One-Way ANOVA

READING: 5.1 - 5.4

EXERCISES: CH 5. 27, 37-38, 40

ASSIGNED: HW 10

PRODUCER: DR. MARIO

- Usage of ANOVA
 - Numerical Response Variable (Y)
 - Categorical Predictor Variable (X)
- Questions to Answer:
 - Do different groups have different means?
 - How different are the means across groups?
- One-Way ANOVA Implies There is One Predictor Variable

- Data: Samples from Different Groups (K = # of Groups)
- Summary Statistics

Group	n_i	\overline{y}_i	s_i
1	n_1	\bar{y}_1	<i>s</i> ₁
2	n_2	\bar{y}_2	<i>S</i> ₂
K	n_K	\bar{y}_K	S_K
Overall	\overline{n}	\overline{y}	S

Test Hypotheses

$$H_0$$
: $\mu_1 = \mu_2 = \dots = \mu_K$ vs. H_a : $Some \ \mu_i \neq \mu_j$

Example: Grades on Different Exams

- There are Four Different Exams (1, 2, 3, 4)
- There are Five Students (Barb, Betsy, Bill, Bob, Bud)
- Each Student Takes All Four Exams
- Question: Is there a significant difference in the average grade among the four different exams?

Supplement for Lecture 22

- Inspect the Data
- Calculate Various Summary Statistics
 - Use tapply() function
- Visual of Relationship
 - Boxplot of Grades by Group
 - Plot Mean Grade by Group
- Differences due to random chance?

Exam	n_i	\overline{y}_i	s _i
1	5	72	17.89
2	5	87	13.93
3	5	68	23.24
4	5	73	15.68

75

18.11

20

Overall

ANOVA (Means) Model

$$Y = \mu_i + \epsilon$$
 Mean for
$$\epsilon \sim N(0, \sigma_\epsilon)$$
 Group #i Independent and Identically Distributed

- Under H_0 : $All \ \mu_i \ Are \ Equal \rightarrow \hat{\mu}_i = \bar{y}$ (overall mean)
- Under H_a : Some $\mu_i \neq \mu_j \rightarrow \hat{\mu}_i = \bar{y}_i$ (group mean)

• Making Prediction \hat{Y} under H_0

$$\hat{y} = \bar{y} \text{ for all groups} \rightarrow residual = y - \bar{y}$$

• Making Prediction \widehat{Y} under H_0

$$\hat{y} = \bar{y}_i$$
 for ith group $\rightarrow residual = y - \bar{y}_i$

Question: Do we do "significantly" better with separate means?

$$SSTotal = \sum (y - \bar{y})^2$$
 vs. $SSE = \sum (y - \bar{y}_i)^2$

Partitioning Variability

$$SSTotal = SSGroups + SSE$$

$$\sum (y - \bar{y})^2 = \sum (\bar{y}_i - \bar{y})^2 + \sum (y - \bar{y}_i)^2$$

ANOVA Table

Source	d.f.	Sum of Squares	Mean Square	F	P-value
Groups	<i>K</i> − 1	SSGroups	$\frac{SSGroups}{K-1}$	MSGroups	F
Residual	n-K	SSE	$\frac{SSE}{n-K}$	MSE	$F_{K-1,n-K}$
Total	n-1	SSTotal			

- ANOVA F-Test
 - $H_0: \mu_1 = \mu_2 = \dots = \mu_K$
 - H_a : $\mu_i \neq \mu_j$ for some $i \neq j$
 - Small P-value -> Reject H_0 Accept H_a -> Significant Difference Among the Means of K Groups
- Question: What groups have significantly different means?

Supplement for Lecture 22

- Visual of Relationship
- Calculate SSTotal, SSE, SSGroups
- ANOVA F-test Using aov() function
- Interpret Results (P-value = 0.395)

Alternate ANOVA

ANOVA (Effects) Model

$$Y = \mu + \alpha_i + \epsilon$$
Overall Effect for Mean Group #i Independent and Identically Distributed

Mean for Group i

$$\mu_i = \mu + \alpha_i$$

- Estimation of Parameters
 - $\hat{\mu} = \bar{y}$
 - $\hat{\alpha}_i = \overline{y}_i \overline{y}$

Alternate ANOVA

Before

- $H_0: \mu_1 = \mu_2 = \dots = \mu_K$
- H_a : $\mu_i \neq \mu_j$ for some $i \neq j$

Now

- H_0 : $\alpha_1 = \alpha_2 = \cdots = \alpha_k = 0$
- H_a : Some $\alpha_i \neq 0$
- These Hypotheses are Equivalent

Example: Grades on Different Exams

- Recall Data
- Estimate of Grand Mean

•
$$\hat{\mu} = \bar{y} = 75$$

1					
	FCTIM	12tac	\cap t	LTT	CTC
_	LJUII	nates	OI.	L 11で	LL3

•
$$\hat{\alpha}_1 = \overline{y_1} - \overline{y} = 72 - 75 = -3$$

•
$$\hat{\alpha}_2 = \overline{y_2} - \overline{y} = 87 - 75 = 12$$

•
$$\hat{\alpha}_3 = \overline{y_3} - \overline{y} = 68 - 75 = -7$$

•
$$\hat{\alpha}_4 = \overline{y_4} - \overline{y} = 73 - 75 = -2$$

Exam	n_i	\overline{y}_i	s_i
1	5	72	17.89
2	5	87	13.93
3	5	68	23.24
4	5	73	15.68

20 75

18.11

$$-\sum \hat{\alpha}_i = 0$$

Overall

Conditions for ANOVA

Recall:

$$\epsilon \stackrel{iid}{\sim} N(0, \sigma_{\epsilon})$$

- Zero Mean: Always Holds for Sample Residuals
- Constant Variance: Compare Standard Deviations of Groups
- Normality: Histogram or QQ Plot of Residuals
- Independence & Randomness: Details About the Data Collection

Thank You

Make Reasonable Decisions

