Working with tidymodels

OCRUG meetup

Emil Hvitfeldt

2019-1-29

tidymodels is a "meta-package" for modeling and statistical analysis that share the underlying design philosophy, grammar, and data structures of the tidyverse.

library(tidymodels)

```
## / broom 0.5.1 / purrr 0.3.0
## / dials 0.0.2 / recipes 0.1.4
## / dplyr 0.7.8 / rsample 0.0.4
## / ggplot2 3.1.0 / tibble 2.0.1
## / infer 0.4.0 / yardstick 0.0.2
## / parsnip 0.0.1.9000
```

The packages

- broom
- dials
- dplyr
- **-** ggplot2
- infer
- parsnip

- purrr
- recipes
- rsample
- tibble
- yardstick

The packages (tidyverse)

- broom
- dials
- dplyr
- ggplot2
- infer
- parsnip

- purrr
- recipes
- rsample
- tibble
- yardstick

The packages (tidyverse)

- broom
- dials
- dplyr
- ggplot2
- infer
- parsnip

- purrr
- recipes
- rsample
- tibble
- yardstick

The packages

- broom
- dials
- dplyr
- ggplot2
- infer
- parsnip

- purrr
- recipes
- rsample
- tibble
- yardstick

△ Disclaimer **△**

This talk is not designed to give opinions with respect to modeling best practices.

This talk is designed to showcase what packages are available and what they can do.

Consider 32 cars from 1973-74

head (mtcars)

```
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 ## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 ## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 ## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 ## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 ## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3
```

predict (model_glm)

########################	Mazda RX4 105.97448 Hornet 4 Drive -276.59440 Duster 360 -158.99087 Merc 280 -20.37716 Merc 450SL -180.68287 Lincoln Continental -427.72554 Honda Civic 164.39652 Dodge Challenger -211.90064 Pontiac Firebird	-206.48454 Chrysler Imperial -357.75792 Toyota Corolla 20.76278 AMC Javelin -189.27739 Fiat X1-9	Datsun 710
	2		
# # # #	Pontiac Firebird -297.35324	Fiat X1-9 63.64819	Porsche 914-2 184.39936
# # # # # # # #	Lotus Europa 146.50220 Maserati Bora 21.69348	Ford Pantera L 24.28831 Volvo 142E 33.80864	Ferrari Dino 162.60217

Error in glmnet(am ~ disp + drat + qsec, data = mtcars, family = "binomial"): unused argument (data

```
library(glmnet)
model_glmnet <- glmnet(am ~ disp + drat + qsec, data = mtcars,</pre>
                        family = "binomial")
## Error in glmnet(am ~ disp + drat + qsec, data = mtcars, family = "binomial"): unused argument (data
model_glmnet <- glmnet(x = as.matrix(mtcars[, c("disp", "drat", "qsec")]),</pre>
                        y = mtcars[, "am"],
                        family = "binomial")
model_glm <- glm(x = as.matrix(mtcars[, c("disp", "drat", "gsec")]),</pre>
                  y = mtcars[, "am"],
                  family = "binomial")
```

Error in glmnet(am ~ disp + drat + qsec, data = mtcars, family = "binomial"): unused argument (data

Error in environment(formula): argument "formula" is missing, with no default

User-facing problems in modeling in R

- Data must be a matrix (except when it needs to be a data.frame)
- Must use formula or x/y (or both)
- Inconsistent naming of arguments (ntree in randomForest, num.trees in ranger)
- na.omit explicitly or silently
- May or may not accept factors

User-facing problems in modeling in R

- Data must be a matrix (except when it needs to be a data.frame)
- Must use formula or x/y (or both)
- Inconsistent naming of arguments (ntree in randomForest, num.trees in ranger)
- na.omit explicitly or silently
- May or may not accept factors

Syntax for Computing Predicted Class Probabilities

Function	Package	Code		
lda	MASS	predict(obj)		
glm	stats	<pre>predict(obj, type = "response")</pre>		
gbm	gbm	<pre>predict(obj, type = "response", n.trees)</pre>		
mda	mda	<pre>predict(obj, type = "posterior")</pre>		
rpart	rpart	predict(obj, type = "prob")		
Weka	RWeka	<pre>predict(obj, type = "probability")</pre>		
logitboost LogitBoost predict(obj, type = "raw", nIter)				

The goals of parsnip is...

- Decouple the model classification from the computational engine
- Separate the definition of a model from its evaluation
- Harmonize argument names
- Make consistent predictions (always tibbles with na.omit=FALSE)

```
library(parsnip)
model_glm <- logistic_reg(mode = "classification") %>%
    set_engine("glm")

model_glm

## Logistic Regression Model Specification (classification)
##
```

Computational engine: glm

```
library(parsnip)
model_glm <- logistic_reg(mode = "classification") %>%
    set_engine("glm")

model_glm

## Logistic Regression Model Specification (classification)
##
## Computational engine: glm

fit_glm <- model_glm %>%
    fit(factor(am) ~ disp + drat + qsec, data = mtcars)
```

```
library(parsnip)
model_glmnet <- logistic_reg(mode = "classification") %>%
    set_engine("glmnet")
model_glmnet

## Logistic Regression Model Specification (classification)
##
## Computational engine: glmnet

fit_glmnet <- model_glmnet %>%
    fit(factor(am) ~ disp + drat + qsec, data = mtcars)
```

Using both formula and x/y

Formula

```
fit_glm <- model_glm %>%
  fit(factor(am) ~ ., data = mtcars)
```

x/y

Tidy prediction

```
## # A tibble: 32 x 1
## .pred_class
## <fct>
## 1 1
## 2 1
## 3 1
## 4 0
## 5 0
## 6 0
## 7 0
## 8 0
## 9 0
## 10 0
## # ... with 22 more rows
```

Consider now that we wanted to model a more advanded relation ship between variables

Consider now that we wanted to model a more advanded relation ship between variables

- Not all inline functions can be used with formulas
- Having to run some calculations many many times
- Connected to the model, calculations are not saved between models

Post by Max Kuhn about the bad sides of formula https://rviews.rstudio.com/2017/03/01/the-r-formula-method-the-bad-parts/

Preprocessing steps

Some of things you may need to deal with before you can start modeling

- Same unit (center and scale)
- Remove correlation (filter and PCA extraction)
- Missing data (imputation)
- Dummy varibles
- Zero Variance

Same units

```
library(recipes)
car_rec <- recipe(mpg ~ ., mtcars) %>%
  step_center(all_predictors()) %>%
  step_scale(all_predictors())
```

PCA

```
library(recipes)
car_rec <- recipe(mpg ~ ., mtcars) %>%
  step_pca(all_predictors(), threshold = 0.8)
```

Any combination of steps

```
car_rec <- recipe(mpg ~ ., mtcars) %>%
  step_knnimpute(drat, wt, neighbors = 5) %>%
  step_zv(all_predictors()) %>%
  step_pca(all_predictors(), threshold = 0.8)
```

```
library(recipes)
car_rec <- recipe(mpg ~ ., mtcars) %>%
  step_center(all_predictors()) %>%
  step_scale(all_predictors())
```

```
library(recipes)
car_rec <- recipe(mpg ~ ., mtcars) %>%
  step_center(all_predictors()) %>%
  step_scale(all_predictors())
car_rec
```

```
## Data Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 10
##
## Operations:
##
## Centering for all_predictors()
## Scaling for all_predictors()
```

```
library(recipes)
car_rec <- recipe(mpg ~ ., mtcars) %>%
  step_center(all_predictors()) %>%
  step_scale(all_predictors())

car_preped <- prep(car_rec, training = mtcars)</pre>
```

```
library(recipes)
car_rec <- recipe(mpg ~ ., mtcars) %>%
  step_center(all_predictors()) %>%
  step_scale(all_predictors())

car_preped <- prep(car_rec, training = mtcars)

bake(car_preped, new_data = mtcars)</pre>
```

```
library(recipes)
car_rec <- recipe(mpg ~ ., mtcars) %>%
  step_center(all_predictors()) %>%
  step_scale(all_predictors())

car_preped <- prep(car_rec, training = mtcars)</pre>
```

bake(car_preped, new_data = mtcars)

```
# A tibble: 32 \times 11
##
             cyl disp
                           hp drat
                                        wt qsec
       mpg
                                                         VS
                                                               am
                                                                    gear
##
     <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <<br/> <dbl> 
                                                                   <dbl>
   1 21
           -0.105 - 0.571 - 0.535
                                0.568 - 0.610
                                              -0.777 - 0.868 1.19
##
                                                                   0.424
                        -0.535
##
   2 21
           -0.105 - 0.571
                                0.568 - 0.350
                                              -0.464 - 0.868 1.19 0.424
##
   3 22.8 -1.22 -0.990
                        -0.783 0.474 -0.917
                                                           1.19
                                              0.426
                                                     1.12
                                                                   0.424
##
   4 21.4 -0.105 0.220
                        -0.535 -0.966 -0.00230 0.890
                                                     1.12
                                                           -0.814 - 0.932
##
   5 18.7 1.01
                1.04
                        0.413 -0.835 0.228
                                              -0.464 - 0.868 - 0.814 - 0.932
##
   6 18.1 -0.105 -0.0462 -0.608 -1.56
                                     0.248
                                              1.33
                                                      1.12
                                                           -0.814 - 0.932
##
                        1.43 -0.723 0.361
                                              -1.12
                                                     -0.868 - 0.814 - 0.932
   7 14.3 1.01
                1.04
##
   8 24.4 -1.22 -0.678 -1.24 0.175 -0.0278
                                             1.20
                                                      1.12
                                                           -0.814 0.424
##
   9 22.8 -1.22 -0.726 -0.754 0.605 -0.0687 2.83
                                                      1.12
                                                           -0.814 0.424
##
     19.2 -0.105 -0.509 -0.345 0.605 0.228 0.253 1.12
                                                           -0.814 0.424
  # ... with 22 more rows, and 1 more variable: carb <dbl>
```

```
library(recipes)
car_rec <- recipe(mpg ~ ., mtcars) %>%
  step_center(all_predictors()) %>%
  step_scale(all_predictors())

car_preped <- prep(car_rec, training = mtcars)</pre>
```

juice(car_preped)

```
\# A tibble: 32 x 11
##
        cyl disp
                      hp drat
                                                                     carb
                                   wt gsec
                                                   VS
                                                          am
                                                              gear
                                                             <dbl> <dbl>
##
     <dbl>
              <dbl> <dbl> <dbl>
                                   <dbl> <dbl> <dbl> <dbl> <dbl>
   1 -0.105 -0.571
                   -0.535 0.568 -0.610
                                         -0.777 -0.868 1.19
                                                                   0.735
##
                                                             0.424
                   -0.535 0.568 -0.350
##
   2 - 0.105 - 0.571
                                         -0.464 - 0.868 1.19
                                                             0.424
                                                                   0.735
   3 - 1.22 - 0.990
                   -0.783 0.474 -0.917
                                                      1.19
##
                                        0.426 1.12
                                                             0.424 - 1.12
##
   4 -0.105 0.220
                  -0.535 -0.966 -0.00230 0.890 1.12
                                                      -0.814 - 0.932 - 1.12
##
   5 1.01
           1.04
                   0.413 -0.835 0.228
                                         -0.464 -0.868 -0.814 -0.932 -0.503
##
   6 - 0.105 - 0.0462 - 0.608 - 1.56
                                0.248
                                        1.33
                                                1.12
                                                      -0.814 - 0.932 - 1.12
   7 1.01
                   1.43 -0.723 0.361
                                         -1.12
                                               -0.868 - 0.814 - 0.932
           1.04
   8 -1.22 -0.678 -1.24 0.175 -0.0278
##
                                        1.20 1.12
                                                      -0.814 0.424 -0.503
##
   9 - 1.22 - 0.726
                   -0.754 0.605 -0.0687 2.83 1.12 -0.814 0.424 -0.503
                                                      -0.814 0.424 0.735
## 10 -0.105 -0.509 -0.345 0.605 0.228 0.253 1.12
## # ... with 22 more rows, and 1 more variable: mpg <dbl>
```

```
recipe -> prepare -> bake/juice

(define) -> (estimate) -> (apply)
```

Types of data splitting

- Random
- By date
- By outcome
 - Classification: within class
 - regression: within quantile

Training and Testing sets

```
library(rsample)
car_preped <- prep(car_rec, training = mtcars)</pre>
```


Training and Testing sets

```
library(rsample)
set.seed (4595)
# These slides were almost finished and I didn't want to change the data in all the other slides
big_mtcars <- rerun(10, mtcars) %>%
  bind rows()
data_split <- initial_split(big_mtcars, strata = "mpg", p = 0.80)</pre>
# Training and test data
cars_train <- training(data_split)</pre>
cars_test <- testing(data_split)</pre>
car_prep <- prep(car_rec, training = cars_train)</pre>
# Preprocessed data
cars_train_p <- juice(car_prep)</pre>
cars_test_p <-bake(car_prep, new_data = cars_test)</pre>
```

Cross-Validating (sneak peak)

6 <split [288/32]> Fold06 7 <split [288/32]> Fold07 8 <split [288/32]> Fold08 9 <split [288/32]> Fold09

10 <split [288/32] > Fold10

```
set.seed(1234)
cv splits <- vfold cv(
  data = big_mtcars,
  v = 10,
  strata = "mpq"
cv splits
## # 10-fold cross-validation using stratification
## # A tibble: 10 x 2
                      id
   splits
   <list>
                      <chr>
   1 <split [288/32] > Fold01
   2 <split [288/32] > Fold02
   3 <split [288/32] > Fold03
   4 <split [288/32] > Fold04
   5 <split [288/32] > Fold05
```

```
car form <- mpg ~ disp + gsec + cyl
# Fit on a single analysis resample
fit model <- function(split, spec) {</pre>
  fit(
    object = nearest neighbor() %>% set engine("kknn"),
    formula = car form,
    data = analysis(split) # <- pull out training set
 # For each resample, call fit model()
cv_splits <- cv_splits %>%
  mutate(models_knn = map(splits, fit_model, spec_lm),
cv splits
## # 10-fold cross-validation using stratification
## # A tibble: 10 x 3
   splits id models knn
##
  1 <split [288/32]> Fold01 <fit[+]>
##
   2 <split [288/32]> Fold02 <fit[+]>
   3 <split [288/32]> Fold03 <fit[+]>
```

4 <split [288/32]> Fold04 <fit[+]> 5 <split [288/32]> Fold05 <fit[+]>

6 <split [288/32]> Fold06 <fit[+]>

7 <split [288/32]> Fold07 <fit[+]>

8 <split [288/32]> Fold08 <fit[+]>

9 <split [288/32]> Fold09 <fit[+]>
10 <split [288/32]> Fold10 <fit[+]>

##

##

##

library(yardstick) head(two_class_example)

```
##
     truth
                Class1
                            Class2 predicted
## 1 Class2 0.003589243 0.9964107574
                                     Class2
  2 Class1 0.678621054 0.3213789460
                                    Class1
                                    Class2
  3 Class2 0.110893522 0.8891064779
## 4 Class1 0.735161703 0.2648382969
                                    Class1
## 5 Class2 0.016239960 0.9837600397
                                    Class2
## 6 Class1 0.999275071 0.0007249286
                                    Class1
```

```
library(yardstick)
head(two class example)
    truth
               Class1
                          Class2 predicted
## 1 Class2 0.003589243 0.9964107574 Class2
  2 Class1 0.678621054 0.3213789460 Class1
  3 Class2 0.110893522 0.8891064779 Class2
  4 Class1 0.735161703 0.2648382969 Class1
## 5 Class2 0.016239960 0.9837600397 Class2
## 6 Class1 0.999275071 0.0007249286
                                  Class1
metrics(two_class_example, truth = truth, estimate = predicted)
## # A tibble: 2 x 3
   .metric .estimator .estimate
   <chr> <chr> <chr> <dbl>
## 1 accuracy binary
                       0.838
```

2 kap binary

0.675

```
library(yardstick)
head(two class example)
    truth
               Class1
                           Class2 predicted
## 1 Class2 0.003589243 0.9964107574 Class2
  2 Class1 0.678621054 0.3213789460 Class1
  3 Class2 0.110893522 0.8891064779 Class2
  4 Class1 0.735161703 0.2648382969 Class1
## 5 Class2 0.016239960 0.9837600397 Class2
## 6 Class1 0.999275071 0.0007249286
                                   Class1
accuracy(two_class_example, truth = truth, estimate = predicted)
## # A tibble: 1 x 3
   .metric .estimator .estimate
   <chr> <chr> <chr> <dbl>
```

1 accuracy binary 0.838

```
library(yardstick)
head(two class example)
     truth
               Class1
                           Class2 predicted
  1 Class2 0.003589243 0.9964107574
                                   Class2
  2 Class1 0.678621054 0.3213789460
                                  Class1
                                  Class2
  3 Class2 0.110893522 0.8891064779
  4 Class1 0.735161703 0.2648382969
                                   Class1
  5 Class2 0.016239960 0.9837600397
                                  Class2
## 6 Class1 0.999275071 0.0007249286
                                   Class1
j_index(two_class_example, truth = truth, estimate = predicted)
## # A tibble: 1 x 3
   .metric .estimator .estimate
   <chr> <chr>
                   <dbl>
## 1 j index binary 0.673
```

And many more!!

```
library(yardstick)
head(two class example)
##
    truth
                Class1
                            Class2 predicted
## 1 Class2 0.003589243 0.9964107574
                                    Class2
  2 Class1 0.678621054 0.3213789460 Class1
  3 Class2 0.110893522 0.8891064779 Class2
  4 Class1 0.735161703 0.2648382969
                                    Class1
## 5 Class2 0.016239960 0.9837600397 Class2
## 6 Class1 0.999275071 0.0007249286
                                    Class1
conf_mat(two_class_example, truth = truth, estimate = predicted)
            Trut.h
## Prediction Class1 Class2
```

##

##

Class1 227

Class2 31 192

50

roc_curve(two_class_example, truth = truth, Class1) %>%
 autoplot()

