#1.) Indicate whether
$$A \in O(B)$$
, $A \in \Omega(B)$, or $A \in \Theta(B)$

A B O
$$\Re$$
 Θ

1) $\sqrt{\frac{i}{09}n}$ 1 Yes Yes Yes

2) $\sqrt{\log n}$ loglogn NO Yes NO

3) $T(n)$ $\frac{1}{5}n$ Yes Yes Yes

$$g(n) \in \mathcal{O}(f(n)) \longrightarrow g(n) \leq c \cdot f(n)$$

$$g(n) \in \mathcal{N}(f(n)) \longrightarrow g(n) \geq c \cdot f(n)$$

$$g(n) \in \mathcal{O}(f(n)) \longrightarrow d \cdot f(n) \leq g(n) \leq c \cdot f(n)$$

$$\frac{1}{1} N_{102} = O(1) \Rightarrow N_{102} = 1 \cdot C$$

$$(\log n)^{1/2} \leq c \cdot \log(\log n)$$

3)
$$T(n) \in O(\frac{1}{5}n)$$
 $\Rightarrow 5 + 2 \leq (\frac{1}{5}n)$

$$T(n) = \begin{cases} 5T(n/5) + 2 & n > 1 \\ 1 & n = 1 \end{cases}$$

$$T(n) = Q \cdot T(%) + (\cdot n^{k})$$

$$= \Theta(v)$$

Use definitions to Prove:
$$N + 3n^2 \in O(n^2)$$

Upper Bound
$$N+3n^2 \leq C \cdot n^2 \rightarrow \frac{N+3n^2}{C} \leq n^2$$
Let $N=1$

$$\frac{(1)+3(1)^2}{1000}$$
 ≤ 1 $\sqrt{1000}$ ≤ 1

|
$$| (1) + 3(1)^2 \ge (1) \cdot (1)^2$$
 | $| (1) + 3(1)^2 \ge (1) \cdot (1)^2$ | $| (1) + 3(1)^2 \ge (1) \cdot (1)^2$ |

$$n+3n^2 \in \Theta(n^2)$$

Prove:
$$\sum_{i=1}^{n} i = \frac{n(n+i)}{2}$$

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + 4 \dots n = \frac{n(n+1)}{2}$$

I. H: Assume that
$$\sum_{i=1}^{k} i = \frac{K(K+1)}{Z}$$

$$I.S: W.T.S: \sum_{i=1}^{k+1} i = \frac{(k+1)(k+2)}{2}$$

$$\sum_{i=1}^{K+1} i = \sum_{j=1}^{K} i + K+1$$

$$= (k+1) \left(\frac{\kappa}{2} + \frac{2}{2}\right) \left[-\frac{(\kappa+1)(\kappa+2)}{2}\right]$$

What are six steps one must do When designing an algorithm?

- 1. Idea/intuition
- 2. Pseudocode
- 3, code
- 4. Experimental run time
- 5. Prove run time
- 6. Prove correctness