中級統計学:復習テスト19

	子耤番号	
	2023年12月15日	
	すべての質問に解答しなければ提出とは認めない.正答に修正した上で,復習テン 上でホチキス止めし,第3回中間試験実施日(12 月 22 日の予定)に提出すること	
	下の用語の定義を式または言葉で書きなさい(各 20 字程度). 不偏推定量	
(b)	最小分散不偏推定量	
(c)	一致推定量	
(d)	漸近分布	
(e)	漸近分散	
(f)	漸近正規推定量	
(g)	漸近有効推定量	

2. 平均 μ ,分散 σ^2 の母集団分布から抽出した大きさ n の無作為標本の標本平均 (a) \bar{X}_n が μ の不偏推定量であることを示しなさい.	を $ar{X}_n$ とする $.$
(b) $ar{X}_n$ が μ の一致推定量であることを示しなさい(ヒント:大数の法則).	
(c) $ar{X}_n$ が μ の漸近正規推定量であることを示しなさい(ヒント:中心極限定	理).

(d) \bar{X}_n の漸近分散を求めなさい.

解答例

- 1. (a) 期待値が母数と等しい推定量.
 - (b) 不偏推定量の中で分散が最小の推定量.
 - (c) 母数に確率収束する推定量.
 - (d) 大標本における推定量の近似的な分布.
 - (e) 漸近分布の分散.
 - (f) 漸近分布が正規分布である推定量.
 - (g) 漸近正規推定量の中で漸近分散が最小となる推定量.
- 2. (a) 期待値の線形性より

$$E(\bar{X}_n) = E\left(\frac{X_1 + \dots + X_n}{n}\right)$$

$$= \frac{E(X_1) + \dots + E(X_n)}{n}$$

$$= \frac{\mu + \dots + \mu}{n}$$

$$= \mu$$

(b) (チェビシェフの) 大数の弱法則より

$$\lim_{n \to \infty} \bar{X}_n = \mu$$

(c) (リンドバーグ=レヴィの) 中心極限定理より

$$\bar{X}_n \stackrel{a}{\sim} \mathrm{N}\left(\mu, \frac{\sigma^2}{n}\right)$$

(d) σ^2/n .