Оптимальное удержание при перестраховании для некоторых типов риска

Эльдеев Долан Хонгорович, гр. 19.Б04-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: к.ф.-м.н., доцент Товстик Т.М. Рецензент: д.ф.-м.н., профессор Невзоров В.Б.

Санкт-Петербург, 2023

Введение

Премия — это цена страхования, продаваемого страховыми компаниями. Принцип расчета премии — это правило, определяющее какая премия должна быть назначена для заданного риска. Для актуария риск — это случайная величина Z, а премия — действительное число P. Метод расчета премии $H[\ast]$ описывает, как получить P, если известно Z.

Перестрахование — это страхование страховых компаний. Одна из главных целей перестрахования — ограничить годовые убытки передающей компании.

Удержание — часть риска, который остается у перестраховщика после перестрахования.

Цели работы

- Найти оптимальные удержания при заданной потенциальной прибыли перестраховщика для N независимых договоров типа Стоп Лосс.
- Найти вероятности разорения до и после перестрахования.

Модель Крамера-Лундберга

Определение

Пусть U — начальный капитал, X_i — страховое возмещение(независимы при всех i), K_t — число страховых случаев за время t, $Z_t = \sum_{i=1}^{K_t} X_i$ — суммарное страховое возмещение за время t, P_t — премия за время t. Капитал компании в момент времени t:

$$U_t = U + P_t - Z_t.$$

Модель, у которой премия растет равномерно, страховые возмещения X_i независимы и одинаково распределены, а их число K_t — случайные величины, распределенные по закону Пуассона, называют моделью Крамера-Лундберга.

Неравенство Крамера

Теорема (Штрауб Э. 1994)

Пусть $\Psi(U)$ — вероятность разорения компании при начальном капитале U. Вероятность разорения $\Psi(U)$ удовлетворяет неравенству Крамера:

$$\Psi(U) \le e^{-\beta U}, \quad \mathbf{E}e^{-\beta Y} = 1, \quad Y = P - Z, \quad Z = \sum_{i=1}^{K} X_i.$$

Приближенная оценка в неравенстве Крамера

Приближенная оценка
$$eta$$
 при $Y=\sum_{k=1}^N (P_k-Z_k)$: $\mathbf{E} e^{-eta Y}=1$,

$$\varphi_{-Y}(\beta) = 0 \approx -\beta \mathbf{E}Y + \frac{1}{2!}\beta^2 \mathbf{D}Y, \quad \beta = \frac{2\mathbf{E}Y}{\sum_{k=1}^{N} \mathbf{D}Z_k}, \quad \mathbf{D}Y = \sum_{k=1}^{N} \mathbf{D}Z_k.$$

Приближенная оценка ildeeta при наличии перестрахования и

$$\tilde{Y} = \sum_{k=1}^{N} (\tilde{P}_k - \tilde{Z}_k) \colon \mathbf{E}e^{-\tilde{\beta}\tilde{Y}} = 1,$$

$$\varphi_{-\tilde{Y}}(\tilde{\beta}) = 0 \approx -\tilde{\beta}\mathbf{E}\tilde{Y} + \frac{1}{2}\tilde{\beta}^{2}\mathbf{D}\tilde{Y}, \quad \tilde{\beta} = \frac{2\mathbf{E}\tilde{Y}}{\sum_{k=1}^{N}\mathbf{D}\tilde{Z}_{k}}, \quad \mathbf{D}\tilde{Y} = \sum_{k=1}^{N}\mathbf{D}\tilde{Z}_{k}.$$

Договор перестрахования типа Стоп Лосс

Пусть $ilde{X}_i$ — иск передающей компании, $ilde{X}_i$ — иск перестраховочной компании. Страховое возмещение при i-ом страховом случае:

$$X_i = \tilde{X}_i + \dot{X}_i.$$

Суммарное страховое возмещение за год:

$$Z = \sum_{i=1}^{K} X_i, \quad \tilde{Z} = \sum_{i=1}^{K} \tilde{X}_i, \quad \dot{Z} = \sum_{i=1}^{K} \dot{X}_i, \quad Z = \tilde{Z} + \dot{Z}.$$

Исходная компания получает премию P:

$$P = (1 + \delta)\mathbf{E}Z.$$

Перестраховочной компании исходная передает \dot{P} :

$$\dot{P} = (1 + \dot{\delta})\mathbf{E}\dot{Z}.$$

Договор перестрахования типа Стоп Лосс

Определение

Договор типа Стоп Лосс имеет вид:

$$\tilde{Z} = \begin{cases} Z, & \text{если } Z \leq \rho P \\ \rho P, & \text{если } Z > \rho P \end{cases},$$

$$\dot{Z} = egin{cases} 0, & & \mbox{если } Z \leq
ho P \ Z -
ho P, & & \mbox{если } Z >
ho P \end{cases}.$$

Величина ho P называется точкой стоп лосс.

Исходные данные

При $1 \le k \le N$:

$$F_k(z) = \begin{cases} 1 - e^{-b_k z} &, z \ge 0, \\ 0 &, z < 0. \end{cases}$$

$$N=3$$
,

$$b_1 = 0.02, \quad b_2 = 0.01, \quad b_3 = 0.005.$$

Премиальные нагрузки после перестрахования:

$$\dot{\delta}_1 = 0.6, \quad \dot{\delta}_2 = 0.5, \quad \dot{\delta}_3 = 0.4.$$

Первые моменты:

$$\mathbf{E}Z_1 = 50, \quad \mathbf{E}Z_2 = 100, \quad \mathbf{E}Z_3 = 200.$$

Оптимальные удержания перестрахования при N исках одного типа

Теорема (Штрауб Э. 1994)

Пусть заключено N независимых договоров перестрахования типа Cтоп Лосс. Оптимальные удержания $R_k = \rho_k P_k$, k=1,...,N, минимизирующие сумму дисперсий суммарных страховых возмещений удержаний $\min \sum \mathbf{D} \tilde{Z}_k$ при условии, что потенциальная прибыль перестраховщика \dot{C} определена исходной компанией, подчиняются уравнениям:

$$\dot{C} = \mathbf{E}\dot{Y} = \sum_{k=1}^{N} \dot{\delta_k} \mathbf{E} (Z_k - \tilde{Z}_k),$$

$$\int_0^{R_k} (R_k - z) \, dF_k(z) = \alpha \dot{\delta}_k, \quad \alpha = \frac{\dot{C} - \sum_{k=1}^N \dot{\delta}_k (\mathbf{E} Z_k - R_k)}{\sum_{k=1}^N \dot{\delta}_k^2}.$$

Лагранжиан для вычисления R_k

Уравнения для оптимальных удержаний найдены с помощью Лагранжиана:

$$\Phi(R_1, R_2, \dots, R_N, \alpha) = \sum_{k=1}^N \mathbf{D}\tilde{Z}_k + 2\alpha \left(\sum_{k=1}^N \dot{\delta}_k \mathbf{E} \dot{Z}_k - \dot{C}\right).$$

При потенциальной прибыли перестраховщика $\dot{C}=32.8$ получаем следующие приоритеты договоров перестрахования

$$R_1 = 187, \quad R_2 = 202, \quad R_3 = 229$$

и удержание

$$\alpha = 230.$$

Вычисление моментов

$$\begin{aligned} \mathbf{D}Z_1 &= 2500, \quad \mathbf{D}Z_2 = 10000, \quad \mathbf{D}Z_3 = 40000. \\ \mathbf{E}\tilde{Z}_k &= \int_0^{R_k} z \, \mathrm{d}F_k(z) + R_k \bar{F}_k(R_k), \\ \mathbf{E}\tilde{Z}_k^2 &= \int_0^{R_k} z^2 \, \mathrm{d}F_k(z) + R_k^2 \bar{F}_k(R_k). \\ \bar{F}_1(R_1) &= 1 - F_1(R_1) = 1 - (1 - e^{-b_1 R_1}) = e^{-b_1 R_1} \approx 0,024. \\ \bar{F}_2(R_2) &= 0,133, \quad \bar{F}_3(R_3) = 0,318. \\ \mathbf{E}\tilde{Z}_1 &= 48,8, \quad \mathbf{E}\tilde{Z}_2 = 86,8, \quad \mathbf{E}\tilde{Z}_3 = 136,3. \\ \mathbf{D}\tilde{Z}_1 &= 2064,19, \quad \mathbf{D}\tilde{Z}_2 = 4467,43, \quad \mathbf{D}\tilde{Z}_3 = 6803,34. \end{aligned}$$

Вычисление капитала

Зададим начальный капитал
$$U = 400 < \sum_{k=1}^{N} (1 + \delta_k) \mathbf{E} Z_k$$
.

При заключении договора перестрахования исходная компания передает следующий капитал:

$$\dot{U} = \sum_{k=1}^{N} (1 + \dot{\delta}_k) (\mathbf{E} Z_k - \mathbf{E} \tilde{Z}_k) = 110.9.$$

После перестрахования у исходной компании образуется остаточный капитал: $\tilde{U} = U - \dot{U} = 289{,}1$.

Вероятность разорения

1) При $\delta_1 = 0.1, \quad \delta_2 = 0.2, \quad \delta_3 = 0.3$ имеем:

	Ψ	Потенциальная прибыль
до перестрахования	0,27	85
после перестрахования	0,10	52,2

2) При $\delta_1=\dot{\delta_1}=0.6, \quad \delta_2=\dot{\delta_2}=0.5, \quad \delta_3=\dot{\delta_3}=0.4$ имеем:

	Ψ	Потенциальная прибыль
до перестрахования	0,087	160
после перестрахования	0,0040245	127,2

3) При $\delta_1 = 0.7, \quad \delta_2 = 0.8, \quad \delta_3 = 0.9$ имеем:

	Ψ	Потенциальная прибыль
до перестрахования	0,01	295
после перестрахования	0,00001155	262,2

Отношение потери прибыли

Потенциальной прибыль исходной компании до перестрахования:

$$C = \mathbf{E}Y = \sum_{k=1}^{N} \delta_k \mathbf{E} Z_k.$$

- 1) При C=85 имеем $\frac{\dot{C}}{C}=0.38$ или 38%, если $\delta_k<\dot{\delta}_k$, $1\leq k\leq N$.
- 2) При C=160 имеем $\frac{\dot{C}}{C}=0{,}21\,$ или $\,21\%$, если $\delta_k=\dot{\delta}_k,\,\,1\leq k\leq N.$

Заключение

- Показана приближенная оценка вероятности разорения при N независимых договорах до и после перестрахования.
- Найдены оптимальные удержания при N независимых договорах перестрахования типа Стоп Лосс для конкретных данных.
- При экспоненциальном распределении суммарных страховых возмещений найдены вероятности разорения до и после перестрахования.
- Сделанные расчеты дают возможность исходной компании определить оптимальные параметры при перестраховании, так как указана связь изменения вероятности разорения с изменением потенциальной прибыли перестраховщика.
- При рассмотрении других распределений путь решения идентичен.