	Ferr	nand	a Pé	, YCZ	Ru	12	Ac)174	210	2			DIA	MES ARC
0	Cóm	tivo	us	cal ar	culo TF	:- 11 tex	ctr of to?	para	خ آم	si tu	aci	one	TF.	- DF. s mo
C	9	terr la for	nino fre mulc	cuer	(F)	por e	n l	05	doc	umi	in	verso	(1 D	F)
-	TF-	· IDF	(Ł,	d,[))=	TF	(t,	d) ×	10	9 (-	DF	t))		
1	105	s el	nún	mero	to	tal	de	do	ruma	onto	5	1 D	F(t) e el	
6	TF- Se con	qui	ere clas	de	sta	cal	de	do	05	, 00	imp	la	anto	es tra-
L	cor y G	bi		eca:	s q	ve m	Se (Tf	a dv	eden	Ziv	oler cr)	nen-	tar i K	
										1 4				
										100				
													IN	orma

2-i Qué problemas de los N-gram resuelve el "Laplace smoothing"? c'émo trabaja? c y qué pasa con un modelo de NLP cuardo se empléa esta técnica? Evita que un N-gram tenga una probabilidad de o cuando no aparece en los datos de ortrenamiento, lo cual puede vomper el modelal Duma un valor (generalmente 1) a todos los conteos de N-grams, incluyando los que no han aparecido. Esto garantiza una probabildo no nola para cada W-gram Hace que el modello sea mas robusto frente a datas no vistos, pero puede sobilees timar la probabilidad 3 - c Qué pasa cuando una palabra en el test se t no se encuentra en el vocabulario del modelo de los N-gram? c'Como se puede modelar la probabilidad de palabras out -of-vocabulary? (000?) Si una palabra en el test set no esta en el vocabulario. el modelo no puede calcular su probabilidad, lo que a tecta su desempeño. Para modelarlo se purde introducir un token especial (KUNKT) para palabras desconocidas o aptical un suo vitado (como Laplace) para quignar probabilidades a palabias fuera del vocabulação