Topic 7: Programmable Data Plane

Presented byDong YUAN

School of Electrical and Information Engineering

dong.yuan@sydney.edu.au

Overview of Data Plane

Overview of Data Plane

- What does data plane do?
 - Router gets packet
 - Looks at packet header for destination
 - Looks up forwarding table for output interface
 - Modifies header (TTL, IP header, etc.)
 - Passes packet to appropriate output interface

Key functions of data plane

- Streaming algorithms that act on packets
 - Matching on some bits (header), taking simple actions
 - Follow the order of control and management plane
- Wide range of functions
 - Forwarding
 - Access control
 - Mapping header fields
 - Traffic monitoring
 - Buffering and marking
 - Shaping and scheduling
 - Deep packet inspection

The Need of Software/Programmable Data Plane

- Network devices are diverse
 - Must do more than just forward/route packets
 - Adding functions is difficult
 - Match/action is only one type function of data plane
- Data plane design goals
 - Flexible
 - Extensible
 - Clean interfaces

A trade-off of software and hardware

- Software flexible
- Hardware fast
- To get the best of both world design a programmable data plane
 - Make the software faster
 - Make the hardware more programmable

Motivation

- SDN protocols require data-plane changes
- Performance requirement
 - Protocols must forward packets at acceptable speeds.
- Support different protocols
 - Run in parallel with existing protocols

- Requirement of SDN data plane a platform that
 - Forwards packets at high speed
 - Run multiple protocols in parallel

Existing Approaches

- Develop Custom Software
 - Flexible, easy to program
 - Slow forwarding speeds
- Develop Custom Hardware
 - Excellent performance
 - Long development cycles, rigid
- Develop programmable hardware
 - Flexible and fast
 - Programming is difficult
- https://rg0now.github.io/prog_dataplane_reading_list/README.html

Contents

Software Router

- Programmable Hardware Data Plane

Network Assembly Language

High Level Language

Click: A Software Data Plane

- Princeton project (early)
- Elements building blocks
- Each element provides unique function
 - Packet switching
 - Lookup and Classification
 - Dropping

Implement functions: assemble building blocks

Software router

 Dobrescu, Mihai, et al. "RouteBricks: exploiting parallelism to scale software routers." Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles. ACM, 2009.

Hardware Router

Traditional Router Architecture

Cluster Router Architecture

- Processing at rate R bps per line card
- Switching at rate N*R by switch fabric

N*N internal links of capacity R

RouteBricks

- Internal link need the capacity of R/N
- ◆ Per-server processing rate: 3R

 The University of Sydney

Bookkeeping problem

- Managing too many packet descriptors
 - Moving between NIC and memory
- Solution: batch packet operations
 - NIC batches multiple packet descriptors
 - CPU polls for multiple packets
 - Cost: increased latency

Parallel processing with Multi-core CPU

- 1 core per queue (avoid locking memory)
- 1 core per packet (faster)
- Large packet buffers to hold multiple packets
- Use GPU to accelerate

Many related papers...

Other approaches to fast software forwarding

- Large packet buffers to hold more packets
- Batch processing
- Avoid lookups on bridge between virtual interfaces and physical interfaces

DPDK

- Data Plane Development Kit that consists of libraries to accelerate packet processing workloads running on a wide variety of CPU architectures.
- It offloading TCP packet processing from the operating system kernel to processes running in user space.
- Frist introduced by Intel, now is an open source software project managed by the Linux Foundation

Today's hardware constraints

 Openflow is protocol dependent because of constrains of traditional switching chips.

 Mapping to existing switching chips enabled quick adoption, but it also limited the control of Openflow.

– What if we could re-design the data plane?

Few Data Plane Primitives

- The set of functions that we want to perform on packets are quite limited
 - Bit shifting, Parsing and rewriting header fields...
- Build a flexible data plane by developing modules + ways to integrate them.

Basic idea to build programmable data plane

An OpenFlow Chip

- Bosshart, Pat, et al. "Forwarding metamorphosis: Fast programmable match-action processing in hardware for SDN." ACM SIGCOMM Computer Communication Review. Vol. 43. No. 4. ACM, 2013.
- Generalise, programmable match-action primitives

RISC-like architecture

Arbitrary Fields: The Parse Graph

Arbitrary Fields: The Parse Graph

Arbitrary Fields: The Parse Graph

Reconfigurable Match Tables: The Table Graph

Changes to Parse Graph and Table Graph

Match/Action Forwarding Model

SwitchBlade

- Anwer, Muhammad Bilal, et al. "Switchblade: a platform for rapid deployment of network protocols on programmable hardware." ACM SIGCOMM Computer Communication Review. Vol. 40. No. 4. ACM, 2010.
- Programmable, modularisable FPGA-based data plane

Main Idea

- Identify modular hardware building blocks that implement a variety of data plane functions
- Allow a developer to enable and connect various building blocks in a hardware pipeline from software
- Allow multiple custom data planes to operate in parallel on the same hardware

- Design the Virtual Data Planes with 4 stages
 - Virtual data plane: selection, shaping, processing, forwarding

Programming languages

Network Assembly Language

High Level Language

Network Assembly Language

- Openflow's design was motivated by the underlying device layout
 - Controller is limited in supporting new functions not supported by Openflow
- New Chipsets are adding data plane functions.
- New languages are specifying data plane at a high level people like to use
- What's in between?
- http://netasm.cs.princeton.edu/

Need for network assembly

- A low-level programming language for programmable network devices
- Provides a one to one correspondence with the underlying hardware
- Uses well-defined constructs to define low-level packet operations
- Enables writing highly optimized network programs

NetASM: An Intermediate Representation

Enables a **common platform** for writing optimizations for programmable data planes

Protocol independence

- Compile from different languages
 - NetKat
 - P4
 - OpenState
 - OpenFlow
 - Flowlog
 - ...

Target Independence

- Assemble for different Targets
 - FPGA
 - Click
 - GPU
 - Open vSwitch

– ...

High Level Language - P4

 Bosshart, Pat, et al. "P4: Programming protocol-independent packet processors." ACM SIGCOMM Computer Communication Review 44.3 (2014): 87-95.

Protocol Independent packet processing

Desirable Features in SDN switches

- Configurable packet parser
 - Not tied to a specific header format
- Flexible match+action tables
 - Multiple tables (in series and/or parallel)
 - Able to match on all defined fields
- General packet-processing primitives
 - Copy, add, remove and modify
 - For both header fields and meta-data

New hardware makes this possible

- New generation of switch ASICs
 - Intel FlexPipe, FM Series
 - Broadcom BCM Series
 - RMT (SigComm'13)
 - Cisco Doppler

- But programming these chips is hard
 - Custom, vendor-specific interfaces
 - Low-level programming

Thank you!

References:

https://www.scs.gatech.edu/news/195 201/free-online-sdn-course

https://www.sdxcentral.com/sdn/?c_ac
tion=num_ball

https://www.opennetworking.org/

