

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + Make non-commercial use of the files We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + Maintain attribution The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + Keep it legal Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

E.Eng. Lib. TN 671 L712

THE METALLURGISTS AND CHEMISTS' HANDBOOK

McGraw-Hill Book Company

Publishers of Books for

Electrical World The Engineering and Mining Journal

Engineering Record Engineering News

Railway Age Gazette American Machinist

Signal Engineer American Engineer

Electric Railway Journal Coal Age **Power**

Metallurgical and Chemical Engineering

THE METALLURGISTS AND CHEMISTS' HANDBOOK

A REFERENCE BOOK OF TABLES AND DATA FOR THE STUDENT AND METALLURGIST

COMPILED BY

DONALD M. LIDDELL

CONSULTING METALLURGICAL ENGINEER, AND SOMETIME MANAG-ING EDITOR OF The Engineering and Mining Journal

FIRST EDITION
SECOND IMPRESSION

McGRAW-HILL BOOK COMPANY, Inc. 239 WEST 39TH STREET. NEW YORK

LONDON: HILL PUBLISHING CO., LTD. 6 & 8 BOUVERIE ST., E. C. 1916

COPYRIGHT, 1916, BY THE McGraw-Hill Book Company, Inc.

Mis. b. 13. de Mancrede 8-21-1923 tast. Eig. Lit.

Trigonometric Abbreviations

sin	sine	tan	tangent
cos	cosine	\mathbf{cot}	cotangent
sec	secant	versin	versed sine
csc	cosecant	covers	coversed sine
sin ⁻¹	θ angle whose sine is θ	$\sin \theta^{-1}$	$\frac{1}{\sin \theta}$

The Greek Alphabet

$\mathbf{A}, \boldsymbol{\alpha}$ alpha	I, iota	$P_{,\rho}$ rho
B,β beta	K, kappa	Σ , s, σ sigma
Γ, γ gamma	Λ,λ lambda	T, tau
Δ, δ delta	$\mathbf{M}, \boldsymbol{\mu} \mathbf{m} \mathbf{u}$	T,v upsilon
$\mathbf{E}_{,\epsilon}$ epsilon	N, ν nu	Φ, ϕ phi
Z,; zeta	Ξ,ξ xi	X,χ chi
H, η eta	0,0 omicron	$\Psi,\!\psi$ psi
$\Theta, \theta, \vartheta$ theta	Л,π рі	Ω, ω omega

Mathematical Constants

$$e = 2.718281828459045$$

$$\pi = \frac{355}{113} \text{ (approx.)}.$$

$$\frac{\pi}{\pi} = 3.14159265358979$$

$$\sqrt{\pi} = 1.772$$

$$\pi^{2} = 9.8696$$

$$\frac{1}{\pi} = 0.5642$$

$$\sqrt{\frac{1}{\pi}} = 1.2599210$$

$$\sqrt{\frac{3}{5}} = 0.7937002$$

$$\sqrt{\frac{3}{5}} = 1.7320508$$

$$\log_{\bullet} 10 = 0.434294$$

$$e = \frac{299}{110} \text{ (approx.)}.$$

$$\log_{\bullet} \pi = 0.4971499$$

$$\log_{\bullet} x = 2.302585 \log_{10} x$$

$$\frac{1}{\pi_{2}} = 0.10132$$

$$\sqrt{\frac{3}{5}} = 1.4422509$$

$$\sqrt{\frac{5}{5}} = 2.2360680$$

$$\sqrt{\frac{5}{5}} = 1.709621$$

Temperature Reduction

The Fahrenheit scale is based on 212° as the boiling point of water at normal pressure, 32° as the freezing point. Its zero was formerly supposed to be the lowest temperature attainable artificially.

The Centigrade (Celsius) scale assumes the freezing point of water as being 0°, the boiling point under normal pressure as 100°.

The Reaumur scale assumes the freezing point of water as θ° , the boiling point of water as 80° .

$$\frac{8}{10}$$
 C.° = R.°; $\frac{10}{8}$ R.° = C.°
 $\frac{5}{6}$ (F.° - 32) = C.°; $\frac{9}{5}$ C.° + 32 = F.°
 $\frac{4}{9}$ (F.° - 32) = R.°; $\frac{9}{4}$ R.° + 32 = F.°

Units of Heat

The British Thermal Unit (B.T.U.) is the quantity of heat equired to raise the temperature of 1 lb. of water 1°F., at or ear its maximum density (39.1°F.).

The calorie (cal.) is the quantity of heat necessary to raise the temperature of 1 gram of water from 10°C. to 11°C. (sometimes also defined as "from 4°C. to 5°C.," less commonly still, from "0°C. to 1°C."

The kilogram-calorie (Cal.) is 1000 times the above.

The pound-calorie is the quantity of heat necessary to raise the temperature of 1 lb. of water 1°C. (usually from 4°C. to 5°C.).

1.0 Cal. = 3.968 B.T.U. = 2.2046 lb.-cal. 1.0 B.T.U. = 0.252 Cal. = 778 ft.-lb. 1 lb.-Cal. = ½ B.T.U. = 0.4536 Cal.

Latent heat of a substance is the number of calories required to be absorbed to change 1 gram of the substance from a solid to a liquid or a liquid to a gas, without change of temperature. An equal quantity is given out when the reverse change takes place.

Specific heat of a substance is the ratio of the quantities of heat necessary to raise the temperature of equal masses of the substance and of water from the same to the same

temperatures.

The equivalent points on the different scales are

 $0.0^{\circ} C = 0.0^{\circ} R.$ - $40.0^{\circ} C = -40.0^{\circ} F.$ - $25.6^{\circ} R = -25.6^{\circ} F.$

Scale of Temperatures by Color of Iron¹

Dark red—hardly visible	970°F.	Orange	2000°F.
Dull red	1300°F.	Yellow	2150°F.
Cherry—dark	1450°F.	White heat	2350°F.
Cherry—red	1650°F.	White welding	2600°F.
Cherry—light	1800°F.	White-dazzling	2800°F.

Standard Thermometric Points²

Ice melts	0.0°C.	Zinc solidifies	419.4°C.
Water boils	100.0°C.	Sulphur boils	444.7°C.
Aniline boils	184.1°C.	Antimony solidifies	630.7°C.
Naphthalene boils	218.0°C.	Sodium chloride	
Tin solidifies	231.9°C.	solidifies	801.0°C.
	306.0°C.	Silver solidifies	960.5°C.
Lead solidifies	327.4°C.	Copper solidifies	1083.0°C.

Weights and Measures

LINEAR MEASURE—ENGLISH

12 in. = 1 ft. 3 ft. = 1 yd. $5\frac{1}{2}$ yd. or $16\frac{1}{2}$ ft. = 1 rod or perch.

320 rods, 1760 yd., 5280 ft. = 1 mile.

Also a number of miscellaneous units, some of which are obsolete, or obsolescent, others are used by certain trades only.

¹ For tables of melting points, see pp. 138, 210, 240 and 434. For Segercone data see p. 431.

2 According to the National Physical Laboratory.

```
= \frac{1}{7} 2 in.
   A point
                                 = \frac{1}{12} in.
   A line
   A barleycorn
                                    1/3 in.
                                 = 3 in.
   A palm
                                 = 4 in.
   A hand
                                 = 9 in.
   A span
   A cubit
                                 = 18 \text{ in.}
                                 = 30 \text{ in.}
   A military pace
                                 = \frac{1}{100} chain
   A knot (nautical mile) = 6086 ft.
   A fathom
                                 = 6 ft. (United States)
   A fathom
                                 = 6.08 \text{ ft. (British)}
   1 ell (English)
                                 = 45 in.
   1 ell (Dutch)
                                 = 1.094 \text{ yd.}
   1 bolt
                                 = 40 \text{ yd}.
   A chain
                                 = 4 \text{ rods } (66 \text{ ft.}) = 20.117 \text{ meters}
                                 = \frac{1}{8} mile
   A furlong
                                 = 3 \text{ knots}
   A league
                                 = 120 fathoms (United States)
   A cable length
                                 = 608 \text{ ft. (British)}
   A cable length
An International Geographical mile = \frac{1}{15}° at equator = \frac{24,350.3}{15} ft.
A British nautical mile
                                                  6,080.4 ft.
```

Linear Measure—French¹

10 millimeters = 1 centimeter \cdot 10 centimeters = 1 decimeter10 decimeters = 1 meter= 1 dekameter 10 meters 10 dekameters = 1 hektometer 10 hektometers = 1 kilometer 10 kilometers = 1 myriameter.

A micron is 1_{000} mm.; a millimicron = 1_{000} micron; 1 angström unit = 1_{000} millimicron

Conversion Table, Linear Measure

1 in. = 2.53998 cm.1 cm. = 0.3937043 in.1 ft. = 0.30479 m. 1 m. = 39.36996 in. = 3.28083 ft.1.09362 yd. 1 yd. = 0.914399 m.1 m. == 1 km. = 0.62137 mi. = 3280.83 ft.1 mi. = 1.60934 km.

The old French measures and their equivalents are:

1 toise = 1.9490366 m.1 pied = 0.3248394 m.1 pouce = 2.706995 cm.1 ligne = 0.225583 cm.

1 toise = 6 pieds = 72 pouces = 864 lignes

The decimeter, dekameter, hektometer and myriameter are seldom used as compared with the other measures. When the metric system was devised the meter was supposed to be one ten-millionth part of the quadrant of the earth's surface. However, owing to inaccuracies of measurement, this is only approximately true, and the meter must be defined as the length of a standard bar of platinum kept in Paris, when measured at a temperature of sero degrees centigrade. of sero degrees centigrade.

Square Measure—English

```
= 1 \text{ sq. ft.}
                     144 sq. in.
                        9 sq. ft.
                                          = 1 \text{ sq. yd.}
                  30.25 sq. yd. \
                                          = 1 \text{ sq. rod}
                 272.25 sq. ft. \( \)
                     160 sq. rd.
                       10 sq. ch.
                                          = 1 \text{ acre}
                        4 roods
                  43,560 sq. ft.
                     640 acres
                                          = 1 \text{ sq. mi.}
A square of flooring or roofing = 100 \text{ sq. ft.}
A section of land
                                       = 1 \text{ mi. sq.}
A township
                                       = 36 \text{ sq. mi.}
A board foot
                                       = 1 ft. square \times 1 in. thick
```

Square Measure—French

```
100 sq. mm. = 1 sq. cm.

100 sq. cm. = 1 sq. dm.

100 sq. dm. = 1 sq. m. (centar)

100 sq. m. = 1 sq. dekameter or ar

100 sq. dekameters = 1 sq. hektometer (hektar)

100 sq. hektometers = 1 sq. kilometer
```

Conversion Table, Square Measure

```
1 centar (1 sq. m.) = 1550 sq. in. = 10.764 sq. ft.

1 ar = 119.6 sq. yd.

1 hectar = 2.47104 acres. 1 acre = 0.40469 hektar

1 sq. cm. = 1.5500 sq. in. 1 sq. in. = 6.4516 sq. cm.

1 sq. meter = 10.76390 sq. ft. 1 sq. ft. = 0.092903 sq. m.

1 sq. km. = 0.3861 sq. mi. 1 sq. mi. = 2.58999 sq. km.
```

Cubic Measure—English¹

```
1728 cu. in = 1 cu. ft.
27 cu. ft. = 1 cu. yd.
128 cu. ft = 1 cord
50 cu. ft. of square timber = 1 load
40 cu. ft. of unhewn timber = 1 load
A board foot = 1 ft. square × 1 in. thick
```

Weight-English

```
Avoirdupois

16 drams (dr.) = 1 ounce (oz.)

16 oz. = 1 pound (lb.)

100 lb. = 1 hundred-weight (cwt.)

20 cwt. = 1 ton

Troy

24 grains = 1 pennyweight (dwt.)

20 dwt. = 1 oz. Tr.

12 oz. Tr. = 1 lb. Tr.
```

¹ For French cubic equivalents see under "Measures of Capacity."

Also in England, and the coal and iron trade in some of the colonies and the United States

112 lb. $= 1 \log cwt$. 1 stone = 14 lb. 2240 lb. = 1 long ton

The Avoirdupois pound = 7000 grains = 14.5833 oz. Tr.
The Troy pound = 5760 grains = 13.1657 oz. Avoir.
The Avoirdupois ounce = 437.5 grains = 0.9115 oz. Tr.

= 29,166.66 oz. Tr. 1 ton = 0.89287 long ton1 ton $1 \log ton = 1.12 \text{ short tons}$

(Troy weight is used in weighing gold, silver, platinum, etc. In weighing precious stones the metric carat = 200 mg., is now used.)

> 1 barrel of flour 8 sacks = 196 lb.

1 barrel of pork = 200 lb.

4 sacks = 376 lb.1 barrel of cement =

Weights—French

10 milligrams = 1 centigram 10 centigrams = 1 decigram 10 decigrams = 1 gram10 grams = 1 dekagram10 dekagrams = 1 hectogram $10 \text{ hectograms} = 1 \text{ kilogram}^1$

> 100 kilograms = 1 metric quintal1000 kilograms = 1 metric ton (tonne) or millier

Conversion Table, Weight

= 28.34954 grams1 oz. avoir. = 453.59 grams1 lb. avoir. = 907.18 kg.1 ton

1 gram = 0.035274 oz. avoir. = 0.00220 lb. = 35.27392 oz. avoir. = 2.2046223 lb. 1 kg.

1 metric ton = 1.102311 tons = 0.9842 long tons

= 64.799 mg.1 grain = 1.55518 g.1 dwt. = 31.1035 g.= 0.37324 kg. 1 oz. Troy 1 lb. Troy

= 15.4324 gr. = 0.64301 dwt.1 gram

 $= 0.64301 \, \text{dwt.} = 0.03215 \, \text{oz. Tr.}$ 1 mg. = 32.15076 oz. Tr. = 2.67923 lb. Tr. 1 mg.

The libra used in Spain, Portugal and Spanish America differs slightly from the U.S. pound, ranging from 1.012 in Portugal and Brazil to 1.016 in Cuba and Porto Rico.

The Assay Ton.—A weight used by assayer such that 1 ton (2000 lb.):1 oz. Tr.::1 A.T.:1 mg.; i.e., if the assayer weighs

When the metric system was devised, it was intended that 1 gram should equal the mass of 1 cubic centimeter of water at its greatest density (4°C.) This relation does not exactly hold, and it is necessary to define the gram as the one-thousandth part of a standard mass of platinum kept in Paris. At 4°C. the mass of 1 cc. of water differs so slightly from unity that for nearly all calculations no correction is necessary. According to delépinay, Benoit and Buisson, 1 kg. of water at 4°C. and 760 mm. pressure = 1000.028 c.c.

out assay tons, each milligram of metal recovered represents 1 Troy oz.

1 A.T. = 29.16667 grams

On the English system, ton of 2240 lb.

1 A.T. = 32.66667 grams

Apothecaries Weight

20 grains = 1 scruple (3) 3 9 = 1 dram (3) 8 3 = 1 ounce (3) 12 3 = 1 lb. Tr.

Apothecaries Measure

60 minims $(\mathfrak{M}) = 1$ dram 8 drams = 1 fluid ounce 16 fl. oz. = 1 pt.

The apothecaries grain is equal to the Troy grain; the scruple to $\frac{5}{6}$ of the pennyweight.

1 gr. = 64.799 mg. $\mathfrak{F} = 10.780$ mg.

Measures of Capacity—English

31½ gal. = 1 barrel (bbl.) U. S. = 1 hogshead (hhd.)

2 hhd. = 1 pipe

42 gal. = 1 bbl. (Standard Oil Co.), formerly

84 gal. (2 tierces) = 1 puncheon

A liquid gallon (U. S.) contains 231.0 cu. in.

An Imperial gallon contains 277.408 cu. in.

A bushel (U. S.) contains 2150.42 cu. in.

An Imperial bushel contains 2218.192 cu. in.

A quarter contains 8 Imperial bu.

NOTE.—It can be seen that the dry quart contains 671/3 cu. in., while the liquid quart contains only 573/4 cu. in. There is therefore no royal road to reducing dry measures to wet equivalents.

1 Imperial gal. = 1.20094 U. S. gal. 1 U. S. gal. = 0.83268 Imp. gal. 1 Imp. bu. = 1.03151 U. S. bu. 1 U. S. bu. = 0.96945 Imp. bu. 1 gal. (ale or beer) = 1.2208 U. S. gal.

¹ Sometimes given 277.274.

² Sometimes given 2219.28.

```
Grains per U. S. gal. × 17.138 = parts per million
Grains per Imp. gal. × 14.285 = parts per million
                        \times 0.583 = grains per U. S. gal.
 \times 0.700 = grains per Imp. gal.
Parts per million
Parts per million
              Measures of Capacity—French
```

1000 cu. mm. = 1 c.c.

1000 c.c. = 1 cu. dm. (liter)

1000 cu. dm. = 1 cu. m.

In measuring wood, the cubic meter is called a ster.

10 milliliters = 1 centiliter

10 centiliters = 1 deciliter

10 deciliters = 1 liter

10 liters = 1 dekaliter

10 dekaliters = 1 hectoliter

10 hectoliters = 1 kiloliter

Conversion Tables, Cubic Measure

1 cu. in. = 16.38720 c.c.

= 0.06102376 cu. in. = 0.0000353 cu. ft.

1 cu. ft. = 0.028317 cu. m.

1 cu. m. = 35.31445 cu. ft. = 1.30794 cu. yd.

1 cu. yd. = 0.764553 cu. m.

Liquid Equivalents

= 29.57370 milliters 1 fl. oz.

1 milliliter = 0.3381 fl. oz. = 0.061027 cu. in.

1 gill = 1.1829 deciliters

1 deciliter = 0.8454 gills

1 quart = 0.94636 liters 1 liter = 1.0567 quarts.

1 U. S. gal. = 3.78543 dekaliter

1 dekaliter = 2.6417 gal.

Dry Equivalents

= 5.5061 centiliters 1 pt.

1 centiliter = 0.18162 pt.

= 1.10122 liters = 0.90808 quarts 1 qt.

1 liter

1 pk. = 0.08810 hectoliter

1 hectoliter = 2.8377 bu.

1 bu. (U. S.) = 0.35239 hectoliter

1 kiloliter = 1.3079 cu. yd.

Circular and Angular Measure

60 sec. (") = 1 minute (")

60 min. (') = 1 degree (\circ)

360 deg. ($^{\circ}$) = 1 circumference

In the higher mathematics another unit is used:

 2π radians = 1 circumference

 \therefore 1 radian = 57.2957795° = 57° 17′ 44.806″

Time

60 sec. = 1 min.; 60 min. = 1 hr.; 24 hr. = 1 day 365.242218 solar days = 1 year 29 days 12 hr. 44 min. = 1 lunar month

A seconds pendulum = 39.138 in. = 0.9958 meters in the latitude of New York at sea level.

The period of a pendulum is $\pi \sqrt{\frac{l}{g}}$, where l is length, and g the acceleration due to gravity.

Miscellaneous

20 units = 1 score
12 units = 1 dozen
12 dozen = 1 gross
12 gross = 1 great gross
24 sheets = 1 quire
20 quires = 1 ream
2 reams = 1 bundle
5 bundles = 1 bale

1 atmosphere = 14.7 lb. per sq. in. = 29.922 in. of mercury = 33.9 ft. of water

C.G.S. Units

The unit of force is the dyne. It is that force which applied to a mass of one gram will give it an acceleration of one centimeter in one second.

The unit of work is the erg. This is the work done by one erg acting through a distance of one centimeter. The joule $= 10^7$ ergs.

A calorie is the heat necessary to raise the temperature of 1 gram of water from 0°C. to 1°C.

A great calorie (Calorie) is the heat necessary to raise the temperature of 1 kg. of water from 0°C. to 1°C.

Unit	Erg	Joule	Kilogram- meter (g. = 981)	Calorie	Small calorie
Erg	1	10-7	1.019×10 ⁻⁸	2.39011 ×10 ⁻¹¹	2.39011 ×10 ⁻⁸
Joule	107	1	1.019	2.39011 ×10-4	2.39011 ×10 ⁻¹
Kilogram-meter $(g. = 981)$	981.0×10 ⁵	9.81	1	2.3446 ×10 ⁻³	2.3446
Calorie	418.4×108	4184	426.5	10	1000

The unit magnetic mass or pole is such that placed at a distance of one centimeter from an identical mass, it exercises a repulsion equal to 1 dyne.

The permeability is the ratio of flux density to magnetic

intensity.

The unit of electric current in the C.G.S. system is a current that exerts a force of one dyne on a unit magnetic pole placed at the center of an arc of the circuit, 1 cm. long, and 1 cm. radius. The practical unit is the ampere (see below), which is one-tenth the C.G.S. unit.

The C.G.S. unit of quantity is the quantity which in one second is conveyed by a C.G.S. unit of current. The practical unit is the coulomb, the quantity of current passing per second, in a current carrying one ampere. It is one-tenth the C.G.S.

The C.G.S. unit of potential difference or electromotive force is the potential difference which exists between two points of a conductor conveying a unit current when one erg of work is done per second. The practical unit is the volt (see below) = 10⁸ × the C.G.S. unit.

The C.G.S. unit of resistance is the resistance possessed by a conductor through which a unit e.m.f. causes a unit current to flow. The practical unit is the ohm (see below) = $10^9 \times$ the C.G.S. unit.

The C.G.S. unit of capacity of a condenser is that capacity which gives a unit potential difference between the coatings when either coating has a unit quantity of electricity. The farad is the practical unit and equals 10⁻⁹ times the C.G.S. unit.

A Gauss is the unit of field strength, the intensity of field which acts on a unit pole with a force of one dyne. A unit magnetic pole has 4π lines of force proceeding from it. It is equal to gilberts per centimeter length. Gausses = maxwells

A Maxwell is the unit of magnetic flux, the amount of magnetism passing through every square centimeter of a field of unit density. The weber is 1,000,000 maxwells. If a conductor cuts a magnetic field so that one volt is induced, 100,000,000 maxwells are cut per second.

A Gilbert is the unit of magneto-motive force, the amount produced by $\frac{10}{4\pi} = 0.7958$ ampere turns. The m.m.f. of a coil

is 1.2566 times the ampere turns. $\phi = \text{flux in maxwells.}$

Reluctance is that quantity in a magnetic circuit which limits the flux under a given m.m.f. It corresponds to the resistance in the electric circuit.

The Oersted is the unit of magnetic reluctance, it is the

reluctance of a cubic centimeter of an air-pump vacuum.

Inductance is the property of a circuit which opposes any change in current flowing by inducing a counter-electromotive force in the circuit at the time the current is changing. The practical unit is the henry (see below) = $10^9 \times$ the C.G.S. unit.

PRACTICAL ELECTRICAL UNITS

Ohm—unit of resistance. The International Ohm¹ is the resistance offered to an unvarying electric current by a column

The true ohm (=10° electromagnetic C.G.S. units) is apparently the resistance of 106.29 cm. of mercury 1 sq. cm. in section. The 1884 legal ohm = 0.9972 int'l. ohms. The B.A. ohm = 0.9866 int'l. ohm.

A joule is almost equal to the energy expended in one second by an international ampere in an international ohm.

of mercury at 0°C., 14.4521 grams in mass, of a constant cross section, and of a length of 106.3 cm.

Coulomb—unit of quantity. Equal to one ampere passing

for one second.

Ampere—unit of current. The International Ampere is the unvarying electric current which, when passed through a solution of nitrate of silver in water, under certain specifications, deposits silver at the rate of 0.00111800 grams per second.

International Volt—unit of pressure. It is that electrical pressure which will steadily produce a one-ampere current through a one-ampere resistance. For practical use it is $\frac{1000}{1434}$ of the e.m.f. of the Clark cell at 15°C.

International Watt-unit of energy. It is the energy expended per second by an unvarying electric current of one International Ampere under an electric pressure of an International Volt.

International Farad—unit of capacity. It is the capacity of a conductor which is charged to a potential of one volt by

one coulomb of electricity.

International Henry—unit of inductance. It is the inductance in the circuit when the e.m.f. induced in the circuit is one international volt, while the inducing current varies at the rate of one international ampere per second.

Ohm's Law.—Current in amperes =

$$\frac{\text{Pressure in volts}}{\text{Resistance in ohms}} \text{ or } I = \frac{E}{R}$$

Power in watts equals energy of the current multiplied by the

Direct current—P (watts = E (volts) $\times I$ (amperes)

$$=\frac{E^2}{R}=IR^2$$

Alternating current—

single-phase, $P = EI \times \text{Power factor}$ two-phase, $P = \sqrt{2}EI \times \text{Power factor}$ (line values; two

three-phase, $P = \sqrt{3}EI \times \text{Power}$ factor (line values; three wire)

Units of Force

1 poundal = 13,825 dynes 1 gram's weight = 980 dynes 1 pound's weight = 444,518 dynes

Work and Energy

1 foot-pound = $1.383 \times 10^7 \text{ ergs} = 1.383 \text{ joules} = 0.1383 \text{ kilo-}$ gram-meters

1 watt = 1 joule per second

1 kilogram-meter = 7.283 foot-pounds

Weight, Force or Pressure, Combined with Areas

1 atmosphere = 760 mm. of mercury = 29.9212 in. of mercury = 10.3329 m. of water = 33.9006 ft. of water = 1.03329 kg. per sq. cm. = 14.6969 lb. per

sq. in.

1 barie = 1 dyne per sq. cm. = 0.00208870 lb. per sq. ft.

1 foot-pound = 13.8255 kilogram centimeters = 3.306×10^{-4} cal.

1 kg. per sq. m. = 14.2234 lb. per sq. in.

1 lb. carbon oxidized to $CO_2 = 14,544$ heat units.

Table of Equivalent Values for Power Expressed in Various English and Metric Units

	Watt	Kw.	English h.p.	Continental h.p.	Kgm. per sec.	Ftlb. per sec.	Kg cal. per sec.	B.t.u. per sec.
1 watt is equal to		0.001000	0.00134	0.00136	0.102	0.737	0.000238	0.000947
1 kw. is equal to 1 English (and Amer-	1000.0	1.000	1.34	1.36	102.0	737.0	0.238	0.947
ican) h.p 1 Continen-		0.746	1.000	1.015	76.0	550.0	0.178	0.707
tal h.p 1 kgm. per	735.0	0.735	0.985	1.000	75.0	541.0	0.175	0.696
sec	9.81	0.00981	0.0131	0.0133	1.000	7.233	0.00234	0.00930
sec 1 kgcal. per	1.356	0.00136	0.00182	0.00185	0.138	1.000	0.000324	0.00129
sec 1 B.t.u. per	4200 .0	4.20	5.61	5.70	427.0	3090.0	1.000	3.968
sec	1055. 0	1.055	0.415	0.422	107.6	778.0	0.252	1.000

Light—velocity of, 299,583 km. per sec. = 186,319 mi. per sec. Wave length, red light—B line—0.000068702 cm. Wave length, violet light—K line—0.000039338 cm.

Some Foreign Weights and Measures and the U.S. Equivalents¹

1 almude (Portugal) = 4.422 gal.1 arobe (Paraguay) = 25 lb.1 arroba, dry (Argentine)
1 arroba, liquid (Cuba, Spain, = 25.3171 lb.= 4.263 gal.Venezuela) 1 arshine (Russia) =28 in.1 sq. arshine (Russia) = 5.44 sq. ft.1 baril (Argentine, Mexico) = 20.079 gal1 braca (Brazil) = 2.407 yards = 0.119305 in.1 bu (Japan) 1 candy (India) = 529 lb.

¹ "Foreign Weights, Measures and Moneys." By John J. Macfarlane.

14 METALLURGISTS AND CHEMISTS' HANDBOOK

```
1 catty (China)
                                    = 1.333 \text{ lb.}
1 catty (Japan)
1 catty (Java)
                                    = 1.323 lb.
                                    = 1.356 \, \text{lb.}
                                    = 1.39 lb.
1 catty (P. I.)
1 catty (Str. Sett.)
                                    = 1.333 \text{ lb.}
1 catty (Sumatra)
                                    = 2.118 lb.
1 centaro (Central America)
                                    = 4.2631 \text{ gal.}
                                    = 1.049867 \text{ ft.}
1 chih (China)
                                    = 357.916  ft.
1 cho (Japan)
1 cuadra (Argentine)
                                    = 4.2 acres
1 dessiatine (Russia)
                                    = 2.6997 \text{ acres}
1 doli (Russia)
                                    = 0.685 grains
1 fanega (Argentine)
                                    = 3.89 \, \mathrm{bu}.
1 fen (China)
                                    = 0.12598 \text{ in.}
                                    = 0.015181 \text{ acres}
1 fen (sq.) (China)
                                    = 0.9028lb. = 409 grams
1 funt (Russia)
1 go (Japan)
                                    = 1.270506 gill liquid =
                                       0.0198517 peck dry
1 hao (China)
                                    = 0.001260 \text{ in.}
1 sq. hao (China)
                                    = 0.00015181 \text{ acres}
1 jo (Japan)
                                    = 3.31404 \text{ yd}.
1 ken (Japan)
                                    = 1.983427 yd.
                                    = 1.32277 lb. Avoir.
= 39.7033 gal. liquid =
1 kin (Japan)
1 koku (Japan)
                                       4.96291 bu. dry
1 kwan (Japan)
                                    = 8.26733 lb. Avoir.
1 legua (Brazil)
                                    = 4.102 miles
1 li (China)
                                    = 0.012598 \text{ in.}
1 liang (China)
                                    = 1.31561 oz. Avoir.
1 lyi (China)
                                    = 0.0015181 \text{ acres}
1 manzana (Costa Rica)
                                    = 1.625 acres
1 marc (Bolivia)
                                    = 0.507 lb.
1 maund (Bengal)
                                    = 82.2855 lb.
1 maund (Bombay)
                                    = 28 lb.
1 maund (Madras)
                                    = 25 lb.
1 meou (China)
                                    = 0.15181 \text{ acres}
1 milla (Nicaragua, Honduras) = 1.1493 miles
1 momme (Japan)
                                    = 2.4123045 \, dwt.
1 pie (Argentine)
                                    = 0.9478 \text{ ft.}
1 pikul (Borneo)
                                    = 135.6354 \text{ lb.}
1 pikul (China)
                                    = 133\frac{1}{3} lb.
1 pikul (Japan)
                                    = 132.277 \text{ lb.}
1 pikul (Java)
                                    = 135.6 lb.
1 pikul (P. I.)
                                    = 139.485 lb.
                                   = 133\frac{1}{3} lb.
1 pikul (Str. Sett.)
                                    = 36.1128 lb.
1 pood (Russia)
1 pulgada (Argentine)
                                    = 0.947 \text{ in.}
                                    = 101.28 lb.
1 quintal (Argentina)
1 quintal (Bolivia, Chile, Colombia, Dominican Repub.,
                                    = 101.4 lb.
  Spain)
                                    = 129.526 lb.
1 quintal (Brazil)
```

```
1 quintal (Costa Rica)
                                   = 101.465 lb.
1 quintal (Syria, Turkey)
                                   = 125 lb.
                                   = 2.440338 \text{ mi.}
1 ri (Japan)
1 ri (marine) (Japan)
                                   = 1.1506873 \text{ mi.}
1 sagene (Russia)
                                   = 7 \text{ ft.}
1 sashen (Russia)
                                   = 7 lb.
1 shaku (Japan)
                                   = 11.9305424 in.
1 sheng (China)
                                   = 2.7354 \text{ liq. gal.}
                                   = 1.5881325 \, \text{qt. liquid} =
1 sho (Japan)
                                      0.1985166 pecks dry
1 sun (Japan)
                                   = 1.1930542 \text{ in.}
1 tan (Japan)
                                   = 0.24507 acre
1 tch'e (China)
                                   = 12.598 \text{ in.}
                                   = 117,600 \text{ sq. ft.}
1 tchetvert (Russia)
                                   = 3.9703313 gal. liquid
1 to (Japan)
1 ts'onen (China)
                                   = 1.2598 in.
1 tsubo (Japan)
                                   = 3.953829 \text{ sq. yd.}
1 vara (Argentine)
                                   = 34.1208 \text{ in.}
                                   = 1.75 in.
1 verchok (Russia)
                                   = 3,500 \text{ ft.}
1 verst (Russia)
1 zolotnik (Russia)
                                   = 658 grains
```

UNITED STATES AND FOREIGN MONEY

(The following figures are based on the gold standard only and do not include exchange.)

```
= $0.9648 = 100 centavos
Argentina (gold)
                            1 peso
                            1 peso
1 krone
                                                = 0.4246 = 100 \text{ centavos}
Argentina (paper)
                                                                 - 100 heller
                                                = 0.203
Austria
Bolivia
                                               = 0.3893
                                                                = 100 centavos
                            1 boliviano
                                                                = 1000 reis
Brazil
                            1 milreis
                                               = 0.5463
                                               = 0.32443 = 100  cents
Ceylon

Chile

1 peso = 0.365 = 100 centavos

China

1 Haikwan tael = 1½ oz. avoir. of silver = 10 mace

Columbian Rep'b. 1 peso = 1.00 = 100 centavos

Costa Rica

1 colon = 0.4654 = 100 centavos

Denmark

1 krone = 0.268 = 100 öre

Ecuador

1 sucre = 0.4867 = 100 centavos

1 pound (£E) = 4.943 = 100 piastres
Ceylon
                            1 rupee
                                                = 1000 milliemes
France
                            1 franc
                                                = 0.193 = 100 \text{ centimes}
                           1 mark = 0.238 = 100 pfennig
1 pound (\pounds) = 4.8665 = 20 shillings = 240 pence<sup>1</sup>
Germany
Great Britain
                            1 \text{ drachma} = 0.193 = 100 \text{ lepta}
Greece
                                                = 0.965 = 100 centavos
= 0.965 = 100 centimes
Guatemala
                            1 peso
                            1 gourde
Haiti
                                              = 0.3979 = 100 centavos
= 0.463 = 100 cents = 1000 cash
= 0.2026 = 100 filler
                            1 peso
1 dollar
1 krone
Honduras
Hongkong
Hungary
                            1 rupee (Rs.) = 0.32443 = 16 annas = 192 pies<sup>2</sup>
1 lira = 0.193 = 100 centesimos
India
                           1 lira
Italy
Japan
                           1 yen
                                               = 0.498
                                                                 = 100 \text{ sen} = 1000 \text{ rin}
                                                = 0.498
Mexico
                            1 peso
                                                                 = 100 centavos
                           1 guilder
                                                = 0.0402 = 100 \text{ cents}
Netherlands
                            1 peso
1 krone
                                                -0.965
                                                                 = 100 centavos
Nicaragua
                                                -0.268
                                                                 = 100 öre
Norway
                                              = 1.00 = 2 silver pesos
= 200 centisimos
= 4.8665 = 10 dinero = 100 centavos
Panama
                            1 balboa
Peru
                            1 libra (£P)

5 shillings = 1 crown; 21 sh. = 1 guinea; 4 farthings = 1 penny (d.).
A lakh = 100,000 rupees; a crore = 10,000,000 rupees.
```

1 peso	_	0.50			
1 milreis	=	1.08	=	1000 reis .	
1 leu	=	0.193			
1 ruble	=	0.515	=	100 kopecks	•
1 peso	-	0.3978	=	100 centavos	
1 peseta		0.193	=	100 centisimos	•
1 dollar	=	0.5677	=	100 cents	
1 krona		0.268	-	100 öre	
1 pound (£T)	=	4.40	=	100 piasters =	4000 paras
1 peso	=	1.0342		100 centavos	•
1 bolivar	=	0.1930	#	100 centimos	
	1 milreis 1 leu 1 ruble 1 peso 1 peseta 1 dollar 1 krona 1 pound (£T) 1 peso	1 milreis = 1 leu = 1 ruble = 1 peso = 1 dollar = 1 krona = 1 pound (£T) = 1 peso =	1 milreis = 1.08 1 leu = 0.193 1 ruble = 0.515 1 peso = 0.3978 1 peseta = 0.193 1 dollar = 0.5677 1 krona = 0.268 1 pound (£T) = 4.40 1 peso = 1.0342	1 milreis = 1.08 = 1 leu = 0.193 = 1 ruble = 0.515 = 1 peso = 0.3978 = 1 dollar = 0.5677 = 1 krona = 0.268 = 1 pound (£T) = 4.40 = 1 peso = 1.0342 =	1 milreis = 1.08 = 1000 reis 1 leu = 0.193 = 100 bani 1 ruble = 0.515 = 100 kopecks 1 peso = 0.3978 = 100 centavos 1 peseta = 0.193 = 100 centisimos 1 dollar = 0.5677 = 100 cents 1 krona = 0.268 = 100 öre 1 pound (£T) = 4.40 = 100 piasters = 1 peso = 1.0342 = 100 centavos

COINAGE STANDARDS1

Country	Gold	Silver coin	Country	Gold coin	Silver coin
Abyssinia		835	Honduras		900
Argentine	900.0	900	Honduras (British)		925
Austria-Hungary		900.835	Hongkong		800
Belgium		900,835	India	916.6	916.6
Bolivia		900	Italy	900.0	900,835
Brazil	916.6	916.6	Japan	900.0	800
Bulgaria	900.0	900,835	Mauritius		800
Canada		925	Mexico		902.7,800
Ceylon		800	Morocco		900,835
Chile	916.6		Newfoundland	916.6	
China	 .	900,866,820			800
Colombia	900.0	900,835	Norway	900.0	800,600,400
Congo	900.0		Panama		900
Corea		800	Paraguay		900
Costa Rica		900	Persia	900.0	
Crete	900.0		Peru		
Curação			Portugal		916.6
Cyprus			Roumania		
Denmark	900.0		Russia		
Dominica			Salvador		
Dutch East Indies			Servia	900.0	
Ecuador	1	900	Siam		900
Egypt	875.0			916.6	
Finland	900.0	868,750		900.0	900,835
France	900.0		Sweden	900.0	800,600,400
Germany	900.0	900	Straits Settlements		900,800
Great Britain	916.0			900.0	
Greece	900.0	900,835	Turkey	910.6	830
Guatemala	900.0		United States	900.0	900
Hayti	900.0		Uruguay		900
Holland	900.0	945,640	Venezuela	900.0	900,835

ALGEBRA

Powers and Roots

According to the binomial theorem

$$(a+b)^{K} = a^{K} + Ka^{K-1}b + \frac{K(K-1)}{1 \cdot 2}a^{K-2}b^{2} + \frac{K(k-1)(k-2)}{1 \cdot 2 \cdot 3}a^{K-3}b^{3} + \dots + \frac{K(K-1)}{1 \cdot 2 \cdot 3} \frac{A^{K-2}b^{K-2}}{1 \cdot 2 \cdot 3} + \frac{K(K-1)}{1 \cdot 2 \cdot 3} \frac{A^{K-1}b^{K-2}}{1 \cdot 2 \cdot 3} + \frac{K(K-1)}{1 \cdot 2 \cdot 3} \frac{A^{K-1}b^{K-1}}{1 \cdot 2 \cdot 3} + \frac{A^{K-1}b^{K-1}b^{K-1}}{1 \cdot 2 \cdot 3} + \frac{A^{K-1}b^{K-1}b^{K-1}b^{K-1}}{1 \cdot 2 \cdot 3} + \frac{A^{K-1}b^{K-1}$$

¹ T. K. Rose, "Precious Metals."

This formula will serve for the solution of any power whatever, and will, in general, serve to indicate the process of the extraction of roots. However, for all practical work on roots and powers, use the table of logarithms on p. 42.

$$\log a^{k} = k \log a$$
$$\log^{k} \sqrt{a} = \frac{\log a}{k}.$$

Permutation, Choice and Chance

The number of different arrangements (or permutations) of n different things taken altogether is factorial n.

(n! or $|\underline{n} = n(n-1) \ (n-2) \ ... \ 3 \times 2 \times 1$)

$$(n! \text{ or } | n = n(n-1) (n-2) \dots 3 \times 2 \times 1)$$

The number of different selections (or combinations) of n different things taken r at a time is:

$$\frac{n(n-1) (n-2) \dots (n-r+1)}{|r|}$$

The number of selections of n things taken r at a time is the same as the number of selections of n things taken n - r at a time.

The number of selection of n things taken r at a time is greatest when: If n is an odd number,

$$r=\frac{n-1}{2}$$

if n is an even number

$$r=\frac{n}{2}$$

The chance of an event happening is expressed by the fraction of which the numerator is the number of favorable ways, and the denominator the whole number of ways, favorable and

If there are several events of which one, and only one can happen, the chance that one will happen is the sum of the respective chances of happening.

Progression

The chief "progressions" are arithmetical, geometrical, and harmonic. They are series of numbers in which a common law connects the successive terms.

Arithmetical progression in a series of numbers consists in a constant difference between the successive terms, as

1, 3, 5, 7, 9, . . . Let a = first term; l = last term; d = the common difference; n = the number of terms; s = the sum of the terms.

$$l = a + (n-1)d = \frac{2s}{n} - a = \frac{s}{n} + \frac{(n-1)d}{2} = -\frac{1}{2}d \pm \sqrt{2ds + \left(a - \frac{d}{2}\right)^2}$$

$$s = \frac{n}{2} \left[2a + (n-1)d \right] = \frac{n}{2} (l+a) = \frac{n}{2} \left[2l - (n-1)d \right] = \frac{l+a}{2} \left(\frac{d+l-a}{d} \right)$$

$$a = l - (n-1)d = \frac{2s}{n} - l = \frac{s}{n} - \frac{(n-1)d}{2} = \frac{1}{2}d \pm \frac{1}{2}d \pm \frac{1}{2}d + \frac{1}{2}d +$$

Geometrical progression in a series of numbers consists in a constant ratio existing between the successive terms, as

4, 8, 16, 32, . . . Let a =first term; l =last term; m =any (middle) term; s =sum; r =ratio or constant multiplier.

$$l = ar^{n-1} = \frac{a + (r-1)s}{r} = \frac{(r-1)sr^{n-1}}{r^{n-1}}$$

$$m = ar^{m-1}$$

$$s = \frac{a(r^n - 1)}{r - 1} = \frac{rl - a}{r - 1} = \frac{n - 1/\overline{l^n} - n - 1/\overline{a^n}}{n - 1/\overline{l} - n - 1/\overline{a}} = \frac{lr^n - l}{r^n - r^{n-1}}$$

$$a = \frac{l}{r^{n-1}} = \frac{(r-1)s}{r^{n-1}} = rl - (r-1)s$$

$$r = \sqrt[n-1]{\frac{l}{a}} = \frac{s - a}{s - l}$$

$$r^n - \frac{s}{a}r + \frac{s - a}{a} = r^n - \frac{s}{s - l}r^{n-1} + \frac{l}{s - l} \equiv 0$$

Harmonic series is one in which the numbers are the reciprocals of those forming an arithmetical progression. Such series are of small practical value, and such questions as arise in them, when solvable, are best answered by inverting the series, and solving as a problem in arithmetical progression. In ancient times a fictitious importance was attached to them owing to the fact that a series of uniform rods of lengths in harmonic progression form a musical scale, hence the name.

INTEREST, ANNUITIES, SINKING FUNDS Simple Interest

If the principal be represented by the interest on \$1 for one year by the amount of \$1 for one year by the number of years by the amount of P after n years by A

Then R = 1 + rSimple interest on P for one year = PrAmount of P for one year = PRSimple interest on P for n years = Pnr= P(1 + nr)Amount P for n years A = P(1 + nr)that is

When any three of the quantities A, P, n, r, are given, the fourth may be found from this last equation.

Since P will in n years at r interest amount to A, P may be considered equivalent in value to A at the end of n years; in other words, P is the "present worth" of A.

Compound Interest

When compound interest is reckoned payable annually. The amount of P dollars in

1 year is
$$P(1+r) = PR$$

2 years is $PR(1+r) \stackrel{.}{=} PR^2$
n years $= PR^n$
or $A = PR^n$ or $P = \frac{A}{R^n}$

When compound interest is reckoned semi-annually. The amount of P dollars in

1/2 year is
$$P\left(1 + \frac{r}{2}\right)$$
1 year is $P\left(1 + \frac{r}{2}\right)^2$
n years, $A = P\left(1 + \frac{r}{2}\right)^{2n}$

When the interest is payable quarterly
$$A = P\left(1 + \frac{r}{4}\right)^{4n}$$

When the interest is payable monthly
$$A = P\left(1 + \frac{r}{12}\right)^{12n}$$

And when the interest is payable q times a year $A = P\left(1 + \frac{r}{q}\right)^{qn}$

$$A = P\left(1 + \frac{r}{q}\right)^{qn}$$

Sinking Funds

If the sum set apart at the end of each year to be put at compound interest be represented by S, then, the sum at the end of the

first year =
$$S$$

second year = $S + SR$
third year = $S + SR + SR^2$
 n th year = $S + SR + SR^2$. . . SR^{n-1}
 $A = S + SR + SR^2$. . . $+ SR^{n-1}$
 $\therefore AR = SR + SR^2$. . . $+ SR^{n-1} + SR^n$
 $\therefore AR - A = SR^n - S$
 $A = \frac{S(R^n - 1)}{R - 1} = S\frac{(R^n - 1)}{r}$

COMPOUND INTEREST AND DISCOUNT TABLES

	<u> </u>	Two p	er cent.	USI AND	Two and one-half per cent.				
Years	Am't of \$1 in n yrs.	Present val. of \$1 due in n yrs.	Am't of \$1 per annum in n yrs.	Present val. of \$1 annuity for n yrs.	Am't of \$1 in n yrs.	Present val. of \$1 due in n yrs.	Am't of \$1 per annum in n yrs.	Present val. of \$1 an- nuity for n yrs.	
1 2	\$1.020. 1.040	.9804 .9612	1.02 2.06	1.000 1.980	1.025 1.051	.9756	1.03 2.08	1.000	
3	1.061	.9423	3.12	2.942	1.077	.9286	3.15	2.927	
	1.082	.9238	4.20	3.884	1.104	.9060	4.26	3.856	
	1.104	.9057	5.31	4.808	1.131	.8839	5.39	4.762	
6 7 8 9	1.126 1.149 1.172 1.195 1.219	.8880 .8706 .8535 .8368 .8203	6.43 7.58 8.75 9.95 11.17	5.713 6.601 7.472 8.325 9.162	1.160 1.189 1.218 1.249 1.280	.8623 .8413 .8207 .8007 .7812	6.55 7.74 8.95 10.20 11.48	5.646 6.508 7.349 8.170 8.971	
11	1.243	.8043	12.41	9.983	1.312	.7621	12.80	9.752	
12	1.268	.7885	13.68	10.787	1.345	.7436	14.14	10.514	
13	1.294	.7730	14.97	11.575	1.379	.7254	15.52	11.258	
14	1.319	.7579	16.29	12.348	1.413	.7077	16.93	11.983	
15	1.346	.7430	17.64	13.106	1.448	.6905	18.38	12.691	
16	1.373	.7284	19.01	13.849	1.485	.6736	19.86	13.381	
17	1.400	.7142	20.41	14.578	1.522	.6572	21.39	14.055	
18	1.428	.7002	21.84	15.292	1.560	.6412	22.95	14.712	
19	1.457	.6864	23.30	15.992	1.599	.6255	24.54	15.353	
20	1.486	.6730	24.78	16.678	1.639	.6103	26.18	15.979	
21	1.516	.6598	26.30	17.351	1.680	.5954	27.86	16.589	
22	1.546	.6468	27.84	18.011	1.722	.5809	29.58	17.185	
23	1.577	.6342	29.42	18.658	1.765	.5667	31.35	17.765	
24	1.608	.6217	31.03	19.292	1.809	.5529	33.16	18.332	
25	1.641	.6095	32.67	19.914	1.854	.5394	35.01	18.885	
26	1.673	.5976	34.34	20.523	1.900	.5262	36.91	19.424	
27	1.707	.5859	36.05	21.121	1.948	.5134	38.86	19.951	
28	1.741	.5744	37.79	21.707	1.996	.5009	40.86	20.464	
29	1.776	.5631	39.57	22.281	2.046	.4887	42.90	20.965	
30	1.811	.5521	41.38	22.844	2.098	.4767	45.00	21.454	
31	1.848	.5412	43.23	23.396	2.150	.4651	47.15	21.930	
32	1.885	.5306	45.11	23.938	2.204	.4538	49.35	22.395	
33	1.922	.5202	47.03	24.468	2.259	.4427	51.61	22.849	
34	1.961	.5100	48.99	24.989	2.315	.4319	53.93	23.292	
35	2.000	.5000	50.99	25.499	2.373	.4214	56.30	23.724	
36	2.040	.4902	53.03	25.999	2.433	.4111	58.73	24.145	
37	2.081	.4802	55.11	26.489	2.493	.4011	61.23	24.556	
38	2.122	.4712	57.24	26.969	2.556	.3913	63.78	24.957	
39	2.165	.4619	59.40	27.441	2.620	.3817	66.40	25.349	
40	2.208	.4529	61.61	27.903	2.685	.3724	69.09	25.730	
41	2.252	.4440	63.86	28.355	2.752	.3633	71.84	26.103	
42	2.297	.4353	66.16	28.799	2.821	.3545	74.66	26.466	
43	2.343	.4268	68.50	29.235	2.892	.3458	77.55	26.821	
44	2.390	.4184	70.89	29.662	2.964	.3374	80.52	27.166	
45	2.438	.4102	73.33	30.080	3.038	.3292	83.55	27.504	
46	2.487	.4022	75.82	30.490	3.114	.3211	86.67	27.833	
47	2.536	.3943	78.35	30.892	3.192	.3133	89.86	28.154	
48	2.587	.3865	80.94	31.287	3.271	.3057	93.13	28.467	
49	2.639	.3790	83.58	31.673	3.353	.2982	96.48	28.773	
50	2.692	.3715	86.27	82.052	3.437	.2909	99.92	29.071	

For interest at 4, 5 and 6 per cent., payable semi-annually, use the tables at 2, 2½ and 3 per cent., dividing the year numeral by 2.

The fourth column, "present value of \$1 annuity for n years," is calculated for an annuity payable at the beginning of the year. The data for an annuity payable at the end of the year by taking the next year's figure and deducting \$1 from it.

COMPOUND INTEREST AND DISCOUNT TABLES

	-	Three p	er cent.		Three and one-half per cent.				
Years	Am't of \$1 in n yrs.	Present val. of \$1 due in n yrs.	Am't of \$1 per annum in n yrs.	Present val. of \$1 annuity for n yrs.	Am't of \$1 in n yrs.	Present val. of \$1 due in n yrs.	Am't of \$1 per annum in n yrs.	Present val. of \$1 annuity for n yrs.	
1 2 3 4 5	\$1.030 1.061 1.093 1.126	.9709 .9426 .9151 .8885	1.03 2.09 3.18 4.31	1.000 1.971 2.913 3.829	\$1.035 1.071 1.109 1.148	.9662 .9335 .9019 .8714	1.04 2.11 3.21 4.36	1.000 1.966 2.900 3.802	
6 7 8 9	1.159 1.194 1.230 1.267 1.305 1.344	.8626 .8375 .8131 .7894 .7664 .7441	5.47 6.66 7.89 9.16 10.46 11.81	4.717 5.580 6.417 7.230 8.020 8.786	1.188 1.229 1.272 1.317 1.363 1.411	.8420 .8135 .7860 .7594 .7337 .7089	5.55 6.78 8.05 9.37 10.73 12.14	4.673 5.515 6.329 7.115 7.874 8.608	
11	1.384	.7224	13.19	9.530	1.460	.6849	13.60	9.317	
12	1.426	.7014	14.62	10.253	1.511	.6618	15.11	10.002	
13	1.469	.6810	16.09	10.954	1.564	.6394	16.68	10.663	
14	1.513	.6611	17.60	11.635	1.619	.6178	18.30	11.303	
15	1.558	.6419	19.16	12.296	1.675	.5969	19.97	11.921	
16	1.605	.6232	20.76	12.938	1.734	.5767	21.71	12.517	
17	1.653	.6050	22.41	13.561	1.795	.5572	23.50	13.094	
18	1.702	.5874	24.12	14.166	1.857	.5384	25.36	13.651	
19	1.754	.5703	25.87	14.754	1.923	.5202	27.28	14.190	
20	1.806	.5537	27.68	15.324	1.990	.5026	29.27	14.710	
21	1.860	.5375	29.54	15.877	2.059	.4856	31.33	15.212	
22	1.916	.5219	31.45	16.415	2.132	.4692	33.46	15.698	
23	1.974	.5067	33.43	16.937	2.206	.4533	35.67	16.167	
24	2.033	.4919	35.46	17.444	2.283	.4380	37.95	16.620	
25	2.094	.4776	37.55	17.936	2.363	.4231	40.31	17.058	
26	2.157	.4637	39.71	18.413	2.446	.4088	42.76	17.482	
27	2.221	.4502	41.93	18.877	2.532	.3950	45.29	17.890	
28	2.288	.4371	44.22	19.327	2.620	.3817	47.91	18.285	
29	2.357	.4243	46.58	19.764	2.712	.3687	50.62	18.667	
30	2.427	.4120	49.00	20.188	2.807	.3563	53.43	19.036	
31	2.500	.4000	51.50	20.600	2.905	.3442	56.33	19.392	
32	2.575	.3883	54.08	21.000	3.007	.3326	59.34	19.736	
33	2.652	.3770	56.73	21.389	3.112	.3213	62.45	20.069	
34	2.732	.3660	59.46	21.766	3.221	.3105	65.67	20.390	
35	2.814	.3554	62.28	22.132	3.334	.3000	69.01	20.701	
36	2.898	.3450	65.17	22.487	3.450	.2898	72.46	21.001	
37	2.985	.3350	68.16	22.832	3.571	.2800	76.03	21.290	
38	3.075	.3252	71.23	23.167	3.696	.2706	79.72	21.571	
39	3.167	.3158	74.40	23.492	3.825	.2614	83.55	21.841	
40	3.262	.3066	77.66	23.808	3.959	.2526	87.51	22.103	
41	3.360	.2976	81.02	24.115	4.098	.2440	91.61	22.355	
42	3.461	.2890	84.48	24.412	4.241	.2358	95.85	22.599	
43	3.565	.2805	88.05	24.701	4.390	.2278	100.24	22.835	
44	3.671	.2724	91.72	24.982	4.543	.2201	104.78	23.063	
45	3.782	.2644	95.50	25.254	4.702	.2127	109.48	23.283	
46	3.895	.2567	99.40	25.519	4.867	.2055	114.35	23.495	
47	4.012	.2493	103.41	25.775	5.037	.1985	119.39	23.701	
48	4.132	.2420	107.54	26.025	5.214	.1918	124.60	23.899	
49	4.256	.2350	111.80	26.267	5.396	.1853	130.00	24.091	
50	4.384	.2281	116.18	26.502	5.585	.1791	135.58	24.277	

COMPOUND INTEREST AND DISCOUNT TABLES

		Four p	er cent.		Five per cent.				
Years	Am't of \$1 in n yrs.	Present val. of \$1 due in n yrs.	Am't of \$1 per annum in n yrs.	Present val. of \$1 annuity for n yrs.	Am't of \$1 in n yrs.	Present val. of \$1 due in n yrs.	Am't of \$1 per annum in n yrs.	Present val. of \$1 an- nuity for n yrs.	
1	\$1.040	.9615	1.04	1.000	\$1.050	.9524	1.05	1.000	
2	1.082	.9246	2.12	1.962	1.103	.9070	2.15	1.952	
3	1.125	.8890	3.25	2.886	1.158	.8638	3.31	2.859	
4	1.170	.8548	4.42	3.775	1.216	.8227	4.53	3.723	
5	1.217	.8219	5.63	4.630	1.276	.7835	5.80	4.546	
6	1.265	.7903	6.90	5.452	1.340	.7462	7.14	5.329	
7	1.316	.7599	8.21	6.242	1.407	.7107	8.55	6.076	
8	1.369	.7307	9.58	7.002	1.477	.6768	10.03	6.786	
9	1.423	.7026	11.01	7.733	1.551	.6446	11.58	7.463	
10	1.480	.6756	12.49	8.435	1.629	.6139	13.21	8.108	
11	1.539	.6496	14.03	9.111	1.710	.5847	14.92	8.722	
12	1.601	.6246	15.63	9.760	1.796	.5568	16.71	9.306	
13	1.665	.6006	17.29	10.385	1.886	.5303	18.60	9.863	
14	1.732	.5775	19.02	10.986	1.980	.5051	20.58	10.394	
15	1.801	.5553	20.82	11.563	2.079	.4810	22.66	10.899	
16	1.873	.5339	22.70	12.118	2.183	.4581	24.84	11.380	
17	1.948	.5134	24.65	12.652	2.292	.4363	27.13	11.838	
18	2.026	.4936	26.67	13.166	2.407	.4155	29.54	12.274	
19	2.107	.4746	28.78	13.659	2.527	.3957	32.07	12.690	
20	2.191	.4564	30.97	14.134	2.653	.3769	34.72	13.085	
21	2.279	.4388	33.25	14.590	2.786	.3589	37.51	13.462	
22	2.370	.4220	35.62	15.029	2.925	.3419	40.43	13.821	
23	2.465	.4057	38.08	15.451	3.072	.3256	43.50	14.163	
24	2.563	.3901	40.65	15.857	3.225	.3101	46.73	14.489	
25	2.666	.3751	43.31	16.247	3.386	.2953	50.11	14.799	
26	2.772	.3607	46.08	16.622	3.556	.2812	53.67	15.094	
27	2.883	.3468	48.97	16.983	3.733	.2678	57.40	15.375	
28	2.999	.3335	51.97	17.330	3.920	.2551	61.32	15.643	
29	3.119	.3207	55.08	17.663	4.116	.2429	65.44	15.898	
30	3.243	.3083	58.33	17.984	4.322	.2314	69.76	16.141	
31 32 33 34 35	3.373 3.508 3.648 3.794 3.946	.2965 .2851 .2741 .2636 .2534	61.70 65.21 68.86 72.65 76.60	18.292 18.588 18.874 19.148 19.411	4.538 4.765 5.003 5.253 5.516	.2204 .2099 .1999 .1904	74.30 79.06 84.07 89.32 94.84	16.372 16.593 16.803 17.003 17.193	
36	4.104	.2437	80.70	19.665	5.792	.1727	100.63	17.374	
37	4.268	.2343	84.97	19.908	6.081	.1644	106.71	17.547	
38	4.439	.2253	89.41	20.143	6.385	.1566	113.10	17.711	
39	4.616	.2166	94.03	20.368	6.705	.1491	119.80	17.868	
40	4.801	.2083	98.83	20.584	7.040	.1420	126.84	18.017	
41	4.993	.2003	103.82	20.793	7.392	.1353	134.23	18.159	
42	5.193	.1926	109.01	20.993	7.762	.1288	141.99	18.294	
43	5.400	.1852	114.41	21.186	8.150	.1227	150.14	18.423	
44	5.617	.1781	120.03	21.371	8.557	.1169	158.70	18.546	
45	5.841	.1712	125.87	21.549	8.985	.1113	167.69	18.663	
46	6.075	.1646	131.95	21.720	9.434	.1060	177.12	18.774	
47	6.318	.1583	138.26	21.885	9.906	.1009	187.03	18.880	
48	6.571	.1522	144.83	22.043	10.401	.0961	197.43	18.981	
49	6.833	.1463	151.67	22.195	10.921	.0916	208.35	19.077	
50	7.107	.1407	158.77	22.341	11.467	.0872	219.82	19.169	

MATHEMATICS

COMPOUND INTEREST AND DISCOUNT TABLES

		Six pe	r cent.				Six per	cent.	
Years	Am't of \$1 in n yrs.	Present val. of \$1 due in n yrs.	Am't of \$1 per annum in n yrs.	Present val. of \$1 annuity for n yrs.	Years	Am't of \$1 in n yrs.	Present val. of \$1 due in n yrs.	Am't of \$1 per annum in n yrs.	Present val. of \$1 annuity for n yrs.
1 2 3 4 5	\$1.060 1.124 1.191 1.262 1.338	.8900 .8396 .7921	1.06 2.18 3.37 4.64 5.98	1.000 1.943 2.833 3.673 4.465	26 27 28 29 30	4.549 4.822 5.112 5.418 5.743	.2198 .2074 .1956 .1846 .1741	62.71 67.53 72.64 78.06 83.80	13.003 14.211 14.406
6 7 8 9 10	1.419 1.504 1.594 1.689 1.791	.6651 .6274 .5919	7.39 8.90 10.49 12.18 13.97	5.212 5.917 6.582 7.210 7.802	31 32 33 34 35	6.088 6.453 6.841 7.251 7.686	.1643 .1550 .1462 .1379 .1301	89.89 96.34 103.18 110.43 118.12	14.929 15.084 15.230
11 12 13 14 15	1.898 2.012 2.133 2.261 2.397	.4970	15.87 17.88 20.02 22.28 24.67	8.360 8.887 9.384 9.853 10.295	36 37 38 39 40	8.147 8.636 9.154 9.704 10.286	.1227 .1158 .1092 .1031 .0972	126.27 134.90 144.06 153.76 164.05	15.737 15.846
16 17 18 19 20	2.540 2.693 2.854 3.026 3.207		27.21 29.91 32.76 35.79 38.99	10.712 11.106 11.477 11.828 12.158	41 42 43 44 45	10.903 11.557 12.250 12.985 13.765	.0917 .0865 .0816 .0770 .0727	174.95 186.51 198.76 211.74 225.51	16.138
21 22 23 24 25	3.400 3.604 3.820 4.049 4.292	.2470	42.39 46.00 49.82 53.86 58.16	12.470 12.764 13.042 13.303 13.550	46 47 48 49 50	14.590 15.466 16.394 17.378 18.420	.0685 .0647 .0610 .0575 .0543	240.10 255.56 271.96 289.34 307.76	16.524 16.589 16.650

These tables are an abridgement of the seven-place tables in "Annuaire pour l'an 1913," published for the Bureau of Longitudes, by Gauthier-Villars, Qnai des Grands-Augustins, 55; Paris, France.

ANNUAL INVESTMENT TABLE¹
The sum of money which must be invested at the beginning of each year for a period of 1 to 50 years to amount to \$1000 at compound interest.

2 Per 3 Per 31/2 Per 4 Per 5 Per 6 Per Years Years cent. cent. cent. cent. cent. cent. \$980.39 970.87 961.55 966.18 952.38 943.39 1 2 3 471.25 478.24 457.88 485.43 474.83 464.47 2 302.11 320.31 314.07 307.98 296.30 3 311.04 232.07 229.20 4 237.87 226.45 215.66 220.95 5 188.40 172.35 182.88 180.18 177.53 167.36 5 в 155.42 147.51 6 150.08 144.97 140.02 135.24 112.39 7 131.87 124.19 121.74 126.71 116.97 106.74 99.73 86.37 75.72 8 114.22 8 109.18 104.35 95.32 93.19 82.36 9 100.50 95.57 90.86 82.10 9 71.57 10 89.53 84.69 80.09 10 11 80.57 75.80 73.52 71.30 67.04 63.01 11 12 73.10 68.41 12 66.17 63.99 **59.83** 55.92 13 66.78 62.17 59.96 53.77 13 57.83 49.96 14 61.38 56.82 54.66 52.57 48.59 44.89 14 15 52.20 **56.69** 50.07 48.02 44.14 40.53 15 16 46.07 48.16 **52.60** 36.75 16 44.06 40.26 48.99 45.79 44.61 42.55 17 33.44 17 40.58 36.86 37.49 34.75 32.29 39.44 18 41.46 33.85 30.53 18 36.66 34.17 19 42.92 38.65 31.19 28.80 27.94 19 20 40.35 36.13 20 **25.65** 30.08 23.59 21 38.02 33.86 31.92 26.66 21 22 22 35.91 31.79 29.89 28.08 24.73 21.74 $\overline{23}$ 23 **33.99** 29.92 28.04 26.26 22..99 20.07 $\overline{24}$ 32.**2**3 24 28.20 **26**.35 **24** . 60 21.40 18.57 25 25 30.61 26.63 24.81 23.09 19.95 17.20 29.12 27.74 26 25.18 23.39 21.70 15.95 26 18.63 17.42 16.31 15.28 14.33 27 23.85 14.81 13.77 27 **22.08** 20.42 20.87 19.75 18.72 19.24 18.15 17.14 26.46 25.27 28 22.61 28 29 12.81 11.93 21.47 29 30 24.17 20.41 30 31 13.46 23.13 19.42 17.75 16.21 31 11.12 32 22.17 18.49 16.85 15.34 10.38 32 12.65 33 21.26 14.52 13.76 33 17.63 16.01 11.90 9.69 16.82 34 20.41 15.23 11.20 9.06 34 35 35 19.61 16.06 14.49 10.54 8.47 13.06 12.39 11.77 11.18 36 7.92 36 18.86 15.34 13.80 9.94 37 38 9.37 8.84 18.14 14.67 13.15 7.41 37 17.47 38 12.54 11.97 6.94 14.04 39 16.83 39 8.35 13.44 6.50 10.64 16.23 10.12 40 12.88 7.88 6.10 40 11.43 12.34 10.92 41 9.63 5.72 41 15.66 7.45 42 15.11 11.84 10.43 9.17 7.04 5.3642 8.74 9.98 43 43 14.60 11.36 6.66 5.03 14.11 13.64 8.33 4.72 44 10.90 9.54 6.30 44 45 10.47 9.13 7.94 5.97 4.43 45 13.20 12.78 12.37 8.74 46 10.06 7.57 5.64 4.16 46 47 9.66 9.29 8.37 7.23 47 5.34 3.91 48 8.02 5.06 4.79 3.67 48 6.9049 11.97 8.94 7.69 6.59 3.45 49 3.25 50 50 11.60 7.37 6.29 8.61 4.55

¹ From "Lefax," Philadelphia, Penn.

AMORTIZATION AND DEPRECIATION FORMULAS'

Amount of an annuity which at the end of n years will amortize a capital of \$1 (interest on annuity payments and on original capital figured at the same rate).

Annuity =
$$\frac{r(1+r)^n}{(1+r)^n-1}$$
-\$1

Present value of an annuity of \$1 per year, payable for n years, at the end of the year.

Present value =
$$\frac{1}{r} \left[1 - \frac{1}{(1+r)^n} \right] \cdot \$1$$

The sum produced at the end of n years by placing annually \$1 at r interest, each dollar being deposited at the beginning of the year.

Sum =
$$\frac{1+r}{r}[(1+r)^n-1]$$
-\$1

Present worth of \$1 payable at the end of n years.

Present worth =
$$\frac{\$1}{(1+r)^n}$$

Value at the end of n years of \$1 at compound interest. Value = $(1 + r)^n \cdot \$1$

AREAS

Triangle = base × 1/4 altitude

Triangle (let a, b, and c be the sides and 2s = a + b + c)

Area =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

Trapezoid = 1/2 sum of the bases × the altitude

Circle = πr^2

Sphere = $4\pi r^2 = \pi d^2$

Cylinder (total surface) = $2\pi r^2 + 2\pi rh$ (h = height or altitude) Cylinder (cylindrical surface only) = πdh = $2\pi rh$

Cone =
$$\pi r^2 + 2\pi r (\frac{1}{2} \sqrt{r^2 + h^2})$$

Regular polygons—where side = s, or r = apothem (radius of inscribed circle)

5 sides (pentagon)
6 sides (hexagon)
7 sides (heptagon)
8 sides (octagon)
9 sides (nonagon)
1.720477 $s^2 = 3.63271r^2$ 2.59807 $6s^2 = 3.46410r^2$ 3.633912 $s^2 = 3.37101r^2$ 4.828427 $s^2 = 3.31371r^2$ 6.181824 $s^2 = 3.27573r^2$ 10 sides (decagon)
11 sides (undecagon)
12 sides (duodecagon)
11.196152 $s^2 = 3.22993r^2$ 180°
180°

for n sides,
$$A = \frac{n}{4}s^2 \cot \frac{180^{\circ}}{n} = n\tau^2 \tan \frac{180^{\circ}}{n}$$

^{*} From "Annuaire pour 1915, Bureau des Longitudes."

TARLE.	OF	REGITTAR	POLYGONS
A Charles and the second			I ULIUUMA

	TABLE OF ILEGOLAR TOLIGORS							
No. of sides	Name of polygon	Area side = S $A = cS^2$	pire	un- d circle	Radius of inscribed circle, side	Length of side, radius of circum, circle * 1	Angle at center	Angle between adjacent aides
3 4 5 6 7 8 9 10 11 12	Triangle Bquare Pentagon Hexagon Octagon Nonagon Decagon Undecagon Duodecagon.	0.4330127 1.0000000 1 7204774 2.5980762 3 6339124 4.8284271 6.1818242 7.6942088 9.3656399 11.1961524	1.414 1 238 1.115 1 110 1.083 1 064 1 051 1.042	0.7071 0.8506 1 0000 1 1524 1.3066 1 4619 1.6180 1 7747	0 6882 0 8660 1 0383 1 2071 1.3737 1.5388 1.7028	1.4142 1 1756 1 0000 0 8677 6 7653 0 6840 0 6180 0 5634	90° 72° 60° 51°26′ 45° 40°	135° 140° 144°

Table of the Regular Polyhedrons whose Edge is Unity

	No. of faces	Surface1	Volume ³
Tetrahedron ^a	4	1.7320508	0.1178513
	6	0.0000000	1.0000000
	8	3.4641016	0.4717045
	12	20.6457288	7.6631189
	20	8.6602540	2.1816950

If the edge is not unity, multiply the constant in the table by the square of the side.

2 If the edge is not unity, multiply the constant in the table by the cube of

*The faces of the tetrahedron, octahedron and icocahedron (20 faces) are triangles; of the hexahedron, squares; and of the decahedron, pentagons.

Circular Ring.—Area = $\pi (R^2 - r^2) = \pi (R - r)$ (R + r) = difference in areas between the inner and outer circles.

Quadrant.—Area = $\frac{\pi r^2}{4}$ = 0.7854 r^2 = 0.3927 c^2 . (c = chord.)

Segment.—b = length of arc. θ = angle in degrees. $c = \text{chord} = \sqrt{4(2hr - h^2)}$ Area = $\frac{1}{2}(br - c(r - h))$

Area =
$$\frac{1}{2}[b\tau - c(r-h)]$$

= $\frac{\theta}{360} - \frac{c(r-h)}{2}$

When θ is greater than 180°, then $\frac{c}{2} \times \text{difference}$ between r and h is added to the fraction $\frac{\pi r^2 \theta}{360}$.

Sector.—Area =
$$\frac{1}{2}br = \pi r^2 \frac{\theta}{360^\circ}$$

 θ = angle in degrees b = length of arc

Spandrel.—Area = $0.2146r^2 = 0.1073c^2$ Parabola.—Area = 3/38h

where $c = \left(\frac{4h}{\circ}\right)^2$

Ellipse.—Area = πab

Circum. =
$$\pi(a + b) \frac{64 - 3 \left(\frac{b - a}{b + a}\right)^4}{64 - 16\left(\frac{b - a}{b + a}\right)^2}$$

[close approximation]

Sector of Sphere.—Total surface = $\frac{\pi r}{2}(4h + c)$;

$$c = 2\sqrt{(2hr - h^2)}$$
.
Volume $= \frac{2\pi r^2 h}{3} = \frac{2\pi r^2}{3} \left(r - \frac{\sqrt{4r^2 - c^2}}{2}\right)$

Segment of Sphere.—Spherical surface

$$= 2\pi rh = \frac{\pi}{4}(c^2 + 4h^2)$$

 $=2\pi rh + \frac{\pi}{4}c^2 = \frac{\pi}{2}(c^2 + 2h^2)$ Total surface

Volume
$$= \pi h^2 \left(r - \frac{h}{3} \right) = \pi h^2 \left(\frac{c^2 + 4h^2}{8h} - \frac{h}{3} \right)$$

 $c = 2\sqrt{2hr - h^2}$

Frustrum of Pyramid.—(Area of top and bottom, a and a' respectively).

Volume =
$$\frac{h}{3}(a + a' + \sqrt{aa'})$$

Ellipsoid of Revolution.—Volume = $\frac{4\pi}{2}$ (product of the three radii).

Paraboloid of Revolution.—Volume = $\frac{\pi r^2 h}{2}$.

Curved surface
$$=\frac{\pi}{6} \frac{r}{h^2} [(r^2 + 4h^2)^{\frac{3}{4}} - r^3]$$

Volumes

Cylinder =
$$\pi r^2 h = \frac{\pi}{4} d^2 h$$

Sphere = $\frac{\pi d^3}{6} = \frac{4}{3} \pi r^2$
Cone = $\frac{1}{3} \pi r^2 h$ ($\frac{1}{3}$ the vol. of the containing cylinder)
Pyramid = $\frac{1}{3}$ base × altitude

TRIGONOMETRY

The following formulas refer to Fig. 1.

$$\sin A = \frac{a}{c}$$

$$\cos A = \frac{b}{c}$$

$$\tan A = \frac{a}{b}$$

$$\cot A = \frac{b}{a}$$

$$\sec A = \frac{c}{b}$$

$$\csc A = \frac{c}{a}$$

$$\cot A = \frac{b}{a}$$

$$\cot A = \frac{b}{a}$$

$$\cot A = \frac{b}{a}$$

$$\cot A = \frac{c}{a}$$

$$\cot A = \frac{c}{a$$

suvers $A = 1 + \frac{b}{c}$

Regarding the trigonometric functions as functions of the arc, rather than of the angle (see Fig. 2) we have:

$$\sin \alpha = BC = OD$$
 $\cot \alpha = RS$
 $\cos \alpha = OC = BD$ $\sec \alpha = OQ$
 $\tan \alpha = PQ$ $\csc \alpha = OR$
 $\cot \alpha = RS$
 $\cot \alpha = RS$

The fundamental trigonometric formulæ are:

$$\frac{1}{\cos \sec \alpha} = \sqrt{1 - \cos^2 \alpha} = \frac{\tan \alpha}{\sqrt{1 + \tan^2 \alpha}} = \frac{1}{\sqrt{1 + \cot^2 \alpha}} = \frac{\sqrt{\sec^2 \alpha - 1}}{\sec \alpha}$$

$$\cos \alpha = \frac{1}{\sec \alpha} = \sqrt{1 - \sin^2 \alpha} = \frac{1}{\sqrt{1 + \tan^2 \alpha}} = \frac{\cot \alpha}{\sqrt{1 + \cot^2 \alpha}} = \frac{\sqrt{\csc^2 \alpha - 1}}{\cos \alpha}$$

$$\tan \alpha = \frac{1}{\cot \alpha} = \frac{\sin \alpha}{\sqrt{1 - \sin^2 \alpha}} = \frac{\sqrt{1 - \cos^2 \alpha}}{\cos \alpha} = \sqrt{\sec^2 \alpha - 1} = \frac{1}{\sqrt{\csc^2 \alpha - 1}}$$

$$\cot \alpha = \frac{1}{\operatorname{ant} \alpha} = \frac{\sqrt{1 - \sin^2 \alpha}}{\sin \alpha} = \frac{\cos}{\sqrt{1 - \cos^2 \alpha}} = \frac{1}{\sqrt{\sec^2 \alpha + 1}} = \sqrt{\csc^2 \alpha - 1}$$

$$\sec \alpha = \frac{1}{\cos \alpha} = \frac{1}{\sqrt{1 - \sin^2 \alpha}} = \sqrt{1 + \tan^2 \alpha} = \frac{\sqrt{1 + \cot^2 \alpha}}{\cot \alpha} = \frac{\csc \alpha}{\sqrt{\cos \cos^2 \alpha - 1}}$$

$$\csc \alpha = \frac{1}{\sin \alpha} = \frac{1}{\sqrt{1 - \cos^2 \alpha}} = \frac{\sqrt{1 + \tan^2 \alpha}}{\tan \alpha} = \sqrt{1 + \cot^2 \alpha} = \frac{\sec \alpha}{\sqrt{\sec^2 \alpha - 1}}$$

$$\sin^2 \alpha + \cos^2 \alpha = 1; \tan \alpha = \frac{\sin \alpha}{\cos \alpha}; \cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$

Rule for signs of trigonometric functions in various quadrants:

	Quadrant	1	2	3	4
sin		+	+		
cos		+			+
tan cot		+		+	
cot		+	_	+	_
sec		+	-	-	+
cosec		+	+	_	_

Any function of 0° or an even multiple of 90°, $\left(\frac{\pi}{2}\right)$, plus or minus A, is the same function of A, and any function of an odd multiple of 90° is the complementary function of A, the sign being determined for the appropriate quadrant by the above table.

$$\sin(x + y) = \sin x \cos y + \cos x \sin y \quad \therefore \sin 2x = 2 \sin x \cos x \cos x \cos x + y = \cos x \cos y - \sin x \sin y \quad \therefore \cos 2x = \cos^2 x - \sin^2 x \sin x \cos x \cos x + y = \cos x \cos y - \cos x \sin y = \cos x \cos y + \sin x \sin y$$

$$\tan(x - y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

$$\tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

$$\cot(x + y) = \frac{\cot x \cot y - 1}{\cot y + \cot x}$$

$$\cot(x - y) = \frac{\cot x \cot y + 1}{\cot y - \cot x}$$

$$\frac{\sin(x + y)}{\sin(x - y)} = \frac{\tan x + \tan y}{\tan x - \tan y}$$

$$\frac{\cos(x + y)}{\cos(x - y)} = \frac{1 - \tan x \tan y}{1 + \tan x \tan y}$$

$$\frac{\sin (x + y)}{\cos (x - y)} = \frac{\tan x + \tan y}{1 + \tan x \tan y} \\
\frac{\sin (x - y)}{\cos (x + y)} = \frac{\tan x - \tan y}{1 - \tan x \tan y} \\
\sin (x + y) \sin (x - y) = \sin^2 x - \sin^2 y = \cos^2 y - \cos^2 x \\
\cos (x + y) \cos (x - y) = \cos^2 x - \sin^2 y^2 = \cos^2 y - \sin^2 x \\
\sin 2x = 2 \sin x \cos x \\
\cos 2x = \cos^2 x - \sin^2 x = 2 \cos^2 x - 1 = 1 - 2 \sin^2 x$$

$$\tan 2x = \frac{2 \tan x}{1 - \tan^2 x} \\
\cot 2x = \frac{\cot^2 x - 1}{2 \cot x} \\
\sin \frac{1}{2}x = \sqrt{\frac{1 - \cos x}{2}} \\
\cos \frac{1}{2}x = \frac{\sin x}{1 + \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\cos x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\cos x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\sin x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\cos x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\cos x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\cos x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\cos x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\cos x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\cos x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\cos x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\cos x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\cos x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\cos x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\cos x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\cos x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\cos x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\cos x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\cos x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\cos x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\cos x}{1 - \cos x} \\
\cot \frac{1}{2}x = \frac{\cos x}{$$

Solution of Triangles

The solution of the right triangle is readily deduced from the functional equations applying to Fig. 1.

The solution of oblique triangles is given in the following formula:

$$\frac{a+b}{a-b} = \frac{\sin A + \sin B}{\sin A - \sin B} = \frac{\tan \frac{1}{2}(A+B)}{\tan \frac{1}{2}(A-B)} = \frac{\cot \frac{1}{2}C}{\tan \frac{1}{2}(A-B)}$$

$$a^{2} = b^{2} + c^{2} - 2bc \cos A \text{ or } c^{2} = a^{2} + b^{2} - 2ac \cos C$$

$$\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc} \text{ or } \cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$$

$$\sin \frac{1}{2}A = \sqrt{\frac{(a+b-c)(a-b+c)}{4bc}} = \sqrt{\frac{(s-a)(s-b)}{bc}}$$

$$\cos \frac{1}{2}A = \sqrt{\frac{s(s-a)}{bc}}$$

$$\tan \frac{1}{2}A = \sqrt{\frac{(s-b)(s-c)}{bc}} \sqrt{\frac{bc}{s(s-a)}}$$

$$\sin A = 2\sqrt{\frac{(s-b)(s-c)}{bc}} \sqrt{\frac{s(s-a)}{bc}}$$

$$Area = \frac{ab \sin C}{2} = \frac{bc \sin A}{2} = \frac{ac \sin B}{2} = \frac{b^2 \sin C \sin A}{2 \sin B} = \sqrt{s(s-a)(s-b)(s-c)}$$

Radius of inscribed circle = $\frac{\text{area}}{\frac{1}{2}}$ perimeter

Radius of circumscribed circle = (product of the sides) (four times area)

Exact Numerical Value of the Functions of Some Angles

Angle	00	30°	45°	60°	900	120°	135°	150°	180°	270°	360°
Sine	0	14	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	i	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	\$6	0	-1	0
Conine	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	36	0	- 34	1 ×2	$-\frac{\sqrt{3}}{2}$	-1	0	I
Tangent	0	1 √3	1	√3	8	-√3	1	$-\frac{1}{\sqrt{3}}$	a	-	0
Cotangent	8	√3	1	1 73	0	- _{\sqrt{3} }	-1	$-\sqrt{3}$	8	0	-
Secant	ī	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	a	-2	$-\sqrt{2}$	$-\frac{2}{\sqrt{3}}$	-1	-00	1
Concent		2	√2	$\frac{2}{\sqrt{3}}$	1	$\frac{2}{\sqrt{3}}$	V 2	2	mici	-1	
Versed sine .	0	2—√3 2	$\frac{\sqrt{9}-1}{2}$	34	1	72	1+√2 √2	$\frac{2+\sqrt{3}}{2}$	2	1	0
Covers sine	1	36	$\sqrt{2-1}$	2-√3 2	o	$\frac{2-\sqrt{3}}{2}$	$\sqrt{2}$	Ϋ́	1	2	1

SQUARES, CUBES, SQUARE AND CUBE ROOTS OF NUMBERS FROM

			7						
No.	Square	Cube	Sq. Root	Cube Root	No.	Square	Cube	Sq. Root	Cube Root
	_					2622	6		2 220 2
I	I	8	1.0000	1.0000	51	2601	132651 140608	7.1414	3.7084
2	4		1.4142	1.2599	52	2704 2800	148877	7.2111	3.7325 3.7563
3	9 16	27 64	2.0000	1.4422 1.5874	53 54	2016	157464	7.3485	3.7798
4	25	125	2.2361	1.7100	55	3025	166375	7.4162	3.8030
5	36	216	2.4495	1.8171	56	3136	17561 6	7.4833	3.8259
	49	343	2.6458	1.9129	57	3249	185193	7.5498	3.8485
7	64	512	2.8284	2.0000	58	3364	195112	7.6158	3.8700
9	8 i	729	3.0000	2.0801	59	3481	205379	7.6811	3.8930
10	100	1000	3.1623	2.1544	60	3600	216000	7.7460	3.9149
II	121	1331	3.3166	2.2240	61	3721	226981	7.8102	3.9365
12	144	1728	3.4641	2.2894	62	3844	238328	7.8740	3.9579
13	160	2197	3.6056	2.3513	63	3969	250047	7.9373	3.9791
14	196	2744	3.7417	2.4101	64	4096	262144	8.0000	4.0000
15	225	3375	3.8730	2.4662	65	4225	274625	8.0623	4.0207
16	256	4096	4.0000	2.5198	66	4356 4489	287496	8.1240 8.1854	4.0412 4.0615
17 18	289	4913 5832	4.1231 4.2426	2.5713 2.6207	68	4624	300763 314432	8.2462	4.0817
19	324 361	5032 6859	4.3589	2.6684	69	4761	328509	8.3066	4.1016
20	400	8000	4.4721	2.7144	70	4900	343000	8.3666	4.1213
	455		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				040		V
21	441	9261	4.5826	2.7589	71	5041	357911	8.4261	4.1408
22	484	10648	4.6904	2.8020	72	5184	373248	8.4853	4.1602
23	529	12167	4.7958	2.8439	73	5329	389017	8.5440	4.1703
24	576	13824	4.8990	2.8845	74	5476	405224	8.6023	4.1983
25	625	15625	5.0000	2.0240	75	5625	421875	8.6603	4.2172
26	676	17576	5.0000	2.9625	76	5776	438976	8.7178	4.2358
27 28	729 784	19683	5.1962	3.0000 3.0366	77	5929 6084	456533	8.7750 8.8318	4.2543
20 29	704 841	21952 24389	5.2015 5.3852	3.0723	79	6241	474552 493039	8.8882	4.2908
30	900	27000	5.4772	3.1072	80	6400	512000	8.9443	4.3089
			1						
31	961	29791	5.5678	3.1414	81	6561	531441	9.0000	4.3267
32	1024	32768	5.6569	3.1748	82	6724	551368	9.0554	4.3445
33	1089	35937	5.7446	3.2075	83	6889	571787	9.1104	4.3621
34	1156	39304	5.8310	3.2396	84	7056	592704	9.1652	4.3795 4.3968
35	1225 1296	42875 46656	5.9161	3.2711 3.3019	8 ₅ 86	7225 7396	614125 636056	9.2195	4.4140
36 37	1369	50653	6.0828	3.3322	87	7569	658503	9.3276	4.4310
3 8	1444	54872	6.1644	3.3620	88	7744	681472	9.3808	4.4480
39	1521	59319	6.2450	3.3012	89	7921	704969	9.4340	4.4647
40	1000	64000	6.3246	3.4200	90	8100	729000	9.4868	4.4814
41	1681	68921	6.4031	3.4482	91	8281	75357I	9.5394	4-4979
42	1764	74088	6.4807	3.4760	92	8464	778688	9.5917	4.5144
43	1849	79507	6.5574	3.5034	93	8649	804357	9.6437	4.5307
44	1936	85184	6.6332	3.5303	94	8836	830584	9.6954	4.5468
45	2025	91125	6.7082	3.5569	95	9025	857375	9.7468	4.5629
46	211Ô	97336	6.7823	3.5830	96	9216	884736	9.7980	4.5789
47	2209	103823	6.8557	3.6088	97	9409	912673	9.8489	4.5947
48	2304	110592	6.9282	3.6342	98	9604	941192	9.8995	4.6104
49	2401	117649	7.0000	3.6593	99	10000	970299	9.9499	4.6261 4.6416
50	2500	125000	7.0711	3.6840	100	1,000	1000000	10.000	4.0410
			•			<u>' </u>			

SQUARES, CUBES, SQUARE AND CUBE ROOTS OF NUMBERS FROM

						_				
	No.	Square	Cube	Sq. Root	Cube Root	No.	Square	Cube	Sq. Root	Cube Root
1	101 102 103 104 105 106 107 108 109	10404 10404 10600 10816 11025 11236 11440 11664 11881	1030301 1061208 1092727 1124864 1157625 1191016 1225043 1359712 1295029	10.0409 10.0995 10.1489 10.1980 10.2470 10.2956 10.3441 10.3923 10.4403 10.4881	4 6570 4.6723 4.6875 4.7027 4.7177 4.7326 4.7475 4.7622 4.7760 4.7914	151 153 154 155 156 157 158 150	22801 23104 23400 23710 24025 24330 24040 24064 25281 25000	3442051 3511808 3581577 3652264 3723875 3796416 3860803 3944312 4019679 4096000	12.2882 12.3693 12.4097 12.4499 12.4990 12.5598 12.5698 12.6491	5-3258 5-3368 5-3485 5-3601 5-3717 5-3832 5-3047 5-4001 5-4175 5-4288
	111 112 113 114 115 116 117 118 119 120	11327 12544 13769 12996 13225 13456 13689 13924 14161 14400	1367631 1404028 1442897 1481544 1520875 1560806 1601613 1643032 1685150 1728000	10.5357 10.5830 10.6301 10.6771 10.7238 10.7703 10.8267 10.8628 10.9087	4.8059 4.8203 4.8346 4.8488 4.8629 4.8770 4.8910 4.9040 4.9187 4.9324	161 162 163 164 165 166 167 108 269	27889	4173281 4251528 4330747 4410944 4492125 457426 4657463 4741032 4826809 4913000	12.6886 14.7279 12.7671 12.8062 12.8452 12.8841 12.928 12.9615 13.0000 13.0384	5.4401 5.4514 5.4626 5.4737 5.4848 5.4959 5.5060 5.5178 5.5288 5.5397
	111 122 113 124 115 126 127 128 129	14641 14884 15120 15376 15625 15876 16129 16384 16641 16900	1771561 1815848 1860867 1906624 1953125 2000376 2048383 2097152 2146680	11.0000 11.0454 11.0905 11.1355 11.1803 11.2250 11.2504 11.3137 11.3578 11.4018	4.9461 4.9597 4.9732 4.9866 5.0000 5.0133 5.0265 5.0397 5.0528 5.0658	171 172 173 174 176 177 178 170 180	31320 31684 32041	5000311 5088448 5177717 5268024 5359375 5451776 5545233 5630752 5735339 5832000	13.0767 13.1149 13.1520 13.1900 13.2288 13.2665 13.3041 13.3417 13.3791	5.5505 5.5013 5.5721 5.5828 5.5034 5.6042 5.6042 5.6252 5.6357 5.6462
	131 133 134 134 136 136 137 139 140	17161 17424 17680 17936 18225 18496 18769 19044 19321 19600	2248001 2709968 2352637 2406104 2460375 2515456 2571353 2628072 2685619 2744000	11.4455 11.4891 11.5326 11.5758 11.6190 11.6619 11.7473 11.7473 11.7473	5.0788 5.0916 5.1045 5.1172 5.1200 5.1426 5.1551 5.1676 5.1801 5.1801	181 183 184 185 186 187 198 189	32761 33124 33489 33836 34215 34506 14969 35344 35721 36100	5020741 6028568 6128487 6220504 6311615 6434856 6510203 6644672 6751260 6859000	13.4536 13.4907 13.5047 13.5047 13.6015 13.6382 13.748 13.7113 13.7477 23.7840	5 6567 5.6671 5 6774 5 6877 5 6986 5 7083 5 7185 5 7287 5 7388 5 7489
	41 48 43 144 145 147 147 148 140 150	19881 20164 20449 20736 21025 21316 21600 21904 22201 12500	1803221 1803288 1924207 2985084 3048625 3112136 3176523 3241792 3307049 3375000	11.8743 11.9164 11.9583 12.0000 12.0416 12.0830 12.1244 12.1655 12.2066 12.2474	5.2048 5.2171 5.2293 5.2415 5.2536 5.2556 5.2776 5.2896 5.3015 5.3133	191 193 194 195 196 197 198 199 200	36481 36864 37240 37636 38025 38416 38809 39204 39601 40000	6967871 7077888 7189057 7301384 7414875 7529536 7645373 7761391 7880599 8000000	13.8203 13.8564 13.8924 13.9284 13.9642 14.0000 14.0357 14.0712 14.1067 14.1421	5.7500 5.7600 5.7700 5.7800 5.7680 5.8688 5.8186 5.8285 5.8383 5.8480

SQUARES, CURES, SQUARE AND CURE ROOTS OF NUMBERS FROM I TO 1000

_									
No.	Square	Cube	Sq. Root	Cube Root	No.	Square	Cube	Sq. Root	Cube Root
201 203 204 205 205 207 208 209 210	40401 40804 41900 41010 42035 42430 42840 43081 43081 44100	8120601 8242408 8365427 8489664 8015125 8741816 8869743 8998912 9120329 9261900	14.1774 14.2127 14.2620 14.3178 14.3527 14.3527 14.4568 14.4222 14.4568	5.8578 5.8675 5.8675 5.8668 5.8664 5.9050 5.9155 5.9250 5.9345 5.9439	251 252 253 254 255 256 257 258 259 260	6300E 63504 64009 64516 65035 65536 66049 66564 67600	15813251 10003008 16104277 16187064 10481375 10777210 16074503 17171512 17373070 17570000	15.8430 15.8745 15.9000 14.0374 15.0000 16.0000 16.0312 16.0034 16.0035 16.1345	6.3080 6.3164 6.3247 6.3300 6.3418 6.3406 6.1579 6.3661 6.3743 6.382\$
911 212 213 214 215 210 217 218 219 220	44591 44944 45300 45706 46325 46656 47080 47524 47961 48400	9393937 9538138 9663597 9800344 9938375 10077696 10218313 10360232 10503459 10648000	14.5758 14.5002 14.5002 14.5045 14.0287 14.6620 14.7300 14.7048 14.7980 14.8524	5-9533 5-9627 5-9614 5-9614 5-9007 6-0000 6-0002 6-0185 6-0277 6-0368	361 262 263 264 365 266 267 168 269 279	68121 68644 69169 69696 70725 70756 71289 71824 71824 71800	17779581 17984728 18191447 19399744 18609615 18821096 19034163 19148832 19465109 19683000	16.1555 16.1864 16.2173 16.2788 16.2788 16.3705 16.401 16.3707 16.4017 16.4317	6.3988 6.4070 6.4151 6.4232 6.4232 6.4318 6.4333 6.4473 6.4553
221 222 223 224 225 236 227 228 220 230	48841 49284 49729 50176 50625 51076 51539 51084 52441 52900	10793861 10941048 11089567 11239424 11390625 11543176 11697083 12852352 12008989	14 8661 14 8997 14 9332 14 9666 15 0000 15 9433 15 0005 14 0997 FS 1327 15 1658	6 0450 6.0550 6.0641 6 07 52 6 0832 6.0012 6 1002 6 1001 6.1150 6.1260	271 273 273 274 276 276 277 278 370 280	73441 73084 74520 75025 76126 76120 76720 77384 77841 78400	19001511 20123048 20340417 20570824 20796875 21024576 21753933 21484952 21717639 21952000	16.4621 16.4024 16.5227 16.5529 16.5831 16.6132 16.6433 16.6733 26.7033 16.7332	6.4733 6.4798 6.4878 6.4051 6.5030 6.5108 6.5108 6.5265 6.3343 6.5431
231 232 233 234 235 236 237 238 239 240	53361 53824 54280 54756 55225 55060 50100 50044 57121 57600	12326391 12487168 12649337, 12812004, 12977875 13144256 13312053 13481272 13651919 13824000	15 1087 15 1315 15 2043 15 2071 15 1207 15 1623 15 3048 15 4272 15 4506 15 4019	6.135B 6.1446 6.1534 6.1522 6.1710 6.1707 6.1885 6.1072 6.2058 6.2058	281 787 283 284 785 286 287 788 289 290	78961 70574 80089 80636 81115 81796 82369 82369 82944 81511 84100	21186041 12425768 12665187 22906304 21149125 23193656 21619903 13887872 24137569 14389000	16.7631 16.7630 16.8323 16.8823 16.8829 16.0114 10.0411 16.0706 17.0000 17.0204	6.5499 6.5577 6.5654 6.5731 6.5868 6.5865 6.5963 6.6039 6.6115 6.0191
241 841 243 244 245 240 247 248 249 250	5808£ 58564 59049 59536 60025 605£6 61506 6200£ 6200£	13007571 14172488 14348907 14510784 14700175 14886936 15069223 15252002 15438749 15625000	15 5242 15 5503 15 5885 15 6205 15 6525 15 6844 15 7102 15 7480 15 7707 15 8114	6.2231 6.1317 6.1403 6.2488 6.1573 6.2658 6.2743 6.2828 6.2912 6.2996	701 102 103 204 205 296 297 298 290 300	84681 85764 85849 86436 87075 87616 88309 88804 89401 90000	24642171 24807088 25153757 25412184 25072375 25034336 20108073 26403502 267300000	17 0587 17.0880 17 1172 17 1404 17 1756 17 2047 17 2027 17 2027 17.2016 17 3205	6.6267 6.6343 6.6419 6.6464 6.6569 6.6644 6.6719 6.6704 6.6869 0.6943

SQUARES, CUBES, SQUARE AND CUBE ROOTS OF NUMBERS FROM 1 TO 1000

No.	Square	Cube	Sq. Root	Cube Root	No.	Square	Cube	Sq. Root	Cube Root
301 302 303 304 305 306 307 308 309	90601 91204 91809 92416 93025 93636 94249 94864 95481	27270901 27543608 27818127 28094464 28372625 28652616 28934443 29218112 29503629	17.3494 17.3781 17.4069 17.4356 17.4642 17.4029 17.5214 17.5499 17.5784	6.7018 6.7092 6.7166 6.7240 6.7313 6.7387 6.7460 6.7533 6.7606	351 352 353 354 355 356 357 358 359	123201 123904 124609 125316 126025 126736 127449 128164 128881	43243551 43614208 43986977 44361864 44738875 45118016 45499293 45882712 46268279	18.7350 18.7617 18.7883 18.8149 18.8680 18.8680 18.8944 48.9209 18.9473	7.0540 7.0607 7.0674 7.0740 7.0807 7.0873 7.0940 7.1006 7.1072
310		29791000	17.6068	6.7679	360	129600	46656000	18.9737	7.1138
311 312 313 314 315 316 317 318 319 320	99225 99856 100489 101124 101761	30080231 30371328 30664297 30959144 31255875 31554496 31855013 32157432 32461759 32768000	17.6352 17.6635 17.6918 17.7200 17.7482 17.7764 17.8045 17.8326 17.8606 17.8885	6.7752 6.7824 6.7897 6.7969 6.8041 6.8113 6.8185 6.8256 6.8328 6.8399	361 362 363 364 365 366 367 368 369 370	130321 131044 131769 132496 133225 133956 134689 135424 136161 136900	47045881 47437928 47832147 48228544 48627125 49027896 49430863 49836032 50243409 50653000	19.0000 19.0263 19.0526 19.0788 19.1050 19.1311 19.1572 19.1833 19.2094 19.2354	7.1204 7.1269 7.1335 7.1400 7.1466 7.1531 7.1596 7.1661 7.1726 7.1791
321 322 323 324 325 326 327 328 329 330	108241	34328125 34645976 34965783 35287552 35611289		6.8470 6.8541 6.8612 6.8683 6.8753 6.8824 6.8894 6.8964 6.9034	371 372 373 374 375 376 377 378 379 380	137641 138384 139129 139876 140625 141376 142129 142884 143641 144400	51064811 51478848 51895117 52313624 52734375 53157376 53582633 54010152 54439939 54872000	19.2614 19.2873 19.3132 19.3391 19.3649 19.3907 19.4165 19.4422 19.4679	7.1855 7.1920 7.1984 7.2048 7.2112 7.2177 7.2240 7.2304 7.2368 7.2432
331 332 333 334 335 336 337 338 339 340	109561 110224 110889 111556 112225 112896 113569 114244 114921 115600		18.1934 18.2209 18.2483 18.2757 18.3030 18.3303 18.3576 18.3848 18.4120 18.4391	6.9174 6.9244 6.9313 6.9382 6.9451 6.9521 6.9589 6.9658 6.9727 6.9795	381 382 383 384 385 386 387 388 389 390	145161 145024 146689 147456 148225 148996 149769 150544 151321	55306341 55742968 56181887 56623104 57066625 57512456 57960603 58411072 58863869 59319000	19.5192 19.5448 19.5704 19.5959 19.6214 19.6469 19.6723 19.6977 19.7231	7.2495 7.2558 7.2622 7.2685 7.2748 7.2811 7.2874 7.2936 7.2999 7.3061
341 342 343 344 345 346 347 348 349 350	116281 116964 117649 118336 119025 119716 120409 121104 121801 122500	40353607 40707584 41063625 41421736	18.6270 18.6548 18.6815	6.9864 6.9932 7.0000 7.0068 7.0136 7.0203 7.0271 7.0338 7.0406 7.0473	391 392 393 394 395 396 397 398 399 400	152881 153664 154449 155236 156025 156816 157609 158404 159201 160000	59776471 60236288 60698457 61162984 61629875 62099136 62570773 63044792 63521199 64000000	19.7737 19.7990 19.8242 19.8494 19.8746 19.8997 19.9249 19.9499 19.9750 20.0000	7 3124 7.3186 7.3248 7.3310 7.3372 7.3434 7.3406 7.3558 7.3619 7.3681

SQUARES, CUBES, SQUARE AND CUBE ROOTS OF NUMBERS FROM 1 TO 1000

Vo.	Square	Cube	Sq. Root	Cube Root	No.	Square	Cube	Sq. Root	Cube Root
юі	100801	64481201	30.0350	7-3742	4SI	203401	91733851		7.668
103	101604	64964808	30.0400	7.3803	452	304304	02345408		7.074
05 04	162400 163216	65450827 65939264	20.0740	7 3864	453 454	205200	03576664	7 4	7.685
Þζ	164025	66430125	20.1240	7.3986	455	207025		21.3307	7.6gt.
юδ	164836	66973416	20.1494	7-4047	456	207936	94818816		7 697
107	165649	67419143	30,1743	7.4108	457	208849	95443993		7 702
log gol	165464	62917312 68417929	20.1000	7.4169	458	210681	96071911		7.708
10	108100	68921000	20.2485	7-4200	400	211600	97335000		7-719
111	168921	69426531	20.2731	7-4359	461	212521	97972181		7-725
12	169744	69934528	20.2078	7.4410	462	213444	98611128		7 730
13 14	170569 171396	79444997 79957944	20,3224	7 4470	464	214360	99251847	20 5174	7 736
15	172225	75473375	20.3715	7-4590	465	216225	100544025		7-747
16	173056	71991296	20 3061	7-4650	466	217156	101194696		7 752
17	173889	72511713 73034632	20.4200	7-4710	467 468	210024	101847563		7.758
րը Մե	174714 175551	73500050	20.4450	7-4770	460	219001	103101709		7 769
30	170400	74088000	20-4939	7.4889	470	220000	103823000		7-775
121	177241	74618461	20.5183	7-4948	471	221841	104487111		7.780
32	178084 178929	75151448 75686967	20,5070	7.5007 7.5007	472	222784	105154048	21.7250 21.7486	7.786
23 24	179776	70125014	20.5013	7.5125	473	224076	100400424		7 791
35	180625	70763625	20.0155	7 5185	475	225625	107171875	21 7045	7 802
126	181476	77308776	20,6398	7-5244	470	226576	107850176		7 Bo7
27 38		77854483	20.0640	7 5302 7-5361	477	227519 228484	108531333		7 8 r 3
20		78953589	20,7123	7.5420	470	220441	100002230		7 824
30		79507000	20.7364	7.5478	480	230400	110593000		7.820
Ŋī	185761	80062991	20.7605	7-5537	48t	231361	111284641	22 9317	7.835
133	186624 187480	80621568	20.7846	7-5595 7-5654	483	232324	111980168 112678587	21.0773	7.840
34	188356	81740504	20.8327	7.5713	484	234250	113379904		7 851
I3Ş	189115	82312875	20.8567	7 5770	485	235225	114084135	12.0227	7 850
Ŋΰ	190096	82881856	20 8806	7 5828	486	236196	114791256		7 862
137 138	190969 191844	83453453	20.0284	7.5886	487 488	237160 238144	\$15501303 \$16214272		7.867
30	192721	84604519	20,9533	7.0001	489	230121	110030100		7.878
140	193600	85184000	20.9762	7.6059	400	240100	117649000	22.1359	7.883
4 2	194481	85766121	21.0000	7.6117	401	241081	118370771		7.889
43	105364	86350888 86938307	21.0238 21.0476	7 6174	493	242064 243049	119095488		7.804
43. 44	107130		21.0713	7 6280	494	244030	120553784		7.005
45	198015	88121125	21,0050	7.6346	495	245025	121287375	22 2486	7 910
46		88716536	21 1187	7.6403	406	240010	111013030		7 915
147 148	199809 200704	89314623. 89915392	31 1424 21.1660	7.6460	497 498	247000 248004	122763473	22 2935	7 932
40	301001	90518849	21,1896	7.6574	499	249001	124251499		7.932
50	202500	01125000	41.3132	7.6631	500	250000	125000000		7-937

SQUARES, CURES, SQUARE AND CURE ROOTS OF NUMBERS FROM

_									
No.	Square	Cube	Sq. Root	Cube Root	No.	Square	Cube	Sq. Root	Cube Root
501	151001	125752501		7.0425	551	303601	167284151		2.108a
501	\$53004	136400008		7 9470	55#	\$04704	168196608		S. 2011
201,	15,1000	117103517		7 9528	553	305800	100113177		_
504	354010	114034004		7 9581 7 9534	554 55\$	308015	170031464		8.1130
505	250036	118787615		7 0080	1 550	300136	171479616		_
500	257040	110111841		7 9739	557	310149	171808003		8. 1278
507	258064	131000313		7.0701	558	311364	175741112		
500	150081	231873220		7.9543	359	312481	174676879		8.1377
\$10	300100	£33651000		7 9800	500	523000	175010000		8.2420
3				, ,	1	1		1	
521	261121	133432831	12.6053	7 0948	Sốt	314781	176558481	23.6854	8.2475
523	202144	134217728		8.0000	562	315844	177504318		8.2524
\$13	163160	135005007	33 0495	8.0058	563	310000	178453547	23 7270	B. 7573
524	204100,	3 157901 44	32 6716	\$ 0104	504	318096	179400144		8.2011
515	205115	136500875		8.0156	365	310225	180362125		8. 2670
\$16	206256	137 (5/1096)		8.0208	500	320350	151131400		8.2710
\$17	207180	138188413			507	311489	28,228,203		8.2768
518	265374	138001831		8 0,11	568	312014	153150432		8 2815
519	269361	150705550			500	323761	197130000		B. 2003
130	370400	140006000	72.8035	8.0415	570	324000	ta2193000	*3.0747	0.9913
220	971441	141420761	22.5254	8,0466	571	326041	186169411	13.8056	5. 2062
332	373454	142136648		8.0517	572	327284	187149148		B.3010
513	273530	143051667		8.0500	573	339130	188138517		3.3050
324,	274576	143877824		8.0020	574	329476	159119114		1.1107
575	375025	144703175		5 0671	575	330015	100100175		B.3155
210	370070	145531576		8 07 23	570	331776	191102976	44	8.3201
5271		146363183			577	332929	191100033		8 3350
538		147197952 148035889			578	334084	191100551		6.3348
530	279841 280900	148577000		8.0017	550	330400	195113000		8.3396
330	300900	1400,1000	3.021		, , ,	33,4411	1		- 300
531	180188	140721201	21.0414	8.0078	581	337561	196112941	24 [0.10	8.3443
537	263014	150568768			" 551	338714	197137368		8.3491
333	all places	151419437		8.1079	553	310880	198155187		3 5550
\$34	285150	157373104		8 1110	584	341056	199176704	24 LOC F	8. 5587
335	286225	133130375			585	543275	300301631		8 1624
\$36	287 200	15 (000050		8 1251	5.96	343396	301310050		8.3682
\$37	288 100	154854153		5 1251	587	344509	503 10 300]		5 5730
538	189144	155720872		3 13 12	588	345744	301707471	24 24 77,	8-3777
339	200511	150500010		8 1381	589	34/021	204336469		8.3825
Pio	ag1600	157494000	13.1370	8.1433	, 590	348100	205379000	14 30001	8.3874
541	292681	258340421	23 2504	8.1483	591	349281	206435071	24 3105 ¹	8.1010
344	203764	159230088		B 1513	592	350464	207474688	24 3311	8 3967
\$43	204840	100103007		8 1583	593	331640			8.4014
\$44	302036)			8 1633	594	352836	300484484		8.4001
\$45	207025	161878025		N ICAJ	595	344054	1100419422		4 4108
540	308110	162778 136	h	\$ 1713	500	344310	311108 16		8 4155
\$47	300 300	10100-111		8 1795	507	120400	213, (1.1		A 4303
545	300304	101200203		8 1482	508	10,001	213547102		
\$40	301 801	165460140		8.1932	500	100000	214021709 210000000		5 4390
550	304500	200373000	13-4311	G. 1734	0.00	, ~~~		-4-444	A-4749

SQUARES, CURES, SQUARE AND CURE ROOTS OF NUMBERS PROM

=									
No. S	quare	Cube	Sq. Root	Cube Root	No.	Square	Cube	Sq. Root	Cube Root
601 603 604 605 606 607 608 609	361301 361404 363609 364816 366025 367236 368449 369664 370881	217081801 218167208 219256227 220348864 221445125 222545016 223648543 224755712 225681000	24 5357 24 5501 24 5764 24 5967 24 5967 24 6374 24 6374 24 6577 24 6779	8.4390 8.4437 8.4484 8.4530 8.4577 8.4613 8.4670 8.4716 8.4716 8.4763	651 653 653 654 655 656 657 658 659 660	423801 425104 426400 427716 429025 430336 431049 432964 434281 435600	27\$804451 277167808 278445077 279726264 281011375 282300416 283593393 284890312 286191179 287496000	25-5343 25-5539 25-5734 25-5930 25-6125 25-6320 25-6515 25-6710	8.6668 8.6713 8.6757 8.6801 8.6845 8.6890 8.6934 8.6978 8.7014 8.7066
612 613 614 615 616 617 618 619	373321 374544 375769 376996 378225 379456 380689 381924 383161 384400	228099131 229220928 230346397 231475544 232608375 233744896 254885113 236029032 237176659 238328000	24 7386 24 7588 24 7790 24 7992 24 8193 24 8395 24 8596 24.8797	8.4856 8.4902 8.4948 8.4994 8.5040 8.5086 8.5132 8.5178 8.5178	66x 663 664 665 666 667 668 669 670	436921 438244 439569 440896 442125 443556 444889 440224 447561 448900	288804781 290117528 291434247 292754944 294079625 295408296 296740963 298077632 298077632 299418309 300763000	25-7294 25-7488 25-7682 25-7876 25-8070 25-8263 25-8457 25-8650	8.7110 8.7154 8.7198 8.7241 8.7285 8.7329 8.7373 8.7410 8.7400 8.7503
622 623 624 625 626 627 628 620	385641 386884 388129 389376 390625 391876 393179 394384 395641 396900	230483061 240641848 241804367 242970624 244140625 245314376 246491883 247673152 248858180 250047000	24 0300 24.9600 24 9800 25.0000 25 0200 25 0400 25 0509 25 0709	8.5316 8.5362 8.5408 8.5453 8.5449 8.5544 8.5590 8.5635 8.5635 8.5635	671 672 673 674 675 676 677 678 679 680	450241 451584 452929 454276 45625 456976 458379 459084 461041 462400	303111711 303464448 304821217 306182024 307546875 308015776 310288713 311665752 313046830 314432000	25.9230 25.9422 25.9605 25.9808 26.0000 26.0102 26.0384 26.0576	8.7547 8.7590 8.7634 8.7677 8.7764 8.7807 8.7807 8.7803 8.7803 8.7037
633 634 635 636 637 638 639	398261 399424 499689 401976 403227 404196 407769 407944 408321 408600	251239501 252435966 253636137 254840104 256047875 257259456 258474853 259694072 260917119 262144000	25 1396 25 1595 25 1704 25 1992 25 2190 25,2389 25 2587 25 2784	8.577# 8.5852 8.5852 8.5952 8.5952 8.6943 8.6088 8.6133 8.6177	68x 68a 683 684 685 686 687 688 689 690	463761 465124 466489 467856 469225 470596 471969 473344 474721 426100	315821241 317214568 318611987 320013504 321410125 322828856 324242703 325060672 327082769 328509000	26.1151 26.1343 26.1534 26.1724 26.1916 26.2107 26.2208 26.2488	2.7980 8.8043 8.8066 8.8109 8.8152 8.8194 8.3237 8.8236 8.8323 8.8366
643 644 645 646 647 648 649	410881 412164 413440 414736 416025 417316 418600 419004 421201 422500	263374721 264609288 265847707 267080084 268336125 269586136 270840023 272097792 273359440 274625000	25-3377 24 3574 25 3772 25 3969 25 4165 25-4362 25 4558 25-4754	8 6222 8.6267 8 6312 8.6357 8.6401 8.6446 8.6490 8.6535 8 6579 8.6624	691 692 693 694 695 696 697 698 699 796	477481 478864 480249 481636 483015 481416 485809 487204 488601 490000	329939371 331373888 332812557 334255384 335702375 337153536 338608873 340068302 341532000	26.3050 26 3240 26 3419 26 3629 26 3818 26 4008 26 4107 26-4386	8.8408 8.8493 8.8493 8.8530 8.8578 8.8663 8.8790 8.8790

MATHEMATICS

SQUARES, CURES, SQUARE AND CURE ROOTS OF NUMBERS FROM

No.	Square.	Cube	Sq Root	Root .	No.	Square	Cube	Sq. Root	Rod
MO E	401401	344472101	36 4764	8 BB33	1751	504001	423564751	27.4044	9.08
101	492804	345948408		8 8875	752	565504	425350008		0.00
105	494200	347418917		8 8017	1753	567000	420957777		9.09
104	405010	348913004		8 8050	754	568510	428001004		9.10
105	497025	350402015			755	5-0015	410368875		9.10
00	498436	351805816		8.9043	756	571536	433081216		
107	400840	313393243		8 9085	757	573049	433798993		0.10
ol	501 104	354891912		8 9127	758	\$74564			_
90	180505	356400830		8 9169	759	57608s	435519512		
10	504100	357911000		8.9211	700	377500	437245479		
20	304100	33/911000	20.0430	0.9222	,	377000	438976000	27.3001	9.11
11	505531	350425431		8.9353	76r	579122	440711081		9.11
12	500044	300944128		8 9295	762	580644	442450728		9 13
13	508300	301407007		8 9337	763	582160	444194947		9 13
14	509790	303904344		8 9378	764	533696	445945744		9 14
15	311275.	305525575		8 9420	765	585225	447097125	17 0480	0.14
30	213020	307001000		8 0462	766	586756	449455000		9.14
117	514080	308001713		8 9503	767	588290	451217663		9 15
18	515574	370146232		8 9545	768	589874	452084832		9 15
10	210001	371004050		8.0587	760	201301	454755500		
20	518400	373248000	8128 08	8 9628	770	201000	456533000	27.7489	g. 16
21	STORAT	374805361	26.8514	8.9670	771	594447	458114011	27 766a	9.16
22	371284	376367048		8 9711	772	595984	4600000648		0.17
73	\$22729	37703 1067		8 9752	773	\$97520	461889917		
24	\$14170	379501434		8.0794	774	500070	461684824		
125	525625	J81078145		8 9835	775	000035	465484375		0.18
36		382057170		5.9876	776	602176	467388576		9.18
27	518520	384440583		8 gors	1777	601720	400007413		
38	\$20084	385848352		8.9959	778	605284	470910052		0.10
29	531441	387420480		0.0000	779	606841.	473720130		
10	532900	380017000	, _	9.0041	780	608400	474552000		9.20
31	\$34361	390617501	27 0170	0.0082	781	60gg6t	426.204.4	17 0.61	
33	535824	302223168		0.0002	782	611524	476370541		9.20
35	537 18g	393832837		9 0104	783	613089	480048087		9.21
34	538750	305440004		0 0305	784	D1 3029	481800104		0 31
35	540125	397095375		0 0140	785	614135	483736625		0.12
30	541606	308688250		0.0187	786	617796	485587650		- A-
37	543100	400315555		9.0147	787	017700	457441401		0.22
3.6	544644	401047271		0.0360	788	010100	480103872		9 23
30		403583410		0.0300	780	612521	401100000		9 13
40		405224000		9.0450	799	024100	403039000		9.34
	# x = 9 = 0	10696nn	48 4451			A a set Pa		-0	
ч	\$40001	406869021		9.0491	701	625681	404013571		9.14
П	350564	408518488		9 0533	793	627.264	496793088		9.35
43		410173407		0.0572	703	019810	498077257		
44				0.0013	794	030430	500500184		9.35
45		413103035		0.0054	795	032025	502450875		9 26
40		415160036		9.0094	796	013010	504158330		9. 20
47		416832723		9.0755	797	035200	500201573		9 27
48	550504	41850Hpg1		9.0775	798	030804	508100501		0 27
40	100195	420180740		0.0816	700	038401	\$10051300	18, 2666	9.17
30	562300;	421875000	47 1861	g. 0850	800	640000	512000000	-0 -0	9.18

SQUARIES, CURES, SQUARE AND CUBE ROOTS OF NUMBERS PROME 1 TO 1000

Ğq.	Square	Cube	Sq Root	Rout	No.	Square	Cube	Sq. Root	Cub
-									
lot	641601	\$13911401		9. 1870	851	714201	616205051	J9 1719	0-475
lo3	643304	\$13849008		9 1000	853	715004	618470308		0.450
03	Uttraco,	5177R1027	10.00	0.2048	853	7.270009	610650477		9.483
04	91/414	519718464		9.2986	854	7.49.116	622615864		9.48;
05	648035	\$31000174		9.3025	855	731045	9120107.2		9 491
юó,		\$21000010		9.3065	856	712736	617111016		9.40
07	651349	515 55 794 1		6 2103	857	734449	619412791		9.49
lof	654864	\$27514122		9.3140	8,8	730104	631628712		9 504
_	654481	\$29475129		9-3179	650	73788E	613639770		9 500
10	656100	531441000	£8.4005	9.3117	800	7,50000	630050000	29.3255	9.500
laz l	657721	\$13411731	18.4781	0.3155	861	747327	638177381	29.3428	0.515
11.	050344	535387328	JR 4050	0.3204	801	743044	640503928	20 150B	0.567
13	Micubo	\$17307707		9-1317	863	744769	642735647	29 1700	9.520
14	pussing	514153144		0.1170	804	746196	644972544		9 374
15	664115	544144175		g. 1406	865	745225	647214625		0.51
10	Mr. Mich	\$64339400		9 3447	866	749050	049401590		9 531
17	001459	SECURE		9 1485	867	751689	031714301		9 533
	609124			Q. 1513	A68	753474	611973033		9 530
	670761	549357250		0. 1501	860	753101	656234900		9-54
30	673400	551,08000	10.0350	0-1290	879	750gao-	658503000	10.4958	9-54
lar l	674041	\$\$3387661	28 6531	9.3637	Byt	758641	660775311	29.5137	0.599
88	6750841	355412348	18 0705	9.1075	Rega.	700384	66 1054848	29 5296	9.55
	617119	357441767	AN GENO!	9 1713	A L	701110	664118617		9 55
34	018070	519470284		0 1751	874	763876	66-62-624		9 561
25	650025	361514021		9 (180	A-2	101011	669921875		9 564
30	051110	SOREROUSE		9.3827	H-6	767376	01/12/04/00		9 566
37	661030	505000243		0 1801	H-7	700130	0.4250121		0-571
26	685584	SOUPERASE		0.1003	6;6	770584	6768161.01		9-575
ag.	687241	500722780		9.1040	N-0	773041	679151410		9.524
30	688gaq	\$71787000	18.8097	9.3974	550	7744000	681472000	30 0048	9.58:
132	600561	57 18 561 91		9.4016	1881	776161	681797841	ag. 6816	g. 586
32	602224	375010168		9-4053	882	277974	660128968		9 504
33	0-315880	518000511		9.40g L	881	779650	68STVC MA	29.7633	9 593
34	9/15/20	shoot or		0.4110	384	24141	hijohozi sa	_	9 593
3.1	691725	5521825,5		9.4150	345	151211	Natistist.		Q DOI
10	nyskyn	4447 050		0.4301	3.46	2 8 4 4 Q P	phenoples.		0 604
117	+30 tp6	CHO LYGORE	4 0110	9 4341	887	140.00	00.01101		g Cal
18	703244	488480423		9.4379	888	738544	700111011		0 611
Jo.	703931	5005/9719		0.4310	8.40	790371	702195100		9 61
رضيا ا	705000	593704000	10.9010	9-4354	89a	101100	704900000	10 9730	9.611
142	707 181	504823121	20.0000	9-4391	Sor	791851	707347071	29.8496	9 61:
42	705004	50004*678		9 44 20	892	721904	709732188		9 6 1
43	710649	10007710		9 4466	Sep 4	797449	78112195"		9.639
44	711314	48211100	110 VE	0 4503	604	740155	714117684		961
45	714025	00111111	ay only	9.4541	Not	501035	717017374	24 6 66	463
46	775710	104401150		9.4525	Bud	AgyAyA	719-25555	7911	p 6at
	711400	601945421		9.4615	Aq	Hospou	72171427	27 9 5440	9.64
lab.	719104	101004000		9.4052	898	806404	724150792		g 64
40		611960049		9.4990	Ago	108808	110111000		9.05
30	723500	014135000	BO T CAR	9-4727	000	\$10200	7 100000000	10,0000	9.65

MATHEMATICS

SQUARES, CURRE, SQUARE AND CURE ROOMS OF NUMBERS PROM

	_ 1	-	Sq.	Cube		_		Sq	Cub
No.	Square	Cube	Root	Root	No.	Square	Cube	Root	Roo
901	511801	731432701	to orfer	9.6585	957	904401	860085351	10 8 8	0.81
002	811004	731870808			951	900104	M1801408		9.81
gag	815400	730314327		0 66 56	953	908 200	865521127		0.54
gos.	817416	738761264		-	954	DIGITÓ	868250664	10 8800	9.84
905	819025	741117615		9.6727	955	013075	87008 187 t		9.84
900	810836	741677416		0.6763	056	91 30 50	871721810	10 0102	0.85
907	R23640	740143643	10 t164	9 6799	957	015849	810461493	10.0341	0.85
goå	824464	748611311	10.1310	0 6814	058	917764	870117912	30 9510	9.85
poq	526351	751089429			959	0100811	851974979		9.66
010	828100	753571000	Jo-1001	g.6go§	góa	921600	884736000	30 0810	9.86
arr.	B20021	756058032	10.1818	0.6041	oft	943541	88750368x	31.0000	g.86
112	832744	758550528			962	915444	890277128		9.87
13	853560	701048497		0 *012	001	927360	893056347	11 0122	9.87
14	835306	703551944	10 2324	9.7947	964	020206	BQ5541 144	37.0453	9.87
125	817225	766060875		9.70ñ#	96.2	011335	898632125		9.88
120	830056	7685 5206		9.7118	900	913156	901427090		9 88
110	BaoBão	771005213			967	031080	904231003		9.88
28	842724	773640633			968	0,7074	00,010111		9.50
510	844501	770151550			969	938961	900853209		0.50
190	846400	778688000	30.7313	9.7259	970	040000	Q13673000	31 1440	9.89
12E	848341	751220001		9.7206	971	941841	915498611		9.90
223	850064	763777448		0.7320	97.4	944784	\$193 10045		0.90
113	651010	786130407		9.7364	973	9407.29	021161417		9 90
24	851776	785854024		9.7400	9 4	948676	634610434		9.01
25	855635 857476	701451125		9.7455	975	950625 952570	020850375	-	0.01
37	850320	704032776 2005070Fs		0 7470	9 0	054570	0192,4913		0 01
	561184	70017875#		0.7540	976	955484	955441353		0.01
90	863041	201705000			070	058441	918311719		0 02
130	864000	804357000		9.7610	980	960400	041103000		
131	866761	806054401	10. 57.23	9.7645	981	962361	944076141	17 1200	0 03
137	865614	800557568	10 1267		981	964524	946900168		0-01
33	870480	B12166237			ofit	g66±8g	010903092		9.04
134	872350	814780504		0.7750	984	Q68250	952161004		9.04
J.S	874215	B17400375	JO 5778,		ons	970325	0440-1034		9.94
36	870000	820021950		9.7819	986	0,3100	psasAszyr		9.95
137	877000	811030053		9.7854	987	974169	301 401 401		9 95
138	879844	B2520 672		9.7889	QJU)	976144	964430373		9.95
1.50	881771	517030010		9.7914	989	O.graf	907301000	_	9.00
Ma	88,500	830584000	30 0504	9.7959	ůho	990100	979299000	11 4047	9.90
141	885481	833337621		0.7003	ggt	aflocing.	973743771		9 96
H2	567 104	815806848		9.8028	902	Pyory	Ski totare		0.07
143	88gz49	8,8561807		9 306 5	903	090010	badrapuz.		0 07
144	591136	Ratzgziffa.		9 8097	904	Q480-5	QH 101184		9.98
	803025	843908034		9 1111	005	900014	Optolfa.t		9 98
46	804016 806800	Rabtgot 16		9816*	Only	901010	Ghnos Toso	1 6000	0.086
	896509	849275.44		g 8701	001	991300	Optoday t		9.00
100	gactor	851971J92 854670140		9.8236 9.8210	QUA	dilyoot footing	00,00,000 001al 130°		0.00
	901500	857375000			1000		0000000000		2 00
660)									

LOGARITHMS OF NUMBERS

N	0	1	2	3	4	5	6	7	8	0
10	0000	0043	0080	0128	0170	0212	0253	0294	0334	0374
11	0414	0453	0492	0531	0569	0607	0645	0082	0719	0785
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106
13	1139	1173	1208	1239	1271	1303	1335	1367	1399	1430
14	1461	1492	1523	1553	1584	1514	1544	1673	1703	1732
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2768
19	2768	2810	2833	2876	2878	2900	2923	2945	2967	2989
20 22 23 24	3010 3222 3424 3617 3602	3032 3243 3444 3636 3820	3054 3203 3404 3655 3838	3075 3284 3483, 3674 3856	3096 3304 3502 3692 3874	3118 3324 3522 3711 3892	3139 3345 3541 3729 3900	3160 3365 3560 3747 3927	3181 3385 3579 3766 3945	3201 3404 3596 3784 3962
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133
26	4150	4166	4183	4200	4216	4232	4249	4263	4281	4294
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4606
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	475
20	4771	4786	4800	4814	4829	4943	4857	4871	4886	4900
31	4914	4928	4942	4955	4969	4953	4997	5011	5024	5033
32	5051	5065	5079	5092	5105,	5119	5132	5145	5159,	5173
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5303
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5424
35	5441	5453	5465	5478,	5490	5502	5514	5527	5539,	555
36	5563	5575	5587	5309	5611	5623	5635	5647	5058	567(
37	5682	5694	5705	5717,	5729	5740	5752	5763	5775	578)
38	5798	5809	5821	5832	5943	5855	5866	5877	5888	589(
39	5911	5922	5933	5944	5955	5966	5977	5988	5999,	601)
40	6021	0031	6042	6053	6004	6075	6085	6096	6107	611
41	6128	0138	6149	6100	6170	6180	6191	6201	6212	622
42	6232	0343	6253	6263	6274	6284	6294	6304	6314	632
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	642
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	652
45 46 47 48 49	0628 6721 6812 6902	6542 6637 6730 6821 6911	6351 6646 6739 6830 6920	6561 6056 6740 6830 6928	6571 6662 6758 6848	6580 6675 6767 6857 6946	6590 6684 6776 6866 6955	6509 6693, 6785 6876, 0964	6609 6702, 6794 6884 6972	661: 671: 680: 689: 698
50	6990	6998	7007	7016	7024	7033	7042	7050	7050	706°
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7153
82	7160	7168	7177	7185	7193	7202	7210	7218	7226	7231
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7310
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7390

MATHEMATICS

LOGARITHMS OF NUMBERS.—Concluded

N	0	1	2	3	4	5	Ġ	7	8	9
55	7404	7412	7419	7427	7435	7443	7451	7459	7486	747
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	755
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	762
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	770
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	777
60	7782	7789	7798	7803	7810	7818	7825	7832	7839	784
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	791
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	798
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	804
64	8062	8069	8075	8082	8089	8096	8102	8100	8116	813
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	818
66	8195	8202	8209	8215	8222	8228.	8235	8241	8248	826
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	831
68	8326	8331	8338	8344	8351	8357	8363	8370	8376	836
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	844
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	850
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	850
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	862
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	862
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	874
75 76 77 78 79	8751 8808 8865 8921 8976	8456 8814 8871 8927 8982	8762 8820 8876 8932 6987	8768 8825 8882 8938 8993	8774 8831 8887 8943 8998	8779 8837 8893 8949 9004	8785 8842 8899 8954 9009	8791 8848 8904 8960 9015	8797 8854 8910 8965 9020	880 883 893 893
80 81 82 83 84	9031 9085 9138 9101 9243	9036 9090 9143 9196 9248	9042 9096 9149 9201 9253	9047 9101 9154 9206 9258	9053 9106 9159 9212 9263	9058 9112 9165 9217 9269	9063 9117 9170 9222 9274	9069 9122 9175 9227 9279	9074. 9128 9180 9232 9284	913 918 923 928
85	9294	9290	9304	9309	9315	9320	0325	9330	9335	934
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	939
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	944
88	9445	9460	9455	9460	9465	9469	9474	9479	9484	948
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	953
90 91 92 93 94	9542 9590 9638 9685 9731	9547 9595 9643 9689 9736	9552. 9600. 9647. 9694. 9741	9557 9605 9652 9699 9745	9562 9609 9657 9703 9750	9566 9614 9661 9708 9754	9571 9619 9686 9713 9759	9576 9624 9671 9717 9763	9581 9675 9722 9768	958 968 968 972 977
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	981
96	9823	9827	9832	9836	9841	9845	9850	9854	9959	986
97	9868	9872	9877	9881	9886	9890	9894	9819	9903	990
98	9912	9917	9921	9926	9930	9934	9939	9943	9941	995
90	9956	9961	9965	9969	9974	9978	9083	9987	9998	998

NATURAL SINES AND COSINES

Norm.—For cosines use right-hand column of degrees and lower line of tenths.

Эод	0.0	1.00	*0.2	°0.3	*0.4	°0.5	°0.6	°0.7	8.0	e. 0°	
3	9.0000 0.0178 0.0349 0.0523 0.0698	0.0192 0.0366 0.0641	0.0309 0.0384 0.0558	0 .0227 0 .0401 0 .0676	0.0244 0.0419 0.0593	0.0262 0.0436 0.0610	0.0279 0.0454 0.0528	0.0471	0.0314 0.0488 0.0663	0.0332 0.0606 0.0680	86 87 86 65
676	0.1045 0.1219 0.1392	0 1063 0 1238 0 1409	0.1080 0.1253 0.1426	0.1097 0.1271 0.1444	0.1115 0.1288 0.1461	0.1132 .0.1305 0.1478	0 1149 0 1323 0 1495	0 1167 0 1340 0 1513	0 .1184 0 .1357 0 .1530	0.1374	84 83 83 81 80
10° 11 12 13	0 1908 0 2079 0 2250	0.1925 0.2096 0.2267	0.1942 0.2113 0.2284	0.1959 0.2130 0.2300	0.1977 0.2147 0.2317	0.1994 0.2164 0.2334	0.2011 0.2181 0.2351	0,2028 0,2198 0,2368	0.2045 0.2215 0.2385	0.1891 0.2062 0.2232 0.2402 0.2571	79 78 77 76 75
15 14 17 18 19	0.2756 0.2924 0.3090	0.2773 0.2940 0.3107	9.2790 9.2957 9.3123	0.2807 0.2974 0.3140	0.2823 0.2990 0.3156	0.2840 0.3007 0.3173	0.2857 0.3024 0.3190	0.2874 0.3040 0.3206	0 .2890 0 .3057 0 .3223	0.2740 0.2907 0.3074 0.3239 0.3404	76 73 72 71 70
90° 21 22 23 24	0 3584 0 3746 0 3907	0 3600 0 3762 0 3923	0.3616 0.3778 0.3939	0 3633 0 3795 0 3955	0.3849 0.3811 0.3971	0 3665 0 3827 0 3987	0.3543 0.4003	0.3859 0.4019	0 3714 0 3875 0 4035	0 3587 0 3730 0 3891 0 4051 0 4210	69 68 67 66 65
26 27	0 4384 0 4540 0 4695	0.4399 0.4555 0.4710	0 4415 0 4571 0 4726	0.4431 0.4586 0.4741	0.4446 0.4602 0.4756	0.4462 0.4617 0.4772	0.4478 0.4633 0.4787	9 4493 9 4048 0 4802	0.4509 0.4664 0.4818	0.4368 0.4524 0.4679 0.4833 0.4985	63 63 61 61
30° 81 82 83 34	0 ,5150 0 ,5299 0 ,5446	0.5165 0.5314 0.5461	0.5180 0.5329 0.5476	0.5195 0.5344 0.5490	0.5358 0.5358 0.5505	0.5225 0.5373 0.5519	0.5240 0.5388 0.5534	0 ,5255 0 ,5402 0 ,5548	0.5270 0.5417 0.5563	0.5135 0.5284 0.5432 0.5377 0.5721	58 57 50 55
25° 26 27 28 28	0.5878 0.6018 0.6157	0.5892 0.6932 0.6170	0.5906 0.6046 0.6184	0.5920 0.6060 0.6198	0,5934 0,6074 0,6211	0.6088 0.6225	0.5962 0.5101 0.6239	0.5976 0.6115 0.6252	0,5990 0,6129 0,6266	9.5864 9.6004 9.6143 9.6280 9.6414	54 53 52 51 50
40° 41 42 43 44	0 6561 0 6691 0 6820	0 6574 0 6704 0 6833	0.6587 0.6717 0.6845	0 6600 0 6739 0 6858	0 6613 0 6743 0 6871	0 6626 0 6756 0 6884	0 6639 0 6769 0 6896	0 6652 0 6782 0 8909	0 6921	0 8547 0 9578 0 6807 0 6934 0 7089	49 48 47 48 45
	°1.0	90.0	°0.8	°0.7	0.6	°0.5	*0.4	°0.1	40,2	, °0 1	De

MATHEMATICS

NATURAL SINES AND COSINES.—Concluded

				-				Ī		
Dog	0.0	1 0	*0.3	*0.3	*0.4	*0.5	8.0*	*0.7	9.0° 8.0°	
48	0,7193 0 7314 0 7431	0 7206 0 7325 0 7443	0 7218 0 7337 0 7455	0 7230 0 7349 0 7466	D.7242 O.7361 O.7478	0.7254 0.7373 0.7490	0 7266 0 7385 0 7501	0 7278 0 7396 0 7513	0.7169 0 7181 0.7290 0.7302 0.7406 0.7420 0.7524 0.7536 0.7638 0.7649	42
40° 412224 4	0 7771 0.7880 0.7966	0 7782 0 7891 0 7997	0.7793 0.7902 0.8007	0.7804 0.7912 0.8018	0 7615 0 .7923 0 .8028	0 7826 0 7934 0 8030	0 7837 0 7944 0 .8649	0 7848 0 7955 0 8059	0 7749 0 .7760 0 7859 0 .7869 0 7965 0 .7976 0 .9070 0 .8080 0 .8171 0 .8181	
68	0.8290 0.8387 0.8480	0 .8300 0 .8396 0 .8490	9.8310 9.8406 9.8499	0 .8320 0 .8415 0 .8508	0.8320 0.8425 0.8517	0.8339 0.8434 0.8526	0.8348 0.8443 0.8536	0 .8355 0 .8453 0 .8545	0.8271 0.8281 0.8368 0.8377 0.8462 0.8471 0.8554 0.8653 0.8643 0.8652	34 33 32 31 30°
#88. \$	0.8746 0.8829 0.8910	0.8753 0.8838 0.8918	0 ,8763 0 ,8846 0 ,8926	0 .8771 0 .8454 0 .8934	0.8790 0.8962 0.8942	0.8758 0.8970 0.8949	0.8796 0.8878 0.8957	0.8805 0.8886 0.8965	0 .8729 0 .8738 0 .8813 0 .8821 0 .8894 0 .8902 0 .8973 0 .8980 0 .9048 0 .9056	29 28 27 26 25
65 67 60 60	0 9135 0 9205 0 9272	0 9143 0 9212 0 9278	0 9150 0 9219 0 9285	0 9157 0 9225 0 9291	0 9164 0 9232 0 9298	0.9171 0.9239 0.9304	0.9178 0.9245 0.9311	0.9184 0.9252 0.9317	0.9121 0.9128 0.9191 0.9194 0.9259 0.9265 0.9323 0.9330 0.9385 0.9391	24 23 23 21 20°
70° 71 72 73 74	0.9455 0.9511 0.9663	0 946t 0 9516 0 9568	0 9466 0 9521 0 9573	0 9472 0 9527 0 9578	0 9478 0 9532 0 9583	0 9483 0 9537 0 9588	0 9489 0 9542 0 9593	0 9494 0 9548 0 9598	0 9444 0 9449 9 9500 9 9565 0 9553 0 9558 0 9603 0 9608 0 9650 0 9655	19 18 17 16 15
75 76 77 78 79	0 9703 0 9744 0 9781	0.9707 0.9748 0.9745	$\begin{array}{c} 0.9711 \\ 0.9751 \\ 0.9789 \end{array}$	0.9715 0.9755 0.9792	0 9720 0 9759 0 9796	0 9724 0 9763 0 9799	0 9728 0 9767 0 9803	0 9732 0 9770 0 9806	0 9694 0 9699 0 9736 0 9749 0 9774 0 9778 0 9810 0 9813 0 9842 0 9845	12
80° 81 83 88 84	0.9877 0.9903 0.9925	0 .9905 0 .9905 0 .9928	0.9842 0.9907 0.9930	0 9885 0 9010 0 9932	0 9888 0 9912 0 9934	9 9914 0 9936	9 9893 9 9917 0 9938	0 9895 0 9919 0 9940	0 9871 0 9874 0 9898 0 9900 0 9921 0 9923 0 9942 0 9943 0 9959 0 9960	8 7 6
86 86 87 86 80	0.9976 0.9986 0.9994	0 9977 0 9987 0 9995	0.9978 0.9988 0.9995	0 9979 0 9949 0 9996	0 9990 0 9996 0 9996	0 9991 0 9990 0 9997	0 9962 0 9991	0 9983 0 9992 0 9997	0 9973 0 9974 0 9984 0 9985 0 9993 0 9993 0 9998 0 9996 1 ,000 1 .000	3 3 1
	0.1°	9.0	e0.8	*0 7	70.6	*0.5	*0.4	*0.3	*0.2 "0.1	Deg.

Nova.—For cosines use right-hand column of degrees and lower line of teaths.

NATURAL TANGENTS AND COTANGENTS

Nova.—For estangents use right-hand column of degrees and lower line of tenths

Deg	1 0 0 0.0	2 02	*0.4 *0.5	*0.7	0.0° 1.0
0 1 2 2 4	0.0175 0 0190 0.0349 0.0360 0.0524 0.0340	: 0 0200 0 .0227 : 0 .0354 0 .0402 : 0 .0559 0 .0577	0.0244 0.0202 0.0419 0.0437 0.0594 0.0612	0,0105 0,0122 0 0,0279 0,0297 0 0,0454 0,0472 0 0,0459 0,0447 0 0,0405 0,0622 0	0314 0 .0332 88 0489 0 0507 87 20664 0 0002 86
8 8 7 8 9	0 1951 0 1066 0 1228 0 1246 0 1445 0 1423	0 1086 0 1104 0 1253 0 1241 0 1441 0 1459	0 1122 0 1139 0 1290 0 1317 0 1477 0 1495	0.0001 0 0000 0 0 1157 0.1175 0 0 1334 0.1352 0 0 1512 0.1530 0 0.1001 0 1700 0	1192 0 1210 83 1370 0 1388 83 1544 0 1566 81
10° 31 32 23 14	0 1944 0 1962 0 2176 0 2144 0 2309 0 2172	0 1980 0 1996 0 2142 0 2140 0 2345 0 2364	0 2016 0 2033 0 2199 0 2217 0 2362 0 236 1	0 1472 0 1800 0 0 2053 0 2071 0 0 2235 0 2254 0 0 2419 0 2435 0 0 2606 0 2623 0	2009 0 2107 78 2272 0 2290 77 2456 0 2475 76
15 76 27 28 19	0 2867 0 2999 0 3067 0 3070 0 3249 0 3259	0 2905 0 2924 0 3094 0 3115 0 3298 0 3307	0 2943 0 2962 0 3134 0 3153 0 3327 0 3346	0 .2792 0 .2411 0 0 .2981 0 .2001 0 0 .3172 0 .3191 0 0 .3385 0 .3385 0 0 .3561 0 .3581 0	3019 9 3038 73 3211 9 3230 72 3404 9 3424 71
\$17° 21 22 23 24	0 3839 0 3859 0 4040 0 4065 0 4245 0 4265	0 3979 0 3999 0 4041 0 4101 0 4256 0 4307	0.3919 0.3939 0.4122 0.4142 0.4327 0.4345	0 2759 0 3779 0 0 3959 0 3979 0 0 4143 0 4183 0 0 4349 0 4396 0 0 4578 0 4599 0	4480 0 4020 68 4204 0 4224 67 4411 0 4431 66
25 26 27 28 29	0 4877 0 4899 0 5095 0 5117 0 5317 0 5346	0 4021 0 4942 0 5139 0 5151 0 5362 0 5384	0 4964 0 4946 0 5154 0 5256 0 5407 5 5430	0 4791 0 4813 0 0 5008 0 5029 0 0 5228 0 5259 0 0 5452 0 5475 0 0 5661 0 5704 0	5051 0 5073 63 5272 0 52951 63 5494 0 55201 61
30° 31 32 33 34	0 6009 0 6033 0 6249 0 6273 0 6494 0 6313	0 6056 0 6090 0 6297 0 6322 0 6544 0 6569	0 6348 1 6371 0 6348 0 6619	0.5914 0.593A 0 0.6152 0.6126 0 0.6395 0.6621 0 0.6644 0.6569 0 0.6899 0.6924 0	6300 3 6224 \$8 6445 0 6469 \$7 5694 0 5720 36
25 30 37 28 26	0 7285 0 7293 0 7536 0 7563 0 7813 0 7843	0 7319 0 7346 0 7590 0 7614 0 7590 0 7895	0 7371 0 7400 0 7646 0 7671 0 7926 1 7954	0.7159 0.7146 0 0.7427 0.7454 0 0.771 t.0.7729 0 0.7983 0.3612 0 0.8273 0.8302 0	7451 0 7509 88 7757 0 77864 83 2040 0 5659 81
60° 41 42 44 64	D 8693 0 2024 3 9004 0 9034 0 9325 0 9354	0 .9754 () .9785 0 906" () 9099 0 9391 () 9424) 3816 0 3947 0 9131 0 9163 0 9457 0 9490	0,8571 0 8813 0 0,8674 0 8910 0 0 9195 0 9224 0 0 9523 0 9556 0 0 8661 0 9698 0	3941 U 3972 65 926 U 9293 67 959 U 9623 46
	*1.0 *0.0	10.8 10.7	4.0	******	0.2 *0 Deg

MATHEMATICS

NATURAL TANGENTS AND COTANGENTS.—Concluded

Deg	*0 0	*01	*0 2	*0 3	*0 4	*0 S	*0 6	*0 7	*0 8	*0 0	
444744	1 .0358 1 .0724 1 1106	1 .0892 1 .0761 1 1145	1 .0428 1 .0799 1 .1154	1 .0464 1 .0637 1 .1224	1 .0501 1 .0875 1 .1263	1 .0638 1 .0913 1 1303	1 .0575 1 .0931 1 1343	1,0947 1,0612 1,0990 1,1363 1,1792	1 .0649 1 102% 1 1423	1 .0884 1 1067 1 1443	44 43 42 41 40°
30° 31 32 33 34	1.2349 1.2799 1.2270	1 2393 1 2946 1 2319	1 .243" 1 .2892 1 .3367	1 .24%2 1 .2935 1 .3416	1 .2527 1 .2985 1 .2465	1,2572 1,3032 1,3514	L 2617 L 3079 L 3564	1 .2218 1 .2642 1 .3127 1 .3613 1 .4124	t .270% t .3175 t .3663	1 .2753 1 .3272 1 .3713	37
56 54 57 68 30	1.4836 1.6399 1.6003	1 .4887 1 .5454 1 .6066	1 .4938 1 .4517 1 .6129	1 .4994 1 .557 1 .5191	1 .8051 1 .8637 1 .6255	£.5106 £.5697 £.6319	1.5166 1.5757 1.6383	1 4659 1 5226 1 5916 1 6447 1 7113	1 .5242 1 .558 1 .6512	L .8340 L .8941 L .6677	34 32 32 31 30°
60° 62 63 64	1 (804) 1 (88)7 1 (9626	1 .8115 1 .8887 1 .9711	1,5190 1,8967 1,979 1	1,4265 1,9047 1,94%3	LAHL L9128 L9270	L.8418 L.9219 2,0037	LUB495 1 9292 2 0145	1.7520 1.8572 1.9375 2.0211 2.1155	1 345% 1 345% 2 0321	1 372A 1 9542 2 0413	26 28 27 26 24
64 66 67 68 60	3 3446 2 3559 3 4751	2 2346 2 3673 2 4476	2 2673 . 2 2759 : 2 3609 :	2.27N1 2.29W 2.5129	3 .280/9 2 .44/23 2 .3257	2 2998 2 4142 2 5386	2 4262 2 4262 3 .5517	2 2140 2 3220 2 4353 2 5649 2 7034	2 ,33,62 . 2 4504 2 ,57,62	2 .3445 2 .4627 2 .8916	21
70° 71 73 73 74	2 9042 3 0777 3 2709	2 920% 3 .0901 3 .2914	2 9175 : 3 1144 : 3 3122 :	2 9544 3 1334 3 3332	3 9714 3 1824 3 3544	2 988° 2 1717 3 2750	1940. E 3 191 3 292. E	2 ASS/ 3 D237 3 2106 3 4197 3 .6354	2.0415 3.2345 3.4424	3 .0595 3 .2506 3 4646	16 17
76 77 78	3 .7321 4 .0108 4 .3315 4 .7046 5 .1446	4.0408 4.3662 4.7453	4 4015 - 4 7867 -	4.1022 4.4374 4.2288	6 1335 6 4737 6 5716	4 1651 4 51 7 4 9152	6 1970 6 34% 6 9536	4.2301 4.5964 5.0045	4 (2933) 4 (6252) 5 (1904)	4 2972 4 6646 5 0970	14 13 12 11 10°
	8.3135 7.1154 8.1443	6.3×59 7.2046 8.2636	6 45% (7 3m2) 8 3863 (6 ,5334 7 ,3962 8 ,41,44	6 6172 7 4947 8 6477	6 5912 7 5955 8 7769	6 772 7 6096 5 915.		6 9795 7 915A 9 2057	7 .0264 N .0285 N .3572	0 8 7 4 5
85 A4 67 68 89	14.30 19.08 39.64	14 67 19 74	11.91 15.06 20.45 31.82 71.82	15 46 21.2t 33 69	15 M9 22 J/2 35 M0	16 15 22 9t	16 A3 23 A6 40 92	24 90 44 07	17 .89 28 .03 47 .74	13 .05 18 .46 27 .27 52 08: 573 0	4 2 1 0
	*1 0	70 8	°0 #	m z	417.6	*0 5	*0 4	*0 3	°0 2	P0.1	Deg.

Norm.—For estangents use right-hand column of degrees and lower line of tenths.

ANALYTIC GEOMETRY

The Straight Line.—The equation of the straight line in its simplest form is $\frac{x}{a} + \frac{y}{b} = 1$, where a and b are the intercepts of the line on the axes of X and Y respectively.

The other useful equations of the straight line are: y = mx + b, where m is the tangent which the line makes with the axis of X. The equation of a line passing through a given point (x_1, y_1) is $y - y_1 = m(x - x_1)$ where m is entirely indeterminate, since any number of lines may pass through a point. The equation of a line passing through two points is

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$

The distance between two points x_1 , y_1 and x_2 , y_2 is:

$$D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Distance from a point x_1 , y_1 to a line ax + by + c = 0 is:

$$d = \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}}$$

The equation of an angle Φ between two lines y = mx + b and y = m'x + b' is:

$$\tan \Phi = \frac{m' - m}{1 + mm'}$$

The Circle.—The circle is the locus of all points in a plane equidistant from a given point.

The equation of a circle whose center lies at the origin is:

$$x^2+y^2=r^2.$$

If its center lies at (a, b):

$$(x-a)^2 + (y-b)^2 = r^2$$

If the origin lies on the left extremity of the diameter, the equation is:

 $(x-r)^2 + (y-0)^2 = r^2$ (as above)

or simplifying

$$y^2 = 2rx - x^2$$

The Ellipse.—The ellipse is the locus of a point moving in a plane so that the sum of its distances from two points in the plane is a constant. The ratio of the constant sum (the major diameter) to the distance between the foci is known as the eccentricity, e.

The area of an ellipse = π times the product of the semi-diam-

eters.

The equation of the ellipse is

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 (center at the origin)

The tangent to the above ellipse through the point of tangency x_1 , y_1 is

$$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$$

The Parabola.—The parabola is the locus of a point moving in a plane so that its distance from a point (the focus) in the plane is always equal to its distance from a line (the directrix) in the plane. Its equation, the curve passing through the origin and its focus lying on the axis of X is $y^2 = 4px$, polar coördinates $\rho = p \sec^2 \frac{\theta}{2}$, where 4p is the double ordinate through the focus. A tangent to a parabola through the point

of tangency x_1, y_1 , is $yy_1 = p(x + x_1)$. The tangent at any point makes equal angles with the axis and a line from the point of tangency to the focus. The parab-

ola has no finite asymptotes.

The Hyperbola.—The hyperbola is the locus of a point moving in a plane so that the differences of its distances from two fixed points in the plane is a constant. Its equation, with its center at the origin and its foci on the axis of x is

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Equilateral hyperbola: $x^2 - y^2 = a^2$.

Equilateral hyperbola referred to its axes as asymptotes: $xy = c^2$ (This is the isothermal curve of pressure and volume in gases).

Equation of the asymptotes

$$\frac{x}{a} = \frac{y}{b}; \frac{x}{a} = -\frac{y}{b}$$

The tangent to a hyperbola bisects the angle formed by the

two lines drawn from the point of tangency to the foci.

The Cycloid.—The cycloid is the curve generated by a point in the circumference of a circle rolling on a straight line. consists of an infinite number of equal arches.

$$x = a \cos^{-1}\frac{a-y}{a} - \sqrt{2ay-y^2} \text{ or } \begin{cases} x = a(\theta - \sin \theta) \\ y = a(1 - \cos \theta) \end{cases}$$

The Epicycloid and Hypocycloid.—The epicycloid is generated by a point in the circumference of a circle rolling upon another circle. The hypocycloid is the curve generated by a point on the circumference of a circle rolling inside another circle.

Epicycloid
$$\begin{cases} x = (a + b) \cos \theta - b \cos \frac{a + b}{b} \theta \\ y = (a + b) \sin \theta - b \sin \frac{a + b}{b} \theta \end{cases}$$
Hypocycloid
$$\begin{cases} x = (a - b) \cos \theta + b \cos \frac{a - b}{b} \theta \\ y = (a - b) \sin \theta - b \sin \frac{a - b}{b} \theta \end{cases}$$

where a is the radius of the main circle, and b of the generating circle.

Cubical Parabola.—Formula, $a^2y = x^3$. Semicubical Parabola.—Formula, $ay^2 = x^3$.

Witch of Agnesi.—Formula,
$$y = \frac{8a^3}{x^2 + 4a^2}$$

Cissoid of Diocles.—Formula,
$$y^2 = \frac{x^3}{2a - x}$$

$$\rho = 2a \tan \theta \sin \theta$$
.

This and the conchoid were invented to solve the problems of the duplication of the cube, i.e., given a cube, a3, whose side is a, to construct the side of a cube, $2a^3$. Lemniscate of Bernouilli.—Formula, $(x^2 + y^2)^2 = a^2(x^2 - y^2)$

 $\rho^2 = a^2 \cos \theta.$

This and the following have a singular point at 0, 0.

Strophoid.—Formula,
$$y^2 = x^2 \left(\frac{a - x}{a + x} \right)$$

$$\rho = a(\cos \theta - \sin \theta \tan \theta).$$

Cardioid.—Formula,
$$x^2 + y^2 + ax = a\sqrt{x^2 + y^2}$$

$$\begin{cases} x = a \cos \theta & (1 - \cos \theta) \\ y = a \sin \theta & (1 - \cos \theta) \\ \rho = a(1 - \cos \theta) \end{cases}$$

This is a special case of the epicycloid in which the generating circles are equal.

The Probability Curve.—Formula, $y = e^{-x^2}$.

The Caternary.—The caternary is the curve assumed by a uniform, completely flexible cord supported at its two ends. Its equation is

$$y = \frac{a}{2} \left(e^{\frac{x}{a}} + e^{-\frac{x}{a}} \right)$$

where e is the base of the Napierian system of logarithms.

The Involute.—The involute is the curve described by a point in a string which is being kept taut and unwound from a cylinder.

$$\begin{cases} x = a(\cos \theta + \theta \sin \theta) \\ y = a(\sin \theta + \theta \cos \theta) \end{cases}$$

$$\theta = \frac{\sqrt{\rho^2 - a^2}}{a} - \tan^{-1} \frac{\sqrt{\rho^2 - a^2}}{a}$$

The Spiral of Archimedes is a curve described by the extremity of a radius vector which lengthens in proportion to the angle That is, the turns are equidistant from each other. traversed.

$$\rho = a\theta$$

Hyperbolic Spiral.—Formula, $\rho\theta = a$. Logarithmic Spiral.—Formula, $\rho = e^{a\theta}$. Lituus.—Formula, $\rho^2\theta = a^2$.

CALCULUS

Elementary Differentials

$$d(c) = 0$$

$$d(x) = 1$$

$$d(cu) = cdu$$

$$d(cx) = c$$

or

$$d(u \pm v \pm w ...) = du \pm dv \pm dw ...$$

$$d(uv) = vdu + udv$$

$$d(uvw) = vwdu + vwdv + uvdw$$

$$\frac{d(uvw)}{uvw} = \frac{du}{u} + \frac{dv}{v} + \frac{dw}{w}$$

$$d(u^{n}) = nu^{n-1}du; \ d(x^{n}) = nx^{n-1}$$

$$d \frac{u}{v} = \frac{vdu - udv}{v^{2}}; \ d\left(\frac{1}{v}\right) = \frac{dv}{v^{2}}; \ d\left(\frac{1}{x}\right) = -\frac{1}{x^{2}}$$

$$d(\sin x) = \cos x \qquad d(\tan x) = \sec^{2}x$$

$$d(\sec x) = \sec x \tan x \qquad d(\cos x) = -\sin x$$

$$d(\cot x) = -\csc^{2}x \qquad d(\csc x) = -\csc x \cot x$$

$$d \sin^{-1}u = \frac{du}{\sqrt{1 - u^{2}}} \qquad d \tan^{-1}u = \frac{du}{1 + u^{2}}$$

$$d \sec^{-1}u = \frac{du}{u\sqrt{u^{2} - 1}} \qquad d \cos^{-1}u = -\frac{du}{\sqrt{1 - u^{2}}}$$

$$d \cot^{-1}u = -\frac{du}{1 + u^{2}} \qquad d \csc^{-1}u = -\frac{du}{u\sqrt{u^{2} - 1}}$$

$$d \log_{a}u = \log_{a}e \cdot \frac{du}{u}; \ d \log_{a}x = \log_{a}e = \frac{1}{x}$$

$$d \log_{a}u = \frac{du}{u}$$

$$da^{u} = a^{u} \log_{a}adu$$

$$de^{u} = e^{u}du$$

Fundamental Integrals¹

$$\int adx = ax$$

$$\int af(x)dx = a \int f(x)dx$$

$$\int \frac{dx}{x} = \log x$$

$$\int x^m dx = \frac{x^{m+1}}{m+1}, \text{ when } m \text{ is different from } -1$$

$$\int e^x dx = e^x$$

$$\int a^x \log a dx = a^x$$

$$\int \frac{dx}{1+x^2} = \tan^{-1} x$$

$$\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1} x$$

$$\int \frac{dx}{x\sqrt{x^2-1}} = \sec^{-1} x$$

$$\int \frac{dx}{x\sqrt{x^2-1}} = \sec^{-1} x$$

¹ For the more complicated integrals, see B. O. Pierces' "Short Table of Integrals" and the various works on integral calculus.

```
\int \cos x dx = \sin x
\int \sin x dx = -\cos x
\int \cot x dx = \log \sin x
\int \tan x \sec x dx = \sec x
\int \sec^2 x dx = \tan x
\int \csc^2 x dx = -\cot x
\int [f(x) + \varphi(x) + \psi(x)] dx = \int f(x) dx + \int \varphi(x) dx + \int \psi(x) dx
\int u dv = uv - \int v du \quad \text{where } u \text{ and } v \text{ are functions of } x
\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx
```

SECTION II

METALLURGICAL PRICE AND PRODUCTION STATISTICS

Metal Prices

For the current figures on metal prices it is, of course, necessary to refer to the "Engineering and Mining Journal." But it is often convenient to have the figures for some years back, for instance in computing mine valuations, or in calculations on metallurgical processes where the value of a metal over a term of years enters into the problem. For that reason I have introduced the following tables.

MONTHLY PRICES OF ELECTROLYTIC COPPER AT NEW YORK FOR THE LAST 10 YEARS (In Cents per Pound)

	19	06	19	BOS	19	07	19	808	I	909	1	910	18	111	11	912	11	913	19	14
Jan	15	008	18	310	24	404	13	726	13	893	13	620	12	295	14	094	16	488	14	223
Feb	15	011	17	889	24	869	12	905	12	949	13	332	12.	256	14	084	14	971	14	491
March	15	125	18	361	25	065	12	704	12	887	13	255	12		14	698	14	718	14	131
April	14	920	18	375	24	224	12	743	12	562	12	733	12	019	15	741	15	291	14	211
May	14	627	18	457	24	048	12	598	12	803	12	550	11		16	031	15	436	13	996
June	14	673	18	442	21	665	12	875	13	214	12	404	12	385	17	234	14	672	13	603
July	14	888	18	190	22	130	12	702	12	880	12	215	12	463	17	190	14	190	13	223
Aug	1,5	664	18	380		356	13	462	13	007	12	490	12	405	17	498	15	400		1
Sept	15	966	19	033	15	565	13	388	12	870	12	379	12	201	17	508	16	328		L
Oct	16	279	21	203	13	169	13	354	12	700	12	553	12	189	17	314	16	337		l .
Nov	16	599	21	833	13	391	14	130	13	125	12	742	12	616	17	328	15	182	11	789
Dec	18	328	22	885	13	163	14	111	13	298	12	581	13	552	17	376	14	224	12	801
Year's aver-	15	590	19	278	20	.004	13	208	12	982	12	738	12	376	_ 16	341	15	269		

These figures from the Engineering and Mining Journal.

¹ No quotations.

Average Monthly Prices of Copper Manufactures (In Cents per Pound)

	19	1	19	12	193	13	19	14
	Copper wire	Sheet copper		Sheet copper	Copper wire	Sheet copper	Copper wire	Sheet
Jan. Feb March April May June July Aug Sept Oct Nov Dec. Year	14.06 13.50 13.25 13.75 13.75 13.75 13.81 13.75 13.50 13.75 13.50 13.75 14.94	18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.63 19.13	15.75 15.25 16.03 17.06 17.30 18.68 19.13 19.13 19.13 19.13 19.13	19.50 19.50 20.30 21.50 21.50 22.50 22.75 23.50 23.50 23.50 23.50 23.50	19 09 16.38 16 39 16 50 16 50 16.18 15.88 16.60 17.84 17.75 17.28 15.79	23.50 22.50 21.50 21.50 21.50 21.50 21.50 22.50 22.50 21.15 20.50	15 94 15 88 15 60 15 25 15 23 15 03 14 88 14 63 14 34 13 34 12 50 14 25	20.75 20.50 20.35 20.25 19.90 19.56 19.38 18.80 18.00 17.38 17.50 18.88

MONTHLY PRICES OF LEAD AT NEW YORK FOR THE LAST 10 YEARS

(In Cents per Pound)

	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914
Jan	4 552	5 800	6 000	3,601	4 175	4 700	4 483	4 435	4 321	4 111
Feb	4 450	Б 464	6 000	3 725	4 018	4 613	4 440	€ 026	4 835	4 048
March	4 470	5 350	6 000	8 538	3 986	4 459	4 394	4 073	4 327	3 970
April	4 500	5 404	8 000	3 993	4 168	4 376	4 412	4 200	4 381	3 B10
May	4 500	5 685	6 000	4 253	4 287	4 315	4 373	4 194	4 342	3 900
June	4 500	å 750	5 780	4 486	4 350	4 343	4 435	4 392	4 325	3 900
July	4 524	5 750	5 288	4 447	4 321	4 404	4 499	4 720	4 353	3 891
Aug -	4 565	5 750	B 250	4 580	4 363	4 400	4 500	4 569	4 824	2 875
8ept	4 850	5 750	4 813	4 515	4 342	4 400	4 485	5 048	4 098	3 828
Oet	4 850	5 750	4 750	4 351	4 341	4 400	4 265	5 071	4 402	3 528
Nov	5 200	5 750	4 376	4 330	4 370	4 442	4 298	4 615	4 293	3 683
Dec	5 422	5- 900	3 658	4 213	4 560	4 500	4 450	4 303	4.047	3 800
Year's aver-	4 707	5 847	5 325	4 200	4.273	4 446	4 420	4 471	4 870	3 862

These figures from the Engineering and Mining Journal.

MONTHLY PRICES OF SILVER AT NEW YORK FOR THE LAST 10
YEARS
(In Cents per Fine Ounce)

	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914
Jan	60.690	65.288	68.673	55.678	51.750	52.375	53.795	56.260	62.938	57.572
Feb	61.023	66.108	68.835	56.000	51.472	51.534	52.222	59.043	61.642	57.506
March	58.046	64.597	67.519	55.365	50.468	51.454	52.745	58.375	57.870	58.067
April	56.600	64.765	65.462	54.505	51.428	53.221	53.325	59.207	59.490	58.519
May	57.832	66.976	65.971	52.795	52.905	53.870	53.308	60.880	60.361	58.175
June	58.428	65.394	67.090	53.663	52.538	53.462	53.043	61.290	58.990	56.471
July	58.915	65.105	68.144	53.115	51.043	54.150	52.630	60.654	58.721	54.678
Aug	60.259	65.949	68.745	51.683	51.125	52.912	52.171	61.606	59.293	54 .344
Sept	61.695	67.927	67.792	51.720	51.440	53.295	52.440	63.078	60.640	53.290
Oct	62.034·	69.523	62.435	51.431	50.923	55.490	53.340	63 .471	60.793	50.654
Nov	63.849	70.813	58.677	49.647	50.703	55.635	55.719	62.792	58.995	49.082
Dec	64.850	69.050	54.565	48.769	52.226	54 :428	54.905	63 .365	57.760	49.375
Year's average	60.352	66.791	65.327	52.864	51.502	53 . 486	53 .304	60.835	59.791	54 .811

Note.—Silver in New York is sold by the fine ounce, 999, in London by the standard ounce, 925 fine.

AVERAGE PRICES OF ALUMINUM, QUICKSILVER, ANTIMONY AND PLATINUM FOR THE LAST 10 YEARS

i	Aluminum, cents per pound	Quicksi dollars pe (flask = 7	r flask		imony, cer per pound	nts	Plati-
	No. 1	San Francisco	N. Y.	Cook- son's	Halletts'	Ordin- aries	dollars per ounce
1905		38.00	38.50				
1906		39.46	40.90		21.94	21.73	28.04
1907		39.60	41.50		15.53	14.84	
1908		44.17	44.84		8.42	8.00	
1909		45.45	46.30		8.02	7.47	
1910	22.85	46.51	47.06	8.25	7.88	7.39	32.70
1911	20.07	46.01	46.54		8.16	7.54	
1912	22.01	42.05	42.49		8.26	7.76	
1913	23.64	39.28	39.54		8.22	7.52	
1914	18.63	48.68	48.31	10.732		8.76	

These figures from the Engineering and Mining Journal.

MONTHLY PRICES OF SPELTER AT ST. LOUIS FOR THE LAST 10 YEARS

/	AN .	44 6	
(In	Cente	per Pound)

			1200	Oction 1	her a m					
	1905	1905	1907	1908	1909	1910	1911	1912	1913	1914
Jan	6 032	6 337	6 582	4 363	4.991	5 951	5 302	6 292	6 854	8 11
Feb	5 989	5 924	6 664	4 638	4 789	5 419	5	6 349	5 089	5,22
Мат	5 917	6 956	6 687	4 527	4 607	5 487	5 413	6 476	5 926	ð 10
Apr	5 667	5 931	6 535	4 498	4 815	5 289	5 249	6 483	5 491	4 96
Мау	5 284	5 846	6 291	4 458	4 974	5 041	5 198	6 629	5 256	4 92
June	5 040	5 948	6 269	4 393	5 252	4 978	5 870	6 727	4 974	4 85
July	5 247	5 856	5.922	4 338	5 252	5 002	5 545	6 966	5 128	4.77
Aug	5 556	5 878	5 551	4 556	5 579	5 129	5 803	6 878	δ.	5,41
Sept	5 737	6 056	5 086	4 819	5 646	5 364	5 719	7 813	5 444	5,23
Oct	5 934	6 070	5 280	4 651	6 043	5 478	5 951	7 276	5 188	4 75
Nov	5 984	6 225	4 775	4 909	6 231	5 826	6 223	7 221	5 📰	4 96
Dec	6 374	6 443	4 104	4 987	6 099	5 474	6 151	7 081	5 004	5 43
Year's aver-	£ 730	d Ols	5 812	4 578	5 352	5 370	5 608	6 799	5.504	5 06:

MONTHLY PRICES OF TIN AT NEW YORK FOR THE LAST 10 YEARS

	19	905	34	906	19	907	19	908	19	909	1	010	19	911	1!	912	19	913	10	714
Jan	29	325	36	390	41	546	27	380	28	080	32	700	41	255	42	529	50	298	37	779
Feb	29	262	38	403	42	102	28	978	28	290	32	920	41	614	42	962	48	766	39	830
Mar	29	523	36	682	41	313	30	577	28	727	32	403	40	157	42	577	46	832	38	038
Apr	30	528	38	900	40	938	31	702	29	445	32	976	42	183	43	923	49	115	38	154
May	30	049	43	313	12	149	30	015	29	225	33	125	43	115	48	053	49	038		
June .,	30	329	39	260	42	120	28	024	29	322	32		44	605	45	815	44	820	30	577
July	31	760	37	275	41	091	29	207	29	125	32	695	42	400	44	519	40	260	31	707
Aug ,,, ,	32	866	40	606	37	667	29	942	29	986	33	972	43	319	П	857	41	582		
Sept	32	095	40	516	36	689		815	30	293	34	982	39	755	49	135	42	410	32	675
Oet	32	481	42	852	32	620	29	444	30	475	36	190	41	185	50	077	40	482	30	284
Nov	39	443	42	906	30	833	30	348	30	809	36	547	43	125	49	891	39	810	33	304
Dec	35	835	42	750	27	925	29	144	32	913	38	199	44		49	815	37	. 635	33	601
Year s aver- age	31	358	39	819	38	160	29	465	29	725	34	123	42	281	46.	.095	44.	.252		

These figures from the Engineering and Mining Journal.

Metal Production Figures

For the latest production figures the reader is referred to the annual statistical number of the Engineering and Mining Journal and to the "Mineral Industry." However, despite the fact that the following figures are somewhat out of date they are offered as useful guides.

PRODUCTION OF METALS IN THE UNITED STATES 1

Metal	Unit	1912	1913	1914
Aluminum. Copper (a) Ferromanganese Gold (b) Lead (c) Nickel (c) Quicksilver Silver (b)	Pounds Pounds Long tons Dollars Long tons Short tons Pounds Flasks Troy ounces Short tons	(g)32,990,000 1,241,762,508 227,725 93,451,500 29,499,422 410,006 42,168,769 (f)25,147 63,766,800 348,638	(g) 49,601,500 1,225,735,834 229,834 88,884,400 30,736,477 433,478 47,124,330 (h)20,000 66,801,500 358,262	(Å)45,000,000 1,158,581,876 185,118 94,531,800 23,147,226 538,735 (e)30,067,064 16,300 72,455,100 362,361

(a) Production from ore originating in the United States. (b) The statistics for 1912 and 1913 are the final and those for 1914 are the prehiminary statistics reported jointly by the directors of the Mint and the U.S. Geological Survey. (c) Production of refined lead ore and scrap originating in the United States; antimonial lead is included. (d) Total production of smelters, except those treating dross and junk exclusively; includes spelter derived from imported ore. (e) Imports; for 1914, first 10 months only. This nickel is refined in the United States for the production of metal, oxide and salts. (f) As reported by U.S. Geological Survey. (g) As reported by the Metallgesellschaft, Frankfurt am Main. (h) Estimated.

PRODUCTION OF MINERAL AND CHEMICAL SUBSTANCES

Bubstance	Unit	1912	1913	1914
Arsenic. Coal, anth.(a) Coal, bitu.(a) Coke(a) Copper sulphate Iron ores	Pounds Short tons Short tons Short tons Long tons Long tons	5,852,000 84,478,627 449,964,723 42,528,653 39,480,741 59,196,778	91,626.825 478,688,867	8,651,940 90,821,507 422,703,970 34,555,914 31,776,670 42,911,897

(a) The coal and coke statistics are the estimates of Coal Age.

WORLD'S PRODUCTION OF NICKEL

(As reported by Metallgesellschaft, Frankfurt a. M., in Metric Tons)

	1910	1911	1912
United States and Canada England Germany France Others	10,000 3,500 4,500 1,500 600	12,000 4,500 5,000 2,000 1,000	15,000 5,200 5,000 2,100 1,200
Totals	20,000	24,500	28,500

^{*} As tabulated in the Engineering and Mining Journal, Jan. 9, 1915.

World's Production of Quicksilver

(In Metric Tons)
(From statistical report of the Metallgesellschaft, Frankfurt am Main)

	1911	1912	1913
United States: a. California (a) b. Texas c. Other states	578 116 37	701 154	578 136
United States	731 1486 793 '931 150	855 1490 783 986 150	714 1490 855 988 150
Total	4100	4300	4200

(a) Eng. and Min. Journ. (b) Exports.

World's Consumption of Aluminum

(In Metric Tons)
(From statistical report of the Metallgesellschaft, Frankfurt am Main)

	1911	1912	1913
United States (a)	20,900 5,000	29,800 6,000	32,800 7,000
England	3,000 900 17,000	$egin{array}{c} 4,000 \\ 1,000 \\ 22,100 \\ \end{array}$	5,000 1,000 21,000
	46,800	62,900	66,800

(a) U. S. Geological Survey.

World's Production of Aluminum

(In Metric Tons)
(From statistical report of the Metallgesellschaft, Frankfurt am Main)

	1911	1912	1913
United States	18,000	19,500	22,500
Canada (exports)	2,300	8,300	5,900
Austria-Hungary Switzerland	8,000	12,000	12,000
France	10,000	13,000	18,000
England	5,000	7,500	7,500
Italy	'800	800	800
Norway	900	1,500	1,500
Totals	45,000	62,600	68,200

World's Production of Pig Lead (In Metric Tons)
(From statistical report of the Metallgesellschaft, Frankfurt am Main)

	1911	1912	1913
Spain (a)	175,100	186,700	203,000
Germany	164,400	176,600	181,100
France	23,600	31,100	(c)28,000
Great Britain	26,000	29,200	30,500
Belgium	44,300	51,200	50,800
Italy	16,700	21,500	21,700
Austria-Hungary	19,600	21,400	24,100
Greece	14,300	14,500	18,400
Sweden and Norway	1,100	1,300	1,500
Russia	1,000	(c)1,000	(c)1,000
Asiatic Turkey	12,400	12,500	13,900
Total Europe (b)	498,500	547,000	574,000
United States	377,900	387,300	407,800
Mexico	124,600	(c)108,000	(c)62,000
Canada	10,700	16,300	17,100
Total North America	513,200	511,600	486,900
Japan		3,600	(c)3,600
Australia		107,400	116,000
Other countries	20,500	12,200	6,200
Total world's production	1,136,000	1,181,800	1,186,700

(a) Exports. (b) Including Asiatic Turkey. (c) Estimated.

Production of Lead (Refinery Statistics)¹ (a) (In Tons of 2000 Lb.)

Class	1911	1912	1913	1914
Domestic				
Desilverized	211,041	236,207	261,616	318,697
Antimonial	8,916	9,239	16,345	17,177
S. E. Missouri	155,008	145,366	133,203	177,413
S. W. Missouri	25,993	19,224	22,312	25,448
Totals	400,958	410,036	433,476	538,735
Desilverized	89,487	82,715	54,774	28,475
Antimonial	4,929	5,003	2,300	1,119
Totals	94,416	87,718	57,074	29,594
Grand totals	495,374	497,754	490,550	568,329

As reported by the Engineering and Mining Journal.

(a) These figures include the lead derived from scrap and junk by primary smelters.

WORLD'S CONSUMPTION OF LEAD
(In Metric Tons)
(From statistical report of the Metallgesellschaft, Frankfurt am Main)

	1911	1912	1918
Germany	232,900	232,100	223,500
Great Britain	198,300	196,300	191,400
France	99,600	104,700	107,600
Russia	42,900	45,600	58,800
Belgium	43,000	44,900	42,900
Italy	36,300	33,000	32,600
Austria-Hungary	36,200	37,800	35,500
Holland (a)	6,800	6,300	9,500
Switzerland	5,000	6,400	5,800
Other European countries	3,500	4,400	6,300
Total Europe	704,500	711,500	713,900
United States		398,400	401,300
Canada	21,100	30,000	22,900
Japan		21,800	(a)18,500
Australia	9,100	10,100	9,600
Other countries	31,200	30,000	(a)30,000
Total world's consumption	1,149,200	1,201,800	1,196,200

⁽a) Estimated.

World's Production of Spelter (In Metric Tons) (From statistical report of the Metallgesellschaft, Frankfurt am Main)

	1911	1912	1913
Germany Rheinland-Westphalia. Silesia. Other districts. Belgium Holland Great Britain. Great Britain. France and Spain Austria and Italy. Russia Norway	81,458	86,619	92,852
	156,174	169,088	170,119
	12,761	15,357	20,142
	195,092	200,198	197,703
	22,733	23,932	24,323
	66,956	57,231	59,146
	64,221	72,161	71,023
	16,876	19,604	21,707
	9,936	8,763	7,610
	6,680	8,128	9,287
Sweden Europe United States Australia Total	632,887	661,081	673,912
	267,472	314,512	320,283
	1,727	2,296	3,724
	902,100	977,900	997,900

World's Consumption of Spelter
(In Metric Tons)
n statistical report of the Metallgesellschaft, Frankfurt am Main)

	1911	1912	1913
1 States	251,600	312,900	313,300
iny .	219,300	225,800	232,000
Britain .	175,700	185,200	194,600
B	82,000	82,000	81,100
m	73,700	77,200	76,400
a-Hungary	43,500	46,800	40,400
	28,900	27,900	33,300
4 1 1 4 + 1 1 4 +	10,100	10,700	10,900
	4,800	4,700	5,900
d (estimated) .	4,000	4,000	4,000
countries (estimated)	17,800	19,700	20,900
al	911,400	996,900	1,012,700

INC SMELTING CAPACITY OF THE UNITED STATES¹
(Number of Retorts at End of Years)

Nume	Situation	1913	1914
in Zinc & Chem Co in Zinc Co. of Ill in Zinc, Lead & Sing Co in Zinc, Lead & Sing Co in Zinc, Lead & Sing Co ille Zinc Co ille Zinc Co ille Zinc Co inc Co. in	Caney, Kan Bartlesville, Okla. Collinsville, Okla. Chanute, Kan Clarksburg, W Va. Collinsville, Ill St. Louis, Mo Cherryvale, Kan, Neodosha, Kan E St. Louis, Ill. Clarksburg, W. Vs. Mesdowbrook, W.	3,200 3,840 3,648 5,184 8,064 (b) 1,280 2,712 (b) 1,536 2,000 4,800 3,760	4,800 3,840
Zine Co	La Harpe, Kan. Hillsboro, Ill. Bartlesville, Okla La Balle, Ill Depue, Ill Bartlesville, Okla, Springfield, Ill. Nevada, Mo. Palmerton, Penn. Pittsburg, Kan Gas City, Kan. Bandoval, Ill Collinsville, Okla.	1,800 4,640 1,856 1,600 8,456 6,800 4,480 8,200 (a) 648 6,744	(d) 4,840 (d) 1,866 1,840 3,466 5,266

eported by the Engineering and Mining Jouractive throughout year. (b) Inactive duit being dismantled. (d) No report rece-

PRODUCTION OF ZINC¹ (In Tons of 2000 Lb.) (By Ore Smelters (a))

States	1911	1912	1913	1914
Colorado	88,681 106,173 46,333	8,860 94,902 111,761 76,837 56,278	8,637 111,551 85,157 83,230 69,687	8,152 130,587 53,424 92,467 77,731
Totals	295,836	348,638	358,262	362,361

⁽a) Includes some works that smelt dross and scrap as well as ore, but does not include works that smelt dross and scrap only. Discrepancies among statistical reports of the spelter production of the United States arise largely on account of the difference in the dividing line that is drawn in this respect.

SILVER-LEAD SMELTING WORKS OF NORTH AMERICA1

Company	Place	Fur- naces	Annual capacity (a)
American Smelting & Refining Co Selby Smelting & Refining Co Selby Smelting & Lead Co Ohio & Colorado Smelting Co U. S. Smelting Co Needles Smelting Co International Smelting Co International Smelting Co	Denver Pueblo Durango Leadville Murray East Helena Omaha (c) Chicago (c) Perth Amboy (c) El Paso Selby Salida, Colo. Midvale, Utah Needles, Cal. (d) Carnegie, Pa. Tooele, Utah	77410842237346225	511,000 380,000 146,000 509,000 657,000 306,600 82,000 60,000 140,000 380,000 210,000 345,000 500,000 70,000 60,000 500,000
Totals, United States	Monterey Aguascalientes Chihuahua Velardeña San Luis Potosi Torreon Mapimi (d) Trail, B. C.	76 10 2 5 3 11 8 6 -45	4,856,600 475,000 100,000 274,000 140,000 385,000 360,000 325,000 2,059,000 110,000

⁽a) Tons of charge. (c) Smelt chiefly refinery between-products. (d) Not operated in 1914.

1 Engineering and Mining Journal, Jan. 10, 1914.

World's Consumption of Copper (In Metric Tons)
(From statistical report of the Metallgesellschaft, Frankfurt am Main)

Europe .	1911	1912	1913
Germany	222,500	231,700	259,300
Great Britain	159,100	144,700	140,300
France	95,700	98,500	103,600
Austria-Hungary	38,500	48,200	39,200
Russia	32,800	40,000	40,200
Italy	29,400	34,200	31,200
Belgium	13,500	15,000	15,000
Netherlands	1,000	1,000	1,000
Other European countries	10,000	10,200	(a)13,300
Total consumption in Europe America	602,500	623,500	643,100
United States	321,900	371,800	348,100
Others in America	3,000	3,000	3,000
Others in America		0,000	5,000
Total consumption in America Asia, Australia, Africa Production Japan and Aus-	324,900	374,800	351,100
	05 000	111 000	110 000
tralia	95,000	111,900	119,000
Imports from Europe	500	1,400 500	1,000
Imports from America	• • • • • • • •	300	80
Total Exports to Europe and Amer-	95,500	113,800	120,100
ica	68,800	73,400	69,800
Consumption in Asia, Australia and Africa	26,700	40,400	50,300
World's consumption	954,100	1,038,700	1,044,500
World's production	893,800	1,018,600	1,005,900

⁽a) Estimated.

World's Production of Copper (a)
(In Metric Tons)

(at material about)						
Country	1911	1912	1913	1914		
United States	491,634	563,260	555,990	525,529		
Mexico	61,884	73,617	58,323	36,337		
Canada	25,570	34,213	34,880	34,027		
Cuba	3,753	4,393	3,381	6,251		
Australasia	(b)42,510	(b)47,772	(b)47,325	(b)37,592		
Peru	28,500	26,483	25,487	23,647		
Chile	33,088	39,204	39,434	40,876		
Bolivia	2,950	4,681	(b) 3,658	(b)1,306		
Japan	(d)52,303	(d)62,486	(b)73,152	(d)72,938		
Russia	(c)25,747	(c)33,550	(c)34,316	(b)31,938		
Germany	(b)22,363	(b)24,303	(b)25,308	(b)39,480		
Africa	(b)17,252	(b)16,632	(b)22,870	(b)24,135		
Spain and Portu-	(-,,	(-),	(-),	(-),		
gal	(b)52,878	(b)59,873	(b)54,696	(b)37,099		
Other countries	(b)26,423	(b)29,555	(b)27,158	(b)25,176		
V-1231 VV-12311300		(2/20)000		(3,23,27		
Totals	886,855	1,020,022	1,005,978	923,888		

(a) The statistics in this table are "E. & M. J." compilations, except where specially noted to the contrary. (b) As reported by Henry R. Merton & Co. (c) As officially reported. (d) Privately communicated from Japan. (e) Exports as reported by Henry R. Merton & Co. (h) Estimated. (f) Communicated through London.

SMELTERS' PRODUCTION OF COPPER IN THE UNITED STATES¹ (In Pounds)

		(In Pounds)		
State	1911	1912	1913	1014
Alasks Arisons California Colorado Idaho Michigan Montans Nevada New Mexico Utah Washington E a s t a n d South Other States	19,412,000 300,578,816 36,806,762 8,474,848 3,745,210 216,412,867 271,963,760 65,385,728 1,518,288 138,336,905	32,602,000 357,952,962 31,069,029 7,502,000 5,964,542 231,628,486 309,247,735 82,530,608 27,488,912 131,673,803 1,121,109 18,592,855 4,396,667	24,452,000 399,849,745 32,390,272 7,670,090 8,434,028 159,437,262 285,336,153 84,683,961 46,953,414 147,591,955 448,805 24,333,014 4,155,135	24,288,000 387,978,852 29,515,488 10,104,579 4,856,460 157,089,796 243,139,737 60,078,095 64,338,892 153,555,902 165,023
Totals	1,083,856,371	1,241,762,508	1,225,735,834	1,158,581,876

As reported by the Engineering and Mining Journal

⁽a) Includes copper originating in states other than those enumerated and also copper whose origin could not be correctly distributed at this early date. Indeed, the distribution for 1914 in several cases in this table must be regarded as merely provisional. Thus, Utah is undoubtedly credited with more or less copper that belongs to Idaho and Nevada.

(SMELTERS' PRODUCTION—Continued) (In Pounds)

urce	1911	1912	1913	1914
nerican n ore	1,284,932,019 34,392,091	1,489,168,562 53,701,307	1,438,565,881 55,803,202	1,327,488,479 50,101,308
ıls	18,529,547	11,949,348	22,427,889 1,516,796,972	20,894,559 1,398,484,346
aerican	32,413,440	45,735,673	36,682,605	36,765,920
copper orted	1,305,440,217 146,422,851	1,508,983,544 144,480,144	1,480,114,367	1,361,718,426
erude	1,451,863,068	1,653,463,688	1,649,430,236	1,492,843,502

WORLD'S PRODUCTION OF SILVER Smelters' Production—In Metric Tons om statistical report of the Metallgesellschaft, Frankfurt am Main)

	1911	1912	1913
t Britain	536.1	499.3	
any	420.0		
um	264.7		280.0
ı and Portugal	134.9		
3e	53.0		(a)47.0
ia-Hungary	63.1		58.9
•••••	14.2	1	14.4
⁷ ay	7.2		
ia	4.9	(a)5.0	
ey (a)	1.5		
en		1.2	0.9
tal Europe	1499.6	1481.2	1478.7
ed States	3891.9	4073.0	4059.1
co		b1063.2	
ral and South America (a)	200.0		
da	509.2		
tal America	5656.7	5929.6	5974.8
ia (Japan)	141.6	138.1	148.9
stralia	129.1	136.4	143.0
production	7427.0	7685.3	7745.4

SILVER PRODUCTION IN THE UNITED STATES (In Fine Ounces)

State	1912	1913	1914
Alabama	200	100	300
Alaska	539,700	366,700	865,900
Arizona	3,445,500	3,912,000	4,439,500
California	1,384,800	1,421,500	2,020,800
Colorado	7,933,100	8,989,700	8,884,400
Georgia	·´ ′200	100	100
ldaho	7,862,900	9,477,100	12,573,800
Illinois	1,800	2,300	1,900
Maryland	700		100
Michigan	543,500	333,700	415,500
Missouri	30,000	38,900	60,000
Montana	12,524,000	12,540,300	2,536,700
Nevada	13,851,400	15,657,400	15,877,200
New Mexico	1,460,800	1,666,900	1,771,300
North Carolina	2,300	1,700	1,500
Oklahoma		800	6,200
Oregon		172,200	147,400
South Carolina			
South Dakota	205,800	172,600	179,800
Tennessee		109,000	102,800
Texas	379,800	429,800	574,700
${f Utah}\ldots\ldots$	13,076,700	11,282,300	11,722,000
Virginia		200	1,500
Washington	350,800	218,700	341,300
Wyoming	300	1,200	100
Continental U. S	63,761,000	66,796,200	72,444,800
Philippines		5,300	10,300
Porto Rico			
Total	63,766,800	66,801,500	72,455,100

As reported by the Director of the Mint and the U.S. Geological Survey.

GOLD PRODUCTION OF THE WORLD FOR 20 YEARS1

1895	\$198,995,741	1905	\$378,411,054
1896	211,242,081	1906	
1897	237,833,984	1907	
	287,327,833	1908	
	311,505,947	1909	· · · · · · · · · · · · · · · · · ·
	258,829,703	1910	
1901	260,877,429	1911	
1902	298,812,493	1912	
1903	329,475,401	1913	, ,
	349 ,088,293	1914	
	, ,		, , ,

As tabulated in the Engineering and Mining Journal, Jan. 10, 1914.

GOLD PRODUCTION OF THE WORLD

	1912	1913	1914
Transvaal	\$188,599,260	\$181,889,012	\$173,176,133
Rhodesia	13,166,230	13,935,681	17,745,980
West Africa	7,386,028		
Madagascar, etc	2,925,000	2,044,600	1,980,000
Total Africa	\$212,076,518	\$205,715,653	\$201,573,484
United States	\$93,451,500	\$88,884,400	94,531,800
Mexico	22,500,000	, ,	
Canada	12,559,288	1 '	1
Central America, etc	3,632,500		
Total North America.	\$132,143,288	\$128,630,931	\$132,141,844
Russia, inc. Siberia	\$27,635,500		1 '
France	1,847,000		
Other Europe	3,615,000		. , ,
Total Europe	\$33,097,500	\$34,262,100	\$30,563,000
British India	\$12,115,162	1 '	1 '
Indies	4,925,000	4,739,100	4,690,000
Japan and Chosen	7,165,000	, ,	
China and others	3,750,000		1 , ,
Total Asia, not inc. Siberia	\$27,955,162	\$27,969,083	\$28,119,480
South America	\$12,425,000	\$13,058,400	\$13,525, 000
Australasia	56,635,800		45,695,271
Total for the world	\$474,333,268	3 \$462,669,558	\$ 451,582,1 29

Official returns of the various countries and reports of the Director of the U.S. Mint.

GOLD PRODUCTION IN THE UNITED STATES (Values)

	(varues)		
State	1912	1913	1914
Alabama	\$16,400	\$9,200	\$12,300
Alaska	17,198,600	15,201,300	16,547,200
Arizona	3,785,400	4,101,400	4,568,900
California	20,008,000	20,241,300	21,251,900
Colorado	18,741,200	18,109,700	19,902,400
Georgia	10,900	13,300	16,800
Idaho	1,401,700	1,244,300	1,187,200
Maryland and Virginia.	1,200	700	500
Montana	3,707,900	3,320,900	4,143,600
Nevada	13,575,700	11,977,400	11,536,200
New Mexico	754,600	892,000	1,219,100
North Carolina	156,000	115,200	130,300
Oregon	759,700	1,477,900	1,589,400
South Carolina	15,400	4,100	6,400
South Dakota	7,823,700	7,214,200	7,334,000
Tennessee	11,500	7,700	6,400
Texas	2,200	200	18,800
Utah	4,312,600	3,570,300	3,377,000
Washington	682,600	657,500	587,800
Wyoming	24,300	17,500	6,700
Continental U. S	\$92,989,900	\$88,176,100	\$93,429,700
Philippines		707,200	1,099,300
Porto Rico			2,800
Total	\$93,451,500	\$88,884,400	\$94,531,800

As reported by the Director of the Mint and the U.S. Geological Survey.

U. S. Pig Iron Production for 12 Years¹ (In Long Tons)

U. S. IRON ORE PRODUCTION AND CONSUMPTION¹ (In Long Tons)

	1912	1913	1914
Lake Superior shipments. Southern ore mined Eastern and other local ores.	48,211,778 7,500,000 3,485,000	7,950,000	6,175,000
Total production Imports	59,196,778 2,104,576	61,847,116 2,594,876	42,911,897 1,455,000
Total supplies	61,301,354 1,195,742	64,441,992 1,042,151	44,366,897 660,000
Approximate consumption	60,105,612	63,399,841	43,706,897

PRODUCTION OF CRUDE PETROLEUM IN THE UNITED STATES1 (In Barrels of 42 Gal.)

Field	1912	1913	1914
California	84,823,992	96,881,967	100,093,568
Colorado	200,000	220,000	(f)200,000
Texas (a)	11,778,324	15,544,046	20,586,377
Louisiana	9,791,896	12,901,703	16,860,235
Illinois	28,400,000	(e)23,893,899	21,500,000
Lima { Indiana	1,200,000 3,000,000	4,750,000	2,900,000
Mid-continental (b).	52,771,603	64,556,000	(d)97,400,000
Kentucky-Tennessee		500,000	580,000
Appalachian (c)	26,000,000	25,673,000	23,800,000
Wyoming	500,000	2,354,000	4,100,000
Others	5,000	50,000	(f)50,000
Total	218,970,815	247,321,615	288,070,180

⁽a) Includes Panhandle field of Texas. (b) Kansas and Oklahoma, only.
(c) Pennsylvania, New York, West Virginia and eastern Ohio. (d) Estimate of Da. David T. Dav, in "Oil, Paint and Drug Reporter," Jan. 2, 1916.
(e) U. S. Geol Survey. (f) Estimated.

As reported by the Engineering and Mining Journal.

Canadian Electro Products Co. Ltd.

TIN PRODUCTION AND CONSUMPTION (In Long Tons)

(III DONE TONS)			
	1913	1914	1915
Exports, Straits and Malay Peninsula Exports, Australian. Banka and Billiton sales Chinese exports and production; Bolivian exports; South African production; Nigerian production; Cornwall production;	1 000	1,771 10,975 8,255 24,844 2,276 1,962	2,275 15,093 7,097 18,800 2,158 1,899
Total	120,356	116,589	118,082
U. S. imports and consumption	45,900 28,736 16,573 21,250 1,000 6,500	15,810 18,633 1,050	39,937 7,625 11,550 1,100
Totals, ,	119,959	115,419	116,342
Visible stocks, Dec. 1	16,045	13,432	14,535

¹ Not in "Statuatics."

World's Production of Tin

(In Metric Tons)

(From statistical report of the Metallgesellschaft, Frankfurt am Main)

	1911	1912	1913
Straits Settlements .	57,944	61,528	65,640
Great Britain:			
From home ores	4,950	5,338	(c)5,300
From other ores (a)	13,850	13,600	16,700
Germany (a)	11,378	11,000	(c)11,500
France	500	500	1,200
Banca (sold in Holland)	15,147	16,111	15,173
Billiton (sold in Holland and	10,21	10,111	10,110
	2,240	2,243	2,243
Java)	5,150	5,130	4,870
China (annuals)			4,010
China (exports)	6,050	8,782	(c)6,000 300
Bolivia (b)	1000	500	300
	117,600	124,700	128,900

⁽c) Mainly from Bolivian ores. (b) Importation of Bolivian crude tin into Great Britain. (c) Estimated.

WORLD'S CONSUMPTION OF TIN (In Metric Tons)

(From statistical report of the Metallgesellschaft, Frankfurt am Main)

	1911	1912	1913
Great Britain	21,900	21,800	24,400
Germany	18,300	20,200	19,300
France	7,400	7,500	8,300
Austria-Hungary	4,000	3,800	3,200
Belgium	1,700	1,500	2,300
Russia	1,900	2,600	2,700
Italy	2,400	2,500	2,900
Switzerland	1,200	1,400	1,400
Spain	1,200	1,300	1,300
Scandinavia	1,400	1,500	1,600
Holland	(a)250	(a)250	(a)250
Other European countries	1,200	1,100	1,200
Total Europe	62,800	65,500	68,900
United States	48,000	51,700	45,000
Other America	2,300	3,300	3,400
Australia	(a)900	(a)1,200	(a)1,400
Africa	(a)500	(a)600	(a)500
China (imports)	1,993	2,427	(a)2,400
Other Àsia	3,000	3,000	3,300
World's consumption	119,500	127,700	124,900
World's production	117,600	124,700	128,900

⁽a) Estimated.

COPPER SMELTING WORKS OF NORTH AMBRICAL

Сопрвпу	Situation of works	No. of blast fur- naces	Annual capacity tons of charge	No. of rever- bera- tory fur- naces	Annual capacity tons of charge	No. of con- ver- ters	Annual capacity in ore tons (a)
American Smelting & Refining Co. American Smelters Securities Co. Ansconds Copper Mining Co. Ansconds Copper Mining Co. Compagnie du Boleo. Balakala Consolidated Copper Co. Calumet & Arisons Mining Co. Canadian Copper Mining & Smelting & Power Co. Copper Queen Consolidated Mining, Smelting & Power Co. Caranby Consolidated Mining, Smelting & Power Co. International Smelting Co. Mammoth Copper Mining Co.	Aguaecalientes, Mez. Perth Amboy, N. J. Omaha, Neb. El Paso, Texas Matehuala, S.L.P., Mez. Hayden, Aria. Garfield, Utah Taooma, Wash. Velardeffa, Dgo., Mez. Anaconda, Mont. Grest Fulls, Mont. Coram, Calif. Santa Rosalia, Mex. Greenwood, B. C. Douglas, Aria. Copper Cliff, Ont. Cazanea, Son. Fumboldt, Aria. Fumboldt, Aria. Isabella, Tenn. Butte, Mont. Grand Forla, B. C. Tooele, Utah Miami, Aria. (d) Kennett, Calif.	∞≈ ≈≈≈≈≈≈≈≈≈≈≈≈≈≈ ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈	730,000 1111,000 325,000 325,000 420,000 634,900 634,900 634,900 1,225,000 1,225,000 1,440,000 700,000 1,440,000 700,000 730,000		420,000 290,000 875,000 360,000 360,000 153,000 300,000 275,000 275,000	4000 000 NOON NOON 100 NOON 100	SS S SS S

COPPER SMELTING WORKS OF NORTH AMERICA.1-Concluded

Thompson, Nev. 2 800, Saltillo, Coah., Mex. 3 630, Coniston, Ont. 3 630, Martinez, Calif. Nev. 1 175, Laurel Hill, N. Y. 2 94, Globe, Ariz. 5 562, Constable Hook, N. J. 2 94, Ouray, Colo. Campo Seco, Calif. 1 52, Corwin, Ariz. 5 500, San Pedro, N. M. 1 190, Copperhill, Tenn. 7 1,000, Teziutlan, Puebla, Mex. 2 175, Ladysmith, B. C. 2 200, Midvale, Utah.	Company	Situation of works	No. of blast fur- naces	Annual capacity tons of charge	No. of reverbers, tory fur-	Annual capacity tons of charge	No. of con- ver- ters	Annual capacity in ore tons (a)
Jerome, Aris (d) 4 427.		New		800 830,000 630,000 175,000 105,000 105,000 175,000 175,000 175,000 175,000 175,000 175,000 175,000 175,000 175,000 175,000 175,000	2 (e) (a)	52,500 900,000 900,000 48,000 40,000	अचळअचअळळ : : : अअचळअ :अच :चम्	22,000 70,000 (g) 40,000 8,400 8,000 15,700 36,000

(a) Raw ore smelted as flux. (b) Included in furnace tonnages. (c) To be abandoned by Jan. 1, 1915. (d) Plants building. by Norfolk Smelting Co., Inc. (g) No raw ore charged. (h) Not in operation

ELECTROLITIC COPPER REFINERIES OF THE UNITED STATES

Works	Situation	1911 capacity, 1912 capacity, pounds	soity, 1913 capacity.	1914 capacity pounds (c)
opper Co Copper Works Copper Smelting & Rolling Co Smelting & Refining Co Melting & Refining Co Copper Mining Co melting Co Techs Mining Co Techs Mining Co	Laurel Hull, N. Y. Perth Amboy, N. J. Canton, Md. Perth Amboy, N. J. Chrome, N. J. Kewark, N. J. Great Falls, Mont. Tacoma, Wash. Buffalo, N. Y. Calumet, Mich.	353333331	000000000000000000000000000000000000000	400,000,000 400,000,000 336,000,000 216,000,000 48,000,000 65,000,000 (a) 65,000,000
Total		1,494,000,000 1,648,000,000	0,000 I,768,000,000	_

(a) Official figures furnished by the respective companies (b) Estimated. (c) All of the figures for 1913 and 1914 were officially furnished. (d) Buffalo works at Calumet & Hecla dismantied in fall of 1914. (e) New works put into operation in 1914,

٠

SECTION III

PHYSICAL CONSTANTS

The Fundamental Laws of Physics

= mass \times acceleration; f = maForce

Momentum = mass \times velocity; M = mvEnergy = $\frac{1}{2}$ mass \times velocity²; $E = \frac{1}{2}$ mv^2 Work = force \times distance = fs = mas

Harmonic motion, period = $2\pi\sqrt{\frac{\text{length}}{\text{acceleration}}}$, or in a pendulum

 $T = 2\pi \sqrt{\frac{l}{a}}$

Laws of a falling body: v = velocity at end of t seconds, S = space traversed in t seconds, $S_t = \text{space traversed from } t \text{ to}$ (t+1) seconds

v = gt $S = \frac{1}{2}gt^{2}$ $S_{t} = \frac{1}{2}g(2t + 1)$

"Centrifugal force" = $mr\omega^2$, where ω = angular velocity.

Torsional pendulum: $T = 2\pi \sqrt{\frac{2lI}{\pi nr^4}}$

where T = period, l = length, I = moment of inertia of masson end, n = coefficient of rigidity, r = radius of wire. Young's modulus, coefficient of elasticity:

 $F_1 = \frac{p}{\Delta l} = \frac{fl}{\pi r^2 \Delta l};$

l = length, $\Delta l = change in length$.

Pressure in liquids = ρgh , where ρ = density and h = height

Speed of escape of a liquid from an orifice, if there were no viscosity,

 $S = \sqrt{\frac{2p}{\rho}}$

Boyle's law, behavior of perfect gases under varying volumes, pressures and temperatures: pv = RmT, where R is the so-called gas constant and T is

absolute temperature.

Under changes so sudden that the heat generated by compression (or absorbed by expansion) cannot radiate or be. absorbed from external objects:

$$pv^{\gamma} = Rmt$$

Electricity: Ampere, the unit of current strength, I; volt, the unit of electromotive force, E; ohm, the unit of resistance, R; coulomb, the unit of quantity, Q; watt, the unit of power, P; joule, the unit of work, J; farad, the unit of capacity, C; henry, the unit of inductance, l. t = seconds. $I = \frac{E}{R}$ (Ohm's law); Q = It, $C = \frac{Q}{E}$, W = QE, P = IE, $P = \frac{E^2}{R} = I^2R = I^2R$ $\frac{W}{t} = \frac{QE}{t}$.

Heating effect of a current = $i^2Rt = \frac{E^2t}{R}$.

Composition of the Air¹

	By weight	By volume	Expired air by volume
Oxygen	$\begin{matrix} 75.539 \\ 1.337 \end{matrix}$	$20.941 \\ 78.122 \\ 0.937$	15.4 79.2 4.33

PYSCHROMETRIC TABLES³

Measurement of Atmospheric Moisture.—The quantity of moisture mixed with the air under different conditions of temperature and degree of saturation may be measured in several distinctly different ways. Many of these, however, are not practicable methods for daily observations, or are not sufficiently accurate. Probably the most convenient of all methods and the one most generally employed is to observe the temperature of evaporation—that is, the difference between the temperatures indicated by wet- and dry-bulb thermometers. The most reliable instrument for this purpose is the sling, or whirled psychrometer. In special cases, rotary fans or other means may be employed to move the air rapidly over the thermometer bulbs. In any case satisfactory results cannot be obtained from observations in relatively stagnant air. A strong ventilation is absolutely necessary to accuracy.

Sling Psychrometer.—This instrument consists of a pair of

thermometers, provided with a handle, which permits the thermometers to be whirled rapidly, the bulbs being thereby strongly affected by the temperature of and moisture in the air. The bulb of the lower of the two thermometers is covered with thin

muslin, which is wet at the time an observation is made.

The Wet Bulb.—It is important that the muslin covering for ¹ According to Ramsay (cf. Benson's "Industrial Chemistry," p. 38. The

Macmillan Co.) ² Including the other inert gases. The rare gases are present in air in the following proportions by weight: krypton, 0.028 per cent.; xenon, 0.005; neon, 0.00038; helium, 0.000056 per cent.

⁸ C. F. Marvin's Tables, Weather Bureau Bulletin No. 235.

TEMPERATURE OF DEW-POINT IN DEGREES FAHRENHEIT Pressure = 30 0 inches of mercury

Temperature of Dew-Point in Degrees Fahrenheit.

Continued .

Pressure =	30 0	inches o	of mercury
------------	------	----------	------------

Air	Depression of wet-bulb thermometer (t - t')
temp., t	3 2 ,8.4 3.6 3 8 4 0 4 2 4 4 4.6 4.8 5 0 5.2 5 4 5 6 5.8 ,0.0
2 3 4	-56 -43 -34 46
8 9	-29 36 -49 -25 -30 39 53 -21 26 -31 -41 -55 -18 -22 -26 32 -42 -15 19 -22 -27 33 -44
10 11 12 13 14	-13 16 -19 -23 27 -34 -45 -10 -13 -16 -19 -22 -27 -34 -46 - 8 10 13 -15 19 -22 -27 -34 47 - 6 - 8 -10 -12 -15 -18 -22 -27 -34 -46 - 4 6 - 5 10 12 -15 -18 -23 -27 -33 -45
15 16 17 18 19	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
20	+ 7 + 6 + 4 + 3 + 2 ± 0 - 1 - 3 - 5 - 7 9 - 11 - 14 - 17 - 2

the wet bulb be kept in good condition. The evaporation o the water from the muslin always leaves in its meshes a smal quantity of solid material, which sooner or later somewhat stif fens the muslin so that it does not readily take up water. Thi will be the case if the muslin does not readily become wet after being dipped in water. On this account it is desirable to use a pure water as possible, and also to renew the muslin from time to time. New muslin should always be washed to remove sizing, etc., before being used. A small rectangular piece wid enough to go about one and one-third times around the bulb and long enough to cover the bulb and that part of the sten below the metal back, is cut out, thoroughly wetted in clear water, and neatly fitted around the thermometer. It is tied firs around the bulb at the top, using a moderately strong thread A loop of thread to form a knot is next placed around the bot tom of the bulb, just where it begins to round off. As thi knot is drawn tighter and tighter the thread slips off the rounder end of the bulb and neatly stretches the muslin covering with it at the same time securing the latter at the bottom.

To Make an Observation.—The so-called wet bulb is that oughly saturated with water by dipping it into a small cup The thermometers are then whirled rapidly for 15 or 20 seconds stopped and quickly read, the wet bulb first. This reading i kept in mind, the psychrometer immediately whirled again an a second reading taken. This is repeated three or four times, o more, if necessary, until at least two succeeding readings of the

Continued on page 98.

Temperature of Dew-Point in Degrees Fahrenheit. Continued Pressure = 30.0 inches of moreury

71. 41	Premu	Depression of wet-bulb thermometer $(t - t')$
Air temp.		2.5 3.0 3.5 4.0 4.5 5 0 5 5 6 0 5 5 7 0 7.5
■ 1.9 20 0 103 18 21 0 108 19 22 0 113 20 23 0 183 21 24 0 124 23 25 0 136 25 27 0 143 26 27 0 157 28 28 0 157 28 28 0 157 28 29 0 29 0 29 0 29 0 31 0 187 32 30 0 29 34 30 33 31 0 29 34 32 34 33 0 29 37 38 0 226 41 42 0 247 43 440 247 440 334 45 44 46 0 47 0	1.0	10

TEMPERATURE OF DEW-POINT IN DEGREES FAHRENHEIT. Continued Pressure = 80.0 inches of mercury

1 L	- M				prés				ulb 1				(t -	t')		
Air temp Vapor	press, in. Hg.	8.0	8.5	9.0	9.5	10 0	10.5	11 0	11.5	12.0	12.5	13,0	13.5	14 0	14 5	15.0
27800.11 28900.11 28900.11 28900.11 28900.11 28900.11 28900.11 28900.11 289	36 43 50 57 87 87 87 87 87 87 87 87 87 87 87 87 87	-51 -52 -23 -12 -12 -12 -13 -12 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13	- 45 - 29 - 20 - 14 - 10 - 11 - 13 - 15 - 17 - 19 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20	-39 -25 -25 -27 -30 -36 -12 -13 -15 -15 -17 -19 -20 -22 -23 -25 -26 -27 -27 -20 -22 -23 -23 -23 -23 -23 -23 -23 -23 -23	-57 -21 -21 -21 -31 -31 -31 -31 -31 -31 -31 -31 -31 -3	126711631446711682011168201116820111682011168201116820111682011168201116820111682011168201116820111682011168201116820111682011168201116820111682011682	-32 -20 -14 - 8 - 4 ± 10 + 3 15 17 19 21 23 24 26 27		- 29 - 29 - 12 - 12 - 13 15 17 19 21 22 24 26 27 29 30 32 33 33 35 36 48 48 48 48 48 48 48 48 48 48 48 48 48	-36 -22 -14 -21 -15 -16 -17 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18	12 14 16 18	30 18 11 13 16 16 18 19 11 13 16 16 18 18 19 11 10 11 10 10 10 10 10 10 10	-36 -21 -12 -56 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13	-45 -24 -14 -15 -16 -13 -15 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16	-50 27 -16 - 9 - 4 + 4 + 7	

TEMPERATURE OF DEW-POINT IN DEGREES FAHRENHEIT. Continued

Pressure = 30.0 inches of mercury

Air	Depression of wet-bulb thermometer $(t - t')$
temp., t	15.5 16.0 16.5 17.0 17.5 (8.0 18.5 19.0 19.5 20 0 20.5 21.0 21.5 22 0 22.5
47 48 49 50 51 52 53 54 56 67 58 69 61 72 73 74 75 77 78 79 80	-35
ŧ	Depression of wat-bulb thermometer $(t - t')$ 23 0 23.5 24.0 24.5 25 0 25.5 26.0 26.5 27.0 27 5 28.0 28.5 29.6 29.6 30.0
54 65 66 67 68 69 70 71 72 73 74 75 76 77 78	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TEMPERATURE OF DEW-POINT IN DEGREES FAHRENHEIT. Continued Pressure = 30.0 inches of mercury

	76		_	_		CHRILI			the.	_		reury		£	př.		
80 1.022 79 77 76 74 73 72 70 88 67 65 63 62 60 58 56 82 78 77 75 74 73 77 70 63 64 65 63 63 61 65 63 82 81 81 81 81 83 81 81 81	<u> </u>	DOT.		_	De	pres	olon.	UI W	er-or	110 6	Heth	10to6	ter (L —	. ,		1
80 1.022 79 77 76 74 73 72 70 88 67 65 63 62 60 58 56 82 78 77 75 74 73 77 70 63 64 65 63 63 61 65 63 82 81 81 81 81 83 81 81 81	r ig ja	Val	1	2	3	1 4	5	6	7	8	9	10	11	12	13	14	15
82 1.091 81 79 78 77 75 74 72 71 69 67 68 64 62 60 68 64 62 60 68 64 62 60 68 64 62 60 68 61 61 63 63 63 63 63 63	80 }	1.022		1 77	76		78	72	70	68	67	65	63	62	50	58	
83 1.127 82 20 79 78 76 75 73 72 70 69 67 85 64 62 60 85 81 85 1201 84 82 81 80 79 77 76 74 73 71 70 69 66 65 85 64 62 85 85 1201 84 82 81 80 78 77 76 74 72 71 60 68 66 65 82 85 1201 84 82 81 80 78 77 76 74 72 71 60 68 66 64 62 82 87 86 1241 85 83 82 81 79 78 76 75 73 72 70 68 67 85 84 87 1.281 86 84 83 82 81 79 78 76 75 73 72 70 68 67 85 84 83 81 83 81 80 78 77 76 74 73 71 69 68 66 67 65 88 1.322 87 85 84 82 81 80 79 77 76 74 73 71 69 68 66 67 65 88 1.322 87 85 84 82 81 80 79 77 76 74 73 71 69 68 66 67 85 88 1.323 87 86 85 83 82 81 79 78 76 75 74 72 71 69 67 85 87 80 11 433 90 88 87 86 85 83 82 81 79 78 76 75 74 72 71 69 67 85 87 80 81 84 83 81 80 78 77 76 74 72 71 69 67 87 87 87 87 87 87 87 87 87 87 87 87 87	82																57
86 1 263 84 82 81 80 78 77 76 74 73 71 70 68 66 65 65 66 66 68 68	83	1.127	82								70						60
86 1.241 85 83 82 8-1 79 78 76 75 73 72 70 69 67 65 88 1.322 87 85 84 83 82 80 79 77 76 74 73 71 69 68 68 83 1.322 87 85 84 83 81 80 79 77 76 76 74 73 71 69 68 68 91 1.364 88 48 68 65 64 82 81 80 79 77 76 76 74 72 71 69 67 65 89 1.364 88 48 85 85 83 82 81 79 78 78 76 75 73 72 70 68 67 65 89 1.364 88 48 87 85 85 83 82 81 79 78 76 75 73 72 70 68 67 67 67 87 87 87 87 87 87 87 87 87 87 87 87 87	84						77	76	74	73	71	70					61
87 1.281 86 84 83 82 80 79 78 76 75 73 72 70 68 68 88 1.322 87 85 84 83 81 80 79 77 76 74 72 71 69 67 67 67 67 87 87 71 89 68 68 89 1.364 88 86 85 84 82 81 80 79 78 76 75 74 72 71 69 67 67 67 1.483 90 88 87 86 85 83 82 81 79 78 76 75 74 72 71 69 67 67 1.483 90 88 87 86 85 83 82 81 79 78 76 75 74 72 71 69 87 82 1.499 19 89 88 87 86 85 83 82 81 80 79 77 76 74 73 71 70 82 1.499 19 89 89 88 87 86 84 83 81 80 79 77 76 74 73 71 70 82 1.499 19 89 89 88 87 85 84 83 81 80 79 77 76 74 73 71 70 84 1595 93 92 90 89 88 87 85 84 83 81 80 79 77 76 74 73 71 70 84 1595 93 92 90 89 88 86 85 84 82 81 79 78 76 76 75 73 73 74 72 94 1595 93 92 91 90 88 87 86 84 83 81 80 79 77 76 74 74 73 71 80 80 80 80 80 80 80 80 80 80 80 80 80	88										72						84
88 1.322 87 85 84 83 81 80 79 77 76 76 74 73 71 76 6 6 76 90 1.408 89 87 86 85 83 82 81 79 78 76 75 74 72 71 66 87 90 1.408 89 87 86 85 83 82 81 79 78 76 75 74 72 71 66 87 90 1.408 89 87 86 85 83 82 81 79 78 76 75 74 72 71 66 87 91 1.433 90 88 87 86 84 83 81 80 79 77 76 74 73 71 70 93 1.546 92 90 89 88 87 86 84 83 81 80 79 77 76 74 73 71 70 93 1.546 92 90 89 88 87 86 84 83 81 80 78 77 75 74 73 71 93 1.546 92 90 89 88 87 86 84 83 81 80 78 77 75 74 73 71 93 1.546 92 90 89 88 86 85 84 82 81 79 78 76 76 76 76 77 76 74 73 71 80 1.546 92 90 89 87 86 85 84 82 81 79 78 76 76 76 76 76 77 76 74 72 96 1.645 94 93 91 90 89 87 86 85 84 82 81 79 78 76 76 76 76 76 77 76 74 72 96 1.645 94 93 91 90 89 87 86 85 83 82 80 79 77 8 76 76 77 8 76 71 78 90 1.559 95 94 92 91 90 88 87 86 84 83 82 80 79 77 8 76 77 8 97 1.749 96 95 93 92 91 89 88 87 86 84 83 82 80 79 77 8 99 1.859 98 97 96 94 93 92 90 89 88 88 88 83 83 83 82 80 79 97 85 94 93 92 90 89 88 88 83 83 83 83 82 80 79 97 85 94 93 92 90 89 88 88 83 83 83 83 83 82 80 79 97 96 94 93 92 90 89 87 86 85 83 82 80 79 77 86 91 1.976 90 99 97 96 95 94 93 92 91 90 89 87 86 85 83 82 80 79 97 100 11 976 100 99 98 97 96 95 94 93 92 91 90 88 87 86 84 83 83 82 80 101 101 100 99 89 97 96 95 94 93 92 91 89 88 86 85 83 82 80 104 22 036 101 100 98 87 96 95 94 93 92 91 89 88 86 85 86 84 83 81 80 80 80 80 80 80 80 80 80 80 80 80 80	87									76							
90 1, 4488	88	1,322	87	85	84	-83	81	80	79	1 77	78	74	73	71	69	68	66
91 1 453 90 88 87 86 85 83 82 80 79 78 76 75 73 71 75 74 73 71 93 1.546 92 90 89 88 87 86 84 83 81 80 78 77 75 74 73 71 93 1.546 92 90 89 88 88 86 85 84 83 81 80 78 77 75 74 73 71 95 1.645 94 93 91 90 89 87 86 85 83 82 80 79 77 75 74 72 96 16 66 1696 96 94 92 91 90 88 87 86 85 83 82 80 79 77 75 74 72 96 15 94 92 91 90 88 87 86 85 83 82 80 79 77 77 75 74 72 96 15 93 92 91 80 88 87 86 84 83 82 80 79 77 77 75 74 72 96 15 93 92 91 80 88 87 86 84 83 82 80 79 77 77 87 75 74 72 88 1.803 97 96 94 92 91 80 88 87 86 85 83 82 80 79 77 87 87 87 87 87 87 87 87 87 87 87 87	89										77	75		72	71		
92 1.499 91 89 88 87 86 84 83 81 80 79 77 76 74 73 77 76 74 73 78 78 78 78 78 78 78																	70
94 1 595 93 92 90 89 88 86 85 84 82 81 79 78 76 78 78 79 81 806 1 696 96 94 92 91 90 89 87 86 85 84 82 80 79 77 76 87 78 79 1.749 98 1.803 97 96 94 93 92 91 89 88 87 86 84 83 82 80 79 77 76 81 803 97 96 94 93 92 91 89 88 87 86 88 86 85 84 82 81 79 87 79 89 1.559 98 97 95 94 93 92 90 89 88 87 86 85 84 82 81 79 89 100 1.916 99 98 96 95 94 93 91 90 89 88 87 86 88 87 86 84 83 82 80 100 1.916 100 1.916 99 97 96 95 94 93 91 90 89 88 87 86 88 88 88 87 86 84 83 82 80 100 1.916 90 98 96 95 94 93 91 90 89 88 87 86 88 88 88 87 86 84 83 81 89 81 80 100 1.916 100 1.916 100 100 1.916 100 100 100 100 100 100 100 100 100 1	92	1,499	91	89	88	87	86	84	83	81	80	79	77	76	74	73	71
96 1 696 96 94 93 91 90 89 87 86 85 83 82 80 79 78 76 74 98 1 893 97 96 94 93 92 91 89 88 87 86 84 83 81 80 79 77 76 98 1 893 98 97 96 94 93 92 90 89 88 87 86 85 83 82 80 79 100 1 916 99 98 96 95 94 93 92 90 89 88 87 86 85 83 82 80 79 100 1 1 975 100 99 97 96 94 93 92 90 89 88 87 86 85 83 82 80 79 100 1 1 975 100 99 97 96 94 93 92 90 89 88 87 86 85 83 82 80 80 101 1 975 100 99 97 96 95 94 93 92 91 90 89 87 86 85 83 82 80 80 101 1 975 100 99 97 96 95 94 93 92 91 90 89 87 86 85 83 82 80 103 1 975 100 99 97 96 95 94 93 92 91 80 88 87 86 84 83 81 103 2 997 100 100 98 97 96 95 94 93 92 91 80 88 87 86 85 83 82 103 2 997 100 100 98 97 96 95 94 93 92 91 80 88 87 86 88 88 88 88 88 88 88 88 88 88 88 88	93 }										81		78	77	75		
96 1 696 96 94 92 91 90 88 87 86 84 83 81 80 79 77 76 76 81 1.803 97 96 94 93 92 90 89 88 87 88 88 83 84 82 81 79 79 79 79 79 79 79 7																	74
98 1.803 97 96 94 93 92 90 89 88 86 85 83 82 60 101 1 975 100 99 97 96 95 94 93 92 90 89 88 86 85 83 82 60 101 1 975 100 199 97 96 95 94 93 92 91 90 89 87 86 88 87 86 84 83 81 102 2 035 101 100 98 97 96 95 94 92 91 90 88 87 86 84 83 81 103 2.007 102 101 99 98 97 96 95 94 93 92 91 80 88 87 86 84 83 81 104 2 180 103 102 100 99 98 97 96 94 93 92 91 80 88 87 86 84 83 105 2 2 22 104 103 101 100 99 88 97 96 94 93 92 91 80 89 88 86 85 64 104 2 180 103 102 100 99 98 97 96 94 93 92 91 80 89 88 86 85 64 105 2 222 105 104 102 101 100 99 98 97 95 94 93 92 90 89 88 86 85 64 106 2 222 105 104 103 101 100 99 98 97 95 94 93 92 90 89 88 88 88 88 86 86 86 82 80 82 80 82 80 82 80 80 80 80 80 80 80 80 80 80 80 80 80	96	1 696	95	94	92	91	90	88	87	86		83	82	80	79	77	76
99 1,858 98 97 95 94 93 92 90 89 88 86 85 83 82 80 100 1,916 99 97 96 95 94 93 91 90 89 87 86 85 83 82 80 102 2 035 101 100 98 97 96 95 94 93 92 91 80 88 87 86 84 83 103 2,097 102 101 99 98 97 96 94 93 92 91 80 88 87 86 85 88 104 2,180 103 102 100 99 98 97 96 94 93 92 91 89 88 86 85 85 105 2 225 104 103 101 100 99 98 97 96 94 93 92 90 89 88 86 85 105 2 225 104 103 101 100 99 98 96 95 94 93 91 90 89 88 86 85 105 2 225 104 103 101 100 99 98 96 95 94 93 91 90 89 87 86 106 2 222 105 104 102 101 100 99 98 97 96 95 93 92 91 107 2,350 106 105 103 102 101 100 99 97 96 95 93 92 91 90 88 108 2,431 107 106 104 103 102 101 100 99 98 97 96 95 93 92 91 90 88 109 2,553 109 108 106 105 104 103 102 101 100 99 98 97 96 98 97 96 98 91 92 90 111 2,652 104 103 104 107 106 105 104 103 101 100 99 98 97 96 98 97 96 98 91 92 90 112 2,730 111 110 109 108 107 106 104 103 101 100 99 98 97 96 98 99 98 97 96 98 99 98 97 96 98 99 98 97 96 98 99 98 97 96 98 99 98 97 96 98 99 98 97 96 98 99 98 97 96 98 99 98 97 96 98 99 98 97 96 98 99 98 97 96 98 99 98 97 96 98 99					93						07			61	80		77
100															82		79
102 2 035 101 100 98 97 96 95 93 92 91 81 68 87 86 84 83 103 2 97 102 101 99 98 97 96 94 93 92 91 89 88 86 85 86 86 85 105 2 225 104 103 101 100 99 98 96 95 94 93 92 91 89 88 86 85 86 86 85 105 2 225 104 103 101 100 99 98 96 95 94 93 91 99 89 87 86 107 2 360 106 105 103 102 101 100 99 98 96 95 93 92 91 89 88 108 2 231 108 107 106 104 103 102 101 100 99 98 97 96 98 98 97 96 98 98 98 98 98 98 98	100	1.916	99	98	96	95	94	93	91	90	89	87	86	85	83	82	60
104 2.160 103 102 100 99 98 97 96 94 93 92 91 89 88 86 85 86 86 86 86 86	101																81
105 2 225 104 103 102 100 99 98 97 95 94 93 92 90 89 88 86 85	103	2.097															R4
106 2 292 105 104 102 101 100 99 98 96 96 97 96 95 93 92 91 90 88 88 80 80 2 33 107 106 104 103 102 101 100 99 97 96 95 93 92 91 90 89 109 2 503 108 107 105 104 103 102 101 99 98 97 96 94 93 92 90 110 2 576 109 108 106 105 104 103 102 101 99 98 97 96 94 93 92 90 111 2 552 110 109 108 106 105 104 103 102 100 99 98 97 96 94 93 92 90 111 2 552 110 109 107 106 105 104 103 101 100 99 98 95 95 95 95 95 95	104	2.160	103	102	100	99	98	97	95	94	93	92	90	89	88	86	85
107 2.360 106 105 103 102 101 100 99 97 96 95 93 92 91 90 88 108 2.431 107 106 104 103 102 101 109 98 97 96 95 94 93 92 90 109 2.576 109 108 106 105 104 103 102 100 99 98 97 95 110 109 108 106 105 104 103 102 100 99 98 97 95 110 109 108 108 108 106 105 104 103 102 100 99 98 96 95 94 93 91 112 2.730 111 110 109 107 106 105 104 103 101 100 99 98 96 95 94 93 113 2.810 112 111 110 108 107 106 105 104 103 102 101 100 99 97 96 98 97 114 2.891 113 112 111 109 108 107 106 105 103 102 101 100 99 98 97 98 115 114 113 111 110 109 108 107 106 105 103 102 101 100 98 98 97 116 3.081 115 114 113 111 110 109 108 107 106 104 103 102 101 99 98 97 117 3.148 115 114 113 111 110 109 108 107 106 104 103 102 101 99 98 97 118 3.239 117 116 115 113 112 111 110 109 108 107 106 104 103 102 101 99 98 103 102 101 100 11											94					87	85
108 2.431 107 106 104 103 102 101 100 90 97 96 95 90 92 92 90 110 2.576 109 108 106 105 104 103 102 100 99 98 97 95 95 95 95 91 92 91 111 2.552 110 109 108 106 105 104 103 102 100 99 98 96 95 95 95 95 95 111 2.552 110 109 107 106 105 104 103 102 100 99 98 96 95 95 95 95 112 111 110 108 107 106 105 104 103 101 100 99 97 97 98 98 96 98 94 112 111 110 108 107 106 105 104 103 101 100 99 97 98 96 98 96 98 96 98 94 113 112 111 109 108 107 106 105 104 103 102 101 100 99 97 98 98 98 98 98 98	107										96				_		
110	108	2.431	107	106	104	103	102	101	100	9	97	96	95	9	-02	91	80
111 2.652 110 109 108 100 105 104 103 102 100 99 98 96 95 94 93 94 112 2.730 111 110 109 107 106 105 104 103 101 100 99 98 96 96 96 96 113 112 111 110 108 107 106 105 104 102 101 100 99 97 96 98 114 2.891 113 112 110 109 108 107 106 105 103 102 101 100 98 116 125 125 124 113 112 110 109 108 107 105 104 103 102 101 90 98 97 116 3.081 115 114 113 111 110 109 108 107 105 104 103 102 101 90 98 117 116 115 114 113 112 111 110 109 108 107 105 104 103 102 101 90 98 117 116 115 114 113 112 111 110 109 108 107 105 104 103 102 101 90 98 118 117 115 114 113 112 111 110 109 108 107 105 104 103 102 101 90 118 117 115 114 113 112 111 110 108 106 105 104 103 101 100 119 3.331 118 117 115 114 113 112 111 110 108 107 106 105 104 103 101 100 119 3.331 118 117 118 114 113 112 111 110 108 107 106 105 104 103 101 100 119 3.331 118 117 118 114 113 112 111 110 108 107 106 105 104 102 103 101 100 103 107 106 105 104 103 101 100 103 107 106 105 104 103 101 100 103 107 106 105 104 103 101 100 103 107 106 105 104 103 101 100 103 107 106 105 104 103 101 100 103 107 106 105 104 103 101 100 103 107 106 105 104 103 101 100 103 107 106 105 104 103 101 100 103 107 106 105 104 103 101 100 103 107 106 105 104 103 101 100 103 107 106 105 104 103 101 100 103 107 106 105 104 103 101 100 103 107 106 105 104 103 107 106 105 104 103 101 100 103 107 106 105 104 103 107 106 105		2.503					103								93		90
112 2,730 111 110 109 107 106 106 104 103 101 100 99 98 96 96 96 113 112 111 110 108 107 106 105 103 102 101 100 99 98 96 98 114 2,891 113 112 110 109 108 107 106 105 103 102 101 100 98 116 125 114 113 111 110 109 108 107 105 104 103 102 101 99 98 97 116 3,081 115 114 113 111 110 109 108 107 105 104 103 102 101 99 98 97 116 3,081 116 115 114 113 111 110 109 108 107 105 104 103 102 101 99 98 117 116 115 114 113 112 111 110 109 108 107 105 104 103 102 101 100 118 3,239 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 101 100 119 3,331 118 117 115 114 113 112 111 110 108 107 106 105 104 103 101 100 119 3,331 118 117 115 114 113 112 111 110 108 107 106 105 104 103 101 100 122 3 425 119 118 117 115 114 113 112 111 110 108 107 106 105 104 102 102 122 3 621 121 120 119 118 116 115 114 113 112 111 100 108 107 106 105 104 102 102 102 122 3 522 121 120 119 118 117 116 115 114 113 112 110 109 108 107 106 104 103 107 106 103 107 106 104 103 107 106 104 103 107 10	111			109	108	100	105	104	103		4.4.		98	96	95	44.00	
114 2.891 113 112 121 109 108 107 106 103 102 101 200 98 98 97 126 3.081 115 114 113 121 110 109 108 107 106 104 103 102 101 99 98 97 126 3.081 115 114 113 111 110 109 108 107 105 104 203 102 100 99 118 3.239 117 116 115 113 112 111 110 109 108 106 105 104 103 101 100 103 104 102 100 100 100 105 104 103 101 100 100 108 106 105 100 100 100 100 105 104 103 101 100 100 102 102 102 102 102 102 103 101 100 100 100	112	2.730	111	'110	109	107	106	105	104	103	101	100	99	91	96	95	94
115 2.975 114 113 112 110 109 108 107 106 104 103 102 101 99 98 97 116 3.081 J15 114 113 111 110 109 108 107 106 104 103 102 101 99 98 117 3.148 116 114 112 111 110 109 108 107 106 105 104 103 102 100 108 107 106 105 104 103 101 100 100 108 106 105 104 103 101 100 100 108 107 106 105 104 102 102 103 101 100 103 101 100 103 104 102 103 104 102 103 104 102 103 104 102 103 104 102 103 104 102 103 104 102 103 104 102	113	2.810										101					
118 3 239 117 116 115 113 112 117 110 109 108 106 105 104 102 102 120 3 425 119 118 117 115 114 113 112 111 110 108 107 106 105 104 102 121 3 522 120 119 118 116 115 114 113 112 111 109 108 107 106 105 104 102 122 3 621 121 120 119 118 116 115 114 113 112 110 109 108 107 106 123 3 723 122 121 120 119 117 116 115 114 113 112 110 109 108 107 124 3 122 121 120 118 117 116 115 114 113 112 111 110	115	2.975	114														
118 3 239 117 116 115 113 112 117 110 109 108 106 105 104 102 102 120 3 425 119 118 117 115 114 113 112 111 110 108 107 106 105 104 102 121 3 522 120 119 118 116 115 114 113 112 111 109 108 107 106 105 104 102 122 3 621 121 120 119 118 116 115 114 113 112 110 109 108 107 106 123 3 723 122 121 120 119 117 116 115 114 113 112 110 109 108 107 124 3 122 121 120 118 117 116 115 114 113 112 111 110	116	3.061	115	114	113	111	110	109	108	107	105	104	103	102	101	90	98
120 3 425 119 118 117 115 114 113 112 111 110 108 107 106 105 103 121 3 522 120 119 118 116 115 114 113 112 111 109 108 107 106 105 103 122 3 621 121 120 119 117 116 115 114 113 112 110 109 108 107 106 107 124 3 627 123 122 121 120 118 117 116 115 114 113 111 110 109 108 107 125 3,933 124 123 122 121 119 118 117 116 115 114 113 111 110 108 126 4 042 125 124 123 122 120 119 118 117 116 115 114 113	117	3.148	116	116	誰	,112			110								
120 3 425 119 118 117 115 114 113 112 111 110 108 107 106 105 103 121 3 522 120 119 118 116 115 114 113 112 111 109 108 107 106 105 103 122 3 621 121 120 119 117 116 115 114 113 112 110 109 108 107 106 107 124 3 627 123 122 121 120 118 117 116 115 114 113 111 110 109 108 107 125 3,933 124 123 122 121 119 118 117 116 115 114 113 111 110 108 126 4 042 125 124 123 122 120 119 118 117 116 115 114 113	110	3.331	118	117				112	111			107		105	104		
126 4 042 125 124 123 122 120 119 118 117 116 115 113 112 111 110 109 127 4 154 126 125 124 123 121 120 119 118 117 116 114 113 112 111 110 128 4.268 127 126 125 124 122 121 120 119 118 117 116 114 113 112 111 110 129 4 385 128 127 126 125 123 121 120 119 118 117 116 114 113 112 111 130 4 504 129 128 127 126 123 122 121 120 119 118 117 116 114 113 113 131 4 627 130 129 128 124 123 122 121 120 119	120	3 425	119	118	117	115	114	113	112	111				106	105		102
126 4 042 125 124 123 122 120 119 118 117 116 115 113 112 111 110 109 127 4 154 126 125 124 123 121 120 119 118 117 116 114 113 112 111 110 128 4.268 127 126 125 124 122 121 120 119 118 117 116 114 113 112 111 110 129 4 385 128 127 126 125 123 121 120 119 118 117 116 114 113 112 111 130 4 504 129 128 127 126 123 122 121 120 119 118 117 116 114 113 113 131 4 627 130 129 128 124 123 122 121 120 119	122	3 621	D 20 D 21		119	1118	115		113								
126 4 042 125 124 123 122 120 119 118 117 116 115 113 112 111 110 109 127 4 154 126 125 124 123 121 120 119 118 117 116 114 113 112 111 110 128 4.268 127 126 125 124 122 121 120 119 118 117 116 114 113 112 111 110 129 4 385 128 127 126 125 123 121 120 119 118 117 116 114 113 112 111 130 4 504 129 128 127 126 123 122 121 120 119 118 117 116 114 113 113 131 4 627 130 129 128 124 123 122 121 120 119	123	3 723	122	121	120	119	117	116	115			112	110	100	108	107	105
126 4 042 125 124 123 122 120 119 118 117 116 115 113 111 110 109 127 4 154 126 125 124 123 121 120 119 118 117 116 114 113 112 111 110 128 127 126 125 124 122 121 120 119 118 117 116 114 113 112 111 110 128 127 126 125 123 123 121 120 119 118 117 116 114 113 112 111 110 110 118 116 114 113 112 111 110 110 118 115 114 113 129 128 124 123 122 <	124	3 827	123														107
127 4 154 126 124 123 121 120 119 118 117 116 124 113 112 111 110 128 4.268 127 126 125 124 122 121 120 119 118 117 116 114 113 112 111 129 4 385 128 127 126 125 123 122 121 120 119 118 117 116 114 113 112 111 130 4 504 129 128 127 126 124 123 122 121 120 119 118 115 114 113 131 4 627 130 129 128 124 123 122 121 120 119 117 116 115 114 133 4 752 131 130 129 128 125 124 123 122 121 120 119 117 116	120	3,333	124			122											
128 4.268 127 126 125 124 122 121 120 119 118 117 116 114 113 112 111 129 4.385 128 127 126 125 123 122 121 120 119 118 117 116 114 113 113 130 4.504 129 128 127 126 124 123 122 121 120 119 118 116 115 114 113 131 4.627 130 129 128 127 125 124 123 122 121 120 119 117 116 115 114 133 4.752 131 130 129 128 125 124 123 122 121 120 119 117 116 115 133 4.860 133 131 130 129 127 126 125 124 123 122 121 120 118 117	127	4 154	126						119		117	116	1114	113	112	111	110
130 4 504 129 128 127 .26 124 123 122 121 120 119 118 115 114 113 131 4 627 130 129 128 127 125 124 123 122 121 120 119 117 116 115 114 132 4 752 131 130 129 128 126 125 124 123 122 121 120 119 117 116 115 133 4 880 132 131 130 129 127 126 125 124 123 122 121 120 118 117 116 115 134 5 011 133 132 131 130 129 125 124 123 122 121 119 118 117 135 5 145 134 133 132 131 120 128 125 124 123 122 120	128	4.268	127			124	122	121			118	117	116			113	
131 4 627 130 129 128 127 125 124 123 122 121 120 119 117 116 115 114 133 4 752 131 130 129 127 126 125 124 123 122 121 120 119 117 116 115 133 4 880 132 131 130 129 127 126 125 124 123 122 121 120 118 117 116 115 134 5 011 133 132 131 130 129 127 126 125 124 123 122 121 119 118 117 135 5 145 134 133 132 131 129 126 125 124 123 122 120 119 118 136 5 282 135 134 133 132 131 129 128 127 126 125	120	4 504				125					120	1110	1177 1118	110	113	114	1113
133 4 880 132 131 130 129 127 126 125 124 123 122 121 120 118 117 116 134 5 011 133 132 131 130 129 127 126 125 124 123 122 121 119 118 117 135 5 145 134 133 132 131 130 128 127 126 125 124 123 122 120 119 118 136 5 282 135 134 133 132 131 129 128 127 126 125 124 123 122 120 119 137 5 422 136 135 134 133 130 129 128 127 126 125 124 123 121 120 138 5 565 137 136 135 134 133 131 130 129 128 127 126 125 124 123 121 120 139 5 712 138 137 136 185 <t< td=""><td>131</td><td>4 627</td><td>130</td><td></td><td>128</td><td>127</td><td>125</td><td>124</td><td>123</td><td>122</td><td>121</td><td>,120</td><td>119</td><td>117</td><td>116</td><td>115</td><td>114</td></t<>	131	4 627	130		128	127	125	124	123	122	121	,120	119	117	116	115	114
134 5 011 133 132 131 130 129 127 126 125 124 123 122 121 119 118 117 135 5 145 134 133 132 131 130 128 127 126 125 124 123 122 120 119 118 136 5 282 135 134 133 132 130 129 128 127 126 125 124 123 122 120 119 137 5 422 136 135 134 133 131 130 129 128 127 126 125 124 123 121 120 138 5 565 137 136 135 134 133 131 130 129 128 127 126 125 124 123 121 120 139 5 712 138 137 136 185 134 132 131 130 129 128 127 126 125 124 123 121 139 5 712 138 137 <t< td=""><td>133]</td><td>4 752</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>116</td><td>(115</td></t<>	133]	4 752														116	(115
135 5 145 134 133 132 131 130 128 127 126 125 124 123 122 120 119 118 136 5 282 135 134 133 132 131 129 128 127 126 125 124 123 122 120 119 137 5 422 136 135 134 133 130 129 128 127 126 125 124 123 121 120 138 5 565 137 136 135 134 133 131 130 129 128 127 126 125 124 122 121 139 5 712 138 137 136 185 134 132 131 130 129 128 127 126 125 124 122 121 139 5 712 138 137 136 185 134 132 131 130 129 128 127 126 125 124 123 122	134	5 011										193					
136 5 282 135 134 133 132 131 129 128 127 126 125 124 123 122 120 119 137 5 422 136 135 134 133 132 130 129 128 127 126 125 124 123 121 120 138 5 565 137 136 135 134 133 131 130 129 128 127 126 125 124 122 121 139 5 712 138 137 136 185 134 132 131 130 129 128 127 126 125 124 123 122	135	5 145	134	133	1132	131	130	128	127	126	125	124	123	122	120	119	118
138 5 565 137 136 135 134 133 131 130 129 128 127 126 125 124 122 121 139 5 712 138 137 136 185 134 132 131 130 129 128 127 126 125 123 122	136	5 282		134	133			129								120	119
139 5 712 138 137 136 185 134 132 131 130 129 128 127 126 125 123 122	138	5 565															
140 5 562 139 138 137 136 135 133 132 131 130 129 128 127 126 124 128	139	5 712	138	137	136	115	134	132	131	130	129	128	127				
	140	5 562	139	138	137	136	135	133	132	131	130	129	1.28	127	126	124	138

TEMPERATURE OF DEW-POINT IN DEGREES FAHRENHEIT. Continued Pressure = 30.0 inches of mercury

- L	t	Dr	VIII DOD				ulb 1				0	627		
P. D. D.		174	pres	8100			aris .	cheri	חוטום	elur	"-	_		
A di Sa	16 1	17 18	19	20	21	22	23	24	25	26	27	28	20	30
### 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0	54 55 55 55 55 55 55 55 55 55 55 55 55 5	17 18 52 50 53 52 55 54 55 55 55 55 55 55 55 55 55 55 55	20 10 47 49 50 52 53 54 65 78 68 69 70 2 73 74 75 78 80 90 92 83 94 95 96 97 88 100 100 100 100 100 100 100 100 100	810B 20 44 48 49 52 55 55 58 66 67 70 71 72 74 75 77 77 78 81 82 83 84 86 87 88 89 90 90 90 90 90 90 90 90 90 90 90 90 90	oī w	et-b	ulb 1	theri	7070 25 333 337 341 345 346 347 347 347 347 347 347 347 347 347 347	eter		_	20 104 181 121 227 231 34 44 44 44 44 45 55 55 56 66 67 77 77 88 88 89 90 90 90 90 90 90 90 90 90 90 90 90 90	20 -77 -77 -15 -15 -22 -25 -73 -22 -25 -27 -32 -32 -33 -33 -33 -33 -33 -33 -33 -33

TEMPERATURE OF DEW-POINT IN DEGREES FAHRENHEIT. Continued

				Pr	698 U.I	e =	30.0) wel	168 ()	l me	reur	r				
3.4	apor			De	press	tion	of w	et-bu	ılb t	herm	ome	ter	(t —	ť)		
Air	Vap	31	32	33	34	35	36	37	38	39	40	41	42	48	44	
82 83 84 85 86 87 88 89 90 92 93 94 95 97 98 99 100 101 102 103 104 106 107 108 110 110 110 110 110 110 110 110 110	1 022 1 056 1 091 1 127 1 163 1 201 1 201 1 201 1 201 1 201 1 201 1 201 1 201 1 304 1 408 1 408 1 408 1 408 1 408 1 408 1 408 1 408 1 408 1 645 1 645 1 645 1 645 1 645 1 645 1 645 1 645 1 645 1 645 2 202 2 300 2 301 2 301 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	- 18 12 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	48 48 48 48 48 48 48 48 48 48 48 48 48 4	- 33 - 12 - 25 - 10 - 15 - 10 - 15 - 10 - 15 - 10 - 15 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	- 27 - 10 - 16 - 16 - 16 - 16 - 16 - 16 - 16 - 16		+ 10 14 19 22 28 31 33 41 43 45 47 49 51	16 20 23 26 29 32 35 36 44 46 50 52 54 56 58	28 9 1 1 2 2 5 8 1 3 3 3 6 3 8 1 3 3 3 6 3 8 1 3 3 3 6 6 3 6 5 6 6 6 6 6 6 6 6 6 6 6 6	-20 5 3 3 4 10 15 19 23 3 3 4 10 15 19 23 3 3 4 10 15 19 23 3 3 4 10 15 19 23 3 3 4 10 15 19 25 3 3 4 10 15 19 25 3 3 4 10 10 10 10 10 10 10 10 10 10 10 10 10	- 15 - 12 - 17 - 21 - 17 - 21 - 12 - 27 - 23 - 33 - 36 - 39 - 43 - 43 - 43 - 43 - 43 - 43 - 43 - 43	33 10 1 1 8 14 18 22 26 27 27 27 27 27 27 27 27 27 27 27 27 27	24 27 30 33 36 39	35 37 40 43 45	36 39 42 44	- 20 4 5 12 17 21 25 29 33 35 46 48 50 69 63 65 67 77 79 80 82 83

TEMPERATURE OF DEW-POINT IN DEGREES FAHRENHEIT. Continued Pressure = 30.0 inches of mercury

**			De	pres	аоів	of w	et-b	ulb t	bern	иоти	eter	(t -	t')		
Air temp.,	46	47	48	49	50	51	52	53	54	36	58	57	58	59	60
106 107 108 109	-56 -12 ± 0 + 8	-26 - 6													
310 111 312 113 114	14 19 23 27 30	+ 4 11 17 21 25	-16 - 1 + 8 14 19	-35 - 8 + 3											
115 116 117 118 119	33 36 39 42 44	29 35 36 41	23 27 30 34 37	21	+ 7 14 19 23 27	+ 2	-22 - 3 + 7	-11 + 2	- 25						
120 121 122 123 124	47 49 51 53 55	43 46 48 50 52	39 42 45 47 49	35 38 41 44 46	30 34 37 40 43	29 32 38	19 23 27 31 34	10 16 21 25 29	- 4 + 6 14 19 24	- 12 + 1 10 17	- 27 4	— 13			
125 126 127 128 129	57 59 61 63 64	54 56 58 80 62	52 54 56 58 60	49 51 53 55 57	45 48 50 52 54	42 44 87 49 51	37 40 43 46 48	33 36 39 42 45	28 31 35 38 41	22 26 30 33 37	24	+ 2 11 17 22 26	-29 - 4 + 7 14 20	13 13 11	~27 — 4
130 131 132 133 134	66 68 69 71 73	64 66 67 69 71	62 63 65 67 68	59 01 63 64 66	56 58 60 62 64	54 56 58 60 62	51 53 56 57 59	47 50 52 54 56	44 46 49 51 53	40 43 45 48 50	36 39 42 44 47	30 34 37 40 43	25 29 32 36 39	17 23 27 81 84	+ 7 15 21 25 29
135 136 137 138 139	74 76 77 78 80	72 74 75 77 78	70 72 73 75 76	68 70 71 73 74	86; 67; 69; 71; 72	63 65 67 69 70	61 63 66 66 66	58 60 62 64 66	56 58 60 62 64	53 55 67 59	50 52 54 56 58	46 49 51 53 56	42 45 48 50 53	38 41 44 47 50	38 37 40 43 48
140	61	80	78	76	74	72	70	68	65	63	m	58	55	52	49

TEMPERATURE OF DEW-POINT IN DEGREES FAHRENHEIT. Continued

	Pressure = 23.0 mohes of mercury	
EDD., S	Depression of wet-bulb thermometer (t - t')	
Air temp. Vapo press.	0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.	0
-40kg.0039		_
-39 4: -38 4: -37 4: -36 4:	4 46 50 6 60 0.0010 52 0.0018 60	0
-36 48	8 43 -55 5 50 50 0001 58	
350,0051 34 54	4-40-50	
-34 54 -33 57 -32 61	1 38 46 59 55 0.0015 47 20 53 kg	
-31 63 -300.0069	0 30 42 30 52 0 0017 45 0 0090 50 57 .	
-29 79 -28 78	33 40 -49 80 -43 33 47 -53	
-29 74 -28 78 -27 83 -26 88	3 30 36 44 55 37 45 50 58	
-25 0 0094 -24 0 0100	4 -28 32 -39 48 54	
-23 106 -22 112	8 -26 -30 -34 -42 -53 37 46 41 45 50 57	
-21 1t9 -200 0126	9 - 24 - 27 - 31 - 36 - 44 - 57 $35 0.0051 - 39 - 42 - 47 - 52$	
-19 133 18 141	3 - 22 - 24 - 28 - 32 - 37 - 47	58 55
—17 150	0 - 19 - 22 - 25 - 28 - 32 - 39 - 48 - 31 - 31 - 33 - 36 - 40 - 44 - 31 - 32 - 31 - 32 - 31 - 32 - 31 - 32 - 32	52 19
-150.0168	8 -17 -19 -22 -25 -28 -33 39 49 -30 0000 32 -34 -35 42	17
14 178 -13 188	8-15-17-19-22-25-28-33-39-49	
-12 199 -11 216 -100 0223	D-13 -14 -16 -10 -21 -24 -28 -32 -39 48 ,	
— 9] 234	4 - 11 - 12 - 14 - 15 - 18 - 21 - 24 - 27 31 37 - 46	
$ \begin{array}{c c} -8 & 247 \\ -7 & 260 \\ \end{array} $	0 - 8 - 10 - 12 - 14 15 - 17 20 23 -26 30 - 35 44 -56	
$-6[273 \\ -5[0.020]$	1 - 6 - 8 - 9 - 11 - 12 - 14 = 16 = 19 = 22 = 25 - 29 = 33 - 40 - 51	
- 4 307 - 3 325	5 - 4 - 5 - 7 - 8 10 - 11 13 - 15 - 17 20 - 23 26 31 37 - 4	7
- 2 344 - 1 363	3 - 2 - 3 - 4 - 6 - 7 - 8 = 10 - 12 - 14 - 16 - 18 = 21 = 24 = 28 - 3	2
+ 1 403	3 + 0 - 1 - 2 - 3 + 4 - 6 + 7 + 9 - 10 + 12 - 14 - 16 - 19 + 22 - 2	8
2 423 3 444	4 2 + 1 + 0 - 1 2 - 3 4 6 - 7 - 9 - 10 - 12 - 14 - 16 - 1	
4 467 5 0. 0491	1 4 3 2 + 1 \pm 0 1 2 3 - 5 - 6 7 - 9 - 10 - 12 - 1	
6 513 7 543	2 6 5 4 3 $2 \rightarrow 1 + 0 + 1 - 2 3 \rightarrow 4 - 5 - 7 \cdot 9 + 1$	2
8 576 9 500	0 8 7 7 6 5 4 3 2 + 1 ± 0 - 1 - 3 - 4 5 -	8
100.8631 11 663	5 10 10 0 8 7 6 5 5 4 3 + 1 ± 0 1 - 2' -	8
12 699 13 73!	5 12 12 11 10 10 9 8 7 8 5 4 3 2 + 1 +	0
14 772 150 0810	2 13 13 12 11 11 10 9 8 8 7 6 5 4 3 1 0 14 14 13 12 12 11 10 10 0 8 7 6 5 4	2 3
16 850 17 891	0 15 15 14 13 13 12 11 11 10 9 8 8 7, 6	5
18 933 190.0979	3 17 17 16 16 15 14 14 13 12 12 11 10 9 8	8
200.1020	C 19 19 18 18 17 16 16 15 15 14 13 19 12 11 1	Ö

TEMPERATURE OF DEW-POINT IN DEGREES FAHRENHEIT Continued Pressure = 23.0 inches of mercury

Air temp., t 3.2 3 4 3.0 3.8 4.0 4 2 4.4 4.6 4.8 5.0 5.2 5.4 5.8 5.8 6 0 -2		Pressure = 23.0 inches of mercury
3.2 3 4 3.0 3.8 4.0 4 2 4.4 4.6 6.8 5.0 5.2 5.4 5.8 5.8 6 0	Air	Depression of wet-bulb thermometer (t - t')
-2	temp., f	
+1		49
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+1	-29 -33 42 -54 -25 -29 -34 -43 -56 -22 -25 -29 -34 -43 -59
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 6 7 6 9	-14 17 -19 -22 25 -30 -35 -45 -60 -12 -14 -16 -79 -22 -25 -30 -35 -45 -10 12 -14 -10 -19 -22 -25 -29 -35 -45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11 12 18	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16 17 18	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
13 -49 14 -36 -47 15 -28 -34 -44 -59 16 -22 27 -32 -40 -53 17 -18 -21 -25 -29 -36 -47 18 -14 -17 -20 23 27 -33 -42 -58 19 11 -13 -16 -18 -21 -25 -30 -37 -49	20	9 9 8 7 8 5 4 3 + 2 + 1 - 1 - 2 - 3 - 5 -
14 -36 -47 15 -28 -34 -44 -59 16 -22 27 -32 -40 -53 17 -18 -21 -25 -29 -36 -47 18 -14 -17 -20 23 27 -33 -42 -58 19 11 -13 -16 -16 -21 -25 -30 -37 -49		<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.5 -26 -34 -44 -59
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TEMPERATURE OF DEW-POINT IN DEGREES FAHRENHEIT.

Pressure 23 0 inches of mercury

Air temp., 2 5 0.5 1.0 1.5 2 0 2 53.0 3.5 4 0 4.5 5 0	
AU 0.5 1	
$ \mathbf{z}_{1} = $	
	5 5 6 0 6 5 7.0 7.5 8.0
20 0 103 19 17 18 14 12 10 8 6 3 1 21 0 108 20 18 17 15 13 12 10 8 5 2	- 3 - 6 ₁ 11 · 17 - 26 - 44
21 0 108 20 18 17 15 13 12 10 8 5 2	1 4 8 13 20 80
22 0.113 21 19 18 16 15 18 11 9 7 4	+1 -2-5-10-15 -25
23 0.118 22 20 19 17 16 14 12 10 8 6	$3 \pm 0 - 3 - 7 - 13 - 16$
24 0 124 23 21 20 10 17 15 14 12 10 8	5 + 2 - 1 - 4 - 8 - 14
25 0 130 24 23 21 20 18 17 15 13 11 9 26 0 136 25 24 22 21 20 18 16 16 13 11	7 4 + 1 - 21 - 5 - 19
	9 6 4+1-3-1
	10 8 6 3 ± 0 - 6
28 0 150 27 26 24 23 22 20 19 17 16 14 39 0.157 28 27 26 24 23 22 20 19 17 15	12 10 8 5 + 2 - 1 13 11 9 7 4 + 1
80 0 164 29 28 27 25 24 23 21 20 16 17	13 11 9 7 4 + 1 15 13 11 9 7 4
31 0 172 30 29 28 27 25 24 23 21 20 18	17 15 13 11 8
32 0 180 31 30 29 28 26 25 24 23 21 20	18 16 14 12 10
33 0 187 32 31 30 20 28 26 25 24 22 21	19 18 16 14 12 10
34 0 195 33 32 31 30 29 28 26 25 24 22	21 19 18 16 14 12
35 0 203 34 33 32 31 30 29 28 26 25 24	22 21 19 17 16 16
36 0 211 35 34 33 32 31 30 29 27 20 25	24 23 21 19 17 18
37 0.219 36 35 34 33 32 31 30 28 37 26	25 24 22 20 19 17
38 0 228 37 36 35 34 33 32 31 30 28 27	26 25 23 22 20 19
39 0.237 38 37 36 35 34 38 32 31 30 28	27 26 25 23 22 20
40 0 247 39 38 37 36 35 34 33 32 31 30	28 26 25 23 32
41 0.256 40 39 38 37 36 35 34 33 32 31	29 28 27 26 24 21
43 D.268 41 40 39 38 37 36 35 34 33 32	31 29 28 27 26 24
68 0 277 42 41 40 39 38 37 36 35 34 33	32 31 29 28 27 26
44 D 287 43 42 41 40 39 38 37 36 35 34	33 82 81 29 26 27
45 0 298 44 43 42 41 40 39 38 37 36 35	34 33 32 31 29 26
66 0 310 45 44 43 42 41 40 39 38 37 38 47 0 322 48 45 44 43 42 42 42 42 40 38 37	35 34 33 82 81 30
47 0 322 48 45 44 43 42 42 41 40 38 37 48 0.334 47 46 45 44 44 43 42 41 40 39	36 35 34 33 32 81 38 37 83 94 33 83
49 0.347 48 47 46 46 45 44 43 42 41 40	38 37 33 34 33 33 39 38 37 36 34 33
50 0 360 49 48 47 47 46 45 44 43 42 41	40 39 38 37 80 34
81 0 373 50 49 48 48 47 48 45 44 43 42	41 40 39 38 37 86
53 D 387 51 50 50 49 48 47 46 45 44 43	41 40 39 38 37 86 42 41 40 39 88 37
53 0 402 52 51 51 50 49 48 47 48 45 44	43 42 41 40 89 88
54 0 417 53 52 52 51 50 49 48 47 46 45	44 44 43 42 41 40
55 0.432 54 53 53 52 51 50 49 48 48 47	48 45 44 43 42 41
56 0 448 55 54 54 53 52 51 50 49 49 48	47, 46 46 44 48 48
87 0 465 56 56 55 54 53 52 51 50 50 49	48, 47 46 45 44 41
58 0 482 57 57 56 55 54 53 62 52 51 50	49 48 47 46 45 44
59 0 499 58 58 57 56 55 54 54 53 52 51	50 49 48 47 46 46
60 0 517 59 59 58 57 56 58 55 64 53 52	51 50 49 49 48, 47 52 52 51 50 49 48
61 0 538 60 60 59 58 57 56 56 55 54 53 62 0 555 61 61 60 59 58 58 57 56 55 54	52 52 51 50 49 48
62 0 555 61 61 60 59 58 58 57 56 55 54 63 63 62 62 61 68 59 59 58 57 56 55	53 53 52 51 50 46 55 54 63 52 51 50
64 0 595 63 63 62 61 50 60 59 58 57 56	55 54 63 52 61 50 58; 55 54 53 62 51
05 0 616 64 64 63 62 61 61 60 59 58 58	58) 55 54 53 62 51 57 56 55 54 54 64 88
66 0 638 65 65 64 63 62 62 61 60 59 59	57 56 55 54 54 54 58 57 56 55 55 56
67 0 661 66 66 65 64 83 63 62 61 61 81	59 58 57 57 56 4
68 0 684 67 67 66 65 64 64 63 62 62 61	60 59 58 58 57
69 0 707 68 68 67 60 06 65 64 63 03 62	61 60 60 59 68 87
70 0 732 69 69 68 67 67 66 65 64 64 63	62' 61 61 60 69 58
71 0.757 70 70 69 68 88 67 66 68 65 64	63 62 63 61 60 69
72 0 783 71 71 70 69 69 68 67 67 66 65	64 64 63 62 61 60
78 0 810 72 72 71 70 70 60 68 68 67 66	65 65 64 63 62 63
74 0 838 73 73 72 71 71 70 89 69 68 67	66 66 65 64 64 61
75 0.866 74 74 73 72 72 71 70 70 69 68	67 67 66 65 65 65
76 0 896 75 75 74 73 73 72 71 71 70 89	69 68 67 66 66 64
77 0 926 76 76 75 74 74 73 72 72 71 70 78 0 957 77 77 76 75 75 74 73 73 73 72 71	70 89 68 67 67 66
	71 70 69 49 66 67
	72 71 70 70 69 68 73 72 71 71 70
60 1 022 79 79 ,78 77 77 76 75 75 74 73	73 72 71 71 70

TEMPERATURE OF DEW-POINT IN DEGREES FAHRENHEIT. Continued Pressure = 23.0 inches of mercury

-					essui					of u		<u> </u>			_		_
P 6	b :			D	epre	Riot	of	wet-	bulb	the	rmo	mete	er (t	— 6°)		
temp.	Vapor press.,	8.5	9.0	.6 [1	0.0 1	0.5	11.0¦1	1.5/1	2.01	2.5 1	3 0	13.5	14.01	4.5 1	5.0/1	5.8 ¹ 1	6.0
22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	0.536 0.555 0.675 0.695 0.695 0.681 0.681 0.684	378112852035680 1 2 3 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3	- 32 - 24 - 18 - 10 - 13 - 13 - 13 - 13 - 13 - 13 - 13 - 13	29 16 17 17 18 17 19 12 22 23 24 26 27 28 30 31 32 32 33 33 34 34 34 34 34 34 34 34 34 34 34	564 564 564 564 565 565 565 565	43 20 21 21 21 21 21 21 21 21 21 21 21 21 21	57 33 16 10 11 16 16 16 16 16 16 16 16 16	40 - 18 -	5000-14-5-802134-6-8-9-6-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	342 -150 -210 -150 -150 -150 -150 -150 -150 -150 -1	- 25 - 25 - 21 - 21 - 21 - 21 - 21 - 21 - 21 - 21	47 -18 -12 -18 -12 -18 -17 -10 -12 -13 -13 -13 -13 -13 -13 -13 -13	6011-1383-1-14683-15683-	34 34 34 34 34 36 37 38 39 31 31 31 31 31 31 31 31 31 31	39 -23 -15 -9 -16 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18	-155	-277-15136011463222857280133443544555555555555555555555555555555

TEMPERATURE OF DEW-POINT IN DEGREES FAHRENHEIT. Continued

			Pre	26 W	- er	23.0	ine	iea o	f me	reur	у				_
_			Depr	essio	n of	wet	- bul l	the	rmo	mete	er (f	~ (f)			
16.5	17.0	17.5	18.0	18 5	18.0	19.5	20.0	20.5	21.0	21.5	22.0	22.5	23.0	23.6	24.0
- 18 - 18 - 11 - 6 - 13 - 11 - 14 - 16 - 18 - 20 - 22 - 23 - 25 - 28 - 30 - 32 - 33 - 35 - 36 - 38 - 38 - 36 - 46 - 46 - 48 - 46 - 46 - 46 - 56 - 56 - 56 - 56 - 56 - 56 - 56 - 5	-31 -19 -11 -13 -15 -13 -15 -13 -15 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13	-33 -20 -12 -12 -13 -14 -16 -18 -16 -18 -16 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18	-35 -20 12 -8 -2 -2 -4 -2 -4 -2 -4 -2 -4 -2 -4 -2 -4 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	-21 -21 -22 -32 -43 -43 -43 -43 -43 -43 -43 -43 -43 -43		122 223 137 2 2 2 3 3 3 3 3 5 3 3 6 3 8 3 4 4 4 4 6 4 7 4 9 5 0		17 19 21 23 25 27 29 30 32 34 35 40 43 45 48	-24 -34 -32 -4 -39 -4 -4 -4 -4 -4 -4 -4 -4 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3			-60 -26 -15 -15 -15 -17 -20 -22 -24 -26 -28 -28 -28 -28 -28 -3 -3 -3 -4 -26 -26 -27 -20 -28 -28 -28 -28 -28 -28 -28 -28 -28 -28	12 15 16 18 20 22 24 28 28 30 32 34 35 40 42	28 28 28 28 20 22 22 25 27 28 28 28 28 28 28 28 28 28 28 28 28 28	
_	- 1									_				1	
)	25.0	25 5	26 0	26 5	27 0	27.5	28.0	28 5	29 Q	29.5	30.0	30.5	31.0	31.5	83.0
16 [[]	-29	Ad								,					
+ 27 10 13 16 18 21 23 25 27 29 31 35 37	-16 -2 + 3 -7 10 13 16 19 21 28 28 29 31 33 36	28 -15 -7 -2 +3 -7 11 14 17 19 22 24 28 30 32 33	-28 -16 -7 -1 + 3 8 11 14 17 20 22 24 28 30 32	17 22 24 27 29	15 18 20 23 25 27	-27 -14 6 0 15 15 18 21 22 25 27	-26 -13 -5 -5 + 5 12 15 16 21 23 26	10 13 16 19 21	13 16 19	76 77 78 79 80 -23 -11 + 2 10 14 17 20	- 33 - 15 6 ± 0	-30 14 - 5 + 1 -50 -20 -10 8 + 3 11 15	- 28 - 13 - 4 - 45 - 19 - 9 - 2 + 4 - 12	-28 -11 -41 -18 -8 -1 +4	34.5 -25 -37 -17 -27 +5
	29 18 10 10 10 10 10 10 10 10 10 10	-29 -18 -31 -19 -5 -11 -5 -11 -15 +3 -11 -15 +3 -11 -15 -11 -15 -11 -15 -11 -15 -11 -15 -11 -15 -11 -15 -11 -15 -11 -15 -15	16.5 17.0 17.5 -29	Depr 16.5 17.0 17.5 18.0 -29	Depression 16.5 17.0 17.5 18.0 18 5 -29	16.5 17.0 17.5 18.0 18 5 19.0 -29	Depression of wet 16.5 17.0 17.5 18.0 18 5 19.0 19.5 -29	Depression of wet-bull	Depression of wet-bulb the 16.5 17.0 17.5 18.0 18 5 19.0 19.5 20.0 20.5	Depression of wet-bulb thermo 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0	Depression of wet-bulb thermometed 16.5 17.0 17.5 18.0 18.5 18.0 19.5 20.0 20.5 21.0 21.5	Depression of wet-bulb thermometer (for the state of the	Depression of wet-bulb thermometer $(t-t')$ $16.5 17.0 17.5 18.0 18.5 18.0 19.5 29.6 20.5 21.0 21.5 22.0 23.5 23.5 23.5 $	Depression of wet-bulb thermometer (t - t') 16.5 17.0 17.5 18.0 18 5 19.0 19.5 20.0 20.5 21.0 21.5 23.0 23.5 23.0 -29	Depression of wet-bulb thermometer (t - t') 16.5 17.0 17.5 18.0 18 5 18.0 19.5 20.6 20.5 21.6 21.5 22.0 23.5 23.6

TEMPERATURE OF DEW-POINT IN DEGREES FARRENMENT. Continued Pressure = 23 0 inches of mercury

		Pre	HI42	• -	33	U	nep	ee o	T III	erm	KF.J						_
	12.	T	13	rph	Ministr	on a	of w	ret-l	bult) th	eco	Offi	ete	r ut	- 4	ስ	
Air temp , I	de de										- 1			-	-		-
	128	L	2	3	4	5	6	7	8	9	10	H	12	+3	14	15	16
80	[[022	7.1	77	76	25	73	73	71	69	61	661	65	63	82	60	38	157
Rt	058	NO	2.8	77	76	73	75	72	70	69	67	66	64	63	di	60	
R2	1 091	N1	79	7%	27	76	74	73	71	70	69	67	60	64	62	61	69
63	1 127	4.2	N1	79	7.4	7-	75	74	72	71	70		67	65	64	62	80
84	1 163	43	82	80	79	78	76	75	74	72	73	69	6h	64	65	63	62
8.6	1 201	84	N3	N1	80	79	77	76	75	73	7.2	70	64	67	66	64	43
0.0	1 241	N5	14	62	81	NO.	23	77	76	24	71	72	70	69	67	86	64
87	1 241	5.0	155	N.3	82	16.1	79	7.4	77	75	74	73	71	70	64	67	65
85	1 322	H.	87	R4 R5	83	N a	50	79	74 79	76	75	24	72	71	69	68	66
89	1 364	NB K9	85	N6	NA NS	A s	N2 N3	NI.	NO	7H	77	75	73 75	72 73	71 72	70	_
01	1 453	90	AV	N7	MA	83	84	1,2	MI	(40)	7	77	76	74	73		70
02	1 490	91	90	5.8	57	56	N.	14	h2	14.1	130	72	77	73	74	72	71
90	1 546	92	91	89	84	67	56	54	10.3	52	h1	79	78	76	7.5		73
84	1 595	93	92	90	И9	NA.	47	NS	164	53	Nº.	M	79	78	78	73	73
95	1 645	94	91	91	90	K9	N%	87	H.5	144	13	81	80	79	77	76	
DQ .	1 696	95	94	92	91	90		2,4	N6	5.5	N4	42	81	NO	76	77	74
97	1 749	945	95	93	92	91	90	64	HZ.	N6	8.5	A3	N2	51	79	74	
96	1 803	97	95	94	93	925	91	90	NA NO	N7	N6	AS	117	8.2	143	79	
98	1 N59 1 916	99	91	96	94	94,	93	91	90	NS NS	NA.	N.S	44 85	N3	K2 K3	NO 81	80
100	1 975	100	90	PK	96	95	64	93	92	90	50	N.H.	NA.	NS	84	1.3	81
102	2 035	liai	100	99	97	96	95	94	93	91	PU	10.5	14.79	Juli	N.S	84	83
109	2 007	1.12	101	100	Qh.	9.7	100	25	94	92	11	90	89	87	R.S		81
104	2 140	103	10.	101	359	Sec.	97	96	95	93	92	91	90	H5s	67	146	85
106	2 225	104	þß	1.72	Lan	99	5429	97	SM.	94	93	9.7	91	149	N8		86
106	2 272	105	1 H	,03	Iot	Kei	(H)	Gh	97	95	94	03	9.2	91	N9		
107	2 411	106	103	100	102	10	100	90	9%	97	100	144	97	97	90		
109 109	2 431 2 503	107	105	106	103 - 04	102		101	1004	PA (H)	96	95	91	9.7	91	90	29
110	2 57A										95		94	95			
iii		110										9%	97	96	95		
112	2 730	111	110	1.84							[3]		94	97	96	94	
113		112			1 Pa						102		99	- Sim			
114	2 891		112	1.1	$\epsilon = 0$						141	-	100	99			
115	2 975	114		112	111						1.14						
116 117		116				110		1 1%			106						
110			116														
119		811		, ja				111			fus					172	
130	3 425	65		12		114		12			, Fa					10	
121	3 425 3 522	120	11 .	15	117			113	11.	111	110		08	106	10.5	1.14	103
199	D 621	121		110		116				117	11					103	
123	2 723	122	121	124	1.0			115		114			110			14.05	
134	3 H37	153	22	1	_	1 4		116			113					1.7	
125 126	4 012	24	123	123	121	$\frac{150}{121}$					밢		112			104	
127	4 154	295	125	124	1,1		120						114	113		110	
128	4 26%	157		137	1	12%									112		110
129	4 385	2%	127	120	12	24				114		H				112	
130	4 504	29	12%		1.36	2.4	1	22	12.		119				-		112
101	4 627	130	129	128	27	-24	124	1	122	1.		Le 4	115	117	116	114	
132	4 752	131		129	h top	- T	"h	124		17.	125		_				
133		11.2		176		-8		1_	124	1.3	. 12				115		115
134	5 011	133		131	7(1)	-29		-6		1.4			17			115	
135 136	5 145 5 282	1134				2.1			- In	4.7		٦,	1	137		119	_
137	5 422	135	135		17,		1.90	20		H-		7	12			120	
138	5 365	133	_	1	34	,		li li	129	34		2 14				122	
130		134		136			LA	32	30							123	
140		139			136		134		131		1	_		_			
		*					,					-		443	7.52	7,4	

THEFERATURE OF DEW-POINT IN DEGREES FAHRENBERT, Continued

]	Dep	C PRINC	Hoh	of	# *(-hu	њ	hers	moi	Pact	er (1 -	n	
Air temp , r	Vapor press	17	18	19	20		22		24		26		28			31	1
80	1 (22	3.5	33	51	49	47	44	43	40	37	36	31	25	24	_		:_
81	1 054	56	84		30		11	122	41	19	34	31	341		21		
82	1 091	57	66		32		47	45	43	40	E	35	32	29		21	
83	1 127	39			53		49	47	44	42	40	37	34	31	27	24	
84	1 163				54				45		41	39			29	26	ı,
84	1 301.	61	59	54	54			50	48	45	43	60	34	35	31	23	
86 84	1 241	62	61	59	57	5.5	53	61	414	47	45	42	40	3*	34	30	ш
87	2 381	84	6.7		58			53	- 51	48	44		41.	39	36		
88	1 322	65	63		46	-54		34	52		К	44	43	40	311		н
00	1 354	F-6		6.1	41	54		53	54	52	Ш	47	45	42	39		
80	1 404	67	66		6.2	60		37	3.1	51	5.1	49	6.6	44	E 44	38	
91	1 483		67	63	61	62		54	5.6			54+	145	46	43	40	
83	1 499	69	88	_	65			50	34		5.4	5.	56	47	4.5	42	
90	1 546	71	69 70		66	54		6)	59		3-	53	-51	44	46	44	ľ
94	1 595	72 73	72	70	67 63	60		62	60			56	53	50	65	100	1
96	1 645	74	73	71	7	64		63	62	61	60	1,31	54 56	52	30 81	48	1
97	749	75	74	22	71	89		66	64	to		54	1,4	55	5.3	SI	١
90	Ant	74	75	74	7.2	24	1	67	66	64	6.2	fice	SA	56	54	33	
90	1 859	78	74	75	73	1		64	67	6.5	64	62	AC	4.4	34	34	
100	1 916	79	7.4	7.6	74	73	71	20	65	6"	854		61	54	1.4		
101	1 975	(41)	74	77	*4	74		71	69	65	14	64	63	62	59	57	
108	2 (3.5	81	ho	75	77	78		72	71	6.4	67	56	64	62	80		
l ed	1.097	3.2	91	79	75	26		73	*3	$T \to$	64	67	65	64	62	60	
104	3 180	8.7	112	R(S	74	175	_	75	73	72	120	68	67	65	43	61	
106	2 225	24	N.T.	22	40	79		76	74	71	31	70	68	66	64	63	
100	2 292	145	М	K.I	81	MI	78	77	74	74	17	21	69	64	54	154	
107	2 380	N.A.	315	44	62		9,1)	7%	17	13		72	31	69	67	64	
108	2 431	PLUS.	NA AT	H3	14			79		30	13	23	72	70	69	67	
100	2 3/3	R/a		2.5	3			11	N.	4	16	7.5	73	13	70		
110 111	2 552	91	9	100	87	4/4	84	H2	R1	T SP	H	16	1	Н	71	71	
112	2 7311	92	91	110	44	8"	85	54	14.1	PL.	100	ź.	-7	73	74	72	
113	2 430	21	92	90	49	SN	47	43	14	N.2		N	-4	76	+3	73	
114	2 401	94	93	92	Qu	89		AA	4.5	H	1.21		~9	24	14	7	ŀ
115	2 075	9.5	94	93	91	9/1	hits.	P.7	p. ft.	25	4.4	42	No.	10	77	76	
176	3 061	96	95	94	92	91)	911	49	47	9.6	8.4	4.1	42	MA	79	72	
117	1 149	9"	94	9.5	94	9.7	01	90	8,60	4.7	10	54	83	41	10	75	
116	1 239	Şide	97	96	95	93	92	91	n/a	5.4.	41	55	14	14,3	61	NO:	
119	3 331	99	94	v"	946	9.4	91	A.5	Set	fest.	2.4	1."	4,5	14	17	80	ľ
130	3 4.5	1	99	94	5_	94		41	92	194	414	16.16	46	65	54	1.2	ı
121	3 522	1 1	100	99	94	97	9.5	94	93	No.	64.1	N-	8.9	6.4	8.5	1/3	ı
122	3 577	!!!!			P3	77	SHE	95	9-4	W	9 1	100	4.2	4.	AA.	54	ı
123	3 777	1 1		1		914	tan.	16	95	7.5	1-1	9	'at	36.76		46	Į
154	3 927	1 4	1 14			2 - 9		42	40	9*	94	4.	17.1	54	AA	N7	ŀ
125 124	3 937	1 10	1 12	-4		1	, "	77	44	0.	9.	93	54 1	91	91	9.5	Į
127	4 042	1 4	1 4	1.86	1 4			1	Uu	O In	914	96	MT.	9.7	97	19	K
120	4 76.5	1	Friend.	4	1	-			1	1313	34	91 91	95	93 64	93	92	ľ
129	193	11	100		1 4	-				1 4	4.7	Q to		95	64	91	ľ
130	4 5/4	H	1 1	144	1 -	4	-	1-4	-,		42	00	13%	50	95	94	1
131	4 637	113	T	1	1490	1			M		1,		12.7	60	94	95	ľ
112	4.732	124		+1		N	-	1 e		16	- 4	-	6	92	9"	96	K
133	4 591	1 4	- 1		11	11	14	-	S. per		- 6	-4			99	9"	ľ
134	5 11	1.5	1.4	- 1		l I	. 44	1.	1	4					1 .	9%	ľ
135	\$ 145	1	21,	1 6		113	. 3 1	-21	1 %	-	41	H		1 .	[9]	99	ľ
136	5 742	117	1 6	2 !	14	. >	F 4	,	4000	1	- H (1 ч		1 '4	1	I
137	8 422	1 8	1*	11#	145	H	1.1	111	[1]	1-1	1-4		1	1-4	1	1-12	H
138	B 555	114	115	11"	18	1.56	- 6	ti.	1.1	11		1 de	, "		11.4	-0	K
139	5 742	1.8	119				.15	- +		111	11 4.		y - No		105		1
1 (in	5 562	121	20)	119	H.	1170	116	115	111	112		10	1111) OH	1(10	106	Ш

TEMPERATURE OF DEW-POINT IN DEGREES FAHRENBEIT. Concluded

Depression of wet-bulb thermomets 2	45 46 (t - 50 51 -40 -12 -1 -2: -6 - (12 +3	47 52 53 49	53
80 1 022 1, -11 81 1.056 6 3 21 82 1 091 11 + 3 9 41 83 1 127 14 8 1 -17 84 1 163 18 12 + 5 6 30 85 1 201 21 16 9 + 1 -13 86 1 241 23 19 13 6 4 -23 87 1 281 26 22 17 11 + 3 -10 54 88 1 322 28 24 20 15 8 -1 -18 89 1 364 30 27 23 16 12 + 5 -7 -34 109 18	(t - 50 51 -40 -12 -1 -2 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	52	
81 1.056 6 3 21 49 49 83 1 127 14 8 1 -17 84 1 163 18 12 + 5 -6 30 85 1.201 21 16 9 + 1 -13 105 -6 106 +3 1281 26 22 17 11 +3 -10 54 107 9 108 14 109 18 1 364 30 27 23 16 12 +5 -7 -34 109 18 109 100 10	50 51 -40 -12 -1 -2 -6 - 0 12 +3	52	53
83 1 127 14 8 - 1 -17	-40 -12 -1 -2 -6 - 0 12 +3	3 -49	53
85 1.201 21 16 9 + 1 - 13 105 - 6 106 + 3 - 1 - 18 107 9 108 14 109 18 1364 30 27 23 16 12 + 5 - 7 - 34 109 18 109	-12 -1 -2; -6 - (12 +3	-49	
86 1.241 23 19 13 6 - 4 - 22 106 + 3 - 107 9 107 9 108 14 109 18 1.364 30 27 23 16 12 + 5 - 7 - 34 109 18 109 10	-12 -1 -2; -6 - (12 +3	-49	
88 1 322 28 24 20 15 8 1-18 108 14 89 1 364 30 27 23 18 12 + 5 - 7 - 34 109 18	-6 - 0 12 +3	-49	
		2 14	
		- 2	23
91 1,453 34 31 28 24 29 14 7 - 3 -25		-	
93 1 546 39 36 32 29 25 21 15 9 — 1 17 94 1 595 41 38 35 31 28 24 19 12 + 6 — 5 — 32			
95 1.645 42 40 37 33 30 26 22 17 11 + 2 -12 96 1.696 44 42 39 36 32 29 25 20 15 8 2 -22			
97 1.749 46 44 41 38 34 31 28 23 19 13+5-7-	-41 -15		
99 1.850 50 47 45 42 39 36 32 29 25 21 14 7	3 -2		
101 1 975 53 51 48 46 43 40 37 34 30 26 22 17	10 ± (
102 2 035 54 52 50 48 45 42 39 36 32 29 25 20 103 2 097 56 54 52 40 47 44 41 38 35 31 28 23	14 + 1		-37 -11
104 2 160 57 55 53 51 49 46 43 40 37 34 30 26	22 10 25 20		
105 2 225 59 57 55 53 56 48 45 42 39 36 33 29 106 2 292 60 58 56 54 52 50 47 44 42 39 35 32 107 2 360 62 60 58 56 54 51 49 46 44 41 38 34 108 2 431 63 61 59 57 55 53 51 48 46 43 40 87	28 24 31 2	18	15
	33 2: 30 3:	9 25	20
110 2 576 66 64 62 60 58 58 54 52 50 47 44 41	38 3	31	27
111 2.652 67 66 64 62 60 58 56 54 51 48 46 43 112 2 730 69 67 65 63 62 60 57 55 53 51 48 46	40 3	36.	30 32
112 2 730 69 67 65 63 62 60 57 55 53 51 48 46 118 3 810 70 68 67 65 63 61 59 57 55 52 50 48 114 2 891 71 70 68 66 64 63 61 59 56 54 52 49 115 2 975 73 71 69 68 66 64 62 60 58 56 54 51 116 3 061 74 72 71 69 67 68 64 62 60 58 56 53	45 4	41	38 38
114 2 891 71 70 68 66 64 63 61 59 56 54 52 49 115 2 975 73 71 69 68 66 64 62 60 58 56 54 51 116 3 061 74 72 71 69 67 66 64 62 60 58 56 53	49 40 50 40		43
117 3.148 75 74 72 70 69 67 65 63 61 59 51 15 118 3 239 77 75 73 72 70 68 67 65 63 61 59 57	52 51 54 5	47	47
	56 5 58 5	6 51	45
121 3 522 80 79 77 76 74 72 71 69 67 65 63 01	59 5	7 55	52
122 3 621 82 80 79 77 75 74 72 70 69 67 65 63 123 3 723 83 81 80 78 77 75 74 72 70 68 66 64	61 5° 63 6°	8 58	54 54
124 [3 827] 84 83 81 80 78 76 75 73 72 70 68 66	64 63 66 6	4 12	68 80
125 3.933 85 84 82 81 79 78 76 74 73 71 69 68 126 4.042 86 85 84 82 81 79 78 76 74 72 71 59 127 4.154 88 86 85 83 82 80 70 77 76 74 72 70 128 4.268 89 87 86 85 83 82 80 78 77 75 74 72	67. 69 69 6		68
128 4 268 89 87 86 85 83 82 80 78 77 75 74 72 129 4 385 90 89 87 86 84 53 81 80 78 77 75 73	70 65 72 76	8 66	68
130 k 504 91 90 98 87 86 84 83 81 80 78 76 75	73 7: 74 7:	1 69	66
132 4.752 93 92 91 89 88 87 85 84 82 81 79 77	76 7	1 72	70
134 5 011 96 94 93 92 90 89 88 86 85 83 82 80	77 71 78 7	7 75	72
136 5 282 98 97 95 94 93 91 90 89 87 86 84 83	80) 73 81) 80	78	78 76
137 5 422 99 98 97 95 94 93 91 90 88 87 85 84 138 5 565100 99 98 96 96 96 94 92 91 90 88 87 85	82) 8: 84) 8:		78
138 5.712101 100 99 98 96 95 94 92 91 89 88 86 140 5.862103 101 100 99 97 96 95 93 92 91 89 88	85 B	82	80

RELATIVE HUMIDITY, PER CENT.—FAHRENHEIT TEMPERATURES
Pressure 30.0 inches of mercury

Air				opr				ret-			_		<u> </u>	r (t		t')			
	0.2 0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2,2	2 4	2.6	28	3.0	3.2	3.4	3 8	3.8	4,0
-40 -39	46 48 50 2					1				2	4 4	4.6	(t 4 8		5.2	5.4	5.6	5.8	0.6
-39 -37 -35 -35 -35 -35 -35 -35 -35 -35 -35 -35	50 2 53 6 59 15 61 20 63 24 64 28 66 32 68 36 70 41 72 45 74 46 75 51 70 53 77 55	0	0 5 10						8 10 11 12 13 14 15 16 17 18 19	1 5 9 12 16 19 22 25 28 30 33 35 37	18	0, 4, 8 11, 15, 19, 21, 24, 27, 29, 32	0 4 7 11 14 18 21 24 20 20	17 20 23	11 14 17 20	0 4 8 11 14 17 20	14 17	1 5 8 11 14	1:
- 23 - 22	78 57 80 59	36 39	15	0					1					_ {	0 1	0 2	0 8		0.
- 21 - 20 - 19 - 15 - 15 - 15 - 15 - 14 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	81 61 82 63 83 65 84 67 85 60 86 70 86 72 87 74 88 75 88 75 90 78 90 78 90 79 91 82 91 83 92 84 92 85 93 87	43 45 48 51 53 56 58 61 63 64	24 28 32 35 39 42 46 46 52 55	19 23 27 31 34 41 44 46	27 127 127 225 229 32 32 34 44 47 49 52 54	4 8 137 125 29 325 34 44 49 51 53	0 6 10 14 18 22 26 32 36 39 42 44 47	4 9 13 17 20 24 28 31 34 37	3 3 12 16 20 27 30 33	3 7 12 16 19 23 27	4 8 12 16 20	1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		- 40 - 45 - 45 - 45 - 45 - 45 - 42 - 41 - 42 - 42 - 41 - 42 - 43 - 35 - 35 - 31 - 32 - 31	54 57 60 63 68 70 71 72 73 74 75 76 77 78 80 81 82 83	5 12 17 22 28 32 36 40 43 48 50 53 50 61 63 64	3 9 14 18 22 25 28 33 37 41 44 46 49 52	2 10 15 20 24 28 36	i
+ 3345678910112131451517899	93 87 94 88 94 88 95 89 95 90 95 90 95 91 96 93 96 93 97 93 97 94 97 94	81 82 82 83 84 85 86 87 88 89 90 90 90	75 76 77 78 78 78 78 81 82 83 84 85 86 86 87 88	68 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85	63 64 65 68 69 70 71 72 73 74	56 59 59 61 63 64 65 69 70 71 74 75 77 78	49 52 54 55 57 60 62 63 65 66 67 71 72 73 74 75	43 46 48 50 52 54 55 57 59 60 62 63 65 67 69 70 71 72 73	36 39 42 44 46 49 51 53 55 56 68 68 68 69 70	30 33 36 39 41 48 50 52 55 60 60 60 60 60 60 60	24 27 30 33 36 41 43 40 47 49 53 56 60 61 63	18 12 28 1 3 3 6 8 4 1 4 3 5 3 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	115192253443539443545555658	5 13 17 23 29 34 34 46 48 52 53 55	11 15 18 21 27 30 33 35 40 42 47 49 50	20 10 13 17 20 23 26 28 31 34 37 39 43 45 47	0 4 8 12 15 15 15 22 25 27 33 35 40 44 46	11117 120 220 220 220 232 34 37 41 43	111112222333

Continued Pressure = 30.0 mehes of mercury

-		_	1				of v			lb t				<u> </u>	-	ť)				_
8	1,0	1.5	2 0	2 5	3 0	3.5	4.0	4 5	5 O	5 5	6 0	6 5	7.Q	7 5	8.0	8.5	9.0	0,5	10 8	10.5
222222444444465555555555555555555555555	85 85 86 87 87 88 88 88 89 90 91 91 91 92 92 92 92 93 93 93 93 93 94 94 94 94 94 94 94 94 94 94 94 94 94	77 78 79 80 81 82 83 84 84 85 86 86 87 87 88 88 88 89 89 90 90 91 91 91 92 92 93 93 93 93 93 93 93 93 93 93 93 93 93	70 71 72 73 74 75 76 77 78 81 82 83 83 83 85 86 86 87 77 87 88 88 88 88 88 88 88 88 88 88	62 63 65 66 67 77 77 77 77 77 77 77 77 77 77 77	56 56 56 56 67 68 67 67 67 67 67 67 67 67 67 67	48 49 51 52 53 54 55 56 66 67 68 69 77 77 77 77 77 77 77 77 77 7	40 42 44 46 47 46 55 56 56 56 56 56 56 56 56 56 56 56 56	33537394357565555666566666666666666666666666666	268 33 337 39 43 446 47 49 52 54 55 55 56 66 66 66 66 66 67 77 77 77 77 77 77 77	21 22 23 33 33 33 33 33 33 33 33 33 33 33	12 13 17 20 22 25 27 29 32 33 43 43 44 45 55 55 55 55 55 56 57 57 57 57 57 57 57 57 57 57 57 57 57	8 11 14 16 19 21 24 28 28 33 37 38 40 44 46 47 48 50 51 50 50 50 50 50 50 50 50 50 50 50 50 50	1 47 10 13 16 18 23 34 36 36 42 3 34 45 47 48 47 52 34 45 47 48 47 52 53 54 45 55 56 57 58 68 68 68 68 68 68 68 68 68 68 68 68 68	1 47 10 13 15 15 15 15 15 15 15 15 15 15 15 15 15	20 22 22 23 23 23 23 23 23 23 23 23 23 23	55 55 56 57 57	49 50 50 51 53 54 55 56 57 58 58 59 60 61 61 62 63 64	42 43 44 45 46 47 48 49 55 55 55 55 55 56	51 52 53 54 55 55	03 6 9 1 1 4 1 5 1 5 1 5 1 5 1 5 1 5 5 5 5 5 5

RELATIVE HUMIDITY, PER CENT.—FAHRENHEIT TEMPERATURE Continued

					:	Pre	BBUI	re =	30	.0 i	nch	88 O	fm	ercu	шу						
- 2					Deg)res	aiör	of	wei	t-bu	Jb :	ther	mo	met	er (4 -	t')				Ī
Air temp.,	11 0	11.5	12 0	12.5	13 0	13.5	14.0	14.5	15.0	15.5	16.0	16.5	17.0	17.5	18 0		19 0	19.5	20.0	20.5	
35 36 36 37 38 38 38 40 41 42 43 44 44 45 45 45 45 45 45 45 45 45 45 45	25 7 10 12 15 17 19 21 15 25 26 28 29 31 32 35 36 37 38 40 41 42 43 44 45 51 52 53 54 55 56 57 57	13 6 8 11 13 15 15 15 15 15 15 15 15 15 15 15 15 15	25 7 10 12 14 16 18 20 22 23 25 27 28 29 1 32 33 34 44 44 45 64 47 48 49 50 51 51 52 53 54	1460 11315 1512 222 242 252 252 253 343 353 364 414 424 444 444 444 444 444 444 444 44	0358 10214 10123 1	2 4 7 9 11 13 15 7 18 22 23 24 26 27 28 33 2 33 34 35 36 37 38 34 44 45 45 45 45 45 45 45 45 45 45 45 45	10 12 14 16 17 19 20 22 23 25 26 27 29 30 31 32 33	0 8 5 7 9 11 13 15 17 18 20 21 22 24 25 28 29 30 31 32 33 44 45 45 45	25 79 10 12 14 16 17 19 20 22 23 24 26 27 28 29 30 31 32 33 34 42 43 44 44 44 44 44 44 44 44 44 44 44 44	246891151819122356 11151819122356 11151819122356 11151819122356 11151819123 111518 115	10 12 14 16 17 18 20 21 22 24 25 27 29 30 31 33 33 34 35 36 37 38	134 68 1012 1315 1412 1920 223 242 252 263 363 363 363 373 383 393	0 2 4 6 8 9 11 3 14 16 17 18 0 2 1 2 2 2 4 2 5 6 2 7 2 8 2 9 3 3 3 3 4 3 5 3 6 3 7 8 8 1	1357910 121315 1618922234 26132334 36135 36135	13578 10113 1416 1718 201223 2425 2923 3133 3435	11 12 14 15 17 18 19 20 21 23 24 25 27 28 29 30 31 31	0 2 4 6 7 9 10 12 13 15 16 17 19 20 22 23 24 25 26 27 28 29 30 31 32	2 3 5 7 8 10 11 13 14 16 17 18 19 20 22 23 24 25 26 27 28 28 20 30	23 5 7 8 0 11 12 14 15 16 19 20 1 22 23 24 25 27 28 29	1 3 5 6 8 9 11 28 16 17 18 12 24 5 25 27 27	4.8 h W h to b to b b b a a a a a a

RELATIVE HUMIDITY, PER CENT.—FAHRENHEIT TEMPERATURES. Continued Pressure = 30 0 inches of mercury

21.5,	De 22.0 22.	press: 5:23.0									²) 27 5	28.0	28.4
61 1 62 2 63 4 64 6 65 7 66 9 67 10 68 11 69 13 70 14 71 15 72 16 73 17 74 18 75 20 76 21 77 22 78 23 79 24	1 2 0 4 2 4 7 5 7 10 8 11 11 13 12 15 13 16 14 17 15 18 17 19 18 20 19 21 20 22 21 23 22	0285689 10213 1415 157 1819	0 2 3 5 6 8 9 10 11 13 14 15 17 18 19	0 2 3 5 6 7 9 10 11 12 13 14 16 17 18	12346778011231441561156	134678912345	13457890111314	1 3 4 5 7 8 9 10 11 12	1.334.55 68.910 111	1 3 4 5 6 8 9 10	1345679	10 Ct 4-00-11	13456

Air	Depression of wet-bulb thermometer $(t-t')$														
temp., t		2	3	4	5	6	7	8	9	10	11	12	13	14	15
80 82 84 66 88 90 92 94 96 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 136 136 136 136	999999999999999999999999999999999999999	91 92 92 92 93 93 93 93 93 94 94 94 94 94 94	87 88 88 88 88 88 89 99 90 90 90 91 91 91 91 91 92 92 92	83 84 84 85 85 86 86 87 87 87 88 88 88 88 88 88 88 88 88 88	79 80 81 82 82 83 83 83 84 84 85 86 86 86 86 86 86 86 86 86 86 86 86 86	75677778800111-122227777880011-12222233333444444	72 72 73 74 75 75 76 77 77 77 77 78 79 79 80 80 81 81 81 82	$\begin{matrix} 6899001222333445556677772888999999777777777777777777777777$	64 65 66 66 66 68 69 69 69 77 77 77 77 77 77 77 77 77 77 77	6123 645 656 667 668 667 677 777 777 777 777 777 77	57 58 59 60 61 62 63 63 64 65 65 66 67 67 68 69 69 70 71 71 71 72 72	55677589 55675589 566622 5666556667768888699 5666677688888699 566667770	55123 555 555 555 555 555 555 555 555 555 5	48 49 50 52 55 55 50 50 51 52 55 65 65 65 65 65 65 65 65 65 65 65 65	44 46 46 47 48 49 50 51 53 54 55 55 57 57 58 59 50 60 61 62 63 63 64 63 64

, January C

RELATIVE HUMIDITY, PER CENT.—FAHRENBERT TEMPERATURES.

Continued

			Pr	C68111	re =	30 (Dino	hes c	of me	rewr,	y				
			D	epre	69101	of	wet-l	dluc	ther	шок	eter	(t -	· t')		
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
80 82 84 86 88 80 92 94 96 98 100 102 104 106 110 112 114 116 122 124 126 128 130 132 134 136 136 138 140	41 42 43 44 46 46 47 48 49 50 50 55 55 55 55 55 55 56 60 61 61 62 62	38 39 42 43 44 45 46 47 48 49 49 50 55 55 55 56 56 56 56 56 56 56 56 56 56	35 36 37 36 37 36 37 36 41 42 43 44 45 45 45 45 45 45 45 45 45	33 35 37 39 37 38 37 37 37 37 37 37 37 37 37 37 37 37 37	29 33 33 35 35 36 37 38 39 41 42 43 44 45 45 47 48 49 49 50 55 55 55 55 55 55 55 55 55 55 55 55	22233455678990123444445677899012223	25 25 25 25 25 25 25 25 25 25 25 25 25 2	2024679012467890 22246790 222467	180 223 225 226 220 220 220 230 230 230 230 230 230 230	157 122 122 122 122 123 123 123 123 123 123	12 16 10 10 10 10 10 10 10 10 10 10 10 10 10	10 12 14 16 18 19 12 22 24 22 22 22 22 23 23 23 23 23 23 23 23 23	70114571002246789012344556778999999941	57013578013555578890 11357801345578890 11357801345578890 11357801345578890 11357801345578890	15 7 9 11 3 15 15 15 15 15 15 15 15 15 15 15 15 15

wet bulb are found to agree very closely, thereby showing that it has reached its lowest temperature. A minute or more is

generally required to secure the correct temperature.

When the air temperature is near the freezing point it often happens that the temperature of the wet bulb will fall several degrees below freezing point, but the water will still remain in the liquid state. No error results from this, provided the minimum temperature is reached. If, however, as frequently happens, the water suddenly freezes, a large amount of heat is liberated, and the temperature of the wet bulb immediately becomes 32°. In such cases it is necessary to continue the whirling until the ice-covered bulb has reached a minimum temperature.

The psychrometer will give fairly accurate indications, even in the sunshine, yet observations so made are not without some error, and where greater accuracy is desired, the psy-

chrometer should be whirled in the shade.

[While the above is true for refined observations, such as were necessary in Professor Marvin's work, yet for practical work I have found that a wet- and a dry-bulb thermometer, simply mounted on a board and placed in a good draft, would give accurate enough results for technical data. In this case the cloth wrapper of the wet-bulb thermometer went down into a cup of water, so that it was always wet and hence always ready for an observation.—Editor.]

RELATIVE HUMIDITY, PER CENT.—FAHRENHEIT TEMPERATURES.

Ġ

RELATIVE HUMIDITY, PER CENT.—FAHRENHEIT TEMPERATURES. Continued

-		•				Pre	MULT	• -	23	i 0.	nch	e8 (of m	ierc	ury							_
7.4					Dej)1°85	siot	of	wei	t-bı	ηр	the	rmo	nie	ter	()	- 1	"				
Air temp.	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2 6	2.6	2.8	3.0	3.2	3.	4 3	.6	3.8	6.0	4.2
- 38	62	25						1				- ole	401-107				Old	1 0	0 4	0 0	- ·	=
— 27 i	64	28 31					ĺ	4	2	E. U.A	81) Upo	.20	45	. היָם	8:0		0.2	0.5	0.0	0.4	7.9
- 36 - 35 - 34	68 70	35	4 9					6	10	6:	2		f			1						
- 83 - 32	72 73	42 45	14 18					8	13 16	13	5 9	5 9	2		1							
-31 -30	74 76	45 48 51	26]	1				10 [1	19 22	16	15	12	250	2 8	2	9						
- 29 - 28	77. 79	51 54 57 59	30	12				12 13	25 27 30	22) 24 27	18 ³ 21 24	15 18 21	12 15 18	12	2 5 9	2 6 9	2	2	0			
27 26	80 81	59 62	40	19 22	28			14	33 35	30	27 30	24 27	21 24	18"		12	9 12	3 0 10	3	1 4 7	1	
- 24 - 24 - 23	82	64 65	44	26 30	13	0		16	38 40	35	32 34	29 32	26	24	21	18 21	15 19	13 16	10 13	7 11	8	3
- 34 - 32 - 31 - 30 - 29 - 28 - 27 - 26 - 23 - 23 - 21 - 20	84 85	65 66 68 70 71	50 53 55	34 37 40	18 22 26	8 10		18 19	42 44	39 41	37 30	34 38	34	29 : 31, :	26 29	24 26	21 24	19 21	19	17	14	12
— 19	B6-	71 78	57 59	44	30	15 20	6 11	20,	45	43	41,	38	36	33	31	29) t	26		(t	_ ta	")	15
$-18 \\ -17$	87 88:	74 75	83	50 52	37 40 43 46	24 27	16	3 8								-	(7)	68	_	0 3	0.4	0.5
-18 -15		78	65 67	54 67	43	31 35	20 24	13 17	3 7							=	46 45	70 72	41	4. 10.		
-14 -13 -12	90 90 90	79 80 81	89 71 72	59 61 63	3.6	38 41 44	28 31 35	22 28	12 16	2						=	44 43	74 76	48 51	19 24	0	
-11 -10	91 02	82 83	73 75	64 66	58	47 50	38	21 32	20 24	11	2						41 41	77 78	54	32	10	
- 9 - 8	92 92	84 85	76 77	68	60	52 54	44	36	28 31	20	12	4 8	0			=	40 39	78 70 80	59 61 62	36 39 41	16 21 25	2
- 7 - 6	93 93	85 86	78 79	70 72	83 85	56 58	49 51	41	34 37	27 30	20 23	12 16	6 9	3		-	37 36	80 81	54	43	28	7
- 5 - 4	93	86 87	80 81	73 74	66 68	59 61	53 55	48	40 42	33 36	26 30	20 23	13	10	4				201			
- 3	94 94	88	82 82	75 76	70	63 65	57 59	51 53 55	45 47 50	39 41 44	33 36 39	27 30 33	21 24 28	18 18 22	12 16	2	r -	1		П		
- 1 0 + 1	94 95 95	89 89 90	83 84 85	77 79 80	72 73 74	66 68 69	61 62 64	57 59	52 64	47 49	41	36 39	31	26 29	20 24	15	1	0	5 9	4		
+ 1 2 3	95 95	90 91	85 88	81 81	76 77	71 72	66 67	61 63,	58) 58)	51 53	47	42,	37 40	32 35	27 30	22	1	8	13 17	8	8	2
4 8	95 96	91 91	86 87	82 82	77 78	78' 74	69 70	641 65	60 61	55 57	51 53	46	42	38	33 36	29 31	2	4 3	20 23	16 19	11 15	7
7	96 96	91 92	87	83 84	79 80	75 76	71 72	66 68	62 64	58 60	54 58	50 52	48	44	38 40	36	3	21 :	26 29	22 25	18 21	14
8	96 96	92 92	88	84 85	80 81	76 77	73 74	69 70	65 66	63	58 59	54	50 52	48	44	41	3	7, 3	34	28 30	24 27	20 23
10 11 12	96 96 97	93 93 93	89 89 90	85 86 86	82 82 83	78 79 80	74 75 76	71 72 73	68 69 70	64 65 66	61 62 63	57 58 60	53 55 57	52 53	48 48 50	45	4	Ц	38 38 40	32 35	29 32 34	26 28 31
13 14	97 97	93 94	90 91	87 87	84 84	81 81	77 78	74 75	71 72	68	641	61	58 60	55 57	52 54	49	1 4	8	42	39 42	36 39	33 36
15 16	97 97	94 94	91 91	88 88	85 85	82 ₁ 83	79 80	76 77	73 74	70 71	67,	64	61 63	58 60	55 57	52	5	0 4	47	44	41.	38 40
17 18	97 97	94 95	92 92	89 89	86 86	83 84	81 811	78 79	75 76	72 73	60; 71;	58	64 65	61 63	50 60	56 57	5	3 .	50 52	48 50	45. 47	42 44
19 20	97 97	95 95	92 92	90	87 87	84 85	82 82	79 80	77 77	74 75	71 72	69 70	66 67	64 65	61 63	59 80	_			51 531	49 60	46 48

RELATIVE HUMIDITY, PER CENT.—FAHRENHEIT TEMPERATURES. Continued Pressure = 30.0 inches of mercury

						r no	as (J.	τ -	ื่อม	.U 11	ren	CA 0	2 1001	aret	17.7						
3				1	Dep	reju	цоп	of	wet	-bu	Jb t	her	mo	met	ær	(t -	ď.)			
Atr temp.	0.5	1.0	1.5	2.0	2.5	3 0	3 5	4.0	4 5	5 0	5.5	6.0	6.5	7.0 _j	7.5	8.0	5 5	0	9.5	0,0	10.5
20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	94 94 94 95 95 95 95 95 96 96 96 96 96 96 96 96 96 97 97 97 97 97 97 97 97 97 97 97 97 97	87 88 88 89 89 89	81 82 83 84 85 86 86 86 86 86 86 86 86 86 86 86 86 86	75 75 75 75 75 75 75 75 75 75 75 75 75 7	69 69 77 77 77 77 77 77 77 77 77 77 77 77 77	63 64 65 65 66 67 68 68 67 68 68 68 68 68 68 68 68 68 68 68 68 68	557 590 61 62 656 666 677 777 777 777 777 777 777 777	52 53 54 56 57 58 58 58 58 58 58 58 58 58 58 58 58 58	46 46 46 46 46 46 46 46 46 46 46 46 46 4	384434460	32 34 36 36 36 36 36 36 36 36 36 36 36 36 36	20 21 3 3 5 7 8 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	21 23 25 28 30 32 34 35 37 34 45 47 40 50 50 50 50 60 60 60 60 60 60 70 71 71 72 72 73 73 74 74 74 75 75 76 76 76 76 76 76 76 76 76 76 76 76 76	15 17 20 25 25 27 29 33 35 36 40 43 45 46 46 46 46 46 46 46 46 46 46 46 46 46	91157 1202224 130323 13033 1414 1404 1505 1505 1505 1505 1505 1505	3 69 12 1 1 1 1 2 2 2 6 8 3 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 6 5 6 5 6 5 6 6 6 6 7 7 8 8 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1477 102 155 177 192 26 15 15 177 192 26 15 15 177 192 26 15 15 177 192 26 15 15 15 15 15 15 15 15 15 15 15 15 15	25 8 10 13 15 17 20 22 24 25 30 32 33 41 42 43 44 45 46 47 48 49 50 51 52 55 55 55 56 60 61 62 63 64	3681180222003236739041244567489012222003233333444444445555555555555666666666666	146911681222222222222222222222222222222222	2 10 12 15 17 19 12 15 17 19 12 15 17 19 12 15 17 19 12 15 17 19 12 15 17 19 12 15 17 19 12 15 17 19 12 15 17 19 12 15 17 19 17 19 17 17 17 17 17 17 17 17 17 17 17 17 17

102 METALLURGISTS AND CHEMISTS' HANDBOOK

RELATIVE HUMIDITY, PER CENT.—FAHRENHEIT TEMPERATURES. Continued

Pressure = 23 0 inches of mercury

4-2
D , 6
Alr
290123388588

RELATIVE HUMIDITY, PER CENT.—FAHRENHEIT TEMPERATURES. Continued Pressure = 23.0 inches of mercury

		_	_		_	-	_				
1.1			-	(t -	- 1	7					
[4]	22 23	94	24 98	97.9	98	9n	ank	11 :	20 :	22	94
1_!	<u> </u>	AT I	20/20	- 10	-0		no!	, e l	1	00	_
60		1			- 1						
61	9 6	3	,	- 1				- (- 1		
62	$\begin{array}{c c} 11 & 8 \\ 12 & 9 \end{array}$	1 2	1			- 1					
	13 10	3467	3 1			- 1	- !				
65		9	8 3							1	
66	16 13	10	7 4	1							
67	17 14	11	8, 5	3	ا ر					ľ	
68		12	9 7	4						- 1	
69 700		13 14	11 8 12 9	6	3 4	0	١.			-1	
1,0	21 18	15	1310	8	5	3	0	١			
	22 10	18	1411	g	ß		1				
73	23 20	17	15 12	10	7	5	3	Ð			
74	24 21	18	1613	111	9	6	4	8			
	25 22	19	1714	12 13	10	7	5	3	1		
	25 23 26 24		18 15 19 16		11 12	8	8 7	4 5	3	1	
78			2017		13	1ő	8	ő	4	2	
	28 25		2118		14	11	9	7	5	234	1
80	29 26		21119	170		12	10	8.	6	4	2

Air			J	Depr	essio	n of	wet	-buli	the	rmo	mete	er (t	- t'))		
temp.,	1	2	3	4	5	6	7	8	9	10	11	12	12	14	16	18
80 82 84 86 88 90 92 94 96 102 104 108 110 112 114 118 120 124 128 128 130 132 134 136 138 140	966666666677777777777777777777777777777	922233333333334444444444444444444444444	85 85 85 85 85 85 85 85 85 85 85 85 85 8	8555555555777776888889999999999999999999	80112223333344444555555556666666666666666666	777889001112222222333334444445 888888888888888888888888888	734 745 757 766 777 777 777 777 777 777 777 77	70111233334445557777777788899999999999999999999999	67788899000112222377444555577777777777777777777777777	63 64 65 66 66 67 67 68 69 69 70 71 71 72 72 73 73 74 74 75 75 75	60 61 61 62 63 63 64 65 66 66 66 66 66 66 66 66 67 77 77 77 77	55889612234455566666666666666666666666666666666	55 55 55 55 55 56 66 66 67 67 68 68 69 69	51 52 53 53 55 55 56 56 56 56 56 56 56 56 56 56 56	48000122255555555555555555555555555555555	45 46 47 48 48 48 48 48 48 48 48 48 48 48 48 48

104 METALLURGISTS AND CHEMISTS' HANDBOOK

RELATIVE HUMIDITY, PER CENT.—FAHRENHEIT TEMPERATURES. Continued Pressure = 23.0 inches of mercury

				Depi	(ess1))D D	wet	-bul	b the	ermo	met	er (į	- 1')		
*	17	18	19	20	21	22	23	24	25	26	27	26	29	30	81	32
80 82 84 86 88 90 92 94 98 100 102 104 106 110 112 114 116 118 120 124 126 138 130 132 134 136 138	43 44 45 47 45 50 55 55 55 55 55 55 55 55 55 55 55 55	39 42 43 44 46 46 46 46 46 46 46 46 46 46 46 46	38900143 44546 4555555555555555555555555555555	34 35 36 38 39 41 42 43 43 44 45 45 45 45 45 45 45 45 45 45 45 45	31 33 35 35 36 37 38 39 41 42 44 44 45 46 47 46 48 49 49 50 51 51 52 53 53 54 54 54 54 54 54 54 54 54 54 54 54 54	29013345673899412344568478899955555555555555555555555555555555	20 20 30 33 33 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 49 49 40 40 40 40 40 40 40 40 40 40 40 40 40	245789123345678890141 42334567889041142345566677889	23 24 26 27 28 31 32 33 33 33 33 33 33 33 33 34 44 45 45 46 46 47	19122456 22222890 333336 33333 441 42243 444 45 45	17902234678901223333556788991014122334444444444444444444444444444444	18 18 18 20 21 22 22 25 26 27 28 29 20 31 22 32 33 34 35 36 37 37 38 39 40 41 42 42 42 42 42 42 42 42 42 42 42 42 42	12 14 16 17 19 19 19 19 19 19 19 19 19 19 19 19 19	10 12 14 15 17 18 18 18 18 18 18 18 18 18 18 18 18 18	802351789122234560778 1135789122234560778 12223456789001233345566778	8 10 13 15 15 15 15 15 15 15 15 15 15 15 15 15

RELATIVE HUMIDITY, PER CENT.—FAHRENHEIT TEMPERATURES. Continued Pressure = 23.0 inches of mercury

Air				Depi	regai	OT 0	wet	-bull	the	rmo	mete	x (t	- t')			
temp.,	33	34	35	36	87	88	39	40	41	43	43	44	45	46	47	48
80 82 84 86 88	4 6 8 11 11	2 4 6 8 10	02468	0 2 4 6	1 22 4	1 3	1					ļ				
90 92 94 96 98	13 14 16 17 18	11 13 14 15 17	9 11 12 14 15	8 9 11 12 14	6 8 9 11 12	6 8 9	9710 @ 0100	1 3 5 6 9	2856	0235	0004	1 2	0 1			
100 102 104 106 108	20 21 22 23 24	18 19 20 21 22	16 18 19 20 21	15 16 17 18 19	13 15 16 17 18	12 13 14 16 17	10 12 13 14 15	9 10 12 13 14	8 9 10 11 12	6 0 10 11	\$ 6 9 10	4 5 6 8 9	24-57-8	13467	***************************************	D 3
110 112 114 116 118	25 26 27 27 28	28 24 25 26 27	22 23 24 25 25	20 21 22 23 24	19 20 21 22 23	18 19 20 20 21	16 17 18 19 20	15 16 17 18 19	14 15 16 17 18	12 14 15 15 16	11 12 13 14 15	10 11 12 13 14	9 10 11 12 13	8 10 11 12	7 8 9 10 11	6 7 8 9
120 122 124 126 128	29 30 30 31 82	28 28 29 30 30	26 27 28 28 29	25 26 26 27 28	23 24 25 26 26	22 23 24 25 25	21 22 22 23 24	20 21 21 22 23	18 19 20 21 22	17 18 19 20 20	16 17 18 19 19	15 16 17 18 18	14 15 16 16 17	13 14 15 15 16	12 13 14 14 15	11 12 13 13
130 132 134 136 138	32 33 34 34 35	31 32 32 33 33	30 30 31 32 32	26 29 30 30 31	27 28 28 29 30	26 27 27 28 28	25 25 26 27 27	23 24 25 25 26	22 23 24 24 25	21 22 23 23 24	20 21 21 22 23	19 20 20 21 21	18 19 19 20 21	17 18 18 19 20	16 17 17 18 19	15 16 16 17 18
140	35	34	33	31	30	29	28	27	26	24	23	22	21	20	19	18

Table XI.—Pressure of Aqueous Vapor for Temperature from 100° to 445°F., in Inches of Mercury

Temp., °F.	0	1	2	3	4	5	6	7	8	9
100 110 120 130 140	Inches 1.916 2.576 3.425 4.504 5.862	2.652 3.522	2.035 2.730 3.621	Inches 2.097 2.810 3.723 4.880 6.331	2.160	2.225 2.975	2.292 3.061 4.042		2.431 3.239 4.268	2.503 3.331
150 160 170 180 190	7.552 9.637 12.187 15.279 19.001	12.470	7.936 10.108 12.759 15.970 19.830	8.133 10.350 13.054 16.325 20.255	13.354	8.541 10.850 13.660 17.055 21.129	13.972	11.369 14.289	11.636	11.909
200 210 220 230 240	23.45 28.75 35.01 42.34 50.89	23.94 29.33 35.69 43.14 51.82	24.44 29.92 36.38 43.94 52.76	24.95 30.52 37.08 44.76 53.72	25.46 31.13 37.79 45.59 54.69	25.99 31.75 38.52 46.44 55.67	26.52 32.38 39.26 47.31 56.67	27.06 33.02 40.01 48.19 57.68	27.62 33.67 40.77 49.08 58.71	28.18 34.33 41.55 49.98 59.76
	60.82 72.26 85.41 100.41 117.50		62.98 74.75 88.25 103.66 121.18		65.20 77.31 91.18 106.99 124.94		67.48 79.93 94.18 110.41 128.81	68.66 81.27 95.70 112.15 130.78	69.85 82.63 97.25 113.91 132.78	71.04 84.01 98.82 115.69 134.80
310 320 330	136.8 158.7 183.1 210.6 241.1	161.0 185.8 213.5	141.0 162.3 188.4 216.4 247.6	165.7 191.1	145.2 168.1 193.8 222.4 254.2	170.6 196.5	149.6 173.0 199.3 228.5 261.1	202.1	154.1 178.0 204.9 234.7 268.0	156.4 180.5 207.7 237.9 271.5
360 370 380	275.1 312.6 354.1 399.7 449.7	316.5 358.4 404.5	282.3 320.5 362.8 409.3 460.1	367.3 414.1	289.6 328.7 371.8 419.1 470.9	332.8 376.4 424.1	337.0	341.2 385.5 434.1		308.7 349.7 394.9 444.4 498.7
410 420 430	504.4 564.1 628.8 699.2 775.3		515.9 576.6 642.5 714.0 791.3	649.4 721.4	527.6 589.3 656.3 728.9 807.4	595.7 663.3	539.5 602.3 670.4 744.2	608.9		557.9 622.1 691.9 767.4

WEIGHT OF A CUBIC FOOT OF AQUEOUS VAPOR AT DIFFERENT TEMPERATURES AND SATURATIONS (IN GRAINS)

	1 2210		ES AN		tage o			A		
Temp,	10	20	20	40	50	60	70	80	90	100
-20 -10 -18 -17 -16	Or. 0 017 0 017 0 018 0 020 0 021	Gr 0 033 0 035 0 037 0 039 0.041	0 055 0 059		Gr 0 083 0 087 0 092 0 098 0 104	Gr. 0 1004 0 104 0 100 0 118 0 124	0 122 0 129 0 137	0.157	0 157 0 166 0 176	Gr, 0 166 0 174 0 184 0 196 0 207
-15 -14 -13 -12 -11	0.022 0 023 0 024 0 026 0.027	0 044 0 046 0 049 0 051 0 054	0 009 0 073	0 092 0 097	0 109 0 116 0 122 0 128 0.135	0 139 0 146	0 153; 0 162; 0 170 0 140 0 189	0 185 0 194	0 208 0 219 0.231	0 218 0 231 0 243 0 257 0 270
-10 - 9 - 8 - 7 - 6	0 028 0 030 0.032 0 033 0 035	0 057 0 060 0 063 0 066 0 070	0 100	0 114 0 120 0 126 0 133 0 140	0.158 0.166	0 190 0 190	0 200 0 210 0 221 0 232 0,345	0 228 0 340 0 253 0 266 0,280	0 284 0 299	0 285 0 300 0 316 0 322 0 350
- 5 - 4 - 3	0.037 0.039 0.041 0.043 0.046	0 074 0 078 0 082 0 087 0 091	0 117	0 164 0 174	0 194 0 206 0 217	0 222 0 233 0 247 0 260 0 274	0 259 0 272 0 288 0 304 0 320	0 347	0 370 0 391	0 370 0 389 0 411 0 434 0 457
0 1 2 3 4	0 048 0 050 0 053 0 053 0 058		0 166	0 202	0 264 0 277	0 317 0 332	0 370 0 388	0 385 0 404 0 423 0 443 0 466	0 454 0 476 0 499	0 481 0 505 0 529 0 554 0 582
5 0 7 H 0	0 061 8 064 0 067 0 070 0 074		0 201 0 211	0 256	0 336 0 352	0 366 0 383 0 403 0 422 0 443		0 488 0 511 0 537 0 563 0 591	0 575 0 604	0 610 0 639 0 671 0 704 0 739
10 11 12 13 14	0 078 0 082 0 066 0 090 0 004	0 155 0 163 0 171 0 190 0 188	0 245 0 257 0 269	0 342	0 408 0 428 0 449		0 571 0 599	0 621 0 653 0 685 0 718 0 753	0 770 0 808	0 776 0 816 0 856 0 896 0 941
15 16 17 18 19	0 009 0 103 0 108 0 113 0 118	0 206 0 216 0 226	0 310 0 324 0 338	0 432	0 516 0 540 0 564	0 619 0 648 0 677	0 756 0 790	0 789 0 826 0 864 0 902 0 345	0 929 0 972 1 015	0 965 1 032 1 080 1 128 1 181
20 21 22 23 24	0 124 0 129 0 136 0 142 0 148	0 247 0 259 0 271 0 284 0 297		0 \$18 0 542 0 567	0.678	0 776 0 813	0 864 0 906 0 945 0 993 1 038	0 988 1 035 1 084 1 134 1 186	1 220 1 270	1 235 1 294 1 355 1 418 1 483
23 36 27	0 155 0 162 0 170	0 310 0 325 0 339	0.487	0 649	0.812	0 974	_	1 241 1 298 1 358	1 396 1.461 1 527	1.551 1.623 1.607

108 METALLURGISTS AND CHEMISTS HANDBOOK

WEIGHT OF A CUBIC FOOT OF AQUEOUS VAPOR AT DIFFERENT TEMPERATURES AND SATURATIONS (IN GRAINS). Continued

Temp.,				Percer	ıtage o	of satu	ration			
ok.	10	20	30	40	50	60	70	80	90	100
28 29	Gr. 0.177 0.185		Gr. 0.832 0.856		Gr. 0.886 0.926	Gr. 1 084 1.112	Gr. 1 241 1.397	Gr. 1.418 1.482	Gr. 1 596 1.668	Gr. 1.773 1.853
30 31 32 33 34	0 194 0.202 0 211 0 219 0 226	0 422	0 607 0 634 0 658	0 845	0.968. 1 011 1 056 1 097 1.140	1.213 1.268 1 316		1 618	1.742 1.820 1.902 1.975 2.061	1.93 2.02 2.11 2.19 2.27
35 35 37 38 39	0.237 0 246 0 256 0 265 0.275	0.510 0.529	0 737 0 765 0.794	0 983 1 020 1 058	1.183 1 228 1.275 1 323 1.373	1.474 1.530	1.785.	2 040 2 117	2.129 2.211 2.295 2.381 2.471	2.457
40 41 42 43 44	0.285 0.296 0.306 0.318 0.329	0,501 0 613	0 888 0 919 0 953	1.182			2.068 2.145	2 364 2.451	2,584 2,860 2,758 2,859 2,985	2,849 2,953 3,054 3,177 3,294
45 46 47 48 49	0.34! 0.354 0.367 0.380 0.394	0.708 0.733	1.024 1 062 1 100 1 140 1 181	1 366 1 416 1 467 1 520 1 574	1.707 1.779 1.834 1 900 1 968	2 048 2.123 2 200 2.280 2 362	2 567	2.731 2.835 2.934 3.040 3.149	3 073 3.185 8 300 3 420 3.542	3 414 3 539 3 667 3 800
50 51 52 53 54	0 408 0,422 0 437 0.453 0.468	0 844 0 874		1 630 1 689 1 749 1 810 1 874	2 186	2 446 2.533 2 623 2 716 2 911	2 955 3 060		3 658 3 800 8 935 4 973 4 216	4 076 4.225 4.375 4.526 4.685
55 56 57 59	0 485 0,502 0,519 0 537 0,556	0 970 1,003 1 038 1 074 1 111	1,455 1,505 1,557 1,621 1,666	1 940 2.006 2.076 2 148 2 222	2 424 2,508 2,596 2 685 2 778	2 909 3 010 3 115 3 222 3 833	3 634 3 759	3 879 4 013 4 153 4 296 4 444	4 364 3 514 4 672 4 633 5 000	4.849 5.016 5.191 5.370 5.586
60 61 62 63 64	0.574 0.594 0.614 0.635 0.656	1 149 1 188 1 228 1 270 1 313	1 724 1 782 1 843 1 905 1 969	2 298 2 876 2 457 2 540 2 625	2 872 2 970 3 071 3 174 3 282	3.447 3.565 3.685 3.609 3.938		4.596 4 753 4 914 5 979 5 250	5 170 5 347 5 528 5 714 5 907	5 745 5 941 6 142 6 349 6 568
85 66 67 68 69	0.678 0.701 0.724 0.748 0.773	1 356 1 402 1 448 1 496 1.545	2 035 2 103 2 172 2 244 2 318	2 713 2 804 2 896 2 992 3 090	3 391 3 504 3 620 3 740 3 883	4 069 4 205 4 345 4 488 4 636	4 747 4 906 5 069 5 236 5 408	5 426 5.607 5 793 5 984 6 181	6.104 6 308 6 517 6 732 6 953	6.782 7.009 7.341 7.480 7.736
70 71 72 73 74	0 798 0 824 0 851 0 878 0 907	1 596 1 648 1 702 1 756 1 813		3 513	3 990 4 120 4 254 4 391 4 533	4 788 4 944 5 105 6 269 5 440	5 768 5 956 6 147	6 384 6 592 6 805 7 026 7 253	7.182 7.416 7.657 7.904 8.159	7.980 8.240 8.506 8.782 9.066

PHYSICAL CONSTANTS

WEIGHT OF A CUBIC FOOT OF AQUBOUS VAPOR AT DIFFERENT TEMPERATURES AND SATURATIONS (IN GRAINS). Continued

Temp.,				Percer	atage o	of satu	ration		
*F.	10	20	30	40	60	60	70	80	90 100
75 76 77 78 79		Gr 1 871, 1 931 1 992 2 055 2 120	Gr, 2.807 2.896 2.989 3.083 3.180	3 985 4 111	4 981 6 138	5 614 5 793 5 977 6 166	Gr. 6 549 6 758 6.973 7 194 7 421	Gr 7 485 7.724 7.970 8.222 8 481	Gr. Gr 8 420 9.30 8 690 9 66 8 966 9.90 9 249 10.27 9 541 10.60
80 81 82 83 84	1.163	2 187 2 255 2 325 2 397 2 471		4.650 4.795	5 638 5 813 5 994	6 765 6 976 7,192	7 892 8.138 8.391	9 020 9 301 9,590	9.841 10.93 10.148 11.23 10 463 11 63 10.788 11 93 11.120 12 33
85 86 87 88 89	1 313 1 353 1 394	2 547 2 525 2 708 2 787 2 872		5 410 5 575	6 564 6 763 6 968	7.877 8 116 8 362	9 189 9 468 9 756	10,502 10 821	11 462 12.7: 11.814 13.1: 12 173 13 5: 12 643 13.8: 12 923 14 3:
90 91 93 94	1.569 1.516	2 958 3 047 3 138 3 231 3 327	4 437 4.570 4 707 4 846 4.990	6 276	7 844	9 140 9 413 9 693	10 864 10 982 11,308	12 187 12 551 12 924	
95 96 97 98	1.814 1.814 1.867	3 425 3 525 3 628 3 734 3 842	6 601	7 050 7.257 7 468	8 813 9 071 9 336	10 576 10 885 11 203	12 338 12 699 13 070	14 101 14 514 : 14,937 :	15 412 17.13 15 863 17 63 16 328 18 1- 16 804 18.65 17 291 19.2
100 101 102 103 104	2 034 2 092 2 151	4 303	6 100 6 275 6 454	8 134 8 367 8 606	10 168 10 458 10 757	12 201 12,550 12 908	14,234 14,842 15 060	16 268/1 16 734 1 17 211 1	17.789 19.76 18 302 20 33 18 825 20.9 19.363 21.55 19 912 22.13
105 106 107 108 109	2.339 2.405 2.472	4.550 4 678 4 809 4 944 5 082	7 018 7 214 7,416	9 357 9 619 9 889	11 896 12 024 12 360	14 035 14 429 14 832	16 374 16 834 17.304	18 714 3 19 238 3 19 776 3	20 475 22.75 21 053 23 35 21 643 24 04 23 248 24.75 22 867 25 44
110	2.611	5 222	7,834	10.445	13 050	15 667	18 278	20.890	3 501 28.11

110 METALLURGISTS AND CHEMISTS' HANDBOOK

TENSION OF AQUEOUS VAPOR AT VARIOUS TEMPERATURES 1-

Temperature, degrees C.	Tension of aqueous vapor in mm.	Temperature, degrees C.	Tension of aqueous vapor in mm.
0	4.525	21	18.505
1	4.867	22	19.675
$egin{array}{c} 1 \ 2 \ 3 \ 4 \end{array}$	5.231	23	20.909
3	5.619	24	22.211
4	6.032	25	23.582
5	6.471	26	25.026
6	6.939	27	26.547
5 6 7 . 8 9	7.436	28	28.148
. 8	7.964	29	29.832
9	8.525	30	31.602
10	9.126	31	33.464
11	9.751	32	35.419
12	10.421	33	37.473
13	11.130	34	39.630
14	11.882	35	41.893
15	12.677	36	44.268
16	13.519	37	46.758
17	14.409	38	49.368
18	15.351	39	52.103
19	16.345	40	54.969
20	17.396		

¹ WINKLER, "Technical Gas Analysis."

BAROMETRIC CORRECTIONS

CORRECTIONS FOR TEMPERATURE (Mercury, brass scale correct at 0°C.)

· To	Millimeters											
Temperature	73	74	75	76	77	78	79					
15°	0.178	0.181	0.183	0.186	0.188	0.191	0.193					
16			0.196	1								
17	0.202	0.205	0.208	0.210	0.213	0.216	0.218					
18	0.214	0.217	0.220	0.223	0.226	0.229	0.231					
19	0.226	0.229	0.232	0.235	0.238	0.241	0.244					
20	0.238	0.241	0.244	0.247	0.251	0.254	0.257					
21	0.250	0.253	0.256	0.260	0.263	0.267	0.270					
22	0.261	0.265	0.269	0.272	0.276	0.279	0.283					
23	0.273	0.277	0.281	0.284	0.288	0.292	0.296					
24	0.289	0.289	0.293	0.297	0.301	0.305	0.309					

Corrections must be subtracted from observed readings, if reading at 19°C. is 76 cm., the corrected reading is 76 - 0.235.

EFFECT OF ALTITUDE 1

Table of altitudes in feet above sea-level; with corresponding approximate barometric readings, atmospheric pressures and proportionate densities. (The capacity of an internal combustion engine at higher altitudes, as compared with its capacity at sea-level, is practically proportional to the atmospheric densities.)

Altitude in feet	Barometer in inches	Atmospheric pressure in pounds per square inch	Proportionate atmospheric density
0.00	30.0	14.72	1.00
500.0	29.5	14.45	0.98
1,000.0	28.9	14.18	0.96
1,500.0	28.4	13.94	0.94
2,000.0	27 .9	13.69	0.93
2,500.0	27.4	13.45	0.91
3,000.0	26.9	13.20	0.89
4,000.0	26.0	12.75	0.86
5,000.0	25.1	12.30	0.83
6,000.0	${\bf 24.2}$	11.85	0.80
7,000.0	23.3	11.44	0.77
8,000.0	22.5	11.04	0.75
9,000.0	21.7	10.65	0.73
10,000.0	20.9	10.26	0.70

¹ From the "Diesel Engine," Busch-Sulzer Bros. Diesel Engine Co.

CORRECTION TO BE ADDED FOR CAPILLARITY

Diameter		Height of meniscus in inches									
tube in inches	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08			
0.15	0.024	0.047	0.069	0.092	0.116						
0.20				0.045	1						
0.25	0.006	0.012	0.019	0.028	0.037	0.047	0.059				
0.30	0.004	0.008	0.013	0.018	0.023	0.029	0.035	0.042			
0.35		0.005	0.008	0.012	0.015	0.019	0.022	0.027			
0.40		0.004	0.006	0.008	0.010	0.012	0.014	0.016			
0.45			0.003	0.005	0.007	0.008	0.010	0.012			
0.50			0.002	0.004	0.005	0.006	0.006	0.007			
0.55			0.001	0.002	0.003	0.004	0.005	0.005			
	<u> </u>	1 10			<u> </u>	1	<u> </u>	<u></u>			

From Ellenwood's "Steam Charts," abbr. from Smithsonian table No. 103.

BAROMETER CORRECTION FOR VARIATION IN g—CORRECT AT 45° N. or S. LATITUDE

	73	74	75	76	77	78	79
35° or 55°	$\begin{bmatrix} 0.065 \\ 0.032 \end{bmatrix}$	0.066	0.066	0.067	0.068	0.069	0.070
40° or 50°		0.033	0.033	0.034	0.035	0.035	0.035

Subtract the correction for 35° and 40°. Add the correction for 50° and 55°.

BATTERIES, E.M.F. OF STANDARD CELLS

Cell	Description	E.m.f.	Resist- ance
Bichromate .	Zn and C in 1 vol. strong H ₂ SO ₄ and 20 vol. sat. K ₂ Cr ₂ O ₇ sol.	2.0	Very low
Bunsen	Zn in 1 vol. strong H ₂ SO ₄ : 12 vol. H ₂ O C in strong HNO ₈ .	1.8-1.9	• • • • • • • • •
Clark	Zn amalgam and Hg in sat. ZnSO ₄ sol.	1.433	About 500
Daniell	Zn in ZnSO ₄ sol. or H ₂ SO ₄ (1:12) Cu in sat. CuSO ₄ sol.	1.07-1.08	About 4
Grove	Like Bunsen, C replaced by Pt.	1.8-1.9	
		1.5	0.25-0.4
	Pb and PbO ₂ in H ₂ SO ₄ of density 1.2	2.2-1.9	
	Zn and C with sat. CaCl ₂ sol.	1.4	
Weston	Cd amalgam. and Hg in sat. CdSO ₄ sol.	1.018	About 500

HYDROMETER CONVERSION FACTORS

Liquids lighter than water
$$\begin{cases} \frac{140}{\text{Bé.}^{\circ} + 130} = \text{sp. gr.} & \text{Liquids heavier} \\ \frac{140}{\text{sp. gr.}} - 130 = \text{Bé.}^{\circ} & \text{than water} \end{cases} \text{Sp. gr.} = \frac{145}{145 - \text{Bé.}^{\circ}} \\ \text{Bé.}^{\circ} = 145 - \frac{145}{\text{sp. gr.}} \\ \text{Bé.}^{\circ} = 145 - \frac{145}{\text{sp. gr.}} \end{cases}$$

To correct Bé. readings to 60°: Correct reading = observed reading + $\frac{60 - t}{10}$ For the Twaddell hydrometer:

$$\frac{\text{Tw.}^{\circ}}{200} + 1 = \text{sp. gr.}$$

 $200(\text{sp. gr.} - 1) = \text{Tw.}^{\circ}$

For the Gay-Lussac (standardized at 4°C.):

$$\frac{100}{\text{G.-L.}^{\circ} + 100} = \text{sp. gr.}$$

$$\frac{100}{\text{sp. gr.}} - 100 = \text{G.-L.}^{\circ}$$

For the Sikes hydrometer: 1° = 0.002 of sp. gr.

For the Beck (12.5°C.): sp. gr. =
$$\frac{170}{170 + \text{Beck}^{\circ}}$$

For the Cartier (12.5°): sp. gr. =
$$\frac{136}{126.1 + \text{Cart.}^{\circ}}$$

For the Brix and the Fisher (15.6°C.): sp. gr. = $\frac{400}{400 + n^\circ}$

Conversion Table for Degrees Baumé¹

(Liquids lighter than water1)

Degrees Baumé	Sp. gr	Pounds in 1 gal Ameri- can*	Dogrees Baumé	Sp gr.	Pounds in 1 gal. Ameri- ran
10	1 0000	8 33	43	0 8092	6 74
11	0.9929	8 27	44	0 8045	6,70
12	0 9859	8 21	45	0 8000	6,66
13	0 9790	8 16	46	0 7954	6 63
14	0 9722	8 10	47	0.7909	6,59
15	0 9655	8 04	48	0 7865	6 55
16	0 9589	7 99	49	0.7821	6 52
17	0 9523	7 93	50	0 7777	6.48
18	0 9459	7 88	51	0 7734	6.44
19	0 9395	7 83	52	0 7692	6 41
20 .	0 9333	7 78	53	0 7650	6 37
21	0 9271	7.72	54	0 7608	6 34
22	0 9210	7 67	55	0 7567	6 30
23	0 9150	7 62	56	0 7526	6 27
24	0 9090	7 57	57	0 7486	6 24
25	0 9032	7 53	58	0 7446	6 20
26	0.8974	7 48	59	0 7407	6 17
27	0 8917	7 43	60	0 7368	6.14
28	0 8860	7 38	61	0 7329	6.11
29	0 8805	7 34	62	0 7290	6 07
30	0 8750	7 29	63	0 7253	6 04
31	0 8695	7 24	64	0 7216	6 01
32	0 8641	7 20	65	0 7179	5 98
33	0 8588	7 15	66	0 7142	5.95
34	0 8536	7 11	67	0 7106	5 92
35	0.8484	7 07	68	0 7070	5 89
36	0 8433	7 03	69	0 7035	5 86
37	0 8383	6 98	70	0 7000	5 83
38	0.8333	6.94	71	0.6829	5 69
39	0 8284	6.90	72	0 6666	5 55
40	0 8235	6 86	73	0 6511	5 42
41	0 8187	6 82	74	0 6363	5 30
42	0 8139	6 78	75	0 6222	5.18

The Baumé scale is entirely arbitrary, so various authorities give various values for the above table. These given above are from a table specially calculated for the "Petroleum Year Book, 1914" by Tagliabue of New York. The formulas on p. 112 were also furnished by him for the same work.

For liquids heavier than water, see the sulphuric and table on page 115.

• Sp. gr. × 10 - pounds per imperial gallon.

114 METALLURGISTS AND CHEMISTS' HANDBOOK

Specific Gravity of Sulphuric Acid¹ at 15°C., Compared to Water at 4°C.

WATER AT 4 U.							
Sp. gr. at.	Degrees	Degrees	100 parts	s of c.p. ac	id contain	, per cent.	
4°	Baumé	Baumé Twaddell		H ₂ SO ₄	60°Bé. acid	50°Bé. acid	
1.000	$egin{array}{c} 0.0 \ 0.7 \ 1.4 \ 2.1 \ 2.7 \ 3.4 \ \end{array}$	0	0.07	0.09	0.12	0.14	
1.005		1	0.68	0.83	1.06	1.33	
1.010		2	1.28	1.57	2.01	2.51	
1.015		3	1.88	2.30	2.95	3.68	
1.020		4	2.47	3.03	3.88	4.85	
1.025		5	3.07	3.76	4.82	6.02	
1.030	4.1	6	3.67	4.49	5.78	7.18	
1.035	4.7	7	4.27	5.23	6.73	8.37	
1.040	5.4	8	4.87	5.96	7.64	9.54	
1.045	6.0	9	5.45	6.67	8.55	10.67	
1.050	6.7	10	6.02	7.37	9.44	11.79	
1.055	7.4	11	6.59	8.07	10.34	12.91	
1.060	8.0	12	7.16	8.77	11.24	14.03	
1.065	8.7	13	7.73	9.47	12.14	15.15	
1.070	9.4	14	8.32	10.19	13.05	16.30	
1.075	10.0	15	8.90	10.90	13.96	17.44	
1.080	10.6	16	9.47	11.60	14.87	18.56	
1.085	11.2	17	10.04	12.30	15.76	19.68	
1.090	11.9	18	10.60	12.99	16.65	20.78	
1.095	12.4	19	11.16	13.67	17.52	21.87	
1.100	13.0	20	11.71	14.35	18.39	22.96	
1.105	13.6	21	12.27	15.03	19.26	24.05	
1.110	14.2	22	12.82	15.71	20.13	25.14	
1.115	14.9	23	13.36	16.36	20.96	26.18	
1.120	15.4	24	13.89	17.01	21.80	27.22	
1.125	16.0	25	14.42	17.66	22.63	28.26	
1.130	16.5	26	14.95	18.31	23.47	29.30	
1.135	17.1	27	15.48	18.96	24.29	30.34	
1.140	17.7	28	16.01	19.61	25.13	31.38	
1.145	18.3	29	16.54	20.26	25.96	32.42	
1.150	18.8	30	17.07	20.91	26.79	33.46	
1.155	19.3	31	17.59	21.55	27.61	34.48	
1.160	19.8	32	18.11	22.19	28.43	35.50	
1.165	20.3	33	18.64	22.83	29.35	36.53	
1.170	20.9	34	19.16	23.47	30.07	37.55	
1.175	21.4	35	19.69	24.12	30.90	38.59	

Specific Gravity of Sulphuric Acid¹ at 15°C., Compared to Water at 4°C. Continued

Sp. gr. at	Degrees	Degrees	100 parts	s of c.p. ac	id contain	, per cent.
15° 4°	Baumé	Twaddell	SOa	H ₂ SO ₄	60°Bé. acid	50°Bé. acid
1.180	22.0	36	20.21	24.76	31.73	39.62
1.185	22.5	37	20.73	25.40	32.55	40.64
1.190	23.0	38	21.26	26.04	33.37	41.66
1.195	23.5	39	21.78	26.68	34.19	42.69
1.200	24.0	40	22.30	27.32	35.01	43.71
1.205	$egin{array}{c} 24.5 \ 25.0 \ 25.5 \ 26.0 \ 26.4 \ \end{array}$	41	22.82	27.95	35.83	44.72
1.210		42	23.33	28.58	36.66	45.73
1.215		43	23.84	29.21	37.45	46.74
1.220		44	24.36	29.84	38.23	47.74
1.225		45	24.88	30.48	39.05	48.77
1.230	26.9	46	25.39	31.11	39.86	49.78
1.235	27.4	47	25.88	31.70	40.61	50.72
1.240	27.9	48	26.35	32.28	41.37	51.65
1.245	28.4	49	26.83	32.86	42.11	52.58
1.250	28.8	50	27.29	33.43	42.84	53.49
1.255	29.3	51	27.76	34.00	43.57	54.40
1.260	29.7	52	28.22	34.57	44.30	55.31
1.265	30.2	53	28.69	35.14	45.03	56.22
1.270	30.6	54	29.15	35.71	45.76	57.14
1.275	31.1	55	29.62	36.29	46.50	58.06
1.280	31.5	56	30.10	36.87	47.24	58.99
1.285	32.0	57	30.57	37.45	47.99	59.92
1.290	32.4	58	31.04	38.03	48.73	60.85
1.295	32.8	59	31.52	38.61	49.47	61.78
1.300	33.3	60	31.99	39.19	50.21	62.70
1.305	33.7	61	32.46	39.77	50.96	63.63
1.310	34.2	62	32.94	40.35	51.71	64.56
1.315	34.6	63	33.41	40.93	52.45	65.45
1.320	35.0	64	33.88	41.50	53.18	66.40
1.325	35.4	65	34.35	42.08	53.92	67.33
1.330	35.8	66	34.80	42.66	54.67	68.26
1.335	36.2	67	35.27	43.20	55.36	69.12
1.340	36.6	68	35.71	43.74	56.05	69.98
1.345	37.0	69	36.14	44.28	56.74	70.85
1.350	37.4	70	36.58	44.82	57.43	71.71
1.355	37.8	71	37.02	45.35	58.11	72.56

116 METALLURGISTS AND CHEMISTS' HANDBOOK

Specific Gravity of Sulphuric Acid¹ at 15°C., Compared to Water at 4°C Continued

Sp. gr at	Degrees	Degrees	100 parts	of e p. sci	d contain,	per cent,
15° 4°	Baumé	Twaddell	80:	B:804	60°Bé noid	50°Bé. acid
1.360	38 2	72	37.45	45 88	58 79	73.41
1 365	38 6	73	37.89	46 41	59 48	74.26
1 370	39.0	74	38.32	46.94	60.15	75.10
1.375	39.4	75	38.75	47 47	60.83	75.95
1.380	39 8	76	39 18	48 00	61.51	76.80
1.385	40 1	77	39 62	48 53	62 19	77.65
1 390	40 5	78	40 05	49 06	62.87	78.50
1 395	40 8	79	40 48	49 59	63.55	79.34
1.400	41 2	80	40 91	50.11	64.21	80.18
1 405	41 6	81	41.33	50,63	64.88	81.01
1 410	42 0	82	41.76	51 15	65 55	81.86
1 415	42,3	83	42.17	51 66	66.21	82.66
1 420	42 7	84	42.57	52 15	66.82	83.44
1 425	43 1	85	42.96	52 63	67 44	84.21
1 430	43 4	86	43 36	53 11	68.06	84.98
1.435	43.8	87	43 75	53 59	68 68	85.74
1 440	44 1	88	44 14	54 07	69 29	86 51
1.445	44 4	89	44 53	54 55	69.90	87.28
1.450	44.8	90	44 92	55 03	70 52	88.05
1 455	45 1	91	45 31	55 50	71.12	88 80
1 460	45.4	92	45 69	55 97	71.72	89 55
1.465	45.8	93	46 07	56 43	72 31	90.29
1.470	46.1	94	46 45	56 90	72 91	91.04
1.475	46.4	95	46 83	57 37	73 51	91.79
1.480	46 8	96	47 21	57 83	74 10	92.53
1.485	47 1	97	47 57	58 28	74 68	93.25
1 490	47.4	98	47 95	58 74	75.27	93.98
1 495	47 8	99	48 34	59,22	75 88	94.75
1.500	48.1	100	48 73	59 70	76 50	95.52
1 505	48 4	101	49 12	60 18	77 12	96 29
1 510	48.7	102	49 51	60 65	77.72	97.04
1 515	49.0	103	49 89	61 12	78 32	97.79
1 520	49 4	104	50 28	61 59	78 93	98.54
1 525	49 7	105	50 66	62 06	79.52	99 30
1 530	50 0	106	51.04	62.53	80 13	100.05

IFIC GRAVITY OF SULPHURIC ACID¹ AT 15°C., COMPARED TO WATER AT 4°C. Continued

r. Bt	Degrees	Degrees	100 parts	of ep. noi	d contain,	per cent.	
	Baume	Baumé Twaddell		80z	H2501	60°Bé. acid	50°Bé. neid
35	50.3	107	51 43	63.00	80 73	100 80	
40	50.6	108	51.78	63.43	81.28	101,49	
45	50.9	109	52 12	63.85	81 81	102,16	
50	51.2	110	52.46	64.26	82.34	102 82	
55	51.5	111	52 79	64 67	82.87	103.47	
60	51 8	112	53 12	65 08	83.39	104.13	
65	52 1	113	53.46	65 49	83.92	104.78	
70	52 4	114	53.80	65 90	84.44	105.44	
75	52.7	115	54 13	66 30	84.95	106.08	
.80 .85 .90 .95	53.0 53.3 53.6 53.9 54.1	116 117 118 119 120	54 46 54 80 55.18 55 55 55 93	66 71 67 13 67.59 68 05 68.51	85.48 86.03 86.62 87.20 87.79	106.73 107.41 108.14 108.88 109.62	
05	54 4	121	56 30	68 97	88.38	110.35	
10	54.7	122	56 68	69 43	88 97	111.09	
15	55.0	123	57 05	69 89	89 56	111.82	
20	55 2	124	57 40	70 32	90.11	112.51	
25	55 5	125	57 75	70.74	90.65	113.18	
30	55 8	126	58 09	71 16		113.86	
35	56.0	127	58 43	71 57		114 51	
40	56.3	128	58 77	71 99		115.18	
45	56 6	129	59 10	72.40		115 84	
50	56 9	130	59 45	72 82		116.51	
155	57 1	131	59 78	73.23	93 81	117.17	
160	57 4	132	60 11	73 64	94 36	117.82	
165	57 7	133	60 46	74 07	94 92	118.51	
170	57 9	134	60 82	74.51	95 48	119.22	
175	58.2	135	61 20	74.97	96 07	119.95	
180	58 4	136	61 57	75 42	96.65	120 67	
185	58 7	137	61 93	75.86	97 21	121 38	
190	58 9	138	62 29	76 30	97 77	122 08	
195	59 2	139	62 64	76.73	98.32	122 77	
'00	59 5	140	63 00	77 17	98 89	123 47	
'05	59 7	141	63.35	77.60	99 44	124 16	
'10	60 0	142	63.70	78 04	100 00	124 86	

118 METALLURGISTS AND CHEMISTS' HAND

Specific Gravity of Sulphuric Acid¹ at 15°C., Compa: Water at 4°C. Continued

	- 77	ATER AT 4		101014464		_
Sp. gr. at	Degrees	Degrees	100 parts	of ep. ac	nd contain	Ţ.
40	Baumé	Twaddell	801	H ₁ SO ₄	60°Bé. acid	
1.715 1 720 1.725	60,2 60,4 60,6	143 144 145	64.07 64 43 64 78	78 48 78 92 79 36	100 56 101.13 101.69	1 1 1
1 730 1.735 1.740 1.745 1.750	60.9 61.1 61.4 61.6 61.8	146 147 148 149 150	65 14 65 50 65 86 66 22 66 58	79 80 80 24 80 68 81 12 81 56	102 25 102.82 103 38 103 95 104.52	111111
1 755 1.760 1.765 1.770 1.775	62.1 62.3 62.5 62.8 63.0	151 152 153 154 155	66 94 67 30 67 65 68 02 68 49	82 00 82 44 82 88 83 32 83 90	105 08 105 64 106 21 106 77 107 51	13 13 13 13 13
1.780 1 785 1.790 1 795 1.800	63.2 63.5 63.7 64.0 64.2	156 157 158 159 160	68 98 69 47 69 96 70 45 70 94	84.50 85 10 85 70 86.30 86 90	108 27 109 05 109.82 110 58 111.35	1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1
1 805 1.810 1.815 1.820 1.821	64 4 64 6 64.8 65.0	161 162 163 164	71.50 72 08 72.69 73 51 73 63	87.60 88 30 89.05 90 05 90.20	112 25 113.15 114 11 115 33 115.59	1: 1: 1:
1 822 1 823 1 824 1 825 1 826	65 1 65 2 65.3	165	73.80 73.96 74.12 74.29 74.49	90 40 90 60 -90 80 91 00 91.25	115 84 116 10 116 35 116 61 116.93	14 14 14 14
1 827 1 828 1 829 1 830 1 831	65.4 65.5	166	74.69 74.86 75.03 75.19 75.35		117.25 117.51 117.76 118.02 118.27	14 14 14 14
1 832 1.833	65.6		75.53 75.72	92.52 92.75		14

Specific Gravity of Sulphuric Acid¹ at 15°C., Compared to Water at 4°C. Continued

Sp. gr. at	Degrees Degrees		100 parts of c.p. acid contain, per cent.				
15°	Baumé	Twaddell	SO ₂	H ₂ SO ₄	60°Bé. acid	50°Bé. acid	
1.834 1.835 1.836	65.7	167	75.96 76.27 76.57	93.05 93.43 93.80	119.23 119.72 120.19	148.88 149.49 150.08	
1.837 1.838 1.839 1.840 1.8405	65.8 65.9	168	76.90 77.23 77.55 78.04 78.33	94.20 94.60 95.00 95.60 95.95	120.71 121.22 121.74 122.51 122.96	150.72 151.36 152.00 152.96 153.52	
1.8410 1.8415 1.8410 1.8405 1.8400		.1.	79.19 79.76 80.16 80.57 80.98	97.00 97.70 98.20 98.70 99.20	124.30 125.20 125.84 126.48 127.12	155.20 156.32 157.12 157.92 158.72	
1.8395 1.8390 1.8385			81.18 81.39 81.59	99.45 99.70 99.95	127.44 127.76 128.08	159.12 159.52 159.92	

According to Lunge and Isler, and Lunge and Naef. Lunge, "The Manufacture of Sulphuric Acid and Alkali," D. Van Nostrand & Co., New York.

To reduce specific gravities observed at other temperatures than 15°C. to 15°C., roughly: For each degree above or below 15°, add to or subtract from the specific gravity observed:

- 0.0006 with acids to 1.170
- 0.0007 with acids from 1.170 to 1.450
- 0.0008 with acids from 1.450 to 1.580
 - 0.0009 with acids from 1.580 to 1.750
 - 0.0010 with acids from 1.750 to 1.840

SPECIFIC GRAVITY OF HYDROCHLORIC ACID

	DECIFIC	CHAVIII	T III DROCHDORIC ACID				
Sp. gr.	Degrees	Degrees	100 pa	rts acid co	ntain by w		
15° 4°	Baumé	Twaddell	Per cent., HCl	Per cent.,	Per cent., I		
	<u> </u>	<u> </u>	i noi	18° a id	20° acid		
1.000	0.0	0.0	0.16	0.57	0.49		
1.005	0.7.	1	1.15	4.08	3.58		
1.010	1.4	2	2.14	7.60	6.66		
1.015	2.1	3	3.12	11.08	9.71		
1.020	2.7	4	4.13	14.67	12.86		
1.025	3.4	5	$\overline{5.15}$	18.30	16.04		
1.030	4.1	6	$6.\overline{15}$	21.85	19.16		
1.035	4.7	7	7.15	25.40	22.27		
1.040	5.4	8	8.16	28.99	25.42		
1.045	$6.\overline{0}$	9	9.16	32.55	28.53		
1.050	6.7	10	10.17	36.14	31.68		
1.055	7.4	11	11.18	39.73	34.82		
1.060	8.0	$1\overline{2}$	12.19	43.32	37.97		
1.065	8.7	13	13.19	46.87	41.09		
1.070	9.4	14	14.17	50.35	44.14		
1.075	10.0	15	15.16	53.87	47.22		
1.080	10.6	16	16.15	57.39	50.31		
1.085	11.2	17	17.13	60.87	53.36		
1.090	11.9	18	18.11	64.35	56.41		
1.095	12.4	19	19.06	67.73	59.37		
1.100	13.0	20	20.01	71.11	62.33		
1.105	13.6	$\overline{21}$	20.97	74.52	65.32		
1.110	14.2	22	21.92	77.89	68.28		
1.115	14.9	23	22.86	81.23	71.21		
1.120	15.4	24	23.82	84.64	74.20		
1.125	16.0	25	24.78	88.06	77.19		
1.130	16.5	26	25.75	91.50	80.21		
1.135	17.1	27	26.70	94.88	83.18		
1.140	17.7	28	27.66	98.29	86.17		
1.145	18.3	29	28.61	101.67	87.66		
1.150	18.8	30	29.57	105.08	92.11		
1.155	19.3	31	30.55	108.58	95.17		
1.160	19.8	$3\overline{2}$	31.52	112.01	98.19		
1.165	20.3	33	32.49	115.46	101.21		
1.170	20.9	34	33.46	118.91	104.24		
1.175	21.4	35	34.42	122.32	107.22		
1.180	22.0	36	35.39	125.76	110.24		
1.185	22 .5	37	36.31	129.03	131.11		
1.190	23.0	3 8	37.23	132.30	115.98		
1.195	23.5	3 9	38.16	135.61	118.87		
1.200	24 .0	40	39.11	138.98	121.84		
	 		 	li	<u> </u>		

This table is taken from Lunge. Other authorities giving in one case as much as 40.78 per cent. of HCl sp. gr. acid.

Specific Gravity of Nitric Acid at 15°, Compared with Water at 4°

Sp. gr.	-	D	100	0 parts o	of acid con	tain by we	ight
15°	Degrees Baumé	Degrees Twaddell	N ₂ O ₅	HNO:	38° acid	40° acid	48.5° acid
1.000 1.005 1.010 1.015	0.0 0.7 1.4 2.1 2.7	0 1 2 3	0.08 0.85 1.62 2.39 3.17	1.00 1.90 2.80	1.89	0.16 1.61 3.07 4.52 5.98	0.10 1.03 1.95 2.87 3.79
1.020 1.025	3.4	4 5	3.94	4.60	8.71	7.43	4.72
1.030 1.035 1.040 1.045 1.050	4.1 4.7 5.4 6.0 6.7	6 7 8 9 10	4.71 5.47 6.22 6.97 7.71	7.26	10.42 12.08 13.75 15.40 17.03	8.88 10.30 11.72 13.13 14.52	5.64 6.54 7.45 8.34 9.22
1.055 1.060 1.065 1.070 1.075	7.4 8.0 8.7 9.4 10.0	11 12 13 14 15	8.43 9.15 9.87 10.57 11.27	10.68 11.51	18.64 20.23 21.80 23.35 24.91	15.89 17.25 18.59 19.91 21.24	10.09 10.95 11.81 12.65 13.49
1.080 1.085 1.090 1.095 1.100	10.6 11.2 11.9 12.4 13.0	16 17 18 19 20	11.96 12.64 13.31 13.99 14.67	14.74 15.53 16.32		22.53 23.80 25.08 26.35 27.63	14.31 15.12 15.93 16.74 17.55
1.105 1.110 1.115 1.120 1.125	13.6 14.2 14.9 15.4 16.0	21 22 23 24 25	16.67 17.34	18.67	33.89 35.36 36.84 38.31 39.77	28.89 30.15 31.41 32.67 33.91	18.35 19.15 19.95 20.75 21.54
1.130 1.135 1.140 1.145 1.150	16.5 17.1 17.7 18.3 18.8	26 27 28 29 30	20.64	$22.54 \\ 23.31$	41.23 42.69 44.15 45.61 47.05	35.16 36.40 37.65 38.89 40.12	22.23 23.12 23.91 24.70 25.48
1.155 1.160 1.165 1.170 1.175 1.180	19.3 19.8 20.3 20.9 21.4 22.0	31 32 33 34 35 36	23.90 24.54	26.36 27.12 27.88	48.49 49.92 51.36 52.80 54.22 55.64	41.35 42.57 43.80 45.03 46.24 47.45	26.26 27.04 27.82 28.59 29.36 30.13

Specific Gravity of Nitric Acid at 15° Compared with Water at 4°. Continued

Sp. gr.,			100		f acid con	tain by we	ight
15° 4°	Degrees Baumé	Degrees Twaddell	N ₂ O ₅	HNO:	38° acid	40° acid	48.5° acid
1.185 1.190 1.195 1.200	$22.5 \\ 23.0 \\ 23.5 \\ 24.0$	37 38 39 40	25.83 26.47 27.10 27.74	30.88 31.62	58.49 59.89	48.66 49.87 51.07 52.26	30.90 31.67 32.43 33.19
1.205 1.210 1.215 1.220 1.225	24.5 25.0 25.5 26.0 26.4	41 42 43 44 45	28.36 28.99 29.61 30.24 30.88	33.09 33.82 34.55 35.28	62.67 64.05 65.44 66.82	53.23 54.21 55.18 56.16 57.64	33.94 34.69 35.44 36.18 36.95
1.230 1.235 1.240 1.245 1.250	26.9 27.4 27.9 28.4 28.8	46 47 48 49 50	31.53 32.17 32.82 33.47 34.13	36.78 37.53 38.29 39.05	69.66 71.08 72.52 73.96	59.13 60.61 61.84 63.07 64.31	37.72 38.49 39.27 40.05 40.84
1.255 1.260 1.265 1.270 1.275	29.3 29.7 30.2 30.6 31.1	51 52 53 54 55	34.78 35.44 36.09 36.75 37.41	40.58 41.34 42.10 42.87	76.86 78.30 79.74 81.20	65.54 66.76 67.99 69.23 70.48	41.62 42.40 43.18 43.97 44.76
1.280 1.285 1.290 1.295 1.300	31.5 32.0 32.4 32.8 33.3	56 57 58 59 60	38.07 38.73 39.39	44.41 45.18 45.95 46.72	84.11 85.57 87.03 88.48	71.72	45.55 46.34 47.13 47.92 48.71
1.305 1.310 1.315 1.320 1.325	33.7 34.2 34.6 35.0 35.4	61 62 63 64 65	41.37 42.06 42.76	48.28 49.07 49.89 50.71	91.40 92.94 94.49 96.05	77.94 79.25 80.57	49.50 50.33 51.17 52.01 52.85
1.330 1.335 1.340 1.345 1.350	35.8 36.2 36.6 37.0 37.4	66 67 68 69 70	44.89 45.62 46.35	52.37 53.22 54.07 54.93	99.19 100.80 102.41 104.04	84.58 85.95 87.32 88.71 90.10	53.71 54.58 55.46 56.34 57.22
1.355	37.8	71	48.57			91.51	58.11

Specific Gravity of Nitric Acid at 15° Compared with Water at 4°. Continued

Sp. gr.,	D	Da	10	0 parts o	of acid con	tain by we	eight
15° 4°	Degrees Baumé	Degrees Twaddell	N ₂ O ₅	HNO ₃	38° acid	40° acid	48.5° acid
1.360 1.365 1.370 1.375	38.2 38.6 39.0 39.4	72 73 74 75	49.35 50.13 50.91 51.69	59.39	110.75 112.48	92.97 94.44 95.91 97.38	59.05 59.98 60.91 61.85
1.380 1.385 1.390 1.395 1.400	39.8 40.1 40.5 40.8 41.2	76 77 78 79 80	52.52 53.35 54.20 55.07 55.97	62.24 63.23 64.25	117.88 119.75 121.68	98.95 100.51 102.12 103.76 105.46	62.84 63.84 64.85 65.90 66.97
1.405 1.410 1.415 1.420 1.425	41.6 42.0 42.3 42.7 43.1	81 82 83 84 85	56.92 57.86 58.83 59.83 60.84	67.50 68.63 69.80	$129.98 \\ 132.19$	107.24 109.01 110.84 112.73 114.63	68.10 69.23 70.39 71.59 72.80
1.430 1.435 1.440 1.445 1.450	43.4 43.8 44.1 44.4 44.8	86 87 88 89 90	61.86 62.91 64.01 65.13 66.24	73.39 74.68 75.98	138.99 141.44 143.90	116.55 118.52 120.61 122.71 124.81	74.02 75.27 76.59 77.93 79.26
1.455 1.460 1.465 1.470 1.475	45.1 45.4 45.8 46.1 46.4	91 92 93 94 95	1	79.98 81.42 82.90	148.86 151.47 154.20 157.00 159.04	126.94 129.17 131.49 133.88 136.39	80.62 82.03 83.51 85.03 86.62
1.480 1.485 1.490 1.495 1.500	46.8 47.1 47.4 47.8 48.1	96 97 98 99 100	75.13 76.80 78.52	87.70 89.60 91.60	162.97 166.09 169.69 173.48 178.19	138.97 141.63 144.70 147.93 151.99	88.26 89.95 91.90 93.95 96.50
1.505 1.510 1.515 1.520	48.4 48.7 49.0 49.4	101 102 103 104	82.63 84.09 84.92 85.44	98.10 99.07	185.79 187.63	155.67 158.43 160.00 160.97	98.86 100.62 101.61 102.23

124 METALLURGISTS AND CHEMISTS' HAND

SPECIFIC GRAVITY OF AMMONIA WATER AT 15°C. CON-WITH WATER OF 15°C.

Spr gr. 15° 15°	Per cent. NH4OH	Correction to sp gr. for ±1°C.	Sp. gr. 15° 15°	Per cent. NH ₄ OH	Cor to sp ±
1 000 0.998 0.996 0 994 0.992	0.00 0.45 0.91 1.37 1.84	0 00018 0 00018 0.00019 0.00019 0.00020	0 940 0 938 0,936 0 934 0,932	15 63 16 22 16.82 17.42 18.03	0. 0. 0. 0.
0.990 0.988 0.986 0.984 0.982	2,31 2 80 3 30 3.80 4.30	0 00020 0.00021 0 00021 0.00022 0.00022	0 930 0.928 0 926 0 924 0 922	18.64 19.25 19.87 20.49 21.12	0. 0. 0. 0.
0 980 0 978 0.976 0 974 0.972	4 80 5.30 5 80 6 30 6 80	0.00023 0.00023 0.00024 0.00024 0.00025	0.920 0.918 0.916 0.914 0.912	21.75 22 39 23 03 23 68 24.33	0. 0. 0. 0.
0.970 0 968 0 966 0.964 0 962	7 31 7.82 8 33 8 84 9 35	0.00025 0.00026 0.00026 0.00027 0.00028	0 910 0.908 0 906 0 904 0 902	24 99 25.65 26 31 26 98 27.65	0. 0. 0. 0.
0.960 0 958 0 956 0.954 0 952	9 91 10 47 11 03 11 60 12 17	0 00029 0 00030 0 00031 0 00032 0 ,00033	0 900 0 898 0 896 0 894 0 892	28 33 29 01 29 69 30,37 31 05	0. 0. 0. 0.
0 950 0 948 0 946 0 944 0.942	12 74 13 31 13 88 14 46 15 04	0,00034 0 00035 0 00036 0 00037 0 00038	0 890 0 888 0 886 0 884 0 882	31.75 32.50 33.25 34.10 34.95	0. 0. 0. 0. 0.

This and the nitric-acid table immediately preceding are reprinted by of the D. van Nostrand Co., New York, from Lunge's "Sulphuric Alkali."

SPECIFIC GRAVITY OF CAUSTIC POTASH SOLUTIONS AT 15°C.¹ (Grams KOH per 100 grams solution)

Sp. gr.	Per cent., KOH	Sp. gr.	Per cent., KOH	Sp. gr.	Per cent., KOH
1.036 1.077 1.124 1.175 1.230	5 10 15 20 25	1.288 1.349 1.411 1.475 1.539	30 35 40 45 50	1.604 1.667 1.729 1.790	55 60 65 70

¹ This and the succeeding 14 tables are from CREMER & BICKNELL'S Chemical and Metallurgical Handbook. They are originally from the work of Kohlrausch and Holborn, Gerlach, Schiff, etc.

SPECIFIC GRAVITY OF CAUSTIC SODA SOLUTIONS AT 15°C.

Sp. gr.	Per cent., NaOH	Sp. gr.	Per cent., NAOH	Sp. gr.	Per cent., NaOH
1.059 1.115 1.170 1.225 1.279	5 10 15 20 25	1.332 1.384 1.437 1.488 1.540	30 35 40 45 50	1.591 1.643 1.695 1.748	55 60 65 70

SPECIFIC GRAVITY OF HYDROFLUOSILICIC ACID AT 15°C.

Sp. gr.	Per cent., H ₂ SiF ₆	Sp. gr.	Per cent., H ₂ SiF ₆	Sp. gr.	Per cent., H ₂ SiF ₆
1.0407 1.0834 1.1281	5 10 15	1.1748 1.2235	20 25	1.2742 1.3162	30 34

SPECIFIC GRAVITY OF SODIUM CHLORIDE SOLUTIONS AT 15°C.

Sp. gr.	Per cent., NaCl	Sp. gr.	Per cent., NaCl	Sp. gr.	Per cent., NaCl
1.00725	123456789	1.07335	10	1.14351	19
1.01450		1.08097	11	1.15107	20
1.02174		1.08859	12	1.15931	21
1.02899		1.09522	13	1.16755	22
1.03624		1.10384	14	1.17580	23
1.04366		1.11146	15	1.18404	24
1.05108		1.11938	16	1.19228	25
1.05851		1.12730	17	1.20098	26
1.06593		1.13523	18	1.20433	26.395 ¹

^{1 (}Sat.)

SPECIFIC GRAVITY OF CALCIUM CHLORIDE SOLUTIONS AT 15°C

Sp. gr.	Per cent., CaCl ₂	Sp. gr.	Per cent., CaCl ₂	Sp. gr.	Per cent. CaCl ₂
1.01704	2	1.14332	16	1.28789	30
1.03407	4	1.16277	18	1.31045	32
1.05146	6	1.18222	20	1.33302	34
1.06921	8	1.20279	22	1.35610	36
1.08695	10	1.22336	24	1.37970	38
1.10561	12	1.24450	26	1.40330	40
1.12427	14	1.26619	- 28	1.41104	46.46

SPECIFIC GRAVITY OF ZINC CHLORIDE AT 19.5°C.

Sp. gr.	Per cent., ZnCl ₂	Sp. gr.	Per cent., ZnCl:	Sp. gr.	Per cent., ZnCl ₂
1.045	5	1.238	25	1.488	45
1.091	10	1.291	30	1.566	50
1.137	15	1.352	35	1.650	55
1.187	20	1.420	40	1.740	60

SPECIFIC GRAVITY OF FERRIC CHLORIDE SOLUTIONS AT 17.5°C

Sp. gr.	Per cent., FeCl:	Sp. gr.	Per cent., FeCl ₃	Sp. gr.	Per cent., FeCla
1.0146	2	1.1746	22	1.3870	42
1.0292	4	1.1950	24	1.4118	44
1.0439	6	1.2155	26	1.4367	46
1.0587	8	1.2365	28	1.4617	48
1.0734	10	1.2568	30	1.4867	50
1.0894	12	1.2778	32	1.5153	52
1.1054	14	1.2988	34	1.5439	54
1.1215	16	1.3199	36	1.5729	56
1.1378	18	1.3411	38	1.6023	58
1.1542	20	1.3622	40	1.6317	60

Specific Gravity of Cuprous Chloride Solutions at 17.5°C

Sp. gr.	Per cent., CuCl ₂	Sp. gr.	Per cent., CuCl ₂	Sp. gr.	Per cent., CuCl ₂
1.0182 1.0364 1.0548 1.0734 1.0920 1.1178 1.1436	2 4 6 8 10 12 14	1.1696 1.1958 1.2223 1.2501 1.2779 1.3058 1.3338	16 18 20 22 24 26 28	1.3618 1.3950 1.4287 1.4615 1.4949 1.5284	30 32 34 36 38 40

SPECIFIC GRAVITY OF LEAD ACETATE SOLUTIONS AT 15°C.

Sp. gr.	Per cent., PbA ₂	Sp. gr.	Per cent., PbA ₂	Sp. gr.	Per cent., PbA ₂	
1.0127	2	1.1384	20	1.2967	38	
1.0255	4	1.1544	22	1.3163	40	
1.0386	6	1.1704	24	1.3376	42	
1.0520	8	1.1869	26	1.3588	44	
1.0654	10	1.2040	28	1.3810	46	
1.0796	12	1.2211	30	1.4041	48	
1.0939	14	1.2395	32	1.4271	50	
1.1084	16	1.2578	34	 .		
1.1234	18	1.2768	36	<i>.</i>		

SPECIFIC GRAVITY OF FERRIC SULPHATE SOLUTIONS AT 17.5°C.

Sp. gr.	Sp. gr. Per cent., Fe ₂ (SO ₄) ₃		Per cent., Fe ₂ (SO ₄) ₃	Sp. gr.	Per cent., Fe ₂ (SO ₄);	
1.0170	2	1.2066	22	1.4824	42	
1.0340	4	1.2306	24	1.5142	44	
1.0512	6	1.2559	26	1.5468	46	
1.0684	8	1.2825	28	1.5808	48	
1.0854	10	1.3090	30	1.6148	50	
1.1042	12	1.3368	32	1.6508	52	
1.1230	14	1.3646	34	1.6868	54	
1.1424	16	1.3927	36	1.7241	56	
1.1624	18	1.4217	38	1.7623	58	
1.1826	20	1.4506	40	1.8006	60	

Specific Gravity of FeSO₄·7H₂O; CuSO₄·5H₂O and ZnSO₄·-7H₂O Solutions at 15°C.

Sp. gr.	Per cent., ZnSO ₄ .7H ₂ O	Sp. gr.	Per cent., CuSO ₄ ·5H ₂ O	Sp. gr.	Per cent., FeSO ₄ .7H ₂ O
1.0288	5	1.0126	2	1.011	2
1.0593	10	1.0254	4	1.021	4
1.0905	15	1.0384	6	1.032	6
1.1236	20	1.0516	8	1.043	8
1.1574	25	1.0649	10	1.054	10
1.1933	30	1.0785	12	1.065	12
1.2310	35	1.0923	14	1.082	15
1.2709	40	1.1063	16	1.112	20
1.3100	45	1.1208	18	1.143	25
1.3522	50	1.1354	20	1.174	30
1.3986	55	1.1501	22	1.206	35
1.4451	60	1.1501	24	1.239	40

128 METALLURGISTS AND CHEMISTS' HANDBOOK

SPECIFIC GRAVITY OF SODIUM CARBONATE SOLUTIONS AT 15°C.

Sp. gr. Per cent., Na ₂ CO ₃		Sp. gr.	Per cent., Na ₂ CO ₃	Sp. gr.	Per cent,. Na ₂ CO ₃
1.01050	1	1.06309	6	1.11655	11
1.02101	2	1.07369	7	1.12740	12
1.03151	3	1.08430	8	1.13845	13
1.04201	4	1.09500	9	1.14950	14
1.05255	5	1.10571	10	1.15360	14.354

Specific Gravity of Dihydrogen Sodium Arsenate Solutions at 17°C.

Sp. gr.	Per cent., H ₂ NaAsO ₄ ·H ₂ O	Sp. gr.	Per cent., H ₂ NaAsO ₄ ·H ₂ O
1.0226	4.22	1.9038	16.88
1.0460 1.0577	8.44 10.55	1.1186	21.10

Specific Gravity of Solutions of Trisodium Arsenate at 17°C.

Sp. gr.	Na ₃ AsO ₄ ·12H ₂ O	Sp. gr.	Na:AsO4·12H:O
1.0193	4.40	1.0812	17.60
1.0393 1.0495	8.80 11.00	1.1035	22.06

Specific Gravity of Disodium Arsenate Solutions at 14°C.

1.0169	4	1.0714	16
1.0344	8	1.1102	23.9
1.0525	12	1.1722	35.9

DENSITIES OF SOME SALINE AND ACID SOLUTIONS¹

	nt	Percentage of salt						
Substances	Tempera- tures	5	10	20	30	40	60	
Potassium chloride Ammonium chloride Bodium bromide Potassium bromide Potassium iodide Sodium nitrate Potassium nitrate Ammonium nitrate Bilver nitrate Potassium carbonate Bodium sulphate Bodium sulphate Potassium bichromate Potassium bichromate Potassium ferricyanide Hydrobromic acid Hydriodic acid Phosphoric acid	15 0°C. 15 0°C. 19 5°C. 19 5°C. 19 5°C. 20 2°C. 15 0°C. 15 0°C. 15 0°C. 15 0°C. 15 0°C. 14 0°C. 13 0°C. 14 0°C.	1 015 1 035 1 035 1 031 1 031 1 042 1 044 1 053 1 045 1 025	1 030 1 078 1 073 1 076 1 066 1 064 1 042 1 080 1 092 1 107 1 071 1 053 1 076	1 172 1 157 1,164 1 140 1,135 1 086 1 196 1 192 1,213 1 157 1,164	1 279 1 253 1 269 1 222 1 131 1 321 1 300	1 407 1 393 1 313 1 179 1 476 1 417	1.73	

^{1 &}quot;Annuaire pour 1914, Bureau des Longitudes."

BOILING POINTS

BOILING POINTS OF THE METALS

	Visible ebullition	Volatdi- zation com- mences		Visible ebullition	Volatili- zation com- mences
Antimony Aluminum Bismuth Chromium Copperi Gold Indium Iron Iridium Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel	1420°C * 1800°C * 1440°C * 2200°C * 2310°C * 2100°C * 1000°C. 2450°C * 1525°C * 1525°C * 1900°C. 357°C * 3350°C * 2450°C *	1420°C * 960°C * 970°C *	Osmium Palladium Platinum Rhodium Rubidium Rubidium Sulcon Silicon Silicon Silicon Tantalum Tin' Titanium Thallium Uranium Wolfram	2950°C. 2540°C. 2650°C. 2750°C. 696°C. 2780°C. 490°C. 3800°C. 1955°C. 2700°C. 1280°C. 1280°C. 3100°C. 3700°C.	1350°C. 850°C 2200°C. 880°C.

According to Tiede and Birneräuer, copper boils at 2000°.

According to H. C. Greenwood

According to Tiede and Birneräuer, Zeil. anorg. chem., 1914, p. 120.

Dulong and Petit.

Watte, Tr. Electrochem. Soc., 1907, p. 141.

Richards, "Metallurgical Calculations."

Given by Carnelly as 1550°C.

	Beginning of evaporation in secue ¹	Boiling point in sacuot	Boiling-point 760° mm.1
Bismuth	270°C.	993°C.	1440°C.
Cadmium	156	450	749
Mercury		155	357
Potassium	63	365	667
Silver	680	1360	1955
Sodium		418	742
Zinc	184	550	920
Sulphur			444.5
		ļ l	

According to H. C. GREENWOOD.

BOILING POINTS OF THE NON-METALLIC ELEMENTS¹

	Visible ebullition		Visible ebullition
Argon Arsenic sublimes Boron sublimes(?) Bromine Carbon Chlorine Fluorine Helium	450.0°C. 3500.0°C. 63.0°C.	Iodine Krypton Neon Nitrogen Oxygen	184.4°C. - 151.7°C. - 239.0°C. - 195.7°C. - 182 9°C. 287.0°C.

J. W. RICHARDS, "Metallurgical Calculations" and KATE and LABY'S "Physical and Chemical Constants."

BOILING POINTS OF SOME COMMON COMPOUNDS

BOILING POINT OF WATER UNDER VARIOUS BAROMETRIC PRESSURES

Pressure nom of mercury	0	1	2	3	4	5	6	7	8	9
#80 690 700 710 720	°C. 96 91 97.32 97 71 98.11 98 49	96 95 97 30 97 75 98 14 98.53	97 40 97 79 98 18	97.83 98 22	97.87	97 52 97 91 98 30	97 95 98 34	97,59 97,99	97.63 98 08 98 42	98.41 98.41
730 740 750 780 770 780	100.37	100 40	99 70 100,07 100,44	99 37 99 74 100.11 100.47	99.78 100.15 100.51	99 44 99 81 100 18 100 55	99 48	99 52 99.89 100.26 100.62	99.56 99.93 100.29 100.66	99.80 99.80 100.80

Regnault gives slightly different values, as shown in the bllowing table:

BOILING, POINT OF WATER AT DIFFERENT BAROMETER READINGS (REGNAULT)

Boiling point	Millimeters	Boiling point	Millimeters
100 . 4°C.	771.95	99.4°C.	743.83
100.3°	768.20	99.3°	741.16
100.2°	765.46	99.2°	738.50
100.1°	762.73	99.1°	735.85
100.0°	760.00	99.0°	733.21
99.9°	757.28	98.9°	730.58
99.8°	754.57	98.8°	727.96
99.7°	751.87	98.7°	725.35
99.6°	749.18	98.6°	722.75
99.5°	746.50	98.5°	720.15

BOILING POINTS OF NITRIC ACID SOLUTIONS IN WATER (160 mm. pressure)

Per cent., HNO:	Boiling point, degrees C.	Per cent., HNO:	Boiling point, degrees C.
19.37	103.56	67.74	121.67
30.43	108.08	68.18	121.79
41.38	112.59	69.24	121.80
51.63	116.85	71.10	121.60
56 .01	118.88	73.56	120.75
59.77	120.06	80.50	115.45
63.89	121.27	85.51	108.12
65.17	121.66	90.06	102.03
		95.45	95.42

¹ Creighton and Githens, "Journal of the Franklin Institute," Feb-18ry, 1915.

DEGREES ¹
N
212
AT
9
AND
7
8
FROM
z
Ö
ORATION
Ŋ
~
H
Š

	Temperature	of feed water, degrees F.	335 44 50 50	55 60 70 75	80 85 90 100	105 110 115 120 125	130 135 140
		125	1.2286 1.2235 1.2183 1.2131 1.2080	1.2028 1.1977 1.1925 1.1874 1.1823	1.1771 1.1720 1.1668 1.1617 1.1566	1.1516 1.1463 1.1412 1.1360 1.1309	1.1257 1.1206 1.1154
ES ₁		115	1.2251 1.2219 1.2168 1.2116 1.2064	1.2013 1.1961 1.1910 1.1858 1.1807	1.1756 1.1704 1.1653 1.1602 1.1550	1.1499 1.1447 1.1396 1.1345 1.1293	1.1242 1.1190 1.1139
Degrees	ed	105	1.2234 1.2203 1.2151 1.2099 1.2048	1.1996 1.1945 1.1893 1.1842 1.1790	1.1739 1.1688 1.1636 1.1585 1.1534	1.1482 1.1431 1.1380 1.1328 1.1277	1.1225 1.1174 1.1123
212 I	saturated	95	1.2216 1.2184 1.2133 1.2081 1.2029	1.1978 1.1926 1.1875 1.1823 1.1772	1.1721 1.1669 1.1618 1.1566	1.1464 1.1412 1.1361 1.1310 1.1258	1.1207 1.1155 1.1104
AND AT	te—dry	& 73	1.2195 1.2164 1.2112 1.2060 1.2009	1.1957 1.1906 1.1854 1.1803 1.1751	1.1700 1.1649 1.1597 1.1546 1.1495	1.1443 1.1392 1.1341 1.1289 1.1238	1.1186 1.1135 1.1083
FROM A	s absolute	75	1.2171 1.2140 1.2088 1.2037 1.1985	1.1933 1.1882 1.1830 1.1779 1.1728	1.1676 1.1625 1.1574 1.1522 1.1471	1.1420 1.1368 1.1248 1.1265 1.1265	1.1163
ION FR	ponnd	65	1.2144 1.2113 1.2062 1.2010 1.1958	1.1907 1.1855 1.1804 1.1752 1.1701	1.1650 1.1598 1.1547 1.1495 1.1444	1.1393 1.1341 1.1290 1.1239 1.1187	1.1136 1.1084 1.1033
EVAPORAT	steam in	55	1.2113 1.2081 1.2030 1.1978 1.1926	1.1875 1.1823 1.1772 1.1720 1.1669	1.1618 1.1566 1.1515 1.1463	1.1361 1.1309 1.1258 1.1207 1.1155	1.1104 1.1052 1.001
	of	45	1.2073 1.2042 1.1990 1.1939 1.1887	1.1836 1.1784 1.1733 1.1681 1.1630	1.1578 1.1527 1.1476 1.1424 1.1373	1.1322 1.1270 1.1219 1.1167 1.1116	1.1065 1.0962 1.0962
Equivalent	Pressure	35	1.2024 1.1993 1.1941 1.1889 1.1838	1.1786 1.1735 1.1683 1.1632 1.1580	1.1529 1.1478 1.1426 1.1323	1.1272 1.1221 1.1169 1.1118 1.1067	1.1015 1.0964 1.0912
Equi		25	1.1958 1.1927 1.1875 1.1823 1.1772	1.1720 1.1669 1.1617 1.1566 1.1514	1.1463 1.1412 1.1360 1.1369 1.1258	1.1206 1.1155 1.1103 1.1052 1.1001	1.0949 1.0898 1.0846
		15	1.1858 1.1827 1.1775 1.1723 1.1672	1.1620 1.1569 1.1517 1.1466 1.1414	1.1363 1.1312 1.1260 1.1209 1.1158	1.1106 1.1055 1.1004 1.0952 1.0901	1.0849 1.0798 1.0746
	Temperature	of feed water, degrees F.	32 35 40 50	55 65 70 75	80 85 90 100	105 110 115 120 125	130 135 140

71	72 73 75 76	77 78 79 80 81	86 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	187 188 189 190	92 93 95 95	97 98 99 100 101	
		, , , , , , , , , , , , , , , , , , , 	HHHHH	AAMAM		HHH00	
			•				٠
	10 -4 -4 00 00	60 60 63 63 63		00000		*********	
897 845 835	825 814 804 793 783	773 763 752 742 732	721 711 701 691 680	670 660 649 639 629	618 608 597 587 577	5566 5566 5556 5555 5555	
000	00000	00000	0.0000	00000	00000	00000	
233	888000	237 277 16 16	9222	44466	678223	20 20 10 10	1
888	077000	077	00000	9999	002 005 052	00000	
<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		
865 813 803	793 782 772 762 752	741 731 721 710 700	690 679 669 659 648	638 628 617 607 597	586 576 566 555	535 524 514 504 493	
900	00000	00000	00000	00000	00000	00000	
4.08 6.13.13	444 33 33	81753	71 61 50 30	100 000 100 100 100 100 100 100 100 100	68 57 37 26	16 06 95 75	
084 075 078	077 077 077 077	07.0 07.0 06.0 06.0	90000	0055	055 055 055 055	051 045 045 045	
<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
826 774 764	754 743 733 712	702 692 681 671 661	650 640 630 619 609	599 588 578 568	547 537 526 516 506	405 473 454 454	
000	00000	00000	00000	00000	00000	99999	
210	00666	88877	5611	<u> </u>	<u> </u>	27770	1
080 075 074	073 072 070 069 068	067 066 065 064 063	062 061 060 059 058	057 056 055 054 053	052 051 050 049 048	047 045 045 043	
444							l
75 24 13	678898	1524 1021 1021 1021	000 000 000 000 000 000	25 25 25 25 25 25 25 25 25 25 25 25 25 2	97 86 76 66 55	255440 55444	
070	78888	88888	00000	0.000.00	22222	22222	İ
887	<u> </u>	00000	44488	<u> </u>	<u> </u>	HHHHH	
44 68 88	であるかる	50000	00000000000000000000000000000000000000	51 50 48 48 74	44444 60469	413 403 392 382 372	
000	900000	00000	00000	00000	00000	00000	
4554 4224	SSHHH	087 007 009 009 009 009 009	88 88 88 88 88	77 67 57 46 36	10101044	4533 322 322 322	1
883	062 062 060 059	0000 0000	88844	42444	040 039 039 038	03770	
<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>	
655 603 593	583 572 562 552	531 521 510 500 490	479 469 459 448 438	428 417 407 397 386	376 366 355 345 335	324 314 304 293 283	
000	00000	00000	00000	00000	00000	00000	i
977	<u> </u>	55444	<u> </u>	<u> </u>	101 001 891 691	<u>44888</u>	4:
058 053 052	051 050 049 048 047	046 045 043 042	041 040 039 038	036 035 034 033	031 030 028 027 026	025 024 023 022 021	191
<u> </u>	<u> </u>				<u> </u>		7
277	17 106 106 175	65 44 44 44 44	722333	62 151 231 20	10 00 89 79 69	58 48 38 27 17	
222	44.60.60	66666	88888	22222	22222	99999	Mar
<u> </u>	<u> </u>				HHHHH		:
							Power,
165 170 171	172 173 175 176	177 178 179 180 181	182 183 184 185 186	187 188 189 190 191	192 193 194 195	0000	rom "

krom "Fower," Mar. 17, 1914.

		of feed water, degrees F.	. 202 202 203 204 203 203 203 203 203 203 203 203 203 203
		125	1.0515 1.0504 1.0484 1.0484 1.0453 1.0453 1.0453 1.0453 1.024 1.0224 1.0172 1.0120 1.0067 0.9963 0.9805 0.9754
		115	1.0499 1.0489 1.04688 1.04688 1.0427 1.0488 1.0487 1.0396 1.0396 1.0157 1.0052 0.9999 0.9999 0.9895 0.9685
	ted	105	1.0483 1.0462 1.0462 1.0462 1.0452 1.0421 1.0421 1.0400 1.0421 1.0400 1.0424 1.01924 1.0038 0.9931 0.9668
	y saturated	95	1.0464 1.0444 1.0444 1.0444 1.0423 1.0402 1.0392 1.0392 1.0277 1.0122 1.0069 0.9964 0.9755 0.9650
	ıte—dry	85	1.0444 1.04433 1.0423 1.04023 1.0402 1.0381 1.0381 1.0381 1.0381 1.0381 1.0381 1.0381 1.0381 1.0381 1.0381 1.0381 1.0381 1.0381 1.0381 1.0383 0.9983 0.9883 0.9883 0.9883 0.9883
	s absolute	75	1.0420 1.0389 1.0389 1.0388 1.0379 1.0358 1.0358 1.0358 1.0358 1.0025 1.0025 0.9920 0.9868 0.9605 0.9605
	n pounds	65	1.0393 1.0393 1.0383 1.0383 1.0382 1.0382 1.0352 1.0290 1.0290 1.0290 1.0290 1.0290 0.9893 0.9893 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684
	steam i	55	1.0361 1.0361 1.0351 1.0320 1.02330 1.0258 1.0278 1.0274 1.0019 0.9966 0.9966 0.9599 0.9599 0.9599
	Pressure of	45	1.0322 1.0312 1.03312 1.02301 1.0281 1.0280 1.0289 1.0239
4	Pres	35	1.0273 1.0252 1.0252 1.0252 1.0252 1.0231 1.0200 1.0138 1.0169 1.0138 1.0169 0.9930 0.9825 0.9825 0.9563 0.9563
		25	1.0207 1.0196 1.0196 1.0178 1.0155 1.0134 1.0124 1.0134 1.
		15	1.0107 1.0086 1.0086 1.0086 1.0085 1.0085 1.0085 1.00886 0.9920 0.9866 0.9555 0.9292 0.9292
	Temperature	ot feed water, degrees F.	22020 22020 20020 20030

Degrees ¹
2
2
AT
AND
KOM
FROM
Z
ATION
RA
PO
VA
囟
ENT
月月
Y
D
E G

Temperature			Pressure	७	steam in	spunod u	is absolute	ute-dry	y saturated	sted			Tomporature
of feed water, degrees F.	135	145	155	165	175	185	195	202	215	225	235	245	of feed water, degrees F.
32 35 40 50 50	1.2279 1.2248 1.2197 1.2145 1.2093	1.2292 1.2261 1.2209 1.2157 1.2106	1.2304 1.2273 1.2221 1.2170 1.2178	1.2315 1.2283 1.2232 1.2180 1.2128	1.2324 1.2293 1.2241 1.2189 1.2137	1.2333 1.2302 1.2250 1.2198 1.2147	1.2342 1.2311 1.2259 1.2208 1.2156	1.2351 1.2319 1.2268 1.2216 1.2164	1.2357 1.2326 1.2274 1.2222 1.2170	1.2365 1.2334 1.2282 1.2230 1.2179	1.2341 1.2341 1.2289 1.2238 1.2238	1.2378 1.2347 1.2295 1.2244 1.2192	32 35 40 50 50
55 60 65 70 75	1.2042 1.1990 1.1939 1.1887 1.1887	1.2054 1.2002 1.1951 1.1900 1.1848	1.2066 1.2135 1.1963 1.1912 1.1861	1.2077 1.2025 1.1974 1.1922 1.1871	1.2086 1.2034 1.1983 1.1932 1.1880	1.2095 1.2044 1.1992 1.1941 1.1889	1.2104 1.2053 1.2002 1.1950 1.1899	1.2113 1.2061 1.2010 1.1958 1.1907	1.2119 1.2067 1.2016 1.1965 1.1913	1.2127 1.2076 1.2024 1.1973 1.1921	1.2134 1.2083 1.2031 1.1980 1.1929	1.2141 1.2089 1.2038 1.1986 1.1935	55 60 70 75
80 85 90 100	1.1785 1.1733 1.1682 1.1630 1.1579	1.1797 1.1745 1.1694 1.1643 1.1591	1.1809 1.1758 1.1707 1.1655 1.1604	1.1820 1.1768 1.1717 1.1665 1.1614	1.1829 1.1777 1.1726 1.1675	1.1838 1.1787 1.1735 1.1684 1.1633	1.1847 1.1796 1.1745 1.1693 1.1642	1.1856 1.1804 1.1753 1.1701 1.1650	1.1862 1.1810 1.1759 1.1708 1.1657	1.1870 1.1819 1.1767 1.1716 1.1655	1.1877 1.1826 1.1775 1.1723 1.1672	1.1883 1.1832 1.1781 1.1729 1.1678	80 85 90 100
105 110 115 120 125	1.1528 1.1476 1.1425 1.1374 1.1322	1.1540 1.1489 1.1437 1.1386 1.1335	1.1552 1.1501 1.1450 1.1398 1.1347	1.1563 1.1511 1.1460 1.1409 1.1357	1.1572 1.1521 1.1469 1.1418 1.1366	1.1581 1.1530 1.1479 1.1427 1.1376	1.1591 1.1539 1.1488 1.1436 1.1385	1.1599 1.1547 1.1496 1.1445 1.1393	1.1606 1.1553 1.1503 1.1452 1.1400	1.1613 1.1562 1.1511 1.1459 1.1408	1.1620 1.1569 1.1518 1.1466 1.1415	1.1627 1.1575 1.1524 1.1472 1.1421	105 110 115 120 125
130 135 140 145 150	1.1271 1.1219 1.1168 1.1116 1.1116	1.1283 1.1232 1.1180 1.1129 1.1077	1.1295 1.1244 1.1193 1.1141 1.1090	1.1306 1.1254 1.1203 1.1151 1.1151	1.1315 1.1264 1.1212 1.1161 1.1109	1.1324 1.1273 1.1221 1.1170 1.1170	1.1334 1.1282 1.1231 1.1179 1.1128	1.1342 1.1290 1.1239 1.1188 1.1136	1.1349 1.1298 1.1246 1.1195 1.1143	1.1356 1.1305 1.1253 1.1202 1.1150	1.1363 1.1312 1.1261 1.1209 1.1158	1.1370 1.1318 1.1267 1.1215 1.1164	130 135 140 150
155 160	1.1013 1.0962	$\frac{1.1026}{1.0974}$	1.1038 1.0987	1.1048 1.0997	1.1058 1.1006	1.1067 1.1015	1.1076 1.1025	1.0185 1.1033	1.1092	$\frac{1.1099}{1.1047}$	1.1106 1.1055	1.1112 1.1061	155 160
1 From "Power,"	Mar. 17,	, 1914.											

	Temperature of feed water, degrees F.	165 170 171	172 173 174 175	177 178 179 180 181	182 183 184 185 186	187 188 190 191	192 193 194 195
3	245	1.1009 1.0958 1.0947	1.0937 1.0927 1.0916 1.0906 1.0896	1.0885 1.0875 1.0865 1.0854 1.0844	1.0834 1.0823 1.0813 1.0803 1.0793	1.0782 1.0772 1.0762 1.0751 1.0741	1.0731 1.0720 1.0710 1.0700
	235	1.1003 1.0951 1.0941	1.0931 1.0921 1.0910 1.0900	1.0879 1.0869 1.0859 1.0848 1.0838	1.0828 1.0817 1.0807 1.0797 1.0786	1.0776 1.0766 1.0755 1.0745	1.0724 1.0714 1.0704 1.0693
٥	225	1.0996 1.0944 1.0934	1.0924 1.09013 1.0893 1.0882	1.0872 1.0862 1.0851 1.0841 1.0831	1.0820 1.0810 1.0800 1.0789 1.0779	1.0769 1.0758 1.0748 1.0738	1.0717 1.0696 1.0686
Saturated	215	1.0989 1.0937 1.0927	1.0916 1.0906 1.0896 1.0886 1.0875	1.0865 1.0854 1.0844 1.0834 1.0824	1.0813 1.0803 1.0793 1.0782	1.0762 1.0751 1.0741 1.0731	1.0710 1.0700 1.0689 1.0679
dry 88		1.0981 1.0930 1.0920	1.0909 1.0889 1.0889 1.0878	1.0858 1.0847 1.0837 1.0827 1.0816	1.0806 1.0796 1.0785 1.0775	1.0754 1.0734 1.0734 1.0723	1.0703 1.0692 1.0682 1.0672
absolute	195	1.0973 1.0922 1.0911	1.0901 1.0890 1.0880 1.0870 1.0860	1.0849 1.0829 1.0818 1.0808	1.0798 1.0787 1.0777 1.0767 1.0766	1.0746 1.0736 1.0725 1.0715	1.0694 1.0684 1.0674 1.0663
unds	185	1.0964 1.0912 1.0902	1.0892 1.0881 1.0871 1.0861 1.0850	1.0840 1.0830 1.0819 1.0809 1.0799	1.0788 1.0778 1.0768 1.0758	1.0737 1.0727 1.0716 1.0706 1.0695	1.0685 1.0675 1.0664 1.0654
٠ ١	ري ا	1.0955 1.0903 1.0893	1.0882 1.0872 1.0862 1.0852 1.0841	1.0831 1.0820 1.0810 1.0800 1.0790	1.0779 1.0769 1.0759 1.0748	1.0728 1.0717 1.0707 1.0697 1.0686	1.0676 1.0666 1.0655 1.0645
e of steam	.	1.0945 1.0894 1.0883	1.0873 1.0863 1.0853 1.0842 1.0832	1.0822 1.0811 1.0791 1.0780	1.0770 1.0760 1.0749 1.0739	1.0718 1.0708 1.0698 1.0687	1.0867 1.0656 1.0646 1.0636
Pressure	155	1.0935 1.0883 1.0873	1.0863 1.0853 1.0842 1.0832 1.0822	1.0811 1.0801 1.0791 1.0780	1.0760 1.0749 1.0739 1.0729	1.0698 1.0698 1.0687 1.0677	1.0656 1.0636 1.0638 1.0638
A ALEN I	145	1.0923 1.0871 1.0861	1.0850 1.0840 1.0830 1.0820 1.0809	1.0799 1.0778 1.0778 1.0768 1.0758	1.0747 1.0737 1.0727 1.0716 1.0706	1.0696 1.0685 1.0675 1.0665	1.0644 1.0623 1.0613 1.0613
1 0 2 0 1	135	1.0910 1.0859 1.0848	1.0838 1.0828 1.0817 1.0807 1.0797	1.0786 1.0776 1.0766 1.0756 1.0745	1.0735 1.0725 1.0714 1.0704 1.0694	1.0683 1.0673 1.0663 1.0652 1.0642	1.0632 1.0621 1.0611 1.0601
	Temperature of feed water, degrees F.	165 170 171	172 173 174 175	177 178 179 180 181	182 183 184 185	187 188 189 190	192 194 195

198 199 200 200 203 204 204 204	0000	220 220 225 230 235	240 245 250 255 260	265 270 275 280 285	290 295 300
1.0689 1.0679 1.0658 1.0648 1.0627 1.0606 1.0596	. 055 0. 056 0. 055 0. 055 0. 055	1.0493 1.0440 1.0388 1.0336	1.0232 1.0179 1.0127 1.0075	0.9970 0.9918 0.9865 0.9812 0.9759	0.9706 0.9654 0.9600
1.0622 1.0642 1.0642 1.0631 1.0621 1.0600 1.0600	. 056 . 055 . 053 . 053	1.0486 1.0434 1.0382 1.0330 1.0278	1.0226 1.0173 1.0121 1.0069 1.0016	0.9964 0.9911 0.9859 0.9806 0.9753	0.9700 0.9648 0.9594
1.0665 1.0665 1.0655 1.0634 1.0634 1.0603 1.0593 1.0593	1.056 1.056 1.055 1.053 1.053	1.0479 1.0427 1.0375 1.0323	1.0218 1.0166 1.0113 1.0062 1.0009	0.9957 0.9904 0.9852 0.9799 0.9745	0.9693 0.9640 0.9587
11.0669 11.0658 11.0658 01.0627 01.0606 91.0606 91.0586	1.055 1.054 1.053 1.053 1.052	5 1.0472 2 1.0419 1 1.0368 8 1.0315 7 1.0264	$\begin{array}{c} 4 \\ 1.0211 \\ 11.0159 \\ 91.0166 \\ 71.0055 \\ 51.0002 \end{array}$	2 0.9950 0 0.9897 7 0.9844 5 0.9792 1 0.9738	8 0.9686 6 0.9633 2 0.9580
53 1.066 32 1.065 32 1.065 12 1.063 01 1.061 70 1.058 70 1.058	91.054 91.053 91.053 91.052 81.051	1.046 1.041 1.036 1.030 1.025	6 1.020 3 1.015 1 1.009 9 1.004 7 0.999	4 0.994 1 0.989 9 0.983 6 0.978 3 0.973	0 0.967 8 0.962 4 0.957
233 1.06 233 1.06 22 1.06 22 1.06 21 1.05 21 1.05	30 1.0 20 1.0 20 1.0 99 1.0 78 1.0	47 1.0 95 1.0 43 1.0 91 1.0	.87 1.019 34 1.014 081 1.009 030 1.003	25 0.993 372 0.988 20 0.982 67 0.977	361 0.967 368 0.961 355 0.956
635 1.06 603 1.06 603 1.06 603 1.06 603 1.06 603 1.06 603 1.06 603 1.06 603 1.06 603 1.05 62 1	21 1.0 21 1.0 10 11.0 90 11.0 69 11.0	438 1.04 385 1.03 334 1.03 281 1.02	125 1.01 072 1.00 021 1.00 968 0.99	915 0.99 863 0.98 810 0.98 758 0.97	652 0.96 599 0.96 546 0.95
0625 1.0 0615 1.0 0605 1.0 0594 1.0 0574 1.0 0563 1.0 0542 1.0	0522 0511 0501 0491 0480	0429 1.0 0376 1.0 0325 1.0 0272 1.0	0168 1.0 0115 1.0 0063 1.0 0011 1.0	9906 0.9 9854 0.9 9801 0.9 9749 0.9	0642 0.9 9590 0.9 9536 0.9
06151 06051 05941 05841 05631 05531 05231 05321	.0501 .0491 .0480 .0470	0418 1. 0366 1. 0314 1. 0262 1.	0158 1. 0105 1. 0053 1. 0001 1. 9948 0.	9896 0. 9843 0. 9791 0. 9738 0. 9685 0.	. 9632 0. . 9580 0. . 9526 0.
1.0603 1 1.0592 1 1.0582 1 1.0572 1 1.0561 1 1.0530 1 1.0520 1 1.0520 1	0489 0478 0458 0458	1.0406 1.0353 1.0302 1.0249 1.0198	1.0145 1.0093 1.0040 0.9989 0.9936	0.9884 0 0.9831 0 0.9778 0 0.9726 0	$\begin{array}{c} 0.9620 \\ 0.9567 \\ 0.9514 \\ 0\end{array}$
1.0590 1.0580 1.0570 1.0549 1.0539 1.0528 1.0528 1.0507 1.0507	0476 0466 0456 0455 0425	1.0394 1.0341 1.0290 1.0237 1.0185	1.0133 1.0080 1.0028 0.9976 0.9924	0.9871 0.9819 0.9766 0.9714 0.9660	0.9607 0.9555 0.9501
199 199 199 200 202 204 204 204 205	000	215 225 225 230 235	240 245 255 255 255	280 280 280 280 280 280	290 300

	Melting point, C.°	Boiling point, C.°		Melting point, C.°	Boiling point, C.°
Acetone Acid: Acetic Benzoic Butyric	16.71 121.0	249.1	Camphor	$ \begin{array}{r r} - & 63.2 \\ - & 34.4 \\ - & 177.5 \end{array} $	205.0 61.2 - 20.7 - 93.0 34.6 -102.5
Carbonic Formic Stearic Succinic Alcohol: Amyl Ethyl	8.51 68.4 185.0	– 57.0	Ethylene dibro- mide Glycerin Methane Naphthalene Nitrobenzene Phenol	- 20.0 -184.11 80.1 5.17 41.1	160.0 291.0 -164.7 217.72
Methyl Aldehyde Aniline Benzene		64.7 20.8 183.7 80.0	Carbon disulphide Carbon tetrachloride Toluene		46.3 76.7 110.0

¹ For the melting points of the elements, see p. 240. For melting points of inorganic compounds, see p. 210 et seq. This table was taken from the "Annuaire pour 1914, Bureau des Longitudes."

The Thermal Properties of Steam

Probably the most critical investigation yet made of the thermal properties of steam was that of G. A. Goodenough of the University of Illinois, from whose work the following formulas are taken:

The relation found between the pressure and temperature of the steam is as follows:

$$\log p = 10.5688080 - \frac{4876.643}{T} - 0.0155 \log T$$

$$- 0.00406258T + 0.00000400555T^{2}$$

$$- 0.00002 \left\{ 10 - 10 \left(\frac{t - 370}{100} \right)^{2} + \left[\frac{t - 370}{100} \right] \right\}$$

where p is the pressure in pounds per square inch, and T the absolute temperature in Fahrenheit units, while t is the temperature in Fahrenheit degrees. The absolute zero is taken as -459.6°F. For the specific volume of the steam Professor Goodenough gives the expression:

$$v - 0.017 = 0.59465 \frac{T}{p} - (1 + 0.05129p^{\frac{1}{2}}) \frac{C_1}{T^4}$$

where v denotes the volume in cubic feet per pound, and $\log C_1 = 10.82500$. The "heat content" of steam at different temperatures and pressures is:

$$i = 0.320T + 0.000063T^{2} - \frac{23583}{T} - \frac{C_{3}p(1 + 0.0342p^{\frac{1}{2}})}{T^{4}} + 0.00333p + 948.7$$

where

$$\log C_3 = 10.79155$$

The entropy of superheated steam is given by the relation:

$$s = 0.73683 \log T + 0.000126T - \frac{11.7915}{T^2} - 0.25355 \log p - \frac{C_4 p(1 + 0.0342p)}{T^5} - 0.08085$$

where

$$\log C_4 = 10.69464$$

The thermal properties of steam at very high pressures and temperatures are stated to be as follows:

(1)	D	77 1	Weight	Heat co	ntent of	T - 4 4
Tempera- ture, degrees F.	Pressure, lb. per sq. in.	Volume of 1 lb., cu. ft.	of 1 cu. ft., lb.	Liquid, B.t.u.	Vapor, B.t.u.	Latent heat, B.t.u.
600.0	1540.4	0.272	3.68	604.5	1164	560
620.0	1658.7	0.241	4.15	633.0	1151	518
640 . 0	2056.6	0.187	5.35	663.0	1136	473
660.0	2360.8	0.151	6.63	700.0	1112	412
680.0	2699.1	0.118	9.86	745.0	1080	335
700.0	3074.5	0.080	12.46	823.0	1016	193
706.3	3200.0	0.048	20.92	921.0	921	0

The following note and table, giving the constants of steam at ordinary temperatures, is from "Lubricants," 1914, p. 10.

The temperature of steam in contact with water depends upon the pressure under which it is generated. At ordinary atmospheric pressure (14.7 lb. per square inch) the temperature is 212°F., but as the pressure increases the temperature of both the steam and the water also increases.

Saturated steam is steam of the temperature due to its pressure, while superheated steam is steam heated to a temperature above that due to its pressure. Saturated steam cannot be cooled except by lowering its pressure. Steam in contact with water cannot be heated above the temperature due to its pressure.

The latent heat or heat of vaporization is obtained by subtracting from the total heat at any given temperature the heat of the liquid. Since the "total heat" is greater as the pressure increases, it will take more heat and consequently more fuel, to make a pound of steam as the pressure increases.

TABLE OF PROPERTIES OF SATURATED STEAM¹

	1 ABL	E OF PH	OPERTIE	S OF SAT	FURATED	OTEAM.	
Pres- sure in pounds per square inch			it in heat ove 32°F. In the water (h)	Heat of vaporization of latent heat (L) in heat units $L = H - h$	Density or weight in pounds of 1 cu. ft.	Volume in cubic feet of 1 lb.	Factor of equivalent evaporation at 212°F.
1 2 3 4 5	101.99 126.27 141.62 153.09 162.34	1120.5 1125.1 1128.6	70.0 94.4 109.8 121.4 130.7	1043.0 1026.1 1015.3 1007.2 1000.8	0.00299 0.00576 0.00844 0.01107 0.01366	173.6 118.5 90.33	0.9661 0.9738 0.9786 0.9822 0.9852
6 7 8 9 10	170.14 176.90 182.92 188.33 193.25	1135.9 1137.7 1139.4	138.6 145.4 151.5 156.9 161.9	995.2 990.5 986.2 982.5 979.0	0.01622 0.01874 0.02125 0.02374 0.02621	53.39 47.06	0.9876 0.9897 0.9916 0.9934 0.9949
15 20 25 30 35	213.03 227.95 240.04 250.27 259.19	1151.5 1155.1 1158.3	181.8 196.9 209.1 219.4 228.4	965.1 954.6 946.0 938.9 932.6	0.03826 0.05023 0.06199 0.07360 0.08508	19.91 16.13	1.0003 1.0051 1.0099 1.0129 1.0157
40 45 50 55 60	267.13 274.29 280.85 286.89 292.51	1165.6 1167.6	236.4 243.6 250.2 256.3 261.9	927.0 922.0 917.4 913.1 909.3	0.09644 0.1077 0.1188 0.1299 0.1409	10.37 9.285 8.418 7.698 7.097	1.0182 1.0205 1.0225 1.0245 1.0263
65 70 7 5 80 85	297.77 302.71 307.38 311.80 216.02	1174.3 1175.7 1177.0	267.2 272.2 276.9 281.4 285.8	905.5 902.1 898.8 895.6 892.5	0.1519 0.1628 0.1736 0.1843 0.1951	6.583 6.143 5.760 5.426 5.126	1.0280 1.0295 1.0309 1.0323 1.0337
90 95 100 105 110	320.04 323.89 327.58 331.13 334.56	1180.7 1181.9 1182.9	290.0 294.0 297.9 301.6 305.2	889.6 886.7 884.0 881.3 878.8	0.2058 0.2165 0.2271 0.2378 0.2484	4.859 4.619 4.403 4.205 4.026	1.0350 1.0362 1.0374 1.0385 1.0396
115 120 125 130 140	337.86 341.05 344.13 347.12 352.85	1186.0 1186.9 1187.8	308.7 312.0 315.2 318.4 324.4	876.3 874.0 871.7 869.4 865.1	0.2589 0.2695 0.2800 0.2904 0.3113	3.862 3.711 3.571 3.444 3.212	1.0406 1.0416 1.0426 1.0435 1.0453
150 160 170 180 190	358.26 363.40 368.29 372.97 377.44	1192.8 1194.3 1195.7	330.0 335.4 340.5 345.4 350.1	861.2 857.4 853.8 850.3 847.0	0.3321 0.3530 0.3737 0.3945 0.4153	3.011 2.833 2.676 2.535 2.408	1.0470 1.0486 1.0502 1.0517 1.0531
200 225 250 275 300	381.73 391.79 400.99 409.50 417.42	1201.4 1204.2 1206.8	354.6 365.1 374.7 383.6 391.9	843.8 836.3 829.5 823.2 817.4	0.4359 0.4876 0.5393 0.5913 0.644	2.294 2.051 1.854 1.691 1.553	1.0545 1.0576 1.0605 1.0632 1.0657
325 350 375 400 500	424.82 431.90 438.40 445.15 466.57	1213.7 1215.7 1217.7	399.6 406.9 414.2 421.4 444.3	811.9 806.8 801.5 796.3 779.9	0.696 0.748 0.800 0.853 1.065	1.437 1.337 1.250 1.172 0.939	1.0680 1.0703 1.0724 1.0745 1.0812

¹ Kent, "Mechanical Engineer's Pocket-Book," New York, 1913, p. 836.

VAPOR TENSIONS OF VARIOUS METALS¹ (As calculated by J. W. RICHARDS, "Metallurgical Calculations")

(As calculated	u by J. W	. RICHAR	bs, Me	tanurgica	I Calculatio) (118
Vapor tension,	Mercury	Lead	Silver	Gold	Cadmium at C.°	Zinc
mm. of mercury	at C.°	at C.°	at C.°	at C.°		at C.
0.0002	0	625	729	942	183	248
0.0005	10	658	766	987	200	267
0.0013	• 20	691	802	1031	216	286
0.0029	30	724	839	1075	233	305
0.0063	40	757	876	1120	250	324
0.013	50	790	913	1165	267	344
0.026	60	822	949	1209	283	363
0.050	70	855	986	1254	300	382
0.093	80	888	1023	1298	317	401
0.165	90	921	1059	1343	333	420
0.285	100	954	1096	1387	350	439
0.478	110	987	1133	1432	367	458
0.779	120	1020	1169	1476	383	477
1.24	130	1053	1206	1520	400	496
1.93	140	1086	1243	1565	417	516
2.93	150	1119	1280	1611	433	535
4.38	160	1151	1316	1654	450	554
6.41	170	1184	1353	1699	467	573
9.23	180 ¹	1217 ¹	1390 ¹	1743 ¹	4831	592 ¹
14.84	190	1250	1427	1788	500	611
19.90	200	1283	1463	1832	517	630
26.25	210	1316	1500	1877	533	649
34.70	220	1349	1537	1921	550	668
45.35	230	1382	1574	1965	567	687
58.82	240	1415	1610	2010	584	706
75.75	250	1448	1647	2055	600	726
96.73	260	1480	1684	2099	617	745
123.0	270	1513	1720	2144	634	764
155.0	280	1546	1757	2188	650	783
195.0	290	1579	1794	2233	667	802
242.0	300	1612	1830	2277	684	821
300.0	310	1645	1867	2322	700	840
369.0	320	1678	1904	2366	717	859
451.0	330	1711	1941	2410	734	878
548.0	340	1744	1977	2455	750	897
663.0	350	1777	2014	2500	767	915
760.0	357 ²	1800 ²	2040 ²	2530 ²	780 ²	930²
	Atmospheres pressure					<u></u>
2.1	400	1951	2197	2722	851	1012
4.25	450	2116	2380	2945	934	1107
8.0	500	2280	2564	3167	1018	1203
13.8	550	2445	2747	3390	1101	1298
22.3	600	2609	2931	3612	1185	1394
34.0	650	2774	3114	3835	1268	1489
50.0	700	2938	3298	4057	1352	1585
72.0	750	3103	3481	4280	1435	1680
102.0	800	3267	3665	4502	1519	1776
137.5	850	3436	3848	4725	1602	1871
162.0	880	3525	3958	4858	1652	1928

<sup>Approximate boiling points in vacuo.
Approximate boiling points at normal pressures.</sup>

MEAN VALUES OF THE VAPOR PRESSURE OF AS2O2

Temper- ature	Vapor pressure	As ₂ O ₃ per 1000 cu. ft. of gas	Temper- ature	Vapor pressure	As ₂ O ₃ per 1000 cu. ft. of gas
°C. 100 120 140 160 180 200	Mm. of mercury 0.000266 0.00180 0.01035 0.0473 0.186 0.653	Pounds 0.000386 0.00261 0.0150 0.0685 0.270 0.947	°C. 220 240 260 280 300	Mm. of mer- cury 2.065 5.96 15.7 38.5 89.1	Pounds 3.00 8.71 23.2 58.6 144.0

This table, from "Tech. Paper 81," U. S. Bureau of Mines, may be used as a rough basis for the calculation of arsenic in smeltery gases. The vapor pressure of arsenic volatilized from flue dust at a given temperature is about half of the value in the table for that temperature. The heat of sublimation of arsenic varies from about 28,000 gram-cal. at 110°C. to about 25,000 at 290°C. per gram-molecule of arsenic (396 grams).

CRYOHYDRATES. SALT AND ICE MIXTURES1

Name of salt	Cryohydric point, degrees C.	Percentage an- hydrous salt in ice mixture
Calcium chloride	$ \begin{array}{r} -24.0 \\ -22.0 \\ -17.5 \\ -15.0 \end{array} $	29.8 41.33 23.60 40.80 19.27 21.86

^{1&}quot; General Electric Review" 1915.

Cooling Mixtures of Salt and Water¹

	Mixed with	Tempera	ture falls
	100 parts water	From C.°	To C.º
Alum-crystallized	14	10.8°	9.0
Ammonium carbonate		15.3	3.2
chloride		13.3	-5.1
nitrate	60	13.6	-13.6
sulphate	75	13.2	6.8
sulphocyanate		13.2	-18.0
Calcium chloride crystallized		10.8	-12.4
Magnesium sulphate crystallized		11.1	-3.1^{-1}
Potassium chloride	30	$\overline{13}.\overline{2}$	$-3.\overline{0}$
iodide		10.8	-11.7
nitrate	16	13.2	-3.0
sulphate		14.7	-11.7
sulphocyanate	1	10.8	-23.7
Sodium acetate, cryst	85	10.7	-4.7
carbonate, cryst		10.7	1.6
chloride		12.6	10. 1
hyposulphite, cryst	110	10.7	-8.0
nitrate	75	13.2	-5.3
phosphate, cryst	14	10.8	7.1
sulphate, cryst		12.5	5.7

¹ CREMER and BICKNELL'S "Chemical and Metallurgical Hand Book."

Capillary Constants for Molten Metals (Given by Landolt, $r \times h = a^2$)¹

Metal	S.W.Smith	Quincke	Siedentopf	Grunmach	
Selenium Antimony	8.65	4.41 9.90			
Bismuth	$\left\{\begin{array}{c} 6.91 \\ 7.53 \end{array}\right\}$	9.76	8.755	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • •
Lead	1 2 22 1	9.98	9.778	9.060	• • • • • • • • • • •
Mercury	$\left\{ egin{array}{c} 6.72 \ 6.73 \ 14.57 \ \end{array} \right\}$	8.234	•••••	$\left\{ \begin{array}{c} 7.39 \\ 6.09 \end{array} \right\}$	Stöckle 6.548
Tin	14.55 14.55 14.97	19.43	17.87	10.27	• • • • • • • • • • •
Cadmium	45.09	19.8 No	21.25 values give	n	• • • • • • • • • • •
Zinc	$\left\{ \begin{array}{c} 25.05 \\ 24.54 \end{array} \right\}$	$\left\{egin{array}{c} 28.6 \\ 30.6 \end{array} ight\}$		• • • • • • • • • • • • • • • • • • • •	Graden witz
Silver	${18.57 \atop 18.47}$	15.94	• • • • • • • • •	• • • • • • • • •	14.5
Copper	$\left\{egin{array}{c} 28.23 \ 29.47 \end{array} ight\}$	14.44	• • • • • • • • •		Heydweiller
Gold	11.29	$\left\{ egin{array}{c} 25.81 \ 27.14 \end{array} ight\}$	• • • • • • • • • •		6.90

Comparison of Values for Surface Tensions of Metals Obtained by Various Workers

(Given by LANDOLT)1

Metal	S.W.Smith	Quincke	Siedentopf	Grunmach	
Selenium Antimony Bismuth Lead Mercury	Dynes per centimeter 274.0 346.0 424.5 447.5	Dynes per centimeter 92.5 317.2 464.9 535.9 457 mm. 547.2 681.2 598 mg.	mm. 612.4	Dynes per centimeter $ \begin{array}{c} 482 \frac{\text{mg.}}{\text{mm.}} \\ 491.2 \\ 405.0 \\ 352 \\ 359 \end{array} $	Dynes per centimeter Stöckle 435.6
Aluminum Zinc Cadmium Silver Gold	520.0 707.5	mm.	values record		Gradenwits, 751.0 Heydweiller 612.2

¹ SYDNEY W. SMITH, paper before the Institute of Metals, September, 1914.

The surface tensions of liquid metals are periodic functions of their atomic weights. In each period the surface tension decreases slightly, the metal of lowest atomic weight having the highest surface tension.

Heat Conductivity (K)

A plate of the given substance 1 cm. thick, with parallel sides having a difference in temperature of 1°C., conducts enough heat per square centimeter per second to heat K grams of water from 0° to 1°C. The table is one compiled from various sources. See also Hering's Thermal Resistivity Table on p. 146.

Metals	Temperature, degrees C.	K
Aluminum	. 18	0.504
Aluminum	. 100	0.492
Aluminum	-160	0.514
Antimony	0 to 30	0.044
Antimony	100	0.040
Bismuth		0.0177
Diamth	100	0.0161
Bismuth	-186	
Bismuth		0.025
Brass, red	. 0	0.2460
Brass, red	. 100	0.2847
Brass, yellow	. 0	0.2041
Brass, yellow	. 100	0.2540
admium	. 0	0.02213
Zadmium	. 100	0.02045
Cadmium	. -160	0.239
Sopper	. 0	1.0405
Copper		0.908
Copper		1.079
Copper (containing iron)	0 to 30	0.954
opper (phosphor bronze)	•0	0.7198
Copper (phosphor bronze)	100	0.7226
erman silver		0.081
derman silver	100	0.0887
Pold	18	0.700
90 1 0	-160	0.152
ron		0.144
ron, wrought (1 per cent. C.)	1 10	0.1772
ron, wrought	. 50	
ron, wrought	. 100	0.1567
ron, wrought	. 150	0.1447
ron, wrought	. 200	0.1357
ron, wrought		0.1240
ron (pure)		0.161
ron (Bessemer steel)		0.0964
ron (puddled)	. 15	0.1375
ead	. 18	0.083
ead	. 100	0.076
lagnesium		0.376
fercury		0.01479
fercury		0.01893
fercury		0.024
lickel		0.14
alladium	18	0.17
		0.19
latinumilatinumilatinum		1.096
teel (1 per cent. C.)		0.115
in	0 to 30	0.151
Vood's metal (99.05 Bi $+$ 0.95 Sn)		0.008
Vood's metal (93.86 Bi $+$ 6.14 Sn)		0.012
inc	0 to 30	0. 303

Non-metals	Temperature, degrees C.	K
1 (compressed)	below 0° below 0° below 0°	5.7 0.0001625 0.000405 0.00055 0.0004
el(erown)(flint)	below 0° . 10-15 . 10-15	0.0009 0.000355 0.00163 0.00143 0.005
r of Pariss sand	0 18-98 below 0° 9-15	0.0013 0.0006 0.00060 0.00481 0.000765 0.001203
(dry pine), dry walnut	. 0°-700° . 0°-100°	0.001555 0.0004 0.00204 0.0006 0.0005
ickickickickickickick dust	. 0°-1300° . 0°-500° . 20°-98° . 0°-100°	0.00013 0.00310 0.00140 0.00028 0.0177 0.012
ite-retort dust	. 20°-100° . 17°-98° . 0°-650° . 0°-1300° . 20°-100°	0.00040 0.00013 0.00038 0.00620 0.00045 0.00016
perpen. to cleavage)	20°-100°	0.00050 0.018 0.0003 0.00045 0.00012
ool		0.00012

Table of Thermal Resistivities¹

APPROXIMATELY IN ORDER OF RESISTIVITY

(Temperature in Centigrade degrees)

	Thermal ohms ¹		ms¹
	Inch cube	Centi- meter cube	Refer- ence
Silver, 0°-100°. Copper (electrode mean), 100°-197°. Copper (electrode mean), 100°-837°. Copper, 0°-100°, about. Copper. Copper, cast. Copper, rolled. Copper, rolled. Aluminum, 0°-100°. Graphite, Acheson (electrode mean), 100°-390° Graphite, Acheson (electrode mean), 100°-914° Brass, 0°-100°. Iron (electrode mean), 100°-398°. Iron (electrode mean), 100°-398°. Iron, wrought. Iron, wrought. Iron, wrought. Iron, cast. Iron, cast. Iron, cast, 30°. Steel. Steel. Steel, various. Steel, 10 per cent. manganese. Platinum. Platinum, 18°-100°.	0.094 0.090 0.11 0.11 0.13 0.12 0.11 0.27 0.28 0.36 0.28 0.43 0.22 0.46 0.76 0.79 0.26 0.63 0.24 0.81 0.25 0.55	0.24 0.23 0.27 0.27 0.32 0.29 0.28 0.32 0.69 0.71 0.82 0.92 0.71 1.1 0.55 1.2 1.9 2.0 0.66 1.6 0.60 2.1 7.7 0.63 1.4 2.9	LB HHBLCJJF LB

¹ Hering uses an expression, the thermal ohm, which is the resistance through which 1 watt of heat flow will pass when the temperature drop is 1° C. Hence, if R is the thermal resistance in thermal ohms, W the flow of heat in watts and T the temperature in Centigrade degrees:

$$W = \frac{T}{R}$$

Or if r is the specific thermal resistance in thermal ohms per centimeter cube then

$$R = \frac{rL}{S}$$

where L is length and S is cross section.

To reduce a thermal conductivity in gram calories per second to resistivity in thermal ohms, multiply the reciprocal of the conductivity by 0.2388 when both are for 1 cm.³ To reduce gram calories to watts, multiply by 4.186. In order to compare thermal resistivities Mr. Hering called that of silver the unit, and reduced all values to this base.

To use the data of the table for all purposes it may be remembered that

watts \times 0.00134111 = horse power watts \times 0.0568776 = B.t.u. per minute.

	The	ermal ohr	ms¹
	Inch cube	Centi- meter cube	Refer- ence
Carbon (electrode mean) 100°-942°. Carbon (electrode mean) 100°-360°. Lead. Lead. Lead, 0°-100°. Plumbago brick, about 1000°. Carborundum brick, about 1000°. Mercury, 0°-50°. Quartz, 0°. Graphite (probably plumbago) 7°. Retort carbon, 0°. Magnesia brick, about 1000°. Stone, calcareous, fine. Chromite brick, about 1000°. Ice Marble, fine grained, gray. Marble, coarse grained, white. Marble, 30°. Stone, calcareous, ordinary Firebrick, probably room temperature Firebrick, bout 1000°. Firebrick, mean for 500°-1300°. Firebrick, mean for 0°-1300°. Firebrick, mean for 0°-500°. Checker brick, about 400°-800°. Firebrick, about 400°-800°. Glass pot, about 1000°. Glass pot, about 1000°. Glass pot, about 1000°. Checker brick, about 1000°. Chalk, solid Cement, Portland, neat, 35°.	1.2 3.8 4.1 5.5 8.0 9.1 13.0 16.0 16.0 19.0 20.0 21.0 22.0 23.0 44.0 25.0 26.0 29.0 43.0 44.0 43.0 47.0 47.0 47.0 52.0 87.0 96.0	1.9 2.7 0.83 2.8 3.0 9.6 10.3 14.1 15.0 23.0 42.0 42.0 42.0 42.0 42.0 51.0 57.0 57.0 57.0 112.0 61.0 63.0 67.0 72.0 89.0 104.0 110.0 89.0 110.0	HHCWBURD QUE QUE QUE QUE LE QUE LE QUE LE
Coarse sand, 20°-155°, 52.9 per cent. solid matter. Cork, solid	110.0 131.0 105.0	280.0 333.0 266.0	O LB LB
Plaster of Paris, 20°-135°, 36.8 per cent. solid matter. Slag concrete, 1 slag: 0.61 cement by weight, 50° Pumice stone, 18.2 lb. per cu. ft., 50° Pumice stone Brick dust, sifted Asbestos, 20°-155°, 34.2 per cent. solid matter Asbestos, 36 lb. per cu. ft., 600° Asbestos, 36 lb. per cu. ft., 50° Asbestos with air cells Cardboard, below 0°	221.0 178.0 169.0 187.0 204.0 139.0 166.0 221.0 416.0	562.0 453.0 430.0 477.0 518.0 353.0 422.0 562.0 1016.0 606.0	O N LB P O N S LB

	Th	ermal ohi	ns.1
	Inch cube	Centi- meter cube	Refer- ence
Ebonite, 48°	251	637	LB
Petroleum, 13°	265	672	LB
Wood pine, parallel to fiber	313 313	796 796	LB
Anthracite	317	803	LB LB
Chalk, 20°-155°, 25.3 per cent. solid matter	332	844	Ö
Very porous slag, 22.5 lb. per cu. ft., 50°	356	905	N
Zinc white, 20°-155°, 8.8 per cent. solid matter	398	1010	O B O
Infusorial earth, 21°-175°	415	1050	В
Infusorial earth 20°-155°, 11.2 per cent. solids.	435	1110	0
Infusorial earth, 20°-155°, 6 per cent. solid matter.	472	1200	O
Infusorial, earth, burned, 12.5 lb. per cu. ft.,	_ · ·		
450°	263	1675	N
Infusorial earth, burned, 12.5 lb. per cu. ft., 50°.	477	1220	Ŋ
Infusorial earth, loose, 21.8 lb. per cu. ft., 350°. Infusorial earth, loose, 21.8 lb. per cu. ft., 50°.	427 562	1090 1430	N N C S
T-finlh	745	1890	KC
Magnesia carb., 85 per cent., 20°-188°	537	1370	ğ
Magnesia, calcined, 20°-155°, 28.5 per cent.	160	470	0 .
Magnesia, calcined, 20°-155°, 4.9 per cent.			
solids	544	1380	O.
solids	554	1410	O B
Magnesia, calcined, 21°-175°	572	1450	В
Charcoal, from leaves ,11.9 lb. per cu. ft., 100°	494	1260	<u>o</u>
Charcoal, from leaves, 11.9 lb. per cu. ft., 100°	537	1370	W
Charcoal, from leaves, 11.9 lb. per cu. ft., 50°.	603	1530	Z
Charcoal	723 577	1840 1470	N C O
Sawdust, 13.4 lb. per cu. ft., 50°	614	1560	Ň
Sawdust	620	1570	Ĉ
Sawdust	7 65	1950	ĽB
Cork, granulated and compressed, 20°-188°	467	1190	8
Cork, ground, 10 lb. per cu. ft., 200°	614	1560	Ŋ
Cork, ground, 10 lb. per cu. ft., 50°	797	2030	N
Air, 20°-155°	143 1700	364 4320	O LB
Cotton wool, 20°-155°, 1 per cent. solid matter.	596	1520	O
Cotton wool, 20°-155°, 2 per cent. solid matter.	659	1570	ŏ
Cotton wool, 5.05 lb. per cu. ft., 100°	572	1460	N
Cotton wool, 5.05 lb. per cu. ft., 50°	627	1600	N C
Cotton wool	830	2110	
Cotton wool, loose	2170	5500	LB
Cotton wool, compressed	2810 633	7120	LB
Hair felt, 20°-155°, 9.2 per cent. solid matter Hair felt, 21°-175°	790	1610 2010	· B
Hair felt.	865	2200	č
Hair felt, below 0°	1080	2740	ĽB
Lampblack, 20°-155°, 5.6 per cent. solid matter	697	1770	ō
Fine quartz sand	718	1820	LB
Silk. 6.3 lb. per cu. ft., 100°	662	1690	Ŋ
Silk, 6.3 lb. per cu. ft., 50°	7 52	1920	N
Wool, sheep's, 20°-155°, 2.1 per cent. solid matter	616	1570	0

	Thermal ohms ¹		
•	Inch cube	Centi- meter cube	Refer- ence
Wool, sheep's, 8.5 lb. per cu. ft., 50°. Wool, sheep's, 8.5 lb. per cu. ft., 100°. Wool, sheep's. Mineral wool, 21°-175°. Mineral wool, 0°-18°. Hard rubber. Wood, pine, radially. Loose fibrous materials, 9°. Flannel.	676 745 803 737 1010 1060 1070 1540 2650	1720 1890 2050 1870 2570 2680 2720 3920 6720	N C N B C LB LB LB

Trans., Am. Soc. Mech. Eng., XVI, p. 827. B—George M. Brill.

Coverings on 8-in. steam pipes.

C-J. J. COLEMAN. Engineering, Sept. 5, 1884, p. 237. Ice melted in cube surrounded with the materials. Temperatures 0-18° and 0-38° C. The values were given relatively to each other; to reduce them to absolute measure it is here assumed that the value for sawdust is 620, thermal ohm, inch cube units.

CE—CLEMENT and Egy.
CJ—CALVERT and JOHNSON. Relative values based on silver. Reduced here on the basis that the conductivity of silver is 1.0 in gram calories per

second, centigrade, centimeter cube units.

D—Depretz, Hood. "Warming and Ventilating Buildings," p. 249.

Given relatively to marble, here assumed to be 10 thermal ohms, inch cube

units.

H—CARL HERING. "The Proportions of Electrodes for Furnaces." (Table.) Paper read before the Am. Inst. Elec. Eng., March 31, 1910.

Mean values when materials are used as furnace electrodes.

LB—LANDOLT and BOERNSTEIN tables. The values here chosen are mostly approximate means of the generally numerous and sometimes greatly differing values given by different observers. For the individual values and for the authorities see those tables. They also include values for

very many other materials. N—WILHELM NUSSEL. LHELM NUSSEL. Zeit. Ver. Deut. Eng., June, 1908, p. 906, table, Materials were placed between two concentric metallic spheres or Temperature measured Heat generated electrically in interior. with thermocouples at numerous depths in the material after several days' heating. As here given they represent the resistivities at the temperatures stated, not the means over a range. Probably the best and most reliable determinations published. His conductivities are here assumed to be in terms of kilogram calories per hour, centigrade, meter cube, units; although not so stated directly in the original, it is undoubtedly what is meant. An abstract appeared in the *Eng. Digest*, August, 1908, p. 168, in which the units are reduced to thermal units, feet, inches and Fahrenheit degrees; the formula there given omits to say that it is necessary to multiply by the temperature also.

O—Prof. Ordway. Trans., Am. Soc. Mech. Eng., Vol. VI, 1884-5, p. 168. Tested in plates 1 in. thick between two flat iron surfaces, one of them heated by steam, the heat emitted by the other being measured calorimetrically. Extended, carefully made researches; presumably very good values. There is an error in the heading in Table VII; square inch should read square

meter, as in the others.
P—Pecler, Box. "Practical Treatise on Heat." Presumably ordinary

weather temperatures. S—H.G. Stott. Power, 1902. Pipe coverings. 200 ft. of 2-in. pipe heated electrically to constant temperature. Coverings were somewhat over 1 in. thick; they are here reduced to 1 in. resistances include that at the surface. Heat transmitted to air, hence these

W-Wolff. Jour. Frank. Inst., 1893. The transmission of heat from the interior to the exterior of buildings through the walls; hence ordinary weather temperatures. Prescribed by law by German Government for heating plants. Said to agree well with good American practice. The value here given is an average of all the individual ones, omitting the first one, which differed greatly from all the others.

WF—Wiedemann and Franz; relative values based on silver. Reduced here on the basis that the conductivity of silver is 1.0 in gram calories per second, centigrade, centimeter cube, units.

WQ—Wologdine, Queneau. The temperatures were about 1000°C.; the materials were those of commerce and do not refer to extra pure or to inferior grades. The present writer is of the opinion, based on the method used in the tests, that these values are probably too low.

Z—Source lost, but probably fairly good values.

For further information the reader is referred to Metallurgical and Chemical Engineering. September. 1909. p. 383: February, 1909. p. 72: December.

Engineering, September, 1909, p. 383; February, 1909, p. 72; December, 1911, p. 652.

According to WILLIAM NUSSEL, thermal conductivity increases by 1/27 a for each degree Centigrade rise in temperature.

Thermal Conductivity of Refractories¹

Woodland firebrick	Quartzite (ganister and clay)	Star silica (ganister and lime)	Magnesite (dead burned)
SiO2	73.91 22.87 1.48 0.29 0.31 1.20 	95.85 0.88 0.79 1.80 0.14 0.39 	2.50 0.50 7.00 2.75 86.50 0.10 2.46 0.03431

Flow of Heat Inward from a Heated Plane Face³

Starting with the simple fundamental law for the flow of heat in the steady state—namely, that the amount of heat conducted varies directly as the conductivity, area, time and temperature difference, and inversely as the thickness—it is not particularly difficult to derive the solution for this case with the aid of Fourier's Series. For such derivation, however, the reader is referred to any treatise on heat conduction where he will find it given in the form:

$$T = T_0 \frac{2}{\sqrt{\pi}} \int_{\frac{x}{2h\sqrt{t}}}^{\infty} e^{-\beta} d\beta$$

This means that for a body initially at the zero of our temperature scale, whose plane surface is suddenly heated to and maintained at T_0 , the temperature T at a distance x from this surface will be given t seconds later by this integral. As to the meaning of h, a little thought will serve to show that inasmuch as the temperature of the substance must be raised by the heat

¹ From a paper by Boyd Dudley, Jr., read at the Atlantic City meeting of the American Electrochemical Society, April, 1915.

² From 445° to 830°C. K is expressed in gram calories per second per inch cube per degree Centigrade, a peculiar unit.

³ Taken from an article by L. R. INGERSOLL in Eng. News, Oct. 30, 1913.

wave as it travels into the body, the rate of this penetration will depend not only on the conductivity, but on the specific heat and density of the material as well. This is taken account of in the constant h which is defined by the relation

$$h^2 = \frac{k}{c\rho}$$

k, c and ρ being respectively the conductivity, specific heat and density of the material. The quantities x, h and t being known, T can be determined. Tables I and II give the values of this integral, and of the constant h^2 , or thermal diffusivity.

Table I.—Values of Integral
$$E = \frac{2}{\sqrt{\pi}} \int_{\frac{x}{2h\sqrt{t}}}^{\infty} e^{-\beta z} d\beta$$

$x/2h\sqrt{t}$	E	$x/2h\sqrt{t}$	E	$x/2h\sqrt{t}$	E
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.25 0.30 0.35 0.40	1.000 0.987 0.955 0.932 0.910 0.888 0.865 0.843 0.821 0.800 0.777 0.724 0.671 0.621 0.572	0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.10 1.20 1.30	0.525 0.480 0.437 0.396 0.358 0.322 0.288 0.258 0.229 0.203 0.179 0.157 0.157 0.120 0.090 0.066	1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70	0.048 0.034 0.024 0.016 0.0109 0.0072 0.0047 0.0030 0.0019 0.0011 0.0007 0.0004 0.0002 0.0001 0.0000

Examples.—The use of these tables is best shown by solving some specific examples:

1. A massive granite block at 20°C. (68°F.) has one face (rapidly) heated to 200°C. (392°F.). What will be the tem-

perature at a depth of 10 cm. (4 in.) after 1 hour?
Since the theory is based on the assumption of an initial temperature of zero the temperature scale must be shifted in this case by subtracting 20°, which will be added again later. Taking h^2 from Table II as 0.0155, t as 3600 (seconds) and xas 10 (cm.), the quantity $x/2h\sqrt{t}$ becomes 0.67. This gives, from Table I, E = 0.34; hence the rise in temperature would be

T = 180E, or 61°, making a final temperature of 81°C. (178°F.). 2. The surface of a dry soil initially throughout at 6°C. (43°F.) is cooled to -20°C. (-4°F.). How long before waterpipes at a depth of 152 cm. (5 ft.) will be in danger of freezing?

Here we have, after shifting the temperature scale,

$$-6 = -26E$$
, or $E = 0.23$

From Table I, then, $x/2h\sqrt{t} = 0.85$, which, with $h^2 = 0.0031$, gives t = 2,600,000 seconds or 30 days.

TABLE II.—VALUES OF THERMAL CONDUCTIVITY CONSTANTS IN C. G. S. 1 UNITS²

Material	Tempera-	Con-	Dif-
	ture,	ductiv-	fusiv-
	deg. C.	ity, k	ity, h ²
Air Aluminum Brass (yellow) Brick (firebrick) Brick (in masonry) Concrete (cinder) Concrete (stone) Copper Cork (ground) Glass (ordinary) Granite Ice Iron (wrought or mild steel) Iron (cast, also high-carbon steel) Lead Limestone Magnesium carbonate (85 per cent. steam-pipe covering) Marble (white) Nickel Rock material, average Sandstone Silver Snow (fresh) Soil (average, damp) Soil (very dry) Water Wood (dry pine—across grain) Wood (dry pine—with grain)	18 18 18	0.000055 0.480 0.204 0.0040 0.0020 0.00081 0.0022 0.918 0.00012 0.0024 0.0081 0.0052 0.1436 0.108 0.0827 0.0050 0.142 0.0050 0.0050 0.142 0.0050 1.006 0.0003 0.0003 0.00037 0.00088 0.00143 0.00009 0.00030	0.179 0.826 0.339 0.0074 0.0050 0.0031 0.0058 1.133 0.0017 0.0057 0.0155 0.0112 0.173 0.121 0.237 0.0092 0.0090 0.152 0.0118 0.0133 1.737 0.0033 0.0055 0.0031 0.0006 0.0008

Flow of Heat Inward from Two Heated Faces

If a plate or slab of thickness l and initial temperature zero have both its faces suddenly heated to and kept at T_o , the temperature T in the middle plane, which will obviously be the last part of the body to heat up, may be obtained from the equation

$$T = T_o \left(1 - \frac{4}{\pi} 10^{-0.434} \frac{h^2 \pi^2 t}{l^2} + \frac{4}{3\pi} 10^{-0.434} \frac{9h^2 \pi^2 t}{l^2} - \dots \right)$$

t being the time in seconds and h^2 the thermal diffusivity. To

¹ The use of this system is almost compulsory in cases where thermal diffusivity is involved, since it is the only one in common use which is consistent in its choice of fundamental units. Thus the steam engineer's conductivity unit of the B.t.u. per hour, per square foot, per degree F., per inch in thickness, is not available in this case since it involves two different units of length, i.e., the inch and foot. Similar objections may be raised against most of the other units in common use with the exception of the C. G. S.

Most of the values for metals are those of Jäger and Diesselhorst, Abh. d. phys-tech. Reichsanstalt, Vol. 3, p. 269 (1900). The others have been compiled from various sources. When not otherwise specified, ordinary

temperatures are assumed.

This table is also taken from Ingersoll's article. Some of these constants differ from those given in the table on p. 144, but the differences are not serious, and since his diffusivity constants have been computed on this basis, it seems better to let the table stand as originally printed.

simplify computation, the values of this series have been tabulated as in Table 1II.

TABLE III.—VALUES OF THE FUNCTION $y = 1 - \frac{4}{\pi} \left(10^{-x} - \frac{1}{3} 10^{-9x} + \frac{1}{5} 10^{-28x} - \dots \right) \text{ where } x = 0.434 \frac{h^2 \pi^2 t}{t^2}$

					·
$oldsymbol{x}$	y	$oldsymbol{x}$	y	$oldsymbol{x}_{\cdot}$	ν
0.01	0.0000	0.11	0.0546	0.36	0.444
0.02	0.0000	0.12	0.0692	0.38	0.469
0.03	0.0000	0.13	0.0848	0.40	0.493
0.035	0.0001	0.14	0.1009	0.45	0.548
0.04	0.0005	0.15	0.1176	0.50	0.597
0.045	0.0010	0.16	0.1345	0.60	0.680
0.05	0.0021	0.17	0.1517	0.70	0.746
0.055	0.0037	0.18	0.1690	0.80	0.798
0.06	0.0055	0.19	0.1862	0.90	0.839
0.065	0.0081	0.20	0.2033	1.00	0.872
0.07	0.0113	0.22	0.2372	1.25	0.928
0.075	0.0150	0.24	0.2702	1.50	0.959
0.08	0.0194	0.26	0.3022	1.75	0.977
0.085	0.0241	1.28	0.3331	$\hat{2}.00$	0.987
0.09	9.0294	0.30	0.3727	2.50	0.996
0.095	0.0351	0.32	0.3912	3.00	0.998
0.10	0.0412	0.34	0.4184	3.50	0.999
				4.00	0.999

Examples.—A dry spruce cross-tie 11.4 × 17.8 cm. (4½ × 7 n.) in section and 71 cm. (28 in.) long, and at an initial temperature of 15°C. (59°F.), is placed in an oven which heats its surface to 137°C. (278°F.) for 10½ hours. What should be the temperature at the end of this period for a point near the center of the tie?

As the heat penetration will be largely due to conduction across the smallest dimension of the tie we shall neglect the other laces altogether. We have then, effectively, a plate of thickness 11.4 cm. and diffusivity 0.0068 (pine wood in Table II), which gives x = 0.85. Then from Table III, y = 0.82, making a rise in temperature of 0.82 (137° - 15°), or 100°. This gives a final temperature of 115°C. (239°F.). In an actual experiment this was found to be 113°C., checking our theory much more closely than could be expected, considering the approximations we have made in neglecting the other faces.

In the same way we can readily show by a few minutes' work with a slide-rule that the center of a plate of steel 2.54 cm. (1 in.) thick, which is plunged into molten lead, should rise to within 2 per cent. of the temperature of its faces in less than half a minute; the center of a firebrick 6.3 cm. (2½ in.) thick, heated by flue gases in a regenerator, should show more than half its surface change in temperature in 10 minutes, and more than three-quarters in 20 minutes; a disk of glass 20.3 cm. (8 in.) thick, which has been subjected to a recent heating or cooling of a dozen degrees should be kept with faces at constant tem-

perature for upwards of 10 hours to insure that the interio temperature is uniform to a small fraction of a degree.

Relative Conductivities of Metals for Heat and Electricity

The following table, compiled from various sources, i intended to show merely the general correspondence between conductivity for heat and for electricity. For ordinary work the table of heat conductivities just preceding, and of electric resistivity just following, should be used. The electric conductivities are the reciprocals of the resistivities given in the late tables.

Metal (in vacuo)	Heat	Elec- tricity	Metal (in vacuo)	Heat	Elec- tricity
Silver	74 54.8 31.33 28.1 24 20.06	27.39 22.0	Iron Steel Platinum Lead German silver Antimony Bismuth Mercury	7.9 6.3 4.03 1.8	14.44 10.53 7.77 6.0

RELATION OF HEAT AND ELECTRIC CONDUCTIVITY

Material	Thermal conductivity Electrical conductivity at 18°C.	Temperatur coefficient (this ratio, per cent.
Copper, commercial. Copper (1), pure. Copper (2), pure. Silver, pure. Gold (1), pure. Gold (2), pure. Nickel. Zinc (1). Zinc (2), pure. Cadmium, pure. Lead, pure. Tin, pure. Aluminum. Platinum (1). Platinum (2), pure. Palladium. Iron (1). Iron (2). Steel. Bismuth. Constantan (60 Cu, 40 Ni). Manganin (84 Cu, 4 Ni, 12 Mn).	6.76×10^{10} 6.65×10^{10} 6.71×10^{10} 6.86×10^{10} 7.27×10^{10} 7.09×10^{10} 7.05×10^{10} 7.05×10^{10} 7.15×10^{10} 7.35×10^{10} 7.35×10^{10} 7.76×10^{10} 7.54×10^{10} 7.54×10^{10} 8.02×10^{10} 8.03×10^{10} 9.03×10^{10} 9.64×10^{10} 9.64×10^{10} 9.14×10^{10}	0.39 0.39 0.37 0.36 0.37 0.39 0.38 0.38 0.37 0.40 0.34 0.43 0.43 0.43 0.43 0.44 0.35 0.15 0.23

¹ Table used by Sir J. J. Thomson at a lecture before the Institute (Metals, May, 1915. Attributed by him to Jäger and Diesselhorst.

RESISTIVITY OF METALS (Microhms per cm.*)

¹ At -183°. ² At 25°. ³ At 20°. ⁴ At -204°. ⁵ From 18° to 100°.

The values at low temperatures are mostly Lee's; those at 18°, Jaeger and Diesselhorst's; those at 0° from a table compiled by Watt's, "Laboratory Course in Electrochemistry," while those at 100° are from various sources.

ALLOYS1

100° - 160° 0° 18° Temp. coeff. at 0° German silver2... 26.6 27.6 0.0003Nichrome..... 0.00044 95.5 Brass..... 6.6 0.0010 0.000050 to Constantan..... 49.0 49.1 +0.0000500.000002 to 42.1 43.13 Manganin³..... 43.50 0.0000394 Phosphor bronze... 5-10

Woods alloy.....

31.25

¹ Temperature coefficients from "Standard Handbook."

² 62 per cent. Cu, 15 Ni, 22 Zn.

³ 84 per cent. Cu, 4 Ni, 12 Mn.
⁴ Most samples of manganin have a zero temperature coefficient from 30° to 40°C.

156 METALLURGISTS AND CHEMISTS' HANDBOOI

RESISTIVITIES AT HIGH TEMPERATURES¹ (Values in italics are merely exterpolated)

	icrohms,	1000°C.	Microhms
	em. cb.	1832°F.	cm. cb.
Silver, solid Copper solid Gold, solid Aluminum, solid Brass, 2-1, solid Molybdenum, solid Fungsten (a, b), solid Platinum (b), solid Cadmium, fused Platinum (a), solid Fin, fused For (a), solid, about For (a), solid, about For (a), solid, about For (a), solid Candetin alloy, fused Ferronickel, solid Candetin alloy, fused Ferronickel, solid Candetin alloy, fused Calido, solid Calido, solid Calido, solid Carbon (a) Carbon (b) Carbon (c) Carbon (c) Carbon (c) Carbon (d) Ca	5.0 5.1 6.62 10.0 12.5 16.5 18.0 25.3 34.12 34.4 36.0 36.60 52.0 94.0 92.85 09.0 15.0 19.0 0.00084 0.0027 0.00084 0.0027 0.0028 0.0033 0.0037 0.22 0.0418 0.547 0.824 0.92.50 19.7 60.0 19.7 60.0 70.0		9.42 12.54 17.01 24.0 28.5 30.5 33.4 40.8 41.0 57.0 66.0 68.0 98.0 105.0 111.0 122.0 125.0 128.0 136.0 167.5 Ohms 0.0006 0.00021 0.0024 0.0030 0.0034 0.12 0.90 1.0 1.7 1.9 2.8 3.5 3.7 4.8 15.0 15.7

¹ A table compiled by CARL HERING, "Metallurgical and Chemical Engineering," January, 1915.

1500°C. 2732°F.	Microhms, cm. cb.	1500°C. 2732°F.	Microhms, cm. cb.
Silver, fused	23.0 24.8 29.0 37.0 40.5 43.0 50.0 52.6 74.4	Iron (b), fused	
Tantalum, solid (a) Tin, fused Platinum (a), solid Iron (a), solid, about Calido, solid Lead, fused	78.0 80.5 98.0 131.0 136.0 148.0	Refrax Silfrax B Carbon grains (b) Graphite grains Kryptol Alundum, about	$0.5 \\ 0.7 \\ 0.85 \\ 1.2 \\ 3.4 \\ 750.0$

Notes.—The resistivity depends to some extent on the state of the metal. In general, cold drawing increases while annealing diminishes the resistance. Winding a wire into a coil apparently increases its resistance. For pure metals the resistance is roughly proportional to the absolute temperature and would apparently vanish at absolute 0°. For alloys the rule does not hold even approximately. For pure metals the Brinnell hardness number is indirectly proportional to the electric conductivity.

In "Engineering," Apr. 3, 1914, appeared a table of the relative resistances of metals in the liquid and solid states at

the melting point.

Metal resistance of liquid at melting point.

Sodium	1.35(a)	1.47(d)		
Potassium	1.36(a)	1.54(d)	2.1(c)	2.12(g)
Tin	(2.2 (b))	2.21(e)]	1.97(g)
Cadmium	1.8 (b)	1.96(e)		
Lead	1.9 (b)	1.95(e)		
Thallium	1	2.00(e)	1	
Zinc				
Mercury	4.0(a)	4.08(f)		1.5(h)
Antimony				
Bismuth		0.45(e)		0.46(q)

⁽a) A. Matthiessen.
(b) L. de la Rivé.
(c) W. Siemens.
(d) E. F. Northrup.
(e) G. Vincentini and D. Omodei.
(f) P. Cailletet and E. Bouty.
(g) G. Vassura.
(h) I. Chunganan

h) L. GRUNMACH.

ELECTRIC CONDUCTANCE OF ORE-FORMING MATERIALS¹

Metal	Good conductor	Inferior or non-conductor
Silver	Argentite, pyrargyrite,	
	proustite.	
Copper	Chalcocite, chalcopyrite,	
'	bornite.	chite, tetrahedrite, chrysocolla.
Lead	Galana	Cerussite, pyromorphite,
Cobait	Smaltite, linnæite, cobaltite.	crocoite, wulfenite, an- glesite, bournonite.
Nickel	Gersdorffite, niccolite, rammelsbergite.	
Tin	Cassiterite.	Stannite.
Zinc		Blende, calamine,
Antimony		smithsonite, stibnite.
Iron	Pyrite, pyrrhotite, mag- netite.	Marcasite, hematite, siderite, limonite, menaccanite, blackband.

¹ HOFMAN, "General Metallurgy."

VOLUME RESISTIVITY OF SOLID DIELECTRICS¹ (Materials arranged in order of decreasing resistivity)

Material	Resistivity, ohms-cm.	Material	Resistivity, ohms-cm.
Special paraffinover	5000×10^{15}	Black electrose	100×10^{12}
Ceresinover	$ 5000 \times 10^{18} $	Tetrachlornaphthalene	50×1013
Fused quartzover	5000×10^{15}	Mica(India ruby stained)	50×1012
Hard rubber	1000×10^{15}	German glass	50×10^{12}
Clear mica	200×10^{16}	Paraffined mahogany	40×10^{12}
² Sulphur	100×10^{16}	Stabalite	30×1012
² Amberite	50×10^{15}	Plate glass	20×10^{12}
² Rosin	50×1016	Hallowax No. 1001	20×10^{12}
² Mica (India ruby slightly		Dielectrite	5×1012
stained)	50×10^{15}	Gummon	3×10 ¹²
G. E. No. 55 R	40×1018	Tegit	2×1012
Hallowax No. 5055 B	20×10^{15}	Opal glass	1×10 ¹²
Mica(brown African clear)	20×10 ¹⁵		. ,
Bakelite L558	20×10^{15}	Paraffined poplar	500×10°
² Electrose No. 8	20×1018	Paraffined maple	300×10°
Selenium (in dark)	20×1015	Italian marble	100 × 10°
² Parowax (paraffin)	10×10^{15}	Bakelite micarta	50×10°
Glyptol	10×10^{18}	Black condensite	40×10°
² Shellac	10×1015	Yellow condensite	40×10°
Kavalier glass		Vulcabeston	20×10°
² Insulate No. 2	8×1015	White celluloid	20×10°
² Sealing wax		Hard fiber	20×10°
² Yellow electrose	5×1016	Black galalith	20×10°
² Duranoid	3×1018	Lavite	20×10°
² Murdock No. 100	3×1018	White galalith	10×10°
² Yellow beeswax	2×10^{16}	Hermit	10×10•
Khotinsky cement	2×10^{15}	Red fiber	5×10°
Ebonite	2×10^{15}	Marble, pink Tennessee.	
Porcelain		Gutta percha	2×10•
² G. E. No. 55A	1×1016	Marble, blue Vermont	1×10•
² Moulded mica	1×10^{15}		
	-/\20	Ivory	200 × 10°
Unglazed porcelain	300×10^{12}	Slate	100 × 10
Unglazed porcelain Redmonite (157.4)	$ 200 \times 10^{12} $	Bakelite No. 140	20 × 10
17			

¹ From publications of U. S. Bureau of Standards.

² Apparent resistivity taken after the voltage had been applied for 15 minutes.

DIELECTRIC CONSTANTS COMPARED WITH AIR!

The inductivity, dielectric constant, or specific inductive capacity K of a material may be defined as the ratio of the capacity of a condenser with the material as dielectric to its capacity when the dielectric is dry air. That is, if two exactly similar condensers, except for the dielectrics, have one plate of each connected, the other plate earthed, then the distribution of charge on the two will be proportional to K.

Bolids	K	Solids	R
Amber. Becawax Calcite Ebouite. Fluorite Glass, crown Glass, flint Gutta percha Gypaum Ice (- 2°) India rubber Marble Mica. Paper, dry Paper, impregnated Paraffin wax Pitch Porcelain Quarts Resin Rocksalt Rubber, vulcanized Selenium Shellac	7.5-7.7 2.05-3 15 6.8 5-7 7-9 6.8-10 3.6 6.3 93 9 2 1-2 3 8.3 4-8 2-2.5	Silica, fused Spermaceti Sulphur Vaseline Liquide Liquide Alcohol, methyl Alcohol, ethyl Alcohol, smyl Bromine Carbon disulphide Carbon disulphide Carbon tetrachloride Ohive oil Kerosene Petroleum crude Water Gases vary from 0 g to 1 0023 for carbon d Sulphur dioxide has a y at 15°C and 760 mm p	2,2-3 9 2,17 K 35.4 at 13.4°C. 26.8 at 14.7°C. 16.0 at 20°C. 3 1 2.62 2.25 at 18°C. 3 1-3.2 4.6-4 8 2.0-2.2 26 995 for helium isulphide vapor. alue of 1 00086

RESISTANCE OF ELECTROLYTES, COPPER REFININGS

Strength		Cui	8O4				Fei	804		H ₂	804
colution,	Ohme	_	Ohms cu. i		Oh	шв ес,		Ohma cu. i		Ohma per	Ohms per eu. in.
2.5 5 0 7.5 10.0 15 0 17 5	92 53 NI 24 22	•	37 21 12 10			65		20		4.8 2.5 1.8	1.9 1.0 0.7
20.0 25.0 30 0		* * *		•		28		10) 0	1 5 1.4 1.37	0 6 0.56 0.55

Compiled from various authorities.

*J. W. RICHARDS, "Metallurgical Calculations."

RESISTIVITY OF ELECTROLYTES (KOHLRAUSCH and HOLBORN)

	,	AUSCH and Iro				
Grams substance in 100 g. of solution	Sp. gr.	Resistivity, ohms per cc.	Temperature coefficient for 1°C.	Gram equivalents per liter		
	H ₂ SO ₄ at 18°C.					
1.0 2.5 5.0 10.0 15.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 85.0 90.0 95.0	1.0161 1.0331 1.0673 1.1036 1.1414 1.2207 1.3056 1.3984 1.5019 1.6146 1.7320 1.7827 1.8167 1.8368 1.8390 1.8354	21.93 9.24 4.82 2.57 1.85 1.54 1.36 1.48 1.86 2.70 4.67 9.13 10.30 9.38 9.84 12.50 118.00	0.00112 0.00115 0.00121 0.00128 0.00136 0.00145 0.00162 0.00178 0.00193 0.00213 0.00256 0.00349 0.00365 0.00320 0.00279 0.00286 0.00400	0.204 0.519 1.065 2.182 3.384 4.667 7.487 10.68 14.30 18.42 23.11 28.33 30.98 33.43 35.68 36.47 37.22		
		HCl as	t 10°C.			
5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0	1.0242 1.0490 1.0744 1.1001 1.1262 1.1524 1.1775 1.2007	2.55 1.59 1.35 1.32 1.39 1.52 1.70 1.95	0.00159 0.00157 0.00156 0.00155 0.00154 0.00153 0.00152	1.408 2.884 4.431 6.050 7.741 9.506 11.33 13.22		
		КОН а	t 15°C.			
4.2 8.4 12.6 16.8 21.0 25.2 29.4 33.6 37.8 42.0	1.0382 1.0777 1.1177 1.1588 1.2088 1.2439 1.2908 1.3332 1.3803 1.4298	6.85 3.69 2.67 2.20 1.97 1.86 1.85 1.92 2.10 2.39	0.00188 0.00187 0.00189 0.00194 0.00200 0.00210 0.00222 0.00237 0.00258 0.00284	0.619 1.580 2.515 3.477 4.534 5.599 6.778 8.001 9.319 10.730		
		KCN at	15°C.			
3.25 6.5	1.0154 1.0316	19.10 9.80	0.00208 0.00194	0.508 1.031		

RESISTIVITY OF ELECTROLYTES. Continued

Grams sub- stance in 100 g. of solution	Sp. gr.	Resistivity, ohms per cc.	Temperature coefficient for 1°C.	Gram equivalents per liter
		AgNO	s at 18°C.	
5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 50.0	1.0422 1.0893 1.1404 1.1958 1.2555 1.3213 1.3945 1.4773 1.5705 1.6745 1.7895 1.9158	39.47 21.20 14.78 11.57 9.53 8.14 7.17 6.45 5.88 5.44 5.09 4.80	0.00219 0.00218 0.00216 0.00213 0.00211 0.00210 0.00208 0.00206 0.00205 0.00206 0.00207 0.00210	0.307 0.642 1.009 1.410 1.851 2.338 2.879 3.485 4.168 4.940 5.800 6.780
		CuSO ₄	at 18°C.	
2.5 5.0 10.0 15.0 17.5	1.0246 1.0513 1.1073 1.1675 1.2003	92.4 53.2 31.4 23.8 21.9	0.00214 0.00217 0.00219 0.00232 0.00237	0.322 0.661 1.393 2.202 2.642

RESISTIVITY OF ELECTROLYTES

Grams substance in 100 g. of solution	Potassium chloride. resistivity, ohms per cc.	Sodium chloride resistivity, ohms per cc.	Calcium chloride resistivity, ohms per cc.
5 10 15 20 25	14.49 7.429 4.950 3.735	14.88 8.257 6.090 5.109 4.684	16.48 8.764 6.645 5.903 5.615
		•	

Grams substance in 100 g. of solution	Cadmium chloride resistivity, ohms per cc.	Ammon. sulphate resistivity, ohms per cc.	Cadmium sulphate resistivity, ohms per cc.
5 10 20 30	41.49 37.59	18.11 9.901 5.677 4.363	68.5

RESISTIVITY	OF	ELECTROLYTES.	Continued
RESISTIVITY	OF	ELECTROLYTES.	COMUTTUEA

Nitrie	acid	Sodium hydrate		
Grams HNOs per	Resistivity, ohms per cc.	Grams NaOH	Resistivity,	
100 cc. solution		per 100 cc. sol.	ohms per cc.	
6.2	3.205	2.5	9.266	
	1.845	5.0	5.076	
18.6	1.449	10.0	3.205	
24.8	$egin{array}{c} 1.302 \ 1.023 \end{array}$	15.0	2.890	
31.0		20.0	3.058	
49.6	1.577	30.0	4.950	
	2.016	40.0	8.621	

ELECTRIC RESISTANCE OF SOME METALLIC OXIDES¹ (Ohms per Cubic Centimeter)

Tem- perature deg. C.	Cr ₂ O ₃	Fe ₃ O ₄	SnO ₂	NiO	CaO	Al ₂ O ₃	SiO ₂	MgO	ZrO
	All of t	hese ha	ve a res	istance	of over	50,000	at room	temper	atures.
400	6,000	11,750	900.0	3,000	1	1	1	1 1	
45 0	2,450	4,300	400.0	1,115					
500	1,250	2,450	235.0	490		1			• • • • •
550	1,000	1,450	125.0	400			<i>.</i>		
600	850	1,200	6 8.0	330					• • • • •
650	1,175	845	56.0	240		l			
700	1,010	710		195					
750	950	510		121		1			
800	690	357		220		1			
850	668	290		280					• • • • •
900	520	210	28.0	190					
950	395	$\overline{162}$	25.5	81					
1,000	345	127	24.0	115					
1,050	335	117	23.0	93					
1.100	330	105	22.25	45					
Gas				-3					
blow									
pipe		• • • • •			550	190	590	600	580

It is safe to say that where the temperature exceeds 1500°C. it is impossible to obtain even approximately good electrical insulation by any means whatever. (Northrup.)

ever. (Northrup.)

All metallic oxides are solids and have a lower specific gravity than have the metals. They melt at higher temperatures than do the metals.

¹ Zt. Electrochem., 1907, xiii, 589; as given in Hofman's "General Metallurgy."

Electrostatic Separation¹

LIST OF MINERALS

od conductors Poor conductors

metals Quartz Quartzite

ite Calcite yrite Limestone **Porphyries**

Sandstones enum Garnet

glance or chalcocite lance or argentite Spinel

Blende or sphalerite pper or tetrahedrite ılphides Smithsonite (ZnCO₃)

opper minerals Barite on minerals Gypsum lver minerals Granite anganese minerals Fluorspar

Most silicates nde Most gangue rocks

Monazite ands

THE ANNEALED COPPER STANDARD

lation from the French text adopted at the Inter-| Electrical Commission, Berlin.

OF THE NATIONAL LABORATORIES CONCERNING AN INTERNATIONAL STANDARD FOR COPPER

I. Annealed Copper

ollowing values should be taken as normal for annealed

d copper.
20°C., the resistance of an annealed copper wire 1 meter d having a uniform cross-section of 1 sq. mm. is 1/58 0.017241 . . . ohm.

20°C., the density of annealed copper is 8.89 grams per

20°C., the coefficient of variation of resistance with ture of annealed copper, measured between potential is rigidly attached to the wire (constant mass), is $=\frac{1}{254.5}$ per deg. C.

nsequently, it follows from (1) and (2) that, at 20°C., tance of an annealed copper wire of uniform cross-section long and having a mass of 1 gram is $(\frac{1}{58}) \times 8.89$, or

. . . ohm.

II. Industrial Copper

e conductivity of annealed copper should be expressed emperature of 20°C. in percentage of that of standard 1 copper, and ordinarily to a precision of 0.1 per cent.

RICHARDS, "Ore Dressing," Vol. III.

2. The percentage conductivity of annealed industrial copper should be computed in accordance with the following rules:

(a) The observation temperature should not differ from 20°C.

by more than 10°C.

(b) The resistance of a wire of industrial copper one meter long and of 1 sq. mm. cross section, increases 0.000068 ohm

(c) The resistance of a wire of industrial copper 1 meter

long and of 1 gram mass, increases 0.00060 ohm per deg. C.

(d) The density of industrial annealed copper at 20°C. should

be taken as 8.89 grams per cubic centimeter.

This value of the density should always be employed in the computation of conductivity in percentage of that of the

annealed copper standard.

It follows from the above that if R is the resistance in ohms. at t deg. C. of a wire having a length of l meters and a mass of m grams, the resistance of a wire of the same copper 1 meter long and 1 sq. mm. cross-section will be

 $Rm/(l^2 \times 8.89)$ ohms at t deg. C. and $Rm/(l^2 \times 8.89) + 0.000068(20 - t)$ ohms at 20°C. The percentage conductivity of this copper is thus

$$\frac{100 \times \frac{0.01724}{Rm}}{l^2 \times 8.89} + 0.000068 (20 - t)$$

Similarly, the resistance of a wire of the same copper 1 meter long and 1 gram in weight is

 Rm/l^2 ohms at t°C., and $Rm/l^2 + 0.00060(20 - t)$ ohms at 20°C.

The percentage conductivity is thus

$$100 \times \frac{0.1533}{\frac{Rm}{l^2} + 0.00060(20 - t)}$$

Note 1. The standard values given in (I) are mean values deduced from a large number of tests. Among a number of samples of copper of normal conductivity, the density may differ from normal density up to 0.5 per cent., and the temperature coefficient of resistivity may differ from the normal up to 1 per cent.; but between the limits indicated in (II) these deviations will not affect the values of the computed percentage conductivity, if the resulting values are limited to four significant digits.

Note 2. The values above stated correspond to the following physical constants for standard annealed copper, all at the temperature of 0°C.

Density, 8.90 grams per cubic centimeter. Coefficient of linear expansion 0.000017 per deg. C.

Resistivity, 1.58791 microhm-cm.

Volume resistivity temperature-coefficient 0.004291 per deg. from and at 0°C.

Resistance temperature coefficient at constant mass, 0.00427 1/234.5 per deg. C. from and at 0°C.

Kelvin's Rule for Power Transmission

The most economical section of conductor is that for which annual interest on capital outlay is equal to the annual cost energy wasted.

COPPER WIRE TABLE

olid wires are not made larger than No. 0000. A solid wire larger than o. 3 is infrequently used, and the constants for wires larger than a No. 3 given for stranded wires. Although wires are sometimes used as large 1,000,000 circular mils, wires larger than 1,000,000 circular mils are not mon, and are omitted from the table. The carrying capacities are those cribed by the National Electrical Code.

Gage	Area in	Resistance in ohms per		capacity peres	Weight in pounds
umber	circular mils	1000 ft. at 25°C.	Rubber insulation	Other insulation	per 1000 ft.
18	1,620	6.51	3	5	4.92
16	2,580	4.09	6	10	7.82
14	4,110	2.58	15	20	12.4
12	6,530	1.62	20	25	19.8
10	10,400	1.02	25	30	31.4
8	16,500	$egin{array}{c} 0.641 \\ 0.403 \\ 0.320 \\ 0.253 \\ 0.201 \\ \end{array}$	35	50	50.0
6	26,300		50	70	79.5
5	33,100		55	80	100.0
4	41,700		70	90	126.0
3	52,600		80	100	159.0
2	66,400	0.163	90	125	205.0
1	83,700	0.129	100	150	258.0
0	106,000	0.102	125	200	326.0
00	133,000	0.0811	150	225	411.0
000	168,000	0.0643	175	275	518.0
0000	212,000 250,000 300,000 400,000 500,000	$egin{array}{c} 0.0510 \\ 0.0432 \\ 0.0360 \\ 0.0270 \\ 0.0216 \\ \hline \end{array}$	225 240 275 325 400	325 350 400 500 600	653.0 772.0 926.0 1,240.0 1,540.0
	600,000	0.0180	450	680	1,850.0
	700,000	0.0154	500	760	2,160.0
	800,000	0.0135	550	840	2,470.0
	900,000	0.0120	600	920	2,780.0
	1,000,000	0.0108	650	1,000	3,090.0

These two numerical values will probably be changed to 1.5880 and 428 by the National Physical Laboratories. Since reference is made usively to the values at 20°C, when measuring and stating percentage luctivity, these physical constants for 0°C, are of secondary importance agineering.

Properties of Resistor Wires1

		Resistivit	y, 20°C.	Maximum
Material	Composition Microhm- cm.		Ohms, mil. ft.	Working temp., °C.
Copper	Annealed	1.724	10.37	260
Copper	Cu 58, Ni 18, Zn 24	` 33.3	200.0	260
Manganin	Cu 84, Ni 4, Mn 12	41.4 —	249.0 —	100
•	ĺ	73.8	443.0	1
Monel metal	Cu, Ni	42.6	256.0	480
Therlo	Cu, Mn, Al	46.7	280.0	200
German silver		48.2	290.0	
Advance	Cu, Ni	48.8	294.0	370
a Ia	Cu, Ni	49.0	295.0	
Raymur	Cu, Ni	49.0	295.0	
Constantin	Cu 60, Ni 40	50.0	300.0	
	Nickel steel	85.9	517.0	
Phenix	Nickel steel	87.0	524.0	540
Climax	Nickel steel	87.2	525.0	540
Calido	Ni - Cr	95.5	575.0	1090
Tophet	Ni - Cr	96.0	580.0	
Nichrome	Ni - Cr Ni - Cr	99.6	600.0	900
Nichrome II	T 7 T T T T T T T T T T T T T T T T T T	109.5	660.0	1100
Calorite	Ni - Cr	119.5	720.0	870

FUSING CURRENTS FOR COPPER WIRE

The following table has been tested for copper-wire fusing currents and was found to be closely correct for average conditions, according to the Electrical Review.

Size wire, B. & S.	Fusing current, ampere	Size wire, B. & S.	Fusing current, ampere
30 28 26 25 24 22 21 20 19	10 15 20 25 30 40 50 60 70	18 17 16 15 14 13 12 11	80 100 120 140 160 200 240 280 330

If heat be developed in an electrical conductor faster than it can be dissipated from its surface by radiation and convection, the temperature will rise. The allowable rise in temperature is one of the limiting features of the current-carrying capacity of any conductor, since the rate at which heat will be dissipated will depend upon many conditions, such as the size and structure of the conductor, the kind and amount of insulation, if any, and the location with respect to other bodies. It is not possible to give any general definite rule for carrying capacity that will be true for all conditions.

¹ Standard Electrical Handbook.

The general subject of fusing currents for copper wire was investigated by W. H. Preece, who developed the formula: $I = ad^{\frac{3}{2}}$ where I is the fusing current in amperes, d is the diameter of the wire in inches, and a is a constant depending on the material. He found the following values for a.

WIRE RESISTANCE TABLE¹

Gage No. B. & S.	Diam. in mils, 20°C.	Cross-section at 20°C., sq. in.	Copper ¹² ohms per 1000 ft.	Aluminum, sohms per 1000 ft.
0000	460.0	0.1662	0.04901	0.0804
00	364.8	0.1045	0.07793	0.128
1	289.3	0.06573	0.1239	0.203
2	257.6	0.05213	0.1563	0.256
2 4 6 8	204.3	0.03278	0.2485	0.408
6	162.0	0.02062	0.3951	0.648
8	128.5	0.01297	0.6282	1.03
10	101.9	0.008155	0.9989	1.64
12	80.81	0.005129	1.588	2.61
14	64.08	0.003225	2.525	4.14
16	50.82	0.002028	4.016	6.59
18	40.30	0.001276 .	6.385	10.5
20	31.96	0.0008023	10.15	16.7
22	25.35	0.0005046	16.14	26.5
24	20.10	0.0003173	25.67	42.1
26	15.94	0.0001996	40.81	67.0
28	12.64	0.0001255	64.90	106.0
3 0	10.03	0.00007894	103.2	169.0
32	7.95	0.00004964	164.1	269.0
34	6.305	0.00003122	260.9	428.0
36	5.000	0.00001964	414.8	689.0
38	3.965	0.00001235	659.6	1080.0
40	3.145	0.000007766	1049.0	1720.0

Sparking Distances in Electrical Installations.—A mass of reliable data is now available concerning sparking distance between electrodes of simple geometrical form (needle points, disks, spheres, etc.), under various conditions, but little infor-

^{1 &}quot;Standard Electrical Handbook."

² Standard annealed, at 20°C. 3 Hard drawn, at 20°C.

mation has hitherto been available concerning sparking distances between metallic conductors and walls in workshops and on switchboards, etc. This problem, which is obviously of great practical importance was recently investigated by GINO REBORA (see also Atti dell' Associazione Elettrot. Italiana No. 31,913). and the first result deduced was the fact that a grain of dust or a fine hair or fiber would often suffice to start discharge from a high-tension conductor. A point or angularity in a conductor may cause a discharge to occur which would otherwise require 30 per cent. higher pressure than that actually operative; it is therefore very desirable that all metal subject to high-tension current should be as free as possible from points and angularities of any kind. The black lines frequently seen on switchboards and walls behind high-tension conductors reveal the presence of sustained feeble discharges which bombard the surface near the conductor with particles of dust.

From observations made in 30 installations, working at pressures between 3000 and 110,000 volts, Rebora derives a curve showing the minimum safe distance between conductor and earthed walls or metal covers, etc. As shown by the following data, his limits are rather less stringent than those recommended

(but not always observed) by the G. E. C.:

P. D.		20	40	60	80	100 Kilovolta
Minimum distance between conductor and earth, , , ,	Rebora G, E, C			1		590 Mm. 770 Mm.

As regards the effective height of porcelain insulators of pylon form, used as intermediate insulators on distribution boards, etc., this height increases almost linearly at the rate of 5 or 5½ mm. per kilovolts for pressures up to 80 kv., and then increases more rapidly, to a total of 580 mm. for 100 kv. and 930 mm. for 130 kv. In deriving these data, Magrini, A. E. G., and Richard Ginori insulators were tested.

In the course of investigations conducted in the Ecole Polytechnique de Milan with a view to determining the laws of discharge between conductor and masonry, etc., copper wires, 2, 4, 5, 6 and 8 mm. in diameter, a bar 3 × 10 mm., and a brass tube 23/2 mm. in external and internal diameter were used. As second electrodes were employed in turn walls of cement, stone, hollow brick, eternite, and metal frameworks. The maximum testing pressure available was 100 kv. at 42 cycles per second. When the conductor under test was pointed straight at the wall, breakdown occurred at 20 per cent.—25 per cent. lower P. D. (for separations of 100 to 250 mm.) than would be required to produce discharge between needle points the same distance apart. This is a result of great practical importance, since live metal parts are frequently so arranged in high tension installations as to produce reductions in the factor of safety.

Thermoelectricity¹

When two different metals are brought into contact so that he two junctions are at different temperatures, there will usully be a slight current of electricity produced. The effective lectromotive force is

volts =
$$\frac{(T_2 - T_1)[(B' - B'') + (C' - C'') \frac{T_2 + T_1}{2})}{100,000,000}$$

where T_2 and T_1 are the temperatures of the junctions, and and C constants as given in the following table:

Metal	В	C	Metal	В	C
teeloft platinumlard platinumlagnesiumlerman silver	$+1139 \\ + 61 \\ + 260 \\ + 244 \\ +1207$	$\begin{array}{r} -4.87 \\ -3.28 \\ -1.10 \\ -0.75 \\ -0.95 \\ -5.12 \\ +2.40 \end{array}$	Copper Lead	$ \begin{array}{r} +283 \\ +136 \\ 0 \\ -43 \\ -77 \end{array} $	+1.50 +1.02 +0.95 +0.00 +0.55 +0.39

The behavior of nickel is anomalous. Antimony and bisauth produce the greatest current of any two metals, but here gain, the constants vary greatly according to the absolute emperatures of the junctions.

PENETRATING POWER OF X-RAYS²

Substance	Specific gravity	Trans- parency	Substance	Specific gravity	Trans- parency
Vaterluminumllassincl	1.00 2.67 2.70 7.29 7.16 7.78 8.51	1.000 0.380 0.340 0.118 0.116 0.101 0.095	Copper Silver Lead Mercury Gold Platinum	8.92 10.24 11.39 13.59 19.63 21.53	0.084 0.070 0.055 0.044 0.030 0.020

Specific Gravity Tables

The following tables give the average specific gravities of nost solids and liquids of importance in mining and metallurgy. There are separate tables for water, mercury, gases and the most mportant minerals.

Comparison of Standards.—Hydrogen, air and water are the hree standards commonly used in the determination of the pecific gravity of gases, liquids and solids. The relative ensities of these standards are as follows:

Air (dry) is 14.418 times as heavy as hydrogen, at the same

emperature and pressure, volume for volume.

Water (max. density, 4°C.) is 773 times as heavy as dry air t 30°F., bar. 29.92 in.; and 815 times as heavy as dry air at 0°F., bar. 30 in., volume for volume.

¹ "Encyclopedia Americana," Vol. XV, "Thermoelectricity."

² The wave length of X-rays is apparently about 10⁻⁹ to 10⁻⁸ cm. The able is from the General Electric Review.

170 METALLURGISTS AND CHEMISTS' HANDBOOK

Specific Gravities and Unit Weights of Solids and Liquidi

Substance	Average sp. gr. (water = 1)	Average weight (lb. per cu. ft.
Alcohol, pure at 20°	0.789	49.2
commercial	0.834	52.1
Aluminum (cast)	2.56 - 2.71	164.0
(rolled)	2.66	166.0
Antimony	6.71	419.0
Argon (liquid, — 185°)	1.4	87.3
Arsenic (amorphous)	5.71	356.0
(crystallized)	5.73 5.71	358.0 356.0
(molten)	3.71 3.2	200.0
Ashes (packed)	$\begin{array}{c} 3.2 \\ 0.72 \end{array}$	45.0
Asphalt (1 to 1.8)	1.4	87.0
Barium	3.78	236.0
Beryllium	1.93	120.0
Bismuth (com'l)	9.74 - 9.92	614.0
(distilled)	9.78	611.0
(molten)	10.04	627.0
Boron	2.45	153.0
Brass, cast (7.8 to 8.4) 70 Cu, 30 Zn	8.1	506.0
rolled, 70 Cu, 30 Zn	8.4	524.0
Brick (fire)	• • • • • • • • • • •	140-150
(soft)	• • • • • • • • • • •	100.0
Brickwork, masonry (1.8 to 2.3)	3.187	110-140
Bromine (at 0°C.)	3.187 ··· 8.8	199.0 550.0
Cadmium	8.60-8. 7 0	540.0
(molten)	7.99	499.0
Caesium	1.87	117.0
Calcium	1.85	115.0
Carbon disulphide	1.29	80.5
Cement (Portland, loose)		78-102
Cement (Portland, loose)		50-60
Cerium	6.68	417.0
Chalk	2.5	156.0
Charcoal		13.0
Chromium	6.52 - 6.73	414.0
Clay (1.8 to 2.6)	$\begin{array}{c} 2.2 \\ 1.5 \end{array}$	137.3 93.6
Coal, anthracite (1.3 to 1.7)bituminous (1.2 to 1.5)	1.3	81.15
cannel, gas coal (1.18 to 1.28)	1.23	76.78
lignite, brown coal	1.1	68.67
Cobalt	8.50-8.80	540.0
Coke, loose piled		20 - 30
	2.3	144.0
Copper, cast (8.6 to 8.8)	8.7	543.0
deposited	8.92	557.0
molten	8.22	513.0
_ rolled (8.8 to 8.95)	8.9	556.0
Cork	0.24	14.98
Diamond	3.52	70 05
Earth, dry, loose to well rammed	• • • • • • • • • • • •	76-95 78-96
wet, flowing mud	• • • • • • • • • • • •	105-115
Emery	4.0	250.0
Erbium	4.97	310.0
		45.9
	U. 735	40.7
Ethyl ether	0.735 5.92	370.0

IC GRAVITIES AND UNIT WEIGHTS OF SOLIDS AND LIQUIDS

Substance	Average sp. gr. (water = 1)	Average weight (lb. per cu. ft.
	2.52	157.0
flint)	2.93 1.26	200.0
.25 to 19.37)	19.31	88.7
ed)	19.27	1203.0
(2.56 to 2.88)		170.0 137.0
Oose		95-120
ne (trap)	•••••	
ground or calcined, loose		
ined	<i></i> .	130-150
ide		200-220
	0.92 4.95	57.5 309.0
	7.12	444.0
4 ann. 700 mhita	$\begin{array}{c} 22.42 \\ 7.6 \end{array}$	1400.0
t gray, 7.08, white		450.0 429.0
	7.68	480.0
nt, sheet (7.6 to 7.9)	7.8 6.15	485.0 384.0
1m	11.35	710.0
n)	10.64	664.0
icklime)		75.0 93.75
, loose (66 lb. per bushel)	••••••	53.0
.0	2.7	168.0
	0.59	36.8 65-100
ım	1.74	109.0
se	7.39^{2} 2.65	461.0
		160-180 100-140
(32°F.)	13.5955	850.0
- 40°F	13.555 15.632	847.0 976.0
- 10 F	2.8	175.0
num		537.0
um.		90-105 434.0
····	8.9	556.0
•••••	8.86	553.0
0 to 0.975), weight given in pounds	12.7	793.0
gallon: . lard	0.916	7.64
n (pure)	0.880	7.34
e	0.925	7.72
l, petroleum (crude)	0.77-1.06 0.700	5.84
enesene (coal oil)	0.800	6.68
tha	0.730	6.09
ble, cottonseeded (boiled)	$0.923 \\ 0.933$	7.70 7.79
(raw)	0.933	6.51
• • • • • • • • • • • • • • • • • • • •	0.917	7.65
(colza)	0.915	7.63

so special table on p. 174.
1 as 8.30 by Nystrom.

SPECIFIC GRAVITIES AND UNIT WEIGHTS OF SOLIDS AND LIQUI

SPECIFIC GRAVITIES AND UNIT WEIGH		
Q.1	Average	Average
Substance	sp. gr.	weight
	(water = 1)	(lb. per cu. 1
Osmium	22.48	1403.0
Palladium	11.90	743.0
Peat (dry, unpressed)	0 94	20-30
(white)	$\begin{array}{c} 2.34 \\ 1.837 \end{array}$	146.0 115.0
Pitch	1.155	72.0
Platinum wire	21.5	1342.0
Potassium	0.875	54.9
Præseodymium	6.475	404.0
Pumice		50 –60 [:]
Quartz	$2 \cdot 65$	165.0
(broken)		94.0
Rhodium	12.60	787. 0
Rosin	$\begin{array}{c} 1.1 \\ 1.52 \end{array}$	68.67
Ruthenium	$\begin{array}{c} 1.32 \\ 12.06 \end{array}$	94.9 753.0
Salt.		45.0
Samarium	7.75	484.0
Sand (dry)		100.0
(wet)		130.0
Sandstone (2.1 to 2.7)	2.4	150.0
Selenium (gray metal)	4.8_	293.0
(red)	4.47	279.0
Shale (2.4 to 2.8)	2.6	162.0
Silicon (amorphous)	$2.00 \\ 2.195$	125.0 127.0
(crystallized)	10.75	137.0 671.0
Silver (cast)(electrolytically deposited)	10.53	655.0
(molten)	9.51	594.0
Slate (2.7 to 2.9)	2.7	169.0
Snow (fresh, dry)		5-12
(wet)	. <i>.</i>	15-50
Soapstone	1.2	166.0
Soda ash,	0.972	74.0 60.7
Steel (7.69 to 7.93)1	7.85	490.0
Strontium	2.54	159.0
Sugar	1.6	
Sulphur	1.96-2.07	125.0
Tallow	0.94	58.7
Tantalum	16.6	1036.0
Tar	1.0	62.5
Tellurium	6.25	390.0
ThalliumThorium	11.85 12.16	740.0 759.0
Tin (cast)	7.29	459.0
(molten)	7.02	438.0
Titanium	4.87*	304.0
Traprock	3.0	187.0
Tungsten	18.7-19.10	1180.0
Uranium	18.69	1667.0
Vanadium	5.50	337.0
Water ² (max. density 4°C.)	1.0	62.428
(pure, 62°F.) (pure, 212°F.)	0.999 0.958	62.3 66
sea, average	1.028	59.8 06 64.176
Wax (bees),	0.97	60.5
1 Pure and soft The specific gravity doore		

¹ Pure and soft. The specific gravity decreases as the carbon increases
² See special table on p. 173 for water.
³ Given in HOFMAN'S "General Metallurgy" as 5.30.

NOTE.—Most of the constants for the chemical elements are taken from the specific gravities of the metals, there are usually two values gives the low figures are usually those of cast metals, the high ones of metal eith finely rolled or drawn into fine wire. finely rolled or drawn into fine wire.

Substance	Average sp. gr. (water = 1)	Average weight (lb. per cu. ft.)	
nd, dry, seasoned:			
sh, white	0.6-0.8	38.0	
irch		41.0	
edar, white		23.0	
red		35.0	
herry		42.0	
hestnut		41.0	
lm		35.0	
bony		. 76.0	
ir, Douglas		20.0	
emlock		25.0	
ickory		53.0	
ahogany, Spanish		53.0	
Honduras		35.0	
	• • • • • • • • • • • • • • • • • • • •	49.0	
ak, live		59.0	
white	0.8	48.0 · 35-45	
black, jack, etc		25.0	
ne, whiteyellow, Northern	0.52	34.0	
Southern	- • • • • • • • • • • • • • • • • • • •	45.0	
oplar (cottonwood)		33.0	
ruce		25.0	
/camore		37.0	
alnut		37.0	
ium	3.8	237.0	
	7.15	446.0	
nolten)	6.48	405.0	
onium	$6.\overline{25}$	390.0	

DE	NSITIES OF	WATER A	T DIFFERENT	Темре	RATURÉS
C.	0.999868	15	0.999126	29	0.995971
į	0.999927	16	0.998970	30	0.995673
	0.999968	17	0.998801	31	0.995367
1	0.999992	18	0.998622	40	0.99224
İ	1.000000	19	0.998432	50	0.98807
1	0.999992	20	0.998230	60	0.98324
}	0.999968	21	0.998019	70	0.97781
ļ	0.999929	22	0.997797	80	0.97183
	0.999876	23	0.997565	90	0.96534
	0.999808	24	0.997323	100	0.95838
l	0.999727	25	0.997071	110	0.951
l	0.999632	26	0.996810	150	0.917
	0.999525	27	0.996539	200	0.863
	0.999404	28	0.996259	$\overline{250}$	0.79
Ì	0.999271			300	0.70

The above tables are founded on Thiessen's figures as given in "Annuaire 1914, Bureau des Longitudes." Other authorities give values somewhat er his.

PROPERTIES OF WATER1

Tempera- ture, deg. F.	Weight in pounds per cubic foot	Relative volume	Tempera- ture, deg. F.	Weight in pounds per cubic foot	Relative volume
32.0	62.418	1.00011	100	62.02	1.00686
39.1	62.425	1.00000	120	61.74	1.01138
50.0	62.41	1.00025	140	61.37	1.01678
60.0	62.37	1.00092	160	60.98	1.02306
62.0	62.355	1.00110	180	60.55	1.03023
70.0	62.31	1.00197	200	60.07	1.03819
80.0	62.23	1.00332	210	59.82	1.04246
90.0	62.13	1.00496	212	59.76	1.04332

For sea water, multiply the above by 1.026. One U. S. gallon of water at 62°F. weighs 8.3356 lb. Water freezes at 32°F.; is at its maximum density at 39.1°F., British standard for sp. gr., 62°F.; boiling point at sea-level, 212°F.

¹ From Pierce and Carver's "Formulas and Tables for Engineers."

PAYNE'S TABLE FOR WATER IN AIR1

The following table will give the amount of water weighed in air with brass weights necessary to fill a liter flask to the 1000 cc. mark at 20°C.

Temperature of water	Apparent weight	Temperature of water	Apparent weight
15	998.0	24	996.6
16	997.9	25	996.3
17	997.7	26	996.1
18	997.6	27	995. 9
19	997.5	28	995.6
20 (standard)	997.3	29	995.4
21	997.1	30	995.1
$\overline{22}$	996.9	31	994.9
$\overline{23}$	996.8	32	994.5

¹ FOULK'S "Manual of Qualitative Analysis."

Densities of Mercury¹

Tempera- ture deg. F.	Pounds per cubic inch		Pounds per cubic inch		Pounds per cubic inch
0 10 20 30 32	0.4928 0.4923 0.4918 0.4913 0.4912	40.0 50.0 58.1 60.0 70.0	0.4907 0.4903 0.4899 0.4898	80 90 100 110	0.4888 0.4883 0.4878 0.4873

Tempera- ture deg. C.	Grams per cc.	Tempera- ture deg. C.	Grams per	Tempera- ture deg. C.	Grams per
-20 -10 0 10 20 30	13.6450 13.6202 13.5955 13.5708 13.5462 13.5217	40 50 60 70 80 90	13.4973 13.4729 13.4486 13.4243 13.4001 13.3759	100 150 200 250 300	13.3518 13.233 13.068 12.998 12.881

¹ ELLENWOOD's "Steam Charts."

KIRBY'S TABLE OF WEIGHTS OF ORE IN PLACE1

	Weight per cubic foot		Cubic feet per ton	
Material	Theoret- ically, ² pounds	Practically, pounds	Theoret-ically ²	Prac- tically
Galena Pyrite Blende Hematite Limonite Dolomite Limestone, andesite, syenite	465 313 250 303 238 175 168	426 286 235 267 213 160 154	4.3 6.4 8.0 6.6 8.4 11.4 11.9	4.7 7.0 8.5 7.5 9.4 12.5 13.0
Vein quartz, granite and granitic rocks	168 163 187	148 136 164	11.9 12.3 10.7	13.5 14.5 12.2
Vein quartz, with 15 per cent. pyrites Vein quartz, with 10 per cent. hema- tite	180	160 155	11.1	12.5 12.9

McDonald's Table of Weights of Ore1

Madarial	Weight per cubic foot		Cubic feet per ton	
Material	In place, pounds	Broken, pounds	In place	Broken
Granite and porphyry	170	97	11.8	20.6
Gneiss	168	96	11.9	20.8
Greenstone and trap		107	10.7	18.7
Limestone	168	96	11.9	20.8
Slate		95	11.4	21.1
Quartz		94	12.1	21.3
Sandstone	151	86	13.2	23.3
Earth in bank	iii		18.0	
Earth dry and loose		74		27.0
Clay		l 	17.0	
Sand	80	1	25.0	

¹ Probably for ore as delivered to mill.

WEIGHT OF ROOK AND SANDI

WEIGHT OF ROCK AND	DAND.	
	Cubic feet per ton	Weight in pounds per cubic foot
Sulphide ore in place	11 to 13	154 to 182
Sulphide ore broken	15 to 18	111 to 133
Oxidized ore in place	14 to 18	111 to 143
Oxidized ore broken	22 to 24	81 to 91
Quartz in place (sp. gr. = 2.65)	12.0	165.0
Quartz broken	21.0	94.0
Earth in bank	18.0	111.0
Earth, dry and loose	27.0	74 .0
Clay	17.0	118.0
Loose sand	25.0	80.0
Mill tailing ² (sp. gr. 2.7)		
Sand collected under water	21.5	93.0
Transferred sand (before leaching)	26.0	77 .0
Leached sand (after transferring)		83.3

¹ From MacFarren's "Cyanide Practice." "Mining and Scientific Press,"

San Francisco, Calif.

2 W. A. CALDECOTT, Journ. Chem., Met. and Min. Soc. of S. A., Oct., 1910.

¹ R. H. RICHARDS, "Ore Dressing, Vol. II."

² Calculated from specific gravity of pure unaltered specimens.

DENSITY AND HARDNESS OF MATERIALS¹

	Specific	. =
	gravity	Hardness
Acids and oxides:	0.40.0.70	
Arsenious acid, As ₂ O ₃	3.69-3.70 1.48	$\begin{array}{c} 1.5 \\ 1.0 \end{array}$
Titanic acid, anatase, TiO2	3.88	5.5-6.0
brookite, TiO2	4.14	5.5-6.0
rutile, TiO ₂	4.28 3.90-4.02	$\begin{array}{c} 6.0 - 6.5 \\ 9.0 \end{array}$
Cuprite, Cu ₂ O	5.99	3.75
Diaspore, Al(OH) ₃ ·Al ₂ O ₃	3.37	6.5
Tin oxide (cassiterite), SnO ₂	6.30-7.10 $6.20-6.30$	6.5 3.0-4.0
• Hematite, Fe_2O_3	4.54-5.28	6.0
Magnetite, Fe ₃ O ₄	4.94-5.18	5.5
Ferric oxide (hydrated) limonite	$\begin{array}{c} 3.60-4.00 \\ 0.92 \end{array}$	5.5
Magnesia (periclase), MgO	3.67	6.0
Magnesia (hydrated, brucite), Mg(OH)2	2.35	2.5
Manganese oxide, braunite,	$\begin{array}{c} \textbf{4.75} \\ \textbf{4.72} \end{array}$	6.0-6.5 5.0-5.5
pyrolusite, MnO ₂	4.82-4.97	2.0
Silica, agate, SiO2	2.58 - 2.62	6.0
quartz, SiO ₂	2.65	7.0
Opal (hydrated silica)	2.03-2.09 6.01-8.07	5.5-6.5 5.5
Zincite, ZnO	5.57	4.0-4.5
Aluminates:		
Spinel, MgO·Al ₂ O ₃	3.55	8.0
Anorthite, Ca ₂ Al ₄ Si ₄ O ₁₆	2.7	6.0-7.0
Antimonides: Breithauptite, NiSb	7.54	5.5
Antimonite, Sb ₂ S ₂	4.57	2.5
Arsenides:		
Cobalt arsenide, smaltite, (Co, Ni) As2	6.41	5.5
Nickel arsenide, niccolite, NiAs	7.75 7.72	3.0-3.5 5.5
Borates:		0.0
Boracite, Mg7Cl2B16O30		5.0-7.0
Borax, $Na_2B_4O_7\cdot 10H_2O$	1.72	2.0
Bromides:	F 00 4 00	0.000
Silver bromide, AgBr	5.80-6.00	2.0-3.0
Carbonates: Aragonite, CaCO ₂	2.93-2.94	3.5-4.0
Azurite, $3Cu_3C_2O_7.7H_2O$	3.70-3.83	.4.0
Calcite, CaCO ₃	2.70-2.73	3.0-3.6 5
Cerussite, PbCO ₃	6.57 $2.83-2.94$	3.25 3.75
Malachite, Cu ₂ CO ₄ ·H ₂ O	3.93	3.5
Magnesite, MgCO ₃	3.0	3.5-4.5
Siderite, FeCO ₃	3.83-3.88 4.30-4.45	3.5-4.0 5.0
Stronianite, SrCO3	3.60-3.71	3.5-4.0
Witherite, BaCO ₃	4.28	3.5
Chlorides:	0 70	0.0.0.
Atacamite, Cu ₂ (OH ₂)Cl	3.70 6.48	3.0-3.5 1.0-2.0
Carnallite, KMgCl ₃ ·6H ₂ O	1.6	1.0
Cerargyrite, AgCl	5.31 - 5.43	1.5
Rock salt, NaCl	2.26	$\begin{array}{c} 2.5 \\ 2.0 \end{array}$
Chromates:	1.00 A.00	2. 0
Lead chromate, PbCrO ₄	5.90-6.10	2.5-3.0
Chromite, FeCr2O4		5.5
¹ From "Annuaire pour 1914, par le Bureau des	Longitudes."	

. •	Specific gravity	Hardness
'luorides:		
Cryolite, Na:AlF6	2.96 3.14-3.19	2.5 4.0
Wulfenite, PbMoO4	6.95	3.0
liobates and Tantalates:	= 0.4	
Fergusonite, Y, Er, Ce, Nb, Ta, O Niobite, FeNb ₂ O ₆	5.84 5.60-6.00	5.5-6.0 6.0
Samarskite	5.54	5. 0-6.0
Tantalite, FeTa ₂ O ₆	7.03	6.0
Vitrates: Saltpeter, KNOs	1.94	2.0
'hosphates:	0 00 0 00	. .
Apatite	2.90-3.20 3.57	$\substack{5.0 \\ 2.0-2.5}$
Monazite (Ce, La)PO ₄	5.00-5.09	5.2
Pyromorphite, Pb ₅ Cl(PO ₄) ₃	6.59-7.05	3.5-4.0
Turquoise	2.52-2.80	6.0 2.0-2.5
ilicates:	J. 40-J. 00	2.0-2.0
Albite	2.60-2.62	6.0
Amphibole	2.92-3.59	5.5
Andalousite, Al ₂ SiO ₅	3.14-3.16	7.5 5.0-6.0
Emerald (beryl)	2.67-2.75	7.5-8.0
Epidote	3.46	6.5
Feldspar orthoclasealbite	2.50-2.59 $2.60-2.62$	6.0 6.0
oligoclase		6.0
andesite	2.67-2.68	
labradoriteanorthite	2.70-2.72 2.75	6.0
Gadolinite, Be ₂ FeY ₂ Si ₂ O ₁₀	4.23-4.33	6.5-7.0
Granite	3.42 - 4.20	• • • • • • •
Hornblende	2.90-3.40	5.0-6.0 5.0-6.0
Idocrase	3.29 - 3.43	6.5
Jadeite, NaAl(SiO ₃) ₂	3.28-3.35	6.5 - 7.0
Lapis-lazuli	2.50-3.04 3.33-3.41	5.0-5.5 6.5-7.0
Phenacite, Be ₂ SiO ₄	2.96	7.5-8.0
Olivine $(Mg, Fe)_2SiO_4$		6.0-7.0
MicaPyroxene, diopside	3.32	2.0-2.5 4.0-6.0
augite	3.30	5.5
hedenbergite	3.50	7.0
Quartz, SiO ₂	$\begin{array}{c} 2.65 \\ 3.64 \end{array}$	7.0 5.5-6.5
Serpentine. Sillimanite, Al ₂ OSiO ₄	2.6	3.0 - 4.0
Sillimanite, Al ₂ OSiO ₄	3.24 4.19-5.22	7.5 4.5–5.0
Thorite, ThSiO ₄	4.19-5.22	5.0
Wollastonite, CaSiO ₃	2.80-2.90	4.5 - 5.0
Zircon, ZrSiO ₄	4.04-4.67	7.5
lydrated silicates: Calamine, Zn ₂ (OH) ₂ SiO ₃	3.35-3.50	5.0
Chrysocolla, CuSiO ₃ ·2H ₂ ()		3.5
Halloysite	1.92 - 2.12	• • • • • • •
Kaolin	$2.5 \\ 1.80-2.20$	$1.0 \\ 2.0-2.5$
Pyrophyllite, HAl(SiO ₃) ₂	2.78	1.5
Talc	2.71	1.0
Thomsonite	2.38	5.0-5.5
ilicoborate: Tourmaline	3.04-3.20	7.0-7.5
10	-10- 0.20	

178 METALLURGISTS AND CHEMISTS' HANDBOOK

•	Specific	Hardness
Silicochloride:	gravity	2101011000
Pyrosmalite	3.08	4.0-4.5
Sodalite	2.38-2.42	5.5 - 6.0
Silico-fluorides:	0.07	4.0
Leucophane	2.97 2.71–3.13	4.0 2.0-3.0
Topas		8.0
Siliconiobate:		_
Wöhlerite	3.41	5.5-6.0
Sulphates:	0 00 0 00	9.0
Anglesite, PbSO ₄		3.0 3.0–3.5
Barite, BaSO ₄	4.48-4.72	3.0
Celestite, SrSO ₄	3.92-3.96	3.0-3.5
Epsomite, MgSO ₄ ·7H ₂ OGlauberite, Na ₂ SO ₄	1.75 $2.64-2.85$	2.0-2.5
Gypsum, CaSO ₄ ·2H ₂ O	2.33	2.0
Kainit, MgSO ₄ ·KCl·3H ₂ O	2.1	2.5
Sulphides:	7 04	0.5
Argentite, Ag ₂ S	7.24 6.40	2.5 2.0
Blende (sphalerite), ZnS	4.09	3.5-4.0
Bornite, Cu ₂ FeS ₂	4.40-5.50	3.0
Chalcocite, Cu ₂ S	5.78 4.17	$2.75 \\ 4.0-4.2$
Cinnabar, HgS	8.12-8.20	2.5
Erubescite, Cu ₃ FeS ₃	5.05	3.0
Galena, PbSGreenockite, CdS	7.26-7.60 4.99	2.75 3.0-3.5
Marcasite, FeS2	4.77-4.86	6.0 - 6.5
Millerite, NiS	5.65	3.5 1.5
Molybdenite, MoS ₂	$\begin{array}{c} 4.94 \\ 3.45 \end{array}$	1.75
Pyrite, FeS ₂	4.85-5. 04	6.0
Pyrrhotite, FeS	4.62 3.64	$\begin{array}{c} 4.0 \\ 2.0 \end{array}$
Realgar, AsSStibnite, Sb ₂ S ₃	$\begin{array}{c} 3.04 \\ 4.62 \end{array}$	2.0
Sphalerite, ZnS	4.09	3.5 - 4.0
Sulph-antimonides:	r mr r 00	0.7.0.0
Bournonite, PbCuSbS2	5.75-5.83 5.61	$\substack{2.5-3.0\\2.5}$
Pyrargyrite, Ag ₂ SbS ₃	5.86	2.5
Sulph-arsenides:		
Cobaltite, CoAsS Enargite, Cu ₃ AsS ₄	6.26-6.37 4.36	5.5 3.0
Mispickel, FeAsS	5.22-6.07	5.5-6.0
Proustite, Ag:AsS:	5.50	2.0 - 2.5
Tellurides:	6.68-7.20	1.0-1.5
Nagyagite, Au, Pb, Sb, Te, S Tetradymite, Bi, Te, S	7.41	1.5-2.0
Petzite (Ag, Au) ₂ Te	8.83	2.5 - 3.0
Sylvanite, AuAgTe ₄	8.28	2.0
Titanates: Ilmenite, FeTiOs	4.89	5.0-6.0
Tungstates:	1.00	0.0 0.0
Scheelite, CaWO4	6.07	4.5-5.0
	7.14-7.36	5.0-5.5
Vanadates: Descloizite	5.84	3.0-5.0
Vanadinite, Pb ₅ Cl(VO ₄) ₃		3.0
Combustibles:		
Anthracite	1.34-1.46 0.83-1.16	
Bituminous	1.28-1.36	• • • • • • •
Lignite	1.10-1.35	• • • • • • •

The Principal Concentrating Ores and Gangues¹

7	Specific gravity	Hardness
Lead: Galena Cerussite Anglesite.	6.57	2.0-3.0 3.75 3.0
Copper: Melaconite. Cuprite. Chalcocite. Bornite. Chalcopyrite. Malachite. Chrysocolla.	6.0 3.99-4.02 5.78 4.40-5.50 4.17 3.93 2.00-2.20	3.0-4.0 2.75 3.0 3.5-4.0 3.5-4.0 2.0-4.0
Iron: Mispickel Magnetite Pyrite Marcasite Fyrrhotite	4.94-5.18 4.85-5.04	5.5-6.0 5.5-6.5 6.0-6.5 6.0-6.5 4.0
Zinc: Smithsonite Sphalerite Willemite	4.30-4.45 4.09 4.01	3.5-4.0 5.0
Ganques: Barite (heavy spar) Manganese garnet Iron garnet Lime garnet Fluorite (fiuorspar) Anhydrite (gypsum) Dolomite. Quartz Calcite Kaolimite Hematite. Serpentine. Spinel Talc.	2.70-2.73 2.40-2.60 4.50-5.30 2.6 3.50-3.60	3.0-3.5 7.0 7.0 7.0 4.0 1.5-2.0 3.5-4.0 7.0 3.0 1.0 5.5-6.5 3.0-4.0 8.0 1.0
Miscellaneous: Hornblende Monazite. Pitchblende Rutile. Thorianite. Thorite. Wolframite.	5.0 6.4 4.20-4.30 8.00-9.70 4.6	5.0-6.0 5.2 5.5 6.0-6.5 7.0 5.0-5.5

¹ From Megraw's "Practical Data for the Cyanide Plant." For a longer table, based on acid radicals, see p. 176.

180 METALLURGISTS AND CHEMISTS' HANDBOOK

SPECIFIC GRAVITY AND ABSOLUTE WEIGHT OF GABES

Gas	Formula	Molecu- lar wt. 0 = 16	Weight of 1 liter in grans at 0°C, and 760 mm. pressure	Sp. gr. Air = 1	Wt. of 1 cu. ft. in lb. at 32 ^a F. and 29.92 in. pressure
Acetylene, Air Aldehyde Ammonia Alcohol, ethyl Alcohol, amyl Alcohol, methyl Argon Arsine Bensene Boron chloride Boron fluoride Bromine Butane Cyanogen Chlorine Chlorine Chlorine dioxide Carbon dioxide Carbon monoxide Carbonyl chloride Carbonyl sulphide Ethylene Fluorine Helium Hydrogen seid Hydrogen selende Hydrogen selende Hydrogen selende Hydrogen selende Hydrogen selende Hydrogen selende Hydrogen selende Hydrogen telluride Hydrogen selende Hydrogen selende Hydrogen selende Hydrogen telluride Hydrogen tetroxide Nitrogen Methyl chloride Nitrogen tetroxide	C ₂ H ₃ OH	26 016 44 032 17 034 46 048 88 096 32 032 39 88 77 984 78 048 117 38 68 00 159 84 58 08 52 05 70 92 86 92 87 98 400 28 00 98 92 80 07 30 048 28 00 98 92 30 048 20 008 127 928 77 984 81 216 34 086 129 516 27 018 28 02 28 032 20 0 50 484 129 516 27 018 28 02 48 02 48 02 80 928 30 048 4129 516 27 018 28 02 48 03 48 04 48 04 48 04 48 04 48 06 48 1 1708 1 2028 1 9811 0 7708 2 0862 4 0606 1 4483 1 7809 3 5821 5 99 7 1437 2 65 2 335 3 222 3 8820 3 0192 1 9768 1 2504 4 47 2 721 1 3562 1 635 0 1782 3 639 1 639 1 639 1 5293 5 80 1 226 11 271 3 708 0 7168 0 9002 2 3045 0 9003 1 593 1 593	0.90561 1.0000 1.5324 0.59623 1.6137 3.1479 1.1203 1.3776 2.6765 2.7708 3.937 2.312 5.258 2.050 1.806 2.4923 3.028 2.3554 1.5291 0.96720 3.457 2.1047 1.0496 0.97532 1.2647 0.1378 2.707 1.26794 0.71318 2.8287 0.69516 2.67755 2.80639 1.18293 4.486 0.9483 8.7183 2.8682 0.9483 8.7183 2.8682 0.9483 8.7183 2.8682 0.9483 8.7183 2.8682 0.9483 8.7183 2.8682 0.9483 8.7183 2.8682 0.9483 8.7183 2.8682 0.9483 8.7183 2.8682 0.9483 8.7183 2.8682 0.93669 1.53021	0.07309 0.08071 0.12358 0.04812 0.13024 0.25406 0.09042 0.11118 0.21593 0.22362 0.3177 0.1867 0.14577 0.1654 0.14577 0.20114 0.24235 0.18843 0.12341 0.07806 0.2791 0.16987 0.07806 0.2791 0.10213 0.07806 0.2791 0.10213 0.05756 0.22830 0.05756 0.22830 0.05756 0.22830 0.05756 0.22830 0.05756 0.22830 0.05756 0.22830 0.05756 0.22830 0.05756 0.22830 0.05756 0.22830 0.05756 0.22830 0.05756 0.22830 0.05756 0.22830 0.05756 0.22830 0.05756 0.22830 0.05756 0.22830 0.05756 0.22830 0.05756 0.22830 0.05756 0.22830 0.055920 0.05620 0.05620 0.05620 0.05620 0.05620 0.05620 0.05620 0.056307 0.056307 0.12850 0.08367 0.08367 0.08367 0.08367 0.08367 0.08367 0.08367 0.08367 0.08367	

The column headed Weight of 1 liter in grams, etc., is mainly based upon the tables in "Annuaire pour 1914, Bureau des Longitudes" and in the "Annual Tables" published by the International Congress of Applied Chemistry. Other data are compiled from various sources. There is a wide variation in the results for these constants, even between the work of two supposedly equally qualified workers. For that reason I have, in several instances, cut out some of the last decimal places. Unquestionably this variation is caused by the effect of surface condensation of gas films on the apparatus worked with. The determination of these constants for gases is by no means a simple problem. So far as possible, the values are those obtained experimentally, and are not simply calculated from atomic weights. In the cases of such substances as mercury, water, etc., the values at 0° and 29.92 in. of mercury pressure are purely theoretical. The experiments for the determination of the constants have been made at higher temperatures and the values in the table calculated from the equation pv = RmT.

The number of molecules per cubic centimeter of gas under

standard conditions is about 27.09×10^{18} .

Velocity of electrons, 2.36×10^{10} to 2.85×10^{10} cm. per

second.

The value of the gas constant in the formula for perfect gases has been calculated by M. D. Berthelot for "Annuaire pour 1914, Bureau des Longitudes." He considers a large number of gases and obtains for the mean value in

$$pv = RT$$

$$R = 0.08207$$

A gram molecule of gas at 0°C. and 760 mm. is 22,380 cc. If a gas be expanded or compressed so quickly that no heat is either absorbed or given off, then $pv^{1.406} = k$.

Critical Temperatures and Pressures¹

The critical temperature of a gas is that temperature above which no pressure suffices to produce a liquid. The pressure at which a gas at the critical temperature begins to become a liquid is known as the critical pressure:

¹ "Annuaire par 1914, Bureau des Longitudes."

Substance	Critical tempera- ture, deg. C.	Critical pressure, atmos.	Critical density calculated
Elements: Argon Bromine Chlorine Helium Hydrogen Iodine Krypton Mercury Neon Nitrogen Oxygen Xenon. Inorganic substances.	-122.44 302.2 146 0 -267.84 -241.1 512 0 -62 5 1270 0 <205.0 -145.1 -118.8 14.7	48.0 83.9 2.26 11.0 41.24 29.0 83.6 50.8 43.5	0.547 0.048 0.299-0.296 0.400
Ammonia, NH ₁ Carbon monoxide, CO Carbon dioxide, CO ₁ Carbon disulphide Carbonyl sulphide, COS Germanium tetrachloride, GeCl ₄ Hydroshloric acid, HCl Hydroselenic acid, HI Hydroselenic acid, H ₂ Se Nitric oxide, N ₁ O ₂ Nitric oxide, N ₁ O ₂ Nitrosyl chloride, NOCl Phosphorus trichloride, PCl ₂ Silicon hydride, SiH ₄ Silicon tetrachloride, SiCl ₄ Sulphur dioxide, SO ₂ Sulphuretted hydrogen, H ₂ S Tin tetrachloride, SnCl ₄ Water, H ₂ O	131.0 -139.5 31.1 273.05 105.0 276.9 51.8 150.7 137.0 - 93.5 36.5 167.0 51.3 285.5 - 0.5 221.0 157.0 100.4 318.7 364.3	113.0 35.5 73.0 72.87 38.0 83.6 91.0 71.2 71.95 64.5 100.0 78.0 89.3 36.95 194.6	0.326 0.460 0.4408 0.462 0.524 0.534
Organic substances: Acetylene, C ₂ H ₁ . Alcohol (ethyl), C ₃ H ₄ OH. Bensene, C ₄ H ₄ . Carbon tetrachloride, CCl ₄ . Ethane, C ₃ H ₄ . Ethylene, C ₂ H ₄ . Naphthalene, C ₁ ₆ H ₆ . Methane, CH ₄ . Pentane, C ₄ H ₁₂ . Phenol, C ₄ H ₄ OH. Toluene, C ₇ H ₈ .	35.5 243.1 288.5 283.15 32.1 9.5 468.2 - 81.8 197.2 419.2 320.6	61.7 62.96 47.89 44.97 49.0 50.8 39.2 54.9 33.0	0.276 0.305 0.558 0.210 0.145 0.232

How to Generate the Various Gases

Acetylene.—Best generated from calcium carbide and water $(CaC_1 + 2H_1O = Ca(OH)_1 + C_2H_2)$. Can also be prepared by the incomplete combustion of coal gas, or by the action of acetylene bromide on alcoholic potash $(C_2H_4Br_1 + 2KOH = C_2H_2 + 2H_2O + 2KBr)$. Can also be bought compressed in cylinders.

Ammonia.—Best generated by the action of calcium oxide on ammonium chloride. Can be bought compressed in cylinders.

Argon.—Can be obtained by depriving air of oxygen with phosphorus, then absorbing the nitrogen by red-hot magnesium.

Arsine.—The gas may be obtained pure by the following

reaction:

$$Sn_8As_2 + 6HCl = 3SnCl_2 + 2AsH_8$$

It is also formed when any arsenious compound comes into contact with nascent hydrogen, which reaction forms the basis for the well-known Marsh test. The other hydride of arsenic, As_2H_4 , is a solid.

Bromine.—Best generated by heating the easily purchased

liquid bromine.

Carbon Dioxide.—Best made by the action of hydrochloric acid on marble or sulphuric acid on sodium carbonate.

also be bought compressed.

Carbon Monoxide.—Best made pure by heating oxalic acid with concentrated sulphuric acid and absorbing the carbon dioxide in calcium hydrate emulsion:

$$C_2H_2O_4 + H_2SO_4 = CO_2 + CO + H_2SO_4 \cdot H_2O$$

Can also be made by passing CO₂ over red hot coke or charcoal. This last reaction is not self-sustaining but requires considerable external heat.

Chlorine.—Is readily generated from a mixture of salt, man-

ganese dioxide and sulphuric acid.

$$(4\text{NaCl} + \text{MnO}_2 + 4\text{H}_2\text{SO}_4 = 4\text{HNaSO}_4 + 2\text{H}_2\text{O} + \text{MnCl}_2 + 2\text{Cl}_2)$$

It is also readily purchased compressed in cylinders.

Cyanogen.—This is easily made by heating mercuric cyanide. It is extremely poisonous.

Ethane.—Must be made from a methyl halide, as:

$$2CH_3Cl + 2Na = 2NaCl + C_2H_6$$

Ethylene.—Is best formed by treating an ethyl halide with potassium hydroxide ($C_2H_5Br + KOH = C_2H_4 + KBr + H_2O$) or by treating ethyl alcohol with concentrated sulphuric acid.

Hydrogen.—Formed by the action of hydrochloric acid or sulphuric acid on zinc, of water on potassium or sodium, or by passing steam over red hot iron. Can also be made very economically by electrolyzing a dilute sulphuric-acid solution.

Hydrochloric Acid Gas.—Given off by the action of concen-

trated sulphuric acid on aqueous hydrochloric acid.

Hydrocyanic Acid Gas.—This is formed by heating sulphuric acid and sodium cyanide. It is fearfully poisonous.

Hydrogen Phosphide (Phosphine).—This is formed when phosphorus is boiled with strong potash or caustic soda, or caustic lime (4P + 3NaOH + 3H₂O = 3H₂NaPO₂ + PH₃). The gas as thus formed takes fire in contact with air, due to This compound can be removed by refrigerattraces of P₂H₄. ing mixtures and the resulting gas will not take fire sponta-

neously. These phosphorous compounds are very poisonous.

Hydrogen Selenide.—Formed by the action of dilute acids or aluminum selenide. This can be made by putting lump

selenium in molten aluminum. A mask and gloves should be worn when making the selenide, as the mixture occasionally spatters badly. The utmost precaution should be observed not to breathe the seleniuretted hydrogen.

Hydrogen Sulphide.—Readily made by treating ferrous sulphide with hydrochloric acid, by the action of sulphuric acid on low-grade mattes, or by melting paraffin and sulphur

together.

Hydrogen Telluride.—Formed by the action of water on aluminum telluride. This is made by putting lumps of tellurium in molten aluminum. The slag which forms on the surface is aluminum telluride. Goggles should be worn when making this compound.

Kakodyl.—[(CH₃)₂As]₂. This is formed by heating arsenious anhydride and potassium acetate in a closed retort. This is ordinarily a fetid, fuming liquid, violent, poisonous, and when

pure, spontaneously inflammable.

Methane.—This is most easily prepared by heating a mixture of 2 parts sodium acetate, 2 parts potassium hydroxide and 3 parts quicklime (NaC₂H₃O₂ + ROH = CH₄ + RNaCO₃). It can also be made by passing carbon disulphide and water vapor over red hot copper (CS₂ + 2H₂O + 6Cu = CH₄ + 2Cu₂S + 2CuO).

Nitric Anhydride.—Prepared by passing dry chlorine over dry

silver nitrate at 95°C.

Nitrous Oxide.—Obtained by heating ammonium nitrate crystals ($NH_4NO_8 = N_2O + 2H_2O$). The reaction takes place

at comparatively low temperatures.

Nitrogen.—Can be readily obtained by absorbing the oxygen from the air with phosphorus. In this case it contains about one-eightieth of its mass in argon and traces of helium, xenon, etc.

Nitrogen Peroxide.—Obtained by mixing two volumes of dry

nitric oxide and one of oxygen together.

Nitric Oxide.—Obtained by the action of nitric acid on copper $(3Cu + 8HNO_3 = 3Cu(NO_3)_2 + H_2O + N_2O_2)$. The gas is colorless, but oxidizes with air to nitrogen peroxide, a reddishbrown gas.

$$(4AgNO_3 + Cl_2 = 4AgCl + 2N_2O_5 + O_2)$$

Oxygen.—Is given off when manganese dioxide or potassium chlorate is heated, or, more safely, on ignition of a mixture of the two. Can also be made cheaply by electrolyzing dilute sulphuric-acid solution. Can be introduced into solution by hydrogen peroxide, sodium peroxide, fuming nitric acid, nitric acid, chloric acid, etc. The compressed gas is a common article of commerce.

Phosphine.—See hydrogen phosphide.

Sulphur Dioxide.—Formed by burning sulphur in air, or if wanted chemically pure, by the action of concentrated boiling sulphuric acid on copper ($Cu + 2H_2SO_4 = CuSO_4 + 2H_2O + SO_2$).

Sulphur Trioxide.—This is most easily formed by roasting ferric sulphate.

Principal Toxic Gases

The following list, from an address of Prof. 1. Guareschi, before the Associazone Chim. Industr. on June 14, 1915, at Turin, is given because of the growing popularity of these compounds in warfare.

Name	Formula	Sp. gr.	Color	Discovered
Chlorine	Cl ₂ 1	2.45	Greenish yellow	Scheele 1774.
Hydrochloric acid	HCl 1	1.26	Colorless	Priestley, 1772.
Chlorine dioxide	ClO ₂ ²	1.28	Reddish yellow	H. Davy, 1815.
Bromine	Br ₂ ¹ HBr	5.6	Red	Balard, 1823.
Nitrogen dioxide	N ₂ O ₂	1.039	Colorless	Priestley, 1772.
Nitrogen peroxide	N ₂ O ₄ 1	$ \hat{2}.5 $	Red	Dulong, Gay-Lussa
Nitrosyl chloride	NOCl 2	$\begin{bmatrix} \overline{2} & \overline{3} & \overline{3} \end{bmatrix}$	Colorless	Gay-Lussac, 1848.
Carbonyl chloride	COCl ₂ ²	3.5	Colorless	J. Davy, 1812.
Carbon monoxide	CO	0.9674		Lasonne, Priestley.
Carbon dioxide	CO ₂	1.524	Colorless	V. Helmont (XVIIth).
Hydrocyanic acid	HNC 2	0.94	Colorless	Scheele, 1782.
Cyanogen	$(CN)_2$	1.808	Colorless	Gay-Lussac, 1815.
Cyanogen chloride	CNCl ²	2.12	Colorless	Berthollet, 1789.
Cyanogen bromide	CNBr 2	3.60	Colorless	Serullas, 1827.
Ammonia	. NH3	0.59	Colorless	Priestley, 1775.
Sulphureted hydrogen.	H_2S	1.18	Colorless	Scheele, 1777.
Sulphur dioxide	SO_2 ²	2.247		
Sulphur trioxide	SO:	2.74	Colorless	XVth century.
Phosphine	PH ₈ ³	1.178	Colorless	Gengembre, 1785.
Arsine	AsH; 3	2.69	Colorless	Scheele, 1775.

<sup>Positively stated to be used in warfare.
Probably being used.
Possibly being used.</sup>

186 'METALLURGISTS AND CHEMISTS' HANDBOOK

FLUORINE GAS AND GASEOUS FLUORINE COMPOUNDS (All toxic)

Name	Formula	Sp. gr.	Color	Discoverer
Fhuorine	F ₂	1.264	Yellow	Moissan, 1886.
Hydrofluoric acid	$\mathbf{H}_{2}\mathbf{F}_{2}$	1.7	Colorless	Scheele, 1782
Boron fluoride	BF:		Colorless	Gay-Lussac an
	220	1	001011000	Thenard, 1809.
Silicon fluoride	SiF4	1	Colorless	Scheele, 1782.
Carbon fluoride	ČF4	3.09	Colorless	Moissan.
Fluoform	CHF ₃	3.06	Colorless	Meslans.
Methyl difluoride	CH ₂ F ₂		Colorless	
Methyl fluoride	CH ₂ F	1.22	Colorless	Dumas and Peligot
Phosphorus trifluoride.	PF _a	3.05	Colorless	H. Davy.
Phosphorus pentafluor-	PF	4.5	Colorless	Thorpe.
ide	•		001011000	1
Phosphoric oxyfluoride Phosphorus dichlor-	POF ₃	3.63	Colorless	Moissan.
trifluoride	PCl ₂ F ₂	5.41	Colorless	Poulenc.
Sulphur fluoride	ŠF.	5.03	Colorless	Moissan and Lebear
Selenium fluoride	SeF.	0.00	Colorless	Prideaux, 1906.
Nitrosyl fluoride	ŇŎF	1.68	Colorless	Gore, 1869.
Nitrile fluoride	NO ₂ F	2.24	Colorless	Moissan and Lebear 1905.
Thionyl fluoride	SOF ₂	3.0	Colorless	Moissan and Lebeau
imonyi nuoride	SOF 2	3. 0	Colorless	1905.
Sulphur dioxydifluoride	SO_2F_2	3.55	Colorless	Moissan and Lebeau
Ethyl fluoride	C ₂ H ₄ F	1.70	Colorless	Fremy.
Ethylene fluoride	C ₂ H ₄ F ₂	1	Colorless	Chabrié.
Propyl fluoride	C ₂ H ₇ F	2.16	Colorless	Meslans, 1894
sopropyl fluoride	C ₂ H ₇ F	2.6	Colorless	Meslans, 1894.
sobutyl fluoride	C.H.F	2.58	Colorless	Moissan.
Allyl fluoride	C.H.F	2.07	Colorless	Meslans.
Acetyl fluoride	CH ₈ COF	2.16	Colorless	Meslans.
Chromyl fluoride	CrO ₂ F ₂		Red	Olivieri, 1880.
Fungsten fluoride	WF.		Colorless	Roscoe.
Bromine pentafluoride	BrF.		Colorless	Lebeau, 1905.
odine pentafluoride	IF.		Colorless	Moissan, 1902.

SLIGHTLY TOXIC AND THE RARE TOXIC GASES

I month chieffee Boots Dimethyl alame Asil(Olis):	Ozone	Cl ₂ O N ₂ O NOCl ₂ HI SbH ₄ SiH ₄ CH ₂ O C = NCH ₂ CrO ₂ Cl ₂ P ₂ H ₄	Carbon suboxide Nickel carbonyl Diazomethane Ammonia Boron chloride Acetylene Methyl chloride Ethyl chloride Ethyl chloride Methyl phosphide Methyl prosphide Methyl arsenide Dimethyl arsine	Ni(CO)4 CH2N2 NH3 BCl3 B4H10 C2H2
---	-------	--	---	--

MINIMUM LETHAL AMOUNTS AND TOLERANCES (PER CE	ENT.)
---	------	---

Gas	Rapidly fatal	Usually fatal in ½ to 1 hour	Usually endur- able ½ to 1 hour	Prolonged exposure usually not harmful
HCl Br or Cl SO: HCN NH: PH: L:S CO	about 1 about 0.3 4-5	1.5 -2.0. 0.01-0.06 0.4 -0.5 0.12-0.15 0.5 -1.0 0.4 -0.6 0.5 -0.7 2.0 -3.0	0.05-1.0 0.004 0.05-0.2 0.05-0.06 0.3 -0.4 0.1 -0.2 0.2 -0.3 0.5 -1.0	0.01 0.0001 0.02-0.03 0.02-0.04 0.1 0.1 -0.15 0.22

For use in warfare, according to Prof. Vivian B. Lewes a gas should have at least twice the specific gravity of air, and should, for ease of transportation, be easily liquefiable. The principal substances which can be used in respirators to absorb the gases more commonly used in warfare are: Carbonate or bicarbonate of soda; sodium hyposulphite; potassium iodide; an alkaline iodide used with an alkaline carbonate; a mixture of alkaline carbonates and thiosulphite; hyposulphite, carbonate and glycerin.2

Some Properties of the Metals³

Brittleness or Toughness (MARTEN'S Formula).—Toughness of test length =

 $\frac{\text{ultimate strength}}{\text{yield point}} \times \frac{\text{per cent. elongation in test length.}}{100}$

The metals then range in this order:

Pb, Pt, Fe, Al, Ni, Zn, Sn, Cu, Au, Ag.

Ductility.—Au, Ag, Pt, Fe, Ni, Cu, Al, Zn, Sn, Sb. By some authorities aluminum is placed fourth; it has been drawn so fine that 11,400 yd. weigh only 1 oz. Tenacity.—Steel, Ni, Fe, Cu, Al, Au, Zn, Sn, Pb.

Malleability.—Au, Ag, Al, Cu, Sn, Pt, Pb, Zn, Fe, Ni. The thinnest metal leaf commercially attainable in 1914 was: Au, 0.000008 cm.; Al, 0.000020; Ag, 0.000021; Pt, 0.000025; Cu, 0.000034; Dutch metal, 0.00007 (KAYE and LABY).

Plasticity (Marten's Formula).—Plasticity = $\frac{\text{toughness}}{\text{yield point}} \times$ 1000.

MARTEN'S Classification.—Fe, Pt, Ni, Al, Zn, Cu, Ag, Au, Pb, Sn.

KURNAKOFF-SCHEMTSCHUSCHNY: K, Na, Pb, Tl, Sn, Bi, Cd, Zn, Sb.

Engineering," July 23, 1915, p. 89.
 Le Genie Civil," Sept. 25, 1915, p. 205.
 H. O. HOFMAN, "General Metallurgy."

	Bulk modulus	Coefficient of rigidity	Young's modulus
Brass Glass Iron (wrought) Steel Aluminum Bismuth, cast Cadmium Copper Gold Lead Nickel Palladium Platinum Silver Tin Bronse Constantan Manganin Zine Phosphor bronse German ailver Magnesium Rhodium	10 0 × 10 ¹¹ 4 0 × 10 ¹¹ 14 6 × 10 ¹¹ 18 4 × 10 ¹¹ 7 46 × 10 ¹¹ 3 14 × 10 ¹¹ 4 12 × 10 ¹¹ 13 1 × 10 ¹¹ 16 6 × 10 ¹¹ 17 6 × 10 ¹¹ 17 6 × 10 ¹¹ 17 6 × 10 ¹¹ 17 6 × 10 ¹¹ 17 6 × 10 ¹¹ 17 6 × 10 ¹¹ 17 6 × 10 ¹¹ 17 6 × 10 ¹¹ 17 6 × 10 ¹¹ 17 6 × 10 ¹¹ 18 5 × 10 ¹¹ 19 52 × 10 ¹¹ 15 5 × 10 ¹¹ 15 5 × 10 ¹¹ 15 0 × 10 ¹¹ 12 0 × 10 ¹¹ 12 0 × 10 ¹¹ 12 0 × 10 ¹¹ 13 0 × 10 ¹¹ 14 2 × 10 ¹¹ 15 0 × 10 ¹¹ 16 0 × 10 ¹¹ 17 0 × 10 ¹¹ 18 0 × 10 ¹¹ 19 0 × 10 ¹¹	3.7 × 10 ¹¹ 2.4 × 10 ¹¹ 7.7 × 10 ¹¹ 8.2 × 10 ¹¹ 2.63 × 10 ¹¹ 1.20 × 10 ¹¹ 1.20 × 10 ¹¹ 4.55 × 10 ¹¹ 4.55 × 10 ¹¹ 2.80 × 10 ¹¹ 2.80 × 10 ¹¹ 2.80 × 10 ¹¹ 4.04 × 10 ¹¹ 3.8 × 10 ¹¹ 4.65 × 10 ¹¹ 4.65 × 10 ¹¹ 4.65 × 10 ¹¹ 4.65 × 10 ¹¹ 4.7 × 10 ¹¹ 4.7 × 10 ¹¹ 4.80 × 10 ¹¹ 4.10 ¹¹	10 4 × 1011 6 0 × 1011 19 6 × 1011 22.0 × 1011 7 05 × 1011 3 19 × 1011 4.99 × 1011 12 3 × 1011 8.0 × 1011 1.62 × 1011 1.62 × 1011 1.68 × 1011 7.90 × 1021 5.43 × 1011 8 08 × 1011 8 08 × 1011 16.3 × 1011 12 4 × 1011 12.0 × 1011 12.0 × 1011 11.6 × 1011

The above values are mainly from KATE and LABY'S, "Physical and Chemical Constants."

If the volume of a body be altered without changing its shape, the stress divided by the strain is known as the bulk modulus: $k = \frac{v\rho}{\Delta v}$

If a body be changed in shape without changing its volume, the modulus of elasticity is the ratio of the stress to the strain which produces it.

Young's Modulus.—The number representing the pressure or tension on a bar per unit of section divided by the compression or elongation per unit of length so produced.

TENSILE STRENGTH OF SOME METALS AT ORDINARY
TEMPERATURES
(Pounds per square inch)

	75,000	Aluminum, cast	
Nickel	54,000	Aluminum, roded.	
Iron, rolled , . ,	55,000	Alaminum, hammered .	
Iron, cast	48.000	Alaminum, drawa	
Palladrum	50 000	Tellarium, cast .	8,500
Platinum, wire, bard drawn	56 000	Zine	
Platinum, wire, annealed	32,000	Tin, cast	
Platinum cast	45,000	Tin, drawn	
Silver, cast	41,000	Bismuth, cast	3,000
Copper, cast	24,000	Lead, cust	2,050
Copper, sheet	30 000	Lead, pipe	
Copper, bolts	34,000	Lend, sheet	
Copper wire, hard drawn	80,000	Antimony, cast	
Copper wire, soft drawn,	35,500	Tuntalum .	
Gold, cast	20,000	Brose	50,000
Gold wire, hard drawn,	37,000	German adver	
Gold wire, annealed.	24,000		

TENSILE	STRENGTHS	AТ	Low	TEMPERATURES ¹
		77.1	1 10 11	

	In kg. per sq. cm.				
	At - 252.6°C.	– 192°C.	+ 17°C.		
Aluminum	4,790	5,370	2,900		
	6,510	4 880	3,580		
CopperGold		13,400	9,860		
Iron	21,700	19,700	14,700		
Lead	813	581	251		
Nickel	16,500	16,100	11,100		
Platinum	8,600	7,250	5,080		
Silver	6,400	5,390	2,780		

TENSILE STRENGTH OF METALS, SHOWING EFFECT OF DRAWING AND ROLLING¹

	Lb. per sq. in.			
	Cast	Thin sheet metal	Wire	
German silver Bronze Brass Copper Iron (lengthwise) Iron (crosswise) Steel (lengthwise) Steel (crosswise)	35,960 24,781		81,735-92,224 78,049- 81,114-98,578 37,607-62,190 59,246-97,908 103,272-318,823	

¹ Rearranged from tests quoted in Kent's "Mechanical Engineers' Pocket Book."

COEFFICIENTS OF LINEAR EXPANSION PER DEGREE CENTIGRADE¹

,	0°-100°	- 190°-0°
Aluminum	0.0000233	0.000183
Antimony	0.0000168	
Antimony (normal to axis)	0.000089	
Arsenic	0.000017	
Bismuth	0.0000157	0.000013
Brass	0.000019	
Brick	0.0000055	
Bronze	0.0000185	
Cadmium	0.000031	0.0000446
Cement	0.0000143	
Cobalt	0.0000123	
Copper	0.0000179	0.0000141
Gas-carbon	0.0000054	
Glass	0.0000085	
Gold	0.0000145	0.0000132

¹ The coefficient of cubic expansion is 3 times the coefficient of linear

¹ Hofman's "General Metallurgy," and" "Annuaire pour 1914, Bureau des Longitudes."

H. O. Hofman, "General Metallurgy."

1 F. A. and C. L. LINDEMANN, Nernst's Festschrift, 1912, p. 264.

190 METALLURGISTS AND CHEMISTS' HANDBOOK

COEFFICIENT OF LINEAR EXPANSION PER DEGREE CENTIGRADE.

COEFFICIENT OF LANEAR EXPANSION P	ER DEGREE	CENTIGRADE,
	0°-100°	-190°-0°
Graphite	0 0000079	1,,,,,,,,,
Indium	0.0000459	
lnvar (63.8 per cent. Fe, 36.2 per		
cent. Ni)	0.0000004	
1ridium	0.0000067	0.0000057
Iron (cast)	0.0000122	0.0000091
lron (wrought)	0.0000119	*********
Lead	0.0000295	0.0000271
Magnesium	0.0000276	0.0000214
Marble	0.000007	
Mercury (solid)	0.000181	
Nickel	0.0000132	0.0000101
Osmium	0.0000068	271111111
Palladium	0 0000119	0 0000120
Platinum	0.0000090	0.0000088
Potassium	0.000083	**********
Rhodium	0.0000086	
Ruthenium	0.0000099	
Selenium (40°)	0.000037	
Silver	0.0000195	
Sodium	0.000072	
Steel	0.000011	
Steel (hardened)	0.0000136	*********
Tellurium	0 000017	*********
Thallium	0.000031	*********
Tin	0.0000227	0.0000226
Zinc	0.0000294	0.0000264
Aluminum bronze	0.000017	310000202
Brass (Cu 66, Zn 34)	0.0000189	
Bronze (Cu 32, Zn 2, Sn 5)	0.0000177	
Constantan (Cu 60, Ni 40)	0.000017	
German silver (Cu 60, Ni 15, Zn 25).	0.0000184	**********
Magnalium (Al 86, Mg 13)	0.000024	**********
Phosphor bronze (Cu 97.6, 2Sn, P 0.2)	0.0000168	**********
Platinum-iridium (lr 10 per cent.)	0.0000087	
Solder (Pb 2: Sn 1)	0.000025	11141414
Speculum metal (Cu 68, Sn 32)	0.0000193	*********
Cement and concrete	0.000010-1	
Glass, soft 68SiO ₂ , 14Na ₂ O, 7CaO	0.0000085	**********
Glass, flint 45SiO2, 8K2O, 46PbO	0.0000078	***********
Granite	0.0000083	************
lce (-10° to 0°)	0.0000507	
Masonry	0.000004-7	
Silica, fused (-80° to 0°)	0.00000022	
(0° to 30°)	0.000000022	
(0° to 100°)	0.00000042	
(0° +o 1000°)	0.00000054	
(0° to 1000°)	0.00000034	
Sandstone		
Slate	0.00000-1	0[

CUBIC EXPANSION OF GASES, PER DEGREE CENTIGRADE1

	Constant volume	Constant pressure
Air. Carbon monoxide. Carbon dioxide. Cyanogen. Hydrogen. Nitrogen. Oxygen. Nitrous oxide. Ammonia. Sulphur dioxide. Argon. Helium.	0.0036678 0.0036682 0.0036741 0.003676	0.003676 0.0036688 0.00371 0.003877 0.0036613 0.003670 0.00486 0.0037195 0.003854 0.0039028

CUBIC EXPANSION OF LIQUIDS

Mercury (0°-100°C.)	0.0001818
Water	
Burning oils of sp. gr. 0.795-0.825	$0.0\overline{0}072$
Benzine	0.00081
Light lubricating oil	
Heavy lubricating oil	0.00063
Sodium (liquid)	0.000226

Hardness

"The customary hardness test at the present time is that of Brinnell, which consists in making on a flat surface of the material an indentation by means of a small steel ball applied under known pressure. According to Rosenhain perhaps the best definition of hardness is "the power of resisting local dis-placement of portions of its surface." But it is at once evident that this power is by no means a simple and definite property of the material which will reproduce itself in all circumstances. Thus the displacement of a portion of the substance of a material may occur by plastic flow—the material may be indented at one point while its level is raised at other points; in other circumstances or in other materials the displacement may occur by direct fracture, as in the scratching of a brittle material. Either of these forms of local displacement may be brought about by the application of a steadily increasing force or by a rapidly applied force, i.e., by a shock or blow. It is by no means certain that the power of resisting all these various forms of displacement will be identical or even proportional, so that the material which displays the highest scratch hardness is not necessarily the hardest under an indentation test. Where hardness is referred to, therefore, the manner of measuring it should always be specified.

¹ From "Annuaire pour 1914, Bureau des Longitudes," with a few values from other sources.

Scale of Hardness (Mohs)

Agate 7.0	Gypsum 2.01
Alabaster 1.7	Heavy spar 3.3
Alum	Hornblende 5.5
Amber	1ridium 6.0
Andalusite 7.5	Jasper 7.0
Anthracite 2.2	Kaolin 1.0
Antimony 3.3	Lead 1.5
Apatite 5.01	Meerschaum2.0-3.0
Aragonite 3.5	Mica
Arsenic 3.5	Nickel5.0-5.5
Asphalt	Onyx 7.0
Augite	Opal
Beryl 7.8	Palladium 4.8
Bismuth 2.5	Platinum 4.3
Calamine 5.0	Quartz 7.01
Calcite 3.0^1	Ruby 9.0
Copper	Saltpeter 2.0
Copperas 2.0	Sapphire 9.01
Copper sulphate 2.5	Serpentine 3.0-4.0
Corundum 9.0	Silver2.5-3.0
Diamond 10.0^1	Spinel 8.0
Dolomite	Stibnite 2.0
Emery 9.0	Sulphur1.5-2.5
Feldspar 6.0^{1}	Talc 1.0
Fluorite 4.01	Topaz 8.01
Gold	Tin2.0-3.0
Granite 7.0	Zinc 4.0
Graphite	

"Among the various methods which have been proposed for the measurement of hardness, it seems probable that the Brinnell ball-test, measuring indentation hardness, is probablythat one which most nearly approaches our fundamental ideal of constituting a measure of a single definite property. In this case the test probably measures a group of properties of a fairly simple type. That this is the case may be inferred from. the fact that tests with balls of different diameter can be rendered fairly comparable."

load in kg. area of concavity of indentation × vadius of ball

The Brinnell hardness number is nearly proportional to the ultimate stress determined by tensile tests. On the other hand, ball-hardness number is not a safe guide as to the power to resist abrasion.2 A better test for resistance to wear is

¹The materials marked thus (1) are the standards on this scale. The hardness is determined by scratching an unknown with these standards. One can scarcely determine within half a point what the hardness is. The finger nail may be assumed at about 2.5, and a knife blade at 6.5.

ROSENHAIN'S "Introduction to Physical Metallurgy."

y that of the Derihon machine, in which the edge of a el disc revolving in oil is pressed against the test speci-Some comparative Brinnell numbers and resistances are given below.

BOTTONE'S SCALE OF HARDNESS²

se.	1456 1450 1410 1375	Palladium Platinum Zinc Silver	1200 1107 1077 990	Iridium Gold Aluminum Cadmium Magnesium .	979 821 760 726	Lead Thallium Calcium Sodium	570 565 405 400
-----	------------------------------	--------------------------------	-----------------------------	---	--------------------------	------------------------------	--------------------------

Brinnell Hardness Numbers⁸

	Cooled in	500 kg.	3000 kg.	Resistance to wear
bronze: cent. Sn. cent. Sn. cent. Sn, 10 per cent. Pb. cent. Sn, 10 per cent. Pb. cl: cent. Sn, 2 per cent. Zn. cent. Sn, 2 per cent. Zn. cent. Sn, 2 per cent. Zn. cent. Sn, 2 per cent. Zn.	Lime Sand Lime Sand Lime Sand Lime Sand Bronze	86 158 80 50 70 86 109 119	107 196 103 69 82 107 137 143	93-100 143-158 80-89 65-70 65-74 86-93 109-119 124-130

mm. ball, applied under 500 kg. pressure 15 seconds. nm. ball, applied under 3000 kg. pressure 30 seconds.

LATENT HEAT OF EVAPORATION

	51.0	Magnesium	1315.0
	2227.0	Nitrio anhydride (N2O3)	44.81
ublimation)	60.0	Nitrous oxide (N ₂ O)	100.6
(calculated)	359.0	Nitric acid	115.08
•	121.0		50.9
1c		Oxygen	
41. 1	120.7	Phosphorus	287.0
thyl	208.92	Potassium	592.0
	263.86	Selenium	140.0
(liquid NH ₂)	341.0	Silicon (calculated)	1262.0
ıloride	5 3.0	Silver	715.0
	45.6	Sodium	1015.0
	398.0	Sulphur	72.0
oxide	49.32	Sulphur dioxide	94.56
sulphide	86.67	Sulphuric acid	122.1
alculated)	38.37	Sulphuric anhydride	147.5
	61.9	Stannic chloride	30.53
	123.0	Tin	271.0
	$\frac{120.0}{24.0}$	Water	538.0
calculated)	2.54	Zinc	425.0
•	68.0		120.0
• • • • • • • • • • • • • • • •	00.0		

Fifth Congress, Int. Assoc. for Testing Materials."
our. Sci., 1874, Vol. 150, p. 644.
v et Alliages, p. 8, 1915.

of these values are from J. W. RICHARDS, "Metallurgical Calculatew from CREMER and BICKNELL'S "Chemical and Metallurgical."

LATENT HEATS OF FUSION¹

Aluminum	100.0	Mercury	2.83
Antimony ²	40.2 ²	Nickel	68.0
Bismuth	12.64	Palladium	36.3
Bromine	16.18	Platinum	27.18
Cadmium	13.02	Phosphorus	5.13
Calcium	52.6	Potassium	16.0
Copper	43.3	Potassium nitrate	47.37
Cobalt	68.0	Selenium	13.0
Gallium	19.11		127.7
Gold	16.3	Silver	23.5
Ice	79.77	Steel	20.0
lodine	11.7	Sodium	31.7
Iridium	26.1	Sulphur	9.37
Iron—cast-white	23.0	Thallium	·5.8
lron—cast-gray	33.0	Tellurium	19.0
Iron—pure	69.0	Tin	14.0
Lead	5.37	Water	79.76
Magnesium	5 8.0	Z inc	22.6

Latent Heats of Fusion—Compounds³

Ox	ides	
Alumina	Al_2O_8	50.9
Silica	SiO_2	76.1
Titanium oxide	TiO_2	35.8
Hal	ides	
Arsenic chloride	AsCl ₂	69.74
Lead bromide	$PbBr_2$	12.34
Lead chloride	$PbCl_2$	20.90
Manganese chloride	MnCl ₂	49.37
Stannic chloride	$SnCl_4$	46.84
Nita	ates	
Potassium nitrate	KNO ₂	48.90
Sodium nitrate	NaNO ₃	64.87
Silio	ates	

CaAl₂Si₂O₂ Al-calcium silicate (anorthite) 100 KAlSi₂O₈ 100 Al-potassium silicate (orthoclase) Al-potassium silicate (microcline) KAlSi₂O₂ 83 100 Calcium silicate (wollastonite) CaSiO₂ Ca-magnesium silicate (malacolite) Ca₂MgSi₄O₁₂ 94 CaMgSi₂O₆ 100 Ca-magnesium silicate (diopside) Magnesium silicate (enstatite) 125 MgSiO₂ 130 Magnesium silicate (olivine) Mg₂SiO₄ 85 Iron silicate (fayalite) Fe₂SiO₄

¹ Most of these values are from J. W. RICHARD'S "Metallurgical Calculations," a few from CREMER and BICKNELL'S "Chemical and Metallurgical Handbook."

² This is an experimental value. Theory points to a value of about 16. ³ J. W. Richards, "Metallurgical Calculations."

Sulphides

Lead sulphide

PbS

104

Specific Heats of Non-metals and Alloys¹

Material	Specific heat	Material	Specific heat
Solids: Asbestos (20°-100°)	0.20	Liquids: Alcohol, ethyl (40°)	0.65
Brass (red)	0.09	Alcohol methyl (12°)	
Brass (yellow)	0.088	Benzene, C ₆ H ₆ (10°)	0.340
Brickwork	About 0.2	Benzine	0.45
Carbon, graphite	0.16	BenzineBenzol, (19°-30°)	0.4158
Clay		Gasoline	0.53
Coal	0.24	Glycerine (18°-50°)	0.58
Fluorspar (30°)	0.21	Hydrochloric (HCl + 10H ₂ O)	1
German silver (0°-100°).	0.095	(18°)	0.749
Glass, crown (10°-50°)	[0.16-0.20]	Hydrogen (253°)	6.00
Glass, flint (10°-50°)	0.12	Kerosene	0.47
Granite (20°-100°)	0.19-0.20	Lead (molten)	0.03
Ice	0.502	Mercury (5°-36°)	0.0333
Iron, pure	0.116	Nitric (HNO ₃ + $10H_2O$) (18°)	0.768
Iron, cast	0.13	Nitrogen $(-208^{\circ} \text{ to } -196^{\circ})$	
Iron, wrought	0.11	Oil, olive (7°)	0.47
Marble (18°)	0.21	Oxygen $(-200^{\circ} \text{ to } -183^{\circ})\dots$	0.35
Quartz (0°)	0.174	Sea water (17°)	0.94
Quartz (350°)	0.279	Sulphur (119°–147°)	0.2346
Sand (20°-100°)	0.19	Sulphuric (H ₂ SO ₄) (16°-20°)	0.3315
Steel	0.12	Sulphuric $(H_2SO_4 + 5H_2O)$	
Stone	About 0.2		0.5764
Wood	[0.45-0.65]	Turpentine (18°)	0.42

The specific heat of a substance is the number of B.t.u.'s required to raise the temperature of a pound of the substance 1°F. or of 1 kg. of water 1°C. There is much discordant data on the subject and several tables are given. The user is advised to look over all of the tables, as the data is given in several forms.

Specific Heats of Some Metals²

Metal	Specific heat			Specific heat		•	
	At about 15°C.	At about melting point	As a gas	Metal	At about 15°C.	At about melting point	As a gas
Ag Al Bi Cb Cd Cu Fe Hg Ir K Li Mg	0.055 0.167 0.030 0.068 0.054 0.106 0.086 0.116 0.033 0.030 0.166 0.941 0.246	0.076 0.308 0.030 	0.046 0.1852 0.0446 0.025 0.128 0.714 0.2084	Mn Mo Na Ni Os P Pb Sr Sb Si Sn Tl Zn	0.122 0.066 0.293 0.109 0.031 	0.161 0.034 0.046 0.054 0.059	0.2174 0.064 0.416 0.107 0.424 0.024 0.076

¹ From Pierce and Carver's, "Formulas and Tables for Engineers," with some additions from other authorities. For the elements, see the table on page 196.

The first two columns are from Hofman's "General Metallurgy," the values for the gaseous state are from J. W. RICHARDS "Metallurgical Cal-

culations.'

Specific Heats of the Elements¹ A table compiled from various sources.

A table compiled from various sources.							
Substance ¹	Tempera- ture ¹	Sp. heat ¹	Substance ¹	Tempera- ture ¹	Sp. heat ¹		
Aluminum	-182°-15°	0.168	Lead	300°	0.0338		
	17°-100°	0.217		Molten	0.0402		
A =4:	600° -186°79°	0.282	Lithium	0°-19°	0.837		
Antimony	1°-20°	$0.0462 \\ 0.0503$	Magnagium	0°-100° -186°79°	1.093		
	Molten	0.0003	Magnesium	17°-100°	$0.189 \\ 0.248$		
	632°-830°	0.0603	l	225°	0.281		
Arsenic: Cryst	0°-100°	0.0822	Manganese		0.093		
Amorph	21°-65°	0.076		14°-97°	0.189		
Barium	-185°-20°	0.068	Mercury	-213°	0.0266		
-	0°-100°	0.05		0°-80°	0.0331		
Beryllium	0°-100°	0.425	Molybdenum	-185°-20°	0.063		
Bismuth	-186°	0.0284	\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	15°-91°	0.072		
	22°-100°	0.0304	Nickel	- 186°-18°	0.086		
Bromine: Solid	Molten - 78°20°	0.0363 0.084	Mitneson lie	18°-100° -208°196°	0.109		
Liquid	13°-45°	0.107	Nitrogen, liq. Osmium	19°-98°	$0.43 \\ 0.031$		
Gas	150°-230°	0.0570	Palladium	18°-100°	0.059		
Boron, amorph.	0°-100°	0.307	Phosphorus:	10 100	0.008		
Cadmium		0.050	Yellow	- 78°-10°	0.17		
	Pure 18°-99°	0.055	Yellow	13°-36°	0.202		
Cæsium	0°-26°	0.048	Liquid	49°-98°	0.205		
Calcium	0°-100°	0.1704	Red	15°-98°	0.17		
Carbon	0°-20°	0.145	Platinum	-186°-18°	0.0293		
Gas carbon	24°-68°	0.204		18°-100°	0.0324		
Charcoal	0°-24°	0.165	D .	1230°	0.0461		
Charcoal	0°-224° - 50°	0.238	Potassium	- 78°-23°	0.166		
Graphite Graphite	- 50° 11°	0.114 0.160	Rhodium Ruthemium .	10°-97° 0°-100°	$0.058 \\ 0.061$		
Graphite	202°	0.160	Selenium:	0-100-	0.001		
Graphite	977°	0.467	Cryst	22°-62°	0.084		
Diamond	ii°	0.113	Amorph	18°-38°	0.095		
Cerium	0°-100°	0.045	Silicon, cryst.	- 185°-20°	0.123		
Chlorine, liquid		0.226	01.001.	57°	0.183		
Chromium		0.067		232°	0.203		
	0°	0.104	Silver		0.496		
	17°-100°	0.110		15°-100°	0.056		
.	400°	0.133	~ ~	427°	0.059		
Cobalt	$-182^{\circ}-15^{\circ}$	0.082	Sodium: Solid		0.234		
	15°-100°	0.103	Solid	10°	0.297		
Copper	15°-630°	$egin{array}{c} 0.123 \ 0.0798 \end{array}$	Liquid	128°	0.333		
Copper	20°-100°	0.0798	Sulphur: Rhombic	17°-45°	0.163		
	900°	0.0930 0.118	Liquid	119°-147°	$0.103 \\ 0.235$		
		0.1318	Tantalum	- 185°-20°	0.033		
Didymium		0.046		58°	0.036		
Gallium, solid.	12°-23°	0.079	Tellurium	15°-100°	0.0483		
Liquid	12°-119°	0.080	Thallium		0.0300		
Germanium	0°-100°	0.074		17°-100°	0.0335		
Gold	-185°-20°	0.035	Thorium	0°-100°	0.028		
	18°-990°	0.0303	$ {f Tin}\dots $	$-186 - 79^{\circ}$	0.0486		
India	Molten	0.0358	ļ	19°-99°	0.0552		
Indium	0°-100° 9°-98°	$0.057 \\ 0.054$	ļ	Molten 240°	0.064		
TOUTHS	Vapor		Titanium		$\begin{array}{c} 0.064 \\ 0.082 \end{array}$		
Iridium	-186°-18°	0.03489		0°-100°	0.002		
	18°-100°	0.0323			0.162		
Iron		0.089	Tungsten		0.036		
	20°-100°	0.119		20°-100°	0.034		
	. 225°	0.137	Uranium	0°-98°	0.028		
	0°-1100°		Vanadium	0°-100°	0.115		
•	Molten	0.25	Zinc	-233°	0.0268		
Lanthanum	0°-100°	0.045		- 192°-20°	0.084		
Lead	-253°	$0.120 \\ 0.0293$		20°-100° 300°	0.093		
	- 192°-20° 15°-100°		Zirconium		0.104 0.068		
1 Canada Aba A	15°-100°	W.0008	ian comuni	0 -100	0.000		

¹ See also the table on p. 195.

Specific Heats of Metals for to Centigrade¹

OTHORIO ALMIN OF MAINTAIN	o role v Chilidianh
Aluminum	0.2220 + 0.00005t
Antimony	0.04864 + 0.0000084t
Beryllium	0.3756 + 0.00106t
Boron	0.22 + 0.00035t
Carbon (under 250°)	0.1567 + 0.00036t
Carbon (250°-1000°)	0.2142 + 0.000166t
Carbon (above 1,000°)	$0.5 - (120 \div t)$
Nickel (up to 230°)	0.10836 + 0.00002233t
Potassium	0.1858 + 0.00008t
Silicon	0.17 + 0.00009t
Sodium	0.2932 + 0.00019t
Titanium	0.978 + 0.000147t
Zinc	0.0906 + 0.000044t
Bismuth	0.0285 + 0.00002t
Bromine	0.105 + 0.0011t
Copper	0.0939 + 0.00001778t
Cadmium	0.0546 + 0.000012t
lridium	0.0317 + 0.000006t
Lead	0.02925 + 0.000019t
Palladium	0.0582 + 0.00001t
Platinum	0.0317 + 0.000006t
Silver (to 400°)	0.555 + 0.00000943t
Silver (over 400°)	0.5758 + 0.0000044t
	$+0.00000006t^2$
Tin	0.0560 + 0.000044t

SPECIFIC HEATS OF CHLORIDES

Chlorides	Formula	Range	Specific heat
Ammonium chloride	NH ₄ Cl	23°-100°	0.3908
Arsenious chloride	AsCl ₂ (solid)	14°-98.3°	0.0896
	AsCl ₂ (gas)	159°-268°	0.1122
Barium chloride	BaCl ₂	14°-98°	0.0896
Calcium chloride	CaCl ₂	23°-99°	0.1730
Chromium chloride			0.1430
Cuprous chloride		17°-98°	0.1383
Lead chloride	PbCl ₂	(20°-100°	0.0651)
•		160°-380°	0.707
Lithium chloride	LiCl	\ 13°-97°	0.2821
Magnesium chloride		24°-100°	0.1946
Manganese chloride	MnCl ₂		0.1425
Mercurous chloride	HgCl	7°-99°	0.0521
Mercuric chloride	HgCl ₂	13°-98°	0.0689
Potassium chloride	KČI	14°-99°	0.1730
Silver chloride	AgCl	160°-380°	0.0978
Sodium chloride	NaCl	15°-98°	0.2140
Strontium chloride	SrCl ₂	13°-98°	0.1199
Titanium chloride	TiCl4 (solid)	13°-99°	0.1881
	TiCl ₄ (gas)	163°-271°	0.1290
Tin (ous)	SnCl ₂	20°-99°	0.1016
Tin (ous)	SnCl ₄ (solid)	14°-98°	0.1476
1	SnCl ₄ (gas)	149°-273°	0.0939
Zinc chloride	ZnCl ₂ .	21°-99°	0.1362

¹ J. W. RICHARDS, "Metallurgical Calculations."
2 From HOFMAN'S, "General Metallurgy."

Specific Heats of the Oxides1

Oxide	Formula	Range	Specific heat
Beryllium oxide	Be ₂ O ₂	0°-100°	0.2471
Boron oxide	B ₂ O ₂	16°-98°	0.2374
Antimonious oxide	Sb ₂ O ₃	18°-100°	0.0927
Alumina	Al ₂ O ₈	0°-1200°	0.2081十 0.00008 76 ε
Alumina	Al ₂ O ₂	above 2200°	0.5935
Arsenious oxide	As ₂ O ₂	13°-97°	0.1276
Calcium oxide		00-40	0.1715+
Calcium oxide	СаО	01.	0.17137 0.00007t
Chromium oxide	Cr ₂ O ₂	10°-99°	0.00007
Ferric oxide	Fe ₂ O ₂	0°-t°	0.1456+
Terric Oxide	Lesos	1 0-4	
Tamasa famila amida	To O	00.40	0.0001886
Ferroso-ferric oxide	Fe ₈ O ₄	0°-t°	0.1447+
		040 4000	0.0001884
Magnesium oxide	MgO	24°-100°	0.2440
Magnesium hydrate	$Mg(OH)_2$	19°-50°	0.312
Manganese oxide	MnO	13°-98°	0.157
Manganese sesquioxide	Mn ₂ O ³	15°-99°	0.162
Manganese sesquioxide,			0.202
hydrated	Mn ₂ O ² .H ₂ O	21°-52°	0.1760
Manganese peroxide	MnO ₂	17°-48°	0.1590
Nickel oxide	NiO	13°-98°	0.1588
			
Silica	SiO ₂	0°-1200°	0.1833 +
3.6	0	70.000	0.000077
Mercuric oxide	HgO	5°-98°	0.0518
Molybdic oxide	MoO ₈	21°-52°	0.1540
Lead oxide	PbO	22°-98°	0.0512
Bismuth oxide	Bi ₂ O ₈	20°-98°	0.0605
Thoric oxide	Th ₂ O ₂	0°-100	0.0548
Tin oxide	SnO ₂	16°-98°	0.0936
Titanic oxide	TiO2	0°-200°	0.1790
Tungstic oxide		8°-98°	0.0798
Zirconium oxide	7.0.	0°-100°	
	ZrO ₂		0.1076
Zinc oxide	ZnO	0°-1000°	0.1212+
Cuprous oxide	Cu ₂ O	19°-51°	0.00003156 0.1110
Cupric orido			
Cupric oxide	CuO	12°-98°	0.1420
Columbic oxide	Cb ₂ O ₅	0°-t°	0.1037+
The manage and a	E-O		0.00007t
Ferrous oxide	FeO		0.1460(a)
Potassium oxide	K ₂ O		0.1390(a)
Sodium oxide	Na ₂ O		0.2250(a)
Lithium oxide	Li ₂ O		0.4430(a)

⁽a) Theoretical results, according to Vogt.

SPECIFIC HEATS OF SULPHATES

Sulphates	Formula	Range	Specific heat
Barium sulphate. Calcium sulphate. Copper sulphate. Lead sulphate. Magnesium sulphate. Manganese sulphate. Nickel sulphate. Potassium acid sulphate. Potassium sulphate. Sodium sulphate. Strontium sulphate. Zinc sulphate.	CaSO ₄ CuSO ₄ PbSO ₄ MgSO ₄ MnSO ₄ NiSO ₄ HKSO ₄	10°-98° 13°-98° 23°-100° 20°-99° 25°-100° 15°-100° 15°-100° 15°-98° 17°-98° 22°-99° 22°-100°	0.1128 0.1965 0.1840 0.0827 0.2250 0.1820 0.2160 0.2440 0.1901 0.2312 0.1428 0.1740

¹ J. W. RICHARDS, "Metallurgical Calculations," Vol. II.

SPECIFIC HEATS OF NITRATES

Nitrates	Formula	Range	Specific heat
im nitrate itrate ate n nitrate rate itrate n nitrate otassium nitrate itrate (fused) n nitrate (fused)	Ba(NO ₂) ₂ Pb(NO ₂) ₂ KNO ₂ KNO ₃ AgNO ₃ NaNO ₂ Sr(NO ₂) ₂ KNa(NO ₂) ₂ NaNO ₃ (liquid)	14°-31° 13°-98° 17°-100° 13°-98° 16°-99° 14°-98° 17°-47° 15°-100° 320°-430° 350°-435°	0.4550 0.1523 0.1173 0.2387 0.1435 0.2782 0.1810 0.2350 0.4130 0.3319

Specific Heats of Carbonates

Carbonates	Formula	Range	Specific heat
arbonate	CaCOs CaCOs CaCOs FeCOs Mg7Fe2(COs)s PbCOs K2COs Na2COs	11°-99° 20°-100° 18°-99° 23°-98° 20°-100° 9°-98° ! 20°-100° 16°-47° 23°-99° 16°-98° 8°-98°	0.1104 0.2086 0.2085 0.2099 0.2179 0.1935 0.2270 0.0791 0.2162 0.2728 0.1475

SPECIFIC HEATS OF CHROMATES

Chromates	Formula	Range	Specific heat
omaten bichromaten chromate	FeCrO ₄ K ₂ Cr ₂ O ₇	19°-50° 19°-50° 16°-98° 19°-98°	0.0900 0.1590 0.1894 0.1851

Specific Heats of Borates

Borates	Formula	Range	Specific heat
prate	PbB4O7 K2B2O4	15°-98° 18°-99° 16°-98° 18°-99°	0.905 0.2198 0.2048 0.2198

Specific Heats of Bromipes, Iodides and Fluorides

Bromides	Formula	Range	Specific heat
Lead bromide. Potassium bromide. Silver bromide. Sodium bromide. Cuprous iodide. Lead iodide. Mercurous iodide. Mercuric iodide. Potassium iodide. Silver iodide. Sodium iodide. Clacium fluoride. Sodium-aluminum fluoride.	KBr AgBr NaBr CuI PbI ₂ HgI HgI ₂ KI	16°-98° 190°-430° 16°-98° 15°-98° 15°-99° 14°-98° 17°-99° 18°-99° 20°-99° 15°-264° 16°-99° 15°-99°	0.0532 0.0532 0.1132 0.0739 0.1384 0.0819 0.0427 0.0395 0.0420 0.0819 0.577 0.0868 0.2154 0.2522

SPECIFIC HEATS OF PHOSPHATES

Phosphates	Formula	Range	Specific heat
Calcium acid phosphate	CaP ₂ O ₆	15°-98°	0.1992
	3Ca ₃ P ₂ O ₈ ·CaF ₂	15°-99°	0.1903
	Pb ₃ P ₂ O ₈	11°-98°	0.0798
	Pb ₂ P ₂ O ₇	11°-98°	0.821
	K ₄ P ₂ O ₇	17°-98°	0.1901
	Ag ₃ PO ₄	19°-50°	0.0898
	Na ₄ P ₂ O ₇	17°-98°	0.2283

SPECIFIC HEATS OF ALUMINATES, TITANATES, ETC.

Aluminates	Formula	Range	Specific heat
Spinel. Chrysoberyl. Ilmenite. Wulfenite. Scheelite. Wolframite. Potassium permanganate. Potassiun chlorate. Glass. Glass, flint. Glass, crown.	BeAl ₂ O ₄ FeTiO ₃ PbMoO ₄ CaWO ₄ Fe(Mn)WO ₄ KMnO ₄ KClO ₂ Ca,K,SiO ₃	15°-47° 0°-100° 15°-50° 15°-50° 15°-50° 15°-15° 10°-100° 14°-99° 10°-50°	0.1940 0.2004 0.177 0.083 0.097 0.098 0.179 0.210 0.1977 0.177

COMPOUND SULPHIDES

Sulphides	Formula	Range	Specific heat
Bornite. Bournonite. Cobaltite. Chalcopyrite. Mispickel. Proustite. Pyrargyrite. Tetrahedrite.	PbCuSbS; CoAsS CuFeS2 FeAsS Ag;AsS; Ag;SbS;	10°-100° 10°-100° 15°-99° 14°-98° 10°-100° 10°-100° 10°-100°	0.1177 0.0730 0.0991 0.1310 0.1030 0.0807 0.0757 0.0987

Specific Heats of Sulphides					
Sulphides	Formula	Range	Specific heat		
Antimony sulphide	Sb ₂ S ₃ A ₈ S A ₅₂ S ₃ Bl ₂ S ₃ C ₀ S C _{u2} S C _{u2} S	23°-99° 20°-100° 20°-100° 11°-99° 15°-98° 9°-97° 0°-t°	0.0840 0.1111 0.1132 0.0600 0.1251 0.1212 0.1126+ 0.00009 <i>t</i>		
Ferrous sulphide. Iron sulphide. Iron pyrites. Lead sulphide. Manganese sulphide. Mercury sulphide. Molybdenum sulphide. Nickel sulphide. Silver sulphide.	FeS Fe7Ss FeS2 PbS MnS MnS HgS MoS2 NiS Ag2S Ag2S	17°-98° 20°-100° 19°-98° 16°-98° 10°-100° 14°-98° 20°-100° 15°-98° 7°-98° 0°- <i>t</i> °	0.1357 0.1602 0.1301 0.0509 0.1392 0.0512 0.1233 0.1281 0.0746 0.0685+ 0.00005t		
Zinc sulphide	ZnS SnS SnS ₂	15°-98° 13°-98° 12°-95°	0.1230 0.0837 0.1193		
Specific Heats of A	RSENIDES AND	Antimonii	DES		
Antimonides	Formula	Range	Specific heat		
Domeykite	Cu2As Ag3Sb FeAs2 CoAs2	10°-100° 10°-100° 10°-100° 10°-100°	0.0949 0.0558 0.0864 0.0830		
Specific I	HEATS OF SILICA	TES			
Silicates	Formula	Range	Specific heat		
Aluminum silicate (topaz) Al-calcium silicate (anorthite) Al-beryllium silicate (beryl) Al-potassium silicate (microcline) Al-potassium silicate (orthoclase) Calcium silicate (wollastonite) Ca-magnesium silicate (diopside) Ca-magnesium silicate (malacolite) Iron silicate (fayalite) Iron-aluminum (garnet) Magnesium silicate (enstatite) Magnesium silicate (olivine) Zirconium silicate (zircon) Basalt Bessemer slag	KAlSi ₃ O ₈ CaSiO ₃ CaSiO ₃ CaSiO ₃ CaMgSi ₂ O ₆ CaMgSi ₂ O ₆ CaMgSi ₄ O ₁₂ Ca ₃ MgSi ₄ O ₁₂ Fe ₂ SiO ₄ Fe ₃ Al ₂ Si ₃ O ₁₂ MgSiO ₃ MgSiO ₃ MgSiO ₄ ZrSiO ₄	12°-100° 0°-1200° 12°-100° 20°-100° 20°-100° 0°-1200° 0°-1200° 0°-1200° 0°-1200° 0°-1200° 0°-1200° 0°-100° 16°-100° 0°-1200° 0°-100° 15°-100° 20°-470° 14°-99°	0.1997 0.189 0.294 0.2066 0.197 0.1877 0.179 0.288 0.194 0.281 0.186 0.264 0.170 0.1758 0.206 0.301 0.2200 0.1456 0.1990 0.1691		

SPECIFIC HEAT OF WATER¹ (Defining specific heat at 0° to 1°C. as unity)

Tempera- ture, deg. F.	Specific heat	Tempera- ture, deg. F.	Specific heat	Tempera- ture, deg. F.	Specific heat
32	1.0000	176	1.0089	320	1.0294
50	1.0005	194	1.0109	338	1.0328
68	1.0012	212	1.0130	356	1.0364
86	1.0020	230	1.0153	374	1.0407
104	1.0030	248	1.0177	392	1.0440
122	1.0042	266	1.0204	410	1.0481
140	1.0056	284	1.0232	428	1.0524
158	1.0072	302	1.0262	446	1.0568

SPECIFIC HEAT OF WATER (Defining specific heat at 16° to 17° as unity)

Tempera- ture, deg. C.	Specific heat	Thermal capacity, $0^{\circ} - t^{\circ}$	Tem- perature, deg. C.	Specific heat	Thermal capacity,
0	1.00940	0.00000	25	0.99806	25.05131
1	1.00855	1.00898	26	0.99795	26.04932
2	1.00770	2.01710	27	0.99784	27.04720
3	1.00690	3.02440	28	0.99774	28.04499
4	1.00610	4.03090	29	0.99766	29.04269
5	1.00530	5.03660	30	0.99759	30.04031
6	1.00450	6.04150	31	0.99752	31.03786
7	1.00390	7.04570	32	0.99747	32.03536
8	1.00330	8.04930	33	0.99742	33.03280
9	1.00276	9.05233	34	0.99738	34.03020
10	1.00230	10.05486	35	0.99735	35.02757
11	1.00185	11.05694	36	0.99733	36.02491
12	1.00143	12.05858	37	0.99732	37.02224
13	1.00100	13.05980	38	0.99732	38.01956
14	1.00064	14.06062	39	0.99733	39.01689
15	1.00030	15.06109	40	0.99735	40.01422
16	1.00000	16.06124	41	0.99738	41.01159
17	0.99970	17.06109	42	0.99743	42.00899
18	0.99941	18.06064	43	0.99748	43.00644
19	0.99918	19.05994	44	0.99753	44.00395
20	0.99895	20.05900	45	0.99760	45.00152
21	0.99872	21.05783	46	0.99767	45.99916
22	0.99853	22.05645	47	0.99774	46.99686
23	0.99836	23.05490	48	0.99781	47.99464
24	0.99820	24.05318	49	0.99790	48.99250
25	0.99806	25.05131	50	0.99800	49.99045

¹ From "The Petroleum Year Book, 1914."

MEAN SPECIFIC HEATS OF GASES

	Under constant pressure	Under constant volume	γ
Air, 20°C. Ammonia. Bromine, 19°-388°. Carbon dioxide, 0°. Carbon disulphide, 86°-190°. Carbon monoxide, 23°-99°. Chlorine. Hydrogen. Methane. Nitrogen, 0°C. Nitrous oxide. Oxygen. Sulphur dioxide. Water. Hydrochloric acid. Acetylene. Argon, 20°-90°C. Iodine, 206°-377°C. Nitric oxide, 13°-172°. Nitrogen peroxide, 27°-67°. Sulphuretted hydrogen, 20°-206°. Ethane.	0.123 0.034 0.232 1.625 0.245	0.1684 0.391 0.0429 0.172 0.131 0.1736 0.0928 2.411 0.486 0.1727 0.181 0.1723 0.123 0.370	1.402 1.336 1.239 1.401 1.33 1.42 1.313 1.41 1.324 1.41- (500°) 1.2 1.305 1.26
Ethylene	0.404 0.299 0.506		1.264 (20°) 1.40

Specific Heat of Gases¹ (Calories per gram of gas at t° C. (absolute temperature = t + 273))

	According to Richards	According to Damour
Nitrogen (to 2000°C.) Nitrogen (2000°-4000°C.) Oxygen (to 2000°C.) Oxygen (2000°-4000°C.) Water vapor Carbon dioxide Sulphur dioxide Sulphur dioxide Carbon monoxide Hydrogen Methane Hydrogen (2000°-4000°C.)	$\begin{array}{c} 0.2104 + 0.0000187t \\ 0.1788 + 0.00005t \\ 0.42 + 0.000185t \\ 0.19 + 0.00011t \\ 0.125 + 0.0001t \\ 0.2405 + 0.000214t \\ 3.37 + 0.0003t \end{array}$	$\begin{array}{c} 0.2438 + 0.0000214t \\ 0.2135 + 0.0000187t \\ 0.447 + 0.000162t \\ 0.194 + 0.000084t \\ 0.2438 + 0.0000214t \\ 3.412 + 0.000300t \\ 0.381 + 0.0000234t \end{array}$

¹ SOMERMEIER'S "Coal."

Table of Mean Specific Heats Calories per gram of gas

	Richards		Damour		Lewis & Randell	
Nitrogen Oxygen Carbon dioxide Water vapor. Carbon monoxide Air Sulphur dioxide Hydrogen Methane	0°-300° 0.247 0.216 0.223 0.476 0.247 0.240 0.155 3.460	0°-1000° 0.262 0.229 0.300 0.605 0.262 0.257 0.225 3.670	0°-300° 0.250 0.219 0.219 0.497 0.250 0.247	0°-1000° 0.265 0.232 0.278 0.610 0.265 0.258	0°-300° 0.247 0.216 0.219 0.469 0.247 0.240 0.150 3.41	0°-1000° 0.259 0.227 0.248 0.512 0.260 0.252 0.170 3.57

Specific Heat of Gases, By Volume¹

	Cal. per cu. m. of gas, per deg. C.	Lbcal. per cu. ft. of gas, per deg. C.
Nitrogen. Water vapor. Carbon dioxide. Carbon monoxide. Sulphur dioxide. Hydrogen. Hydrogen (2000°-4000°). Oxygen.	$ \begin{vmatrix} 0.34 & + 0.00030t \\ 0.37 & + 0.00044t \\ 0.2575 & + 0.000072t \\ 0.444 & + 0.00054t \\ 0.303 & + 0.000027t \end{vmatrix} $	0.0189 + 0.0000017t 0.0189 + 0.0000017t 0.0161 + 0.0000045t 0.0189 + 0.0000017t

Total Heat Contained at Melting Point of Metals1

The heat is expressed in calories necessary to heat 1 gram of the metal to its melting point from 0°C. The latent heat of fusion is then the difference between the heat in the solid and that in the liquid phases.

Element	Melting point	Heat in solid	Heat in liquid	Latent heat of fusion
Aluminum	625.0	158.3	258.3	100.0
Alumina	2200.0	882.0	933.0	51.0
Antimony	632.0	34.1	74.3	40.2
Bismuth	267.0	9.0	21.0	12.0
Cadmium	321.7	18.81	31.83	13.0 2
Copper	1085.0	117.0	162.0	45.0
Gold		34 . 6 3	50.93	16.3
Iron	1450.0	300.0	369.0	69.0
Lead	326.0	11.6	15.6	4.0
Palladium	962.0	64.8	89.15	24.35
Platinum	1775.0°	75.2	102.4	27.2
<u>Tin</u>		14.34	28.16	13.82
Z inc	420.0	45.2	67.8	22.6

¹ J. W. RICHARDS, "Metallurgical Calculations."

LI HEAT CONTAINED IN CERTAIN SILICATES WHEN MELTED!

					_
		Melting	Heat in solid	Heat in liquid	Latent heat of fusion
n silicate (olivine) n silicate (enstatite) m silicate (inicrocline) m silicate orthoclase) silicate anorthite) licate (wollastonite) les silicate (malacolite) les silicate diopside) e (fayalite) silicate (garnet)	Mg28iO4 Mg8iO3 KAlSt3O6 KAlSt-O6 CaAl2St2O0 CaStO3 Ca3Mg8t4O12 CaMg8t2O6 Fe1StO4 Fe2Al2St3O13	1400° 1300° 1170° 1200° 1220° 1250° 1200° 1225° 1040° 1145°	520 403 358 360 319 344 310		

eral, the specific heat of a slag (silicate) may be cals the mean of the specific heat of the constituents, ack approximation is to take it at any temperature as

 $S_0(1 + 0.00078t)$

any range of temperature as being

 $S_1(1 + 0.00039[t_1 - t_2])$

is specific heat at 0° and S_1 is specific heat at t_1 .

SOLUBILITY OF SALTS AT 10°C. AND BOILING²

One part requires for solution	Cold water	Hot water
suiphate (+18H ₂ O) 1 alum (+12H ₂ O) 1 carbonate 2 chloride 2 chlorplatinate. 1 nitrate 1 oxalate 1 sulphate oride (+2H ₂ O). drate (+8Aq) rate chloride choride cho	1 052 10 92 4 0 3.04 150 0 0 54 22,22 1.358 3.00 21 32 12,50 51 3(0°) 30 0 1 08 Insoluble 1.667 600 0 1.07(0°) 750 0 3 86(18°) 0 607 0 833(20°) 2 9(20°) 2 7	0.088 0.24 1.5 1.37 80.0 0 19 2.45 1.66 0 02 3 11 2.94 31.9(30°) 0 75 0 649 0 28(152°) 1500 0 451.0

ple is compiled from Richard's "Metallurgical Calculations."
a and Bicknett's "Chemical and Metallurgical Handbook."
tables of solubility see the table of "Properties of Compounds,"
"Properties of Precipitates," p. 328.

SOLUBILITY OF SALTS AT 10°C. AND BOILING. Continued

One part requires for solution	Cold water	Hot water	
Copper acetate	14.28	5.05	
Copper nitrate	0.78	• • • • • • • •	
Ferrous chloride (+4H ₂ O)	0.68		
Ferric chloride	0.63	$0.18 \\ 0.27$	
Ferrous sulphate (+7H ₂ O)	1.64 1.00(40°)	0.27	
Lead chloride	105.0	20.0	
Lead nitrate	2.07	0.72	
Lead sulphate	12,500	• • • • • • • •	
Lithium chloride	1.24	0.7	
Magnesium carbonate (+3H ₂ O)	552(16°)		
Magnesium chloride (+6H ₂ O)	0.6 50,000	0.27	
Magnesium oxide		1.25	
Manganous chloride	1.61	0.81	
Manganous chloride	0.79	1.07	
Mercuric chloride	15.22	1.85	
Oxalic acid	8.69	1.00	
Potassium bitartrate	244.0	16.4	
Potassium alum (+12H ₂ O)	10.50 3.0	0.28	
Potassium bicarbonate		1.06	
Potassium bromide	1.76	0.98	
Potassium carbonate	0.91	0.64	
Potassium chlorplatinate	89.3(20°)	19.3	
Potassium chlorate	16.58	1.66	
Potassium chloride	3.13	1.77	
Potassium chromate	1.64	1.22	
Potassium cyanide Potassium ferricyanide	0.82 2.73	1.29	
Potassium ferrocyanide	3.4(15°)	1.1	
Potassium hydrate	0.50	•••	
Potassium iodide	0.7(20°)	0.5	
Potassium nitrate	4.74	0.4	
Potassium oxalate (acid)	40.0	10.0	
Potassium permanganate	16.0(15°)		
Potassium sulphate	10.31 1.00	3.82	
Potassium sulphite	250.0	9.52	
Silver nitrate	0.4(19°)	0.09	
Sodium acetate (+3H ₂ O)	4.0(6°)	1.7(48°)	
Sodium bicarbonate	10.0	• • • • • • • •	
Sodium bisulphate	3.5	• • • • • • • • •	
Sodium borate	21.5	1.82	
Sodium bromide	1.13 1.61	0.87 .0.4(30°)	
Sodium carbonate (+10H ₂ O)	1.0(20°)	0.49	
Sodium chloride	2.78	2.53	
Sodium hydrate	1.64		
Sodium hyposulphite (+5H ₂ O)	0.6	• • • • • • • •	
Sodium nitrate	1.14(20°)	0.56	
Sodium acid phosphate (Na ₂ HPO ₄ ·12H ₂ O)	6.7(15°)	0.4	
Sodium sulphate $(+10H2O)$	4.34	0.32(33)° 1.00	
Sodium sulphite	4.00 2.07	0.98	
Strontium hydrate (+8H ₂ O)	55.5(20°)	2.1	
Strontium nitrate	1.82	0 .99	
Stannous chloride	0.37		
Tartaric acid	1.31	0.50	
Zinc chloride $(+2H_2O)$	0.25(15°)	<u>.</u> . <u></u>	
Zinc sulphate $(+7H_2O)$	0.72	0.15	

Solubilities of Solids in Water

S = number of grams of anhydrous substance which when dissolved in 100 grams of water make a saturated solution at the temperature stated.

p = number of grams of anhydrous substance per 100 grams

of saturated solution.

Substance	0°C.	10	15	20	40	60	80	100
Am. chlor , NH4Cl, S Barium chlor .	29.4	33.3	35.2	37.2	45.8	55 2	65.6	77.3
BaClr2Hr0, S	31.6	33.3	84.5	35.7	40.7	46.4	52.4	58.8
Barium hydrate, Ba(OH): 8H ₂ O, S	1 67	2.48	3 23	3 89	8 22	20.94	101.4	
Bromine (liquid), Br., S Cadmium sulphate,	4 17	3.74	3.6 5 	3.88	3.45	1		
CdSO ₄ -32H ₂ O ₄ S Calcium hydrate.	76.5	76.0	76.3	76.6	78.5	83 7	70.2	60.774
Ca(OH) 2, S	0 185	0 176	0.170	0.165	0.141	0.116	0.094	0.077
Cuso, 5H,0, S	14.3	17.4	18.8	20.7	28.5	40.0	55 0	75 0
Lithium carbonate, LucCOs, S.	1 54	1 43	1,38	1 33	1.17	1 01	0.850	0.720
Mercuria abloride, HgClz, p	2 50	4 50	5.00	5 40	9.30	14 0	23 1	38 0
Potasa, chloride, KCl, S	27 6	31.0	32 4	34 O	40 0	45 6 ;	51.1	56 7
Potses, bromide, KBr, S. Potses, iodide, KI, S	127.5	136 0	140 0	144 0				104.0 208.0
Potass. hydrate, _ KOH-2H ₂ O, S,	97.0	103 0	107.0	112 0	138.0*			178 04
Potses, nitrate, KNO. S Silver nitrate, AgNO., S	13 3	20 9	25 8	32 0	64 0	110 0,	169,0	246 0 952.0
Sodium carbonate, Na ₂ CO ₂ 10H ₂ O, S		12.5			46.14			
Sodium chloride,								
NaCi, S Sodium sulphate		35,8		36 0 I		-		39.0
NatSO ₄ 10H ₄ O, S Strontium chloride,	5.0	90	13,4	19.4	40 04	45.0	44.04	42.0
BrCl=6H ₁ O, 8	\$3.0	48 0	50.0	58.0	65 0	82 0	91 04	101.0

The above formulas are those of the solid phases that are in equilibrium with the solution. The figures are from Seidell's "Solubilities of Inorganic and Organic Substances." D. Van Nostrand Co., New York.

Very soluble in ammonium-acetate solution.
Solid phase becomes CdSO₁·H₂O at 74°.
Becomes KOH·36H₂O at 32 5° and KOH·H₂O at 50°.
Becomes Na₁CO₂·H₁O at 35°.

Becomes Na₂SO₄ at 32.38°. Becomes SrCla 2HaO at 70°.

Solvents for Metals

Gold Aqua regia. Platinum Aqua regia.

HÑO₃, boiling H₂SO₄. Silver

HNO₃, boiling concen. H₂SO₄ slightly. Lead

Mercury HNO₃, boiling H₂SO₄.

Bismuth HNO₃. HNO₃. Copper Cadmium HNO3.

Aqua regia, HNO₃ to oxide. Aqua regia, HNO₃ to oxide. Arsenic Antimony

HCl, HNO's to oxide. Tin

HCl, dilute H₂SO₄, not by conc HCl, HNO₃, H₂SO₄, alkalis. lron Aluminum

Nickel HNO₃ HNO₃ Cobalt Manganese HCl.

HCl, HNO₃, H₂SO₄, alkalis. Zinc

In Dilute Solution (Fifth Normal or More Dilute)1

1. Copper is acted upon by cold dilute hydrochloric acid to a much greater extent than by sulphuric or nitric acids. Each of the last-named acids attacks the metal to about the same extent.

2. Aluminium is slowly attacked by dilute nitric acid and

sulphuric acid.

3. Lead is more rapidly attacked by hydrochloric acid than by sulphuric acid, the action of the latter acid being negligible.

4. Tin is soluble in caustic soda and in sodium carbonate

solution, but not in ammonia.

Action of Acetylene upon Metals (Chem. Zeit., 1915, 89, 42). -In acetylene installations explosions have sometimes occurred which have been attributed to the formation of explosive compounds of acetylene with the metal of the fittings. In a series of experiments it was found that pure dry acetylene in contact for 20 months with the following metals had no action upon them: zinc, tin, lead, iron, copper, nickel, brass, German silver, phosphor bronze, aluminum bronze, type metal, solder. With pure moist acetylene nickel and copper were both attacked. Unpurified moist gas, as obtained in the ordinary way from commercial carbide, had no appreciable action on tin, German silver, aluminum bronze, type metal or solder, but had a distinct action on zinc, lead, brass, much more on iron and bronze, and still more on phosphor bronze, while the action on copper was very rapid; but it is stated that in no case were explosive substances produced. It is recommended that metal fittings used in connection with acetylene should be coated with nickel or tin.

¹ A. J. Hale and H. S. Foster, Journ. Soc. Chem. Ind., May 15, 1915.

Solubility of Air in Water 1

0 cc. of water saturated with air at 760 mm. pressure n the following volumes of dissolved gas (calculated to e at 0°C. and 760 mm.).

		Ten	apera	ture	of was	ter	
	00	5⁵	10°	15°	20°	25°	30°
above, cc et oxygen in dissolved air (by me)	10 19 19.0 29.2 34.9						

SOLUBILITY OF SULPHUR DIOXIDE IN WATER (760 mm. pressure)

rature of water, deg. C	20	30	4D	50	60	70	Ņ.	90	100
r cent. dissolved	8 6	7 4	6 1	4.9	3 7	2.6	1.7	0.9	0 0

Solubility of Gases in Water (760 mm pressure)

	Volumes, 0°C:	Volumes, 15°C	Volumes, 30°C.	Volumes, 60°C.
monoxide	0 0489 0 02388 0.03537 1 713	0.03415 0 01686 0 02543 1.019	0.02608 0.01380 0.01998 0.665	0.019 0.0100 0.015 0.36
sis	1300.0	802.0	598.0 28°	
********	0.058	0.041 2 63	0.030	1.0 · ·
/4145141414	```Ó.OÌ5Ò	0.0139	0.0138	
gen	0.0215	0.0188	0.018 20°	
hloric acid	506.0	458.0	411 0	339.0
oxide ,		0.74	0.63 20°	
oxide	0.074	0.0515	0.040	0.029
retted hydrogen .	4.68	8.05	2.67	
r dioxide	79.8	47.3	27.2	18.8
			ļ	
10		0 02045 28.4		

e majority of the above cases the gases are in equilibrium with the .t 760° mm. pressure.

rs and Last's "Chemical and Physical Constants."
FMAN's "General Metallurgy."
apiled from various authorities.

COMPOUNDS	
INORGANIC	
PRINCIPAL	
OF THE	
PROPERTIES	
THE	

	THE LAUF	NOTERNIES OF	1 221	BINCIPAL I	CINCROPAIC	COMPOUNDS	NDS		
		Molecular	4:00	Melting	Boiling	Solubilit	Solubility (parts solid	olid to parts	ts water)
Substance	Formula	weight O = 16	Specino	point, deg. C.	point, deg. C.	Cold water	Hot water	Alcohol	Acids
Aluminum	Al	27.1	2.50-2.68	820		•#	·M	•==	i cold dil.
									cold. HNO.
BromideChloride.	AlBrs AlCls.6HsO	266.86 241.58	2.54	93	265 190	4:1	6 2 6 2	1:2	HC:
• •	AI(OH):	84.1	 	Decomp.		opel opel	• • • • • •		• ≠ ©
lodide	Allr6H2O Al2(NO2)&15H2O	515.96 694.50	2.63	185 73	360 Decomp.	8 V.8.	ec ec	e e	8-C8:
:	Alsos	102.2	4.0	White heat	134	• pri] •		•#	
Phosphate	Alr(804) r.9HrO	504.55	1.62	Decomp.	Decomp.	85:100	130:100		s conc. scids
Sulphide	Al;S; NH;	150.41 17.03		-75	-33.5	Decomp. 1050:1	730at 15°	• •	• • •
Ammonium: Acetate	NH4C2H3O2 NH4A[(SO3)::12H4O	77.07	1.63	Decomp. 89		14.8:100	8	€0	•
Arsenate	(NH.), A.90.3H.90 (NH.), Cr.90,	247.1 252.08				B V.B.	82 85.		42
Bromide.	NH,Br	97.96	2.33	60 Decomb		66:10 25:100	128 v.s.	æ. æ	
Chloride.	NH.CI (NH.).PtCI.	53.48 444.06	1.52 3.06	Sublimes Decomp.		37:100 0.67:100	1:1	12:100 i	
Chromate.	(NH,)sCro.	136.8	 88.	Decomp.		Decomp.	Decomp.		
Hydrate	NEOH	• •			• • •	•			
Lodide. Magnes, arrenate	NH.II	198.38		Sublimes Decomp.		0.02:100	i	i.,	
			بنبندوالاستدنان						

E HNO	.per .per	P-HCI P-HCI P-HCI P-HCI P-HCI P-HCI P-HCI P-HCI
0.00		[] [] Impartment [on] on on \$9] [] [] [
Decomp. 1:1 7.4.	H H H	Decomp. Vols. Decomp. Decomp. I I Decomp. Decomp. Decomp. Decomp. Decomp. Decomp.
0.005:100 Decomp. 200.100 1:25 1:4 0 03.100	75:100 162-100	Decomp. 20.100 Decomp. 816:100 15:10 15:10 Decomp. Decomp. Decomp.
210desomp	Sublimes White heat	280 102 5 -18 401 223 Sublimen Decomp. 223 Decomp. 320 1332 63 404
Decomp. 152 Decomp. Decomp.	9ublimes	93 - 6 - 91.5 167 72 Red heat 360 Red beat 73.2 Decomp. 130 Sublimes 130 Red beat - 130 Red beat 130 - 18 - 18 - 18 - 18 - 18 - 18
2.4-2.9 1.71 1.5 1.5 3.065	1.77	4.15 4.85 4.85 4.75 4.71 5.75 5.75 6.66 3.06 3.06 4.71 4.71
245.52 1236.32 80.05 64.05 142.1 132.13	132.15 51.12 76.12 120.2	359.96 297.50 123.22 500.96 228.04 336.61 320.4 74.96 74.96 74.96 310.27 310.27 311.22 310.27 314.72 181.96 455.72
NH, MgPO, 6H, O (NH,), Moros, 4H, O NH, NO, NH, NO, (NH,), PO, (NH,), PO, (NH,), PO, (NH,), PO, (NH,), PO, (NH,), PO, (NH,), PO,	(NH,),90, NH,H8 NH,SCN Sb	SbBry SbCls SbCls Sbrbs Sbrbs Sbrbs Sbrbs Sbrbs Sbrbs Sbrbs SbCls Sbock Sbock Assers Assers Assers
Ammonium: Magnes, phoeph, Molybdate Nitrate Oxalate Phoephate Phoephate Phoephate Phoephate	Bulphate Bulphydrate Bulphodyanate. Antimony	Bromide Chloride Eydride Lodide Ous chloride Ous chloride Oxide Sulphide Oxy chloride Oxy chloride Oxy chloride Cryst. Cr

212 METALLURGISTS AND CHEMISTS' HANDBOOK

Bt 120 Decomp. 3.85 4.3 795 3.05 Below red- ness 4.92 740 3.24 5.4 Red hest

Sulphide.	BaS Ba(SH)2	169.44 203.53)			Decomp.	Decomp.	4+#4	-, eg eg
• • • •	BeBr ₂ BeCl ₃ BeSO ₄ ·4H ₂ O Bi	168.94 80.02 177.23 208.0	9.4	601 600 Decomp. 270	Red heat	44:100			
	BiBr, BiCl,	447.76	5.6 9.4	200 225	453 429	Decom.			8-HNO3 8-HCl
	Bi(OH); BiI; Bi(NO;);5H;0			Sublimes 74	Decomp. 80	Decomp.	i Decomp.	• • •	
Sulphate	Biz(SO ₄); BizS ₃	404.0 704.21 512.21	7-7.8	Decomp. Decomp.		Decomp.			
•	H ₅ BO ₅	62.02	1.43	Decomp.	•	1:25	1:3	1:6	•
	Bros BBrs BCls BFs Br Cd Cd CdBrs CdCOs CdClr·2HsO Cd(OH)s Cd(OH)s Cd(NOs)s·4HsO CdO	70.00 250.76 117.38 68.00 11.0 79.92 172.40 172.40 272.24 144.42 308.48 128.40		Liquid Liquid -127 -25 320 571 590 Decomp.	90 17 -101 58.6 860 809 900 132	1:40 Decomp. Decomp. 1 14:100 127:100 127:100	16:100 i i 15:101 i i	82	a a a in in-in-in-in-in-in-in-in-in-in-in-in-in-i
Sulphide	Cd8	144.47	8.8	Red heat	•	epel			s-conc.

¹ The anhydrous salt is referred to.

	THE PROPERTIES	S OF THE	PRINCIPAL	L INORGANIC	IC COMPOUNDS.	UND8.	Continued	eq	
		Molecular	- J: N	Melting	Boiling	Solubility	y (parts solid	olid to parts	ts water)
Substance	Formula	weight O = 16	Specinc gravity	point, deg. C.	point, deg. C.	Cold water	Hot water	Alcohol	Acids
Casium: Carbonate	Css COs	325.62		Decomp.		V.8.	V.8.		
Chloride	[] []	168.27	3.97	631		174:100	•	•	•
Hydride	CsH	133.82	2.7	Decomp. Red heat		Decomp.			
Nitrate.	Cano.	194.82	3.69		Decomp.	15:100 Decomo	Dogoma	Dogoma	
Bromide	CaBr.	199.91	0 4_7 6	3.3	760	800	125:100		. ex (
Carbonate		5.001	7	250mp. 825	•	-	→	⊣	10 2
Chloride	: 	110.99	•	780 Decomp		72:100	65:10	60	•
Fluoride		78.07				1:2000			62
Hydrate	Ca(OH);	7.02	2.08	Decomp.	710	0.13:100	0.1:100	• p=1	8 0
Nitrate	Ca(NO ₂);	164.29	1.82	Decomp.	011	• • •			
Oxide	CaO	56.07	3.5	132 Infusible		1:778	1:1270	• 64	€
Phosphate	Cas(PO ₄),	310.29	3.18			0.003:100			2 62
Sulphate	CaSO4.2H10	172.17	2.31	Decomb.	:	1:500	1:460	• • • • •	æ
Tetrachloride.	, CCI,	153.84	1.582	-23.8	78.7	4 · =4	1	- · · · · · · · · · · · · · · · · · · ·	•
Carbonic:	Д	62 02				œ	æ		,
Anhydride	CO.	44.00		-78.5		1:1 vol.	2		• • •
Disulphide	\$	76.14	1.29	-110	46.6	1		. 00	•
Cerium (ic) oxide	30	172.25	6.74) R -	287 - · · ·	1:30 Vols.			
Cerium (ous): Chloride	10	246.63	80			•			
Oxide	O O	328.50	0			• • • •			
Sulphate. Calorie acid.	(#CO-7H-0	586.73 210.58	 		Decomp.	16.5:100 V.A.			
		•				: •			

H ₂ SC.	s s-alk.,acids i	8-HNOs 8-HNOs	• • • • • • • • • • • • • • • • • • • •		602	• • • • • • • • • • • • •	රත අත අත ලත
	62 ···· 62	oped	· rel	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	opt	1:14	
	e. ∞.ч.ч æ	© operated appropria	• •	8 i i 65:1001		2:10 ; v.s.	i v.s. i 2:11
	165.5:100 l.s. i i	м 00.м.м.м.м т	∞ ∙~	29.5:100 i 36:100¹	Decomp.	1:131 i 7:101	5:4 1:51
	Decomp. Sublimes Decomp.		• • •		240.5	Decomp.	red
	190 Decomp. White heat Decomp.	White heat	Decomp. Decomp. at red heat.	Subl. 87	194 1098	Decomp. at 240 Decomp.	Decomp. 114.5 Decomp. at
	2.74 2.76 5.21 1.87	5.21	2.9 4 5.6	1.84 3.6 5.7 1.92	8.85-8.94	2.47	2.17 2.27
	100.00 316.76 206.04 152.00 716.50	998.82 152.00 546.20 323.10 58.97	330.70 165.94	129.89 92.99 74.97 281.15	270.8 63.57	199.64 123.57 170.52	97.59 187.59 79.57 249.72
	Cr.O. Cr.Cl. Cr.(OH). Cr.O. Cr.(SO.). 18H.O	K,Cr,(SO,),·24H,O Cr,O; PbO:PbCrO, PbCrO, Co	Co:Cle Co:O:	CoCl, Co(OH), CoO CoSO,7H,O	CbCl	Cu(CsHsOs HsO CuCOs CuCls 2HsO	Cu(OH), Cu(NO3), CuO CuSO, 5H,O
	de		Cobaltue: Chloride	Cobaltous: Chloride. Hydrate. Oxide. Sulphate.	columbium pen- tachloride Copper	AcetateCarbonate.	

The anhydrous salt is referred to.

	THE PROPERTIES	S OF THE	PRINCI	PAL INORGANIC		COMPOUNDS.	Continued	p _i	
		Molecular	9.	Melting	Boiling	Solubility	Solubility (parts solid to parts water)	lid to par	ts water)
Substance	Formula	weight O = 16	Specific	point, deg. C.	point, deg. C.	Cold water	Hot water	Alcohol	Acids
Cupric: Sulphide	CuS	95.64				•••	•••	• •	i-dil. se.
Cuprous: Chloride	Cu ₂ Cl ₂	198.06	3.7	410	1000	1.8.	•		B-HCl,
Oxide Sulphide Cyanogen	Cuso Cuso (CN)	143.14 159.21 52.02	5.8 Liq. 0.866	Bright red 1100 -34	-21	i i 4.5:1 vol.	•	i 23:1	PONH'S B-HNO
Erblum: Nitrate Oxide.	Err(SO4) 1'8H2O ErrOs	767.74 383.4	3.18 8.6	•	• • • • • • • • • • • • • • • • • • • •	23:100 i		• •	• • • • • • • • • • • • • • • • • • • •
:	Fe ₂ (C ₂ H ₃ O ₂) ₆ .Aq	•		Decomp.	•	opel	•~	•	80
Ammon. surphate	Fer(NH4);(SO4)4	964.42	1.7		:	1:3	V.8.	•#	12
Bromide Chloride	Fe ₂ Br ₆ Fe ₂ Cl ₆ FeS ₂	591.20 324.44 119.98		Sublimes 301	Red heat Sublimes	91:100 i	8 V. S.	8 S	s s SH-g
	Fe ₁ (FeC ₆ N ₆) ₃ Fe ₂ (OH) ₆	859.06 213.73	3.4–3.9	Decomp. Decomp.		opel opel			•
Nitrate Oxalate	Fer (C:04)	375.68	1.68	47.2 Decomp.	Decomp.	12 12.	€2 €2.	#0 :	en en ;
Oxide Phosphate	Fer(PO4)r.4HrO Fer(SO4)r.9HrO	373.82 562.03	2.0			1 i 26:1001	i Decomp.	i Decomp.	
귤:	Fe(NH4)2(SO4)2:-	392.15	1.81	Decomp. at		17:100	W.8.		10
Carhonate	Feco.	118 84	æ æ	redness.	•	••	••		יםיטים •

60 60 60 60 60 60 .	s-Aq. reg.		Bol - KI nol.	8-HNOs	g-alk. HNOs
	• • • • • • • • • • • • • • • • • • •	92	8	ord ord	ept ept
8 i 33:10		; B 130:100	• • • • • • • • • • • • • • • • • • • •	•rel •rel	1:1270 i
1.8. 8 8 1 6:10	2.3:100 Decomp. 0.4:100	i v.s. 221:100 500:1 vol	2 vol.: 100 v.s. 331: 100 vols. 1.s.	i 0.04:100	1:778 i Decomp.
Бесотр.	88	-36.7 -65	28.5 19.5 80.2 -42	1040	
Decomp. Decomp. Decomp. 64 Red heat Gas	1100	- 55 - 87 - 112 5	- 13.8 Gas - 2 - 64	1050–1500 33 4 373	Red heat 180
88	4.14 1.89 4.70 19.26-	2.2	0.697 0.988 1.458	7-7.8 11.37 6.12	3.2 9.2 0.59
89.86 179.86 143.84 71.84 278.02 87.91	602.81 214.34 104.5 197.2	12.00 127.93 80.93	27.02 20.02 2.016 34.02 81.22	55.84 207.10 260.94	56.07 223.10 6.94
Fe(OH): Fe(NOs): FeC:O4 FeO FeSO4.7H:O FeS	Gds(SO ₄)s GeCl ₄ GeO ₂ Au	C HI HBr	HCN H; H;O;	Fe Pb PbIs	CaO PbO Li
	sul-	• • •	Hydrocyanic acid Hydrogen Hydrogen Peroxide Selenide	<u> </u>	::::

	Тне Ркоректиея	S OF THE	PRINCIPAL	L INORGANIC	- 1	COMPOUNDS.	Continued	p	
		Molecular	3:000	Melting	Boiling	Solubility	(parts	solid to parts	s water)
Substance	Formula	weight O = 16	gravity	point, deg. C.	point, deg. C.	Cold water	Hot	Alcohol	Acids
ithium:	Ti.Co.	73 88	9 11	91.0		1 9.100	1 5.100	••	a
Chloride	LiCi-H,0		2-2.07	491	Decomp.	65:1001	125:1001	V.8.	V.B.
Hydrate	LioH	23.96	• 1	Red heat	•].s.	:	•	6 2
Nitrate	Lino,		2.3-2.4	258	:	4:5	V.8.	V.B.	•
Fnosphate	LisO.H.0	127.97	2.4	818 818		35:1001	28: 1001	. 60	
Magnesium	Mg			Red heat)) •===	Decomp.		•
Ammonphos	NH, MgPO, 6H,0		•	Decomp.		1:15,000	• • • • • • • • • • • • • • • • • • • •	•	•0
:	MgCO:	84.32	3.0 0.0	Decomp.	•	0.01:100	. pref		•2
•	MgClr6H10	203.34	1.56	708	•	15:10	37:10	1:2	•
• • • • • • • • • • • • • • • • • • • •	Mg(OH);	58.34	2.34	Decomp.	•	~ 4	٦,	•	•
•	Mg(NO1)2-6H2O	256.44	1.46	28	143			:	
•	Mac	999 79	3.65	•	•	0.Wi:100	pri + F		6 02 6
•		276	11.		• • • • • • • • • • • • • • • • • • • •	16.	174.	•	10 (
Sulpuste Manganese	Mr.	•	7.52	ned near	•	Slowly	Decomb	2	12 C
Dioxide	MnO	86.93	4.7-5.0			i		•	2 42
Manganous:	•							1	l
Carbonate	MnCO.	114.93		Decomp.	• • • • • • • • • • • • • • • • • • • •	•,=	e pet		€0
•	MnCl2.4H20	197.91	1.91	•	•	15:10	65:10	53:100	62
Hydrate	Mn(OH);	88.83 8.83 8.83				-	-	F	
:	Mn(NO3)2.6H30	287.05	78.7	87.0	Decomb.	 		60 • 1	60 (
	Ouw	70.85	2.7	• • • • • • • • • • • • • • • • • • • •	•	100		F4 •	
•	MnSO.4 or 7H2O			•	•	12:10	9:101	<u></u>	62
• • • • • •	Mns	3.78	•	•	•	r4	-	•	8-Aq. reg.
Recurse:	HeBr	260 44	7	244	Ruhl 322		,		1
Chloride	HECI	271.52	5.42	265	300	6:100	54:100	1.3	
Iodide	Hgis	454.44	6.2	238	349	1:50	1.8.	0.8:100	•
Nitrate	Hg(NOs)s	324.62	•	Decomp.	Red heat	Decomb.			•
Oxide	HEO	216.6	11.14	Decomb.	Red heat	-	M	P •	•
omburte	IngsO.	10.082	•	• • • • • • • • • • • • • • • • • • • •	•	necomb.	• • • • • • • • • • • • • • • • • • • •	- -	• • • • • • • • • • • • • • • • • • • •

8-Aq. reg. i-HCl s-HNOs	s-NH,OH i-HCl s-HCl	s-KCN s-KCN s s-4q. reg.; i-dil. HCl.	Decomp. Explodes s-FeSO4 Rol. Explodes
enten len len l		·m 20·m ·m	4.2:1 vol. Decomp. Decomp.
i i Decomp	1:960	6:10 6:10	
i i v.s. i l.s. Decomp.	1:500	62:100 i 1:2 1:3 i i 0.0018:1	1.8. 5.1:100 vol. i 1.3:1 vol. Decomp. Decomp.
Sublimes 357.25 268 Sublimes		136.7	Explodes Explodes - 153 - 153 - 22 - 88 - 86 - 89.4
Decomp. 400–500 Decomp. Decomp38.9 194	Red heat White heat -25	Sublimes 56.7 98	Liquid 71 -167 Explodes -101 -49 -111
6.99 7.64 4.78 8.95 13.555 8.6	4.39 8.82 1.32	2.52 4.36 2.06 2.03 0.00126	1.65
232.67 472.12 655.04 298.64 417.20 497.27 200.6 96.0 283.30 128.0	144.0 192.21 58.68 170.68 109.73	129.60 110.70 92.70 290.80 280.86 90.75	253.77 120.39 30.01 394.77 44.01 76.02
HgS HgsCl, Hgs1, Hgs0 Hgs0 HgsSO, Hg Mo Mo MoO; MoO;	MoOs MoSs Ni Ni(CO), Ni(OH)s	NiCls Ni(CN); Ni(OH); Ni(NO ₂);·6H ₂ O NiSO ₄ ·7H ₂ O NiS.Aq Ns	NBr. NCI. NO. N.O. N.O. HNO. Aq
	Molybdic: Anhydride Sulphide Nickel Nickelic hydrate	Chloride Cyanide Hydrate Nitrate Sulphate Sulphide	Bromide Chloride Dioxide Monoxide Tetroxide Trioxide Nitric acid

Continued
COMPOUNDS.
PRINCIPAL INORGANIC C
PRINCIPAL
OF THE
PROPERTIES
T'HE

	THE PROPERTIES	S OF THE	PRINCIPAL	L INORGANIC		COMPOUNDS.	Continued	g	
		Molecular	9 ;	Melting	Boiling	Solubility	y (parts solid	olid to parts	ts water)
Substance	Formula	weight O = 16	Specinc	point, deg. C.	point, deg. C.	Cold water	Hot water	Alcohol	Acids
Osmium tetroxide	080° 080°	254.9 32.00	0.00143	20	100 - 183	0.041	• •	•	
Palladious: Chloride Hydrate	PdC!. Pd(OH): PdI:	177.62 140.73 359.91		Sublimes 300	Decomp.	Ø. n. n	• • • • • • • • • • • • • • • • • • •	·	8 8–alkalis
Nitrate Sulphate Palladium	Pd(NO ₂); PdSO ₄ ·H ₂ O Pd	230.72 220.79 106.7	11.4	Decomp. at	Redness	Decomp. Decomp.			8 8 8-HNO3
Perchloric acid Phosphine	HC104 PH1	100.47 34.09	1.76	- 135 - 133	185	8. 8.	• • •		
Phosphoric: Acid	HiPO.	98.09	1.88	36.6	Decomp.	Combines	8		92 9 2
Chloride	PCIS	208.34 124.16	1.83	148	162 290	Decomp.	Decomp.	Decomp.	8-CS2
Acid	HiPOs Pros	82.06 110.08		22.5	Decomp. 173	V.B. V.B.	8. V 8. S.		
Chloride Red Platinic chloride	PtCls-5H2O	137.38 31.04 427.12	2.1	250 changes Decomp.	0	Decomp.	Decomp.		i-CS ₂
Platinous chloride.	PtCl. Pt	266.12 195.2	5.87	Decomp. Oxyhyd.		·M·M	·ri·ri	pref	s-HCl s-Aq. regia
Flumbic: Acetate Carbonate	Pb(C ₂ H ₃ O ₂) ₂ ·3H ₂ O PbCO ₃ PbCl ₃	379.20 267.10 278.02	6.5 5.8 7	200	006	2:3 i 1:101	2:1 i 1:20	s i 1:20	60 60 60
Chromate. Hydrate. Oxide.	PbCrO. PbO. PbO. PbO.	323.10 241.12 223.10 239.10		Red heat Decomp.		.a 6 .a .a	60		s e-alkalis e-alkalis
Phosphate	Pbs(PO4)3	811.38	7.1			•#	••	:	-HNO

	s-HNOs Decomp.	വ മ		• • •	Decomp.	62 0	Decomp.	Decomp.	i-conc. HCl	6 0	60 (. 00	•	•	•			80	Decomp.	6 2 6	2 60	, ,	02	€2		Decomp.
	i Decomp.	92 . _{Pri}	4:100		1:1200	1.900	3	1:120	1:200	• 🚅 •	e	1.8	•	• •	80	1:7	•	• [=]	·r4		Decomp.	•		▼.l.s.	•	
	i Decomp.	8:1 7:100	36:10	V.8.	1:1		. 6. .6.	1:2	1:2	1:1.7	I:2 Decomb.	V.8.	1:12	1:1	œ.	2:1	Decomp.	2:1	8. 8	9 5	.8.		.e.	1:19	•	10
,	i Decomp.	0.4:100	$1:10 \\ 1:5$	V.8.	1:4	1:10 2:3	11:10	1:14	3:10	1:2	Z: 10 V.8.	V .8.	1:2.5	1:51	2.0	14:10	œ	<u></u>	.: ::	20 ⁰⁰	10:16	1	æ.	1:100	a.	0
_	1085 700				:	Decomp.		Decomp.	400 Sublimes	•					Sublimes			Decomp.	•	•			•	•	•	•
	1015 62.5	292 Decomp.	84.5		Decomp.	400 750	838	334	190	940	Red heat		Decomp.	Decomp.	Ked heat	639		340	Ked heat	•	Decomp.	240	Decomp.	Decomp.		080
;	7.5		1.73			2.69 9.68	2.27	•	2.0	2.7	1.52		1.82	•	•	90.0		2.08 .08	:	•	2.7		•	3.99		•
;	239.17 39.10		•			294.2	138.20		74.56	194.10	998.86 65.11	94.13		422.35	•	166.02	•	101.11	•	184.21	158.03	6	1/4.25	486.16	430.60	•
* > 22	PbS K	K:C:H:0; HKH,C:0;	K ₂ Al ₂ (SO ₄) ₄ ·24H ₂ O K ₂ AsO ₄	K2HA803	KHCO3	KiCriO,	K,CO,	KC10,	KCI	K,CrO,	K1C7(SO4) 4.24 H10 KCN	KF-2H20	\hat{z}	K4Fe(CN)4·3H10	KOH KIO.	KI	K ₂ MnO ₄	KNO.	KNOs WCOS	Kacata Caran	KMn0,	Ogn 7	Ninfo4	K,PtCl,	KrSbrOr	A IOIOI
	Sulphide	Acctate	AlumArgenate	Arsenite	Bicarbonate	Bichromate	Carbonate	Chlorate	Chloride	Chromate	Chrome alum	Fluoride	Ferrioyanide	Ferrocyanide	Hydrate	Iodide	te	:		Oxide	ate.	DL	Platinia ablor-	ide	Fyroantimor- ate	•

	THE PROPERTIES	S OF THE	PRINCIPAL	L INORGANIC		COMPOUNDS.	Continued	ğ	
		Molecular	υ. -	Melting	Boiling	Solubilit	Solubility (parts solid	olid to parts	ts water)
Substance	Formula	weight O = 16	gravity	point, deg. C.	point, deg. C.	Cold	Hot water	Alcohol	Acids
		100		010		,	,		
	KHSO,	136.17	2.65 2.16	1970	Decomp.	1:8 36:100	4 : 4 8. V	7	6 2 0 2
Irate .	KHS	72.17	•			20	60	60 (Decomp.
Sulphite	K,80,2H,0	194.30		• • •			z; e;	2 0 • ,=	Decomp.
Tartrate	K,H,C,0	226.13		Decomp.		15:10		0.4:100	
mide	RaBr ₂	386.24 214.06	ec.	728		60 · -			aollrolio
Rubidium:) ;	•	•	•	1	•	STRAINS
Carbonate	Rb2CO3	230.90		Decomp.	•	V.8.	:	•	•
Chloride	RbCl	120.91	2.5	710	•	84:100	•	•	•
:	Rbs SO.	226.97	3.61			43:100	•	:	•
Selenic acid	H2SeO.	145.22 96.33	2.95	8 6	760	φ. α	•	:	THE SECOND
•					•	:	•	•	alkalis
Anhydride	SiO ₂	60.3	2.7		•	•=	•==	• 1	8-HF and
•	SiBr.	347.98	8.8	13	153	•	•	•	ain aile
	SiCI	170.14	1.52	68 -	59	Decomp.		Decomp.	
•	SIF.	104.30	:	-140	- 107	Decomb.	Decomp.	•	Decomp.
Lydride		535.98		2 C	066	Decomp	•	:	•
	SiS.	92.44				Decomp.		Decomp.	• • •
:	is v	28.3	12.49	•	•	· • • • • •			
Arenite	Ag.AsQ.	446 60	20.01	•	• • • • • • • • • • • • • • • • • • • •	- 1 • F	r4	H	
	AgBr	187.80	6.39	427	Decomp.	0.000008:	•	• •	s-conc. HCl
J. L. L. J.	اکسا	142 24	z z	150	3	100 0 000 15.	••		- 1111 /11

\cdots AgI		234.80	2.67	240		0.0000003	•#	•	i-NHOH
. Agl	AgNO ₈	169.89	4.35	224	Decomp.	21:10	V.8.	•	•
. AgNO	403	153.89		Decomp.	redness.	1:120	Decomp.	•	•
. Agz	AgrCrO.	<u></u>	2	Explodes	•	v.l.s.	v.l.s.	• •	e-HNO.
AgiO			5.47	250 decomp Decomp.		1:0000			
AgsPO.	AgsPO4	418.68	7.3	Redness		1.150	1.00	•	HO'HN-8
AgiS				: : : : :		31.1	1.00	• • •	i-NH,OH
Ag:SO:	SO.	295.83	0.0	Decomp.	7.10	Jeesman			Decomp.
8 Z Z	NaC:H:0:3H:0			319		1:3	2:1	Decomp.	Decomp.
Z	NaNH,HPO,4H20	209.15	1.55	Decomp.	•	16:100	1:1	•=	•2
Za2	Na, HASO, 12H,0		•		•	1:3	V.8.	2:100	
SZZ ZBZ	Na.HABO:	169.97 84.01	2.2	Decomp.	• • •	v.s. 0.1:10	v.s. Decomp.		Decomb.
				270_			•		
2 2 -	Na ₂ Cr ₂ O ₇ ·2H ₂ O N ₂ -R ₂ O ₇ ·10H ₂ O	298.03 382.16	1 69	Red best	•	7:41 6:100	V.8.	•	€
8 8 2	NaBr-4H20		3.1		• • •	314	$112:100^{1}$].s.	• • •
ZZ	Na ₂ CO ₃ ·10H ₂ O		1.45			=	42:101	• • •	Decomp.
# Z		106.00 106.46	.4-4.0	549 Decomp	Decomb.	3	45:100 9:1	–4	Decomp.
NaC	5		2.13	776	White heat	. 63	4:10	2 · ==	i-conc. HC1
S Z	Na,CrO4.10H,0	•	•		TAYLER A. B. C. A.	77:1001	50 7	•	62
2 d	Na-S-O-:5H-O	248, 22	1.67	320 45	Decomp.	1.10	2:10 2:10	2 0 • ,=	Decomb
BZ	NaI-4H30	221.96	2.45	650			3:11	. 60	
BZ	NaNO;		2.26	313	•	8:10	2:1	€.	
SZ.	S No.		•	271	•	8:10	V.8.	· - (Decomp.
	ွှင့်	787	000	Decomp		V.B.	V.8. Decomn		62 (
	Na.HPO.12H.0		3.58	Decomp.		1:251	1:11	.,~	•
Platinic chloride Naz	Na ₂ PtCl ₆ ·6H ₂ O	562.06	• • • • • • • • • • • • • • • • • • • •	Decomp.	•	V.8.	V.8.	•	60

		Molecular	9.	Melting	Boiling	Solubili	Solubility (parts solid to parts water)	lid to part	s water)
Substance	Formula	weight 0 = 16	Specific	point, deg. C.	point, deg. C.	Cold	Hot water	Alcohol	Acids
Sodium: Potass. tartrate	NaKC4H406-4H10	281.51	1.79	75	220		,		
Fyroantimon-	Na,Sh,O,H,O	416,44			decomb.	7 ×		- A	
Pyrophosphate.	Na,P,O,10H,O	399.24		77		6:100	9:10		· •
:	Na ₂ SnO ₃ ·4H ₂ O	282.19		1000	•	62 (©	•	Decomp.
Sulphate	Na;SO,10H;O	322.23		Decomp.1		1:51	$1:2^{1}$	4.7	Jecomp.
Sulphate	On a Co	119.07	2.67	884		.8.			Desomn
Sulphite	Na ₃ SO ₃ ·7H ₂ O	252.18	1.56	Decomp.		1:41	1:11	2 • •	Decomp.
Stannie: Chloride	SnCl	260.84	2.28	- 33	114.1	Decomp.	•	•	=
Hydrate	H ₃ SnO ₃	169.02		Decomp.	•	· r=4	•		s-acids, al-
Oxide	SnO ₂ SnS ₂	151.00 183.14	6.8	1130		•ल •ल	· ·	• •	i-acids i-Acids i-Akish
Stannous: Chloride	SnCl.·2H.0 H-SnO.	225.95 153.02		250 Decomb	909	Decomp.	in excess	•	8 Ja abina-a
		70.001	•		•	• •	•	•	kalis.
Oxychloride	Sn.OCI.2H,O	360.95		Decomb	•	. = 1 • =	epd or		. pr. •
Sulphide	SuS	51.07	4.97	970	1090	4 • •	4 • #4		e-conc. HCl
Strontium	Sr	87.63	75. 25.		•	Decomp.	Decomp.		•
Carbonate	SrCO.	147.63	, w , w	Decomp.	• • • • • • • • • • • • • • • • • • • •	0.001:100	•		8-H3CO3
Chloride	SrCl:-6H20	266.65	1.92	1160 832	•	1:21	1:11		•
Hydrate	Sr(OH);	121.65			•	1:52	1:24		62 (
MILTER CO	מנלות סוו	211.00	P	645 645	•	6:2	7:T	·	.
Oxide	lsro	103.63	3.9	3000	•	35:100	•		•
1Anhydrous fo	¹ Anhydrous form. melts at 860°.	3 Norma	² Normal anhydrous phosphate melts at 957°C.	phosphate n	nelts at 957°	<u>ن</u>			

s-HCl Decomp.	i-CS ₂ s-CS ₂	•	Decomp.	s-CS; i-H ₂ SO ₄	s-alkalis i-acids ·	i-HCI	s s m m-e
· 02	v.1.s.	•	Decomp. Decomp. Decomp. Decomp. Decomp.	ος. _{σα}		· · · · · · · · · · · · · · · · · · ·	
1:3700 Decomp.	• ~•	•	Combines	Decomp.			
Decomp. 1:3000 Decomp.	······	305:100	Combines Decomp.	s 1:6 vols. Decomp.	Decomp.	10 - pai - pai	1.8. 1.8. Decomp. 8 i 4:100 v.8.
	440	-63.5	327 35 64 decomp.	10 136	245	Decomp. Red heat	Below 700 327 0 Red heat Decomp. Decomp.
Decomp. Decomp.	114	-85	10.5 14.8 Liquid Decomp.	76 	211	Decomp. Decomp. 500	Dull red 175 -48 290 272 25
5.46	$\begin{array}{c} 1.98 \\ 2.0 \end{array}$	Liq. 0.9	1.842 1.97 1.62 1.9	1.68	7.28	5.07 6.25	5.93 11.86 7.1
119.63 183.70 119.70	32.07 32.07	34.09	98.09 80.07 102.99 178.16 173.91	64.07 135.06 181.5	1419.08 443.0 358.80 276.50	229.55 175.50 127.5	177.52 159.50 198.42 129.52 204.0 264.00
SrO ₂ SrSO ₄ SrS	ಬಬ	H ₂ S	H,SO, SO; SC! H,S2O, SC!	H ₂ SO ₂ + Aq SO ₂ S ₂ Cl ₂ T8	3Ta ₂ O ₅ ·5H ₂ O Ta ₂ O ₅ TaCl ₅ TaF ₅	HrTeO4.2HrO TeOs Te	Hrreo, Teo; Tecis Hrre Ti Tico,
e	Allotropic Common	drogen	Sulphuric: Acid Anhydride Chloride Fuming acid Tetrachloride	Sulphurous: Acid Anhydride Chloride Tantalum	de.	<u>e</u>	Acid Anhydride Chloride Hydride Thallium Carbonate

8 8-H ₂ SO ₄	H25O4. 8-H2SO4 8-alkalis 8	s i–HCl s–alkalis s	80 80 80 H 80 80	1.8.
	0	· · · · · · · · · · · · · · · · · · ·		
	(2	V.8. V.8.	655: 100 i	T. V.8.
13:10 ¹	1:1000 1.s. i 0.001:100	37:10 i i v.s. 115:100 ¹	135:100 i Decomp. v.s. g	lopel DB
118	1040	230	ed heat readily	
59.5 Decomp.	658 433 Sublimes Decomr.	262 262 Decomp.	Decomp. 1050 Sublimes Sublimes	Infus Decomp. st red.
2.81	3.35	2.91	1.95 3.5-4.2 4.15	5.71
502.62 516.69 302.57 605.00 51.0	182.0 100.01 65.37 225.21 125.37	136.29 298.77 342.64 99.39 319.01 81.37	258.82 287.55 97.44 90.6 232.44 220.65	122.60 182.90 186.67
UO2(NO3)2-6H2O UO2(SO4)2-3H2O UO2S U3O8	V ₂ O ₅ HVO ₃ Zn ZnBr ₂ ZnCO ₃	ZnCl ₃ Zn ₂ (OH) ₂ CrO ₄ ·H ₂ O Zn ₂ Fe(CN) ₃ Zn(OH) ₃ Zn ₁ Zn ₁ Zn (NO ₃) ₃ ·6H ₂ O Zn C	Znsc.7H ₂ O Znso.7H ₂ O Zns Zr ZrCl ₄ ZrF ₄ :3H ₂ O Zr(NO ₂) ₄	Zròs Zrsios Zrsos
Uranyl: Nitrate Sulphate Sulphide Uranic oxide	PentoxideZincBromide	Chloride	Fhosphide Sulphate Sulphide Zirconium Bromide Chloride Nitrate	Oxide Silicate Sulphate.

¹ The molecular weights have been recalculated by the 1915 atomic weight table on a basis of O = 16. Where a melting point greatly exceeding 100°C. is given for a hydrated salt, the melting point is that of the anhydrous form.

Magnetic Susceptibilities of the Elements¹

h = magnetic force.

 μ = permeability = B/h.

 $H = \text{susceptivity} = I/h = \frac{\mu - 1}{4\pi}$.

I = intensity of magnetization. $= \text{magnetic moment per cm.}^3$ $= \text{pole strength per cm.}^2$ $B = \text{magnetic induction, or flux density} = h + 4\pi I.$ B = magnetic induction $B = \text{magn$

Coercivity, $h_{B=0}$, is the demagnetizing force required to make B = 0 after saturation.

Coercive force is the demagnetizing force required to make

B=0 after some particular field strength. Remanence, $B_{H=0}$, is the induction remaining when the mag-

netizing force is removed after saturation.

The work done, i.e., hysteresis loss, Qe, in taking a cm. s of magnetic material through a magnetic cycle between the limits

$$+ H_{\bullet} \text{ and } - H_{\bullet} = \int_{-H_{\bullet}}^{+H_{\bullet}} h dI = \frac{1}{4\pi} \int_{-H_{\bullet}}^{+H_{\bullet}} h dB.$$

STEINMETZ'S empirical formula for the hysteresis loss is ηB_{max}^{n} , where η is a constant and $\eta = 1.6$ (usually). The magnetic properties of a material depend not only on its chemical composition, but on its previous mechanical and heat treatment; thus only general characteristics are indicated below.

Good permanent magnet steel contains about 0.5 per cent. W and 0.6 per cent. C. Cast iron, chilled from 1000°C., may also be used, but the results will never be so good as with steel. The Heusler alloys (Cu, Mn, Al) are remarkable in showing high magnetism when the components do not.

PERMEABILITY µ

Material	h = 0.5	h = 1	h = 5	h = 20	h = 60	h = 150
Swedish wrought iron Annealed cast steel Unannealed cast steel Cast iron Magnet steel { hardened. tungsten	1450 490	3710 3500 970	2060 2100 1700 81 68 ² 80 ³	736 747 680 182 78 119	274 280 270 117 193 204	120 123 122 65 100 100

The figures given are only roughly comparative and can only be used as a general working guide. If exact results on particular specimens are wanted, laboratory determinations are necessary.

¹ KAYE and LABY, "Physical and Chemical Constants."

 $^{^{2}}$ At h = 15.

 $^{^{3}}$ At h = 10.

Material	Coerc-, ivity	Rema- nence	Н.	Hysteresis loss Qs, ergs/cm.
Swedish wrought iron	0.8	4,000	200	6,700
	0.97	7,100	151	11,700
	2.08	9,000	150	20,400
	11.9	4,230	155	34,300
	52.6	11,700	234	211,000
	27.5	9,880	505	116,000

The figures given are only roughly comparative and can only be used as a general working guide. If exact results on particular specimens are wanted, laboratory determinations are necessary.

			ion, B,			For has	
Material	hmaz	hmos	h = 100	ji man	Coer.	Reman	Hyst. loss, args/ cm.
Mild steel, Steel, 28% Cr, 0.8% C	129	18,190	17,700		0 6 56.0	10,300 6,400 ²	4,900
Steel, 5 5 % W, 0 6 % C, hardened at 770° Steel, 7 7 % W, 1 9 % C.					72.0	7,0002	280,000
hardened at 800° Steel, 4% Mo, 12% C, hardened at 800°					85 0 85 0	4,700 ⁴ 6,700	
Iron	50	17,100	-,	1,750	2 22	53 % B _{max}	
Stheon iron, 0.6% Si,	55	16,000		1,900	1.62	43 % Bmay	1 4 1 4 1 4 4
Silicon iron, 45% St.	56	15,100		2,500	1 21	39 % B _{max}	,
Electrolytic iron Electrolytic iron heated to 1200° C	210	21,250	16,000	.:: : .	18 0 2 5	10,000 12,500	
Happield's Masteels Nickel annealed Cobalt Cobalt, 96% Hensier alloys	100 140 114 92	5,137 10,090 8,237 2,735	9,500 7,800		8 0 12 0	Small 3 570 3,400	19,000

The figures given are only roughly comparative and can only be used as a general working guide If exact results on particular specimens are wanted, laboratory determinations are necessary

$$H = I/h = \frac{\mu - 1}{4\pi}$$
, $H = 0$ for a vacuum.

The susceptibility depends very much upon the purity of the material, especially upon the absence of iron. It appears to be a periodic property of the atomic weight.

 $^{^{1}}H = 10$

Bar magnet.
12 per cent Mn, 1 per cent. C.

Mn 24, Al 16, Cu 60, An alloy of iron and boron Fe₂B is highly magnetic, as is also MnB (16.66 per cent. B) "Trans. VIII Int. Cong. App. Chem."

Elem. solids	$H \times 10^{-6}$	Elem. solids	$H \times 10^{-6}$	Elem. solids	$H \times 10^{-6}$
Al ² Sb As. Bi B Cd. Cr. Cb. Cu. Au. I. Ir Fe. Pb. Mg. Mn. Mo.	+ 0.65 - 0.95 - 0.31 - 1.4 - 0.71 - 0.17 + 3.7 + 1.3(?) - 0.087 - 0.15 - 0.36 + 0.15 see p. 229 - 0.12 + 0.55 + 10.6(?) + 0.04(?)	P. Pt. K. Rh. Ru. Se. Si. Ag. Na. S. Ta. Te. Tl. Th. Sn. Ti. W.	+1.8	U. V. Zn. Zr. Liquids: Br. Hg. N (liq.). O (liq.). H ₂ O (15°). Gases: Air (16°). A. He. H. N. O.	$\begin{array}{c} +\ 0.9^{1} \\ +\ 1.5 \\ -\ 0.15 \\ -\ 0.45 \\ \\ -\ 0.45 \\ -\ 0.19 \\ +\ 0.28 \\ +\ 0.324 \\ -\ 0.80 \\ \\ +\ 0.032 \\ -\ 0.010 \\ -\ 0.002 \\ -\ 0.008 \\ +\ 0.024 \\ +\ 0.123 \\ \end{array}$

The figures given are only roughly comparative and can only be used as a general working guide. If exact results on particular specimens are wanted, laboratory determinations are necessary.

There is a critical temperature above which magnetic permeability is very small; in the case of iron it is one of the recalescence temperatures. The critical temperature is not perfectly definite, but depends upon whether the material is being heated or cooled.

Fe, 690-895°C.; Ni, 95 per cent., 300-377°C.; magnetite, 582°C.; magnetite, 582°C.; Heusler alloys, about 300°C.; Co, 1102°C.; Cu, 72°C.; Zn, 300-350°C, possibly also at 170°C.; Sn, 18° and 161°C.

Electromagnetic Separation

MAGNETIC PERMEABILITY

Iron 100,000 Magnetite 40,000 Spathic iron ore 767 Hematite 714 Oolitic iron ore 593 Limonite 296	Manganese sulphate	
---	--------------------	--

The figures given are only roughly comparative and can only be used as a general working guide. If exact results on particular specimens are wanted, laboratory determinations are necessary.

Magnetic Permeability (in descending scale).

FARADAY'S arrangement.

Paramagnetic: Fe, Ni, Co, Mn, Cr, Ti, Pd, Pt, Os. Diamagnetic: Bi, Sb, Zn, Sn, Cd, Hg, Pb, Ag, Cu, As, U, Ir, W. Iron = 2000; air = 1; Bi = 0.998.

¹ Approximate only.

² Probably this paramagnetism is due to contained iron, for the more nearly chemically pure Al becomes the less its magnetism. This value is given by Horda, Annalen der Physik, 1910, p. 1045.

ACTION OF THE WETHERILL MAGNET ON MINERALS FOUND IN PLACER SANDS, TOGETHER WITH THEIR SPECIFIC GRAVITY1

Non-magnetic	Sp. gr.	Separated by current of ½ amp. or less		Separated by current of 314 amp.
Mineral: Iridium	5.3-7.3 5.0 4.8 4.7 4.3-4.6	Platinum ² Cast iron 7.5 Josephinite 7	Platinum ² Hematite 5 Ilmenite 5	Platinum ² Cassiterite 7 Monazite 5

Minerals Which Become Quite Magnetic on Roasting⁸

Sulphides Oxides and carbonates oxidizing roast without reducing roast with carbon carbon FeS₂ Pyrite, Hematite. Fe₂O₃ Marcasite, Siderite, FeS₂ FeCO₂ Chalcopyrite, Wolframite, FeMnWO₄ FeCuS₂ Bornite, FeCu₃S₃ Chromite. FeCr₂O₄ Arsenopyrite, FeAsŠ

ZINC-IRON SEPARATION BY MAGNETIC SEPARATORS TOMBOY GOLD MINES, TELLURIDE, COLO.4

	Au, oz.	As,	Pb, per cent.	Zn, per cent.	Fe, per cent.	Cu, per cent.	SiO ₂ , per cent.
Zinc concentrates Iron concentrates		4.00 6.74	4.10 5.14	45.70 12.00	6.20 40.00	1.90 7.00	13.40 12.30

¹ R. H. RICHARDS, "Ore Dressing," Vol. IV.

² Probably due to iron.

⁸ R. H. RICHARDS, "Ore Dressing," Vol. II. ⁴ R. H. RICHARDS, "Ore Dressing," Vol. IV.

SHRINKAGE OF METALS¹

Metal	Casting temperature, deg. C.	Freezing point, deg. C.	Shrinkage during freezing, per cent.	Total shrinkage, per cent.
Pb	500	326	0.065	0.82
Pb	600	326	0.065	0.83
$\mathbf{Z}_{\mathbf{n}}$	650	416	0.08	1.40
$\mathbf{Z}_{\mathbf{n}}$	700	416	0.08	1.40
Zn	750	416	0.08	1.40
Sn (Banca)	550	225	0.1-0.15	0.44
$\mathbf{Sn} \dots$	500	225	0.1-0.15	0.55
Al	800	683		1.78
Al	850	683		1.78
Cu	1250	1060	Expansion	1.42
3i	500	261	.	0.29
3b	· 710	621		0.29
3b	750	621		0.63
8b	800	621		0.29
3b	1050	621		0.66
Na ²				2.57

The expansion of copper is to be attributed to the setting free of dissolved gas. The lead, zinc, copper and antimony that Wüst worked with were not even commercially pure. This may account for the inconsistency of his results with those of other authorities, given below.

SHRINKAGE OF METALS³

Metals	Percentage increase of volume on melting
Sodium	2.5 (a)
	2.5 (b)
Potassium	\ldots 2.5 (a)
	2.6 (b)
Tin	2.8 (a)
	2.8 (c)
Cadmium	
~ ,	4.72(c)
Lead	
(D) 11'	3.39(c)
Thallium	\
Zinc	
Aluminum	\ •
Tellurium	. 7 /
Antimony	$\begin{array}{ccc} & 1.4 & (a) \\ & -3.27(a) \end{array}$
Distriction	-3.27(a) -3.31(c)
	-3.31(c) -3.0(d)
	0.0(a)

(d) C. Ludeking, Annalen der Physik, 1888, Vol. 34, p. 21.

⁽a) M. Toepler, Annalen der Physik, 1888, Vol. 34, p. 21.
(b) H. Block, Zeit. für Phys. Chem., 1912, Vol. 78, p. 385.
(c) G. Vincentini and D. Omodei, Atti R. Accademia delle Scienze di Torino, 1889, Vol. 31, p. 25.

¹ From Hofman's "General Metallurgy," originally from Wtsr, Metallurgie, Vol. 6, 1909, p. 769.

² Chem. Trade Journ., June 26, 1915.

^{*} Compilation in Engineering, Apr. 3, 1914, p. 473.

SECTION IV

CHEMICAL DATA

FUNDAMENTAL CHEMICAL LAWS

Avogadro's.—Equal volumes of all gases and vapors contain the same number of ultimate particles or molecules at the same temperature and pressure.

Conservation of Energy.—Whenever a change in mode of manifestation of energy takes place, the total amount of energy

remains a constant.

Dalton's.—See multiple proportions.

Definite Proportions.—A chemical compound always contains the same constituents in the same proportion by weight.

Diffusion of Gases.—The rate of diffusion of gases is approximately inversely proportional to the square roots of their specific gravities.

Dulong and Petit.—The product of the atomic weight and

the specific heat of the same element is a constant.

Gay-Lussac's.—When gases or vapors react on each other the volumes both of the factors and the products of the reaction always bear to each other some simple numerical ratio.

Indestructibility of Matter (Lavoisier).—Whenever a change in the composition of substances takes place, the amount of matter after the change is the same as before the change.

Mariotte's.—The volume of a gas is directly proportional to the absolute temperature and inversely proportional to the

absolute pressure upon it.

Multiple Proportions (Dalton).—If two elements A and B form several compounds with each other, and we consider any fixed mass of A, then the different masses of B which combine with the fixed mass A bear a simple ratio to one another.

Periodic.—The properties of an element are periodic functions of the atomic weight.

The Periodic Table

The so-called "periodic law" was the enunciation by Mendeleff that the atomic weight of any element determines its properties, or, that the properties of the elements are periodic functions of the atomic weight. Roughly, if the elements are arranged in recurring "octaves" according to increasing atomic weights, elements of similar properties fall in columns. While this is so generally true that Mendeleff was enabled to prophesy the discovery of certain elements with certain properties, it is not without its exceptions, if our present knowledge be correct. For instance, according to atomic weight, iodine should come before tellurium, while according to its properties it comes after it. Argon and potassium form another such exceptional case.

The table following (p. 238), gives the places of most of the common elements, but omits most of the radioactive elements and the rare earths. These latter are, Pr, 140.6; Nd, 144.3; Sa, 150.4; Eu, 150.0; Gd, 157.3; Tb, 159.2; Ho, 163.5; Ds, 162.5; Er, 167.4; Tm, 168.5 [2 modifications (?)]; Lu, 174.0.

As to the radioactive elements, these are, as is well known, characterized by a greater or less instability. After a certain period of existence, which may range from over a thousand million years, as in the case of uranium (U₁) to a millionth of a second as in the case of radium (RaC₁) the atom disintegrates spontaneously and yields an atom which possesses totally distinct properties. The disintegration is detected by the expulsion either of alpha or of beta particles. Accompanying the expulsion of beta particles there is also observed in a number of cases, an emission of gamma rays. These are electromagnetic pulses of extremely short wave length (about 10⁻⁹ cm.) and are probably due to the bombardment of the atoms of the radioactive substance itself by the beta particles.

As a result of the large amount of careful work which has been carried out during the past few years in investigating the relationship between the different radioactive elements and their transformation products, it has been concluded that there exist three well-defined disintegration series whose starting points

are uranium, thorium, and actinium, respectively.

Fig. 1 illustrates diagrammatically the manner in which the

members of these series appear to be related.

When mesothorium 11 disintegrates, it yields radiothorium and as a beta particle is expelled during the transformation there is no change in atomic weight. Radiothorium is chemically allied to thorium and non-separable from it. These facts lead to the conclusion that radiothorium belongs to Group IV and mesothorium 11 must therefore belong to Group 111.

Passing to thorium X, we here again come to an element which is chemically similar to radium, thus placing it in Group II. The atom of thorium X expels an alpha particle and yields thorium emanation, a gas which is inert chemically, and condenses at low pressures between -120° C. and -150° C. The emanation resembles, therefore, the rare gases of the argon group.

Thorium emanation is the first member of the group of transformation products that constitute the thorium "active deposit." They are indicated in Fig. 1 as thorium A, B, C_1 , C_2

and D.

¹ From the General Electric Review, July, 1915.

The alpha particle has the same mass as an atom of helium, but differs from the latter in possessing two unit positive charges, $2E = 9.54 \times 10$ E.S.U. The beta particles correspond in mass and electric charge to the electrons units of negative electricity, $E = 4.77 \times 10$ E.S.U.

Fig. 1.—Method of disintegration of radioactive elements.

The diagrams illustrating the actinium and uranium series are self-explanatory. In a general way the three series are quite similar. The most noteworthy feature about these radioactive elements is the fact that individual members of each series appear to be chemically indistinguishable from certain members of the other series. Thus thorium B and radium B possess identical chemical properties. If it were not for the difference in period of existence of both substances it would be impossible to differentiate them.

Isotopes.—Soddy first drew attention to this and similar cases of radioactive elements that are chemically identical and since they must occupy the same place in the Periodic Table he has designated them isotopes. Thus the elements uranium X_1 , ionium, and radioactinium are isotopic. A similar example is furnished by the three emanations, and by radium and thorium X. A remarkable feature about these isotopes is that although they are chemically the same, they differ in atomic weights. In other words, we have here cases of elements that are absolutely inseparable by all chemical methods so far devised, and yet differ in that respect which has hitherto been taken to be the most important characteristic of an element—its atomic weight.

Soddy's Law of Sequence of Changes.—A comprehensive survey of the chemical properties of the different radioactive elements has led Soddy and Fajans independently to an interesting and extremely important generalization which enables them to assign these isotopes to their places in the Periodic

Table.

It will be remembered that an alpha particle is a helium atom with two positive charges. By its expulsion, therefore, the atom must lose two positive charges, and the atomic weight must decrease by four units. Similarly, the expulsion of a beta particle means the loss of a negative charge or, what is equivalent, the gain of one positive charge; and since the mass of the beta particle is extremely small compared with that of the atom, there is practically no decrease in atomic weight. Now in the Periodic Table the valency for oxygen, an electronegative element, increases regularly as we pass from Group 0 to Group VIII, while that for hydrogen, an electropositive element, decreases, i.e., the electropositive characteristic increases by one unit for each change in the group number as we pass in any series from left to right. Furthermore, in each group the electropositive character increases regularly with increasing atomic weight.

These considerations led Soddy and Fajans to this conclusion:

The expulsion of an alpha particle from any radioactive element leads to an element which is two places lower in the Periodic Table (and has an atomic weight which is four units less) while the emission of a beta particle leads to an element which is one place

higher up, but has the same atomic weight.

It is possible, therefore, to have elements of the same atomic weight but possessing distinctly different chemical properties,

and, on the other hand, since the effect of the emission of one alpha particle may be neutralized by the subsequent emission of two beta particles, it is possible to have two elements which differ in atomic weight by four units (or some multiple of four)

and yet exhibit chemically similar properties.

As an illustration, let us consider the Uranium Series. Uranium I belongs to Group VI. By the expulsion of an alpha particle we obtain uranium X_1 , an element of Group IV. This atom in turn disintegrates with the expulsion of a beta particle. Consequently uranium X_2 must belong to Group V. In this manner we can follow the individual changes that lead to the different members of the series, and by means of the generalization of Soddy and Fajans we cannot only assign to each element its place in the Periodic Table but also its atomic weight, as has been done in Fig. 1.

This generalization has been of material assistance in elucidating some of the difficult problems in the study of the disintegration series. More than this, it has led to the intensely interesting conclusion that the end product of each of the three radioactive series in an isotope of lead. The results of the most recent work on the atomic weight of lead are in splendid accord with this deduction, as it has been found that lead which is of radioactive origin, has a slightly lower atomic weight than

ordinary lead.1

In a couple of cases the isotope has not been definitely isolated, but there can hardly be any doubt of its existence. Thus, the disintegration product of radium C_2 must be an element of Group IV, but the evidence for its existence is very meager.

¹ J. Am. Chem. Soc., 36, 1329, 1914.

THE PERIODIC TABLE OF THE ELEMENTS

Series	Zero group	Group I R ₂ O	Group II RO	Group III R ₂ O ₂	Group IV RH4 RO2
1 2 3 4 5 6 7 8 9 10 11 12	He = 4.0 Ne = 20.0 Ar = 39.88 Kr = 82.92 Xe = 130.2	H = 1.008 Li = 6.94 Na = 23.0 K = 39.1 (Cu) = 63.57 Rb = 85.45 (Ag) = 107.9 Cs = 132.8 (-) 	Be = 9.1 Mg = 24.32 Ca = 40.07 Zn = 65.37 Sr = 87.63 Cd = 112.4 Ba = 137.37	Sc = 44.1 Ga = 69.9 Yt = 88.7 In = 114.8 La = 139.0	C = 12 Si = 28.3 Ti = 48.1 Ge = 72.5 Zr = 90.6 Sn = 119 Ce = 140.25 Pb = 207.1 Th = 232.4
Series	Group V RH ₃ R ₂ O ₅	Group VI RH ₂ RO ₂	Group VII RH, R ₂ O ₇	Group R(VIII
1 2 3 4 5 6 7 8	N = 14.01 P = 31.04 V = 51.0 As = 74.96 Cb = 93.5 Sb = 120.2		$ \begin{array}{lll} \text{Cl} &=& 35.46 \\ \text{Mn} &=& 54.93 \\ \text{Sr} &=& 79.92 \\ &=& 100.0 \end{array} $	Fe = 55.84, Co = 58.97, Rh = 102.9, Pd = 106.7,	Ni = 58.68 Cu = 63.57 Ru = 101.7 Ag = 107.88

Examples of the manner in which the properties of the elements are progressive functions of the atomic weight are shown in the tables of the Ca-Sr-Ba, and Fl-Cl-Br-I families which follow:

10

11

12

 $Ta = 181.5 \cdot | W = 184.0$

= 238.5

Bi = 208.0

 $\begin{cases} Ir = 193.1, Pt = 195.2 \\ Os = 190.9, Au = 196.7 \end{cases}$

Element	Calcium	Strontium	Barium
Atomic mass Specific gravity Carbonate disso-	40 1.6	88 2.5	137 3.6
ciates; tempera- ture	600C.	1100°C.	1400°C.
liter of water at	1.32	18	50
Heat of formation of chloride; units.	170	185	195

Element	Fluorine	Chlorine	Bromine	Iodine
Atomic mass .	19	35 5	80	127
Boiling tempera-	- 187°C	-33°	59°	184°
Specific pravity	1.15 (bouid)	1 5 (houid)	3 2 (liquid)	5 (solid)
Union with hydro- gen takes place	In the dark	In sunlight	At red heat.	At red heat but incom-
Ren rayes hises	tempera-			pletely.
	tures.			
Heat of formation of hydrogen com- pound		22	8	-6.1
Stability of hydro- gen compound	Most stable	Decomposed at 1500°C.	Decomposed at 800°C	Decomposed at 180°C.

ELECTROCHEMICAL	EQUIVALENTS1
-----------------	--------------

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27 1 0.00009363 07.88 0.0011183 79.92 0.00082845 12.40 0.00058257
Cl - Co + 2 Cu + 2 Cu + 1 Sn + 2 Fe + 1 Fe + 1 Hg + 1 Hg + 1 Ni + 2 Pt + 2 Pt + 2 Pb + 2 K + 1 Na + 2 Sb + 1 K + 1 Mg + 1	40.0 0.00020732 35.46 0.00036758 58.97 0.00032948 63.57 0.00065897 63.57 0.00061678 19.0 0.00030839 55.84 0.00019267 19.0 0.00019267 19.0 0.00019695 1.008 0.000103661 26.92 0.00103661 00.6 0.00207322 58.68 0.00030414 97.2 0.00068139 16.00 0.00050584 95.2 0.00101168 07.1 0.00107340 39.10 0.00040531 23.00 0.0023842 05.37 0.00033881 20.2 0.00041532 6.94 0.0007245 24.32 0.0001891 54.93 0.0001449

¹Goza, "The Art of Electrolytic Separation of the Metals."

INTERNATIONAL ATOMIC WEIGHTS, 1915

INTERNATIONAL ATOMIC WEIGHTS, 1915							
Element	Symbol	Weight	Val- ence ¹	Electro- chem. equi- valents, g. per amp hr.	Melting points	Boiling points	
Aluminum Antimony Argon Arsenic Barium	Al Sb A As Ba	27.1 120.2 39.88 74.96 137.37	3 3 0 3 2	0.3368 1.4966 0.9324 2.5619	658.7 630.0 -188.0 850.0 850.0	1800.0 1460.0 -186.0 450.0 ²	
Bismuth Boron Bromine Cadmium Caesium	Bi B Br Cd Cs	208.0 11.0 79.92 112.40 132.81	3 3 1 2 1	2.5854 2.9814 2.0955	271.0 2350.0 -7.3 320.9 26.0	1440.0 58.75 778.0	
Calcium Carbon Cerium Chlorine Chromium	Ca C Ce Cl Cr	40.07 12.00 140.25 35.46 52.0	2 4 1 3	0.7477 0.1118 1.3220 0.6476	$\begin{array}{c} 810.0 \\ > 3600.0 \\ 623.0 \\ -101.5 \\ 1520 \text{ to} > \text{Fe} \end{array}$	- 37.6 2200.0	
Cobalt Columbium. Copper Dysprosium. Erbium	Co Cb Cu Dy Er	58.97 93.5 63.57 162.5 167.7	2 5 2	1.1000	1478 ± 5 1950–2200 1083 0	2100.0	
Europium Fluorine Gadolinium. Gallium Germanium	Eu F Gd Ga Ge	152.0 19.0 157.3 69.9 72.5	1	0.7085	-223.0 30.1 958.0	-187.0	
Glucinum Gold Helium Holmium Hydrogen	Gl Au He Ho H	9.1 197.2 4.002 163.5 1.008	3 0 1	2.4513 0.03759	1800.0 1063.0 -271.9 -259.0	-268.8 -252.8	
Indium Iodine Iridium Iron Krypton	In I Ir Fe Kr	114.8 126.92 193.1 55.84 82.92	1 4 2	4.7303 1.0404	$\begin{array}{c} 154.5 \\ 114.0 \\ 2300.0 \\ 1530 \pm 5 \\ -169.0 \end{array}$	184.35 2450.0 -151.7	
Lanthanum. Lead Lithium Lutecium Magnésium.	La Pb Li Lu Mg	139.0 207.20 6.94 175.0 24.32	2 1 2	3.8613 0.2622 0.4531	810.0 327.4 186.0 651.0	1525.0 1120.0	
Manganese. Mercury Molybde-	Mn Hg Mo	54.93 200.6 96.0	2 2 2	1.0255 7.4803 1.7900	$ \begin{array}{c c} 1260 \pm 20 \\ -38.7 \\ 2500.0 \end{array} $	1900.0 357.0	
num Neodymium Neon	Mo Nd Ne	144.3 20.0	0	1.7900	2500.0 840.0 -253.0		

¹ In those cases in which a metal has two valences, the valence given corresponds to the electrochemical equivalent, and may not necessarily be the commoner one.

² Sublimes.

INTERNATIONAL ATOMIC WEIGHTS, 1915. Continued

				•		
Element	Symbol	Weight	Val- ence ¹	Electro- chem. equi- valents, g. per amp hr.		Boiling points
Nickel Niton Nitrogen Osmium Oxygen	Ni Nt N Os O	58.68 222.4 14.01 190.9 16.00	2 0 3 2	1.0945 0.1745 0.2983	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 195.7 - 183.0
Palladium Phosphorus. Platinum Potassium Praseody- mium	Pd P Pt K Pr	106.7 31.04 195.2 39.10	2 4 1	1.9951 1.8206 1.4584	1550.0 44.1 1755.0 62.3	287.0 667.0
Radium Rhodium Rubidium Ruthenium. Samarium	Ra Rh Rb Ru Sa	226.0 102.9 85.45 101.7 150.4	2		900.0 1940.0 38.0 >1950.0 1350.0	
Scandium Selenium Silicon Silver Sodium	Sc Se Si Ag Na	44.1 79.2 28.3 107.88 23.00	2 4 1 1	1.477 0.2638 4.0248 0.8596	1200.0(?) 218.5 1420.0 961.0 97.5	690.0 1955.0 742.0
Strontium Sulphur Tantalum Tellurium Terbium	Sr S Ta Te Tb	87.63 32.07 181.5 127.5 159.2	2 2 2	1.6333 0.5980 2.379	>805, 850< >Ca <ba 116.5 2850.0 451.0</ba 	444.5 1390.0
Thallium Thorium Thulium Tin Titanium	Tl Th Tm Sn Ti	204.0 232.4 168.5 118.7 48.1	 2 4	2.2188 0.4490	302.0 >1700.0 <pt 231.9 1795.0±15.0</pt 	1700.0 2270.0
Tungsten Uranium Vanadium Xenon Ytterbium	W U V Xe Yb	184.0 238.2 51.0 130.2 173.5	 0	3.4308	3540.0 Near Mo. 1720.0±20.0 -140.0 1800.0(?)	- 109.0°
Yttrium Zinc Zirconium	Yt Zn Zr	88.7 65.37 90.6	2 	1.2194	1200.0(?) 419.3 2350.0(?)	918.0

Note.—In addition to the above elements, there is some reason to believe in the existence of a gas "coronium" (so called from its existence in the solar corona) which would form 0.00058 per cent. of the earth's atmosphere according to Dr. A. Wegener's calculations (Science, Oct. 31, 1913).

¹ In those cases in which a metal has two valences, the valence given corresponds to the electrochemical equivalent, and may not necessarily be the

commoner one.

A SHORT ACCOUNT OF THE COMMON METALS AND METALLOIDS

Aluminum.—Atomic weight, 27.1; trivalent; sp. gr., cast, 2.56; rolled, 2.66. A silver-white metal; breaks with crystalline fracture. Melts at 657°C.; volatilizes at a very high temperature; specific heat from 0° to 100°C., 0.2270 (mean); latent heat of fusion, 100 cal.; coefficient of linear expansion, 0.0000231; heat conductivity, 31.33 (Ag = 100). Is friable at 530°C. The tensile strength of cast aluminum is about 15,000 lb. per sq. in., but this may be increased by drawing to 35,000 lb. per sq. in. Its conductivity is about 58 (Ag = 100).

The metal cannot be reduced with carbon; but forms a carbide Al_4C_3 ; and a nitride AlN. It is reduced by sodium from its compounds. Said to be paramagnetic, susceptibility 0.6×10^{-6} . Is very malleable between 100° and 150° C. Is notable for the lightness of its alloys, and for its energetic reduction of oxides of other metals (thermit process). It cannot be produced by direct electrolysis in aqueous solution but is deposited electrolytically from a solution of its oxide in cryolite. The

oxide forms the base of most artificial gems.

Antimony.—Atomic weight, 120.2; trivalent usually; sp. gr. 6.71; melts at 632°F., and volatilizes at about 1,500°C. Is in no degree malleable or ductile; its electric conductivity is 4.2 (Ag = 100). Has extremely crystalline structure; coefficient of linear expansion, along axis 0.0000168; normal to axis 0.0000089. It may readily be crushed to powder. Hydrochloric acid has a slight solvent action on it; nitric acid converts it to the pentoxide; sulphuric acid first oxidizes it and then converts it to sulphate. Chlorine reacts directly with the metal, forming anhydrous chloride. The classic process for the recovery of antimony is its liquation as sulphide, Sb₂S₃, from rich ores and the subsequent throwing down of the antimony by melting with scrap iron. It is also recovered by subjecting the ore to an oxidizing roast, driving off the antimony in fume, which is caught and reduced to metal. mony can also be recovered by lixiviation of the ores with sodium sulphide, obtaining either Na₃SbS₃ or Na₃SbS₄. these solutions it can be regained either chemically or by electrolysis. Another important source of antimony is in refining argentiferous lead. Before mixing in zinc for the Pattinson process the lead is oxidized slowly for some time to purify it (softening process). The slag thus formed runs high in antimony from which it is recovered as antimonial lead.

In refining crude antimony (not hard lead) the crude metal is fused with 8 to 12 per cent. of Sb₂S₃ and 4 to 5 per cent. of NaCl to bring it up to 98 to 99 per cent., and then it is given a final purifying by "starring," in which it is melted in the presence of Sb₂S₃ and soda ash. No iron must be allowed to get into it during this process; so the iron ladles, etc., are

kept well covered with whitewash.

Argon.—Occurs in the air to the extent of 0.935 per cent.

It can be prepared by passing atmospheric nitrogen, free from oxygen and moisture, over red-hot magnesium ribbon; magnesium nitride is thus formed while the argon does not combine.

Arsenic.—Atomic weight 74.96; trivalent usually; sp. gr., crystalline 5.73, amorphous 4.71; a brittle steel-colored metal, volatilizes at 450°C., without melting. The metal and the pentavalent compounds are not poisonous, but the metal easily oxidizes and the pentavalent form easily reduces to the extremely poisonous trivalent form. Forms a very volatile hydride AsH₃, which serves as the basis for the famous Marsh test. Most of the arsenic on the market is recovered from fluedust, in which the arsenic concentrates. This is roasted in reverberatories and the roasted arsenious oxide condensed in large chambers.

Barium.—The properties of this metal are still in doubt, as it is probable that it has not yet been prepared in a high degree of purity. The impure form is prepared by reducing the oxide with magnesium. The peroxide, BaO₂, formed by heating BaO to 500°C. in the presence of air, serves as the basis of hydrogen peroxide manufacture. At a still higher tempera-

ture it again gives off oxygen.

Beryllium.—Atomic weight, 9.1; bivalent; sp. gr. 1.842. A soft, lustrous, white, malleable metal. Melts at 1800°C. Does not volatilize at 1900°C. Burns like magnesium when in powder or ribbon. Withstands water better than magnesium, but this apparent inertness may be due to a film of oxide. Prepared by electrolyzing a mixture of sodium and beryllium fluorides, or by decomposition of the fluoride by sodium,

potassium or magnesium.

Bismuth.—Atomic weight, 208; trivalent; sp. gr., 9.80; the metal is neither malleable nor ductile; it melts at 266°C. and volatilizes between 1100 and 1450°. Electric conductivity, 1.3 (Ag = 100). This metal is remarkable in that it expands on solidifying; its sp. gr. is about 10.055 just above the melting point. It is the most diamagnetic material known. Is obtained: (1) by liquation in crucibles or retorts of ores carrying native bismuth; (2) by reduction processes, using Na₂CO₃ as a flux, beside CaO and FeO, since the fusion temperature of the slag must be low; (3) as a by-product of electrolytic lead refining; (4) as a by-product of steam Pattinsonizing (Hulst process); (5) as a result of the wet treatment of the last oxide coming from the cupellation of lead-silver bullion. Some of its alloys melt at remarkably low temperatures (see fusible metals under "alloys").

Boron.—The element is found in nature as boric acid and borax. It is obtained by reduction as a brown amorphous powder, which, on dissolving in molten aluminum, separates on cooling in crystalline form, said to rival the diamond in hardness. The suboxide is an energetic deoxidizer, recommended by Weintraub for insuring high-conductivity copper castings.

¹ Fighter and Jableyzuski say it will scratch glass after fusion and melts at 1280°C. Berichte, XLVI, No. 7,

Bromine.—Occurs in the mother liquors of certain salt-wells in the United States and at Stassfurt, Germany. It is liberated from these liquors by the action of chlorine, or by direct electrolysis. It is, at ordinary temperatures, a fuming red liquid of unbearable odor, from which it takes its name. It is more active than iodine and less than chlorine.

Cadmium.—Atomic weight, 112.4; always bivalent; sp. gr., cast, 8.60; white metal of bluish tinge, intermediate in hardness between tin and zinc. Melts at 320°C.; boils at 778°C., so can be separated from zinc by volatilization. Is precipitated from solution by zinc. Is remarkable for its fusible alloys: thus, 2 parts Bi, 1 part Sn, 1 part Pb melt at 93.75°C.; but with 10 per cent. Cd added melt at 75°C., while Cd 14.3, Sn 19.0, Pb 33.1 and Bi 33.6 melt at 66°C. Its metallurgy is simply that of a by-product of zinc. It is greatly concentrated in the first zinc dust formed in roasting the ores. The cadmium may then be freed from the zinc in a wet way owing to the fact that if a mixture of cadmium and zinc oxides be treated with insufficient sulphuric acid to dissolve both, the cadmium will be dissolved before the zinc will. Moreover, if a mixture of cadmium and zinc sulphates be agitated with a mixture of cadmium and zinc oxides, the cadmium will be dissolved and zinc oxide will be precipitated. It is eventually freed from the last zinc by electrolysis, if a very pure metal be desired. If this is not necessary, advantage is simply taken of the fact mentioned above, that CdO is more volatile than ZnO, and also that CdO reduces at a lower temperature than does ZnO, and that CdO precipitates Zn from ZnSO4 as ZnO.

Cæsium.—Of no commercial value. Atomic weight, 132.8. Discovered by Kirchoff in the Dürkheim mineral water. Its spectrum contains two characteristic blue lines, whence its

name.

Calcium.—Atomic weight, 40.07; bivalent; sp. gr., 1.85. A lustrous, silvery-white brittle metal. It is less malleable than the alkali metals; shows a crystalline fracture. It melts in vacuo at 760°C. It forms a hydride, CaH₂; a nitride, Ca₃N₂ and a carbide, CaC₂. It is a powerful deoxidizer. Cannot be reduced by carbon. The metal can be cut with a knife and

will scratch lead but not calc spar.

Cerium.—Atomic weight, 140.25; sp. gr., 6.73. It has an iron-gray color, is soft, being somewhat harder than lead, is malleable and easily rolled. Fuses at about 800°C. Its most remarkable property is that of combining with heavy metals, such as iron or copper, to form dense but easily oxidizable alloys (the pyrophoric alloys). Fine wire made from the metal burns with a brilliancy even exceeding that of magnesium. It dissolves easily in dilute acids, but only to a limited extent in cold concentrated sulphuric or nitric acid. It will reduce the oxides of most metals or metalloids. On filing or scraping cerium with a knife, the filings or scrapings will take fire. It can be prepared by fusion of the anhydrous chloride, but not by direct reduction of its oxide by carbon, as a carbide is

formed. Lanthanum, præseodymium and neodymium greatly resemble it. Cerium fluoride is used in the "flaming-arc" lamp. Chlorine.—Atomic weight, 35.46. Gas at ordinary temperatures. It derives its name from its greenish-yellow color. Strongly corrosive to organic tissues as well as to most metals. A violent poison. Liquefies readily. It is much used in commerce as a bleaching material, for which it is derived by the Wellow process (a.v.) or by electrolysis of sodium chloride. Weldon process (q.v.), or by electrolysis of sodium chloride solutions (Castner-Kellner, Gibbs process, etc.). The hypochlorites form the basis for many disinfectants; the chlorates form the basis of many modern explosives.

Chromium.—A bright gray, very lustrous, very hard crystal-line metal. Atomic weight, 52.0; sp. gr., 6-7. It oxidizes slowly in cold air, readily on heating. Does not burn so readily as iron on heating in oxygen. Combines readily with the halogens, sulphur, silicon and carbon.

Chrome-iron ore can be directly smelted with carbon to give ferrochrome. To obtain pure chromium the chrome-iron ore is roasted with sodium carbonate or sodium carbonate and lime. The mass should not be fused. From this sintered mass sodium chromate can be leached out. If H₂SO₄ is added to sodium-chromate solutions the bichromate is produced. Sodium bichromate can be reduced with sulphur to give chromous anhydride, which can then be reduced with carbon or with aluminum. In the carbon reduction the metal is not fused, but remains as a powder. Chromium alloys readily with iron, manganese, cobalt and tungsten; with other metals only

with difficulty. It can also be prepared by aluminum reduction.

Cobalt.—Atomic weight, 58.97; trivalent; sp. gr. 8.66-8.92.

A silver-white metal, melts at 1497°C. (Kalmus). Yield point, 31,200-65,600 lb. per sq. in. Specific heat, 0.1056 (15°-100°). This is the most magnetic element except iron. Exceeds iron both in hardness and tenacity. May be turned with ordinary lathe tools. Brinnell hardness, chilled from melting point, 90.8; annealed from 250°C., 77.3. Cobalt may be separated from nickel when both are in solution by precipitation with milk of lime or with calcium hypochlorite; the cobalt comes down first. down first.

Copper.—Atomic weight, 63.57. The only red metal. Bivalent. Tough; ductile. The best conductor of electricity (except perhaps silver); the third best conductor of heat. Recovery of copper is chiefly by smelting sulphide ores to give a copper-iron sulphide, the earthy materials forming a fusible slag, then blowing air through the sulphide (known as matte) getting metallic copper, sulphur dioxide, and ferrous oxide, which is slagged by addition of silica. This smelting may be done in either blast or reverberatory furnaces. The metal from the deculphurising appreciation (converting) is then furnace from the desulphurizing operation (converting) is then furnace refined if non-argentiferous, or by electrolysis if silver-bearing. Copper is also produced by direct reduction of oxide and carbonate or roasted sulphides to metal (black copper) and by wet processes, as at Rio Tinto, Wallaroo, Chuquicamata, etc.

A preliminary concentration of the copper minerals in an ore

by gravity or flotation is also much practised.

Fluorine.—A slightly greenish-yellow gas, occurring in nature chiefly in fluorspar. One of the most active of the elements. Combines with hydrogen even in the dark. It is the only element except those of the argon group which will not combine with oxygen. It attacks all metals except platinum and gold, and decomposes most organic compounds. It is used to etch on glass (as HF), as an electrolyte in lead refining (as H₂SiF₆), as a valuable flux (as CaF₂), and in the manufacture of aluminum (as Na₃AlF₆).

Gallium.—A rare metal which, although tough, may be cut with a knife. With aluminum it forms a liquid alloy which

will decompose water.

Gold.—Atomic weight, 197.2 (O = 16); trivalent; sp. gr., 19.29–19.37; the only yellow metal; most malleable and ductile of all metals; softer than silver, harder than tin; tenacity, about 14,000 lb. per sq. in. with 30.8 elongation. Melts at 1063°C., begins to volatilize at 1100°C. and volatilizes four times as fast at 1250°C. Electric conductivity 76.7 (Ag = 100). One oz. of gold leaf covers about 160 sq. ft. U. S. gold coin is 990 parts gold, 10 parts copper. Gold is recovered either by purely mechanical concentration (panning, etc.), by amalgamation, by dissolving it in chemical reagents (chlorination, cyanidation) or by recovering it in a fusion process with copper or lead. Has very small tendency to absorb gases when molten, but absorbs about 0.7 per cent. H, CO, and other electropositive gases when cold, if it is finely divided. It is dissolved by no one acid except nitrous, but is dissolved by any mixture (such as aqua regia) generating chlorine and bromine. Except in the thiosulphate, it does not play the part of base to oxy-acids.

Gold possesses the lowest solution tension of any metal. It may be precipitated from its solution by even the weakest reducing agents, such as H, P, As, Sb, C, by nearly all metals (except from cyanide solution, from which it can be separated only by zinc and metals more electropositive than zinc), by metallic sulphides, by protosalts of iron, tin, etc., by hypophosphites, sulphites, SO₂, the lower oxides of nitrogen, arsenic,

oxalic acid, etc.

Helium.—First discovered by spectroscopic observation of the sun. One of the rarest of the elements on the earth's surface. Found in some uranium minerals, is given off by the gases of certain springs, and is found in the air in the proportion of 0.0005 per cent. It is absolutely inactive.

Iodine.—Atomic weight, 126.92. Occurs at ordinary temperatures as beautiful violet to black crystals. It is largely used in the aniline color industry, in making iodoform and in potassium iodides in photography and medicine. The chief sources of iodine are the mother liquors of the Chilean nitrate industry and the ashes of sea weeds. It is readily precipitated

from iodates thus:

 $2NaIO_3 + 3Na_2SO_3 + 2NaHSO_3 = 5Na_2SO_4 + H_2O + I_2$

Iridium is insoluble in every acid, differs from platinum in not being soluble in aqua regia, although when the iridium is very finely divided it is attacked by this reagent. Fusion with acid potassium sulphate oxidizes it but does not dissolve it (distinction from ruthenium). It also oxidizes to the trioxide, Ir₂O₃ when heated with fused sodium nitrate and hydroxide, or with hydroxide alone in the presence of air, but the residue is but slightly soluble in water. Iridium may be distinguished from platinum by suspending the precipitate produced with caustic alkalis in a solution of potassium nitrite and the solution saturated with SO₂ and boiled, renewing the water so long as SO₂ is given off, all of the iridium is converted to an insoluble brownish-green basic iridic sulphite. Iridic salts are reduced by alcohol in alkaline solutions to iridous compounds soluble in hydrochloric acid. For a method of decomposing osmiridium, see "osmium," p. 250.

Iron.—A white metal of atomic weight, 55.84. Forms two series of compounds, ferric (trivalent) and ferrous (bivalent) which pass from one form to the other by very gentle reduction

or oxidation.

Iron is the most magnetic of the metals. It alloys readily with most of the earth metals, only slightly with Pb and Cu. In the presence of Si, iron will dissolve more Cu than otherwise, that is cuprosilicon is dissolved more readily than is pure Cu. Fé

alloys readily with C, Si, P, S and O.

Iron Metallurgy.—Iron is produced by a reducing smelting after concentration or roasting or both. The slag, usually known as cinder, differs from that of the lead and copper metallurgists in being a calcium-aluminum silicate. The use of preheated blast, often previously dried, is also at variance with non-ferrous practice. The iron produced always contains Si, C, P, S, etc. Indeed most of the usefulness of iron depends on its carbon content; so a list is herewith appended of the carbides of iron and their modifications, with the names applied to them by the iron metallurgists.

Ferrite.—Chemically pure iron: α -iron, magnetic and free from C, passes at 780°C. into β -iron, which is non-magnetic and practically incapable of dissolving C. Above 880°C. β -iron passes into γ -iron which is non-magnetic and capable

of dissolving C or Fe₃C.

Cementite.—Iron carbide, Fe₃C.

Austenite and Martensite.—Solid solutions of Fe₃C in γ-iron.

Troosite.—Colloidal solution of Fe₃C in Fe.

Sorbite.—Mixtures of Fe, Fe₃C and solid solutions of Fe₃C in Fe.

Pearlite.—The eutectic between ferrite (Fe) and cementite (Fe₃C). It corresponds to 0.9 per cent. C, or (Fe₃C + 20Fe). Temper Carbon.—Non-graphitic carbon which separates

from white iron by keeping it for a long time at a temperature near 1000°C., during which time the finely divided cementite changes into a mixture of ferrite, pearlite and temper carbon.

Temper carbon is more readily oxidizable than graphite or carbide carbon.

Forgeable Iron.—The saturation point of Fe₃C in Fe is reached at 2 per cent. C (2 Fe₃C + 15Fe). Anything up to this point may be regarded as forgeable iron.

Steel Hardening.—This is explained by assuming a transformation of pearlite to martensite, and the maintenance of this

solid solution by quenching.

Malleablizing.—By exposing white iron for a long time to about 1000°C., the dissolved Fe₃C is converted into Fe and C, but the carbon is not present as graphite, but in an easily oxidized state. The oxidation is then carried on by Fe₂O₃ or FeCO₃.

White iron is a supercooled solution and may be regarded as a metastable system between Fe₃C and Fe, in which the reaction Fe₃C = 3Fe + C has not been allowed to take place.

Gray iron is a stable system Fe—Fe₃C—C. It has had time. at the different temperatures and concentrations to reach a more or less complete state of equilibrium. During the cooling some of the Fe₃C has decomposed into Fe and C, the latter being found as graphite. See also Bessemer (p. 475), Thomas Gilchrist (p. 478) and Siemens-Martin (p. 478).

Krypton.—Present in the proportion of 1:1,000,000 in air. Inert. Has a characteristic spectrum, noticed especially in

the Aurora Borealis.

Lanthanum.—Greatly resembles cerium, which see.

chiefly in monazite sand.

Lead.—Atomic weight, 207.1; tetravalent; sp. gr., 11.35—11.37, when molten, 10.37—10.65; a dull gray metal, malleable but not ductile; tenacity the lowest of any common metal. Melts at about 326°C.; electric conductivity 10.7 with silver 100. Heaviest of all base metals. Fuses at 325°C.; boils at 1525°C. Has a great affinity for all the noble metals and is often used as a carrier in their extractions.

Lead is obtained by its ores by roast-reaction process (2PbO + PbS = 3Pb + SO₂ or PbSO₄ + 2PbS = 3Pb + 3SO₂); by the so-called precipitation process (PbS + Fe = Pb + FeS); or by reduction with carbon of oxide and carbonate ores or previously roasted sulphides. The argentiferous lead is refined by either the Parkes, Pattinson or Betts processes (q.v., pp. 475, 476, 477).

Lithium.—Atomic weight, 6.94; monovalent; sp. gr., 0.5936. A soft silver-white metal. Melts at 186°C.; vaporizes at about 1000°C. Below 200°C. may be melted in the air; above that, bursts into flame. Decomposes water at ordinary temperatures.

It is the lightest known metal.

Magnesium.—Atomic weight, 24.32; bivalent; sp. gr., 1.75. A white lustrous metal of fibrous crystalline structure. Malleable and ductile, not tough. Melts at 651°C.; boils at about 1120°C. Large pieces oxidize superficially. In powder it burns readily. Combines readily with nitrogen at elevated temperatures. Is a good deoxidizer. Lightest of metals in common use. When powdered, it is highly combustible,

burning with a vivid light.

Manganese.—Atomic weight, 54.93; usually bivalent, may be heptavalent; sp. gr. given by various authorities at from 7.39 to 8.30. Silvery, lustrous, hard, brittle, smooth fracture. Melting point, 1260°C. Volatilizes considerably even at the melting point. Boils about 1900°C. Cannot be reduced by carbon to pure metal, as some Mn₃C is always formed, but can be produced in comparative purity by reduction of Mn₂O₃ by aluminum. Is used commercially mainly as ferromanganese, which is formed by direct reduction of manganese and iron ores.

Mercury.—Atomic weight, 200.6; bivalent; sp. gr., when fluid at 0°C., 13.59, solid at — 40°C., 14.19. Silver white with bluish tinge. Melts at — 39.38°C. Contracts on solidification, forming a white, very ductile, very malleable mass, which can be cut with a knife. Specific heat from — 78° to — 40°C. is 0.0247; of the fluid metal, 0 to 100°C., 0.0333. Electric conductivity at 22.8°C. is 1.63. Heat conductivity, 67.7 (Ag = 100). Boils at 360°C (Dulong and Petit). Amalgamates readily with gold, silver, zinc, tin, cadmium, lead and bismuth; with copper when finely divided; with arsenic, antimony and platinum with difficulty; with iron, nickel and cobalt not at all directly. Is obtained by smelting the ores and catching the flue dust, in which the mercury condenses.

Molybdenum.—Atomic weight, 95.3; quadrivalent; sp. gr., 8.62-9.01. A white, extremely lustrous, very hard metal. Acids scarcely affect it, except nitric, which converts it to molybdic oxide or acid. The sulphides readily form thio-salts with alkaline sulphides. Remains unchanged in air at ordinary temperatures, but oxidizes slowly when heated to redness. Used in high-speed steels, where it exercises about twice the influence that tungsten does. It cannot be produced pure by direct

reduction of the oxide by carbon.

The reduction test for molybdenum is as follows: A small quantity of molybdate or wulfenite, in a powdered state, together with a scrap of paper, should be placed in a test-tube with a few drops of water and an equal quantity of concentrated sulphuric acid. The tube and its contents should then be heated until the acid fumes begin to come over. After allowing the tube to cool, water should be added, a drop at a time. The addition of the first drops gives rise to a deep blue color, which disappears as more water is added.

Neodymium.—Greatly resembles cerium, which see.

Nickel.—Atomic weight, 58.58; sp. gr., cast, 8.35, rolled or hammered, 8.6 to 8.9; is very hard; can be rolled to sheets not over 0.0008 in. thick and drawn into a wire 0.0004 in diameter. According to Shakell the tenacity is 42.4 tons per sq. in. for annealed wrought nickel. It melts at 1452°C. when pure; the melting point is considerably lowered by carbon. Nickel is attracted by a magnet (Ni: Fe:: 1:1.54), but it loses this power at 340°C. Its electric conductivity is 12.9 (Ag = 100). The metallurgy of nickel somewhat resembles the fire metallurgy

of copper, in that the ores are smelted, following either wet concentration or roasting, or both, and the nickel-copper matte is bessemerized, but the converting process is not carried so far as in copper. In constitution nickel matte seems to vary, as the nickel content increases, from (Ni₂S and FeS) to (Ni₃S₂ and FeS) to pure Ni₃S₂ or even a solution of Ni in Ni₃S₂. Nickel speiss consists of Ni₅As₂, NiAs and probably Ni₃As₂. The partly bessemerized mattes and speisses are then given the so-called "top and bottom smelting"—a reducing fusion with sodium sulphate. The product of this fusion consists of a layer of slag, a Cu-Fe-Na matte, and a Ni₂Fe matte at the bottom. By repeated top and bottom smeltings a copper matte practically free from nickel and a nickel matte practically

free from copper are obtained.

The nickel matte is then worked up by one of numerous wet processes. A part of the present Ni-Cu matte from the Canadian Copper Co.'s works is worked down into metal (the so-called monel metal) without separation of the nickel, copper and iron. The electrolytic baths are probably neutral sulphate containing considerable amounts of borate. An interesting method of nickel recovery from products in which the nickel occurs as oxide, oxide ores or wasted sulphides is the Mond process. A reducing roast is given the ores in retorts heated to 300°C. with gases containing H, whereby the nickel oxide is reduced to sponge Ni. The reduced nickel is then exposed to gas containing CO at 100°C. and 15 atmospheres pressure. Volatile nickel carbonyl is formed. This is stable at 50°C. at 2 atmospheres pressure; at 100° at 15 atmospheres; at 180° at 30 atmospheres; and at 250° at 100 atmospheres. The vapors of Ni(CO)4 escaping from the vessels under pressure can be dissociated by simply lowering the pressure. The electrolyte formerly used by the Balbach works was said by Ulke to be a hot nickel sulphite, the current density to be 15 amp. per sq. ft. and a tank voltage of 1.7-1.8 volts.

Osmium.—The heaviest of all metals; sp. gr., 22.48; atomic weight, 190.9. Osmium is volatilized in, but not melted by the oxyhydrogen blowpipe. When strongly heated in contact with air the finely divided metal burns to osmic anhydride, OsO₄ (usually known as osmic acid). This oxide is remarkable for its peculiar, exceedingly irritating and offensive odor. It is injurious to the eyes and is extremely poisonous. This oxide is soluble in water, giving a neutral solution, from which it is precipitated by nearly all metals, even silver, as a black precipitate. Fuming nitric acid or aqua regia also oxidizes osmium to OsO₄. When intensely ignited, osmium is rendered insoluble in acid, and must be fused with niter and distilled with HNO₃, when OsO₄ will distil over. All compounds of osmium yield the metal when ignited in hydrogen. Osmiridium may be attacked by mixing it with common salt or potassium chloride and exposing it in a glass or porcelain tube to a current of moist chlorine gas. Osmic acid is formed, which volatilizes below 212°C. and can be condensed and fixed by passing the

fume into an alkaline solution. Iridium remains behind in the tube as a double chloride, 2KCl·IrCl4.

Palladium is the most fusible of the so-called platinum metals. The metal oxidizes when heated in air. It absorbs hydrogen to a large extent. A solution of iodine produces a black stain on palladium, but has no effect on platinum. The best solvent for palladium is aqua regia. It is sparingly soluble in pure nitric acid, but dissolves more readily in fuming nitric acid, forming palladious nitrate, Pd(NO₃)₂. All palladium compounds decompose on ignition.

Phosphorus.—Found in nature chiefly as the tri-basic calcium phosphate. To produce phosphorus the calcium phosphate is treated with sulphuric acid in lead-lined tanks. This converts the tricalcium into monocalcium phosphate. The clear solution is then drawn off and the precipitate thoroughly washed. The solution and washings are evaporated to 45°Bé. and about 25 per cent. of coke or charcoal added and the pasty mass dried in iron pans. The dry mixture is then distilled in cast-iron retorts and the fumes passed into a condenser containing water, under which the phosphorus collects. Phosphorus melts at 44°C. and distills at 269°C. It must be

kept under water.

Platinum.—Atomic weight, 195.2; tetravalent; sp. gr., cast, 21.5; a white metal of a grayish tinge; is very malleable and ductile; harder than copper, silver and gold; tenacity about 23,000 lb. per sq. in. (Deville and Debray); electric conductivity 13.4 at 0°C. (Ag = 100); melts at 1710°C., but is sensibly volatile at 1300°C. Is mainly recovered from alluvial deposits, but is also got in Wohlwill's process of electrolytic gold refining, where it remains in the solution. affected by fused alkaline hydroxides, phosphorus, cyanides, sulphides and halogens. Platinum is not acted upon either by pure hydrochloric, nitric or sulphuric acid. It dissolves in aqua regia and other mixtures, evolving chlorine, but less readily than gold, so that gold which has been fused to platinum can be dissolved by dilute aqua regia at moderate temperatures without injuring the platinum. When alloyed with silver, lead and some other metals it is dissolved (see tables on pp 312, 313).

Potassium.—Atomic weight, 39.1; monovalent; sp. gr., 0.865. A bluish-white metal, softer than sodium; fuses at 62.3°C., vaporizes about 700°C. The vapor is greenish. Like sodium in its reactions (q.v.). However, there is an explosive material left in the retorts when potassium carbonate is reduced by carbon, and the process is dangerous. It is found in greatest

abundance in the salt deposits of Stassfurt, Germany.

Præseodymium.—Greatly resembles neodymium, which see.

Occurs chiefly in monazite sands.

Rhodium is found in the insoluble residue resulting from the treatment of crude platinum with aqua regia. It is, when pure and in a compact state, not acted upon by even aqua regia, but when alloyed with lead, copper or bismuth in certain pro-

portions it dissolves in it. When alloyed with gold or silver it does not dissolve. It is oxidized by air at a red heat, or by fusion with potassium hydroxide and niter. It is converted by fusion with acid potassium sulphate into the soluble potassium rhodic sulphate K₆Rh₂(SO₄)₆. Mixed with sodium chloride and ignited in chlorine it forms the easily soluble 3NaCl-RhCl₃·H₂O. Rhodium is distinguished from the other platinum metals by its insolubility in aqua regia, its solubility in fused HKSO₄, and the formation of a brown precipitate on adding KOH and alcohol to rhodium-chloride solution.

Ruthenium is found in the insoluble residue resulting from the treatment of platinum ore with aqua regia. It is a grayishwhite metal, closely resembling iridium and very difficultly soluble. When heated in air it becomes covered with bluishblack ruthenic oxide, Ru₂O₃. When pure it is unacted on by acid, and is scarcely acted on by acid potassium sulphate. It is attacked by fusion with potassium hydrate and niter, or potassium chlorate and is converted into K2RuO4, a darkgreen mass, soluble in water to an orange-colored fluid which stains the skin black. Ruthenium is rendered soluble by ignition with potassium chloride in a current of chlorine, being converted to 2KCl·RuCl₄.

Selenium.—An element originally recovered from the dust chambers and mud of the lead chambers of sulphuric-acid plants. The classic process is to leach the mud with concentrated potassium cyanide, forming KCNSe, and then precipitating the Se by adding hydrochloric acid. My own process, by which much of the commercial selenium is now obtained, is to oxidize seleniferous flue dusts with HCl and NaClO3, then after all the free chlorine is gone, precipitate the metal with sulphur dioxide. The precipitate is then washed and dried. Selenium occurs in several amorphous modifications, some soluble in CS₂, some insoluble; in certain crystalline forms when precipitated from solution; in a vitreous form when melted and cooled quickly; and a so-called metallic form when melted and cooled slowly. This metallic modification has the remarkable property of altering its electric conductivity when illuminated. The vitreous modification passes over into the metallic when heated for some time above 180°F. There is a considerable evolution of heat during the change.

Silver.—Atomic weight, 107.88; monovalent; sp. gr., cast 10.50, minted 10.57. Melts at 962°C., boils at 1850°C. Moissan). It is the whitest of metals, harder than gold, softer than copper, more malleable and ductile than any metal except gold, the best conductor of heat and electricity of known substances. (Some authorities state that gold is the best conductor of heat and copper of electricity. In any case the difference is slight.) It volatilizes at high temperatures, yielding a green vapor. In the molten state it has the property of absorbing twenty-two times its volume of oxygen, which is given out on cooling, causing the so-called spitting of silver. This occurs only with the pure metal. Small quantities of copper, bismuth

and zinc entirely prevent it, as does also an inert cover. Arsenic antimony, bismuth and lead render silver brittle. It is recovered by amalgamation, by chemical processes (Augustin, Ziervogel, Kiss, Russell, Patera, Patio, Cyanide, etc.) and from the impure bullion from lead or copper smelting. From lead it is recovered by the Pattinson, Parks and Betts processes (q.v.) and from copper by electrolytic parting. In both these cases it contains gold, which is then recovered either by dissolving the silver by sulphuric or nitric acid, or by electrolytically refining the silver by the Moebius or Thum process. The auriferous silver bullion is known as doré. Silver does not oxidize in air, even if heated, but is easily attacked by sulphur and its compounds. It is attacked by nitric acid, and by hot sulphuric, scarcely at all by hydrochloric nor

by the halogens and not at all by fused alkaline hydroxides.

Sodium.—Atomic weight, 23.00; monovalent, sp. gr., 0.974.

A soft silvery-white metal, which may be kneaded at ordinary temperatures. Melts at 95.6°C.; vaporizes at about 900°C. Dissolves in anhydrous ammonia. Decomposes water at ordinary temperatures, and must be kept under oil. Burns in dry air to the peroxide, Na₂O₂. Practically all sodium compounds are soluble. Can be reduced from the carbonate by

carbon.

Strontium.—A soft white metal. Found chiefly in nature as carbonate and sulphate. Is used in the manufacture of fireworks for red fire, and in the refining of sugar.

Tantalum.—Atomic weight, 181.5. A rare element usually occurring with columbium. Below 200°C. the metal is not attacked by air, oxygen or any acid except concentrated hydrofluoric. Not attacked by aqua regia, or by alkaline solutions, but is by fused alkalies. Can be used for electrolytic cathodes,

but not as anodes, as it oxidizes under anodic action.

Tellurium.—A metal much like selenium. Occurs usually as gold or silver telluride. About the only method of separating from selenium, if the two are mixed, is to make a fractional separation with SO₂, for selenium precipitates from concentrated hydrochloric-acid solutions with SO₂, while tellurium does not, or by taking a mixture of finely divided precipitates, leaching with concentrated cyanide solutions at ordinary temperatures, heating the solution, and filtering hot. The selenium is dissolved.

Tin.—Atomic weight, 119.0; quadrivalent; sp. gr., cast 7.287, rolled 7.30, tetragonal form (electrolytically deposited) 7.25, rhombic 6.55, ordinary commercial about 7.5, friable modification (due to tin pest) 5.8; melts at 232°C.; boils at 2100°C.; specific heat, 0.0562; coefficient of linear expansion, 0.00223; heat conductivity, 15.2 (Ag = 100). Most malleable at about 100°C., most brittle at about 200°C. Rolls to sheets not over ½000 inch thick. Tensile strength of very pure bars 2420 lb. per sq. in. (H. Louis), of hammered 2540 lb. per sq. in., commercial about 4600 lb. per sq. in., tin foil about 5980 lb. per sq. in. Breaks down at low temperatures to a gray granular per sq. in. Breaks down at low temperatures to a gray granular

powder (tin pest); the change commences at 18°C., and is most rapid at -48°C. Boils at 1500° to 1600°C. if heated out of access of air. It is but little affected by air and moisture at ordinary temperatures. Electric conductivity, 14.4 (Ag = 100). Decreases in volume by 6.75 per cent. on solidification. Acted on by Cl, HCl, H₂SO₄ and HNO₃, but is only oxidized by latter and does not form nitrates. Ores are usually concentrated, roasted if required and smelted in shaft or reverberatory furnaces, and refined by fire processes. Analyses of English tin show (H. Louis, "Metallurgy of Tin"): Sn, 98.64-99.76; Fe, tr-0.13; Pb, 0-0.20; Cu, tr-1.16. Tin from Pulo Brani showed, Sn, 99.76; Sb, 0.07; Pb, 0.02; Fe, 0.14; Cu, As, none. Is perceptibly volatile at 1200°C. Because of the high specific gravity of tin oxide it is ordinarily concentrated by mechanical means before smelting. The smelting of tin is difficult because it tends, when there is an excess of base in the slag, to enter it as an acid, forming stannites and stannates, while if there is an excess of silica tin enters the slag as a base.

Tungsten.—An almost white, very lustrous hard metal. Atomic weight, 184.0; sp. gr., 18.7-19.1. It begins to oxidize only at elevated temperatures in air. It can be reduced by carbon from the oxide. Ductile tungsten is practically insoluble in the common acids, it has the highest melting point of any metal (3000°C.); it is paramagnetic, and its wire can be drawn to smaller sizes than can the wire of any other metal. The chief commercially important forms are sodium tungstate, largely used for fireproofing and as a mordant, and tungsten as a constituent of high-speed steels. The recovery is entirely by chemical methods: (1) fusion with sodium carbonate; leaching out sodium tungstate with water; precipitation of WO3 by acidifying with hydrochloric acid, followed by reduction with carbon. A little W2C and WC is formed in this reduction and dissolved by the metal. Ferrotungsten can also be formed by direct reduction of wolframite or scheelite with iron compounds and powdered quartz or glass. The carbonfree metal can also be produced by the aluminum-reduction

A general test for all tungsten ores is carried out as follows: Strong hydrochloric acid is added to the ore, which is first pulverized to as fine a powder as possible, and part of the tungsten will pass into the solution. Metallic zinc should then be added and the mixture boiled. A fine azure blue denotes the

presence of tungsten.

When any ore containing tungsten is fused with sodic carbonate, leached out with hot water and filtered, the tungsten passes into the filtrate. If hydrochloric acid is added the tungsten is precipitated. This precipitate is insoluble in all acids, dissolves readily in ammonia, and is of a fine yellow color. A little of this yellow powder, if added to a bead of salt of phosphorus and treated in a reducing flame, using a blow lamp, gives the fine blue bead characteristic of tungsten.

Uranium.—A white lustrous, very hard metal, oxidizing in

air only at high temperatures, but igniting in pure oxygen at 170°. Fluorine attacks it at ordinary temperatures, chlorine at 180°, bromine at 210° and iodine at 260°C. It combines

with sulphur at about 1000°C. to form a black sulphide and with nitrogen at about 1000°C. to produce a yellow nitride.

Vanadium.—Atomic weight, 51.0; sp. gr., 5.50; melts at 1720°.

According to Borchers the purest metal yet obtained was a gray lustrous powder which ignites readily in the Bunsen flame. It dissolves with great difficulty in hydrochloric or dilute sulphuric acid, but more readily in strong sulphuric acid, in hydrofluoric acid or in nitric. With fused alkali-metal hydroxides it forms yangestes. ides it forms vanadates. At elevated temperatures it combines readily with the halogens, sulphur, or even with nitrogen.

Xenon.—Occurs in the atmosphere in the proportion of

1:20,000.

Zinc.—Atomic weight, 65.37; always bivalent; sp. gr., cast, from 6.861 to 7.149; when rolled, 7.2 to 7.3; when fluid, 6.48 to 6.55. Boils at about 920°C. Melts at 415°C. Specific heat at 0° to 100°C., 0.09555 (Regnault); probably 0.1015 from 100° to 300°C. It burns in air at about 505°C. Zinc is brittle at ordinary temperatures, especially if impure, but between 100°C. and 150°C. it becomes malleable and ductile, and may be rolled into sheets and drawn into wire, and retains these properties after cooling. At 205°C. it again becomes so brittle that it may be powdered in a mortar. When cast at a temperature near its melting point it is more malleable than when cast at a higher temperature. In malleability zinc ranks between lead and iron; in ductility between copper and tin. In hardness it stands between copper and tin; more exactly between silver and platinum, being 2.5 on Moh's scale, 6 on Turner's sclerometer, and 1077 on Bottone's scale, on which the diamond is 3010. The thermal conductivity is given from 19 (Wiedemann) to 64.1 (Calvert and Johnson), silver being 100. Its electrical conductivity is 16.92, mercury at 0°C. being unity. On the basis of silver = 100, BECQUEREL gives its conductivity at 24.06, and Weiller at 29.90. According to Roberts-Austen the coefficient of linear expansion is 0.0000291; Calvert and Johnson give it at 0.00002193 for hammered zinc. The tensile strength of zinc varies from 2700 lb. per sq. in. for cast metal to 17,700 for an annealed rod. Zinc dissolves readily in both acid and alkaline solutions with evolution of hydrogen. A moderate tenor in lead makes zinc malleable and ductile; over 1.5 per cent. Pb is certainly detrimental. Iron up to 0.2 per cent. does not greatly affect the properties of zinc, above that it makes it less fluid, less malleable, less strong, harder and more Cadmium seems to have no injurious influence except when the spelter or ore is to be used for making zinc oxide. Copper makes zinc harder and more brittle, even if only 0.5 per cent. be present. Tin also makes it harder and more Other impurities are of minor importance, but silver, thallium, indium, magnesium, aluminum, antimony, arsenic, sulphur, carbon, chlorine and oxygen occur. The metal

is produced by smelting the ores in retorts with carbon as a reducing agent, and extraneous fuel to heat them. A fusible slag is not wanted. Sulphide ores must be roasted clean before distillation. The loss of zinc in the smelting process, due to retort absorption, escape through the pores of the retorts, escape of uncondensed zinc through the adapters, through zinc left in the retorts, etc., is very seldom below 10 per cent. and may amount to 25 per cent.

Zirconium.—Atomic weight, 90.6; sp. gr., 6.4; melts about 2350°C., occurs as the natural oxide and as the silicate (zircon). It was used as the incandescing material in the first gas mantles.

DETECTION OF THE METALS

Aluminum.—Is precipitated as white gelatinous hydroxide by ammonia. When the oxide is strongly heated on charcoal with cobalt nitrate, a bright-blue mass is obtained. With soda before the blowpipe it swells and forms an infusible compound.

Antimony. — When a small quantity of an antimony compound is heated in the upper reduction zone of a Bunsen burner on a thread of asbestos, the flame is given a bluish tinge and when a small porcelain basin filled with cold water is held above it, a brownish-black deposit of metallic antimony is deposited upon the basin, and this is but slightly attacked by cold nitric acid and is insoluble in sodium hypochlorite. Arsenic gives a similar reaction, but arsenic gives a garlic-like odor during the reduction, and the metallic film is readily soluble in the hypochlorite. Antimony compounds may be obtained in solution by treating with HCl or by fusing first with potassium carbonate and potassium nitrate. Hydrogen sulphide produces in acid solution a very characteristic orange-red-colored precipitate of antimony trisulphide. Blowpipe tests—on coal, reducing flame, volatile white coat, bluish in thin layers, continues to form after cessation of blast. With bismuth flux on plaster, orange-red coat, made orange by (NH₄)₂S; on coal, faint yellow or red coat. In open tube, dense, white, non-volatile amorphous sublimate. The sulphide, too rapidly heated, will yield spots of red. In closed tube the oxide will yield a white fusible sublimate of needle crystals; the sulphide, a black sublimate, red when cold.

Arsenic.—Mix with sodium carbonate and heat on charcoal with the blowpipe. All arsenic compounds give a garlic odor. Add to concentrated hydrochloric acid a few drops of an arsenite solution and half a cubic centimeter of saturated solution of stannous chloride in hydrochloric acid, warm, and the solution turns brown, then black. Blowpipe—on smoked plaster gives a white coat of octahedral crystals. The action on coal has already been spoken of. With bismuth flux on plaster Sb gives a reddish-orange coat, made yellow by (NH₄)₂S; on coal a faint yellow coat. In open tube it gives a white sublimate of octahedral crystals. Too high heat may form

brown suboxide or red or yellow sulphide. In closed tube may give white oxide, yellow or red sulphide, or black mirror of metal. Flame—azure blue.

Barium.—The Bunsen flame is colored a yellowish-green tint when any volatile barium compound is brought into it. Soluble barium salts are distinguished from those of strontium and calcium inasmuch as they are immediately precipitated by a solution of calcium sulphate. Blowpipe—on coal, with soda, fuses and sinks into the coal. The yellow-green flame can be

improved by moistening with HCl.

Bismuth.—On charcoal with soda, bismuth gives a very characteristic orange-yellow sublimate. Brittle globules of the metal are also reduced on the charcoal when treated with soda. Hydrogen sulphide precipitates from solutions of bismuth salts a blackish-brown sulphide (Bi₂S₃) insoluble in ammonium sulphide and easily soluble in nitric acid. Ammonia throws down a white basic salt insoluble in excess. Blowpipe—with bismuth flux (sulphur, 2 parts; potass. iodide, 1 part; potass. bisulphate, 1 part) on plaster, bright scarlet coat surrounded by chocolate brown with sometimes a reddish border. The brown may be made red with ammonia. With bismuth flux, on coal, gives a bright-red coat with sometimes an inner fringe of yellow.

Cadmium.—Cadmium is precipitated as a yellow sulphide by hydrogen sulphide. The sulphide is insoluble in ammonium sulphide and in the caustic alkalies. On charcoal with soda, compounds of cadmium give a characteristic sublimate of the

reddish-brown oxide.

To test for cadmium in a sulphide, roast it to oxide, and reduce some of the oxide in the upper reducing flame of the Bunsen burner, at the same time holding a glazed porcelain dish which contains water just above the flame to receive a brown coating. To the brown coating add a drop of AgNO₃ solution; if Cd is present, black metallic silver will be deposited. Blowpipe—on coal, reducing flame, greenish yellow in thin layers. Beyond the coat, at first part of operation, the coat shows a variegated tarnish. On smoked plaster with bismuth flux Cd gives a white coat made orange by (NH₄)₂S. With borax or sodium phosphate, oxidizing flame, clear yellow hot, colorless cold, can be flamed milk white. The yellow bead touched to Na₂S₂O₃ becomes yellow.

Cæsium.—H2PtCl6 produces a bright-yellow crystalline precipitate, a brighter color than the potassium salt thus produced, and is much more soluble than the potassium salt.

The flame test is reddish violet, similar to potassium.

Calcium.—Calcium compounds moistened with hydrochloric acid and placed on a platinum wire in the hottest part of a

Bunsen flame impart a red color to the flame.

Calcium may be precipitated from solution as oxalate by first making the solution ammoniacal and then adding ammonium oxalate or oxalic acid. Blowpipe—on coal with soda, insoluble and not absorbed by the coal. Flame—yellow red, improved by moistening with HCl. With borax or sodium

phosphate, clear and colorless; can be flamed opaque.

Cerium.—Fuse with sodium carbonate. Treat with dilute hydrochloric acid, evaporate to dryness and bake. Take up with dilute hydrochloric acid, filter. Add ammonia to the filtrate, filter. Dissolve the precipitate in hydrochloric acid, add ammonia and oxalic acid, filter. Dissolve the precipitate in concentrated hydrochloric acid, nearly neutralize with ammonia; add 1 cc. of hydrogen peroxide and then ammonia, drop by drop, until just alkaline. When just neutral, white thorium peroxide is precipitated; when ammoniacal, the orange

cerium peroxide is precipitated.

Chromium.—Chromium oxide is detected in its insoluble compounds by its characteristic green color. It forms an emerald-green head with borax or microcosmic salt. Caustic potash or soda gives a green precipitate in solutions of chromic salts. This dissolves in an excess of alkali in the cold, but is precipitated on boiling the solution. The detection of chromic acid is rendered easy by the bright-yellow color of its salts. The yellow color of the normal chromates becomes red on the addition of an acid, and again yellow when made alkaline. Blowpipe—with borax or sodium phosphate, oxidizing flame, reddish when hot, fine yellow when cold. Reducing flame, in borax, green hot and cold. In sodium phosphate, red when hot, green when cold. With soda—oxidizing flame, dark yellow when hot, opaque and light yellow cold. Reducing flame, opaque and yellowish green cold. Manganese interferes, giving a bright yellowish green with soda bead in the oxidizing flame.

Cobalt.—Ammonium sulphide produces a black precipitate (CoS) insoluble in acetic acid and in dilute hydrochloric acid. Ammonium sulphocyanate produces a beautiful blue color, Co(CNS)₂. With a borax bead cobalt gives the characteristic cobalt-blue color. Blowpipe—on coal, reducing flame, the oxide becomes magnetic metal. The solution in HCl will be rose-red, but on evaporation will be blue. With borax or

sodium phosphate, pure blue in either flame.

Columbium.—Fuse with potassium bisulphate. Pulverize the fusion and treat it with hot water; then treat it with dilute hydrochloric acid. Digest the residue with ammonium sulphide to remove W, Sn, etc. Wash and treat again with dilute hydrochloric acid. The residue should be colorless and contain only silica and the oxides of columbium and tantalum. This residue in a bead of microcosmic salt is colorless if no columbium is present or if heated in the oxidizing flame; but if heated in the reducing flame, columbium imparts a violet color to the bead, or blue if saturated with oxide. ing ferrous sulphate turns the bead blood red.

If, when the mixed oxides are boiled in dilute sulphuric acid with metallic zinc, the white precipitate turns intensely blue and remains so on dilution, columbium is present; if it turns bluish gray and colorless on dilution, tantalum is predominant.

Copper.—Copper can easily be detected by the reduction

to the red metallic bead on charcoal before the blowpipe. Copper compounds moistened with HCl color the non-luminous flame green. An excess of ammonia added to a nitric acid solution of copper produces an azure-blue color. With borax or sodium phosphate, oxidizing flame, green when hot, blue or green blue cold. (By repeated oxidation and reduction, the borax bead becomes ruby red.) Reducing flame, green or colorless hot, opaque and brownish red cold.

Erbium.—Erbium oxide heated on a platinum wire colors

the flame distinctly green.

Gallium.—If a neutral solution of gallium chloride be warmed with zinc, gallium oxide or basic salt separates but not the

Germanium.—Fuse with sulphur and sodium carbonate. Treat with hot water, filter, add a few drops of hydrochloric acid to the filtrate to precipitate white germanium sulphide. Filter and heat the residue in a current of hydrogen to reduce it to gray-black crystalline germanous sulphide. Dissolve the crystals in hydrochloric acid and pass hydrogen sulphide into the solution to precipitate reddish-brown germanous

Glucinum.—Ammonium carbonate produces a white precipitate, GlCO₃, soluble in an excess of the reagent; by boiling

the solution it is precipitated as a basic carbonate.

Gold.—Gold may be reduced from its ores on charcoal to a yellow malleable bead which is soluble in aqua regia; if the solution be dropped on filter paper and one drop of stannous chloride added, a purple-red color is produced.

Indium.—Heated on charcoal before the blowpipe it colors the flame blue, and gives an incrustation of the oxide. It slowly dissolves in hydrochloric and dilute sulphuric acids,

but readily in nitric acid.

Iridium.—Ammonium chloride produces in a tolerably concentrated solution of iridium a dark-red crystalline precipitate. Iridium is distinguished from platinum by the formation of a colorless solution of potassium chloriridiate when caustic potash is added to the chloride of the metal, and on exposure to the air this colorless solution first becomes red colored and afterward blue.

Hydrogen sulphide precipitates brown iridium sulphide,

which is soluble in ammonium sulphide.

Iron.—Ferrous salts with potassium ferricyanide produce a dark-blue precipitate. Ferric salts with ammonia or the fixed alkalies produce a brown precipitate. Ferric salts with potassium or ammonium sulphocyanate produce a blood-red-colored Ferrous salts with a bead of microcosmic salt or borax are colored dark green. This color readily changes to yellow or reddish brown by oxidation. Blowpipe—on coal, with reducing flame, many compounds become magnetic. Soda assists this reaction. With borax, oxidizing flame, yellow to red hot, colorless to yellow cold. With reducing flame, bottle green. With tin on coal, violet-green. With sodium phosphate, oxidizing flame, yellow to red hot, greenish when cooling, colorless to yellow cold. Reducing flame, red

both hot and cold, greenish when cooling.

Lead.—Black precipitatate formed with hydrogen sulphide, chrome yellow with chromates. In nitric acid solution dilute sulphuric acid gives a white precipitate of lead sulphate. Blowpipe -on coal, lead is reduced in either flame to malleable metal. and yields near the assay a dark lemon-yellow coat, sulphur yellow cold, and bluish white at border. The phosphate yields no coat without the aid of a flux. With bismuth flux on plaster chrome-yellow coat, blackened by (NH₄)₂S. On coal, volatile yellow coat, darker hot. Flame, azure blue. With borax or sodium phosphate, oxidizing flame, yellow hot, colorless cold. Flames opaque yellow. In reducing flame, borax bead becomes clear; S. Ph. bead, cloudy.

Lithium.—In the Bunsen flame a fine carmine-red color is produced, visible if sodium is present by viewing the flame through cobalt glass. If silicon is present, make into a paste with boracic-acid flux and water and fuse in the blue flame.

Just after the flux fuses the red flame will appear.

Magnesium.—To a solution of magnesium add ammonium chloride, ammonia and sodium phosphate; a white precipitate (MgNH₄PO₄) forms. The action is hastened by rubbing the sides of the beaker with a glass rod. Blowpipe—on coal, with soda, Mg is insoluble and not absorbed by the coal. With borax or sodium phosphate, clear and colorless; can be flamed opaque white. With cobalt solution, strongly heated, becomes a pale flesh color. (With silicates this action is of use only in absence of coloring oxides. The phosphate, arsenate and borate become violet colored.)

Manganese.—Ammonium sulphide produces a flesh-colored precipitate. A solution containing traces of manganese boiled in concentrated nitric acid with lead peroxide or sodium bismuthate and allowed to settle gives a violet-red-colored solution (HMnO₄). The borax bead with manganese in the oxidizing flames gives an amethyst-colored bead (with much, black or opaque) and this in the reducing flame becomes colorless or with black spots. With soda, oxidizing flame, bluish green and opaque when cold. Nitrate assists the reaction. If silicon is present, dissolve in borax, then make soda

fusion.

Mercury.—Stannous chloride heated with a solution of mercury precipitates gray metallic Hg. Mercury compounds mixed with sodium carbonate and heated in a closed tube produce a gray mirror of metallic Hg. With bismuth flux, on plaster, Hg gives a volatile yellow and scarlet coat. If too strongly heated the coat is black and yellow. On coal Hg gives a coat faint yellow at a distance. In matrass gives mirror-like sublimate, which may be collected in globules. (Gold leaf is whitened by the least trace of mercury vapor.)

Molybdenum.—To a strong nitric acid solution of molybde-

num add nearly enough ammonia to neutralize the acid and

then add a few drops of sodium phosphate solution. A brightyellow, crystalline precipitate forms when the solution is warmed. A hydrochloric or sulphuric acid solution of molybdenum, to which zinc or stannous chloride is added, turns first blue, then green, and finally brown. On coal, with oxidizing flame Mo gives a coat, yellowish when hot, white when cold, crystalline near assay; in reducing flame the coat is turned in part deep blue, in part copper red. Its Bunsen-burner flame is yellowish green. With borax, oxidizing flame, yellow when hot, colorless when cold. Reducing flame, emerald green.
Neodymium.—The didymium salts are violet and are identi-

fied by a characteristic absorption spectrum.

Nickel.—Potassium cyanide produces a bright-green precipitate, Ni(CN)2. When nickel compounds are heated with reducing agents before the blowpipe, an infusible magnetic powder is produced. If this powder is dissolved in a drop or two of dilute nitric acid and evaporated to complete dryness, a characteristic green stain is obtained which becomes yellow on further heating. Nickel compounds color the borax bead brownish yellow in the oxidizing flame, the bead becoming gray and opaque in the reducing flame, owing to the separation of metallic nickel. Nickel is precipitated in alkaline solution by ammonium sulphide, which dissolves in an excess of ammonium sulphide forming a dark-colored solution.

Osmium.—It is dissolved in fuming nitric acid, or by fusing with sodium hydroxide and potassium nitrate and then treating with nitric acid and distilling. Osmic oxide (OsO₄), which sublimes at a moderately low temperature, passes over and condenses as a colorless crystalline mass. The osmic oxide has

an odor similar to chlorine and is poisonous.

Palladium.—Dissolves in nitric acid or aqua regia. Potassium iodide added produces a black precipitate, palladous iodide (PdI₂), soluble in an excess of the reagent but not soluble in water, alcohol, or ether. Mercuric cyanide, Hg(CN)2, produces a yellowish-white gelatinous precipitate, Pd(CN)₂, which, on ignition, leaves the spongy metal. See also special articles on palladium determination on p. 264.

Platinum.—When heated with sodium carbonate on charcoal, gray spongy metal is reduced. This, rubbed on a mortar with a pestle, gives a metallic luster and is insoluble in any single acid. See also special articles on platinum determination on p. 264.

Potassium.—A solution of H2PtCl6 added to concentrated solutions of potassium gives a yellow precipitate K₂PtCl₆. the Bunsen flame potassium gives a violet color, visible if sodium also is present if viewed through cobalt glass.

Praseodymium.—See Neodymium.

Radium.—To the Bunsen flame a radium salt imparts an intense carmine-red color. Radium rays discharge a charged electroscope and may be used for making photographs on ordinary X-ray plates.

Rhodium.—Before the blowpipe on charcoal with sodium carbonate the salts of rhodium are reduced to the metal, which is insoluble in aqua regia, but may be dissolved by fusing it with potassium pyrosulphate and then treating the fusion with water. By adding to this solution potassium hydroxide and a little alcohol the brown rhodium hydroxide is formed.

Rubidium.—A solution of H₂PtČl₆ produces a white crystalline precipitate, Rb₂PtC₆, which is less soluble than the corresponding potassium salt and more soluble than the cæsium The flame test gives a color similar to the cæsium test.

Ruthenium.—Ruthenium is practically insoluble in all acids and in aqua regia. Fuse it with potassium hydroxide and potassium nitrate. The resulting K₂RuO₄ heated with NaCl in a current of chlorine yields soluble K₂RuCl₆. The greenish-black fusion treated with water yields an orange-yellow solution, which stains the skin black.

Scandium.—A hydrochloric acid solution of scandium treated with solid sodium silicofluoride and boiled 30 min. gives a precipitate containing scandium free from the rare earth metals.

Silver.—When fused with sodium carbonate on charcoal before the blowpipe, a bright metallic silver bead is produced, which may be dissolved in nitric acid and precipitated from the solution by hydrochloric acid as a curdy precipitate of silver chloride, or, if only a trace of silver is present, as a mere opalescence.

Sodium.—To a neutral or weakly alkaline solution add potassium pyroantimonate, $K_2H_2Sb_2O_3$, and a heavy white crystalline precipitate, $Na_2H_2Sb_2O_3$, is quickly formed by rubbing the sides of the beaker with a glass rod. Solutions of sodium on a platinum wire in a Bunsen flame give a vellow

color.

Strontium.—Solutions on a platinum wire color the Bunsen flame carmine red, improved by moistening with HCl. Strontium sulphate is less soluble than calcium sulphate, but more soluble than barium sulphate. If barium is present the flame turns brownish yellow. The lithium flame is unaffected by addition of barium chloride.

Sulphur.—Fuse on coal with soda and a little borax in the reducing flame and place melt on a bright silver coin. Moisten, crush, and let stand. In presence of sulphur the coin will

turn brown or black.

Thallium.—Dissolve in dilute acid, add H₂S, filter. the filtrate ammonium sulphide and filter. If thallium is present in the precipitate it will color the Bunsen flame emerald

Thorium.—Fuse in a platinum crucible with sodium carbonate. Cool, dissolve in water and hydrochloric acid. Evaporate to dryness and bake. Take up with dilute hydrochloric acid, filter. Add ammonia to the filtrate, filter. Dissolve the precipitate in hydrochloric acid; reprecipitate with oxalic acid, filter, ignite the residue. Dissolve in hydrochloric acid. Evaporate to dryness. Take up with water. Add an excess of sodium thiosulphate and boil to precipitate.

Tin.—Mercuric chloride added to a solution of a stannous

salt precipitates white mercurous chloride. A trace of stannous chloride in solution added to a solution of gold chloride precipitates finely divided gold, brown by transmitted light and bluish green by reflected light. Metallic zinc precipitates tin from solution as a spongy mass, which adheres to the zinc. Heat the ore on charcoal with sodium carbonate or potassium cyanide; a metallic bead is produced which is coated with white oxide when the flame is removed. Cassiterite in lumps in a test-tube with metallic zinc and dilute sulphuric acid is soon coated with metallic tin.

Titanium.—Titanium sulphate with hydrogen peroxide in a slightly acid solution produces an orange-red color, or a clear yellow with small amounts of titanium. Vanadic acid with hydrogen peroxide produces a similar effect. Tin or zinc in hydrochloric acid solutions of titanium produces a violet color

due to Ti₂Cl₂.

Tungsten.—Treat with hydrochloric and nitric acids (4:1) and take to dryness, wash by decantation, add dilute hydrochloric acid and metallic zinc, aluminum, or tin and shake; a fine blue coloration or precipitate is produced, W₂O₅; the color disappears when diluted with water. Fuse in platinum with potassium bisulphate, digest with a solution of ammonium carbonate, filter, add to the filtrate a few drops of SnCl₂ solution, acidify with hydrochloric acid, warm gently; a fine blue color is produced. The microcosmic salt bead made in the reducing flame is clear blue; if iron is also present, the bead will be red brown. In the oxidizing flame the bead is colorless.

brown. In the oxidizing flame the bead is colorless.

Uranium.—Potassium ferrocyanide produces a brown precipitate, in dilute solution a brownish-red coloration. The borax (or microcosmic salt) bead is yellow in the oxidizing

flame and green in the reducing flame.

Vanadium.—Vanadium compounds can be dissolved by a treatment with acids or alkalies. The hydrochloric acid solution assumes a bright blue color on addition of zinc. solution of hydrovanadic sulphate cannot be distinguished in color from one of copper sulphate when sufficiently diluted with water, but, of course, does not become colorless in the presence of metallic iron. Solutions of certain vanadates also closely resemble solutions of the chromates. For instance, a solution of the tetravanadate of potassium, K₂V₄O₁₁, does not differ in appearance from one of potassium dichromate. They may, however, be distinguished from one another, since the vanadate solution becomes blue and the chromate assumes a green color on deoxidation. When a solution of vanadic acid or an acid solution of an alkali vanadate is shaken up with ether containing hydrogen peroxide, the aqueous solution assumes a red color like that of ferric acetate. This reaction serves to detect one part of vanadic acid in 4000 parts of the liquid. Chromic acid does not interfere with the reaction.

Yttrium.—Extract the yttrium in the manner described under Cerium and separate it from the other rare earths in a solution of their sulphates by adding a saturated solution of

potassium sulphate. Yttrium sulphate is soluble; the others are not.

Zinc.—Ammonium sulphide precipitates ZnS. Potassium ferrocyanide produces a white precipitate, Zn₂Fe(CN₆). Before the blowpipe on charcoal with sodium carbonate, a coating of oxide is produced which is yellow while hot and white when cold. With cobalt nitrate on charcoal an infusible green mass

is produced.

Zirconium.—Treat with dilute sulphuric acid (2:1), filter, add ammonia to the cold filtrate, filter; wash, dissolve the precipitate in hydrochloric acid, evaporate to dryness. Take up with a little water and add to the cold saturated solution hydrochloric acid, drop by drop; if zirconium is present, the oxychloride will be precipitated. Heat to dissolve the precipitate. Cool and after some time fine silky needles of ZrOCl₂ + 8H₂O will precipitate.

DETERMINATION OF PLATINUM, PALLADIUM AND GOLD¹

Scorify the lead buttons from two or more ½-a.t. crucible fusions together, adding at least six times as much silver as the combined weight of the Pt, Pd and Au present, and cupel hot. In rich materials such as slimes or concentrates, two ½-a.t. fusions suffice, but low-grade ores may require 10 or more ½-a.t. fusions combined for each determination.

Part the silver beads with HNO₃ (1:6), followed by stronger parting acid (1:1) and wash with water as usual. All Pd goes into solution, together with considerable Pt. The residue consists of Au plus some Pt. Dissolve residue in strong aqua regia and reserve the solution (solution A). Precipitate the silver in the nitric-acid solution—containing Ag, Pd and some Pt—with HCl. Practically all the Pt will remain in solution; but the precipitated AgCl is pink in color and contains considerable Pd. Filter off the AgCl, scorify and cupel it and part again with HNO₃ (1:6); all should dissolve. Reprecipitate the Ag with HCl. The liquid now contains most of the remaining Pd, but some is co-precipitated with AgCl. Filter off the AgCl and add the filtrate to the first filtrate from AgCl. Again scorify and cupel the silver chloride, dissolving the silver in nitric acid as before and reprecipitating the silver as chloride. In most cases the filtrate from this silver chloride contains all the remaining Pd. If, however, the AgCl is distinctly pink, another separation must be made.

Unite all filtrates from AgCl precipitations and evaporate to small bulk, adding the aqua-regia solution of the Au and Pt (solution A). The liquid now contains all the Au, Pt and Pd present in the original ore, together with traces of Ag due to solubility in AgCl in excess of HCl, and also traces of Pb gathered from the lead retained in the silver buttons from the

several recupellations.

¹ From an article by A. M. Smoot, Eng. and Min. Journ., Apr. 17, 1915.

Evaporate the liquid to dryness on the steam bath; take up with dilute HCl (1:3) and evaporate again to dryness; take up with five drops of HCl and 40 cc. H₂O. Pay no attention to any insoluble residue of AgCl or PbCl₂.¹ Precipitate gold by adding, say, 3 grams of oxalic acid to the solution and boiling it. Let stand over night and filter off the Au. If Pt and Pd are high, it is necessary to redissolve the Au in aqua regia, evaporating with HCl to dryness and repeating the oxalic-acid precipitation, uniting the filtrate with that from the first gold precipitation. Burn the filter containing the gold and scorify it with six times its weight of silver and a little test lead; cupel,

part and weigh the gold as usual.

To the oxalic-acid filtrates from Au add 5 cc. of HCl and make volume up to 150 cc.; heat to boiling and precipitate Pt and Pd with a rapid current of H₂S in hot solution, passing the current of gas for some time and keeping the solution hot during precipitation. Filter and wash the Pt and Pd sulphides with H₂S water containing a little HCl. Wash the precipitate from the filter with a fine water jet into an original beaker; spread the filter paper (which will contain a small amount of precipitate impossible to wash off) with the precipitate side down over the lower side of a watch-glass cover. Add aqua regia to the precipitate in the beaker and place the cover on the beaker; warm gently to dissolve the Pt and Pd sulphides. The fumes arising from the acid dissolve the traces of Pt and Pd adhering to the filter paper. When solution is complete and the filter paper is white, remove the watch-glass cover and wash the paper with hot dilute HCl thrown against it in a fine stream.

Evaporate the aqua-regia solution to dryness, take up the residue with HCl and evaporate again to dryness to remove all HNO3. Take up the residue with two or three drops of HCl and about 2 cc. of H₂O. The solution is usually perfectly clear, but it may be slightly cloudy owing to the presence of a little AgCl in it. No attention need be paid to this, however. Add 5 to 10 cc. of a saturated solution of NH₄Cl, stir well and allow to stand over night. Platinum is precipitated as ammoniumplatinum chloride—(NH₄)₂PtCl₆. Filter and wash the precipitate with 20 per cent. NH₄Cl solution. All Pd passes into the filtrate which is reserved (solution B). Dissolve the Pt precipitate in boiling hot 5 per cent. H₂SO₄; heat the liquid to actual boiling and precipitate with H2S as before, filtering and washing with H2S water. Burn the filter and precipitate at a low temperature in a scorifier; add six times as much Ag as Pt, scorifying with lead, cupel and part the silver bead containing the platinum with H₂SO₄; decant off the silver solution and

¹ In materials rich in palladium the small amount of AgCl + PbCl₂ may be distinctly pink in color and retain weighable quantities of Pd. If this is the case, the Pd may be recovered in the solution from the nitric acid parting of the gold. To do this, precipitate the silver in this liquid by adding HCl, filter off the silver chloride and evaporate the filtrate to dryness. Take up with a drop of HCl and a little water, let stand over night and filter through a very small filter. This liquid may be added to solution B before precipitating palladium with glyoxime.

wash once with strong H₂SO₄, followed by 50 per cent. H₂SO₄ until practically all silver is washed away; finally wash with water, anneal and weigh. A minute quantity of Ag is retained with the platinum, but it can usually be neglected. In very important work where the amount of platinum is large dissolve in aqua regia, evaporate the solution to dryness, take up with a drop of HCl, dilute largely with water and let the AgCl settle over night; filter on a small paper, cupel it with a little sheet lead and deduct the weight from the weight of platinum. This refinement need not be considered in materials running less than 15 or 20 oz. to the ton.

It may seem an unnecessary step to precipitate the platinum as sulphide, scorify it with silver and part it as described in the foregoing. General practice has been to ignite the ammoniumplatinum-chloride precipitate and weigh the metallic residue. When this is done, however, there is danger of losing considerable platinum, which is carried away mechanically during the decomposition of the compound; furthermore, it is extremely difficult (if not impossible) to collect the finely divided residue for weighing, and the precipitate invariably contains lead and Precipitation as sulphide, scorification and cupellation with excess silver and parting with sulphuric acid overcome the difficulties inherent in handling the ammonium precipitate.

The palladium is all contained in the filtrate and washings from the platinum-ammonium-chloride precipitates (solution Add to this solution at least seven times as much dimethylglyoxime as there is Pd present (in any case, at least 0.1 gram glyoxime). The precipitant should be dissolved in a mixture of two-thirds strong HCl and one-third water. Dilute the liquid to 250-300 cc., heat on a steam bath for half an hour and let stand over night. Pd is precipitated as a voluminous, yellow, easily filtered glyoxime compound (C₈H₁₄N₄O₄)₈Pd, containing, when dried at 110°C., 31.686 per cent. of Pd. Filter the Pd precipitate on a weighed Gooch crucible and wash it first with dilute HCl, half and half, then with warm water and finally with alcohol; dry it at 110° to 115°C. and weigh. The disadvantage of weighing palladium on a Gooch crucible is overcome—at least to some extent—by the fact that the Pd compound contains a relatively small amount of Pd-less than one-third of its weight. This compound may also be weighed on carefully counterpoised papers; but it is better to use Gooch crucibles, if they are available, because of the relatively strong acid which is required for washing. The object in using half-and-half hydrochloric acid as a wash liquid is to dissolve out any excess of the glyoxime precipitant. This is easily soluble in moderately strong HCl, but is substantially insoluble in water.

DETERMINATION OF SILVER IN ORES AND CON-CENTRATES CONTAINING PLATINUM AND **PALLADIUM**

Make the usual crucible fusion on one-quarter, one-half or full assay ton, according to the amount of silver present. Instead of cupeling the lead button, hammer it free from slag and dissolve it in dilute nitric acid. Most of the silver passes into solution together with palladium, and perhaps a trace of platinum; but gold and most of the platinum remain insoluble. The gold and platinum retain an appreciable proportion of silver which cannot be washed out. Filter out the insoluble residue and wash it thoroughly with hot dilute nitric acid, followed by hot water. Scorify the residue once more with a little lead and dissolve the lead button as before, filtering into the beaker containing the first filtrate. In this liquid precipitate the silver as AgCl by adding standing NaCl in sufficient quantity; stir well, and if the amount of silver is small, add about ½ cc. of strong H₂SO₄ to form a precipitate of lead sulphate. Let the silver chloride, or the silver chloride plus lead sulphate, settle over night or until the supernatant liquid is clear; filter through double filter papers; ignite and scorify the residue of silver chloride with test lead.

If the amount of palladium contained in the sample is small, the silver bead obtained by cupeling the lead button obtained by scorifying the silver chloride may be considered as sufficiently pure for ordinary purposes. It contains, of course, some palladium, and in accurate silver determinations the lead button from the first silver-chloride precipitation should be redissolved and the silver reprecipitated, filtered and scorified as before. The amount of palladium retained after the second precipitation

and scorification is so small as to be negligible.

SCHEME FOR QUALITATIVE ANALYSIS OF HEAVY METALS AND ALKALINE EARTHS

(The material is either in solution or is capable of being

readily dissolved.)

(A) Slightly acidulate solution with HCl. It is best to take only a small portion of the solution, and if a precipitate forms, see whether it redissolves in more acid. If it does, it indicates Sb or Bi. Permanent precipitate shows Ag, Pb, or Hg (ous).

Filter precipitate (B) and reserve solution (C).

(B) Wash with hot water, and add K₂Cr₂O₇ solution to filtrate. Heavy yellow precipitate shows lead. Wash residue (B) with NH₄OH, and acidulate filtrate with HNO₈. Precipitate shows Ag. Blackening of filter paper shows Hg (ous). (C) Pass in H₂S until precipitate coagulates. Precipitate may be As (yellow), Sb (orange), Sn" (brown), Sn"" (yellow), Hg' or Hg" (black), Bi (brown), Cd (yellow), Pb (black), Cu (black). Filter, giving precipitate (D) and solution (E). (D) Warm with ammonium polysulphide and filter. Fil-

trate (G) may contain As, Sb, Sn, and traces of Cu. (Also Au, Ir, Se, W, Pt, Te, V, of the rare elements.) Precipitate (E) contains Hg, Bi, Cd, Pb, Cu.

(G) Throw down precipitate from (NH₄)₂S₂ solution with HCl. Leach precipitate with ammonium carbonate. Arsenic Filter. Add HCl to filtrate to faint acidity. Pass dissolves. Yellow precipitate shows arsenic. (May be confirmed by Marsh test.) Dissolve remaider of precipitate E in strong HCl. Dilute and add metallic zinc in contact with a small piece of platinum. Precipitate of metallic tin and antimony forms. Treat with HCl and filter. To filtrate add HgCl₂ solution. White to gray precipitate of Hg₂Cl₂ shows tin. Treat residue from extraction with aqua regia, boil off excess Cl and HNO₃, and pass in H₂S. An orange precipitate of Sb₂S₅ confirms the presence of antimony, already indicated by a blackening of the platinum.

(F) Heat residue from ammonium polysulphide leaching with dilute (10 per cent.) HNO₃ and filter. Heat residue with concentrated HNO₃, dilute and filter, combining the two filtrates. The precipitate (H) remaining consists of HgS and S. The filtrate (I) contains Cd, Bi, Cu, Pb. (If the original treatment is made with concentrated HNO₃ all of the PbS may be oxidized to PbSO₄ and remain with the mercury. PbS is soluble in 10 per cent. HNO₃ according to the equation PbS

 $+2HNO_3 = Pb(NO_3)_2 + H_2S).$

(H) Dissolve precipitate in aqua regia. Boil off excess of Cl and HNO₃ and add SnCl₂. A white to gray precipitate confirms presence of mercury, probably already indicated by the black residue from the HNO₃ leaching.

(I) Add a few drops of H₂SO₄ to solution. White precipitate indicates lead. Filter, getting precipitate (I) and

solution (K).

(J) Treat precipitate on filter with hot ammonium acetate and filter, adding K2Cr2O, to filtrate. Chrome-yellow pre-

cipitate confirms presence of lead.

(K) Evaporate to small bulk, add about eight times bulk of alcohol, warm, and filter (to ensure removal of all lead). Evaporate off alcohol on sand bath and make strongly ammoniacal. White precipitate indicates Bi. Blue solution indicates Cu. The blue may be so intense as to mask the Bi(OH), precipitate. Filter and wash, and treat filter paper with strong HCl, catching strong HCl solution in a beaker. Dilute largely. White precipitate shows Bi. Take blue copper solution and add KCN solution until blue color just disappears and pass in H₂S. Bright-yellow precipitate indicates Cd.

(E) Boil off all H₂S from the filtrate from the H₂S precipitation, making sure finally that it is all gone by adding a few drops of HNO₃ and boiling. If organic acids, tartaric, citric, or the like are present, it is best to destroy them by evaporating almost to dryness and adding some concentrated

¹ Pd and Os belong in the H2S group of metals whose sulphides are insoluble in (NH₄)₂S₂.

H₂SO₄ and fuming HNO₃. Test a little of the solution for phosphoric acid by means of ammonium-molybdate solution in nitric acid. If a yellow precipitate shows phosphates, evaporate to a thick soup, and add a little tin and nitric acid and boil until action ceases. Dilute, filter, and repeat. The phosphorus is removed as stannous phosphate, all but traces of the tin remain undissolved as metastannic acid. If only traces of the further groups of metals are being looked for, boil off all the nitric acid with repeated additions of HCl, throw out the last of the tin with H₂S, filter, then boil off the H₂S and remove the last traces of it with HNO₃, as above specified. If phosphorus is not present, all of this is unnecessary. Add a little NH₄Cl and make the solution ammoniacal. Fe, Al and Cr are precipitated (L). Boil off excess of ammonia, filter; solution (M) contains Co, Mn, Ni and Zn and the alkaline earths and alkalis.

(L) Leach precipitate with hot KOH solution. Make leachings acid with HCl and add ammonia. White flocculent precipitate indicates alumina. Dissolve half of original precipitate with HCl and add K₄FeCy₆. Precipitate of Prussian blue confirms presence of iron, probably already indicated by red color of precipitate. Take the other half of the precipitate and fuse with sodium carbonate and sodium nitrate. A yellow melt indicates sodium chromate. Dissolve melt in water, acidify with acetic acid and add a drop of lead-acetate solution. Precipitate of lead chromate confirms presence of chromium, probably already indicated by a greenish hydroxide precipitate

or the yellow melt.

(M) Pass in H₂S into solution. Mn, Zn, Co, Ni precipitate. Filter. Filtrate (N) contains alkalies and alkaline earths. Treat precipitate with cold dilute HCl. Mn and Zn dissolve. Add KOH in excess. Filter, acidify filtrate with acetic acid and pass in H₂S. A white or nearly white flocculent precipitate confirms the presence of Zn. Take the precipitate from the KOH precipitation and fuse with Na₂CO₃ and NaNO₃. A green melt shows manganese. Take the residue insoluble in HCl and touch a borax bead to it and heat. A bead, violet when hot, blue when cold, shows cobalt. A gray bead (cold) shows Ni only, but this is easily masked by cobalt blue. So if the bead is blue, dissolve the residue in aqua regia, evaporate to soup, dilute, and add KCN until the precipitate first formed redissolves. Heat solution gently, add a little NaOH, then Br (under a hood). A black precipitate shows nickel.

(N) Boil until H₂S odor becomes faint, add NH₄OH and (NH₄)₂CO₃ and warm slightly. Ba, Sr, and Ca precipitate. Filter and dissolve precipitate in HCl. Add H₂SO₄ to part of the solution. Precipitate indicates Ba or Sr or both. To another part of the solution add K₂CrO₄. An immediate precipitate of a pale yellow color shows Ba. In the filtrate Sr can be

¹ The hydroxide precipitate will carry down As, Sb, Se, Te, Sn, P and Ti if they are present, which reaction affords an easy way to concentrate these elements from a large bulk of copper in exact copper analysis.

determined by the reddish color given a Bunsen burner flame, while Ca can be precipitated as calcium oxalate (white) in ammoniacal solution. Calcium colors a Bunsen flame reddish yellow, and Ba a vivid green.

(O) Add ammonium or sodium-phosphate solution to the filtrate from the Ba, Ca, Sr precipitation. Stir, cool, and allow to settle over night. Granular white precipitate shows Mg.

Qualitative Tests for Acids¹

The acid-radicals cannot be advantageously precipitated in groups, and the members separated and identified as with the metals. They are usually detected in the course of analysis by special tests. They may, however, be arranged in groups of such acid-radicals as resemble one another. A consideration of the metals present, in case the material is in solution, will often rule out many acids as possibilities at once.

The acids may be arranged as follows:

Group I.—Acids which are precipitated by AgNO₃ in presence of nitric acid.

Hydrosulphuric acid
Hydrochloric acid
Hydrobromic acid
Hydrobromic acid
Hydriodic acid
HI

Group II.—Acids whose salts deflagrate on charcoal.

Nitric acid HNO₃ Chloric acid HClO₃

Group III.—Acids which cannot be classified.

Boracic acid $H_{3}BO_{3}$ Carbonic acid H_2CO_3 Chromic acid H_2CrO_4 Hydrofluoric acid \mathbf{HF} Phosphoric acid H₂PO₄ Silicic acid H₄SiO₄ H_2SO_4 Sulphuric acid Arsenic acid H₃AsO₄ Hydrocyanic acid, acetates HCN

GROUP I

H₂S.—AgNO₃ gives a black pp. of Ag₂S insoluble in dilute acids.

Lead acetate—a black pp. of PbS insoluble in dilute acids. Dilute HCl—many sulphides when heated with dilute HCl evolves H₂S, which blackens paper moistened with lead acetate. If much H₂S is present, there will be the characteristic odor present, but do not smell the gas coming off unless you are sure no cyanides are present. It is safer to have some one else smell it, anyway.

¹James Park, "A Text-Book of Practical Assaying," with some original additions.

HC1.—AgNO₈—a white pp. of AgCl at first white, turns violet on exposure to light. Readily soluble in ammonia and KCN. Insoluble in dilute nitric acid.

Lead acetate—a white pp. of PbCl₂ soluble in hot water.

Strong H₂SO₄—when heated with dry chlorides causes evolution of HCl gas, chlorides of Hg and Sn excepted. Bromides, iodides, fluorides, cyanides, carbonates, sulphides, sulphites, thiosulphates and acetates also give off characteristic gases during this test.

MnO₂ + H₂SO₄—when mixed with a chloride causes evolution of chlorine, which bleaches wet litmus paper or a green leaf. Iodine and bromine are also evolved by this means. The

colors are characteristic.

HBr.—AgNO₃—a yellowish-white pp. of AgBr; sparingly soluble in ammonia but readily in KCN. Insoluble in dilute nitric acid. Phosphates also give a yellow precipitate. Test for phosphoric acid with ammonium molybdate in HNO₃ solution.

Lead acetate—a white pp. of PbBr₂. Strong H₂SO₄—with a dry bromide causes evolution of HBr vapors.

MnO₂ + H₂SO₄—causes evolution of Br, which turns starch

paper yellow.

Chlorine water or HCl + two drops of NaClO, when added, drop by drop, to a solution of a bromide liberates Br, which colors solution orange red. Avoid excess of Cl, as it destroys color. When a portion is warmed, reddish-brown vapors are given off. If three drops of CS₂ are added, the Br will sink to the bottom.

HI.—AgNO₃—a yellowish-white pp. of AgI. Sparingly soluble in ammonia; readily in KCN. Insoluble in dilute nitric acid.

Lead acetate—bright yellow pp. of PbI₂.

Chlorine water—reacts for iodine, giving a brown solution and violet vapors. To a portion add starch solution, an intense blue is produced.

GROUP II

Nitric Acid (Nitrates)¹

Dry Reactions.—1. If a nitrate is heated on charcoal it deflagrates, the charcoal burning at the expense of the O of the nitrate. Nitrites, chlorates, chromates, manganates and permanganates also give this reaction.

2. If a mixture of a nitrate and KCN powder be heated on platinum foil, deflagration takes place. This is a delicate test.

Wet Reactions.—1. Strong H₂SO₄ heated with nitrates causes evolution of fumes of nitric acid. Nitrites give this reaction.

2. Mix sol. of a nitrate with strong sol. of FeSO₄. Hold test-tube in a slanting position and pour strong H₂SO₄ down to

¹ Nitrites also give most of these reactions.

bottom. A purple or brown color will mark the plane of contact of the fluids. Nitrites also give this and the following reaction.

3. Copper filings and H₂SO₄ heated with a nitrate liberate NO, which becomes peroxidized to NO2 on contact with the air.

4. A sol. of indigo boiled with HCl and a sol. of a nitrate is decolorized. Not characteristic, as chlorine reacts the same.

5. A little brucine dissolved in H₂SO₄ when added to a sol. of a nitrate gives a fine red color. This is a very delicate test.

6. Free nitric acid may be detected by evaporating to dryness with quill-cuttings. These will be colored yellow.

It gives with FeSO₄ a brown ring; and with copper filings or

foil a reddish-brown gas, NO₂, and a blue color.

The most delicate test for nitrates is to take 2 or 3 c.c. of the solution in HCl, add 12 drops of a solution of diphenylamine in sulphuric acid, then run in H₂SO₄ below the mixture. A faint blue will be given by 1 part in 1,000,000 of HNO₃.

Chloric Acid (Chlorates)

Dry Reactions.—1. Chlorates when heated on charcoal deflagrate far more violently than nitrates. So do perchlorates.

2. Heated on charcoal with KCN, chlorates detonate vio-

lently. Use only small quantities in this experiment.

Wet Reactions. -1. A few drops of H₂SO₄ added to a small quantity of a chlorate liberate chlorine peroxide (ClO2), which colors the H₂SO₄ intensely yellow, and has a strong odor of Cl and a greenish color. This experiment should be tried in a watch-glass without heat, as an explosion might take place.

2. If a cold sol. of indigo is added to a cold sol. of a chlorate till distinctly blue, and some H₂SO₄ then poured in and shaken, the blue color of the indigo is at once destroyed. Chlorites,

perchlorates, and hypochlorites also give this reaction.

3. If a chlorate is mixed with Na₂CO₃ and ignited, O₂ is given off and a chloride remains. On dissolving the residue, acidifying with nitric acid, and adding silver nitrate, a white pp. of AgCl is formed.

GROUP III

Boracic Acid

Dry Reactions.—1. Boric acid tinges the Bunsen flame

2. Pour some methylated spirits on finely powdered borax in a porcelain dish; add a little H2SO4; mix and ignite; the

flame will show a green edge.

Wet Reactions.—1. If a sol. of an alkaline borate is mixed with HCl to slight but distinct acid reaction, and a strip of turmeric paper is half dipped into it and then dried at 212°F. (100°C.), the dipped half will show a peculiar red color—very delicate. Sodium carbonate turns this to a dark blackish-green, and HCl will restore the color.

Carbonic Acid

Wet Reactions.—1. Almost any acid when poured on a carbonate in a test-tube causes effervescence due to rapid evolution of CO₂. When conducted into lime-water this gas causes a pp. of CaCO₃, which is sol. in large excess of the gas. Cyanides, sulphites, tellurides, selenides, sulphides, and thiosulphates also effervesce. Be careful about inhaling these gases.

Chromic Acid

Dry Reactions.—1. Compounds of chromic acid give an emerald-colored bead with borax on platinum loop in both

outer and inner blowpipe flames.

Wet Reactions.—1. H₂S added to an acidified sol. of a chromate produces a green coloration due to reduction of the chromic acid [CrO₃]. A white precipitate of sulphur is formed at the same time.

(Readily oxidizable substances deoxidize K₂Cr₂O₇ with production of a chromic salt; the color of the solution at the same

time changes from orange red to bright green.)

- 2. H₂O₂ or BaO₂ if added to a cold acidified sol. of a chromate produces an intense blue coloration, which becomes fixed if ether is first added and the liquid well shaken after adding the peroxide. The ether assumes and retains the blue color. A few drops of HNO₃ are useful. This is an extremely delicate and characteristic test.
- 3. BaCl₂ gives a light yellow pp. of BaCrO₄, sol. in HCl and HNO₃.
- 4. AgNO₃ gives a dark purple-red pp. of Ag₂CrO₄, sol. in KNO₃ and NH₄OH.
- 5. Pb($C_2H_3O_2$)₂ gives a yellow pp. of PbCrO₄, sol. in KOH, but insol. in $C_2H_4O_2$. This precipitate, "chrome yellow," is very characteristic.

6. If insoluble chromates are fused with Na₂CO₃ and KNO₃, alkaline chromates will be formed, which are soluble in water.

Hydrofluoric Acid

The ordinary tests for a fluoride depend on the liberation of HF, which is allowed to etch glass.

1. If strong H₂SO₄ is warmed with a little finely powdered

CaF₂ in a test-tube, HF is liberated.

2. Cover the convex side of a watch-glass with melted paraffin or wax. Trace lines near the middle of the glass with the point of a penknife so as to remove the wax from these parts, but not to scratch the glass. Place the prepared glass on the top of a platinum crucible containing a little finely powdered CaF₂ and some strong H₂SO₄. Pour a few drops of water into the watch-glass to keep it cool, and gently heat the bottom of the crucible. Allow to stand for 20 minutes. Melt off wax, and on the clean surface the etched lines will be visible. If small

traces of a fluoride were present, the tracing will become visible by breathing on the cold surface of the glass.

This reaction fails when there is too much SiO₂ present, as

the H₂SO₄ then liberates SiF₄ instead of HF.

SiF₄ does not etch glass, but produces white fumes in moist air; when these fumes are conducted into water a colorless flocculent pp. of gelatinous silica is separated.

$H_4SiO_4 = SiO_2 + 2H_2O$

3. CaCl₂ when added to the solution of a fluoride gives an almost transparent gelatinous pp. of CaF₂, which becomes more visible when the liquid is heated or when ammonia is added.

Phosphoric Acid

Wet Reactions.—1. MgSO₄ solution (to which ammonium chloride has been added and then a little ammonia) gives with the solution of a phosphate a white crystalline pp. of magnesium ammonium phosphate (MgNH₄PO₄ + 6H₂O) which rapidly settles. This pp. is insol. in NH₄OH, but is readily sol. in acids, even $C_2H_4O_2$. If very little phosphate is present, the pp. often appears only after the solution has been warmed and allowed to stand.

2. Silver nitrate throws down from neutral solutions a light yellow pp. of Ag₃PO₄, readily soluble in nitric acid and ammonia.

3. The solution of ammonium molybdate in nitric acid gives in the cold a finely divided yellow pp. which settles rapidly. With small quantities of a phosphate, a few hours must be allowed for the reaction, and the liquid may be warmed gently, but not above 40°C. (104°F.). Not more than an equal volume of the fluid to be tested should be added to the molybdate. Large quantities of HCl interfere with the precipitation.

The pp. after subsiding may be separated by filtering, washed with ammonium molybdate solution, then dissolved in ammonia, and, by adding NH₄Cl and MgSO₄ as in (1), the pp.

of MgNH₄PO₄ + 6H₂O may be obtained.

The solution to be tested must not be alkaline to test paper, but should be made distinctly acid with HNO₃. It should then be added in *small quantities* only to some NH₄HMoO₄ sol. in a test-tube, more being added if no yellow pp. forms after a few minutes, when the liquid may be gently warmed.

Arsenates

The pps. found in (1) and (3) with a phosphate are precisely the same as those formed when an arsenate is present. AgNO₂ gives with an arsenate a brown pp.; with a phosphate a yellow pp.; and ammonium molybdate solution gives a pp. with an arsenate only after boiling instead of gently heating as with a phosphate. It is also possible to remove the arsenic with H₂S in HCl solution before making confirmatory tests for phosphates.

Silicic Acid

Dry Reaction.—1. If a fragment of silica or a silicate is heated in a bead of microcosmic salt, it remains undissolved and floats about in the bead as a more or less transparent mass, which retains its original shape. In the case of a silicate the bases dissolve out.

Wet Reactions.—2. NH₄Cl produces in not too dilute solutions

of alkaline silicates a pp. of hydrated SiO₂.

3. The solutions of alkaline silicates are decomposed by all acids, the SiO₂ separating as the gelatinous hydrate. The acid should be added drop by drop and the solution stirred.

Sulphate Group

REMARKS.—Sulphates are the only commonly occurring salts which give with BaCl₂ a pp. insoluble in boiling HCl. (Selenates also give a pp. of BaSeO₄ with BaCl₂, but it dissolves on boiling with strong HCl for some time.)

Tests for Sulphates (SO₃, and a Base)

Wet Reactions.—1. All solutions of the sulphates give with BaCl₂ a white pp. of BaSO₄ which is insoluble in all acids.

2. If a sulphate or any solid substance containing sulphur is mixed with pure solid Na₂CO₃ and fused on charcoal in the

inner reducing blowpipe flame, it will yield Na₂S.

Detach the cold fused mass with the point of a knife, place a portion on a bright silver coin, and moisten with H₂O. Allow to remain a short time, and then rinse off; a black stain of Ag₂S will be seen upon the coin, if sulphur is present.

3. Lead acetate produces a heavy white pp. of PbSO₄, which dissolves readily in hot strong HCl, or alkaline acetates.

4. Sulphuric acid gives, with sugar, a black mass.

5. To detect free sulphuric acid, mix the fluid with a very little cane-sugar and evaporate to dryness at 212°F. (100°C.). If any is present, a black residue will remain; or with small traces a blackish-green residue. No other free acid decomposes cane-sugar in this way.

Cyanides and Acetates

Cyanides.—These give a blue color with a mixture of ferrous and ferric salts.

Some additional tests for other acids are:

A concentrated solution in hydrochloric acid will, when H₂S is passed in, give a precipitate of sulphur if it contains nitrates, nitrites, chlorates, sulphites, thiosulphates, arsenates, chromates, manganates or permanganates.

Acetates evolve a characteristic odor when present in large quantity in strong sulphuric-acid solution. They give a blood-red solution with ferric salts. If the solution be neutral

the iron is precipitated on boiling.

SOME PROPERTIES OF RADIOACTIVE SUBSTANCES

The table below is based on tables in Le Radium, Jan., 1909, Jan., 1910 and Jan., 1911, and in Zeit. für Angew. Chemie. July 6, 1915. See also pages 234-237.

SUBSTANCE

PROPERTIES

Sol. in excess of am. carb. Nitrate soluble in ether TT and acetone. Atomic weight, 238.2. Half-decay

period, 6×10° years. Gives off ∝ particles. Carried down by BaSO₄. Soluble in HCl. Less volatile than U. Volatile in electric arc. Insolu-UX ble in excess of am. carb. Soluble in water and ether. Half-decay period, 24.6 days. Gives off β and γ particles.

Carried down by barium sulphate with UY ferric hydrate, and by animal charcoal. Half-

decay period, 1.5 days.

Soluble in excess of am. oxalate. Carried down by Io H₂O₂ in presence of U salts. Half-decay period,

over 2×10^5 years (?). Gives off ∞ particles. Characteristic spectrum. Spontaneously luminous. Analogous to Ba. RaCl₂ and RaBr₂ are less soluble than BaCl₂ and BaBr₂. Atomic weight, 226.4. Ra Half-decay period, 2000 years. \propto and β particles.

One of group of inert gases. Characteristic RaEm (Niton) spectrum. Mol. wt. = 218. Half-decay period, 3.85 days.

Behaves as a solid. Deposited on cathode in an RaA

RaB

electric field. Volatile at 800-900°C. Soluble in strong acids. Half-decay period, 3 min.

Like RaA. Volatile at 600-700°C. Precipitated by BaSO₄. Half-decay period, 26.8 min.

Physically like RaA. Volatile at 800-1300°C. Chemically like RaB. Deposited on Cu and RaC Ni. Perhaps a mixture of two products.

Volatile below 1000°C. Soluble in strong acids. RaD Reactions of RaD and RaE₁ analogous to those

of Pb. Sometimes known as radiolead.

Volatile at red heat. Soluble in cold acetic acid. RaE₁ Not volatile at red heat. Reactions similar to Bi. Volatile toward 1000°C. Deposited from its solu-RaE₂ RaF tions on Bi, Cu, Sb, Ag, Pt. Carried down by PbCO₃, and by SnCl₂ with Hg and Te. RaD, (Polonium.) E₁, E₂, and F can be separated by electrolysis.

Produces helium. Precipitated by oxalic acid in acid solutions. Oxalate insoluble in HF; accom- \mathbf{Ac} panies thorium and rare earths. Unknown period.

Slightly volatile at high temps. Insoluble in NH4OH. Separated from Ac by electrolysis, by fractional precipitation, by ammonia, and by animal charcoal. Half-decay period, 19.5 days.

Deposited by electrolysis in alkaline solution. AcXprecipitated by NH₄OH. Half-decay, 10.5 days. Behaves as inert gas. Gives off ∝ particles only. AcEm Condenses at -120°C. Half-decay, 3.9 sec. Volatile below 400°C. Soluble in NH₄OH and AcA strong acids. Half-decay, 0.002 sec. a radiation. Volatile below 700°C. Soluble in NH4OH and AcBstrong acids. Deposited by electrolysis of active deposits on cathode in HCl. Half-decay, 36 min. Volatile in electric arc. Colorless salts not spon-Th taneously phosphorescent. Salts ppd. by NH4-OH and oxalic acid. Atomic weight, 232.4. Rad. The Carried down by hydrates, precipitated by NH4OH. ThX Soluble in NH4OH. Carried down by iron. Deposited by electrolysis in alkalis. 3.64 days. Inert gas. Condenses just above — 120°C. H ThEm : decay period, 54.5 sec. Volatile under 630°C. Soluble in strong acids. ThA. Volatile below 730°C. Like ThA. ThB Deposited on Ni. Separated from ThA by electrolysis. Like ThB. Probably two products. ThC One gram of radium gives off 0.0328 cal. per sec., and produces 5.17×10^{-9} cc. of helium (0°, 76 cm. pressure) per gram per sec.

STANDARDS FOR WORK WITH THE BOMB CALORIMETER¹

	Berthelot	Atwater	Fischer & Wrede	U. S. Bureau of Standards
Naphthalene Benzoic acid Cane sugar (sucrose)	9692 6322 3961	9628 6322	9640 6333 3957	9610 6320

Heats of Formation

Heats of formation are expressed in calories, i.e., the amount of heat necessary to raise 1 gram of water from 10°C. to 11°C. When it is said that the heat of formation of any compound is a certain number of units, it is meant that this number of calories is developed in the production of a mass in grams of the substance equal to its molecular weight, i.e., when we say that

$$C + O_2 = CO_2 97,200 cal.$$

we mean that 12 grams of carbon and 32 of oxygen develop 97,200 cal.

The heat of formation and the heat of decomposition of any substance are the same; *i.e.*, in order to effect the decomposition of a substance an amount of heat must be supplied equal to the amount evolved in the formation.

The heat of combination of the elements, like many others of their properties, follows the periodic law, the relation being thus stated by W. G. Mixter (Am. Journ. Sci., June, 1914): The heat equivalents of the elements of a subgroup in the series

¹ From Somermeier's "Coal."

Ill to VIII are either linear functions of the atomic weights, or the heat of formation of the oxide of the middle member falls below the linear value by a constant amount for each atom of oxygen combined.

HEAT OF FORMATION OF SILICATES

TIENT OF PURMATION OF DILICATES					
Starting from	Gram- cal per molecule	Gram- eal per gram of stiteate formed	Starting from	Gram- cal per molecule	Gram- cal. per gram of silicate formed
FeO, SiO ₁ MnO, SiO ₁ BaO, SiO ₂ CaO, SiO ₂ 2CaO, SiO ₂ 3CaO, SiO ₃ 8rO, SiO ₄ 8rO, SiO ₄ 3CaO, Al ₂ O ₄ , 2SiO ₂ 3CaO, Al ₂ O ₄ , 2SiO ₂ 4l ₂ O, SiO ₂ Li ₂ O, SiO ₂ Na ₁ O, SiO ₂ CaO, Al ₂ O ₄ 3CaO, Al ₂ O ₄ 3GaO, Al ₂ O ₄ 3GaO, Al ₂ O ₄		80 41 69 154 165 125 110 67 86 170 720 370 370	Fe, Si, Oa Ma, Si, Oa Ba, Si, Oa Ca, Si, Oa Caz, Si, Oa Sr, Si, Oa Alz, Siz, Oa Alz, Siz, Oa Hz, Alz, Siz, Oa Liz, Siz, Oa Naz, Si, Oa Ca, Alz, Oa	254,600 276,300 328,100 329,350 471,300 603,050 329,100 767,500 1,195,550 927,420 347,100 326,100 524,550 658,900 789,050	2,109 1,540
CaO 11 4, MgO 2.7, Al ₂ O ₃ 9.2, Cu 0 42, S 0 42 per cent	}	133			
2FeO, StO ₁ . FeO 70.80, StO ₂ . 29 20 per cent FeO 57 58, CaO 12.00, SiO ₁ 30.42 per cent. FeO 40 30, CaO 28 00, SiO ₁ 31 70	22,236	109	Fes, Si, Os	333,636	1,637
per cent		193 .		******	,

HEATS OF FORMATION OF MIXTURES OF SiO2, CaO, AND AN-HYDROUS KAOLIN

The kaolin used in these experiments was: SiO₂, 53.58 per cent., Al₂O₂, 43.40, Fe₂O₂, 1.25. The difference between the sum of the Al₂O₂ and CaO and 100% is the SiO₂.

Al ² O ³ per cent. CaO per cent.	2	10	20	100
10 20 30 40 50	+ 76.1 +103.2 +150.6 +154.0	+ 42.8 + 69.7 +109 0 +135.8 +180 4	+ 19.2 + 47.9 + 82.3 +106.5 +137.8	+ 1.7 +49.9 +73.0

¹ Revue de Metallurgie, 1913, p. 673.

HEAT OF FORMATION OF OXIDES

	HEAT OF FORMATI		
Formula	Molecular weights	Molecular heat of formation	In dilute
Mg, O	. 24 + 16 = 40	143,400	148,800
Ba, O ,	137+16=153	133,4001	161,500
Ca, O	40 + 16 = 56	131,500	149,600
Sr, O	87+16=103	131,200	158,400
Ala Oa	54 +48 = 102	392,600	-
ri, O ₁	48+32-80	218,500	1 1 000
Var, O	46 + 16 = 62	100,900	155,900
K ₁ , O	78 + 16 = 94	98,200	185,200
Bi, Oz	28 + 32 = 60	180,000	180,000€
Ma, O	$55 \div 16 = 71$	90,900	1 1 1 1
Br, Or	22 + 48 = 70	272,600	279,900
Za, O	65 + 16 = 81	84,800*	82,680
Mns, O ₄	165 + 64 = 229	328,000	
Pa, Oa	62 + 80 = 142	365,300	405,0004
Sa, O	118 + 16 = 134	70,700	
Sn, Or	118 + 32 = 150	141,300	
co, o	28 + 16 = 44	68,040	73,940
00, 0	2+16-18	70,400 solid	1 10,010
W . O	$\frac{2+16-18}{2+16=18}$	69,000 liquid	
Hz, O			
7 0 1	2+16-18	58,060 gas	48.0004
H Or P	2+32=34	the special section	47,3004
Fea, Oa	168 + 64 = 232	270,800	1 1 1 1 1 1 1 1
Çd, O	112 + 16 = 128	66,300	
Fe, O	56 + 16 = 72	65,700	4 * 4 * 1 * 1 * 1
Fea. Oa	112 + 48 = 160	195,600	
Co, O	59 + 16 = 75	84,100	
Mn, Oz	55 + 32 = 87	125,300	
Ni, O	58 5 + 16 - 74 5	61,500	
3b2, O1	240 + 48 = 288	166,900	
A81, O1	150 + 48 = 198	158,400	148,900
Pb, O	207 + 16 = 223	50,800	1 40,000
C, O ₃	12 + 32 = 44	97,200 gas	103,100
B ₁₁ , O ₂	416+48=464	139,2004	
		138,200	1 + 1 -
Bb ₂ , O ₄	240 + 80 = 320	231,200	005 400
Ana, Oa	150 + 80 = 230	219,400	225,400
Cui, O	127 2 + 16 = 143 2	43,800	111 AN BOW 114
Tlz, O	408 + 16 = 424	42,800	39,700
Cu, O	636 + 16 = 796	37,700	
Ba, Oz	137 + 32 = 169	145,500	
8, O ₃	32 + 32 = 64	69,260 gas	77,600
Pb, O ₂	207 + 32 = 239	63,400	
8, Oa	32 + 48 = 80	91,900*	141,000
Tl ₁ , O ₁	408 + 48 = 456	87,600	
C, O	12 + 16 = 28	29,160 gas	
Hg1, O	400 + 16 = 416	22,200	
Hg, O	200 + 16 = 216	21,500	''' '' '
Te, Oz	125.5 + 32 = 157.5	l '	78,300
	106 + 16 = 122	91 000	10,000
Pd, O		21,000	
Pt, O	195 + 16 = 211	17,000	
Agı, ()	216 + 18 = 232	7,000	- +
Au ₂ , O ₁	394 + 48 = 442	-11,500	, , , ,
N ₁ , O	28 + 16 = 44	{ −19,000⁴	
N, O	14 + 16 = 30	-21,6004	, ,
N_1/Ω_2	28 + 48 = 76	-21,4004	
N. Os (at 23°)	14 + 32 = 46	-1,7004	
N, O1 (at 150°)	14 + 28 = 42	-7,6004	
NaOs	28 + 70 = 98		3,6004
CB ₂ ()	266 + 16 = 282	100,000	D4000
	14+16=30	140,000	, ,
LijO Rh-O			
Rb _z O	171 + 16 = 187	94,900	
W, O ₃	$184 + 48 \approx 232$ $102 + 80 = 183$	243,000	
WA I II	1112 2611 12678	441,000	
Vzi Oa Crai Oa		266,0007	

¹ THOMBEN, 126,000. 2 42,740 at 1125°C. 4 "Annuaire des Bureau des Longitudes," 1914. 4 KATE and LABY, 20,000. 4 KATE and LABY, 103,000. THOMSEN, "Thermochemistry."

1 This is the heat evolved by a stable amorphous oxide. There is an unstable form evolving only 243,000 cal.

280 METALLURGISTS AND CHEMISTS' HANDBOOK

HEAT OF FORMATION OF HYDROXIDES

Formula	Molecular weighta	Molecular best of formation	In dilute solution
Li, O, H Mg, O2, H3. Sr, O2, H3. Ca, O1, H1. K, O, H. Na, O, H. N, O, H. Al, O3, H1. H, O, H. Ti, O, H. Te, O1, H2 Te, O1, H3 Te, O4, H4 Se, O2, H3 Se, O4, H4 Ti, O3, H4 Cd, O4, H1 Cd, O4, H1 Rb, O, H	7+16+1=24 $24+32+2=58$ $87+32+2=121$ $40+32+2=74$ $39+16+1=56$ $23+16+1=40$ $18+16+1=35$ $27+48+3=78$ $1+16+1=18$ $204+16+1=18$ $204+16+1=221$ $208+48+3=259$ $65+32+2=99$ $127+32+2=161$ $127+48+3=178$ $79+32+2=113$ $79+48+3=130$ $204+48+3=255$ $137+32+2=146$ $133+16+1=150$ $85-5+16+1=102.5$	112,300 217,800 217,300 215,600 104,600 102,700 88,800 301,300 70,400 solid 68,000 liquid 58,060 gas 57,400 171,700 83,500 78,300 99,500 52,400 79,300 43,800 217,000° 66,000° 101,300 102,000	118,110 227,400 219,500 117,100 112,500 90,000 54,300

HEAT OF FORMATION OF CYANIDES

Formula	Molecular weights	Molecular heat of formation	In dilute solution	
Ca, C1, N1. K, C, N. Na, C, N. K, Ag, C3, N2. Fet, C16, N16 Zn, C4, N2. Cd, C2, N4 Cu, C, N Pd, C1, N2 H, C, N Hg, C2, N3.	39 + 12 + 14 = 65 $23 + 12 + 14 = 49$ $39 + 108 + 24 + 28 = 199$ $392 + 216 + 252 = 860$	33,450 25,950 18,700 -256,700 - 24,550 - 31,850 - 20,375 - 49,250 - 27,150 (gas) - 59,150	41,650 30,250 25,450 5,350 — 21,050	

HEAT OF FORMATION OF CYANATES

Formula	Molecular weights	Molecular heat of formation	In dilute solution
K, C, N, O Na, C, N, O Ag, C, N, O	39+12+14+16= 81 23+12+14+16= 65 108+12+14+16=150	105,850 105,050 26,450	100,650 100,250

¹ KATE and Laby, 229,000. THOMBEN, "Thermochemistry"

HEAT OF FORMATION OF FERROCYANIDES

Formula	Molecular weights	Molecular heat of formation	In dilute solution
K4, Fe, C6, N6 H4, Fe, C6, N6 K2, Fe, C6, N6 H3, Fe, C6, N6	156+56+72+84=368 $4+56+72+84=216$ $117+56+72+84=329$ $3+56+72+84=215$	157,300 -102,000 129,600	145,300 -101,500 100,800 -127,400

HEAT OF FORMATION OF SELENIDES

Formula	Molecular weights	Molecular heat of formation	In dilute solution
i ₂ , Se	14+79=93	83.000	93,700
ζ², Se	78 + 79 = 157	79,600	87,900
Ba, Se	137 + 79 = 216	69,900	
r, Se	87 + 79 = 166	67,600	
a, Se	40 + 79 = 119	58,000	
Ia2, Se	46 + 79 = 125	60,900	78,600
n, Se		30,300	
kd, Se	112 + 79 = 191	23,700	
In, Se	55 + 79 = 134	22,400	
J, Hs, Se	14+5+79=98	17,800	12,800
Lu, Se	63.6 + 79 = 142.6	17,300	
b, Se	207 + 79 = 286	17,000	
e, Se		15,200	
ĭi, Se	58.5 + 79 = 137.5	14,700	
o, Se	59 + 79 = 138	13,900	
l ₂ , Se	408 + 79 = 487	13,400	[
u ₂ , Se		8,000	
[g, Se		6,300	
g ₂ , Se		2,000	
[2, Se		-25,100 (gas)	
, Se	• • • • • • •	-42,300	

HEAT OF FORMATION OF TELLURIDES

Formula	Molecular weights	Molecular heat of formation	In dilute solution
Zn, Te. Cd, Te. Co, Te. Fe, Te. Ni, Te. Tl ₂ , Te. Cu ₂ , Te. Pb, Te. H ₂ , Te.	59+126=185 $56+126=182$ $58.5+126=184.5$ $408+126=534$ $127.2+126=253.2$ $207+126=333$	31,000 16,600 13,000 12,000 11,600 10,600 8,200 6,200 -34,900 (gas)	

HEAT OF FORMATION OF SULPHIDES

Formula	Molecular weights	Molecular heat of formation	In dilute solution
Li ₂ , S	14 + 32 = 46		115,400
K_2 , \tilde{S}	78 + 32 = 110	103,500	113,500
Ba, S	137 + 32 = 169	102,900	109,800
Sr, S	87 + 32 = 119	99,300	106,700
Ca, S	40 + 32 = 72	94,300	100,600
Na ₂ , S	46 + 32 = 78	89,300	104,300
Mg, S	24 + 32 = 56	79,400	
K, S ₂	39 + 64 = 103	59,300	59,700
Na, S ₂	23 + 64 = 87	49,500	54,400
Mn, S	55 + 32 = 87	45,600	
Z n, S	65 + 32 = 97	43,000	
Al ₂ , S ₈	54 + 96 = 150	126,400	}
N, H ₅ , S	14+5+32=51	40,000	36,700
Cd, S	112 + 32 = 144	34,400	
\mathbf{B}_{2} , \mathbf{S}_{3}	22 + 96 = 118	75,800	
Fe, S	56 + 32 = 88	24,000	
Co, S	59 + 32 = 91	21,900	
Tl ₂ , S	204 + 32 = 236	21,600	
Cu ₂ , S	127.2 + 32 = 159.2	20,300	
Pb, S	207 + 32 = 239	20,200	
Si, S ₂	28 + 64 = 92	40,000	
Ni, 8	58.5 + 32 = 90.5	19,500	
Sb ₂ , S ₃	240 + 96 = 336	34,400	
Hg, S	200 + 32 = 232	10,600	
$\widetilde{\mathbf{C}}\mathbf{u}, \widetilde{\mathbf{S}}$	63.6 + 32 = 95.6	10,100	
$\widetilde{\mathbf{H}}_{2}, \widetilde{\mathbf{S}}_{2}, \dots$	2 + 32 = 34	4,800 gas ¹	9,500
Ag ₂ , S	216 + 32 = 248	3,000	
	• -	$\int -25,400 \text{ gas}$	
C, S_2	12+64=76	-19,000 liquid	
I, S	127 + 32 = 159	9,000	
_, ~		2,000	

¹ Molecular heat of combustion of $H_2S = 122,500$ cal., and heat of combustion of 1 cu. meter $H_2S = 5513$ cal.

HEAT OF FORMATION OF NITRIDES

Formula	Molecular weights	Molecular heat of formation	In dilute solution
C ₂ , N ₂ H ₃ , N Ba ₃ , N ₂ Li ₂ , N K, H ₃ , N Ca ₃ , N ₂	3+14=17 $411+28=439$ $21+14=35$ $39+3+14=56$	-73,900 gas 12,200 gas 16,600 liquid 149,400 49,500 30,700 111,200	-68,300 21,000

¹ F. Haber gives 10,975. Chem. Tr. Journ., Aug. 14, 1915. HEAT OF FORMATION OF METALLIC HYDRIDES

Formula	Molecular weights	Molecular heat of formation	In dilute solution
Sr, H ₂	137+2=139 $1950+1=1951$ $1590+1=1591$	38,400 37,500 14,200 4,600 -6,7001 gas	

¹ KAYE and LABY, 25,000.

HEAT OF FORMATION OF PHOSPHIDES

Formula	Molecular weights	Molecular heat of formation	In dilute solution
Mn ₃ , P ₂ H ₃ , P Fe, P	$ 165+62 = 227 \\ 3+31 = 34 \\ 56+39 = 95 $	70,900 4,900 nearly 0	• • • • • • • • • • • • • • • • • • • •

ARSENIDES, ANTIMONIDES, BORATES

Formula	Molecular weights	Molecular heat of formation	In dilute solution
H ₂ , As	3 + 75 = 78 3 + 120 = 123 46 + 44 + 112 = 202	-44,200 gas -86,800 gas 748,100	-36,700 758,300

HEAT OF FORMATION OF FLUORIDES

Formula.	Molecular weights	Molecular heat of formation	In dilute solution
Sr, F ₂	87 + 38 = 125	224,020	
Ba, F_2	137 + 38 = 175	224,000	221,500
Li, F	7+19=26	· ·	116,880
K, F	39 + 19 = 58	110,000	113,600
Ca, F ₂	40 + 38 = 78	216,450	
Mg, F_2	24 + 38 = 62	209,500	
Na, F	23 + 19 = 42	109,720	109,120
N, H ₄ , F	14+4+19=37	101,250	99,750
Al, F ₃	27 + 57 = 84		275,220
B, F ₃	11 + 57 = 68		219,345
Mn, F ₂	55 + 38 = 93		153,310
Zn, F ₂	65 + 38 = 103		138,220
Si, F4	28 + 76 = 104	275,920 gas	
Fe, F ₂	56 + 38 = 94	2,0,020 800	125,220
Cd, F ₂	112 + 38 = 150		121,720
Co, F_2	59 + 38 = 97		120,340
Ni, F_2	58.5 + 38 = 96.5		118,980
Fe, <u>F</u> 3	56 + 57 = 113		164,940
ri, F	204 + 19 = 223		54,405
Pb, F ₂	207 + 38 = 245	101,600	
H, F	1+19=20	38,500 gas	50,3001
3b, F ₃	120 + 57 = 177		136,680
Cu, F_2	63.6 + 38 = 101.6		88,160
Ag, F	108 + 19 = 127	22,070	25,470

¹ Other authorities, 69,000.

HEAT OF FORMATION OF SILICIDES

Formula	Molecular weights	Molecular heat of formation	In dilute solution
Mn7, Si2	385 + 56 = 441 $4 + 28 = 32$	47,400 -6,700 gas	

HEAT OF FORMATION OF CARBIDES

Formula	Molecular weights	Molecular heat of formation	In dilute solution
Al4, C3. Mn, C2. Mn, C3. Fe3, C. C8, C2. N8, C. Li, C. N2, C2. Ag, C.	55+24=79 55+36=91 168+12=180 40+24=64 23+12=35	232,000 114,400 9,900 8,460 -6,250 -4,400 -5,750 -73,000 gas -43,575 10,400	-131,500 -67,100

HEAT OF FORMATION OF BROMIDES

Formula	Molecular weights	Molecular heat of formation	In dilute solution
Na, Br. K, Br. Al, Brs. Zn, Br2. Cd, Br2. Pb, Br2. Sn, Br2. Cu, Br2. Sn, Br4. Hg, Br Ag, Br (cryst.) Sb, Brs. Cu, Br2. Pt, Br4. Au, Br3. Au, Br3. H, Br	23 + 80 = 103 $46 + 80 = 126$ $27 + 240 = 267$ $65 + 160 = 225$ $112 + 160 = 272$ $207 + 160 = 367$ $118 + 160 = 278$ $63 + 80 = 143$ $118 + 320 = 438$ $200 + 80 = 280$ $108 + 80 = 188$ $120 + 240 = 360$ $63 + 160 = 223$ $195 + 320 = 515$ $197 + 240 = 437$ $197 + 160 = 357$ $1 + 80 = 81$	Liquid bromine 79,450 99,050 120,600 78,200 69,000 63,000 26,000 { 101,400 (solid) 98,400(liquid) 24,500 23,700 64,900 34,800 42,400 12,100 1,000 8,400	207,500 93,200 77,200 59,000 118,000 53,000 52,200 8,400 28,600

^{1 8800} BERTHELOT.

HEAT OF FORMATION OF IODIDES

Formula	Molecular weights	Molecular heat of formation	In dilute solution
Zn, I ₂	65 + 254 = 319 $112 + 254 = 366$	49,200 45,000	60,600 44,000
Pb, I ₂	207 + 254 = 461 $63.5 + 254 = 317.5$ $200 + 254 = 454$	42,000 16,500 14,200	
Ag, I (cryst.) Hg, I ₂ (red)	$ \begin{array}{c} 108 + 127 = 235 \\ 200 + 254 = 454 \end{array} $	14,300 24,300	
Sb, I:	120 + 381 = 501 $197 + 127 = 324$ $1 + 127 = 128$	29,200 - 55,000 - 6,400	13,200
K, I Na, I	46 + 127 = 173 $23 + 127 = 150$	87,500 76,500	

HEAT OF FORMATION OF CARBONATES

ormula	Molecular weights	Molecular heat of formation	In dilute solution
0.	127 12 49 - 107	286,300	
O3			200 400
O ₃	78+12+48=138	282,100	288,600
$\mathfrak{I}_{\mathfrak{d}}$	87+12+48=147	281,400	
0	40+12+48=100	273,850	
, O ₈	46+12+48=106	273,700	279,300
O ₈	24+12+48=84	269,900	
08	55+12+48=115	210,300	
O ₃	65+12+48=125	197.500	1
03	56+12+48=116	187,800	
O ₃	112+12+48=172	183,200	
08	207+12+48=267	170,000	
Ŏ 3	63.6 + 12 + 48 = 123.6	146,100	
O ₃	216+12+48=276	123,800	1
		205,300	100.000
H, CO ₃	14+4+1+12+48=79	200,300	199,000

HEAT OF FORMATION OF BICARBONATES.

ormula	Molecular weights	Molecular heat of formation	In dilute solution
C, O ₃	39+1+12+48=100 23+1+12+48=84	233,300	228,000
C, O ₃		227,000	222,700

HEAT OF FORMATION OF SULPHATES

rmula	Molecular weights	Molecular heat of formation	In dilute solution
04		344,300	337,700
Q 4		339,400	
)4		333,500	339,600
4		330,200	
O4		328,100	328,500
<u>)</u> 4	40+32+64=136	317,400	321,800
Q4		300,900	321,100
O_{12}			879,700
S, O_4		283,500	281,100
O4 <i></i>	55+32+64=151	249,400	263,200
)4 .		229,600	248,000
)4 <i></i>			234,9001
)4	59+32+64=155	[228,900
) ₄			228,700
O_{12}	112 + 96 + 192 = 400		650,500
04	408+32+64=504	221,800	213,500
)4. <i></i>	112+32+64=208	219,900	231,600
) _{4 · · · · · · · · · · · · · · · · · · ·}		215,700	
)4	2+32+64=98	192,200	210,200
)4 	63.6+32+64=159.6	181,700	197,500
O4	400+32+64=496	175,000	
04		167,100	162,600
)4		165,100	
4.7H2O		234,000	
$S_1 O_4 \dots$		283,500	281,100
O4		344,700	
4		349,700	

HEAT OF FORMATION OF CHLORIDES

Formula	Molecular weights	Molecular heat of formation	In dilute solution
K, Cl	39 + 35.5 = 74.5	105,700	101,200
Ba, Cla	$\begin{vmatrix} 137 + 71 & = 208 \\ 9 + 71 & = 80 \end{vmatrix}$	197,100	198,300 199,500
Be, Cl ₂ Na, Cl	23 + 35.5 = 58.5	155,000 97,900	96,600
Li, Cl.	7 + 35.5 = 42.5	93,900	102,300
Sr, Cl ₂	87 + 71 = 158	184,700	195,850
Ca, Cl ₂	40 + 71 = 111	169,900	187,400
N, H ₄ , Cl	14+4+35.5=53.5	76,800	72,800
Mg, Cl ₂	24 + 71 = 95	151,200	187,100
S, Cl ₂	28 + 142 = 170	128,800 gas	101,100
Al, Cla	27 + 106.5 = 133.5	161,800	238,100
Mn, Cl ₂	55 + 71 = 126	112,000	128,000
Zn, Cl ₂	65 + 71 = 136	97,400	113,000
Tl, Cl.	204 + 35.5 = 239.5	48,600	38,400
Cd, Cl ₂	112 + 71 = 183	93,700	96,400
Pb, Cl ₂	207 + 71 = 278	83,900	77,900
Fe, Cl ₂	56 + 71 = 127	82,200	100,100
Sn, Cl ₂	$118 \div 71 = 189$	80,900	
Co, Cl ₂	59 + 71 = 130	76,700	95,000
Ni, Cl ₂	58.5 + 71 = 129.5	74,700	93,900
Cu, Cl	63.5 + 35.5 = 99	35,400	
8n, Cl4	118 + 142 = 260	129,800 liquid	
Fe, Cl ₂	56+106.5=162.5	96,150	127,850
Hg, Cl	200 + 35.5 = 235.5	31,320	
Sb, Cl_3	120 + 106.5 = 226.5	91,400	
Bi, Cl ₃	208+106.5=314.5	90,800	• • • • • • • • • • • • •
B, Cl ₃	11+106.5=117.5	89,100 gas	93,400
Ag, Cl	108 + 35.5 = 143.5	29,000	
Hg, Cl_2	200 + 71 = 271	53,300	50,300
Cu, Cl ₂	63.6 + 71 = 134.6	51,400	62,500
As, Cl:	75+106.5=181.5	71,500	• • • • • • • • • • • • • • • • • • • •
H, Cl	1 + 35.5 = 36.5	22,000	39,400
Sb, Cl	120 + 177.5 = 297.5	104,500 liquid	• • • • • • • • • • • •
Pd, Cl ₂	106 + 71 = 177	40,500	
Pt, Cla	195 + 142 = 337	60,200	79,800
Au, Cl3	197 + 106.5 = 303.5	22,800	27,200
Au, Cl	197 + 35.5 = 232.5	5,800	• • • • • • • • • • • •
P, Cl	31 + 106.5 = 137.5	69,700	• • • • • • • • • • • • •
	85.5 + 35.4 = 120.9	105,900	• • • • • • • • • • • • •
Cs, Cl	133 + 35.4 = 168.4	109,900	• • • • • • • • • • • • •
$\mathbf{Zr}, \mathbf{O}_2 \dots \dots$	91 + 32 = 123	177,500	• • • • • • • • • • • • •
Ce, O_2	140 + 32 = 172	224,600	

HEAT OF FORMATION OF PHOSPHATES AND MISCELLANEOUS Acids

Formula	Molecular weights	Molecular heat of formation	In dilute solution
Cas, P2, Os Mgs, P2, Os Nas, P, O4 Hs, P, O4 ¹ H, Br, Os ¹ H, Cl, Os ¹ H, Cl, Os ¹ H, I, Os ¹ H, I, Os ¹	72 + 62 + 128 = 262 $69 + 31 + 64 = 164$ $3+31 + 64 = 98$ $1 + 80 + 48 = 129$ $1+35.5 + 48 = 84.5$ $1+35.5 + 64 = 100.5$ $1 + 127 + 48 = 176$		302,000 12,500 22,000 39,100 57,700 228,800

¹ These results from "Annuaire du Bureau des Longitudes," 1914

CHEMICAL DATA

HEAT OF FORMATION OF BI-SULPHATES

Formula	Molecular • weights	Molecular heat of formation	In dilute solution
K, H, S, O ₄	39+1+32+64=136	276,100	272,900
Na, H, S, O ₄	23+1+32+64=120	269,100	268,300
N, H ₅ , S, O ₄	$ \begin{vmatrix} 14+5+32+64=115\\1+1+32+64=98 \end{vmatrix} $	244,600	245,100
H, H, S, O ₄		192,200	210,200

HEAT OF FORMATION OF SULPHITES

Formula	Molecular weights	Molecular heat of formation	In dilute solution
S, O ₃ , K ₂	32+48+78=158		272,600
S, O ₃ , Na ₂	32+48+46=126		261,000

HEAT OF FORMATION OF NITRATES

Formula	Molecular weights	Molecular heat of formation	In dilute solution
K, N, O ₂	39+14+48=101	119,000	110.700
Na, N, O ₁	23+14+48=85	110,700	106,000
Zn, N_2, O_6		, , , , , , , , , , , , , , , , ,	131,700
Pb, N_2 , O_6		105,400	98,200
Cu, N_2, O_6			81,300
H, N, O ₁		34,400 gas	48,800
Ag, N, O ₁		28,700	23,000
Ca, N_2 , O_6^1		202,000	
Co. N2. O6:6H2O1	59 + 28 + 96 + 108 = 283		119,000
	7+14+48=69	112,000	
	14 + 4 + 14 + 48 = 80	88,600	82,400

HEAT OF FORMATION OF ALUMINATES

Formula	Molecular weights	Molecular heat of formation	In dilute solution
Ca, Al ₂ , O ₄	40+54+64=158 80+54+80=214 120+54+96=270	524,550 658,900 789,050	

HEAT OF FORMATION OF AMALGAMS

Formula	Molecular weights	Molecular heat of formation	In dilute solution
Hg ₁₂ , K. Hg ₄ , K. Hg ₆ , Na. Hg _x , Au Hg _x , Ag.	2,400 + 39 = 2,439 $800 + 39 = 839$ $1,200 + 23 = 1,223$ $x + 197 = 197 + x$ $x + 108 = 108 + x$	34,600 29,700 21,900	25,600 25,600 19,000 2,580 2,470

HEAT OF FORMATION OF ALLOYS

Formula	Molecular weights	Molecular heat of formation	In dilut solution
Cu, Zn	63.6+130=193.6 63.6+65=128.6 190.8+27=217.8 127.2+27=154.2 190.8+54=244.8 63.6+27=90.6 127.2+81=208.2 63.6+54=117.6	10,143 5,783 26,910 21,278 17,395 1,887 10,196 -6,738	

DEHYDRATION OF METALLIC SULPHATES

	Temperature of beginning dehydration, deg. C.	Product formed	Remarks
FeSO ₄ + 7H ₂ O. FeSO ₄ + 4H ₂ O. FeSO ₄ + H ₂ O. Al ₂ (SO ₄) ₂ + 16H ₂ O. Al ₂ (SO ₄) ₃ + 10H ₂ O. Al ₂ (SO ₄) ₃ + 7H ₂ O. Al ₂ (SO ₄) ₃ + 4H ₂ O. Al ₂ (SO ₄) ₃ + 4H ₂ O. CuSO ₄ + 5H ₂ O. CuSO ₄ + 3H ₂ O. CuSO ₄ + H ₂ O. MnSO ₄ + 5H ₂ O. MnSO ₄ + 5H ₂ O. ZnSO ₄ + 6H ₂ O. ZnSO ₄ + 6H ₂ O. ZnSO ₄ + H ₂ O. NiSO ₄ + 7H ₂ O. NiSO ₄ + 4H ₂ O. NiSO ₄ + 4H ₂ O. CoSO ₄ + 4H ₂ O.	21 80 406 51 82 97 109 180 316 27 93 155 25 60 152 28 115 225 40 106 279 19 58 276	FeSO ₄ + 4H ₂ O FeSO ₄ + H ₂ O Fe ₂ O ₃ + 2SO ₃ Al ₂ (SO ₄) ₃ + 13H ₂ O. Al ₂ (SO ₄) ₃ + 10H ₂ O. Al ₂ (SO ₄) ₃ + 7H ₂ O. Al ₂ (SO ₄) ₃ + 4H ₂ O. Al ₂ (SO ₄) ₃ + H ₂ O. Al ₂ (SO ₄) ₃ + H ₂ O. CuSO ₄ + 3H ₂ O. CuSO ₄ + H ₂ O. CuSO ₄ + H ₂ O. MnSO ₄ + 2H ₂ O. MnSO ₄ + 2H ₂ O. ZnSO ₄ + 2H ₂ O. ZnSO ₄ + H ₂ O. NiSO ₄ + 4H ₂ O. NiSO ₄ + 4H ₂ O. NiSO ₄ + 4H ₂ O. NiSO ₄ + H ₂ O. CoSO ₄ + CoSO ₄ + H ₂ O.	Slight apple g White. Yellowish br White. White. White. White. White. Sky blue. Pale blue. White. Pale peach blossom. Paler than ceding. Paler than ceding. White. White. White. White. White. The peach blossom. Coding. The peach ceding. The peach blossom. The p
CdSO ₄ + \$\frac{9}{2}H_2O CdSO ₄ + 2H_2O CdSO ₄ + H_2O MgSO ₄ + 7H ₂ O MgSO ₄ + 6H ₂ O MgSO ₄ + 2H ₂ O MgSO ₄ + 2H ₂ O CaSO ₄ + 2H ₂ O 2CaSO ₄ + 2H ₂ O 2CaSO ₄ + H ₂ O	30 41 170 19 38 112 203 38 80 149	CdSO ₄ + 2H ₂ O CdSO ₄ + H ₂ O CdSO ₄ MgSO ₄ + 6H ₂ O MgSO ₄ + 2H ₂ O MgSO ₄ + H ₂ O MgSO ₄ CaSO ₄ + H ₂ O 2CaSO ₄ + H ₂ O 2CaSO ₄	White. White. White. White. White. White. White. White. White. White. White.

CHEMICAL DATA

(All formed in state of gas, unless otherwise specified)

	(און ומנום	(All luctured in seaso of gas, un	noices of nerwiee apecited!			
1:		16 Colonia -	27.1.1.1.1.2.2	Molecular	Heat of c	Heat of combustion
Маше	Formula	weights	Molecular near of formation	neat of com- plete com- bustion	1 m.* (cal)	1 ft. B.t.u.
Methane (marsh gas).	(C,H4)	12 + 4 = 16	22,250	191,070	8,598	996
)	(C2, H4)	24 + 6 = 30	26,650	341,930	15,387	1,728
hydride)	(Ca, Ha)	- 80 +		489,900	22,050	2,477
Ethylene (olefiant gas)	(C, H,	+	-11,250	321,770	14,480	1,627
Propylene		= 9 +	;	471,830	21,232	2,385
Tolnene	(a)	 00	(liquid)	906,990		
Benzene	(C, H.)	72 + 6 = 78	(liquid)	758,130		:
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 7,950 (gas)	765,330	34,440	3,869
Turpentine	(C16, H16)	120+16=136	(hiquid)	1,428,930		
Month-the line	(4.0)	190 2 0 - 190	1,850 (gas)	1,438,330	64,725	7,271
· · · · · · · · · · · · · · · · · · ·	(316, 118)	071=0 ±071		1,228,290	55.273	6.209
Anthracene	(C14, H10)	$168 \pm 10 = 178$	(Bolid)	1,690,150		1
	(C ₁ , H ₂)	24+2= 26		365,270	16,437	1,846
Methyl-alcohol (wood	(C, H, O)	12 + 4 + 16 = 32	65.050 (howid)	148.270		
	7) # - (-)			156,670	7.050	799
Ethyl-alcohol (alcohol)	(C ₃ , H ₄ , 0)	24 + 6 + 16 = 46	_	295,330		
	i c		63,150 (grs)	305,430	13,744	1,544
Account	(O# H# O)	8c = 01+0+0c	62,150 (gas)	403,630	18.163	2,040

HEAT OF SOLUTION

Salt dissolved	Calories
$CuSO_4.5H_2O$	2,750
$CdSO_4.8_3H_2O$	
$ZnSO_4.7H_2O$	4,260
$FeSO_4.7H_2O$	
ZnCl ₂ in water	
ZnSO ₄ in water	18,500

DESULPHATIZATION OF ANHYDROUS METALLIC SULPHAT

Metallic sulphates	Temperature of beginning of decomposition, deg. C.	ture of	Products of decomposition	Remarks
Fe ₂ (SO ₄) ₃ . Fe ₂ O ₃ .2SO ₃ Bi ₂ (SO ₄) ₈ . Al ₂ (SO ₄) ₃ . PbSO ₄ . CuSO ₄ . MnSO ₄ . ZnSO ₄ . 2CuO·SO ₈ . NiSO ₄ . CoSO ₄ . 3ZnO·2SO ₃ . CdSO ₄ . 5Bi ₂ O ₈ ·4(SO ₃) ₈ .	492 570 590 637 653 699 702 702 720 755	480 560 639 639 705 670 790 720 736 764 770 767	Fe ₂ O ₃ .2SO ₃ Fe ₂ O ₃ 5Bi ₂ O ₃ ·4(SO ₃) ₃ . Al ₂ O ₄ 6PbO·5SO ₃ 2CuO·SO ₃ Mn ₃ O ₄ 3ZnO·2SO ₃ CuO NiO CoO ZnO 5CdO·SO ₃ Bi ₂ O ₃ (?)	Yellow brown Red. White. White. White. Orange color. Dark red to b White, cold and Black. Brownish gree Brown to black Hot yellow, white. Yellow.
5CdO·SO ₄	878 890 917 952 1200	890 972 925 962	CdO	Black. White. Silver white. White to yell White. White.

Dissociation Tensions of Sulphates at Various Tem tures. Expressed in Millimeters of Mercur!

Temp., deg. C.	Fe ₂ (SO ₄) ₈	CuSO ₄	Al ₂ (SO ₄) ₈	2CuO·SOs	Zı
550 600	9. 8 22.8	25.5 28.7	9.8 16.0	27.6	
650 675	58.0 94.0	37.7 50.5	25.8 34.0	33.0	
700 725	219.0	$71.0 \\ 148.0$	50.0 82.0	36.0 39.0	
750 775				46.0	1
800		• • • • • • • • • •		85.0	2

¹ Hofman, "General Metallurgy." For additional data on decomposite pp. 291, 495 and 496.

Reduction Temperatures of Metallic Oxides

Various metallic oxides were submitted to the action of hydrogen, carbon monoxide, ammonia and methane, at various temperatures for a period of 6 hours, and the investigators report in the *Journ. Soc. Chem. Ind.*, July 30, 1910, the lowest temperatures at which the oxides begin to lose oxygen. The accompanying tabulation shows the results obtained.

TEMPERATURES AT WHICH OXIDES OF THE METALS GIVE UP OXYGEN

Oxide	Carbon monoxide, deg. C.	Hydrogen, deg. C.	Ammonia, deg. C.	Methane, deg. C.
Au ₂ O ₂ Ag ₂ O	0 and below	0 and below 0	• • • • • • • • • • •	
Hg ₂ O	. 0	80	67	220
IgO (yellow).	0 and below	50		
HgO (red) Pb ₂ O	90	115	157 202	200-210 202
PbO ₃	110	150	198	45
Pb2O4	150	170	Above 300	158
РьО	160	190	299	210
CuO Cu ₂ O	75	125	225 208	280 230
CoO	140	1		
n0	170		233	152-159
As ₂ O ₈	60		• • • • • • • • • • •	[• • • • • • • • • • • • • • • • • • •

Reduction Temperatures of Some Refractory Oxides¹

tempera-	Remarks
2400°	Forms carbide.
• • • •	Oxide dissociates before reduction.
1540°	Carbide dissociates above 800°.
1800°	Forms carbide.
2400°	Carbide sublimes.
1100°	Carbide dissociates at 1550°.
1600°	Forms carbide.
	ture 2400° 1540° 1800° 2400° 1100°

Decomposition of Carbonates²

ZnCO ₂	$= \mathbf{Z}$	nO +	CO ₂ .	 • • • • • •	300°C.
MgCO _a	= M	IgO +	$-CO_2$.	 	650°C.
					800°C.
					812°C.

Decomposition of Sulphides²

Pyrite	$- \text{ FeS}_2 =$	FeS +	S	565°C
Chalcor	vrite			720°C.

¹ Zeit. für angew. Chemie., p. 118, Vol. XXVIII, 1915. ² See pp. 495 and 496 for additional data.

Molecular Heat of Dilution¹

The heat set free or absorbed on diluting a gram molecule of liquid with water is the molecular heat of dilution, thus on diluting HCl to (HCl, 300 H₂O) 17,300 cal. per 36.5 grams of HCl are set free; diluting 2NaCl, nH_2O (n=20) to (2NaCl, 100 H₂O) absorbs 1060 cal. per 2 × 58.65 grams of NaCl.

	ICl 0 H ₂ O		NO: 0 H:O		128O4 = 0 H2O		aOH 3 H ₂ O	N	H ₂ ²
1 2 5 50 300	5,370 11,360 14,960 17,100 17,300	1 5 10 20 320	3,280 6,600 7,320 7,460 7,490	1 5 49 199 1,600	6,380 13,100 16,700 17,100 17,900	5 7 9 25 200	2,130 2,900 3,100 3,260 2,940	1 3 5.8 9.5 110	1,260 385 210 20
	aCl 0 H ₂ O		BNO: 12 H ₂ O		a ₂ SO ₄ 50 H ₂ O		nCl ₂ 5 H ₂ O		NO:): - 10
200	-1,060 -1,310 -1,410	100 - 200 -	-2,260 -3,290 -3,860 -4,190	20 40	0 - 665 0 -1,130 0 -1,380 0 -1,480	10 20 50 100 400	1,850 3,150 5,320 6,810 8,020	15 20 50 100 200	910 1,150 1,200 1,100 1,070

¹ From KAYE and LABY, "Physical and Chemical Constants."

² Heat developed on diluting NH₃·nH₂O to NH₃·200H₂O (BERTHELOT).

THERMOCHEMICAL CONSTANTS PER CHEMICAL EQUIVALENT WITH CORRESPONDING VOLTAGES

In the table of thermo-chemical constants per chemical equivalents (by J. W. Richards, Journ. Franklin Inst., 1906) the column headed "per chemical equivalents" gives the additional energy in case of the plus figures, or the smaller amount, in case of the negative, required to set free a chemical equivalent (molecular weight divided by valence) of the given substance as compared with the energy required to decompose the corresponding hydrogen compound.

In the formation of $CuCl_2$ the data in the table are -7900 Cu, +39,400 $Cl_2 = 31,500$ gram-cal. required for the decomposition of one chemical equivalent of $CuCl_2$, the corresponding drop in voltage is -0.34 Cu, +1.71 $Cl_2 = 1.37$ volts for the decomposition voltage of $CuCl_2$. The order in which the elements are placed gives also the order in which they will be

deposited one after another by decreasing voltages.

	Basic elementi			Acid al	emente	
Element	Per chemical equivalents, gram-cals	Corre- sponding voltage	Element	Per chem, equiv., gram-cal	Corre- sponding voltage	Salt
Li'. Rb'. Rb'. Se''. Se''. Na''. Ca''. Al'''. Al'''. Ye'''. Se'''. Pb'''. Pt''''. Au'''. Au'''.	+ 62,900 + 62,000 + 61,900 + 59,950 + 58,700 + 57,200 + 54,400 + 54,300 + 40,100 + 33,400 + 17,200 + 19,900 + 17,200 + 19,900 + 3,230 + 7,700 + 3,230 + 1,900 - 7,900 - 14,250 - 19,450 - 25,200 - 30,300	+2 69 +2 69 +2 69 +2 60 +2 60 +2 60 +2 60 +2 36 +2 36	F:" (gas) Cl:'' (gas) Br'' (gas) Br' (liquid) Br' (solid) I:'' (gas) I' (liquid) I' (solid) S'' (solid) Se" (met.)	+52,900 +39,400 +32,300 +28,600 +27,300 +20,000 +14,600 +13,200 - 5,100 -17,900	+1 71 +1 40 +1 20 +1 18 +0 87 +0 63 +0 57 -0 22	Fluoride Chloride Bromide Bromide Iodide Iodide, Iodide, Sulphide Seleulde.

Calculation of Electromotive Force (Thomson's Rule)

One coulomb liberates 0.000010392 grams of H. In order to set free I gram of H, or 1 gram equivalent of any other element, an expenditure of $1 \div 0.000010392 = 96,600$ coulombs is required. This is known as a Faraday and is usually denoted by the letter F.

If Q is the heat energy of formation of one molecular weight. n the valence of the compound, then

or since

$$nEF = Q \times 4.19$$
 $F = 96,600$
 $E = \frac{Q}{23.040n}$ (Thomson's rule).

The rule is not quite correct. The true relation between heat and electrical energy is given by the Gibbs-Helmholz equation

$$nEF = Q + T \frac{dE}{dT}$$

in which T = absolute temperature, and $\frac{dE}{dT}$ is the temperature coefficient of the e.m.f. As this coefficient is usually not large, Thomson's rule is sometimes used to give an approximate value.

Example:

Cu + Cl₂ +
$$aq = 62,500$$
; $n = 2$ valences
$$E = \frac{62,500}{23,040 \times 2} = 1.36 \text{ volts}$$
CuSO₄ + H₂O = Cu + H₂SO₄ + O
197,500 + 69,000 - 210,000 = 56,300
$$E = \frac{56,300}{2 \times 23,040} = 1.22 \text{ volts}$$

Electroplating Baths¹

Brass Bath (Roseleur's).—Per liter of water:	
Sodium carbonate, dry (Na ₂ CO ₃)	10 g.
Cupric acetate, pulverized	14 g.
Sodium bisulphite (HNaSO ₃)	14 g.
Zinc chloride, fused (ZnCl ₂)	14 g.
Potassium cyanide (100 per cent. KCN)	40 g.
Ammonium chloride (NĤ ₄ Cl)	$2 \ g.$

Current density, 0.3 amp. per sq. dm.; e.m.f., 2.7 volts; sp. gr., 1.0545; deposit per hour, 0.0041 mm.

Dissolve the sodium salts in 400 cc. warm water, stir the copper and zinc salts with 400 cc. of warm water, and stir slowly into the first solution. Dissolve the cyanide in the remainder of the water and stir into the other portion of the bath, where the precipitate should dissolve. Add the ammonium ablarida and bail for an hour replacing the water avant nium chloride and boil for an hour, replacing the water evaporated.

Copper Bath—Acid.—Per liter of water:	
Copper Bath—Acid.—Per liter of water: Copper sulphate (CuSO ₄ ·5H ₂ O)	200 g.
Sulphuric acid (conc. H ₂ SO ₄)	$\dots 30 \overset{\circ}{\mathbf{g}}.$
Current density, 1 to 3 amp. per sq. dm.; sp. gr.	1.1417.
1 "A Laboratory Course in Electrochemistry," WATTS.	

Copper Bath—Alkaline.—Per liter of water:
Sodium sulphite (Na_2SO_3)
Sodium carbonate (Na ₂ CO ₃ ·10H ₂ O) 20 g.
Sodium bisulphite (HNaSO ₃)
Cupric acetate $(Cu \cdot 2C_2H_3O_2 \cdot H_2O) \dots 20 g$.
Cupric acetate $(Cu \cdot 2C_2H_3O_2 \cdot H_2O) \dots 20 g$. Potassium cyanide (100 per cent. KCN) 20 g.
Current density, 0.3 amp.; e.m.f., 2.9 volts; sp. gr., 1.0507;
deposit in 1 hour, 0.0056 mm.; temp., 20°C.; make-up as
under brass bath.
Cobalt Bath I.—Cobalt-ammonium sulphate, CoSO ₄ ·(NH ₄) ₂ -
SO ₄ ·6H ₂ O ₇ , 200 grams per liter of water (or 145 grams of the
anhydrous salt). Sp. gr., 1.053 at 15°C.
Cobalt Bath II.—Cobalt sulphate, CoSO ₄ , 312 grams, sodium
chloride, NaCl, 19.6 grams, boric acid, nearly to saturation,
water, 1000 cc. Sp. gr., 1.25 at 15°C.
Use cobalt anodes, and current even up to 100 amp. per
square foot where possible (H. T. Kalmus et al., Electrical
Review, May 8, 1915).
Gold Bath.—Per liter of water:
Sodium carbonate, dry (Na ₂ CO ₃) 10 g.
Gold-ammonium chloride (NH ₄) ₂ AuCl ₆ 2 g.
Potassium cyanide
Current density, 0.1 amp. per sq. dm.; e.m.f., 2.8 volts; sp.
gr., 1.0175; deposit per hour, 0.00184 mm.; temperature,
20°C.; anode area one-third cathode.
Iron Bath.—Per liter of water:
Ferrous sulphate (FeSO ₄ ·7H ₂ O)
Ferrous chloride (FeCl ₂ ·4H ₂ O)
Ammonium sulphate $(NH_4)_2SO_4$
Current density, 1.0 amp. This bath can be used for refining
iron. At 20°C, the deposit is hard and brittle, but electrolysis
at 80° to 90° yields a soft metal. See also p. 297.
Lead Bath.—Per liter of water:
Lead (as $PbSiF_6$)
Hydrofluosilicic acid (H_2SiF_6) 100 to 150 g.
Gelatin
Current density, 1.2 to 1.6 amp. per sq. dm. This bath is
used for refining. For plating reduce the free acid to 2 or 3 per
cent.
Nickeling on Iron or Steel.—Per liter of water:
Nickel-ammonium sulphate 75 g.
Current density, 0.3 amp.; e.m.f., 3.5 volts; sp. gr., 1.0479;
deposit per hour, 0.0034 mm.; cast anodes should be half the
area of cathode.
Nickeling on Brass or Copper.—Per liter of water:
Nickel sulphate $(NiSO_4.7H_2O)$
Company density of the second leaves of one it is
Current density, 0.5 amp. per sq. dm.; e.m.f., 2.3 volts; sp. gr.
1.0357; deposit in 1 hour, 0.0059 mm.; cast anodes should be
one-half area of cathode.

•
Nickeling on Zinc.—Per liter of water: Nickel sulphate
Current density, 0.27 amp. per sq. dm.; e.m.f., 3.6 volts; sp. gr., 1.0394; deposit per hour, 0.00301 mm.; rolled anodes should have two and one-half times area of cathodes.
Nickel Solution—Thick Deposits.—Per liter of water: Nickel sulphate, NiSO ₄ ·7H ₂ O
Current density, 0.3 amp. per sq. dm. Black Nickel.—Per liter of water:
Nickel-ammonium sulphate
Use nickel anodes three to four times the surface of the cathodes. Current density, 0.05 amp. per sq. dm. Deposit takes best on white nickel. Solution must be kept neutral by nickel carbonate.
Platinum Bath—(Roseleur's).—Per liter of water:
Thin deposits deposits deposits Ammonium phosphate $20.0 \mathrm{g}$ $100.0 \mathrm{g}$. Sodium phosphate $100.0 \mathrm{g}$ $100.0 \mathrm{g}$. Platinum as $PtCl_4$ $2.3 \mathrm{g}$ $10.0 \mathrm{g}$.
Current density, 1 to 2 amp. per sq. dm.; e.m.f., 3 to 4 volts. Dissolve the platinic chloride in 100 cc. of water. Dissolve the ammonium phosphate in 200 cc. of water and stir into the platinum solution, when the precipitate previously formed will dissolve. Boil until odor of ammonia has disappeared and add water to make up for evaporation. Bath should have acid reaction and should be used hot. Potential difference, 6-8 volts.
Silver Bath—Heavy Plating.—Per liter of water:
Silver as silver cyanide
Current density, 0.3 amp.; e.m.f., 1.3 volts; sp. gr., 1.0338; deposit per hour, 0.0114 mm.; area of anodes equals area of cathode.
Silver Bath—Ordinary Plating.— Silver as silver cyanide
Current density, 0.3 amp. per sq. dm.; e.m.f., 1.5 volts; sp. gr., 1.0175; deposit per hour, 0.0115 mm.
Tin Bath (Roseleur's).—Per liter of water: Sodium pyrophosphate (Na ₄ P ₂ O ₇)

Current density, 0.3 amp. per sq. dm.; e.m.f., 2 volts; sp. gr., 1.0357; deposit per hour, 0.0059 mm.; anode area equal to cathode, solution gives deposit on copper, brass, bronze or zinc; but iron or steel must be coppered first or given a preliminary coat of tin by an immersion bath. The tin anodes do not corrode evenly and tin salts must be added to maintain sufficient amount of tin in solution.

Tin Baths.—Per liter of water:

		а	b	С
Caustic soda	(Na2S2O3·5H2O)	90 g. 30 g. 15 g. 15 g.	120 g. 30 g. 60 g.	125 g. 50 g. 75 g.

Tin Bath, by Immersion.—Per liter of water:

Ammonium alum (NH₄Al(SO₄)₂·12H₂O) 25 g. Tin chloride, fused (SnCl₂) 2 g.

A bright coating is produced on clean iron by 30 to 60 seconds immersion in the boiling solution.

Zinc Bath.—Per liter of water:

Ammonium citrate............

Current density, 0.5 to 1.0 amp. per sq. dm.; e.m.f., 1.1 to 2.2; sp. gr., 1.0781; deposit per ampere-hour, 0.0173 mm.

Zinc Bath.—Per liter of water:

Zinc chloride..... 60 g. Ammonium chloride...... 30 g. Hydrochloric acid...... 4 g. Glycerine.....

Use anodes of zinc and of antimonial lead in equal numbers.

Iron Bath—Cowper-Cowles Iron-Refining Process

Ferrous chloride and cresol-sulphuric acid (proportions not given). Iron oxide and scrap iron are kept in it constantly.

Electrolytic Oxidation and Reduction

Overvoltage of Hydrogen and Oxygen. (Quoted from Watts "A Laboratory Course in Electrochem-

istry.")

"Electrolysis lends itself well to oxidation and reduction processes, since it is possible to vary not only the speed, but also the intensity of the action with great nicety. Factors affecting the intensity of the reducing action are the material of the electrode, the nature of its surface, and the current density. In comparing the effects of different cathodes, an attempt is frequently made to resolve the reducing action of the cathodes into the catalytic action of the electrode material, and the 'overvoltage' of the

	By Foerster as Pignet's N.H.S.		perster and to N.H. 804	2N H: SO4	804 By		Discharge poten- tials, N.H.2O4		
Cathode	pari ¹ N H _P SO ₄	Least poten- tral	Current 6	per aq.	0.1 amp.	From Caspari	From Foer- ster		
Mercury Zinc. Lead Tin. Cadmium. Palladium Copper. Nickel. Silver Platinum Gold. Platinum	0.78 0.70 0.64 0.53 0.48 0.23 0.21 0.09 0.02	0.43 0.35 0.43 0.48 0.10 0.10 0.07 0.055	1.25 1.26 1.08 1.18 0.67 0.64 0.86 0.05	1.32 1.35 1.16 1.23 0.79 0.74 0.96	1 30 1 30 1 15 1 22 0 79 0 74 0 93(?) 0 95	+ .5476 + 4676 + 4076 + 2976 + 2476 + .2276 - 0024 - 0224 0824 1424 2124 2124	+ .1976 + .1176 + .1676 + 1976 1324 1324 1624 1874 2274		

NOTE. —" N" in the above table stands for normal.

¹ Zeit. phys. Chem., 1899, p. 89 ² Zeit. f. Elektrochem., 1904, p. 715. ³ Zeit. f. Chem., 1904, p. 712,

hydrogen. The variation in the potential required by electrodes of different metals for visible evolution of hydrogen is usually expressed as the "overvoltage" of hydrogen on the particular metal, the least potential of platinized platinum being taken as zero. The discharge potentials referred to the calomal electrode (value, -0.56 volt) have been calculated for the difference between the calomel electrode and the hydrogen electrode in normal sulphuric acid. The increase of overvoltage with time and its diminution with rise of temperature varies for different metals.

Anode Potentials and Overvoltage of Oxygen

MAODE I	OIMMIN	LIB AN	DOTEM	OLIAGE	OF CA	CIGEN	
Anode	By Coehn Least and and potential for evolution of On ve hyd electrode in N KOH	Overvoltage All- mand, p. 131	Discharge poten- tial vs. calomel electrode calcu- lated by Watta	By Foerster, Least potential for evolution hyd va. hyd electrode 2N KOH	2N KOH after 2 hours, 15°C.	ZN KOH 99°C	2N H580, - 99°C.
Nickel, sponge Nickel, smooth Cobalt Iron Platinued- platinum Copper	1 28 1 35 1 36 1 47 1 47 1 48	0 05 0 12 0 13 0 24 0 24 0 25	- 0 9524 -1 0224 -1 0324 -1 1424 -1 1424 -1 1524		2 00 2 02 2 30	i 77 1 89	* * * * * * * * * * * * * * * * * * * *
Lead Bilver Cadmum Palladium Platinum Gold	1 53 1.63 1.65 1 65 1 67 1 75	0 30 0.40 0 42 0 42 0 44 0 52	-1 2024 -1 3024 -1 3224 -1 3224 -1 3424 -1 4224	1 65 1 67	2 45 2 92		2.17

Electrochemical Order of the Elements¹

In the following series each metal is electropositive to all that follow it. Two metals in contact in the presence of an electrolyte form a galvanic couple which causes the more electropositive to be decomposed by electrolysis.

Cs+, Rb, K, Na, Li, Ba, Sr, Ca, Mg, Al, Cr, Mn, Zn, Ga, Fe, Co, Ni, Tl, In, Pb, Cd, Sn, Bi, Cu, H, Hg, Ag, Sb, Te, Pd, Au, Ir, Rh, Pt, Os, Si, C, B, N, As, Se, P, S, I, Br, Cl, O, F.

Some authors put Cd just before Fe, Sn before Pb, and Sb and As before Cu. That the last two should precede copper ordinarily seems probable. The order changes with the specific electrolyte, and the position of selenium varies with the amount of illumination.

POTENTIALS OF METALS IN THEIR NORMAL SALTS (NEUMANN)

	Sulphate	Chloride	Nitrate	Acetate
Magnesium	+1.239	+1.231	+1.060	+1.240
Aluminum	+1.040	+1.015	+0.775	
Manganese	+0.815	+0.824	+0.560	
Zinc	+0.524	+0.503	+0.473	+0.522
Cadmium	+0.162	+0.174	+0.122	
Iron	+0.093	+0.087		
Cobalt	-0.019	-0.015	-0.078	-0.004
Nickel	-0.022	-0.020	-0.060	
·		-0.085		.
Lead		-0.095	-0.115	-0.079
Hydrogen	-0.238	-0.249	1	-0.150
Bismuth	-0.490	-0.315	-0.500	
Antimony		-0.376		
Arsenic	· • • • • • • • • • • • • • • • • • • •	-0.550		.
Copper	-0.515			-0.580
Mercury	-0.980			
Silver	-0.974		-1.055	-0.991
Palladium		-1.066		
Platinum	· • • • • • • • • • • • • • • • • • • •			
Gold		-1.356		

DECOMPOSITION VOLTAGES (LE BLANC)

H ₂ SO ₄ HNO ₃ H ₂ PO ₄ HCl NaOH KOH NH ₄ OH Na ₂ SO ₄ NaNO ₃ NaCl NaBr	1.70 1.31 1.67 1.69 1.74 2.21 2.15 1.98	NaI NaC2H4O2 K2SO4 KNO4 KCl (NH4)2SO4 CaCl2 SrCl2 BaCl2 ZnSO4 ZnBr	2.10 2.20 2.17 1.96 2.11 1.89 2.01 1.95	NiSO ₄ NiCl ₂ AgNO ₃ CdSO ₄ CoSO ₄ HgCl ₂ Fe ₂ (SO ₄) ₃ FeSO ₄ AuCl ₃ FeCl ₂	1.84 0.70 2.03 1.92 1.30 1.64 2.02 0.39	SnCl ₂ MnSO _{4.} MnCl ₂ CuCl ₂	1.76 2.60 2.77 1.36
--	--	--	--	---	--	---	------------------------------

¹ Gore, "The Art of Electrolytic Separation of Metals."

ELECTROMOTIVE FORCE OF METALS AND MINERALS IN KCN Solution¹

 $\frac{M}{1}$ KCN = 6.5 per cent.

	Volts		Volts
Aluminum. Zinc, amalgamated. Copper. Cadmium. Tin. Bornite. Copper, amalgamated. Gold. Silver. Copper glance. Lead. Quicksilver Gold, amalgamated Antimony Arsenic. Bismuth. Niccolite.	+0.39(?) +0.37 +0.33 +0.29(?)	Iron. Chalcopyrite. Pyrite. Galena. Argentite. Speiss (cobalt). Arsenopyrite. Platinum. Cuprite. Electric-light carbon. Blende. Bournonite. Coke. Ruby silver ore. Stephanite. Stibnite.	-0.17 -0.20 -0.28 -0.28 -0.30 -0.40 -0.40 -0.48 -0.50 -0.54 -0.54

DECOMPOSITION VOLTAGES OF MOLTEN ALKALI HALIDES AND ALKALINE-EARTH CHLORIDES²

Compound	Decompound voltage	Temp. coeff.
LiCl NaCl KCl NaBr KBr NaI KI Na ₂ SO ₄ K ₂ SO ₄ Na ₂ CO ₃ CaCl ₂ . SrCl ₂	835° C. = 2.6 v. 810° C. = 2.8 v. 690° C. = 2.45 v. 690° C. = 2.6 v. 630° C. = 2.05 v. 630° C. = 2.2 v. 890° C. = 2.5 v. 890° C. = 2.6 v. 770° C. = 1.3 v. 585° C. = 2.85 v.	1.35 × 10 ⁻² 1.46 × 10 ⁻² 1.51 × 10 ⁻² 1.465 × 10 ⁻² 1.465 × 10 ⁻³ 1.48 × 10 ⁻³ 1.48 × 10 ⁻³ 2.00 × 10 ⁻³ 2.00 × 10 ⁻³ 0.685 × 10 ⁻³ 0.715 × 10 ⁻³

¹ Prof. S. B. Christy, *Trans.* A. I. M. E., Sept., 1899.

² B. Neumann and E. Bergve. *Z. Elektrochem.* 21, 152-60 (1915).—For these experiments a C crucible covered with a mixture of water-glass and asbestos was found to be the only one practicable. Graphite electrodes were used covered, where exposed, with the same mixture.

Deposition by Immersion¹

Solution SbCl ₃	Bi, Brass, German Ag,	
BiCl ₈	Pb, Sn, Zn Fe, Pb, Sn, Zn	
CuSO ₄ , Cu- (NO ₈) ₂		Sb, Bi, Cu, Au, Ni, Pt.
CuCl ₂ CuCl ₂ (am-	Bi, Fe, Pb, Sn, Zn	Sb, Cu, Au, Ni, Pt, Ag.
moniacal).	Z n	Sb, Cu, Au, Bi, Fe, Pb, Ni, Pt, Ag.
	As, Bi, Cd, Cu, Sb, Fe, brass, Pb, Zn	- ~, - \ - \ \ \ \ \ \ \ \ \ \ - \ \ \ \ - \ \ \ \ \ \ \ - \
AgNo ₈	Pb, Sn, Cd, Zn, Cu, Bi, Sb, Fe, Ni	Ag. Au. Pt.
AgNo ₂ (alcoholic).	As, Sb, Bi, Zn, Sn, Cu,	
AgCN·KCN	Zn, Pb, Cu, brass, German Ag.	Sb, Bi, Sn, Fe, Ni, Ag, Au, Pt.
Au(CN) ₈ KCN		Sb, Bi, Sn, Pb, Fe, Ni, Ag, Au, Pt.

Cleaning Metals by Electrolysis.—In cleaning adhesions of dirt, rust, etc., from metals, the following method is recommended: The articles are connected to the poles of an alternating circuit and immersed in a salt solution. The liberation of gases on the surface of the metals very quickly removes or loosens everything of a non-metallic character, while the alternating current prevents any permanent action on the metal itself, and it is said the finish of the surface is not interfered with. The voltage should be sufficient to cause evolution of gas at the poles, and currents up to 110 volts have been used. (Mining Review, Melbourne, Aust.)

GORE, "Art of Electrolytic Separation of the Metals."

SECTION V

SAMPLING, ASSAYING AND ANALYSIS¹

STANDARD SOLUTIONS

Ammonium-nitrate solution—for washing ammonium phosphomolybdate—5 to 10 per cent. Dissolve 50 to 100 grams NH4NO₃ in water and acidify with HNO₃, using 1 cc. per liter excess. Or add ammonia to strong HNO₃ (sp. gr. 1.42) until alkaline to litmus, and bring back to acidity with HNO, using 1 cc. per liter excess.

Ammonium-oxalate solution—used chiefly as a precipitant for calcium. 1 gram of salt per 10 cc. of water. 1 cc. will

then precipitate 0.0145 gram of CaO.

Barium chloride—used as precipitant for SO₃. 1 gram of crystals per 10 cc. of water. 1 cc. will precipitate 0.0327 gram SO₃.

Bichromate solution—for iron determination—8.79 grams

pure K₂Cr₂O₇ in two liters of water. 1.0 cc. = 0.005 mg. Fe. Cochineal—Grind 1 gram of the bugs in a mortar and digest with 100 to 150 cc. of cold dilute alcohol (1 vol. alcohol, 3 vol. water) for 20 or 30 min. Filter and the solution is ready See note under phenolphthalein concerning acidity of alcohol. Useful with titrations with ammonia. copper, iron and aluminum must be removed. Color changes

from yellowish red in acids to purple in alkalis.

Cuprous-chloride solution (ammoniacal)—for gas analysis. Weigh out 16 grams of fresh Cu₂Cl₂, or about 25 if it is old. Place in large Florence flask and add 250 cc. water. By means of delivery tube immersed in water, pass the gas from 200 cc. concentrated ammonia water into the Cu₂Cl₂ flask using a twohole stopper in this flask with a check valve. Pass until practically all ammonia has passed over. 100 cc. of this Cu₂Cl₂ solution will absorb 24 cc. of CO but should not be used in second pipette after it has absorbed 6.

Cyanide solution—for copper determination. Use about 23 grams commercial potassium cyanide per liter of water.

theoretical amount is 20.63. 1.0 cc. = 0.005 gram Cu.

Ferrocyanide—for zinc determination—45 grams of pure

 K_4 FeCy₆ per liter of water. 1.0 cc. = 0.010 gram Zn.

Hydrodisodium phosphate—HNa₂PO₄—used as precipitant for magnesia. 1 gram to 10 cc. of water. 1 cc. of solution precipitates 0.0112 gram of MgO.

Hyposulphite solution—for use in iodide copper determination -19.59 grams c.p. sodium hyposulphite per liter of water.

1.0 cc. = 0.005 g. Cu.

Litmus—Dissolve 1 gram of litmus in 100 cc. of hot water

¹ For data on qualitative analysis see the previous section, pp. 256-275 inc.

and add, drop by drop, dilute sulphuric acid until the liquid acquires a red color. Boil for 10 min. to expel the carbon dioxide. Should the red color pass into blue during the boiling, restore the color by adding a few drops of dilute sulphuric acid. Then add baryta water, drop by drop, until a violet color develops, set aside to deposit, and filter. Preserve the litmus tincture in bottles not completely filled, and preferably covered only with a loose cover.

Magnesia mixture—Dissolve 3 grams calcined MgO in least necessary quantity HCl. Add excess of magnesia and heat. Filter off any precipitated iron, alumina or phosphates and add 35 grams ammonium chloride and 25 cc. of strong ammonia, and dilute to 250 cc. 1 cc. = 0.016 gram P₂O₅

approximately.

Magnesium-nitrate solution—Dissolve 16 grams calcined magnesia in least necessary nitric acid. Add an excess of magnesia, heat for a few minutes, filter and make up 100 cc.

Manganese sulphate solution—for use in iron titrations, to render end-point more distinct. 160 grams of manganous sulphate are dissolved and diluted to 1750 cc. To this are added 330 cc. of phosphoric acid (syrup 1.7 sp. gr.) and 320 cc. of sulphuric acid. About 6 or 8 cc. are used in a titration.

Mercuric-chloride solution—for tin precipitation in iron

analysis—7 grams HgCl₂ in 150 cc. water.

Methyl orange—Dissolve the dry substance in water, about 0.3 gram per liter. It must be used in cold solutions. cannot, as a rule, be used with organic acids or with nitrites. Yellow with alkalis, pink with acids.

Molybdate solution—Dissolve 25 grams molybdic acid (MoO₃) in about 100 cc. ammonia water. If action is too slow, warm and add a little more strong ammonia water. Cool and pour solution, a little at a time, into about 300 cc. of HNO₃ (sp. gr. 1.20). Cool mixture during this process. Dilute to 500 cc. 1 cc. will precipitate about 0.001 gram of phosphorus.

For lead determination dissolve 9 grams of the salt in 1000

cc. water. 1.0 cc. = 0.01 gram Pb.

Nessler's solution—for estimation of ammonia in water analysis. Dissolve 50 grams potassium iodide in a small quantity of hot water, cool, and add with frequent agitation a strong solution of mercuric chloride (40 grams of HgCl₂ to 300 cc. of water until the red precipitate just redissolves. Add to the filtrate a strong solution of potassium hydrate containing 200 grams of the salt. Filter. Dilute to 1000 cc. and add 5 cc. of a saturated solution of mercuric chloride. Allow the precipitate to settle, decant the clear liquid and keep for use in a tightly stoppered bottle.

Normal acid or alkaline solutions—contain 1.008 grams of

acid hydrogen or 17.008 grams of hydroxyl per liter.

Permanganate solution—for iron, lime, etc.—12 grams KMnO₄ to 2030 cc. water. 1 cc. = 10 mg. Fe. The same solution may be used for lime, 1 cc. = 5 mg. CaO; and for Mn, 1 cc. = 0.002946 gram Mn.

Phenolphthalein—The dry material is dissolved in alcohol, 5 grams per liter. The alcohol may have some acidity which can be removed by boiling, or by redistillation with lime. Cannot be used with ammonia or ammonium salts. Can be used for weak organic acids. Red with alkalis, colorless with acids.

Platinic chloride—Dissolve 1 gram of metal in aqua regia, evaporate to dryness, and dissolve in 1 cc. HCl and 9 cc. H₂O. 1 gram of this solution precipitates 0.048 gram of K₂O.

Salt solution—5.4189 grams per liter. 1.0 cc. = 0.01 mg. of silver. The salt should be dried at about 125°C.

Silver nitrate—1 gram per 20 cc. of water. 1 cc. precipitates **0.0104** gram of Cl.

Sodium chloride—See salt solution.

Stannous chloride solution—Heat 15 grams SnCl₂ and 1 gram pure Sn with 40 cc. water and 10 cc. conc. HCl. Keep

tightly stoppered as it readily absorbs oxygen.

Starch paste—Rub 2 or 3 grams of starch with cold water to , a smooth paste which is then added a little at a time to 400 or 500 cc. of boiling water into which it should be thoroughly stirred. After several minutes remove from heat and dilute (if necessary) to 600 cc. and add 5 grams of crystallized zinc chloride. Stir until the zinc salt dissolves, then allow to cool and settle. Decant and bottle the clear liquid for use.

Tannin—for use as indicator in lead assay by titration with ammonium molybdate. Dissolve 1 gram of tannin in 300 cc.

water.

COMMON NAMES AND THEIR CHEMICAL **EQUIVALENTS**

Alum—usually the potassium-aluminum sulphate KAl(SO₄): 12H₂O is meant.

Argols—potassium bitartrate.

Baking soda—sodium bicarbonate.

Bleaching powder—CaOCl₂.

Bluestone copper sulphate, CuSO₄·5H₂O.

Calomel—mercurous chloride, Hg2Cl2.

Copperas—ferrous sulphate, FeSO₄·5H₂O.

Corrosive sublimate—mercuric chloride, HgCl₂.

Epsom salts—magnesium sulphate.

Eschka's mixture—magnesium oxide and sodium carbonate.

Glauber's salts—sodium sulphate.

Green vitriol—ferrous sulphate.

Marignac's salt—potassium stannosulphate, K₂Sn(SO₄)₂. Microcosmic salt—sodium-ammonium-hydrogen phosphate. HNaNH₄PO₄·4H₂O.

Minium—red lead, Pb₂O₄.

Mohr's salt— $FeSO_4 \cdot (NH_4)_2SO_4 \cdot 6H_2O$.

Muriatic acid—hydrochloric acid.

Oil of vitriol—sulphuric acid.

Orpiment—yellow arsenic glass.

Plaster of Paris—dehydrated gypsum, CaSO₄.

Realgar—red arsenic glass.

Rochelle salts—potassium-sodium tartrate, KNaC4H4O6- $4H_2O$.

Salt of Amber—succinic acid.

Sal ammoniac—ammonium chloride, NH4Cl.

Salts of lemon—acid potassium oxalate, HKC₂O₄.
Salt cake—the residue from nitric-acid making, impure HNaSO₄.

Sal soda—sodium bicarbonate.

Schiff's reagent—ammonium thioacetate solution, CH₂-COSNH₄.

Seidlitz powders—35 grains of tartaric acid and a mixture of 40 grains of sodium bicarbonate with 120 grains of potassium and sodium tartrate.

Soluble water-glass—sodium silicate, Na₂SiO₃.

Sörensen's oxalate—sodium oxalate.

Sugar of lead—lead acetate.

Washing soda—sodium carbonate.

White vitriol—zinc sulphate, ZnSO₄·5H₂O.

The Preparation of Proof Gold¹

The purest gold which can be obtained (usually assay cornets) is dissolved in aqua regia and the excess of nitric acid expelled by repeated evaporation with additional hydrochloric acid on a water bath. The final solution is then poured in a thin stream into a large beaker full of distilled water, producing a solution of about 1 oz. of gold per pint of water. Stir vigorously and leave the solution to settle. At the end of about a week the chloride of silver will have subsided to the bot-Remove the clear supernatant liquor with a glass siphon and dilute to about 1 oz. of gold per gallon of water. gold originally used was free from platinum, precipitate with sulphurous acid; if platinum was present, precipitate with oxalic acid. Sulphurous acid acts almost immediately, but if oxalic acid is used the solution should be warmed and allowed to stand for 3 or 4 days.

After the precipitated gold has settled the acid solution is siphoned off and the gold transferred to a large flask and repeatedly shaken with cold distilled water, closing the mouth of the flask with a watch-glass. The gold is then washed thoroughly with hot water and turned out into a porcelain basin, dried and melted in a clay crucible and poured into an iron mould, which should be neither smoked nor oiled, but rubbed with powdered graphite and then brushed clean with a stiff brush. The ingot is cleaned by brushing and heating in hydrochloric acid. It is then dried and rolled out. The rolls must be clean and bright and free from grease. The surface of the rolled gold plate is then cleaned by scrubbing with fine sand and ammonia, and also with hydrochloric acid, and is scraped with a clean knife before being used for proof in the bullion assay.

¹ T. K. Rose, "Metallurgy of Gold," fifth edition, p. 488.

Another method is given in the Memorandum by the Assayers of the Melbourne Mint, in the "Annual Report of the Mint," 1913, p. 138. Cornets of gold, derived from the metal obtained by reduction with sulphurous acid, and containing 0.1 per cent. of impurity (chiefly Ag), were treated with cold aqua regia (4:1), the solution largely diluted and allowed to stand for a week to effect separation of silver chloride. Three successive quantities of a dilute solution of silver nitrate (containing Ag 0.5 grain) were then added at intervals of 3 days, the surface of the liquid being gently stirred after each addition, and the whole was allowed to stand for 14 days. Any iridium or other impurity suspended in the liquid was entangled in the precipitated silver chloride; the clear solution was siphoned off, evaporated to dryness and ignited in porcelain; the sponge gold fused in a clay crucible with potassium bisulphate and nitrate, borax added, the melt allowed to cool, the cone of gold treated with boiling hydrochloric acid to remove adhering slag, placed by hand upon borax-glass contained in a clay crucible within a large, covered guard-pot, and melted under conditions precluding contamination of the metal by furnace dust. A slow current of chlorine was then passed through the molten metal for 1 hour, the gas being conducted through a clay tube (1/6-in. bore) by which the gold was continuously stirred. The charge was allowed to cool in the crucible, the cone of gold treated with boiling hydrochloric acid and finally rolled (with special precautions against contamination) into a fillet which was also treated with boiling acid. The original gold weighed 21.5 oz., the finished fillet 21.28 oz., and 0.204 oz. was subsequently recovered from the slag.

The Preparation of Proof Silver

Dissolve commercial fine silver in dilute nitric acid (1:1), and allow the liquid to stand until any fine gold has settled. Siphon off from the gold, dilute with hot water, precipitate the silver with hydrochloric acid, stir well, allow to settle, and wash thoroughly by decantation. When the decanted liquid no longer shows hydrochloric acid, which can be ascertained by testing it with a little silver nitrate, it may be considered clean. Allow the silver chloride to settle and decant off the solution. Transfer the silver chloride to a porous cup which has been soaked in hydrochloric acid and thoroughly washed afterward by standing in frequently changed distilled water. A cathode of pure silver or platinum is placed in the silver chloride and the porous cup immersed in a deeper one, in which a carbon anode is placed. Then a current is started, and silver chloride begins to reduce at the cathode. The outer liquid will become saturated with chlorine and should be renewed from time to time. The silver may then be melted down and rolled as given above under the head of gold. Another method is to use the best obtainable fine silver melted into the form of a cathode about 6 or 8 in. long, about 2 in. wide and 1/4 to 3/8 in. thick. Wrap this in filter paper so that no gold can be detached under

electrolysis. The electrolyte is about a 4 per cent. solution of silver nitrate slightly acidulated, and the cathode is pure silver. The current density should be such that the silver is deposited in the form of crystals, which should be later removed, melted and cast, although these crystals may be used themselves in the bullion proof. Still another method of preparing fine silver, due I believe, to A. E. Knorr, is to prepare a solution of silver nitrate from the best commercial fine silver obtainable (material which is already 999 fine) evaporate to remove the excess of nitric acid, and to the neutral solution add enough sodium carbonate to precipitate about one-tenth of the silver present. Boil the precipitate and solution thus produced for some time. The silver carbonate first formed precipitates all other im-Allow to settle, decant carefully (or filter).

The remainder of the silver is then precipitated by chemically pure sodium carbonate. This precipitate carries down a considerable amount of sodium carbonate, but when the material is melted down all of the sodium carbonate comes to the surface as a slag, and can be dissolved off with hydrochloric acid later. The silver carbonate will decompose without the addition of any other reagent if heated sufficiently. produced in this way should be, as said above, cleaned with hydrochloric acid and then rolled, as given above under the

head of the preparation of proof gold.

Assay Fluxes

Basic.—Sodium carbonate (Na₂CO₃)—best used in the anhydrous form.

Sodium bicarbonate (HNaCO₃)—less convenient than the above as it carries much less soda for the same bulk.

Potassium carbonate (K₂CO₃)—a mixture of sodium and potassium carbonates fuses at a much lower temperature than does either one alone.

Litharge (PbO)—forms exceedingly fusible silicates.

metallic lead with reducing agents, C, S, etc.

Red lead (Pb₃O₄)—same as above, but is more of an oxidizing agent. Carries silver into slag unless completely decomposed. Lead peroxide (PbO₂)—still more energetic oxidizer.

Hematite (Fe₂O₃)—extremely infusible and must be reduced

with carbon in presence of silica in order to work as a flux.

Lime (CaO)—when used with silica and some other base it forms fusible slags.

Sodium hydrate (NaOH)—used chiefly to decompose sulphides and sulphates, certain silicates and oxides, and organic

compounds.

Acid.—Borax (Na₂B₄O₇)—should be fused before use to render it anhydrous. Has the property of holding almost all

oxides in suspension.

Silica (SiQ₂)—occasionally used with basic ores to lessen corrosion of crucibles. Better to use glass which carries about 80 per cent. SiO₂.

Glass—see silica.

Neutral.—Fluorspar (CaF₂)—is extremely fusible, and readily carries phosphates, etc., in suspension.

Common salt—also very fusible but does not dissolve infusible substances readily. Is mainly used as a cover to prevent oxidation of the charge underneath.

Metallic.—Iron—often used in the form of nails to take

care of sulphur.

Lead—used in scorification assay both as a collector of the precious metals and, as it oxidizes, to take care of the gangue. In the crucible assay it is reduced from some oxide as a collector.

Oxidizing.—Niter (KNO₃ or NaNO₃)—at about red heat niter decomposes into potassium nitrite and oxygen, KNO₃ = $O + KNO_2$, at a higher temperature the nitrite also decomposes, $2KNO_2 = K_2O + 2NO + O$.

Lead peroxide (see under basic fluxes).

Manganese dioxide—must be used with some other base, and if any remains undecomposed it appears to carry silver into the

Sodium peroxide—extremely energetic and forms very fusible slags. Especially good in decomposing tin ores, and sulphides,

antimonites, etc.

Approximate Reducing Effect of Various Reducing Agents¹

Reducing agent	Quantity of lead in grams reduced from litharge by 1 gram of reagent
Wood charcoal	
Powdered hard coal	
Powdered soft coal	22
Powdered coke	
Argol (crude tartar)	5 - 9.5
Cream of tartar	4.5-6. 5
Wheat flour	
Starch	
Sugar	12.0–14.5
Potassium cyanide	6
Antimonite	6
Blende	7–8
Copper pyrites	
Fahlerz	
Galena	
Iron pyrites	
Mispičkel	

In Assay Ton Charges

						_	
6	per	cent.	FeS			15-gram	
		cent.				15-gram	
	_					15-gram	
	•		Cu ₂ S			15-gram	
20	per	cent.	PbS	reduces	a	15-gram	button.

¹ For amount of lead reduced from red lead multiply the factors given by 0.55. ² E. A. Smith's, "Sampling and Assay of the Precious Metals."

Oxidizing Agents (Wet)

Ammonium Nitrate.—Readily decomposes on heating.

Bichromates.—Usually used as the potassium salt.

Bromine.—Usually used as liquid.

Chlorine.—Generated from bleaching powder and sulphuric acid.

Chromates.—Usually used as the potassium salt.

Chlorates.—The sodium or potassium salt is used both in fusion and solution.

Hydrogen Peroxide.—A powerful oxidizer both in alkaline and acid solution.

Nitrates.—The sodium, potassium and ammonium salts are

Nitric Acid.—An extremely powerful reagent. The fuming acid is still more so and should be kept in a cool, dark place and handled carefully.

Permanganate.—The alkali-metal permanganates are energetic oxidizers both in acid and alkaline solution.

Peroxides (See also Hydrogen Peroxide).—Sodium and potassium peroxide are energetic agents in alkaline solution. The barium, manganese, lead and sodium peroxides are often used advantageously in fusion.

Reducing Agents

The chief reduction agents in fusions have been spoken of on p. 308. In solution we may use:

Alkaline.—Sodium amalgam, zinc dust, sodium sulphite,

sugar, arsenious acid, sodium stannite.

Acid.—Zinc, iron, tin, aluminum, lead, stannous chloride, sulphur dioxide, sulphuretted hydrogen, hypophosphorous acid, oxalic acid, ferrous sulphate.

NITER REQUIRED TO OXIDIZE 1 PART OF METALLIC SULPHIDE

Sulphide	Parts niter to sulphide	1 of	f
Iron pyrites	$2 -2\frac{1}{2}$		
Antimonite	112-2		
Galena	2/3		

STOCK FLUXES

	Sulphide	Tellu	rides	D1 J-	60 :	
	ores	I	II	Blende	Tin ores	
Litharge Niter Potass. carb Sodium carb Borax glass Sand Charcoal Flour Cover Amount for ½2 a.t. charge	3 1½ 1½ 1½ Salt	10 3 6 0.11 Litharge 150 grams	30 7 6 5½ 1 Litharge 75 grams	50 20 20 15 5 Borax 75 grams	60 40 10 1.5 Soda 125 grams	

310 METALLURGISTS AND CHEMISTS' HANDBOOK

CHARODS ¹	
CRUCIBLE	
Ö	
TABLE	

Remarks		Heat gradually until	Collect matte and soor- ify with the lead but- ton.	Wet-and-fire method	wet-sad-ure method preferable for silver. Sconfication preferable.	Scorification preferable Scorification preferable.
THAT	Boraz Salt Boraz Boraz	Salt Salt Borax	Borax	Borax	Boraz	Salt Salt
Grama bosaz glass	1 7	. :	- E		: ;	. 10
Loop of iron.		: :	86	, iā	ı۵ ,	::
logra ama 10	64 ,	1 ; ;		3	- "	N : 1
4Oi8 ema1⊋	- 1030		22	. 12	12	, :
GIRER KNO		1 (hg	4010	: 10	16 °	
Grams K.PeCya		<u> </u>		1 4		17
Odd sms15	82888	158.	28 2	2 8	35	3000
Grams НИвсО ₈		82	10 10 5	8 9	88	155
Grams lead aux	30,40	2228	- :	: 15	15	8
610 .J.A	22224	222		K #	* *	244
Character of gangue	Neutral, no Pb No bases No bases Basic, no Pb Basic, with Baso.	Lead, 84 per cent Silosous, Pb 42 per cent Neutral, Pb 40 per cent	1568		Siliceous	Subseque
Ore	Oxidised Cuarts Cuarts Oxidised	Galena Galena Lead carbonate	Iron pyrites Copper pyrites	Lead matte	Copper matte	Fellundes Artenical . Slags

8n03 Mrs0 10 Litharge Required to Flux Metallic Oxides:

PURMAN, "Manual of Assaying BEOPHAN, "Metallurgy of Lead

Cupel Absorption

A safe table for cupel absorption of lead buttons is given in Ernest A. Smith's "Sampling and Assay of the Precious Metals."

As to the cupel absorption of silver and gold, it seems unsafe to give any tables, as this varies with the nature of the material cupelled, the temperature, whether induced draft is used or not, and many other factors. It seems fairly safe to say that a small silver button will lose about 2 per cent., that at 100 mg. the loss will be about 1.5 per cent. and less for larger buttons, and that the gold loss will probably not run over 0.5 per cent., but these figures must be taken as approximations only. It must also be remembered that not all of the button remaining in the cupel is gold and silver. I have usually found about 0.3 per cent. of Pb and Bi as impurity in the silver button; with cement cupels I have found as much as 0.8 per cent. Pb and Bi. The factor is usually neglected in working on comparative tests on different cupels, although both Dewey and I have repeatedly pointed it out.

W. J. Sharwood states (Trans. A. I. M. E., 1915, page 1484) that "when a given amount of silver (or of gold) is cupeled with a given amount of lead, under a fixed set of conditions as to temperature, etc., the apparent loss of weight sustained by the precious metal is directly proportional to the surface of the button of fine metal remaining." From this he deduces that "the loss of weight varies as the ½ power of the weight, or as the square of the diameter of the button. The percentage loss varies inversely as the diameter of the button, or inversely as the cube root of the weight." This means that, if we run proof assays of any weight whatever, we can deduce the loss of a

button of any other weight.

LEAD RETAINED IN THE CUPELLATION OF PLATINUM ALLOYS¹

Comp	osition o	of alloy	Lead retained,	Character of button
Pt, mg.	Ag, mg.	Au, mg.	mg.	Character of Button
100			37.5	Hard silvery.
100	25	[31.0	Hard silvery.
100	50	. 	26.2	Dull gray.
100	100		25.0	Dull gray.
100	101	48.0	24.0	Dull gray.
100	206	48.0	22.0	Smooth silvery.
10 0	206	6.0	10.0	Smooth silvery.
100	310		10.0	Slightly crystallized.
100	427		5.0	Smooth and silvery.
100	470	19.4	2.0	Smooth and silvery.

The lead is almost eliminated with 10 parts of silver to 1 of platinum.

¹ W. J. Sharwood, "Journ. Soc. Chem. Ind.," Apr. 30, 1904, p. 413.

Parting of Gold-Silver Alloys in Nitric Acid¹ after H. CARMICHAEL²

Weight of metals used, milligrams			Rat	io of m	etals	Weight of	Weight of	
Pt	Au	Ag	Pt	Au	Ag	cornet,* Au+Pt	Pt in cornet ³	
20	100	300	1	5	15	102.7	2.7	
15	100	400	1	6.6	26 .6	$egin{cases} 101.2 \ 100.2 \end{cases}$	$\begin{array}{c c} 1.2 \\ 0.2 \end{array}$	
10	100	300	1	10	30	$\begin{cases} 100.8 \\ 100.4 \end{cases}$	$0.8 \\ 0.4$	
10	100	500	1	10	50	100.2	$0.\overline{2}$	
10	200	600	1	20	60	100.0	0.0	
14	200	800	1	14.3	57.1	200.3	0.3	
14	300	900	1	21.4	64.3	300	0.0	
7	100	400	1	14.3	57.1	100.2	0.2	
5	100	500	1	20	100	100	0.0	

¹ The first acid was of 1.16 sp. gr., the second of 1.26. ² Taken from Sмітн's "Sampling and Assay of the Precious Metals"

as were also the next two tables.

*The author seems to assume a 100 per cent. gold recovery. This is by no means a sure matter, and all the errors of work are thrown on the results for platinum, which are therefore open to suspicion.

PLATINUM-SILVER ALLOYS NITRIC SOLUBILITY OF IN ACID

Composition	of alloy	Parted in 1.10	HNOs of sp. gr.	Parted in HNOs of 1.40 sp. gr.		
Pt, per cent.	Ag, per cent.	Platinifer- ous resi- due, per cent.	Pt dis- solved, ² per cent.	Platinifer- ous resi- due, per cent.	Pt dis- solved,2 per cent.	
0.5 1.0 2.0 3.0 4.0 5.0 10.0 13.0 14.0 15.0 16.0 18.0 20.0	99.5 99.0 98.0 97.0 96.0 95.0 90.0 87.0 86.0 85.0 84.0 82.0 80.0	0.42 0.85 1.74 2.19 2.98 3.56 	0.08 0.15 0.26 0.81 1.02 1.44 	0.22 0.42 1.09 1.81 2.42 2.62 4.53 5.79 4.97 7.93 11.54 11.65 13.94	0.28 0.58 0.91 1.19 1.58 2.38 5.47 7.21 9.03 7.07 4.46 6.35 6.06	
25.0 30.0 31.5	75.0 70.0 68.5	16.62 33.58	8.38	20.66 29.29	4.34 0.71	

¹ Contains Pt and Ag.

² Apparently these figures were arrived at by difference and they are probably unreliable for large weights of residue. See the table following.

Solubility of Platinum-Silver Alloys in Nitric Acid of 1.10 Sp. Gr. (Thompson and Miller's Table)¹

Composition	of alloy	Total	Silver in	Platinum	Platinum dissolved, per cent.1	
Pt, per cent.	Ag, per cent.	residue, per cent.	residue, per cent.	in residue, per cent.		
10.39 20.59 31.46	89.61 79.41 68.54	3.86 8.58 36.59	$0.27 \\ 1.81 \\ 12.09$	$3.59 \\ 6.77 \\ 24.50$	6.80 13.82 6.96	
37.89 57.05	$62.11 \\ 42.95$	49.13 65.16	13.64 12.19	$35.49 \\ 52.79$	$\begin{array}{c} 2.40 \\ 4.08 \end{array}$	

Highly Refractory Crucibles

According to Deville a particularly refractory crucible can be made by heating alumina and strongly ignited marble in equal proportions to the highest temperature of the wind furnace, and then using equal proportions of the substance thus obtained with powdered ignited alumina and gelatinous alumina.

Lime crucibles are made by taking a piece of well-burned slightly hydrated lime, cutting it by means of a saw into a rectangular prism 3 or 4 in. on the side and 5 or 6 in. high. The edges are rounded off, and a hole is bored in the center.²

Magnesia Crucibles.—George Weintraub³ of the General Electric Company, of Schenectady, N. Y., makes refractory articles of magnesia, alumina, thoria, etc., without the use of a The magnesium oxide is first heated in an electric furnace to a high temperature in order to let it assume a stable This firing causes the magnesia to cake together so that regrinding is necessary. It is ground to the fineness of flour in a tube mill. A mould is then made for the article to be produced, say, a crucible. This mould is made of carbon or graphite and a layer of the powdered magnesia is placed on the bottom. A carbon or graphite plug is now placed centrally in the crucible upon this magnesia layer. It is surrounded by a layer of paper which permits the magnesia to shrink when When moulding a crucible of 2½ in. inside diameter, a paper of from 1/16 to 1/8 in. thickness is suitable. The space between the walls of the mould and the paper-covered core is then filled with magnesia powder and packed to a certain degree by shaking and bumping. The mould is now placed in an electric furnace and heated to about 1500°C. When finished and the mould is cooled, the walls of the magnesia crucible contract upon the layer of loose paper carbon, so that cracking is

¹ The solubility of these platinum-silver alloys seems to depend upon the strength of acid used, how the alloy has been annealed, and the amount of gold present, if any.

² SEXTON, "Fuel and Refractory Materials."

^{*} Metallurgical and Chemical Engineering, Vol. 10, p. 308.

avoided. The finished crucibles are smooth, homogeneous and strong and may be safely handled and may even be worked on the lathe. Tubes may be made in the same way.1

Analyses of Graphite Crucibles²

1	2	3	4	5	6	7	8
25.91 11.26 0.48 tr 58.24 2.77	(0.51) tr 62.54	15.70	34.03 12.95 50.18 1.63	$ \begin{cases} 11.52 \\ 2.79 \end{cases} $ $ 48.68 $	37.09 14.58 44.40 2.92	1.10 42.08	31.31 17.30 47.40 3.42
98.66	99.72	98.06	98.79	97.16	98.99	97.13	99.43

WEIGHTS TO BE TAKEN IN SAMPLING ORE8

Weights		Diameters of largest particle						
		Very low grade of	Low grade	Mediu	m ores	Rich	Rich and	
Grams	Pounds	uniform ores, mm.	ores, mm.	Mm. Mm.		ores, mm.	spotty ores, mm.	
• • • • • • •	20,000.0	207.0	114.0	76.2	50.8	31.6	5.4	
• • • • • • •	10,000.0 5,000.0	147.0 104.0	80.3 56.8	53.9 38.1	35.9 25.4	22.4 15.8	3.8 2.7	
• • • • • • • •	2,000.0	65.6	35.9	24.1	16.1	10.0	1.7	
	1,000.0	46.4	25.4	17.0	11.4	7.1	1.2	
	500.0	32.8	18.0	12.0	8.0	5.0	0.85	
	200.0	20.7	11.4	7.6	5.1	3.2	0.54	
• • • • • • •	100.0	14.7	8.0	5.4	3.6	2.2	0.38	
• • • • • • •	50.0	10.4	$ \begin{array}{c} 5.7 \\ 3.6 \end{array} $	$3.8 \\ 2.4$	2.5	1.6	0.27	
• • • • • • • •	$\begin{array}{c} \textbf{20.0} \\ \textbf{10.0} \end{array}$	6.6 4.6	2.5	1.7	$\begin{array}{c} 1.6 \\ 1.1 \end{array}$	$ \begin{array}{c c} 1.0 \\ 0.71 \end{array} $	0.17	
	5.0	3.3	1.8	1.2	0.80	0.50	0.12	
	2.0	$\overset{\circ}{2}.\overset{\circ}{1}$	$\overline{1.1}$	0.76	0.51	0.32		
• • • • • • •	1.0	1.5	0.80	0.54	0.36	0.22		
	0.5	1.0	0.57	0.38	0.25	0.16	1	
90.0	0.2	0.66	0.36	0.24	0.16	0.10		
45.0	0.1	0.46	0.25	0.17	0.11	<i></i>	· · · · · · • •	
22.5	0.05	0.33	0.18	0.12				
9.0	0.02	0.21	0.11	• • • • • •	•••••	• • • • • •	• • • • • • •	
4.5 2.25	$\begin{array}{c} \textbf{0.01} \\ \textbf{0.005} \end{array}$	$\begin{array}{c} 0.15 \\ 0.10 \end{array}$	• • • • • •	• • • • • •	•••••	• • • • • •		
2.20	0.000	0.10				• • • • • •		

¹ U. S. Patent, 1,022,011, April 2, 1912.
² Kerl, "Handbuch der gesammten Thonwaaren Industrie."
1, 2, Hesse; 3, Rhenish; 4, Düsseldorf; 5, German crucible after 18 heats; 6, London (Morgan); 7, English; 8, American.
³ Richards, "Ore Dressing," Vol. II.

SIZE-WEIGHT RATIO IN SAMPLING1

Diameter	of largest inches	particle,	Minimum weight of sample, pounds Colorado practice
	0.04		0.0625
	0.08		0 . 50
	0.16		4.00
	0 . 32		32 . 00
	0.64		256 . 00
	1.25		2,048 . 00
	2.50		16,348.00

SMALLEST PERMISSIBLE WEIGHT FOR SAMPLES OF A GIVEN SIZE²

Size, inches cube or mesh	Weight of sample, lb.	Ratio of weight of largest cube to weight of sample	Effect on value created by one cube assaying \$100,000 per ton, of sp. gr. 5
2	10,000	1: 7,000	\$14.42
11/2	5,000	1: 8,300	12.17
4	2,000	1: 11,000	9.00
3/4 1/2 3/8 1/4 3/16 1/8	1,000	1: 13,000	7.50
1/2	400	1: 18,000	5.62
3/8	300	1: 31,000	3.17
1/4	200	1: 71,000	1.40
3/16	100.	1: 83,000	1.20
1/8	7 5	1: 220,000	0.44
6 mesh	50	1: 430,000	0.23
10 mesh	25	1: 930,000	0.107
18 mesh	10	1:1,900,000	0.051
30 mesh	4	1:4,200,000	0.023
50 mesh	1	1:5,500,000	0.018

SCHEME FOR SAMPLING RICH ORES WITH VEZIN SAMPLERS³

	Inches	Sample, per cent.	Lb. in 100 tons
Maximum size of cubes. Maximum size of cubes. 8 mesh	1.00	0.20	40,000
	0.25	1.25	2,500
	0.0625	0.785	157
	0.0171	0.005	10

¹ E. A. Smith, "Sampling and Assay of the Precious Metals."

² R. H. Richards, "Ore Dressing," Vol. III.

³ R. H. Richards, "Ore Dressing," Vol. III.

Coal Sampling¹

Size of Slate Contained in Coal, and Size of Original Sample Required to Insure the Error of Sampling Being Less Than 1 Per Cent.

Size of slate, inches	Weight of largest piece of slate, lb.	Original sample should weigh, lb.
4 3 2 1½ 1¼ 1 3 4 ½	6.7 2.5 0.75 0.38 0.24 0.12 0.046 0.018	39,000 12,500 3,800 1,900 1,200 600 230 90

SIZE TO WHICH SLATE AND COAL SHOULD BE BROKEN BEFORE QUARTERING SAMPLES OF VARIOUS WEIGHTS

Weight of sam- ple to be divided, lb.	Should be broken to, inches	Weight of sample to be divided, lb.	Should be broken to, inches
7500 3800 1200 460 180	2 1½ 1 34 ½	40 5 . ½ ½ ½	2 mesh 4 mesh 8 mesh 10 mesh

Coke Sampling²

A point that is of utmost importance in the sampling of coke for blast-furnace use is the ash determination, since every pound of ash in a ton of coke means more expensive fluxing, increased cost of smelting, useless cinder and less furnace capacity available for the production of metal. For this reason differences of opinion as to the ash content of coke for blast-furnace use often cause bitter controversies.

In an investigation of this subject several years ago, I was surprised to find how much of the apparent ash content of coke was due to foreign material introduced in the process of grinding the sample. For instance, the analysis of a sample reported as containing 17 per cent. of ash showed that one-seventeenth of this ash, or 1 per cent. of the weight of the sample, was iron abraded from a Braun pulverizer, while the ordinary cast-iron bucking-board and muller much used in grinding samples to be tested introduces iron into the sample to the extent of from 1/4 to 3 per cent.

<sup>Journ. Ind. and Eng. Chem., p. 161, 1909.
Excerpts from an original article in "Coal Age," July 24, 1915.</sup>

Whether the grinding be done by machinery or by hand, this introduction of foreign matter in grinding can be cut down greatly by the use of manganese- or chrome-steel grinding

plates...

It is impossible to determine the amount of this contamination with a magnet, for the reason that too much coke dust will adhere to the iron filings. It is necessary to treat the sample with a neutral copper-sulphate solution, agitate thoroughly, filter and wash the residue with hot water until entirely free from soluble copper salts. This residue is now dried and ignited and the ash tested for copper or the coke treated directly with nitric acid to dissolve the copper. The weight of copper precipitated by the iron in this process is then calculated from the ratio of their respective atomic weights.

This method will not answer for the determination of any foreign material introduced by pebble mills, but is very effectual where the grinding surfaces are of iron. It may be objected that the original ash of the coke may have contained some iron which has been reduced to the metallic state by the red-hot carbon of the coke during the coking process. In answer to this argument, any iron in the coke is probably present as ferrous oxide and combined with silica to form ferrous silicate (FeSiO₃). But in any event the objection is not valid, because if the coke sample is crushed in a silica-pebble mill or in an agate mortar, the iron in the coke does not react with neutral copper-sulphate solution.

LIMIT BEYOND WHICH SAMPLES SHOULD NOT BE DIVIDED WHEN CRUSHED TO DIFFERENT SIZES IN LABORATORY

Size of coal mesh	Should not be divided to less than, grams
2 4 8 10 20	$\left.\begin{array}{c} 8300 \\ 1100 \\ 120 \\ 55 \\ 3 \end{array}\right\} \text{Should be pulverized} $ to at least 60 mesh.

ETCHING REAGENTS AND THEIR APPLICATIONS¹

Etching Reagents for Iron and Steel

Copper-Ammonium Chloride.—Usually consists of a 10 per cent. solution of the salt in water, and is suitable for wrought iron and mild steel. The specimen is immersed in the solution for about 1 minute, then washed, and the copper deposit, which is readily detached, wiped off under running water. reagent is used for deep etching effects, and also to darken parts rich in phosphorus.

Copper Chloride.—Dilute acidulated copper chloride in

¹ O. F. Hudson, "Iron and Steel Institute," March, 1915.

alcohol is used by STEAD to detect phosphorus in steels. The reagent is made up as follows:

Copper chloride10 grams.Magnesium chloride40 grams.Hydrochloric acid20 cc.

The salts are dissolved in the least possible quantity of water, and the solution made up to 1000 cc. with alcohol. The purer portions of the steel become coated with copper before the

phosphoric portions.

Hydrochloric Acid.—A dilute solution (1 per cent.) in ethyl alcohol is generally used. Hoyt (c) writes that a solution of 1 cc. hydrochloric acid (sp. gr. 1.19) in 100 cc. absolute alcohol "is recommended for all the iron-carbon alloys whether in a hardened or annealed state," while the action can be accelerated (for special steels) by the addition of a few cubic centimeters of a 5 per cent. solution of picric acid in alcohol.

Iodine.—The ordinary tincture should be used. A simple solution in absolute alcohol is not so suitable. The specimen may be immersed in the solution, or a drop or two placed on the surface to be etched, and allowed to remain until decolorized.

Nitric Acid.—Until the introduction of picric acid, a dilute solution of nitric acid was the principal etching agent for iron and steel, and it is still often used. Solutions (up to about 5 per cent.) in water, or, preferably, alcohol, are generally used. When alcohol is the solvent, absolute alcohol should be used for washing the specimen, and not water. Lantsberry (c), who always uses nitric acid for steels, points out that the success of the method depends on thoroughly washing the specimen with alcohol and drying at once, and that the surface should never be moistened with water.

SAUVEUR (c) writes that for all grades of steel, wrought iron, and pig iron, regardless of treatment, he uses solutions of concentrated nitric acid in absolute alcohol, in proportions varying between 1 and 10 per cent. of acid, according to requirements. He prefers it to picric acid. The samples are washed in absolute alcohol and dried by means of an air-blast. For manganese steel he uses 10 per cent. nitric acid in absolute alcohol, leaving the specimen in the bath until it is covered with a black deposit. It is then washed in alcohol, without any attempt at removing the deposit by rubbing.

Howe (c) uses a solution of 2 per cent. of concentrated nitric acid in water for hardened steels, manganese steels, etc., and also occasionally to develop grain boundaries quickly in low-carbon material, although he notes that it roughens up the ferrite much more than picric acid. He recommends a pre-liminary treatment for the removal of grease, using "alcohol, hydrochloric acid in alcohol, or, best, picric acid in alcohol."

A 4 per cent. solution of nitric acid in iso-amyl alcohol (as

A 4 per cent. solution of nitric acid in iso-amyl alcohol (as suggested by Kourbatoff) is also used, and gives a slow and delicate etching.

⁽c) Information specially communicated for this paper.

Picric Acid.—This reagent, introduced by Ischewsky, is the one most commonly used, generally as a saturated or nearly saturated solution in alcohol. The specimen is immersed for times varying with the kind of steel and the effect desired, from a few seconds for light etching of ordinary rolled or annealed steels and cast irons, to several minutes for hardened steels and wrought irons. Picric acid is sometimes used in conjunction with nitric acid. Thus Desch (c) recommends for all ordinary (unhardened) steels alcoholic picric acid to which a few drops of nitric acid have been added. A solution of picric acid in amyl alcohol is also used for a slow etching. L. Archbutt (c) also finds it "an advantage to add a small quantity of nitric acid, which gives greater certainty of etching, especially in cold weather." The solution he uses contains 80 vols. of picric acid in alcohol and 20 vols. of 2 per cent. nitric acid in alcohol.

ROSENHAIN'S and HAUGHTON'S Reagent consists of:

Ferric chloride	30 grams
Hydrochloric acid (conc.)	100 cc.
Cupric chloride	10 grams
Stannous chloride	$0.5 \mathrm{grams}$
Water	

It is used for determination of the distribution of phosphorus in steel, the purer portions of the steel being stained by deposition of copper, leaving the phosphorus-rich portions white.

Of the numerous other reagents some are used for special purposes, such as sodium picrate, for the detection of cementite; while others are more or less complicated solutions, such as Kourbatoff's reagent, consisting of 3 vols. of a saturated solution of o-nitrophenol in alcohol and 1 vol. of a 4 per cent. solution of nitric acid in alcohol, used for the determination of troostite and sorbite in hardened steels.

Electrolytic Etching

This method is of great value in special cases. Generally a solution of a neutral salt is used as the electrolyte; the specimen is made the anode and a piece of platinum foil the cathode. A feeble current of a small fraction of an ampere is used. Desch (c) finds that etched figures in brasses, etc., are most perfectly developed by electrolytic etching, using a 5 per cent. sodium-chloride solution and a platinum cathode with two dry cells. Other electrolytes used are ammonium nitrate, sodium thiosulphate (used by Le Chatelier for copper-tin alloys), ammonia, and sometimes very dilute acid solutions.

For Monel metal, L. Archbutt (c) "obtained very good results by electrolytic etching in a solution containing 45 cc. dilute sulphuric acid (1:3) and 5 cc. hydrogen peroxide solution, using a current of 0.1 amp. and 0.5 volt, etching for about 50 seconds. A slight staining of the specimen was subsequently removed by light rubbing with a dilute solution of bromine in hydrochloric acid." Constantan was etched in a similar way, "but stains were removed by using a mixture of dilute sulphuric

acid and hydrogen peroxide and rubbing with the finger." ROSENHAIN (c) has also found that electrolytic etching is useful

for nickel-copper alloys.

Polish Attack.—Used with such success by Osmond and it is one which, if not always applicable, is not adopted as widely as it should be. The objections which appear to be urged against the method are (a) the difficulty of getting uniformly good results, and (b) the danger of obscuring the structure by the flowing action of polishing. Neither of these objections need, however, be serious; the former is overcome by experience. while the latter is probably largely imaginary, unless altogether unnecessary pressure is used. The procedure which has been found suitable for copper and its alloys has already been described in dealing with ammonia as an etching agent. For steels Osmond used a very gentle etching reagent, such as a 2 per cent. solution of ammonium nitrate with precipitated calcium sulphate in parchment, but this method is not now so often used. The author, however, for iron and steel, makes use of parchment thoroughly soaked in water on which a paste of precipitated calcium sulphate is spread. The specimen is then alternately lightly etched with picric acid, and rubbed gently for a few seconds on the parchment. Frequently also it is found to be an advantage to etch the specimen lightly, then polish very gently with alumina and re-etch, repeating if necessary.

GWYER (c) finds that polish attack is sometimes very effective for light aluminum alloys, "for example, in bringing out the structure of the iron-aluminum eutectic. For this washed and ignited magnesia is required, the polishing being done on parchment kept moistened with very dilute caustic soda solution."

GULLIVER (c) notes that sometimes a good polish attack may be obtained with water alone, although not if the pad is new. He found, for example, that polish attack with water alone was

defective in the case of bismuth-tin alloys.

Heat-tinting.—Although not perhaps, strictly speaking, an etching process, heat-tinting is a valuable and widely used method of revealing the structure of alloys, and especially for the detection of small differences in concentration of solid solutions. It consists in heating the specimen until a thin film of oxide is formed on the surface, differences in composition giving rise to variations in thickness, and hence variations in color of the film. STEAD used it with great advantage in studying phosphoric cast irons and alloys of iron and phosphorus, and showed that by its use phosphide and carbide of iron could readily be distinguished, while HEYCOCK and NEVILLE proved its value in their work on the copper-tin alloys. Stead has also applied the method to the determination of the distribution of phosphorus in steel. In a paper on "Metallographic Methods for the Detection of Phosphorus in Steel," read before the Cleveland Society of Engineers in December last, STEAD gives details of the heat-tinting method suitable for this purpose. The specimen is floated on a bath of molten tin at a temperature of about 300°C., and allowed to remain until the whole surface

has a reddish-brown color. On examining the specimen, the portions richest in phosphorus will be detected by their blue color, since the parts which are richer in phosphorus than the surrounding metal become colored more quickly. liminary treatment of the specimen before it is raised to the tinting temperature is important. Washing with a 1 per cent. solution of picric acid in alcohol is recommended, and the surface should always be "cleaned by rubbing with a clean piece of The specimen is heated to about 150°C., and linen or cotton. then rubbed with a clean piece of chamois leather while still hot." It is then immediately raised to the tinting temperature.

Instead of heating in air, and obtaining a colored oxide film, STEAD has shown that other atmospheres may be used, such as sulphuretted hydrogen or bromine. The use of an atmosphere containing bromine for the examination of Muntz

metal has been described recently by STEAD.

Heat-tinting appears to require considerable experience in order to obtain consistent results, and the author, among others cannot rely upon it to be uniformly successful. The following is a summary of the principal reagents for particular metals and alloys.

Etching Reagents Suitable for Particular Metals and Alloys

The following list gives the principal reagents which have been found especially suitable for different metals and alloys:

Copper.—Ammonia (sp. gr. 0.88, diluted 1:1 with water), ammonium persulphate (10 per cent. aqueous solution), bromine (followed by a wash with ammonia), copper-ammonium chloride (5 grams of copper-ammonium chloride in 100 cc. of

water, add ammonia until precipitate just dissolves).

Brasses.—Ammonia, ammonium persulphate, copper-ammonium chloride, electrolytic etching, ferric chloride (slightly acidulated with HCl), chromic acid (saturated or nearly saturated solution), nitric acid (strong acid, followed by water), Tinoféef's reagent (94 grams HNO₃ and 6 grams Cr₂O₃, a few drops are used in 50 cc. of water).

Bronzes.—Ammonia, ammonium persulphate, ferric chloride. Copper-Aluminum Alloys (Aluminum Bronzes).—Ammonium persulphate, ferric chloride, copper-ammonium chloride, nitric

acid.

German Silver.—Ammonium persulphate, ferric chloride. Nickel-Copper Alloys, Monel Metal.—Electrolytic etching.

Gold and Rich Gold Alloys, Platinum and Its Alloys.—Aqua regia (dilute, 1 part HNO₃, 5 parts HCl, 6 parts distilled water, used at 15°C.).

Aluminum and Light Aluminum Alloys.—Caustic soda, hydrochloric acid, hydrofluoric acid (1 part fuming HF to 10 or 20 parts of water, clear after treatment by a few second's immersion in HNO₃).

Lead, Tin and Their Alloys (White Metal, etc.).—Chromic acid in nitric acid, ferric chloride, hydrochloric acid, nitric acid, silver nitrate (5 per cent. solution).

Zinc and Alloys Rich in Zinc.—Caustic soda, iodine (1 part

iodine, 3 parts KI and 10 parts water).

	Given	Sought	Multiply by factor N
Aluminum, 27.1	Al ₂ O ₈	Al	0.5303
·	Al	Al ₂ O ₃	1.8856
	AlPO ₄	Al_2O_3	0.4187
	Al ₂ O ₃	$Al_2(SO_4)_3$	3.3504
Antimony, 120.2	Sb_2O_4	Sb	0.7900
_	Sb_2O_4	Sb_2O_3	0.9474
	Sb_2O_4	Sb_2O_5	1.0526
	Sb_2S_3	Sb	0.7142
	Sb_2S_3	Sb_2O_3	0.8569
	Sb_2S_3	$ Sb_2O_5$	0.9520
	Sb	Sb_2O_3	1.1998
	Sb	Sb_2O_5	1.3330
Arsenic, 74.96	As_2S_3	As	0.6091
•	As_2S_3	As_2O_3	0.8041
	As_2S_3	As_2O_5	0.9341
	As_2S_3	AsO ₄	1.1291
	As_2S_5	As	0.4832
	$Mg_2As_2O_7$	As	0.4827
	$Mg_2As_2O_7$	As_2O_3	0.6373
	$Mg_2As_2O_7$	As_2O_5	0.7403
	$Mg_2As_2O_7$	AsO ₄	0.8949
	Ag_8AsO_4	As	0.1620
	As	As_2O_3	1.3202
	As	As_2O_5	1.5336
Barium, 137.37	BaSO ₄	Ba	0.5885
	BaSO ₄	BaO	0.6568
	BaCrO ₄	Ba	[0.5422]
	BaCrO ₄	BaO	0.6053
	BaCO ₃	Ba	0.6960
	BaCO ₃	BaO	0.7771
	Ba	BaO	1.1165
Bismuth, 208.0	Bi_2O_3	Bi	0.8966
	BiOCl	Bi ·	0.8017
	BiOCl	Bi ₂ O ₃	0.8942
	Bi ₂ S ₃	Bi	0.8122
	Bi_2S_3	Bi ₂ O ₃	0.9061
D	Bi	Bi ₂ O ₃	1.1154
Boron, 11	B_2O_3	B	0.3143
D . TO	В	B_2O_3	3.1818
Bromine, 79.92	AgBr	Br	0.4256
	AgBr	HBr	0.4309
	Br - Cl	Br	1.7969
	Br – Cl	AgBr	4.2202
	Br	034	[0.1 001

	Given	Sought	Multiply by factor N
Cadmium, 112.4	CdO CdS .CdS	Cd Cd CdO	0.8754 0.7780 0.8888
Caesium, 132.81	Cd Cs ₂ SO ₄ Cs ₂ PtCl ₆	CdO Cs Cs	1.1424 0.7344 0.394 3
Calcium, 40.07	Cs CaO CaO CaSO ₄	Cs ₂ O Ca CaCO ₃ Ca	1.0623 0.7146 1.7847 0.2943
!	CaSO ₄ CaCO ₃ CaCO ₃	CaO Ca CaO	0.4119 0.4005 0.5603
Carbon, 12	Ca Ca CaO CaC ₂ O ₄	$ CaO \\ CaCO_3 \\ CaC_2O_4 \\ CO_2 $	1.3993 2.4971 2.2841 0.3436
·	CaCO ₃ CO ₂ C	CO ₂ CO ₂	0.4397 0.2727 3.6667
Chlorine, 35.46	$egin{array}{c} \mathrm{CO_2} \\ \mathrm{AgCl} \\ \mathrm{AgCl} \\ \mathrm{Ag} \end{array}$	CO ₃ Cl HCl Cl	1.3636 0.2474 0.2544 0.3287
Chromium, 52.0	Cl AgCl Cr ₂ O ₃	O 1/2 O 1/2 Cr	0.2256 0.05581 0.6842
	Cr ₂ O ₃ PbCrO ₄ PbCrO ₄ PbCrO ₄	$ CrO_3 $ $ Cr$ $ Cr_2O_3 $ $ CrO_3 $	1.3158 0.1609 0.2351 0.3094
Cobalt, 58.97	Cr Cr CoSO ₄	$ \begin{array}{c} \operatorname{Cr}_2\operatorname{O}_3\\ \operatorname{Cr}\operatorname{O}_3\\ \operatorname{Co} \end{array} $	1.4615 1.9230 0.3804
Campon 62 57	Co ₃ O ₄ Co Co(NO ₂) ₃ ·3KNO ₂		0.7343 1.2713 0.1303
Copper, 63.57	CuO Cu Cu ₂ S Cu ₂ S	Cu CuO Cu CuO	0.7989 1.2517 0.7986 0.9996
	CuSCN CuSCN	Cu CuO	0.5226 0.6541

324 METALLURGISTS AND CHEMISTS' HANDBOOK

	Given	Sought	Multiply by factor N
Cyanogen, 26.01	AgCN	CN	0.19427
Fluorine, 19	Ag CaF ₂	CN F	0.2411 0.4867
Gold, 197.2	SiF ₄ Au	F AuCl:	0.7286 1.5395
Hydrogen, 1.008 Iodine, 126.92	H ₂ O AgI	H	0.11190 0.54055
10ume, 120.02	$ \begin{array}{c} \widehat{PdI}_{2} \\ \widehat{I} - \widehat{Cl} \end{array} $	I I I	0.7041 1.3877
	I - Cl	AgI	2.5673
Iron, 55.84	Fe_2O_3 Fe_2O_3	Fe FeO	0.6994 0.8998
	Fe_2O_3 Fe_2O_3	Fe ₃ O ₄ FeS ₂	$0.9666 \\ 1.5028$
	FeO	Fe	0.7773 1.1114
•	FeS	Fe ₂ O ₃ Fe	0.6352
	Fe Fe	FeO Fe ₂ O ₃	$\begin{vmatrix} 1.2865 \\ 1.4298 \end{vmatrix}$
Lead, 207.2	PbSO ₄ PbSO ₄	Pb PbO	0.6832 0.7360
	PbSO ₄ PbSO ₄	PbO ₂ PbS	0.7887 0.7890
	PbCrO ₄	Pb	0.6411
·	PbCrO ₄ PbS	PbO Pb	0.6906 0.8660
	PbS PbCl ₂	PbO Pb	0.9328 0.7450
	PbO Pb	Pb PbO	0.9283 1.0772
Lithium, 6.94	Li ₂ SO ₄	Li	0.13474
	Li ₂ SO ₄ Li ₃ PO ₄	Li ₂ O Li	0.29007 0.18197
	Li Li ₂ CO ₃	Li ₂ O Li	2.1 527 0.18 79
Magnagium 24 32	Li ₂ CO ₃ Mg ₂ P ₂ O ₇	Li ₂ O Mg	0.4044 0.2184
Magnesium, 24.32	$Mg_2P_2O_7$	MgO	0.3621
•	$Mg_2P_2O_7$ $MgSO_4$	MgCO ₃	$\begin{bmatrix} 0.7572 \\ 0.20201 \end{bmatrix}$
	MgSO ₄ MgO	MgO Mg	0.33491 0.6032
	MgO	$MgCO_3$	2.0912
	Mg	MgO	1.6579

	Given	Sought	Multiply by factor
rese, 54.93	Mn ₂ P ₂ O ₇	Mn	0.3869
	$Mn_2P_2O_7$	MnO	0.4996
	Mn ₃ O ₄	Mn	0.7203
	Mn_3O_4	MnO	0.9301
	MnS	Mn	0.6314
	MnS	MnO	0.8153
	$MnSO_4$	Mn	0.3638
	MnSO ₄	MnO	0.4697
Ì	MnO	MnO_2	1.2256
	Mn	MnO	1.2913
	Mn	MnO ₂	1.5826
y, 200.6	HgS	Hg	0.8622
,, = = = = = = = = = = = = = = = = = =	HgS	HgO	0.9309
	HgCl	Hg	0.8498
	HgCl	HgO	0.9176
	Hg	HgO	1.0798
enum, 96.0.	MoO_3	Mo	0.6667
,	PbMoO ₄	MoO_a	0.3922
58.68	NiSO ₄	Ni	0.3792
	NiO	Ni	0.7858
	Ni	NiO	1.2727
n, 14.01	NH ₄ Cl	N	0.26186
,	NH ₄ Cl	NH_3	0.31838
	NH ₄ Cl	NH ₄	0.33722
	$(NH_4)_2PtCl_6$	N	0.06310
	$(NH_4)_2$ PtCl ₆	NH_3	0.07672
	(NH ₄) ₂ PtCl ₆	NH ₄	0.08126
	$(NH_4)_2$ PtCl ₆	NH ₄ Cl	0.2410
	Pt	N	0.1435
	Pt	NH_3	0.1745
	Pt	NH ₄	0.1848
	N	NH_3	1.2158
	NH_3	N	0.82247
	N	$(NH_4)_2O$	1.8587
	N	$(NH_4)_2SO_4$	4.7164
İ	N	N_2O_5	3.8579
	N	NO ₃	4.4261
	N	NO_2	3.2841
	N	NO	2.1420
orus, 31.04	$Mg_2P_2O_7$	P	0.2787
<i>'</i>	$Mg_2P_2O_7$	P_2O_5	0.6379
	$Mg_2P_2O_7$	PO ₄	0.8534
	FePO ₄	P_2O_5	0.4708
	$U_2P_2O_{11}$	P_2O_5	0.1989

,	Given	Sought	Multiply by factor
Phosphorus, 31.04	P_2O_5	P	0.4369
Platinum, 195.2	P $(NH_4)_2PtCl_6$	$\begin{array}{c c} \mathbf{P_2O_5} \\ \mathbf{Pt} \end{array}$	2.2886 0.4396
	K ₂ PtCl ₆	Pt	0.4015
Potassium, 39.10	KCl	K	0.5244
	KCl	K ₂ O	0.63170
	KBr	K K	0.3285
	K ₂ SO ₄	K ₂ O	0.44870 0.5405
	$egin{array}{c} \mathrm{K_2SO_4} \\ \mathrm{K_2PtCl_6} \end{array}$	$\begin{array}{c c} \mathbf{K_2O} \\ \mathbf{K} \end{array}$	0.3403
	K ₂ PtCl ₆	\mathbf{K}_{2} O	0.1941
	K ₂ PtCl ₆	KČI	0.3071
	KClO ₄	K	0.28219
	KClO	$\overline{\mathbf{K}}_{2}\mathbf{O}$	0.33992
	KClO ₄	KCl	0.53811
	K	K_2O	1.2046
	KOH	K_2CO_3	1.2315
Rubidium, 85.45	Rb_2SO_4	Rb	0.6401
	Rb_2PtCl_6	Rb	0.2952
011 - 700	Rb	$ Rb_2O$	1.0936
Selenium, 79.2	Se	SeO_2	1.4040
Q:1: 90 9	Se	SeO ₃	1.6060
Silicon, 28.3	SiO ₂ SiO ₂	Si SiO ₃	$\begin{bmatrix} 0.4693 \\ 1.2653 \end{bmatrix}$
	$\begin{array}{c} SiO_2 \\ SiO_2 \end{array}$	Si ₂ O ₇	1.3980
	SiO_2	SiO ₄	1.5307
	Si Si	SiO ₂	2.1308
Silver, 107.88	ÄgCl	Ag	0.7526
	AgCl	$\overline{\mathbf{Ag_2O}}$	0.80843
	AgBr	Ag	0.57444
	Agl	Ag	0.4595
	$\mathbf{A}\mathbf{g}$	Ag_2O	1.0742
Sodium, 23.00	NaCl	Na	0.3934
	NaCl	Na ₂ O	0.53028
	Na ₂ SO ₄	Na o	[0.3238]
	Na ₂ SO ₄	Na ₂ O	0.4364
	Na ₂ CO ₃	Na O	0.43396
	Na ₂ CO ₃	Na ₂ O	0.58491
Q4mon4in 07 00	Na g-go	Na ₂ O	1.3478
Strontium, 87.63	SrSO ₄	Sr S-O	0.4770
	SrSO ₄	SrO Sr	0.5641
	SrCO ₃ SrCO ₃	SrO	0.593 6 0.7019
	SrCO ₃	SrO	1.1826
			1.1020

	Given	Sought	Multiply by factor
Sulphur, 32.07	BaSO ₄ BaSO ₄	S SO ₂	0.13738 0.27446
	BaSO ₄ BaSO ₄ BaSO ₄	SO_3 SO_4 H_2SO_4	0.34300 0.41154 0.42018
	S S S	SO ₂ SO ₃	1.9978 2.4967
m 11 ' 107 F		H ₂ ŠO ₄	3.0585
Tellurium, 127.5	Te	${ m TeO_2} \ { m TeO_3}$	$\begin{bmatrix} 1.2510 \\ 1.3765 \end{bmatrix}$
Thallium, 204.0	TlI Tl_2PtCl_6	Tl Tl	$\begin{bmatrix} 0.6165 \\ 0.5000 \end{bmatrix}$
Thorium, 232.4	$ ext{Tl} ext{ThO}_2$	Tl ₂ O Th	$\begin{bmatrix} 1.0392 \\ 0.8790 \end{bmatrix}$
Tin, 118.7	_	$ Sn $ $ SnO_2 $	0.7877 1.2693
Titanium, 48.1 Tungsten, 184.0	TiO_2	Ti W	0.6005 0.7930
Uranium, 238.2	U ₃ O ₈ U ₃ O ₈	Ü UO2	0.8481 0.9525
Vanadium, 51.0	$\begin{array}{c} \mathbf{UO_2} \\ \mathbf{V_2O_5} \end{array}$	U V	0.8816 0.5604
vanadidii, 51.5		V_2O_5 VO_4	1.7843 2.2549
Zinc, 65.37	ZnO	Zn	0.8034
	ZnS ZnS	Zn ZnO	0.6709
	$\mathbf{Zn_{2}P_{2}O_{7}}$	Zn ZnO	$\begin{bmatrix} 0.4289 \\ 1.2448 \end{bmatrix}$
Zirconium, 90.6 Ammonia, 17.03	$egin{array}{c} \mathbf{ZrO_2} \\ \mathbf{Pt} \end{array}$	Zr NH3	$\begin{bmatrix} 0.7390 \\ 0.17452 \end{bmatrix}$
·	Pt Pt	NH₄ NH₄O H	$\begin{bmatrix} 0.1848 \\ 0.35912 \end{bmatrix}$

Calculated by International Atomic Weight Table of 1915, O = 16.

PROPERTIES OF PRECIPITATES1

Ele- ments	Object	Obtained by or precipitated with	Obtained or precipitated as	Conditions of solution	Soluble in	Contaminants	Prepared for weighing by	Weighed
M	Weigh- ing.	Precipitant Pt-Cl ₄ . Precipitate preferably dissolved in hot H ₂ O and evaporated in a weighed vessel.		Cold, alcoholic, slightly soluble NaCl and other ides or HCl. Salts in hot, H ₂ O. insoluble in alcother than NaCl Solubility in-hol. Removed by should be absent. creased by alka-washing with H ₂ O. Small amounts of li or acid, dimin-+NH ₄ Cl+K ₂ Pt-present, but are or Na ₂ PtCl ₆ .	Slightly soluble in cold, more so in bot, H ₂ O. Solubility in-creased by alkali or acid, diminshed by PtClase or Na ₂ PtClase	NaCl and other Drying. salts (assulphates) insoluble in alcohol. Removed by washing with H ₂ O + NH ₄ Cl+K ₂ Pt- Cle.		K,PtCl,
	Weigh- ing.	Precipitant PtCl4.	K,PtCl.	detrimental. As above.	As above.	As above.	Ignition gently Pt at first. Addition of HrCrO4	Pt.
	Weigh- ing.	Evaporation KCl and gentle ignition. Volatile at temperatures	KCI	Only chlorides or In water. salts converted in in alcohol to chlorides should strong HCl. be present. Am-	Less l or l.	NaCl, and if long Ignition not a- exposed to the air, bove a dull red. organic dust.	aids reduction. Ignition not above a dull red.	KCI
-	Weigh- ing.	Evaporation K.SO. and ignition. (NH4);CO. facilitates conversion.	K2SO.	monium salts may be present. Absence of salts Moderately in Na ₂ SO ₄ or forming non-vola- H ₂ O, much less non-volatile tile sulphates or in alcohol. containing non- volatile acids (as H ₂ PO ₄).	Moderately in H ₂ O, much less in alcohol.	Õ	ther Ignition over sul-anordinaryBun- sen flame.	K,SO,
a Z	Weigh- ing.	Evaporation and gentle ignition.	NaCl	KCI.	Same as KCl.	KCl and other Ign salts (as sulphates abo insoluble in alco-red.	nition not we s dull	NaCi
XII, ta	ompiled 1	¹ Compiled mainly from an article by Pror. E. Waller XII, taken from FURMAN's "Manual of Practical Assaying."	rticle by Preusel und of Practi	or. E. Waller, entilical Assaying."	tled "Properties	entitled "Properties of Precipitates," School of Mines Quarterly, Vol.	chool of Mines Qu	arterly, Vol.

				. !
Na:80.	Ca.O		Mg:P:Or	B&SO4
K;SO4 and other Same as K;SO4. Na;SO4. harso.	acids, MgC ₂ O ₄ , which Ignition, gen-CaO n H ₂ -isremoved by solu-tly at first and tion in HCl and finally over reprecipitation. Addition of H ₂ -SO ₄ , evaporation, and ignition, and ignition. In presence of C add		Ignition, gently at first, finally intensely. In presence of C add NH,NO.	Ignition. In the Basio, presence of C the addition of HNOs is necessary.
Зв ше в	Ignition, tly at first finally class-lamp. Addition o SO, evapo tion, and tion. In ence of C	Š N H		
other sul-	which y golu- yl and on.	and Mg- much are	unim- r pur- separa-	hlor- hlor- s, sul- stes, o, or
and latile	O., ved by pitati ve.	s and f mac	of fo	ine an ilorate io o
K ₂ SO ₄ and non-volatile phates.	MgC ₂ O ₄ , whistemoved by sction in HCl reprecipitation. As above.	In acids CO ₂ , if much are hot solupresent. NH ₄ CI. NH ₄ OH NH ₂ OH	ad (OH)s. d (OH)s. lid n- Transly be poses of tion.	Alkal kali-ea ides, ch phates basic, alumin
K ₃ SO ₄ .	l acids, in Ha-	taining acids of solu- NH,Cl. in NH,OH	Hotin cold in cold in cold in cold in cold of the cold of the cold of the cold in cold	sago, in other sago, in a strong sago, and sago,
Same as K ₁ SO ₄ .	Mineral slightly i C2O4.	Alkaline solution H ₂ Ocontaining free from large ex-CO ₂ . In acids cess of alkaline and in hot solusalts, especially cition of NH ₄ Cl. trates. H ₂ O + NH ₄ OH + (NH ₄) ₂ CO ₂ .	Acids. Hot solutions and alightly in cold HsO. Insoluble in NH4NOs. Acids and ammonium salts. Prevented by organic salts.	containing Conc. Hs8O.in Alkaline and alfree HCl. strong hot HCl kali-earth chlorates of 8iO., and HNO. (di-ides, chlorates, sulamounts of lute). In strong phates, nitrates, sgroup and hot Fercis and basic, ferric, or in alkaline or al-aluminis c o m-lts.
÷	l d	ution ge ex- caline a lly ci-ti		containing free HCl. see of SiO., a mounts of lust in Sgroup and his.
es KsS	Hot, strongly noniscal and xcess of oxals s above.	Alkaline solure from largeses of alkasits, especially rates.		control free of smooth
Same as K ₂ SO	Hot, strongly am moniscal and an excess of oxalate. As above.	Alkali free fro cess salts, e trates.	Cold, containing excess of NH,OH+NH,OH, Absence of SiO ₂ and bases other than alkalies. Akaline and moderately concentrated. Free from ammonium salts and organic salts.	Hot, contain some free Habsence of Silarge amounts (NHs) sgroup Casalts.
	·0.	. 0.		
Nas	CaC:0.	080	PO PO Mg(Be B
K2SO4.	Precipitant CaC:0. (NH4):C:04 or H:C:04 in NH4-OH solution. As above. CaC:04	Precipitant CaCOs (NH4)2COs.	Precipitant MgNH-PO. Precipitant Mg(OH):	Precipitant BagO4 HagO4. Should be heated before adding.
ne as F	Precip (NH4)2C3 H2C2O4 in OH soluti As above.	H)3C(H	HPO.	e oi p 104. ing.
San				
Weigh- Same as K ₂ SO ₄ . Na ₂ SO ₄ ing.	Weigh- ing. Weigh- ing.	Separation.	Weigh- ing. Separa- tion.	Weigh- ing.
	ల ో		Mg	ag a

Continued
PRECIPITATES.
0.0
PROPERTIES

Ele- meats	Object	Obtained by or precipitated with	Obtained or precipitated as	Conditions of solution	Soluble in	Contaminants	Prepared for weighing by	Weighed
A.					kali-earth ni- trates. In or- trates.	bothing in very di- hite HCl assists in removal, but hable to dissolve some of the precipitate MgCO ₂ if much is		
	Separa- tion.	Precipitant BaCO.	Baco.	Alkaline, contain- ing NH,OH and excess of (NH,);-	H ₂ O contain- ing CO ₃ and acids In hot NH ₄ Cl. Insolu- ble in NH ₄ OH +(NH ₄) ₂ CO ₃ .	bonates of the fixed alkalies.		
e St	Weigh-	Precipitant Fer(OH)s NH.OH Addi- tion of NH.Cl ads precapits- tion.	Fen(OH);	Alkaline, and free from HaS.	Mineral acids and solutions containing citrac, tartaric acids, or organic sub-	Basic ferric sulta Cr. P.O., Al. Ma., Zn. Co. Ni, Mg., SiO., etc.	Ignition. In presence of C, HNO, or NH-NO, should be added Volatile in presence of chlorides.	HOT TO TO TO TO TO TO TO TO TO TO TO TO T
	Separa-	As above.	Fet(OH).	As above.	As above.	As above.		
	Bepars- tion.	Precipitant Fee(OH)n-NaCtHaOt. Fil- (CtHr-Ot)e-n	Fer(OH)n- (CrH+ Ou)s-n	ing but little frae HC.H.O. Hot, c. but too long boil-	In cold mineral cids. Also in itrates or or an in a cub-	Salts of fixed alkahes, SiO ₁ , PrO ₂ , Al, Cr, Co, Ni, Zn, Mn, Cu, etc. Removed by resolu-		

Fe e				avoided.	ble in hot very dilute HC2H2O2.	ble in hot very tion and reprecipidilute HC ₂ H ₂ O ₂ . tation.		·
A S	Weigh- ing.	Precipitant (usual) NH4OH. Best precipitated by adding slight excess NH4OH, boiling, and passing	Al ₂ (OH)	Neutral or slight- ly alkaline, con- taining preferably NH4Cl.	Acids and fixed alkalies. Slightly in cold NH4-OH. Tartrates, citrates, etc., prevent precipitation.	Neutral or slight- Acids and fixed Basic Al salts; I g n i t i o n . ly alkaline, con-alkalies. Slight- SiO ₂ , P ₂ O ₈ , Al, Slightly volatile taining preferably ly in cold NH ₄ - Cr, Co, Ni, Zn, in presence of OH. Tartrates, Mn, etc. Removed NH ₄ Cl. citrates, sugar, by resolution and etc., prevent reprecipitation.	I g n i t i o n . Slightly volatile in presence of NH4Cl.	Al ₂ O ₃
	Separa- tion.	Same as Fe.	Al ₁ (OH)n- (C ₂ H ₇ - O ₂) _{6-n}	Same as Fe. No Same as Fe, exfree acetic acid cept slightly should be present. soluble in hot dilute HC2H3O3.	Same as Fe, except slightly soluble in hot dilute HC ₂ H ₂ O ₂ .	Same as Fe.		•
ర	Weigh- ing.	Precipitant Crs(OH)s NH4OH. Excess removed by boil- ing.		Absence of members of the (NH4);—S group, and preferably all nonvolatile salts. Solution must be neutral.	All acids, NaOH, KO and slightly NH,OH. T trates, citrat sugar, etc., p vent precipi	Same as Al.	Ignition.	Cr203
E	Weigh- ing.	Insoluble form by boiling the solution acidi-fied with HaSO.	H,TiO;	Dilute containing but little free Hr-804. HCl and chlorides must be labent. HC ₁ H ₂ O ₂ facilitates precipitation. Prolonged	hing Soluble form FesOs, Al Hr-same as Fest-Os, and Psand (OH)s. Insolution and A be ble form by furmoved by IsOs sion with KH-tion, recipited with conc. HCl precipitation	150s, Si- Os; Fer- 150s re- re-golu- and re- on in	mition with dition of Ha)5CO3.	TiO ₃ .
	Separa-	Fusion and leaching until filtrate rune cloudy.	(x.Na.) (1109)- (Na. 110	ation st ture.	with Acids. Slightly high in HsO.	H.O. Boid-sod- ium silicate, alkali- earth carbonates,		

PROPERTIES OF PRECIPITATES. Continued

Weighed	ZaO Car		MnrPrO;	
Prepared for weighing by	Ignition; ab-ZnO sence of C is necessary.		if bases Ignition Gen- insoluble tly at first, tes are ab- l precipi- il washed.	
Contaminants		a d.a - 1	None forming phosphal sent and tate is we	Salts of fixed al- kalies, FerOs, ZnO
Soluble in	Dilute a cide, fixed caustre alkahes, bicarbonates, and organic solutions Dilute HCl and HasO, when hother	tards pr	Acide, Slightly in large excess of ammonium salts. The influence of ammonium salts is incomum salts is incomum salts is less on ed by large excess of the precipitant.	sbeent of HCl Dilute mineral halogen; acida (especially to lower HCl). Insoluble nitrogen in strong HCr sitrong HCr special HCs and cone.
Conditions of solution	Absence of caustic and bicarbonate alkalies and smmonium salts. Alkaline, or acid only with weak organic acid., Free	ロ海 日十	Mn must be en- Acids, Slightly tirely in mangan-in large excess ous form, and of ammonium alightly alkaline salts. The in-Ancarers of phos-fluence of amphabate is necessary monium salts is Oxalates and ex-less oned by ressive amounts of large excess of simmonium salts the precipitant.	Absence of HCl or other halogen ands. Also lower oxides of nitrogen per reducing sectors.
Obtained or precipitated as	ZaCO _{1,} Za(OH),		MaNH	MnO ₂
Obtained by or precapitated with	Precipitant ZaCOn, Za(OH), Precipitant ZaB, HiO HiS in boiling dilute HC:Hio		Precipitant NaNH/HPO4 in presence of am- monium salts.	Br from ace- tate solution ECIOs from boling nitrio- acid colution.
Object	Weigh- ing Separa- tion		Weigh-	Separa- tion.
Ele- menta	gg u	1,	MD	

ij	ViO		3K ₂ SO ₄ + 2C ₀ SO ₄ + C ₀	•	n C
Drying at gen-lane heat. (See u.)	Ignition NiO strongly.		e in di- O4, and e in a vessel. Ni.		with then cohol.
Absence of all Readily in Co, Fe and Zn, Drying at gen-Ni other metals of HNO ₂ . Slowly unless previously the heat. (See groups. Ni pres- (NH ₄) ₂ C ₂ O ₄ . phate, or double ammonium nitrate, and excess the state of the contract of the	302	of other Precipitation Sulphides of H ₂ S of the prevented by a.n d (NH ₄) ₂ S (NH ₄) ₂ S m o d e r a t e groups, if not pre-NH ₄ Cl amounts of free viously removed. pitation. acetic or mineral acids. Soluble in mineral acids and KCN.	Warm, contain- H ₂ O, acids, NH ₄ Ca and Pb if Dissolve in disology Co, Ni, and Na salts. present. K salts lute H ₂ SO ₄ , and and K salts, and Insoluble in dishould be removed evaporate in a nearly saturated lute HC ₂ H ₃ O ₂ by careful wash- weighed vessel. Same as Ni. Same as Ni.	Ni and other members of (NH4) 18 group, if not previously removed by separation.	tion HNOs and HCl. As, Sb, or Bi, if Washing few Deposit pre-HNOs is not pres-H2O and INOs vented by Cl. ent. If HNOs and with al
Readily in HNOs. Slowly in strong (NH4)2C2O4.	lineral acids. ammonium ts, tartrates,	Precipitation prevented by a moder at e amounts of free acetic or mineral acids and KCN.	HrO, acids, NH, and Na salts. Insoluble in di-lute HC, HrO, and alcohol.	Same as NiS, H ₂ O.	HNO, and HCl. Deposit p r e - vented by Cl,
Absence of all other metals of H ₂ S and (NH ₄) ₂ S groups. Ni present as oxalate, sulphate, or double ammonium nitrate, and excess of NH ₂ OH	Bases other than Mark all all should be absent.	Absence of other Precipitation members of the prevented by H ₁ S or (NH ₄) ₂ S m o d e r a t e groups. NH ₄ Cl amounts of free aids precipitation. acetic or mineral acids and KCN.	Warm, containing only Co, Ni, and K salts, and nearly saturated with KC2H3O2.	Same as NiS, H ₂ O.	H ₂ SO ₄ solution containing a few drops of HNO ₃
ž				as NiS, CoS, H ₂ O	
Electrolysis.	Precipitant Ni(OH) ₂ KOH or NaOH.	Precipitant NiS, HiO HiS in weak HCzHiO; solution.	Precipitant 6KNOs, KNOs in soluction slightly acid (NOs)swith HCzHsOs. Electrolysis. Co	Same as NiS, H ₂ O.	Electrolysis. Cu
Weigh- ing.	Weigh- ing.	Separa- tion.	Weigh- ing. Weigh-	Separa- tion.	Weigh- ing.
Ë			පි		Cu Cu

PROPERTIES OF PRECIPITATES. Continued

1	%				_	
	Weighed as			If C PbSO4 treat + + hporite.	PbCr0.	
	d for g by	at a a ture an be y the			on pre-	
	Prepared for weighing by	Drying at emperatements which can borne by hand.	_	Ignition. If (is present, treswith HNO; H;SO4, evaporate, and ignite.	Drying on previously weighed filter.	
	nants	ent, Zn to pre- soon as precipi-	group.	phates, emoved g with H.SO4.	Ig and If is pres-	members 2S group
	Contaminants	preferable. Organ- too strong acid, Zn are present, Zn Drying at a ic acids should be or lower oxides will begin to pre-temperature absent. Cu is all precipi-borne by the tated.	Moderately Hot dilute Other members strong HCl or Hr H NO; and of the H ₂ S group. SO ₄ . If HNO; is strong hot HCl. present, the solution must be cold and dilute.	SO4, Conc. mineral Other sulphates, Ignition. If C little acids; in Na ₃ S ₂ -which are removed is present, treat HCl. O ₃ ; in NH ₄ salts, by washing with with HNO ₃ + and and especially very dilute H ₂ SO ₄ . H ₃ SO ₄ , evaporganic those of organic e ab-acids.	Bi, Ag, Fe, and Moderately Ba, Bi, Hg and Drying on pre-Ba should be absent, N H 4 C 2 H 3 O 2. ent, possibly Fe and also alkaline Insoluble in di-(CrO4).	Dilute boiling Other me HNOs; hot conc. of the H ₂ S HCl. In. Narif present. S ₂ O ₃ .
	e in	g scid, z	and and the HCl.	mineral Na ₁ S ₂ - H ₄ salts, l specially organic	ately nineral n both H s O 1. 6	boiling lot conc.
	Soluble in	too stron or lower of nitroge	Hot d HNO: strong ho	H ₂ SO ₄ , Conc. mineral little acids; in Na ₂ Sr-HCl. O ₂ ; in NH ₄ salts, a and and especially organic those of organic be ab-acids.	and Moder ab- strong ides acids; is ent, NH4C; line Insoluble	Dilute HNOs; b HCl. I.
	ns of	Organ-	or Hr- INOs is te solu- be cold	H Pod	fe, and be ab- hlorides absent, alkaline rtrates,	id, neu- lkaline. pitated SO4 80-
	Conditions solution	preferable. Or ic acids shoul absent.	Moderat strong HCl ol SO4. If HN present, the tion must be and dilute.	ess of but but salt salt of of must	Bi, Ag, Fe, and Moderat Ba should be absent, NH 4C2H and also alkaline Insoluble in citrates, tartrates, lute HNOs.	Slightly acid, neutral, or alkaline. E Best precipitated E in cold HiSO, solution.
P 0 4 1	Optained or precipitated as	D∷ 68	ಇಂದ ಬ್ಲಾಕು ಜ			EE.MC 0
1	or pi		CuS	Pbs(PbC	Pbs
1	ed by itated h		itant dilute tion.	itant	oitant in ace- olution.	itant
7	Obtained by or precipitated with		Precipitant CuS H2S in dilute acid solution.	Precipitant PbSO4 H2SO4.	Precipitant PbCrO4 K2Cr2O7 in acetic-acid solution.	Precipitant Pb8 H ₂ S.
	Object		Separa-	Weigh- ing.	Weigh-	Separa-
	Ele- ments	Cu		Pb		

lg Cl		As ₃ S ₃	the Mg:As ₂ O, in a seel, ting st.	P2O4
n until AgCl ss fuse. at s sture above		800	ring the Nate in into a vessel, rating, igniting	Mixed with 50 Sb ₂ O ₄ imes its weight ited to dull ed.
Ignition until the edges fuse. Volatile at a temperature slightly above		les Drying. Vol if tile as Ass upon ignition.	Dissolving the precipitate in HNOs into a weighed vessel, evaporating, and igniting slowly at first.	Mixed times its of HgO nited tered.
s of Pb f present ution.		sulphides group if	Mg salts, tes, and alts insolu- NH4OH+	ally ac- s the pre- removed cing the alcohol, ing with
y in Chlorides of HCl and Hg if pres Parlin the solution. alkalalar		1	Basic Nsulphat other salt ble in Nalcohol.	S generation of the second sec
from strong hot HCl and Hg if present the edges or HNOs. Partially in alkaline and alkaline-earth chlor-	ides. Readily in NH4OH, KCN, and Na ₂ S ₂ O ₃ . Same as AgCl. Insoluble in considerable excess of precipitant.	in al- lrates, s, and In aqua id in	In warm acids. Basic Mg salts, In H ₂ O + NH ₄ -sulphates, and Cl. Insoluble in other salts insolu-NH ₄ OH + alcoble in NH ₄ OH + hol.	Slightly acid and Moderately S generally ac- Mixed with 50 Sbs moderately dilute. concentrated companies the pre-times its weight acids (HCl especially). Tarby replacing the nited to dull taric acid assists H;O by alcohol, red. Dissolved by CSz. fixed alkalies or alkaline sul-phides.
h Partial nstrong ho or HNO3. tially in line and line-earth	ides. Res NH4OH, and Na ₂ S Same as Insoluble siderable of precipi	kaline hyc carbonate sulphides. KHSO, ir regia, an HrO+Clo	h In wa for In HiC of Cl. In ir NH(O).	d Mod scids acids pecially taric a precip Disso fixed a slk alk alk alk alk alk alk alk alk alk a
y acid wit free froi s.	AgCI.	th miners eferabl	Alkaline with In NH4OH, contain- In ling a minimum of Cl. NH4Cl and 30 per NH cent. alcohol.	' acid andely dilute
Slightly acid with the standard the standard chlorides.	Same as AgCl	Acid wi acid (pr HCl).	Alkaline NH4OH, con ing a minimu NH4Cl and 3 cent. alcohol.	Slightly moderat
AgCl	AgBr	As:S:	MgNH4- AsO,	Sb ₂ S ₃
Weigh- Precipitant AgCl ng. HCl in very slight excess.	Precipitant AgBr NaBr.	Precipitant HrS in HCl.	Precipitant MgNH4-MgCls in ammoniacal solution containing alcohol.	Precipitant Sb ₂ S ₃ H ₂ S in acid solution, or upon acidifying solutions of sulphantimonite.
Precipita HCl in valight excess.		Prec HrS in		Precipit H ₂ S in acid tion, or acidifying tions of su sutimonite.
Weigh- ing.	Separa- tion.	Weigh- ing.	Weigh- ing.	Weigh- ing.
Ag		8		gg.

PROPERTIES OF PRECIPITATES. Continued

Weighed as	1 0u	Mg1P1O7	8804	AgCI.
Prepared for weighing by	members Heating mod-SnOzgroup, if erately and slow-Separat-ly with free ac-Sb ₂ S ₂ by cess of air. Ad-H ₂ C ₂ O ₄ , dition of HNOzades.	as Mg. Same as Mg. M. no-molyb-For titration SiO ₂ , Fe ₂ O ₃ , by dissolving in NH ₄ OH and reducing by Zn+ H ₂ SO ₄ , or by acidimetry.	Same as BaSO4. BaSO4	Same as Ag.
Contaminants	_ 80:Ξ	Same as Mg. Arseno-molyb-date, SiO ₂ , Fe ₂ O ₃ , and TiO ₂ .	g NH¢- BaSO4. Same as BaSO4.	Same as Ag.
Soluble in	Moderately Other strong acids of H ₂ S (HCl especial-present. ly). In boiling ed from solution c o n - a d d in taining free H ₂ - and boil C ₂ O ₄ .	Same as Mg. NH4OH and alkalies. Soluble cin HCl and moderately strong H ₂ SO ₄ or HNO ₂ . In hot H ₂ O. Insoluble in very		Same as Ag.
Conditions of solution	Moderately di- lute and slightly s acid. Precipitation (promoted by ace- tates and inter-s fered with by oxa- lates or oxalic (acid.	Acid with HNOs, and containing an eately strong chlorides, HCl, re-HrSOs or HNOs. Chlorides, HCl, re-HrSOs or HNOs. ducing agents and In hot HrO. Incompand or ganic acid soluble in very	Same as BaSO4.	Same as Ag.
Obtained or precipitated as			BaSO4	AgCI
Obtained with or precipitated by	Precipitant SnSz HzSinacid solu- tion or upon acidifying solu- tions of alkaline sulpho-s tan- nate.	MgCl ₂ in ammoniacal solution containing NH ₄ CI. Precipitant 12MoOr(NH ₄) MoO ₄ in (NH ₄) HNO ₃ solution heated to 80°C. Agitation facilitates precipitation.	Precipitant BaCls in hot sol- ution containing a little free HCl.	Precipitant AgCl
Object	Weigh- ing.	Weigh- ing. Separa- tion and titration.	Weigh- ing.	Weigh- ing.
Ele- ments	$\mathbf{S}_{\mathbf{n}}$	A	B. BO. B.O., BO., etc.	ರ

]	1
SiO.	c 03	Pt
Ignition after drying. When impurities are present is determined by loss on ignition with HF and H ₂ SO ₄ .	Absorption in weighed apparatus containing suitable absorbents.	Ignition to Pt. (See KrPtCl6).
Si and Weigh- SiO ₂ ing. SiO ₂ ing. SiO ₃ ing. of acid solution action xH ₂ O, SiO ₂ Should contain a sing. of acid solution to dryness and to dryness and the sting at 115° to dryness and the sting at 115° be at 115° con tain a lanch fixed alkalies are should be removed fixed alkalies conc. H ₂ SO ₄ . Also present is detertor land by adding HCl (caustic or car-SnO ₂ , Sb ₂ O ₄ , and mined by loss and boiling. to fumes of SO ₄ solution to fumes of SO ₄ and boiling. to fumes of SO ₄ solution after SiO ₂ . When the sum of the sum	from the atmos- weighed appa- phere. Prevented ratus containing by suitable absortius.	(NH4)1Pt- Same as KiPtCls. Same as KiPt- Same as KiPtCls. Ignition to Pt. Pt Cls. (See KiPtCls).
Boiling caustic fixed alkalies. By fusion with fixed alkalies (caustic or carbonate). Insoluble in H ₂ O and acids (HF excepted).		Same as KiPt-Cle.
Should contain HCl. If much HNOs is present, should be removed by adding HCl and boiling.		Same as KrPtCls.
xH2O, SiO2	Na ₂ CO ₃ , K ₂ CO ₃ or Na ₂ CO ₃ + CaCO ₃ .	(NH4) ₂ Pt- Cl ₆
Byevaporation of acid solution to dryness and heating at 115° to 120°C., or by evaporation of H ₂ SO ₄ solutior to fumes of SO ₄	C, CO ₂ , Weigh- Absorption Na ₂ CO ₃ , etc. ing. with KOH, Na- K ₂ CO ₃ or OH, or Ca(OH) ₂ Na ₂ CO ₃ + + NaOH. CaCO ₃ .	PtCl4.
Weigh- ing.	Weigh- ing.	Weigh- PtCl4.
Si and SiO2	C, CO.,	Z

QUANTITATIVE PRECIPITATION OF METALS BY ELECTROLISIS 1

	ŀ	_	+	-	_	-	_	H	ŀ		_						
Solution	₽₽ P¢	- Ad	-0 Y	3A 3H	Pd	45_	98	#8	Cu.	C¶ B ¹	I.L	ΘŒ	υM	EZ :	•၁	1N	₽B
1 1 1 1 1 1 1 1		1			+(a)	<u>.</u>				1	(Q) +		(a)+	(p) -	-	+	
Dauble ammon oraliste	<u> </u>	<u></u> ,	<u> </u>			<u> </u>	<u> </u>	-	1	(S)	1	:	S +		Ιτ	1	
Double ammon sulphate	1 :	 	1 .	1		<u> </u>	· 	¦	-		:	(b)	(g) +		<u> </u>		
Double potass cyanide	1		1 1					1			:		;	:	Ì		+-(3)
-	-	-		<u> </u>	-		i	!	-		:	:	-				
Glacual phosphoric acid after (NH4) CO		-		1:		+ 			-	<u>:</u>			+	ı	Ī	1	

locron Katlan (private communication) called attention to the precipitation of selenium as metal at both cathode and a. This seems to be the only case where this is true. 1 KARN and Woodgarth, "Journ Soc. Chem. Ind.," Vol. VIII, p. 256.

- Precipitated on cathode as metal.

+ Precipitated on anode.

(a) On anode as PbOr.

(b) On anode as TirOs.

(c) On anode as MnOr.

(d) From alkaline or neutral solution.

(d) From alkaline or neutral solution.

(d) From alkaline or neutral solution.

(d) From pletaly. Completely from potage. salt.

(f) Incompletely. Completely from potage. salt.

(h) Incompletely.

(k) Incompletely.

(k) Incompletely.

(k) Incompletely.

(k) Incompletely.

(k) Incompletely.

SECTION VI

ORE DRESSING

CRUSHING

Stamps, Chilean mills and rolls are used for coarse crushing; feed generally not over 2 in. and discharge screen about 35 to 40 mesh. The roll makes less fines in the product than either of the others. Hardings mill is a stage crusher; feed about ¾ in. product uniform fine sand with but little slime; Huntington mill, regrinding machine; best feed not over ¼ in. makes considerable slime. Tube mill is best and only logical fine grinding machine.

Abbé Tube Mill.—The original Abbé gear-driven mill was supported on a pair of riding rings. The distinguishing feature was a spiral of Archimedes through which the ore was fed and discharged. Tube mills now supported either on riding rings or trunnions. Early tendency was toward long mill of small diameter, 22 ft. by $3\frac{1}{2}$ ft., now changing to 5 and 6 ft. diameter and 16 to 18 ft long. Grinding effected by flint pebbles fed into mill. (See Ball mill.)

Amalgamating Pan.—This is a flat-bottomed iron pan with an iron cone in the center, with high sides, nearly or quite vertical, and in it a horizontal, annular disk, called a muller, is revolved. Many authorities claim that this should not be used as a grinder, but only as an amalgamator. From 3 to 5 hp. is needed for amalgamating, and 5 to 10 hp. for grinding in a 5-ft. pan.

Arrastre.—A machine having horizontal surfaces grinding concentrically on a vertical shaft. In its original form it consists of a circular pavement from 6 to 20 ft. in diameter with a retaining wall around it and a step in the center. Upon the step stands a vertical revolving spindle from which extend horizontal arms, to which large boulders, called dragstones, are attached by chains.

Ball Mill.—Short tube mill (q.v.) of relatively large diameter in which grinding is done by steel balls instead of pebbles. Wet grinding with steel balls formerly considered unwise due

to excessive steel consumption now coming into favor.

Blake Crusher.—Original crusher of jaw type. Rock is crushed between two jaws set at an angle to each other, one fixed and the other swinging from top suspension rod. Motion imparted to lower end of crushing jaw by toggle joint operated by eccentric. (See also Dodge crusher.)

Bryan Mill.—A form of Chilean mill using three rollers instead of two. The wear seems a little more even in this type of mill

than in the Huntington or the regular Chilean.

Chilean Mill (Edge Runner).—These mills have vertical rollers running in a circular enclosure with a stone or iron base or die. They are of two classes: (a) those in which the rollers gyrate around a central axis, rolling upon the die as they go (the true Chile mill; (b) those in which the enclosure or pan revolves, and the rollers, placed on a fixed axis, are in turn revolved by the pan. It was formerly used as a coarse grinder, but is now used as a fine.

Dodge Crusher.—Similar to Blake crusher (q.v.) except movable jaw is hinged at bottom. Therefore discharge opening is fixed giving a more uniform product than Blake with its discharge opening varying every stroke, but this decreases capacity.

Dodge Pulverizer.—A hexagonal barrel revolving on a horizontal axis, containing perforated die plates and screens.

Pulverizing is done by steel balls inside barrel.

Edge Runner.—See Chilean mill.

Fuller-Lehigh Pulverizing Mill.—For coal dust pulverizing only. Used by the Pennsylvania Steel Co., at Lebanon, Penn.

Gardner Crusher.—A swing-hammer crusher, the hammers being flat U-shaped pieces hung from trunnions between two disks keyed to a shaft. When revolved, centrifugal force throws hammer out against feed and heavy anvil inside crusher housing.

Griffin Roller Mill.—A centrifugal mill, like the Huntington except there is one roller only (see "Huntington"). The mill is consequently unbalanced and requires a very solid

foundation.

Gyratory Crusher.—Consists of a vertical spindle the foot of which is mounted in an eccentric bearing. The top carries a conical crushing head revolving eccentrically in a conical maw. There are three types of gyratory: those which have the greatest movement on the smallest lump; those that have equal movement for all lumps; those that have greatest movement on largest lump.

Hardinge Mill.—This is a tube mill made with two conical sections connected by a central very short cylinder. The cone at the feed end is very short so that the large pebbles settle and

grind at the large end where the feed is coarse.

Huntington Mill.—This operates by the centrifugal force of steel rollers revolving against the inner surface of a heavy horizontal steel ring or die. The rollers are suspended upon rods from horizontal arms by short trunnions allowing a swing of the rod and roller in a direction radial from the central vertical shaft.

Kent Roller Mill.—This consists of a revolving steel ring with three rolls pressing against its inner face. The rolls are supported on springs, and the rings support the roll, so that there is some freedom of motion. The material to be crushed is held against the ring by centrifugal force.

Kinkead Mill.—This is a pan mill with a convex conical bottom on which a muller, having two surfaces of different

inclinations, grinds. The machine acts on the gyratory princi-

ple as regards crushing between the surfaces.

Jeffrey Swing-hammer Crusher.—In an iron casing a shaft revolves carrying swinging arms having a free arc movement of 120°. The rotation of the driving shaft causes the arms to swing out and strike the coal or other brittle material, which, when sufficiently fine, passes through the grated bottom.

when sufficiently fine, passes through the grated bottom.

Krupp Ball Mill.—This is the classic ball mill. Grinding was done by chilled-iron or steel balls of various sizes which ground against each other and the die ring, composed of five perforated spiral plates, each of which lapped the next. This formed steps which gave the balls a drop from one plate to the next, and in addition, gave a space through which oversize was returned. Outside the die-plate is a coarse perforated screen to take the chief wear, while outside that come fine gauze screens. The fines discharge through these into the housing inside which the screens revolve and which has a hopper bottom.

Lane Mill.—A slow-speed roller mill of the Chilean type. A horizontal spider carrying six rollers revolves slowly in pan 10 ft. or more in diameter making about 8 r.p.m. Advantages: great crushing weight, low power, decreased wear due to slow

speed.

Marathon Mill.—A form of tube mill used in the cement industry, in which the pulverizing is done by long pieces of

hardened steel shafting.

Marcy Mill.—A ball mill in which a vertical diaphragm is placed about 1 ft. from the discharge end. Between this perforated diaphragm and the end of the tube there are arranged screens for sizing the material, oversize being returned for further grinding while undersize is discharged.

Nissen Stamps.—This is a gravity stamp with an individual

circular mortar for each stamp.

Rolls.—Two cylinders, with faces much less than the diameters, revolving toward each other, drawing the material in between the crushing peripheries. One roll at least usually runs in fixed bearings, the other may or may not run in movable bearings held by springs.

Roll Jaw Crusher.—Same general type as Blake and Dodge (q.v.), but moving jaw has rolling instead of oscillating

 \mathbf{n}_{1} otion.

Stamp Battery.—In effect a heavy iron pestle working mechanically in a huge iron mortar. Generally grouped in units of five per mortar. Stamps vary up to 2000 lb. in weight, dropping 6 to 8 in. over 100 times per minute.

Sturtevant Balanced Rolls.—All four boxes are movable and held in position by springs. The idea is to divide the thrust whenever the springs yield and, by dividing by two the distance

the roll must move, to reduce internal stresses.

Sturtevant Grinder.—A disk grinder in which one disk is stationary and the other rotates. The stationary disk is moved out of center from time to time, so that any groove which forms can be ground out.

Sturtevant Roll Jaw Crusher.—A crusher in which the motion of the upper part of the jaws is very like that of the Dodge crusher, while the lower parts of the jaws, two cylindrical surfaces of varying radii, grind the ore between them.

Sturtevant Ring-roll Crusher.—Works as does the Kent

roller mill, which see.

Symon's Disk Crusher.—A mill in which the crushing is done between two cup-shaped plates which revolve on shafts set at a small angle to each other. These disks revolve with the same speed in the same direction and are so set as to be widest apart at the bottoms. Feed is from the center and the material is gradually crushed as it nears the edge, and is then thrown out by centrifugal force.

Williams Hinged-hammer Crusher.—A machine similar to the Jeffrey machine. There is a rotating central shaft carrying a number of hinged hammers, which fly out from centrifu-

gal force, crushing the feed against the casing.

Crushing with Taw Crushers

The jaw crusher is probably still the most popular method of reducing the size of ore. A table is given below of what has actually been done with jaw crushers, taken from RICHARD'S "Ore Dressing," but the ordinary table of manufacturer's figures on crusher outputs, etc., is omitted for reasons given in part of the general discussion by Milton H. Heller in the Engineering

and Mining Journal, Feb. 27, 1915.

When it is observed that the material fed to crushers is for the most part wet, as it comes from the mine, or dampened to reduce the dust, it is apparent the water exerts a lubricating action, which is further augmented should any clayey material be present. This condition might at any time bring the coefficient of friction down to 0.2. Again using RICHARD'S formulas, the angle of nip would have to be 11° or under before a bite would occur.

The great variety of shapes and sizes fed to a crusher, as compared with the rather uniform product to the rolls, would indicate that whereas a roll operating with an angle of nip of 16° is just on the danger point, a crusher so operated would have From this reasoning it would appear correct that exceeded it. the angles between the jaws of a crusher should not exceed 12° to work near its utmost capacity.

By referring to the accompanying table, it is readily seen what degree of reduction under present standard measurements of construction will bring the jaw angle about this limit:

DEGREE OF REDUCTION AND JAW ANGLE, BLAKE CRUSHERS

Size of crusher, in.	Actual width opening, in.	Length vertical jaw, in.	Set to crush to, in.	Angle between jaws
4× 7	4	12	1/2	15° 50′
			1 11/	13° 45′ 11° 50′
			11/2	9° 25′
7×10	61/4	1714	2 1	16° 30′
	->-		11/2 2 3 11/2	15° 0′
			2 -	13° 15′
			3	10° 30′
9×15	81/4	24	11/2	15° 25′
			21/2	13° 10′
			3	12° 0′
10×20	01/	26	4 11/	9° 30′ 14° 40′
10 × 20	81⁄2	20	2½ 3 4 1½ 3 4 1½ 3 4 5	11° 30′
			3	9° 40′
13×24	111/2	33	146	16° 30′
20,722	/2		3 2	14° 15′
			4	12° 30′
		1	5	11° 0′
15×24	131/3	33	11/2	22° 30′
			2	21° 45′
			3	20° 30′
			4	18° 30′
			D Q	17° 15′
			2 3 4 5 6 7	15° 20′ 13° 30′

The manufacturers, no doubt, have exceeded this angle, because it gave them the mouth-size that was sought, for the least cost. The direction that has been taken to increase crusher capacity has been to make a wider jaw. It would have been better if the jaw angle had been made smaller, and the additional iron put into the height of the jaw, rather than the width. The second point, the breaking character of the rock, is important, but is a character outside of our control.

It is readily admitted that a decrease in the size of the discharge opening will reduce the capacity. This amount of reduction is, however, greatly underestimated. Extending the principle given by RICHARDS in Vol. I, p. 35, of his "Ore Dressing," we may argue that in a 15 × 24-in. breaker, if one 15-in. cube reports at the mouth in 125 3-in. cubes, then the capacity at mouth is 125 times that at the throat when breaking to 3 in. If, now, the crushing be reduced to 1½ in., there would be 1000 cubes produced, and the capacity would be 1000 times greater at the mouth than at the throat. The capacity,

344 METALLURGISTS AND CHEMISTS' HANDBOOK

then, in the second case would be theoretically but one-eighth of that in the first case.

With the smaller opening there would be a proportionally larger amount of material that would have to be worked on, as with a smaller opening the probability of more stuff being smaller than that opening would be increased. This would have an added effect in reducing the output. As an illustration of how much this capacity reduction is underestimated, apply the principles stated to the catalog capacity of a 15×24 crusher:

Comparison of Capacities

Approximate capacity for 24 hours

		• •		
Break to	3 in.	$2\frac{1}{2}$ in.	2 in.	
Tons		480	420	• • • • •

THEORETICAL

Break to	3 in.	$2\frac{1}{2}$ in.	2 in.	1½ in.
Tons	600	$3\overline{47}$	177	75 -

An analysis of a catalog table will show the error of basing estimates upon the figures given.

APPROXIMATE CAPACITY IN TONS PER DAY OF 10 HOURS

Size	Tons	In.	Tons	In.	Tons	In.	Tons	In.
I—7×10 II—9×15 III—11×18	120	2 2½ 3	40 100 175	$\begin{vmatrix} 1\frac{1}{2} \\ 2 \\ 2\frac{1}{2} \end{vmatrix}$	25 80 150	1 11/2 2	15 60 100	34 1 134

In case I it is seen that a change from 2-in. to 1-in. product gives 0.5 the output; from 1½ to ¾ in., 0.37 the output. case II, a change from 2 in. to 1 in. gives 0.62 of the output. case III, a change from 3 in. to 1½ in. gives five-tenths (0.5) the output.

There is no consistency in the table, the intermediate size showing less cut than the one larger and the one smaller. The

table is in all probability no more than a guess.

Abbreviations.—C. = solid cast-iron frame; Cap. = capacity; Est. = estimated; griz. = grizzly; HP. = horsepower; hours; In. = inches; L. = lever pattern; Min. = minute; P. = Pitman pattern; p. = per; picked = poor residue left picking; Rev. = revolutions; S. = sectional bolted frame. CRUSHING WITH BLAKE TYPE OF BREAKERS

								_			
Est. HP.	•	20.	4	•	• •	•	•	۴	-	10:	25
Hepaira per year exclu- year exclu- sive of a sixe aring strage	\$100.	<u> </u>	None		• •	•	\$155	86			
Вип	Dry Wet	Dry	Wet		Dry	Wet	Wet	Dry 9	Dry	Dry	Ų.
Est. csp. per 24 hr., tons	125 300	150	112-120	• •	200	•	140	125	3:	• •	
Actual cap. per 24 h. per breaker tons	$\frac{50}{100-120}$.50 .8	371/2-40	95	100	40-50 50-50	861	88	828	ဒုတ္	
Crushed to, in.	%_	-121	1945	27.	77	117	77	72	1	2,7 2,7 2,7	27
Feed size	Mine ore Mine ore	ore ore		Mine ore	Mine ore picked		Mine ore.	Mine ore	ore ore	Mine ore Selected shipping ore.	picked, ov
Rev. per min.	450 360 500	388	128	38	300	250	214	985	38	34.8	340
Mouth size, in.	6×8 10×13 6×8	10×16 ×16	(XX)	7×10			•••		7×12	, , , , ,	
No. used	7-4 p-4 p-		1	-i 1	, ,	, - 1	- -	10	٠ <u>٠</u>	22 —	
птээзаТ		i Ai A									
Bresker No.		- 	1 7-4 7-	- 	-		- 	, -	- CQ :	a	9

Continued
BREAKERS.
TYPE OF
BLAKE
RUSHING WITH
U

Est. HP.	L2
Repaira per year exclu- year exclu- io evia wearing strag	None None Small Small Small
Вип	AAAAAAAAAAAEEEE A AEAE
Est. cap. per 24 h., tons	230 350 350 100 400 100
Actual cap. per 24 h. per breaker tons	200 250 75 60 300 300 300 300 480
Crushed to, in.	
Feed size	Mine ore picked Mine ore over 1½ in. griz. Mine ore over 1½ in. griz. Mine ore over 1 in. griz. Mine ore over 1 in. griz. (k) On No. 1 trommel 1½ in. Mine ore. (k) On No. 1 trommel, ½ in. Mine ore. (k) On No. 1 trommel, ½ in. Mine ore. (k) On No. 1 trommel, ½ in. Mine ore. (k) On No. 2 grizzly 3½ in. Mine ore over 4 in. griz. Mine ore over 4 in. griz. Mass copper rock (m). From No. 1 breaker. Copper rock (m) Kine ore over 4 in. griz. Mine ore over 4 in. griz.
Rev. per min.	280 280 280 350 350 350 350 350 350 350 350 350 35
Asia diuoM in.	797 797 798 798 798 798 798 798 798 798
No, used	
Pattern	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

~ #I			<u></u>	•	٥	:	:	*	0	Ç¢.		:	:	•		91	-			:		:	SIT
	: Fi		830	+	-	:	:	1	-	-	•	1	4	:	-	De l	4	-	•		-	:	mpler. A) Bann cough No
<u></u>	:©	:	99		<u>ځ</u>	:	:	-	F	<u>5</u>	:	:			:	Noi		•		:	- 4	:	6 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
A S	2 £	Dry	Dry	À A	À	Dry	P.	Did	À	Wet	Wet		Dry	Dry	Wet	Dry	Dry	A	Did	À	Ž	Wet	kod bro
72	50	:	200			* * * * * * * * * * * * * * * * * * * *			* 1	8	-		*			300	900	150				200	et 2-4 we n sometim gris., pie
223	252	15	116	110	1	100	22	12		Under 50		7.5		125	7.5	125	125	62	4			8	3.50 each, la so that pitma rough 194-in.
	11/2	72	-	27	12/2	200	7	172	172	172	172	-1	13%	176	172	27	-	*	11%	4	3.	172	Es, cost i
r 2 in. griz.	r 3 in. gris r 1½ in. griz.	r griz	r 1% in. griz	r 2 m. griz	r 135 in. gris	Ä.	r 2 in, gris	r 2 in. gris	r 11/4 in. gris	ael, 1 in							o. I breaker	o. 2 breaker		r 11% in. gris			(c) Rubber sprin fr year. (c) Very l
Mine ore over	Mine ore over Mine ore over	Mine ore over	Mine ore over	Mine ore over	Mine ore over	010	Mine ore over	Mine ore over	Mine ore over	(n) On tromm	Mine ore	Mine ore	Mine ore	Mine ore		Mine ore	Product of N	Product of N	Mine ore	Mine ore over	(C)	Mine ore	ncentrating ore.
	8×12 240 8×12 240	×12	×12	10×16 200	9×15/250	9×16	12×16 195	12×16 195	9×15/250	×15	7×9 220	X1022	8×12 252	X15/2	7×12[12×24 270	12×24 270	9×17 270	9×15200	15 X30 270	(q) 276	9×15	(f) Less than trings. (j) Pro
⊣ €0 (N 62	П	-		ಣ	 1	CN (ed (63	٥,		-	7	-		-	-	Ċ	-	-		-	ipping o
joi Jai,						-				_	_									P. C.			For all
			_	_	_		_	_	_		•	_	\equiv		_	_		_	_	_			35.2

348 METALLURGISTS AND CHEMISTS' HANDBOOK

ESTIMATED COST OF CRUSHING BY JAW CRUSHER¹

Size of mouth in inches Tons crushed in 24 hours Horsepower	84 5	7 × 10 120 8 \$500	9 × 15 192 12 \$750	10 × 20 300 20 \$1050	13 × 30 540 30 \$2250
Cost, cents per ton, oil	4.762	0.021 0.135 0.865 3.333 0.815 0.462	0.021 0.127 0.811 2.083 0.815 0.462	0.021 0.114 0.865 1.333 0.815 0.462	0.021 0.135 0.721 0.741 0.815 0.462
Total cost, cents per ton	\$6.939	\$5.631	\$4.319	\$3.610	\$2.895

ESTIMATED COST. OF CRUSHING BY SPINDLE BREAKERS

Number of breaker	$\begin{array}{c} 4 \times 30 \\ 72 \\ 3 \end{array}$	6 × 42 216 9 \$760	$\begin{array}{c c} & 4\\ 8 \times 54\\ 540\\ 22\\ \$1800 \end{array}$	6 11 × 72 1080 45 \$3300	8 18 × 126 3000 125 \$7000
Cost, cents per ton for oil Cost, cents per ton interest and depreciation Cost, cents per ton, power Cost, cents per ton, labor Cost, cents per ton, wear Cost, cents per ton, repairs		0.021 0.114 0.541 1.852 0.971 0.308	0.021 0.108 0.541 0.741 0.971 0.308	0.021 0.099 0.541 0.370 0.971 0.308	0.021 0.076 0.541 0.133 0.971 0.308
Total cost in cents per ton	\$7 .556	\$3.807	\$2.678	\$2.310	\$2.050

PER CENT. OF VOIDS IN CRUSHED LIMESTONE³

Screen opening,	Per cent. of voids								
inches	By water displacement	From specific gravity							
3,6	40.9	46.8							
3%	39.6	46.1							
1/2	42.2	47 . 1							
3/4	43.0	45 .6 -							
$1\frac{1}{4}$ to $\frac{3}{8}$	45.7	44 . 7							
2 to $\frac{1}{2}$	47.9	46 . 2							
1 1/4 to 3/8 2 to 1/2 2 to 3/4	46.6	46 . 6							
$2\frac{1}{4}$ to $\frac{3}{8}$	44.3	42.9							
$ \begin{array}{ccccccccccccccccccccccccccccccccc$	46.2	4 3. 4							
3 to 2	46.1	45.1							
3 to 2	47.5	46.1							

¹ R. H. RICHARDS, "Ore Dressing," Vol. I. ² R. H. RICHARDS, "Ore Dressing," Vol. I. ³ RICHARDS, "Ore Dressing," Vol. IV.

An ordinary mine wedge, 8 in. long by 4 in. wide by 2 in. thick at the large end, when caught in 9×15-in. breakers, takes about as long to work through as does a ton of ore. Moral—remove the wood first.

So far as known, up to the date of writing, July 16, 1915, the largest jaw crusher is one made by the Traylor Engineering and Manufacturing Co., a 66 × 84-in. jaw crusher for the Rockland Lake quarry of the Conklin & Foss Co. on the west bank of the Hudson River just north of Nyack. This crusher, described in detail in the Engineering and Mining Journal of Mar. 27, 1915, is slightly larger than the jaw crushers the Traylor company has previously supplied. The crusher weighs about 520,000 lb. and is approximately 18 ft. high, 26 ft. long and 20 ft. wide. The driving pulley is 12 ft. in diameter and a 350-hp. Westinghouse MS motor will be used to drive the crusher. Fourteen railroad cars were required to transport the crusher from the shops to the quarry, where blockholing and bulldozing will be practically eliminated by the unit.

Symon's Disk Crushers¹

For the work of secondary breaking from a 3- to 5-in. size, to approximately 1½ in., the Symons disk crusher is now being largely used, and has been adopted by the larger mining companies such as Phelps, Dodge & Co., the Guggenheim companies, the Anaconda Copper Co., and the Inspiration Copper Co. Records of the Detroit Copper Co. at Morenci, Ariz., give a life of 170,000 tons for one set of manganese-steel disks, which are the main wearing parts, and cost about \$300. The Federal Lead Co., at Flat River Mo., obtained the low figure of 0.2 ct. per ton for wear over a period of a year.

A test of capacity, power and size of the product of a 48-in. disk crusher was made by David Gilmour, chief engineer for the Guggenheim Exploration Co., with a view to determining the advisability of using it instead of 72 × 20-in. rolls, and as a result the disk crusher was adopted for the Chile Copper Co., at Chuquicamata, Chile. One of the tests was as shown

herewith:

Test of Disk Crusher

Feed, 20 per cent. 4 to 6 in., 50 per cent. 2 to 4 in., 25 per cent. 1 to $1\frac{1}{2}$ in.

Crusher opening, 11/4 in.

Product, 78 per cent. 1/2 to 11/2 in., 22 per cent. 1/2 in. and smaller.

Capacity, 100 tons per hour.

Power, 29 to 47.9 hp. It will be noted that the rated capacity for this crusher with 1½-in. product is 60 to 80 tons; the power from 50 to 65 hp., so that the catalog ratings are conservative.

In a more practical way the advantages of the disk crusher can be shown by a comparison of costs, which are available for

¹ Julius I. Wile, "Tendency of American Milling Machinery Practice," "Eng. and Min. Journ.," Apr. 17, 1915.

1000-ton units for secondary breaking from 3½ into 1½ in. The accompanying estimate is based on the cost of power and repairs only, with 8 hr. crushing and power taken at the low figure of \$50 per hp. per year, the average yearly tonnage being 350,000 tons. The estimate is given for both class A and class B ores, and comparison is made between gyratories, rolls and disk breakers.

CRUSHER ACTION ON VARIOUS ORES-CLASS A

	Two No. 5 gyratories, 50 hp. (25 hp. each)	72 × 16-in. rolls, 60 hp.	48-in. disk, 40 hp.
Power Repairs	0.24 cts. 0.65 cts.	0.29 cts. 0.50 cts.	0.2 cts. 0.2 cts.
Total	0.89 cts.	0.79 cts.	0.4 cts.
	Class B		
	Two No. 6 gyratories, 66 hp. (33 hp. each)	72 × 20-in. rolls, 80 hp.	48-in. disk, 50 hp.
Power Repairs	0.32cts. 1.30cts.	0.39 cts. 1.00 cts.	0.25 cts. 0.40 cts.
Total	1.62cts.	1.39 cts.	0.65 cts.

Crushing with Rolls¹

According to Philip Argall the most successful dry crusher is the belted roll. They do their best work on $1\frac{1}{2}$ - to 2-in. cubes. In wet crushing they give good results down to 20-mesh and fair down to 40-mesh. According to Mr. Argall the following formulas give the proper roll speed: Let P = peri-pheral speed in feet per minute; D = diameter of rolls in inches; N = the number of revolutions per minute; S = size in inches of maximum ore cube fed; $S_n = \text{size in inches of maximum cube}$ feed for a given diameter of roll; then

$$100 \times \frac{\log \frac{16}{s}}{\log 2} = P; \ 0.0476 \times D = S_n; \frac{382}{D} \times \frac{\log \left(\frac{16}{s}\right)}{\log 2} = N.$$

The angle of nip for a given particle is the angle between the tangents drawn to the rolls at the points where the particle touches. The most favorable angle is 32°.

The largest particle which can be fed to a set of rolls, according to Haton de la Goupillière is: $\frac{r}{R} > 18 - 19m$; where r = radius of roll, R = radius of largest particle in the feed, and ¹ R. H. Richards, "Ore Dressing," Vol. III.

m = ratio between diameter of the largest grain in crushed product and that of the largest grain in the feed.

The theoretical capacity of the rolls is: $\frac{60PWS}{1728} = C$; where P = peripheral speed in inches per minute, W = width of roll face in inches, S = space between the rolls in inches, and C = capacity in cubic feet per hour.

Size of Feed to Give a 32° Angle of Nip on Different Rolls

Diameter of rolls	Space between the rolls in inches										
in inches	34	5%	34	38	34	38	0				
36 30 26 24 20 16 9	2.23 1.99 1.83 1.74 1.58 1.42 1.14	2.10 1.86 1.70 1.61 1.46 1.29 1.01	1.96 1.73 1.56 1.48 1.32 1.16 0.88	1.84 1.60 1.44 1.36 1.20 1.03 0.75	1.71 1.47 1.31 1.22 1.06 0.90 0.62	1.57 1.34 1.17 1.10 0.94 0.77 0.49	1.45 1.21 1.05 0.96 0.80 0.64 0.36				

Size of Feed to Give a 32° Angle of Nipon Different Rolls

Diameter of rolls	Size of feed to rolls in inches										
in inches	1 1/2	11/4	1	34	3/2	14					
	Space between rolls (a)										
36	0.46										
30 26	$0.280 \\ 0.432$	0.038									
24	0.512	0.270	0.031								
$\begin{array}{c} 20 \\ 16 \end{array}$	$0.666 \\ 0.822$	0.424	0.185	0.101							
9	1.193	0.851	0.613	0.372	0.132						

⁽a) Where blank spaces are left the angle of nip is under 32° with the rolls set close together.

Width of Rolls.—According to Richards the following are the chief considerations. Wide rolls of the same speed have more surface and hence greater capacity. But as width and capacity increase so do the stresses to be met, and consequently the cost of the machine increases. On the other hand, narrow rolls are much easier to keep true, and by running them faster, provided the speed does not exceed the limits for good work, the capacity lost by narrowing can be regained, the stresses are less, and first cost, weight and friction are reduced.

A table of results of roll crushing, taken from RICHARDS,

follows:

352 METALLURGISTS AND CHEMISTS' HANDBOOK

Abbreviations.—Bi. = Blaks breaker; cap. = capacity; est. = estimated; G. = Garns breaker; gr. = grinsly; b = bours; in, inches; j.m. = jig middlings; L. = Lower breaker, mag. = magnetic, mar. = maximum; mid. = middlings; ov. = oversise; = sectional; th. = through; No. = number, tr. = trommel. GENERAL TABLE OF ROLL DATA

Roll No.

1	Class	3		м
	per tons	.xaM	130 70 50 250 250	128
	Cap 24 b.	fautoA	200 200 45 45 45 100 100 200 200 200 200 200 200 200 200	200
	-estiod -en	Est, power quired	12222	49
		Bevolu im req	0222224 750 (A) 5.000 00 00 00 00 00 00 00 00 00 00 00 00	00 %
I	.ai ,d3b	iw soasi	本本社の文字では、 2000年末の04年200年度 1 年末日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本	*
	.ni ,19	Diamet	3242882742	-8
		Space b rolla, i	**************************************	Close
		Product to	Hand jig. Y5 in No. 1 tr., 15 in No. 1 tr., 15 in No. 1 tr., 22 mesh. No. 1 tr., 20, 10, 2 mm. (8) No. 1 tr., 15 mm. No. 2 tr., 0 083 in. No. 2 tr., 0 252 in. No. 2 tr., 0 252 in. No. 1 tr., 0.050 in. No. 1 tr., 12 mm. No. 1 tr., 12 mm. No. 1 tr., 7 mm. No. 1 tr., 7 mm. No. 1 tr., 7 mm. No. 2 tr., 7 mm. No. 2 tr., 7 mm.	Mo. 1 tr., 6 mm.
		Dee.4		Th. H., 1944.; Ov. No. 1tr., 6 mm. Mo. 1 tr., 6 mm.
	**	TOUR TAC		74

- III - III - III - III, IV	T I	ı	HÀ.	I N	1 170 170 111 170 111, 170	III, IV
55 150 100	8 : : :			4 5 -	700 4450 3000 	
500 2000 1500 96	4 : [:	275	888	200	850 150 150 300	300
400 (30) (30)	30 - i 1	10	10	27.5	00044 : : :	15
848488	88. 64. 	40	26 30 35	36	8266244 244	, de
4.00 4.44	1622	14	404 404	222	54242021	45545
200000000000000000000000000000000000000	2222	36	2002	2007	######################################	22888
Close Sato 3rd Close 35 55 55 55 55 55 55 55 55 55 55 55 55	Close Close	*	Ciose Z	C 222		CI 72
Ags No 2 tr, 0,224 in No 2 tr, 0 224 in No 2 tr, 54 in No 9 tr, 24a in No 2 tr, 16 min.	No Str. 342 mm. No 1 tr. 8 mm. No 1 tr. 8 mm. No 2 tr. 6 mm.	No 1 tr, 25, 15, 10 mm. (8)	No 1 tr., 25, 15, 10 mm, (S.) No 1 tr., 25, 15, 10 mm, (S.) No 3 tr., 5, 235 mm (S.)	No 1 tr. 18, 15, 9 mm. (S.) No 1 tr. 18, 15, 9 mm. (S.) No 3 tr., 2½ mm.	No 1 tr., 12, 8 mm. (S.) No 4 tr., 5, 2 mm. (S.) No 4 tr., 5, 2 mm. (S.) No 4 tr., 5, 2 mm. (S.) No 1 tr., 0.2, 0.31 m. (S.) No 2 tr., 0.2, 0.13 in. (S.) No 1 tr., 15 mm. No 1 tr., 15 mm.	No. 5 tr., 3 mm. No. 1 tr., 16 mm. No. 5 tr., 2½ mm. No. 1 tr., 0.5 in. No. 1 tr., 0.5 in.
ig skirmmings, 6 min to 0 from Dudge brenker, 1 in by No. 2 tr., 0 234 in b) Bl. 13g in, on No. 1 tr., 155 in, gr tailings, 4g to 25g in	indi.	1 Th gr, 15; in; th G or Bl, 255	1 rolls on No. 1 tr , 25 mm to 7 mm; ov. No. 3 tr,	Bl, 1½ m . 1½ in to 4 mm . 4 mm. to 0, j m., 2½ mm	Bl. 1½ m., th. gr., 1½ in. 1½ in to 8 mm. 8 to 5 mm. 5 to 2 mm. Bl 1 m., on No. 1 tr., 0.5 in 0 5 in to 0. r. 1½ in, th G., 1½ in.	3

354 METALLURGISTS AND CHEMISTS' HANDBOOK .

	ē	ε	DI II	IV VI		22-2		NA NA	Ā	
	per tons	AsM.	: :	1 1 1		1014		125	100	
	Cap 14 b (a) (a)	IsutoA	::			500	81	::	15	20
	-81	Est, b power pariup						10		: : :
		uloveA im 19g	40,	403.4	322	80 4 C E	2007	202	99	RR
72	at, in	Face wi	10	255			22222	16	91	212
Continued	αί ,18	Diamet	20	26 42 42	288	2389	88888	28	8	010 010 010
DATA-CO		d esaqê i ,alist	1984	žaž	7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	Close 15	Close Close	000 000 000 000 000 000 000 000 000 00	Clotte	G S S
GENERAL TABLE OF ROLL I		Product to	No. 3 tr., 0.2 in. No. 1 tr., 25 mm.	No. 1 tr., 25 mm. No. 1 tr., 25 mm. No. 7 tr., 7, 3 mm. (8.)	2 tr., 36 ib. 2 tr., 36 ib. 6 tr., 245 mm	884 11111		No 5 tr., % in. No 5 tr., 0.1 m.	No. 2 tr., 3 mm.	No. 1 tr., 4 mesh No. 1 tr., 0.234 in. No. 1 tr., 0.224 in.
GB		Febd	0 31 in to 0	to 3 mm. to 3 mm.; ov. No. 7 tr.,	., 195 to 75 in.	(a) Jig tailings, 15 to 8½ mm From No 2 Bl., 1 in	2 breaker o 1 rolls. to 14 in. to 14 in.	th. 14 in. 14 in. to 0, ov. No 5 tr., 0.1	J.m., 1 in. to 3 mm.; ov. No. 2 tr., No.	Th. Bl. 145 in. on No.1 tr., 4 mesh No. Th. Bl., 145 in. No. 1 tr., 0.234 in. Mo.
	-	ноп ио	저근	E4 60 44	-010	48.5	ब चा न्य दव रहा चा	49+4	H	++++69

~~ 그 ~ 이 ~ 이 10 ~ 이 ~ 이

W tons for hard their maximum capacity is what their maximum capacity. (b) mm. on No. 2 tr., 10 mm.; J. in. on No. 1 tr., 0.252 in. (35 revolutions the rolls becameting table heads. (c) Ov. ment. (f) Th. Donoz, 1% in. ov. No. 5 tr., 2½ mm. (n) J. 2 tr., 1½ in. (p) This varies classes referred to in the above uct of a breaker after it has may not have been screened; I

Tube Mill Data¹

Relation between Per Cent. Ore and Solution, Fineness of Grinding and Horsepower

Screen Analysis of Sand Fed to Tube Mills, 12 ft. Long, 5 ft. Diameter

On 20 On 30 On 40 On 60 On 80 On 100 On 120 On 150 Through **150** 6.0 20.0 24.0 23.0 11.0 8.0 4.0 2.0 2.0

VARIABLE PEBBLE VOLUME, FIXED ORE AND SOLUTION

Pounds, pebbles	On 60	On 100	On 150	Through 150	Per cent., ore	Per cent., solu- tion	Tons ore per 24 hr.	Indi- cated horse- power
3,000 6,000 9,000 12,000 15,000 16,800 19,000 20,000 21,000 22,000 23,000 24,000 24,500 25,000 26,000 27,000	42.5 46.5 42.0 32.0 29.0 18.0 3.5 4.0 9.0 6.0 6.0 3.0 4.0 3.0	27.5 23.5 26.0 32.0 30.0 29.0 28.0 30.0 29.0 20.0 20.0 20.0 20.0 20.0 20.0 2	8.0 8.0 12.0 14.0 12.0 16.0 13.0 15.0 14.0 14.0 14.0 14.0	22.0 24.0 24.0 24.0 34.0 51.5 55.0 44.0 50.5 50.0 54.0 57.0 57.0 45.0	63.72 70.17 74.29 60.00 65.38 66.67 66.67 71.88 71.88 71.88 70.37 70.96 68.18 66.67 70.00 68.00	36.28 29.83 25.71 40.00 34.62 33.33 33.33 28.12 28.12 29.63 29.04 31.82 33.33 30.00 32.00	172 172 172 172 172 172 172 172 172 172	18.80 20.37 22.5 32.16 39.13 42.88 47.16 51.45 56.28 60.10 65.39 77.18 68.61 69.68 75.04 68.60 64.85

Variable Ore and Solution, Fixed Pebble Volume

Pounds, pebbles	Feed, inches	Tons ore per 24 hr.	On 60	On 100	On 150	Through 150	Per cent., ore	Per cent., solu- tion	Indi- cated horse- power
20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000	3 312 312 4 4 412 412	172 172 190 190 216 216 231 231	7.0 13.0 12.5 14.0 16.0 14.0 26.0 30.0	32.0 35.0 36.0 34.0 36.0 38.0 30.0		41.0 41.5 40.0 36.0 34.0 30.0	64.71 66.67 71.05 67.86 68.18 69.70 66.67 72.22	28.95 32.14 31.82 30.30 33.33	54.28 51.6 54.8 53.2 49.4 47.5

¹ Hofman, "General Metallurgy."

VARIABLE SOLUTION, FIXED PERBLE VOLUME AND ORE FEED

Pounds, pebbie	Ore feed, inches	Tons ore per 24 hr.	Tons solu- tion per 24 hr.	On ,80	On 100	On 150	Through 150	Per cent., ore	Par cent., solu- tion	Indi- cated horse- power
20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000	~~~~~~~~~~~	172 172 172 172 172 172 172 172 172 172	68.0 75 0 90.0 92 0 98.0 111 0 113 0 136 0 196 0 207.0 268.0	13 00 8 00 8 00 7 00 7 00 5 5	30 0 32.0 33 0	12 0 14.0 12 0 13 0 13 0 14.0 14.0 13.0	49.0 48.0 46.0 46.0 50.0 46.0 47.0 51.0	69 56 65 67 65 20 63.78 60.70 60 44 85 71 47 10 45.40		45.0 48.9 55.8 57.4 58.0 56.9 55.0 55.8 59.0 62.3 62.3

Work of Grinding Pan and Tubb Mill at Homestakes

-	5-ft. grinding	5 × 14-ft.	tube mill
	12,308 tons ground by 7 pans	Regular adjustment, medium feed	Special adjustment, heavy feed
Total tons ground per day	19.34 per pan	78	110.0
Tons ground per day to pass 200-mesh sieve Water in feed, per cent	10.83 per pan 80–90	43 38	52.8 38.4

	Head	Tails	Head	Tails	Head	Tails
Assay: gold value per ton Sixing test: per cent. on 50 mesh	\$2.66 47 84 9 6	\$2.07 6 0 14.0 14.0 26.0 40.0	\$2.49 89.0 88.0 12.0 7.0 4.0	\$2.04 5.0 12.0 13.0 28.0 42.0	\$2.49 18.0 49.0 17.0 11.0 5.0	\$2.06 7.0 15.0 14.0 26.0 88.0
power per day at one passage through grinder. To pass 100-mesh sieve To pass 200-mesh sieve		1.81		1.14		2.92 1.40 0.97

Material consumed. Iron, worn, 8.41 pounds per ton Total iron 4.23

1.66 Pobbles

¹ HOPMAN, "General Metallurgy."

LANE LOW-SPEED CHILEAN MILL DATA!

Size of mill	mill		Туре	Type of ore		Size	ze of feed	ڻ ا	Discharge	Consistency of overflow	Tons per 10 hrs.
10-ft 10-ft 10-ft 10-ft		Schist and hard quartz. Same ore as above. Hard, no talcose matter Tough, close-grained quartz Chunderlee, Australia Hard quartz Brecciated quartz and andesit.	Schist and hard quartz	quartzovee matter ained quartzstraliastralia	uartz		in. ring size. in. ring size. 34-in. 14-in.	4: 4: • • • • •	7½-in. overflow, no screen 6-in. overflow, 30-mesh screen. 7½-in. overflow 7-in. overflow 7-in. overflow 9-in. overflow 6½-in. overflow	80 % water 80 % water 82 - 84 % 80 % water	19.4 13.3 16.6 13.3 16.6 20-21
Size of		Scree	Screen analysis (not cumulative)	sis (not	cumule	tive)		Rev. per.	O Company	,	
llim	+30	+40	09+	08+	+100	+120	-120	min.		24	:
10-ft. 10-ft. 10-ft.	0.428 none 0.16	0.858 none 1.05	2.376 0.87 6.33	5.346 3.959 4.06	13.848 13.017 15.33	13.848 3.656 13.017 5.952 15.33	73. 182 76.049		Shows screen is a detriment 6.84 % on 150; 12.25 % on 200, 53.42 through 200		1gh 200
10-ft.	:	2.7	12.0	12.0	11.8	61		œ		•	•
10-ft. 10-ft. 7-ft.		1.0 0.5 3.0	2.0 2.25 12.0	3.0 11.5 3.4	4.0 13.5 12.5	90.0	0.00	~~~	To compare effect of height of discharge Barnes-King Development Co., Mont. Argonaut mine, Cal. 62% minus = 200	nt Co., Mont. ninus = 200	
	- -].];						

1 From original notes of Alexander McLaren, Litchfield, Conn. Mr. McLaren says that at least 2 in. of pulp should be kept under the rollers of the slow-speed Lane mill. The slow-

:

	-200	39.4
	+200	628.0 5.0 7.0
าวทาง	+150	ine i
ouse or product	+60 +100 +150	25.00 12.6
2550	' '	6
	+ 50	121
	980	14.5
ď		Hard Hard Medium. Hard
Feed		14-in 14-in 4-mesh 135-in
Screen	mesp	8888
D D	24 Dr	124 120 75 105
Rev per	digit	34
Type		Akron 6 ft. Akron 6-ft Trent 6-ft Monadnock
Men	*	Portland Independence Goldfield Mogul

One horsepower will crush from 1 to 2), tons of ore in the slow-speed mill brivate notes of H. A. Mægraw

CRUSHING WITH GYRATORY CRUSHERS

Shims up to 8 in. Head raised by GATES; gris. - grissly; hp. Screw to 6 in. Screw to 6 19. Worm gear. Worm goar. (g) 30 80 - 25 80 - 25 bp, roquired 20 Ř श्रमु attag gaitasw 3 Œ S 3 Repairs pesides i (6)980 960 REGI aad (n) ₩ 480 380 34 ponts' = estimated; dwa TH III 18日 BUO1 75 125 200 80 tetual cap, per br. per 24 hours, 2002 잃었 [auto A 1 to 145 - maximum: No - number esdoai Abbreviations.—Br. = breakers; c. = comet. cap = capacity, est ebower, in = inches, L = Lowar, max = maximum; No = numb exig pedanta Mine ore over 15-1n gris. Mine ore over 155-in griz Mine ore over 115-in gris Mine ore over 114-in gris Mine ore over 14-in griz I-in gris Size of feed Mine ore over Mine ore Mine ore Mine ore Mine ore bead 300 Revolutions 212 ŏ 2222 2222 minute pulley ŏ 425 8 Stre ეტოთდიიდტე used å Pattern ರಿಂದಿರಿದಿದ್ದರು ಬಿನ್ನ Beaker No Por l --------

This is the result of (9) Bovel year and (b) This (a) These are estimates by the mill managers, for capacities quoted by manufacturers, see Tables 19 and 20, can probably crush 1440 tons in 24 hours. (c) Repairs, oil and other incidentals, \$200 per year. (d) between measurement. (e) None except occasional babbitting. (f) Babbitt eccentric every 6 months. pinion gear. (b) Babbitting bearings. (i) Through No. 3 breaker on No. 1 trommel, 1 in.

HARDINGE MILL DATA

Speed, rev. per min.	
Charge, balls or pebbles, pounds	8,000 8,000 8,000 8,000 8,000 8,000 10,000 1
Material	Ore from mill bin. Jig tailing. Rock-crusher product. Rock-crusher product. Rock-crusher product. Rock-crusher product. Middling from jigs and tables Oversize Colbath classifier. Product 16 by 42-in. rolls. 1 Jig middling. Jig middling. Jig middling. Jig tailing. Jig tailing. Jig tailing. Jig tailing. Jig tailing. Jig tailing.
Gangue	Quartz and basalt Siliceous porphyry Quartzose, very hard. Quartz and schist Quartz and schist Quartzite and siderite. Altered schist Altered schist Quartzite and siderite. Quartzite and siderite. Quartzite and siderite. Quartzite and siderite. Quartzite and siderite. Quartzite and siderite. Quartzite and siderite. Quartzite and siderite. Siliceous limestone Conglomerate Amygdaloid Porphyry
Mining company	Vipond Porcupine Mines Co. Miami Copper Co. Britannia M. & S. Co. McIntyre Porcupine Mines. McIntyre Porcupine Mines. Buckhorn Mines Co. Vipond Porcupine Mines. Wiami Copper Co. Miami Copper Co. Federal M. & S. Co. Federal M. & S. Co. Federal M. & S. Co. Calumet & Hecla. Copper Range Consol Arizona Copper Co.
Туре	Ball Ball Ball Ball Ball Pebble Pebble Pebble Pebble Pebble Pebble Pebble Pebble Pebble Pebble Pebble Pebble
Length cylin- der, inches	14 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Diameter of mill, feet	4.၀၀၀၀၀ ၀ ၀လလလလလလလလလ ကုိ
No.	122 107 1554 192 191 108 109 109 136 136 136 136 137

Continued
DATA.
MILL
ARDINGE
H

Pebbles or a factor of a factor or a facto	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
Elevation of feed end, inches	80-440044040400000000000000000000000000	ľ
Por cent, bast in tataw	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
Relative much.	**************************************	
Difference, E U	1,143 583 1,392 1,392 1,010 594 1,010 594 1,010	
Energy units	1,423 4 1,432 4 1,432 7 1,535 6 1,535 6 1,535 6 1,591 3 1,504 7 1,508 7 1,508 7 1,508 7 1,508 7 1,508 7 1,508 7 1,508 7 1,508 7 1,508 7 1,508 7 1,508 7 1,508 7 1,508 7	
7er eent daam 008 -	622-255-255-255-25-25-25-25-25-25-25-25-2	
Average num jazis	000000000000000000000000000000000000000]
All pass, D	54564-800-8-004-04-04-04-04-04-04-04-04-04-04-04-04	֧֓֞֟֟֟֟֟֟֓֓֟֟֟֓֓֓֓֟֟֟ ֓֞֓֓֓֞֓֓֓֞֓֓֞֓֓֞֓֞֓֓֓֞֓֞֓֓֞֓֓֞֓֞֓֓֓֡֡֓
Energy units	280 2 912 3 313 1 1,092 8(?) 1,040 9 1,040 9 1,040 9 1,05.6 1,05.6 1,05.6	
Avriage m 1 1418	10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
All pass,	85.0008622424446 8-58821004740476 5.8851004740476	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓
Tour pare I	で の し の し の の は の の の の の の の の の の の の の	
томодовно Н		
Tons, per 24	28.55 120 120 120 120 120 120 120 120 120 120	
S.	123 155 107 108 108 108 108 108 108 108 108 108 108	

thes (cf. "Kng. and Min. Journ.," Nov. 21 and 23, 1914). See for another basis, "Eng. and Min. Journ.," May 24, 1913, and Apr. 18, 1914, and the "Work of M. E.," February, 1914. Either method gives comparative results, one must be absolute units, and the arguments are too voluminous to reprint here CATES on the "Crushing-Surface Diagram, "Eng. of", by Arthur F. Trogarat, "Trans. A. I. M. E.," F energy unite The "er Anthum (Crushing"

HARDINGE MILL DATA¹

	6 ft. by 16-in. ball mill	8 ft. by 22-in. pebble mill
Average maximum size of feed, mm	9.0 6.0 0.37 28.9 ²	9.7 1.26 1.5 0.14 37.0 44.3 31.6
A in. slope. Reduction ratio, range. Reduction ratio, average. Average size of product, no slope, mm. Average size of product, slope 0.5 to 4 in. Average tonnage. Average tonnage at no slope. Average tonnage at 0.5 to 4 in. slope. Average horsepower. Average charge, balls or pebbles, tons. Average ball or pebble consumption, pounds per ton. Average relative mechanical efficiency. Average percentage of water in feed. Average revolutions per minute.	7 to 67 39.6 	0.17 110

¹ Trans. A. I. M. E., July, 1915. ² Nos. 155 and 191 estimated.

Stamp Milling

Stamp order—Homestake 1 Stamp order—Brazil 1 2 4 3 5 5 2 4

Drops per minute—theoretical maximum on 9-in. drop—95. Drops per minute—theoretical maximum on 8-in. drop— 100 to 108.

STAMP MILL DROPS'

•	Length of drop, inches	Number of drops per minute	Total inches drop per minute	Compara- tive power required	Number units crushing force per drop	Number units crushing force per minute
•	6	115	690	100.00	1.0000	115.00
	7	108	756	109.57	1.1667	126.00
	8½	100	850	123.19	1.4167	141.67
	10½	90	945	136.96	1.7500	157.50

¹ McFarren's "Stamp Milling and Amalgamation." Courtesy of the "Mining and Scientific Press."

HORSEPOWER PER STAMP REQUIRED BY THE 5-STAMP BATTERY¹

Height of Drop in Inches and Number of Drops per Minute

A. Nominal Horsepower to Raise Stamps without Friction

		1			Ţ	
Weight of	5 in.	6 in.	7 in.	8 in.	9 in.	10 in.
stamp in	115	110	105	100	95	90
pounds	drops	drops	drops	drops	drops	drops
			·			
850	1.234	1.417	1.578	1.717	1.835	1.932
900	1.307	1.500	1.670	1.818	1.943	2.045
9 5 0	1.379	1.584	1.764	1.919	2.052	2.159
1000	1.452	1.667	1.856	$\frac{1.013}{2.020}$	2.052 2.159	2.139
1000	1.102	1.007	1.000	2.020	2.105	2.213
1050	1.525	1.750	1.949	2.121	2.267	2.386
1100	1.597	1.833	2.042	2.222	2.375	$\frac{2.500}{2.500}$
1150	1.670	1.917	2.134	2.323	2.483	$\frac{2.614}{2.614}$
1200	1.742	2.000	2.227	2.424	2.591	2.727
1200		2.000			1.001	2.12,
1250	1.815	2.083	2.320	2.525	2.699	2.841
1300	1.888	2.167	2.413	2.626	2.807	2.955
$\overline{1350}$	1.960	2.250	2.506	2.727	2.915	3.068
1400	2.033	$\frac{1}{2}.333$	2.598	2.828	3.023	3.182
	_,,,,,				0.020	0.101
1450	2.105	2.417	2.691	2.929	3.131	3.295
1500	2.178	2.500	2.784	3.030	3.239	3.409
155 0	2.251	2.583	2.877	3.131	3.347	3.523
1600	2.323	2.667	2.970	3.232	3.455	3.636
1650	2.396	2.750	3.062	3.333	3.563	3.750
1700	2.468	2.833	3.155	3.434	3.670	3.864
1750	2.541	2.917	3.248	3.535	3.778	3.977
1800	2.614	3.000	3.341	3.636	3.886	4.091
1850	2.686	3.083	3.434	3.737	3.994	4.204
1900	2.759	3.167	3.527	3.838	4.102	4.318
1950	2.831	3.250	3.619	3.939	4.210	4.432
2000	2.904	3.333	3.712	4.040	4.318	4.545
2050	2.978	3.417	3.805	4.141	4.426	4.659
2100	3.050	3.500	3.898	4.242	4.533	4.772
2150	3.123	3.583	3.990	4.343	4.641	4.886
2200	3.194	3.666	4.084	4.444	4.750	5.000
		<u> </u>				<u> </u>

¹ McFarren's "Stamp Milling and Amalgamation." If the number of drops used varies from that in the table, multiply the horsepower taken from the table by the number of drops used, and divide by the number of drops in the table.

B. Horsepower Applied to Cam-shaft Pulley (1.202 times A)

Weight of stamp in pounds	5 in.	6 in.	7 in.	8 in.	9 in.	10 in.
	115	110	105	100	95	90
	drops	drops	drops	drops	drops	drops
850	1.483	1.703	1.897	2.064	2.206	2.322
900	1.571	1.803	2.008	2.185	2.336	2.459
950	1.658	1.903	2.119	2.307	2.465	2.595
1000	1.745	2.003	2.231	2.428	2.595	2.732
1050	1.833	2.103	2.343	2.550	2.725	2.868
1100	1.920	2.204	2.454	2.671	2.855	3.005
1150	2.007	2.304	2.566	2.793	2.984	3.142
1200	2.094	2.404	2.677	2.914	3.114	3.278
1250	2.182	2.504	2.789	3.035	3.244	3.415
1300	2.269	2.604	2.900	3.157	3.374	3.551
1350	2.357	2.704	3.012	3.278	3.504	3.688
1400	2.444	2.805	3.123	3.400	3.633	3.825
1450	2.532	2.905	3.235	3.521	3.763	3.961
1500	2.619	3.005	3.347	3.642	3.893	4.098
1550	2.706	3.105	3.458	3.764	4.023	4.234
1600	2.793	3.205	3.570	3.885	4.152	4.371
1650	2.881	3.305	3.681	4.007	4.282	4.507
1700	2.968	3.406	3.793	4.128	4.412	4.644
1750	3.055	3.506	3.904	4.250	4.542	4.781
1800	3.143	3.606	4.016	4.371	4.671	4.917
1850	3.230	3.706	4.127	4.492	4.801	5.054
1900	3.317	3.806	4.239	4.614	4.931	5.190
1950	3.404	3.906	4.350	4.735	5.061	5.327
2000	3.492	4.007	4.462	4.857	5.190	5.464
2050	3.579	4.107	4.574	4.978	5.320	5.600
2100	3.667	4.207	4.685	5.099	5.450	5.737
2150	3.754	4.307	4.797	5.221	5.580	5.873
2200	3.840	4.408	4.908	5.342	5.710	6.010

C. APPROXIMATE TOTAL HORSEPOWER (1.35 times A)

				 		,
Weight of stamp in pounds	5 in.	6 in.	7 in.	8 in.	9 in.	10 in.
	115	110	105	100	95	90
	drops	drops	drops	drops	drops	drops
850	1.666	1.913	2.130	2.318	2.477	2.608
900	1.764	2.025	2.255	2.454	2.623	2.762
950	1.862	2.138	2.380	2.591	2.769	2.915
1000	1.960	2.250	2.506	2.727	2.915	3.069
1050	2.058	2.363	2.631	2.863	3.060	3.222
1100	2.156	2.475	2.756	3.000	3.206	3.375
1150	2.254	2.588	2.881	3.136	3.352	3.529
1200	2.352	2.700	3.007	3.272	3.498	3.682
1250	2.450	2.813	3.132	3.409	3.643	3.836
1300	2.548	2.925	3.257	3.545	3.789	3.989
1350	2.646	3.038	3.383	3.681	3.935	4.143
1400	2.744	3.150	3.508	3.818	4.081	4.296
1450	2.842	3.263	3.633	3.954	4.226	4.449
1500	2.940	3.375	3.758	4.091	4.372	4.603
1550	3.038	3.488	3.884	4.227	4.518	4.756
1600	3.136	3.600	4.009	4.363	4.663	4.910
1650	3.234	3.713	4.134	4.500	4.809	5.063
1700	3.332	3.825	4.260	4.636	4.955	5.217
1750	3.430	3.938	4.385	4.772	5.101	5.370
1800	3.528	4.050	4.510	4.909	5.246	5.523
1850	3.626	4.163	4.635	5.045	5.392	5.677
1900	3.724	4.275	4.761	5.181	5.538	5.830
1950	3.822	4.388	4.886	5.318	5.684	5.984
2000	3.920	4.500	5.011	5.454	5.829	6.137
$egin{array}{c} 2050 \\ 2100 \\ 2150 \\ 2200 \\ \end{array}$	4.018	4.613	5.136	5.590	5.975	6.291
	4.116	4.725	5.262	5.727	6.121	6.444
	4.214	4.838	5.387	5.863	6.266	6.597
	4.312	4.950	5.512	6.000	6.412	6.750

Mud Sills.—These vary from three to four and range from 12×12 to 24×24 in. These are used only with old-style wooden foundations.

Cross Sills.—These range from 12×16 in. to 20×24 in.

MORTAR BLOCKS1

	Ft. In. Foundation Material How fastened	8 2-in. plank on end (a)	4 Solid rock	ete $(b) \mid 30 \times 30$ -in. timbers	0 Solid rock	6 Solid rock	6 Solid rock 28×30 -in. timbers	$ 2 $ Solid rock $ 2 \times 12$ -in. plank	6 Solid	-	4 Three timbers	0 Concrete	2 5 Solid rock (f) Pine timbers, 29×29 in. By three 11%-in. bolts.	7		6 Solid rock	0 Solid rock 24×30 -in. timbers	$ 6 $ Solid rock $ 18 \times 12$ -in. timbers	2 Solid rock	
Width		8	4	9	0	9	9	7	9			0	ro.		4	9	0	9	7	
tth	In. I		10	101%	0	0	10	∞	4	-	_	0	10	9	_ 2	0	0	0	∞	_
Length	Ft.	:	4	4	ಬ	က	4	4	(c) 28		4	(e) 13		4	4	(e) 13	3	(e) 10		
th	In.	0	0	0	0	ර	0	0	0		7	0	0	0	4	0	0	0	0	
Depth	Ft.	12	တ	14	12	12	14	19	18		တ	01	6	10	တ	14	10	တ	12	

(a) With width parallel to cam shaft. (b) 2 ft. thick. (c) For four batteries. (d) Planed and joined. (e) Length over all. The author is in doubt whether these are individual or combined mortar blocks. (f) Levelled by sand. ¹ R. H. RICHARDS, "Ore Dressing," Vol. I.

Steam Stamps

The steam stamp is one in which a vertical stamp shaft is forced down to strike its blow, and lifted up preparatory to the next by means of a steam piston. The large ones are used solely in the Michigan Copper Country. A small steam stamp, the Tremain, built by the Gates Iron Works, has been devised for treating gold ore, the idea being that they would be light to pack for the capacity obtained, and could be quickly mounted and dismounted.

STANDARD MINING SCREENS1

Mesh	Wire No.	Diam. of wire, inches	Diam. of aperture, inches	Equivalent in milli- meters	Per cent. of opening
1''	3	0.2437	0.7563	19.81	
	I .	0.2253	0.5247	13.33	
3/4" 5/8"	5	0.2070	0.4180	10.62	
2 mesh	5 8	0.1620	0.3380	8.59	
$2\frac{1}{2}$	9	0.1483	0.2517	6.39	
3	10	0.1350	0.1983	5.04	
$3\frac{1}{2}$	11	0.1205	0.1652	4.20	
4	12	0.1055	0.1445	3.67	• • • • • • • •
$4\frac{1}{2}$	13	0.0915	0.1307	3.32	
5	13	0.0915	0.1085	2.76	
6	14	0.0800	0.0867	2.20	
6 7 8 9	15	0.0720	0.0709	1.80	
8	16	0.0625	0.0625	1.59	
9	17	0.0540	0.0571	1.45	
10	18	0.0475	0.0525	1.33	
12	19	0.0410	0.0423	1.07	25 .80
14	20	0.0348	0.0366	0.93	26.01
16	22	0.0286	0.0339	0.86	30.47
18	23	0.0258	0.0298	0.76	30.24
20	24	0.0230	0.0270	0.69	29.16
22	25	0.0204	0.0251	0.64	31.35
24	26	0.0181	0.0286	0.60	32.27
30	28	0.0162	0.0171	0.43	27.03
40	31	0.0132	0.0118	0.30	21.15
50	34	0.0104	0.0096	0.24	25.00
60	36	0.0090	0.0077	0.20	18.45
64	37	0.0085	0.0071	0.18	
70	38	0.0080	0.0063	0.16	16.42
80	40	0.0070	0.0055	0.14	19.36

RITTINGER'S sizes: Fine table ore, finer than 0.25 mm.; coarse table ore, 0.25-1 mm.; fine jigging ore, 1-4 mm.; coarse jigging ore, 4-16 mm.; lump ore, 16-64 mm.

¹ R. H. RICHARDS, "Ore Dressing."

368 METALLURGISTS AND CHEMISTS' HANDBOOK

Tyler Standard Screen Scale

Ratio \sqrt{s}	or 1.414		Diama mina dan		
Opening in inches	Opening in millimeters	Mesh	Diam. wire, dec. of an inch		
1.050 0.742 0.525 0.371 0.263 0.185 0.131 0.093 0.065 0.046 0.0328 0.0232 0.0164 0.0116 0.0082 0.0058 0.0058	26.67 18.85 13.33 9.423 6.680 4.699 3.327 2.362 1.651 1.168 0.833 0.589 0.417 0.295 0.208 0.147 0.104	3 4 6 8 10 14 20 28 35 48 65 100 150	$egin{array}{c} 0.149 \\ 0.135 \\ 0.105 \\ 0.092 \\ 0.070 \\ 0.065 \\ 0.036 \\ 0.032 \\ 0.035 \\ 0.025 \\ 0.0172 \\ 0.0125 \\ 0.0122 \\ 0.0092 \\ 0.0072 \\ 0.0042 \\ 0.0026 \\ \end{array}$		
0.0029	0.074	200	0.0021		

I. M. M. STANDARD LABORATORY SCREENS¹

Mesh,	Diameter	r of wire	Ape	Screening	
linear inch	In.	Mm.	In.	Mm.	area, per cent.
5 8 10 12 16 20 30 40 50 60 70 80 90 100 120 150 200	0.1 0.063 0.05 0.0417 0.0313 0.025 0.0167 0.0125 0.010 0.0083 0.0071 0.0063 0.0055 0.005 0.0041 0.0033 0.0025	2.540 1.600 1.270 1.059 0.795 0.635 0.424 0.317 0.254 0.211 0.180 0.160 0.139 0.127 0.104 0.084 0.063	0.1 0.062 0.05 0.0416 0.0312 0.025 0.0166 0.0125 0.01 0.0083 0.0071 0.0062 0.0055 0.005 0.0042 0.0033 0.0025	2.540 1.574 1.270 1.056 0.792 0.635 0.421 0.317 0.254 0.211 0.180 0.157 0.139 0.127 0.107 0.084 0.063	25.00 24.60 25.00 24.92 24.92 25.00 24.80 25.00 24.80 24.70 24.60 24.50 25.00 25.00 25.00

¹ E. A. Smith, "Sampling and Assay of the Precious Metals."

Sizes of Round and Slot-punched Plate Screens

Needle number of screen	Approximate mesh of wire cloth to which openings correspond	Width of slot or diameter of hole in inches	Width of slot or diameter of hole in millimeters
1 2 3 4 5 6 7 8 9 10 11 12 13	12 14 16 18 20 25 30 35 40 50 55 60 70	$egin{array}{c} 0.058 \\ 0.049 \\ 0.042 \\ 0.035 \\ 0.029 \\ 0.027 \\ 0.024 \\ 0.022 \\ 0.020 \\ 0.018 \\ 0.0165 \\ 0.015 \\ 0.013 \\ \hline \end{array}$	$egin{array}{c} 1.47 \\ 1.25 \\ 1.07 \\ 0.89 \\ 0.74 \\ 0.69 \\ 0.61 \\ 0.56 \\ 0.51 \\ 0.46 \\ 0.42 \\ 0.38 \\ 0.33 \\ \end{array}$

The needle-number is the number of the standard sewing needle that will just pass the screen.

Table taken from MacFarren's "Stamp Milling and Amalgamation."

CONCENTRATION

The processes by which concentration may be carried on are: hand picking, wet-gravity separations (jigging, vanning, etc.), amalgamation, magnetic, electrostatic, pneumatic, adhesion or flotation, crushing and screening, decrepitation and screening, by varying electric conductivity. A short list of the chief

concentrating machinery follows:

Ball-Norton Magnetic Separator.—This consists of two revolving drums. Within each of these drums is a series of stationary electromagnets extending the working length of the drum, but corresponding only to a portion of the periphery. The ore is fed on the top of the first drum, and as the drum revolves, the magnetic particles adhere to it, while the non-magnetic fall into a tailings bin below. The magnetic particles, as soon as the portion of the drum on which they are passes beyond the magnets, are thrown off by centrifugal force against the second drum. This either rotates faster or has 'a weaker magnetic field than the first drum, so that those particles least strongly attracted by the first drum fall from the second, making a middlings product.

Bartlett Table.—This is a three-deck Wilfley, the second deck re-treating the material from the first and the third deck re-treating the material from the second.

amount of wash water is used on the successive decks.

Bilharz, Corning, Luhrig and Stein Tables.—These are side-bump tables having a table surface made of an endless traveling belt which has a plane surface.

Bumping and Jerking Tables.—These machines use mechanical agitation to bring the light and the heavy grains into their respective layers on a washing surface, and they use a bumping or jerking action to convey the heavy grains to one side or the other of the machine, while the current of surface water conveys the light grains to another side or end. They may be either side-bump, having the bump or jerk at right angles to the flow of the water, or end-bump, having the bump or jerk in the opposite direction from the flow of the water. See RITTINGER, BILHARZ, WILFLEY, BARTLETT and OVERSTROM for side-bump tables. For further information see these types and "endbump" tables.

Canvas Tables.—These are inclined rectangular tables covered with canvas. The pulp, to which clear water is added if necessary, is evenly distributed across the upper margin. As it flows down, the concentrates settle in the corrugations of the After the meshes are filled, the pulp feed is stopped, the remaining quartz is washed off with clear water, and finally

the concentrates removed (by hose or brooms).

Card Concentrator.—A table made of two planes having a flexible joint between them dividing the table into two nearly equal triangles, forming a diagonal line along which concen-

trates and tailings part company.

Conkling Magnetic Separator.—The ore is fed on a conveying belt which passes under magnets, below which belts run at right angles to the line of travel of the main belt. The magnetic particles are lifted up against these cross belts and are thus removed.

Deister Table.—This is a riffled table in which the angle between the line of termination of the riffles and the direction of motion is not so acute as in the Wilfley. It is also wider and

shorter. The top is rhomboidal.

Ding's Magnetic Separator.—Material is fed up a vibrating conveyor and passes through successive zones of separation. These zones are covered by the rims of rotating wheels which carry secondary magnets. These carry the magnetic particles out of the field, are demagnetized, and drop the concentrates.

Dodd Buddle.—A round table resembling in operation a WILFLEY table, and also like the PINDER table (q.v.) except that it is convex instead of concave. The table does not revolve but has a peripheral jerking motion imparted to it circumferentially

by means of a toggle movement.

End-bump Tables.—The heavy and light minerals are separated by agitation and are propelled up the slope of the table by bumping action, but the wash water carries down the surface quartz at a higher speed than the bump can send it up. Gilpin County, IMLAY and Golden Gate concentrators are the

Ferraris Table.—This table has a plane rubber belt traveling between rollers furnished with broad flanges to keep the belt in It has a slope from side to side. The feed is at an upper

corner, and washing is by jets directed across the table.

Film-sizing Tables.—These use the relative transporting power of a film of water flowing on a quiet surface, which may be either rough or smooth, to act upon the particles of a water-sorted product. The smaller grains, of high specific gravity, are moved down the slope slowly or not at all by the slow under-current; the larger grains, of lower specific gravity, are moved rapidly down the slope by the quick upper current. These tables may be classified as: Surface tables, from which the products are removed before they have formed a bed, so that the washing is always done on the same surface; and building tables or buddles, on which the products are removed after they have formed a bed.

Frue Vanner.—This consists essentially of a rubber belt traveling up a slight inclination. The material to be treated is washed by a constant flow of water while the entire belt is meanwhile shaken from side to side. Other vanners of the side-

shake type are the Tulloch, Johnston and Norbom.

Gates Canvas Table.—A large form of inclined canvas table in which the pulp is first classified, then distributed along the upper edge of the table. The concentrates are caught in the warp of the canvas and after this is full, treatment must be

stopped while the concentrates are swept or sluiced off.

Gröndal.—A magnetic separator consisting of a vertical revolving cylinder made up of rings of cast iron with the spaces between containing the wires for the electric current. Each ring is so magnetized as to be a little stronger than the one above. There is another cylinder of wood studded with soft wrought-iron pegs, a ring of pegs being opposite each cast-iron ring. The magnetic portion of the ore (usually crushed below 12 mesh) is carried around on the cast-iron rings until it gets near the pegs, to which it jumps because of their induced magnetism. It is then carried on these pegs out of the magnetic field and thrown off.

Hallett Table.—This is like the WILFLEY except that the tops of the riffles are in the same plane as the cleaning planes and the

riffles are sloped toward the wash-water side.

Hancock Jig.—A jig with movable sieve having both an

up-and-down and a reciprocating motion.

Harz or Plain Eccentric Jig.—One in which pulsion is given intermittently with suction. The periods devoted to them are

about equal.

Huff Separator.—An electrostatic machine depending on the repelling and attracting action of electrically charged particles. The feed is passed over a roller, and the constituents take various electrical charges according to conductivity and are repelled accordingly. This machine is superseding the old Blake type.

Isbell Table.—A table with a reciprocating motion in which there is no cross wash water. The bed of pulp is deep as in a jig, and heavy material goes to the bottom. The concentrates and tailings are then split by means of a cut-out which can be adjusted vertically to skim at any height desired. The riffles make an angle of about 20° with the line of motion of the table.

James Concentrator.—The table deck is divided into two sections, flexibly joined together on a line oblique to the line of motion of the table. One section is riffled for the coarse material while the other section is smooth, to allow the settling of the fine particles which will not settle on a riffled surface. By means of the joint, the slope of the sections can be varied independently.

Johnston Vanner.—The chief difference between this and a Frue (q.v.) is that the belt is given an undulating motion, designed to prevent sands from piling up against the edges of the

belt.

Kieves.—These are strong tubs with sides flaring upward, in which separation is effected by mechanical agitation in a deep mass of thick pulp. Stirring paddles are used for preliminary mixing, and hammers or heavy striking bars for the final separation. They are used to finish the concentration of fine products that are nearly rich enough to ship.

Log Washer.—This is a slightly slanting trough in which revolves a thick shaft or log, carrying blades obliquely set to the axis. Ore is fed in at the lower end, water at the upper. The blades slowly convey the lumps of ore uphill against the current, while any adhering clay is gradually disintegrated and floated

out the lower end.

Overstrom Table.—A WILFLEY squeezed out into a diamond

shape (rhomboid), thus eliminating the waste corners.

Pinder Concentrator.—A revolving table on which are tapering spiral copper cleats on a linoleum cover. The tailings are washed over the riffles and off the edge while the concentrates are delivered at the end of the riffles.

Richard's Pulsator Jig.—An outcome of the pulsator classifier,

in which a pulsating column of water is used in the jig.

Rittinger Table.—A side-bump table with plane surface, using

a cam, spring and bumping post.

Spitzlutte.—This is a classifying device consisting of a V-shaped box, as distinguished from the pyramidal boxes of the spitzkasten. Classification is dependent on the force of a stream of water admitted at the bottom.

Sutton, Steele and Steele Dry Table.—A concentrator of the Wilfley type in motion, but instead of using water, stratification is by means of rising currents of air. The heavy grains are pushed forward by the head motion, while the lighter grains roll or flow down the slope toward the tailing side.

Triumph Concentrator.—This machine resembles a Fruz vanner (q.v.), but the shaking motion is endwise instead of side

to side.

Trough Washer.—This is used to float adhering clay or fine stuff from the coarser portions of an ore. In its simplest form it is a sloping wooden trough, 1½ to 2ft. wide, 8 to 12ft. long and 1 ft. deep, open at the tail end, but closed at the head end.

Ullrich Magnetic Separator.—These machines have powerful

Ullrich Magnetic Separator.—These machines have powerful electromagnets of wedge section. The material is treated on rolls on which magnetism is induced. They consist of alternate

disks of soft iron and some non-magnetic material. The ore is fed over the first roll, which removes the most magnetic material, and the tailings go on to the second which is weaker, where a

second separation is made.

Vanner.—See Frue vanner for general description of the side-shake type. There is also an end-shake type, which includes the Triumph concentrator, Embry concentrator, and Woodbury vanner, and a gyrating type, the Ellis. A 4-ft. vanner may take up to 13 gal. of water per minute and the weight of water to dry sand may rise to 10.7:1. The pulp bed may be as much as 0.45 in. thick.

Wetherill's Magnetic Separator.—Parallel form. Two flat belts, the upper of which is the wider, run parallel to each other. The magnets are long and set obliquely to the belts. Consequently magnetic particles are drawn up against the upper belt, more diagonally out and as they pass beyond the influence of the magnets, fall from the edge past the other belt into a concentrates bin. Another form operates by belts moving across

the line of travel of the main belt.

Wilfley Slimer.—A form of shaking canvas table which is

given a vanner motion.

Wilfley Table.—A side jerk table with a riffled surface. The light and heavy grains are separated into layers by agitation, and the jerking action then throws the heavy grains toward the head end, while the light grains are washed down over the cleats into the tailings box. The table tapers toward the head end, and the riffles are progressively longer toward the tailings side. The Dodd, Cammett, Hallett and Woodbury are very like it.

Woodbury Jig.—A jig with a plunger compartment at the head end, so that the material is given a classification in the

jig.

Woodbury Table.—A table of the general WILFLEY-OVER-STROM-CARD type, with the riffles parallel to the tailing side, and a hinged portion without riffles (unlike the Card). The table top is a rhomboid, and the riffles gradually shorten as they near the tailings side.

CONCENTRATING AND CYANIDING MACHINERY

The following list includes the most important types of concentrating and cyaniding machinery not already described under crushing and concentrating equipment.

Akins Classifier.—A classifier of the free-settling type, in which the heavy material is driven up an inclined plane by

means of an interrupted-flight screw conveyor.

Blaisdell Reclaiming Apparatus.—Apparatus for automatically discharging sand tank having a central bottom opening. Consists of a central vertical shaft carrying four arms fitted with round plow disks. Sand is plowed toward central opening and discharged on a conveyor belt.

Blaisdell Loading Machinery.—Apparatus for loading sand tanks. Consists of a rapidly revolving disk with curved radial

vanes. Disk is hung on a shaft in tank center. Sand dropped on disk is distributed over the entire tank area.

Brown Tank.—As ordinarily used it is a cylindrical tank 45 ft. high and 15 ft. in diameter, ending at the lower end in a 60° cone. Within the tank is a hollow column about 15 in. in diameter extending from about 18 in. of the bottom to within

about 8 in. of the top. A 1½-in. air pipe discharges air upward at and into the tube. The apparatus works on the air-lift principle, the pulp in the tube being lightened by the air, flowing upward, and being discharged at the top, more pulp flowing in at the bottom to take its place.

Bunker Hill Screen.—A rotating screen shaped like a funnel. Material is delivered inside the funnel, undersize passing through the screen while the oversize is discharged through the

funnel neck.

Burt Filter.—This is a stationary, intermittent filter in which the leaves are suspended vertically in a round tank set on a considerable incline. The leaves are therefore ellipses. The slime cake is discharged by introducing air and water into the interior of the leaf. There is also a newer Burt filter of the continuous

rotating-drum type.

Butters Filter.—This is a stationary, intermittent vacuum filter. The leaves are arranged in a box having a pyramidal bottom. When the pulp is introduced a vacuum is applied until a cake from 1 to 2 in. in thickness is formed. The surplus solution is then removed from the box and wash solution or water introduced. After removing the wash solution, either the box is filled with water or the cake dropped and sluiced out.

Callow Screen.—A classifying screen using the travelingbelt principle, the screen cloth forming the belt member. It passes over two drums, or pulleys, oversize being discharged

while the belt travels under the drums.

Callow Cone.—This is a conical settling tank with vertical central feed, peripheral overflow, annular launder to collect and convey away the overflow, and a spigot in the form of a gooseneck to discharge the tailings.

CALLOW CONE TEST ON BUTTE COPPER SLIMES

	Total gal. per min.	Grams per gal.	Tons per 24 hr.	Assay per oent. Cu	Os. Ag per ton
Feed Overflow Spigot product	1792.7 1495.0 297.5	41.15 16.25 154.5	117.16 38.45 73.13	2.80 1.815 3.5	2.81 2.36 3.34

Dehne Filter Press.—One of the best known of the standard plate-and-frame presses, which see.

Dorr Agitator.—An agitating machine based on the thickener

principle. It is essentially a Dorr thickener equipped with a central air-lift.

Dorr Classifier.—A machine to diminish the amount of water required for classification by raking the heavier grains up an inclined plane against a light current of water, which washes away the lighter material. It is of the intermittent type.

Esperanza Classifier.—A classifier of the free-settling type in which the settled material is removed by dragging it up an inclined plane by means of a continuous belt of flat blades or

paddles. This is continuous in its operation.

France Screen.—A traveling belt screen in which the screencloth is mounted on a series of separate pallets, thus avoiding

bending the screen as it goes over the pulleys.

Hunt Continuous Filter.—A horizontally revolving continuous vacuum filter. It consists of an annular filter bed, usually of triangular wooden slats filled with coarse sands. The vacuum withdraws part of the pulp moisture as soon as the bed is formed. A spray then washes it after which the vacuum dries it and the material is then scraped off.

Impact Screen.—A type in which the screen moves with the load of material, bringing up against a stop so as to throw the material forward on it. The Imperial is probably the best

known type.

Imperial Screen.—A pulsating screen in which the ore is thrown up in the air as well as moved forward over the screen.

Kelly Filter.—This is an intermittent, movable pressure filter. The leaves are vertical and are set parallel to the axis of the tank. Pulp is introduced into the tank (a boiler-like affair) under pressure and the cake formed. The head then is unlocked and the leaves run out of the tank chamber, by means of a small track, and the cake is dropped. The carriage and leaves are then run back into the tank and the cycle begun again.

King Screen.—A drum-type screen in which the pulp to be screened is delivered on the outside, the undersize passing through the screen and discharging through the open end.

Maxton Screen.—A screening machine of the trommel class, open at each end and rotating on rollers supporting the tube through tires at each end. There are radial elevating ribs, to prevent wear of screen cloth and to elevate the oversize. Unscreened material is delivered on the inside screen surface, undersize passing through and oversize being elevated and discharged into a separate launder.

Merrill Filter Press.—A variation of the plate-and-frame

press.

Moore Filter Press.—The best known of the movable, intermittent vacuum filters. A series, "or basket," of leaves is fastened together in such a way that it may be dropped in a pulp tank and kept submerged until a cake is formed. It is then transferred by crane to an adjoining wash-solution tank and washed. The basket is then lifted out of this and the cake dropped.

Newaygo.—A slanting screen down which the material to be

screened passes. The screen is kept in vibration by the impact

of a vast number of small hammers.

Oliver Continuous Filter.—This consists of a revolving drum prepared as a leaf-filtering surface and divided into compartments, each of which is connected to a vacuum pipe and to a pipe for admitting compressed air. The drum is partly immersed in a tank or box of thick pulp and revolves at a slow rate of speed. The vacuum causes a ½ to ½-in. slime cake to form; after emerging, the solution is sucked out of the adhering cake; a wash is then given and displaced by air as far as possible; and finally the cake is dropped by compressed air.

Ovoca Classifier.—A classifier of the free-settling type in

which the heavy material is removed by a double-screw, con-

tinuous-flight conveyor, working up an inclined plane.

Pachuca Tank.—Same as the Brown tank.

Paddle-wheel Agitator.—The simplest form, in which the solids are kept in suspension by paddles. It is difficult to do with sand, the machine being difficult (if not impossible) to start if sand packs around the blades, and it is expensive both in operating and in repair costs.

Parral Agitator. An agitator using a number of small air lifts disposed about a circular, flat-bottomed tank in such a way as to impart a circular swirling motion to the pulp.

Patterson Agitator.—An agitator of the Pachuca-tank type in which the air is replaced by solution or water, under pressure

from a centrifugal pump.

Plate-and-frame Filter Press.—The old style press. consists of plates with a girdiron surface alternating with hollow frames, all of which are held by means of lugs, on the press framework. The corners of both frames and plates are cored to make continuous passages for pulp and solution. The filter cloth is placed over the plates. The pulp passageway connects with the large square opening in the frame; the solution passageways with the girdiron surface of the plate. DEHNE and the MERRILL are well-known types.

Richard's Pulsator Classifier.—A classifier operating by a pulsating current of water without a screen. The pulp grains fall through a sorting column against an upward pulsating cur-

rent of water.

Ridgeway Filter.—This is a horizontal revolving, continous vacuum filter. The surface is an annular ring consisting of separate trays with vacuum and compressed air attachments. The filtering surface is on the under side, the trays being dipped into the tank of pulp to form the cake, and then lifted out of it.

Richard's Shallow-pocket Hindered-settling Classifler .- A series of pockets through which successively weaker streams of water are directed upward. The material that can settle does

so and is drawn off through spigots.

Sherman Settler.—A series of cylindrical tanks with conical bottoms having central feed and a peripheral overflow. The tanks continually decrease in depth and increase in diameter.

Trent Agitator.—This agitator has the arms of the paddle-

wheel type, but they are hollow, and pulp solution or air is discharged from nozzles on these arms, thus causing the stirrer to rotate.

Trommel.—A revolving screen set at an angle. The material to be screened is delivered inside the trommel at one end. The fine material drops through the holes; the coarse is delivered at the other end.

Vibracone.—A vibrating screen manufactured by the Stephens-Adamson company, in which the feed is from a saucer-shaped distributor onto a conical surface kept in vibration by a ratchet motion.

Power Used in Concentrating Mills

As an indication of what power may be needed in milling, the following table is taken from R. H. RICHARD'S "Ore Dressing," Vol. IV, page 1929. The figures are those for the Cananea Consolidated Copper Co.'s No. 2 and No. 1 mills:

	sepower
20 trommels 4×5 ft. and 4×8 ft	20
4 16-in. elevators, 46 ft. between pulley centers	10
4 sets 16×36-in. rolls at 80 r.p.m	20
6 one-compartment bull jigs (4 active)	8
16 two-compartment middle jigs	16
16 three-compartment sand jigs	16
2 dewatering trommels	1
2 chip trommels	1
10 shovel wheels with shafting	3
2 centrifugal pumps, 1200 gal. per minute, 40-ft. lift	60
8 5-ft. Bryan mills	144
38 Wilfley tables with line shafting	25
36 6-ft. Frue vanners with line shafting	8
2 centrifugal pumps	25
6 shaking launders	3
2 middling elevators	3 5 3
2 pulp elevators	
2 pulp elevators Friction of engine and remaining shafting	80
Total on mill engine	472
1400 tons of ore treated per day.	

378 METALLURGISTS AND CHEMISTS' HANDBOOK.

	Horsepower
24 trommels	12
2 No. 1 elevators	13
2 No. 2 elevators	14
2 No. 3 elevators	
2 No. 4 elevators	8 8 8
8 bull-jigs (4 active)	Ř
16 two-compartment jigs	16
8 three-compartment jigs	8
2 Bryan mills	3 6
2 Diyah hillis	40
2 No. 1 centrifugal pumps	
2 shaking launders and 2 shovel wheels	2
2 16×36-in. Davis rolls	22
4 14×27-in. Davis rolls	40
shafting and belts	40
engine and jackshaft friction	50
Total angine load	317
Total engine load	26
42 Wilfley tables	20
36 six-foot Frue vanners	8
2.10×48 -in. sand pumps	3
1 No. 2 centrifugal pump	
Friction of transmission	13
Total motor driven load	
Total motor-driven load	65
Total power required in mill	382
1400 tons of ore treated per day.	

Power Used in Boston & Montana Concentrator

Machine	R.p.m.	Horsepower required
Hancock jig	62 190	$\frac{3.41}{0.50}$
Trommel (3×6-ft.)	251	0.30 0.3 64
Wilfley table Vanner (4-ft.)		$\begin{array}{c} 0.352 \\ 0.230 \end{array}$

WATER USED IN MILLS1

Mill	Water used per 24 hr., gal.	Capacity of mill per 24 hr., tons	Water used per ton, gal. (c)	Remarks, stamps
Hector Mining Co., Telluride, Colo. Franklin Mining, Placerville, Calif. North Star, Grass Valley, Calif. Empire Mill, Grass Valley, Calif. Idlewild Mill, Greenwood, Calif. Grand Victory, Placerville, Calif. Wildman, Sutter Creek, Calif. West Waverley, Waverley, N. S. Montana, Marysville, Mont. Utica, Angels Camp, Calif. Stickles Mill, Angels Camp, Calif. Stickles Mill, Angels Camp, Calif.	51,840(a) 96,336(a) 156,193(a) 240,750(a) 239,040(a) 151,000(a) 123,840(a) 216,000 213,120 185,760(a) 185,760(a) 179,676(a)	AP MILLS 90 60 64 64 60 115 to 128 100 to 150 93 200 50 to 65 105 300 300 150	576.0 1,605.6 2,440.5 4,012.5 1,867.5 to 2,078.6 1,730.6 to 2,596.0 1,623.7 619.2 3,324.6 to 4,320.0 2,029.7 619.2 619.2 619.2	30 440 30 40 60 60 60 60 60
	COMBINATION SILVER MILLS	LS		
Montana, Marysville, Mont	$\left\{\begin{array}{ll} 252,576\\ \text{Steam power} & 15,360(b)\\ \text{Concentrating} & 39,480(b) \end{array}\right\}$	110	2,296.1 457.0	20 80
Mammoth, Tintic, Utah	$ \begin{array}{c} \textbf{Fresh} & 54,840(b) \\ \textbf{Fresh} & 70,000 \\ \textbf{Repumped} & 30,000 \\ \hline & 100,000 \end{array} \right\} $	100	1,000.0	40
	JIGGING MILLS			
Friedensville Zinc, Friedensville, Penn	62,000(c)	120 to 135	459.3 to 516.7	

TABLES
AND
ANNERS
~
>
Jigs, V
>

Mill	Water used per 24 hr., gal.	Capacity of mill per 24 hr., tons	Water used per ton, gal. (c)	Remarks, stamps
Old Jordan & Galena, Bingham, Utah Central Lead, Flat River, Mo St. Joseph Lead Co., Bonne Terre, Mo Bullion Beck & Champion, Eureka, Utah. Smuggler, Aspen, Colo	237,600 1,152,000 2,250,000 129,600 900,000(a) (c)	175 175 900 200 100	1,357.6 6,582.8 2,500.0 648.0 9,000.0	•
	MONTANA COPPER SULPHIDE	Mills		
Butte & Boston, Butte, Mont	(Flows in 1,000,000 { Pumped 1,440,000 (Repumped 700,000	200	2,000 2,880 1,400	
Colo. Sm. & Ref., Butte, Mont	3,140,000 1,064,000 1,200,000 to 1,400,000	275 to 300 300 to 350	6,280 3,546.7 to 3,869.0 4,000	
LAKE SUPERI	SUPERIOR NATIVE COPPER MILLS WITH	ITH STEAM STAMPS	AMPS	
Calumet & Hecla, Calumet, Mont. Franklin, Hancock, Mich. Osceola, Mich. Quincy, Hancock, Mich. Tamarack, Houghton, Mich.	20,000,000 3,744,000(d) 12,000,000 12,000,000 10,000,000	2,080 450 1,260 1,700 to 1,900 1,500	9,615.4 8,320.0 9,523.8 6,315.8 to 7,058.8 6,666.7	
(a) The mill is run by water power, and this figure does is repumped. (c) This is for 10 hours only. (d) This is the	this figure does not include the water used for power.	er used for power the mill with the	(b) This does not include tailings. The amount of w	nclude what

"Vol. II, and consequently represents the practice of 15 years ago. may be necessary.

WATER CONSUMPTION IN VARIOUS MILLS

WATER OU	NSUMPTION	IN VA	MICOS II	TTITIE	
	Gal. water per 24 hr.	Tons ore per	Water per ton		Remarks
		24 hr.	Gallons	Tons	
•	Gold	STAMP	MILLS		
Haile, South Carolina	360,000	150	2,400	10	60 stamps
	Jigging	Mills			
Smuggler Mining Co St. Joe Lead St. Louis Sm. & Ref Block 10 Daly-West Minas Tecolotes Silver Lake	$2,160,000\\4,000,000\\5,760,000\\\left\{\begin{array}{c}864,000^{1}\\69,000\\57,600\\57,600\\2,001,600^{1}\\338,400\\1,885,000\end{array}\right.$	400 1,200 1,800 575 500 600 325	5,400 3,333 3,200 { 1,500 ¹ 120 1,008 ¹ 144 { 3,336 ¹ 567 5,800	22.5 13.9 13.3 6.26 0.5 4.2 0.6 13.9 2.36 24.2	Australian
	Iron Ore	Wash	DRY ⁴		,
Oliver Iron Longdale Iron	300,000 ² 1,144,800	1,000 ² 480	300 2,385	1.25 10.0	
Monta	NA COPPER	SULPE	HDE MI	LLS	
Anaconda	44,352,000 25,000,000	8,800 3,000	5,040 8,300	21.0 34.6	
U	тан Сорре	r Sulp	HIDE		•
Newhouse M. & S Utah Copper Co	$\left\{\begin{array}{c} 1,440,000^{1} \\ 720,000 \\ 8,640,000 \end{array}\right.$	} 1,000 6,000	1 (120	6.0 3.0 6.0	}
Nı	EVADA COPP	er Sui	PHIDE		
Giroux Con	{ 800,000¹ 160,000	} 800	{ 1,000¹ 200	4.01 0.83	
	Arizona	COPPE	R		
Detroit Copper Min. Co. Old Dominion	275,000 750,000	1,100 500	250 1,500	1.04 6.26	
¹ In mill circulation.	2 Ten hours.	8 A coor	ding to B	TOPLAND	a the water

¹ In mill circulation. ² Ten hours. ³ According to RICHARDS, the water used in stamping varies from 1 to 6.69 gal. per stamp per minute in the various mills under his observation, and 2.40 to 15.97 tons per ton of ore stamped. South African practice seems to be about 4 to 10 tons of water per ton of ore milled. ⁴ Log washers take about 2000 gal. of water per ton of ore in Southern practice.

Abbreviations...In - inches; R - round holes in stamp screens; Sq. - square holes in stamp screens ADJUSTMENT, FEED AND CAPACITY OF MILL VANNERS

Tous	by one vanner in 24 hours		
Feed	Maximum sise (a'),		1 V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
À	Source	<u>මු</u> මෙම මෙම මෙම මෙම මෙම මුම් පුම් මි	<u>BISES</u>
Num- ber of	tions per minute	205-210 190 190 196 116 230 230 230 200 190 200 215	190-194
Travel of bolt	inches per minute	85 26 36 36 36 36 36 36 36 36 36 36 36 36 36	85-41 46 51 56-48
Slope	Degrees	2°25'-2°50' 2° 0' 1° 12' 1° 45' 1° 45' 0° 35' 1° 30' 1° 35' 1° 35' 1° 35'	10000 0000 10000 10000
[S	Inches to	6-714 6-714 6-714 8-714	4040
	Life in months	24 36 24-60	09-199
Belt	Width, feet	44 400 0 0 0 44444	104 4 4
B	Kind	Frue Frue Blaisdelt Woodbury Woodbury Woodbury Woodbury (b') Blaisdell (b') (b') (b') (b')	Frue (S)
	Kind of wanner	Frue Frue Frue Frue Johnston Woodbury (g') Woodbury (g') Frue Frue Frue Frue Frue	
.tbet.	nua llilić	22 22 22 22 22 22 22 22 22 22 22 22 22	6 8 8 8

•	•	7.1%	1633	× × × × × × × × × × × × × × × × × × ×	8 #	4	r.c		3¾	A 1 %	474	15	712-1012	L.	1 0	*	1235	4.0	673	41	12	•	121/2
:	:	0.70 Sq.	:	2001	201.	0.79 R.	0.59 Sq.		0.64 R.		•	0.81 R.	0.75 R.			•	0.76 R.	0.52 Sq.	•	•			0.76 R.
E	(w)(y)(f)	(a)	(a)	(z)	3	(a)	(a)	•	(a)	3	3)	(a)	(a)	(6)	3 3	(a)	(a)	(g)	(a)	(a)	(a) (d)	_	(a)
•	200	$\frac{160}{235} \left.\right\}$	500 200 200 200 200	000	9	230 200	200	238	200		•	225	206	027	190	230	168	196	(910	206	220	1	175–185
• 1	36-72	8 4 8	33.0	000	9	26 24	∞ `	04-74	56	45	(09	72	45	48 21	36-72	36-48	30.e 36.e	22	. 14	ဂ က	20	1	32-35
•	1° 25′	1° 25′	0 0	0		1° 12′ 0° 54′	1		1° 12′		2° 20′	3° 30′		2° IQ	1°12′-2°0′	1,00	2° 5′ 2° 35′	1° 25′	700 0	14	0	1	1° 47′–2° 5′
	3½	315		70 ×	!	\ 3 2½	2.3-234	974	က	334	8/29	& &	334	5.4	3-73 3-57	21%	57.6 7.6	, e , e		\$\frac{2}{2}\$	335	,	412-514
48	•				•	(e')	120	(24–30)	36	30	•	30	•	•	48	87			•	•	•		72
4 ro 4	4	41 rc	90	ه د	1 '	ক ক	41,	ဂ	4		4	જ	4,,	ი <	i 4	4	414	41	9	4	rð	,	4
(Canvas (Rubber	(,9,)	Frue	Blaisdell (b')		Smooth surface	Blaisdell (c') Blaisdell (c')		Biaisdell (c') Triumph		Blaisdell (c')	Blaisdell (c') Woodbiiry	Woodbury	Blaisdell (b)	dell	Frue (b)		Blaisdell (b')		Frue	Frue	Woodbury	Loring	Brownell Blaisdell
Frue Tulloch Embrey	Frue	Frue Woodhury (a')	Frue	Frue	Frue Triumph	Triumph Frue	Frue	(Triumph	Triumph		Frue	(Woodbury (g'))	Woodbury (n')) Frue	Triumph	Frue	Triumph	Frue	Frue	Frue	Frue	Woodbury (g')		Frue
41	43	53	7.	5	55	57	85	}	59		90	61	69	3 6	50	64	65	89	69	71	72		73

Continued FEED AND CAPACITY OF MILL VANNEIRS. ADJUSTMENT,

Tons	by one vanner in 24 bours	1235 936 735-1236 10 735 1235 534.6
Feed	Maxi- mum esso (a'), mm	0 78 K 1 13 Sq. 0 42 Sq. 0 41 Sq.
1 14	Source	9 668888 ² 88888
Num- ber of	vibra- tions per minute	150 186 188 188 180 200 200 200 200 200
Travel	per minute	55 38 37-42 85 20 30 20 30 35 13
Slope	Degrees	20 35 10 47 10 12 10 1
88	Inches in	614 415 2000 2000 2000 2000 2000 2000 2000 20
	Lafe un months	9 3 .
Belt	Width, feet	6.6 4.4 0 4. 400 0 0 4 0 0
Ä	Kind	Blaisdell (c') Blaisdell (c') Woodbury Blaisdell (b') Blaisdell (b') Blaisdell (b') Blaisdell (b') Blaisdell (b') Woodbury
	Kind of vanner	(Tulloch Frue Gates Woodbury Frue Frue Frue Frue Frue Woodbury (#)
toda	mpa llilA	4 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

o. 2 whole current classifier mixed tots of whole current classifier, whole current classifier. GREPH mill. The mill numbers refer to this book, nydraulic classifier. (c) BRYAN mill. Spigots of No. surface current (b) HUNTINGTON mill H. RICHARD'S "Ore Dressing " ravity stamps. m R. Fron (a)

CANVAS, BLANKET AND CARPET TABLES

	Len	Length	Width	Jth.	Slope	adi	in the state of th	t	Destin	Destination of	Tons treated
Kand of table] E	Ft.	4	la per ft	Degrees	Lille of Burtace	P.F.C	-noO -nso -nso selent	Tail- ings	per table in 24 br.
Brussels carpet	ಬ್ರಾ	0	(r) 4	90	214			(a)	(E)	(T)	10-15
Canvas	10	0	123	0	112			3			
Brussels carpet .	16	0	(v) 4	00	S (S)			B	3	E	7.5 12.5
Wool blanket	ಣ	9	-	90	67		12 months	(g)	3	E	52.50
No. 6 cotton duck	10	0	12	0	11/5	7° 5'	8 months	3	(£)	3	1.25
No. 6 cotton duck	10	0	12	0	11/2			<u> </u>	(E)	3	
No. 6 cotton duck	10	0	12	0			8 months	3	(144)	8	
No. 4 cotton duck.	39	9		93	720			3	(m)	(8)	1 9
4 cotton	16	9	1	90	90	3° 25′		S	(E)	3	
No. 8 cotton duck	242	0	1	90	(\q)		10 months	9	(0)	3	4.55

(b) Overflow of hydraulic classifier (c) Overflow of box classifier (d) Tailings of (f) Fine riffie-box tailings. (g) Vanner tailings. (h) Approximately. (i) Cleanup (o) Cyanide leaching. (r) Vanners. (e) Waste. (f) Arrastre. (e) Partitioned (a) Stamp pulp from amalgamated plates pecial vanner (c) Coarse riffle-box tailings, sarrel, (k) Smeltery. (m) Special vanner, lown the center.

Water Used in Jigging

According to Richards, a jig will use anywhere from 0.528 to 22.22 gal. of water per square foot of jig area per minute, and from 8.76 to 54.98 tons of water per ton of ore in American practice, and 1.23 to 33.04 tons of water per ton of ore in European practice. The stroke of a jig varies from 1.63 to 7.18 times the diameter of the average grain fed to it. The coarser the grains the greater should be the throw, because coarse grains settle faster than fine grains and require a higher velocity of current and a greater quantity of water to lift them. The heavier the grains, the greater should be the stroke.

CARKEEK'S SLOPE FOR LAUNDERS1

Size of ore	Degrees	Slopes, inches per foot	
Mine ore to breaker	36° 35′	8.9	Dry.
2 in. to 1 in	37° 50′	9.33	Wet.
1 in. to ½ in	33° 40′	8.0	Wet.
$\frac{1}{2}$ in to $\frac{1}{4}$ in	29° 5′	6.66	Wet.
$\frac{1}{4}$ in. to $\frac{1}{8}$ in	24° 0′	5.33	Wet.
$\frac{1}{8}$ in. to $\frac{1}{1}$ in	18° 25′	4.0	Wet.
16 in. to vanner material	7° 33′	1.6	Wet.
Table or vanner material	6° 20′	1.33	Wet.
Tail race for $\frac{1}{16}$ -in. material	3° 35′	0.75	Wet.
Tail race for 1/8-in. or larger	6° 20′	1.33	Wet.
Trommel casing for $-\frac{1}{2}$ -in.	<u> </u>		
material	16° 15′	3.5	Wet.
Trommel casing for $+\frac{1}{2}$ -in.			
material	33° 40′	8.0	Wet.

¹ R. H. RICHARDS, "Ore Dressing," Vol. II.

DANTITIES OF WATER FLOWING IN RECTANGULAR LAUNDERS OF ROUGH PLANE

		2 2400011					
epth of water	Slope in 1 ft.						
in inches	36 in.	34 in.	35 in.	1 fn.	2 in.		
	Gallons per Minute, Launders 4 In. Wide						
1/2	5.8	8.2	, 11 7	16.5	23.3		
1	18.9	26.3	37.8	53.5	75.7		
$egin{array}{c} 1 \ 2 \ 3 \end{array}$	52 4	74.2	105.0	148.0	210.0		
٥ 4	91 6	130 0	183.0	259 0	366.0		
4	129.0	183.0	259.0	366.0	517.0		
	LAT	NDERS 8	In, Wide		,		
1	42.1	59.5	84.2	119	168		
2	129 0	189 0	259.0	366	517		
1 2 3 4 6	240 0	339.0	479.0	676	958		
4	363 0	519 0	726.0	1,027	1,452		
8	625 0	884.0	1,250 0	1,767	2,500		
_ ^	890.0	1,253.0	1,779.0	2,516	3,558		
	Lau	NDERS 12	In. Widi	G			
1	69 3	Dill	139	100	277		
2	211 0	298	422	597	844		
4	625 0	85(4	1,250	1,767	2,500		
6	1099.0	1,554	2,198	3,108	4,396		
9	1908 0	2,698	3,816	5,395	7,631		
12	2736.0	3,868	5,471	7,736	10,943		
	LAU	NDERS 16	In. Wide	Č.			
1 2 4 8 12 16	94 309 890 2,432 4,116 6,000	133 437 1,258 3,438 5,820 8,485	188 617 1,779 4,863 8,232 12,001	266 873 2,516 6,877 11,640 16,961	376 1,235 3,559 9,727 16,464 24,002		
	_	NDERS 32					
	IIA ()	NDERS 52	IN. TIDE	<u> </u>			
1	196	278	393	556	786		
$\frac{2}{4}$	650	919	1,301	1,839	2,601		
	2,075	2,933	4,149	5,167	8,298		
8	8,000	8,435	12,001	16,969	24,002		
16 24	$16,023 \\ 26,751$	22,657 37,8 26	32,046 53,503	45,313 75,653	64,092 107,005		
$\frac{27}{32}$	38,590	54,565	77,179	109,131	154,358		
	00,000	0.11000		100,101	202,000		
				_			

SPEED OF CURRENT NECESSARY TO MOVE DIFFERENT SIZES OF SAND AND PEBBLES¹

	Velocities at bottom of stream. feet per second		
Material	Slowest observed velocity that moved the grains	velocity that did	
Brown clay (sp. gr. 2.64)	$egin{array}{c} 0.71 \ 1.55 \end{array}$	0.27 0.53 0.71 0.36 0.62 1.07 2.13 3.20	

Percentages of Moisture Retained by Different Sizes of ORE AFTER THOROUGH WETTING FOLLOWED BY REASON-ABLE DRAINING

Size,	Moisture,	Size,	Material	Moisture,
mm. Material	per cent.	mm.		per cent.
64-32 Ore Ore Ore Ore Ore Ore Ore Ore Calcite Ore Ore Calcite Ore Calcite Ore Ore Calcite Ore Calcite Ore Ore Calcite Ore Ore Calcite Ore Ore Calcite Ore Ore Ore Ore Ore Ore Ore Ore Ore Or	2.25 2.58 3.01 3.38 2.91	4-3 3-2 2-1 1-0.5 0.5-0.35 0.35-0.10 0.10-0	Calcite Calcite Calcite Calcite Calcite Calcite Calcite Calcite Calcite Calcite Calcite Calcite Calcite Calcite	5.66 5.21 6.19 6.06 8.59 9.30 17.59 18.90 18.16 20.44 16.80 20.57 16.94 21.69

¹ R. H. RICHARDS, "Ore Dressing," Vol. II.
² Percentage calculated on weight of mixture of pulp and water.

PEED OF MINERAL GRAINS FALLING IN WATER (METERS PER SECOND)1

Diameter in mm.	Nature of grains	}% sec.	14 sec.	1/2 sec.	1 sec.	2 sec.
15	$\left\{egin{array}{l} ext{Galena} \ ext{Pyrites} \ ext{Quartz} \end{array} ight.$	0.903 0.825 0.570	1.441 1.174 0.767	1.630 1.287 0.801	1.650 1.293 0.817	1.650 1.293 0.817
4	Galena Pyrites Quartz	$0.704 \\ 0.586 \\ 0.383$	0.814 0.643 0.409	$0.823 \\ 0.646 \\ 0.409$	0.824 0.646 0.409	0.824 0.646 0.409
1	Galena Pyrites Quartz	$0.409 \\ 0.321 \\ 0.203$	$\begin{array}{ c c c c }\hline 0.413 \\ 0.323 \\ 0.204 \\ \hline \end{array}$	0.414 0.323 0.204	$egin{array}{c} 0.414 \ 0.323 \ 0.204 \ \end{array}$	$egin{array}{c} 0.414 \ 0.323 \ 0.204 \ \end{array}$

SLOPE OF PLATES IN AUSTRALIAN MILLS?

Name of mill	Situation	Slope of plates, inches per foot	Water per battery per minute, gallons
ew Star of the Eastld Star of the Eastritannia Unitedarrietville	Ballarat Ballarat Ovens dis- trict	7/8 8/4 1 7/8	37 1/2 37 1/2 25 25
ld Fortuna ew Fortuna earl ew Chum Consolidated	Bendigo Bendigo	3/4 15/16 11/8 13/4 11/4	321/2

The Flotation Process³

Everybody has, of course, noticed the dearth of discussion out the flotation process in the current technical literature. he explanation of this is the still unsettled patent litigation id the attitude of Minerals Separation, Ltd., the claimant. nat company will neither permit its own employees to talk write about the process, nor will it permit the employees of 3 licensees to do so. We do not recollect any metallurgical ocess of broad application and use respecting which such forts toward secrecy have been exerted and so far have been ccessfully maintained. Toward that end no stone is left sturned. For example, a flotation apparatus is introduced

^{1 &}quot;Handbook of Milling Details," McGraw-Hill Co.
2 R. H. RICHARDS, "Ore Dressing," Vol. II.
3 The Engineering and Mining Journal, Jan. 30, 1915.

somewhere for experimental purposes. The finished, the apparatus, which is essentially a construction of timber, is destroyed with axes. Naturally those concerns which are employing the flotation process without license from Minerals Separation and are liable to be called into court, keep their mouths shut as a matter of policy.

This situation is likely to prevail until a final decision in the Hyde case is rendered by the Supreme Court of the United States. In the meanwhile the suit against the Miami Copper Co. has been taken under advisement and a decision is expected this Spring (1916). This suit brought into court review the Callow and the Towne systems of flotation.

The flotation process as practised is a matter of delicate ad-With any given ore experiments may fail to give any promise whatever, simply because of failure to conform to some essential, and usually simple, condition. The size of the ore, the quantity of the feed, the temperature, etc., must all be just right, and especially must regularity of feed be attended to carefully. The fundamental features of the treatment also vary according to different ores. Thus, in floating the blende In floating the of Butte the addition of acid is necessary. copper ore of Miami the presence of acid is fatal. ter of the oil used also varies according to the ore. In the treatment of the zinc-lead ores of Broken Hill eucalyptus oil is commonly employed. In the treatment of the zinc ores of Butte, pine oil, a product of wood distillation (analogous to the eucalyptus oil of Australia) is generally used. Sometimes a little oleic acid is added. In the flotation of copper minerals heavier mineral oils are used. The choice seems to be more or less dependent upon what it is desired to accomplish. In the concentration of copper ore the aim is to extract all the copper possible and if considerable gangue is dragged out with it, no great harm is done. In the concentration of blende, however, the production of a high grade of concentrates is more important than the extraction of the maximum possible percentage of zinc. Therefore a lighter, more delicate oil is favored. In some processes of selective flotation some oils that are very light indeed are used. We have touched upon a few of the important points in connection with this process that ought to be discussed in technical literature, but probably that is not to be expected so long as the shadow of the litigation is over us.

Flotation Processes¹

Crilley and Everson.—The ore is crushed to 50 mesh, and mixed with a thick black oil. Boiling water containing enough acid to give it a tart taste is then added. This process was tried at Baker City, Ore., and at Denver, in 1889.

Robson and Crowder.—The ore was mixed with but little water, 25 to 30 per cent., agitated and oil added during agitation. This was operated at the Glasdir mine in Wales, in 1894.

¹ From Hoover's "Concentrating Ores by Flotation," "The Mining Magazine," London.

Elmore (Old Process).—The ore was mixed with several times its weight of water, and an equal, or greater weight of oil in a revolving drum. The oil was mixed without emulsifying, then run on a spitzkasten, where the oil carried the sulphides to the surface, and the gangue and water were removed from the bottom. This process was invented in 1898 and tried extensively. Its history may be said to close in 1905.

Potter-Delprat.—The original Potter process (1902) was

one of flotation in a 1 to 10 per cent. acid solution. The mixture was 1:1 of ore and acid solution; this was agitated freely and heat applied, causing the forming of CO₂ from the carbonates in the ore. This caused the sulphides to rise to the surface where they were either allowed to flow off continuously or were skimmed off. This was clearly a surface tension process. Delprat (1902) accomplished the same thing with acid salt-cake solution. Both processes were tried out at Broken Hill, Australia. Later patents indicate that oil has been found to assist in this process. These inventors worked independently, became involved in litigation and eventually pooled their

Froment.—Alcide Froment discovered in 1901 that when a sulphide ore is agitated in water with a little oil and sulphuric acid, the sulphide particles become oiled and attach themselves to and are floated by gas bubbles. He recommended adding a little calcite to the ores when needed. Minerals Separation,

Ltd., bought this patent in 1903.

Minerals Separation, Ltd.—Organized in 1903 by Ballot, Curle, Webster, Gregory, Sulman and Pickard to acquire the Cattermole patents. Soon after bought the Froment patents. Present processes are based on surface-tension phenomena, accelerated by means of addition to the pulp of small quantities of oil and air in minute subdivision. There is only about 0.1 per cent. oil added, and very violent agitation is indulged in for from 1 to 10 minutes. Innumerable small bubbles of air are thus mechanically introduced which join the oilcoated particles. These are then removed on a spitzkasten. Exposure to air after this treatment then aërates any mineral which has not already taken up its oil film after which a second spitzkasten treatment removes this.

Cattermole.—Added 4 to 6 per cent. of oil, according to the sulphide contents, to a freely flowing pulp, and also 2 per cent. of soap. This process was bought up by Minerals Separation,

Ltd.

Goyder and Laughton.—Their process (1905) was only a variation of the Potter-Delprat. It was used at Broken Hill.

Wolf.—JACOB D. Wolf in 1903 invented a method of applying the principles of flotation. He used sulpho-chlorinated or other oils and aimed to secure a high extraction with a low grade of concentrate in the first step, and by washing with hot water to concentrate the concentrate in a second step. Apparently no commercial use was made of it.

Elmore (Vacuum Process).—In 1904 Francis E. Elmore took out patents covering a process in which flotation is secured by the addition of a small quantity of oil, and by the liberation of air in the pulp in a finely divided condition, this being accomplished by subjecting the freely flowing pulp to a vacuum and simultaneous heating.

De Bavay.—Auguste J. F. De Bavay in 1904 invented a flotation process in which a freely flowing pulp was brought to the surface of a vessel of water, where advantage was taken of the surface tension of the liquid, and the sulphide floated. A film of carbonate on the sulphide, from weathering, is detrimental, and is removed by soaking the ore in a weak solution of carbonate of ammonia, or by passing carbon dioxide through the pulverized wet ore, or by friction. In the original process no oil or acid was used. Later these were also made use of.

Macquisten.—ARTHUR P. S. MACQUISTEN, in 1904, invented a process and a tube apparatus for floating sulphides by surface tension. Oil has since been added to the process. It is operat-

ing at the Morning mill at Mullan, Idaho.

Zinc Corporation.—Organized in 1905 to treat zinc tailing in the Broken Hill district. Tried Potter process in 1905. Remodeled plant in 1907 for Minerals Separation process. In late 1907 and 1908 built an Elmore vacuum mill. In 1910 again

adopted Minerals Separation.

Hyde.—In 1911 James M. Hyde patented a process in which a small amount of sulphuric acid, with or without the use of copperas, is used to give the slimy portion of the ore a preliminary coagulation before flotation. The sulphides, after agitation, are floated off rapidly and as completely as possible with a considerable overflow of freely flowing water, thereby producing an impure concentrate which is re-treated in a second machine. At present the process is being used by the Butte & Superior Copper Co., and is in litigation with Minerals Separation, Ltd.

Murex.—While this process is not strictly of the same class as the others, it still makes use of the principle of selective oiling of sulphide particles. In this process the crushed ore is fed into an agitator and mixed with 4 to 5 per cent. of its weight of a paste made of 1 part of oil or thin tar with 3 or 4 parts of magnetic oxide of iron. This oxide must be ground to an impalpable powder. These ingredients, with enough water to make a pulp, are agitated from 5 to 20 minutes. The paste preferentially adheres to the sulphides because of the oil. The ore is then fed over magnets and the oxide of iron, with the mineral adhering to it, pulled out. The oil and magnetite are then recovered.

Sanders.—This process uses, instead of an acid bath in deep pans, a dilute solution of aluminum sulphate in shallow pans. It was tried by the Tri-Bullion Smelting & Development Co. on a commercial scale, without success.

Horwood.—If a mixture of iron, copper, lead and zinc sulphides is roasted, the three former can be changed to oxide and

sulphide at a comparatively low temperature, whereas the blende is practically unaltered. The partly roasted material is then subjected to a heated-acid oil-flotation process, by which the zinc is floated, the other metals staying behind.

AIR IN ORE AVAILABLE FOR ELMORE PROCESS¹

Proportion of water to ore	Cu. ft. of available air in this water	Lb. of sulphide this will float	Percentage of mineral in the ore
1:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1	0.75 1.50 2.25 3.00 3.75 4.50 5.25 6.00 6.75 7.50	60 120 180 240 300 360 420 480 540 600	2.7 5.4 8.1 10.8 13.5 16.2 18.9 21.6 24.3 27.0

As the proportion of water to ore rarely exceeds 6:1, and as the ores usually yield over 16 per cent. of concentrate, it may be seen that some other gas than that naturally found in the water must be found to effect flotation. This is generally secured by adding limestone to the ore, and then acid at the point where the pulp enters the vacuum chamber.

In general, ore must be crushed to at least 40 mesh to obtain

the best results in flotation.

Ideal ores for flotation processes are said by Hoover to be as follows:

	Pb	Zn	Fe	Cu	Mn	S	CO ₂	SiO ₂	CaO	Al ₂ O ₃
Acid flotation. Oil-air	7	20	8 12	3	3	14	3	42 72	1	2

The first is from Broken Hill, the second from Bolivia.

Testing Oils for Flotation²

It has long been recognized that a well-equipped experimental testing laboratory is necessary for the successful working of a flotation concentrating plant. Of the many various tests which are required from time to time, the most frequent and perhaps the most important is the testing of oil, or active floating medium. The following remarks refer chiefly to eucalyptus. and resinous oils:

The first material necessary is a standard ore sample.

¹ T. J. Hoover's "Concentrating Ores by Flotation," "The Mining Magazine," London.

² Excerpts from an article by J. Courts, in Aust. Min. Stand., Apr. 8,

purpose of oil testing, a thoroughly representative sample of the material to be treated is dried, crushed to pass 60 mesh and bagged. For convenience, a supply ready for use may be weighed off in 1-lb. lots and put up in small tins.

A sulphuric-acid solution, containing 405 grams of H₂SO₄ per liter, is generally used, 1 cc. of such a solution containing 2 lb. of pure acid per ton, when working on 1 lb. of ore sample.

A standard oil sample is that oil which has been found to fully meet the requirements of the proposition, upon which all future calculations are based and comparisons made. It may be stored ready for use in bottles.

Preliminary Examination

For specific gravity tests hydrometers reading to 0.001 are required. In all cases it is necessary to ascertain the specific gravity of the oil, with the view, at least, to future calculations. This may be carried out at any suitable temperature which has been fixed upon as standard. It has been found advisable to check the specific gravity of the standard oil simultaneously, because of the gradual increase in specific gravity which takes place owing to the loss of lighter oils by volatilization. A correction for temperature is made by allowing 0.00045 for each deg. Fahrenheit.

A small burette is used for counting the number of drops in 1 cc. of the oil, also for admitting the oil to the machine during testing operations: The greater the number of drops delivered by the burette, the greater the accuracy of the test. To obtain a suitable dropper, cut a burette about 8 in. above the cock, almost close the discharge orifice by dumping up the glass with a blowpipe flame, then grind the outside back to a point so that a minimum surface is presented to the oil drop. The burette should at normal temperatures give between 80 and 90 drops per cubic centimeter, when run at the rate of 1 drop per second. The temperature of the oil during dropping test should correspond with the temperature during flotation test.

Having obtained the number of drops per cubic centimeter

Having obtained the number of drops per cubic centimeter and the specific gravity, it is easy to calculate the number of pounds of oil per ton of ore, when working on 1 lb. of sample.

Thus $\frac{2240 \times sp. \ gr.}{453.6 \times drops \ per \ cc.} = lb. \ of \ oil \ per \ long \ ton.$

It is sometimes desired in practice to use a mixture of oils. When the oil under examination is to be used in conjunction with other oils, these should be wholly miscible in the propor-

tions in which they are to be used.

The following classification and explanations will serve to give a general idea of the methods employed when carrying out various tests: (1) flotation of lead, zinc and other sulphides, as a mixed concentrate; (2) differential separation, or selective flotation of one sulphide in the presence of other sulphides (the term "differential separation" is usually applied to the selective flotation of lead sulphide from zinc and other sulphides); (3) flotation of copper and iron sulphides.

Outline of Test Process

The testing of oils in the laboratory is carried out by comparing measured quantities (from 3 to 6 drops) of a standard oil, with a similar quantity of the oil under examination, the values being arrived at by comparing the results obtained from each series of tests. Tests are usually made on 1 lb. of standard ore sample in 4 lb. of water at a standard temperature, acidulated with a definite quantity of sulphuric acid. The oil then being admitted, the mixture is agitated in a specially constructed agitating machine, the principle of which is dependent on the object of the test. The float produced is skimmed off, dried,

weighed and assayed.

The Flotation of Mixed Sulphides.—Almost any eucalyptol oil which produces a persistent froth, and leaves a gummy residue on evaporation, is suitable for this class of work. An agitating machine may be constructed by cutting a packing bottle about 10 in. above the neck (a bell jar of suitable dimensions can be obtained). Fit four copper baffles, $4 \times 1\frac{1}{2}$ in. wide, to a copper band of the same width and push this arrangement hard down into the bottle (the band being first bent to fit the inside circumference of the bottle). The lower ends of the baffles will jam hard to a point where the concave glass begins. The band is then expanded hard against the glass, and held in position by soldering the separated ends. The mouth, or discharge end, is closed with a rubber stopper, through which is passed a glass or metal tube fitted with a short rubber tube and clip. The bottle with the baffles in position is inverted and clamped centrally under two pairs of suitable bearings, which carry a ½-in. impeller shaft. At the upper end of the shaft is fitted a driving wheel, and at the lower end a four-bladed impeller which just has clearance between the lower points of the baffles and the glass. The blades of the impeller have a lateral angle of about 45° and should be driven at about 1200 r.p.m. in a lifting direction.

Test 2. Differential Separation.—For differential separa-

tion, an oil high in phlanderene which leaves a gummy residue on evaporation is used. Phlanderene may be tested for by a Differential separation is worked in acid and neutral and in hot and cold liquors, and being still in its infancy, allows of many types of machines and schemes. Each different ore requires some modifications, but the principal in main is the addition of medium and aëration from below, which is effected

by air jets or suction created by the impeller.
Test 3. Flotation of Copper and Iron Sulphides.—An oil which gives a deflection by the polariscope of 60 or over is considered sufficiently high in phlanderene for use in copper flotation. Tests are usually made with the apparatus described in Test 1, using cold circuit liquors made slightly acid. In practice the mine water usually contains sufficient acid for the purpose.

RECENT PROGRESS IN FLOTATION1

Certain progress in the more general details of flotation milling is of interest. For instance, it now looks as if much of the older concentrating machinery is going to be displaced by flotation machinery. The first application of flotation was to retreat slimes carrying valuable sulphides, and it was hence merely an addition to slime-treating machinery, such as vanners and slime tables. Soon the vanner heads instead of the tails were being tested in the flotation machines, and the results have varied greatly. In some places the flotation machines are still treating the vanner or slime-table tails; in others the tests have shown better work with the older slime-treating machinery entirely eliminated. Of course, the criterion used has been the economy of concentrating the various ores in question.

Although slime-treating machinery could now be almost entirely dispensed with, there is still some doubt in many cases as to the advisability of doing so. However, some men have gone much farther and have suggested that it may be advisable to displace the sand-concentrating tables and to grind all material for direct treatment by flotation. In fact, one large copper company has decided to displace all concentrating machinery with the exception of rougher tables and regrind the tails from these for flotation. But with, say, a lead- or a zincsulphide ore containing the valuable minerals in large clean crystals it is hard to see why such a practice should be necessary. It would seem that only the fines and slimes, which are inevitably produced by any crushing, should require flotation treatment. This, of course, leaves out of consideration the cases where heavy gangue minerals make mechanical concentration of other kinds difficult.

"Cleaning" Flotation Products

The practice of "cleaning" both flotation concentrates and tails is another development, at least in American practice.

Only a few years ago "rougher" and "cleaner" units were not commonly spoken of. Now almost every installation, of whatever type, is retreating the concentrates from a "rougher" machine in a "cleaner" machine in order to drop out most of the gangue material and some of the middlings which need further treatment. Moreover, it is becoming customary to add suitable oils to the tailings for further flotation treatment in order to produce clean tailings and a low-grade middling product. These various middling products are reground in the best practice and returned to the circuit, while in other instances simple return of middlings without regrinding is common. Another point of interest has been the installation of all manner of "drag" devices for removing any froth that may form on the pulp in the subsequent handling of tailings, such as in dewatering or thickening. It is also a debated question as to whether

¹ Excerpts from an article by O. C. Ralston and F. Cameron, Eng. and Min. Journ., May 29, 1915.

further flotation treatment before discharge is not better'

practice.

Another development when using pneumatic cells of the Callow type has been to add "recleaners" for further treatment of the concentrates from the froth "cleaners." Thus we have "roughing" machines followed by "cleaners" for the tailings, and, in some installations of the Callow type "cleaners" and "recleaners" for the concentrates. As a matter of fact, the same general sequence of treatment is followed in the many compartments or cells, in series, of the Minerals Separation type of machine.

Breaking Up the Froth

The further handling of froth concentrates has proved a serious problem for many operators when the froth has been tough and permanent. The most common method of breaking froth is by jets or sprays of water. A single strong jet of water turned on the flowing froth in a launder often results in material benefit, and a water pipe perforated with many holes to give more jets is better, while special sprays, such as rotating garden sprays (inverted), Buffalo sprays, etc., prove even more efficient. Direct feed into a filter of the pressure-filter type is most effi-cient, as the froth does not need to be broken up. The vacuum filters are not so well adapted to immediate treatment of the froth because it generally is too thin (25 per cent. to 35 per cent. solids) to cake well; vacuum filters of the Portland or Oliver type require approximately 50 per cent. solids in the pulp. However, by breaking the froth and dewatering, a vacuum filter is permissible. In a number of installations a bucket elevator seems to break up the froth to a satisfactory extent, actual tests made by one company indicating 80 per cent. efficiency in breaking froth, merely in the passage of the froth through the bucket elevator. Addition of chemicals, such as acid or lime, or of more oil to the froth, also tends to break it down and make the solids settle out well. If lime be used for this purpose, the mill water cannot be used again without neutralizing.

Settling of froth in bins for dewatering, while a common practice, is not satisfactory, as it practically imposes a canvas lining for the car in which the concentrates are shipped, and concentrates shipped in this manner will drain in such a "traveling filter" to about 25 per cent. or 30 per cent. moisture. In case of a long haul, this is expensive both in freight and leaks. Filters are being used in nearly all of the larger plants. Oliver and Portland filters turn out a satisfactory product with 10 per cent. to 15 per cent. moisture, and pressure filters like the Kelly while more cumbersome and expensive to operate, are giving products ranging from 6 per cent. to 10 per cent. moisture.

Flotation Practice with Complex Sulphides

Where the flotation concentrates consist of several mixed sulphides which it is advisable to separate they are run over concentrating tables after breaking the froth. This idea is old,

but its application in the United States is relatively new. Mixed concentrates made on Minerals Separation, Callow, McQuisten and De Bavay machines are now being treated in this manner in the United States.

The mention of separation of mixed sulphides in flotation concentrates suggests the work on preferential (selective) flotation. In this field there is much work being done in laboratories, and many seemingly good results are being obtained. However, most work of this kind is being guarded closely. In four separate and distinct places the idea has been adopted of separating galena selectively in the presence of sphalerite by an exact proportioning of a suitable oil, adding only enough to float the galena. This idea is old, but to see it worked out in detail and applied in the works (as it is in three instances) is

gratifying.

Most of the preferential methods have consisted in the treatment of ore by some method which modifies one of the flotative minerals and prevents its floating. The Horwood process (a slight roast to deaden the surfaces of lead-sulphide particles and prevent their floating, while the zinc sulphide is unaffected) has been tried experimentally in at least five instances, and more or less encouraging results have been obtained. A patent of Greenway and Lowry reveals another proposal of adding chromates to the mill water to act on one sulphide while the other is unaffected and can still be floated. Still other methods of getting preferential flotation have been experimented with—by proper preliminary treatment of the oil, such as emulsifying, fractionally distilling, treatment with proper electrolytes, acids or other chemicals. This work is nearly all experimental-laboratory work.

Retreatment of Tailings

The cleaning of tailings is being accomplished, as a rule, by further addition of oil and retreatment in other flotation cells. The "step" addition of oils is claimed by the Butte metallurgists as a contribution of their own. Almost universally, oleic acid is used in the cleaning treatment of the tails of lead- or zinc-sulphide ores. It seems to be especially adapted to the purpose, though it is hard to get high-grade concentrates by its use.

Incidentally, the effect of adding an excess of any flotation oil seems to be the formation of lower grade concentrates, which are hard to clean. Moreover, the froth is liable to be too tough and permanent to permit of its being easily broken after removal from the machine. Oil or substances immiscible with water and generally understood by that name are not necessary to flotation. Many soluble frothing agents are used that are not "oils" in any sense of the term. As the term "soluble frothing agents" has been mentioned in many of the more recent patents, the term "oil flotation" might be advantageously dropped before it gains too much headway.

Flotation Oils

The subject of oils is a most important one, and more experimental work has been done on this particular phase of the subject than on any other. Attempts to determine which oils may be best suited to the treatment of certain minerals have not resulted in deciding on any particular oil that will always concentrate a certain mineral in all cases. Pine oil is a favorite for floating both lead and zinc sulphides, though the wood creosotes are close competitors. Eucalyptus oil seems in many cases to work better than either of these, but it is too costly.

Petroleum products appear to be sufficiently selective for copper concentration; but in the concentration of lead or zinc sulphides they seem to float too much gangue. Such being the case, it may be said that petroleum oils are not well adapted to flotation work upon lead-zinc ores, as in the treatment of such ores it is necessary to produce concentrates which shall contain not less than 45 per cent. lead or zinc. On the other hand, particularly high-grade concentrates are not necessary in copper work, and a high extraction, with concentrates having a tenor of 10 per cent. to 25 per cent. Cu, is usually obtainable.

Delivered, pine oil costs from 25 cts. to 30 cts. per gallon; creosote 18 cts. to 25 cts.; eucalyptus oil, \$1.50 to \$2 per gallon. (Roughly, there are 8 lb. of oil in a gallon.) The petroleum products used can be bought for from 5 cts. to 10 cts. per gallon.

Use of Acid in Flotation

In the use of acid in the mill water the practice differs sharply. The addition of acid seems to improve selective action, especially on galena, sphalerite and pyrite, and appears to be effective for the purpose of getting clean concentrates with a minimum of gangue. The removal of oxidized films from sulphide particles is one result. It could doubtless be used in many places where it is not now used. On the other hand, it has been found in certain instances that the presence of an acid was fatal to the process. As a rule sulphuric acid is the cheapest acid available and so is generally the one used. The amount of acid used is somewhat lower than formerly, when from 0.5 per cent. to 1 per cent. H₂SO₄ was used in the mill water. Now the average practice is from 0.2 per cent. to 0.5 per cent.

The presence of any electrolyte seems to have a marked effect on flotation, and a set of experiments on some well-known ore, using distilled water instead of mill water, is therefore of great interest. In fact, the analysis of mill water from some of the mills where different methods are employed for treating ores that seem to be almost identical may reveal some interesting points. In our own laboratory the possibilities of new conditions arising from the use of water from the Great Salt Lake

is a question under investigation.

Temperature Increases, Selective Action

Whether temperature is an important item or not is also under dispute. On nearly every ore being treated it is possible to get

good work done with unheated mill pulp; but a better grade of concentrates can often be obtained by heating the solution. makes the oil and water less viscous, so that a given amount of oil will go a little farther. Moreover, less gangue rises through the more fluid water. The consideration of what would happen in the way of flotation of gangue if a mill solution composed of thick molasses were used illuminates this point. Further, the selective action due to the presence of an acid or electrolyte is promoted by a higher temperature. Hence, heating the mill pulp will be of value in those instances where concentrates of high metal tenor are wanted, as when working on lead- and zincsulphide ores. The temperature to which the mill water is heated is not over 65°C. (149°F.) in any case, and usually not over 50°C. (112°F.). The cost of heating to these temperatures is from 5 cts. to 10 cts. per ton of dry slimes.

Developments in Mechanical Agitation

The tendency in all mechanical-agitation methods of flotation (as distinguished from pneumatic methods) seems to be toward the most careful and rigid practice possible. A study is being made of the exact proportioning of compartments, of the beating blades or paddles on the impellers, and of the spitzkasten or settling boxes. For example, inclined blades seem to wear better than vertical ones.

The addition of froth rakes or hoes has also been made to nearly all such machines so as to remove the froth as fast as it is formed rather than to let it accumulate until it overflows by The removal of the froth in this manner avoids the breaking of bubbles and thus prevents the mineral getting back into the pulp and being lost. It also increases the capacity of the machine and permits the use of only enough oil to give a

froth that breaks easily and carries little gangue.

Individual drive of each impeller from a small special motor has been adopted in one design, rather than the use of a line shaft with either belt or gear drive of each impeller. doubtless costs much more for installation, but gives flexibility of control of each individual cell. Other mechanical means of mixing are being tried, such as the centrifugal pump which was used in Australia some time ago. This arrangement seems to give a low extraction and high-grade concentrates, a result capable of explanation on the assumption that the flotation conditions obtained are rather poor and that hence only the purest mineral floats, while middlings are unaffected. Such a practice makes cleaning of the tails by further treatment necessary. Having adjustable openings between beating compartments and spitzkasten seems to be nearly universal practice, though in a few of the mills visited the openings are hardly ever manipulated.

A preliminary mixing of the oil with the pulp is suggested as an interesting possibility as a result of some experiments conducted by three large companies, in which the addition of the oil was made before the material treated was passed through a tube mill. The mixing conditions were ideal and the tube-mill discharge could be run directly into a spitzkasten for separation of froth, or into pneumatic-flotation cells. This idea will doubtless be followed further.

Variation in Pneumatic-flotation Cells

Contrary to the tendency in mechanical-agitation schemes, the pneumatic-flotation machinery is being modified, apparently, toward the greatest freedom of design possible. As an instance, the Callow cell is designed with a slanting bottom to facilitate discharge of tailings. Some mill men find flat bottoms to work just as well. In fact, every possible modification of a bottom seems to be at work. Single and quadruple thicknesses of canvas are used. The canvas may be clamped and bolted between two strong grids of perforated sheet steel or it may be supported against some wire cloth and tacked on. It may likewise not be supported in any manner, but simply stretched tight and held by a piece of rope driven in a groove which extends around the inside of the bottom of the machine. The last-cited method seems to be about as successful as any for changing bottoms when the canvas becomes worn out.

Before treatment in the pneumatic-flotation cell the pulp is commonly mixed with the oil in a Pachuca mixing tank. In several instances a number of these Pachucas are placed in series and a good grade of froth is drawn direct from the tops of them. It is quite likely that radical changes in design will result from this experimental work. Both wooden and metal constructions are used, the metal cells costing nearly twice as much as the

wooden ones.

Electrical Flotation

Among the new proposals appearing during the last year was the Fields electric-flotation process. In this process it is proposed to accomplish flotation by means of hydrogen bubbles developed by electrolysis of the solution mixed with the pulp. Fields also proposes to use air lifts to keep the pulp in suspension. It is claimed that no oil is necessary, but that it helps. The special application of this process is stated to be on partly oxidized copper ores, where the copper sulphides can be floated, and by use of a solution of a sulphate or a chloride the oxidized copper will go in solution at the anode and a rough copper cathode will finally result. Promising results have been obtained, but at an expenditure of power of about 10 times that anticipated. Whether or not this process can be made commercially feasible is a matter of considerable interest.

Flotation of Oxidized and Other Minerals

In the flotation of oxidized and other minerals much quiet work is being done. The most promising method proposed is that of "sulphidizing" oxidized minerals of copper and of lead by treatment with the proper soluble sulphide and then floating the artificial sulphides formed. This idea has been tried

principally on copper ores with fair results. Treatment with hydrogen-sulphide gas, either of dry ore or suspended pulp, works well, or the sulphidizing may go on during flotation by use of ground matte and acid to react on each other and form H₂S; or solutions of hydrogen sulphide, alkaline sulphides, alkaline-earth sulphides and other compounds can be used with more or less success. The concentrates formed are never of high grade, as a great deal of gangue is carried up, especially Similar work is being done in our laboratory on low-grade oxidized ores of lead, but a concentrate with only 20 per cent. of lead is a different thing from a 20 per cent. copper concentrate. The present outlook seems to be that the process will apply only to oxidized copper ores. Oxidized zinc ores seem to be unaffected by the process.

SECTION VII

CYANIDATION

Flow of Sand and Water through Spigots¹

RELATION OF COMPOSITION TO VISCOSITY OF MIXTURES OF SAND AND WATER

Kilo- grams sand and water	Kilo- grams sand	Kilo- grams and liters water	Liters sand	Liters sand and water	Per cent. sand by volume	Per cent. sand by weight	Vis- cosity of mix- ture
9.20	0.00	•	0.000	9.20	0.00	0.00	1.00
9.30	0.45		0.165	9.02	1.83	4.84	1.02
9.35	1.10		0.405	8.66	4.68	11.8	1.06
9.35	1.40		0.515	8.47	6.08	15.0	1.09
9.40	1.90		0.699	8.20	8.53	20.2	1.12
9.40	1.95		0.717	8.17	8.78	20.8	1.13
9.55	2.20		0.809	8.16	9.92	22.0	1.13
9.20	2.25		0.827	7.78	10.6	24.4	1.18
9.05	2.50		0.920	7.47	12.3	27.6	1.23

A concrete example, illustrating the use of the data given above, may prove of interest. It is desired to discharge from the pocket of a classifier 40 tons of sand per 24 hours together with water in the ratio of 1 part of sand to 3 parts of water by weight. The head of water above the spigot is 3 ft. The form of the spigot is that of a short tube with a conical mouth on the influx end. The mean specific gravity of the sand is 2.81. What must be the diameter of the spigot opening? For the sake of convenience, metric units are used in making the calculation. The area of the spigot opening may be obtained from the formula:

$$a = \frac{fq}{c \sqrt{2gh}}$$

Taking up the terms on the right hand of the equation in order, f the viscosity, may be estimated as follows: The weight ratio of water to sand in the mixture to be discharged is 3 to 1. Considering 100 grams of the mixture, the weight of water is 75 grams; its volume is 75 cc. The volume of the sand is 25 grams \div 2.81 (the density of the sand) = 8.9 cc. The total volume of 100 grams of the mixture is 75 + 8.9 = 83.9 cc. Hence the percentage of sand by volume in the mixture is $8.9 \div 83.9 = 10.6$. From the lower curve of Fig. 1, the viscosity of a mixture containing 10.6 per cent. of sand by volume is 1.17. Therefore, f = 1.17. The quantity of sand discharged per 24 hours is 40

¹ RICHARDS and DUDLEY, Trans. A. I. M. E., January, 1915.

tons. One ton per 24 hours is 0.631 kg. per minute. Forty tons per 24 hours is $40 \times 0.631 = 25.2$ kg. per minute. The volume of sand per minute is $25.2 \div 2.81$ (the density) = 8.98 liters. The quantity of water per minute is three times that of the sand, $25.2 \times 3 = 75.6$ kg. = 75.6 liters. The total volume of sand and water per minute is 8.98 (sand) + 76.5 (water) = $85.5 \div 60 = 1.43$ liters = 1430 cc.

Fig. 1.—Graphic representation of results shown in table on p. 403.

Since the spigot is to consist of a short tube with a conical mouth on the influx end, the coefficient of discharge, c, may be assumed as 0.88. Substituting these values in the above equation gives for the area of the spigot opening:

$$a = \frac{1.17 \times 1430}{0.88 \sqrt{2 \times 980 \times 914}} = 1.42 \text{ sq. cm.}$$

The diameter may be obtained from the relation:

$$d = 2 \sqrt{\frac{a}{n}} d = 1.35 \text{ cm.} = 0.53 \text{ in.}$$

Pulp Constants

In an article by G. H. CLEVENGER, H. W. Young and T. N. Turner (Eng. and Min. Journ., Dec. 19, 1914) it was shown that the ordinary calculations for contents of tanks, weights of tailings, etc., based on the assumption that the specific gravity of the solution was 1, were incorrect by large amounts. Clevenger worked out a set of complete tables covering these constants, of which only the basic formulas are here given.

Let a =Specific gravity of wet pulp. S =Specific gravity of dry slime.

V = Total volume of wet pulp. m = Total weight of dry slime in wet pulp. c = Volume of solution in wet pulp.

d =Specific gravity of solution.

P = Percentage of dry slime in wet pulp.

$$a = \frac{m + cd}{V} \qquad S = \frac{m}{(V - c)}$$

Solving for c, equating values, simplifying and solving for m:

$$m = \frac{SV(a-d)}{(S-d)}$$

Solving for ℓ , equating values, simplifying and solving for m. $m = \frac{SV(a-d)}{(S-d)}$ P is obtained by multiplying the above value of m by 100 and dividing by weight of the wet pulp, Va: $P = \frac{100S(a-d)}{a(S-d)}$

$$P = \frac{100S(a-d)}{a(S-d)}$$

The error introduced by assuming d = 1 is not a negligible one.

SPECIFIC GRAVITY OF WORKING CYANIDE SOLUTIONS

Solution	Specific	gravity		
Fresh solution Butters plant, Virginia City, Nev Butters plant, Virginia City, Nev Belmont plant, Tonopah, Nev Belmont plant, Tonopah, Nev Montana-Tonopah, Tonopah, Nev Empire, Grass Valley, Calif Portland, Colorado Springs, Colo South Africa, average Pittsburgh-Silver Peak, Blair, Nev	Tails Heads Tails Heads Heads Heads	1.00170 1.00281 1.00279 1.00881 1.00873 1.00314 1.00142 1.01000 1.00210 1.00309		

SLIME COAGULANTS¹

Substances	by du	antities required weight, to pro- ce equal effects
Aluminum sulphate		100
Alum (potash)		143
Ferric sulphate		223
Alum (ammonium)		252
Alum (ammonium-chromium)		295
Lime		654
Magnesia		74 8
Alum (potassium-chromium)		958
Calcium chloride		1,095
Calcium carbonate		1,215
Calcium sulphate		2,870
Magnesium sulphate		3,460
Sodium chloride		, –
Sodium sulphate		

¹ MEGRAW, "Practical Data for the Cyanide Plant," adapted from JULIAN and SMART.

406 METALLURGISTS AND CHEMISTS' HANDBOOK

Number of Cubic Feet for each Foot of Depth of Cylindrical Tanks¹

2 Sat					Dia	meter,	feet				
Diam	10	11	12	13	14	15	16	17	18	10	20
0 14 11/4 2 21/4 3 31/4 41/4 5 51/4 6 61/4 71/4 81/4 91/4 10 10/4 11	78 5: 79 8: 80 5: 81 8: 82 5: 83 8: 83 8: 84 5: 85 9: 86 5: 87 9: 88 6: 89 3: 90 0: 90 7: 92 8: 93 6:	9 95 75 9 96 48 1 97 20 8 97 93 5 98 66 2 99 40 9 100 1 6 100 9 4 101 6 7 103 1 9 103 1 9 103 9 8 104 6 7 105 4 6 106 9 8 107 6 8 108 4 7 109 2 9 110 7 9 110 7 9 110 7 9 110 7 9 111 5	113 1 113 9 114 7 115 5 116 3 117 1 117 9 118 7 119 5 120 3 121 9 122 7 123 5 124 4 125 0 126 8 127 7 128 5 129 4 130 2 131 0	134 4 135 3 136 2 137 0 137 9 138 7 139 6 140 5 141 4 142 2 143 1 144 9 145 8 146 7 147 0 148 5 149 4 150 3 151 2 152 I	154 8 155 8 156 7 157 6 158 5 160 4 161 4 162 3 163 2 164 1 165 1 167 9 169 9 170 8 172 8 173 8 174 8	177 7 178 7 180 7 181 7 182 7 183 7 184 7 185 7 186 7 187 7 191 8 193 8 194 8 196 9 197 0	220 4 221 5 222 6 223 7 224 8	243 9 245 1 246 2 247.4 248 6 249 8 250 9 252 1	255 6 256 8 258 0 259 2 260 4 261 6 262 8 264 0 265 2 266 6 268 8 270 0 271 2 272 4 273 7 274 9 276 1 277 3 278 6 279 8	284.7 286.0 287.2 288.5 289.7 291.0 292.3 293.6 294.8 296.1 297.3 298.6 299.0 301.2 302.5 303.8 305.1 306.4 307.6 308.9 310.2 311.5	316.8 316.8 318 1 319 4 320 7 323.4 324.7 326.0 327.4 328.7 330.1 381.4 382.8 334.1 385.5 336.8 338.2 340.9 342.2 348.6
1134	94 31	1112 3	131.8	153 0	175 7	200 0	225.9	253 3	282.2	312.8	340.0

Number of Cubic Feet for each Foot of Depth of Cylindrical Tanks. 1 Continued

EG					Dia	meter,	, feet				
Diam., Inches	21	22	23	24	25	26	27	28	29	30	31
0 14 116 216 316 416 516 616 716 816 10 10 10 10 11	346 4 347 7 349 1 350 5 351 9 353 3 354 7 358 9 367 4 363 1 364 5 365 9 367 3 368 7 371 5 372 9 374 4 375 8	385 9 387 3 388 8 390 2 391 7 393 2 394 7 396 1 397 6	418 5 420 0 421 5 423 0 424 6 426 1 427 1 430 2 430 2 430 8 435 8 438 9 441 4 446 1 446 1 447 7	453 9 455 5 457 1 458 7 460 9 463 4 465 0 468 2 469 8 471 4 474 6 474 6 477 9	492 5 494 2 495 8 497 4 499 0 500 7 502 4 504 1 505 7 507 4 507 4 517 4 517 4 522 4 524 1 525 8	562 0	577 8 579 6 581 4 583 2 586 8 586 8 586 6 592 2 594 0 595 8 597 6 599 4 601 2 603 0 604 8	617 6 619 4 621 2 623 1 624 9 626 8 630 5 632 3 634 2 636 9 639 8 641 7 643 5 645 4 647 3	662 4 664 3 666 2 668 1 670 0 672 0 673 9 673 9 677 7 679 6 681 5 683 5 685 4 687 4 689 3 891 2 693 1 695 1 697 0 699 0 700 9	708 8 710 8 710 7 710 7 716 7 718 7 718 7 720 7 722 7 724 6 726 6 736 6 736 6 738 6 736 6 736 7 746 7 748 7	756.8 760.6 760.6 763.9 764.0 767.0 769.0 771.1 775.2 777.2 770.3 781.3 783.4 785.8

Number of Cubic Feet for mace Foot of Defte of Cylindrical Tanks. 1 Continued

ametec,	1			D	amet	er, for	et				
inches	32 3	3	34	35	36	37	38	39	40	141	2
	+ +	- 1		T ^	 	-		_		-	_
0	804 2 85	5 3	907	962 1	1018	1075	1134	1195	1257	1320	1383
51	500 3.95		910	1 964 4		_	1136	1197	1250	1323	1334
1	808 4 55	8.6	912	4 906 7			1149	1200	1262	1326	139
162	810 5 86	1. 8	914	6 969 0		1052		1202	1261	132H	
2	512 6 No	1 0	916	8 171 3		10a5		1205	1207	1331	139
212	814 7 80	1	919	0 973 6	1029	1047	1146	1207	1200	1333	139
3	81b 9.86	1		1 975 9		1090	1140	1210	1272	1436	1400
312	819 0 87	1.5			1034	1092	2151	1212	1275		140
4	921 1 97				1037	1095	1174	121 (1278	1342	1400
419	824 2 87	I N			1030	1097	1156	1217	1280	1314	141
5	N25 5 N7	7 0	930	1 985 2	1042	1200	1159	1220	1281	1347	141.
515	N27 4 975	1.2	932	5 947 5	1044	1102	1161	1222	1285	1350	141
6	829 B 88	4	9 14 3	S BRO N	1046	1104	1164	1225	1288	13333	2489
folia:	83. 7 KK	16	937 (0.492.1	1044	1106	1166	1228	1291	1355	142
7	534 9 55	5 h	9 39	1994 5	1051	1109	1100	1231	1,294	1358	142
742	N35 9 NN	(1)	941 (6 994 5	1053	TELL	1171	1233	1290	1461	142
Ng.	H44 1 HH	1 2	943 1	1 999 1	1056	1114	1374	1236	1299	1.164	1430
81;	840-254	3.4	046	1 1901	1495M	1116	1176	1238	1301	1366	1433
9	812 4 89	I G	145 -	1004	1864	1119	1179	1241	1304	1360	143.
10 % 2	814 5 59	p N	950 0	1 1006	27365.5	1121	1181	1243	1307	1371	1434
10	546 7 59	0.1	153 (T LOON	1066	1121	1184	1246	1310	1374	144
100	5038-36.90	1.2	955 .	2 1010	1 Clean	1126	1186	1218	1312	1377	1444
11	2671 0 90	3 5	957	5 1013	1079	1129	11.89	1251	1315	1390	144
115.	H53 1 90	7	939 1	1015	1072	1131	1192	1254	1317	1382	1450

NUMBER OF CUBIC FEET FOR EACH FOOT OF DEPTH OF CYLINDRICAL TANKS. S Continued

Dia octor				D	amet	er, fe	et				
unchosi.	41 4	14 45	46	47	48	49	50	51	52	53	54
	r •	+	†		1	-	1	1	- 1		-
t)	s452 18	521 159	0-1662	1735	1810	1886	1963	2043	2124	2206	2290
1	3.155.17	524-159	3.1685		1813	[NMG	1966	2046	2127	2209	2293
1	1458 12	526 150	6 1668	1743	1816	1902	1970	2050	2131	2213	2297
1,	1360-17	529 2.39	$a_{-1}(71)$	1744	1812	1895	1973	2054	(21)34	2210	2300
2	Lind C	532 year	2.1674	1747	1822	3 94993	1977	20.96	21.47	2220	2304
_1,	L106 r	635 TOH	1 14 77	-1750	1825	1002	1980	2059	2140	2224	2307
1	1469-17	545 160	5 1650	1753	2828	1905	1963	20053	21.14	2227	2311
3.5	1472 1	off 161		17.56			-				2315
4	1475	74 TO		-1760			_			2234	2319
1.5	4477 (546 TCI	7 1589	1763	1838	1914	1993	2073	41.04	2237	2322
7)	1180.1	(L) 162		1766		1918	_		2158	2241	2326
5.5	1483.1	32 Te 3	11.1595	1769	1844	4921	1999)	2073	4161	2214	2329
f .	7.186 F	557.162					_	_			
1.5	115+1			1775					21168	2231	2336
7	5.192.1	s61 163	2.1704	1778	1850	1931	2010	권하다	2172	22.55	2340
7.1	149 / 1	F-1 (6.1	3.1707	4 5 11		1 255					2343
44	1498.1	667 163			-	1937					2347
26.5	1500.1	-7 - 104		3788				4			
•	1503 E	73 164		1791					2285	2269	2354
4114	1.50M (C)	576-164	7.1720	1794		1947			2230		2357
[]	1.409 (4.	:79 [6]	0.1723	3797	5573	19.40	2029	2110	2100	2276	2361
101	1.421	82 [63				1953				2273	
L1		$385 \cdot 165$						_ , ,			
145	1538 13	587 163	0 1732	1806	1882	1960	2039	2120	2202	2286	2372

408 METALLURGISTS AND CHEMISTS' HANDBOOK

Number of Cubic Feet for each Foot of Depth of Cylindrical Tanks. 1 Continued

Diameter,	ì				Dian	neter,	feet				
inches	55	56	57	58	59	80	61	82	63	64	
0	9376	2463	2552	2642	2734	2827	2022	3019	3117	3217	1
34		2466		2646				3023	3121	3221	
9.74									3125	3225	l
135	2386		2563			2839				3229	
2		2178	2567	2657		2843				3234	
214				2081					3138	4238	
3	2397			2065					3142	3242	ı
334	2401		257H	2660	2761	2×35			3146	3246	1
4	2405	2492	2582	2673	2765	2859	2954	3052	3150	3251	
434	2408	2496	2585	2676	2769	256.6	29.58	30.56	3154	3255	ı
ð.	2412	2500	2589	26th	2773	2867	2063	3060	3159	3259	ı
555	.2415	2503	2593	2684	2777	2871	2987	30 64	3163	3263	ı
6	2419	2507	2507	2500	2781	2875	2971	3068	3167	3267	
614	2422	2511	5000	2691		2879		3072		3271	
7	2426								3175		
755	2430								3179		
8	2434	2522	5015	4703	_	2841			3184		
R14	2437	252)	2015	2707		2895			3158		
₽.	2441	2529	2619	2711					3192		
915	2444	2533	26.23						3190		
10	2448	2537	20.27						3200		
10%	2452	2540	2630	272.					3204		
11	12450		2644		2820				3200		
1134	2409	2048	2049	2730	4023	4918	2017	2117	3213	3314	ı

Number of Cubic Feet for each Foot of Depth of Cylindrical Tanks 1 Continued

Diameter,			Diatr	icter, fi	ret			
tachen	06 67	64 69	70	71 7	72 73	74	75	
	+ 1 -		1	1	1 .		,	ľ
0		3632 3739					4418	ď
35	3425 3530	3630 3743			276 4190		4423	ŀ
1	3430 3544				381 4193		4428	Ē
116	3434 4535				985 4200		4433	
2	3438 3545	3656 3757			<i>1</i> 90 1205			
234	3442 3547	3654.5761	13871	3.985.40	305 420%	4325	4442	ŀ
3	3447 35 =	3608,370						
334	3451 3550				104 4219			
4	3450 3501				109 4 224		4457	
436	3460 (565		2.5559		14 4228		4462	
5	3465 6513				139 4233			
534		3650 3753				4 154		
6		3685 3791						
6 12	3477 1 PA	3169 3795						
7.	3482 5 87	32.94 (80)					4487	
735	3486 (591	3505 3507				4374		
8.	3491 1500	3703 3813			47 4262		4497	
814	3495 зили	2707 (SI)			32 4267			
9	3468 380 5				177 4272		4507	
934	3503 3909	3716 382				4 39-4	4512	
10	3505 3514	3721 363			06 4281		4517	
1014	3512 3615	3725 3834					1522	
11	3517 3623	3730 3839	130.30	FD02 43	70 4291	4408	4527	
1156	3521 3627	3734 3843	3954	4067 41	80 4290	1413	1031	i

NUMBER OF CUBIC PERT FOR BACK FOOT OF DEPTH OF CYLINDRICAL TANES. 1 Continued

Digins fee				n	ia me	ter, fo	set				
no hes	77	78	79	HO	18	82	8.3	84	8.5	86	87
11	4657	4775	4902	5027	1153	5281	5411	5542	5675	SAUG	194
(4667	4754	496.7		511%		5416	3547		0414	50.50
1	4667	4750	4912		5164	2462	5421	55 41			1950
11	467.	4794	4937		5,49		54.26			0925	
2	4677	47394	4922	Tara N	374		54.42	5564		5831	106
212	46.92	4 htel	4927	5053	5179		54.47		70.2		
3	4657	4 5020	4933		1155		5663				
3 47	46.82	4814	49.04	WHEE !	(1 ac)		5448		17.3	_	196
4	4697	4519	494 1	Salesta	47	11.4			1719		
415	4702	4824	4 115	5437.4	1200		5450		724	3850	
5	4707	4 5 40	4951	5079	1200	5 1 1		5 617	52.67		600
5	4712	49.55	4959	9.81	5211		5470		17.15		
6	4717	4540	4 864	6 (04	217		5176	_	711	1877	
6 ,	4722	444 .	419974	SHIP		54		461.1	7747		
7	4727	4550	4974	*100	2.27		4457			THER	_
7.	47.12	45.5	4979	3105	10.0	- 11	31.2	6521	7.4	15.61	_
В	47.68	45040	4995	1111	52.68	167				0.599	
	4741	4565	4994	3116	5243	5 (72					
44	47.45	4871	4997	121	5249	175		Section		5954	
to a	47	4571	5000	Atai	52.4	5.1%	-	50.46	794		
10	47.18	4551	SHIRE	_	5260	436.4		36.32		53.2	
10	420-1	4550	50.3.1		529/5	5 (1)	5525	3657		5027	
11	4750	4 14/2 [5016		5270			5664		5033	
ii	4774	6390	5021				5530				

NUMBER OF CUBIC FEET FOR BACH FOOT OF DEPTH OF CTLINDRICAL TANKS. Continued

han eter	Diameter, feet
Tacy for	1 5 80 WO WET 92 93 94 95 96 97 95 90
1	605, 52,1 6362 6504 6645 6793 6940 7055 7235 7390 7543 769 6655 62,7 6365 6317 6654 6799 6940 7094 7244 7396 7549 770
L	6001 [35 6 74] 16 6660 / 86 63 /2 71 172 1740 / 77 /6 771 666 / 778 / 37 / 7 [2 666 / 8] 1 6958 7107 7237 7409 7562 771
230	6 1 14 5 5 6 18 177, 1817 6864 71 5 710 5 741 5 7569 772
3	6117 (1.3) (4.3) (6.4) (8.4) (8.2) (6.7) 7126 727 73418 7381 773
+	6118 (1874) F 1 100 0 0842 0089 71 8 7289 7441 7394 775 6131 (2.4.4)
į.	0140 LK 612 01 0708 0804 7 0 4 7151 7 6 1 7451 700 1 776 6 4 1 8 404 7 7 70 7 4 6 6 6 70 7 7157 7 8 7 74 90 701 4 776
n e	 C. C. li>
7	C.C. (144) SKICTS, OSTS TOPO TITO TIPE 7479 7635 778
:	6.17 File and 1714 had 170 to 7148 7 (c) 7492 7(4) 780 files at 50 8 (c) 649 7(4) 749 749 749 749 749 749 749 749 749 749
1	G.S. C. C. L. C. C. C. G. (1900), 705 (78.1.7352-750), 707 (781.00), 705 (781.750), 707 (781.00), 707 (781.750), 707 (781.00), 7
[) [0	C. 18 1. CR C. 184 GO., 4 (. 7) (. 80), 5 (70) (. 72) (. 7.04) 7 (17.7) 7 (7), 752 (. 2) (. 2) (. 10) (. 48) (. 66) (. 7) (. 60), 1 (. 200) 7, 10 (. 7) (. 7) (. 7) 7 (. 7) 7 (. 7)
į.	62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

¹G. H. Cervenunn, et al., "Pulp Constants," Eng. and Min. Jour., Dec., 1914.

410 METALLURGISTS AND CHEMISTS' HANDBO

OPERATING DATA ON DORR THICKENERS1

Mill	Sq. ft. settling area per ton of solids thickened per 24 hr.	Sq. ft. settling area per gallon overflowed per minute	Remarks
San Rafael, Mexico	4.5		Tube-mill product, 75 per -200 mesh, discharge
Liberty Bell, Colorado.	15.0	12.6	per cent. solids. Tube-mill product, much argillaceous slime. Discle 33 per cent. solids: +10 per cent.; +200, 13 per cent. Feed Solution fed at capacity; solution fed at cap
Mogul, South Da- kota.	3.92		nature of the slime. Tube-mill product, ore silic +60, 0.6 per cent.; + 7.8 per cent.; +200, 26 cent.; -200, 65.6 per Discharge 56 to 59 per cent ids. Continuous decants
Batopilas, Mexico.	0.6 to 0.9		40-mesh product; 90 per
Zambona, Mexico.	3.1		passing 100 mesh. Tube-mill product. Disch
Dominion, Ontario	5.4		40 per cent. solids. Tube-mill product, 88 per — 200 mesh, ore diabase. charge 40 per cent. so Feed 6:1.
Porcupine-Crown, Ontario.	4.25		Tube-mill product, 75 per — 200 mesh. Discharge 6 cent. solids. Quartz ore. tinuous decantation. 5.1 sq. ft. settling area per settles to 71 to 73 per solids.
El Palmarito, Mexico.	4.5		Tube-mill product: pure que zite, 97 per cent. — 200 number per cent. Solids. Continue decantation.
Amparo, Jalisco, Mex.	4.9	1.4	Tube-mill product, silice 93.5 per cent200 n Feed 24.5:1. Discharge per cent. solids; used to vanners.
Veta, Colorado, Parral, Mex.	5.0	3144	Tube-mill product, rather a laceous: 71 per cent mesh. Feed 11:1. Disch 33 per cent. solids for agit Have settled to 65 per
Smuggler-Union, Telluride, Colo.	• • • • • • • • • • • • • • • • • • • •		solids. Very clayey slime with classed field sand. Screen test: 1.48 per cent.; +60, 7.27 cent.

¹ Metallurgical and Chemical Engineering, February, 1915. a. Not up to capacity of overflow.

OPERATING DATA ON DORR THICKENERS. Continued

Mill	Sq. ft. settling area per ton of solids thickened per 24 hr.	Sq. ft. settling area per gallon overflowed per minute	Remarks
Smuggler-Union, Telluride, Colo.			+100, 14.81 per cent.; +200, 11.63 per cent.; -200, 65.81 per cent.
	30.0	26.0	Settling from cold water, slight- ly alkaline. Feed 8:1. Dis- charge 50 per cent. solids,
	10.0	•••••	1.429 sp. gr. Settling from cyanide solution. Feed, 2.5:1. Discharge 40 per cent. solids, 1.316 sp. gr.
A large copper company, Arizona.	11.6	8.11	Considerable argillaceous slime. Feed 10.4 per cent. solids. Discharge 25.3 per cent.
Pennsylvania Steel, Lebanon, Pa.	14.2	2.48	solids. Thickening ahead of vanner concentration. Feed 2.8 per cent. solids. Discharge 10.6 per cent. solids. Overflow 0.4 per cent. solids, extremely fine, which does not interfere with using water again.
Nevada Consolidated, Ely, Nev.		1.25	"Each 17-ft. thickener supplies wash water for 20 Wilfley tables and occasionally for wash on vanners. One thickener has a greater capacity than twelve 8-ft. cones." Area of 17-ft. tank is 226 sq. ft.; of the twelve 8-ft. cones, 525 sq. ft.
Broken Hill, Pro- prietory, Austra- lia.		1.80	Dewatering slime from lead- sinc concentration mill. Feed 100:1. Discharge 55 per cent. solids.
Anaconda Copper, Mont.	• • • • • • • • • • • • • • • • • • •	5.95	Dewatering slime from concentrator. Forty 4-deck thickeners, each 28 ft. in diameter by 3 ft. 3 in. deep, handle about 26,000,000 gal. of pulp per day which contains approximately 2 per cent. solids. A clear overflow obtained, the underflow containing about 15 per cent. solids, which is fed to buddles.

The data given here show that when pulp is carried in cyanide solution a provision of 5 to 6 sq. ft. per ton for a siliceous tube mill product is ample and from 7 to 15 sq. ft. for a clayey material or classified slime product. When very dilute products are handled the area required is determined usually by the gallons per minute to be overflowed.

Power Details for Pachuca Tanks1

Tank, diam. × ht., feet	Ore	Charge tons	Free air, cu. ft.	Pressure, lb. per sq. in.	Horse- power	Pulp
7.5×37 7.5×37 10×40 13×55 10×40 7.5×37 10×40 13×55	Slime	15 40 35 110 50	5 17 9 16 25 14 22 38	22 26 22 33 22 22 23 35	0.5 2.0 0.75 1.75 2.25 1.4 2.3 4.0	Thin. Thin. Thin. Thin. Thin. Thickened. Thickened. Thickened.

This estimation of horsepower required conforms to the popular ideas on that point. On the basis of some careful tests. which have been made, however, it is probable that actual power consumption is considerably higher.

Principles of Cyanidation

The cyanide process is based upon the solubility of gold and silver, and of some of the compounds of both metals, in an alkaline cyanide. The chemical theory is expressed in Elsner's equation, which was first brought forward by him to show the action of oxygen in the dissolution of precious metals. It is as follows:

$$2Au + 4KCN + O + H_2O = 2KAu(CN)_2 + 2KOH.$$

The usual cyanide salt was formerly potassium cyanide, but for reasons of economy, the sodium salt is principally used at the present time. The commercial product contains about 125 to 128 per cent. of the required compound in terms of KCN.

The essential difference between gold and silver cyanidation is that the gold is almost universally present as a free metal, and the cyanide dissolves the gold only. On the contrary, silver is seldom present in the free state, and usually occurs as a sulphide, chloride, or bromide. The sulphide is the most rebellious of all the compounds, except those which contain highly complex mixtures of antimony, arsenic, cobalt and nickel, but all of these can be treated. Silver sulphide often goes into solution as a sulphide, and it requires some manipulation to separate the silver as a metal.

The consumption of cyanide varies from as low as 0.1 lb. per ton of ore treated, in the case of fine free gold disseminated in pure quartz with no cyanicide, to as much as 5 or 6 lb. per ton in the case of semi-rebellious silver ores. Of course the limit of cyanide consumption depends entirely upon the richness of the ore to be treated. A rich ore will stand a higher consumption than a poor ore. Under ordinary commercial conditions, however, about 5 or 6 lb. per ton would be the limit on ore no matter how high its grade, since the consumption of much more cyanide than this would throw the cost up into competition with the smelting processes, under which circumstances smelting would be preferable to cyanide treatment.

¹ Eng. and Min. Journ., Vol. LXXXVI, 1908, p. 901.

SECTION VIII FUELS AND REFRACTORIES

Calorific and Evaporative Values of Various Liquid Fuels¹

	Sp. gr.	Flash point, °F.	Calorific value by bomb calories	Actual evapora- tion from and at 212°F.
American residuum. Russian Astatki. Texas. Burma. Borneo. Mexican crude. Oklahoma. Roumanian residue. Trinidad crude. California. Shale oil. Blast furnace oil. Heavy tar oil. Gasoline. Ohio crude.	0.886 0.956 0.945 0.920 0.936 0.950 0.863 0.946 0.945 0.962 0.875 0.979 1.084 0.7100 0.8048	350 308 244 230 285 290 	10,904 10,800 10,700 10,480 10,461 10,500 10,500 10,200 10,400 10,120 8,933 8,916 11,733 11,149	15.0 14.8 14.79 14.5 14.0 14.90

¹ Specially compiled for "The Petroleum Year Book, 1914."

414 METALLURGISTS AND CHEMISTS' HANDBOOK

BAUMÉ GRAVITY AND CORRESPONDING SPECIFIC GRAVITIES, WEIGHTS PER GALLON AND CALORIFIC POWER OF OIL¹

			,		
Baumés	Specific gravity	Pounds in	Calculated B t u. per pound	Calculated B.t.u per gallon	Remarks
14 15 16 17 18 19 20	0.9722 0 9655 0.9589 0.9523 0.9459 0 9395 0.9333	8 10 8 05 7.99 7 94 7.88 7.83 7.78	18,810 18,850 18,890 18,930 18,970 19,010 19,050	152,361 151,743 150,931 150,304 149,484 148,848 148,209	Mexico, Cali- fornia, Tax-
21 22 23 24 25	0 9271 0 9210 0 9150 0.9090 0.9032	7.73 7.68 7.63 7.58 7.54	19,090 19,130 19,170 19,210 19,250	147,506 146,918 146,267 145,612 145,145	as and Kan- sas crudes, fuel oil
26 27 28 29 30	0.8974 0.8917 0.8860 0.8805 0.8750	7.49 7 44 7.39 7 34 7.29	19,290 19,330 19,370 19,410 19,450	144,482 143,815 143,144 142,469 141,790	Kansas, In- dian Terri-
31 32 33 34 35	0 8695 0.8641 0 8588 0 8536 0.8484	7.25 7.21 7.16 7.12 7.07	19,490 19,530 19,570 19,610 19,650	141,303 140,811 140,121 139,623 138,926	tory and Illi- nois crudes, Penn'a. fuel, California refined fuel oil
37 38 39 40	0.8433 0.8383 0.8333 0.8284 0.8235	7.03 6.99 6 95 6 91 6 87	19,690 19,730 19,770 19,810 19,850	138,421 137,913 137,402 136,887 136,370	Ohio, Penn's. and West Virginia
41 42 43 44 45	0.8187 0.8139 0.8092 0.8045 0.8000	6 83 6 80 6 76 6.72 6 68	19,890 19,930 19,970 20,010 20,050	135,849 135,524 134,997 134,467 133,934	formia and Kansas refined fuel oil
46 47 48 49 50	0 7954 0.7909 0 7865 0 7821 0 7777	6 64 6 60 6 57 6 53 6,49	20,090 20,130 20,170 20,210 20,250	133,398 132,858 132,517 131,971 131,423	Kerosene and gasoline

¹ From "Fuel Oil Data," TATE-JONES & Co., Inc., furnace engineers, based on Shehman and Khappp's formula:

B.t.u. = 18,650 - 40 (B6.° - 10)

Journ. Am. Chem. Soc., October, 1908.

•	T S2	
	CTATES.	
ζ	D	
•	NITED	֡
۲	<u>ر</u>	
	ANALYSES-	
	Z	
4		
F	FUEL	֡
	Ę	
	Q.	
•	LIMITS	

6.00-19.7 3.2-36.0 0.19-1.94 5.8-7.0 3.6-7.4 15.8 -14.0 1.7-14.7 0.63-2.20 53-70 3.6-7.4 10.6 - 5.2 6.1-14.7 0.90-4.5 60.5-78.8 4.8-5.2 91-98 0.0-3.0		H ₂ O	Ash	Sulphur	Ö	Ħ	X + 0	Calories
0 7 0 0 0 10 0 0 1 10 0 0 1 10 0	Peat. Brown coal. Bituminous.	6.00-19.7 5.8 -14.0 0.6 - 5.2 0.5 - 2.5	3.2-36.0 1.7-14.7 6.1-14.7	0.19-1.94 0.63-2.20 0.90-4.5	53-70 60.5-78.8 91-98	3.6-7.4 4.8-5.2 0.0-3.0	10.8–23.9 9.1–15.4 0.0–3.0	2867–5161 4700–6000 6000–8000 7000

¹ Somermeier's "Coal."
² Compressive strength of 600-2000 lb. per square inch, hardness of 2.5-3. These values from private notes on Eastern cokes.

•	–	
	LYBEB	
	8	
	×	
	ANAL	
	ż	
•	く	
	_	
	148	
ζ	5	
	_	
	님	
	\mathbf{c}	
	Ĭ	
	_	
	×	
E	Z	

	C0	Vol. hyd. carb.	N	CO3	H
Producer gas. Mond gas. Iron-furnace gas. Water gas (blow up). Water gas (true).	23.7-33.6 10.3-11.0 20.0-32.0 23.7-32.2 40.9-45.2 0.6-1.8	1.3 - 11.9 $2.0 - 5.3$ $0.0 - 0.6$ $0.18 - 0.44$ $0.2 - 1.1$ $28.5 - 77.3$	49.5-67.1 43.0-55.8 55.0-65.0 63.9-65.9 1.9-7.1	0.45-5.30 $14.6-16.5$ $6.0-18.0$ $1.6-7.0$ $1.8-5.6$	1.25- 9.7 ² 23.5 -27.5 1.0 - 6.0 2.1 - 2.95 44.8 -51.4 18.9 -68.5

1 HOFMAN'S "General Metallurgy."
1 Using steam.

416 METALLURGISTS AND CHEMISTS' HANDBOOK

OXYGEN AND AIR REQUIRED FOR PERFECT COMBUSTION¹

• 1 11	Requires	kilograms	Product	Nitrogen in original	
1 kilogram	Oxygen	Dry air	Composi- tion	Kilograms	air kilograms
C C CO H CH ₄ C ₂ H ₄ Fe Fe Si P Mn S	1.333 2.667 0.571 8.000 4.000 3.429 0.286 0.429 1.143 1.290 0.291 1.000	5.777 11.555 2.472 34.664 17.332 14.848 1.238 1.857 5.064 5.586 1.221 4.333	$\begin{array}{c} CO \\ CO_2 \\ CO_2 \\ H_2O \\ CO_2, H_2O \\ CO_2, H_2O \\ FeO \\ Fe_2O_3 \\ SiO_2 \\ P_2O_5 \\ MnO \\ SO_2 \end{array}$	2.333 3.667 1.571 9.000 2.750, 2.250 3.143, 1.286 1.286 1.439 2.143 2.290 1.291 2.000	4.444 8.888 1.901 26.664 13.332 11.419 0.952 1.428 3.921 4.296 0.969 3.333

Theoretical Maximum Combustion Temperatures²

Oxyhydrogen flame	3191°C.
Hydrogen and dry air	2010°C.
Hydrogen and dry air in 25 per cent. excess	
Carbon monoxide with cold air	
CO and air, both at 700°C	
Natural gas and air	1806°C.
Natural gas with air at 1000°C	2288°C.
Thermit $(2Al + Fe_2O_3)$	2694°C.

COMPARATIVE COMPOSITION OF DIFFERENT FUELS³ Moisture Content when New

Fuel	Moisture, per cent.	Remarks
Wood. Peat. Lignite. Bituminous coal. Semi-bituminous coal. Anthracite coal.	30-60 50-90 30-45 2-25 1- 5 1- 3	Green wood As dug. As mined. As mined. As mined. As mined.

¹ From Hofman's "General Metallurgy."

² J. W. Richard's "Metallurgical Calculations," Vol. I, pp. 36-39.

³ Somermeier's "Coal."

Composition and Heating Value of Air-Dried Materials

		33 .	en 65	Bitur	ninous	rgh	t	
	Wood	Peat ¹ Florida	Lignite, North Dakots	Illinois²	Ohio, 3 Hock- ing	Penna.,4 Pittsburgh	Semi-bit., ² New River	Anthra- cite, 2 Penna.
Proximate Moisture Volatile Fixed carbon Ash		51.72 22.11 5.17	37.10 39.49 6.71	32.68 47.46 14.73	39.00 50.50 7.50	35.00 57.85 6.15	20.54 73.61 5.09	7.27 74.32 16.33
Ultimate Carbon Hydrogen Nitrogen Oxygen Sulphur Ash	0.8 50.7	100.00 46.57 6.51 2.33 38.97 5.17 0.45	55.16 5.61 0.91 30.98 0.63	60.51 4.88 1.23 14.20	70.70 5.20 1.30 11.95	78.75 5.14 1.55 7.56 0.90	82.41 4.38 1.05 5.87 1.20	0.80 4.08
Determined Calorific value Calculated Calorific value	100.0 4200	100.00 4515 4338	100.00 5273 5071	100.00 6199 6059	100.00 7155 7100	100.00 7865 7845	100.00 8254 7942	100.00 6929 6886

ULTIMATE COMPOSITION OF CRUDE OILS AND COAL¹ CRUDE OIL

	Sp. gr.	C	Н	0
Pennsylvania Russia (Balachny) Russia (Balachny re-	0.886 0.884	84.9 87.4	13.7 12.5	1.4 0.1
siduum)	0.928 0.945 0.936 0.920	87.1 87.8 85.66 86.4	11.7 10.78 11.03 12.1	1.2 1.24 3.31 1.5

¹ From "The Petroleum Year Book, 1914."

U. S. G. S., "Bulletin No. 332."
 U. S. G. S., "Professional Paper, No. 48."
 Ohio G. S., "Bulletin No. 9."
 U. S. G. S., "Bulletin No. 290."

418 METALLURGISTS AND CHEMISTS' HANDBOOK

Mineral Oils—General Composition¹

The characteristics of crude mineral oils and their products vary greatly in different localities; but the following general information may be of interest.

	Gravity, deg. Bé.	Flash point, deg. F.	Burning point, deg. V.
Crude oil	12-45	110-200	120-220
	40-50	90-125	105-150
	28-38	100-250	110-325
	22-28	100-300	125-375
	10-20	125-500	200-600

The heat value of mineral oils and their products may be very closely determined from their gravity, by the following formula:

B.t.u. per pound = $18,650 + \{40(Baum6 - 10)\}$ (SHERMAN AND KRAPPP)

2	ě.	*	9
1 41	ж	11.0	_

	Sp. gr.	С	H	0		Ash	H ₂ O
Newcastle	1.315 1.256 1 273	82.1	5.3	1 0 1.3 1 3	1.4 1.2 1.4	4.1 5.7 9.5	4.9 3.8 4.6

COMMERCIAL SIZES OF ANTHRACITE

<i>a</i> .	Size of scr	een, inchea	Wt. per	1 cu. ft. solid coal gives, cu. ft.	
Grade	On	Through	ou. ft., lb.		
Lump Broken Egg Large stove Small stove Chestnut Pea No. 1 Buckwheat No. 2 Buckwbeat	4½ -9 2¾ -2½ 1¾ -2¼ 1¼ -1⅓ 1 -1¼ 5% - ¾ 3% 3% 5% 316 - ¾	314 41/2 23/8 -27/8 13/4 -21/4 11/4 -11/4 1 -11/4 1 -1/4 5/8 - 1/8 3/8 - 3/8	57.0 53.0 52.0 51.5 51.25 51.00 50.75 50.75	1.614 1.755 1.769 1.787 1.795 1.804 1.813 1.813	

Shale Oil

These oils are secured by the distillation of shales. Two typical shale analyses are given by Sexton as follows: (1)

[&]quot;The Diesel Engine," Buscn-Sulsen Bros., Diesel Engine Co.
"Petroleum Year Book," 1914.

Volatile matter, 34.96 per cent.; fixed carbon, 7.54 per cent.; ash, 57.5 per cent. (2) Volatile matter, 13.5 per cent.; fixed carbon, 2.5 per cent.; ash, 84 per cent.

Typical Gas Analyses¹ (by Volume)

	Natural gas	Coal gas	Producer gas	Water gas	Mond gas
Hydrogen	4.8 0.2 53.7 41.2 0.1	51.8 9.1 31.8 5.2 2.1	$ \begin{array}{c} 8.0 \\ 23.7 \\ 2.2 \\ \\ 61.5 \\ 4.1 \end{array} $	49.17 43.75 0.31 4.00 2.71	27.2 11.0 1.8 0.4 42.5 17.1

KINDLING TEMPERATURES OF FUELS²

Solid	Deg. C.	Gaseous	Oxygen	Air
Dry peat Bituminous coal Pine wood Charcoal, made at 350°C Charcoal, made at 1250°C Anthracite Coke Mine timbers Lignite dust	326 395 360 650 700 700 200–400	Hydrogen Carbon monoxide, moist. Ethylene Acetylene Hydrogen sulphide Methane Ethane Benzene Illuminating gas Water gas Enriched producer gas Propane Propylene Cyanogen	651 543 429 364 650-750 520-630 547 504	406-440 580-590 644-658

Calorific Power of Fuels

Let H represent the percentage of hydrogen in a fuel; C represent the percentage of carbon; O the oxygen; S the sulphur; and assume also that the water formed by the combustion, represented by H₂O, does not condense (which it usually does not in metallurgical operations).

Dulong's formula for calorific power of a fuel then is:

$$C.P. = \frac{8,100C + 34,500(H - \frac{O}{8}) + 2,250S - 537H_2O}{100}$$

An empirical formula adopted by German engineers is:

$$C.P. = \frac{8,100C + 29,000(H - \frac{O}{8}) + 2,500S - 600H_2O}{100}$$

¹ Sexton, "Fuel and Refractory Materials."

² Dixon and Coward, "Journ. Chem. Soc. of London," 1910, p. 514.

Fractions	of Average	COAL TAR	AND THEIR	Uses ¹
First crude sep- aration by dis- tillation.	Light oil.	Middle oil (or dead oil).	Heavy oil (including anthracene oil).	Pitch.
Temperatures of distillation. Percentage in	70°–160°C. 3	160°-230°C. 8	230°–360°C.	Above 360°C. 65
tar. Intermediate products, by distillation or expression.	Benzene, tolu- ene, xylene, etc.; phenol.	Phenol, cresols, etc.; naphtha- lene, heavy hydrocarbons	phthalene,	Soft pitch, hard pitch.
Crude commercial products and their uses.	"Benzol" and solvent naphtha for solvents, paint thinners, motor fuel, gas enrichment.	Creoso Lamp Disinfectants.	black. Road oils, im- pregnation of timber. Roofi	Pitch, briqueting, protective paints. ng tars. g tars.
Intermediate chemical prod- ucts.	Nitrobenzene, aniline salts, aniline oil, carbolic acid.	Carbolic acid, picric acid, phthalic acid, naphthols, naphthyla-mines, salicylic acid.	Anthraquin- one, ali- zarin.	•
Refined chemical products, dyes, etc., and their uses.	Nitrotoluenes, diphenylamine and other ingredients of explosives; aniline dyes; hydroquinone and other photographic developers; drugs and medicines.	Picric acid, pic-		

Inflammability of Gaseous Mixtures—Determination of the Dilution Limits.2—The results given by previous workers varied over a considerable range. The authors define a gaseous mixture as inflammable at a stated temperature and pressure if it will propagate flame indefinitely when the unburnt portion of the mixture is kept at that temperature and pressure. Combustion in an inflammable mixture is not necessarily complete. In order to conform to this definition, the flame is started near the bottom of a tall vessel which is of sufficient cross-section to minimize the cooling influence of the walls, and the bottom of the vessel is sealed in water so that the pressure cannot rise appreciably. flame propagation is adopted since in very weak mixtures the velocity of propagation may be less than that of the upward convection currents and downward propagation of the flame may thus be prevented. Under these conditions the following minima were found:

¹ Tech. Paper 89, Bureau of Mines.

² H. F. Coward and F. Brinsley, Chem. Soc. Trans., 1914, 105, 1859-1885.

Lowest Limits for Hydrogen, Methane and Carbon Monoxide in Air.—Mixtures at atmospheric pressure, and saturated with water vapor at 17°-18°C., were inflammable if they contained not less than 4.1 per cent. H₂, 5.3 per cent. CH₄, or 12.5 per cent. CO.

Composition of the Residual Atmosphere Produced by FLAMES¹

	Composition of residual atmosphere in which flame was extinguished											
Substance burnt -	O ₂ , per cent.	N ₂ , per cent.	CO ₂ , per cent.									
Alcohol	14.9	80.7	4.35									
Methylated spirit	15.6	80.2	4.15									
Paraffin oil	16.6	80.4	3.0									
Colza and paraffin	16.4	80.5	3.1									
Candles	15.7	81.1	3.2									
Hydrogen	5.5	94.5										
Carbon monoxide	13.4	74.4	12.2									
Methane	15.6	82.1	2.3									
Coal gas	11.4	83.7	4.9									

Limits of Combustion (Gas and Air)²

	Lower explosive limit, per cent.3	Other authors	Upper explosive limit, per cent.	Other authors
Carbon monoxide Hydrogen Water gas Acetylene Coal gas Methane Gasoline Ethylene Hydrogen4	$\begin{array}{c} 2.40 \\ 4.10 \end{array}$	13-16.7 4.5-10 2.8-3.35 4.5-8.1 4-7.7 1.626 3.5-4.1 4.4-13	74.95 66.40 66.75 52.30 19.10 12.80 4.90 14.6	74.1-77.5 ⁵ 55-80 ⁵ 52.3-80 ⁵ 18.4-30 ⁵ 12.8-16.7 ⁵ 6.0 ⁶ 11.8-22 ⁵ 91-96.7 ⁵

Coal Burned per Square Foot of Grate in Reverberatory Furnaces⁷

Hand reverberatory roasting furnace	3 to	8 lb.
Agglomerating or lead-reverberatory smelting furnace	10 4-	10 lk
Turnace	12 to	10 ID.
Copper-reverberatory smelting furnace	16 to	30 lb.

¹ Journ. Soc. Chem. Ind., Feb. 27, 1915. ² From Benson's "Industrial Chemistry." The Macmillan Co.

³ Eitner's values.

⁴ With oxygen. It is evident that the various observers have not standardized conditions.

⁶ Bureau of Mines, 1915. Probably most reliable figures given. ⁷ GRÜNER, "Traité de Metallurgie Générale."

422 METALLURGISTS AND CHEMISTS' HANDBOOK

Puddling furnace		30 lb.
Heating furnace	30 to	40 lb.
Locomotive boilers (induced draft)	80 to	100 lb. i

Ratio of Areas of Total Grate to Air Space1

Coke													
Bituminous coal													
Brown coal													
Peat or wood					 		- 1		,	+	7:1	to	5:1

Combustion Data

Good modern practice	
1 lb. coal average. 1 lb. coal $(13,500 \times 778) + (60 \times 33,000)$	13,500 B.t.u.
1 lb. coal $(13,500 \times 778) + (60 \times 33,000)$	5.3 hphours.
Lost through grates	1.00 per cent.
Lost boiler radiation	5.00 per cent.
Lost chimney gases	22.00 per cent.
Lost main pipes radiation	1.55 per cent.
Lost auxiliary pipes radiation	0.22 per cent.
Lost auxiliary exhaust	1.40 per cent.
Lost engine radiation	2.03 per cent.
Lost engine exhaust	
Total loss	90.57 per cent.
Converted to nower	9 43 per cent

Ringelmann's Smoke Chart

The following chart is convenient for estimating the density of smoke from chimneys, both as a check on the completeness of combustion and as evidence in case certain chimneys are attacked as nuisances by owners of property near metallurgical.

plants. (Use this chart at arms length. The original is a chart 3×24 in., supposed to be posted about 50 ft. away.)

Leitfader to Eisenhüttenkunde, 1898, p. 104.

```
Standard Fire Brick Shapes<sup>1</sup>
                                 Dimensions
      Name
                            9 \times 4\frac{1}{2} \times 2\frac{1}{2}
9 in.
                            9 \times 2\frac{1}{2} \times 2\frac{1}{4}
Soap
                            9 \times 4\frac{1}{2}
No. 1 Split
                                          \times 1\frac{1}{4}
                            9 \times 41
No. 2 Split
                                          \times 2
                            9 \times 6\frac{3}{4} \times 2\frac{1}{2}
9-in. large
                            9 \times 3\frac{1}{2} \times 2\frac{1}{2}
9-in. small
                            9 \times 4\frac{1}{2} - 4 \times 2\frac{1}{2}: 12 ft. diam. inside.
No. 1 Key
                                   brick to circle.
                            9 \times 4\frac{1}{2} - 3\frac{1}{2} \times 2\frac{1}{2}: 6 ft. diam. inside.
                                                                                                   65
No. 2 Key
                                     brick to a circle.
                            9 \times 4\frac{1}{2} - 3 \times 2\frac{1}{2}: 3 ft. diam. inside.
                                                                                                   41
No. 3 Kev
                                          brick to a circle.
                            9 \times 4\frac{1}{2} - 2\frac{1}{4} \times 2\frac{1}{2}: 18 in.
No. 4 Key
                                     diam. inside. 26 brick to
                                     a circle.
                            9 \times 4\frac{1}{2} \times 2\frac{1}{2} - 2: 5 ft. diam. inside.
No. 1 Wedge<sup>2</sup>
                                                                                                  102
                                     brick to a circle.
                            9 \times 4\frac{1}{2} \times 2\frac{1}{2} - 1\frac{1}{2}: 2 ft. 6 in.
No. 2 Wedge<sup>2</sup>
                                   diam. inside. 63 brick to a
                                   circle.
                            9 \times 4\frac{1}{2} \times 2\frac{1}{2} - 2: 4 ft. diam. inside. 72 brick to a circle.
No. 1 Arch
No. 2 Arch
                            9 \times 4\frac{1}{2} \times 2\frac{1}{2} - 1\frac{1}{2}: 2 ft. diam.
                                                    42 brick
                                   inside.
                                                                        to
                                    circle.
                            9 \times 4\frac{1}{2} \times 2\frac{1}{2} - 1: 6 in. diam. inside.
No. 3 Arch
                                                                                                    19
                                     brick to a circle.
Side Skew
                            9 \times 4\frac{1}{4} - 1\frac{3}{4} \times 2\frac{1}{2}
                            9 \times 7 \times 4\frac{1}{2} \times 2\frac{1}{2}
End Skew
                            9 \times 4\frac{1}{2} - \bar{1}\frac{1}{2} \times \bar{2}\frac{1}{2}
Skewback
                            9 - 4\frac{1}{2} \times 4\frac{1}{2} \times 2\frac{1}{2}
No. 1 Neck
No. 2 Neck
                            9-2\times4\frac{1}{2}\times2\frac{1}{2}
                            9 \times 4\frac{1}{2} \times 2\frac{1}{2}
No. 3 Neck<sup>2</sup>
                            9 \times 4\frac{1}{2} \times 2\frac{1}{2} - \frac{1}{8}

9 \times 4\frac{1}{2} \times 2\frac{1}{2} (rounded corner).
Feather edge
No. 1 Jamb
                            9 \times 4\frac{1}{2} \times 2\frac{1}{2} (rounded corner
No. 2 Jamb
                                   and beveled corner).
No. 3 Jamb 9 \times 4\frac{1}{2} \times 2\frac{1}{2} (rounded corner). No. 3 Bullhead<sup>2</sup> 9 \times 4\frac{1}{2} \times 3 - 2 (see illustration).
No. 3 Jamb
                            9 \times 3 \times 3 or 9 \times 2\% \times 2\%.
Checker
Large 9 in.
No. 1 Wedge
                            9 \times 6\% \times 1\% : 5 ft. diam.
                                   inside. 102 brick to the circle.
Large 9-in.
No. 2 Wedge
                            9 \times 6 \frac{3}{4} \times 2 \frac{1}{2} - 1 \frac{1}{2} : 2 \text{ ft. } 6
                                                                                              diam.
                                                                                       in.
                                   inside. 63 brick to the circle.
                            9 \times 4\frac{1}{2} - 3 \times 2\frac{1}{2}.
Edge arch
                            18 (or \bar{2}0 or 24) \times 6 \times 3.
Checker tile
Checker tile (mill tile) 18 (or 20 or 24) \times 9 \times 3.
   As made by the Stowe-Fuller Co., Cleveland, Ohio. Other makers deviate
```

slightly from the figures given for keys.

The wedge brick taper from end to end, as do the keys, No. 3 neck, and bullbead.

424 METALLURGISTS AND CHEMISTS' HANDBOOK

		LatoT	110000000000000000000000000000000000000
	key brioks	Straights	meaned
		No. 1	222222222222222222222222222222222222222
	134-in.	Mo. 2 agbaw	- 10 10 中央 20 m20 日日 - 20 00 00 00 00 00 00 00 00 00 00 00 00
		Total	\$
	brioks	.ai-8	- 00 12 40 00 00 00 00 00 00 00 00 00 00 00 00
183	ge bri	No. 1. wedge	N අඟුල්ල ය රාජා රාජා යා යා යා යා යා යා යා යා යා යා යා යා යා
CIRCLES!	Wedge	No. 2 wedge	- 04.621 - 04.621
ARIOUS		LatoT	35 34 35 36 36 36 36 36 36 36 36 36 36 36 36 36
>		.пi-8	4027432
K FOR	ioks	No. 1 key	
FIREBRICK	key brie	ren No. 2	
OF FI	9-in.	No. 3	20000000
TABLE		No. 4 key	en to a second
Ĭ.		fatoT	42242222222222222222222222222222222222
	ks.	ai 9	115 22 29 29 37 44 50 50 57 74 88 89 97 1113 1113 1123 1123 1134 1142
	Arch bricks	No. 1 Areh	900000000000000000000000000000000000000
	A	g oN dota	10 10 10 10 10 10 10 10 10 10 10 10 10 1
		Innde dismeter of circle	1,-1248844407000

Hints on Brick Laying

One ton of fire-clay ought to lay about 6000 brick. The composition in which they are laid should be, if possible, of the same composition as the brick themselves, and the brick should be dipped in a thin paste and laid, not laid in a mortar. In general, the thinner the bond between the bricks the better the The joints are the zones of greatest weakness and are soonest attacked. For metallurgical furnaces it appears that the denser the brick the less its absorption. Magnesite brick are best laid in a suspension of finely ground magnesite in anhydrous tar, or magnesite and linseed oil, or in a suspension of magnesite in a 20 per cent. sodium silicate solution. brick are best laid in a thin paste of 60 fine sand, 40 fire-clay. About 5/32 in. per foot should be left for expansion in a furnace bottom.

Always store Refractories in a Dry Place

Magnesite bricks are good conductors of heat, and where this conductivity would injure the armoring of the furnace, the brick should be backed by asbestos or some other non-conductor. Great variations of temperature, or heating when they are moistened with water or oil, will cause spalling. Magnesite brick should not be subjected to great loads when hot.

For red-brick work 9 cu. ft. of sand and 3 bu. of lime will lay

1000 brick.

Brickwork Table¹

1 sq. ft. of 4½-in. wall requires seven bricks.

1 sq. ft. of 13½-in. wall requires twenty-one bricks. 1 cu. ft. of brickwork requires seventeen 9-in. bricks.

1 cu. ft. of fire-clay brickwork weighs 150 lb.

1 cu. ft. of silica brickwork weighs 130 lb.

1000 bricks (closely stacked) occupy 56 cu. ft. 1000 bricks (loosely stacked) occupy 72 cu. ft.

- M. S. Wologdine has probably done the best work on the thermal properties of fire brick. A. L. QUENEAU deduces, among others, the following conclusions from Wologdine's work:
- 1. All terra cotta, building bricks and fire bricks have practically equal coefficients of heat conductivity. The coefficients are differentiated in this class of refractory materials solely by the temperature of burning and not by the character of the clays or by their chemical composition.

2. In all refractory materials, including the special bricks, such as chrome, magnesia, carborundum and graphite, the heat conductivity is a direct function of the temperature of burning.

3. The coefficient of heat conductivity of chrome brick is

practically independent of the temperature.

4. There are remarkable variations in the permeability to gases of the same bricks with increase in temperature. In one case the permeability changed from 3.3 liters per hour to

¹ HAVARD. "Furnaces and Refractories."

241 liters per hour. This shows the importance of scientifically selecting the clay mixtures for a given work as for crucibles or retorts where, as in zinc metallurgy, the permeability to gases has a material influence on the metal recovery. In this connection the nil permeability of graphite crucibles is to be noted. Perhaps the same results might be obtained at a much reduced cost by substituting clay flakes for the graphite flakes proposed by H. Putz (German pat. 198,840 of Sept. 29, 1907).

5. To secure efficient heat insulation, refractory materials should be burned at the lowest allowable temperature. This burning temperature is generally known; it is the maximum temperature to which the bricks will be exposed in the furnaces. The use of the maximum temperature is necessary in order to prevent the brick from shrinking any further when set in the furnace walls. Though this last fact is well known it is often neglected, and a shortening of the furnace life is the result.

6. The gas permeability of the bricks of blast-furnace linings must have an important bearing on their life, owing to the destructive action of carbon monoxide in contact with the iron

oxide present in the brick.

There is no question that the absorption of metals by a furnace bottom will be directly proportional to the air spaces in the original brick; consequently in work with any of the non-ferrous metals, the nearer the ratio of the specific gravity of the brick in bulk to the true specific gravity of the constituent material approaches unity, the better the brick.

Short Description of the Common Refractories

Alundum.—Melting point, 2050°C.; specific heat, 0.195-0.198 at 100°C.; thermal conductivity about twice that of fire brick. Electric resistivity, at 528°C., 130 megohms per cc.; at 730°, 16 megohms; at 892°, 5.3 megohms; at 1020°, 1.8 megohms. Coefficient of expansion, 0.0000071 per deg. C.; maximum crushing strength, 7½ tons per square inch; tensile strength, 1700 lb. per square inch. Specific gravity, 3.91.

Asbestos.—A very poor conductor of heat and refractory, but will not stand molten slags. The composition of a typical Canadian asbestos is: MgO, 40.07; FeO, 0.87; Al₂O₃, 3.67;

SiO₂, 39.05, H₂O, 14.48; total 98.14%.

Bauxite.—Bauxite melts at 1820°C., but as bauxite shrinks about 30 per cent. and crumbles in calcining, some silica must be added to make a good brick. The washed bauxite is calcined at from 1350° to 1400°, ground, pugged with about 4 per cent. of a highly aluminous plastic clay, balled, dried and calcined. The mixture is then ground, pugged again with clay and hand molded. Basic open-hearth brick should not contain over 12 per cent. of silica. An analysis of an American bauxite brick is: SiO₂, 2 per cent.; TiO₂, 5 per cent.; Al₂O₃, 90.5 per cent.; Fe₂O₃, 1 per cent.; and CaO, 1.5–2 per cent. The crushing strength may be as high as 10,000 lb. per square inch, but in general the bricks are weak.

Bull Dog.—This is a mixture of ferric oxide and silica made by roasting tap cinder with free access of air. Tap cinder is a basic ferrous silicate—2FeO·SiO₂ or thereabouts—and on roasting it takes up oxygen, and gives a mixture of ferric oxide and silica. As these do not unite, the substance is infusible in an oxidizing atmosphere, but fuses in a reducing atmosphere, ferrous silicate being re-formed.¹

Carbon brick—lay in a mixture of tar and carbon dust.

Chrome.—Typical chromites used for refractories analyse as follows (Eng. and Min. Journ., Oct. 24, 1908): Turkish: Cr₂O₃, 51.70 per cent.; FeO, 14.20; Al₂O₃, 14.10; MgO, 14.30; SiO₂, 3.50; CaO, 1.70; H₂O, 0.30 per cent.; New Caledonian: Cr₂O₃, 55.70 per cent.; FeO, 16.60; Al₂O₄, 18.20; MgO, 9.80; SiO₂, 0.25; CaO, 0.25; MnO, 0.20; P₂O₄, 0.05; H₂O, 1.05 per cent.; Japanese: Cr₂O₃, 44.55 per cent.; FeO, 15.25; SiO₂, 5.4; CaO, 0.20; MgO, 19.10; Al₂O₃, 15.20; H₂O, 0.30 per cent. Chrome is unreliable above 1500°C.

Conducts heat two to four times as well as clay brick. Makes a good breaking joint between magnesite and silica. Should be used as little as possible in furnace bottoms on lead, copper, silver, or gold work, as the cobbing is almost impossible either to grind or to smelt. It is not so strong as alumina, nor so

resistant to high temperatures.

Clay Brick.—Probably as fine a quality of clay brick is needed in the shafts of iron furnaces as anywhere. Two typical bricks for this purpose are given by Havard as follows: (1) Loss on ignition, 0.07; SiO₂, 54 44; Fe₂O₃, 2.53; Al₂O₃, 40.01; CaO, 0.18; MgO, 0.53; K₂O, 2.24. Crushing strength, pounds per square inch, side, 5098; edge, 3840; end, 2693. Specific gravity, true, 2.34; in mass, 2.03. Porosity, 12.93 per cent. of volume. Expansion, 0.042 in. per foot. (2) Loss on ignition, 0.07; SiO₂, 56.07; Fe₂O₃, 3.32; Al₂O₃, 39.00; CaO, 0.12; MgO, 0.18; K₂O, 1.30. Crushing strength, pounds per square inch, side, 5248; edge, 2170; end, 2710. Specific gravity, true, 2.43; in mass, 2.10 Porosity, 13.30 per cent. of volume. Expansion, 0.064 in. per foot.

SOME TYPICAL REFRACTORIES ANALYSES

	41.0.	i Curry	ď	20102	4 4 6	MEG	CaO		FegO	0 44	P.FO	Naro	TiO		Lo	158	To	tal
Saaran clay Striegau clay American fire brick	36 29	75 65	49. 53	00 02	0. 0	56 78		a	80 40*	0	41	0.37				87	99	.07 76 46
Clay for open hearth N J clay for since	42	12	44	00	0	10	0.24	O.	86	-		-			14	20		
retorts Missouri clay for	37	50	45	00	o	30	1.00	0	70	0	50		1	5	13	50		
zinc retorts	34	46	49	5	0	62	0.80	2	39			* 1 * 1	L		12	86		

¹ SEXTON, "Fuel and Refractory Materials."

FeO.

A general formula for determining how refractory a clay is, is given by Bischof (cf. Havard's "Furnaces and Refractories," p. 61). If Q be the refractory coefficient, a the oxygen content of the alumina, b that of the silica, and c that of the fluxes, then

$$Q = \frac{a^2}{bc}$$

If Q is between 2 and 4 the clay will make a third-grade fire brick; if between 4 and 6, a second-grade fire brick; from 6 to

14, a first-class fire brick.

Crystolon.—Crystallized silicon carbide (SiC)—does not fuse at 2700°C. Conducts heat a little better than alundum (q.v.). Electric resistivity, at 320°C., 31.8 megohms per cc.; at 650°C., 6.3 megohms; at 809°C., 3.2 megohms; at 940°C., 1.0 megohms at 1040°C., 0.4 megohms. It is not affected by acids or acid vapors, except hydrofluoric, but reacts readily with alkalis, alkaline carbonates and alkaline sulphates, and, at elevated temperatures, with the oxides of practically all metals. cient of expansion, 0.0000045 per deg. C.

Dinas brick—a classic English brick made in South Wales. Composition: SiO₂, 96.80 per cent.; Al₂O₃, 0.92; Fe₂O₃, 0.50; CaO, 1.20; alkalis, 0.20. It is essentially a silica brick with

In America this is known as ganister. lime as a binder.

Dolomite.—Analyses of typical dolomites (from Harbord's "Steel," p. 212) are: Raw, SiO_2 , 1.10 per cent.; Fe_2O_3 and Al_2O_3 , 1.64; CaO, 33.20; MgO, 19.60; CO₂, 44.30 per cent. Calcined, SiO_2 , 3.66 per cent.; Fe_2O_3 and Al_2O_3 , 4.80; CaO, 55.50; MgO, 34.83; CO₂, 1.06 per cent.

Fibrox—a fibrous silicon oxycarbide, formed in the presence of certain catalytic agents, of which calcium fluoride is one, by the reaction between vapors of silicon and carbon monoxide or dioxide. It is a soft, resilient, fibrous material, the average diameter of the fibers being stated by E. Weintraub of the General Electric Co. as being about 0.6 \(\mu\), or about the wave

.		Thermal ohms			
Density	Temperature	R' in. cube	R cm. cube		
0.231	200	950	2375		
0.231	50 0	520	1300		
0.412	200	1200	3000		
0.412	500	605	1510		
0.767	200	1320	3300		
0.767	500	878	2195		
1.27	200	1460	3650		
1.27	500	987	2470		
1.98	200	1590	3975		
1.98	$\overline{500}$	1000	2500		

length of yellow light, or about one-twentieth that of fine cotton fiber. Its apparent weight is about $2\frac{1}{2}$ to 3 grams per liter, its real specific gravity about 1.84 to 2.2. It is claimed to be the best heat insulator known. It oxidizes slowly above 1000° C.

The effect of the density on the heat resistivity of fibrox at temperatures of 200° and 500° is shown by the foregoing table:

Ganister—another classic English refractory. A typical analysis, from Harbord: SiO₂, 94.60 per cent.; Al₂O₃, 1.40; Fe₂O₃, 0.90; CaO, 0.48; MgO, 0.16; alkalis, 0.14; water, 2.60

per cent.

Lime.—FITZGERALD reports that lime fused in the electric furnace may be a very useful refractory. It is a better conductor of heat than ordinary lime. Blocks cut from it resist quick heating followed by sudden cooling. Fused lime resists exposure to moist air remarkably well, hydration being a matter of days.

Magnesite—composition, Federal brick: SiO₂, 1.46 per cent.; Al₂O₃, 1.50; Fe₂O₃, 7.58; CaO, 3.14; MgO, 86.36 per cent.

cent.; Al₂O₃, 1.50; Fe₂O₃, 7.58; CaO, 3.14; MgO, 86.36 per cent. Conducts heat two to four times as fast as clay brick. Usually laid dry, or in a paste made of magnesite clay and 20 per cent. water-glass solution. Magnesite can only be considered "dead-burned" when the final ignition temperature exceeds 1800°C. The greatest objection to magnesite is its cracking when heated to a high temperature. This is due to its shrinkage; a piece of magnesite heated to 350° may have a density of

3.19, while electrically fused its density will be 3.65.

Silica Sand.—An analysis of the sand used for furnace bottoms in Swansea is (from Percy): SiO₂, 87.87 per cent.; Al₂O₃, 2.13; Fe₂O₃, 2.72; CaO, 3.79; MgO, 0.21; volatile, 2.60 per cent. Silica melts at 1750°, after softening at 1500° and becoming glassy at 1700°C. It expands on heating and does not return exactly to its former volume. In general, silica brick are highly refractory, porous, of low specific gravity, brittle and hard to cut, poor conductors of heat, inelastic, and not resistant to sudden changes of temperature. The compressive strength is about 1900 to 4000 lb. per square inch. A typical American silica-lime brick analyzed as follows: SiO₂, 93.92 per cent.; Fe₂O₃, 0.79; Al₂O₃, 3.07; CaO, 2.55; MgO, 0.18; porosity, 18.58 per cent. of volume, expansion, 0.188 in. per foot. Another brick gave 0.346 in. per foot expansion.

Siloxicon—a more or less oxidized carborundum, the amorph-

ous crystolon of the Norton Co.

Zirconia—a pure white refractory of a density of about 4.2 and a melting point of about 3000°C. Its first important use was to replace the calcium-oxide cylinders in the Drummond light. Used also in the first Welsbach experiments. Its heat-conducting power is not over half that of firebrick. Has been used as a lining of a Siemens-Martin furnace with good results.

¹ From a paper presented at the Atlantic City Meeting, American Electrochemical Society, Apr. 22, 1915.

REFRACTORIES

MELTING POINTS OF SOME REFRACTORY OXIDES1

	Temperature of volatilization	Melting point	Color of melt and sublimate	Furnace used	Remarks
BeO MgO CaO Als Os. Las Os.	About 2000° 1690° 1750° 2000°	About 2400° 2800°(a) 2572°(a) 2050° About 2000° 2430°	White like porcelain Colorless, glassy Clear yellow melt White opaque melt	Cathode ray Both furnaces Cathode ray Cathode ray Cathode ray Cathode ray	Evaporated just before melting. Dissociated into its elements. Tendency for melt to crystallize. Dissociated, forming lower oxide. Evaporated just before melting
SnO ₂ SnO CeO ₂	Red heat 1875° About 2000°	Did not melt Did not melt Did not melt	Black sublimate Transparent sublimate in crucible White opaque	Cathode ray Cathode ray Cathode ray	End dissociated into its elements. Dissociated, forming lower oxide.
	Did not evaporate Red heat Did not evaporate	Did not melt Did not melt Did not melt 1650°	sublimate Blue-black sublimate Black	Cathode ray Cathode ray Cathode ray Cathode ray	Dissociated probably to VO2. Melt crystallized.

(e) According to C. W. Kanolt, Journ. Franklin Inst., p. 587, 1913; other determinations according to Tiede and Birnbrature, Zoil. anorg. Chem., 1914, p. 129.

Fused silica—thermal conductivity high. Melting point, Sp. gr., 2.5–2.6. Specific heat, 0.776. Coefficient of expansion, 0.00000539 per deg. C.

MELTING POINTS OF FIRE BRICK

 $2100^{\circ}(e)$, softens 1970° C.(e) Alumina 2050°C.(a) Alundum 1820°C.(b) 1620–1785°C.(a) Bauxite Bauxite brick 1865° C.(c) Bone-ash cupel Decomposes at 2220° with fusing.(b) Carborundum 2050°C.(a); 2180°(b); 1545°-1730°.(c) 1555-1740°C.(a) Chromite Clay brick, 1st class Clay brick, 2d class 1400-1650°C.(e) Diatom nonpareil brick 900°C.(d) 1680° C.(c) Dinas silica Kaolinite (pure) $1740^{\circ}\text{C.}(\dot{b})^{'}1830^{\circ}.(e)$ Softens about 2040°C.(e) Lime (CaO) 2720°C.(a), softens about 2500°C.(e) Magnesia 2165°C.(a), softens about 2000°.C(e) Magnesite brick

Silica

Silicon carbide

(a) According to Bureau of Standards.
(b) Bull. Tech. A. et M., July, 1913, p. 728.
(c) W. H. Patterson, "Brit. Iron and Steel Inst. Carnegie Scholarship Memoirs," No. 6, p. 231, 1914.
(d) Information from manufacturers. An insulator, not a refractory.
(e) F. T. Havard, "Fuels and Refractories."

 $1700-1705^{\circ}C.(a)$

 $2700^{\circ} + C.(a)$

Testing Refractory Materials under Load.—The melting point of various clays used in the manufacture of firebrick and retort material was found to be 200°-320°C. lower when the clay was under pressures of 54 to 112 lb. per square inch.

SEGER CONES AND THEIR SOFTENING TEMPERATURES¹

Estimated softening	Cone		Mole	lecular composition				
point (deg. C.)	No.	Na ₂ O	PbO	Al ₂ O ₂	B ₂ O ₃	SiO		
590	022	0.5	0.5		1	2.0		
620	021	0.5	0.5	0.1	1	2.2		
650	020	0.5	0.5	0.2	1	2.4		
680	019	0.5	0.5	0.3	1	2.6		
710	018	0.5	0.5	0.4	1	2.8		
740	017	0.5	0.5	0.5	1	3.0		
770	016	0.5	0.5	0.55	1	3.0		
800	015	0.5	0.5	0.6	1	3.2		
830	014	0.5	0.5	0.65	1	3.3		
860	013	0.5	0.5	0.7	1	3.4		
890	012	0.5	0.5	0.75	1	3.5		
$\boldsymbol{920}$	011	0.5	0.5	0.8	1	3.6		

SEGER CONES AND THEIR SOFTENING TEMPERATURES¹

Estimated softening	Cone		1	Molecular	compositi	on	
point (deg. C.)	No.	K2O	CaO	Fe ₂ O ₂	Al ₂ O ₃	B ₂ O ₃	SiO ₂
950	010	0.3	0.7	0.2	0.3	0.50	3.50
970	09	0.3	0.7	0.2	0.3	0.45	3.50
990	08	0.3	0.7	0.2	0.3	0.40	3.60
1010	07	0.3	0.7	0.2	0.3	0.35	3.64
1030	06	0.3	0.7	0.2	0.3	0.30	3.70
1050	05	0.3	0.7	0.2	0.3	0.25	3.78
1070	04	0.3	0.7	0.2	0.3	0.20	3.80
1090	03	0.3	0.7	0.2	0.3	0.15	3.8
1110	02	0.3	0.7	0.2	0.3	0.10	3.90
1130	01	0.3	0.7	0.2	0.3	0.05	3.98
1150	1	0.3	0.7	0.2	0.3		4.0
1170	2 3	0.3	0.7	0.1	0.4		4.0
1190	3	0.3	0.7	0.05	0.45		4.0
1210	4	0.3	0.7		0.5		4.0
1230	5	0.3	0.7	[0.5		5.0
1250	6	0.3	0.7		0.6		6.0
1270	7	0.3	0.7		0.7		7.0
1290	8	0.3	0.7		0.8		8.0
1310	9	0.3	0.7		0.9		9.0
1330	10	0.3	0.7		1.0		10.0

¹ F. T. HAVARD, "Furnaces and Refractories."

SEGER CONES AND THEIR SOFTENING TEMPERATURES

Estimated	Cone		Molecular o	composition	
softening point (deg. C.)	No.	K ₂ O	CaO	Al ₂ O ₃	SiO ₂
1350	11	0.25	0.58	1	10.0
1370	$ar{12}$	$0.\overline{21}$	0.50	1	10.0
1390	$\overline{13}$	0.19	0.43	$\bar{1}$	10.0
1410	$\overline{14}$	0.17	0.39	ī	10.0
1430	15	0.14	0.33	. 1	10,0
1450	16	0.13	0.29	ī	10.0
1470	$\overline{17}$	0.11	0.26	<u>1</u>	10.0
1490	18	0.10	0.23	ĩ	10.0
1510	19	0.09	0.20	ī	10.0
1530	$\overline{20}$	0.08	0.18	1 1	10.0
(21	0.07	0.15	$\bar{1}$	10.0
1	$ar{22}$	0.06	0.14	$\bar{1}$	10.0
1	23	0.06	0.13	1 1	10.0
	24	0.05	0.12	$\bar{1}$	10.0
[]	25	0.04	0.11	$\bar{1}$	10.0
1580	26	0.04	0.10	1 1	10.0
1610	27	0.02	0.03	$\bar{1}$	10.0
1630	2 8			1	10.0
1	$28\frac{1}{2}$			$\bar{1}$	9.0
1650	29			$\bar{1}$	8.0
1	$29\frac{1}{2}$			$\bar{1}$	7.0
1670	30			1	6.0
1690	31	[$ar{f 1}$	5.0
1710 ²	32^2			ĩ	4.0
1730	33			1	3.0
1750	34			1	2.5
1770	35			1	$\overline{2}.\overline{0}$
1920	40			$\bar{1}$	

¹ These cones are not manufactured, as their estimated softening points lie too close to neighboring cones, and are somewhat irregular.

² Pure silica behaves like cone 32.
From "The Silicates in Chemistry and Commerce," by W. and D. Авси.

METALLIC SALTS AS FUSION PYROMETERS¹.

Salt	Melting point, deg. C.	Salt	Melting point, deg. C.
Na ₂ SiO ₃ . K ₂ SO ₄ . BaCl ₂ . K ₂ SiO ₃ . Na ₂ SO ₄ . 5K ₂ SO ₄ + 5Na ₂ SO ₄ . 3K ₂ SO ₄ + 7Na ₂ SO ₄ . 2K ₂ SO ₄ + 8Na ₂ SO ₄ . Na ₂ CO ₃ . NaCl KCl	1007 1070 955 890 865 850 830 825 810 800 775	KBr. KI	730 682 655 625 600 580 560 550 520 320 313

¹ Hofman, "General Metallurgy."

ERHARD AND SCHERTEL FUSION PYROMETERS1

Composition	Melting point, deg. C.	Composition	Melting point, deg. C.
100Ag	954	60Au 40Pt	1320
80Ag 20Au	975	55Au 45Pt	1350
60Ag 40Au	995	50Au 50Pt	1385
40Ag 60Au	1020	45Au 55Pt	1420
20Ag 80Au	1045	40Au 60Pt	1460
100Au	1075	35Au 65Pt	
95Au 5Pt	1100	30Au 70Pt	1495 1535
90Au 10Pt	1130	25Au 75Pt	1570
85Au 15Pt	1160	20Au 80Pt	1610
80Au 20Pt	1190	15Au 85Pt	1650
75Au 25Pt	1220	10Au 90Pt	1690
70Au 30Pt	1255	5Au 95Pt	1730
65Au 35Pt	1285	100Pt	1775 ²

¹ Hofman, "General Metallurgy." ² 1755°C. is probably the correct figure.

COLOR SCALES!

White and Taylo	er .	Pouillet		Howe		
Name of color	Deg.	Name of color	Deg. C.	Name of color	Deg.	
Dark red Dark cherry red Cherry, full red. Light cherry, bright cherry, light red Orange Light crange Yellow White		Incipient redness. Dark red. Incipient cherry red. Cherry red. Light cherry red Dark orange. Light orange. White. Brilliant white	700 800 900 1000 1100 1200	Lowest visible red in dark Lowest visible red in daylight Dull red Full cherry Light red. Full yellow White	470 475 550- 625 700 850 1000 1150	

¹ HOPMAN, "General Metallurgy," p. 138.

Loss of Heat by Radiation

(Loss in Gram-calories per Square Centimeter of Surface at 100°C. to Surrounding Bodies at 0°C —Peccer's Figures)

Polished brass Copper Polished sheet iron Leaded sheet iron Ordinary sheet iron	0.00068 0.00189 0.00273	Russia sheet iron New cast iron Oxidized iron Glass Building stone	0 01332 0.01410 0.01222
---	-------------------------------	--	-------------------------------

To correct the above figures for various other ranges of temperature than from 100°C to 0°C., multiply by the factors below.

100°-0° 150°-0° 200°-0° 300°-0° 400°-0° 500°-0°	1.0 2 0 3.3 7.0 12 0 18.3	600°-0° 700°-0° 800°-0° 900°-0° 1000°-0°	26.0 35.0 45.3 57.0 70.0
--	--	--	--------------------------------------

In general, radiation from hot bodies to cold surroundings will vary as the differences of the fourth powers of the absolute temperatures.

Heat Emissivity of Various Surfaces¹

Black body	1.00
Copper, oxidized	0.72
Copper, calorized	0.26
Silver	0.03
Cast iron, bright	0.22
Cast iron, oxidized	0.62
Cast iron, aluminum painted	0.50
Cast iron, gold enamelled	0.37
Monel metal, bright	0.43
Monel metal, oxidized	0.43
Brick surfaces (probably)	0.60-0.75

DIFFUSIVITY²

¹ Boyd Dudley, Jr., "Penn. State Min. Quart.," April, 1915.

² The property of diffusing and transmitting heat is dependent on the conductivity, the density and the specific heat of the body. Thus the coefficient of diffusivity, $D = \frac{K}{WS_1}$ where K is the thermal conductivities in gram-calorie-seconds per cm. ³ per 1°C. F. T. HAVARD, "Refractories and Furnaces."

CONDUCTIVITY, DENSITY, POROSITY AND PERMEABILITY OF REFRACTORY MATERIALS1

	Conductivit	ıctivity	De	Density	Domosita	Perm	Permeability	£
Material	Gram-cal. per sq. cm. per hr. per 1°C. dif- ference	Gram-cal. per Kgcalhr. sq. cm. per hr. per sq. m. per per 1°C. dif- ference difference	True	Appar- ent 3	in per cent. of volume	Cm. ³ sec. per sq. m. per cm.	Lithr. per sq. m. per m.	perature of burning
Fire-clay brick	0.0037	•		1.81		0.0409		1050
Fire-clay brick	0.0020	1.81	2.02	1.91	24.1	0.069	24.84	1300
Checker brick	0.0039	•	•	1.91	•	•	•	
Bauxite brick	0.0033	1.19	•	•	•	•	•	1300
Silica brick	0.0020	0.71	•	•	•	•		1050
Silica brick	0.0031	•	•	1.50		0.0536		1300
Magnesia brick	0.0065	2.35	•	•		•		1300
Magnesia brick	0.0028	•	•	•		•		1050
Carborundum brick	0.0033	•	•	•		•	•	1050
Carborundum brick	0.0145	5.22	•	•		•	1.55	1300
Chromite (unburned)	0.0057	•	•	•		•	20.45	•
Chromite brick (clay binder)	0.0034	. •		2.49		0.0075	1.7	1300
Kieselguhr	0.0018	•	•	•		•	34.45	•
Graphite brick	0.024	8.64		•		•	0.0	-
Porcelain	0.0046	•	•	•		•	•	1400
Building brick	0.0037	1.34	2.56	1.90	25.7	0.0015	0.53	1050
Light clay	0.0024	98.0	•	1.41	S.	0.0164	•	•

Chromite, In general, the conductivity increases with an increase in the original temperature and the temperature of using. however, has a conductivity with practically no temperature coefficient.

1 F. T. Havard, "Refractories and Furnaces."

HEAT CONDUCTIVITIES OF REFRACTORIES¹

	Char			ф. ge.		men	•		
Specimen	Cher analy		Трісіспева	Apparent sp.	True sp. gr.	Lower bur- face, deg.	Upper sur- face, deg.	Mean	Remarks
Fire-clay brick (Farnley).	Al ₁ O ₁	31 0 1 2 0 3	167	1 95	2 54	825 970 1080 1440 1100 1350	300 330 550 420	0.0029 0.0029 0.0036 0.0040 0.0033 0.0039	Hard fired to Seger cone 10—11 ap- proximately, Another specimen.
Fire-clay brick (Faraley).	As abs	ove	134"	1,90	2.67	1005 1020	*	0 00165 0 00120	
Silicious brick (Farnley).	AlıOı	82 5 18,1 1 2 MgO		1 82	2.53	1300	310	0,0028	With many gilica grains.
filica brick (Gregory).	SiO: Al:O: FeO: CBO	2 0	21/9"		2 32	l.	295 370	0 0039 0 0030 0 0035 0 0042	Another / specimen, Both coarse grained.
Magnesia brick (Mabor).	SiO ₁ Al ₁ O ₂ Fe ₂ O ₄ CaO MgO	5.0 0.4 1.6 1.7 92.1			3.51	380 560 600 700 750 875 1025 1040 1370	325 400 450 470 525 580 590	0 0170 0 0151 0 0148 0 0132 0 0116 0 0110 0 0101 0 0098 0 0091	Finer grained than the above.

1

The chemical analysis and porosity data were not derived from measurements on the actual test brick but on similar specimens of the same make. They will correspond approximately with those of the test bricks.

¹ G. Dougill, H. J. Hodsman, and J. W. Cons in Journ. Soc. Chem. Ind., May 15, 1915.

HEAT CONDUCTIVITIES OF REFRACTORY MATERIALS1 (See also Table on op. 437 and 438.)

	He	st conductivity	_
Material	Gallons cal, sec. p. sq. em p. em. p. 1°C. diff.	Kg. cal, hr. p. sq. m. per m. p. 1°C. diff.	Relative per cent.
Fraphite brick Jarborundum brick Jagnesia brick Jagnesia brick Jacker brick Jas-retort brick Jas-retort brick Jauxite brick Jauxite brick Jass pot Jerra cotta Jilica brick	0.025 0.0231 0.0071 0.0057 0.0042 0.0039 0.0038 0.0035 0.0033 0.0027 0.0023 0.0020 0.0018	9.0 8.32 2.54 2.05 1.50 1.42 1.36 1.26 1.19 0.96 0.84 0.71 0.64	100.0 92.4 28.4 22.8 16.7 15.8 15.2 14.0 13.2 12.4 9.8 7.8

The above are average conductivities only. The conductivy varies with the porosity, permeability, size, character and umber of grains and pores in the brick, the temperature at thich the brick was burned and the temperature at which it is sed. In general the conductivity is greater the higher the emperature at which the brick is burned. Thus, a clay brick urned at 1050°C. has a conductivity of 1.32, while the same rick burned at 1300°C, has a conductivity of 1.81 (HAVARD). 'he conductivity also increases with increase of temperature of he experiment.

Arch Construction^{*}

Showing way of covering over a flue on a small furnace without use of an arch. This is practical to spans as large as 30" to 36". This form of construction is particularly applicable where a flat covering is advantageous.

Showing manner of laying a "dutch arch," simple and cheap for spans up to 30" to 40" or even larger. This form of construction is particularly good where flat cover of larger size than the preceding is desired.

¹ HAVARD, "Furnaces and Refractories," p. 280.

² Metallurgical and Chemical Engineering, November, 1913.

SECTION IX

MECHANICAL ENGINEERING AND CONSTRUCTION

CAPACITY OF BELT CONVEYORS1

By R. W. Dull

Chief Engineer, Stephens-Adamson Mfg. Co.

The capacity of belt conveyors is a subject upon which various engineers differ materially in results they have published. We suspect that most of the matter published is purely theo-

retical and not based on actual performance.

There are several conditions which influence the capacity rating; the main one, and the one we will first discuss, is the manner of feeding the conveyor. If the conveyor is fed with a feeder, the maximum capacity is possible, but if the feed is intermittent, the capacity will, of course, be proportionately less. It is usually an advantage to put in a feeding device of some kind if the feed is irregular, as it is often possible to cut down the size of the conveyor, which difference in cost will more than pay for the cost of the feeding device, as well as cut down the size of the driving connections. Uniform loading of the belt also makes the operation of the conveyor less trouble-some and usually is desirable in the different processes throughout a plant.

I have made a chart, which is based on good feeding conditions, as we must have some basis from which to start. This chart has curves for various kinds of material, based on the belt speed which I recommend that they should run for the particular kind of material. This speed is given in the curves. If good feeding conditions are not obtainable, allowance must be made on the chart. This is a condition which varies so much we cannot set down any rigid rule, but must leave it to the judgment of the user of the chart to make proper allowance. Variation as great as 50 per cent. is likely and certainly many

where 75 per cent. of chart rating is advisable.

Materials undoubtedly will be handled which are not given in the chart, but as a similar substance can be selected, the chart can still be used.

The speed of the belts carrying various substances has been studied carefully to suit all conditions, as for instance, lump coal and coke, if carried too fast, will be broken up too much

^{1 &}quot;The Chemical Engineer," Vol. X, No. 2.

the market; and again, very fine material, if carried too ll make the mill too dusty.

of the curves are stopped off at a certain size belt, as rge pieces, it is not advisable to use a conveyor any nar-

regardless of what capacity is required.

erial with large lumps, on an inclined conveyor, will be oll back some, so the capacity allowance should be liberal, a speed should be reduced slightly, if the conveyor is g material down an incline, as the motion of the belt will e lumps rolling down. These lumps may possibly jump he trough of the belt.

eyors going up an incline and fed uniformly, can usually a angle whose tangent is greater than the coefficient of of material on the belt, because the material forms a op all the way up the incline. But if the feed is interpretable, the material is apt to get started down the incline and ion of the belt will have no influence on the motion of erial.

eyors should be fed so that the material is delivered in ction of motion of the belt and with the same velocity belt is moving, if possible. The writer has devised a o accomplish this purpose and adjustment is possible various kinds of material and different belt speeds. But is also made with a bar screen bottom which lets the terial through onto the belt first which makes a cushion h the larger lumps fall and saves a great deal of wear on. It is not advisable to make small conveyors, such as

12-in. belts, too long, for the material will shift some and lose off before it reaches the end of the conveyor, and liberal allowance in capacity should be made if such a conveyor is installed.

The problem of belt conveyor capacity should be studied carefully and the allowances should be liberal. There have been very many disappointments in results caused by a too hasty decision or too, great a desire to keep the first cost down.

Most firms are willing to help the purchaser, and it is usually a good plan to take up the matter of capacity with the manufacturer. It is not always easy for the manufacturer to find out all the conditions within so short an interval of time as he usually has at his disposal, and unless the manufacturer has had considerable experience with this type of conveyor, the purchaser may be led to install apparatus which gives him very disappointing results.

CAPACITY OF BELT CONVEYORS IN TONS OF COAL PER HOUR!

Width of			Velocity	of belt, fe	et per mir	nute	
belt, inches	300	350	400	450	500	550	600
12 14 16 18 20 24 30 36	27.0 36.7 48.0 60.7 75.0 108.0 168.7 243.0	31.5 42.8 56.0 70.8 87.5 126.0 197.0 283.0	36 49 64 81 100 144 225 324	40.5 55.2 72.0 91.2 112.5 162.0 253.0 365.0	45.0 61.3 80.0 101.0 125.0 180.0 281.0 405.0	49.5 67.4 88.0 111.0 137.5 198.0 307.0 446.0	54.0 73.6 96.0 135.0 150.0 216.0 338.0 386.0

For materials other than coal, the figures in the above table should be multiplied by the following coefficients.

Material	Coefficient	Material	Coefficient
Ashes damp Cement Clay Coke	$\begin{matrix}1.76\\1.26\end{matrix}$	EarthSandCrushed stone	1.4 1.8 2.0

¹ Kent's "Mechanical Engineers' Pocketbook."

THE NEW AMERICAN STANDARD FOR FLANGES AND FLANGED FITTINGS

	<u> </u>				5	<u> </u>	A.	,E			G
					STAN	DARD					
Suga	AA-Face to face, tees and crosses	A-Center to face, ells, tees, and crosses	B-Center to face, long rad- ius ella	C-Center to face 45° ells	D-Face to face	E-Center to face laterals	F-Center to face laterals	G-Face to face reducers	Diameter of flanges	Thickness of fianges	Minimum metal thickness of body
1 114 114 2 2 212	7 732 8 9	314 334 4 415 5	5 532 6 632 7	134 2 234 234 232 3	734 8 9 1034 12	5¾ 6¼ 7 8 9⅓	134 134 2 234 234		416	%(a %(a %(a %(a 1)/(a	Me Me Me Me
3 3 4 4 4 5	11 12 13 14 15	516 632 7 732	794 834 9 934 1034	3 356 4 4 4)5	13 1454 15 1554 17	10 111/4 12 12/4 13/4	3 3 3 3 3 3	6 6)1 7 7)4 8	714 812 9 914 10	34 1340 1540 1546 1546	7/16 3/16 3/6 3/6
6 7 8 9 10	16 17 18 20 22	8 836 9 10 11	1134 1234 14 1534 1532	5 5)4 5)4 6	18 2014 22 24 2514	1416 1614 1716 1916 2016	3)4 4 4)6 4)6 5	9 10 11 1134 12	11 12]6 13]2 15	11/4 11/6 11/6 11/6	9/6 96 94 15/6 94
12 14 15 16 16	24 28 29 30 33	12 14 1436 15 1636	111 2134 2234 24 2634	714 714 8 8 8	80 33 3414 3614 39	2414 27 2814 30 32	616 6 615 7	14 16 17 18 19	19 21 2254 2352 25	136 136 136 136 136 196	13/16 3/6 3/6 1 13/16
20 22 24 26 28	36 40 44 46 48	18 20 22 23 24	20 8134 34 3639 38	954 10 11 13 14	43 46 49)4 53 56	35 3734 4032 44 4634	8 8)4 9 9	20 22 24 26 28	2734 2934 82 8434 3634	1134a 1134a 136 2	114 154 114 156 156 156
30 32 34 36 33	50 52 54 56 58	25 26 27 28 29	4135 44 4632 49 5136	15 16 17 18 19	.69	4.0	10	30 32 34 35 38	3834 4134 4334 46 4834	234 234 234 234 234	17/6 134 19/6 154 11/4
40 42 44 46 48	60 62 64 66 68	30 31 32 33 84	54 551/4 59 617/4 64	20 21 22 23 24				40 42 44 48	5094 53 5554 5754 5952	254 254 254 2116 234	136 1136 136 1136 2
50 52 54 56 58	70 74 78 82 84	35 37 39 41 42	6634 69 7134 74 7634	25 26 27 28 29				50 52 54 56 58	6134 64 6534 6834 71	234 234 3 3 3)4	234 234 234 234 234 2914

THE NEW AMERICAN STANDARD FOR FLANGES AND FLANGED FITTINGS. Continued

STANDARD

					OTAN	DARD					
40 40 40 40 40 40 40 40 40 40 40 40 40 4	AA-Face to face, tees and crosses	A-Center to face, clls, tees and crosses	B-Center to face, long rad-	C-Center to face 45° ells	D-Face to face laterals	E-Center to face laterals	F-Center to face laterals	G-Face to face reducers	Diameter of flanges	Thickness of	Minimum metal Sifesances of body
60 62 64	88 90 94	44 45 47	79 813-5 84	30 31 32	ŀ		}	60 62 64	73 75% 78	316 314 314	23/4 23/4 29/6
68 70 72 74	96 100 102 105 108	48 50 51 53 54	8834 89 9134 94 9634	33 34 35 36 37				66 68 70 72 74	80 8234 8434 8634 8832	374 374 374 874 874	256 211/a 213/a 213/a
76 78 80 82 84	112 116 118 120 124	56 58 59 60 62	99 101}2 104 10834 109	38 39 40 41 42				76 78 80 82 84	9094 93 9534 9754 9994	394 394 374 374	219/s 3 33/s 33/s 33/s
86 88 90 92 94	126 130 134 136 138	63 65 67 68 69	11136 114 11636 119 12136	48 44 45 46 47				86 88 90 92 94	102 10434 10634 10834 111	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	314 344 374 314 316 3910
98 98 100	142 146 148	71 73 74	124 12632 129	48 49 50				98 100	11354 11554 11754	434 434 434	5% 311/1a 314

The dimensions given above are those adopted as a compromise by the committees responsible for the "U. S. 1912 Standard" and the competing "Manufacturers Standard."

THE NEW AMERICAN STANDARD FOR FLANGES AND FLANGED FITTINGS. Continued

+B+ +B+ +B+ +B+ +B+ +B+ +B+

				型	The state of the s	超			
				STAND	ARD				
Size	*Size of outlet and smaller	AA-Face to face, run	A-Center to face, run	B-Center to face, out- let	Size	Size of outlet and smaller	AA-Face to face, run	A-Center to face, run	B-Center to face, out- let
1 134 132 2 232					42 44 46 48 50	28 28 30 32 32	46 46 48 52 52	23 23 24 26 26	30 31 33 34 35
3 31/2 4 41/2 5	to 9	in. incl center	ng fitting lusive ha to face ght size f	ave the dimen-	52 54 56 58 60	34 36 36 38 40	54 58 58 62 66	27 29 29 31 33	36 37 39 40 41
6 7 8 9 10	6	18	9	934	62 64 66 68 70	40 42 44 44 46	66 68 70 70 74	33 34 35 35 37	42 44 45 46 47
12 14 15 16 18	8 9 9 10 12	20 22 23 24 26	10 11 111/2 12 13	11 13 13½ 14 14 15½	72 74 76 78 80	48 48 50 52 52	80 80 84 86 86	40 40 42 43 43	48 49 50 52 53
20 22 24 26 28	14 15 16 18 18	28 28 30 32 32	14 14 15 16 16	17 18 19 20 21	82 84 86 88 90	54 56 56 58 60	88 94 94 96 100	44 47 47 48 50	54 56 57 58 61
30 32 34 36 38	20 20 22 24 24	36 36 38 40 40	18 18 19 20 20	23 24 25 26 28	92 94 96 98 100	60 62 64 64 66	100 104 106 106 110	50 52 53 53 55	62 63 64 65 67

The dimensions given above are those adopted as a compromise by the committees responsible for the "U. S. 1912 Standard" and the competing "Manufacturers Standard."

29

26

40

44

22

THE NEW AMERICAN STANDARD FOR FLANGES AND FLANGED FITTINGS.. Continued

				Extr	HEAT	74			
Sign	*Size of outlet and smaller	AA-Face to face, run	A-Center to face, run	B-Center to face, out-	Sise	*Sise of outlet and smaller	AA-Face to face, run	A-Center to face, run	B-Center to face, out- let
1 114 114 2 214 3 314 4 414 5	the s	o 9 in. ame ce sions s	cing fit inclusive enter to s straig	re have face di-	16 18 20 22 24 26 28 30 32 34	10 12 14 15 16 18 18 20 20 22	25 28 31 33 34 38 41 41 41	12½ 14 15½ 16¼ 17 19 19 20½ 20½ 20½	15½ 17 18½ 20 21½ 23 24 25½ 26½ 26½
6 7 8 9 10	6	18	9	11	36 38 40 42 44	24 24 26 28 28	47 47 50 53 53	23 1/4 23 1/4 25 26 1/4 26 1/4	29/4 20/4 31/4 31/4 34/4
12 14 15	8 9 9	21 23 23	10½ 11½ 11½	12½ 14 15	46 48	30 32	55 5 8	273 <u>4</u> 29	3514 3714

The dimensions given above are those adopted as a compromise by the committees responsible for the "U. S. 1912 Standard" and the competing "Manufacturers Standard."

1E NEW AMERICAN STANDARD FOR FLANGES AND FLANGED FITTINGS. Continued

			7 -		4		I -		1 0	E	
_				E	CXTBA	HEAVY		,			
Sine	AA Face to face, tees and crosses	A-Center to face, ella, tees and crosses	B-Center to face, long ra- dius ella	C-Center to	D-Face to face, laterals	E-Center to face, laterals	F-Center to face, laterals	G-Face to face, reducers	Diameter of	Thickness of	Minimum metal thick- ness of body
1 155 155 2 2 2	8 835 9 10 11	4 4,4 41 ₉ 5 63 ₉	5 534 6 634 7	214 214 214 314 314	814 914 11 1114 1114	634 734 834 9 1034	2 2)4 2)5 2)5 2)5	****	434 5 6 636 736	15/16 34 15/16 7/6	10 14 14 15 916
3 3,4 4,4 5	12 13 14 15 16	6 6)6 7 71 ₂ 8	784 819 9 916 1014	336 4 436 436 5	14 15)6 16)2 18 18	11 1252 1332 1432 15	3 3 3 4 3 4 3 4 3 4	6 6)4 7 7)4 8	8)4 10 10)4 11	136 1314 134 1316 136	910 910 96 56 11(a
7 8 0	17 18 20 21 23	852 9 10 1032 1132	111/2 1294 14 1514 1612	514 6 6 614 7	2116 2316 2516 2716 2916	1736 19 2036 2239 24	414 5 5 5	9 10 11 11,5 12	12)6 14 15 16)4 17)6	17/6 11/6 15/6 13/4 17/8	3/6 15/6 15/6 15/6 15/6
2 4 5 6 8	26 30 31 33 36	13 15 15}2 1632 18	19 2134 2234 24 2652	8 854 9 954 10	33/2 37/4 39/4 42 45/2	2754 31 33 3454 3754	6 6)4 6)4 7)4 8	14 16 17 18 19	2014 23 2414 2515 28	2 2)6 2)16 2)4 2)4	1 136 136 136 136
0 2 4 6 8	39 41 45 48 52	1052 2049 2232 24 26	29 3134 34 3612 39	1056 11 12 13 14	49 53 57}4	40% 43% 47%	816 914 10	20 22 24 26 28	3034 33 36 3844 4034	214 298 234 21316 21316	134 194 196 136 136
0 2 4 8	55 58 61 65 68	2759 29 30+9 3256 34	4146 44 4636 49 5146	15 16 17 18 19		* *		30 32 34 36 38	43 4514 4714 50 5214	3 334 334 334 376	2 236 234 236 236 236
0 2 4 6 8	71 74 78 81 84	35+2 37 39 40½ 42	54 5632 50 61+2 04	20 21 22 23 24	*			40 42 44 46 48	5414 67 5914 6115 65	3% 3% 3% 4	29/0 211/0 213/0 27/0 8

The dimensions given above are those adopted as a compromise by the mmittees responsible for the "U. S. 1912 Standard" and the competing Manufacturers Standard."

THE NEW AMERICAN STANDARD FOR FLANGES AND FLANGED FITTINGS. Continued

	c L	D TAND	ARD			ı	ì	O L	HEAV	X	
Z2i	* Size of branch and smaller	C-Face to face,	D-Center to face, run	E-Center to face, run	F-Center to face, branch	Silve	* Size of branch and amalier	C-Face to face,	D-Center to face, run	E-Center to face, run	F-Center to face, branch
1 1)1 1)4 2 2)6	in in	icluery to fac	eng fit e have e dim e fittin	enaron enaron	C613+	1 11/4 11/2 2 21/4	in u	reduc iclusiv to fan ght siz	e have	tings i same ension igs.	cen-
3 83-5 4 43-6 5	254 251 3	13 13 14	11 11 12	22.04.04	11 11 12	3 354 4 454 5	214 214 8	14 15 16	12 12}4 18}4	2 2)4 2)4	13 1314 1414
6 7 8 0 10	3 352 4 432 5	15 16 16 17 18	1354 1456 1459 1559	13-6 13-6 13-6 13-6 13-6 13-6	135-4 16 153-9 163-2 18	8 7 8 9 10	3 354 4 454 5	17 18 20 21 23	14\6 15\6 17\6 18\4 20\4	216 216 216 216 216	15% 16% 18% 19% 21%
12 14 15 16 18	6 7 7 8 9	20 22 23 24 26	19 21 22 23 25	1 1 1 1	2012 23 24 2514 2712	12 14 15 16 18	6 7 8 9	26 29 30 32 34	2334 2834 2734 29 31	2) 6 2) 6 2) 6 2) 6 3	2414 2714 2814 3014 3214
20 22 24 26 28	10 10 12 12 14	28 29 32 35 37	27 2834 3132 35 37	1 12 0 0	2939 3132 3431 38 40	20 22 24	10 10 12	37 40 44	34 37 41	3 3	36 39 43
30	15	39	39	0	42						

The dimensions given above are those adopted as a compromise by the committees responsible for the "U. S. 1912 Standard" and the competing "Manufacturers Standard."

SAFE LOADS FOR ROPES AND CHAINS

(In pounds)

Prepared by National Founders' Association
NON: When handling molten metal, wire ropes and chains should be cent. stronger than indicated in table.

:.—The safe loads	in table	When used straight	When used at 60° angle	When used at 45° angle	When used at 80° angle
each single rope of used double or less the loads mall proportionately.	or chain. n other				
Steel Wire Ropends of 19 or 3 If crucible steed used reduce load th.	7 34	1,500 2,400 4,000 6,000 8,000 10,000 13,000 16,000 19,000 22,000	1,275 2,050 3,400 5,100 6,800 8,500 11,000 13,500 16,000 19,000	1,050 1,700 2,800 4,200 5,600 7,000 9,000 11,000 13,000 16,000	750 1,200 2,000 3,000 4,000 5,000 6,500 8,000 9,500 11,000
RANE CHAIN grade of wrought and-made, tested nk chain.)		600 1,200 2,400 4,000 5,500 7,500 9,500 12,000 15,000 22,000	500 1,025 2,050 3,400 4,700 6,400 8,000 10,200 12,750 19,000	425 850 1,700 2,800 3,900 5,200 6,600 8,400 10,500 16,000	350 600 1,200 2,000 2,750 3,700 4,700 6,000 7,500 11,000
ILA ROPE 134 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	120 250 360 520 620 750 1,000 1,200 1,600 2,100 2,800 4,000 6,000	100 210 300 440 520 625 850 1,025 1,350 1,800 2,400 3,400 5,100	85 175 250 360 420 525 700 850 1,100 1,500 2,000 2,800 4,200	60 125 180 260 300 375 500 600 800 1,050 1,400 2,000 3,000

ANNEALING CHAINS¹

For many years The Travelers Insurance Company has recommended the periodical annealing of chains that are subject to severe usage, such as those that are used on cranes, dredges, and chain hoists, and for slings and for other heavy work, although many prominent authorities firmly believe that such treatment is inadvisable. A recent canvass of a considerable number of chain manufacturers shows that those in favor of the annealing process outnumber those opposed to it by about five to one, although the advocates of annealing are not in harmony as to the methods employed, the frequency of annealing, the temperature to which the chains are to be subjected. or

the length of time required to insure good results.

All chain manufacturers, and practically all chain users, are aware of the fact that rough usage, shocks, and twists tend to weaken chains. A change gradually occurs in the molecular composition of the material, and the strength of the chain becomes seriously impaired. This is known as "fatigue" of the metal. There may be no visible evidence of this deteriora-tion, although a careful microscopic examination would doubtless disclose a multitude of small cracks; but a person accustomed to the use of chains knows that deterioration is going on, and that eventually the chains will fail. When a chain has been in service for a sufficient length of time to make it unsafe for use at the load for which it was originally designed, it would be desirable to discard it, or at least to use it only for lighter loads: but such a course is not always practicable, nor, according to the views of the advocates of annealing, is it necessary, because the process of annealing counteracts the effects of fatigue and restores the chain to nearly its original strength.

As to the proper method of doing the work, a pyrometercontrolled muffle furnace is the best thing possible. Open fires are bad because it is difficult to guess the temperature of the chain, and impossible to hold the temperature steady. The Committee on Heat Treatment, of the American Society for Testing Materials, recommends the following annealing tem-

peratures.

Carbon content	Annealing temperature					
Less than 0.12 per cent	875–925°C.	(1607-1697°F.)				
0.12-0.25 per cent	840–870°C.	(1544–1598° F.)				
0.30-0.49 per cent	815–840°C.	(1499–1544° F.)				
0.50-1.00 per cent	790–815°C.	(1454–1499°F.)				

If an open fire must be used, heat to a cherry red in a wood fire, then let the fire die out, and allow the chain to cool in the ashes.

Various methods for testing chains are employed by persons who have no faith in the annealing process. The method advo-cated by the Yale & Towne Manufacturing Co. and by the Brown & Sharpe Manufacturing Co. is to make use of a gage 3

¹ From the "Travelers Standard." p. 122, 1915.

long. Every new chain is marked with a prick-punch at ervals of 3 ft., and at each subsequent inspection of the chain prick-punch marks are compared with the gage. If it is ind that a section of the chain between two of the marks has etched by an amount equal to one-third of the length of a k, the chain is considered unsafe and is condemned, or is used some place where it will be subjected only to light loads. It sometimes found that only a single section of the chain must discarded. The experience of users of chains who have opted this method for testing them has been satisfactory, in main, and accidents from breaking chains have been terially reduced by it. Manifestly, however, it would not ply without modification to chains having unusually large ks.

Many authorities on chains, even though admitting that ig chains should be annealed, insist that block chains that is over sheaves should not be treated in this way. The danfrom molecular changes caused by overloading the chains y be greatly diminished by proper annealing, but when distion of the links occurs in block chains the chains no longer the sheaves, and excessive wear results, often accompanied by ere and badly distributed stresses. No amount of annealing a restore the links to their original lengths, and the only pracal remedy, when such distortion has occurred, is to substitute w chains.

BER ROPE KNOTS AND HITCHES—AND HOW TO MAKE THEM

The principle of a knot is that no 2 parts which would move the same direction if the rope were to slip, should lie alongside and touching each other. This principle is clearly shown in

e square knot (I).

A great number of knots have been devised, of which a few of most useful are herewith illustrated by courtesy of C. W. int Company, of New York. In the engravings they are own open, or before being drawn taut, in order to show the sition of the parts. The names usually given to them are:

A. Bight of a rope.

B. Simple or overhand knot.

C. Figure 8 knot.D. Double knot.

E. Boat knot.

F. Bowline, first step.

G. Bowline, second step.

H. Bowline, completed.1. Square or reef knot.

J. Sheet bend or weaver's knot.

K. Sheet bend with a toggle.

L. Carrick bend.

M. "Stevedore" knot completed.

N. "Stevedore" knot commenced.

O. Slip knot.
P. Flemish loop.
Q. Chain knot with toggle.

R. Half-hitch.

S. Timber-hitch. T. Clove-hitch.

U. Rolling-hitch.
V. Timber-hitch and half-hitch.
W. Blackwall-hitch.

X. Fisherman's bend.

Y. Round turn and half-hitch.

Z. Wall knot commenced.

AA. Wall knot completed.

BB. Wall knot crown commenced.

CC. Wall knot crown completed.

DD to HH. Eye splice commenced and completed.

The bowline (G) is one of the most useful knots; it will not slip, and after being strained is easily untied. It should be tied with facility by everyone who handles rope. Commence by making a bight in the rope, then put the end through the bight and under the standing part, as shown in the engraving, then pass the end again through the bight, and haul tight.

The square or reef knot (1) must not be mistaken for the "granny" knot that slips under a strain. Knots (H, K and M) are easily untied after being under strain. The knot (M) is useful when the rope passes through an eye and is held by the knot, as it will not slip, and is easily untied after being strained.

The wall knot looks complicated, but is easily made by pro-

ceeding as follows:

Form a bight with strand 1, and pass the strand 2 around the end of it, and the strand 3 around the end of 2, and then through the bight of 1, as shown in engraving Z. Haul the ends taut, when the appearance is as shown in the engraving AA. The end of the strand 1 is now laid over the center of the knot; strand 2 laid over 1, and 3 over 2, when the end of 3 is passed through the bight of 1, as shown in the engraving BB. Haul all the strands taut, as shown in the engraving CC.

The "stevedore" knot (M), (N) is used to hold the end of a rope from passing through a hole. When the rope is strained the knot draws up tight, but it can be easily untied when the

strain is removed.

If a knot or hitch of any kind is tied in a rope, its failure under stress is sure to occur at that place. Each fiber in the straight part of the rope takes proper share of the load, but in all knots the rope is cramped or has a short bend, which throws an overload on those fibers that are on the outside of the bend and one fiber after another breaks until the rope is torn apart. shorter the bend in the standing rope, the weaker is the knot.

FORMULAS FOR PUMPS AND PIPING1

		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To find	Given	Formu las
1. Pressure in lb. per sq. in. = P.	Head in ft. = H	$P = H \times 0.433.$
2. Head in ft. $= H$.	Pressure in lb. per sq. in. $= P$.	$H = P \times 2.312.$
3. Horsepower required to raise water (theoretical).	Gal. per min. $= G$. Head in ft. $= H$.	$H.p. = \frac{G \times H}{3,300}$
4. Volume of water discharged by pipe (neglecting bends and friction).	Internal dia. of pipe in in. = D . Head in ft. = H . Length of pipe in yards = L .	Gal. per min.: $= 28 \sqrt{\frac{D^5 \times H}{L}}$
5. Theoretical capacity of single-acting pump.	Area of ram in in. = A . Stroke in in. = S . No. of strokes per min. = N .	Gal. per min.: = $\frac{A \times S \times N \times 6.25}{1728}$
6. Dia. in in. of single-acting pump to deliver given number of gals. per	Gal. per stroke = G . Stroke in ft. = S .	Dia. of pump = $\sqrt{\frac{31G}{S}}$
stroke. 7. Feet head lost by friction in pipes $= F$.	yards = L. Internal dia. of pipe	(allowing 5 per cent. waste). $F = \frac{G^2 \times L}{(3D)^5}.$
8. Approx. weight of water in vertical pipes in lb. $= W$.	in in. $= D$. Internal dia. of pipe in in. $= D$. Length of pipe in	$W=D^2\times L.$
9. Thickness of castiron pipes in in. T .	yards = L . Internal dia. of pipe in in. = D . Pressure in lb. per	$T=\frac{D\times P}{4,000}+0.3.$
10. Delivery per stroke of single-acting pump.	sq. in. = P . Dia. of plunger in in. = D . Stroke in ft. = S .	Gal. delivered per stroke = $\frac{D^2 \times S}{31}$
11. Speed of water through pipes in ft. per sec.	Area in pipe in in. = A. Discharge in cu. ft. per min. =	(allowing 5 per cent. waste). Velocity ft. per sec. = $\frac{\text{F.P.M.} \times 2.4}{A}$
12. Velocity in ft. per sec. due to head = V.	F.P.M. H = head. g = 32.2.	$V = \sqrt{2gH}$
13. Head from velocity.		$H = \frac{V^2}{2g}$
14. Imperial gallons 15. Cubic feet	Cubic feet $= C$ Gallons (Imperial) $= G$.	Imperial gallons $= C \times 6.25$. Cubic feet $= G \times 0.16$.

¹ G. S. Burrows, in American Machinist, Aug. 20, 1914.

WATER PRESSURE AT VARIOUS HE

Feet head	Pounds per sq. in.	Feet head	Pounds per sq. in.	Feet head	Pounds per sq. in.	Feet head	Pounds per sq. in.	Feet head	Pounds per sq. in.
		130 135 140 145 150 155	56.31 58.48 60.64 62.81 64.97 67.14	195 200 205 210 215 220	84.47 86.63 88.80 90.96 93.14 95.30	260 265 270 275 280 285	112.62 114.79 116.96 119.12 121.29 123.45	360 370 380 390 400	151.61 155.94 160.27 164.61 168.94 173.27
		160	69.31	225	97.49	290	125.62	450 500 550	194.92 216.58 238.24
100	43.31	165	71.47	230	99.63	295	127.78	600 650	259.90 281.56
105	45.48	170	73.64	235	101.79	300	129.95		303.22 324.88
110	47.64	175	75.80	240	103.96	310	134.28	800 850	346.54 368.20
115	49.81	180	77.97	245	106.13	320	138.62	900 950	389.86 411.52
120 125	51.98 54.15	185 190	80.14 82.30	250 255	108.29 110.46	330 340	142.95 147.28	1000	433.18

For heads under 100 ft., take the figure corresponding to 10 (or 100) times the given head and move the decimal point one (or two) places to the left.

Flow of Gas in Pipes¹

If d = Diameter of pipe in inches. Q = Quantity of gas in cu. ft. per hour. l = Length of pipe in yards. h = Pressure in inches of water.

s = Specific gravity of gas, air being 1,

then

$$d = \sqrt[5]{\frac{Q^2 s l}{(1350)^2 h}}$$

$$h = \frac{Q^2 s l}{(1350)^2 d^5}$$

$$Q = 1350 d^2 \sqrt{\frac{dh}{s l}} = 1350 \sqrt{\frac{d^5 h}{s l}}$$
or Molesworth gives $Q = 1000 \sqrt{\frac{d^5 h}{s l}}$
while J. P. Gill gives $Q = 1291 \sqrt{\frac{d^5 h}{s (l+d)}}$

¹ Kent, "Mechanical Engineers' Pocket Book."

TABLE FOR CONVERTING "COMPRESSED AIR" INTO "FREE AIR" 1

4	_	###	32888	4238
1	110	တ် တဲ့ တဲ့ တဲ့ တ	99000	===
	20	14 24 74 71	0888	689
	108	တေ့ တာ့ တာ တဝဲ တဝဲ	000000	211
	0	82884	82775	8222
	100	\$ 50 00 00 of	တတ်ထဲထာ	999
	9.5	982727 98228	25 53 53 53 53 54	588
	_ a	-1-1-1-1-1	ಯಯಯರಾದಾ	e 22
	96	233,232,233,000,000,000,000,000,000,000,	87 140 40 66 98	29.69
		4444	<u> </u>	<u> </u>
	1/2 90	88.00.02	49 74 99 23 3,54	∞0 ⊶ 4,
1 5 1		466666	<u> </u>	10 ct -4
pressure	8	41000-00	<u> </u>	80 80 80
	-	00000	4 10 10 10 10 10 10 10 10 10	H 00 51
GALTO	25	00000	7.7.7.7.7.9.9.7.7.9.9.7.7.9	2000
~		ಹಳುಬಳು4	45001	10 O m
	02	6.00	7666	4.7.7
	NO.	75825	98 15 73 73	99
	Φ	வவவ்வவ	ကြောက်တက	10 m
	90	22.25.24	25 25 35 35 35 35 35 35 35 35 35 35 35 35 35	53 74 94
		10 10 10 10 10 TO	ကြောက္ကတ္ကတ္	တ္ထ
	100	89 89 05 05	885888	26 44
		च्चचच च	TO TO TO TO TO	100 to
	20	944 966 979	28124	@ 5- W
		44444	44000	4 H R
	43	30,23,23	84.75 52.00 50.00	ने कि स
<u> </u>		चं च च चं चं	चंचंचचच	ம்மம்
Atmos-	pheric	7 112 92 61	10 61 15 75 27	552
E.	2 2			000
A	4 2	44488	11222	222
	Barometer	0000000	പ്രതാവ	000
	6 E	98 88. 78 88.	F- 12-100 00	988
E	Bar	28888	22222	22 21 20
	a			
-	Attitude	92888	8,000 4,000 7,000 6,000 7,000	000,00
1 1	3131	000000	00000	000
-	4	10 H-10	20 dv 113 dD La	100
l				

Opposite 4000 and Example: Given 348 cu. ft. of air compressed to 95 lb. pressure at 4000 ft. altitude. below 95 appears the figure 8.53. 8.53 × 348 = 2968.44 = volume in "free air." sallivan Machinery Co.'s Catalog.

Horsepower (Theoretical) Required to Compress 100 Cu. Ft. Free Air to Various Pressures¹

Gage	Single-stage			ving of two-stage over			
pressure			Horsepower	Per cent.			
5	1.97						
10	3.61		 				
15	5.02						
20	6.28						
$\frac{25}{20}$	7.44			• • • • • • • • • • •			
30	8.45	• • • • • • • • • • • • • • • • • • • •					
$\begin{array}{c} 35 \\ 40 \end{array}$	$\begin{array}{c} 9.41 \\ 10.30 \end{array}$			• • • • • • • • • • •			
$\begin{array}{c} 40 \\ 45 \end{array}$	11.13			• • • • • • • • • • • • • • • • • • • •			
50	11.13	10.65	1.28	10.70			
55	12.67	11.25	1.42	11.22			
.60	13.37	11.81	1.57	11.72			
$\dot{65}$	14.05	12.34	1.71	12.18			
70	14.70	12.84	1.85	12.61			
75	15.32	13.32	2.00	13.04			
80	15.91	13.77	2.13	13.40			
85	16.48	14.21	2.27	13.77			
90	17.04	14.63	2.41	14.12			
95	17.57	15.03	2.54	14.45			
100	18.09	15.42	2.67	14.77			
110	19.08	16.15	2.93	15.36			
120 130	$egin{array}{c} 20.01 \ 20.90 \ \end{array}$	16.83	$\begin{array}{c} 3.18 \\ 3.43 \end{array}$	15.90 16.42			
140	21.74	17.46 18.07	3.43	$16.42 \\ 16.89$			
150	22.55	18.64	3.91	17.33			
160	23.32	19.26	4.06	17.40			
170	24.06	19.78	4.29	17.80			
180	24.77	20.27	4.51	18.18			
190	25.46	20.74	4.70	18.46			
200	26.12	21.19	4.93	18.88			
210		21.54	• • • • • • • • • • • • •	• • • • • • • • • • •			
$\begin{array}{c} 220 \\ 230 \end{array}$		$\begin{array}{c} 21.96 \\ 22.37 \end{array}$	• • • • • • • • • • •	• • • • • • • • • • •			
$\begin{array}{c} 230 \\ 240 \end{array}$		$\begin{bmatrix} 22.37 \\ 22.76 \end{bmatrix}$	• • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			
$\begin{array}{c} 240 \\ 250 \end{array}$		23.03	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •			
260		23.28		• • • • • • • • • • • • • • • • • • • •			
270		23.84		• • • • • • • • • • • • • • • • • • • •			
$\frac{280}{280}$		24.19					
290		24.53		• • • • • • • • • • •			
300		04 05		• • • • • • • • • •			
350		26.35		• • • • • • • • •			
400							
450		28.85					
500		29.97	• • • • • • • • • • • •	• • • • • • • • •			

To secure the actual horsepower required to compress a given volume f air to any desired pressure, 10 to 15 per cent. should be added to the gures shown above, depending upon the size and type of the compressor, o allow for mechanical losses.

1 Sullivan Machinery Co.'s Catalog.

APPROXIMATE CUBIC FEET OF FREE AIR AND WORKING PRESURE REQUIRED TO RAISE 1 GAL. OF WATER BY AIR LIFT!

 $V = \frac{L}{\frac{H + 34}{34} \times 292.5}$ H = Submergence in feet. L = Lift in feet.

Ft. lb. working power = submergence \times 0.4465 + 7 lb. V = Volume of free air per gallon in cubic feet.

RATIO OF SUBMERGENCE TO LIFT

V SEA	25 ;	25 per cent. 35-1			er o	ent.	43]	43 per cent. 34-1			50 per cent. 1-1		
Lift in feet	Free air, cu. ft.	Working	Horse- power	F. C. F	W P.	H. P.	F. A C F	W P.	H. P.	F. C. F.	W. P.	H. P.	
20 30 40 50 60 80							0 68	40	070	0 34 0 38 0 41 0 44 0 47 0 52 0 58	25 29 34 43	.024 031 .036 048 .056	1-Stage
120 140 160 180 200 250 300 850 400	1.44 1.57 1.69 1.82 1.96	37 44 52 59	241	1 15 1 27 1 40 1 50 1 63;	52 63 74 85 96	141 154 186 213 248	1 05 1.20 1 31	47 54 61 67 74 91 107 124 141	. 123	0 68 0 73 0 77 0 82 0,92 1 03		075 .087 .099 .111 .124 .154 .187 .225	2-Stage
450 500 550 660 650 700 750 800 850	2 08 2 19 2 30 2 41 2.52 2.64 2 76 2.88 2 97 3 18 3.28	111 119 126 133 141 149	.276 306 333 364 396 428 463 496 524 557 591 622	2 05 2 18 2 27 2 37 2 47 2 57 2 67	107 119 130 141 152 163 174 186 197 208 219 230	.342 .372 .409 .441 .473 .508 .542	1.48 1.56 1.68 1.78 1.87 1.96 2.06 2.15 2.24 2.33 2.40	157 174 191 208 226 240 258 275 292	282 312 .349 358 388 416	1 43 1 52 1 61 1 74 1 81 1 88 1 97 2 06 2 14 2 22	364 387 409 431	267 .290 .329 .360 .400 .427 .454 .486 .519 .550 .579 .614	3-Stage

Sullivan Machinery Co.'s Catalog.

Approximate Cubic Fret of Free Air and Working Pressure Required to Raise 1 Gal. of Water by Air Lift—Continued.

	_											-	
1.44	55 per cent. 154-1			60 per cent. 1}4-1			66 per cent. 2–1			70 per cent. 2}3-1			
Lift in feet	F C F	₩. P.	Н Р.	F. ACF	W. P.	H . P,	F. ACF.	W. P	Н Р.	F. C. F.	w. P	H. P	
20 30 40	0 29 0 32 0 35		029	$0.28 \\ 0.31$	34		$\begin{array}{c} 0 & 23 \\ 0 & 26 \end{array}$		015 .021 028	0 20 0 23	_52	014 021 028	1-Stage
50 60 70	0.38 0.41 0.46	35 40 52		0.37 0.42	40 47 61	050	0.32 0.36	52 61 78	049	$0.28 \\ 0.33$	63 74 96	032 037 .050	980
100 120 140 160	0 51 0 56 0 61 0 66	63 74 85 96	062 074 087 .100	0 56		087	0 46	132	.062 076 088 .101	0 42 0 46	119 141 163 186	062 076 089 103,	2-Stage
180 200	0 70 6 74	119	112° , 124	0 65 0 69	127 141	112^{1}	$\substack{0.58\\0.62}$	168 186	114 .127	0 54 0 58	$\begin{array}{c} 208 \\ 230 \end{array}$	109 .121	
250 300 350	0.96	147, 174, 202	.159° 192, 209°		174 208 241	158 179 209		230 275 320	.151		286 342 398	.152 184 214	
400 450 500 550	1 14 1 23 1 32 1 42	230 258 286 328	238 269 299 338	1 08 1 17 1 26 1 34	275 308 342 375	.241 272 .304 334	0.98 1 07, 1.15 1 25	364 409 453 498	. 242 . 275 . 306 . 343	$\frac{0.93}{1.02}$	453 509	247 282 308	3-Stage
600 650 700 750 800		425	.463,		442 476 509	401 .432 .458	1 47 1.55	587 632	.369 .402 435 .468 507				6
850 900 950 1000	1 93 2 00 2 08	481	523 552 584	1 82 1 86 1.99 2.06	576 610 643	.523 544 591		766 811 855	533 564 599	•			

,	i -		, .		•	
			Volum. coeff.	1.00 1.97 1.93 1.87	.78 .78 .78 .73	.68 .68 .68 .63 .63
ı		150		10000	00000	00000
_			coeff.	00 98 97 97	6888	80 77 77 72 72 72 72
NO			.q.H	0.00.0	00000	00000
1881			coeff.	40840	41000	71 68 63 61 61
PRE			Volum.		8.000	0.000
COMPRESSION ¹		140				107744
ŭ			H.p. coeff.	00.88.99.90 00.88.99.90	98888888888888888888888888888888888888	877777
AIR	र्वं			10000		00000
V	inch.		coeff.	97 93 93 87	48 28 28 28 28 28 28 28 28 28 28 28 28 28	71 68 68 62 59 59
GE	square	0	.muloV	. +0000	00000	000000
Two-stage		120	coeff.	986 988 988	0 8 8 8 8	208648
٥	per		.q.H	10000	00000	8.000.00
H	pounds			07418	ინედ 6 4	
æ	nod	100	Volum. coeff.	\circ	∞∞ <i>ν</i> .ν.ν.	69 64 62
FOR				10000	00000	00000
ഇ	pressure,	1	.q.H .neoo	98 98 98 98	91 85 83 83	82 77 74 75 74
EN	pre			-0000	00000	000000
TCIENTS	gage		Volum. coeff.	07418	₩ ₩ ₩ ₩	652 652 653 653 653
EFF				0.000	0000	00000
COEFF	Terminal	6			10774	000F04
	Ter		.q.H .Bəoə	00. 86. 94. 93.	ထဲထဲထဲထဲထဲ	∞∞r-r-r-
WE				000	00000	00000
PO			.Beoo	00 97 94 91 88	85 70 77 74	65 65 63 65 65
RSE		0	Volum.	0.00	0000	00000
Horsepower		80	coeff.	9998	91 88 88 86 84	83 77 74 74 74
			.q.H	0.00	00000	000000
AND			coeff.	94 94 88	882 82 77 75	655872
Į			.muloV	0.00	00000	000000
rRI		20	coeff.	98 98 97 95 93	91 88 85 85	883 822 77 77 75
KEJ			J.q.H	1.0 0.9 0.9	00000	000000
VOLUMETRIC			per sq. 11	72 172 64 64 64	17 71 27 85 45	80000 X Z Z I
Vo	'IP'	пі в вэ	Ватот. рт	44662	00-1-10	0.000000
			<u> </u>	2000 2000 2000 2000 2000 2000 2000 200	22222	
		Alti-	feet	Sea level 1,000 2,000 3,000 4,000	6,000 6,000 8,000 9,000	000000000000000000000000000000000000000
	Alti- tude in feet		5 ⁴⁴	'A (4 th 4	m) @ [~ W @	11,2,11,0,11,0,11,0,11,0,11,0,11,0,11,0

1 Sullivan Machinery Co.'s Catalog.

Horsepower per 100 Cubic Feet Free Air Per Minute, Two-stage Compression; Theoretical Horsepower in Air Cylinders¹

(Allow for Friction and other Losses)

Altitude	Barom.			i i		Te	Terminal g	gage pressure	sure					1
in feet		70	75	80	82	06	95	100	110	120	. 130	140	150	
Sea level	4	2.8		13.	14.2	14.6	5.0	15.4	6.1	16.8	17.4	18.0	18.	64
1,000 2,000	14.17	$\begin{vmatrix} 12.62 \\ 12.39 \end{vmatrix}$	13.08 12.84	133	13.95 13.68	14.35 14.08	14.74 14.46	15.12 14.82	15.83	16.49	17.11	$\begin{vmatrix} 17.69 \\ 17.33 \end{vmatrix}$	2.2	% % %
3,000	က (2.1	100	133	13.4	13.8	4.1	14.5	50	15.8	16.4	16.9	17.	48
4,000	8 7	6. -	N.	12.	13.1	13.5	ත ල	14.2	4 .9	15.5	16.0	16.6	17.	1
5,000	2.1	7	•	12.	12.9	13.2	3.6	13.9	4.6	15.1	15.7	16.2		75
6,000	11.71	11.51	11.91	12.	12.6		13.35	13.68	14.29	14.86	15	15	16.	38
2,000	1.2	2	•	_	12.4	12.7	က ()	13.4	4.0	14.5	15.0	15.5	_	3
8,000	∞. ∞.	0		11	12.1	12.5	α Ω	13.1	3.7	14.2	14.7	15.2	_	29
6,000	0 .4	∞.	•	11.	11.9	12.2	2.5	12.8	3. 4.	13.9	14.4	14.9		83
10,000	10.06	9.0	1.0	11.3	11.6	12.0	2.3	12.6	3.1	13.6	14.1	14.5		66
11,000	69.6	10.46	10.81		11.46	11.76	12.06	12.34	12.87	13.36	13.8	2 14.26	3 14.	29
12,000	9.33	0.2	0.5	10.9	11.2	11.5	1.8	12.0	2.6	13.0	13.5	13.9	_	34
13,000	•	0.0	0.3	10.7	11.0	11.2	1.5	11.8	2.3	12.7	13.2	13.6	_	8
14,000	•	∞	0.1	10.4	10.7	11.0	1.3	11.5	2.0	12.5	12.9	13.3	_	20
15,000	•	9	<u>o</u> .	10.2	10.5	10.8	1.0	11.3	1.7	12.2	12.6	13.0		39
1 Sullivan Machinery		Co 'a Catalog											_	1

Sullivan Machinery Co.'s Catalog.

Air Lifts—Ratio of Lift to Submergence¹

Lift	Submergence
Up to 50 ft.	70-66 per cent.
50–100 ft.	66-55 per cent.
100–200 ft.	55-50 per cent.
200–300 ft.	50-43 per cent.
300–400 ft.	43-40 per cent.
400–500 ft.	40-33 per cent.

METALLURGICAL CONSTRUCTION

Allowable Unit Strains For Metallurgical Works2 Substructure

Foundations.—Pressure on foundations not to exceed, in tons per square foot:

Soft clay	1
Ordinary clay and dry sand mixed with clay	2
Dry sand and dry clay	3
Hard clay and firm, coarse sand	4
Firm, coarse sand and gravel	6

Masonry.—Working pressure in masonry not to exceed, in tons per square foot:

Common brick, Rosendale-cement mortar	10
Common brick, Portland-cement mortar	12
Hard-burned brick, Portland-cement mortar	15
Rubble masonry, Rosendale-cement mortar	8
Rubble masonry, Portland-cement mortar	10
Coursed rubble, Portland-cement mortar	12
Fist-class masonry, sandstone	20
First-class masonry, limestone	25
	30
Concrete for walls:	
Portland cement 1-2-5	20
Portland cement 1-2-4	25

Pressure on Wall-plates.—The pressure of beams, girders, wall-plates, column bases, etc., on masonry shall not exceed the following, in pounds per square inch:

On brickwork with cement mortar	200
On rubble masonry with cement mortar	200
On Portland-cement concrete	350
On first-class sandstone	400
On first-class limestone	500
On first-class granite	600

¹ Sullivan Machinery Co., Bull. No. 71-A.
² "Specifications for Structural Work on Buildings," A. S. M. E.

Costs of Some Metallurgical Plants¹

Character of plant	Capacity per 24 hours	Cost
Iron blast furnace	300 tons of pig iron	\$650,000 900,000
las and hot-metal reservoir. Acid open hearth, ten 50-ton furnaces.	1000 tons of steel	1,500,000
Basic open hearth, ten 50-ton furnaces.	1000 tons of steel	1,650,000
Rolling mill	Starting with ingots 20 in. square, weighing about 5000 lb., consisting of 36-in. blooming mill and 28-in. structural mill.	1,250,000 to 1,500,000
Copper smelting and converting.	Partial pyritic smelting of 1000 tons of ore to 100 tons of 45 per cent. matte.	1,250,000
Lead smelting	500 tons of mixed lead ore	250,000
Parkes desilverizing	100 tons of lead bullion	250,000
Moebius electrolytic parting	30,000 oz. of doré bullion	20,000
Electrolytic copper refining, multiple process.	100 tons of copper, from pig to wire bars.	500,000
Zinc smelting	100 tons of blende, not making sulphuric acid.	375,000
Stamp milling ²	100 tons per day	50,000
Cyaniding ²	100 tons per day	100,000

Cost of Metallurgical Work³

Cheapest type of mill in Joplin district, capacity 50,000 tons annually, construction cost, 12 to 16 cts. per ton of annual capacity.

Joplin mill designed for concentration of mixed sulphide ore,

15,000 tons annual capacity, 67 to 80 cts. per ton. San Juan mill, capacity 75,000 tons per year, cost per ton **\$**1.33.

Wet concentration mills of Boston Consolidated Copper Co.,

1,000,000 tons capacity, cost about \$1.50 a ton.

Garfield mill of Utah Copper Co., capacity 2,200,000 tons, cost per ton \$1.85.

Ohio Copper Co., capacity 1,000,000 tons, cost per ton \$1.50.

The above are for wet concentrating mills.

Magnetic Separating Plants

New Jersey Zinc plant, 300,000 tons capacity, cost \$1.75 Smaller plants are 15,000 tons capacity, cost \$3 to per ton. **\$4** a ton.

Copper Smelting Works

Blast-furnace plant, no roasting furnaces, annual capacity 330,000 tons, cost \$1.70 per ton.
Balakalala, capacity 437,500 tons, cost \$2.25 per ton, of

which 25 cts. was for the converter plant.

Washoe plant, capacity 3,000,000 tons, cost \$3.56 per ton.

¹ Hofman, "General Metallurgy," p. 888.

² H. A. MEGRAW, private notes. ³ By W. R. Ingalls in Engineering and Mining Journal, July 2, 1910.

CONSTRUCTION COSTS, BELMONT MILL

					100	
	Excavation,	Floors and	Buildings	lings	Machinery, including	
	concrete wans, and foundations	macumery foundations	Frames	Covering	piping, wiring, belting, etc.	T Ocars
Grusher wlent	65 760 79		1			6 32 170 87
Inclined conveyor.	166.41		1.771.75	585.19	3.620	6.382.16
Battery bins	399.00					431.
Stamps		8,797.82		•	36,873.06	5,670.
Tube milis and classifiers			• • • • • • • • • • • • • • • • • • • •	•	_	43,308.84 989.88
Concentrating plant				•	_	010
Concentrate house	76.80		354.80	623.27		106.
Dorr thickeners				:	034.	332.
Circulating system				•	846.	993.
Air agitation	261.71				257.	507.
Clarifying		o.,		•	573.	<u>4</u> 03.
Fredipitation system	395.00	44.05			581	
Driquetting plant	• • • • • • • • • • • • • • • • • • • •	•			200 200 200 200 200 200 200 200 200 20	100 100 100
Air compressor			:	•	104	170. 581
Refinery	2.473.84	1,552.23	2.200.17	2.292.80	7.548.79	
Boiler plant and fuel-oil system.	571.56			531.1	7,606.28	201.
Tank-heating system	•			-	362.	371.
Transformer house	91.83	101.05	428.69			839.
Time house		٠.	. 1	753.	•	0.20
Machine shop	•	<u> </u>	138.7	•		Sio.
Storeroom	511.55	1,509.60	1,305.84	1,315.78	152.04	•
Inclined railway	•		432.	203	379.51	1,148.
Mill building	39,645.45	6,757.80	•	•	. 1	120,524.18
Total	\$51,795.78	\$51,085.37	\$55,758.13	\$30,861.38	\$275,688.41	\$465,189.07

Highland Boy plant, capacity 300,000 tons, cost \$3.23 a ton. Garfield plant, capacity 800,000 tons, cost \$7.50 per ton, but this included a large amount of land secured to protect against smoke suits.

Lead Plants

Modern lead smelting works, capacity 330,000 tons, cost \$2.30 to \$3.00 per ton. A lead desilverizing refinery, capacity 30,000 tons of base bullion, cost about \$6.66 per ton.

Zinc Smelting Works

Zinc smelteries in natural gas field in Kansas and Oklahoma, capacity 25,000 tons annually, cost \$7.00 per ton.

Plant in the same field, of superior design and construction,

cost \$10.00 per ton.

Plant to burn coal with gas producers and regenerative furnaces in Europe, figured to cost \$15 per ton. Same plant in United States would probably have cost \$17.50 to \$18.00, but actual constructions have run as high as \$20.00 per ton.

Sulphuric Acid Works

Sulphuric acid plant to be added to zinc smeltery, costs \$5 to \$6 per ton.

Miscellaneous

Tennessee Copper Co., acid plant, annual capacity 168,000 tons of acid, cost per ton of capacity \$10.00.

Randfontein Central mill, capacity 150,000 tons per month,

cost per ton \$4.80.

Moctezuma, capacity 2000 tons per day, cost \$1.37. Federal Lead, capacity 2400 tons per day, cost \$1.03. Southeastern Missouri in general, \$1.26.

Wetherill magnetic separating plant, capacity 100 tons per day, cost \$2.05.

Blake electrostatic, capacity 100 tons per day, cost \$1.37.

Wilfley roasting process, capacity 100 tons per day, cost **\$**1.37.

Mexico silver-gold cyaniding plant, \$3.40 per ton.

Cyanide Plant Construction

Bearing out the estimate of \$1000 per ton of daily capacity as the cost of constructing a cyanide plant, the figures on p. 464 were given in the A. I. M. E. Bulletin for September, 1915.

The general subject of mill construction costs for the amateur was covered by HARRY T. CURRAN in the Engineering and Mining Journal of Aug. 14, 1915, so well that there seems to be nothing to add to his article, which is herewith reproduced.

Mill-construction costs are widely variable and the subject is a broad one. No two mills are alike, nor will their construction be carried on under the same conditions, yet the construction work itself is much the same in all. The figures given in this article are taken from my field notes and by modification they can be applied to any similar work.

The results of laborious search into metallurgical literature for mill-construction data are discouraging at the best. Little has been written on the subject, and the operator is prone to place too much reliance on "general figures," which in varied modern practice comprise the last word in unreliability. General figures are useful, however, in rough preliminary estimations. it has been determined just what kind of a plant is needed, the site selected and drawings made, a thorough organization of plans should be established and every detail gone over in the mind's eye.

Preparation of Costs of Material.—The first step is to estimate the yardage to be excavated, the amount of masonry or concrete work required, and then a complete list of all material should be made. The tendency is to overlook a multitude of small things which have considerable value in the aggregate. To the machinery specifications should be added a complete list of lumber, doors, windows, all hardware down to nails, pulleys, belts, lime, sand, broken rock—in fact everything that goes into the construction. The cost and weight of this can readily be determined by consulting reliable dealers and adding the necessary freight charges.

Planning the Preliminary Work.—The next step should be

the working out of a thorough development plan and an estimate of its cost. Everything should be made ready, so that when actual construction starts there will be neither confusion nor delay. The cost of this work is considerable and it is often neglected, with the consequent addition of excessive costs to some other part of the work. A great amount of future trouble and worry can be avoided by a careful planning for a few impor-

tant features, which will be mentioned.

Unloading facilities and material and tools to do it with should be provided. A good road to the plant should be built and convenient deliveries arranged for. It is a noticeable fact that many a well-constructed mill has such poor facilities for receiving supplies that the extra cost for a year would probably build everything needed to make such work easy and cheap. Ample room ought to be set aside for timber yards; and all lumber should be marked and piled so that a glance will determine just what

part of the job it was bought for.

A handy place should be marked off for a storage house and its cost estimated. It is surprising what a number of small things will be lost or misplaced without such storage. Roomy framing plots, as level as possible, should be marked off and handy places for machinery storage determined, keeping in mind pieces which will be first used and their situation. supply of gravel, sand and rock must be looked into and arrangements made for its cheap delivery at any point. for disposing of rock and earth excavated with the least possible amount of handling should be planned.

The labor question must be studied and complete arrangements made for the comfort of the men. Their efficiency will vary directly with the conditions of their surroundings. cently, in the West, a so-called mining man who had never given human nature a moment's thought attempted to build a mill in

an out-of-the-way place with no fit accommodations for anyone. The results were disastrous for the company. Good men could not be kept and the mill was finished up at an excess in cost of more than \$50,000. Some of the tanks collapsed on their foundations with the first filling.

The cost of all this preliminary work can be estimated by the man on the ground; it averages from 5 to 10 per cent. of the total. If it is neglected, confusion and delays throughout the job are the inevitable result. Good organization is just as essential to

the construction of a plant as to its operation.

Consideration of Erection Costs.—Erection costs are variable and can only be obtained by experience or by comparison with other jobs. If all necessary steps are taken to avoid delays estimates can be made dependable within reasonable limits. Fixed rules cannot be given for this part of the work. They will vary with the wages, efficiency of labor, climatic conditions and the experience of the man in charge. However, if the rules given in this article are applied for summer work in the United States, the estimate will come approximately close to actual cost. Labor wage is based on the average paid in Western mining

Superintendence can be figured when conditions are known, and will average, including cost of plans, from 3 to 5 per cent. of the total. Excavation by picking, shoveling, and hauling average earth in wheelbarrows, moving 100 ft., will cost about 45 cts. per cubic yard; add one-third of hourly wage of laborer for every additional 100 ft. Where mine cars can be used to advantage this may be cut to 35 cts. per cubic yard, moving 100 ft.; add one-fifth of hourly wage for every additional 100 ft., which covers placing the track. Breaking rock by hand—like hauling conditions—will cost from \$1.25 to \$1.75 per cubic yard, with 100 ft. haul. It will cost a few cents more per yard than in earth work for every additional 100 ft. There are so many unknown quantities entering into excavating that these figures

are only roughly approximate.

Masonry and Concrete Construction.—Rubble masonry will average \$5 per cubic yard, using cement mortar. A mix of 1 part of portland cement to 5 parts of sharp, clean sand will give good results. Such walls will average about 15-in. courses and will require from 1/4 to 1/3 cu. yd. of mortar per cubic yard of wall. Concrete work can be figured to a nicety when conditions are known. With a mechanical mixer \$1 a yard will cover the cost of mixing and placing in the average mill. large job it is well to determine just what mix is required with the material used. The duty of the sand is to fill the voids in the broken rock and, when the two are mixed, the resultant voids should be filled with cement. It is well to allow 10 per cent. excess in each case, but there is nothing gained by using a richer mix for retaining walls and foundation. However, if a weaker mix is desired it can be obtained by puddling instead of cutting down the proportion of sand and cement. In forms of any size puddling is good practice and the strength of the con-

crete is by no means decreased. Clean, firm rock should be used and the edges should not touch. On the average mill job concrete will not cost more than \$7 per cubic yard for large forms, \$8 for medium, and \$10 for small and heavy-duty machine foundations, including the cost of the forms. By using old iron, reinforced concrete can be made for 50 cts. per yard more. Floors with a 5-in. base and 1-in. covering will average

from \$10 to \$14 per cubic yard.

Unloading and hauling depend upon conditions. There will be a fixed average charge of from 30 cts. to 40 cts. per ton. Small pieces should be handled for less, but large unyielding pieces, such as a tube mill, can easily cost to \$1 per ton. Probably 75 cts. per ton-mile would be a good average for hauling on any kind of a decent road and grade. By consulting local freighters these things can be definitely settled. panying curve shows the variable cost of hauling on different For example, consider 50 cts. per load as a cost unit, representing a reasonable cost per mile on level roads, so that a comparison of costs on different grades can be found.

Carpenter work with a well-organized crew of mill-wrights will average about \$21 per M, for framing and erecting; \$12 to \$15 per M, for siding and roofing and \$2.50 per M for shingles or 75 cts. to \$1 per square for corrugating iron roofing and siding. With a picked-up local crew, \$28 to \$31 per M, for framing and erecting, \$19 per M, for siding and roofing and \$2.50 per M for shingles or \$1.25 per square for iron, will be the average figures. The nails required in this work per M will be about as shown in

the table.

NAILS REQUIRED IN ERECTION

	D	Lb.
Siding and roofing Flooring (1-in. material) Flooring (2-in. material) Studding, etc Shingles (per 1000)	20 or 30	18-21 28-32 20-25 14 6

Assembling and erecting machinery depends upon the nature of the machinery. A good point to emphasize here is that poorly stored machinery may easily add several dollars per ton to erection costs. An experienced engineer will size up the job and divide the material into different classes. It is then usually figured on a tonnage basis. Generally speaking, the heavier the piece the less the erection cost per ton. Steel tanks over 36 in. thick can be erected for \$35 per ton; for 3% in. or less from \$40 to \$45 per ton. To place engines, stamps, crushers, pumps, to line up shafting, set electric motors, including wiring, etc., about \$45 per ton of iron. To set up concentrating machinery, classifiers, filters, etc., from \$50 to \$65 per ton. These figures cover the necessary carpenter work, placing pulleys, belts, and

adjustments. When the carpenter work is figured separately, these figures are high. Under these conditions it will cost from \$25 to \$30 per ton of iron to place engines, stamps, crushers, lineup shafting, etc. To set up concentrating machinery, classifiers, filters, etc., from \$30 to \$45 per ton. This of course includes placing pulleys, belts, and adjustments. The pipe work in the average mill will cost from \$40 to \$45 per ton. Erecting wooden tanks costs about \$12 per M. Reduction works constructed wholly of steel are now becoming popular where the winters are not too severe. Framework of steel can be erected for \$12 to \$15 per ton by contract. A good contractor with a crew of construction men will make money at these figures. However, the amateur will do well if he shades the figures at all.

Recently the construction of a 50-ton combination concentrating and cyanide plant came under my notice. The contract was taken for just a little under \$30 per M, and the same price per ton for machinery erection, which also included all foundations and concrete work. The total cost of the mill was around \$30,000, but it is just under a finished product in every way and is bound to give considerable trouble that will eventually cost more, not considering delays, than the extra thousand or two dollars it would have taken to make it a

finished mill in the first place.

Small items are important and there are a number of them. Considerable timber is required for staging and a number of unavoidable losses must be allowed for. The building should be painted, fire protection and heating arranged and office and

laboratory equipment bought.

Cost of Making Alterations.—The expense of the breaking-in period and necessary alterations are often overlooked. Here we have the personal equation entering. It is a bet by the designer and constructor on his own ability. It is a good idea to allow 10 per cent. of the total cost for possible changes, while any excess is often useful to cover the expense of unavoidable delays. I have in mind two mills, designed by two well-known metallurgists, where the starting-up period took in one case 5 per cent. of the total expenditure and 15 per cent. in the other. The operator has a problem different from that of the man who follows construction only. When the former designs and constructs a mill he must worry through the breaking-in period and come out with a mill that is satisfactory in every way. On the other hand, the construction man generally has a contract and his responsibility ends by turning over a mill that is up to specifications, which may mean a good mill or a very poor one from the operator's standpoint.

Difficulties of Winter Construction.—In the northern United States winter work is a tough undertaking at its best and should be avoided if possible. With an average winter the excess cost will easily foot up to 33 per cent. of the total labor expenditure. With an open, mild winter these figures are high, but with a cold, snowy winter they may easily reach 50 per cent. Concrete

work often costs 35 per cent. more, as complete arrangements must be made for heating and protecting against frost until after the preliminary set. After 12 hours, freezing can only retard

the final set, but cannot injure the concrete.

A brief description of methods used in a winter concrete job may be of interest. A steam coil 12 × 12 ft. was made out of 2-in. pipe spaced 1 ft. apart, and perforated every 6 in. with $\frac{3}{16}$ -in. holes. This made it possible to keep plenty of broken rock heated ahead of the mixer. Barrels were arranged on the mixer platform so that the water could be heated to the boiling point with steam. A 10 per cent. salt solution was made, which in no way seemed to damage the concrete. The sand was not heated. Live steam was turned into the forms before pouring. sufficient time being allowed to draw the frost a few inches. Large forms were simply well covered with canvas after filling; the concrete stayed above the freezing point for a couple of days even in the coldest weather. Small forms were protected by steam hose and fires for 12 hours. Calcium chloride is probably better than sodium chloride, since its solution freezes at a lower temperature and it also increases the waterproof quality of the concrete. It has been proven that concrete with 2 per cent. of calcium chloride gives the best resistance. More than 2 per cent. of it unduly increases the speed of setting and weakens the Since from 10 to 15 per cent. of water is used in mixing concrete, a 2 per cent. mix would be given by using a 15 or 20 per cent. solution. A 20 per cent. sodium-chloride solution freezes at about 7°F., while a 20 per cent. calcium-chloride solution will not freeze until it reaches about the zero mark.

On a winter job of any size an inclosed framing shed will pay for itself many times over. It is not only useful during the framing period, but is a happy addition on a bitter cold day during the erecting period when the carpenters would otherwise have to be laid off. There are always launders, doors, plate beds, or a multitude of small things that they can work at under protection from the weather. When the mill is finally under cover it can be kept comfortable and the work will go on much

more efficiently.

Expense of Řebuilding Old Mills.—Remodeling old mills is in a class by itself and each case presents a special problem depending upon the extent of the work and the condition of the mill. Like a new mill the cost of excavating, concrete, machinery, etc., can be rather accurately figured on, but the amount of hardware and lumber that can be used again and the amount of new material required is often misleading. The carpenter work and assembling of machinery will generally cost twice as much as in a new plant. It is a tearing down and building up process for which no rules can be given.

The main causes for underestimates are:

Guess work, lack of good organization, false economy, omissions and change of plans, neglect of preliminary work, too much reliance placed on general figures, and inefficiency of labor resulting from surroundings. Under unavoidable circumstances

ULTIMATE AND ELASTIC STRENGTHS OF MATERIALS 1
Metals (Kimball and Barr)

	WILLIAM N	Cumate strengta (C)	9	Elastic	Elastic strength (B	(E L)	Direct coefficient of	Transverse coefficient of
Material	Тепвлоп	Сотр	Shear	Teaston	Comp	Shear	elasticity (E)	elastionty (Es)
Cast iron	20,000	95,000	20,000	10,000	25,000	8,000	15,000,000	6,000,000
Malleable iron	35,000	42,000	2000	30,000	99 000	99 000	00 000 000	10 000 000
Steel, 0 15 carbon	63,000		48,000	42,000	40,000	more a	30,000,000	10,000,000
ó	80,000		57,000	48,000	46,000		30,000,000	10,000,000
0 70	89,000		60,000	53,000	53,000		30,000,000	10,000,000
0	103,000	•	80,000	22,000	63,000	:	30,000,000	10,000,000
0	118,000		83,000	69,000	71,000	:	30,000,000	10,000,000
teel, boiler plate	60,000	:	48,000	30,000			30,000,000	
Crucible steel	116,000	:		80,000	80,000	,	31,000,000	12,400,000
Steel castings	50,000		40,000	30,000	30,000	,	25,000,000	
Nickel steel	100,000	4		60,000		,	31,000,000	
Copper castings	22,000	000'09		6,000	,	,	12,000,000	:
Rolled copper	31,000		-	8,000	+	:	15,000,000	4
Brass castings ,	20,000	12,000	:				10,000,000	
Bronze, gun metal	35,000						12,000,000	
Bronze, phosphor .	50,000			20,000			14,000,000	:
Tobin metal.	80,000	,		55,000				
Aluminum castings	15,000	12,000	12,000	6,500	3,500	-	11,000,000	:

may be mentioned unexpected strikes or inefficient labor, badweather delays and the failure of railroads or supply houses

to deliver material as expected.

Any reputable machinery house will give valuable information. Nearly all have one or more experienced engineers and will gladly go into all details with the buyer. It is a mistaken idea to think that they let their responsibility end with the last car of machinery that leaves their plant. There are plenty of would-be metallurgists who are always willing to build a plant for half the bid of a reputable house, but without exception they are a most expensive "economy." This also applies to the manuacturer of an untried innovation. Almost without exception a small mining company cannot afford to experiment with such things. If there is merit in the innovation the larger companies will soon pick it up and demonstrate it. If the plans are followed, a good organization maintained and efficient labor secured, the figures will be found a little higher than actual costs. Sectionalized machinery for mule-back haulage cannot be erected at these prices.

Effectiveness of Wood Preservatives

The relative efficiencies of certain widely used wood preservatives were recently tested by the U.S. Department of Agriculture (Bull. No. 227).

The tests were made by the Petri-dish method. The quantities mentioned are sufficient to stop growth in a cubic foot of

culture medium.

For Fomes annosus	Pounds	For Fomes pinicola	Pounds
Coal-tar creosote: Fraction II. Sodium fluoride Cresol calcium. Coal-tar creosote: Fraction II. Fraction III. Zinc chloride. Coal-tar creosote, Grade C. Water-gas tar distillate. (sp. gr. 0.995). Wood creosote Hardwood tar. Coal-tar creosote: Fraction IV. S. P. F. carbolineum. Avenarius carbolineum. Coal-tar creosote: Fraction V. Copperized oil. United Gas Improvement Co., 1.07 oil. Nonesuch special Sapwood antiseptic.	0.14 0.16 0.09-0.18 0.19 0.20 0.31 0.34 0.41 0.78 2.06 2.8 3.27 20.59 25.0 Over 25 Over 25 Over 25	Coal-tar creosote: Fraction III Fraction IV Fraction II Sodium fluoride Wood creosote Coal-tar creosote: Grade C Fraction I Avenarius carbolineum Zinc chloride Hardwood tar Coal-tar creosote: Fraction V Copperized oil United Gas Improvement Co., 1.07 oil Nonesuch special	0.08 0.08 0.09 0.09 0.13 0.14 0.14 0.19 0.47 0.47 4.87 Over 25 Over 25 Over 25

~	\sim		
CEMENT		IDAGI	TIONE
ORMENI			

	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO:	NaKO
Portland ¹	28.95 21.60	3.20 9.30-	0.54 0.65	58-67 35.98 50.29 61.00 50.80- 55.00	18.00 2.96 0.85 0-3.00		

Strength of Common Materials⁴

	Ultimate	strength (U)
Material	Tension	Compression
Bricks, best hard	400	12,000
Bricks, light red	40	1,000
Brickwork, common	50	1,000
Brickwork, best	300	2,000
Cement, Portland, 1 month old	400	2,000
Cement, Portland, 1 year old	500	3,000
Concrete, Portland	200	1,000
Concrete, Portland, 1 year old	400	2,000
Hemlock	6,000	4,000
Oak, white	10,000	7,000
Pine, shortleaf yellow	9,000	6,000
Pine, Georgia	12,000	8,000
Pine, white	7,000	5,500

BLOWING MACHINERY TYPES

The centrifugal blower is usually used for moving large volumes of air at pressures up to 16 oz. per square inch. Such service is that required for reverberatory furnaces or cupola furnaces. The disadvantages of the centrifugal blower are that it must run very close to rated capacity if it is to run economically, and that it cannot send blast into a choked fur-An example of a large centrifugal blower is quoted by HOFMAN as being furnished by the General Electric Co., 10,200 cu. ft. of air per minute at 31/4-lb. pressure.

Turbo-blowers are multistage centrifugal blowers. The discharge from one blower forms the feed of the next, thus enabling these blowers to compete even with high-pressure blowing engines. Hofman quotes one blowing 42,000 cu. ft. of air per

minute, attaining a maximum pressure of 18 lb.

¹ Benson's, "Industrial Chemistry." The Macmillan Co.
2 J. Park, "Text-book of Practical Assaying."
3 Said to be finest natural cement in the world.
4 Pierce and Carver's, "Tables for Engineers."

Rotary Blowers.—Two impellers, which may be similar or dissimilar in shape attached to parallel shafts, revolve in opposite directions. The impellers are in tangential contact with each other and with the casing and hence draw in a fixed volume of air and discharge it on the opposite side. Consequently they are known as positive blowers. They are most effective working at from 1 to 4 lb. pressure. The Roots blower has two impellers whose surfaces are epicycloidal curves. The Connective working at the surfaces are epicycloidal curves. The Connective with two vanes, and two small revolving drums for valves. The Sturtevant is a very complicated two-impeller machine.

Blowing Engines.—These are of the double-acting piston type and are used for converters, iron blast furnaces, and a few

copper furnaces requiring very high pressures.

Testing Blower Capacity

Experiments at the Mission School of Mines by Eraco H. Harris have shown that the most reliable method for testing large blowers is by passing the air current through large orifices. A 30-in. onfice will pass about 25,000 cu. ft per min. under 4-in. water pressure. Where very large blowers are to be tested he advises setting several orifices in a conduit wall (Missouri School of Mines Bull., November, 1915). The essential tables are:

	coefficient a 3½ in		Co	efficien	ta C for l	arge orifi	008	
Water gage, inches,	ll coeff		Round			Bqui	ire	
	MoGill o	30 in	24 in.	18 in.	30 in. × 30 in	24 in. × 24 in.	18 in. × 18 in.	18 in. X 30 in.
13845	0.599 0.597 0.596 0.595 0.594	0 604 0 602 0 601 0 600 0 599	0 599 0 579 0 596 0 595 0 594	0 597 0 596 0 594 0 593 0 592		0.607 0.605 0.604 0.603 0.601	0 598 0.596 0 595 0.694 0 593	0.602 0.600 0.599 0.598 0.597

The above coefficients are to be applied to get the weight Q per second, of air passing by formula as follows:

For round orifices
$$Q = C \times 0.1639 D^{\frac{1}{4}} \sqrt{\frac{i}{l}p}$$

For rectangular orifices
$$Q = C \times 2.413a\sqrt{\frac{i}{t}}p$$

Q = Weight of air in pounds per second.

i - Water gage in inches.

t = Absolute temperature (Fahrenheit) = 460 + (Thermometer reading F.).

p = Absolute pressure back of orifice in pounds per square inch = barometer pressure + 0.036i.

D = Diameter of round orifice in inches.

a =Area of rectangular orifice in square feet.

SECTION X

GENERAL METALLURGY

PROCESSES KNOWN BY THEIR INVENTORS' OR BY NON-DESCRIPTIVE NAMES

Aczolling—the treatment of timber with a mixture of metallic ammoniates with an antiseptic acid (derivative of phenol or

naphthalene).

Augustin process for silver extraction consists of chloridizingroasting; leaching with hot solutions of common salt in wooden vats; precipitating the silver on copper and casting into silver bars; precipitating the copper on scrap iron and casting it into shot to be used again.

Bessemer process—the production of steel by blowing air through molten pig iron. Also, by analogy, the enrichment of copper matte by blowng air through it when molten. See

Converting.

Betts lead refining process—an electrolytic process using PbSiF₆ acidulated with HF as the electrolyte.

Boss process for silver extraction is a continuous pan-amal-

gamation process.

Converting—the process invented by Pierre Mannés in which air is blown through molten copper matte in the presence of free silica. The iron is oxidized to FeO which forms a slag with the silica; the sulphur is oxidized and goes off as SO₂. After the iron is practically oxidized, copper is formed thus:

$$Cu_2S + 3O = Cu_2O + SO_2$$

 $2Cu_2O + Cu_2S = 6Cu + SO_2$.

Also applied to the Bessemer process of steel manufacture.

Diehl process—a modification of the cyanide process in which cyanogen bromide is added to the leaching solution.

Dumoulin process—copper is deposited on a rotating mandrel and this copper is later stripped off as a long strip, which is then drawn into wire without recasting.

Elmore process—a flotation process. See Flotation for full

description.

Gutzkow's process—a modification of the sulphuric-acid parting process for bullion containing large amounts of copper. A large excess of acid is used; the silver sulphate is then reduced with charcoal or, in the original process, ferrous sulphate.

Hayden process—for copper refining. There is but one true cathode and one anode in the tank, a large number of plates of unrefined copper being placed between and parallel

to them. The side of each plate toward the cathode then acts as anode, while copper is deposited on the side of each plate toward the anode, until the entire plate has moved over by the amount of its own thickness. This is the so-called series method of refining.

Höpfner process—Copper Recovery.—A solution of cuprous chloride in sodium or calcium chloride is used to dissolve copper sulphides. The solution is then electrolyzed in tanks with diaphragms. The anodes are copper, the cathodes pure copper. Copper is deposited from the cuprous-chloride solution, and

cupric chloride regenerated.

Hunt's process—compiled by Bertram Hunt for treating precious metal ores containing copper or zinc, using an ammoniacal cyanide solution and recovering ammonia by boiling. Process may more truly be said to have been devised and perfected by Mosher.

Hunt & Douglas process—consists in roasting matte carrying copper, lead, gold and silver at a very low temperature, forming copper sulphate and oxide but not silver sulphate. This product is leached with dilute sulphuric acid for copper. The resulting solution is treated with calcium chloride and the copper precipitated as subchloride by passing SO₂ through the solution. The cuprous chloride was then reduced to cuprous oxide by milk of lime, regenerating calcium chloride, and the cuprous oxide was smelted.

Kiss process—about the same as the Patera process (which see below) except that calcium hyposulphite was used for leaching the ore, and calcium polysulphide for precipitating

the silver.

LeBlanc process for soda making—

$$2NaCl + H_2SO_4 = Na_2SO_4 + 2HCl$$

 $Na_2SO_4 + 2C = Na_2S + 2CO_2$
 $Na_2S + CaCO_3 = Na_2CO_3 + CaS$

Lohmannizing—a process by which a protective zinc coating is amalgamated to the base-metal sheet. Details of the process not made public.

MacArthur-Forrest cyanide process—the original successful

commercial process.

Marriner process—a modification of the cyanide process in which the ore is dead roasted, all of it ground to slime, and the resulting product treated by agitation.

Miller process of parting gold and silver by conducting chlorine gas into the molten metal. The silver and other base metals are chloridized and come to the top of the bath.

Moebius process—for parting gold and silver. The electrolyte is silver nitrate with a little nitric acid. original process the silver was deposited on an endless moving silver belt, from which it was constantly removed by revolving brushes.

Murex process—see under "Flotation," p. 392.

Parkes process—lead refining by the addition of sine to

molten argentiferous lead. The zinc and silver rise to the surface of the bath as a scum, which is then taken off and afterward distilled to drive off the zinc.

Patera process consists in a chlorizing-roasting; leaching with water to remove base metals (some silver is dissolved and must be recovered); leaching with sodium hyposulphite for silver; precipitation of silver by sodium sulphide. The process was first carried out by von PATERA at Joachimsthal.

Patio process is one for the recovery of silver by amalgamation in low heaps with the aid of salt and copper sulphate (magistral). Thorough mixing is obtained in the usual form by having horses or oxen tread the mass.

Pattinson process—recovery of the silver from argentiferous lead by fractional crystallization of lead crystals out of a silver-lead eutectic. Seldom used now except in conjunction

with the Parkes process (q.v.).

Peirce-Smith—basic-converting process—converting copper
matte in a magnesite-lined converter. The iron of the matte

is fluxed by silica added before the process begins.

Pelatan-Clerici process is a continuous process of dissolving silver or gold in cyanide solution and simultaneously precipitating the precious metals in mercury in the same vessel, an electrical current assisting precipitation.

Powellizing—a process of wood treatment consisting in impregnating the wood with a saccharin solution. It hardens

the wood, and appears to fireproof it somewhat.

Randolph process—a modification of the series process of copper refining in which the electrodes lie horizontally, the top surface of each one acting as anode, the lower as cathode. Theoretically it has the advantage of extremely low metal losses and great purity of copper. Practically, it is too difficult to right matters in a tank after a short circuit. See HAYDEN series and Smith processes.

Reese River process—pan amalgamation with previous

Rozan process (Luce-Rozan process)—Pattinsonizing with steam.

Russell process—about the same as the Patera (q.v.)except that cuprous-sodium hyposulphite is used in addition to the sodium hyposulphite.

Series Copper-refining Process.—See HAYDEN, SMITH and

RANDOLPH processes.

Sherardizing—a process of cold galvanizing. The cleaned parts are tumbled in zinc dust, which coats them as in ordinary galvanizing. Cannot be used for parts which would be injured by the tumbling.

Siemens & Halske method of copper recovery.—Copper sulphides are dissolved by solutions of ferric sulphate con-

taining free sulphuric acid.

 $(H_2SO_4) + Cu_2S + 2Fe_2(SO_4)_8 = 2CuSO_4 + 4FeSO_4 + (H_2SO_4)_8$ The solution is then electrolyzed in a tank having a diaphragm. Copper is deposited and ferric sulphate regenerated.

Siemens-Martin process—the production of steel in a reverberatory furnace by oxidation of the impurities by oxides added (either the rust on scrap, or mill scale, or pure ores).

It may be conducted either on an acid or a basic lining.

Smith process—a variation of the series system of copper refining in which the plates are placed horizontally, the top surface of each one acting as cathode, the lower as anode. Linen diaphragms must be placed between the plates to catch the slimes. These diaphragms break and allow the slimes to drop on the cathode, and it is impossible to remedy any short. circuits in the tank without dismantling the tank.

Solvay process for soda manufacture-

 $NaCl + HNH_4CO_3 = HNaCO_3 + NH_4Cl$ $2NH_4Cl + MgO = MgCl_2 + 2NH_3 + H_2O$ $2HNaCO_3 = Na_2CO_3 + CO_2 + H_2O$ $CO_2 + NH_3 + H_2O = HNH_4CO_3$.

Spellerizing—subjecting the heated bloom to the action of rolls having regularly shaped projections on their working surface, then subjecting the bloom while still hot to the action of smooth-faced rolls. The surface working is said to give a dense texture to pipe made from the bloom, adapting it to resist corrosion.

Thomas-Gilchrist process—bessemerizing (q.v.) pig iron high in phosphorus and low in S; in a converter lined with cal-The slags formed consist of a basic calcium cined dolomite. phosphate which is used for fertilizer.

Thum-Balbach process—a silver-refining process using carbon cathodes, doré anodes and a silver-nitrate nitric-acid electrolyte.

The silver is scraped off the bottom as crystals.

Washoe process—for silver extraction. Consisted in wet crushing and pan amalgamation without previous roasting. Named for the district in which it was first carried on.

Weldon's process for making chlorine-

 $MnO_2 + HCl = MnCl_2 + Cl_2 + H_2O$ $MnCl_2 + Ca(OH)_2 = Mn(OH)_2 + CaCl_2$ $Mn(OH)_2 + Ca(OH)_2 + O$ (from air) = $CaMnO_3 + 2H_2O$ $2Mn(OH)_2 + Ca(OH)_2 + 2O = CaMn_2O_5 + 3H_2O$ $CaMnO_3 + 6HCl = CaCl_2 + MnCl_2 + 3H_2O + Cl_2$ $CaMn_2O_5 + 10HCl = CaCl_2 + 2MnCl_2 + 5H_2O + 2Cl_2$

Wohlwill process—a process of gold refining, using impure gold bullion as anodes and sheet gold cathodes in a solution carrying 25-30 oz. of gold and 25-30 oz. free HCl (sp. gr. 1.19) per cu. ft. If the anodes contain lead some H₂SO₄ is added. The current density is about 100 amp. per sq. ft., the potential 1 volt. The tanks usually used are porcelain. Platinum and the allied metals remain in the electrolyte, the silver settles out as chloride.

Ziervogel process—this consisted in smelting ore to an argentiferous matte; concentrating the matte to 60 or 70 per cent. Cu; grinding; roasting under such conditions of temperature ontrol as to decompose the copper sulphate while leaving the ilver sulphate undecomposed; leaching out the silver with rater, precipitating the silver and recovering it; smelting the esidues for copper bottoms from which the gold can be ecovered.

Unstable Alloys¹

The following metals do not form stable alloys within the mits mentioned, i.e., if a mixture containing percentages of the naterials lying between the critical points is heated, there may e (though not always) an alloy produced at the time, but here will be segregation on standing.

Ten		Zinc-Lead Alloys
650°C.	Between $\begin{cases} Pb = \\ Zn = \end{cases}$	$\begin{array}{l} 98.76 \\ 1.24 \\ 98.70 \\ 1.30 \\ \end{array} \text{ and } \begin{cases} Pb = 1.14 \\ Zn = 98.86 \\ Pb = 1.57 \\ Zn = 98.43 \\ \end{cases}$
800°C.	Between $\begin{cases} Pb = \\ Zn = \end{cases}$	$98.70 \text{ and } \begin{cases} Pb = 1.57 \\ Zn = 98.43 \end{cases}$
	B	ismuth-Zinc Alloys
650°C.	Between $\begin{cases} Bi = \\ Zn = \end{cases}$	$\begin{array}{lll} 85.72 \\ 14.28 \\ 14.28 \\ \text{and} \end{array} \begin{cases} \begin{array}{lll} \text{Bi} & = & 2.32 \\ \text{Zn} & = & 97.68 \\ \text{84.82} \\ \text{15.18} \\ \text{and} \end{array} \end{cases} \\ \begin{array}{lll} \text{Bi} & = & 2.47 \\ \text{Zn} & = & 97.53 \\ Prime P$
750°C.	Between $\begin{cases} Bi = \\ Zn = \end{cases}$	$\begin{array}{l} 84.82 \\ 15.18 \\ \text{and} \end{array} \begin{cases} \text{Bi} = 2.47 \\ \text{Zn} = 97.53 \end{cases}$
800°C.	Between $\begin{cases} Bi = \\ Zn = \end{cases}$	$84.17 \text{ and } \begin{cases} \text{Bi} = 2.52 \\ \text{Zn} = 97.48 \end{cases}$
	Le	ad-Aluminum Alloys
800°C.		$_{0.07}^{99.93}$ and $\left\{ \begin{array}{l} \mathrm{Pb} = 1.91 \\ \mathrm{Al} = 98.09 \end{array} \right.$
	Bisr	nuth-Aluminum Alloys
800°C.		$_{0.28}^{99.72}$ and $\left\{ \begin{array}{l} \mathrm{Bi} = 2.02 \\ \mathrm{Al} = 97.98 \end{array} \right.$
	Cadn	nium-Aluminum Alloys
750°C.	Between $\begin{cases} Cd = \\ Al = \end{cases}$	$_{0.22}^{99.78}$ and $\left\{ \begin{array}{l} \text{Cd} = 3.39 \\ \text{Al} = 96.61 \end{array} \right.$

Alloys

Aluminum.—Aluminum containing 0.05 to 0.20 per cent. of 'e is more resistant to corrosion than aluminum itself.

Aluminum-Silver Alloy.—Argental—silver substitute.
Aluminum-Zinc Alloy.—Macadamum—strong but light castigs. Patented alloy, like preceding. Composition unknown. Argental.—Aluminum-silver.

Auer Metal.—35 per cent. Fe and 65 per cent. of the metal btained by reducing the cerium earths (Misch metal, q.v.).

Bismuth Alloys.—Bi, 3; Pb, 10; Sn, 5. Sticks to glass, ielts at 170°C.

Cobalt-Chromium Alloys-Stellite.-High tensile strength, esistant to corrosion, takes high polish.

Cobalt-Chromium-Tungsten.—Harder than stellite.

¹ ROBERT'S-AUSTEN, "Introduction to the Study of Metallurgy."

Al	This and Sterro's metal are remarkable for their great tensils strength, 85,000 lb per square inch Recommended for use with soid mine water. For soap factories, etc.	Melts at 1570°F.	_ <u>@</u>	Cu, 7 per cent.	rass for plumbers use in	about 1650° Typical brass. The high brass	B3.V	Or may be 50 per cent. Cu. At per	oent, Zn,
ñ		<u>:;</u>		,	: .	: :	:		
Ag			+		,		:		
ź		, ,			87	* *	:		
egg.	+	_	11 10	10 00	. ,		9 20	6.00	
뫄	0 10 30 00	1 h	28.	, :	: 1	1:	-		: :
Sn	55		83.00 83.44 84 84 84 84 84 84 84 84 84 84 84 84 8	80 00 20 00	+	:	90 60	96.90	4 5 5 5 S
F. 1	1 50	• :		+ 1			1	1 1 1	
Zn	2 8 8	88.88 88.88 89.88		0	33 34	20 20		67.00	888
ខ	50 00 53 05 65 00 5 00				38	80.00	0 20	388	288
	Aich's metal Acid-resisting metal Aiar plastic bronse Aiksli-resisting metal Anti-fraction metal	Ashberry Admiralty brass Babbitt's (original) Babbitt, hard Babbitt, normal.	Babbitt, soft Babbitt, German railways .	Babbitt, Swies railways . Belf metal	Brass, cartridge	Brass, low	Britannia, casting	Britannia, sheet	Bronse, British comage Bronse, bearing metal

	Ç	Zn	FG	Sa	Ph	Sb	7	100 170	B	=	
000	74 00 71 40			- ·	15 00 4 70 5 90			4			
Bronze, l' S Naval Bronze, Tobin, . Con, silver, U 8. Constantan Cupromagnesium.		39 48		54 · · ·		, , ,	00 00	90.00	Me		English gear bronne is Cu 88.70, Sn 11.00, P 0.30. Used as a deoxiduer; density 8 4,
Camelia metal. Darcet's metal. Delta metal Dewrance metal	20 20 80 80 80 80 80 80 80 80 80 80 80 80 80	10 20	0.65	4.25 25 00 33.3	14.75 25.00 0 37	- 45	N N	MA.	50.00	95.5	s at 93°C treatly same as Sterro metal contain some Fe and Si fro
Duriron		-	88 00	*	:			12 00 12 00	;		Extremely resistant to acids. Very hard. Sp. gr. 7.00. Melts 1200°C.
Pontains-moreau's bronze	4 50	8 :	0.50	: :	b a		: :				See Darcet's, Guthrie's, Lipowita's, Lichtenburg's, Newton's, Onion's,
German eilver (English)	61.30	19 10	:	:	:	:	Ni 19	:	:	:	Rose's, Wood's.
Gun metal. Gun metal. Gun metal. Gun metal.	92.50 91.00 87.75 85.00	2000 2000 2000 2000 2000 2000 2000 200	::::	887.88	::::	::::		::::		::::	Melts at 1825°F. With 3 per cent. Pb, melts at
Gurley's metal	86.50 86.50	15.00		2 00 5.40 19.97	2 70 19.36	,	: : :		47.38	: : :	Used for transit frames, Melts at 160°E,

ALLOTS

	1				-				,		
	ខី	Zn		eg B	Po	SP	Ž į	Ag	Bi	A	
Hardware metal	50,00	34.90	:	:	:	-	15 00	:	:	0 10	10 Harness trimmings, etc. Casts well.
Hydraulic bronze Hydraulic bronze	75.00 83.00	14 00 5,00	, :	11.00	\$.00		2 00	. !	::	1	For pressures up to 3000 lb per sq.
Jacoby metal Lichtenberg's metal Lipowita's metal	2 00	• • • •	: . :	85 00 20.00 13 33	30.00	10 00	1 + 7		50.00	, P	Melts 94 5°C
Mackenale's alloy Magnolia metal	_ : :	; ;		4.75	88 90 90 90	16 00 15,00	,		16 00 0 25	3	Stereotype metal Melts at 608°C, coeff, of exp.
Magnalium,	02 12	,	0.57	-	:	::	2 29	:::	Mn	: :	Practically no temperature coeffi-
Mannheim gold	80,00	20.00		•	;		:		90 :	:	Practically identical with Prince's
Monel metal	33,00	12.00	6 50		. : '		60 00	11	1	Ai	
Mosaio gold Morin's Chinese brouse	555 555 555 555 555 555 555 555 555 55	388 808		2 00	10 00	+ 1				÷ ;	
Munta metat		40	0 72	8 70	- [2]		: :	: .	, .6	: :	Trace of P
Newton's metal Needle metal Onion's alloy	84 96	[9]	. : :	20.00	30.00				20.00		Melts at 94.5°C. Extremely fluid. Melts at 197°F.
Packfong. Finchbeck. Parr's alloy.	25.25.00 25.25.00 25.25.00	16.76	C. 02				15.80	≥ 8			A Chinese alloy. A cheap imitation gold, Also contains Al, B, and Mn. Said to have tenails strength of 80,000
Plantin. bernam	_;			1	M 200						lb, per square inch and to resist acids.

ALLOYS

Cobalt-chromium-molybdenum-up to 40 per cent. W and 40 per cent. Mo suitable for high-speed steels.

Cobalt-Tin (40 Co, 60 Sn to 60 Co, 40 Sn).—Very resistant

to acids, but too brittle for ordinary purposes.

Elianite.—A patented composition; withstands acids and halogens; melts at 1250°C. Probably a ferrosilicon.

High-speed Steel.—C, 0.45-.085 per cent.; Si, tr.-0.20 per cent.; Mn, 0.10-0.50 per cent.; W, 8 to 18 per cent.; Cr, 2.50-6.5 per cent.; Mo, 0-2.50 per cent.; V, 0-1.5 per cent.; Co, 0-5 per cent.

High-speed Steel (Beth. Steel Co., Paris Exposition).—C, 0.6 per cent.; Mn, 0.2 per cent.; Si, 0.1 per cent.; Cr, 4 per cent.,

W, 18 per cent.

Ivanium.—A patented aluminum alloy.

Kaiserzinn.—Practically britannia, which see in alloys.

Kunheim Metal.—A pyrophoric alloy containing hydrides of the cerium earth metals with magnesium and aluminum.

Macadamum.—An aluminum-zinc alloy.
Misch Metal.—Cerium, 42 per cent.; lanthanum, didymium, etc., 57 per cent. (These figures are approximate only).

Mushet Steel.—C, 2 per cent.; Mn, 1.75 per cent.; Si, 0.75 per

cent.; Cr, 0.4 per cent.; W, 5.5 per cent.

Phonoelectric Wire.—See silicon-bronze in preceding table.

Pyrophoric Alloys.—Cerium-iron mixtures.

Stellite.—A white noncorrosive extremely hard metal patented by Elwood Haynes. It consists of 10-25 per cent. Cr, 90-75 per cent. Co and may carry a little tungsten or molybdenum.

Fluxes for Soldering and Welding¹

Iron or steel. Tinned iron. Copper and brass. Zinc. Lead. Lead and tin pipes. Aluminum.

Borax or sal-ammoniac. Resin or tin chloride. Sal-ammoniac or zinc chloride. Zinc chloride. Tallow or resin. Resin and sweet oil. Borax 96 parts, sodium bisulphate 4 parts.²

1 MEGRAW, "Practical Data for the Cyanide Plant."

² Given as a Danish flux by Brass World, May, 1915. Seems very questionable whether it will work.

Some General Considerations Regarding Alloys

A pure metal is always softer than its alloys; it is usually more malleable and ductile; the expansion of alloys by heat cannot be calculated from the coefficients of expansion of the constituents; the specific heat of alloys at temperatures considerably removed from the melting points is the mean of the specific heat of the metals composing them; alloys never conduct heat as well as the components; the electric conductivity is also usually lower than that of either constituent.

SHEET-ZINC GAGE

	Ameri	can	Belgi	an	Vieille Mo	ontagne
Gage number	Thickness, decimals of an inch	Weight per sq. ft., lb.	Thickness, decimals of an inch	Weight per sq. ft., lb.	Thickness, decimals of an inch	Weight per sq. ft., lb.
1	0.002	0.075	0.0018	0.068	0.004	0.150
2	0.004	0.150	0.0036	0.135	0.006	0.225
3	0.006	0.225	0.0055	0.206	0.007	0.263
4	0.008	0.300	0.0073	0.274	0.008	0.300
5	0.010	0.375	0.0091	0.341	0.010	0.375
6	0.012	0.450	0.0110	0.413	0.011	0.413
7	0.014	0.525	0.0128	0.480	0.013	0.488
8	0.016	0.600	0.0146	0.548	0.015	0.563
9	0.018	0.675	0.0165	0.619	0.018	0.675
10	0.020	0.750	0.0180	0.675	0.020	0.750
11	0.024	0.900	0.0217	0.814	0.023	0.863
12	0.028	1.050	0.0254	0.953	0.026	0.975
13	0.032	1.200	0.0290	1.088	0.029	1.088
14	0.036	1.350	0.0326	1.223	0.032	1.200
15	0.040	1.500	0.0364	1.365	0.038	1.425
16	0.045	1.688	0.0400	1.500	0.043	1.613
17	0.050	1.875	0.0437	1.639	0.048	1.800
18	0.055	2.063	0.0478	1.793	0.053	1.988
19	0.060	2.250	0.0509	1.909	0.058	2.175
20	0.070	2.625	0.0581	2.179	0.063	2.363
21	0.080	3.000	0.0728	2.730	0.070	2.625
22	0.090	3.375	0.0764	2.865	0.077	2.888
23	0.100	3.750	0.0800	3.000	0.084	3.150
24	0.125	4.688	0.0896	3.360	0.091	3.413
25 26 27 28	0.250 0.375 0.500 1.000	9.375 14.063 18.750 37.500	0.0992 0.1088	3.720 4.080	0.098 0.105	3.675 3.938

WIRE AND SHEET METAL GAGES COMPARED²

	VV 11013	21112	/ELJEST 2.13		- CILGED			
t 0	aing- n or s' iron gage, ch	American or Brown & Sharpe's gage, inch	Roebling's and Wash- burn & Moen's gage, inch	ıb's steel re gage, inch	ritish mperial andard ire gage, inch	Legal standard since Mar. 1, 1884, mm.	sheet plate	5 9
Number of gage		merican Brown Sharpe'	toeblin and Wa burn Moen'	s s ga ich	British Imperial Standard wire gage	Legal standard since Mai 1, 1884 mm.	U. S. sheet and plate gage, inch	Number of gage
du fe	Birmi ham Stubs' wire g	Amei or E & Sh gage,	Roeb and V burn Moe	Stub's wire g	Brit Imp Stan Wire	Lengan	J. S. s and I gage,	35
4 •	Stan	A 19 88	88 B	Str	I SS	st sin	D. <u>eg</u> gg	
0000000			0.49		0.500	12.7	0.500	36
000000			0.46 0.43		0.464 0.432	11.78 10.97	0.469 0.438	% % % % % 0
0000	0.454	0.46	0.393		0.400	10.16	0.406	7 %
000	0.425	0.40964	0.362		0.372	9.45	0.375	34
00 0	0.380 0.340	0.3648 0.32486	0.331 0.307	• • • • •	0.348 0.324	8.84 8.23	0.344 0.313	70
1	0.300	0.2893	0.283	0.227	0.300	7.62	0.281	į
2	0.284 0.259	$0.25763 \\ 0.22942$	0.263 0.244	0.219 0.212	0.276 0.252	7.01 6.40	0.266 0.250	3
2 3 4	0.238	0.22342	0.225	0.212	0.232	5.89	0.234	1
5	0.220	0.18194	0.207	0.204	0.212	5.38	0.219	5
5 6 7	0.203 0.180	0.16202 0.14428	0.192 0.177	0.201 0.199	0.192 0.176	4.88 4.47	0.203 0.188	7
8	0.165	0.12849	0.162	0.197	0.160	4.06	0.176	8
9	0.148	0.11443	0.148	0.194	0.144	3.66	0.156	9
10 11	0.134 0.120	0.10189 0.09074	0.135 0.120	0.191	0.128 0.116	3.25 2.95	0.141 0.125	10 11
12 13	0.109	0.08081	0.105	0.185	0.104	2.64	0.109	12 .
13 14	0.095 0.083	0.07196 0.06408	0.092 0.080	0.182 0.180	0.092 0.080	2.34 2.03	0.0 94 0.078	13 14
15	0.072	0.05707	0.072	0.178	0.000	1.83	0.070	15
16	0.065	0.05082	0.063	0.175	0.064	1.63	0.0625	16
17 18	0.058 0.049	0.04526 0.04030	0.054 0.047	0.172 0.168	0.056 0.048	1.42 1.22	0.0563 0.0500	17 18
19	0.042	0.03589	0.041	0.164	0.040	1.02	0.0438	19
20	0.035	0.03196	0.035	0.161	0.036	0.91	0.0375	20
21 22	0.032 0.028	0.02846 0.02535	$egin{array}{c} 0.032 \ 0.028 \end{array}$	0.157 0.155	0.032 0.028	0.81 0.71	0.0344 0.0313	21 22
23	0.025	0.02257	0.025	0.153	0.024	0.61	0.0281	23
24 25		0.02010 0.01790	0.023 0.020	0.151 0.148	0.022 0.020	0.56 0.51	0.0250 0.0219	34 25
26 26		0.01594	0.020	0.146	0.020	0.46	0.0188	26
27	0.016	0.01419	0.017	0.143	0.0164	0.42	0.0172	27
28 29	0.014 0.013	0.01264 0.01126	0.016 0.015	0.139	0.0148 0.0136	0.38 0.35	0.0156 0.0141	28 29
30	0.012	0.01002	0.014	0.127	0.0124	0.31	0.0125	30
31 32	0.010	0.00893 0.00795	0.013 0.013	0.120 0.115	0.0116 0.0108	0.29 0.27	0.0109 0.0101	31 32
32 33		0.00708	0.013	0.113	0.0100	0.25	0.0094	33
34	0.007	0.00630	0.010	0.110	0.0092	0.23	0.0086	34 ;
35 36		0.00561	0.0095 0.0090	0.108	0.0084 0.0076	0.21 0.19	0.0078 0.0070	35 36
37]	0.00445	0.0085	0.103	0.0068	0.17	0.0066	87
38		0.00396	0.080 0.0075	0.101	0.0060	0.15 0.13	0.0063	38
39 4 0		0.00314	0.0073	0.099	0.0052 0.0048	0.13		39 40
41				0.095	0.0044	0.11	•••••	41
42 43		· <i>·</i> ····		0.092	0.0040 0.0036	0.10 0.09	•••••	43
44				0.085	0.0032	0.08		44
45	}			0.081	0.0028	0.07	•••••	45
46 47				0.079	0.0024 0.0020	0.06 0.05		46 ·
48				0.075	0.0016	0.04		48
49				0.072	0.0012	0.03 0.02 5	•••••	49 <u>.</u>
50			1	0.069	0.0010	0.020	• • • • • •	00

¹ From Kent's "Mechanical Engineer's Pocket Book," 8th Edition, p. 30; and "American Machinist," p. 931, Dec. 5, 1912. The moral of the above table is to specify wire by mils and not by gages.

IMPURITIES IN COMMERCIAL METALS

Aluminum: Fe, 0.18 per cent.; Si, 0.17; Na, 0.05; Cu, tr. Electrolytic aluminum will carry 98.52 to 99.34 per cent. Al, and Si from 0.07 to 1.14, per cent. according to RICHARDS.

Antimony: Cookson's: Pb, 0.041; Sn, 0.035; As, tr.; Cu, 0.04; Fe, 0.010; Zn, tr. Cookson's: Pb, 0.102, Sn, tr.; As, 0.092; Bi, none; Cu, 0.046; Cd, none; Fe, 0.004; Zn, 0.034; Ni and Co, 0.028; S, 0.086; Sb (by difference), 99.608. Hallett's: Pb, 0.669; Sn, 0.175; As, tr.; Cu, 0.038; Fe, 0.014; Zn, tr. Hallett's: Pb, 0.718; Sn, 0.012; As, 0.021; Bi, none; Cu, 0.046; Cd, none; Fe, 0.007; Zn, 0.023; Ni and Co, none; S, 0.128; Sb (by difference), 98.856. Innerese: Pb, 0.443; Sn, 0.175; As (by difference), 98.856. Japanese: Pb, 0.443; Sn, 0.175; As, 0.008; Cu, 0.034; Fe, 0.015; Zn, tr. Japanese: Pb, 0.424; Sn, 0.012; As, 0.095; Bi, none; Cu, 0.043; Cd, none; Fe, 0.007; Zn, 0.023; Ni and Co, none; S, 0.201; Sb, 99.195. Chinese: Pb, 0.018, Sn, 0.035; As, 0.017, Cu, 0.008; Fe, 0.007; Zn, tr. Chinese: Pb, 0.029; Sn, none; As, 0.090; Cd, none; Fe, 0.004; Zn, 0.027; Ni and Co, tr.; S, 0.078; Sb, 99.760.

Bismuth (American): Pb, Au, Cu, Sb, Te, traces; Ag,1.37 oz. per ton; Fe, 0.009 per cent.

Copper (electrolytic): Cu, 99.89; Bi, none; Ni, 0.0100; As, 0.00108; Sb, 0.00515 per cent.; Ag, 0.96 oz. per ton. presence of a small amount of oxygen, less than 0.06 per cent., seems to affect the copper beneficially, and in most of the electrolytic copper, which carries from 99.89 to 99.94 per cent. Cu, oxygen forms by far the largest part of the balance.²
Iron-pure is defined by the American Society for Testing

Materials (Atlantic City meeting, 1915) as containing under 0.02 per cent. C; 0.03 per cent. Mn; 0.03 per cent. S; 0.01 per

cent. P; 0.03 per cent. Cu. Lead (electrolytic): Ag, 0.29 oz. per ton; Bi, 0.0024 per cent.;

Cu, 0.0010; As, tr.; Sb, 0.0066; Fe, 0.0028. Lead (Parkes process), American: Bi, 0.066-0.110; Sb, 0.0028 -0.0076; As, 0.00025-0.009 per cent.³

Nickel: Ni, 99.8+; Fe, 0.04; Si, 0.01.

Tin.—(Pulo Brani, 1892, after Henry Louis): Sn, 99.76; Sb, 0.07; Pb, 0.02; Fe, 0.14 per cent.; Cu, As, none. English: Sn, 99.73; Fe, 0.13; Pb, —; Cu, tr. The presence of over 0.8 per cent. of copper spoils tin for tin-pot work, according to my own experience, yet Louis gives as a typical English tin analysis:

Sn, 98.64; Fe, tr; Pb, 0.20; Cu, 1.16 per cent.

Zinc.—The impurities found in zinc may amount to 2 per cent. of its weight. They are: Pb, Fe, Cd, Cu, C, Si, As, Sb, S, Sn, Ag, Tl, In and Ga. Tin has been found in New Jersey metal. A moderate tenor in Pb makes zinc ductile and malleable, but over 1.5 per cent. Pb renders it tender. Zinc for the brass trade should not carry over 0.05 per cent. Fe. Cd is objectionable if the zinc is to be used for zinc white. Copper and tin

¹ Min. and Sci. Press, July 10, 1915. ² See also pp. 551 and 553.

^{*} See also p. 538.

both render the zinc hard and brittle. Arsenic renders spelts brittle and hard to melt. It is also objectionable in sinc which is to be used for generating hydrogen or in cyanide precipitation, owing to the danger of poisoning workmen with arseniurette hydrogen.

Roasting
DETAILS OF MONTANA ROASTING-FURNACES

							_	- FE-1
	Tons rossted in 24 hr.	Horsepower	% sulphur in concentrates	% sulphur in	Area of hearths,	Concentrates per sq. ft. of hearth, lb.	Lb. of coal per ton of con-	Cost of reasting per ton
Hand reverberatory, 6936 ft. × 16 ft	13		35	7-8	1112	12	307.0	53 . 00
Allen-O'Hara, two hearths, 94 ft. 0 × 9 ft	51	3 64	35	8	1692	77	245.0	0.78
Brückner cylinder, 8 ft. × 16 ft	18- 20	1 5	37	9 5			540.01	1.25
Pearce, single deck , .	14*	1 5	32	7-8	505	85	400.0	0.98
Pearce, double deck, 6-ft. hearths	304	3 0	35	8-7	1010	59	400.0	0.98
Pearce, double deck, 7-ft.	424	3 0	25	6-7	1218	69	182.0	0,98
Keller-Galord-Cole, two sets of six hearths	50	18,	38	7 10	2592	38	67.0	
Wethey, two sets of four hearths, 50 ft. × 5 ft.	60	4 0	40	8	2000	60	110,0	
Wethey, two sets of four hearths, 65 ft. × 10 ft.	90	4 0	35	5-6	2600	70	80.■	
Herreshoff, five hearths.	56		35	6	135	80		0.40
MacDougall-Evans- Klepetko, six hearths.	40	1 667	35	7	952	84		0.35
Pearce multiple, six hearths	50#	12	35	6-7	2947	38	28.5	0.982

Lead Ores.—It may safely be said that there is no apparatus able to compete with the Dwight-Lloyd and Huntington-Heberlein installations in dead-roasting lead ores. Consequently, discussion of the older types, the Brückner cylinders,

Data obtained from operations of six months at Great Falls.

Average.

These low figures are due to the character of the ore (Gagnon Mine) which carries from 8 to 12 per cent. of sinc. The table is by HOFMAN.

Brown-O'Hara, Ropp, etc., would serve no useful purpose. However, a comparison of Huntington-Heberlein pots and DWIGHT-LLOYD roasters, made at a works where both are used, is of the utmost interest.

Such a comparison was made by W. W. Norton, regarding the plant at Murray, Utah, at the Salt Lake meeting of the A. I. M.

E., August, 1914.

Sulphur Limits of Roasting Equipments

At the Murray plant, modern roasting practice is fully exemplified and there are now in successful operation roasting furnaces or devices of several sorts; namely, Godfrey revolving-hearth furnaces, Wedge multiple-hearth mechanical roasters, DWIGHT-LLOYD sintering machines, and HUNTINGTON-HEBER-LEIN pots. Godfrey and Wedge furnaces will properly handle material high in sulphur, say ores with 25, 30 and 35 per cent. of that element; D. & L. machines and H. & H. pots will positively not treat efficiently ores or mixtures containing anywhere near the sulphur content mentioned, but are confined to charges containing from 15 to 18 per cent. In passing, it may also be explained that, so far as the knowledge of the writer goes, GODFREY and WEDGE furnaces do not economically eliminate sulphur to an extent sufficiently low for lead-smelting practice. With these simple facts in mind, it will be perfectly clear to all that the metallurgist in charge may elect to treat sulphide ores in either of two ways: He may preroast in Godfrey and Wedge furnaces and subject the partly roasted product to a final treatment on D. & L. machines and H. & H. pots, or he may dilute the average sulphur in the raw ore to 15 or 18 per cent. by means of an admixture of the requisite quantity of non-sulphur fines and send the mixture thus obtained to D. & L. and H. & H. machines. The Murray plant does both. A certain flexibility is thus afforded for a segregation of the various classes of sulphide ores; moreover, in the matter of oxide fines, one can limit screening operations to a point deemed best metallurgically.

GODFREY and WEDGE furnaces are essentially preroasters; D. & L. machines and H. & H. pots are final roasters. Murray all final roast is either D. & L. or H. & H.

Cost of Installation

The Murray plant is equipped with two D. & L. machines, the total daily capacity of which may be stated at 220 tons, and 23 H. & H. pots, with capacity of 400 tons. It would, of course, be manifestly unfair to compare directly the total costs of these two installations, but it seems quite safe to say that for almost any given tonnage capacity a D. & L. plant can be built for considerably less than an H. & H. plant, it being understood that by H. & H. is meant the converting-pot portion of an installation only, with no reference to Godfrey furnaces. In the case of the H. & H. one must have heavy cast-iron pots for handling ore in comparatively large units, expensive overhead

Cost of Roasting

Any discussion of roasting costs should, of course, be based on units of sulphur eliminated. In a general way, our experience has shown that the D. & L. will reduce an initial sulphur of about 15 or 16 per cent. to about 4 per cent. in the roasted product, while the H. & H. is capable of handling a slightly higher initial sulphur, say 17 or 18 per cent. with resultant 5 per cent. in product. During a recent period of 47 consecutive days, it is known that units of sulphur eliminated per ton of charge at the D. & L. practically equaled units of sulphur eliminated per ton of H. & H., and it is probable that an exhaustive examination of Murray plant roasting records would show about the same amount of sulphur per ton of charge driven off as between the two sorts of roasters now under review. It follows that figures representing costs of roasting are truly comparable.

The limitations of this paper will not permit of a detailed review of roasting costs, but it may be stated that during the entire year 1913 the H. & H. made the better showing to the extent of about 5 cts. per ton roasted, and for the first 3 months of 1914 the H. & H. also had an advantage of about 3 cts. per ton. Murray experience, everything considered, indicates slightly lower costs for H. & H., as compared with D. & L., but the fact that all calculations are based on operations at an H. & H. plant having twice the capacity of the D. & L. plant

must not be overlooked.

Wide Range of Charge

Any intelligent discussion of analysis of raw charge to roasters should have the fundamental thought in mind that the metal-lurgist must treat what comes to the plant. He cannot always be favored with the proportions of silica, iron and lead which would give the best results, consequently the adaptability of any given roasting device to a variety of materials will be

accepted as an item of far-reaching importance.

Two or three years ago, in connection with a visit to three or four custom lead-smelting works newly equipped with D. & L. machines, the writer was somewhat impressed with the limitations placed on the charge the machines were capable of handling. Inquiry brought forth the information that certain sorts of materials could be attempted only by resort to a special layer of fine limestone or other infusible material carried next to the grates; any percentage of raw matte at all seemed out of the question; zinc was naturally "side-stepped" as highly deleterious; much stress was placed upon the proportion of silica to the iron, and nearly all the enthusiasts demanded a goodly percentage of lead provided a choice quality of sinter was to be in evidence. Of late, however, the staff at Murray have found that a wide range of mixtures may be efficiently handled over

the D. & L., and have no doubt that equally good progress has been accomplished at other works. Preroasted ore, any kind of aw sulphide ore or concentrates, flue dust, preroasted matte, or even raw matte may be combined in certain proportions and successfully sintered over these machines. A sufficient quantity of non-sulphur diluent to bring the average of the mixture down to 16 per cent. sulphur must always be added and, of course, the letails of operation must be cared for. However, equally satis-

actory results have been attained with H. & H. pots.

Turning now to physical character of the raw ore, it is, of course, recognized that the air currents are required to permeate thin layer of charge in case of D. & L. treatment, whereas he pot roasters are committed to a much thicker layer; but a physically fine charge will restrict tonnage on D. & L. just as urely as it will in H. & H. pots, although the D. & L. process is able to treat slimes or rather fine material which it would be vholly useless to attempt to treat in the H. & H. By way of umming up, it may be stated that the D. & L. process possesses slight advantage over the H. & H. in the matter of flexibility or range of charge, because the D. & L. permits more delicate application of operating details which are essential to success; also extremely fine materials find no proper place in the H. & H. harge.

Lead Losses

We have certain data at hand showing a moderate lead loss in D. & L. machines, these data being based on standard operating conditions during which the resultant gases and fumes were ampled and analyzed. No data available covering losses with I. & H. pots. The expense and difficulties in connection with courately sampling an H. & H. output of 400 tons per day need not be pointed out and gas measurements and samples taken rom the combined gases of 23 pots on two different main lues might eventuate in metal-recovery data not wholly lependable. . . . It is regarded as doubtful if the D. & L. process is productive of any lower metal losses than is the H. & H. process.

Physical Condition of Product

Final-roasting treatment results in a sintered or agglomerated product, and material of a desirable physical character is passed long to the blast furnaces. The D. & L. sinter is usually of a porous or cellular structure; the H. & H. tends to greater density or firmness. Published and unpublished opinions of metal-urgists have sought to show that the peculiarly open or coke-ike structure of the D. & L. sinter carried with it certain extra-ordinarily favorable properties when subjected to the smelting process in the blast furnace, and have even claimed appreciable awing in the coke percentage used for smelting. Rather xaggerated ideas concerning the efficiency of an exposure of porous surfaces to contact with reducing gases have been adanced and intimate mixtures (possibly intimately combined

silica and lead) have been proclaimed as "predigested," and therefore more easily reduced. The writer believes that a partly fused or "predigested" combination may tend to poor results rather than to good results when smelted, for the reason that such substances fuse at too low a temperature in the furnace. Certain writers have gone so far as to examine the cell structures of the D. & L. product microscopically and have declared that glazed or unglazed surfaces have a bearing upon the readiness with which the products were later reduced in furnaces.

With all due respect to the theories above set forth, it was considered that more dependable conclusions could be drawn by means of actual operating tests and accordingly the MURRAY furnaces during 5 days of August, 1912, were run on two charges, the one containing no D. & L. roast at all, the other

TEST CHARGES WITH AND WITHOUT D. & L. SINTER

	Furnaces 1, 3, 7 and 8 (No D. & L.)	Furnace 5 (D. & L.)
Coke, 920 (11½ per cent.) Bed 36, bin 7. H. & H. roast. D. & L. roast. Hand-roasted matte. Iron ore. Limestone. Scrap iron.	2970 2000 600 690 1640	320 4800 400 540 1840 100
Total	8000 Per cent. 0.63 10.7	8000 Per cent. 0.91 14.96

containing a rather large amount of this material. believed that any peculiar virtue existing in D. & L. product would have abundant opportunity to make itself manifest. The exact charges used are given above, together with the average lead in resultant slag and matte.

Great pains were used to make the experimental run one of The D. & L. roasted product was of a typically honey-No. 5 furnace was in excellent condition, its combed character. operations were closely watched by the metallurgist in charge of the furnaces and by the writer, yet absolutely no strengthening of reduction appeared. On the contrary, No. 5 did worse than the other furnaces.

General blast-furnace experience covering a wide range of charges and a considerable period of time indicates that no particular effect, either good or bad, can be claimed for D. & L. sinter as relating to strength of reduction during the smelting process, and exactly the same remark will apply to H. & H. agglomerated material. (Of course, the D. & L. sintered cakes must be broken to the proper size and the H. & H. material must be crushed suitably small, or distinctly bad reduction will

That both of these products of modern roasting ment help the speed of furnaces enormously is certainly

The final roasters of modern smelters, in supplanting hand roasters and fine-ore-producing mechanical furhave very naturally served to increase blast-furnace

es to a remarkable extent.

which product is the better physically, that is to say, will produce the heavier tonnage at blast furnaces, as S. & L. sinter does not excel a first-class H. & H. erated product. Moreover, given an inferior quality of would seem that the admittedly cellular or at times D. & L. can hardly equal the more firm and stable H. & H. gain, however, real experience at blast furnaces may the mere conjecture or theorizing, so the following data mitted with the idea of showing that in this instance at e physical character of the D. & L. produced no better at blast furnaces than did the physical character of the ... On Aug. 12 and 13, 1912, the following two charges nelted side by side with the same coke percentage, the ast pressure and as near like conditions in other respects is possible to obtain:

	Furnaces 1, 3 and 5 (H. & H.)	Furnaces 7 and 8 (D. & L.)
0 (11½ per cent.)	1400 3000	2060 3000 400 580 1860 100
tons per furnace per day lead in slag	8000 294 Per cent. 0.81 13.47	8000 287 Per cent 1.03 13.0

Conclusions

pelieved that a fair summary of the actual experience set this paper would be as follows:

	Advantage in favor of
installation	D. & L.
roasting	H. & H.
bility of charge	D. & L.
osses	Doubtful
l condition of product	H. & H.

D. & L. over the H. & H. system, although continued may upset the balance at any time. If history repeats

itself some new roasting system will take rank over both within a

few years.

Copper Roasting.—The cement kiln and DWIGHT-LLOYD are both being used on flotation concentrates, which apparently are the most troublesome item with which the roaster has to The Wedge, Herreshoff and McDougal furnaces are being used on larger material. What any one of them will do on an unknown ore seems to be mainly a matter of experiment. The table on p. 488 gives some working data.

Lead Roasting Furnace Dimensions¹

Long-bedded Hand-roasting Furnace with Level Hearth

	I	II	III
Length of hearth	60′	66′	75′
Width of hearth	14'	16'	14'
Hearth area, sq. ft	840	1056	1150
Length of grate	8'	7′ 9′′	8′
Width of grate	3' 4"	2' 6"	3' 6"
Grate area, sq. ft	14.62	19.4	28
Ratio hearth to grate area	57.5:1	54.5:1	41:1
Space above fire bridge, length	,		
and width	7'9"×2' 2"	7' 9"×2' 2"	2' 6"×1'
Space above flue bridge, length			
width Height of fire bridge above hearth	No flue bridge	4' 2"×8"	No flue bridge
Height of fire bridge above hearth	14"	12"	20"
Height of roof above fire bridge	18"	20"	12"
Height of flue bridge above hearth	[6''	
Height of roof above flue bridge.		15"	
Depth of grate below top of			
bridge	14"	15"	17"
Character of ore	1/3 galena	Matte	Pyritio
Character of ore	33 pyrite	Concentration	Galena
Depth of charge near flue bridge.	3-4"		5"
Time ore remains in furnace, hr	32	24	24
Tons of raw ore per 24 hr	8.1	12	9
Lb. ore roasted sq. ft. of hearth			ł
area		21.8	15.65
Character of roasted ore	Partly	Pulverulent	Partly
	sintered		sintered
Per cent. S in roasted ore	12	2-5	3

Brick used. Clay brick inside, red brick or second-class clay brick. Average thickness of side walls. 18 to 30 in. Thickness of roof, 9-15 in.

Roasting Table 8

1 kg. FeS	becomes 0.909 kg.	Fe ₂ O ₂
1 kg. FeS_2	becomes 0.667 kg.	
1 kg. PbS	becomes 1.268 kg.	PbSO ₄
1 kg. CaCO ₃	becomes 0.560 kg.	
1 kg. MgCO ₃	becomes 0.476 kg.	MgO

^{1 &}quot;Metallurgy of Lead," H. O. HOFMAN.
2 Not clear how this figure is obtained.
3 Ingalls, "Metallurgy of Zinc."

LENGTH OF TIME CONSUMED IN BURNING HEAPS OF VARIOUS HEIGHTS^t

Height	Quality of ore	Sample	Percent,	Per cent.	Days
in feet		aumber	sulphur	copper	burning
5 5 5 5 5 5 5 6 6 7 7	Pyrite. Chalcopyrite. Bornite and pyrite. Copper glance and pyrite in quarts.	10010010010	39 18 31 39 16 31 39 31 39	614 14.3 21.4 6.5 14.8 91.4 6.5 14.3 21.4 6.5 21.4	54 41 58 66 50 65 73 61 74 94 86

IGNITION AND INCANDESCENCE TEMPERATURES, DEG. C., OF SOME METALLIC SULPHIDES, HEATED IN AIR

Material	Sine of grain	First notice of SO ₂	Incap-
Pyrite	III II	325 405 472	533
Pyrrhotate	ŢŢ	430 525	595
Nickel sulphide, Ni, 73 3 S, 26.7 Cobalt sulphide	III III III	590 700 803 886 574	
Co. 66.37 S. 33 63 Cobalt sulphide Co. 70 20 S. 29 80		684 859 514 751 1019	850
Stibnite	III	200 340 240	
Cinnabar	III	508 338	
Thalcoeite	III	420 430	
Bismuth sulphide	III	679 500 626	
Manganese sulphide, Mn, 61.01, Fe, 2.02, 8, 83.98	i III	855 700	
Argentite	нî I	605 875	
Blende	ni I	647 810 573	
Millerite	III III	616 573 616	

² Ратая, "Modern Copper Smelting." ² Норман, "General Metallurgy," p. 404.

I = 0 1 mm.
II = 0 1 to 0.2 mm.
III = over 0 2 mm.
(a) In oxygen.

Dissociation Temperatures of Certain Earths and Salts

The following dissociation temperatures were obtained by W. Hempel and C. Schubert, and were determined by heating in an electric oven and determining the end points by the evolved gas volumes. The temperatures were determined with a La-Chatelier pyrometer. (See also p. 291.)

Material	Beginning of decomposition	End of decomposition
Brown iron ore	470–500°C.	1280°C
Hematite		1500
Lead peroxide		640
Potassium permanganate	160	1400
Potassium bichromate	600	1150
Lead chromate		1500
Potassium nitrate		950
Sodium nitrate		725
Spathic iron ore		880
Strontianite	1075	1340
Magnesite	350	900
Blende	150-175	360
Pyrite	480	over 1400
Copper sulphide		550
Arsenical pyrites	220	
Copper pyrites		720°

Efficiency of Roasting Apparatus1

Apparatus	Lb. ore treated in 24 hr. per sq. ft. of hearth area	Character of product for blast-furnace smelting
I. Roast heaps and stallsII. Reverberatory roasters:	5–2 0	Good.
1. Hand furnaces	24– 35	Fair.
Average conditions Special conditions	33–75 150	Too fine.
3. Revolving cylinders	128	Too fine.
III. Blast-roasting pots, range Blast-roasting pots, excellent	500-900 600	Excellent. Excellent.
IV. Blast-roasting, thin layers: Dwight-Lloyd system		\
1. Intermittent down-draft pans. 2. Continuous sintering machines	1000-2000 2200-3000	Excellent. Excellent.

¹ Hofman, "General Metallurgy," p. 433.

Metallurgical Slags

In metallurgy, slagging is the formation, at elevated temeratures, of any fluid or semi-fluid mass, with the separation om it of a metal or metalloidal residue. Slags may be waste roducts, as in lead, iron or copper smelting in the blast furnace, r they may be extremely rich products which must be receated, as the slags from copper-refining furnaces or from imes smelting.

The ordinary constituents of the metallurgist's slage may be

rouped as follows:

Bases: FeO, CaO, Cu₂O, PbO, MnO, ZnO, MgO, BaO, K₂O, Ia₂O, Al₂O₃ (sometimes).

Protecting agents: S, As, Sb, Te, Se.

Reducing agents: C, S.

Acids: SiO₂, Al₂O₁ (sometimes).

Neutral solvents: CaF₂, Na₂CO₂, K₁CO₃, CaCl₂ borates. Slag Degree.—The metallurgist names his slag by the relave amounts of oxygen combined with acid and base. Thus bisilicate slag is FeO·SiO₂, since there is twice the oxygen ombined with the silica as with the iron. It follows, then, nat the bisilicate of the metallurgist is the silicate of the hemist. A metallurgical monosilicate is (FeO)₂·SiO₂; a sesquilicate (FeO)₄·(SiO₂)₃.

Iron.—Within reasonable limits, the larger the amount of on the more fusible the slag. Slags rich in iron are dangerous is a lead furnace, as high iron seems to promote the formation of

ormation temperatures of ferrous silicates. (HOPMAN.)

Formation temperatures of ferrous silicates. (Horman.)

rusts. But high iron is considered a necessity, by some, when me is present, as it is said high iron promotes the solution f ZnO.

Pyrite—loses one atom of sulphur and enters the matte to be extent of 70 per cent. or over, except in pyritic smelting.

Manganese. -In general its effects are similar to iron, but it

498 METALLURGISTS AND CHEMISTS' HANDBOOK

Formation temperatures of ferrous silicates.

Lower line—Sintering temperatures.
Upper line—Temperatures of complete fusion.

makes a less fusible and more liquid slag than iron. It should be used with as acid slags as are economical. It seems to carry silver into the slag. It reduces the dissolving power of the

Formation temperatures as affected by substitution of MnO for FeO. The slag was a singulo-silicate, SiO₁, 30.1 per cent.; FeO, 35.9 per cent.; CaO, 32 per cent.

slag for zinc oxide, magnesia and barium sulphide. The luster of an Mn slag is usually glassy and small particles are attracted by a magnet.

Lime and Magnesia.—Lime decreases (after a certain point) both the fusibility and the specific gravity of slags. In lead

Total heats of solidification of calcium silicates.

emelting it seems to inhibit the formation of speics. It is said to enter matter as CaS. Burnt line advantage over limestone. Magnesia:

siderable extent, but magnesia and zinc are incompatibles. The Mg slags usually do not flow well.

Fluorspar—forms extremely fusible slags and will dissolve

anything.

Alumina—apparently acts as a base if much silica is present, as an acid if the silica is low, always as a nuisance. work it has seemed to make a most unhappy mixture with high magnesia. Some successful slags with high alumina are given It may be only an accident that they were successful. In iron practice the upper limit of alumina seems to be reached. according to J. E. Johnson, Jr., at about 13-14 per cent. Menk of the Shenango Furnace Co. has run slags carrying 18-23 per cent. of Al₂O₃, but they were tough and pasty, and coke consumption was high. On the other hand, a slag carrying 10-15 per cent. of Al₂O₃ usually is a better running slag than one carrying only 7. That is, there is a lower danger line as well as an upper.

Barium.—It enters slag as silicate and matte as sulphide, making the former heavy, the latter light, and thereby hindering settling. A barium-iron slag is usually not very fluid, is opaque, steel gray to black, with vitreous luster, and usually is strongly

magnetic.

Blende and zinc oxide—cause more difficulty in the blast furnace than anything else. ZnS in the matte lowers its fusibility; ZnO in the slag renders it less fusible. (It goes to slag and matte in about equal proportions.) It carries other metallic sulphides into the slag, and makes furnace accre-It is most disastrous in combination with magnesia and alumina.

Successful high-zinc slags in lead smelting are said to have been:1

RECOMMENDED LEAD SLAGS C	CARRYING	High	ZINC ²
--------------------------	----------	------	-------------------

$egin{array}{lll} \mathbf{SiO_2} \\ \mathbf{FeO} \\ \mathbf{CaO} \\ \mathbf{ZnO} \end{array}$	$33.9 \\ 14.8$	$29.0 \\ 14.0$	$\begin{vmatrix} 33.4 \\ 14.4 \end{vmatrix}$	$31.5 \\ 19.0$	$29.4 \\ 24.5$	$32.1 \\ 19.0$	26.5 24.3	22.7 24.8
Total	93.2	88.5	93.6	92.5	92.9	92.1	91.9	94.9

Arsenic, antimony, selenium and tellurium—tend to form speiss; are of more trouble in the subsequent refining than in smelting, except in so far as they volatilize easily and tend to carry off other metals.

Specific Gravities of Slag-forming Compounds

Singulo-silicates of iron, manganese and zinc, about 4. Bisilicates of iron, manganese and zinc, about 3.5. The basic silicates of alumina, from 3.2 to 3.4. The acid silicates of alumina, from 3 to 3.2.

¹ Hofman, "Metallurgy of Lead."
2 FURMAN'S "Manual of Assaying."
3 Hofman's "General Metallurgy," p. 74.

Silicates of magnesia, from 3 to 3.3. Silicates of lime, from 3 to 3.

Alkaline silicates, about 2.5. Uncombined silica, 2.6. Bisilicate of barium, 4.4. Silicate of lead, 7. Ferrous sulphide, 4.8. Calcium sulphide, 4. Magnetic oxide, 5. Sulphate of barium, 4.5.

Triaxial diagram of some ferrous-calcium silicates. (HOPMAN-BARU.)

'ormation temperatures and total heats of solidification of the calciumaluminum singulo-silicates.

Triaxial diagram of total heats of solidification of calcium-aluminum silicates.

Formation temperatures of the calcium-aluminum singulo-silicates

ø

Formation temperatures, AlsOs-BiOs series, (After SHEFHERD and RANKINE.)

Freezing temperatures, CaO-SiO: series.
(After BEEFERED and DAY.)

Matte Smelting¹

In order of decreasing affinity for sulphurs the chief metals stand thus according to

FOURNET: Cu, Fe, CoNi, Sn, Zn, Pb, Ag, Hg, Au, As, Sb.¹

SHUTZ: Mn, Cu, Ni, Fe, Sn, Zn, Pb. I

Formation temperatures as affected by replacement of CaO by MgO, BaO, ZnO.

The slag was a singulo-silicate, SiO₂, 30.1 per cent.; FeO, 35.9 per cent. CaO, 32 per cent.

HOFMAN'S "General Metallurgy," p. 74.

But in a wet way Schürmann places the sulphides in the following orders as regards the rate at which they are decomposed by the nitrates, sulphase and chlorides of other metals: Pd. Hg. Ag. Cu. Bi. Cd. Sb. Sn. Pb. Zn. Ni Co. Fe. As. Tl. Mn. Thus PdS is not decomposed by the salts of any of the other metals, while PdCl₂ converts the sulphides of the other metals is the shlorides. With MnS, this is decomposed by salts of any of the other netals, while MnSO₄ has no decomposing effect.

Specific Gravities of Matte-forming Compounds!

Substances having a specific gravity not greater than 4.7: the sulphides of zinc, molybdenum, calcium and manganese.

Substances having a specific gravity between 4.7 and 5.5: the sulphides of barium, iron, cadmium, nickel, cobalt, and copper; and the magnetic oxide of iron.

Substances with specific gravities from 6 to 9: the sulphides of silver, lead and bismuth; the arsenides and antimonides; and

Triaxial diagram, heats of solidification of the calcium-magnesium silicates.

the sulpharsenides and sulphantimonides of silver, copper, bismuth, lead, iron, cobalt and nickel; and metallic lead, iron and copper.

Formation-Temperature Charts

In the illustrations on pp. 506-509 are plotted certain type mixtures of ferrous-calcium silicates and silicate-aluminates, calculated to a basis of CaO + FeO + SiO₂ = 90, together with the formation temperature corresponding to the mixture. To use these, determine the general type to which the slag corresponds, and then find the ordinate corresponding most closely to its composition, and read the formation temperature on the ordinate.

¹ HOFMAN'S "General Metallurgy," p. 74.

506 METALLURGISTS AND CHEMISTS' HANDBOOK

See p. 505 for explanation of these charts.

510 METALLURGISTS AND CHEMISTS' HANDBOOK

ORTHOSILICATE SLAG FACTORS

Given	Re- quired	To make	Factor	Given	Re- quired	To make	Factor
Al ₂ O ₃ BaO BaSO ₄ CaO CaCO ₃ CaSO ₄ 2H ₂ O Cu CuO Fe FeO Fe ₂ O ₃ Fe ₃ O ₄	SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂	Al ₄ (SiO ₄) ₂ Ba ₂ SiO ₄ Ba ₂ SiO ₄ Ca ₂ SiO ₄ Ca ₂ SiO ₄ Cu ₄ SiO ₄ Cu ₄ SiO ₄ Fe ₂ SiO ₄	0.8865 0.1969 0.1294 0.5383 0.3017 0.1754 0.2374 0.1897 0.5403 0.4200 0.3780 0.3910	FeS: K:O MgO MgCO: Mn MnO Na:O Pb PbO Zn	SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂	FesSiO4 FesSiO4 K4SiO4 MgsSiO4 MgsSiO4 MnsSiO4 MnsSiO4 PbsSiO4 PbsSiO4 ZnsSiO4 ZnsSiO4	0.3438 0.2556 0.3388 0.7468 0.3438 0.4254 0.4468 0.1460 0.1355 0.4568 0.3730

To use the following table for metasilicates, (M'SiO₂) halve the amount of basic substance found by the table.

To use it for mesosilicates, (M'O)₂ (SiO₂)₂ decrease by one-quarter the amount found by the table.

SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂ CaO CaCO ₂ SiO ₂ CaSO ₄ 2H ₂ O Cu CuO Fe SiO ₂ SiO ₂ FeO FeO FeO FeO FeSiO ₂ FeS FeS FeS	Ca ₂ SiO ₄ Ca ₂ SiO ₄	1.128 5.080 7.730 1.858 3.315 5.702 4.212 5.271 1.851 2.381 2.646 2.557 2.913 3.974	SiO: SiO: SiO: SiO: SiO: SiO: SiO: SiO:	K ₂ CO ₂ MgO MgCO ₂ Mn MnO Na ₂ CO ₂ Pb PbO Zn ZnO	Mn ₂ SiO ₄ Mn ₂ SiO ₄	4.579 1.336 2.793 1.821 2.351 3.513 6.851 7.381 2.106 2.005
--	--	--	--	--	--	--

SULPHIDES

Given	Required	Factor	Given	Required	Packet
Cu Cu ₂ S Cu ₂ S Fe Fe FeS FeS FeS	Cu ₂ S S (to make Cu ₂ S) Cu S FeS S (to make FeS) Fe S Fe ₂ O ₃	1.252 0.2520 0.7987 0.2013 1.574 0.5735 0.6355 0.3645 0.9084	Pb Pbs Pbs	S (total) FeS (FeS ₂ = FeS + S) PbS Pb Fe (PbS + Fe = FeS + Pb) Cu (to make CusS) CusS FeS FesO ₂ (required for FeS)	0.5343 0.7329 1.135 0.2035 0.2035 4.903 2.744 2.403

ALUMINA SLAGS (ACCORDING TO HENRICH)

	SiO ₂	Al ₂ O ₂	FeO	CaO
" slag (FeO) 4 (CaO) 8 (Al2O 8) 2 (SiO 2) 2. ' slag (FeO) 6 (CaO) 6 (Al2O 8) 2 (SiO 2) 6. g (FeO) 8 (CaO) 4 (Al2O 8) 2 (SiO 2) 9	16.05	18.22	25.73	40.00
	27.15	15.31	32.32	25.22
	35.12	13.21	37.17	14.50

Some Pyritic Slags¹

Made by	· SiO ₂	Fe	Al ₂ O ₃	CaO	MgO	Ag	Cu
KochuttingreelandHeywood	33.5 44.0 32.60	32.26 28.0 38.84	2.00 1 1.54	18.0 8.24	• • • • •	0.24	$0.27 \\ 0.35$

G'S TABLES FROM "COMPENDIUM DER METALLUR-GISCHEN CHEMIE"

y weight of by weight of silica
0.538 0.748 0.886 0.420 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.427 1.773 0.841 0.841 0.851 i-silicates 0.806 1.122 1.330 0.630 0.630 0.638
)

RICKARD'S "Pyritic Smelting."

510 METALLURGISTS AND CHEMISTS' HANDBOOK

ORTHOSILICATE SLAG FACTORS

Green	Re- guired	To make	Factor	Given	Re- quired	To make	Factor
Al ₁ O ₁ BaO BaSO ₄ CaO CaCO ₁ CaSO ₄ - 2H ₁ O Cu CuO Fe FeO Fe ₁ O ₄	SiO: SiO: SiO: SiO: SiO: SiO: SiO: SiO: SiO: SiO: SiO: SiO: SiO:	Al ₄ (8 ₁ O ₄) ₂ Ba ₂ S ₁ O ₄ Ba ₂ S ₁ O ₄ Ca ₂ S ₁ O ₄ Ca ₂ S ₁ O ₄ Ca ₂ S ₁ O ₄ Cu ₄ S ₁ O ₄ Fe ₁ S ₁ O ₄ Fe ₁ S ₁ O ₄ Fe ₂ S ₁ O ₄ Fe ₂ S ₁ O ₄	0 8865 0.1969 0 1294 0.5383 0 3017 0 1754 0 2374 0 1897 0 5403 0 4200 0 3780 0 3910	FeS: K:O MgO MgCO: Mn MnO Na:O Pb PbO Zn	BiO ₁ SiO ₂ SiO ₃ SiO ₃ SiO ₃ SiO ₃ SiO ₃ SiO ₃ SiO ₃ SiO ₃	FerBiO ₄ FerBiO ₄ K ₄ SiO ₄ MgrSiO ₄ MgrSiO ₄ MnrSiO ₄ MnrSiO ₄ Na ₄ SiO ₄ PhrSiO ₄ PhrSiO ₄ ZnrSiO ₄	0.3433 0.2516 0.3203 0.7483 0.3580 0.5491 0.4254 0.4863 0.1460 0.1355 0.4618 0.3710

To use the following table for metasilicates, (M"SiO₂) halve the amount of basic substance found by the table.

To use it for mesosilicates, (M"O)₁ (SiO₂)₂ decrease by one-quarter the amount found by the table.

SiO: SiO: SiO: SiO:	Al ₂ O ₃ BaO BaSO ₄ CaO CaCO ₃	Al ₄ (StO ₄) ₂ : Ba ₂ StO ₄ Ba ₂ StO ₄ Ca ₂ StO ₄ Ca ₂ StO ₄	1 128 5 080 7.730 1.858 3,315	S1O ₁ SiO ₂ S1O ₂ S1O ₂ S1O ₃	K ₁ CO ₁ MgO MgCO ₁ Mq MnO	K4SiO4 Mg2SiO4 Mg2SiO4 Mg2SiO4 Mg2SiO4	4.579 1.336 2.793 1.821 2.351
SiO ₂ SiO ₃ SiO ₃ SiO ₃ SiO ₃ SiO ₃ SiO ₃ SiO ₃	CaSO.~2H.O Cu CuO Fe FeO: Fe:O: Fe:S:	Ca:SiO4 Cu:SiO4 Cu:SiO4 Fe:SiO4 Fe:SiO4 Fe:SiO4 Fe:SiO4 Fe:SiO4 Fe:SiO4	5 702 4 212 5 271 1 851 2 381 2 646 2 557 2 913 3 974	SiO2 SiO2 SiO2 SiO2 SiO3	Na ₄ CO ₁ Pb PbO Zn ZnO	Na48104 Pb:SiO4 Pb:SiO4 Zn:SiO4 Zn:SiO4	3 513 6.851 7.381 2.166 2.695

SULPHIDES

Given	Required	Factor	Given	Required	Factor
Cu Cu:S Cu:S Fe Fe FeS FeS FeS	Cu ₂ S 8 (to make Cu ₂ S). Cu S FeS S (to make FeS) Fe S Fe ₂ O ₃	1.252 0.2520 0.7987 0.2013 1.574 0.5735 0.6355 0.3645 0.9084	Pbs Pbs Pbs	8 (total) FeS (FeS; = FeS + S) PbS Pb Fe (PbS + Fe = FeS + Pb) Cu (to make CusS) CusS FeS FesOs (required for FeS)	0.5343 0.7226 1.155 0.8658 0.2336 3.968 4.968 2.746 2.486

ALUMINA SLAGS (ACCORDING TO HENRICH)

	SiO ₂	Al ₂ O ₂	FeO	CaO
"Singulo" slag (FeO) ₄ (CaO) ₈ (Al ₂ O ₂) ₂ (SiO ₂) ₃ . "Sesqui" slag (FeO) ₆ (CaO) ₆ (Al ₂ O ₃) ₂ (Si O ₂) ₆ . "Bi" slag (FeO) ₈ (CaO) ₄ (Al ₂ O ₃) ₂ (SiO ₂) ₅	16.05	18.22	25.73	40.00
	27.15	15.31	32.32	25.22
	35.12	13.21	37.17	14.50

SOME PYRITIC SLAGS¹

Made by	· SiO2	Fe	Al ₂ O ₃	CaO	MgO	Ag	Cu
Walter E. Koch	44.0 32.60	$\begin{array}{c} 28.0 \\ 38.84 \end{array}$	1 1.54	18.0	2-5 3.44 1.37	0.24	0.27

Balling's Tables from "Compendium der Metallurgischen Chemie"

One part by weight of silica requires	Parts by weight of bases	One part by weight of bases requires	Parts by weight of silica
For Singulo-silicates Lime. Magnesia. Alumina. Ferrous oxide. Manganous oxide. For Bi-silicates Lime. Magnesia. Alumina. Ferrous oxide. Manganous oxide. For Sesqui-silicates Lime. Magnesia Alumina. Ferrous oxide. For Serqui-silicates Lime. Magnesia. Alumina. Ferrous oxide. Magnesia. Alumina. Ferrous oxide. Manganous oxide.	1.86 1.34 1.13 2.38 2.35 0.93 0.67 0.56 1.19 1.18 1.24 0.89 0.75 1.59 1.57	For Singulo-silicates Lime Magnesia Alumina Ferrous oxide Manganous oxide For Bi-silicates Lime Magnesia Alumina Ferrous oxide Manganous oxide For Sesqui-silicates Lime Magnesia Alumina Ferrous oxide Magnesia Alumina Ferrous oxide Magnesia Alumina Ferrous oxide Magnesia Alumina	0.538 0.748 0.886 0.420 0.425 1.077 1.497 1.773 0.841 0.851 0.806 1.122 1.330 0.630 0.638

¹ T. A. RICKARD'S "Pyritic Smelting."

512 METALLURGISTS AND CHEMISTS' HANDBOOK

Balling's Table for Alumina as Actu To form (MO), AliO;

1 part Al ₂ O ₂ requir	es parts of	1 part of base requ	sires parts AM
MgO	1 72 2.47 3 03 3 07 3 48 6.56 2.65 4.03	MgO	0.580 0.417 0.330 0.325 0.287 0.153 0.377 0.248

I. AUXILIARY TABLES TO ACCOMPANY BALLING'S SLAG TABLE

Formula	. Mol. wt.	Log.
(MgO) ₄ SiO ₂	221.84	2.34604
CaO) ₄ SiO ₂	284.8	2.45454
$MnO)_4SiO_2$	344.4	2.53706
FeO) ₄ SiO ₂	348.0	2.54158
BaO) SiOt	674.0	2.82866
$MgO)_3SiO_2$	181 . 48	2.25888
CaO) ₃ StO ₂	228.7	2.35927
$MnO)_3SiO_4$	273.4	2.43680
$FeO)_{3}SiO_{2}$	276.1	2.44107
BaO) ₂ SiO ₂	520.6	2.71650
MgO)₂SiO₂	141.12	2.14959
$CaO)_2SiO_2$	172.6	2.23704
$MnO)_2SiO_2$, ,	202.4	2.30621
FeO)2SiO2	204.2	2.31006
$BaO)_2\mathrm{SiO}_2$, , , , , , , , , , , , , , , , , , ,	367.2	2.56490
$MgO)_4(SiO_2)_3,\ldots\ldots$	342.64	2.53484
$\operatorname{CaO})_4(\operatorname{SiQ}_2)_3,\ldots,\ldots,$	405.6	2.60810
$MnO)_4(SiO_2)_4$	465.2	2.66755
FeO)4(SiO₂)8	468.8	2.67099
BaO) ₄ (SiO ₂) ₂	794.8	2.90026
IgOSiO ₂	100.76	2.00329
@OS1Oz	116.5	2.06688
InOSiO ₁	131.4	2.11860
'eOSiO₃	132.3	2.12156
BaOSiO2	213.8	2.33001

II. RATIOS OF MOLECULAR WEIGHTS

CaSiO ₃ 1.000 Ca ₄ Si ₃ O ₃ 1.000 Ca ₂ SiO ₄ 1.000 CaSiO ₃	$egin{array}{cccccccccccccccccccccccccccccccccccc$	36 O ₁₀ Fo 56 O ₄ Fo 83 O ₁₀ C	$e_4Si_3O_{10}$ 4.024 e_2SiO_4 0.5035 e_3SiO_5 1.600 a_2SiO_4 1.482	Fe ₂ SiO ₄ 1.757 Fe ₃ SiO ₅ 0.6807 Fe ₄ SiO ₆ 2.016
$FeSiO_3$ 1.00	Fe ₄ Si ₃ O ₄ 3.543	Fe_2SiO_4 1.543	Fe ₈ SiO ₅ 2.087	Fe ₄ SiO ₆ 2.630

III. BASES

Radical	Mol. wt.	Log.
MgO	40.36	1.60595
CaO	56.1	1.74896
Na ₂ O	62.1	1.79309
MnO	$7\overline{1}.\overline{0}$	1.85126
FeO	71.9	1.85673
$\widetilde{\mathrm{K_2O}}$	94.3	1.97451
SrO	103.6	2.01536
ŽnO	106.6	2.02776
Cu_2O	143.2	2.15594
BaO	153.4	2.18583
PbO	222.7	2.34772

ACIDS

Radical	Mol. wt.	Log.
Al_2O_3 B_2O_3 P_2O_5	$102.2 \\ 70.0 \\ 142.0$	2.00945 1.84510 2.15229
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60.4 80.1	1.78104 1.90363

IV. Composition of Type Slags (Calculated to a 90 per cent. total)

Compound	SiO ₂	FeO	CaO
FeO·SiO ₂ . 4(FeO·SiO ₃) + CaO·SiO ₂ . 3(FeO·SiO ₂) + CaO·SiO ₃ . 2(FeO·SiO ₂) + CaO·SiO ₂ . 3(FeO·SiO ₂) + 2(CaO·SiO ₂). FeO·SiO ₂ + CaO·SiO ₂ . 2(FeO·SiO) + 3(CaO·SiO ₂). FeO·SiO ₂ + 2(CaO·SiO ₂). FeO·SiO ₂ + 3(CaO·SiO ₂). FeO·SiO ₂ + 4(CaO·SiO ₂). FeO·SiO ₂ + 4(CaO·SiO ₂). CaO·SiO ₂ (FeO) ₄ (SiO ₂) ₃ + CaO·SiO ₂ . 3(FeO) ₄ (SiO ₂) ₃ + CaO·SiO ₂ . 2(FeO) ₄ (SiO ₂) ₃ + CaO·SiO ₂ . 2(FeO) ₄ (SiO ₂) ₃ + CaO·SiO ₂ . 2(FeO) ₄ (SiO ₂) ₃ + 4CaO·SiO ₂ . 2(FeO) ₄ (SiO ₂) ₃ + 4CaO·SiO ₂ . (FeO) ₃ SiO ₂ + CaO·SiO ₂ . 4(FeO) ₃ SiO ₂ + CaO·SiO ₂ . (FeO) ₃ SiO ₂ + CaO·SiO ₂ .	41.1 42.4 42.8 43.6 44.7 45.2 45.4 46.7 34.8 35.4 36.2 36.4 37.2 46.6 29.2 33.8 40.7 46.7	48.9 40.1 37.8 34.0 30.8 26.1 21.1 17.7 13.4 10.8 55.2 52.0 47.4 44.2 40.2 27.5 63.4 55.5 45.9 40.4 34.2 19.3	7.8 9.8 13.2 16.0 20.3 24.7 27.6 31.4 33.8 43.3 2.5 6.2 8.6 11.7 21.6 43.3 5.4 11.9 15.7 20.0 30.1 43.3
	SiO,	FeO ₃	CaO
$\begin{array}{l} (\text{FeO})_{2} \text{SiO}_{2} \\ 4(\text{FeO})_{2} \text{SiO}_{2} + (\text{CaO})_{4} (\text{SiO}_{2})_{3} \\ 3(\text{FeO})_{2} \text{SiO}_{2} + 2(\text{CaO})_{4} (\text{SiO}_{2})_{3} \\ (\text{FeO})_{2} \text{SiO}_{2} + 4(\text{CaO})_{4} (\text{SiO}_{2})_{3} \\ 2(\text{FeO})_{2} \text{SiO}_{2} + 3(\text{CaO})_{4} (\text{SiO}_{2})_{3} \\ (\text{FeO})_{2} \text{SiO}_{2} + 4(\text{CaO})_{4} (\text{SiO}_{2})_{3} \\ (\text{CaO})_{4} (\text{SiO}_{2})_{2} \\ (\text{CaO})_{4} (\text{SiO}_{2})_{2} \\ (\text{FeO})_{2} \text{SiO}_{2} + (\text{CaO})_{2} \text{SiO}_{2} \\ 3(\text{FeO})_{2} \text{SiO}_{2} + (\text{CaO})_{2} \text{SiO}_{2} \\ 2(\text{FeO})_{2} \text{SiO}_{2} + (\text{CaO})_{2} \text{SiO}_{2} \\ (\text{FeO})_{2} \text{SiO}_{2} + 2(\text{CaO})_{2} \text{SiO}_{2} \\ (\text{FeO})_{2} \text{SiO}_{2} + 3(\text{CaO})_{2} \text{SiO}_{2} \\ (\text{FeO})_{2} \text{SiO}_{2} + 4(\text{CaO})_{2} \text{SiO}_{2} \\ (\text{FeO})_{2} \text{SiO}_{2} + 4(\text{CaO})_{2} \text{SiO}_{2} \\ (\text{FeO})_{2} \text{SiO}_{2} + 4(\text{CaO})_{2} \text{SiO}_{2} \\ (\text{CaO})_{2} \text{SiO}_{2} + 3(\text{CaO})_{2} \text{SiO}_{2} \\ (\text{CaO})_{2} \text{SiO}_{2}$	26 6 31 1 34 3 35 7 36 8 38 7 40 2 26 6 27 5 27 7 28 1 28 4 28 9 29 6 30 1 30 4 31 5	63.4 42.4 27.3 21.2 15.9 7.1 63.4 52.3 49.4 44.5 40.5 34.3 27.9 23.6 17.9 14.4	16.5 28.4 33.1 37.3 44.2 49.8 10.2 12.9 17.4 21.1 26.8 32.7 36.8 42.0 45.2 58.5

	BiO ₂	FeO	CaO
$ \begin{array}{l} - & (\text{FeO})_4(\text{SiO}_2)_1 \\ + & (\text{CaO})_4(\text{SiO}_2)_3 + (\text{CaO})_4(\text{SiO}_2)_4 \\ + & (\text{SiO}_2)_3 + (\text{CaO})_4(\text{SiO}_2)_3 \\ + & (\text{CaO})_4(\text{SiO}_2)_3 + (\text{CaO})_4(\text{SiO}_2)_3 \\ + & (\text{CaO})_4(\text{SiO}_2)_3 + (\text{CaO})_4(\text{SiO}_2)_3 \\ + & (\text{FeO})_4(\text{SiO}_2)_3 + (\text{CaO})_4(\text{SiO}_2)_3 \\ + & (\text{FeO})_4(\text{SiO}_2)_3 + 2(\text{CaO})_4(\text{SiO}_2)_2 \\ + & (\text{FeO})_4(\text{SiO}_2)_3 + 2(\text{CaO})_4(\text{SiO}_2)_4 \\ + & (\text{FeO})_4(\text{SiO}_2)_3 + 3(\text{CaO})_4(\text{SiO}_2)_4 \\ + & (\text{FeO})_4(\text{SiO}_2)_3 + 4(\text{CaO})_4(\text{SiO}_2)_4 \\ + & (\text{CaO})_4(\text{SiO}_2)_3 + 4(\text{CaO})_4(\text{SiO}_2)_4 \\ + & (\text{CaO})_4(\text{SiO}_2)_3 \\ \\ + & (\text{CaO})_4(\text{SiO}_2)_3 \\ + & (\text{CaO})_4(\text{SiO}_2)_3 \\ \\ + & (\text{CaO})_4(\text{SiO}_2)_3 \\ \\ + & (\text{CaO})_4(\text{SiO}_2)_3 \\ \\ + & (\text{CaO})_4(\text{SiO}_2)_3 \\ \\ + & (\text{CaO})_4(\text{SiO}_2)_3 \\ \\ + & (\text{CaO})_4(\text{SiO}_2)_3 \\ \\ + & (\text{CaO})_4(\text{SiO}_2)_3 \\ \\ + & (\text{CaO})_4(\text{SiO}_2)_3 \\ \\ + & (\text{CaO})_4(\text{SiO}_2)_3 \\ \\ \\ + & (\text{CaO})_4(\text{SiO}_2)_3 \\ \\ $	34.8 35.7 36.0 36.6 36.7 37.3 37.9 38.2 38.7 39.0 40.2	55.2 45.4 42.9 38.4 35.1 29.6 24.0 20.2 15.4 12.4	8.9 11.1 15.0 18.2 23.1 28.1 31.6 35.9 38.6 49.8

Formation Temperature of Some Pure Ferrous Silicates

```
4FeO, SiO<sub>1</sub> = 82 8 % FeO, 17.2 % SiO<sub>2</sub> = 1280°C.¹
3FeO, 2SiO<sub>3</sub> = 64 3 % FeO, 35 7 % SiO<sub>4</sub> = 1140°C.¹
FeO, SiO<sub>7</sub> = 54 55 % FeO, 45 45 % SiO<sub>2</sub> = 1110°C.¹
2CaO, SiO<sub>2</sub> = 65 0 % CaO, 35 0 % SiO<sub>4</sub> = 1570°C.²
CaO, SiO<sub>1</sub> = 48 2 % CaO, 51.8 % SiO<sub>2</sub> = 1540°C.³
3CaO, 2SiO<sub>2</sub> = 58.2 % CaO, 41 8 % SiO<sub>2</sub> = dissociates at 1475°C.³
3CaO, SiO<sub>2</sub> = 73.6 % CaO, 26.4 % SiO<sub>2</sub> = dissociates at 1900°, before maltine³
                                                                                                                                                                                                                                                                                                                                                    melting*
 4CaO, 3SiO<sub>2</sub> = 37.0 % CaO, 63.0 % SiO<sub>2</sub> = 1436°C.<sup>2</sup> 4CaO, 3SiO<sub>2</sub> = 54.5 % CaO, 45.5 % SiO<sub>2</sub> = 1455°C.<sup>2</sup>
```

FORMATION AND MELTING TEMPERATURES OF SILICATES

Description	SiO ₂	AlsOz	Com		MeO	BaO	MnO	For-	Fus-
			FeO	Ca0				mation temp	ing temp.
Iron slag ⁴ Iron slag ⁴ Lead slag ⁴ Lead slag ⁴ Copper slag ⁴ Copper slag ⁴	50.0 43 9 36 0 31 47 33 0 40.80	7.0	3 0 4 5 40.0 45 68 60.3 39 46		10.2 3.0		0.3	1392 1450 1220 1190 1273 1160	1208 1250 1160

¹ Trans A I M. E, Vol. 29.

² F T HAVARD, "Furnaces and Refractories."

³ RANKIN and WRIGHT, Am. Journ. Sci., January, 1915.

From Havard, "Furnaces and Refractories."

See also p. 278.

rs
DOTC
PR
RNACE
s Fo
MEOUS
CLA

			SiO ₂ Al ₂ O ₃		CaO	Fe ₂ O ₃	MnO	MgO		CaS	Z	NaKO 1	P:0,	FeO
Iron blast furnace slags Acid open hearth slags Basic open hearth slags Bessenner converter slags Charcoal iron furnace slag? Arizona converter slags Arizona converter slags Arizona converter slags Arizona converter slags			21. 25 28. 19 47. 25 20. 0 20. 0 21. 5 21. 5	15.13 3.45 3.72 3.72 16.0 9.6	32.82 49.39 1.84 50.76 0.6 1.3	3.56	1.62 15.74 31.89 2.05	74 .02 7 .08 .44 44.00		1	H	20000000000000000000000000000000000000	4.78	35.98. 15.430 15.430 58.8 59.8 59.8 59.8
	SiO.	WO.	<u></u>	SnO	FeO	MnO	Al ₂ O ₃	CaO	MgO	NazO	ZnO	\omega \tag{\text{\tinit}\\ \text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texit{\text{\ti}\tintt{\text{\text{\text{\texi}\text{\text{\texi}\text{\t	Ja D	Total
(glass), (story).	39.4	1.3	8.1	-	26.2	Тгасе	14.8	6.7	0.5	1.7			:	6.66
om slag	40.0	•	. 7.5	rō.	20.3	11.1	9.6	3.6	1.0	•	•	:	:	93.1
	24.06	24.03	о » ——	9.36	•	5.64	•	•	_•	•	•	•	•	•
copper slag ² (tri-	57.43	s.0 F-2.09		0.4.0		o :	် ဆွ		•	• •		•	• •	
Manafeld copper sings Manafeld copper sings	3 6 35			• • •	4.8 4.8 4.9	0.28	4.43 16.63	33.1 21.81	4.6 4.6 4.6	4.05	1.93	0.16	82	99.78
3.842) ⁵ belieste) ⁴ copper presides	223 250				41.15 65.63 81.0		200 200 200 200 200 200 200 200 200 200	980	0.74			.ea	- 40 00 00 00 00 00 00 00 00 00 00 00 00 0	8 :

										1 ' 11	-		h) .	111, 11	h	
Arizona copper practice 35.4	35.4	•	:	•	• :	23.8	•	13.5	•	2.2	-:		•	0.28		
Arizona copper practices	39.8	:	•	•		$30.\overline{7}$	•	•	3.0	2.1	•	:	:	0.35		
Arizona copper practice6	40.6	•	•	•		34.7	•	14.5	•	•	•	- :	:	٠		
Arizona copper practice6	43.7	:	•		_	31.1	•	15.3	0	2.2	:	•	:	•		
New Jersey cupola practices.	28.4	•	•	•				•	22.65	:	•	•	 : :	0.45		
New Jersey matting furnace	33.43	•	•	•		45.65	•	5.23	4.0	1.95	•		:	0.8310		
Arizona converter slag	16.5	:	•	•		63.7	:	•		•	•	:		2.50		
Blast-furnace sows	2.14	• • •	•			Fe 7.82	- -	•	•	•	•	•		36.98		
Settler sowe	2.87	•	:		Fe	Fe 18.31	•	•	:	-	•	•	22.58	56.81		
Copper converter slag, acid							_									
lining, Parrott. 2	36.80		:	•	•	Fe 50.40		6.80	tr.	:	:	4.43	0.47	.8	8.66	
Copper converter slag, acid														-		
lining, Anaconda?	35.70	•	•	:	•	ι,	0.25	1.76	•	•	:	0.86	•	2.14	97.54	
Nickel slag, ore smelting ¹¹	38.0	ï	4.0 =	5	•	0.	:	10.0	4.5	2.5	:	:	8.8	4.	•	
Nickel sow, ore smelting 11.	2.11	ï	= 4.8	5 Fe =	88.17	•	:	:	: -	•	•	:	4.05	1.4	•	
Zinc retort residue ¹	69.72	•	•	:	•	9.03	•	10.08	6.17	1.84	3.44	2.40	<u>o</u> .	:	•	
Slag from basic lined refining		_														
furnace ²	26.75	•	•		5.7	∴	:			0.51	:	•		51.70		
Copper refinery slag	39.02	:	•	-: -:	•	10.	:	4.19	5.0g	:	•	:	0.61	35.2	•	
Lead slag from Freiberg	27.2	:	•	<u> </u>	PbO	4	:	:	:	:	:	10.1	•	:	•	
Freiberg, lead slag, roasting			•		ļ	•		,		1) 					
and reduction [23.95]	[23.95]	•	•		2.87	44.41	0.85	4.45	4.75	0.54	P ₂ O ₂	14.81	4.46	0.69		
Prsibram, lead slag, roasting	-				(1		- 1		,	•					
and reductions.	37.50	:	•		0.48	28.37	2.51	7.81	14.70	1.11	2.11	4.07	0.92	•	•	
Lead blast furnace, Middle	20 67				10	30 40			5	60.9		1		00		
Tood Boronhonotony Middle	<u>.</u>	:	•		21.	•	:	•	; -	•	:	1.03	:	1	•	
West, U. S. A.	41.35	•	•		1.00	9.24		27.05	17.50	3.14	•		•	•	•	
•																
1 TT T 1			٩			ζ	C				ا.					

² Peters, "Modern Copper Smelting." ⁵ Private notes. ⁶ RICHARDS, "Metallurgical Calculations." SCHNABEL'S "Handbook of Metallurgy HENRY LOUIS, "Tin."

Some of these Arizona slags are interesting because of their high alumina content. Private notes.

⁷ Private notes. A wonderfully clean slag, almost snow white in color.

⁸ Poured slag, ore lining.

⁹ Poured slag, quarts lining.

¹⁰ Foured slag, ore lining.

¹¹ This nickel slag, given by Schnabel, is far from typical of modern operations. For instance, a year's results in Canadian practice gave the following average for the blast-furnace slag: SiO₂, 35.37; Fe, 34.69; CaO, 5; MgO, 5.10; Al₂O₃, 8; S, 0.82; Cu, 2.4; Ni, 3.9 per cent. The corresponding matte, for a yearly average, carried: Ni, 19.33; Cu, 13.23 per cent. The succeeding year gave: SiO₂, 34.89; Fe, 38.06; S, 1.01; Cu, 2.0; Ni, 3.9; with corresponding matte: Ni, 20.55; Cu, 10.7 per cent. The year following this showed: SiO₂, 33.90; Fe, 39.59; S, 1.31; Cu, 1.8; Ni, 3.9; with corresponding matte: Ni, 20.92, and Cu, 8.57

per cent

TYPICAL FURNACE PRODUCTS

	Cu	Pb	Fe	Ä	ပိ	gp	As	Ag	nY	Ø	Bi	Zn
Speiss—Schmöllnitz¹. 12.99 0.09 1 Speiss—Neusohl¹. 41.18 0.69 3 Black copper—Mansfeld. 94.52 1.93 Converter copper—Mexican. 95.64 1.864 Converter copper—Australian. 0.262 Converter copper—Australian. 0.262 Converter copper—Western U. S. 99.28 Lead from blast furnace—Freiberg¹. 0.225 95.088 Lead from Przibram¹. 0.11	12.99 41.18 94.52 95.64 96.39 0.225 0.225	0.09 12.63 0.69 35.41 1.93 0.62 1.864 0.068 0.684 0.0123 0.262 0.116 tr. 0.044 95.088 0.007	12.63 35.41 0.62 0.068 0.0123 0.044 0.007	1.40 0.09 0.76 0.100 0.014	0.00	60.00 10.79 .0.171 0.364 0.012 0.010 0.958	7.42 6.10 0.085 0.509 tr.	0.38 0.33 0.33 0.47 0.423	0.06	2.04 2.60 0.86 0.265 0.242 0.005	1.26 None 0.088 0.004 0.007	1.09

¹ SCHNABEL, "Handbook of Metallurgy."

TOTAL HEAT IN CALORIES PER KG. OF MELTED SLAG (After AKERMAN)

Calorie s	Per cent., SiO ₂	Per cent., CaO	Per cent., Al ₂ O ₃	Calories	Per cent., SiO ₂	Per cent., CaO	Per cent., Al ₂ O ₃
347 {	59 39 63 58	36 42 35 35	5 19 2 7 5	360 {	31 46 58 58	37 37 32 27	32 17 10 15
350	58 53 41 38	37 37 42 47	5 10 17 15	380	62 38 25 44	37 52 34 33	1 10 41 23
	39 37 66	43 40 32	19 23 2 3	400	60 65 41	20 35 52	20 0 7
360 {	59 48 40 34	38 42 48 48	10 12 18		37 21 43	53 32 30	10 47 27

TYPICAL LEAD SLAGS¹

	SiO ₂	Fe(Mn)O	Ca(Ba, Mg)O	Total
Eilers	28	50	12	90
Eilers	30	40	20	90
Livingstone	30	36	20	86
Iles	32	33	23	88
Schneider	33	33	24	90
Page	33	36	16	85
Hahn	34	50	12	96
Raht	35	27	28	90
Hahn	36	40	20	96
Murray	40	34	26	100
Hixon	34	33	23	90
Hixon	33.4	34 .1	21	88.5
Hixon	30	40	20	90

Temperatures of Metallurgical Operations

Copper blast-furnace smelting:

oppor amou rurmuoo prizoruma.	
Furnace running fast	1260°C.1
Normal smelting	1215°C.1
Slow smelting, lower limit	1130°C.1
Pyritic smelting 1240°-	-1350°C.1

¹ Hofman, "Metallurgy of Lead," and Hixon's "Lead Smelting and Copper Converting."

•	
Copper converters: Matte introduced. Turned down to skim. Turned back to blow. Cooling during skimming. Temperature of escaping gas at end of 10 minutes Temperature of escaping gas at end of 20 minutes Temperature of escaping gas at end of 30 minutes Temperature of escaping gas at finish.	1170°C. 1297°C. 1284°C. 13°C. 1260°C. 1270°C. 1275°C.
Copper-refining furnaces: Charge melted and ready to rabble After 25 minutes rabbling After 75 minutes rabbling At end of rabbling After 20 minutes poling At end of poling Heated to After ladling 20 minutes	1141°C. 1103°C. 1103°C. 1103°C. 1110°C. 1117°C. 1125°C. 1121°C.
Lead blast-furnace work: On two-fifths slag, Fe, 30 per cent.; CaO, 12 per cent. SiO ₂ , 31 per cent., Zn, 10 per cent.; woon half slag, 1134°C. On three-fifths slag, Fe, 30.5 – 31 per cent.; CaO, 13 cent.; Al ₂ O ₃ , 6.4 – 6.6 per cent.; SiO ₂ , 34 – 32 per 5.8 per cent.; MgO, 1.3 per cent., MnO, 3.7 – 3.8 1170° – 1149°C. The temperature change seems to be about 9°C. silica up or down, from the above figures.	as 1126°C. 5 — 14.5 per cent.; Zn, 8 per cent.,
Slag melting point	-1310°C.¹ -1285°C.¹ -1725°C.¹
Reverberatory roasting—leady mattes: 1215°C. at fire box to 505°C. at flue end.	
Reverberatory smelting flue: 1300°C. at furnace; 1217° at 14 ft. from furnace 27 ft.; 1097° at 41 ft.; 1045° at 54 ft.; 911° at 6 at 80 ft.; 767° at 94 ft.; 727° at 107 ft.; 642° at 1 of stack).	37 ft.: 807°
I_{RON^2}	
	Deg. C.
Blast furnace at tuyères	. 2000 . 1600
1 Rounded averages (to nearest 5°C.) of figures given by G. H.	CLEVENCES

¹ Rounded averages (to nearest 5°C.) of figures given by G. H. CLEVENGER Metallurgical and Chemical Engineering, August, 1913. Other figures not averaged.

² Stowe-Fuller Co.'s catalog.

Medium-hard steel at tapping	1600
Gas leaving producers	700
Gas leaving regenerators	1200
Air leaving regenerators	1100
Waste gas at stack	300
Medium steel ready to roll	1050
Glass pots working	1050
Glass pots refining	1325
Tanks for casting glass	1325
Crucible-steel furnace	1300
Cement rotary clinkering kiln	1684
Ingot being rolled	1065
Heating furnace	1150

MODERN COPPER BLAST FURNACES¹

	Dimensions at tuyère, in.	and size	Center of tuyère to feed floor ft. in.	Height of smelting column, ft.	Blast pressure, oz.	Approximate capacity, tons
Anaconda, Mont ² Cananea, Mexico Garfield, Utah Mammoth, Calif Steptoe, Nev Cerro de Pasco, Peru. Mason Valley, Nev Tezuitlan, Mex Canadian Copper Co. \{ Mond Nickel Co Trail, B. C	47×300 54×240 50×204 50×240 42×210 42×360 42×264 42×420	150-4 36-434 34-434 48-4 28-4 50-4 40-5	19 10 434 13 0	10 9 12 14 14 14 12 8 8 8	40 16 24 42 40 24 42 28–32	3000 280 360 400 300-500 300 720 500 400 550 350 650 460 700
United Verde. Ariz Anyox, B. C B. C. Copper Co., B. C.	50 × 420 44 × 266 ½ 48 × 260 84 × 180 42 × 216 42 × 240 48 × 330 50 × 360 51 × 360 51 × 240 42 × 120 48 × 160	72-314 72-314	22 31/2	8 12 12 12 12 12 12 6 6		875 500 550

¹ From Gowland's "Metallurgy of the Non-ferrous Metals," p. 83, and Bull. 209, Canad. Dept. of Mines.

² The Anaconda furnace is the largest yet constructed.

Blower Capacity

Iron Cupola Work.—500 cu. ft. of air per minute is required to melt 1 ton of pig iron per hour.1

Rotary blowers seem to require 5 hp. for every 1000 cu. ft. of

air discharged at 1 lb. pressure.2

Copper Blast Furnaces.—At the Tennessee Copper Co. 1000 cu. ft. per minute per linear foot of furnace is the rule (56 × 270in. furnace). At Mt. Lyell 20,000 cu. ft. at 64 oz. pressure used per minute in a 54×210 -in. furnace. At Great Falls. Mont., a furnace 84×180 in. at the tuyères receives 17,000 cu. ft. of air per minute. The Sasco, Ariz., smeltery used 13,000 cu. ft. per minute at 24 oz. pressure for a 43 \times 192-in. furnace. Cananea used 12,000 cu. ft. per minute at 16 oz. pressure for a 48×210 -in. furnace.

Converters.—The Copper Queen works figures that it requires 85,800 cu. ft. of blast to convert 1 ton of matte to blister

copper.

OPERATIONS AT THE BRITISH COLUMBIA COPPER Co.'s SMELTERY³

Blast furnaces.—The blast furnace building is 150 ft. long by 60 ft. wide and contains three water-jacketed blast furnaces placed end to end, with space between them for the minor axis of a 10 by 18-ft. oval settler. The two outside furnaces, Nos. 1 and 3, are each 51 by 360 in., while the middle one, or No. 2, is 51 by 240 in. in area at the tuyères. The vertical distance from the center of tuyères to the feed floor is 16 ft., and to the sole plate 37 in., the other furnace dimensions being as follows:

	30-ft. Furnace	20-ft. Furnace
Hearth area, sq. ft	127.5	85
Center tuyères to tapping floor	. 5 ft. 3 in.	5 ft. 3 in.
Height of bottom jackets	. 9 ft. 0 in.	9 ft. 3 in.
Width of side jackets	. 3 ft. 4 in.	3 ft. 4 in.
Width of end jackets, bottom	. 3 ft. 8 in.	3 ft. 8 in.
Width of end jackets, bottom	. 6 ft. 2 in.	6 ft. 2 in.
Number of tuyères	. 72	48
Diameter of tuyères	. 4 in. bushe	ed to 31/4 in.
Area of tuyères	.597.4 sq. in.	602.9 sq.in.
Tuyère area per square foot of hearth		•
area		7.09 sq. in
Center line to center line tuyères		
Water space in jacket, 4 in.; plate	used on insid	le 5% in.: on
outside, 3/8 in.		

A Résumé of Furnace Operating Data, B. C. Copper Co.

Tons smelted per day, 2250.0; tons smelted per square foot of hearth area, average, 6.62; tons smelted per square foot of hearth area, maximum, 8.70; tons smelted per man per day.

¹ Hofman, "General Metallurgy," p. 777. ² Ibid., p. 771.

From a paper by F. K. BRUNTON, Trans. A. I. M. E., 1915.

· 1.

35.70; Cu, on charge, per cent., 0.8 to 1.2; Cu. in matte, per cent., 30.0 to 45.0; Cu in slag, per cent., 0.22 to 0.27; S on charge, per cent., 2.00; S burnt off, per cent., 85.00 to 90.00; coke used on charge, per cent., 12.00 to 14.00; coke ash, per cent., 20.00 to 28.00; blast, cubic feet per minute, 25,000; blast, temperature, atmospheric; cooling water for jackets, gallons per minute, 2500; men per 8-hour shift, 21.0; matte, per cent. of total charge, 1.65; matte, specific gravity, 5 to 0; slag, per cent., SiO₂, 38 to 45; Fe, 13 to 20; CaO, 20 to 26; Al₂O₃, 6 to 9; specific gravity, 3 to 3.2.

Kind of labor	Number of men	Wages per shift	Total wages per shift
Shift bosses. Furnace men. Furnace helpers. Slag motorman. Slag switchman. Charge motormen. Head loaders. Second loaders. Feeders. Binman. Power house.	1 3 3 1 1 3 3 1 1	\$5.25 4.00 3.00 3.40 3.00 3.15 3.15 3.00 4.00 2.75 3.40	\$5.25 12.00 9.00 3.40 3.00 9.45 9.45 9.00 4.00 2.75 3.40
· Total	21		\$70.70

Costs of Copper Smelting—British Columbia Copper Co.

The following costs do not include overhead expenses, depreciation or insurance:

preciation of insurance.	
Cost per ton of smelting ore to matte ¹	\$ 1.18
Cost per pound of copper of converting matte to blister	0.0048
Cost per ton of copper of converting matte to blister	9.60
Cost per ton of smelting ore to blister copper	1.23
Cost per ton of copper to produce blister copper	0.105
Cost of coke per ton of ore smelted to matte	0.851
Cost of flux per ton of ore smelted to matte	0.114
Cost of labor per ton of ore smelted to matte	0.15
Cost of power per ton of ore smelted to matte	0.033
Cost of supplies per ton of ore smelted to matte	0.03
 	\$1.178
Cost of coke per ton f.o.b. smelter bins	\$6.00
Cost of flux per ton f.o.b. smelter bins	2.75
Cost of power per kilowatt-hour	0.0065

¹ Note.—The furnaces were slowed up with an excess of silica on the charge because of shortage of ore, hence the higher cost per ton of ore smelted to matte. They smelted only 6.55 tons per square foot of hearth area against 6.66 tons per square foot when the cost smelting was \$1.084.

Briquette mill handled 1057 cars of blast-furnace flue dust and made 398 tons of briquettes.

Briquette cost \$0.945 per ton for labor.

Distribution of smeltery payroll for same month and cost of labor per ton of ore smelted:

	Payroll distribution	Cost of labor per ton of ore smalted
Sample mill	\$318.05	\$0.00462
Bins	729.35	0.01060
Briquette	376.65	0.00546
Furnaces	6,508.35	0.0958
Slag disposal	1,413.65	0.0206
Linings	615.60	0.0078
Converters	1,016.85	0.0147
Crane	277.25	0.00403
Water system	224.65	0.00326
General surface	430.15	0.00624
Power house	585.60	0.00850
Total	\$ 12,496.15	\$0.18161

JACKET WATER REQUIRED¹

Hearth area, square feet	Water per hour, blowing in or out, gallons	Water per hour, normal running, gallons
3	900	460
5	1200	600
7	1450	950
9.5	2200	1100
12.5	3000	13 00
18	4000	1500
24	5000	18 00
30	6000	2000
36	7000	2200

Analyses of Copper Blast Furnace Gases

	О	СО	CO ₂	SO ₂	SO ₃	N
Morenci, Ariz Globe, Ariz Copper Queen	17.2	2.15 3.2 $(H2O$ $3.5)$	10.9	2.5 3.5 1.27	0.086	78.1
Tennessee ²			3.5	3.50	Tr.	••••

¹ Peters's "Modern Copper Smelting."

As delivered to sulphuric acid chambers. According to ROBERT STICET'S data, all of the above results showing free oxygen are open to doubt, as he believes that oxygen can only be present in the free state in copper furnace gases when extraneous air is drawn into the testing apparatus via the charge doors.

FETTLING PRACTICE AT IMPORTANT NORTH AMERICAN SMELTING WORKS

Humboldt,	Roasted cfine mine raw conclimerock		About 5% of total charge.	125 Oil. 1.1 bbl. 42 % No.	Not yet rebuilt. Bridge and side walls, from 6 to 25 ft. from bridge.
McGill, Nev.	18 ft. 9 in. X 131 ft. 9 in. Roasted conc. flue dust, con- verter sec- ondaries and	<u> </u>	27	639 Oil. 0.58 bbl. 42.6% No.	Semiannually Not rebut no the 50 ft. Brid nearest the fron from firing end.
Garfield, Utah	20 ft. 4 in. × 123 18 ft. 9 in. × ft. 5 in. Roasted conc. Roasted conc. flue dust and lime dust, consand.	sand-Siliceous ores Grushed quartz, Siliceous suland crushed siliceous tailings phide conc. silica. In.e Dropped Dropped through Thrown in. Every 2 to 4 A b out every 5 Daily.	days. 5	406 Oil.r O.70 bbl. 43.5% Some floaters but not enough to make trouble.	
Tooele, Utah	conc. Low-grade dust. calcines.	Siliceous ores and crushed silica. f Dropped through roof.	hours. 8-10	310 Coal. 1:5 39.0% No.	8 Eight or nine months. e Arch and sides c. 20 to 30 ft. from bridge.
Anaconda, Mont.	J 45		1 275	276 Coal.e 1:4.25 39.68% No.	Once in 8 years. Matte line near firebox.
Great Falls, Mont.	15 ft. 9 in. 19×11 × 42 ft. Roasted conc. and and flue flue dust.	Crushed Crushed sandstone. stone.e Thrown in. Thrown	every 10 days. 2.8 200b	203 Gas.c 1:2d 37.9% Occasión- ally.	At bridge.
Copper Cliff, Ont.	19×112 ft. Calcines, 80% green ore and flue dust, 20%.	Green ore and Crushed Crushed calcines. Dropped Thrown in. Thrown through roof. Continually. About Monthly	300a 100–150a	400–450 Pulverized coal. 1:6 33–35% No.	Not since starting 8 mo. ago. Roof.
Works at	Size of reverberatory fur- nace Kind of material smelted. Calcines, green ore	Present fettling materials How fettled	Tons of fettling used perfurnace day	: · · · · · · · · · · · · · · · · · · ·	How often are side walls Not since start-repaired

Continued
WORKS.
SMELTING
AMERICAN
RTANT NORTH
IMPORTANT
AT
PRACTICE
Fetting

FETTLING FRACTICE	AT IMPORTANT	NORTH	AMERICAN SMELTING		WORKS. Continued	nea
Works at	Clifton, Aris.	Douglas, Ariz., C. & A. Wks.	Douglas, Aris., C. Q. Wks.	Hayden, Aris.	El Paso, Texas	Cananea, Mex.
Size of reverberatory furnace Kind of material smelted	8	19×100 ft. Calcines and flue dust.	91½ ft. nes, flue and raw	19×112 ft. Roasted conc. and limerock.	19×100 ft. Rossted conc. and flue dust.	19½×100 ft. Roasted conc. and fiue dust.
Present fettling materials	and fluxes. Siliceous copper ores, and slag and matte.h	Copper ores, (carrying S, 1.7 to 23.8 %; SiO ₂ , 29.2 to	ore. Copper Queen sulphur-bear- ing ores.m	Conc. and converter slag.	Siliceous ore.	High-grade conc. and sili- ceous ore.
How fettled	Dropped through roof.	Dropped. through roof.	DroppedDroppedDroppedFed through through roof, through roof, through roof, special side openings.		Thrown in, except at bridge above which are fettling	Dropped through roof.
Frequency of fettlingTons of fettling used per furnace day.	Each shift required.	as Practically continuously 55	Practically continuously 75	Practically continuously About 20% of	Three times daily. About 6% of	times Practically continuously.
Tons smelted exclusive of fettling. Total tons smelted. Fuel. Fuel ratio! SiOs in slag.	260 326 <i>j</i> Oil. 0.837 bbl. <i>k</i> 38.5%	290 3451 Oil. 0.8 bbl.k	2.2		Oil.	159 226 Oil. 0.995 bbl. 39.8%
Any trouble with guiceous noaters How often are side walls repaired	Yes. When making g e n e r a l repairs.	One 8 1/8	Eight to nine months.		About once a year; except door jambe	Large repair about every six months; usually, one
Where is greatest wear in furnace	Under second charge hole, 20 ft. from	In first 80 ft. from the bridge wall.	In first 80 ft. At firing end. In first 80 ft. In first from the bridge. from bridge. from bridge.	In first 80 ft. from bridge.	paired about every 6 weeks. In first 30 ft. from bridge.	amall repair during interim. First 40 ft. of arch and 20 ft. of side walls.

		-	:
	i		į
	İ	Ē	
		٥	
i		ć	

furnaces now being replaced by direct fired furnaces—d The coal used is a high-sulphur bituminous coal of the following composition. History 19310 per lb. e Now changeing to coal-dust firing, and fettling through roof with calcined concentrates and flue dust. fisherous ores used for daily fettling; furnaces tapped down at intervals of 1 to 2 months and fettled with crushed silica. g From 20 to 22 tons of cold charge fed daily. I Solid charge, in addition about 100 tone of liquid converter alagare poured into the furnace. m Tonnage smalted in-rom 230 to 300 tone when Bisbee sulphide ores (15.5 per cent. S) was substituted for 80 per cent. SiOs fettling. n Aver-urnace-day in 1913; cone, 64 tons; biliceous ore, 3 tons - r Coal-dust firing being tried in one furnace. d The coal used is a high-ash, high-sulphur bituminous coal of the following Must of the tonnage smelted is charged through fettling hoppers, when over 25 per cent in c Gas-fired a Furnace equipped for fetting through roof, which will be & Per ton of solid charge, and includes starting and stopping 1 Coal consumption expressed in ratio of tons of coal to tons of charge smelted, oil consumption expressed as barrels of oil per b Exclusive of fettling and converter sing. dropped from regular charge hoppers a good fuel ratio is not maintained A Average per furnace-day; ores, 18 tons; slag and matte, 48 tons. when certain conveying devices are ready. 1 Solid charge, a About. ton of charge smelled prectised urnaces. creased f age per f

	C	otato	sifton	Composition of reverberatory slags	berat	ory si	826		Co	троез	Composition of fettling materials	f fet	ելու	That	erial			1	ļ
Situation of works	Au,	ÅE, Oa	C _{tt}	SiO ₁ ,	FeO.	Ca.O.), All	đ.	Au, os	Ag	Cu,	SiO _t ,		A7-	Fe.	200	ស់នេះ	1 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	r R
f, Ont Mont,	%id 0001 00008	- CO:	0000	33-36 37-9 39-7	43.0 43.0 42.3	्यं च	ØI-	100		堂 -	wa : 0	10 25 95 97	2000	-3 00 £~	400		1 + 1		
Garfield, Utab	0000	0 035	000	4230	30 82	480	6-0		500	300 200	200 200 288		<u>.=œ</u>	EN 00	3	200 200 200	6. C		0.4
Humboldt, Aris	:	:	23 	0 1 24 0	29 65	15 (_	1			7 30			-	667			Sificeous	000
Cluton, Arishman		;		20 20 20 20 20	\$ \$	9.	5à	-	: ;				1 6	3 26	φ	7 64	4	Slag an	
Douglas, Aris., C.		:	0.5	34.0	46.0	2 0	9	0	0.033	0 36	4100	1200	24.00 26.00 26.00	 +# 3	400	N-014	23 ↔ c	Sulphide Oxide	-
Douglas, Aris., C.Q.		0 10	0 487	34.8	43 1	1 9	90		22	→	9) # ‡ +	३ चा	-	åvå.	-	
yden,	1	;	:		;	1			,					0 2 2 2		0	24 1 2 2	_0	Concentrates.
								_, -	_	je	100	8	0.16	910	20			Concontrate	trates
Cananes, Mex	717	0 13	0.48	30.00	2.	*	0_	*	0 001	0 35	. 60			· Of		da d	tep		Ore.
• Cu-Ni	p Repo	Reported as	Fe.	o-verted	2	P.60	for go	ag out	mparison.	9	CaO-MgO	MEC							

Fettling Practice at North American Smelting Works1

The fettling of reverberatory furnaces has undergone marked change in the last 8 or 10 years. This is well illustrated in the table on the preceding pages, which has been compiled from replies received from officials of the leading smelting works in North America that use reverberatory furnaces. presents in concise form much interesting data regarding the reverberatory furnaces of the country, but the most striking feature is the diversity in fettling practice between the older and Most of the newer works fettle the furnaces newer plants. through the roof, while the older plants throw the fettling in through the side doors. The older works still use for the most part quartz or other high-silica material, and naturally use this fettling as sparingly as possible. The newer plants, on the other hand, drop almost any material on the sidewalls and in large quantities, the idea being that the sidewalls will be protected if a sufficient amount of cold materials be dropped thereon. should be remarked, however, that most of the plants that fettle through the roof use ores or products containing sulphur. some carrying the revolution so far as to use raw concentrates. or converter slag or matte cleanings-materials that a few years ago would have seemed absolutely heretical.

When the fettling was dropped through the roof on the side walls in great quantities, some of it naturally floated out into the furnace, and after some experimentation it was found that raw ore, floating off with the slag, during skimming, was increasing the metal loss; this led to the use of siliceous ores containing copper as sulphide, in which form it would be readily removed by the heat of the furnace. This practice has been carried still farther by the use of ores carrying as much as 15 per cent. sulphur as at Douglas, and also by the use of raw concentrates, as at Cananea and elsewhere, confirming the hypothesis that a large quantity of cold materials was what was

needed to protect the side walls.

It should be borne in mind in consulting the table that much of the data is approximate and subject to the personal equation of the official answering the series of questions submitted. For example, in the matter of tonnage figures, it may readily be that one official is reporting the tonnage of his furnace under the best normal operating conditions, whereas another may have given the average tonnage actually smelted in a given month. thus including interruptions or accidents that invariably reduce the actual tonnage smelted below the average of the furnace under the best conditions. Hence the tonnages given should be merely regarded as approximate. In several instances officials went to the trouble to point out that molten converter slag was not included in tonnage reported. This is what would normally be expected, but it is not clear whether this is the case in every instance. The answers to the various questions have been inserted in the table in the original phraseology of the reporting

¹ Eng. and Min. Journ., Oct. 17, 1914.

 official wherever that was consistent with a proper interpretation by comparison with other data submitted. The subsidiary table showing the analyses of the slags and of the fettling materials will be of interest, and some of the other incidental information will attract attention, particularly that touching on the practice in Montana, where some important changes are taking place.

Coal-dust Firing of Reverberatories¹

It was finally adopted at Copper Cliff, however, designing furnaces especially to meet the requirements by eliminating right-angled bends in the flues and placing the skimming door at the side instead of the end. The waste-heat boiler was made a secondary consideration. The first smelting showed no difficulty with the fuel, and as improvements were gradually made the smelting became more efficient. In the first 3 months of 1914 the fuel ratio was 5, 5.65 and 6.77, respectively. method of feeding has been changed. At first it was done through hoppers near the fire end, but is now done almost entirely through pipes in the side walls. Coal dust is introduced through five pipes 5 in. in diameter. It is first dried and then ground so that about 95 per cent. passes a 100-mesh and 80 per cent. passes a 200-mesh screen. The great advantage found in this method of firing is the absence of breaks in the temperature curve due to grating or cleaning the hearth, and as a consequence a greatly increased tonnage and fuel ratio.

At Anaconda coal-dust firing was tried in June, 1914, in a furnace 124 ft. by 21 ft. The method of charging was similar to that used at Copper Cliff. From the experience gained in this work, Mr. Bender lays down the following requisites for successful use of coal dust: (1) The coal should be dried before pulverizing, containing not more than 1 per cent. moisture; (2) fine pulverization affords increased area and higher thermal efficiency, 95 per cent. should pass a 100-mesh screen and 85 per cent. a 200-mesh; (3) the quantities of coal and air delivered to the furnace should be carefully controlled in order to secure complete combustion; (4) the coal should contain enough volatile combustible matter to give the required combustion; a standard for cement work is 30 per cent.; (5) the furnace should be properly designed and equipped, and (6) provision must be made for taking care of the ash. Based on past experience, some changes will be made in the new equipment for coal-dust reverberatory firing at Anaconda. The furnaces will be 144 ft. by 25 ft., with a flue area of 48 sq. ft. Matte will be tapped at the The skimming plate will be 12 in. higher than in other furnaces, the top of the plate being 24 in. above the tap hole. Recent records for a week at Anaconda indicate the efficiency of coal-dust firing; the average tonnage per day was 542.7, with a fuel ratio of 7.5.

^{1 &}quot;Bull." A. I. M. E., January, 1915.

Reverberatory Practice

Some of the essentials of good ore-smelting reverberatory practice are thus summed up by R. E. H. Pomeroy.1

1. Careful preparation of the charge by adequate mixing of

all ingredients before charging.

2. Addition of enough lime rock, preferably coarse, to produce an active boiling in the furnace.

3. Maintaining a deep bath of molten matte to equalize and

distribute the heat over the whole of the hearth.

4. Frequent skimming so as to carry only a thin layer of slag over the matte bath.

5. Operating the furnace for the best smelting conditions, ignoring the waste-heat boilers as factors in the power supply. Factors affecting the life of the furnace:

1. The furnace roof set high over the hottest portion of the

hearth.

2. Frequent fettling to protect the side walls.

3. Frequent charging and active charge mixtures to avoid

floater and blanket formation requiring excessive firing.

The largest copper-ore-smelting reverberatory, so far as known, is the new one at Anaconda, with a 25×144 -ft. hearth. A furnace 178 ft. long has been built for settling reverberatory The largest copper-refining reverberatory is, so far as I know, 17 ft. \times 33 ft. 8 in., and has cast a charge of 550,000. lb. These figures are due to the courtesy of A. CLAYTON CLARK.

Electric Smelting of Copper Ores CLAUDE VATTIER'S LIVET EXPERIMENTS, 19032

		Analyses	
·	Оте	Matte	Slag
Cu	5.10	47.90	0.10
3	4.13	22.96	0.57
Fe	28.50	24.30	32.50
Mn	7.64	1.40	8.23
SiO_{2}	23.70	0.80	27.20
Al_2O_3	4.00	0.50	5.20
CO_2	4.31		
CaO	7.30		9.90
MgO	0.33		0.39
P	0.05		0.06
<u> </u>	85.06	97.86	94.15

Current, 4750 amp. at 119 volts.

One metric ton of ore smelted per hour.

Electrode consumption, 6.25 kg. per hour.

¹ Bull. A. I. M. E., February, 1915. ² J. W. RICHARD'S "Metallurgical Calculations," Vol. III.

According to D. A. Lyon and Robert M. Keeney, no copper ores are treated in the electric furnace in this country at the present time. It is reported, however, that in Norway trial smeltings of copper ores with an electric furnace of 1000 hp. and an estimated producing capacity of 2000 tons of copper per annum have been conducted at the Ilen Smelting Works, Trondhjem, and we understand that it is the intention to smelt copper ores regularly at this plant in the electric furnace.

Converter Output at Great Falls

In the article on the Old Dominion smelting works, at Globe, Ariz., in the Journal of June 6, 1914, attention is directed to the large daily output obtained in the Great Falls type converter used at this plant. The statement is made that this daily copper output, i.e., 60 tons is about double that reported last year by Messes. Wheeler and Krejci for shells of the same size at Great Falls, Montana.

COPPER OUTPUT OF CONVERTERS AT GREAT FALLS

Period	Tons copper produced per con- verter day	Per cent. cu. in. matte	Min. per ton of copper	Tons of iron and sulphur oxidized per converter day	Tons of ore used per converter day
Feb., 1914.		36.4	15.13	176	65.3
Mar., 1914.		33.8	16.13	186	71.4

While this is probably a record figure for upright shells, 12 ft. in diameter, it does not approximate the output obtained from the Class V or 20-ft. converters now in use at Great Falls. In the 20-ft. converters the average output of copper was over 95 tons per day in February, and nearly 90 tons in March when converting a 34 per cent. matte. In addition, from 25 to 30 tons of cold matte and cleanings are treated per converter day, and operations during the months cited were handicapped on account of reconstruction work; it is expected that the output will be increased when normal running conditions are restored. In the article "Great Falls Converter Practice," Messes. Wheeler and Krejci reported that the 20-ft. converter produced at the rate of 4.31 and 4.77 tons of copper per converter hour when in operation, or at the rate of 103.4 and 114.5 tons of copper per day, respectively; this was when converting a 38 to 39 per cent. matte.

¹ Bull. A. I. M. E., Feb., 1914.

AMERICAN CONVERTERS—OLD STYLE ACID LINED¹

Company, type	Out- side height, ft.	Out- side diam- eter, ft.	Blast pres- sure, lb. per sq. in.	Initial charge, lb.	Maxi- mum charge, lb.	DIOWR		Number of tuydess
Parrot and M.O.P.Co.'s Anaconda Great Falls Stalmann Copper Queen.	8.5 10 13 8 7.25	5 6 7 5 5.67×8	11 13 16 10 5.5	2,500 7,000 10,000 3,000 4,000	17,000 22,000	16 12 10 14 12	16,000 22,000 26,000 17,000	16

CANADIAN CONVERTER PRACTICE²

Company	Туре	Stands	Shells	Dimensions
Canadian Copper Co.	Basic. Peirce-Smith			
	special	5	5	10' 0"×37' 2"
Mond Nickel Co	Basic. Peirce-Smith standard	2	2	10' 0"×25' 10'
Granby Cons. M. &	Basic. Power & Min-			
S. Co.: Grand Forks	ing Mchy Co. acid	3	10	84"×1 26"
Anyox	Basic. Great Falls	3	3	12' 0"× #' 9"
B. C. Copper Co	typeAcid. Allis-Chalmers	3 2	3 5	12' 0"×5' 9" 84"×126"

Converting at the British Columbia Copper Co.'s Smeltery*

There are two hydraulic converter stands; seven 84×126 in. converter shells; a 40-ton NILES electric traveling crane; a 6-ft. Carlin silica mill, motor driven; a pneumatic tamping device; copper casting trucks, etc. A converter lining lasts two to three charges. The matte runs from 30 to 45 per cent.

The converter department produced per day about 30,000 lb. of blister copper, carrying about 7 oz. of gold and 30 of silver per ton. It required a crew of 21 men which, divided as follows. into two 8-hour shifts, was able to handle all the matte produced:

Kind of labor	Day shift, 7 A.M. to 3 P.M.	Afternoon shift, 3 P.M. to 11 P.M.
Foremen	1	0
Converters Crane	$oldsymbol{2}^{2}$	2
LaborersL	3 5	1 3
Total	 13	- 0

From Peter's, "Modern Copper Smelting."
 Bull. 209, Canadian Dept. of Mines.
 From a paper by F. K. BRUNTON, Trans. A. I. M. E., 1915.

Converter Blast.—According to STICHT, about 100,000 cu. ft. of air is required per long ton of copper produced from 50 per cent. matte and 165,000 cu. ft. of air for a long ton of copper from 40 per cent. matte. At one American works 183,000 cu. ft. of air is required per 2000 lb. of Cu produced.

Converter Costs.—As a rough basis for estimates on new work, \$4.50 per ton of matte could be taken as a minimum, and \$9.50 should be an outside figure for acid converting.

Basic should be a little cheaper.

Lining.—About 2 tons of copper will be produced per ton of

lining in the acid converter.

Gases.—The following analysis of gas passing through a converter flue is given by Dunn (*Trans. A. I. M. E.*, 1913): SO_2 , 2.845 per cent.; SO_3 , 0.0515; CO_2 , 0.2084; H_2O , 1.061; As_2O_3 , 0.00073; O, 12.04; N, 83.64 per cent.

Sulphuric-Acid Manufacture

As the regions surrounding smelteries grow more densely populated, the difficulties caused by the discharge of sulphuric acid and sulphur dioxide into the atmosphere and the probability of being forced into sulphuric-acid manufacture increase. The contact-acid process does not seem successful for smelting plants, probably because of the arsenic in the fumes poisoning the catalyst. In the chamber process one has the ordinary chambers, the Meyer tangential system, the Falding high-chamber, and the still experimental lead spirals to choose from. The Falding system as adopted at the Tennessee Copper Co. was described by its inventor in the Eng. and Min. Journ. of Sept. 4, 1909, p. 443. In that article he makes the following comparison between the systems:

	Chamber space, cu. ft.	Ground area, sq. ft.	Weight of lining, tons
Old System Meyer tangential Falding	174,480	12,936 11,938 4,096	112 110 66.5

Acid manufacture at the Ducktown Sulphur, Copper & Iron Co.'s plant was described in the Journal of May 28, 1910, by W. H. Freeland and C. W. Renwick. That plant was designed for a capacity of 160 tons of 60° B. acid per day. Under normal conditions the gases delivered to the chambers analyze: SO₂, 3½ per cent.; CO₂, 3½ per cent.; and SO₃ trace. Temperature control of the gases is attained by small kite-shaped flues through varying lengths of which the gases can be run, until they are sufficiently cool. There are two Glover's towers, each 12 ft. square and 45 ft. high. Following these are four hard-lead fans (10 per cent. antimony) then two sets of eight chambers each. Each chamber is 96 ft. long, 22 ft. 8 in. wide and 30 ft. high. Special arrangements are said to be in-

troduced here to take care of the carbon dioxide in the gases.1 Six Gay-Lussac towers are used for recovery of the nitrous acid.

In a discussion of pyritic smelting and acid manufacture by Falding and Channing (Eng. and Min. Journ., Sept. 17, 1910) the necessity of a uniform composition of gas is insisted upon by these authors, and the general point made that an acid plant drawing its gases from several furnaces will more probably be successful than if it draws its gas from one.2

The Anaconda Copper Co. in 1915 constructed a 100-ton acid plant, but this was as an adjunct to a leaching plant, and not to use blast-furnace gases. It was described by E. P. MATHEWSON in the Eng. and Min. Journ. of April 24, 1915.

Two 7-hearth Wedge roasters 22 ft. 6 in. inside shell diameter are used and the gases are led into a dust absorber 32 ft. in diameter by 44 ft. high over all. There are six niter pans. Gases from these mix with the sulphur gases in an octagonal Glover's tower 16 ft. across × 51 ft. high. There are 23 cooling chambers, 11 ft. diameter \times 36 ft. high and six 40 \times 96 \times 36 ft. These are arranged five round, rectangular, three round, rectangular, three round, two rectangular, three round, rectangular, three round, rectangular, six rectangular. A hardlead fan, 8 ft. in diameter and 4-ft. face follows the first five round chambers.

There are 21 Gay-Lussac towers, circular in section, 7 ft. in diameter by 38 ft. high. They are constructed, except for the lead pans, of Duro-tile blocks laid in acid-proof cement with a packing of 72-hr. coke. The chamber space is 18 cu. ft. per pound of sulphur per day.

Miscellaneous Data for Lead Metallurgy

ZINC REQUIRED FOR DESILVERIZING LEAD

Silver in lead,	Zinc required, per cent.	Silver in lead,	Zinc required,	
per cent.		per cent.	per cent.	
0.025	$egin{array}{c} 1.25(a) \ 1.33(a) \end{array}$	0.3	2.00 (a)	
0.05		0.38	1.84 (b)	
0.1	$egin{array}{ccc} 1.5 & (a) \ 1.66 & (a) \end{array}$	0.51	1.96 (b)	
0.15		0.84	2.45 (b)	

The matter of the ill effect of carbon dioxide in chamber work is by no means settled. Lunge says one Bohemian works with which he was acquainted made acid without trouble or special precautions from material carrying 10 per cent. of bituminous matter.

² In plants making sulphuric acid from pyrites, the inlet gases are considered to be best at 8.8 per cent. SO₂, 9.6 per cent. O₂; when burning brimstone, the gases should contain 10.65 per cent. SO₂, 10.35 per cent. O₂.

3 SCHNABEL'S "Handbook of Metallurgy." The Macmillan Co.

(a) According to Illing. (b) According to June.
Note.—At 350°C. lead dissolves 0.6 per cent. of Zn; at 650° it will dissolve 3.0 per cent. of Zn.

	Speiss, Leadville	Speiss, St. An- dreasberg	Matte, Pueblo	Matte, Pueblo	Raw matte, Clausthal	Roasted matte, Clausthal
Ag	0.0085				0.0299	0.0327
A u	tr.					
<u>C</u> u	0.3628	18.37	20.40	10.35	4.620	4.123
Pb	1.4935	66.84	8.50	12.45	10.665	10.492
$\underline{\mathbf{Mo}}\dots$	0.2110		.	· · · · · ·		• • • • • • •
Fe	60.578	0.22	41.20	42.50	53.112	52 .411
$\mathbf{Z}\mathbf{n}\dots$	tr.	0.04	1.50	3.10	2.110	2.459
Ni	0.0876	0.13			0.312	0.350
Co		0.13	• • • • • • • • • • • • • • • • • • •	• • • • • • •	0.312	0.000
S	5.1891		26.30	26.40		
As	31.4725	tr.	tr.	0.12	26.877	0.613
$Sb \dots$	tr.	3.60	tr.	0.05	0.267	0.128
SiO_2			0.20	0.30	0.510	1.486
CaO				0.15	0.383	0.3 36
Sn		10.60	0.16	0.21		
Bi		tr.				
Mn	·		1.40	3.30	0.385	0.317
O				• • • • • •	[22.966
SO_3	· · · · · · · · · · · · · · · · · · ·				[4.225

Effect of Steam on Molten Lead¹

If the temperature of the lead be below the melting point of zinc, steam will bring to the surface a zinc crust with some of the silver.

If the temperature of the lead be slightly above the melting point of zinc, the steam will cause a thorough mixing of the zinc and lead.

If the temperature be between a dark red and an incipient cherry red, the steam will cause a scum to rise, containing about 3 per cent. of zinc, which does not, however, take any silver away from the zinc.

If it be a clear cherry red, the zinc will decompose the steam; the zinc oxide, mixed with lead oxide, collects as a powder on the surface of the lead.

¹ HOFMAN'S "Metallurgy of Lead."

SOFTENING LEAD¹

	Claus	thal	Laute	nthal	Freiberg		Denver	
	Before drossing	After dross- ing	Before drossing	After dross- ing	Before dross- ing	Liquat- ed dross (5%)	Dross before liquat- ing	Dross after liquat- ing
Pb Cu Cd	0.1862 Tr.	0.1096 None	Tr.	0.0907 None	96.667 0.940	17.97	53.0 18.2	50.0 26.8
Bi Ag As Sb	0.0048 0.1412 0.0064 0.7203	0.0050 0.1420 0.0053 0.7066	0.1430 0.0074	0.0083 0.1440 0.0032	0.066 0.544 0.449	None 0.17 2.32		Au = 0.30 or 75.0 or 7.31
Sn Fe Zn	None 0.0064 0.0028	None 0.0042 0.0017	None 0.0089 0.0024	None 0.0048 0.0015	0.820 0.210 0.027 0.022	0.98 0.04 0.43 0.07		0.18
Ni Co S O	0.0023	0.0017 Tr.	0.0068 0.00035	$\left\{ egin{array}{c} 0.0038 \ \mathrm{Tr.} \end{array} ight\}$	0.0055 0.200	1.09 4.00 1.87	2.0	3.6
Slag,	ash, hear	th mate	rial			8.66	1.8	4.8

PATTINSON'S PROCESS—CRYSTALLIZATION

(Ounces of Silver per Ton)

In the molten lead before crystallization	In the crystals	In the liquid lead		
205.33	113.74 - 135.91	298.95		
213.49	92.75 - 109.8	313.83		
281.34	119.58 - 198.33	422.91		
288.16	113.74 - 181.99	446.24		
420.57	198.91 —	560.57		
609.57	586.53 —	659.15		
615.15	503.99 - 646.31	655.65		

Results from experiment—not particularly concordant. "Berg- und Hutten-männische Zeitung," 1862, p. 251.

Zinc Table for a 30-ton Kettle²

FIRST ADDITION OF ZINC (TO REMOVE GOLD)

Up to 0.10 oz. gold per ton, 250 lb. zinc.

From 0.10 to 0.30 oz. per ton, 300 lb. zinc.

From 0.30 to 0.50 oz. per ton, 350 lb. zinc.

From 0.50 to 0.70 oz. Au, 400 lb. zinc.

From 0.70 to 0.90 Au, 450 lb. zinc, etc., etc.

HOFMAN, "Metallurgy of Lead."
 By Eurich, taken from Hofman's "Metallurgy of Lead."

Second addition to bring silver contents to 40 oz.		Third addit	tion to bring ents to 1 oz.	Fourth addition to bring silver contents to 0.1 oz.		
Oz. Ag per ton	Lb. zinc	Oz. Ag per ton	Lb. zinc	Oz. Ag per ton	Lb. zinc	
40 50 60 70 80 90 100 110 120 130 140 150 160 170 180	15 50 100 160 200 245 285 315 345 365 390 415 440 460 475	5 7 10 15 20 22 24 26 28 30 32 34 36 38 40	225 265 320 400 450 470 485 500 512 530 540 555 570 585 600	0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.5 2.0 2.5 3.0 3.5 4.0	60 75 90 105 120 135 150 165 180 225 330 390 450 510 562	
190 200	495 515	42 46 48 50 52 54 56 58 60 62	615 630 640 655 670 680 695 710 734 747	must be softed per must be a pletely, arsen antimony to per cent. Co	liverizing leadened, for copremoved commic to a trace, not over 0.75 opper and teline with zinc readily than	

NEWTON'S experiments at Maurer (Bull. A. I. M. E., 1915, p. 174), conclusively showed that 535°C. is the best temperature at which to remove the zinc crusts. Carpenter and Whitley have shown that there is but one chemical compound formed between zinc and silver; this is Zn₃Ag₂, freezing at 665°C. It is soluble in lead at high temperatures.

Effect of Impurities on Refined Lead¹

Antimony and arsenic—render lead hard and less malleable. Said to render lead more easily attacked by hot sulphuric acid when antimony is over 0.2 per cent. This seems unreasonable. For corroding, lead may not have over 0.005 per cent. So. Tin, arsenic and antimony are oxidized in that order, and the products from softening lead may be separately worked up for these elements.

Bismuth—0.118 to 0.352 makes lead hard. somewhat crystalline and more fusible. Over 0.02 unfits lead for corroding.

Cadmium—tends to protect lead against sulphuric acid.

Iron.—Lead containing 0.07 per cent. Fe does not seem to loss in either softness or malleability. Corroding lead ought not to carry over 0.003 per cent. Fe.

Nickel and Cobalt.—These can readily be eliminated by slow-

fusion.

Tin—makes lead light gray, hard and increases fusibility. Is readily removed by heating in air.

Zinc.—Corroding lead ought not to carry over 0.003 per cent.

Zn.

Typical Lead Smelting Furnaces

	Dimensions at tuyères, inches	Blast pres- sure		Capacity per 24 hr.	Remarks
U. S. Smelting Co., Midvale ¹ Tintic Sm. Co., Tintic, Utah ¹ A. S. & R. Co., Pueblo, Colo. ¹	48×160	32–34 34		150	Mech. feed Coke, 12 % Mech. feed
	$\begin{array}{c} 42 \times 144 \\ 48 \times 164 \end{array}$	32 34	18 20 21	120-150 166 150	Coke, 12%
N. J. ¹	44×128 48×160 42×192 46×162	35–40	16 20 22	140 250–275 150	Coke, 13% Coke, 14% Coke, 18.1%
Peñoles, Mapimi., Mex. ² A. S. & R. Co., Perth Amboy, N. J. ² A. S.&R. Co., Monterey, Mex. ² A S.&R. Co., Chihuahua, Mex. ²	42×220 44×236 46×202				

¹ Hofman, "Metallurgy of Lead."

¹ From Gowland's "Metallurgy of the Non-ferrous Metals," p. 155.

² Private notes.

It would appear that the Port Pirie furnace is the largest operating.

ZINC SMELTING1

Effect of Impurities in Smelting:

Alumina—may be objectionable, as zinc spinel may be formed.

Arsenic and Antimony.—These are partly reduced and volatilized, and appear in traces in the spelter.

Cadmium.—Cadmium is more easily reducible and more volatile than zinc, and collects in the first dust and metal, which can then be used as a source of this metal.

Calcium.—Lime alone is beneficial, as it tends to decompose zinc sulphide. See Silica, above.

Fluorspar.—This is an undesirable constituent because it forms fusible slags which attack the retorts.

Gold and Silver.—These remain chiefly with the retort residues and can be recovered from them by resmelting.

Iron and Manganese—should not be present as sulphide, as it corrodes the retort. Also forms fusible slags with silica, which corrode the retort. Ten per cent. Mn + Fe represents about the upper limit of safety.

Lead.—The chief objection to lead is that its compounds are reduced and some lead distils over with the zinc.

Magnesia—acts much like lime, but magnesian slags are less fusible than calcareous.

Silica—is inert alone, of no particular consequence when lime is present, but is harmful if both lime and iron are constituents of the charge since ferrous-lime silicates are extremely fusible.

Sulphur—decreases the yield of zinc, since the sulphide is not decomposed by carbon. Ferrous sulphide corrodes the retort.

In general, either highly acid or highly basic charges must be used, there must be a little space above the charge, and the charge should not be too finely pulverized.

The formation of zinc spinel occurs to a larger extent in hand-made than in machine-made retorts; it is diminished greatly by addition of coke to the mass used for making the retorts. During smelting the slag takes up considerable quantities of silica and alumina from the retorts, and a viscous layer, intermediate in composition between the slag and the retort, is formed, which tends to prevent rapid destruction of the latter. It is only at the higher temperatures prevailing toward the end of the distillation that there is any pronounced destructive action of the slag on the retorts. The absorption of zinc oxide by the clay used for making the retorts, and its fixation as aluminate, increases with the pressure, temperature, and time.²

² Metall. und Erz., 1914, pp. 333, 337, 412, 553.

¹ W. R. Ingalls, "Metallurgy of Zinc and Cadmium."

Miscellaneous Data for Zinc Smelting Blue Powder Production (Zinc Smelting)

Blue powder	I	II	III	,IV	v	VI
ZnPbFeCdAs, SbCInsolZinc ore:	0.82	(b) 94.04 2.50 0.30 1.30 	(a) 91.50 0.50 0.18 0.50 0.16	1.50	(d) 88.80 1.90 1.32 1.80 Tr. 4.10 Tr.	1.98 0.79 0.52 Tr.
ZnPbFeCdSSbCaOMgOSiO ₂	47.00 3.80 10.34 0.005 1.08 Tr. Tr. 4.00 0.60 10.00 A	46.60 6.60 5.50 0.06 1.80 Tr. Nil 2.80 0.80 13.80 B	43.00 1.80 8.40 0.10 1.50 0.05 0.03 3.50 1.20 22.00 C	5.50 8.50 ? ? ? ? ?	48.50 6.50 8.30 0.18 2.50 0.02 0.04 6.00 13.80	44.50 9.30 12.50 0.25 3.40 0.02 0.03 4.50 13.90

(a) A small portion in the form of ZnO. (b) Metallic zinc, 88.74 per cent.; ZnO, 6.60 per cent. (c) Metallic zinc, 85.34 per cent.; ZnO, 12.66 per cent. (d) Metallic zinc, 79.16 per cent.; ZnO, 11.26 per cent. (e) Metallic zinc, 85.24 per cent.; ZnO, 7.54 per cent.

W. R. INGALLS, "Metallurgy of Zinc and Cadmium."

Residues produced	I	II	III	IV	v	٧ı
Zn Pb Fe	4.00 5.00 16.55	2.50 8.50 14.50	3-7 1.26 ?	4.00 10.00	3.40 8.10	4.20 9.50
Ag	0.016 0.05 Nil Nil Nil	? ? ? ?	?????	0.01	0.05 ? ? ?	0.085
S	$egin{array}{c} ? \\ 2.50 \\ 0.45 \\ \end{array} \} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	4.00 2.50 1.50 60.00	???	? 8.00 ? 17.50	2.10	3.50

On attempting a jigging of the above, these products were obtained:

Zn	$\begin{bmatrix} 24.25 \\ 0.032 \\ 42.75 \end{bmatrix}$	5.00 13.16 0.016 20.68 44.67	15-20		30.0-35.0 0.04-0.05	2.50-7.0 10.0-48.0 0.049-0.16 11.77-24.0 12.75-60
----	---	--	-------	--	------------------------	---

Retort Duty.—According to Ingalls, a production of about

 $4\frac{1}{4}$ tons of spelter per retort per year is a safe estimate.

Glazing.—Sometimes the retorts are glazed when dry in order to make them impervious to the passage of gas. Lead glazes may not be used; more often porcelain and salt glazes are used. The porcelain glaze consists of 84 parts ground feld-spar, 35 parts calcium carbonate, 26 to 91 parts china clay and 54 to 204 parts quartz sand. It is not necessary that the glaze be quite white. The glaze is made into a mixture with gum arabic, dextrine or some other paste and painted on the inside of the retort to a thickness of about ½ in.

CADMIUM-BEARING FLUE DUSTS1

	Silesia works			Go		
	Solu- ble	Insoluble	Total	Solu- ble	Insoluble	Total
ZnO	0.874 0.006 1.896 1.332 2.900 0.714 0.168	6.285 1.147 	6.285 2.021 0.006 1.896 1.376 15.058 1.192 0.608 0.401 0.263 27.042 11.400	1.120 0.006 1.676 0.481 2.940 1.191 0.464 1.337	8.980 1.518 1.518 1.591 (Mn ₈ O ₄) 15.928 4.601 1.071 0.858 1.280 0.394 9.061	20.523 8.980 2.638 0.006 1.676 2.072 18.868 5.792 1.535 2.195 1.280 0.394 22.381 4.850 6.804

Smelting Zinc Ores by Electricity

The following estimate of electric zinc smelting is given by Dorsey A. Lyon and Robert M. Keeney, in a paper before the San Francisco meeting of the A. I. M. E., September, 1915:

Although more progress has been made hitherto in the electric smelting of zinc ores than in that of any of the non-ferrous metals except aluminum, and metals forming ferro-alloys, such as silicon, chromium and tungsten, the process is nevertheless still largely in the experimental stage. There is no plant operating on a commercial scale except the Trollhättan works, taking from 10,000 to 13,000 hp. There are about twenty-four furnaces installed at this plant, each requiring from 400 to 1200 hp. The same company, the Norse Power & Smelting Syndicate, also has a smaller plant near Trolhättan at Sarpsberg, where there are seven small furnaces. One other small commercial plant is in course of erection at Keokuk, Iowa, by the Johnson Electric Smelting Co. It appears that the experiments conducted at Hartford, Conn., for several years have

¹ Schnabel's "Handbook of Metallurgy." The Macmillan Co.

Zinc Distillation Temperatures

According to Ingalls

In the retort: beginning, 781; end, 1188.

In the furnace: 1067; end, 1309.

Interior of furnace near middle wall where the gas is introduced, about 1315°C.

CAPACITY AND WEIGHT OF CYLINDRICAL RETORTS1

Outside vol., cu. in. 2926 2990 3054	Inside vol., cu. in. 1693 1732 1770	Wt. lb. (a) 86.3	Outside vol., cu. in. 3613 3691	Inside vol., cu. in. 2212 2262	
2990	1732	88.0		1	98.1 100.0
3117 3181 3244 3308 3372 3435 3499 3563	1809 1847 1886 1924 1963 2001 2040 2078	89.9 91.6 93.4 95.1 96.9 98.6 100.4 102.1 104.0	3770 3848 3927 4006 4084 4163 4241 4320 4398	2312 2362 2413 2463 2513 2564 2614 2664 2714	102.1 104.0 106.6 108.0 110.6 112.0 113.1 115.9 117.9
	3244 3308 3372 3435 3499	3244 1886 3308 1924 3372 1963 3435 2001 3499 2040 3563 2078 3626 2117	3244 1886 95.1 3308 1924 96.9 3372 1963 98.6 3435 2001 100.4 3499 2040 102.1 3563 2078 104.0 3626 2117 105.6	3244 1886 95.1 4006 3308 1924 96.9 4084 3372 1963 98.6 4163 3435 2001 100.4 4241 3499 2040 102.1 4320 3563 2078 104.0 4398 3626 2117 105.6 4477	3244 1886 95.1 4006 2463 3308 1924 96.9 4084 2513 3372 1963 98.6 4163 2564 3435 2001 100.4 4241 2614 3499 2040 102.1 4320 2664 3563 2078 104.0 4398 2714 3626 2117 105.6 4477 2764

¹ W. R. Ingalls, "Metallurgy of Zinc and Cadmium."

(a) After burning. An old retort will carry 12-18 per cent. of its weight in zinc.

DIMENSIONS OF ZINC RETORTS USED IN THE UNITED STATES

Place	Cross section	Length, in.	Diameter, in.
Jersey City Peru Pulaski	Circular Circular Circular Elliptical Elliptical Elliptical Circular	48 46 54 54 54 54 54	8 8 8 8 7 7×9 7½×11 8×10 8 6¾×12¼

¹ W. R. INGALLS, "Metallurgy of Zinc and Cadmium."

Retort Duty.—According to Ingalls, a production of about

4½ tons of spelter per retort per year is a safe estimate.

Glazing.—Sometimes the retorts are glazed when dry in order to make them impervious to the passage of gas. Lead glazes may not be used; more often porcelain and salt glazes are used. The porcelain glaze consists of 84 parts ground feld-spar, 35 parts calcium carbonate, 26 to 91 parts china clay and 54 to 204 parts quartz sand. It is not necessary that the glaze be quite white. The glaze is made into a mixture with gum arabic, dextrine or some other paste and painted on the inside of the retort to a thickness of about ½ in.

CADMIUM-BEARING FLUE DUSTS1

	Si	lesia works		Go		
	Solu- ble	Insoluble	Total	Solu- ble	Insoluble	Total
ZnO	0.874 0.006 1.896 1.332 2.900 0.714 0.168 20.430 11.400	6.285 1.147 	6.285 2.021 0.006 1.896 1.376 15.058 1.192 0.608 0.401 0.263 27.042 11.400	1.120 0.006 1.676 0.481 2.940 1.191 0.464 1.337	8.980 1.518 	20.523 8.980 2.638 0.006 1.676 2.072 18.868 5.792 1.535 2.195 1.280 0.394 22.381 4.850 6.804

Smelting Zinc Ores by Electricity

The following estimate of electric zinc smelting is given by Dorsey A. Lyon and Robert M. Keeney, in a paper before the San Francisco meeting of the A. I. M. E., September, 1915:

Although more progress has been made hitherto in the electric smelting of zinc ores than in that of any of the non-ferrous metals except aluminum, and metals forming ferro-alloys, such as silicon, chromium and tungsten, the process is nevertheless still largely in the experimental stage. There is no plant operating on a commercial scale except the Trollhättan works, taking from 10,000 to 13,000 hp. There are about twenty-four furnaces installed at this plant, each requiring from 400 to 1200 hp. The same company, the Norse Power & Smelting Syndicate, also has a smaller plant near Trolhättan at Sarpsberg, where there are seven small furnaces. One other small commercial plant is in course of erection at Keokuk, Iowa, by the Johnson Electric Smelting Co. It appears that the experiments conducted at Hartford, Conn., for several years have

¹ Schnabel's "Handbook of Metallurgy." The Macmillan Co.

proved successful enough to warrant the installation of a small commercial unit to test the process further. The Johnson process and the Trollhättan process are essentially the same. Johnson claims to have overcome the problem of condensation

1

of zinc vapor into zinc instead of blue powder.

From the work at Trollhättan and the results of others, it is evident that the difficulty in electric smelting of zinc ores lies almost entirely in the condensation of zinc vapor to a metal, rather than blue powder, under the peculiar conditions of the electric furnace. The electric furnace presents no great difficulties, mechanically or electrically, because all the troubles formerly experienced have been solved in the construction of large pig-iron, steel, carbide and ferro-alloy furnaces. The problem, then, is one of a metallurgical nature, and is caused by the different conditions and greater speed of smelting in the electric furnace, as compared with the combustion retort.

While this problem is difficult, there is no reason why it should not be worked out in time. When it has thus been rendered unnecessary to resmelt a large proportion of blue powder (as at Trollhättan, where 2 tons of blue powder are smelted for each ton of ore treated), it is probable that electric zinc smelting will proceed rapidly in favorable localities. The use of iron as a desulphurizing agent does not seem to have advanced as far as the reduction of oxide with carbon, and it is probable that the

latter will keep its present supremacy.

TIN SMELTING

In British practice with ore assaying 65 to 71 per cent., the charges are: Ore, 80 cwt.; culm, 10.4 cwt.; refinery dross, 2.4 cwt. For ore above 71 per cent. increase the culm. This

Flow sheet, tin smelting.1

¹ From Louis, "Metallurgy of Tin," p. 96.

will give from 4500 to 4800 of tin assaying about 99.5 per cent. of tin, and 2200 to 2500 lb. of rich slag, carrying 35 per cent. of tin. This slag is then smelted as follows: Rich slag, 30 cwt.; rough-metal dross, 12 cwt.; scrap iron, 2.75 cwt.; anthracite, 6 cwt.; coral, 2.4 cwt. It may be noted in operations where tin is on the furnace charge, that it will be carried into either too silicious or too basic a slag, as it forms silicates and stannates and stannates.

Tin Smelting by Electricity

The electric furnace should be appropriate for the smelting of tin ores, since the reduction of tin oxide by carbon requires a very high temperature especially if impurities are to be eliminated. The reduction by carbon produces partly carbon dioxide and partly carbon monoxide, and theoretically would require 665 kw.-hr. per ton of ore. The theoretical amount of energy per ton of ore smelted may be estimated as follows:

Reduction		665 kwhr.
Slag		130
Heating tin		65
Radiation		130
Gases		150
	-	
Total		1140 kwhr.

Experiments on tin smelting, conducted by H. HARDEN in Cornwall, were described in the Mining Journal of London, in The current was a three-phase, alternating, of 50 cycles, 650 to 675 volts. A shaft furnace was used containing 3 electrodes and the formation of a direct arc was avoided. charge formed a cone around the reaction zone, in which the electrodes burned freely, surrounded by incandescent gases which served as resistance. The three factors, yield of tin, consumption of energy, and losses in slag, are closely interrelated. It is easy to obtain a slag containing only 0.25 per cent. of tin, but the process is not economical, as the consumption is 3000 kw.-hr. per ton of metal. When the slag contains 17 to 19 per cent. of tin the consumption of energy is reduced to 1300 kw.-hr. per ton of metal, but this is not economical. On a recovery of about 96.75 per cent. of the tin in the ores, the consumption was 2200 kw.-hr. per ton of metal. The consumption of electrodes was 12.7 kw. per ton of metal. Arsenides and sulphides of iron were introduced at regular intervals to avoid the formation of hard slag, obtaining a metal containing 98 per cent. of tin from very impure ores. This metal was afterward refined in shaft furnaces containing iron tubes for the injection of air. HARDEN'S conclusions are that the electric process can be advantageously employed in places where the ores are good but not very rich, and where waterfalls can be utilized for supplying the power needed.

NICKEL-COBALT-COPPER SMELTING

In smelting nickel, copper and cobalt together under succonditions as to form a matte and a speiss, it is the generated tendency of the copper to enter the matte in preference to the nickel, and for the nickel to enter it in preference to the cobalt. Some subjoined analyses from Schnabel illustrate this very well. The furnace charge (at Altenau) was a leady copper slag, smelted with iron and arsenical pyrites.

•	Ni,CO	Cu	Fe	Pb	As	Sb	8
Speiss	26.77	19.85	15.82	12.14	12.15	10.01	4.57
Matte	6.10	37.24	20.84	16.10		0.47	19.25

The speiss was roasted, then resmelted with heavy spar, arsenical pyrites, copper-refinery slags, and slag from lead-matting giving:

	Ni	Со	Cu	Fe	Pb	·As	Sb	8
Speiss Matte	35.13 4.37	10.70	17.18 37.45	8.41 12.68	6.59 22.81	18.65 tr.	10.82 tr.	2.16 24.48

MERCURY SMELTING

Analyses of Mercury Soot from Distillation Furances¹

Mercury	56.30	6.42	3.12
Mercuric sulphide	0.70	2.20	31.10
Mercuric sulphate	18.99	13.07	10.80
Mercurous chloride	2.20	1.80	
Sulphuric acid	1.10	4.80	
Magnesia		1.10	
Lime	0.76	1.20	
Ferric oxide and alumina	tr.	0.80	
Calcium sulphate	1.04	6.30	
Basic ferric sulphate	3.24	0.40	
Soot and tar	33.9	29.40	24.80
Water		26.50	10.30
Ore residues		3.80	2.20
Magnesium sulphate			
Sodium sulphate			1.24
Ammonium sulphate			0.54
Ferrous sulphate			6.02
	1	<u> </u>	

The mercury is extracted from these residues by pressing, followed by retorting.

¹ Schnabel, "Handbook of Metallurgy," Vol. II. The Macmillan Co.

COPPER REFINING

ELIMINATION OF IMPURITIES IN REVERBERATORY REFINING OF COPPER¹

	Cu	Fe	8	Pb	Bi	Sb
Before After	98.283	0.062	0.2576	0.5382 0.1100	0.0045 0.0101	$0.1853 \\ 0.1527$
Before After	99.399	0.036 0.004	0.086 0.0009	0.029 0.006	0.017 0.007	0.032 0.007
Before After	99.475	0.013 0.004	0.088 0.006	0.007 0.004	0.001 0.003	0.129 0.017
	As	Те	Se	Ni	Ag ounces	Au
Before After	0.1709 0.1502	0.0054 0.0195	Trace Trace	0.0473 0.0539	59.91 61.7	0.276 0.27
Before After	0.054 0.010	0.014 0.003	0.010	0.008 0.009	68.17	0.204
After After	$0.067 \\ 0.045$	0.006 0.003	0.005	0.009 0.013	39.893	0.251

Elimination of Impurities in Cupola (Black Copper Smelting)

	Cu	Pb	Bi	Sb	As	Te & Se
Refining furnace slag Cupola slag Black copper Per cent. elimination	97.7	0.78			0.0033	0.0026 0.0 0.0095 0.0

In refining blister copper to anodes Keller gives the following table of relative slaggability of the various metals:

 Cu
 Pb
 Bi
 Sb
 As
 Te, Se

 1
 52.1
 1.07
 5.90
 5.07
 0.84

This omits volatilization losses, which would be higher for the last four elements than for the first two ("Mineral Industry," 1901, p. 248).

C

¹ Private notes.

548 METALLURGISTS AND CHEMISTS' HANDBOOK

In the converter, Keller figures that the percentage eliminations of impurities are as follows:

Fe Zn Co Pb Bi Sb Te 99 37 99 99 **9**9 96 97 71 Per cent. These may serve as the slaggability ratios in the old acid-lined converters.

Flow sheet of Great Falls Electrolytic Plant¹

Electrolytic Refining Current Losses²

320 tanks—22 anodes, 22 cathodes per tank—90 per cent. amp. eff.—2-day cathodes.

	Volts per tank	Volts per 320 tanks	Percentage distribu- tion
Voltage drop—bus bar to anode.	$egin{array}{c} 0.044 \ 0.495 \ 0.055 \end{array}$	14.08	7.40
Voltage drop through electrolyte		158.72	83.36
Voltage drop—cathode to bus bar		17.60	9.24

¹ W. T. Burns, Trans. A. I. M. E., August, 1913. ² R. S. McCaffery, in the "Wisconsin Engineer."

Converter and Furnace-refined Copper Anodes¹

OMPARISON OF CONVERTER AND REFINED ANODES CAST IN THE SAME MOULDS

	Converter anodes	Refined anodes
imber of days covered by test imber of refining tanks employed erage analyses of anodes:	50.0 48.0	50.0 48.0
Per cent. Cu	98.91	99.27
Per cent. As $+$ Sb	0.072	0.071
Ounces Ag per ton	59.09	61.14
Ounces Au per ton	0.200	0.219
erage analyses of electrolyte:		
Specific gravity	1.20	1.20
Grams per liter Cu	43.5	43.5
Grams per liter free acid	160.0	160.0
Grams per liter As	11.97	11.97
Grams per liter Sb	0.49	0.49
Grams per liter Fe	10.09 0.045	10.09 0.045
erage temperature of electrolyte:	0.020	0.043
Inlet of 8-tank cascade C.º	58.0	58.0
Inlet of 8-tank cascade, C.°	54.0	54.0
te of circulation of electrolyte, gal. per min	6.0	6.0
imber of anodes per tank	20.0	20.0
imber of cathodes per tank	20.0	20.0
erage weight per new anode, lb	525.0	632.0
erage thickness per new anode, in	3.0	3.0
stance, center of anode to center of cathode, in.	2.87	2.87
tive cathode surface per tank, sq. ft	252.0	252 .0
erage amperes per tank	8,387.0	8,387.0
erage volts for 48 tanks	27.21	28.53
erage volts per tank	0.56 7	0.594
erage kilowatts for 48 tanks	228.2	239.3
tal copper deposited, lb	1,103,749	1,148,749
erage age of cathodes drawn	21/2	21/2
erage ampere efficiency of deposit, per cent	88.3	91.9
erage amperes per sq. ft. cathode surface	33.3	33.3
erage lb. copper deposited per kilowatt-hour.		4.00
rerage oz. per ton silver in cathodes	1.25	0.95
rerage per cent. As + Sb in cathodes	0.0043 8.00	0.0043 5.30
rerage per cent. anode scrap	٥.٠٠	0.30
Per cent. Cu	40.3	18.80
Ounces Ag per ton	6,755.00	14,079.0
Ounces Au per ton		38.45
Counces Itu per von.		33.10

The chief disadvantages of converter anodes are: lower ade slimes; higher losses of silver in the cathodes; and higher reentage of anode scrap. However, Mr. W. T. Burns states at the losses due to these factors are not equal to half the st of reverberatory refining.

Starting-sheet Tank Electrolyte

Specific gravity	1.175
Free H ₂ SO ₄ , grams per liter	120.0
Cu, grams per liter	40 . 0
As, grams per liter	5 .0
Sb, grams per liter	0.4
Fe, grams per liter	4.5
Cl, grams per liter	0.04

¹ Trans. A. I. M. E., August, 1913.

550 METALLURGISTS AND CHEMISTS' HANDBOOK

Elimination of Impurities in Electrolytic Refining

According to Keller's figures about 99.92 per cent. of the copper in the anode goes into solution, the remainder to the slime; from 61 to 78 per cent. of the bismuth goes into the slimes, 30 to 60 per cent. of the antimony (according to conditions worked under), 23 to 38 per cent. of the arsenic; while the silver, gold, selenium, tellurium and lead are quantitatively slimed ("Mineral Industry," 1898, Vol. VII, p. 239). Nickel is slimed if it is present as oxide in the anode copper; dissolved if present as metal. Cobalt, zinc, manganese and iron go into solution.

Work in Insoluble-anode Tanks¹

REMOVAL OF COPPER, ARSENIC AND ANTIMONY FROM ELEC-TROLYTE IN INSOLUBLE-ANODE TANKS

(Circulation, 4 liters per minute. Lead anodes, copper cathodes, 9000 amp., 31.8 amp. per square foot)

	Grams per liter					Volta	Tem-
	Acid	Cu	Fe	An	Sb	per tank	C. Deci-
Inlet tank No. 1 Outlet tank No. 1 Outlet tank No. 2 Outlet tank No. 3 Outlet tank No. 4.	144 184 194 208 216	37 060 7.376 0 504 0.088 0 048	6.242 6.813 7.364 7.701 7.915	3,200 2,240 0,400 0,056 0,028	0.463 0.260 0.061 0.038 0.028	2.25 2.25	17 57 64 65

CORRECTED ANALYSES²

	Grama per liter				Percentage elimination of original amounts			Ampere effi- ciency,	
	Acid	Cu	Fe	As	8b	Cu	As	Вb	per cent.
Inlet tank No. 1. Outlet tank No. 1 Outlet tank No. 2 Outlet tank No. 3 Outlet tank No. 4	144 169 165 169 170	6 760 0 427 0 071	6.242 6.242 6.242	2 050 0 339 0 045	0.4630 0.2380 0.0517 0.0308 0.0220	81.8 17 1 0 9	53 5	40 2	19.50
Total and average			414+	1411+		99.9	99.3	95.8	23,26

See p. 552 for some notes on lead, duriron and tantiron as insoluble anodes.

anode tanks.

W T Burns, Trans, A. I. M. E., August, 1915.
 Calculated to the same value for iron, which is not affected in the involution.

	TYPICAL PRODUCTS	
	٢)
	P)
	5	۱
	\sim)
4	۳	
-		l
	_	ı
	<	į
	$\mathbf{\Sigma}$)
	ā	
	H	ı
E	_	ı
	_	
		۱
	F	,
	NALYSES)
	E	
	2	
	Έ.	
	⋖	
	Z	
4	A NALYSES	١
	1	
	Ļ	•
	$\mathbf{\tilde{z}}$,
		۱
	Z	
	H	
	CHINICE	
6	Υ	
•		1
	2	
	Ĕ	1
	1	
	()OPPER	۰
7	_	
•	$\overline{}$	•

Orude Seltas lesin	None 0.0023 0.0048 19.27	0.0140	0.0574	
Ted bar teub suft	31.49	2.80 0.01 Trace	4 .	32.61
Anode fur- and soan teub	11.10	3.20	7.39	29.48
Slimes flue stanb	1.70 5.51 17.04	3.20 0.015 19.52	1.38	
Blue stone	25.07	0.170		
Blue stone	24.89	0.245		
Casting copper	99.34 0.4237 0.1092 0.0795	0.0136 0.0026 Trace		
Slimes flue dust²	2.10 4.85 15.36	2.460 0.003 7.84	1.32	
Refining- furnace sebona	98.21 0.1492 0.1716 0.1050	0.0208 0.0177 0.6050 0.0270 0.0544	0.0720 0.0350 0.0250 Trace	
trolyte? Elec-	2.51 0.5523 0.0451 1.23	0.0033 0.1456 None None None	None 0.0226	0.0048
Elec- slime slime per cent.	43.3400 3.0300 3.4600 0.0800	0.1100 0.3640 17.1870 0.1200 1.2000	2.1000 0.7600 0.0900 13.2100	0.1770 0.0260 0.5900 0.000166
Wire bar, ¹ per cent.	99.9500 0.0016 0.0015 0.0006 Trace	0.0004 0.0006 0.0030 Trace	Trace 0.0001 0.0025 0.0350	
Elec- trolyte, ¹ per cent.	3.280 0.500 0.041 0.377 0.016	0.021 0.600 None None None	None Trace 0.418	0.0040 13.0300 1.220
Converter anodes, 1 per cent.	99.1300 0.1183 0.0534 0.0420 0.0018	0.0038 0.0110 0.1371 0.0008 0.0090	0.0170 0.0065 0.0035 0.2610	
	CopperArsenicNickelCobalt	BismuthSil verGold	Tellurium Lead Zinc Sulphur Oxygen	Silica. Chlorine. Carbon. Platinum. Free sulphuric acid Specific gravity

¹ First four columns from Willis T. Burns' "The Great Falls Electrolytic Refinery," *Trans. A. I. M. E.*, Aug., 1913. ² Eastern practice.

Slime from Insoluble-anode Tanks

(Treating electrolyte direct from tank room)

Moisture, per cent.	10.0	As, per cent	10.3
Cu, per cent	55.1	Sb, per cent	2.5
SiO_2 , per cent		Ni, per cent	0.35
FeO, per cent	0.4	Zn, per cent	0.32
Al_2O_3 , per cent		Ag, oz. per ton	3.4
CaO, per cent		Au, oz. per ton	0.02
S, per cent		, •	

Better results are secured from the insoluble-anode tanks Great Falls when the electrolyte from the tank room is boil until it reaches a specific gravity of 48°Bé. It is then crystallis for 4 days, when the mother liquor then analyzes: acid, 47 Cu, 17.4; As, 20.2; Sb, 1.1; and Fe, 15.2 grams per lit This is then electrolyzed to remove Cu, As and Sb.

Analysis of Insoluble-anode Tank Slime

(Treating mother liquor from crystallizing tanks)

Moisture, per cent	9.66	As, per cent	21.48
Cu, per cent		Sb, per cent	2.28
SiO ₂ , per cent		Ni, per cent	0.35
FeO, per cent	1.66	Zn, per cent	0.32
Al ₂ O ₃ , per cent	0.4	Ag, oz. per ton	3.61
CaO, per cent	1.08	Au, oz. per ton	0.03
S, per cent		•	

Materials for Insoluble Anodes

The usual materials for insoluble anodes are platinum, cs bon, iron and hard lead, according to the nature of the ele trolyte. Fused magnetite anodes are also being used, notab at Chuquicamata, Chile, but they are extremely expensi and very brittle. However, when the anodes do not have to handled often, i.e., are not subject to chance of breakage ! carelessness, and can be guarded from sudden large changes temperature, they are unquestionably the finest anodes obtai In ordinary copper tank-room practice hard-lead anod are usually used in the insoluble-anode tanks. Herewith folk some notes, not hitherto published, furnished by F. R. Pra assistant superintendent of the United States Metals Refini Co.'s copper refinery, giving parallel tests on hard lead, du iron, and tantiron electrodes, using them as anodes in v rious electrolytes. The current density was about 20 am per square foot. In a 12 per cent. sulphuric-acid solution ti tantiron lost 0.94 per cent. in 24 hours, the duriron lost 7. per cent. in 42 hours and the hard lead, 0.69 per cent. in ; In regular tank-house electrolyte of approximately per cent. copper, 10 per cent. sulphuric acid, the tantiron lo 1.88 per cent. in 48 hours, the duriron 10 per cent. in 60 hour the hard lead, 0.44 per cent. in 36 hours, and on another test the same solution the hard lead showed a loss of 1.71 per cen

18 hours. This shows that even tantiron and duriron are not of against the violent anodic oxidation and corrosive soluns in the insoluble-anode tanks of a copper refinery. As against a deposit of 8 to 8.5 lb. of copper per kilowatt-hour ng the multiple process and 10.5 to 11.5 lb. per kilowatt-hour

CHEMICAL ANALYSES OF REFINED COPPER¹

Element .	Lake	Lake	Electro-	Best
	wire	arsenical	lytic wire	selected
	bar	ingot	bar	English
Cu + Ag. Cu. Ag. { Pb. Bi. As. Sb. Se + Te. Fe. Ni Zu. S. O (by diff.) Sn. ductivity, annealed ductivity, hard drawn erence due to hard drawing sile strength, lb. per sq. in. sts in 6 in. ngation, per cent. ds, annealed. meter of wire, in.	99.900 99.890 0.0096 (2.8 oz.) 2.0031 0.0000 0.0062 0.0000 0.0028 0.0090 0.0028 0.0090 0.0016 0.0753 96.49 93.84 2.65 67.590 17 1.03 ² 11.0 0.080	(7.41 oz.) 0.0027 0.0000 0.3183 0.0000 N.d. 0.0056 0.0153 0.0000	99.953 0.0018 (0.56 oz.) 0.0010 0.0000 0.0009 0.0026 0.0038 0.0028	99.530 0.021 (7.02 oz.) 0.1331 0.0000 0.0071 0.0087 0.0066 0.0044 0.1112

en using the series process, ordinarily only about 1 lb. per pwatt-hour is obtained with insoluble anodes. However, by ag ferrous sulphate as a depolarizer at the anode, a certain ount of aluminum sulphate as a substitute for a diaphragm,

Comparison of Series and Multiple Refining

	Multiple	Cast-series
pere efficiency	90.0	68.0
ts per tank	0.3	18.0
odes per tank	28.0	120.0
chodes per tank	29.0	120.0
p. per square foot	18.0	16.0
ily deposit per tank	204.0	2040.0
Cu per kilowatt-hour	7.79	11.79

HOFMAN, "Metallurgy of Copper," p. 12. In 8 in. In 60 in. and reducing the ferric sulphate formed in the depolarising, b means of sulphur dioxide, Addicks claims to have obtained: high as 2.25 lb. per kilowatt-hour. He also claims that whe suitably depolarized, carbon anodes will stand up in a sulphs electrolyte. ("Electrolysis of Copper Sulphate Liquors, using Carbon Anodes," joint meeting A. I. M. E. and A. E. S., & Francisco, Calif., Sept. 17, 1915.)

Electrolytic Lead Refining.—In a refinery operating und commercial conditions the ampere efficiency in lead depositions was 88.5 per cent. with a deposit of 20 lb. per kilowatt-hou The current density used was 16.7 amp. per square foot. Anot were spaced 4½ in. from center to center. Starting sheets we cast by allowing molten lead to flow down an inclined cast-in plate. Electrolytic lead refining must be made to pay throu its byproducts, particularly bismuth, and it seems questional whether it can be adapted to a low-bismuth bullion.

TYPICAL	ELECTROLYTIC	LEAD	REFINERY	MATERIALS
TILICULE		LIEAU	TODLINDICI	MINITULE

	Pb, per cent.	Ag, oz. per ton	Au, oz. per ton	Bi, per cent.	Cu, per cent.	As, per cent.	Sb, per cent.	Te, per cent
Slimes Electrolyte. Refined lead Slag, slimes	8.32	4949.2 0.29		4.81 0.00058 0.0024	0.065 1.45 0.00049 0.001	0.0008 Tr.	22.75	0.01 0.45

Electrolytic Production of Metals

Aluminum—from fused cryolite bath containing Al₂O₂ solution (cryolite 36 per cent.; AlF₃ 44; CaF₂ 20). The specific gravity of a saturated solution of Al₂O₃ in cryolite is 2.35, that molten aluminum is 2.54. The bath must be fluid at 900° 950°C. Cryolite melts at 1000°C., but with 10 per cent. Ald present it is 930°C., and with 20 per cent. 880°C.; 25 per cen saturates the solution. The current density is about 700 am per square foot of cathode section, potential (theoretical, 2 volts) 7.5-8.5 volts. Anodes are carbon blocks, cathode the carbon lining of the furnace. Power consumption 1400 e.h. per metric ton of metal per 24 hours. Also prepared by electr lyzing a double sulphide of aluminum and sodium. Potenti about 5 volts. The alumina for electrolysis should carry minimum of 98 per cent. Al₂O₃.

¹ These slimes were largely produced from the anodes just above.
² Carries also 11.78 per cent. H₂SiF₆; 0.36 per cent. HF; 0.28 per cent. Zn: 0.44 per cent Sn

	New South Wales	Italian	Italian French		German	
Al ₂ O ₃		47.44-57.00		43.20	55.61	
Fe_2O_3	28.91	25.98-36.77	1.02	7.25	7.17	
SiO_2	0.16	2.33 - 4.06	5.78	34.40	4.42	
TiO_2	4.75	1.17-2.86		1		
CaO						
MgO	0.37					
KNaO				1		
Volatile	23.45			15.15	32.33	

SOME TYPICAL BAUXITES1

Antimony—may be recovered by electrolysis from the sulphantimonite. The anodes are lead plates, the cathodes and tanks are iron. Current density is 10 to 15 amp. per square foot at start, later 4 to 5 amp. per square foot. The voltage is about 2. The metal is always contaminated with iron when produced in this way. Betts also proposes electrolysis of the fluoride in solution carrying an excess of hydrofluoric acid.

Beryllium—from the fused double fluoride of sodium and

beryllium.

Bismuth—is refined electrolytically in BiCl, solution carrying an excess of free hydrochloric acid. Current density, 15-30 amp. per square foot. Anodes, argentiferous and auriferous bismuth; cathodes, pure bismuth; porcelain tanks.

Cadmium—obtained by the electrolysis of CdCl₂ or CdSO₄ solutions. Current density, 6 to 15 amp. per square foot; e.m.f.; 0.045 volts. Cathodes are cadmium sheets, anodes are

of crude cadmium.

Calcium—from fused calcium chloride or iodide. Current density must exceed 500,000 amp. per square meter. Electrolyte near cathode must be at lowest possible temperature. Cell resistance, 12 volts.

Cerium—from the fused chloride, which is traversed by an alternating current to keep it fused and decomposed by direct

current.

Chromium—according to Borchers, may be produced by electrolysis of a CrCl₂ solution containing 13-14 oz. of chromium per gallon. The anodes are carbon, the cathodes platinum foil. The current density must be from 85 to 170 amp. per square foot. At 70 amp. per square foot the metal contains perceptible amounts of CrO, and with 8 amp. per square foot, only CrO is deposited. The temperature must not exceed 122°F. G. Glaser has compiled the following table regarding the behavior of chromium during electrolysis:

¹ Schnabel, "Handbook of Metallurgy." The Macmillan Co.

Current density, amp. per sq. ft.	Deposit	Current efficiency		
8.36 16.7 33.4 41.7	Chromo-chromic oxide			
66 .8	deposits	$\begin{array}{c} 5.4 \\ 23.4 \end{array}$		
84.5	Pure metal			
127.3	Pure metal, with a growth of crystals	38.0		
169.0	Pure metal, for the most part crystallized	38. 6		

The effect of solution concentration was also studied:

Grams Cr per liter of solution	Deposit	Current efficiency
210 184 158 135 105 79 53 26	Metallic powder, mixed with chloride of chromium Same. Pure metal. Pure metal. Pure metal. At first metal, then chromo-chromic oxide. Chromo-chromic oxide and hydrogen. Trace of chromo-chromic oxide, brisk evolution of hydrogen.	56.6 49.0 38.4

Copper—obtained by the electrolysis of copper-sulphate solutions carrying free sulphuric acid, using copper cathodes and anodes. Current density about 12 to 15 amp. per square foot, e.m.f. 0.34 to 0.44 volt. Temperature of solution about 114°F. Ag, Au, Pb, Se, Te go quantitatively to the slime; Bi, As, and Sb, chiefly to the slime; Fe Ni, Co into solution, except the nickel be present in the anode as NiO.

Gold¹—from gold-chloride solution carrying 25-30 oz. of gold and 25-30 oz. free HCl (sp. gr. 1.19) per cubic foot. The anode is the unrefined gold, the cathode is a pure sheet. If anodes carry lead, some H₂SO₄ is added. Current density about 100 amp. per square foot, potential 1 volt, temperature 60-70°C. Tanks—stone or porcelain. (Wohlwill process.) Pt stays in the electrolyte, Ag slimes as chloride.

Iron—may be obtained by electrolysis of the sulphate. Anodes are pig iron, the cathodes are pure metal. Current density about 110 amp. per square meter, electrolyte contains 10 per cent. FeSO₄·7H₂O and 5 per cent. (NH₄)₂SO₄. Temperature carried at about 30°C. Voltage drop across tank about 0.3 to 0.9 volts. This, however, gives a metal carrying a trace of sulphur. Theoretically the chloride should furnish an electrolyte free from this objection, practically chloride electrolytes are awkward to work with. There is a great deal of occluded hydrogen in the metal as precipitated.

¹ From W. Borcher's "Metallurgy."

Lead—can be produced by electrolysis in a solution of lead fluosilicate carrying free hydrofluosilicic acid and a little gelatin. Anodes, base bullion; cathodes, pure lead sheets. Temperature of solution, about 87°F. cathode density, 10–12 amp. per square foot.; potential, about 0.3 volts; tank, wooden.

Lithium—from fused mixtures of LiCl with an alkalineearth chloride. From a solution of lithium chloride in pyridine.

20-30 amp. per square centimeter, 14 volts.

Magnesium—from fused magnesium chloride, from fused K-Mg or Na-Mg chlorides. Current density, 1000 amp. per square meter; cell voltage, 1 to 8; anode, carbon in porcelain envelope. Do not raise temperature of bath much above melting point of the magnesium.

Potassium—from fused mixtures of KCl with an alkaline-

earth chloride. General process same as sodium.

Silver—(Moebius and Thum processes) recovered by electrolysis of a nitrate solution carrying about 0.1 per cent. free HNO₃, 5.0 per cent. Ag, and some copper. The cathode is either silver (Moebius process), or carbon (Thum process). The anode is the doré. The current density is 30-40 amp. per square foot; the e.m.f. is 1.4-1.5 volts; the tanks are usually porcelain. The Cu in the anodes dissolves; Pt and Au stay in the slime.

Solubility of Silver Chloride¹

Salt	Strength of solution, per cent.	Temperature, deg. C.	Silver chloride dissolved per liter, grams	Silver per liter, grams
KCl	24.95	19.6	0.914	0.688
NaCl	25.96	19.6	1.270	0.956
NH ₄ Cl	28.45	30	3.673	2.764
$\operatorname{CaCl}_2 \ldots \ldots$	41.26	30	8.350	6.283
$BaCl_2 \dots$. 27.32	30	0.741	0.558
$\operatorname{MgCl}_2.\ldots.$	36.35	30	7.095	5.339
$\overline{\mathrm{FeCl}_{2}\ldots\ldots}$	30.70	20	2.395	1.802
$\operatorname{FeCl}_3 \dots$	37.48	21.4	0.085	0.064
$\operatorname{MnCl}_2 \ldots \ldots$	43.85	30	2.958	2.226
ZnCl_2	${f 53}$, ${f 34}$	30	0.215	0.162
CuCl_2	44.48	30	0.833	0.627
$PbCl_2 \dots$	0.99	30		

The above table is by H. C. Hahn and W. M. Curtis. According to Vogel and Bernhart, the solubilities in grams of silver chloride per liter of solution are as follows: KCl, 0.472; NaCl, 0.950; NH₄Cl, 1.575; CaCl₂, 0.930; BaCl₂, 0.143; SrCl₂, 0.884; MgCl₂, 1.710. They also state that it is insoluble in the chlorides of tin, mercury, copper, zinc, cadmium, nickel and cobalt. But some unpleasant experiences of my own

¹ Schnabel's "Handbook of Metallurgy," Vol. I. The Macmillan Co.

convince me that it is highly soluble in a mixture of cuprous

and cupric chlorides.

Sodium—from fused sodium hydroxide—Castner process— Iron anode, carbon cathode. From fused sodium nitrate—Darling's process—Iron melting vessel serving as anode. Magnesia diaphragm, carbon cathode. Cell resistance 15 volts. From fused sodium chloride. Current density over 5000 amp. per square meter.

Strontium-from fused strontium chloride. General con-

ditions like those of calcium production.

Tin—the electrolysis of tin commercially is confined to the detinning of old tin-plate, chiefly by the caustic-soda process. The cathodes are iron, the anodes are the tin scrap, packed in wooden baskets. Electrolyte contains about 9 per cent. NaOH, which is recausticized from time to time by Ca(OH)₂. tank potential is about 1.5 volts, the current density 8-12 amp. per square foot and the temperature 160°F. and up. Alkaline sulpho-stannates have also been proposed as electrolytes.

Ūranium—from fused uranium-sodium chloride; cell re-

sistance, 8 to 10 volts.

Zinc—The Brunner, Mond & Co. works at Winnington is said to operate as follows: The electrolyte is ZnCl2 with 0.08 to 0.12 per cent. free HCl, the cathodes are rotating zinc plates, and the anodes are carbon. The current density is 10 amp. per square foot and the e.m.f. of the cell is 3.3. to 3.8 volts. apparatus is complicated, as there must be piping for carrying off the chlorine generated, which is then used for making bleaching-powder. The solution tends to become basic after prolonged electrolysis and additional acid must be added.

Since the outbreak of the war a great deal has been done to solve the general problem of the electrolytic production of zinc. The following is understood to be the outcome of the experiments, but accurate data are hard to obtain. At Anaconda, Mont., and Trail, B. C., the ore is leached with the spent electrolyte which contains free sulphuric acid until almost neutral. The solution is then freed from impurities with sine oxide and electrolyzed, using lead anodes. The process appears to be what every experimenter has tried for some years, and success is, apparently, a matter of close attention to details of current density, concentration, etc.

In the process as conducted by Keating at Bully Hill, Calif., lime is used to precipitate zinc hydroxide and calcium sulphate from the solution of the zinc sulphate. This precipitate is suspended in the zinc sulphate liquor of the electrolytic cell and as fast as sulphuric acid forms it is neutralized by the sine

hydrate.

In the Mammoth Copper Co.'s experiments at Palo Alto., Calif., a sponge-lead cathode is used, the sulphuric acid formed by electrolysis forming lead sulphate, which can be decomposed later by reversing the current. The material used is said to be the result of leaching the baghouse dusts with sulphuric acid.

Recovery of Radium from the Olary Ores

ecause of the general interest in the extraction of radium the wing excerpts are given from S. RADCLIFF'S description ne recovery of radium from the Olary (Australia) ores at the ium Hill Co.'s plant at Sydney, N. S. W. (Min. and Eng.

ew, Oct. 5, 1914).

he ore is dry crushed at the mine to pass a sieve of 20 holes ne linear inch, and is then concentrated magnetically; the entrates, amounting to about 30 per cent. of the ore crushed,

g forwarded to Sydney for treatment.

he concentrates have the composition: CaO, 0.55 per cent.; 0.16; Fe₂O₃, 17.4; FeO, 16.9; MnO, tr.; thorium, cerium, hanum and didymium oxides, 3.27; Cr₂O₃, 0.85, U₃O₈,

 V_2O_5 , 0.86; TiO_2 , 45.85 per cent.; SiO_2 , 12.70.

s the concentrates are insoluble in acids, a fusion process is ssary to effect the initial decomposition. The concentrates mixed with three times their weight of salt cake (acid sulte of soda) and fused in a reverberatory furnace of sufficient icity to take 500 kilos of concentrates and 1500 of salt cake single charge. Three charges can be put through in 24 The fused product, crushed to 8 mesh, is fed, in small unts at a time, into wooden vats filled with agitators. er is fed continuously into the vats at the bottom and an flow is provided near the top. By suitably adjusting the litions, it is possible to separate out on the bottoms of the a considerable amount of comparatively coarse material ch is almost free from radium and uranium. The turbid id overflowing carries in suspension the radium, lead and um as sulphates, together with a considerable amount of y divided silica; while in solution we have the uranium earths, and part of the iron and acid earths contained in the

he coarse residues are removed from the vats daily, rehed to free them from any undissolved fused product and

to the dump.

he overflow from the dissolving vats is pumped to large -lined settling tanks and allowed to stand all night. The mes" settle completely in 12 hours, and the clear liquid is vn off daily and treated for the recovery of the uranium. slimes which amount, when dried, to approximately 10 cent. of the weight of the concentrates, are collected weekly treated for the recovery of the radium as described below. he further steps in the treatment process may conveniently lescribed under two heads:

- i) The recovery of the uranium.
-) The recovery of the radium.

Recovery of the Uranium

he clear solution containing the uranium and much of the and other bases in the concentrates, together with a large ount of sodium salts, is fed into series of vats containing a sured excess of a mixture of carbonate and bicarbonate of

soda; and heated and agitated by means of steam jets. iron, with most of the other bases present, is precipitated, while the uranium goes into solution together with some of the ran The bulky iron precipitate is separated partly by settlement and partly by means of vacuum filters. It is difficult to handle and cannot be washed effectually; a portion of the uranium is therefore unavoidably discarded along with this precipitate. The uranium solution is made just acid with sulphuric acid, heated and the carbon dioxide expelled by a brisk current of air. The uranium is then precipitated by the The ammonium uranate is thickensi addition of ammonia. somewhat in conical settling tanks and then further thickened to a pulp in a hydro-extractor. This pulp is dried and dehydrated in large muffles. The dehydrated product is broken up and washed repeatedly with hot water. This treatment removes the bulk of the sodium salts, and a product is obtained which on drying contains about 75 per cent. of U₂O₈. An analysis of this, together with that of the iron precipitate, is given below. Prior to analysis the iron hydroxide was twice dissolved and reprecipitated with ammonia to free it from the large amount of sodium salts present. The washed precipitate was dried ignited and analyzed.

•	Uranium product	Iron precipitate
Insoluble matter Titanium dioxide		8.11
Ferric oxide	9.41	74.65 2.7
Rare earthsLead oxide	0.51	7.36
Vanadic oxide		5.81
Sodium salts	8.21	

Recovery of the Radium

The thickened insoluble residue or slime from the settling tank is mixed with half its dry weight of strong sulphuric act and allowed to stand for several days. It is then washed, first by decantation and then on a vacuum filter, till the washing give only a very slight precipitate with barium chloride. The acid treatment and washing reduces the bulk of the slime considerably, removing large amounts of acid earths and iron salts. The washed slime in quantities of about 200 kilos, dry weight, is then boiled in a large steel boiler under pressure with an excess of a 20 per cent. solution of sodium car onate for two days, the solution being replaced once during the boiling. This treatment dissolves a large amount of silica, and converts much of the lead, radium, and barium sulphates to carbonates. The slime is then washed till the wash water gives no reaction for

sulphates; this takes 2 days for each lot of 200 kilos. washed slime is then fed into a warm dilute solution of hydrochloric acid, agitated for a couple of hours, and allowed to settle all night. The clear solution is siphoned off and the lead, barium, and radium precipitated as sulphates. After washing once by decantation, the slime is again treated as above described. Two treatments suffice to extract most of the radium, but the slime is reserved for a further treatment, if necessary. The plant as at present arranged can treat the slime from 10 tons of concentrates per week. The weekly yield of crude sulphate is about 12 kilos.

A number of experiments, both in the laboratory and on the working scale were made to see if the sulphates in the slime could be reduced by heating the material with carbonaceous substances, or else in a current of some reducing gas, but the

results so far have not been encouraging.

The treatment of the crude sulphate is now carried out as follows, not as in the paper read by the author before the Royal Society of New South Wales in 1913: The crude sulphate is dried and fused with three times its weight of caustic soda in an iron pot. The melt is poured, cooled, and digested with hot Most of the lead goes into solution. The insoluble residue is washed till free from soluble sulphates, and then digested in a rotating boiler under a steam pressure of about 60 This converts the bulk of the sulphates of barium, radium and lead to carbonates. The carbonates are well washed on a filter and dissolved in hydrochloric acid. The solution is taken to dryness to remove any colloidal silica, and the residue is taken up with water and a little HCl. In addition to barium and radium chlorides, small amounts of iron and lead chlorides, together with considerable quantities of barium, lanthanum, didymium, and thorium chlorides are present. This solution is now saturated with hydrogen chloride gas; the barium and radium are precipitated quantitatively as chlorides, almost free from the other substances present. The chlorides are filtered off, dried, dissolved in water, and purified from the small amounts of second and third group elements in the ordinary way. They are finally precipitated as carbonates by means of pure Na₂CO₃, and the carbonates dissolved in HCl. This solution is now ready for fractional crystallization for the recovery of the radium.

The economic success of the process depends on the fact that it is possible to decompose the uranium minerals without bringing the whole ore complex into solution, and that comparatively small amounts of reagents are required to effect this. ings sent to the dump, amounting to about 50 per cent. of the material smelted, are almost free from radium and uranium, and appear to consist mainly of unaltered rutile. The radioactive slimes amount to about 1 ton from every 10 tons of concentrates, and are one-fifth of the weight of the tailings. the alpha ray activity of the slimes is thirty times that of the tailings, it appears that the slimes carry over 80 per cent. of the radium originally present in the concentrates. That is, the initial fusion of the concentrates enables a great concentration of the radium to be made by mechanical means before continuing the chemical treatment.

The rare earths in the concentrates distribute themselves in the course of the iron hydroxides carrying 7.36 per cent. rare earths, the uranium product containing 1.57 per cent. and the crude sulphates. The rare earths extracted from the iron hydroxide precipitate are only very feebly radioactive. The activity does not increase with time, and is due to the presence of 0.06 per cent. of thorium oxide, with its attendant ionium. The earths extracted from the uranium product are also only The rare earths carried down with the crude very feebly active. sulphate contain a considerable proportion of the thorium in the ore, and appear also to carry most of the actinium. be expected, as it is well known that actinium can be extracted from a solution by precipitating barium sulphate in it. A thorium-ionium preparation worked up from the earths in the crude sulphate has an activity several hundred times as great as that of U₃Os.

The rare-earth mixture, containing about 3 per cent. of rare earths in addition to the constituents enumerated, is fused in an iron crucible with excess of sodium hydroxide containing some sodium carbonate, the melt extracted repeatedly with hot water, the insoluble residue digested with excess of sodium carbonate under a steam pressure of 90 lb., the carbonate residue washed, treated with dilute hydrochloric acid, the solution evaporated to dryness, the residue treated with water, the silica filtered off, and the solution saturated with hydrochloric acid gas (to precipitate the radium and barium) and filtered. The filtrate, containing the actiniferous rare earths, is evaporated to dryness and the residue further treated to separate actinium. Ionum appears to be chemically inseparable from thorium, so that by extracting and purifying the latter by any of the well-known methods an active ionium product is obtained.

DUST AND FUME CONDENSATION

The problem of dust catching is one of reducing the speed of the gas sufficiently. James Douglas, in writing of the Copper Queen, says that all true dust would settle from a velocity of 21/4 ft. per second in a chamber 125 ft. long, which rate of settlement can be materially increased by wire screens placed across the direction of flow. Later it was understood that the rate adopted was 5 ft. per second. Hence dust settlement reduces itself to a question of large chambers and of temperature reduction, which reduces volume and hence speed. The reduction of temperature can best be achieved by thin-walled steel flues-often, as at Mammoth, by passing the gas through a great number of parallel steel pipes. These pipes may or may not be cooled by water spray. Another method is to make the top of a brick out of a series of cast-iron pans which are set step-fashion,

so that each overflows into the next, the feed being just sufficient

to equal the combined evaporation from all the pans.

The use of baffles and tortuous windings in the flues has largely been given up, as it is usually conceded that these act more as stirrers than settlers. However, settlement is helped by plates hung so that they are parallel to the travel of the gas (Freudenberg plates), or by wires across the travel (Roesing's wires).

A stack is of practically no value as a dust settler. It may be needed to give the necessary draft through the flues, or to discharge the gas so high that it will be diluted enough not to be unendurable by the time it reaches the ground, but that is about all. When a dust particle starts up a stack it usually emerges on top. The Wislicenus stack consists of a large number of radial openings near the top of the stack. The wind enters through these and quickly dilutes the effluent.

The ferrous metallurgist uses the centrifugal gas washer (a test of a Thiesen washer is given in the succeeding pages) but it seems doubtful whether they would have any effect on the

lead- or copper-smelter's fume.

For fume condensation the most successful treatment seems to be the Cottrell system of electrostatic discharge, described at more length below, filtration through bags, or precipitation by thoroughly atomized water (Schütte-Koerting system). Scrubbers in which the gas is allowed to bubble through water amount to very little, although their efficiency can be raised, usually, by oils or acids in the water. Figures on baghouse work are given on p. 565. While a baghouse should pay in lead smelting or on silver furnaces, it probably does it only indirectly in copper work—by keeping the smoke farmers quiet.

Gas control must be by chemical means, except that SO₃ is very easily condensed by the Cottrell system. Sulphur dioxide and trioxide are controlled completely at the Ashio mines, Japan, by passing all the effluent gases through lime water. The Sprague system adds zinc oxide to the flue gases and filters out the zinc salts in the baghouse. The Hall process aims to reduce the sulphur oxides to sulphur as formed in the furnaces using hydrocarbon vapors as the reducing agent. Young's thiogen process aims at the reduction of the sulphur vapors in the flues by hydrocarbon gases.

Electrostatic Precipitation (Cottrell Process)

This is best performed in tubes in which the tube forms one electrode and a wire placed concentrically with it forms the other. The discharge should not be one produced by an alternating current, but should be a silent discharge with the wire preferably the negative anode. The breakdown voltage with most smoke is about 32,000. The presence of fine points due to hardened deposits, kinks in the wire, rough spots, etc., tends to localize the discharges from the wire, and even though there be many such points, the cleaning action of such discharges is

much below that of a uniform field around a straight wire (A. F. Nesbit, "Trans. A. I. E. E.," Third Midwinter Con-

vention, Feb. 17 to 19, 1915).

At the Hooker Electrochemical Co.'s Plant 30,000 cu. ft. of gas per minute is treated with a power consumption of 3 to At the Garfield, Utah, smeltery 200,000 cu. ft. of gas per minute is treated with an expenditure of 50 kw. The electrode spacing is 2½ in. and the potential is 50,000 volts. At Tooele, Utah, 20,000 cu. ft. of gas per minute requires less than 5 kw. Each of the two units contains 48 pipes 12 in. in diameter by 15 ft. long.

A full review and complete bibliography of this process is

given in in the Eng. and Min. Journ. of Feb. 12, 1916.

Thiogen Process

The thiogen process was devised by S. W. Young of Stanford University, in an attempt to eliminate sulphur gases from smeltery smoke. The process contemplates passing a mixture of the sulphur-bearing gases and a hydrocarbon reducing agent of the ethylene series over a catalyst of calcium sulphide. The reactions are:

$$CaS + SO_2 = 2CaSO_3 + 3S$$

 $2CaSO_3 + C_2H_4 = 4CaS + 2CO_2 + 2H_2O$.

In practice, when a mixture of sulphur dioxide and hydrocarbon vapor pass together over a mixture of calcium sulphide and calcium sulphite, the reactions proceed simultaneously. The hydrocarbon gas is generated from fuel oil. The process has been tried at the Penn Smelting Works, Campo Seco, Cal., but the catalyst poisons easily and it does not appear that it is yet a commercial process. (See Eng. and Min. Journ., Feb. 15, 1913.)

Hall Process

An invention of E. J. Hall, by which sulphur-bearing gases were to be treated immediately after their formation with a reducing gas containing some hydrocarbons. Elemental sulphur was to be set free, which was to be recovered in a cen-The process was tried at the Balaklala trifugal scrubber. smeltery in California, but is understood to have given trouble through the formation of allyl compounds that rendered the neighborhood extremely offensive, and through the fact that the washers did not do what was expected of them. (See Eng. and Min. Journ., July 5, 1913, for a fuller account of the theory of the process.)

Bag-house Data

Some data were given by Anton Eilers, before the International Congress of Applied Chemistry in 1912, concerning bag houses of the American Smelting & Refining Co. Murray, Utah, plant treats furnace charges low in lead (10-12 per cent.) and the precious metals. They are wet and carry up to 4 per cent. of sulphur. Its total cost was \$127,195 including the cost of 4,032 cotton bags and the distributing flue, etc.

uilding was $216\frac{1}{2} \times 90\frac{1}{2}$ ft., and was $51\frac{1}{2}$ ft. to the roof Stacks carried the fumes out of the building and it ecessary to place a lead-lined pan at a sufficient distance the stack not to interfere with the draft, to catch the con-I moisture dripping from the stack sides, which otherwise on and eats away the bags. The bags are 18 in. in diamnd 30 ft. long, shaken from outside. The average life ton bags costing \$2.136 a piece, was 17 months, 11 days. were replaced by woolen bags from the Buell Mfg. Co., seph, Mo., costing \$4.7185 apiece, which it is estimated years. Other bags were bought from the Laporte n Mills, Laporte, Ind., at a cost of \$4.784. There are 2 sq. ft. of filtering surface for filtering 165,000 cu. ft. per minute, but if one compartment was down, there were 1. ft. of filtering surface per cubic foot per minute. 4 in. of fume is allowed to accumulate in the cellars under gs, spontaneous combustion begins. Therefore, when the of any compartment contains 24 in. of dust, it is dampff from the bags, hot coals thrown in on the dust, and the intered by its own combustion. In this Murray bag house llowing percentages of the metals charged in the furnaces recovered: Lead, 1.269 per cent.; silver, 0.063 per cent.; 0.049 per cent.; and copper, 0.0118 per cent. cost in 43% years was \$76,853; treatment charge on the ial recovered was \$69,290, while the value of the metals red was \$152,691, showing an apparent gain of \$6,547, proper interest and amortization charges be placed against re is a net loss of \$58,746. These figures show that, takne immediate financial outcome only, bag houses are not able in lead-smelting works, except where it is an object p smoke-suits.

Omaha Plant

s plant treats gases from converters treating leady copper s; from blast furnaces treating rich charges; and from xide furnaces. The following facts are given for the conbag house. The secret of long life for the bags is said thorough cooling of the gases before admission, and a good mover the bags, drawing off the exhaust gases rapidly. onverter bag house has 68,000 cu. ft. in the flue; 67,000 in the cellar; 174,000 cu. ft. in the bag chamber; has 940 ls in. × 28 ft. long, having 124,000 sq. ft. of filtering area; the gases from converting about 45 tons of blister, or 5,200,000 cu. ft. of gas which usually passes in 15 hr. out 24. The gas temperature at the bag house is 152°F. bag house showed a profit of \$98,712 per year on a \$42,000

ne other miscellaneous bag-house data have been collected ows:

vashed-wool bags have been found to be the best for ag purposes because they last much longer than any other Unwashed wool is wool which has not had the animal scoured out.

The method of neutralizing sulphurous gases at the United States lead smeltery at Bingham Junction is to pass the gases through steel flues exposed to the atmosphere in order to get cooling effect; then to add powdered lime to combine to form calcium sulphate. Zinc oxide is also very valuable for neutralizing these gases, but it is expensive. However, since the works have zinc concentrates to treat, these will be mixed with crushed coal or coke, and roasted in furnaces near the flues. The zincoxide fumes resulting will be conducted into the main flues after the lime has been added, about 100 ft. further on, so that the lime shall have had time to act. A considerable velocity of gases is required in order to keep the lime in suspension, 2200 ft. per minute, which was the velocity of the copper blastfurnace gases in the flues.

The gases should travel at least 100 ft. after the neutralizing

agents have been put in, in order to give them time to act.

Apart from their greater resistance to sulphuric acid, sulphuric anhydride, and selenium dioxide, wool bags are superior to cotton for filtering purposes because of the fine hairs lying on the surface, which arrest all the finest possible particles of the fume before they reach the actual pores of the filtering medium.

The bags at the United States lead plant are 34 ft. 6 in. long × 18 in. in diameter. When tied in place they give a net filtering area 31 ft. × 18 in. diameter, equal to 141 sq. ft. of filtering surface per bag. One sq. ft. of bag filter cloth is allowed for 0.7 cu. ft. of gas at 0°C. These bags weigh 7 to 8 lb. each and cost 45 cts. per linear yard. The freight on bags per pound is 2½ cts. and the hanging cost is estimated at 15 cts. per bag. This makes the total cost per bag in place \$5.50. The mechanical shaking device installed in this bag house costs at the rate of \$2 per bag.

In the Mammoth bag-house experiments, 1 sq. ft. of filter cloth filtered 0.75 cu. ft. of gas at 0°C. under ½6- to ½-in. water pressure. There was no apparent deterioration of bags at 50° to 100°C. When temperature falls below 45° the bags become damp and permit the fume to escape. In dry weather, the temperature can be as low as 25°C. and the bags filter all The cotton bags used were of 50 mesh and the wool

bags of 20 mesh.

At the United States lead bag house the ideal temperature for lead blast-furnace gases is considered 70°F., and must not exceed 90°. The ideal temperature for roaster gases is 100°

and must not exceed 120°F.

At the United States lead bag house the blast-furnace bag dust is high in arsenic. This dust ignites of its own accord in the dust chamber basement and sinters to a sort of clinker which is treated in the arsenic plant. This clinker contains on an average 22 per cent. arsenic and 32 per cent. lead. This product goes to the Brunton furnace, 20 ft. diameter × 4 ft. high, encased in brick, fired with coke, and with the hearth revolving once in about 9 min. The arsenic volatilizes and passes off as As₂O₃. The lead sinters and is worked off the hearth into hoppers by rabbles. This averages 40 per cent. lead and 9 per cent. arsenic. The As₂O₃ fume discharges into brick settling chambers 200 × 20 × 10 ft. high for the first 50 ft., and 8 ft. high the rest of the length. At intervals of 8 ft. in this chamber are baffle walls to make the gases zigzag and deposit acid on the walls. The product from this chamber averages 97 to 99 per cent. arsenic and is further refined in a reverberatory furnace 25 ft. × 15 ft. × 6 ft., coke fired. This chamber is kept at 500° at 30 ft., 200° at 100 ft., and 120° at 175 ft. from the furnace. If the end chamber gets too hot the acid goes off and is lost. This product is crystalline and has to be ground for the market. It assays 99.87 per cent. pure and is much better than the foreign article.

In installing any bag house the quantity of gases and the temperatures will be known. It is required to determine the amount of cooling surface necessary to reduce this temperature to one which would not injure the bags, and then to determine the number of bags required to filter this amount of gas. The length of the cooling pipes is more or less fixed by the contour of the ground, and the available sites for the bag house. The sizes of the pipes are determined by the quantity of the gas flowing.

Experiments in radiation and conduction through No. 8 steel plate show that the rate of heat transmission is equal to 0.042 B.t.u. per minute per square foot of cooling surface per degree difference between temperature of gas and external air. The weight of this gas may be taken at 0.08 lb. per cubic feet at 0°C., and its specific heat at 0.2375.

A typical baghouse fume is Pb, 52.5 per cent.; Zn, 3; S, 5.4;

As, 14.2; Sb, 1.6.

Chimneys¹

The velocity of discharge of a gas from a chimney is as follows:

$$V = \sqrt{2gh\left(1 - \frac{t'}{t''}\right)}$$

where V =Velocity in feet per second.

g = Acceleration due to gravity. h = Height of chimney in feet.

t' = Absolute temperature of external air.t'' = Absolute temperature of the hot gas.

Since the velocity varies as the square root of the height, high chimneys do not pay. Indefinite increase in temperature of the exhaust gas is not an advantage, either, for although the velocity increases with increased temperature, the increase in volume offsets this. The maximum results are obtained at 273°C. over outside air.

Draught power of a chimney in inches of water is:

$$d = h\left(\frac{7.64}{t'} - \frac{7.95}{t''}\right)$$

Copper Leaching

In general, leaching processes fall into 12 distinct groups: (1) Oxidation of sulphides in the ore with formation of water-soluble sulphates. This may be slow, going on at ordinary temperatures; or a quick sulphatizing roast. This latter, in turn, may be either an oxidation of sulphides already present in the ore, or with addition of pyrite material, such as was tried in the Shannon Copper Co.'s experiments. However, owing to the formation of basic compounds, the products of the sulphatizing roast must ordinarily be treated with dilute sulphuric-acid solution, so that this process grades into: (2) Leaching of oxidized ores or calcined sulphides with sulphuric acid, in which category come the successful operations of the Anaconda Copper Mining Co., the Chile Exploration Co.'s plant at Chuquicamata, the New Cornelia Copper Co. at Ajo, Ariz., the Arizona Copper Co.'s leaching plant at Clifton, and the Butte-Duluth and Steptoe plants. Somewhat akin to these is: (3) The use of soluble persulphates, of which iron is the only practical example, as a solvent. The Siemens & Halske process is the classic example of this:

$$Cu_2S + 2Fe_2(SO_4)_3 = 2CuSO_4 + 4FeSO_4 + S$$

 $CuO + Fe(SO_4)_3 = CuSO_4 + Fe_2(SO_4)_2O$

(4) Closely allied to (2) is the process used at Stadtberge and Linz, Germany, in which oxidized ores were treated with sulphur dioxide and nitrous gases. Intermediate between two main groups of sulphate and chloride leaching stands: (5) the Dötsch process, used at Rio Tinto, Spain. In this process, ferric sulphate and salt are the reagents, the equations being essentially:

$$CuS + Fe2Cl6 = 2FeCl2 + CuCl2 + S$$

$$Cu2S + Fe2Cl6 = 2FeCl2 + Cu2Cl2 + S$$

The liquor is regenerated, after precipitation of the copper, by running it down through chlorine towers, the gas being produced by heating salt and ferrous sulphate in an oxidizing atmosphere in reverberatories:

$$2FeSO_4 + 4NaCl + 3O = Fe2O3 + 2Na2SO4 + 4Cl$$

The Hunt-Douglas process also falls into the same class. Among the chloride-leaching processes the use of (6) hydrochloric acid has been proposed but does not seem to be in commercial use anywhere at present. (7) Höpfner uses cupric chloride:

$$CuCl_2 + CuS = Cu_2Cl_2 + S$$

while the use of ferrous chloride is theoretically attractive:

$$3CuO + 2FeCl_2 = Fe_2O_3 + CuCl_2 + Cu_2Cl_2$$

 $3CuCO_3 + 2FeCl_2 = Fe_2O_3 + Cu_2Cl_2 + CuCl_2 + 3CO_2$

Practically, however, the reactions are slow, precipitation of the copper expensive, and regeneration of the "ic" salts incomplete. (8) The Longmaid-Henderson process first calcined the ores, then roasted with abraumsalz, a mixture of sodium, po-

tassium, magnesium and calcium chlorides. In an absolutely different class of reagents come: (9) Ammonium carbonate or (10) ammonia. The great difficulty with these processes has been the loss of the reagents by volatilization, but the ammonialeaching process is now to be given a thorough trial at Lake Linden, Mich., under the auspices of the Calumet & Hecla Company. (11) Last is the theoretically beautiful leaching with sodium thiosulphate, which appears to be a practical failure through the ready decomposition of the reagent and the inhibitory effects of calcium compounds. (12) Leaching with nitric acid is to be tried by the Nevada-Douglas Copper Co. at Ludwig, Nev.

Any review of leaching would be incomplete without some reference to the ingeniously worked out Bradley process.¹ The ore was carefully roasted to a sulphate and most of the iron was converted into insoluble ferric oxide. This must be done at temperatures between 450°C. and 550°C. The roasted ore was then brought into association with an excess of calcium-chloride solution in a reaction drum at about a temperature of 100°C. Cupric chloride was produced by the reaction between the copper sulphate and the calcium chloride, while any ferric sulphate in the roasted product reacts with the calcium chloride to produce ferric chloride. The calcium sulphate from both these reactions is of course insoluble and is separated by filtration in the succeeding step.

From this solution the iron and alumina was precipitated by cupric oxide, hydrate, or calcium carbonate, which carries down some copper. This precipitate was therefore returned to the sulphatizing-roasting process, in which the bulk of the iron and alumina were rendered insoluble, while the copper was

converted into soluble copper sulphate.

The solution from which the iron and alumina had been removed and which contained the bulk of the copper was run into a second tank in which copper was precipitated by calcium carbonate as oxide of copper. The precipitate was filtered off and the copper recovered, while the calcium chloride was regenerated for use on further quantities of ore. There were also modifications for recovery of the silver, gold and zinc in the ore. Apparently its own chemical complications caused its failure.

In the consideration of any leaching process the first factor is the character of the ore. Thus, an ore containing large amounts of calcium carbonate obviously cannot be successfully leached with any free-acid reagents. The same would equally apply to ores containing large amounts of soluble alkalies, magnesia, alumina, etc. The leaching agent will be determined partly by the character of the ore and partly by its own cost. The reagent most generally available and cheapest is sulphuric acid. Ample wash water is a sine qua non, while the last great question is that of a precipitating agent. On this we are at once reduced to iron, sulphur dioxide under pressure, electrolysis and calcium carbonate or hydrate.

¹U. S. Pat. No. 1,011,502.

Scrap iron, after the floating supply of tin cans has been utilized is likely to be an expensive commodity. Using a fairly pure copper sulphate solution, the consumption of iron is likely to run from 1½ to 1½ lb. of iron per pound of copper produced. Where the solutions are high in chlorides, as in the Dötsch process at Rio Tinto, the consumption of iron is said to run as high as 2½ lb. of iron per pound of copper produced. However, I do not feel that the possibilities of sponge iron, i.e., iron produced by the reduction without fusion of ferric oxide, have by any means been exhausted, and that the great hope of chemical precipitation lies in this material.

Electrolysis looks fine on paper, like everything else connected with leaching. However, as ordinarily conducted there will be constant trouble with the anodes, and only about 1 lb. of copper will be deposited per kilowatt-hour. According to theory, if sulphur dioxide can be introduced under proper conditions, the anode can be depolarized and the electrolytic cell made to be practically a primary battery. Working along these lines Lawrence Addicks claims to have obtained a deposit of 2½ lb. of copper per kilowatt-hour. But it is by no means certain that high enough current densities can be used when this efficiency is being obtained to make the process a com-

mercial one.

However, the factors of solution and precipitation will ordinarily be settled by purely commercial considerations, *i.e.*, some one solvent and some one precipitant will probably be the one that must be made to work if the process is to be successful. The question of water supply must be settled by the

proper locating of the works.

Other details on which experimental work will have more of a chance to pick and choose are such matters as fineness of crushing, upward or downward percolation, percolation vs. agitation, strength of lixiviant, the control of impurities in the solution, both as to their control when there, and preventing them going into solution, the slime problem, adsorption of copper by the ore and the proper amount of wash water. This will probably seem a very summary dismissal of the leaching problem. So it is. The process has not arrived at the stage of having constants or published working costs and conditions.

Precipitation of Silver from Cyanide Solution

Precipitation from cyanide solution is by deposition of the dissolved metal upon zinc, either in the form of shavings or dust, or upon aluminum in the form of dust, or by electrolysis. Zinc dust is at present the most usual precipitant, although aluminum has some advantages, in that it does not form any cyanogen compound. Electrolysis has been a popular process, but at the present time it is considered too expensive for general use. One ounce of silver requires about one ounce of zinc or one-third of an ounce of aluminum for its precipitation.

¹ Eng. and Min. Journ., Jan. 9, 1915.

Sulphur-sand Cement¹

Sulphur-sand cement is composed of 1 part sulphur and 1.4 parts quartz sand ground to pass at least a 60-mesh screen. The mixture is heated to about 150°C, when it flows nicely and a sufficiently above the melting point of sulphur, 114°C, to prevent sudden chilling. The fact that sulphur begins to thicken above 156°C, and becomes so viscid that it will not flow at 180°C, must be borne in mind or there will be difficulty in working the cement. This is possibly the most satisfactory general cement available for low temperature work. It is readily handled and remarkably strong, has a tenacious bond a free from cracking and inert to most solutions. It will be found valuable for large-scale work, as well as in the laboratory. It was developed by Charles S. Bradley for use in his coppereaching process.

SizES AND CAPACITIES OF BULLION MOULDS*

	Inside measur	e	Capacity,	Silver,	Weight
Length, anches	Width, inches	Depth, inches	gold, Troy os,	Troy on	of mould lb.
$\begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 2 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 2 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 2 \\ 4 \\ 2 \\ 4 \\ 4 \\ 4$	5 1 1 1 6 1 3 8 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 2 3 4 1 4 1 4 1 4 1 4 1 4 1 4 1 5 1 4 1 4 1	4 10 25 50 95 100 136 180 244 250 295 365 375 550 620 730 910 1015 1285 1448 1470 1650 1830 2200 2750	2 5 12 25 50 56 76 100 134 140 166 200 208 300 340 400 500 600 700 800 810 900 1000 1200 1500	1 1 1 3 6 7 9 10 10 10 11 12 13 15 19 28 35 36 10 41 42 55 65 72 76

¹ E. J. Hatt, Eng. and Min. Journ., July 17, 1915.

As made by FRABER & CHALMERA.

Briquetting

For the purpose of agglomerating flue dusts and fine ores there are a number of binders and methods. Among the binders may be mentioned cement, concentrator slime, milk of lime, molasses refuse (which usually leads to a convention of flies assembling from all the neighboring states), ferric- or ferroussulphate solutions, magnesium- or calcium-chloride solution (the use of 5 to 10 per cent. of magnesium-or calcium-chloride solution, equivalent to 0.25 to 2 per cent. of MgCl₂ or CaCl₂, followed by compression, constitutes the patented Schumacher process), and various asphaltic and tarry residues.

Of the various methods used with these binders may be mentioned hand-moulding, brick-press moulding (square form), round briquettes (Chisholm-Boyd-White machine), briquettes cut from continuous stream (CHAMBER'S brick machine), the use of bags, and agglomeration in Huntington-Heberlein pots or Dwight-Lloyd roasters for lead ores, and on Dwight-LLOYD machines or in cement kilns for flotation concentrates.

For metallic chips the Ronay process is probably best.

This method is one for briquetting metallic chips without a The divided metal particles are subjected in a mould to pressures of about 30,000 lb. per square inch. The briquette is allowed to remain under pressure a sufficient time to expel all the air and moisture, having been previously freed from dust and dirt.

A general résumé of the subject of briquetting for iron-blast furnace work is abstracted by the Journal of the Society of Chemical Industry, Oct. 30, 1915, from Le Génie Civil, 1913, p. 306, and Revue de Metallurgie, 1915, p. 138. To be serviceable in a blast furnace, briquettes should satisfy the following tests: (1) fall from a height of 3 to 4 m. on to a metal plate without being reduced to powder, and withstand a pressure of about 140 kg. per square centimeter; (2) withstand a temperature of 900°C. without being reduced to powder; (3) stand in water for some time without softening; (4) withstand steam at 150°C. without being reduced to powder; (5) be sufficiently porous to absorb 12.5 to 16 per cent. by volume of water on being immersed for 25 minutes. The briquettes should be free from sulphur, arsenic, and other objectionable materials, and the cost of briquetting must not be greater than the difference in value of the ore in lump and as smalls.

Methods of Briquetting.—(1) (YEADON). 5 to 10 per cent. of slaked lime is added and the mixture made into a paste with Briquettes are formed under a pressure of 400 kilos per square centimeter and are placed in the open air to dry and harden. This requires at least 2 months. To avoid this delay steam under pressure is sometimes used, or about 10 per cent. of sawdust is added to the mixture and the briquettes are heated to 1200°-1400°C., when the wood carbonizes and the particles of ore frit together. (2) A mixture of equal parts of lime and sand is used as the agglomerant. (3) (SCHUMACHER). Fresh blast-furnace dust is briquetted with magnesium chloride

概引送 二年記・こと

):

as binder. (4) Basic blast-furnace slag is used as the agglomerant for dust, hardening being effected by high-pressure steam. If the dust is deficient in lime, 4-4.5 per cent. of this material is added. (5) An intimate mixture of ore, limestone, and moistened cement is briquetted under a pressure of 400 kilos per square centimeter. The briquettes are serviceable after standing in the open air for 3 or 4 days. (6) (Weiss). Briquettes containing 5-6 per cent. of slaked lime are compressed at 300 kilos per square centimeter and subjected to the action of carbon dioxide under a pressure of 20 kilos per square centimeter, first in the cold and then hot. The treatment requires about 5 hours, after which the briquettes are serviceable. (RONAY). Blast-furnace dust or roasted pyrites is compressed hydraulically into briquettes, without the addition of binders, under a pressure of about 1000 kilos per square centimeter.
(8) (GRÖNDAL). Impure ores are ground and concentrated in magnetic separators. The ore-mud is formed under small compression into briquettes, which are then passed on wagons of special construction through gas-fired tunnel furnaces. The highest temperature reached is 1300°-1400°C., which causes the particles to frit together and drives off sulphur. quettes are of high quality.

Recent German Blast-furnace Practice.—A writer in Stahl und Eisen gives the following comparison of the space used per ton of pig iron in Germany 30 years ago with present practice. Our translation is taken from The Iron Age. The particulars

are the average of forty-three furnaces:

	20	Present practice		
Iron	30 years ago	Daily output	Per ton	
Foundry iron	4.5–5.5 3.5–4.5	Tons 185 165 350 \$\{\pmu 50\} 280	Cubic meters 2.89 2.22 1.34 1.28 1.10	

In a similar way the time required for the charge to work through the furnace has decreased considerably during the last 10 years. For basic-Bessemer iron it varies from 10 to 25 hours, the lower time for Westphalia and the higher for the Minette district. For open-hearth steel-making iron it is from 14 to 21 hours, for hematite 15 to 30 hours, and for foundry iron 16 to 27 hours. For spiegeleisen the time varies from 24 to 27 hours. For 80 per cent. ferro-manganese the time required is 20 hours with about 205 per cent. coke consumption, 18 hours with 230 per cent., and 12 hours with 260 per cent.; all for 90 tons daily output. For 12 per cent. ferro-silicon, with about 125 tons

daily output, it is about 14 hours with 215 per cent. coke consumption, and 12 hours with 225 per cent. The advantage of a wide throat that favors a uniform descent of the charge has found greater and greater recognition, so that diameters of over 5200 mm. (17 ft.) are not uncommon today, with a ratio to the diameter at the bosh line of 0.8, which makes the angle of the stack very steep. This angle is usually about 86 deg.; in particular, for furnaces making foundry iron it is 85 to 87 deg., for those making open-hearth steel-making iron, 81½ to 86½ deg., and for those making basic-Bessemer iron, 81 to 86½ deg. With large outputs the bosh angle is 76 deg., although there are some exceptions. In particular, for furnaces making foundry iron the lowest case is 67 deg., the highest 77 deg.; for furnaces giving open-hearth steel-making iron the angle is 701/2 to 77 deg., and for those making basic-Bessemer iron, 71½ to 76½ deg. If the cross-section of the tuyères per ton of coke is compared for modern blast furnaces, considerable differences are found, and this is also true of the blast pressure. No settled ratio between these quantities can be noticed. For instance, the results of the forty-three furnaces give the following:

Iron	Tuyère section per ton coke	Pressure
Foundry iron	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14.0-24 cm. 22.5-75 cm. 24.0-68 cm.

Some Constants for the Metallurgy of Iron HEAT CONTENT OF PURE IRON¹

Temp.	Total heat	Temp.	Total heat	Temp.	Total hea
250	30.5	750	125.6	1250	208.3
300	37.7	800	135.8	1300	216.1
350	45.0	850	144.4	1350	224.2
400	52.2	900	152.8	1400	233.1
450	60.3	950	160.4	1450	241.4
500	68.3	1000	167.8	1500	250.0
550	76.7	1050	175.4]
600	85.0	1100	183.0	 .]
650	95.1	1150	191.7	 	
700 .	111.8	1200	200.0		1

	Shrinkage	of	Cas	stings	per	Foot
Cast iron	•			Zinc		

Cast iron			
Brass	$\frac{3}{16}$ in.	Tin	K ₂ in.
Steel			
Malleable iron			

¹ P. Overhoffer, Metallurgie, June 22, July 8 and 22, 1907.

PIG-IRON CONVERTING DATA

	C, per cent.	P, per cent	Si, per cent.	Mn, per cent	S, per cent.
Charge	2.98	0.10	0.94	0.43	0.06
After blowing 9 min. 10 sec	0.04	0.11	0.02	0.01	0.06

Slag formed: SiO_2 , 63.56 per cent.; Al_2O_3 , 3.01; FeO, 21.39; Fe_2O_3 , 2.63; MnO, 8.88; CaO, 0.90; MgO, 0.36. Gases produced: CO_2 , 5.20 per cent., CO, 19.91; H_2 , 1.39;

 N_2 , 73.50 per cent.

3. . .

Heat Balance Sheet (Blowing 22,500 Lb. of Above Pig)

Heat in converter body at starting. Heat in melted pig iron. Heat in spiegeleisen. Heat in blast.	8,034,970 6,750,500 750,000 86,580
Heat of oxidation	4,510,800 ¹ 59,890
Total on hand and developed	20,192,740
Heat in converter body at finish	7,183,770
Heat in finished steel	8,632,750
Heat in slag	1,582,350
Heat in escaping gases	2,786,000
Heat absorbed in decomposing moisture Heat conducted to the air	182,130
Heat conducted to the air	34,630
Heat lost by radiation.	25,240
Total accounted for	20,426,870
C to CO ₂	1,139,670 cal.
C to CO	1,309,280 cal.
$Si \text{ to } SiO_2$	1,422,400 cal.
Mn to MnO	327,130 cal.
Fe to FeO	268,150 cal.
Fe to Fe ₂ O ₃	44,170 cal.
	4,510,800 cal.

Tempering Ordinary Steel

Deg.	Color
200	Yellow
250	
300	Light blue
350	Dark blue

576 METALLURGISTS AND CHEMISTS' HANDEOU

STEEL CONVERTING-HEAT EFFECT OF OXIDIZING 1 Kg. of MATERIAL

	Heat of oxida- tron	Formation of slag	Total heat developed	Chilling effect of blast, ra- diation, etc.	Nethestavail- able for raising temperature	Theoresical
Silicon Manganese Iron (to Fe ₂ O ₃) Iron (to Fe ₂ O ₃) Titanium Aluminum Nickel Chromium Carbon (to CO ₂) Carbon (to CO) Phosphorus	7,000 1,653 1,173 1,746 4,542 7,272 1,051 2,344 8,100 2,430 5,897	159 159 159	7,000 1,751 1,332 1,905 4,542 7,272 1,210 2,344 8,100 2,430 8,469	1,688 430 422 825 1,022 1,305 378 887 3,936 2,572 2,477 2,2531	5,312 1,321 910 1,080 3,520 5,957 832 1,457 4,164 — 142 3,739	Dept.

Basic-lined Open Hearth (Monell Process)*

Fifty tons pig iron at 1300°C, run in on 15 tons of ore oper cent. Fe₂O₂; 10 per cent. SiO₂) also heated to 1300°C. There is 2000 lb. CaO on the ore. The reaction requires about 20 minutes.

ANALYSIS OF METAL

	On running in	After reaction
Carbon	3 50	3.00
Silicon	2 00	0.00
Phosphorus	0 75	0.00
Manganese	0 50	0.00
Iron	93 25	97.00

	Heat evolved	Cel.
Si to SiO ₂ P to P ₂ O ₅ Mn to MnO C to CO SiO ₂ to FeO ₂ SiO ₄ . CaO to 3CaO ₂ P ₂ O ₅	$2,000 \times 7,000 =$ $750 \times 5,892 =$ $500 \times 1,653 =$ $471 \times 2,430 =$ $7,286 \times 144 =$ $2,000 \times 949 =$	14,000,000 4,419,000 826,500 1,144,500 1,049,200 1,898,000

¹ Chilling effect of time added preheated to 600° ² J. W. Richards, "Metallurgical Calculations," Vol. II

	Heat absorbed	Cal
O ₃ to FeO O to Fe C to Fe ₃ +C Si to Fe+Si P to Fe ₄ +P	18,900 × 573 ~ 4,681 × 1,173 ~ 471 × 705 = 2,000 × 931 = 750 × 1,400 ~	10,829,700 5,490,800 332,000 (?) 1,862,000 (?) 1,050,000 (?)

BALANCE SHEET OF IRON BLAST FURNACE¹ (Per 1000 Units of Pig Iron)

Charge	P.S.	Pıg	iron	Blag		G	8568
Fe ₂ O ₃	1530 2 1314 9	Fe	920 4			٥.	394 5
FeO 8iO ₂ MnO MnO MsO ₃ CaO	84 2 9 6 11 6 34 1	Fe Si Mn	46.2 6 0 0 25	FeO 8:01 6 MnO Al ₂ O ₁ 1 CaO. 3	I 2 9 6 9 3 11 6	0 .	13 2 8 6 0.1 0 03
MgC) PaUs . R C . catone	14 8 0 092 0 153 0 11	P S Cu	0 04 0 07 0 11	MgO CaS	0 19	o ō.∷	0.05 0 0i
$egin{array}{l} { m Fe}_2 { m O}_3 \ { m S}_1 { m O}_2 \ { m A}_2 { m O}_3 \ { m C}_3 { m O}_3 \ { m C}_3 { m O}_3 \ { m M}_2 { m O}_3 \ { m P}_2 { m O}_5 \ { m S} \ { m C}_2 \ { m C}_2 \end{array}$	0 2 3 6 0 4 62 2 0 2 0 007 0 001 49 1	P.	0 003	FeO, SiO1 Al2O2 CaO MgO	0 2 3 6 0 4 32 2 0 2	0 Ó . CO ₂	0 02 0 004 49 1
recal C N	682 0 547 7 0 5	С	27 0			C	520 7 0 5
O Fe ₂ O ₁ SiO ₂ C ₃ O MgO P ₂ O ₄ S K ₂ O H ₁ O	24 1 2 2 1 3 6 1 0 7 0 046 0 116 3 4 95 8		0 02	FeO. SiOa. CaO MgO CaS. K ₁ O	2 0 1 3 5 9 0 7 0 25 3 4	0	24 1 0 2 0 06 0 03
et O ₂ N ₂	2416 8 557 7 1559 1				-	O	557.7
'otals	1744 8		1000 0	22	20 8	14 .	3543.7

J W REGIANDS, Metallurgical Calculations," Vol 11.

HEAT BALANCE, IRON BLAST FURNACE¹ (Per 100 Kg. of Iron)

Heat developed	Dry blast	,
C to CO C to CO ₂ Heat in blast Solution of carbon in iron Formation of slag	92,950 Cal. 206,955 Cal. 37,850 Cal. 2,820 Cal. 4,260 Cal.	•
	344,835 Cal.	;
Heat accounted for	Dry blast	
Reduction of iron Reduction of silicon Expulsion of CO ₂ . Evaporation of moisture Heat in waste gases Decomp. of blast moisture Heat in slag Heat in pig iron Heat in cooling water Lost by radiation and conduction.	7,000 18,666 11,342 23,799 3,225 29,280 32,500 14,922	
Carbon burnt at tuyères	67.8 85.6	

CUPOLA CHARGES IN STOVE FOUNDRIES²

	Foundry A	Foundry B	Foundry C	Found:
Bed of coke	5000 1000 200 200 150 120	1600 1800 1000 150 130 130 100	1600 4000 2000 200 200 150 150 150	1800 5600 2900 200 200 200 200 200

¹ J. W. RICHARDS, "Metallurgical Calculations," Vol. II.

² KENT'S, "Mechanical Engineers' Pocket Book."

³ A very high melting ratio for stove plate. About 8- to 14 necessary for good melting. The metal loss will probably run per cent.

WASHING	GASES	WITH	THIESSEN	WASHER
---------	-------	------	----------	--------

	Hock	ndahl		Hö	rde	
	Appa- ratus I, hot un- cleaned gas	Appa- ratus II	Schalke	Appa- ratus I, cool cleaned gas	Appa- ratus II	Rom- bach
grains per 1000 i. ft.:						
ore washing, grains per 1000 1. ft.:	2.6 0.017	2.6 0.008	1.3-1.7 0.008		1.0 0.004	0.87
ore washing	7.8	10.4	15.0 % vol.	13.9	15.8	18.3
er washing	3.1	2.2	12.20 % vol.	1.5	1.3	13.9
eg. C.: ore washing	144.0	158.0	144.0	46.0	45.0	43.0
r washing erature of water, eg. C.:	30.0	37.0	30.0	33.0	28.0	36.0
ore washing r washing g water con- med:	14.0 39.0	7.0 40.0	12.0 55.0	28.0 37.0	20.0 34.0	18.0 19.0
ic feet per hour per 1000 cu. ft	8.22	424.0 7.48	360.0 7.48	565.0 7.78	247.0 7.93	360.0 8.45
e of gas per hour, c feet	607,160	423,600	360,060	529,500	211,800	317,700

FMAN'S "General Metallurgy."

STEEL ROLLING

C MILLIMETERS OF STEEL DISPLACED BY 1 Kg.-m. OF ENERGY AT DIFFERENT TEMPERATURES 1

	At temperatures, deg. C.					
are ingots to	1300	1200	1000	900		
ds	100 80	45 50	20	18		
ders	85	67 70	20 20	10		

FMAN'S "General Metallurgy," p. 665.

Types of Electric Furnaces

Electric furnaces may be divided into three classes: (1) Arc: (2) resistance; (3) induction furnaces, according to the different

methods of applying the heat.

In the arc furnaces the heating is produced by radiation or conduction from an electric arc. This arc is formed by the passage of an electric current at 50 to 120 volts across the air gap between two carbon electrodes, or between one or more carbon electrodes and the surface of the molten metal, which then acts as the second pole of an electric circuit.

In resistance furnaces the heat effect is produced within the metal itself by the resistance offered to the passage of the current through it. The temperature attained by this method of heating cannot equal that attained in arc heating; the radiation and conduction losses are lower and the thermal efficiency of the

furnace is higher.

Induction furnaces form really a subdivision of the resistance type of furnace, since the thermal effect is again due to the resistance of the metal to the flow of current through it. In this case, however, induced currents of electricity are used in place of direct current. The induction furnace is in fact nothing but a great step-down transformer in which a ring of molten metal forms the secondary circuit and becomes the focus of current of large intensity but low e.m.f. The disadvantages of this type of furnace are its comparatively low temperature and the necessity for retaining a certain proportion at every melt in the annular ring in order to carry the current for melting the next charge. A great advantage is that electrodes are dispensed with and that this costly item of running charges is wiped out. A secondary advantage is that the capital expenditure upon cables and conductors is greatly reduced.

The chief commercial types of furnace fall into the classes as follows: (1) arc—Chaplet, Grönwall, Girod, Heroult, Keller, Nathusius, Snyder, Stassano; arc and resistance— HÄRDEN, NAU, SODERBERG, STOBIE; resistance—Rochling, Rodenhauser, Queneau (pinch effect), Hering (pinch effect);

induction—Anderson, Colby, Frick, Hiorth, Kjellin.

Composition of the Silicides and Carbides²

Ni₂Si, Co₂Si, Cr₂Si, Mn₂Si, Cu₂Si, Fe₂Si, Fe₅Si, W₂Si₃.

1	2(a)	3 (b)	4(c)	5(f)	6(d)	7(f)	8(<i>f</i>)	9(e)	10(f)
Li ₂ C ₂		CeC ₂ LaC ₂ YtC ₂ ThC ₂	U2C8	wc	Al ₄ C ₃ Be ₄ C ₃	Cr ₈ C ₂	MoC W ₁ C	MnsC FesC	Cr4C

⁽a) All carbides of this group give acetylene when decomposed with water.

(b) These carbides give off complex mixtures of acetylene, ethylene, methane and hydrogen, according to temperature employed. (c) This carbide when decomposed with water gives gases rich in methane. Only about one-third of the carbon is given off in this way, the remainder forms liquid and solid hydrocarbons and carbohydrates. (d) These carbides and water methane only. (e) Manganese carbide and water give equal mixtures than and hydrogen. Iron carbide is not decomposed.

hane and hydrogen. Iron carbide is not decomposed. (1) These s are not decomposed by water.

ording to Borchers' "Electric Smelting and Refining." re silicides alloy with silica in all proportions.

Electric Steel Furnaces¹
POWER CONSUMPTION IN KILOWATT-HOURS PER METRIC TON OF
STEEL PRODUCED

	Co 80	old charg mposed	of		Molte	a char	ges fro	tn
	Scrap	Fig. iron and Wel- loon iron	Average	Bessemer	Wellman open hearth	Martin open hearth	Cupols	Average for molten , charges
Heroult	459 528		493	104 33	200	, .	-	146
GiroJ	750 850		800		200 275	*4		237
Stassano	918 958							, , , .
	1000 1250		1071			+	-	
Röchling- Rödenhauser	1260 640		1071	125 150	280		280	- 4-
	780 900		773	200 250			-	214
Prick	780 800		790	**		14 * *		
Keller Hiarth		680 720	-	, .		275		275
Colby	605	790	730	-	. ,	+4		
Kjellin	825 650		715				,	
	790 800		747			,,	** -	4 + 1

Power Consumption in Ferro-chrome Making²

The power consumption in a ferro-chrome furnace of the Meraker Electric Smelting Co., at Kopperaaen, Norway, was recently given as 3 kw.-hours per pound, or 0.68 kw.-year per short ton in making a ferro-chrome containing 5 per cent. carbon. At Kanawha Falls, W. Va., ferro-chrome was made in a crucible electric-arc furnace with a power expenditure of 3.6 kw. hours per pound, or 0.72 kw.-year per ton. This product contained 70.96 per cent. chromium, 23.23 per cent. iron, 5.21 per cent. carbon, 0.5 per cent. silicon, 0.008 per cent. phosphorus, and 0.078 per cent. sulphur. At both Kopperaaen and Kanawha Falls an ore containing about 50 per cent. Cr₁O₄ was

JOHN B. KERSHAW, "Electrothermal Methods of Iron and Steel Production"

2 Iron Trade Review, May 13, 1915.

used. The Kopperaen ferro-chrome contains 65 to 70 pt cent. chromium. In the experiments of the writer, a product containing 50 to 68 per cent. chromium and 4.32 to 9.31 pt cent. carbon was obtained with an ore containing 46.35 pt cent. Cr₂O₃, and power consumption of 3.02 kw.-hours pt pound or 0.69 kw.-year per ton. A 750-kw. furnace of the Alby Carbide type at Kopperaen, operating continuously, use on the average about 3 kw.-hours per pound of ferro-chrome produced, or 0.68 kw.-year per short ton, when chromite ore containing 50 per cent. Cr₂O₃ is charged; and the product contains 5 per cent. or more of carbon and 65 per cent. of chromium.

SECTION XI

FIRST AID

TRUCTIONS FOR FIRST-AID TREATMENT¹

t. alcoholic iodine into wound freely; then apply dry gauze to wound and bandage it. Do not otherwise wound

e Bleeding.—Place patient at rest and elevate injured apply sterile gauze pad large enough to allow pressure

pove and below wound. Bandage tightly.

ere bleeding continues apply tourniquet between wound rt and secure doctor's services at once. Use tourniquet ution and only after other means have failed to stop

Bleeding.—Maintain patient in upright position with evated. Have him breathe gently through mouth and rose. If bleeding continues freely, press finger firmly ent's upper lip close to nose or have him snuff diluted ine vinegar into nose.

es which do not Bleed—Bruises and Sprains.—
njury with several layers of sterile gauze or cotton,
ndage tightly. Application of heat or cold may help,
eans are unnecessary. If injury is severe place patient
and elevate injured part until doctor's services are

njuries—Except Eye Burns.—For ordinary eye irritaod eye with 4 per cent. boric acid solution. Remove
ose particles which can be brushed off gently with
at cotton wrapped around end of toothpick or match.
It remove foreign bodies stuck in the eye. In that case
other eye injuries, drop castor oil freely into eye, apply
auze, bandage loosely and go to doctor.

Electrical and Sun Burns.—Do not open blisters. Use itment (3 per cent. bicarbonate of soda in petrolatum) a sterile gauze applied directly to burn. Cover with hicknesses of flannel or soft material, then bandage but

tlv.

Burns.—Thoroughly flush wound with water, then dry apply burn ointment and bandage as above.

a Bulletin of the Conference Board on Safety and Sanitation Affiliated Safety Organizations; M. W. Alexander, Secretary, n., Mass.). Copyright, 1914. Reprinted from Engineering News.

Alkali Burns.—Thoroughly flush wound with water, t flood with white wine vinegar to neutralize (dilute vinegar alkaline eye burns), dry wound, apply burn ointment bandage as above.

Asphyxiation or Electric Shock.—See page 587.

Burns and Scalds.—Cover with cooking soda and lay cloths over it. Whites of eggs and olive oil. Olive or lin oil, plain, or mixed with chalk and whiting.

Chills and Cramps.—Give patient 20 to 30 drops of Jam ginger in hot or cold water. If no improvement, send for do

Cinders in the Eye.—Roll soft paper up like a lamp lighter wet the tip to remove, or use a medicine dropper to draw it Beware of infecting the eye with a dirty handkerchief corns similar material. Rub the other eye.

Dislocations.—In case of dislocation of finger except so joint of thumb, grasp finger firmly and pull it gently to rep joint, then place finger in splint and bandage. In other c

rest dislocated part and secure doctor.

Fainting.—Place flat on back; allow fresh air, and spri with water.

Fractures.—Make patient comfortable and secure doctors services at once. Avoid unnecessary handling to prevent all edges of broken bones tearing artery. If patient must moved, place broken limb in as comfortable position as post and secure it by splint.

Frost Bites.—Rub with ice, snow or cold water; then t

as "fire burns."

Heat Prostration.—Give patient teaspoonful of aromatics of ammonia in hot or cold water. In case body feels warm as cold to it; if necessary give cold bath. In case body feels and clammy, apply heat to it and send for doctor.

Internal Poisoning.—Immediately secure doctor's servi Make patient drink large quantities of water, preferably we and make him vomit by sticking one's finger down his three

by other means.

Lightning.—Dash cold water over a person struck.

Mad Dog or Snake Bite.—Tie cord tight above wound. Sthe blood and cauterize with caustic or white hot iron at or cut adjoining parts with a sharp knife.

Shock, Following Injury.—In case shock is due to severe ble ing, control it first as directed under "severe bleeding";

summon a doctor.

Lay patient flat on back and keep him warm with blank hot-water bottles, etc., and provide plenty of fresh air. patient inhale fumes of aromatic spirit of ammonia. If fi conscious give patient hot drink or teaspoonful of aroma ammonia in hot or cold water.

Sunstroke.—Loosen clothing. Get patient into shade,

apply ice-cold water to head.

Venomous Insect Stings, Etc.—Apply weak ammonia, oil, a water, or iodine.

ANTIDOTES FOR POISONS

st.—Send for a physician.

ond.—Induce vomiting by tickling throat with feather or, drinking hot water or strong mustard and water. ow sweet oil or whites of eggs.

ds are antidotes for alkalies, and vice versa.

Special Poisons and Antidotes

.—Muriatic, oxalic, tic, sulphuric (oil of riol), nitric (aquatis).

ic Acid.

olic Acid.

ies.—Potash, lye, tshorn, ammonia. iic.—Rat poison,

cis green.

Poison.—Lead, saltre, corrosive sublite, sugar of lead, e vitriol.

oform.—Chloral

er.

pperas, cobalt.

e.—Antimony, taremetic.

ury and its salts.

m.—Morphine,
danum, paregoric,
othing powders or
ups.

Soap-suds, magnesia, lime-water.

Ammonia in water. Dash water in face.

Flour and water, mucilaginous drinks.

Vinegar or lemon juice in water.

Milk, raw eggs, sweet oil, limewater, flour and water.

Whites of eggs, or milk in large doses.

Dash cold water on head and chest. Artificial respiration.

Soap-suds and mucilaginous drinks.

Starch and water, astringent infusions. Strong tea.

Whites of eggs, milk, mucilages.

Strong coffee, hot bath. Keep awake and moving at any cost.

CYANIDE POISONING

is recommended that boxes labeled "Antidotes for tide," with directions for use affixed to the lids of the boxes, d be kept in prominent and easily accessible parts of the ide plants. Each box should contain: a spoon and a l receptacle to hold about 1 pt.; one blue hermetically d vial containing 30 cc. of 33 per cent. solution of ferrous tate; a white vial containing 30 cc. of 5 per cent. causticate; a white vial containing 30 cc. of 5 per cent. causticate; and one package, 30 grains, of oxide of magne-(light). The directions for the use of the antidote should follows:

eparation of Antidote.—Quickly empty the contents of the vial, of the white vial, and of the magnesia package into netal receptacle, and stir well with the spoon. This should

be done as rapidly as possible, as the patient's chance of 1

depends on promptness.

Administration of the Antidote.—If the patient is conscionable make him swallow the mixture at once and lie down for a faminutes. If the patient is not conscious, place him on his beand pour the mixture down his throat in small quantities, necessary pinching his nose in order to make him swallow.

Incite Vomiting.—After the antidote has been given, try

Incite Vomiting.—After the antidote has been given, try make the patient vomit by tickling the back of the throat wit feather or with the fingers, or giving a tumblerful of warm was

and mustard.

Then call the undertaker.

For cyanide eczema use equal parts by weight of calomel a bismuth subnitrate and apply locally. It will give immedirelief and will dry up the sores in 2 or 3 days.

Other prescriptions are as follows:

Add 3 oz. of camphor to 1 pt. of olive oil and dissolve slow heat. This occasions some pain when first applied t will soon afford relief.

In mild cases the following will be beneficial: zinc oxide 1/4 c zinc carbonate 30 grains, glycerin 1/2 oz., lime water to ma 1/2 pt.

For sores which do not heal use: pure lard 5 oz., olive 5 oz., white wax $2\frac{1}{2}$ oz., spermaceti $2\frac{1}{2}$ oz., powdered gr

benzoin 12 oz.

For selenium poisoning under the fingernails, brush the en of the fingers with 5 per cent. cocaine solution.

FIRST AID FOR GAS ASPHYXIATION OR ELECTR SHOCK

In line with its campaign to reduce the number of deat in the mines of the United States, the Federal Bureau of Min some time ago appointed a committee of eminent physicis and surgeons to develop an efficient method of resuscitation be administered by miners or other persons to a fellow-workm overcome by electric shock or by gases in places which cannot reached by a physician or surgeon in time to save life.

As a result of this committee's report the Bureau recomment the following procedure in rendering first aid to those in need

artificial respiration.

The recommendations apply not only to men who are over come by electric shock or gases in mines, but also to persons a fering from the effects of illuminating-gas poisoning or free electric shock anywhere. The recommendations are, therefore of importance to many thousands of workmen:

In case of gas poisoning, remove victim at once from the gased atmosphere. Carry him quickly to fresh air and immediate give manual artificial respiration. Do not stop to loom

clothing. Every moment of delay is serious.

In case of electric shock, break electric current instant! Free the patient from the current with a single quick motion

W

(12

F\$.,

311

A.W

E.

X"

J.

using any dry non-conductor, such as a newspaper, clothing, rope, or board, to move patient or wire. Beware of using any metal or moist material. Meantime have every effort made to shut off current.

Attend instantly to the victim's breathing. If the victim is not breathing, he should be given manual artificial respiration at once. If the patient is breathing slowly and regularly do not give artificial respiration, but let nature restore breathing unaided.

If patient is unconscious, even if he appears dead, lay him on his belly with arms extended forward, turn his face to one side, remove false teeth, tobacco, etc., from his mouth and draw

his tongue forward.

Kneel, straddling patient's thighs, facing his head, and resting your hands on his lowest ribs. Swing forward and gradually bring weight of your body upon your hands and thus upon patient's back, then immediately remove pressure by swinging

Inspiration; pressure off.

Expiration; pressure on.

backward. Repeat this movement about twelve times per minute without interruption for hours if necessary, until breathing has been started and maintained (see illustrations).

In gas cases, give oxygen. If the patient has been a victim of gas, give him pure oxygen, with manual artificial respiration. The oxygen may be given through a breathing bag from a cylinder having a reducing valve, with connecting tubes and face mask, and with an inspiratory and an expiratory valve, of which the latter communicates directly with the atmosphere.

588 METALLURGISTS AND CHEMISTS' HANDE

No mechanical artificial resuscitating device should be unless one operated by hand that has no suction effect c lungs. Use the Schaefer or prone pressure method of art respiration. Begin at once. A moment's delay is se Continue the artificial respiration. If necessary, conti hours or longer without interruption until natural breath restored. If natural breathing stops after being res use artificial respiration again.

Do not give the patient any liquid, until he is fully cons Give him fresh air, but keep his body warm. Send fo nearest doctor as soon as accident is discovered.

A		Amalgams, heat of formation of,	
	000	Ammonia, determination of	
:	339	generation of	
ions	1	gravimetric factors	
n, cupel		specific gravity of	124
, first aid in		Analysis, qualitative, acids	270
, action of, on metals,	208	qualitative, bases 256-	-267
		Analytics, fundamental equa-	
ion of, on metals	208	tions	48
ochloric, density of	120	Angle of nip	350
ofluosilicic, density of	125	Annealed copper standard	163
Illaneous heats of for-		Annealing, for chains	450
nation	286	Annuities, formulas for	18
eacid, density of	121	tables	20
tative analysis for	270	Anode potentials	298
uric, density of		Anodes, analyses	551
ting alloy, composi-		converter vs. furnace re-	
cion		fined	549
, properties of		insoluble-anode materials,	
expansion, equation	_,_	tanks	550
or	75	slime analyses	552
definition of	475	Anthracite, analyses of	415
z metal, British, com-	2.0	commercial, sizes of	418
position of	480	Antidotes, cyanide	
S. bronze	481	general	585
374, 375,		Antifriction metal, composition	000
tal, composition of	480	of	480
able for flotation		Antimonides, heat of formation	283
oustion limits in		specific heats of	201
osition of		Antimony, alloys of 481-	
pressed-air tables. 456-		in blast furnace	500
oility of, in water		detection of	256
		determination of	
stic bronze, composi-	400		555
tion of	480	electrolytic production of	
's table of total heat in	E10	gravimetric factors	
slags		impurities in	487
ssifier		prices, average	55 242
elementary formulas	10	properties	
isting metal, compo-	400	Apothecaries' measure, table of	8
1		weight, table of	110
eneral table of 479-		Aqueous vapor, tension of, 106,	110
s of formation		weight per cubic foot	107
d (see "Gallium")		Arcs, sparking distances	167
, Greek	3	Arches, construction of	439
barometric pressure,	110	firebrick in	424
effect on	112	Areas, formulas for	25
in slags 500,		of polygons	26
es, heat of formation,		Argental, composition of	.479
fic heats of	200	Argentan, see "Berlin Argentan"	
n, alloys of	479	Argon, generation of	183
imption of	58	properties	242
rtion of	256	Arsenides, heat of formation	283
mination of	331	specific heats of	201
rolytic production of,		Arsine, generation of	183
imetric factors	322	Asbestos, properties of	426
rities in	487	Ashberry metal, composition of,	480
s, average	55	Asphyxiation, first aid in	586
uction statistics57		Assay fluxes	307
erties,		ton, definition of .2	7
, properties of	426	Atomic weights	240
ating pan	339	Auer metal, composition of	479

Augustin process, description 47	5 Boiling points of elements	
Austenite, definition of 24 Avogadro's law 23	7 of metals 129, 3 of nitric acid	131
Avogadio s law	of non-metals	130
В	organic bodies	188
	of salts	
Babbit, composition of 48	0 sulphur dioxide	180
Bag-house data 56	4 water 130, 131,	132
Balance sheet, iron furnace 57		277
steel converter 574, 57	6 Borates, heat of formation	283
Ball mill	1 specific heats of	199 272
Ball-Norton magnetic separator 36		322
Barium, detection of 25		243
determination of 329, 33		475
gravimetric factors 32	2 Bottone's scale of hardness	193
properties 24	3 Boyle's law	75
in slags 500, 50	4 Bradley process,	570
Barometer, altitude effect 11		480
correction for capillarity 11 for gravity 11		294 480
for gravity		431
Bartlett table	9 shapes of	$\frac{101}{428}$
Bases, qualitative analysis for. 26		425
Batteries, e.m.f. of	2 Briquetting processes	572
Baumé, conversion to specific	British Columbia Copper Co.,	
gravity 113, 41		528
Bauxite, analyses of 55		523
properties of	The state of the s	3
Bearing metals, composition of . 48 Bell metal, composition of 48		198
Belt conveyor, capacity 44	0 tests	191
Berlin argentan, composition of, 48		572
Beryllium, detection of 25		480
electrolytic production of 55	5 Brittleness of metals	187
properties	T	284
Bessemer process, description of, 47		200
Betts process, description 47 Bilharz table		183 322
Bilharz table		0 <i>64</i> 244
detection of		
electrolytic deposition of 55	5 Brown tank, description	374
gravimetric factors 32	2 power data	412
impurities in 48	7 Bryan mill	339
properties	Buddle, Dodds	370
Bisulphates, heat of formation, 28		188
Bituminous coal, analyses of 41 Blaisdell machinery 37		$\frac{100}{426}$
Blanket-table data	5 Bullion-mould sizes	571
Blake crusher	9 Bumping table	37 0
crushing with 34	2 Bunker Hill screen	374
largest 349	9 Burt filter	374
Blast furnaces, balance sheet,		374
iron furnace 57	. ————————————————————————————————————	
copper smelting 52 gases, analyses of 52		
gases, analyses of 524 iron-furnace practice 573		257
jacket water required 52		555
lead furnaces 53		543
typical operating data 52	3 gravimetric factors	$32\overline{3}$
slags497 et seg	properties	244
Blende, effect on blast furnace. 500		257
Blowing machinery, for copper-		3 28
$egin{array}{cccccccccccccccccccccccccccccccccccc$		244 257
general notes		201 3 20
Blue powder analyses 540		555
Blue vitriol analyses, typical 55		3 23
Boiling points, ammonia 13	0 properties	244
carbon dioxide 13	O Calculus, elementary formulas.	50

ne	374	Classifiers 373, 374, 375,	376
1	374	Clevenger's formulas for pulp	40.4
	374	constants	404
efinition of	4	Cleaning metals by electrolysis,	301
ower, liquid fuels, 413,		Coagulants, slime	400
er, standards for		Coal, analyses of 415,	
netal, composition of,			418
.ble, description370, ieral data	385	grate area	57
measures of	8, 9	sampling	315
1ks	406	Coal-dust firing in reverbera-	010
y, barometric correc-	100	tories	529
ion for	111	Coal-tar distillation products	420
constants of metals	143	Cobalt, alloys of	481
composition of metal-		detection of	258
ic	580	determination of	333
of formation	284	electroplating bath	295
	247	gravimetric factors	323
rick, laying	427	properties	245
oxide, determination,		smelting	546
neration of	183	Coefficient of elasticity	471
.vimetric factors	323	of linear expansion	189
es, decomposition	001	of rigidity	188
emperatures	291	Coercivity, definition	228 57
of formation fic heats of	285 199	Coke, production, U. S	315
entrator	370	sampling	310
slope tables for	010	480,	481
aunders	386	standards	16
work, cost of	468	Coins, value of	15
ble data	385	Color scales for temperature	435
shrinkage of	574	Columbium, detection of	258
ootentials	298	Combination, heats of 277-	-290
le flotation process		Combustion, efficiency of, in	
potash, resistivity of	_	engines	422
solutions	160	limits of	421
	125	oxygen required for	416
oda, specific gravity of	102	temperatures	416
Bolutions	125	Compounds, chemical and com-	
ompositions	47 3		304
e, definition of	247 3	Compressor formulas456-Concentration, machinery used	-102
le, temperature scale letection of	258	in	369
olytic production of	555	specific gravities, minerals,	
erties	244	Concentrator, canvas table data,	
inits	10	power requirements 377,	270
nnealing			3/5
	450	vanner data 382-	-384
oads for	450 449	vanner data 382-	-384
oads for	449 310	vanner data 382- water requirements 379- Concrete, costs of	-384 -361 468
crucible, for assays aill, description of	449 310 340	vanner data	-384 -381 468 562
crucible, for assays aill, description of	449 310 340 358	vanner data	-384 -361 468
crucible, for assays aill, description of ing in	449 310 340 358 567	vanner data	-384 -381 468 562 155
crucible, for assays aill, description of ing in ronze, composition of,	449 310 340 358 567 481	vanner data	-384 -381 468 562 155
crucible, for assays nill, description of ing in ronze, composition of, , heat of formation of,	449 310 340 358 567 481 286	vanner data	-384 -381 468 562 155 163
crucible, for assays aill, description of ronze, composition of, , heat of formation of, fic heat of	449 310 340 358 567 481 286 197	vanner data	-384 -381 468 562 155 163 166 159
crucible, for assays aill, description of ing in ronze, composition of, , heat of formation of, fic heat of determination of	449 310 340 358 567 481 286 197 336	vanner data	-384 -381 468 562 155 163 166 159
crucible, for assays aill, description of ronze, composition of, heat of formation of, fic heat of determination of ration of	449 310 340 358 567 481 286 197 336 183	vanner data	-384 -361 468 562 155 163 160 159 156
crucible, for assays nill, description of ronze, composition of, , heat of formation of, fic heat of determination of ration of imetric factors	449 310 340 358 567 481 286 197 336 183 323	vanner data	-384 -361 468 562 155 163 166 159 156 162
crucible, for assays aill, description of ing in ronze, composition of, , heat of formation of, fic heat of determination of ration of imetric factors erties	449 310 340 358 567 481 286 197 336 183 323 245	vanner data	-384 -381 468 562 155 163 169 159 155 155
crucible, for assays nill, description of ing in ronze, composition of, , heat of formation of, fic heat of determination of imetric factors erties s, specific heat of	449 310 340 358 567 481 286 197 336 183 323 245 199	vanner data	-384 -361 468 562 155 163 166 159 156 162
crucible, for assays nill, description of ing in ronze, composition of, , heat of formation of, fic heat of determination of imetric factors erties s, specific heat of prick, properties of	449 310 340 358 567 481 286 197 336 183 323 245 199 427	vanner data	-384 -381 468 562 155 163 159 156 155 157 158
crucible, for assays aill, description of ronze, composition of, heat of formation of, fic heat of determination of ration of erties s, specific heat of prick, properties of m, alloys of480-	449 310 340 358 567 481 286 197 336 183 323 245 199 427	vanner data	-384 -381 468 562 155 163 159 156 157 158 162 154
crucible, for assays aill, description of ronze, composition of, , heat of formation of, fic heat of determination of ration of erties s, specific heat of prick, properties of m, alloys of 480- rtion of	449 310 340 358 567 481 286 197 336 183 323 245 199 427 -484 258 331	vanner data	-384 -381 468 562 155 163 159 156 157 158 162 154
crucible, for assays nill, description of ronze, composition of, , heat of formation of, fic heat of determination of ration of s, specific heat of prick, properties of m, alloys of tion of mination of rolytic production of	449 310 340 358 567 481 286 197 336 183 323 245 199 427 -484 258 331 555	vanner data	-384 -381 468 562 155 163 159 156 162 155 162 154 167
crucible, for assays nill, description of ing in ronze, composition of, , heat of formation of, fic heat of determination of ration of s, specific heat of rick, properties of m, alloys of mination of rolytic production of. chrome manufacture.	449 310 340 358 567 481 286 197 336 183 323 245 199 427 -484 258 331 555 581	vanner data	-384 -381 468 562 155 163 159 156 157 158 162 154 167
crucible, for assays nill, description of ing in ronze, composition of, , heat of formation of, fic heat of determination of ration of erties s, specific heat of prick, properties of m, alloys of mination of rolytic production of. chrome manufacture. imetric factors	449 310 340 358 567 481 286 197 336 183 323 245 199 427 -484 258 331 555 581 323	vanner data	-384 -381 468 562 155 163 159 156 157 158 162 157 158 162 154 167
crucible, for assays nill, description of ronze, composition of, , heat of formation of, fic heat of determination of ration of erties s, specific heat of prick, properties of m, alloys of mination of rolytic production of. chrome manufacture. imetric factors erties chrome manufacture. imetric factors erties	449 310 340 358 567 481 286 197 336 183 323 245 199 427 -484 258 331 555 581 323 245	vanner data	-384 -381 468 562 155 163 159 156 157 158 162 154 164 154
crucible, for assays nill, description of ing in ronze, composition of, , heat of formation of, fic heat of determination of ration of erties s, specific heat of prick, properties of m, alloys of mination of rolytic production of. chrome manufacture. imetric factors	449 310 340 358 567 481 286 197 336 183 323 245 199 427 -484 258 331 555 581 323	vanner data	-384 -381 468 562 155 163 159 159 157 158 162 154 164 154 370

Conservation, of matter, law of 233	Crushing, Hardinge mill 360	1
Consumption statistics of alu-	Crushing, slow-speed chilean 358	_
	stampmilling	
	4bomilling 950 950	7
of copper	tubemilling 356, 357	
of iron ore	Cryohydrates	
of lead $\dots 59, 60$	Crystolon, properties of 428	
of tin	Cube roots, table of	
of zinc 61	Cubes, table of 32	
Constantan, composition of 481	Cupel absorption 311	Ĺ
resistance of	Cupellation 311-318	3
Construction, general notes on,	Cupola, copper, elimination of	
462-469	impurities 547	7
Converters, sizes of 532	iron, charges for 578	
Converting, at B. C. smeltery, 532	Cupromagnesium, composition	
description	of	ı
at Great Falls 531		_
		_
iron-converting data574, 576	Cyanates, heat of formation of. 280	J
temperatures of	Cyanidation, Dorr thickener	_
Conveyer capacity 440	data	_
Cooling mixtures 142	general notes 403-412	
Copper, alloys of 480-484	machinery for 377	7
annealed copper standard, 163	pulp constants 403	3
blast furnaces 521	slime coagulants 406	8
casting copper analysis 551	specific gravity of solutions 40	5
consumption statistics 65	tank capacities 400	Ř
converting 531	Cyanide eczema, cure 586	-
cupola refining 547	heat of formation of 280	
detection		
	plant, cost of463-464) E
determination of 334	poisoning, antidotes 581	
electric smelting 530	precipitation 570	
electrolytic refining, see	Cyanogen, gravimetric factors, 324	
"Electrolytic Refining."	generation of 18	3
electroplating bath 294		
fusing currents for 166	D	
gravimetric factors 323	D	
impurities in 487, 553		
leaching 568	Dalton's law	3
prices, average 53	Darcet's metal, composition of 48	_
production statistics 57, 64	De Bavay flotation process 392	
properties 245	Decomposition voltages 29	
refining capacity 74	Definite proportions, law of 23	_
reverberatory refining 547	Dehne filter press	
	Dehydration temperatures of	=
		0
smelting capacity of the		
U. S	Deister table	
wire prices	Delta metal, composition of 48	
wire resistances 165	Density of alkaline solutions 12	
works construction cost 463	ammonia11	
Corning table	Baumé	
Cosines, table of 44	gangues 17	
Costs of metallurgical con-	gases 18	
struction 463		
Cotangents, table of 46	hydrochloric acid 12	
	hydrochloric acid 12	0
Cottrell process	hydrochloric acid 12 hydrofluosilicic acid 12	05
Cottrell process	hydrochloric acid 12 hydrofluosilicic acid 12 liquids general) 16	059
Crilley flotation patent 390	hydrochloric acid	0594
Crilley flotation patent 390 Critical pressures of gases 181	hydrochloric acid	05946
Crilley flotation patent	hydrochloric acid	059461
Crilley flotation patent	hydrochloric acid	0594615
Crilley flotation patent	hydrochloric acid 12 hydrofluosilicic acid 12 liquids general 16 mercury 17 minerals 17 nitric acid 12 ores 17 refractories 43	05946157
Crilley flotation patent	hydrochloric acid 12 hydrofluosilicic acid 12 liquids general 16 mercury 17 minerals 17 nitric acid 12 ores 17 refractories 43 saline solutions 126-12	059461579
Crilley flotation patent	hydrochloric acid 12 hydrofluosilicic acid 12 liquids general 16 mercury 17 minerals 17 nitric acid 12 ores 17 refractories 43 saline solutions 126-12 solids 16	0594615799
Crilley flotation patent	hydrochloric acid 12 hydrofluosilicic acid 12 liquids general 16 mercury 17 minerals 17 nitric acid 12 ores 17 refractories 43 saline solutions 126-12 solids 16 sulphuric acid 11	05946157994
Crilley flotation patent	hydrochloric acid	059461579949
Crilley flotation patent	hydrochloric acid	059461579949
Crilley flotation patent	hydrochloric acid	0594615799499
Crilley flotation patent	hydrochloric acid	0594615799499 4
Crilley flotation patent	hydrochloric acid	0594615799499 4
Crilley flotation patent	hydrochloric acid	0594615799499 4
Crilley flotation patent	hydrochloric acid	0594615799499 41 5

hatization, temperature	Electrolytic refining, antimony.	555
of	beryllium	555
oint		
nce metal, composition of 481	cadmium	555
process, description of 475	Electrolytic refining, calcium.	555
		555
rics, resistivity of 158, 159	cerium	
ntial calculus 48	chromium	555
on of gases, law of 233	converter anodes	549
vity of heat 436	copper 548-553,	556
on, heats of 292	current losses	548
brick, properties of 428	elimination of impurities,	550
magnetic separator 370	flow sheet, copper	548
egration, chart for radio-		
ments 235	insoluble-anode tanks	550
rusher	iron	555
ishing with 349	lead 554,	
	lishium	557
tation, temperatures of	lithium	
compounds	magnesium	557
nsions for sulphates 290	potassium	557
ation products of coal tar, 420	silver	557
buddle 370	sodium	558
crusher 340	starting-sheet electrolyte,	549
lverizer 340	strontium	558
ite, properties of 428	tin	558
gitator 374	uranium	558
issifier	zinc	558
ickener data 410	Electromagnetic separation, 230,	
i process	Electromotive force, of batteries	
	of metals in solution	300
easure, tables	of thermoelectric couples,	
ity of metals 187	Electroplating baths294-	-291
and Petit, law of 233	Electrostatic fume precipita-	
ilin process, description	tion	563
of	separation	371
min, composition of 481	units 10-12,	77
n, composition of 481	Elements, atomic weight	240
soluble anodes from 552	boiling points	
ondensation 562	electrochemical equiva-	
Thiessen washer 579	lents 239,	240
t-Lloyd roaster, work of, 489	periodic table	238
v zioja roadior, worz or, zov	melting points	
${f E}$	specific heats	196
11		
a avanida auras for 508	RITTORIA	7411
a, cyanide, cures for 586	symbols	240
	valence	240
unner	valence	240 392
constants of solids, 188, 471	valence	240 392 412
constants of solids, 188, 471 s, standards for443-448	valence	240 392 412 436
constants of solids, 188, 471 s, standards for443-448 cal units, C. G. S10, 11	valence	240 392 412 436 370
constants of solids, 188, 471 s, standards for443-448 cal units, C. G. S10, 11 practical11, 12, 77	valence	240 392 412 436 370 12
constants of solids, 188, 471 s, standards for443-448 cal units, C. G. S10, 11 practical11, 12, 77 c shock, first aid in586	valence Elmore flotation process 391, Elsner's equation Emissivity of heat End-bump tables Energy, units of Erbium, detection of	240 392 412 436 370 12 259
constants of solids, 188, 471 s, standards for443-448 cal units, C. G. S10, 11 practical11, 12, 77 c shock, first aid in586	valence	240 392 412 436 370 12 259 375
constants of solids, 188, 471 s, standards for443-448 cal units, C. G. S10, 11 practical11, 12, 77 c shock, first aid in586 c smelting, of copper530	valence Elmore flotation process 391, Elsner's equation Emissivity of heat End-bump tables Energy, units of Erbium, detection of Esperanza classifier	240 392 412 436 370 12 259
constants of solids, 188, 471 s, standards for443-448 cal units, C. G. S10, 11 practical11, 12, 77 e shock, first aid in586 c smelting, of copper530 of iron580	valence Elmore flotation process 391, Elsner's equation Emissivity of heat End-bump tables Energy, units of Erbium, detection of Esperanza classifier Etching, reagents for	240 392 412 436 370 12 259 375
constants of solids, 188, 471 s, standards for443-448 cal units, C. G. S10, 11 practical11, 12, 77 c shock, first aid in586 c smelting, of copper530 of iron580 of tin545	valence Elmore flotation process 391, Elsner's equation Emissivity of heat End-bump tables Energy, units of Erbium, detection of Esperanza classifier Etching, reagents for Ethane, generation of	240 392 412 436 370 12 259 375 317 183
constants of solids, 188, 471 s, standards for443-448 cal units, C. G. S10, 11 practical11, 12, 77 c shock, first aid in586 c smelting, of copper530 of iron580 of tin545 of zinc543	valence Elmore flotation process 391, Elsner's equation Emissivity of heat End-bump tables Energy, units of Erbium, detection of Esperanza classifier Etching, reagents for Ethane, generation of Ethylene, generation of	240 392 412 436 370 12 259 375 317 183 183
constants of solids, 188, 471 s, standards for443-448 cal units, C. G. S10, 11 practical11, 12, 77 c shock, first aid in586 c smelting, of copper530 of iron580 of tin545 of zinc543 ochemical equivalents,	valence Elmore flotation process 391, Elsner's equation Emissivity of heat End-bump tables Energy, units of Erbium, detection of Esperanza classifier Etching, reagents for Ethane, generation of Ethylene, generation of Evaporative power, liquid fuels	240 392 412 436 370 12 259 375 317 183 413
constants of solids, 188, 471 s, standards for443-448 cal units, C. G. S10, 11 practical11, 12, 77 c shock, first aid in586 c smelting, of copper530 of iron580 of tin545 of zinc543 ochemical equivalents, 239, 240	valence Elmore flotation process 391, Elsner's equation Emissivity of heat End-bump tables Energy, units of Erbium, detection of Esperanza classifier Etching, reagents for Ethane, generation of Ethylene, generation of Evaporative power, liquid fuels Everson flotation patent	240 392 412 436 370 12 259 375 317 183 413 390
constants of solids, 188, 471 s, standards for	valence Elmore flotation process 391, Elsner's equation Emissivity of heat End-bump tables Energy, units of Erbium, detection of Esperanza classifier Etching, reagents for Ethane, generation of Ethylene, generation of Evaporative power, liquid fuels Everson flotation patent Expansion, coefficients of 189-	240 392 412 436 370 12 259 375 317 183 413 390 -191
constants of solids, 188, 471 s, standards for443-448 cal units, C. G. S10, 11 practical11, 12, 77 c shock, first aid in586 c smelting, of copper530 of iron580 of tin545 of zinc545 ochemical equivalents, 239, 240 ries of the elements299 olysis, cleaning metals by 301	valence Elmore flotation process 391, Elsner's equation Emissivity of heat End-bump tables Energy, units of Erbium, detection of Esperanza classifier Etching, reagents for Ethane, generation of Ethylene, generation of Evaporative power, liquid fuels Everson flotation patent Expansion, coefficients of 189- Eureka, wire resistance	240 392 412 436 370 12 259 375 317 183 413 390 -191 166
constants of solids, 188, 471 s, standards for443-448 cal units, C. G. S10, 11 practical11, 12, 77 c shock, first aid in586 c smelting, of copper530 of iron580 of tin545 of zinc543 ochemical equivalents, 239, 240 ries of the elements299 olysis, cleaning metals by 301 composition voltages293	valence Elmore flotation process 391, Elsner's equation Emissivity of heat End-bump tables Energy, units of Erbium, detection of Esperanza classifier Etching, reagents for Ethane, generation of Ethylene, generation of Evaporative power, liquid fuels Everson flotation patent Expansion, coefficients of 189-	240 392 412 436 370 12 259 375 317 183 413 390 -191
constants of solids, 188, 471 s, standards for	valence Elmore flotation process 391, Elsner's equation Emissivity of heat End-bump tables Energy, units of Erbium, detection of Esperanza classifier Etching, reagents for Ethane, generation of Ethylene, generation of Evaporative power, liquid fuels Everson flotation patent Expansion, coefficients of 189- Eureka, wire resistance Evaporation, latent heat of	240 392 412 436 370 12 259 375 317 183 413 390 -191 166
constants of solids, 188, 471 s, standards for	valence Elmore flotation process 391, Elsner's equation Emissivity of heat End-bump tables Energy, units of Erbium, detection of Esperanza classifier Etching, reagents for Ethane, generation of Ethylene, generation of Evaporative power, liquid fuels Everson flotation patent Expansion, coefficients of 189- Eureka, wire resistance	240 392 412 436 370 12 259 375 317 183 413 390 -191 166
constants of solids, 188, 471 s, standards for	valence Elmore flotation process 391, Elsner's equation Emissivity of heat End-bump tables Energy, units of Erbium, detection of Esperanza classifier Etching, reagents for Ethane, generation of Ethylene, generation of Evaporative power, liquid fuels Everson flotation patent Expansion, coefficients of 189- Eureka, wire resistance Evaporation. latent heat of	240 392 412 436 370 12 259 375 317 183 413 390 -191 166 193
constants of solids, 188, 471 s, standards for	valence Elmore flotation process 391, Elsner's equation Emissivity of heat End-bump tables Energy, units of Erbium, detection of Esperanza classifier Etching, reagents for Ethane, generation of Ethylene, generation of Evaporative power, liquid fuels Everson flotation patent Expansion, coefficients of 189- Eureka, wire resistance Evaporation. latent heat of F Factors, gravimetric	240 392 412 436 370 12 259 375 317 183 413 390 -191 166 193
constants of solids, 188, 471 s, standards for	Valence Elmore flotation process 391, Elsner's equation Emissivity of heat End-bump tables Energy, units of Erbium, detection of Esperanza classifier Etching, reagents for Ethane, generation of Ethylene, generation of Evaporative power, liquid fuels Everson flotation patent Expansion, coefficients of 189- Eureka, wire resistance Evaporation. latent heat of F Factors, gravimetric Faraday scale of permeability,	240 392 412 436 370 12 259 375 317 183 413 390 -191 166 193
constants of solids, 188, 471 s, standards for	valence Elmore flotation process 391, Elsner's equation Emissivity of heat End-bump tables Energy, units of Erbium, detection of Esperanza classifier Etching, reagents for Ethane, generation of Ethylene, generation of Evaporative power, liquid fuels Everson flotation patent Expansion, coefficients of 189- Eureka, wire resistance Evaporation. latent heat of F Factors, gravimetric	240 392 412 436 370 12 259 375 317 183 413 390 -191 166 193
constants of solids, 188, 471 s, standards for	valence Elmore flotation process 391, Elsner's equation Emissivity of heat End-bump tables Energy, units of Erbium, detection of Esperanza classifier Etching, reagents for Ethane, generation of Ethylene, generation of Evaporative power, liquid fuels Everson flotation patent Expansion, coefficients of 189- Eureka, wire resistance Evaporation. latent heat of F Factors, gravimetric Faraday scale of permeability, Fahrenheit temperature scale	240 392 412 436 370 12 259 375 317 183 413 390 -191 166 193
constants of solids, 188, 471 s, standards for	valence Elmore flotation process 391, Elsner's equation Emissivity of heat End-bump tables Energy, units of Erbium, detection of Esperanza classifier Etching, reagents for Ethane, generation of Ethylene, generation of Evaporative power, liquid fuels Everson flotation patent Expansion, coefficients of 189- Eureka, wire resistance Evaporation. latent heat of F Factors, gravimetric Faraday scale of permeability, Fahrenheit temperature scale Ferraris table	240 392 412 436 370 12 259 375 317 183 413 390 -191 166 193
constants of solids, 188, 471 s, standards for	Valence Elmore flotation process 391, Elsner's equation Emissivity of heat End-bump tables Energy, units of Erbium, detection of Esperanza classifier Etching, reagents for Ethane, generation of Ethylene, generation of Evaporative power, liquid fuels Everson flotation patent Expansion, coefficients of 189-Eureka, wire resistance Evaporation. latent heat of F Factors, gravimetric Faraday scale of permeability, Fahrenheit temperature scale Ferraris table Ferrite, definition of	240 392 412 436 370 259 375 317 183 413 390 191 166 193 322 230 370 247
constants of solids, 188, 471 s, standards for	Valence Elmore flotation process 391, Elsner's equation Emissivity of heat End-bump tables Energy, units of Erbium, detection of Esperanza classifier Etching, reagents for Ethane, generation of Ethylene, generation of Evaporative power, liquid fuels Everson flotation patent Expansion, coefficients of 189- Eureka, wire resistance Evaporation. latent heat of F Factors, gravimetric Faraday scale of permeability, Fahrenheit temperature scale Ferraris table Ferrite, definition of Ferrochrome manufacture	240 392 412 436 370 12 259 375 317 183 413 390 191 166 193 322 230 370
constants of solids, 188, 471 s, standards for	Valence Elmore flotation process 391, Elsner's equation Emissivity of heat End-bump tables Energy, units of Erbium, detection of Esperanza classifier Etching, reagents for Ethane, generation of Ethylene, generation of Evaporative power, liquid fuels Everson flotation patent Expansion, coefficients of 189-Eureka, wire resistance Evaporation. latent heat of F Factors, gravimetric Faraday scale of permeability, Fahrenheit temperature scale Ferraris table Ferrite, definition of	240 392 412 436 370 12 259 375 317 183 413 390 -191 166 193 322 230 370 247 581

Ferromanganese production,	Furnace products, miscellane-
Ü. S 57	
	ous, analyses 510
Fettling, reverberatory practice 525	Furnaces, copper blast, typical, 521
Fibrox, properties of	electric iron 580
Film-sizing tables 371	steel
Filter press 374, 375	
Tiller press orr, ord	T .
Filters 375, 376	jacket water required 524
Firebrick, circles turned with 424	Fusible metal, see Darcet's,
melting points 431	Guthrie's, Lipowits's,
shapes of	Tichtenhung's No-
	Lichtenburg's, New-
in walls of given size 425	ton's, Onion's, Rose's
Fireclay, analyses 427	and Wood's metal.
heat conductivity 438	Fusing currents for copper wire, 166
	ather meterials
properties of	other materials 167
(See also Refractories.)	Fusion, see also "Melting
First aid, accidents 586	Points."
asphyxiation 586	latent heats of194-195, 204
	4-4-1 ho-4f - 004 001
cyanide poisoning 586	total heats of 204, 205
electric shock 586	
poisoning 585, 586	G
selenium poisoning 586	
Mamor maideal streethers	O
Flames, residual atmosphere	Gages, sheet-metal 485, 486
from 421	wire 485
Flanges, standards for 443-448	Gallium, detection of 250
Flotation	
Flow of gas in pipes 455	Ganister, properties of 429
of heat 150, 152	Gardner crusher 340
of water in pipes 454	Gases, adiabatic expansion of 75
	Boyle's law
Flue dust, anode reverberatory,	
analyses 551	critical temperatures and
copper refinery, analyses, 551	pressures 181
wire-bar reverberatory,	densities of 180
	monaration of 100
analyses551	generation of
Fluorides, heat of formation 283	lethal amounts of 187
specific heats of 200	molecular weight of 180
Fluorine, gravimetric factors 324	solubility of, in water 209
properties	specific gravity 180
Fluorspar in slags 500	specific heats of 203, 204
Fluxes, assay 307, 309	toxic
for soldering and welding 484	Gas fuels, analyses of 415, 419
Fontaine-Moreau's bronze 481	inflammability limits 420
Force, units of 10, 11	kindling temperatures 419
Foreign measures 13	residual a t m o s p h e r e
money	from 421
	Gates convas table 371
	Cates convas table of I
Formation, heats of 277-290	Gay-Lussac, law of 283
temperatures of slags,	Geometry, analytic 48
497, 505–509	Germanium, detection of 259
Foundations, allowable pressure	properties 243
on	German silver, composition of, 481
France screen 375	Sheffield type 483
Freezing mixtures 142	wire resistances 166
Frement flotation patents 391	Gilpin County table 370
Frue reapon 271	
Frue vanner	
Fuel oil, calorific power 413	Gold, detection of
Fuels, analyses of 415-419	determination of, in plati-
calorific-power formulas 419	num 264
combustion temperatures 416	
gas analyses 415, 419	electroplating bath 295
general subject 413	gravimetric factors 324
kindling temperatures 419	production statistics 57, 67, 68
	proof, preparation of 305
oil analyses 417, 418	properties
oxygen required for com-	Golden Gate concentrator 370
bustion 416	Goyder flotation process 391
Fuller-Lehigh pulverizer 340	Grate area for coal 421, 422
Fume, composition of zinc 541	Gravimetric factors 322
condensation	Gravity, barometer correction
Functions, trigonometric 28	for 112
values of	Greek alphabet

rinding in Chile mills 358		183
in grinding pans 357 in Hardinge mill 360		324 298
in tube mill 356, 357	phosphide, generation of	183
röndal separator 371		183
un metal, composition of 481 uthrie's metal, composition of 481		184 184
utzkow's process, description		113
of	constants for	112
yratory crusher, breaking with	Hydroxides, heat of formation	280
with	of	200 77
Н	T	
[all process	Tanitian tamparaturas enseaus	
[allett table	Ignition temperatures, gaseous mixtures	419
Iancock jig	metallic sulphides	495
[ardinge mill, description of 340 grinding in 360		370
Iardness, Bottone's scale 193	Immersion, deposition of metals by	301
Brinnell numbers 193	I. M. M. screen sizes 367,	
test	Impact screen	375
of minerals 176–179	=	375
Moh's scale 192	Incandescence, temperatures of, in roasting	495
Iardware metal, composition of 482	Indium, detection of	259
Iarmonic motion, equation of, 75 Iarz jig		420
layden process, description of, 475		571 51
Ieat, conductivity, general	Integral calculus	18
tables 144, 146	tables	20
laws of		284
of dilution		200 324
emissivity		246
etching by	Iridium, detection of	259
latent heat of evaporation, 193		247
of fusion 194	Iron, alloys 479- blast-furnace balance sheet	$\begin{array}{c} 102 \\ 527 \end{array}$
loss by radiation	practice	573
specific heats 195–204	briquetting	572
total, of fusion 204, 205	carbon, compounds with converting data 574,	576
in slags	cupola charges	578
units, definition of	detection of	259
Hitches, in ropes	determination ofelectric-furnace types	33U 590
Höpfner process, description of	electrolytic production of	555
476, 568 Horwood flotation process 392	electroplating baths	295
Tuff separator	ferrochrome manufacture	
Humidity tables	gravimetric factors heat content of iron	574
Hunt filter	magnetic properties 228-	230
Hunt's process, description of 476 Hunt and Douglas process, de-	Monell process	576
scription of 476, 568	ore, see "Iron Ore." permeability 228-	230
Huntington-Heberlein roaster,	properties of 247,	259
work of	pure iron defined	487
Tyde flotation process 392	in slags	497
Hydraulic bronze, composition 482	Thiessen washerworks, cost of	463
Hydrides, heat of formation 282	Iron ore, consumption of, in	
Hydrocarbons, heat of formation of	Ü. S	69
Hydrochloric acid, density of 120	production in U. S 57. Isbell table	, 09 371
generation of 183	ADDCII FONIC	J11
resistivity of 160 Tydrocyanic acid, generation of 183	J	
Tydrocyanic acid, generation of 188 Tydrofluosilicic acid, specific	Jacket water for furnaces	524
gravity of solutions 125	Jacoby metal, composition of	482

	372	Lignite, analyses of	418
	481	Lime, as a refractory	
	341	in slags	504
	341	Linear expansion, coefficients	101
	370 272	of	
Jig, water used in, 386, 371, 372, 3	372	Linear measure, tables of	4, 5
Johnson vanner	014	Lipowitz's metal, composition	
K		Liquids, expansion of	191 310
17		Litharge, fluxing oxides with Lithium, description of	248
Kaiserzinn, see "Britannia."		detection of	260
	184	electrolytic production of	557
Kelly filter	375	gravimetric factors	324
Kelvin rule for power transmis-	,,,	Log washer	372
sion	165	Lohmannizing, description of	476
		Longmaid-Henderson process	568
Kieves	372	Low temperatures, effect on	
Kilogram, definition of	7	tensile strength	189
weight of, in pounds	7	electric conductivity	155
Kindling temperatures, table of		Luce-Rozan process, description	
King screen	375	of	477
Kinkead mill 3	340	Luhrig table	369
Kirby's table, ore in place1	175		
	176	\mathbf{M}	
Knots, how to tie 4	151		
	341	Macadamum, composition of	484
	248	MacArthur-Forrest process, de-	
Kunheim metal, composition of 4	184	scription	476
~ ·		McDonald's table, ore in place,	175
${f L}$			482
T. b	100		393
	368		482
	248	Magnesite, properties of 429,	438
	341 358	(See also Refractories.) Magnesium, description of	040
grinding in	4	detection of	248
	193	determination of	
of fusion194, 195, 204, 2		electrolytic production	557
Laughton flotation process 3	300 301	gravimetric factors	324
Launders, moving sand in 3		in slags 499,	
slope of	386	Magnetic separating plant cost	463
water-carrying capacity 3	387	Magnetic separators, Ball-	
Leaching, copper 5		Norton	369
Lead, alloys of 480-4	84	Conkling	370
blast furnaces 5	38	Dings	370
consumption statistics 59,	60	Grondal	371
	260	Ullrich	372
	334		378
electrolytic refining data,		Magnetic units, C. G. S	10
554, 5		Magnetism, "see Permeability"	
	295	and "Electromagnetic	
gravimetric factors 3	24	Separation.''	400
impurities, effect of 487, 5	008 194	Magnolia metal, composition of,	
	536 54	Malleability of metals	187
prices, average for 10 years, production statistics 57,			482
production statistics 57, products of smelting, analy-	Uð		404 249
ses	35	detection of	260
	248	determination of	332
	188	gravimetric factors	325
smelting capacity, U.S	75		497
			482
steam, effect on molten lead, 5			166
			482
works, cost of	65	Marathon mill	341
zinc table for 30-ton kettle, 5	36	Marcy mill	341
Le Blanc process, description of, 4	76	Mariotte, law of	233
Lethal amounts of gases 1	.87	Marriner process	476
Lichtenberg's alloy, composi-		Martensite, definition of	247
tion of 4	182	Masonry, allowable pressures on	462

asonry, cost of construction 466		
	Milling, canvas table data 3	
atte smelting, factors for 510	power required 377, 3	378
specific gravity of mattes 505	vanner data 382-3	384
sulphur affinity in 504	water required 379-3	381
axton screen		391
easure, capacity, tables of 8, 9	Misch metal, composition of 4	184
circular, tables of 9	Modulus, bulk 1	
linear, tables of 4, 5	Young's	
miscellaneous units 10	Moebius process, description of	
square, tables of 6	plant cost 4	163
	Moh scale of hardness 1	192
	Moisture in etmosphere	
		76
Ielting point, affected by		416
pressure 431		388
of elements 240	Molecular weights of salts, 210-2	
of firebrick 431		249
of organic bodies 138		260
of oxides		325
of salts 210–227		182
Mendeleef's table 239		576
Mercury, consumption of 58	Money, table of values	18
description of 249		375
detection of	Morin's Chinese bronze, compo-	
gravimetric factors 326	sition of 4	482
prices, average 55		366
production statistics 57, 58	Mosaic gold, composition of 4	182
smelting 546	Mould capacity 5	571
Merrill filter press 375	Mud sills, size of	365
Metals, acetylene, action of, on		233
metals 208		553
· acids, action of, on metals 208		182
boiling points of 129		392
brittleness of 187		184
bulk modulus 188	in ability become composition	
capillary constants 143		
coefficient of rigidity 188	N	
conductivity, electric 154, 157		
heat	Neodymium, detection of 2)R1
consumption, statistics 58-71	properties of	240
ductility		PIC
uuctiitty	Newayaa	77 F
		37 <i>8</i>
etching 317	Newton's alloy, composition of, 4	482
etching	Newton's alloy, composition of, 4 Nickel, alloys of	482 484
etching	Newton's alloy, composition of, 4 Nickel, alloys of	482 484 249
etching	Newton's alloy, composition of, 4 Nickel, alloys of	482 484 249 261
etching	Newton's alloy, composition of, 4 Nickel, alloys of	482 484 249 261 333
etching	Newton's alloy, composition of, A Nickel, alloys of	482 484 249 261 333 295
etching	Newton's alloy, composition of, A Nickel, alloys of	482 484 249 261 333 295 325
etching	Newton's alloy, composition of, 4 Nickel, alloys of	482 484 249 261 333 295 325 487
etching	Newton's alloy, composition of, A Nickel, alloys of	482 484 249 261 333 295 325
etching	Newton's alloy, composition of, A Nickel, alloys of	482 484 249 261 333 295 325 487
etching	Newton's alloy, composition of, Nickel, alloys of	482 484 249 261 333 295 325 487 57
etching	Newton's alloy, composition of, Nickel, alloys of	482 484 249 261 333 295 325 487 57
etching	Newton's alloy, composition of, Nickel, alloys of	482 484 249 261 333 295 325 487 57
etching	Newton's alloy, composition of, Nickel, alloys of	482 484 249 261 3333 329 532 554 7
etching	Newton's alloy, composition of, Nickel, alloys of	482 484 249 2261 333 329 532 54 57 5547 350
etching	Newton's alloy, composition of, Nickel, alloys of description of detection of determination of electroplating bath gravimetric factors impurities in production statistics salt from copper-refining, analyses slags, blast-furnace smelting data. Niobium, see "Columbium." Nip, angle of Signal Signa	48249 48249 53333 5516 5516 5547 3503 3503 3503
etching	Newton's alloy, composition of, Nickel, alloys of	48249 484 2261 3333 3295 551 551 554 57 350 350 350 350 350 350 350 350 350 350
etching	Newton's alloy, composition of, Nickel, alloys of	482 484 484 226 333 332 551 551 551 551 551 551 551 551 551 55
etching	Newton's alloy, composition of, Nickel, alloys of	482 484 249 261 333 329 551 551 551 350 350 350 350 350 350 350 350 350 350
etching	Newton's alloy, composition of, Nickel, alloys of	48249261 4849261 33333295 5516 5547 5547 5547 6692767
etching	Newton's alloy, composition of, Nickel, alloys of	482 484 226 3333 3295 3295 3295 334 350 350 350 350 350 350 360 360 360 360 360 360 360 360 360 36
etching	Newton's alloy, composition of, Nickel, alloys of	48249 4849 2613333 3295 3295 5516 5516 5517 5516 5517 5517 5518 577 577 577 577 577 577 577 577 577 57
etching	Newton's alloy, composition of, Nickel, alloys of description of detection of detection of determination of electroplating bath gravimetric factors impurities in production statistics salt from copper-refining, analyses slags, blast-furnace smelting data. Niobium, see "Columbium." Nip, angle of Nissen stamps. Niter, oxidizing sulphides with. Niton, properties of Specific heats of Nitrates, heat of formation of specific heats of specific gravity of anhydride, generation of coxide, generation of specific generation generation generation specific generation generation generation generation generation generation gen	484 484 484 926 333 329 487 551 551 551 551 551 184 184 184
etching	Newton's alloy, composition of, Nickel, alloys of	482 482 482 483 483 487 551 551 551 551 551 551 551 551 551 55
etching	Newton's alloy, composition of, Nickel, alloys of	482 484 484 484 484 482 483 487 484 484 484 484 484 484 484 484 484
etching	Newton's alloy, composition of, Nickel, alloys of	48249 4849 4849 4849 48249 4829 4849 484
etching	Newton's alloy, composition of, Nickel, alloys of description of detection of detection of determination of electroplating bath gravimetric factors impurities in production statistics salt from copper-refining, analyses slags, blast-furnace smelting data. Niobium, see "Columbium." Nip, angle of Nissen stamps. Niter, oxidizing sulphides with. Niton, properties of Specific heats of Nitrates, heat of formation of specific heats of specific gravity of anhydride, generation of sylvanides, heat of formation. Nitrides, heat of formation of generation of gravimetric factors.	482 484 484 484 484 482 483 487 484 484 484 484 484 484 484 484 484
etching	Newton's alloy, composition of, Nickel, alloys of	48249 48249 2613333 3295 3295 3295 3295 3295 3295 3295
etching	Newton's alloy, composition of, Nickel, alloys of	48249 4849 261333 3295 3295 3295 3295 3295 3295 3295 3

O	Pewter, composition of
Oils, calorific powers of 413-415	Bronse."
composition of fuel oils, 415, 417, 418	Phosphates, heats of formation, 266 specific heats of
for flotation 393, 399	Phosphides, heat of formation. 28 Phosphine, generation of 18
Olary ores, treatment of 558 Oliver filter 376	Phosphor bronze, composition
Onion's alloy, composition of 482	of
Ores, conductivity (electric) of 158 consumption of iron ore in	gravimetric factors325, 336
U. S 69	properties of
production of iron ore in U.S 57,69	Pig-iron output
sampling of 314	Pinchbeck, composition of 481 Pinder concentrator 372
Osmium, description of 250 detection of 261	Pipe fittings, standards for 443-445
Overstrom table 372	Piping, formulas for
Overvoltage 298 Ovoca classifier 376	Placer sands, magnetic separa-
Oxidation agents in assaying 308	Plants, metallurgical, construc-
by electrolysis 297 wet reagents 309	tion 462
Oxides, fluxing with litharge 310	costs of
heat of formation of 279 melting points of 430	Plasticity of metals
reduction temperatures of, 291	Plates, slope of, in Australian mills
resistivity of	Platine, composition of 484
Oxygen, combustion require-	Platinoid, composition of 484 wire resistance 167
ments	Platinum, cupellation of 311-313
overvoltage 298	description of
P	determination of 264
F	electroplating bath 296 gravimetric factors 336
Pachuca (Brown) tank 374	parting 312, 313
Packfong, composition of 482 Paddlewheel agitator 376	Poisons and antidotes, cyanide. 585 general 585
Palladium, description of 251	Polygons, areas of
detection of	Polyhedrons, areas of
Parkes process, description of 476	Polonium, properties of 276
results of	Porosity of refractories 437
	Potassium description of
Parral agitator 376	Potassium, description of 251 detection of 261
Parr's alloy, composition of 482	Potassium, description of 251 detection of 261 determination of 326
Parr's alloy, composition of 482 Parting, gold-silver alloys 312 platinum alloys 311-313	Potassium, description of
Parr's alloy, composition of 482 Parting, gold-silver alloys 312 platinum alloys 311-313 Patera process, description of 477	Potassium, description of
Parr's alloy, composition of 482 Parting, gold-silver alloys 312 platinum alloys 311-313 Patera process, description of 477 Patio process, description of 477 Patterson agitator 376	Potassium, description of
Parr's alloy, composition of 482 Parting, gold-silver alloys 312 platinum alloys 311-313 Patera process, description of 477 Patio process, description of 477 Patterson agitator 376 Pattinson process, data on 536	Potassium, description of
Parr's alloy, composition of 482 Parting, gold-silver alloys 312 platinum alloys 311-313 Patera process, description of 477 Patio process, description of 477 Patterson agitator 376 Pattinson process, data on 536 description of 477 Payne's table, weight of water	Potassium, description of
Parr's alloy, composition of 482 Parting, gold-silver alloys 312 platinum alloys 311-313 Patera process, description of 477 Patio process, description of 477 Patterson agitator 376 Pattinson process, data on 536 description of 477 Payne's table, weight of water in air 174	Potassium, description of
Parr's alloy, composition of 482 Parting, gold-silver alloys 312 platinum alloys 311-313 Patera process, description of 477 Patio process, description of 477 Patterson agitator 376 Pattinson process, data on 536 description of 477 Payne's table, weight of water	Potassium, description of. 251 detection of 261 determination of 328 electrolytic production of 557 gravimetric factors 238 Potentials, anode 296 cathode 296 Potter-Delprat flotation process 291 Powellizing, description of 477 Power, algebraic formula 16 concentrator 377, 378 cubes, table of 33 Dorr thickener 410
Parr's alloy, composition of 482 Parting, gold-silver alloys 312 platinum alloys 311-313 Patera process, description of 477 Patio process, description of 477 Patterson agitator 376 Pattinson process, data on 536 description of 477 Payne's table, weight of water in air	Potassium, description of. 251 detection of 361 determination of 328 electrolytic production of 557 gravimetric factors 238 Potentials, anode 296 cathode 296 Potter-Delprat flotation process 291 Powellizing, description of 477 Power, algebraic formula 16 concentrator 377, 378 cubes, table of 33 Dorr thickener 410 Pachuca tank 165
Parr's alloy, composition of 482 Parting, gold-silver alloys 312 platinum alloys 311-313 Patera process, description of 477 Patio process, description of 477 Patterson agitator 376 Pattinson process, data on 536 description of 477 Payne's table, weight of water in air 174 Pearlite, definition of 247 Peirce-Smith process, description of 477 Pelatan-Clerici process, description of 477	Potassium, description of. 251 detection of 361 determination of 328 electrolytic production of 557 gravimetric factors 228 Potentials, anode 296 cathode. 296 Potter-Delprat flotation process 291 Powellizing, description of 477 Power, algebraic formula 16 concentrator 377, 378 cubes, table of 33 Dorr thickener 410 Pachuca tank 165 transmission 412 units of 130
Parr's alloy, composition of 482 Parting, gold-silver alloys 312 platinum alloys 311-313 Patera process, description of 477 Patio process, description of 477 Patterson agitator 376 Pattinson process, data on 536 description of 477 Payne's table, weight of water in air 174 Pearlite, definition of 247 Peirce-Smith process, description of 477 Pelatan-Clerici process, description of 477 Pendulum, seconds, length of 10	Potassium, description of. 251 detection of 361 determination of 328 electrolytic production of 557 gravimetric factors 228 Potentials, anode 296 cathode. 296 Potter-Delprat flotation process 291 Powellizing, description of 477 Power, algebraic formula 16 concentrator 377, 378 cubes, table of 33 Dorr thickener 410 Pachuca tank 165 transmission 412 units of 130
Parr's alloy, composition of 482 Parting, gold-silver alloys 312 platinum alloys 311-313 Patera process, description of 477 Patio process, description of 477 Patterson agitator 376 Pattinson process, data on 536 description of 477 Payne's table, weight of water in air 174 Pearlite, definition of 247 Peirce-Smith process, description of 477 Pelatan-Clerici process, description of 477 Pendulum, seconds, length of 10 torsional, period of 75 Periodic law 233	Potassium, description of
Parr's alloy, composition of 482 Parting, gold-silver alloys 312 platinum alloys 311-313 Patera process, description of 477 Patio process, description of 477 Patterson agitator 376 Pattinson process, data on 536 description of 477 Payne's table, weight of water in air 174 Pearlite, definition of 247 Peirce-Smith process, description of 477 Pelatan-Clerici process, description of 477 Pendulum, seconds, length of 10 torsional, period of 75 Periodic law 233 table 238	Potassium, description of. 251 detection of 326 determination of 326 electrolytic production of 326 Potentials, anode 296 Potter-Delprat flotation process. 291 Powellizing, description of 477 Power, algebraic formula 16 concentrator 377, 378 cubes, table of 33 Dorr thickener 410 Pachuca tank 165 transmission 412 units of 13 Precipitates, properties of 322-333 Precipitation of metals by elec-
Parr's alloy, composition of 482 Parting, gold-silver alloys 312 platinum alloys 311-313 Patera process, description of 477 Patio process, description of 477 Patterson agitator 376 Pattinson process, data on 536 description of 477 Payne's table, weight of water in air 174 Pearlite, definition of 247 Peirce-Smith process, description of 477 Pelatan-Clerici process, description of 477 Pendulum, seconds, length of 10 torsional, period of 75 Periodic law 233	Potassium, description of

E

ī.

Pressure, critical, of gases 181	Randolph process, description
effect on boiling point,	of
Price, of aluminum, yearly	Reaumur, temperature scale 3 Red metal, composition of 483
averages	Reduction, agents for, in assay-
antimony, yearly average 55	ing 308
copper, monthly averages. 53	by electrolysis 297
wire and sheets 54	temperatures of 291
lead, monthly averages 54 platinum, yearly average 55	wet reagents
platinum, yearly average 55 Price, quicks ilver, yearly average 55	Reese River process, description of 477
spelter, monthly averages. 56	Refining capacity, copper, in
tin, monthly averages 56	United States 74
zinc, monthly averages 56	Refractories, description of com-
Production statistics of arsenic 57	mon
of aluminum 57, 58	general subject 423-439
of coal	heat conductivity, 437, 438, 439 melting points of firebrick. 431
of copper 57, 64	of oxides
of ferromanganese 57	permeability 437
of gold 57, 67, 68	porosity 437
of iron 57, 69	Seger cone data 431
ore	testing under load 431
of lead	(See also Chrome, Mague- site, Fireclay, etc.).
of nickel	Remanence, definition 228
of quicksilver 57, 58	Resistivity, electric, 156, 157, 158
of silver 57, 65, 66	of electrolytes 159, 160
of spelter 57, 62	of metallic oxides 162
of tin 70	of oxides
of zinc 57, 60, 61, 62	of solid dielectrics 158
Progressions, mathematical 17	of solutions 159–162
Proof gold, preparation of 305 Proof silver, preparation of 306	thermal
Pulp constants	Retort (sinc), capacity 542
Pumps, formulas for 454	distillation temperatures 542
Punched-plate screens 369	duty 543
Pyritic slags, typical 511	gases from 541
Pyrometers, color scales 435	glazing 543
Erhard and Schertel 434	residue analyses 540
metallic salts	Reverberatory furnace, coal- dust firing in 529
Seger cones	copper refining 547
and Misch metal."	fettling 526
Psychrometric tables 76	grate area 421
_	largest copper 530
${f Q}$	practice 305
Qualitativa analysis asida 970	Rhodium, description of 251
Qualitative analysis, acids 270 bases 267	detection of
Queen's metal, composition of 483	Richards jig
Quicksilver, consumption sta-	Ridgeway filter 376
tistics 58	Rigidity, coefficient of 188
description of 249	Ringelmann's smoke chart 422
detection of 260	Rittinger table
prices, average 55 production statistics 57, 58	Roasting, copper-roasting fur- nace
production statistics 37, 36	nace
R	tures
	efficiency of apparatus for, 496
Radian, value of 9	factors for calculating prod-
Radiation, loss of heat by 435	uct
(See also Diffusivity and	furnace dimensions 494
Emissivity.)	heap roasting, time of 495
Radioelements, chart showing disintegration 235	ignition and incandescence temperatures 495
properties of 276	lead ores
Radium, detection of 261	loss with zinc ores 541
properties of 276	magnetism produced by 231
recovery from Olary ores 558	Montana roasting furnaces 488

en ein yi yi as of yien h

n

ol Kı H. Ro

n

(b) an wh on an

Robson flotation patent 390	Silver, alloys of 44
Roller mill 340	chloride, solubility table 54
Rolling mill construction cost 463	description of 28
Rolling, steel, power consump-	detection of 26
tion 579	determination of 33
Roll jaw crusher 341	with platinum 26
Rolls, crushing with 350, 352	electrolytic refining of5
width of	electroplating bath 29
Roots, formulas for	gravimetric factors 32
Ropes, knot tying 451	ingot-mould sizes 58
safe loads for	precipitation of, in cyanide
Rose's metal, composition of 483	process
Rozan process, description of 477	production statistics of 57, 65,6
Rubidium, detection of 262	proof silver, production of, 30
gravimetric factors 326	Sines, table of 4
Russell process, description of 477	Sinking funds, formulas for 18, 1
Ruthenium, description of 252	tables2
detection of	Slaggability ratios, copper refin-
detection of	ing 54
·S	ing
· B	Slags, alumina in
	Balling's tables 51
afe loads for ropes and chains, 449	blende in
lts, boiling points 210-227	degree of
formulas 210–227	factors for 50
melting points 210-227	fluorspar in 50
molecular weights of 210-227	general considerations 49
solubility of 205-207, 210-227	heats of formation 497-51
specific gravities 210-227	iron in
mpling of coal 316	lead furnace
mpling of coal	lime in
nders flotation process 200	
anders flotation process 392	
candium, detection of 262	manganese in
reen sizes 367–369	miscellaneous analyses 51
eger cone data	pyritic
lenides, heat of formation 281	specific gravity of 50
lenium, gravimetric factors 326	zinc in 50
poisoning, antidote 586	Slime, analyses of copper 55
properties of	coagulants
aration, electromagnetic 230, 231	flue dust (copper) 55
electrostatic	Smelting, in blast furnaces, cop-
ries-copper refining, names of	per
processes 477	in electric furnace, copper 53
ies refining vs. multiple 553	zinc
ttlers	general notes on, 497 et se
	lead furnage VII, 201 61 66
ettling, coagulants for 405	lead furnace
ale oils	mercury
neet metal gages 485, 486	nickel
erardizing, definition 477	in reverberatories 52
herman settler 376	tin 54
ock, electric, first aid in 586	zinc
hrinkage of castings 574	Smelting capacity, U.S., copper. 7
of metals on solidifying 232	lead
emens and Halske process, de-	lead
CALCIU GIIU LLGIONE ULUCEOG, UCT	MARY CA - AUGUL
gomination of AMM	gino 4
scription of 477	zinc
scription of 477 emens-Martin process, de-	Smith process, description of 47
scription of 477 emens-Martin process, de- scription of 478	Smith process, description of 47 Smoke chart
scription of	Smith process, description of 47 Smoke chart
scription of	Smith process, description of 47 Smoke chart
scription of	Smith process, description of 42 Smoke chart
scription of	Smith process, description of 42 Smoke chart
scription of	Smith process, description of 42 Smoke chart
scription of	Smith process, description of 47 Smoke chart
scription of	Smith process, description of 47 Smoke chart
scription of	Smith process, description of 47 Smoke chart 42 Soddy's law for radioelements 23 Sodium, detection of 26 determination of 32 gravimetric factors 32 properties of 25 Sodium chloride, specific gravity of solutions 12
scription of	Smith process, description of. 47 Smoke chart. 42 Soddy's law for radioelements. 23 Sodium, detection of. 26 determination of 32 gravimetric factors. 32 properties of. 25 Sodium chloride, specific gravity of solutions. 12 Softening, typical analyses. 53
scription of	Smith process, description of. 47 Smoke chart. 42 Soddy's law for radioelements. 23 Sodium, detection of. 26 determination of. 32 gravimetric factors. 32 properties of. 25 Sodium chloride, specific gravity of solutions. 12 Softening, typical analyses. 53 Solder, composition of. 48
scription of	Smith process, description of. 47 Smoke chart. 42 Soddy's law for radioelements 23 Sodium, detection of 26 determination of 32 gravimetric factors 32 properties of 25 Sodium chloride, specific gravity of solutions 12 Softening, typical analyses 53 Solder, composition of 48 Soldering, fluxes for 48
scription of	Smith process, description of. 47 Smoke chart. 42 Soddy's law for radioelements. 25 Sodium, detection of. 26 determination of. 32 gravimetric factors. 32 properties of. 25 Sodium chloride, specific gravity of solutions. 12 Softening, typical analyses. 53 Solder, composition of. 48 Soldering, fluxes for. 48 Solubility of air in water. 20
scription of	Smith process, description of. 47 Smoke chart. 42 Soddy's law for radioelements. 23 Sodium, detection of. 26 determination of. 32 gravimetric factors. 32 properties of. 25 Sodium chloride, specific gravity of solutions. 12 Softening, typical analyses. 53 Solder, composition of. 48 Soldering, fluxes for. 48 Solubility of air in water. 20 of gases in water. 20
scription of	Smith process, description of. 47 Smoke chart. 42 Soddy's law for radioelements. 23 Sodium, detection of. 26 determination of. 32 gravimetric factors. 32 properties of. 25 Sodium chloride, specific gravity of solutions. 12 Softening, typical analyses. 53 Solder, composition of. 48 Soldering, fluxes for. 48 Solubility of air in water. 20 of gases in water. 20
scription of	Smith process, description of. 47 Smoke chart. 42 Soddy's law for radioelements. 25 Sodium, detection of. 26 determination of. 32 gravimetric factors. 32 properties of. 25 Sodium chloride, specific gravity of solutions. 12 Softening, typical analyses. 53 Solder, composition of. 48 Soldering, fluxes for. 48 Solubility of air in water. 20

utions, densities of saline, 126-12	
heats of	90 Sterro's metal, composition of, 48
resistivities of 159–10	62 Stone, voids in crushed 34
specific gravity of saline,	Strengths of materials 470, 47
126–12	29 Strontium, detection of 20 02 electrolytic production 58
standard	
	47 properties of
irking distance, electrical,	Sturtevant grinder 34
167, 16	
ecific gravity, alkaline solu-	roll jaw crusher 34
tions 12	25 rolls
ammonia 12	24 Sulphates, dehydration tem-
Baumé 11	13 peratures 28
	04 desulphatization tempera-
	14 tures 29
	dissociation tensions 29
	heat of formation of 28
	20 specific heats of 19
	25 Sulphides, decomposition tem- 69 peratures 29
	69 peratures
minerals 176-17	
	21 oxidizing, with niter 30
	75 specific heats of 200, 20
saline solutions 126-12	
salts 210-22	27 Sulphur, affinity for various
	69 metals 50
	detection of
temperature correction 1	determination of 33
	69 gravimetric factors 32
water, various tempera-	Sulphur dioxide, generation of . 18 74 solubility in water 20
tures	74 solubility in water 20 95 Sulphur-sand cement 47
definition of	4 Sulphur trioxide, generation of. 18
	96 Sulphuric acid, density of 11
of gases 203, 20	
of metals 195, 19	
non-metals 19	95 resistivity 16
	78 temperature correction 11
lter, see "Zinc."	Surface tensions, of metals 14
	Susceptibility, magnetic 228, 22
	72 Susceptivity
nare measure, tables of	6 Sutton, Steele & Steele table 37 32 Swing-hammer crusher 341, 34
	32 Symbols, chemical 24
	41 mathematical
drops of	62 Symons crusher 34
	66 crushing with 34
mud sills, size of 36	65 T
power required 36	63
sequence of $drops$ 30	$\frac{62}{2}$ Tables, concentrating 369-37
	67 Tangents, tables of
	63 Tank capacity
	63 Tantiron, composition of 48 02 for insoluble anodes 55
rting-sheet electrolyte com-	Tantulum, properties of 25
	49 Tees, standards for 443-44
	35 Tellurides, heat of formation 28
equivalent evaporation	Tellurium, gravimetric factors, 32
	32 properties of
thermal constants 14	40 Temperature, barometer cor-
properties of 138, 13	39 rection for 11
el, see also "Iron."	by color of iron
electric furnaces for 58	
•••	76 critical, of gases
rolling, power consumption 57	
tempering	
lite, composition of 479, 48	
comboning or zigi zo	201,000,000,01

malting points	Troostite, definition of
melting points	Trough washer. Tube mill, description
scales of	grinding in
steel tempering 576	Tungsten, detection of
Temper carbon 247	gravimetric factors
Tempering, temperatures for 576	properties of
Tenacity of metals	Turbadium bronze, con
Tensile strength of metals, 188, 189 Thallium, detection of 262	tion of
gravimetric factors 327	Turbine-wheel bronze, con
Thermochemical constants, 277-293	tion of
Thermoelectricity, formulas 169	Type metal, composition
Thermometer, centigrade 3	
Fahrenheit	Ŭ
Reaumur3	Ullrich magnetic separator
wet-bulb	Ultimate strengths of mate
Erhard and Schertel fusion	
mixtures 434	Unstable alloys
metallic salts for 434	Uranium, detection of
Seger cones	electrolytic production
standard melting points 4	gravimetric factors
scales defined 3	properties ofrecovery from Olary
Thiessen washer, work of 579	recovery from Clary
Thiogen process	V
Thomas-Gilchrist process, defi-	Valence
nition of	Valence Vanadium, detection of
tion e.m.f 293	gravimetric factors
Thorium, detection of 262	properties of
gravimetric factors 327	Vanner, Frue371
properties of	general data on
Thum-Balbach process, defini-	Vapor tension, arsenious ac
tion of	water
Time, units of	Vibracone
Tin, alloys of	Victor metal, composition
consumption of	Viscosity of sand-water
determination of 336	Voids in crushed stone
	TOTAL IN CLASSICA BOOMS
electrolytic recovery 558	Voltage of decomposition
electrolytic recovery 558	Voltage of decomposition Volume, formulas for
electrolytic recovery 558 electroplating bath 296 gravimetric factors 327	Voltage of decomposition. Volume, formulas for measures of
electrolytic recovery 558 electroplating bath 296 gravimetric factors 327 impurities in 487	Volume, formulas for measures of
electrolytic recovery 558 electroplating bath 296 gravimetric factors 327 impurities in 487 prices, average 56	Volume, formulas for
electrolytic recovery	Volume, formulas for measures of W
electrolytic recovery	Volume, formulas for measures of W Wall plates, allowable pres
electrolytic recovery 558 electroplating bath 296 gravimetric factors 327 impurities in 487 prices, average 56 production statistics 70 properties of 253 smelting 544	Volume, formulas for measures of W Wall plates, allowable pres
electrolytic recovery	Volume, formulas for
electrolytic recovery 558 electroplating bath 296 gravimetric factors 327 impurities in 487 prices, average 56 production statistics 70 properties of 253 smelting 544 Titanates, specific heats of 200 Titanium, detection of 263	Volume, formulas for measures of W Wall plates, allowable pres on Watchmaker's alloy, compution
electrolytic recovery	Volume, formulas for measures of W Wall plates, allowable preson Watchmaker's alloy, compation Water, capacity of launders
electrolytic recovery	Volume, formulas for measures of
electrolytic recovery	Wall plates, allowable preson. Watchmaker's alloy, compation. Water, capacity of launder density of falling in. pipe and pump formula
electrolytic recovery	Wall plates, allowable preson. Watchmaker's alloy, compation. Water, capacity of launder density of falling in. pipe and pump formula pressure at various hea
electrolytic recovery	Wall plates, allowable preson. Watchmaker's alloy, compation. Water, capacity of launder density of falling in. pipe and pump formula
electrolytic recovery	Wall plates, allowable preson. Watchmaker's alloy, compation. Water, capacity of launder density of falling in. pipe and pump formula pressure at various head pumping by compressed
electrolytic recovery	Wall plates, allowable preson. Watchmaker's alloy, comption. Water, capacity of launder density of falling in. pipe and pump formula pressure at various head pumping by compressed required for concentrate
electrolytic recovery	Volume, formulas for measures of
electrolytic recovery	Volume, formulas for measures of
electrolytic recovery	Wall plates, allowable preson. Watchmaker's alloy, comption. Water, capacity of launder density of falling in. pipe and pump formula pressure at various head pumping by compressed required for concentrate solubility of salts in specific heats of speed necessary to measures of services at various head pumping by compressed required for concentrate solubility of salts in
electrolytic recovery	Wall plates, allowable preson. Watchmaker's alloy, comption. Water, capacity of launder density of falling in. pipe and pump formula pressure at various head pumping by compressed required for concentrate 379—solubility of salts in specific heats of speed necessary to measure and
electrolytic recovery 558 electroplating bath 296 gravimetric factors 327 impurities in 487 prices, average 56 production statistics 70 properties of 253 smelting 544 Titanates, specific heats of 200 Titanium, detection of 263 determination of 331 gravimetric factors 327 Tobin bronze, composition of 483 Tombac, composition of 483 Tombac, composition of 483 Toughness of metals 187 Transmission of power, copper wire table 165 Kelvins rule 165 Trent agitator 376 Triangle, solution of 30 Trigonometry, abbreviations 2 definitions 28 formulas 28, 29, 30	Volume, formulas for measures of. W Wall plates, allowable presson. Watchmaker's alloy, comption. Water, capacity of launder density of falling in. pipe and pump formular pressure at various head pumping by compressed required for concentrate 379— solubility of salts in specific heats of speed necessary to mean sand. Weight, atomic.
electrolytic recovery	Volume, formulas for measures of. W Wall plates, allowable presson. Watchmaker's alloy, comption. Water, capacity of launder density of falling in. pipe and pump formular pressure at various head pumping by compressed required for concentrate 379— solubility of salts in specific heats of speed necessary to mean sand. Weight, atomic. foreign.
electrolytic recovery	Volume, formulas for measures of. W Wall plates, allowable pressor. Watchmaker's alloy, compation. Water, capacity of launders density of falling in. pipe and pump formular pressure at various head pumping by compressed required for concentrate 379— solubility of salts in specific heats of speed necessary to measure tables.
electrolytic recovery 558 electroplating bath 296 gravimetric factors 327 impurities in 487 prices, average 56 production statistics 70 properties of 253 smelting 544 Titanates, specific heats of 200 Titanium, detection of 263 determination of 331 gravimetric factors 327 Tobin bronze, composition of 483 Tombac, composition of 483 Tombac, composition of 483 Toughness of metals 187 Toxic gases 185–187 Transmission of power, copper wire table 165 Kelvins rule 165 Trent agitator 376 Triangle, solution of 30 Trigonometry, abbreviations 2 definitions 28 formulas 28 formulas 28, 29, 30 numerical values of functions 31, 44 sine tables 44	Wall plates, allowable preson. Watchmaker's alloy, comption. Water, capacity of launder density of falling in. pipe and pump formula pressure at various head pumping by compressed required for concentrate 379—solubility of salts in specific heats of speed necessary to mean sand. Weight, atomic foreign—pressure tables of.
electrolytic recovery	Volume, formulas for measures of. W Wall plates, allowable pressor. Watchmaker's alloy, compation. Water, capacity of launders density of falling in. pipe and pump formular pressure at various head pumping by compressed required for concentrate 379— solubility of salts in specific heats of speed necessary to measure tables.

nagnetic concen-	Zinc, alloys480-484
tor 373	analytical factors 327
e 8, 9	blue-powder production 540
, composition 483	cadmium-bearing flue
er 373	dusts 543
373	consumption statistics 61
hinged-hammer	desulphurization tempera-
sher 342	tures 541
alyses	detection of 264
currents 166	determination of 332
485	distillation temperatures 542
ces of 165, 166	electric smelting 543
rocess, description	electrolytic refining of 558
	electroplating baths 297
on patent 391	fume composition 541
al, composition 483	glazing retorts 541
rvatives, effective-	gravimetric factors 327
s of 472	impurities in 487
ig	Parkes process require-
0=0	ments
valents in various	prices, averages 56
ts	production statistics57, 60–62
10, 11	properties 255
	retort capacity 542
X	duty 543
	gases, analysis 541
rrence 255	residue, analysis 540
	roasting losses
${f Y}$	in slags
	smelting capacity 75
ting) 447–448	effect of impurities 539
dulus 188	smelting works, cost of. 463, 465
tection of 263	Zinc Corporation flotation proc-
${f z}$	
ZI .	ess
rocess, description	Zirconium, gravimetric factors. 327
	properties of 258

