Distributed Systems

Overview

- n Distributed system is collection of loosely coupled processors interconnected by a communications network
- n Processors variously called nodes, computers, machines, hosts
 - **Site** is location of the processor
 - Generally a **server** has a resource a **client** node at a different site wants to use

Reasons for Distributed Systems

- Reasons for distributed systems
 - Resource sharing
 - Sharing and printing files at remote sites
 - Processing information in a distributed database
 - Using remote specialized hardware devices
 - Computation speedup load sharing or job migration
 - Reliability detect and recover from site failure, function transfer, reintegrate failed site
 - Communication message passing
 - All higher-level functions of a standalone system can be expanded to encompass a distributed system
 - Computers can be downsized, more flexibility, better user interfaces and easier maintenance by moving from large system to multiple smaller systems performing distributed computing

Types of Distributed Operating Systems

- Network Operating Systems
- Distributed Operating Systems

Network-Operating Systems

- Users are aware of multiplicity of machines
- Access to resources of various machines is done explicitly by:
 - Remote logging into the appropriate remote machine (telnet, ssh)
 - Remote Desktop (Microsoft Windows)
 - Transferring data from remote machines to local machines,
 via the File Transfer Protocol (FTP) mechanism
- Users must change paradigms establish a session, give network-based commands
 - More difficult for users

Distributed-Operating Systems

- Users not aware of multiplicity of machines
 - Access to remote resources similar to access to local resources
- Data Migration transfer data by transferring entire file, or transferring only those portions of the file necessary for the immediate task
- Computation Migration transfer the computation, rather than the data, across the system
 - Via remote procedure calls (RPCs)
 - or via messaging system

Distributed-Operating Systems (Cont.)

- Process Migration execute an entire process, or parts of it, at different sites
 - Load balancing distribute processes across network to even the workload
 - Computation speedup subprocesses can run concurrently on different sites
 - Hardware preference process execution may require specialized processor
 - Software preference required software may be available at only a particular site
 - Data access run process remotely, rather than transfer all data locally
- Consider the World Wide Web

Network Structure

- Local-Area Network (LAN) designed to cover small geographical area
 - Multiple topologies like star or ring
 - Speeds from 1Mb per second (Appletalk, bluetooth) to 40 Gbps for fastest Ethernet over twisted pair copper or optical fibre
 - Consists of multiple computers (mainframes through mobile devices), peripherals (printers, storage arrays), routers (specialized network communication processors) providing access to other networks
 - Ethernet most common way to construct LANs
 - Multiaccess bus-based
 - Defined by standard IEEE 802.3
 - Wireless spectrum (WiFi) increasingly used for networking
 - I.e. IEEE 802.11g standard implemented at 54 Mbps

Local-area Network

Network Types (Cont.)

- Wide-Area Network (WAN) links geographically separated sites
 - Point-to-point connections over long-haul lines (often leased from a phone company)
 - Implemented via connection processors known as routers
 - Internet WAN enables hosts world wide to communicate
 - Hosts differ in all dimensions but WAN allows communications
 - Speeds
 - T1 link is 1.544 Megabits per second
 - T3 is 28 x T1s = 45 Mbps
 - OC-12 is 622 Mbps
 - WANs and LANs interconnect, similar to cell phone network:
 - Cell phones use radio waves to cell towers
 - Towers connect to other towers and hubs

Communication Processors in a Wide-Area Network

Communication Structure

The design of a communication network must address four basic issues:

- Naming and name resolution How do two processes locate each other to communicate?
- Routing strategies How are messages sent through the network?
- Connection strategies How do two processes send a sequence of messages?
- Contention The network is a shared resource, so how do we resolve conflicting demands for its use?

Routing Strategies

- Fixed routing A path from A to B is specified in advance; path changes only if a hardware failure disables it
 - Since the shortest path is usually chosen, communication costs are minimized
 - Fixed routing cannot adapt to load changes
 - Ensures that messages will be delivered in the order in which they were sent
- Virtual routing- A path from A to B is fixed for the duration of one session. Different sessions involving messages from A to B may have different paths
 - Partial remedy to adapting to load changes
 - Ensures that messages will be delivered in the order in which they were sent

Routing Strategies (Cont.)

- Dynamic routing The path used to send a message form site A to site B is chosen only when a message is sent
 - Usually a site sends a message to another site on the link least used at that particular time
 - Adapts to load changes by avoiding routing messages on heavily used path
 - Messages may arrive out of order
 - This problem can be remedied by appending a sequence number to each message
 - Most complex to set up
- Tradeoffs mean all methods are used
 - UNIX provides ability to mix fixed and dynamic
 - Hosts may have fixed routes and gateways connecting networks together may have dynamic routes

Routing Strategies (Cont.)

- Router is communications processor responsible for routing messages
- Must have at least 2 network connections
- Maybe special purpose or just function running on host
- Checks its tables to determine where destination host is, where to send messages
 - Static routing table only changed manually
 - Dynamic routing table changed via routing protocol

Routing Strategies (Cont.)

- More recently, routing managed by intelligent software more intelligently than routing protocols
 - OpenFlow is device-independent, allowing developers to introduce network efficiencies by decoupling data-routing decisions from underlying network devices
- Messages vary in length simplified design breaks them into packets (or frames, or datagrams)
- Connectionless message is just one packet
 - Otherwise need a connection to get a multi-packet message from source to destination

Connection Strategies

- Circuit switching A permanent physical link is established for the duration of the communication (i.e., telephone system)
- Message switching A temporary link is established for the duration of one message transfer (i.e., post-office mailing system)
- Packet switching Messages of variable length are divided into fixed-length packets which are sent to the destination
 - Each packet may take a different path through the network
 - The packets must be reassembled into messages as they arrive
- Circuit switching requires setup time, but incurs less overhead for shipping each message, and may waste network bandwidth
 - Message and packet switching require less setup time, but incur more overhead per message

An Ethernet Packet

bytes preamble—start of packet start of frame delimiter 2 or 6 destination address 2 or 6 source address 2 length of data section 0 - 1500data 0 - 46pad (optional) 4 frame checksum

each byte pattern 10101010
pattern 10101011
Ethernet address or broadcast
Ethernet address
length in bytes

message data

message must be > 63 bytes long for error detection

Robustness

- ► Failure detection
- Reconfiguration

Failure Detection

- Detecting hardware failure is difficult
- To detect a link failure, a heartbeat protocol can be used
- Assume Site A and Site B have established a link
 - At fixed intervals, each site will exchange an I-am-up message indicating that they are up and running
- If Site A does not receive a message within the fixed interval, it assumes either (a) the other site is not up or (b) the message was lost
- Site A can now send an Are-you-up? message to Site B
- If Site A does not receive a reply, it can repeat the message or try an alternate route to Site B

Failure Detection (Cont.)

- If Site A does not ultimately receive a reply from Site B, it concludes some type of failure has occurred
- Types of failures:
 - -Site B is down
 - The direct link between A and B is down
 - The alternate link from A to B is down
 - The message has been lost
- However, Site A cannot determine exactly why the failure has occurred

Reconfiguration

- When Site A determines a failure has occurred, it must reconfigure the system:
 - If the link from A to B has failed, this must be broadcast to every site in the system
 - If a site has failed, every other site must also be notified indicating that the services offered by the failed site are no longer available
 - When the link or the site becomes available again, this information must again be broadcast to all other sites