Арифметика с плавающей точкой

12

Обзор главы

В разделе	Вы найдете	на стр.
12.1	Обзор	12–2
12.2	Сложение чисел с плавающей точкой	12–3
12.3	Вычитание чисел с плавающей точкой	12–4
12.4	Умножение чисел с плавающей точкой	12-5
12.5	Деление чисел с плавающей точкой	12–6
12.6	Анализ битов слова состояния в операциях с плавающей точкой	12–7
12.7	Образование абсолютного значения числа с плавающей точкой	12–8
12.8	Образование квадрата или квадратного корня числа с плавающей точкой	12–9
12.9	Образование натурального логарифма числа с плавающей точкой	12–11
12.10	Образование экспоненциального значения числа с плавающей точкой	12–12
12.11	Образование тригонометрических функций углов в виде чисел с плавающей точкой	12–13

12.1. Обзор

С использованием арифметики с плавающей точкой Вы можете выполнять приведенные ниже арифметические операции над двумя числами с плавающей точкой (32 бита, IEEE–FP):

- сложение
- вычитание
- умножение
- деление

Числа с плавающей точкой (32 бита, IEEE-FP) принадлежат к типу данных REAL. Информацию о формате чисел с плавающей точкой возьмите из Приложения С.

С использованием арифметики с плавающей точкой Вы можете выполнять следующие функции над одним числом с плавающей точкой (32 бита, IEEE–FP):

- Образование абсолютного значения (ABS) числа с плавающей точкой
- Образование квадрата (SQR) или квадратного корня (SQRT) числа с плавающей точкой
- Образование натурального логарифма (LN) числа с плавающей точкой
- Образование экспоненциального значения (EXP) с основанием е 2,71828...)
- Образование следующих тригонометрических функций угла, представленного в виде числа с плавающей точкой (32 бита, IEEE-FP):
 - образование синуса (SIN) числа с плавающей точкой и образование арксинуса (ASIN) числа с плавающей точкой
 - образование косинуса (COS) числа с плавающей точкой и образование арккосинуса (ACOS) числа с плавающей точкой
 - образование тангенса (TAN) числа с плавающей точкой и образование арктангенса (ATAN) числа с плавающей точкой

12.2. Сложение чисел с плавающей точкой

Описание

Состояние сигнала "1" на разрешающем входе (EN) активизирует операцию Сложение чисел с плавающей точкой. Эта операция складывает входы IN1 и IN2. Результат может опрашиваться на выходе О. Если результат лежит вне допустимой области для чисел с плавающей точкой (выход за верхнюю или нижнюю границу диапазона значений), то OV-бит и OS-бит имеют значение "1", а ENO - значение "0". Информацию по оценке индикаторов в слове состояния Вы найдете в главе 12.6.

При размещении блока *Сложение чисел с плавающей точкой* Вы должны соблюдать определенные ограничения (см. главу 6.1).

Блок КОР	Параметры	Тип данных	Область памяти	Описание
ADD R	EN	BOOL	E, A, M, D, L	Разрешающий вход
EN ENO	ENO	BOOL	E, A, M, D, L	Разрешающий выход
	IN1	REAL	E, A, M, D, L	Первое слагаемое
DIA O	IN2	REAL	E, A, M, D, L	Второе слагаемое
-1N2 O -	0	REAL	E, A, M, D, L	Результат сложения

Рис. 12-1. Блок "Сложение чисел с плавающей точкой" и параметры

Рис. 12-2. Сложение чисел с плавающей точкой

12.3. Вычитание чисел с плавающей точкой

Описание

Состояние сигнала "1" на разрешающем входе (EN) активизирует операцию Вычитание чисел с плавающей точкой. Эта операция вычитает вход IN2 из IN1. Результат может опрашиваться на выходе О. Если результат лежит вне допустимой области для чисел с плавающей точкой (выход за верхнюю или нижнюю границу диапазона значений), то OV-бит и OS-бит имеют значение "1", а ENO - значение "0". Информацию по оценке индикаторов в слове состояния Вы найдете в главе 12.6.

При размещении блока Вычитание чисел с плавающей точкой Вы должны соблюдать определенные ограничения (см. главу 6.1).

Блок КОР	Параметры	Тип данных	Область памяти	Описание
SUB R	EN	BOOL	E, A. M, D, L	Разрешающий вход
EN ENO	ENO	BOOL	E, A. M, D, L	Разрешающий выход
	IN1	REAL	E, A. M, D, L	Уменьшаемое
IN2 O	IN2	REAL	E, A. M, D, L	Вычитаемое
7111/2 0	0	REAL	E, A. M, D, L	Результат вычитания

Рис. 12-3. Блок "Вычитание чисел с плавающей точкой" и параметры

Рис. 12-4. Вычитание чисел с плавающей точкой

12.4. Умножение чисел с плавающей точкой

Описание

Состояние сигнала "1" на разрешающем входе (EN) активизирует операцию Умножение чисел с плавающей точкой. Эта операция умножает вход IN1 на IN2. Результат может опрашиваться на выходе О. Если результат лежит вне допустимой области для чисел с плавающей точкой (выход за верхнюю или нижнюю границу диапазона значений), то OV-бит и OS-бит имеют значение "1", а ENO - значение "0". Информацию по оценке индикаторов в слове состояния Вы найдете в главе 12.6.

При размещении блока *Умножение чисел с плавающей точкой* Вы должны соблюдать определенные ограничения (см. главу 6.1).

z	Блок КОР	Параметры	Тип данных	Область памяти	Описание
	MUL R	EN	BOOL	E, A, M, D, L	Разрешающий вход
	EN ENO	ENO	BOOL	E, A, M, D, L	Разрешающий выход
	IN1	IN1	REAL	E, A, M, D, L	Первый сомножитель
	DIO O	IN2	REAL	E, A, M, D, L	Второй сомножитель
	-[IN2 0]-	О	REAL	E, A, M, D, L	Результат умножения

Рис. 12-5. Блок "Умножение чисел с плавающей точкой" и параметры

Рис. 12-6. Умножение чисел с плавающей точкой

12.5. Деление чисел с плавающей точкой

Описание

Состояние сигнала "1" на разрешающем входе (EN) активизирует операцию Деление чисел с плавающей точкой. Эта операция делит вход IN1 на IN2. Результат может опрашиваться на выходе О. Если результат лежит вне допустимой области для чисел с плавающей точкой (выход за верхнюю или нижнюю границу диапазона значений), то OV-бит и OS-бит имеют значение "1", а ENO - значение "0". Информацию по оценке индикаторов в слове состояния Вы найдете в главе 12.6.

При размещении блока *Деление чисел с плавающей точкой* Вы должны соблюдать определенные ограничения (см. главу 6.1).

Блок КОР	Параметры	Тип данных	Область памяти	Описание
DIV R	EN	BOOL	E, A, M, D, L	Разрешающий вход
EN ENO	ENO	BOOL	E, A, M, D, L	Разрешающий выход
	IN1	REAL	E, A, M, D, L	Делимое
	IN2	REAL	E, A, M, D, L	Делитель
-z 0 -	О	REAL	E, A, M, D, L	Результат деления

Рис. 12-7. Блок "Деление чисел с плавающей точкой" и параметры

Рис. 12-8. Деление чисел с плавающей точкой

12.6. Анализ битов слова состояния в операциях с плавающей точкой

Основные вычислительные операции влияют на следующие биты слова состояния:

- A1 и A0
- OV
- OS

Тире (–) в таблице означает, что соответствующий бит не испытывает воздействия со стороны результата операции.

Таблица 12–1. Состояние сигнала битов слова состояния для результатов операций с плавающей точкой; результат лежит внутри действительной области

Действительная область для результата операции над числами с плавающей точкой (32 бита)				ния
	A1	A0	OV	os
+0, -0 (нуль)	0	0	0	-
-3,402823E+38 < результат < -1,175494E-38 (отрицательное число)	0	1	0	_
+1,175494E-38 < результат < 3,402823E+38 (положительное число)	1	0	0	_

Таблица 12–2. Состояние сигнала битов слова состояния для результатов операций с плавающей точкой; результат лежит вне действительной области

Недействительная область для результата операции над числами с плавающей точкой (32 бита)	Биты слова состояния			
	A1	A0	ov	os
-1,175494E-38 < результат $< -1,401298E-45$ (отрицательное число) выход за нижнюю границу	0	0	1	1
+1,401298E-45 < результат $< +1,175494E-38$ (положительное число) выход за нижнюю границу	0	0	1	1
результат < -3,402823E+38 (отрицательное число) переполнение	0	1	1	1
результат > 3,402823E+38 (положительное число) переполнение	1	0	1	1
результат $<$ $-3,402823E+38$ или результат $>$ $+3,402823E+38$ не является числом с плавающей точкой	1	1	1	1

12.7. Образование абсолютного значения числа с плавающей точкой

Описание

С помощью операции Образование абсолютного значения числа с плавающей точкой Вы можете получить абсолютное значение числа с плавающей точкой.

Блок КОР	Параметры	Тип данных	Область памяти	Описание
ABS	EN	BOOL	E, A, M, D, L	Разрешающий вход
EN ENO	ENO	BOOL	E, A, M, D, L	Разрешающий выход
IN O	IN	REAL	E, A, M, D, L	Вход. значение: число с плав. точк.
	0	REAL	E, A, M, D, L	Выход. значение: Абсолютная величина числа с плавающей точкой

Рис. 12-9. Блок ABS и параметры

Рис. 12-10. Образование абсолютного значения числа с плавающей точкой

12.8. Образование квадрата или квадратного корня числа с плавающей точкой

Описание

С помощью операции Образование квадрата числа с плавающей точкой Вы можете возвести в квадрат число с плавающей точкой.

С помощью операции *Образование квадратного корня числа с плавающей точкой* Вы можете извлечь квадратный корень из числа с плавающей точкой. Эта операция выводит положительный результат, если операнд больше, чем "0". Единственное исключение: квадратный корень из - 0 равен - 0.

Информацию о воздействии, оказываемом операцией SQR или SQRT на состояние сигнала битов состояния A1, A0, OV и OS, Вы найдете в главе 12.6.

Параметры

Рисунок 12–12 показывает блок SQR и описывает параметры. Рисунок 12–13 показывает блок SQRT и описывает параметры.

Блок КОР	Параметры	Тип данных	Область памяти	Описание
SQR	EN	BOOL	E, A, M, D, L	Разрешающий вход
EN ENO	ENO	BOOL	E, A, M, D, L	Разрешающий выход
	IN	REAL	E, A, M, D, L	Число
	0	REAL	E, A, M, D, L	Квадрат числа

Рис. 12-12. Блок SQR и параметры

Блок КОР	Параметры	Тип данных	Область памяти	z
SORT	EN	BOOL	E, A, M, D, L	Разрешающий вход
EN ENO	ENO	BOOL	E, A, M, D, L	Разрешающий выход
IN O	IN	REAL	E, A, M, D, L	Число
	0	REAL	E, A, M, D, L	Квадратный корень из числа

Рис. 12-13. Блок SQRT и параметры

```
Блок SQRT активизируется, если E\ 0.0 = 1. Результат SQRT (MD0) сохраняется в двойном меркерноом слове MD10. Если MD0 < 0 или результат выходит за пределы допустимого диапазона для чисел с плава-
                     E 0.0
                                          SQRT
                                               ENO
                                       ΕN
                       MD0
                                      ΙN
                                                                  MD10
                                                                                                     ющей точкой или состояние сигнала E\ 0.0 = 0, то выход A\ 4.0 устанавливается.
                                                           Запись битов в слове состояния
  Операция выполняется (EN = 1):
                                                                                                       OR
x
                                                                               _{x}^{\mathrm{OV}}
                                                                                                                       STA
x
                                       BIE
                                                      A1
                                                                    A0
                                                                                              OS
                                                                                                                                                        /ER
                                                                                            0
записывает
                                         X
                                                                    \mathbf{X}
```

Рис. 12-14. Образование квадратного корня из числа с плавающей точкой

12.9 Образование натурального логарифма числа с плавающей точкой

Описание

С помощью операции *Образование натурального логарифма числа с плавающей точкой* Вы можете образовать натуральный логарифм числа с плавающей точкой.

Информацию о воздействии, оказываемом операцией LN на состояние сигнала битов состояния A1, A0, OV и OS, Вы найдете в главе 12.6.

Блок КОР	Параметры	Тип данных	Область памяти	Описание
LN	EN	BOOL	E, A, M, D, L	Разрешающий вход
EN ENO	ENO	BOOL	E, A, M, D, L	Разрешающий выход
IN O	IN	REAL	E, A, M, D, L	Число
III O	0	REAL	E, A, M, D, L	Натуральный логарифм числа

Рис. 12-15. Блок LN и параметры

Рис. 12-16. Образование натурального логарифма числа с плавающей точкой

12.10. Образование экспоненциального значения числа с плавающей точкой

Описание

С помощью операции *Образование экспоненциального значения числа с плавающей точкой* Вы можете образовать экспоненциальное значение числа с плавающей точкой с основанием е (= 2,71828...).

Информацию о воздействии, оказываемом операцией EXP на состояние сигнала битов A1, A0, OV и OS слова состояния, Вы найдете в главе 12.6.

Блок КОР	Параметры	Тип данных	Область памяти	Описание
EXP	EN	BOOL	E, A, M, D, L	Разрешающий вход
EN ENO	ENO	BOOL	E, A, M, D, L	Разрешающий выход
	IN	REAL	E, A, M, D, L	Число
III O	0	REAL	E, A, M, D, L	Экспонента числа

Рис. 12-17. Блок ЕХР и параметры

Рис. 12-18. Образование экспоненциального значения числа с плавающей точкой

12.11. Образование тригонометрических функций углов в виде чисел с плавающей точкой

Описание

С помощью следующих операций Вы можете образовать тригонометрические функции углов, представленных в виде чисел с плавающей точкой (32 бита, IEEE–FP):

Операция	Значение
SIN	Образовать синус числа с плавающей точкой, представляющего угол, который задан в радианах.
ASIN	Образовать арксинус числа с плавающей точкой. Результатом является угол, который задан в радианах. Это значение находится в следующем диапазоне: $-\pi / 2 \le \text{арксинуc} \le + \pi / 2$, причем $\pi = 3.14$
COS	Образовать косинус числа с плавающей точкой, представляющего угол, который задан в радианах.
ACOS	Образовать арккосинус числа с плавающей точкой. Результатом является угол, который задан в радианах. Это значение находится в следующем диапазоне: $0 \le $ арккосинус $\le + \pi$, причем $\pi = 3.14$
TAN	Образовать тангенс числа с плавающей точкой, представляющего угол, который задан в радианах.
ATAN	Образовать арктангенс числа с плавающей точкой. Результатом является угол, который задан в радианах. Это значение находится в следующем диапазоне: $-\pi / 2 \le \text{арктангенс} \le + \pi / 2$, причем $\pi = 3.14$

Информацию о воздействии, оказываемом операциями SIN, ASIN, COS, ACOS, TAN и ATAN на состояние сигнала битов A1, A0, OV и OS слова состояния, Вы найдете в главе 12.6.

Параметры

Рисунки с 12–19 по 12–24 показывают блоки SIN, ASIN, COS, ACOS, TAN и ATAN и описывают параметры.

Блок КОР	Параметры	Тип данных	Область памяти	Описание
SIN	EN	BOOL	E, A, M, D, L	Разрешающий вход
EN ENO	ENO	BOOL	E, A, M, D, L	Разрешающий выход
	IN	REAL	E, A, M, D, L	Число
117 0	0	REAL	E. A. M. D. L	Синус числа

Рис. 12-19. Блок SIN и параметры

Блок КОР	Параметры	Тип данных	Область памяти	Описание
ASIN	EN	BOOL	E, A, M, D, L	Разрешающий вход
EN ENO	ENO	BOOL	E, A, M, D, L	Разрешающий выход
-IN O	IN	REAL	E, A, M, D, L	Число
	0	REAL	E, A, M, D, L	Арксинус числа

Рис. 12-20. Блок ASIN и параметры

Блок КОР	Параметры	Тип данных	Область памяти	Описание
COS	EN	BOOL	E, A, M, D, L	Разрешающий вход
EN ENO	ENO	BOOL	E, A, M, D, L	Разрешающий выход
-IN O	IN	REAL	E, A, M, D, L	Число
	0	REAL	E, A, M, D, L	Косинус числа

Рис. 12-21. Блок COS и параметры

Блок КОР	Параметры	Тип данных	Область памяти	Описание
ACOS	EN	BOOL	E, A, M, D, L	Разрешающий вход
EN ENO	ENO	BOOL	E, A, M, D, L	Разрешающий выход
IN O	IN	REAL	E, A, M, D, L	Число
III O	0	REAL	E, A, M, D, L	Арккосинус числа

Рис. 12-22. Блок ACOS и параметры

Блок КОР	Параметры	Тип данных	Область памяти	Описание
TAN	EN	BOOL	E, A, M, D, L	Разрешающий вход
EN ENO	ENO	BOOL	E, A, M, D, L	Разрешающий выход
IN O	IN	REAL	E, A, M, D, L	Число
	0	REAL	E, A, M, D, L	Тангенс числа

Рис. 12-23. Блок ТАХ и параметры

Блок КОР	Параметры	Тип данных	Область памяти	Описание
ATAN	EN	BOOL	E, A, M, D, L	Разрешающий вход
EN ENO	ENO	BOOL	E, A, M, D, L	Разрешающий выход
IN O	IN	REAL	E, A, M, D, L	Число
	0	REAL	E, A, M, D, L	Арктангенс числа

Рис. 12-24. Блок ATAN и параметры

Рис. 12-25. Образование синуса числа с плавающей точкой