Team Name:			
Group Members:			

The 4077^{th} Mobile Army Surgical Hospital is considering the purchase of a helicopter to transport critical patients. The **probability distribution** of X, the number of patient helicopter transports per month, is determined from a similarly-sized army hospital as given by the probability distribution below.

Number of Helicopter Transports per Month

X	0	1	2	3	4	5	6
P(X)	0.15	0.20	0.34	0.19	0.06	0.05	0.01

For all of the following problems, include **probability notation**, label values with the appropriate **symbol**, show your **work**, and include **units** wherever applicable.

- 1. **Verify** that this is a valid discrete probability distribution.
- 2. Find the probability that a helicopter will **not be used** at all to transport patients in a month.
- 3. Find the probability that a helicopter will be used at least once to transport critical patients.
- 4. Find the **expected number** of times a helicopter will be used to transport critical patients each month. Show your work using the appropriate formula. (You should only use your calculator to <u>check</u> your work.)
- 5. **Interpret** the expected value in context of the problem.
- 6. Find the **standard deviation** of the number of times a helicopter will be used to transport critical patients in a month. Show your work using the appropriate formula. (Use your calculator to <u>check</u> your work.)

7.	You	d-a-Bear distributors claim that there is only a 2% chance that an unstuffed bear has a sewing defect. It store received a shipment of 200 unstuffed bears. Let $X =$ the number of bears with defects. Round probabilities in the following problems to four decimal places.
	(a)	What is the probability that exactly 10 bears have a defect? Show probability notation, the binomial formula with values plugged in, and your answer.
	(b)	What is the probability that at most 10 bears have a defect? Show probability notation and your answer.
	(c)	What is the probability that at least two bears have defects? Show probability notation and your answer
	(d)	What is the expected number of defective bears in your shipment? Include units, the appropriate symbol, and your calculations.
	(e)	What is the standard deviation of defective bears in your shipment? Include units, the appropriate symbol, and your calculations.