Proof. Everything is straightforward. For example, if $a_1 \equiv_{\mathfrak{I}} b_1$ and $a_2 \equiv_{\mathfrak{I}} b_2$, then $b_1 - a_1 \in \mathfrak{I}$ and $b_2 - a_2 \in \mathfrak{I}$. Since \mathfrak{I} is an ideal, we get

$$(b_1 - a_1)b_2 = b_1b_2 - a_1b_2 \in \mathfrak{I}$$

and

$$(b_2 - a_2)a_1 = a_1b_2 - a_1a_2 \in \mathfrak{I}.$$

Since \Im is an ideal, and thus, an additive group, we get

$$b_1b_2 - a_1a_2 \in \mathfrak{I},$$

i.e., $a_1a_2 \equiv_{\mathfrak{I}} b_1b_2$. The equality $\operatorname{Ker} \pi = \mathfrak{I}$ holds because \mathfrak{I} is an ideal.

Example 30.1.

- 1. In the ring \mathbb{Z} , for every $p \in \mathbb{Z}$, the subroup $p\mathbb{Z}$ is an ideal, and $\mathbb{Z}/p\mathbb{Z}$ is a ring, the ring of residues modulo p. This ring is a field iff p is a prime number.
- 2. The quotient of the polynomial ring $\mathbb{R}[X]$ by a prime ideal \mathfrak{I} is an integral domain.
- 3. The quotient of the polynomial ring $\mathbb{R}[X]$ by a maximal ideal \mathfrak{I} is a field. For example, if $\mathfrak{I} = (X^2 + 1)$, the principal ideal generated by $X^2 + 1$ (which is indeed a maximal ideal since $X^2 + 1$ has no real roots), then $\mathbb{R}[X]/(X^2 + 1) \cong \mathbb{C}$.

The following proposition yields a characterization of prime ideals and maximal ideals in terms of quotients.

Proposition 30.8. Given a ring A, for any ideal $\mathfrak{I} \subseteq A$, the following properties hold.

- (1) The ideal \Im is a prime ideal iff A/\Im is an integral domain.
- (2) The ideal \Im is a maximal ideal iff A/\Im is a field.

Proof. (1) Assume that \Im is a prime ideal. Since \Im is prime, $\Im \neq A$, and thus, A/\Im is not the trivial ring (0). If [a][b] = 0, since [a][b] = [ab], we have $ab \in \Im$, and since \Im is prime, then either $a \in \Im$ or $b \in \Im$, so that either [a] = 0 or [b] = 0. Thus, A/\Im is an integral domain.

Conversely, assume that A/\mathfrak{I} is an integral domain. Since A/\mathfrak{I} is not the trivial ring, $\mathfrak{I} \neq A$. Assume that $ab \in \mathfrak{I}$. Then, we have

$$\pi(ab) = \pi(a)\pi(b) = 0,$$

which implies that either $\pi(a) = 0$ or $\pi(b) = 0$, since A/\mathfrak{I} is an integral domain (where $\pi: A \to A/\mathfrak{I}$ is the quotient map). Thus, either $a \in \mathfrak{I}$ or $b \in \mathfrak{I}$, and \mathfrak{I} is a prime ideal.