WARNING: MISBEHAVIOR AT EXAM TIME WILL LEAD TO SERIOUS CONSEQUENCE.

SCUT Final Exam

《Calculus II》 Exam Paper A

Notice:

- 1. Make sure that you have filled the form on the left side of seal line.
- 2. Write your answers on the exam paper.
- 3. This is a close-book exam.
- 4. The exam with full score of 100 points lasts 120 minutes.

Question No.	1-6	7-17	18	Sum
Score				

- —. Please fill the correct answers in the following blanks. $(3' \times 6 = 18')$
- 1. Let L be the circle line $x^2 + y^2 = 9$ with anticlockwise, then the line integral

$$\oint_L (2xy - 2y) dx + (x^2 - 4x) dy = \underline{\qquad}$$

2. The divergence of the vector field $\vec{A} = e^{xy}\vec{i} + \cos(xy)\vec{j} + xz^2\vec{k}$ is ______.

The curl of the vector field $\vec{B} = (2z - 3y)\vec{i} + (3x - z)\vec{j} + (y - 2x)\vec{k}$ is ______.

- 3. If $\vec{a} = \{-1, 2, 2\}, \vec{b} = \{2, -1, 2\}, \text{ then } (\vec{a} \vec{b}) \times (\vec{a} + \vec{b}) = \underline{\qquad}$
- 4. The area of the region inside the cardioid $r = a(1 + \cos \theta)$ is _______
- 6. Interchange the integration order, we have $\int_{0}^{2} dy \int_{y^{2}}^{2y} f(x, y) dx = \underline{\qquad}.$

- \equiv Finish the following questions. (7-17: $7' \times 11 = 77'$; 18: $5' \times 1 = 5'$)
- 7. Find the convergence region and sum function of power series $\sum_{n=0}^{\infty} \frac{x^n}{n+1}$.

8. Expand the function $f(x) = \ln \frac{1+x}{1-x}$ into power series of x.

9. Let $\begin{cases} x = \ln\left(\sin t + \sqrt{1 + \sin^2 t}\right) \text{ and } y \text{ is a function of } x, \text{ find } \frac{d^2 y}{dx^2}. \end{cases}$

10. Let G(u,v) be differentiable and G(u,v)=0, $u=x^2+yz, v=y^2+xz$ making that z is a differentiable function for x,y, prove that $(2y^2-xz)\frac{\partial z}{\partial x}+(2x^2-yz)\frac{\partial z}{\partial y}=z^2-4xy$.

11. Let
$$f(x, y) =\begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & x^2 + y^2 \neq 0\\ 0 & x^2 + y^2 = 0 \end{cases}$$
.

Prove that: 1) $f_x(0,0), f_y(0,0)$ exist; 2) f(x,y) is not differentiable at (0,0).

12. Find
$$\iint_{D} |y-x^2| dxdy$$
, $D: -1 \le x \le 1, 0 \le y \le 1$.

13. Find the area of the surface $S = \{(x, y, z) | x^2 + y^2 + z^2 = a^2 \}$.

14. Find the mass of $\Omega = \{(x, y, z) | x^2 + y^2 + z^2 \le a^2 \}$ with the density $x^2 + y^2 + z^2$.

15.
$$\iiint_{\Omega} \sqrt{x^2 + y^2} \, dv \text{ where } \Omega \text{ is bounded by } x^2 + y^2 = 16, y + z = 4, z = 0.$$

16. Find the minimum distance between the original point (0,0) with the points of the curve

$$x^2 + xy + y^2 + 2x - 2y - 12 = 0$$
.

17. Determine whether $(4x^3 + 9x^2y^2)dx + (6x^3y + 6y^5)dy$ is conservative, if yes please find u(x, y) such that $du(x, y) = (4x^3 + 9x^2y^2)dx + (6x^3y + 6y^5)dy$.

18. Find $\int_{\bar{A}\bar{B}} [x\varphi(u) + y^2] dx + [y\varphi(u) + 2xy] dy$, if $\varphi(u)$ has continuous derivatives, and $u = x^2 + y^2$, where AB is any smooth curve in the first quadrant connecting points A(5,0) and B(3,4).