MATH 308 D200, Fall 2019

5. Slack variables and first look at tableaus

(based on notes from Dr. J. Hales, Dr. L. Stacho, and Dr. L. Godyyn)

Dr. Masood Masjoody

SFU Burnaby

1/5

First example again

Maximize the value f(x, y) = x + y subject to constraints

- (1) $y-x\leqslant 1$
- (2) $x + 6y \le 15$
- (3) $4x y \leq 10$
- (4) $x \ge 0$
- (5) $y \ge 0$

First example again

Maximize the value f(x, y) = x + y subject to constraints

- (1) $y x \leq 1$
- (2) $x + 6y \le 15$
- (3) $4x y \leq 10$
- $(4) x \geqslant 0$
- (5) $y \ge 0$

Geometric intuition:

(a) Start at extreme point (0,0)

First example again

Maximize the value f(x, y) = x + y subject to constraints

- (1) $y x \leq 1$
- (2) $x + 6y \leq 15$
- (3) $4x y \leq 10$
- (4) $x \ge 0$
- (5) $y \ge 0$

- (a) Start at extreme point (0,0)
- (b) Choose an incident edge and move along it to reach better extreme point

First example again

Maximize the value f(x, y) = x + y subject to constraints

- (1) $y x \leq 1$
- (2) $x + 6y \leq 15$
- (3) $4x y \leq 10$
- (4) $x \ge 0$
- (5) $y \ge 0$

- (a) Start at extreme point (0,0)
- (b) Choose an incident edge and move along it to reach better extreme point

First example again

Maximize the value f(x, y) = x + y subject to constraints

- (1) $y x \leq 1$
- (2) $x + 6y \leq 15$
- (3) $4x y \leq 10$
- (4) $x \ge 0$
- (5) $y \ge 0$

- (a) Start at extreme point (0,0)
- (b) Choose an incident edge and move along it to reach better extreme point

First example again

Maximize the value f(x, y) = x + y subject to constraints

- (1) $y x \leq 1$
- (2) $x + 6y \leq 15$
- (3) $4x y \leq 10$
- (4) $x \ge 0$
- (5) $y \ge 0$

- (a) Start at extreme point (0,0)
- (b) Choose an incident edge and move along it to reach better extreme point

First example again

Maximize the value f(x, y) = x + y subject to constraints

- (1) $y x \leq 1$
- (2) $x + 6y \le 15$
- (3) $4x y \leq 10$
- $(4) x \geqslant 0$
- (5) $y \geqslant 0$

- (a) Start at extreme point (0,0)
- (b) Choose an incident edge and move along it to reach better extreme point

First example again

Maximize the value f(x, y) = x + y subject to constraints

- (1) $y x \leq 1$
- (2) $x + 6y \leq 15$
- (3) $4x y \leq 10$
- $(4) x \geqslant 0$
- (5) $y \ge 0$

Geometric intuition:

- (a) Start at extreme point (0,0)
- (b) Choose an incident edge and move along it to reach better extreme point
- (c) Repeat (b) until done

department of mathematics

First example again

Maximize the value f(x, y) = x + y subject to constraints

- (1) $y x \leq 1$
- (2) $x + 6y \le 15$
- (3) $4x y \leq 10$
- $(4) \times \geqslant 0$
- (5) $y \ge 0$

- (a) Start at extreme point (0,0)
- (b) Choose an incident edge and move along it to reach better extreme point
- (c) Repeat (b) until done

First example again

Maximize the value f(x, y) = x + y subject to constraints

- (1) $y x \leq 1$
- (2) $x + 6y \le 15$
- (3) $4x y \leq 10$
- $(4) x \geqslant 0$
- (5) $y \ge 0$

- (a) Start at extreme point (0,0)
- (b) Choose an incident edge and move along it to reach better extreme point
- (c) Repeat (b) until done

First example again

Maximize the value f(x, y) = x + y subject to constraints

- (1) $y-x\leqslant 1$
- (2) $x + 6y \le 15$
- (3) $4x y \leq 10$
- (4) $x \ge 0$
- (5) $y \ge 0$

Geometric intuition:

- (a) Start at extreme point (0,0)
- (b) Choose an incident edge and move along it to reach better extreme point
- (c) Repeat (b) until done

department of mathematics

First example again

Maximize the value f(x, y) = x + y subject to constraints

- (1) $y x \leq 1$
- (2) $x + 6y \le 15$
- (3) $4x y \leq 10$
- (4) $x \ge 0$
- (5) $y \ge 0$

Geometric intuition:

- (a) Start at extreme point (0,0)
- (b) Choose an incident edge and move along it to reach better extreme point
- (c) Repeat (b) until done

$$\textbf{(0,0)}\rightarrow\textbf{(5/2,0)}\rightarrow\textbf{(3,2)}$$

or

$$(0,0)\to (0,1)\to (9/7,16/7)\to (3,2)$$

department of mathematics

First example again

Maximize the value f(x, y) = x + y subject to constraints

- (1) $y x \leq 1$
- (2) $x + 6y \le 15$
- (3) $4x y \leq 10$
- (4) $x \ge 0$
- (5) $y \ge 0$

- (a) Start at extreme point (0,0)
- (b) Choose an incident edge and move along it to reach better extreme point
- (c) Repeat (b) until done

$$\textbf{(0,0)}\rightarrow\textbf{(5/2,0)}\rightarrow\textbf{(3,2)}$$

$$(0,0)\to (0,1)\to (9/7,16/7)\to (3,2)$$

First example again

Maximize the value f(x, y) = x + y subject to constraints

- (1) $y x \leq 1$
- (2) $x + 6y \le 15$
- (3) $4x y \leq 10$
- (4) $x \ge 0$
- (5) $y \ge 0$

Geometric intuition:

- (a) Start at extreme point (0,0)
- (b) Choose an incident edge and move along it to reach better extreme point
- (c) Repeat (b) until done

$$\textbf{(0,0)}\rightarrow\textbf{(5/2,0)}\rightarrow\textbf{(3,2)}$$

or

$$(0,0)\to (0,1)\to (9/7,16/7)\to (3,2)$$

First example again

Maximize the value f(x, y) = x + y subject to constraints

- (1) $y x \leq 1$
- (2) $x + 6y \le 15$
- (3) $4x y \leq 10$
- (4) $x \ge 0$
- (5) $y \ge 0$

Geometric intuition:

- (a) Start at extreme point (0,0)
- (b) Choose an incident edge and move along it to reach better extreme point
- (c) Repeat (b) until done

$$\textbf{(0,0)}\rightarrow\textbf{(5/2,0)}\rightarrow\textbf{(3,2)}$$

or

$$(0,0)\to (0,1)\to (9/7,16/7)\to (3,2)$$

First example again

Maximize the value f(x, y) = x + y subject to constraints

- (1) $y x \leq 1$
- (2) $x + 6y \le 15$
- (3) $4x y \leq 10$
- (4) $x \ge 0$
- (5) $y \ge 0$

Geometric intuition:

- (a) Start at extreme point (0,0)
- (b) Choose an incident edge and move along it to reach better extreme point
- (c) Repeat (b) until done
- $(0,0) \to (5/2,0) \to (3,2)$

or

 $(0,0)\rightarrow (0,1)\rightarrow (9/7,16/7)\rightarrow (3,2)$

SFU department of mathematics

First example again

Maximize the value f(x, y) = x + y subject to constraints

- (1) $y x \leq 1$
- (2) $x + 6y \le 15$
- (3) $4x y \leq 10$
- (4) $x \ge 0$
- (5) $y \ge 0$

Geometric intuition:

- (a) Start at extreme point (0,0)
- (b) Choose an incident edge and move along it to reach better extreme point
- (c) Repeat (b) until done

$$(0,0) \to (5/2,0) \to (3,2)$$

or

$$(0,0)\to (0,1)\to (9/7,16/7)\to (3,2)$$

(9/7, 16/7)

x

(3, 2)

First example again

Maximize the value f(x, y) = x + y subject to constraints

- (1) $y x \leq 1$
- (2) $x + 6y \le 15$
- (3) $4x y \leq 10$
- (4) $x \ge 0$
- (5) $y \ge 0$

Geometric intuition:

- (a) Start at extreme point (0,0)
- (b) Choose an incident edge and move along it to reach better extreme point
- (c) Repeat (b) until done

$$\textbf{(0,0)}\rightarrow\textbf{(5/2,0)}\rightarrow\textbf{(3,2)}$$

or

$$(0,0)\to (0,1)\to (9/7,16/7)\to (3,2)$$

department of mathematics

First example again

Maximize the value f(x, y) = x + y subject to constraints

- (1) $y x \leq 1$
- (2) $x + 6y \le 15$
- (3) $4x y \leq 10$
- (4) $x \ge 0$
- (5) $y \ge 0$

Geometric intuition:

- (a) Start at extreme point (0,0)
- (b) Choose an incident edge and move along it to reach better extreme point
- (c) Repeat (b) until done

$$\textbf{(0,0)}\rightarrow\textbf{(5/2,0)}\rightarrow\textbf{(3,2)}$$

or

 $(0,0)\to (0,1)\to (9/7,16/7)\to (3,2)$

SFU department of mathematics

First example again

Maximize the value f(x, y) = x + y subject to constraints

- (1) $y x \leq 1$
- (2) $x + 6y \leq 15$
- (3) $4x y \leq 10$
- (4) $x \ge 0$
- (5) $y \ge 0$

Geometric intuition:

- (a) Start at extreme point (0,0)
- (b) Choose an incident edge and move along it to reach better extreme point
- (c) Repeat (b) until done

$$\textbf{(0,0)}\rightarrow\textbf{(5/2,0)}\rightarrow\textbf{(3,2)}$$

or

$$(0,0)\to (0,1)\to (9/7,16/7)\to (3,2)$$

First example again

Maximize the value f(x, y) = x + y subject to constraints

- (1) $y-x\leqslant 1$
- (2) $x + 6y \le 15$
- (3) $4x y \leq 10$
- (4) $x \ge 0$
- (5) $y \ge 0$

Geometric intuition:

- (a) Start at extreme point (0,0)
- (b) Choose an incident edge and move along it to reach better extreme point
- (c) Repeat (b) until done

$$\textbf{(0,0)}\rightarrow\textbf{(5/2,0)}\rightarrow\textbf{(3,2)}$$

or

 $(0,0)\to (0,1)\to (9/7,16/7)\to (3,2)$

SFU department of mathematics

First example again

Maximize the value f(x, y) = x + y subject to constraints

- (1) $y-x\leqslant 1$
- (2) $x + 6y \le 15$
- (3) $4x y \leq 10$
- (4) $x \ge 0$
- (5) $y \ge 0$

Geometric intuition:

- (a) Start at extreme point (0,0)
- (b) Choose an incident edge and move along it to reach better extreme point
- (c) Repeat (b) until done

$$\textbf{(0,0)}\rightarrow\textbf{(5/2,0)}\rightarrow\textbf{(3,2)}$$

or

 $(0,0)\to (0,1)\to (9/7,16/7)\to (3,2)$

SFU department of mathematics

First example again

Maximize the value f(x, y) = x + y subject to constraints

- (1) $y x \leq 1$
- (2) $x + 6y \le 15$
- (3) $4x y \leq 10$
- (4) $x \ge 0$
- (5) $y \ge 0$

Geometric intuition:

- (a) Start at extreme point (0,0)
- (b) Choose an incident edge and move along it to reach better extreme point
- (c) Repeat (b) until done

$$\textbf{(0,0)}\rightarrow\textbf{(5/2,0)}\rightarrow\textbf{(3,2)}$$

or

$$(0,0)\to (0,1)\to (9/7,16/7)\to (3,2)$$

department of mathematics

We introduce "slack variables" t_1, t_2, t_3 (one for each main constraint): x, y, t_3

$$\max f(x,y) = x + y - 0 \qquad f(x,y) = x + y - 0$$
(1) $-x + y \le 1 \qquad -x + y = 1$
(2) $x + 6y \le 15 \qquad x + 6y = 15$
(3) $4x - y \le 10 \qquad 4x - y = 10$
 $x, y \ge 0$

We introduce "slack variables" t_1, t_2, t_3 (one for each main constraint): $x, y, t_1, t_2, t_3 \ge 0$ At all times 2 of the 5 variables are independent, the other 3 are dependent.

$$\max f(x,y) = x + y - 0 \qquad f(x,y) = x + y - 0$$
(1) $-x + y \le 1$ $-x + y + t_1 = 1$
(2) $x + 6y \le 15$ $x + 6y + t_2 = 15$

(3)
$$4x - y \le 10$$
 $4x - y + t_3 = 10$
 $x, y \ge 0$

SFU faculty of scie

3/5

We introduce "slack variables" t_1, t_2, t_3 (one for each main constraint): $x, y, t_1, t_2, t_3 \ge 0$ At all times 2 of the 5 variables are independent, the other 3 are dependent. Initially: x, y are independent; ineqs. $\{x, y \ge 0\}$ are tight; extreme point is (x, y) = (0, 0)

$$\max f(x,y) = x + y - 0 \qquad f(x,y) = x + y - 0$$

$$(1) \quad -x + y \leqslant 1 \qquad -x + y + t_1 = 1$$

$$(2) \quad x + 6y \leqslant 15 \qquad x + 6y + t_2 = 15$$

$$(3) \quad 4x - y \leqslant 10 \qquad 4x - y + t_3 = 10$$

$$x, y \geqslant 0 \qquad x = 0$$

x, y are independent variables

We introduce "slack variables" t_1, t_2, t_3 (one for each main constraint): $x, y, t_1, t_2, t_3 \ge 0$ At all times 2 of the 5 variables are independent, the other 3 are dependent.

To move $(0,0) \mapsto (5/2,0)$, $x \ge 0$ will go "slack" (so x becomes dependent), and (3) will go "tight" ($t_3 \rightarrow 0$ and t_3 becomes independent)

max
$$f(x,y) = x + y - 0$$
 $f(x,y) = x + y - 0$

$$I(x,y) = x +$$

(1)
$$-x + y \le 1$$
 $-x + y + t_1 = 1$

(2)
$$x + 6y \le 15$$
 $x + 6y + t_2 = 15$

$$(3) \quad 4x - y \leqslant 10$$

$$4x - y + t_3 = 10$$

$$x, y \geqslant 0$$

$$x = 0$$

x, y are independent variables

We introduce "slack variables" t_1, t_2, t_3 (one for each main constraint): $x, y, t_1, t_2, t_3 \ge 0$ At all times 2 of the 5 variables are independent, the other 3 are dependent. To move $(0,0) \mapsto (5/2,0), x \ge 0$ will go "slack" (so x becomes dependent),

and (3) will go "tight" ($t_3 \to 0$ and t_3 becomes independent)

$$\max f(x,y) = x + y - 0$$
 $f(x,y) = x + y - 0$

(1)
$$-x+y \le 1$$
 $-x+y+t_1=1$

(2)
$$x + 6y \le 15$$
 $x + 6y + t_2 = 15$

(3)
$$4x - y \le 10$$
 $4x - y + t_3 = 10$
 $x, y \ge 0$ $x > 0$
 $y = 0$

x, y are independent variables

We introduce "slack variables" t_1, t_2, t_3 (one for each main constraint): $x, y, t_1, t_2, t_3 \ge 0$ At all times 2 of the 5 variables are independent, the other 3 are dependent.

To move $(0,0)\mapsto (5/2,0)$, $x\geq 0$ will go "slack" (so x becomes dependent), and (3) will go "tight" $(t_3\to 0)$ and t_3 becomes independent)

max
$$f(x,y) = x + y - 0$$
 $f(x,y) = x + y - 0$

$$-x+y+t_1=1$$

(1)
$$-x + y \le 1$$

(2) $x + 6y \le 15$

(2)
$$x + 6y \le 15$$
 $x + 6y + t_2 = 15$

$$(3) \quad 4x - y \leqslant 10$$

$$4x - y + t_3 = 10$$
$$x > 0$$

$$x, y \geqslant 0$$

x, y are independent variables

We introduce "slack variables" t_1, t_2, t_3 (one for each main constraint): $x, y, t_1, t_2, t_3 \ge 0$ At all times 2 of the 5 variables are independent, the other 3 are dependent. To move $(0,0) \mapsto (5/2,0), x \ge 0$ will go "slack" (so x becomes dependent),

and (3) will go "tight" ($t_3 \rightarrow 0$ and t_3 becomes independent)

$$\max f(x,y) = x + y - 0$$
 $f(x,y) = x + y - 0$

$$-x + y + t_1 = 1$$

$$(1) -x + y \leqslant 1$$

(2)
$$x + 6y \le 15$$
 $x + 6y + t_2 = 15$

$$(3) \quad 4x - y \leqslant 10$$

$$4x - y + t_3 = 10 \ (t_3 = 0)$$

$$x, y \geqslant 0$$

y = 0 x, t_3 are <u>independent</u> variables

 t_1, t_2, y are dependent variables

SFU faculty of science (0,0)

We introduce "slack variables" t_1, t_2, t_3 (one for each main constraint): $x, y, t_1, t_2, t_3 \ge 0$ At all times 2 of the 5 variables are independent, the other 3 are dependent. To move $(0,0) \mapsto (5/2,0), x \ge 0$ will go "slack" (so x becomes dependent),

and (3) will go "tight" ($t_3 \rightarrow 0$ and t_3 becomes independent)

$$\max f(x,y) = x + y - 0$$
 $f(x,y) = x + y - 0$

(1)
$$-x + y \leq 1$$
 $-x + y + t_1 = 1$

(2)
$$x + 6y \le 15$$
 $x + 6y + t_2 = 15$

(3)
$$4x - y \le 10$$
 $4x - y + t_3 = 10$ $x, y \ge 0$

x, y are independent variables

We introduce "slack variables" t_1, t_2, t_3 (one for each main constraint): $x, y, t_1, t_2, t_3 \ge 0$ At all times 2 of the 5 variables are independent, the other 3 are dependent.

$$\max f(x,y) = x + y - 0 \qquad f(x,y) = x + y - 0 \qquad x + y - 0 = f(x,y)$$

$$(1) \quad -x + y \leqslant 1 \qquad -x + y + t_1 = 1 \qquad -x + y - 1 = -t_1$$

$$(2) \quad x + 6y \leqslant 15 \qquad x + 6y + t_2 = 15 \qquad x + 6y - 15 = -t_2$$

$$(3) \quad 4x - y \leqslant 10 \qquad 4x - y + t_3 = 10 \qquad 4x - y - 10 = -t_3$$

$$x, y \geqslant 0$$

x, y are independent variables

We introduce "slack variables" t_1, t_2, t_3 (one for each main constraint): $x, y, t_1, t_2, t_3 \ge 0$ At all times 2 of the 5 variables are independent, the other 3 are dependent.

$$\max f(x,y) = x + y - 0 \qquad f(x,y) = x + y - 0 \qquad x + y - 0 = f(x,y)$$
(1) $-x + y \le 1 \qquad -x + y + t_1 = 1 \qquad -x + y - 1 = -t_1$
(2) $x + 6y \le 15 \qquad x + 6y + t_2 = 15 \qquad x + 6y - 15 = -t_2$

(3)
$$4x - y \le 10$$
 $4x - y + t_3 = 10$ $4x - y - 10 = -t_3$
 $x, y \ge 0$

x, y are independent variables

 t_1, t_2, t_3 are dependent variables

Write the data into a tableau (Tucker tableau):

We introduce "slack variables" t_1, t_2, t_3 (one for each main constraint): $x, y, t_1, t_2, t_3 \ge 0$ At all times 2 of the 5 variables are independent, the other 3 are dependent.

$$\max f(x,y) = x + y - 0 \qquad f(x,y) = x + y - 0 \qquad x + y - 0 = f(x,y)$$

$$(1) \quad -x + y \leqslant 1 \qquad -x + y + t_1 = 1 \qquad -x + y - 1 = -t_1$$

$$(2) \quad x + 6y \leqslant 15 \qquad x + 6y + t_2 = 15 \qquad x + 6y - 15 = -t_2$$

$$(3) \quad 4x - y \leqslant 10 \qquad 4x - y + t_3 = 10 \qquad 4x - y - 10 = -t_3$$

x, y are independent variables

 t_1, t_2, t_3 are dependent variables

Write the data into a tableau (Tucker tableau):

X	y	-1	
-1	1	1	$= -t_1$
1	6	15	$= -t_2$
4	-1	10	$= -t_3$
			= f

 $x, y \geqslant 0$

We introduce "slack variables" t_1, t_2, t_3 (one for each main constraint): $x, y, t_1, t_2, t_3 \ge 0$ At all times 2 of the 5 variables are independent, the other 3 are dependent.

$$\max f(x,y) = x + y - 0 \qquad f(x,y) = x + y - 0 \qquad x + y - 0 = f(x,y)$$

$$(1) \quad -x + y \leqslant 1 \qquad -x + y + t_1 = 1 \qquad -x + y - 1 = -t_1$$

$$(2) \quad x + 6y \leqslant 15 \qquad x + 6y + t_2 = 15 \qquad x + 6y - 15 = -t_2$$

$$(3) \quad 4x - y \leqslant 10 \qquad 4x - y + t_3 = 10 \qquad 4x - y - 10 = -t_3$$

 $x, y \geqslant 0$ x, y are independent variables

 t_1, t_2, t_3 are dependent variables

Write the data into a tableau (Tucker tableau):

X	y	-1	
-1	1	1	$= -t_1$
1	6	15	$= -t_2$
4	-1	10	$= -t_3$
1	1	0	= f

Slack variables

We introduce "slack variables" t_1, t_2, t_3 (one for each main constraint): $x, y, t_1, t_2, t_3 \ge 0$ At all times 2 of the 5 variables are independent, the other 3 are dependent.

$$\max f(x,y) = x + y - 0 \qquad f(x,y) = x + y - 0 \qquad x + y - 0 = f(x,y)$$

$$(1) \quad -x + y \leqslant 1 \qquad -x + y + t_1 = 1 \qquad -x + y - 1 = -t_1$$

$$(2) \quad x + 6y \leqslant 15 \qquad x + 6y + t_2 = 15 \qquad x + 6y - 15 = -t_2$$

$$(3) \quad 4x - y \leqslant 10 \qquad 4x - y + t_3 = 10 \qquad 4x - y - 10 = -t_3$$

x, y are independent variables

 t_1, t_2, t_3 are dependent variables

Write the data into a tableau (Tucker tableau): (* indicates pivot entry)

X	y	-1	
-1	1	1	$= -t_1$
1	6	15	$= -t_2$
4*	-1	10	$= -t_3$
1	1	0	= f

 $x, y \geqslant 0$

Slack variables

We introduce "slack variables" t_1, t_2, t_3 (one for each main constraint): $x, y, t_1, t_2, t_3 \ge 0$ At all times 2 of the 5 variables are independent, the other 3 are dependent.

$$\max f(x,y) = x + y - 0 \qquad f(x,y) = x + y - 0$$

$$f(x,y) = x + y - 0$$

$$x+y-0=f(x,y)$$

$$(1) \quad -x+y \leqslant 1$$

$$-x+y+t_1=1$$

$$-x+y-1=-t_1$$

(2)
$$x + 6y \le 15$$
 $x + 6y + t_2 = 15$

$$x+6y+t_2=15$$

$$x+6y-15=-t_2$$

$$(3) \quad 4x - y \leqslant 10$$
$$x, y \geqslant 0$$

$$4x-y+t_3=10$$

$$4x - y - 10 = -t_3$$

x, y are independent variables

 t_1, t_2, t_3 are dependent variables

Write the data into a tableau (Tucker tableau): (* indicates pivot entry)

$$\begin{array}{c|cccc} x & y & -1 \\ \hline -1 & 1 & 1 & 1 \\ 1 & 6 & 15 & = -t_2 \\ 4^* & -1 & 10 & = -t_3 \\ \hline 1 & 1 & 0 & = f \end{array}$$

$$x + y - 0 = f(x, y)$$

(1)
$$-x+y-1=-t_1$$

(2)
$$x + 6y - 15 = -t_2$$

(3)
$$4x - y - 10 = -t_3$$

	-1	y	t_3
$=-t_1$			
$=-t_2$			
=-x			
= f			

$$x + y - 0 = f(x, y)$$

$$(1) -x + y - 1 = -t_1$$

(2)
$$x + 6y - 15 = -t_2$$

(3)
$$4x - y - 10 = -t$$

(3)
$$4x - y - 10 = -t_3$$
 $x - y/4 - 10/4 = -t_3/4$

X	y	-1	
-1	1	1	$= -t_1$
1	6	15	$= -t_2$
4*	-1	10	$= -t_3$
1	1	0	= f

t_3	y	-1	
			$=-t_1$
			$=-t_2$
			=-x
			= f

$$x + y - 0 = f(x, y)$$

$$(1) -x + y - 1 = -t_1$$

(2)
$$x + 6y - 15 = -t_2$$

(3)
$$4x - y - 10 = -t$$

(3)
$$4x - y - 10 = -t_3$$
 $x - y/4 - 10/4 = -t_3/4$ $t_3/4 - y/4 - 10/4 = -x$

$$t_3/4 - y/4 - 10/4 = -x$$

X	y	-1	
-1	1	1	$= -t_1$
1	6	15	$= -t_2$
4*	-1	10	$= -t_3$
1	1	0	= f

L3	y	-1	
			$=-t_1$
			$=-t_2$
			=-x
			= f

$$x + y - 0 = f(x, y)$$

(1)
$$-x+y-1=-t_1$$

(2)
$$x + 6y - 15 = -t_2$$

(3)
$$4x - y - 10 = -t_3$$

(3)
$$4x - y - 10 = -t_3$$
 $x - y/4 - 10/4 = -t_3/4$ $t_3/4 - y/4 - 10/4 = -x$

$$t_3/4 - y/4 - 10/4 = -x$$

X	y	-1	
-1	1	1	$= -t_1$
1	6	15	$= -t_2$
4*	-1	10	$= -t_3$
1	1	0	= f

t_3	y	-1	
			$=-t_1$
			$=-t_2$
1/4	-1/4	5/2	=-x
			= f

$$x + y - 0 = f(x, y)$$

(1)
$$-x+y-1=-t_1$$

(2)
$$x + 6y - 15 = -t_2$$
 $x = -t_3/4 + y/4 + 5/2$

$$(3) \quad 4x - y - 10 = -t_3$$

$$x - v/4 - 10/4 = -t_3/4$$

(3)
$$4x - y - 10 = -t_3$$
 $x - y/4 - 10/4 = -t_3/4$ $t_3/4 - y/4 - 10/4 = -x$

X	y	-1	
-1	1	1	$= -t_1$
1	6	15	$= -t_2$
4*	-1	10	$= -t_3$
1	1	0	= f

Challenge: swap
$$x$$
 and t_3

$$x + y - 0 = f(x, y)$$

(1)
$$-x+y-1=-t_1$$

(2)
$$x + 6y - 15 = -t_2$$
 $x = -t_3/4 + y/4 + 5/2 - t_3/4 + 25y/4 - 25/2 = -t_2$

(3)
$$4x + 10 = t_0$$

(3)
$$4x - y - 10 = -t_3$$
 $x - y/4 - 10/4 = -t_3/4$ $t_3/4 - y/4 - 10/4 = -x$

Challenge: swap
$$x$$
 and t_3

<i>t</i> ₃	y	-1	
			$=-t_1$
			$=-t_2$
1/4	-1/4	5/2	=-x
			= f

$$x + y - 0 = f(x, y)$$

(1)
$$-x+y-1=-t_1$$

(2)
$$x + 6y - 15 = -t_2$$
 $x = -t_3/4 + y/4 + 5/2 - t_3/4 + 25y/4 - 25/2 = -t_2$

$$(3) \quad 4x - y - 10 = -t_3$$

(3)
$$4x - y - 10 = -t_3$$
 $x - y/4 - 10/4 = -t_3/4$ $t_3/4 - y/4 - 10/4 = -x$

Challenge: swap
$$\times$$
 and t_3

<i>t</i> ₃	У	-1	
			$=-t_1$
-1/4	25/4	25/2	$=-t_2$
1/4	-1/4	5/2	=-x
			= f

$$x + y - 0 = f(x, y)$$

(1)
$$-x+y-1=-t_1$$
 $-x=t_3/4-y/4-5/2$

(2)
$$x + 6y - 15 = -t_2$$
 $x = -t_3/4 + y/4 + 5/2 - t_3/4 + 25y/4 - 25/2 = -t_2$

(3)
$$4x - y - 10 = -t_3$$
 $x - y/4 - 10/4 = -t_3/4$ $t_3/4 - y/4 - 10/4 = -x$

$$\begin{array}{c|ccccc} x & y & -1 \\ \hline -1 & 1 & 1 & 1 \\ 1 & 6 & 15 & = -t_2 \\ 4^* & -1 & 10 & = -t_3 \\ \hline 1 & 1 & 0 & = f \\ \end{array}$$

Challenge:
$$t_3$$
 y -1 $= -t_1$ x_3 y -1 $= -t_2$ $= -t_2$ x_4 x_5 x_4 x_5 x_5 x_6 x_7 x_8 $x_$

SFU department of mathematic

= f

$$x+y-0=f(x,y)$$

(1)
$$-x+y-1=-t_1$$
 $-x=t_3/4-y/4-5/2$ $t_3/4+3y/4-7/2=-t_1$

(2)
$$x + 6y - 15 = -t_2$$
 $x = -t_3/4 + y/4 + 5/2 - t_3/4 + 25y/4 - 25/2 = -t_2$

(3)
$$4x - y - 10 = -t_3$$
 $x - y/4 - 10/4 = -t_3/4$ $t_3/4 - y/4 - 10/4 = -x$

Challenge: swap
$$x$$
 and t_3

<i>t</i> ₃	y	-1	
			$=-t_1$
-1/4	25/4	25/2	$=-t_2$
1/4	-1/4	5/2	=-x
			= f

$$x+y-0=f(x,y)$$

(1)
$$-x + y - 1 = -t_1$$
 $-x = t_3/4 - y/4 - 5/2$ $t_3/4 + 3y/4 - 7/2 = -t_1$

(2)
$$x + 6y - 15 = -t_2$$
 $x = -t_3/4 + y/4 + 5/2 - t_3/4 + 25y/4 - 25/2 = -t_2$

(3)
$$4x - y - 10 = -t_3$$
 $x - y/4 - 10/4 = -t_3/4$ $t_3/4 - y/4 - 10/4 = -x$

Challenge: swap x and t_3 \rightarrow

<i>t</i> ₃	У	-1	
1/4	3/4	7/2	$=-t_1$
-1/4	25/4	25/2	$=-t_2$
1/4	-1/4	5/2	=-x
			= f

$$x + y - 0 = f(x, y) - t_3/4 + 5y/4 + 5/2 = f$$
(1) $-x + y - 1 = -t_1 - x = t_3/4 - y/4 - 5/2$ $t_3/4 + 3y/4 - 7/2 = -t_1$

(2)
$$x + 6y - 15 = -t_2$$
 $x = -t_3/4 + y/4 + 5/2 - t_3/4 + 25y/4 - 25/2 = -t_2$

(3)
$$4x - y - 10 = -t_3$$
 $x - y/4 - 10/4 = -t_3/4$ $t_3/4 - y/4 - 10/4 = -x$

Challenge: swap \times and t_3

<i>t</i> ₃	У	-1	
1/4	3/4	7/2	$=-t_1$
-1/4	25/4	25/2	$=-t_2$
1/4	-1/4	5/2	=-x
			= f

$$x + y - 0 = f(x, y) - t_3/4 + 5y/4 + 5/2 = f$$
(1) $-x + y - 1 = -t_1 - x = t_3/4 - y/4 - 5/2$ $t_3/4 + 3y/4 - 7/2 = -t_1$

(2)
$$x + 6y - 15 = -t_2$$
 $x = -t_3/4 + y/4 + 5/2 - t_3/4 + 25y/4 - 25/2 = -t_2$

(3)
$$4x - y - 10 = -t_3$$
 $x - y/4 - 10/4 = -t_3/4$ $t_3/4 - y/4 - 10/4 = -x$

<i>t</i> ₃	У	-1	
1/4	3/4	7/2	$=-t_1$
-1/4	25/4	25/2	$=-t_2$
1/4	-1/4	5/2	=-x
-1/4	5/4	-5/2	= f

$$\max f(x,y) = x + y - 0$$

- $(1) \quad -x+y\leqslant 1$
- $(2) \quad x + 6y \leqslant 15$
- $(3) 4x y \leqslant 10$ $x, y \geqslant 0$

$$\begin{array}{c|ccccc} x & y & -1 \\ \hline -1 & 1 & 1 & 1 \\ 1 & 6 & 15 & = -t_2 \\ 4^* & -1 & 10 & = -t_3 \\ \hline 1 & 1 & 0 & = f \end{array}$$

First pivot: $x \leftrightarrow t_3$

		-1		<i>t</i> ₃		-1	
-1	1	1	$= -t_1$	1/4	3/4	7/2	$= -t_1$
1	6	15	$= -t_2$	-1/4	25/4	25/2	$= -t_2$
4*	-1	10	$= -t_1$ $= -t_2$ $= -t_3 \rightarrow$	1/4	-1/4	5/2	= -x
1	1	0	= f	-1/4	5/4	-5/2	= f

First pivot: $x \leftrightarrow t_3$

X	У	-1		t_3	y	-1	
-1	1	1	$= -t_1$	1/4	3/4	7/2	$= -t_1$
1	6	15	$=-t_2$	-1/4	25/4*	25/2	$= -t_2$
4*	-1	10	$= -t_1$ $= -t_2$ $= -t_3$	1/4	-1/4	5/2	= -x
			= f	-1/4	5/4	-5/2	= f

First pivot: $x \leftrightarrow t_3$ Second pivot: $y \leftrightarrow t_2$

First pivot: $x \leftrightarrow t_3$ Second pivot: $y \leftrightarrow t_2$

First pivot: $x \leftrightarrow t_3$ Second pivot: $y \leftrightarrow t_2$

An optimum solution found (since both main entries in last row are ≤ 0)

First pivot: $x \leftrightarrow t_3$ Second pivot: $y \leftrightarrow t_2$

An optimum solution found (since both main entries in last row are ≤ 0) This optimum solution is (x, y) = (2, 3)

First pivot: $x \leftrightarrow t_3$ Second pivot: $y \leftrightarrow t_2$

An optimum solution found (since both main entries in last row are ≤ 0) This optimum solution is (x, y) = (2, 3), since $(t_3, t_2) = (0, 0)$

First pivot: $x \leftrightarrow t_3$ Second pivot: $y \leftrightarrow t_2$

An optimum solution found (since both main entries in last row are ≤ 0) This optimum solution is (x,y)=(2,3), since $(t_3,t_2)=(0,0)$ The optimum value is $f(x,y)=(-1)\cdot(-5)=5$

SFU department of mathematics