1 Brouwer's Fixed Point Theorem

Theorem 1.1

Let $f: B^n \to B^n$ be a continuous map, then there exists a $p \in B^n$ s.t. f(p) = p.

Definition 1.2 — A manifold with boundary M models after halfspaces H^n : $\{(x_1,\ldots,x_n)\in\mathbb{R}^n|x_n\geq 0\}.$

Exercise: If $\dim(M) = n$, then ∂M is an (n-1)-manifold (therefore $\partial(\partial M) = \emptyset$.

The tangent space are one-sided derivatives of half-curves and has the same dimension as M.

Every n-manifold with ∂ is diffeomorphic to a subset of a n-manifold without ∂ . (Doubling of a manifold by identifying boundaries of two manifolds).

Exercise: $f: M^m \to \mathbb{R}$ and 0 is a regular value of f, then $f^{-1}([0,\infty))$ is an m-manifold with boundary and $\partial(f^{-1}[0,\infty)) = f^{-1}(0)$.

Theorem 1.3

 $f: M^m \to N^n$, M is a manifold with ∂ , $q \in N$ is a regular value of both f and $f|_{\partial M}$ and $f^{-1}(q) \neq \emptyset$, then $f^{-1}(q)$ is (m-n)-manifold with ∂ , and

$$\partial(f^{-1}(q)) = f^{-1}(q) \cap \partial M$$

Exercise 9: $T_pH^m\cong T_p\mathbb{R}^m$ since we can extend any half-curve to a curve.

Exercise 13: take $v \in T_p f^{-1}(q)$, $v = \alpha'(0)$, $\alpha : (-\varepsilon, \varepsilon) \to f^{-1}(q)$, $\alpha(0) = p$. Since $f \circ \alpha(t) = q$ so $df_p(v) = (f' \circ \alpha)'(0) = 0$.

Proof. WLOG $M=H^m$. Take $pf^{-1}(q)\cap \partial M$. Take a neighborhood V of p, by smoothness of f we can extend it to $\tilde{f}:V\to N$ where $\tilde{f}=f$ on $H^m\cap V$. By $d\tilde{f}_p=df_p$, we know that p is a regular point of \tilde{f} . This implies that q is a regular value of \tilde{f} as we can make V small so $\{p\}=\tilde{f}^{-1}(q)$. So $\tilde{f}^{-1}(q)$ is a manifold in V. Define $g:\tilde{f}^{-1}(q)\to\mathbb{R}, (x_1,\ldots,x_n)\mapsto x_n$. Then g(p)=0 and $V\cap f^{-1}(q)=H\cap \tilde{f}^{-1}(q)=g^{-1}([0,\infty))$. Suppose 0 is not a regular value,

then rank is 0 so $T_p \widetilde{f}^{-1}(q) = \ker \deg_p \subseteq T_p \partial H$.

Theorem 1.4 (Sard's)

Let $f: M \to N$ be a smooth map, almost every (except for a set of measure zero) $g \in N$ is a regular value of f.

Proof of Brouwer. First we may assume that f is smooth by approximation theorem. Suppose to the contrary that $f: B^n \to B^n$ has no fixed point. Then there exists a smooth retraction $r: B^n \to \partial B^n = S^{n-1}$ by a ray at f(p) through p. Notice that $r(p) = p \ \forall \ p \in \partial B^n$. By Sard's Theorem, there exists a $q \in S^{n-1}$ which is a regular value of r and $r^{-1}(q) \neq \emptyset$. By the regular value theorem, $r^{-1}(q)$ is a 1-dim manifold with ∂ . Recall $\partial(r^{-1}(q)) = r^{-1}(q) \cap S^{n-1}$. Since $q \in r^{-1}(q)$. So $r^{-1}(q)$ must be an interval with distinct endpoints on the boundary. But this says that r(q') = q yet r(q') = q', a contradiction.