

27.4.5 Interface Registers

OCDS Control and Status Register

The OCDS Control and Status (OCS) register is cleared by Debug Reset.

The OCS register can only be written when the OCDS is enabled.

If OCDS is being disabled, the OCS register value will not change. When OCDS is disabled the OCS suspend control is ineffective.

ocs

OCDS	Contro	l and S	tatus R	egiste	r	(00E8 _H) Debu						ug Res	g Reset Value: 0000 0000 _H				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	0	SUSST A	SUS_P		SU	JS	ı		ı	1	'	0	l	l	ı		
l.	r	rh	W		rv	V	1			1	1	r	1	1			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	1	1	1 1		1 1	0	1	1	1	1	1	1		0	1		
		'				r				'				rw			

Field	Bits	Туре	Description
SUS	27:24	rw	OCDS Suspend Control Controls the sensitivity of STMx to the suspend signal coming from CPUx (CPUxSUSOUT) 0_H Will not suspend 1_H Reserved, do not use this combination 2_H 64-bit counter will be stopped others, Reserved, do not use this combination
SUS_P	28	w	SUS Write Protection SUS is only written when SUS_P is 1, otherwise unchanged. Read as 0.
SUSSTA	29	rh	Suspend State 0 _B Module is not (yet) suspended 1 _B Module is suspended
0	2:0	rw	Reserved Read as 0; must be written with 0.
0	23:3, 31:30	r	Reserved Read as 0; must be written with 0.

Table 2 Access Mode Restrictions of OCS sorted by descending priority

Mode Name	Acce	ss Mode	Description
write 1 to SUS_P	rw	SUS	
(default)	r	SUS	

Access Enable Register 0

The Access Enable Register 0 controls write access for transactions with the on chip bus master TAG ID 000000B to 011111B (see On Chip Bus chapter for the products TAG ID <-> master peripheral mapping). The BPI_FPI is prepared for a 6-bit TAG ID. The registers ACCEN0 / ACCEN1 are providing one enable bit for each possible 6-bit TAG ID encoding.

Mapping of TAG IDs to ACCENO.ENx: ENO -> TAG ID 000000B, EN1 -> TAG ID 000001B, ..., EN31 -> TAG ID 011111B.

ACCENO

Access	Enable	e Regis	ter 0				(00F0	C _H)		Application Reset Value: FFFF FFFF _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
EN31	EN30	EN29	EN28	EN27	EN26	EN25	EN24	EN23	EN22	EN21	EN20	EN19	EN18	EN17	EN16	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
EN15	EN14	EN13	EN12	EN11	EN10	EN9	EN8	EN7	EN6	EN5	EN4	EN3	EN2	EN1	ENO	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	

Field	Bits	Туре	Description
ENn (n=0-31)	n	rw	Access Enable for Master TAG ID n
			This bit enables write access to the module kernel addresses for transactions with the Master TAG ID n O _B Write access will not be executed 1 _B Write access will be executed

Access Enable Register 1

The Access Enable Register 1 controls write access for transactions with the on chip bus master TAG ID 100000B to 111111B (see On Chip Bus chapter for the products TAG ID master peripheral mapping).

Mapping of TAG IDs to ACCEN1.ENx: EN0 -> TAG ID 100000B, EN1 -> TAG ID 100001B, ..., EN31 -> TAG ID 111111B.

ACCEN1

Ac	cess	Enable	e Regis	ter 1			(00F8 _H)				Application Reset Value: 0000 0000 _H					
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		ı	ı	ı	ı	!	ı	'	0	ı	ı	ı	!	ı	ı	'
-		1	I.		I				r	I						
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									0							
ь		I	1	1	1	I	1	1	r	1	1	1	I	1	1	1

Field	Bits	Туре	Description
0	31:0	r	Reserved
			Read as 0; should be written with 0.

Kernel Reset Register 0

The Kernel Reset Register 0 is used to reset the related module kernel. To reset a module kernel it is necessary to set the RST bits by writing with ´1´ in both Kernel Reset Registers related to the module kernel that should be reset (kernel 0 or kernel 1). In order support modules with two kernel the BPI_FPI provides two set of kernel reset registers. The RST bit will be re-set by the BPI with the end of the BPI kernel reset sequence.

Kernel Reset Register 0 includes a kernel reset status bit that is set to ´1´ by the BPI_FPI in the same clock cycle the RST bit is re-set by the BPI_FPI. This bit can be used to detect that a kernel reset was processed. The bit can be re-set to ´0´ by writing to it with ´1´.

KRST0 Kernel		Regist	er 0				(00F	4 _H)		Ар	plicati	on Res	et Valı	ıe: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	•	•	•	ı	ı.	•	·	0	'	Į.	Ţ	Ţ	ļ.	'	
	1	1	1	ı	1	1	I	r	ı	I	1	1	I		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						(0							RSTST AT	RST
	1	1	1			1	r	1						rh	rwh

Field	Bits	Туре	Description
RST	0	rwh	Kernel Reset This reset bit can be used to request for a kernel reset. The kernel reset will be executed if the reset bits of both kernel registers are set. The RST bit will be cleared (re-set to '0') by the BPI_FPI after the kernel reset was executed. 0 _B No kernel reset was requested 1 _B A kernel reset was requested
RSTSTAT	1	rh	Kernel Reset Status This bit indicates wether a kernel reset was executed or not. This bit is set by the BPI_FPI after the execution of a kernel reset in the same clock cycle both reset bits. This bit can be cleared by writing with '1' to the CLR bit in the related KRSTCLR register. O _B No kernel reset was executed 1 _B Kernel reset was executed
0	31:2	r	Reserved Read as 0; should be written with 0.

Kernel Reset Register 1

The Kernel Reset Register 1 is used to reset the STM kernel. STM kernel registers related to the Debug Reset (Class 1) are not influenced. To reset the STM kernel it is necessary to set the RST bits by writing with ´1´ in both Kernel Reset registers. The RST bit will be cleared with the end of the BPI kernel reset sequence.

KRST1

Kernel	Reset	Regist	er 1				(00F) _H)		Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	ı	Į.	!	!	!		'	0	ı	!		!			!	
	<u> </u>	r	I	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		i				i	0	1	1		i		ı	i	RST	
		ı	1	1	1		r		1	1		1			rwh	

Field	Bits	Туре	Description
RST	0	rwh	Kernel Reset
			This reset bit can be used to request for a kernel reset. The kernel reset will be executed if the reset bits of both kernel reset registers is set. The RST bit will be cleared (re-set to '0') after the kernel reset was executed. O _B No kernel reset was requested 1 _B A kernel reset was requested
0	31:1	r	Reserved Read as 0; should be written with 0.

Kernel Reset Status Clear Register

The Kernel Reset Register Clear register is used to clear the Kernel Reset Status bit (<>_KRST0.RSTSTAT).

KRSTCLR

Kerne	l Reset	Status	Clear I	Registe	er	(00EC _H)				Application Reset Value: 0000 0000 _H					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ı	ı	ı		ı	ı		D	1	I		!	1	!	'
	1	l	I	1	l	I		r	1	l	ı	1	1	1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	ı	ı	1	ı	ı	0	ı	1	1	1	1	1	1	CLR
1	1		1	1			r		1	ı	1	1	1	ı	W

Field	Bits	Туре	Description	
CLR	0	w	Kernel Reset Status Clear	
			Read always as 0.	
			0 _B No action	
			1 _B Clear Kernel Reset Status KRST0.RSTSTAT	
0	31:1	r	Reserved	
			Read as 0; should be written with 0.	

27.5 IO Interfaces

The table below list of interfaces of the STM to other modules.

Table 3 List of STM Interface Signals

Interface Signals	I/O	Description
sx_fpi		FPI slave interface
sx_irq_stm		STM Interrupt Socket
SR0_INT	out	System Timer Service Request 0
SR1_INT	out	System Timer Service Request 1

27.6 Revision History

Table 4 Revision History

Reference	Change to Previous Version	Comment		
V9.2.3				
Page 23	Previous versions removed from revision history.			
V9.2.4				
Page 19	Description of bit field "SUS" of register "OCDS Control and Status Register" updated.			

Generic Timer Module (GTM)

28 Generic Timer Module (GTM)

GTM general Architecture

Figure 4 GTM Architecture block diagram

Note: The GTM system runs with the GTM global clock f_{GTM} (referred in this chapter as SYS_CLK)