1. Background and Setup

Let $Z \subseteq \blacksquare \blacksquare$ denote the latent space of a pretrained generative model G: $Z \to X$, where X is the data space (e.g.

Let $\{z\blacksquare\}$ for i=1 to N be a finite set of latent vectors. These may correspond to real images or synthetic data.

We are given a target latent vector $z \in Z$. Our goal is to interpolate or reconstruct z as a linear combination of the

$$\blacksquare = \Sigma (\alpha \blacksquare * z \blacksquare)$$
, where $\Sigma \alpha \blacksquare = 1$, and $\alpha \blacksquare \in \blacksquare$

with indices corresponding to the k nearest neighbors to z.

2. Nearest Neighbor Selection

Define a distance metric d: $Z \times Z \rightarrow \blacksquare \blacksquare$. We use the Euclidean distance:

$$d(z, z\blacksquare) = ||z - z\blacksquare||\blacksquare$$

Let $I\blacksquare(z) \subseteq \{1,...,N\}$ denote indices of the k closest latent vectors to z:

$$I \blacksquare (z) = \text{argmin over I: } |I| = k \text{ of } \sum ||z - z \blacksquare|| \blacksquare \text{ for i in I}$$

3. Linear Reconstruction via Least Squares

We want to find weights $\alpha \blacksquare \in \blacksquare$, for $i \in I \blacksquare (z)$, such that:

$$\blacksquare = \sum \alpha \blacksquare * z \blacksquare \approx z$$
, with $\sum \alpha \blacksquare = 1$

Define matrix $Z \blacksquare \in \blacksquare \blacksquare \blacksquare \blacksquare$ with columns $z \blacksquare$ and let $\alpha \in \blacksquare \blacksquare$ be the weights. Then:

minimize $||Z \blacksquare \alpha - z|| \blacksquare^2$ subject to $1 \blacksquare \alpha = 1$

4. Solution via Lagrange Multipliers

Form the Lagrangian:

$$L(\alpha, \lambda) = ||Z \blacksquare \alpha - z|| \blacksquare^2 + \lambda(1 \blacksquare \alpha - 1)$$

Set gradients to zero:

$$\nabla \alpha L = 2 Z \blacksquare \blacksquare (Z \blacksquare \alpha - z) + \lambda 1 = 0$$

 $\partial L / \partial \lambda = 1 \blacksquare \alpha - 1 = 0$

This gives a system of k+1 equations solvable with standard methods.

5. Reconstruction and Interpolation

The solution $\blacksquare = Z \blacksquare \alpha^*$ is a convex (if $\alpha \blacksquare \ge 0$) or affine (if some $\alpha \blacksquare < 0$) combination of the nearest latent vector

This is a locally linear approximation similar to Locally Linear Embedding (LLE).

6. Summary

- Nearest neighbors are chosen by Euclidean distance.
- Linear model with weights summing to 1 approximates z.
- Reconstruction lies in a local linear manifold in latent space.
- Final \blacksquare can be passed to G to approximate G(z).