Lecture No. 47 DC Generator (Types & Characteristics)

Lecture delivered by

Objectives

At the end of this lecture, student will be able to:

- Derive an expression for induced E.M.F.
- Classify DC Generators based upon methods of excitation
- Discuss Open Circuit and Load characteristics of DC Generators
- Explain the losses associated with DC machines

E.M.F. Generated in An Armature Winding

Z = number of armature conductors,

 ϕ = useful flux per pole, in webers

p = number of pairs of poles

and n = armature speed in rev/s

• The e.m.f. generated by the armature is equal to the e.m.f. generated by one of the parallel paths.

E.m.f. generated in an armature winding

• Each conductor passes 2p poles per revolution and thus cuts 2pφ webers of magnetic flux per revolution.

so the average e.m.f. *E* generated per conductor is given by:

$$E = 2p\phi n$$
 Volts

(since 1 volt = 1 Weber per second)

E.m.f. generated in an armature winding

• c = number of parallel paths through the winding between positive and negative brushes

c= 2 for a wave winding
c= 2p for a lap winding

- The number of conductors in series in each path Z/c
- The total e.m.f. between brushes
 - = (average e.m.f./conductor)(number of conductors in series per path)
 - $= 2p\phi n*Z/c$

i.e., generated e.m.f.,
$$E = \frac{2p\Phi nZ}{c}$$
 volts

E.m.f. generated in an armature winding

• Since Z, p and c are constant for a given machine, then E α φ_n . However

 $2\pi n$ is the angular velocity ω in radians per second, hence the generated e.m.f. is proportional to φ and ω , i.e.,

generated e.m.f., $E \alpha \phi_{\omega}$

• **Problem 1.** An 8-pole, wave-connected armature has 600 conductors and is driven at 625 rev/min. If the flux per pole is 20 mWb, determine the generated e.m.f.

$$Z = 600, c = 2$$
 (for a wave winding), $p = 4$ pairs

$$n = \frac{625}{60} rev/s$$
, $\Phi = 20 \times 10^{-3} Wb$

Generated e.m.f.,
$$E = \frac{2p\Phi nZ}{c}$$

$$= \frac{2(4)(20x10^{-3})\left(\frac{625}{60}\right)(600)}{2} = 500 \text{ volts}$$

DC Generator

- DC generators are classified according to the method of their field excitation. These groupings are
 - > Separately-excited generators
 - > Self-excited generators
 - (a) shunt
 - (b) series, and
 - (c) compound wound generators

Types of DC generator

Separately-excited generator -

terminal voltage,

$$V = E - I_a R_a$$

- **Problem 7**. Determine the terminal voltage of a generator which develops an e.m.f. of 200 V and has an armature current of 30 A on load. Assume the armature resistance is 0.30
- **Sol**ⁿ V = E-IaRa = 200-(30)(0.30) = 200 9 =**191 volts**
- **Problem 8**. A generator is connected to a 60Ω load and a current of 8 A flows. If the armature resistance is 1Ω determine (a) the terminal voltage, and (b) the generated e.m.f.
 - (a) Terminal voltage, $V = I_a R_L = (8)(60) = 480 \text{ volts}$
 - (b) Generated e.m.f., $E = V + I_a R_a$

$$=480 + (8)(1) = 480 + 8 = 488$$

Separately-excited Generator Characteristics

Shunt-wound generator

 In a shunt wound generator the field winding is connected in parallel with the armature as shown in Figure. The field winding has a relatively high resistance and therefore the current carried is only a fraction of the

For the circuit shown:

 $ter \min al \ voltage \ V = E - I_a R_a$

or generated e.m.f., $E = V + I_a R_a$

 $I_a = I_f + I$, from kirchhoff 's current law,

where $I_a = armature current$

$$I_f = field \ current \left(\frac{V}{R_f} \right)$$

and $I = load\ current$

Problem 10. A shunt generator supplies a 20 kW load at 200 V through cables of resistance, R = 100 m. If the field winding resistance, Rf = 50 and the armature resistance, Ra = 40 m, determine (a) the terminal voltage, and (b) the e.m.f. generated in the armature

Solⁿ: -The circuit is as shown in Figure (a)

 $R = 100 \text{ m}\Omega$

Volt drop in the cables to the load =
$$IR = (100)(100 \times 10^{-3})$$

= $10V$

Hence ter min al voltage, V = 200 + 10 = 210volts

(b) Armature current
$$I_a = I_f + I$$

Field current,
$$I_f = \frac{V}{R_f} = \frac{210}{50} = 4.2A$$

Hence
$$I_a = I_f + I = 4.2 + 100 = 104.2A$$

= $210 + (104.2)(40 \times 10^{-3})$
= 214.17 volts

Shunt Generator Characteristics

- The generated e.m.f., E, is proportional to ϕ , hence at constant speed, since ω =2 ϕ n,
- E / φ Also the flux φ is proportional to field current I_f until magnetic saturation of the iron circuit of the generator occurs.

Shunt-wound Generator Characteristics

 As the load current on a generator having constant field current and running at constant speed increases, the armature volt drop, la Ra increases

Series-wound Generator

Series-wound Generator

 The values of field resistance and armature resistance in a series wound machine are small, hence the terminal voltage V is very nearly equal to E.

Compound-wound Generator

Compound-wound generator consists both shunt and series windings

Short Shunt

• Problem 11. A short-shunt compound generator supplies 80 A at 200 V. If the field resistance, $R_f=40$, the series resistance, $R_{Se}=0.02$ and the armature resistance, $R_a=0.04\Omega$, determine the e.m.f. generated.

Soln

Volt drop in series winding = $IR_{Se} = (80)(0.02) = 1.6 \text{ V}$

P.d.across the field winding = p.d. across armature

$$= V_1 = 200 + 1.6 = 201.6 \text{ V}$$

Field current
$$I_f = \frac{V_1}{R_f} = \frac{201.6}{40} = 5.04 \text{ A}$$

Armature current, $I_a = I + I_f = 80 + 5.04 = 85.04 A$

Generated e.m.f.,
$$E = V_1 + I_a R_a$$

= 201.6 + (85.04)(0.04)
= 205 volts

D.C. Machine Losses

Efficiency of a D.C. Generator

efficiency,
$$\eta =$$

efficiency,
$$\eta = \left(\frac{\text{output power}}{\text{input power}}\right) \times 100\%$$

- Armature copper loss- $I_a^2 R_a$
- Field copper loss- $I_f V$

Efficiency of a D.C. Generator

the total losses is given by

$$I_a^2 R_a + I_f V + C (I_a^2 R_a + I_f V)$$
 is, in fact, the 'copper loss')

Total input power = $VI + I_a^2 R_a + I_f V + C$. Hence

efficiency,
$$\eta = \frac{\text{output}}{\text{input}} = \left(\frac{\text{VI}}{\text{VI} + \text{I}_a^2 \text{R}_a + \text{I}_f \text{V} + \text{C}}\right) \times 100\%$$

 The efficiency of a generator is a maximum when the load is such that:

$$I_{a}^{2}R_{a}=VI_{f}+C$$

i.e., when the variable loss = the constant loss

Problem 12. A 10 kW shunt generator having an armature circuit resistance of 0.75Ω and a field resistance of 125Ω , generates a terminal voltage of 250 V at full load. Determine the efficiency of the generator at full load, assuming the iron, friction and windage losses amount to 600 W.

Soln

Output power =
$$10\ 000\ W = VI$$

from which, load current I =
$$\frac{10\ 000}{V} = \frac{10\ 000}{250} = 40\ A$$

Field current,
$$I_f = \frac{V}{R_f} = \frac{250}{125} = 2 \text{ A}$$

Armature current, $I_a = I_f + I = 2 + 40 = 42 \text{ A}$

Efficiency,
$$\eta = \left(\frac{VI}{VI + I_a^2 R_a + I_f V + C}\right) x 100\%$$

$$= \left(\frac{VI}{10 000 + (42)^2 (0.75) + (2)(250) + 600}\right) x 100\%$$

$$= 80.50\%$$

Problem 13. The armature of a d.c. machine has a resistance of 0.25 and is connected to a 300 V supply. Calculate the e.m.f. generated when it is running: (a) as a generator giving 100 A, and (b) as a motor taking 80 A.

(a) As a generator, generated e.m.f.,

$$E = V + I_a R_a,$$

= 300 + (1000)(.25)
= 300 + 25 = 325 volts

(b) As a motor, generated e.m.f. (or back e.m.f.),

$$E = V - I_a R_a,$$

= 300 - (80)(0.25) = 280 volts

Summary

- Induced emf in a DC machine is proportional to speed and flux per pole
- OCC of Shunt Generator is similar to B-H curve
- As the load increases on a shunt generator its terminal voltage decreases
- Efficiency of a DC machine is maximum when variable loss is equal to constant loss

