MÉTODOS MATEMÁTICOS DE LA INFORMÁTICA

1. Los Números Reales

- 1.1. A) Encuentra el número más pequeño de los siguientes conjuntos de números naturales: a) $A = \{2n : n \ge 5\}$ b) $\{2k^2 + 7 : 8 \ge k \ge 2\}$ ¿Cuál es el elemento más grande en cada conjunto?
- B) ¿Es verdad que si $E \subset \mathbb{N}$ y $E \neq \emptyset$, existe un elemento $a \in E$ de modo que $a \leq b$ para todo elemento $b \in E$?
- C) Observa el subconjuto de números racionales $\{\frac{1}{n}:n\in\mathbb{N}\setminus\{0\}\}$. ¿En este subconjunto existe un elemento que es el más pequeño de todos? ¿Existe alguno que sea el más grande?
 - 1.2. Demuesta por inducción que:

1)
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
 2) $\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)$

3)
$$\sum_{k=0}^{n} r^k = \frac{1-r^{n+1}}{1-r}$$
, si $r \neq 1$. 4) $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^n} \ge 1 + \frac{n}{2}$.

- 5) Si $n \geq 4$, entonces $2^n \geq n^2$ (Indicación: ver antes que $2n^2 \geq (n+1)^2$ para todo
- 6) Dado un conjunto A de n elementos, prueba que tiene exactamente 2^n subconjuntos.
- 1.3. Usando que todo número entero $n \in \mathbb{N}$ se descompone en producto de potencias de números primos, prueba que
- a) si $p, n \in \mathbb{N}$ y p es un número primo entonces que p divida a n^2 es equivalente a que p divida a n;
- b) y que $\sqrt{p} \notin \mathbb{Q}$, siempre que p sea un número primo.
- **1.4.** Sea $p \in \mathbb{Q}$, $p \neq 0$ y sea $x \in \mathbb{R} \setminus \mathbb{Q}$. Prueba que p + x y px son irracionales, es decir que pertenecen a $\mathbb{R}\setminus\mathbb{Q}$.
 - **1.5.** Demuestra lo siguiente:
- a) Si ax = a para algún número $a \neq 0$, entonces x = 1.
- b) $(x+y)^2 = x^2 + 2xy + y^2$ c) $x^2 y^2 = (x+y)(x-y)$. d) Si $x^2 = y^2$, entonces x = y o bien x = -y.

e)
Si
$$ax^2 + bx + c = 0$$
 y $a \neq 0$, prueba que $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ ¿siempre?

a)
$$\frac{x^2 - a^2}{x - a}$$
 b) $\frac{x^2 + 2a + a^2}{x + a}$ c) $\frac{x^3 - a^3}{x - a}$.

- **1.7.** Encuentra el fallo en la siguiente "demostración". Si x = y, entonces $x^2 = xy$ y por tanto $x^2 - y^2 = xy - y^2$. Sacando factor común (x - y)(x + y) = y(x - y) y simplificando x + y = y. Como x = y, escribimos 2y = y y de nuevo simplificando 2 = 1.
 - **1.8.** Dibuja los siguientes conjuntos de \mathbb{R} .

1)
$$\{1 - 1/n : n \in \mathbb{N}\}\$$
 2) $[1, 3) \bigcup (2, \pi]$

2)
$$[1,3)$$
 $[(2,\pi]$

3)
$$\{(-1)^n + \frac{n}{n+1}, \quad n \in \mathbb{N}\}.$$

- 1.9. Halla todos los números reales x que satisfacen, en cada caso, las siguientes relaciones:
- a) $x^2 4 \ge |2x + 4|$ b) $\frac{1 2x}{x + 2} \le 3$ c) $\sqrt{1 + x} < 1 + \frac{1}{x}$. d) |x 1| + |x 2| > 1 e) $x^3(x^6 62)(x + 3)^2 < 0$.
- **1.10.** Resuelve las ecuaciones: |x-3| + |x-7| = 2, |x-3| + |x-7| = 4 y ||3-x|-|x|| = |x|+1.
 - **1.11.** En la ecuación y = 2x + |2 x|, despeja x en función de la y.
 - **1.12.** Si x > 0, prueba que entonces es cierto que $x + \frac{1}{x} > 2$.
- **1.13.** Si $a \le b$ y para todo $\epsilon > 0$ se verifica que $a \le b \le a + \epsilon$, prueba que a = b. Del mismo modo prueba que si para todo $\epsilon > 0$ se verifica que $b - \epsilon \le a \le b$, entonces a = b.
- **1.14.** Sea A un subconjuto no vacío y acotado de \mathbb{R} . Sea $A_0 \subseteq A$ con $A_0 \neq \emptyset$. Prueba que A_0 está acotado y que:

$$\inf A \le \inf A_0 \le \sup A_0 \le \sup A$$

1.13. Sean $A, B \subseteq \mathbb{R}$, no vacíos y sea $\alpha \in \mathbb{R}$. Se definen los siguientes subconjuntos $de \mathbb{R}$:

$$A + B = \{x \in \mathbb{R} : x = a + b \text{ donde } a \in A \text{ y } b \in B\}$$

У

$$\alpha A = \{ x \in \mathbb{R} : x = \alpha a \text{ donde } a \in A \}$$

Prueba que:

- i) $\sup A + B = \sup A + \sup B$ ii) $\inf A + B = \inf A + \inf B$.
- iii) inf $\alpha A = \alpha$ inf A y sup $\alpha A = \alpha$ sup A siempre que $\alpha > 0$.
- iv) inf $\alpha A = \alpha \sup A$ y sup $\alpha A = \alpha$ inf A siempre que $\alpha < 0$.
 - **1.15.** Sea α una cota superior de $A \subset \mathbb{R}$.
- A) Prueba que si $\alpha \in A$, entonces $\alpha = \sup A$.
- B) Prueba que $\alpha = \sup A$ es equivalente a decir que para todo número r > 0 existe $a \in A$ de modo que $\alpha - r \leq a$.
- 1.16. Calcula cotas superiores e inferiores, supremos e ínfimos (si existen) de los siguientes conjuntos:
- 1) $\{3, 3'3, 3'33, 3'333, ...\}$ 2) $[3, \frac{7}{3}] \bigcap (\frac{5}{4}, 8]$ 3) $\{x \in \mathbb{R} : x = 1 \frac{1}{r}, \text{ con } r > 0\}.$
- 4) $A \subset \mathbb{R}$ de modo que si $x \in A$ y su forma decimal es $x = c, a_1 a_2 a_3 \dots a_n \dots$ se tiene que $a_{2k} = 1$ para todo $k \in \mathbb{N}$.
 - 1.17. Representa en \mathbb{R}^2 los siguientes conjuntos:
- 1) $\{(x,y) \in \mathbb{R}^2 : x > 0\}$ 2) $\{(x,y) \in \mathbb{R}^2 : |x| < 1\}$
- 3) $\{(x,y) \in \mathbb{R}^2 : |3x-1| \ge y\}$ 4) $\{(x,y) \in \mathbb{R}^2 : |x^2-x| + x > y\}$. 5) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$.