

Tutorium 4: Hashing

Matthias Schimek | 3. Juni 2017

TUTORIUM ZUR VORLESUNG ALGORITHMEN I IM SS17

Gliederung

Letztes Blatt

2 Hashing

3 Aufgaben

Letztes Blatt

Vollständige Induktion:

- Im Ind. Schritt muss die komplette IV für *n* + 1 gezeigt werden
- - Um Aussage A zu beweisen, per Induktion zeigen, dass B(n) für alle
 - Aus der (damit bewiesenen) Aussage " $\forall n \in \mathbb{N} \ B(n)$ " die Aussage A

Letztes Blatt

Vollständige Induktion:

- \blacksquare Im Ind. Schritt muss die komplette IV für n+1 gezeigt werden
- Manchmal ist folgendes nützlich:
 - Um Aussage A zu beweisen, per Induktion zeigen, dass B(n) für alle $n \in \mathbb{N}$ gilt
 - Aus der (damit bewiesenen) Aussage " $\forall n \in \mathbb{N} \ B(n)$ " die Aussage A folgern

Wörterbuchoperationen

- Wollen folgende Operation auf Menge M in (erwartet) $\mathcal{O}(1)$:
 - $M.insert(e) : M := M \cup \{e\}$
 - $M.remove(k : key) : M := M \setminus \{e\}, key(e) = k$
 - $M.find(k : key) : return e \in M$ with key(e) = k; \bot falls $e \notin M$

Aufgaben

Wörterbuchoperationen

- Wie können wir Wörterbuchoperationen effizient umsetzen?
- Liste → zu langsam
- \blacksquare Array \to wo speichern? hier kommt Hashfunktion ins Spiel

Element - Key

- Elemente: beliebig, z.B. Autos, Bücher, Studenten, ...
- Key: repräsentiert Element eindeutig, hiermit wird "gerechnet"
- Funktion: $key : M \rightarrow KEYS$
 - Es gilt: Wenn $key(e_1) = key(e_2) \Rightarrow e_1 = e_2$
 - z.B. Nummernschild, ISBN-Nr., Matrikelnummer, ...

Wörterbuchoperationen

- Wie können wir Wörterbuchoperationen effizient umsetzen?
- Liste → zu langsam
- \blacksquare Array \to wo speichern? hier kommt Hashfunktion ins Spiel

Element - Key

- Elemente: beliebig, z.B. Autos, Bücher, Studenten, ...
- Key: repräsentiert Element eindeutig, hiermit wird "gerechnet"
- Funktion: $key : M \rightarrow KEYS$
 - Es gilt: Wenn $key(e_1) = key(e_2) \Rightarrow e_1 = e_2$
 - z.B. Nummernschild, ISBN-Nr., Matrikelnummer, ...

Hashfunktion:

- Haben Array mit m Plätzen
- h : KEYS → {1, ..., m}
- D.h. für Element e:
 h(key(e)) ist Index, an dem e gespeichert wird
- h sollte einfach und effizient zu berechnen sein
- Speicherung von h sollte wenig Platz verbrauchen

Hashing - Perfekte Hashfunktion

- Perfekte Hashfunktionen schwer zu finden
- Manchmal unmöglich
- Lösung?

Implementiere die Folgen in den Tabelleneinträgen durch einfach verkettete Listen

insert(e): Füge e am Anfang von t[h(key(e))] ein.

remove(k): Durchlaufe t[h(k)].

Element e mit key(e) = k gefunden?

→ löschen und zurückliefern.

find(k): Durchlaufe t[h(k)].

Element e mit key(e) = k gefunden?

zurückliefern.

Sonst: ⊥ zurückgeben.

²Folien 'Algorithmen I', KIT

Analyse für zufällige Hashfunktionen

Satz Für eine zufällige Hashfunktion $h: KEYS \rightarrow \{1, ..., m\}$ gilt $\forall k:$ die erwartete Anzahl kollidierender Elemente ist in $\mathcal{O}(1)$ falls $|KEYS| \in \mathcal{O}(m)$ (m Größe der Hashtabelle)

Damit:

Letztes Blatt

Wörterbuchoperationen in erwartet konstanter Zeit

Analyse für zufällige Hashfunktionen

Satz Für eine zufällige Hashfunktion $h: KEYS \rightarrow \{1, ..., m\}$ gilt $\forall k:$ die erwartete Anzahl kollidierender Elemente ist in $\mathcal{O}(1)$ falls $|KEYS| \in \mathcal{O}(m)$ (m Größe der Hashtabelle)

Damit:

Letztes Blatt

Wörterbuchoperationen in erwartet konstanter Zeit

Hashing - Beispiele

Hier: Element e = key(e) $M = \{36, 78, 50, 1, 92, 15, 43, 99, 64\}$

Hashfunktionen:

- a → 0
- a → a mod 5
- $a \rightarrow a \mod 7$
- a → a mod 9

Aufgaben

Worst-Case-Laufzeit

- Jedes Element bekommt Schlüssel aus Universum U zugewiesen (U = KEYS)
- n Elemente werden in Hashtabelle der Größe m eingefügt
- vufällige Funktion h aus $\{1, ..., m\}^U$ als Hashfunktion

Zeige, dass für |U| > nm eine Teilmenge von U der Größe n existiert, sodass alle Schlüssel zum gleichen Slot gehasht werden. D.h. insbesondere ist die Worst-Case-Zeit für eine Suchoperation in $\Theta(n)$.

Wichtig: Für $n \in \mathcal{O}(m)$ Suchoperation trotzdem in *erwartet* $\mathcal{O}(1)$

Worst-Case-Laufzeit

- Jedes Element bekommt Schlüssel aus Universum U zugewiesen
 (U = KEYS)
- n Elemente werden in Hashtabelle der Größe m eingefügt
- **u** zufällige Funktion h aus $\{1, ..., m\}^U$ als Hashfunktion

Zeige, dass für |U| > nm eine Teilmenge von U der Größe n existiert, sodass alle Schlüssel zum gleichen Slot gehasht werden. D.h. insbesondere ist die Worst-Case-Zeit für eine Suchoperation in $\Theta(n)$.

Wichtig: Für $n \in \mathcal{O}(m)$ Suchoperation trotzdem in *erwartet* $\mathcal{O}(1)$

Behauptung: man kann Hashing mit verketteten Listen entscheidend verbessern, indem man die verketteten Listen stets sortiert hält.

- Ist diese Behauptung richtig? Wie ändert sich das worst-case Laufzeitverhalten von *insert*, *remove* und *find* in diesem Fall.
- Verwendet statt sortierter verketteter Listen nun sortierte unbeschränkte Arrays. Welche worst-case Laufzeiten können insert, remove und find nun erreichen?
- Betrachtet nochmals die Hashtabelle aus der 2. Teilaufgabe. Sind die amortisierten Laufzeiten von insert, remove und find besser als die worst-case Laufzeiten?

Behauptung: man kann Hashing mit verketteten Listen entscheidend verbessern, indem man die verketteten Listen stets sortiert hält.

- Ist diese Behauptung richtig? Wie ändert sich das worst-case Laufzeitverhalten von insert, remove und find in diesem Fall.
- Verwendet statt sortierter verketteter Listen nun sortierte unbeschränkte Arrays. Welche worst-case Laufzeiten können insert remove und find nun erreichen?
- Betrachtet nochmals die Hashtabelle aus der 2. Teilaufgabe. Sind die amortisierten Laufzeiten von insert, remove und find besser als die worst-case Laufzeiten?

Behauptung: man kann Hashing mit verketteten Listen entscheidend verbessern, indem man die verketteten Listen stets sortiert hält.

- Ist diese Behauptung richtig? Wie ändert sich das worst-case Laufzeitverhalten von insert, remove und find in diesem Fall.
- Verwendet statt sortierter verketteter Listen nun sortierte unbeschränkte Arrays. Welche worst-case Laufzeiten können insert, remove und find nun erreichen?
- Betrachtet nochmals die Hashtabelle aus der 2. Teilaufgabe. Sind die amortisierten Laufzeiten von insert, remove und find besser als die worst-case Laufzeiten?

Behauptung: man kann Hashing mit verketteten Listen entscheidend verbessern, indem man die verketteten Listen stets sortiert hält.

- Ist diese Behauptung richtig? Wie ändert sich das worst-case Laufzeitverhalten von insert, remove und find in diesem Fall.
- Verwendet statt sortierter verketteter Listen nun sortierte unbeschränkte Arrays. Welche worst-case Laufzeiten können insert, remove und find nun erreichen?
- Betrachtet nochmals die Hashtabelle aus der 2. Teilaufgabe. Sind die amortisierten Laufzeiten von insert, remove und find besser als die worst-case Laufzeiten?

Kreativaufgabe - SparseArray

- Ein *SparseArray* mit *n* Slots braucht $\mathcal{O}(n)$ Speicher.
- Erzeugen eines leeren *SparseArray* mit *n* Slots braucht $\mathcal{O}(1)$ Zeit.
- Das *SparseArray* unterstützt eine Operation *reset*, die es in $\mathcal{O}(1)$ Zeit in leeren Zustand versetzt.
- Das *SparseArray* unterstützt die Operation get(i) und set(i, x).
 - get(i): liefert Element an *i*-ter Stelle oder \perp falls uninitialisiert
 - set(i, x): setzt Feld mit Index i auf Wert x
 - beide Operationen benötigen in konstanter Zeit

allocate liefert beliebig viel *uninitialisierten* Speicher in $\mathcal{O}(1)$.

Aufabe Implementiere ein SparseArray.

Letztes Blatt

Aufgaben

Kreativaufgabe - SparseArray

- Ein SparseArray mit n Slots braucht $\mathcal{O}(n)$ Speicher.
- Erzeugen eines leeren *SparseArray* mit *n* Slots braucht $\mathcal{O}(1)$ Zeit.
- Das *SparseArray* unterstützt eine Operation *reset*, die es in $\mathcal{O}(1)$ Zeit in leeren Zustand versetzt.
- Das *SparseArray* unterstützt die Operation get(i) und set(i, x).
 - get(i): liefert Element an *i*-ter Stelle oder \perp falls uninitialisiert
 - set(i, x): setzt Feld mit Index i auf Wert x
 - beide Operationen benötigen in konstanter Zeit

allocate liefert beliebig viel *uninitialisierten* Speicher in $\mathcal{O}(1)$.

Aufabe Implementiere ein SparseArray.

