MiniLM: Deep Self-attention Distillation For Task-agnostic Compression Of Pre-trained Transformers

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, Ming Zhou

Microsoft Research 2020

Miguel Angel Ruiz Ortiz

Maestría en Matemáticas Aplicadas

miguel.ruiz@cimat.mx

LIMITACIONES DE MODELOS GRANDES

 Modelos de lenguaje pre-entrenados (e.g., BERT)

Éxito en NLP

Tamaño masivo!

BERT_{BASE} (110M parámetros)
BERT_{LARGE} (340M parámetros)

#Layers	Hidden Size	#Param (Emd)	#Param (Trm)	Inference Time		
12	768	23.4M	85.1M	93.1s (1.0×)		
6	768	23.4M	42.5M	46.9s (2.0×)		
12	384	11.7M	21.3M	34.8s (2.7×)		
6	384	11.7M	10.6M	$17.7s(5.3\times)$		
4	384	11.7M	7.1M	12.0s (7.8×)		
3	384	11.7M	5.3M	$9.2s(10.1\times)$		

- Emd: Embedding -Trm: Transformer

LIMITACIONES DE MODELOS GRANDES

 Modelos de lenguaje pre-entrenados (e.g., BERT)

Éxito en NLP

Tamaño masivo!

BERT_{BASE} (110M parámetros)
BERT_{LARGE} (340M parámetros)

- Complica el fine-tuning
- Tiempos de inferencia lentos
- Límites en latencia en modelos en producción.

#Layers	Hidden Size	#Param (Emd)	#Param (Trm)	Inference Time		
12	768	23.4M	85.1M	93.1s (1.0×)		
6	768	23.4M	42.5M	46.9s (2.0×)		
12	384	11.7M	21.3M	$34.8s(2.7\times)$		
6	384	11.7M	10.6M	$17.7s(5.3\times)$		
4	384	11.7M	7.1M	12.0s (7.8×)		
3	384	11.7M	5.3M	$9.2s(10.1\times)$		

Emd: Embedding -Trm: Transformer

DESTILACIÓN DE CONOCIMIENTO

- Objetivo: Comprimir
 Transformers pre-entrenados
- Deep self-attention distillation

Teacher

Student

DESTILACIÓN DE LA ATENCIÓN

DESTILACIÓN DE LA ATENCIÓN

Función de costo:

1) Divergencia KL entre distribuciones de self-attention entre maestro y estudiante.

$$\mathcal{L}_{ ext{AT}} = rac{1}{A_h |x|} {\sum_{a=1}^{A_h} \sum_{t=1}^{|x|} D_{KL}(\mathbf{A}_{L,a,t}^T \parallel \mathbf{A}_{M,a,t}^S)}$$

2) Divergencia KL de selfattention values-values

$$\mathcal{L}_{ ext{VR}} = rac{1}{A_h |x|} {\sum_{a=1}^{A_h} \sum_{t=1}^{|x|} D_{KL}(\mathbf{V}\mathbf{R}_{L,a,t}^T \parallel \mathbf{V}\mathbf{R}_{M,a,t}^S)}$$

COMPARACIÓN CON PROPUESTAS ANTERIORES

Approach	Teacher Model	Distilled Knowledge	Layer-to-Layer Distillation	Requirements on the number of layers of students	Requirements or the hidden size of students	
DistillBERT	$BERT_{BASE}$	Soft target probabilities Embedding outputs			✓	
TinyBERT	$BERT_{BASE}$	Embedding outputs Hidden states Self-Attention distributions	- ✓			
MobileBERT	IB-BERT _{LARGE}	Soft target probabilities Hidden states Self-Attention distributions	✓	✓	✓	
MINILM	$BERT_{BASE}$	Self-Attention distributions Self-Attention value relation	***			

FINE TUNING EN SQUAD2 Y GLUE

Model	#Param	SQuAD2	MNLI-m	SST-2	QNLI	CoLA	RTE	MRPC	QQP	Average
BERTBASE	109M	76.8	84.5	93.2	91.7	58.9	68.6	87.3	91.3	81.5
DistillBERT	66M	70.7	79.0	90.7	85.3	43.6	59.9	87.5	84.9	75.2
TinyBERT	66M	73.1	83.5	91.6	90.5	42.8	72.2	88.4	90.6	79.1
MINILM	66M	76.4	84.0	92.0	91.0	49.2	71.5	88.4	91.0	80.4

- Destilaciones con 6 layers y 768 hidden dim
- MiniLM: 50% más ligero, retiene 99% del accuracy en diferentes tasks

Oracle Restricted

TEACHER ASSISTANT

- Modelo de tamaño intermedio entre el maestro y el estudiante.
- Guía el entrenamiento del estudiante.

Architecture	#Param	Model	SQuAD 2.0	MNLI-m	SST-2	Average
M=6;d' _h =384	22M	MLM-KD (Soft-Label Distillation)	67.9	79.6	89.8	79.1
		TinyBERT	71.6	81.4	90.2	81.1
		MINILM	72.4	82.2	91.0	81.9
		MINILM (w/TA)	72.7	82.4	91.2	82.1
	19M	MLM-KD (Soft-Label Distillation)	65.3	77.7	88.8	77.3
14 4.3/ 204		TinyBERT	66.7	79.2	88.5	78.1
$M=4;d'_{h}=384$		MINILM	69.4	80.3	90.2	80.0
		MINILM (w/ TA)	69.7	80.6	90.6	80.3
M =3; d_h' =384	17M	MLM-KD (Soft-Label Distillation)	59.9	75.2	88.0	74.4
		TinyBERT	63.6	77.4	88.4	76.5
		MINILM	66.2	78.8	89.3	78.1
		MINILM (w/TA)	66.9	79.1	89.7	78.6

TA: Teacher Assistant

Oracle Restricted

KEYTAKE AWAYS

- **Distilación centrada en atención**: MiniLM solo destila las distribuciones de self-attention de la última capa y las relaciones entre vectores value.
- Flexibilidad en la arquitectura del estudiante.
- Teacher assistant intermedio
- < $\frac{1}{2}$ de parámetros, y buena precisión.

GRACIAS

Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., & Zhou, M. (2020). MiniLM:
 Deep self-attention distillation for task-agnostic compression of pre-trained transformers. Advances in neural information processing systems, 33, 5776-5788.

onfidenti / Oracle Restrict