얼굴인식에서의 선형대수의 활용

목차

첫 번째.	주제 선정 이유	02
두 번째.	얼굴 인식 단계	03
세 번째.	이미지 표현	04
네 번째.	이미지 가공	05
다섯 번째.	PCA	06
마지막.	응용 및 전망	0 7

미 주제 선정 이유

실생활에서의 중요성 및 응용 분야의 다양성

얼굴 인식 기술은 오늘날 많은 실생활 응용 분야에서 필수적 EX) 보안 시스템, 스마트폰 잠금 해제, 금융 거래 인증 등 다양한 분야에서 얼굴 인식이 사용

얼굴 인식 기술에서의 선형대수의 활용에 대해 깊게 알아보기 위해 선정

D2 얼굴인식 단계

1. 얼굴 검출

이미지나 비디오에서 얼굴 영역을 검출

2. 얼굴 정렬

검출된 얼굴 이미지가 일정한 형태와 크기로 정렬. 이 과정에서는 얼굴의 눈, 코, 입 등의 위치를 기준으로 이미지를 회전하고 크기를 조정하여 얼굴 특징점이 일정한 위치에 오도록 함.

3.특징 추출

정렬된 얼굴 이미지에서 고유한 특징을 추출

- PCA: 주성분 분석을 사용하여 얼굴 이미지의 주성분을 추출

- LDA: 선형 판별 분석을 사용하여 얼굴 특징을 추출

- LBP: 각 픽셀의 주변 픽셀 값을 이진수로 변환하여 텍스처 정보를 추출

D2 얼굴인식 단계

4. 얼굴 인식

특징 추출 단계에서 얻어진 특징 벡터를 사용하여 얼굴을 인식

- 최근접 이웃 (K-Nearest Neighbors, KNN): 새로운 얼굴 특징 벡터와 데이터베이스의 벡터 간의 거리를 계산하여 가장 가까운 이웃을 찾음
- 서포트 벡터 머신 (SVM) : 특징 벡터를 사용하여 얼굴을 분류하는 기법

5. 결과 출력

얼굴 인식의 최종 결과를 출력

인식된 얼굴의 신원 정보나, 인식된 얼굴이 데이터베이스에 없을 경우 "알 수 없는 사용자" 등의 메시지를 출력. 이 결과는 사용자 인증, 출석 체크, 보안 시스템 등 다양한 응용 분야에 사용

□3 이미지 표현

3.1 이미지의 행렬 표현

- 이미지의 기본 구성: 이미지란 본질적으로 픽셀들의 배열
- 행렬 표현:이미지는 이차원 행렬로 표현
 - 흑백 이미지는 m x n 행렬로, 여기서 m과 n은 각각 이미지의 높이와 너비를 나타냄
 - 컬러 이미지는 3개의 m x n 행렬(R, G, B 채널)로 표현

3.2 픽셀 데이터의 벡터화

벡터화: 행렬 형태의 이미지를 벡터 형태로 변환하는 과정. 벡터화는 주로 머신러닝 알고리즘에서 효율적인 처리를 위해 사용

03 이미지 표현

3.3 선형대수의 기본 연산

- 행렬 연산 : 이미지 데이터에 대한 기본적인 선형대수 연산
 - 덧셈과 뺄셈: 같은 크기의 두 이미지(행렬) 간의 덧셈과 뺄셈 연산
 - 스칼라 곱: 행렬의 각 요소에 일정한 값을 곱하는 연산
 - 행렬 곱: 이미지 필터링, 합성 등 다양한 이미지 처리 작업에 사용
- 고유값 분해 : 얼굴 인식의 PCA 단계에서 중요한 역할을 하는 연산
 - 정의: 행렬 A에 대해 A = PDP^-1 (P는 고유벡터, D는 고유값 대각행렬) 형태로 분해.
 - 적용: 고유 얼굴(Eigenfaces) 계산 시 공분산 행렬의 고유값과 고유벡터를 구하는 데 사용

04 이미지 가공

Bill Clinton

George W. Bush

Barack Obama

Donald Trump

$$(p_1)_1$$
 $(p_1)_2$
 \vdots
 $(p_1)_{276002}$

 $(p_1)_{276003}/$

$$(p_2)_1$$
 $(p_2)_2$
 \vdots
 $(p_2)_{276002}$
 $(p_2)_{276003}$

$$\begin{pmatrix} (p_4)_1 \\ (p_4)_2 \\ \vdots \\ (p_4)_{276002} \\ (p_4)_{276003} \end{pmatrix}$$

$$\begin{pmatrix} (p_5)_1 \\ (p_5)_2 \\ \vdots \\ (p_5)_{276002} \\ (p_5)_{276003} \end{pmatrix}$$

얼굴 사진을 ℝ²⁷⁶⁰³³의 벡터로 매핑 →이미지를 수학적으로 다룰 수 있다!

● □4 이미지 가공

1) 평균 face 벡터

$$\vec{m} \equiv \frac{1}{10} (\vec{p}_1 + \vec{p}_1 + \dots + \vec{p}_{10})$$

: face벡터의 평균 벡터

2) caricature 벡터

$$\vec{\tilde{q}}_j \equiv \vec{p}_j - \vec{m}$$

: 각 벡터와 평균벡터 차이를 나타내는 벡터 -) 각 사진의 특성을 반영 But. $(\vec{q}_j)_i$ 가 음수가 될 수도 있음!

0 0미지 가공

3) caricature 벡터의 부분공간

$$S \equiv span\{\vec{q}_1, \vec{q}_2, \cdots, \vec{q}_{10}\}$$

Q. caricature 벡터들은 선형 독립인가?

$$\begin{aligned} \vec{0} &= c_1 \vec{q}_1 + c_2 \vec{q}_2 + \dots + c_{10} \vec{q}_{10} \\ \vec{\tilde{q}}_1 + \vec{\tilde{q}}_2 + \dots + \vec{\tilde{q}}_{10} &= (\vec{p}_1 - \vec{m}) + (\vec{p}_2 - \vec{m}) + \dots + (\vec{p}_{10} - \vec{m}) \\ &= (\vec{p}_1 + \vec{p}_1 + \dots + \vec{p}_{10}) - 10\vec{m} \\ &= \vec{0} \end{aligned}$$

→caricature 벡터들은 선형 종속이다.

부분공간 S 의 차원은 최대 B이다. 이번 문제에서는 S의 차원이 B라고 가정하자.

D5 PCA(Principal Component Analysis)

O5 PCA(Principal Component Analysis, 주성분 분석)

■ 제 1 주성분

$$\sum ||proj_{ec{v}_1}\overrightarrow{q_j}||$$
 가 최대가 되도록하는 $ec{v}_1$

■ 제 2 주성분

$$\vec{v}_1 \cdot \vec{v}_2 = 0$$
 를 만족하며,

$$\sum ||proj_{ec{v}_2}\overrightarrow{q_j}||$$
 가 최대가 되도록하는 $ec{v}_2$

•

O5 PCA(Principal Component Analysis, 주성분 분석)

$$Q = [\vec{q}_1 \cdots \vec{q}_{10}], \qquad C = QQ^T$$

$$\rightarrow \sum \left\| proj_{\vec{v}_1} \overrightarrow{q}_j \right\|^2 = \sum \left\langle \overrightarrow{q}_j, \vec{v}_1 \right\rangle^2 \qquad (\|v_1\| = 1 \text{ 일때})$$

$$= \|Q^T v_1\|^2 = (Q^T v_1)^T (Q^T v_1) = v_1^T Q Q^T v_1$$

$$= v_1^T C v_1 \qquad \rightarrow 0 \text{ 값을 최대화 하자!}$$

다는 "대칭" "실행렬" 이다.

∴직교대각화 가능

$$P^{T}CP = D = \begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{276033} \end{bmatrix} \longrightarrow v_{1}^{T}Cv_{1} = \lambda$$

● D5 PCA(Principal Component Analysis, 주성분 분석)

 $v_1^T C v_1$ 라는 값이 놈의 제곱의 합으로 정의되었으므로, C는 반양한정이다. 변환행렬 P는 고유벡터들의 열행렬로 구성되어있고, 그 순서는 각 고윳값에 대응된다.

-> 고윳값을 큰 순서부터 나열하면, 아래와같다.

$$[\vec{v}_1 \quad \cdots \quad \vec{v}_{276033}] C \begin{bmatrix} \vec{v}_1 \\ \vdots \\ \vec{v}_{276033} \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{276033} \end{bmatrix} \qquad \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_{276033}$$

즉, 데이터의 제1 주성분은 C행렬의 가장 큰 고윳값에 대응되는 고유벡터이다.

대칭 실행렬의 고유벡터는 직교하므로, 제2 주성분은 그 다음 고윳값에 대응되는 고유벡터이다.

● D5 PCA(Principal Component Analysis, 주성분 분석)

C의 고윳값을 구했으므로, Q의 특이값을 구할 수 있고, 아래와같은 고유 얼굴을 정의할 수 있다.

$$\vec{e}_i \equiv \sqrt{\lambda_i} \vec{v}_i$$
 $(i=1,2,...,9)$:eigenfaces

이 eigenface의 선형결합을 통해 벡터p (이미지)를 표현 할 수 있다.

$$ec{q} = f_1 ec{e}_1 + f_2 ec{e}_2 + \dots + f_3 ec{e}_3$$

$$ec{p} = \overrightarrow{m} + ec{q} = \overrightarrow{m} + f_1 ec{e}_1 + f_2 ec{e}_2 + \dots + f_3 ec{e}_3$$

$$ec{f} = [f_1 \ f_2 \ \dots \ f_9] \ \text{:Feature}$$

● D5 PCA(Principal Component Analysis, 주성분 분석)

정리

ℝ²⁷⁶⁰³³ 의 벡터를 주성분 분석을 통해 데이터의 특성을 나타내는 5개의 basis로 표현하였다.

이미지를 다루기 쉬운 벡터로 대응시켰으므로, 우리는 이미지의 차이를 수학적으로 정의할 수 있게되고, 얼굴 사진이 주어졌을때, 그 사진과 가장 차이가 적은 (혹은 특정 값 이하인) 사진을 찾아낼 수 있다.

많은 dateset의 feature 벡터 중 $\|\vec{f}_{dataset} - \vec{f}_{input}\| < \epsilon$ 를 만족하는 feature 벡터에 를 만족하는 feature 벡터에대응 되는 사람의 얼굴과 가장 유사하다는것을 알 수있다.

DG 기술의 응용 및 전망 - 응용

보안 및 감시

중요한 장소에서 얼굴 인식으로 출입을 관리합니다.

금융

얼굴 인식을 통해 본인 인증 절차를 간소화 하고, 사기 행위를 예방합니다

마케팅 및 소매업

얼굴 인식을 통해 고객의 성별, 연령대 등을 분석하여 맞춤형 광고와 서비스를 제공합니다.

건강 관리

얼굴 표정을 분석하여 스트레스나 우울증 등 징후를 평가합니다

DG 기술의 응용 및 전망 - 전망

엔터테인먼트

가상현실(VR)이나 증강현실(AR) 환경에서 사용자 맞춤형 겸험을 제공하는데 사용됩니다

교육

다가오는 온라인 시대에 얼굴 인식을 통해 학생 출석을 관리하거나 온라인 시험에서의 부정행위 를 방지합니다

감사합니다

선형대수 8조 박성철, 오연우, 최윤호, 홍지윤