CSE 566 Spring 2023

Multiple Sequence Alignment

Instructor: Mingfu Shao

What We've Learned

Problem	Algorithm			
Querying P against text T	Z-algo, KMP			
Constructing suffix tree	Ukkonen's algorithm			
Constructing suffix array	Skew algorithm			
Querying q against an suffix array	O(q + log S)-time algorithm			
Constructing/Recovering/Querying BWT	O(s)-time algorithms			
Constructing local/glocal alignments	O(nm)-time algorithms			
Edit distance problem	O(nd)-time, O(n)-space			
•••	•••			

Tackling NP-hard Problems

- NP-hard: there does not exist polynomial-time $\underline{\text{exact/optimal}}$ algorithm unless P = NP.
- Still need exact/optimal solution
 - exponential algorithms
- Don't require exact/optimal solution, but some theoretical guarantee
 - Approximation algorithms: $algo(I)/OPT(I) \le c$, for any I.
 - Randomized algorithms
- Heuristics, often need experimental comparisons

Multiple Sequence Alignment (MSA)

```
S1:ATCGACTACTCGTC ATC-GACTACTC-GTC
S2:ATCGGACTCGTT ATCGGA---CTC-GTT
S3:ACGGACACTCGTT A-CGGAC-ACTC-GTT
S4:ACGGCTACTCAGTT A-CGG-CTACTCAGTT
```

- Widely used to find common patterns, conserved regions, comparative analysis, etc.
- Input: sequences S1, S2, ..., Sm
- Output: an MSA M, such the cost of M is minimized.
- Different cost functions lead to different formulations.

The First Formulation

- Assume that columns of M are independent
- $\underline{cost(M)} = \sum_{c} cost(M_c)$, where M_c is the c-th column of M
- This cost function generalizes the <u>unit gap cost</u> of 2 sequences to m sequences
- This formulation is NP-hard.

Dynamic Programming Algorithm

- Take m=3 as example. Define OPT(i, j, k) as the minimized cost between S1[1..i], S2[1..j], and S3[1..k] OPT(i, j, k) as the minimized cost
- Consider all possibilities of the last column

$$Cost(S_{1}[i], S_{2}[j], S_{3}[k]) + OPT(i - 1, j - 1, k - 1)$$

$$Cost(S_{1}[i], S_{2}[j], -) + OPT(i - 1, j - 1, k)$$

$$Cost(S_{1}[i], -, S_{3}[k]) + OPT(i - 1, j, k - 1)$$

$$Cost(S_{1}[i], -, -) + OPT(i - 1, j, k)$$

$$Cost(-, S_{2}[j], S_{3}[k]) + OPT(i, j - 1, k - 1)$$

$$Cost(-, S_{2}[j], -) + OPT(i, j - 1, k)$$

$$Cost(-, S_{3}[k]) + OPT(i, j - 1, k)$$

$$Cost(-, -, S_{3}[k]) + OPT(i, j, k - 1)$$

Dynamic Programming Algorithm

- Generalizing to m sequence:
 - #(subproblems) = n^m , where assuming $|S_i| = n$
 - Solving each subproblem takes $O(2^m)$ cases,
 - Assume cost of a column can be computed in O(m) time.
- Total running time: $O(m \cdot n^m \cdot 2^m)$
- Only affordable for very small m.

$$m=4 \Rightarrow O(4 \cdot n^4 \cdot 2^4)$$

The Second Formulation

• An MSA M implies all pairwise alignments.

```
S1:ATC-GACTACTC-GTC
S2:ATCGGA---CTC-GTT
S3:A-CGGAC-ACTC-GTT
S4:A-CGGAC-CTACTCAGTT

S2:ATCGGA--CTCGTT
S3:A-CGGACACTCGTT
S4:A-CGGACACTCGTT
S4:A-CGG-CTACTCAGTT

M24
```

• The implied pairwise alignment may not be optimal.

The Second Formulation

- Assume the <u>cost function for alignment between two</u> sequences is given (say, unit gap cost, affine gap cost, etc)
- Assume that this cost function is a metric, i.e., satisfying the triangle inequality: $cost(M_{ij}) \leq cost(M_{ik}) + cost(M_{kj})$, \forall K.
- Sum-of-pairs cost: $cost(M) = \sum_{i < j} cost(M_{i,j})$
- We are able to design a 2-approximation algorithm (STAR):

$$\frac{STAR(I)}{OPT(I)} = \frac{\sum_{i < j} cost(M_{i,j})}{\sum_{i < j} cost(M_{i,j}^*)} \le 2$$

$$OPT: M*$$

STAR Algorithm

 $O(\overline{M_s} \cdot U_s)$

- Step 1: build all optimal pairwise alignments; let $\underline{M}(S_i, S_j)$ be the alignment and let $\underline{cost}(S_i, S_j)$ be the cost.
- Step 2: find the sequence that is the closest to others, i.e., S_x such that $\sum_{i \neq x} cost(S_i, S_x)$ is minimized.
- Step 3: merge $\underline{M(S_1, S_x)}$, $\underline{M(S_2, S_x)}$, ..., $\underline{M(S_m, S_x)}$ into an MSA, called M.

Merging $M(S_i, S_x), 1 \le i \le m$

· Keep all columns; add "-" as needed

```
S1:ATC-GACTACTCGTC ) MSA
```

```
S1:ATC-GACTACTCGTC
S2:ATCGGA--CTCGTT
S3:A-CGGACACTCGTT

S1:ATC-GACTACTCGTC

S2:ATCGGA---CTCGTT
```

```
S1:ATC-GACTACTC-GTC
S2:ATCGGA---CTC-GTT
S4:A-CGG-CTACTCAGTT
S4:A-CGG-CTACTCAGTT
S4:A-CGG-CTACTCAGTT
```

Proof of Approximation Ratio

$$\begin{aligned} 2 \cdot cost(M) &= 2 \cdot \sum_{i < j} cost(M_{i,j}) = \sum_{i,j} cost(M_{i,j}) \\ &\leq \sum_{i,j} (cost(M_{i,x}) + cost(M_{x,j})) \quad \text{triangly inequality} \\ &= \sum_{i,j} (cost(S_i, S_x) + cost(S_x, S_j)) \\ &= \sum_{i,j} cost(S_i, S_x) + \sum_{i,j} cost(S_x, S_j) \\ &= 2m \cdot \sum_{i} cost(S_i, S_x) \end{aligned}$$

$$2 \cdot cost(M^*) = 2 \cdot \sum_{i < j} cost(M^*_{i,j}) = \sum_{i,j} cost(M^*_{i,j})$$

$$\geq \sum_{i,j} cost(S_i, S_j)$$

$$= \sum_{i} cost(S_i, S_j)$$

$$= \sum_{i} cost(S_i, S_j) + \sum_{i} cost(S_i, S_2) + \cdots + \sum_{i} cost(S_i, S_m)$$

$$\geq m \cdot \sum_{i} cost(S_i, S_x) \qquad \text{show } 2$$

Transform MSA to Profile

```
A T C - G A C T A
A T C G G A - - - A
A T C G G A C A A
A - C A
A T C G G A C A A
A - C G G A C A
A - C A
A T C G G G A C A
```

MSA	

MXn

A	1	0	0	0	0	0.6	0	0	0.6
C	0	0	0.8	0	0	0	0.8	0	0
G	0	0	0	0.8	0.8	0	0	0.2	0
T	0	0.6	0	0	0.2	0	0	0.4	0
_	0	0.4	0.2	0.2	0	0.4	0.2	0.4	0.4

Aligning Two Profiles

- Input: two profiles S and T
- DP algorithm:

$$OPT(i, j) = \max \begin{cases} OPT(i-1, j-1) + score(S[i], T[j]) \\ OPT(i-1, j) + score(S[i], -) \rightarrow 0 \\ OPT(i, j-1) + score(-, T[j]) \end{cases}$$

$$score(S[i], T[j]) = \sum_{c \in \Sigma} S[i][c] \cdot T[i][c]$$

 More sophisticated approaches exist, such as profile HMM; see more in "Biological sequence analysis", by R. Durbin, et al.

Progressive Approach for MSA

- Step 1: build all pairwise alignments to get the cost matrix.
- Step 2: build a guide tree (clustering, phylogeny, etc).
- Step 3: progressively align two profiles following the tree.

