

Visionary Course - Energy Al Week 08

Apr. 22, 2022 Seokju Lee

Week 08a – Object Detection

Limitation of Image Classification: Dog or Cat?

"Sofa?" "Cat?"

"Dog?"

Object Detection: What and Where?

Object Detection: Input & Output

: Task of assigning labels & bounding boxes to all objects in the image.

Classify which class the object belongs to.

Images	Class (=label)		
I_1	cat		
I_2	cat		
I_3	dog		

Classification

Find the coordinates of the bounding box where the object is located, and classify which class it belongs to.

Images	Class (=label)	х	у	w	h
I_1	cat	60	210	100	180
I_1	dog	200	50	340	360
I_2	car	46	250	100	80

Classification + Regression

*Back to Basics: Supervised & Unsupervised Learning

Let's review – **Two** major approaches of machine learning?

- Supervised learning requires labels for training
- Unsupervised learning does not require labels for training

→ Mathematical representation:

*Back to Basics: Classification & Regression

Supervised learning problem can be represented into two tasks.

- 1) Classification is the task of predicting a discrete class label.
- 2) Regression is the task of predicting a continuous quantity.

Object Detection: How to Design Models?

Object Detection: How to Design Models?

- R-CNN [Girshick et al. 2014]
- SPP-net [He et al. 2014]
- Fast R-CNN [Girshick. 2015]

- R-CNN: Regions with CNN features

 warped region

 person? yes.

 tvmonitor? no.

 1. Input image proposals (~2k) CNN features

 4. Classify regions
- Faster R-CNN [Ren et al. 2015]
- R-FCN [Dai et al. 20→ Is there a standardized model?
- · YOLO Redmon et a What is the most basic framework?
- SSD [Liu et al. 2016]
- Feature Pyramid Networks + Faster R-CNN [Lin et al. 2017]
- RetinaNet [Lin et al. 2017]
- Training with Large Minibatches (MegDet) [Peng, Xiao, Li, et al. 2017]
- Cascade R-CNN [Cai & Vasconcelos 2018]
- DETR [Carion et al. 2020]
- ...

Object Detection: What is the Meta-Architecture?

Meta- means?

: High-level or symbolic abstraction.

Meta-architecture means?

: Abstract of deep neural architecture. Representative/generic structure of networks.

Meta-architecture for object detection?

- → Two-stage detector
- → One-stage detector

Object Detection: Two-Stage vs. One-Stage

- R-CNN [Girshick et al. 2014]
- SPP-net [He et al. 2014]
- Fast R-CNN [Girshick. 2015]
- Faster R-CNN [Ren et al. 2015]
- R-FCN [Dai et al. 2016]
- YOLO [Redmon et al. 2016]
- SSD [Liu et al. 2016]
- Feature Pyramid Networks + Faster R-CNN [Lin et al. 2017]
- RetinaNet [Lin et al. 2017]
- Training with Large Minibatches (MegDet) [Peng, Xiao, Li, et al. 2017]
- Cascade R-CNN [Cai & Vasconcelos 2018]
- DETR [Carion et al. 2020]
- ...

Two-Stage Detector: R-CNN Series

References

- B. Alexe, T. Deselaers, and V. Ferrari. "Measuring the objectness of image windows." T-PAMI, 2012.
- I. Endres and D. Hoiem. "Category independent object proposals." ECCV, 2010.
- J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. "Selective search for object recognition." *IJCV*, 2013.
- A. Krizhevsky, I. Sutskever, and G. Hinton. "ImageNet classification with deep convolutional neural networks." NIPS, 2012.
- X. Wang, M. Yang, S. Zhu, and Y. Lin. "Regionlets for generic object detection." ICCV, 2013.
- R. Girshick, J. Donahue, T. Darrell, and J. Malik. "Rich feature hierarchies for accurate object detection and semantic segmentation." CVPR, 2014.

Key idea

→ Exploit strong CNN representation for accurate region classification

Hybrid approach: Traditional region proposal + CNN feature extraction

R-CNN: Regions with CNN features

Per-image computation

Per-region computation for each $r_i \in r(I)$

Use an off-the-shelf region/object/detection proposal algorithm (~2k proposals per image)

Per-image computation

Per-region computation for each $r_i \in r(I)$

Selective search?

→ Region proposal based on different similarity metrics.

(e.g., color, texture,

size, and shape)

Region-of-Interest (Rol)

Use an off-the-shelf region/object/detection proposal algorithm (~2k proposals per image)

The Problem with R-CNN: "Slow"

Solution: Fast R-CNN

Key idea

 \rightarrow **Sharing** heavy per-region computation for **fast** inference (2 fps, x100 times to the R-CNN)

Region proposal + CNN feature extraction for the entire input image in the first stage

[1] R. Girshick, et al., "Fast R-CNN." ICCV (2015).

One-Stage Detectors

Key idea

- → Object detection from **single feedforward** of CNN
- → Eliminate proposal generation & per-region feature resampling and classification
- → Extremely fast (40~90 FPS with single GPU)

References

- YOLO: You Only Look Once [Redmon et al., CVPR'16]
- YOLO-v2 [Redmon et al., CVPR'17]
- YOLO-v3 [Redmon et al., arXiv'18]
- SSD [Liu et al., ECCV'16]
- RetinaNet [Lin et al., ICCV'17]

SSD: Single Shot Multibox Detector

Key idea

- → Fully convolutional layers to extract **spatial** features.
- → Aggregates **multi-scale** spatial features.
- → Meta-architecture for one-stage detector.

SSD: Single Shot Multibox Detector

Summary: What is the Best Model?

Speed & accuracy trade-offs

→ A lot more creative and high-performance architectures have been released so far, and they resemble **human** cognitive processes!

Two-stage detectors

- Complex & Slow (~5FPS)
- More accurate

One-stage detectors

- Simple & Fast (~55FPS)
- Less accurate

Week 08a – Object Detection on Jetson Nano

Before starting

*Your basic workspace is here: "cd ~/jetson-inference/build/aarch64/bin" Every code is pre-built in this path.

Live object detection with visualization

Q1. Run "python detectnet.py --flip-method=rotate-180". What is on the screen? What is different from "imagenet.py" in the previous class?

Try using options for object detection

- Q2.1. Run "python detectnet.py --overlay=line, labels, conf --flip-method=rotate-180". What is different from the screen in Q1?
- Q2.2. Control alpha (default alpha=120 e.g., 50 & 100) by running "python detectnet.py --alpha=50 --flip-method=rotate-180". What does alpha mean?
- Q2.3. Control threshold (default threshold =0.5 e.g., 0.3 & 0.7) by runing "python detectnet.py -- threshold=0.3 --flip-method=rotate-180". What does threshold mean?

Try other object detection models

- Q3.1. Detect objects and students. Observe the label and confidence.
- Q3.2. Go to the linked page (https://github.com/dusty-nv/jetson-inference/blob/master/docs/detectnet-console-2.md#pre-trained-detection-models-available). Check the list of models. COCO dataset contains 91 classes as defined in this page (https://github.com/dusty-nv/jetson-inference/blob/master/data/networks/ssd coco labels.txt).
- Q3.3. (optional) Check your installed model via "cd ~/jetson-inference/build/aarch64/bin/networks" "ls" You can see the models installed.
- Q3.4. Deploy other detection networks via "python detectnet.py --network=ssd-inception-v2 --flip-method=rotate-180". Try multiple different models and compare the label and confidence with the same object and angle. Which model is best?
- Q3.5. Use facenet and find the maximum threshold to recognize your masked face.

 Run "python detectnet.py --network=facenet --threshold=0.7 --flip-method=rotate-180"

Try to detect objects on your own images

- Q4.1. Find your preferable photo (yourselves, or your pet, or your favorite place, food,.., etc.) or take your photo instantly. Move the photo using browser to the ~/jetson-inference/build/aarch64/bin/images folder.
- Q4.2. Try the models you are interested in. Run "python detectnet.py --network=facenet images/photo.jpg images/test/output photo.jpg"
- Q4.3. Observe the results which are saved in ~/jetson-inference/build/aarch64/bin/images/test folder.

Some useful tips while debugging

*Sometimes, the python process does not respond. In this case, please terminate the process with ctrl+c. If it still does not respond at all, forcibly stop the process with ctrl+z, and check the running process name with the ps -a command, and then type sudo pkill -9 [name-of-process] command to kill the process. If you don't shut it down, it will remain as a zombie and keep occupying the processor (CPU or GPU) in the background.

*Sometimes, the best solution for resolving an issue is just rebooting the system.

```
"cd" = "change directory"
"ls" = "list segment (files & directories)"
```

Computer Vision Tasks

*Slide by Kim, et al., "Video Panoptic Segmentation" (CVPR 2020)

Model Complexity ⚠ Output dimension ♠

