

1) Publication number: 0 516 354 A1

12

EUROPEAN PATENT APPLICATION

(21) Application number: 92304660.1

(5) Int. CI.5: C03C 13/00, C03C 3/087

(22) Date of flling: 22.05.92

39 Priority: 25.05.91 GB 9111401

(43) Date of publication of application: 02.12.92 Bulletin 92/49

Designated Contracting States:
 AT BE CH DE DK ES FR IT LI NL SE

(1) Applicant: PILKINGTON INSULATION LIMITED Prescot Road St Helens Merseyside WA10 3TT (GB) 18 Claremont Drive
Ormskirk, Lancashire L39 4SP (GB)
Inventor: Mason, Allen Frank
17 Springpool, Near-Wigan
Greater Manchester (GB)
Inventor: Shorrock, Peter
19 Ash Grove, Standish
Wigan, Greater Manchester (GB)
Inventor: Edwards, Norman Anthony
53 The Serpentine, Aughton
Ormskirk, Lancashire L39 6RN (GB)

(4) Representative: Blatchford, William Michael et al Withers & Rogers 4 Dyer's Buildings Holborn London EC1N 2JT (GB)

- 64) Glass composition and use.
- (a) A glass composition capable of being spun into fibres has the following components expressed as weight percent: SiO₂ 66 to 73; Al₂O₃ 0.85 to 5; R₂O (= Na₂O + K₂O) 14 to 17.5; CaO 6.5 to 12; and SiO₂ + A₂O₃ 69 to 74. The composition is free of boric oxide and consequently avoids pollution difficulties associated with that compound, yet it can be used in high temperature spinners to produce durable fibres.

This invention relates to a boric oxide free glass composition capable of being spun into fibres, it also relates to a method of spinning compositions according to the invention in a spinner made from a mechanically alloyed or oxide dispersion strengthened alloy and to glass fibre insulation produced from the compositions according to the invention.

Glass compositions are known for use in the technique of fiberizing glass using a centrifugal spinner. The compositions have customarily incorporated boric oxide in order to give them temperature/viscosity characteristics that will enable the glass to pass freely through orifices in the centrifugal spinner wall at a temperature sufficiently low to prevent excessive comosion and erosion of the spinner. A problem with the use of boric oxide is that boron is volatile and may escape from the glass melting tank to cause pollution problems. Furthermore it tends to condense on regenerators thereby fouling them up and preventing use of such devices to improve the thermal efficiency of fuel fired glass melting tanks.

GB 2 041 910 proposes the reduction or elimination of boric oxide with a consequent rise in liquidus temperature and high levels of alumina or baria. These reduced boric oxide compositions are acknowledged to be virtually impossible to fiberize on an industrial basis by the prior art spinning techniques. A technique involving the use of a novel spinner shape is proposed, but, in practice, the corrosion of such a spinner when fabricated from conventional alloy is unacceptably high. Also the glass compositions according to this patent have unacceptably low durability.

US Patent 4 402 767 proposes a novel spinner fabrication process to produce a mechanically alloyed or oxide dispersion strengthened alloy by a combination of warm working, annealing and hot forming processes. Such spinners are claimed to have excellent resistance against molten glass attack and are said to be capable of producing glass fibres and mineral wool at temperatures as high as 1315°C. No details of glass fibre production are given in the specification.

The problem has been to identify boron free glass compositions which have the required durability and can be used in high temperature spinners such as those described in US 4 402 767. Although the absence of boric oxide gives rise to a deterioration in the aqueous durability of the glass, we have identified a range of compositions for which the durability is satisfactory.

According to the present invention a boric oxide free glass composition capable of being spun into fibres, comprises the following components, expressed as weight percent:

```
SiO<sub>2</sub> 66-73

Al<sub>2</sub>O<sub>3</sub> 0.8-5

R<sub>2</sub>O = Na<sub>2</sub>O + K<sub>2</sub>O 14-17.5

CaO 6.5-12

SiO<sub>2</sub> + Al<sub>2</sub>O<sub>3</sub> 69-74
```

δ

20

25

30

35

Such glasses have a viscosity of 1000 poise or less at temperatures up to about 1200°C and a liquidus at least 130°C below the 1000 poise temperature.

The composition may also contain: 0-2% Fe_2O_3 ; 0-5% MgO; 0-0.6% SO_3 , all expressed as weight percent. Preferably the components are present in weight percentages within the following ranges:

```
SIO2
                               67-72.4
Al<sub>2</sub>O<sub>2</sub>
                                1-4
                                14.5-17
R_2O
K<sub>2</sub>O
                               0.5-2
Na<sub>2</sub>O
                                13.5-16.5
CaO
                               7-11.2
                               0.1 - 2.5
Fe<sub>2</sub>O<sub>3</sub>
MgO
                               0.2 - 4.4
SiO<sub>2</sub> + Al<sub>2</sub>O<sub>3</sub>
                               70-73.7
```

Most preferably the components are present in weight percentages within the following ranges

```
SIO<sub>2</sub>
                                   67-70
Al<sub>2</sub>O<sub>3</sub>
                                   2-4
Na<sub>2</sub>O
                                    14-15.5
                                   0.5 - 1.5
K<sub>2</sub>O
MgO
                                   3-4.5
CaO
                                   7-8.5
Fe<sub>2</sub>O<sub>3</sub>
                                   0.3-2
SO<sub>3</sub>
                                   0-0.3
SiO<sub>2</sub> + Al<sub>2</sub>O<sub>3</sub>
                                   70-72
Na<sub>2</sub>O + K<sub>2</sub>O
                                    15-16.5
```

A high level of Na₂O is needed to give a low liquidus temperature but the preferred narrow range of MgO

allows the Na₂O to be kept to a minimum so optimising durability while maintaining liquidus at least 160 centigrade degrees below the 1000 poise viscosity temperature, which is advantageously below 1170°C.

The invention will now be described with reference to the following non-limiting examples 1-28. Low levels of SO_3 , K_2O and Fe_2O_3 are recorded as a minimum in these examples. In fact they are only present at the lower levels as impurities in the raw materials and do not make a significant contribution to the properties of the glass fibres. Details of the examples and durability tests are given in the Table. It should be noted that Example 18 falls outside the scope of the present invention as its low level of alumina renders it insufficiently durable.

There is no established international test procedure for assessing the suitability of a glass for glass fibre insulation applications. It has become the practice to use the laboratory ware test of ISO 719 as it gives a useful guide to the aqueous durability and weathering resistance of the glass. In this test 2g of glass grains are treated with distilled water for 60 mins at 98°C and the extracted alkali titrated against 0.01 M HCL. The durability is described in terms of the alkali extracted per gram of glass as calculated from the acid required to neutralise. The relevant classes for glass wool are ISO Class 3 - from 62 to 264 micrograms of alkali per gram; and Class 4 - from 265 to 620 micrograms per gram. Glass wool is preferably in Class 3 but a good Class 4 may be acceptable because the performance of the insulation is a function of both glass and resin binder, and binders are available for use with higher release glasses. A class 3 rating is good and a class 4 rating is acceptable, but not as good.

10	
15	
20	
25	
30	Table 1
35	
40	

Example	7	2	က	4	2	9	7	8
S102	70	69	89	29	70	69	29	67
A1203	1	2	ဧ	4	3	E .	3	6
S102+A1203	71	71	71	71	73	7.2	20	70
Fe203	0.3	0.3	0.3	0.3	0.3	€.0	0.3	0.3
CaO	8	8	8	В	8	8	8	6
₩d0	4	4	4	7	4	P	4	4
Na20	15.5	15.5	15.5	15.5	13.5	14.5	16.5	15.5
K20	F	1	1		1	τ	1	1
R20	16.5	16.5	16.5	16.5	14.5	15.5	17.5	16.5
803	0.2	0.2					0.2	0.2
Tlog3	1146	1150			111	1173	1136	1142
liquidus	952	964					086	1018
ugR20/g	307	270		248	186	152	406	282
Class	4	4	9	3	3	E	7	4

	ত	8	6		6	8	~	-	-	10	2	_	~	6	~
	1	68		71	1.9		3.9	1,		ï	0.2	1170	1026	195	
	15	89	4	72	0.3	7.5	3.5	15.5	1	16.5	0.2	1158	966	256	ဇ
	14	70	. 3	73	0.3	8.3	3.9	13.5	6.0	14.4	0.2	1195	1018	231	e
	13	72.4	1.3	73.7	0.1	11.2	0.2	14	0.5	14.5	0.2	1170	1018	286	4
	12	89	3	71	1.3	7.5	4	15	1	16	0.2	1163	1000	253	7
	11	69	3	72	0.3	7.5	4	15	1	16	0.2	1169	996	259	3
-	10	68.5	3	71.5	0.3	8	7	15	1	16	0.2	1163	066	258	8
-	6	69	က	72	0.3	7	4	15.5	-	16.5	0.2	1166	950	298	4
	Example	8102	A1203	S102+A1203	Fe203	OES Cao	Mao	Na20	120	R20	803	Tlog3	liguidus	uaR20/a	Clark

ace 2

10	
15	
20	
26	
30	Table 1
35	
40	
4 5	

Example	17	18	19	20	21	22	23	24
S102	68.5	7.1	89	69	68	29	99	99
A1203	၉	0	3	e	3	3	3	4
S102+A1203	71.5	71	71	72	71	70	69	70
Fe203			0.3	0.3	1.3	2.3	3.3	2.5
CaO	7.6		8	7.5	7.5	7.5	7.5	7.8
MgO	4.4	4	4	7	7	4	4	က
NaZO	15	15.5	15.5	15	15	15	15	15.5
K20	7	٦	1	1	7	1	1	1
R20	16	16.5	16.5	16	16	16	16	16.5
503	0.2	0.2	0.2		0.2	0.2	0.2	0.5
Tlog3	1165	1142	1154	1170	1164	1157	1150	1155
liquidus	1006	940	981		994	1002	1024	1010
ugR20/a	251	474	251	259	253	236	239	240
Class	3	4	3	3	က	ო	3	3

age 3

55

73.

0

ö

1.5 1.5 10.2 10.2 206

Table 1

5

10

15

20

25

30

35

Claims

1. A boric oxide free glass composition capable of being spun into fibres, comprising the following compo-40 nents expressed as weight percent:

SIO2

68-73

Al₂O₃

0.8-5

 $R_2O = Na_2O + K_2O$

14-17.5

CaO

6.5-12

45 SIO2 + Al2O3 69-74

2. A glass composition according to claim 1, further comprising the following components expressed as

0-2 Fe₂O₃ 0-5

MgO

0-0.6 SO₃

A glass composition according to claim 1 or 2, wherein the components are present in weight percentages within the following ranges: SiO₂

50

55

67-72.4

 Al_2O_3

1-4

 R_2O K₂O 14.5-17 0.5-2

	Na ₂ O	13.5-16.5
	CaO	7-11.2
	Fe ₂ O ₃	0.1-2.5
	MgO	0.2-4.4
5	SiO ₂ + Al ₂ O ₃	70-73.7

4. A glass composition according to claim 3, wherein the components are present in weight percentages within the following ranges:

	SiO ₂	67-70
10	Al ₂ O ₃	2-4
	Na ₂ O	14-15.5
	K ₂ O	0.5-1.5
	MgO	3-4.5
	CaO	7-8.5
15	Fe ₂ O ₃	0.3-2
	SO ₃	0-0.3
	SIO ₂ + Al ₂ O ₃	70-72
	Na ₂ O + K ₂ O	15-16.5

- 5. An insulating glass fibre production process including the spinning of molten glass at a high temperature in a spinner made from a mechanically alloyed or oxide dispersion strengthened alloy to produce fibres having a composition according to any preceding claim.
 - 6. Insulating glass fibres having a composition according to any one of claims 1 to 4.

25

30

35

40

..

50

EUROPEAN SEARCH REPORT

Application Number

EP 92 30 4660

Category	Citation of document with a	DERED TO BE RELEV			
- Legory	of relevant pr	esages		cicvant cinim	CLASSIFICATION OF THE APPLICATION (Int. CL5)
×	EP-A-0 399 320 (BAYER /	v c.)	1	4,6	C03C13/00
۲		-	5		C03C3/087
x,c	US-A-4 203 746 (J.A. B/ * table IV *	ATTIGELLI ET AL.)	1-	4,6	
'		_	5		
•	CHEMICAL ABSTRACTS, vol 1982, Columbus, Ohio, I abstract no. 167698Y, M. CZAJA ET AL.: 'Resu technological and desig production of glass fil	IS; Its of the selection of In parameters for	1-	4,6	
,	page 299 :		-		
;	* abstract *	_	5		
2, Υ	US-A-4 402 767 (J.W. H) the whole document *	NZE ET AL.)	5		
			İ		TECHNICAL FIELDS SEARCHED (Int. CL5)
					CQ3C
			ł		
				1	
	The present search report has be	en drawa up for all claims			•
	Piece of search	Date of complettee of the search			Premiae
1	THE HAGUE	08 SEPTEMBER 199		REED	IJK A, M, E,
X : parti	ATEGORY OF CITED DOCUMEN cularly relevant if taken alone cularly relevant if combined with ano ment of the same category	E : earlier paie	ited in the	mailcation	invention thed on, or

KPO FORM 1500 03.42 (PO401)