הקדמות

פונקציות סתומות

F(x,y)=0 נאמר כי פונקציה y(x) המוגדרת על קטע א מוגדרת מוגדרת אם נאמר כי פונקציה לכל F(x,y(x))=0 אם מתקיים

כי $x^2+y^2=1$ כי $x^2+y^2=1$ מוגדרת בצורה סתומה ע"י $y_1(x)=\sqrt{1-x^2}$ כי

$$x^{2} + y_{1}(x)^{2} = x^{2} + (\sqrt{1 - x^{2}})^{2} = x^{2} + 1 - x^{2} = 1$$
 $-1 \le x \le 1$

משפט הפונקציות הסתומות: תהי F(x,y) פונקציה בעלת נגזרות חלקיות רציפות בתחום משפט הפונקציות הסתומות: תהי $f'_y(x_0,y_0) \neq 0$ וכך ש־ $f(x_0,y_0) \in D$ ותהי $f'_y(x_0,y_0) \in D$ וכך ש־ $f(x_0,y_0) \in D$ ומכיל את $f'_y(x_0,y_0) \in D$ המוגדרת בקטע פתוח $f'_y(x_0,y_0) \in D$ המימת פונקציה רציפה וגזירה $f'_y(x_0,y_0) \in D$ המוגדרת בקטע פתוח $f'_y(x_0,y_0) \in D$

$$y(x_0) = y_0$$

$$F(x, y(x)) = 0 \quad x \in I$$

$$y'(x_0) = -\frac{F'_x(x_0, y_0)}{F'_y(x_0, y_0)}$$

בנקודה העוברת $x^2+y^2=1$ נחפש פונקציה המוגדרת הצורה סתומה ע"י בנקודה $x^2+y^2=1$ נחפש פונקציה המונקציות הסתומות כדי לוודא שיש רק פונקציה אחת כזו: (0,1)

$$F(x,y) = x^{2} + y^{2} - 1$$

$$F(0,1) = 1$$

$$F'_{y}(x,y) = 2y$$

$$F'_{y}(0,1) = 2 \cdot 1 = 2 \neq 0$$

ולכן יש פונקציה אחת בלבד. הפונקציה היא $y=\sqrt{1-x^2}$ היא בלבד. הפונקציה אחת בלבד. הפונקציה היא בכל נקודה אזי תחום ההגדרה הוא [-1,1] אבל אם אנו דורשים גזירות של הפונקציה בכל נקודה אזי תחום ההגדרה נהיה [-1,1].

האם יש פונקציה יחידה המוגדרת בצורה סתומה ע"י $x^2+y^2=1$ וגם עוברת דרך האם יש פונקציה יחידה הפונקציות אינו $y=\pm\sqrt{1-x^2}$ אינו שתי הפונקציות לא. שתי הפונקציות בי $y=\pm\sqrt{1-x^2}$ המפט הפונקציות הסתומות כי $F_y'(1,0)=0$

שימו לב כי $y=\pm\sqrt{1-x^2}$ הוא צורה סתומה של הפונקציות $x^2+y^2=1$ כאשר האחרון הוא צורה מפורשת של הפונקציות. בקורס זה לפעמים ניתן פונקציות אך ורק לפי צורתן הסתומה. לחלק מהפונקציות לא תהיה צורה מפורשת.

אלגברה

הוא ביטוי ער ווקטורי $\{v_1,\dots,v_n\}$ במרחב הוקטורי על הוא ביטוי מהצורה מהצורה

$$c_1v_1 + \cdots + c_nv_n$$

.כאשר $c_1, \ldots c_n$ הם סקלרים

נאמר שווקטורים W במרחב ווקטורי במרחב ווקטורי במרחב $\{v_1,\dots,v_n\}$ במרחב נאמר שווקטורים על הימים $w\in W$ וגם לכל וגם לכל על $\{v_1,\dots,v_n\}\subset W$

$$w = c_1 v_1 + \dots + c_n v_n$$

 $w\in W$ פלומר אם לכל שנותנת קומבינציה לינארית אל קיימת קומבינציה לינארית אם v_1,\dots,v_n שנותנת אם קיימים נאמר כי ווקטורים v_1,\dots,v_n במרחב ווקטורי אפס, כך ש־ סקלרים v_1,\dots,v_n אשר לא כולם אפס, כך ש־

$$c_1 v_1 + c_2 v_2 + \dots + c_n v_n = 0$$

נאמר שהווקטורים הם בלתי תלויים לינארית אם הם לא תלויים לינארית, כלומר,

$$c_1v_1 + c_2v_2 + \dots + c_nv_n = 0 \iff c_1 = c_2 = \dots = c_n = 0$$

נאמר כי ווקטורים $\{v_1,\dots,v_n\}$ הם בסיס עבור מרחב ווקטורי $\{v_1,\dots,v_n\}$ הם בלתי תלויים לינארית ואם הם פורשים את M המקרה זה נאמר כי המימד של הוא M

המרחבים הווקטורים שיעניינו אותנו הם מרחבים ווקטורים שאבריהם פונקציות. סימונים: עבור קטע בור קטע ווקטורים שיעניינו אותנו הם מרחבים ווקטורים שאבריהם פונקציות. סימונים:

- I הוא המרחב הווקטורי של הפונקציות הרציפות על הקטע. 1
- I הוא המרחב הווקטורי של הפונקציות הגזירות ברציפות על הקטע .2 הוא המרחב הווקטורי הפונקציות הגזירות ברציפות א

הוא המרחב הווקטורי של הפונקציות שהנגזרת מסדר n שלהם היא פונקציה כה הווקטורי של הפונקציות שהנגזרת מסדר $C^n(I)$.3 רציפה על הקטע

למעשה נסתכל על הפונקציה $y(x)=\frac{1}{x}$ לאיזה מרחב ווקטורי היא שייכת? למעשה חייבים לציין את תחום ההגדרה והוא צריך להיות קטע. ולכן אפשר לקחת חייבים לציין את תחום ההגדרה והוא צריך להיות קטע. ולכן אפשר לקחת $C(I_1)$ או $I_1=(0,\infty)$ כך שייכת לי $I_2=(-\infty,0)$ או אפילו מוגדרת אבל גם ליC(-1,1). היא אינה שייכת ליC(-1,1) כי אינה רציפה, או אפילו מוגדרת באפס.

דוגמא: נסתכל על הפונקציות |x| |x| |x| |x| האם הן תלויות לינארית? השאלה אינה מוגדרת היטב כי לא נתנו תחום הגדרה. נסתכל למשל על שלוש מקרים: \mathbb{R} נראה כי במקרה זה הפונקציות בלתי תלויות לינארית. בשלילה, אם הן תלויות לינארית אזי קיימים קבועים c_1, c_2 לא שניהם אפס כך שלכל $x \in \mathbb{R}$ מתקיים

$$c_1x + c_2|x| = 0.$$

בפרט עבור x=1 נקבל

$$c_1 \cdot 1 + c_2 \cdot |1| = c_1 + c_2 = 0.$$

ועבור x = -1 נקבל

$$c_1 \cdot (-1) + c_2 \cdot |-1| = -c_1 + c_2 = 0$$

כלומר

$$c_1 + c_2 = 0$$

$$-c_1 + c_2 = 0$$

אבל הפתרון היחיד של זה הוא $c_1=c_2=0$ ולכן הפונקציות בלתי תלויות לינארית אבל הפתרון היחיד של זה הוא \mathbb{R} הוא הוא

במקרה זה $[0,\infty]$. במקרה זה 2.

$$c_1x + c_2|x| = c_1x + c_2x = (c_1 + c_2)x$$

ולכן הפונקציות הפונקציות אבור $c_1x+c_2|x|=x-x=0$ נקבל נקבל ב $c_1=1=-c_2$ לכל עבור עבור (ולכן עבור הוא המדרה הוא המדרה הוא הוער).

הפונקציות מוגדרות על $[-\infty,0]$. במקרה זה

$$c_1x + c_2|x| = c_1x - c_2x = (c_1 - c_2)x$$

ולכן הפונקציות לכל $c_1x+c_2|x|=x-x=0$ נקבל נקבל בור $c_1=1=c_2$ לכל עבור $c_1=1=c_2$ ולכן הפונקציות האגדרה הוא הוא הוא הוא הוא האגדרה הוא

דוגמא: נראה כי x+1,x-1 פורשים את W שהוא תת המרחב של הפונקציות הרציפות שהוא כל הפולינומים מדרגה 1 לכל היותר:

 $.W^{-1}$ קודם כל, ברור כי x+1,x-1 הם פולינומים מדרגה וולכן שייכים לf(x)=a+bx יהי הי x+1,x-1 עראה כי כל פולינום הוא קומבינציה לינארית של ב c_1,c_2 כך ש־פולינום מדרגה ווער. אנו מחפשים סקלרים כך ער

$$c_1(x+1) + c_2(x-1) = ax + b$$

אז נפתור:

$$c_1(x+1) + c_2(x-1) = ax + b$$

$$(c_1 - c_2) + (c_1 + c_2)x = ax + b$$

$$c_1 - c_2 = b$$

$$c_1 + c_2 = a$$

$$2c_1 = b + a$$

$$c_1 = \frac{a+b}{2}$$

$$c_2 = a - c_1 = a - \frac{a+b}{2} = \frac{a-b}{2}$$

ולכן פורשים. האם הם בלתי תלויים לינארית? צריך לבדוק האם יש סקלרים שונים מאפס כד ש־

$$c_1(x+1) + c_2(x-1) = 0 = 0x + 0$$

אבל לפי חישוב קודם נובע כי

$$c_1 = \frac{a+b}{2} = \frac{0+0}{2} = 0$$
 $c_2 = \frac{a-b}{2} = \frac{0-0}{2} = 0$

W ולכן בלתי תלויים. ולכן הם בסיס עבור

מטריצות

n imes n מגודל A מגודל מספר מספר מספר מחשי או מרוכב λ הוא ערך עצמי (ע"ע) של מטריצה A מגודל $Av=\lambda v$ אם קיים ווקטור שונה מאפס v עבורו עבמי (ו"ע) של הע"ע λ .

 $p(\lambda)=\det(A-\lambda I)$ הוא $n\times n$ מגודל A מגודל (פ"א) של מטריצה A השורשים של הפולינום האופייני הם בדיוק הערכים העצמיים של הפטריצה A. לפי המשפט היסודי של האלגברה יש בדיוק n שורשים לפולינום האופייני כאשר אנו סופרים ריבויים. כלומר יש בדיוק n ערכים עצמיים לכל מטריצה ריבועית מגודל n. הריבוי האלגברי (ר"א) של ע"ע λ הוא הריבוי שלו כשורש של הפולינום האופייני. הריבוי הגיאומטרי (ר"ג) של ע"ע λ הוא המספר המקסימלי של ווקטורים עצמיים בלתי תלויים שיש לו. במילים אחרות, מספר הפתרונות הבלתי תלויים של המשוואה $n-rank(A-\lambda I)$ כלומר $n-rank(A-\lambda I)$

תזכורות: 1. ריבוי אלגברי גדול או שווה לריבוי גיאומטרי.

- n היותר לכל היותר האלגברי האלגברי הוא לפחות אחד והריבוי האלגברי הוא לכל היותר 2.
- 3. מטריצה היא לכסינה אם ורק אם לכל ע"ע של המטריצה הריבוי האלגברי שווה לריבוי הגיאומטרי.
 - .4 שווה למכפלת ה־ע"ע שלה. $\det(A) = |A|$ מטריצה של 4.
 - .5 עקבת המטריצה trace(A) שווה לסכום ה־ע"ע של המטריצה.
- 6. מטריצה A היא הפיכה אם"ם הדטרמיננטה שלה שונה מאפס אם"ם כל הע"ע שלה אם מטריצה $A \cdot x = 0$ שונים מאפס אם"ם למערכת המשוואות
- 7. מטריצה A אינה הפיכה אם"ם הדטרמיננטה של היא אפס אם"ם לפחות אחד הע"ע שלה הוא אפס אם"ם למערכת המשוואות $A \cdot x = 0$ יש פתרון לא טריביאלי כלומר פתרון שאינו ווקטור האפס.

תרגיל: מצאו פ"א ע"ע ו"ע של המטריצה

$$\begin{pmatrix} 3 & -2 \\ 2 & -2 \end{pmatrix}$$

פתרון: נמצא קודם את הע"ע בעזרת הפ"א ואז נמצא את הו"ע המתאימים

$$p(r) = \det(A - rI) = \det\begin{pmatrix} 3 - r & -2 \\ 2 & -2 - r \end{pmatrix} = r^2 - r - 2 = (r+1)(r-2)$$

$$-1: \begin{pmatrix} 3 - (-1) & -2 \\ 2 & -2 - (-1) \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} 4 & -2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$4c - 2d = 0$$

$$2c - d = 0$$

$$\begin{pmatrix} c \\ 2c \end{pmatrix} = c \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$2: \begin{pmatrix} 3 - 2 & -2 \\ 2 & -2 - 2 \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 \\ 2 & -4 \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$c - 2d = 0$$

$$2c - 4d = 0$$

$$\begin{pmatrix} 2d \\ d \end{pmatrix} = d \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

כלומר כל הו"ע של הע"ע $c \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ וכל המצורה הם הע"ע הם הע"ע כלומר כל הו"ע הם מהצורה . $d \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

תרגיל: מצאו פ"א ע"ע ו"ע

$$\begin{pmatrix} 3 & -2 \\ 4 & -1 \end{pmatrix}$$

פתרון: נמצא קודם את הע"ע בעזרת הפ"א ואז נמצא את הו"ע המתאימים

$$p(r) = \det(A - rI) = \det\begin{pmatrix} 3 - r & -2 \\ 4 & -1 - r \end{pmatrix} = r^2 - 2r + 5$$

$$1 \pm 2i$$

$$1 + 2i : \begin{pmatrix} 3 - (1+2i) & -2 \\ 4 & -1 - (1+2i) \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 2 - 2i & -2 \\ 4 & -2 - 2i \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$(2 - 2i)c - 2d = 0$$

$$4c + (-2 - 2i)d = 0$$

$$\begin{pmatrix} c \\ c(1-i) \end{pmatrix} = c \begin{pmatrix} 1 \\ 1-i \end{pmatrix}$$

 $c\left(egin{array}{c}1\\1+i\end{array}
ight)$ הם 1-2i שימו של הע"ע אז הו"ע ממשית היא ממשית אז הו"ע של הע"ע אז הוקטורים הצמודים לו"ע של הע"ע אז הוקטורים הצמודים לו"ע של הע"ע של הע"ע אז הו

טורי חזקות

טור חזקות סביב a הוא ביטוי מהצורה $a_n(x-a)^n$. הטור תמיד מתכנס עבור $\sum_{n=0}^\infty a_n(x-a)^n$ ביטוי $a_n(x-a)^n=a_n$. רדיוס ההתכנסות של טור חזקות הוא מספר $a_n(x-a)^n=a_n$ כי $a_n(x-a)^n=a_n$ כי $a_n(x-a)^n=a_n$ כך שאם $a_n(x-a)^n=a_n$ אז הטור מתכנס, כלומר $a_n(x-a)^n=a_n$ קיים, ועבור $a_n(x-a)^n=a_n$ הטור מתבדר. $a_n(x-a)^n=a_n$ יש יחס בין מקדמי הטור לבין הפונקציה $a_n(x-a)^n=a_n$ ויחס זה נובע מנוסחת טיילור והוא $a_n=\frac{f^{(n)}(a)}{n!}$ או $a_n=\frac{f^{(n)}(a)}{n!}$

$$f(x) = \sum_{n=0}^{\infty} a_n (x - a)^n$$

$$f'(x) = \sum_{n=0}^{\infty} n a_n (x - a)^{n-1} = \sum_{n=1}^{\infty} n a_n (x - a)^{n-1}$$

$$f''(x) = \sum_{n=0}^{\infty} n(n-1) a_n (x - a)^{n-2} = \sum_{n=2}^{\infty} n(n-1) a_n (x - a)^{n-2}$$

רדיוס ההתכנסות של הטור של הנגזרת הוא אותו רדיוס התכנסות של הטור של הפונקציה המקורית.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \qquad R = \infty$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} \qquad R = \infty$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!} \qquad R = \infty$$

$$\ln(1+x) = 1 - x + \frac{x^{2}}{2} - \frac{x^{3}}{3} + \dots = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{n}}{n} \qquad R = 1$$

$$\frac{1}{1-x} = 1 + x + x^{2} + \dots = \sum_{n=0}^{\infty} x^{n} \qquad R = 1$$

כל פולינום הוא טור טיילור סביב a=0 של עצמו ויש לו רדיוס התכנסות אינסוף אבל גם לכל טור חזקות סביב a של פולינום יש רדיוס התכנסות אינסוף.

$$a=1$$
 סביב $p(x)=x^2+x+1$ מביב סור מצא טור מצא

$$p(x) = x^{2} + x + 1 \to p(1) = 3$$

$$p'(x) = 2x + 1 \to p'(1) = 3$$

$$p''(x) = 2 \to p''(1) = 2$$

$$p'''(x) = 0 \to p^{(n)}(1) = 0 \quad n \ge 3$$

$$p(x) = \sum_{n=0}^{\infty} \frac{p^{(n)}(1)(x-a)^{n}}{n!} = p(1) + p'(1)(x-1) + p''(1)\frac{(x-1)^{2}}{2!} = 3 + 3(x-1) + 2\frac{(x-1)^{2}}{2} = 3 + 3(x-1) + (x-1)^{2}$$