Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Departamento de Sistemas e Computação

Disciplina: FMCC I

Lista de Exercícios 2

- 1 Use as leis de equivalência para lógica proposicional e prove que:
 - a) $(z \land w) \lor (\sim z \land w) \lor (z \land \sim w) \equiv z \lor w$
 - b) $(p \leftrightarrow q) \rightarrow r \equiv (\sim p \land q) \lor (\sim q \land p) \lor r$, sabendo que $(p \Box q) \equiv (p \rightarrow q) \land (q \rightarrow p)$

Obs: Especifique cuidadosamente cada lei que você está usando a cada passo.

2 - Com o uso de símbolos predicados mostrados e os quantificadores apropriados, escreva cada sentença na língua portuguesa como uma wff predicativa (O domínio é todo o mundo).

- A) Todos os dias são ensolarados.
- B) Alguns dias não são chuvosos.
- C) Todo dia que é ensolarado não é chuvoso.
- 3 Represente as seguintes proposições em forma de lógica de predicados:
 - A) Alguém anda e alguém fala
 - B) Se alguém trapacear, então todos sofrem
 - C) Toda pessoa que ama todo mundo ama a si mesma
- 4- Considere P(x) como o predicado "x passa mais do que cinco horas em aula todos os dias", em que o domínio de x são todos os estudantes. Expresse cada uma dessas quantificações em português.
 - A) $\exists x P(x)$
 - B) $\forall x P(x)$
 - C) $\exists x \neg P(x)$
 - D) $\forall x \neg P(x)$
- 5 Qual o valor-verdade de cada uma das wffs na interpretação onde o domínio consiste nos números inteiros?

$$A) (\forall x)(\exists y) (x + y = x)$$

$$B) (\exists y)(\forall x) (x + y = x)$$

C)
$$(\forall x)(\exists y)(x+y=0)$$

D)
$$(\exists y)(\forall x)(x + y = 0)$$

6- Dê versões em português para as fbfs (fórmulas bem formadas) a seguir, onde:

```
A(x,y) é "x ama y". j é "João". V(x) é "x é vistoso". c é "Cátia".
```

H(x) é "x é um homem"; M(x) é "x é uma mulher".

B(x) é "x é bonita".

- a) $V(j) \wedge A(c,j)$
- b) $(\forall x) [H(x) \rightarrow V(x)]$
- c) $(\forall x) (M(x) \rightarrow (\forall y)[A(x,y) \rightarrow H(y) \land V(y)])$
- d) $(\exists x) [H(x) \land V(x) \land A(x,c)]$
- e) $(\exists x) (M(x) \land B(x) \land (\forall y)[A(x,y) \rightarrow V(y) \land H(y)])$
- 7- Usando a lógica de predicados, formalize as sentenças a seguir:
 - a) Toda cobra é venenosa.
 - b) Os remédios são perigosos.
 - c) Nenhuma bruxa é bela.
 - d) Não existe bêbado feliz.
 - e) Algumas pedras são preciosas.
 - f) Existem plantas que são carnívoras.
 - g) Alguns políticos não são honestos.
 - h) Há aves que não voam.
- 8- Se L(x,y) quer dizer "x ama y", onde o domínio tanto para x quanto para y consiste de todas as pessoas do mundo, represente usando lógica de predicados as seguintes afirmativas:
 - a) Todos amam Mariana
 - b) Todos amam alguém
 - c) Há alguém que todos amam
 - d) Há alguém que ninguém ama
 - e) Todos amam a si mesmos
 - f) Ninguém ama todos
- **9** Usando os símbolos predicados indicados e quantificadores apropriados, escreva cada declaração em português como uma *fbf* (fórmula bem formada) predicada. (O conjunto universo é o mundo inteiro).

C(x) é "x é um Corvette".

P(x) é "x é um Porsche".

F(x) é "x é uma Ferrari".

D(x,y) é "x anda mais devagar do que y".

- a. Nada é ao mesmo tempo um Corvette e uma Ferrari.
- b. Alguns Porsches só andam mais devagar do que Ferraris.

- c. Apenas Corvettes andam mais devagar do que algum Corvette.
- d. Alguns Porsches não andam mais devagar do que Corvette algum.
- e. Se existe algum Corvette que anda mais devagar do que uma Ferrari, então todos os Corvettes andam mais devagar do que todas as Ferraris.
- **10 -** São dadas diversas formas de negação para cada uma das proposições a seguir. Qual delas está correta?
 - a. Algumas pessoas gostam de matemática.
 - 1. Algumas não gostam de matemática.
 - 2. Todo o mundo não gosta de matemática.
 - 3. Todo o mundo gosta de matemática.
 - b. Todo o mundo gosta de sorvete.
 - 1. Ninguém gosta de sorvete.
 - 2. Todo o mundo não gosta de sorvete.
 - 3. Algumas pessoas não gostam de sorvete.
 - c. Todas as pessoas são baixas e gordas.
 - 1. Algumas pessoas são baixas e gordas.
 - 2. Ninguém é alto e magro.
 - 3. Algumas pessoas são baixas ou gordas.
 - d. Algumas fotos são velhas ou estão apagadas.
 - 1. Todas as fotos nem são velhas nem estão apagadas.
 - 2. Algumas fotos não são velhas ou não estão apagadas.
 - 3. Todas as fotos não são velhas ou não estão apagadas.
- 11 Usando símbolos predicados E(x) para "x é um estudante", I(x) para "x é inteligente" e M(x) para "x gosta de música", escreva fbfs que expressem as proposições a seguir. (o domínio consiste em todas as pessoas)
 - A. Todos os estudantes são inteligentes.
 - B. Alguns estudantes inteligentes gostam de música.
 - C. Todo o mundo que gosta de música é um estudante burro.
- 12 Verifique a validade dos argumentos utilizando regras de inferência:
 - A. $[(r \rightarrow p \lor q) \land r \land \neg p] \rightarrow q$
 - B. $\lceil (p \rightarrow q) \land \neg q \land (p \lor r) \rceil \rightarrow r$
 - C. $\lceil (\neg a \rightarrow b) \land (b \rightarrow c) \land \neg c \rceil \rightarrow a$
 - D. $[p \rightarrow (q \rightarrow r) \land (p \rightarrow q) \land p] \rightarrow r$
 - E. $[(p \lor \neg q) \land (\neg q \rightarrow r) \land (p \rightarrow s) \land \neg r] \rightarrow s$
 - F. $[(p \lor q \rightarrow (p \rightarrow s \land t)) \land (p \land r)] \rightarrow t \lor u$

- 13 Que regra de inferência é ilustrada pelo argumento dado?
- a) Se Martins é o autor, então o livro é de ficção. Mas o livro não é de ficção. Portanto, Martins não é o autor.
- b) Se a firma falir, todos os seus ativos têm que ser confiscados. A firma faliu. Segue que todos os seus bens têm que ser confiscados.
- c) O cachorro tem um pelo sedoso e adora latir. Portando, o cachorro adora latir.
- d) Se Paulo é um bom nadador, então ele é um bom corredor. Se Paulo é um bom corredor, então ele é um bom ciclista. Portanto, se Paulo é um bom nadador, então ele é um bom ciclista.

14 - Use a lógica proposicional para provar que o argumento é válido:

a) A'
$$\wedge$$
 (B \rightarrow A) \rightarrow B'

b)
$$(A \rightarrow B) \land [A \rightarrow (B \rightarrow C)] \rightarrow (A \rightarrow C)$$

c)
$$[(C \rightarrow D) \rightarrow C] \rightarrow [(C \rightarrow D) \rightarrow D]$$

d) A'
$$\wedge$$
 (A \vee B) \rightarrow B

e)
$$[A \rightarrow (B \rightarrow C)] \land (A \lor D') \land B \rightarrow (D \rightarrow C)$$

f)
$$(A' \rightarrow B') \land B \land (A \rightarrow C) \rightarrow C$$

Soluções

1.a)
$$(z \land w) \lor (\sim z \land w) \lor (z \land \sim w)$$

$$\equiv (z \wedge w) \vee (z \wedge \sim w) \vee (\sim z \wedge w)$$
 Lei comutativa

$$\equiv (z \land (w \lor \sim w) \lor (\sim z \land w)$$
 Lei distributiva

$$\equiv (z \land T) \lor (\sim z \land w)$$
 Lei de negação

$$\equiv (z \lor (\sim z \land w))$$
 Lei de identidade

$$\equiv (z \lor \sim z) \land (z \lor w)$$
 Lei distributiva

$$\equiv T \wedge (z \vee w)$$
 Lei de negação

$$\equiv (z \vee w)$$
 Lei de identidade

1.b)
$$(p \leftrightarrow q) \rightarrow r$$

$$\equiv ((p \rightarrow q) \land (q \rightarrow p)) \rightarrow r$$
 Equivalência

$$\equiv (\sim p \ \lor \ q) \ \land (\sim q \ \lor \ p) \rightarrow r$$
 Equivalência

$$\equiv (\sim p \lor q) \land (\sim q \lor p) \rightarrow r$$
 Equivalência

$$\equiv \sim ((\sim p \lor q) \land (\sim q \lor p)) \lor r$$
 Equivalência

$$\equiv \sim (\sim p \ \lor \ q) \ \lor \sim (\sim q \ \lor \ p) \ \lor \ r$$
 Lei de De Morgan

$$\equiv (p \land \neg q) \lor (q \land \neg p) \lor r$$
 Lei de De Morgan (2x)

$$\equiv (\sim p \land q) \lor (\sim q \land p) \lor r$$
 Lei da comutatividade

2 - a)
$$(\forall x)(D(x) \rightarrow S(x))$$

b)
$$(\exists x)(D(x) \land \neg R(x))$$

c)
$$(\forall x)(D(x) \land S(x) \rightarrow \neg R(x))$$

3 - a)
$$\exists x(P(x) \longrightarrow Q(x) F(x))$$

b)
$$\forall x (T(x) \rightarrow \forall y S(y))$$

c)
$$\forall x (\forall y P(x,y) \rightarrow (P(x,x))$$

- 4 a) Existe um estudante que passa mais do que cinco horas em aula todos os dias
 - b) Todos os estudantes passam mais do que cinco horas em aula todos os dias
 - c) Existe um estudante que não passa mais do que cinco horas em aula todos os dias
 - d) Nenhum estudante passa mais do que cinco horas em aula todos os dias
- **5 a)** Verdadeiro (fazer com y = 0).
 - **b)** Verdadeiro (fazer com y = 0).
 - c) Verdadeiro (fazer com y = -x).
 - d) Falso
- 6 a) João é vistoso e Cátia ama João.
 - **b)** Qualquer que seja x, se x é um homem, então x é vistoso.

- c) Qualquer que seja x, se x é uma mulher, então qualquer que seja y, se x ama y, então y é um homem e é vistoso.
- d) Existe pelo menos um x, tal que x é homem, x é vistoso e x ama Cátia.
- e) Existe pelo menos um x, tal que x é mulher, é bonita e qualquer que seja y, se x ama y, então y é vistoso e é homem.
- 7- a) $\forall X[cobra(X) \rightarrow venenosa(X)]$
 - **b)** $\forall X [\text{remédio}(X) \rightarrow \text{perigoso}(X)]$
 - c) $\forall X[bruxa(X) \rightarrow \neg bela(X)]$
 - **d)** \forall X[bebado(X) $\rightarrow \neg$ feliz(X)]
 - e) $\exists X[pedra(X) \land preciosa(X)]$
 - f) $\exists X[planta(X) \land carnivora(X)]$
 - g) $\exists X[político(X) \land \neg honesto(X)]$
 - h) $\exists X[ave(X) \land \neg voa(X)]$
- **8 a)** $\forall x [L(x, Mariana)]$
 - **b)** $\forall x \exists y [L(x, y)]$
 - c) $\exists y \forall x [L(x, y)]$
 - **d)** $\exists x \forall y \neg [L(y, x)]$
 - e) $\forall x [L(x, x)]$
 - **f)** $\forall x \exists y [\neg L(x, y)]$
- 9 a) $(\forall x) \neg [C(x) \land F(x)]$
 - **b)** $(\exists x)(\forall y) [P(x) \land (D(x,y) \rightarrow F(y))]$
 - c) $(\forall x \forall y) [(P(y) \land D(x,y)) \rightarrow C(x))]$
 - **d)** $(\forall x)(\exists y)[(F(x) \land C(y)) \rightarrow D(x,y)]$
 - e) $(\exists x \exists y) [(P(x) \land C(y)) \rightarrow \neg D(x,y)]$
 - f) $(\exists x \exists y) [C(x) \land F(y) \land D(x,y)] \rightarrow (\forall x \forall y) [D(x,y)]$
- **10 a)** 2 **c)** 3
 - **b)** 3 **d)** 1
- 11 A) $(\forall x)[E(x) \rightarrow I(x)]$
 - **B)** $(\exists x) [E(x) \land I(x) \land M(x)]$
 - C) $(\forall x)(M(x) \rightarrow E(x) \land [I(x)]')$
- 12 --
 - a) 1. $r \rightarrow p \vee q$
 - 2. r
 - 3. ¬p
 - -----
 - 4. p V q | Modus Ponens em 1 e 2

```
5. q | Silogismo Disjuntivo em 3 e 4
b) 1. p \rightarrow q
   2. ¬q
    3. p V r
                | Modus Tollens em 1 e 2
    5. r
                  | Silogismo Disjuntivo em 3 e 4
c) 1. \neg a \rightarrow b
    2.
         b \rightarrow c
    3. ¬c
   4. \neg a \rightarrow c | Silogismo Hipotético em 1 e 2
    5. ¬¬a | Modus Tollens 3 e 4
    6. a
                  | Dupla negação em 5
d) 1. p \rightarrow (q \rightarrow r)
   2. p \rightarrow q
   3. p
   4. q \rightarrow r | Modus Ponens em 1 e 3
   5. q | Modus Ponens em 2 e 3
   6. r | Modus Ponens em 4 e 5
e) 1. p∨¬q
    2. \neg q \rightarrow r
    3. p \rightarrow s
    5. ¬¬q | Modus Tollens em 2 e 4
    6. q
                | Dupla negação em 5
    7. p
                | Silogismo Disjuntivo em 6 e 1
    8. s
                | Modus Ponens em 7 e 3
   1. p \lor q \rightarrow (p \rightarrow s \land t)
   2. p∧r
   3. p | Simplificação em 24. p V q | Adição em 3
    5. p \rightarrow s \wedge t | Modus Ponens em 4 e 1
```

6. $s \wedge t$ | Modus Ponens em 3 e 5

f)

- 7. t | Simplificação em 6
- 8. t V u | Adição em 7
- **13 -** Denomine uma letra para cada sentença e as associe até chegar à sentença final. Depois, descreva como a sentença é verdadeira, assim:
- a) $(M \to F) \land F' \to M'$ // obtido por modus tollens
- b) $(B \rightarrow A) \land B \rightarrow // A \text{ modus ponens}$
- c) S \wedge L \rightarrow L // simplificação
- d) $(S \rightarrow R) \land (R \rightarrow B) \rightarrow (S \rightarrow B)$ //silogismo hipotético
- **14 -** a) 1. A' // hipótese
 - 2. B \rightarrow A // hipótese
 - 3. B' // 1,2 modus tollens
 - b) 1. A \rightarrow B // hipótese
 - 2. A \rightarrow (B \rightarrow C) // hipótese
 - 3. A // hipótese
 - 4. B // 1,3 modus ponens
 - 5. B \rightarrow C // 2,3 modus ponens
 - 6. C // 4,5 modus ponens
 - c) 1. $(C \rightarrow D) \rightarrow C // \text{hipótese}$
 - 2. $C \rightarrow D$ // hipótese
 - 3. C // 1,2 modus ponens
 - 4. D // 2,3 modus ponens
 - d) 1. A' // hipótese
 - 2. A v B // hipótese
 - 3. (A')' v B // 2, dupla negação
 - 4. A' \rightarrow B // 3, condicional
 - 5. B // 1,4, modus ponens
 - e) 1. A \rightarrow (B \rightarrow C) // hipótese
 - 2. A v D' // hipótese
 - 3. B // hipótese
 - 4. D // hipótese
 - 5. D' v A // 2, comutatividade
 - 6. D \rightarrow A // 5, condicional
 - 7. A // 4,6, modus ponens
 - 8. B \rightarrow C // 1,7, modus ponens
 - 9. C // 3,8, modus ponens

- f) 1. A' \rightarrow B' // hipótese
 - 2. B // hipótese
 - 3. A \rightarrow C // hipótese
 - 4. (B')' // 2, dupla negação
 - 5. (A')' // 1, 4, modus tollens
 - 6. A // 5, dupla negação
 - 7. C // 3, 6, modus ponens