WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF ELECTRONICS

FIELD: Elektronika (EKA)

SPECIALIZATION: Advanced Applied Electronics (AAE)

MASTER OF SCIENCE THESIS

Problems of software implementation of SDR radio in programmable logic structures

AUTHOR: Karol Szpila

SUPERVISOR:

Ph.D., D.Sc. Grzegorz Budzyń

Institute of Telecommunications, Teleinformatics and Acoustics (I-28)

GRADE:

Nomenclature

 $\begin{array}{ll} ADC & \text{Analog to Digital Converter} \\ DAC & \text{Digital to Analog Converter} \\ FPGA & \text{Field Programmable Gate Array} \end{array}$

SDR Software Defined Radio

RF Radio Frequency SoC System on Chip

SPI UART

Contents

1	\mathbf{Intr}	roduction	4
	1.1	Purpose and aim	4
	1.2	Thesis outline	4
2	The	eoretical background	6
	2.1	Theoretical operation of RF mixer	6
	2.2	IQ signal model	8
	2.3	IQ imbalance models	11
	2.4	Software Defined Radio	14
3	Har	rdware and tools	15
	3.1	Adalm Pluto and AD tools	15
	3.2	libIIO	18
	3.3	Zynq and Xilinx tools	19
4	Alg	orithms	22
	4.1^{-}	DC offset correction	22
	4.2	Magnitude and Phase Correction	23
5	Har	rdware Implementation	25
	5.1	Data Flow Path	25
	5.2	Moving Average Filter	27
	5.3	Gaussian Filter	27
	5.4	I/Q mismatch compensation	27
6	Per	formance evaluation	28
	6.1	Simulations	28
	6.2	Hardware Implementation	38
	6.3	On Chip Algorithm	39
7	Co	onclusions	47
\mathbf{B}^{i}	iblios	graphy	47

Chapter 1

Introduction

Nowadays modern technologies are developing very rapidly often displacing older solution. This creates need for very flexible systems that can adapt to the changes in the future. Such problem can be approached in two ways: by moving processing part of the system form hardware to software, or by create re-configurable hardware. Both approaches have its own advantages and disadvantages, but current trend on the market is system composed of both: fast processing system and re-configurable hardware. This lead to creation of SoC (System on Chip) which is build on the base of both solution. Such approach allows to utilize advantage of one and the other. In RF system problem on easily adaptive system considers also transceiver part. For that reason direct conversion is widely used in modern RF application. Such approach allows to limit hardware part to the necessary minimum and move all further processing to the baseband processing system.

1.1 Purpose and aim

The purpose of this paper is to study various parameters defining RF signal quality and model of IQ imbalance. Research concept of Software Defined Radio, principles of operation of such devices and capability of Xilinx Zynq SoC in such domain. Evaluation of different correction algorithms implementation. Evaluation of their performance for Matlab and hardware implementation together with compensation built in RF agile transceiver present on the board. Measurements includes various type of signals: single tone, multi tone and broadband. The comparison include simulation in Matlab, implementation hardware (FPGA part of ZYNQ SoC) and native correction implemented in RF transceiver hardware.

1.2 Thesis outline

This thesis is divided into following chapters:

- Chapter 1 contains brief introduction to this master thesis, presented problems and considered solutions.
- Chapter 2 explains theory behind IQ signal including: model of the signal, its parameters, imbalance model, theoretical operation of IQ modulator and demodulator and concept of SDR.

1.2. Thesis outline 5

• Chapter 3 describes concept of SoC, describes hardware on chosen board and available tools.

- Chapter 4 is mathematical introduction to the presented problem of IQ imbalance together with explanation of chosen correction algorithms.
- Chapter 5 presents Matlab implementation of algorithms mentioned in chapter 4.
- Chapter 6 presents same algorithms implemented in the real hardware.
- Chapter 7 evaluates performance of all algorithms in Matlab, implemented in hardware and built in RF agile transceiver present on the board.
- Chapter 8 concludes all performed measurements, results and summarize this master thesis.

Chapter 2

Theoretical background

In this chapter the theoretical operation of basic RF fronted components is explained. Mentioned elements are mixers, quadrature modulators and demodulators. Next widely used in RF communication IQ signal model is described, together with single branch imbalance models. After that Software Defined Radio concept is presented.

2.1 Theoretical operation of RF mixer

The mixer is one of the basics component used in RF communication. It is nonlinear circuit used for signal multiplication. Such process is used virtually in every radio system, cellular base stations, radars and many more devices.

RF mixer is three port devices, which takes as an input two signal and produces signal consisting of the two frequencies on the output. Due to the non linearity of the mixer the new signal on the different frequency is generated.

Figure 2.1: Schematic of RF mixer.

Where:

- F_{i1} and F_{i2} are input signal that are mixed together.
- $F_{i1} + F_{i2}$ is USB (Upper Side Band) output signal,
- $F_{i1} F_{i2}$ is LSB (Lower Side Band) output signal.

In every mixing operation USB and LSB signal are generated. Depending on the relation between RF and LO signal one of the band is desired output and other is undesired image.

When RF < LS mixer works as up-converter USB is desired and LSB is undesired.

Figure 2.2: Schematic of RF mixer.

Figure 2.3: Schematic of RF mixer working as up-converter.

When RF < LS mixer works as down-converter LSB is desired and USB is undesired...

Figure 2.4: Schematic of RF mixer.

Figure 2.5: Schematic of RF mixer working as down-converter.

To remove unwanted band it is necessary to include in the RF mixer design BPFs (Band Pass Filters). This filter attenuates all frequencies outside specified band.

Application for mixers are mostly:

- Frequency shifting The most common application for RF mixer is changing signal frequency with preservation of others parameters such as amplitude and phase. This technology is mostly used in RF transmitter and receivers. Such devices are called up-converters (for mixing signal with carrier) and down-converter (for extracting signal from carrier).
- Phase comparison It is possible to detect phase difference between two signal using mixer. This RF mixer application is used in PLLs (Phase Locked Loops).

2.2 IQ signal model

The term IQ is an abbreviation for in-phase and quadrature. Signal are considered inphase when phase of both is equal and quadrature when it differs by 90°. IQ data model shows changes in phase and magnitude of a sine wave. Modification of these parameters allow to encode information upon a sine wave.

Equation of the sine wave is:

$$A\cos\left(2\pi ft+\phi\right)$$
,

where:

- A is amplitude,
- \bullet f is frequency,
- ϕ is phase shift

According to equation only amplitude, phase and frequency of the sine wave can be modified. Moreover frequency is first derivative of phase. Therefore it can be collectively referred to as the phase angle. According to these assumptions the instantaneous state of a sine wave can be described in complex plain using magnitude and phase as polar coordinates.

Figure 2.6: Representation of sine wave in complex plain

Using trigonometry, the polar coordinates can be converted into I and Q components of the signal using following equations:

- $I = A\cos(2\pi ft)$,
- $Q = Asin(2\pi ft)$,

IQ data model is widely used in RF communication systems. It gives possibility to distinguish type of modulation used on carrier and allows introduce concept of positive and negative frequency. Amplitude and phase angle form seems to be more intuitive, however precisely varying the phase of a high-frequency carrier sine wave in a hardware circuit according to an input message signal is difficult. Therefore such hardware modulators will be expensive and hard to design and build. To avoid direct modulation of RF signal phase signal is decomposed to I and Q components.

According to Ptolemy's identitie for the cosine of sum:

$$cos(x + y) = cos(x)cos(y) - sin(x)sin(y)$$

sine wave carrier can be represented as:

$$A\cos(2\pi ft + \phi) = A\cos(2\pi ft)\cos(\phi) - A\sin(2\pi).ft)\sin(\phi)$$

Using equation 2.2 following formula is obtained:

$$A\cos(2\pi ft + \phi) = I\cos(2\pi ft) - Q\sin(2\pi ft)$$
,

where:

- I is amplitude of in-phase signal,
- Q is amplitude of quadrature signal.

Using this data samples representation modulation of phase of the RF signal is possible just by modulation of I/Q signals amplitudes and then mixing it with carrier and quadrature of carrier using mixers. Schematics below shows structure of IQ modulator and demodulator.

Figure 2.7: $Schematic\ of\ IQ\ modulator$

Figure 2.8: Schematic of IQ demodulator

The flexibility and simplicity of this solution compared to direct phase manipulations is a reason why I/Q modulators and demodulators are so widely used and popular in RF hardware.

2.3 IQ imbalance models

In this section two models of IQ mismatch imbalance are presented. First model is called Single-Branch IQ Imbalance Model (SBIQMB) and IQ imbalance is modeled as amplitude and phase error in only Q branch. Second is called Double-Branch IQ Imbalance Model (DBIQMB) and models IQ imbalance as amplitude and phase error in both branches.

Single-Branch IQ Imbalance Model

This model is characterized by mismatch existing only in Q branch. Amplitude error is described as g which results in 1-g represents total error in amplitude. Phase mismatch is modeled ϕ . This could be written as equation in following form:

$$\begin{bmatrix} I(t) \\ Q(t) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -gsin(\phi) & gcos(\phi) \end{bmatrix} \begin{bmatrix} I_{RF}(t) \\ Q_{RF}(t) \end{bmatrix}$$
 (2.1)

Figure 2.9: Schematic of SBIQIM.

where:

- $I_{RF}(t)$ and $Q_{RF}(t)$ IQ components of received signal.
- I(t) and Q(t) IQ components with introduced mismatch.

Double-Branch IQ Imbalance Model

This model is characterized by mismatch existing in Q both. In the I branch mismatch is described as amplitude error $1 + \epsilon$ and phase error ϕ . Respectively in Q branch amplitude error is $1 - \epsilon$ and phase error is $-\phi$.

$$\begin{bmatrix} I(t) \\ Q(t) \end{bmatrix} = \begin{bmatrix} (1+\epsilon)\cos(\phi) & (1+\epsilon)\sin(\phi) \\ (1-\epsilon)\sin(\phi) & (1-\epsilon)\cos(\phi) \end{bmatrix} \begin{bmatrix} I_{RF}(t) \\ Q_{RF}(t) \end{bmatrix}$$
(2.2)

Figure 2.10: Schematic of DBIQIM.

where:

- $I_{RF}(t)$ and $Q_{RF}(t)$ IQ components of received signal.
- I(t) and Q(t) IQ components with introduced mismatch.

Relation between SBIQIM and DBIQIM

As mentioned before both models describes IQ mismatch in different ways. DBIQIM is equivalent to SBIQIM processed by two additional matrices. Matrix G that represents gain and matrix R which represents rotation. Equations below shows relation between SBIQIM and DBIQIM:

As mentioned earlier:

$$SBIQIM = \begin{bmatrix} 1 & 0 \\ -gsin(\phi) & gcos(\phi) \end{bmatrix}$$

$$DBIQIM = \begin{bmatrix} (1+\epsilon)cos(\phi) & (1+\epsilon)sin(\phi) \\ (1-\epsilon)sin(\phi) & (1-\epsilon)cos(\phi) \end{bmatrix}$$

$$DBIQM = G \cdot SBIQIM \cdot R \tag{2.3}$$

G and R are defined as follows:

$$G = \frac{2}{1+g} \tag{2.4}$$

$$R = \begin{bmatrix} \cos(-\frac{\phi}{2}) & \sin(-\frac{\phi}{2}) \\ -\sin(-\frac{\phi}{2}) & \cos(-\frac{\phi}{2}) \end{bmatrix}$$
 (2.5)

Using equation above transition between models parameters works as follows:

• Calculation of DBIQIM parameters based on SBIQIM.

$$\epsilon = \frac{1-g}{1+g}$$

$$\phi_{DBIQIM} = -\phi_{SBIQIM}/2$$

• Calculation of SBIQIM parameters based on DBIQIM.

$$g = \frac{1 - \epsilon}{1 + \epsilon}$$

$$\phi_{SBIOIM} = -2\phi_{DBIOIM}$$

2.4 Software Defined Radio

SDR (Software Defined Radio) is a radio communication system where components typically implemented in hardware (e.g. mixers, filters, amplifiers, modulators/demodulators), are instead implemented by the means of software.

Below the block diagram of SDR device is presented:

Figure 2.11: Block diagram of SDR device.

- Flexible RF fronted is a first stage of SDR processing system. This part is configured by the means software to match current requirements for best system performance. This is possible by using numerically controlled components. NCO (Numerically Controlled Oscillators) which are used as flexible frequency generators. This component are essential for I/Q modulators/demodulators as flexible carrier generators for mixers. Bandpass filters and equalizers used for signal conditioning.
- ADC / DAC converters. This is where captured signal is converted from analog to digital domain and likewise transmited is converted form digital to analog domain. This is a last stage before before purely digital domain of the system.
- Channelization and Sample rate conversion. Here the data processed by the baseband system are assigned to respective communication channels, and conditioned for specific channel transmission parameters like frequency and sampling rate.
- Baseband Processing System Digital core of the SDR system. This may by either processor, FPGA, ASIC or SoC. Variety of choice in this case allows creation of well-suited system for desired performance and cost range. Mentioned component is responsible with interfacing with external system for data exchange purpose. All logic related to transmission is implemented here in the software including correction algorithms and application layer. Thanks to that system can adapt to changes. This means changing software to improve quality of the processed signal or even complete change of the application layer, by simply providing new software.

Chapter 3

Hardware and tools

This chapter describes chosen hardware, tools and explains reasons behind such decisions.

3.1 Adalm Pluto and AD tools

Adalm Pluto Board

Adalm Pluto is learning module from Analog Devices that can be used to introduce principles of operation and theory behind SDR and RF communication.

Figure 3.1: Image of Adalm Pluto device.

Figure 3.2: Schematic Adalm Pluto hardware

Adalm Pluto is already integrated with with MATLAB, Simulink, GNU Radio, and libIIO which allows to interface with the devices using C, C++, C# or Python programming languages. PlutoSDR is open software repository with all software and tools related to Adalm Pluto including: HDL Project in Xillinx Vivado and Buildroot configuration

for embedded Linux. Main reason for choosing this SDR device was relatively low price 136.80USD in comparative to other available solutions on the market. Adalm Pluto core is Zynq7010 SoC which is combination of ARM based processor capable of running Linux and FPGA part which can communicate with the processor via AXI interface.

AD9363 Agile RF Transceiver

The main part of Adalm Pluto SDR is AD9363. AD9363 is a high performance, highly integrated RF agile transceiver designed for use in 3G and 4G femtocell applications.

Figure 3.3: Block diagram of AD9363 RF transceiver

Ad9363 features:

- Wide bandwidth from 325Mhz to 3.8GHz,
- Tunnable channel bandwidth up to 20MHz,
- Independent AGC (Automatic Gain Control),
- Full duplex communication,
- DC offset and I/Q mismatch tracking.
- Flexible rate, 12-bit ADC and DAC

IIO Osciloscope

The ADI IIO Oscilloscope is application which allows interfacing with different evaluation or custom made board based on AD agile RF Transrecivers. This program allows communication with the device connected with PC using:

- Local or remote network,
- USB 2.0 interface,
- Serial Port.

Application supports full configuration of the device including: configuration receiver frequency and channel bandwidth. Access to DC offset tracking, I/Q correction, internal calibration functionality and all registers. Moreover allows to process revived using filters designed in matlab and four gain control modes:

- manual configuration gain is selected by user,
- slow attack approach,
- fast attack approach,
- hybrid attack approach,

Program allows to plot received data from selected channels in four different modes:

- time domain as I and Q signals,
- frequency domain with configurable FFT and averaging size,
- constellation as relation between I and Q signals,
- cross-correlation for multi-channel boards.

3.2 libIIO

libIIO is library developed by Analog devices for interfacing Linux IIO (Industrial Input Output) devices.

Library is composed of three main parts:

- local backend responsible for interfacing with the Linux kernel using sysfs virtual file system,
- network backend which communicates with the IIOD (IIO Deamon) by network link.

The IIOD is libiio based application that creates libiio context which is using local backend and then connects it to network backend. Described process allows to share local context with the server and makes device accessible via network

Figure 3.4: Block diagram of libIIO working principles.

3.3 Zynq and Xilinx tools

Introduction to SoC

SoC is aberration from System on Chip. Such devices aggregates many types of hardware in single chips including: ADCs, DACs, internal memory, external memory controllers, peripheral interfaces such as SPI, UART, I2C and many others. The main idea is that single silicon chip may be used to implement functionality of entire system. Such approach results in cheaper and faster solution than realizing such functionality on PCB using separate components. In the past such role belonged to ASIC. (Application Specific Integrated Circuits). The major disadvantages of such solution is lack of flexibility and significant development cost and time. This makes ASIC's sustainable only on the high volume market where no future upgrade will be required. These limitations created clear need for more flexible device with faster development time. This need has been long satisfied by a FPGAs. FPGA can be reconfigured as desired which means virtually no risk in deploying solution which may require upgrade based on FPGA. Next step are SoC based solution. SoC is combination of processor and FPGA. This allows to create fast

application dependent on the hardware functionality. Moreover processor can run normal operating system which allows fast development and flexibility of the solution.

Zynq-7000 family SoC

The Zynq is new kind of SoC from Xillinx. It combines both applications processor and FPGA fabric. The Zynq device comprises two sections: PS (Processing System) and PL (Programmable Logic). This sections can be used separately for independent task or together to utilize advantages of both software and hardware. The Zynq devices are meant to use structure of both sections and interface between them. Connection between these parts is provided by AXI (Advanced eXtensible Interface) which is registered under ARM trademark.

Processing System in all Zynq devices has the same architecture, and the base of it is a dual-core ARM Cortex-A9 processor. This is a hard processor which means it is manufactured directly in silicon structure. Zynq allows to use soft processors like PicoBlaze and MicroBlaze which can be implemented in PL sections. Depending on the size and speedgrade of the device ARM processor is accompanied by set of processing resources e.g (MMU, DMA, SRAM, Processing System External Interfaces, cache memory, control registers, etc.) which forms together APU (Application Processing Unit).

Figure 3.5: Block diagram fo Zynq 7000 family SoC

Programmable Logic is a FPGA based on Atrix-7 and Kintex-7 fabric from Xillinx. PL consist of CLBs (Configurable Logic Blocks), slices, IOBs (Input Output Blocks), LUTs (Lookup tables), fliplops and switch matrices. Additionally there are BRAM (Block Random Access Memory) which are used to store large amout of date in small part of the device which allows fast access to its content. Second additional resource is DSP48E1 slice. This is advanced DSP module that allows many complex mathematical operation in a single clock cycle.

Xillinx Vivado Tools

As a part of Zynq-7000 family SoC design flow. Xillinx Vivado 2018.2 and Xilinx Vivado HLS 2018.2 where choosen. This version of the software is tested and compatible with latest release of the plutosdr-fw repository.

Xillinx Vivado is a tool for FPGA design. This program allows full configuration of PL part of the Zynq-7000 family SoC including: synthesis, implementation, routing, timing validation and generation of the bitstream. Bitstream is used to deploy configuration onto FPGA device.

Xilinx Vivado HLS is a program for High Level Synthesis for Zynq-7000 family SoC. This tool allows to write and test software in C language. After proper validation in the software domain, code can be synthesized to HDL and exported to Xillinx Vivado as an IP Core. This allows much faster design than direct HDL development and much easier testing. These were main reason for choosing HLS environment.

Chapter 4

Algorithms

This chapter describes all algorithms used for signal quality improvement. All of considered algorithms are blind. This means that signal analysis is purely statistical with no prior information about signal. Advantages of this approach is that this algorithms can be used for any type of possible signal.

4.1 DC offset correction

This section describes algorithms used for removing DC offset from revived samples.

Moving Average Filter

Moving Average Filter is simple FIR (Finite Impulse Response) filter. This filter is commonly used for white noise removal and signal smoothing. However when filter order is great enough to account for samples from full period of the signal filters the average represents signal DC offset.

The filter equations is presented below:

$$y[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[n-k], \tag{4.1}$$

where:

- N is order of the filter.
- y[n] is filtered sample at n-th step,
- x[n] is n-th sample from receiver.

Corrected values are calculated as follows:

$$I/Q_{corr} = I/Q - I/Q_{mean},$$

where:

- I/Q is recived I/Q sample,
- I/Q_{mean} is DC offset calculated using Moving Average Filter.

Algorithm introduces delay by N samples in the signal. It is important to that the number of samples taken into consideration must extend at least one period of the signal. Otherwise filter will works white noise attenuator.

Normalized Gaussian Filter

Normalized Gaussian Filter is filter whose impulse response has shape of Gaussian function with all values in range from 0 to 1.

$$G(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-x}{2\sigma^2}}$$

where:

- \bullet x is
- σ is standard deviation.

The filter equations is presented below:

$$y[n] = \sum_{k=0}^{N-1} x[n-k]G(x)$$
 (4.2)

• N is windows size,

Corrected values are calculated as follows:

$$I/Q_{corr} = I/Q - I/Q_{gauss},$$

where:

- I/Q is recived I/Q sample,
- I/Q_{gauss} is DC offset calculated using Normalized Gauss Filter.

This filter has better performance in frequency domain than Moving Average Filter.

4.2 Magnitude and Phase Correction

The I/Q imbalance is common problem in RF front-ends that uses analog quadrature down- mixing. The ideal down-converter performs only simple frequency shift. Real down- converters introduces image interference which may be assumed as constant. But amplifiers and filters introduces varying with frequency imbalance.

In ideal case the receiver output is:

$$I(t) = cos(\omega t)$$

$$Q(t) = sin(\omega t)$$
(4.3)

where:

• ω is tone frequency.

24 4. Algorithms

I and Q components are orthogonal with respect to each other.

In real case, assuming Single Branch Model receiver output is:

$$I(t)' = \alpha \cos(\omega t) + \beta_I$$

$$Q(t)' = \sin(\omega t + \phi) + \beta_Q$$
(4.4)

where:

- α is magnitude mismatch,
- ϕ is phase imbalance,
- $\beta_{I/Q}$ is signal DC offset.

Input of phase correction algorithms is signal with DC offset extracted using algorithms from previews section. Hence the signal model is:

$$I(t)'' = \alpha \cos(\omega t)$$

$$Q(t)'' = \sin(\omega t + \phi)$$
(4.5)

According to Ptolemy's identitie for the sine of sum:

$$sin(\omega t + \phi) = sin(\omega t)cos(\phi) + cos(\omega t)sin(\phi)$$

Equation ?? be rewritten in matrix form as:

$$\begin{bmatrix} I(t)'' \\ Q(t)'' \end{bmatrix} = \begin{bmatrix} \alpha & 0 \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} I(t) \\ Q(t) \end{bmatrix}$$
(4.6)

After multiplying both sides of ?? by inversion of parameters matrix following set of exuations is obtained:

$$\begin{bmatrix} I(t) \\ Q(t) \end{bmatrix} = \begin{bmatrix} \alpha^{-1} & 0 \\ \alpha^{-1}tan(\phi) & sec(\phi) \end{bmatrix} \begin{bmatrix} I''(t) \\ Q''(t) \end{bmatrix}$$
(4.7)

This shows that only α and ϕ must be found to perform I/Q mismatch compensation. According to this paper:

$$\langle I''(t)I''(t) \rangle = \frac{1}{2}\alpha^2$$

$$\alpha = \sqrt{2 \langle I''(t)I''(t) \rangle}$$

$$\langle I''(t)Q''(t) \rangle = \frac{1}{2}\alpha^2 sin(\phi)$$

$$sin(\phi) = \frac{2}{\alpha} \langle I''(t)Q''(t) \rangle$$

Assuming that $|\phi| \leq \frac{pi}{4} \cos(\phi)$ can be obtained directly from $\sin(\phi)$ using following formula:

$$cos(\phi) = \sqrt{1 - sin(\phi)}$$

Using following parameters in we can substitute matrix equations 4.6 with:

$$\begin{bmatrix} I(t) \\ Q(t) \end{bmatrix} = \begin{bmatrix} \frac{1}{\alpha} & 0 \\ \frac{-\sin(\phi)}{a\cos(\phi)} & \frac{1}{\cos(\phi)} \end{bmatrix} \begin{bmatrix} I''(t) \\ Q''(t) \end{bmatrix}$$
(4.8)

The I/Q mismatch correction can be now applied using 4.8 formula.

Chapter 5

Hardware Implementation

This chapter explains structure of hardware implemented in Zynq PL section. This includes data flow from PS to AD9361 RF transceiver, including correction algorithms for RF signal quality improvement.

5.1 Data Flow Path

Diagram below shows data path for I/Q samples from Zynq PS system to PL logic.

- AXI_AD9361 IP core provided by Analog devices. This block is responsible for interfacing with AD9363 RF transceiver placed on board.
- FIRDecimator down-sampling block with additional filters to block unwanted images created by change of sampling frequency in receive path.
- FIR Interolator up-sampling block with additional filters to block unwanted images created by change of sampling frequency in transmit path.
- DC Offset Removal implementation of dc offset removal algorithm. Depending on test bench Moving Average or Gaussian Filter.
- I/Q Correction realization of phase and magnitude correction in the revived signal.
- Zynq Processing System CPU part of Zynq SoC. Mentioned block is responsible for communication between PL and PS part using AXI interface. Zynq PS section perform task related to data aquisition and interfacing with PC using USB 2.0 interface.

Figure 5.1: Block diagram of the PS logic structure.

Table 5.3

Latency		Interval		
min	max	min	max	
1	1	2	2	

Table 5.4: Latency estimation of C synthesis of Moving Average Filter.

Table 5.5

BRAM_18K	DSP48E	FF	LUT
2	0	102	418

Table 5.6: Resource utilization for Moving Average Filter.

5.2 Moving Average Filter

Moving Average Filter w

Table 5.1

Clock	Period	Estimated	Uncertanity
$100 \mathrm{MHz}$	$10\mathrm{ns}$	8.358	1.25

Table 5.2: Timing estimation of C synthesis of Moving Average Filter.

5.3 Gaussian Filter

5.4 I/Q mismatch compensation

Chapter 6

Performance evaluation

This chapter presents results of simulation, hardware implementation and built in functionality of AD9363 in IQ imbalance compensation. For all of these approaches three different cases are considered:

- single tone signal consisting of only one frequency,
- multi tone signal consisting of two different frequencies,
- broadband signal with band of specified width.

6.1 Simulations

In this section results of the algorithms implemented in the Matlab are tested in two cases: without additional noise and with noise of normal distribution and amplitude of 0.1. Algorithms were tested in the following conditions:

- Amplitude 1,
- I DC offset 0.1,
- Moving Average Filter Order 256.
- Gaussian filter $\sigma = 5$, window size = 30

DC offset removal

In this section simulations of DC offset correction algorithms are compared for signle tone signal of frequency f = 1kHz with and without additional noise.

6.1. Simulations 29

Scenario 1: Noiseless signal

 $\label{eq:comparison} \mbox{Figure 6.1: } \mbox{$Comparison of DC offset algorithms outputs in time domain.}$

Figure 6.2: Comparison of DC offset algorithms outputs in frequency domain.

 ${\bf Figure~6.3:~} {\it Comparison~of~constellation~diagram~for~tested~algorithms}.$

Scenario 1: Noisy signal

Figure 6.4: Comparison of DC offset algorithms outputs in time domain.

Figure 6.5: Comparison of constellation diagram for tested algorithms.

6.1. Simulations 31

Figure 6.6: Comparison of DC offset algorithms outputs in frequency domain.

Gaussian filters needs almost three times lower number of samples to work correctly in comparison to Moving Average Filter. It means lower delay in processing path. Gaussian filter distort magnitude of the signal, but this problem will be resolved by Magnitude and Phase correction algorithm.

Single Tone Signal

In this case IQ mismatch compensation with two DC offset removal algorithms are compared for single tone signal with frequency f=1kHz with and without additional noise.

Scenario 1: Noiseless signal

Figure 6.7: Comparison of spectrum for IQ mismatch compensation algorithms for signle tone signal.

Figure 6.8: Comparison of constellations for IQ mismatch compensation algorithms for signle tone signal.

6.1. Simulations 33

Scenario 2: Noisy signal

Figure 6.9: Comparison of spectrum for IQ mismatch compensation algorithms for signle tone signal with noise.

Figure 6.10: Comparison of constellations for IQ mismatch compensation algorithms for signle tone signal with noise.

Multi tone

In this case IQ mismatch compensation with two DC offset removal algorithms are compared for multi tone signal with frequencies f1 = 1kHz and f2 = 0.5kHz with and without additional noise.

Scenario 1: Noiseless signal

Figure 6.11: Comparison of spectrum for IQ mismatch compensation algorithms for multi tone signal.

Figure 6.12: Comparison of constellations for IQ mismatch compensation algorithms for multi tone.

6.1. Simulations 35

Scenario 1: Noisy signal

Figure 6.13: Comparison of spectrum for IQ mismatch compensation algorithms for multi tone signal with noise.

 $\label{eq:comparison} \begin{tabular}{ll} Figure~6.14:~Comparison~of~constellations~for~IQ~mismatch~compensation~algorithms~for\\ multi~tone~signal~with~noise. \end{tabular}$

Broadband

In this case IQ mismatch compensation with two DC offset removal algorithms are compared for broadband signal in frequency range from $f_s=0.5kHz$ to $f_e=1kHz$ with and without additional noise.

Scenario 1: Noiseless signal

Figure 6.15: Comparison of spectrum for IQ mismatch compensation algorithms for broadband signal.

Figure 6.16: Comparison of constellations for IQ mismatch compensation algorithms for broadband signal.

6.1. Simulations 37

Scenario 1: Noisy signal

 $\label{eq:comparison} \begin{tabular}{ll} Figure~6.17:~Comparison~of~spectrum~for~IQ~mismatch~compensation~algorithms~for\\ broadband~signal~with~noise. \end{tabular}$

 $\label{eq:comparison} \begin{tabular}{ll} Figure~6.18:~Comparison~of~constellations~for~IQ~mismatch~compensation~algorithms~for\\ broadband~signal~with~noise. \end{tabular}$

6.2 Hardware Implementation

This section contains description of all algorithms implemented in Zynq PL section and its performance evaluation.

DC offset removal

Moving Average Filter

Figure 6.19: Received signal spectrum with DC offset removal implemented in Zynq PL section.

Single Tone Signal Multiton Signal Broadband Signal

Figure 6.20: Received single tone signal spectrum with IQ mismatch compensation with Moving Average Filter.

Figure 6.21: Received broadband signal spectrum with IQ mismatch compensation with Gaussian Filter.

6.3 On Chip Algorithm

This section contains performance evaluation of compensation algorithms built in AD9363.

• Moving Average Filter Order - 256.

Figure 6.22: Received multi tone signal spectrum with IQ mismatch compensation with Moving Average Filter.

Figure 6.23: Received broadband signal spectrum with IQ mismatch compensation with $Gaussian\ Filter.$

• Gaussian filter $\sigma = 5$, window size = 30

All test were performed using IIO Oscilloscope program. Transmit and receive path are configured as follows:

Figure 6.24: Received broadband signal spectrum with IQ mismatch compensation with Moving Average Filter.

Figure 6.25: Received broadband signal spectrum with IQ mismatch compensation with Gaussian Filter.

- sampling rate 30.719998 MSPS,
- bandwidth 18MHz.,
- $\bullet\,$ TX LO frequency 2799.999998 MHz,
- RX LO frequency 2799.999998 MHz.

DC offset removal

In this case DC offset removal algorithm implemented in chip is tested. Test were performed for the single tone signal with the following parameters:

- sampling frequency 40kHz,
- signal frequency 1kHz,
- signal amplitude 1,
- $\bullet\,$ DC offset in I branch 0.1

Figure 6.26: Received signal spectrum without DC offset removal.

Figure 6.27: Received signal spectrum with AD9363 built in DC offset removal. dc off fund - 13.17 dc on - 37.06 img - 68.21 fund -13.71 dbfs dc - 84.01 img - 70.50

Single Tone Signal

In this case built in IQ mismatch compensation and DC offset removal algorithms are tested for single tone signal with frequency f = 1kHz.

 $\label{eq:Figure 6.28: Received single tone signal spectrum\ without\ IQ\ mismatch\ compensation.$

fund - 13.10 dc on - 40.50 img - 44.50

 $\label{eq:Figure 6.29:Received single tone signal spectrum with IQ mismatch compensation.}$

fund - 12.94 dc on - 75.08 img - 92.49

Multiton Signal

In this case built in IQ mismatch compensation and DC offset removal algorithms are tested for multi signal with frequencies f1 = 1kHz and f2 = 0.5kHz.

 $\label{eq:figure 6.30:Received multi tone signal spectrum without IQ mismatch compensation. }$

Figure 6.31: Received multi tone signal spectrum with IQ mismatch compensation.

Broadband Signal

In this case built in IQ mismatch compensation and DC offset removal algorithms are tested for broadband signal in frequency range from $f_s = 0.5kHz$ to $f_e = 1kHz$.

Figure 6.32: Received broadband signal spectrum without IQ mismatch compensation.

 $\label{eq:figure 6.33:} Received\ broadband\ signal\ spectrum\ with\ IQ\ mismatch\ compensation.$

Chapter 7

Conclusions

Bibliography

- [1] Stephen H. Hal, Garrett W. Hall, and James A. McCall. *High-Speed Digital System Design A Handbook of Interconnects Theory and Design Practices*. New York, Chichester, Weinheim, Brisbane, Singapore, Toronto, 2000.
- $[2] \ https://wiki.analog.com/_detail/resources/tools-software/linux-software/libiio_diagram.png?id=resources\%3Atools-software\%3Alinux-software\%3Alibiio$
- [3] S.W. Ellingson Correcting I-Q Imbalance in Direct Conversion Receivers