Deep Learning for Natural Language Processing

Lecture 2 — Mathematical foundations of deep learning

Dr. Ivan Habernal

April 18, 2023

www.trusthlt.org

Motivation

Motivation

Problem 1: Minimize functions

Problem 2: Minimize multivariate functions

Problem 3: When functions become heavily nested

Efficient computation of gradient

Quick poll

1. Who of you knows stochastic gradient descent and backpropagation?

Quick poll

- 1. Who of you knows stochastic gradient descent and backpropagation?
- 2. Who of you ever implemented it from scratch?

Quick poll

- 1. Who of you knows stochastic gradient descent and backpropagation?
- 2. Who of you ever implemented it from scratch?
- 3. Why not?

How deep will we go?

We won't cover

- · Set theory: The assembler of mathematics
 - Sets $A = \{a, b, c\}, a \in A$, no ordering
 - Ordered tuples $(a, b) \neq (b, a)$

How deep will we go?

We won't cover

- · Set theory: The assembler of mathematics
 - Sets $A = \{a, b, c\}, a \in A$, no ordering
 - Ordered tuples $(a, b) \neq (b, a)$
- Number theory
 - Set of natural numbers $\mathbb{N}_0 = \{0, 1, \ldots\}$
 - · Set of real numbers \mathbb{R} , infinity

How deep will we go?

We won't cover

- · Set theory: The assembler of mathematics
 - Sets $A = \{a, b, c\}, a \in A$, no ordering
 - Ordered tuples $(a, b) \neq (b, a)$
- · Number theory
 - Set of natural numbers $\mathbb{N}_0 = \{0, 1, \ldots\}$
 - · Set of real numbers \mathbb{R} , infinity
- Sequences and limits

 $\mathbb{R}^2=\mathbb{R}\times\mathbb{R}$ — tuples of reals, e.g., (1.3,-44.67), also a two-dimensional vector

Problem 1: Minimize functions

Motivation

Problem 1: Minimize functions

Problem 2: Minimize multivariate functions

Problem 3: When functions become heavily nested

Efficient computation of gradient

Problem: Find minimum of any function

- For "easy" functions, closed-form solution (high school math)
- For complicated functions not trivial and cumbersome

Function of single variable

We typically use Euler's notation with arbitrary but somehow standard naming conventions (x, y, f)

$$y = f(x)$$
 $f: \mathbb{R} \to \mathbb{R}$

 $f:A\to B$ where A is domain, B is co-domain

Function composition

$$f: \mathbb{R} \to \mathbb{R} \quad g: \mathbb{R} \to \mathbb{R}$$

$$h=g\circ f$$

$$h(x) = g(f(x)) \text{ or } (g \circ f)(x) = g(f(x))$$

Lines in two dimensions

Lines in a Cartesian plane are characterized by linear equations.

Every line L (including vertical lines) is the set of all points whose coordinates (x, y) satisfy a linear equation:

$$L = \{(x, y) \mid w_1 x + w_2 y = w_3\}$$

where w_1 , w_2 and w_3 are fixed real numbers (called coefficients) such that w_1 and w_2 are not both zero.

Linear function in two dimensions

Usually we use **slope-intercept** form y = ax + b

$$\theta = \arctan(a)$$
 $a = \tan(\theta)$

Approximate function by a line at point

"Steepness" at c?

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

The derivative of f at c

Derivative-computing function

We want a funtion D which, when given a differentiable function $f: \mathbb{R} \to \mathbb{R}$ as input, produces another function $g: \mathbb{R} \to \mathbb{R}$ output, such that g(c) = f'(c) for every c.

Derivative-computing function

We want a funtion D which, when given a differentiable function $f: \mathbb{R} \to \mathbb{R}$ as input, produces another function $g: \mathbb{R} \to \mathbb{R}$ output, such that g(c) = f'(c) for every c.

This derivative-computing function D is often written as

$$\frac{d}{dx}$$

but this causes inconsistent notation like

$$\frac{d}{dx}(f), \qquad \frac{df}{dx}, \qquad \frac{dy}{dx}$$

and forces one to choose a variable names x or y

Derivative of nested functions: The chain rule hammer

Variant 1 (Lagrange's notation)

Let $f, g : \mathbb{R} \to \mathbb{R}$ be two functions which have derivatives.

Then the derivative of g(f(x)) is $g'(f(x)) \cdot f'(x)$

Derivative of nested functions: The chain rule hammer

Variant 1 (Lagrange's notation)

Let $f, g : \mathbb{R} \to \mathbb{R}$ be two functions which have derivatives. Then the derivative of g(f(x)) is $g'(f(x)) \cdot f'(x)$

Variant 2 (Function composition operator ∘)

Let $f,g:\mathbb{R}\to\mathbb{R}$ be two functions which have derivatives. Let $h=g\circ f$. The derivative of h is $h'=(g\circ f)'=(g'\circ f)\cdot f'$

Derivative of nested functions: The chain rule hammer

Variant 1 (Lagrange's notation)

Let $f, g : \mathbb{R} \to \mathbb{R}$ be two functions which have derivatives. Then the derivative of g(f(x)) is $g'(f(x)) \cdot f'(x)$

Variant 2 (Function composition operator ∘)

Let $f,g:\mathbb{R}\to\mathbb{R}$ be two functions which have derivatives. Let $h=g\circ f$. The derivative of h is $h'=(g\circ f)'=(g'\circ f)\cdot f'$

Variant 4 (Leibnitz's notation)

Call h(x)=g(f(x)). Then using $\frac{dh}{dx}$ for the derivative of h, the chain rule for this would be $\frac{dh}{dx}=\frac{dh}{df}\frac{df}{dx}$

Chain rule example

Consider $y = e^{\sin(x^2)}$. Composite of three functions:

$$y = f(u) = e^{u}$$

$$u = g(v) = \sin v = \sin(x^{2})$$

$$v = h(x) = x^{2}$$

Chain rule example

Consider $y = e^{\sin(x^2)}$. Composite of three functions:

$$y = f(u) = e^{u}$$

$$u = g(v) = \sin v = \sin(x^{2})$$

$$v = h(x) = x^{2}$$

Their derivatives are

$$\frac{dy}{du} = f'(u) = e^u = e^{\sin(x^2)}$$
$$\frac{du}{dv} = g'(v) = \cos v = \cos(x^2)$$
$$\frac{dv}{dx} = h'(x) = 2x$$

Chain rule example (cont.)

Consider $y = e^{\sin(x^2)}$. Composite of three functions:

$$y = f(u) = e^u$$
, $u = g(v) = \sin v = \sin(x^2)$, $v = h(x) = x^2$

Their derivatives are

$$\frac{dy}{du} = e^{\sin(x^2)}, \frac{du}{dv} = \cos(x^2), \frac{dv}{dx} = 2x$$

Chain rule example (cont.)

Consider $y = e^{\sin(x^2)}$. Composite of three functions:

$$y = f(u) = e^u$$
, $u = g(v) = \sin v = \sin(x^2)$, $v = h(x) = x^2$

Their derivatives are

$$\frac{dy}{du} = e^{\sin(x^2)}, \frac{du}{dv} = \cos(x^2), \frac{dv}{dx} = 2x$$

Derivative of their composite at the point x=a is (in Leibniz notation)

$$\frac{dy}{dx} = \frac{dy}{du}\Big|_{u=q(h(a))} \cdot \frac{du}{dv}\Big|_{v=h(a)} \cdot \frac{dv}{dx}\Big|_{x=a}$$

Gradient-based optimization: Find minimum of a function

We want $\hat{x} = \operatorname{argmin}_x f(x)$

Pre-requisites:

- We can evaluate y = f(x) for any x
- We can evaluate its derivative f'(c) (or $\frac{dy}{dx}(c)$) for any c

Figure 1: $3 - \frac{\sin(2x)}{x}$

Gradient-based optimization: Find minimum of a function

- 1. Start with initial random value x_i
- 2. $u = f'(x_i)$ direction and strength of change at x_i
- 3. Next value $x_{i+1} \leftarrow x_i \eta \cdot u$
- 4. With small enough η (eta), $f(x_{i+1}) < f(x_i)$

Repeating 2 + 3 (with properly decreasing values of η) will find minium point x_i

Gradient-based optimization: Workout example

Problem 2: Minimize multivariate functions

Motivation

Problem 1: Minimize functions

Problem 2: Minimize multivariate functions

Problem 3: When functions become heavily nested

Efficient computation of gradient

Multivariate functions

 $f: \mathbb{R}^n \to \mathbb{R}$

Multivariate functions

 $f: \mathbb{R}^n \to \mathbb{R}$

Figure 2: $f(x, y) = (a - x)^2 + b(y - x^2)^2$, a = 1, b = 100

Partial derivatives

Partial derivative: the directional derivative wrt. a single variable

$$\frac{\partial f}{\partial x_2}$$
 — "the partial derivative of f with respect to x_2 "

Example:
$$f(x_1, x_2, x_3) = (x_1)^2 x_2 + \cos(x_3)$$

$$\frac{\partial f}{\partial x_1} = 2x_2 x_1 \qquad \frac{\partial f}{\partial x_2} = (x_1)^2 \qquad \frac{\partial f}{\partial x_3} = -\sin(x_3)$$

Gradient

Example:
$$f(x_1, x_2, x_3) = (x_1)^2 x_2 + \cos(x_3)$$

$$\frac{\partial f}{\partial x_1} = 2x_2x_1$$
 $\frac{\partial f}{\partial x_2} = (x_1)^2$ $\frac{\partial f}{\partial x_3} = -\sin(x_3)$

The resulting total derivative matrix Df is called the gradient of f, denoted ∇f

Example:
$$f(x_1, x_2, x_3) = (x_1)^2 x_2 + \cos(x_3)$$

$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_3} \end{pmatrix} = \begin{pmatrix} 2x_2x_1 & (x_1)^2 & -\sin(x_3) \end{pmatrix}$$

Gradient properties

Example:
$$f(x_1, x_2, x_3) = (x_1)^2 x_2 + \cos(x_3)$$

$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_3} \end{pmatrix} = \begin{pmatrix} 2x_2x_1 & (x_1)^2 & -\sin(x_3) \end{pmatrix}$$

J. Kun (2020). A Programmer's Introduction to Mathematics. 2nd ed., p. 252

For every differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ and every point $x \in \mathbb{R}^n$, the gradient $\nabla f(x)$ points in the direction of steepest ascent of f at x.

Warning!

Sometimes we call gradient the function (as above) and sometimes the vector of concrete numbers computed for the particular input.

Gradient descent for minimizing multivariate functions

Given $f: \mathbb{R}^n \to \mathbb{R}$ we want to find

$$\hat{\boldsymbol{x}} = \operatorname*{argmin}_{\boldsymbol{x}} f(\boldsymbol{x})$$

- 1. Start at some random position with a random value vector $\mathbf{x}_i = (x_1, \dots, x_n)$
- 2. Compute the gradient and update the position

$$\boldsymbol{x}_{i+1} \leftarrow \boldsymbol{x}_i - \eta \cdot \nabla f(\boldsymbol{x}_i)$$

3. After enough iterations or some stopping criterion we have \hat{x}

Gradient descent for minimizing multivariate functions

Figure 3:
$$f(x, y) = (a - x)^2 + b(y - x^2)^2$$
, $a = 1, b = 100$

$$\nabla f = (-400xy + 400x^3 + 2x - 2; \quad 200y - 200x^2)$$

Gradient for minimizing multivariate functions

Random starting point (-1.8; 1.5), minimum at (1; 1)

Problem 3: When functions become heavily nested

Problem 3: When functions become heavily nested

Efficient computation of gradient

In reality we work with deeply composed functions

Example

Minimize function e wrt. w_0, w_1, \ldots, w_K

$$e = -\frac{1}{N} \sum_{i=1}^{N} y_{[i]} \log \left(\frac{1}{1 + e^{\left(w_0 + \sum_{j=1}^{K} w_k \cdot x_{[i][k]}\right)}} \right)$$

Where $x_{[1]}, \ldots, x_{[N]}$, and $y_{[1]}, \ldots, y_{[N]}$ are constants

In reality we work with deeply composed functions

Example

Minimize function e wrt. w_0, w_1, \ldots, w_K

$$e = -\frac{1}{N} \sum_{i=1}^{N} y_{[i]} \log \left(\frac{1}{1 + e^{\left(w_0 + \sum_{j=1}^{K} w_k \cdot x_{[i][k]}\right)}} \right)$$

Where $\pmb{x}_{[1]},\ldots,\pmb{x}_{[N]},$ and $y_{[1]},\ldots,y_{[N]}$ are constants

$$\nabla f = \left(\frac{\partial e}{\partial w_0}; \frac{\partial e}{\partial w_1}; \dots; \frac{\partial e}{\partial w_K}\right)$$

$$\frac{\partial e}{\partial w_1} = \dots$$

In reality we work with deeply composed functions

Example

Minimize function e wrt. w_0, w_1, \ldots, w_K

$$e = -\frac{1}{N} \sum_{i=1}^{N} y_{[i]} \log \left(\frac{1}{1 + e^{\left(w_0 + \sum_{j=1}^{K} w_k \cdot x_{[i][k]}\right)}} \right)$$

Where $x_{[1]}, \ldots, x_{[N]}$, and $y_{[1]}, \ldots, y_{[N]}$ are constants

$$\nabla f = \left(\frac{\partial e}{\partial w_0}; \frac{\partial e}{\partial w_1}; \dots; \frac{\partial e}{\partial w_K}\right)$$

 $\frac{\partial e}{\partial w_1} = \dots$ Good luck!

Chain Rule for Multivariable Functions

Suppose that x=g(t) and y=h(t) are differentiable functions of t and z=f(x,y) is a differentiable function of x and y. Then z=f(x(t),y(t)) is a differentiable function of t and

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$

where the ordinary derivatives are evaluated at t and the partial derivatives are evaluated at (x, y).

Chain Rule for Multivariable Functions

Suppose that x = g(t) and y = h(t) are differentiable functions of t and z = f(x, y) is a differentiable function of x and y. Then z = f(x(t), y(t)) is a differentiable function of t and

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$

where the ordinary derivatives are evaluated at t and the partial derivatives are evaluated at (x, y).

Be ready for possible notation madness

$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial t} + \frac{\partial f}{\partial h} \frac{\partial h}{\partial t}$$

Chain rule for multivariable functions (two independent variables)

Suppose x=g(u,v) and y=h(u,v) are differentiable functions of u and v, and z=f(x,y) is a differentiable function of x and y. Then, z=f(g(u,v),h(u,v)) is a differentiable function of u and v, and

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u}$$
$$\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v}$$

Problem 3: When functions

Efficient computation of gradient

become heavily nested

Working example

$$e = (a+b)(b+1)$$

Compute gradient wrt. $\it a$ and $\it b$

Working example

$$e = (a+b)(b+1)$$

Compute gradient wrt. a and b

This one is easy by hand, but that's not the point

$$e = (a+b)(b+1) = ab + a + b^{2} + b$$
$$\frac{\partial e}{\partial a} = b+1 \qquad \frac{\partial e}{\partial b} = a+2b+1$$

Add some intermediate variables and function names

$$e = (a+b)(b+1)$$

$$e = f_1(r, s) := r \cdot s$$

$$r = f_2(a, b) := a + b$$

$$s = f_3(b) := b + 1$$

Build computational graph and evaluate (forward step)

Important: a, b will be some concrete real numbers, therefore r, s, e will be concrete real numbers too!

Computational graph

- DAG direct acyclic graph (not necessarily a tree!)
- \cdot Each node a differentiable function with arguments
- Leaves variables (e.g., a, b) or constants
- Arrows Function composition

Figure 4: r, s are parents of b; a, b are children (arguments) of r

Goal: $\frac{\partial e}{\partial a}$ and $\frac{\partial e}{\partial b}$ (the gradient), but let's do $\frac{\partial e}{\partial \star}$ for every node

Since $e=r\cdot s$, partial derivatives are easy: $\frac{\partial e}{\partial r}=s$ and $\frac{\partial e}{\partial s}=r$

Sanity check: r,s are some concrete real numbers, therefore $\frac{\partial e}{\partial r}$ and $\frac{\partial e}{\partial s}$ will be concrete real numbers too!

Proceed to the next child r and compute $\frac{\partial e}{\partial r}$ – use chain rule!

Proceed to the next child s and compute $\frac{\partial e}{\partial s}$ – use chain rule!

Since r=a+b, partial derivatives are easy: $rac{\partial r}{\partial a}=1$ and $rac{\partial r}{\partial b}=1$

Proceed to the next child a and compute $\frac{\partial e}{\partial a}$ – use chain rule!

Since s=b+1, partial derivatives are easy: $rac{\partial s}{\partial b}=1$

Proceed to b and compute $\frac{\partial e}{\partial b}$ – use multivariate chain rule!

$$e = (a+b)(b+1)$$

$$e = f_1(r,s) := r \cdot s$$

$$r = f_2(a,b) := a+b$$

$$s = f_3(b) := b+1$$
Global output wrt. node output
$$r = f_2(a,b)$$

$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$
Global output wrt. node output
$$r = f_2(a,b)$$

$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$

$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$

$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$

$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$

$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$

$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$

$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$

$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$

$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$

$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$

$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$
Global output wrt. node output
$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$
Global output wrt. node output
$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac$$

Goal: $\nabla e = \left(\frac{\partial e}{\partial a}; \frac{\partial e}{\partial b}\right)$ — we computed it for concrete a and b!

$$e = (a+b)(b+1)$$

$$e = f_1(r,s) := r \cdot s$$

$$r = f_2(a,b) := a+b$$

$$s = f_3(b) := b+1$$
Global output wrt. node output
$$r = f_2(a,b)$$

$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$
Global output wrt. node output
$$s = f_3(b)$$

$$\frac{\partial e}{\partial s} = \frac{\partial e}{\partial e} \cdot \frac{\partial e}{\partial s}$$

$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$

$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$

$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$

$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$

$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$

$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$
Global output wrt. node output
$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$
Global output wrt. node output
$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial r}{\partial r}$$
Global output wrt. node output
$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial r}{\partial r}$$
Global output wrt. node output
$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial r}{\partial r}$$
Global output wrt. node output
$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial r}{\partial r}$$
Global output wrt. node output
$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial r}{\partial r}$$
Global output wrt. node output
$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial r}{\partial r}$$
Global output wrt. node output
$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$
Global output wrt. node output
$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$
Global output wrt. node output
$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$
Global output wrt. node output
$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$
Global output wrt. node output
$$\frac{\partial e}{\partial r} = \frac{\partial e}{\partial r} \cdot \frac{\partial e}{\partial r}$$
Global output wrt. node output

Generic node in a computational graph

Figure 5: A generic node of a computation graph. Node f has many inputs, its output feeds into many nodes, and each of its inputs and outputs may also have many inputs and outputs.

Adapted from J. Kun (2020). A Programmer's Introduction to Mathematics. 2nd ed., p. 265

Generic node in a computational graph $f(a_1, \ldots, a_n)$

Assuming the graph is a function e = g(...), we compute

$$\frac{\partial e}{\partial f} = \sum_{i=1}^{k} \frac{\partial e}{\partial h_i} \cdot \frac{\partial h_i}{\partial f}$$

and

$$\frac{\partial f}{\partial a_i}$$
 for a_i, \dots, a_n

What each node must implement?

For example a function s = f(a, b, c, d)

- How to compute the output value s (given the parameters a,b,c,d)
- How to compute partial derivatives wrt. the parameters, i.e. $\frac{\partial s}{\partial a}, \frac{\partial s}{\partial b}, \frac{\partial s}{\partial c}, \frac{\partial s}{\partial d}$

Backpropagation

- Forward computation: Compute all nodes' output (and cache it)
- Backward computation (Backprop): Compute the overall function's partial derivative with respect to each node

Ordering of the computations? Recursively or build a graph's topology upfront and iterate

Backpropagation: Recap

- We can express any arbitrarily complicated function $f: \mathbb{R}^n \to \mathbb{R}$ as a computational graph
- For computing the gradient ∇f at a concrete point (x_1, x_2, \dots, x_n) we run the forward pass and backprop
- When caching each node's intermediate output and partial derivatives, we avoid repeating computations \rightarrow efficient algorithm

Recap

Motivation

Problem 1: Minimize functions

Problem 2: Minimize multivariate functions

Problem 3: When functions become heavily nested

Efficient computation of gradient

Take aways

- We can quite efficiently find a minimum of any differentiable nested multivariate function
 - Iterative gradient descent takes the most promising direction
 - Backpropagation utilizes computational graphs and caching → computes gradients efficiently
- We have not touched neural networks yet at all!

License and credits

Licensed under Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

Credits

Ivan Habernal

Content from ACL Anthology papers licensed under CC-BY https://www.aclweb.org/anthology