Information Theory

Reduced entropy means reduced security

How can you reduce entropy?

- Social Engineering
 - Psychological manipulation of people to perform actions or divulge confidential information
 - Phishing
 - Impersonation on help desk calls
 - Physical access (tailgating, shoulder surfing, dumpster diving)
 - Stealing important documents
 - Baiting Providing Fake software, Trojans

- What can be gained from a social engineering attack that can reduce the entropy of a cipher?
 - Step 1 name and describe an attack
 - Step 2 describe info gained
 - Step 3 quantify loss of entropy

Implementation attacks

- Side channel attacks
- Timing attacks study the time of computations
- Power monitoring attacks study the power of computations
- Remanence/Acoustic/Electromagnetic attacks study the physical residues of computation
- Differential fault analysis provide bad data
- Row hammer (rowhammer) access and change adjacent memory

Implementation attacks

- Countermeasures
 - Eliminate or reduce the release of information from a crypto system
 - Eliminate the relationship between the leaked information and the secret data
- Describe how an implementation attack can reduce the entropy of a cipher?

Reduced entropy means reduced security

How can you reduce entropy?

Classical Cryptanalysis Mathematical Attacks

- A large class of attacks that exploit the underlying mathematical properties of keys, ciphertext and plaintext -> ciphertext transformation, including...
 - Integer factorization best known modern example, factor primes used in RSA
 - Frequency analysis frequency of letters or groups of letters in a ciphertext
 - Differential analysis differences in information input can affect the resultant difference at the output
 - Linear analysis affine approximations (abstracts the encryption device as a projection on a vector in a hyper plane)

Classical Cryptanalysis Brute Force Attacks

 Brute Force attack: An exhaustive key search that treats the cipher as a black box and checks all possible keys until condition is fulfilled:

$$d_{K}(y_{0}) = x_{0}$$

 Requires (at least) 1 plaintext-ciphertext pair (x0, y0)

Classical Cryptanalysis Brute Force Attacks

- Computational Security assumes this attack is the most effective
- Helps think about security in terms of key space and key size

Key length in bit	Key space	Security life time (assuming brute-force as best possible attack)
64	2 ⁶⁴	Short term (few days or less)
128	2128	Long-term (several decades in the absence of quantum computers)
256	2 ²⁵⁶	Long-term (also resistant against quantum computers – note that QC do not exist at the moment and might never exist)

Classical Cryptanalysis Brute Force (BF) Attacks

- Given n operations required to test a key
 - -n dependent on size of input
- Given rate r of testing n operations in a time period
 - -i.e. r = n operations / Year
- Given |K| keys (cardinality of the set of all keys)
- Calculate the time, τ_{BF} , required to break a cipher as the worst case time to test every key

$$\tau_{BF} = (|K| * n) / r$$

Classical Cryptanalysis Brute Force (BF) Attacks

• Calculate the up front cost, C_m , (manufacturing cost) as the per unit cost of a computer (c_c) times the number of computers necessary to achieve the testing rate r

$$C_m = c_c * (number of computers)$$

 $C_m = c_c * (r / r_c)$

where r_c is the per computer rate of testing Assumes BF attack can exploit parallelism

 A general secrecy [crypto] system is one where Message x from M and Key k from K are independent RV

Ciphertext $y \in E$ is generated by $E = f(x \in M, k \in K)$ Transformation T maps plaintext to ciphertext

Function Behaviors

- Key space mapping, T
 - Encryption typically bijective (one-to-one , onto)
 - Surjective makes decryption impossible
 - Injective limits key space mapping

Source: http://www.mathsisfun.com/sets/injective-surjective-bijective.html

- Entropy related to Key Equivocation
- Key Equivocation H(K|E) is
 - the amount of uncertainty of the key K
 - given the observation of the ciphertext E
- Ideal H(K|E) is shown

- Key Equivocation H(K|E) in practical systems
 - Observation of E constrains the possible message space since key space is also limited
 - Ex: Shift Cipher: Given y, M can only be 1 of 26 messages

 Encryption function must completely obscure statistical properties of original message

- Proposed two types of properties that preserve Key Equivocation
 - Confusion
 - Diffusion

Confusion

- Confusion operation make relation between statistics of ciphertext and the value of the encryption key as complex as possible
 - Focus on relationship between key and ciphertext
 - Promote independence of ciphertext space and key space
- Examples
 - XOR with random number
 - Complex substitution algorithm (using expansion)

Diffusion

- Dissipates the statistical structure of plaintext over bulk of ciphertext.
- Diffusion operation dissipate statistical structure of plaintext over bulk of ciphertext
 - Focus on relationship between ciphertext and plaintext
 - One change in the plaintext triggers an average of half of the symbols in the ciphertext to change

Diffusion

- Substitution plain text character only affected one cipher text character
- Diffusion uses Permutation to manipulate the order of bits according to some algorithm.
- Redistributes non uniformity in the ciphertext and makes non-uniformity harder to detect

Avalanche

- **Avalanche**: a small change yields large effects in the output (averages greater than half of bits)
- Added by Fiestel's to strengthen Claude Shannon's concept of diffusion
- High avalanche impact is desirable in a cryptographic algorithm

Shannon's building blocks

- Shannon proposed two components
 - S-Boxes -- substitution
 - providing confusion of input bits
 - P-Boxes -- permutation
 - providing diffusion across S-box inputs

Substitution Ciphers

- Symbols are replaced by other symbols according to a key.
- Substitution adds confusion
- To escape frequency analysis, we can use a expanding substitution cipher
 - Map symbols to multiple symbols.
 - $e.g 0 \rightarrow \{01, 10\}, 1 \rightarrow \{00, 11\}$
 - 011010010 becomes: 011100101101011110
 - Advantage: frequencies hidden
 - Disadvantage: message and key are longer

S-box (substitution)

Word size of 3 bits => mapping of $2^3 = 8$ values

Note: mapping must be reversible

Permutation Ciphers

- A permutation cipher is one that rearranges the symbols of the message according to a preset pattern.
 - "Attack at dawn" becomes "cda tka wan tat"
- Permutation adds diffusion
- Helps avoid detection of symbols based on correspondence. ('q' followed by 'u')
- Definition (permutation) Let S be a finite set of elements, a permutation p is a bijective function from S to itself

$$p(x): S \rightarrow S$$

P-box (permutation)

Two examples of permutations. The second one switches halves of the input in the output.

Product Cipher

 By themselves, substitution and permutation ciphers are relatively insecure.

 By combining these operations, we can produce a secure cipher.

- $M \rightarrow Sub_k(M) \rightarrow Perm_k(Sub_k(M))$.
 - Might go through multiple rounds.

Product Cipher

- Alternate S and P boxes
- BUT, we must also decrypt
- So define the sequence of boxes so that precisely the same system will decrypt as well as encrypt
- Just run it backwards

$$X_i = e^{-1}_k(y_i) = e^{-1}_k(e_k(x_i))$$

Product Cipher Example

- S-box (substitution):
 - Invertible mapping of the input block into an output of the same or different size but with low correlation
- P-box (permutation):
 - Re-arranges the input bits

