Recolección online de grabaciones para el estudio de las variantes argentinas del español

Fernando Bugni

Directores: Agustín Gravano, Miguel Martínez Soler

Departamento de Computación - Facultad de Ciencias Exactas - Universidad de Buenos Aires

2014

Variantes del español en Argentina

 Regla 1: Los hablantes de Córdoba estiran la sílaba anterior a la acentuada mientras los de Buenos Aires no lo hacen

'Espectacular'

Sílaba acentuada en *'-lar'* La sílaba anterior *'-cu-'* se alarga para hablantes de Córdoba

 Regla 2: Los hablantes de Córdoba aspiran y elisionan la /s/ al finalizar una palabra. Esto no sucede en Buenos Aires

'Pájaros'

/s/ se acorta su duración en el hablante de Córdoba

 Regla 3: Para hablantes de Córdoba, la /s/ antes de la /c/ o /t/ suenan más suaves que para hablantes de Buenos Aires

'Mosca'

/s/ suena más suave para Córdoba que para Buenos Aires

 Regla 4: La 'c' antes de la 't' se pronuncia con menor frecuencia para hablantes de Córdoba que para hablantes de Buenos Aires

'Doctor'

No debe sonar el fonema /c/

 Regla 5: Para hablantes cordobeces la 'y' y 'll' se pasa a 'i'. No sucede esto para Buenos Aires

'lluvia'

Palabras con el fonema y/o / II/se pronuncian j/s

 Regla 6: En hablantes cordobeces la /r/ no vibra mientras que en Buenos Aires pasa lo contrario

Para Córdoba /r/ debe ser suave en comparación de Buenos Aires

Bibliografía:

- El español en la Argentina y sus variedades regionales María Beatriz Fontanella de Weinberg
- Español en la Argentina Elena Vidal de Battini

• Frases Comúnes: habla espontánea

• Frases Amper: reconocer palabra acentuada

Frases Comúnes

Pronunciar frases popularmente conocidas

- Objetivo: pronunciación espontánea
- Reglas a cubrir: 2 a 6

'En la pelea se conoce al soldado, sólo en la victoria se conoce al caballero'

- 'victoria' cubre la regla 4 que nos propone medir la duración de la /c/ antes de la /t/.
- 'caballero' para la regla 5: el fonema /II/ se pasa a /i/

Frase	Frase que cubre
'No hay dos sin tres'	Regla 2: 'dos', 'tres'
'Más difícil que encontrar una aguja en un pajar'	Regla 2: 'más'
'Más perdido que turco en la neblina'	Regla 2: 'más'
'No le busques la quinta pata al gato'	Regla 2: 'busques', Regla 3:
	'busques'
'Se te escapó la tortuga'	Regla 3: 'escapó'
'Todos los caminos conducen a Roma'	Regla2: 'todos', 'los', 'cami-
	nos'
'Siempre que llovió paro'	Regla 5: Ilovió
'La suegra y el doctor cuanto más lejos mejor'	Regla 2: más, lejos , Regla 4:
	doctor
'La belleza que atrae rara vez coincide con la belleza que	Regla 5: belleza
enamora'	
'No esta mal ser bella lo que esta mal es la obligación de	Regla 5: bella
serlo'	
'Río revuelto ganancia de pescadores'	Regla 3: pescadores, Regla 2:
	pescadores, Regla 6: río, re-
	vuelto

Agrega 31 Frases populares para grabar

Figura : Porcentaje del total de frases grabadas por cada regla

Frases Amper

Pronunciar frases con una estructura fija variando acentuaciones

- Objetivo: cubrir acentuaciones
- Regla a cubrir: 1

- Sujeto: "El canapé", "El repollo", "El espárrago".
- Adjetivo: "espectacular", "delicioso", "riquísimo".

Bibliografía: AMPER-ARGENTINA: VARIABILIDAD RÍTMICA EN DOS CORPUS - Jorge A. Gurlekian, Reina Yanagida,

Mónica Noemí Trípodi y Guillermo Toledo

"El canapé salió delicioso"

- Canapé: palabra aguda
- Delicioso: palabra grave

Agrega 9 frases amper

Trazas: combinación de frases

- Frases comúnes
- Frases Amper

Intercalado: 1 ó 3 Frases comúnes cada una Amper

Figura: Encuesta inicial del sistema

Figura: Grabando

Figura: Reproduciendo

Audio 6

Id: 6

Speaker: 2

Word: No está mal ser bella; lo que está mal es la obligación de serlo

Attempt: 1

Filename:

download: bsas u2 t32 a1

Labels:

- Conservar
- Sonido saturado
- Mucho ruido de fondo
- Problema en el habla

Submit

20 / 46

Datos obtenidos

	Bs.As.	Cba.	Total
Conservar	220	90	310
Problemas en el habla	33	15	48
Mucho ruido de fondo	2	12	14
Sonido saturado	2	0	2

Tabla : Evaluación manual de las grabaciones

	Bs.As.	Cba.	Total
Todos los intentos	220	90	310
Último intento	181	79	260

Tabla: Cantidad de audios repetidos

¿Cómo estraer atributos (features) de un audio? Etiquetamos en qué momento se escuchó cada fonema.

ProsodyLab-Aligner

Utilizando Hidden markov models alinea cada audio

Definimos tipos de atributos:

Definimos tipos de atributos:

Atributo acústico

Atributo fonético

Definimos tipos de atributos:

Atributo acústico

Atributo fonético

Atributo silábico

Definimos tipos de atributos:

Atributo acústico

Atributo fonético

Atributo silábico

ProsodyLab, Python 2.7, Numpy, Pymatlab

Atributos acústicos

tiempo

Atributos acústicos

Escala Mel: escala sobre la precepción auditiva humana

- 1 Frame the signal into short frames.
- 2 For each frame estimate the power spectrum (Fast Fourier Transform).
- 3 Apply the mel filterbank to the power spectra, sum the energy in each filter.
- 4 Take the logarithm of all filterbank energies.
- 5 Take the DCT of the log filterbank energies. (DCT=discrete cosine transform)
- 6 Keep DCT coefficients 2-13, discard the rest.

Script en Matlab llamado por Pymatlab

Atributos fonéticos

- Duración de 'kt'
- Duración de 'sc'
- Duración de 'll'
- Duración de 'rr'
- Duración de 's' final
- Duración de cada fonema
- Duración de cada vocal
- Duración de cada consonante

Atributos fonético: cálculo duración de 'kt'

"en la pelea se konose al soldaDo solo en la biktorja se konose al kaBaZero"

$$\frac{X-\mu}{\sigma}$$

- X es el valor a normalizar (por ej.: la duración de un fonema dado).
- ullet es el promedio de duración de la unidad utilizada en la grabación.
- \bullet σ es el desvío estándar de la unidad utilizada en la grabación.

Atributos silábicos

- Duración de la sílaba acentuada
- Duración de la sílaba anterior a la acentuada

Atributos silábico: sílaba anterior a la acentuada

"en la pelea se konose al soldaDo solo en la biktorja se konose al kaBaZero"

la
$$sil$$
 bik to* rja sil se sil ko no* se sil al sil ka

$$\frac{X-\mu}{\sigma}$$

- ullet X es el valor a normalizar (por ej.: la duración de un fonema dado).
- ullet μ es el promedio de duración de la unidad utilizada en la grabación.
- \bullet σ es el desvío estándar de la unidad utilizada en la grabación.

Análisis

Clasificadores

- Zero rules
- RIPPER
- C4.5
- Support vectors machines
- Naive Bayes

Análisis

Cross-validations

- Grupos de hablantes
- Dejando un hablante fuera promediando los atributos
- Dejando un hablante fuera promediando los atributos desconocidos

Figura: Esquema de test 5-folds

Figura : Cantidad de audios de Buenos Aires y Córdoba según cada grupo de Train y Tests

	Zero Rules	RIPPER	C4.5	SVM	NaiveBayes
Fold 1	64	61	64	73	63
Fold 2	71	68	71	76	71
Fold 3	67	54	45	75	67
Fold 4	55	52	55	67	80
Fold 5	66	70	66	70	70
Promedio	64	61	60	72	70

Tabla : Clasificación correcta en porcentaje

	Student Test	Wilcoxon Test
ZeroR y Ripper	0.8438	0.87
ZeroR y C4.5	0.9772	0.813
ZeroR y NaiveBayes	0.2113	0.1692
ZeroR y SVM	0.03125	0.004545

Tabla: Resultados de cada test representado en p-valor

Detalles:

- \bullet Tenemos en cada fold más hablantes de Buenos Aires que de Córdoba. Esto se ve reflejado en el clasificador Zero Rules con un porcentaje de aciertos mayor al 50 %
 - Necesitamos **equilibrar los hablantes** para analizar si se esta sacando provecho a los clasificadores.

Detalles:

- Tenemos en cada fold más hablantes de Buenos Aires que de Córdoba.
 Esto se ve reflejado en el clasificador Zero Rules con un porcentaje de aciertos mayor al 50 %
 Necesitamos equilibrar los hablantes para analizar si se esta sacando
 - Necesitamos **equilibrar los hablantes** para analizar si se esta sacando provecho a los clasificadores.
- Analizando la salida de cada clasificador, observamos que C4.5 nos da un árbol sólo de 1 hoja.
 - Inclusive vemos que tiene igual porcentaje que Zero Rules.
 - Analizando C4.5 vemos que su algoritmo puede generar árboles de pocos atributos si en los datos hay muchos **missing values**.

Hablantes equilibrados: 8 Buenos Aires, 8 Córdoba

● Hablante para train ● Hablante para test

Número de hablante

2 3 4 5 6 7 ... 14

•••

Fold 3

Juntamos los atributos de cada hablante de la siguiente forma.

Atributos		A1	A2	А3	 ΑN
Hablante 1	Audio1	1	?	2	2
	Audio2	?	?	1	 ?
	Audio3	2	?	3	?
Hablante 2	Audio1	1	?	?	 ?
	Audio2	1	2	?	?

Tabla: Original

esto pasaría a:

Atributos		A1	A2	А3	 AN
Hablante 1	Audio1	1.5	?	1.667	 2
Hablante 2	Audio1	1	2	?	 ?

Tabla: Modificado

	ZeroR	RIPPER	C4.5	SVM	NaiveBayes
Promedio	53.33	60	60	93.33	80

Tabla : Clasificación correcta en porcentaje

	Student Test	Wilcoxon Test
ZeroR y Ripper	0.3351	0.3828
ZeroR y C4.5	0.2908	0.3864
ZeroR y NaiveBayes	0.05191	0.06472
ZeroR y SVM	0.004282	0.009828

Tabla: Resultados de cada test representado en p-valor

Detalles:

 Cada clasificación tiene 1 instancia para analizar Matrices de confusión muy pobres.

Buenos Aires	Córdoba	
1	0	Buenos Aires
0	0	Córdoba

Dejando un hablante fuera promediando los atributos desconocidos

Atributos		A1	A2	А3	 AN
Hablante 1	Audio1	1	?	2	2
	Audio2	?	?	1	 ?
	Audio3	2	?	3	?
Hablante 2	Audio1	1	?	?	 ?
	Audio2	1	2	?	?

Tabla: Original

Se cambia a ...

Atributos		A1	A2	А3	 AN
Hablante 1	Audio1	1	?	2	2
	Audio2	1.5	?	1	 2
	Audio3	2	?	3	2
Hablante 2	Audio1	1	2	?	 ?
	Audio2	1	2	?	?

Dejando un hablante fuera promediando los atributos desconocidos

	ZeroR	RIPPER	C4.5	SVM	NaiveBayes
Promedio	50	72.44	73.48	77.19	74.62

Tabla : Clasificación correcta en porcentaje

	Student Test	Wilcoxon Test
ZeroR y Ripper	0.06537	0.1284
ZeroR y C4.5	0.06156	0.1111
ZeroR y NaiveBayes	0.03916	0.06111
ZeroR y SVM	0.02936	0.03522

Tabla: Resultados de cada test representado en p-valor

Dejando un hablante fuera promediando los atributos desconocidos

Matríz de confusión mejores

Buenos Aires	Córdoba	
33	1	Buenos Aires
0	0	Córdoba

Selección de atributos de forma automática

Para cada atributo calcula la entropía de la clase y luego calcula la entropía¹ de la misma sabiendo el valor de este atributo

$$InfoGain(Class, Attribute) = H(Class) - H(Class|Attribute)$$

- H(Class) representa el valor de la entropía de la clase a predecir.
 Mide la incertidumbre asociada a la clase sin tener en cuenta el valor de ningún atributo en particular.
- H(Class|Attribute) representa el valor de la entropía de la clase sabiendo el valor del atributo Attribute

¹Cuán frecuente es una clase en una serie de muestras

Selección de atributos de forma automática

Ganancia de Información	Atributo
0.07231	FON_consonant_norm
0.07217	FON_vowel_norm
0.03963	SIL_syllableAccent_normhd
0.03963	SIL_prevSyllableAccent_normhd
0.02332	FON_II_norm
0.02285	FON_Sfinal_norm
0.02226	ACU_MinLL_1
0.02144	ACU_AverageLL_1

Tabla: Resultados de InfoGain

¿Preguntas?