	X(s)	x(t)	x(kT) or $x(k)$	X(z)				
1.	-	_	Kronecker delta $\delta_0(k)$ 1 $k = 0$ 0 $k \neq 0$	1				
2.	- ,	_	$ \delta_0(n-k) $ $ 1 $	z ^{-k}				
3.	<u>1</u> s	1(t)	1(k)	$\frac{1}{1-z^{-1}}$				
4.	$\frac{1}{s+a}$ e^{-at}		e-akT	$\frac{1}{1-e^{-aT_Z-1}}$				
5.	$\frac{1}{s^2}$	Common &	stems) kTpich inding	$\frac{Tz^{-1}}{(1-z^{-1})^2}$				
6.	$\frac{2}{s^3}$	[2	(kT) ²	$\frac{T^2z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$				
7.	6 s4	[3	(kT) ³	$\frac{T^3z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^4}$				
8.	$\frac{a}{s(s+a)}$	1 - e-at	1 - e ^{-akT}	$\frac{(1-e^{-aT})z^{-1}}{(1-z^{-1})(1-e^{-aT}z^{-1})}$				
9.	$\frac{b-a}{(s+a)(s+b)}$	e-a1 — e-b1	e-akT — e-bkT	$\frac{(e^{-aT}-e^{-bT})z^{-1}}{(1-e^{-aT}z^{-1})(1-e^{-bT}z^{-1})}$				

24.	23.	22.	21.	20.	19.	18 .	17.	16.	. 15.	14.	13.	12.	iow U.J.	10.
ere u	k) la	knes	(s)+a	it sedi	(x)+	Wase.	$\frac{s+a}{(s+a)^2+\omega^2}$	$\frac{\omega}{(s+a)^2+\omega^2}$	$\frac{s}{s^2+\omega^2}$	$\frac{\omega}{s^2 + \omega^2}$	$\frac{a^2}{s^2(s+a)}$	$\frac{2}{(s+a)^3}$	$\frac{s}{(s+a)^2}$	$\frac{1}{(s+a)^2}$
(ousigi a swe	r the	e-1(f differe (k)+a	W/X mee es	1)+ instic	1)/+(e at cos wt	e-at sin wt	cos wt	sin wt	$at-1+e^{-at}$	t ² e-at	$(1-at)e^{-at}$	te-at
a ^k cos kπ	k4ak-1	k³a ^{k−1}	k²a ^{k−1}	ka*-1	a^{k-1} $k=1,2,3,\ldots$	a ^k	e-akt cos ωkT	e ^{-ak7} sin ωkΤ	cos ωkΤ	sin ωkT	$akT - 1 + e^{-akT}$	(kT) ² e ^{-akT}	$(1-akT)e^{-akT}$	kTe-akt
Value Value	$\frac{z^{-1}(1+1 az^{-1}+1 a^3z^{-2}+a^3z^{-9})}{(1-az^{-1})^5}$	$\frac{z^{-1}(1+4az^{-1}+a^2z^{-2})}{(1-az^{-1})^4}$	$\frac{z^{-1}(1+az^{-1})}{(1-az^{-1})^3}$	$\frac{z^{-1}}{(1-az^{-1})^2}$	$\frac{z^{-1}}{1-az^{-1}}$	$\frac{1}{1-az^{-1}}$	$\frac{1 - e^{-aT}z^{-1}\cos\omega T}{1 - 2e^{-aT}z^{-1}\cos\omega T + e^{-2aT}z^{-2}}$	$\frac{e^{-aT_Z-1}\sin \omega T}{1-2e^{-aT_Z-1}\cos \omega T+e^{-2aT_Z-2}}$	$\frac{1-z^{-1}\cos\omega T}{1-2z^{-1}\cos\omega T+z^{-2}}$	$\frac{z^{-1}\sin\omega T}{1-2z^{-1}\cos\omega T+z^{-2}}$	$\frac{[(aT-1+e^{-aT})+(1-e^{-aT}-aTe^{-aT})z^{-1}]z^{-1}}{(1-z^{-1})^2(1-e^{-aT}z^{-1})}$	$\frac{T^2e^{-aT}(1+e^{-aT}z^{-1})z^{-1}}{(1-e^{-aT}z^{-1})^3}$	$\frac{1 - (1 + aT)e^{-aT}z^{-1}}{(1 - e^{-aT}z^{-1})^2}$	$\frac{T_{e^{-\alpha T_{z}-1}}}{(1-e^{-\alpha T_{z}-1})^{2}}$

Unless otherwise noted, $k = 0, 1, 2, 3, \ldots$