

目录

ONE 一个经典的问题

Monty Hall problem

TWO 条件概率

定量地描述信息的价值

THREE 贝叶斯定理

先验概率与后验概率

一个经典的问题

Monty Hall problem

Monty Hall problem (蒙提霍尔问题):

- · 坚持最初选择还是更改选择?
- · 绝大部分人的直觉是没必要更改选 择,因为获奖的概率都是50%

一个经典的问题

蒙特卡洛方法

直觉

直觉上,两扇门没有任何区别 背后是汽车的概率都为50% 所以,无所谓坚持或改变 蒙特卡洛方法

通过计算机来随机模拟现实

实际情况

目录

ONE 一个经典的问题

Monty Hall problem

TWO 条件概率

定量地描述信息的价值

THREE 贝叶斯定理

先验概率与后验概率

条件概率

Monty Hall problem的数学证明

用A表示汽车所在的门牌号

用B表示主持人打开的门牌号

根据贝叶斯定理

计算汽车在2号门 且主持人打开3号门的概率

$$P(A = 1) = P(A = 2) = P(A = 3) = \frac{1}{3}$$

坚持原有选择的 获奖概率

更改选择的 获奖概率

$$P(A = 1 | B = 3)$$
 $P(A = 2 | B = 3)$

$$P(A = 2 | B = 3) = \frac{P(A = 2, B = 3)}{P(B = 3)}$$

$$P(A = 2, B = 3) = P(B = 3 | A = 2) \times P(A = 2)$$

$$P(B = 3 | A = 2) = 1$$

$$P(A = 2, B = 3) = 1/3$$

条件概率

Monty Hall problem的数学证明

根据贝叶斯定理

$$P(A = 2 | B = 3) = \frac{P(A = 2, B = 3)}{P(B = 3)}$$
 $P(A = 2, B = 3) = 1/3$

1/3

 \bigcirc

$$P(B = 3) = P(A = 1, B = 3) + P(A = 2, B = 3) + P(A = 3, B = 3)$$

$$P(A = 1,B = 3) = P(B = 3 | A = 1) \times P(A = 1)$$

$$P(B = 3 | A = 1) = 1/2$$

$$P(A = 1,B = 3) = 1/2 \times 1/3 = 1/6$$

$$P(B = 3) = 1/6 + 1/3 = 1/2$$

$$P(A = 2 | B = 3) = \frac{1/3}{1/2} = \frac{2}{3}$$
 $P(A = 1 | B = 3) = \frac{1}{3}$

更改选择的获奖概率

坚持原有选择的 获奖概率

条件概率

定量地描述信息的价值

目录

ONE 一个经典的问题

Monty Hall problem

TWO 条件概率

定量地描述信息的价值

THREE 贝叶斯定理

先验概率与后验概率

贝叶斯定理

先验概率与后验概率

知因求果 建模假设 先验概率 A 已知汽车位置的情况下, 主 持人打开各号门的概率分布 生活常识、模型假设 $P(\mathbf{X} \mid y) \times P(y)$ $P(y \mid \mathbf{X}) =$ $P(\mathbf{X})$ 透过表象, 猜测原因 已知主持人开门位置的情况下, 后验概率 \boldsymbol{B} 汽车所在位置的概率分布 建模目的 知果求因

贝叶斯定理

THANK YOU