

Майнор «Прикладной статистический анализ»

Временные ряды и их практическое применение (Time Series and Their Application)

Родионова Лилия Анатольевна

к.э.н., доцент департамента статистики и анализа данных НИУ ВШЭ LRodionova@hse.ru

Тема 4.4

Адаптивные сезонные модели временных рядов

Родионова Л.А. 2019

Адаптивные модели временных рядов

- Основа моделей метод экспоненциально взвешенного скользящего среднего
- -Адаптация (лат. adapto приспособляю)
- Характерная черта «подстройка» под эволюцию процесса.
- Достоинство методов: простота вычислений
- используют для краткосрочного прогнозирования

Brown R.G. Smoothing forecasting and prediction of discrete time series. - N.Y., 1963.

Brown R.G., Meyer R.F. The fundamental theorum of exponential smoothing. Oper. Res. - 1961. - Vol. 9. - N_2 5.

Метод экспоненциально взвешенного скользящего среднего

(Exponential moving average – EMA)

$$Q(f) = \sum_{k=0}^{t-1} \lambda^k (y_{t-k} - f)^2 \rightarrow \min_f$$

 λ – параметр сглаживания $0 < \lambda < 1$.

Веса λ^k уменьшаются экспоненциально по мере удаления наблюдений в прошлое .

$$\hat{f}(t) = \frac{1 - \lambda}{1 - \lambda^t} \sum_{k=0}^{t-1} \lambda^k y_{t-k}$$
 (4.4.1)

• Влияние ЕМА на остатки $\tilde{\mathcal{E}}_t = \frac{1-\lambda}{1-\lambda^t} \sum_{k=0}^{t-1} \lambda^k \mathcal{E}_{t-k}, \mathcal{E}_t \sim \text{WN}(0, \sigma^2)$

$$E(\varepsilon_{t})=0,$$
 $E\widetilde{\varepsilon}_{t}=0,$

$$V(\mathcal{E}_t) = \sigma^2 \qquad V\widetilde{\mathcal{E}}_t = \sigma^2 \frac{(1-\lambda)(1+\lambda^t)}{(1+\lambda)(1-\lambda^t)}$$

Метод экспоненциально взвешенного скользящего среднего

Случай «бесконечно удаленного» прошлого

$$\hat{f}(t) = \frac{1 - \lambda}{1 - \lambda^t} \sum_{k=0}^{t-1} \lambda^k y_{t-k} \to \hat{f}(t) = (1 - \lambda) \sum_{k=0}^{\infty} \lambda^k y_{t-k}$$
 (4.4.2)

- Влияние ЕМА на остатки $V\widetilde{\mathcal{E}}_t = \sigma^2 \frac{(1-\lambda)}{(1+\lambda)}$
- Рекуррентное соотношение: $\hat{f}(t) = \lambda \hat{f}(t-1) + (1-\lambda)y_t$
- Выбор параметра сглаживания
- Выбор начального значения
- •Пример

t	1	2	3	4
yt	2	3	4	5

Восстановление пропущенных наблюдений в середине выборки

use http://www.stata-press.com/data/r13/sales1, clear tssmooth exponential sm1=sales, parms(.7) forecast(3) generate sales2=sales if t!=28 tssmooth exponential sm3=sales2, parms(.7) forecast(3)

exponential coefficient = 0.7000 sum-of-squared residuals = 6842.4 root mean squared error = 11.817 . list t sales2 sm3 if t>25 & t<31

	t	sales2	sm3
26.	26	1011.5	1007.5
27.	27	1028.3	1010.3
28.	28		1022.9
29.	29	1028.4	1022.9
30.	30	1054.8	1026.75

$$S_{29} = \alpha S_{28} + (1 - \alpha)S_{28} = S_{28}$$

Модель Брауна

$$y_t = a_0 + \mathcal{E}_t$$

$$E\varepsilon_t = 0, V\varepsilon_t = \sigma^2$$

Прогноз:

$$\hat{\mathbf{y}}(t,\tau) = \hat{a}_0 = \tilde{\mathbf{y}}_t \quad (4.4.4)$$

$$Q = \sum_{j=0}^{t-1} \lambda^{j} (y_{t-j} - a_0)^2 \to \min$$

$$\hat{a}_0 = \widetilde{y}_t = \frac{1 - \lambda}{1 - \lambda^t} \sum_{j=0}^{t-1} \lambda^j y_{t-j}$$

$$\hat{a}_0 = \tilde{y}_t = (1 - \lambda) \sum_{j=0}^{\infty} \lambda^j y_{t-j}$$

Построение прогноза: При появлении следующего (t+1)-го наблюдения у(t+1) перерасчет прогнозирующей функции

$$\hat{\mathbf{y}}(t+1;1) = \widetilde{\mathbf{y}}_{t+1}$$

$$\widetilde{y}_{t+1} = \lambda \widetilde{y}_t + (1 - \lambda) y_{t+1}$$

Модель Брауна: случай линейного тренда

Прогнозная модель:

$$\hat{y}_{t+\tau} = a_t + b_t \tau$$

• Параметры модели определяются
$$Q = \sum_{j=0}^{\infty} \lambda^j (y_{t-j} - a_j - b_j j)^2 \to \min_{a,b}$$

$$\hat{a}_t = \tilde{y}_t = (1 - \lambda) \sum_{j=0}^{\infty} \lambda^j y_{t-j}$$

$$\hat{b}_{t} = (1 - \lambda)\tilde{y}_{t} + (1 - \lambda)^{2} \sum_{j=0}^{\infty} (j+1)\lambda^{j} y_{t-j}$$

• **Прогноз:**
$$\hat{y}(t; \tau = 1) = \hat{a}_t + \hat{b}_t$$

- Недостатки модели:
 - неопределенность выбора λ
 - •выбор аппроксимирующего полинома
 - •однопараметричность подхода (λ)

Адаптивные полиномиальные модели

Развитие аппарата адаптивного прогнозирования экономических процессов:

1 направление - усложнение структуры адаптивных моделей,

2 направление - совершенствование адаптивного механизма моделей.

Метод Хольта

1. Двухпараметрическая модель Ч. Хольта [Holt (1957)] — введение *двух* параметров сглаживания 0<α, β<1. Прогноз на т тактов времени в текущий момент времени t определяется линейным трендом:

$$\hat{\mathbf{y}}(t;\tau) = \hat{\mathbf{y}}_{t+\tau} = \hat{a}_t + \hat{b}_t \tau$$

Определение коэффициентов: $\hat{a}_t = \alpha y_t + (1-\alpha) \left\{ \hat{a}_{t-1} + \hat{b}_{t-1} \right\},$ $\hat{b}_t = \beta \left\{ \hat{a}_t - \hat{a}_{t-1} \right\} + (1-\beta) \hat{b}_{t-1}$

Holt C.C. Forecasting trends and seasonals by exponentially weighted moving averages // O.N.R. Memorandum, Carnegie Inst. of Technology. - 1957. - № 2.

Адаптивные модели – модель Хольта

Вычисленные значения:

	hw3	hw4
193	162.1872	163.1678
194	162.6979	164.506
195	163.4803	165.3345
196	164.2582	164.9381
197	165.0313	164.9674
198	165.3653	163.2788
199		163.3665
200		163.3461
201		163.3256

Прогнозирование

tssmooth hwinters hw4 = var2, forecast(3)

Замечание. В эконометрических пакетах (Stata) представлена модель Хольта с возможностью выбора оптимальных параметров по критерию минимума среднеквадратической ошибки путем перебора на сетке возможных значений.

B Stata: модель Хольта = Holt—Winters nonseasonal smoothing (tssmooth hwinters)

1

Уинтерс [Winters (1960)] развил метод Хольта с учетом сезонных эффектов.

Модель Хольта-Уинтерса — сезонная мультипликативная модель с линейным трендом

Прогноз на τ шагов вперед : $\hat{y}(t,\tau) = \hat{y}_{t+\tau} = \{\hat{a}_t + \tau \cdot \hat{b}_t\} \cdot \hat{s}_{t-L+\tau}$

L-число временных тактов, содержащихся в полном сезонном цикле (в одном году 12 месяцев, L=12)

Мультипликативная модель Хольта-Уинтерса

$$\hat{y}(t,\tau) = \hat{y}_{t+\tau} = \left\{ \hat{a}_t + \tau \cdot \hat{b}_t \right\} \cdot \hat{s}_{t-L+\tau}$$

Расчет коэффициентов:

$$\hat{a}_{t} = \alpha \frac{y_{t}}{\hat{S}(t-L)} + (1-\alpha) \{ \hat{a}_{t-1} + \hat{b}_{t-1} \},$$

$$\hat{b}_{t} = \beta \{\hat{a}_{t} - \hat{a}_{t-1}\} + (1 - \beta)\hat{b}_{t-1};$$

$$\hat{S}_{t} = \gamma \frac{y_{t}}{\hat{a}_{t}} + (1 - \gamma)\hat{S}(t - L);$$

$$0 < \alpha, \beta, \gamma < 1$$
.

Пример

Определение начальных значений:

$$\hat{b}_t(0) = \frac{\overline{y}_m - \overline{y}_1}{(m-1)L};$$

$$\hat{a}_t(0) = \bar{y}_1 - \frac{1}{2}\hat{b}_t(0);$$

$$\hat{S}_{0l} = \overline{S}_l \left(\frac{l}{\sum_{l=1}^L \overline{S}_l} \right), l = \overline{1, L};$$

$$\overline{S}_l = \frac{1}{m} \sum_{k=0}^{m-1} S_{l+kL}$$

t	1	2	3	4	5	6	7	80	9	10	11	12
yt	2	1	3	5	3	0.5	3.5	6	2.5	1	3.2	5.5

Пусть α =0.1, β =0.2, γ =0.3

$$\hat{a}_{t} = \alpha \frac{y_{t}}{\hat{S}(t-L)} + (1-\alpha) \{ \hat{a}_{t-1} + \hat{b}_{t-1} \},$$

$$\hat{b}_{t} = \beta \{ \hat{a}_{t} - \hat{a}_{t-1} \} + (1-\beta) \hat{b}_{t-1};$$

$$\hat{S}_{t} = \gamma \frac{y_{t}}{\hat{a}_{t}} + (1-\gamma) \hat{S}(t-L);$$

$$0 < \alpha, \beta, \gamma < 1.$$

Optimal weights: alpha = 0.1310 beta = 0.1428 gamma = 0.2999 sum-of-squared residuals = 106.1409

tssmooth shwinters shw1=sales

Menu Statistics > Time series > Smoothers/univariate forecasters > Holt-Winters seasonal smoothing

Optimal weights:

alpha = 0.2891 beta = 0.0212 gamma = 0.8579 penalized sum-of-squared residuals = 16514.49 sum-of-squared residuals = 16514.49 root mean squared error = 10.70906

Остатки

. wntestq e6

Portmanteau test for white noise

Portmanteau (Q) statistic = **60.7559** Prob > chi2(**40**) = **0.0187**

Сезонная аддитивная модель с линейным трендом

Аддитивная модель Хольта-Уинтерса (Модель Тейла – Вейджа)

- На практике часто встречаются экспоненциальные тенденции с мультипликативным сезонным эффектом.
- Логарифмирование: мультипликативную сезонность заменяют на аддитивную.
- •Преимущество аддитивной модели: относительная простота вычислений.

$$\hat{y}(t,\tau) = \hat{y}_{t+\tau} = \left\{\hat{a}_t + \tau \cdot \hat{b}_t\right\} + \hat{s}_{t-L+\tau}$$

Расчет коэффициентов:

$$\hat{a}_{t} = \alpha \left(y_{t} - \hat{S}(t - L) \right) + (1 - \alpha) \left\{ \hat{a}_{t-1} + \hat{b}_{t-1} \right\},$$

$$\hat{b}_{t} = \beta \left\{ \hat{a}_{t} - \hat{a}_{t-1} \right\} + (1 - \beta) \hat{b}_{t-1};$$

$$\hat{S}_{t} = \gamma \left(y_{t} - \hat{a}_{t} \right) + (1 - \gamma) \hat{S}(t - L);$$

$$0 < \alpha, \beta, \gamma < 1.$$

Начальные значения:

$$y_t = a_t(0) + b_t(0)t + \beta_{s,1-L}d_1 + \beta_{s,2-L}d_2 + \dots + \beta_{s,0}d_L + \varepsilon_t$$

Родионова Л.А. 2019