Teórica 3 : Sistemas deductivos, Deducción natural para lógica proposicional

Tomás Felipe Melli

April 17, 2025

Índice

1	Sist	emas Deductivos
	1.1	Definición Formal
	1.2	Reglas de Inferencia
	1.3	Derivación / Deducción / Prueba
		1.3.1 Árbol de Derivación
	1.4	Afirmación Derivable (Teorema)
	1.5	Lógica Proposicional
2	Ded	lucción Natural para la Lógica Proposicional
	2.1	Sintaxis
	2.2	Convención de Notación
	2.3	Semántica
	2.4	Contextos y Juicios
	2.5	Consecuencia Lógica
	2.6	Limitaciones del método semántico
	2.7	Enfoque Deductivo
	2.8	Reglas de Inferencia
		2.8.1 Axioma
		2.8.2 Conjunción
	2.9	Implicación
		2.9.1 Disyunción
		2.9.2 Falsedad
		2.9.3 Negación
	2.10	Deducción natural Intuicionista (NJ)
		2.10.1 Reglas
		2.10.2 Propiedades del Sistema
		2.10.3 Reglas derivadas
		2.10.4 Principio de razonamiento clásicos
	2.11	Lógica Intuicionsta vs Lógica Clásica
3	Sem	nántica Bivaluada
J	3.1	Corrección y Completitud
	J.1	3.1.1 Demo de corrección $\Gamma \vdash_{NK} \tau \implies \Gamma \models \tau$
		3.1.2 Demo de completitud $\Gamma \models \tau \implies \Gamma \vdash_{NK} \tau$
		5.1.2 Define the compression of $\Gamma = \Gamma = \Gamma = \Gamma = \Gamma$

1 Sistemas Deductivos

La idea es poder hacer afirmaciones matemáticamente precisas sobre programas en distintos lenguajes de programación. Por ejemplo :

- El tipo Bool > Int está sintácticamente bien formado.
- La expresión map tiene tipo ((a->b)->[a]->[b])
- El programa while (true) { } no termina
- Los algortimos de quicksort y mergesort son indistinguibles

La idea es tener mecanismos para demostrar estas afirmaciones. Que en este contexto llamamos juicios. Informalmente decimos que un sistema deductivo nos brinda herramientas y principios para razonar de forma rigurosa. En otras palabras, sirve para razonar acerca de juicios. La definición formal es:

1.1 Definición Formal

Dado un conjunto de axiomas y reglas de inferencia que tienen la siguiente estructura

$$\frac{-\sqrt{\operatorname{axioma}}}{\langle \operatorname{axioma}} \langle \operatorname{nombre\ del\ axioma} \rangle$$

$$\frac{\langle \operatorname{premisa}_0 \rangle \quad \langle \operatorname{premisa}_1 \rangle \quad \dots \quad \langle \operatorname{premisa}_n \rangle}{\langle \operatorname{conclusión} \rangle} \langle \operatorname{nombre\ de\ la\ regla} \rangle$$

Donde:

- Axioma : Afirmaciones básicas que se asumen como verdaderas (no se deducen de otras afirmaciones)
- Reglas de inferencia: Permiten derivar afirmaciones (teoremas) a partir de axiomas y otras afirmaciones.

1.2 Reglas de Inferencia

$$\frac{\langle \mathsf{premisa}_0 \rangle \quad \langle \mathsf{premisa}_1 \rangle \quad \dots \quad \langle \mathsf{premisa}_n \rangle}{\langle \mathsf{conclusión} \rangle} \langle \mathsf{nombre\ de\ la\ regla} \rangle$$

Las premisas son condiciones suficientes para la conclusión. Esto se lee :

- Arriba hacia abajo: si tenemos evidencia de que valen las premisas, podemos deducir que vale la conclusión.
- Abajo hacia arriba : si queremos demostrar que vale la conclusión, alcanza con demostrar que valen las premisas.

1.3 Derivación / Deducción / Prueba

Un procedimiento sistemático que permite construir una demostración, mostrando cómo una afirmación se deduce a partir de un conjunto de axiomas y reglas de inferencia se denomina **derivación**. Gráficamente esto tomaría una forma arbórea que llamamos **árbol de derivación**

1.3.1 Árbol de Derivación

Es un árbol finito donde los **nodos representan afirmaciones**, la **raiz es lo que se quiere probar (conclusión)** y las **ramas representan las reglas de inferencia** que conectan a las afirmaciones. Este árbol parte de ciertas premisas (hojas) y llega a una conclusión (raiz).

1.4 Afirmación Derivable (Teorema)

Decimos que una afirmación es derivable si existe alguna derivación sin premisas que la tiene como concluisión.

^{**} Dato de color : un axioma es una regla de inferencia sin premisas.

1.5 Lógica Proposicional

Supongamos un conjunto infinito de variables proposicionales $\Phi = \{P, Q, R, ...\}$.

Primero hablemos de la **sintaxis**.

Las fórmulas bien formadas (fbf) de la lógica proposicional se construyen inductivamente según las siguientes reglas :

- Cualquier variable proposicional es una fórmula
- \perp es una fórmula (representa una contradicción)
- Si τ es una fórmula, entonces $\neg \tau$ es una fórmula
- Si τ y σ son fórmulas, entonces $\tau \wedge \sigma$, $\tau \implies \sigma$ y $\tau \vee \sigma$ son fórmulas.

Miremos cómo llevamos esto al sistema deductivo

La afirmación "X FORM" denota que X es una fórmula de la lógica proposicional. $\frac{P \in \mathcal{P}}{P \text{ FORM}} \mathsf{FP} \qquad \frac{\tau \text{ FORM}}{\bot \text{ FORM}} \mathsf{F} \bot \qquad \frac{\tau \text{ FORM}}{(\tau \land \sigma) \text{ FORM}} \mathsf{F} \land \\ \frac{\tau \text{ FORM}}{(\tau \Rightarrow \sigma) \text{ FORM}} \mathsf{F} \Rightarrow \qquad \frac{\tau \text{ FORM}}{(\tau \lor \sigma) \text{ FORM}} \mathsf{F} \lor \qquad \frac{\tau \text{ FORM}}{\neg \tau \text{ FORM}} \mathsf{F} \neg$

Nos piden demostrar que $\neg(P \implies (Q \implies P))$ FORM, es decir, que esta fórmula está bien formada.

$$\frac{P \in \mathcal{P}}{P \text{ FORM}} \text{ FP} \qquad \frac{Q \in \mathcal{P}}{Q \text{ FORM}} \text{ FP} \qquad \frac{P \in \mathcal{P}}{P \text{ FORM}} \text{ FP}}{(Q \Rightarrow P) \text{ FORM}} \text{ FP}$$

$$\frac{(P \Rightarrow (Q \Rightarrow P)) \text{ FORM}}{\neg (P \Rightarrow (Q \Rightarrow P)) \text{ FORM}} \text{ F} \rightarrow$$

2 Deducción Natural para la Lógica Proposicional

2.1 Sintaxis

Usualmente no vamos a definir la sintaxis de lenguajes a través de sistemas deductivos. Vamos a escribirlos de manera abreviada, usando **gramáticas**. La gramática entonces de la lógica proposicional es como sigue

$$\tau, \sigma, \rho, \cdots := P \mid \bot \mid (\tau \land \sigma) \mid (\tau \lor \sigma) \mid (\tau \Rightarrow \sigma) \mid \neg \tau$$

y gracias a ella podemos generar que expresiones que serán las **fórmulas.**

Una observación es que las gramáticas definen sistemas deductivos de manera abreviada. Una expresión τ se puede generar a partir de la gramática de arriba si y sólo si el juicio τ FORM es derivable del sistema anterior.

2.2 Convención de Notación

1. Omitimos los paréntesis más externos de las fórmulas

$$\tau \wedge \neg (\sigma \vee \rho) = (\tau \wedge \neg (\sigma \vee \rho))$$

2. La implicación es asociativa a derecha

$$\tau \Rightarrow \sigma \Rightarrow \rho = (\tau \Rightarrow (\sigma \Rightarrow \rho))$$

3. Los conectivos $\land \lor$ no son conmutativos ni asociativos

$$\tau \lor (\sigma \lor \rho) \neq (\tau \lor \sigma) \lor \rho$$
$$\tau \land \sigma \neq \sigma \land \tau$$

2.3 Semántica

Una valuación es una función $v : \mathcal{P} \to \{V, F\}$ que asigna valores de verdad a las variables proposicionales. Una valuación v satisface una fórmula τ si $v \models \tau$, donde:

$$v \models P \quad \text{si y solo si} \quad v(P) = V$$

$$v \models \tau \wedge \sigma \quad \text{si y solo si} \quad v \models \tau \text{ y } v \models \sigma$$

$$v \models \tau \Rightarrow \sigma \quad \text{si y solo si} \quad v \not\models \tau \text{ o } v \models \sigma$$

$$v \models \tau \vee \sigma \quad \text{si y solo si} \quad v \models \tau \text{ o } v \models \sigma$$

$$v \models \neg \tau \quad \text{si y solo si} \quad v \not\models \tau$$

Nota: $v \models \bot$ nunca vale.

2.4 Contextos y Juicios

Un contexto es un conjunto finito de fórmulas. Los vamos a notar con letrar griegas mayúsculas $(\Gamma, \Delta, \Sigma, ...)$. Por ejemplo :

$$\Gamma = \{P \Rightarrow Q, \neg Q\}$$

Vamos a omitir el uso de llaves.

Con esto en mente, $v \models \Gamma$ significa Una valuación v satisface un contexto Γ si y sólo si v satisface a todas las fórmulas de Γ .

** Toda valuación v satisface al contexto vacío.

2.5 Consecuencia Lógica

Una fórmula τ es una consecuencia lógica (o semántica) de un conjunto Γ (lo notamos $\Gamma \models \tau$) si y sólo si cualquier valuación v que satisface a Γ también satisface a τ

- \bullet τ es verdadera para todas las valuaciones que satisfacen todas las fórmulas en Γ
- Asumiendo que todas las fórmulas en Γ son verdaderas (hipóotesis), τ (tesis) es verdadera

Veamos unos ejemplos

1. Probar que $P \wedge Q \models P$

$$\frac{P \wedge Q}{P}$$
Eliminación de la conjunción

2. Probar que $P \vee Q, \neg Q \models P$

$$\frac{P \vee Q \qquad \neg Q}{P} \text{ Eliminación de la disyunción}$$

3. Probar que $P \lor Q \models Q$

4. Probar que $P \models Q \lor \neg Q$

$$\frac{P}{Q \vee \neg Q}$$
 Tautología

5. Probar que $\models P \implies P$

$$P \Rightarrow P$$
 Tautología

2.6 Limitaciones del método semántico

- 1. Muy pocas lógicas tienen procedimientos de decisión como la lógica proposicional
- 2. El conjunto de hipóteiss (axiomas) puede ser infinito
- 3. No evidencia la relación de la fórmula con hipótesis
- 4. Difícil reconocer estados intermedios (Lemas)

Por ello surge el enfoque deductivo

2.7 Enfoque Deductivo

Vamos a ver el sistema de deducción natural. En este se trabaja con afirmaciones de la forma

$$\underbrace{\Gamma}_{\text{Hipótesis}} \vdash \underbrace{\tau}_{\text{Tesis}}$$

A estas afirmaciones las llamamos **juicios**. Informalmente, un juicio afirma que a partir de las hipótesis en el contexto Γ es posible deducir la fórmula de la tesis.

2.8 Reglas de Inferencia

El sistema de deducción natural tiene muchas reglas de inferencia.

2.8.1 Axioma

$$\overline{\Gamma, \tau \vdash \tau}$$
 ax

Miremos unos ejemplos:

$$P \vdash P$$
 ax $P \Rightarrow Q, R \vdash P \Rightarrow Q$ ax $P, Q \land R, S \vdash Q \land R$ ax

Los siguientes juicios no se deducen de la regla ax :

$$P,Q \vdash R \qquad \vdash P \Rightarrow P \qquad P \land Q \vdash Q \land P \qquad \neg \neg P \vdash P$$

2.8.2 Conjunción

• Introducción de la conjunción

$$\frac{\Gamma \vdash \tau \quad \Gamma \vdash \sigma}{\Gamma \vdash \tau \land \sigma} \land_i$$

• Eliminación de la conjunción

$$\frac{\Gamma \vdash \tau \land \sigma}{\Gamma \vdash \tau} \land_{e_1} \qquad \frac{\Gamma \vdash \tau \land \sigma}{\Gamma \vdash \sigma} \land_{e_2}$$

Nos piden dar derivaciones para :

1.
$$P \wedge Q \vdash Q \wedge P$$

$$\frac{ \begin{array}{c|c} \hline \Gamma \vdash P \land Q \end{array} \overset{\text{ax}}{\underset{\land \vdash P}{}} \overset{\text{ax}}{\underset{\land \vdash Q}{}} & \frac{ \Gamma \vdash P \land Q }{ \Gamma \vdash Q } \overset{\text{ax}}{\underset{\land \vdash Q}{}} & \overset{\text{ax}}{\underset{\land \vdash Q}{}} \\ \hline \Gamma \vdash Q \land P & & \\ \hline \end{array}}$$

5

2.
$$P \wedge (Q \wedge R) \vdash (P \wedge Q) \wedge R$$

$$\frac{ \begin{array}{c|c} \Gamma \vdash P \land (Q \land R) \\ \hline \Gamma \vdash P & \land (Q \land R) \\ \hline \\ \hline \Gamma \vdash P & \land e1 \\ \hline \\ \hline \Gamma \vdash P \land Q & \land e1 \\ \hline \\ \hline \\ \Gamma \vdash P \land Q & \land i \\ \hline \\ \hline \\ \Gamma \vdash R & \land i \\ \hline \end{array} \xrightarrow{ \begin{array}{c} \Gamma \vdash Q \land R \\ \hline \\ \Gamma \vdash R & \land e2 \\ \hline \\ \hline \\ \hline \\ \hline \end{array} \xrightarrow{ \begin{array}{c} \Gamma \vdash Q \land R \\ \land e2 \\ \hline \\ \hline \\ \hline \end{array} \xrightarrow{ \land e2 \\ \hline \\ \hline \\ \hline \end{array} \xrightarrow{ \begin{array}{c} \Gamma \vdash Q \land R \\ \land e2 \\ \hline \\ \hline \\ \hline \end{array} \xrightarrow{ \begin{matrix} \Gamma \vdash Q \land R \\ \land e2 \\ \hline \\ \hline \\ \hline \end{array} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \\ \hline \\ \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \\ \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \\ \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \land e2 \\ \hline \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix} \end{matrix}}} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix} \end{matrix}}} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix} \end{matrix}}} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix} \end{matrix}}} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix} \end{matrix}} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix}}} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix}} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix}}} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \land R \\ \end{matrix}}} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \begin{matrix} \Lambda \vdash Q \begin{matrix} \end{matrix}}} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \begin{matrix} \Lambda \vdash Q \begin{matrix} \end{matrix}}} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \begin{matrix} \Lambda \vdash Q \begin{matrix} \end{matrix}}} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \begin{matrix} \Lambda \vdash Q \begin{matrix} \end{matrix}}} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \begin{matrix} \Lambda \vdash Q \begin{matrix} \end{matrix}}} \xrightarrow{ \begin{matrix} \Lambda \vdash Q \begin{matrix} \end{matrix}}} \xrightarrow$$

2.9 Implicación

• Introducción de la implicación

$$\frac{\Gamma, \tau \vdash \sigma}{\Gamma \vdash \tau \Rightarrow \sigma} \Rightarrow i$$

• Eliminación de la implicación

$$\frac{\Gamma \vdash \tau \Rightarrow \sigma \qquad \Gamma \vdash \tau}{\Gamma \vdash \sigma} \Rightarrow e$$

Nos piden dar derivaciones de :

 $1. \vdash P \implies P$

$$\frac{\Gamma \vdash P}{\Gamma \vdash P \Rightarrow P} \Rightarrow i$$

 $2. \vdash P \implies Q \implies (Q \land P)$

$$\frac{ \overline{\Gamma \vdash P} \xrightarrow{\text{ax}} \overline{\Gamma \vdash Q} \xrightarrow{\text{A}i} }{ \overline{\Gamma \vdash Q \land P} \xrightarrow{\text{A}i} } \xrightarrow{} i$$

$$\overline{\Gamma \vdash Q \Rightarrow (Q \land P)} \xrightarrow{\Rightarrow i} i$$

$$\overline{\Gamma \vdash P \Rightarrow (Q \Rightarrow (Q \land P))} \Rightarrow i$$

3. $P \implies Q, Q \implies R \vdash P \implies R$

$$\frac{\Gamma \vdash P \xrightarrow{\text{ax}} \qquad \overline{\Gamma \vdash P \Rightarrow Q} \xrightarrow{\text{ax}} \qquad }{\Gamma \vdash Q \Rightarrow R} \xrightarrow{\text{ax}} \qquad \overline{\Gamma \vdash Q \Rightarrow R} \Rightarrow e$$

2.9.1 Disyunción

• Introducción de la disyunción

$$\frac{\Gamma \vdash \tau}{\Gamma \vdash \tau \lor \sigma} \lor i_1$$

$$\frac{\Gamma \vdash \sigma}{\Gamma \vdash \tau \lor \sigma} \lor i_2$$

• Eliminación de la disyunción

$$\begin{array}{c|c} \Gamma \vdash \tau \lor \sigma & \Gamma, \tau \vdash \rho & \Gamma, \sigma \vdash \rho \\ \hline \Gamma \vdash \rho & \end{array} \lor e$$

Nos piden dar las siguientes derivaciones...

$$1. \vdash P \implies (P \lor P)$$

$$\frac{\frac{\Gamma \vdash P}{\Gamma \vdash P \lor P}^{\text{ax}}}{\Gamma \vdash P \Rightarrow (P \lor P)} \Rightarrow i$$

$$2. \vdash (P \lor P) \implies P$$

3.
$$P \lor Q \vdash Q \lor P$$

$$\cfrac{\cfrac{}{\cfrac{}{\Gamma \vdash P \lor Q}} \text{ ax}}{\cfrac{}{\Gamma \vdash Q \lor P} \text{ conmutatividad}}$$

2.9.2 Falsedad

El conectivo \perp representa la falsedad (contradicción, absurdo). Este conectivo no tiene reglas de introducción.

• Eliminación del falso (principio de explosión o ex falso quodlibet)

$$\frac{\Gamma \vdash \bot}{\Gamma \vdash \tau} \bot e$$

Nos piden dar unas derivaciones ...

1.
$$(P \lor Q) \implies \bot \vdash P \implies Q$$

$$\frac{ \begin{array}{ccc} \hline \Gamma \vdash (P \lor Q) \Rightarrow \bot & \text{ax} & \overline{\Gamma \vdash P} & \text{ax} \\ \hline \hline \Gamma \vdash (P \lor Q) \Rightarrow \bot & \overline{\Gamma \vdash P \lor Q} & \Rightarrow e \\ \hline \hline \frac{ \Gamma \vdash \bot}{\Gamma \vdash Q} & \bot e \\ \hline \hline \Gamma \vdash P \Rightarrow Q & \Rightarrow i \\ \hline \end{array}$$

$$2. (P \lor Q) \Longrightarrow \bot \vdash P \Longrightarrow Q \Longrightarrow R$$

$$\frac{\Gamma \vdash (P \land Q) \Rightarrow \bot}{\Gamma \vdash P} \xrightarrow{\text{ax}} \frac{\Gamma \vdash Q}{\Gamma \vdash P \land Q} \xrightarrow{\land i} \frac{\Gamma \vdash \bot}{\Gamma \vdash R} \xrightarrow{\bot e} \frac{\Gamma \vdash \bot}{\Gamma \vdash Q \Rightarrow R} \xrightarrow{\Rightarrow i} \frac{\Gamma \vdash \bot}{\Gamma \vdash P \Rightarrow (Q \Rightarrow R)} \xrightarrow{\Rightarrow i}$$

3. Mostrar que hay infinitas derivaciones de $\bot \vdash \bot$

$$\begin{array}{c|c} \frac{\overline{\Gamma \vdash \bot}}{\overline{\Gamma \vdash P}} \bot e \\ \hline \overline{\Gamma \vdash P \lor Q} ^{\lor i_1} & \overline{\Gamma, P \lor Q \vdash \bot} \Rightarrow e \end{array}$$

2.9.3 Negación

• Introducción de la negación (reducción al absurdo intuicionista)

$$\frac{\Gamma, \tau \vdash \bot}{\Gamma \vdash \neg \tau} \neg i$$

• Eliminación de la negación

$$\frac{\Gamma \vdash \tau \qquad \Gamma \vdash \neg \tau}{\Gamma \vdash \bot} \neg e$$

7

Nos piden dar derivaciones para ...

$$1. \vdash P \implies \neg \neg P$$

$$\frac{\Gamma \vdash P \qquad \Gamma \vdash \neg P}{\Gamma \vdash \neg \neg P} \neg e$$

$$\frac{\Gamma \vdash \bot}{\Gamma \vdash \neg \neg P} \neg i$$

$$\Gamma \vdash P \Rightarrow \neg \neg P \Rightarrow i$$

$$2. \vdash \neg (P \land \neg P)$$

$$\frac{\Gamma \vdash P \land \neg P}{\Gamma \vdash P} \land e_1 \qquad \frac{\Gamma \vdash P \land \neg P}{\Gamma \vdash \neg P} \land e_2}{\frac{\Gamma \vdash \bot}{\Gamma \vdash \neg (P \land \neg P)}} \neg i$$

3. $P \lor P \vdash \neg (\neg P \land \neg Q)$

2.10 Deducción natural Intuicionista (NJ)

Veamos todas las reglas :

2.10.1 Reglas

Axioma

$$\overline{\Gamma, \tau \vdash \tau}$$
 ax

Reglas de Introducción

Conjunción A

$$\frac{\Gamma \vdash \tau \qquad \Gamma \vdash \sigma}{\Gamma \vdash \tau \land \sigma} \land i$$

Disyunción V

$$\frac{\Gamma \vdash \tau}{\Gamma \vdash \tau \lor \sigma} \lor i_1$$

$$\frac{\Gamma \vdash \sigma}{\Gamma \vdash \tau \lor \sigma} \lor i_2$$

Implicación \Rightarrow

$$\frac{\Gamma, \tau \vdash \sigma}{\Gamma \vdash \tau \Rightarrow \sigma} \Rightarrow i$$

Negación ¬

$$\frac{\Gamma,\tau\vdash\bot}{\Gamma\vdash\neg\tau}\,\neg i$$

Reglas de Eliminación

$$\begin{array}{ccc} \textbf{Conjunci\'on} \ \land & & \frac{\Gamma \vdash \tau \land \sigma}{\Gamma \vdash \tau} \land e_1 \\ \hline & & \Gamma \vdash \sigma \end{array} \land e_2$$

Disyunción V

$$\begin{array}{c|cccc} \underline{\Gamma \vdash \tau \lor \sigma} & \underline{\Gamma, \tau \vdash \rho} & \underline{\Gamma, \sigma \vdash \rho} \\ & \underline{\Gamma \vdash \rho} \end{array} \lor e$$

Implicación \Rightarrow

$$\frac{\Gamma \vdash \tau \Rightarrow \sigma \qquad \Gamma \vdash \tau}{\Gamma \vdash \sigma} \Rightarrow e$$

Negación \neg

$$\frac{\Gamma \vdash \tau \qquad \Gamma \vdash \neg \tau}{\Gamma \vdash \bot} \neg e$$

Falsum \perp

$$\frac{\Gamma \vdash \bot}{\Gamma \vdash \tau} \bot e$$

2.10.2 Propiedades del Sistema

Teorema (weakening)

Si $\Gamma \vdash \tau$ es derivable, entonces $\Gamma, \sigma \vdash \tau$ es derivable.

$$\frac{\Gamma \vdash \tau}{\Gamma, \sigma \vdash \tau} \le$$

Se puede demostrar por inducción estructurar en la derivación. Veamos un ejemplo

$$\frac{ P \land Q, R \vdash P \land Q}{P \land Q, R \vdash Q} \stackrel{\text{ax}}{\wedge e_2} \quad \frac{P \land Q, R \vdash P \land Q}{P \land Q, R \vdash P} \stackrel{\text{ax}}{\wedge e_1}$$

$$\frac{P \land Q, R \vdash Q \land P}{R \vdash (P \land Q) \Rightarrow (Q \land P)} \Rightarrow i$$

2.10.3 Reglas derivadas

Se deducen de las anteriores

• Modus Tollens

$$\frac{\Gamma \vdash \tau \Rightarrow \sigma \qquad \Gamma \vdash \neg \sigma}{\Gamma \vdash \neg \tau} \text{ MT}$$

• Introducción a la doble negación

$$\frac{\Gamma \vdash \tau}{\Gamma \vdash \neg \neg \tau} \neg \neg i$$

2.10.4 Principio de razonamiento clásicos

• Eliminación de la doble negación Se puede deducir la siguiente de las anteriores ?

$$\frac{\Gamma \vdash \neg \neg \tau}{\Gamma \vdash \tau} \neg \neg e$$

• Principio de tercero excluido Law of Excluded Middle Se puede deducir la siguiente de las anteriores ?

$$\frac{\Gamma \vdash \neg \neg \tau}{\Gamma \vdash \tau} \neg \neg e$$

La respuesta es que **no**. Sin embargo, se pueden deducir la una de la otra.

- 1. Usando **LEM** se puede deducir $\neg \neg_e$
- 2. Usando $\neg \neg_e$ se puede deducir **LEM**

Las reglas $\neg \neg_e$ y LEM son **principios de razonamiento clásicos**. Otro equivalente es

• Reducción al absurdo clásico Proof by Contradiction

2.11 Lógica Intuicionsta vs Lógica Clásica

Son dos sistemas deductivos:

- NJ : sistema de deducción natural intuicionista
- NK : sistema de deducción natural clásico

NK extiende a NJ con principios de razonamiento clásicos.

Si un juicio es derivable en \mathbf{NJ} también lo será en \mathbf{NK}

NJ es más restrictiva ya que no permite usar $\neg \neg_e$, LEM, PBC, etc.

Para matemática comúnmente usamos la lógica clásica.

Por qué nos interesa en computación la lógica intuicionista?

Ya que nos permite razonar acerca de **información**. Las derivaciones en **NJ** se pueden entender como programas. **NJ** es la base de un lenguaje de programación funcional.

3 Semántica Bivaluada

3.1 Corrección y Completitud

Teorema

Son equivalentes:

- 1. $\Gamma \vdash \tau$ es derivable en NK
- 2. $\Gamma \models \tau$

3.1.1 Demo de corrección $\Gamma \vdash_{NK} \tau \implies \Gamma \models \tau$

Supongamos que $\Gamma \vdash \tau$ es derivable en NK. Por inducción estructural en la derivación demostramos $\Gamma \models \tau$. Son 13 casos, uno por cada regla de NK. Supongamos la regla \Rightarrow_e :

$$\frac{\Gamma \vdash \tau \Rightarrow \sigma \qquad \Gamma \vdash \tau}{\Gamma \vdash \sigma} \Rightarrow e$$

Queremos ver que $\Gamma \models \sigma$. Sea v tal que $v \models \Gamma$ y veamos que $v \models \sigma$. Por HI sabemos que $\Gamma \models \tau \implies \sigma$ y que $\Gamma \models \tau$. Como $v \models \Gamma$ tenemos que $v \models \tau \implies \sigma$ y $v \models \tau$. Por definición de $v \models \tau \implies \sigma$, tenemos entonces que $v \not\models \tau$ o $v \models \sigma$. Pero teníamos que $v \models \tau$ con lo cual, concluimos que $v \models \sigma$.

Así con los 12 casos restantes.

3.1.2 Demo de completitud $\Gamma \models \tau \implies \Gamma \vdash_{NK} \tau$

- 1. Un contexto Γ determina una variable $P \in \mathcal{P}$ si se cumple que $P \in \Gamma$ o que $\neg P \in \Gamma$.
- 2. Un contexto Γ determina un conjunto de variables $X \subseteq \mathcal{P}$ si determina a todas las variables de X.

Para probar el teorema de completitud, necesitamos el siguiente resultado:

Lema principal

Si Γ determina a todas las variables que aparecen en τ , entonces:

- 1. o bien $\Gamma \vdash \tau$ es derivable en NK,
- 2. o bien $\Gamma \vdash \neg \tau$ es derivable en NK.

Asumamos que el lema vale; lo demostraremos más adelante. Supongamos que $\sigma_1, \ldots, \sigma_n \models \tau$. Queremos ver que $\sigma_1, \ldots, \sigma_n \vdash \tau$ es derivable en NK.

Sea
$$\rho = (\sigma_1 \wedge \cdots \wedge \sigma_n) \Rightarrow \tau$$
. Sabemos que $\models \rho$.

Alcanza con probar que $\vdash \rho$ es derivable en NK.

¿Por qué?

Sea $X = \{P_1, \dots, P_n\}$ el conjunto de variables que aparecen en ρ . Usando el **LEM** (tercio excluido) y la regla $\forall e$, podemos considerar 2^n casos, de la forma:

$$\tilde{P}_1,\ldots,\tilde{P}_n\vdash\rho$$

donde cada \tilde{P}_i es o bien P_i o bien $\neg P_i$.

Por el lema principal, se da uno de los dos casos siguientes:

- 1. O bien $\tilde{P}_1, \ldots, \tilde{P}_n \vdash \rho$ es derivable en NK (y listo).
- 2. O bien $\tilde{P}_1, \ldots, \tilde{P}_n \vdash \neg \rho$ es derivable en NK.

Por corrección, vale que $\tilde{P}_1, \dots, \tilde{P}_n \models \neg \rho$. Sea v una valuación tal que $v(P_i) = V$ si y sólo si $\tilde{P}_i = P_i$.

Entonces $v \models \neg \rho$.

Absurdo, pues sabíamos que $\models \rho$.

3.1.3 Demo Lema Principal

Si Γ determina a todas las variables que aparecen en τ , entonces:

- 1. O bien $\Gamma \vdash \tau$ es derivable en NK.
- 2. O bien $\Gamma \vdash \neg \tau$ es derivable en NK.

Demostración: Por inducción estructural sobre la fórmula τ .

Hay 6 casos posibles según la forma de τ : P, $\tau_1 \wedge \tau_2$, $\tau_1 \Rightarrow \tau_2$, $\tau_1 \vee \tau_2$, \bot , $\neg \tau_1$.

Ejemplo: Supongamos que $\tau = \sigma \wedge \rho$.

Por hipótesis inductiva sobre σ , sabemos que:

1. O bien $\Gamma \vdash \sigma$ es derivable en NK.

Y por hipótesis inductiva sobre ρ , sabemos que:

- 1.1 O bien $\Gamma \vdash \rho$ es derivable en NK, entonces podemos aplicar $\wedge i$ y obtener $\Gamma \vdash \sigma \wedge \rho$.
- 1.2 O bien $\Gamma \vdash \neg \rho$ es derivable en NK, entonces podemos obtener $\Gamma \vdash \neg (\sigma \land \rho)$ usando introducción de \neg .
- 2. O bien $\Gamma \vdash \neg \sigma$ es derivable en NK, entonces también podemos concluir $\Gamma \vdash \neg (\sigma \land \rho)$.

Intentar probar los 5 casos restantes: $\tau = P$, $\tau = \sigma \Rightarrow \rho$, $\tau = \sigma \lor \rho$, $\tau = \bot$, $\tau = \neg \sigma$.