Problem Set 3

STAT 394/ MATH 394 Probability I

Due Date: 10:00 PM, April 19, 2022

Last Update: April 16, 2022

Prof. Alexander Giessing Spring Quarter, 2022

Study Group: _

Question 1. [3 + 3 + 3 + 3 pts] In this exercise you will generalize the binomial distribution.

(a) Show that the number of possible ways in which a set A with cardinality |A| = n can be partitioned into r subsets A_1, \ldots, A_r with cardinalities n_1, \ldots, n_r such that $n_1 + \ldots + n_r = n$ is equal to

$$\frac{n!}{n_1!\cdots n_r!}.$$

(b) Consider an urn with N balls which are labeled $1, \ldots, N$ with the first N_1 balls of color 1, the second N_2 balls of color 2, ..., and the last N_r balls of color r. You draw n balls with replacement from this urn. Denote the event that out of the n balls exactly n_1 balls are of color 1, n_2 balls are of color 2, ..., and n_r balls are of color r by

$$E_{n_1,\dots,n_r} = \left\{ (a_1,\dots,a_n) : \left| \left\{ i : a_i \in \left\{ \sum_{j=0}^{k-1} N_j + 1,\dots, \sum_{j=0}^k N_j \right\} \right\} \right| = n_k, \ k \in \{1,\dots,r\} \right\},$$

where $N_0 = 0$, $N_1 + \ldots + N_r = N$, and $n_1 + \ldots + n_r = n$. Use part (a) to find a collection of disjoint sets C_1, C_2, \ldots, C_m (for some m that you need to specify) such that

$$E_{n_1,\dots,n_r} = \bigcup_{j=1}^m C_j$$
 and $|C_j| = N_1^{n_1} N_2^{n_2} \cdots N_r^{n_r}$ for all $j = 1,\dots, m$.

(Hint: Take a hard look at the proof of Lemma 3.5.)

(c) Use part (b) to show that

$$\mathbb{P}(E_{n_1,\dots,n_r}) = \frac{n!}{n_1! \cdots n_r!} \left(\frac{N_1}{N}\right)^{n_1} \left(\frac{N_2}{N}\right)^{n_2} \cdots \left(\frac{N_r}{N}\right)^{n_r}.$$

(Hint: Argue via Definition 1.5 of Laplace experiments.)

(d) Let $\Omega = \{(n_1, \dots, n_r) : n_1 + \dots + n_r = n, n_k \in \mathbb{N}_0, 1 \le k \le r\}$. Show that the function $p : \Omega \mapsto [0, 1]$ defined by

$$p(n_1,\ldots,n_r) := \mathbb{P}(E_{n_1,\ldots,n_r})$$

is a discrete probability measure on $(\Omega, 2^{\Omega})$. Also, show that this probability measure does not describe a Laplace experiment. (Hint: First, check the properties of a discrete probability measure in Definition 3.2. Second, direct calculation.)

Question 2. [3 + 3 + 3 + 3 pts]. Suppose that A and B are events with 0 < P(A) < 1 and 0 < P(B) < 1. Prove the following statements.

- (a) If A and B are disjoint, then they are not independent.
- (b) If A and B are independent, then they are not disjoint.
- (c) If $A \subset B$, then A and B are not independent.
- (d) A and $A \cup B$ are not independent.

(Hint: Draw Venn-Diagrams for your intuition; however, points are only given for rigorous proofs.)

Question 3. [3 pts]. Let A_1, \ldots, A_n be independent events. Show that

$$\mathbb{P}(A_1 \cup \ldots \cup A_n) = 1 - \prod_{k=1}^n (1 - \mathbb{P}(A_k)) \ge 1 - \exp\left(-\sum_{k=1}^n \mathbb{P}(A_k)\right).$$

(Hint: $e^{-x} \ge 1 - x$ for all $x \in \mathbb{R}$.)

Question 4. [3 pts] You and one of your study group members toss a fair coin n times. Show that the probability that both of you toss the same number of heads is $\binom{2n}{n}2^{-2n}$. (Note: There are several ways to derive this probability; in particular, there is one way which does not require any calculation at all!)

Question 5. [3 + 3 + 3 + 3 pts] More urn problems.

- (a) Consider an urn with 3 red and 6 white balls. Compute all probabilities of all possible draws of 3 balls without replacement.
- (b) Consider an urn with 2 red, 2 black, and 2 white balls. What is the probability of drawing exactly 1 ball from each color when you draw 3 balls with replacement?
- (c) Consider an urn with R red and W white balls. You draw balls from the urn without replacement. What is the probability that the first red ball is drawn at the kth draw for k = 1, 2, ...?
- (d) Consider 2 urns with 5 balls each. The first urn contains 3 white and 2 red balls, the second urn contains 2 white and 3 red balls. You randomly choose the first urn with probability 1/4 (the second with probability 3/4) and draw 2 times without replacement. Compute the conditional probability that you have drawn balls from the first urn, given that you have drawn two red balls.