- Consider vinder

$$T^{(K,L)}V := V \otimes ... \otimes V \otimes V^* \otimes ... \otimes V^*$$
tensor

$$K copies \qquad Lupies$$

(By ustation,
$$T^{(0,0)} = \mathbb{R}$$
)

e.g.
$$V = IR^n$$
 and consider det $\in T^{(0,n)}IR^n$ by det $(V_1, \dots, V_n) := \det \begin{pmatrix} 1 & 1 \\ V_1 & V_n \end{pmatrix}$

uxn matrix

Important obsenation on ordering; suitch v; v; det changer sign this property is called "afternating" or "antisymmetric". In when winds, some elements in T(0, R) v* are more special (elaborated next Lecture).

Back to the section-name "tensor algebra". $\mathcal{J}(V) := \bigoplus_{k,l} \mathcal{T}^{(k,l)}V = \mathbb{R} \oplus (V \oplus V^*) \oplus (V^{\otimes 2} \oplus V \otimes V^* \oplus (V^*)^{\otimes 2}) \oplus \cdots$ Then J(V) is an algebra under "" b/c $a \in T^{(k_1, l_1)}(V)$ $b \in T^{(k_1, l_2)}(V) \xrightarrow{\otimes} a \otimes b \in T^{(k_1 + k_2, l_1 + l_1)}(V)$ Recall that tangent bundle TM = U(UaxIRn) via d(4p.42)(-) Similarly, one can construct (E/L)-type tensor bundle $T^{(k,l)}M = \bigcup (U_k \times T^{(k,l)}|R^n)$ where (x, (v,..., vk, w,..., w,s)) ~ (x, (d(9,-9-1)x)v,..., d(9,-9-1)x)v_k $(d(\varphi_{s}, \varphi_{s}^{-1})^{T})^{T}(x) w_{1}, \cdots, (d(\varphi_{s}, \varphi_{s}^{-1})^{T})^{T}(x) w_{k})$ e.g. TM = T(1,0)M, T*M = T(0,1)M

e.g. $T^{(92)}M$ A section S is called a (92)-tensor field.

A Riemannian metric g is a special (0,2) - tensor field satisfying

(1) $g(x)(X,X) \ge 0$ and g(x)(X,X) = 0 iff X = 0 $\forall x \in M$ and $X \in T_xM$

(2) g(x)(X,Y) = g(x)(Y,X) for any $x \in M$, $X,Y \in T_xM$.

locally under a preferred basis, g(x) is a matrix $(g_{ij})_{i \in i,j \in n}^{(x)}$. Symmetric and positive definite (so its signature type is (n, 0)) **

**proportive eigenshee*

Ruk As a comparison, Lorentzian metric is of signature type (n-1, 1).

- Reall that a connection $\nabla^2 \Gamma(TM) \times \Gamma(E) \rightarrow \Gamma(E)$ is an $TM \to TM$ operator that "eats" 2 vector fields and "spits out" 1 vector field. One way wonder if ∇ is a (1, 2) - tensor field.

Prop An IR-multi-linear operator A on $(T^*M)^{\otimes k}$ $(T^*M)^{\otimes l}$ is tensor field if A is $C^{\infty}(M)$ -multi-linear.

e.g. ∇^2 is not a tensor field \sqrt{c} $\nabla^2_x(f) = X(f)Y + f \nabla^2_xY$ However, if ∇'^2 is another connection, then $\nabla^2 - \nabla'^2$ is a tensor field!

eg. Recall the bracket Γ_{r-1} : $\Gamma(TM) \otimes \Gamma(TM) \longrightarrow \Gamma(TM) \times \mathcal{N}_r \cap \mathcal{C}_r \mathcal{N}_1$ It is not a tensor field \mathcal{N}_c $D_{fxy} F \stackrel{def}{=} D_{fx} D_r F - D_r D_{fx} F$ $= f(D_x D_r F) - D_r (f \cdot D_x F)$ $= f(D_x D_r F) - Y(f) D_x F - f D_r D_x F$ $= -Y(f) D_x F + D_f(x, r) F$

- On target bundle $TM = T^{(l,0)}M$, one can associate two structures. One is $\nabla^{\alpha}: \Gamma(TM) \times \Gamma(TM) \longrightarrow \Gamma(TM)$

Theother is Rican g. [(TM) x [(TM) -> IR

The following compatibility condition, $\forall x, Y, z \in \Gamma(TM)$ $\geq g(x,Y) = g(\nabla_z^2 X, Y) + g(X, \nabla_z^2 Y) \quad (4)$

has a clear geometric meaning.

e.g. On $\mathbb{R}^3 = \mathbb{R}^3(x, y, z)$, consider vector fields $(x, y, z) = (1,0,0) \quad Y((x, y, z)) = (0,0), \quad z = ((x, y, z)) = (0,0,1)$

Define a connection V° by

 $\nabla_{x}^{x} X = -z \qquad \nabla_{x}^{z} X = -X \qquad \nabla_{x}^{z} X = -X$ $\nabla_{x}^{x} X = -z \qquad \nabla_{x}^{z} X = -X$

and extend it over (org.?).

Then ∇^a and g (= standard inner product) are compatible. $\nabla^2_z g(x,x) = g(\nabla^2_z x,x) + g(x,\nabla^2_z x)$ \ddot{b} \ddot{b} Observe that $\nabla^2_x Y - \nabla^2_y X = Z - (-Z) = 2Z (\neq 0)$

Observe that $\nabla_{x}^{\alpha}Y - \nabla_{y}^{\alpha}X = Z - (-Z) = 2Z (\neq 0)$ [X, Y] = 0 (by Lie bracket formula) $(S_0 \nabla_{x}^{\alpha}Y - \nabla_{y}^{\alpha}X + [x, Y]).$

Thun (Exe) On (M,g), there exists a unique connection ∇^2 that is (i) compatible with g by (x); (ii) $\nabla_x^2 [-\nabla_y^2 X = [x,y]]$ torsion free

Ruk. In e.g. above, one computes $\nabla_{[x,Y]} = \nabla_x \nabla_y - \nabla_y \nabla_x$. $\forall x, y$. So curvature of this ∇^a is o (f(a+). Curvature \neq torsion!