LECTURE-4 Basis and Dimension

Basis

Spanning

Sets

Bases

Basis :

V: a vector space

$$S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\} \subseteq V$$

1) S spans V (i.e., span(S) = V)

 \Rightarrow S is called a basis for V

Notes:

A basis S must have enough vectors to span V, but not so many vectors that one of them could be written as a linear combination of the other vectors in S

Linearly

Independent

Sets

■ Notes:

(1) the **standard basis** for R^3 :

$$\{i, j, k\}$$
, for $i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1)$

(2) the **standard basis** for R^n :

$$\{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n\}$$
, for $\mathbf{e}_1 = (1,0,...,0)$, $\mathbf{e}_2 = (0,1,...,0)$, ..., $\mathbf{e}_n = (0,0,...,1)$

Ex: For \mathbb{R}^4 , {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)}

RExpress any vector in R^n as the linear combination of the vectors in the standard basis: the coefficient for each vector in the standard basis is the value of the corresponding component of the examined vector,

e.g., (1, 3, 2) can be expressed as $1 \cdot (1, 0, 0) + 3 \cdot (0, 1, 0) + 2 \cdot (0, 0, 1)$

(3) the **standard basis** for $m \times n$ matrix space:

$$\{E_{ij} \mid 1 \le i \le m, 1 \le j \le n\}$$
, and in E_{ij}
$$\begin{cases} a_{ij} = 1 \\ \text{other entries are zero} \end{cases}$$

Ex: 2×2 matrix space:

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

(4) the **standard basis** for $P_n(x)$:

$$\{1, x, x^2, ..., x^n\}$$

Ex:
$$P_3(x) = \{1, x, x^2, x^3\}$$

• Ex 4.1: The nonstandard basis for R^2

Show that $S = \{\mathbf{v}_1, \mathbf{v}_2\} = \{(1, 1), (1, -1)\}$ is a basis for \mathbb{R}^2

(1) For any
$$\mathbf{u} = (u_1, u_2) \in \mathbb{R}^2$$
, $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = \mathbf{u} \implies \begin{cases} c_1 + c_2 = u_1 \\ c_1 - c_2 = u_2 \end{cases}$

Because the coefficient matrix of this system has a **nonzero determinant**, the system has a unique solution for each \mathbf{u} . Thus you can conclude that S spans R^2

(2) For
$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = \mathbf{0} \implies \begin{cases} c_1 + c_2 = 0 \\ c_1 - c_2 = 0 \end{cases}$$

Because the coefficient matrix of this system has a **nonzero determinant**, you know that the system has only the trivial solution. Thus you can conclude that *S* is linearly independent

• Theorem 4.1: Uniqueness of basis representation for any vectors If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for a vector space V, then every vector in V can be written in one and only one way as a linear combination of vectors in S

Pf:

∴ S is a basis ⇒
$$\begin{cases} (1) \operatorname{span}(S) = V \\ (2) S \text{ is linearly independent} \end{cases}$$
∴ span(S) = V Let $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$

$$\mathbf{v} = b_1 \mathbf{v}_1 + b_2 \mathbf{v}_2 + \dots + b_n \mathbf{v}_n$$
⇒ $\mathbf{v} + (-1)\mathbf{v} = \mathbf{0} = (c_1 - b_1)\mathbf{v}_1 + (c_2 - b_2)\mathbf{v}_2 + \dots + (c_n - b_n)\mathbf{v}_n$
∴ S is linearly independent ⇒ with only trivial solution
$$\Rightarrow \operatorname{coefficients} \text{ for } \mathbf{v}_i \text{ are all zero}$$
⇒ $c_1 = b_1$, $c_2 = b_2$,..., $c_n = b_n$ (i.e., unique basis representation).

Theorem 4.2: Bases and linear dependence

If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for a vector space V, then every set containing more than n vectors in V is linearly dependent (In other words, every linearly independent set contains at most n vectors)

Pf:

Let $S_1 = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_m\}$, be another set such that m > n, we want to show that S_1 is linearly dependent.

If
$$V = \text{span}(S_1)$$

$$\mathbf{u}_1 = c_{11}\mathbf{v}_1 + c_{21}\mathbf{v}_2 + \dots + c_{n1}\mathbf{v}_n$$
 And
$$\mathbf{u}_i \in V \Longrightarrow \quad \mathbf{u}_2 = c_{12}\mathbf{v}_1 + c_{22}\mathbf{v}_2 + \dots + c_{n2}\mathbf{v}_n$$
 :

$$\mathbf{u}_m = c_{1m} \mathbf{v}_1 + c_{2m} \mathbf{v}_2 + \dots + c_{nm} \mathbf{v}_n$$

Consider $k_1\mathbf{u}_1 + k_2\mathbf{u}_2 + \dots + k_m\mathbf{u}_m = \mathbf{0}$ (For L.I) (if k_i 's are not all zero, S_1 is linearly dependent)

$$\Rightarrow d_1 \mathbf{v}_1 + d_2 \mathbf{v}_2 + \dots + d_n \mathbf{v}_n = \mathbf{0} \ (d_i = c_{i1} k_1 + c_{i2} k_2 + \dots + c_{im} k_m)$$

:.
$$S ext{ is L.I.} \Rightarrow d_i = 0 \quad \forall i$$
 i.e., $c_{11}k_1 + c_{12}k_2 + \dots + c_{1m}k_m = 0$
$$c_{21}k_1 + c_{22}k_2 + \dots + c_{2m}k_m = 0$$

$$\vdots$$

$$c_{n1}k_1 + c_{n2}k_2 + \dots + c_{nm}k_m = 0$$

- : If the homogeneous system has fewer equations (n equations) than variables ($k_1, k_2, ..., k_m$), then it must have infinitely many solutions
- $\therefore m > n \Rightarrow k_1 \mathbf{u}_1 + k_2 \mathbf{u}_2 + \dots + k_m \mathbf{u}_m = \mathbf{0}$ has nontrivial (nonzero) solution

$$\Rightarrow$$
 S_1 is linearly dependent

- Theorem 4.3: Number of vectors in a basis
 If a vector space V has one basis with n vectors, then every basis for V has n vectors
- Pf: \times According to Thm. 4.2, every linearly independent set contains at most n vectors of a vector space if there is a basis of n vectors spanning that vector space

$$S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$$

$$S' = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_m\}$$
 are two bases with different sizes for V

 \Re For R^3 , since the standard basis $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ can span this vector space, you can infer any basis that can span R^3 must have exactly 3 vectors

Dimension

Dimension:

The dimension of a vector space V is defined to be the number of vectors in a basis for V

V: a vector space S: a basis for V

 \Rightarrow dim(V) = #(S) (the number of vectors in a basis S)

• Finite dimensional:

A vector space V is finite dimensional if it has a basis consisting of a finite number of elements

• Infinite dimensional:

If a vector space V is not finite dimensional, then it is called infinite dimensional

Notes:

 $(1) \dim(\{\mathbf{0}\}) = 0$

(If *V* consists of the zero vector alone, the dimension of *V* is defined as zero)

(2) Given
$$\dim(V) = n$$
, for $S \subseteq V \#(S) \ge n \#(S) = n \#(S) \le n$

S: a spanning set \Rightarrow #(S) \geq n (Ex 3.2 on Slides 6 and 7 previous lec.)

S: a L.I. set \Rightarrow #(S) \leq n (from Theorem 4.2)

S: a basis $\Rightarrow \#(S) = n$ (Since a basis is defined to be a set of L.I. $\Rightarrow \#(S) = n$ vectors that can spans V, $\#(S) = \dim(V) = n$) (see the above figure)

- (3) Given $\dim(V) = n$, if W is a subspace of $V \Rightarrow \dim(W) \le n$
 - X For example, if $V = R^3$, you can infer the dim(V) is 3, which is the number of vectors in the standard basis
 - X Considering $W = R^2$, which is a subspace of R^3 , due to the number of vectors in the standard basis, we know that the dim(W) is 2, that is smaller than dim(V)=3

- Ex4.2: Find the dimension of a vector space according to the standard basis
 - * The simplest way to find the dimension of a vector space is to count the number of vectors in the standard basis for that vector space
 - (1) Vector space R^n \Rightarrow standard basis $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ $\Rightarrow \dim(R^n) = n$
 - (2) Vector space $M_{m \times n} \implies \text{standard basis } \{E_{ij} \mid 1 \le i \le m, 1 \le j \le n\}$ and in E_{ij} $\begin{cases} a_{ij} = 1 \\ \text{other entries are zero} \end{cases}$ $\implies \dim(M_{m \times n}) = mn$
 - (3) Vector space $P_n(x) \Rightarrow \text{standard basis } \{1, x, x^2, \dots, x^n\}$ $\Rightarrow \dim(P_n(x)) = n+1$
 - (4) Vector space $P(x) \implies$ standard basis $\{1, x, x^2, ...\}$

- Ex 4.3: Determining the dimension of a subspace of R^3
 - (a) $W = \{(d, c-d, c): c \text{ and } d \text{ are real numbers}\}$
 - (b) $W = \{(2b, b, 0): b \text{ is a real number}\}$

Sol: (Hint: find a set of L.I. vectors that spans the subspace, i.e., find a basis for the subspace.)

- (a) (d, c-d, c) = c(0, 1, 1) + d(1, -1, 0) $\Rightarrow S = \{(0, 1, 1), (1, -1, 0)\} \text{ (S is L.I. and S spans W)}$ $\Rightarrow S \text{ is a basis for } W$ $\Rightarrow \dim(W) = \#(S) = 2$
- (b) :: (2b,b,0) = b(2,1,0) $\Rightarrow S = \{(2, 1, 0)\} \text{ spans } W \text{ and } S \text{ is L.I.}$ $\Rightarrow S \text{ is a basis for } W$ $\Rightarrow \dim(W) = \#(S) = 1$

• Ex 4.4: Finding the dimension of a subspace of $M_{2\times2}$ Let W be the subspace of all symmetric matrices in $M_{2\times2}$. What is the dimension of W?

Sol:

$$W = \left\{ \begin{bmatrix} a & b \\ b & c \end{bmatrix} | a, b, c \in R \right\}$$

$$\therefore \begin{bmatrix} a & b \\ b & c \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \text{ spans } W \text{ and } S \text{ is L.I.}$$

$$\Rightarrow$$
 S is a basis for $W \Rightarrow \dim(W) = \#(S) = 3$

■ Theorem 4.4: Methods to identify a basis in an *n*-dimensional space

Let V be a vector space of dimension n

- (1) If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a linearly independent set of vectors in V, then S is a basis for V
- (2) If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ spans V, then S is a basis for V (Both results are due to the fact that #(S) = n)

Solve Problems