Модель гармонических колебаний

Любимов Дмитрий Андреевич Н Φ Ибд-01-20 1

4 марта, 2022, Москва, Россия

¹Российский Университет Дружбы Народов

Цели и задачи работы

Цель лабораторной работы

Целью моей работы является изучения уравнения гармонического осциллятора.

Задание к лабораторной работе

- 1. Построить решение уравнения гармонического осциллятора без затухания
- 2. Записать уравнение свободных колебаний гармонического осциллятора с затуханием, построить его решение. Построить фазовый портрет гармонических колебаний с затуханием.
- 3. Записать уравнение колебаний гармонического осциллятора, если на систему действует внешняя сила, построить его решение. Построить фазовый портрет колебаний с действием внешней силы.

Процесс выполнения лабораторной

работы

Теоретический материал

Движение грузика на пружинке, маятника, заряда в электрическом контуре, а также эволюция во времени многих систем в физике, химии, биологии и других науках при определенных предположениях можно описать одним и тем же дифференциальным уравнением, которое в теории колебаний выступает в качестве основной модели. Эта модель называется линейным гармоническим осциллятором. Уравнение свободных колебаний гармонического осциллятора имеет следующий вид:

$$\ddot{x} + 2\gamma \dot{x} + \omega_0^2 = 0$$

Теоретический материал

При отсутствии потерь в системе ($\gamma=0$) получаем уравнение консервативного осциллятора энергия колебания которого сохраняется во времени.

$$\ddot{x} + \omega_0^2 x = 0$$

Для однозначной разрешимости уравнения второго порядка необходимо задать два начальных условия вида

$$\begin{cases} x(t_0) = x_0 \\ \dot{x}(t_0) = y_0 \end{cases}$$

Теоретический материал

Уравнение второго порядка можно представить в виде системы двух уравнений первого порядка:

$$\begin{cases} x = y \\ y = -\omega_0^2 x \end{cases}$$

Начальные условия для системы примут вид:

$$\begin{cases} x(t_0) = x_0 \\ y(t_0) = y_0 \end{cases}$$

Постройте фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев

- 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы $\ddot{x}+1.5x=0$
- 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы $\ddot{x} + 0.8\dot{x} + 3x = 0$
- 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы $\ddot{x} + 3.3\dot{x} + 0.1x = 0.1\sin3t$

На интервале $t \in [0; 46]$, шаг 0.05, $x_0 = 0.1$, $y_0 = -1.1$

Случай 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы

Рис. 1: График решения для случая 1

OpenModelica

Рис. 2: График решения для случая 1

Случай 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы

Рис. 3: Фазовый портрет для случая 1

OpenModelica

Рис. 4: Фазовый портрет для случая 1

Случай 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы

$$\ddot{x} + 0.8\dot{x} + 3x = 0$$

Рис. 5: График решения для случая 2

OpenModelica

Рис. 6: График решения для случая 2

Случай 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы

$$\ddot{x} + 0.8\dot{x} + 3x = 0$$

Рис. 7: Фазовый портрет для случая 2

OpenModelica

Рис. 8: Фазовый портрет для случая 2

Случай 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы

$$\ddot{x} + 3.3\dot{x} + 0.1x = 0.1\sin 3t$$

Рис. 9: График решения для случая 3

<u>OpenMode</u>lica

Рис. 10: График решения для случая 3

Случай 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы

Рис. 11: Фазовый портрет для случая 3

${\bf Open Modelica}$

Рис. 12: Фазовый портрет для случая 3

Выводы по проделанной работе

Вывод

Мной были построены решения уравнения гармонического осциллятора и фазовые портреты гармонических колебаний без затухания, с затуханием и также при действии внешней силы. Цель лабораторной работы выполнена.