Decidibilidade

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

07 de junho de 2016

Plano de Aula

- Pensamento
- 2 Revisão
 - Decidibilidade
- Opecidibilidade
 - O Problema da Parada

Bônus (0,5 pt)

Desafio

- Problema 4.12:
 - Seja $A = \{\langle R, S \rangle \mid R \in S \text{ são expressões regulares e } L(R) \subseteq S$ L(S)}. Mostre que A é decidível.
- Candidaturas até amanhã (07 de junho, 09h30);
- Apresentação e resposta por escrito → Segunda (14 de junho, 11h30):
- 20 minutos de apresentação.

Candidato

???

Sumário

- Pensamento
- 2 Revisão
 - Decidibilidade
- Decidibilidade
 - O Problema da Parada

Pensamento

Pensamento

Frase

Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin.

Quem?

John von Neumann (1903-1957) Cientista da computação húngaro/americano.

Sumário

- Pensamento
- 2 Revisão
 - Decidibilidade
- Decidibilidade
 - O Problema da Parada

Introdução

Propósitos da Teoria da Computação

- Conhecer o poder dos algoritmos;
- Explorar os limites da solubilidade algorítmica;
- Identificar algoritmos insolúveis.

Por que devemos estudar insolubilidade?

- Relaxamento dos requisitos;
- Conhecimento das limitações dos modelos computacionais.

Linguagens Decidíveis

Exemplos de Linguagens Decidíveis

São úteis porque

- Algumas linguagens decidíveis estão associadas a aplicações;
- Algumas linguagens aparentemente triviais não são decidíveis.

Problema da aceitação

Dado um modelo computacional MC e uma cadeia de entrada ω , identificar se MC aceita ω .

Problema da aceitação para AFDs

Problema da aceitação para AFDs

Dado um AFD B e uma cadeia de entrada ω , identificar se B aceita ω .

Problema

 $A_{AFD} = \{\langle B, \omega \rangle \mid B \text{ \'e um AFD que aceita a cadeia de entrada } \omega \}$

Estratégia de Resolução

Resolver o problema da aceitação para AFDs é decidir se $\omega \in \mathcal{A}_{AFD}$.

Problema da aceitação para AFDs

Teorema 4.1

A_{AFD} é uma linguagem decidível.

Ideia da Prova

M= "Sobre a entrada $\langle B,\omega\rangle$, em que B é um AFD, e ω , uma cadeia:

- **1** Simule B sobre a entrada ω ;
- Se a simulação termina em um estado de aceitação, aceite. Senão, rejeite."

Problema da aceitação para AFDs

Detalhes de implementação

- A entrada $\langle B, \omega \rangle$ representa um AFD e uma cadeia;
 - Uma representação razoável de B seria uma lista de seus cinco componentes: $Q, \Sigma, \delta, q_0 \in F$;
 - M simula B de forma que M aceita se B estiver em um estado final, e rejeita, caso contrário.

Problema da aceitação para AFNs

Problema da aceitação para AFNs

Dado um AFN B e uma cadeia de entrada ω , identificar se B aceita ω .

Problema

 $A_{AFN} = \{\langle B, \omega \rangle \mid B \text{ \'e um AFN que aceita a cadeia de entrada } \omega \}$

Estratégia de Resolução

Decidir se $\langle B, \omega \rangle \in A_{AFN}$.

Problema da aceitação para AFNs

Teorema 4.2

A_{AFN} é uma linguagem decidível.

Prova

N= "Sobre a entrada $\langle B,\omega\rangle$, em que B é um AFN, e ω , uma cadeia:

- Converta AFN B para um AFD equivalente C, usando o procedimento para essa conversão dado no Teorema 1.39;
- 2 Rode a MT M do Teorema 4.1 sobre a cadeia $\langle C, \omega \rangle$;
- Se M aceita, aceite. Caso contrário, rejeite."

Problema da Vacuidade de uma Linguagem

Descrição

Dada uma linguagem L, identificar se $L = \emptyset$.

Problema aplicado a AFDs

$$V_{AFD} = \{ \langle A \rangle \mid A \text{ \'e um AFD e } L(A) = \emptyset \}$$

Estratégia de Resolução

Decidir se $\langle A \rangle \in V_{AFD}$.

Problema da Vacuidade de uma Linguagem

Teorema 4.4

 V_{AFD} é uma linguagem decidível.

Problema da Vacuidade de uma Linguagem

Teorema 4.4

 V_{AFD} é uma linguagem decidível.

Prova

A seguinte MT T decide V_{AFD} .

 $T = \text{``Sobre a entrada } \langle A \rangle$, em que A é uma AFD:

- Marque o estado inicial de A;
- Repita até que nenhum estado novo venha a ser marcado;
 - Marque qualquer estado que tenha uma transição chegando nele a partir de qualquer estado que já está marcado.
- Se nenhum estado final estiver marcado, aceite. Caso contrário, rejeite."

Sumário

- Pensamento
- 2 Revisão
 - Decidibilidade
- Oecidibilidade
 - O Problema da Parada

Descrição

Dadas duas linguagem L_1 e L_2 , identificar se $L_1 = L_2$.

Descrição

Dadas duas linguagem L_1 e L_2 , identificar se $L_1 = L_2$.

Problema aplicado a AFDs

$$EQ_{AFD} = \{\langle A, B \rangle \mid A \in B \text{ são AFDs e } L(A) = L(B)\}$$

Descrição

Dadas duas linguagem L_1 e L_2 , identificar se $L_1 = L_2$.

Problema aplicado a AFDs

$$EQ_{AFD} = \{ \langle A, B \rangle \mid A \in B \text{ são AFDs e } L(A) = L(B) \}$$

Estratégia de Resolução

Decidir se $\langle A, B \rangle \in EQ_{AFD}$.

Teorema 4.5

 EQ_{AFD} é uma linguagem decidível.

Teorema 4.5

EQ_{AFD} é uma linguagem decidível.

Lema 4.1

Iremos construir um AFD C a partir de A e B de forma que C aceita as cadeias que são aceitas por A ou por B, mas não por ambas. Consequentemente, se A e B reconhecem a mesma linguagem, C não aceitará nada. A linguagem de C é

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$$

Teorema 4.5

EQ_{AFD} é uma linguagem decidível.

Lema 4.1

Iremos construir um AFD C a partir de A e B de forma que C aceita as cadeias que são aceitas por A ou por B, mas não por ambas. Consequentemente, se A e B reconhecem a mesma linguagem, C não aceitará nada. A linguagem de C é

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$$

Corolário

$$L(C) = \emptyset \leftrightarrow L(A) = L(B)$$

FIGURA **4.6** A diferença simétrica de L(A) e L(B)

Teorema 4.5

 EQ_{AFD} é uma linguagem decidível.

Teorema 4.5

 EQ_{AFD} é uma linguagem decidível.

Prova

A seguinte MT F decide EQ_{AFD} .

 $F = \text{``Sobre a entrada } \langle A, B \rangle$, em que $A \in B$ são AFDs:

- Construa o AFD C conforme descrito no Lema 4.1;
- 2 Rode MT T do Teorema 4.4 sobre a entrada $\langle C \rangle$;
- Se T aceita, aceite. Caso contrário, rejeite."

Teoremas sobre GLC

Teorema 4.7

A_{GLC} é uma linguagem decidível.

Teorema 4.8

 V_{GLC} é uma linguagem decidível.

Teorema 4.9

Toda LLC é decidível.

Teoremas sobre GLC

Teorema 4.7

A_{GLC} é uma linguagem decidível.

Teorema 4.8

 V_{GLC} é uma linguagem decidível.

Teorema 4.9

Toda LLC é decidível.

Cuidado!

EQ_{GLC} não é uma linguagem decidível.

Relacionamento entre as classes de linguagens

O relacionamento entre classes de linguagens

Problema da aceitação para MT

Dada uma MT M e uma cadeia de entrada ω , identificar se M aceita ω .

Problema da aceitação para MT

Dada uma MT M e uma cadeia de entrada ω , identificar se M aceita ω .

Problema

 $A_{MT} = \{\langle M, \omega \rangle \mid M$ é uma MT que aceita a cadeia de entrada $\omega \}$

Problema da aceitação para MT

Dada uma MT M e uma cadeia de entrada ω , identificar se M aceita ω .

Problema

 $A_{MT} = \{\langle M, \omega \rangle \mid M ext{ é uma MT que aceita a cadeia de entrada } \omega \}$

Teorema 4.11

A_{MT} é indecidível.

Considerações sobre o Teorema 4.11

 A_{MT} é Turing-reconhecível. Pois é possível construir U da seguinte forma:

Considerações sobre o Teorema 4.11

 A_{MT} é Turing-reconhecível. Pois é possível construir U da seguinte forma:

U= "Sobre a entrada $\langle M,\omega \rangle$, em que M é uma MT e ω uma cadeia:

- **1** Simule M sobre a entrada ω ;
- Se M em algum momento entra no seu estado de aceitação, aceite; se M em algum momento entra em seu estado de rejeição, rejeite."

Considerações sobre o Teorema 4.11

 A_{MT} é Turing-reconhecível. Pois é possível construir U da seguinte forma:

U= "Sobre a entrada $\langle M,\omega \rangle$, em que M é uma MT e ω uma cadeia:

- **1** Simule M sobre a entrada ω ;
- Se M em algum momento entra no seu estado de aceitação, aceite; se M em algum momento entra em seu estado de rejeição, rejeite."

Problema da Parada

Não é possível construir uma MT que decida A_{MT} .

O Problema da Parada

Máquina de Turing Universal

É uma MT capaz de simular qualquer outra MT.

A MT $\it U$ apresentada anteriormente é uma MT Universal.

O Problema da Parada

Máquina de Turing Universal

É uma MT capaz de simular qualquer outra MT.

A MT *U* apresentada anteriormente é uma MT Universal.

Contribuição importante

A MT Universal estimulou o desenvolvimento de computadores com programas armazenado.

O Problema da Parada

Figura: Arquitetura de von Neumann (1945).

Contribuição

Criou o método da diagonalização em 1873.

Quem?

George Cantor (1845-1918)

Matemático russo

Problema

Se temos dois conjuntos infinitos, como podemos dizer se um conjunto é maior que o outro (ou se eles têm o mesmo tamanho)?

Problema

Se temos dois conjuntos infinitos, como podemos dizer se um conjunto é maior que o outro (ou se eles têm o mesmo tamanho)?

Conjuntos finitos

Podemos utilizar o método da contagem.

Problema

Se temos dois conjuntos infinitos, como podemos dizer se um conjunto é maior que o outro (ou se eles têm o mesmo tamanho)?

Conjuntos finitos

Podemos utilizar o método da contagem.

Proposta de Cantor

Dois conjuntos finitos têm o mesmo tamanho se os elementos de um deles puder ser emparelhados com os elementos do outro. Basta estendermos essa ideia para os conjuntos infinitos!

Função um-para-um

Sejam dois conjuntos A e B e uma função f de A para B. Dizemos que f é **um-para-um** se ela nunca mapeia dois elementos diferentes para um mesmo lugar (ou seja, $f(a) \neq f(b)$ sempre que $a \neq b$).

Função um-para-um

Sejam dois conjuntos A e B e uma função f de A para B. Dizemos que f é **um-para-um** se ela nunca mapeia dois elementos diferentes para um mesmo lugar (ou seja, $f(a) \neq f(b)$ sempre que $a \neq b$).

Função Sobrejetora

Uma função f é **sobrejetora** se ela atinge todo elemento de B (ou seja, se para todo $b \in B$ existir um $a \in A$ tal que f(a) = b).

Correspondência

Uma correspondência é uma função que é tanto um-para-um, quanto sobrejetora. Em uma correspondência $f:A\to B$, todo elemento de A é mapeado para um único elemento de B e cada elemento de B tem um único elemento de A mapeando para ele.

Correspondência

Uma correspondência é uma função que é tanto um-para-um, quanto sobrejetora. Em uma correspondência $f:A\to B$, todo elemento de A é mapeado para um único elemento de B e cada elemento de B tem um único elemento de A mapeando para ele.

Tamanho de conjuntos

Dois conjuntos A e B são de **mesmo tamanho** se existe uma correspondência de A para B.

Decidibilidade

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

07 de junho de 2016

