MACHINE LEARNING

[Revised Credit System]

(Effective from the academic year 2021 onwards) ${\bf SEMESTER-VII}$

Number of Lecture Hours/Week	03	Exam Marks	50
Total Number of Lecture Hours	36	Exam Hours	03

CREDITS - 03

Course objectives: This course will enable students to

- To introduce the generic principle of learning.
- To introduce the basic principles, techniques, and applications of Machine Learning.
- To have basic proficiency in Python to write basic to intermediate programs for Machine Learning algorithm

Module -1	Teaching	
	Hours	
INTRODUCTION:	1 Hour	
Basic concepts of machine learning, some day to day examples of machine learning		
MATHEMATICAL PRELIMINARIES:		
Review of Linear Algebra, Probability Theory Review, Overview of Convex		
Optimization, Hidden Markov Models, Multivariate Gaussian Distribution,		
Gaussian Processes		
SUPERVISED LEANING:	12 Hours	
Supervised learning setup, LMS, Logistic regression, Perceptron, Exponential		
family, Generative learning algorithms, Gaussian discriminant analysis, Naive		
Bayes, Support vector machines, Model selection and feature selection, Ensemble		
methods: Bagging, boosting. Evaluating and debugging learning algorithms		
LEARNING THEORY:		
Bias/variance tradeoff, Union and Chernoff and Hoeffding bounds, VC dimension,		
Worst case (online) learning, Practical advice on how to use learning algorithms		
UNSUPERVISED LEARNING:	8 Hours	
Clustering, K-means, EM, Mixture of Gaussians, Factor analysis, PCA (Principal		
components analysis), ICA (Independent components analysis).		
REINFORCEMENT LEARNING:	7 Hours	
Markov Decision Processes (MDPs), Bellman equations, Value iteration and		
policy iteration, Linear quadratic regulation (LQR), LQG, Q-learning, Value		
function approximation, Policy search, Reinforce, POMDPs		
Tunetion approximation, I oney search, Itemforce, I office is		

Course outcomes:

After studying this course, students will be able to:

- 1. Have acquired a broad understanding of machine learning algorithms and their use in datadriven knowledge discovery.
- 2. Identify, formulate and solve machine learning problems that arise in practical applications.
- 3. Ability to understand and apply scaling up machine learning techniques and associated computing techniques and technologies
- 4. Ability to recognize and implement various ways of selecting suitable model parameters for different machine learning techniquestest
- 5. Implement several machine learning algorithms in Python

Reference Books:

- 1. Kevin P Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012.
- 2. MehryarMohri, AfshinRostamizadeh, and AmeetTalwalkar, *Foundations of Machine Learning*, MIT Press, 2012.
- 3. Daphne Koller and Nir Friedman, *Probabilistic Graphical Models: Principles and Techniques*, MIT Press, 2009.
- 4. Christopher M.Bishop, Pattern Recognition and Machine Learning, (2e), Springer, 2013.