

Licenciatura em Ciência de Dados

UC: Tópicos de Matemática I (1º ano)

# GRÁFICOS DE FUNÇÕES E PESQUISA DE ZEROS

Docentes: Abdul Suleman e Marco Mendes

# Grupo:

José Valério, n.º 112255 Ricardo Rafael, n.º 123451 Rodrigo Teixeira, n.º 94331 Sofia Martins, n.º 113135

## Grupo I

a) Análise da função:  $f(x) = \frac{x}{\sqrt{x^2+1}} + \frac{1}{3(x+2)^2}$ 

## 1. Obter o gráfico da função



#### 2. Identificar o domínio

$$D_f = \left\{ x \in \mathbb{R} : \sqrt{x^2 + 1} \neq 0 \ \land \ 3(x + 2)^2 \neq 0 \right\} = \mathbb{R} \setminus \{-2\}$$

#### 3. Estudar a continuidade

f é contínua em  $\mathbb{R}\setminus\{-2\}$  ( f é definida pela soma de duas funções racionais contínuas nos seus domínios )

# Determinar as coordenadas dos pontos de interseção do gráfico com os eixos coordenados

Interseção do gráfico com o eixo Ox e o eixo Oy: f(x) = 0 e f(0):

# Estudar a paridade da função, ou seja, a simetria do gráfico

 $f(-x) \neq f(x)$  e  $f(-x) \neq -f(x)$ ,  $\forall x \in D_f$  : a função não é par nem ímpar.

Graficamente também podemos constatar que não é simétrica em relação ao eixo Oy (ou seja, não é par) e que não é simétrica em relação à Origem (ou seja, não é ímpar).

## 6. Periodicidade

Graficamente podemos concluir que a função não é periódica. Isto é,  $f(x) \neq f(x+P)$  com P uma constante diferente de zero.

# 7. Determinar a existência de assíntotas e as equações que as definem

#### • Verticais:

$$\lim_{x \to -2} f(x) = +\infty$$



A reta de equação x=-2 é uma assíntota vertical do gráfico de f.

Como f é contínua em  $\mathbb{R} \setminus \{-2\}$ , não existem outras assíntotas verticais.

### • Não verticais:

Quando  $x \to -\infty$ :

$$\lim_{x \to -\infty} f(x) = -1$$



A reta de equação y=-1 é uma assíntota horizontal do gráfico de f, quando  $x \to -\infty$ .

#### Quando $x \to +\infty$ :

$$\lim_{x \to +\infty} f(x) = 1$$



A reta de equação y=1 é uma assíntota horizontal do gráfico de f, quando  $x \to +\infty$ .

## 8. Gráfico com as informações anteriores



link para o script em MATLAB

#### 9. Monotonia e extremos



link para o script em MATLAB

$$f'(x) = 0$$

```
1 % Definir a função.
2 syms x
3 f = @(x) x./(sqrt(x.^2+1)) + 1./(3*(x+2).^2);
4 %
5
6 % Calcular a derivada
7 df = diff(f, x);
8 %
9
18 % Converter a derivada para uma função MATLAB --
11 df_func - matlabFunction(df);
12 %
13
14 % Encontrar a raizes usando a função fzero
15 disp('a raiz da função derivada de f é:');
16 disp(fzero(df_func, -1));
17 %

Command Window

>> TI_f2_alinea a__monotonia_c_extremos
A raiz da função derivada de f é:
-0.8522
```

f(-0.8522)

link para o script em MATLAB

## Tabela de variação de f:

| x               | -8       | -2   |   | -0.8522 | +∞       |
|-----------------|----------|------|---|---------|----------|
| sinal de $f'$   | +        | n.d. | - | 0       | +        |
| variação de $f$ | <b>*</b> | n.d. | 1 | -0.3956 | <b>*</b> |

Min.

f é estritamente crescente em ]  $-\infty$ ; -2[ e em  $[-0.8522; +\infty[$ .

f é estritamente decrescente em ]2; -0.8522].  $f(-0.8522) \approx -0.3956$  é mínimo relativo e  $x \approx -0.8522$  o minimizante.

# 10. Estudar o sentido da concavidade e a existência de pontos de inflexão





link para o script em MATLAB

link para o script em MATLAB

## Tabela de sentidos de concavidades de f:

| x                                            | -∞ | -2   |   | 0.0387 | +8 |
|----------------------------------------------|----|------|---|--------|----|
| sinal de $f''$                               | +  | n.d. | + | 0      | ı  |
| Sentido da<br>concavidade do<br>gráfico de f |    | n.d. |   | 0.1189 |    |
|                                              | •  |      |   | P.I.   |    |

O ponto de coordenadas (0.0387, 0.1189) é um ponto de inflexão do gráfico da função f.

O gráfico de f tem a concavidade voltada para cima em  $]-\infty;-2[$  e em ]-2;0.0387] e voltada para baixo em  $[0.0387; +\infty[$ .

#### 11. Indicar o contradomínio

$$D'_f = ]-1;+\infty[$$

# b) Fórmula de Taylor, de 2ª ordem, em potências de x, e um majorante do erro cometido ao aproximar a função pelo polinómio assim obtido, no intervalo [-0.5; 0.5]



Incluindo a  $3^{\underline{a}}$  derivada de f para o cálculo do erro cometido:



link para o script em MATLAB

O polinómio de Taylor de  $2^{\underline{a}}$  ordem, em potências de x (centrado em a=0), para a função de f(x), é dado por:

$$P_2(x) = f(0) + \frac{f'(0) \cdot x}{1!} + \frac{f''(0) \cdot x^2}{2!} + R_2(x)$$

Onde  $R_2(x)$  é o resto de Lagrange e é dado por:

$$R_2(x) = f^{(3)}(\xi) \cdot \frac{x^3}{3!}$$
, com  $\xi \in [-0.5; 0.5]$ 

 $\Leftrightarrow$ 

$$|\,R_2(x)| = |f^{(3)}(\xi)| \cdot |\,\frac{x^3}{3!}| \ \text{, com } \xi \in [0;x]$$

Através dos cálculos em MATLAB, temos que os maiores valores em módulo são:

$$f^{(3)}(-0.0145) \approx -3.2545 \iff |f^{(3)}(-0.0145)| \approx 3.2545$$
 e  $|\frac{(0.5)^3}{6}| \approx 0.0208$ 

Portanto,

$$|f^{(3)}(x)| \le 3.2545$$
 e  $|\frac{(x)^3}{6}| \le 0.0208$ 

Ou seja, um majorante do erro cometido é:

$$|R_2(x)| \le 3.2545 \cdot 0.0208$$

$$\Leftrightarrow$$

$$|R_2(x)| \le 0.0678$$

$$g(x) = 2 - \frac{\ln(x)}{2}$$

# a) Mostre que g(x) tem um ponto fixo no intervalo $[\sqrt{2};2]$ :



link para o script em MATLAB

Sabemos que g (com domínio  $\mathbb{R}^+$ ) é contínua no intervalo  $[\sqrt{2},2]$  e constatamos graficamente que  $g([\sqrt{2},2]) \subset [\sqrt{2},2]$ .

Analiticamente, temos: 
$$x \in \left[\sqrt{2}, 2\right] \Rightarrow \sqrt{2} < 2 - \frac{\ln(x)}{2} < 2$$



Calculando g'(x) no intervalo verificamos que,

$$\max_{x \in [\sqrt{2},2]} |g'(x)| < 1$$

portanto, pelo corolário **1.1** do teorema **1.1** (da sebenta de cálculo numérico), concluímos que g tem um, e só um, ponto fixo c no intervalo  $\lceil \sqrt{2}, 2 \rceil$ .

Pelos cálculos no MATLAB, após 9 iterações, temos que o ponto fixo é  $c\approx 1.7269$  com um erro de  $\approx 0.0001$ .

### b) Determine-o pelo método da bissecção:

Para encontrar o ponto fixo pelo método da bisseção precisamos de transformar o problema da pesquisa do ponto fixo, que resolvemos na alínea anterior, num problema de pesquisa de zeros.

Para tal, como o ponto fixo é o ponto de interseção entre a função g e a bissetriz dos quadrantes ímpares (y=x), temos que:

ponto fixo 
$$\Leftrightarrow$$
  $g(x) = x \Leftrightarrow g(x) - x = 0$ 

Usando o MATLAB, com a rotina do *método da bisseção*, encontramos o zero desta equação, e que corresponde ao ponto fixo:





link para o script em MATLAB

Seja então h(x)=g(x) – x. Como h é contínua e diferenciável em  $[\sqrt{2};2]$ , verifica-se que,  $h(\sqrt{2})\cdot h(2)<0$  e  $h'(x)\neq 0$   $\forall$   $x\in ]\sqrt{2};2[$ 

Pelo teorema **2.2** (da sebenta de cálculo numérico), concluímos que nestas condições existe uma, e uma só, raiz da equação h(x) = 0, no intervalo  $\sqrt{2}$ ;  $2\lceil$ .

Algo que pode facilmente ser entendido graficamente, na figura acima.

De referir ainda que, esta conclusão reforça a conclusão da alínea anterior – a da unicidade do ponto fixo no intervalo em questão.

#### c) Fazer o mesmo que na alínea anterior, usando agora o método de Newton-Raphson:



link para o script em MATLAB

#### d) Comentar os resultados obtidos nas duas últimas alíneas:

Em relação aos resultados obtidos, constatamos que o *método de Newton-Raphson* é bem mais eficiente do que o *método da bisseção* (tendo em conta, como foi o caso, que o ponto inicial escolhido está relativamente próximo da raiz a se encontrar).

Foi definido, em ambos, os mesmos valores para os erros, e verificamos que ambos convergem para  $\approx 1,7269$  porém o erro cometido pelo *método Newton-Raphson* foi menor, o que significa que este método retornou um valor ainda mais aproximado do valor real (esse facto pode ser melhor verificado se alterarmos as <u>formatações de visualização numéricas</u> no MATLAB, por exemplo com o comando: *format long*).

Ou seja, em conclusão, ainda que o *método da bisseção* seja um algoritmo robusto, eficaz e não tão sensível às condições iniciais, o *método de Newton-Raphson* não só convergiu mais depressa (pois o número de iterações necessárias para convergir à raiz foram menores) como também o erro cometido foi menor.