LaPIS Diagnostic Test Workbook - Mathematics

Name : Tharun R

Class: 7

Section : C

School : AKV Public School

Login ID : AKV183

Tharun R's Performance Report

Score: 11/40 Percentage: 27.5%

Tharun R's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sig
		Too ob on's To	edback to Student		
		reacher's re	edback to Student		
	Class Teacher S		D.:	ipal Signature	

Basic arithmetic

Topics to be Improved		
Types of angles	Identification of types of angles	

Hi, here in this video you will learn **Types of Angles**

Question: 1

Find the angles.

Answer:

The angle ranges from $___{\circ}$ to $___{\circ}$.

The angle perpendicular to 0° is $___{\circ}$.

The straight line measures $___^{\circ}$.

Question: 2

The angle formed between the directions

(i) West and East is _____ angle.

(ii) North and East is angle.	
(iii) East and South is angle.	
Answer:	
The angle formed between West and East is° and it is called angle.	
The angle formed between North and East is° and it is called angle.	
The angle formed between East and South is° and it is called angle.	
$\underline{\textit{Question: 3}}$	
The addition of straight angle and right angle is angle.	
Answer:	
The measurement of straight angle is°	
The measurement of right angle is°.	
Straight angle + Right angle = + = =	
It is called as angle.	

Data handling

Topics to be Improved		
Chance of probability Basis of probability		
Arithmetic mean, mode and median	Mean, Median and Mode	

and median	Weath, Weathin and Weath	
Hi, here in this video you	will learn Basics of probability	
Question: 4		
Identify the sure events and im	apossible events	
(i) The sun rises in the west.		
(ii) Water is colourless.		
(iii) Clock rotates in clock wis	se direction.	
(iv) Ball is square in shape.		
Answer:		
Events that cannot occur are confere, The sun rises in the west event.	alled (sure/ impossible) events. alled (sure/ impossible) events. a is event. Water is colourless is ection is event. Ball is square in shape is	
Question: 5		
Probability of sure events is	(greater / smaller) than probability of	impossible events
Answer:		
	=(0/ 1/ any number). = (0/ 1/ any number). event Probability of impossible event.	
<i>Question:</i> 6		
Raju has pencil, an eraser, a so probability of getting a pen fro	cale, sharpener, colour pencil and protractor in his om his box.	box. What is the

 $\underline{Answer:}$

Does Raju have p	ee pen in his box, of getting pen from his	(Yes/ N		0/1)		
Hi, here in th	is video you will le	earn M	ean, Mo	edian, N	Mode	
Question: 7						
Find the mode of	the following data: 5,	, 15, 23,	5, 32, 44,	72, 55, 6, 3	3, 5, 65, 45,	67, 24, 19 and 98.
$\underline{Answer:}$						
Arranging the da	per that occurs ta in ascending order: occurs most number of					
Question: 8						
Which shape cont	tains median of the given					
ascending or desc Arrange the given	(first/cen ending order. n data in ascending or the given data is	der :	and it i	s the		of a data.
	Marks scored	100	90	80	70	
	Number of students	4	5	2	1	
$Mean = \underline{\hspace{1cm}},$	Median = an	nd Mode	=	_•		
Answer:						
$Mean = \frac{1}{mu}$	of all observation mber of observation of observation					
Therefore, mean a Arrange the data	observation = = in ascending order : _ , mode				tion =	

Geometry

	Topics to be Improved		
Angle sum property of triangle	Angle sum property of triangle		
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles		
Related angles	Basic of angles, Complementary angles		
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle		
Right angle triangle and pythagoras property	Basics of Pythagoras property		
Transversal angle made by transversal	Basics of Transversal angle		
Faces vertex and edges	Idenfication of faces, edges and vertices		
Types of triangle Basics of types of triangle (sides)			

.....

Hi, here in this video you will learn Angle sum property

Question: 10

Sum of the angles of triangle is ______.

Answer:

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

Question: 11

Which of the following triangle satisfy the angle sum property.

Angle sum property of triangle: sum of the angles of a triangle is $_$		_
In $\triangle ABC$, Sum of the angles $= \angle A + \angle B + \angle C =$	=	
In $\triangle PQR$, Sum of the angles = =	=	
In $\triangle KLM$, Sum of the angles = =	. =	
In $\triangle XYZ$, Sum of the angles = =	=	
Therefore, the triangles that satisfy the angle sum property are $=$ $_{-}$		_

Question: 12

Find the angles of triangle, if their angles are in the ratio 8:6:4.

Answer:

Ratio of angles in the triangle is
Let's consider the angles of triangle be $8x$, and
We know sum of the angles of a triangle is
Therefore, $8x + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = 180^{\circ}$. The value of $x = \underline{\hspace{1cm}}$
The angles of the triangle are

Hi, here in this video you will learn **Criteria of congruence**

Question: 13

Circle the groups that contain congruent images.

Answer:

Two geometrical shapes are said to be congruent if the	ney are
(identical/non-identical) in shapes and size.	
Example: Square and Rectangle are	(congruent/not congruent).

<u>Question: 14</u>

If the three sides of the triangle are equal to the corresponding sides of the other triangle, then two triangles are congruent under $____$ (SSS/ASA/SAS) criteria .

4			~~	
\boldsymbol{A}	ns	w	er	:

Two triangle are ______ (congruent/not congruent) if they are identical in shapes and size. Criteria for congruence of triangles are SSS, _____ and ____.

- 1. In SSS Congruence criteria (2/3/5) sides of the triangle are (equal/1) not equal) to the three corresponding sides of the other triangle.
- 2. In SAS Congruence criteria (2/3/5) sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
- 3. In ASA Congruence criteria (2/3/5) angles and (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

Question: 15

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ___ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Hi, here in this video you will learn **Related Angles**

Question: 16

- (i) When two rays of an angle are perpendicular, then the angle formed between them is a $\underline{\hspace{1cm}}$ angle .
- (ii) When two rays of an angle are in opposite sides, then the angle formed between them is a _____ angle .

A ______ (line segment /ray) begins from one point and travels endlessly in a direction.

- (i) The angle formed between two perpendicular rays is ____° and it is called _____ angle.
- (ii) If two rays starting at same point moves in opposite direction, they form a ______ (straight / perpendicular) line. The measure of the angle formed is _____ and it is called _____ angles.

Question: 17

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC$ = ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$
Therefore, $\angle DBE = \underline{\hspace{1cm}}$

Find the complementary angles in the given diagram.

Two angles are said be complementary if sum of their angles is equal to
$\angle AOB = $, and its complement angle is
$\angle BOC = $, and its complement angle is
$\angle COD = $, and its complement angle is
$\angle DOE = $, and its complement angle is
Therefore, in the given figure the complementary angles are $\angle AOB$, and $\angle BOC$,
Hi, here in this video you will learn Related Angles

......

Question: 19

- 1. Two angles are complementary if their sum is equal to _____.
- 2. Two angles are supplementary if their sum is equal to _____.

Answer:

- 1. When sum of the two angles is equal to 90°, they are called as _____ angle. Example: 45° and 45°, _____, and ____.
- 2. When sum of the two angles is equal to 180°, they are called as _____ angle. Example: 90° and 90°, _____, and ____.

Question: 20

Shade the complementary angles.

.....

90°, 90°	
----------	--

Answer:

Two angles are said be complementary if the sum of their angles are equal to _____

 $85^{\circ}+95^{\circ}=$ and this is _____ (a / not a) complementary angles.

$$45^{\circ} + 45^{\circ} =$$
 and this is _____ angles.

$$6^{\circ} + 84^{\circ} =$$
 and this is _____ angles.

$$73^{\circ} + 107^{\circ} =$$
 and this is _____ angles.

$$36^{\circ} + 64^{\circ} =$$
 and this is _____ angles.

$$90^{\circ} + 90^{\circ} =$$
 _____ and this is ____ angles.

Question: 21

Find the complement and supplement of 15° and 90°

Answer:

One angle is _____ (complements / supplements) to other angle, when sum of the two angles is equal to 90° .

......

One angle is _____ (complements / supplements) to other angle, when sum of the two angles is equal to 180°.

Complement of
$$15^{\circ} = \underline{\hspace{1cm}}$$
,

Supplement of
$$15^{\circ} = \underline{\hspace{1cm}}$$
,

Complement of
$$90^{\circ} =$$
_____.
Supplement of $90^{\circ} =$ _____.

Hi, here in this video you will learn **Sum of the length of sides** of the triangle

Question: 22

Find the greatest distance to reach C from A in the given diagram.

Answer:

The sides of the given triangle are _____

The possible way to reach point C from point A are _____ and AB then to

$$Side\ AC = \underline{\hspace{1cm}}$$

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 23
(Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.
Answer:
There are sides in a triangle. The sum of the two sides of a triangle is than the other side of the triangle. The difference of the two sides of a triangle is than the other side of the triangle. Example: In triangle XYZ,
X
XY + YZ $XZ (<,>,=)$ $XZ (<,>,=)$ Z $XZ (<,>,=)$
$_{ m Y}$ $_{ m 60m}$
Question: 24 The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?
Answer:
1. The sum of the two sides of a triangle is than the third side of the triangle. Therefore, the third side should be (less/ greater) than sum of other two sides. Here, sum of the two sides = + = Therefore, the length of the third side is less than
2. The difference of the two sides of a triangle is than the third side of the
triangle. Therefore, the third side should be(less/ greater) than sum of other two sides. Here, difference of the two sides = = Therefore, the length of the third side is greater than
Therefore, length of the third side is greater than but less than
Hi, here in this video you will learn Pythagoras property
Question: 25
In a right angled triangle, square of the = sum of the squares of the legs.

 $\underline{Answer:}$

Pythagoras theorem is only applicable for ______ triangle.

Longest side of the triangle is _____ (hypotenuse/ legs) and other two sides are called

.....

_____(hypotenuse/ legs).

Pythagoras theorem states that _____

Question: 26

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its

Given: Base = _____, Altitude = _____

Base and altitude are _____ (hypotenuse/legs) of the triangle.

.....

Therefore, hypotenuse of the triangle is _____.

Question: 27

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the $___$ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = _____, length of diagonal = _____

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Basics of Transversal angle

Question: 28

.....

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

......

Question: 29

Find the transversal, alternate angles and corresponding angles in a given diagram.

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	\angle a and \angle e, \angle b and \angle f,

.....

Question: 30

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Hi, here in this video you will learn Basics of 3D model

Question: 31

A point at which two or more lines segments meet is called _____(Vertex/ edges/ faces).

......

Answer:

has two end point (line/line segment/ray).

A ______is a point where two or more line segments meet(Vertex/ edges/ faces).

Mark the vertices in the diagram,

Question: 32	
4	

Mark and find the number of vertices, edges and faces in a cube.

$\underline{Answer:}$

Mark the vertex, edges and faces in a cube.

Count the number	of vertex,	edges and	faces in	a cube.	
Cube have	_ vertices,	ec	lges and		faces.

Question: 33

How many vertices, edges and faces does dices have?

Answer:	
The shape of dice is Dices have vertices, edges and faces.	
Hi, here in this video you will learn Types of triangle	
Question: 34	
Polygon with three sides is called as	
$\underline{Answer:}$	
A polygon is a simple (open / closed) curve made up of only line segments. Polygon with three sides is called Draw a diagram of polygon with three sides :	

$\underline{Question:~35}$

Identify the types of triangles.

Answer:

Triangle has _____ sides.

• Triangle with all sides are equal is called _____ triangle.

• Triangle with two sides of equal length is called triangle.
• Triangle with three sides of different length is called triangle.
$Question: \ 36 $
A park is in the shape of an isosceles triangle. If side length of the park is 30ft and 60ft. then the possible length of third side of park can be
$\underline{Answer:}$
The shape of the park is The shapes has sides and this shape has sides of equal length. Given: length of sides of park is The possible length of third side is

Number system

Topics to be Improved				
Properties of integers	Associative property			
Introduction to rational numbers	Basics of rational numbers			
Law of Exponents	Law of Exponents			
Exponents	Solving exponents			
Operations on rational numbers	Division of rational numbers			
Decimals	Multiplication and division of decimals			
Fractions	Division of fraction, Multiplication of fractions			

.....

Hi, here in this video you will learn **Properties of integers**

Question: 37

Match the following based on the properties of integers

i	Closure
ii	Associative
iii	Commutative
iv	Identity

a	(5+7)+3=3+(7+5)
b	21 + 0 = 21
С	15 + 17 = 32
d	1 + 99 = 99 + 1

Answer:

((1)		C.	los	ure	pro	эр	erty	
---	-----	--	----	-----	-----	-----	----	------	--

The sum of integers is always _____(integer / not a integer).

Therefore, _____ + ____ = ____

From the given option _____ satisfies the closure property.

(ii) Associative property:

Rearranging the parentheses (brackets) ______ (does not/does) change the sum.

Therefore, (a + b) + c =_____.

From the given option ______ satisfies the Associative property.

(iii) Commutative property:

Changing the order of the addends _____ (does not/ does) change the sum.

Therefore, $a + b = _{---} + _{---}$

From the given option ______ satisfies the Commutative property.

` /	dentity property : The surface $a + \underline{\qquad} =$		ny number always retu	rns same number.
	From the given option		s the Identity property.	
Quest	tion: 38			
Mark 1	the operations in which co	ommutative property	y holds true for any two	o integers.
	Addition	Subtraction	Multiplication	Division
\underline{Answ}	<u>er:</u>			
For an The co	nmutative property, chang (does not/ does y two integers, commutate mmutative property for a mmutative property for a	s) change the result. Live property holds to addition is	rue for	
Quest	tion: 39			
Are ad	ditive identity and multip	plicative identity the	e same? (Yes or No)	
\underline{Answ}	<u>er:</u>			
The Id	by property holds only for lentity property for additi- lentity property for multi-	ion is	_ and additive identity	
Theref	Fore, additive identity is _	(equal / not	equal) to multiplicative	re identity.
Hi, l	nere in this video you	will learn Basic	s of rational num	lbers
Quest	tion: 40			Electric.
The nu	umbers in the diagram re	presents	<u> </u>	
	$\frac{1}{49}$ $\frac{8}{27}$	$\frac{13}{75}$ $\frac{11}{5}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 -4

Answer:	•
21100 WC1 .	

0, 4,5,2,3,1 are _____ numbers.

-1,-2, -3, -4 are _____ numbers.

The combination of these circles are called ______.

 $\frac{1}{49}$, $\frac{1}{2}$, $\frac{8}{27}$, $\frac{11}{5}$, $\frac{13}{75}$ are ______.

Combination of all three circles are called as ______ numbers.

Question: 41

Shade the correct form of rational numbers.

Answer:

Rational number can be expressed as ______, where both numerator and denominator are _____ (integer/ not a integer),

.....

.....

denominator is equal to ______(zero/ one/ any integer other than zero).

Question: 42

Circle the number which is not a rational number.

$$\frac{-5}{-8}$$

$$\frac{-3}{2}$$

$$\frac{12}{-6}$$

$$\frac{4}{0}$$

Answer:

Rational number can be expressed as ______, where both numerator and denominator are _____(integer/ not a integer), denominator is equal to ______ (zero/ one/ any integer other than zero).

Here, ______ is/are rational number and ______ is/are not a rational number.

Hi, here in this video you will learn Law of exponents

Question: 43

 $(x)^0$ is equal to ______.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In
$$(x)^0$$
 base = _____

$$Power = \underline{\hspace{1cm}}$$

Any number or variable with power zero is equal to Therefore, $(x)^0$ equal to
Question: 44
i. $a^m \times a^n = \underline{\hspace{1cm}}$ ii. $a^m \div a^n = \underline{\hspace{1cm}}$
Answer:
Multiplication of two numbers with same base with different power, their exponents are (added/ subtracted) Division of two numbers with same base with different power, their exponents are (added/ subtracted).
Question: 45
Circle the result of the expression $(a^0 \times b^1) + (m^1 \times n^0) + (x^0 \times y^1)$
a + n + x bmy 1 $ab + mn + xy$ 0 anx $b + m + y$
$\underline{Answer:}$
Any number with power zero is equal to (One/ Zero). Any number with power one is equal to (same/ different) number.
=+ = Hi, here in this video you will learn Exponents and power
<u>Question: 46</u> Find the exponential form of 1000.
Answer:
(Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result. Exponents is also called as (Base / Power).
1000 can be written as = $10 \times $ $\times $ 10 is raised to the power of = (10)
Question: 47

Find the value of $(-2)^3$.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In this exponential form
$$(-2)^3$$
, base = ____, power = ____.
 $(-2)^3$ = ____ × ___ = ___.

.....

......

Question: 48

- (i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$).
- (ii) k is raised to the power of 5 is $((k)^5)$ or $(5)^k$.

Answer:

Exponential form = (Base)—

- (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____.
- (ii) k is raised to the power of 5 : Base = ____, Power/Exponent = ____, exponential form = ____.

Hi, here in this video you will learn **Operation on rational numbers**

Question: 49

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square$$

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the ______(same/reciprocal) of the divisor.

Here, dividend = ____ and divisor = ____

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

Question: 50
Solve: $\frac{18}{7} \div 0.6$
Answer:
Fraction form of $0.6 = \underline{\hspace{1cm}}$, when any fraction is divided by a fraction, we multiply the dividend by the $\underline{\hspace{1cm}}$ (same/reciprocal) of the divisor. Here, dividend = $\underline{\hspace{1cm}}$ and divisor = $\underline{\hspace{1cm}}$.
$\frac{18}{7} \div \boxed{\square} = \frac{18}{7} \times \boxed{\square} = \boxed{\square}$
Question: 51 Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\Box} = 2$
<u>Answer:</u>
$\frac{8}{3} \div \frac{16}{\square} = 2$
$\frac{8}{3} \times \frac{\square}{16} = 2$
Transposing 8/3 to RHS,
$\frac{\square}{16} = 2 \square \frac{8}{3}$
$\frac{\square}{16} = 2 \times \square$

Transposing 16 to other side, the result is _____

Hi, here in this video you will learn Basics of decimals

 $\underline{\textit{Question: 52}}$

Shade 0.4 part of the given shape.

Answer:
There are boxes. 0.4 can be expressed as in fraction This fraction represents parts out ofequal parts. So, we need to shade boxes out ofboxes.
Question: 53
Solve the following.
(i) 0.4×1.2
(ii) 0.48×1.2
Answer:
 (i) 0.4 × 1.2 : Multiplication of 0.4 × 1.2 assuming there is no decimal point is The number of digits after decimal point in 0.4 is and 1.2 is Total digits after decimal point in the product of two numbers is Count that digits from the right towards left and place the decimal point, the result is (ii) 0.48 × 1.2: Multiplication of 0.48 × 1.2 assuming there is no decimal point is The number of digits after decimal point in 0.48 is and 1.2 is Total digits after decimal point in the product of two numbers is Count that digits from the right towards left and place the decimal point, the result is
Question: 54
One box of chocolate costs Rs.20.10. What is the cost of 15 chocolates, if a box contains 10 chocolates?
Answer:
One box contains chocolates. The cost of one box is Then cost of one chocolate = ÷ =
(i) Total digits after decimal point in decimal number =
(ii) Divide the two numbers assuming there is no decimal point.
$\frac{2010}{15} = $

(iii)	Place the decimal point after	digits coun	ting from	the right in	the quotien	t after
	division.					

Then the cost of one chocolate is _____.

The cost of 15 chocolates = cost of one chocolate \times ____ = __ x ___ = __

Hi, here in this video you will learn Division on fractions

Question: 55

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is _____ , 2 is _____ and 7 is _____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

$$5\frac{2}{7} = \frac{(--- \times ---) + ----}{7} = \frac{\square}{\square}$$

Question: 56

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by _____ (same / reciprocal) of the divisor. Here, dividend = _____ and divisor = ____.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{\square} = \boxed{\square}$$

.....

Question: 57

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{} = \frac{12}{40} \times \underline{} = \underline{}$$

Then the answer is __

Hi, here in this video you will learn Multiplication on fractions

Question: 58

Fill the boxes

$$2+4+\frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

Answer:

The whole number can be expressed in fraction with denominator equal to _____ (zero/one). Therefore, 2 can be written as _____ in fraction.

4 can be written as _____ in fraction.

$$2+4+\frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Question: 59

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

.....

.....

Answer:

Total number of students = _____

Fraction of students who are girls = _____

Number of girls = \times = = =

Question: 60

Solve: $2\frac{7}{4} \times \frac{2}{3}$

Answer:

Improper fraction of $2\frac{7}{4} =$

$$2\frac{7}{4} \times \frac{2}{3} = \boxed{\qquad} \times \frac{2}{3} = \boxed{\qquad}$$

Comparing Quantities

Topics to be Improved				
Equivalent ratios	Basic of proportion			
Simple interest	Calculation of simple interest			
Conversion of fraction into percentage	Conversion of fraction into percentage			

Hi, here in this video you will learn Basics of proportion	
$Question: \ 61$	
If a:b and c:d are equivalent ratio, then it can be expressed as	
$\underline{Answer:}$	
A (proportion / ratio) is used to express (one/two) equivalent rational form to express proportion is	tios.
$Question: \ 62$	

Find the ratio of shaded part to unshaded part of A and B. Are the two ratios equivalent ?

A

Answer:

Shaded part of $A = \underline{\hspace{1cm}}$, Unshaded part of $A = \underline{\hspace{1cm}}$.
Ratio of shaded to unshaded parts of A is $___$. Fractional form $= ___$.
Shaded part of $B = \underline{\hspace{1cm}}$,
Unshaded part of $B = \underline{\hspace{1cm}}$.
Ratio of shaded to unshaded parts of B is
Fractional form $=$
Fraction form of A (equal/ not equal) to Fraction form of B.
Question: 63

If a : b ::	c: c	l is proportion, sha <u>de the c</u>	orrect	t expi	ression	
	$\frac{\partial c}{\partial d}$	$c = \frac{ad}{b}$ ad=0	ed			
Answer	<u>:</u>					
orFirst and In proporterms.	_ = _ fourtion, e, a ×		and s	econd	e written as a : b :: c : d and third term are called (equal to/ not equal to) produc	
		this video you will lea				
$\frac{Questio}{Match th}$		<u></u>				
			1		C. I. D.	
	i	Column A Principle(P)	1	0	Column B Interest calculated based on th	ig
	ii	Amount (A)	1	a b	Total sum you borrow	15
	iii	Rate (R)	1	$\frac{c}{c}$	Number of years	
	iv	Time period (T)		d	Total sum with interest	
Interest of Total sun Number of	for ca calcula n you of yea		l sum	——. 1 with	interest is	
Sara depo	osited	Rs.1200 in a bank. After	three	years	, she received Rs.1320. Find the	interest she
Answer	<u>:</u>					
If Amoun	nt and	· -	rmula	for c	, Time period = alculating interest is	
$\overline{Questio}$	n: 6	<u>6</u>				

The simple interest on	Rs.5000 for 3 years is Rs	s.1350. Find the 1	rate of interest.	
Answer:				
Interest =	, Time period $ = $, Pr	$incipal = \underline{\hspace{1cm}}$	·
Rate of interest $=\frac{1}{1}$	x 100 Principal x			
Substituting values in				
Rate of interest $=\frac{1}{1}$	x 100 Principal x			
Rate of interest = Therefore, the rate of i	interest is	_ %		
percentage	ideo you will learn (
Question: 67				
Complete the box in the	he given equation.			
$5\% = \frac{5}{\Box}$				
Answer:				
Percentage are the frac	ction with the denominat	or		
	Therefore, 5% can be ϵ	expressed as		
Mark the correct conve	ersion form of fraction $\frac{1}{2}$	to percentage.		
(i) $\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} = 50$	0%			
(ii) $\frac{1}{2} \times \frac{100}{100} = \frac{100}{200} = 2$	200%			
(iii) $\frac{1}{2} \times 100 = \frac{100}{2} = \frac{1}{2}$	50%			
Answer:				
100 or	to percentage, the value of a (multiply / divide) the version form is	fraction with 100		umerator)should be
,				

Find the percentage of shaded part of square.

$\underline{Answer:}$

The square shape is divided into	_ parts
Number of shaded part of square is $_$	
Shaded part of square in fraction is	

To Convert	into percentage,	x 100

Algebra

Topics to be Improved			
subtraction of algebraic expressions	subtraction of algebraic expressions		
Terms of an expression	Identification of terms in an expression		
Basics of simple equation	Solving of simple equation, Formating of simple equation		
Monomials, binomials, trinomials and polynomials	Types of algebraic expression		
Addition and subtraction of algebraic expressions	Like terms and Unlike terms		

Hi, here in this video you will learn Subtraction on expression

Question: 70
Find the sum of two expressions $a + b + c$ and $b + c + d$
Answer:
The given two expressions are and
The two terms will get added only if they are(Like/ Unlike) terms.
The sum of two expressions —

Question: 71

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A? _____

The answer is _____

(i) Number of boys in school A = _____, Number of boys in school B = _____.

Total number of boys in school A and school B is _____ + ___ = ____.

- (ii) Number of boys in school B= ______, Number of girls in school B= _____. Total number of students in school B is _____ + ____ = ____.
- (iii) Number of teachers more in school B than school A = Teachers in school B Teachers in school A = $__$.

Question: 72

Solve the following:

$$\begin{array}{c|c}
 3a - 5b \\
 \hline
 (-) & 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{c|c}
 3a - 5b \\
 \hline
 (-) & 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$

.....

Hi, here in this video you will learn Terms of an expression

Question: 73

Separate the variables and constants for all the terms given in the box

Answer:

In algebraic expression, variables are represented by _____ and Constant is a

Terms	Constants	Variables

.....

.....

Question: 74

Mark the expression that contains two terms.

$$3x + 5$$
 $12a$ $4xy$ $12a + b + 1$ $7m + 0$

Answer:

The terms in the expression 3x + 5 is/are _____.

The terms in the expression 12a is/are _____.

The terms in the expression 4xy is/are _____

The terms in the expression 12a + b + 1 is/are _____.

The terms in the expression 7m + 0 is/are _____.

Question: 75

Shade the outline of circle that contains the term of the given expression.

$$6m^2 - 7mn + nl$$

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

Here, _____, ____ are the terms of the given expression.

Hi, here in this video you will learn Solving an equation

Question: 76

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley © is _____

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 77

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

.....

 $7 \Box + 3 = -4$

4	ns	211	er	
71	เบอ	\boldsymbol{w}	C1	•

The given equation is 7 = -4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times __+3 = __$$

$$7 \times __+3 = __$$

Therefore, ______ is the number that can be placed in a box to make the equation correct.

.....

.....

.....

Question: 78

Arrange the terms in the descending order when the value of x is 2. x+32x-4

$$2x \quad 5x \times 1$$

Answer:

The given expression are ______.

The value of x is _

substituting value of **x**

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$$

$$2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$

$$\frac{1}{2}x = \frac{1}{2} \times \underline{\qquad} = \underline{\qquad}$$

Arranging in descending order: ____, ____, ____, ____.

Their respective algebraic terms are ____, ____, ____, ____.

Hi, here in this video you will learn **Types of expression**

Question: 79

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

The terms in the expression are ______, _____, and ______.

Therefore, there are ______ terms in the expression.

Question: 80

Classify the following expression into monomial, binomial and polynomial.

1.
$$7m + n + 2$$

2.
$$8x^2 + 0$$

3.
$$7xy + 4m$$

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a ______
- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.
- 3. The terms in expression 7m + n + 2 are _____. Here, expression has ____ term and it is a _____.

Question: 81

 $5m^2 + m + 0$ is a ______ expression. (Monomial/ Binomial/ Trinomial)

Answer:

The terms in expression $5m^2 + m + 0$ are _____. Here, the expression has _____ terms and it is called a _____ expression.

Hi, here in this video you will learn Addition on expression

Question: 82

Shade the like terms.

......

Answer:

Given terms are

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are _____

Question: 83

Complete the expression $7r^2 + r \Box - 2 \Box = r^2$

Answer:

_____ (Like / Unlike) terms can be added or subtracted.

$$_{7r^2+ r} \square_{-2} \square = (_{7} + \underline{ } - 2)_{r^2} = \underline{ }$$

Question: 84	
Sam have 3a chocolates an	l 9y icecream. Ram have 7a chocolates and 5y icecream.
(i) Total chocolates Ram	and Sam have:
(ii) How many icecreams	Sam have more than Ram :
Answer:	
	Chocolates Icecream
	Sam Ram
(i) Total chocolates Ram's cho	and Sam have : colate + Sam's chocolates = + =
· /	Sam have more than Ram : eecream icecream = =
Hi, here in this video application	you will learn Solving an equation using
Question: 85	
	Box A Box B
Box B contains tir	nes the number of chocolates in Box A
Answer:	
Box A contains ch Box B contains ch No. of chocolates in Box B	
Question: 86	
Write the equation for the Subtracting four times of r	

	subtracting four times of m from $4 = \underline{\hspace{1cm}}$	
The equation is		
Question: 87		
Compare the given two stars $Sum ext{ of } 2a ext{ and } 9 $ Add $Sum ext{ Add } 9$		
Answer:		
	Sum of $2a$ and $9 = \underline{\hspace{1cm}}$	
	Product of a and $2 = \underline{\hspace{1cm}}$	
	Add 9 to the product of a and $2 = \underline{\hspace{1cm}}$	
Therefore, sum of $2a$ and $9a$	\square Add 9 to the product of a and 2	

Four times of $m = \underline{\hspace{1cm}}$