Package 'gofar'

October 13, 2022

Type Package

Title Generalized Co-Sparse Factor Regression

Version 0.1

Date 2022-02-26

Maintainer Aditya Mishra <amishra@flatironinstitute.org>

Description

Divide and conquer approach for estimating low-rank and sparse coefficient matrix in the generalized co-sparse factor regression. Please refer the manuscript 'Mishra, Aditya, Dipak K. Dey, Yong Chen, and Kun Chen. Generalized co-sparse factor regression. Computational Statistics & Data Analysis 157 (2021): 107127' for more details.

URL https://github.com/amishra-stats/gofar,

https://www.sciencedirect.com/science/article/pii/S0167947320302188

Depends R (>= 3.5), stats, utils

Imports Rcpp (>= 0.12.9), MASS, magrittr, rrpack, glmnet

License GPL (>= 3.0)

LazyData TRUE

Encoding UTF-8

LinkingTo Rcpp, RcppArmadillo

NeedsCompilation yes

RoxygenNote 7.1.2

Language en-US

Author Aditya Mishra [aut, cre],

Kun Chen [aut]

Repository CRAN

Date/Publication 2022-03-02 08:50:10 UTC

2 gofar_control

R topics documented:

Index																				12
	gofar_sim simulate_g																			
	gofar_s .										 									4
	gofar_p .																			
	gofar_cont	rol									 									- 2

 ${\tt gofar_control}$

Control parameters for the estimation procedure of GOFAR(S) and GOFAR(P)

Description

Default control parameters for Generalized co-sparse factor regresion

Usage

```
gofar_control(
 maxit = 5000,
 epsilon = 1e-06,
 elnetAlpha = 0.95,
  gamma0 = 1,
  se1 = 1,
  spU = 0.5,
  spV = 0.5,
  lamMaxFac = 1,
  lamMinFac = 1e-06,
  initmaxit = 2000,
  initepsilon = 1e-06,
  equalphi = 1,
 objI = 1,
 alp = 60
)
```

Arguments

maxit	maximum iteration for each sequential steps
epsilon	tolerence value set for convergene of gcure
elnetAlpha	elastic net penalty parameter
gamma0	power parameter in the adaptive weights
se1	apply 1se sule for the model;
spU	maximum proportion of nonzero elements in each column of U
spV	maximum proportion of nonzero elements in each column of V

gofar_p 3

lamMaxFac	a multiplier of calculated lambda_max
lamMinFac	a multiplier of determing lambda_min as a fraction of lambda_max
initmaxit	maximum iteration for initialization problem
initepsilon	tolerence value for convergene in the initialization problem
equalphi	dispersion parameter for all gaussian outcome equal or not 0/1
objI	1 or 0 convergence on the basis of objective function or not
alp	scaling factor corresponding to poisson outcomes

Value

a list of controling parameter.

References

Mishra, Aditya, Dipak K. Dey, Yong Chen, and Kun Chen. Generalized co-sparse factor regression. Computational Statistics & Data Analysis 157 (2021): 107127

Examples

```
# control variable for GOFAR(S) and GOFAR(P)
control <- gofar_control()</pre>
```

Generalize Exclusive factor extraction via co-sparse unit-rank estimation (GOFAR(P)) using k-fold crossvalidation

Description

gofar_p

Divide and conquer approach for low-rank and sparse coefficent matrix estimation: Exclusive extraction

Usage

```
gofar_p(
   Yt,
   X,
   nrank = 3,
   nlambda = 40,
   family,
   familygroup = NULL,
   cIndex = NULL,
   control = list(),
   nfold = 5,
   PATH = FALSE
)
```

4 gofar_p

Arguments

Yt response matrix

X covariate matrix; when X = NULL, the function performs unsupervised learning

nrank an integer specifying the desired rank/number of factors nlambda number of lambda values to be used along each path

family set of family gaussian, bernoulli, possion

familygroup index set of the type of multivariate outcomes: "1" for Gaussian, "2" for Bernoulli,

"3" for Poisson outcomes

cIndex control index, specifying index of control variable in the design matrix X

ofset offset matrix specified

control a list of internal parameters controlling the model fitting

nfold number of fold for cross-validation

PATH TRUE/FALSE for generating solution path of sequential estimate after cross-

validation step

Value

C estimated coefficient matrix; based on GIC
Z estimated control variable coefficient matrix

Phi estimted dispersion parameters

U estimated U matrix (generalize latent factor weights)

D estimated singular values

V estimated V matrix (factor loadings)

lam selected lambda values based on the chosen information criterion

lampath sequences of lambda values used in model fitting. In each sequential unit-rank

estimation step, a sequence of length nlambda is first generated between (lam-MaxlamMaxFac, lamMaxlamMaxFac*lamMinFac) equally spaced on the log scale, in which lamMax is estimated and the other parameters are specified in gofar_control. The model fitting starts from the largest lambda and stops when the maximum proportion of nonzero elements is reached in either u or v, as

specified by spU and spV in gofar_control.

IC values of information criteria

 $\begin{array}{ll} \text{Upath} & \text{solution path of } U \\ \text{Dpath} & \text{solution path of } D \\ \text{Vpath} & \text{solution path of } D \end{array}$

ObjDec boolian type matrix outcome showing if objective function is monotone decreas-

ing or not.

familygroup spcified familygroup of outcome variables.

References

Mishra, Aditya, Dipak K. Dey, Yong Chen, and Kun Chen. Generalized co-sparse factor regression. Computational Statistics & Data Analysis 157 (2021): 107127

gofar_s 5

Examples

```
family <- list(gaussian(), binomial(), poisson())</pre>
control <- gofar_control()</pre>
nlam <- 40 # number of tuning parameter</pre>
SD <- 123
# Simulated data for testing
data('simulate_gofar')
attach(simulate_gofar)
q \leftarrow ncol(Y)
p <- ncol(X)
# Simulate data with 20% missing entries
miss <- 0.20 # Proportion of entries missing
t.ind <- sample.int(n * q, size = miss * n * q)
y <- as.vector(Y)</pre>
y[t.ind] <- NA
Ym <- matrix(y, n, q)
naind <- (!is.na(Ym)) + 0 \# matrix(1,n,q)
misind <- any(naind == 0) + 0
# Model fitting begins:
control$epsilon <- 1e-7
control$spU <- 50 / p
controlspV \leftarrow 25 / q
control$maxit <- 1000</pre>
# Model fitting: GOFAR(P) (full data)
set.seed(SD)
rank.est <- 5
fit.eea <- gofar_p(Y, X,</pre>
  nrank = rank.est, nlambda = nlam,
  family = family, familygroup = familygroup,
  control = control, nfold = 5
# Model fitting: GOFAR(P) (missing data)
set.seed(SD)
rank.est <- 5
fit.eea.m <- gofar_p(Ym, X,</pre>
  nrank = rank.est, nlambda = nlam,
  family = family, familygroup = familygroup,
  control = control, nfold = 5
)
```

Generalize Sequential factor extraction via co-sparse unit-rank estimation (GOFAR(S)) using k-fold crossvalidation

gofar_s

Description

Divide and conquer approach for low-rank and sparse coefficent matrix estimation: Sequential

Usage

```
gofar_s(
   Yt,
   X,
   nrank = 3,
   nlambda = 40,
   family,
   familygroup = NULL,
   cIndex = NULL,
   ofset = NULL,
   control = list(),
   nfold = 5,
   PATH = FALSE
)
```

Arguments

Yt response n	e matrix
---------------	----------

X covariate matrix; when X = NULL, the function performs unsupervised learning

nrank an integer specifying the desired rank/number of factors nlambda number of lambda values to be used along each path

family set of family gaussian, bernoulli, possion

familygroup index set of the type of multivariate outcomes: "1" for Gaussian, "2" for Bernoulli,

"3" for Poisson outcomes

cIndex control index, specifying index of control variable in the design matrix X

ofset offset matrix specified

control a list of internal parameters controlling the model fitting

nfold number of folds in k-fold crossvalidation

PATH TRUE/FALSE for generating solution path of sequential estimate after cross-

validation step

Value

C estimated coefficient matrix; based on GIC
Z estimated control variable coefficient matrix

Phi estimted dispersion parameters

U estimated U matrix (generalize latent factor weights)

D estimated singular values

V estimated V matrix (factor loadings)

lam selected lambda values based on the chosen information criterion

familygroup spcified familygroup of outcome variables.

fitCV output from crossvalidation step, for each sequential step

gofar_s 7

References

Mishra, Aditya, Dipak K. Dey, Yong Chen, and Kun Chen. Generalized co-sparse factor regression. Computational Statistics & Data Analysis 157 (2021): 107127

Examples

```
family <- list(gaussian(), binomial(), poisson())</pre>
control <- gofar_control()</pre>
nlam <- 40 # number of tuning parameter</pre>
SD <- 123
# Simulated data for testing
data('simulate_gofar')
attach(simulate_gofar)
q \leftarrow ncol(Y)
p <- ncol(X)
# Simulate data with 20% missing entries
miss <- 0.20 # Proportion of entries missing
t.ind <- sample.int(n * q, size = miss * n * q)
y <- as.vector(Y)</pre>
y[t.ind] \leftarrow NA
Ym <- matrix(y, n, q)
naind \leftarrow (!is.na(Ym)) + 0 # matrix(1,n,q)
misind \leftarrow any(naind == 0) + 0
# Model fitting begins:
control$epsilon <- 1e-7
control$spU <- 50 / p
controlspV <- 25 / q
control$maxit <- 1000</pre>
# Model fitting: GOFAR(S) (full data)
set.seed(SD)
rank.est <- 5
fit.seq <- gofar_s(Y, X,</pre>
  nrank = rank.est, family = family,
  nlambda = nlam, familygroup = familygroup,
  control = control, nfold = 5
)
# Model fitting: GOFAR(S) (missing data)
set.seed(SD)
rank.est <- 5
fit.seq.m <- gofar_s(Ym, X,</pre>
  nrank = rank.est, family = family,
  nlambda = nlam, familygroup = familygroup,
```

8 gofar_sim

```
control = control, nfold = 5
)
```

gofar_sim

Simulate data for GOFAR

Description

Genertate random samples from a generalize sparse factor regression model

Usage

```
gofar_sim(U, D, V, n, Xsigma, C0, familygroup, snr)
```

Arguments

U	specified value of U
D	specified value of D
V	specified value of V
n	sample size

 $\label{eq:covariance matrix} \textit{Xsigma} \qquad \qquad \textit{covariance matrix for generating sample of } X$

C0 Specified coefficient matrix with first row being intercept

familygroup index set of the type of multivariate outcomes: "1" for Gaussian, "2" for Bernoulli,

"3" for Poisson outcomes

snr signal to noise ratio specified for gaussian type outcomes

Value

Y Generated response matrix
X Generated predictor matrix

sigmaG standard deviation for gaussian error

References

Mishra, Aditya, Dipak K. Dey, Yong Chen, and Kun Chen. Generalized co-sparse factor regression. Computational Statistics & Data Analysis 157 (2021): 107127

gofar_sim 9

Examples

```
## Model specification:
SD <- 123
set.seed(SD)
n <- 200
p <- 100
pz <- 0
# Model I in the paper
# n <- 200; p <- 300; pz <- 0;
                                        # Model II in the paper
# q1 <- 0; q2 <- 30; q3 <- 0
                                             # Similar response cases
q1 <- 15
q2 <- 15
q3 <- 0 # mixed response cases
nrank <- 3 # true rank</pre>
rank.est <- 4 # estimated rank
nlam <- 40 # number of tuning parameter</pre>
s <- 1 # multiplying factor to singular value
snr <- 0.25 # SNR for variance Gaussian error
q < -q1 + q2 + q3
respFamily <- c("gaussian", "binomial", "poisson")</pre>
family <- list(gaussian(), binomial(), poisson())</pre>
familygroup \leftarrow c(rep(1, q1), rep(2, q2), rep(3, q3))
cfamily <- unique(familygroup)</pre>
nfamily <- length(cfamily)</pre>
control <- gofar_control()</pre>
## Generate data
D <- rep(0, nrank)
V <- matrix(0, ncol = nrank, nrow = q)</pre>
U <- matrix(0, ncol = nrank, nrow = p)</pre>
#
U[, 1] \leftarrow c(sample(c(1, -1), 8, replace = TRUE), rep(0, p - 8))
U[, 2] \leftarrow c(rep(0, 5), sample(c(1, -1), 9, replace = TRUE), rep(0, p - 14))
U[, 3] \leftarrow c(rep(0, 11), sample(c(1, -1), 9, replace = TRUE), rep(0, p - 20))
if (nfamily == 1) {
  # for similar type response type setting
  V[, 1] \leftarrow c(rep(0, 8), sample(c(1, -1), 8,
    replace =
      TRUE
  ) * runif(8, 0.3, 1), rep(0, q - 16))
  V[, 2] \leftarrow c(rep(0, 20), sample(c(1, -1), 8,
    replace =
      TRUE
  ) * runif(8, 0.3, 1), rep(0, q - 28))
  V[, 3] \leftarrow c(
    sample(c(1, -1), 5, replace = TRUE) * runif(5, 0.3, 1), rep(0, 23),
    sample(c(1, -1), 2, replace = TRUE) * runif(2, 0.3, 1), rep(0, q - 30)
```

10 gofar_sim

```
} else {
  # for mixed type response setting
  # V is generated such that joint learning can be emphasised
  V1 <- matrix(0, ncol = nrank, nrow = q / 2)
  V1[, 1] \leftarrow c(sample(c(1, -1), 5, replace = TRUE), rep(0, q / 2 - 5))
  V1[, 2] <- c(
    rep(0, 3), V1[4, 1], -1 * V1[5, 1],
    sample(c(1, -1), 3, replace = TRUE), rep(0, q / 2 - 8)
  )
  V1[, 3] <- c(
    V1[1, 1], -1 * V1[2, 1], rep(0, 4),
    V1[7, 2], -1 * V1[8, 2], sample(c(1, -1), 2, replace = TRUE),
    rep(0, q / 2 - 10)
  )
  V2 \leftarrow matrix(0, ncol = nrank, nrow = q / 2)
  V2[, 1] \leftarrow c(sample(c(1, -1), 5, replace = TRUE), rep(0, q / 2 - 5))
  V2[, 2] <- c(
    rep(0, 3), V2[4, 1], -1 * V2[5, 1],
    sample(c(1, -1), 3, replace = TRUE), rep(0, q / 2 - 8)
  )
  V2[, 3] <- c(
    V2[1, 1], -1 * V2[2, 1], rep(0, 4),
    V2[7, 2], -1 * V2[8, 2],
    sample(c(1, -1), 2, replace = TRUE), rep(0, q / 2 - 10)
  V <- rbind(V1, V2)</pre>
U[, 1:3] \leftarrow apply(U[, 1:3], 2, function(x) x / sqrt(sum(x^2)))
V[, 1:3] \leftarrow apply(V[, 1:3], 2, function(x) x / sqrt(sum(x^2)))
D \leftarrow s * c(4, 6, 5)  # signal strength varries as per the value of s
or <- order(D, decreasing = TRUE)
U <- U[, or]
V <- V[, or]</pre>
D <- D[or]
C <- U \%*\% (D * t(V)) # simulated coefficient matrix
intercept \leftarrow rep(0.5, q) # specifying intercept to the model:
C0 <- rbind(intercept, C)</pre>
#
Xsigma <- 0.5^abs(outer(1:p, 1:p, FUN = "-"))</pre>
# Simulated data
sim.sample <- gofar_sim(U, D, V, n, Xsigma, C0, familygroup, snr)</pre>
# Dispersion parameter
pHI <- c(rep(sim.sample$sigmaG, q1), rep(1, q2), rep(1, q3))
X <- sim.sample$X[1:n, ]</pre>
Y <- sim.sample$Y[1:n, ]
simulate\_gofar \leftarrow list(Y = Y, X = X, U = U, D = D, V = V, n=n,
Xsigma = Xsigma, C0 = C0, familygroup = familygroup)
```

simulate_gofar 11

 $simulate_gofar$

Simulated data for GOFAR

Description

Simulated data with low-rank and sparse coefficient matrix.

Usage

data(simulate_gofar)

Format

A list of variables for the analysis using GOFAR(S) and GOFAR(P):

- Y Generated response matrix
- X Generated predictor matrix
- U specified value of U
- V specified value of V
- D specified value of D
- n sample size

Xsigma covariance matrix used to generate predictors in X

C0 intercept value in the coefficient matrix

familygroup index set of the type of multivariate outcomes: "1" for Gaussian, "2" for Bernoulli, "3" for Poisson outcomes Mishra, Aditya, Dipak K. Dey, Yong Chen, and Kun Chen. Generalized co-sparse factor regression. Computational Statistics & Data Analysis 157 (2021): 107127

Index