4a. Newton-artige Verfahren Das Newton-Verfahren

Optimierung SoSe 2020 Dr. Alexey Agaltsov

Plan

- Die Newton-Richtung
- Das Newton-Verfahren
- Konvergenz

Mathematisches Programm

Minimiere
$$f(x)$$
 über $x \in U$
 $f \in C^2(U), U \subseteq \mathbb{R}^n$ offen

- Man kann dieses Problem mit dem Gradientenverfahren lösen
- Das benötigt nur die ersten Ableitungen von f und garantiert lineare Konvergenz
- Benutzt man auch die zweiten Ableitungen, so kann man ein effizienteres Verfahren erstellen

Newton-Verfahren

Das Newton-Verfahren

Das Newton-Verfahren lässt verschiedene Herleitungen zu:

- Löse die Optimalitätsbedingung $\nabla f(x) = 0$ für x_* mit dem Newton-Verfahren für nichtlineare Gleichungen
- Minimiere konsekutive quadratische Approximationen an f

Newton-Verfahren für nichtlineare Gleichungen

Löse
$$g(x) = 0$$

 $g \in C^1(\mathbb{R})$ linearisiere

$$g(x_k) + g'(x_k)(x - x_k) = 0$$

aktuelle Näherungslösung

$$x_{k+1} := x_k - \frac{g(x_k)}{g'(x_k)}$$

Newton-Verfahren für Optimierungsprobleme

Quadratische Approximation

Minimiere
$$f(x)$$
 über $x \in \mathbb{R}$ $f \in C^2(\mathbb{R})$ quadratische Approximation

Minimiere
$$g(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2$$

aktuelle Approximation

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

Mehrdimensionaler Fall

Minimiere
$$f(x)$$
 über $x \in \mathbb{R}^n$ quadratische Approximation Minimiere $g(x)$ über $x \in \mathbb{R}^n$ quadratische Approximation
$$g(x) = f(x_k) + \nabla f(x_k)(x - x_k) + \frac{1}{2}(x - x_k)^T \nabla^2 f(x_k)(x - x_k)$$
 aktuelle Approximation Optimalitätsbedingung
$$\nabla f(x_k) + \nabla^2 f(x_k)(x_{k+1} - x_k) = 0$$

$$x_{k+1} = x_k - \nabla^2 f(x_k)^{-1} \nabla f(x_k)$$

Die Newton-Schritt

Als Newton-Schritt bezeichnen wir die Aufdatierungsformel:

$$x_{k+1} = x_k - \nabla^2 f(x_k)^{-1} \nabla f(x_k)$$

• Als Newton-Richtung im Punkt x_k bezeichnen wir:

$$d_k = -\nabla^2 f(x_k)^{-1} \nabla f(x_k)$$

Die Newton-Richtung

$$d_k = -\nabla^2 f(x_k)^{-1} \nabla f(x_k), \quad \nabla f(x_k) \neq 0$$

• Sei $\nabla^2 f(x_k) > 0$, so ist die Newton-Richtung d_k eine Abstiegsrichtung:

$$-\nabla f(x_k)^T d_k = \nabla f(x_k)^T \nabla^2 f(x_k)^{-1} \nabla f(x_k) > 0$$

Vorsicht: Ist $\nabla^2 f(x_k) > 0$, so kann d keine Abstiegsrichtung sein

Plan

- Die Newton-Richtung
- Das Newton-Verfahren
- Quadratische Konvergenz

Koordinatentransformation

Minimiere
$$f(x)$$
 über $x \in \mathbb{R}^n$ $f \in C^2(\mathbb{R}^n)$ $\bar{x} := P^{1/2}x$ mit $P \in \mathbb{S}^n_>$ $\bar{f}(\bar{x})$ über $\bar{x} \in \mathbb{R}^n$ $f(\bar{x}) := f(P^{-1/2}\bar{x}) = f(x)$

• Die Newton-Richtung in \bar{x} ist:

$$\bar{d} = -\nabla^2 \bar{f}(\bar{x})^{-1} \nabla \bar{f}(\bar{x}) = -P^{1/2} \nabla^2 f(x)^{-1} \nabla f(x)$$

• Die entsprechende Richtung in *x* ist:

$$d = P^{-1/2}\bar{d} = -\nabla^2 f(x)^{-1}\nabla f(x)$$

Die Newton-Richtung ist linear- (und sogar affin-) invariant Das NV ist unempfindlich ggb. der Kondition der Unterniveau-Mengen

Abbruchsregel

- Sei x_k eine aktuelle Näherungslösung und $\varepsilon > 0$ ein Toleranzwert
- Gewöhnliches Abbruchskriterium $\|\nabla f(x_k)\|_2 < \varepsilon$
- Es wäre wünschenswert, eine affin-invariante Abbruchsregel bei dem Newton-Verfahren zu haben

Das Newton-Dekrement

• Als Newton-Dekrement am Punkt x_k bezeichnen wir:

$$\lambda(x_k) = \|\nabla f(x_k)\|_{\nabla^2 f(x_k)^{-1}}$$
$$= \left(\nabla f(x_k)^T \nabla^2 f(x_k)^{-1} \nabla f(x_k)\right)^{1/2}$$

- Das Newton-Dekrement ist affin-invariant
- Affin-invariante Abbruchsregel:

$$\lambda(x_k) < \varepsilon \implies$$
 Breche die Iteration ab

Das Newton-Verfahren

- 1. Initialisierung: Startwert $x_0 \in \mathbb{R}^n$, Toleranzwert $\epsilon > 0$
- 2. for k = 0,1,2,... do:
- 3. **if** $\lambda(x_k) < \epsilon$ **then** break
- 4. $x_{k+1} = x_k \nabla^2 f(x_k)^{-1} \nabla f(x_k)$
- 5. end for

Beispiel: 1D

Minimiere
$$f(x) = x - \log x$$
 über $x > 0$

$$f'(x) = 1 - \frac{1}{x} \implies x_* = 1$$
 ist stationär

$$f''(x) = \frac{1}{x^2} > 0 \implies f$$
 ist strikt konvex

 x_* ist die optimale Lösung

$$d(x) = -\left(\frac{1}{x^2}\right)^{-1} \left(1 - \frac{1}{x}\right) = x - x^2$$

$$x_{k+1} = x_k + (x_k - x_k^2) = 2x_k - x_k^2$$

Beispiel: 1D

Beispiel: 2D

Minimiere
$$f(x_1, x_2) = -\log(1 - x_1 - x_2) - \log(x_1) - \log(x_2)$$

über $x_1, x_2 > 0, x_1 + x_2 < 1$

$$\nabla f(x_1, x_2) = \begin{bmatrix} \frac{1}{1 - x_1 - x_2} - \frac{1}{x_1} \\ \frac{1}{1 - x_1 - x_2} - \frac{1}{x_2} \end{bmatrix} \implies \text{station\"arer Punkt } x_1^* = x_2^* = \frac{1}{3}$$

$$\nabla^2 f(x_1, x_2) = \begin{bmatrix} \left(\frac{1}{1 - x_1 - x_2}\right)^2 + \left(\frac{1}{x_1}\right)^2 & \left(\frac{1}{1 - x_1 - x_2}\right)^2 \\ \left(\frac{1}{1 - x_1 - x_2}\right)^2 & \left(\frac{1}{1 - x_1 - x_2}\right)^2 + \left(\frac{1}{x_2}\right)^2 \end{bmatrix} > 0$$

 \implies f ist konvex $(\frac{1}{3}, \frac{1}{3})$ ist die optimale Lösung

Beispiel: 2D

$$x^0 = (0.6, 0.1), \quad x^* = (\frac{1}{3}, \frac{1}{3})$$

k	$\left\ x^k-x^*\right\ _2$	$f(x^k)-f_*$	c^k
0	0,35	0,72	
1	0,18	0,21	0,4
2	0,07	0,029	0,66
3	0,009	0,00044	0,53
4	0,00011	6,9E-08	0,36

$$f(x^k) - f_* = c^k (f(x^{k-1}) - f_*)^2$$

Wir werden auch theoretisch zeigen, dass die Konvergenz quadratisch ist

Plan

- Die Newton-Richtung
- Das Newton-Verfahren
- Konvergenz

Mathematisches Program

Minimiere
$$f(x)$$
 über $x \in \mathbb{R}^n$
 $f \in C^2(\mathbb{R}^n)$

- Sei x_* eine optimale Lösung
- Sei x_0, x_1, \dots eine mit dem Newton-Verfahren erzeugte Folge
- Was bestimmt die Konvergenz und ihre Geschwindigkeit?

Was bestimmt die Konvergenz?

Hauptfaktoren, die die Konvergenz bestimmen:

- Qualität der quadratischen Approximation
- Wie nahe x_0 an x_* liegt
- Positive Definitheit der Hesse-Matrix

Qualität der quadratischen Approximation

$$f(x) \approx f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \nabla^2 f(x_k) (x - x_k)$$

- Die Approximation ist gut falls $\nabla^2 f(x)$ sich langsam ändert
- Lipschitz-Stetigkeit von $\nabla^2 f(x)$ quantifiziert es durch L > 0:

$$\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \le L\|x - y\|_2$$

Beispiel: Quadratische Zielfunktion

Minimiere
$$f(x) = \frac{1}{2}x^TQx - c^Tx + r$$
 mit $Q \in \mathbb{S}^n_>$ $\nabla f(x) = Qx - c$ $\nabla^2 f(x) = Q > 0$

- Nach Aufgabe 2.21 ist $x_st = Q^{-1}c$ ein eindeutiges globales Minimum
- Das Newton-Verfahren findet x_* in einem Schritt $\forall x_0$:

$$x_1 = x_0 - Q^{-1}(Qx_0 - c)$$
$$= Q^{-1}c$$

Wahl des Startwertes

• Die Methode des steilsten Abstiegs bzgl. $\|\cdot\|_P$ konvergiert schnell falls

$$P^{-1/2}(\nabla^2 f)P^{-1/2} \approx I \text{ auf } S = \{x: f(x) \le f(x_0)\}$$

- Ist $x_0 \approx x_*$, so ist $P = \nabla^2 f(x_*)$ eine optimale Wahl
- Die Newton-Richtung in x ist die Richtung des steilsten Abstiegs bzgl. $\|\cdot\|_P$ mit $P = \nabla^2 f(x)$

schnelle Konvergenz für
$$x_0 \approx x_*$$

Positive Definitheit der Hesse-Matrix

$$d = -\nabla^2 f(x)^{-1} \nabla f(x)$$

- $\nabla^2 f(x)$ muss regulär sein, damit ist d wohldefiniert
- $\nabla^2 f(x) > 0$ garantiert, dass d eine Abstiegsrichtung ist
- $\nabla^2 f(x) \ge mI$ lässt die Konvergenzgeschwindigkeit abschätzen Konvergengeschwindigkeit steigt mit m

Satz 4.1. Quadratische Konvergenz

Sei $f \in C^2(\mathbb{R}^n)$ und sei x_* ein lokales Minimum. Angenommen:

•
$$\nabla^2 f(x) \ge mI > 0 \quad \forall x \in B_{\delta}(x_*)$$

•
$$\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \le L \|x - y\|_2 \quad \forall x, y \in B_{\delta}(x_*)$$

Ist
$$||x_0 - x_*||_2 < \min\left(\delta, \frac{2m}{L}\right)$$
, so gilt:

Qualität der quadratischen Approximationen

$$||x_{k+1} - x_*||_2 \le \frac{L}{2m} ||x_k - x_*||^2 \quad \forall k \ge 0$$

Beweis

$$r_k \coloneqq x_* - x_k$$

Ziel: Drücke r_{k+1} durch r_k aus

$$r_{k+1} = r_k + \nabla^2 f(x_k)^{-1} \nabla f(x_k) \qquad \nabla f(x_k) = 0$$

$$= r_k - \nabla^2 f(x_k)^{-1} (\nabla f(x_k) - \nabla f(x_k)) \qquad \text{Taylor-Formel}$$

$$= r_k - \nabla^2 f(x_k)^{-1} \int_0^1 \nabla^2 f(x_k + r_k t) r_k dt \qquad \text{Taylor-Formel}$$

$$= \nabla^2 f(x_k)^{-1} \int_0^1 [\nabla^2 f(x_k) - \nabla^2 f(x_k + r_k t)] r_k dt$$

Beweis

Behauptung: $||r_{k+1}||_2 \le \frac{L}{2m} ||r_k||_2^2$

$$r_{k+1} = \nabla^2 f(x_k)^{-1} \int_0^1 [\nabla^2 f(x_k) - \nabla^2 f(x_k + r_k t)] r_k dt$$

$$||r_{k+1}||_{2} \leq ||\nabla^{2} f(x_{k})^{-1}||_{2} \int_{0}^{1} ||\nabla^{2} f(x_{k}) - \nabla^{2} f(x_{k} + r_{k}t)||_{2} ||r_{k}||_{2} dt$$

$$\leq L||r_{k}||_{2}t$$

$$||r_{k+1}||_2 \le \frac{L}{m} \int_0^1 ||r_k||_2^2 t dt \le \frac{L}{2m} ||r_k||_2^2 \leftarrow$$

Globale Konvergenz

- Das Newton-Verfahren entspricht den Schrittweiten $lpha_k \equiv 1$
- Liegt x_0 weit von x_* so kann die Konvergenz fehlschlagen
- Schrittweitenstrategien k\u00f6nnen die Konvergenz globalisieren

 Ged\u00e4mpftes Newton-Verfahren

Zusammenfassung

- Die Newton-Richtung
- Das Newton-Verfahren
- Quadratische Konvergenz

Nächstes Video

• 4b. Newton-artige Verfahren: Quasi-Newton-Verfahren