Fall'19 CSCE 629

Analysis of Algorithms

Fang Song
Texas A&M U

Lecture 25

Computational intractability

Credit: based on slides by A. smith & K. Wayne

Fundamental theorem of linear programming

- Weak duality. If x is a feasible solution for a linear program \square , and y is a feasible solution for its dual \square , then $c^Tx \leq y^TAx \leq y^Tb$.
- Strong duality. \sqcap has an optimal solution and x^* if and only if its dual \sqcup has an optimal solution y^* such that $c^Tx = y^TAx = y^Tb$.

Duality example

(P) Maximize:
$$x_1 + 5x_2$$
 Subject to:

$$0 \le x_1 \le 12$$

 $0 \le x_2 \le 15$
 $x_1 + x_2 \le 24$

$$Max = 84, x_1 = 9, x_2 = 15$$

(D) Minimize:
$$12y_1 + 15y_2 + 24y_3$$
 Subject to:

$$y_1 + y_3 \ge 1$$

 $y_2 + y_3 \ge 5$
 $y_1, y_2, y_3 \ge 0$

Min = 84,
$$y_1 = 0$$
, $y_2 = 4$, $y_3 = 1$ (magic) multipliers

A dialogue between Dantzig & von Neumann

George Dantzig

Let me show you my exciting finding: simplex algorithm for LP ... [next 30 mins]

Get to the point, please!

OK! Em...To be concise ... [next 3 mins]

John von Neumann

```
[next 60 mins] .... (convexity)... (fixed point) ... (2-player game) ... so, there is duality which'd follow by my min-max theorem ...
```

For any matrix A, $\min_{x} \max_{y} xAy = \max_{y} \min_{x} xAy$.

A refection on the algorithmic journey

- So far: algorithm design triumph
 - Divide-and-conquer
 - Greedy
 - Dynamic programming
 - Linear programming (duality)
 - Local search
 - Randomization
 - •

Examples

- $O(n \log n)$ Merge sort
- $O(n \log n)$ interval scheduling
- $O(n^2)$ edit distance
- $O(n^3)$ bipartite matchin

New goal: understand what is hard to compute

Computational intractability

Computability: can you solve it, in principle?

Halting problem is uncomputable [Given program code, will this program

terminate or loop indefinitely?]

Church-Turing Thesis. A function can be computed in any reasonable model of computation iff. it is computable by a Turing machine.

Complexity: can you solve it, under resource constraints?

Extended Church-Turing Thesis. A function can be computed efficiently in any reasonable model of computation iff. it is efficiently computable by a Turing machine.

Disprove ECT???

Quantum supremacy using a programmable superconducting processor

Central ideas in complexity

- Poly-time as "feasible"
 - Most natural problems either are easy (e.g., n^3) or no poly-time alg. known
- Reduction : relating hardness $(A \le B \Rightarrow A \text{ no harder than } B)$
- Classify problems by "hardness"
 - P = {problems that are easy to answer}
 - NP = {problems that are easy to verify given hint} [lots of examples, stay tuned!]
 - Complete problems: "hardest" in a class

What'd be considered "feasible"?

Q. Which problems will we be able to solve in practice?

A. Those with poly-time algorithms. [von Neumann1953, Godel1956, Cobham1964, Edmonds1965, Rabin1966]

YES	Probably No
Shortest path	Longest path
Matching	3D-matching
Min cut	Max cut
2-SAT	3-SAT
Planar 4-color	Planar 3-color
Bipartite vertex cover	Vertex cover
D 1 11	- , .
Primality	Factoring

Classify problems

Desiderata. Classify problems as those that can be solved in polynomial-time and those that cannot.

Provably require exponential time.

Roughly: C program on machine with infinite memory

- Given a Turing machine, does it HALT in at most k steps?
- Given a board position in an $n \times n$ generalization of chess, can black win?
- ©Frustrating news: Huge number of fundamental problems have defied classification for decades.
 - We will show: these problems are "computationally equivalent" and appear to be different manifestations of one hard problem.

Tool: polynomial-time reduction

Desiderata'. Suppose we can solve Y in poly-time. What else could we solve in polynomial time?

- Reduction. Problem X polynomial reduces to Problem Y if arbitrary instance of X can be solved using:
 - Polynomial number of standard computation steps
 - & polynomial number of calls to oracle that solves A

```
Notation. X \leq_{P,Cook} Y (or X \leq_{P} Y)
```

! Mind your direction, don't confuse $X \leq_P Y$ with $Y \leq_P X$

N.B. We pay for time to write down instances to oracle \Rightarrow instances of Y must be of polynomial size.

What polynomial-time reductions buy us

- Design algorithms. If $X \leq_P Y$ and Y can be solved in poly-time, then X can also be solved in polynomial time.
- Establish intractability. If $X \leq_P Y$ and X cannot be solved in polytime, then Y cannot be solved in polynomial time.
- Establish equivalence. If $X \leq_P Y$ and $X \leq_P Y$, then $X \equiv_P Y$.

Bottomline. Reductions classify problems acc. to relative difficulty

Quiz

- Which of the following poly-time reductions are known?
 - A. FIND-MAX-FLOW \leq_P FIND-MIN-CUT
 - B. FIND-MIN-CUT \leq_P FIND-MAX-FLOW
 - C. Both A and B
 - D. Neither A nor B

VALUES VS. ACTUAL FLOW/CUT

Simplification: decision problems

- Search problem. Find some structure.
 - Example. Find a minimum cut.
- Decision problem.
 - Problem X is a set of strings [e.g., strings that encode graphs containing a triangle]
 - Instance: string s [e.g., encoding of a graph]
 - YES instance: $s \in X$; NO instance: $s \notin X$
 - Algorithm A solves problem X: A(s) = yes iff. $s \in X$
 - Example. Does there exist a cut of size $\leq k$?
- Self-reducibility. Bottomline. Search problem \leq_P Decision version
 - Applies to all NP-complete problems in this chapter [Recall HWI]
 - Justifies our focus on decision problems

Polynomial-time transformation

- Cook reduction. Problem X polynomial reduces to Problem Y if arbitrary instance of X can be solved using:
 - Polynomial number of standard computation steps
 - ullet & polynomial number of calls to oracle that solves A

$$X \leq_{P,Cook} Y$$

■ Karp reduction. (Decision) problem X polynomial transforms to Problem Y if given any x, we can construct y with size |y| = poly(|x|) such that $x \in X$ iff. $y \in Y$. $X \leq_{P,Karp} Y$

N.B. Polynomial transformation is polynomial reduction with just one call to oracle for Y, exactly at the end of the algorithm for X.

Open question. Are these two concepts the same?