EE5351: CONTROL SYSTEM DESIGN LABORATORY 02

NAME : BANDARA LRTD

REG No. : EG/ 2021/ 4433

GROUP NO: CE07

DATE : 24/01/2025

Table 1: Summative Laboratory Form

Semester	05	
Module Code	EE5351	
Module Name	Control System Design	
Lab Number	02	
Lab Name	Laboratory Section 2	
Lab conduction date	2024.11.05	
Report Submission date	2025.01.24	

Contents

1	OBSERVATION	6
2	CALCULATION	7
3	REFERENCES	12

List of Tables

Table 1: Summative Laboratory Form

Table 2: Observations 6

List of Figures

Figure 1: Simplified Simulink	8
Figure 2: Closed Loop T/f	8
Figure 3: O/p diagram	Ģ
Figure 4:output from closed loop transfer function	Ģ
Figure 5:Time domain response of the closed loop function	11
Figure 6: Design a PD Controller	11
Figure 7: Overshoot is reduced by 30%	11

1 OBSERVATION

Table 1: Observations

Terminal Resistance (R _m)	8.4	Ω
Rotor inductance (L _m)	1.16	mH
Equivalent(J _{en})	2.09×10 ⁻⁵	kgm²
Torque constant (K _t)	0.042	Nm/A
Voltage constant (K _m)	0.042	Nm/A

2 CALCULATION

Q1.

i.

1. Voltage equation:

$$V_m = i_m R_m + L_m \frac{di_m}{dt} + e_b$$

2. Back EMF equation:

$$e_b = k_m \omega_m$$

3. Torque equation:

$$T_m = J_e q \frac{d\omega_m}{dt}$$

4. Motor torque relationship:

$$T_m = i_m k_t$$

ii. Transfer function

By using equations (1), (2), (3), and (4):

$$\frac{\theta_m(s)}{V_m(s)} = \frac{k_t}{s\{J_{eq}s[R_m + L_m s] + k_m k_t\}}$$

$$\frac{\theta_m(s)}{V_m(s)} = \frac{0.042}{2.4244 \times 10^{-8}s^3 + 17.556 \times 10^{-5}s^2 + 1.764 \times 10^{-3}s}$$

Due to the negligible rotor inductance the simplified version is:-

$$\frac{\theta_m(s)}{V_m(s)} = \frac{k_t}{s\{J_{eq}sR_m + k_mk_t\}}$$
$$\frac{\theta_m(s)}{V_m(s)} = \frac{0.042}{1.756 \times 10^{-4}S^2 + 1.764 \times 10^{-3}S}$$

Figure 1: Simplified Simulink

iv. By considering the closed loop transfer function

$$\frac{\theta_m(s)}{\theta_{ref}(s)} = \frac{\frac{\theta_m(s)}{V_m(s)}}{1 + \frac{\theta_m(s)}{V_m(s)}}$$

$$\frac{\theta_m(s)}{\theta_{ref}(s)} = \frac{0.042}{1.756 \times 10^{-4} S^2 + 1.764 \times 10^{-3} S + 0.042}$$

v.

Figure 2: Closed Loop T/f

Figure 3: O/p diagram

Overshoot given as
$$=$$
 $\frac{1.33-1}{1} \times 100\%$ $=$ 33%

Q2.

i. Characteristic equation given as:

$$S^2 + 10.047S + 239.23 = 0$$

ii. By considering;

$$2\epsilon\omega$$
 = 10.047
 ω_n^2 = 239.23
 ϵ = 0.3248
 ω_n = 15.47rad/s

Overshoot =
$$e^{\frac{\pi \epsilon}{\sqrt{1-\epsilon^2}}} \times 100\%$$

Figure 4:output from closed loop transfer function

$$= e^{-\frac{\pi \times 15.47}{\sqrt{1-15.47^2}}} \times 100\%$$

= 33.99%

iii.
$$\frac{33.99 \times 70}{100} = e^{-\frac{\pi \epsilon}{\sqrt{1-\epsilon^2}}} \times 100\%$$

$$\varepsilon_{new} = 0.415$$

$$\frac{t_p}{\frac{\pi}{\omega_{n(new)}\sqrt{1-\varepsilon_{(new)}^2}}} < 2$$

According to that to maintain $t_p <$

The PD characteristics equation is given as

$$S^2 + 2\left(\varepsilon_{old} + \frac{k_d\omega_{n(new)}}{2}\right)\omega_{n(new)}S + \sqrt{k_p}\omega_{n(old)}{}^1 = 0$$

Considering that $\omega_{n(new)}$ can replace by $\sqrt{k_p}\omega_{n(old)}^{-1}$.

From that given as:
$$\frac{\pi}{\sqrt{k_p}\omega_{n(old)^1}\sqrt{1-\varepsilon_{(new)^2}}} < 2$$

$$k_p > 0.01762$$

From that k_p can consider as 1.

According to that

$$\varepsilon_{new} = \left(\varepsilon_{old} + \frac{k_d \omega_n}{2}\right)$$

$$0.415 = \left(0.325 + \frac{k_d 15.47}{2}\right)$$

$$k_d = 0.011635$$

I.

Figure 5:Time domain response of the closed loop function

II. The overshoot is given by: $\frac{1.3622-0.9725}{0.9725} \times 100\%$:40.0717%

III.

Figure 6: Design a PD Controller

Figure 7: Overshoot is reduced by 30%

3 REFERENCES

- [1] M. H. Center. [Online]. Available: https://www.mathworks.com/help/slcontrol/ug/create-i-pd-and-pi-d-controllers.html.
- [2] MEDIUM. [Online]. Available: https://medium.com/@mmwong920/a-brief-introductino-to-pd-controller-bac79c4f3fef.
- [3] GREEKFOGGREEK. [Online]. Available: https://www.geeksforgeeks.org/compensators/.