

field extension with Galois group Q_8

 ${\bf Canonical\ name} \quad {\bf Field Extension With Galois Group Q8}$

Date of creation 2013-03-22 17:44:28 Last modified on 2013-03-22 17:44:28

Owner rm50 (10146) Last modified by rm50 (10146)

Numerical id 7

Author rm50 (10146) Entry type Example Classification msc 12F10 Let $\alpha = \sqrt{(2+\sqrt{2})(3+\sqrt{3})}$, $E = \mathbb{Q}(\alpha)$. We will show that E is Galois over \mathbb{Q} and that $G = Gal(E/\mathbb{Q}) \cong Q_8$ (the group of quaternions).

We begin by showing that $[E:\mathbb{Q}]=8$. Let $F=\mathbb{Q}(\sqrt{2},\sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$. Claim that $F\subsetneq E$. To show that they are not equal, we show that $\alpha\notin F$, i.e. that $(2+\sqrt{2})(3+\sqrt{3})$ is not a square in F. If it were, say $(2+\sqrt{2})(3+\sqrt{3})=c^2,c\in F$, take $\sigma\in Gal(F/\mathbb{Q})$ to be the element

$$\sigma: \begin{cases} \sqrt{2} \mapsto \sqrt{2} \\ \sqrt{3} \mapsto -\sqrt{3} \end{cases}$$

Then
$$(2 + \sqrt{2})(3 + \sqrt{3})\sigma((2 + \sqrt{2})(3 + \sqrt{3})) = (c\sigma(c))^2$$
, so
$$(2 + \sqrt{2})^2(3 + \sqrt{3})(3 - \sqrt{3}) = 6(2 + \sqrt{2})^2 = (c\sigma(c))^2$$

But $c\sigma(c) = \operatorname{Tr}_{F/\mathbb{Q}(\sqrt{2})}(c) \in \mathbb{Q}(\sqrt{2})$, and thus $6 = \left(\frac{c\sigma(c)}{2+\sqrt{2}}\right)^2$, so $\sqrt{6} \in \mathbb{Q}(\sqrt{2})$, a contradiction. Thus $F \neq E$. We show that $F \subset E$ by showing that $\sqrt{2} + \sqrt{3} \in E$.

$$(2+\sqrt{2})(3+\sqrt{3}) = 6+3\sqrt{2}+2\sqrt{3}+\sqrt{6} \in E, \text{ so}$$

$$3\sqrt{2}+2\sqrt{3}+\sqrt{6} \in E, \text{ so}$$

$$(3\sqrt{2}+2\sqrt{3}+\sqrt{6})^2 = 36+12(\sqrt{2}+\sqrt{3}+\sqrt{6}) \in E, \text{ so}$$

$$\sqrt{2}+\sqrt{3}+\sqrt{6} \in E, \text{ so}$$

$$3\sqrt{2}+2\sqrt{3}+\sqrt{6}-\sqrt{2}-\sqrt{3}-\sqrt{6}=\sqrt{3}+2\sqrt{2} \in E, \text{ so}$$

$$(\sqrt{3}+2\sqrt{2})^2 = 11+4\sqrt{6} \in E, \text{ so}$$

$$\sqrt{6} \in E, \text{ so}$$

$$\sqrt{2}+\sqrt{3}+\sqrt{6}-\sqrt{6}=\sqrt{2}+\sqrt{3} \in E$$

So $F \subsetneq E$ and thus [E:F]=2. Then $[E:\mathbb{Q}]=[E:F][F:\mathbb{Q}]=8$.

Now, the irreducible polynomial f(x) for $(2+\sqrt{2})(3+\sqrt{3})$ over \mathbb{Q} is the product of $x-\tau((2+\sqrt{2})(3+\sqrt{3}))$ as τ ranges over $\operatorname{Gal}(F/\mathbb{Q})$:

$$f(x) = (x - (2 + \sqrt{2})(3 + \sqrt{3}))(x - (2 - \sqrt{2})(3 + \sqrt{3}))(x - (2 + \sqrt{2})(3 - \sqrt{3}))(x - (2 - \sqrt{2})(3 - \sqrt{3})(3 - \sqrt{3})(x - (2 - \sqrt{2})(3 - \sqrt{3})(3 - \sqrt{3})(x - (2 - \sqrt{2})(3 - \sqrt{3})(3 - \sqrt$$

so that $f(x^2)$ is a degree 8 polynomial with α as a root. In fact,

$$f(x^2) = x^8 - 24x^6 + 48x^4 - 288x^2 + 144$$

This polynomial must be irreducible since α is of degree 8, so $f(x^2)$ is the minimal polynomial for α over \mathbb{Q} . The roots of $f(x^2)$ are obviously

$$\pm\sqrt{(2\pm\sqrt{2})(3\pm\sqrt{3})}$$

Furthermore, it is easy to see that each of these roots lies in E, for

$$\alpha\sqrt{(2-\sqrt{2})(3+\sqrt{3})} = \sqrt{2}(3+\sqrt{3}) \in F$$

$$\alpha\sqrt{(2+\sqrt{2})(3-\sqrt{3})} = \sqrt{6}(2+\sqrt{2}) \in F$$

$$\alpha\sqrt{(2-\sqrt{2})(3-\sqrt{3})} = \sqrt{2}\sqrt{6} = 2\sqrt{3} \in F$$

so dividing through by α we see that

$$\sqrt{(2-\sqrt{2})(3+\sqrt{3})}, \sqrt{(2+\sqrt{2})(3-\sqrt{3})}, \sqrt{(2-\sqrt{2})(3-\sqrt{3})} \in E$$

Thus E is in fact Galois over \mathbb{Q} , is the splitting field for $f(x^2)$, and has Galois group $G = \operatorname{Gal}(E/\mathbb{Q})$ of http://planetmath.org/OrderGrouporder 8.

G acts transitively on the roots of $f(x^2)$, and $E = \mathbb{Q}(\alpha)$, so an element of G is determined by the image of α . Thus the elements of G are the automorphisms of E that map α to any of the eight roots of $f(x^2)$. Let

$$\alpha = \sqrt{(2 + \sqrt{2})(3 + \sqrt{3})} \qquad \beta = \sqrt{(2 - \sqrt{2})(3 + \sqrt{3})}$$
$$\gamma = \sqrt{(2 + \sqrt{2})(3 - \sqrt{3})} \qquad \delta = \sqrt{(2 - \sqrt{2})(3 - \sqrt{3})}$$

and let $\sigma : \alpha \mapsto \beta, \tau : \alpha \mapsto \gamma$ be elements of G.

 $\sigma(\alpha^2) = \beta^2$, so $\sigma(2 + \sqrt{2})\sigma(3 + \sqrt{3}) = (2 - \sqrt{2})(3 + \sqrt{3})$. This is an equation in F, so regarding σ as an automorphism of F/\mathbb{Q} , it must be the automorphism $\sqrt{2} \mapsto -\sqrt{2}, \sqrt{3} \mapsto \sqrt{3}$. Since $\alpha\beta = \sqrt{2}(3 + \sqrt{3})$, we have $\sigma(\alpha\beta) = -\alpha\beta$ and thus that $\sigma(\beta) = -\alpha$. It follows that σ is an element of http://planetmath.org/OrderGrouporder 4 in G.

Similarly, $\tau(\alpha^2) = \gamma^2$, so $\tau(2+\sqrt{2})\tau(3+\sqrt{3}) = (2+\sqrt{2})(3-\sqrt{3})$, so that τ , regarded as an automorphism of F/\mathbb{Q} , must be $\sqrt{2} \mapsto \sqrt{2}, \sqrt{3} \mapsto -\sqrt{3}$. Since $\alpha\gamma = \sqrt{6}(2+\sqrt{2})$, we have $\tau(\alpha\gamma) = -\alpha\gamma$, so that $\tau(\gamma) = -\alpha$, and τ is also an element of http://planetmath.org/OrderGrouporder 4 in G. Note also that $\sigma^2(\alpha) = -\alpha = \tau^2(\alpha)$, so that $\sigma^2 = \tau^2 \neq 1$.

Looking at $\sigma \tau$,

$$\sigma\tau(\alpha) = \sigma(\gamma) = \sigma\left(\frac{\alpha\gamma}{\alpha}\right) = \frac{\sigma(\sqrt{6}(2+\sqrt{2}))}{\sigma(\alpha)} = \frac{-\sqrt{6}(2-\sqrt{2})}{\beta} = -\frac{\beta\delta}{\beta} = -\delta$$

while

$$\tau\sigma(\alpha) = \tau(\beta) = \tau\left(\frac{\alpha\beta}{\alpha}\right) = \frac{\tau(\sqrt{2}(3+\sqrt{3}))}{\tau(\alpha)} = \frac{\sqrt{2}(3-\sqrt{3})}{\gamma} = \frac{\gamma\delta}{\gamma} = \delta$$

and thus $\tau \sigma^3(\alpha) = \tau \sigma \sigma^2(\alpha) = -\tau \sigma(\alpha) = -\delta = \sigma \tau(\alpha)$. So $\sigma \tau = \tau \sigma^3$.

Putting this all together, we see that G is generated by σ, τ , and that the generators satisfy the relations

$$\sigma^4 = \tau^4 = 1, \qquad \sigma^2 = \tau^2 \neq 1, \qquad \sigma\tau = \tau\sigma^3$$

Define $\varphi: G \to Q_8$ by $\varphi(\sigma) = i, \varphi(\tau) = j$. This is easily seen to be a homorphism, and $\varphi(\sigma\tau) = ij = k$, so φ is surjective and is thus an isomorphism since both groups have http://planetmath.org/OrderGrouporder 8. Thus $\operatorname{Gal}(E/\mathbb{Q}) \cong Q_8$.