NANYANG TECHNOLOGICAL UNIVERSITY

SEMESTER 1 EXAMINATION 2018-2019

EE6203 – COMPUTER CONTROL SYSTEMS

November/December 2018

Time Allowed: 3 hours

INSTRUCTIONS

- 1. This paper contains 5 questions and comprises 8 pages.
- 2. Answer all 5 questions.
- 3. All questions carry equal marks.
- 4. This is a closed-book examination.
- 5. The Transform Table is included in Appendix A on pages 7 to 8.
- 1. (a) Consider the following sampled-data signal:

$$x(kT) = \begin{cases} kT, & k \ge 0 \\ 0, & k < 0 \end{cases}$$

where T is the sampling period and k is an integer. If

$$y(kT) = \sum_{h=0}^{k} x(hT),$$

determine the Z-transform of y(kT) and verify the Initial Value Theorem.

(6 Marks)

(b) Suppose that x(kT) is the sampled signal from x(t) with sampling period T=1 second and its Z-transform is given as

$$X(z) = \frac{z}{(z-1)(z^2 - \sqrt{2}z + 1)}.$$

Find x(kT).

(11 Marks)

Note: Question No. 1 continues on page 2

(c) Based on the Final Value Theorem, a student found that x(kT) in Question 1(b) satisfies

$$\lim_{k\to\infty}x(kT)=\frac{1}{2}+\frac{\sqrt{2}}{2}.$$

Justify, with reasons, whether the answer from the student is correct.

(3 Marks)

2. Consider the control system shown in Figure 1.

Figure 1

(a) Suppose that

$$G_I(s) = \frac{1 - e^{-Ts}}{s}$$
, $G_2(s) = \frac{\alpha}{s+1}$ where α is a constant.

If H(s) = 1, the sampling period T is 0.1 second and the input r(t) is a unit-step function, determine the Z-transform of the system output.

(11 Marks)

(b) Find the range of α in Question 2(a) to ensure the stability of the system.

(5 Marks)

(c) If the reference input r(t) = t for $t \ge 0$, justify whether there exists a constant α such that $\lim_{k \to \infty} |e(kT)| \le 0.1$, where e(kT) = r(kT) - c(kT).

(4 Marks)

3. (a) The dynamics of a room temperature control system are given by the following system:

$$\begin{bmatrix} \frac{dx_1(t)}{dt} \\ \frac{dx_2(t)}{dt} \end{bmatrix} = \begin{bmatrix} -10 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} -2 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

where $x_1(t)$ and $x_2(t)$ are the states, u(t) and y(t) are the input and output variables, respectively. The system is sampled with a zero-order hold at a sampling period T = 0.1 second.

- (i) Determine a discretised state-space model for the system.
- (ii) Where are the poles of the discrete-time system located? (10 Marks)
- (b) A discrete-time system has a state-space representation given by

$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(k)$$
$$y(k) = \mathbf{C} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}$$

Give a matrix C such that the system is observable and has a single variable output y(k).

(5 Marks)

(c) Consider a system which is described by the following state equation:

$$\mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{B}u(k)$$

and with an associated performance index given by

$$J = \frac{1}{2} \sum_{k=0}^{\infty} (\mathbf{x}^{T}(k) \mathbf{Q} \mathbf{x}(k) + ru^{2}(k))$$

Note: Question No. 3 continues on page 4

The control law that minimises J is of the following form:

$$u^*(k) = -\mathbf{K}\mathbf{x}(k)$$

where the optimal control gain is given by

$$\mathbf{K} = \left(\mathbf{B}^T \mathbf{S} \mathbf{B} + r\right)^{-1} \mathbf{B}^T \mathbf{S} \mathbf{A}$$

and S > 0 solves the following equation:

$$\mathbf{S} = \mathbf{A}^T \mathbf{S} \mathbf{A} + \mathbf{Q} - \mathbf{A}^T \mathbf{S} \mathbf{B} (r + \mathbf{B}^T \mathbf{S} \mathbf{B})^{-1} \mathbf{B}^T \mathbf{S} \mathbf{A}$$

Now, consider the following system and associated performance index:

$$x(k+1) = x(k) + u(k)$$

$$J = \frac{1}{2} \sum_{k=0}^{\infty} \left(qx^{2}(k) + 8u^{2}(k) \right)$$

If the optimal control law that minimises J is

$$u^*(k) = -0.5x(k)$$

determine q. Determine also the location of the closed-loop pole.

(5 Marks)

4. (a) A discrete-time system has a state-space representation given by

$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} e^{-T} & 0 \\ 1 - e^{-T} & 1 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} 1 - e^{-T} \\ T - 1 + e^{-T} \end{bmatrix} u(k)$$
$$y(k) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}$$

where $\begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}$, u(k) and y(k) are the states, input and output variables, respectively. If the sampling period T is 1 second, design the deadbeat state-

(7 Marks)

Note: Question No. 4 continues on page 5

feedback controller.

(b) A discrete-time system has a state-space representation given by

$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} 0.78 & 0 \\ 0.22 & 1 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} 0.22 \\ 0.03 \end{bmatrix} u(k)$$
$$y(k) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}$$

where $\begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}$, u(k) and y(k) are the states, input and output variables,

respectively. Design a full-order prediction estimator of the following form:

$$\overline{\mathbf{x}}(k+1) = \mathbf{A}\overline{\mathbf{x}}(k) + \mathbf{B}u(k) + \mathbf{L}_o(y(k) - \mathbf{C}\overline{\mathbf{x}}(k))$$

such that the desired estimator poles are at $z_{1,2} = 0$. Verify that the error response is indeed deadbeat with the designed estimator.

(7 Marks)

(c) A discrete-time system has a state-space representation given by

$$\mathbf{x}(k+1) = \mathbf{A} \ \mathbf{x}(k) + \mathbf{B} \ u(k)$$
$$y(k) = \mathbf{C} \ \mathbf{x}(k)$$

where $\mathbf{x}(k)$, u(k) and y(k) are the state vector, input and output variables, respectively. The following observer is employed to give an estimate of the state vector $\overline{\mathbf{x}}(k)$:

$$\overline{\mathbf{x}}(k) = \mathbf{A}\overline{\mathbf{x}}(k-1) + \mathbf{B}u(k-1) + \mathbf{L}_{o}\left\{y(k) - \mathbf{C}(\mathbf{A}\overline{\mathbf{x}}(k-1) + \mathbf{B}u(k-1))\right\}$$

If the error vector is defined as

$$\mathbf{x}_{a}(k) = \mathbf{x}(k) - \overline{\mathbf{x}}(k)$$

obtain an equation for the error dynamics of the observer in the following form:

$$\mathbf{x}_{a}(k+1) = \mathbf{A}_{a}\mathbf{x}_{a}(k)$$

i.e. obtain an expression for A_e in terms of A, B, C and L_e , where applicable.

(6 Marks)

5. (a) Consider the following second-order analog filter:

$$G(s) = \frac{\omega_n^2}{s^2 + 2\varsigma\omega_n s + \omega_n^2}$$

where $\omega_n = 5$ rad/s and $\varsigma = 0.5$. Find its pole-zero matched strictly proper digital filter approximation with the same DC gain and a sampling period of 1 second.

(8 Marks)

(b) Consider the closed-loop system shown in Figure 2.

Figure 2

The desired closed-loop transfer function $G_{cl}(z)$ has the same specifications as those of the filter in Question 5(a). With a sampling period of 1 second, $G_{ZAS}(z)$ is given as

$$G_{ZAS}(z) = \frac{0.3679z + 0.2642}{(z - 1)(z - 0.3679)}$$

Design the controller C(z).

(8 Marks)

(c) Implement the controller C(z) obtained in Question 5(b) with the direct programming approach and show the relevant block diagram.

(4 Marks)

Appendix A

Properties and Table of Z-Transform

Discrete function	z Transform	
x(k+4)	$z^4X(z) - z^4x(0) - z^3x(1) - z^2x(2) - zx(3)$	
x(k+3)	$z^3X(z)-z^3x(0)-z^2x(1)-zx(2)$	
x(k+2)	$z^2X(z) - z^2x(0) - zx(1)$	
x(k+1)	zX(z)-zx(0)	
x(k)	X(z)	
x(k-1)	$z^{-1}X(z)$	
x(k-2)	$z^{-2}X(z)$	
x(k-3)	$z^{-3}X(z)$	
x(k-4)	$z^{-4}X(z)$	

	X(s)	x(t)	x(kT) or $x(k)$	X(z)
1.			Kronecker delta $\delta_0(k)$ 1, $k=0$	1
1.			$0, k \neq 0$	1
2.			$\delta_0(n-k)$ 1, $n=k$	z^{-k}
2.			$0, \qquad n \neq k$	Z
3.	$\frac{1}{s}$	1(t)	1(k)	$\frac{1}{1-z^{-1}}$
4.	$\frac{1}{s+a}$	e^{-at}	e^{-akT}	$\frac{1}{1 - e^{-aT}z^{-1}}$
5.	$\frac{1}{s^2}$	t	kT	$\frac{Tz^{-1}}{(1-z^{-1})^2}$
6.	$\frac{2}{s^3}$	t^2	$(kT)^2$	$\frac{T^2z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$
7.	$\frac{6}{s^4}$	t^3	$(kT)^3$	$\frac{T^3z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^4}$
8.	$\frac{a}{s(s+a)}$	$1-e^{-at}$	$1-e^{-akT}$	$\frac{(1-e^{-aT})z^{-1}}{(1-z^{-1})(1-e^{-aT}z^{-1})}$
9.	$\frac{b-a}{(s+a)(s+b)}$	$e^{-at}-e^{-bt}$	$e^{-akT}-e^{-bkT}$	$\frac{(e^{-aT} - e^{-bT})z^{-1}}{(1 - e^{-aT}z^{-1})(1 - e^{-bT}z^{-1})}$
10.	$\frac{1}{(s+a)^2}$	te ^{-at}	kTe ^{-akT}	$\frac{Te^{-aT}z^{-1}}{(1-e^{-aT}z^{-1})^2}$
11.	$\frac{s}{(s+a)^2}$	$(1-at)e^{-at}$	$(1-akT)e^{-akT}$	$\frac{1 - (1 + aT)e^{-aT}z^{-1}}{(1 - e^{-aT}z^{-1})^2}$

Note: Transform Table continues on page 8.

	X(s)	x(t)	x(kT) or $x(k)$	X(z)
12.	$\frac{2}{(s+a)^3}$	t^2e^{-at}	$(kT)^2 e^{-akT}$	$\frac{T^2 e^{-aT} (1 + e^{-aT} z^{-1}) z^{-1}}{(1 - e^{-aT} z^{-1})^3}$
13.	$\frac{a^2}{s^2(s+a)}$	$at-1+e^{-at}$	$akT-1+e^{-akT}$	$\frac{[(aT-1+e^{-aT})+(1-e^{-aT}-aTe^{-aT})z^{-1}]z^{-1}}{(1-z^{-1})^2(1-e^{-aT}z^{-1})}$
14.	$\frac{\omega}{s^2+\omega^2}$	sin <i>oot</i>	sin ωkT	$\frac{z^{-1}\sin\omega T}{1-2z^{-1}\cos\omega T+z^{-2}}$
15.	$\frac{s}{s^2+\omega^2}$	cos ωt	cos ωkT	$\frac{1 - z^{-1} \cos \omega T}{1 - 2z^{-1} \cos \omega T + z^{-2}}$
16.	$\frac{\omega}{(s+a)^2+\omega^2}$	$e^{-at}\sin\omega t$	$e^{-akT}\sin\omega kT$	$\frac{e^{-aT}z^{-1}\sin\omega T}{1-2e^{-aT}z^{-1}\cos\omega T + e^{-2aT}z^{-2}}$
17.	$\frac{s+a}{(s+a)^2+\omega^2}$	$e^{-at}\cos\omega t$	$e^{-akT}\cos\omega kT$	$\frac{1 - e^{-aT} z^{-1} \cos \omega T}{1 - 2e^{-aT} z^{-1} \cos \omega T + e^{-2aT} z^{-2}}$
18.			a^k	$\frac{1}{1-az^{-1}}$
19.			a^{k-1} $k = 1, 2, 3, \dots$	$ \frac{1}{1 - az^{-1}} $ $ \frac{z^{-1}}{1 - az^{-1}} $ $ z^{-1} $
20.			ka^{k-1}	$\frac{z^{-1}}{(1-az^{-1})^2}$
21.			k^2a^{k-1}	$\frac{z^{-1}(1+az^{-1})}{(1-az^{-1})^3}$
22.			k^3a^{k-1}	$\frac{z^{-1}(1+4az^{-1}+a^2z^{-2})}{(1-az^{-1})^4}$
23.			k^4a^{k-1}	$\frac{z^{-1}(1+11az^{-1}+11a^2z^{-2}+a^3z^{-3})}{(1-az^{-1})^5}$
24.			$a^k \cos k\pi$	$\frac{1}{1+az^{-1}}$
25.			$\frac{k(k-1)}{2!}$	$\frac{z^{-2}}{(1-z^{-1})^3}$
26.		$\frac{k(k-1)\cdot}{(n-1)!}$	$\frac{\cdots(k-m+2)}{n-1)!}$	$\frac{z^{-m+1}}{(1-z^{-1})^m}$
27.			$\frac{k(k-1)}{2!}a^{k-2}$	$\frac{\overline{(1-z^{-1})^m}}{\frac{z^{-2}}{(1-az^{-1})^3}}$
28.	8. $\frac{k(k-1)\cdots(k-m+2)}{(m-1)!}a^{k-m+1}$			$\frac{z^{-m+1}}{(1-az^{-1})^m}$

x(t) = 0, for t < 0.

Unless otherwise noted, $k = 0, 1, 2, 3, \cdots$

x(kT) = x(k) = 0, for k < 0.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

EE6203 COMPUTER CONTROL SYSTEMS

Please read the following instructions carefully:

- 1. Please do not turn over the question paper until you are told to do so. Disciplinary action may be taken against you if you do so.
- 2. You are not allowed to leave the examination hall unless accompanied by an invigilator. You may raise your hand if you need to communicate with the invigilator.
- 3. Please write your Matriculation Number on the front of the answer book.
- 4. Please indicate clearly in the answer book (at the appropriate place) if you are continuing the answer to a question elsewhere in the book.