1. If α , β are the roots of $x^2 - x + 1 = 0$ then the quadratic equation whose roots are α^{2015} , β^{2015} is

(1) $x^2 - x + 1 = 0$

(2) $x^2 + x + 1 = 0$

- (3) $x^2 + x 1 = 0$ mathongo /// mathongo /// (4) $x^2 x 1 = 0$ mathongo /// mathongo ///

2. For a quadratic $(a^2 - 3a + 2)x^2 + (a^2 - 5a + 6)x + a^2 - 4 = 0$, the number of values of a for which the given quadratic equation is an identity in x, is equal to mathong w mathon w ma

(1) 0

- (3) 2 hongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///
- 3. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then
- /// mathongo /// mathongo /// $(2)_a a b 4 = 0$ // mathongo /// mathongo /// mathongo ///
- (3) a b + 4 = 0

- (4) a + b + 4 = 0
- **4.** Find the value of λ such that sum of the squares of the roots of $x^2 + (4 \lambda)x + 3 = \lambda$ has the least value.
- 5. If one root of equation $x^2 + ax + 12 = 0$ is 4 while the equation $x^2 + ax + b = 0$ has equal roots, then the value of b is (1) $\frac{4}{49}$ ongo /// mathongo // mathongo /// mathongo /// mathongo /// mathongo /// mathong

- 6. The number of integral values of m for which the equation $(1+m^2)x^2 2(1+3m)x + (1+8m) = 0$ has no real root is:
 - (1) 2

(2) 3

(3) Infinitely many

- 7. The number of all possible positive integral values of α for which the roots of the quadratic equation, $6x^2 11x + \alpha = 0$ are rational numbers is
 - (1) 3 hongo /// mathongo ///
- 8. The sum of the roots of the equation, $x^2 + |2x 3| 4 = 0$, is now we mathon with mathon of the roots of the equation, $x^2 + |2x 3| 4 = 0$, is now we mathon of the roots of the equation, $x^2 + |2x 3| 4 = 0$, is now we mathon of the roots of the equation, $x^2 + |2x 3| 4 = 0$, is now we mathon of the roots of the equation, $x^2 + |2x 3| 4 = 0$, is now we mathon of the roots of the equation of the roots of the roots

(1) 2

- (3) $\sqrt{2}$ ongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///
- 9. If $\alpha \neq \beta$, $\alpha^2 = 5\alpha 3$ and $\beta^2 = 5\beta 3$ then the equation whose roots are α/β , β/α is
 - (1) $3x^2 25x + 3 = 0$ (2) $x^2 + 5x 3 = 0$ (4) $3x^2 19x + 3 = 0$

- 10. Let α & β be the roots of, $x^2 6x 2 = 0$ with $\alpha > \beta$. If $a_n = \alpha^n \beta^n$ for $n \ge 1$, then the value of $\frac{a_{10} 2a_8}{2a_9}$ is
 - (1) 1

(2) 2

- (3) 4 mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///