

FUNCTIONS

Why

We want a notion for a correspondence between two sets.

Definition

A function f from a set X to a set Y is a relation (see Relations) whose domain is X and whose range is a subset of Y such that for each $x \in X$, there exists a unique $y \in Y$ so that $(x,y) \in f$.

We call the unique $y \in Y$ the result of the function at the argument x. We call Y the codomain. If the range is Y we say that f is a function from X onto Y (or f is surjective). If distinct elements of X are mapped to distinct elements of Y, we say that the function is one-to-one (or f is injective).

We say that the function *maps* elements from the domain to the codomain. Since the word function and the verb "maps" connote activity, some authors refer to the concept that we have defined as a function as the *graph* of a function—namely, the set of ordered pairs which that function produces—and leave the concept of function undefined.

Notation

Let X and Y denote sets. We denote a function named f whose domain is X and whose codomain is Y by $f: X \to Y$. We read the notation aloud as "f from X to Y". We denote the set

of all functions from X to Y (which is a subset of $(X \times Y)^*$) by Y^X . A less standard but equally good notation is $X \to Y$, read aloud as "A to B". Using the notations introduced so far, we denote that $f \in (A \to B)$ by $f : A \to B$. We tend to denote function by lower case latin letters, especially f, g, and h. f is a mnemonic for function and g and h are nearby.

Let $f: A \to B$. For each element $a \in A$, we denote the result of applying f to a by f(a), read aloud "f of a." We sometimes drop the parentheses, and write the result as f_a , read aloud as "f sub a." Let $g: A \times B \to C$. We often write g(a,b) or g_{ab} instead of g((a,b)). We read g(a,b) aloud as "g of a and b". We read g_{ab} aloud as "g sub a b."

Examples

If $X \subset Y$, the function $\{(x,y) \in X \times Y \mid x=y\}$ is the inclusion function of X into Y. We often introduce such a function as "the function from X to Y defined by f(x) = y". We mean by this that f is a function and that we are specifying the appropriate ordered pairs using the statement, called argument-value notation. The inclusion function of X into X is called the identity function of X. If we view the identity function as a relation on X, it is the relation of equality on X.

The functions $f:(X \times Y) \to X$ defined by f(x,y) = x is the pair projection of $X \times Y$ ono X. Similarly $g:(X \times Y) \to Y$ defined by g(x,y) = y is the pair projection of $X \times Y$ onto Y. The identity function is one-to-one and onto, the inclusion functions are one-to-one but not always onto, and the pair projections are usually not one-to-one.

