# NCI Analysis for MAC (IDENT)

Aitor Ameztegui (CREAF - CTFC)

November 2016

This is an R Markdown Notebook showing the descriptive analyses and first results of the NCI analyses carried out in MAC. The final aim is to determine the role of functional diversity on growth, through the classic NCI growth equations. For this, we first need to determine the target trees, identify which are the neighbours for each target, and define several indicators of functional diversity in the neighborhood of each tree.

### Target Trees

##

First thing we need is to describe our dataset, which contains 19 species (12 native, 7 exotic), that have been measured between 2009 and 2014. The total number of trees planted was 13,824, but after deleting the missing and dead trees, we kept a total of 12466 as target trees. These are the main descriptive statistics of the target trees per species

| ## |        |    |     |                |      |                  |       |          |      |          |       |
|----|--------|----|-----|----------------|------|------------------|-------|----------|------|----------|-------|
| ## |        |    |     | ${\tt Diam14}$ |      | ${\tt Height14}$ |       | D Growth |      | H Growth |       |
| ## | CodeSp | n  |     | Mean           | Sd   | Mean             | Sd    | Mean     | Sd   | Mean     | Sd    |
| ## | ABBA   |    | 678 | 31.8           | 10.2 | 196.3            | 66.0  | 26.1     | 10.0 | 169.8    | 64.8  |
| ## | ACPL   |    | 429 | 40.1           | 18.7 | 415.4            | 157.1 | 33.7     | 18.7 | 392.0    | 157.0 |
| ## | ACRU   |    | 822 | 41.1           | 17.4 | 388.6            | 132.6 | 35.9     | 17.3 | 352.1    | 132.9 |
| ## | ACSA   |    | 841 | 35.4           | 12.5 | 396.8            | 123.0 | 31.1     | 12.4 | 348.6    | 121.7 |
| ## | BEAL   |    | 726 | 40.8           | 18.6 | 412.7            | 141.3 | 37.4     | 18.5 | 364.6    | 139.9 |
| ## | BEPA   |    | 893 | 60.4           | 21.8 | 627.7            | 126.7 | 56.7     | 21.8 | 582.5    | 126.5 |
| ## | LADE   |    | 258 | 41.6           | 22.4 | 377.8            | 176.1 | 38.6     | 22.3 | 353.0    | 174.8 |
| ## | LALA   |    | 842 | 51.7           | 16.8 | 491.1            | 112.4 | 47.3     | 16.6 | 453.5    | 111.9 |
| ## | PIAB   |    | 461 | 35.4           | 9.5  | 252.0            | 75.9  | 29.8     | 9.2  | 208.4    | 74.6  |
| ## | PIGL   |    | 980 | 32.9           | 8.7  | 192.4            | 57.7  | 27.3     | 8.5  | 154.5    | 57.1  |
| ## | PIOM   |    | 235 | 20.7           | 8.8  | 83.3             | 42.8  | 16.6     | 8.7  | 64.3     | 42.7  |
| ## | PIRE   |    | 742 | 41.2           | 11.3 | 233.5            | 60.1  | 36.3     | 11.2 | 212.6    | 59.3  |
| ## | PIRU   |    | 725 | 28.6           | 8.5  | 182.8            | 61.7  | 23.8     | 8.4  | 140.0    | 60.9  |
| ## | PIST   | 1  | 136 | 37.2           | 12.4 | 249.4            | 91.6  | 32.0     | 12.3 | 226.4    | 91.4  |
| ## | PISY   |    | 497 | 41.9           | 14.9 | 228.1            | 80.4  | 36.9     | 14.9 | 192.9    | 79.3  |
| ## | QURO   |    | 351 | 39.4           | 16.0 | 390.9            | 108.3 | 36.8     | 16.0 | 375.7    | 108.3 |
| ## | QURU   |    | 706 | 48.2           | 20.5 | 459.9            | 116.3 | 39.2     | 19.4 | 437.9    | 116.2 |
| ## | THOC   |    | 812 | 37.4           | 14.0 | 205.9            | 67.2  | 33.9     | 13.9 | 177.2    | 66.7  |
| ## | TICO   |    | 332 | 45.2           | 25.1 | 404.9            | 142.5 | 42.3     | 24.9 | 380.3    | 141.0 |
| ## | All    | 12 | 466 | 40.2           | 17.5 | 331.1            | 170.7 | 35.4     | 17.5 | 297.7    | 168.2 |
|    |        |    |     |                |      |                  |       |          |      |          |       |

We can see that the exotic species are less abundant (LADE: 258; PIOM: 235) than the native ones, for which there are always > 700 individuals in the dataset (this contrasts with previous database, where some species were much rarer). The mean diameter growth for all the dataset is 7.07 mm per year in diameter, and 59.53 cm per year in height. We can also see that diameter growth is more consistent across species than height growth, for which the fastest growing species (BEPA: 5.82 m) growed almost 10 times faster than the slowest growing one (PIOM = 0.6m)

## Determination of neighbours

As we will work at an individual level, not at the plot level, we must identify the neighbours of each target tree. We do this externally, using ArcGIS and the Generate Near Table utility. We must note that every target tree has a different and unique neighborhood, and as a consequence, a given species may not exist in the neighborhood of another given species. This can have computational consequences, so first we need to know which species are neighbours of which ones.

```
mytable <- table(neighbours$CodeSp_IN, neighbours$CodeSp_NEAR)
kable(addmargins(mytable,2), format = 'markdown' )</pre>
```

| ABB               | AACI | PACRU | JACSA | ABEAI | LBEPA | LAE  | EAL   | APIA: | ₽IGL  | PIO  | MPIRE | PIRU  | PIST  | PIS  | ⁄QUI | R <b>Q</b> UR | UTHO( | CTIC | (Sum   |
|-------------------|------|-------|-------|-------|-------|------|-------|-------|-------|------|-------|-------|-------|------|------|---------------|-------|------|--------|
| ABB <b>A</b> 2470 | 293  | 2390  | 2541  | 312   | 742   | 141  | 776   | 76    | 1560  | 337  | 966   | 1299  | 351   | 99   | 222  | 334           | 270   | 225  | 25404  |
| ACPL96            | 8523 | 3722  | 646   | 629   | 1068  | 81   | 167   | 562   | 207   | 545  | 175   | 202   | 205   | 315  | 240  | 198           | 511   | 604  | 15896  |
| ACR <b>2</b> B27  | 738  | 14556 | 528   | 3236  | 834   | 74   | 519   | 225   | 388   | 120  | 490   | 635   | 1008  | 352  | 186  | 1238          | 2588  | 678  | 30720  |
| ACS <b>2</b> 468  | 634  | 513   | 14837 | 794   | 1207  | 109  | 2160  | 166   | 1851  | 778  | 417   | 750   | 1019  | 233  | 201  | 285           | 2662  | 359  | 31443  |
| BEAL97            | 632  | 3121  | 795   | 12831 | 773   | 30   | 464   | 405   | 844   | 262  | 713   | 956   | 937   | 272  | 224  | 2136          | 891   | 614  | 27197  |
| BEP <b>₹</b> 40   | 1104 | 1833  | 1247  | 807   | 14848 | 210  | 1104  | 657   | 1540  | 598  | 560   | 1155  | 2937  | 649  | 761  | 2684          | 825   | 174  | 33433  |
| LAD <b>E</b> 04   | 68   | 60    | 102   | 25    | 185   | 6471 | 116   | 132   | 149   | 44   | 632   | 132   | 307   | 485  | 190  | 428           | 96    | 59   | 9785   |
| LALA89            | 170  | 519   | 2213  | 478   | 1101  | 150  | 15229 | 654   | 2868  | 321  | 198   | 808   | 2797  | 656  | 194  | 941           | 1050  | 267  | 31403  |
| PIAB77            | 589  | 249   | 173   | 411   | 655   | 156  | 661   | 9103  | 642   | 119  | 275   | 685   | 449   | 1192 | 207  | 202           | 1175  | 148  | 17168  |
| PIGI1578          | 201  | 374   | 1918  | 863   | 1524  | 179  | 2863  | 643   | 15361 | 191  | 1288  | 1616  | 3813  | 933  | 522  | 509           | 1371  | 813  | 36560  |
| PIOM260           | 352  | 79    | 481   | 177   | 393   | 42   | 255   | 73    | 135   | 5624 | 165   | 52    | 301   | 78   | 43   | 173           | 90    | 112  | 8885   |
| PIRE928           | 165  | 481   | 421   | 656   | 518   | 594  | 189   | 242   | 1242  | 237  | 13779 | 3544  | 3023  | 441  | 142  | 665           | 420   | 166  | 27853  |
| PIRUI245          | 199  | 611   | 724   | 900   | 1086  | 148  | 735   | 648   | 1561  | 102  | 3553  | 12188 | 1188  | 1048 | 699  | 377           | 277   | 118  | 27407  |
| PIST357           | 201  | 993   | 1105  | 964   | 2894  | 333  | 2757  | 443   | 3835  | 361  | 3162  | 1295  | 18802 | 2300 | 719  | 1481          | 1468  | 866  | 42336  |
| PISY 88           | 309  | 351   | 245   | 272   | 584   | 516  | 591   | 1119  | 937   | 120  | 535   | 1005  | 300   | 9426 | 563  | 540           | 915   | 201  | 18617  |
| QUR <b>26</b> 9   | 218  | 189   | 167   | 151   | 738   | 203  | 169   | 191   | 561   | 74   | 145   | 758   | 724   | 619  | 7268 | 3112          | 92    | 503  | 13151  |
| QUR <b>3</b> 29   | 191  | 1243  | 282   | 2356  | 2664  | 481  | 934   | 200   | 490   | 239  | 815   | 453   | 1501  | 565  | 112  | 11971         | 1462  | 140  | 26428  |
| THO <b>27</b> 3   | 516  | 2494  | 2979  | 939   | 801   | 109  | 1057  | 1122  | 21396 | 102  | 438   | 298   | 1488  | 919  | 107  | 1457          | 13821 | 261  | 30577  |
| TICO 60           | 593  | 597   | 219   | 605   | 148   | 64   | 238   | 131   | 715   | 156  | 148   | 114   | 774   | 175  | 449  | 118           | 188   | 6638 | 312230 |

Although some combinations are rarer than others, with the new dataset there are many more neighbours for all combinations of species. The minimum is the 25 BEAL (Betula alleghaniensis) in the neighbourhood of LADE (Larix decidua).

Let's see how many neighbours has a target tree in average

# Mean # neighbours per tree



It is also important to know if this value (mean #neighbours) is consistent across species.

```
plot(n_neighbours~ CodeSp, data=targets,las =2, main = "# Neighbours per species")
abline(mean(targets$n_neighbours, na.rm=T),0 , col="red", lwd=2, cex=0.8)
```

# # Neighbours per species



Another thing to consider is if the mean distances to neighbours of different species are similar for all target species, since competition coefficients might be influenced by spatial seggregation of species. Thus, we determine the mean distances to neighbours of different species.

| ABB       | AACP | LACR | UACS. | ABEA | LBEP. | ALAD | ELAL. | APIAE | 3 PIGI | L PIOI | MPIRE | PIRU | PIST | PISY | QUR  | QUR  | UTHO | CTICO |
|-----------|------|------|-------|------|-------|------|-------|-------|--------|--------|-------|------|------|------|------|------|------|-------|
| ABBA1.20  | 1.66 | 1.32 | 1.30  | 1.55 | 1.41  | 1.55 | 1.37  | 1.51  | 1.29   | 1.61   | 1.45  | 1.37 | 1.65 | 1.54 | 1.58 | 1.63 | 1.56 | 1.57  |
| ACPL1.66  | 1.20 | 1.44 | 1.37  | 1.36 | 1.34  | 1.34 | 1.50  | 1.27  | 1.55   | 1.21   | 1.51  | 1.58 | 1.54 | 1.52 | 1.54 | 1.64 | 1.31 | 1.27  |
| ACRUL.31  | 1.43 | 1.20 | 1.56  | 1.31 | 1.42  | 1.72 | 1.61  | 1.61  | 1.63   | 1.51   | 1.66  | 1.57 | 1.48 | 1.67 | 1.63 | 1.33 | 1.29 | 1.36  |
| ACSA1.30  | 1.37 | 1.56 | 1.20  | 1.37 | 1.35  | 1.68 | 1.30  | 1.54  | 1.36   | 1.41   | 1.64  | 1.41 | 1.47 | 1.64 | 1.58 | 1.64 | 1.34 | 1.63  |
| BEAL1.55  | 1.37 | 1.31 | 1.37  | 1.20 | 1.42  | 1.78 | 1.62  | 1.66  | 1.45   | 1.63   | 1.40  | 1.39 | 1.46 | 1.62 | 1.59 | 1.28 | 1.44 | 1.36  |
| BEPA1.40  | 1.33 | 1.42 | 1.36  | 1.41 | 1.21  | 1.61 | 1.48  | 1.34  | 1.37   | 1.36   | 1.61  | 1.44 | 1.33 | 1.34 | 1.39 | 1.29 | 1.41 | 1.53  |
| LADE1.55  | 1.35 | 1.72 | 1.67  | 1.77 | 1.61  | 1.22 | 1.61  | 1.45  | 1.55   | 1.22   | 1.38  | 1.62 | 1.59 | 1.30 | 1.68 | 1.26 | 1.53 | 1.45  |
| LALA1.37  | 1.51 | 1.61 | 1.31  | 1.62 | 1.49  | 1.59 | 1.21  | 1.35  | 1.31   | 1.61   | 1.60  | 1.37 | 1.30 | 1.36 | 1.59 | 1.43 | 1.43 | 1.61  |
| PIAB 1.51 | 1.27 | 1.61 | 1.55  | 1.66 | 1.35  | 1.48 | 1.36  | 1.20  | 1.33   | 1.37   | 1.65  | 1.36 | 1.67 | 1.30 | 1.49 | 1.60 | 1.34 | 1.44  |
| PIGL 1.30 | 1.55 | 1.63 | 1.37  | 1.46 | 1.37  | 1.54 | 1.31  | 1.34  | 1.21   | 1.57   | 1.36  | 1.33 | 1.31 | 1.43 | 1.30 | 1.65 | 1.34 | 1.40  |
| PIOM1.61  | 1.22 | 1.57 | 1.42  | 1.66 | 1.36  | 1.23 | 1.64  | 1.37  | 1.56   | 1.21   | 1.60  | 1.51 | 1.64 | 1.29 | 1.51 | 1.62 | 1.45 | 1.43  |

| ABB       | AACP | LACR | UACS. | ABEA | LBEP. | ALAD | ELAL. | APIAE | 3 PIGI | PION | MPIRI | E PIRU | JPIST | PISY | QUR  | QUR. | UTHO | CTICC |
|-----------|------|------|-------|------|-------|------|-------|-------|--------|------|-------|--------|-------|------|------|------|------|-------|
| PIRE 1.44 | 1.52 | 1.65 | 1.65  | 1.41 | 1.61  | 1.40 | 1.59  | 1.63  | 1.36   | 1.62 | 1.21  | 1.29   | 1.31  | 1.37 | 1.68 | 1.45 | 1.62 | 1.62  |
| PIRU 1.36 | 1.58 | 1.56 | 1.41  | 1.40 | 1.44  | 1.62 | 1.36  | 1.37  | 1.33   | 1.52 | 1.29  | 1.20   | 1.39  | 1.30 | 1.36 | 1.59 | 1.58 | 1.64  |
| PIST 1.64 | 1.54 | 1.48 | 1.48  | 1.46 | 1.33  | 1.59 | 1.30  | 1.67  | 1.31   | 1.64 | 1.31  | 1.40   | 1.20  | 1.62 | 1.41 | 1.41 | 1.39 | 1.39  |
| PISY 1.53 | 1.52 | 1.67 | 1.64  | 1.62 | 1.35  | 1.28 | 1.36  | 1.30  | 1.43   | 1.24 | 1.34  | 1.31   | 1.61  | 1.21 | 1.29 | 1.32 | 1.42 | 1.43  |
| QURQ.59   |      |      |       |      |       |      |       |       |        |      |       |        |       |      |      |      |      |       |
| QURU.62   |      |      |       |      |       |      |       |       |        |      |       |        |       |      |      |      |      |       |
| THOO.57   | 1.30 | 1.29 | 1.34  | 1.45 | 1.40  | 1.52 | 1.43  | 1.33  | 1.35   | 1.44 | 1.62  | 1.59   | 1.38  | 1.43 | 1.68 | 1.36 | 1.20 | 1.63  |
| TICO 1.55 | 1.28 | 1.35 | 1.60  | 1.36 | 1.52  | 1.44 | 1.61  | 1.43  | 1.39   | 1.43 | 1.59  | 1.65   | 1.38  | 1.43 | 1.24 | 1.52 | 1.61 | 1.20  |

We see that both the mean number of neighbours and the mean distance are very similar across species, so we don't need to worry about spatial seggregation of species.

## **Functional Diversity**

#### **Functional Traits Database**

For this study, we characterized three components of functional diversity: functional difference, functional dispersion and effective species richness. In all cases, the dataset of traits used is the same:

|      | Wd   | SeedMass | LMA    | Nmass | Amass  | Llo   | ShadeT | DroughtT | WaterT |
|------|------|----------|--------|-------|--------|-------|--------|----------|--------|
| ABBA | 0.33 | 7.6      | 143.00 | 1.45  | 50.00  | 84.0  | 5.01   | 1.00     | 2.00   |
| ACPL | 0.52 | 130.3    | 46.45  | 1.62  | 83.07  | 6.0   | 4.20   | 2.73     | 1.46   |
| ACRU | 0.49 | 23.7     | 71.09  | 1.91  | 111.15 | 5.6   | 3.44   | 1.84     | 3.08   |
| ACSA | 0.56 | 55.2     | 70.63  | 1.83  | 84.58  | 5.5   | 4.76   | 2.25     | 1.09   |
| BEAL | 0.55 | 1.0      | 46.08  | 2.20  | 206.00 | 5.5   | 3.17   | 3.00     | 2.00   |
| BEPA | 0.48 | 0.3      | 85.51  | 2.21  | 195.00 | 5.5   | 1.54   | 2.02     | 1.25   |
| LADE | 0.47 | 7.1      | 86.29  | 1.96  | 71.62  | 6.0   | 1.46   | 2.31     | 1.10   |
| LALA | 0.49 | 2.0      | 120.00 | 1.36  | 59.42  | 6.0   | 0.98   | 2.00     | 3.00   |
| PIAB | 0.37 | 7.0      | 235.18 | 1.19  | 29.31  | 103.0 | 4.45   | 1.75     | 1.22   |
| PIGL | 0.33 | 2.4      | 302.86 | 1.28  | 35.58  | 50.0  | 4.15   | 2.88     | 1.02   |
| PIOM | 0.36 | 2.9      | 285.73 | 1.18  | 29.39  | 62.0  | 4.65   | 2.75     | 1.03   |
| PIRE | 0.41 | 9.0      | 294.12 | 1.17  | 24.00  | 36.0  | 1.89   | 3.00     | 1.00   |
| PIRU | 0.37 | 3.3      | 263.00 | 1.20  | 32.00  | 55.0  | 4.39   | 2.50     | 2.00   |
| PIST | 0.34 | 17.0     | 121.92 | 1.42  | 43.80  | 20.0  | 3.21   | 2.29     | 1.03   |
| PISY | 0.42 | 6.0      | 292.76 | 1.22  | 36.85  | 28.0  | 1.67   | 4.34     | 2.63   |
| QURO | 0.56 | 3378.0   | 64.85  | 1.86  | 85.10  | 6.0   | 2.45   | 2.95     | 1.89   |
| QURU | 0.56 | 3143.0   | 88.03  | 2.03  | 148.55 | 6.0   | 2.75   | 2.88     | 1.12   |
| THOC | 0.30 | 1.5      | 223.00 | 1.02  | 32.22  | 33.0  | 3.45   | 2.71     | 1.46   |
| TICO | 0.42 | 50.9     | 49.11  | 2.12  | 83.85  | 4.8   | 4.18   | 2.75     | 1.83   |

To calculate the several diversity indices we need to take into account the relative abundances of each species on each neighborhood, based on the sum of diameters per species. We will compute this separately for the target tree and the neighbours

... and now we can compute the several FD indices using the FD package

## FEVe: Could not be calculated for communities with <3 functionally singular species. ## FDis: Equals 0 in communities with only one functionally singular species.

#### Functional Difference (FDif)

The first variable of interest is functional difference (FDif), calculated as the difference in trait values between the target and its neighbours. Actually, there are two possible ways to calculate this:

#### (1) Based on mean of the differences between traits

We know CWM for each trait for target and neighbours, and FDif is the difference between these two values. Since CWM is trait-specific, we have to calculate a unidimensional variable, so we compute the quadratic mean of the differences.By definition, FDif can get values of 0 when all the neighbours of a target tree are conspecific, so we modify this by adding 1 to all FDif values.

#### (2) Based on the difference in functional identity

Calculating CWM would provide one value per neighborhood and per trait, so in order to obtain a single value we first perform a PCA with trait values, and then calculate a CWM of the first component of the PCA.

```
# Perform PCA to determine Functional Identity

# Perform the PCA
pca_traits <- princomp(traits, cor=T)
#summary(pca_traits)
#loadings(pca_traits)
#scores(pca_traits)
PC1=data.frame(Axis1=pca_traits$scores[,1])
kable(round(PC1,3),format = "markdown")</pre>
```

|      | Axis1  |
|------|--------|
| ABBA | 2.049  |
| ACPL | -1.025 |
| ACRU | -1.639 |

|      | Axis1  |
|------|--------|
| ACSA | -1.208 |
| BEAL | -3.044 |
| BEPA | -2.545 |
| LADE | -1.265 |
| LALA | -0.783 |
| PIAB | 2.958  |
| PIGL | 2.486  |
| PIOM | 2.672  |
| PIRE | 1.686  |
| PIRU | 2.207  |
| PIST | 0.872  |
| PISY | 1.004  |
| QURO | -2.547 |
| QURU | -2.908 |
| THOC | 2.197  |
| TICO | -1.167 |

```
# CWM of Axis1 for Neighbours
FId_Voisins=functcomp(PC1, neig_sps_diam)

# CWM of Axis1 for Target
FId_Cible=functcomp(PC1, targ_sps_diam)

# Determine the difference (in absolute value)
FDif2<- abs(FId_Voisins - FId_Cible) +1
colnames(FDif2) <- "FDif2"
targets <- cbind (targets, FDif2)</pre>
```

Let's see how this new variable looks like depending on how we calculate it

```
par (mfrow = c(2,2))
hist(FDif$FDif, main="FDif using quadratic mean")
hist(FDif2$FDif2, main="FDif using functional Id (PCA)")

plot(FDif~ CodeSp, data=targets,las =2, main = "FDif per species (quadratic.mean)")
abline(mean(targets$FDif, na.rm=T),0 , col="red", lwd=2, cex=0.8)

plot(FDif2~ CodeSp, data=targets,las =2,main = "FDif per species (PCA)")
abline(mean(targets$FDif2, na.rm=T),0 , col="red", lwd=2, cex=0.8)
```

# FDif using quadratic mean

# FDif using functional Id (PCA)





## FDif per species (quadratic.mean)

# FDif per species (PCA)





## **Functional Dispersion**

Functional dispersion was calculated previously. We also add 1 to all values to avoid 0's.

```
FDis <- FD_neighbours$FDis +1
targets <- cbind (targets, FDis)
hist(FDis, main="FDis ")</pre>
```

FDif2



plot(FDis~ CodeSp, data=targets,las =2,main = "FDis per species")
abline(mean(targets\$FDif2, na.rm=T),0 , col="red", lwd=2, cex=0.8)

# FDis per species



#### Species richness

First, we determine the species richness in the neighborhood of each target tree. Then, we calculate the "effective number of species" as the exponential of the Shannon entropy

# **Shannon Exponent**



plot(shannon~ CodeSp, data=targets,las =2,main = "Shannon exponent per species")
abline(mean(targets\$shannon, na.rm=T),0 , col="red", lwd=2, cex=0.8)

# Shannon exponent per species



## Regroupement of species

Since some combinations of target-neighbour are rare, we may be forced to group the neighbour species into a limited number of classes. We use here two approaches: in the first, called "Functional Groups", we performed a cluster analysis based on the values of functional traits provided above. In the second, species were classified into three groups as a function of their shade tolerance: tolerants, intermediate and intolerants.

#### **Based on Functional Groups**

```
d<-vegdist(std_traits,method="euclidean",na.r=T)
fit <- hclust(d, method = "ward.D2")

# Plot dendrogram
plot(fit, cex=0.6,
    main = " Functional Groups ",
    hang = -1)
    # Add red boxes to separate groups
    rect.hclust(fit, 4)</pre>
```

# **Functional Groups**



d hclust (\*, "ward.D2")

We can now compute how many neighbours of each functional group there are at the neighborhood of each target species

```
# Get the cluster for each species
cluster_groups <- data.frame(CodeSp= levels(targets$CodeSp),cluster=cutree(fit, 4))
cluster_groups$cluster <- as.character(cluster_groups$cluster)</pre>
```

```
targets <- left_join(targets, cluster_groups, by=c("CodeSp"))
neighbours <- left_join(neighbours, cluster_groups, by=c("CodeSp_NEAR"="CodeSp"))

targets$cluster <- as.factor(targets$cluster)
neighbours$cluster <- as.factor(neighbours$cluster)

cluster_neighbours <- table(neighbours$CodeSp_IN, neighbours$cluster)
kable(addmargins(cluster_neighbours,2), format="markdown")</pre>
```

|      | 1     | 2     | 3     | 4     | Sum   |
|------|-------|-------|-------|-------|-------|
| ABBA | 12546 | 7420  | 4882  | 556   | 25404 |
| ACPL | 858   | 12440 | 2160  | 438   | 15896 |
| ACRU | 2552  | 21163 | 5581  | 1424  | 30720 |
| ACSA | 2634  | 20613 | 7710  | 486   | 31443 |
| BEAL | 702   | 19260 | 4875  | 2360  | 27197 |
| BEPA | 1397  | 20327 | 8264  | 3445  | 33433 |
| LADE | 236   | 7086  | 1845  | 618   | 9785  |
| LALA | 1443  | 20127 | 8698  | 1135  | 31403 |
| PIAB | 9180  | 3042  | 4537  | 409   | 17168 |
| PIGL | 2221  | 8735  | 24573 | 1031  | 36560 |
| PIOM | 333   | 1891  | 6445  | 216   | 8885  |
| PIRE | 1170  | 3190  | 22686 | 807   | 27853 |
| PIRU | 1893  | 4521  | 19917 | 1076  | 27407 |
| PIST | 800   | 10113 | 29223 | 2200  | 42336 |
| PISY | 1207  | 3069  | 13238 | 1103  | 18617 |
| QURO | 460   | 2338  | 2973  | 7380  | 13151 |
| QURU | 529   | 8291  | 5525  | 12083 | 26428 |
| THOC | 1395  | 9156  | 18462 | 1564  | 30577 |
| TICO | 291   | 9102  | 2270  | 567   | 12230 |

So we see it actually solves the problem of the lack of species

#### Based on Shade tolerance Groups

In this case, standardizing or not has no effect on the results, since we only work with one variable (shade tolerance). We performed a cluster analysis and grouped species in three categories (intolerant, tolerant and intermediate)

# **Shade Tolerance Groups**



d\_ToIS hclust (\*, "ward.D2")

Let's see how many neighbours of each shade tolerance group there are at the neighborhood of each target species

```
# Get the shade clusters for each species
shade_groups <- data.frame(CodeSp= levels(targets$CodeSp),shade=cutree(fit_TolS, k=3))
shade_groups$shade <- as.character(shade_groups$shade)
targets<- left_join(targets, shade_groups, by=c("CodeSp"))
neighbours <- left_join(neighbours, shade_groups, by=c("CodeSp_NEAR"="CodeSp"))
targets$shade <- as.factor(targets$shade)
neighbours$shade <- as.factor(neighbours$shade)
shade_neighbours <- table(neighbours$CodeSp_IN, neighbours$shade)
kable(addmargins(shade_neighbours,2), format="markdown")</pre>
```

|      | 1     | 2     | 3     | Sum   |
|------|-------|-------|-------|-------|
| ABBA | 18801 | 3879  | 2724  | 25404 |
| ACPL | 11585 | 2505  | 1806  | 15896 |
| ACRU | 5639  | 22812 | 2269  | 30720 |
| ACSA | 21843 | 5474  | 4126  | 31443 |
| BEAL | 4805  | 20140 | 2252  | 27197 |
| BEPA | 7215  | 8847  | 17371 | 33433 |
| LADE | 790   | 1106  | 7889  | 9785  |
| LALA | 8090  | 5979  | 17334 | 31403 |
| PIAB | 11536 | 2693  | 2939  | 17168 |
| PIGL | 22321 | 7452  | 6787  | 36560 |

|      | 1     | 2     | 3     | Sum   |
|------|-------|-------|-------|-------|
| PIOM | 7089  | 863   | 933   | 8885  |
| PIRE | 6945  | 5387  | 15521 | 27853 |
| PIRU | 16785 | 4052  | 6570  | 27407 |
| PIST | 8463  | 24427 | 9446  | 42336 |
| PISY | 4024  | 2941  | 11652 | 18617 |
| QURO | 2741  | 8536  | 1874  | 13151 |
| QURU | 2324  | 18645 | 5459  | 26428 |
| THOC | 6947  | 20306 | 3324  | 30577 |
| TICO | 8726  | 2731  | 773   | 12230 |
|      |       |       |       |       |