Assignment due April 5th at 11:59 p.m.

Complete the following problems. These problems are related to Chapters 12 in the Book of Proof. Found at:

https://www.people.vcu.edu/rhammack/BookOfProof/Main.pdf

Problem 1: For each of the following functions, determine whether the function is injective, surjective, bijective or none. Also, order the functions in a manner such that if a function f(x) is to the left of g(x) in the ordering, then f(x) is O(g(x)). You do not need to prove any of your conclusions. Assume the domain and co-domain of each function is \mathbb{R} .

- a(x) = 2xInjective, Surjective and Bijective
- $b(x) = 2^x$ Injective, not Surjective and Bijective
- $c(x) = \log(x)$ Injective, not Surjective and not Bijective
- $d(x) = x^x$ not Injective, not Surjective and not Bijective
- $e(x) = \frac{1}{x}$ Injective, Surjective and Bijective
- $f(x) = \frac{x^2}{5}$ not Injective, not Surjective and not Bijective
- $g(x) = \frac{x^4 1}{7x + 7}$
- h(x) = 918532

For problems 2 through 7, prove each of the statements.

Problem 2: The function $f: \mathbb{Z} \to \mathbb{N}$, $f(n) = n^2$ is not surjective and not injective.

Problem 3: The function $f: \mathbb{N} \to \mathbb{Z}$, f(n) = 3n - 17 is injective.

Problem 4: The function $f : \mathbb{R} \to \mathbb{Z}$, $f(x) = \lfloor x \rfloor$ is surjective. Note that the floor function, denoted $\lfloor x \rfloor$, just rounds down.

Problem 5: The function $f: \mathbb{Z} \to \mathbb{Z}$, f(n) = -n + 4, is a bijection. *Hint: first find its inverse*.

Problem 6: $\frac{x^3+17}{4x+5}$ is $O(3x^2)$.

Problem 7: $n \log(n)$ is not O(100n). Assume log base 10.