IONIZATION CONSTANT OF WATER

Serguei N. Lvov and Allan H. Harvey

This table gives values of p $K_{\rm w}=-\log_{10}(K_{\rm w})$, where $K_{\rm w}$ is the equilibrium constant of the reaction $2{\rm H_2O}={\rm H_3O^+}({\rm aq})+{\rm OH^-}({\rm aq})$. $K_{\rm w}$ is defined as $K_{\rm w}=a_{{\rm H_3O^+}}a_{{\rm OH^-}}/a_{{\rm H_2O}}^2$, where a_i is the dimensionless activity of species i. The activities are on the molality basis for ions and mole fraction basis for water molecules. It is assumed that the activity of ${\rm H_3O^+}({\rm aq})$ is the same as the activity of ${\rm H^+}({\rm aq})$, so that $K_{\rm w}$ is numerically equal to $a_{{\rm H^+}}a_{{\rm OH^-}}/a_{{\rm H_2O}}^2$, the equilibrium constant for the ionization reaction of water, ${\rm H_2O}={\rm H^+}({\rm aq})+{\rm OH^-}({\rm aq})$, that is most commonly used in the literature. Values in the table

are calculated using an analytical equation given in Refs. 1 and 2 where $K_{\rm w}$ is presented as a function of temperature and density from 0 °C to 800 °C and 0 g cm⁻³ to 1.25 g cm⁻³.

References

- 1. International Association for the Properties of Water and Steam, *Release on the Ionization Constant of H_2O* (2007), available from www. iapws.org.
- 2. Bandura, A.V., and Lvov, S.N., J. Phys. Chem. Ref. Data 35, 15, 2006.

Pressure,	Temperature, °C										
MPa	0	25	50	75	100	150	200	250	300		
$0.1 \text{ or } p_s$	14.946	13.995	13.264	12.696	12.252	11.641	11.310	11.205	11.339		
25	14.848	13.908	13.181	12.613	12.165	11.543	11.189	11.050	11.125		
50	14.754	13.824	13.102	12.533	12.084	11.450	11.076	10.898	10.893		
75	14.665	13.745	13.026	12.458	12.006	11.364	10.974	10.769	10.715		
100	14.580	13.668	12.953	12.385	11.933	11.283	10.880	10.655	10.568		
150	14.422	13.524	12.815	12.249	11.795	11.135	10.713	10.458	10.327		
200	14.278	13.390	12.687	12.123	11.668	11.000	10.564	10.289	10.131		
250	14.145	13.265	12.567	12.004	11.549	10.876	10.430	10.140	9.963		
300	14.021	13.148	12.453	11.892	11.437	10.760	10.306	10.005	9.814		
350	13.906	13.037	12.346	11.786	11.331	10.651	10.191	9.881	9.679		
400	13.797	12.932	12.243	11.685	11.230	10.548	10.083	9.766	9.555		
500	13.595	12.736	12.052	11.496	11.042	10.356	9.884	9.557	9.332		
600	13.411	12.556	11.875	11.322	10.868	10.181	9.703	9.369	9.135		
700	13.240	12.389	11.710	11.159	10.705	10.018	9.537	9.197	8.956		
800	13.080	12.233	11.556	11.006	10.553	9.865	9.381	9.037	8.791		
900	12.930	12.085	11.410	10.861	10.410	9.721	9.236	8.888	8.638		
1000	12.788	11.946	11.272	10.725	10.273	9.585	9.098	8.748	8.495		

Pressure,	Temperature, °C									
MPa	350	400	450	500	600	700	800			
$0.1 \text{ or } p_s$	11.920	47.961	47.873	47.638	46.384	43.925	40.785			
25	11.551	16.566	18.135	18.758	19.425	19.829	20.113			
50	11.076	11.557	12.710	14.195	15.621	16.279	16.693			
75	10.802	11.045	11.491	12.162	13.507	14.301	14.791			
100	10.600	10.744	11.005	11.381	12.296	13.040	13.544			
150	10.295	10.345	10.464	10.642	11.117	11.613	12.032			
200	10.062	10.063	10.119	10.220	10.513	10.853	11.171			
250	9.869	9.839	9.859	9.917	10.112	10.360	10.609			
300	9.702	9.651	9.646	9.677	9.810	9.998	10.199			
350	9.554	9.487	9.465	9.476	9.567	9.712	9.877			
400	9.420	9.341	9.305	9.302	9.361	9.475	9.613			
500	9.182	9.086	9.031	9.007	9.024	9.094	9.191			
600	8.974	8.866	8.798	8.761	8.749	8.790	8.861			
700	8.787	8.670	8.593	8.546	8.514	8.536	8.587			
800	8.616	8.493	8.409	8.354	8.308	8.314	8.352			
900	8.458	8.330	8.240	8.180	8.122	8.117	8.144			
1000	8.311	8.178	8.084	8.019	7.952	7.939	7.957			

Note: Pressure for first row is 0.1 MPa at t < 100 °C and $t \ge 400$ °C, or p_s (saturated liquid) for 100 °C $\le t \le 350$ °C