学籍番号:

右図のように、ベース座標系 Σ_B から X_B 軸に沿って長さ L_1 の リンクがあり、 θ_1 だけ関節を回転した後に、長さ L_2 だけ伸 びたリンクの先にエンドエフェクタ座標系 Σ_E があるロボット アームを考える。 $L_1=1$ m, $\theta_1=\frac{\pi}{\epsilon}$ rad, $L_2=0.8$ m のとき, 以 下の問いに答えよ。

問 1. $Σ_E$ で見た座標を $Σ_B$ で見た座標に変換する同次変換行列 pT_E を求めよ。

間 2. Σ_E から見た点 P の位置ベクトルが E $p=[0.4 0.2]^T$ m のとき、これを Σ_B で見た位置

ベクトル
$$^{B}p$$
を、 $^{B}T_{E}$ を用いて求めよ。

$$\begin{bmatrix}
5p \\
1
\end{bmatrix} = BT \begin{bmatrix}
5p \\
1
\end{bmatrix}$$

$$= \begin{bmatrix}
\frac{73}{2} & -\frac{1}{2} & 0.4 & 0.4 \\
\frac{1}{2} & \frac{73}{2} & 0.4 & 0.2
\end{bmatrix}$$

$$= \begin{bmatrix}
\sqrt{3} & -\frac{1}{2} & 0.4 & 0.2 \\
0 & 0 & 1
\end{bmatrix}$$

$$= \begin{bmatrix}
\sqrt{3} & 0.4 + (-\frac{1}{2}) \cdot 0.2 + (0.4 | 3 + 1) \cdot 1 \\
\frac{1}{2} \cdot 0.4 + (\frac{1}{2}) \cdot 0.2 + (0.4 | 3 + 1) \cdot 1
\end{bmatrix}$$

$$\begin{bmatrix}
\frac{1}{2} \cdot 0.4 + (\frac{1}{2}) \cdot 0.2 + (0.4 | 3 + 1) \cdot 1 \\
0 \cdot 0.4 - 0.2 + (1 + 1)
\end{bmatrix}$$

$$\begin{bmatrix}
0 \cdot 2 \cdot 73 - 0.1 + 0.4 - 73 + 1 \\
0 \cdot 2 \cdot 73 + 0.1 - 73 + 0.4
\end{bmatrix}$$

$$\begin{bmatrix}
0 \cdot 2 \cdot 73 - 0.1 + 0.4 - 73 + 1 \\
0 \cdot 2 \cdot 73 + 0.1 - 73 + 0.4
\end{bmatrix}$$

$$\begin{bmatrix}
0 \cdot 2 \cdot 73 - 0.1 + 0.4 - 73 + 1 \\
0 \cdot 2 \cdot 73 + 0.1 - 73 + 0.4
\end{bmatrix}$$

$$\begin{bmatrix}
0 \cdot 2 \cdot 73 - 0.1 + 0.4 - 73 + 1 \\
0 \cdot 2 \cdot 73 + 0.1 - 73 + 0.4
\end{bmatrix}$$

$$\begin{bmatrix}
0 \cdot 2 \cdot 73 - 0.1 + 0.4 - 73 + 1 \\
0 \cdot 2 \cdot 73 + 0.1 - 73 + 0.4
\end{bmatrix}$$

The second of th

