Sequential Nondeterminism, Hoare Triples 1 & 2

CS 536: Science of Programming, Spring 2023

Due Thu Feb 16, 11:59 pm [not Sep 16]

A. Problems [60 points total]

Class 7: Sequential Nondeterminism

- 1. [12=2*6 points] Let DO be the nondeterministic loop [2023-02-13 do/od keywords]
 - do x ≠ 0 → x := x 1; y := y + 1 □ x ≠ 0 → x := x 1; y := y + 2 od
 - a. First, let's work on what what a typical loop iteration does over an arbitrary state $\sigma = \{x = \beta, y = \delta\}$. Assume $\beta \ge 2$ and calculate the two states we can be in after a single iteration of the loop. I.e., what are the τ where $\langle DO, \sigma \rangle \rightarrow {}^{3}\langle DO, \tau \rangle$?
 - b. Extend part (a) to do κ iterations where $1 < \kappa \le \beta$. What is the set of final states Σ' we can reach in 3κ iterations? I.e., what is $\Sigma' = \{\tau \in \Sigma \mid \langle DO, \sigma \rangle \rightarrow {}^{3\kappa} \langle DO, \tau \rangle \}$?

Classes 8 & 9: Hoare Triples, pt 1 & 2

- 2. [16 = 4 * 4 points]
 - a. Using backward assignment, what can we use for precondition p_1 in the triple $\{p_1\}$ $b := b + b\{b * c \le d - b\}$? (Mild hint: Be careful with parenthesization)
 - b. Using backward assignment, what can we use for p_2 in $\{p_2\}x := m\{1 \le x * y \le n * m\}$?
 - c. Using backward assignment, what can we use for p_3 in $\{p_3\}$ $y := n \{p_2\}$?
 - d. Joining parts (b) and (c), what can we use for p_4 in $\{p_4\}y := n$; $x := m\{1 \le x * y \le n * m\}$?
- 3. [6=2*3 points] Let $p_0 \rightarrow p$, $p \rightarrow p_1$, $q_0 \rightarrow q$, and $q \rightarrow q_1$ all be valid. From $\{p\} S\{q\}$, there are four triples of the form $\{p_i\}$ S $\{q_i\}$ that get by replacing p by p_0 or p_1 and q by q_0 or q_1 .
 - a. If $\sigma \models \{p\} S \{q\}$, which of the four triples $\sigma \models \{p_i\} S \{q_i\}$ is/are also satisfied by σ under \models ? Briefly justify.
 - b. Repeat part (a) but under total correctness.
- 4. $[8=2*4 \text{ points}] \text{ Say } \sigma \models \{p_1\} S\{q_1\} \text{ and } \sigma \models \{p_2\} S\{q_2\}.$
 - a. Does $\sigma \models \{p_1 \land p_2\} S \{q_1 \lor q_2\}$? Justify briefly.
 - b. Does $\sigma \models \{p_1 \lor p_2\} S \{q_1 \land q_2\}$? Justify briefly.

- 5. [10 points] Answer the following questions below about the relationships between or variations of correctness triples. Assume $\sigma \neq \bot$ and S is deterministic.
 - a. [4 points] There are four statements of the form σ (\models or \neq) { p } S {q or $\neg q$ }. Which (if any) of them are implied by $\sigma \models_{tot} \{p\} S \{q\}$?
 - b. [4 points] There are eight statements of the form σ (\models or \neq) { p } S {q or $\neg q$ }. Which (if any) of them are implied by $\sigma \models_{\text{tot}} \{T\}S\{q\}$?
 - c. [2 points] There are four statements of the form $\sigma \models \{p \text{ or } \neg p\} S \{q \text{ or } \neg q\}$. When can all four of them be satisfied at the same time, or is it impossible?

Definitions

```
"\Sigma_0 partly \models p" means there is a \tau \in \Sigma_0 with \tau \models p.
```

" Σ_0 *partly* $\neq p$ " means there is a $\tau \in \Sigma_0$ with $\tau \vdash \neg p$.

- 6. [8 = 2 * 4 points] Now assume that $\sigma \neq \bot$ and S is nondeterministic and answer the following questions.
 - a. There are four statements of the form σ partly (\models or \neq) { p } S { q or $\neg q$ }. If $\bot \notin M(S, \sigma)$, then which (if any) of them are implied by $\sigma \not\models \{p\}S\{q\}$?
 - b. Continuing, which (if any) of the remaining statements can occur (but might not) when $\sigma \not\models \{p\} S \{q\}$?

Sequential Nondeterminism, Hoare Triples 1 & 2

Solutions

- 1. (Nondeterministic loop)
 - a. $\{x = \beta 1, y = \delta + 1\}, \{x = \beta 1, y = \delta + 2\}$
 - b. $\{x = \beta \kappa, y = \delta''\}$ where $\kappa \le \delta'' \le 2 \kappa$. κ times, we add 1 or 2 to δ , so we add a minimum of κ and a maximum of 2 κ to δ .
- 2. (Sequence of backward assignments)
 - a. $(b+b)*c \le d-(b+b)$
 - b. $u = 1 \le m * y \le n * m$
 - c. $v = 1 \le m * n \le n * m$
 - d. $w \equiv v \equiv 1 \leq m * n \leq n * m$
- 3. (Weakening and strengthening conditions)
 - a. $\{p_0\}$ $S\{q_1\}$ by precondition strengthening and postcondition weakening.
 - b. Same: $\{p_0\}S\{q_1\}$ by strengthening and postcondition weakening.
- 4. (Conjunctions and disjunctions of conditions)
 - a. Yes. If $p_1 \wedge p_2$ holds then postcondition q_1 holds because of p_1 and q_2 holds because of p_2 , so postcondition $q_1 \land q_2$ holds, and we can weaken that to $q_1 \lor q_2$.
 - b. No. If $p_1 \vee p_2$ holds then postcondition $q_1 \vee q_2$ holds, using reasoning similar to part (a), but $q_1 \lor q_2$ doesn't imply $q_1 \land q_2$.
 - holds. If p_1 holds then q_1 (and therefore $q_1 \vee q_2$) holds; alternatively if p_2 holds then q_2 (and therefore $q_1 \vee q_2$) holds, and $q_1 \vee q_2$ either way.
- 5. (Relationships among variations of triples)
 - a. $\sigma \models_{tot} \{p\} S \{q\} \text{ implies } \sigma \models \{p\} S \{q\} \text{ and } \sigma \not\models \{p\} S \{\neg q\}.$
 - b. $\sigma \models_{tot} \{T\}S\{q\} \text{ implies } \sigma \models \{p\}S\{q\} \text{ and } \sigma \not\models \{p\}S\{\neg q\}.$
 - c. If $M(S, \sigma) = \{\bot\}$, then all four of $\sigma \models \{p\}S\{q\}, \sigma \models \{p\}S\{\neg q\}, \sigma \models \{\neg p\}S\{q\}, \sigma \models \{\neg p\}\}$ $S \{ \neg q \}$ are satisfied by σ .
- 6. (Partial $= / \neq$)
 - a. $\sigma \not\models \{p\} S \{q\} \text{ and } \bot \not\in M(S, \sigma) \text{ then } M(S, \sigma) \text{ partly } \models \neg q.$
 - b. $\sigma \not\models \{p\} S \{q\}$ and $M(S, \sigma)$ partly $\not\models q$ can still occur.