

M. Hohle:

Physics 77: Introduction to Computational Techniques in Physics

syllabus

<u>Week</u>	<u>Date</u>	<u>Topic</u>
1	June 12th	Programming Environment & UIs for Python,
		Programming Fundamentals
2	June 19th	Basic Types in Python
3	June 26th	Parsing, Data Processing and File I/O, Visualization
4	July 3rd	Functions, Map & Lambda
5	July 10th	Random Numbers & Probability Distributions,
		Interpreting Measurements
6	July 17th	Numerical Integration and Differentiation
7	July 24th	Root finding, Interpolation
8	July 31st	Systems of Linear Equations, Ordinary Differential Equations (ODEs)
9	Aug 7th	Stability of ODEs, Examples
10	Aug 14th	Final Project Presentations

<u>ordinary differential equation:</u>

What is an ODE?

Solving ODEs by thinking Solving ODEs with Pythor

- **total** derivative
$$\rightarrow$$
 ordinary

$$\frac{d^k f(x)}{dx^k} \qquad k \in \mathbb{N}$$

- of **n-th** order
$$\rightarrow n = max(k)$$

- non-linear
$$\rightarrow$$
 power of any x is not one

partial differential equation:

$$\frac{\partial y(x)}{\partial t} = [a\Delta + bg(x)] y(x)$$

$$\frac{\partial^2 y(x)}{\partial t^2} = [a\Delta + bg(x)] y(x)$$

wave

<u>let's start simple:</u>

What is an ODE?

Solving ODEs by thinking
Solving ODEs with Pythor

constant relative change per time step

$$\frac{\Delta N}{N}\frac{1}{\Delta t}=c$$

$$\frac{dN}{N} = c dt$$

$$\frac{dN}{dt} = c N$$

$$\int_{N(t=0)}^{N} \frac{1}{N} dN = c \int_{0}^{t} dt$$

$$N(t) = N(t = 0) e^{ct}$$

<u>let's start simple:</u>

What is an ODE?

Solving ODEs by thinking
Solving ODEs with Python

We want the model to have a limited carrying capacity κ

$$\frac{dN}{N} = c dt$$

For $t \to \infty$ the island can only feed $N_{eq} = \kappa$ cows

 κ : carrying capacity

How do we model that?

<u>let's start simple:</u>

What is an ODE?

Solving ODEs by thinking
Solving ODEs with Python

$$\frac{dN}{N} = c dt$$

<u>let's start simple:</u>

What is an ODE?

Solving ODEs by thinking

Solving ODEs with Python

$$\frac{dN}{N} = c dt$$

<u>let's start simple:</u>

What is an ODE?

Solving ODEs by thinking
Solving ODEs with Python

$$\frac{dN}{N} = c dt$$

let's start simple:

What is an ODE? **Solving ODEs by thinking**

We want the model to have a limited carrying capacity κ

$$\frac{dN}{N} = c dt$$

Occam's razor:

prefer simple model (Bayesian Model Selection)

<u>let's start simple:</u>

What is an ODE?

Solving ODEs by thinking
Solving ODEs with Python

Occam's razor:

We want the model to have a limited carrying capacity κ

$$\frac{dN}{N} = c dt$$

$$c(N) = c_0 + m N$$

$$c(\kappa) = 0$$
 $c(\kappa) = 0 = c_0 + m\kappa$ $m = -\frac{c_0}{\kappa}$

$$c(0) = c_0$$

$$c(N) = c_0 \left(1 - \frac{1}{\kappa} N \right)$$

$$\frac{dN}{N} = c_0 \left(1 - \frac{1}{\kappa} N \right) dt$$

Verhulst Equation

<u>let's start simple:</u>

What is an ODE?

Solving ODEs by thinking
Solving ODEs with Python

$$\frac{dN}{N} = c dt$$

$$\frac{dN}{N} = c_0 \left(1 - \frac{1}{\kappa} N \right) dt$$

$$\frac{dN}{dt} = c_0 \left(1 - \frac{1}{\kappa} N \right) N$$

ODEs

let's start simple:

What is an ODE? **Solving ODEs by thinking**

We want the model to have a limited carrying capacity κ

$$\frac{dN}{dt} = c_0 \left(1 - \frac{1}{\kappa} N \right) N$$

Verhulst Equation

<u>let's start simple:</u>

What is an ODE?

Solving ODEs by thinking
Solving ODEs with Python

$$\frac{dN}{dt} = c_0 \left(1 - \frac{1}{\kappa} N \right) N$$
 Verhulst Equation

<u>let's start simple:</u>

What is an ODE?

Solving ODEs by thinking
Solving ODEs with Python

We want the model to have a limited carrying capacity κ

$$\frac{dN}{dt} = c_0 \left(1 - \frac{1}{\kappa} N \right) N$$

Verhulst Equation

 x_1, x_2 fixed points

$$f(x) = \frac{dx}{dt} = \dot{x}$$

ODEs

fixed points x^*

 x_1 : repeller

→ unstable

 $\frac{df(x)}{dx} = \frac{d}{dx}\dot{x} > 0$

 x_3 : repeller

→ unstable

 x_2 : attractor

→ stable

$$\frac{df(x)}{dx} = \frac{d}{dx}\dot{x} < 0$$

What is an ODE? **Solving ODEs by thinking**

fixed points x^*

 $x(t) = x^* + \varepsilon(t)$

small perturbation $\varepsilon(t)$

What is an ODE?

Solving ODEs by thinking

$$\frac{d\varepsilon(t)}{dt} = \frac{d}{dt}[x(t) - x^*] = f(x) + 0 = f(x^* + \varepsilon(t))$$

$$\frac{d\varepsilon(t)}{dt} = f(x^* + \varepsilon(t)) \approx f(x^*) + \frac{df(x)}{dx}|_{x = x^*} \varepsilon(t) = 0 + \frac{df(x)}{dx}|_{x = x^*} \varepsilon(t)$$

$$\varepsilon(t) = \varepsilon_0 e^{\frac{df(x)}{dx}|_{x=x^*} t}$$

time scale
$$au = \frac{1}{\frac{df(x)}{dx}|_{x=x^*}}$$

$$\frac{df(x)}{dx} > 0$$
 unstable

$$\frac{df(x)}{dx} < 0 \qquad \text{stable}$$

fixed points x^*

small perturbation $\varepsilon(t)$

What is an ODE?
Solving ODEs by thinking

$$\varepsilon(t) = \varepsilon_0 e^{\frac{df(x)}{dx}|_{x=x^*} t}$$
 time scale $\tau = \frac{1}{\frac{df(x)}{dx}|_{x=x^*}}$

$$\frac{df(x)}{dx} < 0$$
 stable

fixed points x^*

small perturbation $\varepsilon(t)$

What is an ODE?

Solving ODEs by thinking

Solving ODEs with Python

$$\varepsilon(t) = \varepsilon_0 e^{\frac{df(x)}{dx}|_{x=x^*} t}$$
 time scale $\tau = \frac{1}{\frac{df(x)}{dx}|_{x=x^*}}$

$$f(x) = ax^2 + bx + c$$

$$\frac{df(x)}{dx} > 0 \qquad \text{unstable}$$

$$\frac{df(x)}{dx} < 0$$
 stable

if coupled to another system: → can change dynamics drastically (chem reactions)

 $\dot{x} = -x + a y + x^2 y$

 $\dot{y} = b - a y - x^2 y$

2D system

$$f(x,y) = \dot{x}$$

$$g(x,y) = \dot{y}$$

null clines

$$\dot{x} = 0 \Rightarrow \qquad y_1 = \frac{x}{a + x^2}$$

$$\dot{y} = 0 \Rightarrow \qquad y_2 = \frac{b}{a + x^2}$$

Find out which way the system moves!

What is an ODE? **Solving ODEs by thinking**

a, b >0

non-linear, coupled ODEs

 \dot{x} and \dot{y} model **Glycolysis** (Selkov et al., 1968)

 $\dot{x} = -x + a y + x^2 y$

 $P\left(b, \frac{b}{a+b^2}\right)$

 $\dot{y} = b - a y - x^2 y$

2D system

$$f(x,y) = \dot{x}$$

$$g(x,y) = \dot{y}$$

null clines

$$\dot{x} = 0 \Rightarrow \qquad \qquad y_1 = \frac{x}{a + x^2}$$

$$\dot{y} = 0 \Rightarrow \qquad y_2 = \frac{b}{a + x^2}$$

Find out which way the system moves!

What is an ODE?

Solving ODEs by thinking

Solving ODEs with Python

small perturbation
$$\mathbf{@}\ \dot{\mathbf{x}} = \mathbf{0}$$

$$-x + \varepsilon_x + a y + (x + \varepsilon_x)^2 y =$$

$$\varepsilon_x y^2 + 2xy \varepsilon_x - x + a y + x^2 y =$$

$$\varepsilon_x y^2 + 2xy \varepsilon_x + \dot{x} =$$

$$\varepsilon_x y^2 + 2xy \varepsilon_x > 0$$

2D system

$$f(x,y) = \dot{x}$$

$$g(x,y) = \dot{y}$$

null clines

$$\dot{x} = 0 \Rightarrow \qquad y_1 = \frac{x}{a + x^2}$$

$$\dot{y} = 0 \Rightarrow \qquad y_2 = \frac{b}{a + x^2}$$

Find out which way the system moves!

What is an ODE? **Solving ODEs by thinking**

$$\dot{y} = b - a y - x^2 y$$

 $\dot{x} = -x + a y + x^2 y$

2D system

$$f(x,y) = \dot{x}$$

$$g(x,y) = \dot{y}$$

null clines

$$\dot{x} = 0 \Rightarrow \qquad y_1 = \frac{x}{a + x^2}$$

$$\dot{y} = 0 \Rightarrow \qquad y_2 = \frac{b}{a + x^2}$$

Find out which way the system moves!

What is an ODE?

Solving ODEs by thinking

$$\dot{x} = -x + a y + x^2 y$$

$$\dot{y} = b - a y - x^2 y$$

small perturbation $\mathbf{@} \dot{\mathbf{x}} = \mathbf{0}$

What is an ODE?

Solving ODEs by thinking

2D system

$$f(x,y) = \dot{x}$$

$$g(x,y) = \dot{y}$$

null clines

$$\dot{x} = 0 \Rightarrow \qquad \qquad y_1 = \frac{x}{a + x^2}$$

$$\dot{y} = 0 \Rightarrow \qquad y_2 = \frac{b}{a + x^2}$$

$$\dot{x} = -x + a y + x^2 y$$
 a, b >0

$$\dot{y} = b - a y - x^2 y$$

2D system

$$f(x,y) = \dot{x}$$

$$g(x,y) = \dot{y}$$

null clines

$$\dot{x} = 0 \Rightarrow \qquad \qquad y_1 = \frac{x}{a + x^2}$$

$$\dot{y} = 0 \rightarrow \qquad \qquad y_2 = \frac{b}{a + x^2}$$

$$\dot{x} = -x + a y + x^2 y$$

$$\dot{y} = b - a y - x^2 y$$

What is an ODE? **Solving ODEs by thinking**

2D system

$$f(x,y) = \dot{x}$$

$$g(x,y)=\dot{y}$$

null clines

$$\dot{x} = 0 \Rightarrow \qquad \qquad y_1 = \frac{x}{a + x^2}$$

$$\dot{y} = 0 \rightarrow \qquad \qquad y_2 = \frac{b}{a + v^2}$$

$$\dot{x} = -x + a y + x^2 y$$

$$\dot{y} = b - a y - x^2 y$$

What is an ODE? **Solving ODEs by thinking**

2D system

What is an ODE?

Solving ODEs by thinking

$$f(x,y) = \dot{x}$$

$$\dot{x} = -x + a y + x^2 y$$

$$g(x,y) = \dot{y}$$

$$\dot{y} = b - a y - x^2 y$$

non-linear, coupled ODEs

$$\dot{x} = 0 \rightarrow$$

$$\dot{x} = 0 \Rightarrow \qquad \qquad y_1 = \frac{x}{a + x^2}$$

$$\dot{y} = 0 \rightarrow$$

$$y_2 = \frac{b}{a + x^2}$$

2D system

What is an ODE?

Solving ODEs by thinking

$$f(x,y) = \dot{x}$$

$$\dot{x} = -x + a y + x^2 y$$

$$g(x,y) = \dot{y}$$

$$\dot{y} = b - a y - x^2 y$$

non-linear, coupled ODEs

stability of P:

$$f(x^* + \varepsilon_x, y^* + \varepsilon_y) \approx f(x^*, y^*) + \frac{\partial f(x, y)}{\partial x}|_{x^*, y^*} \varepsilon_x + \frac{\partial f(x, y)}{\partial y}|_{x^*, y^*} \varepsilon_y$$

$$\frac{d \varepsilon_x(t)}{dt}$$

$$\alpha$$

$$\beta$$

$$g(x^* + \varepsilon_x, y^* + \varepsilon_y) \approx g(x^*, y^*) + \frac{\partial g(x, y)}{\partial x}|_{x^*, y^*} \varepsilon_x + \frac{\partial g(x, y)}{\partial y}|_{x^*, y^*} \varepsilon_y$$

$$\frac{d \varepsilon_y(t)}{dt} \qquad = \mathbf{0} \qquad \qquad \mathbf{v} \qquad \qquad \mathbf{\delta}$$

$$\dot{\vec{\epsilon}} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \vec{\epsilon}$$

2D system

$$f(x,y) = \dot{x}$$

$$g(x,y) = \dot{y}$$

stability of P:

What is an ODE?

Solving ODEs by thinking

$$\dot{x} = -x + a y + x^2 y$$

$$\dot{y} = b - a y - x^2 y$$

non-linear, coupled ODEs

$$\dot{\vec{\varepsilon}} = \begin{pmatrix} \alpha & \beta \\ \mathbf{v} & \delta \end{pmatrix} \vec{\varepsilon}$$

$$A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$

a, b > 0

$$\dot{\vec{\varepsilon}} = \begin{pmatrix} \alpha & \beta \\ \mathbf{v} & \delta \end{pmatrix} \vec{\varepsilon} \qquad A = \begin{pmatrix} \alpha & \beta \\ \mathbf{v} & \delta \end{pmatrix} \qquad \varepsilon(t) = \varepsilon_0 e^{\frac{df(x)}{dx}|_{x=x^*} t}$$

$$\vec{\varepsilon}(t) = \vec{\varepsilon}(t=0) e^{\lambda t}$$

eigenvalue of A

$$0 = \det \begin{pmatrix} \alpha - \lambda & \beta \\ \gamma & \delta - \lambda \end{pmatrix} = \lambda^2 - (\alpha + \delta)\lambda + (\alpha \delta - \gamma \beta)$$

one can show that
$$\tau = \frac{b^4 + (2a - 1)b^2 + a(1 + a)}{a + b^2}$$

 $\tau > 0$

P is a repeller

 $\tau < 0$

P is an attractor

2D system

What is an ODE?

Solving ODEs by thinking

$$f(x,y) = \dot{x}$$

$$\dot{x} = -x + a y + x^2 y$$

$$g(x,y) = \dot{y}$$

$$\dot{y} = b - a y - x^2 y$$

non-linear, coupled ODEs

stability of P:

$$\vec{\varepsilon}(t) = \vec{\varepsilon}(t=0) e^{\lambda t}$$

attractor: real part of all eigenvalues has to be negative!

non-isolated fixed point $(\lambda_1 = 0 \& \lambda_2 < 0)$

$$egin{aligned} extit{spiral} \ (\lambda_1 = ar{\lambda}_2 \ \& & \operatorname{Re}(\lambda)
eq 0 ext{ for both}) \end{aligned}$$

center $(\lambda_1=ar{\lambda}_2$ & $\operatorname{Re}(\lambda)=0$ for both)

What is an ODE?

Solving ODEs by thinking

P is an attractor

Berkeley Introduction to Computational Techniques in Physics:

2D system

$$f(x,y) = \dot{x}$$

$$g(x,y) = \dot{y}$$

stability of P:

$$\dot{x} = -x + a y + x^2 y$$

$$\dot{y} = b - a y - x^2 y$$

$$\vec{\varepsilon}(t) = \vec{\varepsilon}(t=0) e^{\lambda t}$$

$$\tau = \frac{b^4 + (2a-1)b^2 + a(1+a)}{a+b^2} \quad \frac{\tau > \mathbf{0}}{\tau < \mathbf{0}} \quad \text{P is a repeller}$$

What is an ODE?

Solving ODEs by thinking

Solving ODEs with Pythor

$$P\left(b, \frac{b}{a+b^2}\right) = (0.6, 1.42)$$

 \dot{x} and \dot{y} model **Glycolysis** (Selkov et al., 1968)

$$X = [ADP], Y = [F6P]$$

What is an ODE?

Solving ODEs by thinking

Solving ODEs with Python

$$P\left(b, \frac{b}{a+b^2}\right) = (0.6, 1.30)$$

 \dot{x} and \dot{y} model **Glycolysis** (Selkov et al., 1968)

$$X = [ADP], Y = [F6P]$$

What is an ODE?

Solving ODEs by thinking

Solving ODEs with Python

$$P\left(b, \frac{b}{a+b^2}\right) = (0.6, 1.24)$$

 \dot{x} and \dot{y} model **Glycolysis** (Selkov et al., 1968)

$$X = [ADP], Y = [F6P]$$

D. avatore

$$P\left(b, \frac{b}{a+b^2}\right) = (1.1, 0.82)$$

 \dot{x} and \dot{y} model **Glycolysis** (Selkov et al., 1968)

What is an ODE?

$$X = [ADP], Y = [F6P]$$

Runge-Kutta-Heun

What is an ODE?
Solving ODEs by thinking
Solving ODEs with Python

$$\frac{dy}{dt} = f(x(t), t)$$

initial condition:

$$y_0 = y(t_0)$$

goal: y(t)

$$y(t + dt) = y(t) + \frac{dy}{dt}dt + \frac{1}{2}\frac{d^2y}{dt^2}dt^2 + \cdots$$

$$y(t + dt) = y(t) + f(x,t) dt + \frac{1}{2} \frac{d}{dt} f(x,t) dt^2 + \cdots$$

$$y(t+dt) = y(t) + f(x,t) dt + \frac{1}{2} \left[\frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial t} \right] dt^2 + \cdots$$

note: more general
$$\frac{dy}{dx} = f(x(t), y(x(t)))$$

Runge-Kutta-Heun

What is an ODE?
Solving ODEs by thinking
Solving ODEs with Python

$$\frac{dy}{dx_{-}} = f(x(t), y(x(t)))$$

$$\frac{dy}{dx_{+}} = f(x(t) + \Delta x, y + \Delta x f(x(t)))$$

$$\frac{dy}{dx_{+}} = f(x(t) + \Delta x, y + \Delta x f(x(t)))$$

<u>updating:</u>

$$x(new) = x(t) + \Delta x$$

$$y(new) = y(t) + \Delta x \frac{1}{2} \left[\frac{dy}{dx_{-}} + \frac{dy}{dx_{+}} \right] = y(t) + \Delta x \frac{1}{2} \left[f(x(t), y(x(t))) + f(x(t) + \Delta x, y + \Delta x, f(x(t))) \right]$$

Runge-Kutta-Heun

What is an ODE?
Solving ODEs by thinking

Solving ODEs with Python

$$x(new) = x(t) + \Delta x$$

$$y(new) = y(t) + \Delta x \frac{1}{2} \left[\frac{dy}{dx_{-}} + \frac{dy}{dx_{+}} \right] = y(t) + \Delta x \frac{1}{2} [f(x(t), y(x(t))) + f(x(t) + \Delta x, y + \Delta x, f(x(t)))]$$

more precise (here shown for for 1D y = y(t)):

$$k_{1} = f(t_{n}, y_{n})$$

$$k_{2} = f(t_{n} + \frac{\Delta t}{2}, y_{n} + \frac{\Delta t k_{1}}{2})$$

$$k_{3} = f(t_{n} + \frac{\Delta t}{2}, y_{n} + \frac{\Delta t k_{2}}{2})$$

$$k_{4} = f(t_{n} + \Delta t, y_{n} + \Delta t k_{3})$$

$$t(new) = t_{n+1} = t_n + \Delta t$$

$$y(new) = y_{n+1} = y_n + \frac{\Delta t}{6} [k_1 + 2k_2 + 2k_3 + k_4]$$

recall: Simpson & Simpson 3/8

Runge-Kutta-Heun

What is an ODE?
Solving ODEs by thinking
Solving ODEs with Python

$$x(new) = x(t) + \Delta x$$

$$y(new) = y(t) + \Delta x \frac{1}{2} \left[\frac{dy}{dx_{-}} + \frac{dy}{dx_{+}} \right] = y(t) + \Delta x \frac{1}{2} \left[f(x(t), y(x(t))) + f(x(t) + \Delta x, y + \Delta x, f(x(t))) \right]$$

from scipy.integrate import solve_ivp

method = 'RK45'

4: referring to the number of subintervals for integration (4 is equivalent to the Simpson rule)

5: referring to the order of the Taylor approximation for the derivatives

$$\dot{x} = -x + a y + x^2 y$$

$$\dot{y} = b - a y - x^2 y$$

What is an ODE?
Solving ODEs by thinking
Solving ODEs with Python

def SolveGlycolysis(Init, t_span, a, b):

def Glycolysis(Init, t, a, b):

$$dx = -x + a*y + (x**2)*y$$

 $dy = b - a*y - (x**2)*y$

$$D = [dx, dy]$$

return D

note: t is an input variable, even though it is not being used explicitly

→ integration over t

$$\dot{x} = -x + a y + x^2 y$$

$$\dot{y} = b - a y - x^2 y$$

What is an ODE? Solving ODEs by thinking **Solving ODEs with Python**

the actual solver

def SolveGlycolysis(Init, t_span, a, b):

t = XY.t

X = XY.y[0,:]

Y = XY.y[1,:]

$$\dot{x} = -x + a y + x^2 y$$

$$\dot{y} = b - a y - x^2 y$$

What is an ODE?
Solving ODEs by thinking
Solving ODEs with Python

$$\dot{x} = -x + a y + x^2 y$$

$$\dot{y} = b - a y - x^2 y$$

return result

What is an ODE?
Solving ODEs by thinking
Solving ODEs with Python

```
def SolveGlycolysis(Init, t_span, a, b):
           = ode_solver(Glycolysis, Init, t_span, method = 'RK45',\
    XY
                        a = a, b = b
from scipy.integrate import | solve ivp
def ode_solver(ode_func, Init, t_span, method = 'RK45', **params):
       result = solve_ivp(fun = lambda t, y: ode_func(y, t, **params), \
                       t_span = t_span, y0 = Init, method = method,\
                       rtol = 1e-9, atol = 1e-9, max step = 0.01)
```


$$\dot{x} = -x + a y + x^2 y$$

$$\dot{y} = b - a y - x^2 y$$

What is an ODE? Solving ODEs by thinking **Solving ODEs with Python**

<u>run:</u>

<u>run:</u>

What is an ODE?
Solving ODEs by thinking
Solving ODEs with Python

SolvePhageTherapy(Init, t_span, rates)

Synergistic elimination of bacteria by phage and the immune system

Chung Yin (Joey) Leung* and Joshua S. Weitz[†] School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA and School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

$$\dot{B} = Replication Decay Lysis Immune killing
$$\dot{B} = Replication Decay Lysis \epsilon IB - \epsilon IB -$$$$

B: bacteria

P: phages

I: immune cells

$$\dot{P} = \widetilde{\beta \phi B P} - \widetilde{\omega P} ,$$

Immune stimulation

$$\dot{I} = \alpha I (1 - \frac{I}{K_I}) \frac{B}{B + K_N}.$$

$$\frac{dN}{dt} = c_0 \left(1 - \frac{1}{\kappa} N \right) N$$

recall: Verhulst Equation

<u>run:</u>

What is an ODE?
Solving ODEs by thinking
Solving ODEs with Python

SolvePhageTherapy(Init, t_span, rates)

Synergistic elimination of bacteria by phage and the immune system

Chung Yin (Joey) Leung* and Joshua S. Weitz[†]
School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA and
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

Thank you for your attention!

