Университет ИТМО

Тестирование программного обеспечения Лабораторная работа №2

Вариант 682

Выполнила: Калугина Марина

Группа: Р3402

г. Санкт-Петербург

Задание

Провести интеграционное тестирование программы, осуществляющей вычисление системы функций (в соответствии с вариантом).

$$\begin{cases} \left(\left(\left(\frac{(\csc(x)+\sin(x))-\cot(x)}{\tan(x)}\right)\cdot\left((\cot(x)-\cos(x))+\tan(x)\right)\right)-\left(\left(\csc(x)^2\right)+\sec(x)\right)\right) & \text{if } x\leq 0 \\ \left(\left(\left(\left(\left(\log_2\left(x\right)^2\right)\cdot\log_3(x)\right)-\log_{10}(x)\right)\cdot\left(\left(\log_{10}\left(x\right)^3\right)-\log_2(x)\right)\right)-\left(\log_3(x)\cdot\left(\left(\frac{\log_2\left(x\right)}{\log_5\left(x\right)}\right)-\log_3(x)\right)\right)\right) & \text{if } x>0 \end{cases} \end{cases}$$

Правила выполнения работы:

- 1. Все составляющие систему функции (как тригонометрические, так и логарифмические) должны быть выражены через базовые (тригонометрическая зависит от варианта; логарифмическая натуральный логарифм).
- 2. Структура приложения, тестируемого в рамках лабораторной работы, должна выглядеть следующим образом (пример приведён для базовой тригонометрической функции sin(x)):

- 3. Обе "базовые" функции (в примере выше sin(x) и ln(x)) должны быть реализованы при помощи разложения в ряд с задаваемой погрешностью. Использовать тригонометрические / логарифмические преобразования для упрощения функций ЗАПРЕЩЕНО.
- 4. Для КАЖДОГО модуля должны быть реализованы табличные заглушки. При этом, необходимо найти область допустимых значений функций, и, при необходимости, определить взаимозависимые точки в модулях.
- 5. Разработанное приложение должно позволять выводить значения, выдаваемое любым модулем системы, в csv файл вида «X, Результаты модуля (X)»,

позволяющее произвольно менять шаг наращивания X. Разделитель в файле csv можно использовать произвольный.

Функция

Периодическая функция с периодом 2рі. Функция состоит из 4-ех частей, каждая часть которой уходит в бесконечность. Для тестирования были проверены все граничные точки (точки разрыва второго рода) и точки в каждом классе эквивалентности и проверена периодичность функций

F2(x) при x > 0

Функция f2 пересекает ось ОХ в 3-х местах.

На отрезке от 0 до 0.0333409 функция резко убывает. Функция была протестирована во всех классах эквивалентности, в точках экстремумов и при пересечении оси ох

Исходный код

https://github.com/KaluginaMarina/FourthYearOfltmo/tree/master/testing/lab2

Структура кода

Краткие результаты тестирования

Test Summary

Графики функций, полученные из экспериментальных данных

sin(x)

cos(x)

tan(x)

sec(x)

csc(x)

Ход работы

При тестировании были написаны тесты для проверки значений во всех классах эквивалентности, разобраны значения в граничных точках, точках экстремумов, перегибов и разрывов первого и второго родов.

Тестирование проходило в 5 уровней: на первом уровне производилась проверка работы системы функций. Для этого заглушки были установлены на функции f1(x) и f2(x). На втором уровне заглушки устанавливались на все тригонометрические и логарифмические функции, на третьем уровне - на sin, cos, ln, на четветом на sin и ln, на пятом функции проверялись без использования каких-либо заглушек.

По полученным результатам были построены графики.

Вывод

В ходе выполнения лабораторной работы было проведено и изучено интеграционное тестирование функции, были изучены основные принципы интеграционного тестирования и была изучена среда тестирования Москіto, при помощи которого создавались табличные заглушки в ходе выполнения лабораторной работы.