This lab is to deal with **Logistic Regression**, **kNN**, and **Decision Tree** alogirthms applied to classification tasks.

• Deadline: 23:59, 01/04/2024

Import libraries

```
# code
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.impute import SimpleImputer
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression,LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics
from sklearn.metrics import accuracy_score, classification_report
```

Task 1.

Apply **LogisticRegression** to iris dataset to classify species of iris based on sepal_length (chiều dài đài hoa), sepal_width, petal_length (chiều dài cánh hoa), petal_width. The species are 'setosa' 'versicolor' and 'virginica'.

```
from sklearn import datasets
 data1 = datasets.load iris()
# code
from sklearn import datasets
from sklearn.linear_model import LogisticRegression #import linear
from sklearn.metrics import confusion_matrix #import matrixs để đánh giá modelfrom sklearn.model_selection import train_test_split
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
data1 = datasets.load_iris()
X1 = data1.data
v1= data1.target
#chia tệp thành train và test , test 30%
Xtrain, Xtest, ytrain, ytest = train_test_split(X1,y1,test_size=0.3)
regression = LogisticRegression(random_state = 0)
regression.fit(Xtrain, ytrain)
#predict y
y_pred = regression.predict(Xtest)
print ("Accuracy : ", accuracy_score(ytest, y_pred))
print("\nClassification Report:")
print(classification_report(ytest, y_pred))
     Accuracy: 0.95555555555556
     Classification Report:
                   precision
                                recall f1-score
                0
                                            1.00
                                                         11
                        0.94
                                  0.94
                                            0.94
                                                         18
                1
                2
                        0.94
                                  0.94
                                            0.94
                                                         16
                                                        45
                                            0.96
         accuracy
                        0.96
                                  0.96
                                            0.96
                                                         45
        macro avg
```

0.96

weighted avg

Task 2.

Apply LogisticRegression to **FASHION** dataset (*fashion_train.csv* and *fashion_test.csv*) which aims at classifying 10 fashion categories. Dataset includes 784 pixels values of images (28x28). This pixel-value is an integer between 0 and 255. Each training and test example is assigned to one of the following labels:

- 0 T-shirt/top
- 1 Trouser
- 2 Pullover
- 3 Dress
- 4 Coat
- 5 Sandal
- 6 Shirt
- 7 Sneaker
- 8 Bag
- 9 Ankle boot

Accuracy: 0.783

```
from google.colab import drive
drive.mount('/content/gdrive')
%cd '/content/gdrive/MyDrive/machine_learning/lab4'
     Mounted at /content/gdrive
     /content/gdrive/MyDrive/machine_learning/lab4
# code
train_data = pd.read_csv('fashion_train.csv')
test_data = pd.read_csv('fashion_test.csv')
X_train1 = train_data.iloc[:,:784]
y_train1 = train_data.iloc[:,-1]
X_test1 = test_data.iloc[:,:784]
y_test1 = test_data.iloc[:,-1]
# train model sử dụng train set
model1 = LogisticRegression(max_iter=1000)
model1.fit(X_train1, y_train1)
y_pred1 = model1.predict(X_test1)
#đánh giá mô hình
accuracy1 = accuracy_score(y_test1, y_pred1)
print ("Accuracy : ", accuracy1)
print("\nClassification Report:")
print(classification_report(y_test1, y_pred1))
```

,					
Classifi	catio	n Report: precision	recall	f1-score	support
	0	0.72	0.82	0.77	91
	1	0.95	0.96	0.95	92
	2	0.59	0.71	0.65	91
	3	0.88	0.77	0.82	105
	4	0.66	0.66	0.66	99
	5	0.88	0.78	0.83	105
	6	0.51	0.43	0.47	99
	7	0.83	0.88	0.86	94
	8	0.93	0.93	0.93	115
	9	0.86	0.86	0.86	109
accu	racy			0.78	1000
macro	avg	0.78	0.78	0.78	1000
weighted	avg	0.79	0.78	0.78	1000

Task 3.

Apply another classification algorithm named kNN, which is an instance classification model.

- 3.1. Perform kNN algorithm to Iris dataset with k={3, 5, ..., 29}. Select the best value of k. Plot the values of accuracy, precision, recall, f1 measure metrics with different values of k.
- 3.2. Then compare the obtained results with those using Logistic regression (based on metrics: accuracy, precision, recall, f1 measure) using PrettyTable.

```
# task 3.1
import numpy as np
from sklearn import datasets
from sklearn.neighbors import KNeighborsClassifier
from sklearn import neighbors
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
data1 = datasets.load_iris()
X3 = data1.data
y3= data1.target
#tách data , 30% test 70% train
X_train2, X_test2, y_train2, y_test2 = train_test_split(
     X3, y3, test_size=30)
#kiểm tra với k range từ 3->29 step 2
k_{values} = range(3, 30, 2)
# tệp lưu đánh giá
accuracies =[]
precisions=[]
recalls=[]
f1_scores=[]
for k in k_values:
   knn_model = KNeighborsClassifier(n_neighbors=k)
   # train với tệp 50 50 ở trên
   knn_model.fit(X_train2, y_train2)
   # predic y
   y_pred2 = knn_model.predict(X_test2)
   # đánh giá
   accuracy = accuracy_score(y_test2, y_pred2)
   precision = precision_score(y_test2, y_pred2, average='macro')
   recall = recall_score(y_test2, y_pred2,average='macro')
   f1 = f1_score(y_test2, y_pred2, average='macro')
   #thêm vào tệp lưu
   accuracies.append(accuracy)
   precisions.append(precision)
   recalls.append(recall)
   f1_scores.append(f1)
#lấy giá trị tốt nhất
best_accuracy = np.argmax(accuracies)
best_k = k_values[best_accuracy]
print('giá trị tốt nhất k:',best_k ,'- với accuracy',accuracies[best_k])
# show với k
plt.figure(figsize=(10, 6))
plt.plot(k_values, accuracies, label='Accuracy')
plt.plot(k_values, precisions, label='Precision')
plt.plot(k_values, recalls, label='Recall')
plt.plot(k_values, f1_scores, label='F1 Score')
plt.xlabel('k')
plt.ylabel('Score')
plt.xticks(k_values)
plt.legend()
plt.grid(True)
plt.show()
#3.2 so sánh k best
from prettytable import PrettyTable
t = PrettyTable(['','KNeighbors', 'Logistic regression'])
t.add_row(['Accuracy',accuracies[best_k], accuracy_score(ytest, y_pred)])
t.add_row(['pricision',precisions[best_k], metrics.precision_score(ytest, y_pred, average='macro')])
t.add_row(['F1',f1_scores[best_k],metrics.f1_score(ytest, y_pred,average='macro')])
```

t.add_row(['recall',recalls[best_k], metrics.recall_score(ytest, y_pred,average='macro')])
print(t)

Task 4.

Similar to Task 3, apply kNN algorithm to FASHION dataset which included in datasets of sklearn API.

- 4.1. Perform kNN algorithm to Iris dataset with k={3, 5, ..., 29}. Select the best value of k. Plot the values of accuracy, precision, recall, f1 measure metrics with different values of k.
- 4.2. Plot the values of accuracy, precision, recall, f1 measure metrics with different values of k.
- 4.3. Then compare the obtained results with those using Logistic regression (based on metrics: accuracy, precision, recall, f1 measure).

```
# code
train_data4 = pd.read_csv('fashion_train.csv')
test_data4 = pd.read_csv('fashion_test.csv')
X_train4 = train_data4.iloc[:,:784]
y_train4 = train_data4.iloc[:,-1]
X_test4 = test_data4.iloc[:,:784]
y_test4 = test_data4.iloc[:,-1]
#kiểm tra với k range từ 3->29 step 2
k4\_values = range(3, 30, 2)
# tệp lưu đánh giá
accuracies4 =[]
precisions4=[]
recalls4=[]
f1_scores4=[]
for a in k4_values:
      knn4_model = KNeighborsClassifier(n_neighbors=a)
      # train với tệp 50 50 ở trên
      knn4_model.fit(X_train4, y_train4)
      # predic y
     y_pred4 = knn4_model.predict(X_test4)
      # đánh giá
```

```
accuracy = accuracy_score(y_test4, y_pred4)
      precision = precision_score(y_test4, y_pred4, average='macro')
      recall = recall_score(y_test4, y_pred4,average='macro')
      f1 = f1_score(y_test4, y_pred4, average='macro')
      #thêm vào tệp lưu
      accuracies4.append(accuracy)
      precisions4.append(precision)
      recalls4.append(recall)
      f1\_scores4.append(f1)
#lấy giá trị tốt nhất
best_accuracy4 = np.argmax(accuracies4)
best_k4 = k4_values[best_accuracy4]
print('giá trị tốt nhất k:',best_k4 ,'- với accuracy',accuracies4[best_k4])
#k=5 tốt nhất
# show với k
plt.figure(figsize=(10, 6))
plt.plot(k4_values, accuracies4, label='Accuracy')
plt.plot(k4_values, precisions4, label='Precision')
plt.plot(k4_values, recalls4, label='Recall')
plt.plot(k4_values, f1_scores4, label='F1 Score')
plt.xlabel('k')
plt.ylabel('Score')
plt.xticks(k4_values)
plt.legend()
plt.grid(True)
plt.show()
# vẽ pretty so sánh với regession
tb = PrettyTable(['','KNeighbors', 'Logistic regression'])
\label{tb.add_row(['Accuracy',accuracies4[5], accuracy_score(y_test1, y_pred1)])} \\
tb.add\_row(['precision',precisions4[5],\ metrics.precision\_score(y\_test1,\ y\_pred1,\ average='macro')])
\verb|tb.add_row(['F1',f1_scores4[5],metrics.f1_score(y_test1, y_pred1,average='macro')]|)| \\
tb.add_row(['recall',recalls4[5], metrics.recall_score(y_test1,y_pred1,average='macro')])
print(tb)
```

j giá trị tốt nhất k: 5 - với accuracy 0.752

-			+
		KNeighbors	Logistic regression
	Accuracy precision F1 recall	0.752 0.768657281971095 0.7470186833739232 0.7536326207068555	0.783 0.7805722822135391 0.7790413311115769 0.7814072147995884

Task 5.

Compare the performance of selected classification algorithms (**Decision Tree, kNN, and Logistic Regression**) to *spam detection*. The dataset can be accessed from the link: http://archive.ics.uci.edu/ml/datasets/Spambase Attribute Information: The last column of 'spambase.csv denotes whether the e-mail was considered **spam (1) or not (0)**, i.e. unsolicited commercial e-mail. Most of the attributes indicate whether a particular word or character was frequently occurring in the e-mail. The run-length attributes (55-57) measure the length of sequences of consecutive capital letters. For the statistical measures of each attribute, see the end of this file. Here are the definitions of the attributes:

- 48 continuous real [0,100] attributes of type word_freq_WORD = percentage of words in the e-mail that match WORD, i.e. 100 * (number of times the WORD appears in the e-mail) / total number of words in e-mail. A "word" in this case is any string of alphanumeric characters bounded by non-alphanumeric characters or end-of-string. Example: word_freq_address: percentage of words in the e-mail that match ADDRESS.
- 6 continuous real [0,100] attributes of type char_freq_CHAR] = percentage of characters in the e-mail that match CHAR, i.e. 100 * (number of CHAR occurences) / total characters in e-mail
- 1 continuous real [1,...] attribute of type capital_run_length_average = average length of uninterrupted sequences of capital letters
- 1 continuous integer [1,...] attribute of type capital_run_length_longest = length of longest uninterrupted sequence of capital letters
- 1 continuous integer [1,...] attribute of type capital_run_length_total = sum of length of uninterrupted sequences of capital letters = total number of capital letters in the e-mail
- 1 nominal {0,1} class attribute of type spam = denotes whether the e-mail was considered spam (1) or not (0), i.e. unsolicited commercial e-mail

In order to compare the performance of selected algorithms, some common metrics including **accuracy, precision, recall, f1 measures** could be used.

```
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from sklearn.tree import DecisionTreeClassifier
# code
data5 = pd.read_csv('spambase.csv')
X5 = data5.iloc[:,:-1]
y5 = data5.iloc[:,-1]
#chia data 30-70
X_train5, X_test5,y_train5,y_test5 = train_test_split(X5,y5,test_size=0.3)
# train logistic
logistic model5 = LogisticRegression(random state=0);
logistic_model5.fit(X_train5,y_train5)
y_logis_pred5 = logistic_model5.predict(X_test5)
 #đánh giá
logis_accuracy = accuracy_score(y_test5, y_logis_pred5)
logis_precision = precision_score(y_test5, y_logis_pred5, average='macro')
logis_recall = recall_score(y_test5, y_logis_pred5,average='macro')
logis_f1 = f1_score(y_test5, y_logis_pred5, average='macro')
#train decision
decision_model5 = DecisionTreeClassifier(random_state=42)
decision model5.fit(X train5, y train5)
y_deci_pred5 = decision_model5.predict(X_test5)
  #đánh giá
deci_accuracy = accuracy_score(y_test5, y_deci_pred5)
deci_precision = precision_score(y_test5, y_deci_pred5, average='macro')
deci_recall = recall_score(y_test5, y_deci_pred5,average='macro')
deci_f1 = f1_score(y_test5, y_deci_pred5, average='macro')
#train knn
knn_model5 = KNeighborsClassifier()
knn_model5.fit(X_train5, y_train5)
y_knn_pred5 = knn_model5.predict(X_test5)
  #đánh giá
knn_accuracy = accuracy_score(y_test5, y_knn_pred5)
knn_precision = precision_score(y_test5, y_knn_pred5, average='macro')
knn_recall = recall_score(y_test5, y_knn_pred5,average='macro')
knn_f1 = f1_score(y_test5, y_knn_pred5, average='macro')
from prettytable import PrettyTable
# These 3 are the columns of the tables
t = PrettyTable(["",'decision', 'Knn', 'logistic'])
# To insert rows:
t.add_row(['Accuracy',deci_accuracy,knn_accuracy,logis_accuracy ])
t.add_row(['Precision', deci_precision,knn_precision,logis_precision])
t.add_row(['Recall', deci_recall,knn_recall,logis_recall])
+ add now/['f1 ccono' doci f1 knn f1 logic f1])
```

c.auu_row([τI _score , ueci_ τI , kiiii_ τI , iogis_ τI]/ print(t)

İ	+ decision +	Knn	logistic
Precision Recall	0.8982628649978937	0.7960547122074637	0.9187182910547396 0.917205063964703

Finally,

Save a copy in your Github. Remember renaming the notebook.