

Foundations of C.S.

Spring, 2022

PRINT NAME: \mathcal{SIGN} :

1. (5 pts) Let L(G) be the language of the grammar

And set $M = \{w \in \{a, b\}^* \mid n_a(w) = n_b(w)\}$. Prove that $L(G) \subseteq M$.

• We will prove by induction that, after n moves, every sentential form W satisfies $n_a(W) = n_b(W)$.

Base Case: n = 0, so the sentential form is S. $n_a(S) = n_b(S) = 0$.

Inductive step. Let $n \geq 0$ be given. Suppose that $S \stackrel{n}{\Rightarrow} W$, and $n_a(W) = n_b(W)$. We will show that for all sentential forms with $W \rightarrow W'$, we must have $n_a(W) = n_b(W)$, There are only two types of rules. λ rules, do not change n_a or n_b , in which case $n_a(W') = n_a(W) = n_b(W) = n_b(W')$, as required. The other type or rule adds exactly two a's and exactly two b' to the sentential form, in which case $n_a(W') = n_a(W) + 2 = n_b(W) + 2 = n_b(W')$. In either case $n_a(W') = n_b(W')$ for all W' with $S \stackrel{n+1}{\Rightarrow} W$.

So the requirement is satisfied for every sentential form W derivable from S by induction, and hence for all elements of the language.

2. (5 pts) Let L(G) be the language of the grammar

And set $N=\{w\in\{a,b\}^*\mid w=a^{2k}b^{2k}a^{2k}b^{2k}a^{2k}b^{2k}\}$. On the back of this page, prove that $N\subseteq L(G)$.

• We give a derivation sequence. For k=0, we have $w=\lambda$, and $S\Rightarrow\lambda$ using the S rule. For k=1, we use $S\Rightarrow a^2Bb^2\Rightarrow a^2b^2Ba^2b^2\Rightarrow a^2b^2a^2Ab^2a^2b^2\Rightarrow a^2b^2a^2\lambda b^2a^2b^2$.

For $k \geq 2$, we use $S \Rightarrow a^2Ab^2 \stackrel{k-2}{\Rightarrow} a^{2k-2}Ab^{2k-2} \Rightarrow a^{2k}Bb^{2k} \stackrel{k}{\Rightarrow} a^{2k}b^{2k}Ba^{2k}b^{2k} \Rightarrow a^{2k}b^{2k}a^2Ab^2a^{2k}b^{2k} \stackrel{k-1}{\Rightarrow} a^{2k}b^{2k}a^{2k}Ab^{2k}a^{2k}b^{2k} \Rightarrow a^{2k}b^{2k}a^{2k}b^{2k}a^{2k}b^{2k}$.