Finite representation of real numbers Floating-point numbers

Dr. Ing. Rodrigo Gonzalez

rodralez@frm.utn.edu.ar

Técnicas Digitales III

Universidad Tecnológica Nacional, Facultad Regional Mendoza.

Summary

- Floating-point Representation
 - Floating-point Representation
 - Standards
 - Normalized Form
- Ploating-point Examples
- De-normalized Form
- Special values
- Rounding schemes
- Opposition of the property of the property
- Precision
- Precision problems

Floating-point Representation

A floating-point number can represent a very large or a very small value, positive and negative.

Floating-point Numbers (Decimal)

A floating-point number is typically expressed in the scientific notation in the form of

$$(-1)^{S} \times F \times r^{E}$$
,

where,

- S, sign bit.
- F, fraction.
- E, exponent.
- r, certain radix. r = 2 for binary; r = 10 for decimal.

Standards

Modern computers adopt IEEE 754-2008 standard for representing floating-point numbers.

						IEE	E Sta	ndar	d P7	54 Fo	rmat					
Bit	31	30	29	28	27	26	25	24	23	22	21	20		2	1	0
	S	27	26	25	24	23	22	21	20	2 1	2 2	2 3		2 21	2 22	2-23
Sign	$6ign (s) \qquad \leftarrow Exponent (c) \rightarrow$						\leftarrow Fraction $(f) \rightarrow$									
							I	BM I	Form	at						
Bit	31	30	29	28	27	26	25	24	23	22	21	20		2	1	()
	S	26	2 ⁵	24	23	2 ²	21	20	2-1	2 2	2-3	2 4		2 22	2 23	2 24
Sign	Sign (s) \leftarrow Exponent (e) \rightarrow				\leftarrow Fraction $(f) \rightarrow$											
					DEC	(Dig	ital I	qui	omer	nt Co	rp.) F	orma	t			
Bit	31	30	29	28	27	26	25	24	23	22	21	20		2	1	0
	S	27	2 ⁶	25	24	2 ³	2 ²	21	20	2-2	2 -3	2 4		2 22	2 -23	2 24
Sigr	Sign (s) \leftarrow Exponent (e) \rightarrow						\leftarrow Fraction $(f) \rightarrow$									
						M	IL-S	TD 1	750	\ For	mat					
Bit	31	30	29		11	10	9	8	7	6	5	4	3	2	1	0
	20	2 1	2 2		2-20	2 21	2 -22	2 -23	27	26	25	24	23	22	21	20
	\leftarrow Fraction $(f) \rightarrow$						\leftarrow Exponent (e) \rightarrow									

IEEE 754-2008 standard

IEEE 754-2008 standard defines several formats.

	Binary form	tats $(B=2)$	Decimal formats $(B = 10)$				
Parameter	Binary 16	Binary 32	Binary 64	Binary 128	Decimal 132	Decimal 164	Decimal 128
p, digits	10 + 1	23 + 1	52 + 1	112 + 1	7	16	34
e_{max}	+15	+127	+1023	+16383	+96	+384	+16,383
e_{min}	-14	-126	-1022	-16382	-95	-383	-16,382
Common name	Half precision	Single precision	Double precision	Quadruple precision			

IEEE-754 32-bit Single-Precision

32-bit Single-Precision Floating-point Number

$$(-1)^S \times F \times r^{(E-bias)}$$

- *S*, sign bit. 0 for positive numbers and 1 for negative numbers.
- E, 8-bits exponent.
- We need to represent both positive and negative exponents.
- E = [1, 254], bias = 127; $-126 \le E bias \le 127$.
- E = 0 and E = 255 are reserved.
- F, 23-bits fraction.

Normalized Form

- Representation of a floating point number may not be unique: $11.01_2 = 1.101_2 \times 2^1 = 110.1_2 \times 2^{-1}$.
- Therefore, the fractional part *F* is normalized.
- 1.F, implicit leading 1.

Represent 3215.020002₁₀

http://babbage.cs.qc.cuny.edu/IEEE-754.old/Decimal.html

Represent $3215.020002_{10} \times 2 = 6430.040004_{10}$

Decimal Value Entered: 6430.040004

Single precision (32 bits):

```
Binary:
          Status: normal
```

```
Bit 31
                          Bits 30 - 23
Sign Bit
                         Exponent Field
  0
                           10001011
  0: +
         Decimal value of exponent field and exponent
  1: -
                            - 127 = 12
                      139
```

Bits 22 - 0 Significand 1 .10010001111000001010010

Decimal value of the significand 1.5698340

Hexadecimal: 45C8F052

Decimal: 6430.0400

Represent $3215.020002_{10}/4 = 803.7550005_{10}$

Decimal Value Entered: 803.7550005

Single precision (32 bits):

Binary: Status: normal

Hexadecimal: 4448F052 Decimal: 803.75500

Floating-point numbers are auto-scaled!

De-normalized Form

Not all real numbers in the range are representable

Normalized floating-point numbers

Denormalized floating-point numbers

- Normalized form has a serious problem.
- With an implicit leading 1 for the fraction, it cannot represent the number zero!
- De-normalized form is devised to represent zero and small numbers.
- $E = 0 \Rightarrow 0.F$, implicit leading 0.

Represent -3.4E-39₁₀

Decimal Value Entered: -3.4e-39

Single precision (32 bits):

Special values

- **Zero**: E = 0, F = 0. Two representations: **+0** (S = 0) and **-0** (S = 1).
- Inf (Infinity): $E = 0 \times FF$, F = 0. Two representations: +Inf (S = 0) and -Inf (S = 1).
- NaN (Not a Number): E = 0xFF, $F \neq 0$. A value that cannot be represented as a real number (e.g. 0/0).

MATLAB

- $0 \gg a = 1/0$
- ② » ans = Inf

- \bigcirc » c = 0/0

C code

- #include <math.h>
- \bigcirc a = NAN;
- b = INFINITY;
- 0 c = -INFINITY;

Rounding schemes

- ulp (unit of least precision, eps ()).
- f, significant, f = 1.F.
- f' and f'' being two successive multiples of ulp.
- Assume that f' < f < f'', f'' = f' + ulp,
- Then, the rounding function round(f) associates to f either f' or f'', according to some rounding strategy.

Rounding schemes II

Rounding schemes are:

- Truncation (also called round toward 0 or chopping):
 - if f is positive, round(f) = f'.
 - if f is negative, round(-f) = f''.
- Round toward plus infinity: round(f) = f''.
- Round toward minus infinity: round(f) = f'.
- Round to nearest (default):
 - if f < f' + ulp/2, round(f) = f'.
 - if f > f' + ulp/2, round(f) = f''.

Dynamic range

$$DR_{dB} \approx 6.02 \cdot 2^{b_E}$$

where b_E is the number of bits of E.

For single precision (32-bits):

$$DR_{dB} \approx 6.02 \cdot 2^8 \approx 1541 \, dB$$

For fixed-point Q31 (32-bits):

$$DR_{dB} \approx 6.02 \cdot 31 \approx 186 \, dB$$

Precision

- Precision is not constant throughout floating point numbers' range.
- As the numbers get larger, the precision gets larger.

MATLAB

Precision IV

eps(x) returns the positive distance from abs(x) to the next larger in magnitude floating point number of the same precision.

MATLAB

Sum of two floating-point positive numbers

Perform $0.5_{10} + (-0.4375_{10})$ using 4 bits for the mantissa.

$$\begin{aligned} 0.5_{10} &= 0.1_2 \times 2^0 = 1.000_2 \times 2^{-1} \text{ (normalised)} \\ -0.4375_{10} &= -0.0111_2 \times 2^0 = -1.110_2 \times 2^{-2} \text{ (normalised)} \end{aligned}$$

- Matches with the exponent of the larger number: Apply n left shifts to -1.110₂ where n = (exponent1 - exponent2). -1.110₂ × 2⁻² = -0.1110₂ × 2⁻¹
- **3** Add the mantissas: $1.000_2 \times 2^{-1} + -0.1110_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- Normalise the sum, checking for overflow/underflow: $0.001_2 \times 2^{-1} = 1.000_2 \times 2^{-4}$ -126 <= -4 <= 127 No overflow or underflow
- Round the sum: The sum fits in 4 bits so rounding is not required

Sum of two floating-point positive numbers, II

Perform $1e10_{10} + 1300_{10}$ using IEEE-754 single precision.

$$1e10_{10} = (-1)^0 \times 1.001010100000010111111001_2 \times r^{(160-127)} \text{ (normalised)}$$

$$1300_{10} = (-1)^0 \times 1.010001010000000000000_2 \times r^{(137-127)} \text{ (normalised)}$$

Matches with the exponent of the larger number:

Apply n left shifts to 1.010001010000000000000000002 where n = (exponent1 - exponent2).

$$1300_{10} = 0.0000000000000000000000_2 \times r^{(160-127)}$$

- Add the mantissas:
 - $(1.001010100000010111111001_2 + 0.00000000000000000000000_2) \times r^{(160-127)}$
- Normalise the sum, checking for overflow/underflow:

$$1.001010100000010111111001_2 \times r^{(160-127)}$$

$$-126 <= (160 - 127) <= 127$$
 No overflow or underflow

- Round the sum:
 - The sum fits in 23 bits so rounding is not required

More examples

 When calculations involve large and small numbers at the same time, the loss of precision affects the small number and the result.

MATLAB

- \bullet » t = tan(x) sin(x)/cos(x)
- \bullet » t = 2.2204e-16 % eps(1)

Fixed-point vs floating-point

Bibliography

1 Jean-Pierre Deschamps, Gustavo D. Sutter, and Enrique Cantó. Guide to FPGA Implementation of Arithmetic Functions, Chapter 12.