

## BUNDESREPUBLIK DEUTSCHLAND

03. 09. 2004

EP041009843



|                    |
|--------------------|
| REC'D. 13 OCT 2004 |
| WIPO               |
| PCT                |

**PRIORITY  
DOCUMENT**  
SUBMITTED OR TRANSMITTED IN  
COMPLIANCE WITH RULE 17.1(a) OR (b)

**Prioritätsbescheinigung über die Einreichung  
einer Patentanmeldung**

**Aktenzeichen:** 103 42 670.1  
**Anmeldetag:** 16. September 2003  
**Anmelder/Inhaber:** Bayer HealthCare AG,  
51373 Leverkusen/DE  
Erstanmelder: Bayer Aktiengesellschaft,  
51368 Leverkusen/DE  
**Bezeichnung:** Isoliertes Photoprotein mtClytin sowie dessen  
Verwendung  
**IPC:** C 12 N, C 07 K

**Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ur-  
sprünglichen Unterlagen dieser Patentanmeldung.**

München, den 24. Juni 2004  
**Deutsches Patent- und Markenamt**  
**Der Präsident**  
 Im Auftrag

Hintermeier

BEST AVAILABLE COPY

Isoliertes Photoprotein mtClytin, sowie dessen Verwendung

5 Die Erfindung betrifft das Photoprotein mtClytin, dessen Nukleotid- und Amino-  
säuresequenz, sowie die Aktivität und Verwendung des Photoproteins mtClytin.

**Photoproteine**

10 Als Biolumineszenz bezeichnet man das Phänomen der Lichterzeugung durch Lebewesen. Sie ist das Ergebnis von biochemischen Reaktionen in Zellen, bei denen die chemische Energie in Form von Lichtquanten abgegeben wird (sog. kalte Emission durch Chemolumineszenz). Derartig erzeugtes Licht ist monochromatisch, denn es wird bei einem diskreten Elektronen-Übergang abgestrahlt, kann aber durch sekundäre Leuchtfarbstoffe (z.B. fluoreszierende Proteine bei Leuchtquallen der  
15 Gattung Aequora) in längerwellige Spektralbereiche verschoben werden.

20 Die biologische Funktion ist vielfältig: In der Meerestiefe zwischen 200 und 1000 m (Mesopelagial) leuchten rund 90 % aller Lebewesen. Die Leuchtsignale werden hier zur Partnerwerbung, Täuschung und als Köder eingesetzt. Auch Glühwürmchen und Leuchtkäfer nutzen die Lichtsignale zur Partnersuche. Die Bedeutung des Leuchtens von Bakterien, Pilzen und einzelligen Algen ist dagegen unklar. Es wird vermutet, dass es zur Koordination von vielen Einzel-Individuen einer großen Population eingesetzt wird oder eine Art biologische Uhr darstellt.

25 Eine Vielzahl an Coelenteraten ist biolumineszent (Morin et al., 1974). Diese Organismen emittieren blaues oder grünes Licht. Das 1962 als erstes Licht produzierendes Protein identifizierte Aequorin aus Aequoria victoria (Shimomura et al., 1969) emittierte als isoliertes Protein ein blaues Licht und nicht grünes Licht wie phänotypisch beobachtet bei Aequoria victoria. Später konnte das grün fluoreszierende Protein (GFP) aus Aequoria victoria isoliert werden, das aufgrund der Anregung durch das Aequorin die Meduse phänotypisch grün erscheinen lässt (Johnson  
30

et al., 1962; Hastings et al., 1969; Inouye et al., 1994). Als weitere Photoproteine konnten noch Clytin (Inouye et al., 1993), Mitrocomin (Fagan et al., 1993) und Obelin (Illarionov et al., 1995) identifiziert und beschrieben werden.

5      **Tabelle 1:** Übersicht über einige Photoproteine. Angegeben sind der Name, der Organismus aus dem das Protein isoliert worden ist und die Identifikationsnummer (Acc. No.) des Datenbankeintrages.

| Name       | Organismus                    | Identifikations Nr. |
|------------|-------------------------------|---------------------|
| Obelin     | Obelia geniculata             | AAL86372            |
| Clytin     | Clytia gregaria               | CAA49754            |
| Aequorin   | Aequorea macrodactyla         | AAK02061            |
| Aequorin   | Aequorea parva                | AAK02060            |
| Mitrocomin | Mitrocoma cellularia          | AAA29298            |
| Pholasin   | Pholas dactylus               | AAM18085            |
| ?          | Symplectoteuthis oualaniensis | AX305029            |

10     **Tabelle 2:** Übersicht über einige Photoproteine. Angegeben sind der Organismus aus dem das Protein isoliert worden ist, der Name des Photoproteins und eine Auswahl an Patenten bzw. Anmeldungen.

| Organismus        | Fluoreszierendes Protein | Patent / Anmeldung                                      |
|-------------------|--------------------------|---------------------------------------------------------|
| Obelia geniculata | Obelin                   | WO03006497                                              |
| Clytia gregaria   | Clytin                   | WO03006497                                              |
| Aequoria victoria | Aequorin                 | WO200168824<br>US-0908909<br>US 6,152,358<br>JP-0176125 |
| Pholas dactylus   | Pholasin                 | WO0028025<br>GB-0024357                                 |

Biolumineszenz wird heute in der Technik vielfältig genutzt, z.B. in Form von Bio-  
Indikatoren für Umweltverschmutzung oder in der Biochemie zum empfindlichen  
Nachweis von Proteinen, zur Quantifizierung bestimmter Verbindungen oder als  
sogenannte "Reporter" bei der Untersuchung zellulärer Gen-Regulation.

5

Die Photoproteine unterscheiden sich nicht nur aufgrund ihrer Nukleotid- und  
Aminosäuresequenz, sondern auch aufgrund ihrer biochemischen und physikalischen  
Eigenschaften.

10

Es konnte gezeigt werden, dass durch die Veränderung der Aminosäuresequenz von  
Photoproteinen die physikalischen und biochemischen Eigenschaften verändert  
werden können. Beispiele von mutagenisierten Photoproteinen sind in der Literatur  
beschrieben (US 6,495,355; US 5,541,309; US 5,093,240; Shimomura et al., 1986).

15

Die Lichterzeugung durch die oben genannten Photoproteine erfolgt durch die  
Oxidation von Coelenterazin (Haddock et al., 2001; Jones et al., 1999).

### **Reportersysteme**

20

Als Reporter- oder Indikatorgen bezeichnet man generell Gene, deren Genprodukte  
sich mit Hilfe einfacher biochemischer oder histochemischer Methoden leicht nach-  
weisen lassen. Man unterscheidet mindestens 2 Typen von Reportergenen.

25

1. Resistenzgene. Als Resistenzgene werden Gene bezeichnet, deren Expression  
einer Zelle die Resistenz gegen Antibiotika oder andere Substanzen verleiht,  
deren Anwesenheit im Wachstumsmedium zum Zelltod führt, wenn das  
Resistenzgen fehlt.

30

2. Reportergene. Die Produkte von Reportergenen werden in der Gentechnologie  
als fusionierte oder unfusionierte Indikatoren verwendet. Zu den ge-

bräuchlichsten Reportergen gehöre die beta-Galaktosidase (Alam et al., 1990), alkalische Phosphatase (Yang et al., 1997; Cullen et al., 1992), Luciferasen und andere Photoproteine (Shinomura, 1985; Phillips GN, 1997; Snowdowne et al., 1984).

5

Als Lumineszenz bezeichnet man die Abstrahlung von Photonen im sichtbaren Spektralbereich, wobei diese durch angeregte Emittormoleküle erfolgt. Im Unterschied zur Fluoreszenz wird hierbei die Energie nicht von Außen in Form von Strahlung kürzerer Wellenlänge zugeführt.

10

Man unterscheidet Chemolumineszenz und Biolumineszenz. Als Chemolumineszenz bezeichnet man eine chemische Reaktion, die zu einem angeregten Molekül führt, das selbst leuchtet, wenn die angeregten Elektronen in den Grundzustand zurückkehren. Wird diese Reaktion durch ein Enzym katalysiert, spricht man von Biolumineszenz. Die an der Reaktion beteiligten Enzyme werden generell als Luziferasen bezeichnet.

15

### **Einordnung der Spezies *Clytia gregaria***

20

Cnidaria → Leptomedusae → Campanulariidae → *Clytia gregaria*

Die Spezies *Clytia gregaria* gehört zu den Cnidaria, speziell zu den Medusen. Der biolumineszente bzw. fluoreszente Phänotyp wurde bereits 1998 beschrieben (Ward et al., 1998).

25

### **Isolierung der cDNA**

Zur Untersuchung der Biolumineszenz-Aktivität der Spezies *Clytia gregaria* wurden Exemplare im Weißen Meer (Biologische Station Kartesh, Russland) gefangen und in flüssigem Stickstoff gelagert. Zur Erstellung der cDNA-Bibliotheken von *Clytia*

30

gregaria, wurde die poly(a)+ RNA mit Hilfe des „Straight A“ Isolationsmethode von Novagen (USA) isoliert.

5 Zur Herstellung der cDNA wurde eine RT-PCR durchgeführt. Hierzu wurden 1 µg RNA mit Reverser Transkriptase (Superscript Gold II) nach folgendem Schema inkubiert:

|     |    |    |          |      |
|-----|----|----|----------|------|
| PCR | 1. | 30 | Sekunden | 95°C |
|     | 2. | 6  | Minuten  | 68°C |
| 10  | 3. | 10 | Sekunden | 95°C |
|     | 4. | 6  | Minuten  | 68°C |

17 Zyklen von Schritt 4 nach Schritt 3

15 Die Reaktionsprodukte wurden zur Inaktivierung der Polymerase für 30 Minuten bei 37°C mit Proteinase K inkubiert und die cDNA mit Ethanol präzipitiert. Die Expression-cDNA Bank wurde mit Hilfe des „SMART cDNA Library Construction Kits“ der Firma Clontech (USA) nach Herstellerangaben durchgeführt. Die Klonierung erfolgte in den Expressionsvektor pTriplEx2 (Clontech; USA). Die Expressionsvektoren wurden durch Elektroporation in Bakterien des Stammes E. coli 20 XL1-Blue transformiert.

25 Die Bakterien wurden auf LB-Nährböden plattiert und für 24 Stunden bei 37°C inkubiert. Anschließend wurde eine Replikaplatierung durchgeführt, indem die Bakterien mit Hilfe eines Nitrocellulosefilters auf eine weitere Nährbodenplatte übertragen wurden. Die Replikaplatte wurde wiederum für 24 Stunden bei 37°C inkubiert und die gewachsenen Bakterienkolonien in LB-Flüssigmedium übertragen. Nach der Zugabe von IPTG (Endkonzentration 0,1 mM) wurden die Bakterien für 4 Stunden bei 37°C auf einem Schüttler inkubiert. Die Bakterien wurden durch 30 Zentrifugation geerntet und die Bakterienmasse in 0,5 ml Aufschlusspuffer (5 mM

EDTA, 20 mM Tris-HCL pH 9,0) bei 0°C resuspendiert. Anschließend erfolgte der Aufschluss der Bakterien durch Ultraschall.

5 Die Lysate wurden nach der Zugabe von Coelenterazine (Endkonzentration 10E-07 M) bei 4°C für 3 Stunden inkubiert. Anschließend erfolgte die Messung der Biolumineszenz nach der Zugabe von Calciumchlorid (Endkonzentration 20 mM) im Luminometer.

10 Es wurde ein Photoprotein identifiziert. Das Photoprotein wurde als mtClytin bezeichnet. Im Folgenden wird das Photoprotein mtClytin im einzelnen dargestellt.

### **mtClytin**

15 Das Photoprotein mtClytin zeigt die höchste Homologie auf Aminosäureebene zu Clytin aus Clytia gregaria mit einer Identität von 87 % und zu Obelin aus Obelia geniculata eine Identität von 77 % (gezeigt in Beispiel 8; Figur 8). Die Homologie von 87 % - in Bezug auf Clytin - ergibt sich am C-terminalen Ende des Proteins, wobei verteilt über das gesamte Protein mehrfache Aminosäureaustausche zu identifizieren sind. Auf Nukleinsäureebene liegt die Identität unter 30 % (gezeigt in Beispiel 7; Figur 7). Zum Sequenzvergleich wurde das BLAST-Verfahren verwendet (Altschul et al., 1997).

20 Das Photoprotein Clytin-2 zeigt die höchste Homologie auf Aminosäureebene zu Clytin aus Clytia gregaria. Die Sequenz weist jedoch eine Reihe an Abweichungen in der Aminosäuresequenz auf, die im Beispiel 11 (Figur 9) dargestellt sind. Diese Abweichungen können zur veränderten physikochemischen, biochemischen und biolumineszenten Eigenschaften führen. Das Photoprotein Clytin-2 besitzt kein Signalpeptid (wie in Beispiel 10 gezeigt).

30 Das Photoprotein mtClytin besitzt ein Signalpeptid, das zur Translokation des Photoproteins in Mitochondrien führen kann. Die Identifizierung des Signalpeptides

erfolgte durch das Computerprogramm MITOPROT (Claros et al., 1996) (gezeigt in Beispiel 10). Das durch MITOPROT ermittelte Signalpeptid ist in SEQ ID NO: 3 angegeben. Das Photoprotein mtClytin ist das erste Photoprotein, bei dem ein natürliches Signalpeptid zur Translokation in Mitochondrien identifiziert werden konnte.

5

Die Erfindung betrifft auch funktionelle Äquivalente von mtClytin. Funktionelle Äquivalente sind solche Proteine, die vergleichbare physikochemische Eigenschaften haben und mindestens 70 % homolog sind zu SEQ ID NO: 2. Bevorzugt ist eine Homologie von mindestens 80 % oder 90 %. Besonders bevorzugt ist eine Homologie von mindestens 95 %.

10

Die Erfindung betrifft auch die funktionellen Äquivalente des Signalpeptides von mtClytin. Funktionelle Äquivalente sind solche Proteine oder Peptide, die vergleichbare physikochemische Eigenschaften haben und mindestens 70 % homolog sind zu SEQ ID NO: 3. Bevorzugt ist eine Homologie von mindestens 80 % oder 90 %. Besonders bevorzugt ist eine Homologie von mindestens 95 %.

15

Das Photoprotein mtClytin eignet sich als Reportergen für zelluläre Systeme speziell für Rezeptoren, für Ionenkanäle, für Transporter, für Transkriptionsfaktoren oder für induzierbare Systeme.

20

Das Signalpeptid von mtClytin eignet sich auch als Fusion mit Reportergenen als fusionierte Reportergen für zelluläre Systeme speziell für Rezeptoren, für Ionenkanäle, für Transporter, für Transkriptionsfaktoren oder für induzierbare Systeme.

25

Das Photoprotein mtClytin eignet sich auch als Reportergen durch Markierung, Identifizierung und Charakterisierung von Zellorganellen speziell für Mitochondrien.

30

Das Signalpeptid von mtClytin eignet sich auch zur Fusion mit Peptiden oder Proteinen zur Translokation in Zellorganellen speziell Mitochondrien.

Das Photoprotein von mtClytin eignet sich auch als Reportergen zur Bestimmung von Parametern innerhalb und außerhalb von Zellorganellen, speziell von Mitochondrien, speziell von Kalziumkonzentrationen.

5

Das Signalpeptid von mtClytin eignet sich als Fusionspeptid auch als Reportergen zur Bestimmung von Parametern innerhalb und außerhalb von Zellorganellen, speziell von Mitochondrien, speziell von Kalziumkonzentrationen.

10

Das Photoprotein mtClytin eignet sich als Reportergen in bakteriellen und eukaryotischen Systemen speziell in Säugerzellen, in Bakterien, in Hefen, in Bakulo, in Pflanzen.

15

Das Photoprotein mtClytin eignet sich als Reportergen für zelluläre Systeme in Kombination mit biolumineszenten oder chemolumineszenten Systemen, speziell Systemen mit Luziferasen, mit Oxygenasen, mit Phosphatasen.

20

Das Signalpeptid von mtClytin eignet sich als Fusionspeptid auch als Reportergen für zelluläre Systeme in Kombination mit biolumineszenten oder chemolumineszenten Systemen, speziell Systemen mit Luziferasen, mit Oxygenasen, mit Phosphatasen.

25

Das Photoprotein mtClytin eignet sich als Fusionsprotein speziell für Rezeptoren, für Ionenkanäle, für Transporter, für Transkriptionsfaktoren, für Proteininasen, für Kininasen, für Phosphodiesterasen, für Hydrolasen, für Peptidasen, für Transferasen, für Membranproteine und für Glykoproteine.

30

Das Signalpeptid von mtClytin eignet sich als Fusionspeptid auch als Fusionsprotein speziell für Rezeptoren, für Ionenkanäle, für Transporter, für Transkriptionsfaktoren, für Proteininasen, für Kininasen, für Phosphodiesterasen, für Hydrolasen, für Peptidasen, für Transferasen, für Membranproteine und für Glykoproteine.

Das Photoprotein mtClytin eignet sich zur Immobilisierung speziell durch Antikörper, durch Biotin, durch magnetische oder magnetisierbare Träger.

5 Das Photoprotein mtClytin eignet sich als Protein für Systeme des Energietransfers speziell der FRET- (Fluorescence Resonance Energy Transfer), BRET- (Bioluminescence Resonance Energy Transfer), FET (field effect transistors), FP (fluorescence polarization), HTRF (Homogeneous time-resolved fluorescence) Systemen.

10 Das Photoprotein mtClytin eignet sich als Markierung von Substraten oder Liganden speziell für Proteasen, für Kinasen, für Transferasen.

15 Das Photoprotein mtClytin eignet sich zur Expression in bakteriellen Systemen speziell zur Titerbestimmung, als Substrat für biochemische Systeme speziell für Proteinasen und Kinasen.

Das Photoprotein mtClytin eignet sich als Marker speziell gekoppelt an Antikörper, gekoppelt an Enzyme, gekoppelt an Rezeptoren, gekoppelt an Ionenkanäle und andere Proteine.

20 Das Signalpeptid von mtClytin eignet sich als Fusionspeptid auch als Marker speziell gekoppelt an Antikörper, gekoppelt an Enzyme, gekoppelt an Rezeptoren, gekoppelt an Ionenkanäle und andere Proteine.

25 Das Photoprotein mtClytin eignet sich als Reportergen bei der pharmakologischen Wirkstoffsuche speziell im HTS (High Throughput Screening).

Das Signalpeptid von mtClytin eignet auch als Reportergen bei der pharmakologischen Wirkstoffsuche speziell im HTS (High Throughput Screening).

Das Photoprotein mtClytin eignet sich als Komponente von Detektionssystemen speziell für ELISA (enzyme-linked immunosorbent assay), für Immunohistochemie, für Western-Blot, für die konfokale Mikroskopie.

5 Das Photoprotein mtClytin eignet sich als Marker für die Analyse von Wechselwirkungen speziell für Protein-Protein-Wechselwirkungen, für DNA-Protein-Wechselwirkungen, für DNA-RNA-Wechselwirkungen, für RNA-RNA-Wechselwirkungen, für RNA-Protein-Wechselwirkungen (DNA: deoxyribonucleic acid; RNA: ribonucleic acid; ).

10

Das Photoprotein mtClytin eignet sich als Marker oder Fusionsprotein für die Expression in transgenen Organismen speziell in Mäusen, in Ratten, in Hamstern und anderen Säugetieren, in Primaten, in Fischen, in Würmern, in Pflanzen.

15

Das Signalpeptid von mtClytin eignet sich als Fusionspeptid auch als Marker oder Fusionsprotein für die Expression in transgenen Organismen speziell in Mäusen, in Ratten, in Hamstern und anderen Säugetieren, in Primaten, in Fischen, in Würmern, in Pflanzen.

20

Das Photoprotein mtClytin eignet sich als Marker oder Fusionsprotein zur Analyse der Embryonalentwicklung.

Das Photoprotein mtClytin eignet sich als Marker über einen Kopplungsvermittler speziell über Biotin, über NHS (N-hydroxysulfosuccimide), über CN-Br.

25

Das Photoprotein mtClytin eignet sich als Reporter gekoppelt an Nukleinsäuren speziell an DNA, an RNA.

30

Das Photoprotein mtClytin eignet sich als Reporter gekoppelt an Proteine oder Peptide.

Das Signalpeptid von mtClytin eignet sich als Fusionspeptid auch als Reporter gekoppelt an Proteine oder Peptide.

Das Photoprotein mtClytin eignet sich als Reporter zur Messung von intra- oder

5 extrazellulären Calciumkonzentrationen.

Das Photoprotein mtClytin eignet sich zur Charakterisierung von Signalkaskaden in zellulären Systemen.

10 Das an Nukleinsäuren oder Peptiden gekoppelte Photoprotein mtClytin eignet sich als Sonde speziell für Northern-Blots, für Southern-Blots, für Western-Blots, für ELISA, für Nukleinsäuresequenzierungen, für Proteinanalysen, Chip-Analysen.

15 Das Photoprotein mtClytin eignet sich zur Markierung von pharmakologischen Formulierungen speziell von infektiösen Agentien, von Antikörpern, von „small molecules“.

Das Photoprotein mtClytin eignet sich für geologische Untersuchungen speziell für Meeres-, Grundwasser- und Flussströmungen.

20 Das Photoprotein mtClytin eignet sich zur Expression in Expressionssystemen speziell in in-vitro Translationssystemen, in bakteriellen Systemen, in Hefe Systemen, in Bakulo Systemen, in viralen Systemen, in eukaryotischen Systemen.

25 Das Signalpeptid von mtClytin eignet sich als Fusionspeptid auch zur Expression in Expressionssystemen speziell in in-vitro Translationssystemen, in bakteriellen Systemen, in Hefe Systemen, in Bakulo Systemen, in viralen Systemen, in eukaryotischen Systemen.

Das Photoprotein mtClytin eignet sich zur Visualisierung von Geweben oder Zellen bei chirurgischen Eingriffen speziell bei invasiven, bei nicht-invasiven, bei minimal-invasiven.

5 Das Photoprotein mtClytin eignet sich auch zur Markierung von Tumorgeweben und anderen phänotypisch veränderten Geweben speziell bei der histologischen Untersuchung, bei operativen Eingriffen.

Die Erfindung betrifft auch die Reinigung des Photoprotein mtClytin speziell als wildtyp Protein, als Fusionsprotein, als mutagenisiertes Protein.

Die Erfindung betrifft auch die Reinigung des Signalpeptides von mtClytin speziell als wildtyp Protein, als Fusionsprotein, als mutagenisiertes Protein.

15 Die Erfindung betrifft auch die Verwendung des Photoprotein mtClytin auf dem Gebiet der Kosmetik speziell von Badezusätzen, von Lotionen, von Seifen, von Körperfarben, von Zahnpasta, von Körperpudern.

Die Erfindung betrifft auch die Verwendung des Photoprotein mtClytin zur Färbung speziell von Nahrungsmitteln, von Badezusätzen, von Tinte, von Textilien, von Kunststoffen.

25 Die Erfindung betrifft auch die Verwendung des Photoprotein mtClytin zur Färbung von Papier speziell von Grußkarten, von Papierprodukten, von Tapeten, von Bastelartikeln.

Die Erfindung betrifft auch die Verwendung des Photoprotein mtClytin zur Färbung von Flüssigkeiten speziell für Wasserpistolen, für Springbrunnen, für Getränke, für Eis.

Die Erfindung betrifft auch die Verwendung des Photoprotein mtClytin zur Herstellung von Spielwaren speziell von Fingerfarbe, von Schminke.

5 Die Erfindung betrifft Nukleinsäuremoleküle, die das Polypeptid offenbart durch SEQ ID NO: 2 kodieren.

Die Erfindung betrifft Nukleinsäuremoleküle, die das Polypeptid offenbart durch SEQ ID NO: 3 kodieren.

10 Die Erfindung betrifft Nukleinsäuremoleküle, die das Polypeptid offenbart durch SEQ ID NO: 6 kodieren.

Die Erfindung betrifft das Polypeptid mit der Aminosäuresequenz, die in SEQ ID NO: 2 offenbart ist.

15 Die Erfindung betrifft das Polypeptid mit der Aminosäuresequenz, die in SEQ ID NO: 3 offenbart ist.

20 Die Erfindung betrifft das Polypeptid mit der Aminosäuresequenz, die in SEQ ID NO: 6 offenbart ist.

Die Erfindung bezieht sich des weiteren auf Nukleinsäuremoleküle, ausgewählt aus der Gruppe bestehend aus

25      a)    Nukleinsäuremolekülen, die ein Polypeptid kodieren, welches die Aminosäuresequenz offenbart durch SEQ ID NO: 2 beinhaltet;

          b)    Nukleinsäuremolekülen, welche die durch SEQ ID NO: 1 dargestellte Sequenz enthalten;

30

c) Nukleinsäuremolekülen, deren komplementärer Strang mit einem Nukleinsäuremolekül aus a) oder b) unter stringenten Bedingungen hybridisiert und welche ein Polypeptid kodieren, das die biologische Funktion eines Photoproteins aufweist;

5

Eine stringente Hybridisierung von Nukleinsäuremolekülen kann zum Beispiel in einer wässrigen Lösung, die 0,2 x SSC (1x standard saline-citrate = 150 mM NaCl, 15 mM Trinatriumcitrat) enthält, bei 68°C durchgeführt werden (Sambrook et al., 1989).

10

d) Nukleinsäuremolekülen, welche sich auf Grund der Degenerierung des genetischen Kodes von den unter c) genannten unterscheiden;

15

e) Nukleinsäuremolekülen, welche eine Sequenzhomologie von mindestens 95 % zu SEQ ID NO: 1 zeigen, und deren Proteinprodukt die biologische Funktion eines Photoproteins aufweist; und

f) Nukleinsäuremolekülen, welche eine Sequenzhomologie von mindestens 65 % zu SEQ ID NO: 1 zeigen, und deren Proteinprodukt die biologische Funktion eines Photoproteins aufweist.

20

Die Erfindung betrifft auch Nukleinsäuremoleküle, die eine Sequenzhomologie von mindestens 95 %, 90 %, 85 %, 80 %, 75 %, 70 %, 65 % oder 60 % zu SEQ ID NO: 1 oder SEQ ID NO: 5 aufweisen und für ein Polypeptid kodieren, welches die Eigenschaften eines Photoproteins besitzt.

25

Die Erfindung betrifft auch Nukleinsäuremoleküle, die eine Sequenzhomologie von mindestens 95 %, 90 %, 85 %, 80 %, 75 %, 70 %, 65 % oder 60 % zu SEQ ID NO: 4 aufweisen und für ein Polypeptid kodieren, welches die Eigenschaften eines Signal- bzw. Leaderpeptides besitzt.

30

Die Erfindung betrifft die oben genannten Nukleinsäuremoleküle, bei denen die Sequenz einen funktionalen Promotor 5' zu der das Photoprotein kodierenden Sequenz bzw. der das Leader- oder Siganlsequenz kodierenden Sequenz enthält.

5 Die Erfindung betrifft auch Nukleinsäuremoleküle wie vorhergehend beschrieben, die Bestandteil von rekombinanten DNA oder RNA Vektoren sind.

Die Erfindung betrifft Organismen, die einen solchen Vektor enthalten.

10 Die Erfindung bezieht sich auf Oligonukleotide mit mehr als 10 aufeinanderfolgenden Nukleotiden, die identisch oder komplementär zur DNA oder RNA Sequenz der mtClytin Moleküle oder der weiteren erfindungsgemäßen Molekülen sind.

15 Die Erfindung betrifft Photoproteine, die durch die vorhergehend beschriebenen Nukleotidsequenzen kodiert sind.

Die Erfindung bezieht sich auf Verfahren zur Expression der erfindungsgemäßen Photoprotein Polypeptide in Bakterien, eukaryontischen Zellen oder in *in vitro* Expressionssystemen.

20 Die Erfindung betrifft auch Verfahren zur Aufreinigung/Isolierung eines erfindungsgemäßen Photoprotein Polypeptides.

25 Die Erfindung bezieht sich auf Peptide mit mehr als 5 aufeinanderfolgenden Aminosäuren, die immunologisch durch Antikörper gegen die erfindungsgemäßen Photoproteine erkannt werden.

30 Die Erfindung betrifft die Verwendung der erfindungsgemäßen, für Photoproteine kodierende Nukleinsäuren als Marker- oder Reportergene, insbesondere für die pharmakologische Wirkstoffsuche und Diagnostik.

Die Erfindung betrifft die Verwendung der erfindungsgemäßen Photoproteine bzw. eine erfindungsgemäße, für ein Photoprotein kodierende Nukleinsäure als Marker oder Reporter bzw. als Marker- oder Reportergen.

5 Die Erfindung betrifft die Verwendung des Photoproteins mtClytin (SEQ ID NO: 2) bzw. die Verwendung einer für das Photoprotein mtClytin kodierenden Nukleinsäure als Marker oder Reporter bzw. als Marker oder Reportergen insbesondere für die pharmakologische Wirkstoffsuche und Diagnostik.

10 Die Erfindung betrifft die Verwendung der in SEQ ID NO: 1 dargestellten Nukleinsäure als Marker- oder Reportergen, insbesondere für die pharmakologische Wirkstoffsuche und Diagnostik.

15 Die Erfindung betrifft die Verwendung des in SEQ ID NO: 6 dargestellten Peptides und der hierzu zugrundeliegenden Nukleinsäuresequenz SEQ ID NO: 5 als Marker- oder Reportergen, insbesondere für die pharmakologische Wirkstoffsuche und Diagnostik.

20 Gegenstand der Erfindung sind auch polyklonale oder monoklonale Antikörper, welche ein erfindungsgemäßes Polypeptid erkennen.

Die Erfindung betrifft auch monoklonale oder polyklonale Antikörper, die das Photoprotein mtClytin (SEQ ID NO: 2) bzw. das Photoprotein Clytin-2 (SEQ ID NO: 6) erkennen.

25 Die Erfindung betrifft auch monoklonale oder polyklonale Antikörper, die das Signalpeptide des Photoprotein mtClytin (SEQ ID NO: 3) erkennen.

Des weiteren betrifft die Erfindung ein Nukleinsäuremolekül, ausgewählt aus der 30 Gruppe bestehend aus

10

- a) Nukleinsäuremolekülen, die ein Polypeptid kodieren, welches die Aminosäuresequenz offenbart durch SEQ ID NO: 3 beinhaltet;
- b) Nukleinsäuremolekülen, welche die in SEQ ID NO: 4 dargestellte Sequenz beinhaltet;
- 5 c) Nukleinsäuremolekülen, deren komplementärer Strang mit einem Nukleinsäuremolekül aus a) oder b) unter stringenten Bedingungen hybridisiert und welche ein Peptid kodieren, das die biologische Funktion eines Signal- oder Leaderpeptides aufweist;
- d) Nukleinsäuremolekülen, welche sich auf Grund der Degenerierung des genetischen Kodes von den unter c) genannten unterscheiden;
- c) Nukleinsäuremolekülen, welche eine Sequenzhomologie von mindestens 95 % zu SEQ ID NO: 4 zeigen, und welche ein Peptid kodieren, das die biologische Funktion eines Signal- oder Leaderpeptides aufweist; und
- f) Nukleinsäuremolekülen, welche eine Sequenzhomologie von mindestens 65 % zu SEQ ID NO: 4 zeigen, und welche ein Peptid kodieren, das die biologische Funktion eines Signal- oder Leaderpeptides aufweist.

15

Ebenfalls Bestandteil der Erfindung ist ein Nukleinsäuremolekül, ausgewählt aus der Gruppe bestehend aus

20

- a) Nukleinsäuremolekülen, die ein Polypeptid kodieren, welches die Aminosäuresequenz offenbart durch SEQ ID NO: 6 beinhaltet;
- b) Nukleinsäuremolekülen, welche die in SEQ ID NO: 5 dargestellte Sequenz beinhaltet;
- 25 c) Nukleinsäuremolekülen, deren komplementärer Strang mit einem Nukleinsäuremolekül aus a) oder b) unter stringenten Bedingungen hybridisiert und welche ein Polypeptid kodieren, das die biologische Funktion eines Photoproteins aufweist;
- d) Nukleinsäuremolekülen, welche sich auf Grund der Degenerierung des genetischen Kodes von den unter c) genannten unterscheiden;

30

e) Nukleinsäuremolekülen, welche eine Sequenzhomologie von mindestens 95 % zu SEQ ID NO: 5 zeigen, und welche ein Polypeptid kodieren, das die biologische Funktion eines Photoproteins aufweist; und

f) Nukleinsäuremolekülen, welche eine Sequenzhomologie von mindestens 5 80 % zu SEQ ID NO: 5 zeigen, und welche ein Polypeptid kodieren, das die biologische Funktion eines Photoproteins aufweist.

Die Erfindung betrifft auch eine Nukleinsäure wie in den vorangehenden Absätzen beschrieben, welche einen funktionalen Promotor 5' zur kodierenden Sequenz enthält.

10

Die Erfindung beinhaltet rekombinante DNA oder RNA Vektoren, welche die vorangehend beschriebenen Nukleinsäuren enthalten.

15

Organismen, die einen wie vorangehend beschriebenen Vektor enthalten, sind ebenfalls erfindungsgemäß.

Die Erfindung bezieht sich auch auf Oligonukleotide mit mehr als 10 aufeinanderfolgenden Nukleotiden, die identisch oder komplementär zu einer Teilsequenz eines wie oben beschriebenen Nukleinsäuremoleküls sind.

20

Ein Polypeptid, das durch eine wie oben beschriebene Nukleinsäuresequenz kodiert ist, ist ebenfalls Teil der Erfindung.

25

Erfindungsgemäß ist auch ein Verfahren zur Expression der vorangehend genannten Polypeptide in Bakterien, viralen Zellen, Hefen oder eukaryontischen Zellen oder in *in vitro* Expressionssystemen.

30

Bestandteil der Erfindung ist ebenfalls ein Verfahren zur Aufreinigung/Isolierung eines erfindungsgemäßen Polypeptides.

Erfindungsgemäß sind ebenfalls Peptide mit mehr als 5 aufeinanderfolgenden Aminosäuren, die immunologisch durch Antikörper gegen das Photoprotein mtClytin erkannt werden.

5 Bestandteil der Erfindung sind weiterhin Peptide mit mehr als 5 aufeinanderfolgenden Aminosäuren, die immunologisch durch Antikörper gegen das Photoprotein Clytin-2 erkannt werden.

10 Ebenfalls Bestandteil der Erfindung sind Peptide mit mehr als 5 aufeinanderfolgenden Aminosäuren, die immunologisch durch Antikörper gegen das durch SEQ ID NO: 3 offenbare Signal- bzw. Leaderpeptid erkannt werden.

15 Auch erfundungsgemäß sind Peptide mit mehr als 5 aufeinanderfolgenden Aminosäuren, die immunologisch durch Antikörper gegen das Photoprotein offenbart durch SEQ ID NO:6 (Clytin-2) erkannt werden.

Die Erfindung betrifft die Verwendung einer erfundungsgemäßen Nukleinsäure als Marker- oder Reportergen.

20 Die Erfindung betrifft auch die Verwendung eines erfundungsgemäßen Photoproteins als Marker oder Reporter.

25 Des weiteren betrifft die Erfindung die Verwendung einer Nukleinsäure, welche die als SEQ ID NO: 4 dargestellte Sequenz, bzw. eine Sequenz mit 60 %iger, 65 %iger, 70 %iger, 75 %iger, 80 %iger, 85 %iger oder 90 %iger, vorzugsweise mit 95 %iger Sequenzidentität zu SEQ ID NO: 4, beinhaltet, als Signal- bzw. Leadersequenz.

30 Auch ist die Verwendung eines Peptides, welches die als SEQ ID NO: 3 dargestellte Sequenz, bzw. eine Sequenz mit 60 %iger, 65 %iger, 70 %iger, 75 %iger, 80 %iger, 85 %iger oder 90 %iger, vorzugsweise mit 95 %iger Sequenzidentität zu SEQ ID NO: 3 beinhaltet, als Signal- bzw. Leaderpeptid Bestandteil der Erfindung.

Ebenfalls Erfindungsgemäß ist die in den zwei vorangehenden Absätzen beschriebene Verwendung, um an das Signal- bzw. Leaderpeptid fusionierte Proteine in Zellorganellen zu transportieren.

5

Bestandteil der Erfindung ist auch die im vorangehenden Absatz beschriebene Verwendung, wobei es sich bei den Zellorganellen um Mitochondrien handelt.

10

Bestandteil der Erfindung ist auch die im vorletzten Absatz beschriebene Verwendung, wobei es sich bei den Zellorganellen um das endoplasmatische Retikulum (ER) handelt.

15

Des weiteren betrifft die Erfindung die Verwendung der als SEQ ID NO: 4 dargestellten Nukleinsäuresequenz als Signal- bzw. Leadersequenz.

20

Auch ist die Verwendung des als SEQ ID NO: 3 dargestellten Peptides, welches die dargestellte Sequenz beinhaltet, als Signal- bzw. Leaderpeptid Bestandteil der Erfindung.

25

Ebenfalls Erfindungsgemäß ist die in den zwei vorangehenden Absätzen beschriebene Verwendung, um ein an das Signal- bzw. Leaderpeptid fusioniertes Protein in Zellorganellen zu transportieren.

Bestandteil der Erfindung ist auch die im vorangehenden Absatz beschriebene Verwendung, wobei es sich bei den Zellorganellen um Mitochondrien handelt.

Bestandteil der Erfindung ist auch die im vorletzten Absatz beschriebene Verwendung, wobei es sich bei den Zellorganellen um das endoplasmatische Retikulum (ER) handelt.

30

Die Verwendung der erfindungsgemäßen Polypeptide als Reporterproteine in der pharmakologischen Wirkstoffsuche ist ebenfalls Bestandteil der Erfindung.

Schließlich betrifft die Erfindung auch die Verwendung der erfindungsgemäßen

5 Nukleinsäuren als Reportergene in der pharmakologischen Wirkstoffsuche.

### **Expression der erfindungsgemäßen Photoproteine**

Als Expression bezeichnet man die Produktion eines Moleküls, das nach dem Einbringen des Gens in eine geeignete Wirtszelle die Transkription und Translation des in einen Expressionsvektor klonierte Fremdgen erlaubt. Expressionsvektoren enthalten die für die Expression von Genen in Zellen von Prokaryonten oder Eukaryonten erforderlichen Kontrollsingale.

15 Expressionsvektoren können prinzipiell auf zwei verschiedene Weisen konstruiert werden. Bei den sogenannten Transkriptionsfusionen wird das vom einklonierten Fremdgen codierte Protein als authentisches, biologisch aktives Protein synthetisiert. Der Expressionsvektor trägt hierzu alle zur Expression benötigten 5'- und 3'-Kontrollsingale.

20 Bei den sogenannten Translationsfusionen wird das vom einklonierten Fremdgen codierte Protein als Hybridprotein zusammen mit einem anderen Protein exprimiert, das sich leicht nachweisen lässt. Die zur Expression benötigten 5'- und 3'-Kontrollsingale inklusive des Startcodons und eventuell ein Teil der für die N-terminalen Bereiche des zu bildenden Hybridproteins codierenden Sequenzen stammen vom Vektor. Der zusätzliche eingeführte Proteinteil stabilisiert nicht nur in vielen Fällen das vom einklonierten Fremdgen codierte Protein vor dem Abbau durch zelluläre Proteasen, sondern lässt sich auch zum Nachweis und zur Isolierung des gebildeten Hybridproteins einsetzen. Die Expression kann sowohl transient, als auch stabil erfolgen. Als Wirtsorganismen eignen sich sowohl Bakterien, Hefen, Viren als auch eukaryotische Systeme.

### **Reinigung der erfindungsgemäßen Photoproteine**

Die Isolierung von Proteinen (auch nach Überexpression) wird häufig als Proteinreinigung bezeichnet. Zur Proteinreinigung steht eine Vielzahl an etablierten Methoden und Verfahren zur Verfügung.

Die Fest-Flüssig-Trennung ist eine Grundoperation bei Proteinisolierungen. Sowohl bei der Abtrennung der Zellen vom Kulturmedium als auch bei der Klärung des Rohextraktes nach Zellaufschluss und Entfernung der Zelltrümmer, bei der Abtrennung von Niederschlägen nach Fällungen usw. ist der Verfahrensschritt erforderlich. Er erfolgt durch Zentrifugation und Filtration.

Durch Gewinnung intrazellulärer Proteine muss die Zellwand zerstört bzw. durchlässig gemacht werden. Je nach Maßstab und Organismus werden dazu Hochdruckhomogenisatoren oder Rührwerkskugel- bzw. Glasperlenmühlen eingesetzt. Im Labormaßstab kommen u.a. mechanische Zellintegrationen und Ultraschallbehandlung zum Einsatz.

Sowohl für extrazelluläre als auch intrazelluläre Proteine (nach Zellaufschluss) sind verschiedene Fällungsverfahren mit Salzen (insbesondere Ammoniumsulfat) oder organischen Lösungsmitteln (Alkohole, Aceton) eine schnelle und effiziente Methode zur Konzentration von Proteinen. Bei der Reinigung intrazellulärer Proteine ist die Entfernung der löslichen Nukleinsäuren erstrebenswert (Fällung z.B. mit Streptomycin- oder Protaminsulfat). Bei der Gewinnung extrazellulärer Proteine werden häufig Träger (z.B. Stärke, Kieselgur) vor Zugabe der Fällungsmittel zugesetzt, um besser handhabbare Niederschläge zu erhalten.

Für die Feinreinigung stehen zahlreiche chromatographische und Verteilungsverfahren zur Verfügung (Absorptions- und Ionenaustauschchromatographie, Gelfiltration, Affinitätschromatographie, Elektrophoresen). Eine Säulenchromatographie wird

auch im technischen Maßstab angewandt. Für den Labormaßstab ist vor allem die Affinitätschromatographie von Bedeutung, die Reinigungsfaktoren bis zu mehreren 100 pro Schritt ermöglicht.

5      Extrazelluläre Proteine fallen in relativ verdünnten Lösungen an. Sie müssen ebenso wie extrazelluläre Proteine vor ihrer weiteren Verwendung konzentriert werden. Neben den schon erwähnten Verfahren hat sich – auch im industriellen Maßstab – die Ultrafiltration bewährt.

10     Anorganische Salze als Begleitstoffe von Proteinen sind für spezifische Anwendungen häufig unerwünscht. Sie können u.a. durch Gelfiltration, Dialyse und Diafiltration entfernt werden.

15     Zahlreiche Proteine kommen als Trockenpräparate zum Einsatz. Als Trocknungsverfahren sind die Vakuum-, Gefrier- und Sprühtrocknung von Bedeutung.

### **Nukleotid- und Aminosäuresequenzen**

Das Photoprotein mtClytin wird durch die folgende Nukleotidsequenz kodiert (SEQ ID NO: 1):

5`-

gacagataaaaaattcactccttagattatttagtgaataagagaaaaaggataa  
gaaatcaagatgcaaaggttacaatcgcttccatgtcggcttacgtca  
agatcaagattgcaacgcacggcaaatttcacaccagcatactttggctacagat  
5 tcaaaaatacgcggtaactcgatcctgatttgcaaatccaaaatggatcaacaga  
cacaatttatgttcaactttggacataaacggtaaggggaaaatcacatttagat  
gaaatcgctccaaagcttcagacgacatttgctaaactggatgcaacaccagaa  
cagaccaaacgtcaccaggatgctttgaagcctttcaagaaaatggcatggat  
tatggtaaagaagtgcattcccagaatttattaaggatggaaagagttggccgaa  
10 cacgacttggactctggctcaaaaacaaaagtacattgatccgtgaatggggagat  
gctgtttcgacatttcgacaaagacgcaagtggctcaatcagtttagacgaatgg  
aaggcttacggacgaatcttggaatctgtccatcagacgaagacgctgagaagacg  
ttcaaacattgtgatttggacaacagtggcaacttgcattgtgatgagatgaccagg  
caacatttaggcttctggtacacattggatccaacttgcattgtgatggctttatggcaat  
15 ttgttccctaagaagcgttcagttaaaacgctaaacattgttcagttgtaaaatt  
atattcatttcatttcgtaaaatttagtatttataaatttgtatcataaattgtatc  
catgtttagactaaataagactcgcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa  
-3`.

20 Daraus ergibt sich eine Aminosäuresequenz von (SEQ ID NO: 2):

MQRFTNRLLSMSALRARSRLQRTANFHTSILLATDSKYAVKLDPDFANPKWI  
NRHKFMFNFLDINGKGKITLDEIVSKASDDICAKLDATPEQTKRHQDAVEAFF  
KKMGMDYGKEVAFPEFIKGWEELAEHDLELWSQNKSILREWGDVFDFD  
25 KDASGSISLDEWKAYGRISGICPSDEDAEKTFKHCDLDNSGKLDVDEMTRQH  
LGFWYTLDPSTDGLYGNFVP

Das putative Signalpeptide des Photoprotein mtClytin besitzt folgende Sequenz  
(SEQ ID NO: 3):

30 MQRFTNRLLSMSALRA

und weist folgende Nukleinsäuresequenz auf:

5`- atgcaaaggttacaaatcgcttcttccatgtcggcttacgtaca - 3`  
(SEQ ID NO 4)

5 Das Photoprotein Clytin-2 wird durch die folgende Nukleotidsequenz kodiert (SEQ ID NO: 5):

5`-

GATCTCAGCTCAACTTGCATAAGTATCAGATCAAATTGCAACTCAA  
GCAAATCATCAACTTCATCATAATGACTGACACTGCTCAAAATACGCTG  
TCAAACCTCAAGACCAACTTGAAGATCCAAATGGGTCAACAGACACAA  
ATTATGTTCAACTTTGGACATTAACGGCAACGGAAAAATCACTTG  
ATGAAATTGTCTCCAAAGCTCGGATGACATTGCGCCAATTGGAGCT  
ACACCCAGCTCAAACCCAACGTCATCAGGAAGCTGTTGAAGCTTCTCAA  
GAAGATTGGTTGGATTATGGCAAAGAAGTCGAATTCCCAGCTTCGTTA  
15 ACGGATGGAAAGAACTGCCAACATGACTTGAACACTTGGCCAAAA  
CAAGAAATCTTGATCCGCAATTGGGAGAAGCTGTATTGACATTTCG  
ACAAGGACGGAAGTGGCTCAATCAGTTGGACGAATGGAAAACATACGG  
AGGAATCTCTGGAATCTGTCATCAGACGAAGACGCTGAAAAGACCTC  
AAACATTGCGATTGGACAACAGTGGCAAACATTGATGTTGACGGAGATGA  
20 CCAGACAAACATTGGGATTCTGGTACACCTGGACCCATAACGCTGATGGT  
CTTATGGCAACTTGTCCCTAAAAACTTTTGCTGTAAATTCTTAC  
GGGTTATTTTCATAATTGTCATTGATTTAACATTGTTCGGAAAATG  
AAAAATATTCTTATTCAAAAAAAAAAAAAAAAAAAAAA - 3`

25 daraus ergibt sich eine Aminosäuresequenz von (SEQ ID NO: 6):

MTDTASKYAVKLKTNFEDPKWVNRHKFMNFLDINGNGKITLDEIVSKASD  
DICAKLGATPAQTQRHQEAFFKKIGLDYGKEVEFPAFVNGWKEAKHD  
LKLWSQNKKSLIRNWGEAVFDIFDKDGSGSISLDEWKTYYGGISGICPSDEDAE  
30 KTFKHCDLDNSGKLDVDEMTRQHLGFWYTLDPNADGLYGNFVP

Diese Sequenzen finden sich im Sequenzlisting wieder.

**Kurze Beschreibung der Figuren**

5      Figur 1:            Die Figur 1 zeigt die Plasmidkarte des Vektors pTriplex2-mtClytin.

Figur 2:            Die Figur 2 zeigt die Plasmidkarte des Vektors pcDNA3-mtClytin.

Figur 3:            Die Figur 3 zeigt das Ergebnis der bakteriellen Expression von mtClytin, sowie die Biolumineszenzaktivität von mtClytin nach bakterieller Expression. (Y = RLU : relative light units; X = Verdünnung; schwarze Balken = mtClytin; graue Balken = Kontrolllysat).

Figur 4:            Die Figur 4 zeigt das Ergebnis der eukaryotische Expression von mtClytin, sowie die Biolumineszenzaktivität von mtClytin nach Expression in CHO Zellen. (Y = RLU : relative light units; X = ATP (logarithmische Darstellung in mol/l)).

Figur 5:            Die Fig. 5 zeigt die kinetische Analyse der Biolumineszenz von mtClytin. (Y = RLU : relative light units; X = Zeit [Sekunden]).

Figur 6:            Die Fig. 6 zeigt die kinetische Analyse der Biolumineszenz von Obelin. (Y = RLU : relative light units; X = Zeit [Sekunden]).

Figur 7 :            Die Figur 7 zeigt das Alignent von Clytin und mtCyltin auf Aminosäureebene.

10     Figur 8 :            Die Figur 8 zeigt das Alignent von Clytin und mtCyltin auf Nukleinsäureebene.

Figur 9 :            Die Figur 9 zeigt das Alignent von Clytin, mtCyltin und Clytin-2 auf Aminosäureebene.

**Beispiele**

**Beispiel 1**

5 Als Vektor zur Herstellung des im folgenden dargestellten Konstruktes wurde das Plasmid pTriplEx2 der Firma Clontech verwendet. Das Derivat des Vektors wurde als pTriplEx2-mtClytin bezeichnet. Der Vektor pTriplEx2-mtClytin wurde zur Expression von mtClytin in bakteriellen Systemen verwendet.

10 Die Figur 1 zeigt die Plasmidkarte des Vektors pTriplEX2-mtClytin .

**Beispiel 2**

15 Als Vektor zur Herstellung des im folgenden dargestellten Konstruktes wurde das Plasmid pcDNA3.1(+) der Firma Clontech verwendet. Das Derivat des Vektors wurde als pcDNA3-mtClytin bezeichnet. Der Vektor pcDNA3-mtClytin wurde zur Expression von mtClytin in eukaryotischen Systemen verwendet.

Die Figur 2 zeigt die Plasmidkarte des Vektors pcDNA3-mtClytin .

20

**Beispiel 3**

**Bakterielle Expression**

25 Die bakterielle Expression erfolgte im E. coli Stamm BL21(DE3) durch Transformation der Bakterien mit den Expressionsplasmiden pTriplEX2-mtClytin und pTriplEX2. Die transformierten Bakterien wurden in LB-Medium bei 37°C für 3 Stunden inkubiert und die Expression für 4 Stunden durch Zugabe von IPTG bis zu einer Endkonzentration von 1 mM induziert. Die induzierten Bakterien wurden durch 30 Zentrifugation geerntet, in 50 mM Tris/HCl (pH 9,0) + 5 mM EDTA resuspendiert und durch Ultraschall aufgeschlossen. Das Lysat wurde anschließend für 15 Minuten

bei 13000 Umdrehungen pro Minute (16000 rcf) zentrifugiert und der Überstand abgenommen. Der Überstand (Verdünnungen 1:5; 1:10; 1:20 und 1:50 mit Tris/HCl pH 9,0)) wurde 3 Stunden mit Coelenterazin (10E-07 M Coelenterazine in Tris/HCl pH 9,0) im dunkeln inkubiert. Direkt nach der Zugabe von 5 mM Calciumchlorid wurde die Biolumineszenz im Luminometer gemessen. Die Integrationszeit der Messung betrug 40 Sekunden.

Die Figur 3 zeigt die Ergebnisse der Biolumineszenzmessung von mtClytin in Bakterien.

10

#### Beispiel 4

##### **Eukaryotische Expression**

15 Die konstitutive eukaryotische Expression erfolgte in CHO-Zellen durch Transfektion der Zellen mit den Expressionsplasmiden pcDNA3-mtClytin und pcDNA3.1(+) in transienten Experimenten. Hierzu wurden 10000 Zellen pro Loch in DMEM-F12 Medium auf 96 Loch Mikrotiterplatten plattiert und über Nacht bei 37°C inkubiert. Die Transfektion erfolgte mit Hilfe des Fugene 6 Kits (Roche) nach Herstellerangaben. Die transfizierten Zellen wurden über Nacht bei 37°C in DMEM-F12 Medium inkubiert. Anschließend wurde das Medium entfernt und durch 50 µl Coelenterazin (10E-07 M Coelenterazine in PBS) ersetzt. Die Zellen wurden für 3 Stunden bei 37°C inkubiert und anschließend ATP (Adenosintriphosphat) bis zu einer Finalkonzentration von 1 µM zugegeben. Die Messung wurde direkt nach der Zugabe im Luminometer gestartet. Die Integrationszeit betrug 1 Sekunde, bei einer Gesamtmessdauer von 60 Sekunden.

20  
25  
30 Die Figur 4 zeigt die Ergebnisse der Biolumineszenzmessung von mtClytin in CHO Zellen.

**Beispiel 5**

**BLAST**

5 Ergebnis einer BLAST-Analyse von mtClytin auf der Aminosäureebene.

>emb|CAD87655.1| unnamed protein product [Clytia gregaria], Length = 198, Score = 368 bits (945), Expect = e-101, Identities = 171/195 (87%), Positives = 182/195 (92%)

10 >sp|Q08121|CLYT\_CLYGR Clytin precursor (Phialidin), pir||S28860  
clytin - hydromedusa (Clytia gregarium), emb|CAA49754.1| clytin  
[Clytia gregaria], gb|AAA28293.1| apoclytin, Length = 198, Score =  
368 bits (945), Expect = e-101, Identities = 171/195 (87%),  
15 Positives = 182/195 (92%)

>emb|CAD87658.1| unnamed protein product [synthetic construct], Length = 198, Score = 367 bits (943), Expect = e-101, Identities = 170/195 (87%), Positives = 182/195 (93%)

20 >sp|Q27709|OBL\_OBEO Obelin precursor (OBL), pdb|1EL4|A Chain A,  
Structure Of The Calcium-Regulated Photoprotein Obelin, Determined  
By Sulfur Sas, gb|AAA67708.1| unnamed protein product, Length = 195,  
Score = 327 bits (837), Expect = 1e-88, Identities = 150/193 (77%),  
25 Positives = 170/193 (87%)

>emb|CAD87674.1| unnamed protein product [synthetic construct], Length = 195, Score = 326 bits (835), Expect = 2e-88, Identities = 149/193 (77%), Positives = 170/193 (87%)

30 >emb|CAD87672.1| unnamed protein product [synthetic construct], Length = 195, Score = 325 bits (834), Expect = 3e-88, Identities = 149/193 (77%), positives = 170/193 (87%)

35 >emb|CAD87673.1| unnamed protein product [synthetic construct], Length = 195, Score = 325 bits (833), Expect = 4e-88, Identities = 149/193 (77%), Positives = 170/193 (87%)

- 30 -

>pdb|1JF0|A Chain A, The Crystal Structure Of Obelin From Obelia Geniculata At 1.82 Å Resolution, gb|AAL86372.1|AF394688\_1 apoobelin [Obelia geniculata], Length = 195, Score = 325 bits (833), Expect = 4e-88, Identities = 149/193 (77%), Positives = 168/193  
5 (86%)

**Beispiel 6**

**BLAST**

10

Ergebnis einer BLAST-Analyse von mtClytin auf Nukleinsäureebene :

>emb|AX702125.1| Sequence 23 from Patent WO03006497, Length = 597, Score = 669 bits (348), Expect = 0.0, Identities = 504/582 (86%)

15

>emb|AX702119.1| Sequence 17 from Patent WO03006497, Length = 597, Score = 669 bits (348), Expect = 0.0, Identities = 504/582 (86%)

20

>emb|X70221.1|CGCLYTIN C.gregaria mRNA for clytin, Length = 747, Score = 669 bits (348), Expect = 0.0, Identities = 504/582 (86%)

>gb|L13247.1|CY1APOCLYT Clytia gregarium apoclytin mRNA, complete cds, Length = 747, Score = 669 bits (348), Expect = 0.0, Identities = 504/582 (86%)

25

>emb|AX702187.1| Sequence 85 from Patent WO03006497, Length = 597, Score = 664 bits (345), Expect = 0.0, Identities = 503/582 (86%)

30

>emb|AX702185.1| Sequence 83 from Patent WO03006497, Length = 597, Score = 664 bits (345), Expect = 0.0, Identities = 503/582 (86%)

>emb|AX702183.1| Sequence 81 from Patent WO03006497, Length = 597, Score = 664 bits (345), Expect = 0.0, Identities = 503/582 (86%)

35

>emb|AX702181.1| Sequence 79 from Patent WO03006497, Length = 597, Score = 664 bits (345), Expect = 0.0, Identities = 503/582 (86%)

>emb|AX702179.1| Sequence 77 from Patent WO03006497, Length = 597, Score = 664 bits (345), Expect = 0.0, Identities = 503/582 (86%)

>emb|AX702131.1| Sequence 29 from Patent WO03006497, Length = 597,  
Score = 664 bits (345), Expect = 0.0, Identities = 503/582 (86%)

5 >emb|AX702129.1| Sequence 27 from Patent WO03006497, Length = 597,  
Score = 664 bits (345), Expect = 0.0, Identities = 503/582 (86%)

**Beispiel 7**

10 Die Figur 7 zeigt das Alignment von mtClytin mit Clytin (*Clytia gregaria*) auf  
Nukleinsäureebene.

**Beispiel 8**

15 Die Figur 8 zeigt das Alignment von mtClytin mit Clytin (*Clytia gregaria*) auf  
Aminosäureebene.

**Beispiel 9**

20 **Kinetische Analyse von mtClytin**

Zur kinetischen Analyse der Biolumineszenz von mtClytin, wurden CHO Zellen mit  
pcDNA3-mtClytin bzw. pcDNA-Obelin oder pcDNA3 (ohne integrierte cDNA)  
transient transfiziert. Die Transfektion und Messung erfolgte wie unter Beispiel 4  
beschrieben. Die Messdaten wurden für einen Zeitraum von 60 Sekunden mit einer  
Integrationszeit von 1 Sekunde erhoben.

Die Figuren 5 und 6 zeigen die Ergebnisse der kinetischen Analyse von mtClytin  
und Obelin.

**Beispiel 10**

**MITOPROT-Analyse**

Zur Analyse des Signalpeptides von mtClytin wurde das Computerprogramm  
5 MITOPROT verwendet (Claros et al., 1996). Folgende Photoproteine wurden analy-  
siert: Obelin (Q27709), Aequorin (P07164), Clytin (Q08121) und mtClytin (SEQ ID  
NO. 2).

Ergebnisse der Analysen:

Obelin:

5 Sequence name: OBELIN

Input sequence length : 195 aa

---

VALUES OF COMPUTED PARAMETERS

10 Net charge of query sequence : -11  
Analysed region : 11  
Number of basic residues in targeting sequence : 3  
Number of acidic residues in targeting sequence : 0  
Cleavagesite : not predictable  
15 Cleaved sequence : -

---

HYDROPHOBIC SCALE USED

|    |            | GES    | KD     | GVH1   | ECS   |
|----|------------|--------|--------|--------|-------|
| 20 | H17 :      | -0.624 | 0.259  | -0.308 | 0.295 |
|    | MesoH :    | -1.573 | -0.241 | -0.642 | 0.060 |
|    | MuHd_075 : | 14.019 | 3.641  | 4.408  | 1.523 |
|    | MuHd_095 : | 7.994  | 7.898  | 3.285  | 1.838 |
| 25 | MuHd_100 : | 13.734 | 9.836  | 5.597  | 2.742 |
|    | MuHd_105 : | 21.195 | 11.755 | 7.339  | 4.117 |
|    | Hmax_075 : | -9.450 | -2.800 | -4.008 | 1.132 |
|    | Hmax_095 : | -0.963 | 1.837  | -1.971 | 1.103 |
|    | Hmax_100 : | 0.400  | 1.300  | -1.942 | 2.240 |
| 30 | Hmax_105 : | 10.617 | 6.067  | 0.733  | 3.127 |

---

PROBABILITY

- 34 -

of export to mitochondria: 0.1479

Aequorin :

5 Sequence name: AEQUORIN

Input sequence length : 196 aa

-----  
VALUES OF COMPUTED PARAMETERS

10

Net charge of query sequence : -13

Analysed region : 3

Number of basic residues in targeting sequence : 0

Number of acidic residues in targeting sequence : 0

15 Cleavage site : not predictable

Cleaved sequence : -

-----  
HYDROPHOBIC SCALE USED

20

|  | GES | KD | GVH1 | ECS |
|--|-----|----|------|-----|
|--|-----|----|------|-----|

H17 : 0.006 0.794 -0.263 0.368

MesoH : -1.673 -0.382 -0.703 0.048

MuHd\_075 : 24.326 4.153 5.947 2.450

25 MuHd\_095 : 12.638 7.213 4.218 1.796

MuHd\_100 : 13.748 8.827 4.477 2.427

MuHd\_105 : 16.581 11.426 5.056 3.453

Hmax\_075 : 0.438 0.233 -2.490 1.692

Hmax\_095 : 0.525 -1.400 -2.394 0.674

30 Hmax\_100 : -0.100 -1.200 -2.292 1.550

Hmax\_105 : 0.500 -0.000 -2.164 1.540

-----  
PROBABILITY

- 35 -

of export to mitochondria: 0.0148

Clytin:

5

Sequence name: CLYTIN

Input sequence length : 198 aa

10

-----  
VALUES OF COMPUTED PARAMETERS

Net charge of query sequence : -9  
Analysed region : 32  
Number of basic residues in targeting sequence : 6  
15 Number of acidic residues in targeting sequence : 2  
Cleavage site : not predictable  
Cleaved sequence : -

-----

HYDROPHOBIC SCALE USED

20

|  |  | GES | KD | GVH1 | ECS |
|--|--|-----|----|------|-----|
|--|--|-----|----|------|-----|

H17 : -0.429 0.341 -0.313 0.313  
MesoH : -1.778 -0.307 -0.718 0.053  
25 MuHd\_075 : 32.928 17.509 7.351 5.708  
MuHd\_095 : 30.874 20.344 9.074 5.834  
MuHd\_100 : 36.596 22.666 10.051 6.762  
MuHd\_105 : 39.174 19.336 10.379 7.609  
Hmax\_075 : 4.900 7.087 -1.223 3.684  
30 Hmax\_095 : 13.600 10.100 1.251 4.390  
Hmax\_100 : 14.000 12.600 1.601 5.060  
Hmax\_105 : 6.650 13.067 -0.468 3.920

-----

PROBABILITY

- 36 -

of export to mitochondria: 0.2047

Clytin-2:

5

Sequence name: CLYTIN-2

Input sequence length : 198 aa

10

-----  
VALUES OF COMPUTED PARAMETERS

Net charge of query sequence : -7  
Analysed region : 16  
Number of basic residues in targeting sequence : 3  
15 Number of acidic residues in targeting sequence : 1  
Cleavage site : not predictable  
Cleaved sequence : -

-----

HYDROPHOBIC SCALE USED

20

|    |            | GES    | KD     | GVH1   | ECS   |
|----|------------|--------|--------|--------|-------|
|    | H17 :      | -0.288 | 0.341  | -0.213 | 0.313 |
|    | MesoH :    | -1.519 | -0.206 | -0.681 | 0.081 |
| 25 | MuHd_075 : | 32.594 | 15.092 | 8.192  | 4.075 |
|    | MuHd_095 : | 36.090 | 19.707 | 8.836  | 6.716 |
|    | MuHd_100 : | 38.617 | 20.269 | 9.682  | 6.851 |
|    | MuHd_105 : | 30.267 | 16.082 | 8.229  | 5.470 |
|    | Hmax_075 : | 6.533  | 6.417  | -0.793 | 2.508 |
| 30 | Hmax_095 : | 13.600 | 10.100 | 1.251  | 4.390 |
|    | Hmax_100 : | 13.600 | 10.100 | 1.251  | 4.390 |
|    | Hmax_105 : | 13.417 | 10.150 | 1.612  | 3.862 |

-----

PROBABILITY

- 37 -

of export to mitochondria: 0.3974

mtClytin:

5

Sequence name: mtClytin

Input sequence length : 228 aa

10

-----  
VALUES OF COMPUTED PARAMETERS

Net charge of query sequence : -8

Analysed region : 34

Number of basic residues in targeting sequence : 6

15

Number of acidic residues in targeting sequence : 0

Cleavage site : 17

Cleaved sequence : MQRFTNRLLSMSALRA

20

-----  
HYDROPHOBIC SCALE USED

|  |       | GES      | KD     | GVH1   | ECS   |
|--|-------|----------|--------|--------|-------|
|  | H17   | : -0.135 | 0.453  | -0.343 | 0.309 |
|  | MesoH | : -1.623 | -0.215 | -0.701 | 0.073 |

25

|  |          |          |        |       |       |
|--|----------|----------|--------|-------|-------|
|  | MuHd_075 | : 33.394 | 19.322 | 8.634 | 7.593 |
|--|----------|----------|--------|-------|-------|

|  |          |          |        |       |       |
|--|----------|----------|--------|-------|-------|
|  | MuHd_095 | : 34.726 | 19.634 | 8.110 | 8.861 |
|--|----------|----------|--------|-------|-------|

|  |          |          |        |       |       |
|--|----------|----------|--------|-------|-------|
|  | MuHd_100 | : 32.825 | 16.596 | 7.376 | 7.520 |
|--|----------|----------|--------|-------|-------|

|  |          |          |        |       |       |
|--|----------|----------|--------|-------|-------|
|  | MuHd_105 | : 28.005 | 19.893 | 7.410 | 7.865 |
|--|----------|----------|--------|-------|-------|

|  |          |          |        |       |       |
|--|----------|----------|--------|-------|-------|
|  | Hmax_075 | : 16.683 | 17.733 | 2.851 | 5.763 |
|--|----------|----------|--------|-------|-------|

30

|  |          |          |        |       |       |
|--|----------|----------|--------|-------|-------|
|  | Hmax_095 | : 13.125 | 13.388 | 2.299 | 4.314 |
|--|----------|----------|--------|-------|-------|

|  |          |         |        |       |       |
|--|----------|---------|--------|-------|-------|
|  | Hmax_100 | : 8.300 | 11.500 | 1.845 | 3.830 |
|--|----------|---------|--------|-------|-------|

|  |          |         |       |        |       |
|--|----------|---------|-------|--------|-------|
|  | Hmax_105 | : 1.700 | 9.500 | -1.171 | 2.390 |
|--|----------|---------|-------|--------|-------|

-----  
PROBABILITY

of export to mitochondria: 0.9974

Die Wahrscheinlichkeit einer Translokation des analysierten Peptides in

5 Mitochondrien steigt mit der Annäherung des berechneten Faktors an 1.

Die Analyse der Proteinsequenzen von Obelin, Aequorin, Clytin, Clytin-2 und mtClytin hat ergeben, dass nur mtClytin die Merkmale eines Proteins aufweist, dass in Mitochondrien transportiert werden kann.

10

### Beispiel 11

Die Figur 9 zeigt das Alignment von mtClytin, Clytin (*Clytia gregaria*) und Clytin-type2 auf Aminosäureebene.

15

### Literatur / Patente

US 6,495,355

US 5,541,309

20 US 5,093,240

US-0908909

US 6,152,358

JP-0176125

GB-0024357

25 WO03006497

WO200168824

Alam J, Cook JL. Reporter genes: application to the study of mammalian gene transcription. *Anal Biochem*. 1990 Aug 1;188(2):245-54

Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schäffer, Jinghui

30 Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997); Gapped

BLAST and PSI-BLAST: a new generation of protein database search programs;  
*Nucleic Acids Res.* 25:3389-3402

**Chiesa A, Rapizzi E, Tosello V, Pinton P, de Virgilio M, Fogarty KE, Rizzuto R.** Recombinant aequorin and green fluorescent protein as valuable tools in the study of  
5 cell signalling. *Biochem J.* 2001 Apr 1;355(Pt 1):1-12.

**Claros, M.G., Vincens, P.** (1996); Computational method to predict  
mitochondrially imported proteins and their targeting sequences. *Eur. J. Biochem*  
241, 779-786.

**Cullen Bryan R., Malim Michael H.**, Secreted placental alkaline phosphatase as a  
eukaryotic reporter gene. *Methods in Enzymology*. 216:362ff

**Fagan TF, Ohmiya Y, Blinks JR, Inouye S, Tsuji FI.** Cloning, expression and  
sequence analysis of cDNA for the Ca(2+)-binding photoprotein, mitrocomin. *FEBS*  
*Lett.* 1993 Nov 1;333(3):301-5

**Hastings, J.W. and Morin, J.G.** (1969) Comparative biochemistry of calcium-  
activated photoproteins from the ctenophore, *Mnemiopsis* and the coelenterates  
*Aequorea*, *Obelia*, and *Pelagia*. *Biol. Bull.* 137, 402.

**Haddock SH, Rivers TJ, Robison BH.** Can coelenterates make coelenterazine?  
Dietary requirement for luciferin in cnidarian bioluminescence. *Proc Natl Acad Sci U*  
*SA* 2001 Sep 25;98(20):11148-51

**Inouye S, Tsuji FI.** (1994) Aequorea green fluorescent protein. Expression of the  
gene and fluorescence characteristics of the recombinant protein. *FEBS Lett* 1994  
Mar 21;341(2-3):277-80

**Inouye S, Tsuji FI.** Cloning and sequence analysis of cDNA for the Ca(2+)-  
activated photoprotein, clytin. *FEBS Lett.* 1993 Jan 11;315(3):343-6.

**Illarionov BA, Bondar VS, Illarionova VA, Vysotski ES.** Sequence of the cDNA  
encoding the Ca(2+)-activated photoprotein obelin from the hydroid polyp *Obelia*  
*longissima*. *Gene.* 1995 Feb 14;153(2):273-4.

**Jones K, Hibbert F, Keenan M.** Glowing jellyfish, luminescence and a molecule  
called coelenterazine. *Trends Biotechnol* 1999 Dec;17(12):477-81

- 40 -

**Johnson, F.H., Shimomura, O., Saiga, Y., Gershman, L.C., Reynolds, G.T., and Waters, J.R.** (1962) Quantum efficiency of *Cypridina* luminescence, with a note on that of *Aequorea*. *J. Cell. Comp. Physiol.* 60, 85-103.

5 **Morin, J.G. and Hastings, J.W.** (1971) Biochemistry of the bioluminescence of colonial hydroids and other coelenterates. *J. Cell. Physiol.* 77, 305-311.

**Phillips GN.** Structure and dynamics of green fluorescent protein. *Curr Opin Struct Biol.* 1997 Dec;7(6):821-7

10 **Sambrook, J., Fritsch, E. Maniatis, T.** 1989, Molecular cloning. A laboratory manual Vol 1-3, *Cold Spring Harbor*, New York : Cold Spring Harbor Laboratory Press

**Shimomura O, Johnson FH.** Properties of the bioluminescent protein aequorin. *Biochemistry*. 1969 Oct;8(10):3991-7

**Shimomura O.** Bioluminescence in the sea: photoprotein systems. *Symp Soc Exp Biol.* 1985;39:351-72

15 **Shimomura O.** Isolation and properties of various molecular forms of aequorin. *Biochem J.* 1986 Mar 1;234(2):271-7.

**Snowdowne KW, Borle AB.** Measurement of cytosolic free calcium in mammalian cells with aequorin. *Am J Physiol.* 1984 Nov;247(5 Pt 1):C396-408.

20 **Ward, W.W.** (1998) Biochemical and physical properties of green fluorescent protein. In: *Green Fluorescent Protein: Properties, Applications, and Protocols* (Chalfie, M. and Kain, S., eds) pp. 45-70. Wiley-Liss, Inc.

**Yang Te-Tuan, Sinai Parisa, Kitts Paul A. Kain Seven R.** Quantification of gene expression with a secreted alkaline phosphatase reporter system. *Biotechnique*. 1997 23(6) 1110ff

25

Patentansprüche

1. Nukleinsäuremolekül, ausgewählt aus der Gruppe bestehend aus

5           a) Nukleinsäuremolekülen, die ein Polypeptid kodieren, welches die Aminosäuresequenz offenbart durch SEQ ID NO: 2 beinhaltet;

10          b) Nukleinsäuremolekülen, welche die in SEQ ID NO: 1 dargestellte Sequenz beinhalten;

15          c) Nukleinsäuremolekülen, deren komplementärer Strang mit einem Nukleinsäuremolekül aus a) oder b) unter stringenten Bedingungen hybridisiert und welche ein Polypeptid kodieren, das die biologische Funktion eines Photoproteins aufweist;

20          d) Nukleinsäuremolekülen, welche sich auf Grund der Degenerierung des genetischen Kodes von den unter c) genannten unterscheiden;

25          e) Nukleinsäuremolekülen, welche eine Sequenzhomologie von mindestens 95 % zu SEQ ID NO: 1 zeigen, und welche ein Polypeptid kodieren, das die biologische Funktion eines Photoproteins aufweist; und

f) Nukleinsäuremolekülen, welche eine Sequenzhomologie von mindestens 65 % zu SEQ ID NO: 1 zeigen, und welche ein Polypeptid kodieren, das die biologische Funktion eines Photoproteins aufweist.

30          2. Nukleinsäuremolekül, ausgewählt aus der Gruppe bestehend aus

30          a) Nukleinsäuremolekülen, die ein Polypeptid kodieren, welches die Aminosäuresequenz offenbart durch SEQ ID NO: 3 beinhaltet;

b) Nukleinsäuremolekülen, welche die in SEQ ID NO: 4 dargestellte Sequenz beinhalten;

5 c) Nukleinsäuremolekülen, deren komplementärer Strang mit einem Nukleinsäuremolekül aus a) oder b) unter stringenten Bedingungen hybridisiert und welche ein Peptid kodieren, das die biologische Funktion eines Signal- oder Leaderpeptides aufweist;

10 d) Nukleinsäuremolekülen, welche sich auf Grund der Degenerierung des genetischen Kodes von den unter c) genannten unterscheiden;

15 e) Nukleinsäuremolekülen, welche eine Sequenzhomologie von mindestens 90 % zu SEQ ID NO: 4 zeigen, und welche ein Peptid kodieren, das die biologische Funktion eines Signal- bzw. Leader-peptides aufweist; und

20 f) Nukleinsäuremolekülen, welche eine Sequenzhomologie von mindestens 60 % zu SEQ ID NO: 4 zeigen, und welche ein Peptid kodieren, das die biologische Funktion eines Signal- bzw. Leader-peptides aufweist.

3. Nukleinsäuremolekül, ausgewählt aus der Gruppe bestehend aus

25 a) Nukleinsäuremolekülen, die ein Polypeptid kodieren, welches die Aminosäuresequenz offenbart durch SEQ ID NO: 6 beinhaltet;

b) Nukleinsäuremolekülen, welche die in SEQ ID NO: 5 dargestellte Sequenz beinhalten;

30

c) Nukleinsäuremolekülen, deren komplementärer Strang mit einem Nukleinsäuremolekül aus a) oder b) unter stringenten Bedingungen hybridisiert und welche ein Polypeptid kodieren, das die biologische Funktion eines Photoproteins aufweist;

5

d) Nukleinsäuremolekülen, welche sich auf Grund der Degenerierung des genetischen Kodes von den unter c) genannten unterscheiden;

10

e) Nukleinsäuremolekülen, welche eine Sequenzhomologie von mindestens 95 % zu SEQ ID NO: 5 zeigen, und welche ein Polypeptid kodieren, das die biologische Funktion eines Photoproteins aufweist; und

f) Nukleinsäuremolekülen, welche eine Sequenzhomologie von mindestens 80 % zu SEQ ID NO: 5 zeigen, und welche ein Polypeptid kodieren, das die biologische Funktion eines Photoproteins aufweist.

15

4. Nukleinsäure nach Anspruch 1, 2 oder 3, welche einen funktionalen Promotor 5' zur kodierenden Sequenz enthält.

20

5. Rekombinante DNA oder RNA Vektoren, welche Nukleinsäuren nach Anspruch 4 enthalten.

6. Organismen, die einen Vektor gemäß Anspruch 5 enthalten.

25

7. Oligonukleotide mit mehr als 10 aufeinanderfolgenden Nukleotiden, die identisch oder komplementär zu einer Teilsequenz eines Nukleinsäuremoleküls gemäß Anspruch 1, 2 oder 3 sind.

30

8. Polypeptid, das durch eine Nukleinsäuresequenz nach Anspruch 1, 2 oder 3 kodiert ist.

9. Verfahren zur Expression der Polypeptide gemäß Anspruch 8 in Bakterien, viralen Systemen, Hefen oder eukaryontischen Zellen oder in *in vitro* Expressionssystemen.

5

10. Verfahren zur Aufreinigung/Isolierung eines Photoprotein Polypeptides gemäß Anspruch 8.

10

11. Peptide mit mehr als 5 aufeinanderfolgenden Aminosäuren, die immunologisch durch Antikörper gegen das Photoprotein mtClytin erkannt werden.

12. Peptide mit mehr als 5 aufeinanderfolgenden Aminosäuren, die immunologisch durch Antikörper gegen das Photoprotein Clytin-2 erkannt werden.

15

13. Peptide mit mehr als 5 aufeinanderfolgenden Aminosäuren, die immunologisch durch Antikörper gegen das durch SEQ ID NO:3 offenbare Signal- bzw. Leaderpeptid erkannt werden.

14. Verwendung einer Nukleinsäure gemäß den Ansprüchen 1 bis 5 als Marker- oder Reportergen.

20

15. Verwendung eines Photoproteins gemäß Anspruch 8 als Marker oder Reporter.

25

16. Verwendung einer Nukleinsäure, welche die als SEQ ID NO: 4 dargestellte Sequenz beinhaltet, als Signal- bzw. Leadersequenz.

17. Verwendung eines Peptides, welches die als SEQ ID NO: 3 dargestellte Sequenz beinhaltet, als Signal- bzw. Leaderpeptid.

30

- 45 -

18. Verwendung gemäß Anspruch 16 oder 17, um ein an das Signal- bzw. Leaderpeptid fusioniertes Protein in Zellorganellen zu transportieren.

5 19. Verwendung gemäß Anspruch 18, wobei es sich bei den Zellorganellen um Mitochondrien oder das endoplasmatische Retikulum (ER) handelt.

20. Verwendung der Polypeptide gemäß Anspruch 8 als Reporterproteine in der pharmakologischen Wirkstoffsuche.

10 21. Verwendung der Nukleinsäuren gemäß Ansprüchen 1-3 als Reportergene in der pharmakologischen Wirkstoffsuche.

Isoliertes Photoprotein mtClytin, sowie dessen Verwendung

Z u s a m m e n f a s s u n g

Die Erfindung betrifft das Photoprotein mtClytin, dessen Nukleotid- und Aminosäuresequenz, sowie die Aktivität und Verwendung des Photoproteins mtClytin.

Figuren

Fig. 1



- 2/10 -

Fig. 2



- 3/10 -

Fig. 3



Fig. 4



- 5/10 -

Fig. 5



- 6/10 -

Fig. 6



- 7/10 -

Fig. 7

|          |                                                         |
|----------|---------------------------------------------------------|
| 1        | 50                                                      |
| Clytin   | .....                                                   |
| mtClytin | GACAGATAAA AAATTCACTC CTTAGATTAT TTAGTGAATA AGAGAAAAAA  |
| 51       | 100                                                     |
| Clytin   | .....                                                   |
| mtClytin | AGGATAAGAA ATCAAGATGC AAAGGTTAC AAATCGTCTT CTTCCATGT    |
| 101      | 150                                                     |
| Clytin   | ..... ATCA ACTTTTGCAA CTCAAAGCAA ATTCAAAAC              |
| mtClytin | CGGCTTTACG TGCAAGATCA AGATT.GCAA CGCACGGCAA ATTTTCACAC  |
| 151      | 200                                                     |
| Clytin   | TTCAACATGG CTGAC.ACTG CATCAAAATA CGCCGTCAA CTCAGACCCA   |
| mtClytin | CAGCATACTC TTGGCTACAG ATTCAAAATA CGCGGTCAA CTCGATCCTG   |
| 201      | 250                                                     |
| Clytin   | ACTTCGACAA CCCAAAATGG GTCAACAGAC ACAAAATTAT GTTCAACTTT  |
| mtClytin | ATTTTGCAAA TCCAAAATGG ATCAACAGAC ACAAAATTAT GTTCAACTTT  |
| 251      | 300                                                     |
| Clytin   | TTGGACATTA ACGGCGACGG AAAAATCACT TTGGATGAAA TCGTCTCAA   |
| mtClytin | TTGGACATAA ACGGTAAGGG GAAAATCACA TTAGATGAAA TCGTCTCAA   |
| 301      | 350                                                     |
| Clytin   | AGCTTCGGAT GACATTTGCG CCAAACTTGG AGCAACACCA GAACAGACCA  |
| mtClytin | AGCTTCAGAC GACATTTGTG CTAAACTGGA TGCAACACCA GAACAGACCA  |
| 351      | 400                                                     |
| Clytin   | AACGTCACCA GGATGCTGTC GAAGCTTTCT TCACAAAGAT TGGTATGGAT  |
| mtClytin | AACGTCACCA GGATGCTGTT GAAGCCTTT TCAAGAAAAT GGGCATGGAT   |
| 401      | 450                                                     |
| Clytin   | TATGGTAAAG AAGTCGAATT CCCAGCTTT GTTGATGGAT GGAAAGAACT   |
| mtClytin | TATGGTAAAG AAGTTGCATT CCCAGAATT ATTAAAGGGAT GGGAAAGAGTT |
| 451      | 500                                                     |
| Clytin   | GGCCAATTAT GACTTGAAAC TTTGGTCTCA AAACAAGAAA TCTTTGATCC  |
| mtClytin | GGCCGAACAC GACTTGGAAC TCTGGTCTCA AAACAAAAGT ACATTGATCC  |
| 501      | 550                                                     |
| Clytin   | GCGACTGGGG AGAAGCTGTT TTCGACATT TTGACAAAGA CGGAAGTGGC   |
| mtClytin | GTGAATGGGG AGATGCTGTT TTCGACATT TCGACAAAGA CGCAAGTGGC   |

- 8/10 -

|          |             |            |            |            |             |
|----------|-------------|------------|------------|------------|-------------|
|          | 551         |            | 600        |            |             |
| Clytin   | TCAATCAGTT  | TGGACGAATG | GAAGGCTTAT | GGACGAATCT | CTGGAATCTG  |
| mtClytin | TCAATCAGTT  | TAGACGAATG | GAAGGCTTAC | GGACGAATCT | CTGGAATCTG  |
|          | 601         |            |            | 650        |             |
| Clytin   | CTCATCAGAC  | GAAGACGCCG | AAAAGACCTT | CAAACATTGC | GATTGGACA   |
| mtClytin | TCCATCAGAC  | GAAGACGCTG | AGAAGACGTT | CAAACATTGT | GATTGGACA   |
|          | 651         |            |            | 700        |             |
| Clytin   | ACAGTGGCAA  | ACTTGATGTT | GATGAGATGA | CCAGACAACA | TTTGGGATTC  |
| mtClytin | ACAGTGGCAA  | ACTTGATGTT | GATGAGATGA | CCAGGCAACA | TTTAGGCTTC  |
|          | 701         |            |            | 750        |             |
| Clytin   | TGGTACACCT  | TGGACCCCAA | CGCTGATGGT | CTTTACGGCA | ATTTTGTTC   |
| mtClytin | TGGTACACAT  | TGGATCCAAC | TTCTGATGGT | CTTTATGGCA | ATTTTGTTC   |
|          | 751         |            |            | 800        |             |
| Clytin   | TTAACACATCG | ...AAACAAA | AGCCCCAAAG | AAGTTTGGA  | AGAATTATTT  |
| mtClytin | CTAAGAAGCG  | TTCAGTTAAA | AACGCTAAC  | ATTGTTCACT | TGAAAATTA   |
|          | 801         |            |            | 850        |             |
| Clytin   | GATAC..TAT  | CATTTG.... | TTACTATT   | TCGTAACATG | CT..ATATTT  |
| mtClytin | TATTCATTTC  | CATTCGTA   | AATTAGTATT | TATAAATTTG | TATCATAAAAT |
|          | 851         |            |            | 900        |             |
| Clytin   | TGTAAC.ATG  | CTATATT.TA | AATAATTTC. | .....      | .....       |
| mtClytin | TGTATCCATG  | TTGTAGACTA | AATAAGACTC | GGCAAAAAAA | AAAAAAAAAA  |
|          | 901         | 913        |            |            |             |
| Clytin   | .....       | ...        |            |            |             |
| mtClytin | AAAAAAAAAA  | AAA        |            |            |             |

- 9/10 -

Fig. 8

|          |                                                        |     |
|----------|--------------------------------------------------------|-----|
|          | 1                                                      | 50  |
| mtClytin | MQRFTNRLLS MSALRARSRL QRTANFHTSI LLATDSKYAV KLDPDFANPK |     |
| Clytin   | ..... .... MADTASKEYAV KLRPNFNDNPK                     |     |
|          | 51                                                     | 100 |
| mtClytin | WINRHKFMFN FLDINGKGKI TLDEIVSKAS DDICAKLDAT PEQTKRHQDA |     |
| Clytin   | WVNRHKFMFN FLDINGDGKI TLDEIVSKAS DDICAKLGAT PEQTKRHQDA |     |
|          | 101                                                    | 150 |
| Clytin   | VEAFFKKMGM DYGKEVAFPE FIKGWEELAE HDLELWSQNk STLIREWGDa |     |
| Clytin   | VEAFFKKIGM DYGKEVEFPA FVDGWKELAN YDLKLWSQNk KSLIRDWGEA |     |
|          | 151                                                    | 200 |
| Clytin   | VFDIFDKDAS GSISLDEWKA YGRISGICPS DEDAEKTFKH CDLDNSGKLD |     |
| Clytin   | VFDIFDKDGs GSISLDEWKA YGRISGICSS DEDAEKTFKH CDLDNSGKLD |     |
|          | 201                                                    | 228 |
| mtClytin | VDEMTRQHLG FWYTLDPPTSD GLYGNFVP                        |     |
| Clytin   | VDEMTRQHLG FWYTLDPNAD GLYGNFVP                         |     |

Fig. 9

|          |                                                         |     |
|----------|---------------------------------------------------------|-----|
|          | 1                                                       | 50  |
| mtClytin | MQRFTNRLLS MSALRARSRL QRTANFHTSI LLATDSKYAV KLDPDFANPK  |     |
| Clytin-2 | ..... .... MTDTASKEYAV KLKTNFEDPK                       |     |
| Clytin   | ..... .... MADTASKEYAV KLRPNFNDNPK                      |     |
|          | 51                                                      | 100 |
| mtClytin | WINRHKFMFN FLDINGKGKI TLDEIVSKAS DDICAKLDAT PEQTKRHQDA  |     |
| Clytin-2 | WVNRHKFMFN FLDINGNGKI TLDEIVSKAS DDICAKLGAT PAQTQRHQEA. |     |
| Clytin   | WVNRHKFMFN FLDINGDGKI TLDEIVSKAS DDICAKLGAT PEQTKRHQDA  |     |
|          | 101                                                     | 150 |
| mtClytin | VEAFFKKMGM DYGKEVAFPE FIKGWEELAE HDLELWSQNk STLIREWGDa  |     |
| Clytin-2 | VEAFFKKIGL DYGKEVEFPA FVNGWKELAK HDLKLWSQNk KSLIRNWGEA  |     |
| Clytin   | VEAFFKKIGM DYGKEVEFPA FVDGWKELAN YDLKLWSQNk KSLIRDWGEA  |     |
|          | 151                                                     | 200 |
| mtClytin | VFDIFDKDAS GSISLDEWKA YGRISGICPS DEDAEKTFKH CDLDNSGKLD  |     |
| Clytin-2 | VFDIFDKDGs GSISLDEWKT YGGISGICPS DEDAEKTFKH CDLDNSGKLD  |     |
| Clytin   | VFDIFDKDGs GSISLDEWKA YGRISGICSS DEDAEKTFKH CDLDNSGKLD  |     |

- 10/10 -

|          | 201                            | 228 |
|----------|--------------------------------|-----|
| mtClytin | VDEMTRQHLG FWYTLDPSTD GLYGNFVP |     |
| Clytin-2 | VDEMTRQHLG FWYTLDPNAD GLYGNFVP |     |
| Clytin   | VDEMTRQHLG FWYTLDPNAD GLYGNFVP |     |

- 1 -

SEQUENCE LISTING

<110> Bayer AG, BHC

<120> Isoliertes Photoprotein mtClytin, sowie dessen Verwendung

<130> Le A 36 839

<160> 6

<170> PatentIn version 3.1

<210> 1

<211> 912

<212> DNA

<213> Clytia gregaria

<400> 1

|                                                                     |     |
|---------------------------------------------------------------------|-----|
| gacagataaa aaattcactc ctttagattat ttagtgaata agagaaaaaaa aggataagaa | 60  |
| atcaagatgc aaaggtttac aaatcgcttt ctttccatgt cggctttacg tgcaagatca   | 120 |
| agattgcaac gcacggcaaa ttttcacacc agcatactct tggctacaga ttcaaaaatac  | 180 |
| gcggtaaaac tcgatccgtt ttttgcaaat ccaaaatgga tcaacagaca caaattttatg  | 240 |
| ttcaactttt tggacataaa cggtaagggg aaaatcacat tagatgaaat cgtctccaaa   | 300 |
| gcttcagacg acatttgc taaactggat gcaacaccag aacagaccaa acgtcaccag     | 360 |
| gatgctgttg aagcctttt caagaaaatg ggcattggatt atggtaaaga agttgcattc   | 420 |
| ccagaattta ttaaggatg ggaagagttg gccgaacacg acttggaaact ctggctctcaa  | 480 |
| aacaaaagta cattgatccg tgaatgggaa gatgctgtt tcgacatttt cgacaaagac    | 540 |
| gcaagtggct caatcagttt agacaaatgg aaggcttacg gacaaatctc tggatctgt    | 600 |
| ccatcagacg aagacgctga gaagacgttc aaacattgtt atttggacaa cagtggcaaa   | 660 |
| cttgatgttg atgagatgac caggcaacat ttaggcttct ggtacacatt ggatccaact   | 720 |
| tctgatggtc tttatggcaa ttttgttccc taagaagcgt tcagttaaa acgctaaaca    | 780 |
| ttgttcagtt gtaaaattat attcattttc atttcgtaaa attgtatTTt ataaattttgt  | 840 |
| atcataaaatt gtatccatgt tggtagactaa ataagactcg gcaaaaaaaaaaaaaaaa    | 900 |
| aaaaaaaaaa aa                                                       | 912 |

<210> 2

<211> 228

<212> PRT

<213> Clytia gregaria

<400> 2

Met Gln Arg Phe Thr Asn Arg Leu Leu Ser Met Ser Ala Leu Arg Ala

1

5

10

15

- 2 -

Arg Ser Arg Leu Gln Arg Thr Ala Asn Phe His Thr Ser Ile Leu Leu  
20 25 30  
Ala Thr Asp Ser Lys Tyr Ala Val Lys Leu Asp Pro Asp Phe Ala Asn  
35 40 45  
Pro Lys Trp Ile Asn Arg His Lys Phe Met Phe Asn Phe Leu Asp Ile  
50 55 60  
Asn Gly Lys Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser  
65 70 75 80  
Asp Asp Ile Cys Ala Lys Leu Asp Ala Thr Pro Glu Gln Thr Lys Arg  
85 90 95  
His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Met Gly Met Asp Tyr  
100 105 110  
Gly Lys Glu Val Ala Phe Pro Glu Phe Ile Lys Gly Trp Glu Glu Leu  
115 120 125  
Ala Glu His Asp Leu Glu Leu Trp Ser Gln Asn Lys Ser Thr Leu Ile  
130 135 140  
Arg Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Asp Lys Asp Ala Ser  
145 150 155 160  
Gly Ser Ile Ser Leu Asp Glu Trp Lys Ala Tyr Gly Arg Ile Ser Gly  
165 170 175  
Ile Cys Pro Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His Cys Asp  
180 185 190  
Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg Gln His  
195 200 205  
Leu Gly Phe Trp Tyr Thr Leu Asp Pro Thr Ser Asp Gly Leu Tyr Gly  
210 215 220  
Asn Phe Val Pro  
225

<210> 3  
<211> 16  
<212> PRT  
<213> Clytia gregaria

<400> 3  
Met Gln Arg Phe Thr Asn Arg Leu Leu Ser Met Ser Ala Leu Arg Ala  
1 5 10 15

<210> 4  
<211> 48  
<212> DNA  
<213> Clytia gregaria

- 3 -

<400> 4

atgcaaagg t<sub>t</sub>tacaaatcg t<sub>t</sub>tttcc atgtcggott tacgtgca 48

<210> 5

<211> 791

<212> DNA

<213> Clytia gregaria

<400> 5

gatctcagct caacttgcaa taagtatcg atcaaattt gcaactcaa gcaaatcatc 60  
aacttcatca taatgactga cactgctca aaatacgctg tcaaactcaa gaccaacttt 120  
gaagatccaa aatgggtcaa cagacacaaa ttatgttca actttttgga cattaacggc 180  
aacggaaaaa tcactttgga tgaaattgtc tccaaagctt cgatgacat ttgcgc当地 240  
cttggagcta caccagctca aacccaacgt catcaggaag ctgttgaagc tttcttcaag 300  
aagattgggtt tggattatgg caaagaagtc gaattcccag cttcgttaa cgatggaaa 360  
gaactggcca aacatgactt gaaactttgg tccccaaaaca agaaatctt gatccgcaat 420  
tggggagaag ctgttattcga cattttcgac aaggacggaa gtggctcaat cagtttggac 480  
gaatggaaaa catacggagg aatotcttgg atctgtccat cagacgaaga cgctgaaaag 540  
acccctcaaac attgcgattt ggacaacagt ggaaacttg atgttgcga gatgaccaga 600  
caacatttgg gattctggta caccttggac cctaacgcgt atggctttta tggcaacttt 660  
gtcccttaaa aactttttt gctgtaaatt ctttacgggt tatttttca taatttgtcat 720  
ttgattttaa ctttgcgttgc gaaaatggaaa aatattctt attcagaaaa aaaaaaaaaaa 780  
aaaaaaaaaa a 791

<210> 6

<211> 198

<212> PRT

<213> Clytia gregaria

<400> 6

Met Thr Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Lys Thr Asn Phe

1 5 10 15

Glu Asp Pro Lys Trp Val Asn Arg His Lys Phe Met Phe Asn Phe Leu

20 25 30

Asp Ile Asn Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys

35 40 45

Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Ala Gln Thr

50 55 60

Gln Arg His Gln Glu Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Leu

65 70 75 80

Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asn Gly Trp Lys

85 90 95

- 4 -

Glu Leu Ala Lys His Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser  
100 105 110  
Leu Ile Arg Asn Trp Gly Glu Ala Val Phe Asp Ile Phe Asp Lys Asp  
115 120 125  
Gly Ser Gly Ser Ile Ser Leu Asp Glu Trp Lys Thr Tyr Gly Gly Ile  
130 135 140  
Ser Gly Ile Cys Pro Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His  
145 150 155 160  
Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg  
165 170 175  
Gln His Leu Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu  
180 185 190  
Tyr Gly Asn Phe Val Pro  
195

**This Page is Inserted by IFW Indexing and Scanning  
Operations and is not part of the Official Record**

**BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** \_\_\_\_\_

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.**