Undirected Graphs

- ▶ Graph API
- maze exploration
- depth-first search
- breadth-first search
- connected components
- ▶ challenges

References:

Algorithms in Java, Chapters 17 and 18 Intro to Programming in Java, Section 4.5 http://www.cs.princeton.edu/introalgsds/51undirected

Undirected graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

- Interesting and broadly useful abstraction.
- Challenging branch of computer science and discrete math.
- Hundreds of graph algorithms known.
- Thousands of practical applications.

Graph applications

graph	vertices	edges	
communication	telephones, computers fiber optic cables		
circuits	gates, registers, processors wires		
mechanical	joints rods, beams, springs		
hydraulic	reservoirs, pumping stations pipelines		
financial	stocks, currency transactions		
transportation	street intersections, airports	ersections, airports highways, airway routes	
scheduling	tasks	precedence constraints	
software systems	functions function calls		
internet	web pages	hyperlinks	
games	board positions	oard positions legal moves	
social relationship	people, actors friendships, movie cas		
neural networks	neurons synapses		
protein networks	proteins	protein-protein interactions	
chemical compounds	molecules	bonds	

Social networks

high school dating

Reference: Bearman, Moody and Stovel, 2004 image by Mark Newman

corporate e-mail

Reference: Adamic and Adar, 2004

Power transmission grid of Western US

Reference: Duncan Watts

Protein interaction network

Reference: Jeong et al, Nature Review | Genetics

The Internet

Graph terminology

Some graph-processing problems

Path. Is there a path between s to t?

Shortest path. What is the shortest path between s and t?

Longest path. What is the longest simple path between s and t?

Cycle. Is there a cycle in the graph?

Euler tour. Is there a cycle that uses each edge exactly once?

Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?

MST. What is the best way to connect all of the vertices?

Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges?

First challenge: Which of these problems is easy? difficult? intractable?

▶ Graph API

- ▶ maze exploration
- ▶ depth-first search
- ▶ breadth-first search
- **▶** connected components
- **▶** challenges

Graph representation

Vertex representation.

- This lecture: use integers between 0 and v-1.
- Real world: convert between names and integers with symbol table.

Other issues. Parallel edges, self-loops.

Graph API

```
public class Graph (graph data type)

Graph(int V) create an empty graph with V vertices
Graph(int V, int E) create a random graph with V vertices, E edges
void addEdge(int v, int w) add an edge v-w

Iterable<Integer> adj(int v) return an iterator over the neighbors of v

int V() return number of vertices

String toString() return a string representation
```

Client that iterates through all edges

```
Graph G = new Graph(V, E);
StdOut.println(G);
for (int v = 0; v < G.V(); v++)
   for (int w : G.adj(v))
     // process edge v-w</pre>
```

processes BOTH v-w and w-v

Set of edges representation

Store a list of the edges (linked list or array)

Adjacency matrix representation

Maintain a two-dimensional $v \times v$ boolean array.

For each edge v-w in graph: adj[v][w] = adj[w][v] = true.

Adjacency-matrix graph representation: Java implementation

```
public class Graph
   private int V;
                                                adjacency
   private boolean[][] adj;
                                                 matrix
   public Graph(int V)
      this.V = V;
                                               create empty
      adj = new boolean[V][V];
                                              V-vertex graph
   public void addEdge(int v, int w)
      adj[v][w] = true;
                                                add edge v-w
                                               (no parallel edges)
      adj[w][v] = true;
   public Iterable<Integer> adj(int v)
                                               iterator for
      return new AdjIterator(v);
                                               v's neighbors
```

Adjacency matrix: iterator for vertex neighbors

```
private class AdjIterator implements Iterator<Integer>,
                                     Iterable<Integer>
   int v, w = 0;
  AdjIterator(int v)
   { this.v = v; }
  public boolean hasNext()
     while (w < V)
      { if (adj[v][w]) return true; w++ }
     return false;
   public int next()
      if (hasNext()) return w++ ;
      else throw new NoSuchElementException();
   public Iterator<Integer> iterator()
   { return this; }
```

Adjacency-list graph representation

Maintain vertex-indexed array of lists (implementation omitted)

Adjacency-SET graph representation

Maintain vertex-indexed array of SETs (take advantage of balanced-tree or hashing implementations)

Adjacency-SET graph representation: Java implementation

```
public class Graph
   private int V;
                                                  adjacency
   private SET<Integer>[] adj; 
                                                    sets
   public Graph(int V)
      this.V = V;
      adj = (SET<Integer>[]) new SET[V];
                                                 create empty
      for (int v = 0; v < V; v++)
                                                 V-vertex graph
          adj[v] = new SET<Integer>();
   public void addEdge(int v, int w)
      adj[v].add(w);
                                                  add edge v-w
                                                 (no parallel edges)
      adj[w].add(v);
   public Iterable<Integer> adj(int v)
                                                 iterable SET for
      return adj[v];
                                                  v's neighbors
                                                                     19
```

Graph representations

Graphs are abstract mathematical objects, BUT

- ADT implementation requires specific representation.
- Efficiency depends on matching algorithms to representations.

representation	space	edge between v and w?	iterate over edges incident to v?
list of edges	Е	Ε	E
adjacency matrix	V ²	1	V
adjacency list	E+V	degree(v)	degree(v)
adjacency SET	E+V	log (degree(v))	degree(v)*

In practice: Use adjacency SET representation

- Take advantage of proven technology
- Real-world graphs tend to be "sparse"
 [huge number of vertices, small average vertex degree]
- Algs all based on iterating over edges incident to v.

* easy to also support ordered iteration and randomized iteration

Maze exploration

Maze graphs.

- Vertex = intersections.
- Edge = passage.

Goal. Explore every passage in the maze.

Trémaux Maze Exploration

Trémaux maze exploration.

- Unroll a ball of string behind you.
- Mark each visited intersection by turning on a light.
- Mark each visited passage by opening a door.

First use? Theseus entered labyrinth to kill the monstrous Minotaur; Ariadne held ball of string.

Claude Shannon (with Theseus mouse)

Maze Exploration

Flood fill

Photoshop "magic wand"

Graph-processing challenge 1:

Problem: Flood fill

Assumptions: picture has millions to billions of pixels

How difficult?

- 1) any COS126 student could do it
- 2) need to be a typical diligent COS226 student
- 3) hire an expert
- 4) intractable
- 5) no one knows

Depth-first search

Goal. Systematically search through a graph.

Idea. Mimic maze exploration.

Typical applications.

- find all vertices connected to a given s
- find a path from s to t

DFS (to visit a vertex s)

Mark s as visited.

Visit all unmarked vertices v adjacent to s.

recursive

Running time.

- O(E) since each edge examined at most twice
- usually less than V to find paths in real graphs

Design pattern for graph processing

Typical client program.

- Create a Graph.
- Pass the Graph to a graph-processing routine, e.g., Dfsearcher.
- Query the graph-processing routine for information.

Client that prints all vertices connected to (reachable from) s

```
public static void main(String[] args)
{
    In in = new In(args[0]);
    Graph G = new Graph(in);
    int s = 0;
    DFSearcher dfs = new DFSearcher(G, s);
    for (int v = 0; v < G.V(); v++)
        if (dfs.isConnected(v))
            System.out.println(v);
}</pre>
```

Decouple graph from graph processing.

Depth-first search (connectivity)

```
public class DFSearcher
{
                                                   true if
   private boolean[] marked;
                                                connected to s
   public DFSearcher(Graph G, int s)
                                                 constructor
      marked = new boolean[G.V()];
                                                marks vertices
      dfs(G, s);
                                                connected to s
   private void dfs(Graph G, int v)
      marked[v] = true;
                                                recursive DFS
       for (int w : G.adj(v))
                                                does the work
          if (!marked[w]) dfs(G, w);
   public boolean isReachable(int v)
                                               client can ask whether
      return marked[v];
                                                  any vertex is
                                                 connected to s
```

Connectivity application: Flood fill

Change color of entire blob of neighboring red pixels to blue.

Build a grid graph

• vertex: pixel.

• edge: between two adjacent lime pixels.

• blob: all pixels connected to given pixel.

Connectivity Application: Flood Fill

Change color of entire blob of neighboring red pixels to blue.

Build a grid graph

• vertex: pixel.

• edge: between two adjacent red pixels.

• blob: all pixels connected to given pixel.

Graph-processing challenge 2:

Problem: Is there a path from s to t?

How difficult?

- 1) any CS126 student could do it
- 2) need to be a typical diligent CS226 student
- 3) hire an expert
- 4) intractable
- 5) no one knows

Graph-processing challenge 3:

Problem: Find a path from s to t.

Assumptions: any path will do

How difficult?

- 1) any CS126 student could do it
- 2) need to be a typical diligent CS226 student
- 3) hire an expert
- 4) intractable
- 5) no one knows

Paths in graphs

Is there a path from s to t? If so, find one.

Paths in graphs

Is there a path from s to t?

method	preprocess time	query time	space
Union Find	V + E log* V	log* V †	V
DFS	E + V	1	E+V

† amortized

If so, find one.

- Union-Find: no help (use DFS on connected subgraph)
- DFS: easy (stay tuned)

UF advantage. Can intermix queries and edge insertions.

DFS advantage. Can recover path itself in time proportional to its length.

Keeping track of paths with DFS

DFS tree. Upon visiting a vertex v for the first time, remember that you came from pred[v] (parent-link representation).

Retrace path. To find path between s and v, follow pred back from v.

Depth-first-search (pathfinding)

```
public class DFSearcher
                                                     add instance variable for
   private int[] pred;
                                                    parent-link representation
                                                         of DFS tree
   public DFSearcher(Graph G, int s)
       pred = new int[G.V()];
                                                    initialize it in the
       for (int v = 0; v < G.V(); v++)
                                                      constructor
          pred[v] = -1;
   private void dfs(Graph G, int v)
      marked[v] = true;
       for (int w : G.adj(v))
          if (!marked[w])
              pred[w] = v;
                                                     set parent link
              dfs(G, w);
   public Iterable<Integer> path(int v)
                                                     add method for client
                                                     to iterate through path
     // next slide }
                                                                         39
```

Depth-first-search (pathfinding iterator)

```
public Iterable<Integer> path(int v)
{
    Stack<Integer> path = new Stack<Integer>();
    while (v != -1 && marked[v])
    {
        list.push(v);
        v = pred[v];
    }
    return path;
}
```


DFS summary

Enables direct solution of simple graph problems.

- Find path from s to t. 🗸
- Connected components (stay tuned).
- Euler tour (see book).
- Cycle detection (simple exercise).
- Bipartiteness checking (see book).

Basis for solving more difficult graph problems.

- Biconnected components (see book).
- Planarity testing (beyond scope).

Breadth First Search

Depth-first search. Put unvisited vertices on a stack. Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to t that uses fewest number of edges.

BFS (from source vertex s)

Put s onto a FIFO queue.

Repeat until the queue is empty:

- lacktriangledown remove the least recently added vertex lacktriangledown
- add each of v's unvisited neighbors to the queue,
 and mark them as visited.

Property. BFS examines vertices in increasing distance from s.

Breadth-first search scaffolding

```
public class BFSearcher
                                             distances from s
   private int[] dist;
   public BFSearcher(Graph G, int s)
      dist = new int[G.V()];
      for (int v = 0; v < G.V(); v++) initialize distances
         dist[v] = G.V() + 1;
      dist[s] = 0;
                                              compute
      bfs(G, s);
                                              distances
   public int distance(int v)
                                             answer client
      return dist[v]; }←
                                                query
   private void bfs(Graph G, int s)
   { // See next slide. }
```

Breadth-first search (compute shortest-path distances)

```
private void bfs(Graph G, int s)
   Queue<Integer> q = new Queue<Integer>();
   q.enqueue(s);
  while (!q.isEmpty())
      int v = q.dequeue();
      for (int w : G.adj(v))
         if (dist[w] > G.V())
            q.enqueue(w);
            dist[w] = dist[v] + 1;
```

BFS Application

- Kevin Bacon numbers.
- Facebook.
- Fewest number of hops in a communication network.

Connectivity Queries

- Def. Vertices v and w are connected if there is a path between them.
- Def. A connected component is a maximal set of connected vertices.
- Goal. Preprocess graph to answer queries: is v connected to w? in constant time

Vertex	Component	
A	0	
В	1	
C	1	
D	0	
E	0	
F	0	
G	2	
H	0	
I	2	
J	1	
K	0	
L	0	
M	1	

Union-Find? not quite

Connected Components

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex \mathbf{v} , run DFS and identify all vertices discovered as part of the same connected component.

preprocess Time	query Time	extra Space
E + V	1	V

Depth-first search for connected components

```
public class CCFinder
   private final static int UNMARKED = -1;
   private int components;
                                                           component labels
   private int[] cc;
   public CCFinder(Graph G)
      cc = new int[G.V()];
      for (int v = 0; v < G.V(); v++)
         cc[v] = UNMARKED;
                                                            DFS for each
                                                             component
      for (int v = 0; v < G.V(); v++)
         if (cc[v] == UNMARKED)
            { dfs(G, v); components++; }
   private void dfs(Graph G, int v)
      cc[v] = components;
      for (int w : G.adj(v))
                                                           standard DFS
         if (cc[w] == UNMARKED) dfs(G, w);
   public int connected(int v, int w)
                                                             constant-time
   { return cc[v] == cc[w]; }
                                                           connectivity query
```

Connected Components

63 components

Connected components application: Image processing

Goal. Read in a 2D color image and find regions of connected pixels that have the same color.

Input: scanned image

Output: number of red and blue states

Connected components application: Image Processing

Goal. Read in a 2D color image and find regions of connected pixels that have the same color.

Efficient algorithm.

- Connect each pixel to neighboring pixel if same color.
- Find connected components in resulting graph.

Connected components application: Particle detection

Particle detection. Given grayscale image of particles, identify "blobs."

- Vertex: pixel.
- Edge: between two adjacent pixels with grayscale value ≥ 70.
- Blob: connected component of 20-30 pixels.

\ black = 0 white = 255

Particle tracking. Track moving particles over time.

Graph-processing challenge 4:

Problem: Find a path from s to t

Assumptions: any path will do

Which is faster, DFS or BFS?

- 1) DFS
- 2) BFS
- 3) about the same
- 4) depends on the graph
- 5) depends on the graph representation

Graph-processing challenge 5:

Problem: Find a path from s to t

Assumptions: any path will do

randomized iterators

Which is faster, DFS or BFS?

- 1) DFS
- 2) BFS
- 3) about the same
- 4) depends on the graph
- 5) depends on the graph representation

Graph-processing challenge 6:

Problem: Find a path from s to t that uses every edge

Assumptions: need to use each edge exactly once

- 1) any CS126 student could do it
- 2) need to be a typical diligent CS226 student
- 3) hire an expert
- 4) intractable
- 5) no one knows

Bridges of Königsberg

earliest application of graph theory or topology

The Seven Bridges of Königsberg. [Leonhard Euler 1736]

"... in Königsberg in Prussia, there is an island A, called the Kneiphof; the river which surrounds it is divided into two branches ... and these branches are crossed by seven bridges. Concerning these bridges, it was asked whether anyone could arrange a route in such a way that he could cross each bridge once and only once..."

Euler tour. Is there a cyclic path that uses each edge exactly once?

Answer. Yes iff connected and all vertices have even degree.

Tricky DFS-based algorithm to find path (see Algs in Java).

Graph-processing challenge 7:

Problem: Find a path from s to t that visits every vertex

Assumptions: need to visit each vertex exactly once

- 1) any CS126 student could do it
- 2) need to be a typical diligent CS226 student
- 3) hire an expert
- 4) intractable
- 5) no one knows

Graph-processing challenge 8:

Problem: Are two graphs identical except for vertex names?

- 1) any CS126 student could do it
- 2) need to be a typical diligent CS226 student
- 3) hire an expert
- 4) intractable
- 5) no one knows

Graph-processing challenge 9:

Problem: Can you lay out a graph in the plane without crossing edges?

- 1) any CS126 student could do it
- 2) need to be a typical diligent CS226 student
- 3) hire an expert
- 4) intractable
- 5) no one knows

