REDE DE COMPUTADORES – ENTREGA 01

DHT22 – Protocolo (One-Wire)

O protocolo One-Wire é um protocolo simples baseado em um único fio para transmitir dados entre o sensor e o microcontrolador. Esse único fio é usado para transmitir e receber informações.

O processo de troca de dados envolve pulso de temporização e leitura de Bits: O ESP32 envia um sinal de "início" para o sensor e ele responde com uma sequência de Bits (DHT22 possui 40 BITS ao total: 16 bits para a temperatura, 16 para umidade e 8 de verificação).

Vantagens

- Economia de espaço e simplicidade;
- Comunicação simples e de baixo custo;
- Facilidade de uso e implementação;
- · Capacidade de conectar múltiplos sensores em série;
- Baixo consumo de energia.

MAX30102 e MLX90614 – Protocolo (I2C)

É um protocolo de comunicação serial usado para permitir a troca de dados entre microcontroladores e periféricos (Sensores, Displays, Módulos de Memórias etc.), usando um barramento compartilhado. É usado em sistemas embarcados de fios e pinos, especialmente quando múltiplos dispositivos precisam se comunicar com um único microcontrolador.

Barramento Compartilhado = Vários dispositivos usam as mesmas linhas de comunicação (fios) para trocar dados.

Vantagens

- Usa apenas dois fios para conectar vários dispositivos;
- Facilita a expansão de sistemas, podendo adicionar novos dispositivos facilmente;
- É bidirecional, ou seja, pode tanto mandar quanto receber dados.

WIFI (HTTP)

É um protocolo de comunicação da camada de aplicação que facilita a transferência de dados entre clientes (geralmente navegadores ou dispositivos) e servidores. É um dos protocolos mais utilizados na web para comunicação entre sistemas, especialmente em aplicações baseadas em internet.

O HTTP é baseado em um modelo requisição-resposta, onde o cliente faz uma solicitação (requisição) ao servidor, e então responde com os dados solicitados.

Quando utilizamos o ESP32 em um projeto de Internet das Coisas (IoT), o **HTTP** desempenha um papel fundamental, pois muitas vezes é necessário que o dispositivo se comunique com servidores ou interfaces web.

Funciona da seguinte forma, um cliente, como um navegador ou um dispositivo (como o ESP32), envia uma requisição HTTP para o servidor. O servidor recebe a requisição, processa a solicitação e retorna uma resposta, o cliente recebe a

resposta do servidor e, dependendo da natureza da resposta, a exibe ou processa os dados de acordo.

Vantagens do Uso do Protocolo HTTP no Projeto da Pulseira Inteligente:

Simplicidade e Facilidade de Implementação:

O HTTP é amplamente utilizado e bem documentado, o que facilita o desenvolvimento e a integração entre a pulseira (ESP32) e o aplicativo móvel.

Muitas bibliotecas para ESP32 já oferecem suporte nativo ao HTTP, tornando sua implementação mais rápida.

Compatibilidade:

HTTP é um padrão da web, o que garante que a pulseira possa se comunicar facilmente com servidores e aplicações web, possibilitando envio e recebimento de dados de forma eficiente.

Isso permite integração com serviços em nuvem ou APIs de terceiros, como plataformas de saúde ou bancos de dados remotos.

Transmissão de Dados em Tempo Real:

O ESP32 pode enviar leituras dos sensores periodicamente para o app ou servidor via HTTP POST, permitindo que o aplicativo processe essas informações quase em tempo real.

HTTP GET pode ser usado para solicitar configurações ou receber mensagens personalizadas do servidor.

Flexibilidade e Escalabilidade:

HTTP pode ser combinado com tecnologias como REST APIs, o que facilita a expansão do sistema no futuro (por exemplo, para armazenar dados históricos na nuvem ou gerar relatórios personalizados).