Hafta2 Programlamaya Giriş LAB

Karenin alan ve çevresini bulan algoritmayı yazınız.

- Karenin alan ve çevresini bulan algoritmayı yazınız.
 - 1. Başla
 - 2. kenar oku
 - 3. alan=kenar*kenar
 - 4. cevre=4*kenar
 - 5. alan' i yaz
 - 6. cevre' yi yaz
 - 7. Dur

Fiyatı girilen ürüne %18 kdv ekleyerek son fiyatı hesaplayan algoritmayı yazınız.

- Fiyatı girilen ürüne %18 kdv ekleyerek son fiyatı hesaplayan algoritmayı yazınız.
 - Başla
 - 2. fiyat oku
 - kdv=fiyat*18/100
 - sonfiyat=fiyat+kdv
 - sonfiyat'ı yaz
 - Dur

Değişkenler:

fiyat, kdv, sonfiyat

 Klavyeden girilecek iki sayıdan büyük olanından küçük olanını çıkarıp sonucu ekrana yazacak program için algoritmayı yazınız.

- Klavyeden girilecek iki sayıdan büyük olanından küçük olanını çıkarıp sonucu ekrana yazacak program için algoritmayı yazınız.
 - 1. Başla
 - 2. A sayısını oku
 - 3. B sayısını oku
 - 4. Eğer A büyüktür B ise sonuc=A-B
 - Değilse sonuc=B-A
 - 6. sonuc' u yaz
 - 7. Dur

Matematiksel ifade	Bilgisayar/algoritma dilinde kodlanması
a + b - c + 2abc - 7	
$a + b^2 - c^3$	
$\mathbf{a} - \frac{b}{c} + 2\mathbf{a}\mathbf{c} - \frac{2}{a+b}$	
$\sqrt{a+b} - \frac{2ab}{b^2 - 4ac}$	

Matematiksel ifade	Bilgisayar/algoritma dilinde kodlanması
a + b - c + 2abc - 7	a + b - c + 2 * a * b * c - 7
$a + b^2 - c^3$	
$\mathbf{a} - \frac{b}{c} + 2\mathbf{a}\mathbf{c} - \frac{2}{a+b}$	
$\sqrt{a+b} - \frac{2ab}{b^2 - 4ac}$	

Matematiksel ifade	Bilgisayar/algoritma dilinde kodlanması
a + b - c + 2abc - 7	a + b - c + 2 * a * b * c - 7
$a + b^2 - c^3$	a + b ^ 2 - c ^ 3
$\mathbf{a} - \frac{b}{c} + 2\mathbf{ac} - \frac{2}{a+b}$	
$\sqrt{a+b} - \frac{2ab}{b^2 - 4ac}$	

Matematiksel ifade	Bilgisayar/algoritma dilinde kodlanması
a + b - c + 2abc - 7	a + b - c + 2 * a * b * c - 7
$a + b^2 - c^3$	a + b ^ 2 - c ^ 3
$\mathbf{a} - \frac{b}{c} + 2\mathbf{a}\mathbf{c} - \frac{2}{a+b}$	a – b / c + 2 * a * c - 2/(a+b)
$\sqrt{a+b} - \frac{2ab}{b^2 - 4ac}$	

Matematiksel ifade	Bilgisayar/algoritma dilinde kodlanması
a + b - c + 2abc - 7	a + b - c + 2 * a * b * c - 7
$a + b^2 - c^3$	a + b ^ 2 - c ^ 3
$\mathbf{a} - \frac{b}{c} + 2\mathbf{a}\mathbf{c} - \frac{2}{a+b}$	a – b / c + 2 * a * c - 2/(a+b)
$\sqrt{a+b} - \frac{2ab}{b^2 - 4ac}$	(a+b)^(1/2)-(2*a*b/(b^2-4*a*c))

Matematiksel ifade	Bilgisayar/algoritma dilinde kodlanması
$\mathbf{q} + \frac{b+c^2}{d + \frac{e-f}{3a}}$	
$a^{5} + \frac{b3}{\frac{c+d}{\sqrt[4]{a+b^{2}+c^{3}+d^{4}}}}$	
$a + \sqrt[7]{abc} - \frac{1}{1 + \frac{1}{a + \frac{1}{b + \frac{1}{c + \frac{1}{abc}}}}}$	
$ \sqrt[5]{a + \frac{1 + \frac{1}{\sqrt[3]{a^2 + 1}}}{1 + \sqrt{\frac{2a}{a^3 + 1}}}} $	

Matematiksel ifade	Bilgisayar/algoritma dilinde kodlanması
$\mathbf{q} + \frac{b+c^2}{d + \frac{e-f}{3a}}$	a+(b c^2)/(d+(e-f)/(3*a))
$a^{5} + \frac{b3}{\frac{c+d}{\sqrt[4]{a+b^{2}+c^{3}+d^{4}}}}$	
$a + \sqrt[7]{abc} - \frac{1}{1 + \frac{1}{a + \frac{1}{b + \frac{1}{abc}}}}$	
$ \sqrt[5]{a + \frac{1 + \frac{1}{\sqrt[3]{a^2 + 1}}}{1 + \sqrt{\frac{2a}{a^3 + 1}}}} $	

Matematiksel ifade	Bilgisayar/algoritma dilinde kodlanması
$\mathbf{q} + \frac{b+c^2}{d + \frac{e-f}{3a}}$	a+(b c^2)/(d+(e-f)/(3*a))
$a^{5} + \frac{b3}{\frac{c+d}{\sqrt[4]{a+b^{2}+c^{3}+d^{4}}}}$	(a^5+b^3/(c+d))/((a+b^2+c^3+d^4)^(1/4))
$a + \sqrt[7]{abc} - \frac{1}{1 + \frac{1}{a + \frac{1}{c + \frac{1}{abc}}}}$	
$ \sqrt[5]{a + \frac{1 + \frac{1}{\sqrt[3]{a^2 + 1}}}{1 + \sqrt{\frac{2a}{a^3 + 1}}}} $	

Matematiksel ifade	Bilgisayar/algoritma dilinde kodlanması
$\mathbf{q} + \frac{b+c^2}{d + \frac{e-f}{3a}}$	a+(b c^2)/(d+(e-f)/(3*a))
$a^{5} + \frac{b3}{\frac{c+d}{\sqrt[4]{a+b^{2}+c^{8}+d^{4}}}}$	(a^5+b^3/(c+d))/((a+b^2+c^3+d^4)^(1/4))
$a + \sqrt[7]{abc} - \frac{1}{1 + \frac{1}{a + \frac{1}{c + \frac{1}{abc}}}}$	a+(a*b*c)^(1/7)-1/(1+1(a+1/(b+1/(c+1/(a*b*c*)))))
$ \sqrt[5]{a + \frac{1 + \frac{1}{\sqrt[3]{a^2 + 1}}}{1 + \sqrt{\frac{2a}{a^3 + 1}}}} $	

Matematiksel ifade	Bilgisayar/algoritma dilinde kodlanması
$\mathbf{c}_{\mathbf{l}} + \frac{b + c^2}{d + \frac{e - f}{3a}}$	a+(b c^2)/(d+(e-f)/(3*a))
$a^{5} + \frac{b3}{\frac{c+d}{\sqrt[4]{a+b^{2}+c^{3}+d^{4}}}}$	(a^5+b^3/(c+d))/((a+b^2+c^3+d^4)^(1/4))
$a + \sqrt[7]{abc} - \frac{1}{1 + \frac{1}{a + \frac{1}{b + \frac{1}{c + \frac{1}{abc}}}}}$	a+(a*b*c)^(1/7)-1/(1+1(a+1/(b+1/(c+1/(a*b*c*)))))
$ \sqrt[5]{a + \frac{1 + \frac{1}{\sqrt[3]{a^2 + 1}}}{1 + \sqrt{\frac{2a}{a^3 + 1}}}} $	(a+(1+1/(a+1)^(1/3))/(1+(a/(a^3+1)^0.5)^0.5))^(1/5)

İfade	Matematiksel eşdeğeri	Sonuç
A+B^1/2		
A+B^(1/2)		
(A+B)^1/2		
(A+B)^(1/2)		

İfade	Matematiksel eşdeğeri	Sonuç
A+B^1/2	$A + \frac{B^1}{2}$	$9 + \frac{16}{2} = 9 + 8 = 17$
A+B^(1/2)		
(A+B)^1/2		
(A+B)^(1/2)		

İfade	Matematiksel eşdeğeri	Sonuç		
A+B^1/2	$A + \frac{B^1}{2}$	$9 + \frac{16}{2} = 9 + 8 = 17$		
A+B^(1/2)	$A+\sqrt{B}$	$9+\sqrt{16} = 9+4 = 13$		
(A+B)^1/2				
(A+B)^(1/2)				

İfade	Matematiksel eşdeğeri	Sonuç
A+B^1/2	$A + \frac{B^1}{2}$	$9 + \frac{16}{2} = 9 + 8 = 17$
A+B^(1/2)	$A+\sqrt{B}$	$9+\sqrt{16} = 9+4 = 13$
(A+B)^1/2	$\frac{(A+B)^1}{2}$	$\frac{9+16}{2} = \frac{25}{2} = 12.5$
(A+B)^(1/2)		

İfade	Matematiksel eşdeğeri	Sonuç
A+B^1/2	$A + \frac{B^1}{2}$	$9 + \frac{16}{2} = 9 + 8 = 17$
A+B^(1/2)	$A+\sqrt{B}$	$9+\sqrt{16} = 9+4 = 13$
(A+B)^1/2	$\frac{(A+B)^1}{2}$	$\frac{9+16}{2} = \frac{25}{2} = 12.5$
(A+B)^(1/2)	$\sqrt{A+B}$	$\sqrt{9+16} = \sqrt{25} = 5$

Karşılaştırma İşlemleri

İşlem Sembolü	Anlamı
=	Eşittir
>	Büyüktür
<	Küçüktür
<>	Eşit Değildir
>= veya =>	Büyük Eşittir
<= veya =<	Küçük Eşittir

Mantıksal İşlemler

• a=77, b=99 için c=a.b, d=a+b ve e=a' mantıksal işlem sonuçlarını hesaplayınız.

Mantıksal İşlemler

• a=77, b=99 için c=a.b, d=a+b ve e=a' mantıksal işlem sonuçlarını hesaplayınız.

c =[0	1	0	0	0	0	0	1 =65
d =	0	1	1	0	1	1	1	1 =111

•
$$e=1$$
 0 1 1 0 0 1 0 = -50

References

- Doç. Dr. Fahri Vatansever, "Algoritma Geliştirme ve Programlamaya Giriş", Seçkin Yayıncılık, 12. Baskı, 2015.
- ► J. G. Brookshear, "Computer Science: An Overview 10th Ed.", Addison Wisley, 2009.
- ► Kaan Aslan, "A'dan Z'ye C Klavuzu 8. Basım", Pusula Yayıncılık, 2002.
- ► Paul J. Deitel, "C How to Program", Harvey Deitel.
- ► Bayram AKGÜL, C Programlama Ders notları