學號:R08922167系級:資工碩一姓名:曾民君

1. (2%) 試說明 hw6_best.sh 攻擊的方法,包括使用的 proxy model、方法、參數等。此方法和 FGSM 的差異為何?如何影響你的結果?請完整討論。(依內容完整度給分)

Ans:

Model	VGG-16	VGG-19	ResNet- 50	ResNet- 101	DenseNet- 121	DenseNet- 121
Public	0.115	0.275	0.42	0.36	0.915	0.42

上表為單次 FGSM 攻擊 black box 的成功率

經過多次上傳攻擊不同 model 的結果,得出最有可能的 black box model 是 resnet-121,但首次的 FGSM 攻擊只有 91.5% 成功攻擊,所以改進方法為,將單次 FGSM 的失敗攻擊的結果進行第二次的 FGSM 攻擊,至於 epsilon 部份設為0.095 攻擊結果為 100%,avg infinite norm 為 6。 想法就是攻擊一次不夠就在攻擊一次,但問題會是攻擊兩次的影像可能會在 infinite norm 表現很遭。

2. (1%) 請嘗試不同的 proxy model,依照你的實作的結果來看,背後的 black box 最有可能為哪一個模型?請說明你的觀察和理由。

Ans: 最有可能的 black box 為 resnet-121,原因是將所有有可能的proxy model 使用 FGSM 成功攻擊率只有 resnet-121 超過一半,所以判定為 resnet-121。

3. (1%) 請以 hw6_best.sh 的方法,visualize 任意三張圖片攻擊前後的機率圖 (分 別取前三高的機率)。

Ans:

4. (2%) 請將你產生出來的 adversarial img,以任一種 smoothing 的方式實作被動防禦 (passive defense),觀察是否有效降低模型的誤判的比例。請說明你的方法,附上你防禦前後的 success rate,並簡要說明你的觀察。另外也請討論此防禦對原始圖片會有什麼影響。

Ans: 這邊實作的被動防禦是使用 median filter, kernel 大小為 5*5。 比較對於只丟正常影像的結果,如果做防禦的話準確率會下降約 17%, 但對於只丟備攻擊的影像,有做防禦的話準確率會上升約 32%,若只單看數字 的話有做防禦平均的準確率會叫高。

Model: densenet-121	Success	Wrong	Accuracy
Ori-img + No-defense	185	15	0.925
Adv-img + No-defense	0	200	0
Ori-img + Defense	151	49	0.755
Adv-img + Defense	64	136	0.32