MAS472/6004 Computational Inference

Richard Wilkinson

r.d.wilkinson@sheffield.ac.uk

Computational Inference

Simple computational tools for solving hard statistical problems.

- ► Monte Carlo/simulation
- ▶ MC and simulation in frequentist inference
- Random number generation/ simulating from probability distributions
- ▶ Further Bayesian computation

Methods implemented via simple programs in R.

Chapter 1: Monte Carlo methods

Problem 1: estimating probabilities

A particular site is being considered for a wind farm. At that site, the log of the wind speed in m/s on day t is known to follow an AR(2) process:

$$Y_t = 0.6Y_{t-1} + 0.4Y_{t-2} + \varepsilon_t, \tag{1}$$

with $\varepsilon_t \sim N(0, 0.01)$.

If $Y_1 = Y_2 = 1.5$, what is the **probability** that the wind speed $\exp(Y_t)$ will be below 15 kmh for more than 10 days in a 100 day period?

Problem 2: estimating variances

Given a sample of 5 standard normal random variables X_1, \ldots, X_5 , what is the **variance** of

$$\max_{i} \{X_i\} - \min_{i} \{X_i\}$$

Problem 3: Estimating percentiles

The concentration of pollutant at any point in region following release from point source can be describe by the model

$$C(x, y, z) = \frac{Q}{2\pi u_{10}\sigma_z \sigma_y} \exp\left[-\frac{1}{2} \left\{ \frac{y^2}{\sigma_y^2} + \frac{(z - h)^2}{\sigma_z^2} \right\} \right], \quad (2)$$

C: air concentration of pollutant, Q: release rate, u_{10} : wind speed at 10m above ground, σ_y , σ_z : diffusion parameters in horizontal and vertical directions, h:release height, (x, y, z): coordinates along wind direction, cross wind and above ground.

Given Q = 100, h = 50m, but u, σ_z, σ_y uncertain. If

$$\log u_{10} \sim N(2, .1)$$
 $\log \sigma_y^2 \sim N(10, 0.2)$ $\log \sigma_z^2 \sim N(5, 0.05)$

What is the **95th percentile** of C(100, 100, 40)?

Problem 4:Estimating expectations

A hospital ward has 8 beds

- ► The number of patients arriving each day is uniformly distributed between 0 and 5 inclusive.
- ▶ The length of stay for each patient is also uniformly distributed between 1 and 3 days inclusive.

If all 8 beds are free initially, what is the **expected** number of days before there are more patients than beds?

Problem 5: Optimal decisions

The Monty Hall Problem

On a game show you are given the choice of three doors.

▶ Behind one door is a car; behind the others, goats.

The rules of the game are

- ▶ After you have chosen a door, the game show host, Monty Hall, opens one of the two remaining doors to reveal a goat.
- ➤ You are now asked whether you want to stay with your first choice, or to switch to the other unopened door.

What is the **optimal strategy**? And what is the resulting probability of winning?

These 5 problems are all either hard or impossible to tackle analytically. However, the **Monte Carlo method**, can be used to obtain approximate answers to all of them.

Monte Carlo methods are a broad class of computational algorithms relying on repeated random sampling to obtain numerical results. They use randomness to solve problems that might be deterministic in principle.

Some useful results

Monte Carlo is primarily used to calculate integrals. For example

▶ Expectation of a random variable $X \sim f(\cdot)$, or a function of it

$$\mathbb{E}g(X) = \int g(x)f(x)dx$$

▶ Variance

$$Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2.$$
 (3)

▶ Probability $\mathbb{P}(X < a)$ is the expectation of $\mathbb{I}_{X < a}$, the indicator function which is 1 if X < a and otherwise is 0. Then

$$\mathbb{P}(X < a) = 1 \times \mathbb{P}(X < a) + 0 \times \mathbb{P}(X \ge a)$$
$$= \mathbb{E}\{\mathbb{I}(X < a)\} = \int \mathbb{I}_{X < a} f(X) dx$$

Monte Carlo Integration - I

Suppose we are interested in the integral

$$I = \mathbb{E}(g(X)) = \int g(x)f(x)dx$$

Let X_1, X_2, \ldots, X_n be independent random variables with pdf f(x). Then a Monte Carlo approximation to I is

$$\hat{I}_n = \frac{1}{n} \sum_{i=1}^n g(X_i).$$
 (4)

Example:

Monte Carlo Integration - II

Some properties of \hat{I} .

(1) \hat{I}_n is an unbiased estimator of I. **Proof:**

Monte Carlo Integration - III

(2) \hat{I}_n converges to I as $n \to \infty$.

Proof:

Monte Carlo Integration - IV

The SLLN tells us \hat{I}_n converges, but not how fast. It doesn't tell us how large n must be to achieve a certain error.

(3)

$$\mathbb{E}[(\hat{I}_n - I)^2] = \frac{\sigma^2}{n}$$

where $\sigma^2 = \mathbb{V}ar(g(X))$. Thus the 'root mean square error' (RMSE) of \hat{I}_n is

$$RMSE(\hat{I}_n) = \frac{\sigma}{\sqrt{n}} = O(n^{-1/2}).$$

Thus, our estimate is more accurate as $n \to \infty$, and is less accurate when σ^2 is large. σ^2 will usually be unknown, but we can estimate it:

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (g(X_i) - \hat{I}_n)^2$$

We call $\hat{\sigma}$ the Monte Carlo standard error.

Monte Carlo Integration - V

We write¹

$$RMSE(\hat{I}_n) = O(n^{-1/2})$$

to emphasise the rate of convergence of the error with n.

To get 1 digit more accuracy requires a 100-fold increase in n. A 3-digit improvement would require us to multiply n by 10^6 .

Consequently Monte Carlo is not usually suited for problems where we need a very high accuracy. Although the error rate is low (the RMSE decreases slowly with n), it has the nice properties that the RMSE

- does not depend on $d = \dim(x)$
- \blacktriangleright does not depend on the smoothness of f

Consequently Monte Carlo is very competitive in high dimensional problems that are not smooth.

Monte Carlo Integration - VI

In addition to the rate of convergence, the central limit theorem tells us the asymptotic² distribution of \hat{I}_n

(4)

$$\frac{\sqrt{n}(\hat{I}_n - I)}{\sigma} \to N(0, 1)$$
 in distribution as $n \to \infty$

Informally, \hat{I}_n is approximately $N(I, \frac{\sigma^2}{n})$ for large n. This allows us to calculate confidence intervals for I.

See the R code on MOLE.

- ▶ If we require $E\{f(X)\}$, random observations from distribution of f(X) can be generated by generating X_1, \ldots, X_n from distribution of X, and then evaluating $f(X_1), \ldots, f(X_n)$.
- ▶ Preceding results can be applied when estimating variances or probabilities of events.
- ▶ Percentiles estimated by taking the sample percentile from the generated sample of values X_1, \ldots, X_n .
- We expect the estimate to be more accurate as n increases. Determining a percentile is equivalent to inverting a CDF. If wish to know the 95th percentile, we must find ν such that

$$P(X \le \nu) = 0.95,\tag{5}$$

Monte Carlo solutions to the example problems Question 1

Define E: the event that in 100 days the wind speed is below 15kmh for more than 10 days.

To estimate $\mathbb{P}(E)$, generate lots of individual time series, and count proportion of series in which E occurs

- 1. Generate *i*th realisation of the time series process: For t = 3, 4, ..., 100:
 - ► Set $Y_t \leftarrow 0.6Y_{t-1} + 0.4Y_{t-2} + N(0, 0.01)$
- 2. Count number of elements of $\{Y_1, \ldots, Y_{100}\}$ less than $\log 4.167$:
 - ▶ Set $X_i \leftarrow \sum_{t=1}^{100} I\{Y_t < \log 4.167\}$
- 3. Determine if event E has occurred for time series i:
- 4. Estimate $\mathbb{P}(E)$ by $\frac{1}{N} \sum_{i=1}^{N} E_i$

Question 2

Define Z to be the difference between max and min of 5 standard normal random variables. Estimate the variance

Question 3

Transformation of a random variable: Given random variables X_1, \ldots, X_d we want to know the distribution of $Y = f(X_1, \ldots, X_d)$.

- ▶ The Monte Carlo method can be used
 - ► Sample unknown inputs from their distributions,
 - evaluate the function to obtain output value from its distribution.
- ▶ Given suitably large sample, 95th percentile from distribution of C(100, 100, 40) can be estimated by the 95th percentile from sample of simulated values of C(100, 100, 40).

For i = 1, 2, ..., N:

- 1. Sample a set of input values:
 - ▶ Sample $u_{10,i}$ from log N(2,.1)
 - ► Sample $\sigma_{y,i}^2$ from log N(10,0.2)
 - Sample $\sigma_{z,i}^{2}$ from $\log N(5,0.05)$
- 2. Evaluate the model output C_i :

► Set
$$C_i \leftarrow \frac{100}{2\pi u_{10,i}\sigma_{z,i}\sigma_{y,i}} \exp\left[-\frac{1}{2}\left\{\frac{40^2}{\sigma_{y,i}^2} + \frac{100}{\sigma_{z,i}^2}\right\}\right]$$

3. Return the 95th percentile of C_1, C_2, \ldots, C_N .

Question 4

- ▶ Define W to be the number of days before the first patient arrives to find no available beds.
- ▶ The question has asked us to give E(W).
- ▶ If we can generate $W_1, ..., W_n$ from the distribution of W, we can then estimate E(W) by \overline{W} .

See the R code on MOLE for a way to simulate this process.

The Monty Hall Problem

- ▶ Simulate N separate games by randomly letting x take values in $\{1,2,3\}$ with equal probability. x represents which door the car is behind.
- Simulate the contestant randomly picking a door by choosing a value y in $\{1,2,3\}$ (it doesn't matter how we do this, we can always choose 1 if you like, the results are the same).
- ▶ Now the game show host will open the door which hasn't been picked that contains a goat. For each of the N games, record the success of the two strategies
 - 1. stick with choice y
 - 2. change to the unopened door.
- ▶ Calculate the success rate for each strategy.

Example 1

Consider the probability p that a standard normal random variable will lie in the interval [0,1]. This can be written as an integral

$$p = \int_0^1 \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx. \tag{6}$$

Two methods for estimating/evaluating this probability are

- 1. numerical integration/quadrature, e.g., trapezium rule, Simpson's rule etc
- 2. given a sample of standard normal random variables Z_1, \ldots, Z_n , look at the proportion of Z_i s occurring in the interval [0,1].

Example 1: An alternative method

- 1. Y is a RV with f(Y) any function of Y. To generate a random value from the distribution of f(Y), generate a random Y from the distribution of Y, and then evaluate f(Y).
- 2. Providing $\mathbb{E}\{f(Y)\}$ exists, given a sample $f(Y_1), \ldots, f(Y_n)$,

$$\frac{1}{n}\sum_{i=1}^{n}f(Y_i)$$

is an unbiased estimator of $\mathbb{E}\{f(Y)\}.$

3. Let X be a random variable with a U[0,1] distribution. For an arbitrary function f(X), what is the expectation of f(X)?

4 Now choose f to be the function $f(X) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{X^2}{2}\right)$. Then if $X \sim U[0,1]$

$$\mathbb{E}\{f(X)\} = \int_0^1 \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) 1 dx \tag{8}$$

Given a sample $f(X_1), \ldots, f(X_n)$ from the distribution of f(X), we can estimate $E\{f(X)\}$ by the *unbiased* Monte Carlo estimator \hat{p}

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} f(X_i), \tag{9}$$

where X_i is drawn randomly from the U[0,1] distribution.

Key idea

re-express the integral of interest (6) as an expectation.

Example 2

Consider the integral $\int_0^1 h(x) dx$ where

$$h(x) = [\cos(50x) + \sin(20x)]^2$$

Generate X_1, \ldots, X_n from U[0,1] and estimate with $\hat{I}_n = \frac{1}{n} \sum h(X_i)$.

The general framework

$$R = \int f(x)dx \tag{10}$$

Let g(x) be some density function that is easy to sample from. How do we re-write (10) as the expectation of a function of a random variable X with density function g(x)?

So we now have $R = E\{h(X)\}$, where X has the density function g(x). If we now sample X_1, \ldots, X_n from g(x), then evaluate $h(X_1), \ldots, h(X_n)$,

$$\hat{R} = \frac{1}{n} \sum_{i=1}^{n} h(X_i) \tag{12}$$

is an unbiased estimator of R.

Example 3

Use Monte Carlo integration to estimate

$$R = \int_{-1}^{1} \exp(-x^2) dx. \tag{13}$$

We'll consider two different choices for g(x).

1. A uniform density on [-1,1]: g(x) = 0.5 for $x \in [-1,1]$. We sample X_1, \ldots, X_n from U[-1,1], and estimate R by

$$\hat{R} = \frac{1}{n} \sum_{i=1}^{n} \frac{\exp(-X_i^2)}{g(X_i)} = \frac{1}{n} \sum_{i=1}^{n} 2 \exp(-X_i^2).$$
 (14)

2 A normal density function N(0, 0.5).

Note: sampled value X from g(x) not constrained to lie in [-1,1].

Re-write R as

$$R = \int_{-\infty}^{\infty} I\{-1 \le x \le 1\} \exp(-x^2) dx,\tag{15}$$

where $I\{\}$ denotes the indicator function.

We now sample X_1, \ldots, X_n from N(0, 0.5) and estimate R by

$$\hat{R} = \frac{1}{n} \sum_{i=1}^{n} \frac{I\{-1 \le X_i \le 1\} \exp(-X_i^2)}{g(X_i)} = \frac{1}{n} \sum_{i=1}^{n} \pi^{1/2} I\{-1 \le X_i \le 1\} \exp(-X_i^2)$$
(16)

Key idea

g(x) needs to mimic f(x) as closely as possible. Consider again $R = \int_{-1}^{1} \exp(-x^2) dx$.

Two terrible choices of g:

1. A uniform density on [0,1]: g(x) = 1 for $x \in [0,1]$.

$$R = \int_{-\infty}^{\infty} I\{-1 \le x \le 1\} \exp(-x^2) dx, \tag{17}$$

For $x \in [-1,0)$, we have f(x) > 0 and g(x) = 0. Must have g(x) > 0 for all x where f(x) > 0.

2. A normal density N(0, 0.09).

In this case, we have g(x) > 0 for $x \in [-1, 1]$, but we when we sample x from g, we expect around 95% of the values to lie in the range (-0.6, 6).

The Monte Carlo estimate of R is given by

$$\hat{R} = \frac{1}{n} \sum_{i=1}^{n} I\{-1 \le X_i \le 1\} \frac{\exp(-X_i^2)\sqrt{0.18\pi}}{\exp(-5.56X_i^2)}.$$
 (18)

Convergence

- ▶ Provided $f(x) > 0 \Rightarrow g(x) > 0$, \hat{R} will converge to R as $n \to \infty$.
- Use the central limit theorem to derive a confidence interval for \hat{R} :

$$\hat{R} \sim N\left(R, \frac{\sigma^2}{n}\right),$$
 (19)

where we estimate σ^2 by

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n \left\{ h(X_i) - \hat{R} \right\}^2 \tag{20}$$

▶ We can then report the confidence interval as

$$\hat{R} \pm Z_{1-\alpha/2} \sqrt{\hat{\sigma}^2/n},\tag{21}$$

Estimates of σ^2 in the example: U[-1,1]:0.16, N(0,0.5):0.42, N(0,0.09):6.81.

Comparison of Monte Carlo with numerical integration Mid-ordinate rule

Consider finding $I = \int_0^1 f(x) dx$. There are many different numerical integration schemes we might use. For example, the mid-ordinate rule is one of the simplest methods, and approximates I by a sum

$$\tilde{I}_n = \frac{1}{n} \sum_{i=1}^n f(x_i),$$

The points $x_i = (i - \frac{1}{2})h$ are equally spaced at intervals of h = 1/n.

Comparison of MC with numerical integration II Mid-ordinate rule error analysis

For smooth 1-d functions the error rates for quadrature rules can be much better than Monte Carlo

For example, if $f:[0,1]\to\mathbb{R}$ and f''(x) is continuous, then

$$|I - \tilde{I}_n| \le \frac{1}{24n^2} \max_{0 \le x \le 1} |f''(x)|$$

So

$$RMSE(\tilde{I}) = O(n^{-2})$$

i.e., it is a second order method. Other rules achieve higher error rates. For example, Simpson's rule is a fourth order method.

This is much faster than Monte Carlo: to get an extra digit of accuracy we only need multiply n by a factor of $\sqrt{10} = 3.2$

Comparison of MC with numerical integration III Curse of dimensionality

Classial quadrature methods work well for smooth 1d problems. But for d-dimensional integrals we have a problem. Suppose

$$I = \int_0^1 \int_0^1 \dots \int_0^1 f(x_1, \dots, x_d) dx_1 \dots dx_d$$

We can use the same N point 1-d quadrature rules on each of the d integrals.

This uses $n = N^d$ evaluations of f. The 1d mid-ordinate rule has error $O(N^{-2})$, so the d-dimensional mid-ordinate rule has error

$$|I - \tilde{I}| = O(N^{-2}) = O(n^{-2/d})$$

For d=4 this is the same as Monte Carlo. For larger d it is worse.

In addition, we require f to be smooth (f''(x)) to be continuous) for the method to work well.

Monte Carlo has the same $O(n^{-1/2})$ error rate regardless of $\dim(x)$ or f''(x)