Introduction to Statistical Machine Learning Homework 2

Yota Toyama

November 2, 2016

1.

$$R(h_r;q) = \int_{\mathbf{x}} \sum_{c=1}^{C} \sum_{c'=1}^{C} L_{0/1}(c',c)q(c_r = c'|\mathbf{x})p(\mathbf{x},y = c)d\mathbf{x}$$

$$= \int_{\mathbf{x}} R(h_r|\mathbf{x})p(\mathbf{x})d\mathbf{x}$$
where $R(h_r|\mathbf{x}) = \sum_{c=1}^{C} \sum_{c'=1}^{C} L_{0/1}(c',c)q(c_r = c'|\mathbf{x})p(y = c|\mathbf{x})$

$$= \sum_{c=1}^{C} \sum_{c'\neq c}^{C} q(c_r = c'|\mathbf{x})p(y = c|\mathbf{x})$$

$$= \sum_{c=1}^{C} (1 - q(c_r = c|\mathbf{x}))p(y = c|\mathbf{x})$$

$$R(h^*) = \int_{\mathbf{x}} R(h^*|\mathbf{x})p(\mathbf{x})d\mathbf{x}$$
where $R(h^*|\mathbf{x}) = \sum_{c=1}^{C} L_{0/1}(h^*(\mathbf{x}),c)p(y = c|\mathbf{x})$

$$= \sum_{c\neq h^*}^{C} p(y = c|\mathbf{x})$$

$$= 1 - p(y = h^*(\mathbf{x})|\mathbf{x})$$

$$R(h_r|\mathbf{x}) - R(h^*|\mathbf{x}) = \sum_{c=1}^{C} (1 - q(c_r = c|\mathbf{x}))p(y = c|\mathbf{x}) - (1 - p(y = h^*(\mathbf{x})|\mathbf{x}))$$

$$= p(y = h^*(\mathbf{x})|\mathbf{x}) - \sum_{c=1}^{C} q(c_r = c|\mathbf{x})p(y = c|\mathbf{x})$$

$$= \sum_{c=1}^{C} q(c_r = c|\mathbf{x})(p(y = h^*(\mathbf{x})|\mathbf{x}) - p(y = c|\mathbf{x}))$$

$$\geq 0$$

$$\therefore R(h_r|\mathbf{x}) \geq R(h^*|\mathbf{x})$$

$$\therefore R(h_r;q) > R(h^*)$$

2. Let M be the number of augmented data points.

$$\sum_{i=1}^{N+M} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 = \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \lambda \|\mathbf{w}\|^2$$
$$\sum_{i=N+1}^{N+M} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 = \lambda \|\mathbf{w}\|^2$$

Let $y_i = 0$ and $\mathbf{x}_i = [0, a, ..., a]^T$.

$$\sum_{i=N+1}^{N+M} a^2 \|\mathbf{w}\|^2 = \lambda \|\mathbf{w}\|^2$$

$$Ma^2 \|\mathbf{w}\|^2 = \lambda \|\mathbf{w}\|^2$$

$$Ma^2 = \lambda$$

$$\vdots$$

$$\vdots$$

$$y_N$$

$$0$$

$$\vdots$$

$$0$$

$$A'' = \begin{bmatrix} y_1 \\ \vdots \\ 1 & x_{N1} & \cdots & x_{Nd} \\ 0 & a & \vdots & a \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \vdots & \vdots \\ 0$$

s.t. $Ma^2 = \lambda$ (where M is the number of augmented data points)

3.

$$\forall i, j, \log \frac{p(c_i|x)}{p(c_j|x)} = \mathbf{w}_{ij}\mathbf{x}\log p(c_i|\mathbf{x}) - \log p(c_j|\mathbf{x}) \qquad = \mathbf{w}_{ij}\mathbf{x}$$

Let $\log p(c_i|x) = \mathbf{w}_i \mathbf{x}$.

$$\mathbf{w}_{i}\mathbf{x} - \mathbf{w}_{j}\mathbf{x} = \mathbf{w}_{ij}\mathbf{x}$$

$$\mathbf{w}_{ij} = \mathbf{w}_{i} - \mathbf{w}_{j}$$

$$p(c_{i}|\mathbf{x}) = e^{\mathbf{w}_{ij}\mathbf{x}}p(c_{j}|\mathbf{x})$$

$$p(c_{i}|\mathbf{x}) = e^{\mathbf{w}_{i}\mathbf{x}}e^{-\mathbf{w}_{j}\mathbf{x}}p(c_{j}|\mathbf{x})$$

$$1 = \sum_{i=1}^{C} e^{\mathbf{w}_{i}\mathbf{x}}e^{-\mathbf{w}_{j}\mathbf{x}}p(c_{j}|\mathbf{x})$$

$$p(c_{j}|\mathbf{x}) = \frac{e^{\mathbf{w}_{j}\mathbf{x}}}{\sum_{i=1}^{C} e^{\mathbf{w}_{i}\mathbf{x}}}$$

 \therefore the softmax model corresponds to modeling the log-odds between any two classes.