NOTE TO USERS

This reproduction is the best copy available.

The Evolution of Massive Stars: The Be Star and Microquasar Phenomena

A DISSERTATION

Presented in Partial Fulfillment of Requirements for the
Degree of Doctor of Philosophy
in the College of Arts and Sciences
Georgia State University

2004

by

M. Virginia McSwain

Committee:

Jang a Jun

Douglas R. Gies, Chair

William G. Bagnholo, Member

D. Michael Crenshaw, Member

Jun

Steven T. Manson, Member

H. Richard Miller, Member

Paul J. Witta

Paul J. Witta, Member

(29/04

William H. Nelson, Chair

Department of Physics and Astronomy

UMI Number: 3155325

Copyright 2004 by McSwain, M. Virginia

All rights reserved.

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI Microform 3155325

Copyright 2005 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346

© Copyright by Mary Virginia McSwain 2004

Abstract

Massive O- and B-type stars evolve significantly faster than stars with cooler spectral types, so their populations include stars at many different evolutionary stages. They provide fascinating laboratories for the study of stellar evolution. In this dissertation, I investigate an unevolved massive star system as well as two particular categories of evolved stars, Be stars and microquasars.

The massive triple system HD 16429 A is largely unevolved, but I present it here as an example of the type of system that will eventually experience a disrupting supernova. I discuss the Doppler tomography technique that I used to isolate the two brightest components and my analysis of each star. The stationary component, HD 16429 Aa, is an O9.5 II star. The Ab1 component is a hotter yet less luminous O8 III-IV star, while the unseen Ab2 star is estimated to be a B0 star.

Many massive binary systems, including Be binaries, contain the final product of massive stellar evolution: a neutron star or black hole companion. Mass transfer from the less evolved star onto the compact companion generates X-ray emission, and some of these massive X-ray binaries (MXRBs) also have relativistic radio jets that

closely resemble small versions of extragalactic quasars. In this dissertation I perform a spectroscopic study of the microquasar LS 5039. Based on its large eccentricity and runaway velocity, LS 5039 appears to be a recent survivor of the supernova that formed the microquasar.

Be stars are a class of B stars with circumstellar disks that cause Balmer and other line emission. The source of their disks is not well understood, but it is likely that a combination of rapid rotation and other processes contribute to their formation. There are three possible reasons for their rapid rotation: they may have been born as rapid rotators, spun up by binary mass transfer, or spun up during the MS evolution of B stars. To investigate these three formation scenarios, I am performing a photometric survey of open clusters. In this work I present the results from the first 20 clusters.

Acknowledgments

I must begin these acknowledgments by thanking my family because, without their influence and advice, I never would have considered graduate school, or even a career in physics and astronomy, in the first place. Although neither of my parents has a strong background in math or science, somehow they recognized my talent for these subjects and managed to guide me along this path to a Ph.D. in Astronomy.

My sisters, Suzanne and Lauren, have also been very supportive during my graduate school career. Although the three of us have become more physically separated during the past few years, moving across the country to various schools and jobs, we are becoming closer to each other than ever. It is comforting to know that I will always be able to rely on them in any situation.

I am grateful to my advisor, Doug Gies, for his persistent good humor and motivation while I have worked with him at Georgia State. Working with him, I discovered the two greatest thrills of astronomy: travelling to exotic corners of the world to collect observations, and publishing the results. Whenever I have been frustrated with the other parts of the research process, Doug has always been upbeat and encouraging. And however annoying it may be at times, his insistence on quality and attention to detail in my work has considerably influenced my maturity as an astronomer.

My committee has been very supportive as well as instructive throughout my career at Georgia State. Bill Bagnuolo, Mike Crenshaw, Steve Manson, Dick Miller, and Paul Wiita have all been strong professors from whom I aquired a vast wealth of knowledge on astronomy and physics. My experience with these professors both in the classroom and while working on this dissertation has been inspiring.

There are several individuals who helped me with the photometry portion of this dissertation who deserve thanks as well. Todd Henry planted the idea in my head and convinced me to apply for my first two observing runs in Chile. His students, Wei-Chun Jao and John Subasavage, helped me learn the techniques involved in analyzing the data. Wei-Chun also taught me how to use the 0.9m telescope at CTIO. I also appreciate the help that Charlie Finch and John Helsel gave me in analyzing the large amount of data.

I must also thank the department's computer support team for their tremendous hard work. Without Dave Berger, John McFarland, Rajesh Deo, and Duke Windsor, this dissertation (and many other projects that I have accomplished) would not have been possible.

I am grateful for the devoted friendship of many of the graduate students and other friends I have made during the past five years: Ellyn Baines, Dave & Amber Berger, Rajesh Deo, Erika Grundstrom, Wei-Chun Jao, Kevin Marshall, John McFarland,

Chad Ogden, Angela Osterman, James Rush, Katie Sadler, and John Subasavage. We have had many great memories together, but it has been during times of stress that my friends have shown their greatest support and devotion. I will miss them all tremendously.

I have already mentioned several people by name, but I would like to thank everyone in the Physics and Astronomy department at Georgia State University. I definitely could not have accomplished so much in graduate school without the collective advice and wisdom of this community. The array of charming yet unique personalities have made graduate school an unforgettable time of my life.

Finally, I would like to thank NOAO for the travel support they provided me to use the Coudé Feed Telescope at KPNO and the 0.9m telescope at CTIO. I am also grateful to the SMARTS consortium for my observations with the 1.5m telescope at CTIO. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has also made use of the SIMBAD database, operated at CDS, Strasbourg, France.

Contents

	Abs	stract		iii
	Ack	nowle	dgments	\mathbf{v}
	List	of Ta	bles	xi
	List	of Fig	gures	xiii
	Abł	oreviat	cions	xvi
1	Intr	\mathbf{coduct}	ion	1
	1.1	Massir	ve Stars on the Main-Sequence	. 3
	1.2		Main-Sequence Evolution	
	1.3	Evolu	tion of Close Binary Systems	. 15
	1.4		ne of this Dissertation	
2	Obs	ervati	ons and Data Reduction	22
	2.1	Spectr	roscopy	. 22
		2.1.1	KPNO Coudé Feed Telescope	. 25
		2.1.2	CTIO 1.5 m Telescope	. 26
		2.1.3	McDonald 2.7 m Telescope	. 27
		2.1.4	Data Reduction	. 27
	2.2	Photo	metry	. 28
		2.2.1	CTIO 0.9 m Telescope	. 28
		2.2.2	Data Reduction and Analysis	. 32
		2.2.3	Standard Star Calibration	. 37
		2.2.4	Precision and Accuracy of Results	. 42
	2.3	Astroi	metry	51

3	The	Massive Triple Star System HD 16429 A	54										
	3.1	Introduction	54										
	3.2	Blended Line Radial Velocities	57										
	3.3	Orbital Elements	59										
	3.4	Discussion of the Components	68										
	3.5	The Vicinity of HD 16429 A	74										
4	The	Microquasar LS 5039	78										
	4.1	Introduction	78										
	4.2	Radial Velocities	81										
	4.3	Orbital Elements	84										
	4.4	Spectral Classification and Stellar Parameters	87										
	4.5	HST/STIS Spectroscopy and UV Wind Lines	94										
	4.6	Reddening and Extinction	100										
	4.7	Masses from a Wind Accretion Model	103										
	4.8	Pre-Supernova Orbital Parameters	114										
	4.9	The Origin of the N Enrichment	122										
5	Be Stars in Open Clusters												
	5.1	Introduction	126										
	5.2	Identifying Be Stars From Photometry	131										
	5.3	The Test Case: NGC 3766	161										
	5.4	Comments on Individual Clusters	168										
	5.5	Discussion of Be Star Populations	182										
6	Con	clusions	198										
	6.1	Summary of Results	198										
	6.2	Further Work	201										
${f A}$	\mathbf{Abs}	olute Photometry with IRAF	203										
	A.1	Getting Started With IRAF	203										
		A.1.1 IRAF Help	203										
		A.1.2 IRAF Parameter Files	203										
		A.1.3 Fixing Image Headers	204										
		A.1.4 Displaying and Examining Images	204										
		A 1 5 ID A F carinta	205										

	A.2	Data l	Reduction	205
		A.2.1	Image Processing	205
		A.2.2	Computing the Effective Airmass	213
		A.2.3	Removing Cosmic Rays	213
		A.2.4	Fixing Bad Pixels	214
	A.3	Standa	ard Star Photometry	214
		A.3.1	Software Packages for Photometry	214
		A.3.2	Aperture Photometry of Standards	214
		A.3.3	The Standard Star Solutions	217
	A.4	Photo	metry of a Crowded Field	227
		A.4.1	Finding the Stars	227
		A.4.2	Aperture Photometry of Crowded Fields	229
		A.4.3	PSF Fitting	229
		A.4.4	Aperture Correction	235
	A.5	Analy	zing Your Results	236
В	IRA	F Scri	ipts	239
\mathbf{C}	Ana	lyzing	Photometry With IDL	246
	C.1	Readin	ng the Instrumental Magnitudes	246
	C.2	Identif	fying Close Neighbors	249
	C.3	Match	ing Photometry from Multiple Filters	253
	C.4	Calcul	ating the Aperture Correction	258
	C.5	Transf	forming to Standard Magnitudes	262
D	Pho	tomet	ry of Open Clusters	268
	Refe	erence	s	430

List of Tables

2.1	Summary of spectroscopic observations	24
2.2	Strömgren and H α filter parameters	30
2.3	Standard stars used to calibrate photometry	32
2.4	Mean transformation coefficients and their errors for clusters	40
2.5	Transformation coefficients and their errors for LS 5039	40
2.6	Offsets for H α magnitudes	43
3.1	Journal of observations of HD 16429 A	58
3.2	Orbital elements of HD 16429 A	60
3.3	Associated stars near HD 16429 A	75
4.1	Journal of observations of LS 5039	81
4.2	Orbital elements of LS 5039	85
4.3	He line ratios and effective temperature for LS 5039	92
4.4	Range in stellar parameters for LS 5039	110
4.5	Pre-supernova orbital parameters of LS 5039	116
5.1	Summary of open clusters	134
5.2	Distribution of clusters in the Galaxy	192
D.1	Photometry of Haffner 16	269
D.2	Photometry of IC 2581	296
D.3	Photometry of NGC 2362	305
D.4	Photometry of NGC 2367	309
D.5	Photometry of NGC 2383	314
D.6	Photometry of NGC 2384	327
D.7	Photometry of NGC 2414	332
D.8	Photometry of NGC 2421	335

D.9	Photometry	of I	NGC	2439												349
D.10	Photometry	of I	NGC	2483												354
D.11	Photometry	of I	NGC	2489												363
D.12	Photometry	of I	NGC	2571												375
D.13	Photometry	of I	NGC	2659												379
D.14	Photometry	of I	NGC	3293												385
D.15	Photometry	of I	NGC	3766												389
D.16	Photometry	of I	NGC	4103												394
D.17	Photometry	of I	NGC	4755												402
D.18	Photometry	of I	NGC	5281												408
D.19	Photometry	of l	Rupre	echt 79)					 ١.						411
D 20	Photometry	of r	Trum	nler 7												427

List of Figures

1.1	Main-sequence evolutionary tracks	ξ
2.1	Transmission curves of Strömgren and H α filters	31
2.2	Instrumental magnitudes of standard stars vs. aperture	34
2.3	Instrumental error for the b filter	46
2.4	Accuracy of the photometry for the cluster NGC 3766	50
2.5	Errors in astrometry	53
3.1	Heirarchical diagram of the HD 16429 system	56
3.2	Radial velocity curve of HD 16429 A	61
3.3	Grayscale plot of the blended He I $\lambda 6678$ line in HD 16429 A \dots	63
3.4	Determining K for HD 16429 Ab1	65
3.5	Grayscale plot of the He I $\lambda 6678$ line in HD 16429 Ab1	67
3.6	Separated spectra of HD 16429 Aa and Ab1	70
4.1	Radial velocity curve of LS 5039	86
4.2	Average blue spectrum of LS 5039	88
4.3	$H\gamma$ profile of LS 5039	93
4.4	N V P Cygni profiles in the UV spectrum of LS 5039	97
4.5	C IV P Cygni profile in the UV spectrum of LS 5039	98
4.6	UV, optical, and IR flux distribution of LS 5039	101
4.7	Covariability of X-ray flux and H α mass loss rate in LS 5039	107
4.8	Constraints on the masses of LS 5039	111
4.9	Supernova mass loss parameters for LS 5039	120
5.1	Theoretical color-color curve from Kurucz models	137
5.2	Color-magnitude and color-color diagrams of Haffner 16	141
5.3	Color-magnitude and color-color diagrams of IC 2581	142

5.4	Color-magnitude and color-color diagrams of NGC 2362	143
5.5	Color-magnitude and color-color diagrams of NGC 2367	144
5.6	Color-magnitude and color-color diagrams of NGC 2383	145
5.7	Color-magnitude and color-color diagrams of NGC 2384	146
5.8	Color-magnitude and color-color diagrams of NGC 2414	147
5.9	Color-magnitude and color-color diagrams of NGC 2421	148
5.10	Color-magnitude and color-color diagrams of NGC 2439	149
5.11	Color-magnitude and color-color diagrams of NGC 2483	150
5.12	Color-magnitude and color-color diagrams of NGC 2489	151
5.13	Color-magnitude and color-color diagrams of NGC 2571	152
5.14	Color-magnitude and color-color diagrams of NGC 2659	153
5.15	Color-magnitude and color-color diagrams of NGC 3293	154
5.16	Color-magnitude and color-color diagrams of NGC 3766	155
5.17	Color-magnitude and color-color diagrams of NGC 4103	156
5.18	Color-magnitude and color-color diagrams of NGC 4755	157
5.19	Color-magnitude and color-color diagrams of NGC 5281	158
5.20	Color-magnitude and color-color diagrams of Ruprecht 79	159
5.21	Color-magnitude and color-color diagrams of Trumpler 7	160
5.22	$H\alpha$ profiles of Be stars in NGC 3766	163
5.23	$H\alpha$ profiles of inactive Be stars in NGC 3766	166
5.24	$H\alpha$ equivalent width versus observed $y - H\alpha$	167
5.25	Two stellar populations of Haffner 16	169
5.26	Distribution of stellar populations in the vicinity of Haffner 16	170
5.27	Percentage of Be stars as a function of cluster age	186
5.28	Absolute color-magnitude diagram of Be stars	188
5.29	Histogram plot of total Be and B star populations	189
5.30	Distribution of the cluster sample in the Galaxy	193
5.31	Percentage of Be stars as a function of distance from Galactic center	194
5.32	Percentage of Be stars as a function of number of B stars	195
A.1	The instrument file $ccd.dat$	206
A.2	The setinstrument parameter file	206
A.3	List of flat field images, flat	207
A.4	The zerocombine parameter file	208
A.5	The ccdproc parameter file for flat field images	210
A.6	The flatcombine parameter file	211

A.7	The ccdproc parameter file for object images	212
A.8	The cosmicray parameter file	214
A.9	The photpars parameter file	215
A.10	Using photpars with multiple apertures	216
A.11	The fitskypars parameter file	217
A.12	The datapars parameter file for standard stars	218
A.13	The centerpars parameter file	218
A.14	The phot parameter file for standard stars	219
A.15	The mkimsets parameter file	220
A.16	Output produced by mkimsets , nightA.stdim	220
A.17	The mknobsfile parameter file	221
A.18	Output produced by mknobsfile , nightA.standobs	222
A.19	Sample transformation equations in the file transformeq	223
A.20	The mkconfig parameter file	224
A.21	The fitparams parameter file	225
A.22	Output produced by fitparams , ctio.ans	226
A.23	The daofind parameter file	228
	The phot parameter file for cluster stars	230
A.25	The daopars parameter file	231
	The pstselect parameter file	232
A.27	The psf parameter file	233
A.28	The allstar parameter file	234
A.29	The phot parameter file for aperture correction stars	237
Δ 30	The photners parameter file for aperture correction stars	237

Abbreviations

 3α triple alpha

A&A Astronomy & Astrophysics

A&AS Astronomy & Astrophysics Supplement Series

AAS American Astronomical Society

AJ Astronomical Journal

ARA&A Annual Reviews of Astronomy & Astrophysics

ApL Astrophysical Letters ApJ Astrophysical Journal

ApJS Astrophysical Journal Supplement Series

CCD charge coupled device CEP common envelope phase

CF Coudé Feed

CNO carbon-nitrogen-oxygen CS Cassegrain Spectrograph

CTIO Cerro Tololo Inter-American Observatory

FUV far ultraviolet

FWHM full-width at half-maximum

HR Hertzsprung-Russell
HST Hubble Space Telescope
HWHM half-width at half-maximum

IUE International Ultraviolet Explorer
 KPNO Kitt Peak National Observatory
 LCS Large Cassegrain Spectrograph
 LTE local thermodynamic equilibruium

McDonald Observatory

MNRAS Monthly Notices of the Royal Astronomical Society

MS main-sequence

MXRB massive X-ray binary

NAC narrow absorption components

PASP Publications of the Astronomical Society of the Pacific

pp proton-proton

PSF point-spread function RLOF Roche lobe overflow

SN supernova

S/N signal-to-noise ratio

STIS Space Telescope Imaging Spectrograph

TAMS terminal-age main-sequence

UV ultraviolet

ZAMS zero-age main-sequence

Chapter 1

Introduction

Massive O- and B-type stars evolve significantly faster than stars with cooler spectral types, so their populations include stars at many different evolutionary stages. They provide fascinating laboratories for the study of stellar evolution. In this dissertation, I investigate two particular categories of evolved stars, Be stars and microquasars.

Be stars are a class of B stars with circumstellar disks that produce Balmer and other line emission. The source of their disks is not well understood, but it is likely that rapid rotation, combined with nonradial pulsations or magnetic fields, contributes to their formation (Porter & Rivinius 2003). This phenomenon is observed both in pre-main-sequence and evolved B stars, although here I concentrate on main-sequence (MS) and post-MS Be stars. These classical Be stars may develop among B stars that are born as rapid rotators, or the phenomenon may occur later during their lifetimes. Recent evolutionary models of rapidly rotating massive stars

have suggested that the Be phenomenon may be caused by an evolutionary spin-up towards the end of the MS lifetime (Meynet & Maeder 2000). Alternatively, binary mass transfer may be responsible for the increase in rotational velocity that induces the Be star disks, although not all Be stars are observed in binary systems.

Many massive binary systems, including Be binaries, contain the final product of massive stellar evolution: a neutron star or black hole companion. Mass transfer from the less evolved star onto the compact companion generates X-ray emission, and some of these massive X-ray binaries (MXRBs) also have relativistic radio jets that closely resemble small versions of extragalactic quasars. Not only are microquasars a good testbed for accretion disk and jet models, they provide fascinating examples of stellar evolution. For example, LS 5039 appears to be a recently formed microquasar, and many of its pre-supernova characteristics can be derived from spectroscopic studies of the system.

Before I examine these particular examples of stellar evolution, I present a broader discussion of stellar evolution in general. The processes involved during the MS evolution of O- and B-type stars are discussed in §1.1, and their post-MS evolution is described in §1.2. Finally, close binary systems such as HD 16429 Ab and the progenitor to LS 5039 will undergo unique evolutionary processes due to binary interactions, and such close binary evolution is discussed in §1.3. Finally, in §1.4 I present an outline of my investigations for each object.

1.1 Massive Stars on the Main-Sequence

The most important factor that influences a star's life on the MS is its mass. More massive stars have higher core and surface temperatures, greater initial luminosities, and more energy generation in their cores to provide radiation pressure and support them against their own gravity. To accommodate their excesses in luminosity and energy generation, the lifetimes of massive stars are shortened significantly compared to solar and lower mass stars. In this section I review the structure of massive stars on the MS, the methods of energy generation and energy transport in their interiors, and the effect of increasing the mean molecular weight as H is converted to He. I also mention several other factors that influence MS evolution, namely metallicity, convective core overshooting, and rotational velocity. Unless otherwise specified, this discussion of MS (and post MS evolution in §1.3) is from Kippenhahn & Weigert (1990).

When stars begin their core H burning at the zero-age main-sequence (ZAMS), they are generally assumed to be chemically homogeneous and in mechanical and thermal equilibrium. The internal structure of a spherically symmetric star can be described by the differential equations of stellar structure. Mass conservation defines the relationship between the mass distribution inside the star, m, the density, ρ , and the radius, r, such that

$$\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \rho}. (1.1)$$

Stars are assumed to be in hydrostatic equilibrium in which the difference in pressure, P, across any element within the star is equal to the force of gravity; therefore

$$\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4},\tag{1.2}$$

where G is the gravitational constant. The luminosity distribution, l(m), within the star depends on the nuclear energy generation rate, $\epsilon_{\rm n}$, energy loss from neutrinos, ϵ_{ν} , and internal energy released from the gas:

$$\frac{\partial l}{\partial m} = \epsilon_{\rm n} - \epsilon_{\nu} - c_P \frac{\partial T}{\partial t} + \frac{\delta}{\rho} \frac{\partial P}{\partial t}.$$
 (1.3)

Here, c_P is the specific heat at constant pressure, and the temperature T and pressure P may change over time, t. The coefficient δ is defined as

$$\delta \equiv -\left(\frac{\partial \ln \rho}{\partial \ln T}\right)_{P}.\tag{1.4}$$

Finally, the temperature distribution within the star is given by the expression

$$\frac{\partial T}{\partial m} = -\frac{GmT}{4\pi r^4 P} \nabla,\tag{1.5}$$

where ∇ is defined as

$$\nabla \equiv \frac{d \ln T}{d \ln P}.\tag{1.6}$$