

The U-plane of rank-one $4d\,\mathcal{N}=2$ KK Theories

Cyril Closset ¹

Horia Magureanu ²

¹School of Mathematics, University of Birmingham

²Mathematical Institute, University of Oxford

Seiberg-Witten geometry

• Low energy physics on Coulomb branch (CB) of 4d $\mathcal{N}=2$ theories famously encoded in a *Rational Elliptic Surface*. CB parametrized by gauge invariant operator $u=\langle \operatorname{Tr} \phi^2 \rangle$. For KK theories, this becomes the VEV of a Wilson line operator:

$$U = e^{2\pi i a} + e^{-2\pi i a} + \dots .$$

Singular fibers classified by Kodaira. Simple constraints:

$$y^2 = 4x^3 - g_2(U, \mathbf{M})x - g_3(U, \mathbf{M}), \qquad \sum_{v} \operatorname{ord}(\Delta) = 12.$$

Sections of RES form the Mordell-Weil group:

$$\Phi = \mathbb{Z}^r \oplus \Phi_{tor}$$
.

• Configurations of singular fibers of RES completely classified by Persson and Miranda! A rank-one $\mathcal{N}=2$ theory is then specified by fixing the singular fiber at infinity F_{∞} .

Global aspects from the Coulomb branch

Setup: IIA on $\widetilde{\boldsymbol{X}} \longleftrightarrow$ IIB on $\widehat{\boldsymbol{Y}}$, where $\widetilde{\boldsymbol{X}} = \operatorname{Tot}(\mathcal{K} \to dP_n)$. We use Hori-Vafa mirrors in F-theory uplift:

$$E \times \mathbb{C}^* \longrightarrow \hat{\mathbf{Y}} \longrightarrow \mathbb{C}$$
.

- 1. Non-abelian flavour symmetry algebra is encoded in the Kodaira fibers. Fiber at infinity does not contribute to flavour symmetry!
- 2. Abelian flavour symmetry is $U(1)^r$, with r the rank of the Φ .
- 3. Torsion part of Φ restricts global form of the flavour symmetry.

$$\mathcal{Z}^{[1]} = \{ P \in \Phi_{tor} : (P) \text{ intersects } \Theta_{v,0} \text{ for all } F_{v \neq \infty} \}$$
 ,

and denote by \mathcal{F} the cokernel of the inclusion map $\mathcal{Z}^{[1]} \to \Phi_{tor}$. Thus, by construction, we have the short exact sequence:

$$0 \to \mathcal{Z}^{[1]} \to \Phi_{tor} \to \mathcal{F} \to 0$$
.

The flavour symmetry group of the theory $\mathcal{T}_{F_{\infty}}$ is given by:

$$G_F = \widetilde{G}_F/\mathcal{F}$$
 ,

with \widetilde{G}_F the simply connected group with algebra \mathfrak{g}_F from fibers.

4. We also conjecture:

$$\mathcal{Z}^{[1]}\cong ext{ 1-form symmetry }, \qquad \Phi_{tor}\cong ext{ 2-group symmetry }.$$

Examples and Results

Simplest singular fibers describe theories:

$$F_{\infty}= I_{4-N_f}^*: \qquad \mbox{4d } SU(2)+N_f \mbox{ flavours }, \ I_{9-n}: \qquad \mbox{4d } E_n \mbox{ KK theories }.$$

 Our analysis is in agreement with known results, but also predicts new ones. For RES with only two singular fibers:

$\{F_v\}$	$\Phi_{ m tor}$	F_{∞}	4d theory	\mathfrak{g}_F	G_F
II^*,II	_	II^*	$AD\; H_0$	-	_
		II	E_8 MN	E_8	E_8
III^*, III	\mathbb{Z}_2	III^*	$AD\;H_1$	A_1	$SU(2)/\mathbb{Z}_2$
		III	$E_7 MN$	E_7	E_7/\mathbb{Z}_2
IV^*,IV	\mathbb{Z}_3	IV^*	$AD\; H_2$	A_2	$SU(3)/\mathbb{Z}_3$
		IV	E_6 MN	E_6	E_6/\mathbb{Z}_3
I_0^*,I_0^*	$\mathbb{Z}_2 \times \mathbb{Z}_2$	I_0^*	$SU(2) N_f = 4$	D_4	$\operatorname{Spin}(8)/\mathbb{Z}_2 \times \mathbb{Z}_2$

• For 5d SCFT parent theories, we find that:

$$G_F(E_n) = E_n/Z(E_n)$$
.

Modularity and BPS quivers

- When RES can be constructed as quotient \mathbb{H}/Γ , for $\Gamma \subset \mathrm{PSL}(2,\mathbb{Z})$, then U-plane can be isomorphically mapped to upper half-plane \mathbb{H} .
- The special points of Γ **cusps** and **elliptic points** get mapped to the singular fibers. The light BPS states can be simply found:

$$\tau = \frac{q}{m} \quad \longleftrightarrow \quad \pm (m, -q) \ .$$

