Table of Laplace Transforms

f(t), t > 0	$F(s) = \mathcal{L}[f(t)]$
$f(t), \ t \ge 0$	$F(s) = \mathcal{L}[f(t)]$ $\frac{1}{s}$
t	$\frac{1}{s^2}$
t^n	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
$t^n e^{at}$	
	$\frac{n!}{(s-a)^{n+1}}$
$\sinh at$	$\frac{a}{s^2-a^2}$
$\cosh at$	$\frac{s}{s^2-a^2}$
$\frac{1}{a-b}(e^{at}-e^{bt})$	$\frac{1}{(s-a)(s-b)}$
$\frac{a}{a-b}e^{at} - \frac{b}{a-b}e^{bt}$	$\frac{s}{(s-a)(s-b)}$
$\sin at$	$\frac{a}{s^2+a^2}$
$\cos at$	$\frac{s}{s^2+a^2}$
f'(t)	sF(s) - f(0)
f''(t)	$s^2F(s) - sf(0) - f'(0)$
$\int_0^t f(\tau) d\tau$	$\frac{1}{s}F(s)$
$e^{at}f(t)$	F(s-a)
Heaviside $u_a(t)$	$\frac{e^{-as}}{s}$
$f(t-a)u_a(t)$	$e^{-as}F(s)$
Ramp $R(t-a)$	$\frac{e^{-as}}{s^2}$
tf(t)	-F'(s)
$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(\sigma) d\sigma$
$(f * g)(t) \equiv \int_0^t f(t - \tau)g(\tau) d\tau$	F(s)G(s)
f(t) = f(t+p)	$\frac{1}{1 - e^{-sp}} \int_0^p f(t)e^{-st} dt$