# 第2章 参数估计

第2.1节 点估计

第2.2节 估计量的优良标准

第2.3节 区间估计

# 第2.1节 点估计

总体 X 的分布函数 F 含有未知的参数  $\theta$  ,  $\theta$  所有可能的取值范围称为"参数空间",记为  $\Theta$  。 从这个总体中抽取了一组样本  $X_1$  , ... ,  $X_n$  , 相应的样本观察值是  $x_1$  , ... ,  $x_n$  。 应该如何估计出  $\theta$  的具体数值?

点估计就是利用样本构造一个合理的统计量: $g(X_1, ..., X_n)$ ;用它的观察值  $g(x_1, ..., x_n)$ 去作为作为  $\theta$  的估计值。

- 例2.1.1 政府或者企业希望了解人们的作息习惯。 Gallup 公司做过一项调查, 56%的美国人说 他们习惯早起, 44%的认为自己是"夜猫子"。
- 例2.1.2 丁同学在一个体重仪上称她的体重,假定这个体重仪没有系统误差,每次称量的结果是真实重量 $\mu$ 加上一个随机误差  $\varepsilon_k$ 。一般认为  $\varepsilon_k \sim N(\mathbf{0}, \sigma^2)$ ,因此 n 次称量的结果  $X_k = \mu + \varepsilon_k \sim N(\mu, \sigma^2)$

你可以用这组数据中的任何一个,或者样本均值,或者是样本中位数等,作为 μ 的估计值。

#### 常用的点估计方法

矩估计: 用样本的有关矩去作为总体有关矩的估计。即样本均值作为总体期望的估计; 样本方差作为总体方差的估计; 样本中位数(或众数) 作为总体中位数(或众数) 的估计等。

#### 极大似然估计:

所有情况中"看起来最象"的那个估计

# 2.1.1 矩估计

#### K.Pearson 的矩估计理论

假定总体 X 有 m 个未知参数  $\theta_1$  , ... ,  $\theta_m$  , 而有关的原点矩  $V_k = EX^k$  存在 , 则应该有 :

$$\begin{cases} V_1 = g_1(\theta_1, \dots, \theta_m) \\ V_2 = g_2(\theta_1, \dots, \theta_m) \\ \cdots \\ V_m = g_m(\theta_1, \dots, \theta_m) \end{cases}$$

#### 理论上求解方程组可以得到

$$\begin{cases} \theta_1 = h_1(V_1, \dots, V_m) \\ \theta_2 = h_2(V_1, \dots, V_m) \\ \dots \\ \theta_m = h_m(V_1, \dots, V_m) \end{cases}$$

假如用样本的 k 阶原点矩  $A_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k$  作为总体 k 阶矩  $V_k$  的估计,则可以 得到总体未知参数  $\theta_1$  , ... ,  $\theta_m$  的估计。

理论依据:大数律。矩估计基本上都是依概率或者几乎处处收敛到未知参数。

#### 矩估计需要注意的几个问题

- (1) 总体的参数不能表示成矩的函数时(一般是总体矩不存在),就不能使用矩估计;
- (2) 如果能够用低阶的矩估计,就不要用高阶矩;
- (3) 按照矩估计的理论应该用样本的二阶中心矩 来估计总体的方差,但是在实际应用中人们 总是采用样本方差作为总体方差的估计。

矩估计的最大优点是简单实用,与总体分布 形式没有关系。只要知道总体随机变量一些矩 存在,就可以做相应的矩估计。 例2.1.3 设总体  $X \sim U(0, \theta)$  ,  $\theta$ 是未知参数 ,  $X_1$  , ... ,  $X_n$ 是一组样本 , 求 $\theta$ 的矩估计。

解.总体的未知参数  $\theta$ 可以通过期望与方差表示:

总体期望:  $\frac{\theta}{2}$ ; 总体方差:  $\frac{\theta^2}{12}$ 。

因此根据矩估计的思想,可以得到两个矩估计:

$$\hat{\theta} = 2X$$
 或者是  $\hat{\theta} = 2\sqrt{3}S$ 

习惯上我们采用第一个估计量

例2.1.4 
$$X_1$$
 , ... ,  $X_n$  是来自总体  $X \sim N(\mu, \sigma^2)$  的一组简单随机样本 , 求  $\mu$  ,  $\sigma^2$  的矩估计。

解. 显然有:  $V_1 = \mu$  ,  $V_2 = \sigma^2 + \mu^2$  ; 即  $\mu = V_1$  ,  $\sigma^2 = V_2 - V_1^2$  。

因此得到: 
$$\hat{\mu} = \overline{X} = \frac{1}{n} \sum_{k=1}^n X_k$$
 
$$\hat{\sigma}^2 = \frac{1}{n} \sum_{k=1}^n X_k^2 - (\frac{1}{n} \sum_{k=1}^n X_k)^2$$
 
$$= \frac{1}{n} \sum_{k=1}^n (X_k - \overline{X})^2$$

#### 几个常见分布的矩估计

二项分布 B(N,p), N已知

$$\hat{p} = \frac{\overline{X}}{N}$$

均匀分布 U(a,b)

$$\overline{X} \pm \sqrt{3(n-1)/n}S$$

泊松分布  $P(\lambda)$ 

$$\hat{\lambda} = \overline{X}$$

参数为  $\theta$ 的指数总体

$$\hat{\theta} = 1/\overline{X}$$

正态总体

$$N(\mu, \sigma^2)$$

$$\hat{\mu} = \overline{X} \qquad \hat{\sigma}^2 = \frac{n-1}{n} S^2$$

$$\hat{\sigma} = \sqrt{(n-1)/n} S$$

例2.1.5 随机取 8 个零件,测得直径是(mm) 74.001,74.005,74.003,74.001, 74.000,73.993,74.006,74.002。 设总体期望与方差存在,求它们的矩估计。

解 首先计算这组样本的样本均值和样本方差,  $\bar{x} = 74.001375$ ,  $s^2 = 1.5696 \times 10^{-5}$ 

根据矩估计的思想,虽然不知道这组样本来自什么样的总体,仍然可以给出总体期望和方差的矩估计:

 $\hat{\mu} = 74.001375$ ,  $\hat{\sigma}^2 = 1.3734 \times 10^{-5}$ 

# 两个估计

#### 1. 总体百分比的估计

采用样本中的百分比作为估计值。

总体分布被认为是一个两点分布,参数 p 或者说总体期望 p 就是总体的百分比。

因此如果希望了解总体中具有某种属性的 个体的比例,只需要从总体中抽取部分样本, 以样本中具有这种属性的比例 p<sub>s</sub> 作为估计。

#### 2. 序列号估计

二战期间德国生产的每一辆坦克都带有一个编号(工厂出厂号)。盟军方面根据击毁或缴获的德军坦克的序列号: $x_1$ ,..., $x_n$ ,精确地估计出德国的坦克总产量N。

#### 解:

方法一. 假定每个得到的序列号  $x_1$ , ...,  $x_n$ 都是均匀地取自总体  $\{1, 2, ..., N\}$ , 那么这组样本数据居中的那一个数据(样本中位数)应该非常接近总体数据居中的那个数 (N/2);

方法二. 仍然假定样本数据均匀取自总体数据,则它们之间应该是等间隔地分布,因此总产量 N 就是样本中最大的那一个(极大统计量) 加上这些样本的"平均间隔"。



2.1.2 极大似然估计(MLE)

1. 极大似然估计的想法

例2.1.6 假定盒子里黑、白球共 5 个不知道黑球具体数目。现在随机有放3 个小球,发现是两个黑球和一个白问盒子里最可能有几个黑球?

解:盒子里黑白球所有的可能有六种5白,4白1黑、3白2黑,2白3黑,1白 例2.1.6 假定盒子里黑、白球共5个,但是 不知道黑球具体数目。现在随机有放回抽取 3个小球,发现是两个黑球和一个白球。

解:盒子里黑白球所有的可能有六种:

5白,4白1黑、3白2黑,2白3黑,1白4黑,5黑

以p 记盒子里黑球所占的比例,则p 全部可能的值是:

$$\{0, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, 1\}$$

定义三个统计量  $X_1$ ,  $X_2$ ,  $X_3$ 表示抽样结果:取到黑球记为 1, 否则记为 0。因此  $X_1$ ,  $X_2$ ,  $X_3$ 独立同分布于参数 p 的两点分布。

例题中的三个样本观察值  $x_1$ ,  $x_2$ ,  $x_3$  有两个取值是 1, 一个取值为 0。

而样本的联合分布律显然是

$$L(x, p) = p^{x_1+x_2+x_3}(1-p)^{3-x_1-x_2-x_3} = p^2(1-p)$$

#### 注意这里样本的联合分布律

$$L(x, p) = p^{x_1+x_2+x_3}(1-p)^{3-x_1-x_2-x_3}$$

其实就是概率函数 $f(x, \theta)$ 。

它的含义是:当盒中黑球比例为p时,随机事件"有放回取出的三个小球中有两个黑球、一个白球"的概率。

对应于参数空间中不同的p,样本分布  $L(x, p) = p^2(1 - p)$  所对应的这些概率是:

既然"三个小球中包含两个黑球"是已经发生了的随机事件,因此使得这个事件发生概率取最大的那个值就是未知参数p最有可能的取值。

即p的极大似然估计就是3/5。

#### R.A.Fisher 的极大似然估计理论

把概率函数 $f(x,\theta)$  记为 $L(x,\theta)$ ,并且认为x 固定,它是 $\theta$  的函数。

 $L(x, \theta)$  称为"似然函数"

1. 对离散总体,它是样本联合分布律;

2. 对连续总体,它是样本联合密度函数。

如果有  $L(x, \theta_1) < L(x, \theta_2)$  , 很自然我们会认为总体参数  $\theta$  更有可能是  $\theta_2$  , 而不太可能是  $\theta_1$  。

# 总体参数 $\theta$ 的极大似然估计就是使得似然函数在参数空间 $\Theta$ 中达到极大者

即对于任意  $\theta$   $\Theta$ 都有:

$$L(x, \hat{\theta}) = \max L(x, \theta)$$

一般采用对数似然方程(组)求解MLE

$$\frac{\partial \ln L(x,\theta)}{\partial \theta} = 0$$

无法建立似然方程时,必须根据定义求MLE

例2.1.7 设总体  $X \sim B(N,p)$  , N 已知 , p 是未知参数 ,  $X_1$  , ... ,  $X_n$  是一组简单随机样本 , 求总体参数 p 的极大似然估计。

解. 不妨假定样本  $X_1$ , ...,  $X_n$  相应的观察值是  $x_1$ , ...,  $x_n$ , 而二项总体的似然函数为:

$$\mathbf{L}(x,\theta) = \left[\prod {N \choose x_k}\right] p^{\sum x_k} (1-p)^{nN-\sum x_k}$$

这里每一个 $x_k = 0$ 、1、...、N 中的某个值

取对数再对参数p 求导,得到对数似然方程:

$$\frac{\partial}{\partial \theta} \ln \left[ L(x,\theta) \right] = \frac{\overline{x}}{p} - \frac{N - \overline{x}}{1 - p} = 0$$

因此,当N已知时,二项分布B(N,p)中参数p的极大似然估计就是

$$\hat{p} = \frac{\overline{X}}{N}$$

两点分布的参数 p 的 MLE 就是样本均值

例2.1.8  $X_1$ , ...,  $X_n$  是来自总体  $X \sim N(\mu, \sigma^2)$  的简单随机样本, 求  $\mu$   $\sigma$  的极大似然估计。

解. 正态总体的似然函数为

L 
$$(x,\theta) = (2\pi\sigma^2)^{-\frac{n}{2}} \exp\{-\frac{1}{2\sigma^2} \sum_{k=1}^{n} (x_k - \mu)^2\}$$

注意这里总体参数  $\theta$ 是一个向量 ( $\mu$ ,  $\sigma$ ), 因此对于似然函数取对数后分别对  $\mu$ ,  $\sigma$  求导, 建立对数似然方程组:

$$\begin{cases} \frac{1}{\sigma^2} (\bar{x} - \mu) = 0 \\ -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{k=1}^n (x_k - \mu)^2 = 0 \end{cases}$$

#### 解方程组得到正态总体两个参数的MLE

$$\hat{\mu} = \overline{X} \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{k=1}^n (X_k - \overline{X})^2 = \frac{n-1}{n} S^2$$

#### 练习2.1.9

总体标准差 $\sigma$ 的极大似然估计是什么?如果  $\mu$  已知,方差  $\sigma$  的极大似然估计又是什么?

例2.1.10 总体  $X \sim U(\theta, \theta+1)$  ,  $\theta$ 是未知参数 ,  $X_1$  , ... ,  $X_n$  是一组样本 , 求 $\theta$ 的极大似然估计。

解. 总体的密度函数为:

$$f(x, \theta) = 1$$
,  $\theta < x_1$ , ...,  $x_n < \theta + 1$ 

显然不能对参数  $\theta$  求导,无法建立似然方程

注意到这个似然函数不是 0 就是 1 , 利用顺序统计量 , 把似然函数改写成如下形式:

$$f(x, \theta) = 1$$
,  $\theta < x_{(1)} < ... < x_{(n)} < \theta + 1$ 

因此只要  $\theta < x_{(1)}$  并且  $x_{(n)} < \theta + 1$  同时满足,似然函数就可以达到极大值 1。

所以  $U(\theta, \theta+1)$  中参数 $\theta$ 的极大似然估计可以是区间  $(x_{(n)}-1, x_{(1)})$  里的任意一个点。

#### 说明 MLE 可以不唯一, 甚至有无穷多个

同理,总体U(a,b)左右端点 $a \setminus b$ 的MLE分别就是两个极值统计量 $x_{(1)} \setminus x_{(n)}$ 。

#### 几个常见分布的极大似然估计

二项分布 B(N,p), N已知

$$\hat{p} = \frac{X}{N}$$

均匀分布 U(a,b)

$$X_{(1)}$$
,  $X_{(n)}$ 

泊松分布  $P(\lambda)$ 

$$\hat{\lambda} = \overline{X}$$

参数为  $\theta$ 的指数总体

$$\hat{\theta} = 1/\overline{X}$$

正态总体

$$N(\mu, \sigma^2)$$

$$\hat{\mu} = \overline{X} \quad \hat{\sigma}^2 = \frac{n-1}{n} S^2$$

$$\hat{\sigma} = \sqrt{(n-1)/n} S$$

## 2.1.3 极大似然估计与矩估计的简单比较

矩估计由 K.Pearson 在1894年提出,只要求总体的矩存在即可,不需要知道总体分布。

极大似然估计由 R.A. Fisher 在 1912 年提出的,必须要知道总体来自哪一种分布类型。

一般来说极大似然估计具有更多数学上的优良性, 应用得更为广泛。

例如它肯定是充分统计量的函数;多数情况下在 无偏估计的类中具有最小方差;具有渐近正态性; 还是均匀先验分布时后验分布的概率函数的众数。 例2.1.11 为了研究密歇根湖湖滩地区的岩石成分,随机取了100个样品。每个样品中包含10个石子,记录下每个样品里属于石灰石的石子个数,有关数据为:

| 样品中石灰<br>石子的个数 | 0 | 1 | 2 | 3 | 4  | 5  | 6  | 7  | 8 | 9 | 10 |
|----------------|---|---|---|---|----|----|----|----|---|---|----|
| 相应样品数          | 0 | 1 | 6 | 7 | 23 | 26 | 21 | 12 | 3 | 1 | 0  |

设p 是这个地区的一块石子是石灰石的概率,则每个样品里的石灰石子的个数服从B(10,p),如果这 100 次观察是独立的,求p 的估计。

一解. 可以证明p的矩估计和极大似然估计都是:

$$\hat{p} = \frac{X}{10}$$

关键的地方在于样本均值的计算,这里不是象

$$\frac{1}{x} = \frac{499}{100}$$
 ,  $\hat{p} = 0.499$ 

#### 练习2.1.12

如果没有砝码,我们应该如何去判断一个 测量仪器的精度(即标准差)?

#### 练习2.1.13

 $X_1, ..., X_n$  是来自负二项分布的一组样本,

$$p_k = C_{k-1}^{r-1} p^r q^{k-r}$$
 ,  $k$   $r$ 

求总体参数p、r的矩估计以及极大似然估计。

#### 练习2.1.14

 $X_1, ..., X_n$  是来自Logistic分布的一组样本,

$$F(x) = \frac{1}{1 + e^{-\alpha x - \beta}} , \alpha > 0$$

求总体参数 $\alpha$ 、 $\beta$  的极大似然估计。

#### 练习2.1.15

 $X_1, \ldots, X_n$  是来自对数正态分布的一组样本,

$$f(x) = \frac{1}{\sqrt{2\pi\sigma x}} \exp\left[-\frac{(\ln x - \mu)^2}{2\sigma^2}\right]$$

求总体参数 μ, σ 的矩估计和极大似然估计。

#### 练习2.1.16

 $X_1, ..., X_n$  是来自Weibull 分布的一组样本,  $f(x) = \mu \alpha x^{\alpha-1} \exp[-\mu x^{\alpha}], \quad x > 0$ 

求总体参数  $\mu(>0)$ ,  $\alpha(>0)$  的极大似然估计。

#### 练习2.1.17

 $X_1, ..., X_n$  是来自Pareto 分布的一组样本, $f(x) = \alpha M^{\alpha} x^{-(1+\alpha)}, \quad x \ge M$ 

求总体参数  $\alpha(>0)$ , M(>0) 的极大似然估计。

# 第2.2节 估计的优良标准

一般的,一个良好的点估计应该满足三个标准:

无偏性:估计量的数学期望要等于参数;

有效性:估计量的方差要比较小(主要是

限制在无偏估计的范围内);

一致性: 当样本容量趋于无限多时, 估计

量应该收敛到参数。

### 2.2.1 无偏估计(Unbiased estimation)

定义2.2.1 参数  $g(\theta)$  的估计量  $\varphi(X_1,...,X_n)$  如果满足: $E \varphi(X_1,...,X_n) = g(\theta)$  对 $\Theta$  中所有的  $\theta$  都成立,则称  $\varphi(X_1,...,X_n)$  是  $g(\theta)$  的一个无偏估计量。

#### Remark

无偏性是估计好坏的一个基本要求,它表明即使每一次估计都可能有误差,但是从长远来看,这种估计总的误差能够相互抵消。

例2.2.1 假定总体 X 的期望  $\mu$  , 方差  $\alpha$  存在 , 则 样本均值、样本方差分别是  $\mu$   $\alpha$  的无偏估计。

证明. 样本均值是 μ 的无偏估计很显然;

只需证明  $ES^2 = \sigma^2$ 。

$$S^{2} = \frac{1}{n-1} \sum_{k=1}^{n} (X_{k} - \overline{X})^{2} = \frac{1}{n-1} \{ \sum_{k=1}^{n} X_{k}^{2} - n \overline{X}^{2} \}$$

$$E S^{2} = \frac{1}{n-1} \{ n[\mu^{2} + \sigma^{2}] - n[(E\overline{X})^{2} + D\overline{X}] \}$$

$$= \frac{1}{n-1} \{ n[\mu^{2} + \sigma^{2}] - n[\mu^{2} + \frac{\sigma^{2}}{n}] \} = \sigma^{2}$$

练习2.2.2

对于总体  $X \sim N(\mu, \sigma^2)$  , 验证 n = 2 时样本绝对偏差及样本标准差的统计量都是  $\sigma$  的无偏估计。

$$\varphi_{1} = \sqrt{\frac{\pi}{2}} \frac{1}{\sqrt{n(n-1)}} \sum_{k=1}^{n} |X_{k} - \overline{X}|$$

$$\varphi_{2} = \frac{\Gamma(\frac{n-1}{2})}{\sqrt{2}\Gamma(\frac{n}{2})} \sqrt{\sum_{k=1}^{n} (X_{k} - \overline{X})^{2}}$$

提示:考虑N(0,1)的绝对矩以及卡方分布的期望

例2.2.3 总体  $X \sim U(0, \theta)$ ,  $\theta$ 是未知参数, 讨论  $\theta$  的无偏估计。

解.  $\theta$  的矩估计是  $2\overline{X}$ , 显然是无偏估计, 不过样本均值不是充分统计量, 因此可能不如极大似然估计  $X_{(n)}$  好, 但是  $X_{(n)}$  是否无偏的?

 $X_{(n)}$  的分布函数显然是  $\mathbf{P} \{ X_{(n)} \quad x \} = (x/\theta)^n \; , \; \mathbf{0} < x < \theta \; . \;$  因此  $E \, X_{(n)} = \frac{n}{n+1} \; \theta \; ; \;$  修正后得到根据充分统计量 构成的 $\theta \;$  的 $UE \;$  是  $\frac{n+1}{n} \; X_{(n)} \; . \;$ 

#### 利用充分统计量构造无偏估计

假定样本是  $X_1$ , ...,  $X_n$ , 充分统计量为 T, 参数  $g(\theta)$  的无偏估计量是  $\varphi$ , 则 $E(\varphi|T)$  是  $g(\theta)$  的由充分统计量构成的无偏估计。

练习2.2.4

样本  $X_1$ , ...,  $X_n$  来自参数 p 的两点分布,利用充分统计量  $T = X_1 + ... + X_n$  构造总体方差 p(1-p) 的一个无偏估计量。

## 糟糕的无偏估计

#### 反例1

设总体 X 来自泊松分布  $P(\lambda)$ , 现在只有一个样本  $X_1$ , 求  $g(\lambda) = e^{-2\lambda}$ 的无偏估计。

#### 这里无偏估计只有一个:

当  $X_1$  的观察值为偶数时,用 1 估计 $e^{-2\lambda}$  ; 当  $X_1$  的观察值为奇数时,用 - 1 估计 $e^{-2\lambda}$ 

#### 反例2

总体 X 来自两点分布 B(1,p) , 仍然只有一个样本  $X_1$  , 则  $p^2$  的无偏估计不存在。

如果  $g(X_1)$  是 $p^2$ 的一个无偏估计,则多项式  $p g(1) + (1 - p) g(0) = p^2$  对所有的 0 都成立,矛盾。 所以这里无偏估计不存在。

# 2.2.2 有效性

### 1. 如何衡量估计的偏差

$$\varphi(X_1,...,X_n)+Y$$

定义2.2.2 假定  $\varphi(X_1,...,X_n)$  是  $g(\theta)$  的一个估计 , 则

$$M(\varphi) = E [\varphi(X_1,...,X_n) - g(\theta)]^2$$
 称为是估计量  $\varphi(X_1,...,X_n)$  的均方误差( $MSE$ )。

MSE 越小估计就越好, UE 的 MSE 就是它的方差 例2.2.5 总体  $X \sim U(0, \theta)$  , 比较  $\theta$  的两个无偏

估计:  $\varphi_1 = 2\overline{X}$  与 $\varphi_2 = \frac{n+1}{n}X_{(n)}$ 的MSE。

解. 由于都是无偏估计,因此只需计算方差

显然  $Var \varphi_1 = 4 Var (X_1) / n = \frac{\theta^2}{3n}$ ,容易计算出  $Var \varphi_2 = \frac{\theta^2}{n(n+2)}$  ;

n=1时即只有一个样本,它们的MSE 相同,但事实上这时这两个估计重合;

当样本容量大于1总有 n(n+2) > 3n ,所以 从均方误差的角度看 ,  $\varphi_2$ 也要比  $\varphi_1$ 好。

### 2. 限制在UE 中的最优估计

定义2.2.3 <u>一致最小方差无偏估计</u>(UMVUE) 假定  $\varphi_0(X_1,...,X_n)$  是  $g(\theta)$  的一个无偏估计,并且  $M(\varphi_0)$   $M(\varphi)$  对 $g(\theta)$  的任意 UE  $\varphi$  都成立,则称 $\varphi_0(X_1,...,X_n)$ 是 $g(\theta)$  的一致最小方差无偏估计

显然  $g(\theta)$  的无偏估计的方差越小越好,但是这些方差不可能任意地小。  $g(\theta)$  的所有无偏估计的方差有一个公共的下界(C-R下界)。

方差达到这个下界的 UE 自然就是 UMVUE

# 3. 一般情况下如何寻找 UMVUE

Blackwell-Lehmann-Sheffe 定理

如果T 是充分、完备的统计量 ,  $\varphi(T)$  是  $g(\theta)$  的一个无偏估计 , 则 $\varphi(T)$  就是  $g(\theta)$  的UMVUE。

只需利用充分、完备统计量去构造无偏估计

思考1

给出计算任意 $g(\theta)$ 的UMVUE的思路。

例2.2.6 求  $N(\mu, \sigma^2)$  中参数  $\mu, \sigma^2$  的 UMVUE

解. 根据正态分布密度函数或因子分解定理, 充分完备统计量是:

$$(\sum_{k=1}^{n} X_{k}, \sum_{k=1}^{n} X_{k}^{2})$$

现在已知样本均值、样本方差分别是  $\mu$ ,  $\sigma$  的无偏估计,最重要的,它们还都是充分完备统计量的函数,因此  $\mu$ ,  $\sigma$  的UMVUE 分别就是样本均值和样本方差。

#### 例2.2.7 关于一些常见分布的参数的UMVUE

这些估计量都是无偏估计, a.由因子分解定理,它们都是充分统计量; b.总体属于指数族,它们也都是完备统计量; 因此根据B-L-S 定理,这些估计都是*UMVUE*。

# 2.2.3 一致估计(Consistent estimation)

参数  $g(\theta)$  的估计量  $\varphi(X_1,...,X_n)$  总是与样本容量 n 有关,因此不妨记为 $\varphi_n$ ;

一个好的估计直观上应该满足: 当 n 充分大时 ,  $\varphi_n$  要充分接近  $g(\theta)$  。

定义2.2.4 对于任意  $\varepsilon > 0$  , 如果当n 时 ,  $P\{ | \varphi_n - g(\theta) | > \varepsilon \} \to 0$  则称  $\varphi_n$  是  $g(\theta)$  的一致估计(又叫相合估计)

即 ,  $\varphi_n$ 依概率收敛到  $g(\theta)$ 

#### 强相合估计:

 $P\{\varphi_n \rightarrow g(\theta)\} = 1$  即  $\varphi_n$ 不收敛到  $g(\theta)$  的那些样本点的概率为 0

一般来说矩估计都具有强相合性,而在较广泛的条件下,极大似然估计也具有强相合性。

### 渐近正态估计: Asymptotically normal estimation

如果存在一个常数 
$$\sigma > 0$$
 , 使得 
$$\frac{n^{1/2} [\varphi_n - g(\theta)]}{\sigma} \rightarrow N(0, 1)$$

即 ,  $\varphi_n$ 的分布可以近似认为是  $N(g(\theta), \frac{\sigma^2}{n})$ 

#### 练习2.2.8

样本  $X_1, ..., X_n$  来自泊松总体  $P(\lambda)$ ,构造参数 $\lambda$  的渐近正态估计。

#### 练习2.2.9

样本  $X_1, ..., X_n$  来自总体  $U(0, \theta)$ , 已知  $X_{(n)}$  是总体参数 $\theta$ 的极大似然估计。证明它也是 $\theta$ 的一致估计。(甚至是强相合及任意阶的矩相合估计)

# 第2.3节 区间估计

矩估计与极大似然估计,都是一种点估计。 区间估计是指用一个(随机)区间去做未知 参数  $g(\theta)$  的估计,这个区间称为是置信区间。

这个区间包含  $g(\theta)$ 的概率称为置信度或置信水平; 区间的长度称为是这个区间估计的精度, 长度越短,即精度越高,这个区间越好。

#### 东北大学数学系

区间估计的想法是"给所做的结论留些余地", 表示我们有多大的把握肯定我们所做的结论。 显然对于总体的未知参数一个区间要比一个 数值提供的信息更多,也更让人放心。

置信度越大,则区间的长度应该越长,即精度小,或者说抽样误差大。

在实际的统计应用中大多数的置信区间是由样本统计量 ± "抽样误差"来构造。

# 2.3.1 置信区间理论(Confidence interval)

定义2.3.1 给定一个常数  $0 < \alpha < 1$  , 对于总体未知参数  $g(\theta)$  , 如果存在两个统计量  $\varphi_1$ 、 $\varphi_2$  满足:

 $P\{\varphi_1(X) < g(\theta) < \varphi_2(X)\}$  1 -  $\alpha$  则称 $(\varphi_1, \varphi_2)$ 是 $g(\theta)$ 的置信度1 -  $\alpha$  的置信区间;  $\varphi_1$ 、 $\varphi_2$ 分别被称为是置信下限与置信上限。

有时也只考虑单侧区间 $(\varphi_1, +)$ 或 $(-, \varphi_2)$ 

点估计可以形式上认为是一种特殊的区间估计,这个区间的长度为0。

区间估计的置信度与精度是一对矛盾。

如果置信度越高,明显地区间应该越大,即误差大,区间的精度低。反之同理。

#### J. Neyman 的观点:

先考虑置信度,再去讨论估计的精度

先找出一些以 $1 - \alpha$  概率包含未知参数的区间,再从这些区间里去找长度最短者。

# 2.3.2 区间估计的求解思路

置信区间主要依据统计量的抽样分布或者是大样本理论来构造。

第一步 找一个枢轴变量  $Z(X, \theta)$ 。

枢轴变量是一个随机变量,它与抽取出的样本以及待估计的  $g(\theta)$  都有关系。但是它的分布又必须是与参数  $\theta$  无关的已知分布。

一般是从  $g(\theta)$  的良好的点估计出发, 去寻找枢轴变量  $Z(X, \theta)$ 。 第二步 对于给定的置信度  $1 - \alpha$  , 求出两个常数  $a \setminus b$  , 使得:  $P\{a < Z(X, \theta) < b\} = 1 - \alpha$ 

第三步 变换不等式,成为等价的形式:  $a < Z(X,\theta) < b$   $\varphi_1(X) < g(\theta) < \varphi_2(X)$ 

因此区间  $(\varphi_1, \varphi_2)$  就是  $g(\theta)$  的一个置信度为1 -  $\alpha$  的区间估计。

# 2.3.3 常见的几个区间估计

### 1. 总体属性比例的置信区间

假定从总体中抽取了n 个观察值,以 $p_s$  记样本里具有某种属性的比例,则总体中具有这种属性的比例p 的1 -  $\alpha$  区间估计近似是:

$$p_s - u_{\alpha/2} \sqrt{\frac{p_s(1-p_s)}{n}} \quad \text{all} \quad p_s + u_{\alpha/2} \sqrt{\frac{p_s(1-p_s)}{n}}$$

 $u_{\alpha/2}$  恰好是标准正态分布的双侧  $\alpha$  分位点

#### 依据是 De Moivre - Laplace 中心极限定理

- a. 随机从总体中抽取一个样本,它具有这种属性的概率是p;
- b. 随机从大总体中抽取n个样本,其中具有这种属性的样本个数X近似有 $X \sim B(n, p)$ ;
- c. 根据中心极限定理,又近似有:

$$\frac{X-np}{\sqrt{np(1-p)}} \sim N(0,1)$$

把上式改写成:  $\frac{\frac{X}{n}-p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0,1)$ 

这里(X/n)正好是样本中的比例  $p_s$ , 而根号符号里的 p 未知,因此用  $p_s$  近似替代,注意到标准正态分布是一个对称的分布,因此得到总体比例 p 的最短的近似区间估计:

$$p_s - u_{\alpha/2} \sqrt{\frac{p_s(1-p_s)}{n}} \qquad \text{all} \qquad p_s + u_{\alpha/2} \sqrt{\frac{p_s(1-p_s)}{n}}$$

例2.3.1 考虑容量为 1200 的一组样本构造的区间估计,假定有60% 的同学每天自习时间超过 2 小时。一个 95% 的置信区间的抽样误差是 2.8 个百分点。

#### 这个结论的含义是:

有 95% 的把握可以肯定,学习认真同学的真实比例界于 57.2~62.8 之间。

同理,90%的置信区间的抽样误差是2.3个百分点,因此以90%的把握可以确定的这个区间是 $57.7 \sim 62.3$ 。

例2.3.2 随机询问500 名工作一年的大学毕业生, 其中290 人表示对自己的工作还算满意,即新 毕业大学生中有58%不反感自己的工作。

从区间估计的角度,95%区间的抽样误差是

$$1.96\sqrt{\frac{0.58(1-0.58)}{500}} = 2.2\%$$

有 55.8~60.2 的毕业生认可他的新工作。

练习2.3.3

不满意而想换工作的比例大约在什么范围?

### 2. 两个属性比例之差的置信区间

假定从两个总体中分别抽取了  $n_1$ 、  $n_2$  个观察值,样本比例相应是  $p_{s1}$ 、  $p_{s2}$  。则两个总体比例之差  $p_1$  -  $p_2$  的置信水平 1 -  $\alpha$  的区间估计近似地是:

$$(p_{s1}-p_{s2})-u_{\alpha/2}\sqrt{\frac{p_{s1}(1-p_{s1})}{n_1}+\frac{p_{s2}(1-p_{s2})}{n_2}}$$

到 
$$(p_{s1}-p_{s2})+u_{\alpha/2}\sqrt{\frac{p_{s1}(1-p_{s1})}{n_1}+\frac{p_{s2}(1-p_{s2})}{n_2}}$$

例2.3.4 Time / CNN 曾经进行了一项电话委托调查:访问 503 名非洲裔美国人,询问他们是更喜欢用"非洲裔美国人"还是"黑人"来作为他们种族的称呼,结果其中有26%的人更喜欢第一种称呼;五年以后这个调查被重新做了一遍,发现有53%更喜欢"非洲裔美国人"的称呼。调查是否表明与五年前相比人们的观点有改变?

分析: 问题的关键是,这27个百分点的差异究竟是来自于调查时不可避免的随机误差,还是因为这两次调查时真实的比例的确发生了"显著的"改变?

首先计算抽样误差,

$$1.96\sqrt{\frac{0.26(1-0.26)}{503} + \frac{0.53(1-0.53)}{503}} = 0.058$$

即真实比例的百分比差异  $p_1$  -  $p_2$  以95%可能界于 27-5.8 = 21.2 到 27 + 5.8 = 32.8 之间。

很显然这个区间(21.2,32.8)不包含 0点,因此可以认为真正的差异发生了变化。

进一步还可以认为大约有21% 到33%的比例变得更喜欢用"非洲裔美国人"来称呼他们自己。

### 3. 正态总体均值的置信区间

假定样本  $X_1$ , ...,  $X_n$  来自总体  $N(\mu, \sigma^2)$ 

(1) 如果总体方差已知  $\sigma^2 = \sigma_0^2$  此时样本均值的分布为  $N(\mu, \frac{\sigma_0^2}{n})$ 

$$\mathbf{P}\{|\frac{\sqrt{n}(\overline{X}-\mu)}{\sigma_0}| \leq u_{\alpha/2}\} = 1-\alpha$$

总体均值  $\mu$ 的  $1 - \alpha$ 的区间估计:  $(\overline{X} - u_{\alpha/2} \frac{\sigma_0}{\sqrt{n}}, \overline{X} + u_{\alpha/2} \frac{\sigma_0}{\sqrt{n}})$ 

# (2) 如果总体方差 & 未知需要使用抽样分布中定理1.3.1

$$\frac{\sqrt{n} (\overline{X} - \mu)}{S} \sim t (n-1)$$

因此有:

$$\mathbf{P}\left\{\left|\frac{\sqrt{n(X-\mu)}}{S}\right| \le t_{\alpha/2}(n-1)\right\} = 1-\alpha$$

总体均值  $\mu$  的1 -  $\alpha$  区间估计为:

$$(\overline{X}-t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}},\overline{X}+t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}})$$

例2.3.5 科学上的很多重大发现往往由年轻人提出,下表是 16 世纪中期到 20 世纪的 12 项重大科学突破的情况:

| 科学发现         | 科学家  | 时间   | 年龄 |
|--------------|------|------|----|
| 日心说          | 哥白尼  | 1543 | 40 |
| 望远镜,天文学基本定律  | 伽利略  | 1600 | 43 |
| 动力学,万有引力,微积分 | 牛顿   | 1665 | 23 |
| 电的本质         | 富兰克林 | 1746 | 40 |
| 燃烧即氧化        | 拉瓦锡  | 1774 | 31 |

| 莱尔   | 1830                             | 33                                                        |
|------|----------------------------------|-----------------------------------------------------------|
| 达尔文  | 1858                             | 49                                                        |
| 麦克思韦 | 1864                             | 33                                                        |
| 居里   | 1896                             | 34                                                        |
| 普朗克  | 1901                             | 43                                                        |
| 爱因斯坦 | 1905                             | 26                                                        |
| 薛定谔  | 1926                             | 39                                                        |
|      | 达尔文<br>麦克思韦<br>居里<br>普朗克<br>爱因斯坦 | 达尔文 1858<br>麦克思韦 1864<br>居里 1896<br>普朗克 1901<br>爱因斯坦 1905 |

假定数据来自期望、方差未知时的正态 总体,问什么年龄段科学家们将可能做出 重要的工作? 解. 首先计算样本统计量,

$$\overline{x} \approx 36.17, \quad s \approx 7.53$$

现在有12个样本,因此抽样误差是

$$t_{0.025}(11)\frac{s}{\sqrt{12}} = 2.201 \times \frac{7.53}{3.4641} = 4.78$$

可以构造出一个区间 (31.4, 41.0)

历史数据表明,科学家研究工作的黄金时期是31岁半到41岁间。这个年龄段他们将有可能做出杰出的工作。

这个结论的可靠程度是95%。

### 4. 正态总体方差的置信区间

只讨论μ未知的情况,由抽样分布定理1.3.1

$$\frac{(n-1)S^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$$

$$P\{\chi_{1-\alpha/2}^{2}(n-1) < \frac{(n-1)S^{2}}{\sigma^{2}} < \chi_{\alpha/2}^{2}(n-1)\} = 1-\alpha$$

虽然卡方分布的密度函数不是对称函数,习惯上仍然取总体方差  $\sigma$ 的  $1 - \alpha$  的区间估计为:

$$\left(\frac{(n-1)S^2}{\chi_{\alpha/2}^2(n-1)}, \frac{(n-1)S^2}{\chi_{1-\alpha/2}^2(n-1)}\right)$$

### 5. 两个正态总体均值差的置信区间

假定从总体  $X \sim N(\mu_1, \sigma_1^2)$  中抽取  $n_1$  个样本,从另个独立的总体  $Y \sim N(\mu_2, \sigma_2^2)$  中抽取  $n_2$  个样本;

相应的样本均值与样本方差分别为:

$$\overline{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i \quad , \quad S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \overline{X})^2$$

$$\overline{Y} = \frac{1}{n_2} \sum_{j=1}^{n_2} Y_j \quad , \quad S_2^2 = \frac{1}{n_2 - 1} \sum_{j=1}^{n_2} (Y_j - \overline{Y})^2$$

#### 根据抽样分布中定理1.3.2,有

根据抽样分布中定理1.3.2,有 
$$\frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{S_W\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} \sim t(n_1+n_2-2)$$
 这里  $S_W^2=\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2}$  因此均值差  $\mu_1$  -  $\mu_2$  的1 -  $\alpha$  区间估计为: 
$$(\overline{X}-\overline{Y}-t_{\alpha/2}(n_1+n_2-2)S_W\sqrt{\frac{1}{n_1}+\frac{1}{n_2}},$$
  $\overline{X}-\overline{Y}+t_{\alpha/2}(n_1+n_2-2)S_W\sqrt{\frac{1}{n_1}+\frac{1}{n_2}})$ 

$$(\overline{X} - \overline{Y} - t_{\alpha/2}(n_1 + n_2 - 2)S_W \sqrt{\frac{1}{n_1} + \frac{1}{n_2}},$$

$$\overline{X} - \overline{Y} + t_{\alpha/2}(n_1 + n_2 - 2)S_W \sqrt{\frac{1}{n_1} + \frac{1}{n_2}})$$

## 6. 两个正态总体方差比的置信区间

仍然根据抽样分布中定理1.3.2,有

$$\frac{S_1^2 / S_2^2}{\sigma_1^2 / \sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$

因此方差比  $\sigma_1^2/\sigma_2^2$  的1 -  $\alpha$  区间估计为:

$$\left(\frac{S_1^2/S_2^2}{F_{\alpha/2}(n_1-1,n_2-1)},\frac{S_1^2/S_2^2}{F_{1-\alpha/2}(n_1-1,n_2-1)}\right)$$

例2.3.6 用某种标准给子女和父母亲近程度打分,

| 样本容量      | 平均接触程度 | 标准差 |
|-----------|--------|-----|
| 71(父亲酗酒)  | 78分    | 25  |
| 46(父亲不酗酒) | 91分    | 22  |

给出95%的区间估计并且讨论。

解. 对于父亲酗酒的子女构成的总体, 抽样误差是 25 50

$$t_{0.025}(70)\frac{25}{\sqrt{71}}\approx 5.9$$

一个95%的区间估计是 (72.1,83.9);

#### 同理不酗酒父亲的子女构成总体的抽样误差是

$$t_{0.025}(45)\frac{22}{\sqrt{46}}\approx 6.6$$

一个95%的区间估计是(84.4,97.6);

而这两个均值差的区间估计是(s 23.9)

(4.1, 21.9)

可以认为正常家庭子女比酗酒父亲的子女要更亲近父母,大约高出4~22分。

### 置信水平的理解

由于总体参数是未知的,对于每一个计算 出来的区间估计,它要么包含总体参数,要么 不包含,只是我们不知道而已;

但我们可以肯定,如果采用某种方法构造出一个置信水平 0.95 的区间(这个区间的两个端点是统计量的函数),当我们代入 100 次统计量的数据从而得到100 个区间时,平均有 95 个区间要包含总体参数。

#### 样本容量对区间长度的影响

以95%的区间估计为例,

总体比例

$$2\times1.96\sqrt{\frac{p_s(1-p_s)}{n}}$$

两个比例之差  $2\times1.96\sqrt{\frac{p_{s1}(1-p_{s1})}{n_1}+\frac{p_{s2}(1-p_{s2})}{n_2}}$ 

方差未知正态总体

$$2 \times t_{0.025}(n-1) \frac{s}{\sqrt{n}}$$

方差已知正态总体

$$2 \times 1.96 \frac{\sigma_0}{\sqrt{n}}$$

4倍的样本容量,抽样误差才可能缩减一半

#### 民意调查中的估计

在总体比例的区间 估计中抽样误差是: $1.96\sqrt{\frac{p_s(1-p_s)}{n}}$ 

根据不等式关系  $p_s(1-p_s)$  0.5 × 0.5 = 0.25, 所以只要取样本容量 n 1200, 就足够保证抽样误差 3个百分点。

这也是大多数的民意调查至少要保证抽取 1200个样本的原因, 同时抽样误差被近似成  $100/\sqrt{n}$  个百分点。

# 2.3.4 序贯区间估计

一个好的区间估计,应该是置信度不小于事先给定的  $1 - \alpha$ ,而区间的长度又不要超过事先指定的某个常数 l。

这种区间是否存在?又如何去构造?

序贯或逐次(Sequential)方法最初是 A. Wald 在二战后期为处理美国军火生产中质量检验问题 而提出的一个一个地抽取样本的方法(序贯概率比 检验): 样本容量 n 不再事先给定,而是根据 抽样或观测过程来决定什么时候停止抽样,即 n 是随机变量。

### 考虑总体 $N(\mu, \sigma^2)$ 中均值 $\mu$ 的区间估计

1. 如果总体方差已知  $\sigma^2 = \sigma_0^2$ 

这时只要样本容量 n 足够大就可以找到同时 满足置信度与长度要求的区间估计:

$$(\overline{X}-u_{\alpha/2}\,\frac{\sigma_0}{\sqrt{n}}\,,\overline{X}+u_{\alpha/2}\,\frac{\sigma_0}{\sqrt{n}}\,)$$

区间的长度为: $2u_{\alpha/2}\sigma_0/\sqrt{n} \leq l$ 

只要取样本容量  $n \quad (\frac{2u_{\alpha/2} \sigma_0}{l})^2$  ,

就可以保证置信度与精度同时达到要求。

# 2. 如果总体方差 $\sigma$ 未知 1940年 Dantzig 证明了这种同时满足置信度 $1 - \alpha$ 与长度 $\ell$ 的区间估计不存在。

$$(\overline{X}-t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}},\overline{X}+t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}})$$

1945年,C.Stein 提出了一个两阶段抽样的序贯方法,能够同时满足置信度与长度的要求:第一阶段先抽取若干样本估计  $\sigma^2$ ,根据这个估计值看需要多大的样本容量 n 才能满足长度的要求,不够的 n 将在第二阶段补齐。

给定一个自然数  $n_0$  , 记: $C = \frac{l^2}{4 t^2_{c/2} (n_0 - 1)}$  ,

$$\overline{X}_0 = \frac{1}{n_0} \sum_{k=1}^{n_0} X_k \qquad S^2 = \frac{1}{n_0 - 1} \sum_{k=1}^{n_0} (X_k - \overline{X}_0)^2$$

指定自然数  $n_0$  ,第一阶段抽样  $n_0$  次得到样本  $X_1$  ,…, $X_{n_0}$  ,定义:

$$n(t) = \max(n_0, \frac{t^2}{C} + 1), 0 < t < +$$

得到  $n_0$  个样本后计算出样本标准差 S , 如果函数 $n(S) = n_0$  即  $S^2$  C  $n_0$  则停止抽样 (长度已满足要求);

另一种情况是  $n(S) > n_0$  即  $S^2 > C n_0$ ,则进入第二阶段,再抽样  $n(S) - n_0$  次,又得到样本  $X_{n_0+1}$ ,…, $X_{n(S)}$ ,定义随机变量:

$$\overline{X} = \frac{1}{n(S)} \sum_{k=1}^{n(S)} X_k \qquad Y = \frac{\sqrt{n(S)}(\overline{X} - \mu)}{S}$$

在理论上可以证明  $Y \sim t (n_0 - 1)$ , 所以如下区间具有置信度  $1 - \alpha$ :

$$(\overline{X} - t_{\alpha/2}(n_0 - 1) \frac{S}{\sqrt{n(S)}}, \overline{X} + t_{\alpha/2}(n_0 - 1) \frac{S}{\sqrt{n(S)}})$$

注意到函数 n(t) 的定义,始终有 n(S)  $S^2/C$ ,因此这个区间的长度 l

例2.3.7 假定总体  $X \sim N(\mu, \sigma^2)$  , 如下构造一个置信度 0.95 , 长度 0.6 的关于 $\mu$  的区间估计。

第一阶段,假定取了 $n_0 = 21$ 个样本,

这21个样本的样本均值与样本方差为:

$$\overline{X}_0 = 0.91$$
,  $S^2 = 0.73$ 

相应的, 分位点  $t_{0.025}(20) = 2.086$ , $C=0.6^2/(4\times 2.086^2)$ , $n(S)=\max{(21,[0.73\times 4\times 2.086^2/0.6^2]+1)}=36$ 因此需要再抽取  $n(S)-n_0=36-21=15$  个样本, 1.23 2.11 1.07 1.02 1.84 -0.26 0.05 1.83 0.46 -0.06 0.69 2.32 1.05 0.44 0.30

计算出全部 36 个样本的总的样本均值 0.92 ,以及相应的抽样误差 $2.086 \times 0.73^{1/2}/36^{1/2} = 0.297$ ,最后得到置信度 0.95 ,长度不超过 0.6 的区间: (0.623, 1.217)

#### 练习2.3.8

假定成年人脉搏次数(每分钟)服从正态分布。

- (1) 分别抽取 15 个男生样本、10 个女生样本, 给出男、女生脉搏次数 0.95 的区间估计。
- (2) 合并这 25 个样本计算 0.95 的区间估计。
- (3) 给出 0.95 的上侧以及下侧区间。
- (4) 讨论序贯区间,要求区间长度不大于10。