STAGKOS EFSTATHIADIS, Ion (is1820)

Imperial College London

Department of Computing Academic Year **2020-2021**

Page created Tue Nov 3 23:15:11 GMT 2020

70051 rac101 2 t5 is1820 v1

 ${\bf Electronic_submission}$

Tue - 03 Nov 2020 12:27:06

is1820

Exercise Information

Module: 70051 Introduction to Symbolic

Artificial Intelligence (MŠc AI)

Exercise: 2 (CW)

Title: Logic FAO: Craven, Robert (rac101)

Issued: Tue - 20 Oct 2020

Due: Tue - 03 Nov 2020 **Assessment:** Individual

Submission: Electronic

Student Declaration - Version 1

 \bullet I declare that this final submitted version is my unaided work.

Signed: (electronic signature) Date: 2020-11-03 12:25:52

For Markers only: (circle appropriate grade)

STAGKOS EFS-	01074696	t5	2020-11-03 12:25:52	A*	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	${f E}$	\mathbf{F}
TATHIADIS, Ion (is1820)										

Introduction to Symbolic Al Coursework 1: Logic.

i) $((\neg(\forall \lor c)) \rightarrow (\neg \iota))$ c: Michael is rich

V. Michael will live another live years

ii) ((bV(75)) AS) b: Raheem will wear boots s: Snowstorm will orrive

iii) ((a/t) ->(fesc)) + filming will begin, c: conterer have deared out

((in) ((in)) ((in)) (in)) (in) s: sora arrived

V) ((-1a) -> (-1(h / 9))) a: Herbert heard the performance a. Anne Sophie onswered her phone calls.

9. Anne-Sophie heard the performance.

i) A propositional formula A is satisfiable if there is some valuation v for which h, (A) = true

ii) Two propositional formulae are logically equivalent if for every v, h, (A) = h, (B). (often written A = B)

111) Assume TIA=T, then TA=TT, then TA=F which means that formula TA is logically equivalent to Jake ite.: there is no valuation & for which ho (-A) = true

By definition in i, this means that TA is not satisfiable. Hence, TA is satisfiable iff TITA = T does not hold namely iff T.

3)														
P	9		((P	٨	79)	⟨→ ⟩	7(7(V	77)	\rightarrow (770	1 ->	5
ŧ	t	+	t	t	5	5	t	f	£	4	E	t	ŧ	t
t	ŧ	4	t	t	4	+	f	t	t	#	1	t	f	+
t	7	ť	t	t	t	t	t	4	+	5	t	1	t	£
t	3	f	t	t	t	+	t	t	t	+	t	+	t	5
+	ŧ.	t	+	t	J	t	f	4	t	t	t	t	t	t
\$	t	t	5	1	+	£	t	t	t	t	5	t	5	-
3	+	t	1	4	t	t	4	7	t	t	t	Ĵ	t	t
4	+	+	\$	f	t	t	+	t	t	t	(t)	-	t	de .

The proporitional formula is not true regardless of the evaluation function (not true in all cases) so it is not valid.

4

- i) a) CNF b) both CNF and DNF c) None
- d) None e) DNF f) None
- 3) Both CNF and DNF

h) Both CMF and DMF

in set notation this is

(the empty set), then the formula is unsolingiable.

Otherwise, it's catisfiable.

{\{\tau_\\ \tau_\\ \tau_\\ \tau_\\ \tau_\\ \tau_\\ \tau_\\ \tau_\\ \tau_

so satisfiable, so argument is not valid.

i) Signature 2 contains:

C = {and reas

B = { cupcake } : cupcake (x) means x is a cupcake

-0

Fo = { count 3: ount (x, x) means x is 11's ount

= { gave} · gave (x, v, z) means x gave to Y a Z

YX (YY (aunt (X, Y) Naunt (Y, andrea) → JZ (JW cupcale(W) Ngave (X,Z,W)))))

ii) Signature & contains

E : {computer} : computer(x) means x is a computer

Pa = { connected }: connected (x, y) means X is connected to Y

YX (computer (x) 1 - connected (x, x) → JY (connected (y,x)))

iii) Signature 2 contains C = { paulklee, Kandinsky} P. = { british, gallery, room }: british (x) means X is British. gallery (x) means x is a gallery coom (x) meons x is a coom P2 = { painting, hangs, in }; painting (x, y) means X is a painting by y hangs (X, x) means X hangs in Y in(x, y) means X is in Y. W(XX (YX (YZ (Painting (X, Powletee) Agallery (X) Noritish (Y) 1 room (2) Nin (21) Apainting (W, Kandinsky) Nin (W, Y) Mangs (X, 2) -> hangs (W, Z))]) * IV) Signature 2 contains P2 = {loves ?: loves (x, y) means x loves y ∀X (¬(∃Y (100€5 (Y,Y))) → ¬¬∃Z (100€5 (X,Z))) * The way I have translated it, in case it is hard to see is I. (There is a gallery which is British and has a room in it, in which room a painting by Paul Klee hongs, and there is also a painting by Kandinsky in that gallery), when the latter painting also hangs in that same room.

(ie false)

i) Not true because $\alpha(R, X)$ is true iff X recruicity the object $\psi(j)$, in which case $\neg(X=j)$ is false.

ii) c(L) is true

=) whole argument is true

(iii) if X is and Y is K, then:

(-(X=Y) / a(X,Y)) is true so the whole

orgument that there is not some Y for some X to

satisfy the above is false

if X is I, there is indeed a black circle to which X is related if X is j, there is only a pointer from it to I, which is not a black dot so the argument sinks for all X so, talse

Y) if X=L: =Y(-1(X=Y) \ \a(X,Y)) is folse so false

vi) if X=R and Y=R: a(x,j) A a(Y,j) is true
a(x,y) va(Y,X) is false

so Jalse