16.

1 Краткая теоретическая справка

1.1 Пределы

1. Предел отношения двух многочленов P(x)/Q(x) при $x \to \infty$ зависит только от старших степеней этих многочленов, а именно

$$\lim_{x \to \infty} \frac{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \ldots + b_1 x + b_0} = \begin{cases} \infty & \text{при } n > m, \\ 0 & \text{при } n < m, \\ \frac{a_n}{b_n} & \text{при } n = m. \end{cases}$$
 (1)

2. Второй замечательный предел

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e \quad \text{или} \quad \lim_{x \to 0} \left(1 + x \right)^{\frac{1}{x}} = e \quad \text{или} \quad \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1 \tag{2}$$

1.2 Разложения элементарных функций в ряд Тейлора

Ряд Тейлора в точке x=0 (по степеням x) называется также **рядом Маклорена**.

Экспонента

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad x \in (-\infty, +\infty).$$
 (3)

Логарифм

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n}, \quad x \in (-1,1].$$
 (4)

Синус

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}, \quad x \in (-\infty, +\infty).$$
 (5)

Косинус

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}, \quad x \in (-\infty, +\infty).$$
 (6)

Биномиальное разложение:

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} + \dots = 1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha-1) \cdot \dots \cdot (\alpha-n+1)}{n!} x^n, \quad x \in (-1,1).$$
 (7)

При $\alpha = -1$ из (7) получаем формулы сумм геометрических прогрессий:

$$\frac{1}{1-x} = 1 + x + x^2 + \dots = \sum_{n=0}^{\infty} x^n \quad \text{if} \quad \frac{1}{1+x} = 1 - x + x^2 - \dots = \sum_{n=0}^{\infty} (-1)^n x^n.$$
 (8)

1.3 Признаки сходимости рядов с положительными членами

Эталонные ряды (используются в признаках сравнения).

Ряд
$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$
 сходится при $\alpha > 1$ и расходится при $\alpha \leqslant 1$. (9)

Ряд
$$\sum_{n=1}^{\infty} a^n$$
 сходится при $0 \leqslant a < 1$ и расходится при $a \geqslant 1$. (10)

Теорема 1 (Первый признак сравнения). Если начиная с некоторого номера n выполняются неравенства

$$0 \leqslant a_n \leqslant b_n$$

mo

- из сходимости $\sum_{n=1}^{\infty} b_n$ (большего ряда) следует сходимость $\sum_{n=1}^{\infty} a_n$ (меньшего ряда);
- из расходимости $\sum_{n=1}^{\infty} a_n$ (меньшего ряда) следует расходимость $\sum_{n=1}^{\infty} b_n$ (большего ряда).

Теорема 2 (Второй (предельный) признак сравнения). Если начиная с некоторого номера $b_n > 0$ и существует конечный предел

$$\lim_{n \to \infty} \frac{a_n}{b_n} = A, \quad A \neq 0,$$

то ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ одновременно сходятся или расходятся.

Теорема 3 (Признак Даламбера). Пусть $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=d,\ mor\partial a\ pnd\ \sum_{n=1}^\infty a_n$

- cxodumcs npu d < 1;
- pacxodumcs npu d > 1.

Теорема 4 (Радикальный признак Коши). Пусть $\lim_{n\to\infty} \sqrt[n]{a_n} = d$, тогда ряд $\sum_{n=1}^{\infty} a_n$

- cxodumcs npu d < 1;
- pacxodumcs npu d > 1.

Теорема 5 (Интегральный признак Коши). Рассмотрим общий член ряда $\sum_{n=1}^{\infty} a_n$ как функцию $a_n = f(n)$. Если функция f(x) непрерывна и монотонно убывает на $[1, +\infty)$, то

ряд
$$\sum_{n=1}^{\infty} a_n$$
 и интеграл $\int_{1}^{+\infty} f(x)dx$ одновременно сходятся или расходятся.

Замечание 1. Сумма ряда $\sum_{n=1}^{\infty} a_n$, как правило, не равна значению интеграла $\int_{1}^{+\infty} f(x) dx!$

1.4 Знакопеременные ряды. Признак Лейбница

Определение 1. Числовой ряд

$$\sum_{n=1}^{\infty} (-1)^n a_n, \text{ где } a_n \geqslant 0, \tag{11}$$

называется знакочередующимся.

Теорема 6 (Признак Лейбница). Знакочередующийся ряд (11) сходится если

- последовательность из модулей его членов убывает: $a_n > a_{n+1}$ для любого n;
- u стремится κ нулю: $\lim_{n\to\infty} a_n = 0$.

Замечание 2. Доказать убывание членов ряда можно одним из следующих способов.

- Доказать, что $a_n a_{n+1} > 0$ для любого n.
- Доказать, что $\frac{a_n}{a_{n+1}} > 1$ для любого n.
- Если $a_n = f(n)$, то доказать, что производная f'(x) < 0 для любого x.

1.5 Комплексные числа

Определение 2. Число вида z = x + iy, где x и y — действительные числа, а i — корень уравнения $x^2 + 1 = 0$, называется <u>комплексным числом</u>. Число x называется <u>действительной частью</u> комплексного числа z и обозначается x = Re(z). Число y называется <u>мнимой частью</u> комплексного числа z и обозначается y = Im(z). Число $\overline{z} = x - iy$ называется <u>комплексно-сопряженным</u> числу z = x + iy. Выражение x + iy называется алгебраической формой комплексного числа z.

3амечание 3. Комплексные числа изображаются точками на плоскости. Комплексному числу z = x + iy соответствует точка на плоскости с декартовыми координатами (x, y).

Замечание 4. Комплексные числа складываются, вычитаются, умножаются и делятся по правилам сложения, вычитания, умножения и деления многочленов, если считать i переменной, учитывая при этом, что $i^2 = -1$.

Пусть $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$. Тогда

- $z_1 \pm z_2 = (x_1 \pm x_2) + i(y_1 \pm y_2);$
- $z_1z_2 = (x_1x_2 y_1y_2) + i(x_1y_2 + x_2y_1);$
- $\bullet \ \frac{z_1}{z_2} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + i \frac{x_2 y_1 x_1 y_2}{x_2^2 + y_2^2}.$

Определение 3 (Полярные координаты). Пусть r — это расстояние от начала координат до точки (x,y) или иными словами длина радиус-вектора точки (x,y), а φ — это угол между осью абсцисс (осью Ox) и радиус-вектором (x,y), отсчитываемый от оси абсцисс против часовой стрелки. Числа r и φ называются полярными координатами точки на плоскости с декартовыми координатами (x,y).

Замечание 5. Формулы перехода от декартовых координат к полярным:

$$\begin{cases} x = r\cos\varphi, \\ y = r\sin\varphi. \end{cases} \tag{12}$$

Формулы перехода от полярных координат к декартовым:

$$\begin{cases} r = \sqrt{x^2 + y^2}, \\ \operatorname{tg} \varphi = \frac{y}{x}. \end{cases} \tag{13}$$

Определение 4 (Тригонометрическая форма комплексного числа). Пусть z=x+iy — комплексное число. Выражение $z=r(\cos\varphi+i\sin\varphi)$, где r и φ — полярные координаты точки (x,y), называется тригонометрической формой комплексного числа z. Число r называется модулем комплексного числа z и обозначается r=|z|. Число φ называется аргументом комплексного числа z и обозначается $\varphi=\operatorname{Arg} z$.

Замечание 6. Используя формулу Эйлера

$$e^{i\varphi} = \cos\varphi + i\sin\varphi,\tag{14}$$

получаем формулу показательной формы комплексного числа $z=re^{i\varphi}.$

Замечание 7. Аргумент комплексного числа $\mathop{\rm Arg} z$ является многозначной периодической функцией с периодом 2π . При этом

$$\operatorname{Arg} z = \operatorname{arg} z + 2\pi k$$
, где $-\pi < \operatorname{arg} z \leqslant \pi$.

Замечание 8. Комплексные числа в тригонометрической форме легко умножать, делить и возводить в степень. Пусть $z_1 = r_1(\cos \varphi_1 + i \sin \varphi_1), \ z_2 = r_2(\cos \varphi_2 + i \sin \varphi_2)$. Тогда

$$z_1 z_2 = r_1 r_2 \left(\cos \left(\varphi_1 + \varphi_2 \right) + i \sin \left(\varphi_1 + \varphi_2 \right) \right),$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left(\cos \left(\varphi_1 - \varphi_2 \right) + i \sin \left(\varphi_1 - \varphi_2 \right) \right).$$

Если $z = r(\cos \varphi + i \sin \varphi)$, то

$$z^{n} = r^{n} (\cos(n\varphi) + i\sin(n\varphi)).$$

Замечание 9. Корень n-й степени из комплексного числа $z = r(\cos \varphi + i \sin \varphi) \neq 0$ имеет n различных значений, которые находятся по формуле

$$\sqrt[n]{z_k} = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right), \quad k = 0, 1, \dots, n - 1.$$
 (15)

1.6 Функции комплексного переменного

Также как комплексная переменная z=x+iy имеет действительную и мнимую части x и y, являющиеся действительными переменными, функция комплексного переменного f(z)=u(x,y)+iv(x,y) также имеет действительную и мнимую части u(x,y) и v(x,y), являющиеся действительнозначными функциями двух действительных переменных.

Показательная функция

$$e^z = e^x(\cos y + i\sin y) \tag{16}$$

Данная формула является следствием формулы Эйлера (14).

Гиберболические функции

$$ch z = \frac{e^z + e^{-z}}{2}, \quad sh z = \frac{e^z - e^{-z}}{2}, \quad th z = \frac{sh z}{ch z}, \quad cth z = \frac{ch z}{sh z}.$$
(17)

Тригонометрические функции

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \quad \sin z = \frac{e^{iz} - e^{-iz}}{2i}, \quad \operatorname{tg} z = \frac{\sin z}{\cos z}, \quad \operatorname{ctg} z = \frac{\cos z}{\sin z}.$$
 (18)

Замечание 10. Тригонометрические и гиперболические функции связаны следующими формулами

$$\cos(iz) = \operatorname{ch} z$$
, $\sin(iz) = i \operatorname{sh} z$, $\operatorname{ch}(iz) = \cos z$, $\operatorname{sh}(iz) = i \sin z$.

Логарифмическая функция

$$\operatorname{Ln} z = \ln|z| + i\operatorname{Arg} z = \ln|z| + i(\operatorname{arg} z + 2\pi k), \quad k = 0, \pm 1, \pm 2, \dots$$
 (19)

Простейшие множества точек на плоскости

Уравнение

$$|z - z_0| = R$$

задает **окружность** с центром в точке $z_0 = x_0 + iy_0$ (точка с координатами (x_0, y_0)) радиуса R. Неравенства $|z - z_0| \leq R$ и $|z - z_0| \geq R$ задают, соответственно, внутренность или внешность соответствующего круга.

Для изображения множеств точек, заданных уравнениями, содержащими $\operatorname{Re} z$ или $\operatorname{Im} z$, нужно подставить в уравнения $\operatorname{Re} z = x$ или $\operatorname{Im} z = y$.

Например множество $\operatorname{Re} z\geqslant \operatorname{Im} z$ есть множество $x\geqslant y$, т.е. полуплоскость, расположенная справа внизу от прямой x=y.

Определение 5. Однозначная функция f(z) называется <u>аналитической в точке</u> z_0 , если она дифференцируема в точке z_0 и в некоторой окрестности этой точки. Функция f(z) называется аналитической в области D, если она дифференцируема в любой точке области.

Теорема 7 (Условия Коши-Римана). Для того чтобы функция f(z) = u(x,y) + iv(x,y) была дифференцируема в точке z = x + iy, необходимо и достаточно, чтобы функции u(x,y) и v(x,y) были дифференцируемы в точке (x,y) и чтобы в этой точке имели место равенства

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$
 (20)

Уравнения (20) называются условиями Коши-Римана.

1.7 Вычеты

Теорема 8 (Интегральная формула Коши). Если D — область, ограниченная контуром C, а f(z) — однозначная u аналитическая в \overline{D} функция, тогда для любой точки $z_0 \in D$ справедлива формула

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)dz}{z - z_0}.$$
 (21)

Теорема 9. Если функция f(z) аналитична в области D и непрерывна в \overline{D} , то во всех внутренних точках области у функции f(z) существуют производные любого порядка, причем справедлива формула

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_C \frac{f(z)dz}{(z - z_0)^{n+1}},\tag{22}$$

 $r \partial e \ z_0 \in D$, а C - граница области <math>D.

Теорема 10 (Разложение в ряд Лорана). Функция f(z), однозначная и аналитическая в кольце $0 \le r < |z - z_0| < R \le +\infty$, разлагается в этом кольце единственным образом в сходящийся к ней ряд Лорана

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n.$$

Ряд

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

называется правильной частью ряда Лорана, а ряд

$$f(z) = \sum_{n=-\infty}^{-1} c_n (z - z_0)^n = \sum_{n=1}^{\infty} \frac{c_{-n}}{(z - z_0)^n}$$

— главной частью ряда Лорана.

Определение 6. Точка z_0 называется <u>правильной точкой</u> функции f(z), если f(z) аналитична в z_0 .

Определение 7 (Изолированная особая точка). Точка z_0 называется изолированной особой точкой функции f(z), если f(z) аналитична в некоторой окрестности этой точки, за исключением самой точки z_0 , а в точке z_0 функция не определена или не дифференцируема.

Определение 8 (Классификация изолированных особых точек). Изолированная особая точка z_0 функции f(z) называется

- устранимой особой точкой, если ряд Лорана f(z) в точке z_0 не содержит главной части: $f(z) = c_0 + c_1(z z_0) + \dots$ В этом случае $\lim_{z \to z_0} f(z) = c_0$ (предел f(z) при $z \to z_0$ конечен);
- полюсом порядка n, если главная часть ряда Лорана f(z) в точке z_0 конечна, а n старшая степень $(z-z_0)$ в знаменателе: $f(z) = \frac{c_{-n}}{(z-z_0)^n} + \frac{c_{-(n-1)}}{(z-z_0)^{n-1}} + \ldots + c_0 + c_1(z-z_0) + \ldots$ В этом случае $\lim_{z \to z_0} f(z) = \infty$;
- существенно особой точкой, если главная часть ряда Лорана f(z) в точке z_0 бесконечна. В этом случае $\lim_{z\to z_0} f(z)$ не существует.

Определение 9 (Вычет функции). Вычетом аналитической функции f(z) в изолированной особой точке z_0 называется коэффициент при $(z-z_0)^{-1}$ в разложении f(z) в ряд Лорана в окрестности точки z_0 . Вычет функции f(z) в точке z_0 обозначается $\mathop{\mathrm{res}}_{z=z_0} f(z)$.

Формулы для вычисления вычетов

- Если z_0 устранимая особая точка функции f(z), то $\mathop{\mathrm{res}}_{z=z_0} f(z)=0$.
- ullet Если z_0 простой полюс, то

$$\operatorname{res}_{z=z_0} f(z) = \lim_{z \to z_0} f(z)(z - z_0)$$
(23)

• Если z_0 — простой полюс, а f(z) в окрестности z_0 представима как частное двух аналитических функций $f(z) = \frac{\varphi(z)}{\psi(z)}$, причем $\varphi(z_0) \neq 0$, $\psi(z_0) = 0$, $\psi'(z_0) \neq 0$, то

$$\operatorname{res}_{z=z_0} f(z) = \frac{\varphi(z_0)}{\psi'(z_0)}.$$
 (24)

ullet Если z_0 — полюс порядка n функции f(z), то

$$\operatorname{res}_{z=z_0} f(z) = \frac{1}{(n-1)!} \lim_{z \to z_0} \left[f(z)(z-z_0)^n \right]^{(n)}. \tag{25}$$

• Если точка z_0 — существенно особая точка функции f(z), то для нахождения необходимо найти коэффициент c_{-1} в разложении f(z) в ряд Лорана в окрестности точки z_0 .

Теорема 11 (Основная теорема о вычетах). Если функция f(z) аналитична всюду внутри замкнутой области D, ограниченной контуром C, за исключением конечного числа изолированных особых точек z_1, \ldots, z_n , лежащих внутри D, то

$$\oint_C f(z)dz = 2\pi i \sum_{k=1}^n \mathop{res}_{z=z_k} f(z).$$

Теорема 12 (Вычисление несобственных интегралов от рациональных функций).

Пусть функция $F(x) = \frac{P(x)}{Q(x)}$, где P(x), Q(x) — многочлены, причем все корни знаменателя не являются действительными, и степень Q(x) больше степени P(x) не менее, чем на 2. Тогда

$$\int_{-\infty}^{+\infty} F(x)dx = 2\pi i \sum_{k=1}^{n} \underset{z=z_k}{res} F(z),$$

где z_k — полюсы функции F(z) лежащие в верхней полуплоскости.

2 Решение типовых задач

Задача 1. Исследовать на сходимость числовой ряд $\sum_{n=1}^{\infty} (n^3 - 2n^2) \sin \left(\frac{7}{n^4 + 5n} \right)$.

Решение. В начале приведем идею решения.

Используя эквивалентность $\sin x \sim x$ (следствие формулы (5)), получим ряд $\sum_{n=1}^{\infty} \frac{7 \left(n^3 - 2 n^2\right)}{n^4 + 5 n}$. Поскольку на сходимость отношения двух многочленов влияют только старшие степени, то данный ряд ведет себя, как ряд $\sum_{n=1}^{\infty} \frac{7 n^3}{n^4} = 7 \sum_{n=1}^{\infty} \frac{1}{n}$, а ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится по формуле (9).

Теперь приведем строгое доказательство.

Пусть
$$a_n = (n^3 - 2n^2) \sin\left(\frac{7}{n^4 + 5n}\right)$$
, а $b_n = \frac{1}{n}$. Тогда

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{(n^3 - 2n^2)\sin\left(\frac{7}{n^4 + 5n}\right)}{\frac{1}{n}} = \lim_{n \to \infty} \frac{7n(n^3 - 2n^2)}{n^4 + 5n} = \lim_{n \to \infty} \frac{7n^4 - 14n^3}{n^4 + 5n} = 7,$$

откуда по предельному признаку сравнения ряды $\sum_{n=1}^{\infty} (n^3 - 2n^2) \sin\left(\frac{7}{n^4 + 5n}\right)$ и $\sum_{n=1}^{\infty} \frac{1}{n}$ одновременно сходятся или расходятся. Но $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится, значит расходится и исследуемый ряд.

Задача 2. Исследовать на абсолютную (условную) сходимость ряд $\sum_{n=1}^{\infty} \frac{(-1)^n}{n(\ln n + 1)^2}$.

Решение. Сначала исследуем ряд на абсолютную сходимость, т.е. исследуем на сходимость ряд $\sum\limits_{n=1}^{\infty} \frac{1}{n(\ln n+1)^2}$. Функция $\frac{1}{x(\ln x+1)^2}$ непрерывна и монотонно убывает на промежутке $[1,+\infty)$, поэтому можно воспользовать интегральным признаком Коши (теорема 5). Поскольку $d(\ln x+1)=\frac{dx}{x}$, то можно вычислить интеграл

$$\begin{split} \int_{1}^{\infty} \frac{dx}{x(\ln x + 1)^{2}} &= \lim_{n \to \infty} \int_{1}^{n} \frac{dx}{x(\ln x + 1)^{2}} = \lim_{n \to \infty} \int_{1}^{n} \frac{d(\ln x + 1)}{(\ln x + 1)^{2}} = \\ &= -\lim_{n \to \infty} \left. \frac{1}{\ln x + 1} \right|_{1}^{n} = -\lim_{n \to \infty} \left(\frac{1}{\ln n + 1} - 1 \right) = -(0 - 1) = 1. \end{split}$$

Интеграл сходится, значит по интегральному признаку Коши сходится и ряд $\sum_{n=1}^{\infty} \frac{1}{n(\ln n + 1)^2}$. Следовательно, ряд $\sum_{n=1}^{\infty} \frac{(-1)^n}{n(\ln n + 1)^2}$ сходится абсолютно.

Задача 3. Найти область сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{(x-2)^n}{2^n \sqrt{n+1}}$.

Решение. Пусть $a_n = \frac{(x-2)^n}{2^n \sqrt{n+1}}$, тогда

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{|x-2|^{n+1}}{2^{n+1}\sqrt{n+2}} \cdot \frac{2^n \sqrt{n+1}}{|x-2|^n} = \frac{|x-2|}{2} \lim_{n \to \infty} \sqrt{\frac{n+1}{n+2}} = \frac{|x-2|}{2}.$$

По признаку Даламбера ряд сходится если $\frac{|x-2|}{2} < 1$, т.е. -2 < x-2 < 2 или 0 < x < 4.

Нам осталось исследовать поведения ряда в точках x=0 и x=4. При x=0 имеем знакопеременный ряд $\sum_{n=1}^{\infty} \frac{(-2)^n}{2^n \sqrt{n+1}} = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$. Исследуем его на условную сходимость по признаку Лейбница.

- 1. Последовательность $\{b_n\}_{n=1}^{\infty}$, $b_n = \frac{1}{\sqrt{n+1}}$ монотонно убывает, поскольку $\frac{b_n}{b_{n+1}} = \frac{\sqrt{n+2}}{\sqrt{n+1}} >$ 1 при $n \geqslant 1$.
- 2. $\lim_{n \to \infty} \frac{1}{\sqrt{n+1}} = 0$.

Оба условия признака Лейбница (Теорема 6) выполнены, значит ряд сходится. При x=4 имеем ряд $\sum_{n=1}^{\infty} \frac{2^n}{2^n \sqrt{n+1}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$, который расходится по предельному признаку сравнения, т.к. эталонный ряд $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{1/2}}$ расходится (см. (9)).

Задача 4. Найти сумму ряда $\sum_{n=1}^{\infty} \frac{3^n}{n!}$

Решение. Подставим в разложение (3) x = 3, получим

$$e^3 = \sum_{n=0}^{\infty} \frac{3^n}{n!} = 1 + \sum_{n=1}^{\infty} \frac{3^n}{n!}$$
, откуда $\sum_{n=1}^{\infty} \frac{3^n}{n!} = e^3 - 1$.

Задача 5. Решить уравнение $\sin z = i$.

Решение. Применяя вторую для $\sin z$ из (18), получаем $\frac{e^{iz}-e^{-iz}}{2i}=i$ или $e^{iz}-e^{-iz}=-2$. Пусть $e^{iz}=t$, имеем $t-\frac{1}{t}=-2$ или $t^2+2t-1=0$. Решая данное квадратное уравнение, получаем $(t+1)^2=2,\,t=-1\pm\sqrt{2}$. Отсюда $e^{iz}=-1-\sqrt{2}$ или $e^{iz}=-1+\sqrt{2}$. Получаем

$$iz = \operatorname{Ln}\left(-1 - \sqrt{2}\right) = \ln\left|-1 - \sqrt{2}\right| + i\operatorname{Arg}\left(-1 - \sqrt{2}\right) = \ln\left(1 + \sqrt{2}\right) + i(\pi + 2\pi k), \quad k \in \mathbb{Z}$$

или

$$iz = \operatorname{Ln}\left(-1 + \sqrt{2}\right) = \ln\left|-1 + \sqrt{2}\right| + i\operatorname{Arg}\left(-1 + \sqrt{2}\right) = \ln\left(\sqrt{2} - 1\right) + i(2\pi k), \quad k \in \mathbb{Z},$$
 откуда $z = \pi + 2\pi k - i\ln\left(1 + \sqrt{2}\right)$ или $z = 2\pi k - i\ln\left(\sqrt{2} - 1\right).$

Задача 6. Найти площадь области, заданной неравенствами: $1\leqslant |z|\leqslant 2,\ \mathrm{Re}\,z\geqslant 0.$

Решение. Неравенства $1\leqslant |z|\leqslant 2$ задают кольцо с центром в начале координат, внутренним радиусом 1 и внешним радиусом 2. Площадь кольца равна $\pi\cdot 2^2-\pi\cdot 1^2=3\pi$.

Неравенство Re $z\geqslant 0$ задает правую полуплоскость $x\geqslant 0$, которая отсекает от кольца половину, так что площадь пересечения будет $\frac{3}{2}\pi$.

Задача 7. Исследовать на аналитичность функцию $f(z) = 2i\overline{z} - 3z^2$.

Решение. Представим функцию f(z) в виде f(z) = u(x,y) + iv(x,y) и проверим условия Коши-Римана (20):

$$f(z) = 2i\overline{z} - 3z^2 = 2i(x - iy) - 3(x + iy)^2 = 2ix + 2y - 3(x^2 + 2ixy - y^2) =$$

$$= (3y^2 + 2y - 3x^2) + i(2x + 2xy),$$

так что

$$u(x,y) = 3y^2 + 2y - 3x^2$$
, $v(x,y) = 2x + 2xy$

Отсюда

$$\frac{\partial u}{\partial x} = -6x, \quad \frac{\partial u}{\partial y} = 6y + 2, \quad \frac{\partial v}{\partial x} = 2 + 2x, \quad \frac{\partial v}{\partial y} = 2x.$$

Условия Коши-Римана не выполняются нигде, кроме точки (0,0), значит функция не является аналитической.

Задача 8. Вычислить интеграл $\int\limits_{|z|=1}^{} \frac{e^z dz}{z(z-2)}$ с помощью вычетов.

Решение. Способ 1. Функция $\frac{e^z}{z(z-2)}$ имеет две особых точки z=0 и z=2. Внутри круга $|z|\leqslant 1$ лежит только точка z=0, поэтому по основной теореме о вычетах (теорема 11)

$$\oint_{|z|=1} \frac{e^z dz}{z(z-2)} = 2\pi i \operatorname{res}_{z=0} \frac{e^z}{z(z-2)} = 2\pi i \lim_{z \to 0} \frac{z e^z}{z(z-2)} = 2\pi i \frac{e^0}{0-2} = -\pi i.$$

Решение. Способ 2. Функция $\frac{e^z}{z(z-2)}$ имеет две особых точки z=0 и z=2. Внутри круга $|z|\leqslant 1$ лежит только точка z=0, поэтому функция $\frac{e^z}{z-2}$ является аналитической в круге $|z|\leqslant 1$. Тогда по интегральной формуле Коши (21)

$$\int_{|z|=1} \frac{e^z dz}{z(z-2)} = \int_{|z|=1} \frac{\frac{e^z}{z-2}}{z-0} dz = 2\pi i \frac{e^0}{0-2} = -\pi i.$$

Задача 9. Вычислить несобственный интеграл $\int_{-\infty}^{+\infty} \frac{dx}{(x^2+4)(x^2+9)}$ с помощью вычетов.

Решение. Функция $F(z) = \frac{1}{(z^2+4)(z^2+9)}$ удовлетворяет условиям теоремы 12, ее знаменатель $(z^2+4)(z^2+9) = (z+2i)(z-2i)(z+3i)(z-3i)$ имеет два корня в верхней полуплоскости z=2i и z=3i. По теореме 12

$$\int_{-\infty}^{+\infty} F(x)dx = 2\pi i \left(\underset{z=2i}{\text{res }} F(z) + \underset{z=3i}{\text{res }} F(z) \right).$$

Поскольку z = 2i и z = 3i — простые полюсы F(z), то для вычисления вычетов в этих точках воспользуемся формулой (23):

$$\operatorname{res}_{z=2i} F(z) = \lim_{z \to 2i} \frac{1}{(z+2i)(z+3i)(z-3i)} = \frac{1}{4i \cdot 5i \cdot (-i)} = -\frac{i}{20}.$$

$$\operatorname{res}_{z=3i} F(z) = \lim_{z \to 2i} \frac{1}{(z+2i)(z-2i)(z+3i)} = \frac{1}{5i \cdot i \cdot 6i} = \frac{i}{30}.$$

Таким образом,

$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+4)(x^2+9)} = 2\pi i \left(-\frac{i}{20} + \frac{i}{30}\right) = \pi \left(\frac{1}{10} - \frac{1}{15}\right) = \frac{\pi}{30}.$$

12