EXP-4: Analyze Network Traffic using Wireshark Tool

Aim:

Analyze Network Traffic using Wireshark tool/TCP dump tool

Components and Tools:

System: Desktop Computer/Laptop Operating system: Windows/Linux

Tool: Wireshark

Description: (next slide)

Procedure: https://www.howtogeek.com/104278/how-to-use-wireshark-to-capture-filter-and-inspect-packets/

- Getting Wireshark-Wireshark Installation
- Capturing Packets
- Color Coding
- Sample Captures
- Filtering Packets
- Inspecting Packets

Lab Report: (last slide)

Description:

- Wireshark is a free and open source packet analyzer used for network troubleshooting and analysis.
- Wireshark can be useful for many different tasks, whether you are a **network engineer**, **security professional** or **system administrator**.

Troubleshooting Network Connectivity

- Visually understand packet loss
- Review TCP retransmission
- Graph high latency packet responses

Examination of Application Layer Sessions (even when encrypted by SSL/TLS see below)

- View full HTTP session, seeing all headers and data for both requests and responses
- View Telnet sessions, see passwords, commands entered and responses
- View SMTP or POP3 traffic, reading emails off the wire

- Troubleshoot DHCP issues with packet level data

- Examine DHCP client broadcast
- DHCP offer with address and options
- Client requests for offered address
- Ack of server acknowledging the request

Extract files from HTTP sessions

<u>Export objects</u> from HTTP such as javascript, images, or even executables.

Extract file from SMB sessions

• Similar to the **HTTP export option** but able to extract files transferred over **SMB**(Server Message Block protocol), the ever present **Microsoft File Sharing protocol**.

Detect and Examination of Malware

- · Detect anomalous behaviour that could indicate malware
- Search for unusual domains or IP address endpoints
- Use IO graphs to discover regular connections (beacons) to command and control servers
- Filter out the "normal" and find the unusual
- Extract large DNS responses and other oddness which may indicate malware

Examination of Port Scans and Other Vulnerability Scan types

- Understand what network traffic the vulnerability scanner is sending
- Troubleshoot vulnerability checks to understand false positives and false negatives

Procedure:

Wireshark Installation

- Preparation
 - To prepare for this activity:
 - Turn on your PC by pressing the power button (Windows will start automatically).
 - Log in if necessary.
- Activity 1 Determine System Type
 - To determine system type:
 - Use msinfo32 (press Windows key, type "run", then type "Msinfo32") to display the system type. The system type will either be X86-based PC or X64-based PC. X86-based PC is a 32-bit system. X64-based PC is a 64-bit system.
 - Close msinfo32.
- Activity 2 Download Wireshark
 - To download Wireshark:
 - Open a web browser.
 - Navigate to https://www.wireshark.org/download.html
 - Select Download Wireshark.
 - Select the Wireshark Windows Installer matching your system type, either 32-bit or 64-bit as determined in Activity 1. Save the program in the Downloads folder.
 - Close the web browser.

- Activity 3 Install Wireshark
 - To install Wireshark:
 - Open Windows Explorer.
 - Select the Downloads folder.
 - Locate the version of Wireshark you downloaded in Activity 2. Double-click on the file to open it.
 - If you see a User Account Control dialog box, select Yes to allow the program to make changes to this computer.
 - Select Next > to start the Setup Wizard.
 - Review the license agreement. If you agree, select I Agree to continue.
 - Select Next > to accept the default components.
 - Select the shortcuts you would like to have created. Leave the file extensions selected. Select Next > to continue.
 - Select Next > to accept the default install location.
 - Select Install to begin installation.
 - Select Next > to install WinPcap.
 - Select Next > to start the Setup Wizard.
 - Review the license agreement. If you agree, select I Agree to continue.
 - Select Install to begin installation.
 - Select Finish to complete the installation of WinPcap.
 - Select Next > to continue with the installation of Wireshark.
 - Select Finish to complete the installation of Wireshark.

Capturing Packets

- After downloading and installing Wireshark, launch it and double-click the name of a network interface under Capture to start capturing packets on that interface.
- For example, if you want to capture traffic on your wireless network, click your wireless interface. You can configure advanced features by clicking Capture > Options, but this isn't necessary for now.

As soon as you click the interface's name, you'll see the packets start to appear in real time. Wireshark captures each packet sent to or from your system.

- If you have promiscuous mode enabled---it's enabled by default---you'll also see all the other packets on the network instead of only packets addressed to your network adapter.
- To check if promiscuous mode is enabled, click Capture > Options and verify the
 "Enable promiscuous mode on all interfaces" checkbox is activated at the bottom of
 this window.

• Click the red "Stop" button near the top left corner of the window when you want to stop capturing traffic.

Color Coding

- You'll probably see packets highlighted in a variety of different colors. Wireshark
 uses colors to help you identify the types of traffic at a glance.
- By default, light purple is TCP traffic, light blue is UDP traffic, and black identifies packets with errors---for example, they could have been delivered out of order.
- To view exactly what the color codes mean, click View > Coloring Rules. You can also customize and modify the coloring rules from here, if you like.

Sample Captures

- If there's nothing interesting on your own network to inspect, Wireshark's wiki has you covered. The wiki contains a <u>page of sample capture files</u> that you can load and inspect. Click File > Open in Wireshark and browse for your downloaded file to open one.
- You can also save your own captures in Wireshark and open them later. Click File > Save to save your captured packets.

Default Columns In a Packet Capture Output

NAME DESCRIPTION		
No.	Frame number from the beginning of the packet capture	
Time	Seconds from the first frame	
Source (src)	Source address, commonly an IPv4, IPv6 or Ethernet address	
Destination (dst)	Destination address	
Protocol	Protocol used in the Ethernet frame, IP packet, or TC segment	
Length Length of the frame in bytes		

Filtering Packets

Filter Types DESCRIPTION

NAME DESCRIPTION	
Capture filter Filter packets during capture	
Display filter	Hide packets from a capture display

 The most basic way to apply a filter is by typing it into the filter box at the top of the window and clicking Apply (or pressing Enter). For example, type "dns" and you'll see only DNS packets. When you start typing, Wireshark will help you autocomplete your filter.

- You can also click Analyze > Display Filters to choose a filter from among the default filters included in Wireshark. From here, you can add your own custom filters and save them to easily access them in the future.
- For more information on Wireshark's display filtering language, read the <u>Building display</u> <u>filter expressions</u> page in the official Wireshark documentation.

- Another interesting thing you can do is right-click a packet and select Follow > TCP Stream.
- You'll see the full TCP conversation between the client and the server. You can also click other protocols in the Follow menu to see the full conversations for other protocols, if applicable.
- Close the window and you'll find a filter has been applied automatically. Wireshark is showing you the packets that make up the conversation.

Filtering Packets (Display Filters)

OPERATOR	DESCRIPTION	EXAMPLE
eq or ==	Equal	ip.dest == 192.168.1.1
ne or !=	Not equal	ip.dest != 192.168.1.1
gt or >	Greater than	frame.len > 10
it or <	less than	frame.len < 10
ge or >=	Greater than or equal	frame.len >= 10
le or <=	Less than or equal	frame.len <= 10

Logical Operators

OPERATOR	DESCRIPTION	EXAMPLE
and or && Logical AND All the conditions should match		All the conditions should match
or or	Logical OR	Either all or one of the conditions should match
xor or ^^	Logical XOR	Exclusive alterations - only one of the two conditions should match not both
not or !	Not (Negation)	Not equal to
[n][]	Substring operator	Filter a specific word or text

Miscellaneous

NAME	DESCRIPTION
Slice Operator	[] - Range of values
Membership Operator	{} - In
CTRL+E	Start/Stop Capturing

Capture Filter Syntax

SYNTAX	PROTOCOL	DIRECTION	HOSTS	VALUE	LOGICAL OPERATOR	EXPRESSIONS
Example	tcp	src	192.168.1.1	80	and	tcp dst 202.164.30.1

Display Filter Syntax

SYNTAX	PROTOCOL	STRING 1	STRING 2	COMPARISON OPERATOR	VALUE	LOGICAL OPERATOR	EXPRESSIONS
Example	http	dest	ip	==	192.168.1.1	and	tcp port

Common Filtering Commands

USAGE	FILTER SYNTAX
Wireshark Filter by IP	ip.add == 10.10.50.1
Filter by Destination IP	ip.dest == 10.10.50.1
Filter by Source IP	ip.src == 10.10.50.1
Filter by IP range	ip.addr >= 10.10.50.1 and ip.addr <=10.10.50.100
Filter by Multiple Ips	ip.addr == 10.10.50.1 and ip.addr == 10.10.50.100
Filter out IP adress	! (ip.addr == 10.10.50.1)
Filter subnet	ip.addr == 10.10.50.1/24
Filter by port	tcp.port == 25
Filter by destination port	tcp.dstport == 23
Filter by ip adress and port	ip.addr == 10.10.50.1 and Tcp.port == 25
Filter by URL	http.host == "host name"
Filter by time stamp	frame.time >= "June 02, 2019 18:04:00"
Filter SYN flag	Tcp.flags.syn == 1 and tcp.flags.ack ==0
Wireshark Beacon Filter	wlan.fc.type_subtype = 0x08
Wireshark broadcast filter	eth.dst == ff:ff:ff:ff:ff
Wireshark multicast filter	(eth.dst[0] & 1)
Host name filter	ip.host = hostname
MAC address filter	eth.addr == 00:70:f4:23:18:c4
RST flag filter	tcp.flag.reset == 1

Inspecting Packets

Click a packet to select it and you can dig down to view its details.

• You can also create filters from here -- just right-click one of the details and use the Apply as Filter submenu to create a filter based on it.

Report

	Part I
1	What is Wireshark and how do you use it?
2	Can Wireshark see texts?
3	What are the 2 types of filters used by Wireshark?
4	Can Wireshark see incognito?
5	How do you capture packets in Wireshark?
6	What can hackers do with Wireshark?

	Part II
1	Is the frame an outgoing or an incoming frame?
2	Source IP address of the network-layer header in the frame:
3	Destination IP address of the network-layer header in the frame:
4	Total number of bytes in the whole frame:
5	Number of bytes in the Ethernet (data-link layer) header:
6	Number of bytes in the IP header:
7	Number of bytes in the TCP header:
8	Total bytes in the message (at the application layer):