TD de variétés algébriques

Exercices par Jean-François Dat*

1 TD1

- 1. Pour $x \in S$ et $f \in I_S$, on a f(x) = 0, donc $S \subset V_{I_S}$. Par définition de la topologie de Zariski, V_{I_S} est fermé donc $\overline{S} \subset V_{I_S}$. Maintenant, soit $y \in k^n$ et U un ouvert de Zariski contenant y qui ne rencontre pas S. On peut prendre U principal égal à U_f . Alors, $U_f \cap S = \emptyset$, donc $S \subset V_{\{f\}}$, donc f(x) = 0 pour tout $x \in S$, donc $f \in I_S$. Comme $y \in U_f$, $f(y) \neq 0$, donc $y \notin V_{I_S}$. Par contraposée, cela conclut.
- **2.** Soient $I \triangleleft k[X_1, \ldots, X_n]$ et $J \triangleleft k[X_{n+1}, \ldots, X_m]$ tels que $V = V_I$ et $W = V_J$. Alors,

$$(x_1, \dots, x_{n+m}) \in V \times W \iff (x_1, \dots, x_n) \in V \text{ et } (x_{n+1}, \dots, x_{n+m}) \in W$$

$$\iff \forall f \in I, f(x_1, \dots, x_n) = 0 \text{ et } \forall g \in J, g(x_{n+1}, \dots, x_{n+m}) = 0$$

En posant $f_1(x_1,...,x_{n+m}) = f(x_1,...,x_n)$ et $g_2(x_1,...,x_{n+m}) = g(x_{n+1},...,x_{n+m})$, on voit que

$$(x_1,\ldots,x_{n+m})\in V\times W\iff \forall f\in I, f_1(x_1,\ldots,x_{n+m})=0 \text{ et } \forall g\in J, g_2(x_1,\ldots,x_{n+m})=0$$

donc $V \times W$ est algébrique comme intersection d'ensembles qui le sont.

- 3. On fait la preuve dans le cas n=m=1 pour alléger. Alors, l'ensemble $V_{X-Y}^c=\{(x,y)\in k^2\mid x\neq y\}$ est un ouvert de Zariski de k^2 . Soit maintenant $O_1,O_2\subset k$ deux ouverts non vides de Zariski. Comme on est sur k,O_1 et O_2 sont en fait des parties de complémentaire fini. Comme k est supposé infini, $O_1\cap O_2\neq \varnothing$. Mais alors, on dispose d'un $x\in k$ tel que $(x,x)\in O_1\cap O_2$, ce qui implique que V_{X-Y}^c ne peut pas contenir de produit d'ouverts non vides de k donc nous donne le résultat. Dans le cas général, on peut faire une preuve similaire en considérant l'ouvert complémentaire des solutions de $X_1=X_2=\cdots=X_{n+m}$.
- **4.** Si $f_i(x) = 0$, alors f(x) = 0, donc $\bigcup_i V_i \subset V_f$. Réciproquement, si f(x) = 0, alors par intégrité il existe i tel que $f_i^{n_i}(x) = 0$, donc en fait $f_i(x) = 0$, donc $V = \bigcup_i V_i$. **TODO**
- 5. Une union de composantes connexes est ouverte, donc si V avait une infinité de composantes connexes $(C_n)_{n\in\mathbb{N}}$ deux à deux distinctes, alors $\bigcup_{k=0}^n C_k$ serait une suite croissante d'ouverts qui ne stationne pas ce qui est impossible car V muni de la topologie de Zariski est noethérien.

^{*}https://webusers.imj-prg.fr/~jean-francois.dat/enseignement/enseignement.php