Additive Manufacturing

presented by

Partha Saha

Additive Manufacturing earlier known as 'Rapid Prototyping

Definition of a Prototype

- A 'prototype' is the first or original example of something that will be copied or further developed.
- So prototype is the basis for later improved models
- It is a model of preliminary version.

e.g. Prototype of car, motorcycle, toy etc.

Prototype of a toy (printed on a 3D printer with multiple materials)

Prototype of a car

Prototype of a Handheld Drill Gun

More general and broader definition of Prototype

- An approximation of a product (or system) or its components in some form for a definite purpose during some stage of its implementation.
- It covers all kind of prototypes used in the product development process; including objects like mathematical models, pencil sketches, foam models, and functional physical model of the product.
- 'Prototyping' is the process of realizing these prototypes.

Role of the Prototypes

- Experimentation and learning
- Testing and proofing
- Communication and interaction
- Synthesis and integration
- Scheduling and markers

Iterative backward testing

Design thinking process

A scale model of an airplane in a wind tunnel for testing

Small Prototypes Application – MEMS Packaging and Microdevices

Type of prototypes at different stages of product development

Product development cycle

25 % of the product development time may go for fabricating the prototypes

P Saha Mech. Engg. Dept. IITKGP

Three Aspects of Prototypes

- Implementation of the Prototype; from the entire product (or system) to its sub-assemblies or components
- The form of the prototype; from a virtual prototype to a physical prototype.
- The degree of Approximation of the prototype; from a very rough estimation to a very accurate replication of the product.

CAD model of a cell phone, Sketch of a keypad, Rough foam model of a cell phone, Handheld rubber model of key pad – **In which category does each one fall ???**

From crude prototype to production: Progression of the flow saddle making.

Types of prototypes described along the 3 aspects:

→ Implementation,→ Form, and

→ Approximation

P Saha Mech. Engg. Dept.

IITKGP

Additive Manufacuring Books

- Rapid Prototyping Principles & Applications in Manufacturing: Chua Chee Kai, Leong Kah Fai, [John Wiley & Sons]
- Rapid Prototyping: Laser-based and Other Technologies by Patri K. Venuvinod and Weiyin Ma [Kluwer Acedemic Publishers]
- Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing -Brent Stucker, David Rosen, Ian Gibson [Springer]

Importance of Additive Manufacturing in Present Manufacturing Scenario

Importance of Additive Manufacturing in present manufacturing scenario

Value of product > Combined values of individual inputs

Cost Structure for Product Realisation

P Saha Mech. Engg. Dept. IITKGP

Changing competitive strategies

 Business based on single product: conceived, designed, tooled and manufactured in-house

Q: Quality

Innovation

Higher selling price of the product if it has quality and innovation

Cost of new technology should not offset the cost decrease achieved through higher productivity

Different Manufacturing Processes

Forming Processes

Removal Processes

Joining Processes

Solid

Liquid

Powder

Final shape

Excess material removed

Activities Involved In Traditional Manufacturing

- Specific manufacturing Process
- Relative movement between Tool & Work
- Loading-Unloading of Job & Tool Change
- Inspection of Components
- Transportation of Components& Tool from Location toLocation

- Assembly & Fabrication
- Testing and quality control of Product
- Packaging
- Material & Inventory Control
- Process Planning & Engineering Design
- Management & Marketing

Mechanization in Manufacturing → Historically

Historical Development of Technologies

from Mechanization to AM

Year of invention (AD)	Technology
1770	Mechanization
1946	First computer
1952	First NC machine tool
1960	First commercial laser
1961	First commercial robot
1963	First interactive graphic system (early version of CAD)
1988	First commercial rapid prototyping machine

P Saha Mech. Engg. Dept. IITKGP

Old Market Pattern

New Market Pattern

Changes in the Market Requirement

Cost Effectiveness of Different Types of Manufacturing

P Saha Mech. Engg. Dept. IITKGP

Typical duration of Product Development

Typical duration of Prototype Development

Cost of changes during various stages of product development

Various cost characteristics during product development

New Product Development -

Comparison of Traditional Methods with

Testing and Virtual Prototyping

Virtual Prototyping

Computer Workstation

Design

Simulate functionality

Design Manufacturing Process

Simulate Manufacturing Process

Build tools Prototype Manufacture **Test**

Virtual Prototyping

Role of Simulation in Virtual Prototyping

Addressing the Manufacturing Middle

Automation through CAD, CAE,etc.

Craft Intensive, Lacks Automation, & Eats up Time Automation through CAM, CNC, Robotics etc.

Concurrent Engineering

 Design engineers + Engineers from Production Shop works together

Concurrent Engineering

- ➤ All design, analysis and manufacturing activities utilizes the same data
- ➤ There is no duplication or misunderstanding
- Product information base can be copied and reused.
- ➤ It can be readily available for different downstream applications

Time compression through concurrent technology

Typical number of design changes

No. of design changes

Process Chain for Prototype Development

P Saha Mech. Engg. Dept. IITKGP