

Statistik und Wahrscheinlichkeitsrechnung

- Wintersemester 2019/20 -

Kapitel 04: Zufallsvariablen

Prof. Dr. Adrian Ulges

Angewandte Informatik (B.Sc.) / Informatik - Technische Systeme (B.Sc.) / Wirtschaftsinformatik (B.Sc.)

> Fachbereich DCSM Hochschule RheinMain

Outline

- 1. Zufallsvariablen: Grundlagen
- 2. Stetige Zufallsvariablen
- 3. Unabhängigkeit von Zufallsvariablen
- 4. Kennwerte von Zufallsvariablen Quantile Erwartungswert Varianz Kovarianz
- 5. Rechenregeln für Erwartungswert und Varianz

Von Zufallsexperimenten zu Zufallsvariablen Bild: [2]

Wie wir bisher Zufallsexperimente formalisiert haben

- Ergebnismenge Ω
- ▶ Wahrscheinlichkeiten sind auf Ereignissen $A \subseteq \Omega$ definiert.

Von Zufallsexperimenten zu Zufallsvariablen

- ► Oft interessieren uns nur Zahlenwerte, die sich aus den Ergebnissen ergeben.
- Diese Zahlenwerte modellieren wir mittels sogenannter Zufallsvariablen.

Zufallsvariablen...

- ... können wir uns als Zufallszahlen vorstellen.
- ... sind ein zentrales Konzept der Wahrscheinlichkeitsrechnung.

Zufallsvariablen: Illustration

Beispiel: Zwei Würfel (Augensumme)

Beispiel: Personen

Zufallsvariablen: Illustration

Beispiel: Zwei Würfel (Augensumme)

Beispiel: Personen

Zufallsvariablen: Formalisierung

Definition (Zufallsvariable)

Es sei (Ω, Σ, P) ein Wahrscheinlichkeitsraum. Dann nennen wir eine Abbildung

$$X:\Omega\to\mathbb{R}$$

eine Zufallsvariable. Die Zufallsvariable ordnet jedem Ergebnis ω des Zufallsexperiments eine reelle Zahl $X(\omega)$ zu.

Anmerkungen

- ► Wir bezeichnen Zufallsvariablen üblicher Weise mit Großbuchstaben (X, Y, ...).
- ▶ Wir bezeichnen die Werte, die Zufallsvariablen annehmen, mit Kleinbuchstaben (x, y, ...). Diese Werte nennen wir auch die Realisierungen der Zufallsvariable.

Diskrete Zufallsvariablen

Das Ereignis 'X=x'

► In der Regel wollen wir die Wahrscheinlichkeit berechnen, dass die Zufallsvariable X einen bestimmten Wert x annimmt. Hierzu definieren wir das Ereignis

$$X=x := \{\omega \mid X(\omega) = x\}.$$

▶ Beispiel: Augensumme *X* von zwei Würfeln

$$X=4 = \{(1,3),(2,2),(3,1)\} \rightarrow P(X=4) = 3/36.$$

Diskrete Zufallsvariablen

Wir unterscheiden zwischen diskreten und stetigen Zufallsvariablen:

- ▶ Diskrete Zufallsvariablen können nur endlich oder *abzählbar* unendlich viele Realisierungen $x_1, x_2, x_3, ...$ annehmen.
- ▶ Wir schreiben kurz: $p_i := P(X = x_i)$.
- ► Realisierungen x_i und Wahrscheinlichkeiten p_i bilden die Verteilung der Zufallsvariablen.

Diskrete Zufallsvariable: Beispiele

Würfeln mit zwei Würfeln, Augensumme

				\rightarrow		-					
Xi	/2	3	4	5	6	7	8	9	10	11	12
$P(X = x_i)$	$\frac{1}{36}$	<u>2</u> 36	3 36	<u>4</u> <u>36</u>	<u>5</u> 36	<u>86</u>	$\frac{5}{36}$	<u>4</u> 36	3 36	$\frac{2}{36}$	1 36
		_				,					

Beispielereignisse

- ► $P(X = 9) = \frac{4}{36}$
- ► $P(4 \le X < 7) = P(X = 4) + P(X = 5) + P(X = 6) = \frac{12}{36}$

$$F(5) = P(X \le 5) = \frac{1+2+3+4}{36} = \frac{10}{36}$$

$$F(5) = P(X \le 5) = \frac{10}{36}$$

$$F(6) = P(X \le 6) = \frac{1+2+3+4+5}{36} = \frac{15}{36}$$

Diskrete Zufallsvariable: Grafische Darstellung

Wir können die Wahrscheinlichkeiten $p_1, p_2, p_3, ...$ (genau wie relative Häufigkeiten) als **Säulendiagramm** darstellen:

Definition: Verteilungsfunktion

Definition (Verteilungsfunktion)

Sei X eine (diskrete oder stetige) Zufallsvariable. Dann nennen wir die Funktion $F:\mathbb{R}\to [0,1]$ mit

$$F(x) = P(X \le x)$$

die Verteilungsfunktion von X.

Anmerkungen

▶ Wir ermitteln F(x), indem wir einfach die Wahrscheinlichkeit für alle Werte kleiner oder gleich x aufsummieren (oder kumulieren):

$$F(x) = \sum_{i:x_i < x} p_i$$

Verteilungsfunktion: Beispiel

Würfeln mit zwei Würfeln, Augensumme

Xi	2	3	4	5	6	7	8	9	10	11	12
$P(X=x_i)$	<u>1</u> 36	2 36	3 36	4 36	<u>5</u> 36	6 36	<u>5</u> 36	<u>4</u> 36	3 36	2 36	<u>1</u> 36
$P(X \leq x_i)$	1 36	3 36	6 36	10 36	15 36	2 <u>1</u> 36	26 36	30 36	33 36	35 36	1

Verteilungsfunktion: Grafische Darstellung

Es ergibt sich also:

$$F(x) = P(X \le x) = \begin{cases} 0 & \text{falls } x < 2\\ 1/36 & \text{falls } 2 \le x < 3\\ 3/36 & \text{falls } 3 \le x < 4\\ 6/36 & \text{falls } 4 \le x < 5\\ 10/36 & \text{falls } 5 \le x < 6\\ \dots\\ 35/36 & \text{falls } 11 \le x < 12\\ 1 & \text{falls } 12 \le x \end{cases}$$

Verteilungsfunktion: Eigenschaften

Die Verteilungsfunktion F einer (diskreten oder stetigen) Zufallsvariablen X ist immer monoton wachsend.

Beweis
$$E_{S}$$
 $Soi \times_{n} < \times_{2}$

$$\Rightarrow \quad \times < \times_{n} \quad \subseteq \quad \times < \times_{2}$$

$$\Rightarrow \quad P(X \leq \times_{1}) \leq P(X \leq \times_{2})$$

$$\Rightarrow \quad P(X_{1}) \leq P(X_{2}) = P($$

Outline

1. Zufallsvariablen: Grundlagen

Diskret

AF(x) = P(X = x)

--> pi

2. Stetige Zufallsvariablen

3. Unabhängigkeit von Zufallsvariablen

e | ______

F(x)

4. Kennwerte von Zufallsvariablen

Erwartungswerf

Varianz

Kovarianz

5. Rechenregeln für Erwartungswert und Varianz

 $C_{i} \leftarrow$

Von diskreten zu stetigen Zufallsvariablen

Diskrete Zufallsvariablen	Stetige Zufallsvariablen				
haben wir schon kennengelernt	lernen wir jetzt kennen				
können nur abzählbar viele Werte annehmen	können überabzählbar viele Werte annehmen				
besitzen eine Verteilungsfunktion <i>F</i>	besitzen eine Verteilungsfunktion <i>F</i>				
F weist Sprünge auf	F ist stetig				

Stetige Zufallsvariablen: Beispiele

X = Größe zufällig ausgewählter männlicher Personen zwischen 20 und 25 Jahren

X = Lebensdauer einer Festplatte (mit beliebiger Genauigkeit)

X = x-Koordinate des nächsten Regentropfens, der auf ein Einheitsquadrat fällt

Definition: Dichtefunktion

Definition (Dichtefunktion)

Sei X eine stetige Zufallsvariable mit (stückweise) differenzierbarer Verteilungsfunktion F. Die Ableitung

$$f(x) = F'(x)$$

nennen wir eine Dichtefunktion. Umgekehrt erhalten wir die Verteilungsfunktion durch Integration der Dichtefunktion:

$$P(X \le x) = F(x) = \int_{-\infty}^{x} f(t) dt$$

P(X ≤ 170)

Dichtefunktion: Beispiele

X = Größe zufällig ausgewählter männlicher Personen zwischen 20 und 25 Jahren

X = Lebensdauer einer Festplatte (in Monaten)

Dichtefunktion: Beispiele

X = x-Koordinate eines Regentropfens, der auf ein Einheitsquadrat fällt.

Dichtefunktion: Eigenschaften

Es sei X eine stetige Zufallsvariable und $a, b \in \mathbb{R}$ mit a < b. Dann gilt:

P(
$$a \le x \le 5$$
) = $\int f(t) dt$

P($a \le x \le 5$) = $\int f(t) dt$

P($a \le x \le 5$) = $\int f(t) dt$

P($a \le x \le 5$) = $\int f(t) dt$

P($a \le x \le 5$) = $\int f(t) dt$

Dichtefunktion: Rechenbeispiel

Was ist die Wahrscheinlichkeit, dass unsere Festplatte im dritten Jahr ausfällt?

X sei die Lebensdauer der Festplatte, mit Dichtefunktion: (120, Vesota, $F(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} falls \times co$ mit $\lambda = \frac{1}{24}$ $P(24 \le x \le 36) = F(36) - F(24)$ = $(1 - e^{-\frac{1}{24} \cdot 36}) - (1 - e^{-\frac{1}{26} \cdot 24})$

Dichtefunktion: Rechenbeispiel

Dichtefunktion: Eigenschaften

- ▶ Es gilt: $f(x) \ge 0$ für alle $x \in \mathbb{R}$
- ► Es gilt: Die Gesamtfläche unter der Dichtefunktion ist 1

$$\int_{-\infty}^{\infty} f(t) dt = 1$$

ightharpoonup Es gilt: Eine Zufallsvariable X ist genau dann stetig, wenn

$$P(X = x) = 0$$
 für alle $x \in \mathbb{R}$

Beweis

Dichtefunktion: Eigenschaften

- ▶ Das bedeutet: Die Wahrscheinlichkeit, dass X einen bestimmten Wert x_0 annimmt, ist immer gleich null (auch wenn die Dichte $f(x_0) > 0$ ist).
- Aber: Die Wahrscheinlichkeit, dass X in einem bestimmten Bereich [a, b] mit a < b liegt, ist im Allgemeinen > 0.

Outline

- 1. Zufallsvariablen: Grundlagen
- 2. Stetige Zufallsvariablen
- 3. Unabhängigkeit von Zufallsvariablen
- 4. Kennwerte von Zufallsvariablen
 Quantile
 Erwartungswert
 Varianz
 Kovarianz
- 5. Rechenregeln für Erwartungswert und Varianz

Unabhängigkeit von Zufallsvariablen

Wiederholung: Wann haben wir zwei Ereignisse A, B als unabhängig bezeichnet?

- ► Antwort: "Wenn die Wahrscheinlichkeit von B nicht davon abhängt, ob A eintritt"
- Formal:
 - P(B|A) = P(B)
 - \blacktriangleright bzw. P(A|B) = P(A)
 - $bzw. \ P(A,B) = P(A) \cdot P(B)$

Unabhängigkeit von Zufallsvariablen?

► Intuition: Zwei Zufallsvariablen X, Y sind unabhängig, wenn die Werte, die X annimmt, unabhängig von den Werten sind die Y annimmt.

Die Würfel sind unabhängig

Größe und Gewicht sind abhängig

Definition: Unabhängigkeit von Zufallsvariablen

Definition (Unabhängigkeit von Zufallsvariablen)

Wir bezeichnen zwei Zufallsvariablen X und Y als unabhängig, falls für alle $x, y \in \mathbb{R}$ gilt:

$$P(X \le x, Y \le y) = P(X \le x) \cdot P(Y \le y)$$

Anmerkungen

- Wir können die Unabhängigkeit von Zufallsvariablen also genauso prüfen wie wir es für Ereignisse bereits kennen. Wir müssen nur alle möglichen "Fälle" abdecken!
- ► Für diskrete Zufallsvariablen können wir alternativ prüfen, ob für alle Realisationen x_i (bzw. y_j) von X (bzw. Y) gilt:

$$P(X = x_i, Y = y_j) = P(X = x_i) \cdot P(Y = y_j)$$

Unabhängigkeit von Zufallsvariablen: Beispiel 1

Zweifaches Würfeln

- ▶ Für $(\omega_1, \omega_2) \in \Omega$ definieren wir die Zufallsvariablen
 - ▶ $X := \omega_1$ (1. Wurf)
 - $Y := \omega_2$ (2. Wurf)
- ▶ **Vermutung**: *X* und *Y* sind **unabhängig**

Beweis

Unabhängigkeit von Zufallsvariablen: Beispiel 2

Zweifaches Würfeln

- ▶ Für $(\omega_1, \omega_2) \in \Omega$ definieren wir die Zufallsvariablen
 - $X := \omega_1 + \omega_2$ (Summe der Augen)
 - $Y := \omega_1 \cdot \omega_2$ (Produkt der Augen)
- Vermutung: X und Y sind abhängig.

Beweis
$$\forall x_{19} \quad P(x=x, Y=y) \neq P(x=x) \cdot P(Y=y)$$
?
 $P(x=n0) = \frac{3}{36} \quad || (5,5), (6,9), (9,6)$
 $P(x=n0) = \frac{2}{36} \quad || (5,2), (2,5)$
 $P(x=n0, Y=n0) = 0$ alraugig.

Outline

- 1. Zufallsvariablen: Grundlagen
- 2. Stetige Zufallsvariablen
- 3. Unabhängigkeit von Zufallsvariablen
- 4. Kennwerte von Zufallsvariablen

Quantile

Erwartungswert

Varianz

Kovarianz

5. Rechenregeln für Erwartungswert und Varianz

Wiederholung: Kennwerte

Wir haben bereits Kennwerte zur Beschreibung von Stichproben kennengelernt (Kapitel 1):

- ► (Arithmetischer) Mittelwert
- ► Median und Quantile
- Varianz
- Kovarianz
- **.**..

Wir können dieselben Kennwerte auch zur Beschreibung der Verteilung von Zufallsvariablen einsetzen.

Outline

- 1. Zufallsvariablen: Grundlagen
- 2. Stetige Zufallsvariabler
- 3. Unabhängigkeit von Zufallsvariablen
- 4. Kennwerte von Zufallsvariablen Quantile

Erwartungswert Varianz Kovarianz

5. Rechenregeln für Erwartungswert und Varianz

Quantile: Wiederholung

Wie waren Quantile definiert?

▶ Das α -Quantil ist der Wert, unterhalb dessen ein Anteil von α aller Samples liegt.

Quantile für Zufallsvariablen?

- \blacktriangleright Bisher: Die **relative Häufigkeit** kleinerer Werte ist α
- ightharpoonup Jetzt: Die **Wahrscheinlichkeit** kleinerer Werte ist α

Quantile von Zufallsvariablen

Definition (Quantil einer Zufallsvariable)

Es sei X eine (diskrete oder stetige) Zufallsvariable und $\alpha \in (0,1)$. Ein Wert $x_{\alpha} \in \mathbb{R}$, für den gilt:

$$P(X \le x_{\alpha}) = \alpha$$
 (bzw. $F(x_{\alpha}) = \alpha$)

heißt α -Quantil von X.

Anmerkungen

- Intuitive Vorstellung: "Wiederholen wir unser Zufallsexperiment beliebig oft, ist im Mittel ein Anteil von α der Realisierungen kleiner oder gleich x_{α} ".
- ▶ Beispiel: Beim Werfen eines fairen 6-seitigen Würfels lautet das 50%-Quantil... $x_{50\%} = 3$.
- ▶ Falls $\alpha = 50\%$, nennen wir x_{α} einen Median.

Quantile: Grafische Darstellung

Wir können Quantile leicht aus der Verteilungsfunktion F ablesen:

Quantile: Existenz und Eindeutigkeit

- → F springt über den Wert 0,8 hinweg
- → Das 80%-Quantil existiert nicht!

Für manche α s kann es keine (bzw. mehrere)¹ Quantile geben!

 $^{^1}$ Es existieren alternative Definitionen, die die Existenz der Quantile (auch im Fall von Sprungstellen) gewährleisten. Dann wäre im Beispiel $x_{\alpha}=9 \ \ \forall \alpha \in [0.6,0.9].$

Quantile: Anwendungsbeispiel

Nach welcher Zeit wird unsere Festplatte mit 60% Wahrscheinlichkeit ausgefallen sein?

$$f(x) = \begin{cases} 0 & \text{falls } x < 0 \\ \lambda \cdot e^{-\lambda x} & \text{sonst} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{sonst} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{sonst} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{sonst} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{sonst} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{sonst} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{sonst} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{sonst} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{sonst} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{sonst} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{sonst} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{sonst} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{sonst} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{sonst} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{sonst} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{sonst} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{sonst} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{sonst} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{sonst} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{sonst} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{sonst} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{sonst} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{sonst} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{sonst} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{falls } \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{falls } \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{falls } \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{falls } \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{falls } \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{falls } \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{falls } \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{falls } \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{falls } \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0 \\ 1 - e^{-\lambda x} & \text{falls } \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{falls } x < 0$$

Outline

- 1. Zufallsvariablen: Grundlagen
- 2. Stetige Zufallsvariablen
- 3. Unabhängigkeit von Zufallsvariablen
- 4. Kennwerte von Zufallsvariablen

Quantile

Erwartungswert

Varianz

Kovarianz

5. Rechenregeln für Erwartungswert und Varianz

Wiederholung: Mittelwert

Wie kann man den Mittelwert berechnen?

- ▶ Alle Samples aufsummieren und durch *n* teilen ...
- ... oder: jeden vorkommenden Wert mit seiner relativen Häufigkeit gewichten und die gewichtete Summe bilden

"Mittelwerte" für Zufallsvariablen?

- ▶ Bisher: Gewichtete Summe mit relativen Häufigkeiten
- ▶ Jetzt: Gewichtete Summe mit Wahrscheinlichkeiten

Definition: Erwartungswert

Definition (Erwartungswert)

Es sei X eine diskrete Zufallsvariable mit Realisierungen $x_1, x_2, ..., x_m$ (und Wahrscheinlichkeiten $p_1, p_2, ..., p_m$).

Dann nennen wir

$$E(X) := \sum_{i=1}^{m} p_i \cdot x_i$$

den Erwartungswert von X. Existieren unendlich viele Realisierungen $x_1, x_2, ...,$ entspricht E(X) einer Reihe:

$$E(X) := \sum_{i=1}^{\infty} p_i \cdot x_i$$

Ist X eine stetige Zufallsvariable mit Dichtefunktion f, dann lautet der Erwartungswert:

$$E(X) := \int_{-\infty}^{\infty} f(x) \cdot x \ dx$$

Erwartungswert: Beispiel 1 Bild: [2]

Würfeln mit zwei Würfeln, Augensumme

Xi	2	3	4	5	6	7	8	9	10	11	12
$P(X=x_i)$	<u>1</u> 36	<u>2</u> 36	3 36	4 36	<u>5</u> 36	<u>6</u> 36	<u>5</u> 36	4 36	$\frac{3}{36}$	$\frac{2}{36}$	<u>1</u> 36

$$E(x) = \sum_{i} p_{i} \cdot x_{i}$$

$$= \frac{1}{36} \cdot (1.2 + 2.3 + 3.4 + 4.5 + ... + 4.12)$$

$$= 7$$

$$\frac{1}{23} \cdot (1.2 + 2.3 + 3.4 + 4.5 + ... + 4.12)$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

Erwartungswert: Beispiel 2

Ausfall einer Festplatte

- \triangleright X = Lebensdauer einer Festplatte (in Monaten)
- Die Dichtefunktion lautet:

0.04

0.03

Erwartungswert: Beispiel 2

$$= \lim_{b \to \infty} \left[e^{-\lambda t} \cdot \left(-x - \frac{1}{\lambda} \right) \right]_{x=0}^{b}$$

$$= \lim_{b \to \infty} \left[\left(e^{-\lambda b} \cdot \left(-b - \frac{1}{\lambda} \right) \right) - \left(e^{-\lambda 0} \left(-0 - \frac{1}{\lambda} \right) \right) \right]$$

$$= \int_{0}^{\infty} \left[\left(e^{-\lambda b} \cdot \left(-b - \frac{1}{\lambda} \right) \right) - \left(e^{-\lambda 0} \cdot \left(-0 - \frac{1}{\lambda} \right) \right) \right]$$

Erwartungswert: Eigenschaften

- ▶ Die erwartete Lebensdauer beträgt also 24 Monate
- \blacktriangleright Wir sehen: E(X) entspricht dem **Schwerpunkt** der Verteilung

Outline

- 1. Zufallsvariablen: Grundlagen
- 2. Stetige Zufallsvariablen
- 3. Unabhängigkeit von Zufallsvariablen
- 4. Kennwerte von Zufallsvariablen

Quantile

Erwartungswert

Varianz

Kovarianz

5. Rechenregeln für Erwartungswert und Varianz

Varianz von Zufallsvariablen

Der Erwartungswert beschreibt die erwartete Lage der Werte einer Zufallsvariablen. Wir wollen nun zusätzlichen Aussagen über die erwartete Streuung treffen.

Wiederholung: Varianz für Stichproben

Gegeben eine Stichprobe $x_1,..,x_n \in \mathbb{R}$ mit Mittelwert \overline{x} , nennen wir

$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

die Varianz der Stichprobe.

Varianz für **Zufallsvariablen**?

- Bisher: Varianz = mittlerer quadratischer Abstand der Stichprobenwerte vom Mittelwert.
- ► Jetzt: Varianz = mittlerer quadratischer Abstand der Realisierungen vom **Erwartungswert**.

Definition: Varianz von Zufallsvariablen

Definition (Varianz (Zufallsvariable))

Es sei X eine diskrete Zufallsvariable mit Realisierungen $x_1, ..., x_m$ und Erwartungswert E(X) — Dann definieren wir die Varianz von X als:

$$Var(X) = \sum_{i} \bigcap_{j} \left(X_{i} - y_{j} \right)^{2}$$

Ist X eine stetige Zufallsvariable mit Dichtefunktion f, dann definieren wir:

$$Var(X) = \int f(x) \cdot (x - \mu)^2 dx$$

Anmerkungen

► Idee wie beim Erwartungswert: Jede Realisierung wird gewichtet mit ihrer Wahrscheinlichkeit / Dichte!

Definition: Varianz von Zufallsvariablen

Anmerkungen (cont'd)

- Wir notieren die Varianz auch mit σ^2 .
- Wir nennen die Wurzel σ die Standardabweichung.
- ▶ Es gilt immer: $Var(X) \ge 0$. Var(X) = 0 gilt genau dann, wenn X nur einen Wert annimmt ("entartete" Zufallsvariable).
- ▶ Der Verschiebungssatz den wir bereits für Stichproben kennen gilt analog für die Varianz von Zufallsvariablen. Sei X eine Zufallsvariable mit Erwartungswert $E(X) = \mu$ und Varianz σ^2 . Dann gilt:

$$\sigma^2 = E(X^2) - [E(X)]^2 = E(X^2) - \mu^2$$

Varianz von Zufallsvariablen: Grafische Interpretation

Die Varianz drückt die Streuung der Fläche unter der Dichtefunktion aus.

- ▶ **Links**: Dichte einer Variable X_1 mit Varianz $Var(X_1) = 100$
- **Rechts**: Dichte einer Variable X_2 mit Varianz $Var(X_2) = 16$

Varianz: Beispiel

For Erwartungswert beträgt
$$\mu = \frac{1}{2}$$

For $(x) = \begin{cases} 1 & \text{falls } 0 \le x \le 1 \\ 0 & \text{sonst} \end{cases}$

For Erwartungswert beträgt $\mu = \frac{1}{2}$

For $(x) = \int_{-\infty}^{\infty} f(x) \cdot (x - \mu)^2 dx = \int_{-\infty}^{\infty} f(x) \cdot (x - \frac{1}{2})^2 dx$

$$= \int_{-\infty}^{\infty} x^2 - \frac{x}{4} + \frac{1}{4} dx = \left(\frac{1}{3}x^3 - \frac{1}{24}x^4 + \frac{1}{4}x^3\right)^{\frac{1}{6}} dx$$

$$= \left(\frac{1}{3} - \frac{1}{2}x^4 + \frac{1}{4}x^4\right) - \left(\frac{1}{3}x^3 - \frac{1}{4}x^4\right) = \frac{1}{12}$$

Varianz: Beispiel

Outline

- 1. Zufallsvariablen: Grundlagen
- 2. Stetige Zufallsvariablen
- 3. Unabhängigkeit von Zufallsvariablen
- 4. Kennwerte von Zufallsvariablen

Quantile

Erwartungswert

Varianz

Kovarianz

5. Rechenregeln für Erwartungswert und Varianz

Kovarianz von Zufallsvariablen

Wiederholung: Kovarianz für Stichproben

Gegeben eine Stichprobe $(x_1, y_1), ..., (x_n, y_n) \in \mathbb{R}^2$, nennen wir

$$s_{xy} = \frac{1}{n} \cdot \sum_{i} (x_i - \overline{x})(y_i - \overline{y})$$

die Kovarianz.

Kovarianz für **Zufallsvariablen**?

► Gleiche Idee: Die Kovarianz zwischen X und Y ist positiv (bzw. negativ), falls (wenn wir sehr oft ziehen) mit wachsendem X-Wert auch der Y-Wert steigt (bzw. fällt).

Kovarianz von Zufallsvariablen

Definition (Kovarianz (diskrete Zufallsvariablen))

Es seien X und Y diskrete Zufallsvariablen mit Realisierungen $x_1, x_2, ...$ und $y_1, y_2, ...$, sowie Erwartungswerten μ_X und μ_Y . Dann nennen wir

$$Cov(X,Y) = \sum_{i} \sum_{j} P(X = x_i, Y = y_j) \cdot (x_i - \mu_X) \cdot (y_j - \mu_Y)$$

die Kovarianz von X und Y.

Anmerkungen

- ► (Auch) diese Formel ist analog zu der für Stichproben.
- ► Die Kovarianz drückt (analog zur Stichproben-Variante) eine lineare Abhängigkeit zwischen Zufallsvariablen aus.
- ▶ Sind X und Y unabhängig, gilt Cov(X, Y) = 0.

Wir berechnen die Kovarianz Cov(X, Y):

Kovarianz von Zufallsvariablen

Anmerkungen (cont'd)

Wir können (ähnlich wie wir es für Stichproben bereits kennen) auch die Korrelation ρ von X und Y berechnen:

$$\rho = \frac{Cov(X, Y)}{\sqrt{Var(X) \cdot Var(Y)}}$$

- Wir nennen X und Y positiv (bzw. negativ) korreliert, wenn Cov(X, Y) > 0 (bzw. Cov(X, Y) < 0)
- Für die Korrelation von Zufallsvariablen gilt (wie bei Stichproben): $-1 \le \rho \le 1$
- ▶ Es gilt wie bei Stichproben $\rho = \pm 1$ genau dann, wenn $Y = \alpha \cdot X + \beta$ ("maximale Abhängigkeit")

Outline

- 1. Zufallsvariablen: Grundlagen
- 2. Stetige Zufallsvariablen
- 3. Unabhängigkeit von Zufallsvariablen
- 4. Kennwerte von Zufallsvariablen
 Quantile
 Erwartungswert
 Varianz
 Kovarianz
- 5. Rechenregeln für Erwartungswert und Varianz

Erwartungswert und Varianz: Lineare Transformation

Definition (Lineare Transformation von Zufallsvariablen)

Es sei X eine (diskrete oder stetige) Zufallsvariable und $\alpha, \beta \in \mathbb{R}$. Ersetzen wir X durch $X' := \alpha \cdot X + \beta$, so lautet der neue

Erwartungswert

$$E(X') = \alpha \cdot E(X) + \beta$$

und die neue Varianz

$$Var(X') = \alpha^2 \cdot Var(X).$$

Anmerkungen

Dieselben Formeln galten bereits f
ür Stichproben (Kapitel 1).

Erwartungswert und Varianz: Lineare Transformation

Beweis (hier nur für den Erwartungswert und stetige Zufallsvariablen X)

Erwartungswert: Addition/Multiplikation

Wie verhalten sich Erwartungswert und Varianz, wenn wir <u>mehrere</u> Zufallsvariablen addieren/multiplizieren?

Definition (Addition und Multiplikation von Zufallsvariablen)

Es seien X und Y zwei Zufallsvariablen. Dann gilt:

$$E(X + Y) = E(X) + E(Y).$$

Sind X und Y darüber hinaus unabhängig, gilt außerdem:

$$E(X \cdot Y) = E(X) \cdot E(Y).$$

Erwartungswert: Addition/Multiplikation

Beweis (für die Multiplikation diskreter Zufallsvariablen)

Addition und Multiplikation: Beispiele

Aufzug

- ▶ Das Gewicht von Personen sei eine Zufallsvariable mit Erwartungswert 80.
- ▶ 10 Personen mit Gewicht $X_1, ..., X_{10}$ betreten einen Aufzug.
- Welches Gewicht ist insgesamt zu erwarten?

$$E(X_1 + ... + X_{10}) = E(X_1) + E(X_2) + ... + E(X_{10})$$

= 80 + 80 + ... + 80 = 800

Addition und Multiplikation: Beispiele Bild: [1]

Aktien

- ▶ Der jährliche prozentuale Kursgewinn einer Aktie sei eine Zufallsvariable mit Erwartungswert 1.5%
- ► Im Mittel wird das Guthaben also mit 1.015 multipliziert
- ▶ Welcher prozentuale Gewinn ist über vier Jahre X₁, ..., X₄ zu erwarten?

$$E(X_1 \cdot X_2 \cdot X_3 \cdot X_4) = E(X_1) \cdot E(X_2) \cdot E(X_3) \cdot E(X_4)$$

= 1.015 \cdot 1.015 \cdot 1.015 \cdot 1.015 = 1.0614

► **Achtung:** Das gilt nur falls *X*₁, ..., *X*₄ unabhängig sind !?

Varianz: Addition von Zufallsvariablen

Definition (Addition von Zufallsvariablen)

Es seien X und Y zwei Zufallsvariablen. Dann gilt:

$$Var(X + Y) = Var(X) + 2 \cdot Cov(X, Y) + Var(Y)$$

Sind X und Y unabhängig, gilt (weil Cov(X, Y) = 0)

$$Var(X + Y) = Var(X) + Var(Y)$$

Anmerkungen

▶ Das bedeutet: Addieren wir unabhängige Zufallsvariablen auf, nimmt die Streuung immer weiter zu.

Beispiel: Würfeln Bild: [2]

Wir würfeln mehrfach und addieren die Augen auf

- $X_1, X_2, X_3, ... = \text{Augen des } 1./2./3./... \text{ Wurfs}$
- ► Wir berechnen $X_1 + X_2 + ... + X_n$. Wie lautet die Varianz dieser Summe?
- ▶ Für jeden Wurf X_i gilt: $Var(X_i) \approx 2.92$
- Die Würfe sind unabhängig. Also folgt:

$$Var(X_1 + X_2) = Var(X_1) + Var(X_2)$$
 = 2 · 2.92 = 5.84
 $Var(X_1 + X_2 + X_3) = Var(X_1) + Var(X_2) + Var(X_3)$ = 3 · 2.92 = 8.76
...
$$Var(X_1 + X_2 + ... + X_n) = Var(X_1) + Var(X_2) + ... + Var(X_n) = n \cdot 2.92$$

Die Varianz wächst linear mit der Anzahl der Würfe.

Beispiel: Wiederholtes Würfeln (n mal)

Beispiel: Wiederholtes Würfeln (n mal)

References

- Ken Teegardin: Graph With Stacks Of Coins. https://flic.kr/p/ahtKQx (retrieved: Nov 2016, no changes made).
- [2] Ulrica Törning: Yatzy. https://flic.kr/p/84JVjL (retrieved: Nov 2016).