

Mini-projet LU3IN003:

Alignement de séquences

Encadré par :

Anne-Elisabeth Falq

3ème année Licence Informatique Mono-disciplinaire Groupe n°6

SOMMAIRE

Definitions :	3
Methode naif :	4
Programmation dynamique	6
Amelioration de la complixité spatiale du calcul de la distance	10
Diviser pour regner	12
Une extension : l'alignement local de séquences (Bonus)	17
COMPARAISON ENTRE LES PERFORMANCE DES ALGORITHMES	12

DEFINITIONS:

Question 1

 (\bar{X}, \bar{Y}) est un alignement de (X, Y) veut dire que :

$$\begin{cases} |\bar{\mathbf{x}}| = |\bar{\mathbf{y}}| \\ \forall i \in [1..|\bar{\mathbf{x}}|], \bar{\mathbf{x}}_i \neq - \text{ ou } \bar{\mathbf{y}}_i \neq - \end{cases}$$

 $(\bar{\mathbf{u}},\bar{\mathbf{v}})$ est un alignement de (\mathbf{u},\mathbf{v}) veut dire que : $\begin{cases} |\bar{\mathbf{u}}| = |\bar{\mathbf{v}}| \\ \forall \ i \ \in \ [1 \, .. \, |\bar{\mathbf{u}}|], \ \bar{\mathbf{u}}_i \ \neq \ - \ \text{ou} \ \bar{\mathbf{v}}_i \ \neq \ - \end{cases}$

$$\forall i \in [1..|\bar{\mathbf{u}}|], \bar{\mathbf{u}}_i \neq - \text{ ou } \bar{\mathbf{V}}_i \neq -$$

Donc:

$$\left.\begin{array}{l} |\bar{x}|=|\bar{y}| \\ |\bar{u}|=|\bar{v}| \end{array}\right\} \qquad \Rightarrow \qquad |\bar{x}.\bar{u}|=|\bar{y}.\bar{v}|$$

Et puisque:

 $\forall i \in [1..|\bar{X}|], \bar{X}_i \neq - \text{ ou } \bar{Y}_i \neq - \text{ et } \forall j \in [1..|\bar{U}|], \bar{U}_j \neq - \text{ ou } \bar{V}_j \neq -$

Alors:

$$\forall i \in [1..|\bar{\mathbf{x}}.\bar{\mathbf{u}}|], (\bar{\mathbf{x}}.\bar{\mathbf{u}})_k \neq - \text{ ou } (\bar{\mathbf{y}}.\bar{\mathbf{v}})_k \neq -$$

Conclusion:

 (\bar{x},\bar{y}) et (\bar{u},\bar{v}) alignements de resp. (x,y) et (u,v) \Rightarrow $(\bar{x}.\bar{u},\bar{y}.\bar{v})$ alignement de (x.u,y.v)

Question 2

La longueur maximale d'un alignement (x,y) de longueur respectivement n,m est : n+m

Exemple:

Soit $\Sigma = \{A,G,T,C\}$ avec x = GTA et y = AAAAAA donc n = 3 et m = 6, l'alignement de taille maximale est :

$$\overline{\bar{x}} = GTA---- \overline{\bar{y}} = ---AAAAAA$$

On a bien n+m = 3+6 = 9 la taille de l'alignement ci-dessus.

METHODE NAIF:

Question 3

On sait que la longueur de \bar{X} après positionnement de k gaps dans x est n+k, en sachant que on ne peut pas changer l'ordre de lettre et que l'ordre des gaps et le même on a :

Le nombre de mots \bar{x} avec k gaps est : C_{n+k}^k

Question 4

On doit ajouter k' = n+k-m gaps a y

Pour un k donné on a : $C^k_{n+k} \times C^{k'}_n$ alignements possible

On sait que la taille max d'un alignement est n+m alors $k \in [0,m]$ donc le nombre d'alignement possible est :

$$\sum_{k=1}^{m} (C_{n+k}^{k} \times C_{n}^{k'}) \quad \text{avec } k' = n+k-m$$

Pour n = 15 et y = 10 on a $\sum_{k=0}^{10} \frac{(k+15)! \times 15!}{15! \times k! \times (10-k)! \times (k+5)!} = 298199265$ alignements possibles

Question 5

La complexité pour trouver une distance d'édition et trouver un alignement de coût minimal est : le nombre d'alignements possible car il sera obliger énumérer tout les alignements.

Donc : nombre alignement possible qui veut dire $\Theta(\sum_{k=1}^{m} (\mathbf{C}_{n+k}^{k} \times \mathbf{C}_{n}^{k'}))$

Question 6

La complexité spatiale d'un algorithme naïf :

Pour trouver la distance : $\Theta(1)$ pour la variable dist

Pour trouver un alignement minimale : O(n+m) pour le tableau de taille max n+m

En prenant en considération la pile des appel récursif on est en $\Theta(\sum_{k=1}^{m} (\mathbf{C_{n+k}^k \times C_{n}^k}))$

Tache A

Les tests son indiquer sur le fichier testTacheA.py, les résultats son les suivants :

fichier: Instances_genome/Inst_0000010_7.adn

Distance naif: 8 time used is 5.924769 s

fichier: Instances_genome/Inst_0000010_8.adn

Distance naif: 2 time used is 2.388596 s

 $fichier: Instances_genome/Inst_0000010_44.adn$

Distance naif: 10 time used is 0.032060 s

fichier: Instances_genome/Inst_0000012_32.adn ← plus grande instance < 1min

Distance naif : 6 time used is $10.652283 \ s$

fichier: Instances_genome/Inst_0000012_56.adn

Distance naif: 9

time used is 77.781131 s

Plus grande instance execute: Instances_genome/Inst_0000500_8.adn

Consumation mémoire: pour toute instance la consommation est de 0.1% mais la pile des appels récursifs ne peut pas exécuteur une instance plus grande que n = 500 qui est cohérent car la fonction est en $\Theta(1)$ mais en prenant compte de la pile des appels récursif on est en $\Theta(\sum_{k=1}^{m} (C_{n+k}^{k} \times C_{n}^{k'}))$

Complexité:

 $F(n) = \sum_{k=1}^{m} (C^{k}_{n+k} \times C^{k}_{n})$ 6

5

4

3

2

1

Taille de x (n)

Figure 1 -Performance de la méthode DIST_NAIF

Figure 2 - Attente Théorique

En considérant le graphe de la Figure 2 a partir de n=10 on remarque que c'est exactement le comportement de DIST NAIF.

PROGRAMMATION DYNAMIQUE

1. CALCUL DE LA DISTANCE

Question7

 $(\bar{\mathbf{u}},\bar{\mathbf{v}})$ est un alignement de $(\mathbf{u}_{[1..i]},\mathbf{v}_{[1..j]})$ veut dire que : $\forall i \in [1..|\bar{\mathbf{u}}|], \bar{\mathbf{u}}_i \neq -$ ou $\bar{\mathbf{v}}_i \neq -$ donc :

Si on a $\bar{u}_l = -$ alors \bar{V}_l doit être le dernier caractère de v donc v_j car on ne peut pas changer l'ordre des caractères. Et donc si on a $\bar{v}_l = -$ alors $\bar{u}_l = u_l$

Puis si on a $\bar{u}_1 \neq -$ ou $\bar{V}_1 \neq -$ on aura $\bar{u}_1 = u_i$ et $\bar{V}_1 = v_i$

Question8

$$C(\bar{u},\bar{v}) = \begin{cases} C(\bar{u}_{[1..l-1]},\,\bar{v}_{[1..l-1]}) + C_{ins} & \text{si } \bar{u} \text{ } l = - \\ \\ C(\bar{u}_{[1..l-1]},\bar{v}_{[1..l-1]}) + C_{del} & \text{si } \bar{v} \text{ } l = - \\ \\ C(\bar{u}_{[1..l-1]},\bar{v}_{[1..l-1]}) + C_{sub}(\bar{u}\text{ } l,\bar{v}\text{ } l) & \text{sinon} \end{cases}$$

Question9

On sait que D(i,j) et la distance minimale et que le cout de la case (i,j)est obtenue a partir des case (i,j-1), (j-1,i-1), (i-1,j)

Donc:

$$D(i,j) = min \begin{cases} D(i-1,j-1) + C_{sub}(x_i,y_j) \\ D(i-1,j) + C_{del} \\ D(i,j-1) + C_{ins} \end{cases}$$

Question10

 $D(0,0) = d(x_{[1..0]}, y_{[1..0]}) = d(\emptyset,\emptyset) = 0$ car la distance entre deux mots vide est nulle.

Question11

On sait que D(0,j) est obtenus a partir des case (-1,j)(-1,j-1)(0,j-1) comme la position -1 d'une lettre d'un mot n'existe pas , $D(0,j-1) + C_{ins}$ est la seule option donc :

$$\begin{array}{ll} D(0,j) = & D(0,j-1) + C_{ins} \\ \\ D(0,j) = & D(0,j-2) + 2 \times C_{ins} \\ \\ \\ \\ \\ \\ \\ D(0,j) = D(0,0) + j \times C_{ins} \end{array}$$

et selon la question 10 on a D(0,0) = 0 donc

$$D(0,j)=j\times C_{ins}$$

De la même façon pour i

$$D(i,0) = i \times C_{del}$$

Question12

```
Entrée : x et y deux mots

Sortie : distance entre x et y

T = tableau indexé par [o..n][o..m]

T[o][o] = o;

Pour i de 1 à n+1 faire

______ T[i][o] = i × C_{del}

Pour j de 1 à m+1 faire

______ T[o][j] = j × C_{ins}

Pour i de 1 à n+1 faire

Pour j de 1 à m+1 faire

T[i][j] = min ( T[i-1][j-1]+C_{sub}(X<sub>i-1</sub>, y<sub>i-1</sub>),

T[i][j-1]+C<sub>ins</sub>, T[i-1][j] + C_{del})

retourner T[n][m]
```

Question13

La complexité spatiale de DIST_1 est $\Theta(\mathbf{n} \times \mathbf{m})$ car dans tout les cas l'algorithme parcours et sauvegarde toute la matrice qui contient $\mathbf{n} \times \mathbf{m}$ cases.

Question14

La complexité temporelle de DIST_1 est **O(n**×**m)** car on parcours un tableau de deux dimension n et m pour calculer la distance minimale de chaque combinaison.

2. CALCUL D'UN ALIGNEMENT OPTIMAL

```
Soit (i,j) \in [0..n] \times [0..m] Mq Si j>0 et D(i,j) = D(i,j-1) + C<sub>ins</sub> \Rightarrow \forall (\bar{u},\bar{v}) \in Al^* (i,j-1), (\bar{u}.-,\bar{v}\cdot\gamma_j) \in Al^* (i,j):
D(i,j) = D(i,j-1) + C_{ins} = d(x_{[1..i]},y_{[1..j-1]}) + C_{ins}
= C(\bar{u},\bar{v}) + C_{ins} \quad (\bar{u},\bar{v}) \in Al^* (i,j-1)
= C(\bar{u}.-,\bar{v}\cdot\gamma_j) \quad \textit{cf Question 8}
On a D(i,j) = d(x_{[1..i]},y_{[1..i]}) = C(\bar{u}.-,\bar{v}\cdot\gamma_j) \quad \text{alors } (\bar{u}.-,\bar{v}\cdot\gamma_j) \in Al^* (i,j)
```

Question16

```
SOL_1
               Entrée : x et y deux mots
                             T tableau de deux dimension [o..n] \times [o..m] remplis par DIST_1
               Sortie: alignement minimale de (x,y)
               \bar{x}=\emptyset, \bar{y}=\emptyset, i=n, j=m
              tantque (j>o) or (i>o) faire
                              si(j>0) and T[i][j] = T[i][j-1] + C_{ins} alors
                                            \bar{X} = -.\bar{X}
                                            \boldsymbol{\bar{y}} {=} \boldsymbol{y_{j\text{-}1}}.\boldsymbol{\bar{y}}
                              si(i>0) and T[i][j] = T[i-1][j] + C_{del} alors
                                            \bar{y} = -.\bar{y}
                                            \bar{X} = X_{i-1}.\bar{X}
                              si (j>o) and (i>o) and T[i][j] = T[i-1][j-1] + C_{sub}(x_{i-1}, y_{j-1}) alors
                                            \bar{X} = x_{i-1}.\bar{X}
                                            \boldsymbol{\bar{y}} {=} \boldsymbol{y_{j\text{-}1}}.\boldsymbol{\bar{y}}
                                            j---
               <u>ret</u>ourner (x̄,ȳ)
```

Question17

La complexité de PROG_DYN est en $\Theta(n \times m)$ car on doit parcourir toutes les case de la matrice pour la construire dans Dist_1 en $\Theta(n \times m)$ puis appliquer SOL_1 pour trouver l'alignement minimale en $\Theta(n \times m)$

Question18

La complexité spatiale de SOL_1 est O(n+m) et de DIST_1 est $O(n\times m)$

Alors PROG_DYN est en O(n×m)

Tache B

Les tests son indiquer sur le fichier testTacheB.py, les résultats son les suivants :

fichier: Instances_genome/Inst_0000010_7.adn

Distance1 + Align 1: (8, 'TGGG-TG-CTAT', '-GGGGT-TCTAT') time used is 0.000082 s

fichier: Instances_genome/Inst_0000010_8.adn

Distance1 + Align 1: (2, 'AACTGTCTTT', 'AACTGT-TTT') time used is 0.000076 s

fichier: Instances_genome/Inst_0000010_44.adn

Distance1 + Align 1: (10, 'TATATGAGTC', 'TAT-T---T-') time used is 0.000113 s

fichier: Instances_genome/Inst_0000012_32.adn

Distance1 + Align 1: (6, 'CCATTGATTTTC', 'C-ATTGATT-T-') time used is 0.000089 s

fichier: Instances_genome/Inst_0000012_56.adn

Distance1 + Align 1: (9, 'GCTTAACTAACG', 'GCTAAACTA-CT') time used is 0.000097 s

fichier: Instances_genome/Inst_0000100_7.adn

Distance1 + Align 1: (62, 'TGGGTGCTA....-CCTCAGT', 'TGGGTGCA....-TCCTCA-T') time used is 0.004208 s

fichier: Instances_genome/Inst_0000500_88.adn

Distance1 + Align 1: (296, 'TGT-...GAATTTCCA-G', '-GTTCTCG-...AATTT--AAG') time used is 0.101040 s

fichier: Instances genome/Inst 0002000 44.adn

Distance1 + Align 1: (1078, 'TATATGA...-TGTCAGT', '-ATATGAGT...GTGTCAGA') time used is 1.669113s

Plus grande instance execute: Instances_genome/Inst_0020000_5.adn
Pour l'instance "Instances_genome/Inst_0020000_5.adn":

Consommation mémoire pour DIST1 : 69% soit 11,2 GB.

Consommation mémoire pour PROG_DYN : 85% soit 13,9 GB.

Complexité:

Figure 3 - Performance PROG_DYN

Figure 4 - Attente Théorique

On remarque que la complexité calculé expérimentalement (Figure 3) est exactement le comportement qu'on attendait de PROG DYN théoriquement (Figure 4).

AMELIORATION DE LA COMPLIXITE SPATIALE DU CALCUL DE LA DISTANCE

Question 19

Parce que la valeur de D(i,j) est obtenu a partir de 3 valeurs D(i-1,j-1),D(i,j-1),D(i-1,j) qui se trouve a la ligne i et la ligne i-1 alors on peut utilisé seulement une matrice de deux lignes pour améliorer la complexité spatiale.

Question 20

```
Entrée : x et y deux mots

Sortie : distance entre x et y

T = tableau indexé par [o..1][o..m]

T[o][o] = o;

Pour j de 1 à m+1 faire

T[o][j] = j × C<sub>ins</sub>

Pour i de 1 à n+1 faire

T[1][o] = i × C<sub>del</sub>

Pour j de 1 à m+1 faire

T[1][j] = min (T[o][j-1]+C<sub>sub</sub>(X<sub>i-1</sub>, Y<sub>i-1</sub>),

T[1][j-1]+C<sub>ins</sub>, T[o][j] + C<sub>del</sub>)

Pour j de o à m faire

T[o][j] = T[1][j]

retourner T[1][m]
```

Tache C

Les tests son indiquer sur le fichier testTacheC.py, les résultats son les suivants :

fichier: Instances_genome/Inst_0000010_7.adn

Distance methode 2:8 time used is 0.000074 s

fichier: Instances_genome/Inst_0000010_8.adn

Distance methode 2: 2 time used is 0.000070 s

fichier: Instances_genome/Inst_0000010_44.adn

Distance methode 2: 10 time used is 0.000047 s

 $fichier: Instances_genome/Inst_0000012_32.adn$

Distance methode 2 : 6 time used is 0.000074 s

fichier: Instances_genome/Inst_0000012_56.adn

Distance methode 2:9 time used is 0.000088 s

fichier: Instances_genome/Inst_0000100_7.adn

Distance methode 2:62 time used is 0.004237 s

fichier: Instances_genome/Inst_0000500_88.adn

Distance methode 2: 296 time used is 0.102112 s

fichier: Instances_genome/Inst_0002000_44.adn

Distance methode 2: 1078 time used is 1.608261 s

En comparant la consommation mémoire pour la même instance "Instances_genome/Inst_0020000_5.adn":

Consommation mémoire pour DIST1 : 69% soit 11,2 GB. Consommation mémoire pour DIST2 : 17,5% soit 2,8 GB.

On confirme que DIST_2 est meilleur que DIST_1 en complexité spatiale.

Complexité:

Figure 5 - Comparaison entre dist1 et dist2

Figure 6 - Attente Theorique

L'attente théorique **O(n×m)**représenté dans la figure 6 est bien la même pour la complexité calcule expérimentalement DIST_1 (voir entre 0,1000) par contre pour DIST_2 est supérieur a **n×m** mais c'est logique car elle prend en compte le temps d'exécution des opération de décalage.

Figure 7 - Comparaison DIST_NAIF, DIST_1, DIST_2

En comparant DIST_NAIF avec DIST_1 et DIST_2 on voit clairement la différance dans la performance des fonctions.

DIVISER POUR REGNER

Question 21

```
Entrée : entier k

Sortie : mot constituer de k gaps

out = Ø

Pour i de 1 à k faire

out = out.—

retourner out
```

```
Align_lettre_mot

Entrée : x et y deux mots avec x de taille 1

Sortie : alignement minimale de (x,y)

\bar{y} = y, \bar{x} = x, min = +\infty, pos = -1

Pour j de 1 à m faire

\begin{array}{c} si \ C_{sub}(x_o, y_j) < min \ alors \\ min = C_{sub}(x_o, y_j) \\ pos = i \\ si \ (min + (m-1) \times C_{ins}) > (C_{del} + m \times C_{ins})) \ alors \\ \bar{x} = \bar{x}.mot\_gaps(m) \\ \bar{y} = \bar{y}.- \\ \frac{sinon}{\bar{x}} = mot\_gaps(pos).\bar{x}.mot\_gaps(m-pos) \\ \frac{ret}{o} = mot\_gaps(pos).\bar{x}.mot\_gaps(m-pos) \\ \hline \end{array}
```

Question 23

 (\bar{X}_1,\bar{y}_1) est un alignement optimale de (x^1,y^1) est :

$$\bar{x}_1 = BAL$$

 $\bar{y}_1 = RO-$

 (\bar{X}_2, \bar{y}_2) est un alignement optimale de (x^2, y^2) est :

$$\bar{x}_2 = LON - \bar{y}_2 = --ND$$

Supposant que $(\bar{X}_1.\bar{X}_2,\bar{y}_1.\bar{y}_2)$ est optimale . on a $C(\bar{X}_1.\bar{X}_2,\bar{y}_1.\bar{y}_2)=22$

$$\bar{x}_1.\bar{x}_2 = BALLON - \bar{y}_1.\bar{y}_2 = RO - - - ND$$

or il existe un alignement du même taille $(\bar{X}_3.\bar{X}_3)$ tq $C(\bar{X}_3.\bar{X}_3) = 17 < 22 < C(\bar{X}_1.\bar{X}_2,\bar{Y}_1.\bar{Y}_2)$ ABS.

$$\bar{x}_3$$
= BALLON-
 \bar{y}_3 = R---OND

Donc par l'absurde $(\bar{X}_1.\bar{X}_2,\bar{y}_1.\bar{y}_2)$ n'est pas optimale.

```
SOL_2_REC

Entrée : x et y deux mots

Sortie : alignement minimale de (x,y)

si n = o alors

retourner (x,mots_gaps(m))

si m = o alors

retourner (mots_gaps(n),y)

si n = 1 alors

retourner align_lettre_mot(x,y)

i = [n/2]

j = coupure(x,y,i)

(x1,y1) = SOL_2_REC(x[0...],y[0...])

(x2,y2) = SOL_2_REC(x[i+1..n],y[i+1..m])

Retourner(x1+x2,y1+y2)
```

Question 25

```
coupure
          Entrée : x et y deux mots
          Sortie : entier coupure de y
          n=|x|, m=|y|
          D = tableau indexé par [o..1][o..m]
          I = tableau indexé par [o..1][o..m]
          pour k de 1 à m+1 faire
                    |[o][k]=k
                    D[o][k]=k \times C_{del}
          pour i de 1 à n+1 faire
                    I[1][0]=0
                   D[1][0]=i \times C_{ins}
                    pour j de 1 a m+1 faire
                             dell=D[1][j-1] + C_{del}
                             ins =D[o][j] + C_{ins}
                             sub = D[o][j-1] + C_{sub}(x_{[i-1],}y_{[j-1]})
                             D[1][j]=min(dell,ins,sub)
                             si (i > n/2) alors
                                       Si (D[1][j]=dell) alors
                                                 |[1][j]=|[1][j-1]
                                       Sinon Si (D[1][j]=ins) alors
                                                 l[1][j]=l[0][j]
                                       Sinon
                                                 |[1][j]=|[0][j-1]
                    D[0]=D[1]
                   si (i > n/2) alors
                             |[0]=|[1]
          retourner I[o][m]
```

Question 26

La complexité spatiale de coupure est en $\Theta(m)$ cars seule deux tableau de deux dimension de taille m sont stockée.

Question 27

On sait que la complexité de coupure est en $\Theta(m)$ qui est en O(n) car n>m . Donc pour chaque appel récursive de SOL_2 on a deux sous problème de taille n/2

Et pour chaque appel récursive on a une complexité spatiale en O(n)

Donc : $T(n)=2\times T(n/2)+O(n)$, a=2, b=2, d=1 On a $log_2(2)=1$ donc d'après le théorème de maitre :

 $T(n)=O(n\times log(n))$

Question 28

La complexité temporelle de coupure est en $\Theta(n \times m)$ car on doit parcourir toute la matrice de taille $n \times m$ pour trouver la coupure.

Tache D

Les tests son indiquer sur le fichier testTacheC.py, les résultats son les suivants :

fichier: Instances_genome/Inst_0000010_7.adn

Alignement methode 2: ('TGGGTG--CTAT', '-GGG-GTTCTAT') time used is 0.000267 s

fichier: Instances_genome/Inst_0000010_8.adn

Alignement methode 2: ('AACTGTCTTT', 'AACTGT-TTT') time used is 0.000200 s

fichier: Instances_genome/Inst_0000010_44.adn

Alignement methode 2: ('TATATGAGTC', 'TAT-T---T-') time used is 0.000148 s

fichier: Instances_genome/Inst_0000012_32.adn

Alignement methode 2: ('CCATTGATTTTC', 'C-ATTGATTT--') time used is 0.000228 s

fichier: Instances_genome/Inst_0000012_56.adn

Alignement methode 2: ('GCTTAACTAACG', 'GCTAAACTA-CT') time used is 0.000262 s

fichier: Instances_genome/Inst_0000100_7.adn

Alignement methode 2: ('TGGGTGCGTG...CTCAGT', 'TGGGTTA...-CCTCA-T') time used is 0.010963 s

fichier: Instances_genome/Inst_0000500_88.adn

Alignement methode 2: ('TGT-CTCGG-...CAATTTCCA-G', '-GTTCT...TTT--AAG') time used is 0.247998 s

fichier: Instances_genome/Inst_0002000_44.adn

Alignement methode 2: ('TATATGA....-TGTCAGT', '-ATATGA....GTCAGA') time used is 3.917269 s

Consommation mémoire de SOL_2: "Instances_genome/Inst_0020000_5.adn" 17.5% soit 2,8 GB.

Complexité:

Figure 8 - Performance de SOL 2

Figure 9 - Courbe théorique de ⊖(n×m)

SOL 2 est supérieure a $\Theta(n \times m)$ voir (entre 0 et 10000) mais inferieure a $\Theta(n^2)$ mais largement en $O(n^2)$

Question 29

En comparant la complexité de PROG_DYN et SOL_2 on remarque qu'on a perdu en complexité temporelle en améliorant la complexité spatiale

Figure 10 - Comparaison entre PROG_DYN et SOL_2

UNE EXTENSION: L'ALIGNEMENT LOCAL DE SEQUENCES (BONUS)

Question 30

En calculant le cout minimal des exemples suivants (inclus dans le répertoire BONUS) on obtient :

Pour $Inst_1$: n=20 , m=2 , DIST_1 retourne 36 qui est bien 2 × (20-2) = C_{del} × (n-m)

Pour Inst_2: n=25, m=4, DIST_1 retourne qui est bien $2 \times (25-4) = C_{del} \times (n-m)$

Pour Inst_3: n=18, m=3, DIST_1 retourne qui est bien $2 \times (18-3) = C_{del} \times (n-m)$

Pour Inst_4: n=40, m=9, DIST_1 retourne qui est bien $2 \times (40-9) = C_{del} \times (n-m)$

Question 31

C'est une bonne idée pour un alignement petit mais pour un alignement de taille max qui est de n+m on aura une complexité de $(n+m)^2$ car on enlevant les gaps du début et fin on parcours tout de même $(n+m) \times (n+m) \times (le \ cout \ d'aligner \ T[i][|y|]et \ T[|x|][j])$

COMPARAISON ENTRE LES PERFORMANCE DES ALGORITHMES

Algorithme	Complexité temporelle	Complexité spatiale	Consommation mémoire
DIST_NAIF	$\Theta(\sum_{k=1}^{m}(C_{n+k}^{k}\times C_{n}^{k'}))$	⊝(1)	0.1%
DIST_1	⊝(n×m)	⊝(n×m)	69%
DIST_2	⊖ (n×m)	⊝(m)	17.5%
SOL_1	O(n+m)	O(n+m)	/
PROG_DYN	⊝(n×m)	⊝(n×m)	85%
Align_lettre_mot	⊖(m)	⊖(m)	/
Coupure	⊝(n×m)	⊖(m)	/
SOL_2	O(n²)	O(n×log(n))	17.5%

Les consommations mémoire sont calculer pour une taille n = 20000

Conclusions:

- DIST_NAIF est la plus mauvaise méthode pour résoudre le problème malgré ca complexité spéciale en ⊖(1) mais le nombre d'appels récursifs est trop important et la capacité de la pile ne suffit pas pour une taille supérieure à 500.
- DIST_2 est mieux que DIST_1 en termes de complexité spatiale avec une augmentation négligeable de complexité temporelle à cause des décalages comme on voit sur la Figure 5.
- SOL_2 est mieux que PROG_DYN en termes de complexité spatiale pour un prix considérable de complexité temporelle.
- La consommation mémoire de SOL_2 est similaire a celle de DIST_2 car coupure utilise le même principe que DIST_2.