#### Stereo Vision versus Structure from Motion

#### Stereo vision:

is the process of obtaining **depth information** from a pair of images coming from two cameras that look at the same scene from different but **known** positions

#### Structure from Motion:

is the process of obtaining **depth and motion information** from a pair of images coming from the same camera that looks at the same scene from different positions

# **Stereo Vision** | working principle

 Observe scene from two different viewpoints and solve for the intersection of the rays and recover the 3D structure



# Stereo Vision | simplified case

- An ideal, simplified case assumes that both cameras are identical and aligned with the x-axis
- Can we find an expression for the depth  $Z_P$  of point  $P_W$ ?
- From similar triangles:

$$\frac{f}{Z_{P}} = \frac{u_{l}}{X_{P}}$$

$$\frac{f}{Z_{P}} = \frac{-u_{r}}{b - X_{P}}$$

$$Z_{P} = \frac{bf}{u_{l} - u_{r}}$$
Disparity

- Disparity is the difference in image location of the projection of a 3D point in two image planes
- Baseline is the distance between the two cameras



# **Stereo Vision** | general case

- Two identical cameras do not exist in nature!
- Aligning both cameras on a horizontal axis is very difficult
- In order to use a stereo camera, we need to know the intrinsic extrinsic parameters of each camera, that is, the relative pose between the cameras (rotation, translation) ⇒ We can solve for this through camera calibration





# Stereo Vision | general case

- To estimate the 3D position of  $P_W$  we can construct the system of equations of the left and right camera
- Triangulation is the problem of determining the 3D position of a point given a set of corresponding image locations and known camera poses.



#### Correspondence Search | the problem

- Goal: identify corresponding points in the left and right images, which are the reprojection of the same 3D scene point
  - Typical similarity measures: Normalized Cross-Correlation (NCC), Sum of Squared Differences (SSD), Census Transform
  - Exhaustive image search can be computationally very expensive! Can we make the correspondence search in 1D?



# Correspondence Search | the epipolar constraint

- The epipolar plane is defined by the image point p and the optical centers
- Impose the epipolar constraint to aid matching: search for a correspondence along the epipolar line



## Correspondence Search | the epipolar constraint

Thanks to the epipolar constraint, corresponding points can be searched for, along epipolar lines ⇒ computational cost reduced to 1 dimension!





# **Epipolar Rectification**

 Goal: transform the left and right image so that pairs of conjugate epipolar lines become collinear and parallel to one of the image axes (usually the horizontal one)



# **Epipolar Rectification**

First, remove radial distortion





# **Epipolar Rectification**

- First, remove radial distortion
- Then, compute homographies and rectify



#### Stereo Vision | disparity map

- The disparity map holds the disparity value at every pixel:
  - Identify correspondent points of all image pixels in the original images
  - Compute the disparity  $(u_l u_r)$  for each pair of correspondences
- Usually visualized in gray-scale images
- Close objects experience bigger disparity; thus, they appear brighter in disparity map



ULINK GLORISTAN UTCALAZA TAMES COMPANION OF THE PARTY OF

Left image

Right image



**Disparity Map** 

#### Stereo Vision | disparity map

- The disparity map holds the disparity value at every pixel:
  - Identify correspondent points of all image pixels in the original images
  - Compute the disparity  $(u_l u_r)$  for each pair of correspondences
- Usually visualized in gray-scale images
- Close objects experience bigger disparity;
   thus, they appear brighter in disparity map
- From the disparity, we can compute the depth Z as:

$$Z = \frac{bf}{u_l - u_r}$$





