Лабораторная работа N^o6

Временные ряды

```
import pandas as pd
import numpy as np
from statsmodels.tsa.seasonal import seasonal decompose
import matplotlib.pyplot as plt
import statsmodels.api as sm
from datetime import datetime
df = pd.read_csv("data/tovar_moving.csv", index_col=['date'],
parse dates=['date'], dayfirst=True) # считываем датасет
df.head()
C:\Users\marin\AppData\Local\Temp\ipykernel 23536\4252153029.py:9:
UserWarning: Parsing dates in %Y-%m-%d format when dayfirst=True was
specified. Pass `dayfirst=False` or specify a format to silence this
warning.
  df = pd.read csv("data/tovar moving.csv", index col=['date'],
parse dates=['date'], dayfirst=True) # считываем датасет
                 qty
date
2009-12-25
             72314.0
2009-12-26 66586.0
2009-12-27 125199.0
2009 - 12 - 28
             91544.0
2009-12-29 76995.0
test df = df.iloc[-1]
train df = df.iloc[:-1]
plt.figure(figsize=(10, 6))
plt.plot(train df.index, train df['qty'], label='Заказы') # Access
'date' using index
plt.xlabel('Дата')
plt.ylabel('Количество')
plt.title('График временного ряда')
plt.legend()
plt.show()
```



```
decomposition = seasonal_decompose(train_df, model='additive')
decomposition.plot()
pyplot.show() # любуемся результатом
```



```
from statsmodels.tsa.api import SimpleExpSmoothing
ses = SimpleExpSmoothing(train df)
alpha = 0.7
model = ses.fit(smoothing level = alpha, optimized = False)
exp pred = model.forecast(1)
print("Forecast: {:.1f}".format(exp pred.iloc[0]))
print("Actual: ", test df)
Forecast: 225015.5
Actual: qty
               423846.0
Name: 2013-12-02 00:00:00, dtype: float64
c:\Users\marin\AppData\Local\Programs\Python\Python39\lib\site-
packages\statsmodels\tsa\base\tsa model.py:473: ValueWarning: No
frequency information was provided, so inferred frequency D will be
used.
  self. init dates(dates, freq)
def stat test(df):
    test = sm.tsa.adfuller(df)
    #print ('adf: ', test[0] )
    #print ('p-value: ', test[1])
    #print('Critical values: ', test[4])
```

```
if test[0]> test[4]['5%']:
        return False
    else:
        return True
test = df
order = 0
while not stat test(test):
    test = test.diff().dropna()
    order += 1
print(f"Порядок интегрирования: {order}")
if stat test(test) == False:
    print('есть единичные корни, ряд не стационарен')
else:
    print ('единичных корней нет, ряд стационарен')
Порядок интегрирования: 1
единичных корней нет, ряд стационарен
from matplotlib import pyplot as plt
%matplotlib inline
fig = plt.figure(figsize=(12,8))
ax1 = fig.add_subplot(211)
fig = sm.graphics.tsa.plot acf(train df.values.squeeze(), lags=25,
ax=ax1)
ax2 = fig.add subplot(212)
fig = sm.graphics.tsa.plot_pacf(train_df, lags=25, ax=ax2)
```



```
import pandas as pd
import numpy as np
from statsmodels.tsa.ar model import AutoReg
ar model = AutoReg(train df, lags=7).fit()
print(ar model.summary())
ar_pred = ar_model.predict(start=len(train_df), end=(len(train_df)),
dynamic=False)
ar pred
                            AutoReg Model Results
_____
Dep. Variable:
                                         No. Observations:
                                   qty
1438
Model:
                           AutoReg(7)
                                        Log Likelihood
18187.904
                      Conditional MLE
                                         S.D. of innovations
Method:
80096.504
                     Thu, 06 Jun 2024
Date:
                                         AIC
36393.808
                                         BIC
Time:
                             13:18:59
```

36441.203 Sample: 36411.506	Sample: 01-01-2010 HQIC					
0.975]	coef	std err	z	P> z	[0.025	
const 3.81e+04	2.606e+04	6125.181	4.254	0.000	1.41e+04	
qty.L1	0.2917	0.026	11.169	0.000	0.241	
0.343 qty.L2	0.1248	0.027	4.585	0.000	0.071	
0.178 qty.L3 0.154	0.1008	0.027	3.727	0.000	0.048	
qty.L4	0.0199	0.027	0.731	0.465	-0.033	
0.073 qty.L5	0.1659	0.027	6.128	0.000	0.113	
0.219 qty.L6	0.0374	0.027	1.374	0.169	-0.016	
0.091 qty.L7	0.1692	0.026	6.466	0.000	0.118	
0.220			Roots			
Frequency	Real	Imaginary		Modulus		
AR.1	1.0270	-0.0000j		1.0270		
-0.0000 AR.2	0.7834	-1.0303j		1.2943		
-0.1465 AR.3 0.1465	0.7834	+1.0303j		1.2943		
AR.4 -0.4174	-1.1247	-0.6422j		1.2952		
AR.5 0.4174	-1.1247	+0.6422j		1.2952		
AR.6 -0.2817	-0.2828	-1.4029j		1.4311		
AR.7 0.2817	-0.2828	+1	L.4029j	1.43	11	

```
c:\Users\marin\AppData\Local\Programs\Python\Python39\lib\site-
packages\statsmodels\tsa\base\tsa model.py:473: ValueWarning: No
frequency information was provided, so inferred frequency D will be
used.
  self. init dates(dates, freq)
c:\Users\marin\AppData\Local\Programs\Python\Python39\lib\site-
packages\statsmodels\tsa\deterministic.py:308: UserWarning: Only
PeriodIndexes, DatetimeIndexes with a frequency set, RangesIndexes,
and Index with a unit increment support extending. The index is set
will contain the position relative to the data length.
  fcast index = self. extend index(index, steps, forecast index)
2013-12-02
              345269.605384
Freq: D, dtype: float64
pred = ar model.predict(start=len(train df), end=(len(df)-1),
dynamic=False)
print(pred)
2013-12-02
             345269.605384
Freq: D, dtype: float64
c:\Users\marin\AppData\Local\Programs\Python\Python39\lib\site-
packages\statsmodels\tsa\deterministic.py:308: UserWarning: Only
PeriodIndexes, DatetimeIndexes with a frequency set, RangesIndexes,
and Index with a unit increment support extending. The index is set
will contain the position relative to the data length.
  fcast index = self. extend index(index, steps, forecast index)
```