Смежные паросочетанию задачи и их решение для двудольных графов

Подготовил Сивухин Никита. По вопросам пишите на почту sivukhin.work+teach@gmail.com

Смежные задачи

Для графа G = (V, E) рассмотрим следующие часто встречающиеся оптимизационные задачи:

- Максимальное назвисимое множество (maximum independent set) наибольшее по размеру подмножество вершин $I \subseteq V$ такое, что каждая пара вершин $v, u \in I$ не связана ребром $\{v, u\} \notin E$. Максимальный размер I обозначается как $\alpha(G)$
- Минимальное вершинное покрытие (minimum vertex cover) наименьшее по размеру подмножество вершин $C \subseteq V$ такое, что для каждого ребра $e \in E$ существует вершина $v \in C$ инцидентная e. Минимальный размер C обозначается как $\tau(G)$
- Максимальное паросочетание (maximum matching) наибольшее по размеру подмножество рёбер $M \subseteq E$ такое, что каждая пара рёбер $e_1, e_2 \in M$ не имеет общих вершин. Максимальный размер M обозначается как $\nu(G)$
- Минимальное рёберное покрытие (minimum edge cover) наименьшее по размеру подмножество рёбер $B\subseteq E$ такое, что для каждой вершины $v\in V$ существует ребро $e\in B$ инцидентное v. Минимальный размер B обозначается как $\rho(G)$

Рис. 1: Наибольшее паросочетание ($\nu(G)=2$)

Рис. 2: Наименьшее рёберное покрытие ($\rho(G) = 4$)

Рис. 3: Наименьшее вершинное покрытие ($\tau(G) = 2$)

Рис. 4: Наибольшее независимое множество ($\alpha(G) = 4$)

Замечание 1. Для любого графа G = (V, E) верно, что $\nu(G) \le \tau(G)$

Теорема 1 (Первое тождество Галлаи). Для любого графа G = (V, E) верно, что $\alpha(G) + \tau(G) = |V|$

Доказательство. Несложно показать, что $\tau(G) \leq |V| - \alpha(G)$, так как дополнение \overline{I} к любому независимому множеству $I \subseteq V$ является корректным вершинным покрытием (если существует ребро $\{u,v\} \in E$ такое, что $u,v \notin \overline{I}$, то $u,v \in I$, что невозможно по определению).

Аналогично, $\alpha(G) \geq |V| - \tau(G)$, так как дополнение \overline{C} к любому вершинному покрытию $C \subseteq V$ является корректным независимым множеством.

Теорема 2 (Второе тождество Галлаи). Для любого графа G = (V, E) без изолированных вершин верно, что $\nu(G) + \rho(G) = |V|$.

Доказательство. Несложно показать, что $\nu(G) \geq |V| - \rho(G)$. Заметим, что рёбра наименьшего рёберного покрытия B образуют граф без циклов (иначе можно было бы уменьшить множество) — то есть лес из деревьев. Количество компонент связности в таком графе G = (V, B) равно $|V| - \rho(G)$, а также все компоненты связности содержат хотя бы $\mathbf 2$ вершины. Тогда если взять из каждой компоненты по одному ребру, то получится корректное паросочетание, а значит $\nu(G) \geq |V| - \rho(G)$.

Также покажем, что $\rho(G) \leq |V| - \nu(G)$. Паросочетание M покрывает $2\nu(G)$ вершин V_M , значит $|V| - 2\nu(G)$ вершин осталось непокрытыми. Заметим, что непокрытые вершины $V \setminus V_M$ образуют независимое множество, так как если между ними было бы ребро, то им можно расширить паросочетание M. Тогда, так как в графе нет изолированных вершин, можно взять произвольное ребро для каждой вершины из $V \setminus V_M$, получив таким образом корректное рёберное покрытие, имеющее размер $\nu(G) + (|V| - 2\nu(G)) = |V| - \nu(G)$, а значит $\rho(G) \leq |V| - \nu(G)$.

Замечание 2. Доказательство второго тождества Галлаи содержит алгоритм построения минимального рёберного покрытия по максимальному паросочетанию

Удивительным образом, для случая двудольных графов G = (X, Y, E) можно доказать строгое равенство $\tau(G) = \nu(G)$.

Для доказательства рассмотрим декомпозицию вершин двудольного графа G=(X,Y,E) на множества X^+,X^-,Y^+,Y^- , порождённую паросочетанием M. Для этого оринтируем рёбра графа в соответствие с паросочетанием M (для $\{x,y\}\in M$ ориентация в сторону $y\to x$, для $\{x,y\}\notin M$ — наоборот в $x\to y$) и построим множество V^+ из всех вершин достижимых из **ненасыщенных** вершин доли X. Тогда определим $X^+=X\cap V^+,Y^+=Y\cap V^+,X^-=X\setminus X^+,Y^-=Y\setminus Y^+$.

Замечание 3. Заметим, что для построения декомпозиции используется тот же граф с наведённой ориентацией G_M , что используется для поиска M-чередующейся цепи. Поэтому декомпозиция является естественным продолжением алгоритма построения паросочетания, где после нахождения наибольшего паросочетания нужно запустить аналогичный поиск в глубину из всех ненасыщенных вершин, который в итоге посетит все вершины из множества V^+ .

Рис. 5: Декомпозиция вершин двудольного графа Насыщенные вершины окрашены в оранжевый цвет

Если иходное паросочетание M являлось наибольшим, то построенная декомпозиция обладает некоторыми интересными свойствами:

- 1. Все вершины из X^- являются насыщенными (по построению)
- 2. Все вершины из Y^+ являются насыщенными (иначе в графе существовала бы M-чередующаяся цепь)

- 3. В графе нет ориентированных рёбер в сторону $X^+ \to Y^-$ и $Y^+ \to X^-$ (иначе конечная вершина ребра должна была быть в множестве V)
- 4. В графе нет рёбер в сторону $Y^- \to X^+$

В данном случае вершина из X является насыщенной, а значит попасть в неё в рамках нашего построения можно было только по ребру из паросочетанием, следовательно вершина из Y тоже должна была быть посещённой

Рис. 6: Структура рёбер для декомпозиции относительно **наибольшего** паросочетания M Оранжевым выделены компоненты, **полностью** состоящие из насыщенных вершин

Теорема 3 (Теорема Кёнига-Эгервари). Для двудольного графа G = (X, Y, E) верно, что размер наибольшего паросочетания равен размеру наименьшего вершинного покрытия

Доказательство. Из свойств (3) и (4) следует, что множество $C = X^- \cup Y^+$ является корректным вершинным покрытием.

Заметим также, что из свойств (1) и (2) следует, что C состоит только из насыщенных вершин, причем так как рёбер между компонентами X^+ и Y^- нет, то любое ребро из M содержит ровно одну вершин из C, а значит |C| = |M|.

Таким образом $\tau(G) \leq \nu(G)$, но так как $\nu(G) \leq \tau(G)$, то $\nu(G) = \tau(G)$.

Замечание 4. Из теоремы Кёнига-Эгервари следует, что в графе G = (X, Y, E) для любого оптимального паросочетания $M \subseteq E$ и оптимального вершинного покрытия $C \subseteq V$ верно, что каждое ребро $e \in M$ содержит ровно одну вершину $v \in C$