1

Yes, f is uniformly continuous on (1,2).

Let $\varepsilon > 0$, and let $\delta = \varepsilon$. Then if $|x - y| < \delta$,

$$\left| \frac{1}{x} - \frac{1}{y} \right| = \left| \frac{x - y}{xy} \right|$$

$$< |x - y| \qquad (Since \ x, y > 1)$$

$$< \delta = \varepsilon.$$

So $\left|\frac{1}{x} - \frac{1}{y}\right| < \varepsilon$, as desired.

 $\mathbf{2}$

Let $\delta = 100 - \sqrt[3]{100^3 - 10^{-10}}$. Then let $|x - y| < \delta$. Note that $|x^3 - y^3|$ is maximized when one of x or y is equal to 100. In other words, if $|x - y| < \delta$, and $|100 - z| < \delta$, then $|x^3 - y^3| \le |100^3 - z^3|$. $z \le 100$, so $|100^3 - z^3| = 100^3 - z^3$. Then, since $100 - z < \delta = 100 - \sqrt[3]{100^3 - 10^{-10}}$, we have

$$100 - z < 100 - \sqrt[3]{100^3 - 10^{-10}}$$

$$\Rightarrow -z < -\sqrt[3]{100^3 - 10^{-10}}$$

$$\Rightarrow z > \sqrt[3]{100^3 - 10^{-10}}$$

$$\Rightarrow z^3 > 100^3 - 10^{-10}$$

$$\Rightarrow 100^3 - z^3 < 10^{-10}$$

$$\Rightarrow |100^3 - z^3| < 10^{-10} = \varepsilon$$

Since, as we saw, $|x^3 - y^3| \le |100^3 - z^3|$, the above holds for any $x, y \in I$, $|x - y| < \delta$, as desired.

3

 $\sum_{n=1}^{\infty} a_n$ converges to a real number, so $a_n \to 0$. This means that there exists some N such taht $a_n \le 1$ for all n > N. We know that $a_n^2 \le a_n$ whenever $a_n \le 1$, so

$$\sum_{n=N}^{\infty} a_n^2 \le \sum_{n=N}^{\infty} a_n.$$

 $\sum_{n=1}^{N-1} a_n^2$ is a finite sum, and thus is a real number. Also, since $\sum_{n=N}^{\infty} a_n^2$ is bounded above by $\sum_{n=N}^{\infty} a_n$, a real number, it must be a real number as well. Thus we have

$$\sum_{n=1}^{\infty} a_n^2 = \sum_{n=1}^{N-1} a_n^2 + \sum_{n=N}^{\infty} a_n^2$$

is a sum of two real numbers, and so $\sum_{n=1}^{\infty} a_n^2$ must itself converge to a real number, as desired.

4

Let $\varepsilon > 0$. g is uniformly continuous, so for any $\varepsilon_1 > 0$, there exists some $\delta_1 > 0$ such that if $x, y \in B$, $|x - y| < \delta_1$, then $|g(x) - g(y)| < \varepsilon_1$. Similarly, f is uniformly continuous, so for any $\varepsilon_2 > 0$, there exists some $\delta_2 > 0$ such that if $w, z \in A$, $|w - z| < \delta_2$, then $|f(w) - f(z)| < \varepsilon_2$.

Choose ε_2 to be ε , and let δ_2 be chosen as above. Also choose ε_1 to be δ_2 , and let δ_1 be chosen as above. Let $x, y \in B$, $|x - y| < \delta_1$. Then $|g(x) - g(y)| < \varepsilon_1 = \delta_2$. $g(x), g(y) \in \text{im } g \subseteq A$, so since $|g(x) - g(y)| < \delta_2$, $|f(g(x)) - f(g(y))| < \varepsilon_2 = \varepsilon$, and so $f \circ g$ is indeed uniformly continuous on B, as desired.

5

We claim $\overline{S} = [0, \infty)$. Let $x \in [0, infty)$, and let $\varepsilon > 0$. We know that for any real number x and positive integer k, there exists an integer a such that $kx \in [a, a+1)$ and $\left|x - \frac{a}{k}\right| < \frac{1}{k}$. Take k to be the larger of the two following numbers: $\frac{1}{\varepsilon}$, and the smallest integer of the form 2^n such that $a+1 \le 4^n$. Although a is dependent on the choice of k, 4^n grows much faster than 2^n , so this choice of k is always possible given a large enough n. Given this, $k = \frac{a}{2^n} \in S$. We now have

$$\left| x - \frac{a}{k} \right| = \left| x - \frac{a}{2^n} \right|$$

$$< \frac{1}{k}$$

$$< \varepsilon$$

So indeed, $\overline{S} = [0, \infty)$, as desired.

6

Let $\varepsilon = |\alpha - \beta| \neq 0$. Assume for a contradiction that the sequence (a_n) is convergent. Then (a_n) is Caucy.

Choose N_1 such that $m, n > N_1 \implies |a_m - a_n| < \frac{\varepsilon}{3}$.

Choose N_2 such that $p_i > N_2 \implies |a_{p_i} - \alpha| < \frac{\varepsilon}{3}$.

Choose N_3 such that $q_i > N_3 \implies |a_{q_i} - \beta| < \frac{\varepsilon}{3}$.

Finally, let $N = \max\{N_1, N_2, N_3\}$. Then by the triangle inequality,

$$|\alpha - a_{p_i}| + |a_{p_i} - a_{q_i}| + |a_{q_i} - \beta| \ge |\alpha - \beta|,$$

but we also have

$$|\alpha - a_{p_i}| + |a_{p_i} - a_{q_i}| + |a_{q_i} - \beta| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

$$= \varepsilon.$$

So we end up with

$$\varepsilon > |\alpha - a_{p_i}| + |a_{p_i} - a_{q_i}| + |a_{q_i} - \beta| \ge |\alpha - \beta|,$$

or $\varepsilon > |\alpha - \beta|$, but $\varepsilon = |\alpha - \beta|$, a contradiction, and so (a_n) is not a convergent sequence, as desired.

7

Let $S' = \{|s| \mid s \in S\}$. Then $\sup S' = \max\{|\sup S|, |\inf S|\}$. We know $|\sup S|^2 = (\sup S)^2$ and $|\inf S|^2 = (\inf S)^2$, so we need only show that $\sup T = (\sup S')^2$.

Assume for a contradiction that $\sup T \neq (\sup S')^2$. Then there is some $s \in S'$ such that $s \neq \sup S'$, but $\sup T = s^2$. $s < \sup S'$, so there exists some $s' \in S'$ such that $s < s' < \sup S'$. Then $(s')^2 > s^2 = \sup T \ge (s')^2$, a contradiction, and so $\sup T = (\sup S')^2 = (\max \{|\sup S|, |\inf S|\})^2 = \max \{(\sup S)^2, (\inf S)^2\}$, as desired.

inf T need not be equal to min $\{(\sup S)^2, (\inf S)^2\}$. Consider for example S = (-1, 1). min $\{(\sup S)^2, (\inf S)^2\} = 1$, but inf T = 0.

8