

Nombre : Jose Ismael Font Fernandez

Curso: Tecnico en ciberseguridad

Facilitador Kelvin Feliz

Modulo: CCNA1

Fundamentos de Redes Informáticas

Introducción

Una **Red Informática** es un sistema que interconecta dos o más dispositivos (como computadoras, servidores, impresoras y teléfonos inteligentes) con el propósito de compartir información, recursos y servicios. Constituyen la base de la comunicación digital moderna, incluyendo la propia Internet.

1. Conceptos Fundamentales

Para entender el funcionamiento de una red, es esencial conocer su terminología básica:

Concepto	Descripción
Protocolo	Un conjunto de reglas estandarizadas que define cómo se comunican dos o más dispositivos. El protocolo más importante es TCP/IP.
Paquete de Datos	La unidad fundamental de información que se transmite a través de una red. Los datos originales se dividen, se envían y luego se reensamblan en el destino.

Dirección IP (Internet Protocol)	Es el identificador lógico asignado a cada dispositivo en una red. Permite que los enrutadores (routers) dirijan el tráfico al destino correcto. Ejemplo: 192.168.1.5 o una dirección más compleja en IPv6.
Dirección MAC (Media Access Control)	Es el identificador físico y único pregrabado en la Tarjeta de Interfaz de Red (NIC) por el fabricante. Opera en el nivel de enlace de datos.
Servidor	Un equipo dedicado a gestionar recursos y proporcionar servicios (archivos, impresión, correo electrónico, web) a las estaciones de trabajo (clientes).
Cliente	Un dispositivo (computadora, móvil) que accede y utiliza los servicios proporcionados por un servidor.

2. Componentes de una Red

Toda red se compone de elementos de **hardware** y **software** que interactúan.

A. Dispositivos Físicos (Hardware)

Componente	Función Principal
Medios de Transmisión	El canal por donde viajan los datos. Incluye cables (par trenzado, fibra óptica) y medios inalámbricos (ondas de radio como Wi-Fi).
Router (Enrutador)	Dispositivo clave que interconecta redes distintas (por ejemplo, tu red local con Internet). Se encarga de determinar la mejor ruta para que los paquetes lleguen a su destino.

Switch (Conmutador)	Conecta dispositivos dentro de una misma red local (LAN). Envía el tráfico de datos de forma inteligente, solo al puerto del dispositivo de destino.
NIC (Tarjeta de Red)	El hardware instalado en un dispositivo que le permite conectarse a un medio de red.

B. Estructura Lógica

La **Topología de Red** se refiere a la disposición física o lógica de los nodos y las conexiones en una red.

Topología	Descripción
Bus	Todos los dispositivos están conectados a un único cable troncal. Si el cable principal falla, toda la red cae. (Antigua y poco usada).
Anillo	Cada dispositivo está conectado a otros dos, formando una estructura circular. Los datos circulan en una dirección.
Estrella	Todos los dispositivos se conectan a un punto central (un switch o hub). Es la más común hoy en día, ya que la falla de un nodo individual no afecta al resto de la red.

3. Tipos de Redes según su Alcance Geográfico

Las redes se clasifican principalmente según el área física que cubren:

Siglas	Nombre	Alcance Típico	Ejemplos

PAN	Personal Area Network	Pocos metros (Espacio personal)	Bluetooth, conexión de un móvil a un ordenador.
LAN	Local Area Network	Área limitada (Hogar, edificio, campus)	La red interna de una escuela o una oficina.
MAN	Metropolitan Area Network	Una ciudad o área metropolitana	Redes de cable de fibra óptica que interconectan sedes de empresas dentro de una misma urbe.
WAN	Wide Area Network	Grandes distancias (Países, continentes)	Internet es el ejemplo más grande de una WAN, que conecta múltiples LANs y MANs.

4. El Modelo de Interconexión de Sistemas Abiertos (OSI)

El **Modelo OSI** es un marco de referencia conceptual que estandariza las funciones internas de un sistema de comunicación. Lo divide en **siete capas** para simplificar la comprensión y el desarrollo de protocolos.

Las 7 Capas del Modelo OSI

Сара	Nombre	Función Clave	Unidades de Datos	Dispositivos Típicos
7	Aplicación	Interfaz directa con la aplicación del usuario. (Protocolos: HTTP, SMTP, FTP).	Datos	Gateway, Hosts
6	Presentación	Formato de datos, cifrado y compresión.	Datos	Hosts

5	Sesión	Establece, administra y finaliza las conexiones (sesiones) entre aplicaciones.	Datos	Hosts
4	Transporte	Entrega de datos de extremo a extremo y control de flujo. (Protocolos: TCP y UDP).	Segmentos	Firewall, Hosts
3	Red			Router, Capa 3 Switch
2	Enlace de Datos	Acceso al medio y direccionamiento físico (MAC). Control de errores.		Switch, Bridge
1	Física	Transmisión de bits a través del medio físico (voltajes, señales de luz u ondas de radio).	Bits	Cables, Hub, Repetidor

TCP vs. UDP (Capa de Transporte)

- TCP (Transmission Control Protocol): Confiable y orientado a la conexión. Se asegura de que todos los paquetes lleguen y lo hagan en orden. (Ej: navegación web, transferencia de archivos).
- **UDP** (User Datagram Protocol): **Rápido** y sin conexión. No garantiza la entrega ni el orden, pero es más rápido. (Ej: streaming de video, juegos en línea, llamadas VoIP).

5. Profundización: El Modelo TCP/IP

Aunque el Modelo OSI es un marco teórico de siete capas, el modelo que realmente utiliza Internet es el **Modelo TCP/IP** (o pila de protocolos de Internet), que es más pragmático y consta de cuatro o cinco capas.

El modelo TCP/IP es la columna vertebral de la comunicación moderna.

Capa TCP/IP	Capas OSI Equivalentes	Función Principal	Protocolos Clave
4. Aplicación	Aplicación, Presentación, Sesión (7, 6, 5)	Proporciona la interfaz para que las aplicaciones de usuario accedan a los servicios de red.	HTTP, FTP, SMTP, DNS, SSH.
3. Transporte	Transporte (4)	Gestión de la comunicación de extremo a extremo, controlando la fiabilidad y el flujo de datos.	TCP, UDP.
2. Internet	Red (3)	Direccionamiento lógico y enrutamiento de paquetes entre diferentes redes.	IP (IPv4/IPv6), ICMP.
1. Acceso a la Red	Enlace de Datos, Física (2, 1)	Gestiona el acceso al medio físico (cable o inalámbrico) y el direccionamiento físico.	Ethernet, Wi-Fi, PPP.

6. Dispositivos de Red y su Capa de Operación

Los dispositivos de red se clasifican por la capa del Modelo OSI en la que operan. Entender esto es fundamental para el diseño y la solución de problemas.

Capa OSI	Dispositivo	Función Específica

Capa 3 (Red)	Router (Enrutador)	Decide el mejor camino (enrutamiento) para un paquete entre diferentes redes (subredes). Utiliza Direcciones IP para tomar decisiones.
Capa 2 (Enlace de Datos)	Switch (Conmutador)	Conecta dispositivos dentro de la misma red (LAN). Utiliza Direcciones MAC para enviar datos directamente al puerto del dispositivo de destino.
Capa 1 (Física)	Hub (Concentrador)	Recibe bits por un puerto y los retransmite a todos los demás puertos. Es un dispositivo "tonto" que no toma decisiones.
Capa 1 (Física)	Repetidor	Regenera y amplifica la señal eléctrica o de luz para extender el alcance del medio de transmisión.

Diferencia Clave:

- Un **Router** conecta redes.
- Un **Switch** conecta dispositivos dentro de una red.

7. Comparación Detallada: TCP vs. UDP

Ambos protocolos operan en la Capa de Transporte (Capa 4 del Modelo OSI / Capa 3 del Modelo TCP/IP), pero son radicalmente diferentes en su enfoque:

Característica	TCP (Protocolo de Control de Transmisión)	UDP (Protocolo de Datagramas de Usuario)
Confiabilidad	Alta. Garantiza la entrega y el orden de los datos.	Baja/Nula. No garantiza la entrega.

Conexión	Orientado a la Conexión. Requiere un "apretón de manos" (handshake) de tres pasos antes de enviar datos.	Sin Conexión. Envía datos inmediatamente (Datagramas).	
Control de Errores	Incluye numeración de secuencia y acuses de recibo (ACK) para retransmitir paquetes perdidos.	Solo incluye una suma de comprobación (checksum) para la detección básica; no realiza corrección.	
Velocidad	Más lento debido a la sobrecarga de control y retransmisión.	Más rápido y eficiente (menos sobrecarga).	
Uso Típico	Navegación Web (HTTP), Correo Electrónico (SMTP/POP/IMAP), Transferencia de archivos (FTP).	Streaming de Video/Audio, Juegos en línea, DNS, VoIP.	

8. Protocolos Adicionales de la Capa de Aplicación

La Capa de Aplicación (Capa 7 de OSI) es donde interactúan las aplicaciones de usuario y contiene muchos protocolos cruciales:

Protocolo	Siglas	Función	Puerto Predeterminado
HTTP(S)	HyperText Transfer Protocol (Secure)	Transferencia de páginas web. HTTPS añade cifrado (SSL/TLS).	TCP 80 (HTTP), TCP 443 (HTTPS)

DNS	Domain Name System	Traduce nombres de dominio legibles (ej: https://www.google.com/search?q= google.com) a direcciones IP numéricas.	UDP 53 / TCP 53
DHCP	Dynamic Host Configuration Protocol	Asigna automáticamente direcciones IP, máscaras de red y otros parámetros a los dispositivos de la red.	UDP 67 y 68
SMTP	Simple Mail Transfer Protocol	Utilizado para el envío de correo electrónico.	TCP 25
POP3/IMAP	Post Office Protocol / Internet Message Access Protocol	Utilizados para la recepción y acceso al correo electrónico.	TCP 110 (POP3), TCP 143 (IMAP)
FTP	File Transfer Protocol	Usado para la transferencia de archivos grandes entre un cliente y un servidor.	TCP 20 y 21