

Electronics 1 Project

Presenters:

Mustafa Haider Id: 4010177

Marwan Baitar Id: 4110259 Abdulsalam Kanjou Id: 4110002

Course Title
EE222-Electronics 1

Instructor

Dr. Mohammed Al Molla

Date 25/5/2022

Content

1	Introduction	
2	Task 1/ Full Bridge Rectifier	
3	Task 2/ Touch Sensor Circuit	
4	Task 3/ Comparator Circuit	
5	Task 4/ Testing different loads	
6	Parameters Calculations	
7	Limitation	
8	Challenges	
9	Work distribution	
10	Conclusion	

Introduction

- Appling the gained knowledge
- Achieving the objectives:
- 1. Designing a circuit based on requirements.
- 2. Incorporating only (Electronics 1) materials.
- 3. Simulation and data acquisition.

Tasks	Topic
Task 1	Diodes.
Task 2	Online research and electrical circuit background.
Task 3 Task 4	BJTs.

Task 1 / Full Bridge Rectifier

- Converting AC to DC.
- The positive half-wave & the negative half-wave Cycle.
- Diode characteristics.

Task 1/ SIMULATION

$$V_{r(pp)} = \left(\frac{1}{\textit{fR}_{L}C}\right) V_{p(\textit{rect})}$$

The simulation of the bridge rectifier circuit

The peak-peak ripple voltage was found 83.7uV

The minimal output Ripple Voltage (DC Voltage)

Task 2 / Touch Sensor Circuit

- Difficulties:
- 1- Amperes = Less than 1 mA, Less than 10 mA
- 2- 1k Ohm < Human resistor < 10k Ohm.
- Mechanism:

Switch + Resistor + Effects of the Comparator Circuit

Task 2 / Simulation

Simulation + Representation of the Touch Sensor

Task 3 / Comparator Circuit

NPN BJT used.

Symbol	Parameter	Va	Unit	
Symbol	Faiailletei	BD235	BD237	Offic
V _{CBO}	Collector-base voltage (I _E = 0)	60	100	V
V _{CER}	Collector-emitter voltage ($R_{BE} = 1 \text{ k}\Omega$)	60	100	V
V _{CEO}	Collector-emitter voltage (I _B = 0)	60	80	V
V _{EBO}	Emitter-base voltage (I _C = 0)	5		V
Ic	Collector current 2		2	Α
I _{CM}	Collector peak current (t _p < ms)	6		Α
P _{TOT}	Total dissipation at T _{case} = 25°C	25		W
T _{stg}	Storage temperature -65 to 150		°C	
T _J	Max. operating junction temperature 150		50	°C

Absolute maximum ratings

IB

IC

VCE

Task 3 / Comparator Circuit

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector cut-off current (I _E = 0)	V_{CB} = rated V_{CBO} V_{CB} = rated V_{CBO} T_{C} = 150°C		-	0.1 2	mA mA
I _{EBO}	Emitter cut-off current (I _C = 0)	V _{EB} = 5V		-	1	mA
V _{CEO(sus)} ⁽¹⁾	Collector-emitter sustaining voltage (I _B = 0)	I _C = 100mA for BD235 for BD237	60 80	-		V V
V _{CE(sat)} ⁽¹⁾	Collector-emitter saturation voltage	I _C = 1A		-	0.6	V
V _{BE(on)} ⁽¹⁾	Base-emitter on voltage	$I_C = 1A$ $V_{CE} = 2V$		-	1.3	V
h _{FE} ⁽¹⁾	DC current gain	$I_{C} = 150 \text{mA} \qquad V_{CE} = 2V$ $I_{C} = 1A \qquad V_{CE} = 2V$	40 25	-		

Electrical characteristics

BJT characteristic curve

Task 3 / Simulation

Comparator Circuit Simulation

- We needed to make sure that the circuit works with different loads. Such as:
 - Different colored LEDs.
 - Lasers.
 - Buzzers.
- The circuit must operate these loads while keeping the current through the touch sensor low.

Task 4 / Simulation

The Buzzer Connected to the Circuit

LED Connected to the Circuit

Parameters Calculations

- the most important parameters are:
- 1. Zi: input impedance.
- 2. Zo: output impedance.
- 3. li: current entering the Base.
- 4. lo: current entering the Collector.
- We can find some variables first:
- r_{e1} & r_{e2} (reverse emitter resistors): $r_{e1} = r_{e2} = 25$ mV / le = 25m / 111u = 225 Ohm.
- Beta: $I_C / I_B = 153$
- $Zb (I_B path impedance) = Beta*R_E = 153M Ohm$

Parameters Calculations

• So, our parameters will be:

$$1 - Zi = Zb // RB = 29994 Ohm$$

$$2- Zo = RC = 50 Ohm$$

$$3 - Ii = 458 \text{ nA}$$

$$4- lo = 70.1 uA$$

And the final important parameter is the gain AV = -RC/RE = - 50 u

- Our circuit was limited between 125 and 311 Vpeak AC.
 - Below 125Vp, the buzzer will stop working.
 - Above 311Vp, the current through the touch sensor will cause a shock to the person touching it.

- Challenges:
- 1) Multiple error in Multisim
- 2) Miscalculations
- 3) Finding proper current through the human hand
- 4) Having suitable voltage for output

- Work distribution:
- 1. Mustafa = Task 1 + Simulation 1 + written content + ppt design
- 2. Marwan = Task 2 + Task 3 + Simulation 2 + written content + ppt content
- 3. Abdulsalam = Task 4 + Simulation 3 + written content + ppt content

NOTE: there was an overlap between the members in the work.

3 Working Circuits

4 Tasks Done

Seeking improvements in the future

- BD237 Data-sheet, STMicroelectronics.
- Electrical Engineering Department, University of Prince Mugrin (UPM). Laboratory Manual for Electronic Circuits 1.
- Nashelsky, L., & Boylestad, R. L. (2021). Electronic Devices and Circuit Theory Eleventh Edition.
- Resistance of Humans. (2021). Fundamentals of Electricity.
 https://c03.apogee.net/mvc/home/hes/land/el?utilityname=citizenselectric&spc=foe&id=465
 7#:%7E:text=Human%20resistance%20is%20about%2010%2C000,or%20impedance%20to%20cur
 rent%20flow
- 1N4007 Data-sheet, Onsemi.

Thank you

