

Retrospective and Prospective Mixture-of-Generators for Task-oriented Dialogue Response Generation

Jiahuan Pei Pengjie Ren Christof Monz Maarten de Rijke

University of Amsterdam

{j.pei, p.ren, c.monz, derijke}@uva.nl

Task: dialogue response generation (DRG)

Task definition

- **Input**: dialogue context
 - ⇒ historical utterances.
 - \Rightarrow belief states.
 - ⇒ retrieved database results.
- Output: response a sequence of words generated token by token
 - ⇒ Task-completion e.g., assist a user to book a flight successfully,
 - \Rightarrow Language fluency it sounds like a natural language from a real person.

Motivation: statistical studies

University of Amsterdam

 Exiting assumption: each token is drawn from a single distribution over the vocabulary.

Figure 1: Dominant end-to-end TDS.

• This is **unreasonable**: responses vary greatly with different intents.

Figure 2: Relative token frequency distribution of different domains (top), system actions (bottom).

Solution: 1 chair - k experts framework

- *k* expert generators, each of which is specialized for a particular *intent*, e.g., a domain, a type of action of a system, etc.
- a **chair generator**, which learns to coordinate a group of experts to make an optimal decision.
- Each expert follows Seq2Seq under an encoder-decoder architecture.
- Mixture-of-Experts adopted to decoder part.

Main research question

Does DRG performance improves if a response be drawn from a **mixture of distributions** for *multiple intents* compared with from a single distribution for a general intent?

Dataset

Multi-domain Wizard-of-Oz (MultiWOZ)

- \bullet \sim 10k natural conversations between a tourist and a clerk.
- 8,438/1,000/1,000 dialogues for training, validation, and testing, respectively.

Table: Two groups of intents that are divided by domains and the type of system actions.

Туре	Intents
Domain	Attraction, Booking, Hotel, Restaurant, Taxi, Train, General, UNK.
Action	Book, Inform, NoBook, NoOffer, OfferBook, OfferBooked, Select, Recommend, Request, Bye, Greet, Reqmore, Welcome, UNK.

• MoGNet improves **5.64%** of the overall performance <u>automatically</u> evaluated by balancing both task-completion and language fluency.

	BLEU	Inform	Success	Score
S2SAttnLSTM	18.90%	71.33%	60.96%	85.05
S2SAttnGRU	18.21%	81.50%	68.80%	93.36
Structured Fusion	16.34%	82.70%	72.10%	93.74
LaRLAttnGRU	12.80%	82.78%	79.20%	93.79
MoGNet	20.13%*	85.30%*	73.30%	99.43*

$$Score = (0.5 * Inform + 0.5 * Success + BLEU) * 100$$

Main results: human evaluation

• MoGNet improves ≥12.5% of the overall performance manually evaluated by Satisfactory of workers on Amazon Mechanical Turk.

	S2SAttnGRU		LaRLAttnGRU		MoGNet	
	≥ 1	≥ 2	≥ 1	≥ 2	≥ 1	≥ 2
Informativeness	56.79%	31.03%	76.54%	44.83%	80.25%	53.45%
Consistency	45.21%	23.53%	71.23%	39.22%	80.82%	50.98%
Satisfactory	26.79%	25.00%	44.64%	21.88%	60.71%	37.50%

Main results: case study

• Example:

User	System
i am looking for a train departing from [value_place] that will arrive at [value_place].	S2SAttnGRU : what day would you like to travel? LaRLAttnGRU : there are [value_count] trains leaving [value_place] on [value_day] . what day would you like to travel?
	MoGNet: what day and time would you like to travel?

Main results: ablation study

• PR coordination mechanisms (-2.62%); GL learning scheme (-6.95%).

	BLEU	Inform	Success	Score
MoGNet	20.13%	85.30%	73.30%	99.43
MoGNet-P-R MoGNet-GL	18.16% 19.33%	85.10% 78.40%	72.20% 67.90%	96.81 <u>92.48</u>

Conclusion

Contribution:

- A mixture-of-generators network (MoGNet) model that firstly devises chair and expert generators for DRG.
- ▶ Two coordination mechanisms (RMoG & PMoG) to help the chair make better decisions.
- A global-and-local (GL) learning scheme to differentiate experts and fuse data efficiently.

• Future work:

- Explorations of coordination mechanisms between chair and expert generators.
- Studies on how to do intent partition automatically.

Thanks for your attention!

- Paper: Jiahuan Pei, Pengjie Ren, Christof Monz, and Maarten de Rijke. "Retrospective and Prospective Mixture-of-Generators for Task-oriented Dialogue Response Generation." In Proceedings of ECAI 2020.
- Emails: {j.pei, p.ren, c.monz, derijke}@uva.nl
- Code: https://github.com/Jiahuan-Pei/multiwoz-mdrg