Relations de comparaison

Questions de cours.

- **1.** Donner un équivalent simple en 0 de $\cos x 1$.
- **2.** Donner un équivalent simple en 0 de ln(1+x).
- **3.** Donner un équivalent simple en 0 de $(1+x)^{\alpha}-1$ pour $\alpha \in \mathbb{R}$.

1 Relations de comparaison

Exercice 1.1 (*). Pour $n \in \mathbb{N}$, on pose $u_n = \left(1 + \frac{1}{n^2}\right)^n - 1$. Étudier le comportement asymptotique de $(u_n)_{n \in \mathbb{N}}$.

Exercice 1.2 (*). Soit 1 < a < b. Déterminer les limites des suites définies ci-dessous :

1.
$$u_n = \left(\frac{a^{1/n} + b^{1/n}}{2}\right)^n$$
 2. $u_n = \left(3 \cdot 2^{1/n} - 2 \cdot 3^{1/n}\right)^n$.

Exercice 1.3 (*). Pour $n \in \mathbb{N}^*$, on définit $g_n : x \in \mathbb{R}_+^* \longmapsto nx \ln x - 1$.

- **1.** Pour $n \in \mathbb{N}^*$, montrer qu'il existe un unique $\pi_n \in \mathbb{R}_+^*$ t.q. $g_n(\pi_n) = 0$.
- **2.** La suite $(\pi_n)_{n\in\mathbb{N}^*}$ converge-t-elle? Si oui, quelle est sa limite?
- **3.** On note $\ell = \lim_{n \to +\infty} \pi_n$. Donner un équivalent simple de $(\pi_n \ell)_{n \in \mathbb{N}^*}$.

Exercice 1.4 (*). Pour $n \in \mathbb{N}^*$, on définit $f_n : x \in \mathbb{R}_+ \longmapsto x^{n+1} + x^n + 2x - 1$.

- **1.** Pour $n \in \mathbb{N}^*$, montrer qu'il existe un unique $u_n \in \mathbb{R}_+$ t.q. $f_n(u_n) = 0$.
- **2.** Étudier la suite $(u_n)_{n\in\mathbb{N}^*}$.

Exercice 1.5 (*). Étudier la suite $(z_n)_{n\in\mathbb{N}}$ définie par $z_0\in\mathbb{C}$ et $\forall n\in\mathbb{N},\ z_{n+1}=\frac{1}{2}(z_n+|z_n|)$.

Exercice 1.6 (*). Soit $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et $\forall n\in\mathbb{N},\ u_{n+1}=u_n+\frac{1}{u_n}$.

- **1.** Montrer que $(u_n)_{n\in\mathbb{N}}$ diverge.
- **2.** Montrer que $u_n \sim \sqrt{2n}$.

Exercice 1.7 (Lemme de Hadamard, \star).

- **1.** Soit $(w_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ t.q. $w_{n+1}-w_n\xrightarrow[n\to+\infty]{}\ell\in\overline{\mathbb{R}}$. Démontrer (à l'aide du théorème de Cesàro) que $\frac{w_n}{n}\xrightarrow[n\to+\infty]{}\ell$.
- **2.** On s'intéresse à la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0\in\mathbb{R}_+^*$ et :

$$\forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n}{1 + u_n^2}.$$

- **a.** Étudier la convergence de $(u_n)_{n\in\mathbb{N}}$.
- **b.** Déterminer un réel $\alpha > 0$ t.q. $\left(\frac{1}{u_{n+1}^{\alpha}} \frac{1}{u_n^{\alpha}}\right)_{n \in \mathbb{N}}$ converge.
- **c.** En déduire un équivalent simple de $(u_n)_{n\in\mathbb{N}}$.

Exercice 1.8 (*). On définit une suite $(u_n)_{n\in\mathbb{N}}$ par $u_0\in\mathbb{R}^*_+$ et $\forall n\in\mathbb{N},\ u_{n+1}=\sin u_n$.

- **1.** Montrer que $(u_n)_{n\in\mathbb{N}}$ converge vers une limite que l'on précisera.
- **2.** Trouver un $\gamma \in \mathbb{R}$ t.q. la suite $(u_{n+1}^{\gamma} u_n^{\gamma})_{n \in \mathbb{N}}$ converge.
- **3.** Utiliser le théorème de Cesàro pour en déduire un équivalent de $(u_n)_{n\in\mathbb{N}}$.

Exercice 1.9 (Mines '01, \star).

- **1.** Pour tout $n \in \mathbb{N}$, justifier l'existence d'un unique $x_n \in \mathbb{R}$ t.q. $x_n + e^{x_n} = n$.
- **2.** Déterminer la limite puis un équivalent de $(x_n)_{n\in\mathbb{N}}$.

Exercice 1.10 (*). Soit $f: \mathbb{N}^* \to \mathbb{N}^*$ une bijection. Montrer que si la suite $\left(\frac{f(n)}{n}\right)_{n \in \mathbb{N}^*}$ converge vers $\ell \in \mathbb{R}$, alors $\ell = 1$.

Exercice 1.11 (*). Soit $f: \mathbb{R} \to \mathbb{R}$ vérifiant $f(x) = x - ax^b + o_0(x^b)$, avec $a \in]0, +\infty[$, $b \in]1, +\infty[$. On définit la suite $(u_n)_{n \in \mathbb{N}}$ par $u_0 \in \mathbb{R}_+$ et $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.

- **1.** Montrer qu'il existe un voisinage V de 0 tel que, si $u_0 \in V$, alors $(u_n)_{n \in \mathbb{N}}$ converge.
- **2.** Trouver un équivalent de $(u_n)_{n\in\mathbb{N}}$.

Exercice 1.12 (Mines-Pont '16, \star). Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite réelle vérifiant :

$$\forall n \in \mathbb{N}^*, \ u_{n+1} = \frac{u_n}{n} + \frac{1}{n^2}.$$

Montrer que $u_n \xrightarrow[n \to +\infty]{} 0$ et donner un équivalent de $(u_n)_{n \in \mathbb{N}}$.

Exercice 1.13 (Polytechnique '17, \star). Soit $a \in \mathbb{R}$. On définit une suite $(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ par :

$$u_0 = a$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \tanh u_n.$

Donner la limite, puis un équivalent de $(u_n)_{n\in\mathbb{N}}$.