MTh 535 Homework 4

Evan Fox

11/19

Problem 1.

Proof. Since f is a bounded measureable function on a set of finite measure, E, and $A \subseteq E$, $\int_A f$ exists and thus,

$$\sup\{\int_A \phi \, | \, \phi : A \to \mathbb{R} \text{ simple }, \, \phi \le f\} = \int_A f$$

Similarly, $\int_E f \cdot \chi_A$ exits and we have,

$$\sup \{ \int_{E} \psi \, | \, \psi : E \to \mathbb{R} \text{ simple }, \, \psi \le f \cdot \chi_A \} = \int_{E} f \cdot \chi_A$$

Now for each such simple function $\phi: A \to \mathbb{R}$ with $\phi \leq f$ we may define $\tilde{\phi}: E \to \mathbb{R}$ to be ϕ for all $x \in A$ and 0 for all $x \in E \setminus A$. We have defined a map $\phi \to \tilde{\phi}$ and we have

$$\sup\{\int_E \psi \,|\, \psi: E \to \mathbb{R} \text{ simple }, \, \psi \leq f \cdot \chi_A\} = \sup\{\int_E \tilde{\phi} \,|\, \phi: A \to \mathbb{R} \text{ simple }, \, \phi \leq f\}$$

By construction, $\tilde{\phi}$ is a simple function defined on all of E and clearly $\tilde{\phi} \leq f \cdot \chi_A$, so the fact that the LHS of the above is greater or equal to the RHS is clear. To see the other direction, for any such $\psi: E \to \mathbb{R}$ simple satisfing $\psi \leq f \cdot \chi_A$, we can first restrict the domain of ϕ to A, to obtain a ϕ such that $\phi = \psi$ on A and then extending again we will have $\phi \leq \tilde{\phi} \leq f \cdot \chi_A$, since $\tilde{\phi} = f \cdot \chi_A$ on the complement of A in E. Thus we also have that the RHS is less or equal the LHS and this implies equality. All that remains is to argue

$$\int_{A} \phi = \int_{E} \tilde{\phi}$$

Since both ϕ and $\tilde{\phi}$ are a simple functions and since $\tilde{\phi}$ is an extension of ϕ to all of E which is identically zero on $E \setminus A$. Thier canonical representations differ by a single term, of the from $0 \cdot \chi_{E_0}$ where $E_0 = \{x \in E | \tilde{\phi}(x) = o\}$. Since this term has a leading coefficient 0, it follows from the definition of the Lesbegue integral for simple functions, that the integrals above are equal. Then the result follows just by following the equalities.

Problem 2.

Proof. Let $A = \{x \in E \mid f(x) \neq 0\}$. We show m(A) = 0. By additivity over domains of integration we have

$$0 = \int_{E} f = \int_{E \setminus A} f + \int_{A} f = \int_{A} f$$

since f = 0 for all $x \in E \setminus A$, the integral over this set is zero. Now

$$0 = \int_{A} f = \sup \{ \int_{A} h \, | \, h \text{ simple }, \, 0 \le h \le f \}$$

Thus for all such h, we have

$$0 = \int_A h = \sum_{i=1}^n a_i \cdot m(E_i)$$

for some canonical representation of $h = \sum_{i=1}^n a_i \chi_{E_i}$. If m(A) > 0, then there would exist a simple function $h \le f$ defined on A such that $h = \sum_{i=1}^n a_i \cdot \chi_{E_i}$ where $a_i \ne 0$ for all i and $m(E_i) > 0$ for some i, thus $\int_A h > 0$ which implies $\int_A f > 0$ a contradiction.

Problem 3.

Proof. First we have a small lemma. Let $\{a_n\}_n \to a$ in \mathbb{R} and let $\{b_n\}_n$ be any real valued sequence. Then

$$\lim\inf\{a_n + b_n\} = a + \liminf\{b_n\}$$

Let $\epsilon > 0$, then fix $N \in \mathbb{N}$ such that for all $n \geq N$ we have $a - \epsilon \leq a_n \leq a + \epsilon$. Then for $n \geq N$, we have

$$a - \epsilon + \liminf\{b_n\} = \liminf\{a - \epsilon + b_n\} \le \liminf\{a_n + b_n\} \le \liminf\{a + \epsilon + b_n\} = a + \epsilon + \liminf\{b_n\}$$

Letting ϵ go to zero proves the result. Note that this prove works just as well for \limsup .

Let $E \subseteq \mathbb{R}$ be arbitrary. By Fatou's lemma we have

$$\int_{E} f \le \liminf_{n \to \infty} \int_{E} f_n$$

Using the above lemma we get

$$\limsup_{n \to \infty} \left(\int_{E} f_{n} \right) = \limsup_{n \to \infty} \left(\int_{\mathbb{R}} f_{n} - \int_{\mathbb{R} \setminus E} f_{n} \right) = \int_{\mathbb{R}} f + \limsup_{n \to \infty} \left(- \int_{\mathbb{R} \setminus E} f_{n} \right)$$

$$= \int_{\mathbb{R}} f - \liminf_{n \to \infty} \left(\int_{\mathbb{R} \setminus E} f_{n} \right) \le \int_{E} f$$

where the last inequality follows from Fatou's lemma applied to the integral of f over $\mathbb{R} \setminus E$ and linearity of integration. Then since we have

$$\limsup_{n \to \infty} \int_{E} f_n \le \liminf_{n \to \infty} \int_{E} f_n$$

the two are equal (the other inequality is always true) and this implies convegence of the sequene $\int_E f_n$. Thus

$$\lim_{n \to \infty} \int_E f_n = \int_E f$$

Problem 4.

Proof. By Fatou's lemma we have that

$$\int_E f \le \liminf_{n \to \infty} \int_E f_n$$

And since for all $n \in \mathbb{N}$ we have $f_n \leq f$, by monotinicity, it follows $\int_E f_n \leq \int_E f$, thus

$$\limsup_{n \to \infty} \int_E f_n \le \int_E f$$

and just as above we get that

$$\limsup_{n\to\infty}\int_E f_n \leq \liminf_{n\to\infty}\int_E f_n$$

which implies the result, as in the previous problem.

Problem 5.

Proof. First we prove it for non-negative functions on sets of arbitrary measure. Let f be a non-negative measureable function of E. Let $C \subseteq E$ be measureable. Given h, bounded, measureable, function on C with finite support which satisfies $0 \le h \le f$, then automatically h is a bounded, measureable, finite support function on E satisfying $0 \le h \le f \cdot \chi_C$. Conversly, given a bounded, measureable function $h: A \to \mathbb{R}^+$ with finite support $A \subset E$ satisfying $0 \le h \le f \cdot \chi_C$ by restricting the domain of h to $A \cap C$ and setting h = 0 for all $C \setminus (A \cap C)$. We obtain a bdd., measureable, finite spp function on C such that $0 \le h \le f$. Then it clearly follows

 $\sup\{\int_C h\,|\,h\text{ bdd., measu., finite spp. },\,0\leq h\leq f\}=\sup\{\int_E h\,|\,h\text{ bdd., measu., sinite spp.},\,0\leq h\leq f\cdot\chi_C\}$

Thus by definition, $\int_C f = \int_E f \cdot \chi_C$.

Now, for the general case let f be integrable, then

$$\int_{A} f = \int_{A} f^{+} - \int_{A} f^{-} = \int_{E} f^{+} \cdot \chi_{A} - \int_{E} f^{-} \cdot \chi_{A} = \int_{E} f \cdot \chi_{A} \tag{1}$$

where the first and last equalities are by the defintion of integration and the middle inequality follows since f^+ and f^- are both non-negative measureable functions, we may apply the case proven above.

Problem 6.

Proof. Fix a sequence $y_n \to 0^+$ and define $f_n(x) = f(x, y_n)$. Then $f_n(x)$ is a measureable function for each n. Since for each fixed value of x we have $\lim_{y\to 0^+} f(x,y) = f(x)$, we have $f_n(x) \to f(x)$ pointwise. Further, $|f_n(x)| \le g(x)$ for all n, by assumption. Then by the Lesbeque dominated convergence theorem we have that

$$\lim_{y \to 0^+} \int_0^1 f(x, y) = \lim_{n \to \infty} \int_0^1 f_n(x) = \int_0^1 f(x)$$

Problem 7.

Proof. First note that by the definition of the derivative, we have

$$\frac{d}{dy}\left(\int_{[0,1]} f(x,y)dx\right) = \lim_{h \to 0} \left(\frac{\int_{[0,1]} f(x,y)dx - \int_{[0,1]} f(x,y+h)dx}{h}\right)$$
(2)

then by linearity we have

$$\frac{d}{dy}\left(\int_{[0,1]} f(x,y)dx\right) = \lim_{h \to 0} \left(\int_{[0,1]} \frac{f(x,y) - f(x,y+h)}{h} dx\right)$$
(3)

Now for each $y \in Q$, we have that f(x,y) is a measureable function of x, thus so is $\frac{f(x,y)-f(x,y+h)}{h}$. Then

$$\lim_{h \to 0} \frac{f(x,y) - f(x,y+h)}{h} = \frac{\partial f}{\partial y}(x,y)$$

for each $(x,y) \in Q$ so we have pointwise convergence. All that remains is to exchange the limit and the integral sign. By assumption we have

$$\left| \frac{\partial f}{\partial y}(x,y) \right| \le g(x,y) \ \forall (x,y) \in Q \tag{4}$$

Fix $y \in [0,1]$. This inequality can easily be made strict (i.e. redefine G(x) = g(x,y) + 1). Then if we fix a sequence $\{h_n\} \to 0$ there exists an $N \in \mathbb{N}$ such that

$$|F_n(x)| = \left| \frac{f(x,y) - f(x,y+h_n)}{h_n} \right| \le G(x)$$

for all $n \ge N$. Then by starting the sequence $\{F_n\}_{n=N}^{\infty}$ at N we get a sequence of measureable functions in x which are uniformly bounded by G(x) which are converging point wise to the partial derivative of f w.r.t y. By Lesbeque Dominated convergence we have,

$$\lim_{h \to 0} \left(\int_{[0,1]} \frac{f(x,y) - f(x,y+h)}{h} dx \right) = \lim_{n \to \infty} \left(\int_{[0,1]} F_n(x) dx \right) = \int_{[0,1]} \frac{\partial f}{\partial y}(x,y) dx \tag{5}$$

Since $y \in [0, 1]$ was arbitrary, the above holds for all $y \in [0, 1]$.