T. D. M 54. E^{1} $A \in \mathcal{C}_{m,m}(C), B \in \mathcal{C}_{k,\ell}(C)$ Mg ker A* C (Jm A) +. a endomorphisme. a: Cm of Cm. soit Eun onsomble, VnEE, x E ken A* => $\forall y \in E$, $\langle a^*(n), y \rangle = 0$ \Rightarrow $\forall y \in E, \langle x, a(y) \rangle = 0$ $\Rightarrow x \in (J_m A)^{\perp}$ $n,y \in \mathbb{C}^m$, $\langle n,y \rangle = \sum_{i=1}^n n_i y_i$ <7,7 >= 2 ai yi

Mg (Im A) - C for A*, Im A = { Yne C', y=An, ty e CM} a) Mg for A* = (Im A) = 8 Jm A* = (kor A) + (Im A) = ly & C, <y, An >= 0, \for a \in C) ly∈ (1", <A*(y), x> =0, ∀x ∈ C"} $C \Rightarrow y \in \ker A^{\infty}$ On a bion mgé bon A D (Im A).

Par double inclusion, on a mgé bon A = (Im A). Mg Im A = (ker A) = en atilisant 1 égalité. ker (A") = (Jon A") 1 ker A = (Im A x) -(ker A) = Jm A*

a Dlan A= {x EC", <x, Ay>=0, Ky E C"

$$A = \begin{pmatrix} 3 & i & -5i \\ -i & -2 & 5 \\ 5i & 5 & 10 \end{pmatrix}, g = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

on a bien A=A*, B= B*.

$$AB = \begin{pmatrix} 3 & 0 & 0 \\ -1 & 0 & 0 \\ 51 & 0 & 0 \end{pmatrix} & (AB)^{4} = B^{4}A^{2} = \begin{pmatrix} 3 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$AB = \begin{pmatrix} 3 & 0 & 0 \\ 51 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$AB = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$AA^* = I = A^*A$$
 $BB^* = I = B^*B$

$$A \cdot B (AB) = ABB A = AA = I$$

A inversible
$$\Rightarrow \exists A^{-1}$$
, det $A \neq 0 \neq \det A^{-1}$
 $1 = \det (I) = \det (AA^{-1}) = \det (A)$, det (A^{-1})
 $\det (A^{-1}) = \frac{1}{\det A} = \left(\det (A)\right)^{-1}$

(I) n=1, det (AM) = aM

Pa est initialisé

Re Maix.

Re Maix.

Mg Sh+1.

A=
$$\begin{pmatrix} a_{11} & a_{22} & a_{1,k+1} \\ 0 & a_{22} & a_{2,k+1} \end{pmatrix}$$
, $det(A)=a_{11}$ $\begin{pmatrix} a_{22} & a_{2,k+1} \\ a_{21} & a_{22} & a_{2,k+1} \end{pmatrix}$
 $d'après MOR det(A)=a_{11} & a_{11} &$

a après MOR det
$$(A) = a_{11} \frac{h+1}{11} a_{11} = \frac{h+1}{11} a_{11}$$

al $\forall m \in \mathbb{N}$, det $A = \text{iff} a_{11}$
 $i = 1$

whit
$$8 = A + A^*$$
,
on a $B^* = (A + A^*)^* = A^* + A$
& $C^* = (A - A^*)^* = A^* - (A^*)^*$
 $= A^* - A$
 $= -(A - A^*)$

$$(A.B)jj = ajj bjj$$

 $(A.B)je = 0$ $Ai j = l$
idem écrise $(BA)je$.

g)
$$A \cdot B = 0 \implies A = 0$$
 on $B = 0$.
 $A = \begin{pmatrix} 10 \\ 0 \cdot 0 \end{pmatrix}$, $B = \begin{pmatrix} 00 \\ 01 \end{pmatrix}$; $A \cdot B = \begin{pmatrix} 00 \\ 00 \end{pmatrix}$
de $A \cdot B = 0 \implies A = 0$ on $B = 0$.
 $A = \begin{pmatrix} 2 - i \\ 2 - i \end{pmatrix}$, $B = \begin{pmatrix} 1 & i \\ 2 & 2 \end{pmatrix}$; $AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
 $A \cdot B = 0 \implies A = 0$ on $B = 0$.

i)
$$A, B$$
 diagonales $\Rightarrow A.B = B.A$
 $A, B \in \mathcal{J}_{m}(C)$
 $(A.B)_{j,l} = \sum_{k=1}^{m} a_{jk} b_{kl}$
 $A \text{ eot diagonale } n | a_{jk} = 0 \quad \forall j \neq h \mid B \text{ diag } n | b_{kl} = 0$
 $(A, B)_{j,k} = \sum_{k=1}^{m} a_{jk} b_{kl} = \sum_{k=1}^{m} a_{jk} b_{kl} + a_{jj} b_{jl}$
 $= a_{jj} b_{jl} = \begin{cases} 0 & \text{si } j \neq l \\ a_{jj} b_{jj} & \text{si } j = l \end{cases}$

$$C = AB$$

$$C_{ij} = \sum_{h=1}^{\infty} a_{ih} t_{kj}$$

$$Cij = \sum_{k=i}^{n} a_{ik} b_{kj} = \sum_{k=i}^{j} a_{ik} b_{kj}$$

Pour
$$i > j \implies Cij = 0$$

Pour $i < j \implies Cij \neq 0$

$$\lambda \dot{z} = g : Cii = a_{ii} \dot{b}_{ii}$$
.

 $n_k = \sum_{j=1}^{k-1} a_{ij} n_j$ $\forall k \in [1, m]$

An = e_h $\Rightarrow \sum_{j=1}^{i} a_{ij} a_{j} = b_i \quad \forall i \in L_{1,m} I$

Raisonnons par réamina: $j=1: \alpha_{11} x_{1} = 0 \iff x_{1} = 0$

MOR Supposens $\exists j \in \mathbb{I}_1, k-2 \mathbb{I}_2 \quad \pi_1, \pi_2, \pi_3 = 0$ Mo $\pi_1 = 0$

$$\sum_{i=1}^{j+4} a_{j+3,i} \, \mathcal{H}_{i} = 0$$

$$|a_{j+4,j+4}| = 0 \implies x_{j+4} = 0$$

 \mathcal{D}' après HDQ, $a_{j+2,j+4}=0 \Longrightarrow \chi_{j+2}=0$ cal:-

 $\frac{h}{\sum_{i=1}^{n} a_{ki}} x_{i} = 1 \implies a_{kk} x_{k} = 1 \implies a_{k} = 1$ $A^{-1} = \begin{pmatrix} \frac{1}{a_{ki}} & 0 \\ \frac{1}{a_{ki}} & \frac{1}{a_{ki}} & 0 \\ \frac{1}{a_{ki}} & \frac{1}{a_{ki}} & 0 \end{pmatrix}$

l) The mat de 19 1 pt s'écrire comme A = ny $A \in \mathcal{O}_m(\mathbb{K}), \quad \mathcal{M}(A) = 1$ D'on A= [d, U, d, U, , d; U, d, U] $A = U \left[d_1, d_2, \dots, d_m \right]$ $U \in \mathbb{K}^m$ $d_1, \dots, d_m \in \mathbb{K}$ $y = \begin{pmatrix} \overline{d_1} \\ \overline{d_m} \end{pmatrix} x = 0$ A = ny* E of (H) $\triangle n^{*}y = \langle y, n \rangle = \sum_{i=1}^{n} y_{i} \overline{n_{i}}$

Ex2 a) Mg A est cliagonalisable sh elle possède n vectres juopres lint inclep. $A \in \mathcal{J}_{m}(\mathbb{C})$, $A = SDS^{-1} + D = diag \{A_{n},...,A_{m}\}$ $2i Av_{i} = A_{i}v_{i}, i \in \mathbb{L}_{1,m}\mathbb{I}$ (<=) = [v_1, v_2, ..., v_n] Con suppose of, on st lint indep. alow $S = [v_1, v_2, ..., v_n]$ 4 ry (s) = n. => Sinversible => S-1 bion définire. Avi = livi ; LEC, VIECM Vie III, n H AS=SD alow ASS' = SDS' $A = SDS^{-1} \Rightarrow A$ est cliayonalisable.

(=>) On dignoz A = SDS 2e S mat inversible (chyt de base) Domat diagonale, D= oling {du, , dmm} AS=SDSS (= SD end fie III, Avi = dii vi de vi : la i colonne de S. alors die 2i la i la vl propre (A) au victeur colonne vi à est le Vecteur propre associé à 2i. vi to Vi E ng(A)=n cax Sept inversible. 2, ..., 2m ≠0 € C v_n ,..., v_m ≠ 0 ∈ C^m S=[va,..., om] de ny (s)=m => v1, ..., vn st lint indep.

b) Mg si $\forall \mathbb{Q}$ de $A \in \mathcal{G}_m(\mathbb{C})$ of distincts \Rightarrow A est diagonalisable. (a) les ∇p de A. $\begin{pmatrix} x - \lambda_1 \end{pmatrix}^{2} - (x - \lambda_2)^{2} - (x - \lambda_3)^{2} + \lambda_1 + \lambda_2 = m$ $(H) \Rightarrow \chi_{A}(x) = (x - \lambda_{1})(x - \lambda_{2}) - (x - \lambda_{m}).$ Cen va ma A possède n vecteurs propres list incles. Grâce à @ a) => A est diagonalisable. Superone par l'absurde que vi, vz, ..., vz (vp &A > Az, Az, ..., Az) et lint indep. (HH)

& que [vz+z = \sum_{i=1}^{\infty} \pi_i v_i] 20 \pi_i \neq \lambda_i \neq 0 \pi \neq \lambda_i \neq \lambda_i, \frac{\pi_i}{\pi_i}]

lui est dipt pr k E III, m-1 II et & v₂₊₁ vecteur propre de A 21 A v₂₊₁ = Ant v₂₊₁

A tend
$$2k+1 = A$$
 ($\sum_{i=1}^{n} d_i v_i$)

$$= \sum_{i=1}^{n} \lambda_i (Av_i) + \sum_{i=1}^{n} d_i \lambda_i v_i$$

$$= \sum_{i=1}^{n} \lambda_i (Av_i) + \sum_{i=1}^{n} d_i \lambda_i v_i$$

$$= \sum_{i=1}^{n} \lambda_i \lambda_{k+1} (\sum_{i=1}^{n} d_i v_i)$$

$$= \sum_{i=1}^{n} \lambda_i \lambda_{k+1} v_i$$

$$= \sum_{i=1}^{n} \lambda_i \lambda_{k+1} v_i$$

$$= \sum_{i=1}^{n} \lambda_i \lambda_{k+1} v_i$$

$$= \sum_{i=1}^{n} \lambda_i \lambda_i v_i = \sum_{i=1}^{n} \lambda_i \lambda_{k+1} v_i$$

$$= \sum_{i=1}^{n} \lambda_i \lambda_i v_i = \sum_{i=1}^{n} \lambda_i \lambda_{k+1} v_i$$

$$= \sum_{i=1}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{i=0}^{n} \lambda_i (\lambda_{k+1} - \lambda_i) v_i = 0$$

$$= \sum_{$$

=> Ly, ..., dh = 0 => vk+1 est limit and de v, ..., on [[9] c 4 (HH) hai Y & E II1, mill.

c) Donner l'exemple d'une mat mon $A = \begin{pmatrix} 21 & 8 \\ 8 & 1 \end{pmatrix} \in \mathcal{C}_m(H)$ @ bloc de Fordan Av= Ar

$$\begin{array}{lll}
&= \sum_{i=1}^{L} d_i \lambda_{k+1} v_i \\
&= \sum_{i=1}^{L} d_i \lambda_{k$$

Ext Reduces mat puticulières.

a) Ro (Th) Schur (the mat) $\forall A \in \mathcal{J}_{m}(\mathbb{C}),$ $\exists U \in \mathcal{J}_{m}(\mathbb{C}) \text{ unitaine } | UU = I = U^{*}U$ $\& T \in \mathcal{J}_{m}(\mathbb{C}) \text{ triangle sup}$ $\Rightarrow A = UTU^{*}$

b) Mg A est normale si 74, D 400 tg A-UDUR.

A mormale 2 >> AA* = A*A.

AA* = (UTU*) (UTU*)*
= UTU*UT* U* = UTT*U*

A namale => UTT*U* = UT*TU*
=> TT* = T*T

il faut omg TTE est diagonal > Par Récumence.

 $\sum_{k=1}^{\infty} T_{ik} T_{kj}^{*} = \sum_{k=1}^{\infty} T_{ik}^{*} T_{kj}$

elt ij (TT)ij

E Tik Tjh

user tricing the square.