

3.1 Basic Definitions and Applications

Undirected Graphs

Undirected graph. G = (V, E)

- V = nodes.
- E = edges between pairs of nodes.
- Captures pairwise relationship between objects.
- Graph size parameters: n = |V|, m = |E|.

V = { 1, 2, 3, 4, 5, 6, 7, 8 } E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 } n = 8 m = 11

Some Graph Applications

Graph	Nodes	Edges		
transportation	street intersections	highways		
communication	computers	fiber optic cables		
World Wide Web	web pages	hyperlinks		
social	people	relationships		
food web	species	predator-prey		
software systems	functions	function calls		
scheduling	tasks	precedence constraints		
circuits	gates	wires		

Web graph. Node: web page. Edge: hyperlink from one page to another.

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with A_{uv} = 1 if (u, v) is an edge.

- Two representations of each edge.
- Space proportional to n².
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta(n^2)$ time.

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	1	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.

- Two representations of each edge.
- degree = number of neighbors of u
- Space proportional to m + n.
- Checking if (u, v) is an edge takes O(deg(u)) time.
- Identifying all edges takes $\Theta(m + n)$ time.

Paths and Connectivity

Def. A path in an undirected graph G = (V, E) is a sequence P of nodes $v_1, v_2, ..., v_{k-1}, v_k$ with the property that each consecutive pair v_i, v_{i+1} is joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.

Cycles

Def. A cycle is a path v_1 , v_2 , ..., v_{k-1} , v_k in which $v_1 = v_k$, k > 2, and the first k-1 nodes are all distinct.

cycle C = 1-2-4-5-3-1

11

Trees

Def. An undirected graph is a tree if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.

- G is connected.
- G does not contain a cycle.
- G has n-1 edges.

Rooted Trees

Rooted tree. Given a tree T , choose a root node r and orient each edge away from r .

Importance. Models hierarchical structure.

3.2 Graph Traversal

Connectivity

s-t connectivity problem. Given two node s and t, is there a path between s and t?

s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

Applications.

- Friendster.
- Maze traversal.
- Kevin Bacon number.
- Fewest number of hops in a communication network.

17

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding nodes one "layer" at a time.

BFS algorithm.

- $L_0 = \{ s \}.$
- L_1 = all neighbors of L_0 .
- L_2 = all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .
- L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

Theorem. For each i, L_i consists of all nodes at distance exactly i from s. There is a path from s to t iff t appears in some layer.

Breadth First Search

Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of G. Then the level of x and y differ by at most 1.

Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in O(m + n) time if the graph is given by its adjacency representation.

Pf.

- Easy to prove $O(n^2)$ running time:
 - at most n lists L[i]
 - each node occurs on at most one list; for loop runs ≤ n times
 - when we consider node u, there are \leq n incident edges (u, v), and we spend O(1) processing each edge
- Actually runs in O(m + n) time:
 - when we consider node u, there are deg(u) incident edges (u, v)
 - total time processing edges is $\Sigma_{u \in V} \deg(u) = 2m$

each edge (u,v) is counted exactly twice in sum: once in deg(u) and once in deg(v)

Connected Component

Connected component. Find all nodes reachable from s.

Connected component containing node $1 = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

21

Connected Component

Connected component. Find all nodes reachable from \boldsymbol{s} .

R will consist of nodes to which s has a path Initially $R=\{s\}$ While there is an edge (u,v) where $u\in R$ and $v\not\in R$ Add v to R

 ${\tt Endwhile}$

it's safe to add v

Theorem. Upon termination, R is the connected component containing s.

- BFS = explore in order of distance from s.
- DFS = explore in a different way.

3.5 Connectivity in Directed Graphs

Directed Graphs

Directed graph. G = (V, E)

■ Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to another.

- Directedness of graph is crucial.
- Modern web search engines exploit hyperlink structure to rank web pages by importance.

Graph Search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s, either directly or indirectly.

27

Strong Connectivity

Def. Node u and v are mutually reachable if there is a path from u to v and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually reachable.

Lemma. Let s be any node. G is strongly connected iff every node is reachable from s, and s is reachable from every node.

Pf. \Rightarrow Follows from definition.

Pf. \Leftarrow Path from u to v: concatenate u-s path with s-v path. Path from v to u: concatenate v-s path with s-u path. •

ok if paths overlap

Strong Connectivity: Algorithm

Theorem. Can determine if G is strongly connected in O(m + n) time. Pf.

- Pick any node s.
- Run BFS from s in G. \sim reverse orientation of every edge in G
- Run BFS from s in Grev.
- Return true iff all nodes reached in both BFS executions.
- Correctness follows immediately from previous lemma.

not strongly connected

20

3.6 DAGs and Topological Ordering

Directed Acyclic Graphs

Def. An DAG is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge (v_i, v_i) means v_i must precede v_i .

Def. A topological order of a directed graph G = (V, E) is an ordering of its nodes as $v_1, v_2, ..., v_n$ so that for every edge (v_i, v_j) we have i < j.

a DAG

a topological ordering

31

Precedence Constraints

Precedence constraints. Edge (v_i, v_i) means task v_i must occur before v_i .

Applications.

- ullet Course prerequisite graph: course v_i must be taken before v_j .
- $\hbox{\bf -} \mbox{\bf Compilation: module v_i must be compiled before v_j. Pipeline of computing jobs: output of job v_i needed to determine input of job v_j. }$

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)

- Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
- Pick any node v, and begin following edges backward from v. Since v
 has at least one incoming edge (u, v) we can walk backward to u.
- Then, since u has at least one incoming edge (x, u), we can walk backward to x.
- Repeat until we visit a node, say w, twice.
- Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle. ■

35

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)

- Base case: true if n = 1.
- Given DAG on n > 1 nodes, find a node v with no incoming edges.
- ullet G { v } is a DAG, since deleting v cannot create cycles.
- By inductive hypothesis, $G \{v\}$ has a topological ordering.
- Place v first in topological ordering; then append nodes of $G \{v\}$
- in topological order. This is valid since v has no incoming edges.

To compute a topological ordering of G:

Find a node \boldsymbol{v} with no incoming edges and order it first Delete \boldsymbol{v} from \boldsymbol{G}

Recursively compute a topological ordering of $G-\{v\}$ and append this order after v

Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in O(m + n) time.

Pf.

- Maintain the following information:
 - count[w] = remaining number of incoming edges
 - S = set of remaining nodes with no incoming edges
- Initialization: O(m + n) via single scan through graph.
- Update: to delete v
 - remove v from S
 - decrement $\mathtt{count}[\mathtt{w}]$ for all edges from v to w, and add w to S if c $\mathtt{count}[\mathtt{w}]$ hits 0
 - this is O(1) per edge •