Mini Project: 计算机生成和播放音乐

1. Objective

音乐文件有很多格式,不过其主要的数据(Data)部分,保存的都是一个 M * N 的矩阵(其中, N 为通道数)。因此,对于一个乐谱,我们可以用计算机程序生成这样一个矩阵,并用计算机播放出来。本项目的目标就是:

- 1. 理解音乐的基本要素, 比如音调、节拍、音色、基频、和弦等,
- 2.这些音乐要素如何反映在我们的数据中,
- 3.通过 MATLAB 程序,将一张简谱转化成一段可以播放成音乐的数据,
- 4. 根据数据,产生可播放的音乐,
- 5. 根据数据,产生模仿某种乐器的音乐

2 数字简谱

数字简谱是简易的记谱法,用基本音符1、2、3、4、5、6、7代表音阶中的7个基本级,读音为do、re、mi、fa、sol、la、ti(中国为si),英文由C、D、E、F、G、A、B表示,休止以0表示。图1为《天空之城》数字简谱。

图 1.《天空之城》 数字简谱

2.1 音调

简谱中1、2、3、4、5、6、7表示七种高低不同的音,我们称之为音调。,之所以会呈现不同音调,是因为他们分别对应不同频率的音波。图2为C调音符与频率对应表。

C调音符与频率对照表

音符 频	率/Hz	音符 频	率/Hz	音符 频率	率/Hz
低音1#	262	中音 1	523	高音1	1046
	277	中音 1#	554	高音1#	1109
低音2	294	中音2	587	高音2	1175
低音2#	311	中音2#	622	高音2#	1245
低音3	330	中音3	659	高音3	1318
低音4	349	中音4	698	高音4	1397
低音4#	370	中音4#	740	高音4#	1480
低音5	392	中音5	784	高音5	1568
低音5#	415		831	高音5#	1661
低音6 低音6# 低音7	440 466 494	中音6 中音6# 中音7	932 988	高音6 高音6# 高音7	1760 1865 1976

图 2 C 调音符与频率对应表

从图 2 可以看出,低音频率为同一音符中音频率的一半,同样的,中音频率为同一音符高音频率的一半。也就是说,对应的中音音符和低音音符之间,频率减半,而音程相差一个八度。记在简谱基本音符号下面的小圆点,叫低音点,它表示将基本音符降低一个音组,即降低一个纯八度。记两个圆点表示将基本音符号降低两个音组,即降低两个纯八度。记在简谱基本音符号上面的小圆点,叫高音点,它表示将基本音符号升高一个音组,即升高一个纯八度。记两个圆点,表示升高两个音组,即升高两个纯八度。

为了便于记录表示这些不同频率的音调,出现了很多音律。常用的十二平均律,亦称"十二等程律",将世界上通用的一组音(八度)分成十二个半音音程。在十二平均律中,各相邻两律之间的振动频率之比完全相等。换句话说,十二平均律是指八度的音程(一倍频程)按频率等比例地分成十二等份,每一等份称为一个半音。因此,十二平均律中,相邻两个音阶的频率比值为2¹²,如图 3 所示。

^ 十二平均律表

将主音设为a1(440Hz),来计算所有音的频率,结果如下 (为计算过程更清晰,分数不进行约分):

音程名称	间隔半音数	十二平均律的倍数	频率
纯一度 (A ¹)	0	$2^0=1$	$440\times 1=440$
增一度/ 小二度 (A# ¹ /Bb ¹)	1	$\sqrt[12]{2} = 2^{\frac{1}{12}} \approx 1.0594630943592952645618252949463$	$440 \times 2^{\frac{1}{12}} \approx 466.1637615180899164072031297762$
大二度 (B ¹)	2	$\sqrt[6]{2} = 2^{\frac{2}{12}} \approx 1.1224620483093729814335330496792$	$440 \times 2^{\frac{2}{12}} \approx 493.8833012561241118307545418586$
小三度 (C)	3	$\sqrt[4]{2} = 2^{\frac{3}{12}} \approx 1.1892071150027210667174999705605$	$440 \times 2^{\frac{3}{12}} \approx 523.2511306011972693556999870466$
大三度 (C#)	4	$\sqrt[3]{2} = 2^{\frac{4}{12}} \approx 1.2599210498948731647672106072782$	$440 \times 2^{\frac{4}{12}} \approx 554.3652619537441924975726672023$
纯四度 (D)	5	$\sqrt[12]{32} = 2^{\frac{5}{12}} \approx 1.3348398541700343648308318811845$	$440 \times 2^{\frac{5}{12}} \approx 587.3295358348151205255660277209$
增四度/ 减五度 (D#/Eb)	6	$\sqrt{2} = 2^{\frac{6}{12}} \approx 1.4142135623730950488016887242097$	$440 \times 2^{\frac{6}{12}} \approx 622.2539674441618214727430386522$
纯五度 (E)	7	$\sqrt[12]{128} = 2^{\frac{7}{12}} \approx 1.4983070768766814987992807320298$	$440 \times 2^{\frac{7}{12}} \approx 659.2551138257398594716835220930$
小六度 (F)	8	$\sqrt[3]{4} = 2^{\frac{8}{12}} \approx 1.5874010519681994747517056392723$	$440 \times 2^{\frac{8}{12}} \approx 698.4564628660077688907504812795$
大六度 (F#)	9	$\sqrt[4]{8} = 2^{\frac{9}{12}} \approx 1.6817928305074290860622509524664$	$440 \times 2^{\frac{9}{12}} \approx 739.9888454232687978673904190852$
小七度 (G)	10	$\sqrt[6]{32} = 2^{\frac{10}{12}} \approx 1.781797436280678609480452411181$	$440 \times 2^{\frac{10}{12}} \approx 783.9908719634985881713990609195$
大七度 (G#)	11	$\sqrt[12]{2048} = 2^{\frac{11}{12}} \approx 1.8877486253633869932838263133351$	$440 \times 2^{\frac{11}{12}} \approx 830.6093951598902770448835778670$
纯八度 (A)	12	$2^1=2$	$440\times 2=880$

其中 $\sqrt[12]{2} = 2^{\frac{1}{12}} \approx 1.0594630943593$

 $pprox rac{18}{17} = 1.05882\,$ 99 音分 $pprox rac{107}{101} = 1.05941\,$ 99.9 音分 $pprox rac{11011}{10393} = 1.05946310\,$ 100 音分

图 3.十二平均律表(主音是指当前音调下的参考基准)

而基本音级用 1-7 表示的不同音高,对应到十二平均律上,七个音符之间的频率间隔 不是固定比例的。其中 3—4、7—i 是半音,而其它相邻两个音都是全音(2个半音)。

MATLAB 练习 1:编写函数

function freq = num2freq(num) % num为输入数字音符, freq为输出的频率

以 1=440 Hz 为主音, 计算 1-7, 高八度, 低八度, 总共 21 个音符的频率。

2.2 调号

按照一定的次序和位置记在谱号的后面的,这些记号叫做调号。调号总是只用同类的变音记号,即升记号或降记号。简谱的调号一般是用 1 等于 A、B、C、D、E、F、G 来表示,如 1=C 则表示该简谱是 C 调来记谱,图一中的 1=D 表示 D 调,不同调号和 C 调的对应关系如下图

频率	440	494	523	587	659	740	831	880	988
	A1	B1	С	D	Е	F	G	Α	В
C 调	低 6	低 7	1=C	2	3	4	5	6	7
A 调	1=A1								
B调		1=B1							
D调				1=D					
E调					1=E				

表 1 不同调号主音频率

如果要表示升(降)号的调,则在字母前加#(b)号,升调表示比原音级高一个半音,降调同理。在十二平均律中,半音是构成音乐的最小单位,因此各基本音级之间相隔的距离并不平均,十二个半音构成了有八个基本音级的音列。大调音阶各音之间的关系是全全半全全全半。(简言之,除 34 和 7 I 之间属于半音,其他的全音。1 到 i 间加起来共12 个半音)。图 4 为其他音调对应 C 调的频率。

各音调与C调对照表

A调	音名	C调	音名
	1	低音	6
	2	100 10	7
	3		1#
低音	4		2
	5		3
	6	中音	4#
	7		5#
	1		6
	2		7
	3	高音	1#
中音	4		2
	5		3
	6		4#
	7		5#
高音	1		6

B调	音名	C调	音名
	1	低音	7
	2		1#
	3		2#
低音	4		3
	5	中音	4#
	6		5#
	7		6#
	1		7
	2		1#
	3		2#
中音	4		3
	5	高音	4#
	6		5#
	7		6#
高音	1		7

各音调与C调对照表

D调	音名	C调	音名
	1		2
	2		3
	3	Art. vir.	4#
低音	4	低音	5
	5		6
	6		7
	7	中音	1#
	1		2
	2		3
	3		4#
中音	4		5
	5		6
	6		7
	7	高音	1#
高音	1		2

E调	音名	C调	音名
	1		3
	2		4#
	3	低音	5#
低音	4		6
	5		7
	6		1#
	7	中音	2#
	1		3
	2		4#
	3		5#
中音	4		6
	5		7
	6	高音	1#
	7		2#
高音	1		3

各音调与C调对照表

F调	音名	C调	音名
	1		4
	2	低音	5
	3	以目	6
低音	4		7b
	5		1
	6		2
	7	中音	3
	1		4
	2		5
	3		6
中音	4		7b
	5		1
	6	***	2
	7	高音	3
高音	1	1 1	4

G调	音名	C调	音名
	1		5
	2	低音	6
	3		7
低音	4		1
	5		2
	6		3
	7	中音	4#
	1		5
	2		6
	3		7
中音	4	高音	1
	5		2
	6		3
	7		4#
高音	1		5

图 4. 不同调号对应 C 调音级

MATLAB 练习 2: 在 2.1 函数的基础上,编写函数

function freq = num2freq(num, scale)

% num为输入数字音符, freq为输出的频率, scale 为调号

计算 A-G 调的频率。

2.3 音符长短

简谱中,音的长短是在基本音符的基础上加短横线、附点表示的。

※)短横线的用法有两种:写在基本音符右边的短横线叫增时线。增时线越多,音的时值就越长。

不带增时线的基本音符叫四分音符,每增加一条增时线,表示延长一个四分音符的时间。 写在基本音符下面的短横线叫减时线。减时线越多,音就越短,每增加一条减时线,就表示缩短为原音符音长的一半。

※)写在音符右边的小圆点叫做附点,表示延长前面音符时值的一半。附点往往用于四分音符和少于四分音符的各种音符。带附点的音符叫附点音符。

3 生成不同频率波形

在 MATLAB 中, 生成特定频率的波形一般用三角函数。

```
fs = 8192;
x = linspace(0, 2 * pi, fs);
y = sin(x)
```

以上代码生成了一个频率为1的正弦波。

使用 sound 函数播放 (用 help 命令了解 sound 函数用法) sound(y, fs);

你会发现,什么都听不到,因为,人类听了频率范围是 20-20k Hz. 上面产生的正弦波频率太小了。将代码改成

```
fs = 8192;
x = linspace(0, 2 * pi, fs);
y = sin(440*x);
plot(x,y);
axis([0,2*pi,-2,2]);
sound(y, fs);
```

你会听到一个持续1秒的'du'的声音。波形如下图所示(右图为放大后):

如果需要调整持续时长,则要增加x长度。

rhythm = 5;

x = linspace(0, 2 * pi * rhythm, fs * rhythm);

使用 sound 函数播放,你会听到一个持续 5 秒的'du'的声音。2.3 中介绍的符号决定了音乐中某个音符持续的时长,对应在上面代码中的 **rhythm**,以 4/4 拍为例,每个音符持续时间设为 1/4 秒(可以自己定义),则延半拍(音符右边带小圆点)共持续 1/4+1/8 秒,一条减时线持续 1/8 秒,以此类推。

将数字简谱中的音符都转换成1-7表示的音级(频率),以及不同音级持续的时长,在使用上面介绍到的代码,生成每个音符对应的波形,将所有波形连接在一起,你将得到一段简单的音乐,你可以使用sound函数播放,也可以使用audiowrite函数(使用help命令了解其用法)将其写入音乐文件中。

MATLAB 练习 3 编写函数

function waves = gen_wave(tone, rhythm, fs,scale) %tone为数字音符,rhythm为节拍,即每个音符持续时长,fs为采样频率,scale为调号

将图1中的《天空之城》 数字简谱转换成波形文件。

4 包络衰减

考虑到乐器演奏时,振动会有衰减,不会以固定幅度持续振动,因此一个包络衰减函数能够更加真实的模拟音乐的产生:

waves = y.*exp(-x/(rhythm * 2* pi));

增加这样一行代码,对生成的波进行指数衰减,新的波形如下图所示:

当然,也有很多别的衰减函数或许能带来更加真实的听感,如线性衰减,平方衰减等。

MATLAB 练习 4: 尝试使用不同的衰减函数对 2 中输出结果进行处理,使用 sound 函数播放 并比较其听感,使用 plot 函数画出其波形并分析其播放效果,并选择其中你认为最好的。

5 泛音/不同乐器的音色区别

前面我们讲的乐谱中的音调都是指音乐的基频。而用乐器演奏音乐是,除了发出乐谱中的 基频声音外,由于乐器的发声原理,还产生数量不等的驻波。驻波是指,当一根琴弦两端 被固定时,我们拨动琴弦,琴弦振动部分的长度必须是半波长的整数倍,即,发出的声音 频率包含基频以及基频的整数倍谐频。

图 5. 驻波原理

所以乐器弹奏时会产生包括基频和若干整数倍频率的谐频,而主要的能量集中于基频。对于 2 倍、3 倍、4 倍、5 倍······的谐频,这些谐频的能量比例对于不同乐器各不相同,如果我们调整这个比例,将产生音色完全不同的声波:

fs = 8192;

```
rhythm = 1;
freq = 2;
y = 0.8*sin(freq * x)+0.1*sin(2*freq *
x)+0.05*sin(3*freq * x)+0.025*sin(4*freq * x);
%waves = y.*exp(-x/(rhythm * 2* pi));
plot(x,y);
axis([0,2*pi,-2,2]);
```

如果用上面这段程序来产生乐曲,得到的新的波形如图所示,使用 sound 函数播放,你会发现,其音色明显与 2 中不同。

MATLAB 练习 5: 在 3 的基础上,尝试不同的谐波能量比例,用 plot 分析其波形以及频谱波形,并分析产生的音乐的音色差别。选择你喜欢的音色,将图 1 中的《天空之城》或者你喜欢的其他音乐转换成 wav 格式的音乐。

6 实验要求

- 1. 完成 MATLAB 练习 1-5,包括代码,结果,观察,分析等。
- 2. 完成完整的 代码(包含音符频率计算(num2freq),单个音符波形数据生成(gen_wave),整个简谱波形数据生成(gen_music)共三个函数文件,以及将波形数据保存成音乐文件(建议 wav 格式)的脚本文件),从一份简谱生成一段音乐数据,尝试调整代码中的包络衰减、谐波能量比例等,并分析其对听感的影响,尝试模拟某种乐器的声音,并给出结果分析。
- 3. 提交文件清单: 1) pdf 格式实验报告一份,包含代码,图片(非必须)以及分析过程。2)源代码压缩包,包含上文提到的三个函数和一个脚本文件。简谱数据文件以及最终保存下来的音乐文件。