

本期论文主题:Elmo

导师: Yamada

《Deep contextualized word representations》

基于深度上下文的词表征

作者: Matthew E. Peters

单位: Allen Institute for Artificial Intelligence

发表会议及时间: NAACL, 2018

前期知识储备

Pre-knowledge reserve

概率论

了解基本的概率论知识, 掌握条件概率的概念和公 式

语言模型

掌握语言模型的原理,了 解语言模型的评价标准

Char CNN

掌握Char CNN的基本工作原理。

注意力机制

了解注意力机制的思想, 掌握注意力机制的分类和 实现方式

深度之眼 deepshare.net

Learning objectives

课程安排

The schedule of course

第一课:论文导读

The first lesson: the paper guide

- 论文研究背景、成果及意义
- 2 /论文泛读
- 3 Word2vec 和Char CNN回顾
- 4 本课回顾及下节预告

知识树

论文研究背景、成果及意义

研究背景

Research background

SQuAD:阅读理解任务

SNLI:自然语言推理任务

SRL:语义角色标注任务

Coref:指代消解任务

NER:命名实体识别任务

SST-5:情感分析任务

重点 重点来了!

• • • • • •

研究背景

Research background

语言模型

给定句子(词语序列): 今天早上我去食堂吃饭<mark>电视</mark>

$$S = W_1, W_2, ..., W_k$$

语言模型概率:

$$P(S) = P(W_1, W_2, ..., W_k) = p(W_1)p(W_2|W_1)...P(W_k|W_1, W_2, ..., W_{k-1})$$

研究背景

Research background

Feture-Based and Fine -tuning

Feature-Base(特征提取):

1: 首先在big data A上训练语言模型,训练完毕得到语言模型(用作 embedding) 。

2: 然后构造task-specific model,采用有label的语料B训练该 Model,<mark>将语言模型的参数固定</mark>,语料B的训练数据经过语言模型得到 LM embedding,作为task-specific model的额外特征。

Fine-tuning(微调):

- 1:构造语言模型,采用big data A来训练语言模型。 2:在语言模型基础上增加少量神经网络层来完成specific task,然后 采用有label的语料B来训练模型,这个过程中语言模型的参数不固定, 依然是trainable variables。

深度之眼 deepshare.net

Research background

Feture-Based and Fine -tuning

Research Results

TASK	Previous SOTA		OUR BASELINI	ELMO + E BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
<u>SNL</u> I	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	<u>67.2</u>	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%
		·	,		

在6项nlp下游任务中都取得了不俗的表现。

研究意义

Research Meaning

Elmo历史意义

- 提出了动态词向量,能让词语学习到当前语境信息。
- 拉开了预训练模型的序幕

Word2vec为代表

Elmo

重点 重点来了!

nlp领域

提出elmo这种动态词向量

研究意义

Research Meaning

Elmo历史意义

- 提出了动态词向量,能让词语学习到当前语境信息。
- 拉开了预训练模型的序幕

自从elmo模型提出来后,预训练模型正式被nlp各项下游任务中采用,下游任务中的各种模型都被预训练模型+给替代。

重点 重点来了!

论文泛读

Strcuture of Paper

Structure of Papers

bi-Language Model

abstract

摘要核心

- 1. 我们介绍了一种新的词向量表征可以解决词语义特征和语境特征。
- 2. 我们的向量是在大规模语料通过bidirectional language model学习到的。
- 3. elmo模型在各项nlp下游任务中都表现得良好。
- 4. 暴露预训练的深层内部是至关重要的,允许下游模型混合不同类型的半监督信号。

深度之眼 deepshare.net

Paper title

- 1. Introduction
- 2. Related Work
- 3. ELMo:Embeddings from Language Models
 - 3.1 Bidirectional Language Models
 - 3.2 ELMo
 - 3.3 Using biLMs for supervised NLP tasks
 - 3.4 Pre-trained bidirectional language model_architecture______

- 4. Evaluation
- 5. Analysis
 - 5.1 Alternate layer weighting schemes
 - 5.2 Where to include ELMo
 - 5.3 What information is captured by the biLM respresentations
 - 5.4 Sample effciency
 - 5.5 Visualization of learned weights
- 6. Conclusion

Word2vec以及 Char CNN的回顾

Strcuture of Paper

Structure of Papers

Word2vec

Structure of Papers

Word2vec

- 2. 所有onehot分别乘以共享的输入权重矩阵W {VN矩阵}。
- 3. 所得的向量concat平均作为隐层向量,size为1*N
- 4. 乘以输出权重矩阵W1 {N*V}。

5. 得到向量1*V,映射到词典,直接过softmax。

7

D

Structure of Papers

Char CNN

本课回顾及下节预告

Review in the lesson and Preview of next lesson

Review in the lesson

01 研究背景及成果意义

学习了nlp下游任务以及概念feature-based和fine-tuning、了解了论文的实验结果。

深度之眼

deepshare.net

02 论文总览

论文总共包含6个部分,论文主要介绍elmo的结构。

03 回顾Word2vec以及Char CNN

回顾了Word2vec的流程以及学习了Char CNN的结构。

下节预告

Preview of next lesson

01 Bidirectional Language Model

学习Bidirectional Language Model

02 elmo

学习elmo的主要结构,了解怎么使用elmo结构。

03 实验设置及结果分析

比较了模型在几个数据集上的表现情况。

04 论文总结

总结论文中创新点、关键点及启发点

深度之眼 deepshare.net

Preview of next lesson

- 下载论文
- 泛读论文
- 筛选出自己不懂的部分,带着问题进入下一课时

结 语-

循循而进,欲速则不达也。

联系我们:

电话: 18001992849

邮箱: service@deepshare.net

QQ: 2677693114

公众号

客服微信