МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

Санкт-Петербургский национальный исследовательский университет ИТМО

Мегафакультет трансляционных информационных технологий

Факультет информационных технологий и программирования

Домашнее задание №2

По дисциплине «Аппаратное обеспечение вычислительных систем» Вариант № 3

> Выполнил студент группы №М3113 Балакирева Виктория Валерьевна

Проверил Шевчик Софья Владимировна

Санкт-Петербург 2024 Напишите комплекс программ, состоящий из программы и подпрограммы и обеспечивающий подсчет количества требуемых элементов массива данных. Программа должна выявлять требуемые элементы, а их подсчет должен производиться в подпрограмме

Нулевые элементы из 0000, 0707, 0000, СОАЕ, 0000

1. Исходный текст программы

Адрес	Код команды	Мнемоника	Комментарий		
00A	0000				
00B	0000				
00C	000E		Ссылка на элементы		
00D	FFFB		Кол-во элементов в массиве		
00E	0000				
00F	0707				
010	0000				
011	C0AE	BR 0AE	(0AE) -> CK		
012	0000				
013	0000				
014	0000				
015	0000				
016	+F200	CLA	Начало программы A->0		
017	480C	ADD (00C)	(A) + (00C) -> A		
018	B01A	BRQ 01A	ЕСЛИ (A) = 0 и (C) = 0, то 01A -> CK		
019	C01B	BR 01B	(01B) -> CK		
01A	2045		(CK) -> 045, 045 + 1 -> CK		
01B	000D				
01C	C016		016 -> CK		
01D	F000	HLT	Выключает программу		

•••		
045	0000	
046	F200	0 -> A
047	F800	Увеличивает значение аккумулятора на 1
048	4015	Присваивает аккумулятору результат сложения аккумулятора и ячейки 015
049	3015	Присваивает ячейке по адресу 015 значение из аккумулятора
04A	C845	Присваивает регистру СК значение из ячейки 045

Программа предназначена для поиска ненулевых элементов в массиве. В ходе выполнения, она выполняет последовательное считывание элементов массива, проверяя каждый элемент на ненулевое значение. Если элемент массива равен нулю, программа переходит к следующему элементу. Если элемент ненулевой, происходит инкремент аккумулятора, что может быть использовано для подсчета ненулевых элементов или другой обработки.

Описание работы

1. Начальная настройка:

- о Адреса 00А-00С содержат данные.
- о 00D содержит количество элементов в массиве (FFFB в данном случае).

2. Начало программы:

- Адрес 016: CLA (0 -> A), очищает аккумулятор.
- о Адрес 017: ADD (00C), прибавляет значение по адресу 00C к аккумулятору.
- о Адрес 018: BRQ 01A, переходит к 01A, если аккумулятор равен нулю и флаг условия тоже равен нулю.

3. Проверка и переходы:

- о Адрес 019: BR 01B, безусловный переход к адресу 01B.
- \circ Адрес 01A: переход к 045, если условие выполнено (ЕСЛИ (A) = 0 и (C) = 0).
- о Адрес 01В: переход к 016 для повторного выполнения.

4. Проверка элемента массива:

о Адрес 045: начинается цикл работы с элементом массива.

- Адрес 046: CLA (0 -> A), очищает аккумулятор.
- о Адрес 047: F800, увеличивает значение аккумулятора на 1.
- о Адрес 048: ADD (015), прибавляет значение по адресу 015 к аккумулятору.
- о Адрес 049: сохранение результата в ячейке 015.
- о Адрес 04А: переход по адресу из ячейки 045.

5. Окончание программы:

о Адрес 01D: HLT, завершает выполнение программы.

Вывод

Программа эффективно принимает массив, проверяя каждый элемент на ненулевое значение. Основная логика заключается в очистке аккумулятора, добавлении текущего элемента массива и проверке, является ли он нулевым. Если элемент ненулевой, программа выполняет инкремент аккумулятора и обработку, а затем переходит к следующему элементу. Завершение программы происходит при достижении конца массива. Основной механизм работы основан на условных переходах и циклическом выполнении операций, что позволяет последовательно обрабатывать каждый элемент массива

2. Таблица трассировки:

Адресс	Код	СК	PA	РК	РД	A	C	Адрес	Новый код
016	F200	0017	0016	F200	F200	0000	0		
017	480C	0018	000E	480C	0000	0000	0	00C	000F
018	B01A	001A	0018	B01A	B01A	0000	0		
01A	2045	0046	0045	2046	001B	0000	0	045	001B
046	F200	0047	0046	F200	F200	0000	0		
047	F800	0048	0047	F800	F800	0001	0		
048	4015	0049	0015	4015	0000	0001	0		
049	3015	004A	0015	3015	0001	0001	0	015	0001
04A	C845	001B	0045	C845	001B	0001	0		
01B	000D	001C	000D	000D	FFFC	0001	0	00D	FFFC