Computational Physics(A)Assignment 2

Chon Hei Lo*(罗俊熙)
School of Physics, Peking University
November 5, 2023

注 1: 此作业的解答如无说明,统一使用爱因斯坦求和约定。 P.S.: 这次作业为甚么题目没有标题和分值 QQ,强迫症受不了 QQ

1 Problems & Solutions

1.1 解方程组

编写高斯消元法和 Cholesky 方法的代码,并求解如下线性方程组:

$$\begin{cases} 0.05x_1 + 0.07x_2 + 0.06x_3 + 0.05x_4 &= 0.23\\ 0.07x_1 + 0.10x_2 + 0.08x_3 + 0.07x_4 &= 0.32\\ 0.06x_1 + 0.08x_2 + 0.10x_3 + 0.09x_4 &= 0.33\\ 0.05x_1 + 0.07x_2 + 0.09x_3 + 0.10x_4 &= 0.31 \end{cases}$$

Solution: 此题基本和上一次作业一样,所使用的代码片段如下: 两者结果一样,均为 $x = [1, 1, 1, 1]^T$

^{*}Email: see.looooo@stu.pku.edu.cn; StudentID: 2000012508

Figure 1: 高斯消元法的代码片段

```
def cholesky(x: np.ndarray) -> np.ndarray:
    assert x.shape[0] == x.shape[1], "x must be a square matrix"
    x = x.copy()
    for j in range(x.shape[0]):
        x[j,j] -= x[j,:j] @ x[j,:j]
        x[j,j] = np.sqrt(x[j,j])
        for i in range(j+1, x.shape[0]):
            x[i,j] -= x[i,:j] @ x[j,:j]
        x[i,j] /= x[j,j]
    return np.tril(x)
```

Figure 2: Cholesky 方法的代码片段

1.2 样条函数插值

对 $f(x) = \cos(x^2)$, 采用三次样条插值。分别考虑如下两种边界条件:

- (a) $x_0 = 0$ 和 $x_2 = 0.9$ 端点处的二次导数值为 0;
- (b) 利用 f(x) 得到 $x_0 = 0$ 和 $x_2 = 0.9$ 端点处的一次导数值。

Solution: 参考代码 2-2.py 和 seelib.spline.py, 代码这里就不重复贴上了, 结果如下

Cubic Spline Interpolation

Figure 3: 两种边界条件下的样条函数插值

1.3 Runge 效应

考虑 Runge 函数 $f(x) = \frac{1}{1+25x^2}$ 在区间 [-1,1] 上的行为。本题中将分别利用等间距的多项式内插、Chebyshev 内插以及三次样条函数来近似 f(x) 的数值。

- (a) 考虑 [-1,1] 上的 21 个均匀分布的节点(包括端点,相隔 0.1 一个点)的 20 阶多项式 $P_{20}(x)$ 之内插(你可以利用各种方法,例如拉格朗日内插、牛顿内插或者 Neville 方法)。给出一个表分别列出 x, f(x), $P_{20}(x)$ 以及两者差的绝对值。为了看出两者的区别请在这 21 个点分成的每个小段的中点也取一个数据点并一起列出(因此共有 41 个点),同时画图显示之。
- (b) 现在选取 n=20 并将上问中均匀分布的节点换为标准的 Chebyshev 节点:

$$x_k = \cos\left(\frac{k+1/2}{20}\pi\right), \quad k = 0, 1, \dots, 19$$

然后构造 f(x) 在 [-1,1] 上的近似式,

$$f(x) \approx C(x) \equiv -\frac{c_0}{2} + \sum_{k=0}^{20} c_k T_k(x)$$

其中在各个 Chebyshev 的节点处我们要求它严格等于 f(x) 。同样列出上问的表并画图,与上问结果比较。

(c) 仍然考虑第一问中均勾分布的 21 个节点的内插。但这次利用 21 点的三次样条函数。重复上面的列表、画图并比较。

Solution: 参考代码 2-3.py, 插值结果如??, 它们值的差异在Table 1所示,可以看见在两边出现了巨大的差异。

Table 1: Runge 函数的插值结果

x	f(x)	$P_{20}(x)$	$ P_{20}(x) - f(x) $	T(x)	T(x) - f(x)	S(x)	S(x) - f(x)
-1.00	0.04	0.04	0.00	0.04	0.01	0.04	0.00
-0.95	0.04	-39.95	39.99	0.05	0.01	0.04	0.00
-0.90	0.05	0.05	0.00	0.04	0.01	0.05	0.00
-0.85	0.05	3.45	3.40	0.06	0.00	0.05	0.00
-0.80	0.06	0.06	0.00	0.06	0.00	0.06	0.00
-0.75	0.07	-0.45	0.51	0.06	0.01	0.07	0.00
-0.70	0.08	0.08	0.00	0.07	0.00	0.08	0.00

Table 1: Runge 函数的插值结果

x	f(x)	$P_{20}(x)$	$ P_{20}(x) - f(x) $	T(x)	T(x) - f(x)	S(x)	S(x) - f(x)
-0.65	0.09	0.20	0.12	0.09	0.01	0.09	0.00
-0.60	0.10	0.10	0.00	0.11	0.01	0.10	0.00
-0.55	0.12	0.08	0.04	0.11	0.00	0.12	0.00
-0.50	0.14	0.14	0.00	0.13	0.01	0.14	0.00
-0.45	0.16	0.18	0.01	0.16	0.00	0.16	0.00
-0.40	0.20	0.20	0.00	0.21	0.01	0.20	0.00
-0.35	0.25	0.24	0.01	0.26	0.01	0.25	0.00
-0.30	0.31	0.31	0.00	0.31	0.00	0.31	0.00
-0.25	0.39	0.40	0.00	0.38	0.01	0.39	0.00
-0.20	0.50	0.50	0.00	0.49	0.01	0.50	0.00
-0.15	0.64	0.64	0.00	0.64	0.00	0.64	0.00
-0.10	0.80	0.80	0.00	0.81	0.01	0.80	0.00
-0.05	0.94	0.94	0.00	0.95	0.01	0.94	0.00
0.00	1.00	1.00	0.00	1.00	0.00	1.00	0.00
0.05	0.94	0.94	0.00	0.95	0.01	0.94	0.00
0.10	0.80	0.80	0.00	0.81	0.01	0.80	0.00
0.15	0.64	0.64	0.00	0.64	0.00	0.64	0.00
0.20	0.50	0.50	0.00	0.49	0.01	0.50	0.00
0.25	0.39	0.40	0.00	0.38	0.01	0.39	0.00
0.30	0.31	0.31	0.00	0.31	0.00	0.31	0.00
0.35	0.25	0.24	0.01	0.26	0.01	0.25	0.00
0.40	0.20	0.20	0.00	0.21	0.01	0.20	0.00
0.45	0.16	0.18	0.01	0.16	0.00	0.16	0.00
0.50	0.14	0.14	0.00	0.13	0.01	0.14	0.00
0.55	0.12	0.08	0.04	0.11	0.00	0.12	0.00
0.60	0.10	0.10	0.00	0.11	0.01	0.10	0.00
0.65	0.09	0.20	0.12	0.09	0.01	0.09	0.00
0.70	0.08	0.08	0.00	0.07	0.00	0.08	0.00
0.75	0.07	-0.45	0.51	0.06	0.01	0.07	0.00
0.80	0.06	0.06	0.00	0.06	0.00	0.06	0.00

Table 1: Runge 函数的插值结果

x	f(x)	$P_{20}(x)$	$ P_{20}(x) - f(x) $	T(x)	T(x) - f(x)	S(x)	S(x) - f(x)
0.85	0.05	3.45	3.40	0.06	0.00	0.05	0.00
0.90	0.05	0.05	0.00	0.04	0.01	0.05	0.00
0.95	0.04	-39.95	39.99	0.05	0.01	0.04	0.00
1.00	0.04	0.04	0.00	0.04	0.01	0.04	0.00

Runge Phenomenon

Figure 4: Runge 函数的插值结果

1.4 样条函数在计算机绘图中的运用

本题中我们考虑 Cubic spline 在计算机绘图中的广泛运用。我们将尝试用三次样条函数平滑地连接若干个二维空间中已知的点。考虑二维空间的一系列点

 $(x_i,y_i),\quad i=0,1\cdots n$ 。我们现在希望按照顺序(由 0 到 n)将它们平滑地连接起来。一个方便的办法是引入一个连续参数 $t\in[0,n]$,取节点为 $t_i=0,1,\cdots,n$,然后分别建立两个样条函数: $S_{\Delta}(X;t)$ 和 $S_{\Delta}(Y;t)$ 它们分别满足

$$S_{\Delta}(X;t_i)=x_i$$

$$S_{\Delta}(Y;t_i)=y_i$$

这两个样条函数可以看作是 (x(t),y(t)) 的内插近似。因此绘制参数曲线 (x(t),y(t)) 的问题就化为求出两个样条函数并将它们画出的问题。我们考虑的函数是着名的心形线 (cardioid)。它的极坐标方程是:

$$r(\phi) = 2a(1 - \cos \phi)$$

为了方便起见我们取了 2a = 1。(请利用上一题中关于样条函数内插的相应代码来处理本题)

- (a) 选取 $\phi = t\pi/4$, $t = 0, 1, \dots, 8$ 这九个点,结出 $x_t = r(\phi)\cos\phi$ 和 $y_t = r(\phi)\cos\phi$ 的数值。将这些数值作为精确的数值列在一个表里。
- (b) 给出过这 8 个点的两个三次样条函数 $S_{\Delta}(X;t)$ 和 $S_{\Delta}(Y;t)$ 。
- (c) 画出参数形式的曲线 $(x_t, y_t) = (S_{\Delta}(X; t), S_{\Delta}(Y; t))$ 同时画出它所内插的严格的曲线进行比较,请标出相应的节点。
- (d) 简要说明为什么这个算法可以平滑地连接所有的点 (这实际上是很多画图软件中 spline 曲线所采用的算法)。

Solution: 参考代码 2-4.py, 可以给出这九个点的数据, 如下表:

Table 2: 心形线的数据

		= 72 2 1 722 1 722								
	t	0	1	2	3	4	5	6	7	8
a	c_t	0.00	0.21	0.00	-1.21	-2.00	-1.21	0.00	0.21	0.00
i	Jt	0.00	0.21	1.00	1.21	0.00	-1.21	-1.00	-0.21	0.00

分别画出 x 和 y 的三次样条函数,如Figure 5所示。

Figure 5: 两个参数方程分别的插值结果

通过三次样条函数,可以得到如下的结果:

Figure 6: 心形线的插值结果

因为样条函数是连续可导的,因此 f(x(t),y(t)) 也是可导的,因此可以平滑地连接所有的点。

1.5 对称矩阵特征值问题

考虑一个对称矩阵

$$H = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$

- (a) 通过消元法求出三角矩阵 L 和对角矩阵 D,使 $H = LDL^T$ 。
- (b) 可以将矩阵 H 的一个角元 $H_{33} = 1$ 替换为 q , 使矩阵 H 为半正定,求出最小的 q 。
- (c) 当 $H_{33}=2$ 时,求解其本征值。进而求出扩展到 4×4 矩阵 H' 时的本征值。

$$H' = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{pmatrix}$$

Solution:

(a) 使用高斯消元法进行消元,可以得到:

$$= \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & 1 & 0 & 0 \\ & 1 & \frac{2}{3} & 0 & 1 & 0 \\ & & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & \frac{1}{2} & 0 & 1 & 0 & -\frac{1}{3} \\ & 1 & 0 & 0 & 1 & -\frac{2}{3} \\ & & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & -\frac{1}{2} & 0 \\ & 1 & 0 & 0 & 1 & -\frac{2}{3} \\ & & 1 & 0 & 0 & 1 \end{bmatrix}$$

得到
$$L=\left[egin{array}{cccc}1\\-\frac{1}{2}&1\\&-\frac{2}{3}&1\end{array}\right]$$
。容易验证 $H=LDL^T$ (或者使用 **2-5.py**)进行检验。

- (b) 在进行变换的过程中,我们轻松地发现了角元 $H_{33}=q$ 的改变对 L 不会影响,那么 $D_{33}=q-\frac{2}{3}$,若要求 H 半正定,那么 $D_{33}\geq 0$,可知 $q\geq \frac{2}{3}$ 。
- (c) 直接展开其特征多项式:

$$|\lambda I - H| = (\lambda - 2)^4 - 3(\lambda - 2)^2 + 1$$

得到 $(\lambda - 2)^2 = \frac{3\pm\sqrt{5}}{2}$, 故特征值有 4 个,分别为:

$$\lambda_1 = 2 + \sqrt{\frac{3 + \sqrt{5}}{2}}$$

$$\lambda_2 = 2 - \sqrt{\frac{3 + \sqrt{5}}{2}}$$

$$\lambda_3 = 2 + \sqrt{\frac{3 - \sqrt{5}}{2}}$$

$$\lambda_4 = 2 - \sqrt{\frac{3 - \sqrt{5}}{2}}$$