NR. I TYTUŁ ĆWICZENIA:

3-1. Wyznaczanie współczynnika podziału w układzie dwóch niemieszających się cieczy i stałej dimeryzacji kwasu octowego w rozpuszczalniku organicznym.

IMIĘ I NAZWISKO OSOBY PROWADZĄCEJ ĆWICZENIA:

dr Bożena Parczewska-Plesnar

di bozena i arczewska-i lesnai										
Kierunek	Nr. grupy	Zespół	Imiona i nazwiska osób	Ocena	wysta-					
	studen-		wykonujących ćwiczenie	wiona	przez					
	ckiej			prowadzącego						
Biotechnologia	1	E	Dominika Dmowska							
			Aleksandra Gawinowska							
			Jakub Guzek							
			Grzegorz Jakubiak							
	Kierunek	Kierunek Nr. grupy studen- ckiej	Kierunek Nr. grupy Zespół studen-ckiej	Kierunek Nr. grupy studen-ckiej Imiona i nazwiska osób wykonujących ćwiczenie Dominika Dmowska Aleksandra Gawinowska Jakub Guzek	Kierunek Nr. grupy Zespół Imiona i nazwiska osób Ocena wykonujących ćwiczenie wiona prowadz Dominika Dmowska Aleksandra Gawinowska Jakub Guzek					

1 Cel ćwiczenia

- Poznanie metody wyznaczania współczynnika podziału substancji poprzez porównanie stężenia kwasu octowego w fazie wodnej (z wykorzystaniem miareczkowania roztworem zasady) przed ekstrakcją i po ekstrakcji wybranymi rozpuszczalnikami organicznymi
- Wyznaczenie izoterm podziału kwasu między wodę i wybrane rozpuszczalniki organiczne
- Zbadanie wpływu rozpuszczalnika na wartość współczynnika podziału
- Porównanie wartości stałej dimeryzacji kwasu w różnych rozpuszczalnikach

2 Wstęp teoretyczny

Prawo podziału Nernsta

Jeżeli do układu złożonego z dwóch praktycznie niemieszających się cieczy wprowadzimy trzeci składnik, rozpuszczający się w obu cieczach, to w wyniku ustalenia się stanu równowagi stosunek stężeń wprowadzonej substancji w tych rozpuszczalnikach jest wielkością stałą w danej temperaturze, niezależną od ilości substancji wprowadzonej.

$$k = \frac{c_o}{c_w} \tag{1}$$

gdzie: k – stężeniowy współczynnik podziału substancji

c_o – stężenie molowe substancji w jednym rozpuszczalniku (organicznym)

 c_w – stężenie molowe substancji w drugim rozpuszczalniku (najczęściej wodnym)

Jeżeli substancja rozpuszczona ulega w rozpuszczalniku organicznym asocjacji to współczynnik podziału jest miarą efektu sumarycznego: podziału między obie fazy cząsteczek niezasocjowanych i zasocjowanych. W przypadku dimeryzacji stała równowagi procesu asocjacji wyrażona jest wzorem

$$K_2 = \frac{c_2}{c_1^2} \tag{2}$$

gdzie: K_2 – stała dimeryzacji $\begin{bmatrix} dm^3 \cdot mol^{-1} \end{bmatrix}$ c_2 – stężenie dimerów $\begin{bmatrix} mol \cdot dm^{-3} \end{bmatrix}$ c_1 – stężenie monomerów $\begin{bmatrix} mol \cdot dm^{-3} \end{bmatrix}$

Na podstawie wzoru (2) można wyprowadzić równanie opisujące tzw. izotermę podziału.

$$k = k_1 + 2K_2k_1^2c_w (3)$$

gdzie: $k_1 = c_1/c_w$

3 Wykonanie ćwiczenia

- 1. Przygotowanie roztworów dwufazowych do wytrząsania
 - a) Wypłukanie wodą destylowaną 5 ponumerowanych kolbek stożkowych z korkami o pojemności $100cm^3$
 - b) Odpipetowanie $40cm^3$ roztworu CH₃COOH z butli 1. do kolbki 1. Odpipetowanie do następnych kolb po $20cm^3$ odpowiednich roztworów kwasu octowego z odpowiednich butli
 - c) Odpipetowanie do tych samych kolb takie same ilości rozpuszczalnika organicznego 1-pentanolu. Do kolby 1. $40cm^3$, do pozostałych kolb po $20cm^3$. Rozpuszczalnik organiczny odpipetowano przy użyciu specjalnie do tego przeznaczonej pipety, która nie była płukana wodą ani używana do roztworów wodnych.
 - d) Zamknięcie kolb korkami i wstawienie ich do wytrząsarki mechanicznej na co najmniej 20min
- 2. Oznaczenie stężenia kwasu octowego w roztworach wodnych przed ekstrakcją (c_w') za pomocą miareczkowania mianowanym roztworem NaOH
 - a) Odpipetowanie po $5cm^3$ roztworu CH₃COOH z butli 1. do kolb przeznaczonych do miareczkowania 1' i 1". Odpipetowanie do następnych kolb (2'–5' i 2"–5") po $2cm^3$ odpowiednich roztworów kwasu.
 - b) Dodanie do każdej kolby 2-3 kropel fenoloftalejny
 - c) Miareczkowanie kolejno roztworów za pomocą mianowanego roztworu NaOH
 - d) Zapisanie otrzymanych objętości roztworu NaOH w tabeli 1
 - e) Obliczenie stężenia kwasu (c'_w) w kolejnych roztworach, uwzględniając w każdym wypadku średnią objętość NaOH z dwóch wyników miareczkowania \overline{V}_z

$$c_w' = \frac{c_z \cdot \overline{V}_z}{V_L} \tag{4}$$

- f) Wpisanie wyników do tabeli 1
- 3. Oznaczenie stężenia kwasu octowego w fazie wodnej po ekstrakcji (c_w)
 - a) Odstawienie kolb po wytrząsaniu, aby układ podzielił się wyraźnie na dwie fazy, z których dolna jest fazą wodną, a górna fazą organiczną
 - b) Oznaczenie stężenia roztworów po ekstrakcji (c_w) stanowiących fazę wodną, za pomocą miareczkowania roztworem NaOH
 - c) Odpipetowanie do kolb przeznaczonych do miareczkowania 1' i 1" po $5cm^3$ dolnej fazy z kolby 1. z korkiem. Odpipetowanie do następnych kolb (2'–5' i 2"–5") po $2cm^3$ dolnej fazy z kolejnych kolb z korkiem.
 - d) Oznaczenie i obliczenie stężenia kwasu (c_w) w fazie wodnej po ekstrakcji, powtarzając czynności opisane w punktach 2b–2e
- 4. Obliczenie stężenia kwasu octowego w fazie organicznej (c_o)
 - a) Obliczenie stężenia kwasu octowego w fazie organicznej (c_o) poprzez odjęcie stężenie kwasu w fazie wodnej po ekstrakcji od stężenia kwasu w fazie wodnej przed ekstrakcją¹.

$$c_o = c_w' - c_w \tag{5}$$

- b) Wpisanie wyników obliczeń do tabeli 1
- 5. Opracowanie wyników

¹Można to obliczyć w ten sposób, ponieważ faza wodna i faza organiczna miały jednakowe objętości

a) Obliczenie dla każdego z roztworów wartości współczynników podziału kwasu octowego między rozpuszczalnik organiczny i wodę, korzystają z równania Nernsta

$$k = \frac{c_o}{c_w} \tag{6}$$

gdzie: c_o – stężenie CH3COOH w fazie organicznej c_w – stężenie CH3COOH w fazie wodnej po ekstrakcji

- b) Zapisanie wyników w tabeli 1
- c) Sporządzenie wykresu zależności $k=f(c_w)$
- d) Wyznaczenie wartości współczynnika kierunkowego linii trendu przy użyciu programu MS Office Excel
- e) W przypadku kwasu octowego zachodzi dimeryzacja kwasu w fazie organicznej i zależność $k = f(c_w)$ opisana jest równaniem izotermy podziału

$$k = k_1 + 2K_2k_1^2c_w (7)$$

gdzie: k_1 – graniczny stężeniowy współczynnik podziału (odnoszący się do monomerów) K_2 – stała dimeryzacji kwasu $\left[dm^3\cdot mol^{-1}\right]$ Z równości $b=k_1$ oraz $a=2K_2k_1^2$ można obliczyć K_2

$$K_2 = \frac{a}{2k_1^2}; \quad \frac{\left[\frac{dm^3}{mol}\right]}{[1]} = \left[\frac{dm^3}{mol}\right] \tag{8}$$

f) Interpretacja przebiegu otrzymanej izotery podziału.

Tablica 1: Zestawienie wyników badań podziałowych kwasu octowego z wykorzystaniem jednego rozpuszczalnika organicznego 2

Substancja ekstrahowana:						Rozpuszczalnik organiczny:					
Kwas octowy							1-pentanol				
Stężęnie roztworu NaOH $\left[\frac{mol}{dm^3}\right]$ $c_z=0,1003$								asu Inej asu icznej			
Numer roztworu	objętość miareczkowanego roztworu kwasu $V_k \left[cm^3 \right]$	Objętość NaOH $\left[cm^{3}\right]$					stężenie kwasu w fazie wodnej $\left[\frac{mol}{dm^3}\right]$ stężenie kwasu w fazie organicznej $\left[mol \cdot dm^{-3}\right]$				
		przed ekstrakcją			po ekstrakcji			przed ekstrakcją	po ekstrakcji	c_o	$k = \frac{c_o}{c_w}$
		V_{z1}	V_{z2}	\overline{V}_z	V_{z1}	V_{z2}	$\overline{V_z}$	c_w'	c_w		
1	5	12,3	12,3	12,30	6,4	6,4	6,40	0,2467	0,1284	0,1184	0,9219
2	2	10,0	9,9	9,95	4,9	5,1	5,00	0,4990	0,2508	0,2482	0,9900
3	2	15,0	14,9	14,95	7,4	7,6	7,50	0,7497	0,3761	0,3736	0,9933
4	2	19,2	19,1	19,15	9,7	9,8	9,75	0,9604	0,4890	0,4714	0,9641
5	2	23,5	23,8	23,6	12,1	12,1	12,10	1,1835	0,6068	0,5767	0,9504

 $^{^2}$ Obliczenia, których wyniki zawarte są w tabeli zostały wykonane przy pomocy programu MS Office Excel

Zależność wartości k dla CH_3COOH od stężenia CH_3COOH w fazie wodnej po ekstrakcji³

4 Obliczenia

4.1 Obliczenia wykonane reprezentatywnie dla roztworu numer 1.

Obliczenia dla pozostałych roztworów są analogiczne

$$\overline{V}_{z_{\text{przed}}} = \frac{12, 3cm^3 + 12, 3cm^3}{2} = 12, 3cm^3$$
 (4.1.9)

$$\overline{V}_{z_{po}} = \frac{6,4cm^3 + 6.4cm^3}{2} = 6,4cm^3$$
 (4.1.10)

$$c_w' = \frac{c_z \cdot \overline{V_z}}{V_k} = \frac{0,1003 \frac{mol}{dm^3} \cdot 12,30 \text{cm}^3}{5 \text{cm}^3} = 0,2467 \frac{mol}{dm^3}$$
 (4.1.11)

$$c_w = \frac{c_z \cdot \overline{V_z}}{V_L} = \frac{0,1003 \frac{mol}{dm^3} \cdot 6,40 \text{cm}^3}{5 \text{ cm}^3} = 0,1284 \frac{mol}{dm^3}$$
(4.1.12)

$$c_o = c'_w - c_w = 0,2467 \frac{mol}{dm63} - 0,1284 \frac{mol}{dm^3} = 0,1183 \frac{mol}{dm^3}$$
 (4.1.13)

$$k = \frac{c_o}{c_w} = \frac{0.1184 \frac{mol}{2lm^3}}{0.1284 \frac{mol}{2lm^3}} = 0.9219$$
(4.1.14)

4.2 Obliczenie stałej dimeryzacji na postawie współczynnika kierunkowego lini trendu

$$b = k_1 = 0,9534; \quad a = 0,0284 \frac{dm^3}{mol}$$

$$K_2 = \frac{a}{2k_1^2} = \frac{0,0284 \frac{dm^3}{mol}}{2 \cdot 0,9534^2} = 0,0156 \frac{dm^3}{mol}$$
(4.2.1)

 $^{^3}$ Wykres sporządzony przy użyciu pakietów pgfplots, pgfplotstable, amsmath oraz tikz w IATEX'u na podstawie obliczeń wykonanych w programie MS Office Excel

5 Wnioski

Wartość stężenia kwasu octowego w fazie wodnej zmalała po reakcji, co wskazuje, na to że kwas ten rozpuszcza się w 1-pentanolu.

Wyznaczone wartości k mogą być obarczone błędem pomiarowym gdyż zależność $k=f(c_w)$ powinna być wyraźnie liniowo rosnąca.