Machine Learning Spring 2021

Lecture 8: Algorithm Stability and Generalization, Clustering

Lecturer: Liwei Wang Scribe: Jianing Lou, Xuanyu Peng, Yuedi Chen, Zhao Zhang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

8.1 Term Project 3

Deep learning has a large number of parameters, which often exceed the number of data. Therefore, the generalization of deep learning is a problem worth studying. Read the paper *Uniform Convergence May be unable to Explain the Generalization in deep learning*. If agree with the article, trying to construct general case; Give reasons for disagreeing.

8.2 Algorithmic Stability and Generalization

Definition 8.1 (Uniform Stability) Let \mathcal{A} be a learning algorithm. $S = (z_1, \dots, z_n)$ be a training dataset. Let $S^i = (z_1, \dots, z_{i-1}, z'_i, z_{i+1}, \dots, z_n)$ denote a neighboring dataset. Let $\mathcal{A}(S)$ denote a classifier learned by \mathcal{A} from S. Let $\ell(\cdot, \cdot)$ be a loss function.

A learning algorithm \mathcal{A} is said to have uniform stability β with respect to loss $\ell(\cdot,\cdot)$, if $\forall S, \forall i, \forall S^i, \forall z$,

$$|\ell(\mathcal{A}(S), z) - \ell(\mathcal{A}(S^i), z)| < \beta$$

Theorem 8.2 (Uniform stability implies generalization) Define the risk (similar to test error) as follows,

$$R(\mathcal{A}(S)) = \mathbb{E}_{z \sim D}[\ell(\mathcal{A}(S), z)]$$

And define the empirical risk (similar to training error) as follows,

$$R_{emp}(\mathcal{A}(S)) = \frac{1}{n} \sum_{i=1}^{n} \ell(\mathcal{A}(S), z_i)$$

Then assume $|\ell(\cdot,\cdot)| \leq M$, we have

$$\mathbb{P}(R(\mathcal{A}(S)) - R_{emp}(\mathcal{A}(S)) \ge \beta + \epsilon) \le \exp\left(\frac{-n\epsilon^2}{2(n\beta + M)^2}\right)$$

The proof of 8.2 is based on the following lemmas.

Lemma 8.3 Suppose \mathcal{A} is symmetric with respect to (z_1, \dots, z_n) , i.e. for any permutation σ , $\mathcal{A}(z_1, \dots, z_n) = \mathcal{A}(\sigma(z_1, \dots, z_n))$, then

$$\mathbb{E}_S[R(\mathcal{A}(S)) - R_{emp}(\mathcal{A}(S))] \le \beta \tag{8.1}$$

Proof: On the one hand,

$$\mathbb{E}_{S}[R_{emp}(\mathcal{A}(S))] = \mathbb{E}_{S}\left[\frac{1}{n}\sum_{i=1}^{n}l(\mathcal{A}(S), z_{i})\right]$$
$$= \mathbb{E}_{S}[l(\mathcal{A}(S), z_{1})]$$

That is because $l(A(z_1, \dots, z_i, \dots, z_n), z_i) = l(A(z_i, \dots, z_1, \dots, z_n), z_1) = l(A(S), z_1)$, according to the symmetry of A. On the other hand,

$$\mathbb{E}_{S}[R(\mathcal{A}(S))] = \mathbb{E}_{S}\mathbb{E}_{z}[l(\mathcal{A}(S), z)]$$
$$= \mathbb{E}_{z_{1}, \dots, z_{n}, z}[l(\mathcal{A}(S), z)]$$

That means the expected loss on the random data z_1, \dots, z_n, z . Switch z and z_1 , we have

$$\mathbb{E}_S[R(\mathcal{A}(S))] = \mathbb{E}_S[l(\mathcal{A}(S'), z_1)]$$

where S' denotes (z, z_2, \dots, z_n) . According to the definition of β ,

$$\mathbb{E}_{S}[R(\mathcal{A}(S)) - R_{emp}(\mathcal{A}(S))] = \mathbb{E}_{S}[l(\mathcal{A}(S), z_{1}) - l(\mathcal{A}(S'), z_{1})]$$

$$< \beta$$

Lemma 8.4 (McDiarmid's Inequality) Suppose $|f(x_1, \dots, x_n) - f(x_1, \dots, x_i', \dots, x_n)| \le c_i, \forall i \in [n], \forall x_1, \dots, x_i, \dots, x_n$. Then

$$\mathbb{P}(f(X_1,\dots,X_n) - \mathbb{E}f(X_1,\dots,X_n) \ge \epsilon) \le \exp\{-\frac{2\epsilon^2}{\sum c_i^2}\}$$
(8.2)

Lemma 8.5 Assume $|l(\cdot,\cdot)| \leq M$,

$$\left| \left[R(\mathcal{A}(S)) - R_{emp}(\mathcal{A}(S)) \right] - \left[R(\mathcal{A}(S^i)) - R_{emp}(\mathcal{A}(S^i)) \right] \right| \le 2(\beta + \frac{M}{n})$$
(8.3)

Proof:

$$\begin{aligned} & \left| \left[R(\mathcal{A}(S)) - R_{emp}(\mathcal{A}(S)) \right] - \left[R(\mathcal{A}(S^{i})) - R_{emp}(\mathcal{A}(S^{i})) \right] \right| \\ & \leq & \left| R_{emp}(\mathcal{A}(S)) - R_{emp}(\mathcal{A}(S^{1})) \right| + \left| R(\mathcal{A}(S)) - R(\mathcal{A}(S^{1})) \right| \\ & \leq & \frac{1}{n} \left| l(\mathcal{A}(S), z_{1}) - l(\mathcal{A}(S^{1}), z'_{1}) \right| + \\ & \frac{1}{n} \sum_{i=2}^{n} \left| l(\mathcal{A}(S), z_{i}) - l(\mathcal{A}(S^{1}), z_{i}) \right| + \\ & \mathbb{E}_{z}[l(\mathcal{A}(S), z) - l(\mathcal{A}(S^{1}), z)] \\ & \leq & \frac{1}{n} (\left| l(\mathcal{A}(S), z_{1}) - l(\mathcal{A}(S^{1}), z_{1}) \right| + \left| l(\mathcal{A}(S^{1}), z_{1}) \right| + \left| l(\mathcal{A}(S^{1}), z'_{1}) \right|) + \frac{n-1}{n} \beta + \beta \\ & \leq & 2(\beta + \frac{M}{n}) \end{aligned}$$

Though loss functions are usually unbounded, 8.3 still holds. That's because the proof only uses $|l(\mathcal{A}(S^1), z_1)| \leq M$ and $|l(\mathcal{A}(S^1), z_1')| \leq M$, which are ensured by the bounded data.

Finally, we conclude the proof of Theorem 8.2:

Proof: Denote $\Phi(S) = R(\mathcal{A}(S)) - R_{emp}(\mathcal{A}(S))$. According to Lemma 8.3, we have

$$\mathbb{P}(\Phi(S) \ge \beta + \epsilon) \le \mathbb{P}(\Phi(S) - \mathbb{E}_S[\Phi(S))] \ge \epsilon)$$

Lemma 8.5 means that $\Phi(S)$ is a stable function, where $c_i = 2(\beta + \frac{M}{n})$, then we can used McDiarmid's Inequality to get the result,

$$\mathbb{P}(\Phi(S) - \mathbb{E}_S[\Phi(S))] \ge \epsilon) \le \exp\left(\frac{2\epsilon^2}{\sum_{i=1}^n c_i^2}\right) = \exp\left(\frac{-n\epsilon^2}{2(n\beta + M)^2}\right)$$

8.3 Clustering

Clustering is an unsupervised learning task, and is described as follows:

Given a set of datas $\{x_1, x_2, ..., x_n\}$ and a non-zero integer $k \leq n$, where each data is a d-dimensional real vector, clustering (k-means clustering) aims to partition these n datas into k sets $S_1, S_2, ..., S_k$ so as to minimize the following loss function

$$\phi = \sum_{i=1}^k \sum_{\boldsymbol{x} \in S_i} ||\boldsymbol{x} - \boldsymbol{\mu}_i||^2$$

where μ_i is the cluster center of S_i .

The most common algorithm is "k-means algorithm".

Algorithm 8.3.1: *k*-means algorithm

- 1 Initialize: choose k points randomly as the cluster centers m_1, \ldots, m_k ;
- 2 do
- 3 Assign each data to the cluster center with the nearest mean;
- 4 | $S_i \leftarrow \{x_j : x_j \text{ is assigned to } m_i\}, \forall i;$
- 5 $m_i \leftarrow$ the mean of points in $S_i, \forall i$;
- **6 while** k cluster centers changes;
- **7 return** $m_1, ..., m_k;$

However, this naive algorithm is only guaranteed to find a local optimum.

Improvement: k-means++

We can optimize the "initialize" step in line 1 as follows:

Algorithm 8.3.2: Improved initialization

- 1 Choose one center uniformly at random among the data points;
- 2 for $i:2\rightarrow k$ do
- Choose one new data point at random as a new center, a point x is chosen with probability proportional to $||x m^*||^2$, where $m^* \in \{m_1, \dots, m_{i-1}\}$ and is nearest to x.
- 4 end

Letting ϕ_{OPT} denote the global optimal loss, it has been proved by Arthur and Vassilvitskii[1] that after choosing centers in this way, we have

$$\mathbb{E}[\phi] \le 8(\ln k + 2)\phi_{OPT}$$

References

[1] Arthur, D.; Vassilvitskii, S. (2007). "k-means++: the advantages of careful seeding". *Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms*. Society for Industrial and Applied Mathematics Philadelphia, PA, USA. pp. 1027–1035.