

Deformed N = 1 SCFTs and their supergravity duals

Anthony Ashmore

University of Chicago & Sorbonne Université

2112.08375, 22XX.XXXXX

Collaborators

Dan Waldram

Michela Petrini

Ed Tasker

Plan

Motivation & "The Question"

 $N=1\, \text{AdS}_5$ in IIB & generalised geometry

Marginal deformations, holomorphic data & counting chirals

Motivation & "The Question"

Motivation

Focus on 4d N = 1 SCFTs with type IIB duals

• Canonical example

IIB on
$$AdS_5 \times S^5 \Leftrightarrow N = 4 SYM$$

Generalisation with all fluxes

IIB on
$$AdS_5 \times M \Leftrightarrow N = 1 SCFT$$

Known solutions

- e.g. metric + $F_5 \Rightarrow M$ is Sasaki–Einstein
- e.g. Pilch–Warner, β deformation [Lunin, Maldacena '05]

4d N = 4 SYM in N = 1 language

Three chiral fields Φ^i with SU(3) flavour symmetry and superpotential

$$\mathcal{W} = \epsilon_{ijk} \operatorname{tr}(\Phi^i \Phi^j \Phi^k)$$

F-term conditions imply Φ^i commute: $\partial_1 \mathcal{W} \propto [\Phi^2, \Phi^3] = 0$, etc.

Chiral ring \leftrightarrow ring of holomorphic functions on $C(S^5) = \mathbb{C}^3$:

$$\mathcal{O}_f = f_{i_1...i_n} \operatorname{tr}(\Phi^{i_1} \dots \Phi^{i_n}) \quad \leftrightarrow \quad f(z^i)$$

Hilbert series: graded count of single-trace mesonic operators

$$H(t) = \sum_{k} n_k t^k = \frac{1}{(1-t)^3} = 1 + 3t + 6t^2 + 10t^3 + \dots$$

Marginal deformations

e.g. N = 1 deformations of N = 4 SYM [Leigh, Strassler '95]

$$\mathcal{W} = f_{ijk} \operatorname{tr}(\Phi^i \Phi^j \Phi^k)$$

- $f_{ijk} \in 10_{\mathbb{C}}$ of SU(3) 10 complex d.o.f.
- One-loop beta functions

$$f_{ikl}\overline{f}^{jkl} - \frac{1}{3}\delta^j_i f_{klm}\overline{f}^{klm} = 0$$

Exactly marginal couplings form conformal manifold [Kol '02, Kol '10, Green et al. '10]

$$\mathcal{M}_{c} = \left\{ f_{ijk} \right\} / / \operatorname{SU}(3) = \left\{ f_{ijk} \right\} / \operatorname{SL}(3, \mathbb{C})$$

Superpotential and chirals

At the N = 4 point, we can choose

$$\Delta W = f_{\beta} \operatorname{tr}(\Phi^{1}\Phi^{2}\Phi^{3}) + f_{\lambda} \operatorname{tr}[(\Phi^{1})^{3} + (\Phi^{2})^{3} + (\Phi^{3})^{3}]$$

F-term relations define non-commutative Sklyanin algebra [Ginzburg '06]

Chiral operators for generic f_{β} and f_{λ} counted by [Van den Bergh '94]

$$H(t) = \frac{(1+t)^3}{1-t^3} = 1 + 3t + 3t^2 + 2t^3 + \dots$$

- Two marginal deformations
- Not known for N = 1 SCFTs

Dual geometries?

Can we understand the dual geometries?

- $f_{\lambda} = 0$: " β deformation", preserves U(1)² isometry, exact dual solution known [Lunin, Maldacena '05]
- Generic: no isometries (other than U(1)_R)
- For S⁵, tour de force 3rd-order perturbative analysis [Aharony, Kol, Yankielowicz '02], but full solution not known

Can we count the chiral operators?

• Even for known β -deformed background, counting KK modes looks hard...

Goals of talk

- 1. Review how marginal vs exactly marginal appears in supergravity
- 2. Describe supergravity analogue of holomorphic data encoded by ${\mathcal W}$
- Show how holomorphic data determines solution up to action of complexified diffeos + gauge
- 4. Compute Hilbert series for deformed SCFTs from dual geometry

N=1 AdS $_5$ in IIB & generalised geometry

Supersymmetric AdS₅ backgrounds

Generic type IIB solution preserving 8 supercharges with fields $(\Delta, \tau, H, F_3, F_5, g)$

$$ds_{10}^2=e^{2\Delta}ds^2(AdS_5)+ds^2(\textit{M})$$

Symmetries: GDiff \sim diffeos + p-form gauge

$$\delta B^i = \mathrm{d} \lambda^i, \qquad \delta C_4 = \mathrm{d} \rho - \frac{1}{2} \epsilon_{ij} \mathrm{d} \lambda^i \wedge \mathrm{d} B^j$$

Supersymmetry: fermions = 0 and δ_{ϵ} (fermions) = 0

$$\nabla_m \epsilon + (flux)_m \cdot \epsilon = 0, \qquad \gamma^m \nabla_m \epsilon + flux \cdot \epsilon = 0$$

with $\epsilon = (\epsilon_1, \epsilon_2)$ stablised by USp(6) [Coimbra, Strickland-Constable, Waldram '14]

Example: Sasaki–Einstein

e.g. M is Sasaki-Einstein

Geometry defined by nowhere-vanishing tensors σ_m , j_{mn} and Ω_{mn}

- Defined by spinor bilinears: $j_{mn} \sim \bar{\epsilon} \gamma_{mn} \epsilon$, etc.
- $\xi = g^{-1}\sigma$ is a Killing vector, defines U(1)_R of dual SCFT

Tensors satisfy algebraic conditions

$$i_{\xi}\sigma=1, \qquad i_{\xi}j=i_{\xi}\Omega=j\wedge\Omega=0, \qquad j^2=\frac{1}{2}|\Omega|^2$$

Invariant under $SU(2) \subset GL(5,\mathbb{R})$

Example: Sasaki–Einstein

Supersymmetry implies differential conditions on invariant tensors

$$\begin{split} &d\sigma = 2j, \qquad d\Omega = 3i\sigma \wedge \Omega, \\ &F_5 = 4 \big(\text{vol} \big(\text{AdS}_5 \big) + \text{vol} \big(M_5 \big) \big) \end{split}$$

- \mathcal{L}_{ξ} preserves full solution
- Corresponds to SU(2) structure with singlet intrinsic torsion

SUSY backgrounds with flux

Long history of using G-structures and generalised geometry to analyse supersymmetric flux backgrounds [Hull '07; Pacheco, Waldram '08; Coimbra, Strickland-Constable, Waldram '11; Berman et al. '11;...]

Generic AdS_5 case: spinor ϵ defines exceptional Sasaki–Einstein structure, stabilised by USp(6) [AA, Petrini, Waldram '16]

• Defined by pair (X, K) in $\mathsf{E}_{6(6)} \times \mathbb{R}^+$ generalised geometry

 $X \sim \text{hyper d.o.f.}$ $K \sim \text{vector d.o.f.}$

• Construct tensors as irreps of $E_{6(6)} \times \mathbb{R}^+$

$$\mathsf{GL}(5,\mathbb{R}) \to \mathsf{E}_{6(6)} \times \mathbb{R}^+$$

K structure

Generalised vector V^A parametrises diffeos + gauge transformations

27
$$\sim$$
 E \simeq T \oplus 2T* \oplus Λ^3 T* \oplus 2 Λ^5 T*
$$V^A = v^a + \lambda^i_a + \rho_{abc} + \sigma^i_{abcde}$$

Invariant cubic form on E

$$c(V, V, V) = -\frac{1}{2} \imath_{v} \rho \wedge \rho + \cdots \in \det T^{*}$$

K structure defined by

$$K \in E$$
 s.t. $c(K, K, K) > 0$

 $\bullet \;$ Generalised vector invariant under $F_{4(4)} \in E_{6(6)}$

X structure

e.g. adjoint elements

78 ~ ad
$$\simeq 3\mathbb{R} \oplus (T \otimes T^*) \oplus 2\Lambda^2 T^* \oplus 2\Lambda^2 T \oplus \Lambda^4 T^* \oplus \Lambda^4 T$$

$$R^A_{B} = \cdots + B^i_{ab} + \cdots + C_{abcd} + \ldots$$

X structure defined by

$$X \in \operatorname{\mathsf{ad}}_{\mathbb{C}} \otimes \operatorname{\mathsf{det}} T^*$$
 s.t. $\operatorname{\mathsf{tr}}(X\bar{X}) \neq 0$

- Complex adjoint tensor invariant under $SU^*(6) \in E_{6(6)}$
- $X = \kappa(J_1 + iJ_2) = \kappa J_+$ defines \mathfrak{su}_2 triplet

$$[J_{\alpha},J_{\beta}]=2\kappa\epsilon_{\alpha\beta\gamma}J_{\gamma}, \qquad \operatorname{tr}(J_{\alpha}J_{\beta})=-\kappa^2\delta_{\alpha\beta}, \qquad \kappa^2\in\det T^*$$

Generalised structures

Spinor ϵ defines the pair (X, K)

Intersect on USp(6) if compatible

$$X \cdot K = 0$$
, $\operatorname{tr}(X\bar{X}) = c(K, K, K)^2$

(X,K) equivalent to specifying all supergravity fields for solution

Example: Sasaki–Einstein

Recall structure defined by (σ, j, Ω)

K structure defines "contact structure"

$$K = e^{C}(\xi - \sigma \wedge j) \in T \oplus \Lambda^{3}T^{*} \subset E$$

X structure defines "Cauchy–Riemann structure"

$$X = e^{C + \frac{1}{2}ij^2}u^i \sigma \wedge \Omega \quad \in 2\Lambda^3T^* \subset \mathsf{ad}_\mathbb{C} \otimes \mathsf{det} \, T^*$$

with
$$u^i = au_2^{-1/2}(au,1)^i$$
 and $au = \chi + \mathrm{i}\mathrm{e}^{-2\phi}$

Supersymmetry

Symmetries act by a generalised Lie derivative

$$L_V = \mathcal{L}_v - (d\lambda^i + d\rho)$$

 $\sim diffeo + gauge$

Supersymmetry of the solution is then equivalent to [AA, Petrini, Waldram '16]

$$L_K K = 0, \qquad L_K X = 3iX,$$
 $\mu_+(V) = 0, \qquad \mu_3(V) = \int_M c(K, K, V) \qquad \forall V$

- Equivalent to supersymmetry conditions derived in [Gauntlett et al. '04]
- $\frac{2}{3}L_K$ generates $U(1)_R$ of dual SCFT

Moment maps

The μ_{α} are a triplet of moment maps for the action of

$$\mathsf{GDiff} \simeq \mathsf{diffeo} + \mathsf{gauge}$$

Infinitesimally, $V \in \Gamma(E) \simeq \mathfrak{gdiff}$ acts by

$$\delta J_{\alpha} = L_{V} J_{\alpha}$$

Action preserves hyper-Kähler structure on space of J_{α} so that

$$\mu_{\alpha}(V) = -\frac{1}{2}\epsilon_{\alpha\beta\gamma}\int_{\mathcal{M}} \operatorname{tr}(J_{\beta}L_{V}J_{\gamma})$$

Marginal deformations,

chirals

holomorphic data & counting

Marginal vs exactly marginal deformations

The field theory result of [Kol '02, Kol '10, Green et al. '10] that all marginal deformations are exactly marginal unless there is a global symmetry follows directly from moment map structure

e.g. $AdS_5 \times S^5$, (X, K) preserved by SU(3)

- Linearised deformation parameterised by $f = f_{ijk}z^iz^jz^k$
- $\mu_{\alpha}(V)$ trivially zero for $V \in SU(3)$
- Further moment map for SU(3) and quotient on $\{f_{ijk}\}$

$$\mu_{SU(3)} \equiv f_{ikl} \overline{f}^{jkl} - \frac{1}{3} \delta^j_i f_{klm} \overline{f}^{klm} = 0$$

gives space of exactly marginal couplings

Deformed solutions

Can we solve for the general supergravity solution dual to the deformed field theories? *Unlikely!*

 Solving for generic solution seems intractable – no isometries, harder than Monge–Ampère for Calabi–Yau

Instead, focus on holomorphic data

$$\mu_+ \equiv \mu_1 + i\mu_2 = 0,$$
 $L_K K = 0,$ $L_K X = 3iX$

- "Exceptional Sasaki" (ES)
- Space of X that solve these conditions is still Kähler
- Final condition is a real moment map μ_3 for GDiff

General argument

Given solution (X_*, K) to ES conditions, can show that full solution exists:

- 1. Space of X with fixed K inherits invariant Kähler metric
- 2. $\mu_K(V) = \mu_3(V) \int_M c(K, K, V)$ is moment map for GDiff with fixed K
- 3. (X_*, K) matches exactly marginal solutions for infinitesimal deformations
- 4. Open subset of stable points that lie on orbits of $GDiff_{\mathbb{C}}^{K}$ will intersect $\mu_{K} = 0$ all (X_{*}, K) are stable and thus can be mapped to full solutions
- 5. Different X_* flow to different solutions unless there are isometries
- 6. X_* related by isometries map to same solution under GDiff $_{\mathbb{C}}^K$, in agreement with field theory [Kol '02, Kol '10, Green et al. '10]

Physical interpretation

- 1. Fixing an orbit $[X] \simeq \mathsf{GDiff}_{\mathbb{C}} \cdot X$ fixes the superpotential \mathcal{W} of dual SCFT
- 2. $L_K X = 3iX$ fixes $\Delta = 3 marginal$ deformation
- 3. Motion along orbit \equiv renormalisation of Kähler potential

Example: S⁵ again

Mesonic operators $tr(\Phi ...) \leftrightarrow holomorphic functions <math>f(z)$ on cone

• Marginal $\Rightarrow \mathcal{L}_{\xi} f = 3if$

Cone is $C(S^5) = \mathbb{C}^3$; functions are $f = f_{ijk}z^iz^jz^k$

Recall

$$X=\mathrm{e}^{rac{1}{2}\mathrm{i}j^2}u^i\,\sigma\wedge\Omega\sim u^i\,\sigma\wedge\Omega\quad \mathrm{up\ to\ GDiff}_{\mathbb{C}}$$

How do we deform this by f? Marginal for $\mathcal{L}_{\xi}f = 3if$

X_* for deformed S⁵ background

New family of solutions to holomorphic conditions

$$K = \xi - \sigma \wedge j, \qquad X_* = e^{b^i(f)}(df + v^i(f)\sigma \wedge \Omega)$$

with $b^i \in \Lambda^2 T^*_{\mathbb{C}}$ linear and v^i quadratic in f

- In S⁵ case and f cubic, reproduces second-order parts of [Aharony, Kol, Yankielowicz '02]
- If $f = z^1 z^2 z^3$, can solve for explicit GDiff_C to take solution to exact β -deformed solution
- Works for deformation of any Sasaki–Einstein background T^{1,1}, etc.

Chiral spectrum

What can we calculate using this (partial) solution?

 X_* fixes superpotential so should encode space of mesonic operators

$$\mathcal{O}_f = f_{ijkl...} \operatorname{tr}(\Phi^i \Phi^j \Phi^k \Phi^l ...)$$

Can count these graded by R-charge \rightarrow Hilbert series

- Counting for Sasaki–Einstein point done by [Eager, Schmude, Tachikawa '12]
- But we want to count for the deformed theory!

Chiral spectrum

Counting δX up to GDiff_C defines a cohomology since

$$E_{\mathbb{C}} \xrightarrow{L_{\bullet}X} T\{X\} \xrightarrow{\delta\mu_{+}} E_{\mathbb{C}}^{*}$$

Cohomology counts chiral operators (drop $L_K X = 3iX$ condition)

chirals
$$\sim \frac{\{\delta X \mid \delta \mu_+ = 0\}}{\{\delta X = L_V X\}}$$

Counting depends only on class of X_* and $[X] = [X_*]$

Calculating the cohomoloy

Easiest when the deformed solution is generic – $df \neq 0$

• Using $GDiff_{\mathbb{C}}$, can then write X_* as

$$X_* = e^{\tilde{b}^i(\tau,f) + c_4(\tau,f)} df$$

Cohomology then reduces to [Tasker '21]

$$\dots \xrightarrow{\mathsf{d}} \mathsf{d} f \wedge \Lambda^p T^*_{\mathbb{C}} \xrightarrow{\mathsf{d}} \mathsf{d} f \wedge \Lambda^{p+1} T^*_{\mathbb{C}} \xrightarrow{\mathsf{d}} \dots$$

which can be computed using Kohn–Rossi cohomology of original Sasaki–Einstein

Counting chirals

Hilbert series

$$H(t) \equiv \sum_{k} n_k t^k = 1 + \mathcal{I}_{\text{s.t.}}(t) - [k \equiv_3 0, k > 0] t^{2k}$$

e.g. deformed S⁵ with

$$f = f_{\beta}z^{1}z^{2}z^{3} + f_{\lambda}[(z^{1})^{3} + (z^{2})^{3} + (z^{3})^{3}]$$

Hilbert series is

$$H(t) = \frac{(1+t)^3}{1-t^3} = 1 + 3t + 3t^2 + 2t^3 + \dots$$

in agreement with [Van den Bergh '94]

New results

e.g. $T^{1,1}$ – undeformed result

$$H(t) = \frac{1 + t^{3/2}}{(1 - t^{3/2})^3} = 1 + 4t^{3/2} + 9t^3 + 16t^{9/2} \dots$$

For theory with generic deformed superpotential

$$H(t) = \frac{1 + 4t^{3/2} + 2t^3}{1 - t^3} = 1 + 4t^{3/2} + 3t^3 + 4t^{9/2} + \dots$$

- Matches explicit counting of gauge-invariant chiral field modulo F-term relations up to k=21/3 [Tasker '21]
- No previous calculation of cyclic homology / chirals for deformed theory

New results for $\#n(S^2 \times S^3)$, etc.

Summary

Background geometry naturally encodes superpotential of dual SCFT

Can find supergravity solution for deformations up to $\mathsf{GDiff}_\mathbb{C}$ action – large class of new supergravity duals

Class of structure [X] determines spectrum of chiral operators

Future

- Same/similar formalism for AdS₅/AdS₄ in M-theory
- Cohomology gives supersymmetric index
- a-maximisation for generic supersymmetric backgrounds $a^{-1} \sim \int_{M} c(K, K, K)$