SVGA050 Series Low-Power AMOLED Microdisplay

Data Sheet

Pre-Spec V1.0

SVGA050SW

For Products:

SVGA050SC — Full Color

SVGA050SW — Monochrome White SVGA050SG — Monochrome Green

Yunnan North OLiGHTEK Opto-Electronic Technology Co., LTD March 25, 2012

Record of Revision

Version	Revise Date	Page	Content
Pre-spec. V0.1	2011-11-25	50	Initial release.

Contents

1	FEATUR	ES	1
	1.1 Descrip	tion	1
	1.2 Product	s Coding	1
2	INTROD	UCTION	1
		eristic Parameters	
		Structure	
		rray	
		n Diagram	
	2.5 Interface	e & Pin Assignment	5
	2.5.1	V1 interface	5
	2.5.2	V2 interface	5
	2.5.3	Pin Definition	6
	2.6 Recomm	nended Operation Ratings	6
	2.7 Electric	al Characteristics	7
	2.7.1	DC Characteristics	7
	2.7.2	AC Characteristics	7
3	DETAIL	ED FUNCTION DESCRIPTION	7
		Video Interface	
	3.1.1	Input Video Standard	
	3.1.2	Color Space	
	3.1.3	Digital Video Signal Enhancement	
	3.1.4	Video Pattern Generation	
	3.1.5	Scaling	
	3.1.6	Gamma Correction	
	3.1.7	RGB offset	
	3.2 3D Vide	eo Display	15
	3.3 Power S	Supply & Reset	15
		Power UP/Down Sequence	
	3.3.2	Reset Sequence	16
	3.4 Unit Dr	ive Circuit	17
	3.5 DC/DC	Converter	17
	3.6 Temper	ature Sensor	18
	3.7 Two-wi	re Serial Interface	18
	3.7.1	Communication Operating	19
	3.7.2	Serial Interface Bus Address Selection	20
4	REGISTI	ER DESCRIPTION	20
	4.1 Summar	ry of Registers	20
	4.2 Detailed	I Information of Register	21
	4.2.1	Video Related Registers	21
	4.2.2	Video Display Control Registers	24
	4.2.3	Temperature Sensor Register	26
	4.2.4	Gamma Look-Up Table Registers	
	4.2.5	Color Offset Control Registers	29
	4.2.6	Test Pattern Generator Control Register	
		Setting Example	
5	PHOTOE	ELECTRONIC PROPERTIES	30
	5.1 Test Co	nditions	
	5.1.1	Luminance & Chromaticity Test Conditions	31
	5.1.2	Uniformity Test Conditions	31
	5.1.3	Contrast Test Conditions	31
	5.1.4	Power Consumption Test Conditions	
		Properties	
		ess and Contrast Properties	32
	5.3.1	Brightness	
	5.3.2	Contrast	32

	5.4 Spectrum Properties		33
	5.5 Luminance Characte	ristic with Temperature	33
	5.6 Power Consumption	Characteristic with Luminance	34
6	MECHANICAL CH	ARACTERISTICS	35
		ematic	
		out	
		terials	
7		NING, HANDLING AND STORAGE	
	7.2 General Handling Co	nsiderations	39
		tion	
	•	Storage	
		itorage	
8			
		nsation	
		on Principle	
		on Look-Up Table	
		*	
	8.3.1 Gamma Cor	rection Principle	
	8.3.2 Gamma Cor	rection process	
	8.4 Ghost Effect		43
	8.4.1 Avoid Ghost		
	8.4.2 Clear Ghost		44
	8.5 Application Example	S	44
		m Application	
		ideo	
		(VGA)	
9	APPENDIX		45
	9.1 List of Figures		45
	9.2 List of Tables		46

1 FEATURES

1.1 Description

- Si-Base AMOLED Microdisplay
 - 0.18μm CMOS Technology
 - Full Digital Video Core
 - High Efficiency Top Emission Structure
 - Active Driver Technology
 - Low Power Consumption
- 800×600 (SVGA) Resolution
 - View Area: 0.5 inch
 - Pixel Pitch: 12.6µm
 - Total Pixels : 804 (×3)× 604
- Digital Video Interface
 - Compatible with ITU-R BT.656/601
 - Accept 8/16/24 Bit Digital Video
 - Accept YCbCr/RGB Color or Mono
 - Support SVGA/VGA/PAL/NTSC etc
 - Support Progressive & Interlaced

- Digital Video Signal Enhancement
 - Brightness
 - Contrast
 - R/G/B Offset
- Gamma Correction
 - Piecewise-Linear by 17 Entry Lookup Table
 - Expand 8bit Input to 9bit Output
- Digital 8 Bit Input/9bit Output Gray Level
- Support Binocular Stereovision
- Horizontal/Vertical Mirror
- Shift and Position Control
- Embed Temperature Sensor
- Integrate Vcom DC-DC Module
- Built-in Test Patterns
- 2-Wire Series Interface

1.2 Products Coding

<u>SVGA</u> <u>050</u> <u>S</u> <u>C</u> <u>V1</u> <u>R1</u> ① ② ③ ④ ⑤ ⑥

> ③Temperature Standard: -40 ~ +60°C

①Туре		
SVGA	800x600	
SXGA	1280x1024	

	N	Normal: -	10 ~ +40°C
•			
		4Col	or
1	$\overline{}$	T 11	G 1

⑤Connector		
V1	Board to Board	
V2	FPC to Board	

②Size			
050	0.5 Inch		
060	0.6 Inch		
097	0.97 Inch		

	4 Color			
C	Full Color			
W	Mono White			
G	Mono Green			

@Revision			
R1	Revision No.		

2 INTRODUCTION

SVGA050 series AMOLED microdisplay fabricated by OLiGHTEK's proprietary top emitting and high luminance efficiency Si-Base AMOLED technology. SVGA050 series microdisplay includes full color, Monochrome white, Monochrome green and other specifications. With the same interface and pin definition, SVGA050 series products have 10.13mm×7.61mm (0.5 inch) display area, and supported less than or equal to SVGA resolutions format. With proper optical magnification devices, the microdisplay can provide high quality, large virtual image.

SVGA050 series microdisplay's silicon substrate is fabricated by 0.18µm CMOS technology, integrated full digital video signal processing, 804×604×3 active driving units, digital logic control, scan distribution, D/A converting, temperature sensor, gamma correction, DC-DC for cathode's negative voltage, two-wire serial communication interface and so on. The input video signal is compatible with ITU-R BT. 656/601 and support 8/16/24 bit digital video. The function of microdisplay such as display mode, scanning direction, display position, brightness, contrast, R/G/B offset and gamma correction can be programmed through the two-wire serial communication interface. The digital interface voltage level is compatible with 1.8~3.3V CMOS standard. The microdisplay can be applied in various near-to-eye display systems that demand compact size, high resolution, low power consumption and wide working temperature range.

2.1 Characteristic Parameters

Model		SVGA050				
Product Type		Color	Monochrome White	Monochrome Green		
Re	solution		800 (×3) × 600	,		
Acti	ve pixels		804 (×3) × 604			
Pixel A	Spect Ratio		1:1			
Color Pixe	el Arrangement		RGB Vertical Strip	oe e		
Gra	y Levels		8bit/256Levels			
Luminan	ce Uniformity		> 92%			
C	ontrast		> 10000:1			
Digital Video Interface		ITU-R BT.601/656 24bit, 4:4:4, RGB/YCbCr 16bit, 4:2:2, YCbCr 8bit, 4:2:2, YCbCr/Mono				
Danna Committee	Kernel	DC 1.8V@Max50mA				
Power Supply	OLED Pixels	DC 5.0V@Max200mA				
Operating	Standard	-40°C ∼ +65°C				
Temperature	Normal	-10°C ∼ +40°C				
	White (Color)	CIEx=0.30±0.05, CIEy=0.35±0.05				
Chromaticity	White (Mono)	CIEx=0.30±0.05, CIEy=0.33±0.05				
	Green (Mono)	CIEx=0.30±0.05, CIEy=0.63±0.05				
Operat	ing Humidity	≤85%RH (Non condensing)				
Pixel	Size(µm²)	12.6 × 12.6				
Viewin	Viewing Area(mm²)		10.13 × 7.61			
Mechanical Envelope(mm³)		22 × 17 × 4.6				
Typical Luminance(Cd/m²)		>70	>100	>1500		
Typical Power Consumption(mW)		<200	<200	<450		
Lifeti	Lifetime(Hours)		25000 25000 20000			
Weight(g)		≤2				

2.2 Product Structure

Figure 2-1 SVGA050 series device's structure

OLiGHTEK's SVGA050 series AMOLED microdisplay is manufactured on a silicon substrate which is integrated with video signal processing and active driver, then followed by sub-pixel metal anode, multi-layer OLED light-emitting film, transparent cathode(common cathode), compound high density sealing film, RGB color filter layer, etc., after which paste glass cover to protect the microdisplay, and bond with PCB board. Figure 2-1shows the device's structure.

2.3 Pixel Array

Figure 2-2 Pixel and Sub-Pixel Array

Each pixel of OLiGHTEK's SVGA050 series AMOLED microdisplay is formed by three sub-pixels (Figure 2-2). The pixel's related parameters are shown below:

Model	Pixel Size		Duty	View Area	
Model	Width(W)	Height(H)	Cycle	Width (804×W)	Height (604×H)
SVGA050	12.6µm	12.6µm	70%	10.13mm	7.61mm

Each sub-pixel of colorful display emits white light, and full-color display is fulfilled through the RGB color filter. Since there is no color filter, the luminous efficiency of the monochrome display is higher than the color display.

2.4 Function Diagram

Figure 2-3 SVGA050 Series Architecture & Principle Diagram

Figure 2-3 shows top level block diagram of SVGA050 series microdisplay's driver circuit. The chip is mainly composed of the digital video signal interface and decoder, digital video signal processing, digital Gamma correction, color saturation adjustment, gray mapping, D/A conversion, row & column scanning, pixel driver array, two-wire serial communication interface, programmable control logical unit, temperature sensor, DC/DC converter and other function modules.

Compatible with ITU-R BT.656/601 standards, digital video signal interface has three 8-bit data channels and accepts 8/16/24 bit RGB or YCbCr video signals. According to the different input formats, the internal video decoder outputs 24bit RGB signal. The digital video signal processing circuit receives the 24bit RGB signal, and then adjusts the brightness, contrast respectively. The output signal is still 24bit format and sent to the gamma correction circuit. The gamma correction circuit makes corrections of the 24bit RGB signal by look-up table, and extends it to 27bit RGB signal output. Color saturation adjustment circuit makes adjustment of RGB offset respectively and the output is 9bit in each RGB path. By D/A conversion, the gray mapping circuit converts the three 9 bit R/G/B signals to three R/G/B analog voltage signals. The voltage stands for the R,G,B luminance, Then, the analog signal is stored in sub-pixel driving unit; driving unit circuit applies the RGB analog voltage signal to OLED's anode and holds the voltage on for one frame/field cycle time. With external 5V power supply and external components on PCB backplane, the DC/DC module generates a negative voltage which is applied to all of the OLED sub-pixels' common cathode. Under the bias voltage between the anode and the cathode, OLED keeps emitting light in one whole frame/field cycle.

Through the internal 256 programmable SRAM (register), control logic unit deals with the digital signal, makes the different unit circuits working in harmony with each other, and realizes the binocular 3D display.

Compatible with I²C communication standard, the two-wire serial interface is used to realize the read/write operation of the 256 registers, accordingly, make the chip circuit programmable, such as digital video signal decoding and processing, gamma correction, DC/DC conversion and so on.

The internal temperature sensor circuit updates the corresponding register's numeral value which represents the real-time internal working temperature. The numeral value is read by the external control logic unit through the two-wire serial interface. According to the luminance-temperature character, OLED's common cathode's negative voltage can be adjusted by DC/DC converter so as to get proper luminance at different temperatures.

2.5 Interface & Pin Assignment

SVGA050 series microdisplay have two types of interface:

- V1: Vertical connection by board to board, connector made by Hirose, part number is "DF12D(3.0)-40DP-0.5"
- V2: Horizontal connection by FPC to board, connectors made by Hirose, part number are "FH12-20S-0.5SH" and "FH12-22S-0.5SH"

2.5.1 V1 interface

()	CON	1
V1.8	- 1	2	V5.0
V1.8	3	4	V5.0
GND	5	6	GND
SCL	7	8	Reset
3D	9	10	SelAdr0
HS	11	12	SDA
R[6]	13	14	VS
R[4]			R[7]
R[2]	15	16	R[5]
R[0]	17	18	R[3]
DE	19	20	R[1]
GND	23	22 24	VCLK
G[6]			G[7]
G[4]	25	26	G[5]
G[2]	27	28 30	G[3]
G[0]	29		G[1]
B[6]	_	32	B[7]
B[4]	33	34	B[5]
B[2]	35	36	B[3]
B[0]	37	38 40	B[1]
	39	40	
			l .

DF12D(3.0)-40DP-0.5

Figure 2-4 V1 connector & pin assignment

2.5.2 V2 interface

C	ON20
B[0] B[1] B[2] B[3] B[4] B[5] B[6] B[7] GND R[0] R[1]	1 2 3 4 4 5 6 7 7 8 8 9 10 11
R[2] R[3] R[4] R[5] R[6] R[7] GND V5.0 V1.8	12 13 14 15 16 17 18 19 20

G[0] 1 G[1] 2
$\begin{array}{c c} G[1] & 2 \\ G[2] & 3 \end{array}$
G[3]
G[4] 5
G[5] 6
G[6] 7
G[7] 8
VS 9
HS 10
3D 10
DE 12
Reset 13
SDA 14
SCL 14 15
V1.8 16
V5.0 17
GND 18
GND 19
VCLK 20
GND 21
SelAdr0 21

FH12-20S-0.5SH

FH12-22S-0.5SH

Figure 2-5 V2 connector & pin assignment

2.5.3 Pin Definition

Symbol	V1 Pin No.	V2 Pin No.	Function Description	I/O	Remark
V1.8	1,3	20 ⁽¹⁾ ;16 ⁽²⁾	1.8V Power for digital core	P	
V5.0	2,4	19 ⁽¹⁾ ;17 ⁽²⁾	5.0V Power for OLED driver	P	
GND	5,6,23	9,18 ⁽¹⁾ ;	Power Ground	P	
SCL	7	15 ²	Serial Communication Clock Line	I	
Reset	8	13 ^②	Master Reset (Active Low)	I	No Floating
3D	9	11 ²	3D Left/Right Eye Mode Select	I	
SelAdr0	10	22 ^②	Device Slave Address Select	I	Default Pull-up
HS	11	10 ⁽²⁾	Hsync Signal Input	I	
SDA	12	14 ²	Serial Communication Data Line	I/O	
VS	14	9 [©]	Vsync Signal Input	I	
R[0]—R[7]	13,22, 15—20	10-17 ^①	ITU-R Standard, 8 Bit Red Signal	I	
DE	21	12 ^②	Data Enable Signal Input	I	
VCLK	24	20^{\odot}	Pixel Clock Signal Input	I	
G[0]—G[7]	25—32	1-8 ^②	ITU-R Standard, 8 Bit Green Signal	I	
B[0]—B[7]	33—40	1-8 ¹	ITU-R Standard, 8 Bit Blue Signal	I	

Note ①: The pin number of CON20 connector

Note ②: The pin number of CON22 connector

2.6 Recommended Operation Ratings

SYMBOL	DESCRIPTION	MIN	TYP	MAX [®]	UNIT
V1.8	1.8V Power Supply	1.62	1.8	2.5	V
V5.0	5.0V Power Supply	4.5	5.0	6.0	V
$V_{\rm I/O}$	Digital Signal Voltage ⁴	_	1.8	3.3	V
Tstorage	Storage Temperature	-55	20	90	°C
Toperate	Operation Temperature	-40	20	65	°C

Note ③: The absolute maximum rating values (except VI/O) of this product are not allowed to be exceeded at any time. If the product is used with its symbol value exceeding the maximum rating or in an extreme condition, the characteristics of the device maybe recovered and the lifetime of the device will decrease, even the device may be permanently destroyed.

Note 4: All the Digital logic Pins (except the Power Pin) can support 1.8V/3.3V CMOS logic level.

2.7 Electrical Characteristics

2.7.1 DC Characteristics

PARAMETER	DESCRIPTION		MIN	TYP	МАХ	UNIT
I _{1.8}	1.8V Supp	oly Current	9	10	12	mA
I _{5.0}	5.0V Supp	5.0V Supply Current		20	250	mA
Vcom	Cathode Voltage		-5	-2	0	V
	Color @ 70Cd/m2		80	120	200	
T. 1 D.	Working	Working Monochrome White @ 100Cd/m2		100	200	
Typical Power Consumption		Monochrome Green @ 1500Cd/m2	80	280	450	mW
Consumption	Display Off		71	-	75	
	Power Do	wn	0	-	0.4	

2.7.2 AC Characteristics

PARAMETER	Symbol	MIN	TYP	MAX	UNIT
Disital Vidas Deta Catum & Hald	t_{S}	1	-	-	ns
Digital Video Data Setup & Hold	t_{H}	0.5	-	-	ns
Video Clock Period	$t_{\rm CLK}$	17.8	-	-	ns
Video Clock Duty	q	40	50	60	%

3 DETAILED FUNCTION DESCRIPTION

3.1 Digital Video Interface

Figure 3-1 Digital Video Processing Flow Diagram

The digital video interface has three 8-bit data channels, and additional horizontal and vertical sync (HS/VS), data enable (DE), pixel clock signals (VCLK). User should select the correct signals to connect according to different Video format. VCLK is always needed in any mode. When use 8bit with embedded sync signal (8bit ITU-R BT.656 YCbCr/Mono 4:2:2), only G[7..0] bus and VCLK is needed.

OLED Display receives data with BT601/656 format, like 8/16/24bit and 4:2:2/4:4:4 format, and transfers to 24bit

RGB signal, then sends the signal to Video signal enhancement module, after scaling (only a scaled-down), gamma correction, RGB offset adjustment, finally output 27bit RGB signal.

If the input video format is CVBS, component, VGA (analog RGB), HDMI, DVI video signals, etc., OLED Display requires an external video decoder, such as ADV7180, AD9883, TVP7002 and so on.

3.1.1 Input Video Standard

Table 3-1 Input Signal Standard & Pin Used

Video Standard	Color Succe	PIN					
Video Standard	Color Space	R[7:0]	R[7:0] G[7:0]				
8-bit, 4:2:2	YCbCr	-	YCbCr[7:0]	-			
8-bit, Mono	Y	-	Y[7:0]	-			
16-bit, 4:2:2	YCbCr	-	Y[7:0]	CbCr[7:0]			
24-bit, 4:4:4	YCbCr	Cr[7:0]	Y[7:0]	Cb[7:0]			
24-bit, 4:4:4	RGB	R[7:0]	G[7:0]	B[7:0]			

Figure 3-2 Input Sync Signals Timing (For All Formats)

Figure 3-3 24-bit, 4:4:4 RGB Input VideoTiming

Figure 3-4 24-bit, 4:4:4 YCbCr Input Video Timing

Figure 3-5 16-bit, 4:2:2 YCbCr Input Video Timing

Figure 3-6 8-bit, Mono Input Video Timing

Figure 3-7 8-bit, 4:2:2 YCbCr input Video timing

Table 3-2 VESA Progressive Video Modes

Mode		Frequency	Total	Active	Front Porch + Border	Sync Pulse	Back Porch + Border
	Н	53.674 KHz	1048 pixels	800 pixels	32 pixels	64 pixels	152 pixels
SVGA 800X600 85Hz non-interlaced	V	85.061 Hz	631 lines	600 lines	1 line	3 lines	27 lines
ostiz non interacea	P	56.250 MHz					
CITICAL COORTICOS	Н	46.875 KHz	1056 pixels	800 pixels	16 pixels	80 pixels	160 pixels
SVGA 800X600 75Hz non-interlaced	V	75.000 Hz	625 lines	600 lines	1 line	3 lines	21 lines
73112 Holl Intellaced	P	49.500 MHz					
	Н	48.077 KHz	1040 pixels	800 pixels	56 pixels	120 pixels	64 pixels
SVGA 800X600 72Hz non-interlaced	V	72.188 Hz	666 lines	600 lines	37 line	6 lines	23 lines
72112 Holl Intellaced	P	50.000 MHz					
arra 1 000rr600	Н	37.879 KHz	1056 pixels	800 pixels	40 pixels	128 pixels	88 pixels
SVGA 800X600 60Hz non-interlaced	V	60.317 Hz	628 lines	600 lines	1 line	4 lines	23 lines
ooriz non interacea	P	40.000 MHz					
**********	Н	43.269 KHz	832 pixels	640 pixels	56 pixels	56 pixels	80 pixels
VGA 640X480 85Hz non-interlaced	V	85.008 Hz	509 lines	480 lines	1 line	3 lines	25 lines
ostiz non interacea	P	36.000 MHz					
	Н	37.500 KHz	840 pixels	640 pixels	16 pixels	64 pixels	120 pixels
VGA 640X480 75Hz non-interlaced	V	75.000 Hz	500 lines	480 lines	1 line	3 lines	16 lines
73112 Holl Intellaced	P	31.500 MHz					
1101 (101110)	Н	37.861 KHz	832 pixels	640 pixels	24 pixels	40 pixels	128 pixels
VGA 640X480 72Hz non-interlaced	V	72.809 Hz	520 lines	480 lines	9 line	3 lines	28 lines
, 2112 Holl Intellaced	P	31.500 MHz					
**********	Н	31.469 KHz	800 pixels	640 pixels	16 pixels	96 pixels	48 pixels
VGA 640X480 60Hz non-interlaced	V	59.940 Hz	525 lines	480 lines	10 line	2 lines	33 lines
ooriz non-interiaced	P	25.175 MHz					

Table 3-3 VESA Interlaced Video Modes

Mode		Frequency	Total	Active
MPTE-170M-1	Н	15.734 KHz	780 pixels	640 pixels
640X480 Mono	V	60 Hz Field	262.5 lines	240 lines
30Hz interlaced	P	12.27 MHz		
SMPTE-170M-2	Н	15.625 KHz	1052 pixels	800 pixels
800X600 Mono	V	50 Hz Field	312.5 lines	600 lines
25Hz interlaced	P	16.437 MHz		
NTSC	Н	15.734 KHz	858 pixels	720 pixels
720X480 Color	V	60 Hz Field	262.5 lines	240 lines
30Hz interlaced	P	13.5 MHz		
PAL	Н	15.625 KHz	864 pixels	720 pixels
720X576 Color	V	50 Hz Field	312.5 lines	288 lines
25Hz interlaced	P	13.5 MHz		
NTSC (Square)	Н	15.734 KHz	780 pixels	640 pixels
640X480 Color	V	60 Hz Field	262.5 lines	240 lines
30Hz interlaced	P	12.2727 MHz		
PAL (Square)	Н	15.625 KHz	944 pixels	768 pixels
768X576 Color	V	50 Hz Field	312.5 lines	288 lines
25Hz interlaced	P	14.75 MHz		

Table 3-4	VGA 2	and SVGA	Video	Timing
1 4010 5 7	1 0 1 1 1		v iuco	1 11111111

140	Cymhal		Values	;	Unit	Domostr
Item	Symbol	Min.	n. Typ. Max.		Unit	Remark
Clock Frequency	f_{CLK}			56.25	MHz	SVGA 85Hz
HSYNC Period	t_{HP}	660			t_{CLK}	
HSYNC Pulse Width	$t_{ m HW}$	10			t_{CLK}	
HSYNC Back Porch	t_{HBP}	10			t_{CLK}	
Horizontal Valid data width	$t_{ m HV}$	296		804	t_{CLK}	
HSYNC Front Porch	t _{HFP}	60			t_{CLK}	$t_{HV} >= 580$
Horizontal Blank	t_{HBK}	80			t_{CLK}	
VSYNC Period	t_{VP}	106			t_{HP}	
VSYNC Pulse Width	$t_{ m VW}$	1			t_{HP}	
VSYNC Back Porch	$t_{ m VBP}$	7			t _{HP}	
Vertical valid data width	t_{W}	96		604	t_{HP}	
Vertical Front Porch	$t_{ m VFP}$	2			t _{HP}	
Vertical Blank	t_{VBK}	10			t _{HP}	

3.1.2 Color Space

If the input data format is YCbCr, the device will change it to RGB format. Color space conversion block converts color space from YCbCr to RGB and uses the following equations. Output signal is 24-bit RGB format, 8-bit in each path.

$$R = 1.164 \times (Y - 16) + 1.596 \times (Cr - 128)$$

$$G = 1.164 \times (Y - 16) + 0.813 \times (Cr - 128) - 0.392 \times (Cb - 128)$$

$$B = 1.164 \times (Y - 16) + 2.017 \times (Cb - 128)$$

3.1.3 Digital Video Signal Enhancement

Digital video signal enhancement can be achieved by adjusting the brightness and the contrast ratio, as is Shown in Figure 3-8.

Figure 3-8 Digital Video Signal Enhancement Diagram

Brightness adjustment using addition and subtraction to achieve, the output value is equal to the input value plus the value of register 08H, and then minus 128. When the value of register 08H is greater than 80H, it means increase the brightness, whereas decrease. Brightness adjustment range is ± 128 .

$$V_{out} = V_{in} + Reg(08H) - 128$$

Contrast adjustment using multiplication and division to achieve, the output value is equal to the input value multiplied by the value of register 09H and then divided by 128. When the value of register 09H is greater than 80H, it means increase the contrast, whereas decrease. The gain of contrast adjustment range is 0 to 2.

$$V_{out} = V_{in} \cdot \frac{Reg(09H)}{128}$$

Note: The algorithms keep only 8bit data, if overflow, automatically discarded high bit.

3.1.4 Video Pattern Generation

Built-in test pattern generator can generate color bars, gray scale, tiles, horizontal stripes, vertical stripes, as well as monochrome red, green, blue, and white test pattern. Line width, line spacing, foreground color, background color, etc. of all test pattern can be set by relevant registers. Register 4AH is pattern mode selection, default value is 0, indicates the test pattern generator is turned off; register 4BH, 4CH, 4DH were used to set line width, line spacing, etc. respectively. Details of setting refer to Table 3-5and Figure 3-9

Table 3-5 Summary of Test Pattern Setting

Test Pattern Name	Patterns (4AH)	LineWidth (4BH)	LineSpace (4CH)	BGMASK (4DH)	FGMASK (4DH)
Color Bar	001	-	-	-	-
Gray Scale	010	-	-	-	-
Checker Board	011	-	-	-	-
Alternating Column	100	LineWide	Line Space	000	111
Alternating Row	101	LineWide	Line Space	000	111
Alternating Row & Column	110	LineWide	Line Space	000	111
All Black	100	-	-	000	000
All White	100	-	-	111	111
All Red	100	-	-	100	100
All Green	100	-	-	010	010
All Blue	100	-	-	001	001

Figure 3-9 Test Video Patterns

3.1.5 Scaling

In order to maintain the aspect ratio of input image, some video format in need of scaling. Scaling could be achieved by set register 07H, the algorithm is shown in Figure 3-10 and Figure 3-11, applicable video format is shown in Table 3-6.

Figure 3-10 Diagram of the Horizontal Scaling Algorithm

Figure 3-11 Diagram of the Vertical Scaling Algorithm

Video Format Name	Input Resolution	Scan Mode	Hor. Scaling	Ver. Scaling	Display Resolution
SVGA	800 X 600	Progressive	1:1	1:1	800 x 600
VGA	640 X 480	Progressive	1:1	1:1	640 X 480
SMPTE-170M-2	800 x 600 Mono	Interlaced	1:1	1:1	800 x 600
SMPTE-170M-1	640 x 480 Mono	Interlaced	1:1	1:1	640 x 480
NTSC	720 x 480	Interlaced	11:10/9:8	1:1	640 x 480
NTSC (Square)	640 x 480	Interlaced	1:1	1:1	640 x 480
PAL (Square)	768 x 576	Interlaced	1:1	1:1	768 x 576
PAL	720 x 576	Interlaced	11:10/9:8	6:5	640 x 480

Table 3-6 Scaling format applied

3.1.6 Gamma Correction

Gamma correction is performed using piecewise-linear function by a 17-entry lookup table. Gamma correction expends 8 bit input to 9 bit output by Look-Up Table (LUT). Intermediate values are computed by interpolating between the two nearest LUT entries. In C notation:

$$V_{out} = LUT[V_{in}/16] + V_{in}\%16*(LUT[V_{in}/16+1] - LUT[V_{in}/16])/16$$

Note:

• '/' denotes integer division truncating the remainder, '*' denotes multiplication, '%' denotes integer

division taking remainder

- LUT[0~15] is 9 bit register to support the full 0-511 range without missing codes.
- LUT[16] is 10 bit register to support 201H~3FEH range, set to "200H" as maximum value (512) and "3FFH" as minimum value (-1).

Figure 3-12 Gamma Correction LUT and Curve

3.1.7 RGB offset

After gamma correction process, the corrected R/G/B value can be shifted separately by Roffset, Goffset, Boffset configuration registers, color offset control registers 44H-49H are used to adjust separate R/G/B signal's offset. Gamma correction output 9bit data each channel, color offset adjustment range is 0~511.

Figure 3-13 Color Offset Control

3.2 3D Video Display

Stereo register(02H) and 3DMODE pin can set 3D video display. If 3DMODE pin state is the same as the ST_mode bit (02H) value, the screen display is updated, whereas not. 3DMODE pin signal is latched at Vsync falling edge. 3D video display timing is shown below.

In progressive mode, 3D video signal using frame timing mode, such as the odd frame is updated left display, and the even frame is updated right display.

In interlaced mode, 3D video signal using field timing mode, such as the odd field is updated left display, and the even field is updated right display. At this point, the vertical resolution of each field is lower compare with the source, the last two bit of register 01H should be set to "11", display will repeat to display each line in next line automatically, to ensure that the image aspect ratio and display.

Figure 3-14 3D Video Display Timing

3.3 Power Supply & Reset

SVGA050 series microdisplay need 1.8V and 5V external power supply to operate, 1.8V is used for digital core include decoder, video signal enhancement, gamma correction, communication, etc.; 5V is used for drive circuit, D/A converter, and so on. To ensure the display image quality, please note that ripple and interference rejection of 5V power supply.

3.3.1 Power UP/Down Sequence

Figure 3-15 Power-up Sequence (1.8V power-up, threshold voltage = 1.2V)

Figure 3-16 V5.0 Power Down & Up (POR5n threshold Voltage = 4V)

Figure 3-17 Register Control Power Down & Up

3.3.2 Reset Sequence

Figure 3-18 Reset Block Diagram

Figure 3-19 Reset Timing Case 1 – No external reset pin used (RESETB=1)

Figure 3-20 Reset Timing Case 2 – External reset pin depend on VCLK

Figure 3-21 Reset Timing Case 3 – External reset pin applied

3.4 Unit Drive Circuit

SVGA050 series AMOLED pixel drive circuit as shown in Figure 3-22. Each OLED light-emitting diodes use voltage-driven approach, the typical photo electric properties as shown in Figure 3-23.

When scan signals ROWSEL and ROWSWL_B are valid at the same time, signal Video_In charges the capacitance C through MOS transistors P1&N1, and controls the output of N2. The capacitance C can be guaranteed to maintain the output of N2 in a frame/field cycle.

N2 is used in Source-Follower structure to control 5V(Van) power supply, the current flowed through the protection resistor R is applied to the OLED anode.

All pixels cathode of OLED is connected to negative voltage Vcom(common cathode structure), Vcom can be adjusted by set register 19H in order to achieve the display brightness adjustment.

N3 is used for discharge of parasitic capacitance of the OLED rapidly, thereby improving dynamic contrast of the display. The discharge current can be selected by register 17H and controlled by register 18H.

Figure 3-22 Unit Drive Circuit

Figure 3-23 OLED photo electricity properties

3.5 DC/DC Converter

OLED emitting light needs to be applied positive bias voltage between the anode and cathode, the anode voltage from 5V power supply is controlled by drive transistor, all pixel's common cathode voltage Vcom supplied by DC/DC converter on the PCB backplane. The driving pulse of DC/DC converter is generated by the internal programmable pulse generator, the circuit shown in Figure 3-24. Vcom adjustment range is $0 \sim 3V$, corresponding to register 19H, the typical working curve is shown in Figure 3-25

Figure 3-24 DC/DC Principal Diagram

Figure 3-25 Vcom Programmable Working Curve

3.6 Temperature Sensor

The value of register 1DH is the internal temperature sensor's measured value. So the real-time internal working temperature can be read out through the two-wire serial interface. The temperature and the readout conversion relation is:

$$T = 0.47 \times \text{Reg} (1\text{DH}) - 40$$

The temperature sensor response curve and the calibration curve is shown as Figure 3-26 and Figure 3-27.

→ Temperature sensor in SVGA050 series display updates readings (1DH register value) depending on field sync signal (VS)

External VS must be provided to ensure the inner temperature sensor working properly in 8-bit BT.656 format application embedded sync signal.

Figure 3-26 Temp. Sensor Readout

Figure 3-27 Temp. Sensor calibration curve

3.7 Two-wire Serial Interface

Compatible with I²C communication standard, the two-wire serial interface is used to read/write the registers to realize the display programmable control, such as digital video signal decoding and processing, gamma correction, Vcom adjustment and so on.

SVGA050 series microdisplay acts as a slave for receiving and transmitting data, all read/write operations must be launched by the master. The SDA and SCL line must be pull-up to 1.8v or 3.3v power via a resistance by the outside communication controller.

OLIGHTEK SVGA050 Pre-Spec V1.0

Key Features and tag:

- Communication speed (SCL) support from 100K to 1MHz;
- 8-bits Slave Address consists of 7-bits device address and 1-bit read/write flag;
- Start/Re-Start: SDA change from HIGH to LOW while SCL is HIGH, See Figure 3-28;
- Stop: SDA change from LOW to HIGH while SCL is HIGH, see Figure 3-28;
- ACK: SDA is LOW during the acknowledge clock pulse;
- NAK: SDA is HIGH during the acknowledge clock pulse;
- One transmission includes 8bit data and an acknowledge bit, total nine clock of SCL;
- Except Start and Stop condition:
 - HIGH or LOW state of SDA can only being changed while SCL is LOW
 - Data on the SDA line must be stable during the HIGH period of the SCL

Figure 3-28 Start & Stop Timing

3.7.1 Communication Operating

- Write data (Figure 3-29):
 - 1) Master sends Start condition (S)
 - 2) Master sends 7bit Slave Address and 1bit write flag (\overline{W}) represents as low
 - 3) Slave sends 1bit ACK (A) response
 - 4) Master sends 8bit register address (Register)
 - 5) Slave sends 1bit ACK (A) response
 - 6) Master sends 8bit data (Data)
 - 7) Slave sends 1bit ACK (A) response
 - 8) Master sends stop condition(P)

Figure 3-29 Write Data format

- Read Data (Figure 3-30)
 - 1) Master sends Start condition (S)
 - 2) Master sends 7bit Slave Address and 1bit Write flag (\overline{W}) represents as low
 - 3) Slave sends ACK (A) response
 - 4) Master sends 8bit Register Address (Register)
 - 5) Slave sends 1bit ACK (A) response
 - 6) Master sends 1bit Re-Start condition (Sr)
 - 7) Master sends 7bit Slave Address and 1bit Read flag (R) represents as high
 - 8) Slave sends 1bit ACK (A) response
 - 9) Slave sends 8bit Data (Data)
 - 10) Master sends 1bit NAK (\overline{A}) response
 - 11) Master sends Stop condition (P)

Figure 3-30 Data format(Master reads from Slave)

3.7.2 Serial Interface Bus Address Selection

Two salve address of SVGA050 series microdisplay can be selected by an externally SelAdr0 pin. The SelAdr0 pin has an internal pull up resistor (10K) to pull up to 1.8V power. One of microdisplay's SelAdr0 pin must be connected to GND when used in binocular stereovision application. Microdisplay's corresponding read/write address is shown as Table 3-7.

Table 3-7 Slave Address list

A7 (MSB)	A6	A5	A4	A3	A2	A1 (SelAdr0)	A0 (R/W̄)	Slave Address (R/W̄)
0	0	0	1	1	1	1(Default)	1/0	1FH/1EH
0	0	0	1	1	1	0	1/0	1DH/1CH

4 REGISTER DESCRIPTION

4.1 Summary of Registers

Table 4-1 Summary of Registers

Address	Bytes	Description	Default Value
00H	1	Chip's Drive Circuit Revision	00H
01H	1	Input Video Type Set	34H
02H	1	Sync signal Polarity Set & 3D functions	00H
03H	1	Vertical Blank Lines	00H
04H	1	Horizontal Blank Pixels	00H
05H	1	Adjust Start Active Video Position	01H
06H	1	Field Start Line Position Adjustment For Interlaced Video	00H
07H	1	Down Scaling for NTSC & PAL Video	00H
08H	1	Brightness Control (Video Signal Brightness)	80H
09H	1	Contrast Control (Video Signal Contrast)	80H
0AH	1	Reserved	4AH
0BH	1	Reserved	5AH
0CH	1	Reserved	00H
0DH	1	Reserved	00H
0EH	1	Reserved	00H
0FH	1	Power Down Mode Control	00H
10H	1	Display ON/Off & Scan Directions	04H
11H	1	Display Left Margin	02H
12H	1	Display Right Margin	02H
13H	1	Display Top Margin	02H
14H	1	Display Bottom Margin	02H
15H	1	Reserved	44H
16H	1	D/A Offset Setting	00H
17H	1	Discharge Current Setting	01H
18H	1	Discharge Enabled Control	51H
19H	1	Vcom Level Setting (Display's Brightness)	1BH
1AH	1	Reserved	52H
1BH	1	Reserved	74H
1CH	1	Reserved	FFH
1DH	1	Temperature Sensor Readout	-
1E~1FH	2	Reserved	
[21,20H]	2	9 Bit Gamma Correction LUT0	000Н
[23,22H]	2	9 Bit Gamma Correction LUT1	020H

Address	Bytes	Description	Default Value
[25,24H]	2	9 Bit Gamma Correction LUT2	040H
[27,26H]	2	9 Bit Gamma Correction LUT3	060H
[29,28H]	2	9 Bit Gamma Correction LUT4	080H
[2B,2AH]	2	9 Bit Gamma Correction LUT5	0A0H
[2D,2CH]	2	9 Bit Gamma Correction LUT6	0C0H
[2F,2EH]	2	9 Bit Gamma Correction LUT7	0E0H
[31,30H]	2	9 Bit Gamma Correction LUT8	100H
[33,32H]	2	9 Bit Gamma Correction LUT9	120H
[35,34H]	2	9 Bit Gamma Correction LUT10	140H
[37,36H]	2	9 Bit Gamma Correction LUT11	160H
[39,38H]	2	9 Bit Gamma Correction LUT12	180H
[3B,3AH]	2	9 Bit Gamma Correction LUT13	1A0H
[3D,3CH]	2	9 Bit Gamma Correction LUT14	1C0H
[3F,3EH]	2	9 Bit Gamma Correction LUT15	1E0H
[41,40H]	2	10 Bit Gamma Correction LUT16	200H
42H	1	Reserved	-
43H	1	Reserved	-
[45,44H]	2	9 Bit Red Signal Offset	100H
[47,46H]	2	9 Bit Green Signal Offset	100H
[49,48H]	2	9 Bit Blue Signal Offset	100H
4AH	1	Test Pattern Mode Selection	00Н
4BH	1	Test Pattern Line Width Setting	02H
4CH	1	Test Pattern Line Space Setting	03H
4DH	1	Test Pattern Foreground & Background Color Setting	07H
4E~FFH	178	Reserved	-

4.2 Detailed Information of Register

1) Revision information (Read Only)

Register Address	7	6	5	4	3	2	1	0
H00	N.A.					Revision		
Default	-					0	0	0

4.2.1 Video Related Registers

2) Input video type set

Register Address	7	6	5	4	3	2	1	0
01H	N.A.	Data Mode			Sync signal		Scan mode	
Default	-	0	1	1	0	1	0	0

• Signal Mode: Select input data format

Data Mode	Input Video Format
000	16-bit 422, YCbCr
001	24-bit 444, YcbCr
010	8-bit MONO
011	24-bit 444, RGB
100	8-bit 422, YcbCr

• Sync Signal: Select sync mode

	5
Sync signal	Sync Mode
00	Embedded Sync
01	Embedded Sync
10	External Sync with DE
11	External Sync without DE

• Scan mode : Select scan mode

Interlaced	Interlaced mode
00	Non-interlaced
01	Interlaced
10	Do not use
11	Pseudo-Interlaced

3) V sync/H sync Polarity& 3D function Setting

Reg	ister Address	7	6	5	4	3	2	1	0
	02H	Reserved		3D Enable	N.A		3D Refresh	V_Pol	H_Pol
	Default	0	0	0	0	0	0	0	0

• 3D function control:

3D Enable	3D Refresh	3D Pin	Display Mode	Operating
0	X	X	Normal Mode	Refresh every Frame/Filed
	0	0		Refresh
1	U	1	3D Mode	Keep last data
1	1	0	3D Mode	Keep last data
	1	1		Refresh

• V_Pol/H_Pol setting: Select Vsync & Hsync polarity

V_Pol/H_Pol	Polarity Choice
0	Active High
1	Active Low

4) Input video vertical blank lines

Register Address	7	6	5	4	3	2	1	0
03H				VB	lank			
Default	0	0	0	0	0	0	0	0

5) Input video horizontal blank pixels

Register Address	7	6	5	4	3	2	1	0
04H				ΗE	Blank			
Default	0	0	0	0	0	0	0	0

Figure 4-1 Vertical Blank Lines with DE

Figure 4-2 Vertical Blank Lines without DE

6) Adjust Start Active Video position

Register Address	7	6	5	4	3	2	1	0
05H			N.	A.			SAV	Offset
Default							0	1

• SAV Offset: Adjust start active video (SAV) position

SAV Offset	Hsync position
00	1 pixel before input SAV
01	Same as input SAV
10	1 pixel after input SAV
11	2 pixel after input SAV

7) Field start line position adjust for Interlaced video

Register Address	7	6	5	4	3	2	1	0
06H			V_offset					
Default				-			0	0

• V Offset: Adjust odd field active video start position when interlaced video mode

V Offset	Odd field start position
00	Same as Even field
01	1 line after Even field
10	Do not use
11	1 line before Even field

8) Down scaling for NTSC & PAL video

Register Address	7	6	5	4	3	2	1	0
07H			N.A.			V_Scale	H_S	scale
Default			-			0	0	0

• V Scale: Vertical 4/3downscale for PAL

V_Scale	Down scaling (In : Out)
0	1:1
1	6:5

• H Scale: Horizontal 4/3downscale for PAL/NTSC

H_Scale	Down scaling (In : Out)
00	1:1
01	11:10
10	9:8
11	Do not use

9) Brightness control

Register Address	7	6	5	4	3	2	1	0
08H			Vi	ideo Signa	ıl Brightne	ess		
Default	1	0	0	0	0	0	0	0

• $V_{out} = V_{in} + Reg(08H) - 128$ (Limit Low 8Bit Data)

Brightness	Brightness adjustment effect
00H	Darkest setting
80H	No change
FFH	Brightest setting

10) Contrast Enhance control

Register Address	7	6	5	4	3	2	1	0
09H			1	ideo Sign	al Contra	st		
Default	1	0	0	0	0	0	0	0

• $V_{out} = V_{in} \times Reg(09H) \div 128$ (Limit Low 8Bit Data)

Contrast	Contrast adjustment effect
H00	Gain =0 (Black Screen)
80H	Gain =1 (Normal)
FFH	Gain =2 (Contrast Double)

11) Reserved

Register Address	7	6	5	4	3	2	1	0
0AH	N.A.				Reserved			
Default	-	1	0	0	1	0	1	0

12) Reserved

Register Address	7	6	5	4	3	2	1	0
0BH	N.A.				Reserved			
Default	-	1	0	1	1	0	1	0

13) Power down

Register Address	7	6	5	4	3	2	1	0
0FH	PDOWN	N.	Α.	BSGENPD	RDACPD	RAMPPD	VCOMPD	TSENPD
Default	0		-	0	0	0	0	0

• PDOWN: All system power off

• BSGENPD: Discharge current generator power off

• RDACPD: DAC module power off

• RAMPPD: DAC Buffer module power off

• VCOMPD: Vcom power off

• TSENPD: Temperature sensor power off

4.2.2 Video Display Control Registers

14) Display off & Scan directions

Register Address	7	6	5	4	3	2	1	0
10H			N.A.			DispOff	VSCAN	HSCAN
Default			-			1	0	0

• D	oispOff
0	Display ON
1	Display OFF

• VSC	CAN
0	Top → Bottom
1	Bottom → Top

• HS	CAN
0	Left → Right
1	Right → Left

15) Display Left Margin

Register Address	7	6	5	4	3	2	1	0
11H		COLLFT						
Default	0	0	0	0	0	0	1	0

16) Display Right Margin

Register Address	7	6	5	4	3	2	1	0
12H		COLRGT						
Default	0	0	0	0	0	0	1	0

17) Display Top Margin

Register Address	7	6	5	4	3	2	1	0
13H				ROW	TOP			
Default	0	0	0	0	0	0	1	0

18) Display Bottom Margin

Register Address	7	6	5	4	3	2	1	0
14H		ROWBOT						
Default	0	0	0	0	0	0	1	0

19) Reserved

Register Address	7	6	5	4	3	2	1	0	
15H		Reserved							
Default	0	1	0	0	0	1	0	0	

20) D/A Conversion Offset control

Register Address	7	6	5	4	3	2	1	0
16H		DAOFFSET						
Default	1	1 0 0 0 0 0 0 0						

• DAOFFSET: Adjust D/A output offset

DAOFFSETH='1111'	Maximal output offset = $+20\%$
DAOFFSETL='1111'	Maximal output offset = -20%

Note: The Register setting affect the gamma correction curve, not recommended to change

21) Discharge Current Setting

Register Address	7	6	5	4	3	2	1	0
17H	N	A Re		erved	NA		BIAS	
Default	-	-	0	0	-	-	0	1

• BIAS: OLED pixel discharge current setting. Can enhance the display dynamic contrast ratio, may result in reduced display brightness

BIAS	BIAS Current
00	0 nA (OFF)
01	0.5 nA
10	1nA
11	DO not use

22) Discharge Enable Control

Register Address	7	6	5	4	3	2	1	0
18H		N.A.						
Default				-				0

• BIAS_En: OLED pixel discharge function enable switch, "0" is Disable, "1" is Enable.

23) Vcom Level Setting(can't change)

Register Address	7	6	5	4	3	2	1	0	
19H		Vcom							
Default	0	1	0	1	0	0	0	1	

- The valid range of Vcom setting is $20H \sim FFH$, and the corresponding cathode voltage is about- $3V \sim 0V$. The lower cathode voltage makes the display brighter. The curve of Vcom and cathode voltage sees section 3.5 (DC/DC converter).
- Low Vcom settings will cause the display too bright, may damage the eyes of the user, and continues use may cause display overheating and damage.

4.2.3 Temperature Sensor Register

24) Reserved

Register Address	7	6	5	4	3	2	1	0
1AH	Do no	ot use	Reserved					
Default	-	-	0	1	1	0	0	1

25) Reserved

Register Address	7	6	5	4	3	2	1	0	
1BH		Reserved							
Default	0	1	0	1	0	0	1	0	

26) Reserved

Register Address	7	6	5	4	3	2	1	0	
1CH		Reserved							
Default	1	1	1	1	1	1	1	1	

27) Temperature Sensor Readout (Read Only)

Register Address	7	6	5	4	3	2	1	0
1DH		TEMP_OUT						
Default					•			

• Temperature conversion formula is : $T = 0.47 \times \text{Reg} (19\text{H}) - 40$

4.2.4 Gamma Look-Up Table Registers

28) 9 Bit Gamma Correction LUT0

Register Address	7	6	5	4	3	2	1	0		
21H		N.A.								
Default		<u>-</u>								
20H		LUT0[7:0]								
Default	0	0	0	0	0	0	0	0		

29) 9 Bit Gamma Correction LUT1

Register Address	7	7 6 5 4 3 2 1								
23H		N.A.								
Default		-								
22H		LUT1[7:0]								
Default	0	0 0 1 0 0 0 0								

30) 9 Bit Gamma Correction LUT2

Register Address	7	6	5	4	3	2	1	0		
25H		N.A.								
Default		-								
24H		LUT2[7:0]								
Default	0	1	0	0	0	0	0	0		

31) 9 Bit Gamma Correction LUT3

Register Address	7	6	5	4	3	2	1	0		
27H		N.A.								
Default		-								
26H		LUT3[7:0]								
Default	0	1	1	0	0	0	0	0		

32) 9 Bit Gamma Correction LUT4

Register Address	7	6	5	4	3	2	1	0		
29H		N.A.								
Default		-								
28H		LUT4[7:0]								
Default	1	1 0 0 0 0 0 0								

33) 9 Bit Gamma Correction LUT5

Register Address	7	6	5	4	3	2	1	0		
2BH		N.A.								
Default		-								
2AH		LUT5[7:0]								
Default	1	0	1	0	0	0	0	0		

34) 9 Bit Gamma Correction LUT6

Register Address	7	6	5	4	3	2	1	0		
2DH		N.A.								
Default		-								
2CH		LUT6[7:0]								
Default	1	1	0	0	0	0	0	0		

35) 9 Bit Gamma Correction LUT7

Register Address	7	6	5	4	3	2	1	0		
2FH		N.A.								
Default		-								
2EH		LUT7[7:0]								
Default	1	1	1	0	0	0	0	0		

36) 9 Bit Gamma Correction LUT8

Register Address	7	6	5	4	3	2	1	0		
31H		N.A.								
Default		<u>-</u>								
30H		LUT8[7:0]								
Default	0	0	0	0	0	0	0	0		

37) 9 Bit Gamma Correction LUT9

Register Address	7	6	5	4	3	2	1	0		
33H		N.A.								
Default		-								
32H		LUT9[7:0]								
Default	0	0	1	0	0	0	0	0		

38) 9 Bit Gamma Correction LUT10

Register Address	7	6	5	4	3	2	1	0		
35H		N.A.								
Default		-								
34H		LUT10[7:0]								
Default	0	1	0	0	0	0	0	0		

39) 9 Bit Gamma Correction LUT11

Register Address	7	6	5	4	3	2	1	0		
37H		N.A.								
Default		<u>-</u>								
36H		LUT11[7:0]								
Default	0	1	1	0	0	0	0	0		

40) 9 Bit Gamma Correction LUT12

Register Address	7	6	5	4	3	2	1	0		
39H		N.A.								
Default		-								
38H		LUT12[7:0]								
Default	1	0	0	0	0	0	0	0		

41) 9 Bit Gamma Correction LUT13

Register Address	7	6	5	4	3	2	1	0		
3BH		N.A.								
Default		-								
3AH		LUT13[7:0]								
Default	1	0 1 0 0 0 0						0		

42) 9 Bit Gamma Correction LUT14

Register Address	7	6	5	4	3	2	1	0	
3DH		N.A.							
Default		-							
3CH		LUT14[7:0]							
Default	1	1	0	0	0	0	0	0	

43) 9 Bit Gamma Correction LUT15

Register Address	7	6	5	4	3	2	1	0		
3FH		N.A.								
Default		-								
3EH		LUT15[7:0]								
Default	1	1	0							

44) 10 Bit Gamma Correction LUT16

Register Address	7	6	5	4	3	2	1	0
41H		N.A.						
Default			1	0				
40H								
Default	0	0	0	0				

4.2.5 Color Offset Control Registers

45) 9 Bit R offset control

Register Address	7	6	5	4	3	2	1	0	
45H		Roffset[8]							
Default		-							
44H		Roffset[7:0]							
Default	0	0	0	0	0	0	0	0	

46) 9 Bit G offset control

Register Address	7	6	5	4	3	2	1	0			
47H		N.A.									
Default		-									
46H		Goffset[7:0]									
Default	0	0	0	0	0	0	0	0			

47) B offset control

Register Address	7	6	5	4	3	2	1	0	
49H		N.A.							
Default		-							
48H				Bof	fset[7:0]				
Default	0	0	0	0	0	0	0	0	

4.2.6 Test Pattern Generator Control Register

48) Select Test Pattern

Register Address	7	6	5	4	3	2	1	0	
4AH			N.A.			PatternMode			
Default		-					0	0	

• PatternMode: Select Test Pattern

Patterns	Test Pattern
000	Pattern Generator Off (Normal)
001	Color Bar
010	Gray Scale
011	Tile
100	Vertical Lines
101	Horizontal Lines
110	Ver. & Hor. Lines
111	Do not use

49) Set line width for lines pattern (Patterns = $100 \sim 110$)

Register Address	7	6	5	4	3	2	1	0		
4BH		LineWidth								
Default	0	0	0	0	0	0	1	0		

50) Set line space for line pattern (Patterns = $100 \sim 110$)

Register Address	7	6	5	4	3	2	1	0	
4CH		LineSpace							
Default	0	0	0	0	0	0	1	1	

51) Set Foreground & Background RGB color for lines pattern (Patterns = $100 \sim 110$)

Register Address	7	6	5	4	3	2	1	0
4BH	N.A.	H	BGCOLOR			FGCOLOR		
Default	-	0	0	0	-	1	1	1

• BGCOLOR : Background color

BGCOLOR	Color
000	Black
001	Blue
010	Green
100	Red
111	White

• FGCOLOR: Foreground color

FGCOLOR	Color
000	Black
001	Blue
010	Green
100	Red
111	White

4.3 Register Setting Example

Table 4-2 Register Setting Example

	Register Setting								
Mode Scan		Input	Display	Reg(01H)	Reg(07H)	Reg(11h)	Reg(12H)	Reg(13H)	Reg(14H)
SVGA	Progressive	800×600	800×600	3СН	00H	02H	02H	02H	02H
VGA	Progressive	640×480	640×480	3СН	00H	52H	52H	52H	3EH
SMPTE-170M-1	Interlaced	640×480	640×480	21H	00H	52H	52H	52H	3EH
SMPTE-170M-2	Interlaced	800×600	800×600	3DH	00H	02H	02H	02H	02H
NTSC	Interlaced	720×480	640×480	41H	04H	52H	52H	52H	3EH
PAL	Interlaced	720×480	640×480	41H	05H	52H	52H	52H	3EH
NTSC (SQ)	Interlaced	640×480	640×480	41H	00H	52H	52H	52H	3EH
PAL (SQ)	Interlaced	768×676	768×576	41H	00H	12H	12H	14H	0EH

5 PHOTOELECTRONIC PROPERTIES

5.1 Test Conditions

In this Datasheet, unless special notes, the test circuit is shown in Figure 5-1. The display is working on the built-in test pattern mode, and typical test conditions and test pattern mode is shown as follows:

Temperature: 23 °C±2 °C
Humidity: (40±10)%RH

• Power: V5.0=5.0V, V1.8=1.8V

VCLK: 40MHz

Display Resolution: 804×604
 Display ON: Reg(10H) = 0
 Typical Vcom: Reg(19H) = 80H

• White or Green Test Pattern for Monochrome Display: Reg(4AH) = 04H, Reg(4DH) = 77H

 W/R/G/B Test Pattern for Monochrome Display: Reg(4AH)=04, Reg(4DH) = 77H/44H/22H/11H

Black Test Pattern:

Reg(4AH) = 04H, Reg(4DH) = 00H

• Other Registers Setting: Default value

Figure 5-1 Test Circuit Schematic

5.1.1 Luminance & Chromaticity Test Conditions

Use photometer to measure the center of display's luminance (Cd/m²) and chromatic coordinates (CIEx, CIEy). The test diagram shown in Figure 5-2

5.1.2 Uniformity Test Conditions

All pixels fully on and adjust register 19H to make the luminance is about 100Cd/m², acquire the actually luminance of P0 to P4 shown in Figure 5-3, and then calculate the uniformity by the follow formula:

$$Uniformity = 1 - \frac{L_{max} - L_{min}}{L_{average}} \times 100\%$$

Figure 5-3 Uniformity Test Diagram

5.1.3 Contrast Test Conditions

All pixels fully on and adjust register 19H to make the luminance is about 100Cd/m^2 as L_{255} , then change the display working on the all pixels full off (black mode), acquire the luminance as L_0 . Calculate the contrast by the follow formula:

$$Contrast = \frac{L_{255}}{L_0}$$

5.1.4 Power Consumption Test Conditions

All pixels fully on and adjust register 19H to make the luminance respectively 70Cd/m², 100 Cd/m² and 1500 Cd/m² for color, Monochrome white, Monochrome green display, acquired the voltage and current for each power supply, then calculate the power consumption by the follow formula:

$$P = V_{5.0} \times I_{5.0} + V_{1.8} \times I_{1.8}$$

5.2 Photics Properties

Table 5-1 Photics Properties

Item						Remark	Minimum Value	Typical Value	Maximum value
Contrast Ratio					Highest gr	ray: Minimum gray	10000:1	-	-
Full Color				olor	Using Built-in	test pattern under	0	70	800
		Mon	Monochrome White		typical test conditions and all pixels		0	100	2600
		Mon	ochron	e Green	are fully on		0	1500	9000
luminance uniformity			The average	ge of five test points	90	95	100		
Chromaticity I	Full Co	alam Wilaita	White	CIEX	all pixels are	Using Built-in test pattern under typical	0.25	0.30	0.35
	rull Co	OIOI	white	CIEY	fully on		0.30	0.35	0.40

Item					Remark	Minimum Value	Typical Value	Maximum value
		Red	CIEX		test conditions and all pixels are fully on.	0.48	0.61	0.66
			CIEY			0.32	0.34	0.37
		Green	CIEX			0.15	0.25	0.30
			CIEY			0.48	0.53	0.58
			CIEX			0.10	0.13	0.18
	Monochrome	Blue	CIEY			0.13	0.16	0.19
		White	CIEX	all pixels are fully on		0.25	0.30	0.35
		wille	CIEY			0.28	0.33	0.38
		Croon	CIEX	all pixels are fully on		0.25	0.30	0.35
		Green	CIEY			0.58	0.63	0.68

5.3 Brightness and Contrast Properties

5.3.1 Brightness

The OLED's luminance is depending on the bias voltage and current, increasing the bias voltage can obtain the higher brightness. With OLiGHTEK's proprietary active matrix driver technology, SVGA050 series microdisplay has two kinds of method for brightness adjustment.

- 1) Through the input video signal control the anode voltage, realizing each pixel brightness control. The video signal can enhancement by change the value of register 08H and 09H.
- 2) Adjusting the common cathode voltage, while achieving all pixel brightness adjustment. The cathode negative voltage adjustments by change the value of register 19H.

5.3.2 Contrast

OLED's quickly response and self-emitting characteristics make it has excellent contrast features. But the leakage current will causing the contrast decreased when using a higher bias voltage. The SVGA050 series display's contrast property is shown in Figure 5-4, Figure 5-5 and Figure 5-6.

Figure 5-4 Full Color Display

Figure 5-5 Monochrome White Display

Figure 5-6 Monochrome Green Display

5.4 Spectrum Properties

5.5 Luminance Characteristic with Temperature

Test conditions: V5=5.0V, V1.8=1.8V, All White Pattern, Reg(19H)=80H, VCLK=40MHz

Figure 5-6 SVGA050 Luminance characteristic curve with temperature

5.6 Power Consumption Characteristic with Luminance

Test conditions: T=23°C±2°C, V5=5.0V, V1.8=1.8V, All White Pattern, VCLK=40MHz

Figure 5-7 SVGA050 Power consumption characteristic with luminance

Figure 5-8 SVGA050 Mono Green Display Power consumption characteristic with luminance

6 MECHANICAL CHARACTERISTICS

6.1 Mechanical Drawing

6.2 PCB Backboard Schematic

6.3 PCB Backboard Layout

6.4 Assembly Bill of Materials

Item	Name	Reference	Qty	Description	Coding	Manufacturer
1	CAP	C1,C2,C3,C5,C6,C7 C9,C10,C11,C12	11	Cap, 0.1μF/25V,X5R,10%,0402	TMK105BJ104KV-T	TAIYO YUDEN
2	CAP	C4,C8	2	Cap, 10μF/16V,X5R,10%,0805	EMK212BJ106KG-T	TAIYO YUDEN
3	Diode	D1	1	Diode, Schottky, 30V, 1.5A, SOD123F	PMEG3015EH	PHILIPS
4	Connector 1	Con1	1	Con, 40Pin, 0.5mm, Header	DF12D(3.0)-40DP-0.5(81)	Hirose
5	Connector 2	Con20	1	Con, 20Pin, 0.5mm	FH12-20S-0.5SH	Hirose
6	Connector 2	Con22	1	Con, 22Pin, 0.5mm	FH12-22S-0.5SH	Hirose
7	nFET	Q1	1	nFET, 25V/0.22A, SOT-23	FDV301N	Fairchild
8	Resistance	R2,R1	2	Resistor,10K,5%,1/16W,0402	RC0402JR-0710KL	YAGEO
9	Resistance	R3	1	Resistor,10Ω,5%,1/4W,0805	RC0805JR-0710RL	YAGEO
10	Resistance	R4,R5	2	Resistor,0Ω,5%,1/16W,0402	RC0402JR-070RL	YAGEO
11	Resistance	R6	1	Resistor,127K,1%,1/16W,0402	RC0402FR-07127KL	YAGEO
12	Resistance	R7	1	Resistor,43K,1%,0402	RC0402FR-0743KL	YAGEO
13	Transformer	TX1	1	Transformer, 6.8μH/0.6A, 1:1	LPD4012-682ML	Coilcraft

Note: ①—It is only used in SVGA050V1 microdisplay.

②—It is only used in SVGA050V2 microdisplay.

7 PRODUCTS CLEANING, HANDLING AND STORAGE

7.1 Cleaning

- Avoid using any acid, alkali and organic solvent to clean or contact to the display
- Using the lens paper or clean cloth to clean the surface is recommend

7.2 General Handling Considerations

- Do not expose the display to strong acids, alkalis, or solvents.
- Do not expose the display surface to UV or other strong ionizing radiation.
- Do not using sharp objects to contact the glass and silicon regions of display.
- Avoid applying force to the any region except the PCB backplane, especially apply the force to the region of sealing, silicon edge and cover glass is not allowed.
- Avoid immersion of the display in any liquid.
- Handing with PVC clean gloves is recommended.

7.3 Static Charge Prevention

The microdisplay is sensitive to electro-static discharge due to integrated CMOS circuit in the display. The following measures are recommended to minimize ESD occurrences:

- Operate on a region which is equipped with electro-static eliminator, such as ionizing air blowers.
- Wear the anti-static wrist strap
- wear the non-chargeable clothes
- Keep away from charged region.

Figure 7-1 Handing the Display

7.4 Storage

7.4.1 Short Term Storage

The display should be stored in a dry environment with temperature range from -50°C to 90°C for a short period(≤ 100 hrs).

7.4.2 Long Term Storage

If the display is stored in such an environment with excessive heat or cold or moisture, the lifetime of display will be shorten, even the environment can cause permanent damage to the display. Recommended long-term storage condition as follows:

- Room temperature: 25 °C±5 °C
- Dry environment: dry nitrogen or vacuum sealing cabinet
- Static placing: avoid violent vibration

8 APPLICATIONS

8.1 Status test

SVGA050 series microdisplay need the following condition before it can work:

- 1) 5V and 1.8V power supply
- 2) VCLK signal (more than 25MHz is recommended)
- 3) The input of reset pin pull up to V1.8 via 10K resistance
- 4) Set DispOff bit of register 10H to 0
- 5) Set the value of register 19H is close to 128

At any time, after make sure the above conditions, set the value of register 4AH to 01H/02H/03H, the built-in pattern can be displayed without any video input. Through this way, the product status can be verified. The test circuit schematic is shown in Figure 5-1.

8.2 Temperature Compensation

8.2.1 Compensation Principle

The OLED's emitting relies on the mobility and recombination of charge carrier, but the mobility of charge carrier is affected by temperature, so the luminance of OLED microdisplay is also affected by temperature. As shown in Figure 8-1, the luminance of OLED microdisplay increased with the temperature increasing, and the luminance begin to decrease after the temperature hotter than 60°C. In order to achieve stable luminance within a wide temperature range, OLED drive voltage compensation is required.

SVGA050 series microdisplay uses a common cathode structure and the cathode voltage is programmable, besides it also integrated a readable temperature sensor. So the closed-loop control of automatic luminance compensation can be achieved by an external Microcontroller (MCU). The software flow chart is shown in Figure 8-2.

Figure 8-1 Typical Luminance-Temp. Curve

Figure 8-2 Compensation flow chart

OLEGHTEK

8.2.2 Compensation Look-Up Table

In the Table 8-1, for the convenience of 8-bit MCU calculation, the coefficient is changed from 0.47 to 0.5 and the formula is simplified as follows:

$$T = 0.5 \times Reg(1DH) - 40$$

Table Index can be calculated by the temperature T+40, i.e.

Table_Index =
$$0.5 \times \text{Reg}(1\text{DH})$$

The new value after compensation is equal to the $\triangle \text{Reg}(19\text{H})$ which from the look up table plus the default value of register 19H at room temperature.

$$Reg (19H)_New = Reg (19H)_Default + \Delta Reg (19H)$$

Notice: • Limit the minimum value of register 19H not less than 20H

- The compensation value is corrected based on the luminance of default value (Reg(19H)_Default) at room temperature (20~25°C)
- Auto luminance compensation is in conflict with manual adjust luminance (modify the Vcom value), so, avoid Vcom adjusted by the other way is required.

Table 8-1 Luminance-Temperature compensation Look-up Table

Temp.	Index	ΔReg(19H)	Temp.	Index	ΔReg(19H)	Temp.	Index	ΔReg(19H)
-40	0	-86	1	41	-34	41	81	24
-39	1	-85	2	42	-32	42	82	25
-38	2	-84	3	43	-31	43	83	26
-37	3	-83	4	44	-29	44	84	28
-36	4	-82	5	45	-28	45	85	29
-35	5	-81	6	46	-26	46	86	30
-34	6	-80	7	47	-25	47	87	31
-33	7	-79	8	48	-23	48	88	32
-32	8	-78	9	49	-22	49	89	34
-31	9	-77	10	50	-20	50	90	35
-30	10	-76	11	51	-19	51	91	36
-29	11	-75	12	52	-17	52	92	37
-28	12	-74	13	53	-16	53	93	38
-27	13	-72	14	54	-14	54	94	39
-26	14	-71	15	55	-13	55	95	40
-25	15	-70	16	56	-11	56	96	41
-24	16	-69	17	57	-10	57	97	42
-23	17	-68	18	58	-8	58	98	43
-22	18	-66	19	59	-7	59	99	44
-21	19	-65	20	60	-5	60	100	45
-20	20	-64	21	61	-4	61	101	46
-19	21	-62	22	62	-2	62	102	47
-18	22	-61	23	63	-1	63	103	47
-17	23	-60	24	64	1	64	104	48
-16	24	-58	25	65	2	65	105	49
-15	25	-57	26	66	3	66	106	50
-14	26	-56	27	67	5	67	107	50
-13	27	-54	28	68	6	68	108	51
-12	28	-53	29	69	8	69	109	52
-11	29	-51	30	70	9	70	110	52
-10	30	-50	31	71	11	71	111	53
-9	31	-49	32	72	12	72	112	54
-8	32	-47	33	73	13	73	113	54
-7	33	-46	34	74	15	74	114	55
-6	34	-44	35	75	16	75	115	55
-5	35	-43	36	76	17	76	116	56
-4	36	-41	37	77	19	77	117	56
-3	37	-40	38	78	20	78	118	56
-2	38	-38	39	79	21	79	119	57
-1	39	-37	40	80	23	80	120	57
0	40	-35						ļ

8.3 Gamma Correction

8.3.1 Gamma Correction Principle

The typical luminance gamma curves at $\gamma=1$ and $\gamma=2.2$ are shown in Figure 8-3, and the theory of gamma correction is base on the following formula

$$L_i = (\frac{i}{255})^{\gamma} \cdot L_{max}$$

i: is the grey level number (0-255)

 L_{max} : is the luminance of the maximum grey level (255)

 L_i : is the output luminance of the i gray level after gamma correction

γ: is gamma correction coefficient.

SVGA050 use voltage drive architecture and the luminance with drive voltage of OLED are non-linear. For this reason, the default gamma correction LUT setting is not good for display. Figure 8-4 shows the default gamma properties of SVGA050.

Figure 8-3 Typical Gamma Correction Curve

Figure 8-4 Default Gamma Properties of SVGA050

8.3.2 Gamma Correction process

For SVGA050 series microdisplay, the method for gamma correction is shown as below.

- 1) Adjust the luminance of display and fix the setting of register 19H when the luminance meets the using requirements, then acquired the luminance as L_{max} by using photometer.
- 2) Set LUT[16] = 200H (default).
- 3) Divide the Gray level 0-255 into 16 sections: Gn=16n (n=0 to 15)
- 4) Confirm the gamma coefficient γ , and calculate the values of Ln: $L_n = (\frac{G_n}{256})^{\gamma} \cdot L_{max}$
- 5) From n=0 to 15, input the video signal with gray level is Gn, then adjust the value of LUT[n] to make the luminance to reach or equal L_n.

The reference gamma LUT setting of γ =2.2 is shown in Table 8-2 and the gray scale display effect after correction shown in Figure 8-5.

m 11 0 6	Reference Gamma LUT Setting with γ =2.2 and L _{max} =100Cd/m ²
Table 8-2	Determine Commo I I T Vetting with $n=2.2$ and $I_{ij}=1000$ d/m ²
Lane A=/	Reference Chamma L.D.L. Semmy With V-7 / and L TOOL 0/10

Commo LUT	Monochro	me Display	Color Display			
Gamma LUT	Dec Value	Hex Value	Dec Value	Hex Value		
LUT[0]	0	0H	0	0H		
LUT[1]	341	155H	316	13CH		
LUT[2]	346	15AH	319	13FH		
LUT[3]	360	168H	332	14CH		
LUT[4]	369	171H	343	157H		
LUT[5]	376	178H	354	162H		
LUT[6]	383	17FH	363	16BH		
LUT[7]	389	185H	373	175H		
LUT[8]	394	18AH	383	17FH		
LUT[9]	398	18EH	392	188H		
LUT[10]	404	194H	402	192H		
LUT[11]	408	198H	412	19CH		
LUT[12]	413	19DH	421	1A5H		
LUT[13]	417	1A1H	430	1AEH		
LUT[14]	422	1A6H	440	1B8H		
LUT[15]	427	1ABH	451	1C3H		
LUT[16]	512	200H	512	200H		

Figure 8-5 Gray Scale Display Effect with Gamma Correction

8.4 Ghost Effect

Just like other emitting device, lifetime degradation is also a problem for the OLED display. The high-brightness pixels lifetime decay faster than the low-brightness pixels. When display a static image with high-brightness and high-contrast for long time, the high-brightness area become darkness compare with the low-brightness area when display an image with same brightness. That's called negative ghost effect and shown in Figure 8-6.

Under the typical status: maximum luminance less than 200Cd/m², continually display a static image for 30-60 minutes, SVGA050 series microdisplay will appear the slight ghost effect. Longer time continually display will cause serious ghost effect.

Figure 8-6 Ghost Effect Demo

8.4.1 Avoid Ghost

- Avoid displaying static image for a long time; limit display less than 10 minutes if necessary
- Avoid displaying the characters or menu with high gray level in a fix position for a long time or repeatedly. If necessary, using the half gray level and auto fadeout technology.
- Avoid display operation under high luminance condition.

8.4.2 Clear Ghost

Serious ghost will causing the unrecoverable trace to display, such as burns.

After the slight ghost generated, using the built-in test pattern to make the display operating under full white mode, then, increase luminance properly, after a few minutes, the ghost will be eliminated.

8.5 Application Examples

8.5.1 Digital System Application

SVGA050 series microdisplay use full digital video process architecture, for simplifying system structure and increasing system flexibility, the application system use digital system in the front-end is recommended, such as FPGA, DSP, and SOC etc. So the A/D and D/A unit can take out and transferring the digital video signal to the display directly. Application system diagram is shown in Figure 8-8.

8.5.2 Composite Video

SVGA050 series microdisplay use square pixel layout and the screen's aspect ratio is 4:3. The decoders which support square mode are recommended when using the composite video input. For instance, ADV7180, it supports 768×576 output of PAL format, so it can be taken full advantage of full screen display resolution of 804 $\times 604$. Application system diagram is shown in Figure 8-8.

Figure 8-7 Digital System Application Fig

Figure 8-8 Composite Video Application

8.5.3 Analog RGB (VGA)

AD9883/9985 decoder chips can be used for VGA video input (analog RGB signal) and $800 \times 600/85$ Hz resolution is recommended. The application system diagram is shown in Figure 8-9.

Figure 8-9 VGA Input Application

9 APPENDIX

9.1 List of Figures

Figure 2-1	SVGA050 series device's structure	2
Figure 2-1	Pixel and Sub-Pixel Array	
Figure 2-2	SVGA050 Series Architecture & Principle Diagram	
Figure 2-4	V1 connector & pin assignment	
Figure 3-1	Digital Video Processing Flow Diagram	
•		
Figure 3-2	Input Sync Signals Timing (For All Formats)	
Figure 3-3	24-bit, 4:4:4 RGB Input VideoTiming	
Figure 3-4	24-bit, 4:4:4 YCbCr Input Video Timing	
Figure 3-5	16-bit, 4:2:2 YCbCr Input Video Timing	
Figure 3-6	8-bit, Mono Input Video Timing	
Figure 3-7	8-bit, 4:2:2 YCbCr input Video timing	
Figure 3-8	Digital Video Signal Enhancement Diagram	
Figure 3-9	Test Video Patterns	
Figure 3-10	Diagram of the Horizontal Scaling Algorithm	
Figure 3-11	Diagram of the Vertical Scaling Algorithm	
Figure 3-12	Gamma Correction LUT and Curve	
Figure 3-13	Color Offset Control	
Figure 3-14	3D Video Display Timing	
Figure 3-15	Power-up Sequence (1.8V power-up, threshold voltage = 1.2V)	
Figure 3-16	V5.0 Power Down & Up (POR5n threshold Voltage = 4V)	
Figure 3-17	Register Control Power Down & Up	
Figure 3-18	Reset Block Diagram	
Figure 3-19	Reset Timing Case 1 – No external reset pin used (RESETB=1)	16
Figure 3-20	Reset Timing Case 2 – External reset pin depend on VCLK	16
Figure 3-21	Reset Timing Case 3 – External reset pin applied	17
Figure 3-22	Unit Drive Circuit	
Figure 3-23	OLED photo electricity properties	17
Figure 3-24	DC/DC Principal Diagram	
Figure 3-25	Vcom Programmable Working Curve	
Figure 3-26	Temp. Sensor Readout	
Figure 3-27	Temp. Sensor calibration curve	
Figure 3-28	Start & Stop Timing	
Figure 3-29	Write Data format	
Figure 3-30	Data format(Master reads from Slave)	
Figure 4-1	Vertical Blank Lines with DE	
Figure 4-2	Vertical Blank Lines without DE	
Figure 5-1	Test Circuit Schematic	
Figure 5-2	Photometer Test Diagram	
Figure 5-3	Uniformity Test Diagram	
Figure 5-4	Full Color Display	
Figure 5-5	Monochrome White Display	
Figure 5-6	Monochrome Green Display	
Figure 5-7	SVGA050 Power consumption characteristic with luminance	
Figure 5-8	SVGA050 Mono Green Display Power consumption characteristic with luminance	
Figure 7-1	Handing the Display	
Figure 8-1	Typical Luminance-Temp. Curve	
Figure 8-2	Compensation flow chart	
Figure 8-3	Typical Gamma Correction Curve	
Figure 8-4	Default Gamma Properties of SVGA050	
Figure 8-5	Gray Scale Display Effect with Gamma Correction	
Figure 8-5	Ghost Effect Demo	
Figure 8-7	Digital System Application	
	Composite Video Application	
Figure 8-8 Figure 8-9	VGA Input Application	
riguit 0-7	YOA IIIPULAPPIICAUUII	44

9.2 List of Tables

Table 3-1	Input Signal Standard & Pin Used	8
Table 3-2	VESA Progressive Video Modes	10
Table 3-3	VESA Interlaced Video Modes	10
Table 3-4	VGA and SVGA Video Timing	11
Table 3-5	Summary of Test Pattern Setting	
Table 3-6	Scaling format applied	13
Table 3-7	Slave Address list	20
Table 4-1	Summary of Registers	20
Table 4-2	Register Setting Example	30
Table 5-1	Photics Properties	
Table 8-1	Luminance-Temperature compensation Look-up Table	41
Table 8-2	Reference Gamma LUT Setting with γ =2.2 and L _{max} =100Cd/m ²	