Cours 7 – Estimation dans le cadre de l'échantillon gaussien.

Eya ZOUGAR * Institut National des Sciences appliqués-INSA

Génie mathématiques GM3 Thursday 9th March, 2023

^{*}Basé sur le cours de Bruno PORTIER

1. Introduction: cadre et objectif.

On dispose de n données réelles x_1, x_2, \ldots, x_n .

On suppose que ces données sont les réalisations de n variables aléatoires réelles X_1, X_2, \ldots, X_n , indépendantes et de même loi normale $\mathcal{N}(\mu, \sigma^2)$.

On s'intéresse à l'estimation des paramètres d'espérance μ et de variance σ^2 supposés inconnus.

Il est facile d'estimer ces paramètres, mais le fait de se placer dans le cadre gaussien, va nous permettre de préciser la loi des estimateurs pour toute taille n de l'échantillon.

Nous allons en particulier pouvoir établir des résultats importants qui seront à la base de tests statistiques utiles.

2. Rappels sur quelques lois utiles. 2.1. Le vecteur gaussien.

Soit Z un vecteur gaussien de \mathbb{R}^n , d'espérance le vecteur μ de \mathbb{R}^n , et de matrice de variance-covariance Γ , qu'on note $Z \sim \mathcal{N}(\mu, \Gamma)$.

On notera que la matrice Γ est définie positive, donc inversible.

La densité de probabilité f de Z est une fonction de \mathbb{R}^n dans \mathbb{R}_+ . Elle est définie pour tout $z \in \mathbb{R}^n$ par :

$$f(z) = \frac{1}{\sqrt{(2\pi)^n \det(\Gamma)}} \exp\left(-\frac{1}{2}(z-\mu)^T \Gamma^{-1}(z-\mu)\right)$$

2.2. La variable gaussienne.

Dans le cas pour n=1 : Si $Z \sim \mathcal{N}\left(\mu, \sigma^2\right)$

$$f(z) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(z-\mu)^2}{2\sigma^2}\right)$$

2.2. La variable gaussienne.

Dans le cas pour n=1 : Si $Z \sim \mathcal{N}\left(\mu, \sigma^2\right)$

$$f(z) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(z-\mu)^2}{2\sigma^2}\right)$$

Lemme

Si $Z \sim \mathcal{N}\left(\mu, \sigma^2\right)$ alors $\frac{Z - \mu}{\sigma} \sim \mathcal{N}\left(0, 1\right)$

2.2. La variable gaussienne.

Dans le cas pour n=1 : Si $Z \sim \mathcal{N}(\mu, \sigma^2)$

$$f(z) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(z-\mu)^2}{2\sigma^2}\right)$$

Lemme

Si
$$Z \sim \mathcal{N}\left(\mu, \sigma^2\right)$$
 alors $\frac{Z - \mu}{\sigma} \sim \mathcal{N}\left(0, 1\right)$

Moment d'ordre n

Si $Z \sim \mathcal{N}(\mu, \sigma^2)$ alors $\mathbb{E}[(Z - \mu)^n] = m_n$ est donné par:

$$\begin{cases} m_{2k+1} = 0 & \text{si n} = 2k+1 \\ m_{2k} = \frac{(2k)!}{2^k k!} \sigma^{2k} & \text{si n} = 2k \end{cases}$$

2.3. R code

On trouvera ci-dessous le code R permettant de réaliser les figures du slide suivant.

```
# Construction de courbes de densité avec quantiles à 95%
polycurve <- function(x, y, base.y = min(y), ...) {</pre>
polygon(x = c(min(x), x, max(x)), y = c(base.y, y, base.y), ...)
pdf("Gaussienne_Graphe.pdf")
x = seq(-4,4,1=200)
d0 = dnorm(x)
d1 = dnorm(x, sd=0.8)
d2 = dnorm(x, sd=1.2)
d3 = dnorm(x,m=-2.5)
matplot(cbind(x,x,x,x),cbind(d0,d1,d2,d3),type="l",lty=1,lwd=3,
    xlab="x", ylab="f(x)", cex.axis=1.4, cex.lab=1.4,
    main="Densités gaussiennes", cex.main=1.5)
xxx=dev.off()
```


2.4 Loi du Khi-deux.

On appelle loi du chi-deux à p degrés de liberté (ddl) la loi de la variable $Z = \sum_{i=1}^{p} X_{j}^{2}$ où les variables $X_{1}, X_{2}, \dots, X_{p}, \ p \geq 1$ sont des

variables aléatoires indépendantes et de même loi $\mathcal{N}(0,1)$.

Oa a de plus, $\mathbb{E}[Z] = p$ et $\mathbb{V}ar[Z] = 2p$.

2.5. Loi de Student.

On appelle loi de Student à n degrés de liberté, le rapport d'une gaussienne centrée réduite et de la racine carrée d'un khi-deux à n degrés de liberté, la gaussienne et le khi-deux étant indépendants.

Plus précisément, si $U \sim \mathcal{N}(0,1)$ et $V \sim \chi_n^2$ avec U et V indépendantes, alors $Z_n = \frac{U}{\sqrt{V/n}}$ suit une loi de Student à n ddl et on note $Z \sim T_n$ et on a $\mathbb{E}(Z_n) = 0$ et $Z_n \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$.

Lemme de Slutsky.

Soient $(X_n)_{n\geq 1}$ et $(Y_n)_{n\geq 1}$ deux suites de variables aléatoires réelles.

S'il existe une variable aléatoire X et une constante non nulle a telles que

$$\begin{array}{ccc} X_n & \stackrel{\mathcal{L}}{\underset{n \to \infty}{\longrightarrow}} & X \\ Y_n & \stackrel{P}{\underset{n \to \infty}{\longrightarrow}} & a \end{array}$$

alors

$$Y_n X_n \xrightarrow[n \to \infty]{\mathcal{L}} aX$$

2.6. Loi de Fisher.

On appelle loi de Fisher à p et q degrés de liberté le rapport de 2 khi-deux indépendants à p et q degrés de libertés respectivement.

Plus précisément, si $U \sim \chi_p^2$ et $V \sim \chi_q^2$ avec U et V indépendantes, alors $Z = \frac{U/p}{V/q}$ suit une loi de Fisher à p et q ddl et on note $Z \sim F(p,q)$.

E. ZOUGAR [INSA] X Génie mathématiques GM3 X 2023-03-09

3. Théorème de Cochran 3.1. Un premier Théorème.

Rappel. Si Z est un vecteur gaussien centré et réduit, c'est-à-dire si $Z \sim \mathcal{N}(0, I_n)$, alors $\|Z\|^2 \sim \chi^2(n)$.

En effet, $||Z||^2 = \sum_{j=1}^n Z_j^2$ est une somme de n gaussiennes indépendantes, centrées réduites élevées au carré, c'est donc par définition un khi-deux à n degrés de liberté (ddl).

On a par ailleurs le théorème suivant :

Théorème

Si

$$\square$$
 $Z \sim \mathcal{N}(0, I_n)$

 \square P_E est un projecteur orthogonal de \mathbb{R}^n sur un sous-espace vectoriel E de dimension p

alors $||P_E(Z)||^2$ suit une loi $\chi^2(p)$.

3.2. Le Théorème de Cochran.

Théorème de Cochran

Soient E_1 et E_2 deux sous-espaces vectoriels orthogonaux de \mathbb{R}^n , de dimensions respectives p_1 et p_2 , et soit Z un vecteur gaussien de \mathbb{R}^n , centré et de matrice de variance-covariance I_n . Alors,

- $\square \|P_{E_1}(Z)\|^2$ suit une loi $\chi^2(p_1)$
- $\square \|P_{E_2}(Z)\|^2$ suit une loi $\chi^2(p_2)$
- □ les variables aléatoires $||P_{E_1}(Z)||^2$ et $||P_{E_2}(Z)||^2$ sont indépendantes

Remarque. Ce théorème se généralise au cas de $2 \le m \le n$ sous-espaces vectoriels orthogonaux $(E_i)_{1 \le i \le m}$ de E.

3.3. Le corollaire de Cochran.

On déduit du théorème précédent, le corollaire suivant, qui nous sera utile dans le cas de l'échantillon gaussien pour étudier la loi des différents estimateurs.

Corollaire de Cochran.

Soit $n \ge p$. Soit E un sous-espace vectoriel de \mathbb{R}^n de dimension p, et soit Z un vecteur gaussien de \mathbb{R}^n , centré et de matrice de variance-covariance I_n .

Alors, on a

$$||Z||^2 = ||P_E(Z)||^2 + ||Z - P_E(Z)||^2$$

et

- $\square \|P_E(Z)\|^2$ suit une loi $\chi^2(p)$
- $\square \|Z P_E(Z)\|^2$ suit une loi $\chi^2(n-p)$
- $||P_E(Z)||^2$ et $||Z P_E(Z)||^2$ sont indépendantes

4. Estimation des paramètres. 2.1. Définition des estimateurs.

Puisque $\mu = \mathbb{E}(X_1)$ et $\sigma^2 = \mathbb{V}ar(X_1)$, on peut estimer le paramètre de moyenne μ par:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

et le paramètre de variance par:

$$S^{2} = \frac{1}{(n-1)} \sum_{i=1}^{n} (X_{i} - \overline{X}_{n})^{2}$$

On sait que, dans le cas de variables aléatoires (X_j) indépendantes et de même loi, ces estimateurs sont sans biais et convergents.

Cependant, dans le cas de l'échantillon gaussien, on peut préciser leur loi pour toute taille d'échantillon n.

4.2. Propriétés.

On a les résultats suivants:

Theorem

$$\square \ \overline{X}_n \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right).$$

$$\Box \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$
.

 \square \overline{X}_n et S^2 sont indépendants.

où χ_q^2 désigne la loi du khi-deux à q ddl.

Corollaire

$$\frac{\sqrt{n}\left(\overline{X}_{n}-\mu\right)}{S}\sim T_{n-1}$$

où T_a désigne la loi de Student à q ddl.

2. Preuves des différents résultats. 2.1. Loi de X_n .

Puisque les variables X_1, X_2, \ldots, X_n sont des variables gaussiennes indépendantes, \overline{X}_n est une combinaison linéaire de variables gaussiennes indépendantes et donc une variable gaussienne.

Par conséquent, on a :

$$\overline{X}_n \sim \mathcal{N}\left(\mathbb{E}(\overline{X}_n)\,,\,\mathbb{V}\text{ar}(\overline{X}_n)\right).$$

Or, on a déjà montré que

$$\square \mathbb{E}\left[\overline{X}_n\right] = \mu$$
;

$$\square \ \mathbb{V}\operatorname{ar}(\overline{X}_n) = \frac{\sigma^2}{n}.$$

Le résultat est ainsi établi.

2.2. Loi de S^2 .

2.2.1. Notations et Corollaire de Cochran.

Pour tout entier j = 1, 2, ..., n, on pose $Z_j = \frac{X_j - \mu}{\sigma}$.

Les variables aléatoires Z_1, Z_2, \dots, Z_n sont indépendantes et de même loi normale centrée réduite.

Ainsi, le vecteur $Z = (Z_1, Z_2, \dots, Z_n)^T$ est un vecteur gaussien centré et de matrice de variance-covariance I_n .

On pose
$$P = \frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\mathsf{T}}$$
, avec $\mathbf{1}_{n} = (1, 1, ..., 1)^{\mathsf{T}}$.

Il est facile de montrer que P est un projecteur orthogonal sur le sous-espace vectoriel de \mathbb{R}^n engendré par le vecteur $\mathbf{1}_n$. Ce sous-espace vectoriel est de dimension 1.

Ainsi en utilisant le corollaire de Cochran, on déduit que

$$||PZ||^2 \sim \chi_1^2$$

$$||(I_n - P)Z||^2 \sim \chi_{n-1}^2$$

$$\Box$$
 et $||PZ||^2$ et $||(I_n - P)Z||^2$ sont indépendants.

2.2.2. Fin de la preuve.

On pose $\overline{Z}_n = \frac{1}{n} \sum_{i=1}^n Z_j$. Il est facile de voir que $\overline{Z}_n = \frac{\overline{X}_n - \mu}{\sigma}$ et

que $PZ = \mathbf{1_n}\overline{\mathbf{Z}_n}$. On déduit alors que

$$\square \|PZ\|^2 = \|\mathbf{1}_{\mathbf{n}} \overline{\mathbf{Z}}_{\mathbf{n}}\|^2 = n \overline{Z}_n^2 = \frac{n(\overline{X}_n - \mu)^2}{\sigma^2}.$$

$$||(I_n - P)Z||^2 = ||Z - \mathbf{1}_n \overline{\mathbf{Z}}_n||^2 = \sum_{j=1}^n (Z_j - \overline{Z}_n)^2.$$
 Or, il set facile de voir que pour tout entier i, que

Or, il est facile de voir que pour tout entier j, qu

 $Z_j - \overline{Z}_n = \frac{X_j - X_n}{\sigma}$. En remplaçant alors dans le calcul de $\|(I_n - P)Z\|^2$, on obtient :

$$||(I_n - P)Z||^2 = \sum_{j=1}^n \frac{(X_j - \overline{X}_n)^2}{\sigma^2} = \frac{(n-1)S^2}{\sigma^2}.$$

Ainsi, en reprenant les résultats fournis par le corollaire de Cochran, on déduit que $\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$ et S^2 est indépendant de \overline{X}_n .

2.3. Loi de Student.

La preuve du dernier résultat repose sur le résultat de probabilité suivant :

 \square Soient U et V deux variables aléatoires indépendantes.

Si
$$U \sim \mathcal{N}(0, 1)$$
 et $V \sim \chi_n^2$ alors $\frac{U}{\sqrt{V/n}} \sim T_n$.

On utilise ce résultat avec
$$U = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma}$$
 et $V = \frac{(n-1)S^2}{\sigma^2}$.

2.3. Loi de Student.

La preuve du dernier résultat repose sur le résultat de probabilité suivant :

 \square Soient U et V deux variables aléatoires indépendantes.

Si
$$U \sim \mathcal{N}(0, 1)$$
 et $V \sim \chi_n^2$ alors $\frac{U}{\sqrt{V/n}} \sim T_n$.

On utilise ce résultat avec $U = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma}$ et $V = \frac{(n-1)S^2}{\sigma^2}$.

En effet: Puisque $\overline{X}_n \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$, alors $\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \sim \mathcal{N}(0, 1)$, et comme \overline{X}_n et S^2 sont indépendants, il en est de même pour U et V.

ainsi, on obtient par construction le résultat souhaité :

$$\frac{\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma}}{\sqrt{\frac{(n-1)S^2}{\sigma^2}/(n-1)}} = \frac{\sqrt{n}(\overline{X}_n - \mu)}{S} \sim T_{n-1}$$