Assessing Reliability of Annotations in the Context of Model Predictions and Explanations ADS Grant Roadmap

Pablo Mosteiro Anastasia Giachanou Hadi Mohammadi Massimo Poesio

> Department of Methodology and Statistics, Utrecht University, The Netherlands

> > February 7, 2024

Dataset

- EXIST
- SemEval 2023 Task 10
- SemEval 2023 Task 11

Dataset	Strengths	Weaknesses
EXIST	Multi annotators (data available)	Not clear structure (we can ask)
	Other information about annotators (Gender/Age)	
	Different levels of Sexism detection	
	In Spanish and English	
SemEval 2023 - Task 10	Multi annotators (data not available)	Data of annotators is not public (we can ask)
	Clear structure and document (available)	
SemEval 2023 - Task 11		

Table: Strengths and Weaknesses of Datasets

□ ▶ ◀ 🗗 ▶ ◀ 🛢 ▶ ◀ 🛢 ▶ 💆 🛷 🍳 🥎 ► February 7, 2024

Proposed Model Structure

- The project will employ transformer models, such as BERT, for prediction.
- SHAP (SHapley Additive exPlanations) will be used to identify influential tokens or phrases for generating explanations.
- An A/B testing framework will be established to evaluate the impact of model explanations on annotator agreement.

Universiteit Utrecht

Phases (1)

Oata Preparation (Months 1-2):

- Access and preprocess the selected datasets (EXIST, SemEval Task 10/11). [Assistant]
- Access and read the structure of Annotations. [Assistant]
- Work on the model structure that provides both prediction and explanation.

Phases (2)

Annotation and Calibration (Months 3-4):

- Make a survey structure suitable for our model.
 [Assistant/Consultant]
- Find a proper platform and create the survey. [Assistant]
- Annotate a subset of data with multiple annotators.
- Implement a structured training and calibration process for annotators.

Phases (3)

- Model Integration and Prediction (Months 5-6):
 - Utilize transformer models (e.g., BERT) for prediction on annotated data.
 - Generate explanations using SHAP for model predictions.

Phases (4)

Annotator Agreement Analysis (Months 7-8):

- Calculate Inter-rater Reliability (IRR) metrics (e.g., Cohen's Kappa) for annotator consensus.
- Analyze confusion matrices to identify agreement patterns.

Phases (5)

- A/B Testing (Months 7-8):
 - Conduct A/B testing with two groups of annotators: one with model predictions and another with both predictions and explanations.

Phases (6)

- Feedback Mechanism (Months 9-10):
 - Implement a feedback mechanism for annotators to report ambiguous or unclear predictions and explanations.
 - Assess systematic bias and sensitivity to explanation types.

Phases (7)

- O Data Analysis and Reporting (Months 9-10):
 - Perform statistical analysis of annotator responses. [Assistant]
 - Examine the impact of explanations on annotator agreement.
 - Prepare a research paper and final report.

Metrics

- Metrics include Inter-rater Reliability (IRR) metrics (e.g., Cohen's Kappa, Fleiss' Kappa, Krippendorff's Unitizing Alpha) to measure annotator consensus.
- A confusion matrix will be used to identify agreement patterns, especially False-Positive and False-Negative cases.

Output

- Quantitative measure of annotator agreement.
- Research paper reporting the influence of model explanations on annotator agreement.
- Feedback analysis to improve model predictions and explanations.

Next steps

[]

