Filter Summary Report: TIA,simple,Z3

Generated by MacAnalog-Symbolix

December 11, 2024

Contents

1 Examined $H(z)$ for TIA simple Z3: Z_3
2 HP
3 BP $3.1 \text{ BP-1 } Z(s) = \left(\infty, \ \infty, \ \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \ \infty, \ \infty, \ \infty\right) \dots $
f 4 LP
5 BS $5.1 \text{ BS-1 } Z(s) = \left(\infty, \ \infty, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ \infty, \ \infty, \ \infty\right) \ \dots $
$6~{ m GE}$
7 AP
8 INVALID-NUMER
9 INVALID-WZ
10 INVALID-ORDER $10.1 \text{ INVALID-ORDER-1 } Z(s) = (\infty, \infty, R_3, \infty, \infty, \infty) $ $10.2 \text{ INVALID-ORDER-2 } Z(s) = \left(\infty, \infty, \frac{1}{C_3s}, \infty, \infty, \infty\right) $ $10.3 \text{ INVALID-ORDER-3 } Z(s) = \left(\infty, \infty, \frac{R_3}{C_3R_3s+1}, \infty, \infty, \infty\right) $ $10.4 \text{ INVALID-ORDER-4 } Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3s}, \infty, \infty, \infty\right) $ $10.5 \text{ INVALID-ORDER-5 } Z(s) = \left(\infty, \infty, L_3s + \frac{1}{C_3s}, \infty, \infty, \infty\right) $ $10.6 \text{ INVALID-ORDER-6 } Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \infty\right) $ $10.7 \text{ INVALID-ORDER-7 } Z(s) = \left(\infty, \infty, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \infty\right) $ $10.8 \text{ INVALID-ORDER-8 } Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, \infty\right) $
11 PolynomialError

1 Examined H(z) for TIA simple Z3: Z_3

$$H(z) = Z_3$$

- 2 HP
- 3 BP
- **3.1** BP-1 $Z(s) = \left(\infty, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, \infty\right)$

$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}$

Parameters:

Q:
$$C_3R_3\sqrt{\frac{1}{C_3L_3}}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

- 4 LP
- 5 BS

Parameters:

Q: $\frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3}$ wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{R_3}{L_3}$ K-LP: R_3

K-HP: R₃ K-BP: 0

Qz: None
Wz: $\sqrt{\frac{1}{C_3L_3}}$

- **5.1** BS-1 $Z(s) = \left(\infty, \infty, \frac{R_3(C_3L_3s^2+1)}{C_3L_3s^2+C_3R_3s+1}, \infty, \infty, \infty\right)$
 - $H(s) = \frac{C_3 L_3 R_3 s^2 C_3 L_3 s^2 + C_3 R_3 s^2 C$

- 6 **GE**
- 7 AP

8 INVALID-NUMER

9 INVALID-WZ

10 INVALID-ORDER

10.1 INVALID-ORDER-1 $Z(s) = (\infty, \infty, R_3, \infty, \infty, \infty)$

$$H(s) = R_3$$

10.2 INVALID-ORDER-2 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{1}{C_3 s}$$

10.3 INVALID-ORDER-3 $Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty\right)$

$$H(s) = \frac{R_3}{C_3 R_3 s + 1}$$

10.4 INVALID-ORDER-4 $Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_3 R_3 s + 1}{C_3 s}$$

10.5 INVALID-ORDER-5 $Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{C_3 s}$$

10.6 INVALID-ORDER-6 $Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \infty\right)$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + 1}$$

10.7 INVALID-ORDER-7 $Z(s) = \left(\infty, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{C_3 s}$$

10.8 INVALID-ORDER-8 $Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3L_3s^2+1} + R_3, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{C_3 L_3 s^2 + 1}$$

11 PolynomialError