

Computação Quântica: Qubits e Portas Lógicas

Bruna Shinohara - Doutoranda em Física - USP Arthur Faria- Doutorando em Física - UNICAMP/ U. of Stuttgart

- Bits x Qubits: diferenças e implementações físicas.
 - Revisão de álgebra linear: vetores linha e coluna, matrizes, produto tensorial.
 - Relação com conceitos físicos. Equação de autovalores.
 - Notação de Dirac

 \bigcirc

- Computação com portas lógicas: comparação clássico e quântico.
 - Portas recorrentes

 No modelo circuital, a computação é feita usando bits e portas lógicas booleanas

- No modelo circuital, a computação é feita usando bits e portas lógicas
- Os bits carregam as informações e as portas lógicas fazem operações nos bits para obter os resultados desejados

- Os bits codificam informação em dois estados, que vamos chamar de 0 e 1 (com diversas implementações físicas)
- As portas, atuando em apenas dois estados, funcionam sob airtmética modulo 2.

ARITMÉTICA MODULAR

 $x = y \pmod{N}$

Exemplo:

 $15 = 3 \mod(N)$

(15 horas = 3horas, nossos relógios seguem aritmética mod 12)

Relacionado a operação de módulo (%), que retorna o resto de uma divisão inteira.

Exemplo: 15 % 4 = 3

REVISÃO - ÁLGEBRA LINEAR

Matrizes

n colunas

m x n elementos

Vetores

- Casos específicos de matrizes
 - Matrizes gerais: N linhas x M colunas
 - Um vetor linha: N linhas x 1 coluna
 - Um vetor coluna: 1 linha x M coluna

Multiplicação de Matrizes

$$\begin{bmatrix} \frac{2}{1} & \frac{3}{0} & \frac{4}{0} \end{bmatrix} \begin{bmatrix} 0 & \frac{1000}{100} \\ 1 & \frac{100}{100} \\ 0 & 100 \end{bmatrix} = \begin{bmatrix} 3 & \frac{2340}{1000} \\ 0 & 1000 \end{bmatrix}.$$

Produto Tensorial

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \otimes \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} = \begin{bmatrix} 1 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} & 2 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} & 2 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} \\ 3 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} & 4 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 \times 0 & 1 \times 5 & 2 \times 0 & 2 \times 5 \\ 1 \times 6 & 1 \times 7 & 2 \times 6 & 2 \times 7 \\ 3 \times 0 & 3 \times 5 & 4 \times 0 & 4 \times 5 \\ 3 \times 6 & 3 \times 7 & 4 \times 6 & 4 \times 7 \end{bmatrix} = \begin{bmatrix} 0 & 5 & 0 & 10 \\ 6 & 7 & 12 & 14 \\ 0 & 15 & 0 & 20 \\ 18 & 21 & 24 & 28 \end{bmatrix}.$$

Permite multiplicar coluna por coluna e linha por linha

Representação Gráfica

 $x = r \cos \varphi \sin \theta, \ y = r \sin \varphi \sin \theta, \ z = r \cos \theta.$

CONEXÃO COM A FÍSICA

Vetores -> Estados

$$|0
angle = egin{bmatrix} 1 \ 0 \end{bmatrix} \hspace{0.2cm} |1
angle = egin{bmatrix} 0 \ 1 \end{bmatrix}$$

Notação de Dirac (bra-ket)

```
| "estado"> = ket (coluna)

< "estado"| = bra (linha)

= | "estado">* (* = complexo conjugado)
```

Superposição

Um estado em superposição pode ser escrito como a soma de outros

$$| P1 > = a1 | e1 > + a2 | e2 > + ...$$

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left| \frac{1}{\sqrt{2}} \right| + \frac{1}{\sqrt{2}} \left| \frac{1}{\sqrt{2}} \right|$$

https://www.cl.cam.ac.uk/~jmb25/MCCR C/QC-commentary-2019-08-28.pdf

Emaranhamento

Um estado emaranhado é um estado com mais de um qubit

$$| P2 > = A | e1 > | f1 > + ...$$

que não pode ser escrito como uma multiplicação de estados superpostos

$$|\psi\rangle_A\otimes|\phi\rangle_B$$
.

Exemplo:

$$rac{1}{\sqrt{2}}\left(|0
angle_A\otimes|1
angle_B-|1
angle_A\otimes|0
angle_B
ight).$$

Bits -> Qubits

$$|0
angle = egin{bmatrix} 1 \ 0 \end{bmatrix} \hspace{0.2cm} |1
angle = egin{bmatrix} 0 \ 1 \end{bmatrix}$$

$$|\psi
angle = \cos(heta/2)|0
angle \,+\,e^{i\phi}\sin(heta/2)|1
angle = \cos(heta/2)|0
angle \,+\,(\cos\phi+i\sin\phi)\,\sin(heta/2)|1
angle$$

Matrizes -> Operadores

Equação de Autovalores e Autovetores: uma multiplicação de matriz especial

Portas lógicas → Portas Lógicas Quânticas

Operator	Gate(s)	Matrix
Pauli-X (X)	$-\mathbf{x}$	 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli-Y (Y)	$- \boxed{\mathbf{Y}} -$	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
Pauli-Z (Z)	$-\!\!\left[\mathbf{z}\right]\!-\!$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard (H)	$-\!$	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
Phase (S, P)	$-\!\!\left[\mathbf{s}\right]\!-\!$	$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
$\pi/8~(\mathrm{T})$	$-\!$	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$

Pauli Gates

Operator	$\mathbf{Gate}(\mathbf{s})$	Matrix	
Pauli-X (X)	_x	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	————
Pauli-Y (Y)	$-\mathbf{Y}$	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$	
Pauli-Z (Z)	$-\mathbf{z}-$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	

Hadamard: coloca em superposição de probabilidades iguais

Hadamard (H)
$$- \boxed{\mathbf{H}} - \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Phase gate e T-gate: modificam a fase

R-gates:

$$egin{aligned} R_x(heta) &= e^{(-i heta X/2)} = \cos(heta/2)I - i\sin(heta/2)X = egin{bmatrix} \cos heta/2 & -i\sin heta/2 \ -i\sin heta/2 & \cos heta/2 \end{bmatrix} \ R_y(heta) &= e^{(-i heta Y/2)} = \cos(heta/2)I - i\sin(heta/2)Y = egin{bmatrix} \cos heta/2 & -\sin heta/2 \ \sin heta/2 & \cos heta/2 \end{bmatrix} \ R_z(heta) &= e^{(-i heta Z/2)} = \cos(heta/2)I - i\sin(heta/2)Z = egin{bmatrix} e^{-i heta/2} & 0 \ 0 & e^{i heta/2} \end{bmatrix} \end{aligned}$$

CNOT (controlled not): porta para dois qubits. Útil para emaranhamento!

Controlled Not (CNOT, CX) $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

SWAP: troca bits de lugar - útil dependendo da topologia do seu processador

Obrigada!

Perguntas?