Representação em Lógica de Primeira Ordem (LPO)

• Há muito a dizer sobre a LPO como linguagem de representação do conhecimento!

Alfabeto básico – disse que voltaríamos aqui

- Letras de função com n argumentos (aridade n), para $n \ge 0$ e $i \ge 1$: f_i^n
- Letras de predicado com aridade n, para $n \ge 0$ e $i \ge 1$: P_i^n
- Variáveis individuais para $i \ge 1$: x_i
- Termos (que representam objectos constantes, variáveis e letras de função aplicadas a termos são termos)

Alfabeto básico (cont.)

- Letras de função com n argumentos (aridade n), para $n \ge 0$ e $i \ge 1$: f_i^n
 - Representam funções sobre os elementos da linguagem
 - $-f_i^0$ corresponde a funções de aridade zero que representam constantes
 - Usamos a, b, c, \ldots para representar constantes e f, g, h, \ldots para representar as letras de função que não são constantes

Alfabeto básico (cont.)

- Letras de predicado com aridade n, para $n \ge 0$ e $i \ge 1$: P_i^n
 - Representam relações sobre elementos da linguagem, produzindo valores lógicos
 - Usamos P, Q, R, \ldots para representar as letras de predicado

Alfabeto básico (cont.)

- Variáveis individuais para $i \ge 1$: x_i
 - Têm como domínio os objectos da conceptualização
 - Usamos x, y, z, \ldots para representar as variáveis

Exemplos

Consideremos

- P letra de predicado com aridade 2
- Q letra de predicado com aridade 1
- A e B letras de predicado com aridade 0
- f letra de função com aridade 1
- g letra de função com aridade 3
- a, b, c constantes
- x variável

Então são fbfs

$$- (\neg P(a, g(a, b, c)))$$

$$- (P(a,b) \rightarrow \forall_X [(\neg Q(f(X)))])$$

$$-(A \wedge B)$$

Parêntesis redundantes podem ser eliminados

Exemplos

capital (2, 3): dapital
é verd a Me se

Funções

- capital(x) = capital de x
- soma(x, y) = x + y
- Relações
 - Fronteira(x, y) = verdade se x tem fronteira com y

Termos

- Termos representam objectos; correspondem a sintagmas nominais em linguagem natural
- São definidos recursivamente
 - Cada letra de função com aridade zero (letra de constante) é um termo
 - Cada variável é um termo
 - Se t_1, t_2, \ldots, t_n são termos, então $f_i^n(t_1, t_2, \ldots, t_n)$ é um termo
 - Nada mais é um termo
- Termo sem variáveis é chamado um termo chão (do Inglês ground term)

Exemplos

- Termos (com letras de função)
 - Portugal
 - capital(Portugal)
 - pai(Maria)
 - pai(pai(pai(Maria)))
 - **-** x
 - capital(x)
 - pai(x)
- Fbf atómica (com letras de relação)
 - (capital(x, y)): verdade se x é a capital de y
 - pai(x, y): verdade se x é o pai de y
 - pai(João, Maria): verdade se João é o pai da Maria

Representação em LPO – vamos lá fazer uns exercícios

Exercício 1

Constantes: Pedro, Cálculo (Cal), Álgebra (AL) Predicados: Aluno(x) = x é aluno e Freq(x, y) = x frequenta a A 775 cadeira y 1. O Pedro é um aluno. pai (Redo) Sol: Aluno (Pedro)

2. O Pedro não frequenta Cálculo.

Sol: 7 Freq (Pedro)

Cal 3. O Pedro frequenta Cálculo e Álgebra. Sol: Frig (Pedir, Cal) (Pedir, AL) 4. O Pedro frequenta Cálculo ou Álgebra (ou ambos). O Pedro frequenta Cálculo ou Álgebra (mas não ambos). (Frag(Pedrs, cd) 17 Frag(Pedrs AL)) Freg (Pedro Cal) 1 Freg Pedro, AL)

Representação em LPO - dica

Todas a pessoa sas intellentes Hx Pessoa (2) > (245)

- ∀ é usado com
- ∃ é usado com ∧
- Exemplos (usar diagramas de Venn)
 - Todas as pessoas são inteligentes
 - Existem pessoas inteligentes

X peno4(2) 1 1 wt (2)

Exercício 2

7 En allero

gotte (n Pedo)

Exercício 3

- aluho (2)

Predicados: Do Ex2 + Irm $\tilde{a}(x,y)$, Reprovou(x,y)

4	\frown	D		Ī				•
1. (Pedro	tem	pelo	menos	uma	ırma	Э.

Sol: 3 2 1 ma (2 Pedro tem exactamente uma irmã.

Sol: Fr Inma(n, Pedw) N[+y inma(t, Pedw)

3. O Pedro tem pelo menos duas irmãs. Sol: Ful) Marc (r, Pelo) Marc (1 | Pelo)

4. Todos os alunos que frequentam Cálculo também frequentam

Algebra, Sol: Yn (alun J (x) 1) fig (r, AL)

5. Nenhum aluno reprovou a Álgebra.

Pelo menos um aluno reprovou a Cálculo.

Sol: Fr (a luno (2) 1 repolon 1

Momento de Aprendizagem Activa

