Table S1. Genes that are dispensable for mouse tooth development. Published information indicate that although these genes are expressed during mouse molar development, their null mutations have no detectable effects on the tooth phenotype. Only genes having read counts greater than zero in our RNAseq data were included.

Mouse Ensembl	Gene	Mouse Ensembl	Gene	Mouse Ensembl	Gene
ID	name	ID	name	ID	name
00000019256	Ahr	0000005320	Fgfr4	00000029838	Ptn
00000022636	Alcam	0000027004	Frzb	0000068748	Ptprz1
00000004655	Aqp1	0000030795	Fus	0000004768	Rab23
00000028435	Aqp3	00000022297	Fzd6	00000042453	Reln
00000024411	Aqp4	00000025407	Gli1	0000030110	Ret
00000044217	Aqp5	00000034220	Gpc1	00000025158	Rfng
00000032204	Aqp9	00000029510	Gpc2	0000070691	Runx3
0000000142	Axin2	0000048001	Hes5	0000039656	Rxrb
00000004892	Bcan	0000064325	Hhip	00000015843	Rxrg
00000074483	Bglap	00000078735	II11ra	00000020592	Sdc1
00000029335	Bmp3	00000026638	Irf6	00000025743	Sdc3
00000032179	Bmp5	0000001504	Irx2	00000017009	Sdc4
00000039004	Bmp6	00000031734	Irx3	0000057969	Sema3b
00000025217	Btrc	00000021604	Irx4	0000034684	Sema3f
00000061048	Cdh3	00000031738	Irx6	00000027996	Sfrp2
00000023067	Cdkn1a	00000022817	Itgb5	00000025020	Slit1
00000044303	Cdkn2a	0000019899	Lama2	0000056427	Slit3
00000022037	Clu	0000019846	Lama4	00000045871	Slitrk6
0000001506	Col1a1	00000029570	Lfng	00000025323	Sp4
00000031502	Col4a1	00000023845	Lnpep	00000056222	Spock1
00000032911	Cspg4	0000036295	Lrrn3	00000029304	Spp1
00000032482	Cspg5	00000027239	Mdk	00000061762	Tac1
00000062432	Cyp26c1	00000018169	Mfng	0000032011	Thy1
00000028519	Dab1	00000027820	Mme	0000001131	Timp1
00000019929	Dcn	0000050578	Mmp13	00000017466	Timp2
00000026131	Dst	00000043613	Mmp3	0000030516	Tjp1
00000028017	Egf	00000017737	Mmp9	00000034917	Tjp3
00000038418	Egr1	0000019982	Myb	00000025215	Tİx1
00000028289	Epha7	0000005125	Ndrg1	00000028364	Tnc
00000006369	Fbln1	00000048616	Nog	0000060548	Tnfrsf19
00000064080	Fbln2	0000038146	Notch3	00000026875	Traf1
00000036585	Fgf1	00000025969	Nrp2	00000022996	Wnt10b
00000037225	Fgf2	00000032855	Pkd1		
00000027208	Fgf7	00000028681	Ptch2		

Table S2. Descriptive statistics of the different gene categories. Developmental-process category is based on Gene ontology 00332502 criteria and Other-category includes all the remaining protein coding genes.

Embryonic	Gene	n	Median	Mean	Range	SD
Day/Platform	category					
Microarray	Dan man a si si si	4.5	7.007	0.004	0.70 0.74	0.7074
E13	Progression	15 28	7.867 7.347	8.094 7.087	6.73–9.71	0.7874 1.2489
	Shape				4.3–9.14	
	Double Tissue	10 27	7.419 6.359	7.360 6.231	4.84–8.87	1.0816 1.7706
		27 98	6.599	6.501	3.7–10.61 3.56–9.78	1.7706
	Dispensable	3983	6.100	6.063	1.45–10.43	1.4400
	Dev. process Other					
E14		14825	5.616	5.601	1.45–12.02	1.5698
E14	Progression Shape	15 28	8.029 7.592	8.087 7.389	7.11–9.81 4.63–9.71	0.7486 1.1242
	Double	10	7.143	7.035	5.12-8.06	0.8071
	Tissue	27	6.343	6.315	3.81–10.24	1.7134
	Dispensable	98	6.798	6.606	3.75–9.29	1.7134
	Dev. process	3983	6.109	6.067	1.47–10.71	1.4597
	Other	14825	5.604	5.577	1.53–11.72	1.4597
RNAseq	Other	14023	5.004	5.577	1.55-11.72	1.5029
E13	Progression	15	12.125	11.665	7.07–14.26	1.6394
210	Shape	28	9.695	9.522	3.82–13.19	2.4430
	Double	10	10.752	10.391	5.17–12.83	2.0987
	Tissue	27	9.463	7.619	-2.25–12.41	4.8379
	Dispensable	100	9.031	8.556	-2.35–13.31	3.5693
	Dev. process	4106	8.658	7.331	-2.36–13.47	4.2027
	Other	16165	7.033	5.571	-2.36–13.87	4.6101
E14	Progression	15	12.150	12.022	9.78–14.32	1.1495
	Shape	28	10.133	10.053	4.92–13.01	1.9134
	Double	10	10.949	10.647	6.67-12.86	1.7265
	Tissue	27	9.691	7.735	-2.25-12.47	4.8651
	Dispensable	100	9.541	8.861	-2.35-13.74	3.5664
	Dev. process	4106	8.708	7.383	-2.36-13.55	4.2174
	Other	16165	7.062	5.591	-2.36-14.06	4.6204
E16	Progression	15	12.147	12.134	10.1-14.27	1.0235
	Shape	28	10.310	10.239	4.17-12.92	1.8993
	Double	10	11.351	10.733	8.1-12.73	1.4792
	Tissue	27	9.917	7.842	-2.25-12.25	4.9495
	Dispensable	100	9.562	9.015	-2.35–14.4	3.5389
	Dev. process	4106	8.772	7.419	-2.36–13.63	4.1998
	Other	16165	7.193	5.634	-2.36-13.9	4.6119

Table S3. Permutation tests for microarray, RNAseq and scRNAseq expression levels of progression, shape, and double categories compared to tissue, dispensable, developmental process, and other-gene categories. These are permutation tests of differences between group

medians (p-values of one-tailed significance levels obtained using 10 000 permutations).

Embryonic	Gene	Tissue	Dispensable	Developmental	Other
Day/Patform	category		·	process	
Microarray					
E13	Progression	0.0098	0.0426	0.0003	0.0000
	Shape	0.0689	0.0901	0.0010	0.0000
	Double	0.0978	0.1945	0.0322	0.0039
E14	Progression	0.0028	0.0466	0.0000	0.0000
	Shape	0.0027	0.0345	0.0001	0.0000
	Double	0.1743	0.5010	0.1072	0.0132
RNAseq					
E13	Progression	0.0379	0.0059	0.0370	0.0565
	Shape	0.8391	0.5138	0.2468	0.1082
	Double	0.3008	0.2425	0.1637	0.1533
E14	Progression	0.0199	0.0299	0.0339	0.0608
	Shape	0.6456	0.4646	0.1211	0.0759
	Double	0.3229	0.2751	0.1425	0.1416
E16	Progression	0.0240	0.0302	0.0312	0.0649
	Shape	0.5935	0.3100	0.0886	0.0770
	Double	0.3436	0.1464	0.1040	0.1349
scRNAseq					
E14	Progression	0.0146	0.0071	0.0310	0.0295
	Shape	0.9968	0.9087	0.7788	0.1357
	Double	0.1233	0.0683	0.1262	0.0939

Table S4. Pathway genes used to compare expression levels. Genes marked to belong into more than one pathway were tabulated only once in the calculations. The FGF patway includes also EGF pathway genes. LG = ligand, RC = receptor, IC = intracellular cofactor, TF = transcription factor.

Ensembl ÎD	Gene	Pathway	Туре	Ensembl ID	Gene	Pathway	Туре
	name				name		
00000026836	Acvr1	TGFB	RC	00000024913	Lrp5	Wnt	IC
00000026834	Acvr1c	TGFB	RC	00000030201	Lrp6	Wnt	IC
00000052155	Acvr2a	TGFB	RC	00000050567	Maml1	Notch	TF
00000061393	Acvr2b	TGFB	RC	00000031925	Maml2	Notch	TF
00000054693	Adam10	Notch	IC	00000061143	Maml3	Notch	TF
00000052593	Adam17	Notch	IC	00000004936	Map2k1	FGF	IC
00000001729	Akt1	FGF/TGFB	IC	00000035027	Map2k2	FGF	IC
00000004056	Akt2	FGF/TGFB	IC	00000018932	Map2k3	TGFB	IC
00000035262	Amh	TGFB	LG	00000033352	Map2k4	TGFB	IC
00000005871	Apc	Wnt	IC	00000020623	Map2k6	TGFB	IC
00000020135	Apc2	Wnt	IC	00000028284	Map3k7	EDA /TGFB	IC
00000015750	Aph1a	Notch	IC	00000063358	Mapk1	FGF/TGFB	IC
00000001127	Araf	FGF/TGFB	IC	00000053436	Mapk14	TGFB	IC
00000022911	Arl13b	Hh	IC	00000063065	Mapk3	FGF/TGFB	IC
00000018909	Arrb1	Hh	IC	00000021936	Mapk8	TGFB	IC
00000060216	Arrb2	Hh	IC	00000020366	Mapk9	TGFB	IC
00000024182	Axin1	Wnt	IC	00000018169	Mfng	Notch	IC
0000000142	Axin2	Wnt	IC	00000024294	Mib1	Notch	IC
00000030046	Bmp10	TGFB	LG	00000029060	Mib2	Notch	IC
00000023279	Bmp15	TGFB	LG	00000034121	Mks1	Hh	IC
00000027358	Bmp2	TGFB	LG	00000028991	Mtor	FGF	IC
00000029335	Bmp3	TGFB	LG	00000018501	Ncor1	Notch	IC
00000021835	Bmp4	TGFB	LG	00000029478	Ncor2	Notch	IC
00000032179	Bmp5	TGFB	LG	00000003458	Ncstn	Notch	IC

Ensembl ID	Gene name	Pathway	Туре	Ensembl ID	Gene name	Pathway	Туре
00000039004	Втр6	TGFB	LG	00000006435	Neurl1a	Notch	IC
00000008999	Bmp7	TGFB	LG	00000034413	Neurl1b	Notch	IC
00000032726	Bmp8a	TGFB	LG	00000028163	Nfkb1	EDA/FGF/TGFB	TF
00000002384	Bmp8b	TGFB	LG	00000025225	Nfkb2	EDA/FGF/TGFB	TF
00000021796	Bmpr1a	TGFB	RC	00000021025	Nfkbia	EDA	TF
00000052430	Bmpr1b	TGFB	RC	00000031661	Nkd1	Wnt	IC
00000067336	Bmpr2	TGFB	RC	00000021567	Nkd2	Wnt	IC
00000022687	Boc	Hh	RC	00000037171	Nodal	TGFB	LG
00000002413	Braf	FGF/TGFB	IC	00000026923	Notch1	Notch	RC
00000025217	Btrc	Hh	IC	00000027878	Notch2	Notch	RC
00000038119	Cdon	Hh	RC	00000038146	Notch3	Notch	RC
00000025199	Chuk	EDA	IC	00000015468	Notch4	Notch	RC
00000024576	Csnk1a1	Hh/Wnt	IC	00000027852	Nras	FGF/TGFB	IC
00000025162	Csnk1d	Wnt	IC	00000021224	Numb	Notch	IC
00000022433	Csnk1e	Wnt	IC	00000063160	Numbl	Notch	IC
00000032384	Csnk1g1	Hh/Wnt	IC	00000040586	Ofd1	Hh	IC
00000003345	Csnk1g2	Hh/Wnt	IC	00000029231	Pdgfra	FGF	RC
00000073563	Csnk1g3	Hh/Wnt	IC	00000027665	Pik3ca	FGF/TGFB	IC
00000006932	Ctnnb1	Wnt	IC	00000031834	Pik3r2	FGF/TGFB	IC
00000023000	Dhh	Hh	LG	00000016933	Plcg1	FGF	IC
00000024868	Dkk1	Wnt	IC	00000031169	Porcn	Wnt	IC
00000028031	Dkk2	Wnt	IC	00000005469	Prkaca	Hh	IC
00000030772	Dkk3	Wnt	IC	00000050965	Prkca	FGF	IC
00000031535	Dkk4	Wnt	IC	00000019969	Psen1	Notch	IC
00000014773	DII1	Notch	LG	00000010609	Psen2	Notch	IC
00000003436	DII3	Notch	LG	00000021466	Ptch1	Hh	RC
00000027314	DII4	Notch	LG	00000028681	Ptch2	Hh	RC
00000029603	Dtx1	Notch	IC	00000013663	Pten	FGF	IC
00000029071	Dvl1	Wnt	IC	00000000441	Raf1	FGF/TGFB	IC
00000020888	Dvl2	Wnt	IC	00000039191	Rbpj	Notch	TF
00000003233	Dvl3	Wnt	IC	00000024927	Rela	EDA	TF
00000047193	Dync2h1	Hh	IC	00000002983	Relb	EDA	TF
00000059327	Eda	EDA	LG	00000025158	Rfng	Notch	IC
00000034457	Eda2r	EDA	RC	00000007815	Rhoa	TGFB	IC
00000003227	Edar	EDA	RC	00000034177	Rnf43	Wnt TGFB	IC IC
00000095105	Edaradd	EDA	IC	00000024290	Rock1		
00000028017	Egf	FGF	LG	00000057132	Rpgrip1	Hh	IC
00000020122	Egfr	FGF	RC	00000031309	Rps6ka3	FGF	IC IC
00000029122	Evc Fbxw7	Hh Noteb	IC IC	00000031548	Sfrp1	Wnt	IC IC
00000028086	Fgf1	Notch FGF	LG	00000027996 00000021319	Sfrp2 Sfrp4	Wnt Wnt	IC
00000036585	Fgf10	FGF	LG			Wnt	IC
00000021732 00000042826	Fgf11	FGF	LG	00000018822 00000042626	Sfrp5 Shc1	FGF	IC
00000042828	Fgf12	FGF	LG	00000042020	Shc2	FGF	IC
00000022323	Fqf13	FGF	LG	00000020312	Shh	Hh	LG
00000031137	Fgf14	FGF	LG		Ski	Hh	IC
00000023331	Fgf16	FGF	LG	00000029050 00000031681	Smad1	TGFB	TF
00000037230	Fgf2	FGF	LG	00000031081	Smad2	TGFB	TF
00000037223	Fqf20	FGF	LG	00000024303	Smad3	TGFB	TF
00000031003	Fgf22	FGF	LG	00000032402	Smad4	TGFB	TF
00000031074	Fgf3	FGF	LG	00000021540	Smad5	TGFB	TF
00000051074	Fgf4	FGF	LG	00000027796	Smad9	TGFB	TF
00000000017	Fgf5	FGF	LG	00000027760	Smo	Hh	RC
000000000183	Fgf6	FGF	LG	00000038037	Socs1	FGF	IC
00000027208	Fgf7	FGF	LG	00000020027	Socs2	FGF	iC
00000021233	Fgf9	FGF	LG	00000053113	Socs3	FGF	iC
00000021671	Fgfr1	FGF	RC	00000024241	Sos1	FGF	iC
00000030849	Fgfr2	FGF	RC	00000034801	Sos2	FGF	iC
00000054252	Fgfr3	FGF	RC	00000036169	Sostdc1	TGFB/Wnt	LG
00000005320	Fgfr4	FGF	RC	00000022114	Spry2	FGF	IC
00000020170	Frs2	FGF	IC	00000024427	Spry4	FGF	IC
00000021765	Fst	TGFB	LG	00000026104	Stat1	FGF	TF
00000011658	Fuz	Hh	IC	00000040033	Stat2	FGF	TF
			RC	00000004040	Stat3	FGF	TF
00000044674	Fzd1	Wnt					
	Fzd1 Fzd10	Wnt		00000062939			TF
00000044674 00000081683 00000050288			RC RC		Stat4 Stat5a	FGF FGF	
00000081683	Fzd10	Wnt	RC	00000062939	Stat4	FGF	TF

Ensembl ID	Gene	Pathway	Туре	Ensembl ID	Gene name	Pathway	Туре
00000045005	Fzd5	Wnt	RC	00000028718	Stil	Hh	IC
00000022297	Fzd6	Wnt	RC	00000025231	Sufu	Hh	iC
00000041075	Fzd7	Wnt	RC	00000034601	Ta3	Hh	iC
00000036904	Fzd8	Wnt	RC	00000015755	Tab2	EDA	iC
00000049551	Fzd9	Wnt	RC	00000000782	Tcf7	Wnt	TF
00000031714	Gab1	FGF	IC	00000055799	Tcf7I1	Wnt	TF
00000052957	Gas1	Hh	IC	00000024985	Tcf7l2	Wnt	TF
00000109523	Gdf1	TGFB	LG	00000038593	Tctn1	Hh	IC
00000025352	Gdf11	TGFB	LG	00000002603	Tqfb1	TGFB	ĹĠ
00000025407	Gli1	Hh	TF	00000039239	Tqfb2	TGFB	LG
00000048402	Gli2	Hh	TF	00000021253	Tgfb3	TGFB	LG
00000021318	Gli3	Hh	TF	00000007613	Tafbr1	TGFB	RC
00000059923	Grb2	FGF	IC	00000032440	Tgfbr2	TGFB	RC
00000050069	Grem2	TGFB	LG	00000029287	Tqfbr3	TGFB	RC
00000024858	Grk2	Hh	IC	00000008305	Tle1	Wnt	TF
00000057177	Gsk3a	Wnt	IC	00000032280	Tle3	Wnt	TF
00000022812	Gsk3b	Hh/Wnt	iC	00000026875	Traf1	EDA	IC
00000022528	Hes1	Notch	TF	00000026942	Traf2	EDA	IC
00000025499	Hras	FGF/TGFB	IC	00000021277	Traf3	EDA	IC
00000038564	Ift172	Hh	iC	00000017386	Traf4	EDA /TGFB	iC
00000017858	Ift52	Hh	iC	00000027164	Traf6	EDA/TGFB	iC
00000032965	Ift57	Hh	IC	00000028173	WIs	Wnt	TF
00000040040	Ift88	Hh	IC	00000022997	Wnt1	Wnt	LG
00000006538	lhh	Hh	LG	00000026167	Wnt10a	Wnt	ĹĠ
00000031537	lkbkb	EDA	IC	00000022996	Wnt10b	Wnt	LG
00000004221	lkbkg	EDA	IC	00000015957	Wnt11	Wnt	LG
00000041324	Inhba	TGFB	LG	00000029671	Wnt16	Wnt	LG
00000037035	Inhbb	TGFB	LG	00000010797	Wnt2	Wnt	LG
00000060798	Intu	Hh	IC	00000027840	Wnt2b	Wnt	LG
00000027598	Itch	Notch	IC	00000000125	Wnt3	Wnt	LG
00000027276	Jag1	Notch	LG	00000009900	Wnt3a	Wnt	LG
00000002799	Jag2	Notch	LG	00000036856	Wnt4	Wnt	LG
00000028530	Jak1	FGF	IC	00000021994	Wnt5a	Wnt	LG
00000024789	Jak2	FGF	IC	00000030170	Wnt5b	Wnt	LG
00000031805	Jak3	FGF	IC	00000033227	Wnt6	Wnt	LG
00000052684	Jun	TGFB	TF	00000030093	Wnt7a	Wnt	LG
00000046731	Kctd11	Hh	IC	00000022382	Wnt7b	Wnt	LG
00000018395	Kif3a	Hh	IC	00000012282	Wnt8a	Wnt	LG
00000050382	Kif7	Hh	IC	00000036961	Wnt8b	Wnt	LG
00000030265	Kras	FGF/TGFB	IC	0000000126	Wnt9a	Wnt	LG
00000027985	Lef1	Wnt	TF	00000018486	Wnt9b	Wnt	LG
00000029570	Lfng	Notch	IC	00000041961	Znrf3	Wnt	LG
00000027253	Lrp4	Wnt	RC				

Table S5. Descriptive statistics of the number of cells in which different gene types are **expressed**. The number of analyzed cells was 30930.

Туре	n	Median	Mean	Range	SD					
Progression and shape category genes										
Ligand	13	4585.0	7765.77	386-25360	7440.31					
Receptor	7	13879.0	12897.14	607-23912	8261.00					
Transcription factor	11	14165.0	13215.91	531-24359	8816.32					
Intracellular	12	14522.0	15296.67	4247-30260	8741.45					
Progression and shape	e category p	oathway genes	•							
Ligand	65	2308.0	4020.12	2-25360	5211.06					
Receptor	38	8071.5	9437.92	101-27666	7831.50					
Transcription factor	34	12832.0	12492.38	290-28213	8142.03					
Intracellular	129	11919.0	12944.92	474-30770	8014.32					

Appendix S1. Developmental keystone genes of mouse tooth development. Classification of genes whose null mutations affect the phenotype of the mouse first lower molar. The classification of each gene is usually based on multiple sources, with key references listed.

Haplosufficiency is marked for progression and shape categories.

Acvr2a Bmp4 Bmpr1a Ctnna1 Ctnnb1 Dicer1	(ENSMUSG) 00000052155 00000021835 00000021796	progression				
Bmp4 Bmpr1a Ctnna1 Ctnnb1 Dicer1	00000021835 00000021796					
Bmpr1a Ctnna1 Ctnnb1 Dicer1	00000021796		Yes	receptor	Bud stage arrest, partial penetrance	1
Ctnna1 Ctnnb1 Dicer1		progression	Yes?	signal	Wnt1 cKO: Bud or cap stage arrest	23
Ctnnb1 Dicer1		progression	Yes	receptor	K14 cKO: Bud stage arrest	4
Dicer1	00000037815	progression	Yes?	intracellular	K14 cKO: Cap stage arrest	5
	00000006932	progression	Yes?	intracellular	K14 cKO: Early bud stage arrest	6
Fafr2	00000041415	progression	Yes?	intracellular	Wnt1 cKO: Arrest at cap stage or absence	7 8
, 911 <i>-</i>	00000030849	progression	Yes	receptor	Bud stage arrest	9
Inhba	00000041324	progression	Yes?	signal	Bud stage arrest	10 11
Lef1	00000027985	progression	Yes	transcription factor	Late bud stage arrest	12 13
Msx1	00000048450	progression	Yes?	transcription factor	Bud stage arrest	14
Pax9	00000001497	progression	Yes	transcription factor	Bud stage arrest	15
Pitx2	00000028023	progression	Yes	transcription factor	Bud stage arrest	16 17
Runx2	00000039153	progression	Yes	transcription factor	Late bud stage arrest, extra budding	18 19
Shh	00000002633	progression	Yes	signal	K14 cKO: Cap stage arrest	20
Trp63	00000022510	progression	Yes?	transcription factor	Dental placode stage arrest	21 22
Арс	00000005871	shape	Yes	intracellular	K14 cKO: Deformed supernumerary teeth	23
Barx1	00000021381	shape	Yes	transcription factor	Slightly smaller molars	24
Bcl11b	00000048251	shape	Yes?	transcription factor	Blunted cusps and reduced stellate reticuli	25 26
Bmp2	00000027358	shape	Yes	signal	Osx cKO: Brittle and slightly misshaped, third molars missing	27 28
Bmp7	00000008999	shape	Yes	signal	Abnormal cusp patterning	29 30
Chuk	00000025199	shape	Yes	intracellular	Flattened cusps, no third molars	31
Eda	00000059327	shape	Yes	signal	Reduced number and size of cusps of the first and second molars	32 33 34
Edar	00000003227	shape	Yes	receptor	Reduced teeth	33 35
Edaradd	00000095105	shape	Yes	intracellular	Severe agenesis, cone/peg shaped teeth	36 37
Evc	00000029122	shape	Yes	intracellular	Conical molars, size reduction of the first molar and an enamel defect	38
Fgf10	00000021732	shape	Yes	signal	Smaller molars and/or different shape	39 40
Fgf20	00000031603	shape	Yes	signal	Smaller molars with mildly altered cusp pattern	41
Fgf3	00000031074	shape	Yes	signal	Change of cusp pattern	42
Foxi3	00000055874	shape	Yes	transcription factor	K14 cKO: Misshaped teeth	43
Fst	00000021765	shape	Yes?	signal	Non-polarized cusps with multiple shallow foldings	44 45
Gas1	00000052957	shape	Yes?	intracellular	Supernumerary teeth, molars slightly misshaped	46
Jag2	00000002799	shape	Yes	signal	Increase of cusp number	47
Lrp4	00000027253	shape	Yes?	receptor	Deformed supernumerary teeth	48 49
Msx2	00000021469	shape	Yes	transcription factor	Msx2 null: Misshaped teeth, enamel hypoplasia	50
Pdgfra	00000029231	shape	Yes?	receptor	Slight change in cusp pattern	51
Rps6ka3	00000031309	shape	Yes	intracellular	Small change in tooth shape, often additional molars	52
Smo	0000001761	shape	Yes	receptor	K14 cKO: Cusp pattern changed, molars fused and reduced	53
Sostdc1	00000036169	shape	Yes	signal	Change in cusp pattern,	54

Gene name	Mouse Ensembl ID (ENSMUSG)	Category	Haplo- sufficient	Type of molecule	Mutant tooth phenotype	Ref.
					supernumerary teeth	
Sp6	00000038560	shape	Yes?	transcription factor	Supernumerary teeth, reduction of cusp number	55
Spry2	00000022114	shape	Yes?	intracellular	Slight change in cusp pattern, supernumerary teeth	56
Spry4	00000024427	shape	Yes?	intracellular	Slight change in cusp pattern, supernumerary teeth	56
Wnt10a	00000026167	shape	Yes?	signal	Abnormal cusp patterning, smaller and supernumerary teeth	57
Yap1	00000053110	shape	Yes?	intracellular	K14 cKO: Smaller and abnormal tooth, fewer and flattened cusps	58
Alpl	00000028766	tissue		other	Dentinogenesis imperfecta	59
Ambn	00000029288	tissue		other	Severe enamel hypoplasia, odontogenenic tumors	60
Amelx	00000031354	tissue		other	Enamel hypoplasia	61
Amtn	00000029282	tissue		other	Amelogenesis imperfecta	62
Bmi1	00000026739	tissue		transcription factor	Amylogenesis imperfecta	63
Dmp1	00000029307	tissue		other	Dentinogenesis imperfecta	64 65 66
Dspp	00000053268	tissue		other	Dentinogenesis imperfecta	67 68
Enam	000000029286	tissue		other	No enamel	69
Evc2	00000050248	tissue		intracellular	Amelogenesis imperfecta	70
Fam20a	00000000216	tissue		other	Severe amelogenesis imperfecta	71
Fam20c	00000025854	tissue		other	Severe amelogenesis imperfecta	71
Fgfr1	00000031565	tissue		receptor	K14 cKO: Amelogenesis imperfecta	72
Gdnf	00000022144	tissue		signal	Amelogenesis imperfecta, dentinogenesis imperfecta	73
Grem2	00000050069	tissue		signal	Enamel hypoplasia, dentine hypoplasia	74
Klk4	00000006948	tissue		other	Amelogenesis imperfecta	75
Lama3	00000024421	tissue		other	Enamel hypoplasia	76
Mmp14	0000000957	tissue		other	Amelogenesis imperfecta	77 78
Mmp20	00000018620	tissue		other	Amelogenesis imperfecta, enamel hypoplasia	79
Mtor	00000028991	tissue		intracellular	Osx1 cKO: Dentine hypoplasia	80
Nectin1	00000032012	tissue		other	Amelogenesis imperfecta	81 81
Perp	00000019851	tissue		other	Amelogenesis imperfecta	82
Pkd2	00000034462	tissue		other	Wnt1 cKO: Abnormal pulp cavities, fractured roots	83
Postn	00000027750	tissue		other	Amelogenesis imperfect and abnormal periodontal ligament	84 85
Slc13a5	00000020805	tissue		other	Enamel hypoplasia	86
Slc39a13	00000002105	tissue		other	Dentine hypoplasia	87
Sp3	00000027109	tissue		transcription factor	Enamel hypoplasia, dentinogenesis imperfecta	88
Sppl2a	00000027366	tissue		other	Enamel hypoplasia	89
Acvr2b	00000061393	double		receptor	Double KO (ACVR2A+/-, ACVR2B-/-): Bud stage arrest	11
DIx1	00000041911	double		transcription factor	Double KO: Placode stage arrest	90
Dlx2	00000023391	double		transcription factor	Double KO: Placode stage arrest	90
DIx3	0000001510	double		transcription factor	Double KO: Misshaped teeth	91
DIx4	00000020871	double		transcription factor	Double KO: Misshaped teeth	91
Dlx5	00000029755	double		transcription factor	Double KO: Misshaped teeth	92
DIx6	00000029754	double		transcription factor	Double KO: Misshaped teeth	92
Gli2	00000048402	double		transcription factor	Double KO: Initiation stage arrest	93
Gli3	00000021318	double		transcription factor	Double KO: Initiation stage arrest	93

Gene name	Mouse Ensembl ID (ENSMUSG)	Category	Haplo- sufficient	Type of molecule	Mutant tooth phenotype	Ref.
Lhx6	00000026890	double		transcription factor	Double KO: Initiation stage arrest	94
Lhx8	00000096225	double		transcription factor	Double KO: Initiation stage arrest	94
Csf1	00000014599	no eruption		signal	No eruption of molars	95
Fos	00000021250	no eruption		transcription factor	No eruption of molars	96
Ostm1	00000038280	no eruption		other	No eruption of molars	97
PthIh	00000048776	no eruption		signal	No eruption of molars	98
Tcirg1	00000001750	no eruption		other	No eruption of molars	99
Traf6	00000027164	no eruption		intracellular	No eruption of molars	100 101
						102

References

- 1. Matzuk, M. M., Kumar, T. R. & Bradley, A. Different phenotypes for mice deficient in either activins or activin receptor type II. *Nature* **374**, 356-60 (1995).
- 2. Jia, S. *et al.* Roles of Bmp4 during tooth morphogenesis and sequential tooth formation. *Development* **140**, 423-32 (2013).
- 3. Dunn, N. R. *et al.* Haploinsufficient Phenotypes inBmp4Heterozygous Null Mice and Modification by Mutations inGli3andAlx4. *Dev. Biol.* **188**, 235-247 (1997).
- 4. Andl, T. *et al.* Epithelial Bmpr1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development. *Development* **131**, 2257-2268 (2004).
- 5. Li, C. Y. *et al.* _e-catenin inhibits YAP/TAZ activity to regulate signalling centre formation during tooth development. *Nat. Commun.* **7**, 12133 (2016).
- 6. Liu, F. *et al.* Wnt/beta-catenin signaling directs multiple stages of tooth morphogenesis. *Dev Biol* **313**, 210-224 (2008).
- 7. Oommen, S. *et al.* Distinct roles of MicroRNAs in epithelium and mesenchyme during tooth development. *Dev. Dyn.* **241**, 1465-1472 (2012).
- 8. Michon, F., Tummers, M., Kyyrönen, M., Frilander, M. J. & Thesleff, I. Tooth morphogenesis and ameloblast differentiation are regulated by micro-RNAs. *Dev. Biol.* **340**, 355-368 (2010).
- 9. De Moerlooze, L. *et al.* An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. *Development* **127**, 483-492 (2000).
- 10. Matzuk, M. M. *et al.* Functional analysis of activins during mammalian development. *Nature* **374**, 354-357 (1995).
- 11. Ferguson, C. A. *et al.* The role of effectors of the activin signalling pathway, activin receptors IIA and IIB, and Smad2, in patterning of tooth development. *Development* **128**, 4605-13 (2001).
- 12. Van Genderen, C. *et al.* Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. *Genes Dev.* **8**, 2691-2703 (1994).
- 13. Noh, T., Gabet, Y., Cogan, J., Shi, Y. & Tank, A. Lef1 Haploinsufficient Mice Display a Low Turnover and Low Bone Mass Phenotype in a Gender-and Age-Specific Manner. *PLoS One* **4**, 5438 (2009).
- 14. Satokata, I. & Maas, R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. *Nat. Genet.* **6**, 348-356 (1994).
- 15. Peters, H., Neubüser, A., Kratochwil, K. & Balling, R. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. *Genes Dev.* **12**, 2735-2747 (1998).
- 16. Lin, C. R. *et al.* Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. *Nature* **401**, 279-282 (1999).
- 17. Liu, W., Selever, J., Lu, M. F. & Martin, J. F. Genetic dissection of Pitx2 in craniofacial development uncovers new functions in branchial arch morphogenes, late aspects of tooth morphogenesis and cell migration. *Development* **130**, 6375-6385 (2003).

- 18. Åberg, T. et al. Phenotypic Changes in Dentition of Runx2 Homozygote-null Mutant Mice. J. Histochem. Cytochem. **52**, 131-139 (2004).
- 19. Yoda, S., Suda, N., Kitahara, Y., Komori, T. & Ohyama, K. Delayed tooth eruption and suppressed osteoclast number in the eruption pathway of heterozygous Runx2/Cbfa1 knockout mice. *Arch. Oral Biol.* **49**, 435-442 (2004).
- 20. Dassule, H. R. Shh regulates tooth growth and morphogenesis. 127, 4775-4785 (2000).
- 21. Mills, A. A. *et al.* p63 is a p53 homologue required for limb and epidermal morphogenesis. *Nature* **398**, 708-13 (1999).
- 22. Laurikkala, J. *et al.* P63 Regulates Multiple Signalling Pathways Required for Ectodermal Organogenesis and Differentiation. *Development* **133**, 1553-1563 (2006).
- 23. Kuraguchi, M. *et al.* Adenomatous polyposis coli (APC) is required for normal development of skin and thymus. *PLoS Genet.* **2**, 1362-1374 (2006).
- 24. Miletich, I. *et al.* Developmental stalling and organ-autonomous regulation of morphogenesis. *Proc. Natl. Acad. Sci. U. S. A.* **108**, 19270-19275 (2011).
- 25. Golonzhka, O. et al. Ctip2/Bcl11b controls ameloblast formation during mammalian odontogenesis. *Proc. Natl. Acad. Sci. U. S. A.* **106**, 4278-4283 (2009).
- 26. Katsuragi, Y. *et al.* Bcl11b transcription factor plays a role in the maintenance of the ameloblast-progenitors in mouse adult maxillary incisors. *Mech. Dev.* **130**, 482-492 (2013).
- 27. Guo, F. *et al.* Bmp2 deletion causes an amelogenesis imperfecta phenotype via regulating enamel gene expression. *J. Cell. Physiol.* **230**, 1871-82 (2015).
- 28. Feng, J. *et al.* Abnormalities in the enamel in bmp2-deficient mice. *Cells. Tissues. Organs* **194**, 216-21 (2011).
- 29. Zouvelou, V., Luder, H. U., Mitsiadis, T. A. & Graf, D. Deletion of BMP7 affects the development of bones, teeth, and other ectodermal appendages of the orofacial complex. *J. Exp. Zool. Part B Mol. Dev. Evol.* **312**, 361-374 (2009).
- 30. Zurowski, C., Jamniczky, H., Graf, D. & Theodor, J. Deletion/loss of bone morphogenetic protein 7 changes tooth morphology and function in Mus musculus: implications for dental evolution in mammals. *R. Soc. open Sci.* **5**, 170761 (2018).
- 31. Ohazama, A. et al. A dual role for lkk alpha in tooth development. Dev. Cell 6, 219-27 (2004).
- 32. Srivastava, A. K. *et al.* The Tabby phenotype is caused by mutation in a mouse homologue of the EDA gene that reveals novel mouse and human exons and encodes a protein (ectodysplasin-A) with collagenous domains. *Proc. Natl. Acad. Sci. U. S. A.* **94**, 13069-74 (1997).
- 33. Tucker, A. S. *et al.* Edar/Eda interactions regulate enamel knot formation in tooth morphogenesis. *Development* **127**, 4691-4700 (2000).
- 34. Peterkova, R. *et al.* Different morphotypes of the tabby (EDA) dentition in the mouse mandible result from a defect in the mesio-distal segmentation of dental epithelium. *Orthod. Craniofacial Res.* **5**, 215-226 (2002).
- 35. Charles, C. *et al.* Distinct Impacts of Eda and Edar Loss of Function on the Mouse Dentition. *PLoS One* **4**, (2009).
- 36. Grüneberg, H. The molars of the tabby mouse, and a test of the 'single-active X-chromosome' hypothesis. *J. Embryol. Exp. Morphol.* **15**, 223-244 (1966).
- 37. Headon, D. J. *et al.* Gene defect in ectodermal dysplasia implicates a death domain adapter in development. *Nature* **414**, 913-916 (2001).
- 38. Ruiz-Perez, V. L. *et al.* Evc is a positive mediator of lhh-regulated bone growth that localises at the base of chondrocyte cilia. *Development* **134**, 2903-2912 (2007).
- 39. Harada, H. *et al.* FGF10 maintains stem cell compartment in developing mouse incisors. *Development* **129**, 1533-1541 (2002).
- 40. Yokohama-Tamaki, T. *et al.* Cessation of Fgf10 signaling, resulting in a defective dental epithelial stem cell compartment, leads to the transition from crown to root formation. *Development* **133**, 1359-66 (2006).
- 41. Häärä, O. *et al.* Ectodysplasin regulates activator-inhibitor balance in murine tooth development through fgf20 signaling. *Dev.* **139**, 3189-3199 (2012).
- 42. Charles, C. *et al.* Modulation of Fgf3 dosage in mouse and men mirrors evolution of mammalian dentition. *Proc. Natl. Acad. Sci. U. S. A.* **106**, 22364-8 (2009).

- 43. Jussila, M. *et al.* Suppression of epithelial differentiation by Foxi3 is essential for molar crown patterning. *Development* **142**, 3954-63 (2015).
- 44. Matzuk, M. M. et al. deficient in follistatin. 374, 354-356 (1995).
- 45. Wang, X. P. *et al.* Modulation of activin/bone morphogenetic protein signaling by follistatin is required for the morphogenesis of mouse molar teeth. *Dev. Dyn.* **231**, 98-108 (2004).
- 46. Ohazama, A. *et al.* Primary cilia regulate Shh activity in the control of molar tooth number. *Development* **136**, 897-903 (2009).
- 47. Mitsiadis, T. A., Graf, D., Luder, H., Gridley, T. & Bluteau, G. BMPs and FGFs target Notch signalling via jagged 2 to regulate tooth morphogenesis and cytodifferentiation. *Development* **137**, 3025-35 (2010).
- 48. Johnson, E. B., Hammer, R. E. & Herz, J. Abnormal development of the apical ectodermal ridge and polysyndactyly in Megf7-deficient mice. *Hum. Mol. Genet.* **14**, 3523-3538 (2005).
- 49. Ohazama, A. *et al.* Lrp4 Modulates Extracellular Integration of Cell Signaling Pathways in Development. *PLoS One* **3**, e4092 (2008).
- 50. Satokata, I. *et al.* Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. *Nat. Genet.* **24**, 391-395 (2000).
- 51. Xu, X., Bringas, P., Soriano, P. & Chai, Y. PDGFR-_ signaling is critical for tooth cusp and palate morphogenesis. *Dev. Dyn.* **232**, 75-84 (2005).
- 52. Laugel-Haushalter, V. et al. RSK2 is a modulator of craniofacial development. PLoS One 9, e84343 (2014).
- 53. Gritli-Linde, A. *et al.* Shh signaling within the dental epithelium is necessary for cell proliferation, growth and polarization. *Development* **129**, 5323-5337 (2002).
- 54. Kassai, Y. *et al.* Regulation of mammalian tooth cusp patterning by ectodin. *Science (80-.).* **309**, 2067-2070 (2005).
- 55. Nakamura, T. *et al.* Transcription factor epiprofin is essential for tooth morphogenesis by regulating epithelial cell fate and tooth number. *J. Biol. Chem.* **283**, 4825-33 (2008).
- Klein, O. D. et al. Sprouty Genes Control Diastema Tooth Development via Bidirectional Antagonism of Epithelial-Mesenchymal FGF Signaling. Dev. Cell 11, 181-190 (2006).
- 57. Yang, J. *et al.* Taurodontism, variations in tooth number, and misshapened crowns in Wnt10a null mice and human kindreds. *Mol. Genet. Genomic Med.* **3**, 40-58 (2015).
- 58. Liu, M., Zhao, S., Lin, Q. & Wang, X.-P. YAP Regulates the Expression of Hoxa1 and Hoxc13 in Mouse and Human Oral and Skin Epithelial Tissues. *Mol. Cell. Biol.* **35**, 1449-1461 (2015).
- 59. Foster, B. L. *et al.* Tooth root dentin mineralization defects in a mouse model of hypophosphatasia. *J Bone Min. Res* **28**, 271-282 (2013).
- 60. Fukumoto, S. *et al.* Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. *J. Cell Biol.* **167**, 973-983 (2004).
- 61. Gibson, C. W. *et al.* Amelogenin-deficient Mice Display an Amelogenesis Imperfecta Phenotype. *J. Biol. Chem.* **276**, 31871-31875 (2001).
- 62. Nakayama, Y., Holcroft, J. & Ganss, B. Enamel hypomineralization and structural defects in amelotin-deficient mice. *J. Dent. Res.* **94**, 697-705 (2015).
- 63. Biehs, B. *et al.* Bmi1 represses Ink4a/Arf and Hox genes to regulate stem cells in the rodent incisor HHS Public Access. *Nat Cell Biol* **15**, 846-852 (2013).
- 64. Sun, Y. et al. DMP1 processing is essential to dentin and jaw formation. J. Dent. Res. 90, 619-624 (2011).
- 65. Lu, Y. *et al.* Rescue of odontogenesis in Dmp1-deficient mice by targeted re-expression of DMP1 reveals roles for DMP1 in early odontogenesis and dentin apposition in vivo. *Dev. Biol.* **303**, 191-201 (2007).
- 66. Feng, J. Q. *et al.* The dentin matrix protein 1 (Dmp1) is specifically expressed in mineralized, but not soft, tissues during development. *J. Dent. Res.* **82**, 776-780 (2003).
- 67. Sreenath, T. *et al.* Dentin Sialophosphoprotein Knockout Mouse Teeth Display Widened Predentin Zone and Develop Defective Dentin Mineralization Similar to Human Dentinogenesis Imperfecta Type III. *J. Biol. Chem.* **278**, 24874-24880 (2003).
- 68. Thyagarajan, T., Sreenath, T., Cho, A., Wright, J. T. & Kulkarni, A. B. Reduced Expression of Dentin Sialophosphoprotein Is Associated with Dysplastic Dentin in Mice Overexpressing Transforming Growth Factor-1 in Teeth. *J. Biol. Chem.* **276**, 11016-11020 (2000).

- 69. Hu, J. C.-C. *et al.* Enamel Defects and Ameloblast-specific Expression in *Enam* Knock-out //acZ Knock-in Mice. *J. Biol. Chem.* **283**, 10858-10871 (2008).
- 70. Zhang, H. *et al.* Generation of Evc2/Limbin global and conditional KO mice and its roles during mineralized tissue formation. *Genesis* **53**, 612-626 (2015).
- 71. Vogel, P. *et al.* Amelogenesis imperfecta and other biomineralization defects in Fam20a and Fam20c null mice. *Vet. Pathol.* **49**, 998-1017 (2012).
- 72. Takamori, K. *et al.* Epithelial Fibroblast Growth Factor Receptor 1 Regulates Enamel Formation. *J. Dent. Res.* **87**, 238-243 (2008).
- 73. de Vicente, J. C. *et al.* Impaired dental cytodifferentiation in Glial cell-line derived growth factor (GDNF) deficient mice. *Ann. Anat. Anat. Anzeiger* **184**, 85-92 (2002).
- 74. Vogel, P. et al. Malformation of Incisor Teeth in Grem2-/-Mice. Vet. Pathol. **52**, 224-229 (2015).
- 75. Smith, C. E. *et al.* Effect of kallikrein 4 loss on enamel mineralization: comparison with mice lacking matrix metalloproteinase 20. *J. Biol. Chem.* **286**, 18149-18160 (2011).
- 76. Ryan, M. C., Lee, K., Miyashita, Y. & Carter, W. G. Targeted disruption of the LAMA3 gene in mice reveals abnormalities in survival and late stage differentiation of epithelial cells. *J. Cell Biol.* **145**, 1309-23 (1999).
- Bartlett, J. D., Zhou, Z., Skobe, Z., Dobeck, J. M. & Tryggvason, K. Delayed Tooth Eruption in Membrane Type-1 Matrix Metalloproteinase Deficient Mice. *Connect. Tissue Res.* 44, 300-304 (2003).
- 78. Holmbeck, K. *et al.* MT1-MMP-Deficient Mice Develop Dwarfism, Osteopenia, Arthritis, and Connective Tissue Disease due to Inadequate Collagen Turnover. *Cell* **99**, 81-92 (1999).
- 79. Caterina, J. J. *et al.* Enamelysin (matrix metalloproteinase 20)-deficient mice display an amelogenesis imperfecta phenotype. *J. Biol. Chem.* **277**, 49598-604 (2002).
- 80. Xie, F., Dai, Q., Liu, X. & Wang, J. Conditional knockout of conditional raptor/mTORC1 results in dentin malformation. *Front. Physiol.* **10**, 250 (2019).
- 81. Barron, M. J. *et al.* The cell adhesion molecule nectin-1 is critical for normal enamel formation in mice. *Hum. Mol. Genet.* **17**, 3509-20 (2008).
- 82. Jheon, A. H. *et al.* PERP regulates enamel formation via effects on cell-cell adhesion and gene expression. *J. Cell Sci.* **124**, 745-54 (2011).
- 83. Khonsari, R. H. *et al.* Multiple postnatal craniofacial anomalies are characterized by conditional loss of polycystic kidney disease 2 (Pkd2). *Hum. Mol. Genet.* **22**, 1873-1885 (2013).
- 84. Rios, H. *et al.* Periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype. *Mol. Cell. Biol.* **25**, 11131-44 (2005).
- 85. Rios, H. F. *et al.* Periostin is essential for the integrity and function of the periodontal ligament during occlusal loading in mice. *J. Periodontol.* **79**, 1480-90 (2008).
- 86. Irizarry, A. R. *et al.* Defective enamel and bone development in sodium-dependent citrate transporter (NaCT) Slc13a5 deficient mice. *PLoS One* **12**, e0175465 (2017).
- 87. Fukada, T. *et al.* The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways. *PLoS One* **3**, e3642 (2008).
- 88. Bouwman, P. *et al.* Transcription factor Sp3 is essential for post-natal survival and late tooth development. *EMBO J.* **19**, 655-61 (2000).
- 89. Bronckers, A. L. *et al.* The intramembrane protease SPPL2A is critical for tooth enamel formation. *J. Bone Miner. Res.* **28**, 1622-1630 (2013).
- 90. Thomas, B. L. *et al.* Role of Dlx-1 and Dlx-2 genes in patterning of the murine dentition. *Development* **124**, 4811-8 (1997).
- 91. Qiu, M. *et al.* Role of the Dlx homeobox genes in proximodistal patterning of the branchial arches: mutations of Dlx-1, Dlx-2, and Dlx-1 and -2 alter morphogenesis of proximal skeletal and soft tissue structures derived from the first and second arches. *Dev. Biol.* **185**, 165-84 (1997).
- 92. Beverdam, A. *et al.* Jaw transformation with gain of symmetry after Dlx5/Dlx6 inactivation: mirror of the past? *Genesis* **34**, 221-7 (2002).
- 93. Hardcastle, Z., Mo, R., Hui, C. C. & Sharpe, P. T. The Shh signalling pathway in tooth development: Defects in Gli2 and Gli3 mutants. *Development* **125**, 2803-2811 (1998).

- 94. Denaxa, M., Sharpe, P. T. & Pachnis, V. The LIM homeodomain transcription factors Lhx6 and Lhx7 are key regulators of mammalian dentition. *Dev. Biol.* **333**, 324-336 (2009).
- 95. Fleischmann, A. *et al.* Fra-1 replaces c-Fos-dependent functions in mice. *Genes Dev.* **14**, 2695-700 (2000).
- Alfaqeeh, S. et al. Root and Eruption Defects in c-Fos Mice Are Driven by Loss of Osteoclasts. J. Dent. Res. 94, 1724-1731 (2015).
- 97. Grüneberg, H. Grey-lethal, a new mutation in the house mouse. *J. Hered.* **27**, 105-109 (1936).
- 98. Philbrick, W. M., Dreyer, B. E., Nakchbandi, I. A. & Karaplis, A. C. Parathyroid hormone-related protein is required for tooth eruption. *Proc. Natl. Acad. Sci. U. S. A.* **95**, 11846-11851 (1998).
- 99. Bronckers, A. L. J. J. *et al.* Murine ameloblasts are immunonegative for Tcirg1, the v-H-ATPase subunit essential for the osteoclast plasma proton pump. *Bone* **50**, 901-8 (2012).
- 100. Dickson, K. M., Bhakar, A. L. & Barker, P. A. TRAF6-dependent NF-kB transcriptional activity during mouse development. *Dev. Dyn.* **231**, 122-127 (2004).
- 101. Lomaga, M. A. *et al.* TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. *Genes Dev.* **13**, 1015-24 (1999).
- 102. Naito, A. *et al.* Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. *Genes Cells* **4**, 353-62 (1999).