CH365 Chemical Engineering Thermodynamics

Lesson 32 Review

Professor Andrew Biaglow 14 November 2022

Homework

This review focused on homework problems in problem set 11.

What is the mole fraction of water vapor in air that is saturated with water at 25 deg C and 101.33 kPa?

At 50 deg C and 101.33 kPa?

Estimate the entropy changes of vaporizations of benzene at 50 deg C. The vapor pressure of benzene is given by the equation

$$ln(P^{sat}/kPa) = 13.8858 - \frac{2788.51}{(t/degC) + 220.79}$$

- (a) Use Eq. 6.86 with an estimated value of ΔVIv .
- (b) Use the Clausius-Clapeyron equation from Example 6.6.

Report your answers in J/(mol-K).

(mixtures)

An equimolar mixture of methane and propane is discharged from a compressor at 5,500 kPa and 90 deg C at a rate of 1.4 kg/sec. If the velocity in the discharge line is not to exceed 30 m/sec, what is the minimum diameter of the discharge line?

Steam at 2,100 kPa and 260 deg C expands at constant enthalpy (as in a throttling process) to 125 kPa. What is the temperature of the steam in its final state and what is its entropy change? What would be the final temperature and entropy change for an ideal gas?

Study example 6.9 closely first

Steam at 2,100 kPa and 260 deg C expands at constant enthalpy (as in a throttling process) to 125 kPa. What is the temperature of the steam in its final state and what is its entropy change? What would be the final temperature and entropy change for an ideal gas?

Interpolation of points in steam tables

(x,y) is between (x_1,y_1) and (x_2,y_2)

$$\frac{y-y_1}{x-x_1} = \frac{y_2-y_1}{x_2-x_1}$$

$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1}$$

Remember slope is constant between two points

275 - 250

6.6356 – 6.5162 TABLE E.2 Properties of Superheated Steam (Continued)

,	$S_1 = 6.$	564	40 <u>kJ</u> kg⋅k	.	TEMPERATURE: t°C (TEMPERATURE: T kelvins)									
	P/kPa (t ^{sat} /°C)		sat. Iiq.	sat. vap.	200 (473.15)	225 (498.15)	250 (523.15)	275 (548.15)	300 (573.15)	325 (598.15)	350 (623.15)	375 (648.15)		
Ç.	1750 (205.72)	V U H S	1.166 876.234 878.274 .2.3846	113.38 2595.7 2794.1 6.3853		120.39 2637.6 2848.2 6.4961	128.85 2687.7 2913.2 6.6233	136.82 2734.5 2974.0 6.7368	144.45 2779.3 3032.1 6.8405	151.87 2822.7 3088.4 6.9368	159.12 2865.3 3143.7 7.0273	166.27 2907.4 3198.4 7.1133		
	1800 (207.11)	V U H S	1.168 882.472 884.574 2.3976	110.32 2596.3 2794.8 6.3751		116.69 2635.5 2845.5 6.4787	124.99 2686.1 2911.0 6.6071	132.78 2733.3 2972.3 6.7214	140.24 2778.2 3030.7 6.8257	147.48 2821.8 3087.3 6.9223	154.55 2864.5 3142.7 7.0131	161.51 2906.7 3197.5 7.0993		
	1850 (208.47)	V U H S	1.170 888.585 890.750 2.4103	107.41 2596.8 2795.5 6.3651		113.19 2633.3 2842.8 6.4616	121.33 2684.4 2908.9 6.5912	128.96 2732.0 2970.6 6.7064	136.26 2777.2 3029.3 6.8112	143.33 2820.9 3086.1 6.9082	150.23 2863.8 3141.7 6.9993	157.02 2906.1 3196.6 7.0856		
	1900 (209.80)	V U H S	1.172 894.580 896.807 2.4228	104.65 2597.3 2796.1 6.3554		109.87 2631.2 2840.0 6.4448	117.87 2682.8 2906.7 6.5757	125.35 2730.7 2968.8 6.6917	132.49 2776.2 3027.9 6.7970	139.39 2820.1 3084.9 6.8944	146.14 2863.0 3140.7 6.9857	152.76 2905.4 3195.7 7.0723		
	1950 (211.10)	V U H S	1.174 900.461 902.752 2.4349	102.031 2597.7 2796.7 6.3459		106.72 2629.0 2837.1 6.4283	114.58 2681.1 2904.6 6.5604	121.91 2729.4 2967.1 6.6772	128.90 2775.1 3026.5 6.7831	135.66 2819.2 3083.7 6.8809	142.25 2862.3 3139.7 6.9725	148.72 2904.8 3194.8 7.0593		
	2000 (212.37)	V U H S	1.177 906.236 908.589 2.4469	99.536 2598.2 2797.2 6.3366		103.72 2626.9 2834.3 6.4120	111.45 2679.5 2902.4 6.5454	118.65 2728.1 2965.4 6.6631	125.50 2774.0 3025.0 6.7696	132.11 2818.3 3082.5 6.8677	138.56 2861.5 3138.6 6.9596	144.89 2904.1 3193.9 7.0466		
	2100 (214.85)	V U H S	1.181 917.479 919.959 2.4700	94.890 2598.9 2798.2 6.3187		98.147 2622.4 2828.5 6.3802	105.64 2676.1 2897.9 6.5162	112.59 2725.4 2961.9 6.6356	119.18 2771.9 3022.2 6.7432	125.53 2816.5 3080.1 6.8422	131.70 2860.0 3136.6 6.9347	137.76 2902.8 3192.1 7.0220		
	2200 (217.24)	V U H S	1.185 928.346 930.953 2.4922	90.652 2599.6 2799.1 6.3015		93.067 2617.9 2822.7 6.3492	100.35 2672.7 2893.4 6.4879	107.07 2722.7 2958.3 6.6091	113.43 2769.7 3019.3 6.7179	119.53 2814.7 3077.7 6.8177	125.47 2858.5 3134.5 6.9107	131.28 2901.5 3190.3 6.9985		
	2300 (219.55)	V U H S	1.189 938.866 941.601 2.5136	86.769 2600.2 2799.8 6.2849		88.420 2613.3 2816.7 6.3190	95.513 2669.2 2888.9 6.4605	102.03 2720.0 2954.7 6.5835	108.18 2767.6 3016.4 6.6935	114.06 2812.9 3075.3 6.7941	119.77 2857.0 3132.4 6.8877	125.36 2900.2 3188.5 6.9759		

APPENDIX E. Steam Tables

Steam at 2,100 kPa and 260 deg C expands at constant enthalpy (as in a throttling process) to 125 kPa. What is the temperature of the steam in its final state and what is its entropy change? What would be the final temperature and entropy change for an ideal gas?

- $T_1 = 260 \text{ degC}$
- $P_1 = 2,100 \text{ kPa}$
- Superheated steam, Table E.2, page 705.
- Interpolate between 250 and 275 degC.
- $S_1 = 6.5640 \text{ kJ/(kg} \cdot \text{K)}$
- $H_1 = 2,923.5 \text{ kJ/kg}$
- $H_2 = H_1 = 2,923.5 \text{ kJ/kg}$
- $P_2 = 125 \text{ kPa}$

 $=\frac{\textcolor{red}{2923.5}-2874.2}{\textcolor{red}{2923.9}-2874.2}$ $T_2 - 200$

225 - 200

 $T_2 = 224.80$ °C $S_2 = 7.8316 \frac{kJ}{kg \cdot K}$

Slide 10 Finding T_2 and S_2

TABLE E.2 Properties of Superheated Steam

TEMPERATURE: t°C

692

			sat. liq.	sat. vap.	(TEMPERATURE: T kelvins)								
	P/kPa (t ^{sat} /°C)	75 (348.15)			100 (373.15)	125 (398.15)	150 (423.15)	175 (448.15)	200 (473.15)	225 (498.15)	250 (523.15)		
	101.325 (100.00)	V U H S	1.044 418.959 419.064 1.3069	1673.0 2506.5 2676.0 7.3554		1673.0 2506.5 2676.0 7.3554	1792.7 2544.7 2726.4 7.4860	1910.7 2582.6 2776.2 7.6075	2027.7 2620.4 2825.8 7.7213	2143.8 - 2658.1 2875.3 7.8288	2259.3 2695.9 2924.8 7.9308	2374.5 2733.9 2974.5 8.0280	AFFENDIA E.
	125 (105.99)	V U H S	1.049 444.224 444.356 1.3740	1374.6 2513.4 2685.2 7.2847			1449.1 2542.9 2724.0 7.3844	1545.6 2581.2 2774.4 7.5072	1641.0 2619.3 2824.4 7.6219	1735.6 2657.2 2874.2 7.7300	1829.6 2695.2 2923.9 7.8324	1923.2 2733.3 2973.7 7.9300	
,	150 (111.37)	V U H S	1.053 466.968 467.126 1.4336	1159.0 2519.5 2693.4 7.2234			1204.0 2540.9 2721.5 7.2953	1285.2 2579.7 2772.5 7.4194	1365.2 2618.1 2822.9 7.5352	1444.4 2656.3 2872.9 7.6439	1523.0 2694.4 2922.9 7.7468	1601.3 2732.7 2972.9 7.8447	Sieum Luoies
(175 (116.06)	V U H S	1.057 486.815 487.000 1.4849	1003.34 2524.7 2700.3 7.1716			1028.8 2538.9 2719.0 7.2191	1099.1 2578.2 2770.5 7.3447	1168.2 2616.9 2821.3 7.4614	1236.4 2655.3 2871.7 7.5708	1304.1 2693.7 2921.9 7.6741	1371.3 2732.1 2972.0 7.7724	
	200 (120.23)	V U H S	1.061 504.489 504.701 1.5301	885.44 2529.2 2706.3 7.1268			897.47 2536.9 2716.4 7.1523	959.54 2576.6 2768.5 7.2794	1020.4 2615.7 2819.8 7.3971	1080.4 2654.4 2870.5 7.5072	1139.8 2692.9 2920.9 7.6110	1198.9 2731.4 2971.2 7.7096	
(225 (123.99)	V U H S	1.064 520.465 520.705 1.5705	792.97 2533.2 2711.6 7.0873			795.25 2534.8 2713.8 7.0928	850.97 2575.1 2766.5 7.2213	905.44 2614.5 2818.2 7.3400	959.06 2653.5 2869.3 7.4508	1012.1 2692.2 2919.9 7.5551	1064.7 2730.8 2970.4 7.6540	
(250 (127.43)	V U H S	1.068 535.077 535.343 1.6071	718.44 2536.8 2716.4 7.0520				764.09 2573.5 2764.5 7.1689	813.47 2613.3 2816.7 7.2886	861.98 2652.5 2868.0 7.4001	909.91 2691.4 2918.9 7.5050	957.41 2730.2 2969.6 7.6042	
(275 (130.60)	V U H S	1.071 548.564 548.858 1.6407	657.04 2540.0 2720.7 7.0201				693.00 2571.9 2762.5 7.1211	738.21 2612.1 2815.1 7.2419	782.55 2651.6 2866.8 7.3541	826.29 2690.7 2917.9 7.4594	869.61 2729.6 2968.7 7.5590	
(300 (133.54)	V U H S	1.073 561.107 561.429 1.6716	605.56 2543.0 2724.7 6.9909				633.74 2570.3 2760.4 7.0771	675.49 2610.8 2813.5 7.1990	716.35 2650.6 2865.5 7.3119	756.60 2689.9 2916.9 7.4177	796.44 2729.0 2967.9 7.5176	

Steam at 2,100 kPa and 260 deg C expands at constant enthalpy (as in a throttling process) to 125 kPa. What is the temperature of the steam in its final state and what is its entropy change? What would be the final temperature and entropy change for an ideal gas?

- $T_1 = 260 \text{ degC}$
- $P_1 = 2,100 \text{ kPa}$
- Superheated steam, Table E.2, page 705.
- Interpolate between 250 and 275 degC.
- $S_1 = 6.5640 \text{ kJ/(kg} \cdot \text{K)}$
- $H_1 = 2,923.5 \text{ kJ/kg}$
- $H_2 = H_1 = 2,923.5 \text{ kJ/kg}$
- $P_2 = 125 \text{ kPa}$
- at 125 kPa and 200 deg C, H = 2,874.2 kJ/kg
- at 125 kPa and 225 deg C, H = 2,923.9 kJ/kg
- at 125 kPa and 250 deg C, H = 2,973.7 kJ/kg

• T_2 = 224.8 deg C

Steam at 2,100 kPa and 260 deg C expands at constant enthalpy (as in a throttling process) to 125 kPa. What is the temperature of the steam in its final state and what is its entropy change? What would be the final temperature and entropy change for an ideal gas?

- $T_1 = 260 \text{ degC}$
- $P_1 = 2,100 \text{ kPa}$
- Superheated steam, Table E.2, page 705.
- Interpolate between 250 and 275 degC.
- $S_1 = 6.5640 \text{ kJ/(kg} \cdot \text{K)}$
- $P_2 = 125 \text{ kPa}$
- at 125 kPa and 200 deg C, S = 7.7300 kJ/(kg·K)
- at 125 kPa and 225 deg C, S = 7.8324 kJ/(kg·K)
- $S_2 = 7.8316 \text{ kJ/(kg·K)}$
- Δ S = 7.8316 6.5640 = 1.2676 kJ/(kg·K)

Steam at 2,100 kPa and 260 deg C expands at constant enthalpy (as in a throttling process) to 125 kPa. What is the temperature of the steam in its final state and what is its entropy change? What would be the final temperature and entropy change for an ideal gas?

Ideal gas:

- $T_1 = 260 \text{ degC}$ $P_1 = 2,100 \text{ kPa}$ $P_2 = 125 \text{ kPa}$ $P_1 = 2,923.5 \text{ kJ/kg}$ $P_2 = 2,923.5 \text{ kJ/kg}$

$$\Delta H^{ig} = \int_{T_1}^{T_2} Cp \ dT$$

$$\Delta S^{ig} = \int_{T_1}^{T_2} \frac{Cp}{T} dT - Ln \left(\frac{P_2}{P_1}\right)$$
 Equation 5.10