T319 - Introdução ao Aprendizado de Máquina: *Regressão Linear (Parte IV)*

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

Recapitulando

- Vimos que o *valor do passo de aprendizagem influencia no processo aprendizagem* do gradiente descendente.
 - Valores pequenos fazem com que o algoritmo tenha convergência muito lenta.
 - Valores grandes fazem com que o algoritmo divirja.
- O gráfico do erro versus iterações nos ajuda a depurar as versões do GD.
- Quando usamos as versões estocásticas do GD, podemos reduzir o valor do passo de aprendizagem ao longo do treinamento para "forçar" a convergência do algoritmo.
- Nesse tópico, veremos
 - Técnicas de pré-processamento importantes para algoritmos de ML que usam métricas de distância como função de erro.
 - Como polinômios podem ser usados para se ajustar a dados que apresentam mapeamento não-linear entre os atributos e o valor esperado.

Variações do formato da superfície de erro

- Como vimos no laboratório #3, nem toda superfície de erro criada a partir da função do EQM tem formato de tigela (i.e., com curvas de erro circulares).
- Dependendo dos *intervalos de variação dos atributos*, podemos ter *superfícies com formato de vale*.
- Por exemplo, se $x_1 \gg x_2$, ele **dominará o erro** e fará com que a superfície de erro tenha **formato de vale**.

$$J_{e}(\mathbf{a}) = \frac{1}{N} \sum_{n=0}^{N-1} \left[y_{\text{noisy}}(n) - \underbrace{\left(\hat{a}_{1} x_{1}(n) + \hat{a}_{2} x_{2}(n)\right)}_{\text{Função hipótese}} \right]^{2} \approx \frac{1}{N} \sum_{n=0}^{N-1} \left[y_{\text{noisy}}(n) - \hat{a}_{1} x_{1}(n) \right]^{2}$$

Superfícies com formato de vale

- Superfícies com formato de vale fazem com que a convergência do GD se torne muito lenta.
- A convergência se torna lenta devido à superfície ser plana ou quase plana em algumas direções (i.e., inclinação ≈ 0).
- Nessas direções, o gradiente da função de erro é muito pequeno, tornando as atualizações dos pesos, consequentemente, muito pequenas.
- Na figura ao lado, as derivadas parciais do EQM em relação ao peso a_1 serão muito pequenas devido à pequena inclinação da superfície nessa direção.

O que pode ser feito?

Escalonamento de atributos

- Para evitar esse problema, o *intervalo de variação de todos os atributos* pode ser *escalonado*, trazendo-os para uma escala similar.
- Assim, cada atributo contribuíra com o mesmo peso para o cálculo do erro.
- As duas formas mais comuns de escalonamento são:
 - Normalização Mín-Max
 - Padronização

Observação:

- Em geral, aplicamos o escalonamento *apenas aos atributos* e não aos rótulos, pois são os atributos que influenciam o formato da superfície de erro.
- Além disso, ao escaloná-los, perde-se seu significado. Por exemplo, a predição do preço de casas deixa de ser reais.

Escalonamento de atributos

- Em geral, a *normalização mín-max* faz com que os *atributos variem entre 0 e 1*, mas pode-se definir outros intervalos.
- A equação usada para normalizar os atributos é apresentada abaixo.

$$x'_{k}(n) = \frac{x_{k}(n) - \min(x_{k})}{\max(x_{k}) - \min(x_{k})}, 0 \le x'_{k}(n) \le 1,$$

onde x_k representa o k-ésimo atributo, n é o número da amostra, $\min(x_k)$ e $\max(x_k)$ são os valores mínimo e máximo, respectivamente, calculados ao longo de todas as amostras do k-ésimo vetor de atributo, x_k .

- O escalonamento (qualquer tipo) altera os valores dos pesos originais.
 - Se a escala dos atributos é alterada, para que o modelo ainda prediga os mesmos valores de saída (i.e., rótulos), os pesos precisam ter seus valores alterados (ver anexo I).

Escalonamento de atributos

- Padronização faz com que os atributos passem a ter média zero e desvio padrão unitário.
- Observem que, neste caso, os valores não ficam restritos a um intervalo específico.
- A equação usada para padronizar os atributos é apresentada abaixo.

$$x'_k(n) = \frac{x_k(n) - \mu_{x_k}}{\sigma_{x_k}},$$

onde x_k representa o k-ésimo atributo, n é o número da amostra, μ_{x_k} e σ_{x_k} são as estimativas da média e do desvio padrão, respectivamente, calculados ao longo de todas as amostras do k-ésimo vetor de atributo, x_k .

Vantagens do escalonamento de atributos

- Ajuda a *acelerar a convergência* do gradiente descendente, pois deixa a superfície de erro mais circular
 - Pois a inclinação da superfície se torna similar em todas as direções.
- Reduz a probabilidade de *problemas de precisão numérica*, mantendo a estabilidade do algoritmo durante o treinamento.
 - Por exemplo, atributos com valores muito grandes podem gerar erros extremamente grandes que podem não ser representados pelas variáveis.

Vantagens do escalonamento de atributos

- Possibilita a comparação justa do peso/influência de cada atributo no modelo.
 - Pois os pesos representam o impacto relativo dos atributos nas predições.
- Evita que atributos com escalas muito diferentes dominem o processo de treinamento.
 - Sem escalonamento, o modelo pode dar mais importância a atributos com intervalos maiores e menos importância aos atributos com intervalos menores.

Avisos

- Exercício Prático: Laboratório #5 (Exercício #1 apenas)
 - Pode ser acessado através do link acima (Google Colab) ou no GitHub.
 - Vídeo explicando o laboratório: Arquivos -> Material de Aula -> Laboratório #5
 - Se atentem aos prazos de entrega.
 - Instruções para resolução e entrega dos laboratórios.
- Avaliação Presencial: 10/11/2023 Sala I-16
 - Avaliação e projeto podem ser feitos em grupos de no máximo 3 alunos.
 - Presencialmente, faremos apenas o exercício 1 do projeto final.
 - Projeto final já se encontra no github.
 - Os outros devem ser entregues até 12/12/2023.
 - Vocês já conseguem fazer os exercícios 1 e 4.

Laboratório 6

► Launch on Google Colab

launch binder

Projeto Final

► Launch on Google Colab

💡 launch 🛮 binder

Até agora, usamos funções hipóteses com formato de hiperplanos, e.g., retas e planos, para aproximar mapeamentos lineares entre os atributos e o valor esperado, mas e se os mapeamentos forem não lineares?

O que podemos fazer quando hiperplanos não se ajustam bem aos dados?

Mapeamentos não lineares

- Observem as figuras abaixo, uma reta claramente não seria uma boa escolha para aproximar esses mapeamentos não lineares.
 - Retas não capturariam o comportamento das funções abaixo, pois elas não têm complexidade (i.e., graus de liberdade) o suficiente para isso.
- Portanto, qual tipo de função hipótese seria mais apropriada para aproximar esses comportamentos não lineares?

Regressão polinomial

- O teorema da aproximação de *Stone-Weierstrass* diz que mapeamentos deste tipo podem ser aproximados através de *polinômios*:
 - "Qualquer função contínua no intervalo fechado [a, b] pode ser uniformemente aproximada por um polinômio".
- Portanto, podemos aproximar qualquer tipo de mapeamento (linear ou não linear) com polinômios, bastando apenas encontrar o grau (ou ordem) ideal.
- Exemplo de um polinômio de grau 4* com três atributos, x_1 , x_2 e x_3 :

$$y(x_1, x_2, x_3) = a_0 + a_1x_1 + a_2x_2 + a_3x_1x_3 + a_5x_1^3 + a_4x_1x_2x_3^2$$

 Percebam que em alguns monômios existe a combinação dos atributos originais, formando novos atributos.

^{*} O grau é o maior valor resultante da soma dos expoentes dos atributos de um monômio.

Regressão polinomial

• Por simplicidade didática, inicialmente, nós consideraremos *funções hipóteses polinomiais em uma variável* (i.e., com um atributo):

$$h(x_1(n)) = a_0 + a_1 x_1(n) + a_2 x_1^2(n) + \dots + a_M x_1^M(n) = \mathbf{a}^T \mathbf{x}(n),$$
 onde n é o número da amostra, M é o grau do polinômio, $\mathbf{a} = [a_0 \ a_1 \ a_2 \ \dots \ a_M]^T \in \mathbb{R}^{M+1 \times 1}, \ \mathbf{x}(n) = [x_0 \ x_1(n) \ x_1^2(n) \ \dots \ x_1^M(n)]^T \in \mathbb{R}^{M+1 \times 1}$ e $x_0 = 1$ é o atributo de *bias*, associado ao peso de *bias*, a_0 .

 Todos resultados encontrados anteriormente (equação normal, vetor gradiente para implementação do algoritmo do gradiente descendente, escalonamento) são diretamente estendidos para funções hipótese polinomiais.

Regressão polinomial

- Só precisamos nos lembrar que o *vetor de atributos*, *x*, e consequentemente, a *matriz de atributos*, *X*, são *compostos pelos atributos originais e pelos atributos formados através de suas combinações*.
- Por exemplo, para a seguinte função hipótese polinomial $h(x_1(n)) = a_0 + a_1x_1(n) + a_2x_1^2(n) + \dots + a_Mx_1^M(n),$

a matriz de atributos polinomial, X, fica da seguinte forma

$$\boldsymbol{X} = \begin{bmatrix} 1 & x_1(0) & x_1^2(0) & \cdots & x_1^M(0) \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ 1 & x_1(N-1) & x_1^2(N-1) & \cdots & x_1^M(N-1) \end{bmatrix} \in \mathbb{R}^{N \times M+1},$$

onde cada coluna contém um atributo (original ou combinação).

^{*} A biblioteca SciKit-Learn possui uma função que cria essas matrizes automaticamente a partir dos atributos originais.

Porém, o desafio agora é *encontrar o grau do polinômio* que melhor aproxime os dados.

Exemplo de regressão usando polinômio

Função objetivo: polinômio de ordem 2.

A partir do dados ruidosos, queremos encontrar um polinômio (pesos e ordem) que melhor se aproxime da função objetivo.

• Geramos 30 exemplos do seguinte mapeamento verdadeiro (i.e., função objetivo):

$$y(x_1(n)) = 2 + x_1(n) + 0.5x_1^2(n),$$

e adicionamos ruído Gaussiano branco, w(n)

$$y_{\text{noisy}}(x_1(n)) = y(x_1(n)) + w(n),$$

onde $x_1(n)$ são valores linearmente espaçados entre -3 e 3 e $w(n) \sim N(0, 1)$.

- Vamos usar uma função hipótese polinomial para aproximar a função objetivo a partir dos dados ruidosos.
- Porém, surge uma dúvida, e se não soubéssemos a ordem por trás do modelo gerador, qual grau deveríamos utilizar?

Regressão polinomial: Qual ordem usar?

- Polinômio de ordem 1 (i.e., reta) não tem flexibilidade o suficiente para aproximar o comportamento por trás das amostras ruidosas, ou seja, a função objetivo.
- O erro (MSE) é alto para exemplos dos conjuntos de treinamento e de validação (i.e., exemplos não vistos durante o treinamento).
- Efeito conhecido como subajuste ou underfitting: flexibilidade e grau de generalização muito baixos.

Regressão polinomial: Qual ordem usar?

- Porém, como esperado, o polinômio de ordem 2 produz a melhor aproximação da função objetivo, errando pouco para exemplos dos conjuntos de treinamento e validação.
 - Esse modelo encontra uma relação de compromisso entre *flexibilidade* e *grau de generalização*.
 - Essa aproximação será melhor quanto maior for o conjunto de treinamento e/ou menor o ruído.

Regressão polinomial: Qual ordem usar?

Polinômio de ordem 10.

Polinômio de ordem 20.

Polinômio de ordem 30.

- Polinômios com ordem maior do que 2 tendem a produzir *aproximações perfeitas* dos exemplos disponíveis, i.e., o modelo acaba *memorizando* os exemplos de treinamento.
- O erro para as amostras do conjunto de treinamento é muito baixo.
- Porém, essa aproximação se distancia bastante do modelo gerador.
- Portanto, esses modelos apresentarão erros significativamente maiores quando forem apresentados a exemplos de validação.
- Efeito conhecido como *sobreajuste* ou *overfitting*: *flexibilidade* muito alta e *grau de generalização* muito baixo.

Resumo sobre subajuste e sobreajuste

- Subajuste: situação em que o modelo falha em aproximar o *mapeamento* verdadeiro devido a falta de flexibilidade (ou capacidade).
 - Ocorre devido ao modelo não ter graus de liberdade suficientes para a aproximação.
 - O modelo produz erros significativos tanto quando apresentado ao próprio conjunto de treinamento quanto a dados inéditos.
 - Se o modelo está subajustando, mesmo que o número de exemplos aumente indefinidamente, esta situação não vai desaparecer, é necessário aumentar a flexibilidade do modelo, ou seja, no caso da regressão polinomial, sua ordem.

Resumo sobre subajuste e sobreajuste

- Sobreajuste: situação em que o modelo se ajusta tão bem aos exemplos de treinamento que ele aprende até o ruído presente nos mesmos (baixo *erro de treinamento*).
- Porém, o modelo produz erros significativos quando apresentado a dados inéditos (alto erro de *erro de validação*).
 - Ocorre devido ao alto grau de flexibilidade do modelo.
 - Se o modelo está sobreajustando, então é necessário diminuir sua flexibilidade ou aumentar o conjunto de treinamento até que o erro de validação atinja o erro de treinamento.
- Nosso objetivo será encontrar um modelo que apresente uma relação de compromisso entre *flexibilidade* e *capacidade de generalização*.
 - Flexibilidade suficiente para capturar o comportamento geral e generalizar bem.

Tarefas

- Quiz: "T319 Quiz Regressão: Parte IV" que se encontra no MS Teams.
- Exercício Prático: Laboratório #5.
 - Pode ser acessado através do link acima (Google Colab) ou no GitHub.
 - Vídeo explicando o laboratório: Arquivos -> Material de Aula -> Laboratório #5
 - Se atentem aos prazos de entrega.
 - Instruções para resolução e entrega dos laboratórios.
- Avaliação Presencial: 10/11/2023 Sala I-16
 - Projeto final já se encontra no github.—
 - Pode ser feito em grupos de no máximo 3 alunos.
 - Presencialmente, faremos apenas o exercício 1.
 - Os outros devem ser entregues até 12/12/2023.

Obrigado!

Anexo I: O escalonamento altera o valor dos pesos originais

Mudança dos pesos originais após a padronização

Considerando a seguinte função hipótese

$$\hat{y}(n) = \hat{a}_1 x_1(n).$$

• Se padronizarmos o atributo x_1 , teremos

$$x'_{1}(n) = \frac{x_{1}(n) - \mu_{x_{1}}}{\sigma_{x_{1}}}, \forall n,$$

onde μ e σ são as estimativas da média e do desvio padrão, respectivamente, calculados ao longo de todas as amostras do vetor de atributos, x_1 .

Mudança dos pesos originais após a padronização

- Isolando-se $x_1(n)$ na equação da padronização, temos $x_1(n)=x_1'(n)\sigma_{x_1}+\mu_{x_1}$.
- Na sequência, substituindo-se $x_1(n)$ na função hipótese, tem-se $\hat{y}(n)=\hat{a}_1\big(x_1'(n)\sigma_{x_1}+\mu_{x_1}\big)=\hat{a}_1\sigma_{x_1}x_1'(n)+\hat{a}_1\mu_{x_1}$.
- Perceba que na equação acima há o surgimento de um termo de bias, $\hat{a}_1\mu_{x_1}$, além da alteração do peso original para $\hat{a}_1\sigma_{x_1}$.

Mudança dos pesos originais após a padronização

• Assim, podemos reescrever a equação acima como $\hat{y}(n) = \hat{a}'_0 + \hat{a}'_1 x'_1(n),$

onde
$$\hat{a}'_0 = \hat{a}_1 \mu_{x_1} e \hat{a}'_1 = \hat{a}_1 \sigma_{x_1}$$
.

- Note que a padronização de $x_1(n)$ fez com que \hat{a}_1 fosse modificado de forma que a função hipótese ainda produza em sua saídas predições condizentes com os valores esperados, y(n).
- Ou seja, mesmo com a padronização dos atributos, a função hipótese ainda fará predições alinhadas aos valores dos rótulos, y(n).
- O mesmo procedimento pode ser diretamente aplicado à normalização e também resultará em mudança dos pesos originais.

MY HOBBY: EXTRAPOLATING

"It's a non-linear pattern with outliers.....but for some reason I'm very happy with the data."

ONE DOES NOT SIMPLY

Figuras

