HIGEX HUMBETDeDarmell	Index number	Department
-----------------------	--------------	------------

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI COLLEGE OF ENGINEERING

BSc. (Mechanical Engineering) Mid sem Examination

EE 252 : ELECTRICAL ENGINEERING MACHINES MARCH, 2019

Time allowed: **ONE HOUR**

INSTRUCTIONS FOR CANDIDATES:

- 1. Answer **ALL** questions.
- 2. Circle your answer on the question paper and on the Scannable sheet.

CAUTION: DO NOT TAKE AWAY ANY EXAMINATION MATERIAL PROVIDED TO YOU, UNLESS YOU ARE TOLD TO DO SO.

Two parallel plates a an area of 0.02m^2	re arranged to maintain	a potential differer	nce e of 2x10 ⁴ V. Each plate has
1. Calculate the capac Given that ε_0 =8.85x1	itance between the plate 0^{-12} $\varepsilon_r = 1$	es if the spacing bet	ween the plates is 1cm,
a) 15.8x10 ⁻¹² F	b)17.7x10 ⁻¹² F	c) 18.9x10 ⁻¹²	F d)None of the above
2.Find the energy con	nverted to mechanical for	orm as the plate spa	acing is reduced from 1 cm to 0.5
cm			
a)) 23.9x10 ⁻²⁰ N	b)) 38.7x10 ⁻²⁰ N	c) 35.4x10 ⁻²⁰ N	d)None of the above
The core diameter of stationary. The gap far as very high. Take μ_0	of the relay is 20 mm and aces may be taken as part	and the gap length rallel and the perme	000-turn coil resistance is 5.5 kΩ is 1.5 mm, the armature being ability of the ferromagnetic parts
a) 0.04A	b)0.004A	c)0.05A	d)None of the above
4.Determine the mm	f of the magnetic systen	n	
a)40.0 At	b) 80.0 At	c) 120.0 At	d)None of the above
5.Determine the air g	ap flux density		
a) $0.0107 Wb/m^2$	b) 0.00107Wb/m ²	c) 0.107Wb/m ²	d)None of the above
6.Determine the coil	inductance		
a)0.804 H	b) 0.084H	c) 0.656H	d)None of the above
7. Determine the pull	on the armature.		
a)0.95N	b) 0.88N	c) 0.69N	d)None of the abov
8.A long shunt cor	npound D.C. motor runs	s at full-load speed o	of 1000 rpm. If the current through
its series field windin	gs is caused to be zero,	then its full-load sp	eed
a)becomes more than	ı 1000 rpm	b)re	mains 1000 rpm
c)becomes less than	1000 rpm	d)be	comes 1100 rpm

Index number.	l	Department	
9. In a d.c. series	generator, the termina	al voltage with increas	se in load
a)decreases		b) remains unch	nanged
c) Increases		d) varies with drooping characteristics	
10.Armature wind	ling is one in which w	orking	
a) flux is pro	oduced by field curren	t b)e.m.f	is produced by the working flux
c) flux is pro	oduced by the working	g e.m.f. d) e.m.f	is produced by the leakage flux
The armature of	a d.c machine has a re	esistance of 0.1 Ω and	is connected to a 230 V supply.
Use the abov	e information to answ	ver questions 11 and	12.
11.Calculate the gen	erated E.M.F when it i	s running as a general	tor giving 80A.
a)218V	b)265V	c) 238V	d)None of the above
12.Calculate the	generated E.M.F wher	n it is running as a mo	tor taking 60A.
a)190V	b)245V	c)224V	d)None of the above
armature circuit		e winding is wave –co	current of 50A .The resistance of the onnected with 888 conductors and the
a)567rev/min	b)626rev/min	c)545 rev/min	d)None of the above
			ate the approximate speed when the v flux is to be 0.7 of the original flux
a)367rev/min	b)648 rev/min	c)559 rev/min	d) None of the above
15.A D.C. shunt mo	_	certain load. The effec	ct of adding an external resistance in
a)reduce the mot	or speed	b) reduc	e the armature current of the motor
c) increase the m	otor speed	d) stop t	he motor

16.Wl	nich of the following explains wh	ny the ar	mature current	of a shunt motor decreases as the
motor	accelerates?			
b)	The high speed of the motor wil	l cause t	the flux in the m	otor to decrease.
c)	The supply voltage decreases b	ecause t	he back emf has	increased.
d)	The current decreases because t	he motor	r cannot take up	any load.
e)	The current decreases because t	he back	emf has increase	ed
17.DC	S series motor should never be sw	itched or	n at no load, bed	rause
a)	the field current is initially zero	b)	the motor does	not pick up
c)	the speed becomes dangerously	highd)	it will take lon	g to accelerate
avera	<u>-</u>			gnetic flux and speed are such that luctor is capable of carrying a full
Us	se the above information to answ	er quest	ions 18 to 21	
18.Find	d the terminal voltage on no load	in volts i	if the armature i	s lap-connected.
a)162	b) 153	c)1	132	d)None of the above
19.Fin	d the output current on full load i	n amper	es if the armatu	re winding is lap-connected.
a)800	b)750 c)	700	d)N	one of the above
20.Fin	d the terminal voltage on no load	in volts	if the armature	winding is wave-connected.
a)556	b)544		c)528	d)None of the above
21.Fin	nd the output current on full load i	n amper	es if the armatu	re is wave-connected.
a)200	b)180		c)140	d)None of the above
22. A I	D.C shunt generator when driven	without a	any excitation sl	nowed an open circuit voltage of
12 vol	ts .When the field winding was e	xcited, tl	he voltage dropp	ped to zero . It happened because
a) The	e field resistance was higher than	the critic	cal resistance	
b) The	ere was break in the armature circ	uit		

Index numberDepartment			
c) Field winding	g was wrongly connecte	ed	
d) There was no	residual magnetism in	the field circuit	
	t motor runs at a rated speed would tend to	peed if its field circu	it gets open -circuited, then soon after
a) decrease	b) remain ungagged	c) increase d) fl	uctuate around its previous speed
-	nature is wound with 56. The current in each cond		riven at 800rev/min, the flux per pole
Use the abov	ve information to answe	er questions 24 to 26	6.
24.Calculate the	armature if the conduct	ors are connected wa	ave.
a)240A	b)60A	c)120A	d)None of the above
25.Calculate the	emf generated in the arr	mature if the conduc	tors are connected wave.
a)300.8V	b) 358.0V	c)420V	d)None of the above
26.Calculate the	e power generated in the	e armature if the con-	ductors are connected wave.
a)36,096W	b) 21,480W	c)100,800W	d)None of the above
27.Which of the	e following is NOT TR	UE about an electric	al machine?
b)It consists of	ectrical energy into med stationary and rotational d stator can be excited.	= -	
d)It is only the	stator that is always exc	ited.	
28. Which of the	e following describes a	critical field resistan	ce of self excited d.c. machines?
a) It is the max achieved.	imum total resistance o	of the field circuit ab	pove which self-excitation will not be
b) It is the tota	l resistance in the armat	ure and field circuits	3.
c) Its value dec	creases with increasing	speed of the machine	2.
d)It is the total	resistance of the field c	ircuit when the mach	nine is operating at full load.

29. Which of the following is **NOT** among the requirements for a d.c. machine to be self excited?

- a)The critical field resistance must not be exceeded.
- b)The speed of the machine must be below a critical value.
- c)There should be a residual magnetic field in the machine.
- d)The residual magnetic field and the generated field must add up.

30. The graph below is an external characteristic of ad.c. generator.

a) Separately excited <u>b)</u> Series wound c) Shunt wound d) Compound wound

Index numberDepartment.....

FORMULA SHEET

$$S = \frac{l}{\mu_0 \mu_r A} \quad ; \quad \Phi = \frac{mmf}{reluctan ce} = \frac{NI}{S} \quad ; \quad L = \frac{N\Phi}{I} = \frac{N^2}{S} \quad ; \quad W_{fld} = \frac{1}{2}LI^2$$

$$mmf = Hl = IN$$
 ; $B = \mu H = \mu_r \mu_0 H$; $H = \frac{B}{\mu_r \mu_0}$; $I = \frac{Hl}{N}$