Sciences

Activation 1 – Corrigé

Activation – Pompe à pistons axiaux

Savoirs et compétences :

Bilan des actions mécanique pour chacune des classes d'équivalence Bilan des actions mécaniques pour l'ensemble 1

On choisit d'écrire tous les torseurs des actions mécaniques au point *B* :

• Action de 0 sur 1 en A:

$$\{ \mathcal{T}(S_0 \to S_{1A}) \} = \left\{ \begin{array}{cc} X_{A01} & 0 \\ Y_{A01} & 0 \\ Z_{A01} & 0 \end{array} \right\}_{A,R_1} = \left\{ \begin{array}{cc} X_{A01} & L_1 Y_{A01} \\ Y_{A01} & -L_1 X_{A01} \\ Z_{A01} & 0 \end{array} \right\}_{B,R_1}$$

• Action de 0 sur 1 en B:

$$\{\mathcal{T}(S_0 \to S_{1B})\} = \left\{ \begin{array}{cc} X_{B01} & L_{B01} \\ Y_{B01} & M_{B01} \\ 0 & 0 \end{array} \right\}_{B.R_1}$$

• Action de 2 sur 1 en C:

$$\{\mathcal{T}(S_2 \to S_1)\} = \left\{ \begin{array}{cc} X_{21} & L_{21} \\ Y_{21} & M_{21} \\ 0 & 0 \end{array} \right\}_{C,R_1} = \left\{ \begin{array}{cc} X_{21} & L_{21} \\ Y_{21} & M_{21} \\ 0 & -R Y_{21} \end{array} \right\}_{B,R_1}$$

Bilan des actions mécaniques pour l'ensemble 2

On choisit d'écrire tous les torseurs des actions mécaniques au point *C* :

• Action de 3 sur 2 en D:

$$\{\mathcal{T}(S_3 \to S_2)\} = \left\{ \begin{array}{cc} X_{32} & 0 \\ Y_{32} & 0 \\ Z_{32} & 0 \end{array} \right\}_{D,R} = \left\{ \begin{array}{cc} X_{32} & -\lambda Y_{32} \\ Y_{32} & \lambda X_{32} \\ Z_{32} & 0 \end{array} \right\}_{C,R}$$

• Action de 1 sur 2 en C:

$$\{\mathcal{T}(S_1 \to S_2)\} = \left\{ \begin{array}{cc} -X_{21} & -L_{21} \\ -Y_{21} & -M_{21} \\ 0 & 0 \end{array} \right\}_{C_R}$$

• Action de la pression en C:

$$\{\mathcal{T}(\text{pression} \to S_2)\} = \left\{ \begin{array}{cc} 0 & 0 \\ 0 & 0 \\ F_p & 0 \end{array} \right\}_{C.R.}$$

Bilan des actions mécaniques pour l'ensemble 3

On choisit d'écrire tous les torseurs des actions mécaniques au point D :

• Action de 2 sur 3 en D:

$$\{\mathcal{T}(S_2 \to S_3)\} = \left\{ \begin{array}{cc} -X_{32} & 0 \\ -Y_{32} & 0 \\ -Z_{32} & 0 \end{array} \right\}_{D,R_1}$$

1

• Action de 0 sur 3 en E:

$$\{\mathcal{T}(S0 \to S3)\} = \left\{ \begin{array}{ccc} 0 & L_{03} \\ 0 & M_{03} \\ Z_{03} & 0 \end{array} \right\}_{C,R_{1*}} = \left\{ \begin{array}{ccc} 0 & L_{03} \\ 0 & M_{03} \\ Z_{03} & 0 \end{array} \right\}_{D,R_{1*}} = \left\{ \begin{array}{ccc} Z_{03} \sin(\alpha) & L_{03} \cos(\alpha) \\ 0 & M_{03} \\ Z_{03} \cos(\alpha) & -L_{03} \sin(\alpha) \end{array} \right\}_{D,R_{1}} = \left\{ \begin{array}{ccc} Z_{03} \sin(\alpha) & L_{03} \cos(\alpha) \\ 0 & M_{03} \\ Z_{03} \cos(\alpha) & -L_{03} \sin(\alpha) \end{array} \right\}_{D,R_{1}} = \left\{ \begin{array}{ccc} Z_{03} \sin(\alpha) & L_{03} \cos(\alpha) \\ 0 & M_{03} \\ Z_{03} \cos(\alpha) & -L_{03} \sin(\alpha) \end{array} \right\}_{D,R_{1}} = \left\{ \begin{array}{ccc} Z_{03} \sin(\alpha) & L_{03} \cos(\alpha) \\ 0 & M_{03} \\ Z_{03} \cos(\alpha) & -L_{03} \sin(\alpha) \end{array} \right\}_{D,R_{1}} = \left\{ \begin{array}{ccc} Z_{03} \sin(\alpha) & L_{03} \cos(\alpha) \\ 0 & M_{03} \\ Z_{03} \cos(\alpha) & -L_{03} \sin(\alpha) \end{array} \right\}_{D,R_{1}} = \left\{ \begin{array}{ccc} Z_{03} \sin(\alpha) & L_{03} \cos(\alpha) \\ 0 & M_{03} \\ Z_{03} \cos(\alpha) & -L_{03} \sin(\alpha) \end{array} \right\}_{D,R_{1}} = \left\{ \begin{array}{ccc} Z_{03} \sin(\alpha) & L_{03} \cos(\alpha) \\ 0 & M_{03} \\ Z_{03} \cos(\alpha) & -L_{03} \sin(\alpha) \end{array} \right\}_{D,R_{1}} = \left\{ \begin{array}{ccc} Z_{03} \sin(\alpha) & L_{03} \cos(\alpha) \\ 0 & M_{03} \\ Z_{03} \cos(\alpha) & -L_{03} \sin(\alpha) \end{array} \right\}_{D,R_{1}} = \left\{ \begin{array}{ccc} Z_{03} \sin(\alpha) & L_{03} \cos(\alpha) \\ 0 & M_{03} \\ Z_{03} \cos(\alpha) & -L_{03} \sin(\alpha) \end{array} \right\}_{D,R_{1}} = \left\{ \begin{array}{ccc} Z_{03} \sin(\alpha) & L_{03} \cos(\alpha) \\ 0 & M_{03} \\ Z_{03} \cos(\alpha) & -L_{03} \sin(\alpha) \end{array} \right\}_{D,R_{1}} = \left\{ \begin{array}{ccc} Z_{03} \sin(\alpha) & L_{03} \cos(\alpha) \\ 0 & M_{03} \\ 0 & M_{03} \end{array} \right\}_{D,R_{1}} = \left\{ \begin{array}{ccc} Z_{03} \sin(\alpha) & L_{03} \cos(\alpha) \\ 0 & M_{03} \\ 0 & M_{03} \end{array} \right\}_{D,R_{1}} = \left\{ \begin{array}{ccc} Z_{03} \cos(\alpha) & L_{03} \cos(\alpha) \\ 0 & M_{03} \end{array} \right\}_{D,R_{1}} = \left\{ \begin{array}{ccc} Z_{03} \sin(\alpha) & L_{03} \cos(\alpha) \\ 0 & M_{03} \end{array} \right\}_{D,R_{1}} = \left\{ \begin{array}{ccc} Z_{03} \sin(\alpha) & L_{03} \cos(\alpha) \\ 0 & M_{03} \end{array} \right\}_{D,R_{1}} = \left\{ \begin{array}{ccc} Z_{03} \sin(\alpha) & L_{03} \cos(\alpha) \\ 0 & M_{03} \end{array} \right\}_{D,R_{1}} = \left\{ \begin{array}{ccc} Z_{03} \sin(\alpha) & L_{03} \cos(\alpha) \\ 0 & M_{03} \end{array} \right\}_{D,R_{1}} = \left\{ \begin{array}{ccc} Z_{03} \cos(\alpha) & L_{03} \cos(\alpha) \\ 0 & M_{03} \end{array} \right\}_{D,R_{1}} = \left\{ \begin{array}{ccc} Z_{03} \cos(\alpha) & L_{03} \cos(\alpha) \\ 0 & M_{03} \end{array} \right\}_{D,R_{1}} = \left\{ \begin{array}{ccc} Z_{03} \cos(\alpha) & L_{03} \cos(\alpha) \\ 0 & M_{03} \end{array} \right\}_{D,R_{1}} = \left\{ \begin{array}{ccc} Z_{03} \cos(\alpha) & L_{03} \cos(\alpha) \\ 0 & M_{03} \end{array} \right\}_{D,R_{1}} = \left\{ \begin{array}{ccc} Z_{03} \cos(\alpha) & L_{03} \cos(\alpha) \\ 0 & M_{03} \end{array} \right\}_{D,R_{1}} = \left\{ \begin{array}{ccc} Z_{03} \cos(\alpha) & L_{03} \cos(\alpha) \\ 0 & M_{03} \end{array} \right\}_{D,R_{1}} = \left\{ \begin{array}{ccc} Z_{03} \cos(\alpha) & L_{03} \cos(\alpha) \\ 0 & M_{03} \end{array} \right\}_{D,R_{1$$

Résolution d'un système linéaire homogène

En appliquant successivement le principe fondamental de la statique pour chacun des trois ensemble on obtient un système de 18 équations :

(1)résultante suivant $\vec{x_1}$
$$\begin{split} X_{A01} + X_{B01} + X_{C21} &= 0 \\ Y_{A01} + Y_{B01} + Y_{C21} &= 0 \end{split}$$
(2)résultante suivant $\vec{y_1}$ (3)résultante suivant $\overrightarrow{z_1}$ $Z_{A01} = 0$ (4)moment suivant $(B, \overrightarrow{x_1})$ $L_1 Y_{A01} + L_{B01} + L_{C21} = 0$ (5)moment suivant $(B, \overrightarrow{y_1})$ $-L_1 X_{A01} + M_{B01} + M_{C21} = 0$ (6)moment suivant $(B, \overrightarrow{z_1})$ $-R Y_{C21} = 0$ $X_{D32} - X_{C21} = 0$ (7)résultante suivant $\overline{x_1}$ (8) résultante suivant $\overrightarrow{y_1}$ $Y_{D32} - Y_{C21} = 0$ $Z_{D32} + F_p = 0$ (9)résultante suivant $\overrightarrow{z_1}$ (10)moment suivant $(C, \overrightarrow{x_1})$ $-\lambda Y_{D32} - \dot{L}_{C21} = 0$ $\lambda X_{D32} - M_{C21} = 0$ (11)moment suivant $(C, \overrightarrow{y_1})$ 0 = 0(12)moment suivant $(C, \overrightarrow{z_1})$ $-X_{D32} + Z_{E03} \sin(\alpha) = 0$ (13)résultante suivant $\vec{x_1}$ $-Y_{D32} = 0$ (14)résultante suivant $\overrightarrow{y_1}$ $-Z_{D32}+Z_{E03}\cos(\alpha)=0$ (15)résultante suivant $\overline{z_1}$ $L_{E03}\cos(\alpha)=0$ (16)moment suivant $D\overline{x_1}$ $M_{E03} = 0$ (17)moment suivant $D\overline{y_1}$ $-M_{E03}\sin(\alpha)=0$ (18)moment suivant $D\overline{z_1}$

Mise en évidence de l'hyperstatisme et de la mobilité

Bilan de l'approche statique

- On obtient alors un système de $E_s = 18$ équations statiques.
- La modélisation comporte $I_s = 17$ inconnues statiques.
- Certaines de ces équations ne sont pas significatives, elles correspondent aux mobilités cinématiques du mécanisme :
 - Équation (12) "0 = 0": mobilité de rotation de piston autour de $(C, \overrightarrow{z_1})$.
 - Les équations (6) (8) et (14) sont équivalentes à deux équations libres : *mobilité de rotation du barillet autour de* $(B, \overrightarrow{z_1})$.
 - Équation (18) liée à (17) : rotation du poussoir autour de $(E, \overrightarrow{z_{1*}})$.

Le système possède alors **3 mobilités cinématiques** ($m_c = 3$).

Pour résoudre ce système on se retrouve donc avec $r_S = 15$ équations significatives (rang du système d'équations statiques r_s) pour $I_S = 17$ inconnues. Nous avons donc un déficit de **2 équations** ou encore 2 inconnues statiques de trop pour résoudre le problème. Le système est donc hypercontraint. On dit que la modélisation du système est hyperstatique d'ordre **2**

$$h = I_s - r_s = I_s - (E_s - m_c)$$
(1)

Étude cinématique

Objectifs

- La résolution cinématique a pour but de déterminer les caractéristiques cinématiques au niveau de toutes les liaisons de la chaîne.
- Cette approche permet également de déterminer l'isostaticité ou l'hypertstaticité en vue de déterminer les conditions éventuelles de montage du mécanisme.
- Elle permet enfin de déterminer la loi entrée-sortie cinématique du mécanisme.

Démarche

Le graphe de liaison donné ci-après montre que le mécanisme possède deux chaînes fermées :

- Chaîne $1:\{0-3-2-1-0\}$.
- Chaîne $2:\{0-1-0\}$.

L'approche cinématique consiste à écrire pour chaque chaine la fermeture cinématique à l'aide des torseurs.

Graphe de structure de la pompe

Fermeture de chaine cinématique

Chaine cinématique 1

La fermeture cinématique s'écrit:

$$\{\mathcal{V}(3/0)\} = \{\mathcal{V}(3/2)\} + \{\mathcal{V}(2/1)\} + \{\mathcal{V}(1/0)\}$$

On détermine alors successivement les différents torseurs cinématiques que l'on exprimera tous en C:

• $\{ \mathcal{V}(3/0) \}$:

$$\{ \mathcal{V}(3/0) \} = \left\{ \begin{array}{ccc} 0 & u_{30} \\ 0 & v_{30} \\ r_{30} & 0 \end{array} \right\}_{E,R_{1*}} = \left\{ \begin{array}{ccc} 0 & u_{30} \\ 0 & v_{30} \\ r_{30} & 0 \end{array} \right\}_{D,R_{1*}} = \left\{ \begin{array}{ccc} 0 & u_{30} \cos(\alpha) \\ r_{30} \sin(\alpha) & v_{30} \\ r_{30} \cos(\alpha) & -u_{30} \sin(\alpha) \end{array} \right\}_{D,R_{1}}$$

$$= \left\{ \begin{array}{ccc} 0 & u_{30} \cos(\alpha) - \lambda & r_{30} \sin(\alpha) \\ r_{30} \sin(\alpha) & v_{30} \\ r_{30} \cos(\alpha) & -u_{30} \sin(\alpha) \end{array} \right\}_{C,R_{1}}$$

• $\{ \mathcal{V}(3/2) \}$:

$$\{ \mathcal{V}(3/2) \} = \left\{ \begin{array}{cc} p_{32} & 0 \\ q_{32} & 0 \\ r_{32} & 0 \end{array} \right\}_{D,R_1} = \left\{ \begin{array}{cc} p_{32} & -\lambda q_{32} \\ q_{32} & \lambda p_{32} \\ r_{32} & 0 \end{array} \right\}_{C,R_1}$$

• $\{ \mathcal{V}(2/1) \}$:

$$\{\mathcal{V}(2/1)\} = \left\{ \begin{array}{cc} 0 & 0 \\ 0 & 0 \\ r_{21} & w_{21} \end{array} \right\}_{C,R_1}$$

• $\{\mathscr{V}(1/0)\}$:

$$\{ \mathcal{V}(1/0) \} = \left\{ \begin{array}{cc} 0 & 0 \\ 0 & 0 \\ r_{B10} & 0 \end{array} \right\}_{B,R_1} = \left\{ \begin{array}{cc} 0 & 0 \\ 0 & -R \ r_{B10} \\ r_{B10} & 0 \end{array} \right\}_{C,R_1}$$

Chaine cinématique 2

La fermeture cinématique s'écrit :

$$\{\mathcal{V}(1_A/0)\} = \{\mathcal{V}(1_B/0)\}$$

On détermine alors successivement les différents torseurs cinématiques que l'on exprimera tous en A:

• $\{ \mathcal{V}(1_A/0) \}$:

$$\{\mathscr{V}(1_A/0)\} = \left\{ \begin{array}{cc} p_{A10} & 0 \\ q_{A10} & 0 \\ r_{A10} & 0 \end{array} \right\}_{A.R.}$$

• $\{\mathscr{V}(1_B/0)\}$:

$$\{\mathscr{V}(1_B/0)\} = \left\{ \begin{array}{cc} 0 & 0 \\ 0 & 0 \\ r_{B10} & w_{B10} \end{array} \right\}_{A.R.}$$

Résolution

On écrit alors la fermeture cinématique pour chaque fermeture cinématique. Cela donnera 12 équation pour 13 inconnues avec les deux fermetures de chaines :

$$\left\{\mathcal{V}_{(1/0)}^{A}\right\} - \left\{\mathcal{V}_{(1/0)}^{B}\right\} = \left\{0\right\}$$

$$\{\mathcal{V}(3/2)\} + \{\mathcal{V}(2/1)\} + \{\mathcal{V}(1/0)\} - \{\mathcal{V}(3/0)\} = \{0\}$$

Mise en évidence de l'hyperstatisme et de la mobilité

Approche cinématique

- Avec deux cycles fermés, on obtient alors un système de $E_c=12$ équations.
- La modélisation comporte $I_c = 13$ inconnues cinématiques.
- Le rang du système vaut $r_c = 10$ car deux équations ((4) et (5)) donnent "0 = 0" et ne sont donc pas significatives.
- Le nombre d'équations non-significatives correspond directement à l'**hyperstaticité** (ici h=2)
- La mobilité cinématique se définit comme la différence entre le nombre d'inconnues cinématiques (I_c) et le nombre d'équations significatives (r_c) : **ici** mc=3

$$m_c = I_c - r_c = I_c - (E_c - h).$$
 (2)

Application 1 - Corrigé

Application 01

Savoirs et compétences :

- Mod2.C34 : chaînes de solides ;
- Mod2.C34 : degré de mobilité du modèle ;
- Mod2.C34 : degré d'hyperstatisme du modèle;
- □ Mod2.C34.SF1 : déterminer les conditions géométriques associées à l'hyperstatisme;
- Mod2.C34: résoudre le système associé à la fermeture cinématique et en déduire le degré de mobilité et d'hyperstatisme.

Exercice 1 - Applications directes

Pôle Chateaubriand – Joliot-Curie.

Question 1 Pour chacun des mécanismes suivants, déterminer le degré d'hyperstatisme.

Question 2 *Lorsque le modèle est hyperstatique, proposer :*

- des conditions d'assemblage (intuitivement);
- un modèle isostatique.

Exercice 2 - Déphasage d'arbre à cames

Banque PT SIA - 2008.

L'optimisation d'un moteur 4 temps passe (entre autre) par une bonne maîtrise des lois de levée des soupapes. Il est ainsi possible de positionner entre la poulie 1 (entraînée par le vilebrequin via une chaîne) et l'arbre à came 2 un système permettant de créer un déphasage entre ces pièces.

On propose ci-dessous un modèle cinématique du système de déphasage. On retrouve la culasse **0**, la poulie d'entraînement **1**, l'arbre à cames **2**, le piston **3** et le coulisseau **4**.

Question 3 Établir le graphe des liaisons du mécanisme.

Correction

Question 4 Déterminer le degré d'hyperstatisme en précisant la démarche utilisée. (On utilisera la méthode cinématique et la méthode statique).

Correction

Exercice 3 – Simulateur de vol pour la formation de pilotes en aéroclub

Centrale Supelec 2017 - PSI.

On s'intéresse à un simulateur de vol à plate-forme dynamique. Deux moteurs permettent d'assurer le mouvement de tangage. Ils entraı̂nent respectivement les liaisons pivots de centres H et O.

On propose le modèle plan suivant (la pièce 6 est en traits pointillés pour la démarquer des autres pièces).

Question 5 Déterminer le degré d'hyperstatisme du modèle proposé.

Exercice 5 – Pousseur de tablier

Banque PT 2008 - SIC.

Une technique pour construire un pont et de commencer par ériger les piles définitives en béton et les piles temporaires en acier. On peut alors assembler tronçon par tronçon, les 2 tabliers sur la terre ferme et enfin pousser les deux parties du tablier assemblées sur les piles afin de réaliser la jonction. Cette opération de poussée est réalisée à l'aide de systèmes hydrauliques nommés « pousseurs de tablier ».

Le pousseur de tablier est soutenu par plusieurs vérins de balancelle verticaux (non étudiés) qui assurent le positionnement de la semelle afin que la cale de poussée soit parallèle et à la bonne distance du plan inférieur du tablier.

On suppose dans cette partie, que l'angle que fait le plan supérieur de la cale de levage avec l'horizontale est petit. Ce qui revient à considérer que les contacts dans les liaisons planes sont maintenus durant tout le mouvement. Une première étude conduit à la modélisation suivante.

Question 6 Proposer un modèle pour tenir compte de l'hypothèse des angles « petits ».

Correction

Question 7 Estimer le degré de mobilité du modèle proposé.

Correction

Question 8 Déterminer le degré d'hyperstatisme du modèle proposé.

Correction

Question 9 Proposer des modifications pour rendre le système isostatique. Faire un nouveau schéma cinématique tenant compte de ces modifications.

Correction

Question 10 Le constructeur a fait le choix de mettre une liaison glissière de direction horizontale à la place de la liaison plane entre la cale de levage (2) et la semelle (3) (figure 6). Qu'est-ce qui justifie un tel choix? Comment peut-on rendre ce modèle isostatique?

Correction

Exercice 6 - Planeur sous marin

Banque PT 2012 - SIC.

Le planeur sous-marin est un dispositif autonome développé par l'IFREMER dont le but est de réaliser des mesures océanographiques. Il ressemble à un mini sous-marin qui plane en dents de scie vers un point prédéfini. Il remonte régulièrement à la surface afin de communiquer avec son opérateur par satellite afin d'envoyer les données acquises pendant sa plongée pour évaluer sa dérive due aux courants.

Dans le but de modifier l'orientation et l'équilibrage du planeur, l apartie centrale du planeur comporte un dispositif qui permet de positionner le centre de gravité axialement **24** et radialement **11**.

Question 11 Réaliser le graphe de liaison associé au schéma cinématique minimal proposé. Identifier le nombre de mobilités.

Correction

On supposera que la liaison entre deux roues dentées est une liaison ponctuelle.

Question 12 Déterminer le degré d'hyperstatisme. Si celui-ci est non nul, indiquer la ou les contraintes géométriques associées.

Correction