Questão 1

Resposta salva

Vale 6,00 ponto(s).

Para se reduzir o efeito de "canalização", caracterizada pela implantação mais profunda em determinadas direções cristalográficas, a implantação iônica deve ser realizada a um ângulo crítico com relação à orientação do cristal, segundo a equação:

$$\Psi = 9.73^{\circ} \sqrt{\frac{Z_i Z_t}{E_0 d}}$$

Onde Z_i e Z_t são os números atômicos das espécies iônicas, i, e alvo, t (ver tabela periódica abaixo), E_0 é a energia incidente (em KeV) e d é o espaçamento atômico mínimo ao longo da direção de implantação do íon (em Å).

- a) Estime o ângulo crítico de implantação de P em um cristal de Si (100) a 100 KeV. Considere d=3,8 Å.
- b) Com base no gráfico abaixo, para o Si (100), determine a espécie iônica (elemento químico) implantada.

Tabela periódica:

La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103

a) Psi = 9,73° * raiz((Zi*Zt) / (E0 * d)) = 9,73° * raiz	((15 * 14) / (100keV * 3,8)) = 7,23°
b) para 100keV, ângulo crítico = 4º	
Logo: Zi = ((4,2/9,73)^2 * E0 * d) / Zt = ((4,2/9,73)^ (número atômico B, Boro)	2 * 100 * 3,8) / 14 = 5,05 = 5
Caminho: p	

◄ Notas P1

Seguir para... 🗸

Prova 3 ►

Questão 2

Resposta salva

Vale 4,00 ponto(s).

Cite uma vantagem e uma desvantagem de cada um dos processos para produção de filmes finos/camadas:

- a) CVD Deposição química por vapor
- b) MBE Epitaxia por feixe molecular

a) CVD - deposição química por vapor

O processo de CVD, embora possua reatores comerciais complexos, possui a vantagem de ser um processo com técnica mais conhecida sendo mais utilizado. No entanto, uma desvantagem são os compostos tóxicos produzidos, como gases de ácido clorídrico, tetrahidreto de silício e hidrogênio, os quais devem ser tratados no fluxo de produção.

b) MBE - Epitaxia por feixe molecular

o processo MBE é mais preciso em termos de produção submicrométrica, com alto controle de variáveis como temperatura, pressão e taxa de fluxo, o que assegura um maior padrão na produção de camadas, com melhor estabilidade e repetibilidade, especialmente adequado para dispositivos de alta frequência/velocidade de alteração de concentração de dopantes entre substrato e camada epitaxial. Contudo uma desvantagem é o alto custo em máquinas para aquecimento e ultra-vácuo, sendo, de mesmo modo, uma técnica menos conhecida em relação ao CVD.

Caminho: p

■ Notas P1

