Supplementary Files

SIYI WANG

2023/07/20

1 Proofs

1.1 Reflection Spatial Depth

Proposition 1 (Symmetry). Consider two distinct points \mathbf{u} and \mathbf{v} , and a point $\mathbf{x}_i \in \mathbf{X}$. Also, let \mathbf{u}^i and \mathbf{v}^i denote the points obtained by reflecting \mathbf{u} and \mathbf{v} , respectively, about \mathbf{x}_i , that is $\mathbf{u}^i = 2\mathbf{x}_i - \mathbf{u}$ and $\mathbf{v}^i = 2\mathbf{x}_i - \mathbf{v}$. Then, we have that

$$\mathbf{u} - \mathbf{v}^i = \mathbf{v} - \mathbf{u}^i.$$

and that

$$\|\mathbf{v}^i - \mathbf{u}\|^2 = 2\|\mathbf{v} - \mathbf{x}_i\|^2 + 2\|\mathbf{u} - \mathbf{x}_i\|^2 - \|\mathbf{u} - \mathbf{v}\|^2.$$

Proof. The reflection points \mathbf{v}^i and \mathbf{u}^i can be expressed as $2\mathbf{x}_i - \mathbf{v}$ and $2\mathbf{x}_i - \mathbf{u}$ respectively. Then we have

$$\mathbf{u} - \mathbf{v}^i = \mathbf{u} - 2\mathbf{x}_i + \mathbf{v}$$

= $\mathbf{v} - (2\mathbf{x}_i - \mathbf{u})$
= $\mathbf{v} - \mathbf{u}^i$.

For expression simplicity, let a, b, c, and d represent $\|\mathbf{u} - \mathbf{v}\|$, $\|\mathbf{u} - \mathbf{x}_i\|$, $\|\mathbf{v} - \mathbf{x}_i\|$ and $\|\mathbf{u} - \mathbf{v}^i\|$, i.e., the lengths of vectors $\mathbf{v}\mathbf{u}$, $\mathbf{x}_i\mathbf{u}$, $\mathbf{v}\mathbf{x}_i$, and $\mathbf{v}^i\mathbf{u}$, respectively.

Firstly, consider the scenario where $\mathbf{u} = \mathbf{v}$. In this case, a = 0 and $b^2 = c^2$. Evidently, $d^2 = (2c)^2 = 2c^2 + 2b^2$. Subsequently, assuming that the points \mathbf{u} , \mathbf{v} , and \mathbf{x}_i are not col-linear, they form a triangle. If $\triangle vuv^i$ is an isosceles triangle, with a = d, it is apparent that $b^2 + c^2 = a^2 = d^2$, and thus $d^2 = 2b^2 + 2c^2 - a^2$ holds. If $\triangle vuv^i$ is not an isosceles triangle, we consider three cases, each illustrated by a representative example in Figure 1:

• If $\angle vv^iu$ is an acute angle, we introduce an auxiliary line uh orthogonal to vv^i (see Figure 1a). Let z and y denote the lengths of x_ih and uh, respectively. Then, the following relationships hold:

$$z^{2} + y^{2} = b^{2},$$

$$(c+z)^{2} + y^{2} = a^{2},$$

$$(c-z)^{2} + y^{2} = d^{2}.$$

Figure 1: Examples of three different types of $\triangle vuv^i$

As a consequence,

$$a^{2} + d^{2} = 2c^{2} + 2z^{2} + 2y^{2} = 2c^{2} + 2b^{2},$$

 $d^{2} = 2c^{2} + 2b^{2} - a^{2}.$

• If $\angle vv^iu$ is a right angle (Figure 1b), the following relationships are true:

$$c^2 + d^2 = b^2,$$

 $4c^2 + d^2 = a^2.$

From which we derive:

$$2b^2 - a^2 = 2c^2 + 2d^2 - 4c^2 - d^2 = d^2 - 2c^2,$$

$$d^2 = 2c^2 + 2b^2 - a^2.$$

• If $\angle vv^iu$ is an obtuse angle, we proceed similarly to the acute angle case, introducing auxiliary lines (as depicted in Figure 1c). Let z and y denote the lengths of v^ih and uh, respectively. Then, we have:

$$z^{2} + y^{2} = d^{2},$$

$$(z+c)^{2} + y^{2} = b^{2},$$

$$(z+2c)^{2} + y^{2} = a^{2}.$$

From which we derive:

$$2b^{2} - a^{2} = y^{2} + z^{2} - 2c^{2} = d^{2} - 2c^{2},$$

$$d^{2} = 2c^{2} + 2b^{2} - a^{2}.$$

Hence, in all cases, the relationship $d^2 = 2c^2 + 2b^2 - a^2$ holds, proving the lemma. \Box

1.2 Density-based metric

Notations in this section are the same as the paper, for convenience they are listed as below.

- η_X : The largest value of η such that all observations in the dataset are depth-connected.
- ζ : A certain cluster in the clustering results.
- η_ζ: The largest value of η such that ζ is decomposed into a single DBCA-cluster and outliers (without considering observations in other clusters).
- n_{ζ} : The number of points in ζ .
- O_{ζ} : The set of DBCA-outliers for the cluster ζ .
- \mathcal{X}_{ζ} The set of observations in cluster ζ .
- $\mathcal{J}_{\zeta}^{i} = \{j | \mathbf{x}_{j} \in \mathcal{X}_{\zeta}, \mathbf{x}_{j} \neq \mathbf{x}_{i}, \mathbb{S}_{ij} > \eta_{\zeta}\}$: The set of indices for observation $\mathbf{x}_{i} \in \mathcal{X}_{\zeta}$.
- $\mathbf{I}_{\zeta} := \{ \mathbf{x}_i \in \mathcal{X}_{\zeta} : \mathbb{S}_{ij} < \eta_X \text{ for all } \mathbf{x}_j \in \mathbf{X} \setminus \mathcal{X}_{\zeta} \}$: The set of inner observations in cluster ζ .
- $\mathcal{H}^i_{\zeta} = \{h | \mathbf{x}_h \notin \mathcal{X}_{\zeta}, \mathbb{S}_{ih} > \eta_X\}$: The set of indices of observations from other clusters that are core neighbors of points in \mathcal{X}_{ζ} when $\eta = \eta_X$.

To estimate η , we use a method analogous to the grouping matrix approach in the DLCC algorithm, specifically examining η_X as an example. Initially, we test an η value to assess if it can interconnect all observations within the dataset. A logical starting point is:

$$\min_{\mathbf{x}_i} \max_{\mathbf{x}_j} \{ \mathbb{S}_{ij} : i \neq j \}.$$

This represents the similarity value necessary to ensure that each observation is at least depth-connected to another observation. Any η value above it is impossible to connect all observations.

If this initial η value successfully connects all observations based on the DBCA, then η_X is set to this value. If not, reflecting the principles of density-based clustering, we identify the highest similarity value between any two points across clusters under the current η setting. We then construct a matrix storing these values.

Following the methodology outlined on page 9 of the papers, this matrix undergoes iterative merging of columns and rows containing the largest significant (neither 0 nor 1) values. This process continues until the matrix is reduced to a single element. The η_X value is then the last significant value recorded in this reduction.

Properties of the DC metric:

Property 1: For each observation $\mathbf{x}_i \in \mathcal{X}_{\zeta}$, reducing the threshold from η_{ζ} to $\eta_{\zeta'}$ implies $\mu_{i'} \leq \mu_i$.

Property 2: For each observation $\mathbf{x}_i \in \mathcal{X}_{\zeta}$, reducing the threshold from η_{ζ} to $\eta_{\zeta'}$ implies $\tilde{\mu}_{i'} \leq \tilde{\mu}_i$.

Property 3: For any cluster ζ , the μ_i given by any outlier is less than η_{ζ} .

Property 4: For any cluster ζ , $H_{\zeta} \geq \eta_X$. Higher proportion of inner observations in ζ leads to smaller H_{ζ} .

Property 1. For each observation $\mathbf{x}_i \in \mathcal{X}_{\zeta}$, reducing the threshold from η_{ζ} to $\eta_{\zeta'}$ implies $\mu_{i'} \leq \mu_i$. Additionally, if outliers are not considered, the weighted within-cluster similarity for observations in \mathcal{X}_{ζ} will either remain the same or decrease for smaller η values.

Proof. Assume $\eta_{\zeta'} < \eta_{\zeta}$. For any observation $\mathbf{x}_i \in \mathcal{X}_{\zeta}$ that is not part of \mathbf{o}_{ζ} , we have

$$\mu_i = \frac{Q_i}{n_{O_i}},\tag{1}$$

$$\mu_{i'} = \frac{Q_i + W_i}{n_{Q_i} + n_{W_i}},\tag{2}$$

where $Q_i = \sum_{j \in \mathcal{J}_{\zeta}^i} \mathbb{S}_{ij}$, $n_{Q_i} = |\mathcal{J}_{\zeta}^i|$, $W_i = \sum \{\mathbb{S}_{ij} \mid \eta_{\zeta'} \leq \mathbb{S}_{ij} < \eta_{\zeta}\}$ and $n_{W_i} = |\{\mathbb{S}_{ij} \mid \eta_{\zeta'} \leq \mathbb{S}_{ij} < \eta_{\zeta}\}$. If $n_{W_i} = 0$, then $\mu_i = \mu_{i'}$. For the case where $n_{W_i} > 0$ and W_i , Q_i , n_{W_i} , and

 n_{Q_i} are all positive, we get

$$\eta_{\zeta'} \le W_i / n_{W_i} < \eta_{\zeta} \le Q_i / n_{Q_i}, \tag{3}$$

$$W_{i}n_{Q_{i}} < Q_{i}n_{W_{i}}.$$

$$\mu_{i} - \mu_{i'} = \frac{Q_{i}n_{W_{i}} - W_{i}n_{Q_{i}}}{n_{Q_{i}}(n_{Q_{i}} + n_{W_{i}})} > 0.$$
(4)

Therefore, $\mu_i > \mu_{i'}$ when $\eta_{\zeta'} < \eta_{\zeta}$.

To determine whether $J_{\zeta} > \tilde{J}_{\zeta'}$, let us start with a simple case of only two observations in cluster ζ , as demonstrated in the equation below. (Noted, the expression of $\tilde{J}_{\zeta'}$ is introduced to distinguish it from $J_{\zeta'}$, as different η values indicate different clustering outcomes. Here, $\tilde{J}_{\zeta'}$ is calculated for observations within the cluster ζ , corresponding to the η_{ζ} value.)

$$J_{\zeta} = \frac{\sum Q_i}{\sum n_{Q_i}},\tag{5}$$

$$\tilde{J}_{\zeta'} = \frac{\sum_{i=1}^{N} (Q_i + W_i)}{\sum_{i=1}^{N} (n_{Q_i} + n_{W_i})}.$$
(6)

To examine if $J_{\zeta} > \tilde{J}_{\zeta'}$, we can begin with a simple case with only two observations in a cluster ζ , which is shown in (7).

$$\frac{Q_1 + Q_2}{n_{Q_1} + n_{Q_2}} - \frac{Q_1 + W_1 + Q_2 + W_2}{n_{Q_1} + n_{W_1} + n_{Q_2} + n_{W_2}} = \frac{1}{n_{W_1}Q_1 - n_{Q_1}W_1 + n_{W_2}Q_2 - n_{Q_2}W_2 + n_{W_2}Q_1 - n_{Q_1}W_2 + n_{W_1}Q_2 - n_{Q_2}W_1}{(n_{Q_1} + n_{Q_2})(n_{Q_1} + n_{W_1} + n_{Q_2} + n_{W_2})}, (7)$$

where n_{W_1} and n_{W_2} are non-zero. Following (3), $n_{W_1}Q_1 - n_{Q_1}W_1 > 0$ and $n_{W_2}Q_2 - n_{Q_2}W_2 > 0$. Moreover, all $Q_i/n_{Q_i} \geq \eta_\zeta$ and all $W_j/n_{W_j} < \eta_\zeta$ with $n_{W_j} \neq 0$; Thereby, even when $i \neq j$, $n_{Q_i}W_j < n_{W_j}Q_i$ holds. Then there are $n_{W_2}Q_1 - n_{Q_1}W_2 > 0$ and $n_{W_1}Q_2 - n_{Q_2}W_1 > 0$. Hence,

$$\frac{Q_1 + Q_2}{n_{Q_1} + n_{Q_2}} - \frac{Q_1 + W_1 + Q_2 + W_2}{n_{Q_1} + n_{W_1} + n_{Q_2} + n_{W_2}} > 0.$$
(8)

Similarly, if Q_1+Q_2 , $n_{Q_1}+n_{Q_2}$, W_1+W_2 and $n_{W_1}+n_{W_2}$ are written as $Q_{1\sim 2}$, $n_{Q_{1\sim 2}}$, $W_{1\sim 2}$ and $n_{W_{1\sim 2}}$, it is straightforward to show $J_{\zeta}-\tilde{J}_{\zeta'}>0$ when there are more points in

the cluster. Therefore, $J_{\zeta} > \tilde{J}_{\zeta'}$. Moreover, $J_{\zeta} = \tilde{J}_{\zeta'}$ if and only if $\sum n_{W_i} = 0$. So, we have $J_{\zeta} \geq \tilde{J}\zeta'$ for $\eta_{\zeta} > \eta_{\zeta'}$.

Property 2. For each observation $\mathbf{x}_i \in \mathcal{X}_{\zeta}$, reducing the threshold from η_{ζ} to $\eta_{\zeta'}$ implies $\tilde{\mu}_{i'} \leq \tilde{\mu}_i$. Additionally, if core neighbors of all $\mathbf{x}_i \in \mathcal{X}_{\zeta'}$ are also in $\mathcal{X}_{\zeta'}$, then the weighted between cluster similarity for observations in \mathcal{X}_{ζ} will either remain the same or decrease for smaller η values.

Proof. Let $\eta_{\zeta} > \eta_{\zeta'} \geq \eta_X$. Assume that for every \mathbf{x}_j satisfying $\mathbb{S}_{ij} \geq \eta_{\zeta'}$, \mathbf{x}_j belongs to $\mathcal{X}_{\zeta'}$. Then for any $\mathbf{x}_i \in \mathcal{X}_{\zeta}$, there is,

$$\begin{aligned} \{\mathbf{x}_j \mid \mathbb{S}_{ij} \ge \eta_{\zeta'}\} &= \{\mathbf{x}_v \mid \mathbb{S}_{iv} \ge \eta_{\zeta}\} + \\ \{\mathbf{x}_h \mid \eta_{\zeta'} \le \mathbb{S}_{ih} < \eta_{\zeta}\}, \end{aligned}$$

where $\mathbf{x}_j \in \mathcal{X}_{\zeta'}$, $\mathbf{x}_v \in \mathcal{X}_{\zeta}$ and $\mathbf{x}_h \notin \mathcal{X}_{\zeta}$, which indicates that with a higher η , some observations may be assigned to other clusters.

$$\tilde{\mu}_{i'} = \frac{V_i}{n_{V_i}},\tag{9}$$

$$\tilde{\mu}_i = \frac{V_i + L_i}{n_{V_i} + n_{L_i}},\tag{10}$$

$$\tilde{H}_{\zeta'} = \frac{\sum V_i + n_{I_1} \eta_X}{\sum n_{V_i} + n_{I_1}},$$

$$H_{\zeta} = \frac{\sum V_i + \sum L_i + n_{I_2} \eta_X}{\sum n_{V_i} + \sum n_{I_1} + n_{I_2}},$$
(11)

$$H_{\zeta} = \frac{\sum V_i + \sum L_i + n_{I_2} \eta_X}{\sum n_{V_i} + \sum n_{L_i} + n_{I_2}},$$
 (12)

where $V_i = \sum \{ \mathbb{S}_{ih} \mid \eta_{\zeta'} > \mathbb{S}_{ih} \geq \eta_X \}, n_{v_i} = |\{ \mathbf{x}_h \mid \eta_{\zeta'} > \mathbb{S}_{ih} \geq \eta_X \}|, n_{I_1} = |\{ \mathbf{I}_{\zeta'} \}|,$ $L_i = \sum \{ \mathbb{S}_{ih} \mid \eta_{\zeta'} \leq \mathbb{S}_{ih} < \eta_{\zeta} \}, n_{L_i} = |\{ \mathbf{x}_h \mid \eta_{\zeta'} \leq \mathbb{S}_{ih} < \eta_{\zeta} \}| \text{ and } n_{I_2} = |\{ \mathbf{I}_{\zeta'} \}|.$ Similar to the proof of Property 1, it can be shown that $\tilde{\mu}_{i'} - \tilde{\mu}_i < 0$ when $n_{L_i} > 0$ and $\tilde{\mu}_{i'} = \tilde{\mu}_i$ when $n_{L_i} = 0$.

For the case $\sum n_{L_i} > 0$, consider

$$\frac{\sum V_i + n_{I_1} \eta_X}{\sum n_{V_i} + n_{I_1}} - \frac{\sum V_i + \sum L_i + n_{I_2} \eta_X}{\sum n_{V_i} + \sum n_{L_i} + n_{I_2}} = \frac{\sum V_i \sum n_{L_i} - \sum L_i \sum n_{V_i} + n_{I_1} (\sum n_{L_i} \eta_X - \sum L_I) + (n_{I_1} - n_{I_2}) (\sum n_{V_i} \eta_X - \sum V_i)}{(\sum n_{V_i} + n_{I_1}) (\sum n_{V_i} + \sum n_{L_i} + n_{I_2})}$$

Because $\eta_X \leq \sum V_i / \sum n_{V_i} < \eta_{\zeta'} \leq \sum L_i / \sum n_{L_i}$, it follows that $\sum V_i \sum n_{L_i} - \sum n_{L_i} = \sum$ $\sum L_i \sum n_{V_i} < 0$ and $n_{I_1} (\sum n_{L_i} \eta_X - \sum L_I) < 0$. Since $\eta_{\zeta'} < \eta_{\zeta}, n_{I_1} \ge n_{I_2}$ (With a larger η , less number of inner observations). Given that $\sum \eta_X \leq \sum L_I/n_{L_i}$, it follows that $(n_{I_1}-n_{I_2})(\sum n_{V_i}\eta_X - \sum V_i) \leq 0$. Therefore, $\tilde{H}_{\zeta'} < H_{\zeta}$ when $\sum n_{L_i} > 0$. If $\sum n_{L_i}$ equals 0, then H_{ζ} equals $\tilde{H}_{\zeta'}$. So, we have $H_{\zeta} \geq \tilde{H}\zeta'$ for $\eta_{\zeta} > \eta_{\zeta'}$.

Properties 3 and 4 naturally follow from the definitions of outliers and inner observations.