Problem set 1

Problem 1. Let V be the set of positive continuous functions $f : \mathbb{R} \to (0, \infty)$ equipped with the addition:

$$(f+g)(x) = f(x)g(x)$$
 (multiplying the functions f and g)

and scalar multiplication

$$(cf)(x) = f(x)^c$$
 (f raised to the c power).

Show that V is a vector space over \mathbb{R} by finding the additive identity and additive inverse and checking the axioms.

Problem 2. Let S be the set of polynomials of degree exactly n i.e. $S = \{a_n t^n + \cdots + a_0 \in \mathcal{P}_n(F) : a_n \neq 0\}$. Is S a subspace of $\mathcal{P}_n(F)$? Justify your answer.

Problem 3. To make a distinction, we write the zero vector as $\vec{0}$ and the 0 scalar as 0. Use the axioms of vector spaces as well as <u>Proposition 1.3 (vii) proved in class</u> to show the following:

- (i) The element $\vec{0} \in V$ is unique.
- (ii) For any $x \in V$, $0x = \vec{0}$.
- (iii) For any $a \in F$, $a\vec{0} = \vec{0}$.
- (iv) If $a \in F$, $x \in V$ such that $ax = \vec{0}$, then either a = 0 (in F) or $x = \vec{0}$ (in V).
- (v) For any $x \in V$, the element -x is unique.
- (vi) For any $x \in V$, (-1)x = -x.

Hint for (ii), (iii): write 0x = (0+0)x and $a\vec{0} = a(\vec{0}+\vec{0})$.

Problem 4. This problem is to introduce the set of complex numbers \mathbb{C} . A complex number is a number of the form a+bi where $a,b\in\mathbb{R}$ and i is the imaginary number satisfying the property $i^2=-1$. The number a is called the *real part* and b is called the *imaginary part*. A complex number a+bi is 0 if and only if a=b=0.1 The addition of complex numbers is defined as

$$(a+bi) + (c+di) = (a+c) + (b+d)i.$$

The multiplication of two complex numbers is defined as

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i.$$

(continued on next page)

¹this fact is needed in (iv).

- This formula is obtained by expanding the product using distributive law and $i^2 = -1$. (i) Show that if $a+bi \neq 0$, then $\frac{1}{a+bi} = \frac{a}{a^2+b^2} \frac{b}{a^2+b^2}i$ i.e. $(a+bi)(\frac{a}{a^2+b^2} \frac{b}{a^2+b^2}i) = 1$. (ii) Calculate 3i + (5+2i), (4+i) 3, (2+i)(1-i) and $\frac{1-i}{1+i}$. (iii) Note that a real number multiplying a complex number is given by a(c+di) = 1. ac + adi. Show that \mathbb{C} with the addition of complex number and multiplication by real numbers is a vector space over \mathbb{R} .
 - (iv) Viewing \mathbb{C} as a vector space over \mathbb{R} , show that 1, i is linearly independent.