Семинар 28.

- 1. Обозначим через L лаговый оператор. Найдите значения следующих выражений:
 - (a) $(1+L)^2 y_t$;
 - (b) $\frac{1}{1+0.4L}y_t$;
 - (c) $\frac{1}{1+0.1L^{-1}}y_t$.
- 2. Рассмотрим процесс вида

$$y_t = x_t \times (z_t + z_{t-1}),$$

где $\mathbb{P}(x_t=1)=\mathbb{P}(x_t=-1)=\frac{1}{2},\,\mathbb{P}(z_t=0)=\mathbb{P}(z_t=1)=\frac{1}{2}.$ Известно также, что x_t и x_s — независимы для любых $t\neq s,\,z_t$ и z_s — независимы для любых $t\neq s,$ а также, что x_t и z_s — независимы для любых t,s.

- (a) Стационарен ли процесс y_t ?
- (b) Является ли процесс y_t белым шумом?
- (c) Посчитайте $Cov(y_t^2, y_{t-1}^2)$.
- 3. Пусть $X_1, X_2, X_3, X_4 \sim iid N(0,1)$. Обозначим $L = X_1 + X_2, R = X_2 + X_3,$ $S = X_1 + X_2 + X_3 + X_4$. Вычислите:
 - (a) Corr(L, R);
 - (b) pCorr(L, R; S).
- 4. Пусть $y_t MA(1)$ процесс с уравнением:

$$y_t = \varepsilon_t + 0.5\varepsilon_{t-1}, \ \sigma_{\varepsilon}^2 = 4.$$

- (a) Будет ли процесс y_t стационарным?
- (b) Является ли записанное уравнение данного процесса обратимым относительно белого шума ε_t ? Приведите необратимую запись уравнения данного процесса.
- (c) Постройте теоретическую ACF.
- (d) Постройте теоретическую PACF.