Interpretando geometricamente, dizemos que os zeros da função quadrática são as abscissas dos pontos onde a parábola corta o eixo dos x.

Exemplo:

Construindo o gráfico da função $y = x^2 - 4x + 3$ podemos notar que a parábola corta o eixo dos x nos pontos de abscissas 1 e 3, que são as raízes da equação $x^2 - 4x + 3 = 0$.

SIMETRIA

Sejam x_1 e x_2 pontos equidistantes de x_v , ou seja, o vértice é o ponto médio deles.

VÉRTICE DA PARÁBOLA

O vértice da parábola é o ponto $V\left(\frac{-b}{2a}, \frac{-\Delta}{4a}\right)$.

MÁXIMOS E MÍNIMOS

Teorema:

I) Se a < 0, a função quadrática y = ax² + bx + c admite o valor máximo $y_M = -\frac{\Delta}{4a}$ para $x_M = -\frac{b}{2a}$.

II) Se a > 0, a função quadrática y = ax² + bx + c admite o valor mínimo $y_m=-\frac{\Delta}{4a}$ para $x_m=-\frac{b}{2a}$.

Exemplo:

Seja y = $-x^2 + 5x - 1$. Dado que x varia no intervalo fechado [0, 6], determine o maior (y_M) e o menor (y_m) valor que y assume.

Resolução:

Sendo $y = -x^2 + 5x - 1$, verificamos que:

para
$$x = 0$$
, $y = -1$

para
$$x = 6, y = -7$$

$$V\left(-\frac{b}{2a}, -\frac{\Delta}{4a}\right) = V\left(\frac{5}{2}, \frac{21}{4}\right)$$

Assim, no intervalo [0, 6],

$$y_M = y_V = \frac{21}{4} e y_m = f(6) = -7.$$

Exemplo:

Seja y = $-x^2 + 5x - 1$. Dado que x varia no intervalo fechado [0, 6], determine o maior (y_M) e o menor (y_m) valor que y assume.

*Vertice
$$x_{V} = -\frac{B}{2A} = -\frac{5}{2 \cdot (-1)} = \frac{-5}{-2} = 2.5$$

$$\Delta = \frac{B^{2} - 4 \cdot AC}{A - 5^{2} - 4 \cdot (-1) \cdot (-1)}$$

$$\Delta = \frac{5^{2} - 4 \cdot (-1) \cdot (-1)}{A - 25 - 4 - 21}$$

$$x = 0 \Rightarrow y = ?$$

$$y = -0^{2} + 5 \cdot 0 - 1 = -1$$

$$x = 6 \Rightarrow y = ?$$

$$y = -6^{2} + 5 \cdot 6 - 1$$

$$y = -6^{2} + 5 \cdot 6 - 1$$

$$y = -36 + 30 - 1 = -7$$

*Valores de y para:

$$x=0 \Rightarrow y=?$$

 $y=-0^{2}+5.0-1=-1$
 $x=6 \Rightarrow y=?$
 $y=-6^{2}+5.6-1=-7$
 $y=-36+30-1=-7$

Responds:

$$y_M = 5.25$$

 $y_m = -7$

PROBLEMAS PROPOSTOS

1. Em relação ao gráfico da função $f(x) = -x^2 + 2x + 6$, assinale V para

Verdadeira e F para falsa nas afirmativas abaixo:

Q.(F) é uma parábola de concavidade voltada para cima.
$$A = -1 < 0$$
b.(F) seu vértice é o ponto V(1, 5). $X_V = -\frac{B}{2A} = -\frac{2}{2\cdot(-1)} = 1$
c.(F) intercepta o eixo das abscissas num único ponto. $A = B - 4AC = 2 - 4 - 4AC = 2 -$

2. O gráfico da função $y = f(x) = -\frac{1}{200}x^2 + \frac{1}{5}x$, representado na figura abaixo, descreve a trajetória de um projétil, lançado a partir da origem.

Sabendo-se que x e y são dados em quilômetros, a altura máxima H e o alcance A do projétil são, respectivamente:

- (B) 40 km e 2 km
- (C) 10 km e 2 km
- (D) 2 km e 20 km

3. Considere a função f definida por $f(x) = 2x^2 - 6x - 8$ para todo x real.

Assinale V ou F nas afirmativas a seguir:

- (F) o vértice do gráfico da função f é (3, -8).
- b, (√) a função f é negativa para todos os valores de x pertencentes ao intervalo]-1, 3[.
- C.(f) a imagem da função f é o intervalo [-4, 3].
- d.(F) a interseção da reta de equação y = x 4 com o gráfico de f são os pontos (-1,0) e (4,0).
- L. (V) todas as raízes da função f são números inteiros.

a)
$$x_{v=} - \frac{B}{2A} = -\frac{(-6)}{2 \cdot 2} = \frac{6}{4} = 1.5$$

e)
$$2x^{2}-6x-8=0$$

 $\Delta=36+64=100$
 $x^{1}-6-10$

$$= \frac{6+10}{4} = 4 \quad x'' = \frac{6-10}{4} = -1$$

- 4. Uma indústria de refrigerantes tem sua produção diária P, em garrafas, variando com o número de operadores em serviço n, de acordo com a função $P(n) = n^2 + 50n + 20.000$. Calcule:
- a) a produção se o número de operadores for 40.

$$P(40) = 40^2 + 50.40 + 20.000 = 23.600$$
 garrafas

b) o número de operadores necessário para produzir 25.400 garrafas de refrigerantes.

$$n^{2} + 50n + 20000 = 25400$$

$$n^{2} + 50n - 5400 = 0$$

$$n = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-50 \pm \sqrt{50^{2} - 4 \cdot 1 \cdot (-5400)}}{2 \cdot 1} = \frac{-50 \pm \sqrt{2500 + 21600}}{2 \cdot 1}$$

$$n = \frac{-50 \pm \sqrt{2500 + 21600}}{2 \cdot 1} = \frac{-50 \pm \sqrt{24100}}{2} \cong \frac{-50 \pm 155}{2}$$

$$n' = \frac{-50 + 155}{2} = \frac{105}{2} = 52,5$$

$$n'' = \frac{-50 - 155}{2} = -\frac{205}{2} = -102,5$$

$$P(53) = 25459$$

$$P(52) = 25304$$

Resposta: 53 operadores

5. Um foguete é atirado para cima de modo que sua altura h, em relação ao solo, é dada, em função do tempo, pela função $h(t) = 10 + 120t - 5t^2$,

em que o tempo é dado em segundos e a altura é dada em metros. Calcule :

a) a altura do foguete 2 segundos depois de lançado.

b) o tempo necessário para o foguete atingir a altura máxima.

6. Na figura, estão representados os gráficos das funções

$$f(x) = x^2 - 2x - 3$$
 e $g(x) = 3x + 11$.

A soma da abscissa do ponto P com o valor mínimo de f(x) é:

- a) 2
- b) 4
- c) 5
- d) 6
- e) 7

PROBLEMAS PROPOSTOS

1. Construir os gráficos das funções definidas em R:

a)
$$y = x^2$$

b)
$$v = -x^2$$

c)
$$y = 2x^2$$

d)
$$y = -2x^2$$

e)
$$y = x^2 - 2x$$

f)
$$y = -2x^2 - 4x$$

g)
$$y = -3x^2 - 3$$

h)
$$y = x^2 - 2x + 4$$

2. Determinar os zeros reais das funções:

a)
$$f(x) = x^2 - 3x + 2$$

b)
$$f(x) = -x^2 + 7x - 12$$

c)
$$f(x) = 3x^2 - 7x + 2$$

d)
$$f(x) = x^2 - 2x + 2$$

e)
$$f(x) = x^2 + 4x + 4$$

f)
$$f(x) = -x^2 + \frac{3}{2}x + 1$$

g)
$$f(x) = x^2 - 2x - 1$$

h)
$$f(x) = -x^2 + 3x - 4$$

i)
$$f(x) = x^2 - \sqrt{2}x + \frac{1}{2}$$

j)
$$f(x) = x^2 + (1 - \sqrt{3})x - \sqrt{3}$$

k)
$$f(x) = 2x^2 - 4x$$

1)
$$f(x) = -3x^2 + 6$$

m)
$$f(x) = 4x^2 + 3$$

n)
$$f(x) = -5x^2$$

3. Determinar os valores de m para que a equação $x^2+(3m+2)x+(m^2+m+2)=0$ tenha raízes reais.

4. Determinar o valor máximo ou o valor mínimo, e o ponto de máximo ou o ponto de mínimo das funções abaixo, definidas em R.

a)
$$y = 2x^2 + 5x$$

b)
$$y = -3x^2 + 12x$$

c)
$$y = 4x^2 - 8x + 4$$

d)
$$y = x^2 - \frac{7}{2}x + \frac{5}{2}$$

e)
$$y = -x^2 + 5x - 7$$

f)
$$y = -\frac{1}{2}x^2 + \frac{4}{3}x - \frac{1}{2}$$

5. Construir o gráfico cartesiano das funções definidas em \mathbb{R} :

a)
$$y = x^2 - 2x - 3$$

b)
$$y = 4x^2 - 10x + 4$$

c)
$$y = -x^2 + \frac{1}{2}x + \frac{1}{2}$$

d)
$$y = -3x^2 + 6x - 3$$

e)
$$y = x^2 - 3x + \frac{9}{4}$$

f)
$$y = 3x^2 - 4x + 2$$

g)
$$y = -x^2 + x - 1$$

h)
$$y = -\frac{1}{2}x^2 - x - \frac{3}{2}$$

RESPOSTAS DOS PROBLEMAS PROPOSTOS

g)

1.

a)

e)

f)

b)

h)

d)

e) x = -2 f) $x = -\frac{1}{2}$ ou x = 2 g) $x = 1 + \sqrt{2}$ ou $x = 1 - \sqrt{2}$ h) $\nexists x \in \mathbb{R}$

i) $x = \frac{\sqrt{2}}{2}$ j) x = -1 ou $x = \sqrt{3}$ k) x = 0 ou x = 2

I) $x = \sqrt{2} \ ou \ x = -\sqrt{2}$ m) $\nexists \ x \in \mathbb{R}$

2. a) x = 1 ou x = 2 b) x = 3 ou x = 4 c) x = 2 ou $x = \frac{1}{3}$ d) $\nexists x \in \mathbb{R}$

n) x = 0

3. m = -2 ou $m = \frac{2}{5}$

RESPOSTAS DOS PROBLEMAS PROPOSTOS

- **4.** a) $valor\ minimo = -\frac{25}{8}$ ponto de $minimo = \left(-\frac{5}{4}, -\frac{25}{8}\right)$
 - b) $valor\ m\'aximo = 12$ $ponto\ de\ m\'aximo = (2,12)$
 - c) valor mínimo = 0 ponto de mínimo = (1,0)
 - d) $valor\ minimo = -\frac{9}{16}$ ponto de $minimo = \left(\frac{7}{4}, -\frac{9}{16}\right)$
 - e) $valor\ m\'aximo = -\frac{3}{4}$ ponto de m\'aximo = $\left(\frac{5}{2} \cdot -\frac{3}{4}\right)$
 - f) valor máximo = $\frac{7}{18}$ ponto de máximo = $\left(\frac{4}{3}, \frac{7}{18}\right)$

5.

<u>a</u>)

e)

b)

f)

c)

g)

d)

h)

