Differentially Private Bayesian Inference

Anonymous Authors¹

Abstract

1. Setting up

000

007

009

010

015

018

019

020

021

024

025 026

028

029

034

038

039

041

043

044

045

046

047

049

050

051

053

The Bayesian inference process is denoted as $\mathsf{BI}(x,prior)$ taking an observed data set $x \in \mathcal{X}^n$ and a prior distribution as input, outputting a posterior distribution posterior. For conciseness, when prior is given, we use $\mathsf{BI}(x)$.

For now, we already have a prior distribution prior, an observed data set x.

1.1. Exponential Mechanism with Global Sensitivity

1.1.1. MECHANISM SET UP

In exponential mechanism, candidate set R can be obtained by enumerating $y \in \mathcal{X}^n$, i.e.

$$R = \{ \mathsf{BI}(y) \mid y \in \mathcal{X}^n \}.$$

Hellinger distance H is used here to score these candidates. The utility function:

$$u(x,r) = -\mathsf{H}(\mathsf{BI}(x),r); r \in R. \tag{1}$$

Exponential mechanism with global sensitivity selects and outputs a candidate $r \in R$ with probability proportional to $exp(\frac{\epsilon u(x,r)}{2\Delta_{\sigma}u})$:

$$P[r] = \frac{exp(\frac{\epsilon u(x,r)}{2\Delta_g u})}{\sum_{r' \in R} exp(\frac{\epsilon u(x,r')}{2\Delta_g u})},$$

where global sensitivity is calculated by:

$$\begin{split} \Delta_g u &= \mathsf{H}(\mathsf{BI}(x'), r) - \mathsf{H}(\mathsf{BI}(y'), r)| \\ \max_{\{|x', y'| \leq 1; x', y' \in \mathcal{X}^n\}} \max_{\{r \in R\}}. \end{split}$$

Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute.

1.1.2. SECURITY ANALYSIS

It can be proved that exponential mechanism with global sensitivity is ϵ -differentially private. We denote the BI with privacy mechanism as PrivInfer. For adjacent data set $||x,y||_1=1$:

$$\begin{split} &\frac{P[\mathsf{PrivInfer}(x,u,R) = r]}{P[\mathsf{PrivInfer}(y,u,R) = r]} \\ &= \frac{\frac{exp(\frac{\epsilon u(x,r')}{2\Delta_g u})}{\sum_{r' \in R} exp(\frac{\epsilon u(x,r')}{2\Delta_g u})}}{\frac{exp(\frac{\epsilon u(y,r')}{2\Delta_g u})}{\sum_{r' \in R} exp(\frac{\epsilon u(y,r')}{2\Delta_g u})}} \\ &= \left(\frac{exp(\frac{\epsilon u(x,r)}{2\Delta_g u})}{\sum_{r' \in R} exp(\frac{\epsilon u(y,r')}{2\Delta_g u})}\right) \cdot \left(\frac{\sum_{r' \in R} exp(\frac{\epsilon u(y,r')}{2\Delta_g u})}{\sum_{r' \in R} exp(\frac{\epsilon u(x,r')}{2\Delta_g u})}\right) \\ &= exp\left(\frac{\epsilon(u(x,r) - u(y,r))}{2\Delta_g u}\right) \\ &\cdot \left(\frac{\sum_{r' \in R} exp(\frac{\epsilon u(y,r')}{2\Delta_g u})}{\sum_{r' \in R} exp(\frac{\epsilon u(x,r')}{2\Delta_g u})}\right) \\ &\leq exp(\frac{\epsilon}{2}) \cdot exp(\frac{\epsilon}{2}) \cdot \left(\frac{\sum_{r' \in R} exp(\frac{\epsilon u(x,r')}{2\Delta_g u})}{\sum_{r' \in R} exp(\frac{\epsilon u(x,r')}{2\Delta_g u})}\right) \\ &= exp(\epsilon). \end{split}$$

Then, $\frac{P[\mathsf{PrivInfer}(x,u,R)=r]}{P[\mathsf{PrivInfer}(y,u,R)=r]} \ge exp(-\epsilon)$ can be obtained by symmetry.

1.2. Exponential Mechanism with Local Sensitivity

1.2.1. MECHANISM SET UP

Exponential mechanism with local sensitivity share the same candidate set and utility function as it with global sensitivity. This outputs a candidate $r \in R$ with probability proportional to $exp(\frac{\epsilon u(x,r)}{2\Delta_1 u})$:

$$P[r] = \frac{exp(\frac{\epsilon u(x,r)}{2\Delta_l u})}{\sum_{r' \in R} exp(\frac{\epsilon u(x,r')}{2\Delta_l u})},$$

where local sensitivity is calculated by:

¹Anonymous Institution, Anonymous City, Anonymous Region, Anonymous Country. Correspondence to: Anonymous Author <anon.email@domain.com>.

 $\max_{\{|x,y'|\leq 1;y'\in\mathcal{X}^n\}}\max_{\{r\in R\}}.$

holds.

i.e.

Then we can have:

 $> exp(\frac{\epsilon}{2} * 2)$

it is non-differentially private.

1.3.2. SECURITY ANALYSIS

1.4.2. SECURITY ANALYSIS

2. Privacy Fix

2.1. Propositions

 x_0 to denote:

the statements.

 x_0 ;

if n is even

1.3.1. MECHANISM SETTING UP

1.4.1. MECHANISM SETTING UP

if BayesInfer $(x) = beta(a_1 + 1, b_1 + 1)$

then $BI(x_0) = beta(\frac{n}{2} + 1, \frac{n}{2} + 1)$

else $BI(x_0) = \{beta(\frac{n+1}{2} + 1, \frac{n-1}{2} + 1)\}$

beta (α, β) is the beta function with two arguments α and

Then, we have the following three statements, and proofs of

I $H(BI(x), BI(x+1)) < H(BI(x+1), BI(x+2)) \forall x >$

 $= exp(\epsilon),$

 $exp(\frac{\epsilon}{2}(\frac{u(x,r)+u(y,r)}{\Delta_l u(y)} - \frac{u(x,r)+u(y,r)}{\Delta_l u(x)}))$

 $\frac{P[\mathsf{PrivInfer}(x, u, R) = r]}{P[\mathsf{PrivInfer}(u, u, R) = r]} > exp(\epsilon).$

Since there are cases where exponential mechanism with local sensitivity's privacy loss is greater than e^{ϵ} , we can say

1.3. Exponential Mechanism of Varying Sensitivity

1.4. Exponential Mechanism of Smooth Sensitivity

Assume we have a prior distribution beta(1, 1), an observed data set $x \in \{0,1\}^n$, n > 0. We use the x + 1 and x - 1 to

then BayesInfer $(x + 1) = beta((a_1 + 1) + 1, (b_1 - 1) + 1)$

BayesInfer $(x-1) = beta((a_1-1)+1,(b_1+1)+1),$

 $beta(\frac{n-1}{2}+1,\frac{n+1}{2}+1)$

 $\Delta_l u(x) = \mathsf{H}(\mathsf{BI}(x), r) - \mathsf{H}(\mathsf{BI}(y'), r)|$

We will then prove that exponential mechanism with local

 $= exp\left(\frac{\epsilon u(x,r)}{2\Delta_l u(x)} - \frac{\epsilon u(y,r)}{2\Delta_l u(y)}\right) \cdot \left(\frac{\sum\limits_{r' \in R} exp(\frac{\epsilon u(y,r')}{2\Delta_l u(y)})}{\sum\limits_{r' \in R} exp(\frac{\epsilon u(x,r')}{2\Delta_l u(x)})}\right)$

Without loss of generality, we consider the case that

 $arg(\min_{r'\in R}\{u(y,r')\})$ and $\Delta_l u(y) = u(x,r) - u(y,r)$. We have:

 $= exp\big(\frac{\epsilon}{2}(\frac{u(x,r)+u(y,r)}{\Delta_l u(x)} - \frac{u(x,r)+u(y,r)}{\Delta_l u(y)})\big).$

From Eq. 1, $\{u(x,r') \le 0 | r' \in R\}$ and $\{u(y,r') \le 0 | r' \in R\}$

R}, we can infer that $r = arg(\max_{r \in R} \{u(x, r')\}) = \mathsf{BI}(x)$

and u(x,r) = 0.From $\Delta_l u(y) = u(x,r) - u(y,r)$, we can

also infer that $\Delta_l u(y) = -u(y,r)$. Then, the following

relationship between u(x,r), u(y,r), $\Delta_l u(x)$ and $\Delta_l u(y)$:

 $-\Delta_l u(x) < \Delta_l u(y)$

 $\Delta_l u(x) - \Delta_l u(y) < 2\Delta_l u(x)$

 $-\Delta_l u(y)(\Delta_l u(y) - \Delta_l u(x)) < 2\Delta_l u(x)\Delta_l u(y)$

 $u(y,r)(\Delta_l u(y) - \Delta_l u(x)) < 2\Delta_l u(x)\Delta_l u(y)$

 $\Delta_l u(y) < \Delta_l u(x), \quad r = arg(\max_{r' \in R} \{u(x, r')\})$

1.2.2. SECURITY ANALYSIS

 $\frac{P[\mathsf{PrivInfer}(x,u,R)=r]}{P[\mathsf{PrivInfer}(y,u,R)=r]}$

sensitivity is non-differentialy private.

 $= \frac{\sum\limits_{r' \in R} exp(\frac{\epsilon u(x,r)}{2\Delta_l u(x)} + \frac{\epsilon u(y,r')}{2\Delta_l u(y)})}{\sum\limits_{r' \in R} exp(\frac{\epsilon u(y,r)}{2\Delta_l u(y)} + \frac{\epsilon u(x,r')}{2\Delta_l u(x)})}.$

 $\frac{\sum\limits_{r' \in R} exp(\frac{\epsilon u(x,r)}{2\Delta_l u(x)} + \frac{\epsilon u(y,r')}{2\Delta_l u(y)})}{\sum\limits_{x' \in R} exp(\frac{\epsilon u(y,r)}{2\Delta_l u(y)} + \frac{\epsilon u(x,r')}{2\Delta_l u(x)})}$

 $> \frac{\sum\limits_{r' \in R} exp(\frac{\epsilon(u(x,r) + u(y,r'))}{2\Delta_l u(x)})}{\sum\limits_{r' \in R} exp(\frac{\epsilon(u(y,r) + u(x,r'))}{2\Delta_l u(y)})}$

 $> \frac{|R| \exp(\frac{\epsilon(u(x,r) + u(y,r))}{2\Delta_l u(x)})}{|R| \exp(\frac{\epsilon(u(y,r) + u(x,r))}{2\Delta_l u(y)})}$

062 063

067 068

079

083

094 095

097

104

106

109

075

078

081 082

089 090

093

096

098

099 100

 $\frac{u(x,r) + u(y,r)}{\Delta_l u(x)} - \frac{u(x,r) + u(y,r)}{\Delta_l u(y)} > 2.$

or $H(BI(x), BI(x+1)) > H(BI(x+1), BI(x+2)) \forall x \le$ x_0 .

113 II
$$\Delta_l u(x) = \mathsf{H}(\mathsf{Bl}(x), \mathsf{Bl}(x+1)), \forall x \ge x_0;$$
115

 $\Delta_I u(x) = \mathsf{H}(\mathsf{BI}(x), \mathsf{BI}(x-1)), \forall x < x_0.$

III
$$\forall x \neq x_0 : \Delta_l u(x) > \Delta_l u(x_0).$$

2.2. proof

2.2.1. STATEMENT I

 We use the MI (Mathematical Induction) method to prove the first statement.

 Proof. Since the Hellinger distance is symmetric, if we prove the H(BI(x), BI(x + 1)) < H(BI(x + 1), BI(x + 1))2)) $\forall x \geq x_0$, the other part when $\forall x \leq x_0$ also holds.

1. if $x = x_0$, $H(BI(x_0), BI(x_0 + 1)) < H(BI(x_0 + 1))$ 1), $BI(x_0 + 2)$ holds:

 $\sqrt{1-\frac{\det(\frac{\frac{n}{2}+1+m+\frac{n}{2}+1+m+1}{2},\frac{\frac{n}{2}+1-m+\frac{n}{2}+1-m-1}{2})}{\sqrt{\det(\frac{n}{2}+1+m,\frac{n}{2}+1-m)\det(\frac{n}{2}+2+m,\frac{n}{2}-m)}}}$ $<\sqrt{1-\frac{\mathsf{beta}(\frac{\frac{n}{2}+1+m+1+\frac{n}{2}+1+m+2}{2},\frac{\frac{n}{2}+1-m-1+\frac{n}{2}+1-m-2}{2})}{\sqrt{\mathsf{beta}(\frac{n}{2}+2+m,\frac{n}{2}-m)\mathsf{beta}(\frac{n}{2}+3+m,\frac{n}{2}-m-1)}}$

$$\begin{aligned} &\frac{\mathsf{beta}\big(\frac{n+2m+3}{2},\,\frac{n-2m+1}{2}\big)}{\sqrt{\mathsf{beta}\big(\frac{n}{2}+1+m,\,\frac{n}{2}+1-m\big)\mathsf{beta}\big(\frac{n}{2}+2+m,\,\frac{n}{2}-m\big)}} \\ > &\frac{\mathsf{beta}\big(\frac{n+2m+5}{2},\,\frac{n-2m-1}{2}\big)}{\sqrt{\mathsf{beta}\big(\frac{n}{2}+2+m,\,\frac{n}{2}-m\big)\mathsf{beta}\big(\frac{n}{2}+3+m,\,\frac{n}{2}-m-1\big)}} \end{aligned}$$

Now, we need to proof $H(beta(\frac{n}{2}+1+m+1,\frac{n}{2}+1-m 1), beta(\tfrac{n}{2}+1+m+2, \tfrac{n}{2}+1-m-2)) < \mathsf{H}(\tilde{be}ta(\tfrac{n}{2}+1+m+2, \tfrac{n}{2}+1-m+2)) < \mathsf{H}(\tilde{be}ta(\tfrac{n}{2}+1+m+2, \tfrac{n}{2}+1-m+2) < \mathsf{H}(\tilde{be}ta(\tfrac{n}{2}+1+m+2, \tfrac{n}{2}+1-m+2) < \mathsf{H}(\tilde{be}ta(\tfrac{n}{2}+1+m+2$ $m+2, \frac{n}{2}+1-m-2), beta(\frac{n}{2}+1+m+3, \frac{n}{2}+1-m-3))$ by using what we know.

From $x = x_0 + m$ and property of beta (α, β) function, we know:

$$\begin{aligned} & \mathsf{H}(beta(\frac{n}{2}+1,\frac{n}{2}+1),beta(\frac{n}{2}+1+1,\frac{n}{2}+1-1)) < \mathsf{H}(beta(\frac{n}{2}+1+1,\frac{n}{2}+1-1),beta(\frac{n}{2}+1+2,\frac{n}{2}+1-2)) \\ & \sqrt{1 - \frac{beta(\frac{n}{2}+1+\frac{n}{2}+1+1}{2},\frac{n}{2}+1)beta(\frac{n}{2}+1+1,\frac{n}{2}+1-1)} < \sqrt{1 - \frac{beta(\frac{n}{2}+1+\frac{n}{2}+1+2}{2},\frac{n}{2}+1)beta(\frac{n}{2}+1+1,\frac{n}{2}+1-1)} < \sqrt{1 - \frac{beta(\frac{n+3}{2},\frac{n+1}{2})}{\sqrt{beta(\frac{n}{2}+1,\frac{n}{2}+1)beta(\frac{n}{2}+2,\frac{n}{2})}} < \sqrt{1 - \frac{beta(\frac{n+5}{2},\frac{n-1}{2})}{\sqrt{beta(\frac{n}{2}+2,\frac{n}{2})beta(\frac{n}{2}+2,\frac{n}{2})}} < \sqrt{1 - \frac{beta(\frac{n+5}{2},\frac{n-1}{2})}{\sqrt{beta(\frac{n}{2}+2,\frac{n}{2})beta(\frac{n}{2}+3,\frac{n}{2}-1)}} \\ & \frac{beta(\frac{n+3}{2},\frac{n+1}{2})}{\sqrt{beta(\frac{n}{2}+1,\frac{n}{2}+1)beta(\frac{n}{2}+2,\frac{n}{2})}} > \frac{beta(\frac{n+5}{2},\frac{n-1}{2})}{\sqrt{beta(\frac{n}{2}+2,\frac{n}{2})beta(\frac{n}{2}+3,\frac{n}{2}-1)}} \\ & \frac{beta(\frac{n+3}{2},\frac{n-1}{2})\frac{n-\frac{1}{2}}{\frac{n-1}{2}+\frac{n+3}{2}}}{\sqrt{beta(\frac{n}{2}+1,\frac{n}{2}+1)\frac{n+3}{2}+\frac{n+1}{2}+1}}} > \frac{beta(\frac{n+3}{2},\frac{n-1}{2})\frac{n+\frac{1}{2}+1}{\frac{n+1}{2}+1}+\frac{n+2}{2}+1}}{\sqrt{beta(\frac{n}{2}+1,\frac{n}{2}-1)\frac{n+2}{2}+1}}} > \frac{beta(\frac{n+3}{2},\frac{n-1}{2})\frac{n+\frac{1}{2}+1}{\frac{n+1}{2}+1}+\frac{n+2}{2}+1}}{\sqrt{beta(\frac{n}{2}+1,\frac{n}{2}-1)\frac{n+2}{2}+1}}} > \frac{\frac{n-1}{2}}{\sqrt{(\frac{n}{2}-1)(\frac{n}{2})}}} > \frac{\frac{n-1}{2}}{\sqrt{(\frac{n}{2}-1)(\frac{n}{2})}} > \frac{\frac{n+3}{2}}{\sqrt{(\frac{n}{2}+1)(\frac{n}{2}+2)}}} \\ & (n-1)^2(n+2)(n+4) > (n+3)^2n(n-2)} \\ & n > -1. \end{aligned}$$

Since n > 0, it always holds.

2. if $x = x_0 + m$ holds, then also $x = x_0 + m + 1$ holds:

i.e
$$\mathsf{H}(beta(\frac{n}{2}+1+m,\frac{n}{2}+1-m),beta(\frac{n}{2}+1+m+1,\frac{n}{2}+1-m-1)) < \mathsf{H}(beta(\frac{n}{2}+1+m+1,\frac{n}{2}+1-m-1),beta(\frac{n}{2}+1+m+2,\frac{n}{2}+1-m-2))$$
 is what we know:

$$\begin{aligned} & \operatorname{beta}(\frac{n+2m+5}{2},\frac{n-2m-1}{2})\frac{n-2m-1}{n+2m+3} \\ & \sqrt{\operatorname{beta}(\frac{n}{2}+2+m,\frac{n}{2}-m)\operatorname{beta}(\frac{n}{2}+3+m,\frac{n}{2}-m-1)\frac{n-2m}{n+2m+2}} \\ > & \frac{\operatorname{beta}(\frac{n+2m+7}{2},\frac{n-2m-3}{2})\frac{n-2m-3}{n+2m+5}}{\sqrt{\operatorname{beta}(\frac{n}{2}+2+m,\frac{n}{2}-m)\operatorname{beta}(\frac{n}{2}+3+m,\frac{n}{2}-m-1)\frac{n-2m-2}{n+2m+6}} \end{aligned}$$

188

Proof.

2.2.2. STATEMENT II

219

Proof. From Statement I and Statement II, we can conclude that:

when
$$x > x_0$$

 $\mathsf{H}(\mathsf{BI}(x),\mathsf{BI}(x+1)$
 $> \mathsf{H}(\mathsf{BI}(x_0),\mathsf{BI}(x_0+1);$
 $i.e.\ \Delta_l u(x) > \Delta_l u(x_0)$
when $x < x_0$
 $\mathsf{H}(\mathsf{BI}(x),\mathsf{BI}(x-1)$
 $> \mathsf{H}(\mathsf{BI}(x_0),\mathsf{BI}(x_0-1);$

 $i.e. \Delta_I u(x) > \Delta_I u(x_0).$

$$\begin{aligned} &\mathsf{H}(beta(\frac{n}{2}+2+m,\frac{n}{2}-m),beta(\frac{n}{2}+3+m,\frac{n}{2}-1-m))\\ &< &\mathsf{H}(beta(\frac{n}{2}+m+3,\frac{n}{2}-1-m),beta(\frac{n}{2}+m+4,\frac{n}{2}-m-2)) \end{aligned} \\ &< &\mathsf{H}(beta(\frac{n}{2}+m+3,\frac{n}{2}-1-m),beta(\frac{n}{2}+m+4,\frac{n}{2}-m-2)) \end{aligned}$$

 $\frac{\mathsf{beta}(\frac{n+2m+5}{2},\frac{n-2m-1}{2})}{\sqrt{\mathsf{beta}(\frac{n}{2}+2+m,\frac{n}{2}-m)\mathsf{beta}(\frac{n}{2}+3+m,\frac{n}{2}-m-1)}}$

 $\frac{\mathsf{beta}(\frac{n+2m+7}{2},\frac{n-2m-3}{2})}{\sqrt{\mathsf{beta}(\frac{n}{2}+2+m,\frac{n}{2}-m)\mathsf{beta}(\frac{n}{2}+3+m,\frac{n}{2}-m-1)}}$

$$\begin{split} \sqrt{1 - \frac{\text{beta}(\frac{n+2m+5}{2}, \frac{n-2m-1}{2})}{\sqrt{\text{beta}(\frac{n}{2} + 2 + m, \frac{n}{2} - m)\text{beta}(\frac{n}{2} + 3 + m, \frac{n}{2} - m - 1)}}} \\ < \sqrt{1 - \frac{\text{beta}(\frac{n+2m+7}{2}, \frac{n-2m-3}{2})}{\sqrt{\text{beta}(\frac{n}{2} + 2 + m, \frac{n}{2} - m)\text{beta}(\frac{n}{2} + 3 + m, \frac{n}{2} - m - 1)}}} \end{split}}$$

 $\therefore \quad \Delta_l u(x) = |\mathsf{H}(\mathsf{BI}(x), r) - \mathsf{H}(\mathsf{BI}(y'), r)|,$

 $\Delta_l u(x) = \max\{\mathsf{H}(\mathsf{BI}(x),\mathsf{BI}(x+1)),$

According to Statement I:

 $< \mathsf{H}(\mathsf{BI}(x),\mathsf{BI}(x+1));$

then $\Delta_l u(x) = H(BI(x), BI(x+1));$

> H(BI(x), BI(x+1)):

then $\Delta_I u(x) = H(BI(x), BI(x-1));$

From above, we can conclude the Statement II.

 $\Delta_l u(x_0) = \mathsf{H}(\mathsf{BI}(x_0), \mathsf{BI}(x_0-1))$

 $= H(BI(x_0), BI(x_0 + 1)).$

H(BI(x), BI(x-1));

 $\max_{\{|x,y'| \le 1; y' \in \mathcal{X}^n\}} \max_{\{r \in R\}};$

 \therefore H(BI(x), r) - H(BI(y'), r) < H(BI(x), BI(y'));

 $\Delta_l u(x) = \mathsf{H}(\mathsf{BI}(x), \mathsf{BI}(y')),$

 $\max_{\{|x,y'|\leq 1; y'\in\mathcal{X}^n\}};$

then H(BI(x), BI(x-1))

then H(BI(x), BI(x-1))

if $x > x_0$

if $x < x_0$

i.e. $x = x_0 + m + 1$ also holds when $x = x_0 + m$ is

3. Experimental Evaluations

We got some results from these mechanisms.

4. Dilation Property of Laplace Noise

Proof. We take 1-dimensional Laplace distribution, h(z) = $\frac{1}{2}e^{-|z|}$. The dilation property is:

$$Pr[z \in S] \le e^{\frac{\epsilon}{2}} Pr[z \in e^{\lambda} S] + \frac{\delta}{2}$$

In this case, we have $\alpha = \frac{\epsilon}{2}$, $\beta = \frac{\epsilon}{2\rho_{\delta/2}(|z|)}$ or $\frac{\epsilon}{2ln(2/\delta)}$. We have some prior knowledge that $|\lambda| \leq \beta$.

• case 1: $\lambda > 0$

$$\begin{split} & \because h(e^{\lambda}z) = \frac{1}{2}e^{-|e^{\lambda}z|} < \frac{1}{2}e^{-|z|} = h(z) \\ & \therefore \frac{Pr[z \in e^{\lambda}S]}{Pr[z \in S]} = \frac{\int_{e^{\lambda}S} \frac{1}{2}e^{-|z|}dz}{\int_{S} \frac{1}{2}e^{-|z|}dz} = \frac{\int_{S} \frac{1}{2}e^{-|e^{\lambda}z|}e^{\lambda}dz}{\int_{S} \frac{1}{2}e^{-|z|}dz} \\ & = \frac{e^{-|e^{\lambda}z|}e^{\lambda}}{e^{-|z|}} = \frac{e^{\lambda}h(e^{\lambda}z)}{h(z)} \le e^{\lambda} \\ & \therefore ln(\frac{e^{\lambda}h(e^{\lambda}z)}{h(z)}) \le \lambda \\ & \therefore \end{split}$$

• case 2:
$$\lambda < 0$$

$$\therefore \frac{h(e^{\lambda}z)}{h(z)} = exp(|z|(1 - e^{\lambda})) \le |\lambda|$$
$$\therefore ln(\frac{e^{\lambda}h(e^{\lambda}z)}{h(z)}) \le |z||\lambda|$$