

A residential microgrid Operational Planning & Sizing

Bertrand Cornélusse, Thomas Stegen, Clément Moureau

2 April 2025

I. Case study

Introduction to the physical problem

Representation of the house

Photovoltaic panels are the main energy source

Battery storage system can be used as a slack

A diesel genset can also provide energy if needed

Load is fixed and should be always satisfied

The system can exchange with the grid at a given price

Electric vehicle connects, then should be charged

Bus view

Power generation

- Main source of energy
- Power profile for MPPs
 - $\triangleright P_{pv,max}$
- Connected via inverter
- "Free energy"

- Inverter connected to the PV panels
- Rated capacity defines the maximum power output
 - $\triangleright P_{pv,nom}$

Energy storage

- Should mitigate imbalance
- Fixed capacity
 - $\succ C_{bss}$
- Constant charging efficiency
 - \triangleright ef f_{bss}
- Bounded SOCs
 - $\triangleright [SOC_{min\ bss},\ SOC_{max\ bss}]$

- Inverter connected to the batteries
- Limits the power output
 - $\triangleright P_{bss\ nom}$

Electric vehicle

- Not always connected
 - $\succ EV_{connection}$ (binary)
- Charging time left accessible
 - $\triangleright EV_{remaining time}$
- Should be charged when leaving
 - > SOC_{ev target}
- Fixed capacity
 - $\succ C_{ev}$
- Bounded SOCs
 - $\triangleright [SOC_{min\ ev},\ SOC_{max\ ev}]$

- Charger connected to the electric vehicle
- Limited charging power
 - $\triangleright P_{ev nom}$
- > Fixed efficiency
 - \triangleright ef f_{ev}

Controllable generation and fixed load

- Maximum/minimum power
 - $\triangleright P_{max,gen}, P_{min,gen}$
- > Fuel costs when used
- Avoid repetitive on-off switches
- Power output should maximize efficiency

- Represents plugged-in appliances
- Defined by a profile
 - $\triangleright P_{load}$
- Should always be satisfied

Objectives of the controller

This is what a good controller should achieve, in decreasing order of priority

Ensure feasibility: Power/energy bounds, demand satisfaction,...

Approach optimality: final cost, asset management, genset operation,...

Improve reliability: robustness, more realistic model of appliances,...

II. Operational Planning

Description of the first part of the homework

Objective

Using perfect forecast and given equipment sizes, define the complete optimal power profile of all assets at once.

→ In practice, this step would be done daily, this is called day-ahead operational planning.

→ In this work, we will consider all available data at once to re-use the same code for the second part of the assignment (Sizing of the microgrid).

Python set-up

• Very similar to the previous homework, but now you take decisions for multiple time steps → vector variables.

Some constraints must be enforced for each time-step

 The vehicle is now potentially connecting and disconnecting multiple times → needs to be handled properly.

Code diagram

Parameters

delta_t,SOC_i_bss, SOC_min_bss, SOC_max_bss, eff_bss
P_nom_ev, eff_ev, SOC_min_ev, SOC_max_ev, SOC_target_ev
C_ev, PI_gen, PI_imp, PI_exp

Result object

- P_load, P_pv_max (MPP ratio)
- EV profile
 - t arr, t dep
 - SOC_ev_i
- Asset sizes
- Power setpoints and SOCs:
 - P_pv
 - P_bss

 SOC_bss

P_ev

SOC_ev

P_gen

create_model()

solve_model()

Model object

- Contains all physical constraints of the microgrid
- Minimizes costs as objective function
- Takes decision for power set points

Utils function

- Post processes the result object to ensure simulation results are:
 - 1. Feasible
 - 2. Optimal
 - 3. Looking nice and smooth

save_results() •

check_res() print_res() plot_res()

How to access data in the Results object

This object is very similar to the one from the last assignment, only more complete.

Inputs

- res.P load(t) = Load power at time t
- res.P_pv_max(t) = Max available PV power at time t
- res.EV_connected(t) = EV connected at time t
- res.t_arr(c) = Time at which the EV is connected for the c-th connection
- res.t_dep(c) = Time at which the EV is disconnected for the c-th connection
- res.SOC_i_ev(c) = Arrival SOC of the EV connected at time t arr(c)

Outputs

- res.P pv [t]: Power of the PV system [kW]
- res.P gen [t]: Power of the generator [kW]
- res.P_bss [t]: Power of the battery [kW]
- res.P_ev[t]: Power of the EV [kW]
- res.P_imp [t]: Power of the battery [kW]
- res.P_exp[t]: Power of the EV [kW]
- res.SDC_bss(t): Energy in the battery (kWh)
- res.SOC_ev[t]: Energy in the EV [kW]
- res. objective: Value of the objective function

Differences with last assignment

- Grid connection
- Time-step is now 15 minutes
- You handle time-series up to one year in one solve
- No power minimum for the generator
- EV can connect and disconnect multiple times
- Each DC asset is connected through an inverter with nominal power

Guidelines for operational planning

- 1. Solve the operational planning problem using a linear programming formulation. Optimize the usage of each device to minimize OPEX.
- 2. Compute the yearly system costs and present some results.
- 3. What are the key parameters? How could they totally change the optimal results?
- 4. Show the dependency between the PV size and the operational costs is nonlinear. Explain why.
- 5. Plot the monthly costs, self-consumption, self-sufficiency, BSS, PV, inverter usage, and any other relevant result.
- 6. What are the strong assumptions made when solving this problem? Discuss.

III. Sizing

Description of the second part of the homework

Bus view

Python create_model() function modifications

This function creates the model, with parameters, variables, objective and constraints and it is where you will work.

/!\ You should not change variable names, but you can add some.

- Asset sizes are now variables and not parameters
- Parameters of the model now include investment horizon and investment prices for each technology

Guidelines for sizing – Part 1

- 1. Reformulate the optimization problem of the previous section as a sizing problem. Additional constraints could be required, and the objective function must be adapted to include scaled CAPEX.
- 2. Compute the optimal sizing considering only January.
- 3. Apply the same procedure for June instead of January and finally for the whole year. Compare and comment the sizing results you obtain in each case.
- 4. Show the usage and price of each investment in the yearly case. Discuss the savings they create individually and how they interact.

Guidelines for sizing – Part 2

- 5. Size the microgrid over the entire year considering varying export tariffs (from 0 to any value you may find interesting). How do these influence your results? Explain. What happens when the import cost gradually decreases?
- 6. Describe the impact of simultaneous increase of load and kilometers per year on the results. How would a change in these parameters affect the results?
- 7. Discuss the results and show how the asset sizes are linked. For example, what can you say about the PV inverter size compared to the installed PV capacity?

IV. Report

Report guidelines

1. Maximum 8 pages

2. Pay attention to the graphs and results you present

- 3. Be concise, focus on your decisions and results, not on the case study
 - Try to present the result in the most adequate possible way
 - Use graphs to show dependencies
 - Use tables to summarize and compare results