LOCAL SEARCH ALGORITHMS: Applications

Regression Problem, K-Means Clustering Problem.

Linear regression – an example that uses gradient descent

$$y = mx + b$$

We want to fit a straight line (in 2D case). The sample we are given with is $\{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}.$

We want to find (m, b).

In the space (m, b) what is the function we are going to define? Minimum value of that function should be a solution for us.

Error_(m,b) =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - (mx_i + b))^2$$

$$\frac{\partial}{\partial \mathbf{m}} = \frac{2}{N} \sum_{i=1}^{N} -x_i (y_i - (mx_i + b))$$
$$\frac{\partial}{\partial \mathbf{b}} = \frac{2}{N} \sum_{i=1}^{N} -(y_i - (mx_i + b))$$

$$\frac{\partial}{\partial \mathbf{b}} = \frac{2}{N} \sum_{i=1}^{N} -(y_i - (mx_i + b))$$

Closed form solution

- Since the criterion that is minimized is quadratic, the linear regression problem must be having a closed form solution.
- This is nothing but applying the Newton's descent method.

Single airport problem in 1D

 We are asked to locate the airport place, so that it is "sum of squared distances" from all 3 cities, viz., C1,C2, and C3, is minimized.

2 dimensional, single airport

- Closed form solution
 - The centroid?
 - Why?

2 dimensional, 2 airports problem

- •Single airport problem can be easily visualized.
- •But 2 airports problem is difficult to visualize.
 - •You need to work in a 4 dimensional space.

•3 airports problem you need to work in a 6D space.

Airports Problem (3 airports) ...

- Coordinates of the three airports be $(x_1, y_1)^t, (x_2, y_2)^t, (x_3, y_3)^t$
- $f((x_1, y_1, x_2, y_2, x_3, y_3)^t)$ = Sum of squared distances from each city to its nearest airport
- Find values for the six parameters that minimize $f(\cdot)$

The 3 airports problem

- What is the criterion?
- Sum of squared distances of cities from their nearest airport locations.

K means clustering: Introduction

Let the cities be located at $C_1, C_2, ..., C_n$ and let the three airport locations be A_1, A_2, A_3 .

Arbitrarily choose A_1 , A_2 , A_3 .

Let
$$J = \sum_{i} \min_{j} ||C_i - A_j||^2$$

We want to find A_1, A_2, A_3 such that J is minimized.

- Minimum of convex functions, in general is not convex.
- So the objective is not convex.

An illustration: how k means works

This, indeed, gets stuck with local minima.

Global minima is ...

Lloyd in 1982 gave the k means clustering algorithm

- This is an iterative Newton's Descent Method.
- Gradient descent also works, but is slow.

 Single airport problem can be solved with a closed form solution. (Newton's method gives this).

K airports problems via k means clustering

- Choose randomly k points from the data. (these are the initial airport locations)
- (1) Assign each point to its nearest airport (center/mean) → This gives partition of the data.
- (2) For each block of the partition, solve single airport problem. → Reduce the criterion using Newton's method. (this gives k new points)
- Repeat (1) and (2) iteratively till convergence.

Illustration: see how mean vectors are moving as iterations are increased.

Example, k=2

Initial means:
Point 1 and Point 4

Individual	Distance to mean 1	Distance to mean 2
1	0	7.21
2	1.12	6.10
3	3.61	3.61
4	7.21	0
5	4.71	2.5
6	5.31	2.06
7	4.3	2.91

Point	х	У
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Clusters: {1,2,3}, {4,5,6,7}

New Mean vectors are: (1.83,2.33), (4.125, 5.375)

Point 3 now is closer to mean 2

Dist (3, mean 1) = 2.039

Dist (3, mean 2) = 1.777

So, point 3 moves from cluster 1 to cluster 2.

Clusters = $\{1,2\}$, $\{3,4,5,6,7\}$

Point	х	У
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

- Clusters = $\{1,2\}$, $\{3,4,5,6,7\}$
- Final means = $\{(1.25, 1.5), (3.9, 5.1)\}$