Solutions to MA 110 Mid-Sem Exam (23 Feb 2025)

Q 1. (i) $AB = A^2 + A + I$, hence A(B - A - I) = I. This means, A is invertible and $A^{-1} = B - A - I$. But then $I = A^{-1}A = (B - A - I)A$, which means $BA = A^2 + A + I = AB$. [2 marks]

(ii) Let $x \in N(AB - I_m)$. Then $(AB - I_m)x = 0$. Multiplying by B on the left, BABx - Bx = 0 as well, or $(BA - I_n)(Bx) = 0$. Thus, $T : N(AB - I_m) \to N(BA - I_n)$ sending x to T(x) := Bx is a linear transformation. If Bx = 0 for some $x \in N(AB - I_m)$, then $(AB - I_m)x = 0$ and so x = ABx = 0. This proves that T is injective. Hence nullity $(AB - I_m) \le \text{nullity}(BA - I_n)$. Similarly, nullity $(BA - I_n) \le \text{nullity}(AB - I_m)$.

[2 marks]

Now $(AB - I_m)$ is invertible \iff nullity $(AB - I_m) = 0 \iff$ nullity $(BA - I_n) = 0 \iff$ $(BA - I_n)$ is invertible.

Q2. (i) Let S be a subset of V. Then S is said to be *linearly dependent* if there are distinct $v_1, \ldots, v_n \in S$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$, not all zero, such that $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$. Also, the *span* of S is the set of all (finite) linear combinations of elements of S, i.e.,

$$\operatorname{span}(S) = \left\{ \sum_{j=1}^{n} \alpha_{j} v_{j} : n \in \mathbb{N}, \ \alpha_{j} \in \mathbb{K}, \text{ and } v_{j} \in S \text{ for } j = 1, \dots, n \right\}.$$
 [1 mark]

(ii) Let $S = \{v_1, \ldots, v_s\}$ and let $R = \{w_1, \ldots, w_r\}$. Since $S \subset \text{span}(R)$, there are $\alpha_{jk} \in \mathbb{K}$ such that $v_k = \sum_{j=1}^r \alpha_{jk} w_j$ for $k = 1, \ldots, s$. The matrix $A = (\alpha_{jk})$ has s columns

and r rows, where s > r. Hence there is $\mathbf{0} \neq \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_s \end{pmatrix} \in \mathbb{K}^{s \times 1}$ such that $A\mathbf{x} = 0$. Thus,

 $\sum_{k=1}^{s} \alpha_{jk} x_k = 0$ for each $j = 1, \ldots r$. So we obtain $x_1, \ldots, x_s \in \mathbb{K}$, not all zero, such that

$$\sum_{k=1}^{s} x_k v_k = \sum_{j=1}^{r} \left(\sum_{k=1}^{s} \alpha_{jk} x_k \right) w_j = \sum_{k=1}^{s} \left(\sum_{j=1}^{r} \alpha_{jk} w_j \right) x_k = 0.$$

This proves that S is linearly dependent.

[3 marks]

[Note: Some students have written that S has more elements than the spanning set R, therefore S is linearly dependent. This is just rephrasing the question. No marks have been awarded in these cases.]

Q3. (i)
$$A = iI_n$$
. [1 mark]

(ii) As A satisfies $A^2 + I = 0$, the eigenvalues satisfy $\lambda^2 + 1 = 0$. Hence the only possible eigenvalues of A are $\pm i$.

Since the matrix is real, its characteristic polynomial p(t) is a real polynomial. Since the matrix A is of odd order, p(t) has odd degree, and hence it must have a real root, which is a contradiction. [2 marks]

Q. 4. (i) The adjoint A^* of A is the conjugate transpose of A, i.e., $A^* = \overline{A}^t$. $[\frac{1}{2} \text{ mark}]$

To show that $\operatorname{rank}(A^*) = \operatorname{rank}(A^*A)$, we consider the images of A^* and A^*A , i.e., the images of the corresponding linear transformations. It is clear that $\operatorname{im}(A^*A) \subset \operatorname{im}(A^*)$. Hence $\operatorname{rank}(A^*A) \leq \operatorname{rank}(A^*) = \operatorname{rank}(A)$. On the other hand, if $x \in N(A^*A)$ then $A^*Ax = 0$, and so $0 = x^*A^*Ax = (Ax)^*Ax = \langle Ax, Ax \rangle = ||Ax||^2$. Thus $x \in N(A)$. This implies $N(A^*A) \subset N(A)$; so nullity $(A^*A) \leq \operatorname{nullity}(A)$. By Rank-Nullity Theorem, $\operatorname{rank}(A) \leq \operatorname{rank}(A^*A)$. Thus, $\operatorname{rank}(A^*) = \operatorname{rank}(A^*A)$. $[1\frac{1}{2}]$ mark]

(ii) Let $\lambda_1, \ldots, \lambda_n$ be all the eigenvalues of A and let (x_1, \ldots, x_n) be an orthonormal basis of $\mathbb{R}^{n \times 1}$ such that $Ax_j = \lambda_j x_j$ for all j. Then for every $x \in \mathbb{R}^{n \times 1}$, we can write $x = \sum_{j=1}^n \alpha_j x_j$ for some $\alpha_j \in \mathbb{R}$. Also if $x \neq 0$, then $\alpha_j \neq 0$ for some j. Thus for every nonzero $x \in \mathbb{R}^{n \times 1}$, we find $x^t A x = x^t (\sum_j \alpha_j \lambda_j x_j) = \sum_j \alpha_j^2 \lambda_j > 0$ if all $\lambda_j > 0$. [3 marks]

Q. 5 (i) $T(E_{11}) = E_{11}$, $T(E_{22}) = E_{22}$, $T(E_{12}) = E_{21}$, $T(E_{21}) = E_{12}$. [1 mark] Thus the matrix of T with respect to the ordered basis $(E_{11}, E_{12}, E_{21}, E_{22})$ is

$$M_E^E(T) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 [1 mark]

(ii) The given equation can be rewritten as q(x, y, z) = 36, where

$$q(x, y, z) = X^t A X$$
, where $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ and $A = \begin{pmatrix} 7 & -1 & -10 \\ -1 & 7 & 10 \\ -10 & 10 & -2 \end{pmatrix}$.

The characteristic polynomial of A is $p(A) = \det(A - \lambda I_3) = -(\lambda - 18)(\lambda - 6)(\lambda + 12)$. Thus, the eigenvalues are 18, 6, -12.

Next, consider

$$A - 18I_3 = \begin{pmatrix} -11 & -1 & -10 \\ -1 & -11 & 10 \\ -10 & 10 & -20 \end{pmatrix}.$$

Solving $(A - 18I_3)x = 0$ using Gaussian elimination, we get a solution $x_1 = \begin{pmatrix} -1\\1\\1 \end{pmatrix}$. So

 x_1 is an eigenvector for $\lambda = 18$. Similarly, we get

an eigenvector
$$x_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 for $\lambda = 6$ and an eigenvector $x_3 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ for $\lambda = -12$.

[1 mark]

[Note: If two out of three eigenvectors are correct, $\frac{1}{2}$ mark has been awarded.]

Since A is symmetric, the eigenvectors x_1, x_2, x_3 with distinct eigenvalues form an orthogonal set. Hence if we let $y_1 = x_1/||x_1||$, $y_2 = x_2/||x_2||$ and $y_3 = x_3/||x_3||$, then

 (y_1, y_2, y_3) is an ordered orthonormal basis of $\mathbb{R}^{3\times 1}$. Consequently, the matrix

$$P = \begin{bmatrix} y_1 \ y_2 \ y_3 \end{bmatrix} = \begin{pmatrix} -1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & 0 & 2/\sqrt{6} \end{pmatrix} \text{ is unitary and satisfies } P^t A P = \begin{pmatrix} 18 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & -12 \end{pmatrix}.$$

Now if we let

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = P^t \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 1/\sqrt{6} & -1/\sqrt{6} & 2/\sqrt{6} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

then the quadratic form q(x, y, z) is transformed to the diagonal form $18u^2 + 6v^2 - 12w^2$. Thus the desired orthogonal change of coordinates ig given by

$$u = (-x + y + z)/\sqrt{3}$$

$$v = (x + y)/\sqrt{2}$$

$$w = (x - y + 2z)/\sqrt{6}x$$
[1 mark]

[Note: If two of u, v, w are correct, $\frac{1}{2}$ mark has been awarded.]

Q. 6 (i) An orthonormal basis for the column space $\mathcal{C}(A)$ of the matrix $A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$

is given by
$$(u_1u_2)$$
, where $u_1 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix}$ and $u_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. [1 mark]

Here $b = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. The orthogonal projection of b on $\mathcal{C}(A)$ is

$$v = \langle u_1, b \rangle u_1 + \langle u_2, b \rangle u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} + 0 = \begin{pmatrix} 1/2 \\ 1/2 \\ 0 \end{pmatrix}.$$

Therefore, the best approximation for a solution is given by $x = \begin{pmatrix} 1/2 \\ 0 \end{pmatrix}$, as it solves Ax = v.

(ii) Consider the functions $w_1 = 1$ and $w_2 = t$ which form a basis of W. Observe that $\langle w_1, w_2 \rangle = \int_{-3}^3 t \, dt = 0$. Thus w_1, w_2 are orthogonal,. Also note that $||1||^2 = \int_{-3}^3 dt = 6$ and $||t||^2 = [t^3/3]_{t=-3}^{t=3} = 18$. Thus if we let $u_1 = 1/\sqrt{6}$ and $u_2 = t/\sqrt{18}$, then we see that (u_1, u_2) is an ordered orthonormal basis of W.

Note that $\langle t^2, u_1 \rangle = 18\sqrt{6}$, $\langle t^2, u_2 \rangle = 0$, $\langle t, u_1 \rangle = 0$ and $\langle t, u_2 \rangle = \sqrt{18}$. [1 mark] Hence the orthogonal projection of $t^2 + t$ on W is

$$\langle t^2 + t, u_1 \rangle u_1 + \langle t^2 + t, u_2 \rangle u_2 = 3 + t.$$
 [1 mark]