CH12.陶瓷的結構和性質

CN	陽/陰(陽<陰)
2	<0.155
3	0.155~0.225
4	0.225~0.414
6	0.414~0.732
8	0.732~1

背起來! 2.3.4.6.8→155.225.414.732

※想:配位沒有在配5個和7個的吧!

Rock salt CN=6→0.414~0.732 兩互相穿透的 FCC EX. NaCl, MgO, MnS, LiF, and FeO CsCl CN=8,BCC位置,角落&體心位置 有兩種離子,不能叫 BCC Zinc Blende Structure(sphalerite) CN=4,面心&四面體位置,高度共價鍵 EX. ZnS , ZnTe , Si $A_mX_p(AX_2)$ 陰陽離子電荷不同 CN=8,類似 CsCI,但體心位置只占一半 (8 個 CsCI, 只占 4 個體心) EX. **Fluorite**(CaF₂) \ ZrO₂.. AX₂

$A_m B_n X_p$

EX. Perovskite(BaTiO₃)(背太癢)

溫度大於 120℃ 是 cubic

摳(corner)背、太中心、癢面心

Closepacking

平面由陰離子組成,陽離子間隙其中

★tetrahedral position → CN=4

每個陰離子,有1個八面體位,2個四面體位

此種陶瓷結構取決於

- 1.堆疊方式
- 2.間隙填陽離子方式

Structure Name	Structure Type	Anion Packing	Coordination Numbers		
			Cation	Anion	Examples
Rock salt (sodium chloride)	AX	FCC	6	6	NaCl, MgO, FeO
Cesium chloride	AX	Simple cubic	8	8	CsCl
Zinc blende (sphalerite)	AX	FCC	4	4	ZnS, SiC
Fluorite	AX_2	Simple cubic	8	4	CaF ₂ , UO ₂ , ThO ₂
Perovskite	ABX_3	FCC	12(A) 6(B)	6	BaTiO ₃ , SrZrO ₃ , SrSnO ₃
Spinel	AB_2X_4	FCC	4(A) 6(B)	4	MgAl ₂ O ₄ , FeAl ₂ O ₄

Silicate ceramic

Figure 12.9 A silicon–oxygen (SiO₄⁴⁻) tetrahedron.

S-O→共價性!!

Silica(結晶)

→SiO₂(網狀結構)→三種主要的 polymorphic→1.quartz 2.cristobalite 3.tridymite 密度很低,因為共價鍵的方向性,高熔點(Si-O 強鍵結)

Silica glasses(非晶)

又叫 fuse silica、vitreous silica

Network former	可形成玻璃網狀結構
	$SiO_2 \cdot B_2O_3 \cdot GeO_2$
Network modifier	不形成多面網狀,藉由陽離子修飾網狀結構 EX.CaO、
	Na ₂ O(陽離子間隙其中)
Intermediates	自己不能形成多面網狀,但可以置換 Si 原子,成為一部分
	EX.TiO ₂ \ Al ₂ O ₃

※modifier、Intermediates 都有降低熔點和黏度,使玻璃更容易成形的效果

The silicates

矽酸鹽類的陽離子有2個功用

- 1.維持電中性
- 2.利用離子性鍵結和 SiO₄ 4 鍵結再一起

Simple silicates	isolated tetrahedral EX.Mg ₂ SiO ₄	
Layer silicates	Kaolinite clay Al ₂ (Si ₂ O ₅)(OH) ₄	
	層與層間以微弱的凡德瓦鍵結	

Carbon

diamond	介穩狀態
	結構: a variant of the zinc blende(碳占所有 ZnS 位置)
	每個碳和其他 4 個碳鍵結, 共價鍵, 鑽石立方
	很硬、低導電、 <u>不尋常的高導熱(比金屬還高哦!)</u> 、高折射、
	光學透明
	最近用薄膜技術
graphite	每個碳和其他3個共平面碳鍵結,層之間凡德瓦→潤滑
	平行於層狀方向的導電度很高
Fullerenes	20 hexagons and 12 pentagons(會推)
	C ₆₀ \ buckeyball
	電絕緣,若添加雜質,可做成高導電 or 半導體
Carbon nanotubes	石墨捲成管狀,兩端 C60,剛性極高、延性,最 strongest
	的材料,彈性模數 order→TPa(10 ³ GPa)

鑽石和石墨→network solid

 $C_{60} \rightarrow$ face-centered cubic array

陶瓷中缺陷(離子晶體的缺陷)→會增加導電率!!

Frenkel defect→陽離子空位&陽離子間隙(陽離子亂跑) Schottky defect→陽離子空位&陰離子空位(陰陽一起跑掉) (陰離子太大,比較不會 Frenkel!)

$$N_{fr} = N \exp\left(-\frac{Q_{fr}}{2kT}\right) \quad N_s = N \exp\left(-\frac{Q_s}{2kT}\right)$$

Nonstoichiometry

例如 Iron oxide (wüstite, FeO)→Fe²⁺、Fe³⁺

2 種離子的數目取決於溫度和壓力

形成 2 個 Fe³+→多 2 個正電荷→要想辦法平衡(需移去 2 正電荷)→一個 Fe²+空位

雜質

間隙型→要很小

置換型→取代最相近電性的(陽離子取代陽離子;陰離子取代陰離子)

擴散→vacancy mechanism

- 1.離子空位成對出現
- 2.形成 Nonstoichiometry
- 3.可藉由取代電荷具有不同 charge state

速率受移動最慢的物種限制

擴散是對電導性的一種量測

陶瓷相圖

機械性質

Brittle fracture

陶瓷材料段列強度的預測值低於原子間鍵結理論的預測值

→因為有許多 flaw 為 stress raiser

$$K_{Ic} = Y\sigma\sqrt{\pi a}$$

只要此值沒有比平面應變破壞韌性大,crack propagation 不會發生 陶瓷材料的 plane strain fracture toughness 比金屬小,一般低於 10MPa√m

在有些狀況,當施加 static fatigue,即使低於 plane strain fracture toughness,crack 還是會很慢的 propagation→static fatigue、delayed fracture

fracture-producing stress 的定量

$$\sigma_{\!f} \propto rac{1}{r_m^{0.5}}$$

 \leftarrow the stress level at which fracture occurred

Elastic (sonic) waves are generated also during a fracture event, and the locus of intersections of these waves with a propagating crack front give rise to another type of surface feature known as a *Wallner line*. Wallner lines are arc shaped, and they provide information regarding stress distributions and directions of crack propagation.

※至少知道 wallner line 跟 crack propagation 有關!

STRESS-STRAIN BEHAVIOR

對於陶瓷這種脆性材料 通常採用側向彎曲試驗(3點或4點)

flexural strength=modulus of rupture, fracture strength= the bend strength

Possible cross sections

where M = maximum bending moment

c = distance from center of specimen to outer fibers

I = moment of inertia of cross section

F = applied load

Rectangular
$$\frac{M}{4}$$
 $\frac{c}{2}$ $\frac{I}{12}$ $\frac{\sigma}{3FL}$ $\sigma_{fs} = \frac{3F_fL}{2bd^2}$ 矩形 Circular $\frac{FL}{4}$ R $\frac{\pi R^4}{4}$ $\frac{FL}{\pi R^3}$ $\sigma_{fs} = \frac{F_fL}{\pi R^3}$ 圓形

塑性變形機構

結晶陶瓷)差排

主要離子鍵→淨電排斥→滑動受限→滑動系統減少

主要共價鍵→鍵結很強→滑動系統受限→差排結構複雜

非晶陶瓷→viscous flow

Porosity 的影響

背!

$$E = E_0(1 - 1.9P + 0.9P^2)$$
 P 是孔隙體積分率

- 1.孔隙降低負荷施加的橫截面面積
- 2.應力集中

$$\sigma_{fs} = \sigma_0 \exp\left(-nP\right)$$