# 기상상태에 따른 울산 지역 닻 끌림 발생 여부 분석

이승윤 이창희 이지연 이민재 심세은

- #1 분석 주제
- #2 데이터 설명
- #3 데이터 전처리
- #4 EDA
- #5 분석 기법
- #6 분석 결과

#1

분석 주제

#### 주제 선정 이유

- 대량의 Raw 데이터를 토대로 분석하고자 하는 의견이 있었음
- 상대적으로 데이터 접근이 용이한 공공 데이터를 활용하여 진행을 하고자 함
- 본 공모전이 학습한 내용을 바탕으로 진행하기에 알맞다고 판단함

# 닻 끌림이란?

- 해류·조류, 바람 등 기상의 영향으로 해저의 닻이 끌리면서 선박의 위치가 고정되지 않고 이동하는 현상
- 주로 기상악화 시 동시다발적으로 발생하여 구조작업에 난항
- 해양사고의 가능성이 매우 높음



# 닻 끌림 인지 과정

- VTS가 정박지 관찰
- 선박의 위치가 정박지 내에 있는지, 선박의 항적이 선회반경과 유사한지 감시



#2

# 데이터 설명

| 테이블명                                | 설명                        |  |
|-------------------------------------|---------------------------|--|
| ulsan_anch_train_final<br>(169,631) | 정박 데이터                    |  |
| ulsan_drag_train_final<br>(218,612) | 닻 끌림 발생 데이터               |  |
| ulsan_anch_drag_test<br>(186,513)   | 테스트 데이터 (정박 + 닻끌림)        |  |
| khnp_buoy_train                     | 파고부이 측정 데이터               |  |
| khnp_buoy_test                      | (한국수력원자력 측정 자료)           |  |
| kma_lightbecon_train                | 등표 측정 데이터                 |  |
| kma_lightbecon_test                 | ο <del>π</del> ¬ ο ¬ι-1—ι |  |
| kma_pagobuoy_train                  | 파고부이 측정 데이터               |  |
| kma_pagobuoy_test                   | (기상청 측정 자료)               |  |

# 선박 데이터

| 테이블명                                    | 속성        | 설명            |
|-----------------------------------------|-----------|---------------|
|                                         | num       | 선박번호          |
| ulsan_anch_train_final                  | time      | 데이터 발생 시간     |
| (정박 데이터)                                | latitude  | 선박이 위치한 위도 좌표 |
| ulsan_drag_train_final<br>(닻끌림 발생 데이터)  | longitude | 선박이 위치한 경도 좌표 |
| \\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | sog       | 대지속력          |
| ulsan_anch_drag_test<br>(정박 + 닻끌림 데이터)  | cog       | 실침로           |
|                                         | hdg       | 선수미선          |

# 날씨 데이터

| 테이블명                                    | 속성           | 설명               |
|-----------------------------------------|--------------|------------------|
|                                         | yyyymmddhhmi | 시간 (연/월/일/시/분/초) |
| khnp_buoy_train                         | stn          | 데이터 관측 지점 번호     |
| khnp_buoy_test                          | stn_name     | 데이터 관측 지점명       |
| kma_lightbecon_train                    | WS           | 유향/풍향 (deg)      |
| kma_lightbecon_test                     | wd           | 유속/풍속 (m/s)      |
| kma_pagobuoy_train<br>kma_pagobuoy_test | max_wh       | 최대파고 (m)         |
|                                         | sig_wh       | 유의파고 (m)         |
|                                         | mean_wh      | 파고의 평균값 (m)      |

# TEST 데이터

| 테이블명                                   | 속성 설명     |               |
|----------------------------------------|-----------|---------------|
|                                        | num       | 선박번호          |
|                                        | area      | 닻 끌림이 발생한 장소  |
|                                        | time      | 데이터 발생 시간     |
| ulsan_anch_drag_test<br>(정박 + 닻끌림 데이터) | latitude  | 선박이 위치한 위도 좌표 |
|                                        | longitude | 선박이 위치한 경도 좌표 |
|                                        | sog       | 대지속력          |
|                                        | cog       | 실침로           |

#### #3

# 데이터 전처리

# 시간 데이터의 표기 통일

| ulsan_anch_drag_train.time | kma_pagobuoy_train.yyyymmddhhmi | khnp_buoy_train.yyyymmddhhmi |
|----------------------------|---------------------------------|------------------------------|
| "2022-08-14 00:55:06"      | 2021010100                      | 202101010000                 |
| "2022-08-14 00:55:16"      | 2021010101                      | 202101010001                 |
| 연/월/일/시/분/초                | 연/월/일/시                         | 연/월/일/시/분                    |



| year | month | day | hour | min | sec |
|------|-------|-----|------|-----|-----|
| 2021 | 1     | 3   | 11   | 8   | 37  |
| 2021 | 1     | 3   | 11   | 11  | 36  |

#### 결측치 처리



#### ■ 유향/풍향 결측치

Data Set 별로 방위 표시(16방위/360방위)가 달라 360방위를 16방위로 변경 후 시간대 별로 최빈값을 구하여 결측치 대체

#### ■ 유속/풍속 결측치

시간대별로 평균값을 구하여 결측치 대체

## 이상치 제거



#### 데이터 통합

ulsan\_anch/drag\_train (특성 12개)

| num | year | <br>sog | cog   | hdg |
|-----|------|---------|-------|-----|
| 1   | 2021 | <br>0.6 | 102.9 | 343 |
| 1   | 2021 | <br>0.9 | 70.6  | 299 |
| 1   | 2021 | <br>0.4 | 9.6   | 273 |
| 1   | 2021 | <br>0.2 | 328   | 267 |
| 1   | 2021 | <br>0.2 | 260.1 | 265 |
| 1   | 2021 | <br>0.1 | 262.8 | 270 |
|     |      |         |       |     |

khnp\_buoy\_train (특성 8개)

| stn_name | year | <br>wd | ws   |
|----------|------|--------|------|
| Gori     | 2021 | <br>84 | 37   |
| Gori     | 2021 | <br>88 | 27.8 |
| Gori     | 2021 | <br>84 | 39.3 |
| Gori     | 2021 | <br>86 | 26.5 |
| Gori     | 2021 | <br>85 | 36.6 |
| Gori     | 2021 | <br>79 | 30.6 |

kma\_lightbecon\_train (특성 8개)

| stn_name | year | ••• | wd  | ws  |
|----------|------|-----|-----|-----|
| Idukseo  | 2021 |     | 191 | 3.4 |
| Idukseo  | 2021 |     | 127 | 5.2 |
| Idukseo  | 2021 |     | 99  | 5.4 |
| Idukseo  | 2021 |     | 110 | 5.3 |
| Idukseo  | 2021 |     | 51  | 5.3 |
| Idukseo  | 2021 |     | 135 | 4.5 |

kma\_pagobuoy\_train (특성 8개)

| stn_name | year | <br>max_wh | sig_wh | mean_wh |
|----------|------|------------|--------|---------|
| 간절곶      | 2021 | <br>1      | 0.8    | 0.6     |
| 간절곶      | 2021 | <br>1      | 0.8    | 0.5     |
| 간절곶      | 2021 | <br>1.2    | 0.8    | 0.5     |
| 간절곶      | 2021 | <br>1      | 0.8    | 0.5     |
| 간절곶      | 2021 | <br>1.1    | 0.8    | 0.5     |
| <br>간절곶  | 2021 | <br>1      | 0.7    | 0.5     |



#4

**EDA** 

## 데이터 분포 시각화 - 닻 끌림 데이터





## 데이터 분포 시각화 - 닻 끌림 데이터





# 데이터 분포 시각화 - 닻 끌림 데이터



# 상관관계 분석



# #5

# 분석 기법

#### 알고리즘만 사용 (sec 단위)

RandomForest Classifier

```
1 df_train = pd.read_csv('./4. 통합 데이터 전처리/
df_train_v2.csv')
2
3 # 입력 데이터, 타깃 데이터, 테스트 데이터 설정
4 data = df_train.drop(columns=['answer', 'num'])
5 target = df_train['answer']
6
7 # 훈련데이터와 검증데이터로 나누기
8 X_train, X_val, y_train, y_val = train_test_split(data,
target, test_size=0.2, random_state=123,
stratify=target)
9
10 # 모델 객체 생성
11 rf = RandomForestClassifier()
12
13 # 모델 훈련
14 rf.fit(X_train, y_train)
```

훈련 세트 정확도: 1.0

검증 세트 정확도: 0.9999

#### XGBoost Classifer

```
1 df_train = pd.read_csv('./4. 통합 데이터 전처리/
df_train_v2.csv')
2
3 # 입력 데이터, 타깃 데이터, 테스트 데이터 설정
4 data = df_train.drop(columns=['answer', 'num'])
5 target = df_train['answer']
6
7 # 훈련데이터와 검증데이터로 나누기
8 X_train, X_val, y_train, y_val = train_test_split(data, target, test_size=0.2, random_state=123, stratify=target)
9
10 # 모델 객체 생성
xgb = XGBClassifier()
12
13 # 모델 훈련
14 xgb.fit(X_train, y_train)
```

훈련 세트 정확도: 1.0

분석 기법

#### max\_depth = 10 (sec 단위)

RandomForest Classifier

```
1 df train = pd.read_csv('./4. 통합 데이터 전처리/
df_train_v2.csv')
2
3 # 입력 데이터, 타깃 데이터, 테스트 데이터 설정
4 data = df_train.drop(columns=['answer', 'num'])
5 target = df_train['answer']
6
7 # 훈련데이터와 검증데이터로 나누기
8 X_train, X_val, y_train, y_val = train_test_split(data, target, test_size=0.2, random_state=123, stratify=target)
9
10 # 모델 객체 생성
11 rf = RandomForestClassifier(max_depth=10)
12
13 # 모델 훈련
14 rf.fit(X_train, y_train)
```

XGBoost Classifer

→ max\_depth 설정할 수 없음

훈련 세트 정확도: 0.9996 검증 세트 정확도: 0.9997 분석 기법

#### max\_depth = 10 (min 단위)

RandomForest Classifier

훈련 세트 정확도: 0.9984

- XGBoost Classifer
  - → max\_depth 설정할 수 없음

#### Standardscaler

RandomForest Classifier

```
1 df_train = pd.read_csv('./4. 통합 데이터 전처리/
   df_train_v3_1m.csv')
3 # 입력 데이터, 타깃 데이터, 테스트 데이터 설정
4 data = df train.drop(columns=['answer'])
5 target = df_train['answer']
7 # 스케일링
8 scaler = StandardScaler() #<- 스케일링 방식 변경 가능
9 data scaled = scaler.fit transform(data)
   # 스케일링된 데이터로 모델 훈련 데이터 나누기
12 X train, X val, y train, y val = train test split
   (data scaled, target, test size=0.2, random state=123,
   stratify=target)
14 # 모델 객체 생성
15 rf = RandomForestClassifier(n estimators=100,
   max depth=10, n jobs=-1, random state=42) # max depth
17 # 모델 훈련
18 rf.fit(X_train, y_train)
```

훈련 세트 정확도: 0.9987 검증 세트 정확도: 0.9986

#### XGBoost Classifer

```
1 df train = pd.read csv('./4. 통합 데이터 전처리/
   df train v3 1m.csv')
 3 # 입력 데이터, 타깃 데이터, 테스트 데이터 설정
 4 data = df_train.drop(columns=['answer'])
 5 target = df_train['answer']
 7 # 스케일링
 8 scaler = StandardScaler() #<- 스케일링 방식 변경 가능
   data scaled = scaler.fit transform(data)
11 # 스케일링된 데이터로 모델 훈련 데이터 나누기
12 X train, X val, y train, y val = train test split
    (data_scaled, target, test_size=0.2, random_state=123,
   stratify=target)
14 # 모델 객체 생성
15 xgb = XGBClassifier(n estimators=100, max depth=10,
   n jobs=-1, random state=42) # max depth 13으로 바꿈
17 # 모델 훈련
18 xgb.fit(X train, y train)
```

훈련 세트 정확도: 1.0

#### Standardscaler + 시간컬럼제거

RandomForest Classifier

```
1 df_train = pd.read_csv('./4. 통합 데이터 전처리/
   df train v3 1m.csv')
   # 입력 데이터, 타깃 데이터, 테스트 데이터 설정
   data = df_train.drop(columns=['answer', 'year',
    'month', 'day', 'hour', 'min'])
   target = df_train['answer']
 7 # 스케일링
 8 scaler = StandardScaler() #<- 스케일링 방식 변경 가능
   data_scaled = scaler.fit_transform(data)
   # 스케일링된 데이터로 모델 훈련 데이터 나누기
   X_train, X_val, y_train, y_val = train test split
   (data scaled, target, test size=0.2, random state=123,
   stratify=target)
14 # 모델 객체 생성
15 rf = RandomForestClassifier(n estimators=100,
   max depth=10, n jobs=-1, random state=42) # max depth
17 # 모델 훈련
18 rf.fit(X train, y train)
```

훈련 세트 정확도: 0.9720 검증 세트 정확도: 0.9689

#### XGBoost Classifer

```
1 df_train = pd.read_csv('./4. 통합 데이터 전처리/
   df train v3 1m.csv')
   # 입력 데이터, 타깃 데이터, 테스트 데이터 설정
   data = df_train.drop(columns=['answer', 'year',
    'month', 'day', 'hour', 'min'])
   target = df train['answer']
  # 스케일링
 8 scaler = StandardScaler() #<- 스케일링 방식 변경 가능
 9 data scaled = scaler.fit transform(data)
11 # 스케일링된 데이터로 모델 훈련 데이터 나누기
12 X_train, X_val, y_train, y_val = train_test_split
    (data_scaled, target, test_size=0.2, random_state=123,
   stratify=target)
14 # 모델 객체 생성
15 xgb = XGBClassifier(n estimators=100, max depth=10,
   n jobs=-1, random state=42) # max depth 13으로 바꿈
17 # 모델 훈련
18 xgb.fit(X_train, y_train)
```

훈련 세트 정확도: 1.0

#### Standardscaler + 차원축소(PCA)

RandomForest Classifier

```
4 data = df_train.drop(columns=['answer'])
5 target = df_train['answer']
   scaler = StandardScaler() #<- 스케일링 방식 변경 가능
   data scaled = scaler.fit transform(data)
11 # PCA를 사용하여 차원 축소
12 pca = PCA(n components = 10) # 목표 차원 수로 조정
   data pca = pca.fit transform(data scaled)
16 df pca = pd.DataFrame(data pca, columns=['PC1', 'PC2',
   'PC10'])
18 # 축소된 데이터로 모델 훈련 데이터 나누기
19 X train, X val, y train, y val = train test split
   (df pca, target, test size=0.2, random state=123,
   stratify=target)
21 # 모델 객체 생성
22 rf = RandomForestClassifier(n estimators=100,
   max_depth=10, n_jobs=-1, random_state=42) # max_depth
```

훈련 세트 정확도: 0.9317 검증 세트 정확도: 0.9260

#### XGBoost Classifer

```
3 # 입력 데이터, 타깃 데이터, 테스트 데이터 설정
 4 data = df train.drop(columns=['answer'])
 5 target = df_train['answer']
   scaler = StandardScaler() #<- 스케일링 방식 변경 가능
   data scaled = scaler.fit transform(data)
11 # PCA를 사용하여 차원 축소
12 pca = PCA(n components = 10) # 목표 차원 수로 조정
data pca = pca.fit transform(data scaled)
16 df pca = pd.DataFrame(data pca, columns=['PC1', 'PC2',
    'PC3', 'PC4', 'PC5', 'PC6', 'PC7', 'PC8', 'PC9',
    'PC10'])
18 # 축소된 데이터로 모델 훈련 데이터 나누기
19 X_train, X_val, y_train, y_val = train_test_split
   (df pca, target, test size=0.2, random state=123,
    stratify=target)
21 # 모델 객체 생성
22 xgb = XGBClassifier(n_estimators=100, max_depth=10,
   n jobs=-1, random state=42) # max depth 13으로 바꿈
```

훈련 세트 정확도: 0.9999 검증 세트 정확도: 0.9867

닻 끌림 예측 분석

#### Standardscaler + 시간컬럼제거 + 차원축소

RandomForest Classifier

```
data = df train.drop(columns=['answer', 'year',
    'month', 'day', 'hour', 'min'])
   target = df_train['answer']
   # 스케일링
   scaler = StandardScaler() #<- 스케일링 방식 변경 가능
   data scaled = scaler.fit transform(data)
   pca = PCA(n components = 10) # 목표 차원 수로 조정
   data_pca = pca.fit_transform(data_scaled)
16 df pca = pd.DataFrame(data pca, columns=['PC1', 'PC2',
    'PC3', 'PC4', 'PC5', 'PC6', 'PC7', 'PC8', 'PC9',
    'PC10'])
18 # 축소된 데이터로 모델 훈련 데이터 나누기
19 X_train, X_val, y_train, y_val = train_test_split
    (df pca, target, test size=0.2, random state=123,
    stratify=target)
21 # 모델 객체 생성
22 rf = RandomForestClassifier(n estimators=100,
    max_depth=10, n_jobs=-1, random_state=42) # max_depth
   13으로 바꿈
```

훈련 세트 정확도: 0.9521 검증 세트 정확도: 0.9430

#### XGBoost Classifer

```
data = df train.drop(columns=['answer', 'year',
    'month', 'day', 'hour', 'min'])
    target = df_train['answer']
   scaler = StandardScaler() #<- 스케일링 방식 변경 가능
   data_scaled = scaler.fit_transform(data)
   # PCA를 사용하여 차원 축소
   pca = PCA(n_components = 10) # 목표 차원 수로 조정
   data pca = pca.fit transform(data scaled)
16 df_pca = pd.DataFrame(data_pca, columns=['PC1', 'PC2',
    'PC3', 'PC4', 'PC5', 'PC6', 'PC7', 'PC8', 'PC9',
    'PC10'])
18 # 축소된 데이터로 모델 훈련 데이터 나누기
19 X_train, X_val, y_train, y_val = train_test_split
    (df pca, target, test size=0.2, random state=123,
    stratify=target)
21 # 모델 객체 생성
22 xgb = XGBClassifier(n_estimators=100, max_depth=10,
   n jobs=-1, random state=42) # max depth 13으로 바꿈
```

훈련 세트 정확도: 1.0 검증 세트 정확도: 0.9922 분석 기법

#### XGBRF Classifier

• 알고리즘만 사용 (sec 단위)

```
1 df_train = pd.read_csv('./4. 통합 데이터 전처리/
   df_train_v2.csv')
3 # 입력 데이터, 타깃 데이터, 테스트 데이터 설정
4 data = df_train.drop(columns=['answer', 'num'])
5 target = df_train['answer']
7 # 훈련데이터와 검증데이터로 나누기
8 X_train, X_val, y_train, y_val =
   train_test_split(data, target, test_size=0.2,
   random_state=123, stratify=target)
10 # 모델 객체 생성
   xgbrfc = XGBRFClassifier()
13 # 모델 훈련
14 xgbrfc.fit(X_train, y_train)
```

훈련 세트 정확도: 0.9963 검증 세트 정확도: 0.9964 분석 기법

#### XGBRF Classifier

max\_depth = 10 (sec 단위)

```
1 df train = pd.read csv('./4. 통합 데이터 전처리/
  df train v2.csv')
3 # 입력 데이터, 타깃 데이터, 테스트 데이터 설정
4 data = df_train.drop(columns=['answer', 'num'])
5 target = df train['answer']
7 # 훈련데이터와 검증데이터로 나누기
8 X train, X val, y train, y val =
   train test split(data, target, test size=0.2,
   random state=123, stratify=target)
10 # 모델 객체 생성
11 xgbrfc = XGBRFClassifier(max depth=10)
13 # 모델 훈련
14 xgbrfc.fit(X train, y train)
```

훈련 세트 정확도: 0.9999 검증 세트 정확도: 0.9999 • max\_depth = 10 (min 단위)

```
df train = pd.read csv('./4. 통합 데이터 전처리/
   df train v3 1m.csv')
 3 # 입력 데이터, 타깃 데이터, 테스트 데이터 설정
 4 data = df train.drop(columns=['answer'])
 5 target = df_train['answer']
 7 # 훈련데이터와 검증데이터로 나누기
 8 X_train, X_val, y_train, y_val =
   train_test_split(data, target, test_size=0.2,
   random_state=123, stratify=target)
10 # 모델 객체 생성
11 xgbrfc = XGBRFClassifier(n_estimators=100,
   max_depth=10, n_jobs=1)
13 # 모델 훈련
14 xgbrfc.fit(X_train, y_train)
```

훈련 세트 정확도: 0.9989 검증 세트 정확도: 0.9989

#### XGBRF Classifier

Standardscaler

```
3 # 입력 데이터, 타깃 데이터, 테스트 데이터 설정
 4 data = df_train.drop(columns=['answer'])
 5 target = df train['answer']
   scaler = StandardScaler() #<- 스케일링 방식 변경
   data_scaled = scaler.fit_transform(data)
11 # 스케일링된 데이터로 모델 훈련 데이터 나누기
12 X train, X val, y train, y val =
   train_test_split(data_scaled, target,
   test size=0.2, random state=123,
   stratify=target)
15 xgbrfc = XGBRFClassifier(n estimators=100,
   max_depth=10, n_jobs=-1, random_state=42) #
17 # 모델 훈련
18 xgbrfc.fit(X_train, y_train)
```

훈련 세트 정확도: 0.9983 검증 세트 정확도: 0.9980 • Standardscaler + 시간컬럼제거

```
4 data = df_train.drop(columns=['answer', 'year',
    'month', 'day', 'hour', 'min'])
   target = df train['answer']
 7 # 스케일링
 8 scaler = StandardScaler() #<- 스케일링 방식 변경
   data_scaled = scaler.fit_transform(data)
11 # 스케일링된 데이터로 모델 훈련 데이터 나누기
12 X train, X val, y train, y val =
   train test split(data scaled, target,
   test_size=0.2, random_state=123,
   stratify=target)
15 xgbrfc = XGBRFClassifier(n estimators=100,
   max_depth=10, n_jobs=-1, random_state=42) #
18 xgbrfc.fit(X_train, y_train)
```

훈련 세트 정확도: 0.9710 검증 세트 정확도: 0.9675

#### XGBRF Classifier

Standardscaler + 차원축소(PCA)

```
4 data = df train.drop(columns=['answer'])
 5 target = df train['answer']
    # 스케일링
    scaler = StandardScaler() #<- 스케일링 방식 변경 가능
   data scaled = scaler.fit transform(data)
   pca = PCA(n_components = 10) # 목표 차원 수로 조정
   data pca = pca.fit transform(data scaled)
16 df_pca = pd.DataFrame(data_pca, columns=['PC1', 'PC2',
    'PC3', 'PC4', 'PC5', 'PC6', 'PC7', 'PC8', 'PC9',
    'PC10'1)
18 # 축소된 데이터로 모델 훈련 데이터 나누기
19 X_train, X_val, y_train, y_val = train_test_split
    (df_pca, target, test_size=0.2, random_state=123,
    stratify=target)
21 # 모델 객체 생성
22 xgbrfc = XGBRFClassifier(n_estimators=100,
    max_depth=10, n_jobs=-1, random_state=42) # max_depth
25 xgbrfc.fit(X_train, y_train)
```

훈련 세트 정확도: 0.9380 검증 세트 정확도: 0.9327 • Standardscaler + 시간컬럼제거 + 차원축소

```
data = df train.drop(columns=['answer', 'year',
    'month', 'day', 'hour', 'min'])
   target = df train['answer']
   scaler = StandardScaler() #<- 스케일링 방식 변경 가능
    data scaled = scaler.fit transform(data)
11 # PCA를 사용하여 차원 축소
12 pca = PCA(n components = 10) # 목표 차원 수로 조정
data pca = pca.fit transform(data scaled)
16 df pca = pd.DataFrame(data_pca, columns=['PC1', 'PC2',
    'PC3', 'PC4', 'PC5', 'PC6', 'PC7', 'PC8', 'PC9',
    'PC10'])
19 X_train, X_val, y_train, y_val = train_test_split
    (df_pca, target, test_size=0.2, random_state=123,
    stratify=target)
21 # 모델 객체 생성
22 xgbrfc = XGBRFClassifier(n_estimators=100,
    max_depth=10, n_jobs=-1, random_state=42) # max_depth
    13으로 바꿈
```

훈련 세트 정확도: 0.9536 검증 세트 정확도: 0.9465

# 모델별 성능 비교

|                 | RandomForest                           | XGBoost           | XGB RFC                                |
|-----------------|----------------------------------------|-------------------|----------------------------------------|
| 기본              | 훈련 세트 정확도: 1.0                         | 훈련 세트 정확도: 1.0    | 훈련 세트 정확도: 0.9964                      |
|                 | 검증 세트 정확도: 0.9999                      | 검증 세트 정확도: 0.9999 | 검증 세트 정확도: 0.9965                      |
| max_depth = 10  | 훈련 세트 정확도: 0.9996<br>검증 세트 정확도: 0.9997 | X                 | 훈련 세트 정확도: 0.9999<br>검증 세트 정확도: 0.9999 |
| max_depth = 10, | 훈련 세트 정확도: 0.9984                      | X                 | 훈련 세트 정확도: 0.9989                      |
| 1분 단위           | 검증 세트 정확도: 0.9979                      |                   | 검증 세트 정확도: 0.9989                      |
| StandardScaler  | 훈련 세트 정확도: 0.9987                      | 훈련 세트 정확도: 1.0    | 훈련 세트 정확도: 0.9983                      |
|                 | 검증 세트 정확도: 0.9986                      | 검증 세트 정확도: 0.9999 | 검증 세트 정확도: 0.9981                      |
| StandardScaler  | 훈련 세트 정확도: 0.9720                      | 훈련 세트 정확도: 1.0    | 훈련 세트 정확도: 0.9710                      |
| + 시간제거          | 검증 세트 정확도: 0.9689                      | 검증 세트 정확도: 0.9985 | 검증 세트 정확도: 0.9675                      |
| StandardScaler  | 훈련 세트 정확도: 0.9317                      | 훈련 세트 정확도: 0.9999 | 훈련 세트 정확도: 0.9381                      |
| + 차원축소          | 검증 세트 정확도: 0.9260                      | 검증 세트 정확도: 0.9867 | 검증 세트 정확도: 0.9327                      |
| StandardScaler  | 훈련 세트 정확도: 0.9521                      | 훈련 세트 정확도: 1.0    | 훈련 세트 정확도: 0.9536                      |
| + 시간제거 + 차원축소   | 검증 세트 정확도: 0.9430                      | 검증 세트 정확도: 0.9922 | 검증 세트 정확도: 0.9465                      |

# Ensemble 사용

| 모델           | XGB               | LightGBM          | RandomForest      | Extra Trees       | AdaBoost          | XGBRF             |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| (뒤/앞)        | Classifier        | Classifier        | Classifier        | Classifier        | Classifier        | Classifier        |
| XGB          | Х                 | 훈련 세트 정확도: 1.0    | 훈련 세트 정확도: 1.0    | 훈련 세트 정확도: 1.0    | 훈련 세트 정확도: 0.9450 | 훈련 세트 정확도: 0.9723 |
| Classifier   |                   | 검증 세트 정확도: 0.967  | 검증 세트 정확도: 0.9239 | 검증 세트 정확도: 0.9684 | 검증 세트 정확도: 0.9267 | 검증 세트 정확도: 0.9353 |
| LightGBM     | 훈련 세트 정확도: 1.0    | Х                 | 훈련 세트 정확도: 1.0    | 훈련 세트 정확도: 1.0    | 훈련 세트 정확도: 0.9450 | 훈련 세트 정확도: 0.9723 |
| Classifier   | 검증 세트 정확도: 0.9339 |                   | 검증 세트 정확도: 0.9209 | 검증 세트 정확도: 0.9669 | 검증 세트 정확도: 0.9195 | 검증 세트 정확도: 0.9310 |
| RandomForest | 훈련 세트 정확도: 1.0    | 훈련 세트 정확도: 1.0    | Х                 | 훈련 세트 정확도: 1.0    | 훈련 세트 정확도: 0.9396 | 훈련 세트 정확도: 0.9622 |
| Classifier   | 검증 세트 정확도: 0.9239 | 검증 세트 정확도: 0.9209 |                   | 검증 세트 정확도: 0.9181 | 검증 세트 정확도: 0.8678 | 검증 세트 정확도: 0.8865 |
| Extra Trees  | 훈련 세트 정확도: 1.0    | 훈련 세트 정확도: 1.0    | 훈련 세트 정확도: 1.0    | Х                 | 훈련 세트 정확도: 0.9450 | 훈련 세트 정확도: 0.9723 |
| Classifier   | 검증 세트 정확도: 0.9339 | 검증 세트 정확도: 0.967  | 검증 세트 정확도: 0.9181 |                   | 검증 세트 정확도: 0.9167 | 검증 세트 정확도: 0.9282 |
| AdaBoost     | 훈련 세트 정확도: 0.9397 | 훈련 세트 정확도: 0.9450 | 훈련 세트 정확도: 0.9397 | 훈련 세트 정확도: 0.9397 | X                 | 훈련 세트 정확도: 0.8933 |
| Classifier   | 검증 세트 정확도: 0.8807 | 검증 세트 정확도: 0.9195 | 검증 세트 정확도: 0.8678 | 검증 세트 정확도: 0.8807 |                   | 검증 세트 정확도: 0.8707 |
| XGBRF        | 훈련 세트 정확도: 0.9601 | 훈련 세트 정확도: 0.9723 | 훈련 세트 정확도: 0.9622 | 훈련 세트 정확도: 0.9723 | 훈련 세트 정확도: 0.8624 | Х                 |
| Classifier   | 검증 세트 정확도: 0.9023 | 검증 세트 정확도: 0.9310 | 검증 세트 정확도: 0.8864 | 검증 세트 정확도: 0.9281 | 검증 세트 정확도: 0.8348 |                   |

분석 기법

#### 하이퍼파라미터 튜닝 (Hyperparameter Tunning)

```
from sklearn.model selection import RandomizedSearchCV
from scipy.stats import randint, uniform
params = {'n_estimators': randint(50, 300),
    'max depth': randint(3, 10),
    'learning rate': uniform(0.01, 0.3),
    'subsample': uniform(0.5, 0.5),
    'colsample_bynode': uniform(0.5, 0.5),
    'reg_alpha': uniform(0, 1),
    'reg_lambda': uniform(0, 1),
    'min child weight': randint(1, 10),
    'gamma': uniform(0, 1),
    'scale pos weight': uniform(∅, 1)}
gs = RandomizedSearchCV(XGBRFClassifier(random_state=42), params, n_iter=100, n_jobs=-1, random_state=42)
gs.fit(data pca, target)
print(gs.best params )
{'colsample_bynode': 0.6650497566550777, 'gamma': 0.321582764680029, 'learning_rate': 0.03768717586862382, 'max_depth': 9, 'min_child_weigh
t': 9, 'n estimators': 263, 'reg alpha': 0.08175903194887191, 'reg lambda': 0.8735786241067772, 'scale pos weight': 0.9208724005318132, 'su
bsample': 0.5305389799274318}
```

분석 기법

#### 하이퍼파라미터 튜닝 (Hyperparameter Tunning)

```
# 모델 객체 생성

xgbrfc = XGBRFClassifier(colsample_bynode=0.6650497566550777, gamma= 0.321582764680029, learning_rate= 0.03768717586862382, max_depth= 9, min_child_weight= 9, n_estimators= 263, reg_alpha= 0.08175903194887191, reg_lambda= 0.8735786241067772, scale_pos_weight= 0.9208724005318132, subsample= 0.5305389799274318)

# 보발 분단

xgbrfc.fit(X_train, y_train)

# 훈련 세트 정확도 출력

train_pred = xgbrfc.predict(X_train)

train_accuracy = accuracy_score(y_train, train_pred)

print("훈련 세트 정확도 출력

val_pred = xgbrfc.predict(X_val)

val_accuracy = accuracy_score(y_val, val_pred)

print("검증 세트 정확도:", val_accuracy)

/ 154s
```

훈련 세트 정확도: 0.9380 검증 세트 정확도: 0.9327

#6

분석 결과

## 최종 선정 모델

#### **XGBRF Classifier**



| parameter        | parameter description              | value  |
|------------------|------------------------------------|--------|
| n_estimators     | 트리 개수 지정                           | 263    |
| max_depth        | 각 트리의 최대 깊이 지정                     | 9      |
| learning_rate    | 각 트리의 가중치 업데이트에 대한 학습 속도 지정        | 0.038  |
| subsample        | 각 트리를 훈련할 때 사용할 샘플의 비율 지정          | 0.5305 |
| colsample_bynode | 각 분할에서 사용할 피처의 비율 지정               | 0.6650 |
| reg_alpha        | L1 정규화 항에 대한 가중치 지정                | 0.081  |
| reg_lambda       | L2 정규화 항에 대한 가중치 지정                | 0.8736 |
| min_child_weight | 리프 노드를 분할하기 위한 최소 가중치 합 지정         | 9      |
| gamma            | 리프 노드의 손실 감소에 필요한 최소 손실 감소 값<br>지정 | 0.3216 |
| scale_pos_weight | 양성 클래스의 가중치 지정                     | 0.9209 |

#### **Feature Importances**



# 감사합니다