矩阵理论与方法

内容提要 CONTENTS

- □课程信息
- □课程介绍
- □ 矩阵理论与方法

第2章 范数理论及其应用

向量范数的概念(回顾)

定义 2.1 如果 V 是数域 K 上的线性空间,且对于 V 的任一向量 x,对应一个实值函数 $\|x\|$,它满足以下三个条件:

- (1) 非负性: 当 $x \neq 0$ 时, ||x|| > 0; 当x = 0时, ||x|| = 0;
- (2) 齐次性: $||ax|| = |a| ||x|| (a \in K, x \in V);$
- (3) 三角不等式: $||x+y|| \le ||x|| + ||y||$ ($x, y \in V$). 则称 ||x|| 为 V 上向量x 的范数,简称向量范数.

向量范数的等价性(回顾)

二、线性空间 V" 上的向量范数的等价性

前面已经指出,在数域 K 上的线性空间 V,特别是在 \mathbb{C}^n 上可以定义各种各样的向量范数,其数值大小一般不同. 但是,在各种向量范数之间存在下述重要关系.

定理 2.1 设 $\|x\|_a$ 和 $\|x\|_\beta$ 为有限维线性空间 V 的任意 两种向量范数(它们不限于 p -范数),则存在两个与向量 x 无关的 正常数 c_1 和 c_2 ,使得不等式

 $c_1 \| \mathbf{x} \|_{\beta} \leq \| \mathbf{x} \|_{\alpha} \leq c_2 \| \mathbf{x} \|_{\beta} \quad (\forall \mathbf{x} \in V) \quad (2.1.9)$ 成立.

第2章 范数理论及其应用

a) R^n 上的向量范数

b) 线型空间V上的向量范数

c) $R^{m \times n}$ 上的矩阵范数

第2章 范数理论及其应用

§ 2.2 矩阵的范数

矩阵空间 C^{m×n} 是一个mn 维的线性空间,将 m×n矩阵 A 看做线性空间 C^{m×n} 中的"向量",可以按照例 2.6 的方式定义 A 的范数. 但是,矩阵之间还有乘法运算,它应该在定义矩阵范数时予以体现.

一、矩阵范数的定义与性质

定义 2.3 设 $A \in \mathbb{C}^{m \times n}$, 定义一个实值函数 $\|A\|$, 它满足以下三个条件

- (1) 非负性: 当 $A \neq O$ 时, ||A|| > 0; 当A = O时, ||A|| = 0;
 - (2) 齐次性: $\|\alpha A\| = |\alpha| \|A\| (\alpha \in \mathbb{C});$
 - (3) 三角不等式: $||A + B|| \leq ||A|| + ||B||$ ($B \in \mathbb{C}^{m \times n}$).
 - (4) 相容性:

$$\| AB \| \leq \| A \| \| B \| \quad (B \in \mathbb{C}^{n \times l})$$
 (2. 2. 1)

则称 ||A|| 为 A 的**矩阵范数**.

定义 2.4 对于 $C^{m \times n}$ 上的矩阵范数 $\| \cdot \|_{M}$ 和 C^{m} 与 C^{n} 上的同类向量范数 $\| \cdot \|_{V}$,如果

$$\|Ax\|_{V} \leq \|A\|_{M} \|x\|_{V} \quad (\forall A \in \mathbb{C}^{m \times n}, \ \forall x \in \mathbb{C}^{n})$$

(2.2.2)

则称矩阵范数 || ・ || M 与向量范数 || ・ || V 是相容的.

同向量的情况一样,对于矩阵序列也有极限的概念:设有一个矩阵序列 $\{A^{(k)}\}$,其中 $A^{(k)}\in C^{m\times n}(k=1,2,\cdots)$. 用 $a_{ij}^{(k)}$ 记 $A^{(k)}$ 的第 i 行第 j 列的元素,且 $a_{ij}^{(k)}$ 都有极限 a_{ij} ,则称 $\{A^{(k)}\}$ 有极限 $A=(a_{ij})$,或称 $A^{(k)}$ 收敛于矩阵 A,记为

$$\lim_{k\to\infty} A^{(k)} = A \quad \vec{\boxtimes} \quad A^{(k)} \to A$$

不收敛的矩阵序列称为发散的.

 $A^{(k)} \rightarrow A$ 的充要条件是 $||A^{(k)} - A|| \rightarrow 0$.

例1、设
$$A = (a_{ij})_{m \times n} \in C^{m \times n}, x = (\xi_1, \dots, \xi_n)^T$$
 ,则
$$\|A\|_{m1} = \sum_{i,j=1}^n |a_{ij}| \quad \text{是矩阵函数,且与} \|x\|_1 \text{ 相容}$$

例2、设
$$A = (a_{ij})_{m \times n} \in C^{m \times n}, x = (\xi_1, \dots, \xi_n)^T$$
 , 则
$$\|A\|_{m \infty} = n \cdot \max_{i,j} |a_{ij}| \quad \text{是矩阵函数,且与} \|x\|_{\infty} \text{相容}$$

例3、设
$$A = (a_{ij})_{m \times n} \in C^{m \times n}, x = (\xi_1, \dots, \xi_n)^T$$
,证明
$$\|A\|_{m2} = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}}$$
 是矩阵函数,且与 $\|x\|_2$ 相容

例3、设
$$A = (a_{ij})_{m \times n} \in C^{m \times n}, x = (\xi_1, \dots, \xi_n)^T$$
,证明
$$\|A\|_{m2} = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}} \quad \text{是矩阵函数,且与} \|x\|_2 \text{相容}$$

证明: (1)~(2)成立,

例3、设
$$A = (a_{ij})_{m \times n} \in C^{m \times n}, x = (\xi_1, \dots, \xi_n)^T$$
 , 证明
$$\|A\|_{m2} = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}} \quad \text{E矩阵函数, } \text{且与} \|x\|_2 \text{相容}$$
 证明: (1) \sim (2) 成立,
$$\text{设 } B_{m \times n}, \text{划分 } A = (a_1, \dots, a_n), B = (b_1, \dots, b_n), \text{ 则有}$$

$$\|A + B\|_{m2}^2 = \|a_1 + b_1\|_2^2 + \dots + \|a_n + b_n\|_2^2$$

例3、设
$$A = (a_{ij})_{m \times n} \in C^{m \times n}, x = (\xi_1, \dots, \xi_n)^T$$
 , 证明
$$\|A\|_{m2} = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}} \quad \text{ 是矩阵函数}, \quad \text{且与} \|x\|_2 \text{ 相容}$$
 证明: (1) \sim (2) 成立,
$$\text{设 } B_{m \times n}, \text{ 划分 } A = (a_1, \dots, a_n), B = (b_1, \dots, b_n), \quad \text{则有}$$

$$\|A + B\|_{m2}^2 = \|a_1 + b_1\|_2^2 + \dots + \|a_n + b_n\|_2^2$$

$$\leq \left(\|a_1\|_2 + \|b_1\|_2\right)^2 + \dots + \left(\|a_n\|_2 + \|b_n\|_2\right)^2$$

$$= \|A\|_{m2}^2 + 2\left(\|a_1\|_2 \|b_1\|_2 + \dots + \|a_n\|_2 \|b_n\|_2\right) + \|B\|_{m2}^2$$

例3、设
$$A = (a_{ij})_{m \times n} \in C^{m \times n}, x = (\xi_1, \dots, \xi_n)^T$$
 , 证明
$$\|A\|_{m2} = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}} \quad \text{ 是矩阵函数}, \quad \text{且与} \|x\|_2 \text{ 相容}$$
 证明: (1) \sim (2) 成立,
$$\text{设 } B_{m \times n}, \text{ 划分 } A = (a_1, \dots, a_n), B = (b_1, \dots, b_n), \quad \text{则有}$$

$$\|A + B\|_{m2}^2 = \|a_1 + b_1\|_2^2 + \dots + \|a_n + b_n\|_2^2$$

$$\leq (\|a_1\|_2 + \|b_1\|_2)^2 + \dots + (\|a_n\|_2 + \|b_n\|_2)^2$$

$$= \|A\|_{m2}^2 + 2(\|a_1\|_2 \|b_1\|_2 + \dots + \|a_n\|_2 \|b_n\|_2) + \|B\|_{m2}^2$$

$$\leq \|A\|_{m2}^2 + 2(\sum \|a_i\|_2^2)^{\frac{1}{2}} (\sum \|b_i\|_2^2)^{\frac{1}{2}} + \|B\|_{m2}^2 = (\|A\|_{m2} + \|B\|_{m2})^2$$

定理(柯西-施瓦茨不等式): 若 $a_1,a_2,...,a_n$ 和 $b_1,b_2,...,b_n$ 是任意实数,则有 $\left(\sum_{k=1}^n a_k \cdot b_k\right)^2 \leq \left(\sum_{k=1}^n a_k^2\right) \left(\sum_{k=1}^n b_k^2\right)$

1 /

例3、设
$$A = (a_{ij})_{m \times n} \in C^{m \times n}, x = (\xi_1, \dots, \xi_n)^T$$
 , 证明
$$\|A\|_{m2} = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}} \quad \text{ 是矩阵函数, } \text{ 且与} \|x\|_2 \text{ 相容}$$
 设 $B_{n \times l}$, $AB = \left(\sum_{k=1}^n a_{ik} b_{kj}\right)_{m \times l}$, 则有

例3、设
$$A = (a_{ij})_{m \times n} \in C^{m \times n}, x = (\xi_1, \dots, \xi_n)^T$$
 , 证明
$$\|A\|_{m2} = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}} \quad \text{是矩阵函数, } \text{且与} \|x\|_2 \text{相容}$$
 设 $B_{n \times l}$, $AB = \left(\sum_{k=1}^n a_{ik} b_{kj}\right)_{m \times l}$, 则有
$$\|AB\|_{m2}^2 = \sum_{i,j=1}^n \left|\sum_{k=1}^n a_{ik} b_{kj}\right|^2 \leq \sum_{i,j=1}^n \left(\sum_{k=1}^n |a_{ik}| b_{kj}\right)^2$$

例3、设
$$A = (a_{ij})_{m \times n} \in C^{m \times n}, x = (\xi_1, \dots, \xi_n)^T$$
 ,证明
$$\|A\|_{m2} = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}} \quad \text{是矩阵函数,且与} \|x\|_2 \text{相容}$$
 设 $B_{n \times l}$, $AB = \left(\sum_{k=1}^n a_{ik} b_{kj}\right)_{m \times l}$,则有
$$\|AB\|_{m2}^2 = \sum_{i,j=1}^n \left|\sum_{k=1}^n a_{ik} b_{kj}\right|^2 \leq \sum_{i,j=1}^n \left(\sum_{k=1}^n |a_{ik}| |b_{kj}|\right)^2$$

$$\leq \sum_{i,j=1}^n \left[\left(\sum_{k=1}^n |a_{ik}|^2\right) \cdot \left(\sum_{k=1}^n |b_{kj}|^2\right)\right] = \sum_{i=1}^n \left[\left(\sum_{k=1}^n |a_{ik}|^2\right) \cdot \sum_{i=1}^n \left(\sum_{k=1}^n |b_{kj}|^2\right)\right]$$

例3、设
$$A = (a_{ij})_{m \times n} \in C^{m \times n}, x = (\xi_1, \dots, \xi_n)^T$$
,证明
$$\|A\|_{m2} = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}} \quad \text{是矩阵函数, } \text{且与} \|x\|_2 \text{相容}$$
 设 $B_{n \times l}$, $AB = \left(\sum_{k=1}^n a_{ik} b_{kj}\right)_{m \times l}$,则有
$$\|AB\|_{m2}^2 = \sum_{i,j=1}^n \left|\sum_{k=1}^n a_{ik} b_{kj}\right|^2 \leq \sum_{i,j=1}^n \left(\sum_{k=1}^n |a_{ik}| |b_{kj}|\right)^2$$

$$\leq \sum_{i,j=1}^n \left[\left(\sum_{k=1}^n |a_{ik}|^2\right) \cdot \left(\sum_{k=1}^n |b_{kj}|^2\right)\right] = \sum_{i=1}^n \left[\left(\sum_{k=1}^n |a_{ik}|^2\right) \cdot \sum_{j=1}^n \left(\sum_{k=1}^n |b_{kj}|^2\right)\right]$$

$$= \left(\sum_{i,k=1}^n |a_{ik}|^2\right) \cdot \left(\sum_{k,j=1}^n |b_{kj}|^2\right) = \|A\|_{m2}^2 \cdot \|B\|_{m2}^2$$

例3、设
$$A = (a_{ij})_{m \times n} \in C^{m \times n}, x = (\xi_1, \dots, \xi_n)^T$$
,证明
$$\|A\|_{m2} = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}} \quad \text{是矩阵函数,且与} \|x\|_2 \text{相容}$$

$$||AB|| \le ||A|| ||B||$$

取
$$B = x \in C^{n \times 1}$$
 ,则有
$$\|Ax\|_{2} = \|AB\|_{m2} \le \|A\|_{m2} \cdot \|B\|_{m2} = \|A\|_{m2} \cdot \|x\|_{2}$$

注:

1.
$$\|A\|_{m2} = \left[\operatorname{tr}\left(A^{H}A\right)\right]^{\frac{1}{2}} = \left[\operatorname{tr}\left(AA^{H}\right)\right]^{\frac{1}{2}}$$
 称为矩阵

的Frobenius范数,记做 ||A||_F

注:

- 1. $\|A\|_{m2} = \left[\operatorname{tr}\left(A^{H}A\right)\right]^{\frac{1}{2}} = \left[\operatorname{tr}\left(AA^{H}\right)\right]^{\frac{1}{2}}$ 称为矩阵的Frobenius范数,记做 $\|A\|_{F}$
- 2. $C^{m \times n}$ 中的矩阵范数等价: 对于任意的两种矩阵范数 $\|A\|_{\alpha}$ 和 $\|A\|_{\beta}$,存在 $0 \le c_1 \le c_2$,使得 $c_1 \|A\|_{\beta} \le \|A\|_{\alpha} \le c_2 \|A\|_{\beta}$ $\forall A_{m \times n}$

注:

- 1. $\|A\|_{m2} = \left[\operatorname{tr}\left(A^{H}A\right)\right]^{\frac{1}{2}} = \left[\operatorname{tr}\left(AA^{H}\right)\right]^{\frac{1}{2}}$ 称为矩阵的Frobenius范数,记做 $\|A\|_{F}$
- 2. $C^{m \times n}$ 中的矩阵范数等价: 对于任意的两种矩阵范数 $\|A\|_{\alpha}$ 和 $\|A\|_{\beta}$,存在 $0 \le c_1 \le c_2$,使得 $c_1 \|A\|_{\beta} \le \|A\|_{\alpha} \le c_2 \|A\|_{\beta}$ $\forall A_{m \times n}$
- 3. $C^{m\times n} + \lim_{k\to\infty} A^{(k)} = A \Leftrightarrow \forall ||A||, \lim_{k\to\infty} ||A^{(k)} A|| = 0$

一般的矩阵范数: $: I = I \cdot I$

$$||I|| \le ||I|| \cdot ||I|| \qquad \therefore ||I|| \ge 1$$

例如:
$$\|I\|_{m_1}=n$$
, $\|I\|_{\mathbf{F}}=\sqrt{n}$

第2章 范数理论及其应用

1、矩阵范数的概念

2、由向量范数导出矩阵范数

从属范数

定理: 对 C''与 C''上的同类向量范数 $\|x\|_{V}$,定义 $\|A\| = \max_{\|x\|_{V} = 1} \|Ax\|_{V}$ ($\forall A_{m \times n}, x \in C''$) 则 $\|A\|$ 是 $C^{m \times n}$ 中矩阵A 的范数,且 $\|A\|$ 与 $\|x\|_{V}$ 相容 $\|A\|$ 称为由 $\|x\|_{V}$ 导出的矩阵范数(或称为从属范数)

从属范数

定理: 设
$$A = (a_{ij})_{m \times n}$$
,则

(1) 列和范数:
$$||A||_1 = \max_j \left\{ \sum_{i=1}^m |a_{ij}| \right\}$$

(2) 谱范数:
$$\|A\|_{2} = \sqrt{\lambda_{1}}, \lambda_{1} = \max\{\lambda(A^{H}A)\}$$

(3) 行和范数:
$$||A||_{\infty} = \max_{i} \left\{ \sum_{j=1}^{n} |a_{ij}| \right\}$$

1. 求矩阵
$$\mathbf{A} = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}$$
和 $\mathbf{B} = \begin{bmatrix} -\mathbf{j} & 2 & 3 \\ 1 & 0 & \mathbf{j} \end{bmatrix}$ 的 $\| \cdot \|_1$, $\| \cdot \|_{\infty}$ 及 $\| \cdot \|_2$.

1. 求矩阵
$$\mathbf{A} = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}$$
和 $\mathbf{B} = \begin{bmatrix} -\mathbf{j} & 2 & 3 \\ 1 & 0 & \mathbf{j} \end{bmatrix}$ 的 $\| \cdot \|_1$, $\| \cdot \|_{\infty}$ 及 $\| \cdot \|_2$.

解
$$\|A\|_1 = \max\{|-1|,2,1\} = 2$$

 $\|A\|_{\infty} = |-1|+2+1=4$
 $A^{\text{H}}A = [6]$ 的非零特征值相同,故 $\|A\|_2 = \sqrt{6}$.

$$b^{H}bx = \lambda x$$

$$\Rightarrow x^{H}b^{H}bx = \lambda x^{H}x$$

$$\Rightarrow (bx)^{H}bx = \lambda x^{H}x$$

$$\Rightarrow \lambda = \frac{|bx|^{2}}{|x|^{2}} \ge 0$$

$$A^{H} Ax = \lambda x$$

$$A(A^{H} Ax) = \lambda Ax$$

$$AA^{H} (Ax) = \lambda (Ax)$$

作业 (第五版)

- 1、定义: 2.3、2.4
- 2、定理: 2.4、2.5
- 3、例题: 2.8、2.9
- 4、习题2.2: 1

作业 (第三版)

- 1、定义: 2.3、2.4
- 2、定理: 2.4、2.5
- 3、例题: 2.8、2.9
- 4、习题2.2: 1

下课, 谢谢大家!