第三章 蛋白质化学

蛋白质的定义

* 蛋白质是由许多不同的α-氨基酸按照一定的序列,通过肽键缩合而成的,具有较稳定的构象, 具有一定生物功能的生物大分子

本章内容

蛋白质的概念、分类和功能

- ●蛋白质的分子组成
- ★蛋白质的分子结构 蛋白质结构的测定与多肽的人工合成
- ●蛋白质的理化性质 氨基酸及蛋白质的分析和分离 蛋白质组学的理论与进展概要 蛋白质的生物信息学简介

第一节 蛋白质的概念、 分类和功能

分类

- * 单纯蛋白质
 - * 清蛋白: 溶于水
 - * 球蛋白: 微溶于水, 溶于稀盐溶液;
 - * 谷蛋白: 不溶于水, 溶于稀酸稀碱;
 - * 醇溶蛋白:不溶于水,溶于70%乙醇;
 - * 硬蛋白
- * 结合蛋白质
 - * 核蛋白、糖蛋白、脂蛋白

- * 结构蛋白
- * 活性蛋白

- * 纤维状蛋白
- * 球状蛋白

蛋白质的功能

- *生物催化:酶
- *结构成分:角蛋白、胶原蛋白
- * 转运: 血红蛋白
- *运动: 肌球蛋白与肌动蛋白
- * 营养与贮存: 卵清蛋白、乳酪蛋白
- *免疫、信息传递、调控

第二节 蛋白质的分子组成

元素组成

- * 元素组成:碳、氢、氧、氮、硫
- * 蛋白质含氮量平均为16%
 - * 凯氏定氮实验

例题

* 取0.1g卵清蛋白进行凯氏定氮实验,测得其中蛋白氮含量为10%,那么样品中蛋白质的质量为多少?

蛋白质的含量=氮的含量×6.25

$$CH_2NH_2COOH + 3H_2SO_4 \longrightarrow 2CO_2 + 3SO_2 + 4H_2O + NH_3$$

 $2NH_3 + H_2SO_4 \longrightarrow (NH_4)_2SO_4$

缺点: 易将其他氮(如核酸中的氮)归入蛋白质中

- * 由于食品和饲料工业中蛋白质含量测试方法采用 凯氏定氮法,通过测出样品的含氮量来估算蛋白质的含量,蛋白质平均含氮量为16%左右;
- * 三聚氰胺的含氮量为66%左右,不法商人在食品中添加三聚氰胺会使得食品的蛋白质测试含量偏高,从而使劣质食品通过食品检验机构的测试,因此三聚氰胺也被人称为"蛋白精";
- * 以合格的牛奶中蛋白质含量为2.8%计算,含氮量为0.44%;合格的奶粉中蛋白质含量为18%计算,含氮量为2.88%;三聚氰胺含氮量为66.6%,是牛奶的151倍,是奶粉的23倍;所以每100g牛奶中添加0.1克三聚氰胺,理论上能提高0.625%的蛋白质含量,而费用只有添加真实蛋白原料的1/5;并且三聚氰胺作为一种白色结晶粉末,没有什么气味和味道,所以掺杂后不易被发现。

一、结构单元: 氨基酸

- *蛋白质和多肽可以被酸、碱或蛋白酶催化水解
- * 酸或碱能够将蛋白质完全水解,酶水解一般是部分水解.

1)酸水解

- * 用6mo1/L的盐酸或4mo1/L的硫酸在105-110℃条件下水解约20小时
- *优点:不容易引起水解产物的消旋化,得到的是L-氨基酸。
- *缺点:色氨酸被沸酸破坏生成腐黑质,导致水解液呈黑色;含有羟基的氨基酸(丝氨酸或苏氨酸)部分被分解;天冬酰胺和谷氨酰胺侧链的酰胺基水解生成羧基。

2)碱水解

- * 5mo1/L氢氧化钠煮沸10~20小时。
- * 优点: 色氨酸不受破坏, 水解液清亮。
- * 缺点: 精氨酸脱氨生成鸟氨酸和尿素; 水解产物发生消旋化,产物是D-型和L-型氨基酸的混合物。

3)酶水解

- * 蛋白酶 (proteinase)
- * 优点: 常温,不破坏氨基酸,不发生消旋化
- * 缺点: 水解不完全,产物为较小的肽段。
- *最常见的蛋白水解酶:胰蛋白酶trypsin、 糜蛋白酶、胃蛋白酶、微生物蛋白酶。

胰蛋白酶

 $R_1 = Lys$ 或 Arg 侧连(专一要求, 水解速度快); AECys (能水解,速度较慢)

R₂ = Pro (抑制水解)

糜蛋白酶

R₁ = Phe、Trp 或 Tyr (水解速度快); Leu、Met 或 His (水解速度次之)

R₂= Pro (抑制水解)

嗜热菌蛋白酶

R₂ = Leu、Ile、Phe、Trp、Val、Tyr 或 Met (疏水性强的残基,水解速度快)

 R_2 = Gly或 Pro(不水解)

R₁或 R₃= Pro(抑制水解)

胃蛋白酶

 R_1 和/或 R_2 = Phe、Leu、Trp、Tyr 以及其他疏水性残基(水解速度好)

R₁ = Pro (不水解)

图 4-9 几种蛋白水解酶(内肽酶)的专一性

练习题

- * 已知100g蛋白质样品完全水解后得到8.6g苯 丙氨酸
- * 求蛋白质样品中的苯丙氨酸残基百分含量
- * 已知苯丙氨酸分子量为165

结构单元: 氨基酸 amino acid

- * 羧酸分子中 α 碳原子上的一个氢原子被 氨基取代
- *构成天然蛋白质的氨基酸有20种,R代表侧链基团,不同的氨基酸只是侧链R基不同。

名 称	符 号	结 构 式
甘氨酸 (Glycine)	Gly G	NH ₂
丙氨酸 (Alanine)	Ala A	NH₂ H₃CCCOOH
續氨酸 (Valine)	Val V	H ₃ C NH ₂ CH—C—COOH H ₃ C H
亮氨酸 (Leucine)	Læu L	H ₃ C NH ₂ CH—CH ₂ —C—COOH H ₃ C H
异亮氨酸 (Isoleucine)	Ile I	NH₃ H₃C—CH₃—CH—C—CÕOÈ H₃C H
苯丙氨酸 (Phenylalanine)	Phe F	\
酪氨酸 (Tyrosine)	Tyr Y	НО————————————————————————————————————

名 称	符号	结 构 式
色氨酸 (Tryptophan)	Try (Trp) W	CH ₂ —C—COOH
丝氨酸 (Serine)	Ser S	NH ₂ HO—CH ₂ —С—СООН Н
苏氨酸 (Threonine)	Thy T	NH ₂ H₃C—CH—C—COOH ! OH H
半胱氨酸 (Cysteine)	CysH (Cys) C	NH ₂ HS—CH ₂ —C—COOH
甲硫氨酸 (Methionine)	Met M	Н ₃ С—S—СН ₂ —СН ₂ —С—СООН
天门冬氨酸 (Asparic acid)	Asp D	NH ₂ НООССН ₂ ССООН Н

	谷氨酸 (Glutamic acid)	Glu E	$\begin{array}{c} NH_2\\ \\ HOOC-CH_2-CH_2-C-COOH\\ \\ H\end{array}$
	天门冬酰胺 (Asparagine)	Asn N	О NH ₂
	谷氨酰胺 (Glutamine)	Gln Q	O NH ₂
4	精氨酸 (Arginine)	Arg R	NH NH ₂ H ₂ N·-C-NHCH ₂ CH ₂ CH ₂ CCOOH H
	赖氨酸 (Lysine)	Lys K	H ₂ NCH ₂ CH ₂ CH ₂ CCOOH
	组氨酸 (Histidine)	His H	CH ₂ C COOH NH H
	脯氨酸 (Proline)	Pro P	H ₂ C—CH ₂ H ₂ C CH—COOH N H

1、 氨基酸的分类 (1)

- * 脂肪族氨基酸
 - * 甘、丙、缬、亮、异亮等
- * 芳香族氨基酸
 - > 苯丙氨酸 Phe
 - » 酪氨酸 Tyr
 - > 色氨酸 Trp
- * 杂环氨基酸
 - > 组氨酸 His
- * 杂环亚氨基酸
 - > 脯氨酸 Pro

氨基酸的分类(2)

* 中性氨基酸(一氨基一羧基)

- * 脂肪族: 甘、丙、缬、亮、异亮
- * 芳香族: 苯丙、酪、色
- * 含羟基: 丝、苏
- * 含硫: 半胱、甲硫
- * 含酰胺基: 天冬酰胺、谷氨酰胺
- * 亚氨基酸: 脯
- * 酸性氨基酸 (一氨基二羧基)
 - * 天冬氨酸、谷氨酸
- * 碱性氨基酸 (二氨基一羧基)
 - * 精氨酸、赖氨酸、组氨酸

氨基酸的分类 (3)

必需氨基酸:

异亮氨酸、甲硫氨酸、缬氨酸、亮氨酸、色氨酸、苯丙氨酸、苏氨酸、赖氨酸

半必需氨基酸: 精氨酸、组氨酸

Ile Met Val Leu Trp Phe Thr Lys 一 家 写 两 三 本 书 来

2、其他氨基酸

- * 1)稀有氨基酸
 - * 由相应的基本氨基酸衍生而来

胱氨酸

2)非蛋白质氨基酸

- * 广泛存在于各种细胞和组织中,呈游离或结合态,但不存在蛋白质中(即不是蛋白质组分)
- * 大部分也是蛋白质氨基酸的衍生物

* 鸟氨酸、瓜氨酸(尿素循环)

3) D-氨基酸

	表 1-2 D,L-氨基酸的比较 ^[5]	
Tab 1-2	Comparison between D and L-amino act	ic

L型

D型

数量多、分布广、种类 400 种以上 除谷、丙、脯、丝、苏、正亮氨酸外, 多有苦味

多参与蛋白质的组成,是机体主要组成 代谢酶及辅酶单一 数量少、分布窄、种类约 40 种 除谷、脯、天冬、半胱、心亮氨酸外, 均有甜味

不是机体重要组成,主要有保护作用 代谢酶及辅酶具多样性

3、氨基酸的性质

- > 无色晶体
- > 熔点一般在200~300℃
- > 多数可溶于水,不溶于有机溶剂
 - 〉谷氨酸钠

1) 光学性质

- * 不对称碳原子
 - * 旋光性
 - * 手性异构体

紫外光吸收

- ·构成蛋白质的20种氨基酸在可见光区都没有光吸收,在远紫外区(<220nm)均有光吸收。
- · 在近紫外区(200-300nm) 只有酪氨酸、苯丙氨酸 和色氨酸有光吸收

2) 氨基酸的酸碱性质

- *两性解离与偶极离子(兼性离子)
- * 等电点pI (isoelectric point)
 - *使氨基酸分子内正负电荷恰好相等时溶液的 pH值

$$COOH$$
 — H^+ — COO^- — $COO^$

氨基酸等电点的求取

- * 侧链不含解离基团的中性氨基酸,等电点是它的 pK_1 和 pK_2 的算术平均值: $pI = (pK_1 + pK_2)/2$
- * 对于侧链含有可解离基团的氨基酸, pI值等于两性 离子两边的pK值的算术平均值。

结论

- * 中性氨基酸等电点在6左右;
- * 碱性氨基酸等电点为碱性: 赖、精、组
- * 酸性氨基酸等电点为酸性: 谷、天
- * 在等电点以上的任何pH (即pH>pI),氨基酸带净负电荷,在电场中将向正极移动;
- * 在低于等电点的任何pH (即pH<pI), 氨基酸 带净正电荷, 在电场中将向负极移动
- * 在一定pH范围内,氨基酸溶液的pH离等电点越远,氨基酸所携带的净电荷越大。
- * 氨基酸在等电点时溶解度最小。

练习题

- *构成蛋白质的氨基酸中含有亚氨基的是____, 而____没有旋光性。
- *组成蛋白质的氨基酸中,含硫的氨基酸有____。
 __和___。能形成二硫键的氨基酸是___。
- * 采用紫外分光光度法测定蛋白质含量,是由于蛋白质分子中存在___、___和___三种具有共轭双键的氨基酸。

选择题

- * 组成蛋白质的基本单位是:
- * a. L-α-氨基酸
- * b. D-α-氨基酸
- * c. L-β-氨基酸
- * d.. D-β-氨基酸

4、氨基酸的化学反应

与茚三酮反应 与甲醛反应 与DNFB反应 与PITC反应 与DNS反应

与茚三酮反应 成盐反应 成酯反应 脱羧基反应

侧链基团反应

1) 氨基参与的反应

- * 与甲醛反应
- * 与2,4-二硝基氟苯 (DNFB或FDNB) 反应
- * 与异硫氰酸苯酯 (PITC) 反应
- * 与丹磺酰氯 (DNS) 反应
- * 成盐作用

①与甲醛反应

*应用:测定蛋白质水解进程

原理 水溶液中的氨基酸为两性离子, 因 而 不能直接用 碱滴定氨基酸的羧基。用甲醛处理氨基酸, 甲醛与氨基结合, 可形成—NH—CH₂OH,—N(CH₂—OH)₂ 等 羟甲基衍生物, 使 NH₃上的 H+ 游离出来, 这样就可 用 碱 滴 定 NH₃放出的 H+, 测出氨基氮, 从而计算氨基酸的含量。

②与2,4-二硝基氟苯反应

*弱碱性溶液中;黄色

应用: 蛋白质N末端氨基酸的测定

- * 首先由Sanger应用,确定了胰岛素的一级结构
 - * 肽分子与DNFB反应,得DNP-肽
 - * 水解DNP-肽, 得DNP-N端氨基酸及其他游离氨基酸
 - * 乙醚提取分离DNP-氨基酸
 - * 层析法定性DNP-氨基酸,得出N端氨基酸的种类、 数目

③与异硫氰酸苯酯反应

* 由Edman于1950年首 先提出,又称Edman 降解法

应用

* 用于N末端分析,能够不断重复循环,将肽链 N-端氨基酸残基逐一进行测定

4 与丹磺酰氯反应

* 用于测定N端氨基酸

- * 原理DNFB法相同
- *由于DNS有强烈荧光,水解后的DNS-氨基酸不需分离,可直接用电泳或层析法鉴定,灵敏度比DNFB法高100倍,比Edman法高几到十几倍
- * 可用于微量氨基酸的定量

⑤成盐作用

- * 与盐酸反应生成盐酸盐
- * 氨基酸盐在水中的溶解度大于氨基酸

2) 羧基参与的反应

- * 成盐反应
- * 脱羧反应

①成盐反应

*与碱作用

②脱羧反应

- * 在弱碱或脱羧酶催化下生成胺;
- * 生物体内氨基酸的分解代谢途径之一;

几种重要的脱羧产物

* 组胺: 降低血压;

* 酪胺: 升高血压;

3) 氨基与羧基共同参与的反应

* ①茚三酮反应

*弱酸性溶液中,加热;蓝紫色,570nm

* 脯氨酸: 黄色, 440nm

应用

* 纸层析、电泳 分离氨基酸时作为显色剂

* ②成肽反应

* 一分子氨基酸的 α-羧基与另一分子氨基酸 α-氨基脱水缩合的化合物叫做肽

4) 侧链基团参与的反应

表 3-5 氨基酸侧链 R 基团的部分反应

	表 3-3 氨基酸侧链 八基图的即分及应	No. of the last of
R基名称	化 学 反 应	用途及重要性
苯 环 Tyr, Phe	黄色反应:与 HNO3 作用产生黄色物质	作蛋白质定性试验, 用于鉴定苯丙氨酸和酪氨 酸
耐 基 HO Tyr	Millon 反应:与 HgNO ₃ 、Hg(NO ₃) ₂ 和 HNO ₃ 反应 呈红色 Folin 反应:酚基可还原磷钼酸、磷钨酸生成蓝色物 质	用于鉴定酪氨酸,作 蛋白质定性定量测定
吲哚基 N H Try	乙醛酸反应:与乙醛酸或二甲基氨甲醛反应 (Ehrlich),生成紫红色化合物 还原磷钼酸、磷钨酸成钼蓝、钨蓝	鉴定色氨酸,作蛋白 质定性试验
胍基 H ₂ N—C—NH— NH Arg	坂口反应 (Sakaguchi 反应): 在碱性溶液中胍基与含有 α—萘酚及次氯酸钠的物质反应生成红色物质	作精氨酸的测定
W唑基 N NH His	Pauly 反应: 与重氮盐化合物结合生成棕红色物质	用于组氨酸及酪氨酸的测定

练习题

- * 天冬氨酸的pI为2.98,在pH5的溶液中它应带___ ____电荷,在电场中向_____极移动。
- * 在pH=6时,将Gly、Ala、Glu、Lys、Arg和Ser 混合物进行纸电泳,向阳极移动最快的是____, 向阴极移动最快的是____和___。

判断题

- * 组成蛋白质的20种氨基酸分子中都含有不 对称α-碳原子。
- * 在酸性条件下茚三酮与20种氨基酸都能生成蓝紫色物质。
- * 只有在很高或者很低的pH溶液中,氨基酸才主要以非离子形式存在。

二、肽键与肽

- * 肽(peptide)是两个或者两个以上氨基酸通过 肽键(peptide bond)共价连接而成的聚合物, 常称为肽链(peptide chain)。
- * 蛋白质通常由一条或者多条肽链构成。

肽的命名

- •多肽化合物的名称,通常按照肽内氨基酸残基的排列顺序,以残基名称(如某某氨酰)从N端依次阅读到C端,并以C端残基全名结束肽的名称。
- •下列五肽命名为丙氨酰谷氨酰亮氨酰缬氨酰组氨

酸:

肽键

- * <u>肽键C-N具有双键的性质,不能自由转动</u>,因 此四个原子处于同一平面, H和O呈反式排列
- * C=O双键具有单键性质

肽平面

- * 肽键中的两个α-碳原子为反式结构;
- *构成肽键的C、O和N、H以及两个α-碳原子位于 同一平面内,该平面称为肽平面。

待续!

