Introduction to Algorithms 6.046J/18.401

Lecture 18
Prof. Piotr Indyk

Today

- We have seen algorithms for:
 - "numerical" data (sorting, median)
 - graphs (shortest path, MST)
- Today and the next lecture: algorithms for geometric data

Computational Geometry

- Algorithms for geometric problems
- Applications: CAD, GIS, computer vision,.....

- Given: a set of points $P = \{p_1...p_n\}$ in the plane, such that $p_i = (x_i, y_i)$
- Goal: find a pair $p_i \neq p_j$ that minimizes $||p_i p_j||$ $||p-q|| = [(p_x-q_x)^2+(p_y-q_y)^2]^{1/2}$
- We will see more examples in the next lecture

 \circ

Closest Pair

- Find a closest pair among $p_1...p_n$
- Easy to do in $O(n^2)$ time
 - For all $p_i \neq p_j$, compute $||p_i p_j||$ and choose the minimum

Introduction to Algorithms

• We will aim for O(n log n) time

Divide and conquer

Divide:

- Compute the median of x-coordinates
- Split the points into P_L and P_R , each of size n/2
- Conquer: compute the closest pairs for P_L and P_R
- Combine the results (the hard part)

Combine

- Let $d=\min(d_1,d_2)$
- Observe:
 - Need to check only pairs which cross the dividing line
 - Only interested in pairs within distance < d
- Suffices to look at points in the 2d-width strip around the median line

0

0

Scanning the strip

- Sort all points in the strip by their y-coordinates, forming $q_1 \dots q_k$, $k \le n$.
- Let y_i be the y-coordinate of q_i
- $d_{min} = d$
- For i=1 to k

$$- j = i - 1$$

- While $y_i y_j < d$
 - If $||q_i q_j|| < d$ then $d_{min} = ||q_i q_j||$
 - j:=j-1
- Report d_{min} (and the corresponding pair)

Analysis

- Correctness: easy
- Running time is more involved
- Can we have many q_j's that are within distance d from q_i?
- No
- Proof by packing argument

Analysis, ctd.

Theorem: there are at most 7 q_i 's such that y_i - $y_i \le d$.

Proof:

- Each such q_j must lie either in the left or in the right d × d square
- Within each square, all points have distance distance ≥ d from others
- We can pack at most 4 such points into one square, so we have 8 points total (incl. q_i)

Packing bound

- Proving "4" is not easy
- Will prove "5"
 - Draw a disk of radius d/2 around each point
 - Disks are disjoint
 - The disk-square intersection has area $\geq \pi (d/2)^2/4 = \pi/16 d^2$
 - The square has area d^2
 - Can pack at most $16/\pi \approx 5.1$ points

Running time

- Divide: O(n)
- Combine: O(n log n) because we sort by y
- However, we can:
 - Sort all points by y at the beginning
 - Divide preserves the y-order of points Then combine takes only O(n)
- We get T(n)=2T(n/2)+O(n), so $T(n)=O(n \log n)$

Close pair

- Given: $P = \{p_1 \dots p_n\}$
- Goal: check if there is any pair $p_i \neq p_j$ within distance R from each other
- Will give an O(n) time algorithm, using...

...radix sort!

(assuming coordinates are small integers)

Algorithm

- Impose a square grid onto the plane, where each cell is an $R \times R$ square
- Put each point into a bucket corresponding to the cell it belongs to. That is:
 - For each point p=(x,y), create computes its bucket ID $b(p)=(\lfloor x/R \rfloor, \lfloor y/R \rfloor)$
 - Radix sort all b(p) 's
 - Each sequence of the same b(p) forms a bucket
- If there is a bucket with > 4 points in it, answer YES and exit
- Otherwise, for each $p \in P$:
 - Let c = b(p)
 - Let C be the set of bucket IDs of the 8 cells adjacent to c
 - For all points q from buckets in $C \cup \{c\}$
 - If $\|p-q\| \le R$, then answer YES and exit
- Answer NO

Bucket access

• Given a bucket ID c, how can we quickly retrieve all points p such that b(p)=c?

Introduction to Algorithms

- This is exactly the dictionary problem (Lecture 7)
- E.g., we can use hashing.

- Running time:
 - Putting points into the buckets: O(n) time
 - Checking if there is a heavy bucket: O(n)
 - Checking the cells: $9 \times 4 \times n = O(n)$
- Overall: linear time

Computational Model

- In the two lectures, we assume that
 - The input (e.g., point coordinates) are *real* numbers
 - We can perform (natural) operations on them in constant time, with perfect precision
- Advantage: simplicity
- Drawbacks: highly non-trivial issues:
 - Theoretical: if we allow arbitrary operations on reals, we can compress n numbers into a one number
 - Practical: algorithm designed for infinite precision sometimes fail on real computers