Compiladores Aula 5 Análise Léxica De AFND para AFD

Prof. Dr. Luiz Eduardo G. Martins UNIFESP

- Um programa que implementa um AFD é mais eficiente no reconhecimento de cadeias do que um programa que implementa um AFND
- Por esse motivo, é vantajoso encontrar o AFD equivalente ao AFND
- Construção de Subconjuntos
 - Algoritmo para a construção de um AFD a partir de um AFND
 - Ideia geral: cada estado do AFD construído corresponde a um conjunto de estados do AFND

- O algoritmo de construção de subconjuntos requer a eliminação das ε-transições do AFND
- A eliminação das ε-transições requer a construção de ε-fechos
- ε-fecho de um estado s é o conjunto de estados atingíveis por uma série de zero ou mais ε-transições
 - Denotamos esse conjunto como ₹
 - O ε-fecho de um estado sempre contém o próprio estado

- ε-fecho Exemplo
 - Considere o AFND correspondente à expressão regular a*

Temos

$$\frac{1}{2} = \{1, 2, 4\}$$
 $\frac{1}{2} = \{2\}$
 $\frac{1}{3} = \{2, 3, 4\}$
 $\frac{1}{4} = \{4\}$

 Definimos o ε-fecho de um conjunto de estados como a união dos ε-fechos de cada estado individual

$$\overline{S} = \bigcup_{s \in mS} \overline{s}$$

- Exemplo
 - Considere o AFND da expressão regular a*
 - $\{\overline{1,3}\} = \{1, 2, 3, 4\}$

- Construção de Subconjuntos
 - Denominaremos de M o AFD construído a partir do AFND M
 - 1º passo: computamos o ε -fecho do estado inicial de M, que passa a ser o estado inicial de \overline{M} , resultando no conjunto S
 - 2º passo: para o conjunto S, e para cada conjunto subsequente, computamos transições de caracteres *a*, que denotamos da seguinte forma:
 - $S'_a = \{t \mid para algum s em S existe uma transição de s para t em a \}$
 - 3º passo: computamos S'_a (ε-fecho de S'_a)
 - Isso define um novo estado na construção de subconjuntos, juntamente com uma nova transição $S \xrightarrow{a} \overline{S'_a}$
 - Aplicamos os passos 2 e 3 no conjunto resultante de $\overline{S'_a}$ e assim sucessivamente até que novos estados e transições não sejam mais criados

- Construção de Subconjuntos
 - 4º passo: marcamos como estados de aceitação de M
 os subconjuntos que contenham estados de aceitação
 de M

Fazer exemplos 2.16 e 2.17 (Louden)

- Minimização de estados em um AFD
 - Os algoritmos apresentados para construir um AFD a partir de uma expressão regular, não garantem um AFD com o menor número de estados
 - É importante encontrarmos um AFD ótimo, ou seja, com o número mínimo de estados
 - Pela teoria de autômatos, dado um AFD, existe um AFD equivalente com um número mínimo de estados, o qual é único

- Minimização de estados em um AFD
 - Método da construção de subconjuntos gera autômato finito determinístico
 - Possivelmente, com estados redundantes
 - Procedimento de minimização permite obter autômato equivalente com menor número de estados
 - Baseado no particionamento sucessivo do conjunto de estados

- Minimização de estados em um AFD
 - Particionar os estados do AFD (inicialmente em dois conjuntos)

```
C<sub>1</sub> = {todos estados de aceitação}C<sub>2</sub> = {todos estados que não são de aceitação}
```

- Avaliar as transições de estados em cada conjunto
 - Se as transições levarem para conjuntos de estados idênticos, os estados analisados são redundantes
- Combinar estados redundantes (se identificados)

- Minimização de estados em um AFD
 - ▶ Para o autômato obtido para a expressão (0|1) *0
 - 1. Partição inicial $P_1 = \{C_1, C_2\}$, com

$$C_1 = \{s1\}$$

$$C_1 = \{s1\}$$
 $C_2 = \{s0, s2\}$

2. Para a partição C₂:

	S ₀	S ₂
0	S_1	S ₁
1	S ₂	S_2

⇒ Estados s0, s2 são redundantes

Para uma discussão mais detalhada sobre o tema de minimização de estados de um AFD, ver Aho et al. **Seção 3.9.6**

Bibliografia consultada

LOUDEN, K. C. **Compiladores: princípios e práticas.** São Paulo: Pioneira Thompson Learning, 2004

RICARTE, I. Introdução à Compilação. Rio de Janeiro: Editora Campus/Elsevier, 2008

AHO, A. V.; LAM, M. S.; SETHI, R. e ULLMAN, J. D. **Compiladores: princípios, técnicas e ferramentas.**2ª edição — São Paulo: Pearson Addison-Wesley,
2008