Cálculo Diferencial e Integral en Varias Variables

Mauro Polenta Mora

Ejercicio 8

Consigna

Estudiar la convergencia de las siguientes series:

1.
$$\sum_{n=1}^{+\infty} \frac{n}{(n+1)(n+2)}$$

1.
$$\sum_{n=1}^{+\infty} \frac{n}{(n+1)(n+2)}$$
2.
$$\sum_{n=1}^{+\infty} \frac{n}{(n+1)\log(n+1)}$$
3.
$$\sum_{n=1}^{+\infty} \frac{n^3}{e^n}$$
4.
$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$$

3.
$$\sum_{n=1}^{+\infty} \frac{n^3}{e^n}$$

4.
$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$$

Resolución

Serie #1

$$\bullet \quad \sum_{n=1}^{+\infty} \frac{n}{(n+1)(n+2)}$$

Es una serie de términos positivos, por lo que estudiemos convergencia usando el criterio de equivalencia:

$$\bullet \quad \tfrac{n}{(n+1)(n+2)} \sim \tfrac{n}{n^2} = \tfrac{1}{n}$$

Y como $\sum \frac{1}{n}$ diverge:

•
$$\sum_{n=1}^{+\infty} \frac{n}{(n+1)(n+2)}$$
 también diverge.

Serie #2

$$\bullet \quad \sum_{n=1}^{+\infty} \frac{n}{(n+1)\log(n+1)}$$

Es una serie de términos positivos, por lo que lo primero que haremos será simplificar la expresión del término general:

$$\frac{n}{(n+1)\log(n+1)} = \frac{n}{n\log(n+1) + \log(n+1)} = \frac{1}{\log(n+1) + \log(n+1)} = \frac{1}{2\log(n+1)}$$

Ahora podemos usar la siguiente desigualdad de logaritmo $\forall x \geq 0$:

• $\log(1+x) \le x$

Y por consecuente obtenemos que:

•
$$\frac{1}{2\log(n+1)} \ge \frac{1}{2n} \sim \frac{1}{n}$$

Entonces como tenemos que $\sum \frac{1}{n}$ diverge, por comparación:

• $\sum_{n=1}^{+\infty} \frac{n}{(n+1)\log(n+1)}$ diverge también

Serie #3

•
$$\sum_{n=1}^{+\infty} \frac{n^3}{e^n}$$

Es una serie de términos positivos, por lo que lo primero que haremos será utilizar el criterio de la raíz enésima:

$$\lim \sqrt[n]{\frac{n^3}{e^n}}$$

$$=$$

$$\lim \frac{\sqrt[n]{n^3}}{e}$$

$$=$$

$$\frac{1}{e} \lim e^{\log(n^{\frac{3}{n}})}$$

$$=$$

$$=$$

$$\frac{1}{e} \lim e^{\frac{3}{n} \log(n)}$$

$$=$$

$$=$$

$$\frac{1}{e} \lim e^{\frac{3\log(n)}{n}}$$

$$=$$

$$=$$

$$\frac{1}{e}$$

Como $\frac{1}{e} < 1$, la serie:

• $\sum_{n=1}^{+\infty} \frac{n^3}{e^n}$ converge

Serie #4

$$\bullet \quad \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$$

Es una serie alternada, por lo que primero estudiaremos convergencia absoluta clasificando la siguiente serie:

•
$$\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}}$$

Podemos usar el criterio de comparación y tenemos lo siguiente:

• Como $\sqrt{n} \le n$, tenemos que $\frac{1}{\sqrt{n}} \ge \frac{1}{n} \quad \forall n \in \mathbb{N}$

Entonces como $\sum \frac{1}{n}$ diverge, $\sum \frac{1}{\sqrt{n}}$ también diverge. Por lo que la serie $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ NO es absolutamente convergente.

Para verificar si la misma es convergente, vamos a probar que $\frac{1}{\sqrt{n}}$ es monótona decreciente, es decir que:

•
$$\frac{1}{\sqrt{n}} \ge \frac{1}{\sqrt{n+1}}$$

Esto es directo, pues \sqrt{x} es una función creciente, por lo que $\sqrt{n} \le \sqrt{n+1}$, es decir que $\frac{1}{\sqrt{n}} \ge \frac{1}{\sqrt{n+1}}$.

Además tenemos que $\lim \frac{1}{\sqrt{n}} = 0$. Por lo tanto, por el criterio de Leibnitz tenemos que $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ es convergente.