ЛЕКЦИЯ 13

Несобственные интегралы

1. Определение несобственных интегралов. Интеграл Римана был введен для ограниченных на отрезке функций. Естественно поставить вопрос о распространении понятия интеграла на случай бесконечного промежутка, а также на случай, когда подынтегральная функция является неограниченной.

а) Интеграл на бесконечном промежутке. Рассмотрим функцию $\frac{1}{1+x^2}$. Эта функция непрерывна на отрезке $[0,\xi]$ при любом $\xi\geqslant 0$, и поэтому существует интеграл $J(\xi)=\int\limits_0^\xi \frac{dx}{1+x^2}=rctg\,\xi$, откуда следует, что $\lim\limits_{\xi\to+\infty}J(\xi)=\frac{\pi}{2}$. В этом случае пишут $\int\limits_0^{+\infty}\frac{dx}{1+x^2}=\frac{\pi}{2}$, а символ $\int\limits_0^{+\infty}\frac{dx}{1+x^2}$ называют несобственным интегралом от функции $\frac{1}{1+x^2}$ на бесконечном промежутке $[0,+\infty)$.

Число $\frac{\pi}{2}$ можно интерпретировать как площадь фигуры, ограниченной графиком функции $y=\frac{1}{1+x^2},\ x\geqslant 0,$ и координатными осями (рис. 38.1).

Рис. 38.1

Рассмотрим несобственный интеграл на бесконечном промежутке от функции f.

Пусть функция f(x) определена при $x\geqslant a$, где a — заданное число, и интегрируема на отрез- $\kappa \in [a, \xi]$ при любом $\xi \geqslant a$. Тогда сим-

вол
$$\int\limits_a^{+\infty} f(x)\,dx$$
 будем называть не-

собственным интегралом от функции \ddot{f} на промежутке $[a,+\infty)$. Если

существует конечный $\lim_{\xi\to +\infty}\int\limits_a^\xi f(x)\,dx=A,$ то говорят, что $\mathit{несобсm}$ -венный интеграл $\int\limits_a^{+\infty} f(x)\,dx$ сходится и равен A, а функцию f называ-

ют интегрируемой в несобственном смысле на промежутке $[a, +\infty)$. Таким образом, сходящийся несобственный интеграл от функции fна промежутке $[a, +\infty)$ определяется равенством

$$\int_{a}^{+\infty} f(x) dx = \lim_{\xi \to +\infty} \int_{a}^{\xi} f(x) dx.$$
 (1)

Если функция $\int\limits_a^\xi f(x)\,dx$ не имеет конечного предела при $\xi \to +\infty,$ то говорят, что несобственный интеграл $\int\limits_a^{+\infty} f(x)\,dx$ расходится.

Определим, наконец, несобственный интеграл на промежутке R:

$$\int_{-\infty}^{+\infty} f(x) dx = \lim_{\substack{\xi \to -\infty \\ \eta \to +\infty}} \int_{\xi}^{\eta} f(x) dx.$$
 (3)

В этом случае предполагается, что функция f интегрируема (по Риману) на любом отрезке действительной оси, а интеграл $\int\limits_{-\infty}^{+\infty} f(x)\,dx$ называется сходящимся в случае существования конечного предела (3), причем этот предел не должен зависеть от того, каким способом ξ и η стремятся соответственно к $-\infty$ и к $+\infty$. Иначе говоря, интеграл сходится тогда и только тогда, когда существуют конечные пределы $\lim_{\xi \to -\infty} \int\limits_{\xi}^{a} f(x)\,dx = J_1$ и $\lim_{\eta \to +\infty} \int\limits_{a}^{\eta} f(x)\,dx = J_2$, где $a \in R$, и при этом несобственный интеграл по определению равен $J_1 + J_2$, т. е.

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{+\infty} f(x) dx.$$

б) Интеграл на конечном промежутке. Рассмотрим функцию $\frac{1}{\sqrt{1-x}}$. Эта функция непрерывна на промежутке [0,1), но не ограничена на этом промежутке. При любом $\xi \in [0,1)$ функция $\frac{1}{\sqrt{1-x}}$ интегрируема на отрезке $[0,\xi]$, причем $J(\xi) = \int\limits_0^\xi \frac{dx}{\sqrt{1-x}} = -2\sqrt{1-x} \Big|_0^\xi = 2(1-\sqrt{1-\xi}),$ откуда следует, что существует конечный $\lim_{\xi \to 1-0} F(\xi) = 2$. В этом случае говорят, что несобственный интеграл от функции $\frac{1}{\sqrt{1-x}}$ на промежутке [0,1) равен 2, т. е. $\int\limits_0^1 \frac{dx}{\sqrt{1-x}} = 2$. Число 2 можно интерпретировать как площадь заштрихованной на рис. 38.2 фигуры G.

Обратимся к несобственному интегралу на конечном промежутке. Пусть функция f(x) определена на конечном промежутке [a,b), интегрируема на отрезке $[a,\xi]$ при любом $\xi \in [a,b)$.

Если существует конечный $\lim_{\xi \to b-0} \int_a^\zeta f(x) \, dx = A$, то говорят, что несобственный интеграл от функции f(x) на промежутке [a,b) равен A. Его обозначают символом $\int_a^b f(x) \, dx$. Таким образом, по определению

$$y = \frac{1}{\sqrt{1-x}}$$

$$O$$

$$1$$

$$x$$

$$\int_{a}^{b} f(x) \, dx = \lim_{\xi \to b-0} \int_{a}^{\xi} f(x) \, dx. \tag{5}$$

В случае существования конечного предела (5) несобственный интеграл $\int_a^b f(x) \, dx$ называют cxodsumumcs, в противном случае — pacxodsumumcs; символ $\int_a^b f(x) \, dx$ употребляют как в случае сходимости, так и в случае расходимости интеграла.

Аналогично, если функция f(x) определена на конечном промежутке (a,b], интегрируема на отрезке $[\xi,b]$ при любом $\xi\in(a,b]$, то символ $\int\limits_a^b f(x)\,dx$ называют несобственным интегралом от функции f на промежутке (a,b].

Если существует конечный $\lim_{\xi \to a+0} \int_{\xi}^{0} f(x) \, dx = A$, то говорят, что несобственный интеграл сходится и равен A, т. е.

$$\int_{a}^{b} f(x) dx = \lim_{\xi \to a+0} \int_{\xi}^{b} f(x) dx.$$
 (6)

Если функция $\int\limits_{\xi}^{b} f(x)\,dx$ не имеет конечного предела при $\xi \to a+0$, то несобственный интеграл называют расходящимся.

в) Другие типы несобственных интегралов. Если функция f определена на конечном интервале (a,b), интегрируема по Риману на отрезке $[\xi,\eta]$ при любых ξ,η таких, что $a<\xi\leqslant\eta< b$, то сходящийся несобственный интеграл от функции f на промежутке (a,b) определяется формулой

$$\int_{a}^{b} f(x) dx = \lim_{\begin{subarray}{l}\xi \to a+0\\ \eta \to b-0\end{subarray}} \int_{\xi}^{\eta} f(x) dx \tag{7}$$

при условии, что предел в правой части (7) существует и конечен.

Если функция f определена на отрезке [a,b], за исключением точки $c \in (a,b)$, и интегрируема на отрезках $[a,\xi]$ и $[\eta,b]$ при любых ξ , η таких, что $a \leqslant \xi < c < \eta \leqslant b$, то несобственный интеграл от функ-

ции f на промежутке [a,b] обозначается $\int\limits_a^b f(x)\,dx$ и определяется равенством

$$\int_{a}^{b} f(x) dx = \lim_{\xi \to c - 0} \int_{a}^{\xi} f(x) dx + \lim_{\eta \to c + 0} \int_{\eta}^{b} f(x) dx$$
 (8)

при условии, что оба предела в правой части (8) существуют и конеч-

ны. В этом случае интеграл $\int_{a}^{b} f(x) dx$ называют *сходящимся* и пишут

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

2. Свойства и вычисление несобственных интегралов. Бу-

дем рассматривать несобственные интегралы вида $\int\limits_a^b f(x)\,dx,$ предполагая, что:

- а) функция f определена на промежутке [a,b), где a конечная точка, b либо конечная точка, либо символ $+\infty$;
- б) функция f интегрируема по Риману на отрезке $[a,\xi]$ при любом $\xi \in [a,b).$

Согласно определению сходящегося несобственного интеграла

$$\int\limits_a^b f(x)\,dx = \lim_{\xi \to b - 0} \int\limits_a^\xi f(x)\,dx, \quad \text{если} \quad b \neq +\infty,$$

$$\int\limits_a^{+\infty} f(x)\,dx = \lim_{\xi \to +\infty} \int\limits_a^\xi f(x)\,dx, \quad \text{если} \quad b = +\infty.$$

а) Линейность интеграла.

Утверждение 1. Если сходятся несобственные интегралы от функций f(x) и g(x) на промежутке [a,b), то при любых $\lambda,\mu\in R$ сходится интеграл от функции $\lambda f(x)+\mu g(x)$ на том же промежутке и выполняется равенство

$$\int_{a}^{b} (\lambda f(x) + \mu g(x)) dx = \lambda \int_{a}^{b} f(x) dx + \mu \int_{a}^{b} g(x) dx.$$
 (9)

 \circ Для любого $\xi \in [a,b)$ в силу свойств интеграла Римана справедливо равенство

$$\int_{a}^{\xi} (\lambda f(x) + \mu g(x)) dx = \lambda \int_{a}^{\xi} f(x) dx + \mu \int_{a}^{\xi} g(x) dx,$$

правая часть которого имеет по условию конечный предел при $\xi \to b-0$, откуда следует существование предела при $\xi \to b-0$ в левой части и справедливость формулы (9). \bullet

б) Формула Ньютона-Лейбница.

Утверждение 2. Если функция f(x) непрерывна на промежутке [a,b) и если F(x) — первообразная для функции f(x), то несобственный интеграл $\int\limits_a^b f(x)\,dx$ сходится тогда и только тогда, когда существует конечный

$$\lim_{\xi \to b-0} F(\xi) = F(b-0), \tag{10}$$

причем

$$\int_{a}^{b} f(x) dx = F(b-0) - F(a). \tag{11}$$

в) Интегрирование по частям.

Утверждение 3. Пусть функции u(x), v(x) определены на промежутке [a,b), имеют непрерывные производные на отрезке $[a,\xi]$ для любого $\xi \in (a,b).$ Если существует конечный предел

$$\lim_{\xi \to b-0} [u(\xi) \, v(\xi)] = u(b-0) \, v(b-0) = uv \Big|_{\xi=b-0}$$
 (12)

u интеграл $\int\limits_a^b vu' \, dx$ сходится, то и интеграл $\int\limits_a^b uv' \, dx$ сходится и спра-

ведлива формула интегрирования по частям

$$\int_{a}^{b} uv' \, dx = uv \Big|_{a}^{b-0} - \int_{a}^{b} vu' \, dx. \tag{13}$$

г) Замена переменного.

Утверждение 4. Если функция f(x) непрерывна на промежутке [a,b), a функция $x=\varphi(t)$ непрерывно дифференцируема на промежутке $[\alpha,\beta),$ строго возрастает и удовлетворяет условиям $\varphi(\alpha)=a,$ $\lim_{t\to\beta-0}\varphi(t)=b,$ то справедлива формула замены переменного

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt$$
 (15)

при условии, что хотя бы один из интегралов в (15) сходится.

д) Интегрирование неравенств.

Утверждение 5. Если сходятся интегралы $\int\limits_a^b f(x)\,dx\,u\int\limits_a^b g(x)\,dx$ u для всех $x\in [a,b)$ выполняется неравенство

$$f(x) \leqslant g(x),$$

mo

$$\int_{a}^{b} f(x) dx \leqslant \int_{a}^{b} g(x) dx. \tag{17}$$

Неравенство (17) получается из неравенства

$$\int_{a}^{\xi} f(x) \, dx \leqslant \int_{a}^{\xi} g(x) \, dx, \quad a \leqslant \xi < b,$$

с помощью перехода к пределу при $\xi \to b - 0$.

3. Несобственные интегралы от неотрицательных функций. В пп. 3–5 все утверждения формулируются и доказываются для интегралов того же типа, что и в п. 2.

Теорема 1. Если для всех $x \in [a,b)$ выполняется неравенство

$$f(x) \geqslant 0,\tag{18}$$

то для сходимости несобственного интеграла $\int_{-\infty}^{\infty} f(x) dx$ необходимо и достаточно, чтобы функция $\int\limits_{a}^{\varsigma}f(x)\,dx$ была ограничена сверху, т. е.

$$\exists C \colon \forall \xi \in [a,b) \to \int_{a}^{\xi} f(x) \, dx \leqslant C. \tag{19}$$

О Заметим, что $F(\xi) = \int f(x) \, dx$ — возрастающая функция. В самом деле, из условия (18) и свойств интеграла Римана следует, что

$$\forall \xi_1, \xi_2 \in [a, b) \colon \xi_2 > \xi_1 \to F(\xi_2) - F(\xi_1) = \int_{\xi_1}^{\xi_2} f(x) \, dx \geqslant 0.$$

Если интеграл $\int\limits_a^b f(x)\,dx$ сходится, т. е. существует конечный $\lim_{\xi\to b-0}F(\xi)=\int\limits_a^b f(x)\,dx=J$, то по теореме о пределе монотонной функции $J=\sup_{a\leqslant \xi< b}F(\xi)$, откуда согласно определению точной верхней грани следует, что для всех $\xi \in [a,b)$ справедливо неравенство

$$\int_{a}^{\xi} f(x) \, dx \leqslant \int_{a}^{b} f(x) \, dx,$$

т. е. выполняется условие (19).

Обратно: если выполняется условие (19), то в силу теоремы о пределе монотонной функции (F — возрастающая функция) существует конечный

$$\lim_{\xi \to b \to 0} F(\xi) = F(b - 0) = \sup_{a \le \xi < b} F(\xi),$$

 $\lim_{\xi\to b-0}F(\xi)=F(b-0)=\sup_{a\leqslant \xi< b}F(\xi),$ т. е. интеграл $\int\limits_a^bf(x)\,dx$ сходится. ullet

Теорема 2 (теорема сравнения). Если для всех $x \in [a,b)$ выполняется условие

$$0 \leqslant f(x) \leqslant g(x),\tag{20}$$

mo:

- а) из сходимости интеграла $J_2=\int\limits_a^bg(x)\,dx$ следует сходимость интеграла $J_1=\int\limits_a^bf(x)\,dx;$
- б) из расходимости интеграла J_1 следует расходимость интеграла J_2 .
- O а) Из условия (20) в силу правила оценки интеграла Римана следует, что

$$\int_{a}^{\xi} f(x) dx \leqslant \int_{a}^{\xi} g(x) dx, \quad \xi \in [a, b).$$
 (21)

Если сходится интеграл $\int\limits_a^b g(x)\,dx$, т. е. существует конечный $\lim_{\xi \to b-0} \int\limits_a^\xi g(x)\,dx = J_2$, где $J_2 = \sup_{a \leqslant \xi < b} \int\limits_a^\xi g(x)\,dx$ (теорема 1), то из (21)

следует, что для любого $\xi \in [a,b)$ выполняется неравенство $\int\limits_a^\xi f(x)\,dx \leqslant$

- $\leq J_2$. Таким образом, для неотрицательной функции f(x) выполняется условие (19), и по теореме 1 интеграл J_1 сходится.
- б) Если интеграл J_1 расходится, то интеграл J_2 тоже должен расходиться: в случае сходимости интеграла J_2 сходился бы по доказанному выше интеграл J_1 . \bullet

Следствие. Если для всех $x \in [a,b)$ выполняются условия

$$f(x) > 0, \quad g(x) > 0,$$
 (22)

и, кроме того,

$$f(x) \sim g(x) \quad npu \quad x \to b - 0,$$
 (23)

то интегралы $J_1=\int\limits_a^b f(x)\,dx\,$ и $J_2=\int\limits_a^b g(x)\,dx\,$ сходятся или расходятся одновременно.

4. Критерий Коши сходимости несобственных интегралов.

Tеорема 3. Для cxo димости несобственного интеграла

$$J = \int_{a}^{b} f(x) \, dx$$

необходимо и достаточно, чтобы выполнялось условие Коши

$$\forall \varepsilon > 0 \ \exists \, \delta_{\varepsilon} \in (a, b) \colon \, \forall \xi', \xi'' \in (\delta_{\varepsilon}, b) \to \left| \int_{\xi'}^{\xi''} f(x) \, dx \right| < \varepsilon.$$
 (27)

$$F(\xi) = \int_{a}^{\xi} f(x) dx, \quad a \leqslant \xi < b.$$
 (28)

Тогда сходимость интеграла J означает существование конечного предела функции $F(\xi)$ при $\xi \to b-0$, а этот предел, согласно критерию Коши для функций, существует в том и только том случае, когда функция F удовлетворяет условию

$$\forall \varepsilon > 0 \ \exists \widetilde{\delta}_{\varepsilon} \in (a, b) \colon \forall \xi', \xi'' \in (\widetilde{\delta}_{\varepsilon}, b) \to |F(\xi'') - F(\xi')| < \varepsilon. \tag{29}$$

Из формулы (28) в силу свойств интеграла следует, что

$$F(\xi'') - F(\xi') = \int_{\xi'}^{\xi''} f(x) dx.$$

Поэтому условие (29), являясь необходимым и достаточным для сходимости интеграла J, выполняется тогда и только тогда, когда выполняется условие (27), если взять $\widetilde{\delta}_{\varepsilon} = \delta_{\varepsilon}$.

- **5. Абсолютно и условно сходящиеся интегралы.** Несобственный интеграл $J = \int\limits_a^b f(x) \, dx$ называется:
- а) абсолютно сходящимся, если сходится интеграл $\widetilde{J} = \int_a^b |f(x)| \, dx;$ в этом случае говорят, что функция f абсолютно интегрируема на промежутке [a,b);
- б) условно сходящимся, если интеграл J сходится, а интеграл \widetilde{J} расходится.

Tеорема 4. Если несобственный интеграл \widetilde{J} сходится, то интеграл J также сходится и выполняется неравенство

$$\left| \int_{a}^{b} f(x) \, dx \right| \leqslant \int_{a}^{b} |f(x)| \, dx. \tag{32}$$

О Из сходимости интеграла \widetilde{J} по теореме 3 (необходимое условие) следует, что для него выполняется условие Коши (27), т. е.

$$\forall \varepsilon > 0 \ \exists \, \delta_{\varepsilon} \in (a,b) \colon \, \forall \xi', \xi'' \in (\delta_{\varepsilon},b) \to \left| \int_{\xi'}^{\xi''} |f(x)| \, dx \, \right| < \varepsilon. \tag{33}$$

По определению несобственного интеграла J функция f(x) интегрируема по Риману на отрезке с концами ξ' , ξ'' , и поэтому функция |f(x)| также интегрируема по Риману на этом отрезке. Применяя правило оценки интеграла, получаем

$$\left| \int_{\xi'}^{\xi''} f(x) \, dx \right| \leqslant \left| \int_{\xi'}^{\xi''} |f(x)| \, dx \right|,$$

откуда в силу (33) следует, что функция f удовлетворяет условию Коши (27), и по теореме 2 (достаточное условие) сходится интеграл J. Для доказательства неравенства (32) воспользуемся неравенством

$$\left| \int_{a}^{\xi} f(x) \, dx \right| \leqslant \int_{a}^{\xi} |f(x)| \, dx, \tag{34}$$

справедливым при любом $\xi \in [a,b)$. В силу сходимости интегралов J и \widetilde{J} существуют пределы при $\xi \to b-0$ левой и правой частей (34), равные соответственно J и \widetilde{J} . Переходя в (34) к пределу при $\xi \to b-0$, получаем неравенство (32). lacktriangle

При исследовании сходимости интегралов часто может оказаться полезным следующее утверждение.

Теорема 5. Если функция g(x) абсолютно интегрируема на промежутке [a,b), m. e. несобственный интеграл $\widetilde{J} = \int\limits_a^b |g(x)| \, dx$ сходится, то несобственные интегралы $J_1 = \int\limits_a^b f(x) \, dx$ и $J_2 = \int\limits_a^b (f(x) + g(x)) \, dx$ либо оба абсолютно сходятся, либо оба условно сходятся, либо оба расходятся.

Теорему 5 коротко можно сформулировать так: прибавление (вычитание) под знаком интеграла абсолютно интегрируемой функции не влияет ни на сходимость интеграла, ни на характер сходимости (абсолютная, условная сходимость).

6. Признаки Дирихле и Абеля сходимости интегралов.

Теорема 6 (признак Дирихле). Пусть функция f непрерывна, а функция g имеет непрерывную производную на промежутке $[a, +\infty)$ и выполняются следующие условия:

1) функция $F(x)=\int\limits_a^x f(t)\,dt$ (первообразная для f) ограничена на $[a,+\infty),\ m.\ e.$

$$\exists M > 0 \colon \forall x \in [a, +\infty) \to |F(x)| \leqslant M; \tag{36}$$

2) функция g'(x) не меняет знака на промежутке $[a, +\infty)$, т. е.

$$g'(x) \leqslant 0 \tag{37}$$

или

$$g'(x) \geqslant 0; \tag{38}$$

$$\lim_{x \to +\infty} g(x) = 0. \tag{39}$$

Тогда интеграл

$$J = \int_{a}^{+\infty} f(x)g(x) dx \tag{40}$$

сходится.

О Покажем, что функция fg удовлетворяет на промежутке $[a, +\infty)$ условию Коши (27). Согласно формуле интегрирования по частям для $\xi' > a, \, \xi'' > a$ получаем

$$\int_{\xi'}^{\xi''} f(x) g(x) dx = F(x) g(x) \Big|_{\xi'}^{\xi''} - \int_{\xi'}^{\xi''} F(x) g'(x) dx.$$
 (41)

Из условия (36) следует, что

$$\left| (Fg) \right|_{\xi'}^{\xi''} \right| \le M(|g(\xi')| + |g(\xi'')|),$$
 (42)

$$\left| \int_{\xi'}^{\xi''} F(x) g'(x) dx \right| \leqslant M \left| \int_{\xi'}^{\xi''} |g'(x)| dx \right|. \tag{43}$$

Заметим, что |g'(x)| = -g'(x), если выполнено условие (37), и |g'(x)| = g'(x), если выполнено условие (38). Поэтому в первом случае

$$J_1=\int\limits_{\xi'}^{\xi''}|g'(x)|\,dx=-\int\limits_{\xi'}^{\xi''}g'(x)\,dx=g(\xi')-g(\xi''),$$
 а во втором случае $J_1=g(\xi'')-g(\xi').$ Следовательно,

$$|J_1| = \left| \int_{\xi'}^{\xi''} |g'(x)| \, dx \right| = |g(\xi'') - g(\xi')| \leqslant |g(\xi')| + |g(\xi'')|. \tag{44}$$

Поэтому из равенства (41), используя оценки (42)–(44), получаем неравенство

$$\left| \int_{\xi'}^{\xi''} f(x)g(x) \, dx \right| \leqslant 2M(|g(\xi')| + |g(\xi'')|). \tag{45}$$

Согласно условию (39)

$$\forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > a \colon \forall x \in [\delta_{\varepsilon}, +\infty) \to |g(x)| < \frac{\varepsilon}{4M}.$$
 (46)

Поэтому для $\xi',\,\xi''_{...}\in[\delta_{\varepsilon},+\infty)$ из (45) и (46) следует, что

$$\left| \int_{\varepsilon'}^{\varepsilon''} f(x) g(x) dx \right| < 2M \left(\frac{\varepsilon}{4M} + \frac{\varepsilon}{4M} \right) = \varepsilon,$$

т. е. функция fg удовлетворяет на промежутке $[a, +\infty)$ условию Коши (27), и по теореме 3 интеграл (40) сходится. \bullet

Следствие (признак Абеля). Если функция f непрерывна на промежутке $\Delta = [a, +\infty)$, интеграл $J = \int\limits_a^{+\infty} f(x) \, dx$ сходится, а функция g(x) ограничена на Δ и ее производная g'(x) не меняет знака на Δ (удовлетворяет условию (37) или (38)), то интеграл (40) сходится.