Dinamica rotazionale

Argomenti della lezione

- Posizione angolare
- Velocità angolare
- Accelerazione angolare
- Energia cinetica rotazionale
- Momento d'inerzia
- Momento di una forza
- Momento angolare
- Rotolamento

- Slides da P. Giannozzi

Dinamica Rotazionale

- Richiamo: cinematica rotazionale, velocità e accelerazione angolare
- Energia cinetica rotazionale: momento d'inerzia
- Equazione del moto rotatorio: momento delle forze
- Leggi di conservazione per il moto rotatorio: momento angolare

Posizione angolare

Come possiamo descrivere la posizione angolare in un moto di rotazione di un corpo rigido? Prendiamo per semplicità il caso di un disco.

- Si sceglie una linea di riferimento
- ullet Un punto P a distanza r dall'origine ruoterà attorno all'origine in un cerchio di raggio r

- Ogni particella nel corpo rigido percorre un moto circolare attorno all'origine O
- Conviene usare coordinate polari per rappresentare la posizione di P (o di altri punti): $P = (r, \theta)$, dove r è la distanza dall'origine a P e θ è misurato dalla linea di riferimento in senso antiorario

Posizione angolare

- ullet Se la particella si muove, la sola coordinata che cambia è heta
- ullet Se la particella ruota di heta, percorre un arco di lunghezza s, legato a r da s=r heta

- ullet Possiamo associare l'angolo heta all'intero corpo rigido come pure alle particelle individuali che lo compongono Ricordate che ogni particella dell'oggetto ruota dello stesso angolo
- La posizione angolare del corpo rigido è l'angolo θ fra la linea di riferimento sul corpo e la linea fissa di riferimento nello spazio La linea fissa di riferimento nello spazio è spesso presa come asse x

Spostamento angolare

 Lo spostamento angolare è definito come l'angolo di rotazione dell'oggetto in un intervallo di tempo finito:

$$\Delta \theta = \theta_f - \theta_i$$

ullet E' l'angolo spazzato dalla linea di riferimento di lunghezza r

• La velocità angolare *media* $\overline{\omega}$ di un corpo rigido in rotazione è il rapporto fra spostamento angolare e intervallo di tempo:

$$\overline{\omega} = \frac{\theta_f - \theta_i}{t_f - t_i} = \frac{\Delta \theta}{\Delta t}$$

Velocità angolare

• La velocità angolare istantanea ω è definita come il limite della velocità angolare media $\overline{\omega}$ quando l'intervallo di tempo tende a zero:

$$\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$$

- Unità della velocità angolare: radianti/s, o anche s⁻¹ (i radianti non hanno dimensione)
- La velocità angolare è positiva se θ aumenta (rotazione in senso antioriario), negativa se θ diminuisce (rotazione in senso orario)
- Notare l'analogia fra velocità per il moto lineare e velocità angolare per il moto rotazionale

Accelerazione angolare

• L'accelerazione angolare media, $\overline{\alpha}$, di un corpo è definita come il rapporto fra variazione della velocità angolare e il tempo richiesto per la variazione:

$$\overline{\alpha} = \frac{\omega_f - \omega_i}{t_f - t_i} = \frac{\Delta\omega}{\Delta t}$$

L'accelerazione angolare istantanea α è il limite dell'accelerazione angolare media $\overline{\alpha}$ quando l'intervallo di tempo tende a zero:

$$\alpha = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt} = \frac{d^2 \theta}{dt^2}$$

Le unità dell'accelerazione angolare sono radianti/s², oppure s⁻²
(giacché i radianti non hanno dimensioni)

Velocità e accelerazione

La velocità in un corpo che ruota attorno ad un asse è sempre *tangente* al percorso:

 $v = v_T$ (velocità tangenziale).

L'accelerazione ha una componente tangenziale:

$$a_T = \frac{dv}{dt} = r\alpha$$

e una radiale, o centripeta:

$$a_c = \frac{v^2}{r} = r\omega^2$$

$$\operatorname{con}\, |\vec{a}| = \sqrt{a_T^2 + a_c^2} = r \sqrt{\alpha^2 + \omega^4}$$

Direzione e verso

- Velocità e accelerazione angolare possono essere definiti come *vettori* $\vec{\omega}$ e $\vec{\alpha}$, rispettivamente di modulo ω e α , diretti lungo l'asse di rotazione
- Il verso di $\vec{\omega}$ è dato dalla regola della mano destra
- $\vec{\alpha}$ è diretto come $\vec{\omega}$ se la velocità angolare aumenta, in senso opposto se la velocità angolare diminuisce

Con questa definizione, la velocità di un punto del corpo rigido può essere scritta in generale come $\vec{v} = \vec{\omega} \times \vec{r}$, ovvero $v = \omega r_{\perp}$, dove r_{\perp} è la distanza dall'asse. Questa è l'espressione da usare in tre dimensioni.

Cinematica rotazionale

Per accelerazione angolare costante (in modulo, direzione e verso!) si può descrivere il moto del corpo rigido usando delle equazioni cinematiche: l'analogo rotazionale delle equazioni cinematiche del moto lineare. Matematicamente:

$$\omega(t) = \omega_0 + \alpha t$$
 , $\theta(t) = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$

La relazione fra quantità lineari ed angolari è semplicemente

$$s(t) = \theta r_{\perp}$$
 , $v(t) = \omega r_{\perp}$, $a_t = \alpha r_{\perp}$

dove a_t è l'accelerazione tangenziale e r_{\perp} la distanza dall'asse di rotazione (attenzione: non dall'origine!)

Notare che tutti i punti del corpo ruotante hanno lo stesso moto angolare, ma hanno moto lineare differente.

Energia cinetica rotazionale

Un corpo ruotante con velocità angolare ω possiede un'energia cinetica rotazionale. Ogni particella del corpo ha energia cinetica $K_i = \frac{1}{2} m_i v_i^2$, dove $v_i = \omega r_{\perp i}$. L'energia cinetica rotazionale è la somma di tali energie:

$$K_R = \sum_{i} K_i = \sum_{i} \frac{1}{2} m_i v_i^2 = \frac{1}{2} \left(\sum_{i} m_i r_{\perp i}^2 \right) \omega^2 \equiv \frac{1}{2} I \omega^2$$

dove I è noto come *momento d'inerzia*.

Notare l'analogia fra energie cinetiche associate al moto lineare: $K=\frac{1}{2}mv^2$, e associate al moto rotazionale, $K_R=\frac{1}{2}I\omega^2$.

L'energia cinetica rotazionale non è un nuovo tipo di energia! E' energia cinetica e si misura nelle stesse unità, joule (J)

Momento d'inerzia

Definizione del momento d'inerzia: $I = \sum_i m_i r_{\perp i}^2$ (Unità SI: kg·m²).

- Il momento d'inerzia dipende dall'asse di rotazione! (ma può essere calcolato rispetto a qualunque origine, purché sull'asse di rotazione).
- Si può calcolare il momento d'inerzia di un corpo dividendolo in piccoli elementi di volume, ognuno di massa Δm_i . Nel limite continuo:

$$I = \lim_{\Delta m_i \to 0} \sum_i \Delta m_i r_{\perp i}^2 = \int r_{\perp}^2 dm.$$

• Come per il centro di massa, tale integrale è in generale complicato, salvo per corpi di densità ρ costante (in tal caso $dm = \rho dV$ e ci si riduce a un integrale di volume), oggetti di forma semplice, asse di rotazione simmetrico.

Esempi

Modello di una molecola biatomica omonucleare: due atomi di massa
 M a distanza d, rispetto ad un asse passante per il centro:

$$I = M\left(\frac{d}{2}\right)^2 + M\left(\frac{-d}{2}\right)^2 = \frac{1}{2}Md^2$$

• Momento d'inerzia di un cilindro omogeneo attorno al suo asse: poniamo $\rho = M/(\pi R^2 L)$, $dm = \rho(2\pi r L)dr$.

$$I = \int_0^R r^2 \rho(2\pi r L) dr = \frac{2M}{R^2} \int_0^R r^3 dr$$
$$= \frac{2M}{R^2} \frac{R^4}{4} = \frac{MR^2}{2}$$

Momento d'inerzia per vari corpi

Guscio cilindrico sottile:

$$I = MR^2$$

Sfera:

$$I = \frac{2}{5}MR^2$$

Sbarra sottile, asse passante per il centro:

$$I = \frac{1}{12}ML^2$$

Sbarra sottile, asse passante per un estremo:

$$I = \frac{1}{3}ML^2$$

Un teorema utile sul momento d'inerzia

ullet Il momento d'inerzia I di un corpo di massa M rispetto ad un certo asse è dato da

$$I = I_{cm} + Md^2$$

dove I_{cm} è il momento d'inerzia rispetto ad un asse parallelo a quello considerato, distante d da questo, e passante per il centro di massa del sistema considerato.

Dimostrazione: chiamiamo \vec{r}_i e $\vec{r}_i' = \vec{r}_i + \vec{d}$ le posizioni rispetto al primo asse e rispetto al centro di massa. Vale:

$$I = \sum_{i} m_{i} r_{\perp i}^{2} = \sum_{i} m_{i} [(\vec{r}_{i}' + \vec{d})_{\perp}]^{2} = \sum_{i} m_{i} r_{\perp i}'^{2} + \sum_{i} m_{i} d_{\perp}^{2} + 2 \sum_{i} m_{i} \vec{r}_{i}' \cdot \vec{d}_{\perp}$$

(notare che $\vec{r}_{\perp} = \vec{r} - \hat{n}(\hat{n} \cdot \vec{r})$, dove \hat{n} è il versore dell'asse di rotazione) ma per definizione, $\sum m_i \vec{r}_i' = 0$ (il centro di massa è nell'origine) da cui l'enunciato.

Momento della forza

Se è la forza che cambia il moto, cos'è che cambia la rotazione?

- ullet Momento, $ec{ au}$, di una forza, $ec{F}$: è un vettore definito come $ec{ au}=ec{r} imesec{F}$
- Il momento di una forza dipende dall'origine e dal punto ove la forza è applicata! (tipicamente, l'origine è scelta su di una asse di rotazione)

- ullet ϕ è l'angolo fra la forza ec F e il vettore ec r fra l'origine e il punto di applicazione della forza
- $\tau = rF\sin\phi = dF$ dove $d = r\sin\phi$ è il *braccio del momento* o della leva

Momento della forza

- Il momento della forza ci dà la "tendenza" di una forza a far ruotare un corpo (attorno ad un certo asse).
- Solo la componente della forza ortogonale a \vec{r} produce momento, ovvero tende a far ruotare un corpo

- ullet La componente lungo $ec{r}$ della forza *non produce momento*, ovvero non tende a far ruotare un corpo
- Il momento è *positivo* se la rotazione indotta è *antioraria*

Unità SI del momento: N·m. Attenzione: benché il momento sia una forza moltiplicata per una distanza, è molto diverso da lavoro ed energia! Il momento non si indica *mai* in Joule.

Equilibrio di un corpo rigido

Il momento totale (o risultante) è la somma vettoriale dei momenti.

- Nell'esempio accanto, la forza \vec{F}_1 tenderà a causare una rotazione antioraria del corpo; la forza \vec{F}_2 tenderà a causare una rotazione oraria del corpo.
- $\tau = |\vec{\tau}_1 + \vec{\tau}_2| = (d_1F_1 d_2F_2)$; il vettore $\vec{\tau}$ è ortogonale al piano.

Condizioni di equilibrio statico per un corpo rigido:

$$\sum_{i} \vec{F_i} = 0$$
 ; $\sum_{i} \vec{\tau_i} = 0$

Momento angolare

Se il momento è l'analogo rotazionale della forza, qual è l'analogo rotazionale della quantità di moto?

Momento angolare: è un vettore, di solito indicato con \vec{L} , definito come

$$\vec{L} = \vec{r} \times \vec{p}$$

dove $\vec{p}=m\vec{v}$ è la quantità di moto di una particella.

- E' noto anche come momento della quantità di moto
- Il suo valore dipende dalla scelta dell'origine
- E' nullo se $\vec{r} \parallel \vec{p}$, ha modulo $L = rp\sin\phi$, dove ϕ è l'angolo fra \vec{r} e \vec{p} .

Equazioni del moto angolari

Dalla II legge di Newton, scelta un'origine, troviamo:

$$\frac{d\vec{L}}{dt} = \frac{d(\vec{r} \times \vec{p})}{dt} = \frac{d\vec{r}}{dt} \times \vec{p} + \vec{r} \times \frac{d\vec{p}}{dt} = \frac{1}{m} \vec{p} \times \vec{p} + \vec{r} \times \vec{F} = \vec{\tau}$$

Quindi,
$$\left| rac{d ec{L}}{dt} = ec{ au}
ight|$$
 , analogo rotazionale della II Legge di Newton.

- Non è una nuova legge fondamentale della dinamica! E' la II legge di Newton, specializzata al caso del moto rotatorio
- ullet \vec{L} e $\vec{ au}$ sono calcolati rispetto agli stessi assi e alla stessa origine fissa; tuttavia la legge vale qualunque siano gli assi e l'origine scelta
- Valido per sistemi di riferimento inerziali.

Momento angolare di un sistema di particelle

Il momento angolare di un sistema di particelle è la somma vettoriale dei momenti angolari di ogni particella:

$$\vec{L}_{tot} = \vec{L}_1 + \vec{L}_2 + \ldots + \vec{L}_n = \sum_{i=1}^n \vec{L}_i$$

Differenziando rispetto al tempo:

$$\frac{d\vec{L}_{tot}}{dt} = \sum_{i=1}^{n} \frac{d\vec{L}_{i}}{dt} = \sum_{i=1}^{n} \vec{\tau}_{i} = \vec{\tau}_{tot}$$

dove $\vec{\tau}_{tot}$ è il momento totale delle forze. Analogamente al caso della quantità di moto, solo il momento delle forze *esterne* è responsabile per la variazione del momento angolare!

Per un corpo rigido, il momento angolare totale diventa un integrale.

Momento angolare di un corpo rigido

Consideriamo un caso semplice: disco ruotante con velocità angolare ω

$$L = \sum_{i} L_{i} = \sum_{i} m_{i} v_{i} r_{\perp i} = \sum_{i} m_{i} r_{\perp i}^{2} \omega \equiv I \omega$$

dove I è il momento d'inerzia del disco (attorno all'asse di rotazione). Si può dimostrare che tale relazione ha validità generale e può essere scritta sotto forma vettoriale: $\vec{L} = I\vec{\omega}$. Questa è l'analogo rotazionale della relazione fra velocità e quantità di moto.

La relazione fra momento e accelerazione angolare:

$$\vec{\tau} = \frac{d\vec{L}}{dt} = I\vec{\alpha}$$

valida per asse di rotazione fisso, è l'analogo rotazionale di $\vec{F} = m\vec{a}$.

Conservazione momento angolare

Il momento angolare di un corpo, o di un sistema di particelle, è conservato se la risultante dei momenti delle forze esterne è nulla:

$$ec{L} = \mathsf{costante} \Longrightarrow ec{L}_f = ec{L}_i$$

durante un processo in cui non agiscano momenti esterni.

Ciò rimane vero anche se la massa si ridistribuisce e il momento d'inerzia cambia durante il processo. Se l'asse di rotazione rimane fisso, vale la relazione:

$$L = I_f \omega_f = I_i \omega_i$$

dove $I_{i,f}$ sono i momenti d'inerzia iniziale e finale, $\omega_{i,f}$ le velocità angolari iniziale e finale. Se $I_f > I_I$, allora $\omega_f < \omega_i$ e viceversa.

Lavoro nel moto rotazionale

Qual \grave{e} il lavoro (W) fatto da una forza su di un corpo che sta ruotando?

$$dW = \vec{F} \cdot d\vec{s} = (F \sin \phi)(rd\theta) = \tau d\theta$$

componente radiale della forza, $F\cos\phi$, non fa lavoro perché ortogonale allo spostamento

Teorema dell'energia cinetica, versione "rotazionale":

$$W = \int_{\theta_i}^{\theta_f} \tau d\theta = \int_{\omega_i}^{\omega_f} I \omega d\omega = \Delta K_R \quad , \quad K_R = \frac{1}{2} I \omega^2$$

In presenza di traslazioni e rotazioni: $W = \Delta K + \Delta K_R$.

$$W = \Delta K + \Delta K_R$$

Lavoro nel moto rotazionale

Qual \grave{e} il lavoro (W) fatto da una forza su di un corpo che sta ruotando?

$$dW = \vec{F} \cdot d\vec{s} = (F \sin \phi)(rd\theta) = \tau d\theta$$

componente radiale della forza, $F\cos\phi$, non fa lavoro perché ortogonale allo spostamento

Teorema dell'energia cinetica, versione "rotazionale":

$$W = \int_{\theta_i}^{\theta_f} \tau d\theta = \int_{\omega_i}^{\omega_f} I \omega d\omega = \Delta K_R \quad , \quad K_R = \frac{1}{2} I \omega^2$$

In presenza di traslazioni e rotazioni: $W = \Delta K + \Delta K_R$.

$$W = \Delta K + \Delta K_R$$

Potenza nel moto rotazionale

Il lavoro fatto per unità di tempo è detto potenza:

$$\mathcal{P} = \frac{dW}{dt} = \tau \frac{d\theta}{dt} = \tau \omega.$$

Questo è l'analogo di P = Fv per il moto rotatorio.

Riassunto: moto rotazionale

	Moto di traslazione	Moto rotatorio
		(attorno ad un asse fisso)
Massa	m	I
velocità	$ec{v}$	$ec{\omega}$
Quantità di moto	$\vec{p} = m\vec{v}$	$ec{L} = I ec{\omega}$
Energia cinetica	$K = \frac{1}{2}mv^2$	$K_R = \frac{1}{2}I\omega^2$
Equilibrio	$\sum ec{F} = 0$	$\sum \vec{ au} = 0$
II Legge di Newton	$\sum_{i} \vec{F} = 0$ $\sum_{i} \vec{F} = m\vec{a}$	$\sum_{\vec{\tau}} \vec{\tau} = 0$ $\sum_{\vec{\tau}} \vec{\tau} = I\vec{\alpha}$
alternativamente	$\vec{F} = \frac{d\vec{p}}{dt}$	$\vec{ au} = rac{d\vec{L}}{dt}$
Legge di conservazione		$ec{L}=$ costante
Potenza	P = Fv	$\mathcal{P} = \tau \omega$

Riassunto: leggi di conservazione

Per un sistema isolato (non sottoposto a forze esterne) valgono:

- 1. Conservazione dell'energia cinetica, $K_f = K_i$
- 2. Conservazione della quantità di moto, $\vec{p}_f = \vec{p}_i$
- 3. Conservazione del momento angolare, $ec{L}_f = ec{L}_i$

Per sistemi sotto forze conservative: conservazione dell'energia meccanica, $E_f = K_f + U_f = K_i + U_i = E_i$.

Moto di rotolamento puro

Definizione: quando un corpo rotola senza strisciare, ovvero la velocità del punto di contatto (P in figura) lungo il piano di contatto è *nulla*.

Il moto di rotolamento puro può essere descritto come un moto di rotazione attorno ad un asse istantaneo passante per il punto P, di velocità angolare ω ; il centro di massa ha velocità $v_{cm}=\omega R$, dove R è il raggio della ruota. Il punto P ha velocità nulla!

Descrizione alternativa: moto di traslazione del centro di massa con velocità v_{cm} , più un moto rotatorio attorno al centro di massa con velocità angolare ω . Valgono le seguenti relazioni:

$$v_{cm} = \frac{ds}{dt} = R\frac{d\theta}{dt} = R\omega$$
 , $a_{cm} = \frac{dv_{cm}}{dt} = R\frac{d\omega}{dt} = R\alpha$

Moto di rotolamento puro II

In verde la traiettoria del centro di massa (che è anche il centro della ruota), in rosso la traiettoria del punto P (nota come *cicloide*).

Il moto di rotolamento puro *non* è possibile senza attrito, altrimenti l'oggetto scivolerebbe. Tuttavia l'attrito *non fa lavoro*: $dW = \vec{F} \cdot d\vec{r} = 0$ perché il moto istantaneo del punto P di contatto ha componente solo verticale!

Equilibrio di un corpo rigido

Scala uniforme di lunghezza ℓ e massa m, appoggiata a parete verticale liscia. Qual è θ_{min} per il quale la scala scivola, se $\mu_s = 0.4$ con il suolo?

Condizione di equilibrio sulle forze: n=mg, $P=f_a\leq mg\mu_s$. Condizione di equilibrio sui momenti (che conviene calcolare rispetto al punto O): $mg(\ell/2)\cos\theta=\ell\sin\theta P$ da cui $P=(mg/2\tan\theta)\leq mg\mu_s$, condizione che può essere rispettata solo se $\tan\theta\geq (1/2\mu_s)=1.25$, ovvero $\theta_{min}=51^\circ$.

Momento delle forze gravitazionali

Notare che il momento delle forze gravitazionali agenti su di un corpo è uguale al momento della forza peso, concentrata nel centro di massa:

$$\vec{ au} = \sum_i \vec{r_i} \times (m_i \vec{g}) = \left(\sum_i m_i \vec{r_i}\right) \times \vec{g}$$

ma per la definizione di centro di massa:

$$\sum_{i} m_{i} \vec{r}_{i} = \left(\sum_{i} m_{i}\right) \vec{R}_{cm} = M_{cm} \vec{R}_{cm}$$

da cui

$$\vec{\tau} = \vec{R}_{cm} \times (M_{cm}\vec{g})$$

Esercizio

Una ruota di raggio R, massa M, momento di inerzia I può ruotare su di un asse orizzontale. Una corda è avvolta attorno alla ruota e regge un oggetto di massa m. Calcolare l'accelerazione angolare della ruota, l'accelerazione lineare dell'oggetto, la tensione della corda (si trascurino massa della corda, attrito, resistenza dell'aria, etc.)

Soluzione

Momento torcente esercitato sulla ruota: au=TR, dove T è la forza esercitata dalla corda sul bordo della ruota. Da $I\alpha= au$ si ottiene $\alpha=\frac{TR}{I}$.

Legge di Newton per l'oggetto sospeso:

$$mg - T = ma$$
 \rightarrow $a = \frac{mg - T}{m}$

Relazione che lega a e α : $a=R\alpha$, da cui

$$a = R\alpha = \frac{TR^2}{I} = \frac{mg - T}{m}$$

$$T = \frac{mg}{1 + (mR^2/I)}$$

Energia cinetica di un corpo che rotola

Corpo rigido di massa M, velocità del centro di massa v, momento d'inerzia I per rotazioni attorno al centro di massa, velocità angolare ω .

Energia cinetica totale:

$$K=\frac{1}{2}Mv^2+\frac{1}{2}I\omega^2$$

Esempio: sfera (o cilindro) che rotola giù per un piano inclinato. Avremo:

 $v = \omega R$, $I = \frac{2}{5}MR^2 \Longrightarrow K = \left(\frac{1}{2} + \frac{1}{5}\right)Mv^2 = \frac{7}{10}Mv^2$

Per la conservazione dell'energia meccanica, la velocità finale sarà

$$U_i = Mg(h+R) = \frac{7}{10}Mv^2 + MgR = K_f + U_f \Longrightarrow v = \sqrt{\frac{10}{7}gh}.$$

Dinamica di un corpo che rotola

Notare che l'energia potenziale gravitazionale di un corpo è la stessa che se tutta la massa fosse concentrata nel centro di massa:

$$U = \sum_{i} m_{i}gh_{i} = g\left(\sum_{i} m_{i}h_{i}\right) = g\left(\sum_{i} m_{i}\right)h_{cm} = Mgh_{cm}$$

Risolviamo ora il problema con forze e momenti.

- Lungo il piano: $Ma = Mg\sin\theta F_a$, dove F_a è la forza di attrito.
- Rispetto al centro della sfera: $I\alpha = \tau = RF_a$, dove $\alpha = a/R$.

$$F_a = \frac{I}{R^2}a = \frac{2}{5}Ma \Longrightarrow (M + \frac{2}{5}M)a = Mg\sin\theta \Longrightarrow a = \frac{5}{7}g\sin\theta$$

ovvero un moto uniformemente accelerato, che può essere facilmente risolto e dà lo stesso risultato del calcolo precedente. Notare che la forza di attrito entra nelle equazioni del moto pur non facendo lavoro!