Formal Groups (Lecture 11)

April 27, 2010

We begin by recalling our discussion of the Adams-Novikov spectral sequence:

Claim 1. Let X be any spectrum. Then $\mathrm{MU}_*(X)$ is a module over the commutative ring $L = \pi_* \mathrm{MU}$, and can therefore be understood as a quasi-coherent sheaf on the affine scheme $\mathrm{Spec}\,L$ which parametrizes formal group laws (here L denotes the Lazard ring). This quasi-coherent sheaf admits an action of the affine group scheme $G = \mathrm{Spec}\,\mathbf{Z}[b_1, b_2, \ldots]$ which assigns to each commutative ring R the group $\{g \in R[[t]] : g(t) = t + b_1 t^2 + b_2 t^3 + \cdots \}$, compatible with the action of G on $\mathrm{Spec}\,L$ by the construction

$$(g \in G(R), f(x, y) \in \operatorname{FGL}(R) \subseteq R[[x, y]]) \mapsto gf(g^{-1}(x), g^{-1}(y)) \in \operatorname{FGL}(R) \subseteq R[[x, y]]$$

There is a spectral sequence $\{E_r^{p,q}, d_r\}$, called the Adams-Novikov spectral sequence, with the following properties. If X is connective, then $\{E_r^{p,q}, d_r\}$ converges to a finite filtration of $\pi_{p-q}X$. Moreover, the groups $E_2^{*,q}$ are given by the cohomology groups $H^q(G; MU_*X)$.

Equivalently, we can think of $E_2^{*,q}$ as the cohomology of the stack $\mathfrak{M}_{FG}^s = \operatorname{Spec} L/G$ with coefficients in the sheaf \mathfrak{F}_X determined by $\operatorname{MU}_*(X)$ with its G-action.

To be more precise, we should observe that the ring L, and the ring $\mathbf{Z}[b_1,\ldots,]$ are all equipped a canonical grading. In geometric terms, this grading corresponds to an action of the multiplicative group \mathbb{G}_m . This group acts on L by the formula

$$(\lambda \in R^{\times}, f(x, y) \in FGL(R)) \mapsto \lambda f(\lambda^{-1}x, \lambda^{-1}y).$$

In fact, we can identify both \mathbb{G}_m and G with subgroups of a larger group G^+ , with $G^+(R) = \{g \in R[[x]] : g(t) = b_0 t + b_1 t^2 + \cdots, b_0 \in R^{\times}\}$. This group can be identified with a semidirect product of the subgroup \mathbb{G}_m (consisting of those power series with $b_i = 0$ for i > 0) and G (consisting of those power series with $b_0 = 1$), and this semidirect product acts on Spec L by substitution.

For any spectrum X, $\mathrm{MU}_*(X)$ is a graded L-module, and the action of G on $\mathrm{MU}_*(X)$ is compatible with the grading. In the language of algebraic geometry, this means that $\mathrm{MU}_{\mathrm{even}}(X) = \bigoplus_n \mathrm{MU}_{2n}(X)$ can be regarded as a representation of the group G^+ , compatible with the action of G^+ on $\mathrm{Spec}\,L$. In the language of stacks, this means that $\mathrm{MU}_{\mathrm{even}}(X)$ can be regarded as a quasi-coherent sheaf on the quotient stack $\mathrm{Spec}\,L/G^+$.

Definition 2. The quotient stack Spec L/G^+ is called the *moduli stack of formal groups* and will be denoted by \mathcal{M}_{FG} .

To understand \mathcal{M}_{FG} , it will be useful to have a more conceptual way of thinking about formal group laws. Let R be a commutative ring and let $f(x,y) \in R[[x,y]]$ be a formal group law over R. We let Alg_R denote the category of commutative R-algebras. We can associate to f a functor $\mathcal{G}_f: \mathrm{Alg}_R \to \mathrm{Ab}$ from R to the category of abelian groups: namely, we let $\mathcal{G}_f(A) = \{a \in A: (\exists n)a^n = 0\} \subseteq A$, with the group structure given by $(a,b) \mapsto f(a,b)$. Note that this expression makes sense: though f has infinitely many terms, if a and b are nilpotent then only finitely many terms are nonzero. We will call \mathcal{G}_f the formal group associated to f.

Remark 3. The condition that $f \in R[[x,y]]$ define a formal group law is *equivalent* to the requirement that the above formula defines a group structure on $\mathcal{G}_f(A)$ for every R-algebra A.

Suppose that we are given two formal group laws $f, f' \in R[[x,y]]$ and an isomorphism $\alpha: \mathcal{G}_f \simeq \mathcal{G}_{f'}$ of the corresponding formal groups. In particular, for every R-algebra A, α determines a bijection α_A from the set $\{a \in A : a \text{ is nilpotent }\}$ with itself. To understand this bijection, let us treat the universal case where A contains an element a such that $a^{n+1} = 0$. This is the truncated polynomial ring $A = R[t]/t^{n+1}$. In this case, α carries t to another nilpotent element, necessarily of the form $b_0t + b_1t^2 + \ldots + b_{n-1}t^n$. Since α is functorial, it follows that for any commutative R-algebra A containing an element a with $a^n = 0$, we have $\alpha_A(a) = b_0a + b_1a^2 + \cdots + b_{n-1}a^n$. In particular, if $A = R[t]/t^n$, we deduce that $\alpha_A(t) = b_0t + b_1t^2 + \ldots + b_{n-2}t^{n-1}$. In other words, the coefficients b_i which appear are independent of n. We conclude that there exists a power series $g(t) = b_0t + b_1t^2 + \cdots$ such that $\alpha_A(a) = g(a)$ for every commutative ring a. Since α_A is a bijection for any A, we conclude that g is an invertible power series. Since α_A is a group homomorphism, we deduce that g satisfies the formula f'(g(x), g(y)) = gf(x, y): that is, the formal group laws f and f' differ by the change-of-variable g.

Definition 4. Let R be a commutative ring. An *coordinatizable formal group* over R is a functor $\mathcal{G}: Alg_R \to Ab$ which has the form \mathcal{G}_f , for some formal group law $f \in R[[x,y]]$.

We regard the coordinatizable formal group laws (and isomorphisms between them) as a subcategory of the category Fun(Alg_R, Ab) of functors from Alg_R to abelian groups. We have just seen that this subcategory admits a less invariant description: it is equivalent to a category whose objects are formal group laws $f \in R[[x,y]]$, and whose morphisms are maps g such that f'(g(x),g(y)) = gf(x,y).

The coordinatizable formal group laws over R do not satisfy descent in R. Consequently, it is convenient to make the following more general definition:

Definition 5. Let R be a commutative ring. A formal group law over R is a functor $\mathcal{G}: \mathrm{Alg}_R \to \mathrm{Ab}$ satisfying the following conditions:

- (1) The functor \mathcal{G} is a sheaf with respect to the Zariski topology. In other words, if A is a commutative R-algebra with a pair of elements x and y such that x+y=1, then $\mathcal{G}(A)$ can be described as the subgroup of $\mathcal{G}(A[\frac{1}{x}]) \times \mathcal{G}(A[\frac{1}{y}])$ consisting of pairs which have the same image in $\mathcal{G}(A[\frac{1}{xy}])$.
- (2) The functor \mathcal{G} is a coordinatizable formal group law locally with respect to the Zariski topology. That is, we can choose elements $r_1, r_2, \ldots, r_n \in R$ such that $r_1 + \cdots + r_n = 1$, such that each of the composite functors

$$Alg_{R\left[\frac{1}{r_*}\right]} \to Alg_R \to Ab$$

has the form \mathcal{G}_f for some formal group law $f \in R\left[\frac{1}{r_i}\right][[x,y]]$.

By definition, the moduli stack of the formal groups \mathcal{M}_{FG} is the functor which assigns to each commutative ring R the category of formal group laws over R (the morphisms in this category are given by isomorphisms).

There is a canonical map of stacks $\mathcal{M}_{FG}^s = \operatorname{Spec} L/G \to \operatorname{Spec} L/G^+ = \mathcal{M}_{FG}$. To understand this map (and the failure of general formal groups to be coordinatizable) it is useful to introduce a definition.

Definition 6. Let \mathcal{G} be a formal group over R. The *Lie algebra* of \mathcal{G} is the abelian group $\mathfrak{g} = \ker(\mathcal{G}(R[t]/(t^2)) \to \mathcal{G}(R))$.

Note that if $\mathfrak{G} = \mathfrak{G}_f$ for some formal group law f, we get a group isomorphism $\mathfrak{g} \simeq tR[t]/(t^2) \simeq R$ (since f(x,y)=x+y to order 2). In fact, \mathfrak{g} is not just an abelian group: for each $\lambda \in R$, the equation $t \mapsto \lambda t$ determines a map from $R[t]/(t^2)$ to itself, which induces a group homomorphism $\mathfrak{g} \to \mathfrak{g}$. When \mathfrak{G} is coordinatizable, this is the usual action of R on itself by multiplication. It follows by descent that the above formula always determines an action of R on \mathfrak{g} . Since $\mathfrak{g} \simeq R$ locally for the Zariski topology, we deduce that \mathfrak{g} is an *invertible* R-module: that is, it determines a line bundle on the affine scheme Spec R.

Proposition 7. (1) A formal group \mathfrak{G} over R is coordinatizable if and only if its Lie algebra \mathfrak{g} is isomorphic to R.

(2) The quotient stack \mathfrak{M}^s_{FG} parametrizes pairs (\mathfrak{G}, α) , where \mathfrak{G} is a formal group and $\alpha : \mathfrak{g} \simeq R$ is a trivialization of its Lie algebra.

Proof. We have already established that $\mathfrak{g} \simeq R$ when \mathfrak{G} is coordinatizable. Conversely, fix an isomorphism $\mathfrak{g} \simeq R$. After localizing Spec R, the group \mathfrak{G} becomes coordinatizable: that is, we can write $\mathfrak{G} \simeq \mathfrak{G}_f$ for some $f \in R[[x,y]]$. Modifying f by the action of \mathbb{G}_m , we may assume that this isomorphism is compatible with our trivialization of \mathfrak{g} . The trouble is that these isomorphisms might not glue. The obstruction to gluing them determines a cocycle representing a class in $H^1_{\operatorname{Zar}}(\operatorname{Spec} R,G)$. We claim that this group vanishes. This is because the group G is an iterated extension of copies of the additive group $(A \in \operatorname{Alg}_R) \mapsto (A,+)$, which has no cohomology on affine schemes.

Assertion (2) is just a translation of the following observation: if $f, f' \in R[[x, y]]$ are formal group laws, then an isomorphism of formal groups $\mathcal{G}_f \simeq \mathcal{G}_{f'}$ respects the trivializations of the Lie algebras of \mathcal{G}_f and $\mathcal{G}_{f'}$ if and only if it is given by a power series of the form $g(t) = t + b_1 t^2 + \cdots$ (a power series of the form $g(t) = b_0 t + \cdots$ acts on the Lie algebras by multiplication by the scalar b_0).

We can think of the assignment $(R, \mathfrak{G}) \mapsto \mathfrak{g}^{-1}$ as defining a line bundle ω on the moduli stack \mathfrak{M}_{FG} . In fact, \mathfrak{M}_{FG}^s is just the total space of ω with the zero section removed (equivalently, the moduli stack of trivializations of ω).

We can now be a little bit more precise about the E_2 -term of the Adams-Novikov spectral sequence. Translating our gradings into algebraic geometry, we get the following result:

Claim 8. For any spectrum X, the bordism groups $\mathrm{MU}_{\mathrm{even}}(X)$ form a module over the Lazard ring $L \simeq \pi_* \, \mathrm{MU}$ which carries a compatible action of the group scheme G^+ , and therefore determines a sheaf $\mathfrak{F}^{\mathrm{even}}$ on $\mathfrak{M}_{\mathrm{FG}} = \mathrm{Spec} \, L/G^+$. The E_2 -term of the Adams-Novikov spectral sequence satisfies

$$E_2^{2a,b} = \mathrm{H}^b(\mathfrak{M}_{\mathrm{FG}}; \mathfrak{F}^{\mathrm{even}} \otimes \omega^a).$$

Similarly, the odd homotopy groups $\mathrm{MU}_{\mathrm{odd}}(X)$ determine a sheaf $\mathfrak{F}^{\mathrm{odd}}$ on $\mathfrak{M}_{\mathrm{FG}}$ satisfying

$$E_2^{2a+1,b}=\operatorname{H}^b(\mathfrak{N}_{\operatorname{FG}};\mathfrak{F}^{\operatorname{odd}}\otimes\omega^a).$$

In order to exploit Claim 8, we will need to understand the structure of the moduli stack \mathcal{M}_{FG} . This will be our goal in the next lecture.