CODE REUSE & TESTING / DEBUGGING

Marcos del Pozo Banos

CONTENT

Where to start?

Designing a program

Module programming Functions

Fixing your program

Debugging

OBJECTIVES

Learn to think like a programmer Learn to use flow charts Learn to use modular programming Learn to debug your code Understand the jokes in these slides

What is the meaning of your life? program

Always think before you program

Always think while you are programming

Always think after you have programmed

COMPUTERS OFF

Pen, paper

and FLOW CHARTS

www.conceptdraw.com

Design a program to control a fridge. Your fridge has:

- + A thermostat to read the fridge's temperature.
- + Cooling compressor to cool down the fridge.

Pick a 1vs1 fight

Marcos del Pozo Banos 11

+ Divide and conquer.

One big, difficult problem vs many small, easy problems

+ Small, simple programs are easier to understand & maintain.

- + Program = multiple modules.
- + Each module is a self-contained task.

+ Modules are combined by a main program

Think MODULAR

- + Planetary system = multiple planets.
- + Each planet is a self-contained world.
- + Planets are bound by a star.

Design a program to keep a car between the lines in a motorway. You have:

- + Two sensors (left and right) to read distance to the lines.
- + Steering wheel.

Do not repeat yourself Do not repeat yourself Do not repeat yourself

Be clever...

... but not too clever!

R FUNCTIONS

```
# Function's documentation
# - What it does
  - How to use it
  - Examples
[Name of function] <- function([arguments]) {
  [function's body]
  return([result])
```

R FUNCTIONS

```
# Return sum of squares
# Input arguments:
    a, b: Numeric values
# Returns: a^2 + b^2
# Example:
     c = sum_of_squares(2, 3)
sum_of squares <- function(a, b) {</pre>
  c = a^2 + b^2
  return(c)
Marcos del Pozo Banos
```

Write a program on R that computes the area of any rectangle.

+ Input arguments: side1, side2

+ Returns: area of the rectangle with dimensions side1 x side2.

When things go wrong...

A programmer's life

Debug

Marcos del Pozo Banos

did you know?

didyouknowblog.com

There's an actual tactic called 'rubber duck debugging' where programmers verbally explain a broken code to a rubber duck in hopes of finding the solution by describing the problem.

DEBUGGING

+ Add temporary "print" lines to find where the error is.

+ Print variable values.

LOGGING

Use a DEBUGGER

Marcos del Pozo Banos 25

Locate the errors in the R script provided.

UNIT TESTING

Code testing code

Marcos del Pozo Banos 27

Do not reinvent the wheel

+ CRAN package repository.

+ Google it.

SITUATION: THERE ARE 14 COMPETING STANDARDS.

Reinventing the wheel. Knowing *when* and *how*.

Make your code reusable for you and for others

Write the following function in R:

```
# Count of elements in a list.
#
# Input arguments:
   I: (list of int) List of integers
   v: (int) Value to count in I
#
# Returns: (int) Count of v values in I
#
count_event <- function(I, v){</pre>
```

Write the following function in R:

```
# Finds the list of unique events
#
# Input arguments:
   I: (list of int) List of integers
#
# Returns: (list of int) List of unique events
#
unique_events <- function(I, v){</pre>
```

Write the following function in R:

```
# Finds the list of unique events in a list and count their occurrence.
#
# Input arguments:
   I: (list of int) List of integers
#
# Returns: (data.frame) A data.frame with columns "event" and
"count".
#
count_all_events <- function(l, v){
```

CHALLENGE

Design a program to control an elevator.

+ Sensor measuring current floor.

+ Control panel inside elevator.

+ Control panel on each floor.