

Étudiants ingénieurs en aérospatial

Mémoire de 3^e année

Optimisation des méthodes itératives pour la résolution de systèmes linéaires

Auteurs:

M. AUDET Yoann

M. CHANDON Clément

M. DE CLAVERIE Chris

M. HUYNH Julien

Encadrant:

Pr. Bletzacker Laurent

Version 0.0 du 27 février 2019

Remerciements

Table des matières

T	Intr	roduction
2	Pré	sentation des méthodes itératives classiques
	2.1	Présentation générale des méthodes
	2.2	Méthodes classiques
		2.2.1 Méthode de Jacobi
		2.2.2 Méthode de Gauss-Seidel
	2.3	Une nouvelle méthode
3	Opt	imisation du choix de la matrice d'itération
	3.1	Présentation méthode
	3.2	Implémentation numérique
4	Opt	imisation et Comparaison des méthodes
	4.1	Optimisation des méthodes
		4.1.1 Optimisation mathématique
		4.1.2 Optimisation numérique
	4.2	Comparaison des méthodes
5	Cor	aclusion & ouverture

Introduction

Présentation des méthodes itératives classiques

- 2.1 Présentation générale des méthodes
- 2.2 Méthodes classiques
- 2.2.1 Méthode de Jacobi
- 2.2.2 Méthode de Gauss-Seidel
- 2.3 Une nouvelle méthode

Cependant, il est aussi possible pour nous de trouver notre propre méthode de résolution. Pour cela, il nous faut juste réécrire le problème sous une autre forme :

$$Ax = b (2.1)$$

Optimisation du choix de la matrice d'itération

Nous avons vu dans la partie précédente qu'il existe différente méthode pour permettre de résoudre un système linéaire grâce à des méthodes itératives. Ainsi, toujours dans cette idée d'optimisation que nous avons exposé, nous nous sommes posé la question suivante : « Quelle est la matrice d'itération la plus optimisé pour résoudre un problème ».

- 3.1 Présentation de la méthode
- 3.2 Implémentation numérique

Optimisation et Comparaison des méthodes

- 4.1 Optimisation des méthodes
- 4.1.1 Optimisation mathématique
- 4.1.2 Optimisation numérique
- 4.2 Comparaison des méthodes

Conclusion & ouverture

Liste des sigles et acronymes

Table des figures

Liste des tableaux