Networked Experiments

Causal Inference

- Randomized Controlled Trial
 - A,B: assumes treatment of i does not affect outcome ofj
 - no inteference
- Experiments our networks
 - knowledge diffusion
 - Aral: networked experiments survey
 - All of these break interference

Potential Outcomes

· Finite population

 $Z = (Z_1, ..., Z_{NV})^T = \{0,4\}^{NV}$ +reatment assignment vector $P_2 = P(Z=2)$ prob. of treatment under experimental design

Oi (2) denote outcome of i under treatment Z.

Assume 0:(7) (mtimous

Evaluate treatment based on abserved O1(2),, ON(2)

fundamental quest: observing outcomes under different tratments

	$Z_i = 0$ $Z_i = 1$	7,=0 Z,=0
1	O1(0) O1(1)	0,(6)
2	02(0) 02(1)	-# O ₂ (1)
Ideal		Real

SUTUA: O1(2)=O1(21) independence to 6+hors

unit loud casual effect (i)-0,(0)

Overage treatment effect TATE = Nw ?; (O:(1)-O:(0))

G: Is it estimable?

Francwork: - define unbiased estimator
- mean variance, CLT

$$\vec{\tau}_{\text{ATE}} = \frac{1}{N_V} \sum_{i=1}^{N_V} \left[\frac{z_i(o_i(i))}{N_V N_V} - \frac{(1-z_i)o_i(o)}{N_C/N_V} \right]$$

- We can get bias + variance forthis - variance not in general estimable

and additional assumptions needed. or construct bounds

In general SUTVA is not appropriate

Network Exposure models

- exposure maps: assume there is somefinite # of exposure K

$$f(z,x_i) = C_k \quad k \in [K]$$

+restrict
Vector

- each potential outcome Oi(1),..., O;(K)
 - -> Assumes only facal with one exposure
 - -> induces prob. dist. over treatment exposure