Vectors and Functions

Airat Galiamov

November 2024

Vector basis 1

$$\left\langle \vec{i}, \vec{j} \right\rangle = 0$$
$$\left| \vec{i} \right|^2 = 1$$
$$\left| \vec{j} \right|^2 = 1$$

Orthonormal basis \vec{e}_1, \vec{e}_2 :

$$\begin{split} \vec{e}_1 &= e_{x,1} \cdot \vec{i} + e_{y,1} \cdot \vec{j} = \begin{bmatrix} e_{x,1} \\ e_{y,1} \end{bmatrix} \\ \vec{e}_2 &= e_{x,2} \cdot \vec{i} + e_{y,2} \cdot \vec{j} = \begin{bmatrix} e_{x,2} \\ e_{y,2} \end{bmatrix} \\ \langle \vec{e}_1, \vec{e}_2 \rangle &= [e_{x,1} \, e_{y,1}] \cdot \begin{bmatrix} e_{x,2} \\ e_{y,2} \end{bmatrix} = e_{x,1} \cdot e_{x,2} + e_{y,1} \cdot e_{y,2} = 0 \\ |\vec{e}_n|^2 &= \langle \vec{e}_n, \vec{e}_n \rangle = [e_{x,n} \, e_{y,n}] \cdot \begin{bmatrix} e_{x,n} \\ e_{y,n} \end{bmatrix} = e_{x,n}^2 + e_{y,n}^2 = 1 \end{split}$$

It follows from orthonormality:

$$\begin{cases}
e_{x,1} = e_{y,2} \\
e_{x,2} = -e_{y,1}
\end{cases}
\text{ or }
\begin{cases}
e_{x,1} = -e_{y,2} \\
e_{x,2} = e_{y,1}
\end{cases}$$
(1)

Example:

$$\vec{e}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$$
$$\vec{e}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\1 \end{bmatrix}$$

Basis expansion - linear combination of basis vectors: Example for a given vector \vec{a} :

$$\vec{a} = a_x \cdot \vec{i} + a_y \cdot \vec{j} = \begin{bmatrix} a_x \\ a_y \end{bmatrix}$$

Changing basis to \vec{e}_n :

$$\begin{split} \vec{a} &= a_1 \cdot \vec{e}_1 + a_2 \cdot \vec{e}_2 = a_1 \cdot \begin{bmatrix} e_{x,1} \\ e_{y,1} \end{bmatrix} + a_2 \cdot \begin{bmatrix} e_{x,2} \\ e_{y,2} \end{bmatrix} = \\ &= \begin{bmatrix} a_1 \cdot e_{x,1} + a_2 \cdot e_{x,2} \\ a_1 \cdot e_{y,1} + a_2 \cdot e_{y,2} \end{bmatrix} = \begin{bmatrix} a_x \\ a_y \end{bmatrix} \\ a_x &= a_1 \cdot e_{x,1} + a_2 \cdot e_{x,2} \\ a_y &= a_1 \cdot e_{y,1} + a_2 \cdot e_{y,2} \end{split}$$

Solve to find a_1 and a_2 . Remember in orthonormal basis:

$$a_1 = \langle \vec{a}, \vec{e}_1 \rangle = [a_x \, a_y] \cdot \begin{bmatrix} e_{x,1} \\ e_{y,1} \end{bmatrix} =$$

$$= a_x \cdot e_{x,1} + a_y \cdot e_{y,1}$$

$$a_2 = \langle \vec{a}, \vec{e}_2 \rangle = [a_x \, a_y] \cdot \begin{bmatrix} e_{x,2} \\ e_{y,2} \end{bmatrix} =$$

$$= a_x \cdot e_{x,2} + a_y \cdot e_{y,2}$$

Check it is correct (remember 1):

$$\begin{split} a_x &= a_1 \cdot e_{x,1} + a_2 \cdot e_{x,2} = \\ &= (a_x \cdot e_{x,1} + a_y \cdot e_{y,1}) \cdot e_{x,1} + (a_x \cdot e_{x,2} + a_y \cdot e_{y,2}) \cdot e_{x,2} = \\ &= a_x \cdot e_{x,1}^2 + a_y \cdot e_{y,1} \cdot e_{x,1} + a_x \cdot e_{x,2}^2 + a_y \cdot e_{y,2} \cdot e_{x,2} = \\ &= a_x \cdot (e_{x,1}^2 + e_{x,2}^2) + a_y \cdot (e_{y,1} \cdot e_{x,1} + e_{y,2} \cdot e_{x,2}) = \\ &= a_x \\ a_y &= \dots \end{split}$$

For example vector:

$$\vec{a} = \begin{bmatrix} 37 \\ 28 \end{bmatrix}$$

$$\vec{e}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ and } \vec{e}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$a_1 = a_x \cdot e_{x,1} + a_y \cdot e_{y,1} = 37 \frac{1}{\sqrt{2}} + 28 \frac{1}{\sqrt{2}} = 65 \frac{1}{\sqrt{2}}$$

$$a_2 = a_x \cdot e_{x,2} + a_y \cdot e_{y,2} = -37 \frac{1}{\sqrt{2}} + 28 \frac{1}{\sqrt{2}} = -9 \frac{1}{\sqrt{2}}$$

$$\vec{a} = 65 \frac{1}{\sqrt{2}} \cdot \vec{e}_1 - 9 \frac{1}{\sqrt{2}} \vec{e}_2$$

 $= c_i$

	Vectors	Complex Functions	
Elements	$ec{a} = egin{bmatrix} a_x \ a_y \ dots \ a_z \end{bmatrix}$	$\mathbf{F}(x)$	
Inner product	$ \vec{a} \cdot \vec{b} = \langle \vec{a}, \vec{b} \rangle = \vec{a}^T \cdot \vec{b} = a_x \cdot b_x + \ldots + a_z \cdot b_z = \sum_{i=x}^{z} a_i \cdot b_i$	$\langle \mathbf{F} \mathbf{G} \rangle = \int\limits_{-\infty}^{\infty} \mathbf{F} \cdot \mathbf{G}^* dx$	
Linear	$(k\vec{a} + t\vec{b}) \cdot \vec{c} = k(\vec{a} \cdot \vec{c}) + t(\vec{b} \cdot \vec{c})$	$\langle k\mathbf{F} + t\mathbf{G} \mathbf{H}\rangle = k \langle \mathbf{F} \mathbf{H}\rangle + t \langle \mathbf{G} \mathbf{H}\rangle$	
Orthogonal	$\vec{a} \perp \vec{b} \ \ ext{if} \ \vec{a} \cdot \vec{b} = 0$	$\mathbf{F} \perp \mathbf{G} \text{ if } \langle \mathbf{F} \mathbf{G} \rangle = 0$	
Norm^2	$\left ec{a} ight ^2 = ec{a} \cdot ec{a}$	$\left \mathbf{F} ight ^{2}=\left\langle \mathbf{F} \mathbf{F} ight angle$	
Normalized	$\left \vec{a}\right ^2 = 1$	$ \mathbf{F} ^2 = 1$	
Orthonormal basis	$\vec{e}_n; \vec{e}_n ^2 = 1; \vec{e}_n \cdot \vec{e}_m = 0, \text{ if } n \neq m$	Φ_n ; $ \Phi_n ^2 = 1$; $\langle \Phi_n \Phi_m \rangle = 0$, if $n \neq m$	
Basis expansion, function series	$\vec{a} = c_1 \vec{e}_1 + \ldots + c_n \vec{e}_n = \sum_{i=1}^n c_i \vec{e}_i$	$\mathbf{F}(x) = c_1 \mathbf{\Phi}_1 + \ldots + c_n \mathbf{\Phi}_n = \sum_{i=1}^n c_i \mathbf{\Phi}_i$	
Series coefficients	$c_i = ec{a} \cdot ec{e_i}$	$c_i = \langle \mathbf{F} \mathbf{\Phi}_i \rangle = \int_{-\infty}^{\infty} \mathbf{F} \cdot \mathbf{\Phi}_i^* dx$	
	$\vec{a} \cdot \vec{e_i} = (c_1 \vec{e_1} + \ldots + c_n \vec{e_n}) \cdot \vec{e_i} =$	$\langle \mathbf{F} \mathbf{\Phi}_i \rangle = \langle (c_1 \mathbf{\Phi}_1 + \ldots + c_n \mathbf{\Phi}_n) \mathbf{\Phi}_i \rangle =$	
	$= c_1 \vec{e}_1 \cdot \vec{e}_i + \ldots + c_i \vec{e}_i \cdot \vec{e}_i + \ldots + c_n \vec{e}_n \cdot \vec{e}_i =$	$= c_1 \langle \mathbf{\Phi}_1 \mathbf{\Phi}_i \rangle + \ldots + c_i \langle \mathbf{\Phi}_i \mathbf{\Phi}_i \rangle + \ldots c_n \langle \mathbf{\Phi}_n \mathbf{\Phi}_i \rangle + \ldots + c_n $	

 $= c_i$

