General Chemistry I

단원	Ch 21. Structure and Bonding in Solids
학습 주제	Unit cell and its physical properties

1 Cohesion in Solids

1. ionic solids

구분	ZnS형 구조	NaCl형 구조	CsCl형 구조	CaF ₂ 형 구조
관용명	<u>섬아연광</u> 구조	<u>염화 소듐</u> 구조	<u>염화 세슘</u> 구조	<u>형석</u> 구조
배위	4 : 4배위	6 : 6 배위	8 : 8 배위	8 : 4 배위
극한 반지름비 (γ)	$0.225 \le \gamma \le 0.414$	$0.414 \le \gamma \le 0.732$	$\gamma \ge 0.732$	$\gamma pprox 0.8$
주격자	면심 입방	면심 입방	단순 입방	단순 입방
보조 격자	면심 입방	면심 입방	단순 입방	단순 입방
채워지는 틈새 자리	사면체 틈새 자리의 절반 (같은 방향)	팔면체 틈새 자리	육면체 틈새 자리	사면체 틈새 자리
그림	Zn s	Nat Oct	Cs+ Ct-	○ Ca ²⁺ ○ F-

- 2. Metallic Solids
- 1 Drude model
- ② 고체는 양으로 대전된 <u>금속 이온의 고정된 배열</u>로 간주하고, 각 금속 이온들은 결정 격자의 한 자리에 편재되어 있다. 이 고정된 이온들은 고체의 각 원자에 의해 제공되는 이동성 <u>전자의 바다</u>들에 의해 둘러싸여 있으며, 일련의 전자의 밀도는 양으로 대전된 이온의 수와 같으므로 <u>금속은 전기적으로 중성</u>이다.
- ⑤ 양자역학적 해석: 많은 원자에 의해 atomic orbital은 다양한 위상을 만들며 splitting된다. 금속의 경우 일 련의 결정 구조를 이루면서 준위가 overlap되어 <u>매우 촘촘한 간격의 띠(에너지띠: band)</u>를 만들며, <u>이러한</u> 전자는 모두 비편재화되어 있어 전자의 바다를 이룬다. (MOT를 통한 설명)

Schottky결함

2 Defects and Amorphous Solids

- 1. 모든 고체는 결함을 가진다.
- ① 결함의 원인
 - 내성 결함(intrinsic defect) : 순수한 물질에게서 나타나는 결함
 - 외성 결함(extrinsic defect) : 불순물로 인해 나타나는 결함
- ② 결함의 위치
 - 점결함(point defect) : 단일 자리에서 일어나는 결함
 - <mark>확장된 결함(extended defect)</mark> : 0차원(점)이 아닌 <u>n**차원의 규모**로</u> 나타나는 결함
- 2. 내성 점결함
- ① Schottky defect : 원자나 이온이 정상 자리에서 없어지는 것
 - 낮은 농도에서 NaCl과 같이 순수한 고체에서 나타난다.
- ② Frenkel defect : 원자나 이온이 틈새 자리(구멍)로 이동한 점결함
 - 섬유아연광/섬아연광 구조(배위수가 8:4/4:8)에서 많이 나타난다.
 - ∵ 배위수가 낮고, 열린 구조가 틈새 원자를 수용할 수 잇는 자리를 갖기 때문
- 3. 외성 점결함
- ① 혼입물 : 구조에 원래 있던 원소의 0.1~5%로 작은 수준으로 치환하는 것
- ② <u>색중심</u> : 복사선을 쪼이거나 화학적 처리에 의해 노출된 고체의 IR, 가시광선, UV 흡수 특성이 변형된 결함을 이르는 총칭
 - F중심 : 할로젠화 이온 빈자리에서 전자로 구성된 색중심
 - 생성) x-ray에 노출시켜 전자를 음이온 빈자리로 이온화시킨다.

전자 주위 이온의 편재화된 환경에서 전자의 들뜸으로 발생된다.

- 4. 비화학양론적 화합물
- ① 정의 : 다양한 조성을 보이나 구조의 형태가 같은 물질 ex) 일산화 철
- ② Vegard 규칙: <u>치환형 고용체(Substitutional Solid Solution)</u>는 존재하는 용매 원자(Solvent atom) 와 치환용 불순원자(Dopant)의 성분비에 의해 선형적으로 격자상수와 결정구조(즉, 원자분포), 밴드 갭이 결정된다. 이를 이성분계(binary system)에 적용하여 수식으로 나타내면 아래와 같은데, 이를 <mark>베가드 법칙 (Vegard's Law)라고 한다</mark>.

Vegard's Law - Lattice Parameter (for Binary System)

3 Lattice Energies of Crystals

1. 분자성 결정의 격자 에너지

분자성 고체의 격자 에너지는 간단한 Lennard-Jones potential을 사용하여 추측할 수 있다.

$$V_{LJ}(R) = 4 \epsilon \left(\left(\frac{\sigma}{R} \right)^{12} - \left(\frac{\sigma}{R} \right)^{6} \right)$$

1 atm에서 총 퍼텐셜 에너지를 구하기 위해 모든 쌍의 원자와 분자를 더한다.

$$V_{tot} = \frac{1}{2} \sum_{i=1}^{N_A} \sum_{j=1}^{N_A} V_{LJ}(R_{ij})$$

 $ho_{ij} = R_{ij}/R_0$ 로 정의하고, 대입하여 정리하자.

$$V_{tot} = \frac{N_{\!A}}{2} (4\,\epsilon) \left(\sum_j \! \left(\frac{\sigma}{\rho_{ij} R_0} \right)^{\!12} - \sum_j \! \left(\frac{\sigma}{\rho_{ij} R_0} \right)^{\!6} \! \right) = 2\epsilon \, N_{\!A} \! \left(\! \left(\frac{\sigma}{R_0} \right)^{\!12} \! \sum_j (\rho_{ij})^{-12} - \! \left(\frac{\sigma}{R_0} \right)^{\!6} \! \sum_j (\rho_{ij})^{-6} \right)$$

 R_0 에 대해 앞의 식을 미분하여 그 도함수가 0이 되도록 정해 극값을 구하자. 정리하면

$$R_0 = 1.09 \,\sigma$$

대입하여 구하면 $V_{tot} = -8.61 \, \epsilon \, N_{\!A}$

원자와 분자가 완전히 분리될 때 해당하는 퍼텐셜 에너지는 0이다. 격자 에너지는 이 두 값의 차이이며 양의 수치이다.

$$Lattice\ energy = -\ V_{tot} = 8.61 \,\epsilon\, N_{\!A}$$

2. 이온성 결정의 격자 에너지 - Madelung Constant

[Problem 21.6] Madelung Constant을 구하는 과정을 쓰시오.

[Problem 21.7] 일직선 배열에 전하가 동일한 양이온과 음이온이 연속적으로 반복되고 있다. 일련의 선형 격자의 마델룸 상수를 구하시오.

3. Born-Haber cycle

[Problem 21.8] 물음에 답하시오.

(1) 다음은 Na와 Cl에 대한 열역학적 자료이다. 빈칸을 채우시오.

원소 또는 화합물	열역학 에너지	열역학적 변화 (물질의 상태도 정확히 표시할 것)	값 (kJ/mol)
Na	1차 이온화에너지		496
	2차 이온화에너지		4562
	승화열		108
CI	전자친화도	$Cl(g) +e^- \rightarrow Cl^-(g)$	-349
	해리에너지	$Cl_2(g) \rightarrow 2Cl(g)$	240
NaCl(s)	생성엔탈피		-411

(2) 빈칸을 채우고, NaCl의 격자 에너지를 구하시오.

■ Problem Set 16: 예제 + 21.27, 21.33, 21.37, 21.39, 21.41, 21.60