In the Claims

Please amend the claims as follows:

THAT WHICH IS CLAIMED:

- 1. (currently amended) A catalyst system comprising an ionic liquid dispersed on a <u>porous</u> support having an average pore diameter greater than about 225 Å; wherein said ionic liquid comprises a cation and an anion; and wherein said anion consists essentially of halides of elements selected from the group consisting of: Group 13 (IIIA) metals, zinc, iron and phosphorus, and combinations thereof.
- 2. (original) A catalyst system in accordance with claim 1 wherein said support has a surface area less than about 700 m²/gram.
- 3. (original) A catalyst system in accordance with claim 1 wherein said support is non-crystalline.
- 4. (currently amended) A catalyst system in accordance with claim 1 wherein said support is non-crystalline and has a surface area less than about 700 m²/gram; and wherein said anion consists of halides of elements selected from the group consisting of:

 Group 13 (IIIA) metals, zinc, iron and phosphorus, and combinations thereof.
- 5. (original) A catalyst system in accordance with claim 1 wherein said support is silica.
- 6. (currently amended) A catalyst system in accordance with claim 1 wherein said ionic liquid comprises a cation and an anion; wherein said cation is selected from the group consisting of ions defined by the formulas:

$$R_{2} \xrightarrow{\stackrel{R_{1}}{\underset{R_{3}}{\stackrel{+}{\longrightarrow}}}} R_{4} \qquad \qquad R_{6} \xrightarrow{\stackrel{R_{5}}{\underset{R_{7}}{\stackrel{+}{\longrightarrow}}}} R_{8}$$

$$R_{14}$$
 R_{12}
 R_{13}
 R_{10}
 R_{11}

and combinations of any two or more thereof, wherein:

 R_1 , R_2 , R_3 , R_5 , R_6 , and R_7 are selected from the group consisting of saturated and unsaturated hydrocarbons containing from 1 to 7 carbon atoms per molecule;

 R_4 , R_8 , R_9 , R_{10} , R_{11} , R_{12} , R_{13} , R_{14} , R_{15} , R_{16} , R_{17} , R_{18} , and R_{19} are selected from the group consisting of saturated and unsaturated hydrocarbons containing from 1 to 7 carbon atoms per molecule, and hydrogen; and

wherein said anion is selected from the group consisting of halides of: Group

IIIA metals, copper, zinc, iron and phosphorus.

- 7. (currently amended) A catalyst system in accordance with claim 6 wherein said anion is selected from the group consisting of AlCl₄, Al₂Cl₇, Al₃Cl₁₀, GaCl₄, Ga₂Cl₇, Ga₃Cl₁₀, CuCl₂, Cu₂Cl₃, Cu₃Cl₄, ZnCl₃, FeCl₃, FeCl₄, Fe₃Cl₇, PF₆, and BF₄.
- 8. (original) A catalyst system in accordance with claim 6 wherein said ionic liquid has the formula $R_1R_2R_3NH^+Al_2Cl_7$.
- 9. (original) A catalyst system in accordance with claim 6 wherein said ionic liquid has the formula (CH₃)₃NH⁺Al₂Cl₇.
- 10. (currently amended) A catalyst system in accordance with claim 1 wherein a Group 8-10 (VIII) metal compound is dispersed in said ionic liquid.
- 11. (currently amended) A catalyst system in accordance with claim 10 wherein said Group 8-10 (VIII) metal compound comprises a platinum compound.
 - 12. (withdrawn) A process comprising:
- a) contacting, under conversion conditions, a hydrocarbon feed stream comprising a C_5 paraffin and an initiator with a catalyst system comprising an ionic liquid dispersed on a support; and
- b) withdrawing a product stream comprising a C_4 paraffin and at least one C_6 paraffin.
- 13. (withdrawn) A process in accordance with claim 12 wherein said support has an average pore diameter greater than about 225 Å.

- 14. (withdrawn) A process in accordance with claim 12 wherein said support has a surface area less than about 700 m²/gram.
- 15. (withdrawn) A process in accordance with claim 12 wherein said support is non-crystalline.
- 16. (withdrawn) A process in accordance with claim 12 wherein said support is non-crystalline, has an average pore diameter greater than about 225 Å, and has a surface area less than about 700 m^2/gram .
- 17. (withdrawn) A process in accordance with claim 12 wherein said support is silica.
- 18. (withdrawn) A process in accordance with claim 12 wherein said ionic liquid comprises a cation and an anion; wherein said cation is selected from the group consisting of ions defined by the formulas:

$$R_{2}$$
 R_{1}
 R_{2}
 R_{4}
 R_{6}
 R_{7}
 R_{7}
 R_{10}

$$R_{14}$$
 R_{14}
 R_{13}
 R_{12}

and combinations of any two or more thereof, wherein:

R₁, R₂, R₃, R₅, R₆, and R₇ are selected from saturated and unsaturated hydrocarbons containing from 1 to 7 carbon atoms per molecule;

R₄, R₈, R₉, R₁₀, R₁₁, R₁₂, R₁₃, R₁₄, R₁₅, R₁₆, R₁₇, R₁₈, and R₁₉ are selected from saturated and unsaturated hydrocarbons containing from 1 to 7 carbon atoms per molecule, and hydrogen; and

wherein said anion is selected from the group consisting of halides of: Group IIIA metals, copper, zinc, iron and phosphorus.

- 19. (withdrawn) A process in accordance with claim 18 wherein said anion is selected from the groups consisting of AlCl₄, Al₂Cl₇, Al₃Cl₁₀, GaCl₄, Ga₂Cl₇, Ga₃Cl₁₀, CuCl₂, Cu₂Cl₃, Cu₃Cl₄, ZnCl₃, FeCl₃, FeCl₄, Fe₃Cl₇, PF₆, and BF₄.
- 20. (withdrawn) A process in accordance with claim 18 wherein said ionic liquid has the formula $R_1R_2R_3NH^+Al_2Cl_7^-$.
- 21. (withdrawn) A process in accordance with claim 18 wherein said ionic liquid has the formula (CH₃)₃NH⁺Al₂Cl₇.

- 22. (withdrawn) A process in accordance with claim 12 wherein said hydrocarbon feed stream comprises at least 50 weight-% isopentane, based on the total weight of said hydrocarbon feed stream.
- 23. (withdrawn) A process in accordance with claim 12 wherein said hydrocarbon feed stream comprises in the range of from about 50 to about 95 weight-% isopentane, based on the total weight of said hydrocarbon feed stream.
- 24. (withdrawn) A process in accordance with claim 12 wherein said hydrocarbon feed stream comprises in the range of from about 80 to about 98.5 weight-% isopentane, based on the total weight of said hydrocarbon feed stream.
- 25. (withdrawn) A process in accordance with claim 12 wherein said conversion conditions include a temperature in the range of from about 100°F to about 1000°F.
- 26. (withdrawn) A process in accordance with claim 12 wherein said conversion conditions include a temperature in the range of from about 140°F to about 250°F.
- 27. (withdrawn) A process in accordance with claim 12 wherein said conversion conditions include a temperature in the range of from about 150°F to about 220°F.
- 28. (withdrawn) A process in accordance with claim 12 wherein said C_4 paraffin of said product stream is isobutane and said C_6 paraffin of said product stream is a hexane isomer.

29. (withdrawn) A process in accordance with claim 12 wherein said initiator is selected from the group consisting of: 1) an olefin having in the range of from 2 to 20 carbon atoms per molecule, 2) an alkyl halide wherein said alkyl halide has in the range of from 2 to 20 carbon atoms per molecule, and combinations thereof.