Géométrie

1) Périmètre, aire et volume

Définitions:

- Le périmètre d'une figure est la mesure de la longueur de son contour, exprimée dans une unité de longueur donnée.
- L'aire d'une figure est la mesure de sa surface, exprimée dans une unité d'aire donnée.
- Le **volume** d'un solide est la mesure de l'espace occupé par ce solide, dans une unité de volume donnée.

2) Périmètres et aires de figures particulières

Pour calculer un périmètre ou une aire, les dimensions doivent être exprimées dans la même unité de longueur.

	Figure	Périmètre	Aire
Rectangle		\mathcal{F} = 2 · (L + I) ou \mathcal{F} = 2 · L + 2 · I	A = L · 1
Carré		\mathcal{F} = 4 · c	$A = c \cdot c = c^2$
Losange	d ₂	T = somme des côtés	$A = \frac{d_1 \cdot d_2}{2}$
Parallélogramme	b	${\mathcal F}$ = somme des côtés	A = b·h
Trapèze	b ₁	${\mathcal F}$ = somme des côtés	$A = \frac{b_1 + b_2}{2} \cdot h$
Triangle rectangle		$\mathcal{F} = a + b + c$	$A = \frac{a \cdot b}{2}$
Triangle quelconque	b h c	$\mathcal{T} = a + b + c$	$A = \frac{c \cdot h}{2}$
Cercle - Disque	, t	\mathcal{F} = 2 · r · π ou \mathcal{F} = d · π	$A = \pi \cdot r^2$

Exemple 1: Quel est le périmètre \mathcal{F} et quelle est l'aire \mathcal{A} d'un disque de rayon 7 m ? On demande la valeur exacte puis une valeur approchée au centième. On prendra $\pi \approx 3.14$.

Le périmètre d'un cercle de rayon 7 m est 14π m, soit environ 43,96 m.

L'aire d'un disque de rayon 7 m est 49π m², soit environ 153,86 m².

Exemple 2 : Calcule l'aire du trapèze ABCD ci-contre :

Exemple 3 : Calcule l'aire de la figure ABCDE ci-contre.

On calcule séparément l'aire du rectangle ABDE et celle du triangle rectangle BCD puis on les additionne.

$$A_{ABDE} = AB \cdot AE = 4.8 \text{ cm} \cdot 3.6 \text{ cm} = 17.28 \text{ cm}^2$$

$$A_{BCD} = \frac{BC \cdot BD}{2} = \frac{5 \text{ cm} \cdot 3.6 \text{ cm}}{2} = \frac{18 \text{ cm}^2}{2} = 9 \text{ cm}^2$$

$$A_{\text{ABCDE}} = A_{\text{ABDE}} + A_{\text{BCD}} = 17,28 \text{ cm}^2 + 9 \text{ cm}^2 = 26,28 \text{ cm}^2$$

3) Aires et volumes de solides particuliers

Pour calculer un volume, les dimensions doivent être exprimées dans la même unité de longueur.

	Figure	Volume	Aire totale
Cube	c	$\mathbb{V} = c^3$	A = 6·c²
Pavé droit ou parallélépipède rectangle	L	V = L · I · h	A = 2·L·l + 2·l·h + 2·L·h
Prisme droit	h A _B	𝔱 = A _{base} ⋅ h	\mathcal{A} = somme des aires de toutes les surfaces
Pyramide	h A _B	$V = \frac{A_{base} \cdot h}{3}$	\mathcal{A} = somme des aires de toutes les surfaces
Cylindre	h	$\mathbb{V} = \pi \cdot r^2 \cdot h$	$A = 2\pi r^2 + 2\pi rh$
Cône	h	$\mathcal{V} = \frac{\pi \cdot r^2 \cdot h}{3}$	$A = \pi r^{2} + \pi r \sqrt{(r^{2} + h^{2})}$
Sphère ou boule		$V = \frac{4 \cdot \pi \cdot r^3}{3}$	$\mathcal{A} = 4\pi r^2$

Exemple 1 : Calcule le volume d'un pavé droit de 3,2 cm de longueur, de 2,5 cm de largeur et de 4 cm de hauteur.

$$\mathbb{V} = L \cdot l \cdot h$$

On écrit la formule.

 $\mathbb{V} = 3.2 \text{ cm} \cdot 2.5 \text{ cm} \cdot 4 \text{ cm}$

On remplace par les données numériques exprimées dans la même unité.

Le volume du pavé droit est de 32 cm³.

Exemple 2 : Calcule le volume d'un cube de 5 cm de côté.

Exemple 3 : Calcule le volume d'un cylindre de rayon 4 m et de hauteur 10 m. On prendra π = 3.

4) Patron d'un parallélépipède rectangle

<u>Règle</u>: Un patron d'un parallélépipède rectangle est une figure plane représentant ses six faces en **grandeur réelle** qui, après pliage et sans découpage, permet de fabriquer ce solide. Il existe plusieurs patrons différents permettant de le construire.

Exemple: Représente quatre patrons différents du pavé droit dessiné ci-contre.

Les faces de la même couleur sur le patron sont superposables et représentent, pour le parallélépipède rectangle, des faces parallèles.

Remarque : il existe beaucoup d'autres patrons du pavé droit (54 au total).

Pour le cube, il existe 11 patrons différents :

