Definicja 1. Niech $N = (P, T, F, W, M_0)$ będzie siecią uogólnioną. Sieć N nazywamy stabilną wtedy i tylko wtedy, gdy dla każdego miejsca p sieci N, istnieje liczba całkowita dodatnia n taka, że dla wszystkich znakowań M, osiągalnych ze znakowania początkowego M_0 , ważona suma znaczników jest stała. Jeżeli warunek ten zachodzi jedynie dla właściwego podzbioru P' zbioru miejsc P sieci N, to sieć nazywamy częściowo stabilną.

Twierdzenie 1. Niech $N=(P,T,F,W,M_0)$ będzie siecią uogólnioną. Wtedy dla każdego P-niezmiennika I sieci N oraz każdego znakowania $M \in [M_0)$ spełniony jest warunek $M \circ I = M_0 \circ I$.

Dowód. Niech $M \in [M_0\rangle$ i niech tranzycje $t_1, t_2, \ldots, t_n \in T$ będą takie, że $M_0[t_1, t_2, \ldots, t_n\rangle M$. Warunek ten możemy zapisać w postaci: $M = M_0 + (t_1 + t_2 + \ldots + t_n)$. Ponieważ I jest P-niezmiennikiem, więc spełniony jest warunek: $t_i \circ I = 0$ dla $i = 1, 2, \ldots, n$. Otrzymujemy stąd, że: $M \circ I = (M_0 + t_1 + t_2 + \ldots + t_n) \circ I = M_0 \circ I + t_1 \circ I + t_2 \circ I + \ldots + t_n \circ I = M_0 \circ I$.

Wniosek 2. Niech $N=(P,T,F,W,M_0)$ będzie żywą siecią uogólnioną i niech $T:P\to\mathbb{Z}$ będzie wektorem miejsc. Wektor I jest P-niezmiennikiem wtedy i tylko wtedy, gdy $M\circ I=M_0\circ I$ dla wszystkich $M\in[M_0\rangle$.