

TGF β +MMP+ifn b Sequence

10	20	30	40	50	60
1234567890	1234567890	1234567890	1234567890	1234567890	1234567890
MtGAGGACCTC	CCCCCGTGAG	GCTGCTGCG	CCTGCTCAC	CGCTGCCTTG	CCCTACCTTG
MetProProS	erGlyLeuAr	gLeuLeuPro	LeuLeuLeuP	roLeuLeuTr	pLeuLeuVal
60					
CTGAGGCTTG	GGGGGGAGC	GGGGGGACTA	TOCACCTGCA	AGACTATCGA	CATGGACCTG
LeuThrProG	IyProProAl	aAlaGlyLeu	SerThrCysL	ysThrIleAs	pMetGluLeu
120					
GTGAAGGCGGA	AGCGGATCGA	GGCCATCGCC	GGCCAGATCC	TGTCCAAGCT	GGGGCTCGCC
VallLysArgL	ysArgIleG1	uAlaIleArg	GlyGlnIleL	euSerLysLe	uArgLeuAla
180					
AGCCCCCGGA	CCCAGGGGGA	GGTGGGGGCC	GGCCCCGCTGC	CGGAGGCGT	GCTGGCCCTG
SerProProS	erGlnGlyG1	uValProPro	GlyProLeuP	roGluAlaVa	lLeuAlaLeu
240					
TACAACAGCA	CCCGCGACCG	GGTGGCGGGG	GAGAGTCAG	AACGGAGOC	CGAGCTTGAG
TyrAsnSerT	hrArgAspAr	gValAlaGly	GluSerAlaG	luProGluPr	oGluProGlu
300					
GGCGACTACT	ACGCCAAGGA	GGTCAACCGC	GIGCTAACATGG	TGGAAACCCA	CAACGAAATC
AlaAspTyrT	yrAlaLysG1	uValThrArg	VallLeuMetV	alGluThrHi	sAsnGluIle
360					
TATGACAAGT	TCAAGCAGAG	TACACACAGC	ATATATATGT	TCTTCAACAC	ATCAGAGCTC
TyrAspLysP	heLysGlnSe	rThrHisSer	IleTyrMetP	hePheAsnTh	rSerGluLeu
420					
CGAGAAACCGG	TACCTGAAAC	CGTGTGCTC	TOCGGGCAG	ACCTGGCTCT	GCTGAGGAGG
ArgGluAlaV	alProGluPr	oValLeuLeu	SerArgAlaG	luLeuArgLe	uLeuArgArg
480					
CTCAAGTTAA	AAGGGAGCA	GCACTGGAG	CTGTACCAGA	AATACAGCAA	CAATTCTGG
LeuLysLeuL	ysValGluG1	nHisValGlu	LeuTyrGlnL	ysTyrSerAs	nAsnSerTrp
540					
CGATACCTCA	CCAAACCGCT	GCTGGCAOCC	AGGGACTCGC	CAGAGTGGTT	ATCTTTTGAT
ArgTyrIleS	erAsnArgLe	uLeuAlaPro	SerAspSerP	roGluTrpLe	uSerPheAsp
600					
GTCACCGGAG	TTCGCGCCA	GGGGTGAGC	CGTGGAGGGG	AAATGAGGG	CTTCTGCTT
ValThrGlyV	alValArgG1	nTrpLeuSer	ArgGlyGlyG	luIleGluG1	yPheArgLeu
660					
AGCGCCCACT	GCTCTGIGA	CAGCAGGGAT	AACACACTGC	AAGGGACAT	CAACGGGTC
SerAlaHisC	ysSerCysAs	pSerArgAsp	AsnThrLeuG	InValAspIl	eAsnGlyPhe
720					
ACTACCGGCC	GGGGAGGTGA	CCTGGCCACC	ATTCATGGCA	TGAACCGGOC	TTTCTGCTT
ThrThrGlyA	rgArgGlyAs	pLeuAlaThr	IleHisGlyM	etAsnArgPr	oPheLeuLeu
780					
CTCATGGCCA	CCCCGCTGA	GAGGGGCCAG	CATCTGAAA	CGGAGTGG	GGGAGGCGGA
LeuMetAlaT	hrProLeuG1	uArgAlaGln	HisLeuGlnS	erGluPheG1	yGlyGlyGly
840					
TCCTCGCTCG	GGCTTGGGC	GGGAGGGGGC	TCAAGGGCGC	CAATCAACTA	TAAGCACTC
SerProLeuG	IyLeuTrpAl	aGlyGlyGly	SerAlaAlaA	laIleAsnTy	rLysGlnLeu
900					
CAGCTCCAAAG	AAAGGACGAA	CATTGGAAA	TGTCAAGGAGC	TOCTGGASCA	GCTGAATGGA
GlnLeuGlnG	luArgThrAs	nIleArgLys	CysGlnGluL	euLeuGluG1	nLeuAsnGly
960					

Fig. 1

TGF β +MMP+ifn b Sequence

10	20	30	40	50	60	
1234567890	1234567890	1234567890	1234567890	1234567890	1234567890	
AAGATCAACC	TCACTTACAG	GGGGCACTTC	AAGATCCTA	TGGAGATGAC	GGAGAAAGATG	1020
LysIleAsnL	euThrTyrAr	gAlaAspPhe	LysIleProM	etGluMetTh	rGluLysMet	
CAGAAGAGTT	ACACTGCTT	TGCCATCCAA	GAGATGCTOC	AGAATGTCIT	TCTTGICCTC	1080
GlnLysSerT	yrThrAlaPh	eAlaIleGln	GluMetLeuG	InAsnValPh	eLeuValPhe	
AGAAACAAIT	TCTCCAGCAC	TGGGIGGAAT	GAGACTATIG	TTGTACGCTC	CCCTGGATGAA	1140
ArgAsnAsnP	heSerSerTh	rGlyTrpAsn	GluThrIleV	alValArgLe	uLeuAspGlu	
CTOCCACCAGC	AGACAGTGT	TCTGAAGACA	GTACTAGAGG	AAAAGCAAGA	CGAAAGATTG	1200
LeuHisGlnG	InThrValPh	eLeuLysThr	ValLeuGluG	IuLysGlnGl	uGluArgLeu	
AOGTGGGAGA	TGTCTCTAAC	TGCTCTAAC	TIGAAGAGCT	ATTACTGGAG	GGTGCAAAGG	1260
ThrTrpGluM	etSerSerTh	rAlaLeuHis	LeuLysSerT	yrTyrTrpPar	gValGlnArg	
TACCTTAAAC	TCATGAAGTA	CAACAGCTAC	GCCTGGATGG	TGGTCCGAGC	AGAGATCTTC	1320
TyrLeuLysL	euMetLysTy	rAsnSerTyr	AlaTrpMetV	alValArgAl	aGluIlePhe	
AGGAACCTTC	TCATCATTCG	AAGACTTACC	AGAAACTTCC	AAAACIGATC	TAGACC	1376
ArgAsnPheL	euIleIleAr	gArgLeuThr	ArgAsnPheG	InAsn...	Se rArg	
				uca		

Ifn+MMP+TGFb Sequence

10	20	30	40	50	60	
1234567890	1234567890	1234567890	1234567890	1234567890	1234567890	
ATGAAACAAACA	GGTGGGATCCT	CCACGGCTGCG	TTCCTCCCTGT	GCTTCTCTAAC	CACAGCCCC	60
MetAsnAsnA	rgTrpIleLe	uHisAlaAla	PheLeuLeuC	ysPheSerTh	rThrAlaLeu	
TOCATCAACT	ATAAGGCAGCT	CCAGCTCCAA	GAAAGGAOGA	ACATTOGGAA	ATGTCAGGAG	120
SerIleAsnT	yrLysGlnLe	uGlnLeuGln	GluArgThrA	snlleArgLy	sCysGlnGlu	
CTCTCTGGAGC	ACCTGAATGG	AAAGATCAAC	CTCACCCPACA	GGGGGGACCTT	CAAGATOCCT	180
LeuLeuGluG	InLeuAsnGl	yLysIleAsn	LeuThrTyrA	rgAlaAspPh	eLysIlePro	
ATGGAGATGA	CCGACAAAGAT	CCAGAAAGAGT	TACACTGCGT	TTGCCATCCCA	AGAGATGCTC	240
MetGluMetT	hrGluLysMe	tGinLysSer	TyrThrAlaP	heAlaIleGL	nGluMetLeu	
CAGAAATGCT	TTCTCTGCTT	CAGAAACAAAT	TTCTCAGCA	CTGGGTGGAA	TGAGACTATT	300
GlnAsnValP	heLeuValPh	eArgAsnAsn	PheSerSerT	hrGlyTrpAs	nGluThrIle	
GTTGTACGTC	TCCTGGATGA	ACTOCACCAG	CAGACACTGT	TTCTGAAGAC	AGTACTAGAG	360
ValValArgL	euLeuAspGl	uLeuHisGln	GlnThrValP	heLeuLysTh	rValLeuGlu	
GAAAAGCAAG	AGGAAAGATT	GACGTGGGAG	ATGTCCTCAA	CTGCTCICCA	CTTGAAGAGC	420
GluLysGlnG	luGluArgLe	uThrTrpGlu	MetSerSerT	hrAlaLeuHi	sLeuLysSer	
TATTACTGGA	GGGTGCAAAG	GTACCTAAA	CTCATGAAGT	AACACAGCTA	CGCCTGGATG	480
TyrTyrTrpA	rgValGlnAr	gTyrLeuLys	LeuMetLysT	yrAsnSerTy	rAlaTrpMet	
GTGGCCCGAG	CAGAGATCTT	CAGGAACIT	CTCATCATTC	GAACACTTAC	CAGAAACITC	540
ValValArgA	laGluIlePh	eArgAsnPhe	LeuIleIleA	rgArgLeuTh	rArgAsnPhe	
CAAAACGAAAT	TCTGGGGAGG	CGGATCCCG	CTGGGGCTTT	GGGGGGGAGG	GGGCCTCAGG	600
GlnAsnGluP	heGlyGlyGl	yGlySerPro	LeuGlyLeuT	rpAlaGlyGl	yGlySerAla	
GGGGCACTAT	CCACCTGCCA	CACTACGAC	ATGGAGCTGG	TGAAGCGGAA	GCGCATCGAG	660
AlaAlaLeuS	erThrCysLy	sThrIleAsp	MetGluLeuV	alLysArgLy	sArgIleGlu	
GCGATCCCG	GCCAGATCCT	GTCCAACCTG	CGGCTCGCCA	GCCCCCGAG	CCAGGGGGAG	720
AlaIleArgG	lyGlnIleLe	uSerLysLeu	ArgLeuAlaS	erProProSe	rGlnGlyGlu	
GGGGGGGGGG	GGGGGGGGGC	GGGGGGGGTG	CTGGGGCTGT	ACAAACAGCAC	CGCGGACCGG	780
ValProProG	lyProLeuPr	cGluAlaVal	LeuAlaLeuT	yrAsnSerTh	rArgAspArg	
GGGGGGGGGG	AGAGCTCCACA	ACCGGAGCCC	GAGGCTGAGC	CGGACTACTA	CCCGAAGGAC	840
ValAlaGlyG	luSerAlaGl	uProGluPro	GluProGluA	laAspTyrTy	rAlaLysGlu	
GTCACCCGGCG	TGCTTAATGGT	GGAAACCCAC	AAAGAAATCT	ATGACAAGTT	CAAGCAGAGT	900
ValThrArgV	alLeuMetVa	lGluThrHis	AsnGluIleT	yrAspLysPh	eLysGlnSer	
ACACACAGCA	TATATATGTT	CITCAACACA	TCAGAGCTOC	GAGAAGCGGT	ACCTGAACCC	960
ThrHisSerI	leTyrMetPh	ePheAsnThr	SerGluLeuA	rgGluAlaVa	lProGluPro	

Fig. 2

Ifn+MMP+TGFb Sequence

10	20	30	40	50	60	
1234567890	1234567890	1234567890	1234567890	1234567890	1234567890	
GTCCTTCTCT	CCGGGAGA	GCTCGGTCTG	CTGAGGAGGC	TCAAGTTAAA	AGTGGAGCAG	1020
ValLeuLeuS	erArgAlaGl	uLeuArgLeu	LeuArgArgL	eLysLeuL	sValGluGln	
CACGTCGAGC	TGTAACCAGAA	ATACAGCAAC	AATTCTGGC	GATAACCICAG	CAACCGGCTG	1080
HisValGluL	erTyrGlnLy	sTyrSerAsn	AsnSerTrpA	rgTyrLeuSe	rAsnArgLeu	
CTGGCACCCA	CGGACTCGCC	AGAGTGGTTA	TCTTTTGATG	TCACCGGAGT	TGIGGGCAG	1140
LeuAlaProS	erAspSerPr	cGluTrpLeu	SerPheAspV	alThrGlyVa	lValArgGln	
TGGTTCACCC	GTGGAGGGGA	AATGGAGGCC	TTTGGCTTA	CCGCCCCACTG	CTCTCTGTGAC	1200
TrpLeuSerA	rgGlyGlyGl	uIleGluGly	PheArgLeuS	erAlaHisCy	sSerCysAsp	
AGCACGGATA	ACACACTGCA	AGTGGACATC	AACGGGTICA	CTACCGGCGCG	CGAGGGTGAC	1260
SerArgAspA	snThrLeuGl	nValAspIle	AsnGlyPheT	hrThrGlyAr	gArgGlyAsp	
CTGGCCACCA	TTCATGGCAT	GAACCGGCT	TTCCTGCCTC	TCATGGCACAC	CCCGCTGGAG	1320
LeuAlaThrI	leHisGlyMe	tAsnArgPro	PheLeuLeuL	euMetAlaTh	rProLeuGlu	
AGGCCCCAGC	ATCTGCAAAG	CtgaTCTAGA	CC			1352
ArgAlaGlnH	isLeuGlnSe	r...SerArg				

FIG. 3

Protein	Sequence	Reference
MMP-1/MMP-8		
Human type I collagen (α_1)	Ala-Pro-Gln-Gly ₁₅ ~Leu ₁₆ -Ala-Gly-Gln	80
Human type I collagen (α_2)	Gly-Pro-Gln-Gly ₁₅ ~Leu ₁₆ -Leu-Gly-Ala	80
Human type II collagen	Gly-Pro-Gln-Gly ₁₅ ~Leu ₁₆ -Ala-Gly-Gln	80
Human type III collagen	Gly-Pro-Leu-Gly ₁₅ ~Leu ₁₆ -Ala-Gly-Ile	80
Human α_2 -macroglobulin	Gly-Pro-Gln-Gly ₁₅ ~Leu ₁₆ -Arg-Val-Gly	84
Rat α_2 -macroglobulin	Ala-Ala-Tyr-His ₁₅ ~Leu ₁₆ -Val-Ser-Gln	84
Rat α_2 -macroglobulin	Met-Asp-Ala-Phe ₁₅ ~Leu ₁₆ -Glu-Ser-Ser	84
Rat α_1 -macroglobulin	Glu-Pro-Gln-Ala ₁₅ ~Leu ₁₆ -Ala-Met-Ser	84
Rat α_1 -macroglobulin	Gln-Ala-Leu-Ala ₁₅ ~Met ₁₆ -Ser-Ala-Ile	84
Chicken ovostatin	Pro-Ser-Tyr-Phe ₁₅ ~Leu ₁₆ -Asn-Ala-Gly	79
Human pregnancy zone protein	Tyr-Glu-Ala-Gly ₁₅ ~Leu ₁₆ -Gly-Val-Val	84
Human pregnancy zone protein	Ala-Gly-Leu-Gly ₁₅ ~Val ₁₆ -Val-Glu-Arg	84
Human pregnancy zone protein	Ala-Gly-Leu-Gly ₁₅ ~Ile ₁₆ -Ser-Ser-Thr	84
α_1 -Protease inhibitor	Gly-Ala-Met-Phe ₁₅ ~Leu ₁₆ -Glu-Ala-Ile	85
Human aggrecan	Ile-Pro-Glu-Asn ₁₅ ~Phe ₁₆ -Phe-Gly-Val	86
Human aggrecan	Thr-Glu-Gly-Glu ₁₅ ~Ala ₁₆ -Arg-Gly-Ser	86
Human cartilage link	Arg-Ala-Ile-His ₁₅ ~Ile ₁₆ -Gln-Ala-Glu	87
Human insulin-like growth factor binding protein-3	Leu-Arg-Ala-Tyr ₁₅ ~Leu ₁₆ -Leu-Pro-Ala	88
MMP-2		
Guinea pig α_1 (I) gelatin	Gly-Ala-Hyp-Gly ₁₅ ~Leu ₁₆ -Glx-Gly-His	24
Rat α_1 (I) gelatin	Gly-Pro-Gln-Gly ₁₅ ~Val ₁₆ -Arg-Gly-Glu	30
Rat α_1 (I) gelatin	Gly-Pro-Ala-Gly ₁₅ ~Val ₁₆ -Gln-Gly-Pro	30
Rat α_1 (I) gelatin	Gly-Pro-Ser-Gly ₁₅ ~Leu ₁₆ -Hyp-Gly-Pro	30
Rat α_1 (I) gelatin	Gly-Pro-Ala-Gly ₁₅ ~Glu ₁₆ -Arg-Gly-Ser	30
Rat α_1 (I) gelatin	Gly-Ala-Lys-Gly ₁₅ ~Leu ₁₆ -Thr-Gly-Ser	30
Rat α_1 (I) gelatin	Gly-Pro-Ala-Gly ₁₅ ~Gln ₁₆ -Asp-Gly-Pro	30
Rat α_1 (I) gelatin	Gly-Pro-Ala-Gly ₁₅ ~Phe ₁₆ -Ala-Gly-Pro	30
Rat α_1 (I) gelatin	Gly-Pro-Ile-Gly ₁₅ ~Asn ₁₆ -Val-Gly-Ala	30
Rat α_1 (I) gelatin	Gly-Pro-Hyp-Gly ₁₅ ~Ser ₁₆ -Arg-Gly-Ala	30
Bovine type I collagen (α_1)	Gly-Pro-Gln-Gly ₁₅ ~Ile ₁₆ -Ala-Gly-Gln	22
Bovine type I collagen (α_2)	Gly-Pro-Gln-Gly ₁₅ ~Leu ₁₆ -Leu-Gly-Ala	22
Human aggrecan	Ile-Pro-Glu-Asn ₁₅ ~Phe ₁₆ -Phe-Gly-Val	89
Human galactin-3	Pro-Pro-Gly-Ala ₁₅ ~Tyr ₁₆ -His-Gly-Ala	90
Human cartilage link	Arg-Ala-Ile-His ₁₅ ~Ile ₁₆ -Gln-Ala-Glu	87
Human cartilage link	Gly-Pro-His-Leu ₁₅ ~Leu ₁₆ -Val-Glu-Ala	87
Human insulin-like growth factor binding protein-3	Leu-Arg-Ala-Tyr ₁₅ ~Leu ₁₆ -Leu-Pro-Ala	88
MMP-3		
Human α_2 -macroglobulin	Gly-Pro-Glu-Gly ₁₅ ~Leu ₁₆ -Arg-Val-Gly	79
Human α_2 -macroglobulin	Arg-Val-Gly-Phe ₁₅ ~Tyr ₁₆ -Glu-Ser-Asp	79
Human α_1 -antichymotrypsin	Leu-Leu-Ser-Ala ₁₅ ~Leu ₁₆ -Val-Glu-Thr	91
α_1 -protease inhibitor	Glu-Ala-Ile-Pro ₁₅ ~Met ₁₆ -Ser-Ile-Pro	91
Antithrombin III	Ile-Ala-Gly-Arp ₁₅ ~Ser ₁₆ -Leu-Asn-Pro	91
Chicken ovostatin	Leu-Asn-Ala-Gly ₁₅ ~Phe ₁₆ -Thr-Ala-Ser	79, 92
Human aggrecan	Ile-Pro-Glu-Asn ₁₅ ~Phe ₁₆ -Phe-Gly-Val	93
Substance P	Lys-Pro-Gln-Gln ₁₅ ~Phe ₁₆ -Phe-Gly-Leu	37
Human ProMMP-1	Asp-Val-Ala-Gln ₁₅ ~Phe ₁₆ -Val-Leu-Thr	43
Human ProMMP-3	Asp-Thr-Leu-Glu ₁₅ ~Val ₁₆ -Met-Arg-Lys	94
Human ProMMP-3	Asp-Val-Gly-His ₁₅ ~Phe ₁₆ -Arg-Thr-Phe	94
Human ProMMP-8	Asp-Ser-Gly-Gly ₁₅ ~Phe ₁₆ -Met-Leu-Thr	95
Human ProMMP-9	Arg-Val-Ala-Gln ₁₅ ~Met ₁₆ -Arg-Gly-Glu	48
Human ProMMP-9	Asp-Leu-Gly-Arg ₁₅ ~Phe ₁₆ -Gln-Thr-Phe	48
Human fibronectin	Pro-Phe-Ser-Pro ₁₅ ~Leu ₁₆ -Val-Ala-Thr	21

Fig. 4

	Sequence	Reference
Bovine insulin-like growth factor binding protein-3	Leu-Arg-Ala-Tyr ₉₆ ~Leu ₁₀₀ -Leu-Pro-Ala Ala-Pro-Gly-Asn ₁₀₀ ~Ala ₁₀₁ -Ser-Glu-Ser	88 88
Bovine α_1 (II) collagen, N-telopeptide	Phe-Ser-Ser-Glu ₁₁₆ ~Ser ₁₁₇ -Lys-Arg-Glu	88
Bovine α_1 (II) collagen, N-telopeptide	Ala-Gly-Gly-Ala ₁₁₈ ~Gln ₁₁₉ -Met-Gly-Val	96
Bovine α_1 (IX) collagen, NC2	Gln-Met-Gly-Val ₁₁₉ ~Met ₁₂₀ -Gln-Gly-Pro	96
Bovine α_2 (IX) collagen, NC2	Met-Ala-Ala-Ser~Leu-Lys-Arg-Pro	96
Bovine α_3 (IX) collagen, NC2	~Ala-Lys-Arg-Glu	96
Bovine α_1 (XI) collagen, N- telopeptide	~Leu-Arg-Lys-Pro	96
Bovine α_1 (XI) collagen, N- telopeptide	Gln-Ala'Gin-Ala~Leu-Leu-Gln-Gln	96
Human cartilage link		
Bovine insulin, B chain	Arg-Ala-Ile-His ₁₆ ~Ile ₁₇ -Gln-Ala-Glu	87
Bovine insulin, B chain	Leu-Val-Glu-Ala ₁₈ ~Leu ₁₉ -Tyr-Leu-Val	97
MMP-7	Glu-Ala-Leu-Tyr ₁₉ ~Leu ₂₀ -Val-Cys-Gly	21, 97
Human aggrecan		
Human cartilage link	Ile-Pro-Glu-Asn ₃₄ ~Phe ₃₅ -Phe-Gly-Val	89
Human prourokinase	Gly-Pro-His-Leu ₃₅ ~Leu ₃₆ -Val-Glu-Ala	87
MMP-9	Pro-Pro-Glu-Glu ₃₆ ~Leu ₃₇ -Lys-Phe-Gln	98
Human type V collagen (α_1)		
Human type V collagen (α_2)	Gly-Pro-Pro-Gly ₄₀ ~Val ₄₁ -Val-Gly-Pro	99
Human type XI collagen (α_1)	Gly-Pro-Pro-Gly ₄₅ ~Leu ₄₆ -Arg-Gly-Glu	99
Human aggrecan	Gly-Pro-Gly-Gly ₄₉ ~Val ₅₀ -Val-Gly-Pro	99
Human galectin-3	Ile-Pro-Glu-Asn ₅₀ ~Phe ₅₁ -Phe-Gly-Val	89
Human cartilage link	Pro-Pro-Gly-Ala ₆₂ ~Tyr ₆₃ -His-Gly-Ala	90
MMP-10	Arg-Ala-Ile-His ₆₆ ~Ile ₆₇ -Gln-Ala-Glu	87
Human cartilage link	Arg-Ala-Ile-His ₆₈ ~Ile ₆₉ -Gln-Ala-Glu	87
Human cartilage link	Gly-Pro-His-Leu ₇₃ ~Leu ₇₄ -Val-Glu-Ala	87

Fig. 5

100 95 85 72 66 45 30

M.W. 1 2 3

Fig. 6

	1	2	M.W.	3	4	5	6
LAP-IFN	+	-		+	-	+	-
IFN-LAP	-	+		-	+	-	+
MMP1	-	-		-	-	+	+
MMP3	-	-		+	+	-	-

Fig. 7

	Anti-LAP	+	+	+	+	+	+	+	+
	Anti-IFN	-	-	-	-	-	-	-	-
	MMP1	-	-	+	-	-	-	-	-
	MMP3	-	-	-	+	-	-	-	-
	SF	-	-	-	-	+	-	-	+

Fig. 8a

21 —

T. G. F. C. T. D. = T. G. C. S. S. C. D. (50)

Fig. 8b

A.

B.

Fig. 9

A.

B.

Fig. 10