数学分析 B(下)期末试题(A 卷)

班级	学号	姓名

(本试卷共5页, 九个大题)

题号	_	11	111	四	五	六	七	八	九	总分	
得分											
签名											

- 一. 填空(每小题 4 分, 共 28 分)

此积分的值 $I = _____$.

- 5. 曲线 $y = x^2$ 与直线 y = 1 围成一均匀薄片 D,其面密度 $\mu = 1$,则 D 的质量 m = 2 ______, 质心坐标为______.

7. 设曲线 $L: x^2 + y^2 = R^2$,则 $I = \oint_L (3x^2 + 5y^2 + 2x\cos y + 5\sin y + 4)dl = ______.$

- 二. (8 分) 求曲面 $S: xyz = a^2$ (其中 x, y, z > 0)上点 M(x, y, z) 处的法向量 \vec{n} 以及曲面 S 在点 M 处的切平面与三坐标面所围立体的体积.
- 三. (9 分) 求级数 $\sum_{n=1}^{\infty} n(\frac{x+1}{2})^n$ 的收敛域及和函数.
- 四. (9 分) 设 V 是曲面 $x^2 + y^2 + z^2 = 2z$ $(z \ge 1)$ 与 $z = \sqrt{x^2 + y^2}$ 所围成的有界闭区域,计算积分 $I = \iiint \sqrt{x^2 + y^2 + z^2} dV$.
- 五. (10 分) 设 $f(x,y) = x^2y + y^3 y$, 求 f(x,y) 的极值点和极值.
- 六. (10 分) 已知沿平面任意闭曲线 L, 都有 $\oint_L (2xy + \varphi(y))dx + (x-y)^2 dy = 0$, 且 $\varphi(0) = 1$, 求 $\varphi(y)$ 的表达式及积分 $I = \int_{(0,0)}^{(1,2)} (2xy + \varphi(y))dx + (x-y)^2 dy$ 的值.
- 七. (8 分) 将 $f(x) = \begin{cases} \frac{x^2 + 1}{x} \ln(1 + x^2) & x \neq 0 \\ 0 & x = 0 \end{cases}$ 展成 x 的幂级数, 并指出收敛域.
- 八. (9 分) 设 S 是曲面 $z = \sqrt{x^2 + y^2}$ $(1 \le z \le 2)$ 的下侧,利用高斯公式计算曲面积分 $I = \iint_S x^3 dy dz + y^3 dz dx + (z+1) dx dy.$
- 九. (9 分) 设函数 f(x) 在 x = 0 的某邻域内有二阶导数,且 $\lim_{x \to 0} \frac{f(x)}{x} = a \ (a \ge 0$ 为实数), 判断级数 $\sum_{n=1}^{\infty} (-1)^{n-1} f(\frac{1}{n})$ 的敛散性,若收敛指出是条件收敛还是绝对收敛.