Limitations of FSMs

Computing $2^p \times 2^p$

- Result: 2^{2p} i.e. 1 followed by 2p zeroes, length 2p + 1
- Let the FSM have n states • Input length: p+1
- As the numbers are input (serially) 2p + 1 zeroes should be output
- Next, in p-1 zeroes should be output and finally a 1 • Let p > n, the m/c must loop through the states to generate the p-1 zeroes · The required 1 will never be generated

State equivalence

Basic notions

Distinguishable states S_i and S_j of M are distinguishable if and only if a finite input sequence applied to M produce distinct output sequence, depending of whether M is in S_i or S_j Distinguishing sequence for S_i and S_j

A sequence that allows S_i and S_j to be distinguished

k-distinguishable

 S_i and S_j are k-distinguishable is there exists a sequence of length k to distinguish S_i and S_j k-equivalent

No sequence of length k to distinguish S_i and S_j Equivalent states

 S_i and S_j are equivalent if they are k-equivalent for all k; for n state m/c sufficient if k-equivalent for all $k \le n-1$ (in view of the limited memory of FSMs)

Minimisation of completely specified FSMs

Sample m/c and partition table

FSM specification NS, output Equivalence partition table PS kx = 0Partitions x = 1 P_0 A E,0 D,1 (ABCDEF) F,0 P_1 D,0 E,0 B,1 P_2 P_3 F,0 B,0 P_4 C,0 F, 1 B,0 C,0

Equivalence partition is unique

- Let \mathcal{P}_1 and \mathcal{P}_2 be two distinct equivalence partitions • There there must be two states s_i and s_j in the same partition of \mathcal{P}_1 but in different partitions of \mathcal{P}_2
- Since those are in different partitions in P1, those are distinguishable and cannot be in the same equivalence partition of P2 · Thus, the two equivalence partitions cannot be distinct
- By corollary, the equivalence partition \mathcal{P} is minimum a distinct equivalence partition \mathcal{P}' will not exist

PS

Minimisation of incompletely specified FSMs

Sample incompletely specified FSMs

	A		C,1		E,—		
	B C D		C,— B,0 D,0		E,1		
					A,1		
					E,1		
	I	Е Г		0,1	E,0		
FS	SM	[spe	cif	ication	M_D		
PS		NS, output					
Ta	•	I_1		I_2	I_3	I_4	
A	A		C,1	E,1	В		

E,0

F,0

C,0

F,1

F,0

B,1

A,0

B,0

В

C

D

E

F

FSM specification: M_A

x = 0

NS, output

x = 1

 I_1

E,0

F,0

E,---

F,1

C,1

D,--

A

В

C

D

Ε

F

 I_2

B,0

A,0

C,0

D,0

C,0

B,0

Ε

A,1

FSM specification: MC

x = 0

B,1

PS

A

NS, output

x = 1

T,---

Basic notions

· However, for incompletely specified m/cs the next state many not be defined • An input sequence is said to be applicable to a m/c if its state transitions can be definitely determined for a given input sequence (next state for each input symbol is specified)

• For a completely specified m/c two states si and sj of a machine M are compatible if and only if, for every input sequence the same output sequence will be produced regardless of whether si or sj is the initial state

Outputs need not be specified for an applicable sequence; they need to match when specified

D,1

C,1

Compatible states Two states si and sj of a machine M are compatible if and only if, for every input sequence applicable to both si and sj, the same output sequence will be produced whenever both output symbols are specified and

• Behaviour of the m/cs may be observed when applicable sequences are applied when the m/c starts with either s_i or s_j as the initial state

Compatibility issues

regardless of whether s_i or s_j is the initial state

• Let s_i , s_j and s_k be states whose compatibilities are to be determined

• Since it is unspecified, it can be set to the specified output (o_a) so that s_i^x and s_j^x may be merged (consider merging of B and C of M_E) • What to do if the output of s_k^x is specified (as o_b , $o_a \neq o_b$) but that of s_j^x is not specified, assuming that it is decided to merge s_i^x and s_j^x ?

• Let s_i^x and s_j^x be their x—successors on application of applicable sequence x

• What to do if the output of s_i^x is specified (as o_a) but that of s_j^x is not specified?

- State s_j^x may be split; let s' be resultant of splitting s_j^x ; now the output of s' can be set to the specified output (o_b) so that s_k^x and s' may be merged (consider merging of D and C of M_E)
- What to do if, on input a, the next state of s_i^x is specified (as s_a) but that of s_j^x is not specified? \circ Since it is unspecified, it can be set to the specified state (s_a) so that s_i^x and s_j^x may be merged
- What to do if, on input a, the next state of s_k^x is specified (as s_a^t , not compatibile with s_a) but that of s_j^x is not specified, assuming that it is decided to merge s_i^x and s_j^x ? • State s_j^x may be split; let s' be resultant of splitting s_j^x ; now the next state of s' can be set to the specified state (s_a') so that s_k^x and s' may be merged

В

Merger table after simplification

AC,EF

В

C

EF

BC

Compatibility graphs

 M_E

CD

. AB, EF, CD, BC and AC may be merged without having to merge any other states, then there will be states: AB, EF, CD, BC and AC, covering all states

CD

(AF)

- Merger table

NS, output

 I_1

PS

Table construction

• If s_i and s_j have output conflict on the next state, they are incompatible, indicated by a \times in M_{ij} States A and D have output conflict on I1

- For each pair of states $\langle s_i, s_j \rangle$, M_{ij} indicates the required compatibilities of states o Compatibility of states A and B contingent of compatibility of E and F, also compatibility of A and B Compatibility of states B and F contingent of compatibility of F and F, also compatibility of A and B
- Merger table is symmetric \circ Sufficient to have entries for s_i and s_j for i>j· May be equivalently represented by a merger graph

States B and E have output conflict on I1

- FSM specification: M_E
 - I_2 EF, AB C BC, EE AC,EF A E,0 B,0 В F,0 A,0D EF, CD × C E,-C,0 E CE, CC CD,CF DE, BB AB,DF BC,DE BD, FD BC,CD D F,1 F D,0E В C D E C,1 C,0A D,-B,0

Merger table

Entries with (direct) unsatisfiable dependencies are crossed Unsatisfiable dependencies (transitive) AF depending of compatibility of DF

Table simplification

Entries with (transitive) unsatisfiable dependencies are crossed Self dependencies

Unsatisfiable dependencies (direct)

AB depending on AB, CD depending on CD, FD depending on FD Self dependencies are dropped Reflexive dependencies

Depending on compatibility of E with E, B with B Reflexive dependencies are dropped

DF depending of compatibility of BD

D EF CD,CF E F BC,CD DE BC,DE В C D E A · Compatibility dependencies indicated in the merger table are depicted in the compatibility graph • Each for each M_{ij} in the reduced merger table that is not crossed out, there is a node in compatibility graph • If $\langle s_p, s_q \rangle \in M_{ij}$, there is a directed edge from the node for $\langle s_i, s_j \rangle$ to the node for $\langle s_p, s_q \rangle$, note that $\langle s_i, s_j \rangle \equiv \langle s_j, s_i \rangle$

 M_D

Costing of closed set of compatibiles for M_E

Cost

5

 $\alpha,0$

β,0

 I_4

 $\alpha, 1$

β,1

Closed set of compatibiles

A, B, CE, D, F

AB, EF, CD, BC

Merger table

Compatibility graph

o However, AB, BC and AC together form a clique and may be merged to ABC

CE

(EF

o Then after, merging there will be only 3-states: ABC, CD and EF o Note that C had to be split between CD and ABC

Closed set of compatibiles

· Thus, closed sets of compatibles need to be systematically (through branch and bound) explored and costed · Cliques in a closed set of compatibiles may be combined to a single state · Each closed set of compatible needs to be costed to retain the closed set of compatibles (after clique reduction) of least cosst

• It is desirable to merge compatibile states

• For ME, states C and E are compatibile and may be merged · Similarly, states A and C are compatibile and may be merged

· The reduced FSM (NS and output function tables) need to be constructed

EF .	AB
	\sim

SI

AC	CD	γ	55	δ,1	γ,0		
BC CF	EF	ô		γ,1	α,0		
Reduced FSM for M_D							
	PS		NS, output				
F AD BE AD	Members	Symbol	I_1	I_2	I_3		
(BD)	AB	α	γ,0	β,1	γ,1		
CF	CD	β	γ,0	γ,1	α,1		
PC Y			=:				

EF

Exercises
Present the pseudocode for finding the minimum cost closed set of compatibles

• Work out the state minimisation for M_D and M_F