Electrical Circuits Lecture 15: BJT Transistors

By: Mahmoud Momtazpour

ceit.aut.ac.ir/~momtazpour

Topic Overview

- BJT Large Signal Model
- BJT Modes of Operations
- BJT DC Analysis
- BJT Small Signal Model
- BJT AC Analysis

BJT

□ B: Base

□ C: Collector

□ E: Emitter

BJT Operation

BJT Large Signal Model

Ebers-Moll Model

- Modes of operation:
 - Cut-off
 - Forward Active
 - Reverse Active
 - Saturation

PNP:

NPN:

Cut-off

$$V_B - V_C < 0.4$$

$$V_B - V_E < 0.6$$

$$\square I_B = I_C = I_E = 0$$

Forward Active

$$V_B - V_C < 0.4$$

$$V_B - V_E > 0.6$$

Acts as an amplifier!

$$I_C = \alpha I_E$$
 (0.98 < α < 0.998)

$$\square I_E = I_B + I_C$$

$$\Box I_C = \beta I_B$$

$$\square \beta = \frac{\alpha}{1-\alpha}$$

Reverse Active

$$V_B - V_C > 0.4$$

$$V_B - V_E < 0.6$$

- The collector diode is built in a way that it can tolerate large reverse biases, but emitter diode can't.
- \square It also has poor β .
- □ So, we usually don't use BJTs in this mode...

Saturation

$$V_B - V_C > 0.4$$

$$V_B - V_E > 0.6$$

$$\Box V_C - V_E \approx 0.2$$

- Acts as a switch!
- \square 0.2 is called V_{sat}
- $\Box I_C < \beta I_B$ (I_C is set by the circuit, not by I_B)

BJT Configurations

Common Base

Common Collector

Common Emitter

BJT DC Analysis

- Write BE and CE KVLs
- \square Assume Cut-off ($I_B=0$), use BE-KVL to find V_{BE} :
 - □ If V_{BE} < 0.6, OK! I_C = 0, Use CE-KVL to find V_{CE} .
 - \blacksquare If $V_{BE} > 0.6$, assumption is not true...
- Assume Active ($V_{BE} > 0.6$), assume $V_{BE} = 0.6$, use BE-KVL to find I_B . Find $I_C = \beta I_B$. Use CE-KVL to find V_{CE} .
 - \blacksquare If $V_{CE} > 0.2$, OK! Otherwise, assumption is not true
- Assume Saturation ($V_{CE}=0.2$). Use CE-KVL to find I_C . Double Check $I_C<\beta I_B$

Example

- \square Find i_C ($\beta = 100$)
- Write BE and CE KVLs:

$$-4 + 40000i_B + v_{BE} = 0$$

$$-12 + 1000i_C + v_{CE} = 0$$

Assume Cut-off

Assume Active

$$\mathbf{v}_{BE} = 0.6 \rightarrow i_B = \frac{4-0.6}{40000} = 85\mu A > 0$$

$$\mathbf{v}_{C} = 100 \times 85 \mu = 8.5 mA \rightarrow v_{CE} = 3.5 > 0.2$$

