实分析第十一周作业

涂嘉乐 PB23151786

2025年5月8日

T1.

证明 由 $f \in L^1([a,b])$,所以对任意开球 B (开区间),我们有 $f\chi_B \in L^1([a,b])$. 即 $f \in L^1_{loc}(\mathbb{R}^d)$,所以 f 的 Lebesgue 点集合 L_f 是满测集,即

$$\lim_{\substack{x \in B \\ m(B) \to 0}} \frac{1}{m(B)} \int_{B} |f(y) - f(x)| \mathrm{d}y = 0 \text{ a.e } x \in (a,b)$$

取 B=(x-h,x+h),则对 $\forall \varepsilon>0, \exists h>0, \mathrm{s.t.}\ \frac{1}{2h}\int_{x-h}^{x+h}|f(y)-f(x)|\mathrm{d}y<\frac{\varepsilon}{2}$,故

$$\left| \frac{F(x+h) - F(x)}{h} - f(x) \right| = \left| \frac{1}{h} \int_{x}^{x+h} f(y) dy - f(x) \right| = \left| \frac{1}{h} \int_{x}^{x+h} f(y) - f(x) dy \right|$$

$$\leq \frac{1}{h} \int_{x}^{x+h} |f(y) - f(x)| dy \leq \frac{1}{h} \int_{x-h}^{x+h} |f(y) - f(x)| dy$$

$$< \varepsilon$$

令 $\varepsilon \to 0^+$ 即得

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = f(x)$$
 a.e $x \in (a,b)$

T2.

证明 (1) 取 $r > |x| \ge 1$

$$f^*(x) = \sup_{B\ni x} \frac{1}{m(B)} \int_B |f(y)| dy \ge \frac{1}{m(B(0,r))} \int_{B(0,r)} |f(y)| dy$$
$$\ge \frac{1}{m(B(0,x))} \int_{B(0,1)} |f(y)| dy = \frac{\int_{B(0,1)} |f(y)| dy}{v_d |x|^d}$$

因此取 $c=\frac{\int_{B(0,1)}|f(y)|\mathrm{d}y}{v_d}$,由 $f\in L^1(\mathbb{R}^d)$ 知, $c<+\infty$,再结合先前做过的习题知 $|x|^{-d},|x|\geq 1$ 不可积 积,且 $f^*\geq c|x|^{-d}, \forall |x|\geq 1$,故 f^* 不可积

$$(2)$$
. 根据条件, $c=rac{1}{v_d}$, 因此若 $rac{1}{v_d|x|^d}>lpha$,则 $f\geqrac{1}{v_d|x|^d}>lpha$,即

$$\left\{ x : |x|^d < \frac{1}{v_d \alpha} \right\} \subseteq \{ f^* > \alpha \}$$

因此当 $\alpha < \frac{1}{v_d}$ 时, 对 $\forall x \in \overline{B(0,1)}$, 有

$$m(\{f^* > \alpha\}) \ge m\left(\left\{|x| < \frac{1}{\sqrt[d]{v_d\alpha}}\right\}\right) = v_d \cdot \frac{1}{v_d\alpha} = \frac{1}{\alpha}$$

因此取
$$c'=1$$
 即可

T3.

证明 因为 $E^c \cap [0,1]$ 可测,所以 a.e $x \in E^c \cap [0,1]$ 均为 $E^c \cap [0,1]$ 的密度点,所以

$$\lim_{\substack{B\ni x\\ m(B)\to 0}} \frac{m\big((E^c\cap[0,1])\cap B\big)}{m(B)} = 1 \text{ a.e } x \in E^c\cap[0,1]$$
 (1)

取 B 为 [0,1] 中的开区间, 因为

$$m((E^c \cap [0,1]) \cap B) = m(B) - m(E \cap B) \le (1-\alpha)m(B)$$

即对 $\forall x \in E^c \cap [0,1], \forall B \subset [0,1]$ 满足 $B \ni x$,有 $\frac{m\left((E^c \cap [0,1]) \cap B\right)}{m(B)} \le 1-\alpha$,这与 $m(B) \to 0$ 时极限 为 1 矛盾! 但 (1) 式又对 a.e $x \in E^c \cap [0,1]$ 成立,故只能是 $m(E^c \cap [0,1]) = 0$,且 $E \subset [0,1]$,即 $m(E) = m([0,1]) - m(E^c \cap [0,1]) = 1$