

CLAIMS

1 1. A circuit comprising:
2 a reference signal;
3 a frequency synthesizer, receiving a dithered signal and the reference signal,
4 generating a constant frequency output; and
5 configuration registers transceiving data and control signals with the frequency
6 synthesizer.

1 2. A circuit, as defined in claim 1, further comprising a modulated analog phase
2 lock loop, receiving the reference signal, generating the dithered signal.

1 3. A circuit, as defined in claim 1, the frequency synthesizer comprising:
2 a predictor and corrector that receive the dithered signal and the reference signal,
3 generating a “remove pulse” signal; and
4 an output generator, receiving the dithered signal, reference signal, and “remove
5 pulse” signal, generating a “clear pulse” signal and the constant frequency output.

1 4. A circuit, as defined in claim 1, the frequency synthesizer comprising:
2 a predictor, generating a first output signal indicative of the average number of
3 dithered periods to remove per dithered period;
4 a corrector receiving the first output signal, generating a second output signal
5 indicative of the fractional number of dithered periods to remove each dithered period;
6 and
7 an accumulator receiving the second output signal, operative to count the
8 fractional number of dithered periods, removing a dithered period when an integer has
9 been reached.

1 5. A circuit, as defined in claim 4, the predictor comprising:
2 means for measuring the average number of dithered periods for the sample of the
3 reference signal;

4 a comparator, receiving the first output signal and a desired number of dithereds
5 periods per sample of the reference signal, generating a difference indicative of the
6 average number of dithered periods to remove per sample of the reference signal; and
7 a multiplier, receiving the difference, operative to scale the difference according
8 to a scale factor register value.

1 6. A circuit, as defined in claim 4, the corrector comprising:
2 means for measuring error from the last sample;
3 means for determining a scale to fractional error; and
4 an adder, receiving the scale to fractional error and the average number of
5 dithered periods to remove per dithered period, generating the difference.

1 7. A circuit, as defined in claim 1, the frequency synthesizer including:
2 a first synchronizer, receiving the system clock as reference input and the PLL
3 output, generating a first output;
4 an edge detector, receiving the first output and the PLL output, generating an edge
5 signal;
6 a second synchronizer, receives an enable signal and the system clock, generating
7 a second output;
8 an adder, receiving reference count signals, generating adder output signals;
9 an Expected Count Latch, receiving the second output as a clear input, the system
10 clock as a clock input, the adder output signals as data, and the edge signal as a load
11 signal, generating a latch output;
12 wherein the adder further receives the latch output;
13 an Edge Counter, receiving the system clock and the second output as a clear
14 signal, generating a counter output;
15 a comparator, receiving the counter output and the latch output, generating a
16 rollover output, an A>B+1 signal, and an A>B signal.

1 8. A method for frequency synthesis comprising:
2 receiving a dithered signal and a reference signal;

3 selecting a desired number of periods in the dithered signal to receive during a
4 sample period of the reference signal;
5 counting the actual number of periods in the dithered signal during the sample
6 period;
7 comparing the desired number to the actual number;
8 generating a constant frequency signal based on the comparison.

1 9. A method for frequency synthesis comprising:
2 receiving a dithered signal and a reference signal;
3 determining an average fractional number of dithered periods of the dithered
4 signal to remove each dithered period;
5 determining a fractional error of dithered periods for each dithered period based
6 on a period of the reference signal; and
7 combining the average fractional number and the fractional error generating a
8 fractional number of dithered periods to remove each dithered period; and
9 generating a constant frequency signal based on the combination.

1 10. A method for frequency synthesis, as claimed in 9, determining an average
2 fractional number of dithered periods comprising:
3 measuring an average number of dithered periods for a sample of the reference
4 signal;
5 generating a difference from the average number of dithered periods and a desired
6 number of dithered periods per sample of the reference signal, the difference indicative of
7 the average number of dithered periods to remove per sample of the reference signal; and
8 scaling the difference according to a scale factor register value.

1 11. A method for frequency synthesis, as defined in claim 9, determining a
2 fractional error of dithered periods for each dithered period comprising:
3 measuring error in a number of dithered periods corresponding to a given sample
4 of the reference signal;
5 determining a scale to fractional error; and
6 scaling the scale to fractional error to generate the fractional error.

1 12. A method for frequency synthesis, as defined in claim 11, wherein
2 determining a scale to fractional error comprises referring to a look-up table.

1 13. An apparatus for frequency synthesis comprising:
2 a predictor operative to estimate an average amount of correction per sample;
3 a corrector operative to measure actual error in a previous sample;
4 an accumulator, connected to the predictor and corrector, generating an
5 accumulator output signal indicative of the sum of the average amount of correction and
6 the actual error;
7 an output generator, receiving the accumulator output signal, generating an output
8 signal having constant frequency.