

TC - 4ETI - CI : CAPTEURS INTELLIGENTS

L. LABRAK

Section ETI : Sciences du Numérique

L'AMPLIFICATEURS OPERATIONNEL ET SES APPLICATIONS

Les Ampli Op dans une CdM

LES AOPs: Généralités

Composant le plus répandu en <u>électronique analogique</u> car permet de nombreuses réalisations:

- Amplification
- Dérivation Intégration
- Multiplication Addition Soustraction
- Filtrage
- Comparaison
- Multivibrateurs
- etc

LES AOPs: Généralités

Composant le plus répandu en <u>électronique analogique</u> car permet de nombreuses réalisations:

Linéaires

- Amplification
- Dérivation Intégration
- Multiplication Addition Soustraction
- Filtrage

Non Linéaires

- Comparaison
- Multivibrateurs
- etc

LES AOPs: Généralités

Symboles et notations

• Circuits intégrés (ELA2...) alimentés!

LES AOPs: Caractéristique de transfert

$$V_{\scriptscriptstyle S} = A_{vd} \cdot (V^+ - V^-) = A_{vd} \cdot \varepsilon$$

avec
$$\varepsilon = (V^+ - V^-)$$

La dynamique d'entrée différentielle vaut donc:

$$\varepsilon = \frac{\pm V dd}{A_{vd}}$$

Caractéristique $V_s = f(\varepsilon)$

LES AOPs: Régimes de fonctionnement

Le régime linéaire fonctionne:

- En boucle ouverte sur qq 100μV
- => En boucle fermée (selon la réaction)

LES AOPs: Régimes de fonctionnement

Cas de la CONTRE Réaction:

• Etude qualitative de la stabilité: Pour V_e fixé

$$V_S \uparrow \Rightarrow V_- \uparrow \Rightarrow \varepsilon \downarrow \Rightarrow V_S \downarrow$$

Le régime est LINEAIRE

LES AOPs: Régimes de fonctionnement

Cas de la Réaction positive:

• Etude qualitative de la stabilité: Pour V_e fixé

$$V_S \uparrow \Rightarrow V_+ \uparrow \Rightarrow \varepsilon \uparrow \Rightarrow V_S \uparrow$$

Le régime est NON-LINEAIRE (ou Saturation)

LES AOPs: Ampli Op Parfait et Imperfections

On considère, sauf mention contraire, les AOPs parfaits:

$$-A_{vd} = \infty \Rightarrow \varepsilon = 0 \Rightarrow V_{+} = V_{-}$$

$$-Z_{in} = \infty \Rightarrow i_{+} = i_{-} = 0$$

$$-Z_{out} = 0$$

$$-V_{sat}$$
 = +/- V_{dd}

LES AOPs: Ampli Op Parfait et Imperfections

Dans certains cas on prends en compte les imperfections:

$$-Z_{in} = 1 \text{ à } 100 \text{ M}\Omega$$

$$-Z_{out}$$
= qq 10 Ω

- $-i_+$ et i_- quelques micro à pico-Ampères
- Présence d'une tension d'offset (décalage)

$$-A_{vd} \ge 10^5$$

- TRMC (80 à 120dB)
- Slew Rate
- GBW (Produit gain bande)

LES AOPs en régime linéaire: Montage de base

- Suiveur
- Non-Inverseur
- Inverseur
- Sommateur / Soustracteur
- Convertisseur Courant/Tension

LES AOPs en régime linéaire: Montage de base

- Intégrateur / Dérivateur
- Différence
- instrumentation

LES AOPs en régime linéaire: Montage de base

- Différence
- instrumentation

Cas des alimentations asymétriques

- Cas des alimentations sur batterie (application portable)
 - Gain de place
 - Mise en œuvre subtile
 - Exploitation de la dynamique max sortie (rail to rail)
 - Gestion des signaux d'entrée négatifs (mode commun)

Masse virtuelle 0 (V)

Masse dynamique $\frac{V_{dd}}{2}$ (V)

Cas des alimentations asymétriques

- Construction de la tension de référence:
 - à partir d'un pont diviseur
 - Sans oublier quelques condensateurs au besoin ...

TL082 BIFET Op Amp Audio PreAmplifier

Le Comparateur Simple: AOP en boucle ouverte

Amplificateur en régime SATURE

$$\Rightarrow \varepsilon = v + - v - \neq 0$$

 \Rightarrow Seuil de basculement définit pour $\varepsilon = 0$

Si ϵ Négatif => saturation basse $V_{sat} = -V_{dd}$

Si ϵ Positif => saturation haute V_{sat} = + V_{dd}

Amplificateur en régime SATURE

$$\Rightarrow \varepsilon = v + - v - \neq 0$$

 \Rightarrow Seuil de basculement définit pour $\varepsilon = 0$

Si ϵ Négatif => saturation basse $V_{sat} = -V_{dd}$

Si ϵ Positif => saturation haute V_{sat} = + V_{dd}

Fonctionnement avec Réaction positive

- Pour réaliser des comparateurs à seuils symétriques, il faut:
 - un AO alimenté symétriquement $+/-V_{dd}$
 - une tension de référence nulle : V_{ref} = 0

A seuils symétriques Non inverseur

$$u_1(t) = \begin{pmatrix} V_{T1} \\ V_{T2} \end{pmatrix} = \pm V_{sat} \frac{R_1}{R_2}$$

$$\Delta V_T \equiv V_{T1} - V_{T2} = 2 V_{sat} \frac{R_1}{R_2}$$

A seuils symétriques Inverseur

$$u_1(t) = \begin{pmatrix} V_{T1} \\ V_{T2} \end{pmatrix} = \pm V_{sat} \frac{R_1}{R_1 + R_2}$$

$$\Delta V_T \equiv V_{T1} - V_{T2} = 2 V_{sat} \frac{R_1}{R_1 + R_2}$$

- Pour réaliser des comparateurs à seuils variables, il faut:
 - Une alimentation asymétrique
 - Une sortie indépendante de +/- V_{dd} \Rightarrow Collecteur /Drain ouvert
 - déplacer le centre du cycle en prenant : $V_{ref} \neq 0$.

A seuils asymétriques Non inverseur

$$V_{T0} = \frac{V_{T1} + V_{T2}}{2}$$

$$\Delta V_T \equiv V_{T1} - V_{T2} = (V_H - V_L) \frac{R_1}{R_2}$$

$$u_1(t) = \begin{pmatrix} V_{T1} \\ V_{T2} \end{pmatrix} = V_{ref} \frac{R_1 + R_2}{R_2} - \begin{pmatrix} V_L \\ V_H \end{pmatrix} \frac{R_1}{R_2}$$

Alimentations symétriques

$$\Delta V_T \equiv V_{T1} - V_{T2} = 2 V_{sat} \frac{R_1}{R_2}$$

$$V_{T0} = V_{ref} \frac{R_1 + R_2}{R_2}$$

A seuils asymétriques Inverseur

$$V_{T0} = \frac{V_{T1} + V_{T2}}{2}$$

$$\Delta V_T \equiv V_{T1} - V_{T2} = (V_H - V_L) \frac{R_1}{R_1 + R_2}$$

$$u_{1}(t) = \begin{pmatrix} V_{T1} \\ V_{T2} \end{pmatrix} = V_{ref} \frac{R_{2}}{R_{1} + R_{2}} + \begin{pmatrix} V_{H} \\ V_{L} \end{pmatrix} \frac{R_{1}}{R_{1} + R_{2}}$$

$$\Delta V_{T} \equiv V_{T1} - V_{T2} = 2 V_{sat} \frac{R_{1}}{R_{1} + R_{2}}$$

$$V_{T0} = V_{ref} \frac{R_{2}}{R_{1} + R_{2}}$$

Alimentations symétriques

$$\Delta V_T \equiv V_{T1} - V_{T2} = 2 V_{sat} \frac{R_1}{R_1 + R_2}$$

$$V_{T0} = V_{ref} \frac{R_2}{R_1 + R_2}$$

Performances des comparateurs

- Qu'est ce qu'un comparateur?
 - Un amplificateur rapide
 - Faible limitation en fréquence dues à la compensation
 - Recherche de stabilité pour AOP
 - Temps de bascule fixe et faible

COMPARATEURS vs AOPs

- Gain élevé
- Bande passante large
- Stabilité / Rapidité
- Dynamique de sortie

- Rapidité
- Faible offset
- Sortie Adaptable
- Dynamique entrée

Performances des comparateurs

6.5 Electrical Characteristics, TL07xC, TL07xAC, TL07xBC, TL07xI

 $V_{CC} \pm = \pm 15 \text{ V}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS(1)		T _A ⁽²⁾	TL071C, TL072C, TL074C		TL071AC, TL072AC, TL074AC		TL071BC, TL072BC, TL074BC			TL071I, TL072I, TL074I			UNIT		
		CONDITIONS			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
V _{io}	Input offset	V -0	D - 500	25°C		3	10		3	6		2	3		3	6	mV
VIO	voltage	V _O = 0.	$R_8 = 50 \Omega$	Full range			13			7.5			5			8	mv
°V _{IO}	Temperature coefficient of input offset voltage	V ₀ = 0,	R ₈ = 50 Ω	Full range		18			18			18			18		µV/°C
	Input offset current	v -0	= 0	25°C		5	100		5	100		5	100		5	100	pA
10		V ₀ = 0		Full range			10			2			2			2	nA
I _{IB} Input bia current ⁽³⁾	Input bias	V ₀ = 0		25°C		65	200		65	200		65	200		65	200	pA
	current ⁽³⁾			Full range			7			7			7			7	nA
V _{ICR}	Common-mode input voltage range			25°C	±11	-12 to 15		±11	-12 to 15		±11	-12 to 15		±11	-12 to 15		٧
Vом	Maximum peak output voltage swing	K ^r = 10 K7		25°0	±12	±13.5		±12	±13.0		±12	±13.0		±12	±13.0		
		R _L ≥ 10 kΩ	Full range	±12			±12			±12			±12			٧	
		B>210		ruii range	+10			+10			+10			+10			
	Large-signal	V _O = ±10 V, R _L ≥ 2 kΩ		25°C	25	200		50	200		50	200		50	200		
A _{VD}	differential voltage amplification		R _L ≥ 2 kΩ	Full range	15			25			25			25			V/mV
B ₁	Utility-gain bandwidth			25°C		3			3			3			3		MHz
r _i	Input resistance			25°C		10 ¹²			10 ¹²			10 ¹²			10 ¹²		Ω
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min, V _O = 0,	R ₈ = 50 Ω	25°C	70	100		75	100	1	75	100		75	100		dB
k _{svR}	Supply-voltage rejection ratio (ΔV _{CC2} /ΔV _{IO})	$V_{CC} = \pm 9 \text{ V to}$ $V_{C} = 0$,	±15 V. R _S = 50 Ω	25°C	70	100		80	100		80	100		80	100		dB
Icc	Supply current (each amplifier)	V _O = 0.	No load	25°C		1.4	2.5		1.4	2.5		1.4	2.5		1.4	2.5	mA
V ₀₁ N ₀₂	Crosstalk attenuation	A _{VO} = 100		25°C		120			120			120			120		dB

(1) All characteristics are measured under open-loop conditions with zero common-mode voltage, unless otherwise specified.

(2) Full range is T_A = 0°C to 70°C for TL07_C, TL07_AC, TL07_BC and is T_A = -40°C to 85°C for TL07_I.

(3) Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 1. Pulse techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

Performances de Voltage Compara

- Push-pull CMOS output (no external pull-up resistor required)
- Extremely low supply current: 9μA typ / comparator
- Wide single supply range: 2.7V to 16V or dual supplies (±1.35V to ±8V)
- Extremely low input bias current: 1pA typ
- Extremely low input offset currents: 1pA typ
- Input common-mode voltage range includes GND
- High input impedance: 10¹²Ω typ
- Fast response time: 2µs typ for 5mV overdrive
- Pin-to-pin and functionally compatible with bipolar LM393

Electrical characteristics

Table 3. V_{CC}⁺ = 3V, V_{cc}⁻ = 0V, T_{amb} = 25°C (unless otherwise specified)

ara	Symbol	Parameter	Min.	Тур.	Max.	Unit	
AI C	V _{io}	Input offset voltage ⁽¹⁾ $V_{IC} = 1.5V$ $T_{min} \le T_{amb} \le T_{max}$			5 6.5	mV	
	I _{lo}	Input offset current ⁽²⁾ V _{IC} = 1.5V T _{min} ≤ T _{amb} ≤ T _{max}		1	300	pA	
igure	I _{Ib}	Input bias current (2) $V_{IC} = 1.5V$ $T_{min} \le T_{amb} \le T_{max}$		1	600	pA	
	V _{Icm}	Input common mode voltage range $T_{min} \leq T_{amb} \leq T_{max}$	0		V _{CC} ⁺ -1.2 V _{CC} ⁺ -1.5	٧	
7,	CMR	Common-mode rejection ratio V _{IC} = V _{ICM mIn}		80		dB	
	SVR	Supply voltage rejection ratio VCC ⁺ = 3V to 5V		75		dB	
, T.	VoH	High level output voltage $V_{Id} = 1V$, $I_{OH} = -4mA$ $T_{min} \le T_{amb} \le T_{max}$	2 1.8	2.4		V	
4	V _{OL}	Low level output voltage $V_{Id} = -1V$, $I_{OL} = 4mA$ $T_{min} \le T_{amb} \le T_{max}$.		300	400 575	mV	
<u></u>	lcc	Supply current (each comparator) No load - Outputs low $T_{min} \le T_{amb} \le T_{max}$		7	20 25	μА	
T _s	^t рцн	Response time low to high V_{IC} = 0V, f = 10kHz, C_L = 50pF, overdrive = 5mV TTL input		1.5 0.7		μs	
	^t pHL	Response time high to low V _{IC} = 0V, f = 10kHz, C _L = 50pF, overdrive = 5mV TTL input		2.2 0.15		μs	

- The specified offset voltage is the maximum value required to drive the output up to 2.5V or down to 0.3V.
- Maximum values include unavoidable inaccuracies of the industrial tests.

Performances des control Amplificateur TS272

■ OUTPUT VOLTAGE CAN SWING TO

ELECTRICAL CHARACTERISTICS

V_{CC}* = +10V, V_{CC}*= 0V, T_{amb} = +25°C (unless otherwise specified)

Symbol	Parameter	TS2	72C/A	C/BC	TS272I/AI/BI TS272M/AM/BM			Unit
		Min.	Тур.	Max.	Min.	Тур.	Max.	10.50.
V _{IO}	$eq:local_$		1.1 0.9 0.25	10 5 2 12 6.5 3		1.1 0.9 0.25	10 5 2 12 6.5 3	mV
DVIo	Input Offset Voltage Drift		2			2		μV/°C
I _{lo}	Input Offset Current note 1) $V_{IC} = 5V, V_O = 5V$ $T_{min} \le T_{amb} \le T_{max}$		1	100		1	200	pΑ
I _{Ib}	Input Bias Current - see note 1 V _{IC} = 5V, V _O = 5V T _{mIn} ≤ T _{amb} ≤ T _{max}		1	150		1	300	pΑ
V _{OH}	High Level Output Voltage V_{Id} = 100mV, R_L = 10k Ω $T_{min} \le T_{amb} \le T_{max}$	8.2 8.1	8.4		8.2	8.4		٧
VOL	Low Level Output Voltage V _{Id} = -100mV			50			50	mV
A _{vd}	Large Signal Voltage Gain $V_{ C}$ = 5V, R_L = 10k Ω , V_0 = 1V to 6V $T_{min} \le T_{amb} \le T_{max}$	10 7	15		10 6	15		V/mV
GBP	Gain Bandwidth Product $A_V = 40 dB$, $R_L = 10 k\Omega$, $C_L = 100 pF$, $f_{In} = 100 kHz$		3.5			3.5		MHz
CMR	V _{IC} = 1V to 7.4V, V ₀ = 1.4V	65	80		65	80		dB
SVR	Supply Voltage Rejection Ratio V _{CC} ⁺ = 5V to 10V, V ₀ = 1.4V	60	70		60	70		dB
lcc	Supply Current (per amplifier) $A_V = 1$, no load, $V_0 = 5V$ $T_{min} \le T_{amb} \le T_{max}$		1000	1500 1600		1000	1500 1700	μА
lo	Output Short Circuit Current V _o = 0V, V _{Id} = 100mV		60			60		mA
Isink	Output Sink Current Vo = VCC, Vid = -100mV		45			45		mA
SR	Slew Rate at Unity Gain $R_L = 10k\Omega$, $C_L = 100pF$, $V_I = 3$ to 7V		5.5			5.5		V/µs
φm	Phase Margin at Unity Gain A _V = 40dB, R _L = 10kΩ, C _L = 100pF		40			40		Degree
NOV	Overshoot Factor		30			30		%
en	Equivalent Input Noise Voltage f = 1kHz, R _s = 100Ω		30			30		nV √Hz
V ₀₁ /V ₀₂	Channel Separation		120			120		dB

Maximum values including unavoidable inaccuracies of the industrial ter

Performances des comparateurs LM311

Schematic Diagram

Performances des comparateurs LM311

Electrical Characteristics

(VCC = 15V, TA = 25°C, unless otherwise specified)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
Input Offset Voltage	VIO	$R_S \le 50 K\Omega$		-	1.0	7.5	mV
input Offset Voltage			Note 1	-	-	10	IIIV
Input Offset Current	lio			-	6	50	nA
input Offset Current			Note 1	-	-	70	IIA
Input Bias Current	IBIAS			- 100 250		250	nA
input bias ourient	IBIAS		Note 1	-	-	300	IIA
Voltage Gain	G∨	-		40	200	-	V/mV
Response Time	TRES		Note 2	-	200	-	ns
mana and a	VSAT	IO =50mA, VI ≤ -10mV) =50mA, Vi ≤ -10mV			1.5	2
Saturation Voltage		$V_{CC} \ge 4.5 \text{V}, V_{EE} = 0 \text{V}$ $I_{O} = 8 \text{mA}, V_{I} \le -10 \text{mV},$	Note 1	-	0.23	0.4	V
Strobe "ON" Current	ISTR(ON)	-		-	3	-	mA
Output Leakage Current	ISINK	I_{STR} =3mA, $V_I \ge 10$ mV V_O =15V, V_{CC} =±15V		-	0.2	50	nA
Input Voltage Range	V _{I(R)}	Note 1		-14.5 to 13.0	-14.7 to 13.8	1-0	V
Positive Supply Current	Icc	-		-	3.0	7.5	mA
Negative Supply Current	IEE	-		-	-2.2	-5.0	mA
Strobe Current	ISTR	•		-	3	•	mA

COMPARATEUR vs AOPs

- AOP non idéal ...
 - Gain non infini \Rightarrow basculent à $\varepsilon = \frac{\pm V dd}{A_{vd}}$ c'est la **sensibilité comparateur**
 - Offset => déplace le centre de l'hystérésis
 - Ampli rail to rail
- Critères importants dans un comparateur:
 - Fréquence de fonctionnement
 - Temps de basculement
 - Adaptation des niveaux de tension de sortie
 - Faible niveau des tensions de déchets

EXERCICES D'APPLICATION

 Proposez un schéma permettant de réaliser la caractéristique de transfert suivante.

EXERCICES D'APPLICATION

• Tracer la caractéristique de transfert

MERCI DE VOTRE ATTENTION!

L. LABRAK

