

Decision Trees

Machine Learning

Not Exactly a Tree

- Segments the predictor space into smaller regions
- Collectively known as decision trees
 - Regression trees
 - Classification trees
- Example: salary for baseball players
 - o Task: predict a salary based on: hits & years of experience
 - Salary coded for low (blue / green) to high (yellow / red)
 - O Data (right) results in tree:

Alternative Representations

Advantages & Disadvantages

Advantages

- Great for interpretation
- Elegantly handles irrelevant features

Disadvantages

- Mediocre individual performance (used in confederation for better performance)
- Prone to overfitting

Other random stuff

- "The most common technique" for classification?
- Can see performance improvements with bagging, random forests, boosting

Trees vs. Linear Models

- Advantages of trees
 - Trees are easy to explain and interpret
 - Trees can handle qualitative predictors gracefully
- Disadvantage of trees: generally weak performance
 - Good performance requires "boxy" relationships
 - o Improve performance via:
 - Bagging
 - Random Forests
 - Boosting

Algorithm: Recursive Splitting

- Goal: split trees so that the splits are better organized
 - o Top-down: start at root of tree (all data) ... then splits
 - Greedy: at each step, split on the best predictor with no backtracking
 - Caution: greedy algorithms sometimes produce results which are not globally optimal
- Description
 - \circ Select feature X_i , which leads to greatest reduction in classification error
 - Recursively apply algorithm to subtrees
 - Stop splitting when:
 - Subtree is PURE all instances in subtree belong to the same class
 - There are no more features to split on
 - Subtrees have a number of observations (eg. 5)
- Predictions: use the majority (plurality?) of observations in the subtree

Quantifying Error

Many classification problems use "classification error rate"

$$E = 1 - \max_{k} (\hat{p}_{mk}).$$

- p_{mk} = portion of training observations in m^{th} region from k^{th} class
- In practice, classification error rate is not sufficiently sensitive

Entropy for Quantifying Purity

$$D = -\sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk}$$

- Measures total variance among K classes
- Names: (Shannon) Entropy

```
def entropy(Y): # Y is a list
 from math import log
 size = len(Y)
 counts = dict()
 for y in Y:
     if y not in counts:
         counts[y] = 0.
     counts[y] += 1.
 entropy = 0.
 for key in counts:
     prob = counts[key] / size
     entropy -= prob * log(prob, 2)
 return entropy
```


Entropy — **Example & Questions**

- Entropy of the "animals" data?
- Entropy if we remove "chicken" and "swan"?
- Entropy if only "scorpion" and "starfish" are left?

animals

name	convering	eggs	lives_in	oxygenates	legs	tail	category
aardvark	hair	0	ground	air	4	0	mammal
antelope	hair	0	ground	air	4	1	mammal
bass	scales	1	water	water	0	1	fish
carp	scales	1	water	water	0	1	fish
chicken	feathers	1	ground	air	2	1	bird
scorpion	exoskeleton	0	ground	air	8	1	invert
starfish	skin	1	water	water	5	0	invert
swan	feathers	1	air	air	2	1	bird

Entropy Alternative: Gini Index

$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

- Also measures total variance among K classes
 - Observations from a single class —> Gini index will be 0
 - \circ Takes a small value if p_{mk} s are close to 0 or close to 1
- Also called "node purity" or "Gini impurity"

Data Splitting — The Right Thing?

- Algorithm Overview
 - Measure entropy of data
 - Split the data into subtrees; measure entropy of subtrees
 - Determine whether split results in lower entropy
- Implementation module: split_data
 - Input: X = list of lists; axis = index in x to split on; value of axis
 - Process: find all $x \in X$ such that x[axis] == value
 - Return x[0..axis, axis+1..]

split_data

```
def split_data(X, axis, value):
 return_data = []

 for x in X:
     if x[axis] == value:
         reduced_x = x[:axis]
         reduced_x.extend(x[axis+1:])
         return_data.append(reduced_x)
 return return_data
```

Exercise: Change this function

- Accept Y (target) values
- Return Y values split the same way as X

Data Splitting — Choose Feature

- Measure Information Gain
 - If we split a feature, what is the change in entropy?
 - o If the change is positive (i.e. lower entropy / Gini impurity), this is information gain
- Choose the highest information gain for each tree/subtree
 - sklearn uses binary splitting —> binary tree
 - We will use n-ary splitting: one child for each value in train_x

Implementation: Choose Feature

```
def choose feature (X, Y):
entropy = entropy(Y)
                                     # Get the pre-split entropy
best information gain = 0.
best feature = -1
 for i in range(len(X[0])): # For each feature
     feature list = [x[i] \text{ for } x \text{ in } X]
    values = set(feature list) # ... get unique values
    entropy i = 0.
     for value in values: # ... split the data
         sub x, sub y = split data(X, Y, i, value)
        prob = len(sub x) / float(len(X))
        entropy i += prob * entropy(sub y)
     info gain = entropy - entropy i # ... determine: good split?
     if info gain > best information gain: # Best split?
        best information gain = info gain
        best feature = i
 return best feature
```


Exercise: "animals"

- Get the <u>animals.csv</u> file
 - Split into X and Y
 - Y = class (mammal, bird, etc.)
 - Do not include animal name. (Why?)
- Run choose_feature against animals.csv data
- Which is the best feature?

One Problem

- Problem:
 - Goal: divide data to get pure nodes
 - Algorithm can exhaust all features
 - What if we have exhausted all features but nodes are not pure?
- Solution:
 - Return the majority of labels in a node
 - Return plurality if no clear majority
- Exercise: implement this

Lab

- Lab 3 on Canvas
- Complete implementation of decision_tree class:
 - 1: Use functions above (entropy, split_data, choose_feature) modified for class
 - o 2: Add (recursive) "fit" function to determine where to split

Problems with Performance

- Performance vs. tree size
 - Recursive splitting eventually overfits
 - Sometimes smaller trees (fewer splits) have higher performance
- Solution # 1
 - o Grow the tree while entropy / Gini impurity decrease exceeds some high threshold
 - o Bad idea for a greedy algorithm
 - But worthless splits early on may give excellent splits later
- Solution # 2
 - Grow a (very) large tree
 - Prune the tree to get a subtree

Cost Complexity Pruning

- An algorithm for tree pruning
 - Also known as weakest link pruning
 - \circ Depends on non-negative tuning parameter, α trade-off between complexity of subtree and fit to training observations
- Driven by equation

$$\sum_{m=1}^{|T|} \sum_{i: x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|$$

- Considerations:
 - \circ | T | is number of leaves in the (sub-)tree T
 - R_m is the rectangle of m^{th} leaf node
 - \circ Select optimal α through cross-validation

Putting It All Together

- Grow the tree
 - Use recursive binary splitting to grow a large tree
 - Constructed from training data
 - Stopping when leaves have no more than X observations
- Prune the tree
 - Use cost complexity pruning to get the best set of subtrees
 - \circ Based on α
- Choose the best α
 - Use k-fold cross-validation
 - \circ Average the results and pick α to minimize average (training) error
- Best subtree corresponds to pruned subtree for α

Next Time

- Hands-on with Decision Trees
- Extensions to Trees:
 - Bagging
 - Random Forest
 - Bagging