PROBLEM 2

$$d(A,C) = |D-1|+|1|-0| = 2.1$$

$$d(A,C) = |D-1|+|1|-0| = 2.1$$

$$d(A,C) = |D-1|+|1-0.9| = 1.2$$

$$d(A,D) = |D-1|+|1-0.9| = 1.2$$

Distance Marix

		n	\subset	0
	A	B-T	2.1	1.2
	0 /	[-]	21	
A			1	1.9
_		0	1	
3	1.1.1		10	10.9
C	2.1			
-	- Andrewson Control of the Control o	1.9	10.9	10
	1-2	1		

Chastering using duex

The closest pair is (C, D) with d(C,D)=0-9. Hence, we update the distance matrix using The Maximum distance

dmex (2A3, 2C,D3) = mex (L(M,C), d(A,D)) = mex (2·1,1·2) = 2·1

dmax ({B3, {c, D3}) = max (d(B,C), d(B,D)) = max (1,1.9) = 1.9 updated distance matrix becomes

-	4	B	{c, D}	
A	0	[-]	2.1	
В	10	0	1.9	and when a graduate the second of
{C, D}	2.1	1.9	0	

The next pair with Smallest distance is (A, B) J(A,B)=1.1, hence we merge A and B into [A,B] dnex ({A,B}, {C,D}) = Max(d(A,C,D), d(B,C,D)) = Max (2.1,1.9) = 2.1

Updated distance matrix becomes

_	{A,B}	{c, 0}	
[AB]	0	2.1	
{ C, 0}	2.1	0	

We finally merge [AiB] water and [C, D]
one cluster

domin ($\{A3, \{C, D\}\}\) = min (d(A, C), d(A, D))$ = min (2.1, 1.2) = 1.2 = min (2.1, 1.2) = 1.2 = min (l(B, C), d(B, D))= min (l(1.1.9) = 1

updas	ed mat	n'x be	eomes	
	A	B	& GD3	
A	0	1-1	1-2	
B	6	0	1	
Ecoly	1.2	Î	0	
				1

The next closest pair is (\$83, \$6,03) with d (\$83, \$6,03) = 1

hence we marge them into EC, B, B3

dmin ({A3, {B, C, D3}) = min(d(A,B),d(A,C),d(A,D)) = min(1.1,2.1,1.2)=1.1

The up dated distance matrix now secomes

(min b	{A3	{B, C, O}
{H}		1, 10
{B,C,D}	= (9,7)	
	and the second	

EAJ and EB, C, DJ Con now be merged into one chuster

C. Complete linkage tends to Geate more Compact Chesters because at looks for maximum chesters because at looks for maximum distance (dmax) between chusters, often leading to more balanced duston and Sphanical Shapes.

Single linkage on the other hand, con create long and elaborate clusters since the only considers minimum distance (dmin). It only considers minimum distance (dmin). This can result in chaining effects where clusters can merge over tog a long destance

In addition, Single linkage is generally sensitive 6) to noise and outliers because it can connect distents points if they are the closest to any member of other chapes MAN CONTRACTOR AND STREET TO STREET OF THE S