Method of composition

Let $\theta_{(k)} \in [0,1]^D$ denote the proportions of the k-th topic for all D documents. Suppose that we want to perform a regression of these topic proportions $\theta_{(k)}$ on a subset $\tilde{X} \in \mathbb{R}^{D \times \tilde{P}}$ of prevalence covariates X. The true topic proportions are unknown, but the STM produces an estimate of the approximate posterior $q(\theta_{(k)}|\Gamma,\Sigma,X)$ of $\theta_{(k)}$, where $\Gamma:=\Gamma(w,X,Y)$ and $\Sigma:=\Sigma(w,X,Y)$. A naïve approach would be to regress the estimated mode or mean of the approximate posterior distribution on \tilde{X} . However, this approach neglects much of the information contained in the distribution. Instead, sampling $\theta_{(k)}^*$ from the posterior distribution, performing a regression for each sampled $\theta_{(k)}^*$ on \tilde{X} , and then sampling from the estimated distributions of regression coefficients, provides an i.i.d. sample from the marginal posterior distribution of regression coefficients.

Formally, let ξ denote the regression coefficients and $q(\xi|\theta_{(k)}, \tilde{X})$ the distribution of these coefficients, given design matrix \tilde{X} and response $\theta_{(k)}$.

Repeat m times:

- 1. Draw $\theta_{(k)}^* \sim q(\theta_{(k)}|\Gamma, \Sigma, X)$.
- 2. Draw $\xi^* \sim p(\xi | \theta_{(k)}^*, \tilde{X})$.

Then, ξ_1^*, \dots, ξ_m^* is an i.i.d. sample from the marginal posterior

$$q(\xi|\Gamma,\Sigma,X) := \int_{\theta_{(k)}} q(\xi|\theta_{(k)},\tilde{X}) q(\theta_{(k)}|\Gamma,\Sigma,X) \mathrm{d}\theta_{(k)} = \int_{\theta_{(k)}} q(\xi,\theta_{(k)}|\Gamma,\Sigma,X) \mathrm{d}\theta_{(k)},$$

where $q(\xi, \theta_{(k)}|\Gamma, \Sigma, X) := q(\xi|\theta_{(k)}, \tilde{X})q(\theta_{(k)}|\Gamma, \Sigma, X)$. Thus, it has been integrated over $\theta_{(k)}$, which allows to incorporate uncertainty about $\theta_{(k)}$, when determining ξ .