Joint p.m.f for discrete r.v.:

- 1) $f_{X,Y}(x_i,y_j) \geq 0$
- 2) $\sum_{x} \sum_{y} f_{X,Y}(x_i, y_j) = 1$

Joint p.d.f for continuous r.v.:

- 1) $f_{X,Y}(x,y) \ge 0$
- 2) $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$

Marginal Distribution for discrete r.v.:

$$f_X(x) = \sum_y f_{X,Y}(x,y)$$
 and $f_Y(y) = \sum_x f_{X,Y}(x,y)$

Marginal Distribution for continuous r.v.:

$$f_X(x) = \int_y f_{X,Y}(x,y) dy$$
 and $f_Y(y) = \int_y f_{X,Y}(x,y) dx$

Conditional Distribution of *Y* given X = x:

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)},$$
 if $f_X(x) > 0$.

Independent: if x and y are independent,

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$
, for all x and y.