Романучение повържниме.

Нека са дадени прова в и крава с, ленанде в една равнина. При пълното си завържане около в, с описва повържнина S, каято се нарака фотационна.

Нека Ме питка от с, $\Delta \mu$ - равнината през M, терпендикулярна на ℓ и ℓ тогаво преи ротограмното сисама ℓ и ℓ тогаво преи ротограмното ℓ и ℓ тогаво преи ротограмно ℓ и ℓ тогаво преи ℓ тареанно ℓ ℓ и ℓ тогаво преи ℓ тогаво преи ℓ тогаво преи ℓ тогаво преи ℓ тогаво ℓ тогаво ℓ и ℓ тогаво окранното се нарита паралел ℓ и ℓ на ℓ портирана кограннатна инстениа ℓ тогаво ℓ

жодемо $f(x_0, z_0) = 0$ и $z_M Noz = Z_M(0, 0, z_0)$.

Осицо така $1Z_M M 1 = 1Z_M Mol = |x_0|$. Следователно могката M ленни на окронност k_M в равнинита z_M с пземтер z_M и радиус $1x_01$. Уравнението на k_M е $k_M = x_0 = x_0 = x_0 = x_0$.

Следователно за уровнението на $z_0 = z_0 = x_0 = x_0 = x_0 = x_0$.

Обратно, ваяко уравнение от вида $z_0 = x_0 = x_0 = x_0 = x_0 = x_0$.

Обратно $z_0 = x_0 = x_0$.

Следователно $z_0 = x_0 = x_0$.

Обратно $z_0 = x_0 = x$

4. Асильтотите на хиперіологта $\chi: \begin{cases} \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ ca c} \end{cases}$ уравнения l_{12} $\begin{cases} z = \frac{1}{b} \pm x \\ y = 0 \end{cases}$ Да завъртни тази дваїка прави около 0 ± 9 яно си предтовяще, ке тиде получим ротанцюнен конзе с вреж 0 и абразуваща кая да е от асильтотите се задават се спедната крива от втора степен $y: \int a^2 z^2 - b^2 x^2 = 0$ При завъртането на f^{*} около 0 ± 1 получаване уравнението f^{*} f^{*} около f^{*} f^{*} получаване уравнението f^{*} f^{*} f^{*} около f^{*} f^{*} госоно обикновено се затисва f^{*} f^{*}

Ако завъртин у около Ох , то полутаваме ротационен конус K_2 с уравнение K_2 : $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{b^2} = 0$.

От свая страна , K_2 е асимптотитем конуе за двойния хиперболонд X_2 X_2 : $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{b^2} = 1$.

За разлика от проимия жирерболоид χ_1 , тийто асимптотитен конче κ_1 е "вотре" в жирербологида, тук асимптотисния конче κ_2 на двойния жирербологид χ_2 е вън" от него, им казано по друг начин двойниям жирербологид е "вотре" в асимптотитния си конче. забенинка: Гравненией на р намиране като апебритна крива от втора степен, чинго тоски удовнетворяват уравненията Neucene, re πx re πx response un πx πy πx π => (az-bx)(az+bx)=0; y=0=7 $\int_{y=0}^{y=0} \int_{y=0}^{2} (az-b^2x^2-b^2x^2)$