题号	分析
11.1	观察被积函数,进行拆分计算
11.2	直角坐标系下的二重积分计算;注意画出积分区域
11.3	极坐标系与直角坐标系的相互转化;积分的可加性;轮换对称性可以简便计算
11.4	先画出积分区域;极坐标系与直角坐标系的相互转化;积分的换元技巧;相关公式
11.5	极坐标系与直角坐标系的相互转化
11.6- 11.7	如果不进行积分次序的交换,被积函数f(x,y)关于x或y的函数,原函数无法用初等函数表示
11.8	进行变量替换时观察哪种积分次序方便后续计算
11.10	注意此处的三角函数与反三角函数的图像
11.11	极坐标系与直角坐标系的相互转化
11.12	利用二重积分是一个数的概念
11.13	由于sgnx的存在,所以需要将积分区域进行划分
11.14	由于max\{x,y\}和 y-x^2 的存在,所以需要将积分区域进行划分
11.15	关键在于找好积分区域
11.16	二重积分与极限
11.17	二重积分与极限;二重积分中值定理,反三角函数的性质
11.18	方法一:积分上限函数,累次积分,导数与单调性;方法二:交换积分次序,更改变量名,利用f(x)单调减小,且为正值
11.19	方法1:分部积分; 方法二:化为二重积分,交换积分次序
11.20	代换,换元技巧
11.21	二重积分的逆向思维,交换积分次序,算术平均数大于几何平均数
11.22	计算技巧,与11.21思想类似
11.23	等价无穷小,积分上限函数,积分的中值定理,多元函数的可微
11.24	将已知条件与偏导数的定义建立联系

11.4

积分区域

- 极坐标为
 - \circ D = \{(r, \theta) | 0 \legslant r \legslant sec\theta, 0 \legslant \theta \legslant \frac{\pi}{2}\}
- 化为直角坐标
 - 由0 \leqslant r \leqslant sec\theta, 0 \leqslant \theta \leqslant \frac{\pi}{2}
 - 0 \leqslant x \leqslant 1
 - x \geqslant y \geqslant 0

11.5

积分区域

- 直角坐标为
- 化为极坐标
 - 0 \leqslant \theta \leqslant \frac{\pi}{2}
 - 用x = rcos\theta, y = rsin\theta和1-x \legslant y \legslant \sqrt{1-x^2}
 - 可得1 \leqslant r \leqslant \frac{1}{cos\theta + sin\theta}

11.10

积分次序先y后x

- 积分区域
 - \circ D = D_1 + D_2

 - $D_2 = \{(x,y) \mid \text{ileqslant } x \leq 2\pi, \sin x \leq 3\pi \}$

交换积分次序变为先x后y

- 积分区域
 - \circ D = D_1 + D_2

 - $D_2 = \{(x,y) \mid -1 \mid x \mid (x,y) \mid -1 \mid (x,y) \mid (x,y$

未理解图像

11.11

"穿入穿出"的概念

交换\int_{-\frac{\pi}{4}}^{\frac{\pi}{2}}d\theta \int_0^{2\cos\theta}rf(r, \theta)dr的积分次序,其中f(r, \theta)连续 先r后\theta的积分次序

- 积分区域
 - -\frac{\pi}{4} \legslant \theta \legslant \frac{\pi}{2},0 \legslant r \legslant 2cos\theta

分析穿入与穿出

- 0 \leqslant r \leqslant \sqrt{2}
 - 。 圆弧r从\theta = -\frac{\pi}{4}进入区域D,从r = 2cos\theta , (\theta > 0)穿出
- \sqrt{2} \leqslant r \leqslant 2
 - 。 圆弧r从r = 2cos\theta, (\theta < 0)进入区域D, 从r = 2cos\theta, (\theta > 0)穿出

交换积分次序,先\theta后r

- 积分次序
 - -\frac{\pi}{4} \leqslant \theta \leqslant arccos\frac{r}{2}, \sqrt{2} \leqslant r \leqslant 2
 - \circ -arccos\frac{r}{2} \leqslant \theta \leqslant arccos\frac{r}{2}, 0 \leqslant r \leqslant \sqrt{2}

11.12

设区域D $\{(x,y) \mid x^2+y^2 \mid 0 \}$. In the proof of the proo

解

设\iint_{D}f(u,v)dudv = A

则\iint_{D}f(x,y) dxdy= \iint_{D}\sqrt{1-x^2-y^2}dxdy-\frac{8}{\pi}A\iint_{D}dxdy

从而

- $A = \lim_{D}\sqrt{1-x^2-y^2}dxdy A$

接下来由于被积函数含有x^2,y^2且积分区域为半球形,变换为极坐标计算

11.13