Cursul 7

Proiecția ortogonală a unui vector pe un subspațiu vectorial. Soluția celor mai mici pătrate. Procedura Gramm-Schmidt

Noțiunile şi rezultatele pe care le prezentăm în continuare sunt valabile în orice spațiu vectorial real V_n înzestrat cu un produs scalar, dar discutăm acum doar cazul concret al spațiului $(\mathbb{R}^n, <>)$.

7.1 Complementul ortogonal v^{\perp}

În \mathbb{R}^n fixăm un vector nenul $v=(a_1,a_2,\dots,a_n)^T$ și notăm cu v^\perp mulțimea vectorilor din \mathbb{R}^n ce sunt perpendiculari pe v:

$$v^{\perp} = \{ w = (x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n, w \perp v \Leftrightarrow \langle v, w \rangle = 0 \Leftrightarrow a_1 x_1 + a_2 x_2 + \dots + a_n x_n = 0 \}$$

Observăm că v^{\perp} este multimea soluțiilor sistemului liniar și omogen:

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = 0$$

și deci v^{\perp} este un subspațiu vectorial al lui \mathbb{R}^n . Matricea "sistemului" este:

$$A = \left[\begin{array}{cccc} a_1 & a_2 & \dots & a_n \end{array} \right]$$

și deoarece $v \neq \theta$, rang(A)=1 (cel puţin o coordonată $a_i \neq 0$). Deci dimensiunea spaţiului Null(A)= v^{\perp} este n-1= numărul de coloane în A minus rang(A).

Subspatiul vectorial v^{\perp} , al lui \mathbb{R}^n se numeste **complementul ortogonal** al vectorului v.

Exemplul 1. Fie $v=(-2,3)^T\in\mathbb{R}^2$. Complementul său ortogonal, v^\perp , este subspațiul lui \mathbb{R}^2 de ecuatie $-2x_1+3x_2=0$. Din punct de vedere geometric aceasta este o dreaptă ce trece prin origine. Toți vectorii "cu suportul pe această dreaptă" sunt din v^\perp , adică sunt ortogonali pe v:

Exemplul 2. Să se determine o bază în v^{\perp} unde $v = (1, 2, 1)^T \in \mathbb{R}^3$.

Complementul ortogonal al vectorului v are ecuația $x_1+2x_2+x_3=0$. Conform celor deduse mai sus, dimensiunea lui v^\perp este în acest caz 3-1=2. Deci o bază în v^\perp conține doi vectori. Deoarece v^\perp este mulțimea soluțiilor sistemului $x_1+2x_2+3x_3=0$, determinăm această mulțime. Alegem x_1 necunoscuta principală și $x_2=\alpha$, $x_3=\beta$, necunoscute secundare. Astfel $x_1=-2\alpha-\beta$ și deci:

$$v^{\perp} = \{ w = \begin{bmatrix} -2\alpha - \beta \\ \alpha \\ \beta \end{bmatrix} = \alpha \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \alpha, \beta \in \mathbb{R} \}$$

Astfel o bază în v^{\perp} este $\mathcal{B}_{v^{\perp}}=(u_1=(-2,1,0)^T,u_2=(-1,0,1)^T).$

Exemplul 3. În \mathbb{R}^4 se dă subspațiul vectorial, S, de ecuație

$$-7x_1 + 3x_2 + x_3 - 2x_4 = 0$$

Subspaţiul este complementul ortogonal al vectorului $v=(-7,3,1,-2)^T\in\mathbb{R}^4$. v este ortogonal pe orice vector din subspaţiul S sau simplu, v este ortogonal pe S.

7.2 Proiecția ortogonală a unui vector pe un subspațiu

Fie S un subspațiu vectorial al lui \mathbb{R}^n , $S \neq \{\theta\}$ și v un vector nenul din \mathbb{R}^n .

Definiția 7.2.1 Proiecția ortogonală a vectorului v pe subspațiul S este vectorul $s \in S$ cu proprietatea că $v - s \perp S$, adică vectorul v - s este ortogonal pe orice vector din subspațiu, în particular și pe s, < v - s, s >= 0 (Fig.7.1)

Se poate demonstra că proiecția ortogonală a unui vector v pe subspațiul S este unică.

Cazul 1. Proiecția ortogonală a unui vector v pe un vector nenul w este proiecția ortogonală a vectorului v pe subspațiul 1D generat de vectorul $w \neq 0$: $S = \{s \in V \mid s = \alpha w, \alpha \in \mathbb{R}\} = \operatorname{span}(w)$. Conform definiției, proiecția ortogonală a lui v pe S este un vector s = aw, $a \in \mathbb{R}$, astfel încât < v - aw, s >= 0. Dar dacă un vector este ortogonal pe s = aw, atunci el este ortogonal și pe w și deci avem < v - aw, w >= 0, adică < v, w > -a < w, w >= 0. Rezultă astfel că

$$a = \frac{\langle v, w \rangle}{\langle w, w \rangle},$$

Fig.7.1: Proiecția ortogonală a unui vector v pe un subspațiu S.

Fig.7.2: Ilustrarea proiecției ortogonale a unui vector nenul, v, pe un vector $w \neq \theta$.

iar vectorul proiecție este

$$\mathbf{s} := \mathbf{pr_w}(\mathbf{v}) = \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \mathbf{w}$$

Dacă vectorul w este un versor, adică $||e|| = 1 \Leftrightarrow \langle e, e \rangle = 1$, atunci proiecția ortogonală a lui v pe versorul e este:

$$pr_e(v) = \frac{\langle v, e \rangle}{\langle e, e \rangle} e = (\langle v, e \rangle) e$$

Consecință: Deoarece coordonatele unui vector v într-o bază ortonormată, $\mathcal{B} = (e_1, e_2, \dots, e_n)$, sunt $x_i = \langle v, e_i \rangle$, rezultă că exprimarea vectorului v în baza \mathcal{B} este suma proiecțiilor ortogonale ale vectorului v pe vectorii bazei:

$$v = \langle v, e_1 \rangle e_1 + \langle v, e_2 \rangle e_2 + \dots + \langle v, e_n \rangle e_n = pr_{e_1}(v) + pr_{e_2}(v) + \dots + pr_{e_n}(v)$$

Această proprietate generalizează la orice spațiu euclidian, modalitatea de a descompune un vector după două direcții ortogonale, așa cum se proceda la fizică cu o forță ce acționează în plan (Fig.7.3).

Cazul 2. Proiecția ortogonală a unui vector $v \neq \theta$ pe un subspațiu vectorial $S \subset \mathbb{R}^n$ de dimensiune mai mare ca 1 (Fig.7.1).

Să determinăm acum o modalitate de a găsi proiecția ortogonală a unui vector $v \in \mathbb{R}^n$, pe un subspațiu liniar, S raportat la o bază ortonormată.

Fig.7.3: Proiecția ortogonală a vectorului v pe vectorii bazei ortonormate $\mathcal{B}=(e_1,e_2).$ $v=pr_{e_1}(v)+pr_{e_2}(v).$

Propoziția 7.2.1 Fie S un subspațiu vectorial de dimensiune m al lui \mathbb{R}^n , m < n, și $\mathcal{B}_S = (u_1, u_2, \ldots, u_m)$ o bază ortonormată în S. Atunci vectorul $s \in S$, care este suma proiecțiilor ortogonale ale lui v pe vectorii bazei din S,

$$s = pr_{u_1}(v) + pr_{u_2}(v) + pr_{u_m}(v) = \langle v, u_1 \rangle u_1 + \langle v, u_2 \rangle u_2 + \cdots \langle v, u_m \rangle u_m$$

este proiectia ortogonală a vectorului v pe subspatiul S .

Demonstrație: Pentru a demonstra că $pr_S(v)$ este vectorul $s=< v, u_1>u_1+< v, u_2>u_2+\cdots+< v, u_m>u_m$, arătăm că $v-s\perp s$, adică < v-s, s>=0 sau echivalent, < v, s>=< s, s>. Cum proiecția ortogonală a lui v pe s este unicul vector cu această proprietae, va rezulta că $pr_S(v)=s$.

Aplicând proprietățile produsului scalar avem:

$$\begin{array}{lcl} < v, s> &=& < v, < v, u_1 > u_1 + < v, u_2 > u_2 + \cdots + < v, u_m > u_m > = \\ &=& < v, u_1 > < v, u_1 > + < v, u_2 > < v, u_2 > + \cdots + < v, u_m > < v, u_m > \\ &=& < v, u_1 >^2 + < v, u_2 >^2 + \cdots + < v, u_m >^2 \end{array}$$

Pentru a calcula < s, s > ţinem seama că s este exprimat într-o bază ortonormată şi deci $< s, s >= ||s||^2 =$ suma coordonatelor lui s în baza ortonormată, la pătrat, adică:

$$\langle s, s \rangle = \langle v, u_1 \rangle^2 + \langle v, u_2 \rangle^2 + \dots + \langle v, u_m \rangle^2 = \langle v, s \rangle$$

Exemplul 4. În \mathbb{R}^3 considerăm subspațiul liniar generat de vectorii ortonormați $u_1 = \frac{1}{\sqrt{11}}(1, -3, 1)^T$, $u_2 = \frac{1}{\sqrt{6}}(2, 1, 1)^T$ si vectorul $v = (-5, 1, 3)^T \in \mathbb{R}^3$. Să se determine coordonatele în baza canonică din \mathbb{R}^3 a proiecției ortogonale a vectorului v pe subspațiul S.

Vectorii u_1, u_2 fiind ortogonali sunt liniar independenți si pentru că generează subspațiul S, ei formează o bază ortonormată în S. Conform Propoziției precedente, proiecția ortogonală a lui v pe S este:

$$s = pr_S(v) = \langle v, u_1 \rangle u_1 + \langle v, u_2 \rangle u_2$$

Dar,

$$\langle v, u_1 \rangle = \frac{1}{\sqrt{11}}(-5+3-3) = -\frac{5}{\sqrt{11}}, \quad \langle v, u_2 \rangle = -\frac{6}{\sqrt{6}}$$

și deci $s=pr_S(v)=-\frac{5}{\sqrt{11}}u_1-\frac{6}{\sqrt{6}}u_2$. Dar vectorul proiecție este exprimat în baza ortonormată

din S și în enunt se cere să determinăm coordonatele lui s în baza canonică din \mathbb{R}^3 . Pentru aceasta înlocuim vectorii u_1, u_2 din expresia lui s prin coordonatele lor, care sunt evident, date în baza canonică și avem:

$$s = -\frac{5}{\sqrt{11}} \frac{1}{\sqrt{11}} (1, -3, 1)^T - \frac{6}{\sqrt{6}} \frac{1}{\sqrt{6}} (2, 1, 1)^T) = (-5, 15, -5)^T + (-12, -6, -6)^T = (-17, 9, -11)^T$$

Metoda Gramm-Schmidt de ortonormare a unei baze

În spațiul $(\mathbb{R}^n, <, >)$ baza canonică este o bază ortonormată. În acest spațiu însă există o infinitate de alte baze ortonormate. Cum construim o bază ortonormată dintr-una neortonormată? Folosind metoda Gramm-Schmidt, care este un algoritm de construcție recursivă a unei baze ortonormate $\mathcal{B}'=(q_1,q_2,\ldots,q_n)$ într-un spațiu euclidian arbitrar $(V_n,<,>)$, pornind de la o bază oarecare $\mathcal{B}=(v_1,v_2,\ldots,v_n)$. Procedura recursivă pe care o prezentăm se bazează pe proprietatea proiecției ortogonale a unui vector v pe un subspațiu liniar S în care cunosc o bază ortonormată, (q_1, q_2, \dots, q_m) , și anume că $v - pr_S(v)$ este ortogonal pe orice vector din subspațiu, deci în particular pe fiecare vector al bazei: $v - pr_S(v) \perp q_i, \forall i$.

Etapa 1: În etapa 1 se definește vectorul q_1 ca fiind versorul vectorului v_1 :

$$q_1 \leftarrow v_1/\|v_1\|$$

Etapa 2: Din q_1 și v_2 se construiește un vector o_2 ortogonal pe q_1 și anume luîm $o_2=v_2$ $pr_{q_1}(v_2)=v_2-\underbrace{< v_2,q_1>q_1}_{pr_{q_1}(v_2)},$ Notând versorul lui o_2 cu q_2 :

$$q_2 \leftarrow \frac{v_2 - < v_2, q_1 > q_1}{\|v_2 - < v_2, q_1 > q_1\|}$$

avem construit sistemul ortonormat $\mathcal{O}_2 = (q_1, q_2)$.

Etapa k: Presupunem că am construit deja un sistem ortonormat $\mathcal{O}_k=(\mathtt{q_1},\mathtt{q_2},\ldots,\mathtt{q_k})$, $3 \le k < n$.

Etapa k+1: Definim vectorul o_{k+1} care să fie ortogonal pe fiecare vector q_1, q_2, \ldots, q_k , ca fiind diferentă dintre vectorul v_{k+1} și proiecția sa ortogonală pe subspațiul liniar S_k , generat de vectorii ortonormați construiți deja, q_1, q_2, \ldots, q_k :

$$o_{k+1} = v_{k+1} - pr_{S_k}(v_{k+1} = v_{k+1} - \underbrace{(< v_{k+1}, q_1 > q_1 + < v_{k+1}, q_2 > q_2 + \dots + < v_{k+1}, q_k > q_k)}_{pr_{S_k}(v_{k+1})}$$

Din definiția proiecției ortogonale a vectorului v_{k+1} pe subspațiul S_k rezultă că o_{k+1} este ortogonal pe fiecare vector q_1, q_2, \dots, q_k . Notând versorul lui o_{k+1} cu q_{k+1} avem:

$$q_{k+1} \leftarrow \frac{v_{k+1} - \sum_{i=1}^k < v_{k+1}, q_i >}{\|v_{k+1} - \sum_{i=1}^k < v_{k+1}, q_i > \|}$$

și deci sistemul $\mathcal{O}_{k+1} = (q_1, q_2, \dots, q_k, q_{k+1})$ este un sistem ortonormal construit recursiv.

Observația 7.3.1 Procedura Gramm–Schmidt se poate aplica nu neapărat unei baze arbitrare dintr-un spațiu euclidian $(V_n, <, >)$ ci și unui sistem liniar independent (v_1, v_2, \ldots, v_m) , m < n căruia i se asociază un sistem ortonormat $\mathcal{O}_m = (q_1, q_2, \ldots, q_m)$. Evident că subspațiul liniar S al lui V_n generat de vectorii (v_1, v_2, \ldots, v_m) coincide cu subspațiul liniar generat de sistemul \mathcal{O}_m . Cu alte cuvinte (v_1, v_2, \ldots, v_m) este o bază arbitrară în S, iar (q_1, q_2, \ldots, q_m) este o bază ortonormată în S.

Exemplul 5. În spațiul euclidian $(\mathbb{R}^3, <, >)$ se dă baza $\mathcal{B} = (v_1 = (0, 1, 1)^T, v_2 = (1, 0, 1)^T, v_3 = (1, 1, 0)^T)$. Aplicând procedura Gramm-Schmidt să se construiască o bază ortonormată în \mathbb{R}^3 pornind de la baza \mathcal{B} .

Etapa 1: Luăm

$$q_1 = \frac{v_1}{\|v_1\|} = \frac{(0, 1, 1)^T}{\sqrt{2}} = \left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^T$$

Etapa 2:

$$o_2 = v_2 - < v_2, q_1 > q_1$$

Dar produsul scalar

$$\langle v_2, q_1 \rangle = \frac{1}{\sqrt{2}}$$

și deci:

$$o_2 = v_2 - \frac{1}{\sqrt{2}}q_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix} - \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} 1\\-\frac{1}{2}\\\frac{1}{2} \end{bmatrix} \parallel \begin{bmatrix} 2\\-1\\1 \end{bmatrix}$$

În calculul manual este util să înlocuim vectorii cu coordonate raționale cu vectori coliniari, cu coordonate întregi (ceea ce nu e cazul într-o implementare a algoritmului Gramm-Schmidt!). Astfel luăm în cazul nostru

$$o_2 = \left[\begin{array}{c} 2 \\ -1 \\ 1 \end{array} \right]$$

Înlocuind o_2 cu versorul său $q_2 = o_2/\|o_2\|$ avem:

$$q_2 \leftarrow \frac{1}{\sqrt{6}} \left[\begin{array}{c} 2\\ -1\\ 1 \end{array} \right]$$

Etapa 3: Construim vectorul:

$$o_3 = v_3 - [\langle v_3, q_1 \rangle q_1 + \langle v_3, q_2 \rangle q_2]$$

Calculăm:

$$< v_3, q_1 > = 1/\sqrt{2}$$
 şi $< v_3, q_2 > = \frac{1}{\sqrt{6}}$

Astfel

$$o_{3} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} - \frac{1}{\sqrt{2}} \underbrace{\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}}_{q_{1}} - \frac{1}{\sqrt{6}} \underbrace{\begin{bmatrix} \frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix}}_{q_{2}} = \begin{bmatrix} \frac{2}{3} \\ \frac{2}{3} \\ -\frac{2}{3} \end{bmatrix}$$

 $||o_3|| = 2\sqrt{3}/3$ și deci versorul q_3 al lui o_3 este:

$$q_3 = \frac{1}{\sqrt{3}} \left[\begin{array}{c} 1\\1\\-1 \end{array} \right]$$

Exemplul 6. a) Să se determine o bază în subspațiul vectorial S al lui \mathbb{R}^3 ,

$$S = \{v = (x, y, z)^T \mid -3x + 5y + 2z = 0\}$$

și apoi aplicând procedura Gramm-Schmidt să se ortonormeze baza determinată.

b) Să se determine proiecția ortogonală a vectorului v = (-1, 1, 3) pe subspațiul S.

Subspaţiul S este mulţimea soluţiilor sistemului: -3x + 5y + 2z = 0. Rangul matricii A a sistemului este 1 deci dimensiunea subspaţiului S este 3 - 1 = 2. Pentru a determina o bază arbirară rezolvăm sistemul în raport cu necunoscuta principală z şi avem:

$$S = \left\{ v = \begin{bmatrix} x \\ y \\ \frac{3}{2}x - \frac{5}{2}y \end{bmatrix}, x, y \in \mathbb{R} \right\}$$

Orice vector din S se exprimă astfel:

$$v = x \begin{bmatrix} 1 \\ 0 \\ \frac{3}{2} \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \\ -\frac{5}{2} \end{bmatrix} = \frac{x}{2} \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix} + \frac{y}{2} \begin{bmatrix} 0 \\ 2 \\ -5 \end{bmatrix}$$

Deci o bază arbitrară în subspațiul vectorial S este

$$\mathcal{B}_S = \left(v_1 = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}, v_2 = \begin{bmatrix} 0 \\ 2 \\ -5 \end{bmatrix} \right),$$

care evident nu este ortonormată.

Luăm

$$q_1 = \frac{v_1}{\|v_1\|} = \frac{(2,0,3)^T}{\sqrt{13}} = \left(\frac{2}{\sqrt{13}},0,\frac{3}{\sqrt{13}}\right)^T$$

şi

$$o_2 = v_2 - \langle v_2, q_1 \rangle q_1 = \begin{bmatrix} 0 \\ 2 \\ -5 \end{bmatrix} + \frac{15}{\sqrt{13}} \begin{bmatrix} \frac{2}{\sqrt{13}} \\ 0 \\ \frac{3}{\sqrt{13}} \end{bmatrix} = \begin{bmatrix} \frac{30}{13} \\ \frac{2}{2} \\ -\frac{20}{13} \end{bmatrix}$$

Luând $q_2 = o_2/\|o_2\|$ avem baza ortonormată (q_1, q_2) în S.

b) Proiecția ortogonală a vectorului v pe subspațiul S este vectorul

$$s = \operatorname{pr}_{q_1}(v) + \operatorname{pr}_{q_2}(v) = \langle v, q_1 \rangle q_1 + \langle v, q_2 \rangle q_2$$

7.4 Cea mai bună aproximație printr-un vector dintr-un subspațiu

Într-un spațiul vectorial $(\mathbb{R}^n, <, >)$ se definește distanța dintre doi vectori prin: d(v, w) = ||v - w||.

Considerăm un subspațiu vectorial, S, de dimensiune m al spațiului vectorial ($\mathbb{R}^n, <, >$).

În continuare vom arăta că dintre toate distanțele, d(v,t), unde $t \in S$, distanța cea mai mică este distanța dintre v și proiecția lui ortogonală, $s = pr_S(v)$, pe S. Cu alte cuvinte, cel mai apropiat vector din S, de vectorul $v \in \mathbb{R}^n$ este vectorul $s = pr_S(v)$.

Fig.7.4: Proiecția ortogonală a vectorului v pe subspațiul S.

Mai precis, demonstrăm:

Propoziția 7.4.1 Dacă v este un vector fixat din \mathbb{R}^n și $s = pr_S(v)$, proiecția ortogonală a vectorului v pe S, atunci oricare ar fi t, un vector din subspațiul S, avem că:

$$||v - pr_S(v)|| \le ||v - t||$$

Cu alte cuvinte distanța de la vectorul v la proiecția sa ortogonală pe un subspațiu, este mai mică decât distanța lui v la oricare alt vector din subspațiu.

Fig.7.5: Poziția relativă a vectorilor implicați în demonstrația Propoziției 7.4.1.

Demonstrație: Fie t un vector din subspațiul $S, t \neq s$. Deoarece $s, t \in S$ rezultă că și u = t - s este din S. Dar conform din definiția proiecției ortogonale știm că v - s este ortogonal pe orice vector din S deci și pe u. Datorită acestei ortogonalităti $(v - s \perp u = t - s)$ și pentru că diferența a doi vectori efectuată cu regula triunghiului dă v - s - u = v - s - t + s = v - t, putem scrie relația lui Pitagora în triunghiul din Fig. 7.5:

$$||v - t||^2 = ||v - s||^2 + ||t - s||^2$$

Dacă $t \neq s$, atunci $||t - s||^2 > 0$ și deci $||v - t||^2 > ||v - s||^2$, adică ||v - s|| < ||v - t||, iar dacă t = s, avem evident ||v - s|| = ||v - t||.

Datorită acestei proprietăți de monstrate, proiecția ortogonală a unui vector v pe un susbspațiu vectorial $S \subset \mathbb{R}^n$, se numește **cea mai bună aproximație a vectorului v printr-un vector din** S, iar norma diferenței v-s, err $= ||v-pr_S(v)||$, se numește eroarea aproximării.

Cea mai bună aproximație a unui vector are numeroase aplicații în *Machine Learning*, în problemele de recunoaștere a formelor (fețelor umane, a scrisului de mână, etc).

Reţinem că: Având dat un subspaţiu vectorial S al lui \mathbb{R}^n , orice vector $v \in \mathbb{R}^n$ se exprimă unic, ca suma a doi vectori ortogonali, unul din S şi celălat ortogonal pe S:

$$v = s + \underbrace{v - s}_{u} = pr_S(v) + u, \quad pr_S(v) \in S, u = v - s \perp S$$

7.5 Soluția celor mai mici pătrate pentru un sistem Ax = b

Deşi prin definiție un sistem liniar Ax = b, $A \in \mathbb{R}^{m \times n}$, incompatibil, NU are soluție, în învătărea supervizată, ca metodă de învătăre în *machine learning* se folosește un vector x^* care într-un anume sens este "cel mai aproape" de a fi soluție a sistemului.

Fie $A \in \mathbb{R}^{m \times n}$ o matrice de m linii şi n coloane, având coloanele notate $c_1, c_2, \ldots, c_n, A = [c_1|c_2|\ldots|c_n]$, iar $b \in \mathbb{R}^m$. Considerăm sistemul liniar Ax = b sau detaliat:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Propoziția 7.5.1 Sistemul Ax = b este compatibil dacă și numai dacă b este un vector din subspațiul generat de coloanele matricii A, adică b se poate exprima ca o combinație liniară a vectorilor coloană, c_1, c_2, \ldots, c_n .

Demonstrație: Sistemul Ax = b este compatibil dacă și numai dacă există $x = (x_1, x_2, \dots, x_n)^T$ astfel încât Ax = b, adică:

$$b = Ax = [c_1|c_2|\dots|c_n] \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1c_1 + x_2c_2 + \dots + x_nc_n$$

$$col(A)$$

Consecintă. Sistemul Ax = b, unde $A \in \mathbb{R}^{m \times n}$, este incompatibil (nu are soluție) dacă și numai dacă vectorul termenilor liberi, $b \in \mathbb{R}^m$, nu aparține subspațiului vectorial generat de coloanele matricii A:

$$b \notin \operatorname{col}(A)$$

.

În continuare considerăm sisteme incompatibile, supradeterminate, adică sisteme ce conțin mai multe ecuații decât necunoscute sau echivalent, matricea sistemului $A \in \mathbb{R}^{m \times n}$ are mai multe linii decât coloane, m > n.

În acest caz, subspațiul coloanelor, col(A), poate avea cel mult dimensiunea n < m, și deci acesta este un subspațiu liniar al lui \mathbb{R}^m . Pentru orice vector $x \in \mathbb{R}^n$, notăm r(x) = b - Ax. r(x) se numește abaterea lui Ax de la b sau reziduul sistemului.

Pentru un sistem compatibil, reziduul asociat unei soluţii este este vectorul nul, pentru că dacă $x \in \mathbb{R}^n$ este o soluţie, atunci Ax = b şi deci $r(x) = b - Ax = \theta$. În cazul sistemelor supradeterminate şi incompatibile se caută un vector x^* pentru care Ax^* este cel mai apropiat de b sau echivalent reziduul $r(x^*)$ este cel mai apropiat de 0.

Definiția 7.5.1 Vectorul $x^* \in \mathbb{R}^n$ care minimizează distanța de la b la Ax, adică minimizează norma ||r(x)|| = ||b - Ax||:

$$||b - Ax^*|| \le ||b - Ax||, \quad \forall x \in \mathbb{R}^n$$

sau echivalent:

$$||b - Ax^*||^2 \le ||b - Ax||^2, \quad \forall \, x \in \mathbb{R}^n$$

se numește soluție în sensul celor mai mici pătrate pentru sistemul incompatibil Ax = b (în limba engleză este **least squares solution**).

Dați search *least square solution in machine learning* și vedeți ce număr mare de rezultate este afisat!!!!

Soluția se numeste a celor mai mici pătrate pentru că norma la pătrat a vectorului reziduu, r(x) = b - Ax, se exprimă ca o sumă de patrate. Într-adevăr, :

$$r(x) = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} - \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix} = \begin{bmatrix} b_1 - (a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n) \\ b_2 - (a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n) \\ \vdots \\ b_m - (a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n) \end{bmatrix}$$

și deci

$$||r(x)||^{2} = (b_{1} - (a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n}))^{2} + (b_{2} - (a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n}))^{2} + \dots + (b_{m} - (a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n}))^{2}$$

$$(7.1)$$

Prin urmare soluția celor mai mici pătrate este vectorul x ale cărui coordonate minimizează suma de pătrate din (7.1).

Să deducem o metodă de a afla soluția celor mai mici pătrate pentru un sistem incompatibil, Ax = b, cu A de tip $m \times n$, m > n.

Sistemul fiind incompatibil, b nu aparține subspațiului generat de coloanele matricii A, adică b "este exterior acestui subspațiu".

Considerăm proiecția sa ortogonală pe subspațiul $S = \operatorname{col}(A)$, $b' = \operatorname{pr}_{\operatorname{col}(A)}b$. Deoarece b' este din $\operatorname{col}(A)$, rezultă că există scalarii $x_1^*, x_2^*, \ldots, x_n^*$ astfel încât b' să se exprime ca o combinație liniară a coloanelor matricii A:

$$b' = x_1^* c_1 + x_2^* c_2 + \dots + x_n^* c_n = [c_1 | c_2 | \dots | c_n] \begin{bmatrix} x_1^* \\ x_2^* \\ \vdots \\ x_n^* \end{bmatrix} = Ax^*$$

Orice alt vector $t \in col(A)$ este de forma $t = x_1c_1 + x_2c_2 + \cdots x_nc_n = Ax$, unde $x = (x_1, x_2, \dots, x_n)^T$, adică orice alt vector din col(A) se exprimă ca o combinație liniară a coloanelor. Conform Propoziției 7.4.1 avem că $||b - \underbrace{Ax^*}_{b'}|| \leq ||b - \underbrace{Ax}_{t}||$, $\forall x \in \mathbb{R}^n$ și deci x^* este soluția celor mai mici pătrate pentru sistemul incompatibil Ax = b.

Cum aflăm efectiv soluția x^* ?

Pentru aceasta dăm încă o modalitate de a exprima produsul Dy al unei matrici $D \in \mathbb{R}^{m \times n}$, cu un vector $y = (y_1, y_2, \dots, y_n)^T \in \mathbb{R}^n$. Notând liniile din D cu $\ell_1, \ell_2, \dots, \ell_m$, avem :

$$Dy = \begin{bmatrix} d_{11} & d_{12} & \dots & d_{1n} \\ d_{21} & d_{22} & \dots & d_{2n} \\ \vdots & \vdots & \dots & \vdots \\ d_{m1} & d_{m2} & \dots & d_{mn} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} <\ell_1, y > \\ <\ell_2, y > \\ \vdots \\ <\ell_m, y > \end{bmatrix}$$
(7.2)

Cu alte cuvinte dacă notăm produsul Dy = w, atunci coordonata i a lui w este

$$w_i = d_{i1}y_1 + d_{i2}y_2 + \dots + d_{in}y_n = <\ell_i, y>, \quad i = \overline{1, m}$$

Din definiția proiecției ortogonale a unui vector pe un subspațiu rezultă că $b - b' = b - Ax^*$ este ortogonal pe orice vector din subspațiul S = col(A), deci în particular și pe fiecare vector coloană c_1, c_2, \ldots, c_n :

$$< b - Ax^*, c_i > = 0, \forall i = 1, 2, ..., n$$

Notăm $y = b - Ax^* \in \mathbb{R}^m$. Atunci $< c_i, b - Ax^* >= 0$ înseamnă că $< c_i, y >= 0, \forall i = \overline{1, n}$. Din $< c_i, y >= 0, \forall i = \overline{1, n}$, rezultă că:

$$\begin{bmatrix} \langle c_1, y \rangle \\ \langle c_2, y \rangle \\ \vdots \\ \langle c_n, y \rangle \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Cum c_1, c_2, \ldots, c_n sunt coloane în A, ele vor fi linii în A^T și deci conform (7.2), avem:

$$\begin{bmatrix} \langle c_1, y \rangle \\ \langle c_2, y \rangle \\ \vdots \\ \langle c_n, y \rangle \end{bmatrix} = A^T y = 0$$

Din relația $A^T y = 0$ rezultă revenind la $y = b - Ax^*$ că $A^T (b - Ax^*) = 0$ sau echivalent:

$$A^T A x^* = A^T b$$

Cu alte cuvinte, soluția celor mai mici pătrate pentru sistemul incompatibil supradeterminat Ax = b, dacă există, este soluția sistemului

$$A^T A x^* = A^T b$$

Sistemul liniar $A^TAx = A^Tb$ se numește sistemul normal asociat celui inițial, Ax = b. Remarcăm că matricea $A^TA \in \mathbb{R}^{n \times n}$ a sistemului normal este o matrice pătratică și simetrică deoarece $(A^TA)^T = A^TA$. Deci acest sistem este compatibil determinat, dacă și numai dacă rangul matricii A^TA este egal cu n.

Propoziția 7.5.2 Rangul matricii $A^T A$ coincide cu rangul matricii $A \in \mathbb{R}^{m \times n}$.

Demonstrație: Arătăm mai întâi că $Null(A) = Null(A^TA)$. Efectuăm demonstrația prin dublă incluziune. Dacă $v \in Null(A)$, atunci $Av = \theta$ și deci și $A^T(Av) = A^T(\theta) = \theta$, adică $v \in Null(A^TA)$ și deci $Null(A) \subseteq Null(A^TA)$. Reciproc, fie $v \in Null(A^TA)$, adică $A^TAv = \theta$. Înmulțind această ultimă relație la stânga cu v^T obținem:

$$(v^T A^T)(Av) = 0 \Leftrightarrow (Av)^T (Av) = 0 < Av, Av >= 0 \Rightarrow Av = \theta \Rightarrow v \in Null(A)$$

Prin urmare am arătat și că $Null(A^TA) \subseteq Null(A)$ și deci $Null(A^TA) = Null(A)$. Ambele matrici A^TA și A au n coloane. Dimensinunea(Null(A)) = n - r și deci $rang(A) = n - dim(Null(A)) = n - dim(Null(A^TA)) = rang(A^TA)$.

Dacă rangul matricii $A \in \mathbb{R}^{m \times n}$ a sistemului incomaptibil, supradeterminat Ax = b este egal cu n (numărul coloanelor sale), atunci și rangul lui A^TA este n și deci sistemul normal $A^TAx = A^Tb$ este compatibil determinat și unica sa soluție x^* , este soluția celor mai mici pătrate a sistemului Ax = b.

7.5.1 Aplicarea soluției celor mai mici pătrate la aflarea dreptei celor mai mici pătrate

În analiza datelor ce constau din perechi de puncte (x_i,y_i) , $i=\overline{1,m}$ suntem uneori interesați dacă nu cumva "norul" de puncte este distribuit în jurul unei drepte. Geometric se știe că o dreaptă în plan este perfect determinată de 2 puncte. Având un set de m puncte, necoliniare, evident că nu există o dreaptă care să le conțină pe toate. Pentru a determina ceea ce se numește în machine learning, dreapta celor mai mici pătrate se impune ca datele (x_i,y_i) să verifice ecuația unei drepte $y=\alpha x+\beta$. Astfel obținem m ecuații cu 2 necunoscute α și β :

$$\alpha x_1 + \beta = y_1
\alpha x_2 + \beta = y_2
\vdots = \vdots
\alpha x_m + \beta = y_m$$

adică un sistem supradeterminat și incompatibil. Matricial sistemul se scrie:

$$\begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_m & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

Pentru date foarte generale rangul matricii sistemului este 2, iar al matricii prelungite 3, deci sistemul este incompatibil (deduceți în ce caz rangul lui \overline{A} ar putea fi tot 2!!!).

Asociind sistemul normal $A^TAx^*=A^Tb$ se obține soluția unică $x^*=(\alpha^*,\beta^*)^T$ și dreapta $y=\alpha^*x+\beta^*$ se numește dreapta celor mai mici pătrate, pentru că reziduul r(x), $x=(\alpha,\beta)^T$, asociat sistemului Ax=b este în acest caz:

$$r(x) = \begin{bmatrix} y_1 - (\alpha x_1 + \beta) \\ y_2 - (\alpha x_2 + \beta) \\ \vdots \\ y_m - (\alpha x_m + \beta) \end{bmatrix}$$

iar

$$||r(x)||^2 = \sum_{i=1}^m (y_i - (\alpha x_i + \beta))^2$$

Deci problema aflării dreptei $y=\alpha^*x+\beta^*$ constă în a afla dintre toate dreptele din plan pe cea ai cărei parametri α , β , minimizează suma pătratelor din expresia lui $||r(x)||^2$. Dar $(y_i-(\alpha x_i+\beta))^2$ nu este altceva decât distanta la pătrat "măsurată pe verticală" dintre punctul (x_i,y_i) și dreapta $y=\alpha x+b$ (vezi figura).

Exemplu 7. Numărul de vizitatori unici ai site-ului http://www.exemplu.com (e doar un exemplu, nu dați click pe link!), în patru zile consecutive, este respectiv, 34, 21, 30, 18. Pentru a face predicții privind tendințele surferilor în perioada următotoare să determinăm dreapta celor mai mici pătrate asociate perechilor de puncte:

unde 1, 2, 3, 4 reprezintă ziua monitorizării site-ului.

Impunem ca cele 4 patru puncte să verifice ecuația unei drepte $y = \alpha x + \beta$ și obținem:

$$\begin{array}{rcl} \alpha+\beta & = & 34 \\ 2\alpha+\beta & = & 21 \\ 3\alpha+be & = & 30 \\ 4\alpha+\beta & = & 18 \end{array}$$

Notând cu A matricea sistemului, calculăm A^TA :

$$A^{T}A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} 30 & 10 \\ 10 & 4 \end{bmatrix}$$
$$A^{T}b = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 34 \\ 21 \\ 30 \\ 18 \end{bmatrix} = \begin{bmatrix} 224 \\ 103 \end{bmatrix}$$

Sistemul normal este $A^TAx^* = A^Tb$, adică în cazul nostru:

$$\left[\begin{array}{cc} 30 & 10 \\ 10 & 4 \end{array}\right] \left[\begin{array}{c} \alpha^* \\ \beta^* \end{array}\right] = \left[\begin{array}{c} 224 \\ 103 \end{array}\right]$$

Rezolvand obținem soluția $\alpha^*=-6.7$, $\beta^*=42.5$ Drepta celor mai mici pătrate, adică dreapta cea mai apropiată de toate punctele (în sensul precizat) este y=-6.7x+42.5. Având panta negativă ar trebui să ne întristăm pentru că pe măsură ce zilele trec, site-ul e vizitat din ce în ce mai rar. De exemplu pentru ziua a a șasea numărul vizitelor este predictionat la y=-6.7*6+42.5=2.3, adică în jur de 2: (Prin urmare predicțiile pentru o zi i se obțin calculând ordonata punctului de pe dreapta $y=\alpha x+\beta$, corespunzătoare lui x=i.

(În semestrul 2 învățăm cum se fac predicții cu acuratețe mai mare și nivel de încredere ridicat).