# Improving Language Understanding by Generative Pre-Training

김충현

GTP는 여러 태스크로 효과적인 transfer가 가능한 universal representation을 학습하는 것이 목표

- 어떤 Architecture를 사용할 것인가?
  - -> Transformer
- 어떤 방식으로 representation을 학습할 것인가?
  - -> Pre-train Language model with unsupervised learning
- 어떤 방식으로 representation을 task-specific 하게 transfer 할 것인가?
  - -> Very small modification to pre-trained network

Raw data로부터 unsupervised learning으로 효율적으로 학습하는 건 매우 중요하다 Why?

- Supervised Learning in NLP is a hard task
  - Low-resource NLP problem
    - Not enough labeled data
    - Low-resource languages
    - Spoken language domain <-> Written language domain
    - Mismatch of corpora and actual meaning

Raw data로부터 unsupervised learning으로 효율적으로 학습하는 건 매우 중요하다 Why?

- Enough data?
  - Pretrained word-embedding improves performance

하지만, 효과적인 semi-supervised learning 을 NLP 에 적용하는 건 쉽지 않다 Why?

- Unclear transfer methods
- Unclear de facto standard optimization method for embedding
  - ELMO (language modeling) ?
  - CoVe (machine translation)?
  - Discourse coherence ?

## **Background: Unsupervised pre-training**

Word-level embedding에서 Context-level embedding으로 발전

Traditional word vectors

- Bag of Words
- TF-IDF
- Distributional Embeddings
- •

Word Embeddings

- Word2Vec
- GloVe
- FastText

More than word-level semantics

- ELMo
- CoVe
- •

## **Background: Unsupervised pre-training**

Word-level embedding에서 Context-level embedding으로 발전



http://jalammar.github.io/illustrated-bert/

#### **Background: Auxiliary training objectives**

Language modeling objective 등 unsupervised training objective를 두면 성능 향상 효과



 $L_1(C)$ : some task-specific objective

$$L_1(\mathbf{C}) = \sum_{(x,y)} \log P(y|x^1,\dots,x^m)$$

 $L_2(C)$ : unsupervised training objective

$$L_2 (C) = \sum_{i} \log P(u_i | u_{i-k}, \dots, u_{i-1}; \Theta)$$

http://ruder.io/multi-task/index.html#auxiliarytasks

#### **GTP**

Unsupervised training 후, Supervised training이라는 두 단계로 나뉜다

Unsupervised pre-training

**-----**

Supervised fine-tuning

## **GTP Unsupervised pre-training**



$$L_1(\mathcal{U}) = \sum_{i} \log P(u_i|u_{i-k}, \dots, u_{i-1}; \Theta)$$

$$h_0 = UW_e + W_p$$
 
$$h_l = \texttt{transformer\_block}(h_{l-1}) \forall i \in [1, n]$$
 
$$P(u) = \texttt{softmax}(h_n W_e^T)$$

# **GTP Unsupervised pre-training**



# **GTP** Unsupervised pre-training



### **GTP Supervised training**

#### Auxiliary objective Task objective



단 한 레이어의 linear layer만 추가됨

$$P(y|x^1,\dots,x^m) = \operatorname{softmax}(h_l^m W_y). \tag{3}$$

This gives us the following objective to maximize:

$$L_2(\mathcal{C}) = \sum_{(x,y)} \log P(y|x^1, \dots, x^m). \tag{4}$$

$$L_3(\mathcal{C}) = L_2(\mathcal{C}) + \lambda * L_1(\mathcal{C})$$

Pre-trained network

#### **GTP Supervised inference**



Structured input은 delimiter로 구분되는 ordered sequence로 변환

Inference 때는 auxiliary task head 사용하지 않아도 됨

### **Model specifications**

- 12 decoder-only transformer
- Adam optimization
- Cosine annealing : learning rate schedules with restart
- Input : Contiguous sequences of 512 tokens
- Weight initialization of N(0, 0.02)
- BPE with 40,000 merges

Impact of number of layers transferred



#### Zero-shot behaviors



Table 5: Analysis of various model ablations on different tasks. Avg. score is a unweighted average of all the results. (mc= Mathews correlation, acc=Accuracy, pc=Pearson correlation)

| Method                                                                   | Avg. Score                  | CoLA (mc)                   | SST2 (acc)   | MRPC<br>(F1)                | STSB (pc)                   | QQP<br>(F1)          | MNLI (acc)           | QNLI (acc)           | RTE (acc)            |
|--------------------------------------------------------------------------|-----------------------------|-----------------------------|--------------|-----------------------------|-----------------------------|----------------------|----------------------|----------------------|----------------------|
| Transformer w/ aux LM (full)                                             | 74.7                        | 45.4                        | 91.3         | 82.3                        | 82.0                        | 70.3                 | 81.8                 | 88.1                 | 56.0                 |
| Transformer w/o pre-training<br>Transformer w/o aux LM<br>LSTM w/ aux LM | 59 9<br><b>75.0</b><br>69.1 | 18.9<br><b>47.9</b><br>30.3 | 92.0<br>90.5 | 79 4<br><b>84.9</b><br>83.2 | 30.9<br><b>83.2</b><br>71.8 | 65.5<br>69.8<br>68.1 | 75.7<br>81.1<br>73.7 | 71.2<br>86.9<br>81.1 | 53.8<br>54.4<br>54.6 |

- 1. Larger dataset benefit from auxiliary tasks
- 2. Transformer helps
- 3. Pre-training helps

- 1. Larger dataset benefit from auxiliary tasks
  - -> auxiliary tasks introduce regularization effect and parameter noise
  - -> 모델의 bias가 증가



#### Drawbacks

- 1. Compute requirements: 1 month on 8 GPUs
- 2. Dataset의 한계 : Books, text available on internet do not contain complete information about world