

2. METODOLOGIA DO MODELO

O modelo SMAP é um modelo determinístico de simulação hidrológica do tipo transformação chuva-vazão. Foi desenvolvido em 1981 por Lopes J.E.G., Braga B.P.F. e Conejo J.G.L., e apresentado no International Symposium on Rainfall-Runoff Modeling realizado em Mississippi, U.S.A. e publicado pela Water Resourses Publications (1982).

O desenvolvimento do modelo baseou-se na experiência com a aplicação do modelo Stanford Watershed IV e modelo Mero em trabalhos realizados no DAEE- Departamento de Águas e Energia Elétrica do Estado de São Paulo. Foi originalmente desenvolvido para intervalo de tempo diário e posteriormente apresentadas versões horária e mensal, adaptando-se algumas modificações em sua estrutura.

Em sua versão diária, tem a seguinte descrição:

É constituído de três reservatórios matemáticos, cujas variáveis de estado são atualizadas a cada dia da forma:

Rsolo (i+1) = Rsolo (i) + P - Es - Er - Rec

Rsup (i+1) = Rsup (i) + Es - Ed

Rsub (i+1) = Rsub (i) + Rec - Eb

onde: Rsolo = reservatório do solo (zona aerada)

Rsup = reservatório da superfície da bacia

Rsub = reservatório subterrâneo (zona saturada)

P = chuva

Es = escoamento superficial
Ed = escoamento direto
Er = evapotranspiração real
Rec = recarga subterrânea

Eb = escoamento básico

inicialização: Rsolo (1) = Tuin . Str

Rsup (1) = 0

Rsub (1) = Ebin / (1-kk) / Ad * 86.4

onde: Tuin = teor de umidade inicial (ad.)

Ebin = vazão básica inicial (m3/s) Ad = área de drenagem (km2)

A figura ilustra a estrutura do modelo em sua versão diária.

É composto de 5 funções de transferência:

A separação do escoamento superficial é baseado no método do SCS (Soil Conservation Service do U.S.Dept. Agr.).

1- Se (P > Ai) Então
$$S = Str - Rsolo$$

 $Es = (P - Ai) ^2 / (P - Ai + S)$
Caso contrário $Es = 0$

$$4- Ed = Rsup * (1 - K2)$$

$$5-Eb = Rsub*(1-Kk)$$

sendo Tu = Rsolo / Str

São 6 os parâmetros do modelo:

Str - capacidade de saturação do solo (mm)

K2t - constante de recessão do escoamento superficial (dias)

Crec - parâmetro de recarga subterrânea (%)

Ai - abstração inicial (mm)
Capc - capacidade de campo (%)

Kkt - constante de recessão do escoamento básico (dias)

Foram ajustadas as unidades dos parâmetros:

 $Kk = 0.5 ^ (1/Kkt)$ e $K2 = 0.5 ^ (1/K2t)$ onde Kkt e K2t são expressos em dias em que a vazão cai a metade de seu valor.

Crec e Capc são multiplicados por 100

O eventual transbordo do reservatório do solo é transformado em escoamento superficial.

Finalmente o cálculo da vazão é dado pela equação:

$$Q = (Ed + Eb) * Ad / 86.4$$

Os dados de entrada do modelo são os totais diários de chuva e o total diário médio do período de evaporação potencial (tanque classe A). Para calibração são necessários de 30 a 90 dias de dados de vazão media mensal, incluindo eventos de cheia.

É utilizado um coeficiente de ajuste da chuva media da bacia 'Pcof' que deve ser calculado em função da distribuição espacial dos postos.

3. METODOLOGIA DE CALIBRAÇÃO

3.1. CALIBRAÇÃO DE MODELOS

A calibração de modelos Chuva-Vazão tem sido efetuada de forma manual, através de "tentativa e erro". Este método requer muita experiência do hidrólogo e constitui um processo trabalhoso e subjetivo. Por outro lado, apresenta a vantagem do acompanhamento total do hidrólogo na determinação de cada parâmetro, onde toda sua experiência é passada ao processo.

Recentemente, têm se utilizado de métodos matemáticos de otimização para calibração automática desses modelos, de forma a facilitar o trabalho e diminuir a subjetividade do processo manual. Infelizmente as facilidades fornecidas por esses métodos, em geral, acarretam a falta de acompanhamento do hidrólogo na calibração passo a passo dos parâmetros, impedindo o desenvolvimento da sua sensibilidade, e com isso, diminuindo a confiabilidade dos resultados.

Procurou-se neste trabalho, aproveitar as vantagens dos dois métodos, de forma a permitir boa calibração e colocar os modelos ao alcance de hidrólogos menos experientes.

3.2. METODOS DE BUSCA DIRETA

Os métodos de busca direta consistem em, a partir de um valor inicial dos parâmetros, minimizar a função objetivo provendo-se variação dos parâmetros através de algoritmos matemáticos que resultam numa eficiência computacional.

As principais críticas aos métodos de busca direta recaem sobre a subjetividade da escolha da função objetivo e ao fato desses métodos poderem convergir a um mínimo local da função objetivo sem conseguir atingir o mínimo global.

Neste trabalho foi utilizado o algoritmo de Rosenbrock-Hill (Kuester e Mize, 1973).

3.3 TECNICA DE PESQUISA GLOBAL

A técnica de pesquisa global consiste em rodar o modelo para toda a faixa viável dos parâmetros, atribuindo a estes valores discretos. Seleciona-se então o mínimo valor da função objetivo e em torno dos parâmetros correspondentes novamente se roda o modelo com valores discretos agora mais próximos do mínimo encontrado. Repete-se este procedimento até que não haja mais variação significativa do valor da função objetivo.

Este procedimento equivale a proceder um "zoom" em torno do mínimo valor da função objetivo iterativamente. Dessa forma, dependendo da discretização dos parâmetros, os mínimos locais serão desprezados.

Este procedimento é computacionalmente pouco eficiente se comparado aos métodos de busca direta, porem é muito mais seguro quanto a se atingir o mínimo global. Ainda com a utilização de microcomputadores o tempo de processamento é aceitável.

Esta técnica permite também que se visualize as superfícies da função objetivo, propiciando uma análise de sensibilidade dos parâmetros que será indispensável na escolha final destes.

A equação utilizada para estabelecer a discretização dos parâmetros é a seguinte:

$$Pr(i) = Pr^* \cdot 2^{(i-4)/(2+lp)}$$

onde: Pr (i) = vetor de parâmetros a serem testados
Pr* = parâmetro ótimo do loop anterior
i = índice de discretização do parâmetro (de 1 a 7)
lp = numero do loop (nível de "zoom") (de 1 a n)

3.4. PARAMETROS DE CALIBRAÇÃO

Dos 6 parâmetros do modelo SMAP foram utilizados apenas 3 na calibração automática. As faixas de variação desses parâmetros obtida na aplicação do modelo em bacias de variadas regiões brasileiras, foi a seguinte:

```
100 < Str < 2000
0.2 < K2t < 10
0 < Crec < 20
```

O parâmetro "Kkt" (constante de recessão do escoamento básico) não apresentou sensibilidade à varias funções objetivo utilizadas e deve ser ajustado manualmente após ter-se atingido um ajuste razoável dos 3 parâmetros. Este ajuste deve ser feito observando-se no hidrograma os trechos de recessão. Apresenta-se a seguir tabela que associa a constante de recessão ao tempo em dias em que a vazão básica cai a metade de seu valor (não considerando recarga nesse período).

```
K2t =
        0.2 dia (.06)
        1 dia
                (.5000)
        2 dias (.7070)
        3 dias (.7937)
        4 dias (.8409)
        5 dias (.8706)
Kkt =
       30 dias
                        muito rápido
                                         (.9772)
        60 dias
                        rápido
                                         .9885)
        90 dias
                        médio
                                          .9923)
        120 dias
                        lento
        180 dias
                        muito lento
                                         (.9962)
```

Os parâmetros "Ai" e "Capc" podem ser obtidos através de características da cobertura vegetal e do tipo de solo, respectivamente

3.5. INICIALIZAÇÃO DAS VARIAVEIS DE ESTADO

A inicialização correta das variáveis de estado do modelo (Rsolo e Rsub), efetuada pelas variáveis Tuin e Ebin, mostrou-se fundamental para o bom desempenho da calibração automática. Uma má inicialização, mesmo com parâmetros corretos, causa distorções na função objetivo.

Recomenda-se iniciar o período de calibração em sequências de dias secos, pois dessa forma, a umidade do solo e a vazão básica estarão com valores baixos.

O ajuste da inicialização das variáveis de estado deve então ser feito manualmente com as seguintes recomendações:

Tuin –(Rsolo): Verificar se o valor atribuído está dentro da faixa de variação apresentada na simulação de todo o período (vêr valores na listagem de saída no item resumo). Caso contrario, ressimule alterando seu valor. Observe também a aderência do hidrograma no instante inicial.

Ebin –(Rsub): Pode ser atribuída a vazão básica inicial igual a vazão mínima do período e verificar no hidrograma se existem tendências crescentes ou decrescentes da vazão básica ao longo do período.

Este programa efetua automaticamente a estimativa das variáveis de estado baseado nos dados de chuva e vazão observadas, mas esta estimativa precisa ser sempre revista durante a calibração.

3.6. FUNÇÃO OBJETIVO

Após testar várias funções objetivo em regiões de diferentes regimes hidrológicos optou-se por utilizar a soma dos desvios quadráticos:

onde: QOi = vazão observada QCi = vazão calculada

Lembre-se que a função objetivo nem sempre representa a calibração ideal, mas constitui auxilio para viabilizar processos matemáticos de otimização de parâmetros. Será sempre necessário analisar cuidadosamente o hidrograma para concluir a calibração.

Outra forma é verificar ou ajustar a função objetivo aos produtos pretendidos com a série gerada, como, por exemplo, as diferenças acumuladas ou curvas de permanência.

4. APLICAÇÃO DAS TÉCNICAS DE CALIBRAÇÃO

Esta técnica foi testada em várias bacias variando desde rios intermitentes do Nordeste brasileiro, a bacias litorâneas de alta precipitação.

Em todas as calibrações realizadas utilizando-se apenas o método de Rosenbrock, havia grande dependência entre os parâmetros obtidos e os valores iniciais dos parâmetros. Novas simulações com valores iniciais diferentes produziam parâmetros diferentes.

Utilizando-se a técnica de Pesquisa Global, na qual não é necessário atribuir valores iniciais aos parâmetros, obtêm-se resultados certamente próximos ao mínimo global da função objetivo.

Na maioria dos casos foi necessário efetuar ajustes manuais na inicialização das variáveis de estado, a medida que a calibração evoluía. O parâmetro "Kkt" sempre foi ajustado manualmente.

A técnica de Pesquisa Global permite visualizar as superfícies da função objetivo. Como trabalhamos com 3 parâmetros temos 4 dimensões. Essa visualização é dada por 3 matrizes que representam cortes das superfícies fixando-se 1 dos parâmetros em cada matriz. Essas matrizes representam uma "fotografia" da sensibilidade dos parâmetros.

Calibrando-se uma bacia em períodos diferentes nota-se que os parâmetros obtidos automaticamente são sensivelmente diferentes, mas olhando-se a "fotografia" dada pelas matrizes verifica-se coerência entre os resultados. A escolha final dos parâmetros deve então recair em valores que satisfaçam os dois períodos, desprezando-se nuances da função objetivo que os diferenciariam caso fosse adotado um procedimento totalmente automático.

A média das matrizes permite encontrar um mínimo que atenda aos dois períodos. Normalmente próximo a este mínimo existe uma região onde a função objetivo varia pouco.

A mesma solução pode ser empregada de forma regional, calibrando-se varias bacias vizinhas e regionalizando-se os resultados. Isto aumenta a confiança em encontrar parâmetros adequados, ao invés de utilizar apenas um período e uma única bacia.

A aplicação da técnica de pesquisa global para calibração de modelos chuva-vazão foi efetuada em casos reais de aplicações em engenharia. Nestes casos enfrentam-se problemas de falhas nos dados, distribuição deficiente dos postos de chuva, etc. Isto mostra o aspecto pratico deste trabalho.

A técnica de pesquisa global mostrou-se adequada, principalmente porque a análise de sensibilidade dos parâmetros está implícita no método. Além disso as facilidades computacionais disponíveis atualmente auxiliam muito a aplicação desta técnica.

5. VERSÃO MENSAL

Em intervalo de tempo mensal temos uma soma de eventos de chuva. O reservatório superficial é suprimido pois o amortecimento desse reservatório ocorre em intervalos menores que o mês. O conceito de capacidade de campo utilizado no reservatório do solo tambem é suprimido.

O modelo SMAP, em sua versão mensal, é constituído de dois reservatórios matemáticos, cujas variáveis de estado são atualizadas a cada mês da forma:

Rsub
$$(i+1)$$
 = Rsub (i) + Rec - Eb

Rsub
$$(1) = Ebin / (1-Kk) / Ad . 2630$$

A figura ilustra a estrutura da versão mensal.

É composto de 4 funções de transferência:

Es =
$$f1 \cdot P$$
 onde: $f1 = Tu \land Pes$

$$Er = f2 . Ep$$
 $f2 = Tu$

Rec =
$$f3$$
 . Rsolo $f3 = Crec$. Tu 4

Eb = f4 . Rsub
$$f4 = 1 - Kk$$

São 4 os parâmetros do modelo:

Str - capacidade de saturação do solo (mm)

Pes - parâmetro de escoamento superficial (ad.)

Crec - coeficiente de recarga (ad.)

Kk - constante de recessão (mes^-1)

Foram ajustadas as unidades dos parâmetros:

Kk = (.5) ^ (1/Kkt) onde Kkt é expresso em meses em que a vazão básica cai a metade de seu valor.

Crec e Tu são multiplicados por 100

O eventual transbordo do reservatório do solo é transformado em escoamento superficial.

O modelo contem ainda uma rotina de atualização previa do teor de umidade que a cada intervalo de tempo acrescenta uma parcela de chuva do mês, de forma a utilizar o teor de umidade médio do mês em questão. Essa rotina melhora sensivelmente os resultados, principalmente em regiões de grande variabilidade no regime pluviométrico.

Finalmente o cálculo da vazão é dado pela equação:

$$Q = (Es + Eb) . Ad / 2630$$

Os dados de entrada são a série mensal de chuva e as medias mensais multianuais de evaporação potencial (tanque classe A). Para calibração são necessários de 2 a 9 anos de dados de vazão media mensal.

Existem dois coeficientes de ajuste da chuva média da bacia 'Pcof' e ajuste da evaporação média da bacia 'Ecof' que devem ser calculados em função da distribuição espacial dos postos.

5.1. PARÂMETROS DE CALIBRAÇÃO

Dos 4 parâmetros do modelo SMAP foram utilizados apenas 3 na calibração automática. As faixas de variação dos parâmetros obtidas na aplicação do modelo em bacias de variadas regiões brasileiras, foi a seguinte:

```
400 < sat < 5000
0.1 < pes < 10
0 < crec < 70
```

A constante de recessão ("Kkt") não apresentou sensibilidade à varias funções objetivo utilizadas e deve ser ajustada manualmente após ter-se atingido um ajuste razoável dos 3 parâmetros. Este ajuste deve ser feito observando-se o hidrograma, verificando os trechos de recessão. Apresenta-se a seguir tabela que associa a constante de recessão ao tempo em meses em que a vazão básica cai a metade de seu valor (não considerando recarga nesse período).

```
Kkt = 1 mês - muito rápido (.5000)
2 meses - rápido (.7071)
3 meses - médio (.7937)
4 meses - lento (.8409)
6 meses - muito lento (.8909)
```

5.2. INICIALIZAÇÃO DAS VARIÁVEIS DE ESTADO

Recomenda-se escolher o ano hidrológico da região em estudo e dessa forma, iniciar a calibração pelo mês mais seco, pois nesse período a umidade do solo e a vazão básica estão em seus valores mínimos.

5.3. FUNÇÃO OBJETIVO

São utilizadas na versão mensal duas funções:

para rios perenes a soma dos desvios relativos quadráticos.

f.o. =
$$> ((QOi - QCi)/QOi)^2$$

onde: QOi = vazão observada QCi = vazão calculada

para rios intermitentes a soma dos desvios absolutos quadráticos

Além do valor da função objetivo, devem ser observados dois outros indicadores da calibração:

O armazenamento do período (balanço) deve ser próximo de zero. Isto indica que não está se retendo ou liberando água dos reservatórios do solo de forma tendenciosa. A variação dos reservatórios deve ser cíclica acompanhando a sazonalidade da região.

A recarga e o escoamento básico devem ser aproximadamente iguais. Diferença entre recarga e escoamento básico indicam problemas com os parâmetros "Crec" (coeficiente de recarga) e "Kkt" (constante de recessão do escoamento básico).

6. VERSÃO HORÁRIA

Na versão horária foi acrescido um reservatório para representar o amortecimento dos canais de drenagem que passa a ser sensível nesse intervalo.

7. BIBLIOGRAFIA

LOPES J.E.G., BRAGA B.P.F., CONEJO J.G.L. (1982), SMAP - A Simplified Hydrological Model, Applied Modelling in Catchment Hydrology, ed. V.P.Singh, Water Resourses Publications.

LOPES J.E.G., PORTO R.L.L. (1991), Técnica de Pesquisa Global de Parâmetros para a Calibração de Modelos Chuva-Vazão, ABRH, IX Simpósio Bras. de Rec. Hídricos.

CANEDO P.M. (1989), Hidrologia Superficial, Engenharia Hidrológica, ABRH/ed. UFRJ.

TUCCI C.E.M. (1987), Modelos Determinísticos, Modelos Para Gerenciamento de Recursos Hídricos, ABRH/ed. Nobel.

KUESTER J.L., MIZE J.H. (1973), Optimization Techniques with Fortran. Mc Graw-Hill Book Company.

ROSENBROCK H.H. (1960), An Automatic Method for Finding The Greast or Least Value of a Function, Computer Journal, vol 3,pg 175-184.

SOROOSHIAN S., GUPTA V.K. (1983), Automatic Calibration of Conceptual Rainfall-Runoff Models: The Question of Parameter Observability and Uniqueness. Water Resourses Research, vol 19,n 1, pg 260-268.