DIGITAL DESIGN 2nd LAB

PRELIMINARY REPORT

Course Code: CS 223

Course Name: Digital Design

Section: 1

Name: Arda

Surname: İynem

Student ID: 22002717

Date: 27.02.2022

HALF ADDER

CIRCUIT SCHEMATIC BEHAVIORAL MODULE TESTBENCH

(b) Circuit Schematic for Half Adder

(g) Behavioral SystemVerilog Module for Half Adder

```
module half_adder(input logic a,b, output logic s,c); assign s = a \land b; assign c = a \& b; endmodule
```

(g) Testbench for Half Adder

```
module testbench_half_adder();
logic a,b;
logic s,c;

half_adder dut(a,b,s,c);
initial begin
a = 0; b = 0; #10;
b = 1; #10;
a = 1; b = 0; #10;
b = 1; #10;
end
endmodule
```


HALF SUBTRACTOR

CIRCUIT SCHEMATIC BEHAVIORAL MODULE TESTBENCH

(c) Circuit Schematic for Half Subtractor

'04 5V: 14 GND: 7 '08 5V: 14 GND: 7 '86 5V: 14 GND: 7

(h) Behavioral SystemVerilog Module for Half Subtractor

```
module half_subtractor(input logic a,b, output logic d,bout);
assign d = a ^ b;
assign bout = ~a & b;
endmodule
```

(h) Testbench for Half Subtractor

```
module testbench_half_subtractor();
logic a,b;
logic d,bout;
half_subtractor dut(a,b,d,bout);
initial begin
```

a = 0; b = 0; #10; b = 1; #10; a = 1; b = 0; #10; b = 1; #10; end endmodule

FULL ADDER (USING HALF ADDERS)

CIRCUIT SCHEMATIC STRUCTURAL MODULE TESTBENCH

(d) Circuit Schematic for Full Adder (Using Half Adders)

(i) Structural SystemVerilog Module for Full Adder (Using Half Adders)

```
module full_adder(input logic a,b,cin,
output logic s,cout);
logic s0, c0, c1;
half_adder ha(a,b,s0,c0);
half_adder ha2(s0,cin,s,c1);
assign cout = c0 | c1;
endmodule
```

(i) Testbench for Full Adder

```
module testbench_full_adder();
logic a,b,cin;
logic s,cout;

full_adder dut(a,b,cin,s,cout);
initial begin

a = 0; b = 0; cin = 0; #10;
cin = 1; #10;
b = 1; cin = 0; #10;
cin = 1; #10;
a = 1; b = 0; cin = 0; #10;
cin = 1; #10;
b = 1; cin = 0; #10;
cin = 1; #10;
b = 1; cin = 0; #10;
end
endmodule
```


2-BIT ADDER (USING FULL ADDERS)

CIRCUIT SCHEMATIC STRUCTURAL MODULE TESTBENCH

(e) Circuit Schematic for 2-Bit Adder (Using Full Adders)

(j) Structural SystemVerilog Module for 2-Bit Adder (Using Full Adders)

```
module two_bit_adder(input logic a0,b0,a1,b1, output logic s0,s1,cout); logic cout0; full_adder fa(a0,b0,0,s0,cout0); full adder fa2(a1,b1,cout0,s1,cout);
```

endmodule

(j) Testbench for 2-Bit Adder

```
module testbench_two_bit_adder();
logic a0,b0,a1,b1;
logic s0,s1,cout;
two bit adder dut(a0,b0,a1,b1,s0,s1,cout);
initial begin
 a0 = 0; b0 = 0; a1 = 0; b1 = 0; #10;
 b1 = 1; #10;
 a1 = 1; b1 = 0; #10;
 b1 = 1; #10;
 b0 = 1; a1 = 0; b1 = 0; #10;
 b1 = 1; #10;
 a1 = 1; b1 = 0; #10;
 b1 = 1; #10;
 a0 = 1; b0 = 0; a1 = 0; b1 = 0; #10;
 b1 = 1; #10;
 a1 = 1; b1 = 0; #10;
 b1 = 1; #10;
 b0 = 1; a1 = 0; b1 = 0; #10
 b1 = 1; #10;
 a1 = 1; b1 = 0; #10;
 b1 = 1; #10;
end
endmodule
```


LAB CALCULATOR CIRCUIT SCHEMATIC

(f) Circuit Schematic for Lab Calculator (Using Gates Only)

(f) Circuit Schematic for Lab Calculator (Using Half Adder/Subtractor and MUX)

LAB CALCULATOR

STRUCTURAL MODULE TESTBENCH

(k) Structural SystemVerilog Module for Lab Calculator (Using Half Adders and Half Subtractors)

(k) Testbench for Lab Calculator

```
module testbench_lab_calculator();
logic a,b,c,d;
logic y,z;
lab calculator dut(a,b,c,d,y,z);
initial begin
 c = 0; d = 0; a = 0; b = 0; #10;
 b = 1; #10;
 a = 1; b = 0; #10;
 b = 1; #10;
 d = 1; a = 0; b = 0; #10;
 b = 1; #10;
 a = 1; b = 0; #10;
 b = 1; #10;
 c = 1; d = 0; a = 0; b = 0; #10;
 b = 1; #10;
 a = 1; b = 0; #10;
 b = 1; #10;
 d = 1; a = 0; b = 0; #10
 b = 1; #10;
 a = 1; b = 0; #10;
 b = 1; #10;
end
endmodule
```