Politechnika Warszawska

Zakład Podstaw Konstrukcji

Wprowadzenie do PTC Creo

mgr inż. Grzegorz Kamiński grzegorz kaminski@pw.edu.pl

14 lipca 2023 Wersja 1.2

Dodawanie pochyleń do wyciągnięcia

Głębokość wyciągnięcia

- * **Blind** poprzez wartość,
 - * **Symmetric** równomiernie w dwie strony,
- * **To Next** do na<mark>st</mark>ępnej powierzchni,
- * ThroughAll przez cały model
- * ThroughUntil do następnej powierzchni, przez którą przechodzi,
- * **ToSelected** do wskazanej płaszczyzny, krawędzi, punktu,
- * **Side1/Side2** niezależnie w dwie strony.

Głębokość wyciągnięcia

Strzałka wyświetlana **prostopadle** do przekroju określa kierunek głębokości.

Strzałka wyświetlana **równolegle** do przekroju określa kierunek dodawania lub odejmowania materiału.

P<mark>olite</mark>chnika Warszawska

Pogrubienie szkicu

Tworzenie bryłowych cech obrotowych

Geometria musi być naszkicowana tylko po jednej stronie osi.

Oś <mark>obrotu mu</mark>si znajdować się w płaszczyźnie szkicowania przekroju.

Można obracać zarówno szkice otwarte, jak i zamkniete.

P<mark>olite</mark>chnika Warszawska

Automatyczne usuwanie materiału

- * dostępne dla wewnętrznych i zewnętrznychszkiców,
- * stworzyć na istniejącej geometrii,

- * dostępne przy tworzeniu,
- * przy edycji należy samodzielnie zmienić.

Szkice wewnętrzne

Szkice wewnętrzne można tworzyć:

- poprzez wybranie cechy i wskazanie płaszczyzny,
- * wybranie płaszczyzny i wskazanie cechy,
- * wybranie cechy i wybranie z rozwijanego menu **Define Internal Sketch**.

Porównanie metod modelowania

Szkice wewnętrzne:

- * organizacja,
- * mniejsza liczba cech,
- niemożna zrobić
 wewnętrznego szkicu
 zewnętrznym bez zapisania go
 i odtworzenia.

Szkice zewnętrzne:

- reedycja na wewnętrzny,
- * można wskazać różne szkice do tej samej cechy,
- * jeden s<mark>zk</mark>ic dla <mark>wi</mark>elu ce<mark>ch</mark>,
- * m<mark>o</mark>żna od<mark>łą</mark>czyć (**Unlink**) s<mark>zk</mark>ic,
- * większa liczba cech w drzewie modelu.

Osadzone cechy konstrukcyjne

Cechy:

- * tworzenia na każdym etapie pracy,
- przejrzyste i uporządkowane drzewa modelu,
- funkcja referencji,
- * automatycznie ukrywane.

Osadzone cechy konstrukcyjne

Cechy

- * dod<mark>aw</mark>anie i <mark>od</mark>łączan<mark>ie</mark> cech,
- * zachowanie cech przy usunięciu operacji,
- można korzystać w obrębie cechy zawierającej,
- * nie można się odnieść w kolejnych cechach.

Pomiary i sprawdzanie modeli

Zmiana jednostek modelu

Politechnika Warszawska

Analiza właściwości materiałowych

Center of Gravity [mm]

box 0.000000e+00

her 1.979268a-01

Nov 0.0000000+00

Bibliografia

T. Kucharski. Mechanika ogólna: rozwiązywanie zagadnień z MATHCAD-em. Wydawnictwa Naukowo-Techniczne, 2015. isbn:

L. W. Kurmaz and O. L. Kurmaz. Podstawy konstruowania węzłów i części maszyn: podręcznik konstruowania. Samodzielna Sekcja "Wydawnictwo Politechniki Świetokrzyskiei". 2011. isbn: 9788388906343.

E. Lisowski. Integracja modelowania 3D, kinematyki i wytrzymałości w programie Creo Parametric. Wydawnictwo PK, 2013. isbn:

E. Mazanek, A. Dziurski, and L. Kania. Przykłady obliczeń z podstaw konstrukcji maszyn: Łożyska, sprzęgła i hamulce, przekładnie mechaniczne, tom 2. WNT. 2015. isbn: 9788393491360.

E. Mazanek, A. Dziurski, and L. Kania. Przykłady obliczeń z podstaw konstrukcji maszyn: Połączenia, sprężyny, zawory, wały maszynowe.

E. Winter. Using Pro/Weld in Creo 2.0.

