Swept-Angle Synthetic Wavelength Interferometry

Alankar Kotwal

Recap: SIGGRAPH 2020 paper!

Fig. 4. Implementation of interferometry with coded mutual intensity. The setup is a modified Michelson interferometer that includes an illuminatio component with amplitude modulation (green), and a reference arm with phase modulation (blue). (a) Setup schematic, where the dotted thick lines indicat the Fourier planes where phase and amplitude modulation take place. (b) Photograph of our physical prototype.

Figure 4(a) shows a schematic of our design, which we use throughout this section for reference. Figure 4(b) shows a photograph of a physical prototype. In the supplement we provide details about constructing, aligning, and operating the setup.

Constructing anginging any operating one west proposed and application of the configuration of creating monochromatic illumination with complex emission such that fig. (2014). The such that fig. (2014) and the configuration of the configura

We overcome both challenges by using the setup of Figure 4(a). We use a two-dimensional MEMS insure to steer a collimated coherent laser beam, which is then focused by a scan lens at the focal plane of the main allimination lens. As the direction of the beam incident on the scan lens changes, the focus post scans the focal plane in a programmable manner, and this scan can take place within exposure. Effectively, this scanning scheme corresponds to using time-neutrality-king is implement the integration over θ in Equation (7). To ensure temporal coherence, we use a single-ioniginalizational moderate control of the focus of the focal plane where $A(\theta)$ is non-zero, and stays at each location for an amount of time proportional to $A(\theta)$.

In practice, not all scanning patterns are realizable, both because of acceleration and speed limits imposed by the MEMS mirror, and because the function $A(\theta)$ can be spatially discontinuous, requiring the focused point to instantaneously "jump" from one location θ to another. To address this issue, we place an amplitude electro-optic modulator (EOM) between the laser source and the steering mirror, which we synchronize with the mirror Mirror steering is used to seen only locations of within the support of A(0) (or some superset of this support, as dictated by speed and acceleration limits), and the EOM is used to attenuate the beam at each such location so that the effective overall modulation matches A(0). As both the EOM and mirror support MHz operation, this scaming process can take place within exposure. Even though it does not achieve theoretical pointmility, the resulting configuration remains significantly more light efficient than the alternative based on an amplitude SLM, and at the same time nearures temporal colverance.

We conclude this discussion with two remarks. First, the configutation we use for amplitude modulation is equivalent to using a laser projector coupled with a scan lens. Unfortunately, the laser diodes in commercial laser projectors have temporal coherence lengths of a few millimeters, making it necessary for us to implement a custom system incorporating a single-longitudinal-mode laser. Second, we can place the above light efficiency considerations within the framework of O'Toole et al. [2015]. Unaid their terminology, when A(θ) can be realized without an EOM through scanning patterns of the MMSS mirror has mapfluide modulation configuration of Figure 4(a) is equivalent to an inparticular projector. When the EOM is necessary, experience is used to project in the EOM is necessary to see its order to be a consideration of the EOM is necessary.

Phase modulation. We additionally need to design an optical configuration for implementing the phase modulation & Unlike with amplitude modulation, which can be applied directly on the illumination incident on both arms of the interferometer, the phase modulation needs to be applied only on the reference arm. We achieve this using the optical configuration shown in Figure 4(a) A phase SLM is placed at the focal plane of a lens in the reference arm, and projects a phase modulation pattern equal to Φ . Unlike with amplitude modulation, the use of the phase SLM does not result in light loss, as phase SLMs perfect (most of) the energy incident on them. We note that the combination of the collimation lens with

ACM Trans. Graph., Vol. 39, No. 4, Article XX. Publication date: July 2020.

https://tinyurl.com/CoherentProbing

Recap: spatial probing result

image from a regular camera

image with direct-only probing

Fiber-based optical coherence tomography

Full-field optical coherence tomography

Effects of global illumination

Effects of global illumination

With direct-only probing

Measurements

4-bucket positions

Post-processing measurements

speckle

with Gaussian blurring

Bilateral filtering

speckle

with bilateral filtering

Depth range and resolution

range
depth resolution
measurements

translation stage scan length
user-specified (coherence length)
range / resolution (x 2, empirically)

synthetic wavelength tied into range

16

Results: macroscopic scenes

Results: microscopic scenes

Results: microscopic scenes

Results: microscopic scenes

Results: \$20 bill eagle

Results: depth accuracy

type	window	with direct-only probing			without direct-only probing		
	W	MAE	MedAE	RMSE	MAE	MedAE	RMSE
micro- scopic (400 μm)	5	6.5	4.8	8.2	15.2	13.2	18.9
	11	4.1	3.6	5.1	9.5	9.5	11.2
	15	1.7	1.6	2.0	8.5	7.3	10.5
	21	1.3	1.0	1.6	8.6	6.7	11.1
macro- scopic (16 mm)	5	381.3	300.3	471.4	1130.4	1351.0	1267.2
	11	137.6	120.5	167.1	490.4	501.9	577.9
	15	62.7	50.9	78.7	479.3	412.2	609.5
	21	60.9	49.6	81.7	484.9	334.4	605.7

microscopic range

macroscopic range

Depth range and resolution

range
depth resolution
measurements

400 μm micro / 16 mm macro

1 μm micro / 50 μm macro

800 micro / 640 micro

16

Results: robustness to environmental conditions

scene

Extending depth range

Extending depth range

scene

OCT

wrapped SWI depth

unwrapped SWI depth

Swept-Angle Synthetic Wavelength Interferometry

Alankar Kotwal