Ope Part	rating Systems, Second Term Exam, Chapter 5 to 8, Dec. 21, 2006 I (10%).						
- 411	1 (1076).						
1 (or False. If your answer is false, please write down your explanation(s).						
1. ((F) Two phase locking protocol prevents deadlock. not provent deadlock.						
2. (() "Aging" can be used to prevent low priority processes from starvation when a						
	priority scheduling is chosen.						
3. (F.) Suppose that there was a network breakdown. The system recovery process						
	found that there was no commit log record in an atomic transaction number						
	1111. The recovery process would tedo the transaction. undo						
4. () Deadlock prevention techniques are implemented in most of the operating						
	systems. 会造成連率降低,所以大部分採取忽略死結,由設計表决定						
5. (systems. 会造成速率降低,所以大部分採取忽略死結,由設計表决定 T) Memory compaction could be invoked when there is an external						
Part							
1.	(5%)Write the full name of each terminology. Note that no explanation is needed.						
	(1) FCFS, (2)SJF (in scheduling) (3) RR (in scheduling) (4)MMU (5)TLB translation						
	(15%)Explain the following terminology briefly.						
	(1) load sharing (2) have writing (2) at a density (4) timestown (5) comprises						
3.	(5%) Show an example of "priority inversion" in priority scheduling. How to solve						
٠.	it? Log am anagement.						
	it? Log am memory monagement. (5%)Show an example program segment of "race condition".						
	(5%)You are given the following program segment as an implementation of						
	synchronization mechanism. What is its problem?						
	do { flag[i] = TRUE; transaction kej = TRUE						
,	a di						
	while (flag[j]); critical section						
	flag[i] = false;						
	remainder section } Une						
	while (1);						
6.	(5%)Define the semantic and operation of the atomic instruction SWAP. Use						
	SWAP instruction to implement a critical section.						
7.	(10%)Suppose that a programming language supports a "monitor" class, and there						
	are two operations "enter" and "exit" supported. Use the monitor to write a critical						
	section.						
8.	(10%) Show an example how a virtual address is translated into physical address						
	in the operations of two-level hierarchical paging scheme.						
9.	(15%)Given a snapshot of an operating system: 万頁						
	'P'K						

Allocation Max Available A B C D A B C D A B C D O 0 1 2 0 0 1 2 1 5 2 0 P1 1 0 0 0 1 7 5 0 2 8 8 6 P2 1 3 5 4 2 3 5 6 P3 0 6 3 2 0 6 5 2 P4 0 0 1 4 0 6 5 6	P1 P2 P3	A B C D 0 0 1 2 1 0 0 0 1 3 5 4 0 6 3 2	A B C D 0 0 1 2 1 7 5 0 2 3 5 6 0 6 5 2 0 6 5 6	A B C D 1 5 2 0 1 \$ 3 2 2 8 8 6 2 14 11 8	0 4 10 0 4 10 1 0 2	1570	7
--	----------------	---	---	--	---------------------------	------	---

- (1) What is the content of the matrix Need?
- (2) Is the system in a safe state?
- (3) If a request from process P1 arrives for (0,4,2,0), can the request be granted immediately?
- 10. (15%)Suppose that the snapshot of process arrivals of a computer system are defined as follows:

defined as follows:						
Process	Arrival Time	Burst Time	<u>Priority</u>			
		8	below normal			
PI	0.0	-	normal			
P2	2.0	6				
n 2	4.0	4	(highest)			
P3	,,,-	4	\highest/			
P4	5.0		in proes			
	1 Juliahan	olicy) is priorit	y-based with no pro-			

Assume the scheduling policy is priority-based with no preemption. If two processes are of the same priority, RR is used. The time slice for each RR process

is 2ms, and context switch time is ignorable,

- (1) What is P1's waiting time?
- (2) What is P1's turn around time?
- (3) What is the throughput of the system?
- (4) What is the CPU utilization? 存印章
- (5) What is the average waiting time of the snapshot?

