بهنامخدا

پروژه دوم درس مبانی هوش محاسباتی

امیرمهدی زریننژاد ۹۷۳۱۰۸۷

غودار هزینه برحسب <u>C</u>: (محور افقی تعداد خوشه C و محور عمودی مقدار هزینه میباشد)

مجموعه داده ۱:

با استفاده از روش Elbow و تحلیل نمودار میتوان تعداد بهینه خوشهها را <u>۳</u> در نظر گرفت.

مجموعه داده ۲:

با استفاده از روش Elbow و تحلیل نمودار میتوان تعداد بهینه خوشهها را $\underline{\mathbf{r}}$ در نظر گرفت. در واقع از تعداد ۱ به ۲ خوشه افت هزینه بسیار است و پس از آن شدت افتش کاهش چشم گیر دارد اما تقریبا در c برابر r و یا r میتوان گفت که دیگر افت قابل توجهی در هزینه ها نداریم.

مجموعه داده ۳:

با استفاده از روش Elbow و تحلیل نمودار میتوان تعداد بهینه خوشهها را <u>۳</u> و یا <u>۴</u> در نظر گرفت.

مجموعه داده ۴:

با استفاده از روش Elbow و تحلیل نمودار میتوان تعداد بهینه خوشهها را $\underline{\mathbf{r}}$ در نظر گرفت.

غایش ساده و کریسپ خوشه بندی داده ها:

مجموعه داده ۱:

مجموعه داده ۳:

c=3 :چپ c=4 :راست

تغییرات هزینه برحسب m:

مجموعه داده ۱:

(محور افقی مقدار m و محور عمودی مقدار هزینه میباشد)

میبینیم که با افزایش m، هزینه کاهش یافته و دسته بندی بهتر صورت میگیرد و مقدار تعلق ها بیشتر میشود. در واقع با زیاد شدن m توان مقدار تعلق و تاثیرش در محاسبه هزینه و مقادیر سنتروید ها بیشتر میشود و از طرفی در محاسبه خود مقدار تعلق هم باعث افزایشش میشود.

ي : =2

وسط: m=5

راست: 9=m

میبینیم با زیاد شدن m مقدار تعلق هم بیشتر شده و نتیجتا نقاط تیره تر خواهند بود.

غایش دقیق خروجی خوشه بندی به صورت فازی:

مجموعه داده ۱:

مجموعه داده ۳:

c=3 :چپ د=4 :راست

میتوان دید که داده ها هرچه از مرکز یک خوشه دور تر و به مرکز خوشه دیگر نزدیک تر میشوند رنگشان حالت بینابین تری پیدا میکند (در نقاط مرزی) و با نزدیک تر شدن به مرکز خوشه رنگشان ثابت تر میشود.