Fonction de transfert

Le schéma ci-dessous illustre un circuit avec en entrée une tension $v_e(t)$ et en sortie un tension $v_s(t)$. Leurs amplitudes complexes sont respectivement $\underline{V_e}$ et $\underline{V_s}$

Fondamental

On définit la **fonction de transfert isochrone** \underline{H} comme étant le rapport suivant :

$$\underline{\underline{H}} = rac{\underline{V_s}}{\underline{V_e}}$$
où $\underline{V_e}$ et $\underline{V_s}$ sont respectivement les tensions complexes d'entrée et de sortie.

Cette fonction est à priori complexe, on peut donc la mettre sous la forme : $\underline{H}=G(\omega)\exp[j\varphi(\omega)]$ où $G(\omega)$ est appelé le **gain** du circuit, il est également défini comme le module de la fonction de transfert $\underline{H}:G(\omega)=|\underline{H}|=\left|\frac{\underline{V}_s}{\overline{V}_e}\right|$

et arphi est appelée la **phase**, elle correspond au déphasage de $v_s(t)$ par rapport à $v_e(t)$: $arphi(\omega)=\arg(\underline{H})=\arg(V_s)-\arg(V_e)$

Le gain est en général donné en décibel (dB) :

$$G_{dB} = 20 \cdot \log(G(\omega)) = 20 \cdot \log\left(\left|rac{\dot{V_s}}{\overline{V_e}}
ight|
ight) = 20 \log\left(\left|rac{V_s}{V_s}
ight|
ight) - 20 \log\left(\left|rac{V_e}{V_e}
ight|
ight)$$

Exemple

En régime harmonique, on considère un circuit dont la fonction de transfert est notée \underline{H} . On envoie en entrée un signal sinusoïdal $v_e(t)=2\cdot\sin(\omega t)$. A la fréquence de 1 kHz, le gain est de -3 dB et le déphasage du signal de sortie est de +90 ° (+ $\pi/2$ rad) par rapport au signal d'entrée. Donner l'expression du signal de sortie $v_s(t)$ à la fréquence de 1 kHz.

On donne : $10 \cdot \log(2) = 3$

On note $\underline{v_e(t)} = \underline{V_e} \exp(j\omega t)$ la notation complexe de $v_e(t) = V_{e,0} \sin(\omega t)$ avec $V_{e,0} = 2 \, V$. Ici $v_e(t)$ est pris comme signal de référence, son déphasage est considéré comme nul, on remarque que $\underline{V_e} = V_{e,0}$.

Chargement de [MathJax]/localization/fr/MathMenu.is

Le signal de sortie est donc sous la forme $v_s(t)=V_{s,0}\sin(\omega t+\varphi)$. Sa notation complexe est donc : $v_s(t)=v_s\exp(\omega t)$ avec $v_s(t)=v_s\exp(j\varphi)$

$$arphi$$
 est donné dans l'énoncé : $arphi=rac{\pi}{2}\Rightarrow v_s(t)=V_{s,0}\sin(\omega t+rac{\pi}{2})$

Il ne reste plus qu'à déterminer la valeur de $V_{s,0}$. Pour cela, on utilise l'information donnée sur le gain :

$$G_{dB} = -3\,dB \Leftrightarrow 20\cdot \log igg(igg| rac{V_s}{V_e} igg| igg) = -3\,dB = -10\cdot \log(2)$$

$$\Leftrightarrow 20 \log igg(rac{V_{s,0}}{V_{e,0}}igg) = -10 \log(2)$$

$$\Leftrightarrow 20 \log \biggl(\frac{V_{s,0}}{V_{e,0}}\biggr) = 10 \log \biggl(\frac{1}{2}\biggr) = 20 \log \biggl(\frac{1}{\sqrt{2}}\biggr)$$

$$\Leftrightarrow \frac{V_{s,0}}{V_{e,0}} = \frac{1}{\sqrt{2}}$$

$$\Leftrightarrow V_{s,0} = \frac{V_{e,0}}{\sqrt{2}}$$

Par ailleurs, $V_{e,0}=2\,V$:

$$\Leftrightarrow V_{s,0} = \frac{2}{\sqrt{2}} = \sqrt{2}\,V$$

Au final, on trouve : $v_s(t) = \sqrt{2}\sin(\omega t + \frac{\pi}{2})$

Remarque

Le régime harmonique étant un cas particulier du régime variable. Il est possible de passer de la fonction de transfert opérationnelle H(p) à la fonction de transfert isochrone \underline{H} en faisant un changement de variable $p \to j\omega$ où p est la variable de Laplace et ω est la pulsation du régime harmonique.

Stéphanie Parola - HILISIT - Université Montpellier (c) BY-NO-SA