Insider Thread Detection in Electronic Medical Record Systems

You Chen

Feb, 04, 2015

You.chen@vanderbilt.edu

What Makes Sense?

- Dr. Smith's access of Peggy Johnson's medical record was strange
- Dr. Smith's access was 10 standard deviations away from normal behavior in his hospital
- Dr. Smith's access was strange because he is a neonatologist and he accessed the record of a 100 year-old woman who, for the past year, has only been treated by gerontologists

Suspicious or Anomalous?

Suspicious or Anomalous?

How Did We Get Here?

- Collaborative systems are about social phenomena
- People *should* form communities
- We should be able to measure deviation from community structure

6-Nearest Neighbor Network-Vanderbilt Medical

Center (1 day of accesses) (Chen, Nyemba, & Malin – IEEE TDSC 2012)

The average cluster coefficient for this network is 0.48, which is significantly larger than 0.001 for random networks

Users exhibit collaborative behavior in the Vanderbilt StarPanel System

What type of data we have? StarPanel system Growth in Use

Periodicity!-Week Day VS. Week End

Distinct Patient Accesses across Time

Examples of Accesses

Examples of Patient Diagnosis Codes

Diagnosis codes

patient_study_id	enc_deiden	DX_codes
442.0000726	1	2165 , 65921, 65951, 66401, 66481, V270
442.0001714	1	V053 , V3000
442.0002396	1	4019 , 4111 , 41401, 4142 , 4739 , 49390
442.0002775	2	1122 , 20300, 25000, 27651, 40390, 5845 , 5859 , 591 , 5933 , V1005, V1046
442.0002775	1	1534, 185, 1962, 1974, 20300, 25000, 2809, 40390, 56089, 5849, 5859, 59080, 591, 78791, 7907
442.0003301	1	76408, 76529, V053 , V3100
442.0004873	1	V270 , V8535, 27800, 64911, 64971, 65841, 66401
442.0005024	1	4019 , 72252, V1582
442.0005968	1	5990 , 2724 , 311 , 4019 , 44022
442.0006352	1	65971, V270
442.0007008	1	25000, 6144 , 99859, V1042
442.0007371	1	V707 , 2859 , 33394, 4019 , 71690, 74190, V420
442.0007707	1	30000, 49121, 51889, 60000, 7850
442.0007707	2	78052, V1083, 30001, 496 , 0549 , 1120 , 2768 , 30000
442.0008016	1	V053, V3001
442.0008405	1	2449 , 25080, 4019 , 41400, 42731, 4280 , 60000, V4581, V5861
442 0009617	1	V053 V3000

Various Ways of Access Logs Auditing

Automatic Detection of Insider Threats through Social Network Analysis

- User Level
 - Anomalous users detection

- Access Level
 - Anomalous insider actions detection
 - Specific actions of anomalous users

Two Typical Attacks

Intruders have complete knowledge of the system and its policies

Where are We Going?

User Level Anomaly Detection

Community Anomaly Detection System (CADS) and its extension MetaCADS

Chen et al. IEEE TDSC: You Chen, Steve Nyemba and Bradley Malin. Detecting Anomalous Insiders in Collaborative Information Systems. IEEE Transaction on Dependable and Secure Computing. Vol.9.No 3, p332-344.

Chen & Malin – ACM CODASPY 2011: You Chen and Bradley Malin. Detection of Anomalous Insiders in Collaborative Environments via Relational Analysis of Access Logs. Proceedings of ACM Conference on Data and Application Security and Privacy. 2011, p63-74

Community-Based Anomaly Detection (CADS)

Two general objects of health information system

Community Pattern Extraction

Distance measurement of pairs of users

$$Dis(u_i, u_j) = \sqrt{\sum_{q=1}^{l} ((Z_{qi} - Z_{qj})^2 \times \lambda_q / \lambda_{total})}$$

$$\sum_{i=1}^{l} \lambda_i / \sum_{j=1}^{n} \lambda_j (l \prec n) \qquad \lambda_{total} = \sum_{j=1}^{l} \lambda_j$$

How Do We Set "k"-NN?

Conductance- a measure of community quality

$$\psi(\beta) = \frac{2}{4}, \psi(\alpha) = \frac{2}{8}, \psi(\gamma) = \frac{2}{\min\{4,12\}}$$

$$\psi(\alpha) < \psi(\beta) = \psi(\gamma)$$

Minimum conductance at k=6

6-Nearest Neighbor Network-Vanderbilt Medical Center (1 day of accesses)

Measuring Deviation from k-NN

- Every user is assigned a radius r:
 - the distance to his kth nearest neighbor

Radius for

points in the

green area are 1, and for q_1 is

Smaller the radius → higher density in user's network

$$Dev(u_i) = \sqrt{\frac{\sum_{u_j \in knni} (r_j - \overline{r})^2}{k}}$$

$$\overline{r} = \frac{\sum_{i j \in knni} r_j}{k}$$

$$\bar{r} = \frac{2+2+2+2+3}{5} = 2.2$$

$$Dev(q_1) = \sqrt{\frac{(2-2.2)^2 \times 4 + (3-2.2)^2}{5}} = 0.42$$

5 nearest

Radius for points are larger than 10,

CADS on Vanderbilt Dataset

CADS on Northwestern Dataset

Example Environments

Electronic Health Records (EHR)

- Vanderbilt University Medical Center "StarPanel" Logs
- 3 months in 2010
- Arbitrary Day
 - ≈ 4,208 users
 - \approx 1,006 patients
 - ≈ 1,482 diagnoses
 - \approx 22,014 accesses of subjects
 - \approx 4,609 assignments of diagnoses

Experimental Design

- Datasets are not annotated for illicit behavior
- We simulated users in several settings to test:
 - Sensitivity to number of patients accessed of a specific users
 - Range from 1 to 120
 - Sensitivity to number of anomalous users
 - simulated users correspond to 0.5% to 5% of total users
 - Number of records accessed fixed to 5
 - Sensitivity to diversity
 - Random number of users(0.5%~5%) and records accessed (1~150)

Exp1: False Positive Rate Decreases, when the Number of Subjects Accessed Increases

Number of patients accessed per user

Exp2: Detection Rate With Various Mix Rates of Real and Simulated Users

	MIX RATE				
MODEL	0.5%	2%	5%		
MetaCADS	$0.92{\pm}0.02$	0.90 ± 0.01	0.87 ± 0.03		
CADS	0.91 ± 0.01	$0.94{\pm}0.02$	$0.94{\pm}0.01$		
KNN	0.75 ± 0.02	0.73 ± 0.03	0.72 ± 0.04		
PCA	0.72 ± 0.03	0.74 ± 0.02	0.75 ± 0.03		
HVU	0.68 ± 0.03	0.68 ± 0.03	0.68 ± 0.03		

when the number of simulated users is low (i.e., 0.5 percent), MetaCADS yields a slightly higher AUC than CADS (0.92 versus 0.91)

As the number of simulated users increases, CADS clearly dominates MetaCADS. The performance rate of CADS increases from 0.91 to 0.94, while MetaCADS decreases from 0.92 to 0.87.

Because when the number of simulated users increases, they have more frequent categories in common. In turn, these categories enable simulated users to form more communities than those based on patients alone, thus lowering their deviation scores. 30

Exp3: MetaCADS dominates when the mix rate is low (mix rate = 0.5%)

Where are We Going?

Access Level Anomaly Detection

Specialized Network Anomaly Detection (SNAD)

Local Access Network Construction

Changes of relation strength of a local network could be leveraged for detection of anomalous accesses

SNAD Framework

User Modeling

	u ₁	u ₂	u ₃	u ₄	u ₅	u ₆
s_1	1	0	1	0	0	0
s ₂	1	1	1	1	1	0
S_3	1	1	0	1	1	1
S_4	1	0	0	0	0	1
S ₅	0	1	0	1	1	0
s_6	0	0	1	0	0	1
s ₇	0	1	1	1	1	0

Relationship Measurement

	u ₁	u ₂	u ₃	u ₄	u ₅	u ₆
S ₁	1	0	1	0	0	0
s ₂	1	1	1	1	1	0
S ₃	1	1	0	1	1	1
S ₄	1	0	0	0	0	1
S ₅	0	1	0	1	1	0
s ₆	0	0	1	0	0	1
S ₇	0	1	1	1	1	0

	u ₁	u ₂	u ₄	u ₅	u ₆
u_1	1.00				
u ₂	0.50	1.00			
u_4	0.50	1.00	1.00		
u ₅	0.50	1.00	1.00	1.00	
u ₆	0.58	0.29	0.29	0.29	1.00

Relation Strength of Local Access Network

	u ₁	u ₂	u ₄	u ₅	u ₆
u_1	1.00				
u ₂	0.50	1.00			
u ₄	0.50	1.00	1.00		
u ₅	0.50	1.00	1.00	1.00	
u ₆	0.58	0.29	0.29	0.29	1.00

$$SIM(Net_{s_i}) = \frac{\sum_{i=1}^{|U_{s_i}|-1} \sum_{j=i+1}^{|U_{s_i}|} Sim(u_i, u_j)}{\frac{|U_{s_i}| \times (|U_{s_i}|-1)}{2}}$$

Measuring Accesses through Changes of Network Similarity

Network	Similarity	Size	Access	Score	Size
u ₁ ,u ₂ ,u ₄ ,u ₅ ,u	0.59	5	u1-s3		JIZC /
u ₂ ,u ₄ ,u ₅ ,u ₆	0.64	4	u1-33	0.03	4

In EHR System-one week

In Wiki-one week

Evaluation

For a random user, verifying how number of simulated access injected into this user influence the performances of SNAD

For a fixed number of simulated accesses, verifying how number of intruded users influence the performances of SNAD

The number of simulated accesses and intruded users are both diverse

Model Evaluation-setting 1

For a random user, injecting simulated accesses

S ₁	S ₂	s ₃		S _i	 S _n	
0	1	0		0	 0	
0	1	1		0	 0	1
1	1	1		0	 0	2
		1	:			
			•			
1	1	1		1	 1	100

Model Evaluation-setting 2

Fixing number of simulated accesses, number of intruders is random

S_1	S ₂	S ₃	 S _i	 S _n
		_		

1	1	1		0		1	Intruder_1
0	1	1	•••	1	•••	1	Intruder_2

.

1 1 1 1 0	Intruder_k
-----------	------------

Model Evaluation-setting 3

Fixing number of simulated accesses, number of intruders is random

S ₁	Sa	So	 Si	 Sn
<u>-</u> T	- 2	- 3	-1	- 11

Dataset	SNAD	Spectral IDF	Spectral Binary
EHR	0.83 ± 0.03	0.74 ± 0.06	0.69 ± 0.05
Wiki	0.91 ± 0.02	0.76 ± 0.04	0.64 ± 0.04

Limitations

- SNAD may not be appropriate for large access network with low network similarity
 - Absence of a user has little influence on the similarity.

Conclusions

- It is an effective way by using social network analysis to detect anomalous usages of electronic health records, such as CADS and SNAD
- Adding semantic information of users and subjects will make social network analysis be more understandable

Thanks!