

Appln No.: 09/548,449

Applicant(s): James Norris et al.

TISSUE-SPECIFIC AND PATHOGEN-SPECIFIC TOXIC AGENTS AND RIBOZYMES

Page 1 of 23

FIG. 1A

5'-GATCCCTAGAAAATTATTAAATTGGCAATTGACATTGGTGAGGGATAACAATATATGTGGA
 UP ELEMENT -35 ELEMENT -35 ELEMENT Lac OPERATOR -10 ELEMENT

UP ELEMENT -35 ELEMENT LOC OPERATOR -10 ELEMENT

FIG. 1B

5' AGAAAGCAAAATAATGCTTGACACTGTAGGGAAAGCCGTATA
ATGGAATTGTGAGGGATAACAATTCACA 3'

FIG. 1C

ACTCGCGGA TCATCTTCAC CATCGGCCGC AACTCCTGCC
GGATATCCTC GTCTCCTCC TCCACCGCA CCCCCATGGT AGCGGCCAGC-
TCGCGCCCTG CCTGGAAAG CTGTACATGC TGATCGGCGG CGTCGGTGCC
GGCGGCCGGG TCTTCCGCCT GCTCGGCCGT GCCGGTCCGT GCGGCCTTGG
CGTCCGCCGC GGCGCGCAT GAGGGCGGCA CCTGGCTGGT GATCCAGCCA
CTGAGGGTCA ACATTCCAGT CACTCCGGGA AAAATGGAAT TCTTCCATTG
GATCGGCCCA CGCGTCGCGA ACTTGAGCCC CCTTTCGTC GCCCCTTGAC
AGGGTGCAC AGTAGTCGC AGTTGTTGA CGCAAGTCAC TGATTGGAAA
CCCCATCGGC CTGTCAGAAA TGGTCGTTGCC AGACCTATGG CTGGCACCCG
CATCGCGCT CGCTTACCCCT TACTCCTGTT GTGCCCTTAA CCTAGCAAGG AC

FIG.1D

AATTCTCGA AGTCCTTGCG CTGCTGTG TTCAATGATGT
CGTAGATCAG CGCATGCACC TGCTTGTGTT CCACCGGTGG CAGGTTGATC
CGCGTACAT CCCATCCAC CGGATCATG GGTGGCAGGC CGGGGGAGAG
GTGCAGGTCC GAAGCGCCCT GTTGGCACT GAAGGCGAGC AGCTCGTAA
TATCCATCGG ACTCCCCAAT TACAAGCAAG CAGCTAGAAT GCCGCCAAAG
CCGCGCTCTC GGACAAGGAA AACACCGGAT GAGCCAGGGT GCTTCCAGGA
CACGCGTGGT GTCTCGCGCC AGACGCGGAA CCTCGACACT GGAACAGGAA
GATGGCCATC GAGGCCGGCC GTTCGAGGG CGTCGAGCCC ACCCGGACCG
CACTCCATA GGGCGCAGGT AATGTCACG ATAGCAGAGA ATATTGCAA
GGTTGCCGCG CGCATCCGTG AGGCAGCGCA AGCTGCAGGG CGCGATCCGG
CCACGGTCGG CCTGCTCGCC GTGAGCAAGA CCAAGCCCCG CGCGCGGTG
CGCGAGGCGC ACGCCGCCGG CCTTCCGAC TTCGGCGAAA ACTACCTGCA
GGAGGCCCTC GGCAAGCAGG CCGAACTGGC CGACCTGCC TTGAACCTGGC
ACTTCATCGG CCCATCCAC TCGAACAAAGA CCCGGCCCAT CGCGAGCAT
TTCCAGTGG TGCACTCGGT GGACCGGTTG AAGATCGGCC AGCGCCTGTC
GGAGCAACGC CCGGCCGGGC TGCCGCCCT GAATGCTGTC CTGCAGGTCA
ACGTCAGCGG CGAACGCCAG AAGTCCGGCT GCGCCCCCGA GGACCTGCCG
GCCCTGGCCG AGGCCGTGAA GCAACTGCCC AACCTCCGAT TGCGTGGCCT
GATGGCCATC CCCGAACCCA CGCCCGAACG CGCCGCCGAA CACGCCCGT
TCGCCCCGCT GCGCGAACTG CTGCTGGACC TGAACCTTGG CCTGGACACC
CTGTCCATGG GCATGAGCGA CGACCTCGAG GCAGCCATCGG CGAAGGTGCC
ACCTGGGTCC GCATCGGTAC CGCCCTGTTG CGCGCCCGCGA CTACGGCGCC
CCGGCTTCTT GAATGAATCCC

FIG.1E

CTAGAGCTAT TGATGTGGAT CAACATTGTC CACTAGCCGC
TGCGGCCTAA TCTCCAGAAT TGTGAG

FIG.1F

1 ttattttagca ggaataattt gccagattat cgagggagggtt ccagggcaatccaaacatttgc
61 ttatatatgc atttataaaaa ttttcagaat aatttattat tcatacccttgccttttgtt
121 tcaaattat gcccctttt tgcccttgga aacaaccaca ctccctaaatataatagggtgg
181 gtggtttgcattataat ataacataaa aacaaccacc cagtaacttagttagtggc
241 gtatcgacta taacaaactt atgttatcaat gatatatgtt totgagtgtgacaaggaa
301 atgtctccctg tgagacccaa agccagatat atggcctttt gcccggctatataatgttca
361 cctactataat acacatgtaa ttataacata aaaaaatataa caagtaccgaaatgttca
421 taaaataacaa caagatatac atgtgatataa tggaaataaa aagtcaacggccaaaggcttca
481 ttacgaatag atgaaaattt gaacacattt ctgtgtctaa aatgattatagcataataa
541 cgoatatttc cagctcgaaa ttataatattt gtaataataa tattttataatctttgttaat
601 aattattnaa ttgatttaca taaaataataa ttgtaaaattt aatttgtaatcgatgtgaaa
661 taagttatag gagaataataa aatgataaaa aaactattaa caaaaacattgtatagcaat
721 gctttagttt taacaacatg aggttcagggtt tttcattttt cttcaattataatgttatt
781 aataacgttg aaaaagctga gcaaaacgaca gataacgcattt tgtggaaaatgtaaagagac
841 gctttaaaag acgcgaatattt tatcgataaa acagataatg aaaaatgtcaaggtttgttca
901 aaaaatagaaa atggtggaga aataaccata gaaggaaacag ttaattttagaaaaatattgt
961 acttcaaaaca atcctaaat aaaccctcaat aatgttacaa aataataataacttagaaaa
1021 aatccgaact accctaaat tggatgtcaat aatacatggaa aaaaatttaccagaaaaatttgc
1081 aaaaatggaaa atatagtggaa acaacggcga caatgtttca atcttaagtacagacccctaa
1141 agatgagact gtattcggtt aagttaggaga agataaaatca aacgttaagcaatagatacat
1201 caatccctaaat gatataaaatg aattcaaaatc actaaaaataa ctttttccgaggcagatta
1261 cccctggccic tttcttttggaa cagtgatattt ttctgtatca tggtaacactcaattacttca
1321 gatttttac cttaacttcc ttttaatttca tttctctca tctcttcaaaaatgttgtgt
1381 ttttgatttg tggatggatg tggcggtttt ttcatcggtt tggtaatcccttttaa
1441 gtatcttaat tctcttcttag tcataatcaat tggtttttta ctttcacccattttagtggaaat
1501 actcttatacc tttcttcttgcgttaatgg tggcttaatttta gtataaaatcatgcggccca
1561 tatattccaa tggtaggaca tttaattctgtt gattttcagc tattttcataatcttattat
1621 ctgtataattt gcttaatcca atttcaatgc catagccaa attccccatccactaagtca
1681 ttttggttca tatggtttta atctacggcc aatctcaatgc atagattgaccagcgtt
1741 taaatgcata ttccacggat ccacatttac gataaaatca tcttagttacacaatattatc
1801 ccttaactgca acacaggacg tttctcagcg taaaaaaacac cacttagaaatgtactttaa
1861 gaatataact aattcaatct tatattat aatattctt aatgtaccactcacacttttgc
1921 tttttgtca tttgtaaatctt taaaatgttg tttgaaatctt atatttttttagatagct
1981 cctatgtaaac aaacaattttt taatttaat atattnaaac aatgtcaatttagagatcggt
2041 taatttcgattt catttaatata atatttatac attctataatg taaacgtttacacatttggaa
2101 gtaaggagaa ttaaaaatgtt

FIG.1G

FIG.2

FIG.3A

FIG.3B

Appln No.: 09/548,449

Applicant(s): James Norris et al.

TISSUE-SPECIFIC AND PATHOGEN-SPECIFIC TOXIC
AGENTS AND RIBOZYMES

Page 5 of 23

FIG.4

FIG.5A

FIG.5B

FIG.5C

FIG.6A

FIG.6B

FIG.7

FIG.8

FIG.9A

FIG.9B

FIG. 9C

PAC DELETION COMPLEMENTING PLASMID

- 1) INACTIVATION OF C1 REPRESSOR BY TEMPERATURE SWITCH
- 2) DEREPRESSION OF Pr94 PROMOTER
- 3) EXPRESSION OF PacABC
- 4) PRODUCTION OF PACASE ENZYMES
- 5) CLEAVAGE OF *pac* SITE ON TRANSFER PLASMID

PROMOTERS:

pEDI
 CI PROMOTER
 CI PROMOTER
 (MUTATED Op's)

PR94:

C1 REPRESSOR BINDING SITE OVERLAPS -35
 COMPLETE REPRESSION REQUIRES Bof & C1 REPRESSOR
 PROMOTER NORMALLY REPRESSED DURING LYSOGENIC GROWTH.
 SWITCHED ON APPROXIMATELY 15' AFTER PROPHAGE

Bof MODULATOR:
 FORMS TETRACYCLE COMPLEX
 C1 REPRESSOR•BOF•DNA
 INCREASES EFFICIENCY OF C1 REPRESSION
 DOES NOT BIND TO DNA ALONE

FIG.10

FIG.11A

Appln No.: 09/548,449

Page 14 of 23

Applicant(s): James Norris et al.

TISSUE-SPECIFIC AND PATHOGEN-SPECIFIC TOXIC
AGENTS AND RIBOZYMES

Day
1 2 3 4 5

[blurred gel bands] 1.6 kb

[blurred gel bands] 0.7 kb

FIG.11B

CCACTAAAAGCAGATCATGATCAACTCTAAGATCAACATGCCGGATCACATTGCG
Pro Leu Lys Ser Met Ile Ile Asp His Ser Asn Asp Gln His Ala Gly Asp His Ile Ala

GCTGAAATAGGGAAAAAACAAAGACTAAATGCCGTTGTCAGTGCCGAGTCGAGAAATGCC
Ala Glu Ile Ala Glu Lys Glu Arg Val Asn Ala Val Ser Ala Ala Val Glu Asn Ala
AATCAANNNTTA

q q q
C C C C C C t t
AAGGCCAAATAAGGCATAAAGATCGTTCAGAGATCAGACGGATCACCCCGC
Lys Arg Gln Asn Lys Arg Ile Asn Asp Arg Ser Asp Asp His Asp Val Ile Thr Arg

FIG. 12

FIG.13

FIG. 14

FIG.15

FIG.16

FIG.17

5'-CAGGCGACAGGTATACTTCTCCGATTGTGCCTGTCGCCCTGC

FIG.18

pCLIP TRIPLE RIBOZYME STRUCTURE
INTERNAL RIBOZYME INSERT

FIG.19

pCHOP TRIPLE RIBOZYME STRUCTURE
 INTERNAL RIBOZYME INSERT

FIG. 20

FIG. 21

3'

FIG.22A

FIG.22B

FIG.22C

FIG.22D

FIG.22E