Accessing Image Sub-Regions

Matlab has many in-built image processing functions and sample images that we incorporate in the programming problems. In this problem, we will use the 'Ca is one of the most popular standard grayscale test images of size 256 x 256, owned by MIT. For many Computer Vision and Image Processing tasks, you show with accessing Image sub-regions.

Your task is to extract 50x50 image sub-regions from the top-left as well as the bottom right and store them in the variables subimg1 and subimg2 respectively

After you successfully extract subimg1 and subimg2 images, compute the SSD (Sum of Squared Differences) of the intensities between them and store in the

Script @

```
Save
```


MATLAB Documentation (https://www.mathworks.com/help/)

```
img = imread('cameraman.tif');
subimg1 = img(1:50,1:50);
subimg2 = img( end -49 :end);
SSD = sum(sum((double(subimg1) - double(subimg2)).^2));
SSD
```


Output

```
SSD = 6529105
```

Previous Assessment: All Tests Passed

- ✓ Validating subimg1
- Validating subimg2
- Validating SSD

Color Imaging - RGB Channels

Sergei Mikhailovich Prokudin-Gorskii (1863-1944) was a photographer who, between the years 1909-1915, traveled the Russian empire and took thousands o everything he saw. He used an early color technology that involved recording three exposures of every scene onto a glass plate using a red, green, and blue fi was no way to print such photos, and they had to be displayed using a special projector.

The goal of this assignment is to learn to work with images in Matlab by taking the digitized Prokudin-Gorskii glass plate images and automatically producing a order to do this, you will need to extract the three color channel images, place them on top of each other, so that they form a single RGB color image. Your proglass plate image (https://lcms-files.mathworks.com/content/file/6c1e8eb5-60e2-444c-a584-559ef26ce5a6/image.jpg?versionId=we1PYUROoVB..TeJmkJNw4 input and produce a single color image as output.

The top most image belongs to Blue channel. The middle image belongs to Green channel and the bottom image belongs to Red channel.

The program should divide the image into three equal parts and place the second and the third parts (G and R) on to the first (B)

You have to name your variables as below

Blue channel Image - B

Green channel Image - G

Red channel Image - R

Concatenated Color Image - Color Img

A sample image from the collection-

Script @

MATLAB Documentation (https://www.mathworks.com/help/)

```
%Read the image
img = imread('image.jpg');

%Get the size (rows and columns) of the image
[r,c] = size(img);
rr=r/3;
%Wrire code to split the image into three equal parts and store them in B, G, R channels

B=imcrop(img,[1,1,c,rr-1]);
size(B)
```

▶ Run Script 2

Output

ans =

341 400

ans =

341 400

ans =

341 400

0

Previous Assessment: All Tests Passed

- ✓ Validating Blue Channel Image B
- **✓ Validating Red Channel Image R**
- **⊘** Validating Green Channel Image G
- **⊘** Validating Color Image ColorImg

Image Gradient Magnitude

The image gradient magnitude corresponds to the strength of edges in any given image.

Reference: https://www.mathworks.com/help/images/ref/imgradient.html (https://www.mathworks.com/help/images/ref/imgradient.html)

Read the 'cameraman.tif' image into variable img

Compute Gx and Gy using imgradientxy function

Compute Gmag and Gdir using imgradient function

Script @

MATLAB Documentation (https://www.mathworks.com/help/)

```
img=imread('cameraman.tif');
[Gx,Gy]=imgradientxy(img);
[Gmag,Gdir]=imgradient(Gx,Gy);
%Uncomment the code below to visualize Gx and Gy
imshowpair(Gx,Gy,'montage')

%Uncomment the code below to visualize Gmag and Gdir
imshowpair(Gmag,Gdir,'montage')
%Uncomment the code below to visualize Gmag and Gdir
```


Output

Previous Assessment: All Tests Passed (100%)

•

⊘ Validating img	20% (20%)
⊘ Validating Gx	20 % (20%)
⊘ Validating Gy	20 % (20%)
⊘ Validating Gmag	20 % (20%)
⊘ Validating Gdir	20% (20%)

Total: 100%

9/26/2020 Simulation Study 1

Simulation Study 1

Analyzed File	Air Cylinder Assembly - PE v3
Version	Autodesk Fusion 360 (2.0.8950)
Creation Date	2020-09-26, 02:14:32
Author	Sterling James Richard
	In this lesson, Fusion360 was utilized to create simulations and G-code for CNC machining. These integrated tools help complete the design for manufacturing process using the design, engineering and manufacturing tools in Fusion 360.

□ Project Properties

Title	Studies
Author	J

9/26/2020 Simulation Study 1

□ Simulation Model 1:1

☐ Study 1 - Static Stress

☐ Study Properties

Study Type	Static Stress
Last Modification Date	2020-09-14, 00:56:49

□ General

	0.1 mm
Remove Rigid Body Modes	No

□ Damping

Mesh

Average Element Size (% of model size)		
Solids	10	
Scale Mesh Size Per Part	No	
Average Element Size (absolute value)	-	
Element Order	Parabolic	
Create Curved Mesh Elements	Yes	
Max. Turn Angle on Curves (Deg.)	60	
Max. Adjacent Mesh Size Ratio	1.5	
Max. Aspect Ratio	10	
Minimum Element Size (% of average size)	20	

☐ Adaptive Mesh Refinement

Number of Refinement Steps	0
Results Convergence Tolerance (%)	20
Portion of Elements to Refine (%)	10
Results for Baseline Accuracy	Von Mises Stress

Component	Material	Safety Factor
Link:1	ABS Plastic	Yield Strength
Gripper:1	ABS Plastic	Yield Strength

■ ABS Plastic

Density	1.06E-06 kg / mm^3
Young's Modulus	2240 MPa
Poisson's Ratio	0.38
Yield Strength	20 MPa
Ultimate Tensile Strength	29.6 MPa
Thermal Conductivity	1.6E-04 W / (mm C)
Thermal Expansion Coefficient	8.57E-05 / C
Specific Heat	1500 J / (kg C)

□ Contacts

9/26/2020 Simulation Study 1

Bonded

Name
[S] Bonded1 [Link:1 Gripper:1]
[S] Bonded2 [Link:1 Gripper:1]
[S] Bonded3 [Link:1 Gripper:1]
[S] Bonded4 [Link:1 Gripper:1]

Type	Nodes	Elements
Solids	6943	3568

□ Load Case1

■ Results

□ Safety Factor

☐ Safety Factor (Per Body)

0 8

Stress

□ Von Mises
[MPa] 0.002 4.07

9/26/2020 Simulation Study 1

□ Displacement

□ Total

[mm] 0 0.05259

☐ Reaction Force

Total

3/6

9/26/2020 Simulation Study 1

[N] 0 8.801

9/26/2020 Simulation Study 1 □ Total [MPa] 0 1.023

□ Equivalent 0.000001 0.002319

☐ Contact Pressure

Unit of Measurement: Inches	Practice Assignments TITLE Control Box - PE v3					
APPROVED	SIZE	CODE	DWG N	O		REV
CHECKED	В					
DRAWN Sterling Richard 9/26/2020	SCA	LE 1:1	WEIGHT		SHEET 1/1	

Software Engineering Projects

Attached are various object oriented programming examples written in C#, C++, and Python to supplement the Duke University Software Engineering certification.

Working With Arithmetic Expression - C#

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
Write a C# Sharp program that takes the radius of a sphere as input, calculates and displays the surface and volume of
the sphere.
namespace SoloLearn
         class Program
         static void Main(string[] args)
         double pi = 3.14;
         double radius = int.Parse(Console.ReadLine());
         double surface = 4*pi*radius*radius;
         double volume = (4/3)*pi*radius;
         Console.WriteLine("The sphere's radius is {0}, its surface area is {1}, and its volume is
{2}.",radius,surface,volume);
```

INPUTS = 40

OUTPUT: The sphere's radius is 40, its surface area is 20,096, and its volume is 125.6.

Fahrenheit to Celsius Converter - C++

```
/* Sterling James Richard
Fahrenheit to Celsius Conversion
C++
*/
#include <iostream>
using namespace std;

int main() {
    double f;
    cin >> f;
    double c = (f - 32.0) * (5.0/9.0);
    cout << c;
}
```

INPUTS = 70 OUTPUT: 21.1111

Fibonacci Sequence Calculator - Python

```
/*
Sterling James Richard
Fibonacci Sequence Calculator
The Fibonacci Sequence is an additive sequence such that each number is the sum of two preceding ones.
Source: Live Science - LiveScience.com
*/
first_number = int(input())
second_number = int(input())
count = 0
how_many = int(input())

while count < how_many:
    print(first_number)
        nth = first_number + second_number
        first_number = second_number
        # update values
        second_number = nth
        count +=}
```

```
INPUTS = [1,2,10]
OUTPUTS = [1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
```