Lecture 07 (Processor Architecture)

A2 is competitive (timewise):')

1 ARM Architecture

- 1. 32 bit ARM ISA
- 2. 16-bit Thumb ISA

2 ARM Operating Modes

- 1. User
- 2. FIQ high priority interrupt is raised
- 3. IRQ low priority interrupt is raised
- 4. Supervisor on reset and software interrupt
- 5. Abort memory access violation
- 6. Undef undefined instructions
- 7. System priviledge mode using same registers as user mode

3 ARM Register Set

- 1. $r_0 r_{12}, r_{15}, oper$ is visible to all
- 2. r_{13} , r_{14} are sp and lr

4 Exception Handling

4.1 On Exception

- 1. ARM copies CPSR into SPSR_<mode>
- 2. Sets appropriate CPSR bits
 - change to ARM state
 - change to exception mode
 - disable interrupts
- 3. Sets the return address in LR <mode>

4. Sets PC value to vector address

4.2 On Return

- 1. Restores CPSR from SPSR <mode>
- 2. Restores PC from LR <mode>

5 Program Status Registers

5.1 Condition Code Flags

- 1. N = Negative result
- 2. Z = Zero result
- 3. C = Carried out
- 4. V = oVerflowed

5.2 Interrupt Disable Bits

- 1. I = 1: disables IRQ
- 2. F = 1: disables FIQ

5.3 Mode Bits

Specifies the processor mode

5.4 T Bit

- 1. Architecture xT only
- 2. T = 0: ARM state
- 3. T = 1: Thumb state

6 Program Counter

- 1. ARM state all instructions are word aligned (and long)
- 2. Thumb state all instructions are hald-word aligned (and long)
- 3. Jazelle state all instructions are byte aligned (and long); 4 instructions are read at once

7 Conditional Execution and Flags

- 1. Instructions can be made to execute conditionally, instead of adding jumps
- 2. ADDNE == ADD if not equal
- 3. Flags can be set by postfixing S: SUBS == SUB and set flag
- 4. Conditional codes exist which set approriate flags

8 Data Instructions

1. Arithmetic: ADD, ADC, SUB, SBC, RSB, RSC

Logical: AND, ORR, EOR, BIC
Comparisons: CMP, TST, TEQ
Data movement: MOV, MVN

5. Only work on registers