

NHD-0420H1Z-FL-GBW-33V3

Character Liquid Crystal Display Module

NHD- Newhaven Display 0420- 4 lines x 20 characters

H1Z- Model

F- Transflective

L- Yellow/Green LED Backlight

G- STN- Gray B- 6:00 view

W- Wide Temp. $(-20^{\circ}\text{C} \sim +70^{\circ}\text{C})$ 33V3- 3.3Vdd, 3.0V Backlight

RoHS Compliant

Newhaven Display International, Inc.

2511 Technology Drive, Suite 101 Elgin IL, 60124

Ph: 847-844-8795 Fax: 847-844-8796

www.newhavendisplay.com

nhtech@newhavendisplay.com nhsales@newhavendisplay.com

Document Revision History

Revision	Date	Description	Changed by
0	10/31/2011	33V – improved liquid; VDD = 3.3V	SB

Functions and Features

- 4 lines x 20 characters
- Built-in controllers (ST7066U or equivalent)
- +3.3V Power Supply
- 1/16 duty, 1/4 bias
- RoHS compliant

DOTS DETAIL

SCALE=4.0:1

PIN ASSIGNMENT

1	VSS
3	VDD
	V0
4	RS
5	RW
6	E
7	DB0
8	DB1
9	DB2
10	DB3
11	DB4
12	DB5
13	DB6
14	DB7
15	Α
16	K

Specification:

- 1). Driving: Duty:1/16, Bias:1/4, VLCD:3.2V, VDD:3.3V
- 2). Viewing Direction: 6 O'clock
- 3). Display mode:STN-Gray/Positive/Transflective
- 4). Operating temp.: -20°c~+70°C Storage temp.: -30°c~+80°C
- 5). Driver: ST7066U or equivalent
- 6). Backlight: Yellow/Green Backlight/3.0V

Newhaven Display

Model Name:

NHD-0420H1Z-FL-GBW-33V3

Pin Description and Wiring Diagram

Pin No.	Symbol	External	Function Description
		Connection	
1	Vss	Power Supply	Ground
2	VDD	Power Supply	Supply voltage for logic (+3.3V)
3	V0	Power Supply	Power supply for contrast (approx. 0.1V)
4	RS	MPU	Register select signal. RS=0: Command, RS=1: Data
5	R/W	MPU	Read/Write select signal, R/W=1: Read R/W:=0: Write
6	Е	MPU	Operation enable signal. Falling edge triggered.
7-10	DB0-DB3	MPU	Four low order bi-directional three-state data bus lines. These four
			are not used during 4-bit operation.
11-14	DB4-DB7	MPU	Four high order bi-directional three-state data bus lines.
15	LED+	Power Supply	Power supply for LED Backlight (+3.0V)
16	LED-	Power Supply	Ground for backlight

LCD connector: 2.54mm pitch pins

Backlight connector: --- Mates with: ---

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	Тор	Absolute Max	-20	-	+70	°C
Storage Temperature Range	Tst	Absolute Max	-30	-	+80	°C
Supply Voltage	VDD		-	3.3	5.5	V
Supply Current	IDD	Ta=25°C, VDD=3.3V	-	4.0	5.0	mA
Supply for LCD (contrast)	VDD-V0	Ta=25°C	-	3.2	-	V
"H" Level input	Vih		0.7 VDD	-	VDD	V
"L" Level input	Vil		0	-	0.6	V
"H" Level output	Voh		3.9	-	-	V
"L" Level output	Vol		-	-	0.4	V
Backlight Supply Voltage	Vled	-	-	3.0	-	V
Backlight Supply Current	lled	Vled=3.0V	-	150	-	mA

Optical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Viewing Angle – Vertical (top)	AV	Cr ≥ 2	-	25	-	0
Viewing Angle – Vertical (bottom)	AV	Cr ≥ 2	-	70	-	0
Viewing Angle – Horizontal (left)	AH	Cr ≥ 2	-	30	-	0
Viewing Angle – Horizontal (right)	AH	Cr ≥ 2	-	30	-	0
Contrast Ratio	Cr		-	2	-	-
Response Time (rise)	Tr	-	-	120	150	ms
Response Time (fall)	Tf	-	-	120	150	ms

Controller Information

Built-in ST7066U. Download specification at http://www.newhavendisplay.com/app notes/ST7066U.pdf

Display character address code

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	OF	10	11	12	13
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	50	51	52	53
14	15	16	17	18	19	1A	1B	1C	1D	1E	1F	20	21	22	24	25	26	26	27
54	55	56	57	58	59	5A	5B	5C	5D	5E	5F	60	61	62	63	64	65	66	67

Command Table

				Ins	tructi	ion co	ode					Execution
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	time (fosc= 270 KHZ
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRA and set DDRAM address to "00H" from AC	1.53ms
Return Home	0	0	0	0	0	0	0	0	1	1	Set DDRAM address to "00H" From AC and return cursor to Its original position if shifted. The contents of DDRAM are not changed.	1.53ms
Entry mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction And blinking of entire display	39us
Display ON/ OFF control	0	0	0	0	0	0	1	D	С	В	Set display (D), cursor (C), and Blinking of cursor (B) on/off Control bit.	
Cursor or Display shift	0	0	0	0	0	1	S/C	R/L	-	1	Set cursor moving and display Shift control bit, and the Direction, without changing of DDRAM data.	39us
Function set	0	0	0	0	1	DL	N	F	-	1	Set interface data length (DL: 8-Bit/4-bit), numbers of display Line (N: =2-line/1-line) and, Display font type (F: 5x11/5x8)	39us
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39us
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	39us
Read busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal Operation or not can be known By reading BF. The contents of Address counter can also be read.	0us
Write data To Address	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	43us
Read data From RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	43us

Built-in Font Table

Upper 4																
Lower Bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx0000	CG RAM (1)			囵	a		*•	= -				*****	9	=_	C.	þ
xxxx0001	(2)		i	1	H	Q	a	4				ŗ	手	Ċ,	- =	역
xxxx0010	(3)		11	2	B	R	b	! "				1	ij	×	F	₿
xxxx0011	(4)		#	3	C	5	C	= .			J	Ż	7	ŧ	₩	.00
xxxx0100	(5)		-#-	4	D	T	d	†			٠.	1.	ļ.	t	H	Ω
xxxx0101	(6)		7.	5	E		臣	L			=	7	ナ	1	Œ	ü
xxxx0110	(7)		8	6	F	Ų	f	ĻJ			7	力			F	\$
xxxx0111	(8)			1,1	6	Ш	9	W				#	X	7	핔	Л
xxxx1000	(1)		(8	H	X	h	×			-1	9	‡	Ų	.J	×
xxxx1001	(2)		>	9	I	Y					d	' T	ار	IĿ	- !	닠
xxxx1010	(3)		*		J	Z	j	<u>-</u>			I		ı'n	Ŀ	į.	#
xxxx1011	(4)			7	K	I.	k	{			;	ij	<u>L.</u>		×	.F i
xxxx1100	(5)			<	<u> </u>	¥	1	l			ť	<u>:</u> ,	7	ŋ	4	F
xxxx1101	(6)			*****	M		m	}				Z	^		ŧ.	
xxxx1110	(7)		==	>	H	^	r	÷				t	T	•••	Fi	
xxxx1111	(8)		.**	?	0	24510	0	+			111	ソ	₹		Ö	

Example Initialization Program

```
8-bit Initialization:
void command(char i)
      P1 = i;
                                    //put data on output Port
     D_I = 0;
                                    //D/I=LOW : send instruction
                                    //R/W=LOW : Write
     R_W = 0;
     E = 1;
      Delay(1);
                                   //enable pulse width >= 300ns
      E = 0;
                                    //Clock enable: falling edge
void write(char i)
      P1 = i;
                                    //put data on output Port
     D_I = 1;
                                  //D/I=LOW : send data
     R_W = 0;
                                   //R/W=LOW : Write
     E = 1;
     Delay(1);
                                   //enable pulse width >= 300ns
     E = 0;
                                    //Clock enable: falling edge
void init()
{
      E = 0;
                                    //Wait >15 msec after power is applied
      Delay(100);
      Delay(100,, command(0x30);
                                    //command 0x30 = Wake up
                            //command UX30 = Wake up
//must wait 5ms, busy flag not available
//command 0x30 = Wake up #2
//must wait 160us, busy flag not available
//command 0x30 = Wake up #3
//must wait 160us, busy flag not available
//Function set: 8-bit/2-line
//Set cursor
//Display ON; Cursor ON
      Delay(30);
      command(0x30);
Delay(10);
      Delay(10);
      command(0x30);
Delay(10);
      command(0x38);
command(0x10);
command(0x0c);
command(0x06);
                                    //Display ON; Cursor ON
                                    //Entry mode set
```

```
4-bit Initialization:
void command(char i)
     P1 = i;
                               //put data on output Port
                               //D/I=LOW : send instruction
     D_I = 0;
                              //R/W=LOW : Write
//Send lower 4 bits
     R_W = 0;
     Nybble();
                               //Shift over by 4 bits
     i = i << 4;
     P1 = i;
                               //put data on output Port
     Nybble();
                                //Send upper 4 bits
void write(char i)
     P1 = i;
                                //put data on output Port
     D_I =1;
                               //D/I=HIGH : send data
                              //R/W=LOW : Write
//Clock lower 4 bits
     RW=0;
     Nybble();
     i = i << 4;
                               //Shift over by 4 bits
    P1 = i;
                                //put data on output Port
     Nybble();
                                //Clock upper 4 bits
/********************
void Nybble()
     E = 1;
                               //enable pulse width >= 300ns
     Delay(1);
     E = 0;
                                //Clock enable: falling edge
void init()
{
     P1 = 0;
     P3 = 0;
     Delay(100);
                                //Wait >15 msec after power is applied
     P1 = 0x30;
                                //put 0x30 on the output port
                                //must wait 5ms, busy flag not available
     Delay(30);
     Nybble();
                                //command 0x30 = Wake up
     Delay(10);
                                //must wait 160us, busy flag not available
                                //command 0x30 = Wake up #2
     Nybble();
                                //must wait 160us, busy flag not available
     Delay(10);
     Nybble();
                              //can check busy flag now instead of delay

//put 0x20 on the output port

//Function set: 4-bit interface

//Function set: 4-bit/2-line
                                //command 0x30 = Wake up #3
     Delay(10);
     P1 = 0x20;
     Nybble();
     command(0x28);
     command(0x10);
                               //Set cursor
                                //Display ON; Blinking cursor
     command(0x0F);
     command(0x06);
                                //Entry Mode set
 *****************
```

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high	+80°C , 48hrs	2
	storage temperature for a long time.		
Low Temperature storage	Endurance test applying the low storage	-30°C , 48hrs	1,2
	temperature for a long time.		
High Temperature	Endurance test applying the electric stress	+70°C 48hrs	2
Operation	(voltage & current) and the high thermal		
	stress for a long time.		
Low Temperature	Endurance test applying the electric stress	-20°C , 48hrs	1,2
Operation	(voltage & current) and the low thermal		
	stress for a long time.		
High Temperature /	Endurance test applying the electric stress	+40°C, 90% RH, 48hrs	1,2
Humidity Operation	(voltage & current) and the high thermal		
	with high humidity stress for a long time.		
Thermal Shock resistance	Endurance test applying the electric stress	0°C,30min -> 25°C,5min ->	
	(voltage & current) during a cycle of low	50°C,30min = 1 cycle	
	and high thermal stress.	10 cycles	
Vibration test	Endurance test applying vibration to	10-55Hz , 15mm amplitude.	3
	simulate transportation and use.	60 sec in each of 3 directions	
		X,Y,Z	
		For 15 minutes	
Static electricity test	Endurance test applying electric static	VS=800V, RS=1.5kΩ, CS=100pF	
	discharge.	One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 4 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Precautions for using LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information and Terms & Conditions

http://www.newhavendisplay.com/index.php?main_page=terms