Prática 1: Instrumentos, medidas e incertezas

1.1 Objetivos

Nesta prática serão realizadas medidas diretas de comprimentos, massas e volumes de peças metálicas, assim como medidas indiretas de volume e densidade dos materiais. Serão determinadas as incertezas de medidas com os métodos apropriados para cada caso, descritos no capítulo 1.

1.2 Introdução

A densidade das peças será determinada indiretamente a partir da medida do volume V e da massa m, usando a expressão:

$$\rho = \frac{m}{V} \tag{1}$$

IFSC

A massa será determinada diretamente com uma balança. O volume pode ser medido indiretamente, mensurando as dimensões das peças, ou diretamente usando o princípio de Arquimedes. As incertezas de todas as grandezas medidas devem ser determinadas e os valores arredondados de maneira consistente, de acordo com os métodos e critérios descritos no capítulo 1. Portanto, o conteúdo desse capítulo deverá ser cuidadosamente estudado antes de realizar a prática.

1.3 Paquímetro

A figura 1.1 mostra um paquímetro universal. Consta de uma régua, a escala principal, com precisão D = 1 mm (separação entre as divisões) e

comprimento de 150 mm. O paquímetro dispõe de vários pares de encostos para realizar medições externas, internas e de profundidade.

Figura 1.1 - Paquímetro universal com vernier.

Fonte: Elaborada pelo compilador.

A capacidade de realizar medidas mais precisas do que uma régua convencional se deve ao uso do nônio ou vernier, uma régua deslizante que subdivide as unidades da escala principal. A escala do vernier possui *N* divisões, cuja separação está "encolhida" 10% em relação às divisões da escala principal, como mostrado na figura 1.2.a.

O vernier representado tem 10 divisões, que equivalem a 9 divisões da régua principal. Na figura podemos notar claramente que a primeira divisão do vernier é um 1/10 mais curta que a mínima divisão da régua e, portanto, somente há coincidência das divisões das réguas nas posições 0 e 9 da escala principal.

Note que as divisões da escala principal têm unidades, mas as divisões do vernier não. Se as divisões da escala principal correspondessem a 1 mm, então a defasagem entre as divisões "1", de ambas as escalas na figura 1.2.a, seria de 0,1 mm.

Figura 1.2 - Princípio de funcionamento do vernier. (a) Zeros do vernier e da escala principal alinhados. Observe que as divisões do vernier são 10% mais curtas que as da régua principal. (b) Alinhamento na divisão 1 do vernier. O deslocamento do vernier com relação ao zero da escala principal é de 1/10 de unidade da escala principal. (c) Alinhamento na divisão 4 do vernier. O deslocamento do vernier corresponde, agora, a 4/10 de unidade da escala principal.

Fonte: Elaborada pelo compilador.

Suponha, agora, que o vernier é deslocado para direita de maneira que coincidam as divisões "1" de ambas as escalas, como mostrado na figura 1.2.b. Que distância deveria ter se deslocado o vernier desde a posição inicial? Claramente é 1/10 em unidades da escala principal. Consideremos neste momento um deslocamento maior, como na figura 1.2.c, de maneira que a coincidência das divisões ocorra, por exemplo, para a divisão 4 do nônio. O deslocamento total atual deve ser 4 × 1/10 nas unidades da escala principal. Então, podemos concluir que a coincidência das divisões das escalas permite

mensurar o deslocamento do vernier em frações da mínima divisão da escala principal. Esse princípio pode ser aplicado para aumentar a precisão da medida de comprimento sobre escala principal.

Na figura 1.3 está representado o detalhe do nônio de um paquímetro que possui 20 divisões. A precisão máxima desse paquímetro é, então, 1 mm / 20 = 0,05 mm.

Figura 1.3 - Detalhe da leitura do paquímetro, para o caso de um vernier de 20 divisões (precisão 0,05 mm).

Leitura: 21,00 mm + 0,45 mm = 21,45mm

Fonte: Elaborada pelo compilador.

Consideremos a leitura mostrada na figura sobre a escala principal. Podemos notar que o resultado da medida é maior que 21 mm. A fração de mm, que deve ser acrescentada a esse valor, pode ser medida com o vernier, utilizando o método descrito acima, com a única diferença de contabilizar o deslocamento do vernier a partir da divisão 21 mm, em vez de 0 da escala principal. Na figura 1.3, a coincidência ocorre para a divisão 4,5. Portanto, a

fração deslocada é 4.5×0.10 mm = 0.45 mm e, assim, a leitura completa é 21.00 mm + 0.45 mm = 21.45 mm.

Os paquímetros podem ter verniers de até 50 divisões, resultando em uma precisão de 0,02 mm. Verifique sempre qual é a precisão do paquímetro utilizado para, assim, poder avaliar a incerteza das medidas.

1.4 Micrômetro

A figura 1.4 mostra um micrômetro típico, consistindo de um parafuso axial com rosca calibrada. A forma de medida é sempre externa à peça e o limite está determinado pelo máximo afastamento das superfícies, usualmente 25 mm. O instrumento deve ser segurado pela parte coberta pelo isolante térmico, para evitar eventuais distorções de medida, causadas pela dilatação térmica das partes metálicas em contato com a mão. As superfícies de medida devem fazer contato com as superfícies da peça, avançando suavemente o parafuso usando a catraca.

O micrômetro possui uma escala principal fixa, com precisão de 0,5 mm e uma escala rotatória no tambor com 50 divisões. Uma volta completa do tambor equivale a um avanço de 0,5 mm na escala principal. Logo, a precisão é 0,5 mm / 50 divisões = 0,01 mm.

Figura 1.4 - Micrômetro de parafuso (precisão de 0,01 mm).

Fonte: Elaborada pelo compilador.

A figura 1.5 mostra o detalhe de uma leitura sobre a escala do micrômetro. Até a borda do tambor, a última divisão, claramente visível na escala principal, é 21,00 mm. A fração restante é medida sobre a escala do tambor. A coincidência da linha horizontal ocorre aproximadamente na divisão 30, representando um comprimento de 30 divisões \times 0,01 mm = 0,30 mm. Portanto, a leitura é 21,00 mm + 0,30 mm = 21,30 mm.

21,00 mm + 0,30 mm = 21,30 mm

Precisão do tambor: 0,5mm / 50 divisões = 0,01mm escala principal: divisões de 0,5mm Coincidência da escala do tambor: 30 divisões \times 0,01 mm = 0,30 mm escala principal: divisões de 1 mm última linha visível da escala principal: Leitura do micrômetro: 21,00 mm

Figura 1.5 - Detalhe da leitura do micrômetro, para um tambor de 50 divisões (precisão 0,01 mm).

Fonte: Elaborada pelo compilador.

1.5 Parte experimental

1.5.1 Medidas direta e indireta do volume

Nesta parte do experimento, será determinado o volume de uma peça metálica.

- a) Confira o estado do paquímetro e do micrômetro! Verifique qual é a precisão desses instrumentos e confirme que o zero esteja calibrado! Essas conferências são necessárias para atribuir as incertezas das medidas e evitar erros sistemáticos.
- b) Meça diretamente todas as dimensões das peças, necessárias para calcular o volume. Tente usar o instrumento mais preciso que for

possível em cada dimensão da peça. No relatório, faça esquemas das peças e os parâmetros medidos, e compile claramente os resultados com suas respectivas incertezas.

- c) Calcule para cada peça o volume e sua incerteza.
- d) Meça diretamente o volume das peças utilizando uma proveta graduada contendo água. Determine a incerteza dessas medidas.
- e) Organize os resultados das medidas de volume numa tabela (veja tabela 1.1). Compare e discuta os valores obtidos com ambos os métodos. Indique, por exemplo, se os resultados são equivalentes entre si ou se um dos métodos é mais preciso que o outro.

Tabela 1.1 - Volumes das peças metálicas medidos direta e indiretamente e as respectivas densidades resultantes.

Peça	V _{direto} (cm³)	V _{indireto} (cm³)	$ ho$ (g/cm 3)	Material identificado / $ ho$ (g/cm 3)

Fonte: Elaborada pelo compilador.

1.5.2 Medida indireta da densidade

a) Meça diretamente a massa das peças com uma balança, determinando a incerteza. Certifique que não existam fontes de erros sistemáticos (calibração do zero da balança, nivelação do prato, etc.).

Laboratório de Física I IFSC

b) Usando o volume medido indiretamente, calcule as densidades dos materiais das peças, junto com suas incertezas.

c) De acordo com o valor de densidade e o aspecto da peça, proponha uma identificação para o material, comparando com dados de referência. Indique na tabela o valor de densidade usado para justificar sua identificação. Leve em consideração os critérios de comparação de grandezas com incerteza (capítulo 1, seção 1.7).

1.5.3 Medida direta com dispersão

Nesta parte da prática, será analisado o caso da medida direta de uma grandeza com dispersão dos resultados maior que a precisão do instrumento. Será medido o diâmetro médio de um segmento de fio de cobre, grosso e irregular, utilizando um micrômetro.

- a) Construa uma tabela, como a sugerida na tabela 1.2, incluindo, no mínimo, 10 medidas do diâmetro d do fio realizadas em pontos diferentes do mesmo. Existe dispersão dos dados?
- b) Calcule o valor médio do diâmetro.
- c) Calcule os desvios dos valores com relação à media $(d_i \bar{d})$ e o desvio absoluto médio $\Delta d = \frac{\sum_{i=1}^N |d_i \bar{d}|}{N}$.
- d) Compare o desvio absoluto médio com a precisão D do micrômetro. Qual é a incerteza que deve ser atribuída ao diâmetro médio? Expresse o resultado final com a quantidade de casas significativas consistente com a incerteza.
- e) Qual é a diferença entre o procedimento de medir o diâmetro sempre no mesmo ponto ou em pontos diferentes do fio? Qual é o significado

ou a validade desses procedimentos do ponto de vista do *controle de tolerância dimensional* das características de uma peça?

Tabela 1.2 - Determinação do diâmetro *d* de um fio de cobre medido com um micrômetro.

<i>d</i> (mm)	$d_i - \overline{d}$ (mm)

Fonte: Elaborada pelo compilador.

Bibliografia

Helene, O.; Vanin, V.. **Tratamento estatístico de dados em física experimental.** São Paulo: Editora Edgard Blücher, 1981.

Vuolo, J. E.. **Fundamentos da teoria de erros.** 2. ed. São Paulo: Editora Edgard Blücher, 1993.