

DEPARTAMENTO DE INGENIERÍA DE ORGANIZACIÓN administración de empresas y estadística

Grupo MCA - F Entrega Trabajo 3 en Equipo

Métodos Cuantitativos

8 de diciembre de 2024

Alejandro Aranda López

Leyanet Hernández Linares

Alejandra Sofía Vale de Gato Garcia

Informe: Modelos 1, 2 y 3 - Gestión de Quirófanos

Introducción

Este informe presenta las soluciones desarrolladas para los Modelos 1, 2 y 3 del problema de asignación y planificación de quirófanos en un hospital. Cada modelo aborda una variante específica del problema, utilizando herramientas de programación lineal y algoritmos de optimización.

Modelo 1: Asignación de Operaciones a Quirófanos

Tareas Realizadas

- Se implementó un modelo de programación lineal entera en Python utilizando la biblioteca PuLP.
- -Se cargaron los datos correspondientes a las operaciones y sus costes en función del quirófano.
- El modelo minimiza los costos de asignación de operaciones a quirófanos respetando las restricciones de asignación única y de incompatibilidades.

Posibles Problemas y Soluciones

Durante la implementación, surgió la dificultad de manejar múltiples restricciones de incompatibilidad. Se resolvió utilizando un enfoque iterativo para agregar estas restricciones dinámicamente.

Resultados y Solución

La solución óptima encontró el costo mínimo de asignación: Asignaciones:

Operación	Quirófano
68	34
57	11
133	23
12	42
159	61
18	65
67	58
2	40

Operación	Quirófano
138	4
5	24
44	21
107	50
88	71
Costo total	1510

La solución cumple con todas las restricciones.

Modelo 2: Planificación Diaria de Quirófanos (Set Covering)

Tareas Realizadas

- Se implementó un modelo de Set Covering que selecciona un conjunto mínimo de planificaciones factibles para quirófanos, minimizando los costos de planificación.
- El modelo fue implementado en Python utilizando los datos correspondientes a las operaciones y sus costes.

Posibles Problemas y Soluciones

La generación de todas las planificaciones factibles fue un desafío debido a la posible explosión combinatoria. Se resolvió generando planificaciones dinámicamente y filtrando solo las válidas con base en los horarios de las operaciones.

Resultados y Solución

En la tabla se muestran los resultados obtenidos referente al servicio, la asignación del quirófano y la solución óptima.

Servicio	Quirófano	Solución optima
Cardiología Pediátrica	68	488,88
Cirugía Cardiaca Pediátrica	57	2104,58
Cirugía Cardiovascular	133	493,5
Cirugía General y del aparato		
digestivo	12	2026,93

Modelo 3: Minimización del Número de Quirófanos (Generación de Columnas)

Tareas Realizadas

- Se desarrolló un algoritmo iterativo basado en generación de columnas para minimizar el número de quirófanos.
- El modelo inicializa con un conjunto básico de planificaciones y genera dinámicamente nuevas columnas (planificaciones) con un subproblema de programación lineal.

Posibles Problemas y Soluciones

Un problema principal fue la complejidad computacional del subproblema para generar nuevas planificaciones factibles. Esto se resolvió utilizando heurísticas para filtrar solo las planificaciones más prometedoras en cada iteración.

Resultados y Solución

La solución óptima minimizó el número de quirófanos necesarios a 24 con las siguientes asignaciones:

Quirófano	Operaciones
1	107
2	34
3	68-21
4	57-30
5	133-09
6	12-164
7	159-156
8	18-35
9	67-59
10	02-83
11	138-135
12	05-126
13	44-73
14	88-36
15	22-167
16	70-139
17	125-78
18	110-121
19	55-117
20	99-01
21	104-143
22	165-105

Quirófano	Operaciones
23	102-163
24	148-123

Este resultado garantiza el uso eficiente de los quirófanos.

Conclusión

Los tres modelos resolvieron eficazmente las variantes del problema de asignación de quirófanos, utilizando enfoques avanzados de optimización. Las soluciones muestran una reducción en costos y uso eficiente de recursos, lo que contribuye a una mejor gestión hospitalaria.