

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA INFORMATICA

SOCIAL NETWORKS ANALYSIS A.A. 2021/22

GAME THEORY

- Network Science deals with connectivity and structure of social, natural and technological systems
 - Pattern of connections (graph theory)
 - interdependence in the behaviors of the individuals (game theory)
- Game Theory provides mathematical models and tools to describe behaviours of agents when they take decisions whose output depends also on choices made by the people they are interacting with
 - the outcome for anyone depends at least implicitly on the combined behaviors of all
- Game Theory was born in 30's and developed in 40-50s
 - Studied especially by economists
 - Recently interest on game theory spread in several different areas to model agents' strategic behaviours

WHY WE NEED GAME THEORY?

- We can use Game Theory to model different common situations
 - Fixing prices for a new product
 - Deciding which social relations to maintain
 - Selecting the path to our destination in a transportation network
 - Deciding which offer to present in an auction
 - Deciding which strategy to follow in a competition
- Game-theoretic approches are also relevant to settings where none is overtly making decisions
 - which behaviors tend to sustain themselves when carried out in a larger population?
 - Es. Evolutionary Biology, Social Sciences
 - mutations are more likely to succeed in a population when they improve the fitness of the organisms that carry the mutation
 - * Outside the scope of this course

WORKING HYPOTHESIS OF CLASSICAL GAME THEORY

Game Theory assumes players are selfish and rational and play strategically

o selfish

• Each player pursue her own personal goal

o rational

• Each player can recognize what is better to her

o strategic reasoning

• Players take into account what they know and what are their beliefs about other players' behaviour

WHAT IS A GAME?

- A Game is any situation where
 - Single individuals have to take decisions
 - Payoff obtained by a player depends on the decisions taken by all the players
- Several examples considered in game theory are real games ...
 - Tick-tack-toe, chess, rock-paper-scissors, penalty game
- ... but this framework applies to much larger contexts
- A game consists of
 - A set of players
 - For each player, a set of actions
 - For each player, a payoff (cost) function that gives the payoff received by the player for each profile of actions taken by all the players

A CLASSIFICATION OF GAMES

In this course we will classify games with respect to three characteristics

- Cooperation among players
 - non-cooperative games: each player decides without any interaction with the other players
 - cooperative games: players cooperate in deciding which action to play
- Information known to players
 - perfect (full) information games: players have perfect (complete) information about the game
 - They know actions and payoffs of other players, and know that other players know
 - imperfect (partial) information games: players have an imperfect (partial) knowledge of the game

• time

- strategic (normal) games: players decide their strategies before playing the game anc cannot change their decisions
 - A strategy can consist of several actions
- extensive games: game played in rounds, at each round a player decides her action based on the state of the game and the previous history

GAMES IN STRATEGIC FORMS

- o A game in strategic (normal) form is a triple (N, $(A_i)_i$, $(u_i)_i$)
 - N = set of players
 - A_i = set of actions for player i
 - $u_i(a_1, a_2, ..., a_N)$ = payoff function for player i
- Profiles of the game are N-uple of players' actions

- A solution is a profile of the game
 - Players' payoffs depend on the solution

A FIRST EXAMPLE

- Alice and Bob have to prepare an exam and a (joint) presentation
 - Both want to maximize the global score obtained for the two activities
 - Both have time to work on only one activity and cannot coordinate

o Exam

• If the student studies for the exam takes 28, otherwise takes 20

Presentation

- If both the students work on the presentation they both take 28
- If only one student works on the presentation they both take 24
- If none works on the presentation they both take 22
- What should Alice and Bob decide?
 - They cannot comunicate

GAME FORMALIZATION

- Two players
 - Alice e Bob
- Two alternatives for each players
 - Exam, presentation

	Exam	Present
Exam	25, 25	26, 22
Present	22, 26	24, 24

If my colleague works on the presentation, my best move is to study for the exam
What will my colleague decide?

PLAYERS BEHAVIOUR

- Analyze the behaviours of the two players
- Every student has a *strictly dominant strategy*
 - Independently from what her colleague decides, she should study for the exam
- In this case we can predict the outcome of the game
 - Both students will obtain an average score of 25
- Each player could obtain a greater score to detriment of her colleague
 - It's not rational

PRISONER'S DILEMMA

- Two individuals suspected for a robbery are apprehended by the police for a minor crime
- Each suspected is interrogated in a separate room and offered for a deal
 - a reduction of the fine for a full confession
 - he has to decide how to respond
 - if neither confesses, they are both convicted for 1 year
 - If both confesses, they are both convicted for 4 year
 - If only 1 confesses, he is left free, while the other is convicted to 10 years

NC

- Each suspect has a dominant strategy
 - His best choice is to confess
- His preferred outcome would be that both of them do not confess
 - It's not rational

C	NC
-4, -4	0, -10
-10, 0	-1, -1

BEST RESPONSE MOVES

• A rational player always chooses his best move with respect to her belief on the actions of the other players

• Formalize

- If player 1 chooses strategy S and player 2 chooses strategy T
- Player *i* gets a payoff u_i(S,T)
- o <u>Def</u>: S is a <u>best response</u> with respect to T if $u_1(S,T) \ge u_1(S',T)$ for each alternative strategy S' of player 1
 - S ia a *strict best response* if $u_1(S,T) > u_1(S',T)$

DOMINANT STRATEGIES

- <u>Def:</u> A <u>dominant strategy</u> is a strategy that is a best response with respect to all the possible strategies of the other players
 - Similarly for *strictly dominant strategy*.
- In the Prisoner's Dilemma both the players have a strictly dominant strategy
 - We can easily predict the outcome of the game
- There exist games with no dominant strategies
- What can we say about the outcome of games lacking of dominant strategies?

A MARKETING GAME

- Two firms are planning to produce and put on the market a new product
 - ❖ The new products are in competition
- The population of consumers is formed as follows
 - ❖ 60% interested in a low price product
 - ❖ 40% interested in a high level product
- Firm R (row) is much more popular
 - * If they compete for the same market segment, it gets 80% of all the sales
 - * It they cover different market segments, each one gets all the sales in its segment

• For Firm R low is a dominant strategy

low

.48, .12 .60, .40 .40, .60 .32, .08

low

high

• Firm C should consider the best high move of Firm R and move to high

GAMES WITH NO DOMINANT STRATEGIES

- What can we say when no player has a dominant strategy?
 - How can we reason about these games?
 - We know that each player will play his best response with respect to the strategy of the adversaries
 - * He cannot be sure about what the adversaries will play
 - * But he can reason strategically
 - Best responses for Row player
 - A if C plays A
 - B if C plays B
 - C if C plays C
 - Best responses for Column player
 - A if R plays A
 - B if R plays C
 - C if R plays B

	\boldsymbol{A}	B	\boldsymbol{C}
4	4, 4	0, 2	0, 2
8	0, 0	1, 1	0, 2
\mathcal{C}	0, 0	0, 2	1, 1

NASH EQUILIBRIA

- A solution is a Nash Equilibrium where each player is playing her best response to the strategies of other players
 - Each player has no incentive to change her strategy if other players do not change their strategies
- o John Nash (1952) introduced the concept of equilibrium and proved that each finite game has at least a (mixed) Nash Equilibrium
- Each player can reason strategically and predict how her adversaries would react to their moves

	A	B	C
\boldsymbol{A}	4, 4	0, 2	0, 2
\boldsymbol{B}	0, 0	1, 1	0, 2
\boldsymbol{C}	0, 0	0, 2	1, 1

- o (A, A) is a Nash Equilibrium
 - A is the the best move for C when R plays A
 - A is the the best move for R when C plays A
- o It's the unique Nash Equilibrium

COORDINATION GAMES

	A	B
\boldsymbol{A}	1, 1	0, 0
B	0, 0	1, 1

- Two players have to choose between two alternatives
 - Both prefer to make the same choice
 - They cannot comunicate
- What are the Nash Equilibria for this game?
 - (A, A) and (B, B)
 - What will the players decide?

BATTLE OF SEX

- Alice and Bob have to decide what to do for the night
 - They can choose between a basketball match or shopping
 - Alice prefers shopping, Bob prefers basketball
 - Both prefer to stay together
- What are the Nash Equilibria for this game?
 - (B, B) and (S, S)
- Is it possible to predict the outcome of the game?
 - Social conventions can make an outcome better than the other
 - Es. By chivalry, Bob lets Alice to choose

STAG HUNT

	Stag	Hare
Stag	4, 4	0, 3
Hare	3, 0	3, 3

- Two individuals are hunting
 - They can cooperate and catch a stag
 - Each hunter can decide to not cooperate and catch only a hare
 - The stag is better but more difficult to catch
- Wha are the Nash Equilibria for this game?
 - (Stag, Stag) e (Hare, Hare)
- An equilibrium is much more risky that the other
 - If I hunt the stag but my colleague does not cooperate I'll remain with nothing
 - If I hunt the hare I have a little but certain payoff

HAWK OR DOVE

	Dove	Hawk
Dove	3, 3	1, 5
Hawk	5 , 1	0, 0

- Hawk or Dove(also known as Chicken game)
 - Two animals have to split a pray
 - Each animal can decide to be aggressive (hawk) or submissive (dove)
 - If both are submissive each one takes half of the prey
 - If one is aggressive and the other submissive, the hawk takes the most
 - If both are aggressive, they'll injure each other
- What are the Nash Equilibria for this game?
 - (Hawk, Dove) e (Dove, Hawk)
- This game is used to model relationships among individuals or political relationships

MATCHING PENNIES

	Head	Tail
Head	1, -1	-1, 1
Tail	-1, 1	1, -1

Matching Pennies

- Each player puts a coin on the table
- Player Row wins if both the coins have the same side upward
- Player Column wins if coins have different sides upward

• A Zero-Sum game

- The sum of the payoffs of the players is 0
- If a player wins, its adversary looses

No Nash Equilibria

How would you play this game?

MIXED STRATEGIES

- A *mixed strategy* is a probability distribution (lottery) on the set of all the possible actions
 - Each player has to choose which kind of lottery to use
 - Infinite set
 - A lottery where the player chooses an action with probability 1 is called pure strategy
- o In Matching Pennies
 - Player Row chooses to play Head with probability p
 - Player Column chooses to play Head with probability *q*
- How can we calculate the payoffs?
 - Expected values computed on all the possible profiles of pure strategies

PAYOFF COMPUTATION -- 1

- Player R compares her pure strategies with respect to the mixed strategy (q, 1-q)
 - If she chooses Head, her expected payoff is

$$q + (1-q)(-1) = 2q-1$$

• If she chooses Tail, her expected payoff is

$$(-1)q + (1-q) = 1-2q$$

- Which is her best move?
 - Depends on q
 - if $q < \frac{1}{2}$ best move is Tail
 - if $q > \frac{1}{2}$ best move is Head
 - if $q = \frac{1}{2}$ both the moves are equivalent
 - * It can randomize between the two

PAYOFF COMPUTATION -- 2

- Player C compares her mixed strategies (q, 1-q) taking into account that his adversary will react with her best move
 - If she chooses $q < \frac{1}{2}$ his adversary will play Tail • Her expected payoff is 2q-1 < 0
 - If she chooses q > ½ his adversary will play Head
 Her expected payoff is 1-2q < 0
 - If she chooses $q = \frac{1}{2}$ his adversary has to choose among two equivalent alternatives
 - * If the adversary plays mixed strategy (p, 1-p) her expected payoff is

$$1/2 (-p + (1-p) + p - (1-p)) = 0$$

• Every choice different from $q \neq \frac{1}{2}$ is not rational

MIXED STRATEGY NASH EQUILIBRIA

- Two mixed strategies are in Nash Equilibria if each one is the best response to the other
 - The adversary has no incentive in changing his strategy
- Nash proved that each finite game has at least a mixed strategy Nash Equilibrium
- Matching Pennies has no Pure Nash Equilibrium
 - In each profile there is a player that wants to change her strategy
- (½, ½) is a mixed Strategy Nash Equilibrium for Matching Pennies
 - Each player has an expected ayoff = 0 and this is the best she can obtain

Interpreting Mixed Strategy Nash Equilibria

- Players use mixed strategies to make difficult to their adversaries to predict her choice
 - playing q=1/2, player C makes both the strategies of her adversary equivalent
- Possible interretations of mixed strategy Nash Equilibria
 - In sports and other competitions
 - * Players randomize their strategies to make them less prevedible
 - Food competition among species
 - Individuals are fitted to play some strategies and cannot change
 - In a population there are different individuals
 - * Mixed strategies give the proportions of each type in the whole population
 - * A population is a mixed strategy Nash Equilibrium
 - A mixed strategy Nash Equilibrium is best thought as an equilibrium between beliefs
 - If a player thinks his adversary will play a Nash Equilibrium strategy then her best move is to play a Nash Equilibrium strategy

THE RUN-PASS GAME

	Run	Pass
Run	0, 0	5 , - 5
Pass	10, -10	0, 0

- The Row team offends, column team defends
 - Offenders have to decide if play a pass-game or a run-game
 - * Defenders have to decide on which kind of game to defend
- Defenders decide to defend on a run-game with probability q
 - The two offenders' alternatives are equivalent if
 - $5(1-q) = 10q \rightarrow q = 1/3$
- Offenders decide to play a run-game with probability *p*
 - The two offenders' alternatives are equivalent if
 - $-10(1-p) = -5p \rightarrow p=2/3$
- (1/3, 2/3) is a mixed strategy Nash Equilibrium

PENALTY-GAME

	right	left
right	0,58, -0,58	0,95, -0,95
left	0,93, -0,93	0,70, -0,70

- The Row player shoots the penalty, the Column player is the goalkeeper
 - The blue values in the payoff matrix are the probabilities to score
- The goalkeeper goes on his left with probability q
 - Stricker's alternatives are equivalent if
 - $(0.58)(q) + (0.95)(1-q) = (0.93)(q) + (0.70)(1-q) \rightarrow q = 0.42$
- Similarly, we can compute the probability that the stricker kick on the left p=0.39
- (0,39, 0,42) is a mixed strategy Nash Equilibrium
 - Real data very close to what is predicted by the theory

PARETO OPTIMALITY

- Even if each player plays her best move the outcome could be not the best outcome for the society
 - Es. Prisoner's Dilemma
- How can we define a socially good outcome?
- A solution is Pareto Optimal if there is no other solution such that:
 - Each player obtains at least the same payoff
 - There is a player that obtains a strictly greater playoff

SOCIAL OPTIMALITY

- A solution is socially optimal if it maximizes the social welfare
 - Sum of the payoffs of all the players

	Exam	Present
Exam	25, 25	26, 22
Present	22, 26	24, 24

• In this game there is a unique Nash Equilibrium that is also socially optimal