MACHINE LEARNING PROJECT HEART FAILURE PREDICTION

MELIS HARMANTEPE

DATASET

Attributes (13 clinical features):

- age: age of the patient (years)
- anaemia: decrease of red blood cells or hemoglobin (boolean)
- high blood pressure: if the patient has hypertension (boolean)
- creatinine phosphokinase (CPK): level of the CPK enzyme in the blood (mcg/L)
- diabetes: if the patient has diabetes (boolean)
- ejection fraction: percentage of blood leaving the heart at each contraction (percentage)
- platelets: platelets in the blood (kiloplatelets/mL)
- sex: woman or man (binary)
- serum creatinine: level of serum creatinine in the blood (mg/dL)
- serum sodium: level of serum sodium in the blood (mEq/L)
- smoking: if the patient smokes or not (boolean)
- time: follow-up period (days)
- [target] death event: if the patient deceased during the followup period (boolean)

299 Patients

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 299 entries, 0 to 298
Data columns (total 13 columns):
     Column
                               Non-Null Count
                                                Dtype
                                                float64
                                299 non-null
 0
     age
                                299 non-null
                                                int64
     anaemia
                                                int64
     creatinine_phosphokinase
                               299 non-null
     diabetes
                                                int64
                                299 non-null
                               299 non-null
     ejection fraction
                                                int64
     high_blood_pressure
                                                int64
                                299 non-null
     platelets
                               299 non-null
                                                float64
     serum creatinine
                                                float64
                                299 non-null
     serum_sodium
                                299 non-null
                                                int64
                                                int64
                                299 non-null
     sex
     smoking
                               299 non-null
                                                int64
                                                int64
     time
                                299 non-null
     DEATH_EVENT
                                299 non-null
                                                int64
dtypes: float64(3), int64(10)
memory usage: 30.5 KB
```

Problem statement: I want to build a classification model which estimates a person's probability of deceasing from heart failure based on all of the 12 risk factors (clinical features).

DATA VISUALIZATION & DATA PREPROCESSING

Training accuracy = 82.27%

Test set accuracy = 28.33%

Execution time is: 0.07134466599999989 seconds

LOGISTIC REGRESSION


```
precision
                          recall f1-score
                                              support
        0.0
                                      0.88
                  0.87
                            0.89
                                                  203
        1.0
                  0.76
                            0.71
                                      0.73
                                                   96
                                       0.83
                                                  299
   accuracy
                            0.80
                                       0.80
                                                  299
                  0.81
  macro avg
weighted avg
                  0.83
                            0.83
                                       0.83
                                                  299
```

#ROC roc_auc_score(y, y_pred)

0.7999794745484401

5.1 Confusion Matrix

cm_LR = confusion_matrix(y, y_pred)
print(cm_LR)

[[181 22] [28 68]] Training accuracy = 81.94%

Test set accuracy = 25.00%

Execution time is: 51.198486577 seconds

	precision	recall	f1-score	support
0.0	0.76	0.95	0.84	39
1.0	0.82	0.43	0.56	21
2 CCUT2 CV			0.77	60
accuracy				
macro avg	0.79	0.69	0.70	60
weighted avg	0.78	0.77	0.74	60

#ROC

roc_auc_score(y_test, y_pred_svc)

0.6886446886446886

Training accuracy = 68.56% Test set accuracy = 15.00%

Execution time is: 0.14908029699995495 seconds

NEURAL NETWORKS

	precision	recall	f1-score	support
0.0	0.65	1.00	0.79	39 21
accuracy macro avg weighted avg	0.33	0.50 0.65	0.65 0.39 0.51	60 60

#ROC

roc_auc_score(y_test, y_pred_nn)

0.5

cm_NN = confusion_matrix(y_test, y_pred_nn)
print(cm_NN)

[[39 0] [21 0]]

CONCLUSION

	Logistic Regression	SVM	Neural Networks
Accuracy	0.83	0.82	0.68
F1 Score	0.73	0.56	0.0
AUC	0.80	0.68	0.5
Execution time (secs)	0.07	0.14	51

Logistic Regression > SVM > Neural Networks