Supplementary Materials for "COATi: statistical pairwise alignment of protein coding sequences"

Juan J. Garcia Mesa, Ziqi Zhu, Reed A. Cartwright

Table 1: Accuracy of COATi codon-triplet-mg, PRANK, MAFFT, ClustalOmega, and MACSE on 7719 simulated sequence pairs. Perfect alignments have the same score as the true alignment, best alignments have lowest d_{seq} , and imperfect alignments have a different score than the true alignment when at least one method found a perfect alignment.

	tri-mg	MAFFT	PRANK*	MACSE	ClustalOmega
d_{seq}	0.00214	0.01392	0.02001	0.01351	0.02691
Perfect alignments	5722.00000	5408.00000	4706.00000	2860.00000	2937.00000
Best alignments	5152.00000	4833.00000	4748.00000	3754.00000	2595.00000
Imperfect alignments	1066.00000	1380.00000	2082.00000	3928.00000	3851.00000
F1-score pos selection	0.98238	0.86069	0.88445	0.81206	0.70909
F1-score neg selection	0.99822	0.98556	0.98838	0.98282	0.97030

^{*} PRANK produced 50 empty alignments, calculations are based on 7669 alignments.

Table 2: Accuracy of COATi codon-triplet-ecm, PRANK, MAFFT, ClustalOmega, and MACSE on 7678 simulated sequence pairs. Perfect alignments have the same score as the true alignment, best alignments have lowest d_{seq} , and imperfect alignments have a different score than the true alignment when at least one method found a perfect alignment.

	tri-ecm	MAFFT	PRANK*	MACSE	ClustalOmega
d_{seq}	0.00244	0.01462	0.02051	0.01366	0.02838
Perfect alignments	5524.00000	5350.00000	4664.00000	2864.00000	2970.00000
Best alignments	4957.00000	4731.00000	4764.00000	3731.00000	2652.00000
Imperfect alignments	1189.00000	1363.00000	2049.00000	3849.00000	3743.00000
F1-score pos selection	0.97196	0.84955	0.87737	0.80256	0.71317
F1-score neg selection	0.99721	0.98456	0.98792	0.98249	0.97111

^{*} PRANK produced 41 empty alignments, calculations are based on 7637 alignments.

Table 3: Accuracy of COATi codon-marginal-mg, PRANK, MAFFT, ClustalOmega, and MACSE on 7666 simulated sequence pairs. Perfect alignments have the same score as the true alignment, best alignments have lowest d_{seq} , and imperfect alignments have a different score than the true alignment when at least one method found a perfect alignment.

	mar-mg	MAFFT	PRANK*	MACSE	ClustalOmega
d_{seq}	0.00216	0.01564	0.01927	0.01474	0.02968
Perfect alignments	5678.00000	5208.00000	4733.00000	2799.00000	2891.00000
Best alignments	5348.00000	4684.00000	4860.00000	3794.00000	2576.00000
Imperfect alignments	1055.00000	1525.00000	2000.00000	3934.00000	3842.00000
F1-score pos selection	0.98451	0.83737	0.88698	0.79310	0.68648
F1-score neg selection	0.99842	0.98308	0.98858	0.98122	0.96817

^{*} PRANK produced 47 empty alignments, calculations are based on 7619 alignments.

Table 4: Accuracy of COATi codon-marginal-ecm, PRANK, MAFFT, ClustalOmega, and MACSE on 7717 simulated sequence pairs. Perfect alignments have the same score as the true alignment, best alignments have lowest d_{seq} , and imperfect alignments have a different score than the true alignment when at least one method found a perfect alignment.

	mar-ecm	MAFFT	PRANK*	MACSE	ClustalOmega
d_{seq}	0.00234	0.01514	0.01889	0.01428	0.02818
Perfect alignments	5685.00000	5339.00000	4779.00000	2846.00000	2979.00000
Best alignments	5221.00000	4844.00000	4881.00000	3828.00000	2677.00000
Imperfect alignments	1090.00000	1436.00000	1996.00000	3929.00000	3796.00000
F1-score pos selection	0.98053	0.84153	0.89902	0.80370	0.70905
F1-score neg selection	0.99800	0.98339	0.98966	0.98196	0.96990

 $^{^*}$ PRANK produced 40 empty alignments, calculations are based on 7677 alignments.

Figure 1: Comparison of log10-transformed d_{seq} data with pseudocounts between COATi codon-triplet-mg and PRANK, MAFFT, ClustalOmega, and MACSE. COATi was significantly more accurate than other aligners; all p-values were $\leq 2.06e-79$.

Figure 2: Comparison of log10-transformed d_{seq} data with pseudocounts between COATi codon-triplet-ecm and PRANK, MAFFT, ClustalOmega, and MACSE. COATi was significantly more accurate than other aligners; all p-values were $\leq 8.15e-53$.

Figure 3: Comparison of log10-transformed d_{seq} data with pseudocounts between COATi codon-marginal-mg and PRANK, MAFFT, ClustalOmega, and MACSE. COATi was significantly more accurate than other aligners; all p-values were $\leq 2.65e-80$.

Figure 4: Comparison of log10-transformed d_{seq} data with pseudocounts between COATi codon-marginal-ecm and PRANK, MAFFT, ClustalOmega, and MACSE. COATi was significantly more accurate than other aligners; all p-values were $\leq 3.37e-59$.

Figure 5: Base calling error FST. Arcs from M to S generate matches; however, here they can introduce single-nucleotide errors, which can generate stop codon artifacts.

Supplementary Methods

Ks and Ka represent the number of substitutions per synonymous and non-synonymous sites. The ratio of nonsynonymous (Ka) to synonymous (Ks) nucleotide substitution rates indicates the selective pressures acting on genes. If the ratio is significantly greater than 1, it suggests positive selective pressure, meaning that nonsynonymous substitutions occur more frequently than synonymous substitutions. A ratio around 1 can indicate either neutral evolution at the protein level or a mixture of positive and negative selective pressures. If the ratio is less than 1, it indicates a pressure to maintain protein sequence, known as purifying selection. Ks and Ka are calculated using the R package sequin v.4.2-30 (Charif and Lobry 2007).

References

Charif, D., and J. R. Lobry. 2007. "SeqinR 1.0-2: A Contributed Package to the R Project for Statistical Computing Devoted to Biological Sequences Retrieval and Analysis." In *Structural Approaches to Sequence Evolution: Molecules, Networks, Populations*, edited by U. Bastolla, M. Porto, H. E. Roman, and M. Vendruscolo, 207–32. Biological and Medical Physics, Biomedical Engineering. New York: Springer Verlag.