Задача 9-4

С твердым бинарным веществом X коричневого цвета провели ряд опытов, заключающихся в нагревании его в токе различных газов. Опыты сведены в таблицу с изменением массы полученного твёрдого остатка и наблюдениями.

№ опыта	условия	изменение массы, %	цвет продукта
	Ar, 1000°C	0	черный
	Cl ₂ , 800°C	-31.8	белый*
	H ₂ O, 500°C	+36.4	белый
	NH ₃ , 800°C	+6.1	серый**
	O ₂ , 800°C	?	белый
	H ₂ , 400°C	0	без изменений
	SO ₃ , 700°C	+36.4	белый

^{*} в холодной части прибора сконденсировалась бесцветная жидкость Y, дымящая на воздухе

При взаимодействии \mathbf{Y} с SO_3 при 300°C образуется бесцветная жидкость p- μ ия $\mathbf{8}$), наименее летучий компонент \mathbf{Z} которой содержит 5.61% кислорода по массе. Вещество \mathbf{X} взаимодействует с раствором гидроксида натрия p- μ ия $\mathbf{9}$) и раствором азотной кислоты (p- μ ия $\mathbf{10}$).

Вопросы:

- 1. Предложите, как изменится масса навески в 5 опыте. Ответ обоснуйте.
- 2. Определите неизвестные вещества (X, Y, Z), ответ подтвердите расчетом.
- 3. Запишите уравнения реакций, протекающих в описанных опытах. Образование продуктов обоснуйте, подтвердите расчётом.
- 4. Запишите уравнения реакций 8 10.

^{**} в холодной части прибора сконденсировалась бесцветная жидкость

Решение задачи 9-4

- 1. Анализируя таблицу, можно заметить, что в результате опытов 2, 3, 5 и 7 получился белый продукт. Можно предположить, что в 7 опыте происходит присоединение кислорода, т.к. при 700°C SO₃ разлагается. Таким образом, масса навески в 5 опыте увеличится на 36.4%
- **2.** Летучее вещество **Y**, образующееся при обработке **X** хлором вероятно ковалентный галогенид, который при реакции с SO_3 превратится в вещество, состоящее из кислорода, хлора и неизвестного элемента **Э**. Запишем формулу вещества как \mathbf{F}_x^n OCl_y где $\mathbf{n} > 2$. Тогда можно составить два уравнения, первое исходя из валентности, а второе из массовой доли кислорода:

$$\begin{cases}
\mathbf{n} \cdot \mathbf{x} = 2 + \mathbf{y} \\
M_{3} \cdot \mathbf{x} + 35.5 \cdot \mathbf{y} = 269
\end{cases} \Rightarrow \begin{cases}
\mathbf{y} = \mathbf{n} \cdot \mathbf{x} - 2 \\
M_{3} \cdot \mathbf{x} + 35.5 \cdot \mathbf{y} = 269
\end{cases}$$

$$M_{3} = (340 - 35.5 \cdot \mathbf{n} \cdot \mathbf{x}) / \mathbf{x} = \frac{340}{\mathbf{x}} - 35.5 \cdot \mathbf{n}$$

Перебором x и n можно найти состав соединения как \mathfrak{I}^n OCl_y и элемент \mathfrak{I} :

$\setminus x$	1	2	3
$n \setminus$			
2	269.0	99.0	42.3
3	233.5	63.5	6.8
4	198.0	28.0 (Si)	-28.7
5	162.5	− 7.5	-64.2
6	127.0 (Te)	-43.0	- 99.7

При взаимодействии с парами воды и SO_3 масса меняется на одну и туже величину, что может быть связано с присоединением кислорода. При взаимодействии с кислородом возможно изменение степени окисления на Δn или больше, что соответствует изменению молярной массы на $\sim \Delta n \cdot 8^{\ r}/_{\text{моль}}$. Тогда $\frac{\Delta n*8}{M_{\textbf{X}}}=0,364$, следовательно $\Delta n \cdot 22=M_{\textbf{X}}$. Это позволяет проверить варианты, полученные в предыдущем расчёте. При $\Delta n=2$ X=SiO, $\textbf{Y}=\text{SiCl}_4$, $\textbf{Z}-\text{Si}_2\text{OCl}_6$

3. Степень окисления +2 для кремния нестабильна и при нагревании монооксид диспропорционирует при нагревании:

Oпыт 1:
$$2SiO = SiO_2 + Si$$

При взаимодействии хлора с монооксидом кремния должно происходить окисление. Вычислим потерю массы в г/моль: $44.0,318=14=\frac{1}{2}$ M(Si), что соответствует образованию SiO₂ и удалению кремния в виде SiCl₄.

Опыт 2:
$$2SiO + 2Cl_2 = SiO_2 + SiCl_4$$

При взаимодействии с парами воды, кислородом и SO₃ образуется диоксид кремния, а второй реагент при этом восстанавливается:

Onlim 3:
$$SiO + H_2O = SiO_2 + H_2$$

Опыт 5:
$$2SiO + O_2 = 2SiO_2$$

Onыm 7:
$$SiO + SO_3 = SiO_2 + SO_2$$

При взаимодействии с аммиаком происходит небольшое изменение молярной массы $M = 44 \cdot 1,061 \cdot \textbf{n} = 46,684 \cdot \textbf{n}$, где n — число атомов кремния на формульную единицу. Для $n = 3 M = 140 \, ^{\text{г/}}_{\text{моль}}$, что соответствует $\text{Si}_3 \text{N}_4$:

Onlim 4:
$$3SiO + 4NH_3 = Si_3N_4 + 3H_2 + 3H_2O$$

При нагревании SiO в атмосфере водорода не происходит восстановление (это привело бы к потере массы), диспропорционирование также не наблюдается, т.к. это должно было бы привести к изменению цвета. Таким образом в *Опыте 6* никаких реакций не протекает.

4. Уравнения реакций:

8)
$$2SiCl_4 + SO_3 = Si_2OCl_6 + SO_2Cl_2$$

9)
$$SiO + 2NaOH = Na_2SiO_3 + H_2$$

10)
$$3\text{SiO} + 2\text{HNO}_3 + (3x - 1)\text{H}_2\text{O} = 3\text{SiO}_2 \cdot x\text{H}_2\text{O} + 2\text{NO}$$

Система оценивания:

1	Обоснованный ответ об изменении массы навески в 5 опыте	2 балла	
2	Вещества Х, У, Z по 2 балла	6 баллов	
3	Реакции в опытах 1-5 и 7 по 1 баллу	6 баллов	
4	Реакции 8 – 10 по 2 балла	6 баллов	
	ИТОГО: 20 баллов		