

Predictive Modelling

Week 05-BEM2031

Term2: 2024/25

Today:

- What is random?
- What is predictive modelling?
- Supervised learning
 - Regression
 - Classification
- A decision tree step-by-step

Types of Analytics:

- Descriptive Analytics: WHAT happened (or is happening)?
- Diagnostic Analytics: WHY did it happen?
- Predictive Analytics: WHAT is likely to happen in the future?
- Prescriptive Analytics: WHAT can we do about it?

Geography

Congo,

Rwanda. Uganda, Burundi. Tanzania,

Mozambique, Madagascar

Partial: Africa.

Magnitude

1.0402

-0.3384

Duration

Location

♠ 10.5°S 39.0°E

List of solar eclipses in the 21st century -

Wikipedia

88

Path width

142

Date		
Date		

September 4, 2100

Time	
08:49:20	

Saros

146

Type

Total

Random in the context of prediction models means that some aspect of the model is determined by chance rather than by design.

Randomness is also a source of uncertainty and error. Random phenomena are difficult to measure, predict, and control.

Which of these could be modelled and which is completely random?

R Code

MODULE MATERIALS

Lecture slides >

Workshop output files >

Workshop interactive code >

Week 1 practice

Week 2 practice

Week 3 practice

Week 4 practice

Week 5 practice

- Random and regular fields of
- The random field of points from Lecture 5. d7 distribution:

◆ Start Over

- Create these random fields of points
- Random coin throw, random dice

▶ Run Code

```
1 N <- 1024
2 d1 <- tibble(x = runif(N), y = runif(N), type = 't1')</pre>
```

To create the evenly distributed bit (d2), you have to start with an even grid of points:

Supervised vs Unsupervised methods

Supervised methods have a target, an objective.

"Can we find groups of customers who have particularly high likelihoods of cancelling their service soon after their contracts expire?" **Unsupervised** methods have no specific target.

"Do our customers naturally fall into different groups?"

Supervised vs Unsupervised methods

Supervised vs Unsupervised methods

Unseen (new) data: test the performance of the model y=f(x) on unlabelled data

Types of supervised learning

Regression or classification?

- Weather prediction
- Identification of cancer cells
- Identification of handwritten digits
- Oil price prediction
- Identification of fraudulent credit card transactions
- Monthly income prediction

Machine Learning

Regression modelling:

Linear Regression: House Price Prediction

Given a set of input features (which may influence the price of a house), the goal of the algorithm is to predict the price of a new house going to market

House Price Prediction

	Price (\$) in 1000's	Num of floors	Parking Facility?	Garden?	Num of Rooms	Square footage
	460	2		Yes	3	
Labeled Examp	320	1	No	No		1700
					5	
	1					
	•					
(y)	arget/Dependent Variable	, x _n) Ta	dent Variables (x ₁ , x ₂ ,	ures/Independ	Attributes/Featu	

- Feature Selection input variables that can used to predict house prices
 let's consider one input variable (size in sq.ft) → univariate/simple regression
- Simple linear regression finds a linear function (straight line) that predicts the target variable (y) as a function of the features or independent variables (x)

Features/independent variables (x)	Target/dependent variable (y)
Size in feet ²	Price £ in 1000s
400	100
600	150
650	210
800	220
1000	290
1250	280
1500	295
1600	300
1700	300
2000	295
2200	300

- Feature Selection input variables that can used to predict house prices
 let's consider one input variable (size in sq.ft) → univariate/simple regression
- Simple linear regression finds a linear function (straight line) that predicts the target variable (y) as a function of the features or independent variables (x)

Features/independent variables (x)	Target/dependent variable (y)
Size in feet ²	Price £ in 1000s
400	100
600	150
650	210
800	220
1000	290
1250	280
1500	295
1600	300
1700	300
2000	295
2200	300

- Feature Selection input variables that can used to predict house prices
 let's consider one input variable (size in sq.ft) → univariate/simple regression
- Simple linear regression finds a linear function (straight line) that predicts the target variable (y) as a function of the features or independent variables (x)

Features/independent variables (y)	Target/dependent variable (x)
Size in feet ²	Price £ in 1000s
400	100
600	150
650	210
800	220
1000	290
1250	280
1500	295
1600	300
1700	300
2000	295
2200	300

- Feature Selection input variables that can used to predict house prices
 let's consider one input variable (size in sq.ft) → univariate/simple regression
- Simple linear regression finds a linear function (straight line) that predicts the target variable (y) as a function of the features or independent variables (x)

Features/independent variables (x)	Target/dependent variable (y)
Size in feet ²	Price £ in 1000s
400	100
600	150
650	210
800	220
1000	290
1250	280
1500	295
1600	300
1700	300
2000	295
2200	300

Multiple Linear Regression

- **Feature Selection** input variables that can used to predict house prices
 let's consider multiple input variable → multiple linear regression
- Multiple linear regression models a linear function that predicts a target variable as a function of the independent variables: $y = a_0 + a_1x_1 + a_2x_2 + a_3x_3 + ...$

Square footage	Num of Rooms	Garden?	Parking Facility?	Num of floors	Price (\$) in 1000's	
	3	Yes		2	460	
1700		No	No	1	320	
	5					<i>m</i> training
						examples
						'
					<u> </u>	
	Attributes/Featu	ıres/Indepen	dent Variables (X1. X2	x) To	arget/Dependent Variable	(v)

Problems faced: Underfitting

Should we use linear regression?

Ye	ar Value	1.0						•
196	50 5.918412e+10							•
196	61 4.955705e+10	0.8	-					•
196	32 4.668518e+10							•
196	33 5.009730e+10	0.6	1					•
196	34 5.906225e+10	9						
196	65 6.970915e+10	0.4	1					•
196	66 7.587943e+10	0.2						•
196	7.205703e+10	0.2					******	
196	88 6.999350e+10	0.0	•96	*******	00000000	0000000000		
196	39 7.871882e+10		1960	1970	1980	1990	2000	2010
						Year		

These data points correspond to China's gross domestic product (GDP) from 1960–2014.

Model is not complex enough to capture the underlying patterns in the data.

Leads to bias:

The amount of error introduced by approximating real-world phenomena in a simplified model

Non-linear regression

If a regression equation doesn't follow the rules for a linear model, then it must be a nonlinear model.

The regression example models the relationship between body mass index (BMI) and body fat percent.

It is a linear model that uses a quadratic (squared) term to model the curved relationship.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2$$

Problems faced: Overfitting

If you try to estimate too many parameters, you will overfit!

The size of your dataset restricts the number of terms you can safely add to your model

If your study calls for a complex model, you must collect a relatively large sample size.

Problems faced: Overfitting

Badillo, S., Banfai, B., Birzele, F., Davydov, I.I., Hutchinson, L., Kam-Thong, T., Siebourg-Polster, J., Steiert, B. and Zhang, J.D. (2020), An Introduction to Machine Learning. Clin. Pharmacol. Ther., 107: 871-885 https://doi.org/10.1002/cpt.1796

Classification modelling:

Binary Classification: Email spam prediction

Trained on a large number of spam and non-spam emails, the algorithm's goal is to predict whether or not an email is spam

Classification

Attributes:

Head shape: square, circle Body shape: rectangle, oval Body colour: grey, white

Target:

Write-off: yes, no

Attributes rarely split a group perfectly

Not all attributes are binary

How do we segment for numeric values?

Classification: Decision trees

A decision tree is a model with a number of branching options that lead to a decision at the end.

Each point on the tree is called a **node**. The **depth** of the of the tree is maximum number of steps to reach a decision.

A **leaf** of the tree is where the decision is made (when there's no more splitting).

Classification – decision trees

Entropy:

The amount of uncertainty or randomness in a system

Information gain:

The reduction in entropy or uncertainty after a dataset is split based on a feature.

→ How *impure* a node (how mixed the training data assigned to that node is)

→ Helps the algorithm decide which feature to split on at each step. Features with the highest information gain are selected because they reduce uncertainty the most.

Features that
result in a higher
information gain
are considered
more important –
as they provide
more information

Classification - entropy

An information gain is how much an attribute improves (or decreases) **entropy** (uncertainty) of the model prediction.

$$entropy = -p_1 \log(p_1) - p_2 \log(p_2) - \dots$$

$$p_yes = 7/12$$

 $p_no = 5/12$

$$entropy(S) = -\left[\left(\frac{7}{12}\right) \times \log_2\left(\frac{7}{12}\right) + \left(\frac{5}{12}\right) \times \log_2\left(\frac{5}{12}\right)\right]$$
$$= 0.98$$

Classification - entropy

Pick a ball at random and guess the colour. The chances of being right or wrong depends on the mix of colours.

If your bag has an equal number of red and blue balls, your uncertainty is highest – this is a state of high entropy.

If the bag has mostly red balls, and not many blue balls, you'd probably guess red, and you would be right most of the time. This is a state of low entropy.

Entropy quantifies the uncertainty.

 $IG(parent, children) = entropy(parent) - p(c_1) \times entropy(c_1) + p(c_2) \times entropy(c_2) + \dots$

$$IG = 0.98 - (0.17 \times 1.0 + 0.83 \times 0.97)$$
$$= 0.005$$

Body colour

Grey

White

$$p_yes = 6/10$$

 $p_no = 4/10$

$$entropy = 0.97$$

$$IG = entropy(base) - p(c_1) \times entropy(c_1) + p(c_2) \times entropy(c_2) + \dots$$

$$IG = 0.98 - (0.25 \times 0.92 + 0.75 \times 0.99)$$
$$= 0.0075$$

$$p_yes = 2/3$$

 $p_no = 1/3$

entropy = 0.92

$$p_{yes} = 5/9$$

 $p_{no} = 4/9$

entropy = 0.99

Body Shape

Rectangle

Oval

$$IG = entropy(base) - p(c_1) \times entropy(c_1) + p(c_2) \times entropy(c_2) + \dots$$

$$IG = 0.98 - (0.5 \times 0.650 + 0.5 \times 0.918)$$
$$= 0.196$$

$$p_yes = 2/6$$

 $p_no = 4/6$

$$entropy = 0.918$$

Body Shape(rectangle)

Body Shape(oval)

 $IG = entropy(base) - p(c_1) \times entropy(c_1) + p(c_2) \times entropy(c_2) + ...$ $IG = 0.650 - (0.17 \times 0 + 0.83 \times 0) = 0.650$ $IG = 0.919 - (0.33 \times 0 + 0.67 \times 0) = 0.918$

Decision trees

Survival of passengers on the Titanic

- Widely used for regression and classification problems
- Root at top, leaves at bottom

- Titanic survival model predicts survival for:
 - females
 - males younger than 9.5 years with less than 2.5 siblings
- The figures under the leaves show the probability of survival and the percentage of observations in the leaf.

Fitting classification models

A poorly chosen decision boundary can lead to underfitting (oversimplifying) or overfitting (too closely fitting the data)

 How do we know how best to draw the boundary?

Decision trees: hyperplanes

A decision tree can be plotted with each decision segmenting a space into boxes.

The decision boundary is called a hyperplane.

Support Vector Machines

For SVM, part of the objective function (the goal) uses not only the accuracy of the prediction, but also maximises the width of the margin between categories.

Improves Generalisation:

 A larger margin reduces the risk of overfitting and improves the model's ability to generalize to new data.

Robustness:

 By focusing on the support vectors, SVM ignores other points, making it less sensitive to noise or outliers.

Random Forests

Widely used for regression and classification

Consists of a 'forest' of decision trees:

All fit on *random bootstrap samples* of the data (each tree is trained on a slightly different dataset).

At each split in a tree, Random Forest considers only a *random subset of features* rather than all features.

Each decision tree is *trained independently* on its respective bootstrapped dataset and feature subset.

- The results are averaged for regression
- Majority vote for classification

Next Week: Reading Week – For week 7:

- Read Data Science for Business, chapters 5, 7, 8
- Read <u>AUC-ROC</u>: a really good article
- Watch StatQuest: ROC and AUC, Clearly Explained! YouTube
- Watch StatQuest: <u>Bias and Variance</u>
- Watch StatQuest: <u>Cross validation</u>
- Watch StatQuest: <u>Sensitivity and Specificity</u>

Any questions?

