Click ~Clock

Designing Asynchronous Circuits

10 / 08

Presented by

Vishwa Eswaran

Classic Pipelining

Classic Pipelining

Two Pipelines

In Asynchronous Pipelines

Average worst case delay reduces.

World of Asynchronous Circuits

Two Phase Communication

А	В	Υ
•	•	0
<u>•</u>		Y
<u>u</u>	<u>•</u>	Y
		1

Α	В	Υ
•	<u></u>	Y
<u>•</u>		0
<u>u</u>	<u> </u>	1
		Υ

Control Path

Event Driven Register

Event Driven Register

TrueNorth

1 M Neurons 256 M Synapses 5.4 B Transistors Realtime 73 mW

What's Next?

Join our <u>discord server!</u> We have a async-circuits channel where you can find the slides, recording (once uploaded), and a paper bundle of relevant papers to read about the topic! Feel free to discuss what you thought about the event there as well.

Stay connected with us on our website: https://ieeeuoft-asic.github.io