BEST AVAILABLE COPY

PCT/JP2004/009617

⁴ 30. 6. 2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年 6月30日

REC'D .1 9 AUG 2004

WIFO

PCT

出 願 番 号 Application Number:

特願2003-187312

[ST. 10/C]:

[JP2003-187312]

出 願 人
Applicant(s):

株式会社ディナベック研究所

特許CommJapan

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2.004年 8月 5日

1) 1

【書類名】

特許願

【整理番号】

D3-A0302

【提出日】

平成15年 6月30日

【あて先】

特許庁長官 殿

【国際特許分類】 C12N 15/86

【発明者】

【住所又は居所】

茨城県つくば市観音台1丁目25番11号 株式会社デ

ィナベック研究所内

【氏名】

游軍

【発明者】

【住所又は居所】 茨城県つくば市観音台1丁目25番11号 株式会社デ

ィナペック研究所内

【氏名】

飯田 章博

【発明者】

【住所又は居所】 茨城県つくば市観音台1丁目25番11号 株式会社デ

ィナベック研究所内

【氏名】

長谷川 護

【特許出願人】

【識別番号】 595155107

【氏名又は名称】 株式会社ディナベック研究所

【代理人】

【識別番号】 100102978

【弁理士】

【氏名又は名称】 清水 初志

【選任した代理人】

【識別番号】 100108774

【弁理士】

【氏名又は名称】 橋本 一憲

【手数料の表示】

【予納台帳番号】 041092

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9716812

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 高変異領域が改変された遺伝子を搭載するマイナス鎖RNAウイルスベクター

【特許請求の範囲】

【請求項1】 外来遺伝子を有するマイナス鎖RNAウイルスであって、該外来遺伝子の野生型遺伝子がセンス鎖の配列において5'-AGA₅₋₆C-3'を含み、該マイナス鎖RNAウイルスが有する該外来遺伝子は、センス鎖の配列において該5'-AGA₅₋₆C-3'が他の配列に改変されている、マイナス鎖RNAウイルス。

【請求項2】 該外来遺伝子が蛋白質をコードしており、該野生型遺伝子が含む該5'- $AGA_{5-6}C$ -3'配列が蛋白質コード配列の中にあり、該マイナス鎖RNAウイルスが有する該外来遺伝子は、該野生型遺伝子が該5'- $AGA_{5-6}C$ -3'配列によりコードするアミノ酸配列を維持するように、該外来遺伝子のセンス鎖の配列における該5'- $AGA_{5-6}C$ -3'配列が他の配列に改変されている、請求項1に記載のマイナス鎖RNAウイルス。

【請求項3】 該5'-AGA₅₋₆C-3'配列が、5'-AGA₅₋₆CTT-3'配列中の配列である、請求項1に記載のマイナス鎖RNAウイルス。

【請求項4】 該外来遺伝子がヒトCFTR遺伝子である、請求項1に記載のマイナス鎖RNAウイルス。

【請求項5】 マイナス鎖RNAウイルスがパラミクソウイルスである、請求項1に記載のマイナス鎖RNAウイルス。

【請求項6】 マイナス鎖RNAウイルスがセンダイウイルスである、請求項1に記載のマイナス鎖RNAウイルス。

【請求項7】 請求項1に記載のマイナス鎖RNAウイルスのゲノムRNAまたは その相補鎖をコードするDNA。

【請求項8】 変異頻度が低下するように改変された遺伝子を搭載するマイナス鎖RNAウイルスの製造方法であって、

- (a) 該遺伝子の改変前の遺伝子配列中に5'-AGA₅₋₆C-3'配列を含む場合に、該5'-AGA₅₋₆C-3'配列を他の配列に改変する工程、
 - (b) 改変された遺伝子が組み込まれた該マイナス鎖RNAウイルスのゲノムまた

はその相補鎖をコードするDNAを調製する工程、

(c) 該DNAを転写して該マイナス鎖RNAウイルスを再構成させる工程、を含む方法。

【請求項9】 該5'-AGA₅₋₆C-3'配列が、5'-AGA₅₋₆CTT-3'配列中の配列である、請求項8に記載の方法。

【請求項10】 該外来遺伝子がヒトCFTR遺伝子である、請求項8に記載の方法。

【請求項11】 マイナス鎖RNAウイルスがパラミクソウイルスである、請求項8に記載の方法。

【請求項12】 マイナス鎖RNAウイルスがセンダイウイルスである、請求項8に記載の方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、高変異領域が改変された遺伝子を搭載するマイナス鎖RNAウイルス に関する。

[0002]

【従来の技術】

マイナス鎖RNAウイルスは、搭載するウイルス遺伝子をアンチセンスにコードするRNAゲノム(マイナス鎖RNA)を持つウイルスである。マイナス鎖RNAウイルスは、細胞に感染するとRNAゲノム(マイナス鎖)を鋳型にアンチゲノムRNA(プラス鎖)が生成し、さらにアンチゲノムRNAからゲノムRNAが生じて、これがウイルス中に取り込まれて増殖する。マイナス鎖RNAウイルスは感染宿主細胞の細胞質で強力に遺伝子を発現する能力を有しており、その特徴を生かして近年、遺伝子導入ベクターとしての開発が進められている(国際公開番号 W000/70055 および W000/70070)。しかしマイナス鎖RNAウイルスベクターにある種の外来遺伝子を組み込んだ場合に、高い頻度で変異が生じることについては、ほとんど知られていない。また、その変異が起こらないようにベクターを改変する手段も知られていない。

[0003]

【特許文献1】

国際公開番号第W000/70055号

【特許文献2】

国際公開番号第W000/70070号

[0004]

【発明が解決しようとする課題】

本発明は、高変異領域が改変された遺伝子を搭載するマイナス鎖RNAウイルス を提供することを課題とする。

[0005]

【課題を解決するための手段】

センダイウイルス(SeV)を用いたこれまでの研究において、外来遺伝子を組み込んだウイルスを連続多代継代しても殆ど塩基の変異は認められないことから、一般的にマイナス鎖RNAウイルスのゲノムの安定性は高く、組み込まれた外来遺伝子を長期間に渡って安定に発現すると考えられている(Yu, D. et al., Gen es Cells 2, 457-466(1997))。本発明者らは以前、嚢胞性線維症(Cystic Fib rosis; CF)の原因遺伝子であるヒトCFTR遺伝子(hCFTR)を発現するSeVベクターを構築している(WOO1/32898)。しかし本発明者らのその後の研究により、野生型のhCFTRを搭載したSeVベクターは、hCFTR遺伝子に高頻度で変異が生じ、正常な蛋白質が発現しなくなることを発見した。

[0006]

全長hCFTR遺伝子を搭載したSeVベクターのウイルスゲノム上のhCFTR遺伝子配列を詳細に確認したところ、2 imes所の領域に高頻度な塩基変異が生じていることを見出した(図 1)。これらの塩基変異によってコードする蛋白質のアミノ酸配列が変わり、発現したhCFTR蛋白の活性が認められなくなった。本発明者らは、この2 imes所の高変異領域がマイナス鎖RNAウイルスのEI配列との相同性が非常に高い配列(5'-AGA5-6C-3')を含むことが、変異のホットスポットになる原因だと考えた(図 2)。そこで、アミノ酸配列を変えないように人為的にこの2 imes所の塩基配列を改変してEI配列との相同性を低下させ、SeVベクターに搭載した。

その結果、この高変異領域改変型ヒトCFTR遺伝子を搭載したSeVベクターでは、 ゲノム上のhCFTR遺伝子の変異がまったく見られなかった。また、in vitroとin vivoの両方において、ベクター導入細胞において正常なhCFTR蛋白の発現が安定 して確認された。

[0007]

このように本発明者らは、マイナス鎖RNAウイルスにおいて外来遺伝子を搭載する場合に、高い頻度で変異が生じる配列(5'-AGA₅₋₆C-3')を同定し、これを改変することによって変異頻度を低下させることに成功した。マイナス鎖RNAウイルスは、遺伝子治療用ベクターとして有望だが、この際にウイルスベクターに搭載する遺伝子が変異せずに安定に保持されることは重要である。本発明により、搭載遺伝子の安定性がより向上したマイナス鎖RNAウイルスベクターを提供することが可能となった。

すなわち本発明は、高変異領域が改変された遺伝子を搭載するマイナス鎖RNA ウイルスおよびその製造方法に関し、より具体的には、

- (1)外来遺伝子を有するマイナス鎖RNAウイルスであって、該外来遺伝子の野生型遺伝子がセンス鎖の配列において5'-AGA5-6C-3'を含み、該マイナス鎖RNAウイルスが有する該外来遺伝子は、センス鎖の配列において該5'-AGA5-6C-3'が他の配列に改変されている、マイナス鎖RNAウイルス、
- (2) 該外来遺伝子が蛋白質をコードしており、該野生型遺伝子が含む該5'-AGA 5-6C-3'配列が蛋白質コード配列の中にあり、該マイナス鎖RNAウイルスが有する 該外来遺伝子は、該野生型遺伝子が該5'-AGA5-6C-3'配列によりコードするアミノ酸配列を維持するように、該外来遺伝子のセンス鎖の配列における該5'-AGA5-6C-3'配列が他の配列に改変されている、(1)に記載のマイナス鎖RNAウイルス
- (3) 該5'-AGA₅₋₆C-3'配列が、5'-AGA₅₋₆CTT-3'配列中の配列である、(1)に 記載のマイナス鎖RNAウイルス、
- (4) 該外来遺伝子がヒトCFTR遺伝子である、(1) に記載のマイナス鎖RNAウイルス、
- (5) マイナス鎖RNAウイルスがパラミクソウイルスである、(1) に記載のマ

イナス鎖RNAウイルス、

- (6)マイナス鎖RNAウイルスがセンダイウイルスである、(1)に記載のマイナス鎖RNAウイルス、
- (7) (1) に記載のマイナス鎖RNAウイルスのゲノムRNAまたはその相補鎖をコードするDNA、
- (8)変異頻度が低下するように改変された遺伝子を搭載するマイナス鎖RNAウイルスの製造方法であって、
- (a) 該遺伝子の改変前の遺伝子配列中に5'-AGA₅₋₆C-3'配列を含む場合に、 該5'-AGA₅₋₆C-3'配列を他の配列に改変する工程、
- (b) 改変された遺伝子が組み込まれた該マイナス鎖RNAウイルスのゲノムまたはその相補鎖をコードするDNAを調製する工程、
- (c)該DNAを転写して該マイナス鎖RNAウイルスを再構成させる工程、を含む方法、
- (9) 該5'-AGA₅₋₆C-3'配列が、5'-AGA₅₋₆CTT-3'配列中の配列である、(8) に 記載の方法、
 - (10) 該外来遺伝子がヒトCFTR遺伝子である、(8) に記載の方法、
- (11) マイナス鎖RNAウイルスがパラミクソウイルスである、(8) に記載の 方法、
- (12)マイナス鎖RNAウイルスがセンダイウイルスである、(8)に記載の方法、に関する。

[0008]

【発明の実施の形態】

本発明は、高変異領域が改変された遺伝子を搭載するマイナス鎖RNAウイルスを提供する。本発明者らは、5'-AGA₅₋₆C-3'配列[すなわち5'-AGAAAAAC-3'(但しマイナス鎖ウイルスゲノム上の配列では 3'-UCUUUUUUG-5')または5'-AGAAAAAA C-3'(但しマイナス鎖ウイルスゲノム上の配列では 3'-UCUUUUUUG-5')]を含む外来遺伝子をマイナス鎖RNAウイルスに搭載すると、高い頻度でこの配列に変異が生じることを見出した。従って、この配列を含む遺伝子を持つ組み換えマイナス鎖RNAウイルスの作製時には、この配列を他の配列に変換してウイルスに組み

込むことで、搭載遺伝子が変異するのを防ぐことができる。本発明において組み換えウイルスとは、組み換えポリヌクレオチドを介して生成したウイルスを言う。組み換えポリヌクレオチドとは、組み換えポリヌクレオチドは、人の手によってポリヌクレオチド鎖の結合が改変(切断または結合)されたポリヌクレオチドである。組み換えポリヌクレオチドは、その両端が自然の状態と同じようには連結されていない。組み換えポリヌクレオチドは、ポリヌクレオチド合成、ヌクレアーゼ処理、リガーゼ処理等を組み合わせて、公知の遺伝子組み換え方法により生成させることができる。組み換えウイルスは、遺伝子操作により構築されたウィルスゲノムをコードするポリヌクレオチドを発現させ、ウイルスを再構築することによって生成させることができる。

[0009]

本発明において遺伝子とは遺伝物質を指し、転写単位をコードする核酸を言う 。本発明のウイルスに組み込む外来遺伝子は、改変前の遺伝子配列(例えば野生 型遺伝子の配列)に5'-AGA5-6C-3'配列を含む限り特に制限はなく、蛋白質をコ ードするものおよびしないものが含まれる。本発明において蛋白質をコードする 核酸は、該蛋白質の遺伝子とも呼ぶ。またリボザイムをコードする核酸をそのリ ボザイムの遺伝子という。本発明のウイルスは、センス鎖の配列において野生型 遺伝子が持つ5'-AGA5-6C-3'配列が他の配列に改変された改変型外来遺伝子を持 つ(すなわち該マイナス鎖RNAウイルスのゲノムRNA上の該外来遺伝子においては 、該5'-AGA5-6C-3'の相補配列である3'-UCU5-6G-5'が他の配列に改変されている)。マイナス鎖RNAウイルスはマイナス鎖(アンチセンス鎖)ゲノムを持つウイ ルスであるので、ウイルスが持つ遺伝子はアンチセンスにコードされている。従 って、ある野生型遺伝子に5'-AGA₅₋₆C-3'配列が含まれる場合、この遺伝子を改 変しないままマイナス鎖RNAウイルスベクターに組み込んだ場合は、ベクターの マイナス鎖ゲノムが有する該遺伝子の配列(ゲノムはマイナス鎖であるので該遺 伝子のアンチセンス鎖の配列である)には 3'-UCU₅₋₆G-5' 配列(すなわち 3'-U CUUUUUG-5'または 3'-UCUUUUUUG-5') が含まれるが、本発明のウイルスにおい てはこの $3'-UCU_{5-6}G-5'$ 配列は他の配列に改変されている。

[0010]

本発明において、マイナス鎖RNAウィルスとは、マイナス鎖(ネガティブ鎖) をゲノムに持つRNAウィルスを言う。マイナス鎖RNAウィルスとしては、例えばパ ラミクソウィルス科(Paramyxoviridae)のセンダイウィルス(Sendai virus)、ニ ューカッスル病ウィルス(Newcastle disease virus)、おたふくかぜウィルス(Mu mps virus)、麻疹ウィルス(Measles virus)、RSウィルス(Respiratory syncytia l virus)、牛疫ウィルス(rinderpest virus)、ジステンパーウィルス(distemper virus)、オルトミクソウィルス科(Orthomyxoviridae)のインフルエンザウィル ス(Influenza virus)、ラブドウィルス科(Rhabdoviridae)の水疱性口内炎ウィル ス(Vesicular stomatitis virus)、狂犬病ウィルス(Rabies virus)等が挙げられ る。本発明において特に好適なウイルスは一本鎖のマイナス鎖をゲノムに持つウ イルスであり、例えばパラミクソウイルス(Paramyxoviridae; Respirovirus, M orbillivirus, Rubulavirus, および Pneumovirus属等を含む)、ラブドウイル ・ ス (Rhabdoviridae; Vesiculovirus, Lyssavirus, および Ephemerovirus属等を 含む)、フィロウイルス(Filoviridae)、オルトミクソウイルス(Orthomyxovi ridae; Infuluenza virus A, B, C, および Thogoto-like viruses 等を含む) 、プニヤウイルス(Bunyaviridae; Bunyavirus, Hantavirus, Nairovirus, およ び Phlebovirus属等を含む)、アレナウイルス(Arenaviridae)などの科に属す るウイルスが含まれる。

[0011]

本発明においてパラミクソウィルスとはパラミクソウィルス科(Paramyxoviri dae)に属するウィルスまたはその誘導体を指す。パラミクソウィルスは、非分節型ネガティブ鎖RNAをゲノムに持つウィルスのグループの1つで、パラミクソウイルス亜科(Paramyxovirinae)(レスピロウイルス属(パラミクソウイルス属とも言う)、ルブラウイルス属、およびモービリウイルス属を含む)およびニューモウイルス亜科(Pneumovirinae)(ニューモウイルス属およびメタニューモウイルス属を含む)を含む。本発明を適用可能なパラミクソウィルスとしては、具体的にはセンダイウィルス(Sendai virus)、ニューカッスル病ウィルス(New castle disease virus)、おたふくかぜウィルス(Mumps virus)、麻疹ウィルス(Measles virus)、RSウィルス(Respiratory syncytial virus)、牛疫ウィルス(rin

derpest virus)、ジステンパーウィルス(distemper virus)、サルパラインフルエンザウィルス (SV5)、ヒトパラインフルエンザウィルス1、2、3型等が挙げられる。本発明のウィルスは、好ましくはパラミクソウイルス亜科(レスピロウイルス属、ルブラウイルス属、およびモービリウイルス属を含む)に属するウイルスまたはその誘導体であり、より好ましくはレスピロウイルス属(genus Respir ovirus)(パラミクソウィルス属 (Paramyxovirus)とも言う)に属するウィルスまたはその誘導体である。本発明を適用可能なレスピロウイルス属ウィルスとしては、例えばヒトパラインフルエンザウィルス1型(HPIV-1)、ヒトパラインフルエンザウィルス3型(HPIV-3)、ウシパラインフルエンザウィルス3型(BPIV-3)、センダイウィルス(Sendai virus;マウスパラインフルエンザウィルス1型とも呼ばれる)、およびサルパラインフルエンザウィルス10型(SPIV-10)などが含まれる。本発明においてパラミクソウィルスは、最も好ましくはセンダイウィルスである。これらのウィルスは、天然株、野生株、変異株、ラボ継代株、および人為的に構築された株などに由来してもよい。

[0012]

本発明においてベクターとは、核酸を細胞に導入する担体である。マイナス鎖RNAウイルスベクターとは、マイナス鎖RNAウイルスに由来する、核酸を細胞に導入する担体である。上記のように、SeVなどのマイナス鎖RNAウイルスは遺伝子導入ベクターとして優れており、宿主細胞の細胞質でのみ転写・複製を行い、DNAフェーズを持たないため染色体への組み込み(integration)は起こらない。このため染色体異常による癌化または不死化などの安全面における問題が生じない。マイナス鎖RNAウイルスのこの特徴は、ベクター化した時の安全性に大きく寄与している。またこのウイルスにはカプシド構造蛋白質を持たないことによる導入遺伝子のサイズまたはパッケージングの柔軟性(flexibility)など性質上のメリットがある。例えば伝播能を有するSeVベクターは、外来遺伝子を少なくとも4kbまで導入可能であり、転写ユニットを付加することによって2種類以上の遺伝子を同時に発現する事が可能である。

[0013]

また、センダイウイルスは齧歯類にとっては病原性で肺炎を生じることが知ら

れているが、ヒトに対しては病原性がない。これはまた、野生型センダイウイル スの経鼻的投与によって非ヒト霊長類において重篤な有害作用を示さないという これまでの報告によっても支持されている(Hurwitz, J. L. et al., Vaccine 1 5:533-540,1997)。更に特筆すべき利点として以下の2点、すなわち「高感染 性|及び「高発現量|を挙げることができる。SeVベクターは細胞膜蛋白糖鎖の シアル酸に結合して感染するが、このシアル酸はほとんどの細胞で発現しており 、このことが感染スペクトルを広くする、則ち高感染性に繋がっている。SeVの レプリコンをベースにした伝播型ベクターは放出されたウイルスが周囲の細胞に も再感染し、感染細胞の細胞質で多コピーに複製されたRNPが細胞の分裂に伴い 娘細胞にも分配されるため持続発現が期待される。また、SeVベクターは非常に 広い組織適用範囲を持つ。また、細胞質のみでの転写・複製という特徴的な発現 機構であることから、搭載遺伝子の発現量が非常に高いことが示されている(Mo riya, C. et al., FEBS Lett. 425(1) 105-111 (1998); WOOO/70070)。更に、 エンベロープ遺伝子を欠失して非伝播性にしたSeVベクターの回収にも成功して おり (W000/70070; Li, H.-0. et al., J. Virol. 74(14) 6564-6569 (2000)) 、「高感染性」及び「高発現量」を維持して、「安全性」をさらに高めるための 改良が進行している。

[0014]

これらの特徴は、マイナス鎖RNAウイルスは有効な遺伝子治療用および遺伝子 導入用ベクターであり、遺伝子治療における有望な選択肢の一つとなることを支 持するものである。マイナス鎖RNAウイルスに治療用(または解析用)の遺伝子 を搭載して局所投与することで、治療遺伝子の局所的な高い発現が可能となり、 治療効果の確実性とともに副作用の軽減が期待される。このような効果は、一過 的に強発現が誘導される、SeVを初めとするマイナス鎖RNAウイルスだからこそ、 より有効であると考えられる。

[0015]

マイナス鎖RNAウイルスは、マイナス鎖RNAウイルスのゲノムRNAを含んでいる。ゲノムRNAとは、マイナス鎖RNAウイルスのウイルス蛋白質と共にRNPを形成し、該蛋白質によりゲノム中の遺伝子が発現し、該核酸が複製して娘RNPが形成さ

れる機能を持つRNAを言う。マイナス鎖RNAウイルスはネガティブ鎖RNAをゲノム に持つウイルスであるので、このようなRNAは搭載遺伝子をアンチセンスとして コードしている。一般にマイナス鎖RNAウイルスのゲノムは、3'リーダー領域と5 'トレイラー領域の間に、ウイルス遺伝子がアンチセンスとして並んだ構成をし ている。各遺伝子のORFの間には、転写終結配列(E配列) - 介在配列(I配列) -転写開始配列(S配列)が存在し、これにより各遺伝子が別々のシストロンとして 転写される。本発明のウイルスに含まれるゲノムRNAは、該RNAにコードされる遺 伝子群の発現およびRNA自身の自律的な複製に必要なウイルス蛋白質である N(ヌクレオキャプシド)、P(ホスホ)、およびL(ラージ)をアンチセンスにコー ドしている。また該RNAは、ウイルス粒子の形成に必要なM(マトリックス)蛋白 質をコードしていてもよい。さらに該RNAは、ウイルス粒子の感染に必要なエン ベロープ蛋白質をコードしていてもよい。マイナス鎖RNAウイルスのエンベロー プ蛋白質としては、細胞膜融合を起こす蛋白質であるF(フュージョン)蛋白質 および細胞への接着に必要なHN(ヘマグルチニン-ノイラミニダーゼ)蛋白質が 挙げられる。但し、ある種の細胞では感染にHN蛋白質は必要なく(Markwell, M. A. et al., Proc. Natil. Acad. Sci. USA 82(4):978-982 (1985)) 、F蛋白質の みで感染が成立する。また、F蛋白質および/またはHN蛋白質以外のウイルスエ ンベロープ蛋白質をコードさせてもよい。

[0016]

本発明のマイナス鎖RNAウイルスは、例えばマイナス鎖RNAウイルスのゲノムRN Aとウイルス蛋白質からなる複合体、すなわちリボヌクレオプロテイン (RNP) であってよい。RNPは、例えば所望のトランスフェクション試薬と組み合わせて細胞に導入することができる。このようなRNPは、具体的には例えばマイナス鎖RNAウイルスのゲノムRNA、N蛋白質、P蛋白質、およびL蛋白質を含む複合体である。RNPは細胞内に導入されると、ウイルス蛋白質の働きによりゲノムRNAからウイルス蛋白質をコードするシストロンが転写されると共に、ゲノム自身が複製され娘RNPが形成される。ゲノムRNAの複製は、該RNAのコピー数の増加をRT-PCRまたはノーザンハイブリダイゼーション等により検出することにより確認することができる。

[0017]

また本発明のマイナス鎖RNAウイルスは、好ましくはマイナス鎖RNAウイルスのウイルス粒子である。ウイルス粒子とは、ウイルス蛋白質の働きにより細胞から放出される、核酸を含む微小粒子を言う。マイナス鎖RNAウイルスのウイルス粒子は、ゲノムRNAとウイルス蛋白質を含む上記RNPが細胞膜由来の脂質膜(エンベロープという)に含まれた構造をしている。ウイルス粒子は、感染性を示すものであってよい。感染性とは、マイナス鎖RNAウイルスが細胞への接着能および膜融合能を保持していることにより、接着した細胞の内部にウイルス内部の核酸を導入することのできる能力を言う。本発明のマイナス鎖RNAウイルスは、伝播能を有していてもよく、あるいは伝播能を有さない欠損型ウイルスであってもよい。「伝播能を有する」とは、ウイルスが宿主細胞に感染した場合、該細胞においてウイルスが複製され、感染性ウイルス粒子が産生されることを指す。

[0018]

例えばパラミクソウィルス亜科に属する各ウィルスにおける各遺伝子は、一般に次のように表記される。一般に、N遺伝子は"NP"とも表記される。

レスピロウィルス属	NP	P/C/V	M	F	HN	-	L
ルプラウィルス属	NP	P/V	M	F	HN	(SH)	L
モービリウィルス属	NP	P/C/V	M	F	Н		L

[0019]

例えばセンダイウィルスの各遺伝子の塩基配列のデータベースのアクセッション番号は、N遺伝子については M29343、M30202, M30203, M30204, M51331, M55565, M69046, X17218、P遺伝子については M30202, M30203, M30204, M55565, M69046, X00583, X17007, X17008、M遺伝子については D11446, K02742, M30202, M30203, M30204, M69046, U31956, X00584, X53056、F遺伝子については D00152, D11446, D17334, D17335, M30202, M30203, M30204, M69046, X00152, X02131、HN遺伝子については D26475, M12397, M30202, M30203, M30204, M69046, X00586, X02808, X56131、L遺伝子については D00053, M30202, M30203, M30204, M69040, X00587, X58886を参照のこと。またその他のウイルスがコードするウイルス遺伝子を例示すれば、N遺伝子については、CDV, AF014953; DMV, X75961; H

PIV-1, D01070; HPIV-2, M55320; HPIV-3, D10025; Mapuera, X85128; Mumps, D 86172; MV. K01711; NDV, AF064091; PDPR, X74443; PDV, X75717; RPV, X68311 ; SeV, X00087; SV5, M81442; および Tupaia, AF079780、P遺伝子については、 CDV, X51869; DMV, Z47758; HPIV-1, M74081; HPIV-3, X04721; HPIV-4a, M5597 5; HPIV-4b, M55976; Mumps, D86173; MV, M89920; NDV, M20302; PDV, X75960; RPV, X68311; SeV, M30202; SV5, AF052755; および Tupaia, AF079780、C遺伝 子については CDV, AF014953; DMV, Z47758; HPIV-1. M74081; HPIV-3, D00047; MV. AB016162; RPV. X68311; SeV. AB005796; および Tupaia, AF079780、M遺 伝子については CDV、M12669; DMV Z30087; HPIV-1, S38067; HPIV-2, M62734; HPIV-3, D00130; HPIV-4a, D10241; HPIV-4b, D10242; Mumps, D86171; MV, ABO 12948; NDV. AF089819; PDPR, Z47977; PDV, X75717; RPV, M34018; SeV, U3195 6; および SV5, M32248、F遺伝子については CDV, M21849; DMV, AJ224704; HPN -1. M22347; HPIV-2. M60182; HPIV-3. X05303, HPIV-4a, D49821; HPIV-4b, D4 9822; Mumps, D86169; MV, AB003178; NDV, AF048763; PDPR, Z37017; PDV, AJ2 24706; RPV, M21514; SeV, D17334; および SV5, ABO21962、HN (HまたはG) 遺 伝子については CDV, AF112189; DMV, AJ224705; HPIV-1, U709498; HPIV-2. DO 00865; HPIV-3, AB012132; HPIV-4A, M34033; HPIV-4B, AB006954; Mumps, X990 40; MV, K01711; NDV, AF204872; PDPR, Z81358; PDV, Z36979; RPV, AF132934; SeV, U06433: および SV-5, S76876 が例示できる。但し、各ウイルスは複数の 株が知られており、株の違いにより上記に例示した以外の配列からなる遺伝子も 存在する。

[0020]

これらのウイルス蛋白質のORFは、ゲノムRNAにおいて上記のE-I-S配列を介してアンチセンスに配置される。ゲノムRNAにおいて最も3'に近いORFは、3'リーダー領域と該ORFとの間にS配列のみが必要であり、EおよびI配列は必要ない。またゲノムRNAにおいて最も5'に近いORFは、5'トレイラー領域と該ORFとの間にE配列のみが必要であり、IおよびS配列は必要ない。また2つのORFは、例えばIRES等の配列を用いて同一シストロンとして転写させることも可能である。このような場合は、これら2つのORFの間にはE-I-S配列は必要ない。野生型のパラミクソウ

イルスの場合、典型的なRNAゲノムは、3'リーダー領域に続き、N、P、M、F、HN、およびL蛋白質をアンチセンスにコードする6つのORFが順に並んでおり、それに続いて5'トレイラー領域を他端に有する。本発明のウイルスのゲノムRNAにおいては、ウイルス遺伝子の配置はこれに限定されるものではないが、好ましくは、野生型ウイルスと同様に、3'リーダー領域に続き、N、P、M、F、HN、およびL蛋白質をコードするORFが順に並び、それに続いて5'トレイラー領域が配置されることが好ましい。ある種のマイナス鎖RNAウイルスにおいては、ウイルス遺伝子は6つではないが、そのような場合でも上記と同様に各ウイルス遺伝子を野生型と同様の配置とすることが好ましい。一般に N、P、およびL遺伝子を保持しているウイルスは、細胞内で自立的にRNAゲノムから遺伝子が発現し、ゲノムRNAが複製される。さらにFおよびHN遺伝子等のエンベロープ蛋白質をコードする遺伝子、およびM遺伝子の働きにより、感染性のウイルス粒子が形成され、細胞外に放出される。従って、このようなウイルスは伝播能を有するウイルスベクターとなる。外来遺伝子は、後述するように、このゲノム中の蛋白質非コード領域等に挿入すればよい。

[0021]

また、本発明のマイナス鎖RNAウイルスは、野生型ウイルスが持つ遺伝子のいずれかを欠損したものであってよい。例えば、M、F、またはHN遺伝子、あるいはそれらの組み合わせが不活化または欠失したマイナス鎖RNAウイルスも、本発明のウイルスとして好適である。このようなウイルスの再構成は、例えば、欠損している遺伝子産物を外来的に供給することにより行うことができる。このようにして製造されたウイルスは、野生型ウイルスと同様に宿主細胞に接着して細胞融合を起こすが、細胞に導入されたウイルスゲノムはウイルス遺伝子に欠損を有するため、最初と同じような感染力を持つ娘ウイルス粒子は形成されない。このため、一回限りの遺伝子導入力を持つ安全なウイルスベクターとして有用である。ゲノムから欠損させる遺伝子としては、例えばF遺伝子および/またはHN遺伝子が挙げられる。例えば、F遺伝子が欠損した組み換えマイナス鎖RNAウイルスゲノムを発現するプラスミドを、F蛋白質の発現ベクターならびにNP、P、およびL蛋白質の発現ベクターと共に宿主細胞にトランスフェクションすることにより、組

み換えウイルスの再構成を行うことができる(国際公開番号 W000/70055 および W000/70070; Li, H.-O. et al., J. Virol. 74(14) 6564-6569(2000))。また、例えば、F遺伝子が染色体に組み込まれた宿主細胞を用いてウイルスを製造することもできる。これらの蛋白質群を外から供給する場合、そのアミノ酸配列はウイルス由来の配列そのままでなくとも、核酸の導入における活性が天然型のそれと同等かそれ以上ならば、変異を導入したり、あるいは他のウイルスの相同遺伝子で代用してもよい。

[0022]

また、本発明のウイルスとして、ウイルスゲノムが由来するウイルスのエンベロープ蛋白質とは異なる蛋白質をエンベロープに含む組み換えウイルスを作製することもできる。例えば、ウイルス再構成の際に、ベースとなるウイルスのゲノムが元来コードするエンベロープ蛋白質以外のエンベロープ蛋白質を細胞で発現させることにより、所望のエンベロープ蛋白質を有する組み換えウイルスを製造することができる。このような蛋白質に特に制限はない。例えば、他のウイルスのエンベロープ蛋白質、例えば水疱性口内炎ウイルス(VSV)のG蛋白質(VSV-G)を挙げることができる。本発明のウイルスには、VSV-G蛋白質などのように、ゲノムが由来するウイルス以外のウイルスに由来するエンベロープ蛋白質を含むシュードタイプウイルスが含まれる。ウイルスのゲノムRNAにはこれらのエンベロープ蛋白質をゲノムにコードされないように設計すれば、ウイルス粒子が細胞に感染した後は、このウイルスからこの蛋白質が発現されることはない。

[0023]

また、本発明のウイルスは、例えば、エンベロープ表面に特定の細胞に接着し うるような接着因子、リガンド、受容体等の蛋白質、抗体またはその断片、ある いはこれらの蛋白質を細胞外領域に有し、ウイルスエンベロープ由来のポリペプ チドを細胞内領域に有するキメラ蛋白質などを含むものであってもよい。これに より、特定の組織を標的として感染するウイルスベクターを作り出すこともでき る。これらはウイルスゲノムにコードされていてもよいし、ウイルスの再構成時 に、ウイルスゲノム以外の遺伝子(例えば別の発現ベクターまたは宿主染色体上 などにある遺伝子)の発現により供給されてもよい。

[0024]

また本発明のウイルスは、例えばウィルス蛋白質による免疫原性を低下させるために、あるいはRNAの転写効率または複製効率を高めるために、ウイルスに含まれる任意のウィルス遺伝子が野生型遺伝子から改変されていてよい。具体的には、例えばマイナス鎖RNAウイルスにおいては、複製因子であるN、P、およびL遺伝子の中の少なくとも一つを改変し、転写または複製の機能を高めることが考えられる。また、エンベロープ蛋白質の1つであるHN蛋白質は、赤血球凝集素であるヘマグルチニン(hemagglutinin)活性とノイラミニダーゼ(neuraminidase)活性との両者の活性を有するが、例えば前者の活性を弱めることができれば、血液中でのウィルスの安定性を向上させることが可能であろうし、例えば後者の活性を改変することにより、感染能を調節することも可能である。また、F蛋白質を改変することにより、感染能を調節することも可能である。また、例えば、細胞表面の抗原分子となりうるF蛋白質またはHN蛋白質の抗原提示エピトープ等を解析し、これを利用してこれらの蛋白質に関する抗原提示能を弱めた組み換えウィルスを作製することもできる。

[0025]

また本発明のウイルスにおいては、アクセサリー遺伝子が欠損したものであってよい。例えばSeVのアクセサリー遺伝子の1つであるV遺伝子をJックアウトすることにより、培養細胞における遺伝子発現および複製は障害されることなく、マウス等の宿主に対するSeVの病原性が顕著に減少する(Kato, A. et al., 1997, J. Virol. 71:7266-7272; Kato, A. et al., 1997, EMBO J. 16:578-587; Cur ran, J. et al., W001/04272, EP1067179)。このような弱毒化ウイルスは、in vivo またはex vivoにおける毒性のない遺伝子導入用ウィルスベクターとして特に有用である。

[0026]

本発明のウイルスは、上記のマイナス鎖RNAウイルスのゲノム中に、改変された外来遺伝子をコードしている(ゲノムはマイナス鎖であるので、搭載遺伝子をアンチセンスにコードしている)。ここで、ウイルスに搭載されている外来遺伝子の配列領域に対応する該外来遺伝子の改変前の遺伝子(例えば野生型遺伝子)

の配列には5'-AGA₅₋₆C-3'配列が含まれているが、本発明のウイルスに搭載され ている外来遺伝子においては、その配列が他の配列に改変されている。すなわち 、ウイルスに含まれるマイナス鎖ゲノムが有する外来遺伝子のその部位の配列は 、5'-AGA₅₋₆C-3'配列の相補配列である5'-GU₅₋₆CU-3'から他の配列に改変されて いる。「野生型遺伝子」とは、正常な表現型を示す天然の生物が持つ遺伝子を言 い、任意の多型が含まれる。また、ある抗原に対して生成した抗体をコードする 遺伝子を含む。ここで、ウイルスに搭載しようとする外来遺伝子は、野生型遺伝 子の5'-AGA₅₋₆C-3'配列に対応する領域(但し他の配列に改変されている)を含 む限り、他の領域は野生型と同一である必要はない。すなわち、ウイルスが搭載 する外来遺伝子は、5'-AGA₅₋₆C-3'領域以外の部位において、野生型遺伝子の配 列を塩基の付加、欠失、置換により改変した配列から構成されていてもよい。例 えば、ある膜貫通型受容体の細胞外領域をコードする塩基配列が5'-AGA₅₋₆C-3' を含む場合、この配列を他の配列に改変した細胞外領域のみをコードする外来遺 伝子を搭載するウイルスは本発明に含まれる。また、ある抗体の可変領域をコー ドする塩基配列が5'-AGA5-6C-3'を含む場合、この配列を他の配列に改変したFab 断片およびscFvなどの合成蛋白質をコードするウイルスは本発明に含まれる。ま た、ある変異型遺伝子が、野生型遺伝子の5'-AGA5-6C-3'配列と相同な部位に関 しては野生型遺伝子と同じように5'-AGA5-6C-3'配列を含む場合、変異型遺伝子 の5'-AGA5-6C-3'配列を他の配列に改変した遺伝子を搭載するウイルスは本発明 のウイルスに含まれる。本発明においては、5'-AGA₅₋₆C-3'を含む所望の配列が 改変の標的となるが、さらに特定すれば 5'-AGA₅₋₆C[C/T][C/T]-3' ([C/T] = C またはT) (配列番号:1または2) であり、より特定すれば 5'-AGA5-6CTT-3'(配列番号:3または4)を含む配列である。また本発明においては、SeVの完全 なE配列を含む 5'-ANTAAGAAAAAC-3' (N= A, G, C, または T) (配列番号:5) とは一致しない配列も改変の標的となる。

[0027]

5'-AGA₅₋₆C-3'配列の改変配列としては特に制限はなく、例えば遺伝子の機能 を維持するように適宜塩基の付加、置換、および/または欠失を行う。例えば、 この配列が蛋白質のコード配列の一部である場合は、コードする蛋白質のアミノ 酸配列を変えないように塩基配列を改変することが好ましい。コドンのリダンダンシーを利用すれば、通常、アミノ酸を維持して塩基配列を改変することは容易である。例えば、AGA(Arg)であれば、AGG、または CGN(N= A, G, T, または C) に置換することができる。AAA(Lys)であれば、AAGに置換することができる。AAC(Asn)であれば、AATに置換することができる。ACT(Thr)であれば、ACA,ACC,または ACG に置換することができる。例えば、ヒトCFTR遺伝子のORFには、5'-AGA5-6C-3'に一致する箇所が2箇所存在する(Accession Nos. M28668,NM_000492; Riordan, J.R. et al., Science 245: 1066-1073(1989))。この2箇所の配列を改変することによって、マイナス鎖RNAウイルスに搭載させたときに変異が生じるのを防ぐことができる。5'-AGA5-6C-3'配列が蛋白質をコードしていない場合は、この配列を欠失させても遺伝子の機能が保たれるなら、この配列を欠失させてよいし、あるいは他の配列に置換してもよい。塩基対を形成する配列は、例えば塩基対形成を維持するように改変する。配列の改変は、例えば合成オリゴヌクレオチドを用いたPCRにより実施することができる(実施例参照)

[0028]

また本発明は、本発明のウイルスの製造方法に関する。本発明のウイルスの製造方法は、(a) ウイルスに搭載させる遺伝子の改変前の遺伝子配列中に5'-AGA 5-6C-3'配列を含む場合に、該5'-AGA5-6C-3'配列を他の配列に改変する工程、(b) 改変された遺伝子が組み込まれた該マイナス鎖RNAウイルスのゲノムまたはその相補鎖をコードするDNAを調製する工程、および(c) 該DNAを転写して該マイナス鎖RNAウイルスを再構成させる工程、を含む。

[0029]

外来遺伝子をコードする核酸の挿入位置は、例えばゲノムの蛋白質非コード領域の所望の部位を選択することができ、例えば3'リーダー領域と3'に最も近いウイルス蛋白質ORFとの間、各ウイルス蛋白質ORFの間、および/または5'に最も近いウイルス蛋白質ORFと5'トレイラー領域の間に挿入することができる。また、FまたはHN遺伝子などを欠失するゲノムでは、その欠失領域に外来遺伝子をコードする核酸を挿入することができる。パラミクソウイルスに外来遺伝子を導入する

場合は、ゲノムへの挿入断片のポリヌクレオチドの鎖長が6の倍数となるように挿入することが望ましい(Journal of Virology, Vol. 67, No. 8, 4822-4830, 1993)。挿入した外来遺伝子とウイルス蛋白質ORFとの間に1つのE-I-S配列が構成されるようにする。E-I-S配列を介して外来遺伝子のコード配列を2つまたはそれ以上タンデムに並べて挿入することができる。あるいは、IRESを介して目的の遺伝子を挿入してもよい。

[0030]

ウイルスに搭載する外来遺伝子の発現レベルは、その遺伝子の上流(マイナス 鎖(ネガティブ鎖)の3'側)に付加する転写開始配列の種類により調節すること ができる(W001/18223)。また、ゲノム上の外来遺伝子の挿入位置によって制御 することができ、マイナス鎖の3'の近くに挿入するほど発現レベルが高く、5'の 近くに挿入するほど発現レベルが低くなる。このように、外来遺伝子の挿入位置 は、該遺伝子の所望の発現量を得るために、また前後のウィルス蛋白質をコード する遺伝子との組み合わせが最適となる様に適宜調節することができる。一般に 、外来遺伝子の高い発現が得られることが有利と考えられるため、外来遺伝子を コードする遺伝子は、効率の高い転写開始配列に連結し、マイナス鎖ゲノムの3' 端近くに挿入することが好ましい。具体的には、3'リーダー領域と3'に最も近い ウイルス蛋白質ORFとの間に挿入される。あるいは、3'に一番近いウイルス蛋白 質遺伝子と2番目のウイルス蛋白質遺伝子のORFの間、または3'から2番目と3番 目のウイルス蛋白質遺伝子の間に挿入してもよい。例えば典型的なパラミクソウ イルスにおいては、ゲノムの3'に最も近いウイルス蛋白質遺伝子はN遺伝子であ り、2番目の遺伝子はP遺伝子、3番目の遺伝子はM遺伝子である。逆に、導入遺伝 子の高発現が望ましくない場合は、例えば外来遺伝子の挿入位置をマイナス鎖ゲ ノムのなるべく5'側に設定したり、転写開始配列を効率の低いものにするなどし て、ウィルスベクターからの発現レベルを低く抑えることで適切な効果が得られ るようにすることも可能である。

[0031]

外来遺伝子をコードする核酸をゲノムに挿入するときに付加するS配列として は、例えばマイナス鎖RNAウイルスの所望のS配列を用いることができるが、セン ダイウイルスであれば、3'-UCCCWVUUWC-5'(W= AまたはC; V= A, C, またはG)(配列番号:6)の配列を好適に用いることができる。特に 3'-UCCCAGUUUC-5'(配列番号:7)、3'-UCCCACUUAC-5'(配列番号:8)、および 3'-UCCCACUUUC-5'(配列番号:9)が好ましい。これらの配列は、プラス鎖をコードするDNA配列で表すとそれぞれ 5'-AGGGTCAAAG-3'(配列番号:10)、5'-AGGGTGAATG-3'(配列番号:11)、および 5'-AGGGTGAAAG-3'(配列番号:12)である。センダイウイルスベクターのE配列としては、例えば 3'-AUUCUUUUUU-5'(配列番号:13)(プラス鎖をコードするDNAでは 5'-TAAGAAAAA-3'(配列番号:14))が好ましい。I配列は、例えば任意の3塩基であってよく、具体的には 3'-GAA-5'(プラス鎖DNAでは 5'-CTT-3')を用いればよい。

[0032]

本発明のウイルスを製造するには、哺乳動物細胞においてマイナス鎖RNAウイルスのゲノムRNAを含むRNPの再構成に必要なウイルス蛋白質、すなわちN、P、およびL蛋白質の存在下、本発明のマイナス鎖RNAウイルスのゲノムRNAをコードするcDNAを転写させる。転写によりマイナス鎖ゲノム(ネガティブ鎖とも言う。ウイルスゲノムと同じアンチセンス鎖)を生成させてもよく、あるいはアンチゲノム(ポジティブ鎖またはプラス鎖とも言う。ゲノムRNAの相補鎖。)を生成させても、ウイルスRNPを再構成することができる。ウイルスの再構成効率を高めるには、好ましくはプラス鎖を生成させる。RNA末端は、天然のウイルスゲノムと同様に3'リーダー配列と5'トレイラー配列の末端をなるべく正確に反映させることが好ましい。転写産物の5'端を正確に制御するためには、例えば転写開始部位としてT7 RNAポリメラーゼ認識配列を利用し、該RNAポリメラーゼを細胞内で発現させればよい。また、転写産物の3'端は自己切断により正確に末端が切り出されるようにすることができる(Hasan, M. K. et al., J. Gen. Virol. 78: 2813-2820, 1997、Kato, A. et al., 1997、EMBO J. 16: 578-587 及び Yu、D. et al., 1997、Genes Cells 2: 457-466)。

[0033]

例えば組み換えセンダイウイルスは、Hasan, M. K. et al., J. Gen. Virol.

78: 2813-2820, 1997、Kato, A. et al., 1997, EMBO J. 16: 578-587 及び Yu, D. et al., 1997, Genes Cells 2: 457-466の記載等に準じて、次のようにして構築することができる。

両端にクローニングのための制限酵素サイトを有する、5'-AGA5_6C-3'部位が改変された外来遺伝子をコードするDNAを合成する。ウイルスゲノム上に挿入された後の外来遺伝子とその両側のウイルス遺伝子のORFとの間にE-I-S配列が1つずつ配置されるように、合成DNA中にE-I-S配列を含めるようにする。合成DNAの長さは、付加したE-I-S配列を含む最終的な挿入断片の鎖長が6の倍数になるように塩基数を設計する(いわゆる「6のルール(rule of six)」; Kolakofski, D. et al., J. Virol. 72:891-899, 1998; Calain, P. and Roux, L., J. Virol. 67:4822-4830, 1993; Calain, P. and Roux, L., J. Virol. 67:4822-4830, 1993) 。 E-I-S配列は、例えば挿入断片のオリゴDNAの3'側にセンダイウィルスのマイナス鎖のS配列、I配列、およびE配列、例えばそれぞれ5'-CTTTCACCCT-3'(配列番号:15)、5'-AAG-3'、および5'-TTTTCTTACTACGG-3'(配列番号:16)が用いられる。この断片をウイルスゲノムをコードするcDNAに挿入する。例えばゲノム上のウイルス蛋白質をコードするORFとその上流(ゲノムの3'側)のS配列の間に挿入し、外来遺伝子の両側のウイルス蛋白質遺伝子のORFとの間に、それぞれE-I-S配列が1つずつ配置されるようにする。

[0034]

例えば、組み換えセンダイウィルスゲノムcDNAであれば、文献記載の方法に準じて構築することができる(Yu, D. et al., Genes Cells 2: 457–466, 1997; H asan, M. K. et al., J. Gen. Virol. 78: 2813–2820, 1997)。例えば、外来遺伝子のセンス鎖の3'側にE-I-S配列が連結した2本鎖DNAを合成する。これをゲノムのプラス鎖をコードするcDNAの所望のS配列のすぐ3'側に挿入する。例えばプラス鎖ゲノムをコードするcDNAにおいて、所望のウイルス蛋白質遺伝子のコード配列とこれを転写するS配列の間に予め制限酵素部位を作っておき、ここに外来遺伝子 - E-I-S配列をコードするDNAを制限酵素部位を利用して挿入することができる(Tokusumi, T. et al. (2002) Virus Res 86(1–2), 33–8)。

[0035]

このようにして作製した組み換えマイナス鎖RNAウイルスのゲノムRNAをコード するDNAを、上記のウイルス蛋白質(L、P、およびN)存在下で細胞内で転写させ ることにより、本発明のウイルスを再構成することができる。本発明は、本発明 のウイルスの製造のための、本発明のウイルスのウィルスゲノムRNAまたはその 相補RNAをコードするDNAを提供する。また本発明は、本発明のウイルスの製造に 適用するための、該ウイルスのゲノムRNAまたはその相補RNAをコードするDNAの 使用に関する。組み換えウイルスの再構成は公知の方法を利用して行うことがで きる(W097/16539; W097/16538; Durbin, A. P. et al., 1997, Virology 235: 323-332; Whelan, S. P. et al., 1995, Proc. Natl. Acad. Sci. USA 92: 8388 -8392; Schnell. M. J. et al., 1994, EMBO J. 13: 4195-4203; Radecke, F. e t al., 1995, EMBO J. 14: 5773-5784; Lawson, N. D. et al., Proc. Natl. Ac ad. Sci. USA 92: 4477-4481; Garcin, D. et al., 1995, EMBO J. 14: 6087-60 94; Kato, A. et al., 1996, Genes Cells 1: 569-579; Baron, M. D. and Barr ett, T., 1997, J. Virol. 71: 1265-1271; Bridgen, A. and Elliott, R. M., 1996, Proc. Natl. Acad. Sci. USA 93: 15400-15404)。これらの方法により、 パラインフルエンザ、水疱性口内炎ウィルス、狂犬病ウィルス、麻疹ウィルス、 リンダーペストウィルス、センダイウィルスなどを含むマイナス鎖RNAウィルス をDNAから再構成させることができる。これらの方法に準じて、本発明のウイル スを再構成させることができる。ウイルスゲノムをコードするDNAにおいて、F遺 伝子、HN遺伝子、および/またはM遺伝子を欠失させた場合には、そのままでは感 染性のウイルス粒子を形成しないが、宿主細胞に、これら欠失させた遺伝子およ び/または他のウイルスのエンベロープ蛋白質をコードする遺伝子などを別途、 細胞に導入し発現させることにより、感染性のウイルス粒子を形成させることが 可能である(Hirata, T. et al., 2002, J. Virol. Methods, 104:125-133; Ino ue, M. et al., 2003, J. Virol. 77:6419-6429) .

[0036]

具体的な手順は、(a)マイナス鎖RNAウイルスゲノムRNA(マイナス鎖RNA) またはその相補鎖(プラス鎖)をコードするDNAを、N、P、およびL蛋白質を発現 する細胞で転写させる工程、(b)該細胞またはその培養上清から該ゲノムRNA を含む複合体を回収する工程、により製造することができる。転写のために、ゲノムRNAをコードするDNAは適当なプロモーターの下流に連結される。転写されたゲノムRNAは N、L、およびP蛋白質の存在下で複製されRNP複合体を形成する。そして M、HN、およびF蛋白質の存在下でエンベロープに包まれたウイルス粒子が形成される。ゲノムRNAをコードするDNAは、例えばT7プロモーターの下流に連結させ、T7 RNA ポリメラーゼによりRNAに転写させる。プロモーターとしては、T7ポリメラーゼの認識配列を含むもの以外にも所望のプロモーターを利用することができる。あるいは、インビトロで転写させたRNAを細胞にトランスフェクトしてもよい。

[0037]

DNAからのゲノムRNAの最初の転写に必要なT7 RNAポリメラーゼ等の酵素は、これを発現するプラスミドまたはウイルスベクターの導入によって供給することができるし、または、例えばこの遺伝子を細胞の染色体に、発現を誘導できるように組み込んでおき、ウイルス再構成時に発現を誘導することにより供給することもできる。またゲノムRNA、およびウイルス再構成に必要なウイルス蛋白質は、例えばこれらを発現するプラスミドの導入によって供給する。

[0038]

ゲノムRNAを発現するDNAを細胞内に導入する方法には、例えば次のような方法、①目的の細胞が取り込めるようなDNA沈殿物を作る方法、②目的の細胞による取りこみに適し、かつ細胞毒性の少ない陽電荷特性を持つDNAを含む複合体を作る方法、③目的の細胞膜に、DNA分子が通り抜けられるだけに十分な穴を電気パルスによって瞬間的に開ける方法などがある。

[0039]

②としては、種々のトランスフェクション試薬が利用できる。例えば、DOTMA (Roche)、Superfect (QIAGEN #301305)、DOTAP、DOPE、DOSPER (Roche #1811 169)などが挙げられる。①としては例えばリン酸カルシウムを用いたトランスフェクション法が挙げられ、この方法によって細胞内に入ったDNAは貧食小胞に取り込まれるが、核内にも十分な量のDNAが入ることが知られている(Graham, F. L. and Van Der Eb, J., 1973, Virology 52: 456; Wigler, M. and Silverst

ein, S., 1977, Cell 11: 223)。ChenおよびOkayamaはトランスファー技術の最適化を検討し、1)細胞と共沈殿物のインキュベーション条件を 2~4% CO₂、35 ℃、15~24時間、2) DNAは直鎖状より環状のものが活性が高く、3) 沈殿混液中のDNA濃度が 20~30μg/mlのとき最適な沈殿が得られると報告している (Chen, C. and Okayama, H., 1987, Mol. Cell. Biol. 7: 2745)。②の方法は、一過的なトランスフェクションに適している。古くはDEAE-デキストラン(Sigma #D-98 85 M.W. 5×10⁵)混液を所望のDNA濃度比で調製し、トランスフェクションを行う方法が知られている。複合体の多くはエンドソームの中で分解されてしまうため、効果を高めるためにクロロキンを加えることもできる(Calos, M. P., 1983, Proc. Natl. Acad. Sci. USA 80: 3015)。③の方法は電気穿孔法と呼ばれる方法で、細胞選択性がないという点で①および②の方法に比べて汎用性が高い。効率はバルス電流の持続時間、パルスの形、電界(電極間のギャップ、電圧)の強さ、バッファーの導電率、DNA濃度、細胞密度の最適条件下で良いとされている。

[0040]

以上、3つのカテゴリーの中で②の方法は操作が簡便で多量の細胞を用いて多数の検体を検討することができるので、ウイルス再構成のためのDNAの細胞への導入には、トランスフェクション試薬が適している。好適には Superfect Trans fection Ragent (QIAGEN, Cat No. 301305)、または DOSPER Liposomal Transfection Reagent (Roche, Cat No. 1811169) などが用いられるが、これらに制限されない。

[0041]

cDNAからのウイルスの再構成は具体的には例えば以下のようにして行うことができる。

24穴から 6 穴程度のプラスチックプレートまたは100mmペトリ皿等で、10%ウシ胎児血清(FCS)および抗生物質(100 units/ml ペニシリンGおよび100 μ g/ml ストレプトマイシン)を含む最少必須培地(MEM)を用いてサル腎臓由来細胞株LL C-MK $_2$ をほぼ100%コンフルエントになるまで培養し、例えば 1 μ g/ml psoralen (ソラレン)存在下 UV照射処理を20分処理で不活化した、T7 RNAポリメラーゼ

を発現する組換えワクシニアウィルスvTF7-3(Fuerst, T. R. et al., Proc. Natl. Acad. Sci. USA 83: 8122-8126,1986、Kato, A. et al., Genes Cells 1: 5 69-579, 1996)を2 PFU/細胞で感染させる。ソラレンの添加量およびUV照射時間は適宜調整することができる。感染1時間後、2~60 μ g、より好ましくは3~20 μ gの組換えセンダイウィルスのゲノムRNAをコードするDNAを、ウィルスRNPの生成に必須なトランスに作用するウィルス蛋白質を発現するプラスミド(0.5~24 μ gのpGEM-N、0.25~12 μ gのpGEM-P、および0.5~24 μ gのpGEM-L)(Kato, A. et al., Genes Cells 1: 569-579, 1996)と共にSuperfect(QIAGEN社)を用いたリポフェクション法等によりトランスフェクションする。N、P、およびLをコードする発現ベクターの量比は、例えば 2:1:2 とすればよく、プラスミド量は、例えば1~4 μ gのpGEM-N、0.5~2 μ gのpGEM-P、および1~4 μ gのpGEM-L程度で適宜調整する。

[0042]

トランスフェクションを行った細胞は、所望により100μg/mlのリファンピシ ン (Sigma) 及びシトシンアラビノシド (AraC) 、より好ましくは40 μg/mlのシ トシンアラビノシド(AraC)(Sigma)のみを含む血清不含のMEMで培養し、ワク シニアウィルスによる細胞毒性を最少にとどめ、ウィルスの回収率を最大にする ように薬剤の最適濃度を設定する(Kato, A. et al., 1996, Genes Cells 1: 56 9-579)。トランスフェクションから48~72時間程度培養後、細胞を回収し、凍 結融解を3回繰り返して細胞を破砕した後、RNPを含む破砕物をLLC-MK2細胞に再 度トランスフェクションして培養する。または、培養上清を回収し、LLC-MK2細 胞の培養液に添加して感染させ培養する。トランスフェクションは、例えばリポ フェクトアミンまたはポリカチオニックリポソームなどと共に複合体を形成させ て細胞に導入することが可能である。具体的には、種々のトランスフェクション 試薬が利用できる。例えば、DOTMA(Roche)、Superfect(QIAGEN #301305)、D OTAP、DOPE、DOSPER (Roche #1811169) などが挙げられる。エンドソーム中での 分解を防ぐため、クロロキンを加えることもできる(Calos, M. P., 1983, Proc . Natl. Acad. Sci. USA 80: 3015)。RNPが導入された細胞では、RNPからのウ イルス遺伝子の発現およびRNPの複製の過程が進行しウイルスが増幅する。得ら

れたウイルス溶液(培養上清)を希釈(例えば10⁶ 倍)して再増幅を繰り返すことにより、ワクシニアウィルスvTF7-3は完全に除去することができる。再増幅は、例えば3回以上繰り返す。得られたウイルスは-80℃で保存することができる。エンベロープ蛋白質をコードする遺伝子を欠損した伝播能を持たないウイルスを再構成させるには、エンベロープ蛋白質を発現するLLC-MK2細胞をトランスフェクションに使用するか、またはエンベロープ発現プラスミドを共にトランスフェクションすればよい。また、トランスフェクションを行った細胞にエンベロープ蛋白質を発現するLLC-MK2細胞を重層して培養することによってエンベロープ遺伝子欠損型のウイルスを増幅することもできる(国際公開番号 W000/70055 および W000/70070参照)。

[0043]

回収されたウイルスの力価は、例えばCIU (Cell Infectious Unit) 測定または赤血球凝集活性(HA)を測定することにより決定することができる(W000/70070; Kato, A. et al., 1996, Genes Cells 1: 569-579; Yonemitsu, Y. & Kaneda, Y., Hemaggulutinating virus of Japan-liposome-mediated gene delivery to vascular cells. Ed. by Baker AH. Molecular Biology of Vascular Diseases. Method in Molecular Medicine: Humana Press: pp. 295-306, 1999)。また、GFP(緑色蛍光蛋白質)などのマーカー遺伝子を搭載したウイルスについては、マーカーを指標に直接的に感染細胞をカウントすることにより力価を定量することができる(例えばGFP-CIUとして)。このようにして測定した力価は、CIUと同等に扱うことができる(W000/70070)。

[0044]

ウィルスが再構成する限り、再構成に用いる宿主細胞は特に制限されない。例えば、センダイウィルス等の再構成においては、サル腎由来のLLC-MK2細胞およびCV-1細胞、ハムスター腎由来のBHK細胞などの培養細胞、ヒト由来細胞等を使うことができる。これらの細胞に適当なエンベロープ蛋白質を発現させることで、その蛋白質をエンベロープに含む感染性ウィルス粒子を得ることもできる。また、大量にセンダイウイルスを得るために、上記の宿主から得られたウイルスを発育鶏卵に感染させ、該ウイルスを増幅することができる。鶏卵を使ったウイル

スの製造方法は既に開発されている(中西ら編, (1993),「神経科学研究の先端技術プロトコールIII,分子神経細胞生理学」,厚生社,大阪,pp.153-172)。 具体的には、例えば、受精卵を培養器に入れ9~12日間 37~38℃で培養し、胚を成長させる。ウイルスを尿膜腔へ接種し、数日間(例えば3日間)卵を培養してウイルスを増殖させる。培養期間等の条件は、使用する組み換えセンダイウイルスにより変わり得る。その後、ウイルスを含んだ尿液を回収する。尿液からのセンダイウイルスの分離・精製は常法に従って行うことができる(田代眞人,「ウイルス実験プロトコール」,永井、石浜監修,メジカルビュー社,pp.68-73,(1995))。

[0045]

例えば、F遺伝子を欠失したセンダイウイルスの構築と調製は、以下のように 行うことができる(国際公開番号 W000/70055 および W000/70070参照)。 <1> F欠失型センダイウイルスゲノムcDNAおよびF発現プラスミドの構築

センダイウイルス (SeV) 全長ゲノムcDNA、pSeV18+ b(+) (Hasan, M. K. et a 1., 1997, J. General Virology 78: 2813-2820) ([pSeV18+ b(+)] は [pSeV1 8+」ともいう)のcDNAをSphI/KpnIで消化してフラグメント(14673bp)を回収し、 pUC18にクローニングしてプラスミドpUC18/KSとする。F遺伝子欠損部位の構築は このpUC18/KS上で行う。F遺伝子の欠損は、PCR-ライゲーション方法の組み合わ せで行い、結果としてF遺伝子のORF(ATG-TGA=1698bp)を除いて例えばatgcatgc cggcagatga (配列番号:17) で連結し、F遺伝子欠失型SeVゲノムcDNA (pSeV18+/ ΔF)を構築する。PCRは、F遺伝子の上流には [forward: 5'-gttgagtactgcaagag c/配列番号:18, reverse: 5'-tttgccggcatgcatgtttcccaaggggagagttttgcaacc /配列番号:19] 、F遺伝子の下流には [forward: 5'-atgcatgccggcagatga/配 列番号:20, reverse: 5'-tgggtgaatgagagaatcagc/配列番号:21] のプライマ ー対を用いたPCRの産物をEcoT22Iで連結する。このように得られたプラスミドを SacIとSalIで消化して、F欠損部位を含む領域の断片(4931bp)を回収してpUC18 にクローニングし、pUC18/dFSSとする。このpUC18/dFSSをDraIIIで消化して、断 片を回収してpSeV18+のF遺伝子を含む領域のDraIII断片と置き換え、ライゲーシ ョンしてプラスミドpSeV18+/ΔF を得る。外来遺伝子は、例えばpUC18/dFSSのF

遺伝子欠失部位にある制限酵素 NsiI および NgoMIV 部位に挿入する。

[0046]

<2> SeV-F蛋白を誘導発現するヘルパー細胞の作製

センダイウイルスのF遺伝子(SeV-F)を発現するCre/loxP誘導型発現プラスミドの構築はSeV-F遺伝子をPCRで増幅し、Cre DNAリコンビナーゼにより遺伝子産物を誘導発現されるように設計されたプラスミドpCALNdlw(Arai, T. et al., J. Virology 72, 1998, pl115-1121)のユニークサイト SwaI部位に挿入し、プラスミドpCALNdLw/Fを構築する。

F遺伝子欠損ゲノムから感染ウイルス粒子を回収するため、SeV-F蛋白を発現するヘルパー細胞株を樹立する。細胞は、例えばSeVの増殖によく用いられているサル腎臓由来細胞株LLC-MK2細胞を用いることができる。LLC-MK2細胞は、10%の熱処理した不動化ウシ胎児血清 (FBS)、ペニシリンGナトリウム 50 単位/ml、およびストレプトマイシン 50 μ g/mlを添加したMEMで37℃、5% CO_2 で培養する。SeV-F遺伝子産物は細胞傷害性を有するため、Cre DNAリコンビナーゼによりF遺伝子産物を誘導発現されるように設計された上記プラスミドpCALNdLw/Fを、リン酸カルシウム法(mammalian transfection kit(Stratagene))により、周知のプロトコールに従ってLLC-MK2細胞に遺伝子を導入する。

10 cmプレートを用い、40%コンフルエントまで生育したLLC-MK2細胞に 10μ gのプラスミドpCALNdLw/Fを導入後、10 m 10 10% FBSを含むMEM培地にて、37 C 05% $C0_2$ インキュベーター中で24時間培養する。24時間後に細胞をはがし、10 m 1培地に懸濁後、10 cmシャーレ 5 枚を用い、5 m 1 1枚、2 m 1 2枚、0.2 m 1 2枚に蒔き、641 8(6 IBCO-BRL)を 1200μ g/mlを含む10 m 10 m 10 mFBSを含むMEM培地にて培養を行い、2 E 日毎に培地交換しながら、14 E 間培養し、遺伝子の安定導入株の選択を行う。該培地により生育してきた6418に耐性を示す細胞はクローニングリングを用いて回収する。回収した各クローンは10 cmプレートでコンフルエントになるまで拡大培養を続ける。

F蛋白質の発現誘導は、細胞を6cmシャーレにてコンフルエントまで生育させた後、アデノウイルスAxCANCreを斉藤らの方法 (Saito et al., Nucl. Acids Res. 23: 3816-3821 (1995); Arai, T. et al., J. Virol 72, 1115-1121 (1998)) に

[0047]

<3> F遺伝子欠失SeVウイルスの再構築及び増幅

上記 pSeV18+/ΔF に外来遺伝子が挿入されたプラスミドを以下のようにしてL LC-MK2細胞にトランスフェクションする。LLC-MK2細胞を5×106 cells/dish で1 00mmのシャーレに播く。T7 RNAポリメラーゼによりゲノムRNAの転写を行わせる 場合には、細胞培養24時間後、ソラレン (psoralen) と長波長紫外線 (365nm) で 20 分間処理したT7 RNAポリメラーゼを発現するリコンビナントワクシニアウ イルス (PLWUV-VacT7: Fuerst, T.R. et al., Proc. Natl. Acad. Sci. USA 83, 8122-8126 (1986)) をMOI 2程度で室温で1時間感染させる。ワクシニアウイル スへの紫外線照射には、例えば15ワットバルブを5本が装備された UV Stratalin ker 2400 (カタログ番号 400676 (100V), ストラタジーン社, La Jolla, CA, US A)を用いることができる。細胞を無血清のMEMで洗浄した後、ゲノムRNAを発現 するプラスミド、およびSeVのN、P、L、F、およびHN蛋白質を発現する発現プラ スミドを、適当なリポフェクション試薬を用いてこの細胞にトランスフェクトす る。プラスミドの量比は、これに限定されないが、好適には順に 6:2:1:2:2 :2 とすることができる。例えば、ゲノムRNAを発現するプラスミド、並びにN、 P、L、および FプラスHN蛋白質を発現する発現プラスミド (pGEM/NP, pGEM/P, p GEM/L及びpGEM/F-HN; WO00/70070, Kato, A. et al., Genes Cells 1, 569-579 (1996)) を、それぞれ 12μ g、 4μ g、 2μ g、 4μ g及び 4μ g/dishの量比トランス フェクトする。数時間培養後、血清を含まないMEMで細胞を2回洗浄し、40μg/m Lの Cytosine β-D-arabinofuranoside (AraC:Sigma, St.Louis, MO) 及び7.5 μg/mLのTrypsin (Gibco-BRL, Rockville, MD) を含むMEMで培養する。これらの 細胞を回収し、ペレットをOptiMEM に懸濁する(10⁷ cells/ml)。凍結融解を 3 回繰り返してlipofection reagent DOSPER (Boehringer mannheim)と混合し (10 6 cells/25 μ l DOSPER)室温で15分放置した後、上記でクローニングしたF発現へ ルパー細胞にトランスフェクション(106cells /well 12-well-plate)し、血清 を含まないMEM $(40 \mu \text{ g/ml AraC}, 7.5 \mu \text{ g/ml }$ トリプシンを含む)で培養し、上清 を回収する。F以外の遺伝子、例えばHNまたはM遺伝子を欠損したウイルスも、こ

[0048]

ウィルス遺伝子欠損型ウイルスを調製する場合、例えば、ウイルスに含まれるウィルスゲノム上で欠損しているウィルス遺伝子が異なる2種またはそれ以上のウイルスを同じ細胞に導入すれば、それぞれで欠損するウィルス蛋白質が、他のウイルスからの発現により供給されるため、互いに相補しあって感染力のあるウィルス粒子が形成され、複製サイクルがまわりウィルスが増幅される。すなわち、2種またはそれ以上の本発明のウイルスを、ウィルス蛋白質を相補する組み合わせで接種すれば、それぞれのウィルス遺伝子欠損型ウィルスの混合物を大量かつ低コストで生産することができる。これらのウィルスは、ウィルス遺伝子が欠損しているため、ウィルス遺伝子を欠損していないウィルスに比べゲノムサイズが小さくなりサイズの大きい外来遺伝子を保持することができる。また、ウィルス遺伝子の欠損により増殖性がないこれらのウィルスは細胞外で希釈され共感染の維持が困難であることから、不稔化するため、環境放出管理上の利点がある。

[0049]

なお、伝播性のマイナス鎖RNAウイルスベクターを個体または細胞に投与後、 治療が完了するなどウイルスベクターの増殖を抑止する必要が生じた際には、RN A依存性RNAポリメラーゼ阻害剤を投与すれば、宿主に障害を与えずにウイルスベ クターの増殖だけを特異的に抑止することもできる。

[0050]

本発明の方法によれば、本発明のウイルスは、例えば 1×10^5 CIU/配以上、好ましくは 1×10^6 CIU/配以上、より好ましくは 5×10^6 CIU/配以上、より好ましくは 1×10^7 CIU/配以上、より好ましくは 5×10^7 CIU/配以上、より好ましくは 1×10^8 CIU/配以上、より好ましくは 5×10^8 CIU/配以上の力価でウイルス産生細胞の細胞外液中に放出させることが可能である。ウイルスの力価は、本明細書および他に記載の方法により測定することができる(Kiyotani, K. et al., Virology 177(1), 65-74 (1990); W000/70070)。

[0051]

回収したマイナス鎖RNAウイルスは実質的に純粋になるよう精製することがで

きる。精製方法はフィルトレーション(濾過)、遠心分離、およびカラム精製等を含む公知の精製・分離方法またはその組み合わせにより行うことができる。「実質的に純粋」とは、ウイルスが、それが存在する試料中の成分として主要な割合を占めることを言う。典型的には、実質的に純粋なウィルスは、試料中に含まれる全蛋白質(但しキャリアーまたは安定剤などとして添加した蛋白質などは除く)のうち、ウィルス由来の蛋白質の割合が例えば10%以上、好ましくは20%以上、好ましくは50%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは50%以上を占めることにより確認することができる。パラミクソウィルスの具体的な精製方法としては、例えばセルロース硫酸エステルまたは架橋ポリサッカライド硫酸エステルを用いる方法(特公昭62-30752号公報、特公昭62-33879号公報、および特公昭62-30753号公報)、およびフコース硫酸含有多糖および/またはその分解物に吸着させる方法(W097/32010)等を例示することができる。

[0052]

本発明のウイルスを含む組成物の製造においては、該ウイルスは必要に応じて薬理学的に許容される所望の担体または媒体と組み合わせることができる。「薬学的に許容される担体または媒体」とは、ウイルスと共に投与することが可能であり、ウイルスによる遺伝子導入を有意に阻害しない材料である。例えばウイルスを生理食塩水またはリン酸緩衝生理食塩水 (PBS) などで適宜希釈して組成物とすることができる。ウイルスを鶏卵で増殖させた場合等においては尿液を含んでよい。またウイルスを含む組成物は、脱イオン水、5%デキストロース水溶液等の担体または媒体を含んでいてもよい。さらに、その他にも、植物油、懸濁剤、界面活性剤、安定剤、殺生物剤等が含有されていてもよい。また保存剤またはその他の添加剤を添加することができる。本発明のウイルスを含む組成物は試薬として、および医薬として有用である。

[0053]

本発明のマイナス鎖RNAウイルスを生体に投与する場合の投与量は、疾患、患者の体重、年齢、性別、症状、投与目的、投与組成物の形態、投与方法、導入遺伝子等により異なるが、当業者であれば適宜決定することが可能である。投与経

路は適宜選択することができるが、例えば経皮的、鼻腔内的、経気管支的、筋内的、腹腔内、静脈内、関節内、脊髄腔内、または皮下等に行われうるがそれらに限定されない。また局所あるいは全身に投与し得る。投与されるウイルス量は好ましくは約10⁵ CIU/mlから約10¹¹ CIU/ml、より好ましくは約10⁷ CIU/mlから約10⁹ CIU/ml、最も好ましくは約1×10⁸ CIU/mlから約5×10⁸ CIU/mlの範囲内の量を薬学上容認可能な担体中で投与することが好ましい。ヒトにおいては1回当たりの投与量は 2×10⁵ CIU~ 2×10¹⁰ CIUが好ましく、投与回数は、1回または臨床上容認可能な副作用の範囲で複数回可能であり、1日の投与回数についても同様である。ヒト以外の動物についても、例えば目的の動物とヒトとの体重比または投与標的部位の容積比(例えば平均値)で上記の投与量を換算した量を投与することができる。本発明のウイルスを含む組成物の投与対象としては、ヒト、サル、マウス、ラット、ウサギ、ヒツジ、ウシ、イヌなど全ての哺乳動物が含まれる。

[0054]

【実施例】

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に制限されるものではない。なお、本明細書中に引用された文献は、本明細書の一部として組み込まれる。

[0055]

[実施例1] 高変異領域改変型hCFTR遺伝子を搭載したSeVベクター

本実施例では、高変異領域を含む遺伝子としてヒトCFTR(hCFTR)を用いて、高変異領域改変型hCFTR遺伝子を搭載したSeVベクターの構築を行った。正常配列の全長hCFTR遺伝子を搭載したセンダイウイルスベクターでは、5'-AGA5-6C-3'に合致する2ヶ所の領域に高頻度な塩基変異が生じ、これらの塩基変異によってアミノ酸配列が変わり、発現したhCFTR蛋白の活性が認められなくなる(図1)。そこでhCFTR遺伝子においてアミノ酸配列を変えないように人為的にこの2ヶ所の塩基配列を改変してEI配列との相同性を低下させ、センダイウイルスベクターに搭載した。この高変異領域改変型ヒトCFTR遺伝子を搭載したセンダイウイルスベクターでは、ゲノム上のhCFTR遺伝子の変異がまったく見られなかった。また

- ページ: 32/
- 、in vitroとin vivoの両方において、正常なhCFTR蛋白の活性が確認された。

[0056]

- 1. hCFTR 遺伝子の高変異領域の改変
- (1) hCFTR遺伝子のORFを含むpQB6.2プラスミドをテンプレートとして、5'側はNotI-tailedプライマー CFTR-N (5'-acttgcggccgccaaagttcaatgcagaggtcgcctctg gaaaaggccagc/配列番号:22)、3'側はNotI-tailedプライマー CFTR-C (5'-atcc gcggccgcgatgaactttcaccctaagtttttcttactacggctaaagccttgtatcttgcacctcttcttc/配列番号:23) を用いてPCRを行った。PCR産物を制限酵素NotIで消化して回収し、SeV全長ゲノム cDNA, pSeV18+ (Kato, A. et al., Genes Cells 1, 569-579 (1996))のNotI制限酵素部位に挿入し、pSeV/CFTR'NPが得られた。

[0057]

(2) hCFTRの高変異領域のアミノ酸配列を変えないようにプライマーを設計した(図3および4)。

CF-NotIF: 5' tcacgcggccgccaaagttcaatg (配列番号:24)

CF-NotIR: 5' atctgcggccgcgatgaactttca (配列番号:25)

CF-1257F: 5' taacaataggaagacctctaatgg (配列番号:26)

CF-1257R: 5' ccattagaggtcttcctattgtta (配列番号:27)

CF-3905F: 5' aacatttaggaagaatttggatcc (配列番号:28)

CF-3905R: 5' ggatccaaattcttcctaaatgtt (配列番号:29)

[0058]

[0059]

(4) PCRでhCFTRm断片1、2、3をテンプレートとし、プライマーCF-NotIFとC

F-NotIRを用いてhCFTRm/NotI断片を増幅した(図 5)。酵素はKOD plusを用いた。 10x buffer 5μ l、dNTP 5μ l、 $MgSO_4$ 3μ l(最終 1.5 mM)、プライマー各 30 μ mol、KOD plus 1μ l、鋳型 6μ l(50 ng)を含むPCR反応液 50μ l中でPCRを行なった。サイクル条件は、 $98\mathbb{C}$ 3 minの後、 $98\mathbb{C}$ 15 sec $-55\mathbb{C}$ 30 sec $-68\mathbb{C}$ 5 minを35サイクル、 $72\mathbb{C}$ 7 minの後、 $4\mathbb{C}$ で保存とした。

[0060]

2. 高変異領域改変型hCFTRを搭載したSeV cDNAプラスミドの構築
NotI処理後のライゲーションでSeV cDNA (pSeV(+)MF: Tokusumi, T. et al.,
2002, Virus. Res. 86:33-38) のM遺伝子とF遺伝子の間のNotIサイトにhCFTRm/
NotI断片を挿入し、SeV/CFTRのcDNAプラスミド (pSeV/CFTR) を構築した (図 6
)。

[0061]

3. 改変型全長hCFTR遺伝子を搭載したSeVの再構築

改変型hCFTR遺伝子全長 (hCFTRmと名付けた)を搭載したSeVcDNAを用いて再構築を行い、ウイルスベクターを回収した。再構築プロトコールを以下に示す。 6ウェルプレートで培養したBHK-21細胞を血清を含まないMEM (GIBCO/11668-019)で洗い、3×10⁶ pfu の長波長紫外線 (PLWUV) 処理した組み換えワクシニアウイルス (T7 RNAポリメラーゼ発現) (PLWUV-vTF7-3)を含む0.85% FBS (v/v)を含む 0pti-MEM 200μlを各ウェルに加え1時間感染させた。5μg cDNA、1μg p GEM/NP、0.5μg pGEM/P、1μg pGEM/L、15μl LipofectAMINE 2000 reagent [GI BCO/11668-019]、500μl Opti-MEM (無添加原液)を混合し、室温で20~30分静置してトランスフェクション溶液を準備した。PLWUV-vTF7-3の感染から1時間後、細胞を0pti-MEM (無添加原液)で2回洗浄した後、トランスフェクション溶液に0.5 ml/wellの10%FBS Opti-MEMを混合し、1 ml/wellを細胞へ添加した。37℃で6~8 h 後 Glasgow MEM (10%FBS, 80μg/ml AraC)を添加し、37℃で一晩培養した。

[0062]

2日後、培地を除いてから無血清MEM培地で一回洗浄し、無血清培地VP-SFM (7.5 μ g/ml trypsin, 40 μ g/ml AraC) 1 ml/wellを細胞へ添加した。 6 時間後、1

ページ: 34/

ml/well Glasgow MEM(5×10^5 LLC-MK2 cells/ml, 10% FBS, 40μ g/ml AraC)を 細胞へ重層した。

その翌日、3ウェルの細胞を集め、3000 rpm, 1 min遠心後、0.45 ml培地を残るよう余分な培地を吸い取った。細胞沈殿をボルテックスで懸濁し、エタノール/ドライアイスで凍らせ、5 min後37 $\mathbb C$ で溶かし、ボルテックスした。以上の凍結融解を全部 3 回を行った。凍結融解した細胞懸濁液を 150μ l/eggで十日培養した受精鶏卵 3 個へ接種を行った。

[0063]

4. ウイルスゲノム上のhCFTR遺伝子全長の配列確認

ウイルスからRNAゲノムを抽出し、RT-PCRでhCFTRを含む断片を増幅し、hCFTR 全長の配列を確認した。RNAゲノムの抽出はQIAamp Viral RNA Mini Spin Protoc olに、また逆転写は TOYOBO, ReverTra Ace-α-TM共通に従って実施した。PCRは RT産物を鋳型として以下のプライマーセットを用いて実施した。

[0064]

Primer set 1: SeVF4003/hCFTR-C4

SeVF4003: 5'-cggtgaggaggactgttcgagc (配列番号:30)

hCFTR-C4: 5'-cagttcagtcaagtttgcct (配列番号:31)

Primer set 2: hCFTR-N4/SeVR4993

hCFTR-N4: 5'-cgaccaatttagtgcagaa (配列番号:32)

SeVR4993: 5'-ttcccttcatcgactatgacc (配列番号:33)

hCFTR全長配列確認用Primer:

Forward:

SeVF4003: 5'-cggtgaggaggactgttcgagc (配列番号:30)

hCFTR-NO: 5'-atgcagaggtcgcctctggaaaag (配列番号:34)

hCFTR-N1: 5'-cacattggaatgcagatgaga (配列番号:35)

hCFTR-N2: 5'-tatctgtgcttccctatgca (配列番号:36)

hCFTR-N3: 5'-gcacagtggaagaatttca (配列番号:37)

hCFTR-N4: 5'-cgaccaatttagtgcagaa (配列番号:32)

hCFTR-N5: 5'-ggagtgcctttttgatgat (配列番号:38)

hCFTR-N6: 5'-ggatgaccttctgcctctta (配列番号:39)

hCFTR-N7: 5'-ggatagcttgatgcgatctgt (配列番号:40)

hCFTR-N8: 5'-ggaaagttgcagatgaggtt (配列番号:41)

Reverse:

SeVR4993: 5'-ttcccttcatcgactatgacc (配列番号:33)

hCFTR-CO: 5'-ctaaagccttgtatcttgcacctc (配列番号: 42)

hCFTR-C1Y: 5'-acctcatctgcaactttcca (配列番号:43)

hCFTR-C2: 5'-catggctaaagtcaggata (配列番号:44)

hCFTR-C3Y: 5'-tctattaagaatcccacct (配列番号:45)

hCFTR-C4: 5'-cagttcagtcaagtttgcct (配列番号:31)

hCFTR-C5: 5'-gtctggctgtagattttgga (配列番号:46)

hCFTR-C6: 5'-tgaagtcttgcctgctccagt (配列番号:47)

hCFTR-C7Y: 5'-agtatctcacataggctgccttcc (配列番号:48)

hCFTR-C8: 5'-ggagcagtgtcctcacaata (配列番号:49)

その結果、それぞれのPCRにおいて予想通りの断片が確認された。

$[0\ 0\ 6\ 5]$

- 5. in vitroにおけるhCFTR蛋白発現の確認
- 1) ウェスタンブロッティング(図7)

改変型hCFTR遺伝子搭載SeVによるhCFTR蛋白の発現をウェスタンブロッティングを用いて確認した。サンプル調製のため、まずコンフルエントになったBHK-21細胞へSeV/CFTRを感染させた(100 mm dish)(MOI=3)。コントロールとして、hCFTR発現細胞株T84、未感染のBHK-21細胞、野生型SeV(SeV/w)で感染した(MOI=3)BHK-21細胞などを用いた。ウイルスベクターで感染48時間後の細胞をice-cold PBS (-)で 3回洗い、lysis buffer [10 mM Tris-HCl, pH7.5, 2 mM EDTA, 1

mM benzamidine, 10μ g/ml leupeptin hydrochloride, 10μ g/ml aprotonin, 2 mM 用時調製したPMSF] で溶解した(5 ml/dish)。遠心(3500 rpm, 4°C, 30 s ec)した後、上清を除き、細胞沈殿を1 ml の lysis bufferで懸濁し、4°Cで1時間置いた。遠心(15000 rpm, 4°C, 30 min)した後、上清を除き、沈殿へ 80 μ losolubilization buffer [0.2% SDS(w/v)および0.2% Triton X-100(v/v)を含むlysis buffer] を加えて懸濁し、室温で 3 時間置いた。遠心(15000 rpm, 4°C, 30 min)した後、上清を新しいチューブへ移し、上清に同量のdisaggregation buffer [2% SDS(w/v),15% glycerol(w/v),2% β -mercaptoethanol(v/v),1 mM EDTA,および 0.02%(w/v)bromphenol blue を含む、13PO4含有50 mM Tris,pH 6.8] を加えてよく混合した後、4°Cで一晩置いた。

[0066]

サンプルをSDS-PAGEで分離しメンブレンに転写したのち、一次抗体として200倍希釈した抗ヒトCFTR抗体 (C-Teminus specific) (Genzyme) を、2次抗体として2000倍希釈したHRP-conjugated Anti-Mouse IgG [Daiichi pure chemicals] または1000倍希釈したHRP-conjugated Anti-Biotin [Daiichi pure chemicals] を用いて反応させ、ECL detection kit (Amersham Pharmacia Biotech) を用いて検出した。

図7に示したように、hCFTR蛋白発現のポジティブコントロール細胞であるT84 細胞では、 $160\sim180~kD$ サイズのhCFTR蛋白のバンドが確認されたが、改変型hCFT R遺伝子搭載SeVが感染したBHK-21細胞では、140kDサイズのhCFTR蛋白が検出された。このサイズの違いはhCFTRに修飾された糖鎖によるものと考えられる。これと同様の結果は $LLC-MK_2$, BEAS-2Bなど細胞でも得られた。

[0067]

2) Immunocytochemistry (図8)

改変型hCFTR遺伝子搭載SeVによるhCFTR蛋白の発現を免疫染色法を用いて以下のように確認した。コンフルエントになったLLC-MK2細胞へSeV/CFTRを用いて感染した(MOI=3)。コントロールはSeV/GFPで感染した(MOI=3)LLC-MK2細胞を用いた。ウイルスベクターで感染48時間後の細胞をice-cold PBS(-)で3回洗い、-20 coldアセトン/メタノール(1:1, w/w)を加えて、-20 で20min固定した

。洗浄(RT, PBS, 10 min x 3 times)後、Glycin処理(RT, PBS/50 mM Glycine , 10 min)を行い、再度洗浄(RT, PBS, 10 min x 1 time)後、Blocking(RT, 10%FBS/10%Goat serum/1%BSA/0.05%Tween-20/PBS, 2 h)を行なった。洗浄(RT, PBS, 10 min x 2 times)後、 10μ g/ml Anti-human CFTR抗体(C-Teminus specific)(Chemicon)を用いて一次抗体反応(RT, 1 h)を行い、洗浄(RT, PBS, 10 min x 4 times)後、 5μ g/ml Anti-mouse IgG(Alexa Fluor 594)を用いて二次抗体反応(RT, 30 min)を行なった。洗浄(RT, PBS, 10 min x 4 times)後、蛍光顕微鏡で観察、写真撮影を行なった。図8に示したように、改変型hCFTR遺伝子を搭載したSeVが感染したLLC-MK2細胞が蛍光抗体反応によって特異的に染色された。同様の結果はBHK-21およびBEAS-2B細胞でも得られた。

[0068]

【発明の効果】

本発明により、高変異領域が改変された外来遺伝子を有する組み換えマイナス 鎖RNAウイルスが提供された。本発明のマイナス鎖RNAウイルスは、外来遺伝子が もともと有する高い頻度で変異が生じる配列が改変されているので、標的組織に おいて外来遺伝子を安定して発現することができる。本発明のウイルスは、イン ビボまたはエクスビボにより生体内に投与するための遺伝子治療ベクターとして 有用である。

[0069]

【配列表】

SEQUENCE LISTING

<110> DNAVEC RESEARCH INC.

<120> A MINUS STRAND RNA VIRUS VECTOR CARRING A GENE IN WHICH
A MUTAGENIC REGION HAS BEEN ALTERED

<130> D3-A0302

<140>		•
<141>		
<160>	58	
<170>	PatentIn version 3.1	
<210>	1	
<211>	10	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	a mutagenic sequence for minus strand RNA viruses	
<400>	1	
<400> agaaaa		10
		. 10
agaaaa		10
agaaaa <210>	асуу 2	10
<210><211>		10
<210><211><212>	acyy 2 11 DNA	10
<210><211><212>		10
<210> <211> <212> <213>	acyy 2 11 DNA	10
<210> <211> <212> <213>	. 2 11 DNA Artificial	10
<210> <211> <212> <213>	acyy 2 11 DNA	10
<210> <211> <212> <213> <220> <223>	. 2 11 DNA Artificial a mutagenic sequence for minus strand RNA viruses	10
<210> <211> <212> <213> <223> <400>	. 2 11 DNA Artificial a mutagenic sequence for minus strand RNA viruses	10

agaaaaaaacy y

<210>	3	
<211>	10	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	a mutagenic sequence for minus strand RNA viruses	
<400>	3	
agaaaa	actt	10
<210>	4	
<211>	11	
<212>	DNA	
<213>	Artificial	
	•	
<220>		
<223>	a mutagenic sequence for minus strand RNA viruses	
<400>	4	
agaaaa	aact t	11
<210>	5	

<211> 12

<212> DNA

010			•	٠		•	1
<213>	Ar	t ı	+	1	0	١ ٠	ו ב
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	nı	しょ	_	т	·		u

<220>

<223> an example of E sequence of Sendai virus

<220>

<221> misc_feature

<222> (2)..(2)

<223> "n" at location 2 stands for any of a, g, c, or t

<400> 5

antaagaaaa ac 12

<210> 6

<211> 10

<212> RNA

<213> Artificial

<220>

<223> an example of S sequence of Sendai virus

<400> 6

ucccwvuuwc 10

<210> 7

<211> 10

ംവ	ı O.	DVIV
.</td <td>1/2></td> <td>RNA</td>	1/2>	RNA

<213> Artificial

<220>

<223> an example of S sequence of Sendai virus

<400> 7

ucccaguuuc 10

<210> 8

<211> 10

<212> RNA

<213> Artificial

<220>

<223> an example of S sequence of Sendai virus

<400> 8

ucccacuuac 10

<210> 9

<211> 10

<212> RNA

<213> Artificial

<220>

<223> an example of S sequence of Sendai virus

<400>	9	
ucccad	cuuuc	10
<210>		
<211>	10	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	an example of S sequence of Sendai virus	
<400>	10	
<400>		10
		10
		10
	caaag	10
agggto	caaag	10
agggto	2aaag 11 10	10
<210><211><212>	2aaag 11 10	10
<210><211><212>	2aaag 11 10 DNA	10
<210><211><212>	2aaag 11 10 DNA	10
<210> <211> <212> <213>	2aaag 11 10 DNA	10

<400> 11

agggtgaatg

10

<21	Λ.	12
<2 l	U>	12

<211> 10

<212> DNA

<213> Artificial

<220>

<223> an example of S sequence of Sendai virus

<400> 12

agggtgaaag 10

<210> 13

<211> 9

<212> RNA

<213> Artificial

<220>

<223> an example of E sequence of Sendai virus

<400> 13

auucuuuuu 9

<210> 14

<211> 9

<212> DNA

<213> Artificial

<220>

<223> an example of E sequence of Sendai virus

<400> 14

taagaaaaa 9

<210> 15

<211> 10

<212> DNA

<213> Artificial

<220>

<223> an example of S sequence of Sendai virus

<400> 15

ctttcaccct 10

<210> 16

<211> 15

<212> DNA

<213> Artificial

<220>

<223> an example of E sequence of Sendai virus

<400> 16

tttttcttac tacgg 15

<210>	17	
<211>	18	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	an artificially synthesized linker sequence	
<400>	17	
atgcat	gccg gcagatga	18
<210>	18	
<211>	18	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	an artificially synthesized primer sequence	
<400>	18	
gttgag	tact gcaagagc	18
<210>	19	
<211>	42	

<212> DNA

<213>	Artificial	
<220>		
<223>	an artificially synthesized primer sequence	
<400>	•	
tttgcc	ggca tgcatgtttc ccaaggggag agttttgcaa cc	42
<210>		
<211>		
<212>		
<213>	Artificial	
000		
<220>		
<223>	an artificially synthesized primer sequence	
<400>	20	
		18
atgcat	cgccg gcagatga	10
<210×	21	
<210>		
<211>	21	
<211> <212>	21 DNA	
<211> <212>	21	

<223> an artificially synthesized primer sequence

<220>

21

51

<400>	21
tgggtg	aatg agagaatcag c
<210>	22
<211>	51
<212>	DNA
<213>	Artificial
<220>	
<223>	an artificially synthesized primer sequence
	•
<400>	22
acttgc	ggcc gccaaagttc aatgcagagg tcgcctctgg aaaaggccag c
<210>	23
<211>	76
<212>	DNA
<213>	Artificial
~220 <u>></u>	

<220>
<223> an artificially synthesized primer sequence
<400> 23
atccgcggcc gcgatgaact ttcaccctaa gttttctta ctacggctaa agccttgtat 60
cttgcacctc ttcttc 76

വ	\sim	0.4
<21	11	24

<211> 24

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 24

tcacgcggcc gccaaagttc aatg

24

<210> 25

<211> 24

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 25

atctgcggcc gcgatgaact ttca

24

<210> 26

<211> 24

<212> DNA

<213> Artificial

24

24

<220>	
<223>	an artificially synthesized primer sequence
<400>	26
taacaa	tagg aagacctcta atgg
<210>	27
<211>	24
<212>	DNA
<213>	Artificial
<220>	
	an artificially synthesized primer sequence
	an artificially synthesized primer sequence
<223> <400>	
<223> <400>	27
<223> <400>	27
<223> <400>	27 gagg tcttcctatt gtta
<223> <400> ccatta	27 gagg tcttcctatt gtta

<223> an artificially synthesized primer sequence <400> 28

<213> Artificial

<220>

aacatttagg aagaatttgg atcc

24

<210> 29

<211> 24

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 29

ggatccaaat tcttcctaaa tgtt

24

<210> 30

<211> 22

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 30

cggtgaggag gactgttcga gc

22

<210> 31

<211> 20

<212>
<213>
000
<220>
<223>
<400>
cagttc
<210>
<211>
<212>
<213>
<220>
<223>
<400>
cgacca

DNA Artificial an artificially synthesized primer sequence 31 20 agtc aagtttgcct 32 19 DNA Artificial an artificially synthesized primer sequence 32 19 attt agtgcagaa <210> 33 <211> 21 <212> DNA <213> Artificial <220>

<223> an artificially synthesized primer sequence

<400>	33			
ttcccttcat cgactatgac c 2				
<210>	34			
<211>	24			
<212>	DNA			
<213>	Artificial			
<220>				
<223>	an artificially synthesized primer sequence			
<400>	34			
atgcag	aggt cgcctctgga aaag	24		
<210>	35			
<211>	21			
<212>	DNA			
<213>	Artificial			
	•			
<220>				
<223>	an artificially synthesized primer sequence			
<400>	35			
	cacattggaa tgcagatgag a 21			

<210>	36
-------	----

<211> 20

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 36

tatctgtgct tccctatgca

20

<210> 37

<211> 19

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 37

gcacagtgga agaatttca

19

<210> 38

<211> 19

<212> DNA

<213> Artificial

<220>
<223>
<400>
ggagt
<210>
<211>
<212>

an artificially synthesized primer sequence

38

gcctt tttgatgat

19

39

20

DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 39

ggatgacctt ctgcctctta

20

<210> 40

<211> 21

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 40

ggatagcttg atgcgatctg t

21

20

24

<210>	41				
<211>	20				
<212>	DNA				
<213>	Artificial				
<220>					
<223>	an artificially synthesized primer sequence				
<400>	41				
ggaaag	ttgc agatgaggtt				
<210>					
<211>	24				
<212>	DNA				
<213>	Artificial				
<220>					
<223>	an artificially synthesized primer sequence				
<400>	42				
ctaaag	ctaaagcctt gtatcttgca cctc				

<210> 43

<211> 20

<212> DNA

20

19

<213>	Artificial
<220> <223>	an artificially synthesized primer sequence
<400>	
acctca	tctg caactttcca
<210>	44
<211>	19
<212>	DNA
<213>	Artificial
<220>	
<223>	an artificially synthesized primer sequence
<400>	44
catggo	taaa gtcaggata
<210>	45

<211> 19

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

4	\sim	4 -
//	<00	45
\ -T		~~./

tctattaaga atcccacct

19

<210> 46

<211> 20

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 46

gtctggctgt agattttgga

20

<210> 47

<211> 21

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 47

tgaagtcttg cctgctccag t

21

<210> 48

<21	1>	24

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 48

agtatctcac ataggctgcc ttcc

24

<210> 49

<211> 20

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 49

ggagcagtgt cctcacaata

20

<210> 50

<211> 14

<212> DNA

<213> Homo sapiens

<400> 50

caatagaaaa actt

<210> 51

<211> 14

<212> DNA

<213> Homo sapiens

<400> 51

caataggaaa actt

<210> 52

<211> 15

<212> DNA

<213> Homo sapiens

<400> 52

atttagaaaa aactt

<210> 53

<211> 15

<212> DNA

<213> Homo sapiens

<400> 53

atttaggaga acctt

<2	10>	54
<4.	TU>	J4

<211> 14

<212> DNA

<213> Sendai virus

<400> 54

agtaagaaaa actt

14

<210> 55

<211> 14

<212> DNA

<213> Sendai virus

<400> 55

attaagaaaa actt 14

<210> 56

<211> 14

<212> DNA

<213> Sendai virus

<400> 56

aataagaaaa actt 14

<210> 57

<211> 14

<212> DNA

<213> Artificial

<220>

<223> an altered human CFTR gene (region around the position 1257)

<400> 57

caataggagg acgt

14

<210> 58

<211> 15

<212> DNA

<213> Artificial

<220>

<223> an altered human CFTR gene (region around the position 3905)

<400> 58

atttaggaag aattt

15

【図面の簡単な説明】

【図1】

hCFTR遺伝子の2箇所の高変異領域を示す図である。hCFTRの開始コドンATGのAを1番目とした位置で示した。図中の配列については、1257領域の正常配列および変異配列はそれぞれ配列番号:50および51、3905領域の正常配列および変異配列はそれぞれ配列番号:52および53に示されている。

【図2】

hCFTR遺伝子の2箇所の高変異領域とセンダイウイルスcDNAのEI配列との比較を示す図である。図中の配列については、NPおよびLは配列番号:54、PおよびHNは配列番号:55、MおよびFは配列番号:56、1257領域および3905領域はそれぞれ配列番号:50および52に示されている。

【図3】

hCFTR遺伝子の高変異領域の改変を示す図である。図中の配列については、"12 57"および"1257m"はそれぞれ配列番号:50および57、"3905"および"3905m"はそれぞれ配列番号:52および58に示されている。

【図4】

hCFTR遺伝子の高変異領域の改変のためのプライマーの設計を示す図である。 図中の配列については、上から順に配列番号:24~29に示されている。

【図5】

hCFTR遺伝子の高変異領域が改変された遺伝子断片 (hCFTRm) の構築スキームを示す図である。

【図6】

M遺伝子とF遺伝子の間にhCFTRmが挿入されたSeVゲノムをコードするcDNA (pSe V/CFTR) の構築スキームを示す図である。

【図7】

hCFTR蛋白質の発現の確認を示す図である。一次抗体としてモノクローナル抗 ヒトCFTR (C末端特異的) 抗体 (Genzyme) を用いたウェスタンブロッティングの 結果を示す。レーン1,分子量マーカー;レーン2,T84細胞 (陽性対照);レーン3,BHK-21細胞 (陰性対照1);レーン4,野生型SeV感染BHK-21細胞 (陰性対照 2);レーン5,SeV/CFTR感染BHK-21細胞;レーン6,分子量マーカー。

図8

hCFTR蛋白質の発現の確認を示す図である。免疫細胞化学分析の結果を示す。 一次抗体としてマウス由来抗ヒトCFTRモノクローナル抗体(C末端特異的)(10μ g/ml)(CHEMICON)を、2次抗体としてAlexa Fluor 594 ヤギ由来抗マウスIgG(H+L)コンジュゲート(5μ g/ml)(Molecular Probes)を用いた。対照として、GFP遺伝子を搭載する伝播型SeV(SeV/GFP)を用いた。 【書類名】

図面

【図1】

1257領域					
	1257				
正常配列	CAATAGAAAACTT				
変異配列	CAATAGGAAAACTT				
3905領域 3905					
正常配列	ATTTAGAAAAACTT				
変異配列	ATTTAGGAGAACCTT				

【図2】

SeVcDNAのEI配列

			E	
NP:	AGTA	AG	AAAA	CTT
P:	ATTA	AG	AAAA	CTT
M:	AATA	AG	AAAA	CTT
F:	AATA	AG	AAAAA	CTT
HN:	ATTA	AG	AAAAA	CTT
L:	AGTA	AG	AAAAA	CTT
1257	CAAT	AG	AAAA	CTT
3905	:ATTT	AG	AAAAA	CTT

hCFTRの高変異配列

【図3】

$$\begin{array}{c}
Arg \quad Lys \quad Asn \\
\hline
3905 \quad : \quad ATTT \quad AGA \quad AAA \quad AAC \quad TT \\
\hline
3905m: \quad ATTT \quad AGG \quad AAG \quad AAT \quad TT \\
\hline
3905$$

【図4】

プライマー設計

CF-NotIF: 5' tcacgcggccgccaaagttcaatg

CF-NotIR: 5' atctgcggccgcgatgaactttca

CF-1257F: 5' taacaataggaagacctctaatgg

CF-1257R: 5' ccattagaggtcttcctattgtta

CF-3905F: 5' aacatttaggaagaatttggatcc

CF-3905R: 5' ggatccaaattcttcctaaatgtt

ページ: 1/E

【書類名】 要約書

【要約】

【課題】 高変異領域が改変された遺伝子を搭載するマイナス鎖RNAウイルスベクターを提供する。

【解決手段】 本発明は変異導入により5'-AGA₅₋₆C-3'配列(ウイルスゲノムに 搭載した場合は3'-UCU₅₋₆G-5')を改変した外来遺伝子を有するマイナス鎖RNAウ イルスを提供する。この配列は、マイナス鎖RNAウイルスにおいて高頻度で変異 が生じることが判明した。この配列を持たないように外来遺伝子の配列を改変す ることによって、マイナス鎖RNAウイルスにおいて搭載する遺伝子に変異が生じ るのを防ぐことができる。

【選択図】 なし

特願2003-187312

出願人履歴情報

識別番号

[595155107]

1. 変更年月日

1995年11月 1日

[変更理由]

新規登録

住 所

茨城県つくば市観音台1丁目25番11号

氏 名

株式会社ディナベック研究所

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.