Problem Sheet 6 FYS3110

Sebastian G. Winther-Larsen

October 5, 2016

Figure 1: Quantum joke from Futurama.

Problem 6.1

An electron which has spin-1/2 is in the states

$$|\psi\rangle = \sqrt{\frac{2}{5}} |3, 2, 1\rangle \otimes |\downarrow_z\rangle + \sqrt{\frac{3}{5}} |2, 1, 1\rangle \otimes |\uparrow_z\rangle,$$
 (1)

of the hydrogen atom. The state with quantum numbers n,l,m and spin $s_z=\{\uparrow_z=\hbar/2,\quad \downarrow_z=-\hbar/2\}$ along the z-axis is denoted $|n,l,m\rangle\otimes|s_z\rangle$.

a)

The probability that the electron is measured to be in the spin up state along the z-axis can be calculated in a very difficult manner by computing $\langle \psi | (\mathbb{1} \otimes |\uparrow_z\rangle \langle \uparrow_z |) |\psi \rangle$. However, one can simply look at the coefficients in the superposition represessenation of the state in equation 1 and realize that

$$P(\uparrow_z) = \frac{3}{5}, \quad P(\downarrow_z) = \frac{2}{5}.$$
 (2)

The probabilities add up to one, implying that the state is normalized.

b)

To find which values can be measured for L^2 and for what probabilities one need simply to apply the \hat{L}^2 operator to the state of the electron in equation 1.

$$\begin{split} \hat{L}^2 \ket{\psi} &= \sqrt{\frac{2}{5}} \hat{L}^2 \ket{3,2,1} \otimes \ket{\downarrow_z} + \sqrt{\frac{3}{5}} \hat{L}^2 \ket{2,1,1} \otimes \ket{\uparrow_z} \\ &= \sqrt{\frac{2}{5}} (\hbar^2 2(2+1) \ket{3,2,1} \otimes \ket{\downarrow_z}) + \sqrt{\frac{3}{5}} (\hbar^2 1(1+1) \ket{2,1,1} \otimes \ket{\uparrow_z}) \\ &= \sqrt{\frac{2}{5}} (6\hbar \ket{3,2,1} \otimes \ket{\downarrow_z}) + \sqrt{\frac{2}{5}} (2\hbar^2 \ket{2,1,1} \otimes \ket{\uparrow_z}) \end{split}$$

which means that you can measure $6\hbar^2$ with probability 2/5 and $2\hbar^2$ with probability 3/5 for L^2 .

The same computation for L_z is

$$\hat{L}_{z} |\psi\rangle = \sqrt{\frac{2}{5}} \hat{L}_{z} |3, 2, 1\rangle \otimes |\downarrow_{z}\rangle + \sqrt{\frac{3}{5}} \hat{L}_{z} |2, 1, 1\rangle \otimes |\uparrow_{z}\rangle$$

$$= \sqrt{\frac{2}{5}} |3, 2, 1\rangle \otimes |\downarrow_{z}\rangle + \sqrt{\frac{3}{5}} |2, 1, 1\rangle \otimes |\downarrow_{z}\rangle$$