......

1 Learning Outcome

Differentiation:
\square gradient of the graph of any function
\square derivative meaning and notation
\Box rules for finding derivative, including power rule, sum or differences of functions, constant multiplications
\square Chain Rule for composite functions
\square find tangents and gradients using differentiation
\square connected rates of change
□ locate stationary point
\square distinguish between local maximum and local minimum
$\ \square$ increasing and decreasing nature of function
\square sketch the curve
Integration:
$\hfill\Box$ integration as the reversee process of differentiation
\Box integrate $(ax+b)^n$
$\ \square$ integration rules for sums and difference, constant multiples
\square evaluate definite integral
\square eveluate improper integral
$\hfill\Box$ find area of a region bounded by two functions
\square find the volume of revolution abour one axis

2 Key Concepts

- 1. 导数 derivative 是原函数 f(x) 在任意 x 处的切线的斜率
- 2. 导数的标记手段还是很多的,比如 $\frac{dy}{dx}$,y',f'(x), $\frac{df}{dx}$, $\frac{d}{dx}$ (f(x)) 等
- 3. 求算导数的 power rule: $\frac{\mathrm{d}}{\mathrm{d}x}(x^n) = n \cdot x^{n-1}$
- 4. constant multiplication 运算: $\frac{\mathrm{d}}{\mathrm{d}x}k\cdot f(x)=k\cdot\frac{\mathrm{d}}{\mathrm{d}x}f(x)$
- 5. 导数求算中的加减法运算: $\frac{d}{dx}f(x)\pm g(x)=f'(x)\pm g'(x)$
- 6. 导数求算中的 Product Rule: $(f \cdot g)' = f'g + fg'$
- 7. 导数求算中的 Quotient Rule: $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$
- 8. 导数求算中的 Chain Rule: $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$
- 9. 寻找函数 y = f(x) 在某一点 $(x_0, f(x_0))$ 处的切线 tangent line 的做法: 首先找出导数 f'(x), 然后将 x_0 代入到导数表达式中得到 $f'(x_0)$, 最后用点斜式 point-slope 的方式表达出切线 $y f(x_0) = f'(x_0)(x x_0)$
- 10. 法线 normal line 就是与切线互相垂直的直线,因此依旧采用点斜式的方式来表达 $y-f(x_0)=-\frac{1}{f'(x_0)}(x-x_0)$
- 11. 驻点 stationary point 是导数为 0 处,或者说切线斜率为 0 处。因此必定需要求解 $\frac{\mathrm{d}y}{\mathrm{d}x}=0$ 绝对 没有错
- 12. 原函数的递增递减性质与其导数的正负性紧密相关:原函数递增,导数必定大于 0;导数大于 0,也可以推导出原函数递增;反之一样的结论。因此可以求算原函数单调性的区间
- 13. 相关变化率问题 connected rate of change,必定会有两个量随时间发生变化假设为 A 和 B。在解决这一类问题时必定会利用到 chain rule,因此可以直接写出 $\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}B} \cdot \frac{\mathrm{d}B}{\mathrm{d}t}$ 。去题目当中找寻给定的 rate of change,以及 A 和 B 之间的函数关系就可以了。
- 14. 积分 integration 是微分 differentiation 的反向运算,因此有如果 f'(x) 是 f(x) 的导数的话,那么 $\int f'(x) \mathrm{d}x = f(x) + C$,即对 f'(x) 求算不定积分,结果必定为 f(x) 的一系列函数

- 15. 利用 integration by substitution 可以求算 $\int (ax+b)^n$,结果为 $\frac{1}{a\cdot (n+1)}\cdot (ax+b)^{n+1}+C$
- 16. 积分求算过程中的 constant multiplication 运算: $\int kf(x)\mathrm{d}x = k\cdot\int f(x)\mathrm{d}x$ 。 因此常系数可以直接 从被积表达式 integrand 拿出来
- 17. 求算定积分 definite integral, 首先会在不定积分的基础上增加上下限,其次计算结果为一个常数值。和不定积分的关系是: $\int_a^b f'(x) \mathrm{d}x = f(b) f(a)$
- 18. improper integral 反常积分当中在积分上下限中包含无穷,或者间断点,通常是 $\int_a^\infty f(x) \mathrm{d}x$ 或者是 $\int_0^b f(x) \mathrm{d}x$ 的类型,对于这类无法直接带入上下限,或者函数无定义的情况,采用极限的手段来求算这一类积分
- 19. 求算由两个函数 f(x) 和 g(x) 包围的面积时,第一步需要找出积分上下限,或者两个函数的交点,f(x) = g(x),确定出 x = a 和 x = b 作为积分上下限;第二步,列出面积积分表达式 $A = \int_a^b f(x) g(x) \mathrm{d}x$ (高的减去低的);第三部求解定积分就可以了。但是注意,有的情况下需要水平切割,因此微元是 $\mathrm{d}y$,那么积分的上下限需要转换为 y 的最大最小值,且 integrand 要变成 $x_2(y) x_1(y)$
- 20. 求算旋转体的体积,仅需要利用微元转出来的结果是一个薄薄的 disc 或者 washer。这个薄圆片的厚度是 $\mathrm{d}x$,表面积为 πr^2 。所以只需要找出来半径 r 与 x 的表达式即可。如果转出来的旋转体是空心的的。表面积需要改写为 $r_2^2-r_1^2$ 。 r_2 是较大的半径, r_1 是较小的半径,都是关于x 的表达式。因此最后求算定积分即可 $\int_a^b \pi(f(x))^2 \mathrm{d}x$ 。或者是 $\int_a^b \pi[(f(x))^2-(g(x))^2] \mathrm{d}x$