Q01. Determine whether each integral is convergent or divergent. If it is convergent, evaluate it. If divergent, justify why it is divergent.

(a)
$$\int_{-\infty}^{\infty} (x^3 - 3x^2) \, dx$$

Solution. Notice that we can distribute $\int_{-\infty}^{\infty} (x^3 - 3x^2) dx = \int_{-\infty}^{\infty} x^3 dx - 3 \int_{-\infty}^{\infty} x^2 dx$. Since x^3 is odd, the term goes to zero. By the p-test, the x^2 term diverges. Therefore, the integral diverges.

(b)
$$\int_0^4 \frac{1}{x^2 - x - 2} \, \mathrm{d}x$$

Solution. Notice that $x^2 - x - 2 = (x - 2)(x + 1)$ so there is an asymptote at x = 2. We must find $\int_0^2 \frac{1}{x^2 - x - 2} dx + \int_2^4 \frac{1}{x^2 - x - 2} dx$. By partial fractions:

$$\int_0^2 \frac{1/3}{x-2} - \frac{1/3}{x+1} \, \mathrm{d}x = \lim_{t \to 2^-} \left[\frac{1}{3} \ln|x-2| - \frac{1}{3} \ln|x+1| \right]_0^t = -\infty$$

so the integral diverges.

(c)
$$\int_0^{\pi/2} \frac{\cos x}{\sqrt{\sin x}} \, \mathrm{d}x$$

Solution. Let $u = \sin x$.

Then,
$$\int_0^{\pi/2} \frac{\cos x}{\sqrt{\sin x}} dx = \int_0^1 \frac{du}{\sqrt{u}} = \lim_{t \to 0^+} \left[2\sqrt{u}\right]_t^1$$
, which converges to 2.

(d)
$$\int_0^5 \frac{1}{\sqrt[3]{5-x}} \, \mathrm{d}x$$

Solution. After substituting, we have $\int_5^0 \frac{dx}{\sqrt[3]{x}} = \lim_{t \to 0^+} \left[\frac{3}{2}x^{2/3}\right]_5^t$, converging to $\frac{3\sqrt[3]{25}}{2}$.

(e)
$$\int_1^\infty \frac{e^{1/x}}{x^2} \, \mathrm{d}x$$

Solution. Notice that if we let $u = e^{1/x}$, then $du = -\frac{e^{1/x}}{r^2}$.

So we have $\lim_{t\to\infty} \int_1^t -\mathrm{d}u = \lim_{t\to\infty} \left[-e^{1/x}\right]_1^t = -e^0 + e^1 = e - 1$ which converges. \square

(f)
$$\int_1^\infty \frac{\ln x}{x^2} \, \mathrm{d}x$$

Solution. Integrate by parts:

$$\int \frac{\ln x}{x^2} \, \mathrm{d}x = -\frac{\ln x}{x} - \int \frac{-\mathrm{d}x}{x^2} = -\frac{1 + \ln x}{x} + C$$

Then, $\lim_{t\to\infty} -\frac{1+\ln x}{x}\Big|_1^t = 1$ converges by the Fundamental Log Limit.

(g)
$$\int_0^1 \frac{e^{1/x}}{x^3} \, \mathrm{d}x$$

Solution. Use the same substitution as (e). Then, integrating by parts:

$$\int \frac{e^{1/x}}{x^3} dx = -\frac{e^{1/x}}{x} - \int \frac{e^{1/x}}{x^2} dx = -\frac{e^{1/x}}{x} + e^{1/x}$$

And the limit $\lim_{t\to 0^+} \left[-\frac{e^{1/x}}{x} + e^{1/x} \right]_t^1 = \lim_{t\to 0^+} \left[0 + \frac{e^{1/t}}{t} - e^{1/t} \right] = \infty$ diverges.

Q02. Use the Comparison Theorem to determine whether each integral is convergent or divergent.

(a) $\int_1^\infty \frac{2+e^{-x}}{x} dx$

Proof. By the *p*-test, $\int_1^\infty \frac{\mathrm{d}x}{x}$ diverges. But $1 + e^{-x}$ is positive, so $\frac{2 + e^{-x}}{x} > \frac{1}{x} > 0$. Therefore, by the Comparison Theorem, $\int_1^\infty \frac{2 + e^{-x}}{x} \, \mathrm{d}x$ diverges.

(b) $\int_1^\infty \frac{1+\sin^2 x}{\sqrt{x}} \, \mathrm{d}x$

Proof. By the *p*-test, $\int_1^\infty \frac{\mathrm{d}x}{\sqrt{x}}$ diverges. For x > 1, $\frac{\sin^2 x}{\sqrt{x}} > 0$, so we have $\frac{1+\sin^2 x}{\sqrt{x}} > 0$. By the Comparison Theorem, $\int_1^\infty \frac{1+\sin^2 x}{\sqrt{x}} \, \mathrm{d}x$ must diverge.

Q03. Consider the following integrals:

(a) Prove that $\int_{e}^{\infty} \frac{\cos x^2}{x^2 \ln x} dx$ is convergent.

Proof. We apply the Absolute Convergence Theorem. Notice that for all $x \geq e$, we have $\ln x > 0$ and

$$0 \le \left| \frac{\cos x^2}{x^2 \ln x} \right| \le \frac{1}{x^2 \ln x} \le \frac{1}{x^2}$$

which, by the p-test, is convergent.

Therefore, by the Absolute Convergence Theorem, the integral converges. \Box

(b) Prove that $\int_{1}^{\infty} \frac{\sin x}{x} dx$ is convergent.

Q04. Prove that if f(x) is continuous on $[0, \infty)$ and $\lim_{x \to \infty} f(x) = \alpha > 0$ (or $\alpha = \infty$), then $\int_0^\infty f(x) dx$ diverges.

Proof. First, consider when α is finite. By the definition of the infinite limit, given $\frac{\alpha}{2}$, there is a M>0 such that when $x\geq M$, $|f(x)-\alpha|<\frac{\alpha}{2}$. Since α is positive, this implies $f(x)>\frac{\alpha}{2}$. Now, $\int_{M}^{\infty}\frac{\alpha}{2}\,\mathrm{d}x=\infty$. By the Comparision Theorem, the integral diverges.

If $\alpha = \infty$, there exists a cutoff N > 0 such that when x > N, f(x) > 1. The same logic applies, and the integral must diverge.

Q05. Sketch the region enclosed by the given curves and find the area.

(a) $y = \cos x$, $y = 2 - \cos x$, $0 \le x \le 2\pi$

Solution. Doodle with pgfplots.

We simply evaluate the integral $\int_0^{2\pi} (2-\cos x) - \cos x \, dx$. This is $-2 \int_0^{2\pi} 1 - \cos x \, dx = 2[x-\sin x]_0^{2\pi} = 4\pi$.

(b)
$$x = y^4, y = \sqrt{2-x}, y = 0$$

Solution. Doodle, noticing that the POI is $\sqrt[4]{x} = \sqrt{2-x} \iff x = 1$.

The two areas are $\int_0^1 \sqrt[4]{x} \, dx$ and $\int_1^2 \sqrt{2-x} \, dx$. The first is $[\frac{4}{5}x^{5/4}]_0^1 = \frac{4}{5}$ and the second is $\int_0^1 \sqrt{x} \, dx = [\frac{2}{3}x^{3/2}]_0^1 = \frac{2}{3}$, so the total area is $\frac{22}{15}$.

(c)
$$y = \frac{x^2}{4}$$
, $y = 2x^2$, $x + y = 3$, $x \ge 0$

Solution. Doodle, noticing that the POI again at x = 1.

Now, we have $\int_0^1 2x^2 - \frac{x^2}{4} dx = \left[\frac{2}{3}x^3 - \frac{x^3}{12}\right]_0^1 = \frac{7}{12}$ for the area between 0 and 1, and $\int_1^2 3 - x - \frac{x^2}{4} dx = \left[3x - \frac{x^2}{2} - \frac{x^3}{12}\right]_1^2 = \frac{10}{3} - \frac{29}{12} = \frac{11}{12}$ for the remainder.

The sum is $\frac{2}{3}$.