

Machine Vision

Lecture 3: Image Sampling

Image sensing

- While it is sometimes useful to consider images as continuous functions mapping the 2D image plane to some real-valued intensity, the process of image sensing is inherently discretised
- There are two types of discretisation that we need to consider:
 - Radiometric sampling, that is how the intensity/colour of each pixel is encoded
 - Geometric sampling, that is at what spatial resolution the incoming beams of light are measured

Radiometric depth

Radiometric sampling

- Irradiance is the power per unit area of light falling on a surface
- Every pixel measures a brightness value by integrating irradiance over a defined amount of exposure time
- Exposure times are usually calibrated so that an optimal dynamic range between black and white is achieved
- The brightness is then discretised, typically such that 0=black and 255=white
- High Dynamic Range (HDR) cameras use more bits for discretising brightness

Image histogram

The image brightness histogram is the function that for each brightness
z counts the number of pixels in the image that take on this particular
brightness value

$$h[z] = \sum_{x,y} \delta[I[x,y] - z]$$

It shows how large the areas of a particular brightness are

Image histogram

The image brightness histogram is the function that for each brightness
z counts the number of pixels in the image that take on this particular
brightness value

$$h[z] = \sum_{x,y} \delta[I[x,y] - z]$$

It shows how large the areas of a particular brightness are

In OpenCV it is calculated as follows

Mask

Number of bins

hist = cv2.calcHist([img],[0],None,[256],[0,256])
plt.bar(range(len(hist)),hist.flatten())

Channels

Brightness range

Cumulative histogram

• The cumulative histogram is the number of pixels in the image that have a brightness smaller than a particular value t

$$H[t] = \sum_{z \le t} h[z]$$

plt.plot(np.cumsum(hist))

Histogram operations

 A function T applied to all pixels of an image irrespective of position and transforming its brightness is called a histogram operation

$$I'[x,y] = T[I[x,y]]$$

 Because an image is typically discretised this can be realised as a simple lookup table

Contrast and brightness adjustment

• If *T* is linear the histogram is "squeezed" and "shifted" resulting in a contrast and brightness adjustment of the image

$$I'[x, y] = a I[x, y] + b$$

Negative images

• A linear transformation with negative \boldsymbol{a} transforms the image into the negative image

$$I'[x,y] = a I[x,y] + b$$

Radiometric discretisation

• If the transformation T is a step-function the radiometric discretisation can be adjusted

250

Thresholding

An important special case is the step-function with just a single step

$$I'[x,y] = \begin{cases} 0 & I[x,y] \ge T \\ 1 & I[x,y] < T \end{cases}$$

- The result is a binary image, where all areas exceeding a given threshold
 T are white and the rest of the image is black
- This can be useful for image segmentation

Thresholding

An important special case is the step-function with just a single step

$$I'[x,y] = \begin{cases} 0 & I[x,y] \ge T \\ 1 & I[x,y] < T \end{cases}$$

- The result is a **binary image**, where all areas exceeding a given threshold T are white and the rest of the image is black
- This can be useful for image segmentation
- Because of this there is a dedicated function in OpenCV

```
ret, binary_image = cv2.threshold(img, T, 255, cv2.THRESH_BINARY_INV)
```

Thresholding

 Sometimes the histogram can be useful for determining a good threshold value

Histogram equalisation

 Histogram equalisation tries to improve the contrast of an image by ensuring that all brightness values occur equally frequent

Histogram matching

 A more generic operation is histogram matching, which takes the histogram of the input image as input

$$h[z] = \sum_{x,y} \delta[I[x,y] - z]$$

• And calculates the transformation I'=TI so that the histogram of this transformed image is the given target histogram

$$h'[z] = \sum_{x,y} \delta[T[I[x,y]] - z]$$

• Histogram equalisation is the special case where h^\prime is uniform

Histogram matching

 To find a transformation that matches the output histogram to a target histogram we use the cumulative histograms, which immediately show for each value how to transform it

Image arithmetic

• While histogram operations work pixel-by-pixel on only one image, we can also consider operations \mathcal{C} that work pixel by pixel on two images I_1 and I_2 resulting in a new image

$$I'[x, y] = C[I_1[x, y], I_2[x, y]]$$

 These operations can be for example arithmetic (+,-,x,/) or logical (AND, OR)

Image subtraction

 For example, we can use subtraction or division to detect change

Image blending

To blend two images together we can use a convex combination

$$I'[x, y] = \lambda I_1[x, y] + (1 - \lambda)I_2[x, y]$$

Geometric resolution

Spatial sampling

• Let's assume again the image is a continuous function

$$f[x,y] = wh \sum_{k} \sum_{l} f_{kl} \delta[x - kw, y - lh]$$

comprising unit impulses sampled on a regular grid of width w and height h

• The Fourier transform of this image is

$$F[u,v] = wh \sum_{k} \sum_{l} f_{kl} e^{-i(ukw + vlh)}$$

• This is a periodic function with period $\frac{2\pi}{w}$ and $\frac{2\pi}{h}$, which means all values of F[u,v] for $|u|>\frac{\pi}{w}$ and $v>\frac{\pi}{h}$ are redundant

Nyquist frequency

Let's now look at an image defined in the frequency domain as follows

$$F[u,v] = \begin{cases} \tilde{F}[u,v] & |u| \le \frac{\pi}{w} \land |v| \le \frac{\pi}{h} \\ 0 & otherwise \end{cases}$$

The inverse Fourier transform is

$$f[x,y] = \sum_{k} \sum_{l} f_{kl} \frac{\sin\left[\pi\left(\frac{x}{w} - k\right)\right]}{\pi\left(\frac{x}{w} - k\right)} \frac{\sin\left[\pi\left(\frac{y}{h} - l\right)\right]}{\pi\left(\frac{y}{h} - l\right)}$$

Which evaluates at the sampling points as

$$f[kw, lh] = f_{kl}$$

Nyquist frequency

- Therefore, no information is lost when the image is smooth enough, i.e. it sufficiently band-limited
- The Nyquist frequency

$$B = \frac{\pi}{\max(w, h)}$$

- is the maximum permissible frequency that can occur in the image so that it is discretely sampled without loss of information
- In other words, the sampling interval has to be less than $\frac{\lambda}{2}$, where λ is the wavelength of the highest frequency that can occur
- This can be achieved by sufficiently blurring (or de-focusing) the image before it is sampled on the image plane

Aliasing

• The loss of information that occurs when sampling a signal of a higher frequency than the permissible Nyquist frequency is called **aliasing**

Aliasing

 Spatial aliasing leads to artefacts in images, such as lower frequency Moiré patterns on high frequency textures and problems along sharp edges

Aliasing

 Temporal aliasing occurs in videos when the frame-rate (i.e. the temporal sampling frequency) is too low to capture some highfrequency event

Geometric image transformations

- Geometric image transformations are used for changing the shape of an input image into a desired target shape
- Important geometric transformations are re-sizing, rotation, translation, and perspective transformations
- Because of the discretisation we need to re-sample the original image

• For every pixel (x_o,y_o) in the output image we calculate the coordinate in the input image

$$x_i = T_x[x_o, y_o]$$

$$y_i = T_y[x_o, y_o]$$

 These coordinates typically do not co-inside with the discrete raster of the input image

• Therefore we need to **interpolate** the brightness value

- To interpolate the brightness of pixel (x_o, y_o) we look at the neighbourhood of (x_i, y_i) in the input image
- Nearest-neighbour interpolation uses the brightness value of the nearest raster point in the input image to determine the brightness value in the output image

$$I'[x_o, y_o] = I\left[\left[x_i + \frac{1}{2}\right], \left[y_i + \frac{1}{2}\right]\right]$$

- To interpolate the brightness of pixel (x_o, y_o) we look at the neighbourhood of (x_i, y_i) in the input image
- Linear interpolation uses the average brightness of the four nearest raster points in the input image weighted by the distance to determine the brightness value in the output image

$$\begin{split} I'[x_o, y_o] &= (1 - \lfloor x_i \rfloor)(1 - \lfloor y_i \rfloor)I[\lfloor x_i \rfloor, \lfloor y_i \rfloor] \\ &+ \lfloor x_i \rfloor(1 - \lfloor y_i \rfloor)I[\lfloor x_i \rfloor + 1, \lfloor y_i \rfloor] \\ &+ (1 - \lfloor x_i \rfloor)\lfloor y_i \rfloor I[\lfloor x_i \rfloor, \lfloor y_i \rfloor + 1] \\ &+ \lfloor x_i \rfloor \lfloor y_i \rfloor I[\lfloor x_i \rfloor + 1, \lfloor y_i \rfloor + 1] \end{split}$$

- Linear interpolation provides smoother results
- Even higher-order polynomial interpolations (e.g. bi-cubic) from larger neighbourhoods is being used
- If the input image has a higher resolution than the output image, aliasing is an issue
- This can be resolved by Anti-Aliasing Filters
- The input image is low-pass filtered first, i.e. a Gaussian smoothing kernel is applied to remove all high frequencies above the Nyquist frequency of the target resolution

Colour images

- So far we have only looked at intensity of pixels
- Every photon that is hitting a pixel sensor has a specific energy (or wavelength)
- During exposure every pixel is hit by a lot of these photons
- The wavelength distribution $p[\lambda]$ of these photons depends on the light source and the material properties of the objects off which the light has been reflected before entering the camera
- Most photons emitted by the sun and passing through the earth atmosphere have a wavelength between 400nm and 700nm
- Because the human visual system is adapted to this range it is called "visible light"

Colour images

- To describe the colour spectrum $p[\lambda]$, the human visual system uses only three distinct "sensors", which are sensitive to different parts of the spectrum
- These sensitivity curves $r[\lambda]$, $g[\lambda]$, and $b[\lambda]$ are biologically motivated and fixed and every colour is encoded as a linear combination of these three basis functions
- Only three coefficients (x, y, z) are used to encode the spectrum

$$p[\lambda] = x r[\lambda] + y g[\lambda] + z b[\lambda]$$

Colour images

- Only wavelength distributions that are possible to express as a linear combination of these red/green/blue basis functions can be represented this way
- This coincides with our own inability to spot the difference between those spectra, but this does not mean a machine vision system has the same restrictions
- Other basis functions can be applied, in particular to cover parts of the spectrum that are invisible to the human eye (e.g. infrared or ultraviolet)
- These multi-spectral images are then represented by more than three channels

Colour sensing

- To measure the individual coefficients of the spectrum individual colour filters are placed in front of the sensors
- Now a pixel is counting only those photons that fall within the range of a specific basis function
- The filters are arranged in specific physiologically motivated patterns, such as the Bayer pattern (right) which assigns 50% to sensing green and 25% each to sensing red and blue
- Note, that the full resolution is not used for all colour channels, instead a digital colour image is a mosaic of red, green, and blue components

De-mosaicking

 In order to obtain the RGB values at full resolution we need to interpolate the measurements from neighbouring cells

 The easiest de-mosaicking algorithm interpolates each pixel as the average of all neighbouring pixels

For a red pixel the colour is calculated as

$$R = I[x, y]$$

$$G = \frac{1}{4}(I[x+1,y] + I[x-1,y] + I[x,y+1] + I[x,y-1])$$

$$B = \frac{1}{4}(I[x+1,y+1] + I[x+1,y-1] + I[x-1,y+1] + I[x-1,y-1])$$

De-mosaicking

• In order to obtain the RGB values at full resolution we need to interpolate the measurements from neighbouring cells

 The easiest de-mosaicking algorithm interpolates each pixel as the average of all neighbouring pixels

For a blue pixel the colour is calculated as

$$B = I[x, y]$$

$$G = \frac{1}{4}(I[x+1,y] + I[x-1,y] + I[x,y+1] + I[x,y-1])$$

$$R = \frac{1}{4}(I[x+1,y+1] + I[x+1,y-1] + I[x-1,y+1] + I[x-1,y-1])$$

De-mosaicking

• In order to obtain the RGB values at full resolution we need to interpolate the measurements from neighbouring cells

 The easiest de-mosaicking algorithm interpolates each pixel as the average of all neighbouring pixels

For a green pixel the colour is calculated as

$$G = I[x, y]$$

$$R = \frac{1}{2}(I[x+1,y] + I[x-1,y])$$

$$B = \frac{1}{2}(I[x, y + 1] + I[x, y - 1])$$

Aliasing in colour images

 The effective resolution of individual colour sensors is lower, therefore aliasing effects on high-frequency images can cause colour distortions

Colour spaces

- The three dimensions red, green, and blue form the RGB colour cube
- Every point in this cube represents a colour
- The eight edges of the cube are
 - Black (0,0,0),
 - Red (1,0,0), Green (0,1,0), Blue (0,0,1)
 - Cyan (0,1,1), Magenta (1,0,1), Yellow (1,1,0),
 - and White (1,1,1)

Colour spaces

- The RGB colour space is not very intuitive
- In particular, determining distance relations in RGB space lacks interpretation
- Therefore other colour models that transform the colour cube into a cylinder and use polar coordinates are useful

HSV colour model

- The HSV colour model describes each point in the 3D colour cube colour with the attributes
 - Hue
 - Saturation
 - Value

 In particular the Hue channel is interesting, as it resembles what humans perceive as a specific colour and abstracts from brightness and saturation, that we typically ignore when attributing objects

```
hsv_image = cv2.cvtColor(input_img, cv2.COLOR_RGB2HSV)
```

Chroma key

- Thresholding the Hue channel allows to cut out areas of a specific colour
- This is useful for image segmentation and widely used in TV production

Thank you for your attention!