Sentiment Classification of Tweets about Apple and Google

By Jake Oddi

Overview

Objective: Analyze tweets about Apple and Google products and attempt to classify them based on the sentiment within the tweet.

Goals of Analysis:

- Thoroughly preprocess data and engineer features
- Construct reliable, predictive models for sentiment classification

Data Understanding

- 9093 tweets from 2013
- Sourced via CrowdFlower Open Source Datasets
- Tweets are about Apple/Google or either of their respective products or services
- Sentiment labeled by humans
 - o 'Positive emotion'
 - 'Negative emotion'
 - 'No emotion toward brand or product'
 - 'I can't tell'
- Column indicating product unreliable

Data Cleaning

- No null values in either tweets or sentiment column, only product
- Converted all tweets to strings
- Renamed columns
- Tokenize tweets, remove stopwords

Initial EDA - Word Clouds

Negative

Neutral

Product vs Sentiment

Frequency of different sentiments based on product/company

Company vs Sentiment

Company vs Sentiment (contd.)

Text Length vs Sentiment - Text Length Distributions

Text Length Distributions (contd.)

Text Length vs Sentiment (contd.)

Mean Length of Text by Emotion

Modeling

- 1. Train/Test Split
- 2. TF-IDF Vectorizer
- 3. Support Vector Machine, Naive-Bayes, Random Forest
- 4. Create ensemble with cross validation
- 5. Evaluate

Model Evaluation

SVM performed best of three individual models. F1-Score was used because of class imbalance in target variable

SVM

Train: 0.8838Test: 0.6579

Naive-Bayes:

Train: 0.6962Test: 0.5922

Random Forest

Train: 0.9919Test: 0.6380

Ensemble Cross Val

• Test: 0.6393

Conclusion and Next Steps

- Highest performer was SVM, though faith lies with ensemble
- Next Steps:
 - Lemmatization
 - GridSearch for model params
 - Cross validate all models
 - Word Embedding
 - VADER