Package

October 28, 2022

Title PRIME -- Papillomavirus Rapid Interface for Modelling and Economics

Version 2.0.17	
Author Modelling and Economic Evaluation of Vaccines group, LSHTM (https://meev.lshtm.ac.uk	:)
Maintainer MEEV <meev@lshtm.ac.uk></meev@lshtm.ac.uk>	
Description PRIME is a static model of HPV vaccination that uses proportional impact to estimate the health impact and cost-effectiveness of HPV vaccination in low- and middle-income countries.	
Depends R (>= 3.5.0)	
Imports data.table, foreach, wbstats, lhs, stats, prevalence	
License GPL-3	
Encoding UTF-8	
LazyData true	
RoxygenNote 7.2.1	
Suggests knitr,	
rmarkdown	
VignetteBuilder knitr	
R topics documented:	
ageCoverage	2
analyseCosts	3
BatchRun	4
checkSize	(
CreatePsaData	(
data.cecx_1y_prevalence	
data.cecx_1y_prevalence2020	
data.cecx_3y_prevalence	9
data.cecx_3y_prevalence2020	
data.cecx_5y_prevalence	
data.cecx_5y_prevalence2020	1
data.costcecx	1
data.countryname	12
data.cross_protection	
data.disability_weights	
data.global	
data.hpv_distribution	13

2 ageCoverage

	data.incidence	17 18
	data.incidence ui	18
	data.mortall	19
	data.mortall.unwpp.nqx	20
	data.mortcecx	20
	data.mortcecx2020	21
	data.mortcecx ui	21
	data.pop	22
	data.popproj	23
	data.quality	23
	data.sexual debut	24
	data.valid	24
	dtAggregate	26
	dtColMatch	27
	EmulateVaccineImpactVimcStochastic	28
	EmulateVaccineImpactVimcStochastic_all_cecx_burden	29
	Estimate Vaccine Impact Vimc Central	30
	Estimate_all_cecx_burden_central	31
	Generate_diagnostic_plots	33
	getISO3	34
	lifeTable	35
	monetary_to_number	35
	OutputVimc	36
	prime	37
	propSexDebut	37
	RegisterBatchData	38
	RegisterBatchDataVimc	38
	RunCohort	39
	RunCountry	41
	writelog	43
Index		44

ageCoverage

Get age-specific coverage-rates

Description

Get age-specific coverage-rates

Usage

```
ageCoverage(
  ages,
  routine_coverage,
  vaccine_efficacy_nosexdebut,
  vaccine_efficacy_sexdebut,
  campaigns,
  lifetab,
  cohort,
  agevac,
```

analyseCosts 3

```
country_iso3 = NULL
)
```

Arguments

ages Numeric vector (required): ages in model

routine_coverage

Number (required): proportion of population that receives routine vaccination

campaigns List or number (required): if a list, applies MAC vaccination (needs to change)

lifetab Data.table (required): lifetable generated with lifeTable()

cohort Number (required): cohort-size (only used in MAC campaigns)

agevac Number (required): target age for vaccination

vaccine_efficacy

Number (required): proportion indicating vaccine-efficacy

Value

Data.table with coverage and effective coverage by age. Used in RunCohort()

Examples

```
ages <- c(0:100)
routine_coverage <- 0.75
vaccine_efficacy <- 0.8
lifetab <- lifeTable(unlist(data.mortall[iso3=="AFG", as.character(0:100),
    with=FALSE], use.names=FALSE), 9)
agevac <- 9
ageCoverage (ages, routine_coverage, vaccine_efficacy, -1,
    lifetab, cohort, agevac)</pre>
```

analyseCosts

Returns cost-effectiveness for a single birthcohort in a single country

Description

Usually called using RunCountry(..., analyseCosts=TRUE)

Usage

```
analyseCosts(results, vaccine_cost, gdp_per_capita)
```

Arguments

```
results Data.table (required): results from RunCohort()
vaccine_cost Number (required): cost of a single vaccine
gdp_per_capita Number (required): GDP per capita
```

Value

Data.table with cost-analysis

4 BatchRun

Examples

```
analyseCosts(RunCountry("AFG"), 100, 561)
```

BatchRun

Run multiple cohorts in a batch

Description

Runs multiple cohorts in one batch, based on the data in .data.batch

Usage

```
BatchRun(
  countries = -1,
  coverage = -1,
  agevac = -1,
  agecohort = -1,
  canc.inc = "2020",
  sens = -1,
  unwpp_mortality = TRUE,
  year_born = -1,
  year_vac = -1,
  runs = 1,
  vaccine_efficacy_beforesexdebut = 1,
  vaccine_efficacy_aftersexdebut = 0,
  log = -1,
  by_calendaryear = FALSE,
  use_proportions = TRUE,
  analyseCosts = FALSE,
  canc.cost = "unadj",
  discounting = FALSE,
  disc.cost = 0.03,
  disc.ben = 0.03,
  psa = 0,
  psa_vals = ".data.batch.psa",
  disability.weights = "gbd_2017",
  wb.indicator = "NY.GDP.PCAP.PP.CD",
  wb.year = 2017,
  vaccine = "4vHPV"
)
```

Arguments

countries ignore, read from .data.batch
coverage ignore, read from .data.batch
agevac ignore, read from .data.batch
agecohort ignore, read from .data.batch
canc.inc year from where incidence d

year from where incidence data is read (2018; old data: 2012) – with updated 2018 Globocan data, DALY weights from GBD, and DALY estimation based on

prevalence instead of age of incidence

BatchRun 5

sens ignore, does not do anything anymore

unwpp_mortality

logical, whether to create lifetables based on UNWPP mortality estimates or

WHO data

year_born ignore
year_vac ignore
runs ignore

vaccine_efficacy_beforesexdebut

vaccine efficacy before sexual debut

vaccine_efficacy_aftersexdebut

vaccine efficacy after sexual debut

log name of log file

by_calendaryear

logical, output values by calendar year or by year of birth cohort

use_proportions

logical, output data as rates per capita or in totals

analyseCosts logical, directly run cost-effectiveness analysis on output or not

canc.cost Character (optional): Is cost of cancer adjusted ("adj" for International \$) or not

("unadj" for US\$)

discounting Logical (optional): If TRUE, run cost-effectiveness analysis undiscounted and

discounted. If FALSE, only uses undiscounted

disc.cost Number (optional): Discounting for health costs (only if discounting=TRUE)

disc.ben Number (optional): Discounting for health outcomes (only if discounting=TRUE)

psa integer, number of runs for probabilistic sensitivity analysis (PSA)

psa_vals data table with values to use in probabilistic sensitivity analysis, usually .data.batch.psa,

generated by RegisterBatchData* functions (currently only RegisterBatchDataVimc)

disability.weights

character, disability weights for cervical cancer from GBD 2017 or GBD 2001

wb.indicator character, World Bank indicator for GDP/GNI per capita in I\$/US\$ and cur-

rent/constant data

wb.year numeric, year of the World Bank indicator value

vaccine character, bivalent/quadrivalent (4vHPV) or nonavalent (9vHPV) vaccine

Value

Returns combined results

Examples

#

6 CreatePsaData

checkSize

Checks whether the size of a variable is larger than 0

Description

Used to determine that all required variables are passed to a function Checks whether a vector has length > 0 or a data.table/data.frame has nrow > 0

Usage

```
checkSize(v)
```

Arguments

V

Variable (required)

Value

Logical: TRUE if size is not 0, false if size is 0

Examples

```
x <- c()
checkSize(x)

x <- c(2,5)
checkSize(x)

A <- c()
B <- c(1,2,3)
sapply(c("A","B"),function(x){checkSize(get(x))})</pre>
```

CreatePsaData

Generate/read Latin hyper cube sample of parameters for sensitivity analysis

Description

Generate Latin hyper cube sample of input parameters based on their distributions for probabilistic sensitivity analysis. If file (sample of parameters) already exists, then read Latin hyper cube sample of input parameters.

Usage

```
CreatePsaData(
  country_codes,
  vaccine = "4vHPV",
  psa_runs = 0,
  seed_state = 1,
  psadat_file = "psadat.csv",
  psadat_vimc_file = "psadat_vimc.csv",
  run_lhs = FALSE
)
```

Arguments

 ${\tt country_codes} \quad ISO3 \ country \ codes \ of \ countries$

vaccine bivalent/quadrivalent or nonavalent HPV vaccine psa_runs integer, simulation runs for sensitivity analysis seed_state integer, seed value for random number generator

psadat_file character string, file to save Latin hyper cube sample of input parameters

psadat_vimc_file

character string, file to save Latin hyper cube sample of input parameters (VIMC

format)

run_lhs logical, if TRUE create new sample of input parameters, if FALSE, read sample

of input parameters from file

Value

Null return value; disease burden estimates are saved to corresponding files

Examples

data.cecx_1y_prevalence

1-year prevalence of cervical cancer

Description

A dataset containing the 1-year prevalence (proportion) of cervical cancer in 185 countries, as reported by IARC's Globocan 2018 database.

Usage

```
data.cecx_1y_prevalence
```

Format

A data table containing 185 observations of 103 variables.

Country Country name iso3 ISO3 country code Source Data source Year Data source (year) 0..100 Age 0-100

Details

As per IARC definition – The (1-year) prevalence of a given cancer is the number of individuals within a defined population who have been diagnosed with that cancer (within 1 year) and who are still alive at a given point in time (i.e. the survivors).

Source

https://gco.iarc.fr/today/online-analysis-table

data.cecx_1y_prevalence2020

1-year prevalence of cervical cancer

Description

A dataset containing the 1-year prevalence (proportion) of cervical cancer in 185 countries, as reported by IARC's Globocan 2020 database.

Usage

data.cecx_1y_prevalence2020

Format

A data table containing 185 observations of 103 variables.

Country Country name

iso3 ISO3 country code

Source Data source

Year Data source (year)

0..100 Age 0-100

Details

As per IARC definition – The (1-year) prevalence of a given cancer is the number of individuals within a defined population who have been diagnosed with that cancer (within 1 year) and who are still alive at a given point in time (i.e. the survivors).

Source

https://gco.iarc.fr/today/online-analysis-table?v=2020

data.cecx_3y_prevalence

3-year prevalence of cervical cancer

Description

A dataset containing the 3-year prevalence (proportion) of cervical cancer in 185 countries, as reported by IARC's Globocan 2018 database.

Usage

```
data.cecx_3y_prevalence
```

Format

A data table containing 185 observations of 103 variables.

Country Country name iso3 ISO3 country code Source Data source Year Data source (year)

0..100 Age 0-100

Details

As per IARC definition – The (3-year) prevalence of a given cancer is the number of individuals within a defined population who have been diagnosed with that cancer (within 3 years) and who are still alive at a given point in time (i.e. the survivors).

Source

```
https://gco.iarc.fr/today/online-analysis-table
```

data.cecx_3y_prevalence2020

3-year prevalence of cervical cancer

Description

A dataset containing the 3-year prevalence (proportion) of cervical cancer in 185 countries, as reported by IARC's Globocan 2020 database.

Usage

```
data.cecx_3y_prevalence2020
```

Format

A data table containing 185 observations of 103 variables.

Country Country name iso3 ISO3 country code Source Data source Year Data source (year) 0..100 Age 0-100

Details

As per IARC definition – The (3-year) prevalence of a given cancer is the number of individuals within a defined population who have been diagnosed with that cancer (within 3 years) and who are still alive at a given point in time (i.e. the survivors).

Source

```
https://gco.iarc.fr/today/online-analysis-table?v=2020
```

data.cecx_5y_prevalence

5-year prevalence of cervical cancer

Description

A dataset containing the 5-year prevalence (proportion) of cervical cancer in 185 countries, as reported by IARC's Globocan 2018 database.

Usage

```
data.cecx_5y_prevalence
```

Format

A data table with 185 observations of 103 variables.

Country Country name iso3 ISO3 country code Source Data source Year Data source (year) 0..100 Age 0-100

Details

As per IARC definition – The (5-year) prevalence of a given cancer is the number of individuals within a defined population who have been diagnosed with that cancer (within 5 years) and who are still alive at a given point in time (i.e. the survivors).

Source

https://gco.iarc.fr/today/online-analysis-table

data.cecx_5y_prevalence2020

5-year prevalence of cervical cancer

Description

A dataset containing the 5-year prevalence (proportion) of cervical cancer in 185 countries, as reported by IARC's Globocan 2020 database.

Usage

```
data.cecx_5y_prevalence2020
```

Format

A data table with 185 observations of 103 variables.

Country Country name

iso3 ISO3 country code

Source Data source

Year Data source (year)

0..100 Age 0-100

Details

As per IARC definition – The (5-year) prevalence of a given cancer is the number of individuals within a defined population who have been diagnosed with that cancer (within 5 years) and who are still alive at a given point in time (i.e. the survivors).

Source

```
https://gco.iarc.fr/today/online-analysis-table?v=2020
```

 ${\tt data.costcecx}$

Cost of cervical cancer treatment

Description

A dataset containing the cost of cervical cancer treatment.

Usage

data.costcecx

12 data.countryname

Format

A data table with 194 observations of 7 variables.

country Country name

cancer_cost cost per cancer episode, in 2017 US\$

cancer_cost_adj cost per cancer episode - adjusted, in 2017 US\$ - "adjusted" cancer costs are based on a GDP/capita based adjustment within the region

iso3 ISO3 country code

cancer_cost_2011 cost per cancer episode, in 2011 US\$

cancer_cost_adj_2011 cost per cancer episode – adjusted, in 2011 US\$ – "adjusted" cancer costs
are based on a GDP/capita based adjustment within the region

inflation_factor Inflation factor from 2011 to 2017 estimated from Inflation, GDP deflator (annual %) - https://data.worldbank.org/indicator/NY.GDP.DEFL.KD.ZG

data.countryname

Country names and codes

Description

A dataset containing the country names and codes (ISO/WHO/WB/UN).

Usage

data.countryname

Format

A data table with 251 observations of 13 variables.

name1, name2, name3, name4 Country names

iso2, iso3 ISO2 and ISO3 country codes

isonum ISO number

WHOcode WHO country code

who_region WHO region

who_mort WHO mortality stratum - A/B/C/D/E

WBincome WB income classification of countries

UNgroup UN group classification of countries

GDPpc2011id GDP per capita (2011)

data.cross_protection 13

data.cross_protection Cross-protection effect of bivalent and quadrivalent vaccines

Description

A dataset containing cross-protection effect of bivalent and quadrivalent vaccines

Usage

data.cross_protection

Format

A data table with 5 observations of 7 variables.

hpv_type HPV strain type

bivalent Cross-protection of bivalent vaccine against the corresponding HPV strain type (mean)

bivalent_low Cross-protection of bivalent vaccine against the corresponding HPV strain type (lower bound of 95% uncertainty interval)

bivalent_high Cross-protection of bivalent vaccine against the corresponding HPV strain type (upper bound of 95% uncertainty interval)

quadrivalent Cross-protection of quadrivalent vaccine against the corresponding HPV strain type (mean)

quadrivalent_low Cross-protection of quadrivalent vaccine against the corresponding HPV strain type (lower bound of 95% uncertainty interval)

quadrivalent_high Cross-protection of quadrivalent vaccine against the corresponding HPV strain type (upper bound of 95% uncertainty interval)

Source

Malagón T, Drolet M, Boily MC, Franco EL, Jit M, Brisson J, Brisson M. Cross-protective efficacy of two human papillomavirus vaccines: a systematic review and meta-analysis. Lancet Infect Dis. 2012 Oct;12(10):781-9. https://doi.org/10.1016/S1473-3099(12)70187-1

data.disability_weights

Disability weights and duration of cervical cancer stages

Description

A dataset containing disability weights and duration of different phases of cervical cancer.

Usage

data.disability_weights

14 data.global

Format

A data table with 13 observations of 8 variables.

Source Source of disability weights - IHME / WHO

Sequelae / stage / phase of cervical cancer

Duration Duration of cervical cancer phase

WHO_MortalityStratum WHO moratlity stratum – applicable only for long term sequelae from WHO source

Mid Disability weight (mid)

Low Disability weight (low)

High Disability weight (high)

Description Description of cervical cancer phase

data.global

Global data table

Description

A dataset containing a global range of variables.

Usage

data.global

Format

A data table with 194 observations of 35 variables.

Country Country name

iso2 ISO2 country code

WHO Region WHO regions

WHO Mortality Stratum WHO mortality stratum

World Bank Income Group (2011) World Bank income group levels

GAVI Eligibility GAVI eligibility status

PAHO Revolving Fund PAHO revolving fund status

Cohort size (2010) [1] Cohort size

Coverage (3 doses at year 10) [2] Vaccination coverage at age 10

Vaccine efficacy vs vaccine type infection [2] Vaccine efficacy

Duration of protection [2] Duration of vaccine protection

Age group [3] Age group

Vaccine price USD [4] Vaccine price for 2 doses US\$

Vaccine delivery/ operational/ admin costs (USD) [5] Vaccine delivery, operational and administration costs US\$

Cancer treatment costs - primary level hospital i\$ (per episode, over lifetime) [6] Cancer treatment costs - primary level hospital i\$ (per episode, over lifetime)

data.hpv_distribution 15

Cancer treatment costs - primary level hospital US\$ (per episode, over lifetime) [6] Cancer treatment costs - primary level hospital US\$ (per episode, over lifetime)

Cancer treatment costs - secondary level hospital i\$ (per episode, over lifetime) [6] Cancer treatment costs - secondary level hospital i\$ (per episode, over lifetime)

Cancer treatment costs - secondary level hospital US\$ (per episode, over lifetime) [6] Cancer treatment costs - secondary level hospital US\$ (per episode, over lifetime)

Cancer treatment costs - teaching hospital i\$ (per episode, over lifetime) [6] Cancer treatment costs - teaching hospital i\$ (per episode, over lifetime)

Cancer treatment costs - teaching hospital US\$ (per episode, over lifetime) [6] Cancer treatment costs - teaching hospital US\$ (per episode, over lifetime)

Discount rate [2] Discount rate

Perspective [2] Perspective

Costs [2]

Time horizon [2] Time horizon

"Percent" CeCx due to 16/18 Percentage of cervical cancer due to HPV strains 16 and 18

Vaccine programme Vaccine programme

Vaccine programme Oct2013 Vaccine programme Oct2013

Econ evaluation Economic evaluation

GDP per capita (2011 US\$) [7] GDP per capita (2011 US\$)

GDP per capita (2011 i\$) [7] GDP per capita (2011 i\$)

GNI per capita (2011 i\$) [7] GNI per capita (2011 i\$)

GNI per capita (2011 US\$) [7] GNI per capita (2011 US\$)

V33 International\$

V34 US\$

iso3 ISO3 country code

data.hpv_distribution Relative contribution of HPV 16/18/31/33/45/52/58 in ICC HPV-positive cases

Description

A dataset containing relative contribution of HPV 16/18/31/33/45/52/58 in cases of ICC HPV-positive, by region and country

Usage

data.hpv_distribution

16 data.hpv_distribution

Format

A data table with 249 observations of 39 variables.

Global World

Region UN region

Subregion UN subregion

Intermediate_region UN intermediate region

Country Country name

iso3 ISO3 country code

hpv_4v Relative contribution (%) of HPV 16/18 in ICC HPV-positive cases (mean)

hpv_4v_low Relative contribution (%) of HPV 16/18 in ICC HPV-positive cases (lower bound of 95% uncertainty interval)

hpv_4v_high Relative contribution (%) of HPV 16/18 in ICC HPV-positive cases (upper bound of 95% uncertainty interval)

hpv_9v Relative contribution (%) of HPV 16/18/31/33/45/52/58 in ICC HPV-positive cases (mean)

hpv_9v_low Relative contribution (%) of HPV 16/18/31/33/45/52/58 in ICC HPV-positive cases (lower bound of 95% uncertainty interval)

hpv_9v_high Relative contribution (%) of HPV 16/18/31/33/45/52/58 in ICC HPV-positive cases (upper bound of 95% uncertainty interval)

hpv_16 Relative contribution (%) of HPV 16 in ICC HPV-positive cases (mean)

hpv_16_low Relative contribution (%) of HPV 16 in ICC HPV-positive cases (lower bound of 95% uncertainty interval)

hpv_16_high Relative contribution (%) of HPV 16 in ICC HPV-positive cases (upper bound of 95% uncertainty interval)

hpv_18 Relative contribution (%) of HPV 18 in ICC HPV-positive cases (mean)

hpv_18_low Relative contribution (%) of HPV 18 in ICC HPV-positive cases (lower bound of 95% uncertainty interval)

hpv_18_high Relative contribution (%) of HPV 18 in ICC HPV-positive cases (upper bound of 95% uncertainty interval)

hpv_31 Relative contribution (%) of HPV 31 in ICC HPV-positive cases (mean)

hpv_31_low Relative contribution (%) of HPV 31 in ICC HPV-positive cases (lower bound of 95% uncertainty interval)

hpv_31_high Relative contribution (%) of HPV 31 in ICC HPV-positive cases (upper bound of 95% uncertainty interval)

hpv_33 Relative contribution (%) of HPV 33 in ICC HPV-positive cases (mean)

hpv_33_low Relative contribution (%) of HPV 33 in ICC HPV-positive cases (lower bound of 95% uncertainty interval)

hpv_33_high Relative contribution (%) of HPV 33 in ICC HPV-positive cases (upper bound of 95% uncertainty interval)

hpv_45 Relative contribution (%) of HPV 45 in ICC HPV-positive cases (mean)

hpv_45_low Relative contribution (%) of HPV 45 in ICC HPV-positive cases (lower bound of 95% uncertainty interval)

hpv_45_high Relative contribution (%) of HPV 45 in ICC HPV-positive cases (upper bound of 95% uncertainty interval)

data.incidence 17

- hpv_52 Relative contribution (%) of HPV 52 in ICC HPV-positive cases (mean)
- **hpv_52_low** Relative contribution (%) of HPV 52 in ICC HPV-positive cases (lower bound of 95% uncertainty interval)
- **hpv_52_high** Relative contribution (%) of HPV 52 in ICC HPV-positive cases (upper bound of 95% uncertainty interval)
- hpv_58 Relative contribution (%) of HPV 58 in ICC HPV-positive cases (mean)
- **hpv_58_low** Relative contribution (%) of HPV 58 in ICC HPV-positive cases (lower bound of 95% uncertainty interval)
- **hpv_58_high** Relative contribution (%) of HPV 58 in ICC HPV-positive cases (upper bound of 95% uncertainty interval)
- **hpv_6** Relative contribution (%) of HPV 6 in ICC HPV-positive cases (mean)
- **hpv_6_low** Relative contribution (%) of HPV 6 in ICC HPV-positive cases (lower bound of 95% uncertainty interval)
- **hpv_6_high** Relative contribution (%) of HPV 6 in ICC HPV-positive cases (upper bound of 95% uncertainty interval)
- hpv_11 Relative contribution (%) of HPV 11 in ICC HPV-positive cases (mean)
- hpv_11_low Relative contribution (%) of HPV 11 in ICC HPV-positive cases (lower bound of 95% uncertainty interval)
- **hpv_11_high** Relative contribution (%) of HPV 11 in ICC HPV-positive cases (upper bound of 95% uncertainty interval)

Source

Serrano B, Alemany L, Tous S, Bruni L, Clifford GM, Weiss T, et al. Potential impact of a nine-valent vaccine in human papillomavirus related cervical disease. Infect Agents Cancer. 2012;7: 38. https://doi.org/10.1186/1750-9378-7-38

data.incidence

Incidence of cervical cancer, by age and country

Description

A dataset containing the incidence of cervical cancer in 185 countries, as reported by IARC's Globocan 2018 database. Crude rates, cervix uteri, females, by age.

Usage

data.incidence

Format

A data table with 185 observations of 103 variables.

Country Country name

iso3 ISO3 country code

Source Data source

Year Data source (year)

0..100 Age 0-100 – Crude rates, cervix uteri, females, by age; annual rate per individual

18 data.incidence_ui

Source

https://gco.iarc.fr/today/online-analysis-table

data.incidence2020

Incidence of cervical cancer, by age and country

Description

A dataset containing the incidence of cervical cancer in 185 countries, as reported by IARC's Globocan 2020 database. Crude rates, cervix uteri, females, by age.

Usage

data.incidence2020

Format

A data table with 185 observations of 103 variables.

Country Country name

iso3 ISO3 country code

Source Data source

Year Data source (year)

0..100 Age 0-100 – Crude rates, cervix uteri, females, by age; annual rate per individual

Source

https://gco.iarc.fr/today/online-analysis-table?v=2020

data.incidence_ui

Incidence of cervical cancer with uncertainty intervals, all ages and by country

Description

A dataset containing the incidence of cervical cancer with uncertainty intervals in 185 countries, as reported by IARC's Globocan 2018 database. Estimated number of new cases in 2018, cervix uteri, females, all ages.

Usage

data.incidence_ui

data.mortall 19

Format

A data table with 185 observations of 5 variables.

Country Country name

iso3 ISO3 country code

Mid Estimated number of new cases in 2018, cervix uteri, females, all ages (mean)

Low Estimated number of new cases in 2018, cervix uteri, females, all ages (lower bound of 95% uncertainty interval)

High Estimated number of new cases in 2018, cervix uteri, females, all ages (upper bound of 95% uncertainty interval)

Source Data source

Year Data source (year)

Source

https://gco.iarc.fr/today/online-analysis-table

data.mortall

WHO life table

Description

A dataset containing the WHO life table.

Usage

data.mortall

Format

A data table with 196 observations of 107 variables.

Country | Age [12] Country name

0..100 Age 0-100

V103..V106 na

iso3 ISO3 country code

Source

https://www.who.int/gho/mortality_burden_disease/life_tables/life_tables/en/

20 data.mortcecx

```
data.mortall.unwpp.nqx
```

UNWPP life table

Description

A dataset containing the UNWPP life table (World Population Prospects 2022).

Usage

```
data.mortall.unwpp.nqx
```

Format

A data table with 647790 observations of 8 variables.

```
country_code_numeric Country code numeric
country_code ISO3 country code
country Country name
age_from age from (start-age)
age_to age to (end-age)
year Year
gender Gender
value nqx - probability of dying between ages x and x+n
```

Source

https://population.un.org/wpp/

data.mortcecx

Mortality from cervical cancer, by age and country

Description

A dataset containing the mortality (crude rates) from cervical cancer in 185 countries, as reported by IARC's Globocan 2018 database.

Usage

data.mortcecx

Format

A data table with 185 observations of 103 variables.

Country Country name iso3 ISO3 country code
Source Data source
Year Data source (year)

0..100 Age 0-100 - Crude rates, cervix uteri, females, by age; annual rate per individual

data.mortcecx2020 21

Source

https://gco.iarc.fr/today/online-analysis-table

data.mortcecx2020

Mortality from cervical cancer, by age and country

Description

A dataset containing the mortality (crude rates) from cervical cancer in 185 countries, as reported by IARC's Globocan 2020 database.

Usage

data.mortcecx2020

Format

A data table with 185 observations of 103 variables.

Country Country name

iso3 ISO3 country code

Source Data source

Year Data source (year)

0..100 Age 0-100 - Crude rates, cervix uteri, females, by age; annual rate per individual

Source

https://gco.iarc.fr/today/online-analysis-table?v=2020

Description

A dataset containing the number of deaths from cervical cancer with uncertainty intervals in 185 countries, as reported by IARC's Globocan 2018 database. Estimated number of deaths in 2018, cervix uteri, females, all ages.

Usage

data.mortcecx_ui

22 data.pop

Format

A data table with 185 observations of 5 variables.

Country Country name

iso3 ISO3 country code

Mid Estimated number of deaths in 2018, cervix uteri, females, all ages (mean)

Low Estimated number of deaths in 2018, cervix uteri, females, all ages (lower bound of 95% uncertainty interval)

High Estimated number of deaths in 2018, cervix uteri, females, all ages (upper bound of 95% uncertainty interval)

Source Data source

Year Data source (year)

Source

https://gco.iarc.fr/today/online-analysis-table

data.pop

UNWPP population estimates

Description

A dataset containing the UNWPP population estimates – World Population Prospects 2022.

Usage

data.pop

Format

A data table with 3392220 observations of 8 variables.

```
country_code_numeric Country code numeric
country_code ISO3 country code
country Country name
age_from age from (start-age)
age_to age to (end-age)
year Year
gender Gender
value Population size
```

Source

```
https://population.un.org/wpp/Download/Standard/Population/
```

VIMC

data.popproj 23

data.popproj

Population projections of 5-year old girls

Description

A dataset containing population projections of 5-year old girls. (not used – to be removed)

Usage

```
data.popproj
```

Format

A data table with 98 observations of 91 variables.

iso3 ISO3 country code

2011..2100 Year – 2011..2100

data.quality

Data quality of incidence and mortality

Description

A dataset indicating data quality of cervical cancer incidence and mortality.

Usage

```
data.quality
```

Format

A data table with 186 observations of 4 variables.

Country Country name

Incidence Quality of cervical cancer incidence data

Mortality Quality of cervical cancer mortality data

iso3 ISO3 country code

24 data.valid

data.sexual_debut

Sexual debut data

Description

A dataset containing sexual debut data and (2) parameters for the sexual debut curve (logistic model).

Usage

```
data.sexual_debut
```

Format

A data table with 94 observations of 14 variables.

V1 Row number

iso2 ISO2 country code

country Country name

iso3 ISO3 country code

who WHO region

X15 Proportion of people who have sexually debuted at age 15

X18 Proportion of people who have sexually debuted at age 18

X20 Proportion of people who have sexually debuted at age 20

X22 Proportion of people who have sexually debuted at age 22

X25 Proportion of people who have sexually debuted at age 25

Never Proportion of people who had not sexually debuted

cluster.id Clustering countries with similar characteristics

a Parameter for sexual debut curve (logistic model)

b Parameter for sexual debut curve (logistic model)

data.valid

Model validation

Description

A dataset containing data for validation.

Usage

data.valid

data.valid 25

Format

A data table with 26 observations of 49 variables.

Country Country name

iso2 ISO2 country code

WHO Region WHO region

World Bank Income Group (2011) World Bank income group classification (2011)

Author Author

Year Year of publication

Title Title of publication

Currency Currency

Currency year Currency year

Conversion to I\$2011 International dollar (I\$2011)

ICER vs no prevention Incremental cost-effectiveness ratio of vaccination versus no prevention (CHECK)

ICER vs screen Incremental cost-effectiveness ratio of vaccination versus no prevention (CHECK)

Denominator Denominator for health impact

Vaccine total costs Vaccine total costs

Vaccine coverage Vaccine coverage

Vaccine efficacy vs vaccine type infection Vaccine efficacy versus vaccine type infection

Duration of protection Duration of protective immunity from vaccination

Cohort size Cohort size

Age at vaccination Age at vaccination, years

Cancer treatment cost per episode Cancer treatment cost per episode, dollars

Discount rate: costs Discount rate for costs

Discount rate: benefits Discount rate for benefits **Perspective** Perspective of economic evaluation

Comparator is no screening Comparator refers to no scereening, logical (Y/N)

Time horizon Time horizon of analysis

GDP per capita GDP per capita

Cervical cancer due to 16/18 Proportion of cervical cancer due to HPV types 16 and 18

CeCx cost low original Cervical cancer cost / low / original

CeCx cost high original Cervical cancer cost / high / original

CeCx cost low Cervical cancer cost / low

CeCx cost high Cervical cancer cost / high

CeCx data available Cervical cancer data available, logical (Y/N)

0-4 0-4 years

5-9 5-9 years

9-14 9-14 years

15-19 15-19 years

20-24 20-24 years

26 dtAggregate

```
25-29 25-29 years
30-34 30-34 years
35-39 35-39 years
40-44 40-44 years
45-49 45-49 years
50-54 50-54 years
55-59 55-59 years
60-64 60-64 years
65-69 65-69 years
70-74 70-74 years
75-79 75-79 years
80+ 80+ years
```

dtAggregate

Collapse data-tables

Description

Collapse data-tables

Usage

```
dtAggregate(
  DT,
  aggr_on,
  measure.vars = c(),
  id.vars = c(),
  func = "sum",
  na.rm = TRUE
)
```

Arguments

DT	Data-table (required)
aggr_on	Character string (required): column-name that will be used to collapse on (i.e. combine all age-strata)
measure.vars	Character string (optional): column-names that will be collapsed (function will be applied to all these columns)
id.vars	Character string (optional): column-names that will remain stratified
	N.b. if measure.vars is not provided, all columns that are not in id.vars and aggr_on will be assumed to be assumed
func	Character string (optional): function that will be applied to data (if optional, values will be summed)
na.rm	Logical (optional): if TRUE, removes NA from measure.vars columns before applying function (or passes na.rm=TRUE to function)

Value

Returns collapsed data.table

dtColMatch 27

dtColMatch

Match two data-tables on multiple columns

Description

Returns vector with column-of-interest where columns match

Usage

```
dtColMatch(
  input,
  input_match_on,
  reference,
  reference_match_on,
  reference_return
)
```

Arguments

```
input Data.table (required): input-table to match

input_match_on Character vector (required): column-names in input-table to match

reference Data.table (required): reference-table to match

reference_match_on

Character vector (required): column-names in reference-table to match

reference_return

Character string (required): column-name in reference-table that is returned (where values match)
```

Details

If at least one value in any of the input_match_on columns matches with a value in any of the reference_match_on columns, the two rows will match

Value

Character vector with values from reference_return column in reference_match_on data.table where values match

Examples

```
dtColMatch (data.global, c("Country"), data.countryname,
   c("name1", "name2", "name3", "name4"), "iso3")
```

EmulateVaccineImpactVimcStochastic

Emulate vaccine impact estimates (VIMC stochastic runs)

Description

Emulate vaccine impact estimates for VIMC stochastic runs/sensitivity analysis. The inputs are central disease burden estimates, input parameter distributions (latin hyper sampling), runs for sensitivity analysis, and filename for stochastic burden estimates. The outputs are stochastic disease burden estimates (full results file plus a file per country).

Usage

```
EmulateVaccineImpactVimcStochastic(
   disease_burden_template_file,
   centralBurdenResultsFile,
   psaData,
   diseaseBurdenStochasticFolder,
   diseaseBurdenStochasticFile,
   psa_runs,
   countryCodes = -1,
   vaccination_scenario
)
```

Arguments

disease_burden_template_file

csv file (required), central disease burden template (vimc format); add column with run_id to get stochastic disease burden template

centralBurdenResultsFile

csv file (required), central disease burden estimates pre and post vaccination

psaData data table (required), latin hyper cube sample of input parameters

diseaseBurdenStochasticFolder

character string (required), stochastic disease burden estimates folder (output)

 ${\tt diseaseBurdenStochasticFile}$

character string (required), stochastic disease burden estimates file(s) (output)

psa_runs into

integer (required), simulation runs for sensitivity analysis

 ${\tt countryCodes}$

list (optional), If country codes are provided, stochastic burden estimates are generated for these countries. If set to -1, then stochastic burden estimates are

generated for the countries included in the central burden estimates.

vaccination_scenario

logical (required), generate stochastic burden estimates for (vaccination) or (no vaccination) scenario

Details

Stochastic disease burden estimates are generated. (i) full results files 1 full results file for prevaccination (optional) 1 full results file for post-vaccination (ii) 1 file per country for all runs 1 file per country for all runs – pre-vaccination (optional) 1 file per country for all runs – post-vaccination

Value

Null return value; disease burden estimates are saved to corresponding files

```
EmulateVaccineImpactVimcStochastic_all_cecx_burden
```

Emulate vaccine impact estimates (VIMC stochastic runs) - all cervical cancer burden

Description

Emulate vaccine impact estimates for VIMC stochastic runs/sensitivity analysis. The inputs are central disease burden estimates, input parameter distributions (latin hyper sampling), runs for sensitivity analysis, and filename for stochastic burden estimates. The outputs are stochastic disease burden estimates – all cervical cancer burden. (full results file plus a file per country).

Usage

```
EmulateVaccineImpactVimcStochastic_all_cecx_burden(
  disease_burden_template_file,
  centralBurdenResultsFile,
  centralBurdenResultsFile_all_cecx_burden,
  central_disease_burden_file_all,
  diseaseBurdenStochasticFile_all_cecx_burden.
  diseaseBurden_central_StochasticFile_all_cecx_burden,
  psa_runs,
  countryCodes = -1,
  vaccination_scenario
)
```

Arguments

```
disease_burden_template_file
                  csv file (required), central disease burden template (vimc format); add column
                  with run_id to get stochastic disease burden template
centralBurdenResultsFile
                  csv file (required), central disease burden estimates pre and post vaccination
                  (HPV 16/18 types)
centralBurdenResultsFile_all_cecx_burden
                  csv file (required), central disease burden estimates pre and post vaccination (all
                  HPV types)
central_disease_burden_file_all
                  csv file (required), central disease burden estimates (vimc format)
psaData
                  data table (required), latin hyper cube sample of input parameters
diseaseBurdenStochasticFile_all_cecx_burden
                  character string (required), stochastic disease burden estimates file(s) (output) -
                  all cervical cancer burden
diseaseBurden_central_StochasticFile_all_cecx_burden
                  character string (required), (central + 95 (output) - all cervical cancer burden
```

psa_runs integer (required), simulation runs for sensitivity analysis

countryCodes list (optional), If country codes are provided, stochastic burden estimates are

generated for these countries. If set to -1, then stochastic burden estimates are generated for the countries included in the central burden estimates.

vaccination_scenario

logical (required), generate stochastic burden estimates for (vaccination) or (no

vaccination) scenario

Details

Stochastic disease burden estimates are generated. (i) full results files 1 full results file for prevaccination (optional) 1 full results file for post-vaccination (ii) 1 file per country for all runs 1 file per country for all runs – pre-vaccination (optional) 1 file per country for all runs – post-vaccination

Value

Null return value; disease burden estimates are saved to corresponding files

EstimateVaccineImpactVimcCentral

Generate vaccine impact estimates - HPV 16/18 types (VIMC central run)

Description

Generate vaccine impact estimates (HPV 16/18 types) for VIMC central runs. The inputs are vaccine coverage and disease burden template files and outputs are disease burden estimates (prevaccination and post-vaccination).

Usage

```
EstimateVaccineImpactVimcCentral(
  vaccine_coverage_file,
  disease_burden_template_file,
  disease_burden_no_vaccination_file,
  disease_burden_vaccination_file,
  disease_burden_results_file,
  campaign_vaccination,
  routine_vaccination,
  vaccine = "4vHPV",
  canc.inc = "2020",
  country_set = "all"
)
```

Arguments

```
disease_burden_no_vaccination_file
                  csv file (output), disease burden estimates for no vaccination (vimc format)
disease_burden_vaccination_file
                  csv file (output), disease burden estimates for vaccination (vimc format)
disease_burden_results_file
                  csv file (output), disease burden estimates pre-vaccination and post-vaccination
campaign_vaccination
                  logical, indicates campaign vaccination
routine_vaccination
                  logical, indicates routine vaccination
vaccine
                  character, bivalent/quadrivalent/nonovalent HPV vaccine
                  character, year of GLOBOCAN estimates
canc.inc
                  character, run for all countries specified in disease burden template file (or) run
country_set
                  for a set of countries
```

Details

Three disease burden estimates (HPV 16/18 types) are generated. (i) disease burden estimates for no vaccination (vimc format) (ii) disease burden estimates for vaccination (vimc format) (iii) disease burden estimates for vaccination (pre- and post-vaccination) and includes YLDs and YLLs

Value

Null return value; disease burden estimates are saved to corresponding files

Examples

```
Estimate_all_cecx_burden_central
```

Generate vaccine impact estimates - HPV all types (VIMC central run)

Description

Generate vaccine impact estimates (HPV all types) for VIMC central runs. The inputs are cecx burden estimates pre- and post-vaccination with 4vHPV / 9vHPV at different ages. The outputs are cecx burden estimates pre- and post-vaccination with HPV all types at different ages.

Usage

```
Estimate_all_cecx_burden_central(
  cecx_burden_file,
  cecx_burden_file_all,
  vaccine,
  disease_burden_template_file = "",
  disease_burden_no_vaccination_file_all = "",
  vimc_output = TRUE
)
```

Arguments

Details

Three disease burden estimates (HPV all types) are generated. (i) disease burden estimates for no vaccination (vimc format) (ii) disease burden estimates for vaccination (vimc format) (iii) disease burden estimates for vaccination (pre- and post-vaccination) and includes YLDs and YLLs

Value

Null return value; disease burden estimates are saved to corresponding files

Examples

```
Generate_diagnostic_plots
```

Generate diagnostic plots of vaccine coverage and burden estimates

Description

Generate diagnostic plots of vaccine coverage and burden estimates (cases, deaths, dalys)

Usage

```
Generate_diagnostic_plots(
  vaccine_coverage_folder,
  coverage_prefix,
  touchstone,
  scenarios,
  no_vaccine_scenario,
  plot_no_vaccine_scenario = TRUE,
  burden_estimate_folder,
  plot_folder,
  plot_file,
  plot_type,
  countries,
  start_year = -1,
  end_year = -1,
  compare_plots = FALSE,
  vaccine_prefix,
  no_vaccine_prefix
)
```

Arguments

```
vaccine_coverage_folder
                  character, folder to read vaccine coverage of different scenarios
coverage_prefix
                  character, prefix of coverage file
                  character, touchstone (VIMC)
touchstone
                  character, names of vaccination scenarios
scenarios
no_vaccine_scenario
                  character, name of no vaccination scenario
plot_no_vaccine_scenario,
                  logical, if TRUE then also generate plots for no vaccine scenario
burden_estimate_folder
                  character, folder to read burden estimates of different scenarios
                  character, diagnostic plot folder
plot_folder
plot_file
                  character, diagnostic plot file
                  character, diagnostic plot type (central or stochastic)
plot_type
                  character, "all" countries or specific countries (iso3 codes)
countries,
                  numeric, start year of plot
start_year
```

34 getISO3

```
end_year numeric, end year of plot

compare_plots logical, if TRUE then generate comparative plots

vaccine_prefix character, prefix of burden estimates file (vaccination scenarios)

no_vaccine_prefix

character, prefix of burden estimates file (no vaccination scenario)
```

Details

Diagnostic plots of vaccine coverage and burden estimates (cases, deaths, dalys) are generated for each country and scenario. Optionally, comparative plots across all scenarios can be generated.

Value

Null return value; diagnostic plots are saved to file

Examples

getISO3

Retrieve ISO3-code of country

Description

Retrieve ISO3-code of country

Usage

```
getISO3(countryname, name = FALSE)
```

Arguments

countryname Character string (required): Full name of the country

name Logical (optional): If TRUE, returns full name and alternative names of returned

country (may be useful to double-check that it is the correct country)

lifeTable 35

Value

Character string with ISO3 code. Will also return full name if name=TRUE.

Examples

```
getIS03("Afghanistan")
getIS03("Congo",name=TRUE)
```

lifeTable

Construct lifetable based on qx-column

Description

```
qx = age-specific probability of dying
```

Usage

```
lifeTable(qx = NULL, mx = NULL, agecohort = 0)
```

Arguments

qx Numeric vector (required): Age-specific probabilities of dying

agecohort Number (optional): Age at which cohort is started

Value

Data.table with lifetable

Examples

```
qx \leftarrow unlist(data.mortall[iso3=="AFG", as.character(0:100), with=FALSE], use.names=FALSE) lifeTable(qx, 9)
```

monetary_to_number

Convert monetary character-strings to numeric values

Description

Convert monetary character-strings to numeric values

Usage

```
monetary_to_number(x)
```

Arguments

Х

Character string to convert

36 Output Vimc

Value

Returns number with value, stripped from any currency symbols and thousand-seperators (i.e. "B#2,010.50" becomes 2010.5)

Examples

```
monetary_to_number ("$2,200.20")

# Note that values using German or Dutch notation (i.e. using a comma to separate decimals and a dot to seperate thousands) are converted as well. monetary_to_number ("$2.200,20")
```

OutputVimc

Formatting output for VIMC Montagu

Description

OutputVimc takes result of BatchRun and outputs it in format to be uploaded to VIMC Montagu.

Usage

```
OutputVimc(
  DT,
  age_stratified = TRUE,
  calendar_year = FALSE,
  vimc_template = -1
)
```

Arguments

DT data table with results

age_stratified logical, whether output should be stratified by age

calendar_year logical, whether output should be given by calendar year of event OR by year of

birth of cohort

Value

#

Examples

#

prime 37

prime: Papillomavirus Rapid Interface for Modelling and Economics (PRIME).

Description

PRIME stands for "Papillomavirus Rapid Interface for Modelling and Economics". The R package is based of the spreadsheet-based tool (see http://primetool.org).

PRIME provides estimates of

The magnitude of the burden of cervical cancer.

The impact of introducing HPV vaccination for girls prior to sexual debut.

Healthcare costs incurred as a result of cervical cancer treatment.

Costs associated with vaccination.

Long-term savings which may result from a vaccination program.

propSexDebut Proportion of girls sexually debuted

Description

propSexDebut returns proportion of girls sexually debuted in country_iso3 at age age.

Usage

```
propSexDebut(age, country_iso3)
```

Arguments

age age of girls

country_iso3 ISO3 country code

Value

Returns proportion of girls in a given country that has sexually debuted at a given age.

Examples

```
propSexDebut (20, "IND")
propSexDebut (30, "ETH")
```

RegisterBatchData

Creates .data.batch for running multiple birth cohorts

Description

Creates .data.batch which is used when running/looping over multiple birth cohorts (runCohort()) at once.

Usage

RegisterBatchData(coverage_data, reporting_years = -1, force = FALSE)

Arguments

coverage_data Data table with columns country_code, year (of vaccination), age_first, age_last,

coverage.

reporting_years

Numeric_vector, years that should be reported (parameter: not required)

force Logical, whether .data.batch should be overwritten if it already exists (parame-

ter: not required)

Details

.data.batch is based on the data.table (DT) coverage_data, which is a DT with columns country_code (ISO3), year (of vaccination), age_first (age at vaccination), age_last (age at vaccination), coverage (in proportion, for all the agegroups specified).

If you only want to run 1 age in this country/coverage combination, age_first==age_last

Value

batch data of cohorts with vaccination coverage

Examples

#

 $Register {\tt BatchDataVimc} \quad \textit{Creates . data. batch for running multiple birth cohorts (VIMC runs)}$

Description

Creates .data.batch which is used when running/looping over multiple birth cohorts (runCohort()) at once. Similar to RegisterBatchData, but for when we make runs for VIMC.

RunCohort 39

Usage

```
RegisterBatchDataVimc(
  vimc_coverage,
  vimc_template,
  use_campaigns,
  use_routine,
  restrict_to_coverage_data = FALSE,
  force = FALSE,
  psa = 0
)
```

Arguments

data table with coverage estimates as downloaded from VIMC montagu vimc_coverage vimc_template data table with reporting template as downloaded from VIMC montagu logical, whether campaigns as stated in coverage files should be modelled use_campaigns use_routine logical, whether routine vaccination as stated in coverage file should be modelled restrict_to_coverage_data logical, whether the first birth-cohort should be the first cohort that is mentioned in the coverage data. If TRUE, restrict to coverage data. If FALSE, restrict to cohorts provided in vimc_template. force logical, whether .data.batch should be overwritten if it already exists integer, indicating how many runs for probabilistic sensitivity analysis (PSA). 0 psa to run no PSA.

Details

.data.batch is based on the data.table (DT) coverage_data, which is a DT with columns country_code (ISO3), year (of vaccination), age_first (age at vaccination), age_last (age at vaccination), coverage (in proportion, for all the age groups specified).

Value

batch data of cohorts with vaccination coverage

Examples

#

RunCohort Run PRIME for a single birth-cohort

Description

Runs PRIME for one birth-cohort. Usually called by another function such as RunCountry().

40 RunCohort

Usage

```
RunCohort(
  lifetab,
  cohort,
  incidence,
  mortality_cecx,
  prevalence,
  agevac,
  coverage,
  campaigns,
  vaccine_efficacy_nosexdebut,
  vaccine_efficacy_sexdebut,
  cost_cancer,
  discounting = FALSE,
  disc.cost = 0.03,
  disc.ben = 0.03,
  country_iso3 = NULL,
  run_country = FALSE,
  disability.weights = "gbd_2017"
)
```

Arguments

lifetab	Data.table:	The life-table	for this cohort	. Can be created	l using the lifeTable()

function.

cohort Number: The cohort-size of this birth-cohort at the time where the lifetable

starts.

incidence Numeric vector: Age-specific CeCx(16/18) incidence-rates. mortality_cecx Numeric vector: Age-specific CeCx(16/18) mortality-rates.

prevalence Numeric vector: Age-specific CeCx(16/18) prevalence rates (5-year prevalence)

- referring to people who are alive within 5 years of diagnosis.

agevac Number: Age at which the cohort is vaccinated.

coverage Number: Proportion of the cohort that will receive a vaccination.

campaigns List or number: MAC cohort-vaccinations (needs to be changed).

vaccine_efficacy_nosexdebut

Number: proportion indicating vaccine-efficacy before sexual debut.

vaccine_efficacy_sexdebut

Number: proportion indicating vaccine-efficacy after sexual debut.

cost_cancer Number: total per capita cost of cancer.

discounting Logical (optional): If TRUE, run cost-effectiveness analysis undiscounted and

discounted. If FALSE, only uses undiscounted

disc.cost Number (optional): Discounting for health costs (only if discounting=TRUE)

Number (optional): Discounting for health outcomes (only if discounting=TRUE)

Value

Returns a data.table with size of the birth-cohort and age-specific incidence-rates, mortality-rates, years-of-life-lost, years-of-healthy-life-lost, and cancer-costs before and after vaccination. Also displays whether discounting has been used ("type" column).

RunCountry 41

Examples

```
lifetab <- lifeTable(unlist(data.mortall[iso3=="AFG",</pre>
  as.character(0:100), with=FALSE], use.names=FALSE), 9)
cohort <- -1
incidence <- unlist(data.incidence[iso3=="AFG", as.character(0:100), with=FALSE],</pre>
 use.names=FALSE)
mortality_cecx <- unlist(data.mortall[iso3=="AFG", as.character(0:100), with=FALSE],</pre>
 use.names=FALSE)
prevalence <- unlist(data.cecx_5y_prevalence[iso3=="AFG",</pre>
 as.character(0:100), with=FALSE], use.names=FALSE)
agevac <- 9
coverage <- 0.8
campaigns <- -1
vaccine_efficacy_nosexdebut <- 0.95</pre>
vaccine_efficacy_sexdebut <- 0</pre>
cost_cancer <- 100
RunCohort(lifetab, cohort, incidence, mortality_cecx, prevalence, agevac,
  coverage, campaigns, vaccine_efficacy_nosexdebut, vaccine_efficacy_sexdebut,
  cost_cancer, disc.cost=0.03, disc.ben=0.03,
  discounting=FALSE, country_iso3="AFG", run_country=FALSE)
```

RunCountry

Run PRIME for a specific country

Description

Runs RunCohort() using country-specific estimates. If year_born and year_vac are not provided, assumes vaccination occurs in the current year.

Usage

```
RunCountry(
  country_iso3,
  vaceff_beforesexdebut = 1,
  vaceff_aftersexdebut = 0,
  cov = 1,
  agevac = 10,
  agecohort = 10,
  cohort = -1,
  canc.inc = "2020",
  sens = -1,
  unwpp_mortality = TRUE,
  year_born = -1,
  year_vac = -1,
  campaigns = -1,
  analyseCosts = FALSE,
  canc.cost = "unadj",
  discounting = FALSE,
  disc.cost = 0.03,
  disc.ben = 0.03,
```

42 RunCountry

```
run_batch = FALSE,
psadat = -1,
disability.weights = "gbd_2017",
wb.indicator = "NY.GDP.PCAP.PP.CD",
wb.year = 2017,
vaccine = "4vHPV"
)
```

Arguments

country_iso3 Character string (required): ISO3 code of the country Number (optional): Proportion with routine coverage cov Integer (optional): Target age for HPV vaccination agevac Integer (optional): Reference age for cohort-size (only used when 'cohort' is not agecohort provided) Integer (optional): Cohort-size. -1 if unknown cohort Integer (optional): Reference year for cancer incidence rates (Globocan: 2020 canc.inc or 2018 or 2012) Numeric-vector (optional): Specific values to be used in a PSA. -1 if PSA's are sens not used unwpp_mortality Logical (optional): If TRUE, uses year-specific UNWPP mortality estimates to construct life-tables. If FALSE, use WHO based mortality estimates. year_born Integer (optional): Year in which cohort is born Integer (optional): Year in which cohort is vaccinated year_vac List (optional): Multi-Age-Cohort campaigns (needs to be changed) campaigns analyseCosts Logical (optional): If FALSE, returns result from RunCohort() function. If TRUE, runs analyseCosts() with country-specific results. Character (optional): Is cost of cancer adjusted ("adj" for International \$) or not canc.cost ("unadj" for US\$) discounting Logical (optional): If TRUE, run cost-effectiveness analysis undiscounted and discounted. If FALSE, only uses undiscounted disc.cost Number (optional): Discounting for health costs (only if discounting=TRUE) Number (optional): Discounting for health outcomes (only if discounting=TRUE) disc.ben disability.weights character, disability weights for cervical cancer from GBD 2017 or GBD 2001 wb.indicator character, World Bank indicator for GDP/GNI per capita in I\$/US\$ and current/constant data numeric, year of the World Bank indicator value wb.year vaccine character, bivalent/quadrivalent (4vHPV) or nonavalent (9vHPV) vaccine vaceff Number (optional): Proportion indicating vaccine-efficacy

Value

data.table with country-specific results of HPV vaccination. Returns cost-analysis if analyseCosts=TRUE

writelog 43

Examples

writelog

Simulation log reporting

Description

Appends message of simulation run (x) to log file (logname).

Usage

```
writelog(logname, x)
```

Arguments

logname log filename

x message of simulation run

Value

None

Examples

#

Index

data.cross_protection, 13

```
* datasets
                                               data.disability_weights, 13
    data.cecx_1y_prevalence, 7
                                               data.global, 14
                                               data.hpv_distribution, 15
    data.cecx_1y_prevalence2020,8
                                               data.incidence, 17
    data.cecx_3y_prevalence, 9
                                               data.incidence2020,18
    data.cecx_3y_prevalence2020,9
    data.cecx_5y_prevalence, 10
                                               data.incidence_ui, 18
                                               data.mortall, 19
    data.cecx_5y_prevalence2020, 11
    data.costcecx, 11
                                               data.mortall.unwpp.nqx, 20
                                               data.mortcecx, 20
    data.countryname, 12
                                               data.mortcecx2020, 21
    data.cross_protection, 13
    data.disability_weights, 13
                                               data.mortcecx_ui, 21
                                               data.pop, 22
    data.global, 14
    data.hpv_distribution, 15
                                               data.popproj, 23
    data.incidence, 17
                                               data.quality, 23
                                               data.sexual_debut, 24
    data.incidence2020, 18
    data.incidence_ui, 18
                                               data.valid, 24
                                               dtAggregate, 26
    data.mortall, 19
                                               dtColMatch, 27
    data.mortall.unwpp.nqx, 20
    data.mortcecx, 20
                                               EmulateVaccineImpactVimcStochastic, 28
    data.mortcecx2020, 21
                                               EmulateVaccineImpactVimcStochastic_all_cecx_burden,
    data.mortcecx_ui, 21
    data.pop, 22
                                               Estimate_all_cecx_burden_central, 31
    data.popproj, 23
                                               EstimateVaccineImpactVimcCentral, 30
    data.quality, 23
    data.sexual_debut, 24
                                               Generate_diagnostic_plots, 33
    data.valid, 24
                                               getIS03, 34
ageCoverage, 2
                                               lifeTable, 35
analyseCosts, 3
                                               monetary_to_number, 35
BatchRun, 4
                                               OutputVimc, 36
checkSize, 6
CreatePsaData, 6
                                               prime, 37
                                               propSexDebut, 37
data.cecx_1y_prevalence, 7
                                               RegisterBatchData, 38
data.cecx_1y_prevalence2020,8
                                               RegisterBatchDataVimc, 38
data.cecx_3y_prevalence,9
data.cecx_3y_prevalence2020,9
                                               RunCohort, 39
data.cecx_5y_prevalence, 10
                                               RunCountry, 41
data.cecx_5y_prevalence2020, 11
                                               writelog, 43
data.costcecx, 11
data.countryname, 12
```