Model fitting to human choice and accuracy data

```
"Accuracy increased across the block overall":
```

Effect 01: "trial" F(6.87,116.86)=29.902, p=0.000

"but did so faster in blocks with familiar cues.":

Effect 01: "trial" F(6.87,116.86)=29.902, p=0.000Effect 02: "novel" F(1.00,17.00)=149.680, p=0.000Effect 03: "novel""trial" F(6.94,117.96)=2.899, p=0.008

"Participants began with a bias to respond `target` that abated across the block in roughly equal measure for the two conditions."

Effect 01: "trial" F(7.37,125.24)=46.063, p=0.000 Effect 02: "novel" F(1.00,17.00)=24.619, p=0.000 Effect 03: "novel""trial" F(6.78,115.25)=0.454, p=0.861 interaction between conditions

"specifically, mean values of alpha R were" ... "for blocks with familiar and novel cues respectively, diverging reliably from the respective parameters" ... "that yielded maximal performance under this model in both cases"

alpha RT

mean fittings : 0.34 0.49 mean optimals : 0.21 0.18 std fittings : 0.20 0.24 std optimals : 0.08 0.08

familiar ttest : t(17) = +3.65, p = 0.002novel ttest : t(17) = +5.68, p = 0.000

"similarly, mean values for tau were" ... "both showing a divergence from the performance-maximising parameters" ... "that was statistically reliable"

alpha_m

mean fittings : 2.44 2.22 mean optimals : 1.53 0.96 std fittings : 1.23 1.41 std optimals : 1.03 0.71

familiar ttest2 : t(17) = +2.30, p = 0.034 novel ttest2 : t(17) = +3.71, p = 0.002

alpha RC

 $\begin{array}{ll} \text{mean fittings} &: 0.44\ 0.43 \\ \text{mean optimals} &: 0.33\ 0.26 \\ \text{std fittings} &: 0.22\ 0.27 \\ \text{std optimals} &: 0.07\ 0.08 \\ \end{array}$

familiar ttest : t(17) = +2.05, p = 0.056novel ttest : t(17) = +2.68, p = 0.016

"however, values of tau were smaller ... and values of alpha_R were larger" ... "in the familiar relative to novel cues condition"

```
alpha_M ttest : t(17) = +0.61, p = 0.547 alpha_RT ttest : t(17) = -1.98, p = 0.065 alpha_RC ttest : t(17) = +0.19, p = 0.853
```

"interaction between fittings/optimal and familiar/novel"

```
alpha_RT
```

RANKSUM TEST

adaptation between conditions

fittings on taco4

```
p(alpha_M) = 0.762
p(alpha_RT) = 0.063
p(alpha_RC) = 0.848
p(tau) = 0.116
```

optimals on taco4

```
p(alpha_M) = 0.060
p(alpha_RT) = 0.410
p(alpha_RC) = 0.008
p(tau) = 0.040
```

deviance from optimality

familiar on taco4

```
p(alpha_M) = 0.031
p(alpha_RT) = 0.026
p(alpha_RC) = 0.220
p(tau ) = 0.000
novel on taco4
p(alpha_M) = 0.006
p(alpha_RT) = 0.000
p(alpha_RC) = 0.059
p(tau ) = 0.000
```

CORRELATION PARAMETER / PERFORMANCE

ALPHA M

r(familiar) = -0.3326 r(novel) = -0.5327 p(familiar) = 0.1775 p(novel) = 0.0229

ALPHA RT

r(familiar) = -0.2262 r(novel) = -0.4548 p(familiar) = 0.3668 p(novel) = 0.0579

ALPHA RC

r(familiar) = -0.5348 r(novel) = -0.0808 p(familiar) = 0.0222p(novel) = 0.7500

TAU

r(familiar) = -0.6949 r(novel) = -0.7033 p(familiar) = 0.0014p(novel) = 0.0011

BIC Scores

Fitting (familiar / novel)

BIC(human)	= 32.0413 ± 0.1759	$= 32.7083 \pm 0.0744$
BIC(god)	$= 38.6333 \pm 0.3613$	$= 40.0568 \pm 0.1324$
BIC(hbm)	= 36.8194 ± 0.5052	$= 38.6293 \pm 0.2327$
BIC(ta3)	= 37.8985 ± 0.2117	$= 39.1219 \pm 0.1770$
BIC(ta3opt)	= 39.7748 ± 0.3826	$= 41.7100 \pm 0.2193$
BIC(co3)	= 38.0386 ± 0.2196	$= 38.9329 \pm 0.1918$
BIC(co3opt)	$=40.6822 \pm 0.3417$	$= 41.7815 \pm 0.2204$
BIC(taco4)	= 39.0755 ± 0.1762	$= 40.0401 \pm 0.1637$
BIC(taco4opt)	= 41.3003 ± 0.3899	$= 43.1427 \pm 0.2243$

Test (familiar / novel)

BIC(human)	$= 31.9841 \pm 0.2089$	$= 32.7730 \pm 0.0544$
BIC(god)	$= 38.2427 \pm 0.4556$	$=40.0047 \pm 0.2188$
BIC(hbm)	= 36.5909 ± 0.5426	$= 38.3735 \pm 0.2471$
BIC(ta3)	= 39.5754 ± 0.3627	$=41.0839 \pm 0.4033$
BIC(ta3opt)	$= 40.4352 \pm 0.4451$	$=41.6207 \pm 0.3443$
BIC(co3)	$=40.0569 \pm 0.3723$	$=41.0461 \pm 0.3670$
BIC(co3opt)	= 41.0717 ± 0.4175	$=41.7441 \pm 0.3819$
BIC(taco4)	$=41.2352 \pm 0.3060$	$= 42.5176 \pm 0.3498$
BIC(taco4opt)	= 41.6794 ± 0.4745	$=43.1694 \pm 0.3673$