1.1.

```
> library(rstan)
> set.seed(2)
> options(mc.cores = parallel::detectCores())
> rstan_options(auto_write = TRUE)
> x1 <- c(4.8, 6.2, 6.1, 5.1, 4.8, 3, 6)
> x2 \leftarrow c(4, 4.7, 4.9, 5.7, 4.2, 2.9, 5.6)
> datos <- list(n = length(x1), x1 = x1, x2 = x2)
> codigo <- "
    data {
      int<lower=0> n;
      real<lower=0> x1[n];
     real<lower=0> x2[n];
    parameters {
   real mu1;
    real mu2;
    model{
    mu1 ~ normal(0,5);
    mu2 \sim normal(0,5);
    for(i in 1:n){
                  x1[i] ~ normal(mu1,1);
          for(i in 1:n){
                  x2[i] ~ normal(mu2,1);
    }
    generated quantities{
    real D;
    D = 0;
    for (i in 1:n){
    D += normal_lpdf(x1[i] | mu1,1);
    D += normal_lpdf(x2[i] | mu2,1);
   D*=-2;
> fit <- stan(model_code = codigo, data = datos,iter = 1000)</pre>
> print(fit)
Inference for Stan model: anon_model.
4 chains, each with iter=1000; warmup=500; thin=1;
post-warmup draws per chain=500, total post-warmup draws=2000.
                          2.5%
                                  25%
                                        50%
                                              75% 97.5% n_eff Rhat
      mean se_mean
                     sd
mu1
      5.12
              0.01 0.39
                          4.37 4.84 5.12 5.39 5.87
      4.56
              0.01 0.38
                          3.83 4.30 4.56 4.83 5.30
                                                                  1
mu2
     41.13
              0.07 2.01 39.11 39.68 40.47 41.93 46.57
                                                          734
                                                                  1
lp__ -8.64
              0.04 1.01 -11.33 -9.03 -8.31 -7.91 -7.63
                                                          736
                                                                  1
Samples were drawn using NUTS(diag_e) at Wed Apr 19 16:33:20 2023.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).
> D1<- unlist(extract(fit, pars='D'))</pre>
> DIC1 <- mean(D1) + 0.5 *var(D1)
> print(DIC1)
[1] 43.15062
```

```
> x1 \leftarrow c(4.8, 6.2, 6.1, 5.1, 4.8, 3, 6)
> x2 \leftarrow c(4, 4.7, 4.9, 5.7, 4.2, 2.9, 5.6)
 datos \leftarrow list(n = length(x1), x1 = x1, x2 = x2)
  codigo <- "
    data {
      int<lower=0> n;
      real<lower=0> x1[n];
      real<lower=0> x2[n];
    parameters {
    real mu;
    }
    model{
    mu ~ normal(0,5);
+
    for(i in 1:n){
                   x1[i] ~ normal(mu,1);
          for(i in 1:n){
+
                   x2[i] ~ normal(mu,1);
    generated quantities{
    real D;
    D = 0;
    for (i in 1:n){
    D += normal_lpdf(x1[i] | mu,1);
    D += normal_lpdf(x2[i] | mu,1);
    }
    D*=-2;
    7
> fit <- stan(model_code = codigo, data = datos,iter=1000)</pre>
> print(fit)
Inference for Stan model: anon_model.
4 chains, each with iter=1000; warmup=500; thin=1;
post-warmup draws per chain=500, total post-warmup draws=2000.
      mean se_mean
                           2.5%
                                  25%
                                         50%
                                               75% 97.5% n_eff Rhat
                           4.32 4.67 4.84 5.03 5.36
      4.84
              0.01 0.27
                                                            706
                                                                   1
mu
D
     41.18
              0.05 1.36 40.19 40.29 40.65 41.52 44.98
                                                            834
                                                                   1
              0.02 0.68 -10.11 -8.39 -7.93 -7.75 -7.70
lp__ -8.19
                                                            830
                                                                   1
Samples were drawn using NUTS(diag e) at Wed Apr 19 16:34:53 2023.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).
> D2<- unlist(extract(fit, pars='D'))</pre>
> DIC2 <- mean(D2) + 0.5 *var(D2)
> DIC2 <- mean(D2) + 0.5 *var(D1)
> print(DIC2)
[1] 43.20344
   1.3.
> cat(sprintf("\nModelo 1. mean D = \%8.2f. pD = \%8.2f. DIC = \%8.2f\n
+ Modelo 2. mean D = \%8.2f. pD = \%8.2f. DIC = \%8.2f \ ",
+ mean(D1), 0.5*var(D1), DIC1, mean(D2), 0.5*var(D2), DIC2))
Modelo 1. mean D =
                       41.13. pD =
                                        2.02. DIC =
                                                        43.15
Modelo 2. mean D =
                       41.18. pD =
                                        0.93. \, DIC =
                                                        43.20
```

El modelo 2 presenta peor ajuste, pero es más sencillo. Sin embargo, su IC posterior para mu no incluye el 0 por lo que con un 95% de confianza no podemos asumir que la diferencia entre ambos grupos sea nula. Elijo por lo tanto el modelo 1. Conclusión: El rendimiento en orientación espacial es mayor en hombres que en mujeres.

```
> y <- c(93, 66, 42, 45, 38, 32, 36, 43, 40, 53)
> x \leftarrow c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
> datos <- list(n = length(x), x = x, y = y)
 codigo <- "
   data {
      int<lower=0> n;
      real<lower=0> x[n];
+
     real<lower=0> y[n];
   parameters {
   real phi;
   real tau;
   real omega;
   model{
   real mu;
   real alpha;
   real beta;
    tau ~ normal(0,5);
+
    omega ~ normal(0,5);
          for(i in 1:n){
                  mu = exp(tau+omega*x[i]);
                  alpha = mu*phi;
                  beta = phi;
                  y[i] ~ gamma(alpha,beta);
          }
   generated quantities{
   real D;
   D = 0;
   for (i in 1:n){
   D += gamma_lpdf(y[i] | exp(tau+omega*x[i])*phi,phi);
   D*= -2;
> fit <- stan(model_code = codigo, data = datos, iter = 2000)</pre>
> print(fit)
Inference for Stan model: anon_model.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.
                            2.5%
                                    25%
                                            50%
                                                   75% 97.5% n eff Rhat
        mean se mean
                       sd
                0.00 0.14
        0.31
                            0.10
                                   0.21
                                          0.29
                                                  0.40
                                                         0.62 925
phi
                                   4.12
                                          4.24
                                                  4.36
                                                         4.61 1105
tau
        4.24
                0.01 0.19
                            3.86
                                                                       1
      -0.07
                0.00 0.03
                          -0.14
                                  -0.09 -0.07
                                                 -0.05
                                                         0.00
                                                               1069
                                                                       1
       81.53
                0.07 2.40 78.72 79.78 80.92 82.66 87.69 1347
                                                                       1
                0.03 1.20 -44.21 -41.69 -40.83 -40.25 -39.72 1342
     -41.12
Samples were drawn using NUTS(diag_e) at Wed Apr 19 16:36:36 2023.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).
> D1<- unlist(extract(fit, pars='D'))</pre>
> DIC1 <- mean(D1) + 0.5 *var(D1)
> print(DIC1)
[1] 84.39532
  2.2.
```

```
> y <- c(93, 66, 42, 45, 38, 32, 36, 43, 40, 53)
 x \leftarrow c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
 datos \leftarrow list(n = length(x), x = x, y = y)
 codigo <- "
    data {
      int<lower=0> n;
     real<lower=0> x[n];
      real<lower=0> y[n];
+
+
    parameters {
    real phi;
    real tau;
    real omega1;
    real omega2;
    model{
    real mu;
    real alpha;
    real beta;
    tau ~ normal(0,5);
+
    omega1 ~ normal(0,5);
+
    omega2 \sim normal(0,5);
+
          for(i in 1:n){
+
                  mu = exp(tau+omega1*x[i]+omega2*(x[i])^2);
                  alpha = mu*phi;
                  beta = phi;
                  y[i] ~ gamma(alpha,beta);
          }
    }
    generated quantities{
    real D;
    D = 0;
    for (i in 1:n){
    D += gamma_lpdf(y[i] | exp(tau+omega1*x[i]+omega2*(x[i])^2)*phi,phi);
    }
   D*= -2;
    }
> fit <- stan(model_code = codigo, data = datos, iter = 2000)</pre>
> print(fit)
Inference for Stan model: anon_model.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.
                              2.5%
                                      25%
                                             50%
                                                     75% 97.5% n_eff Rhat
                         sd
         mean se_mean
                              0.82
                                     1.77
                                                                  840 1.00
phi
         2.69
                 0.04 1.25
                                            2.46
                                                    3.45
                                                           5.57
         4.89
                 0.00 0.09
                              4.71
                                     4.84
                                            4.89
                                                    4.95
                                                           5.07
                                                                  995 1.00
                 0.00 0.04
                            -0.51 -0.45
                                                   -0.40
omega1
       -0.43
                                           -0.43
                                                         -0.34
                                                                  909 1.00
        0.03
                 0.00 0.00
                             0.03
                                    0.03
                                            0.03
                                                   0.04
                                                           0.04
                                                                  976 1.00
omega2
D
        59.49
                 0.09 2.91
                            55.86 57.36 58.84 60.90 67.22 1071 1.01
                 0.04 1.45 -34.09 -30.93 -29.91 -29.16 -28.42 1071 1.01
       -30.23
lp__
Samples were drawn using NUTS(diag_e) at Wed Apr 19 16:38:14 2023.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).
> D2<- unlist(extract(fit, pars='D'))</pre>
> DIC2 <- mean(D1) + 0.5 *var(D2)
> print(DIC2)
[1] 85.75326
  2.3.
```

```
> y <- c(93, 66, 42, 45, 38, 32, 36, 43, 40, 53)
> x \leftarrow c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
> datos1 <- list(n = length(x), x = x, y = y, modelo=1)
> datos2 <- list(n = length(x), x = x, y = y, modelo=2)
> codigo <- "
   data {
      int<lower=0> n;
      real<lower=0> x[n];
      real<lower=0> y[n];
      int modelo;
   parameters {
   real phi;
   real tau;
    real omega1;
    real omega2;
   model{
   real mu;
    real alpha;
    real beta;
    tau ~ normal(0,5);
    omega1 ~ normal(0,5);
    omega2 ~ normal(0,5);
          for(i in 1:n){
                  if(modelo==1){
                  mu = exp(tau+omega1*x[i]);
                  }else{
                  mu = exp(tau+omega1*x[i]+omega2*(x[i])^2);
                  alpha = mu*phi;
                  beta = phi;
                  y[i] ~ gamma(alpha,beta);
          }
    generated quantities{
    real D;
    real alpha_D;
    real beta_D;
    beta_D = phi;
    real yPred[n];
   D = 0;
    for (i in 1:n){
            if(modelo == 1){
            alpha_D = exp(tau+omega1*x[i])*phi;
            } else {
            alpha_D = exp(tau+omega1*x[i]+omega2*(x[i])^2)*phi;;
    yPred[i] = gamma_rng(alpha_D, beta_D);
    D += gamma_lpdf(y[i] | alpha_D,beta_D);
    }
    D*=-2;
> fit1 <- stan(model_code = codigo, data = datos1, iter = 2000)</pre>
> fit2 <- stan(model_code = codigo, data = datos2, iter = 2000)
> D1 <- unlist(extract(fit1, pars='D'))</pre>
> D2 <- unlist(extract(fit2, pars='D'))</pre>
> DIC1 \leftarrow mean(D1) + 0.5 * var(D1)
> DIC2 \leftarrow mean(D2) + 0.5 * var(D2)
> cat(sprintf("\nModelo 1. mean D = \%8.2f. pD = \%8.2f. DIC = \%8.2f\n
+ Modelo 2. mean D = \%8.2f. pD = \%8.2f. DIC = \%8.2f \ ",
                                                    mean(D1), 0.5*var(D1), DIC1, mean(D2), 0.5*var(D2), DIC2))
```

```
Modelo 1. mean D = 81.40. \text{ pD} = 2.81. \text{ DIC} = 84.21
```

Modelo 2. mean D = 59.52. pD = 4.35. DIC = 63.87

> print(fit1)

Inference for Stan model: anon_model.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

	mean	se_mean	sd	2.5%	25%	50%	75%	97.5%	n_eff	Rhat
phi	0.31	0.00	0.13	0.10	0.21	0.29	0.38	0.63	1354	1
tau	4.23	0.00	0.19	3.84	4.12	4.24	4.35	4.59	1848	1
omega1	-0.07	0.00	0.03	-0.13	-0.09	-0.07	-0.05	0.00	1872	1
omega2	-0.03	0.10	5.07	-9.88	-3.36	-0.05	3.36	10.25	2712	1
D	81.40	0.06	2.37	78.70	79.63	80.77	82.49	87.80	1689	1
alpha_D	10.83	0.13	4.85	3.49	7.30	10.15	13.66	22.44	1497	1
beta_D	0.31	0.00	0.13	0.10	0.21	0.29	0.38	0.63	1354	1
yPred[1]	65.61	0.35	19.45	32.23	52.71	63.86	76.21	108.00	3032	1
yPred[2]	60.91	0.30	17.91	30.90	48.86	59.09	70.80	100.03	3499	1
yPred[3]	56.32	0.26	15.85	27.99	45.86	55.02	65.14	91.51	3683	1
yPred[4]	52.92	0.25	15.89	26.08	42.27	51.56	61.50	88.89	3959	1
yPred[5]	49.48	0.24	15.21	24.53	39.37	48.12	57.77	82.09	3964	1
yPred[6]	46.08	0.22	14.07	22.26	36.45	44.71	54.14	77.20	4059	1
yPred[7]	43.19	0.23	14.26	19.50	33.61	41.69	51.00	76.08	3970	1
yPred[8]	40.40	0.23	13.71	17.56	31.07	38.81	48.09	71.71	3540	1
yPred[9]	38.05	0.24	14.27	15.35	28.37	36.40	45.82	69.79	3579	1
yPred[10]	35.50	0.26	13.99	12.93	26.24	34.00	43.14	67.83	2924	1
lp	-41.57	0.03	1.39	-45.14	-42.30	-41.24	-40.54	-39.86	1672	1

Samples were drawn using NUTS(diag_e) at Wed Apr 19 $16:39:53\ 2023$. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

> print(fit2)

Inference for Stan model: anon_model.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

	mean	se_mean	sd	2.5%	25%	50%	75%	97.5%	n_eff	Rhat
phi	2.88	0.08	1.37	0.89	1.86	2.68	3.68	6.22	281	1.01
tau	4.90	0.00	0.10	4.70	4.84	4.90	4.96	5.09	1004	1.00
omega1	-0.43	0.00	0.05	-0.52	-0.46	-0.43	-0.40	-0.33	972	1.00
omega2	0.03	0.00	0.00	0.02	0.03	0.03	0.04	0.04	1034	1.00
D	59.52	0.09	2.95	55.80	57.32	58.88	60.99	66.79	1044	1.00
alpha_D	154.75	4.42	74.20	46.34	99.31	142.88	197.93	329.07	282	1.01
beta_D	2.88	0.08	1.37	0.89	1.86	2.68	3.68	6.22	281	1.01
yPred[1]	90.71	0.20	8.45	74.27	85.28	90.50	96.00	107.84	1701	1.00
yPred[2]	65.15	0.10	5.84	53.89	61.46	64.90	68.63	77.10	3526	1.00
yPred[3]	50.16	0.09	5.23	40.44	46.68	49.97	53.39	60.82	3706	1.00
yPred[4]	41.57	0.08	4.70	32.56	38.44	41.47	44.39	51.51	3139	1.00
yPred[5]	36.58	0.07	4.40	28.44	33.69	36.42	39.18	45.61	3510	1.00
yPred[6]	34.58	0.08	4.22	26.97	31.83	34.44	37.16	42.92	3148	1.00
yPred[7]	34.90	0.08	4.32	26.88	32.03	34.75	37.44	44.13	3126	1.00
yPred[8]	37.73	0.07	4.45	29.51	34.87	37.61	40.48	46.97	3842	1.00
yPred[9]	43.37	0.08	4.88	33.86	40.18	43.29	46.38	53.16	4101	1.00
yPred[10]	53.59	0.11	6.11	41.98	49.61	53.38	57.39	66.11	3171	1.00
lp	-30.24	0.05	1.47	-33.92	-30.98	-29.93	-29.14	-28.38	1044	1.00

Samples were drawn using NUTS(diag_e) at Wed Apr 19 16:40:12 2023. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

```
> library(ggplot2)
> yPred_1 <- extract(fit1,"yPred")</pre>
> ## Empleo los últimos 10 valores de la última iteración
> yPred_1 <- yPred_1[[1]]
> yPred_1 <- yPred_1[4000,1:10]</pre>
> yPred_2 <- extract(fit2,"yPred")</pre>
> yPred_2 <- yPred_2[[1]]</pre>
> yPred_2 <- yPred_2[4000,1:10]</pre>
> data_1 <- as.data.frame( cbind(x,y,yPred_1))</pre>
> data_2 <- as.data.frame(cbind(x,y,yPred_2))</pre>
 ggplot(data_1, aes(x, y)) +
          geom_point(aes(color = "y")) +
          geom_line(aes(color = "y")) +
          geom_point(aes(x, yPred_1, color = "yPred")) +
          scale_color_manual(name = "Grupos",
                   values = c("y" = "black", "yPred" = "red")) +
          labs(color = "Leyenda") +
          ggtitle("Modelo 1")
```

Modelo 1

Modelo 2 100 -80 -Grupos yPred 60 **-**40 -7.5

10.0

 $2.5. \,$ El modelo 1 es más sencillo, pero presenta un ajuste considerablemente menor. Elijo el modelo 2 pues.

5.0

X

2.5