

WHAT IS CLAIMED IS:

1. A compound having the structure:

(I)

wherein,

2

3

1

2

1

2

- 4 R¹ is a member selected from —H, —OH, and (=O);
- R² is a member selected from H, reactive functional groups, alkyl groups terminally substituted with a reactive functional group and internally substituted alkyl groups terminally substituted with a reactive functional group;
- Y is a metaber selected from —O—, —S— and—NH—; and
- 10 X^1 and X^2 are members independently selected from O and S.
 - 2. The compound according to claim 1, wherein R² is an internally substituted alkyl group terminally substituted with a reactive functional group.
 - 3. The compound according to claim 2, wherein the alkyl group is internally substituted with a functional group that is a member selected from —OH, (=O) and combinations thereof.
- 1 4. The compound according to claim/1, wherein the reactive 2 functional group is a member selected from —OR³, —NHR⁴, —COR⁵, —SH and
- $3 CH_2X^3$
- 4 wherein,
- OR³ is a member selected from hydroxy, alkyl sulfonate and aryl sulfonate groups;
- R⁴ is a member selected from H, C₁-C₆ alkyl, C₁-C₆ substituted alkyl, aryl and substituted aryl groups;
- R⁵ is a member selected from H, X³ and —OR⁶, wherein R⁶ a member selected from alkyl, substituted alkyl, aryl, substituted aryl,

11	heteroaryl, substituted heteroaryl, heterocyclyl and substituted	
12	heterocyclyl groups; and	
13	X^3 is a halogen.	
1	5. The compound according to claim 1, wherein the compound is a	
2	single stereoisomer.	
1	6. The compound according to claim 4, wherein R ³ is	
	—————————————————————————————————————	
2	Ö (V)	,
3	wherein,	
4	R ⁸ is a member selected from alkyl, substituted alkyl, aryl and substituted	
5	aryl groups.	
1	7. The compound according to claim 1, wherein the alkyl and the	
2	nternally substituted alkyl groups are members selected from C ₁ -C ₂₀ saturated straight-	
3	chain, C_1 - C_{20} saturated branched-chain, C_1 - C_{20} unsaturated straight-chain, C_1 - C_{20}	
4	unsaturated branched-chain alkyl and internally substituted alkyl groups.	
1	8. The compound according to claim 7, wherein the alkyl and	
2	internally substituted alkyl groups are members selected from C ₅ -C ₁₀ saturated straight-	
3	chain, C_5 - C_{10} saturated branched-chain, C_5 - C_{10} unsaturated straight-chain, C_5 - C_{10}	
4	unsaturated branched-chain alkyl and internally substituted alkyl groups.	
1	9. A compound according to claim 1, wherein R ² has the structure:	
2	(CH2)nR7 (III))
3	wherein,	
4	R ⁷ a reactive functional group; and	
5	n is a number from 1 to 20, inclusive.	
1	10. The compound according to claim 9, wherein n is a number from 2	
2	to 9, inclusive.	
1	11. A compound according to claim 1, wherein R ² has the structure:	

2 (CH₂)_qC(CH₂)_s—R⁷

(IV)

wherein

R⁷ is a reactive functional group; and
q and s are numbers independently selected from 1 to 20, inclusive.

- 1 12. The compound according to claim 11, wherein s is a number from 2 2 to 9, inclusive.
- 1 13. A pharmaceutical formulation comprising a pharmaceutically
 2 acceptable carrier and a compound according to claim 1, said reactive functional group of
 3 said compound being covalently bound to a biologically active agent.
- 1 14. The pharmaceutical formulation according to claim 13, wherein said biologically active agent is a member selected from antibiotics, immune stimulators and combinations thereof.
 - 15. A compound having the structure:

1

2

5

6

7

8

9

1

2

3

wherein,

$$\begin{array}{c|c}
H \\
N \\
O \\
O
\end{array}$$
(II)

4 R¹ is a member selected from H, OH, and (=O); and

R² is a member selected from H, reactive functional groups, alkyl groups terminally substituted with a reactive functional group and internally substituted alkyl groups terminally substituted with a reactive functional group, with the proviso that when R² is —OH, R¹ is a member selected from OH, and (=O).

16. The compound according to claim 15, wherein the reactive functional group is a member selected from —OR³, —NHR⁴, —COR⁵, SH and CH₂X³ wherein,

4	—OR ³ is a member selected from hydroxy, and a species such that —OR ³
5	is a leaving group;
6	R ⁴ is a member selected from H, C ₁ -C ₆ alkyl, C ₁ -C ₆ substituted alkyl, aryl
7	and substituted aryl groups;
8	R^5 is a member selected from H, halogen and $-OR^6$, wherein R^6 is
9	species such that —OR ⁶ is a leaving group; and
10	X^3 is a halogen.
1	17. The compound according to claim 16, wherein R ³ is
2	$ \begin{array}{c} $
3	wherein,
4	R ⁸ is a member selected from alkyl, substituted alkyl, aryl and substituted
5	aryl groups.
5	aryr groups.
1	18. The compound according to claim 16, wherein R^6 is a member
2	selected from alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted
3	heteroaryl, heterocyclyl and substituted heterocyclyl groups.
1	19. The compound according to claim 15, wherein the alkyl and the
2	internally substituted alkyl groups are members selected from C ₁ -C ₂₀ saturated straight-
3	chain, C_1 - C_{20} saturated branched-chain, C_1 - C_{20} unsaturated straight-chain, C_1 - C_{20}
4	unsaturated branched-chain alkyl and internally substituted alkyl groups.
1	20. The compound according to claim 19, wherein the alkyl and
2	internally substituted alkyl groups are members selected from C ₅ -C ₁₀ saturated straight-
3	chain, C_5 - C_{10} saturated branched-chain, C_5 - C_{10} unsaturated straight-chain, C_5 - C_{10}
4	unsaturated branched-chain alkyl and internally substituted alkyl groups.
1	21. A compound according to claim 15, wherein R ² has the structure:
2	(CH2)nR7 (III)
3	wherein,
4	R ⁷ is a reactive functional group; and
	<u></u>
	/1

502

n is a number from 1 to 20, inclusive.

- 1 22. The compound according to claim 21, wherein n is a number from
- 2 2 to 9, inclusive.
- 1 23. The compound according to claim 15, wherein R² is a member
- 2 selected from the group consisting of—COOH, —OH, —NH₂, and —SH.
- 1 24. The compound according to claim 21, wherein R⁷ is a member
- 2 selected from the group consisting of—COOH, —OH, —NH₂, and —SH.
- 1 5 25 H

A compound having a structure that is a member selected from:

 $\frac{1}{N}$

Z O O O T

- N Z
- $\bigcup_{O} \bigcup_{O} \bigcup_{O} \bigcup_{O} \bigcup_{O} \bigcup_{D} \bigcup_{n} Z$
- N OH Z

3 wherein,

2

- m is a number selected from 1 to 20, inclusive;
- n is a number from 0 to 20, inclusive; and
- 6 Z is a reactive functional group.
- The compound according to claim 25, wherein m and n are

and

- 2 numbers independently selected from 2 to 9, inclusive.
- 1 27. The compound according to claim 25, wherein Z is a member
- 2 selected from —NH₂, —COOH, —SH, and —OH.

$$R^9$$
 R^1
 X^1
(VI)

1

4 wherein,

1 2

3

7

8

1

2

3

1

2

1

2

3

5 R¹ is a member selected from —H, —OH, and (=O);

R⁹ is a member selected from alkyl groups and substituted alkyl groups;

X is a member selected from -O, -S and -NH;

 X^1 and X^2 are members independently selected from O and S.

- 29. The immobilized compound according to claim 28, wherein the solid support is a member selected from beads, particles, membranes, substantially planar surfaces and combinations thereof.
- 1 30. The immobilized compound according to claim 28, wherein the solid support comprises a member selected from silica, metal, plastic and combinations thereof
 - 31. The immobilized compound according to claim 28, wherein R⁹ comprises a spacer moiety situated between the molecule and the solid support.
- The immobilized compound according to claim 31, wherein the spacer moiety is selected from C₆-C₃₀ alkyl groups, C₆-C₃₀ substituted alkyl groups, polyols, polyethers, polyamines, polyamine acids, polysaccharides and combinations thereof.
- The immobilized compound according to claim 31, wherein the spacer moiety comprises a cleavable moiety.
 - 34. The immobilized compound according to claim 33, wherein the cleavable moiety is cleaved by a member selected from light, heat, oxidation, reduction, enzymatic action, hydrolysis and combinations thereof.

- The immobilized compound according to claim 34, wherein the cleavable moiety is a member selected from disulfides and esters.
 - **36.** A method for isolating a microbial receptor binding to a molecule comprising the formula:

$$\mathbb{R}^9$$
 \mathbb{R}^1
 \mathbb{R}^1
 \mathbb{R}^1
 \mathbb{R}^1
 \mathbb{R}^1
 \mathbb{R}^1

4 wherein,

- 5 R¹ is a member selected from —H, —OH, and (=O);
- R⁹ is a member selected from alkyl groups and substituted alkyl groups;
- 7 X is a member selected from —O—, —S— and—NH—;
- 8 X^1 and X^2 are members independently selected from O and S;
- 9 the method comprising:
- contacting a microbial preparation comprising the receptor with the
- immobilized compound according to claim **28**, thereby forming a complex between the receptor and the immobilized compound.
- The method according to claim 36, further comprising separating the complex from components of the microbial preparation not comprising the receptor.
- 1 38. The method according to claim 37, further comprising disrupting
- 2 the complex between the immobilized compound and the receptor, thereby separating the
- 3 receptor from the immobilized compound.
- 1 39. An immunogenic conjugate comprising a target component
- 2 comprising the structure:

4 wherein,

3

- 5 R¹ is a member selected from —H, —OH, and (=O);
- R⁹ is a member selected from alkyl groups and substituted alkyl groups;
- 7 X is a member selected from —O—, —S— and —NH—; and
- 8 X^1 and X^2 are members independently selected from O and S.
- 1 40. The immunogenic conjugate according to claim 39, wherein the 2 target component comprises the structure:

$$R^9$$
 R^1
 O
 O
 O
 O
 O
 O
 O
 O
 O

4 wherein,

3

- 5 R¹ is a member selected from H, OH, and (=O); and
- R⁹ is a member selected from alkyl and substituted alkyl groups.
- 1 41. The immunogenic conjugate according to claim 40, wherein the 2 target component has the structure:

$$\bigvee_{0}^{H}\bigvee_{m}$$
(XI)

4 wherein,

- 5 m is a number from 0 to 30, inclusive.
- 1 42. The immunogenic conjugate according to claim 39 having the
- 2 structure:

4 wherein,

5 R¹ is a member selected from —H, —OH, and (=O);

R⁹ is a member selected from alkyl groups and substituted alkyl groups;

X is a member selected from —O—, —S— and —NH—;

X¹ and X² are members independently selected from O and S; and

9 P is a protein carrier.

10

7

8

- 1 43. The immunogenic conjugate according to claim 42, wherein the 2 protein carrier has a molecular weight of greater than or equal to 5000 daltons.
- 1 44. The immunogenic conjugate according to claim 43, wherein the 2 protein carrier is a member selected from albumin and hemocyanin.
- The immunogenic conjugate according to claim 39, wherein R⁹
 comprises a spacer moiety situated between the target component and the protein carrier.
- The immunogenic conjugate according to claim 45, wherein the spacer moiety is selected from C₆-C₃₀ alkyl groups, C₆-C₃₀ substituted alkyl groups, polyols, polyethers, polyamines, polyamine acids, polysaccharides and combinations
- 4 thereof.
- The immunogenic conjugate according to claim 45, wherein the spacer moiety comprises a cleavable moiety.
- The immunogenic conjugate according to claim 47, wherein the cleavable moiety is cleaved by a member selected from light, heat, oxidation, reduction, enzymatic action, hydrolysis and combinations thereof.
- The immunogenic conjugate according to claim 48, wherein the cleavable moiety is a member selected from disulfides and esters.

1	50.	A pharmaceutical formulation comprising the immunogenic	
2	conjugate according to claim 39 and a pharmaceutically acceptable carrier.		
1	51.	The pharmaceutical formulation according to claim 50, wherein the	
2	pharmaceutical form	nulation is a vaccine effective for preventing or reducing microbial	
3	infection in a subject	et to whom the vaccine is administered.	
1	52.	An antibody that binds specifically to the immunogenic conjugate	
2	according to claim	39 .	
1	53.	An isolated nucleic acid encoding the antibody according to claim	
2	52 .		
1	54.	The isolated nucleic acid according to claim 53, further comprising	
2	a promoter operably linked to the nucleic acid sequence encoding the antibody.		
1	55.	An expression vector comprising the nucleic acid according to	
2	claim 53.		
1	56.	A host cell comprising the expression vector according to claim 55	
1	57.	The antibody according to claim 52, further comprising a member	
2	selected from detectable labels, biologically active agents and combinations thereof		
3	covalently attached to the antibody.		
1	58.	The antibody according to claim 57, wherein the detectable label is	
2	a member selected from the group consisting of radioactive isotopes, fluorescent agents		
3	fluorescent agent precursors, chromophores, enzymes and combinations thereof.		
1	59.	The antibody according to claim 58, wherein the biologically active	
2	agent is a member s	elected from antibiotics, immune stimulators and combinations	
3	thereof.		
1	60.	A pharmaceutical formulation comprising the antibody according	
2	to claim 52 and a pl	narmaceutically acceptable carrier.	

1	61. A method for treating or preventing a disease in a subject caused		
2	by a microorganism, the method comprising administering to the subject an amount of the		
3	antibody according to claim 52 effective to reduce or prevent the disease state.		
1	62. A method for treating or preventing a disease in a subject caused		
2	by a microorganism, the method comprising administering to the subject an amount of the		
3	vaccine according to claim 51 effective to reduce or prevent the disease state.		
3	vaceme according to claim 31 effective to reduce of prevent the disease state.		
1	63. A method for treating or preventing a disease in a subject caused		
2	by a microorganism, the method comprising administering to the subject an amount of the		
3	immunogenic conjugate according to claim 39 effective to reduce or prevent the disease		
4	state.		
	. 1		
1	64. The method according to claim 61, wherein the disease is a		
2	microbial infection.		
,	65. The method according to claim 62, wherein said microbial		
1	-		
2	infection accompanies cystic fibrosis.		
1	66. The method according to claim 74, wherein said microbial		
2	infection has a causative agent comprising P. aeruginosa.		
1	67. A method for preventing or disrupting the formation of a biofilm,		
2	the method comprising contacting a microbial culture capable of forming a biofilm with		
3	an antibody according to claim 52.		
	CO TI de la continue de claire 67 subancin coid hia film comprisos		
1	68. The method according to claim 67, wherein said biofilm comprises		
2	P. aeruginosa.		
1	69. The method according to claim 67, wherein said biofilm is		
2	associated with an implanted medical device.		
-			
1	70. The method according to claim 67, wherein said biofilm is		
2	associated with an organ in vivo.		

- 1 71. A method for controlling autoinducer responsive gene expression
- 2 in a microorganism, the method comprising contacting the microorganism with an
- antibody according to claim 52 effective to control said gene expression.
- 72. A method for controlling autoinducer responsive gene expression
- 2 in a microorganism, the method comprising contacting the microorganism with an
- 3 antibody according to claim 51 effective to control said gene expression.
- 73. A method for controlling autoinducer responsive gene expression
- 2 in a microorganism, the method comprising contacting the microorganism with an
- 3 antibody according to claim 39 effective to control said gene expression.
- The method according to claim 71, wherein the microorganism is
- 2 bacteria.
- The method according to claim 74, wherein said bacteria is P.
- 2 aeruginosa.
- 1 76. A library of compounds comprising a structure according to
- 2 Formula I:

$$R^1$$

$$X^2$$

$$X^1$$
(IX)

4 wherein,

- 5 R¹ is a member selected from —H, —OH, and (=O);
- R⁹ is a member selected from alkyl groups and substituted alkyl groups;
- 7 X is a member selected from —O—, —S— and —NH—;
- X^1 and X^2 are members independently selected from O and S, the library
- 9 comprising a first compound according to Formula I and a second compound according to
- Formula I, wherein the first compound differs from the second compound in the identity
- of a member selected from R^1 , R^9 , X, X^1 , X and combinations thereof.

1		77.	The library according to claim 76, comprising at least 10
2	compounds.		
1		78.	The library according to claim 77, comprising at least 100
2	compounds.		
1		79.	The library according to claim 78 comprising at least 1000
1 2	compounds.	19.	The notary according to claim 78 comprising at least 1000
_	compounds.		
1		80.	The library according to claim 79 comprising at least 100,000
2	compounds.		
1		81.	A method of detecting an autoinducer in a sample, the method
2	comprising the steps of:		
3		(a) co	ontacting the sample with an antibody that specifically binds to the
4			autoinducer; and
5		(b) d	etermining whether the sample contains the autoinducer, thereby
6			detecting said autoinducer.
1		82.	The method of claim 81, wherein the antibody is a monoclonal
2	antibody.		
1		83.	The method of claim 81, wherein the antibody is a polyclonal
2	antibody.		
1		84.	The method of claim 81, wherein the step of determining whether
	the comple co		
3	the sample contains an autoinducer comprises detecting the antibody in an assay selected from the group consisting of an ELISA assay, a western blot, an immunohistochemical		
<i>3</i>	assay, an immunofluorescence assay, and a real time imaging assay.		
7	assay, an min	iluliolii	iorescence assay, and a real time imaging assay.
1		85.	The method of claim 81, wherein the step of determining whether
2	the sample co	ntain s	an autoinducer further comprises quantitating the amount of
3	autoinducer i	n the s	ample.
1		86.	The method of claim 81, wherein the antibody is bound to a solid
2	substrate.		

1	87. The method of claim 81, wherein the sample is selected from the		
2	group consisting of a cultured cell, and a patient sample.		
1	88. The method of claim 87, wherein the patient sample is a blood		
2	sample.		
1	00. The weether described of alleier 97 whomain the notions complete from a		
1	89. The method of claim 87, wherein the patient sample is from a		
2	human patient.		
1	90. The method of claim 81/, wherein the antibody is covalently linked		
2	to a detectable moiety.		
1	91. The method of claim 90, wherein the antibody is covalently linked		
1	to a member selected from a biotin moiety, a radioactive moiety, an enzyme moiety and		
2			
3	combinations thereof.		
1	92. A method of monitoring the amount of autoinducer in a patient		
2	treated with an agent that inhibits the growth of an organism producing the autoinducer,		
3	the method comprising:		
4	(a) providing a sample from the patient treated with the growth inhibiting		
5	agent;		
6	(b) contacting the sample with an antibody that specifically binds to an		
7	autoinducer; and		
8	(c) determining the amount of autoinducer in the patient sample by		
9	detecting the antibody and comparing the amount of antibody		
10	detected in the patient sample to a standard curve, thereby		
11	monitoring the amount of autoinducer in the patient.		
1	93. The method of claim 92, further comprising the step of adjusting		
2	the dose of the growth inhibiting agent administered to the patient.		
1	94. The method of claim 92, wherein the sample is a blood sample.		
1	95. The method according to claim 94, wherein said blood sample is		
2	derived from a patient having cystic fibrosis and an infection comprising P. aeruginosa.		

1		96.	The method of claim 92, wherein the antibody is a monoclonal
2	antibody.		
1		97.	The method according to claim 92, wherein said antibody is a
2	polyclonal an	tibody.	
1		00	The method of claim 92, wherein the antibody is covalently linked
1	1.1	98.	
2	to a detectabl	e moiety	y.
1		99.	The method of claim 98, wherein the antibody is covalently linked
2	to a member	selected	from a biotin moiety, a radioactive moiety, an enzyme moiety and
3	combinations thereof.		
1		100.	The method of claim 92, wherein the antibody is bound to a solid
2	substrate.		/ /,
1		1.0.1	A method of isolating an autoinducer, the method comprising the
1		101,	A method of isolating an automotice, the method comprising the
2	steps of:		
3		` ′ •	oviding a sample comprising the autoinducer;
4		(b) co	ntacting the sample with an antibody that specifically binds to the
5			autoinducer, thereby forming an autoinducer-antibody complex; and
6		(c) iso	lating the autoinducer-antibody complex by isolating the antibody.
1		102.	The method of claim 101, wherein the antibody is a monoclonal
2	antibody.		
_	umreeuj.		
1		103.	The method of claim 101, wherein the antibody is covalently
2	linked to mer	nber sel	ected from a biotin moiety, a radioactive moiety, an enzyme moiety
3	and combinat	tions the	ereof.
1		104.	The method of claim 101, wherein the antibody is bound to a solid
2	substrate.		
1		105,	A method of detecting an antibody that specifically binds to an
2	autoinducer,	the meth	nod comprising the steps of:
3		(a) pro	oviding a sample;

4	(b)	contacting the sample with a peptide that specifically binds to the
5		antibody; and
6	(c)	detecting the antibody.
1	106	The method of claim 105, wherein the step of detecting the
2	antibody comprise	s an ELISA assay.
1	107	The method of claim 105, wherein the peptide is bound to a solid
2	substrate.	
1	108	A kit for detecting an autoinducer in a sample, the kit comprising:
2	(a)	an antibody that binds specifically to the autoinducer;
3	(b)	directions for using the antibody to detect the autoinducer.