COSC343: Artificial Intelligence

Lecture 15: Supervised learning - a review

Lech Szymanski

Dept. of Computer Science, University of Otago

Lech Szymanski (Otago

OSC343 Lecture 15

Supervised learning: the problem

We have a problem, where a machine needs to make an inference about something based on observations

- · Inference is a decision (or prediction) about something we are interested in
 - Is there a face in the image, and if so where is it?
 - Is the patient at a risk of a heart disease?
- Observations are the data that machine uses to make its decision (or prediction)
 - Pixel values in the image.
 - Attributes of the patient + results of various medical tests.
- Formulate the problem as function of the observed data that produces output value(s) which can be interpreted as machine's decision (or prediction)
 - Input is a single image as a vector of pixel values; one output is a 0 or 1 value corresponding to no-face or face, other output correspond to the location of the face specified as square region of interest within the image.
 - Input is patient's age, blood pressure, cholesterol test; output is a 0 or 1 value corresponding to healthy or heart disease.

In today's lecture

- Review of the supervised learning techniques we learned about
- A classification example using all these techniques

Lech Szymanski (Otago)

COSC343 Lecture 1

Supervised learning: the challenge

Typically we don't know what the relationship between input and output is...

- Though our brains do it with ease, it's hard to engineer an algorithm that detects a face in an image.
- Doctors diagnosis is a combination of experience and intuition...which is hard to explain and not immune to mistakes, when there are many factors to consider.

....but we do have a data sample with examples of inputs and corresponding known outputs.

- Set of images with labels indicating the presence of the face (or not), and the location of the face if there's on in the image (presumably labelled by a person).
- Information and test results for a number of patients were diagnosed by a doctor.

Often the training data is not perfect (there's noise)

- Things in the images that are not faces, things obstructing the face, multiple faces, wrongly labelled data.
- Errors in the tests, errors in record keeping, bad diagnosis.

Lech Szymanski (Otago

Supervised learning: the training

- 1. **Examine the data** (set a portion aside for testing)
- 2. Make a new hypothesis pick a computational model/learner
- Train the model find parameter values that fit the hypothesis to the training data, i.e. the model produces output that is similar to the desired output for the training set.
- 4. **Test the model** on the test data to check if the hypothesis generalises well. If it doesn't, go back to Step 2.
- 5. **Use the model** to make predictions on new data.

Lech Szymanski (Otago

COSC343 Lecture 15

A problem: Heart disease diagnosis

Observations (input of 5-dimensions for a given patient) Decision that needs to be made

		x_1	x_2	x_3	x_4	x_5	g
	Sample	Age	Sex	Chest pain type 1 – typical angina 2 – atypical angina 3 – non-anginal pain 4 – asymptomatic	Resting blood pressure (mm Hg)	Cholesterol Level (mg/dL)	Heart disease
\mathbf{x}_1	1	54	F	3	110	214	N
\mathbf{x}_2	2	68	М	4	144	193	Υ
\mathbf{x}_3	3	64	М	3	140	335	Υ
\mathbf{x}_4	4	58	F	1	150	283	N
					•	•	
x_{297}	297	53	F	4	138	234	N

http://archive.ics.uci.edu/ml/datasets/Heart+Disease

₋ech Szymanski (Otago)

COSC343 Lecture 1

Supervised learning: making a hypothesis

It takes some time, and experience of using different models on different datasets, in order to develop an intuition for what hypothesis/learner might work well in what situation. Some principles to keep in mind:

- The ultimate objective is **generalisation** poor performance on test data despite good performance on training data is a sign of **overtraining**.
- Aim for the simplest hypothesis that is fairly consistent with the training data – more complex models have more representational power which is prone to overfitting.

Lech Szymanski (Otago)

COSC343 Lecture 1

A problem: Heart disease diagnosis

in the second

, ·

Decision that needs to be made

		•	. 4	**	•	•	
	Sample	Age	Sex	Chest pain type 1 – typical angina 2 – atypical angina 3 – non-anginal pain 4 – asymptomatic	Resting blood pressure (mm Hg)	Cholesterol Level (mg/dL)	Heart disease
\mathbf{x}_1	1	54	F	3	110	214	N
\mathbf{x}_2	2	68	М	4	144	193	Υ
\mathbf{x}_3	3	64	М	3	140	335	Υ
\mathbf{x}_4	4	58	F	1	150	283	N
						•	
	•	•	•	•	•	•	•
x_{297}	297	53	F	4	138	234	N

http://archive.ics.uci.edu/ml/datasets/Heart+Disease

Lech Szymanski (Otago

A problem: Heart disease diagnosis

- Use 237 randomly picked patients for training
- · use the remaining 60 for testing

Sample	Age	Sex	Chest pain type 1 – typical angina 2 – atypical angina 3 – non-anginal pain 4 – asymptomatic	Resting blood pressure (mm Hg)	Cholesterol Level (mg/dL)	Heart disease
1	54	F	3	110	214	N
2	68	М	4	144	193	Υ
3	64	М	3	140	335	Υ
4	58	F	1	150	283	N
			•			
						.
	•	•	•	•	•	
297	53	F	4	138	234	N

http://archive.ics.uci.edu/ml/datasets/Heart+Disease

Lech Szymanski (Otago

COSC343 Lecture 1

Naive Bayes Classifier: heart disease example

	ive bayes classifier. Heart alset							
x_1	$p(x_1 y=N) = \mathcal{N}(52.7, 93.2)$							
	$p(x_1 y=Y) = \mathcal{N}(56.8, 65.4)$							
x_2	$p(x_2 = F y = N) = 0.44$ $p(x_2 = M y = N) = 0.56$							
<i>x</i> 2	$p(x_2 = F y = Y) = 0.18$ $p(x_2 = M y = Y) = 0.82$							
	$p(x_3 = 1 y = N) = 0.10$ $p(x_3 = 2 y = N) = 0.23$ $p(x_3 = 3 y = N) = 0.42$ $p(x_3 = 4 y = N) = 0.24$							
x_3	$p(x_3 = 1 y = Y) = 0.06$ $p(x_3 = 2 y = Y) = 0.06$ $p(x_3 = 3 y = Y) = 0.14$ $p(x_3 = 3 y = Y) = 0.74$							
	$p(x_4 y=N) = \mathcal{N}(128.0, 251.4)$							
x_4	$p(x_4 y=Y) = \mathcal{N}(135.1, 365.5)$							
	$p(x_5 y=N) = \mathcal{N}(243.0, 3111)$							
x_5	$p(x_5 y=Y) = \mathcal{N}(249.0, 2603)$							
y	p(y=N) = 0.58							
9	p(y=Y) = 0.42							

Normal (or Gaussian) distribution:

$$\mathcal{N}(\mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Estimating the mean of a Gaussian distribution from data:

$$\mu_m = \frac{1}{N} \sum_i x_{mi}$$

Estimating the variance of a Gaussian distribution from data:

$$\sigma_m^2 = \frac{N}{N-1} \sum_i (x_{mi} - \mu_m)^2$$

Naive Bayes Classifier

 Assuming independence of attributes, compute the probability of each input (symptom) given each possible output value (diagnosis).

$$\prod_{j} p(x_{j}|\tilde{y}=Y)p(\tilde{y}=Y)$$
 Decision should be made based on whichever probability is higher

 Training consists of computing the probability distributions required for the above computation.

Lech Szymanski (Otago

COSC343 Lecture 1

Naive Bayes Classifier: heart disease example

$$\mathcal{N}(\mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$x_1 = 52, x_2 = M,$$

 $x_3 = 3, x_4 = 172,$
 $x_5 = 199$

Healthy Heart Disease

Lech Szymanski (Otago)

Heart disease problem results

Hypothesis	Train result (% of 237 samples classified incorrectly)	Test results (% of 60 samples classified incorrectly)
Naive Bayes Classifier	24.9	23.3

ech Szymanski (Otago)

COSC343 Lecture 15

Decision tree: heart disease example

Lech Szymanski (Otago)

COSC343 Lecture 15

Decision Tree

- Divide training data into subsets in such a way that subsets become *more pure* based on their label information
 - · Divide based on value of a single attribute
 - Pick the attribute and the split point such that entropy (disorder) of the data labels after the split is minimized
- 2. For each subset:
 - If the subsets is pure enough (in terms of data labels) make this a leaf node indicating that label
 - If not, then split this subset again go back to step 1.

Lech Szymanski (Otago)

COSC343 Lecture 1

Heart disease problem results

Hypothesis	Train result (% of 237 samples classified incorrectly)	Test results (% of 60 samples classified incorrectly)
Naive Bayes Classifier	24.9	23.3
Decision Tree (with some pruning)	14.3	20.0

Lech Szymanski (Otago)

A problem: Heart disease diagnosis (normalised)

Sam ple	(Age-34)/43	Sex (0-F, 1-M)	Chest pain type 0 – typical angina 0.33 – atypical angina 0.67 – non-anginal pain 1.0 – asymptomatic	Resting blood pressure (mm Hg-94)/98	Cholesterol Level (mg/dL-126)/438	Heart disease (0-N, 1-Y)
1	0.4651	0	0.67	0.1633	0.2009	0
2	0.7907	1	1.00	0.5102	0.1530	1
3	0.6977	1	0.67	0.4694	0.4772	1
4	0.5581	0	0.00	0.5714	0.3584	0
				•		
•	•	•	•	•	•	
297	0.4419	0	1.00	0.4490	0.2466	0

http://archive.ics.uci.edu/ml/datasets/Heart+Disease

Lech Szymanski (Otago

COSC343 Lecture 1

Linear model: heart disease example

· Linear features

Quadratic features

Solving for w gives:
$$\mathbf{w}^T = \begin{bmatrix} 0.3129 \ 0.3198 \ 0.5827 \ 0.4957 \ 0.2184 \ -0.6002 \end{bmatrix} \qquad \Phi(\mathbf{x}) = \begin{bmatrix} x_1 \\ x_2 \\ x_4 \\ x_5 \\ 1 \end{bmatrix}$$

Solving for w gives:
$$\mathbf{w}^T = \begin{bmatrix} 0.3888 & 0.2756 & -0.7567 & -0.1118 & 0.4146 & -0.2300 & -0.1394 & 0 & 1.1601 & 0.6180 & -0.2727 \end{bmatrix} \quad \Phi(\mathbf{x}) = \begin{bmatrix} x_1 \\ x_3 \\ x_4 \\ x_1 \\ x_1 x_1 \\ x_2 x_2 \\ x_3 x_3 \\ x_3 x_4 \end{bmatrix}$$

Linear model

• Decide on the feature space (the set of base functions that transform input into features)

$$y = \sum_j w_j f_j(\mathbf{x}) = \begin{bmatrix} w_1 & \dots & w_U \end{bmatrix} \begin{bmatrix} f_1(\mathbf{x}) \\ \vdots \\ f_U(\mathbf{x}) \end{bmatrix} = \mathbf{w}^T \Phi(\mathbf{x}) \text{ , where } \Phi(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ \vdots \\ f_U(\mathbf{x}) \end{bmatrix}$$

 Use the formula to compute the weighted sum of the components of input in the feature space

$$\mathbf{w} = \left(\mathbf{F}\mathbf{F}^T
ight)^{-1}\mathbf{F} ilde{\mathbf{y}}^T$$

$$\mathbf{F} = \begin{bmatrix} f_1(\mathbf{x}_1) & \dots & f_1(\mathbf{x}_N) \\ \vdots & \ddots & \vdots \\ f_U(\mathbf{x}_1) & \dots & f_U(\mathbf{x}_N) \end{bmatrix}$$

$$= \left[\Phi(\mathbf{x}_1) & \dots & \Phi(\mathbf{x}_N) \right]$$

Lech Szymanski (Otago)

COSC343 Lecture 1

Optimisation

- Closed form solution is defined only for linear models...
- ...and even then it doesn't always work (matrix in the inversion not guaranteed to have an inverse).
- The parameters of a chosen hypothesis can be learned iteratively starting with an initial guess and followed by a sequence of parameter updates.
- The updates should be such that some chosen evaluation measure of the performance of the model keeps improving (cost is minimised or fitness is maximised)
- Methods for computing the update
 - Random walk change parameters randomly, keep the change if the resulting cost goes down
 - Steepest gradient descent compute negative derivative (gradient) of the cost with respect to parameters, and use it as the update
 - Simulated annealing random change, with initially high (and then gradually lower) probability of accepting a state that leads to higher cost
 - Genetic algorithm evolution of a set of solutions using crossover and mutations of the state (chromosome)

Lech Szymanski (Otago

COSC343 Lecture 15

 $\begin{bmatrix} x_4 x_4 \\ x_5 x_5 \end{bmatrix}$

Heart disease problem results

Нуро	thesis	Train result (% of 237 samples classified incorrectly)	Test results (% of 60 samples classified incorrectly)
Naive Baye	es Classifier	24.9	23.3
	on Tree e pruning)	14.3	20.0
Linear model	Linear features	21.9	23.3
(linear in parameters)	Quadratic features	21.5	20.0

Lech Szymanski (Otago

COSC343 Lecture 15

SVM: heart disease example

• Linear features – use a support vector machine with the linear kernel function

$$\Phi(\mathbf{x}_i)^T \Phi(\mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$$

 Need to choose SVM's C parameter, which penalises for errors in training – large C leads to less emphasis on consistency during training

- Non-linear features –use a support vector machine with non-linear kernel function, such as **RBF**: $\Phi(\mathbf{x}_i)^T \Phi(\mathbf{x}_i) = e^{-\gamma (\mathbf{x}_i \mathbf{x}_j)^T (\mathbf{x}_i \mathbf{x}_j)}$
 - Need to chose SVM's C parameter as well as the gamma parameter for the kernel function

 Train error (%)

 Test error (%)

 Test error (%)

.ech Szymanski (Otago

COSC343 Lecture 15

Linear model with maximum margin (SVM)

- Support Vector Machine optimisation and output computation relies on the relationship of points in the features space: $\Phi(\mathbf{x}_i)^T \Phi(\mathbf{x}_i)$
- · Choice of kernel function determines what feature space is used
- Linear features use a support vector machine with the linear kernel function

$$\Phi(\mathbf{x}) = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ 1 \end{pmatrix} \qquad \text{and so} \qquad \Phi(\mathbf{x}_i)^T \Phi(\mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$$

- Need to choose SVM's C parameter, which penalises for errors in training large C leads to less emphasis on consistency during training
- Non-linear features –use a support vector machine with a non-linear kernel function, such as Radial Basis Function (RBF):

$$\Phi(\mathbf{x}) \text{ not computable, but } \Phi(\mathbf{x}_i)^T \Phi(\mathbf{x}_j) = e^{-\gamma (\mathbf{x}_i - \mathbf{x}_j)^T (\mathbf{x}_i - \mathbf{x}_j)}$$

 Need to chose SVM's C parameter as well as the gamma parameter for the kernel function

Lech Szymanski (Otago)

COSC343 Lecture 1

Heart disease problem results

Нуро	thesis	Train result (% of 237 samples classified incorrectly)	Test results (% of 60 samples classified incorrectly)
Naive Baye	es Classifier	24.9	23.3
	on Tree e pruning)	14.3	20.0
	Linear features	21.9	23.3
Linear model	Quadratic features	21.5	20.0
(linear in	Linear kernel, C=20	26.2	21.7
parameters)	RBF kernel, C=45, gamma=1.1	18.1	16.7

Lech Szymanski (Otago)

Multilayer Perceptron (MLP)

- Create an artificial neural network
 - Decide on the number of hidden layers more layers give a more powerful model, but harder to train
 - Decide on the number of neurons in each layer more neurons give a more powerful model, but harder to train
 - Decide on the activation function (or combination of activation functions) in the hidden layer
 - Pick initial parameter values (network weights and biases) usually a random number close to zero
- Train the network for a chosen number of iterations using backpropagation to derive steepest gradient update for the weights and biases that minimise a chosen cost:
 - Sum of squared errors good for regression, or two-class classification
 - Cross-entropy good for classification
 - Softmax with cross-entropy good for classification with more than two classes, where output is a probability distribution of the class given the input

Lech Szymanski (Otago

COSC343 Lecture 15

MLP: heart disease example

- Tinkering with different network architectures to get a sense of which one might generalise well
 - Same number of neurons per layer, trying different number of layers and different number of neurons per layer
 - 2-hidden-layer architectures with different combinations of neurons

· 3-hidden-layer architectures with different combinations of neurons

 4-hidden-layer architectures, with 2 neurons in the first two layers and 4 or 2 neurons in the other layers

n Szymanski (Otago)

OSC343 Lecture 15

MLP: heart disease example

- Tinkering with different network architectures to get a sense of which one might generalise well
 - Same number of neurons per layer, trying different number of layers and different number of neurons per layer

Heart disease problem results

Нурс	thesis	Train result (% of 237 samples classified incorrectly)	Test results (% of 60 samples classified incorrectly)
Naive Bay	es Classifier	24.9	23.3
	on Tree ne pruning)	14.3	20.0
	Linear features	21.9	23.3
Linear model	Quadratic features	21.5	20.0
(linear in	Linear kernel, C=20	26.2	21.7
parameters)	RBF kernel, C=45, gamma=1.1	18.1	16.7
	vers, 2 neurons per lest of 100 runs)	21.5	18.3

Lech Szymanski (Otago)