مدار

محمدياسين داوده

۱۰ مهر ۱۳۹۹

فهرست مطالب

١	اعداد، مبناها، مکمل و کدها ۱.۱ مبناها	1
۲	جبر بول، سادهساز، EPI و PI	۲
٣	گیتها، منطق سه حالته، هازاد و تکنولوژیهای ساخت تراشه	۲
۴	مدارات ترکیبی	۲
۵	لچ و فلیپ فلاپ	۲
۶	تحلیل مدارات ترتیبی سنکرون، میلی و مور و شمارنده و ثبات	۲
٧	طراحی مدارات ترتیبی سنکرون و کاهش حالت	۲
٨	سنتز مدار	۲

۱ اعداد، مبناها، مکمل و کدها

۱۰۱ مبناها

یک عدد با n عدد، عدد صحیح و m عدد اعشار را میتوان به صورت زیر نوشت:

$$a = \underbrace{a_{n-1}a_{n-1}\dots a_{1}a_{1}a_{1}}_{\text{auchor}} \underbrace{a_{-1}a_{-1}\dots a_{-m}}_{\text{auchor}} \tag{1}$$

برای تبدیل عددی از مبنای r به مبنای دهدهی کافیست هر رقم را در ارزش مکانی خودش ضرب کنیم و حاصل را با هم جمع کنیم:

$$a = a_{n-1} \times r^{n-1} + \ldots + a_{n-1} \times r^{n-1} + \ldots + a_{-m} \times r^{-m}$$
 (Y)

بزرگترین عدد nرقمی در مبنای r همواره برابر با $(r-1)\dots(r-1)\dots(r-1)$ است. به طور مثال در مبنای ده دهی ۱۹۹۹ و در مبنای شانزدهی $FFF\dots FFF$ بزرگترین عدد است. مقدار این عدد به صورت زیر به دست می آید:

$$(r-1) \times r^{n-1} + \ldots + (r-1) \times r^{\cdot} = (r-1)(r^{n-1} + \ldots + r^{\cdot})$$

$$= (r-1)(\frac{r^n-1}{r-1}) = r^n-1$$
(۲)

¹Hexadecimal

²Decimal

- ۲ جبر بول، سادهساز، EPI و PI
- ۳ گیتها، منطق سه حالته، هازاد و تکنولوژیهای ساخت تراشه
 - ۴ مدارات ترکیبی
 - ۵ لچ و فلیپ فلاپ
- ۷ طراحی مدارات ترتیبی سنکرون و کاهش حالت
 - ۸ سنتز مدار