CS 70 Discrete Mathematics and Probability Theory Summer 2023 Huang, Suzani, and Tausik

DIS 4D

1 Head Count

Note 15 Consider a coin with $\mathbb{P}[\text{Heads}] = 2/5$. Suppose you flip the coin 20 times, and define *X* to be the number of heads.

- (a) What is $\mathbb{P}[X = k]$, for some $0 \le k \le 20$?
- (b) Name the distribution of *X* and what its parameters are.
- (c) What is $\mathbb{P}[X \ge 1]$? Hint: You should be able to do this without a summation.
- (d) What is $\mathbb{P}[12 \le X \le 14]$?

Solution:

(a) There are a total of $\binom{20}{k}$ ways to select k coins to be heads. The probability that the selected k coins to be heads is $(\frac{2}{5})^k$, and the probability that the rest are tails is $(\frac{3}{5})^{20-k}$. Putting this together, we have

$$\mathbb{P}[X=k] = \binom{20}{k} \left(\frac{2}{5}\right)^k \left(\frac{3}{5}\right)^{20-k}.$$

(b) Since we have 20 independent trials, with each trial having a probability 2/5 of success, $X \sim \text{Binomial}(20, 2/5)$.

(c)
$$\mathbb{P}[X \ge 1] = 1 - \mathbb{P}[X = 0] = 1 - \left(\frac{3}{5}\right)^{20}.$$

(d)

$$\mathbb{P}[12 \le X \le 14] = \mathbb{P}[X = 12] + \mathbb{P}[X = 13] + \mathbb{P}[X = 14] \\
= \binom{20}{12} \left(\frac{2}{5}\right)^{12} \left(\frac{3}{5}\right)^{8} + \binom{20}{13} \left(\frac{2}{5}\right)^{13} \left(\frac{3}{5}\right)^{7} + \binom{20}{14} \left(\frac{2}{5}\right)^{14} \left(\frac{3}{5}\right)^{6}.$$

2 Head Count II

Note 19

Consider a coin with $\mathbb{P}[\text{Heads}] = 3/4$. Suppose you flip the coin until you see heads for the first time, and define *X* to be the number of times you flipped the coin.

- (a) What is $\mathbb{P}[X = k]$, for some $k \ge 1$?
- (b) Name the distribution of *X* and what its parameters are.
- (c) What is $\mathbb{P}[X > k]$, for some $k \ge 0$?
- (d) What is $\mathbb{P}[X < k]$, for some $k \ge 1$?
- (e) What is $\mathbb{P}[X > k \mid X > m]$, for some $k \ge m \ge 0$? How does this relate to $\mathbb{P}[X > k m]$?

Solution:

(a) If we flipped k times, then we had k-1 tails and 1 head, in that order, giving us

$$\mathbb{P}[X=k] = \frac{3}{4} \left(1 - \frac{3}{4} \right)^{k-1} = \frac{3}{4} \left(\frac{1}{4} \right)^{k-1}.$$

- (b) $X \sim \text{Geometric}(\frac{3}{4})$
- (c) If we had to flip *more than k* times before seeing our first heads, then our first *k* flips must have been tails, giving us

$$\mathbb{P}[X > k] = \left(1 - \frac{3}{4}\right)^k = \left(\frac{1}{4}\right)^k.$$

(d) Notice $\mathbb{P}[X < k] = 1 - \mathbb{P}[X \ge k] = 1 - \mathbb{P}[X > k - 1]$ since X can only take on integer values. Along similar lines to the previous part, we then have

$$\mathbb{P}[X < k] = 1 - \mathbb{P}[X > k - 1] = 1 - \left(1 - \frac{3}{4}\right)^{k - 1} = 1 - \left(\frac{1}{4}\right)^{k - 1}.$$

(e) By part (c), we have

$$\mathbb{P}[X > k \mid X > m] = \frac{\mathbb{P}[X > k \cap X > m]}{\mathbb{P}[X > m]} = \frac{\mathbb{P}[X > k]}{\mathbb{P}[X > m]} = \left(\frac{1}{4}\right)^{k-m}.$$

However, note that this is exactly $\mathbb{P}[X > k - m]$. The reason this makes sense is that if we want to compute the probability that the first heads occurs after k flips, and we know that the first heads occurs after m flips, then the first m flips are tails. Thus, by the independence of the coin flips, the first m flips don't matter, and so we only need to compute the probability that the first heads occurs after k - m flips. This is called the **memorylessness property** of the geometric distribution.

3 Shuttles and Taxis at Airport

Note 19

In front of terminal 3 at San Francisco Airport is a pickup area where shuttles and taxis arrive according to a Poisson distribution. The shuttles arrive at a rate $\lambda_1 = 1/20$ (i.e. 1 shuttle per 20 minutes) and the taxis arrive at a rate $\lambda_2 = 1/10$ (i.e. 1 taxi per 10 minutes) starting at 00:00. The shuttles and the taxis arrive independently.

- (a) What is the distribution of the following:
 - (i) The number of taxis that arrive between times 00:00 and 00:20?
 - (ii) The number of shuttles that arrive between times 00:00 and 00:20?
 - (iii) The total number of pickup vehicles that arrive between times 00:00 and 00:20?
- (b) What is the probability that exactly 1 shuttle and 3 taxis arrive between times 00:00 and 00:20?
- (c) Given that exactly 1 pickup vehicle arrived between times 00:00 and 00:20, what is the conditional probability that this vehicle was a taxi?
- (d) Suppose you reach the pickup area at 00:20. You learn that you missed 3 taxis and 1 shuttle in those 20 minutes. What is the probability that you need to wait for more than 10 mins until either a shuttle or a taxi arrives?

Solution:

(a) (i) Let T([0,20]) denote the number of taxis that arrive between times 00:00 and 00:20. This interval has length 20 minutes, so the number of taxis T([0,20]) arriving in this interval is distributed according to $Poisson(\lambda_2 \cdot 20) = Poisson(2)$, i.e.

$$\mathbb{P}[T([0,20]) = t] = \frac{2^t e^{-2}}{t!}, \text{ for } t = 0,1,2,\dots$$

(ii) Let S([0,20]) denote the number of shuttles that arrive between times 00:00 and 00:20. This interval has length 20 minutes, so the number of shuttles S([0,20]) arriving in this interval is distributed according to $Poisson(\lambda_1 \cdot 20) = Poisson(1)$, i.e.

$$\mathbb{P}[S([0,20]) = s] = \frac{1^s e^{-1}}{s!}$$
, for $s = 0, 1, 2, ...$

(iii) Let N([0,20]) = S([0,20]) + T([0,20]) denote the total number of pickup vehicles (taxis and shuttles) arriving between times 00:00 and 00:20. Since the sum of independent Poisson random variables is Poisson distributed with parameter given by the sum of the individual parameters, we have $N[(0,20)] \sim \text{Poisson}(3)$, i.e.

$$\mathbb{P}[N([0,20]) = n] = \frac{3^n e^{-3}}{n!}, \text{ for } n = 0,1,2,\dots$$

(b) We have

$$\mathbb{P}[T([0,20])=3]=\frac{2^3e^{-2}}{3!}$$
 and $\mathbb{P}[S([0,20])=1]=\frac{1^1e^{-1}}{1!}$.

Since the taxis and the shuttles arrive independently, the probability that exactly 3 taxis and 1 shuttle arrive in this interval is given by the product of their individual probabilities, i.e.

$$\frac{2^3 e^{-2}}{3!} \frac{1^1 e^{-1}}{1!} = \frac{4}{3} e^{-3} \approx 0.0664.$$

(c) Let *A* be the event that exactly 1 taxi arrives between times 00:00 and 00:20. Let *B* be the event that exactly 1 vehicle arrives between times 00:00 and 00:20. We have

$$\mathbb{P}[B] = \frac{3^1 e^{-3}}{1!}.$$

Event $A \cap B$ is the event that exactly 1 taxi and 0 shuttles arrive between times 00:00 and 00:20. Hence

$$\mathbb{P}[A \cap B] = \frac{2^1 e^{-2}}{1!} \frac{1^0 e^{-1}}{0!}.$$

Thus, we get

$$\mathbb{P}[A|B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]} = 2/3.$$

(d) The event that you need to wait for more than 10 minutes starting 00:20 is equivalent to the event that no vehicle arrives between times 00:20 and 00:30. Let N[20,30] denote the number of vehicles that arrive between times 00:20 and 00:30. This interval has length 10 minutes, so $N[(20,30)] \sim \text{Poisson}((\lambda_1 + \lambda_2) \cdot 10) = \text{Poisson}(3/2)$. Since Poisson arrivals in disjoint intervals are independent, we have

$$\mathbb{P}[N([20,30]) = 0 \mid T([0,20]) = 3, S([0,20]) = 1] = \mathbb{P}[N([20,30]) = 0] \sim \frac{1.5^{0}e^{-1.5}}{0!} = e^{-1.5} \approx 0.2231.$$