Number Systems & Boolean Algebra – Cheat Sheet (Theory Only)

1. Number Systems & Conversion

```
Common Number Systems:
Decimal (Base 10): Digits {0-9} (e.g., 25<sub>10</sub>).
```

- **Binary (Base 2):** Digits {0,1} (e.g., 1101₂).
- Octal (Base 8): Digits {0-7} (e.g., 378).
- **Hexadecimal (Base 16):** Digits {0-9, A-F} (e.g., 2F₁₆).

Conversions Between Number Systems:

- **Decimal to Binary:** Repeated division by 2.
- **Binary to Decimal:** Multiply each bit by 2^position and sum up.
- Binary to Octal: Group binary digits into sets of 3 from right.
- **Binary to Hexadecimal:** Group binary digits into sets of 4 from right.

```
Example: Convert 25<sub>10</sub> to Binary
```

```
25 \div 2 = 12 \rightarrow \text{remainder } 1
12 \div 2 = 6 \rightarrow \text{remainder } 0
6 \div 2 = 3 \rightarrow \text{remainder } 0
3 \div 2 = 1 \rightarrow \text{remainder } 1
1 \div 2 = 0
                   → remainder 1
Binary: 110012
```

Example: Convert 10110₂ to Decimal

```
(1 \times 2^{4}) + (0 \times 2^{3}) + (1 \times 2^{2}) + (1 \times 2^{1}) + (0 \times 2^{0})
= 16 + 0 + 4 + 2 + 0
= 2210
```

2. Binary Arithmetic

```
Binary Addition Rules:
0 + 0 = 0
```

```
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10 (carry 1)
```

Example of Binary Addition: 1011

```
+ 1101
11000
```

Binary Subtraction Rules:

```
0 - 0 = 0
1 - 0 = 1
1 - 1 = 0
0 - 1 = 1 (borrow 1 from the next higher bit)
```

Example of Binary Subtraction:

```
1101
- 1010
   0011
```

3. Binary Representation of Numbers

Signed Magnitude Representation:

- Leftmost bit = **Sign bit** (0 for positive, 1 for negative).
- Example: +5 = 00000101, -5 = 10000101.

Complement Representation:

- 1's Complement: Flip all bits $(0 \rightarrow 1, 1 \rightarrow 0)$.
- 2's Complement: 1's complement + 1.

Example: Represent -5 in 2's Complement (8-bit)

```
Step 1: 5 in Binary \rightarrow 00000101
Step 2: 1's Complement \rightarrow 11111010
```

Step 3: Add $1 \rightarrow 11111011$ (Final 2's Complement)

4. Binary Codes

BCD (Binary-Coded Decimal): Each decimal digit is represented in 4-bit binary.

Gray Code: Used in error correction (only one bit changes at a time).

Excess-3 Code: Used in digital systems (BCD + 3). Hamming Code: Used for error detection and correction.

5. Boolean Algebra & Boolean Functions

Boolean Variables: 0 (False) and 1 (True).

Basic Boolean Operations:

- AND $(A \cdot B \text{ or } A \cdot B) \rightarrow \text{Output is 1 if both inputs are 1.}$
- OR $(A + B \text{ or } A B) \rightarrow \text{Output is 1 if at least one input is 1.}$
- NOT (A' or \neg A) \rightarrow Inverts the input $(0 \rightarrow 1, 1 \rightarrow 0)$.

Boolean Laws & Theorems:

- Identity Law: A + 0 = A, $A \cdot 1 = A$.
- Null Law: A + 1 = 1, $A \cdot 0 = 0$.
- Idempotent Law: A + A = A, $A \cdot A = A$.
- Complement Law: A + A' = 1, $A \cdot A' = 0$.
- Commutative Law: A + B = B + A, $A \cdot B = B \cdot A$.
- Associative Law: (A + B) + C = A + (B + C), $(A \cdot B) \cdot C = A \cdot (B \cdot C)$.
- Distributive Law: $A \cdot (B + C) = (A \cdot B) + (A \cdot C)$.
- De Morgan's Theorem:
- $\bullet \qquad (A \cdot B)' = A' + B'$
- $\bullet \qquad (A+B)' = A' \cdot B'$

6. Canonical Forms of Boolean Functions

Sum of Products (SOP):

- OR of multiple AND terms.
- Example: $\overrightarrow{A} \cdot \overrightarrow{B} + \overrightarrow{A}' \cdot \overrightarrow{C}$.

Product of Sums (POS):

- AND of multiple OR terms.
- Example: $(A + B) \cdot (A' + C)$.

7. Boolean Function Simplification

(A) Karnaugh Map (K-Map) Method

Graphical method to minimize Boolean expressions.

Groups 1's in a 2D matrix (4-variable \rightarrow 16 cells, 3-variable \rightarrow 8 cells).

Steps for K-Map Simplification:

1st **Plot the 1's** in the K-Map.

2ndGroup adjacent 1's in powers of 2 (1, 2, 4, 8, ...).

3rd **Find the simplified expression** by eliminating variables.

Example of K-Map for 3-variable function:

```
AB\C | 0 | 1
----|----|
0 | 1 | 1
1 | 0 | 1
```

Simplified Expression: A'C + BC.

(B) Quine-McCluskey Method

Tabular method to minimize Boolean functions systematically.

Steps:

1st List **minterms** and group by the number of 1's.

2ndCompare adjacent groups and merge terms by eliminating one variable.

3rd Continue merging until prime implicants are found.

4th Use **Prime Implicant Chart** to find the **essential terms**.

Example: Minimize $F(A,B,C) = \Sigma(1, 2, 5, 6)$

- Convert to Binary: 001, 010, 101, 110
- Group by 1's and merge:
- 001 (1 one)
- 010 (1 one)
- 101 (2 ones)
- 110 (2 ones)

•

• Find common terms → Final Expression

Comparison of Simplification Methods

Method Best for Drawback

K-Map Up to 4-6 variables Becomes complex for >6 variables

Quine-McCluskey More than 6 variables Time-consuming for large

expressions

Key Takeaways

Number Systems: Binary, Octal, Decimal, Hexadecimal conversions.

Binary Arithmetic: Addition, subtraction, complements.

Boolean Algebra: Laws, De Morgan's Theorem, Canonical Forms.

Boolean Function Simplification: K-Map for small functions, Quine-McCluskey for larger ones.

This Cheat Sheet on Number Systems & Boolean Algebra covers conversions, binary operations, Boolean functions, simplifications, and K-Map techniques. Let me know if you need further explanations!