1. 모델별 성능 시각화 인사이트

 XGBoost(튜닝), LightGBM(튜닝) 모델의 RMSE가 각각 37.47, 38.40으로 가장 낮 았습니다.

이는 자전거 대여량 예측에서 평균 오차가 최소였음을 의미합니다.

곧, 실제 대여량과의 차이가 가장 작아 가장 현실적인 예측이 가능하다는 것을 보여줍니다.

RandomForest, GradientBoosting, LightGBM 등 기본(default) 모델은 RMSE가
41 이상으로 더 높게 나타났습니다.

하이퍼파라미터 튜닝 전과 후의 오차 차이가 명확하게 드러났으며, 특히 트리 기반 부스팅 모델은 튜닝을 통해 실질적인 성능 개선 효과가 있음을 알 수 있습니다.

- R² Score(결정계수) 지표를 보면, GradientBoosting(튜닝), XGBoost(튜닝), LightGBM(튜닝) 모델이 모두 0.955~0.958 수준으로, 데이터의 변동성 중 95% 이상을 설명할 수 있음을 확인했습니다.
- 전반적으로 튜닝된 부스팅 계열(XGBoost, LightGBM, GradientBoosting) 모델의 성능이 가장 우수하게 나타났으며,

기본 모델 대비 튜닝을 통해 예측력(오차 감소, 설명력 증가) 모두 실제로 개선되는 점이 명확히 시각적으로 드러납니다.

2. 예측 결과(count) 해석 및 인사이트

• 최종 count 예측 결과(submission.csv)는 튜닝된 XGBoost, LightGBM 등 최고 성능 모델의 예측값을 바탕으로 생성되었습니다.

예측값은 음수 보정(0 미만은 0으로 처리) 등 실무에서 발생 가능한 예외 상황까지 고려하여 제출 파일로 작성하였습니다.

• 주요 인사이트로는 '시간대', '온도', '요일', '휴일여부' 등이 예측에 큰 영향을 미치는 것으로 나타났으며,

실제 운영에서는 이 변수들을 중심으로 수요예측, 자전거 배치, 마케팅 타이밍 등을 최적화할 수 있습니다.

3. 결론 및 실무 제안

- 실제 서비스 적용 또는 경진대회 참여 시, 트리 기반 부스팅 계열(XGBoost, LightGBM 등) 모델과 하이퍼파라미터 튜닝은 반드시 고려해야 할 핵심 전략임이 실험적으로 검증되었습니다.
- 예측력(오차 감소)과 설명력(결정계수 향상)을 모두 높일 수 있는, 실무 최적 솔루션임을 확인할 수 있었습니다.
- 변수 중요도(Feature Importance) 해석을 병행하여, 수요 예측 및 정책/운영 의 사결정에도 적극 활용할 수 있습니다.
- 실무 현장에서는, 모델 선정·튜닝뿐 아니라 실제 데이터 흐름(파생변수 생성, 이상 치/음수 보정, 결과물 활용 방식)까지 전 주기에 걸친 관리가 중요합니다.

핵심 요약

- 트리 계열 부스팅 모델과 튜닝은 자전거 대여량 예측 문제에서 실제로도, 데이터 적으로도 가장 높은 신뢰성과 성능을 보여줍니다.
- 시각화와 성능 비교, 예측값의 실무적 검증은 효과적인 의사결정, 운영 효율화, 정책 수립의 강력한 근거가 됩니다.

