INTELLIGENT DECISION SUPPORT SYSTEMS - EXERCISES VI - AHP AND CHOQUET INTEGRAL

- I. Indicate the truth (T) or falsity (F) for the below statements.
- a) AHP uses a rule-based preference model
- b) The preference model of AHP is formed by priorities of all elements at all hierarchy levels
- c) The minimal number of hierarchy levels in AHP is three
- d) AHP enforces cardinal consistency condition
- e) The typical Saaty's scale is between 1 and 5
- f) AHP requires pairwise comparisons of all pairs of elements with a common predecessor
- g) Pairwise comparisons in AHP are based on the nominal scale
- h) To rank five criteria with the common predecessor, in AHP, it is required to make 10 pairwise comparisons
- i) AHP estimates the priorities by computing the principal eigenvector of a pairwise comparison matrix
- j) AHP is vulnerable to the rank reversal phenomenon
- k) AHP maintains the condition of order preservation
- I) When consistency ratio CR is greater than 0.1, the consistency is judged satisfactory
- II. Given the below incomplete pairwise comparison matrix, make it complete to satisfy the consistency condition of pairwise comparisons (CCPC) and cardinal consistency condition (CCC).

	a ₁	a ₂	a ₃	a ₄
a ₁	1	3		
a ₂			2	
a ₃				
a ₄	3			

III. Consider the hierarchy consisting of four levels, with two major criteria, each consisting of two sub-criteria, and two alternatives, A and B. Fill in the hierarchy by replacing the question marks (?) so that the hierarchy becomes consistent with the assumptions of AHP. Then, compute the comprehensive scores of A and B. Without computing the exact values, what is the sum of Sc(A) and Sc(B)?

IV. Consider the below entirely consistent pairwise comparison matrix. Compute the priorities $(w_1 - w_4)$ corresponding to the compared alternatives.

	a ₁	a ₂	a ₃	a ₄	
a ₁	1	1/2	1	3	w ₁ =
a ₂	2	1	2	6	w ₂ =
a ₃	1	1/2	1	3	w ₃ =
a ₄	1/3	1/6	1/3	1	w ₄ =

V. Consider the below inconsistent pairwise comparison matrix. Compute the priorities $(w_1 - w_4)$ corresponding to the compared alternatives by approximating the principal eigenvector using the methods based on the arithmetic mean of the normalized matrix.

	a ₁	a ₂	a ₃	a ₄	
a ₁	1	1/3	1	3	w ₁ =
a ₂	3	1	2	5	w ₂ =
a ₃	1	1/2	1	3	w ₃ =
a ₄	1/3	1/5	1/3	1	<i>w</i> ₄ =

VI. The maximal eigenvalue of the above matrix is 4.034. Compute the consistency index CI and consistency ratio CR. Is the inconsistency level of this matrix acceptable according to a default rule of AHP?

VII. Consider four alternatives X, Y, W, and Z evaluated in terms of three criteria g_1 , g_2 , g_3 of gain type. For each statement, indicate its truth (T) or falsity (F) (> denotes a preference relation).

Alternative	g ₁	g ₂	g ₃	Relations X > W and Y > Z can be represented using a weighted sum model	
Х	8	4	7	Relations W > X and Z > Y can be represented using a weighted sum model	
Y	8	6	5	Relations X > Y and W > Z can be represented using an additive value function	
W	3	4	7	Relations X > Y and Z > W can be represented using an additive value function	
Z	3	6	5	Relations X > Y and Z > W can be represented using the Choquet integral	

VIII. Consider the capacities for all subsets of criteria: $u(\emptyset) = 0$, $u(\{g_1\}) = 0.3$, $u(\{g_2\}) = 0.4$, $u(\{g_3\}) = 0.5$, $u(\{g_1, g_2\}) = 0.8$, $u(\{g_1, g_3\}) = 0.6$, $u(\{g_2, g_3\}) = 0.7$, $u(\{g_1, g_2, g_3\}) = 1$. Compute the Choquet integral for alternative A = [3, 6, 5].

$$Ch(A) =$$

IX. Consider the capacities for various subsets of criteria: $u(\emptyset) = 0$, $u(\{g_1\}) = 0.3$, $u(\{g_2\}) = 0.4$, $u(\{g_3\}) = 0.5$, $u(\{g_1, g_2, g_3\}) = 1$. Provide the example capacities for pairs of criteria so that g_1 and g_2 interact positively, g_1 and g_3 interact negatively, and there is no interaction between g_2 and g_3 .

$$u(\{g_1, g_2\}) = u(\{g_1, g_3\}) = u(\{g_2, g_3\}) =$$

X. Consider the weights for individual criteria and criteria pairs: $m(\emptyset) = 0.3$, $m(\{g_1\}) = 0.3$, $m(\{g_2\}) = 0.4$, $m(\{g_3\}) = 0.5$, $u(\{g_1, g_2\}) = 0.1$, $u(\{g_1, g_3\}) = -0.1$, $u(\{g_2, g_3\}) = -0.2$. Compute the Choquet integral for alternative A = [3, 6, 5] using the Möbius representation. Verify if these weights satisfy the normalization and monotonicity constraints.

$$Ch(A) =$$