

=====

Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2008; month=7; day=29; hr=14; min=47; sec=35; ms=461;]

=====

Application No: 10527257 Version No: 5.0

Input Set:

Output Set:

Started: 2008-07-28 10:04:50.641
Finished: 2008-07-28 10:04:51.133
Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 492 ms
Total Warnings: 6
Total Errors: 0
No. of SeqIDs Defined: 12
Actual SeqID Count: 12

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (4)
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (8)

SEQUENCE LISTING

<110> Shanghai Genomics, Inc.
<120> TUMOR TAG AND THE USE THEREOF
<130> 186353/US
<140> 10527257
<141> 2005-03-09

<150> PCT/CN2002/000631
<151> 2002-09-09

<160> 12

<170> PatentIn version 3.4

<210> 1
<211> 720
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (1)..(639)

<400> 1
atg gca gcg gcc gcc agc ccc gcg ttc ctt cta cgc ctc ccg ctt ctg 48
Met Ala Ala Ala Ala Ser Pro Ala Phe Leu Leu Arg Leu Pro Leu Leu
1 5 10 15
ctc ctg ctg tcc agc tgg tgc agg acc ggg ctg gcc gac cct cac tct 96
Leu Leu Leu Ser Ser Trp Cys Arg Thr Gly Leu Ala Asp Pro His Ser
20 25 30
ctt tgc tat gac atc acc gtc atc cct aag ttc aga cct gga cca cgg 144
Leu Cys Tyr Asp Ile Thr Val Ile Pro Lys Phe Arg Pro Gly Pro Arg
35 40 45
tgg tgt gcg gtt caa ggc cag gtg gat gaa aag act ttt ctt cac tat 192
Trp Cys Ala Val Gln Gly Gln Val Asp Glu Lys Thr Phe Leu His Tyr
50 55 60
gac tgt ggc agc aag aca gtc aca ccc gtc agt ccc ctg ggg aag aaa 240
Asp Cys Gly Ser Lys Thr Val Thr Pro Val Ser Pro Leu Gly Lys Lys
65 70 75 80
cta aat gtc aca acg gcc tgg aaa gca cag aac cca gta ctg aga gag 288
Leu Asn Val Thr Ala Trp Lys Ala Gln Asn Pro Val Leu Arg Glu
85 90 95
gtg gtg gac ata ctt aca gag caa ctg ctt gac att cag ctg gag aat 336
Val Val Asp Ile Leu Thr Glu Gln Leu Leu Asp Ile Gln Leu Glu Asn
100 105 110

tac ata ccc aag gaa ccc ctc acc ctg cag gcc agg atg tct tgt gag		384	
Tyr Ile Pro Lys Glu Pro Leu Thr Leu Gln Ala Arg Met Ser Cys Glu			
115	120	125	
cag aaa gcc gaa gga cac ggc agt gga tct tgg cag ctc agt ttc gat		432	
Gln Lys Ala Glu Gly His Gly Ser Gly Ser Trp Gln Leu Ser Phe Asp			
130	135	140	
gga cag atc ttc ctc ctc ttt gac tca gaa aac aga atg tgg aca acg		480	
Gly Gln Ile Phe Leu Leu Phe Asp Ser Glu Asn Arg Met Trp Thr Thr			
145	150	155	160
gtt cat cct gga gcc aga aag atg aaa gaa aag tgg gag aat gac aag		528	
Val His Pro Gly Ala Arg Lys Met Lys Glu Lys Trp Glu Asn Asp Lys			
165	170	175	
gat atg acc atg tcc ttc cat tac atc tca atg gga gac tgc aca gga		576	
Asp Met Thr Met Ser Phe His Tyr Ile Ser Met Gly Asp Cys Thr Gly			
180	185	190	
tgg ctt gag gac ttc ttg atg ggc atg gac agc acc ctg gag cca agt		624	
Trp Leu Glu Asp Phe Leu Met Gly Met Asp Ser Thr Leu Glu Pro Ser			
195	200	205	
gca gga ggc aca gtc tgacccaaag ccatggccac caccctcagt ccctgcagcc		679	
Ala Gly Gly Thr Val			
210			
tcctcctcat cctccctgc ttcatcctcc ctggcatctg a		720	
<210> 2			
<211> 213			
<212> PRT			
<213> Homo sapiens			
<400> 2			
Met Ala Ala Ala Ala Ser Pro Ala Phe Leu Leu Arg Leu Pro Leu Leu			
1	5	10	15
Leu Leu Leu Ser Ser Trp Cys Arg Thr Gly Leu Ala Asp Pro His Ser			
20	25	30	
Leu Cys Tyr Asp Ile Thr Val Ile Pro Lys Phe Arg Pro Gly Pro Arg			
35	40	45	
Trp Cys Ala Val Gln Gly Gln Val Asp Glu Lys Thr Phe Leu His Tyr			
50	55	60	
Asp Cys Gly Ser Lys Thr Val Thr Pro Val Ser Pro Leu Gly Lys Lys			
65	70	75	80

Leu Asn Val Thr Thr Ala Trp Lys Ala Gln Asn Pro Val Leu Arg Glu
85 90 95

Val Val Asp Ile Leu Thr Glu Gln Leu Leu Asp Ile Gln Leu Glu Asn
100 105 110

Tyr Ile Pro Lys Glu Pro Leu Thr Leu Gln Ala Arg Met Ser Cys Glu
115 120 125

Gln Lys Ala Glu Gly His Gly Ser Gly Ser Trp Gln Leu Ser Phe Asp
130 135 140

Gly Gln Ile Phe Leu Leu Phe Asp Ser Glu Asn Arg Met Trp Thr Thr
145 150 155 160

Val His Pro Gly Ala Arg Lys Met Lys Glu Lys Trp Glu Asn Asp Lys
165 170 175

Asp Met Thr Met Ser Phe His Tyr Ile Ser Met Gly Asp Cys Thr Gly
180 185 190

Trp Leu Glu Asp Phe Leu Met Gly Met Asp Ser Thr Leu Glu Pro Ser
195 200 205

Ala Gly Gly Thr Val
210

<210> 3
<211> 29
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 3
cggaattcat ggcagggcc gccagcccc 29

<210> 4
<211> 30
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 4
gccaagcttg atgccaggga ggatgaagca 30

<210> 5
<211> 34
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 5
ccggaattcg accctcactc tctttgctat gaca 34

<210> 6
<211> 30
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 6
gccaagcttg atgccaggga ggatgaagca 30

<210> 7
<211> 21
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 7
atggcagcgg ccgcccagccc c 21

<210> 8
<211> 24
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 8
tcagatgccca gggaggatga agca 24

<210> 9
<211> 742
<212> DNA
<213> Homo sapiens

<400> 9
atggcagcgg ccgcccagccc cgcggttcctt ctacgcctcc cgcttctgct cctgctgtcc 60
agctggtgca ggaccgggct ggccgaccct cactctcttt gctatgacat caccgtcatc 120
cctaagttca gacctggacc acgggtgggt gcggttcaag gccaggtgga tgaaaagact 180
tttcttcact atgactgtgg cagcaagaca gtcacacccg tcagtcctt ggggaagaaa 240
ctaaatgtca caacggcctg gaaagcacag aacccagtac tgagagaggt ggtggacata 300
cttacagagc aactgcttga cattcagctg gagaattaca tacccaagga acccctcacc 360
ctgcaggcca ggatgtcttg tgagcagaaa gccgaaggac acggcagtgg atcttggcag 420
ctcagtttcg atggacagat cttcctcctc tttgacttag aaaaacagaat gtggacaacg 480
gttcatcctg gagccagaaa gatgaaagaa aagtggaga atgacaagga tatgaccatg 540
tccttccatt acatctaat gggagactgc acaggatggc ttgaggactt cttgatggc 600
atggacagca ccctggagcc aagtgcagga gcaccaccca ccatgtcctc aggcacagcc 660
caacccaggg ccacggccac caccctcatc ctttgctgcc tcctcatcat gtgtctcctc 720
atatgctcca ggcacagtct ga 742

<210> 10
<211> 246
<212> PRT
<213> Homo sapiens

<400> 10

Met Ala Ala Ala Ala Ala Thr Lys Ile Leu Leu Cys Leu Pro Leu Leu
1 5 10 15

Leu Leu Leu Ser Gly Trp Ser Arg Ala Gly Arg Ala Asp Pro His Ser
20 25 30

Leu Cys Tyr Asp Ile Thr Val Ile Pro Lys Phe Arg Pro Gly Pro Arg
35 40 45

Trp Cys Ala Val Gln Gly Gln Val Asp Glu Lys Thr Phe Leu His Tyr
50 55 60

Asp Cys Gly Asn Lys Thr Val Thr Pro Val Ser Pro Leu Gly Lys Lys
65 70 75 80

Leu Asn Val Thr Thr Ala Trp Lys Ala Gln Asn Pro Val Leu Arg Glu

85

90

95

Val Val Asp Ile Leu Thr Glu Gln Leu Arg Asp Ile Gln Leu Glu Asn
100 105 110

Tyr Thr Pro Lys Glu Pro Leu Thr Leu Gln Ala Arg Met Ser Cys Glu
115 120 125

Gln Lys Ala Glu Gly His Ser Ser Gly Ser Trp Gln Phe Ser Phe Asp
130 135 140

Gly Gln Ile Phe Leu Leu Phe Asp Ser Glu Lys Arg Met Trp Thr Thr
145 150 155 160

Val His Pro Gly Ala Arg Lys Met Lys Glu Lys Trp Glu Asn Asp Lys
165 170 175

Val Val Ala Met Ser Phe His Tyr Phe Ser Met Gly Asp Cys Ile Gly
180 185 190

Trp Leu Glu Asp Phe Leu Met Gly Met Asp Ser Thr Leu Glu Pro Ser
195 200 205

Ala Gly Ala Pro Leu Ala Met Ser Ser Gly Thr Thr Gln Leu Arg Ala
210 215 220

Thr Ala Thr Thr Leu Ile Leu Cys Cys Leu Leu Ile Ile Leu Pro Cys
225 230 235 240

Phe Ile Leu Pro Gly Ile
245

<210> 11

<211> 741

<212> DNA

<213> Homo sapiens

<400> 11

atggcagcag ccggccgctac caagatcctt ctgtgcctcc cgcttctgct cctgctgtcc 60

ggctggtccc gggctggcg agccgaccct cactctttt gctatgacat caccgtcatc 120

cctaagttca gacctggacc acgggtgggt gcggttcaag gccaggtgga tgaaaagact 180

tttcttcact atgactgtgg caacaagaca gtcacacctg tcagtcctt gggaaagaaa 240

ctaaatgtca caacggcctg gaaagcacag aacccagtac tgagagaggt ggtggacata 300
cttacagagc aactgcgtga cattcagctg gagaattaca caccaagga acccctcacc 360
ctgcaggcca ggatgtcttg tgagcagaaa gctgaaggac acagcagtgg atcttggcag 420
ttcagtttcg atggcagat cttcctcctc tttgacttag agaagagaat gtggacaacg 480
gttcatcctg gagccagaaa gatgaaagaa aagtggaga atgacaaggt tgtggccatg 540
tccttccatt acttctaat gggagactgt ataggatggc ttgaggactt cttgatggc 600
atggacagca ccctggagcc aagtgcagga gcaccactcg ccatgtcctc aggcacaacc 660
caactcaggg ccacagccac caccctcatc cttgctgcc tcctcatcat cctccctgc 720
ttcatcctcc ctggcatctg a 741

<210> 12
<211> 642
<212> DNA
<213> Homo sapiens

<400> 12
atggcagcgg cgcgcagccc cgcggttctt ctacgcctcc cgcttctgct cctgctgtcc 60
agctggtgca ggaccgggct ggccgcacct cactctctt gctatgacat caccgtcatc 120
cctaagttca gacctggacc acgggtggtgt gcggttcaag gccaggtgga tgaaaagact 180
tttcttcaact atgactgtgg cagcaagaca gtcacacccg tcagtcctt gggaaagaaa 240
ctaaatgtca caacggcctg gaaagcacag aacccagtac tgagagaggt ggtggacata 300
cttacagagc aactgcgtga cattcagctg gagaattaca caccaagga acccctcacc 360
ctgcaggcca ggatgtcttg tgagcagaaa gccgaaggac acggcagtgg atcttggcag 420
ttcagtttcg atggcagat cttcctcctc tttgacttag aaaacagaat gtggacaacg 480
gttcatcctg gagccagaaa gatgaaagaa aagtggaga atgacaagga tatgaccatg 540
tccttccatt acatctaat gggagactgc acaggatggc ttgaggactt cttgatggc 600
atggacagca ccctggagcc aagtgcagga ggcacagtct ga 642