CLAIM AMENDMENTS

- 1. (Cancelled)
- 2. (Cancelled)
- 3. (Cancelled)
- 4. (Currently Amended)

A method for production of a highly filled elastomeric compound comprising:

forming a highly filled elastomeric compound from an elastomeric resin and a filler about 15% to about 500% by weight of the resin; and

adding microsilica to the highly filled elastomeric compound in an amount of 1 to 400% by weight of resin as a modifier to improve processability, wherein the microsilica is particulate amorphous SiO_2 obtained from a process in which silica is reduced to SiO_2 and oxidized in vapor phase to form amorphous silica which contains at least 70% by weight silica (SiO_2) and has a specific density of 2.1 - 2.3 g/cm³ and a surface area of 15 - 40 m²/g, and has

primary particles being substantially spherical with an average size of about 0.15 $\mu \mathrm{m}_{\underline{i}}$

wherein the elastomeric resin consists of a polymer selected from the group consisting of natural rubber (NR), ethylene-propylene-diene rubber (EPM and EPDM), styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), polychloroprene rubber (PCP), acrylate rubber, NBR blended with polyvinyl chloride, ethylene vinyl acetate copolymer and blends thereof.

5. (Previously Presented)

The method according to claims 4, wherein microsilica is added to the highly filled elastomeric compound in an amount of 5 to 300% by weight of resin.

6. (Previously Presented)

The method according to claims 4, wherein microsilica is added to the highly filled elastomeric compound in an amount of 10 to 150% by weight of resin.

7. (Currently Amended)

A method of using microsilica as a modifier to improve processability of a highly filled elastomeric compound having a filler content of about 15% to about 500% by weight of resin, comprising a step of adding 1 to 400% by weight of resin of microsilica to said compound, wherein the microsilica is particulate amorphous SiO_2 obtained from a process in which silica is reduced to SiO-gas and oxidized in vapor phase to form amorphous silica, which contains at least 70% by weight silica (SiO_2) and has a specific density of $2.1 - 2.3 \text{ g/cm}^3$ and a surface area of 15 - $40 \text{ m}^2/\text{g}$, and has primary particles being substantially spherical with an average size of about 0.15 μ m; wherein the elastomeric resin consists of a polymer selected from the group consisting of natural rubber (NR), ethylene-propylene-diene rubber (EPM and EPDM), styrenebutadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), polychloroprene rubber (PCP), acrylate rubber, NBR blended with polyvinyl chloride, ethylene vinyl acetate copolymer and blends thereof.

8. (Cancelled)

- 9. (New) The method for production of a highly filled elastomeric compound of claim 4 wherein wherein the elastomeric resin consists of a polymer selected from the group consisting of natural rubber (NR), ethylene-propylene-diene rubber (EPM and EPDM), styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), polychloroprene rubber (PCP), acrylate rubber, ethylene vinyl acetate copolymer and blends thereof.
- 10. (New) The method of using microsilica as a modifier to improve processability of a highly filled elastomeric compound of claim 7, wherein the elastomeric resin consists of a polymer selected from the group consisting of natural rubber (NR), ethylene-propylene-diene rubber (EPM and EPDM), styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), polychloroprene rubber (PCP), acrylate rubber, ethylene vinyl acetate copolymer and blends thereof.