

ដោយ ញ៉ូល សាព៉ង់ មទិញ្ញាមទ្រង់សាំងទិន្យា

्रिक्षात्राधिक्षेत्रम्य (७००० स्पृ ७००५)

still grant

សំសាង់សិចចម្លើយអនុងមសំសិចក្រាបថ្នាក់នី១២ន្លាច់ចេញរួច ទាក់ឌុមពីស្លាំ ២០១០ ೩៧ ២០១៨

លំហាត់

- $m{I}$. គេឲ្យអគ្គយន៍ $f(x)=rac{x^2+3x+6}{x+2}$ កំណត់(គ្រប់x
 eq -2 និងបានខ្សែកាដC ។(២០១០)
 - a. គណនា f'(x) ។ រកត់ម្លៃបរយាមន f ។គណនាលីជីតមិន f កាលណា x ខិតទៅរក $+\infty, -\infty$ ។ សង់ភា រាងអេថរភាព f ។
 - b. រកសជីការបន្ទាត់ប៉ះនិងខ្សែកាង C (ភ្លិងចំណុច $x_0=1$ ។ គណនាកូអអងាវនេចំណុច(ប្រសព្វ A រវាងសជីការបន្ទាត់ប៉ះនិងអាស៊ីជភូតGនិងខ្សែកាង C។
 - c. សង់ខ្សែកាង C បន្ទាន់ប៉ះដនខ្សែកាង C និងអាស៊ីជភូនក្នុងត(ផ្ទៃយអរតួណរយ៉ាល់នៃ ជួយ ។ គណនាវិថ្នី (ក្និឡាខណ្ឌ ដោយខ្សែកាង C អ័ក្សអាប់ស៊ីស និងបន្ទាន់ x=1, x=2 ។
- - a. រក $\lim_{x\to\pm\infty}f(x)$ ។រកសមើការអាស៊ីយភូត េទ្ធិត L_1 នៃ ក្រាប C ។ បង្ហាញថា f មានអប្បបរមា \mathfrak{F} នឹ $x=\ln 2$ ។
 - b. សង់ភារាងអមេរភាជាខែអនុគមន៍ f ។ រកសជីការបន្ទាត់ L_2 ដែលប៉ះ ក្រាប C (គ្និង់ចំណុច A(0;1) ។
 - c. សង់បន្ទាត់ L_1,L_2 និងក្រាប C នៅក្នុងត $\mathbf Q$ យកូអរដោរនៅតជួយ ។ គេឲ្យ $\ln 2=0.7$
 - d. គណនាវិជ្ជិក្សាវិជ្ជិកប្លង់កំណត់ដោយអាស៊ីយកូត ${f C}$ តែ L_1 ក្រាបC បន្ទាត់ឈរx=0 និងx=1 ។
- III. អគ្គជន៍ f កំណត់ចំអោះ x>0 ដោយ $y=f(x)=1-rac{2\ln x}{x}$ សើយយាន (ក្រប C ។(២០១២)
 - a. f(x)និង $\lim_{x \to +\infty} f(x)$ និង $\lim_{x \to 0} f(x)$ ។ រកសមីការអាស៊ីមភូតឈរ និងអាស៊ីមភូតមេកិរន ក្រប C ។
 - b. គណនា ដេរីវេ f'(x) សើយសង់តា រាងអមេរភា ពេរិនអនុគមន៍ f ។
 - c. សង់(ក្របC នៅក្នុងត(មួយកូអរមោរខមួយ ។ គេឲ្យ $e=2.7, rac{2}{e}=0.7$
 - d. គណនាវិថ្នា (ក្រឡាវិថ្មិកប្លង់កំណត់ដោយ (ក្លាប C រភាស៊ីយកូតរមកបន្ទាត់ឈរ x=1និងx=e ។
- IV. អគ្គយន៍ f កំណត់ចំពោះ x>0 ដោយ $y=f(x)=2+rac{\ln x}{x^2}$ ហើយយាន (ក្របC ។(២០១៣)

- a. f(x) និង $\lim_{x\to +\infty} f(x)$ និង $\lim_{x\to 0} f(x)$ ។ រកសមីការអាស៊ីមភូតឈរ និងអាស៊ីមភូតមេកិន ក្រប C ។
- b. គណនា ដេរីវេ f'(x) ហើយសង់តា រាងអថេរភា វេឌែអនុគមន៍ f ។
- c. រកកូអអេវា ខេចំណុចប្រសព្វរវាង ក្រាប C និងអាស៊ីយភូតរងក ។ សង់ ក្រាប C និងអាស៊ីយភូត ក្នុងកG យកូអអេវា ខេដ្ឋយ ។ គេ G $e=2.72, e^{0.5}=1.65$ ។
- d. គណនាវិថ្នី (កូឡាវិថ្និកប្លង់កំណត់ដោយ (ក្លាប C អាស៊ីយកូតវេដក បន្ទាត់ឈរ x=1និង $x=e^{0.5}$ ។
- $m{V}$. គេបានអគ្គជន៍ f កំណត់លើ $I=(0,+\infty)$ ដោយ $f(x)=rac{x+\ln x}{x^2}$ ៗ(២០១៤ លើកទី២)
 - 1. h ជាអនុគមន៍កំណត់លើ I ដោយ $h(x)=-x+1-2\ln x$ ។ គណនា h(1) និងសិក្សាអថេរភាព h(x) ដោយគេជិនភាពជ្រាក់លើជីតា h(x) (ភូមិ 0 និង(ភូមិ $+\infty$ ឡើយ ។
 - 2. a. គណនាលីជីកវិន f(x) (ក្ងឹង់ 0និង(ក្ងឹង់ $+\infty$ ។
 - b. គណនាមេរីអេ f'(x) នៃអនុគយន៍ f(x) ។
 - c. បង្ហាញថា នៅលើ I,f'(x) មានសញ្ញាដូចh(x) ។
 - d. ទាញរកអថេរភាព ន f(x) លើ I និងសង់ (ក្លាប C នf(x) នៅ ក្នុងត(មួយអរគូណរយ៉ាល់។
- $m{VI}$. f ជាអគ្គធន៍កំណត់លើ $(0,+\infty)$ ដោយ $f(x)=x-5+rac{8\ln x}{x}+rac{9}{x}$ និង C ជា (ក្របរបស់វា ។(២០១៤ លើកទី១)
 - 1. a. In $\lim_{x\to +\infty} f(x)$
 - b. $\Re \lim_{x\to 0} f(x)$
 - c. ស្វាយបំភ្លឺថាបន្ទាត់ Δ ដែលមានសមីការ y=x-5 ជាអាស៊ីតូភមិនឡៃ Cនៅជិត $+\infty$ ។
 - d. កំណត់អាប់ស៊ីសចំណុច(ប្រសព្វ Δ និងខ្វែរកាម C ។
 - 2. a. បង្ហាញថាចំអោះ(គ្នំប់x អនាំហើ $(0,+\infty)$ អគមាន $f'(x)=rac{g(x)}{x^2}$ ។
 - b. សិក្សាអថរភាជាឧអនុគយន៍ ស្រាយដឹងថាសជីការg(x)=0 បានចម្លើយ x'=1និង x''=lpha; (1<lpha) ។
- VII. f ជាអគ្គមន៍កំណត់លើ $\mathbb R$ ដោយ $f(x)=4-x-2e^{-x}$ ។ ភាមដោយ C ជា ក្របរបស់វា ។(២០១៤លើកទី១)
 - 1. a. In $\lim_{x\to +\infty} f(x)$
 - b. បង្ហាញថាបន្ទាត់ D បានសមីការ y=-x+4 ជាអាស៊ីមតូតមិនខ្មែរកាម C ។
 - c. តើ ខ្មែរកាង C នៅលើឬ fកា ជបន្ទាត់ D ចូរបញ្ជាក់ ។

- d. ស្នៀងថ្នាត់ថា (គ្រប់ចំនួនពិត $x,f(x)=rac{4e^x-xe^x-2}{e^x}$ ។
- e. វភ $\lim_{x\to -\infty} f(x), (\mathbf{f}(\vec{\mathcal{U}}))$ ទីល $\lim_{x\to -\infty} xe^x = 0)$
- 2. a. គណនា f'(x) ។ សិក្សាអថេរភាពមិន f ។ កំណត់តម្លៃពិតមិនអភិបរយារបស់ f ។
 - b. A ជាចំណុចនៅលើឡៃក្រាងC ដែលយានអាប់ស៊ីស $\mathbf{0}$ ។ កំណត់សមីការបន្ទាត់ប៉ះឡៃក្រាងC (ភ្ងង់ A ។
 - c. បង្ហាញថាសជីការ f(x)=0 មានចម្លើយកែជួយគត់ដែលគេភាងអោយ β នៅក្នុងចន្លោះ [-1,0] ។ (បញ្ហាក់:w0១៤លើកទី១ខេញលំហាត់អនុគមន៍wលំហាត់)

 $m{VIII}$. »A: គេយានអគ្គយគ៍ g កំណត់ហើ $(0,+\infty)$ ហោយ $g(x)=x^2+\ln x$ ។(២០១៥)

- 1. a. បង្ហាញថាអនុគមន៍ g កើនអាច់ទាកលើ $(0,+\infty)$ ។
 - b. គណៈនា g(1) ។
- 2. a. ទាញលទ្ធសាជីសំគួរទី១ បញ្ហាក់ថា អបីx>1 គោះ $x^2+\ln x\geq 0$ និស្សី $0< x\leq 1$ គោះ $x^2+\ln x\leq 1$ ។
 - b. កំណត់សញ្ញា ខែករខ្សាម $x^2+\ln x-1$ កាលណា x នៅ លើចរន្លាះ $(0,+\infty)$ ។
- »B: គេយានអគុគជន៍ f កំណត់លើ $(0,+\infty)$ ដោយ $f(x)=x+1-rac{\ln x}{x}$ និងភាមដោយ C (ក្របរបស់វាក្នុងត(ជួយ។
- 1. សិក្សាលីជីតមនុគមន៍ f (ភ្នំ0 និង $+\infty$ (មយីងដីងថា $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$)
- 2. បង្ហាញថា មេរីវេងនអនុគមន៍ f គី $f'(x)=rac{x^2+\ln x-1}{x^2}$ ។
- 3. \mathbf{t} ប្រីលទ្ធផលវិនសំនួរ A សិក្សាសញ្ញាវិន f'(x) និងសង់ភា រាងអេះថរភា ជាខែអនុគមន៍ fលើ $(0,+\infty)$ ។
- 4. a. បង្ហាញថាបន្ទាត់ Δ មានសមីការ y=x+1 ជារកស៊ីមតូតនៅលើក្រាប C (ត្រឹ \sharp $+\infty$ ។
 - b. សិក្សាទីតាំងCរចៀបនីង Δ និងបញ្ចាក់ថាកូអរដោរនចំណុចប្រសព្ធ I រវាង \widehat{G} ាប Cនិងបន្ទាក់ Δ ។ សង់ Δ និង \widehat{G} ាបC។
- IX. គេឲ្យអគ្គយន៍ f កំណត់លើ $\mathbb R$ អោយ $f(x)=x+2-rac{4e^x}{e^x+3}$ ។(២០១៦)
 - a. គណនាលីជីភានៃ f (ភូង $-\infty$ និង $+\infty$
 - b. សិក្សាទីភាំ $\mathfrak A$ នេ $\mathfrak A$ ប C ឡេប ទៅនិងបន្ទាក់ d_1 ងែលយានសេជីការ y=x+2
 - c. ត្រាយបញ្ជាក់ថាចំអោះទ្រប់ចំនួនពិត $x,f'(x)=\left(rac{e^x-3}{e^x+3}
 ight)^2$ ។
 - d. សិក្សាអថេរភាពវិន f លើ $\mathbb R$ និងសង់ភារាងអថេរភាពវិន f ។

- e. ដើរគររាចថាយ៉ាងណាចំពោះបន្ទាត់ប៉ះ d_2 ទៅនិងក្រាប C (ភ្លង់ចំណុច I នៃលយានអាប់ស៊ីស $\ln 3$ ។
- f. បង្ហាញថាបន្ទាត់ប៉ះ d_3 ទៅនឹងក្រាប C (ភ្និង់ចំណុច អែលយានអាប់ស៊ីសសុន្យយានសមីការ $y=rac{1}{4}x+1$
- g. ដោយសន្លក់ថាចំពោះ I ជាថ្មីតន្លុះ ខែ ក្រាប C និងក្នុងតម្លៃប្រហែលមិន $\ln 3 = 1.09$ ចូរសង់ (កាប់ C និងបន្ទាក់ប៉ះ d_1, d_2, d_3 នៅក្នុងតម្លៃយ៉ាត់ ជួយ ។
- $m{X}$. គេបានអនុគមន៍ f កំណត់លើ $\mathbb R$ ដោយ $f(x)=x+rac{1-3e^x}{1+e^x}$ ។ (២០១៧)
 - a. បង្ហាញថា $f(x)=x+1-rac{4e^x}{1+e^x}$ និងគណៈនាលីជីភមិន f ត្រង់ $-\infty$ ស្វាយបំភ្លឺថាបន្ទាត់ d_1 ខែលយនេសជីការy=x+1 ជាអាស៊ីជភូនទៅនិង ក្រាប C ត្រង់ $-\infty$ ។ សិក្សាទីតាំ អិន ក្រាប C ទៀបនិងបន្ទាត់ d_1 ។

 - c. គណនាសេរីវេ f'(x) និងបង្ហាញថា (គ្លប់ចំនួនពិភ $x,f'(x)=\left(rac{e^x-1}{e^x+1}
 ight)^2$ ។
 - d. សិក្សាអថេរភាពមិន f រួចសង់តារាងអេថេរភាពមិន f ។ សង់ $ig(ar{r})$ ប C និងអាស៊ីយភូត d_1 និង d_2 របស់វា ។
- XI. គេបានអនុគមន៍ f កំណត់លើ $(1,+\infty)$ ដោយ $f(x)=-x+4+\ln\left(\frac{x+1}{x-1}\right)$ ។ គេតាមដោយ(C) (ក្លាបរបស់វា ។(២០១៩)
 - a. គណនាលីជីភ f (ភ្លង់ 1 និង(ភូង់ $+\infty$ ។
 - b. G្វាយបំភ្លឺថា នៅ $(1,+\infty)$ គេបាន ដេរី វេងនអនុគមន៍ fគឺ $f'(x)=\frac{-(x^2+1)}{(x+1)(x-1)}$ ។ សិក្សាអថេ ភាពមិនអនុគមន៍ f និងសង់ភា វាងអថេ ភាពមិន f លើ $(1,+\infty)$ ។
 - c. បង្ហាញថាបន្ទាត់ d_1 មែលយានសេជីការy=-x+4 អាស៊ីយភូតទៅនិងក្រាប C ភ្នែង $+\infty$ ។
 - d. បង្ហាញថា ចំពោះ (គ្ ប់ xលើ $(1,+\infty)$, $\frac{x+1}{x-1}>1$ និងទាញយកការ (ប្រៀបចៀបទីតាំង (C) ទៀបនិង d_1 ។
 - e. កំណត់កូអអងារនាំនចំណុចនៅលើ (C) ដែលបន្ទាត់ប៉ះ d_2 ទៅនិងក្រាប (C) ត្រង់ចំណុចនេះ បានបេតុណ (ភ្នា ប់ទិសស្សើ $-\frac{5}{3}$ និងសអសារសេធីកាអិនបន្ទាត់ d_2 នេះ ។
 - f. សង់ក្រាប (C) អាស៊ីដភូត d_1 និងបន្ទាត់ប៉ះ d_2 ។ ប្រើតិវដ្ដ្ហប្រហែល $\ln 3 = 1.1$ និងក្រាប (C) កាត់អ័ក្សអាស៊ីសចំណុច (4,5,0)

ដំណោះស្រួយ

សម្ដីវាធុន
$$f'(x) = \frac{(2x+3)(x+2) - (x^2 + 3x + 6)}{(x+2)^2}$$

$$= \frac{2x^2 + 4x + 3x + 6 - x^2 - 3x - 6}{(x+2)^2}$$

$$= \frac{x^2 + 4x}{(x+2)^2}$$

$$= \frac{x(x+4)}{(x+2)^2}$$

អូច នេះ
$$f'(x)=\frac{x(x+4)}{(x+2)^2}$$
 »រក់តាំម្ហបរយាមិន f ម៉ោយ $(x+2)^2>0$, (គ្រប់ $x\neq -2$ នោះ $f'(x)$ យកសញ្ញាកាម $x(x+4)$ ឲ្យ $x(x+4)=0$ $\Leftrightarrow x=0, x=-4$ »ភារាសាស្ត្រា

x	-∞		-4	_	-2	0		$+\infty$
f'(x)		+	0	_	_	- 0	+	

តាយភាពសញ្ហា ដោយ
$$f'(x)$$
 ប្តូរសញ្ហាពី $+$ ទៅ $-$ (ភូមឹ $x=-4$ នោះ $f(x)$ យានអភិបរយា(ភូមឹ $x=-4$ នាំ ឲ្យ $f(-4)=\frac{(-4)^2+3(-4)+6}{-4+2}=\frac{16-12+6}{-2}=-5$ ហើយ $f'(x)$ ប្តូរសញ្ហាពី $+$ ទៅ $-$ (ភូមឹ $x=0$) នោះ $f(x)$ យានអប្បបរយា(ភូមឹ $x=0$) ឲ្យ $f(0)=3$

»គណៈ នាកលីដីភ
$$f$$
 កាលណា x ទិតជីភ $+\infty, -\infty$
» $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2 + 3x + 6}{x + 2} = +\infty$
» $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^2 + 3x + 6}{x + 2} = -\infty$

»សង់ភា រាងអេថរភាព

x	-∞	-4	_	-2	0	$+\infty$
f'(x)	+	0	_	_	0	+
f(x)	$-\infty$	-5	$-\infty$	$+\infty$	3	$+\infty$

b. រកសជីការបន្ទាត់ប៉ះនឹងខ្សែកាង C (ភ្និងចំណុច $x_0=1$ សជីការបន្ទាត់ប៉ះខ្សែកាងយានរាង

$$(D): y = f'(x)(x - x_0) + f(x_0)$$

まれい
$$f(x) = \frac{x^2 + 3x + 6}{x + 2}$$

$$\Rightarrow f(1) = \frac{1 + 3 + 6}{1 + 2} = \frac{10}{3}$$
 まだい $f'(x) = \frac{x^2 + 4x}{(x + 2)^2}$
$$\Rightarrow f'(1) = \frac{1 + 4}{(1 + 2)^2} = \frac{5}{9}$$

នាំ ឲ្យ យើងបាន
$$y=\frac{5}{9}(x-1)+\frac{10}{3}=\frac{5}{9}x-\frac{5}{9}+\frac{10}{3}=\frac{5}{9}x+\frac{25}{9}$$
 អូប នេះ $(D):y=\frac{5}{9}x+\frac{25}{9}$

គណនាកូអរអារនៃចំណុំច ${f U}$ សព្វ A រវាងសមីការបន្ទាត់ប៉ះនិងអាស៊ីមតូតរ ${f G}$ តវិន ${f l}$ ១អ្រកាង

សយីវយាន
$$f(x) = \frac{x^2 + 3x + 6}{x + 2}$$

$$= x + 1 + \frac{4}{x + 2}$$

សេរីយ
$$\lim_{x\to\pm\infty}\frac{4}{x+2}=0$$

នោះ (l):y=x+1 ជាអាស៊ីយកូក (ទូកមេខៀមកាង C

$$A = \begin{cases} y = \frac{5}{9}x + \frac{25}{9} \\ y = x + 1 \end{cases}$$

សជីការអាប់ស៊ីស

$$x+1 = \frac{5}{9}x + \frac{25}{9}$$
$$9x + 9 = 5x + 25$$
$$4x = 16$$
$$\Rightarrow x = 4$$
$$\Rightarrow y = 4 + 1 = 5$$

អ្នកស្គេះ A(4;5)

c. សង់ខ្សែកាង C បន្ទាត់ប៉ះខ្សែកាង C និងអាស៊ីយភូត $\mathcal C$ ទិតវិនខ្សែកាង C

គណនាវិថ្នី (កូឡាខណ្ឌ ដោយខ្សែកោង C អើក្សអាប់ស៊ីស និងបន្ទាត់ x=1, x=2

គា ឃ្មារនេះ
$$S=\int_1^2 f(x)dx$$

$$=\int_1^2 (x+1+\frac{4}{x+2})dx$$

$$=[\frac{1}{2}x^2+x+4\ln(x+2)]_1^2$$

$$=2+2+4\ln 4-(\frac{1}{2}+1+4\ln 3)$$

$$=\frac{5}{2}+4(2\ln 2-\ln 3)$$
 ងកត្តាមន្ទ

អ្នកស្នេះ
$$S=\frac{5}{2}+4(2\ln 2-\ln 3)$$
ឯកភ្ជាំវិទ្ធិ ។

$$f'(x) = 0 \Leftrightarrow 1 - 2e^{-x} = 0$$

$$2e^{-x} = 1$$

$$\Rightarrow e^{-x} = \frac{1}{2}$$

$$\Rightarrow x = \ln 2$$

$$f'(x) > 0$$

$$\Leftrightarrow 1 - 2e^{-x} > 0$$

$$e^{-x} < \frac{1}{2}$$

$$x > \ln 2$$

»ភា រាមសញ្ញា

x	-∞		ln 2		$+\infty$
f'(x)		_	0	+	

សោយ f'(x) ប្តូរសញ្ហាស៊ី - ទៅ + ត្រីង់ $x=\ln 2$ គោះ f(x) មានអប្បបរយៈ ត្រឹង់ $x=\ln 2$ សោះ $f(\ln 2)=\ln 2-1+2e^{-\ln 2}=\ln 2-1+2e^{\ln \frac{1}{2}}=\ln 2-1+2(\frac{1}{2})=\ln 2$ អូចនេះ f មានអប្បបរយៈ ត្រឹង់ $x=\ln 2$ មួយនេះ f មានអប្បបរយៈ ត្រឹង់ $x=\ln 2$ ។

b. សង់ភារាងអេថិរភាព f

x	-∞	ln 2	$+\infty$
f'(x)	_	0 +	
f(x)	$+\infty$	ln 2	+∞

»រកសជីការបន្ទាត់ L_2 មែលប៉ះនិង \mathcal{C} ្រប C \mathcal{C} អ់ចំណុច A(0;1) សជីការបន្ទាត់ប៉ះមានរាង

c. សង់បន្ទាន់ $L_1; L_2$ និង \mathcal{E} ្រាប C

d. គណនាវិជ្ជ (ក្រឡាវិជ្ជកម្ពង់កំណត់ដោយអាស៊ីយភូត ${f L}_1$ (ភ្នាប C បន្ទាត់ឈរ x=0, x=1

ភាមរូបមន្ត
$$S = \int_0^1 (f(x) - (L_1)dx)$$

$$= \int_0^1 (x - 1 + 2e^{-x} - x + 1)dx$$

$$= 2\int_0^1 e^{-x}dx$$

$$= -2[e^{-x}]_0^1$$

$$= -2(e^{-1} - e^0)$$

$$= 2(\frac{1}{e} - 1)$$
 $S = 2(\frac{1}{e} - 1)$

អ្នកនេះ
$$S=2(rac{1}{e}-1)$$
 ឯកភ្ជា។ថ្ងៃ ។

III. a. In $\lim_{x\to +\infty} f(x)$ in $\lim_{x\to 0} f(x)$ full $\lim_{x\to 0} f(x)$

មេរី មាន
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (1 - \frac{2 \ln x}{x}) = 1$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} (1 - \frac{2 \ln x}{x})$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} (1 - \frac{2 \ln x}{x})$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} (1 - \frac{2 \ln x}{x})$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} (1 - 2t \ln \frac{1}{t})$$

$$= +\infty$$

អ៊ូដ្ឋាន៖ $\lim_{x \to +\infty} f(x) = 1$; $\lim_{x \to 0} f(x) = +\infty$ ។

»រកសមីការអាស៊ីមក្នុកឈរ និងអាស៊ីមកួតមេកមែ G្រប C

$$\lim_{x\to 0} f(x) = +\infty$$
 is: $x=0$ with $\lim_{x\to 0} f(x) = +\infty$ is: $x=0$

សេសី
$$\lim_{x \to +\infty} f(x) = 0$$
 សោះ $y = 1$ ជាអាស៊ីភូតមេក

មួចនេះ x=0 ជាអាស៊ីយកូតឈរ និង y=1 ជាអាស៊ីយកូតមេកនៃ (ក្លាប C

b. គណនាមេរីអf'(x) រួចសង់តារាងអមេរភាព

សេដីមហុន
$$f(x)=1-\dfrac{2\ln x}{x}$$
 សេដីមហុន $f'(x)=\dfrac{-2(1-\ln x)}{x^2}$ អូបនេះ $f'(x)=\dfrac{-2(1-\ln x)}{x^2}$

»សង់តា រាងអេថរភាព

$$\Rightarrow \text{ if } f'(x) = 0$$

$$\Leftrightarrow \frac{-2(1 - \ln x)}{x^2} = 0, x^2 > 0 \text{ if } x \in \mathbb{R}$$

$$-2(1 - \ln x) = 0$$

$$1 - \ln x = 0$$

$$\ln x = 1$$

$$x = e$$

$$\Rightarrow \text{ if } f'(x) > 0$$

$$\Leftrightarrow \frac{-2(1 - \ln x)}{x^2} > 0$$

$$1 - \ln x < 0$$

$$\ln x > 1$$

$$x > e$$

$$\Rightarrow f'(x) < 0$$

$$\ln x > 1$$

$$x > e$$

$$\Rightarrow \frac{-2(1 - \ln x)}{x^2} < 0$$

$$1 - \ln x > 0$$

$$\ln x < 1$$

$$x < e$$

$$\Rightarrow f(e) = 1 - \frac{2}{e} = 1 - 0.7 = 0.3$$

»ភាពឥអមេរភាព

x	$0 e = 2.7 +\infty$
f'(x)	- 0 +
f(x)	$+\infty$ 1 0.3

c. សង់ (ក្លាប C គៅក្នុងភ(ជួយកូអរអោរឧដ្ដយ។

d. គណនាវិជ្ជិ (កូឡាវិជ្ជិកប្លង់កំណត់ដោយ (ភ្ជាប C អាស៊ីយកូតរេខក បន្ទាត់ឈរ x=1 និង x=2 ដោយ $x\in [1;e]$ (ភ្ជាប C ស្ថិតវេក្សា យបន្ទាត់ y=1

អេត្តាន
$$S = \int_{1}^{e} [1 - f(x)] dx$$

$$= \int_{1}^{e} [1 - (1 - \frac{2 \ln x}{x})] dx$$

$$= 2 \int_{1}^{e} \frac{\ln x}{x} dx$$

$$= 2 \int_{1}^{e} (\ln x)' \ln x dx$$

$$= 2 [\frac{1}{2} \ln^{2} x]_{1}^{e}$$

$$= (\ln e)^{2} - (\ln 1)^{2}$$

$$= 1 - 0 = 1 \lambda \pi \pi \chi$$

ង្ខេខេះ S=1 ឯកភ្នាវិថ្ន

$$IV.$$
 a. $IR\lim_{x \to +\infty} f(x)$ కే $\lim_{x \to 0} f(x)$ కటో కథా క $f(x) = 2 + \frac{\ln x}{x^2}$

មេរីមហុខ
$$\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} (2+\frac{\ln x}{x^2})$$

$$= 2$$
 »
$$\lim_{x\to o} f(x) = \lim_{x\to 0} (2+\frac{\ln x}{x^2})$$

 ស្ $t=\frac{1}{x}$
 ស ្ $t=\frac{1}{x}$
 នាំ ឲ្យ មេរីមហុខ
$$\lim_{x\to 0} (2+\frac{\ln x}{x^2}) = \lim_{t\to +\infty} (2-t^2\ln t)$$

$$= -\infty$$

ដូចនេះ
$$\lim_{x\to +\infty}f(x)=2$$
 និង $\lim_{x\to 0}f(x)=-\infty$ »រកសជីការអាស៊ីយកូតរេងកាំនេ (ក្រប C មោយ $\lim_{x\to +\infty}f(x)=2$ នោះ $y=2$ ជាសជីការអាស៊ីយកូតរេងក មេហ៍ឃ $\lim_{x\to 0}f(x)=-\infty$ នោះ $x=0$ ជាសជីការអាស៊ីយកូតរេងក

អ្នក នេះ
$$f'(x) = \frac{1-2\ln x}{x^3}$$
។

»សង់ភារាងអេថេរភាព ដោយ x>oគ្រប់ $x\in\mathbb{D}$ ភេះ f'(x) យកសញ្ញាភាម $1-2\ln x$

»ភាពង់អេថេរភាព

x	0	$\sqrt{e} = 1.65$ $+\infty$
f'(x)		+ 0 -
f(x)		2.18 /-∞ 2

c. កេត្តអរដោរនចំណុចប្រសព្វវាង (ភ្ជាប C និងអាស៊ីយភូតវេងក ភាង A(x;y) ជាចំណុចប្រសព្វវាង (ភ្ជាប C និងអាស៊ីយភូតវេងក

$$A = \begin{cases} y = 2 + \frac{\ln x}{x^2} \\ y = 2 \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ y = 2 \end{cases} \Rightarrow \text{Biss.} A(1;2) \text{ The sum of the property of } A(1;2) \text{ The sum of the property of } A(1;2) \text{ The sum of the property of } A(1;2) \text{ The sum of the property of } A(1;2) \text{ The sum of the property of } A(1;2) \text{ The sum of the property of } A(1;2) \text{ The sum of the property of } A(1;2) \text{ The sum of the property of } A(1;2) \text{ The sum of } A(1;2) \text{$$

»សង់ (ក្លាប C និងអាស៊ីយភូតក្នុងត(មួយ

d. គណនាំ ថ្ងៃ (ក្រឡា ស្នែកយ្ពង់កំណត់ ដោយ (ក្រប C អាស៊ី ឧត្តត ដេក បន្ទាត់ x=1 និង $x=e^{0.5}$ ដោយ $x\in[1;e^{0.5}]$ (ក្រប C នៅ លើបន្ទាត់ y=2

្រង់ បាន
$$S = \int_{e^{0.5}}^{1} [f(x) - 2] dx$$

$$= \int_{1}^{e^{0.5}} \frac{1}{x^{2}} \ln x dx$$

$$= [-\frac{1}{x} \ln x]_{1}^{e^{0.5}} - \int_{1}^{e^{0.5}} \frac{1}{x} (-\frac{1}{x}) dx$$

$$= -\frac{1}{e^{0.5}} \ln e^{0.5} - (\ln 1) + \int_{1}^{e^{0.5}} \frac{1}{x^{2}} dx$$

$$= -\frac{0.5}{e^{0.5}} - [\frac{1}{x}]_{1}^{e^{0.5}}$$

$$= -\frac{0.5}{e^{0.5}} - \frac{1}{e^{0.5}} + 1$$

$$= 0.09 \text{deg}$$

ដូចនេះ S=0.09 ឯកភ្ជាវិទ្ធ ។

 $m{V}$. 1. គណនា h(1) និងសិក្សាអថេរភាពាំន h(x) ដោយគេជិនក $m{Q}$ វិគណនាលីជីត៌នៃ h(x) (ភូម៌ 0 និង(ភូម៌ $+\infty$ ឡើយ

មេរីមហេខ
$$h(x) = -x + 1 - 2 \ln x$$

 $\Rightarrow h(1) = -1 + 1 - 1 \ln 1 = 0$

អ្វី គួរ h(1)=0 ។

»សិក្សាអមេរភាពវិន h(x)

 \bullet គណ នាអេរីអh'(x)

សេរីសហុន
$$h(x)=-x+1-2\ln x$$
 $\Rightarrow h'(x)=-1-\frac{2}{x}=-\frac{x+2}{x}<0$ ទ្រ ឋ $x\in(0;+\infty)$ »ភា វាស្សសេរីសេរី

x	0		1	$+\infty$
h'(x)		_	_	
h(x)	+∞		, O	$-\infty$

- •h(x) = 0 fm x = 1
- $\bullet h(x) > 0$ fm $x \in (0;1)$
- •h(x) < 0 for $x \in (1; +\infty)$
- 2. a. គណនាល់ដីជានៃ f(x) (ភូម៉ 0 និង(ភូម៉ $+\infty$ មេរីមហនេ $f(x)=rac{x+\ln x}{x^2}$

$$\bullet \lim_{x \to 0} f(x) = \lim_{x \to 0} \left(\frac{x + \ln x}{x^2} \right) = \lim_{x \to 0} \left(\frac{1}{x} + \frac{\ln x}{x^2} \right)$$

ភាអ
$$t = \frac{1}{x}$$

ស្ត្រី
$$x \to 0 \Rightarrow t \to +\infty$$

សម្រីវាធុន
$$\lim_{x\to 0} (\frac{1}{x} + \frac{\ln x}{x^2}) = \lim_{t\to +\infty} (t+t^2\ln\frac{1}{t})$$

$$= \lim_{t\to +\infty} (t-t^2\ln t)$$

$$= \lim_{t\to +\infty} t(1-t\ln t)$$

$$= +\infty(1-\infty)$$

- $\begin{array}{l} \bullet \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (\frac{x + \ln x}{x^2}) = \lim_{x \to +\infty} (\frac{1}{x} + \frac{\ln x}{x^2}) = 0 \\ \text{Resc.} \lim_{x \to 0} f(x) = -\infty; \lim_{x \to +\infty} f(x) = 0 \end{array}$
- b. គណនារដ្ឋិវf'(x) ខែអនុគយន៍ f(x)

សេរីវេយាន
$$f(x)=\frac{1}{x}+\frac{\ln x}{x^2}$$
 សេរីវេបាន $f'(x)=-\frac{1}{x^2}+\frac{x+2x\ln x}{x^4}=-\frac{1}{x^2}+\frac{1+2\ln x}{x^3}=\frac{-x+1+2\ln x}{x^3}$ អូចនេះ $f'(x)=\frac{-x+1+2\ln x}{x^3}$

- c. បង្ហាញថា ទៅលើ I; f'(x) មានសញ្ហាដូច h(x) មេរី មាន $f'(x) = \frac{-x+1+2\ln x}{x^3} = \frac{1}{x}(-x+1+2\ln x) = \frac{1}{x^3}h(x)$ មោយ $\frac{1}{x^3} > 0$ ទ្រប់ $x \in (0; +\infty)$ នោះ f'(x) មានសញ្ហាដូច h(x) ដូចនេះ f'(x) មានសញ្ហាដូច h(x) ស្វើ I
- d. ទាញយកអេថរភាពនៃ f(x) លើ I ដោយ f'(x) បានសញ្ញា ដូច h(x) ភា បភា រាងអេថវភាពនៃ h(x)

រញ្ជីងបាន

- $\bullet f'(x) = 0$ fm x = 1
- f'(x) > 0 fm $x \in (0, 1)$
- f'(x) < 0 fm $x \in (1; +\infty)$
- f(1) = 1

»ភា រាងអេមេរភា លើខ f(x)លើ $(0; +\infty)$

x	0	1	$+\infty$
f'(x)		+ 0 -	
f(x)	_	1	0

- $\bullet f(x)$ កើតនៅចរន្លាះ (0;1)
- ullet f(x) ធុះសៅធស្គេះ $(1;+\infty)$
- ullet f(x) មានជម្រះជិបរមារធ្យប់ទ្រឹx=1;y=1
- »សង់ \mathcal{T} ប \mathcal{C} វន f(x) នៅ ក្នុងក \mathcal{C} ្មួយអរក្ខណ៍ យ៉ោល់

$$VI.$$
 1. a. In $\lim_{x\to +\infty} f(x)$

សេរីវេខាន
$$f(x) = x - 5 + \frac{8 \ln x}{x} + \frac{9}{x}$$

$$\text{FBFF} \, \text{S} \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x - 5 + \frac{8 \ln x}{x} + \frac{8}{x}) = +\infty$$
 Fig. 1 Sign f(x) = $+\infty$ 7

b. In $\lim_{x\to 0} f(x)$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} (x - 5 + \frac{8 \ln x}{x} + \frac{9}{x}) = \lim_{x \to 0} (x - 5 + \frac{8 \ln x + 9}{x}) = -\infty$$
 Refer to $\lim_{x \to 0} f(x) = -\infty$ 7

- c. ស្វាយបំភ្លឺថាបន្ទាត់ Δ មែលបានសមីការ y=x-5 ជារកស៊ីមភូតមិន (ក្រប C នៅជិត $+\infty$ $f(x) = x - 5 + \frac{8 \ln x}{x} + \frac{9}{x} f(x) = \lim_{x \to +\infty} (\frac{8 \ln x}{x} + \frac{9}{x}) = 0$ នោះ y=x-5 ជាសមីការអាស៊ីយកូត ${f C}$ ទាំនៃ ខ្សែកាម Cដូចនេះ $(\Delta):y=x-5$ ជាសមីការអាស៊ីយភូគ $\mathbf G$ ភេះនៃខ្មែរកាម C ។
- d. កំណត់អាប់ស៊ីសចំណុចប្រសព្វ Δ និងខ្មែរកាម CភាមA(x;y) ជាចំណុចប្រសព្វ Δ និង ក្រប C

គាន់
$$A(x;y)$$
 ជាចំណុចប្រជាជួយ Δ និង ក្រប C
$$A = \begin{cases} y = x - 5 + \frac{8 \ln x}{x} + \frac{9}{x}(1) & \text{wf}(1) - (2) \text{ with } \beta = 8 \end{cases}$$

$$\frac{8 \ln x}{x} + \frac{9}{x} = 0$$

$$\frac{8 \ln x}{x} = -\frac{9}{x}$$

$$\Rightarrow \ln x = -\frac{9}{8}$$

$$\Rightarrow x = e^{-\frac{9}{8}} = \frac{1}{e^{\frac{9}{8}}} = \frac{1}{e^{\frac{9}{8}}}$$

ងូចនេះ អាប់ស៊ីសចំណុចប្រសព្វ Δ និងក្រប C គឺ $x=rac{1}{e\sqrt[9]{e}}$

2. a. បង្ហាញថា ចំអោះ (គ្រប់ x អនារល់ $f(0;+\infty)$ អនុបាន $f'(x)=rac{g(x)}{x^2}$ សេរីវេយាន $f(x) = x - 5 + \frac{8 \ln x + 9}{x}$

មេរីវេត្ ន
$$f'(x) = 1 + \frac{8 - 8 \ln x - 9}{x^2} = \frac{x^2 - 8 \ln x - 1}{x^2}$$

ភាអ
$$g(x)=x^2-8\ln x-1$$

នាំឲ្យរយីងជាន $f'(x)=rac{g(x)}{x^2}$

អ្នកស្គ្រី
$$f'(x)=rac{g(x)}{x^2}$$
 ៃ អ្នក្ស្គ្ $g(x)=x^2-8\ln x-1$ ។

b. សិក្សាអថេរភាពខែអនុគយន៍ f ដោយដឹងថាសជីការ $g(x) \, = \, 0$ បានចម្លើយ $x' \, = \, 1$ និង $x'' = \alpha; \alpha > 1$

From
$$f'(x)=rac{g(x)}{x^2}$$
 from $x^2>0$ from $x\in(0;+\infty)$

សេះ f'(x) យកសំណា្កាសមg(x)

»សិក្សាសញ្ញា
$$g(x)$$

$$f$$
 $g(x) = x^2 - 8 \ln x - 1$

សេរី មហុន
$$g'(x) = 2x - \frac{8}{x} = \frac{2x^2 - 8}{x}$$

例
$$g'(x) = 0 \Leftrightarrow \frac{2x^2 - 8}{x} = 0$$

 $\Rightarrow 2x^2 - 8 = 0$
 $\Rightarrow x = \pm 2$
 $x = 2$ ਿかい $x \in (0; +\infty)$

$$ullet g(x)=0$$
 មានប្រាប់ $x'=1; x''=lpha; lpha>1$

វភុក្ខាន្ទ
$$g(1) = 0; g(\alpha) = 0$$

$$\bullet g(2) = 3 - 8 \ln 2 = -2.5$$

$$\bullet g(e) = e^2 - 9 < 0; g(4) = 15 - 16 \ln 2 > 0$$

ናቸጥ $\mathbf 8$ $2 < e < \alpha < 4$

គេបានភាពអាមេរភាពមិន g(x) លើ $(0;+\infty)$ គឺ

x	0	1	2	α	$+\infty$
g'(x)		_	0	+	
g(x)		0	-2.5	0	1

ភាជភា រាងអមេីវភាព យើងបាន

- •g(x) < 0 fm of $x \in (1; \alpha)$
- •g(x) > 0 for $x \in (0,1) \cup (\alpha,+\infty)$

នាំ ឲ្យរយើងបាន

- f'(x) < 0 find $x \in (1; \alpha)$
- $f'(x) > ITM x \in (0,1) \cup (\alpha,+\infty)$
- $\bullet f'(1) = 0; f'(\alpha) = 0$
- $\bullet f(1) = 1 5 + 0 + 9 = 5$

គេបាន ភារាមអមេរភាពមិន f(x) លើ $(0;+\infty)$ គឺ

រគបាន

- ullet f(x) កើតហើចវត្ថា៖ $x\in(0;1)\cup(\alpha;+\infty)$
- ullet f(x) ចុះរលីមវន្តាះ $x\in(1;\alpha)$
- $\bullet f(x)$ យានអភិបារយា ឆៀប(ត្រឹង់ x=1;y=5
- ullet f(x) មានអប្បបរមាវធៀប(ទ្រឹង៉៍ x=lpha;y=f(lpha)

VII. 1. a. In $\lim_{x\to +\infty} f(x)$

ស្ត្រីមហ្គ
$$f(x) = 4 - x - 2e^{-x}$$

- b. បង្ហាញថាបន្ទាត់ D មានសមីការ y=-x+4 ថា អាស៊ីយភូតមិនឡែកាម C មេរីមមាន $f(x)=4-x-2e^{-x}$ ហើយ $\lim_{x\to +\infty}(2e^{-x})=0$ នោះ y=4-x ថាសមីការអាស៊ីយភូត ៤ភិសិនខ្សែកាម C ដូចនេះ (D):y=4-x ថាសមីការអាស៊ីយភូតមិនខ្សែកាម C
- c. សិក្សាទីភាំ អតៀបវិន ខ្សែកា ង C និងបន្ទាត់ (D) យក $(C) (D) = 4 x 2e^{-x} 4 + x + 2e^{-x} = 8 > 0$ $\Leftrightarrow (C) (D) > 0$ $\Leftrightarrow (C) > (D)$ យានន័យថា (ក្លាប C នៅលើបន្ទាត់ D ដូចនេះ ខ្សែកា ង C នៅលើបន្ទាត់ D
- e. In $\lim_{x\to -\infty} f(x)$; (I (I) III III $\lim_{x\to -\infty} xe^x=0$)

 INFORM $f(x)=\frac{4e^x-xe^x-2}{e^x}$ INFORM $f(x)=\lim_{x\to -\infty} f(x)=\lim_{x\to -\infty} (\frac{4e^x-xe^x-2}{e^x})=\lim_{x\to -\infty} \frac{4e^x-2}{e^x}=\lim_{x\to -\infty} (4-\frac{2}{e^x})=-\infty$ Refer to $f(x)=\lim_{x\to -\infty} f(x)=\lim_{x\to -\infty} f(x)=-\infty$

$$\text{"Gf} f'(x) = 0$$

$$\Leftrightarrow \frac{2 - e^x}{e^x} = 0$$

$$\Rightarrow 2 - e^x = 0$$

$$e^x = 2$$

$$\Rightarrow x = \ln 2$$

 $ullet f(\ln x) = 3 - \ln x$ »ភារាសអថេរភាពាំង f(x)

x	$-\infty$ ln 2	$+\infty$
f'(x)	+ 0 -	-
f(x)	$3 - \ln 2$ $-\infty$	$-\infty$

- ullet f(x) ស្ត្រីនូវលើមន្ត្រះ $x\in(0;\ln2)$
- ullet f(x) ចុះស៊ីចវន្តាះ $x \in (\ln 2; +\infty)$
- $\bullet f(x)$ យានអភិបារយា $(\mathfrak{g} \sharp x = \ln 2; y = 3 \ln 2)$
- b. កំណត់សេជីការបន្ទាត់ប៉ះ ខ្សែកាម C (ភូមិ A ដោយ A ជាចំណុចនៅ លើ ខ្សែកាម C បានអាប់ស៊ីស 0 យើងបាន $y_A = f(0) = 4 0 2e^0 = 4 2 = 2$ តាម (t) ជាសេជីការបន្ទាត់ប៉ះ (ភូមិ A(0;2) យើងបាន $(t): y = f'(x_A)(x x_A) + y_A = f'(0)(x 0) + 2$ ហើយ f'(0) = 2

ស្ត្រីអាក្ស $(t): y = f'(x_A)(x - x_A) + y_A = f'(0)(x - 0) + 2$ ស្រី្សាស្ត (t): y = 2x + 2 អូចវេសិ (t): y = 2x + 2

- c. បង្ហាញថាសជីការ f(x)=0 មានចម្លើយតែជួយគត់មែលគេភាមិដោយ β នៅក្នុងចន្លោះ [-1;0]
 - $\bullet f(-1) = 4 + 1 2e = 5 2e < 0$
 - $\bullet f(0) = 4 + 1 2 = 3 > 0$

សយើងបាន $f(-1) \times f(0) < 0$

ភាជ(ទីស្តីបទកណ្តាលសេជីការ f(x)=0 យានឬស β ភៃជួយគត់ទៅចន្លោះ [-1;0] ដូចនេះសេជីការ f(x)=0 យានឬស β ភៃជួយគត់ទៅចន្លោះ [--1;0]

VIII. A. 1. a. បង្ហាញថាអនុគងន៍ g កើនដាច់ខាក ${m M}$ $(0;+\infty)$

មេរី មេរាន $g(x) = x^2 + \ln x$ មេរី មេរាន $g'(x) = 2x + \frac{1}{x} = \frac{2x^2 + 1}{x} > 0$ ទ្រប់ $x \in (0; +\infty)$

អូចនេះអនុគយន៍ g កើនអាចទាភិសេវិចន្លោះ $(0;+\infty)$

- b. គណៈគា g(1)• $g(1) = 1 + \ln 1 = 1$ អ៊ីដូវៈទេះ g(1) = 1
- 2. a. ទាញលទ្ធសពីសំគួរទី១ បញ្ជាក់ថា៖ បើ x>1 ភោះ $x^2+\ln x>\geq 0$ និងបើ $0< x\leq 1$ ភោះ $x^2+\ln x\leq 1$ ដោយ g(1)=1 ហើយ g ជាអគុគបន៍កើនដាច់ខាកលើ $0;+\infty$ ក្រពុន

•
$$\mathcal{E}_{\mathbf{x}}^{\mathbf{y}} x \geq 1 \mathcal{E}_{\mathbf{x}}^{\mathbf{y}}$$
: $g(x) \geq 1 \Rightarrow x^2 + \ln x \geq 0$

•
$$\mathcal{L}$$
 $0 < x \le \mathcal{L}$ $(x) \le 1 \Rightarrow x^2 + \ln x \le 1$

b. កំណត់សញ្ញាវិនករន្តរាយ $x^2+\ln x-1$ កាលណា x នៅលើចនេះ $(0;+\infty)$

• FMM
$$x > 1; x^2 + \ln x > 1 \Leftrightarrow x^2 + \ln x - 1 > 0$$

• FIND
$$0 < x < 1; x^2 + \ln x < 1 \Leftrightarrow x^2 + \ln x - 1 < 0$$

•
$$x = 1; x^2 + \ln x - 1 \Leftrightarrow x^2 + \ln x - 1 = 0$$

B. 1. សិក្សាលីជីភានៃអនុគយន៍ f (ភូម៌ 0 និម $+\infty$ (រយើមអ៊ីអថា $\lim_{x\to +\infty} rac{\ln x}{x} = 0$)

សេរីវេយាន
$$f(x)=x+1-\frac{\ln x}{x}$$
 សេរីវេយាន $f(x)=\lim_{x\to 0}f(x)=\lim_{x\to 0}(x+1-\frac{\ln x}{x})=0+1-(-\infty)$ និង $\lim_{x\to +\infty}f(x)=\lim_{x\to +\infty}(x+1-\frac{\ln x}{x})=+\infty$ អូមសេរ $\lim_{x\to +\infty}f(x)=+\infty$ និង $\lim_{x\to +\infty}f(x)=+\infty$

2. បង្ហាញថា ដៅដែលស្តេចនេះ f គឺ $f'(x) = \frac{x^2 + \ln x - 1}{x^2}$ សេរី៩យាន $f(x) = x + 1 - \frac{\ln x}{x}$

ស្ត្រីវេត្ត
$$f'(x) = 1 - \frac{1 - \ln x}{x^2} = \frac{x^2 + \ln x - 1}{x^2}$$
 ភិភា គួននេះ $f'(x) = \frac{x^2 + \ln x - 1}{x^2}$

អ្ហិចវិនិះ
$$f'(x) = \frac{x^2 + \ln x - 1}{x^2}$$

 $oldsymbol{3}$. $oldsymbol{\iota}$ ប្រើលទ្ធដល់វិនសំនួរ A សិក្សាសញ្ញាវិន f'(x)

អោយ
$$f'(x)=rac{x^2+\ln x-1}{x^2}$$
 យកសញ្ញាកា ដ $x^2+\ln x-1$

•
$$ff(x) = 1; f'(x) > 0$$

•
$$ffin x = 1; f'(x) = 0$$

»សង់តា រាងអមេរភាពខែអនុគមន៍ f លើ $(0;+\infty)$

x	()	1	$+\infty$
f'(x)		_	0	+
f(x)		$+\infty$	2	$+\infty$

4. a. បង្ហាញថាបន្ទាត់ Δ យានសមើការ y=x+1 ជារភាស៊ីមភូតនៅលើក្រាប C ត្រឹង់ $+\infty$

សេរីវយន
$$f(x)=x+1-rac{\ln x}{x}$$
 សេរីយ $\lim_{x o +\infty}rac{\ln x}{x}=0$

នោះ y=x+1 ជាសជីការអាស៊ីយភូភិនេក្រប C

អូចនេះ $(\Delta):y=x+1$ ជាសមីការអាស៊ីមភូតិនៃ $igg(ar{\mathcal{D}}$ ប C

b. សិក្សាទីតាំ C ទៀបនីង Δ និងបញ្ជាក់ថា កូអរអាវនចំណុចប្រសព្វ I រវាងiggraphaប Cនិងបន្ទាត់ 🛆

$$\text{EVF} \ (C) - (\Delta) = x + 1 - \frac{\ln x}{x} - x - 1 = \frac{\ln x}{x}$$

$$\text{FO} \ h(x) = \frac{\ln x}{x}$$

»ភា រាងសញ្ញាវិន $(C)-(\Delta)$

x	0		1		$+\infty$
$C-\Delta$		_	0	+	

»តាមតារាមសញ្ញា

- ullet ហ្គ្រាប C នៅ C មេបន្ទាត់ D អាល $x\in(0;1)$
- ក្រាប C នៅលើបន្ទាស់ D ពេល $x \in (1; +\infty)$ »សង់ $\mathcal G$ ា ប $\mathcal C$ និងបន្ទាក់ Δ

$$IX.$$
 a. គណភាលីជីភាន f (ភូង $-\infty$ និង $+\infty$ យើងយាន $f(x)=x+2-rac{4e^x}{e^x+rac{4}{3}e^x}$

$$\begin{aligned} & \bullet \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (x + 2 - \frac{4e^x}{e^x + 3}) = -\infty \\ & \bullet \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x + 2 - \frac{4e^x}{e^x + 3}) = +\infty \\ & \Re \operatorname{Biss.} \lim_{x \to -\infty} f(x) = -\infty \Re \operatorname{Biss.} \lim_{x \to +\infty} f(x) = +\infty \end{aligned}$$

$$\bullet \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x + 2 - \frac{4e^{x}}{e^{x} + 3}) = +\infty$$

$$\lim_{x\to +\infty} f(x) = -\infty \text{ im} \quad f(x) = +\infty \text{ im} \quad f(x) = +\infty \text{ in} \quad f$$

- b. សិក្សាទីភាំ៩៩ (ក្រប $\,C\,$ ទៀបទៅនិងបន្ទាក់ $\,d_1\,$ ដែលយានសមីការ $\,y=x+2\,$ ដូចនេះ (ក្របC នៅលើបន្ទាត់ d_1 (គ្ប់ $x \in \mathbb{R}$
- c. ស្វាយបញ្ជាក់ថាចំអោះទ្រប់ចំនួនពិត $x;f'(x)=\left(rac{e^x-3}{e^x+3}
 ight)^2$ សេរីវេយាន $f(x) = x + 2 - \frac{4e^x}{e^x + 3}$

សម្តីវត្ត
$$f'(x) = 1 - \frac{4e^x(e^x + 3) - 4e^{2x}}{(e^x + 3)^2}$$

$$= \frac{(e^x + 3)^2 - 4e^{2x} - 12e^x + 4e^{2x}}{(e^x + 3)^2}$$

$$= \frac{e^{2x} + 6e^x + 9 - 12e^x}{(e^x + 3)^2}$$

$$= \frac{(e^x - 3)^2}{(e^x + 3)^2}$$

$$= \left(\frac{e^x - 3}{e^x + 3}\right)^2$$
 fr

អ្នកស្គឺ
$$f'(x) = \left(rac{e^x-3}{e^x+3}
ight)^2$$
 ។

d. សិក្សាអថេរភាពខែ f លើ $\mathbb R$ និងសង់តា រាងអថេរភាពខែ f

$$\text{From }f'(x)=\left(\frac{e^x-3}{e^x+3}\right)^2>0\text{For }x\in\mathbb{R}$$

• Gf
$$f'(x) = 0 \Leftrightarrow \left(\frac{e^x - 3}{e^x + 3}\right)^2 = 0 \Rightarrow x = \ln 3$$

 \bullet ភា រាមសញ្ជាវិន f'(x)

x	$-\infty$		ln 3		$+\infty$
f'(x)		+	0	+	

គេបានអនុគយន៍ f ជាអនុគយន៍កើនជានិច្ចលើ $x\in\mathbb{R}$

- ភា រាងអេមេរភា វេងន f• $f(\ln 3) = \ln 3 + 2 \frac{4e^{\ln 3}}{e^{\ln 3} + 3} = \ln 3 2\frac{4 \times 3}{3 + 3} = \ln 3$

x	$-\infty$		ln 3		$+\infty$
f'(x)		+	0	+	
f(x)	$-\infty$		ln 3		+∞

- e. កំណត់បន្ទាត់ប៉ះ d_2 ទៅនិងក្រប C ត្រង់ចំណុច I យានអាប់ស៊ីសស្មើ $\ln 3$ គេជាន $d_2: y = f'(\ln 3)(x \ln 3) + f(\ln 3)$ ដោយ $f'(x) = \left(\frac{e^x 3}{e^x + 3}\right)^2 \Rightarrow f'(\ln 3) = \left(\frac{e^{\ln 3} 3}{e^{\ln 3} + 2}\right)^2 = \left(\frac{3 3}{3 + 3}\right)^2 = 0$ នាំ ឲ្យគេជាន $d_2: y = f(\ln 3) = \ln 3$ ជាបន្ទាត់ដេកស្វាបនឹងអ័ក្សអាប់ស៊ីស ដូចនេះបន្ទាត់ $d_2: y = \ln 3$ ។
- f. បង្ហាញថាបន្ទាត់ប៉ះ d_3 ទៅនិង ក្រប C ត្រង់ចំណុចដែលមានអាប់ស៊ីសសូន្យមានសេធីការ $y=\frac{1}{4}x+1$ គេបាន $d_3:y=f'(0)(x-0)+f(0)$ អោយ $f'(o)=\left(\frac{1-3}{1+3}\right)^2=\frac{1}{4}$ ហើយ $f(0)=2-\frac{4}{1+3}=1$ នាំឲ្យគេបាន $d_3:y=\frac{1}{4}x+1$ (ពីភ) អូមនេះ $d_3:y=\frac{1}{4}x+1$ (ពីភ)
 - សង់ (ក្រាប C និងបន្ទាក់ប៉ះ d₁; d₂; d₃

X. a. បង្ហាស្ថា $f(x) = x - 1 - \frac{4e^x}{1 + e^x}$ សេរីមហនុ $f(x) = x + \frac{1 - 3e^x}{1 + e^x} = x + \frac{1 + e^x - 4e^x}{1 + e^x} = x + \frac{1 - 3e^x}{1 + e^x}$ (ភិត)

អ្នក
$$f(x) = x + \frac{1 - 3e^x}{1 + e^x}$$

ullet គណនាលីជីជាន f (ភ្នង់ $-\infty$

$$\text{FIFF} \, \text{S} \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (x + \frac{1 - 3e^x}{e^x + 1}) = -\infty$$

$$\text{RFF} \, \lim_{x \to -\infty} f(x) = -\infty \, \text{I}$$

ullet ស្វាយបំរ្លឺថាបន្ទាត់ $d_1:y=x+1$ ជាអាស៊ីយភូតទៅនិងក្រាប C (ភូង $-\infty$

$$\lim_{x \to -\infty} (\frac{4e^x}{1+e^x}) = 0$$

នោះបន្ទាត់ y=x+1 ជាអាស៊ីជភូភិវិន (ភ្ជាប C

អូចនេះបន្ទាត់ $d_1:y=x+1$ ជាអាស៊ីជភូតមិន (ភ្ជាប C

ulletសិក្សាទីតាំងរចៀបវិន (ក្លាប C និងបន្ទាត់ d_1

$$\text{LNF} \ C - d_1 = x + 1 - \frac{4e^x}{1 + e^x} - x - 1 = -\frac{4e^x}{1 + e^x} < 0 \text{Fe} \text{L} \ \in \mathbb{R}$$

ដូចនេះ (ក្លាប C នៅក្រោយបន្ទាត់ d_1

b. គណនាលីជីភf (ភូង $+\infty$

$$\begin{array}{l} \bullet \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x+1 - \frac{4e^x}{1+e^x}) = +\infty \\ \text{Residue} \ \lim_{x \to +\infty} f(x) = +\infty \end{array}$$

ullet ហ្វាយបំភ្លឺថាបន្ទាត់ $d_2:y=x-3$ ជាអាស៊ីយកូតមិន (ក្របC (ភូង់ $+\infty$

សេរីវេយាន
$$f(x) = x + 1 - \frac{4e^x}{1 + e^x} = x + 1 - \frac{4e^x + 4 - 4}{1 + e^x} = x - 3 + \frac{4}{1 + e^x}$$

$$\lim_{x\to +\infty} \lim_{x\to +\infty} \left(\frac{4}{1+e^x}\right) = 0$$

 $m{sm:}\ y=x-3$ ជាអាស៊ីយភូភិនៃ $m{G}$ ប C

ដូចនេះបន្ទាត់ $d_2:y=x-3$ ជាអាស៊ីជភូតិនៃ ${f G}$ ាប C

ulletសិក្សាទីតាំងរចៀបវិន (ក្លាប C និងបន្ទាត់ d_2

以れて
$$-d_2 = x - 3 + \frac{4}{1 + e^x} - x + 3 = \frac{4}{1 + e^x} > 0$$
 分 $x \in \mathbb{R}$

អូចនេះ (ក្របC នៅលើបន្ទាក់ d_2 (គ្រប់ $x \in \mathbb{R}$

c. គណនារងវីរវ f'(x) និងបង្ហាញថា (គ្នប់ចំនួនពិត $x; f'(x) = \left(\frac{e^x-1}{e^x+1}\right)^2$

សេរីវយាន
$$f(x) = x - 3 + \frac{4}{1 + e^x}$$

$$\text{EVSTR} \ f'(x) = 1 - \frac{4e^x}{(1+e^x)^2} = \frac{(e^x+1)^2 - 4e^x}{(1+e^x)^2} = \frac{e^{2x} - 2e^x + 1}{(e^x+1)} = \left(\frac{e^x - 1}{e^x + 1}\right)^2$$

អ្វីធីវនិះ
$$f'(x) = \left(rac{e^x-1}{e^x+1}
ight)^2$$

d. សិក្សាអថេរភាពវិន f

FRIM
$$f'(x) = \left(\frac{e^x - 1}{e^x + 1}\right) > 0$$
 If $x \in \mathbb{R}$

$$\bullet f'(x) = 0 \Leftrightarrow \left(\frac{e^x - 1}{e^x + 1}\right)^2 \Rightarrow x = 0$$

ភា រាងសញ្ញា

x	-∞		0		$+\infty$
f'(x)		+	0	+	

- ullet f(x) ជាអនុគយន៍កើនជានិច្ចullet f(0)=0• សង់ភា រាងអមេរភាព

x	-∞		0		$+\infty$
f'(x)		+	0	+	
f(x)	$-\infty$		_0		+∞

ullet សង់ ullet ក្រ ប និងអាស៊ីយកូត $d_1;d_2$

S

$$XI.$$
 a. គណភាលីជីភ f (ភូម័ 1 និម(ភូម័ $+\infty$ មេឃើមយាន $f(x)=-x+4+\ln\left(rac{x+1}{x-1}
ight)^2$ មេឃើមហ៊ុន

$$\bullet \lim_{x \to 1} f(x) = \lim_{x \to 1} (-x + 4 + \ln\left(\frac{x+1}{x-1}\right)) = +\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (-x+1 + \ln\left(\frac{x+1}{x-1}\right)) = -\infty$$
 The function $f(x) = +\infty$; $\lim_{x \to +\infty} f(x) = -\infty$

b. (ភ្នាយបំភ្លឺថា ទៅលើ
$$(1;+\infty)$$
 គេបានដៅវាងអគ្គយន៍ f គឺ $f'(x)=\frac{-(x^2+1)}{(x+1)(x-1)}$ យើងមាន $f(x)=-x+4+\ln\left(\frac{x+1}{x-1}\right)=-x+4+\ln(x+1)-\ln(x-1)$

សម្តីវេឌុន
$$f'(x) = -1 + \frac{1}{x+1} - \frac{1}{x-1} = \frac{-(x+1)(x-1) + x - 1 - x - 1}{(x+1)(x-1)}$$

$$= \frac{-(x^2-1) - 2}{(x-1)(x+1)}$$

$$= \frac{-(x^2+1)}{(x+1)(x-1)} (ពីភ)$$

អ្នក នេះ
$$f'(x) = \frac{-(x^2+1)}{(x+1)(x-1)}$$
 ។

• សិក្សាអថេរភាពវិន f

よかい
$$f'(x) = \frac{-(x^2+1)}{(x-1)(x+1)} < 0$$
 な $x \in (1; +\inf)$

នោះ f(x) ជាអនុគមន៍ចុះជានិច្ច ភារាងសញ្ញា

x	1		$+\infty$
f'(x)		+	

ulletសង់តារាងអថេរភាពវិន fលើ $(1;+\infty)$

x	1 +0	∞
f'(x)	_	
f(x)	+∞	∞

- c. បង្ហាញថាបន្ទាត់ $d_1: y=-x+4$ ជាអាស៊ីយភូតទៅនិងក្លាប C (ភូមិ $+\infty$ មេរីងយាន $f(x)=-x+4+\ln\left(\frac{x+1}{x-1}\right)$ ហើយ $\lim_{x\to +\infty}\ln\left(\frac{x+1}{x-1}\right)=0$ នោះបន្ទាត់ y=-x+4 ជាអាស៊ីយភូត គ្នាបន្ទាត់ $d_1: y=-x+4$ ជាអាស៊ីយភូតិន ក្រប C (ភូមិ $+\infty$
- d. បង្ហាញថា ចំពោះ (គ្ ប់ xលើ $(1;+\infty); \frac{x+1}{x-1} > 1$ និងទាយយកការ (ប្រៀប ធៀបទីតាំង C ធៀប ចំពោះ $x \in (1;+\infty)$ នោះ $x+1 > x-1 \Rightarrow \frac{x+1}{x-1} > 1$ ងូចនេះ $\frac{x+1}{x-1} > 1$
 - ullet ទាញាយកការ $oldsymbol{u}$ ប្រៀបធៀបទីតាំ (C) រធៀបបន្ទាត់ d_1

$$\lim \text{ find } \frac{x+1}{x-1} > 1$$

$$\ln \left(\frac{x+1}{x-1}\right) > \ln 1$$

$$-x+4+\ln \left(\frac{x+1}{x-1}\right) - (-x+4) > 0$$

$$\Leftrightarrow C-d_1 > 0$$

ដូចនេះ ក្រាប C នៅលើបន្ទាត់ d_1 គ្រប់ $x \in (1; +\infty)$

- e. កំណត់កូអរអានេដៅចំណុចលើក្រាប (C) មែលបន្ទាត់ប៉ះ d_2 ទៅនិងក្រាប (C) ត្រង់ចំណុចនេះបានមេគុណ ប្រាប់ទិសស្មើ $-\frac{5}{3}$ និងសរសេរសមីកាអិនបន្ទាត់ d_2 កាង $A(x_A;y_A)$ ជាចំណុចបន្ទាត់ d_2 ប៉ះ ក្រាប C

まため
$$f'(x) = -\frac{x^2 + 1}{x^2 - 1}$$

$$\Rightarrow f'(x_A) = -\frac{x_A^2 + 1}{x_A^2 - 1}$$

$$f'(x_A) = -\frac{5}{3}$$

$$\Leftrightarrow -\frac{x_A^2 + 1}{x_A^2 - 1} = -\frac{5}{3}$$

$$\Leftrightarrow 3(x_A^2 + 1) = 5(x_A^2 - 1)$$

$$3x_A^2 + 3 = 5x_A^2 - 5$$

$$2x_A^2 = 8$$

$$\Rightarrow x_A = \pm 2$$

$$x_A = 2$$

$$x_A = 2$$

$$x_A = 2$$

ភា ៥
$$(1)\Rightarrow y_A=-2+4+\ln\left(rac{2+1}{2-1}
ight)=2+\ln 3$$
 អូចវេនះ $A(2;2+\ln 3)$

ulletសអសរសេជីការបន្ទាត់ d_2

អភិបាន
$$d_2: y = -\frac{5}{3}(x-2) + 2 + \ln 3 = -\frac{5}{3}x + \ln 3 + \frac{16}{3}$$
 អ៊ូស្ នេះ $d_2: y = -\frac{5}{3}x + \ln 3 + \frac{16}{3}$ ។

f. សង់ fប្រ C និងបន្ទាត់ $d_1; d_2$

FACEBOOK: SARATH NHL FACEBOOKPAGE: MATH KON KHMER

ध्रिक्षमाधिशुँ छिर्दु छर्द्विश्व हिंद्य है ।।।