Тема 2.4. Булева алгебра и теория множеств

Аннтоция: Булева алгебра и теория множеств. Двойственные логические функции.

Булева алгебра и теория множеств

Алгеброй называют систему, включающую в себя некоторое непустое множество объектов с заданными на нем функциями (операциями), результатами применения которых к объектам данного множества являются объекты того же множества.

Рассмотрим непустое множество $A = \{0;1\}$ с двумя бинарными операциями \land (конъюнкция или ее аналог), \lor (дизъюнкция или ее аналог), одной унарной операцией \neg (отрицание или его аналог).

Указанное множество и выделенные операции называются *булевой алгеброй* если выполняются следующие аксиомы:

1. Ассоциативности:

$$(x \lor y) \lor z = x \lor (y \lor z) = x \lor y \lor z,$$

 $(x \land y) \land z = x \land (y \land z) = x \land y \land z.$

2. Коммутативности:

$$x \wedge y = y \wedge x$$
,
 $x \vee y = y \vee x$.

3. Законы поглощения:

$$x \wedge (x \vee y) = x,$$

 $x \vee (x \wedge y) = x.$

4. Дистрибутивности:

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z),$$

 $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z).$

5. Дополнительности:

$$x \wedge \overline{x} = 0,$$

$$x \vee \overline{x} = 1.$$

Любые алгебры с данным набором операций называются *булевыми алгебрами*.

В целом можно показать, что в алгебре логики имеют место следующие равносильности, часть которых была рассмотрена выше:

Закон	Формула
Идемпотентность	$x \lor x = x$
дизъюнкции	
Идемпотентность	$x \wedge x = x$

конъюнкции	
Коммутативность	$x \wedge y = y \wedge x$
конъюнкции	
Коммутативность	$x \lor y = y \lor x$
дизъюнкции	
Ассоциативность	$(x \lor y) \lor z = x \lor (y \lor z) = x \lor y \lor z$
дизъюнкции	
Ассоциативность	$(x \wedge y) \wedge z = x \wedge (y \wedge z) = x \wedge y \wedge z$
конъюнкции	
Дистрибутивность	$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$
конъюнкции	
относительно	
дизъюнкции	
Дистрибутивность	$x \lor (y \land z) = (x \lor y) \land (x \lor z)$
дизъюнкции	
относительно	
конъюнкции	
Правила де Моргана	$x \lor y = x \land y \; ; \; x \land y = x \lor y$
Блейка-Порецкого	$x \vee (\overline{x} \wedge y) = x \vee y$
	$x \wedge (\overline{x} \vee y) = x \wedge y$
Законы поглощения	$x \wedge (x \vee y) = x$
	$x \lor (x \land y) = x$
Закон двойного	=
отрицания	x = x
Свойства констант 0 и 1	$x \wedge 1 = x \; ; \; x \wedge 0 = 0$
	$x \lor 1 = 1; \ x \lor 0 = x$
Закон противоречия	$x \wedge \overline{x} = 0$
Закон исключенного	
третьего	$x \lor x = 1$
Закон импликации	$x \to y = \overline{x} \lor y$

Отметим, что свойства, выделенные как аксиомы будут выполняться и для операций объединения, пересечения и дополнения множеств, если сопоставить

- объединение дизъюнкции;
- пересечение конъюнкции;

• дополнение — отрицанию, а вместо x, y, z подставить некоторые множества A, B и C из U (универсального множества).

Алгебра $(B(U), \cap, \cup, \neg)$, где B(U) - булеан, являющийся несущим множеством, а операциями — пересечение, объединение и дополнение множеств, называется *булевой алгеброй множества U* или *алгеброй Кантора*.

Общий термин «булева алгебра» для алгебр множеств и логических функций не случаен.

алгебре множеств элементами являются подмножества фиксированного («универсального») множества U, операции соответствует пересечение \bigcap , операции \vee – объединение \bigcup , (отрицание) соответствует дополнение; операции множество U, нулем \varnothing . Справедливость является само алгебры соотношений 1-5 ДЛЯ множеств онжом доказать проверкой. Для этого непосредственно их нужно рассмотреть переменные в них как множества с введенными выше операциями, и показать, что, если какой-либо элемент принадлежит множеству из левой части равенства, то он принадлежит и правой части, и наоборот.

Можно доказать следующую теорему:

Алгебра высказываний (A, \land, \lor, \neg) , где $A = \{0;1\}$ и алгебра множеств $(B(U), \cap, \bigcup, \neg)$, где B(U) — булеан множества U изоморфны.

Примем без строго доказательства, но отметим, что в самом деле эти две алгебры изоморфны, т. е. между ними существует взаимнооднозначное соответствие как для элементов носителей, так и для сигнатур.

Если $\Gamma: A \to B$ — изоморфизм, то алгебры A и B называют изоморфными и обозначают так: $A \sim B$.

Отношение изоморфизма на множестве однотипных алгебр является эквивалентностью.

Доказательство:

Проверим рефлексивность, симметричность и транзитивность:

2. Симметричность. $A \sim B \Rightarrow B \sim A$ - выполняется.

3. Транзитивность. $A \sim B \wedge B \sim C \Rightarrow A \sim C$ - выполняется.

Таким образом, данное отношение является отношением эквивалентности. Что и требовалось доказать. *◄*

Пусть однотипные алгебры A и B изоморфны и, пусть в алгебре A установлено свойство $F_1=F_2$, где F_1 и F_2 — некоторые формулы, записанные с помощью операций алгебры A. Тогда, из-за изоморфизма немедленно следует, что в алгебре B выполняется свойство $G_1=G_2$, где G_1 и G_2 — формулы, полученные из F_1 и F_2 заменой операций из алгебры A на соответствующие операции алгебры B.

Алгебраические структуры принято рассматривать с точностью до изоморфизма, т. е. рассматривать классы эквивалентности однотипных алгебр по отношению изоморфизма.

Изоморфизм булевых алгебр широко используется в компьютерных вычислениях. Например, поразрядные операции над двоичными векторами легко реализуются на компьютере, и их используют вместо выполнения операций над множествами или логическими функциями.

Принцип двойственности и двойственные функции

В булевых алгебрах существуют двойственные утверждения, они либо одновременно верны, либо одновременно неверны. Именно, если в формуле, которая верна в некоторой булевой алгебре, поменять все конъюнкции на дизъюнкции, 0 на $1, \le$ на > и наоборот или < на \ge и наоборот, то получится формула, также истинная в этой булевой алгебре. Это следует из симметричности аксиом относительно таких замен.

Булева функция $f*(x_1,x_2,...,x_n)$ называется **двойственной** функцией для булевой функции $f(x_1,x_2,...,x_n)$, если $f*(x_1,x_2,...,x_n)=f'(x_1',x_2',...,x_n')$ для любых $x_1,x_2,...,x_n$.

Пример: Докажите, что одна из функций двойственна другой: yz + x + y, yz + x + z.

Решение:

Найдем двойственную функцию для данной функции f(x,y,z) = yz + x + y: $f^* = (y'z' + x' + y')' = y'z' + x' + y' + 1 =$

=(y+1)(z+1)+(x+1)+(y+1)=yz+y+z+1+x+1+y+1+1=yz+x+z, что и требовалось доказать.

Вопросы для самоконтроля:

- 1. Булева алгебра (аксиоматика).
- 2. Связь булевой алгебры и теории множеств. Теорема об изоморфизме.
- 3. Эквивалентность отношения изоморфизма на множестве однотипных алгебр.
- 4. Принцип двойственности и двойственные функции.