20200228_notes

February 28, 2020

1 Introduction

Let's explore the use of transfer learning for the "Cats vs. Dogs" example from Chapter 5 of Chollet. Our data are color photos of cats and dogs, and our goal is to classify a photo according to which kind of animal it has.

I'm basically following the code from Chapter 5 with a few minor modifications.

1.1 Importing VGG16

The following code imports and loads the VGG16 model with its estimated parameters.

```
[4]: from keras.applications import VGG16

vgg16_full_model = VGG16(
    weights='imagenet',
    include_top=True,
    input_shape=(224, 224, 3))

vgg16_conv_base = VGG16(
    weights='imagenet',
    include_top=False,
    input_shape=(150, 150, 3))
```

Here are summaries of vgg16_full_model and vgg16_conv_base. Note which layers from the full model are not included in the convolutional base.

```
[5]: print(vgg16_full_model.summary())
print(vgg16_conv_base.summary())
```

block1_conv2 (Conv2D)	(None, 224, 224, 64)	36928
block1_pool (MaxPooling2D)	(None, 112, 112, 64)	0
block2_conv1 (Conv2D)	(None, 112, 112, 128)	73856
block2_conv2 (Conv2D)	(None, 112, 112, 128)	147584
block2_pool (MaxPooling2D)	(None, 56, 56, 128)	0
block3_conv1 (Conv2D)	(None, 56, 56, 256)	295168
block3_conv2 (Conv2D)	(None, 56, 56, 256)	590080
block3_conv3 (Conv2D)	(None, 56, 56, 256)	590080
block3_pool (MaxPooling2D)	(None, 28, 28, 256)	0
block4_conv1 (Conv2D)	(None, 28, 28, 512)	1180160
block4_conv2 (Conv2D)	(None, 28, 28, 512)	2359808
block4_conv3 (Conv2D)	(None, 28, 28, 512)	2359808
block4_pool (MaxPooling2D)	(None, 14, 14, 512)	0
block5_conv1 (Conv2D)	(None, 14, 14, 512)	2359808
block5_conv2 (Conv2D)	(None, 14, 14, 512)	2359808
block5_conv3 (Conv2D)	(None, 14, 14, 512)	2359808
block5_pool (MaxPooling2D)	(None, 7, 7, 512)	0
flatten (Flatten)	(None, 25088)	0
fc1 (Dense)	(None, 4096)	102764544
fc2 (Dense)	(None, 4096)	16781312
predictions (Dense)	(None, 1000)	4097000
Total params: 138.357.544	=======================================	=======

Total params: 138,357,544
Trainable params: 138,357,544

Non-trainable params: 0

None

Model: "vgg16"

Layer (type)	Output Shape	 Param #
input_2 (InputLayer)	(None, 150, 150, 3)	0
block1_conv1 (Conv2D)	(None, 150, 150, 64)	1792
block1_conv2 (Conv2D)	(None, 150, 150, 64)	36928
block1_pool (MaxPooling2D)	(None, 75, 75, 64)	0
block2_conv1 (Conv2D)	(None, 75, 75, 128)	73856
block2_conv2 (Conv2D)	(None, 75, 75, 128)	147584
block2_pool (MaxPooling2D)	(None, 37, 37, 128)	0
block3_conv1 (Conv2D)	(None, 37, 37, 256)	295168
block3_conv2 (Conv2D)	(None, 37, 37, 256)	590080
block3_conv3 (Conv2D)	(None, 37, 37, 256)	590080
block3_pool (MaxPooling2D)	(None, 18, 18, 256)	0
block4_conv1 (Conv2D)	(None, 18, 18, 512)	1180160
block4_conv2 (Conv2D)	(None, 18, 18, 512)	2359808
block4_conv3 (Conv2D)	(None, 18, 18, 512)	2359808
block4_pool (MaxPooling2D)	(None, 9, 9, 512)	0
block5_conv1 (Conv2D)	(None, 9, 9, 512)	2359808
block5_conv2 (Conv2D)	(None, 9, 9, 512)	2359808
block5_conv3 (Conv2D)	(None, 9, 9, 512)	2359808
block5_pool (MaxPooling2D)	(None, 4, 4, 512)	0
Total params: 14,714,688 Trainable params: 14,714,688		=== ===

Non-trainable params: 0

None

1.2 Approach 1: Feature Extraction

We do three steps: 1. Make "predictions" from the convolutional base. The results are the $4 \times 4 \times 512$ outputs from the last layer of VGG16. 2. Flatten the outputs from VGG16. These are our inputs for a model we will fit, instead of the actual pictures. 3. Fit a model using the image representations from VGG16 as inputs.

Step 1: "predictions" from the convolutional base.

```
[10]: datagen = ImageDataGenerator(rescale=1./255)
      batch_size = 20
      def extract_features(directory, sample_count):
          features = np.zeros(shape=(sample_count, 4, 4, 512))
          labels = np.zeros(shape=(sample_count))
          generator = datagen.flow_from_directory(
              directory,
              target_size=(150, 150),
              batch_size=batch_size,
              class_mode='binary')
          i = 0
          for inputs_batch, labels_batch in generator:
              features_batch = vgg16_conv_base.predict(inputs_batch)
              features[i * batch_size : (i + 1) * batch_size] = features_batch
              labels[i * batch_size : (i + 1) * batch_size] = labels_batch
              if i * batch_size >= sample_count:
                  break
          return features, labels
      train_features, train_labels = extract_features(train_dir, 2000)
      validation_features, validation_labels = extract_features(validation_dir, 1000)
      test_features, test_labels = extract_features(test_dir, 1000)
```

```
Found 2000 images belonging to 2 classes. Found 1000 images belonging to 2 classes. Found 1000 images belonging to 2 classes.
```

Step 2: Flatten

```
[0]: train_features = np.reshape(train_features, (2000, 4 * 4 * 512))
validation_features = np.reshape(validation_features, (1000, 4 * 4 * 512))
test_features = np.reshape(test_features, (1000, 4 * 4 * 512))
```

Step 3: Fit a model that takes activations from last convolutional layer of VGG16 as inputs

1.3 Approach 2: Transfer Learning

We do this by directly adding dense layers onto the VGG16 convolutional base. We update weights only for the new dense layers.

```
[0]: model = models.Sequential()
    model.add(vgg16_conv_base)
    model.add(layers.Flatten())
    model.add(layers.Dense(256, activation='relu'))
    model.add(layers.Dense(1, activation='sigmoid'))
```

Set parameters in the convolutional base so they are not "trainable"; the weight estimates from VGG16 will not be updated.

This is the number of trainable weights before freezing the conv base: 16812353 This is the number of trainable weights after freezing the conv base: 2097665

```
[56]: model.summary()
```

Model: "sequential_5"

Non-trainable params: 14,714,688

Layer (type)	Output Shape	Param #
vgg16 (Model)	(None, 4, 4, 512)	14714688
flatten_4 (Flatten)	(None, 8192)	0
dense_9 (Dense)	(None, 256)	2097408
dense_10 (Dense)	(None, 1)	257
Total params: 16,812,353 Trainable params: 2,097,665		

Fit the model using data augmentation.

```
[57]: train_datagen = ImageDataGenerator(
           rescale=1./255,
           rotation_range=40,
           width_shift_range=0.2,
           height_shift_range=0.2,
           shear_range=2,
           zoom_range=0.2,
           horizontal_flip=True,
           fill_mode='nearest')
     test_datagen = ImageDataGenerator(rescale=1./255)
     train_generator = train_datagen.flow_from_directory(
             train_dir,
             target_size=(150, 150),
             batch_size=40,
             class_mode='binary')
     validation_generator = test_datagen.flow_from_directory(
             validation_dir,
             target_size=(150, 150),
             batch_size=20,
             class_mode='binary')
     model.compile(loss='binary_crossentropy',
                   optimizer=optimizers.Adam(1r=2e-4),
                   metrics=['acc'])
     tic = time.time()
     history = model.fit_generator(
           train_generator,
           steps_per_epoch=50,
           epochs=30,
           validation_data=validation_generator,
           validation_steps=50)
     toc = time.time()
     toc - tic
     Found 2000 images belonging to 2 classes.
     Found 1000 images belonging to 2 classes.
     Epoch 1/30
     0.7390 - val_loss: 0.3114 - val_acc: 0.8620
     ... so many epochs ...
```

[57]: 528.1107420921326

I did a little more training of this model and validation set accuracy improved ever so slightly. Cut for brevity.

1.4 Approach 3: Fine Tuning

We'll now unfreeze the last block of convolutional layers in the VGG16 model, and update those weights as well.

[67]: vgg16_conv_base.summary()

Model: "vgg16"		
Layer (type)	Output Shape	Param #
input_2 (InputLayer)	(None, 150, 150, 3)	0
block1_conv1 (Conv2D)	(None, 150, 150, 64)	1792
block1_conv2 (Conv2D)	(None, 150, 150, 64)	36928
block1_pool (MaxPooling2D)	(None, 75, 75, 64)	0
block2_conv1 (Conv2D)	(None, 75, 75, 128)	73856
block2_conv2 (Conv2D)	(None, 75, 75, 128)	147584
block2_pool (MaxPooling2D)	(None, 37, 37, 128)	0
block3_conv1 (Conv2D)	(None, 37, 37, 256)	295168
block3_conv2 (Conv2D)	(None, 37, 37, 256)	590080
block3_conv3 (Conv2D)	(None, 37, 37, 256)	590080
block3_pool (MaxPooling2D)	(None, 18, 18, 256)	0
block4_conv1 (Conv2D)	(None, 18, 18, 512)	1180160
block4_conv2 (Conv2D)	(None, 18, 18, 512)	2359808
block4_conv3 (Conv2D)	(None, 18, 18, 512)	2359808
block4_pool (MaxPooling2D)	(None, 9, 9, 512)	0
block5_conv1 (Conv2D)	(None, 9, 9, 512)	2359808
block5_conv2 (Conv2D)	(None, 9, 9, 512)	2359808
block5_conv3 (Conv2D)	(None, 9, 9, 512)	2359808
block5_pool (MaxPooling2D)	(None, 4, 4, 512)	0

Total params: 14,714,688
Trainable params: 7,079,424
Non-trainable params: 7,635,264

We'll set the weights to be trainable starting with the 'block5_conv1' layer.

```
[0]: vgg16_conv_base.trainable = True

set_trainable = False
for layer in vgg16_conv_base.layers:
    if layer.name == 'block5_conv1':
        set_trainable = True
    if set_trainable:
        layer.trainable = True
    else:
        layer.trainable = False
```

Model: "sequential_5"

Layer (type)	Output Shape	Param #
vgg16 (Model)	(None, 4, 4, 512)	14714688
flatten_4 (Flatten)	(None, 8192)	0
dense_9 (Dense)	(None, 256)	2097408
dense_10 (Dense)	(None, 1)	257

Total params: 16,812,353
Trainable params: 9,177,089
Non-trainable params: 7,635,264

Run estimation. We're continuing from the weight estimates as they were at the end of Approach 2.

After reducing the learning rate and training for an additional 60 epochs, I eked out another 1% classification accuracy.


```
[0]: model.save('/content/drive/My Drive/stat344ne_cats_and_dogs_small/

cats_and_dogs_from_vgg16_finetuning_final.h5')
```

I've clearly overfit, and possibly could get another percentage point of accuracy out by regularizing more carefully.

However, I'm feeling emotionally ready to look at test set performance.

Found 1000 images belonging to 2 classes.

test acc: 0.918999993801117

Take aways:

- This was a lot more work, but transfer learning resulted in better performance than what we achieved without transfer learning (around 80%).
- Relative to using VGG16 for just feature extraction, fine tuning helped a little in terms of absolute accuracy (our model with feature extraction was already pretty good), but a lot in terms of percentage unexplained.
- Transfer learning is the norm, not the exception.