#Problem 1: Basic Prime Checking

Description:

In this problem, first you will be given the number of test cases T. Then you will be given T numbers. For each number t_i (1<=i<=T), you need to find if it's a prime number or not. Look at the input output section for more clarification.

Limits

1<=T<=100

1<=t_i<=10^9

Test Cases:

Input	Output
3 2 3 12	PRIME PRIME NOT PRIME
7 10007000 1111113 3111391 100000003 100099897 300099973 244499972	NOT PRIME NOT PRIME NOT PRIME NOT PRIME NOT PRIME PRIME NOT PRIME

#Problem 2: Finding the Pattern's occurrences

Description:

In the first line, you will be given a text T and in the following line you will be given a pattern P. You need to find the occurrences of P in T. Print each occurrence (start and end index in T) in separate lines keeping the ascending order of the starting indexes. Look at the input output section for more clarification. The output will follow 0 based indexing.

Limits

P and T both will always contain only English upper case letters, 'A' \leq P_i, T_i \leq 'Z'.

1<=|P|<=1000

1<=|T|<=10000000

Test Cases:

Input	Output
ABCABCDABCADDD BCA	1 3 8 10
AABABABCABABABABABAB ABAB	1 4 3 6 8 11 10 13 12 15 17 20
DDACBDBBBBBCBABBBCACBDDBBDBBBC BBB	6 8 7 9 8 10 14 16 26 28
CAABCBBBBCBBCCACCACAAAABBBCCBB CAABC	0 4

#Problem 3: Calculate Prefix Function of a String

Description:

In this problem, you will be given a string P. You need to calculate the prefix function's value of P. For each length prefix P_i (1 length, 2 length, 3 length, etc.) of P, prefix function calculates the length of the maximum prefix that matches with the suffix of P_i .

Let the length of the given string be m. Then the output will have a single line containing m integer values separated with a single space denoting the length of the maximum prefix that matches with the suffix for each length prefix of P_i .

Limits

P will always contain only English upper case letters, 'A' \leq P_i, T_i \leq 'Z'. $1\leq$ |P| \leq 100000

Test Cases:

Input	Output
ABABABABCA	0012345601
ABABABABABABABCA	0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 1
AAACBBBCCAACAABBABCCACAAACBC CC	012000001201200100010123 45000