

Measure trunk diameter of 30 trees in your neighbourhood

Read data

```
treediam <- read.csv("treediam.csv")</pre>
```

summary(treediam)

site		tree		diam	
Min. : 1.0	00 Min.	: 1.0	Min.	: 8.70	
1st Qu.: 5.	75 1st	Qu.: 8.0	1st Qu	u.:21.40	
Median :10.	50 Medi	an :15.5	Media	1 :25.25	
Mean :10.	50 Mean	:15.5	Mean	:25.04	
3rd Qu.:15.2	25 3rd	Qu.:23.0	3rd Qu	u.:28.40	
Max. :20.0	00 Max.	:30.0	Max.	:39.40	

3

Visualisation of tree diameters

plot(treediam\$diam)

Visualisation of tree diameters

hist(treediam\$diam)

How well do these values represent actual tree diameters in your neighbourhood?

https://pollev.com/franciscorod726

• At what height did you measure?

- · At what height did you measure?
- Did you include bark?

- · At what height did you measure?
- · Did you include bark?
- Did you measure with tape, caliper, by eye?

- At what height did you measure?
- · Did you include bark?
- · Did you measure with tape, caliper, by eye?
- · When did you measure: dawn, midday, night?

- At what height did you measure?
- · Did you include bark?
- · Did you measure with tape, caliper, by eye?
- · When did you measure: dawn, midday, night?
 - · (trees may get thinner w/ high evapotranspiration)

- At what height did you measure?
- Did you include bark?
- · Did you measure with tape, caliper, by eye?
- · When did you measure: dawn, midday, night?
 - · (trees may get thinner w/ high evapotranspiration)
- Where did you measure?

- At what height did you measure?
- Did you include bark?
- · Did you measure with tape, caliper, by eye?
- · When did you measure: dawn, midday, night?
 - (trees may get thinner w/ high evapotranspiration)
- · Where did you measure?
 - · (differences among streets, species, etc)

Data are hardly ever objective.

We decide what to measure, when, where, and how.

Always consider:

How well do data reflect what we are trying to measure?

Describing your data

How would you describe this distribution?

(Discuss with your partner)

Location / Central tendency

Mean / Average

$$mean = \frac{d_1 + d_2 + d_3}{n}$$

Mean is sensitive to skew/outliers

Median

50% percentile. Leaves half of the data values on each side

Median of c(2, 4, 6, 8, 10) = 6

Median of c(2, 4, 6, 8) = (4 + 6) / 2 = 5

Mode

Most frequent value

Describing the location / central tendency

Describing Variation / Spread

Minimum, Maximum, Range

Minimum = 9.2

Maximum = 41.9

Range = 9.2, 41.9

Quantiles

Quartiles, Percentiles...

Standard Deviation

Average distance between data points and the mean

$$SD = \sqrt{\frac{\sum (x - \mu)^2}{n - 1}}$$

In a Normal distribution

Standard Error of the Mean

$$SEM = \frac{SD}{\sqrt{n}}$$

Estimates uncertainty (spread) of the parameter 'mean'

SD quantifies scatter in population

- SD quantifies scatter in population
- SEM quantifies uncertainty in parameter estimate (population mean)

- SD quantifies scatter in population
- SEM quantifies uncertainty in parameter estimate (population mean)
- SEM = SD/sqrt(n)

- SD quantifies scatter in population
- SEM quantifies uncertainty in parameter estimate (population mean)
- SEM = SD/sqrt(n)
- SEM decreases with sample size (mean better known), SD does not.

- SD quantifies scatter in population
- SEM quantifies uncertainty in parameter estimate (population mean)
- SEM = SD/sqrt(n)
- SEM decreases with sample size (mean better known), SD does not.
- https:
 //gallery.shinyapps.io/
 sampling_and_stderr/

Coefficient of Variation

Facilitates comparing spread of distributions with different means

$$CV = \frac{SD}{mean}$$

Central tendency / location

· mean (average)

Central tendency / location

- mean (average)
- median (50% percentile)

Central tendency / location

- mean (average)
- · median (50% percentile)
- · mode (most frequent value)

Central tendency / location

- mean (average)
- median (50% percentile)
- · mode (most frequent value)

Variation / Spread

· min, max, range

Central tendency / location

- mean (average)
- · median (50% percentile)
- · mode (most frequent value)

- · min, max, range
- · quantiles (quartiles, percentiles...)

Central tendency / location

- mean (average)
- · median (50% percentile)
- · mode (most frequent value)

- · min, max, range
- · quantiles (quartiles, percentiles...)
- standard deviation

Central tendency / location

- mean (average)
- median (50% percentile)
- · mode (most frequent value)

- · min, max, range
- · quantiles (quartiles, percentiles...)
- standard deviation
- standard error of the mean

Central tendency / location

- mean (average)
- · median (50% percentile)
- · mode (most frequent value)

- · min, max, range
- quantiles (quartiles, percentiles...)
- · standard deviation
- · standard error of the mean
- coefficient of variation

What statistical descriptors are best? (and why)

https://pollev.com/franciscorod726

