

Published in final edited form as:

J Am Chem Soc. 2008 July 23; 130(29): 9222–9223. doi:10.1021/ja8028153.

[4 + 2] Cycloadditions of N-Alkenyl Iminium Ions: Structurally Complex Heterocycles from a Three-Component Diels-Alder **Reaction Sequence**

Nihar Sarkar, Abhisek Banerjee, and Scott G. Nelson

University of Pittsburgh Center for Chemical Methodologies and Library Development, Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

> Nitrogen-containing heterocycles are ubiquitous substructures in a myriad of biologically active natural products and small-molecule pharmaceuticals. Accordingly, a wide range of target-directed and diversity-oriented synthesis activities are devoted to heterocycle synthesis. As a strategy for expanding existing hetero-Diels-Alder-based approaches to heterocycle synthesis, we were attracted to cationic 2-azadienes 1 as conduits to three-component [4 + 2]cycloaddition reactions accessing structurally and stereochemically diverse piperidine derivatives (Figure 1). The putative N-alkenyl iminium ion-alkene [4 + 2] cycloadditions would generate tetrahydropyridinium ion cycloadducts 2, allowing further functionalization through nucleophilic addition to the transposed iminium ion 2. Herein, we describe N-alkenyl iminium ions 1 as enabling tools for three-component [4 + 2] cycloaddition-iminium ion addition reactions that afford an efficient and versatile synthesis of highly substituted piperidines.

> Despite the prominence of 2-azadienes in the Diels-Alder lexicon.^{3,4} reaction designs offering in situ functionalization of incipient cycloadducts as a conduit to expanded functionality or structural diversity are relatively rare.⁵ This analysis inspired our interest in developing a general method for accessing cationic 2-azadienes under conditions conducive to realizing the putative intermolecular cycloaddition-iminium ion functionaliztion reaction sequence (Figure 1). Literature precedent implicated *N*-alkoxymethyl enamines (e.g., 3) as convenient precursors to the desired N-alkenyl iminium ion dienes via Lewis acid mediated N.O-acetal ionization (eq 1). 4d,f,6 In the absence of a well-established method for preparing these N-alkoxymethyl enamines.⁷ we selected metal-catalyzed isomerization of allylic amine derivatives as a convenient route to the requisite diene precursors.⁸ Indeed, the easily obtained allylic sulfonamides 4a,b participated in highly E-selective olefin isomerization using either Ir(I)- or Ru(II)-based catalysts to afford the putative diene precursors 3a,b in high yield. 9,10

^{© 2008} American Chemical Society sgnelson@pitt.edu.

Preliminary assessment of the *N*-alkoxymethyl enamines as participants in the multicomponent Diels–Alder reaction sequence utilized **3a** as the diene precursor (eq 2). Allyltrimethylsilane (**5**) was selected as a representative electron-rich dienophile offering the ancillary advantage that excess reagent would directly alkylate the tetrahydropyridinium ion cycloadduct. Accordingly, adding enamine **4a** to a mixture of allyltrimethylsilane (3 equiv) and TiCl₄ (1 equiv, CH₂Cl₂, –78 °C) delivered the C₁-alkylated piperidine **6** (89%). Cycloaddition proved to be highly endo-selective with incomplete facial selectivity during nucleophilic addition to

the iminium ion cycloadduct 7 providing 6 as a 2:1 mixture of C₁ epimers. 11

(2)

(1)

Rapid cycloaddition with electron-rich olefins is a defining feature of the N-alkenyl iminium ion dienes. For example, reacting $\bf 3a$ with TiCl₄, without allyl silane present, affects [4+2] cycloaddition with un-ionized enamine $\bf 3a$ to generate iminium ion $\bf 8$ (eq 3); quenching cycloadduct $\bf 8$ with allyl silane $\bf 5$ promotes C₁ allylation in addition to ionization/allylation of the pendant N,O-acetal to afford the tetrasubstituted piperidine $\bf 9$ as a 4:1 mixture of C₁ epimers (85%). Alternatively, hydride-mediated reduction of $\bf 8$ generated the 3,4,5-trisubstituted piperidine $\bf 10$ as a single endo-diastereomer. Consistent with the preceding allyl silane cycloadducts, the enamine cycloadditions were highly endo-selective. Is 13,14 The four newly formed C-C σ -bonds in $\bf 9$ exemplify the opportunities afforded by this reaction sequence for expanding structural diversity available from the traditional Diels-Alder manifold.

The *N*-alkenyl iminium ions express sufficient reactivity to engage electronically unactivated olefins as dienophiles in [4 + 2] cycloadditions. Activating **3a** with TiCl₄ (1 equiv) in the presence of cyclohexene and quenching the intervening cycloadduct **11** with allyltrimethylsilane or ketene acetal **12** delivered the perhydroisoquinoline derivatives **13** (59%) and **14** (57%), respectively, as single diastereomers (Scheme 1). These cycloadditions are highly exo-selective, suggesting that minimized nonbonded interactions are the determining factor in transition state organization. Ensuing nucleophilic addition to the cycloaddition-derived iminium ion **11** proceeds from the convex face of the cis-fused octahydroisoquinoline ring system to deliver **13** (or **14**) with the fully stereocontrolled construction of three new C–C σ -bonds. Norbornene participates in similarly selective cycloadditions with trimethylsilylcyanide or enol silane functionalization of the intervening cycloadduct **15**, affording cycloadducts **16** and **17**, respectively. Cyclooctene also reacts as the dienophile with **3a** to afford the [6.4.0] bicyclic heterocycle **18** (67%), wherein amine-mediated deprotonation was used as an altenative method for derivatizing the intervening iminium ion.

(3)

The utility of indole in the cycloaddition–alkylation sequence is illustrative of how similar reaction components can be alternated as dienophiles or nucleophiles to access dramatically different architectural types. *N*-Methyl indole functions as an effective nucleophile toward cycloadduct 11 to afford the perhydroisoquinoline 19 (53%) (Scheme 2). However, *N*-methyl indole is too Lewis basic to be compatible with the preceding Lewis acid mediated cycloaddition. *N*-Tosyl indole (20) possesses the correct electronics to participate in efficient [4 + 2] cycloaddition with 3a but lacks sufficient nucleophilicity to add to the intervening cycloadduct 21. As a result, ensuing iminium ion functionalization could be achieved independent of the preceding cycloaddition event; in this case, amine-mediated deprotonation of 21 delivered the tricyclic indole 22 in 77% yield.

The C_1 -substituted N-alkoxymethyl enamine **3b** provides access to azadienes possessing substitution at both terminal carbons (eq 4). Lewis acid mediated ionization of racemic **3b**

generates the anticipated mixture of (Z,E)- and (E,E)-dienes **23** and **24**, respectively. In situ cycloaddition of the more reactive (Z,E)-diene **23** affords the tetra-substituted piperidine **25** with high endo-selectivity (44%).

N-Alkenyl iminium ions enable multicomponent cycloaddition–iminium ion functionalization reactions, affording efficient access to structurally diverse and stereochemically rich piperidine derivatives. These attributes are expected to render this methodology generally useful in both target-directed and diversity-oriented synthesis activities.

(4)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgment

Support from the National Institutes of Health (R01 GM63151 and P50 GM067082 supporting the UPCMLD) and the Merck Research Laboratories is gratefully acknowledged.

References

- 1. For selected reviews, see:a Sondhi SM, Singhal N, Johar M, Reddy BS, Lown JW. Curr. Med. Chem 2002;9:1045. [PubMed: 12733983] b Newton RF. PharmaChem 2003;2:44. c Whitehouse MW. Curr. Med. Chem 2005;12:2931. [PubMed: 16378496]
- Kobayashi, S.; Jorgensen, KA., editors. Cycloaddition Reactions in Organic Synthesis. Wiley-VCH; Weinheim, Germany: 2002.
- For reviews, see: a Povarov LS. Russ. Chem. Rev 1967;36:656. b Schmidt RR. Angew. Chem., Int. Ed. Engl 1969;8:602. c Giordano C, Ribaldone G, Borosotti G. Synthesis 1971:92. d Boger DL. Tetrahedron 1983;39:2869. e Weinreb SM, Scola PM. Chem. Rev 1989;89:1525. f Jayakumar S, Ishar MPS, Mahajan MP. Tetrahedron 2002;58:379.
- 4. For selected relevant examples, see: a Bradsher CK, Solomons TWG. J. Am. Chem. Soc 1958;80:933. b Trifonov LS, Orahovats AS. Heterocycles 1984;22:355. c Shono T, Matsumara Y, Uchida K, Kobayashi H. J. Org. Chem 1985;50:3243. d Cheng Y, Ho E, Mariano PS, Ammon HL. J. Org. Chem 1985;50:5678. e Jnoff E, Ghosez L. J. Am. Chem. Soc 1999;121:2617. f Suga S, Nagaki A, Tsutsui Y, Yoshida J. Org. Lett 2003;5:945. [PubMed: 12633112] g Akiyama T, Morita H, Fuchibe K. J. Am. Chem. Soc 2006;128:13070. [PubMed: 17017784]
- For spectacular examples of cascade reactions involving N-protonated 2-azadienes, see: a Heathcock CH. Angew. Chem., Int. Ed. Engl 1992;31:665. b Heathcock CH. Proc. Natl. Acad. Sci. U.S.A 1996;93:14323. [PubMed: 8962049]
- Maryanoff BE, Zhang H-C, Cohen JH, Turchi IJ, Maryanoff CA. Chem. Rev 2004;104:1431. [PubMed: 15008627]
- 7. For an alternate route to related enamides, see: Coleman RS, Liu P-H. Org. Lett 2004;6:577. [PubMed: 14961627]
- 8. Zacuto MJ, Xu F. J. Org. Chem 2007;72:6298. [PubMed: 17625881]
- 9. a Nelson SG, Bungard CJ, Wang K. J. Am. Chem. Soc 2003;125:13000. [PubMed: 14570453] b Nelson SG, Wang K. J. Am. Chem. Soc 2006;128:4232. [PubMed: 16568990]
- 10. a Arisawa M, Terada Y, Nakagawa M, Nishida A. Angew. Chem., Int. Ed 2002;41:4732. b Alcaide B, Almendros P, Alonso JM, Luna A. Synthesis 2005:668.

11. For the allylation of related tetrahydropyridinium ions, see: Okitsu O, Suzuki R, Kobayashi S. J. Org. Chem 2001;66:809. [PubMed: 11430100]

- 12. The structures of compounds 9, 10, 13, and 19 were confirmed by X-ray diffraction analysis.
- 13. "Endo" describes the orientation of the dienophile's electron-donating substituent relative to the diene.
- 14. While the factors responsible for the observed endo-diastereoselection have not been definitively elucidated, attractive electrostatic interactions between diene and dienophile provide one possible explanation: Garcia JI, Mayoral JA, Salvatella L. Eur. J. Org. Chem 2004:85.

Ts OMe Lewis acid
$$\begin{bmatrix} Ts & R^1 \\ 1 & R^2 \end{bmatrix}$$
 $\begin{bmatrix} R^3 & R^4 \\ 2 & R^2 \end{bmatrix}$ $\begin{bmatrix} Ts & R^1 \\ R^4 \end{bmatrix}$ $\begin{bmatrix} R^3 & R^4 \\ R^4 \end{bmatrix}$ $\begin{bmatrix} Ts & R^4 \\ R^4 \end{bmatrix}$ $\begin{bmatrix} R^3 & R^4 \\ R^4 \end{bmatrix}$

Figure 1. [4 + 2]Cycloadditions of *N*-alkenyl iminium ion dienes.

Scheme 1.

Scheme 2.