Geological Storage of CO₂

- 1. The basic concept is to store captured CO_2 underground in reservoirs that would otherwise contain water, oil or gas
- 2. We need to be deep (greater than 800m) to ensure CO_2 is in a dense form the super-critical phase

3. These are also the depths where we are confident that natural gas has been

trapped for millions of years

- 4. But the big questions are:
 - Where do we store it?
 - How much CO₂ can we inject?
 - Can we store it safely?
 - Can we store it cost-effectively?

CO₂ at depth

- CO₂ is stored at depths >800m to ensure that CO₂ is in a dense form
- This is also important for storage security, because storage seals become more effective with depth
- CO₂ properties are highly variable, f(P,T)

At standard conditions (ISA) (1.013 Bar & 15°C)

- \triangleright 1 m³ of CO₂ has a mass of 1.87 kg
- \rightarrow 1bscf = 28.32 x10⁶ m³
- \triangleright Mass of 1bscf = 52959.5 tonnes
- ➤ Mass of 1MMscf = 52.96 tonnes
- ➤ So a single well injecting 20 MMscf per day is injecting about 1000 tonnes of CO₂ per day

Simplified CO₂ density versus depth diagram (from CO2CRC)

NB. Gas engineers tend to work in standard cubic feet (scf) while CO₂ projects prefer to report mass