CS5340 - Lab2 Part1 Report

Liu Yichao A0304386A

September 23, 2024

factor utils.py

The functions factor_product, factor_marginalization are just the same as lab1. The function factor_evidence omits the observed variables based on the implementation in lab1.

jt_construction.py

The function <u>__get__jt__clique__and__edges</u> contains these steps:

- 1. Construct graph from nodes and edges, stored in an adjacency list
- 2. Choose an elimination order, perform the elimination process to reconstitute the graph by adding edges to the original MRF. (This process is also called triangulation)
- 3. Use elimination cliques as the clique nodes of the junction tree. The weight of the edge between two cliques is the size of the intersection of the two cliques.
- 4. Use *Prim* algorithm to find the maximum spanning tree, which is also junction tree. Here *Prim* is better than *Kruskal* algorithm because we are generating from a complete graph.

The function <u>get_clique_factors</u> constructs the factors for each clique node in the junction tree.

main.py

The function <u>_update_mrf_w_evidence</u>, before constructing the junction tree, updates the graph with evidences, by removing observed nodes and keeping probabilities corresponding to evidences.

The function <u>__get__clique__potentials</u> uses sum-product algorithm to get the potentials for each clique node in the junction tree, which is almost the same as lab1.

The function <u>__get__node__marginal__probabilities</u> compute marginal probabilities for each node in the junction tree. It is a brute-force method here as nodes inside a clique are fully-connected. Since each node may belong to multiple cliques with the same marginal probability, we start this process **from the smallest clique** to minimize the calculation complexity, which in practice is maintaining a bool list to track whether a node has been calculated in another smaller clique. This would notably reduce the complexity of the algorithm.