Rapport: Circuits RLC en tension carrée et sinusoïdale

Groupe : Mattens Simon, Dom Eduardo BAB2 Sciences Informatiques

May 26, 2018

1. Introduction

Le but de la manipulation est l'étude de circuits alimentés en tension alternative (carrée et sinusoïdale) comprenant des associations de résistances (R), condensateurs (capacités C) et bobines d'induction (L).

2. Résumé théorie

2.1 Rappels théoriques nécessaires aux calculs

•Capacité d'un circuit à la résonance dans un circuit RLC série.

 $\omega^2 = \frac{1}{L \cdot C}$, ω etant la vitesse angulaire a la resonance

$$\Longleftrightarrow C = \frac{1}{L \cdot \omega^2}$$

•L'intensité maximale du courant (à la résonance) dans un circuit RLC série.

$$I_{eff\ max} = \frac{U_{eff}}{R_{tot}}$$

•Potentiel aux bornes de L et aux bornes de C.

 $U_L = Z_L \cdot I_L$, avec $Z_L = \omega L$, dans les reels

$$U_C = Z_C \cdot I_C$$
, avec $Z_C = \frac{1}{\omega C}$, dans les reels

•Intensité du courant aux bornes de L et aux bornes de C.

$$|I_L| = rac{|U_L|}{\omega L}, \ dans \ les \ reels$$

$$|I_C| = |U_C| \cdot \omega C$$
, dans les reels

•Capacité d'un circuit à l' anti-résonance dans un circuit RLC en parallèle.

 $\omega^2 = \frac{1}{L \cdot C}$, ω etant la vitesse angulaire a la resonance

$$\Longleftrightarrow C = \frac{1}{L \cdot \omega^2}$$

 $\bullet L$ 'intensité minimale du courant (à l' anti-résonance) dans un circuit RLC en parallèle.

$$I_{eff\ min} = \frac{U_{eff} \cdot R}{\omega L \cdot \sqrt{R^2 + \omega^2 L^2}}$$

3. Manipulation

3.1 Etude théorique d'un circuit (R)LC : oscillations sinusoïdales

Considérons un circuit LC avec L=0.1H et C=4300 pF. Calculons la valeur de la période d'oscillation propre du circuit.

$$T = \frac{2\pi}{\omega_0} = 2\pi\sqrt{LC} = 6.283$$

En tenant compte de la résistance du générateur (RG = 50 $\Omega)$ et de celle de la bobine (à mesurer):

$$R_L = 65.3 \pm 6.66\Omega \ (\approx 100\Omega)$$

3.2 Circuit RLC série en tension carrée: mesures en régime transitoire

- 1) La période du signal carré (répétition du phénomène ON OFF): $T_{GS}=9.94\mathrm{ms}.$
- 2) La période des oscillations : $T_0 = 66.5$ ms.
- 3) Le temps de demi-vie de l'enveloppe exponentielle des amplitudes : $T_{1/2} = 157 \mu s$.
- 4) Donc, le temps de relaxation $\tau = 226.5 \mu s$.
- 5) En examinant le schéma du circuit, on détermine la valeur de $R_{TOT}=560+65.9+50=675.9\Omega$. On ne doit pas tenir compte de la résistance de l'oscillo car aucun courant ne passe par l'oscillo.
- 6) Ci-dessous, le tableau contenant les différents nombres d'oscillations observées en remplaçant la résistance de 560Ω par des résistances de valeurs différentes.

R =	22Ω	216Ω	560Ω	1500Ω
Nombre d'oscillations observées	40.5	27.3	16.3	8.09