STAT151A Homework 6: Due April 19th

Your name here

1 Fit and regressors

Given a regression on X with P regressors, and the corresponding Y, \hat{Y} , and $\hat{\varepsilon}$, define the following quantities:

$$RSS := \hat{\varepsilon}^{\mathsf{T}} \hat{\varepsilon}$$
 (Residual sum of squares)
 $TSS := \mathbf{Y}^{\mathsf{T}} \mathbf{Y}$ (Total sum of squares)
 $ESS := \hat{\mathbf{Y}}^{\mathsf{T}} \hat{\mathbf{Y}}$ (Explained sum of squares)
 $R^2 := \frac{ESS}{TSS}$.

a

- 1. Prove that RSS + ESS = TSS.
- 2. Express R^2 in terms of TSS and RSS.
- 3. What is R^2 when we include no regressors? (P=0)
- 4. What is R^2 when we include N linearly independent regressors? (P = N)
- 5. Can \mathbb{R}^2 ever decrease when we add a regressor? If so, how?
- 6. Can \mathbb{R}^2 ever stay the same when we add a regressor? If so, how?
- 7. Can R^2 ever increase when we add a regressor? If so, how?
- 8. Does a high R^2 mean the regression is correctly specified? Why or why not?
- 9. Does a low R^2 mean the regression is incorrectly specified? Why or why not?

Solutions:

- 1. This follows from $\hat{\boldsymbol{Y}}^{\mathsf{T}}\hat{\varepsilon} = \boldsymbol{0}$. 2. $R^2 = \frac{TSS RSS}{TSS} = 1 \frac{RSS}{TSS}$ 3. $R^2 = 0$ when we include no regressors
- 4. $R^2 = 1$ when we include N linearly independent regressors?

- 5. No, it cannot, since you project onto the same or larger subspace.
- 6. Yes, if you add a regressor column that is colinear with the existing columns.
- 7. Yes, if you add a linearly independent regressor column.
- 8. No, you might overfit.
- 9. No, you might have low signal to noise ratio.

b

The next questions will be about the F-test statistic for the null $H_0: \beta = 0$,

$$\phi = \hat{\beta}^{\dagger}(\boldsymbol{X}^{\dagger}\boldsymbol{X})\hat{\beta}/(P\hat{\sigma}^2)$$

- 1. Write the F-test statistic ϕ in terms of TSS and RSS, and P.
- 2. Can ϕ ever decrease when we add a regressor? If so, how?
- 3. Can ϕ ever stay the same when we add a regressor? If so, how?
- 4. Can ϕ ever increase when we add a regressor? If so, how?

Solutions:

- 1. $\phi = \frac{\hat{\mathbf{Y}}^{\mathsf{T}}\hat{\mathbf{Y}}}{PRSS/(N-P)} = \frac{N-P}{P}\frac{TSS}{RSS}$
- 2. Yes, (N-P)/P decreases with P, and TSS and RSS can stay the same if the added regressor is colinear.
- 3. Yes, TSS/RSS might increase just as much as (N-P)/P decreases.
- 4. Yes, TSS/RSS might increase more than (N-P)/P decreases.

2 Omitted variable bias

For this problem, let $(\boldsymbol{x}_n, \boldsymbol{z}_n, y_n)$ be IID random variables, where $\boldsymbol{x}_n \in \mathbb{R}^{P_X}$ and $\boldsymbol{z}_n \in \mathbb{R}^{P_Z}$. Suppose that \boldsymbol{x}_n and \boldsymbol{z}_n satisfy $\mathbb{E}\left[\boldsymbol{x}_n\boldsymbol{z}_n^\intercal\right] = \boldsymbol{0}$.

Let $y_n = \boldsymbol{x}_n^{\mathsf{T}} \beta + \boldsymbol{z}_n^{\mathsf{T}} \gamma + \varepsilon_n$, where ε_n is mean zero, unit variance, and independent of \boldsymbol{x}_n and \boldsymbol{z}_n .

a

Take $P_X = P_Z = 1$ (i.e. scalar regressors). Show that there exists x_n and z_n such that $\mathbb{E}[x_n z_n] = 0$ but $\mathbb{E}[z_n | x_n] \neq 0$ for some x_n . (A single counterexample will be enough.)

Solution:

An example is $x_n \sim \mathcal{N}(0,1)$, and $z_n = x_n^2$. Then $\mathbb{E}[x_n z_n^2] = \mathbb{E}[x_n^3] = 0$.

A general construction is to start with a generic z_n and define

$$oldsymbol{ ilde{z}}_n = oldsymbol{z}_n - \mathbb{E}\left[oldsymbol{z}_n oldsymbol{x}_n^\intercal
ight] (\mathbb{E}\left[oldsymbol{x}_n oldsymbol{x}_n^\intercal
ight])^{-1} oldsymbol{x}_n.$$

Then

$$\mathbb{E}\left[ilde{z}_n x_n^\intercal
ight] = \mathbb{E}\left[z_n x_n^\intercal
ight] - \mathbb{E}\left[z_n x_n^\intercal
ight] (\mathbb{E}\left[x_n x_n^\intercal
ight])^{-1} \mathbb{E}\left[x_n x_n^\intercal
ight] = 0,$$

but

$$\mathbb{E}\left[\tilde{\boldsymbol{z}}_{n}|\boldsymbol{x}_{n}^{\intercal}\right]\neq0$$

if $\mathbb{E}\left[\tilde{\boldsymbol{z}}_{n}|\boldsymbol{x}_{n}^{\intercal}\right]$ is not linear in \boldsymbol{x}_{n} . So if we start with $\boldsymbol{z}_{n}=f(\boldsymbol{x}_{n})$ for any nonlinear function $f(\cdot)$, we get a valid example.

b

Now return to the general case. Let $\hat{\beta} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y$ denote the OLS estimator from the regression on X alone.

For simplicity, assume that $\frac{1}{N}\sum_{n=1}^{N}\boldsymbol{x}_{n}\boldsymbol{z}_{n}^{\intercal}=\boldsymbol{0}$. (Note that, by the LLN, $\frac{1}{N}\sum_{n=1}^{N}\boldsymbol{x}_{n}\boldsymbol{z}_{n}^{\intercal}\to\boldsymbol{0}$ as $N\to\infty$, so this is a reasonable approximate assumption.)

Derive an expression for $\mathbb{E}\left[\hat{\beta}\right]$, where the expectation is taken over X, Y, and Z.

Solution:

$$\begin{split} \hat{\beta} &= (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathsf{T}} \left(\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{Z}\boldsymbol{\gamma} + \boldsymbol{\varepsilon}\right) \\ &= \boldsymbol{\beta} + (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{Z}\boldsymbol{\gamma} + (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{\varepsilon} \\ &= \boldsymbol{\beta} + (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{\varepsilon} \Rightarrow \\ \mathbb{E}\left[\hat{\beta}\right] &= \boldsymbol{\beta} \end{split}$$

C

Using (b), derive an expression for the bias for a fixed x_{new} , i.e.

$$\mathbb{E}\left[y_{ ext{new}} - oldsymbol{x}_{ ext{new}}^\intercal \hat{eta} | oldsymbol{x}_{ ext{new}}
ight],$$

in terms of β , γ , and the conditional expectation $\mathbb{E}[\boldsymbol{z}_{\text{new}}|\boldsymbol{x}_{\text{new}}]$.

Solution:

$$\mathbb{E}\left[y_{\text{new}} - \boldsymbol{x}_{\text{new}}^{\intercal} \hat{\beta} | \boldsymbol{x}_{\text{new}}\right] = \boldsymbol{x}_{\text{new}}^{\intercal} \beta + \mathbb{E}\left[\boldsymbol{z}_{\text{new}}^{\intercal} | \boldsymbol{x}_{\text{new}}\right] \gamma + \mathbb{E}\left[\varepsilon_{\text{new}} | \boldsymbol{x}_{\text{new}}\right] - \boldsymbol{x}_{\text{new}}^{\intercal} \mathbb{E}\left[\hat{\beta} | \boldsymbol{x}_{\text{new}}\right]$$

$$= \mathbb{E}\left[\boldsymbol{z}_{\text{new}}^{\intercal} | \boldsymbol{x}_{\text{new}}\right] \gamma.$$

d

Using your result from (c), show that the predictions are biased at \mathbf{x}_{new} when omitting the variables \mathbf{z}_n from the regression precisely when $\gamma^{\dagger} \mathbb{E} \left[\mathbf{z}_n | \mathbf{x}_n \right] \neq 0$. Using your result from (a), show that this bias can be expected to occur in general — that is, omitting variables can often induce biased predictions at a point.

Solution: This follows directly.

3 Estimating leave-one-out CV

This homework problem derives a closed-form estimate of the leave-one-out cross-validation error for regression. We will use the Sherman-Woodbury formula. Let A denote an invertible matrix, and u and v vectors the same length as A. Then

$$(A + uv^{\mathsf{T}})^{-1} = A^{-1} - \frac{A^{-1}uv^{\mathsf{T}}A^{-1}}{1 + v^{\mathsf{T}}A^{-1}u}.$$

We will also use the following definition of a "leverage score," $h_n := \boldsymbol{x}_n^\intercal(\boldsymbol{X}^\intercal\boldsymbol{X})^{-1}\boldsymbol{x}_n$. We will discuss leverage scores more in the last lecture, but for now it's enough that you know what it is. Note that $h_n = (\boldsymbol{X}(\boldsymbol{X}^\intercal\boldsymbol{X})^{-1}\boldsymbol{X}^\intercal)_{nn}$ is the n-th diagonal entry of the projection matrix \boldsymbol{P} .

Let $\hat{\boldsymbol{\beta}}_{-n}$ denote the estimate of $\hat{\boldsymbol{\beta}}$ with the data point n left out. For leave-one-out CV, we want to estimate

$$MSE_{LOO} := \frac{1}{N} \sum_{n=1}^{N} (y_n - \boldsymbol{x}_n^\intercal \hat{\boldsymbol{\beta}}_{-n})^2.$$

Note that doing so naively requires computing N different regressions. We will derive a much more efficient formula.

Let X_{-n} denote the X matrix with row n left out, and Y_{-n} denote the Y matrix with row n left out.

a

Prove that

$$\hat{\boldsymbol{\beta}}_{-n} = (\boldsymbol{X}_{-n}^\intercal \boldsymbol{X}_{-n})^{-1} \boldsymbol{X}_{-n}^\intercal \boldsymbol{Y}_{-n} = (\boldsymbol{X}^\intercal \boldsymbol{X} - \boldsymbol{x}_n \boldsymbol{x}_n^\intercal)^{-1} (\boldsymbol{X}^\intercal \boldsymbol{Y} - \boldsymbol{x}_n \boldsymbol{y}_n)$$

Solution

This follows from $\boldsymbol{X}^{\intercal}\boldsymbol{X} = \sum_{n=1}^{N} \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\intercal}$ and $\boldsymbol{X}^{\intercal}\boldsymbol{Y} = \sum_{n=1}^{N} \boldsymbol{x}_{n} y_{n}$.

b

Using the Sherman-Woodbury formula, derive the following expression:

$$(\boldsymbol{X}^\intercal \boldsymbol{X} - \boldsymbol{x}_n \boldsymbol{x}_n^\intercal)^{-1} = (\boldsymbol{X}^\intercal \boldsymbol{X})^{-1} + \frac{(\boldsymbol{X}^\intercal \boldsymbol{X})^{-1} \boldsymbol{x}_n \boldsymbol{x}_n^\intercal (\boldsymbol{X}^\intercal \boldsymbol{X})^{-1}}{1 - h_n}$$

Solution

Direct application of the formula with $u = x_n$ and $v = -x_n$ gives

$$(\boldsymbol{X}^\intercal \boldsymbol{X} - \boldsymbol{x}_n \boldsymbol{x}_n^\intercal)^{-1} = (\boldsymbol{X}^\intercal \boldsymbol{X})^{-1} + \frac{(\boldsymbol{X}^\intercal \boldsymbol{X})^{-1} \boldsymbol{x}_n \boldsymbol{x}_n^\intercal (\boldsymbol{X}^\intercal \boldsymbol{X})^{-1}}{1 - \boldsymbol{x}_n^\intercal (\boldsymbol{X}^\intercal \boldsymbol{X})^{-1} \boldsymbol{x}_n}.$$

Then recognize the leverage score.

c

Combine (a) and (b) to derive the following explicit expression for $\hat{\beta}_{-n}$:

$$\hat{\boldsymbol{\beta}}_{-n} = \hat{\boldsymbol{\beta}} - (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{x}_n \frac{1}{1 - h_n}\hat{\varepsilon}_n$$

Solution

We have

$$(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} - \boldsymbol{x}_n \boldsymbol{x}_n^{\mathsf{T}})^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{Y} = \hat{\beta} + \frac{(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1} \boldsymbol{x}_n \boldsymbol{x}_n^{\mathsf{T}} \hat{\beta}}{1 - h_m}.$$

and

$$(\boldsymbol{X}^{\intercal}\boldsymbol{X} - \boldsymbol{x}_n \boldsymbol{x}_n^{\intercal})^{-1} \boldsymbol{x}_n y_n = (\boldsymbol{X}^{\intercal}\boldsymbol{X})^{-1} \boldsymbol{x}_n y_n + \frac{(\boldsymbol{X}^{\intercal}\boldsymbol{X})^{-1} \boldsymbol{x}_n h_n}{1 - h_n} y_n.$$

Combining,

$$\hat{\boldsymbol{\beta}}_{-n} = \hat{\boldsymbol{\beta}} + (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{x}_n \left(\frac{\boldsymbol{x}_n^{\mathsf{T}}\hat{\boldsymbol{\beta}}}{1 - h_n} - y_n - \frac{h_n}{1 - h_n}y_n\right)$$

$$= \hat{\boldsymbol{\beta}} + (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{x}_n \left(\frac{1}{1 - h_n}\hat{y}_n - \left(1 + \frac{h_n}{1 - h_n}\right)y_n\right)$$

$$= \hat{\boldsymbol{\beta}} + (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{x}_n \left(\frac{1}{1 - h_n}\hat{y}_n - \frac{1}{1 - h_n}y_n\right)$$

$$= \hat{\boldsymbol{\beta}} - (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{x}_n \frac{1}{1 - h_n}\hat{\boldsymbol{\varepsilon}}_n$$

d

Using (c), derive the following explicit expression the leave-one-out error on the n-th observation:

$$y_n - oldsymbol{x}_n^\intercal \hat{oldsymbol{eta}}_{-n} = rac{\hat{arepsilon}_n}{1-h_n}.$$

Solution

$$y_n - \boldsymbol{x}_n^{\mathsf{T}} \hat{\boldsymbol{\beta}}_{-n} = y_n - \boldsymbol{x}_n^{\mathsf{T}} \hat{\boldsymbol{\beta}} + \boldsymbol{x}_n^{\mathsf{T}} (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X})^{-1} \boldsymbol{x}_n \frac{1}{1 - h_n} \hat{\varepsilon}_n$$

$$= y_n - \hat{y}_n + \frac{h_n}{1 - h_n} \hat{\varepsilon}_n$$

$$= \left(1 + \frac{h_n}{1 - h_n}\right) \hat{\varepsilon}_n$$

$$= \frac{\hat{\varepsilon}_n}{1 - h_n}$$

e

Using (d), prove that

$$MSE_{LOO} := \frac{1}{N} \sum_{n=1}^{N} \frac{\hat{\varepsilon}_n^2}{(1 - h_n)^2},$$

where $\hat{\varepsilon}_n = y_n - \hat{y}_n$ is the residual from the full regression without leaving any data out. Using this formula, MSE_{LOO} can be computed using only the original regression and $(\mathbf{X}^{\intercal}\mathbf{X})^{-1}$.

Solution Just plug it in.

f

Prove that $\sum_{n=1}^{N} h_n = P$, and $0 \le h_n \le 1$. Hint: if \boldsymbol{v} is a vector with a 1 in entry n and 0 otherwise, then $h_n = \boldsymbol{v}^{\mathsf{T}} \boldsymbol{P} \boldsymbol{v}$, and projection cannot increase a vector's norm. Recall also that $\operatorname{trace} \left(\boldsymbol{P}_{\boldsymbol{X}} \right) = P$.

Solution

$$0 \le h_n = \boldsymbol{v}^{\mathsf{T}} \boldsymbol{P} \boldsymbol{v} \le \|\boldsymbol{v}\|_2^2 = 1,$$

and

$$\sum_{n=1}^{N} h_n = \operatorname{trace}\left(\mathbf{P}_{\mathbf{X}}\right) = P.$$

g

Using (e) and (f), prove that $MSE_{LOO} > RSS = \frac{1}{N} \sum_{n=1}^{N} \hat{\varepsilon}_{n}^{2}$. That is, the RSS underestimates the leave-one-out cross-validation error.

Solution

We have $1/(1-h_n)^2 \ge 1$ because $-1 < 0 \le h_n \le 1$ At least some $h_n > 0$, since $\sum_{n=1}^N h_n = P$, so for at least one h_n , $1/(1-h_n)^2 > 1$. The result follows.