Week 3: Public-Key Cryptography – RSA

What is RSA?

RSA is a **public-key encryption system**. It allows **secure communication** between people who have **never met before**, by using two keys:

- A **public key** (shared with everyone)
- A private key (kept secret)

You use the public key to lock a message, but only the private key can unlock it.

Why Two Keys?

- Anyone can lock a box and send it to you (using your public key).
- But only you can unlock it (because you have the private key).

How is RSA used?

RSA has two main uses:

- 1. **Encrypting**: To send private messages.
- 2. **Digital Signatures**: To prove a message really came from you.

Basic Idea Behind RSA

- RSA relies on the fact that some problems are easy in one direction but hard in the other.
- It's easy to **multiply** two numbers, even big ones.
- But it's very hard to factor the result back into the original two numbers if they're large enough (like hundreds of digits).
- RSA is built around this one-way trapdoor function.

Why is RSA considered secure?

- Even if everyone knows your public key, they can't figure out your private key unless they can break a very hard problem (factoring a huge number).
- As long as your private key is safe and the math problem stays hard, RSA works.

What makes RSA vulnerable?

RSA can be insecure if:

- Keys are too short (e.g., 512-bit keys are now breakable).
- Bad randomness is used when generating keys.

- RSA is used without proper padding (which protects against certain attacks).
- Computers get fast enough (or quantum) to break it.

Where is RSA used?

- Web browsers (HTTPS)
- Email encryption
- Software signing
- Banking
- Cryptocurrencies (sometimes)

MATH FOUNDATION

Prime, Coprime and Composite Numbers

A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself.

A composite number is any number that has more than two factors.

Two numbers are **coprime** if their greatest common divisor (GCD) is 1.

► In RSA:

You choose **two large prime numbers** to generate your keys.

In RSA, the number n=p×q (product of two primes) is a composite number that forms part of the public key.

We choose a number 'e' that is **coprime to \phi(n)** to ensure it can have a modular inverse — essential for decrypting messages.

GCD (Greatest Common Divisor)

The GCD of two numbers is the largest number that divides both without leaving a remainder.

► RSA Relevance:

We check that the public exponent 'e' is coprime with $\phi(n)$ using GCD.

Modular Arithmetic

This is the heart of RSA. All encryption and decryption in RSA happens **modulo a number**. So understanding modular arithmetic is absolutely essential.

Why Modular Arithmetic Matters in RSA

RSA encrypts messages using: $C = m^e \mod n$

And decrypts using: $M = c^d \mod n$

So everything depends on doing exponentiation modulo nnn!

Modular Exponentiation

Fast Exponentiation (a.k.a. Binary Exponentiation)

This algorithm calculates a^b mod m efficiently, using squaring and reducing along the way.

C++ CODE:

```
int modexp (int a, int b, int m) {
  int result = 1;
  a = a % m;
  while (b > 0) {
    if (b % 2 == 1)
      result = (1LL * result * a) % m;
    a = (1LL * a * a) % m;
    b /= 2;
  }
  return result;
}
```

Euler's Totient Function $\phi(n)$

Euler's Totient Function $\phi(n)$ counts how many numbers less than n are coprime to n.

If p is a prime number : $\phi(p) = p-1$

Euler's Totient for Product of Two Primes

This is exactly what we need for RSA, since n=p×q

If p and q are distinct primes:

$$\phi(n) = \phi(p \cdot q) = (p-1)(q-1)$$

This works because of a special property: $\phi(a \cdot b) = \phi(a) \cdot \phi(b)$ when **a and b are coprime**

When generating RSA keys, we must choose a **public exponent e** such that:

$$1 < e < \phi(n)$$
 and gcd $(e, \phi(n)) = 1$

That is, e must be:

- Greater than 1
- Less than φ(n)
- Coprime to φ(n)

The number 65537 is very commonly used in practice

In RSA:

- You have public exponent e
- You've computed φ(n)

Now you compute private key d as:

$$d \equiv e^{-1} \mod \Phi(n)$$

In other words, d is the modular inverse of e mod $\phi(n)$

RSA Key Generation — The Full Process

1. Choose Two Large Prime Numbers p and q

- Pick two distinct prime numbers, p and q
- For strong security, these are very large primes (hundreds of digits) but for learning, small primes work fine!

2. Compute n=p×q

- This n is part of the public and private keys
- It is called the modulus

3. Compute Euler's Totient $\phi(n)=(p-1)(q-1)$

- This number is crucial for key generation
- It represents the count of numbers coprime with n

4. Choose Public Exponent e

- $1 < e < \phi(n)$
- e must be coprime with φ(n)
- Common choices: 65537, 17, or 3 (prefer 65537 in practice)

5. Compute Private Key d

- $d \equiv e^{-1} \mod \phi(n)$
- Use the modular inverse to find d

6. Public Key = (e, n)

This key is shared publicly — used to encrypt messages

7. Private Key = (d, n)

• This key is kept secret — used to decrypt messages

Example: Small Numbers for Clarity

Let's generate keys with small primes:

- p=5, q=11
- n=5×11=55
- $\phi(n)=(5-1)(11-1)=4\times10=40$
- Choose e = 3 (check gcd(3, 40) = 1, so valid)
- Compute $d \equiv e^{-1} \mod 40$

Using modular inverse:

- 3 × d ≡ 1 mod 40
- d = 27 (because 3×27=81=1mod 40)

Final Keys:

- **Public Key:** (e,n)=(3,55)
- **Private Key**: (d,n)=(27,55)

RSA ENCRYPTION AND DECRYPTION

Encrypting a Message

- You have a **plaintext message** mmm, where 0 ≤ m < n
- Use the **public key** (e, n)
- Compute the **ciphertext** c: c = m^e mod n

This c is the encrypted message.

Decrypting the Message

- You have the ciphertext c
- Use the **private key** (d,n)
- Compute the original message m: m = c^d mod n

This recovers the original plaintext.

Why Does This Work?

Because of a mathematical property (Euler's theorem) that guarantees:

$(m^e)^d \equiv m \mod n$

when e and d are chosen as modular inverses mod $\phi(n)$.

Let's walk through a tiny RSA example:

- Choose p = 3, q = 11
- So, n = 33, $\phi(n) = (3-1)(11-1) = 2 \times 10 = 20$
- Choose e=3 (must be coprime with 20)
- Find d such that d · e ≡ 1 mod 20
- d=7, because 3 · 7 = 21 ≡ 1 mod 20

Now:

- **Public key**: (e = 3, n = 33)
- **Private key**: (d = 7, n = 33)

Encrypt message **m = 4**:

$$c = 4^3 \mod 33 = 64 \mod 33 = 64 - 33 = 31$$

So ciphertext is c=31

Now decrypt:

 $m=31^7 \mod 33 = 27512614111 \mod 33 = 4$

We got back the original message!

Real World

- You'd never use such small primes in real RSA you'd use primes with hundreds or thousands of bits.
- Encryption/decryption in real systems uses modular exponentiation with optimized algorithms like square-and-multiply (also known as binary exponentiation).

SECURITY ASPECTS

The Hardness of Integer Factorization

RSA's security is based on a hard mathematical problem:

→ Given n=p×q, it is very difficult to find p and q — the prime factors of n.

This is known as the **Integer Factorization Problem (IFP)**.

Why is it hard?

- If n is a 2048-bit number (≈ 617 decimal digits), even the **fastest classical computers** would take **centuries** to factor it.
- The best known classical factoring algorithm is the General Number Field Sieve (GNFS), and its time complexity grows sub-exponentially with the number of bits.

Implication:

• If you can't factor n, then you can't compute $\phi(n)$, so you can't compute d (the private key), which keeps the system secure.

Importance of Key Length

Key Length = Number of bits in $n = p \times q$

Key Size (bits)	Status (as of 2025)	Notes
512	Broken in seconds	Factorable easily
1024	Weak	Can be cracked with effort
2048	Standard	Secure against classical attacks
3072+	Stronger	For future-proofing

Longer keys = More security, but slower operations

RSA with 2048 bits is currently the chosen option between speed and security

Attacks on RSA

a. Mathematical Attacks

- → Factoring n: Direct attack, as explained above.
- → Small e attack: If e is too small (like 3) and the message is small, m^e < n, then no mod is applied → message is easily recovered.
- → Common modulus attack: If two users share the same n but have different e, attackers can sometimes recover the message.

b. Timing Attacks

→ If RSA decryption (modular exponentiation) takes different times depending on the input, attackers can measure time and infer bits of the key.

c. Chosen Ciphertext Attack (CCA)

→ An attacker submits specially crafted ciphertexts and observes the decrypted output to infer information about the key or plaintext.

d. Side-channel Attacks

→ Attacks using physical observations (timing, power usage, etc.) to extract secret key data.

What is Padding?

Padding means **adding extra data** to a message before encrypting it — usually to make it:

- 1. The **correct size** for encryption
- 2. More secure by adding randomness or structure

Why is Padding Needed in RSA?

- Raw RSA is deterministic:
 - Same message → same ciphertext every time!
- Also vulnerable to chosen ciphertext attacks and structure-based attacks
- Padding introduces randomness and structure.

PKCS#1 (Public-Key Cryptography Standards) (Legacy Standard)

- Adds non-zero random padding bytes before the message
- Still used, but has known vulnerabilities (Bleichenbacher attack)

The padded message (called **EM**, for *encoded message*) looks like this:

Part	Name	Description
00	Header byte	Always 0x00 — separates RSA padding from other types
02	Block type	"02" means this is for encryption (other values are used for signatures)
PS	Padding string	Random non-zero bytes, at least 8 bytes long
00	Separator	Marks end of padding, start of message
М	Message	The original plaintext message

Example Use

Assume:

• RSA key size: 1024 bits = 128 bytes

• Message M: "Hello" (5 bytes)

Then:

• You need: 128 - 3 - 5 = 120 bytes of padding

• The PS string is filled with **random, non-zero bytes** (e.g., 0x8A, 0xF1, etc.)

The structure becomes:

```
00 || 02 || [120 random bytes] || 00 || "Hello"
```

You encrypt this whole block using RSA: $c = (EM)^e \mod n$

OAEP (Optimal Asymmetric Encryption Padding)

- Modern, secure padding scheme
- Combines the message with:
 - A mask generation function (MGF)
 - o A hash function (e.g., SHA-256)
 - Random seed
- Provides **semantic security** i.e., an attacker can't distinguish between ciphertexts of different messages.

Key Properties:

- Prevents deterministic output
- Resists chosen ciphertext attacks
- Used in RSAES-OAEP (RSA Encryption Scheme)

IMPLEMENTING RSA FROM SCRATCH

Step-by-Step Process

- 1. Choose two large primes: p and q
- 2. Compute $\mathbf{n} = \mathbf{p} \times \mathbf{q}$
- 3. Compute $\phi(n) = (p-1)(q-1)$
- 4. Choose public exponent e: usually 65537
- 5. Compute private exponent d, such that $d \times e \equiv 1 \mod \phi(n)$
- 6. Encryption: c = m^e mod n
- 7. Decryption: $m = c^d \mod n$

Chinese Remainder Theorem (CRT) Optimization

RSA decryption is slow. But we can speed it up 4x using CRT.

CRT Decryption Formula:

Instead of computing: m = c^d mod n

We do:

- m1 = c^{d \mod (p-1)} \mod p
- $m2 = c^{d \pmod{(q-1)}} \pmod{q}$
- Combine results using CRT to get final m

Benefits:

- Works with smaller numbers (faster exponentiation)
- 3x 5x speed-up in decryption

RSA in Libraries (Python Example)

Instead of building everything from scratch, use tested libraries. from cryptography.hazmat.primitives.asymmetric import rsa, padding from cryptography.hazmat.primitives import hashes

```
# Key generation
private key = rsa.generate private key(public exponent=65537, key size=2048)
public key = private key.public key()
# Encryption
ciphertext = public_key.encrypt(
  b"Hello Khushi!",
  padding.OAEP(
    mgf=padding.MGF1(algorithm=hashes.SHA256()),
    algorithm=hashes.SHA256(),
    label=None
# Decryption
plaintext = private_key.decrypt(
  ciphertext,
  padding.OAEP(
    mgf=padding.MGF1(algorithm=hashes.SHA256()),
    algorithm=hashes.SHA256(),
    label=None
print(plaintext.decode())
```

RSA in the Real World

RSA is everywhere, especially in:

1. HTTPS (SSL/TLS)

- RSA is used to securely exchange symmetric keys
- The browser encrypts the session key using the server's RSA public key
- Only the server (with private key) can decrypt it

2. Digital Signatures

- A sender signs a hash of a message with their private RSA key
- Anyone can verify the signature using their public key
- Used in:
 - Emails (S/MIME)
 - Software updates
 - Blockchain transactions

3. SSH Keys

• You can generate RSA key pairs for logging into servers securely.

4. JWTs and Authentication

• Tokens are signed using RSA to verify authenticity

Week 3: Resources Used - The Mathematics of Secrets Cryptography from Caesar Ciphers to Digital Encryption (Joshua Holden) | Introduction To Modern Cryptography (Jonathan Katz, Yehuda Lindell)