Case Study #3 - ARIMA Models

- 1. Identify time series predictability.
 - a. Based on the p-value test, the historical data is not predictable since the null hypothesis is accepted.

```
Series: revenue.ts
ARIMA(1,0,0) with non-zero mean
Coefficients:
        ar1
                 mean
     0.9449 120267.7
s.e. 0.0444
             16666.3
sigma^2 = 95387002: log likelihood = -806.13
AIC=1618.27
             AICc=1618.6
                           BIC=1625.26
Training set error measures:
                         RMSE
                                   MAE
                                             MPE
                                                     MAPE
                                                             MASE
                                                                        ACF1
Training set 1022.498 9637.262 8133.299 0.2702847 6.990888 1.684678 -0.6532536
[1] "Accept null hypothesis"
```

b. Based on the autocorrelation plot of the historical data, we can see that the historical data is predictable since the lag 1 differencing exceeds the horizontal lines for all lags. This means that there is useful information in the dataset that can be modeled and predicted upon.

Autocorrelation for Differenced Walmart Revenue Data

- 2. Apply the two-level forecast with a regression model and AR model for residuals.
 - a. Validation revenue forecast using a regression model with linear trend and seasonality.

```
Point Forecast
2020 Q1
               131681.2
2020 Q2
               136857 2
2020 Q3
              135273.8
2020 Q4
               148512.4
2021 Q1
               135075.7
2021 Q2
               140251.8
2021 Q3
               138668.4
2021 Q4
               151907.0
               138470.2
2022 Q1
2022 Q2
               143646.3
2022 Q3
               142062.9
2022 04
              155301.5
2023 Q1
              141864.7
              147040.8
2023 Q2
              145457.4
2023 Q3
2023 Q4
              158696.0
```

b. Since it looks like there is still information available that would help us to better predict, I believe it is a good idea to add an AR model for residuals.

Autocorrelation with a maximum of 8 lags for Walmart Revenue Data training period

- c. The model equation for AR(1) model for regression residuals is as follows:
 - $e_t^- = -2438.784 + 0.9502 e_{t-1}^-$ which expresses the linear trend component of residuals.

Series: train.lin.season\$residuals ARIMA(1,0,0) with non-zero mean

Coefficients:

ar1 mean 0.9502 -2438.784 s.e. 0.0380 3254.527

Training set error measures:

ME RMSE MAE MPE MAPE MASE ACF1
Training set 181.7393 1492.505 1117.175 -17.85092 104.4523 0.44047 -0.05713674

Autocorrelation of AR(1) for "residuals of residuals" model

Based on the Autocorrelation plot, it seems that all the useful information of the residuals has been captured by the model since all lags are below the significance threshold.

d. Table with validation data, regression forecast for the validation data, AR(1) forecast for the validation data, and combined forecast for the validation period.

	Revenue	Reg.Forecast	AR(1)Forecast	Combined.Forecast
1	134622	131681.2	-3396.695	128284.5
2	137742	136857.2	-3348.981	133508.2
3	134708	135273.8	-3303.644	131970.2
4	152079	148512.4	-3260.564	145251.9
5	138310	135075.7	-3219.631	131856.1
6	141048	140251.8	-3180.737	137071.0
7	140525	138668.4	-3143.780	135524.6
8	152871	151907.0	-3108.663	148798.3
9	141569	138470.2	-3075.296	135394.9
10	152859	143646.3	-3043.591	140602.7
11	152813	142062.9	-3013.466	139049.4
12	164048	155301.5	-2984.840	152316.6
13	152301	141864.7	-2957.641	138907.1
14	161632	147040.8	-2931.796	144109.0
15	160804	145457.4	-2907.239	142550.2
16	173388	158696.0	-2883.905	155812.1

e. Autocorrelation chart for the AR(1) model's residuals shows that all the useful information of the residuals has been captured by the model since all lags are below the significance threshold. Table of forecasts below.

Autocorrelation of AR(1) residuals


```
Reg.Forecast AR(1)Forecast Combined.Forecast
1
      149976.4
                     9326.569
                                         159302.9
2
      155456.4
                     8780.763
                                         164237.1
3
      153973.1
                     8268.571
                                         162241.7
4
      167242.3
                     7787.922
                                         175030.2
5
      153738.8
                     7336.875
                                         161075.7
6
      159218.8
                     6913.605
                                         166132.4
7
      157735.6
                     6516.403
                                         164252.0
8
      171004.8
                     6143.662
                                         177148.5
```

- 3. Use ARIMA Model and Compare Various Methods.
 - a. Model Equation which captures AR(1) and order 1 seasonality, order 1 differencing, order 1 moving average for error lags and quarterly seasonality.

b. Model Equation which captures no autogressiveness, order 1 differencing, order 1 seasonality, order 1 moving average for error lag and quarterly

seasonality $y = y = -0.67850$	Poi	nt Forecast
seasonality. $y_t - y_{t-1} = -0.6785 \rho_{t-1}$	2020 Q1	127552.1
Series: train.ts	2020 Q2	133115.3
	2020 Q3	131035.1
ARIMA(0,1,0)(0,1,1)[4]	2020 Q4	144424.5
	2021 Q1	130305.6
Coefficients:	2021 Q2	135868.8
sma1	2021 Q3	133788.6
-0.6785	2021 Q4	147178.0
s.e. 0.1605	2022 Q1	133059.1
5.e. 0.100J	2022 Q2	138622.3
	2022 Q3	136542.1
sigma∧2 = 2698549: log likelihood = -485.99	2022 Q4	149931.6
AIC=975.98 AICc=976.22 BIC=980	2023 Q1	135812.7
	2023 Q2	141375.9
Training set error measures:	2023 Q3	139295.6
	2023 Q4	152685.1
ME RMSE MAE MPE MAPE MASE ACF1		
Training set -242.4378 1558.427 1146.186 -0.2410367 1.039209 0.2872633 -0.134278		

c. Based on MAPE and RMSE, the ARIMA(1,1,1)(1,1,1) would be the model to apply as it outperforms the auto ARIMA model.

Model MAPE RMSE 1 ARIMA Seasonal 6.948 12111.80 2 Auto ARIMA 7.350 12807.88

d. ARIMA(1,1,1)(1,1,1) Auto ARIMA

	_	1	
	Point Forecast		Point Forecast
2024 Q1	161000.0	2024 Q1	161241.9
2024 Q2	167250.1	2024 Q2	169400.0
2024 Q3	165899.6	2024 Q3	168846.9
2024 Q4	179026.0	2024 Q4	181029.5
2025 Q1	166537.2	2025 Q1	169197.9
2025 Q2	172199.2	2025 Q2	178445.2
2025 Q3	170749.9	2025 Q3	177950.9
2025 Q4	183981.8	2025 Q4	189995.2

e. Based on MAPE and RMSE the best model to apply for forecasting revenue is the ARIMA(1,1,1)(1,1,1) model. Runner ups are the two-level model with AR(1) for residuals and Auto ARIMA.

```
Model MAPE RMSE

Reg Linear Seasonal 3.428 4700.120

Two-level model (with AR(1) model for residuals) 1.187 1899.501

ARIMA(1,1,1)(1,1,1) model 1.048 1840.715

Auto ARIMA 1.233 2109.946

Seasonal Naive 4.081 5863.128
```