OVERVIEW

- This project aims to develop an automated system for detecting changes related to human activities using satellite imagery. It focuses on identifying changes in man-made objects such as vehicles, buildings, roads, and more from Sentinel-2 and LISS-4 datasets
- It leverages AI/ML techniques for efficient semantic segmentation and change detection, enabling applications in urban planning, environmental monitoring, and disaster response

MODEL DEVELOPMENT

1. Data Collection and Preprocessing:

• Resize, normalize, and segment images into patches for model input.

2. Segmentation

 The data provided is divided into patches that are being masked and labels are given according to different landmass

3. Masking:

• The segmented patches are merged again to create a final masked image

4. Change Detection:

Change in the temporal images is detected by looking at change in labels

5. Final Image:

 The labels changed due to human activities are coloured and final image representing the difference is obtained

RESULTS

• The trained model successfully detects changes in human-related activities from satellite imagery. Comparisons of original images, ground truth masks, and predictions demonstrate its ability to identify man-made objects accurately.

CHALLENGES:

- •1. Variations in lighting and seasons affect segmentation accuracy.
- •2. High-resolution satellite data requires significant processing power.
- •3. Temporal data shifts due to satellite motion make alignment difficult.
- •4. Minor changes are hard to detect due to resolution limitations.

USE CASES:

CONCLUSION

•This project highlights the potential of AI/ML techniques in automating change detection tasks from satellite imagery. By focusing on human-related changes, it opens avenues for diverse applications like urban development, monitoring, and emergency management.

ALLAN D'SOUZA - ENG21CT0002
HEMAL S - ENG21CT0009
JAICE S JOSEPH - ENG21CT0011
SHASHANK - ENG21CT0036
SWAROOP - ENG21CT0041