Khôlles de Mathématiques - Semaine 19

Hugo Vangilluwen, George Ober, Kylian Boyet, Félix Rondeau $15~{\rm f\'evrier}~2025$

1 Caractérisation d'une famille liée

Une famille est liée si et seulement si l'un de ses vecteurs est une combinaison linéaires d'autres vecteurs de la famille.

$$(x_i)_{i \in I}$$
 est liée $\iff \exists i_0 \in I : \exists (\lambda_i)_{i \in I \setminus \{i_0\}} \in \mathbb{K}^{(I \setminus \{i_0\})} : x_{i_0} = \sum_{\substack{i \in I \\ i \neq i_0}} \lambda_i . x_i$ (1)

Démonstration. Supposons que $(x_i)_{i\in I}$ est liée. Par définition,

$$\exists (\mu_i) \mathbb{K}^{(I)} : \begin{cases} \sum_{i \in I} \mu_i x_i &= 0_E \\ (\mu_i)_{i \in I} & \neq (0_{\mathbb{K}})_{i \in I} \end{cases}$$

Donc $\exists i_0 \in I : \mu_{i_0} \neq 0_{\mathbb{K}}$. Fixons un tel i_0 .

$$\mu_{i_0} x_{i_0} + \sum_{i \in I \setminus \{i_0\}} \mu_i x_i = 0_E$$

Or $\mu_{i_0} \neq 0$, donc

$$x_{i_0} = \sum_{i \in I \setminus \{i_0\}} \left(\mu_{i_0}^{-1} \times (-\mu_i) \right) . x_i$$

En posant $\lambda_i = \mu_{i_0}^{-1} \times (-\mu_i)$, on obtient

$$x_{i_0} = \sum_{i \in I \setminus \{i_0\}} \lambda_i. x_i$$

Supposons maintenant qu'il existe $i_0 \in I$ et $(\lambda_i)_{i \in I \setminus \{i_0\}} \in \mathbb{K}^{(I \setminus \{i_0\})}$ tels que

$$x_{i_0} = \sum_{\substack{i \in I \\ i \neq i_0}} \lambda_i \cdot x_i$$

Alors $-x_{i_0} + \sum_{\substack{i \in I \\ i \neq i_0}} \lambda_i \cdot x_i = 0_E$. Posons $\mu_{i_0} = -1_{\mathbb{K}}$ et $\forall i \in I \setminus \{i_0\}, \mu_i = \lambda_i$. Ainsi, $(\mu_i)_{i \in I} \in \mathbb{K}^{(I)}$ et $\sum_{i \in I} \mu_i \cdot x_i = 0_{\mathbb{K}}$. Or $\mu_{i_0} \neq 0_{\mathbb{K}}$ donc $(\mu_i)_{i \in I} \neq (0_{\mathbb{K}})_{i \in I}$. Ainsi, $(\mu_i)_{i \in I}$ est liée.

2 Définition et existence du sous-espace engendré par une partie d'un espace vectoriel.

Soient $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel et A une partie de E. Notons \mathcal{A} l'ensemble des sous-espaces vectoriels de E contenant A. En ordonnant (partiellement) $\mathcal{P}(E)$ par l'inclusion, l'ensemble \mathcal{A} admet un plus petit élément, noté Vect E(A), et appelé le sous-espace vectoriel engendré par A dans E.

Démonstration. Posons $\mathcal{F} = \{F \text{ sous-espace vectoriel de } E \mid A \subset F \}$ et $V = \bigcap_{F \in \mathcal{F}} F$ (qui est bien défini car $\mathcal{F} \neq \emptyset$ puisque $E \in \mathcal{F}$). Montrons que $V = \min \mathcal{F}$ pour l'inclusion.

— $V \in \mathcal{F}$ car V est une intersection de sous-espaces vectoriels de E donc est un sous-espace vectoriel de E, et

$$\forall F \in \mathcal{F}, A \subset F \implies A \subset \bigcap_{F \in \mathcal{F}} F \implies A \subset V$$

— Soit $F_0 \in \mathcal{F}$ fixé quelconque.

$$V = \bigcap_{F \in \mathcal{F}} F = F \cap \left(\bigcap_{F \in \mathcal{F} \setminus F_0}\right) \subset F_0$$

donc V est plus petit que tous les autres éléments de $\mathcal F$ pour l'inclusion.

3 Description explicite du sous-espace vectoriel engendré par une partie.

Le sous-espace vectoriel engendré dane E par la famille $(a_i)_{i\in I}$ est

Vect
$$_{E}\{a_{i} \mid i \in I\} = \left\{ \sum_{i \in I} \lambda_{i} a_{i} \mid (\lambda_{i})_{i \in I} \in \mathbb{K}^{(I)} \right\}$$

On note cet ensemble W pour la démonstration.

Démonstration.

- \triangleright W est un sous-espace vectoriel de E.
 - $\star~W \subset E$ et E est un \mathbb{K} -espace vectoriel .
 - $\star W \neq \emptyset \text{ car } 0_E \in W \text{ (pour } (\lambda_i)_{i \in I} \leftarrow (O_{\mathbb{K}})_{i \in I}).$
 - * Soient $(x, y) \in W^2$ et $\lambda \in \mathbb{K}$ fixé quelconque. Il existe (λ_i) et (μ_i) deux familles presque nulles de \mathbb{K} telles que

$$x = \sum_{i \in I} \lambda_i a_i$$
 et $y = \sum_{i \in I} \mu_i a_i$

Ainsi,

$$\lambda x + y = \sum_{i \in I} \underbrace{(\lambda \times \lambda_i + \mu_i)}_{\in \mathbb{K}} \cdot a_i \in W$$

ightharpoonup Montrons que $\{a_i \mid i \in I\} \in W$: Soit $i_0 \in I$ fixé quelconque. Pour $(\lambda_i) \leftarrow (\delta_{i_0,i})$ (autorisé car supp $(\delta_{i_0,i}) = \{i_0\}$ est fini),

$$a_{i_0} = \sum_{i \in I} \delta_{i_0,i} a_i \in W$$

 \triangleright Montrons que $W \subset \text{Vect } \{a_i \mid i \in I\}$: Soit $x \in W$ fixé quelconque. Il existe une famille (λ_i) presque nulle de scalaires telle que

$$x = \sum_{i \in I} \lambda_i a_i \in \text{Vect } \{ a_i \mid i \in I \}$$

car x est une combinaison linéaire de vecteurs de $\{a_i \mid i \in I\}$ donc de vecteurs de Vect $\{a_i \mid i \in i\}$, donc Vect $\{a_i \mid i \in I\}$ est un sous-espace vectoriel de E.

Ainsi, les deux premiers points donnant l'inclusion directe, i.e.

Vect
$$\{a_i \mid i \in I\} \subset W$$

et le troisième l'inclusion réciproque, on a bien l'égalité recherchée.

4 Stabilité de la liberté d'une famille par adjonction d'un vecteur n'appartenant pas au sous-espace qu'elle engendre.

Si \mathcal{F} est une famille libre de vecteurs de E et $x \in E \setminus \text{Vect } \mathcal{F}$, alors la famille $\mathcal{F} \cup \{x\}$ est libre.

Démonstration. Soit $x_{\Delta} \in E \setminus \text{Vect } \{x_i \mid i \in I\}$ fixé quelconque. Soient $(\lambda_i)_{i \in I \cup \{\Delta\}} \in \mathbb{K}^{(I \cup \{\Delta\})}$ fixée quelconque telle que

$$\sum_{i \in I \cup \{\Delta\}} \lambda_i x_i = 0_E \tag{*}$$

Supposons $\lambda_{\triangle} \neq 0_{\mathbb{K}}$. Alors, (*) donne

$$\lambda_{\triangle} x_{\triangle} = \sum_{i \in I} -\lambda_i x_i \implies x_{\triangle} = \sum_{i \in I} -\frac{\lambda_i}{\lambda_{\triangle}} x_i$$

donc $x_{\triangle} \in \text{Vect } \{x_i \mid i \in I\}$ ce qui contredit le choix de x_{\triangle} . Par conséquent, $\lambda_{\triangle} = 0_{\mathbb{K}}$ (1) donc (*) devient

$$\sum_{i \in I} \lambda_i x_i = 0_E$$

or $(x_i)_{i \in I}$ est libre donc

$$\forall i \in I, \lambda_i = 0_{\mathbb{K}} \tag{2}$$

Les relations (1) et (2) donnent $\forall i \in I \cup \{\Delta\}, \lambda_i = 0_{\mathbb{K}}$ donc la famille $(x_i)_{i \in I \cup \{\Delta\}}$ est libre. \square

5 Équivalence \mathcal{F} base, tout vecteur se décompose de manière unique dans \mathcal{F} , \mathcal{F} générarice minimale et \mathcal{F} libre maximale.

Si E est un \mathbb{K} -espace vectoriel et \mathcal{F} une famille de vecteurs de E, les propositions suivantes sont équivalentes :

- (i) \mathcal{F} est une base de E
- (ii) Tout vecteur de E s'écrit d'une manière unique comme une combinaison linéaire des vecteurs de $\mathcal F$
- (iii) \mathcal{F} est une famille génératrice minimale (au sens de l'inclusion)
- (iv) \mathcal{F} est une famille libre maximale (au sens de l'inclusion)

Démonstration. Notons $(a_i)_{i\in I}$ la famille \mathcal{F} .

- $(i) \implies (ii)$ Supposons que \mathcal{F} est une base de E. Soit $x \in E$ fixé quelconque.
 - $\mathcal F$ est une base donc $\mathcal F$ est génératrice donc x s'écrit comme une combinaison linéaire de vecteurs de $\mathcal F$
 - \mathcal{F} est une base donc \mathcal{F} est libre donc x s'écrit de manière unique comme combinaison linéaire de vecteurs de \mathcal{F}
- $((ii) \implies (iii))$ Supposons que tout vecteur de E s'écrit d'une manière unique comme une combinaison linéaire des vecteurs de \mathcal{F} . Alors $E \subset \mathcal{F}$ or Vect $\mathcal{F} \subset E$ donc Vect $\mathcal{F} = E$ donc \mathcal{F} est génératrice.

 $Rappel: \mathcal{F}$ est génératrice minimale signifie qu'aucune sous-famille stricte de \mathcal{F} n'est génératrice. Il suffit donc de montrer qu'une sous-famille \mathcal{F}' de \mathcal{F} quelconque n'est pas génératrice.

Soit \mathcal{F}' une sous-famille stricte de \mathcal{F} ; supposons-la génératrice. Par définition, il existe un élément a de \mathcal{F} n'appartenant pas oà \mathcal{F}' . De plus, \mathcal{F}' étant génératrice, cet élément s'écrit comme combinaison linéaire de vecteurs de \mathcal{F}' (combinaison linéaire des vecteurs de \mathcal{F} avec le coefficient devant a nul). Or $a=1\cdot a$ ce qui contredit l'unicité de lécriture de a comme combinaison linéaire de vecteurs de \mathcal{F} . Ainsi, \mathcal{F} est génératrice minimale.

 $((iii) \Longrightarrow (iv))$ Supposons que \mathcal{F} est une famille génératrice minimale. Représentons \mathcal{F} par $(x_i)_{i\in I}$.

- Supposons \mathcal{F} liée. Alors un des vecteur doté x_{i_0} s'écrit comme combinaison linéaire des autres vecteurs de la famille : $x_{i_0} \in \{x_i \mid i \in I \setminus \{i_0\}\}$. Or \mathcal{F} est génératrice donc $(x_i)_{i \in I \setminus \{i_0\}}$ l'est également. Ainsi $(x_i)_{i \in ei \setminus \{i_0\}}$ est une sous-famille stricte de \mathcal{F} qui est génératrice, ce qui contredit le caractère générateur minimal de \mathcal{F} , donc \mathcal{F} est libre.
- $Rappel: \mathcal{F}$ est libre maximale signifie que toute famille ayant \mathcal{F} comme sous-famille stricte est liée, ou encore qu'il n'existe pas de famille libre contenant strictement \mathcal{F}

Soit \mathcal{F}' une famille libre admettant \mathcal{F} comme sous-famille stricte. Notons a un élément de \mathcal{F} n'appartenant pas oà \mathcal{F}' .

 \mathcal{F} est génératrice donc $a \in \text{Vect } \mathcal{F}$ donc a s'écrit comme combinaison linéaire des autres vecteurs de \mathcal{F}' . Or $a \in \mathcal{F}'$ donc \mathcal{F}' est liée d'où une contradiction. Ainsi \mathcal{F} n'admet aucune famille libre la contenant strictement, donc \mathcal{F} est libre maximale.

- $((iv) \implies (i))$ Supposons que \mathcal{F} est une famille libre maximale.
 - \mathcal{F} est libre
 - Supposons que \mathcal{F} n'est pas génératrice. Alors Vect $\mathcal{F} \subsetneq E$ donc $\exists a \in E : a \notin \text{Vect } \mathcal{F}$, or \mathcal{F} est libre donc (\mathcal{F}, a) (adjonction du vecteur a oà la famille \mathcal{F}) est libre, ce qui contredit le fait que \mathcal{F} est libre maximale (car (\mathcal{F}, a) est libre et admet \mathcal{F} comme sous-famille stricte). Par conséquent, \mathcal{F} est génératrice, et ainsi, \mathcal{F} est une base de E.

6 Le noyau et l'image d'une application linéaire sont des sous-espaces vectoriels

Soit $f \in \mathcal{L}_{\mathbb{K}}(E, F)$.

$$\ker f = \{x \in E \mid f(x) = 0_F\} = f^{-1}(\{0_F\})$$
$$\operatorname{Im} f = \{y \in F \mid \exists x \in E : f(x) = y\}$$

Nous démontrerons le résultat plus général suivant :

- (i) f(E') est un sous-espace vectoriel de F.
- (ii) $f^{-1}(F')$ est un sous-espace vectoriel de E.

Démonstration.

(i) $0_E \in E'$ et $f(0_E) = 0_F$ donc $0_F \in f(E')$ d'où $f(E') \neq \emptyset$ Soit $(\alpha, \beta, y, y') \in \mathbb{K}^2 \times f(E')^2$ fixés quelconques. Par définition, il existe $(x, x') \in E'^2$ tels que f(x) = y et f(x') = y.

$$\begin{aligned} \alpha y + \beta y' &= \alpha f(x) + \beta f(x') \\ &= f(\alpha x + \beta x') \quad \text{car } f \in \mathcal{L}_{\mathbb{K}}(E, F) \\ &\in f(E') \quad \text{car } \alpha x + \beta x' \in E' \text{ puisque } E' \text{ est un sous-espace vectoriel} \end{aligned}$$

Donc f(E') est un sous-espace vectoriel.

(ii) $0_F \in F'$ et $f(0_E) = 0_F$ donc $0_E \in f^{-1}(F')$ d'où $f(F') \neq \emptyset$

Soit $(\alpha, \beta, x, x') \in \mathbb{K}^2 \times f^{-1}(F')^2$ fixés quelconques.

Par définition, il existe $(y, y') \in F'^2$ tels que f(x) = y et f(x') = y. Or F' est sous-espace vectoriel donc $\alpha y + \beta y' \in F'$. $f \in \mathcal{L}_{\mathbb{K}}(E, F)$ d'où $f(\alpha x + \beta x') = \alpha y + \beta y'$. Donc $\alpha x + \beta x' \in f^{-1}(F')$.

Ainsi, $f^{-1}(F')$ est un sous-espace vectoriel.

En appliquant ce résultat pour E'=E et $F'=\{0_F\}$, nous obtenons que $\ker f$ et $\mathrm{Im} f$ sont des sous-espaces vectoriels .