

Measurement and Analysis

Yasha Iravantchi ES 100 October 8, 2014

Agenda

- How do we measure things?
- How should we analyze the data?
- Measurement and Analysis Demos:
 - Computer Vision
 - Accelerometers
 - EEG Data

Measuring? Why?

- We want to measure things because we need to quantify and verify goals and targets
- Example: my ES100 project (bicycle electronics charger)
 - Destroyed a cell phone...Why?
 - Didn't measure top speed of bike → didn't know max voltage
- How do we measure things?
 - Cameras → Computer Vision
 - Sensors → Accelerometers, GPS, etc.

Smartphone \$0USD* (if you own one)

→ Measurement is a fundamental step in QC and verification

CV Measurement Demo: Chaotic Pendulum

- What is a double pendulum?
- What do we want to know?
 - Position, angle, velocity, force
- How do we measure its motion?
 - Shaft encoders
 - Accelerometers
 - Computer vision
 - Anything else?
- What are some drawbacks?
 - Shaft encoders add bulk and weight
 - Accelerometers have very limited accuracy (you will see soon)
 - CV may require proper lighting, high framerate, may not be realtime

$$\dot{\theta}_1 = \frac{6}{m\ell^2} \frac{2p_{\theta_1} - 3\cos(\theta_1 - \theta_2)p_{\theta_2}}{16 - 9\cos^2(\theta_1 - \theta_2)}$$

and

$$\dot{\theta}_2 = \frac{6}{m\ell^2} \frac{8p_{\theta_2} - 3\cos(\theta_1 - \theta_2)p_{\theta_1}}{16 - 9\cos^2(\theta_1 - \theta_2)}.$$

→ Don't just go out and measure, make sure you have the right tool and setup

CV Measurement Demo: Chaotic Pendulum

CV Measurement Demo: Chaotic Pendulum

Accelerometer Measurement Demo

- Say we want to figure out the position of an object...what do we do?
- What sensor should we use?
 - GPS?
 - Good for ~+/-3m
 - Computer vision?
 - Needs line of sight, have to have camera following it
 - Accelerometer
 - Need to do a double integration
 - Anything else?

3Axis Gyro+6Axis Accelerometer \$8USD

$$\hat{s} = \int \hat{v} \cdot dt = \iint \hat{a} \cdot dt^2$$

→ Use the tools you have at your disposal, but know their drawbacks

We've measure the data...what now?

- Analyze the data: find nuances, find interesting experiment errors
- Sanity check: does this look right?
 - Compare to model? Does one exist?
- Example:
 - EEG Data: Why is it so fuzzy?
 - What's that at ~ 60Hz?
 - How do I get rid of it?
 - Clean up (filtering,smoothing)

→ Real life data is never cute...you need to analyze!