Ústav fyzikální elektroniky PřF MU

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Zpracoval: Artem Gorodilov Naměřeno: 21. dubna 2023

Obor: Astrofyzika **Skupina:** Pá 10:00 **Testováno:** uznano

Úloha č. 8: Měření teploty

 $T = 19.9 \, {}^{\circ}\text{C}$

 $p=988~\mathrm{hPa}$

 $\varphi = 40 \%$

1. Zadání

Zjistit teplotní koeficient elektrického odporu, odpor při normální teplotě a termoelektrický Seebeckův součinitel pro odporová čidla vyrobená z různých termočlánků.

Určit relaxační dobu zapouzdřených a nezapouzdřených snímačů (PT1000 a K-typu).

Určit teplotní koeficient pomocí můstku.

Určit emisivitu pro různé povrchy.

Určit propustnost oken z různých materiálů.

2. Teorie

2.1. Teplotní součinitel elektrického odporu

Pro zjištění teplotního koeficientu elektrického odporu je nutné změřit odpor čidla v závislosti na teplotě.

Snímače se umístí do olejové lázně a zahřívají se v určitém teplotním rozsahu v krocích po 5 až 10 stupních.

Poté bude třeba ze získaných údajů vykreslit grafy.

Koeficienty určíme ze vzorce:

$$R = R_0(1 + \alpha \Delta t) \tag{1}$$

kde R je měřený odpor, R_0 je odpor při dané normální teplotě, α je teplotní koeficient elektrického odporu a Δt je rozdíl mezi měřenou a normální teplotou.

Z lineární aproximace určíme koeficienty R_0 a α pomocí následujících vztahů s aproximačními koeficienty A a B:

$$A = R_0 \alpha, B = R_0, \alpha = \frac{A}{R}$$

Seebeckův koeficient zjistíme stejnou metodou, ale budeme hledat koeficienty pro vzorec:

$$U = \beta(t_1 - t_2) \tag{2}$$

Z lineární aproximace vyplývá, že koeficient β se rovná koeficientu A

2.2. Relaxační doba

Pro stanovení relaxační doby zapouzdřeného a nezapouzdřeného čidla je zahřejte horkovzdušnou pistolí nastavenou na 200 °C.

Dále nakreslete graf závislosti odporu čidel na čase a napětí na čase, a pomocí exponenciální aproximace zjistěte hodnotu τ_m ze vzorce:

$$t(\tau) = t_2 - (t_2 - t_1)e^{-\frac{\tau}{\tau_m}} \tag{3}$$

kde t_1 a t_2 jsou hodnoty teploty v různých časových okamžicích a τ_m je relaxační doba.

2.3. Můstek

K určení teploty čidla použijeme následující vzorec:

$$\Delta t = \frac{4U}{\alpha U_0} \tag{4}$$

kde U je rozladění můstku, U_0 je napájecí napětí můstku, Δt je rozdíl teplot.

2.4. Emisivita

Pro určení emisivity musíme změřit teplotu materiálu teploměrem a změřit teplotu infračerveným teploměrem. Poté můžeme použít vzorec:

$$\varepsilon = \left(\frac{T_p}{T}\right)^4 \tag{5}$$

kde T_p je teplota naměřená infračerveným teploměrem a T je skutečná teplota materiálu. Emisivita nastavená na IR teploměru byla $\varepsilon = 1$.

2.5. Propustnost

Koeficient propustnosti oken z různých materiálů lze určit měřením teploty materiálu infračerveným teploměrem přímo a přes okno. Zjištěné hodnoty lze použít ve vzorcích:

$$\tau = \frac{T_{IR,O}^4}{T_{IR,V}^4} \tag{6}$$

$$\tau = \frac{T_{IR,O}^4 - T_{IR,P}^4}{T_{IR,V}^4} \tag{7}$$

kde $T_{IR,O}$ je teplota měřená přes okno, $T_{IR,V}$ je teplota měřená přímo a $T_{IR,P}$ je teplota objektu s nízkým tepelným vyzařováním.

V tomto případě se vzorec (7) použije pro okna z materiálu s nízkou propustností.

2.6. Měření emisivity materiálu při různých teplotách

Abychom určili emisivitu materiálu při různých teplotách, vezmeme chlazenou měděnou desku pokrytou linií a změříme její teplotu v místě pokrytém linií a bez ní. Poté určíme emisivitu podle vzorce (5)

3. Měření

3.1. Teplotní součinitel elektrického odporu

Z našich měření získáme následující graf a jeho lineární aproximace:

Obrázek (1) Závislost odporu čidel na teplotě

Obrázek (2) Závislost napětí čidel na teplotě

Z lineárních aproximací byly získány následující koeficienty:

B (y-intercept) A (slope)	1,0088949125503e+03 6,8769144055974 3,6789705578188e+00 1,2697885827453		9,9154740006834e+02 2 5,7802548464249e+00 4			-2,3374196976723e-04 4,5259478809237e-05	1,0726892046856e-05 1,9806681087018e-07
Errors were scaled	with sqrt(Chi^2/doF) = 8,5112941419121e-01	Errors were scaled wi	th sqrt(Chi^2/doF) = 3,012730	06826442e+00	Errors were scaled with	sqrt(Chi^2/doF) = 1,32762	264332302e-05
(a) Odpor čidla 1	(b)	Odpor čidla 2	2		(c) Napětí	

Hodnoty R_0 a α stanovené podle vzorce (1) jsou s ohledem na nejistoty následující:

čidlo 1:
$$R_{01}=1000(1)$$
 [Ω], $\alpha_1=3.65(1)\times 10^{-3}$ [K^{-1}], čidlo 2: $R_{02}=992(2)$ [Ω], $\alpha_2=5.83(2)\times 10^{-3}$ [K^{-1}]

Seebeckův koeficient se bude rovnat:

$$\beta = 453\text{E-7} \; [\frac{V}{^oC}], \, u_C(\beta) = 2\text{E-7} \; [\frac{V}{^oC}]$$

3.2. Relaxační doba

Ze získaných hodnot sestrojte následující graf závislosti odporu a napětí na čase pro oba čidla:

Obrázek (4) Závislost odporu na teplotě

Obrázek (5) Závislost napětí na teplotě

Koeficienty jejich exponenciálních aproximací jsou následující:

А (амплитуда) 5,6789700940713e+03 5,6091031133379e+01	А (амплитуда) 2,5293255206747e+17 1,0212750892336e+17			
t (время убывания в е раз) 1,1386911326820e+02 2,6345235994203e-01 у0 (смещение) 1,0893536887580e+03 4,9396313046893e-02	t (время убывания в е раз) 1,1718203611815e+01 1,1908143714992e-01 у0 (смещение) 8,9878816031513e-01 1,5457779432585e-03			
Errors were scaled with sqrt(Chi^2/doF) = 6,0552748455527e-01	Errors were scaled with sqrt(Chi^2/doF) = 3,4919348282008e-02			

(a) Odpor

(b) Napětí

Hodnoty τ_m odvozené z koeficientů exponenciální aproximace:

Napětí:
$$\tau_{m1}=11,7~[s],~u_C(\tau_{m1})=0,1~[s],$$

Odpor: $\tau_{m2}=113,9~[s],~u_C(\tau_{m2})=0,3~[s],$

3.3. Můstek

Známé údaje:

$$U_0 = 2.1953 \ [V], \ \alpha = (3.85 \pm 0.04) \times 10^{-3} \ [K^{-1}]$$

Po měření získáte následující graf:

Obrázek (7) Závislost napětí můstku na čase

Proto se změna jeho teploty vypočtená podle vzorce (4) bude rovnat:

$$\Delta t_1 = 0.25 \ [^{o}C], \ u_C(\Delta t_1) = 0.03 \ [^{o}C], \ \Delta t_2 = -0.12 \ [^{o}C], \ u_C(\Delta t_2) = 0.01 \ [^{o}C]$$

3.4. Emisivita

Po měření byly získány následující výsledky:

	Černý povrch	Šedý povrch	Bílý povrch
$T_p[K]$	620.7	494.4	648.1
T[K]	608.4	662.8	631.8
arepsilon	1.0834	0.3096	1.1073

Po zaokrouhlení a výpočtu nejistot jsou výsledky následující:

černý povrch:
$$\varepsilon_1=1.1,\ u_C(\varepsilon_1)=0.001,$$
 šedý povrch: $\varepsilon_2=0.3,\ u_C(\varepsilon_2)=0.0003,$ bílý povrch $\varepsilon_3=1.1,\ u_C(\varepsilon_3)=0.001$

3.5. Propustnost

Známé údaje:

$$T_{IR,P} = 298.4(1) [K]$$

Po měření byly získány následující výsledky:

	$T_{IR,O}[K]$	$T_{IR,V}[K]$	au	$u_C(au)$
NaCl (7,4 mm)	507.1	550.2	0.7216	0.001
$CaF_2 (2 \text{ mm})$	456.9	568.7	0.4166	0.001
$KBr (3 \mathrm{\ mm})$	444.3	536.3	0.4711	0.001
$Si~(0.5~\mathrm{mm})$	442.3	524.3	0.5056	0.001
$GaAs~(0.5~\mathrm{mm})$	455.2	527.1	0.5562	0.001
Polykarbonát (1,5 mm)	302.1	579.7	0.0036	0.0002
$Sklo~(1~\mathrm{mm})$	300.8	574.3	0.0024	0.0002
$SiO_2 (3 \text{ mm})$	298.1	556.2	-0.0003	0.0002
$Cu~(0.3~\mathrm{mm})$	299.4	530.2	0.0014	0.0002

3.6. Měření emisivity materiálu při různých teplotách

Po měření byly získány následující výsledky:

	T[K]	$T_p[K]$	ε	$u_C(\varepsilon)$	
S námazem					1.1
Bez námaza	257.6	271.0	0.816	0.002	>1.2
	-18	18			

K výpočtu chyb byl použit následující kód:

```
import pandas as pd
import numpy as np
import uncertainties as u
from uncertainties import ufloat
from uncertainties.umath import *
from uncertainties import unumpy
ch1_A = ufloat(3.6789705578188, 1.2697885827453*10**(-2))
ch1_B = ufloat (1.0088949125503*10**(3), 6.8769144055974*10**(-1))
\begin{array}{lll} {\rm ch2\_A} &=& {\rm ufloat} \, (5.7802548464249 \, , & 1.2697885827453*10**(-2)) \\ {\rm ch2\_B} &=& {\rm ufloat} \, (9.9154740006834*10**(2) \, , & 2.4342116117969) \end{array}
\begin{array}{lll} \text{U\_A} &=& \text{ufloat} \left( \begin{array}{l} 4.5259478809237*10**(-5), & 1.9806681087018*10**(-7)) \\ \text{U\_B} &=& \text{ufloat} \left( -2.3374196976723*10**(-4), & 1.0726892046856*10**(-5)) \end{array} \right. \end{array}
\mathtt{alpha\_1} \ = \ \mathtt{ch1\_A} \ \ / \ \ \mathtt{ch1\_B}
print(alpha_1)
alpha_2 = ch2_A / ch2_B
print(alpha_2)
\begin{array}{lll} U_-0 &=& ufloat\,(2.1953\,,\ 0) \\ alpha\_coeff &=& ufloat\,(3.85*10**(-3)\,,\ 0.04*10**(-3)) \end{array}
         ufloat (0.53822252*10**(3), 0)
U_2 = ufloat(-0.24239068*10**(3),
dt_-1 \; = \; (4 \; * \; U_-1) \; \; / \; \; (\; al\, p\, h\, a\_c\, o\, e\, ff \; \; * \; U_-0\, )
dt_1 = (4 * 0_1) / (a.p.a...)
print(dt_1)
dt_2 = (4 * U_2) / (alpha_coeff * U_0)
print(epsilon_1 , epsilon_2 , epsilon_3)
print(tau_1 , tau_2 , tau_3 , tau_4 , tau_5 , tau_6 , tau_7 , tau_8 , tau_9)
\begin{array}{lll} {\rm epsilon\_2\_1} \ = \ (\ {\rm ufloat} \ (-13,\ 0.1) \ / \ \ {\rm ufloat} \ (-19.6,\ 0.1)) **4 \\ {\rm epsilon\_2\_2} \ = \ (\ {\rm ufloat} \ (-2.2,\ 0.1) \ / \ \ {\rm ufloat} \ (-15.6,\ 0.1)) **4 \\ {\rm \bf print} \ (\ {\rm epsilon\_2\_1} \ , \ \ {\rm epsilon\_2\_2}) \end{array}
```

4. Závěr

4.1. Teplotní součinitel elektrického odporu

Výsledné hodnoty teplotního koeficientu ($\alpha_1 = 3.647\text{E-3}~[K^{-1}]$) a odporu ($R_{01} = 1000~[\Omega]$) pro první čidlo odpovídají čidlu typu Pt1000.

Výsledné hodnoty teplotního koeficientu ($\alpha_2 = 5.830\text{E-3}~[K^{-1}]$) a odporu ($R_{02} = 992~[\Omega]$) pro druhý čidlo odpovídají čidlu typu Ni1000.

Na základě výsledného seebeckůvá koeficientu ($\beta=453\text{E-7}\ [\frac{V}{^oC}]$) jsem také určil, že termočlánek je typu K.

4.2. Relaxační doba

Relaxační doby, které jsem získal pro oba čidla ($\tau_{m1} = 11.7 \ [s], \ \tau_{m2} = 113.9 \ [s]$), ukazují, že nezapouzdřené čidlo má kratší relaxační dobu než zapouzdřené čidlo, což svědčí o jeho vysoké citlivosti na změny teploty.

4.3. Můstek

Měření na můstku poskytlo hodnoty pro teplotní rozsahy ($\Delta t_1 = 0.25$ [${}^{o}C$], $\Delta t_2 = -0.12$ [${}^{o}C$]), které se vyskytují, když je senzor izolovaný. Tyto teplotní rozsahy představují chyby výpočtu, které je třeba při měření zohlednit.

4.4. Emisivita

Emisivita, kterou jsem definoval pro různé povlaky, je následující: černý povrch: $\varepsilon_1=1.1$, šedý povrch: $\varepsilon_2=0.3$, bílý povrch $\varepsilon_3=1.1$. Což je aproximace k tabulkovým údajům.

4.5. Propustnost

Z výsledků vyplývá, že okna ze $NaCl,\ CaF_2,\ KBr,\ Si$ a GaAs propouštějí záření, a okna z $Polykarbonátu,\ Skla,\ SiO_2$ a Cu nikoli.

4.6. Měření emisivity materiálu při různých teplotách

Získal jsem také hodnoty emisivity pro měděnou desku při různých teplotách, s povlakem a bez něj (s iniem: $\varepsilon = 0.902$, bez inia: $\varepsilon = 0.816$).