Foundation of Cryptography, Spring 2014

Iftach Haitner

Problem set 4

June 7, 2014

Due: In class – June 10. By email – June 12.

- Please submit the handout in class, or email me, in case you write in LATEX
- Write clearly and shortly using sub claims if needed. The emphasize in most questions is on the proofs (no much point is writing a "solution" w/o proving its correctness)
- For Latex users, a solution example can be found in the course web site.
- In it ok to work in (small) groups, but please write the id list of your partners in the solution file, and each student should write his solution by *himself* (joint effort is only allowed in the "thinking phase")
- The notation we use appear in the introduction part of the first lecture (*Notation* section).

1. Let (G, E, D) be an encryption scheme that has indistinguishable encryptions in the privatekey model. Assume that $\operatorname{Supp}(G(1^n)) \subseteq \{0,1\}^n \times \{0,1\}^n$, and that on $(e,\cdot) \in \operatorname{Supp}(G(1^n))$ and $m \in \{0,1\}^{2n}$, algorithm $\mathsf{E}_e(m)$ uses at most $\ell(n)$ random bits. Let $\mathsf{E}_e(m;r)$ denote the output of $\mathsf{E}_e(m)$ whose random coins are set to r.

Prove that the function f over $\{0,1\}^n \times \{0,1\}^{2n} \times \{0,1\}^{\ell(n)}$, defined by

$$f(e, m, r) = (\mathsf{E}_e(m; r), m),$$

is a (partial-domain) one-way function.

2. Consider the following variant of construction 19 in Lecture 8 (Encryption Lecture). Let (G_T, f, Inv) be a (non-uniform) TDP, and let b be hardcore predicate for it.

Construction 1 (bit encryption).

- $\mathsf{G}(1^n)$: output $(e,d) \leftarrow \mathsf{G}_T(1^n)$.
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ conditioned that b(r) = m, and output $f_e(r)$ (output m if no such r exists).
- $\mathsf{D}_d(y)$: output $b(\operatorname{Inv}_d(y))$.
- (a) Describe a PPT E' such that SD $\Big(\big(e, \mathsf{E}'_e(m) \big)_{(e,\cdot) \leftarrow \mathsf{G}(1^n)}, \big(e, \mathsf{E}_e(m) \big)_{(e,\cdot) \leftarrow \mathsf{G}(1^n)} \Big) \leq \operatorname{neg}(n),$ for every $m \in \{0,1\}.$
- (b) Prove that (G, E', D) has public-key indistinguishable encryptions for a multiple messages.
- 3. Assume we change Algorithm 30 in Lecture 8 so that j is Step 1 is always set to 0 (rather than being chosen at random). Is Claim 31 still true?