z-transformace

$$X(z) = \sum_{n=0}^{\infty} x[n]z^{-n}$$
, kde $z = e^{sT_s}$, přičemž $T_s = \frac{1}{f_s}$ Pozn. $n = 0$... 1. index (na rozdíl od Matlabu)

x[n]	X(z)	
$a \cdot x_1[n] + b \cdot x_2[n]$	$a \cdot X_1(z) + b \cdot X_2(z)$	linearita
x[n+1]-x[n]	$(z-1)X(z)-z\cdot x[0]$	diference
$x_1[n] * x_2[n] = \sum_{k=0}^{n} x_1[k] \cdot x_2[n-k]$	$X_1(z) \cdot X_2(z)$	konvoluce
$x[n-n_0] \cdot 1[n-n_0], n_0 > 0$	$z^{-n_0}\cdot X(z)$	posun v "čase" doprava
$x[n+1] \cdot 1[n]$	$z \cdot X(z) - z \cdot x[0]$	posuny v "čase" doleva
$x[n+2]\cdot 1[n]$	$z^2 \cdot X(z) - z^2 \cdot x[0] - z \cdot x[1]$	
$x[n+n_0] \cdot 1[n], n_0 > 0$	$z^{n_0} \cdot X(z) - z^{n_0} \cdot \sum_{k=0}^{n_0-1} x[k] z^{-k}$	
$\delta[n]$	1	
1 [n]	$\frac{z}{z-1}$	základní obrazy
$a^n \cdot 1[n]$	$\frac{z}{z-a}$	

Věta o počáteční hodnotě $x[0] = \lim_{z \to \infty} X(z)$

Věta o koncové hodnotě $\lim_{n\to\infty} x[n] = \lim_{z\to 1} (z-1)X(z)$ (jen pro stabilní systémy)

Věta o stejnosměrném zesílení $DCgain = H(z)|_{z=1}$ (jen pro stabilní systémy)