Chapter 2

Combinational Logic Circuits

Chapter Overview

- 2-1 Binary Logic and Gates
- 2-2 Boolean Algebra
- 2-3 Standard Forms
- 2-4 Two-Level Circuit Optimization
- 2-5 Map Manipulation
- 補充資料:Quine-McCluskey Method
- 2-6 Multiple-Level Circuit Optimization
- 2-7 Other Gate Types
- 2-8 Exclusive-OR Operator and Gates
- 2-9 High-Impedance Outputs
- 2-10 Chapter Summary

2-1 Binary Logic and Gates

Digital circuits:

- hardware components that manipulate binary information
- are implemented using transistors and interconnections in integrated circuits.

Logic gate:

basic ckt that performs a specific logical op

A. Binary Logic

Binary logic:

- deals w/ binary variables and the ops of mathematical logic applied to these variables.
 - > binary variable: variable that take on two discrete values
- resembles binary arithmetic, but should no be confused w/ each other.

Basic Logic Operations

Basic logical ops: p.31, Table 2-1

AND					OR	NOT		
X	Υ	$Z = X \cdot Y$	х	Υ	Z = X + Y	Х	$Z = \overline{X}$	
0	0	0	0	0	0	0	1	
0	1	0	0	1	1	1	0	
1	0	0	1	0	1			
1	1	1	1	1	1			

- **AND**: •, \wedge
 - > identical to binary multiplication
- **OR**: + , \vee
 - resemble binary addition
 In binary logic, 1 + 1 = 1In binary arithmetic: 1 + 1 = 10
- NOT: complement; -, '

Truth Table

Truth table:

- a table of combinations of the binary variables showing the relationship b/t the values that the variables take on and the values of the result of the op.
- -2^n rows, n: # variables
- E.g.: truth table for AND op

AND					
X	Υ	Z = X·Y			
0 0 1 1	0 1 0 1	0 0 0 1			

B. Logic Gates

Logic gate:

- is an electronic ckt that operate on one or more input signals to produce an output signal.
- The input terminals of logic gates accept binary signals within the allowable range and respond at the output terminals w/ binary signals that fall within a specified range.

Graphic symbols of 3 basic logic gates:

Timing diagram:

Multiple-input logic gates:

- AND and OR gates may have ≥ 2 inputs.
- _ E.g.:

2-2 Boolean Algebra

Boolean algebra:

- is an algebra dealing w/ binary variables and logic ops
 - > binary variables: are designated by letters of the alphabet
 - > logic ops: AND, OR, NOT

Boolean expression:

an algebraic expression formed by using binary variables,
the constants 0 and 1,
the logic op symbols, and parentheses.

Boolean Function

- Boolean function:
 - can be described by
 - a Boolean equation,
 - a truth table, or
 - a logic ckt diagram
 - Single-output Boolean function
 - Multiple-output Boolean function

Boolean Equation

Boolean equation:

- consists of a binary variable identifying the function followed by an equal sign and a Boolean expression.
- expresses the logical relationship b/t binary variables
- can be expressed in a variety of ways
 - * Obtain a simpler expression for the same function.

- E.g.:
$$F(X,Y,Z) = X + \overline{Y}Z$$
terms

Truth table for a function: is unique

a list of all combinations of 1's and 0's that can be assigned to the binary variables and a list that shows the value of the function for each binary combination.

- E.g.: $F(X,Y,Z) = X + \overline{Y}Z$

X	Υ	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	O	0	1
1	O	1	1
1	1	0	1
1	1	1	1

Logic circuit diagram:

- An algebraic expression for a Boolean function
 - ⇒ A ckt diagram composed of logic gates
- Circuit gates are interconnected by wires that carry logic signals.
- E.g.: $F(X,Y,Z) = X + \overline{Y}Z$

Combinational logic circuits

Example

Present a set of requirements under which an insurance policy will be issued:

The applicant must be

- 1. a married female 25 years old or over, or
- 2. a female under 25, or
- 3. a married male under 25 who has not been involved in a car accident, or
- 4. a married male who has been involved in a car accident, or
- 5. a married male 25 years or over who has not been involved in a car accident.

<Ans.>

- \triangleright Define variables: 4; w, x, y, z
 - w = 1 if applicant has been involved in a car accident
 - x = 1 if applicant is married
 - y = 1 if applicant is a male
 - z = 1 if applicant is under 25
- > Find a Boolean expression which assumes the value 1 whenever the policy should be issued:
- x y' z' 1. a married female 25 years old or over
- v' z 2. a female under 25
- w' x y z 3. a married male under 25 who has not been involved in a car accident
- $\mathbf{w} \mathbf{x} \mathbf{y}$ 4. a married male who has been involved in a car accident
- w' x y z' 5. a married male 25 years or over who has not been involved in a car accident

$$\Rightarrow F = x y' z' + y' z + w' x y z + w x y + w' x y z'$$

4

> Simplify the expression and suggest a simpler set of requirements:

$$F = x y' z' + y' z + w' x y z + w x y + w' x y z'$$

= $x + y' z$

w = 1 if applicant has been involved in a car accident

x = 1 if applicant is married

y = 1 if applicant is a male

z = 1 if applicant is under 25

The applicant must be

- 1. married or
- 2. a female under 25.

A. Basic Identities of Boolean Algebra

Basic identities of Boolean Algebra:

− *X*, *Y*, *Z*: binary variable

1.
$$X+0=X$$

3.
$$X+1=1$$

$$5. X + X = X$$

7.
$$X + \overline{X} = 1$$

9.
$$\overline{\overline{X}} = X$$

10.
$$X + Y = Y + X$$

12.
$$X + (Y + Z) = (X + Y) + Z$$

$$14. X(Y+Z) = XY+XZ$$

16.
$$\overline{X} + \overline{Y} = \overline{X} \cdot \overline{Y}$$

$$2. X \cdot 1 = X$$

4.
$$X \cdot 0 = 0$$

6.
$$X \cdot X = X$$

8.
$$X \cdot \overline{X} = 0$$

11.
$$XY = YX$$

13.
$$X(YZ) = (XY)Z$$

15.
$$X + YZ = (X + Y)(X + Z)$$

17.
$$\overline{X} \cdot \overline{Y} = \overline{X} + \overline{Y}$$

Duality Principle

Dual:

- The dual of an algebraic expression is obtained by interchanging OR and AND ops and replacing 1's by 0's and 0's by 1's $(OR \leftrightarrow AND, 0 \leftrightarrow 1)$
- E.g.: $X + 0 \xrightarrow{dual} X \cdot 1$

Duality principle:

- A Boolean equation remains valid
 if we take the dual of the expressions on both sides of the equals sign.
- _ E.g.:

1.
$$X + 0 = X$$

2.
$$X \cdot 1 = X$$

Verification of Identities

Verification of an identity:

by truth table or verified identities

$$- E.g.: X + 0 = X X = 0, X + 0 = 0 + 0 = 0 X = 1, X + 0 = 1 + 0 = 1$$

$$X = X + 0 = 0 0 + 0 = 0 1 + 0 = 1$$

E.g.: DeMorgan's theorem

$$(X + Y)' = X' \cdot Y'$$

A)	X	Υ	X + Y	$\sqrt{\mathbf{X} + \mathbf{Y}}$	B)	X	Υ	X	Ÿ	$\int \mathbf{\overline{X} \cdot \overline{Y}}$
	0	0	0	1		0	0	1	1	1
	0	1	1	0		0	1	1	0	0
	1	0	1	0		1	0	0	1	0
	1	1	1	$\setminus 0$		1	1	0	0	$\setminus 0$

General DeMorgan's Theorem

DeMorgan's theorem:

$$\frac{\overline{X+Y} = \overline{X} \cdot \overline{Y}}{\overline{X \cdot Y} = \overline{X} + \overline{Y}}$$

General DeMorgan's theorem:

$$\overline{X_1 + X_2 + \dots + X_n} = \overline{X}_1 \cdot \overline{X}_2 \cdot \dots \cdot \overline{X}_n$$

$$\overline{X_1 \cdot X_2 \cdot \dots \cdot X_n} = \overline{X}_1 + \overline{X}_2 + \dots + \overline{X}_n$$

B. Algebraic Manipulation

Simplification of Boolean functions:

 Boolean algebra is a useful tool for simplifying digital ckts.

1.
$$X+0=X$$
 2. $X\cdot 1=X$

 3. $X+1=1$
 4. $X\cdot 0=0$

 5. $X+X=X$
 6. $X\cdot X=X$

 7. $X+\overline{X}=1$
 8. $X\cdot \overline{X}=0$

 9. $\overline{X}=X$
 11. $XY=YX$ Commutative

 12. $X+(Y+Z)=(X+Y)+Z$
 13. $X(YZ)=(XY)Z$ Associative

 14. $X(Y+Z)=XY+XZ$
 15. $X+YZ=(X+Y)(X+Z)$ Distributive

 16. $\overline{X+Y}=\overline{X}\cdot \overline{Y}$
 17. $\overline{X\cdot Y}=\overline{X}+\overline{Y}$
 DeMorgan's

J.J. Shann 2-23

0

Implementing Boolean Equations

- When a Boolean equation is implemented w/ logic gates:
 - each term requires a gate
 - each variable within the term designates an input to the gate
 - > *literal*: a single variable within a term that may or may not be complemented

- E.g.:
$$F = \overline{X}YZ + \overline{X}Y\overline{Z} + XZ$$
 ... 3 terms & 8 literals $F = \overline{X}Y + XZ$... 2 terms & 4 literals

* Reduce # of terms, # of literals, or both in a Boolean expression \Rightarrow is often possible to obtain a simpler ckt

Reducing Expressions by Boolean Algebra

- Boolean algebra may be applied to reduce an expression for obtaining a simpler ckt:
 - Computer tools for synthesizing logic ckt
 - Manual method: cut-and-try
 - _ E.g.s:

1.
$$X + XY = X(1+Y) = X$$

2.
$$XY + X\overline{Y} = X(Y + \overline{Y}) = X$$

3.
$$X + \overline{X}Y = (X + \overline{X})(X + Y) = X + Y$$

J dual

4.
$$X(X + Y) = X + XY = X$$

5.
$$(X + Y)(X + \overline{Y}) = X + Y\overline{Y} = X$$

6.
$$X(\overline{X} + Y) = X\overline{X} + XY = XY$$

1.	X+0=X	2.	$X \cdot 1 = X$
3.	X+1 = 1	4.	$X \cdot 0 = 0$
5.	X + X = X	6.	$X \cdot X = X$
	$X + \overline{X} = 1$	8.	$X \cdot \overline{X} = 0$
9.	$\overline{\overline{X}} = X$		
10.	X + Y = Y + X	11.	XY = YX
12.	X + (Y + Z) = (X + Y) + Z	13.	X(YZ) = (XY)Z
14.	X(Y+Z) = XY + XZ	15.	X + YZ = (X + Y)(X + Z)
16.	$\overline{X + Y} = \overline{X} \cdot \overline{Y}$	17.	$\overline{X \cdot Y} = \overline{X} + \overline{Y}$

J.J. Shann 2-25

Consensus Theorem

$$xy + x'z + yz = xy + x'z$$

$$(x + y) (x' + z) (y + z) = (x + y) (x' + z)$$

$$xy + x'z + yz = xy + x'z + yz(x + x')$$

$$= xy + x'z + xyz + x'yz$$

$$= xy + xyz + x'z + x'yz$$

$$= xy (1 + z) + x'z (1 + y)$$

$$= xy + x'z$$

- can be used to eliminate redundant terms from Boolean expressions.
- * Venn diagram

4

■ E.g.: Simplify the expression (p.2-15)

$$F = x y' z' + y' z + w' x y z + w x y + w' x y z'$$

$$= x + y' z$$

C. Complement of a Function

- Complement of a function F:
 - interchange of 1's to 0's and 0's to 1's for the values of F in the truth table
 - can be derived algebraically by applying DeMorgan's theorem ⇒ interchange AND and OR ops and complement each variable and constant
 - take the dual of the function equation and complement each literal

Examples

- Complementing functions by applying DeMorgan's theorem:
 - _ E.g.s:

$$F_{1} = \overline{X}Y\overline{Z} + \overline{X}\overline{Y}Z \qquad \overline{F}_{1} = (\overline{X}Y\overline{Z} + \overline{X}\overline{Y}Z)'$$

$$= (\overline{X}Y\overline{Z})' \cdot (\overline{X}\overline{Y}Z)'$$

$$= (X + \overline{Y} + Z) \cdot (X + Y + \overline{Z})$$

$$\begin{split} F_2 &= X(\overline{YZ} + YZ) \qquad \overline{F}_2 = (X(\overline{YZ} + YZ))' \\ &= \overline{X} + (\overline{YZ} + YZ)' \\ &= \overline{X} + (\overline{YZ})' \cdot (YZ)' \\ &= \overline{X} + (Y + Z) \cdot (\overline{Y} + \overline{Z})_{\text{. Shann 2-29}} \end{split}$$

4

Complementing functions by using duals:

_ E.g.s:

dual of
$$F_1 \Rightarrow (\overline{X} + \overline{Y} + \overline{Z}) \cdot (\overline{X} + \overline{Y} + Z)$$

complement each literal $\Rightarrow (X + \overline{Y} + Z) \cdot (X + Y + \overline{Z})$
 $= \overline{F_1}$
 $F_2 = X(\overline{YZ} + YZ)$
dual of $F_2 \Rightarrow X + (\overline{Y} + \overline{Z}) \cdot (Y + Z)$
complement each literal $\Rightarrow \overline{X} + (Y + Z) \cdot (\overline{Y} + \overline{Z})$
 $= \overline{F_2}$

J.J. Shann 2-30

2-3 Standard Forms

Standard forms:

- Contain product terms & sum terms
- Two types:
 - > sum-of-products form
 - > product-of-sums form

Product term:

- a logical product consisting of an AND op among literals
- − E.g.: XY'Z

Sum terms

- a logical sum consisting of an OR op among literals
- _ E.g.: X+Y+Z '

A. Minterms and Maxterms

- Minterm: m_i
 - a product term in which all the variables appear exactly once, either complemented or uncomplemented
 - represents exactly one combination of the binary variables in a truth table
 - has the value 1 for that combination and 0 for all others
 - There are 2^n distinct minterms for n variables.
 - Symbol: $m_{\rm j}$,
 - > *j*: denotes the decimal equivalent of the binary combination for which the minterm has the value 1
 - E.g.: Minterms for 3 variables

E.g.: Minterms for 3 variables

Х	Υ	Z	Product Term	Symbol	m₀	m₁	m ₂	m ₃	m₄	m₅	m ₆	m ₇
0	0	0	$\overline{X}\overline{Y}\overline{Z}$	m_0	1	0	0	0	0	0	0	0
0	0	1	$\overline{X}\overline{Y}Z$	m_1	0	1	0	0	0	0	0	0
0	1	0	$\overline{X}Y\overline{Z}$	m_2	0	0	1	0	0	0	0	0
0	1	1	$\overline{X}YZ$	m_3	0	0	0	1	0	0	0	0
1	0	0	$X\overline{Y}\overline{Z}$	m_4	0	0	0	0	1	0	0	0
1	0	1	$X\overline{Y}Z$	m_5	0	0	0	0	0	1	0	0
1	1	0	$XY\overline{Z}$	m_6	0	0	0	0	0	0	1	0
1	1	1	XYZ	m ₇	0	0	0	0	0	0	0	1

Maxterms

- Maxterm: M_i
 - a sum term that contains all the variables in complemented or uncomplemented form
 - represents exactly one combination of the binary variables in a truth table
 - has the value 0 for that combination and 1 for all others
 - There are 2^n distinct maxterms for n variables.
 - Symbol: M_i ,
 - > *j*: denotes the decimal equivalent of the binary combination for which the maxterm has the value 0
 - E.g.: Maxterms for 3 variables

E.g.: Maxterms for 3 variables

X	Υ	Z	Sum Term	Symbol	Mo	M ₁	M_2	Мз	M_4	M ₅	M_6	M_7
0	0	0	X+Y+Z	M_0	0	1	1	1	1	1	1	1
0	0	1	$X+Y+\overline{Z}$	M_1	1	0	1	1	1	1	1	1
0	1	0	$X + \overline{Y} + Z$	M_2	1	1	0	1	1	1	1	1
0	1	1	$X + \overline{Y} + \overline{Z}$	M_3	1	1	1	0	1	1	1	1
1	0	0	$\overline{X} + Y + Z$	M_4	1	1	1	1	0	1	1	1
1	0	1	$\overline{X} + Y + \overline{Z}$	M_5	1	1	1	1	1	0	1	1
1	1	0	$\overline{X} + \overline{Y} + Z$	M_6	1	1	1	1	1	1	0	1
1	1	1	$\overline{X} + \overline{Y} + \overline{Z}$	M_7	1	1	1	1	1	1	1	0

Minterms vs. Maxterms

- A minterm = a function, not equal to 0, having the min # of 1's in its truth table
- A maxterm = a function, not equal to 1, having the max # of 1's in its truth table

•
$$M_j = (m_j)'$$

- E.g.:

For 3 variables &

For 3 variables & j = 3

$$m_3 = \overline{X}YZ$$

Χ	Υ	Z	Product Term	Symbol	Sum Term	Symbol
0	0	0	$\overline{X}\overline{Y}\overline{Z}$	m_0	X+Y+Z	M_0
0	0	1	$\overline{X}\overline{Y}Z$	m_1	$X+Y+\overline{Z}$	M_1
0	1	0	$\overline{X}Y\overline{Z}$	m_2	$X + \overline{Y} + Z$	M_2
0	1	1	$\overline{X}YZ$	m_3	$X + \overline{Y} + \overline{Z}$	M_3
1	0	0	$X\overline{Y}\overline{Z}$	m_4	$\overline{X} + Y + Z$	M_4
1	0	1	$X\overline{Y}Z$	m_5	$\overline{X} + Y + \overline{Z}$	M_5
1	1	0	$XY\overline{Z}$	m_6	$\overline{X} + \overline{Y} + Z$	M_6
1	1	1	XYZ	m_7	$\overline{X} + \overline{Y} + \overline{Z}$	M_7

$$\overline{m}_3 = \overline{X}YZ = X + \overline{Y} + \overline{Z} = M$$
 3

Representing Boolean Function by m_j 's or M_j 's

- Given the truth table of a function
 - ⇒ a Boolean function in sum of minterms or in product of maxterms
 - Sum of minterms:
 - > a logical sum of all the minterms that produce a 1 in the function.
 - Product of maxterms:
 - > a logical product of all the maxterms that produce a 0 in the function.

• E.g.: Represent F and F' in sum-of-minterms form

Χ	Υ	Z	F	F
0	0	0	1	0
0	O	1	0	1
0	1	0	1	0
0	1	1	0	1
1	0	0	0	1
1	O	1	1	0
1	1	0	0	1
1	1	1	1	0

$$F = XYZ + XYZ + XYZ + XYZ$$

$$= m_0 + m_2 + m_5 + m_7$$

$$= \sum m(0,2,5,7)$$

$$= \log \operatorname{ical sum (Boolean OR)}$$
of the minterms
$$\overline{F} = \overline{X}\overline{Y}Z + \overline{X}YZ + X\overline{Y}\overline{Z} + XY\overline{Z}$$

$$= m_1 + m_3 + m_4 + m_6$$

$$= \sum m(1,3,4,6)$$

4

■ E.g.: Represent *F* in product-of-maxterms form

	X	Υ	Z	F	F
$\overline{F}(X,Y,Z) = \sum m(1,3,4,6)$	0	0	0	1	0
	0	O	1	0	1
$F = m_1 + m_3 + m_4 + m_6$	0	1	0	1	0
1 - 1101 1103 1104 1100	0	1	1	0	1
	1	O	0	0	1
$= m_1 \cdot m_3 \cdot m_4 \cdot m_6$	1	0	1	1	0
	1	1	0	0	1
$= M_1 \cdot M_3 \cdot M_4 \cdot M_6 (:: m_j = M_j)$	1	1	1	1	0
$= (X + Y + \overline{Z})(X + \overline{Y} + \overline{Z})(\overline{X} + Y + \overline{Z})(\overline{X} + \overline{X} + \overline{Z})($	+Z	(\overline{X})	$+\overline{Y}$ +	Z)	
$=\prod M(1,3,4,6)$					

logical product (Boolean AND) of the maxterms

Conversion to Sum-of-minterms Form

Conversion:

- by means of truth table or Boolean algebra
- E.g.:Convert $E = \overline{Y} + \overline{X}\overline{Z}$ to sum-of-minterms form
 - Method 1: by truth table

$$E = \overline{Y} + \overline{X}\overline{Z}$$

$$\downarrow \text{truth table}$$

E	E	Z	Υ	Χ
1	1	0	0	0
1	1	1	0	0
$\Rightarrow = \sum m(0,1,2,4,5)$	1	O	1	0
	0	1	1	0
1	1	0	0	1
1	1	1	0	1
0	0	0	1	1
0 J.J. Sha	0	1	1	1
0 J.J. Sha	0	1	1	

4

- E.g.:Convert E = Y + XZ to sum-of-minterms form
 - Method 2: by Boolean algebra

$$E = \overline{Y} + \overline{X}\overline{Z}$$

$$= \overline{Y}(X + \overline{X})(Z + \overline{Z}) + \overline{X}\overline{Z}(Y + \overline{Y})$$

$$= X\overline{Y}Z + X\overline{Y}Z + \overline{X}\overline{Y}Z + \overline{X}\overline{Y}Z + \overline{X}\overline{Y}Z + \overline{X}\overline{Y}Z$$

$$= \overline{X}\overline{Y}Z + + \overline{X}\overline{Y}Z + \overline{X}\overline{Y}Z + X\overline{Y}Z + X\overline{Y}Z$$

$$= \sum m(0,1,2,4,5)$$

Summary of the Properties of Minterms

- There are 2^n minterms for n Boolean variables.
 - These minterms can be evaluated from the binary numbers from 0 to $2^n 1$.
- Any Boolean function can be expressed as a logical sum of minterms.
- The complement of a function contains those minterms not included in the original function.
- A function that includes all the 2^n minterms is equal to logic 1.
 - E.g.: $G(X, Y) = \Sigma m(0,1,2,3) = 1$

B. Sum of Products (SoP)

Sum-of-products form:

- a standard form that contains product terms w/ any number of literals. These AND terms are ORing together.
- _ E.g.: F(X,Y,Z) = Y + XYZ + XY

Sum-of-minterms form:

- is a special case of SoP form
- is obtained directly from a truth table
- contains the max # of literals in each term and usually has more product terms than necessary
- ⇒ simplify the expression to reduce the # of product terms and the # of literals in the terms
- ⇒ a simplified expression in *sum-of-products* form

Logic Diagram for an SoP form

- Logic diagram for an SoP form:
 - consists of a group of AND gates followed by a single OR gate. \Rightarrow 2-level implementation or 2-level ckt
 - ➤ Assumption: The input variables are directly available in their complemented and uncomplemented forms. (⇒ Inverters are not included in the diagram)

- E.g.:
$$F = \overline{Y} + \overline{X}Y\overline{Z} + XY$$

$$\overline{Y}$$

$$\overline{X}$$

$$Y$$

$$X$$

$$Y$$

C. Product of Sums (PoS)

Product-of-sums form:

- a logical product of sum terms & each logical sum term may have any # of distinct literals.
 - \Rightarrow 2-level gating structure
- Special case: Product-of-maxterms form

- E.g.:
$$F = X \cdot (\overline{Y} + Z) \cdot (X + Y + \overline{Z})$$

D. Nonstandard Form

Nonstandard form:

$$-$$
 E.g.: $F = AB + C(D + E)$ → 3-level

■ Nonstandard form → Standard form:

By using the distributive laws

- E.g.:
$$F = AB + C(D + E)$$

= $AB + CD + DE \rightarrow 2$ -level

2-4 Two-Level Circuit Optimization

- Representation of a Boolean function:
 - Truth table: unique
 - Algebraic expression: many different forms
 - ⇒ digital logic circuit
- Minimization of Boolean function:
 - Algebraic manipulation: literal minimization (§2-2)
 - > use the rules and laws of Boolean algebra
 - > Disadv.: It lacks specific rules to predict each succeeding step in the manipulation process.
 - Map method: gate-level minimization (§2-4~2-5)
 - ➤ a simple straightforward procedure using *Karnaugh map* (*K-map*)
 - > Disadv.: Maps for more than 4 variables are not simple to use.
 - Tabular method: Quine-McCluskey method (補充資料)
 - * The simplest algebraic expression: not unique

A. Cost Criteria

- Two cost criteria:
 - i. Literal cost
 - > the # of literal appearances in a Boolean expression
 - ii. Gate input cost (✓)
 - > the # of inputs to the gates in the implementation

Literal Cost

Literal cost:

- the # of literal appearances in a Boolean expression
- E.g.: $F = AB + C(D + E) \rightarrow 5$ literals $F = AB + CD + CE \rightarrow 6$ literals
- Adv.: is very simple to evaluate by counting literal appearances
- Disadv.: does not represent ckt complexity accurately in all cases
 - > E.g.:

$$G = ABCD + \overline{ABCD} \rightarrow 8 \text{ literals}$$

 $G = (\overline{A} + B)(\overline{B} + C)(\overline{C} + D)(\overline{D} + A) \rightarrow 8 \text{ literals}$

Gate Input Cost

Gate input cost:

- the # of inputs to the gates in the implementation
- For SoP or PoS eqs, the gate input cost can be found by the sum of
 - > all literal appearances
 - > the # of terms excluding terms that consist only of a single literal
 - the # of distinct complemented single literals (optional)
- E.g.: p.2-46 $G = ABCD + \overline{ABCD} \longrightarrow 8 + 2 (+ 4) \text{ gate input counts}$ $G = (\overline{A} + B)(\overline{B} + C)(\overline{C} + D)(\overline{D} + A) \longrightarrow 8 + 4 (+ 4)$
- is a good measure for contemporary logic implementation
 - is proportional to the # of transistors and wires used in implementing a logic ckt. (especially for ckt \geq 2 levels)

B. The Map Method

- Map method: Karnaugh map simplification
 - a simple straightforward procedure
 - K-map: a pictorial form of a truth table
 - » a diagram made up of squares
 - > Each square represents one minterm of the function.
 - The simplified expressions produced by the map are always in one of the two standard forms:
 - > SOP (sum of products) or POS (product of sums)

(a) Two-Variable Map

Two-variable map:

- _ 4 squares, one for each minterm.
- A function of 2 variables can be represented in the map by marking the squares that correspond to the minterms of the function.

		X	0	1	
\mathbf{m}_0	\mathbf{m}_1	0	$\overline{X}\overline{Y}$	$\overline{X}Y$	
m_2	m_3	1	$X\overline{Y}$	XY	
(8	a)		(b)		

Example

• E.g.:

$$\begin{array}{c|cccc}
Y \\
X & 0 & 1 \\
0 & & 1 \\
1 & 1 & 1 \\
\hline
 & 1$$

$$<$$
Ans $> F_1 = m_3 = XY$

$$F_{2} = m_{1} + m_{2} + m_{3}$$

$$= \overline{XY} + X\overline{Y} + XY$$

$$= \overline{XY} + X(\overline{Y} + Y)$$

$$= \overline{XY} + X$$

$$= (\overline{X} + X)(Y + X)$$

by combining

J.J. Shann 2-53

by applying Boolean algebra

1

(b) Three-Variable Map

■ Three-variable map: $8 \text{ minterms} \Rightarrow 8 \text{ squares}$

m_0	m_1	m_3	m_2
m_4	m ₅	m ₇	m_6

ΥZ			Y		
X	00	01	11	10	
0	$\overline{X}\overline{Y}\overline{Z}$	$\overline{X}\overline{Y}Z$	$\overline{X}YZ$	$\overline{X}Y\overline{Z}$	
X[1]	$X\overline{Y}\overline{Z}$	$X\overline{Y}Z$	XYZ	$XY\overline{Z}$	
			Z	!	

Only one bit changes in value from one adjacent column to the next

- > Any two adjacent squares in the map differ by only one variable, which is primed in one square and unprimed in the other.
- > E.g.: m₅ & m₇
- Note: Each square has 3 adjacent squares.
 - > The right & left edges touch each other to form adjacent squares.
 - > E.g.: $m_4 \to m_0, m_5, m_6$

Map Minimization of SOP Expression

Basic property of adjacent squares:

- Any two adjacent squares in the map differ by only one variable: primed in one square and unprimed in the other
 - E.g.: $m_5 = XYZ$, $m_7 = XYZ$
- ⇒ Any two minterms in adjacent squares that are ORed together can be simplified to a single AND term w/ a removal of the different variable.

E.g.:
$$m_5 + m_7 = X\overline{Y}Z + XYZ = XZ(\overline{Y} + Y) = XZ$$

J.J. Shann 2-55

Procedure of map minimization of SOP expression:

- i. A 1 is marked in each minterm that represents the function.
 - Two ways:
 - (1) Convert each minterm to a binary number and then mark a 1 in the corresponding square.
 - (2) Obtain the coincidence of the variables in each term.
- ii. Find possible adjacent 2^k squares:
 - \gt 2 adjacent squares (i.e., minterms) \rightarrow remove 1 literal
 - \rightarrow 4 adjacent squares (i.e., minterms) \rightarrow remove 2 literal
 - \rightarrow 2^k adjacent squares (i.e., minterms) \rightarrow remove k literal
 - ⇒ The larger the # of squares combined, the less the # of literals in the product (AND) term.
 - * It is possible to use the same square more than once.

Example 2-3

Example 2-3: Simplify the Boolean function $F(X, Y, Z) = \Sigma m(2,3,4,5)$

<Ans.>

$$F = \overline{X}Y + X\overline{Y}$$

4-minterm Product terms

Product terms using 4 minterms:

- E.g.:
$$F(X, Y, Z) = \Sigma m(0,2,4,6)$$

$$m_0 + m_2 + m_4 + m_6 = \overline{X}\overline{Y}\overline{Z} + \overline{X}Y\overline{Z} + X\overline{Y}\overline{Z} + XY\overline{Z}$$

$$= \overline{X}\overline{Z}(\overline{Y} + Y) + X\overline{Z}(\overline{Y} + Y)$$

$$= \overline{X}\overline{Z} + X\overline{Z} = \overline{Z}(\overline{X} + X) = \overline{Z}$$

- E.g.: $F(X, Y, Z) = \Sigma m(0,1,2,3,6,7)$

Example 2-4

■ Example 2-4: Simplify the Boolean function

$$F_1(X,Y,Z) = \sum m(3,4,6,7)$$

$$F_2(X,Y,Z) = \sum m(0,2,4,5,6)$$

<Ans.>

Non-unique Optimized Expressions

There may be alternative ways of combining squares to product equally optimized expressions:

- E.g.:
$$F(X,Y,Z) = \sum m(1,3,4,5,6)$$

$$F(X,Y,Z) = \sum m(1,3,4,5,6)$$

$$= \overline{X}Z + X\overline{Z} + X\overline{Y}$$

$$= \overline{X}Z + X\overline{Z} + \overline{Y}Z$$

Simplifying Functions not Expressed as Sumof-minterms Form

- If a function is not expressed as a sum of minterms:
 - use the map to obtain the minterms of the function & then simplify the function
 - E.g.: Given the Boolean function $F = \overline{X}Z + \overline{X}Y + X\overline{Y}Z + YZ$

<Ans.>

$$F = \overline{X}Z + \overline{X}Y + X\overline{Y}Z + YZ$$

$$1, 3 \quad 2, 3 \quad 5 \quad 3, 7$$

$$= \sum m(1, 2, 3, 5, 7)$$

$$= Z + \overline{X}Y$$

(c) Four-Variable Map

Four-variable map: $16 \text{ minterms} \Rightarrow 16 \text{ squares}$

m_0	m_1	m_3	m_2
m_4	m_5	m ₇	m_6
m ₁₂	m ₁₃	m ₁₅	m ₁₄
m_8	m ₉	m ₁₁	m ₁₀

- Note: Each square has 4 adjacent squares.
 - > The map is considered to lie on a surface w/ the top and bottom edges, as well as the right and left edges, touching each other to form adjacent squares.
 - > E.g.: $m_8 \rightarrow m_0, m_9, m_{10}, m_{12}$

Example 2-5

Simplify the Boolean function

$$F(W, X, Y, Z) = \Sigma(0,1,2,4,5,6,8,9,12,13,14)$$

Example 2-6

Simplify the Boolean function

$$F = \overline{ABC} + \overline{BCD} + A\overline{BC} + \overline{ABCD}$$

<Ans.>

$$F = BD + BC + ACD$$

J.J. Shann 2-65

(d) Five-Variable Map (補充資料)

■ Five-variable map: $32 \text{ minterms} \Rightarrow 32 \text{ squares}$

Each square has 5 adjacent squares.

Alternatives: Five-variable map

	A = 0							
	,	DE		i	D			
i	BC	00	01	11	10			
	00	0	1	3	2			
	01	4	5	7	6	$ _{c}$		
В	11	12	13	15	14			
D.	10	8	9	11	10]		
				-	,			

		A = 1						
		DE D						
i	BC	0.0	01	11	10	•		
	00	16	17	19	18			
	01	20	21	23	22	$\Big]\Big]_c$		
В	11	28	29	31	30			
ъ	10	24	25	27	26]		
		,		3	•			

- Each square has 5 adjacent squares.
 - > Consider the two half maps as being one on top of the other.
 - > Any 2 squares that fall one over the other are considered adjacent.
 - > E.g.: $m_8 \rightarrow m_0, m_9, m_{10}, m_{12}, m_{24}$
- Six-variable map: 64 minterms \Rightarrow 64 squares_{Shann 2-67}

Example

Simplify the Boolean function

$$F(A,B,C,D,E) = \Sigma(0,2,4,6,9,13,21,23,25,29,31)$$

<Ans.>

		A = 1					
		DE		1	D		
i	ВС	0.0	01	11	10	•	
	00						
	01		1	1		$\Big \Big _{c}$	
В	11		1	1			
D	10		1]	
				3	•		

$$F = A'B'E' + BD'E + ACE$$

- Relationship b/t the # of adjacent squares and the # of literals in the term:
 - Any 2^k adjacent squares, for k = 0, 1, ..., n, in an n-variable map, will represent an area that gives a term of n k literals.

	Number of Adjacent Squares	Number of Literals in a Term in an <i>n</i> -variable Map					
K	2^k	n = 2	n = 3	n = 4	n = 5		
0	1	2	3	4	5		
1	2	1	2	3	4		
2	4	O	1	2	3		
3	8		0	1	2		
4	16			0	1		
5	32				0		

- Maps for more than 4 variables are not as simple to use:
 - Employ computer programs specifically written to facilitate the simplification of Boolean functions w/ a large # of variables.

⇒ 補充 Quine-McCluskey Method (p.7-87~7-99)

2-5 Map Manipulation

- When choosing adjacent squares in a map:
 - Ensure that all the minterms of the function are covered when combining the squares.
 - Minimize the # of terms in the expression.
 - avoid any redundant terms whose minterms are already covered by other terms

A. Essential Prime Implicants

Implicant:

 A product term is an implicant of a function if the function has the value 1 for all minterms of the product term.

Prime implicant: PI

a product term obtained by combining the max. possible #
 of adjacent squares in the map

• Essential prime implicant: EPI, must be included

- If a minterm in a square is covered by only one PI, that PI is said to be essential.
 - Look at each square marked w/ a 1 and check the # of PIs that cover it.

Example: p.2-57

■ Find the PIs and EPIs of the Boolean function

$$F(X, Y, Z) = \Sigma m(1,3,4,5,6)$$

<Ans.>

$$F(X,Y,Z) = \sum m(1,3,4,5,6)$$

$$= \overline{X}Z + X\overline{Z} + X\overline{Y}$$

$$= \overline{X}Z + X\overline{Z} + \overline{Y}Z$$

4 PIs: $\overline{X}Z$, $X\overline{Z}$, $X\overline{Y}$, $\overline{Y}Z$

2 EPIs: \overline{XZ} (m_3) , $X\overline{Z}$ (m_6)

J.J. Shann 2-73

Example

Find the PIs and EPIs of the Boolean function $F(A,B,C,D) = \Sigma(0,2,3,5,7,8,9,10,11,13,15)$

<Ans.>

6 PIs: BD, B'D',

CD, B'C,

AD, AB'

2 EPIs: BD (m5), B'D' (m0)

Example (Cont')

Find the PIs and EPIs of the Boolean function

$$F(A,B,C,D) = \Sigma(0,2,3,5,7,8,9,10,11,13,15)$$

<Ans.>

(a) Essential prime implicants BD and B'D'

6 PIs: BD, B'D', CD, B'C, AD, AB'

2 EPIs: BD (m₅), B'D' (m₀)

(b) Prime implicants CD, B'C AD, and AB'

- Procedure for finding the simplified expression from the map: (SoP form)
 - i. Determine all PIs.
 - ii. The simplified expression is obtained from the logical sum of all the EPIs plus other PIs that may be needed to cover any remaining minterms not covered by the EPIs.
 - There may be more than one expression that satisfied the simplification criteria.

Example 2-7

Simplify the Boolean function

$$F(A,B,C,D) = \Sigma(1,3,4,5,6,7,12,14)$$

Example 2-8

Simplify the Boolean function

$$F(A,B,C,D) = \Sigma(0,5,10,11,12,13,15)$$

EPIs:
$$\overline{ABCD}$$
 $AB\overline{CD}$
 $AB\overline{CD}$

 \Rightarrow Combine PIs that contains m₁₅

$$\Rightarrow F = \overline{ABCD} + B\overline{CD} + AB\overline{C} + A\overline{BC} + AB\overline{C} + AB\overline$$

J.J. Shann 2-78

Selection Rule of Nonessential PIs

- Selection rule of Nonessential PIs:
 - Minimize the overlap among PIs as much as possible.
 - Make sure that each PI selected includes at least 1 minterm not included in any other PI selected.
 - > It results in a simplified, although not necessarily minimum cost, SoP expression.

Example 2-9

<Ans.>

Simplify the Boolean function

$$F(A,B,C,D) = \Sigma m(0,1,2,4,5,10,11,13,15)$$

EPI: \overline{AC} (m₁, m₄)

F(A,B,C,D) $= \overline{AC} + ABD + A\overline{BC} + \overline{ABD}$ $1 \qquad 2 \qquad 3$

Example: p.2-74

Simplify the Boolean function

 $F(A,B,C,D) = \Sigma(0,2,3,5,7,8,9,10,11,13,15)$

<Ans.>

6 PIs: BD, B'D', CD,

B'C, AD, AB'

2 EPIs: BD, B'D'

(a) Essential prime implicants BD and B'D'

(b) Prime implicants CD, B'C AD, and AB'

EPIs: BD, B'D' \rightarrow m₀,m₂, m₅, m₇, m₈, m₁₀, m₁₃, m₁₅

 \Rightarrow Combine PIs that contains m_3, m_9, m_{11} (CD, B'C, AD, AB')

$$\Rightarrow$$
 F = BD +B'D' + CD + AD

$$= BD + B'D' + CD + AB'$$

$$= BD + B'D' + B'C + AD$$

$$= BD + B'D' + B'C + AB'$$

C. Product-of-Sums (PoS) Optimization

Approach 1:

- Simplified F' in the form of sum of products
- Apply DeMorgan's theorem F = (F')'

F': sum of products \Rightarrow F: product of sums

Approach 2:

- combinations of the maxterms of F
 - i. A 0 is marked in each maxterm that represents the function.
 - ii. Find possible adjacent 2^k squares and realize each set as a sum (OR) term, w/ variables being complemented.

$$- E.g.: AB 00 01 11 10$$

$$- M_0 M_1 = (A+B+C+D)(A+B+C+D') 01 M_4 M_5 M_7 M_6$$

$$= (A+B+C)+(DD') 11 M_8 M_9 M_{11} M_{10}$$

J.J. Shann 2-82

Example 3-8

Simplify the Boolean function in (a) SoP and (b)

PoS:
$$F(A,B,C,D) = \Sigma m(0,1,2,5,8,9,10)$$

<Ans.>

(a)
$$F = B'D' + B'C' + A'C'D$$

(b) Approach 1:

$$\overline{F} = AB + CD + B\overline{D}$$

$$F = (\overline{F})' = (\overline{A} + \overline{B})(\overline{C} + \overline{D})(\overline{B} + D)$$

Approach 2:

Think in terms of maxterms

Gate implementation:

(a)
$$F = B'D' + B'C' + A'C'D$$

- (b) $F = (\overline{A} + \overline{B})(\overline{C} + \overline{D})(\overline{B} + D)$
- The implementation of a function in a standard form is said to be a two-level implementation.
 - Assumption: The input variables are directly available in their complement ⇒ Inverters are not needed.
- Determine which form will be best for a function.

D. Don't-Care Conditions

Don't care condition:

- the unspecified minterms of a function
- is represented by an ★
- E.g.: A 4-bit decimal code has 6 combinations which are not used.

Incompletely specified function:

- has unspecified outputs for some input combinations
- Simplification of an incompletely specified function:
 - When choosing adjacent squares to simplify the function in the map, the x's may be assumed to be either 0 or 1, whichever gives the simplest expression.
 - An × need not be used at all if it does not contribute to covering a larger area.

Example 2-11

Simplify the Boolean function $F(w,x,y,z) = \Sigma m(1,3,7,11,15)$ which has the don't-care conditions $d(w,x,y,z) = \Sigma m(0,2,5)$.

<Ans.>

* The outputs in a particular implementation of the function are only 0's and 1's.

(a) SOP:
$$F(w,x,y,z) = yz + w'x' = \Sigma m(0,1,2,3,7,11,15)$$

 $F(w,x,y,z) = yz + w'z = \Sigma m(1,3,5,7,11,15)$

(b) POS: $F(w,x,y,z) = z(w'+y) = \Sigma m(1,3,5,7,11,15)$ Shann 2-86

補充資料:

Quine-McCluskey Method &

CAD Tools for Simplification

A. Quine-McCluskey Method (for SOP)

Tabular method to systematically find all PIs

Stage 1: Find all prime implicants

Step 1: Fill Column 1 with minterm and don't-care condition indices. Group by number of 1's.

Step 2: Apply Uniting Theorem (xy + xy' = x)

Compare elements of group w/ N 1's against those w/ N+1 1's.

Differ by one bit implies adjacent.

Eliminate variable and place in next column.

When used in a combination, mark with a check.

If cannot be combined, mark with a star.

These are the prime implicants (PI).

Stage 2: Find the minimum cover (SOP)

Stage 1: Finding All Prime Implicants (1/4)

 $F(A,B,C,D) = \Sigma m(4,5,6,8,9,10,13) + \Sigma d(0,7,15)$

Stage 1: Find all prime implicants

Step 1: Fill Column 1 with minterm and don't-care condition indices. Group by number of 1's.

Implication Table					
Column 1					
0	0000				
4	0100				
8	1000				
5	0101				
6	0110				
9	1001				
10	1010				
7	0111				
13	1101				
15	1111	LL Cham 2.90			

J.J. Shann 2-89

Stage 1: Finding All Prime Implicants (2/4)

Step 1: Fill Column 1 with minterm and don't-care condition indices. Group by number of 1's.

Step 2: Apply Uniting Theorem
Compare elements of group w/
N 1's against those w/N+1 1's.
Differ by one bit implies adjacent.
Eliminate variable and place in next column.

E.g., 0000 vs. 0100 yields 0-00 0000 vs. 1000 yields -000

When used in a combination, mark with a check.
If cannot be combined, mark w/ a star (i.e., PI).

Implication Table				
Column 1	Column 2			
0000 √ 0100 √	0-00 -000			
1000 √	010- 01-0			
$egin{array}{c} 0101\ \\ 0110\ \\ 1001 \end{array}$	100- 10-0			
1010 √	01-1 -101			
0111 √ 1101 √	011- 1-01			
1111 √	-111 11-1			

Repeat until no further combinations can be made.

Stage 1: Finding All Prime Implicants (3/4)

Step 1: Fill Column 1 with minterm and don't-care condition indices. Group by number of 1's.

Step 2: Apply Uniting Theorem
Compare elements of group w/
N 1's against those w/N+1 1's.
Differ by one bit implies adjacent.
Eliminate variable and place in next column.

E.g., 0000 vs. 0100 yields 0-00 0000 vs. 1000 yields -000

When used in a combination, mark with a check.
If cannot be combined, mark w/ a star (i.e., PI).

Implication Table						
Column 1	Column 2	Column 3				
0000 √	0-00 * -000 *	01*				
$0100 \sqrt{1000}$	010- √	-1-1 *				
$0101 \sqrt[4]{0110 }$	01-0 √ 100- *					
$egin{array}{c c} 0110 \ 1001 \ 1010 \ \hline \end{array}$	10-0 * 01-1 √	-				
0111 √	$-101 \sqrt{011}$					
1101 √ 1111 √	1-01 * -111 √	-				
1111 /	-111 √ 11-1 √					

Repeat until no further combinations can be made.

Implication Table							
Column 1	Column 2	Column 3					
0000 √	0-00 * -000 *	01 *					
1000 √	010- √ 01-0 √	-1-1					
0101 √ 0110 √	100- * 10-0 *						
1001 1010 √	01-1 √	-					
0111 √ 1101 √	-101 √ 011- √ 1-01 *						
1101 √	-111 √	-					
	11-1 √						

Prime Implicants:

$$0-00 = A' C' D'$$
 $01--= A' B$

$$-000 = B' C' D'$$
 $-1-1 = B D$

$$100 - = A B' C'$$

$$10-0 = A B' D'$$

$$1-01 = A C' D$$

Find all PIs by using K-map:

$$F(A,B,C,D) = \Sigma m(4,5,6,8,9,10,13) + \Sigma d(0,7,15)$$

Prime Implicants:

$$0-00 = A' C' D'$$
 $01--= A' B$
 $-000 = B' C' D'$ $-1-1 = B D$
 $100-= A B' C'$

$$10-0 = A B' D'$$

$$1-01 = A C' D$$

Stage 2: Finding the Minimum Cover

Stage 2: Find smallest set of prime implicants that cover the minterms.

Recall that essential prime implicants must be in all covers. Another tabular method \rightarrow the prime implicant chart

Prime Implicants:

$$0-00 = A' C' D'$$

$$01 - - = A' B$$

$$-000 = B' C' D'$$

$$-1-1 = B D$$

$$100 - = A B' C'$$

$$10-0 = A B' D'$$

$$1-01 = A C' D$$

rows = prime implicants
columns = minterms only
(don't-care conditions are not
 included)

Place an "X" if minterm is covered by the PI.

Prime Implicants:

$$F(A,B,C,D) = \Sigma m(4,5,6,8,9,10,13) + \Sigma d(0,7,15)$$

(a) Initial prime implicant chart

If column has a single X, then the PI associated w/ the row is essential. (EPI)

It must appear in minimum cover.

(b) Essential prime implicants

Eliminate all columns covered by **EPI**.

Find minimum set of rows that cover the remaining columns

$$|\mathbf{F} = \mathbf{A} \mathbf{B'} \mathbf{D'} + \mathbf{A} \mathbf{C'} \mathbf{D} + \mathbf{A'} \mathbf{B}|$$

B. CAD Tools for Simplification

ESPRESSO Method

Problem with Quine-McCluskey:

the # of prime implicants grows rapidly with the # of inputs

Upper bound: $3^n/n$, where *n* is the number of inputs

Finding a minimum cover is NP-complete, i.e., a computational expensive process not likely to yield to any efficient algorithm.

Espresso: trades solution speed for minimality of answer don't generate *all* prime implicants (Quine-McCluskey Stage 1) judiciously select a subset of primes that still covers the ON-set operates in a fashion not unlike a human finding primes in a K-map

Espresso Inputs and Outputs

$$F(A,B,C,D) = \Sigma m(4,5,6,8,9,10,13) + d(0,7,15)$$

Espresso Input		Espresso Output		
.i 4	# inputs	.i 4		
. 0 1	# outputs	. 0 1		
.ilb a b c d	input names	.ilb	a b c	d
.ob f	output name	.ob	f	_
.p 10	number of product terms	.p 3	•	
0100 1	A'BC'D'	$\bar{1}$ -0		
0101 1	A'BC'D	10-	0 1	
0110 1	A'BCD'	01-	- 1	
1000 1	AB'C'D'	.e		-
1001 1	AB'C'D			
1010 1	AB'CD'			
1101 1	ABC'D			
0000 -	A'B'C'D' don't care			
0111 -	A'BCD don't care		\	
1111 -	ABCD don't care	$\mathbf{F} = \mathbf{A} \ \mathbf{C}'$	$\mathbf{D} + \mathbf{D}$	$\mathbf{A} \mathbf{B'} \mathbf{D'} + \mathbf{A'} \mathbf{B}$
.e	end of list			

2-6 Multiple-Level Circuit Optimization

- 2-level ckt optimization:
 - can reduce the cost of combinational logic ckts
- Multi-level ckts:
 - ckts w/ more than 2 levels
 - There are often additional cost saving available

Example

• E.g.: G = ABC + ABD + E + ACF + ADF<Ans.>

2-level implementation: gate-input cost = 17

Multi-level implementation: distributive law

$$G = ABC + ABD + E + ACF + ADF \rightarrow 17$$

$$= AB(C+D) + E + AF(C+D) \rightarrow 13$$

$$= (AB + AF)(C+D) + E \rightarrow 11$$

$$= A(B+F)(C+D) + E \rightarrow 9$$

Gate input count (GIC)

$$G = ABC + ABD + E + ACF + ADF$$

$$G = AB(C+D) + E + A(C+D)F$$

$$G = A(B+F)(C+D) + E$$

- Multiple-level ckt optimization (simplification):
 - is based on the use of a set of transformations that are applied in conjunction w/ cost evaluation to find a good, but not necessarily optimum solution.

for

Multilevel Optimization Transformations

Transformations:

— Factoring:

> is finding a factored form from either a SoP or PoS expression for a function

– Decomposition: **GIC** ↓

> is the expression of a function as a set of new functions

– Extraction:

> is the expression of multiple functions as a set of new functions

Substitution of a function G into a function F:

> is expressing F as a function of G and some or all of the original variables of F

for delay

Elimination: flattening or collapsing

- > is the inverse of substitution
- > function G in an expression for function F is replaced by the expression for G

J.J. Shann 2-105

Example 2-12

■ E.g. 2-12: Multilevel optimization transformations $G = \overline{ACE} + \overline{ACF} + \overline{ADE} + \overline{ADF} + \overline{BCDEF}$ $H = \overline{ABCD} + \overline{ABE} + \overline{ABF} + \overline{BCE} + \overline{BCF}$

GIC Ans.>
$$G = \overline{ACE} + \overline{ACF} + \overline{ADE} + \overline{ADF} + BCD\overline{EF}$$

$$= A(\overline{CE} + \overline{CF} + \overline{DE} + \overline{DF}) + BCD\overline{EF}$$

$$= A(\overline{C}(E+F) + \overline{D}(E+F)) + BCD\overline{EF}$$

$$= A(\overline{C} + \overline{D})(E+F) + BCD\overline{EF}$$

$$= A(\overline{C} + \overline{D})X_2 + BX_1\overline{EF}$$

$$= A(\overline{C} + \overline{D})X_2 + BX_1\overline{EF}$$

$$= A(\overline{X}_1X_2 + BX_1\overline{X}_2)$$

$$= A(\overline{X}_1X_1 + AX_1\overline{X}_2)$$

$$= A(\overline{X}_1X_1 + AX_1\overline{X}_1 + AX_1$$

$$G = A\overline{X}_1 X_2 + BX_1 \overline{X}_2$$

$$X_1 = CD$$

$$X_2 = E + F$$

(Cont'd)

$$H = ABCD + ABE + ABF + BCE + BCF$$

$$=B(\overline{ACD} + AE + AF + CE + CF)$$

$$=B(\overline{ACD}+A(E+F)+C(E+F))$$

$$= B(\overline{A}(CD) + (A+C)(E+F))$$

$$\Rightarrow$$
 extraction of G & H: $X_1 = CD$

$$X_2 = E + F$$

$$X_3 = A + C$$

$$\Rightarrow$$
 substitution: $G = A\overline{X}_1X_2 + BX_1\overline{X}_2$

$$H = B(\overline{A}X_1 + X_3X_2)$$

$$G = A\overline{C}E + A\overline{C}F + A\overline{D}E + A\overline{D}F + BCD\overline{E}F$$

$$H = \overline{A}BCD + ABE + ABF + BCE + BCF$$

$$GIC = 48$$

$$G = A\overline{X}_{1}X_{2} + BX_{1}\overline{X}_{2}$$

$$H = B(\overline{A}X_{1} + X_{3}X_{2})$$

$$X_{1} = CD$$

$$X_{2} = E + F$$

$$X_{3} = A + C$$

GIC = 25 (w/ shared terms) (= 31 w/o shared terms)

Key to successful transformations:

 is the determination of the factors to be used in decomposition or extraction and choice of the transformation sequence to apply

Transformation for Delay Reduction

Path delay:

 the length of time it takes for a change in a signal to propagate down a path through the gates

Critical path:

- the longest path(s) through a ckt
- In a large proportion of designs, the length of the longest path(s) through the ckt is often constrained.
 - \Rightarrow The # of gates in series may need to be reduced.
 - ⇒ Elimination transformation

Elimination transform:

- replaces intermediate variables, Xi, w/ the expressions on their right hand sides or removes other factoring of some variables
 - ⇒ Reduces the # of gates in series
- Determination of factor or combination of factors should be eliminated:
 - > look at the effect of gate input count
 - > The increase in gate input count for the combinations of eliminations that reduce the problem path lengths by at lease one gate are of interest.

Example 2-13

- E.g.: Transformation for delay reduction
 - Assumption: Ignore the delay of NOT gate.

$$G = A\overline{X}_1X_2 + BX_1\overline{X}_2$$

$$H = B(AX_1 + X_3X_2)$$

$$X_1 = CD$$

$$X_2 = E + F$$

$$X_3 = A + C$$

$$GIC = 25$$

$$X_2 = E + F$$

$$X_3 = A + C$$
GIC = 25

<Ans.>

- i. removal of the factor B in H \Rightarrow GIC increases = 0
- ii. removal of the intermediate variables X_1 , X_2 , X_3

$$\Rightarrow$$
 GIC increases = 12 (?)

iii. removal of B, X_1 , X_2 , X_3

 \Rightarrow GIC increases = 12 (?)

$$G = A\overline{X}_{1}X_{2} + BX_{1}\overline{X}_{2}$$

$$H = B\overline{A}X_{1} + BX_{3}X_{2}$$

$$X_{1} = CD$$

$$X_{2} = E + F$$

$$X_{3} = A + C$$

$$G = A\overline{C}E + A\overline{C}F + A\overline{D}E + A\overline{D}F + BCD\overline{E}F$$

$$H = B(\overline{A}CD + AE + AF + CE + CF)$$
26
18

$$G = A\overline{C}E + A\overline{C}F + A\overline{D}E + A\overline{D}F + BCD\overline{E}F$$

$$H = ABCD + ABE + ABF + BCE + BCF$$
26
22

J.J. Shann 2-113

$$G = AX_1X_2 + BX_1\overline{X}_2$$

$$H = B(\overline{A}X_1 + X_3X_2)$$

$$X_1 = CD$$

$$GIC = 25$$

$$X_2 = E + F$$

$$X_3 = A + C$$

Use Eliminate the factor B

$$G = A\overline{X}_1X_2 + BX_1\overline{X}_2$$

$$H = B\overline{A}X_1 + BX_3X_2$$

$$GIC = 25$$

2-7 Other Gate Types

- Basic logic operations: AND, OR, NOT
- All possible functions of *n* binary variables:

n binary variables $\rightarrow 2^n$ distinct minterms

 $\rightarrow 2^{2^n}$ possible functions

■ E.g.: $n = 2 \rightarrow 4$ minterms $\rightarrow 16$ possible functions

Truth Tables for the 16 Functions of Two Binary Variables

<u>x</u>	y	F ₀	<i>F</i> ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1 1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

x	y	Fo	<i>F</i> ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
		0															
0	1	0	0	0	0	1	1	1	3	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1 1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Boolean functions	Operator symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x, but not y
$F_3 = x$	to the second se	Transfer	x'
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$	a Gilliana e e	Transfer	y
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	y'	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If y , then x
$F_{12} = x'$	x'	Complement	Not x
$F_{13} = x' + y$	$x\supset y$	Implication	If x, then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$		Identity	Binary constant 1

2-116

Boolean functions	Operator symbol	Name	Comments
$F_0 = 0$	90 7 3 7 7	Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x, but not y
$F_3 = x$		Transfer	x'
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$	and the state of t	Transfer	y
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	y'	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If y , then x
$F_{12} = x'$	x'	Complement	Not x
$F_{13} = x' + y$	$x\supset y$	Implication	If x, then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$		Identity	Binary constant 1

- The 16 functions can be subdivided into 3 categories:
 - 1. 2 functions that produce a constant 0 or 1.
 - 2. 4 functions w/ unary operations complement (NOT) and transfer.
 - 3. 10 functions w/ binary operators that define eight different operations AND, OR, NAND, NOR, exclusive-OR, equivalence, inhibition, and implication.

Digital Logic Gates

- Boolean expression:
 - AND, OR and NOT operations
 - It is easier to implement a Boolean function in these types of gates.
- Consider the construction of other types of logic gates:
 - the feasibility and economy of implementing the gate w/ electronic components
 - the basic properties of the binary operations
 - > E.g.: commutativity, associativity, ...
 - the ability of the gate to implement Boolean functions alone or in conjunction w/ other gates
 - the convenience of representing gate functions that are frequently used
 J.J. Shann 2-118

Primitive Digital Logic Gates

- AND
- OR
- NOT (inverter)
- Buffer
 - amplify an electrical signal to permit more gates to be attached to the output or to decrease the time it takes for signals to propagate through the ckt
- 3-state Buffer (§2-9)
- NOR
- NAND * NAND or NOR gates alone can implement any Boolean function
 - \Rightarrow are much more widely used than AND and OR gates.

	Graphics Symbol	ols	
Name	Distinctive shape	Algebraic equation	Truth table
AND	х — F	F = XY	X Y F 0 0 0 0 1 0 1 0 0 1 1 1
OR	х _Y F	F = X + Y	X Y F 0 0 0 0 1 1 1 0 1 1 1 1
NOT (inverter)	negatior x—F	indicator $F = \overline{X}$	X F 0 1 1 0
Buffer	x	F = X	X F 0 0 1 1
3-State Buffer	х Е F		E X F 0 0 Hi-Z 0 1 Hi-Z 1 0 0 1 1 1
NAND	х Ү	$F = \overline{X \cdot Y}$	X Y F 0 0 1 0 1 1 1 0 1 1 1 0
NOR	х ү F	$F = \overline{X + Y}$ J.J. SHAIII	XY F 0 0 1 0 1 0 1 0 0 2-11 0

Universal gate:

- a gate type that alone can be used to implement all Boolean functions
- E.g.: NAND gate, NOR gate

Proof of a universal gate:

- Show that the logical ops of AND, OR, and NOT can be obtained w/ the universal gate only.
- E.g.: Show that the NAND gate is a universal gate

4

E.g.: Show that the NAND gate is a universal gate

 E.g.: Simplify the Boolean function and implement it by NAND gates

$$F(X,Y,Z) = \sum m(0,2,4,5,6)$$

<Ans.> NAND gates ← SoP form

Method 2:

Complex Digita	ıl
Logic Gates	N

- Exclusive-OR (§2-8)
- XNOR (§2-8)
- AND-OR-Invert (AOI)
 - the complement of SoP
 - _ E.g.: 2-1 AOI

$$F = \overline{XY + Z}$$

– E.g.: 3-2-2 AOI

$$F = TUV + WX + YZ$$

- OR-AND-Invert (OAI)
 - the dual of AOI
 - the complement of PoS
- AND-OR (AO)
- OR-AND (OA)

	Graphics Symbols		
Name	Distinctive shape symbol	Algebraic equation	Truth table
			ΧΥΙ
Exclusive-OR	x— 1	$F = X\overline{Y} + \overline{X}Y$	0 0

		XΥ	F
x—1	$F = XY + \overline{XY}$	0 0	1
у F	$= \overline{\mathbf{X} \oplus \mathbf{Y}}$	0 1	0
. ,		1 0	0
		1 1	1

Exclusive-NOR (XNOR)

$$F = \overline{(W + X)(Y + Z)}$$

0 1 1

1 0 1 1 1 0

$$F = (W + X)(Y + Z)$$

Adv. of using complex gates:

- reduce the ckt complexity needed for implementing specific Boolean functions in order to reduce integrated ckt (IC) cost
- reduce the time required for signals to propagate through a ckt

2-8 Exclusive-OR Operator and Gates

■ Exclusive-OR: XOR, ⊕

$$X \oplus Y = X\overline{Y} + \overline{X}Y$$

- is equal to 1 if exactly one input variable is equal to 1
- Exclusive-NOR: XNOR, equivalence

$$\overline{X \oplus Y} = XY + \overline{X}\overline{Y}$$

- is equal to 1 if both X and Y are equal to 1 or if both are equal to 0.
- XOR & XNOR are the complement to each other.

$$\overline{X \oplus Y} = \overline{X \overline{Y} + \overline{X} Y} = (\overline{X} + Y)(X + \overline{Y}) = XY + \overline{X} \overline{Y}$$

■ They are particularly useful in arithmetic operations and error-detection and correction ckts.

Properties of XOR

Identities:

$$X \oplus 0 = X$$
 $X \oplus 1 = \overline{X}$
 $X \oplus X = 0$ $X \oplus \overline{X} = 1$
 $X \oplus \overline{Y} = \overline{X \oplus Y}$ $\overline{X} \oplus Y = \overline{X \oplus Y}$

- can be verified by using a truth table or by replacing the op by its equivalent Boolean expression
- Commutativity and associativity:

$$A \oplus B = B \oplus A$$

 $(A \oplus B) \oplus C = A \oplus (B \oplus C) = A \oplus B \oplus C$

⇒ XOR gates w/ three or more inputs

Implementations of XOR function

XOR function is usually constructed w/ other types of gates:

Odd Function

- Multiple-variable XOR operation: odd function
 - equal to 1 if the input variables have an odd # of 1's
 - E.g.: 3-variable XOR

$$X \oplus Y \oplus Z = (X\overline{Y} + \overline{X}Y) \oplus Z$$

$$= (X\overline{Y} + \overline{X}Y)\overline{Z} + (XY + \overline{X}Y)Z$$

$$= X\overline{Y}Z + \overline{X}Y\overline{Z} + \overline{X}YZ + XYZ$$

$$= \sum m(1,2,4,7)$$

YZ			Y			
Χ.	00	01	11	10		
0		1		1		
X 1	1		1			
_			 Z	•		

⇒ is equal to 1 if only one variable is equal to 1 or if all three variables are equal to 1.

(a)
$$X \oplus Y \oplus Z$$

E.g.: 4-variable XOR

$$A \oplus B \oplus C \oplus D = (AB' + A'B) \oplus (CD' + C'D)$$

$$= (AB' + A'B)(CD + C'D') + (AB + A'B')(CD' + C'D)$$

$$= \Sigma(1, 2, 4, 7, 8, 11, 13, 14)$$

■ *n*-variable XOR function: the logical sum of the 2ⁿ/2 minterms whose binary numerical values have an odd # of 1's.

J.J. Shann 2-131

Even Function

- Multiple-variable XNOR op: an even function
 - E.g.: 4-variable XNOR

• n-variable XNOR function: the logical sum of the $2^n/2$ minterms whose binary numerical values have an even # of 1's.

Logic Diagram of Odd & Even Functions

Logic diagram of odd & even functions:

(a) 3-input odd function

(b) 3-input even function

Multiple-input Odd function:

Example

 Simplify the Boolean function and implement it by XOR gates and other gates

$$F(W, X, Y, Z) = \Sigma(1, 4, 7, 8, 13)$$

<Ans.>

$$F = Y'(W \oplus X \oplus Z)$$

$$+ WZ'(X \oplus Y)'$$
or
$$= Y'(W \oplus X \oplus Z)$$

$$+ W'XYZ$$

2-9 High-Impedance Outputs

- Output values of a gate:
 - -0, 1
 - Hi-Z: high-impedance state
 - > behaves as an open ckt, i.e., looking back into the ckt, the output appears to be disconnected
 - * Gates w/ only logic 0 and 1 outputs cannot have their outputs connected together.
 - * Gates w/ Hi-Z output values can have their outputs connected together, provided that no 2 gates drive the line at the same time to opposite 0 and 1 values.
- Structures that provide Hi-Z:
 - 3-state buffers
 - transmission gates

4

Three-State Buffers

3-state buffer:

(a) Logic symbol

(b) Truth table

Multiplexer constructed by 3-state buffers:

− E.g.: 2-to-1 MUX

(a) Logic Diagram

EN1	EN0	IN1	IN0	OL
0	0	Χ	X	Hi-Z
(S) 0	(\overline{S}) 1	Χ	0	0
0	1	X	1	1
1	0	0	X	0
1	0	1	X	1
1	1	0	0	0
1	1	1	1	1
1	1	0	1	~
1	1	1	0	300

(b) Truth table

Transmission Gates

Transmission gate (TG):

-

XOR gate constructed from transmission gates:

$$C = 0, F = A$$
 $C = 1, F = A'$
 $F = AC' + A'C$

2-10 Chapter Summary

- Primitive logic ops: AND, OR, NOT
- Boolean algebra
- Minterm & maxterm standard forms
- SoP and PoS standard forms \Rightarrow 2-level gate ckts
- 2 cost measures for ckt optimization:
 - # of input literals to a ckt
 - total # of inputs to the gates in a ckt

Circuit optimization:

- 2-level ckt optimization
 - > Boolean algebra manipulation
 - K-map
 - > Quine-McCluskey method
- Multi-level ckt optimization

Other logic gates:

- NAND, NOR
- XOR, XNOR

Hi-Z outputs:

- 3-state buffer
- transmission gates

Problems

Sections	Exercises
§2 - 1	
§2 - 2	2-1 ~ 2-9
§2-3	2-10 ~ 2-13
§2-4	2-14 ~ 2-18
§2 - 5	2-19 ~ 2-26
§2 - 6	2-17 ~ 2-29
§2 - 7	2-30
§2-8	2-31
§2 - 9	2-32 ~ 2-35

Homework (1/2)

Part I:

- 1. 2-3 (a)與(c)用 algebraic manipulation來證明
- 2. 2-4 (證明兩個Boolean equations相等)
- 3. 2-6(a) and (d) (化簡Boolean equation)
- 4. 2-11(minterms and maxterms)
- 5. 2-12 (sum-of-products and product-of-sums)
- 6. 找出下列式子的complement (證明DeMorgan's law)

$$(a) x'y' + xy + x'y$$

(b)
$$ab(c'd+cd') + a'b'(c'+d)(c+d')$$

7. 用真值表驗證底下的式子

$$xy + x'y + yz = xy + x'y$$

Homework (2/2)

Part II:

- 1. 使用K-Map化簡 F(a,b,c,d) = b'cd' + abc + a'bc + abc'd -->給定布 林方程式來做化簡
- 2. 2-16(c) -->給定布林方程式來做化簡
- 3. 2-21(a) --> 給定布林方程式(輸入是sum of minterm)來做化簡, PoS form
- 4. 2-22(c) --> 給定布林方程式來做化簡,並轉成SoP and PoS forms
- 5. 2-26(a) --> 給定布林方程式與don't-card conditions來做化簡,並轉成SoP and PoS forms
- 6. 2-27(a) -->decomposition
- 7. 2-29(a) -->elimination
- 8. 2-31 -->使用excusinve-OR與AND,並在最少# of gate inputs的前提下,實做一個布林方程式