Estatística Monte Carlo e fundamentos de programação em R para ecologia

Pavel Dodonov pdodonov@gmail.com

Laboratório de Ecologia Aplicada à Conservação (LEAC) Universidade Estadual de Santa Cruz (UESC) Ilhéus - BA

Aula teórica 3 – Permutações II

Regressão múltipla
Teste de Mantel
PERMANOVA

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + ... + \beta_p X_{pi} + \epsilon_i$$

Notação matricial

$$Y = X \beta + \epsilon$$

$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$	1 1	$x_{11} \\ x_{21}$	$x_{12} \\ x_{22}$	 $\begin{bmatrix} x_{1p} \\ x_{2p} \end{bmatrix}$	β_0 β_1		$arepsilon_1 \\ arepsilon_2$	
$\begin{vmatrix} \vdots \\ y_n \end{vmatrix}$: 1	x_{n1}	x_{n2}	 x_{np}	β_p	+ 	ε_n	

$$Y = X \beta + \epsilon$$

$$Y = X \beta + \epsilon$$

F: Variação explicada / variação residual

$$Y = X \beta + \epsilon$$

R²: quantidade de variação em Y que é explicada pelo modelo

Como aleatorizar?

Efeito de todas as variáveis juntas

Efeito de todas as variáveis juntas

Efeito de uma variável depois de controlar pelos efeitos das outras

Efeito de uma variável depois de controlar pelos efeitos das outras

Equivale a comparar o modelo completo com um reduzido

Determinar quais variáveis de fato importam

Determinar quais variáveis importam

Testes sequencias entre modelos aninhados Seleção de modelos + *bootstrap Multi-model inference*

Determinar quais variáveis importam

Testes sequencias entre modelos aninhados Seleção de modelos + *bootstrap Multi-model inference*

Quem sabe em outra disciplina...:-) (Exceto *bootstrap* semana que vem!)

	1	2	3	4	5	6	7	8
1		5	10	4	4	11	13	12
2			5	5	4	6	12	10
3				6	6	2	9	8
4					1	5	5	6
5						5	3	5
6							5	7
7								2
8								

	1	2	3	4	5	6	7	8
1	0	5	10	4	4	11	13	12
2		0	5	5	4	6	12	10
3			0	6	6	2	9	8
4				0	1	5	5	6
5					0	5	3	5
6						0	5	7
7							0	2
8								0

	1	2	3	4	5	6	7	8
1	0	5	10	4	4	11	13	12
2	?	0	5	5	4	6	12	10
3	?	?	0	6	6	2	9	8
4	?	?	?	0	1	5	5	6
5	?	?	?	?	0	5	3	5
6	?	?	?	?	?	0	5	7
7	?	?	?	?	?	?	0	2
8	?	?	?	?	?	?	?	0

	1	2	3	4	5	6	7	8
1		5	10	4	4	11	13	12
2			5	5	4	6	12	10
3				6	6	2	9	8
4					1	5	5	6
5						5	3	5
6	laı	اما ،	00.0	40 0	imo		5	7
7	191	Jai	au (de c	11116			2
8								

Pergunta

Árvores mais próximas são mais parecidas geneticamente?

Relação entre duas matrizes de distância

Distâncias genéticas

Distâncias espaciais

Distâncias genéticas

Distâncias espaciais

Coeficiente de correlação (R) entre os elementos das duas matrizes

Como aleatorizar?

Distâncias genéticas

Distâncias espaciais

Como aleatorizar?

Distâncias genéticas

Distâncias espaciais

Teste de Mantel

Correlação entre duas matrizes, calculando a significância por aleatorizações

Teste de Mantel

Relação entre três matrizes de

Relação entre três matrizes de distância

Plantas em ambientes parecidos (distância ambiental pequena) são parecidas geneticamente?

ambientais

Aleatoriza a matriz de interesse

Distâncias ambientais

PERMANOVA

Permutational Multivariate Analysis of Variance

PERMANOVA

Austral Ecology (2001) 26, 32-46

A new method for non-parametric multivariate analysis of variance

MARTI J. ANDERSON

Centre for Research on Ecological Impacts of Coastal Cities, Marine Ecology Laboratories A11, University of Sydney, New South Wales 2006, Australia

PERMANOVA

Como funciona uma ANOVA univariada?

 $\frac{\Sigma \, Distâncias_{dentro}}{\Sigma \, Distâncias_{entre}}$

Como aleatoriezar?

Como aleatoriezar?

Premissa

As observações são intercambiáveis se a H₀ for verdadeira

Premissa

As observações são intercambiáveis se a H₀ for verdadeira

Vêm de distribuições similares

Premissa

