PODS Lab 12: Confidence Intervals, Bootstrapping, and Bayes' **Theorem**

Hamza Alshamy

Center for Data Science, NYU ha2486@nyu.edu

04/18/25

- Confidence Intervals (CI)
- Bootstrapping

Agenda

- Bayes' Theorem
- Quiz + Discussion

- So far, we have focused on point estimates:
 - **Examples:** Effect size, test statistic, p-value, power, sample mean \bar{X}
- Now, we shift to interval estimates.

- ▶ So far, we have focused on point estimates:
 - **Examples:** Effect size, test statistic, p-value, power, sample mean \bar{X}
- Now, we shift to interval estimates.

Scenario:

Suppose we want to estimate the population mean μ .

- So far, we have focused on point estimates:
 - **Examples:** Effect size, test statistic, p-value, power, sample mean \bar{X}
- Now, we shift to interval estimates.

Scenario:

- Suppose we want to estimate the population mean μ .
- **Option 1:** Take a single sample and compute the sample mean \bar{X} .

- So far, we have focused on point estimates:
 - **Examples:** Effect size, test statistic, p-value, power, sample mean X
- Now, we shift to interval estimates.

Scenario:

- Suppose we want to estimate the population mean μ .
- **Option 1:** Take a single sample and compute the sample mean \bar{X} .
- Option 2: Construct a range of plausible values an interval.

- So far, we have focused on point estimates:
 - **Examples:** Effect size, test statistic, p-value, power, sample mean \bar{X}
- Now, we shift to interval estimates.

Scenario:

- Suppose we want to estimate the population mean μ .
- **Option 1:** Take a single sample and compute the sample mean \bar{X} .
- Option 2: Construct a range of plausible values an interval.

Definition: Confidence Interval (CI)

An interval estimate that captures plausible values for the true population parameter.

Idea of Confidence Intervals

- **Sampling Error:** Every time we sample from a population, our sample statistic (e.g., X) can differ due to random variability.
- **Consequence:** Different samples would give different estimates.
- Big Idea:
 - If we repeatedly sample from the same population and construct a confidence interval for each sample,
 - Then approximately 95% of those intervals would contain the true population parameter (e.g., the population mean), assuming no sampling bias.

Clarifying Points

- **Question:** How can we build a confidence interval for something we don't know (population parameter)?
- Answer: The Central Limit Theorem (CLT) gives us the structure to do it.
 - **CLT:** If we repeatedly sample from a population and compute the sample mean \bar{X} each time, then the distribution of the sample means will tend toward a **normal distribution**, regardless of the shape of the original population, provided the sample size is large enough.

In short: The sampling distribution of a sample statistic (e.g. *X*) becomes approximately normal even if the population itself is not.

How to Calculate Confidence Intervals

- Declare a confidence level: 99.9%, 99%, 95%, 50%
 - Find the **critical value** *z* that corresponds to your confidence level
- Pick a sample size n
- **Measure** the sample statistic (e.g., sample mean \bar{X})
- Plug into the confidence interval formula

Confidence Interval Formula

$$\mathsf{CI} = \bar{X} \pm (z_{\alpha/2} \times \mathsf{SE})$$
 ,where

- ▶ **SE** = $\frac{\sigma}{\sqrt{n}}$ or $\frac{s}{\sqrt{n}}$ if σ is unknown.
- **►** *z* (Confidence level): 99.9% \rightarrow 3.29; 99% \rightarrow 2.58; 95% \rightarrow 1.96; 90% \rightarrow 1.645; 80% \rightarrow 1.28; 50% \rightarrow 0.674 (From z-table)

Confidence Intervals (CI) Bootstrapping Bayes' Theorem

○○○○○○○○

○○○

○○○

Confidence Intervals Visualization and interpretation

Observe:

- At the same confidence level (95%) and sample size, confidence intervals may vary due to sampling variability.
- **Larger samples yield narrower intervals** because standard error decreases as *n* increases.

How to Interpret Confidence Intervals

► A 95% confidence interval means:

- If we repeated sampling many times and constructed a confidence interval each time.
- About 95% of those intervals would contain the true population parameter.

Important:

- It does **not** mean there is a 95% probability that the true parameter is inside **this particular** interval.
- ► The true parameter is fixed; the interval is random.

Tradeoff Between Confidence and Precision:

- ► Higher confidence levels (e.g., 99%) result in wider intervals, as they must include more possible values.
- Narrower intervals offer greater precision but are less likely to include the true parameter.

Interval	Interpretation
Contains 0	No significant difference between groups
Entirely positive (+, +)	Group 1 > Group 2 (Significant)
Entirely negative $(-, -)$	Group 1 < Group 2 (Significant)

Assumptions of Confidence Intervals

- Random Sampling
- Independence of Observations
- Sufficiently Large Sample Size
- No Sampling Bias
- Normality of the Population Distribution:
 - For small sample sizes, many confidence interval methods assume that the population from which the sample is drawn is normally distributed.
 - For larger sample sizes, the Central Limit Theorem (CLT) ensures that the sampling distribution of the statistic becomes approximately normal, even if the population itself is skewed.
- Problem: Not all statistics naturally distribute normally especially for small samples, ratios, or rare events.
 - ► Solution: Bootstrap!

Bootstrapping

- ▶ **Bootstrapping:** A resampling technique to approximate the sampling distribution of a statistic.
- Obtain one sufficiently large and representative sample (the original sample).
- Sample with replacement from the original sample to create many bootstrap samples.
 - We treat the original sample as if it were the entire population.
- Calculate the sample statistic (e.g., mean, median, effect size) for each bootstrap sample.
- Build a sampling distribution from these bootstrap statistics.

Two Options for Building Confidence Intervals (Bootstrapping)

- After generating bootstrap samples, you have two common ways to construct a confidence interval:
- Percentile Method: (Our Method)

$$Cl_{95\%} = [2.5th percentile, 97.5th percentile]$$

Standard Error Method (similar to before):

$$CI = \bar{x}_{original} \pm (z \times SE_{bootstrapped})$$

Confidence Intervals (CI) Bootstrapping Bayes' Theorem 0000000 000 0000

Bootstrapping and Confidence Interval Visualization

- From the original sample, we drew 5,000 bootstrap samples (sampling with replacement).
- We calculated the sample mean for each bootstrap sample to build the sampling distribution.
- ► The 95% confidence interval is obtained by slicing the bootstrap distribution at the 2.5th and 97.5th percentiles.

Key Idea: Conditional probability helps us revise our beliefs when new information is available.

Conditional Probability Formula

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

In words: What is the probability *B* Given that *A* has happened? how does this affect our belief in *B*?

From Conditional Probability to Bayes' Rule

Bayes' Rule: Allows us to "reverse" conditional probabilities.

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

Rewriting:

$$P(A \cap B) = P(B \mid A) \times P(A)$$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Rewriting:

$$P(A \cap B) = P(A \mid B) \times P(B)$$

Deriving Bayes' Rule

$$P(B \mid A) \times P(A) = P(A \mid B) \times P(B)$$

$$\implies P(A \mid B) = \frac{P(B \mid A) \times P(A)}{P(B)}$$

Some Terminology

Bayes' Rule with Interpretation

$$\underbrace{P(A \mid B)}_{\text{Posterior}} = \underbrace{\frac{P(B \mid A) \times P(A)}{P(B \mid A) \times P(A)}}_{\text{Prior (of } B)}$$

- ▶ **Prior:** Our belief about event *A* before seeing the data (e.g., how likely we thought *A* was initially).
- ► **Likelihood:** The probability of observing the data *B* assuming *A* is true.
- ▶ **Posterior:** Our updated belief about *A* after seeing the data *B*.

Scenario:

- Prior Belief: The coin is fair.
 - ightharpoonup P(Heads) = 0.5
 - ightharpoonup P(Tails) = 0.5
- New Evidence: We flip the coin 60 times and observe heads 70% of the time (42 heads).
- Updated Belief (Posterior):
 - Based on the data, we update our belief: The coin may be biased toward heads.

Key Idea: Prior \rightarrow New Data \rightarrow Posterior

Quiz + Discussion