

دانشگاه تهران

دانشکده ریاضی آمار و علوم کامپیوتر

مطالب تكميلي شماره ١١

حل تمرین مبانی ترکیبیات

مروری بر مطالب درس:

• رابطه بازگشتی همگن خطی:

• قضيه اول:

 $\{a_n\}$ اگر c_1 و c_2 اعداد حقیقی باشند، فرض می کنیم c_2 و c_1 دارای ۲ ریشه متفاوت c_2 و میباشد. در نتیجه دنباله c_2 و اعداد حقیقی باشند، فرض می کنیم c_1 میباشد، اگر و تنها اگر a_1 a_2 a_3 به ازای... a_n و a_1 به ازای... a_n و a_1 ثابت، برقرار باشد.

• قضیه دوم:

اگر c_1 و c_2 اعداد حقیقی باشند به طوری که $c_2 \neq 0$ ، فرض کنید $c_2 = 0$ تنها یک ریشه حقیقی c_1 دارد. دنباله $a_1 = \alpha_1 r_1^n + \alpha_2 r_2^n$ تنها یک ریشه حقیقی $a_1 = \alpha_1 r_1^n + \alpha_2 r_2^n$ به $a_2 = \alpha_1 r_1^n + \alpha_2 r_2^n$ یک راه حل برای رابطه بازگشتی $a_1 = a_1 r_1^n + a_2 r_2^n$ میباشد، اگر و تنها اگر $a_2 = a_1 r_1^n + a_2 r_2^n$ به ازای $a_2 = a_1 r_1^n + a_2 r_2^n$ و همچنین $a_1 = a_2 r_1^n$ و همچنین $a_2 = a_1 r_1^n + a_2 r_2^n$ ثابت، برقرار باشد.

• قضیه سوم:

 r_1, r_2, \ldots, r_k اعداد حقیقی متفاوت k ، $r^k - c_1 r^{k-1} - \ldots - c_k = 0$ اعداد حقیقی متفاوت $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$ میباشد، اگر و تنها اگر و $\{a_n\}$ عارد. دنباله $\{a_n\}$ یک راه حل برای رابطه بازگشتی $\{a_n\}$ به ازای $\{a_n\}$ به ازای به ا

قضیه چهارم:

اگر a_n اعداد حقیقی باشند، فرض کنید a_n با مراتب a_n اعداد حقیقی متفاوت $a_1, c_2, \ldots, c_k = 0$ با مراتب a_n اعداد حقیقی باشند، فرض کنید a_n با مراتب a_n به ترتیب، به طوری که به ازای a_n به ازای a_n به ترتیب، به طوری که به ازای a_n به ازگشتی $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$ میباشد، اگر و تنها اگر: $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$ میباشد، اگر و تنها اگر: $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$

$$a_n = (\alpha_{1,0} + \alpha_{1,1}n + \dots + \alpha_{1,m_1-1}n^{m_1-1})r_1^n + (\alpha_{2,0} + \alpha_{2,1}n + \dots + \alpha_{2,m_2-1}n^{m_2-1})r_2^n$$

١

$$+\ldots+ig(lpha_{2,0}+lpha_{2,1}n+\ldots+lpha_{2,m_2-1}n^{m_2-1}ig)r_2^n$$
به ازای $j\leq m_i-1$ به ازای که $n=0,1,\ldots$ به ازای که میرود که میرود که ازای که ازای که میرود که ازای که میرود که میرود که ازای که میرود که می

• قضیه پنجم:

اگر $\left\{a_n^{(p)}
ight\}$ یک جواب مشخص برای رابطه غیرهمگن بازگشتی خطی با ضرایب ثابت $\left\{a_n^{(p)}+a_n^{(h)}
ight\}$ ست، به طوری که $\left\{a_n^{(h)}
ight\}$ است، به طوری که $\left\{a_n^{(h)}
ight\}$ است، به طوری که $\left\{a_n^{(h)}+a_n^{(h)}
ight\}$ است، به طوری که $a_n=c_1a_{n-1}+c_2a_{n-2}+\ldots+c_ka_{n-k}+F(n)$ یک راه حل برای رابطه همگن بازگشتی مربوطه $a_n=c_1a_{n-1}+c_2a_{n-2}+\ldots+c_ka_{n-k}$ میباشد.

• قضيه ششم:

فرض کنید $\{a_n\}$ در رابطه غیرهمگن بازگشتی خطی $\{a_n\}$ در رابطه غیرهمگن بازگشتی خطی $\{a_n\}$ در رابطه غیرهمگن بازگشتی خطی $\{a_n\}$ در رابطه غیرهمگن بازگشتی خطی مستند و $\{a_n\}$ به طوری که به طوری که به طوری که $\{a_n\}$ به عداد حقیقی هستند. زمانی که $\{a_n\}$ ریشه معادله همگن بازگشتی خطی مربوطه نیست، یک جواب خاص به فرم $\{a_n\}$ به طوری که $\{a_n\}$ به طوری که نمای در ایمای نازگشتی خطی مربوطه است و مرتبه آن $\{a_n\}$ به طوری که $\{a_n\}$ به طوری که $\{a_n\}$ به طوری که $\{a_n\}$ به طوری که نازگشتی خطی مربوطه است و مرتبه آن $\{a_n\}$ به طوری که نازگشتی خطی مربوطه است و مرتبه آن $\{a_n\}$ به طوری که نازگشتی خطی مربوطه است و مرتبه آن $\{a_n\}$ به طوری که نازگشتی خطی مربوطه است و مرتبه آن $\{a_n\}$ به طوری که نازگشتی خطی مربوطه است و مرتبه آن $\{a_n\}$ به طوری که نازگشتی خطی مربوطه است و مرتبه آن $\{a_n\}$ به طوری که نازگشتی خطی مربوطه است و مرتبه آن $\{a_n\}$ به طوری که نازگشتی خطی مربوطه است و مرتبه آن $\{a_n\}$ به طوری که نازگشتی خطی مربوطه است و مرتبه آن $\{a_n\}$ به طوری که نازگشتی خطی مربوطه است و مرتبه آن $\{a_n\}$ به طوری که نازگشتی خطی مربوطه است و مرتبه آن $\{a_n\}$ به طوری که نازگشتی خطی مربوطه است و مرتبه آن $\{a_n\}$ به طوری که نازگشتی خوا به نازگشتی خوا به طوری که نازگشتی خوا به نازگش

سوالات كلاس حل تمرين:

۱) روابط بازگشتی زیر را حل کنید.

$$a_n = \frac{1}{2}a_{n-1} - 3, a_0 = 2(3 + \sqrt{3})$$
 (ibi)

$$a_n - a_{n-1} = 3 \times 2^n - 4n, a_1 = 2$$
 (ب

۳) میخواهیم یک مستطیل $n \in N$ دادن این کار تعریف می کنیم. a_n را تعداد راههای انجام دادن این کار تعریف می کنیم. a_n میخواهیم یک مستطیل a_n یافته و آن را حل کنید.

اند: هده اند: ورض کنید $\{a_n\}$ دو دنباله از اعداد صحیح باشند که به صورت زیر تعریف شده اند: $\{b_n\}$

$$a_0 = 1, a_1 = 1, a_n = a_{n-1} + 2a_{n-2} \quad n \ge 2$$

$$b_0 = 1, b_1 = 7, b_n = 2b_{n-1} + 3b_{n-2} \quad n \ge 2$$

در نتیجه چند جمله اول آنها به صورت زیر است:

a: 1,1,3,5,11,21,...

b: 1,7,17,55,161,487,...

ثابت كنيد به جز 1 اين دو دنباله جمله مشترك ديگرى ندارند.(USA MO 1973)

(Putnam 1957) بشان دهید مجموع n جمله اول بسط دو جملهای $(2-1)^{-n}$ با فرض $n \in \mathbb{N}$ برابر $\frac{1}{2}$ است.

ياسخ سوالات كلاس حل تمرين:

()

 $a=rac{1}{2}$ الله) ابتدا باید مقدار $a_n^{(h)}$ محاسبه شود. معادله مشخصه $a_n-rac{1}{2}a_{n-1}=0$ برابر با $a_n-rac{1}{2}a_{n-1}=0$ محاسبه شود. معادله مشخصه آن برابر با $a_n-rac{1}{2}a_{n-1}=0$ میباشد. بدین ترتیب داریم: $a_n^{(h)}=A\left(rac{1}{2}
ight)^n$ که در آن $a_n^{(h)}=a_n^{(h)}=a_n^{(h)}$

حال به پیدا کردن $a_n^{(p)}$ میپردازیم. از آنجایی که f(n)=-3 چند جملهای از n و با درجه صفر است و ۱ ریشه مشخصه نیست : $a_n^{(p)}$ به طوری که $a_n^{(p)}$ تأبت باشد.

چون $a_n = \frac{1}{2}a_{n-1} - 3$ می کند، داریم $a_n = \frac{1}{2}B - 3$ که برابر است با $a_n = \frac{1}{2}a_{n-1} - 3$ جواب عمومی $a_n = \frac{1}{2}a_{n-1} - 3$ چون $a_n = a_{n-1} - 3$ می توان نتیجه گرفت: $a_n = a_n^{(h)} + a_n^{(p)} = A\left(\frac{1}{2}\right)^n - 6$ می توان نتیجه گرفت:

 $A-6=2(3+\sqrt{3})$

در نتیجه، جواب عمومی رابطه بازگشتی برابر است با:

$$n \ge 0$$
 به ازای هر $a_n = 2(\sqrt{3} + 6)\left(\frac{1}{2}\right)^n - 6 = \left(\frac{1}{2}\right)^{n-1}(\sqrt{3} + 6) - 6$

ب) ابتدا باید مقدار $a_n^{(h)}$ محاسبه شود. معادله مشخصه $a_{n-1}=0$ برابر با a_n-3 برابر با a_n-3 میباشد. $a_n^{(h)}=a_n$ میباشد. که در آن $a_n^{(h)}=a_n$ که در آن $a_n^{(h)}=a_n$ که در آن $a_n^{(h)}=a_n$ که در آن $a_n^{(h)}=a_n$ که در آن $a_n^{(h)}=a_n$

حال به پیدا کردن $a_n^{(p)}$ میپردازیم. از آنجایی که $a_n^{(p)}$ که $a_n^{(p)}$ مجموعی از تابع نمایی $a_n^{(p)}$ میپردازیم. از آنجایی که $a_n^{(p)}$ که و $a_n^{(p)}$ میپردازیم. از آنجایی که طورت $a_n^{(p)}$ میپردازیم. که در آن $a_n^{(p)}$ ثابت هستند. چون $a_n^{(p)}$ در معادله ی $a_n^{(p)}$ میپردازیم. عادله ی $a_n^{(p)}$ میپردازیم. عادله ی $a_n^{(p)}$ میپردازیم. از آنجایی که میپردازیم. عادله ی $a_n^{(p)}$ میپردازیم. حادل میپردازیم. از آنجایی که میپردازیم. از آنجایی که میپردازیم. از آنجایی که در آن $a_n^{(p)}$ میپردازیم. از آنجایی که در آن $a_n^{(p)}$ در معادله ی

$$(B \cdot 2^n - Cn + D) - 3(B \cdot 2^{n-1} - C(n-1) + D) = 3 \cdot 2^n - 4n$$

با برابر قرار دادن ضرایب مشترک داریم:

$$\begin{cases} \frac{-1}{2}B = 3\\ -2C = -4\\ 3C - 2D = 0 \end{cases}$$

که در نتیجه این برابری ها می توان به معادله $a_n-3a_{n-1}=3\cdot 2^n-4n$ رسید. جواب عمومی $a_n^{(p)}=-6\cdot 2^n+2n+3$ برابر $a_n-3a_{n-1}=3\cdot 2^n-4n$ رسید. جواب عمومی $a_n=a_n^{(h)}+a_n^{(p)}=A\cdot 3^n-6\cdot 2^n+2n+3$ می توان نتیجه گرفت $a_n=a_n^{(h)}+a_n^{(p)}=A\cdot 3^n-6\cdot 2^n+2n+3$ در نتیجه، راه حل مورد نیاز برابر است با $a_n=3\cdot 3^n-6\cdot 2^n+2n+3=3^{n+1}-6\cdot 2^n+2n+3$ به ازای هر $a_n=3\cdot 3^n-6\cdot 2^n+2n+3=3^{n+1}-6\cdot 2^n+2n+3$

(٢

معادله مشخصه رابطه بازگشتی داده شده، به صورت $px^2+qx+r=0$ است و تفکیک کننده $px^2+qx+r=0$ معادله مشخصه رابطه بازگشتی داده شده، به صورت $q^2-4pr=(-p-r)^2-4pr=p^2+2pr+r^2-4pr=p^2-2pr+r^2=(p-r)^2$

دو حالت در نظر می گیریم.

حالت اول: p
eq r آنگاه ریشههای معادله مشخصه عبارتند از $a_1 = \frac{-q+r-p}{2p} = \frac{r}{p}$ و $a_1 = \frac{-q+p-r}{2p} = 1$ بنابراین، جواب کلی رابطه بازگشتی p
eq r حالت اول: p
eq r آنگاه ریشههای معادله مشخصه عبارتند از $a_1 = r$ و $a_2 = r$ نتیجه می دهد که به صورت $a_1 = r$ است که $a_2 = r$ مقادیر ثابت هستند. شرایط اولیه $a_3 = r$ و $a_4 = r$ نتیجه می دهد که

$$A + B = s \wedge A + \frac{rB}{p} = t$$

داريم:

$$A = s + \frac{p(t-s)}{p-r} \land B = \frac{-p(t-s)}{p-r}$$

د,نتىحە:

$$a_n = s + \frac{p(t-s)}{p-r} \left(1 - \left(\frac{r}{p}\right)^n \right)$$

$$A = s \wedge A + B = t$$

داريم:

$$A = s \wedge B = t - s$$

درنتيجه:

$$a_n = s + (t - s)n$$

لذا:

$$a_n = \begin{cases} s + \frac{p(t-s)}{p-r} \left(1 - \left(\frac{r}{p}\right)^n\right) & \text{if } p \neq r \\ s + (t-s)n & \text{if } p = r \end{cases}$$

۲)

هر طریقه ممکن پوشاندن مستطیل n imes 2 توسط بلوک های یکسان 2 imes 1 و 2 imes 2 را در نظر می گیریم. اکنون حالت های مختلف را بررسی می کنیم:

حالت اول:

بالا-چپترین مربع از مستطیل n imes 2 توسط بلوک عمودی 2 imes 1 پوشانده شده. هیچ محدودیتی برای چگونگی پوشانده شدن بالا-چپترین مربع از مستطیل 2 imes (n-1) باقیمانده وجود ندارد. در نتیجه در این حالت a_{n-1} روش وجود دارد.

حالت دوم:

بالا-چپ ترین مربع از مستطیل $n \times 2$ توسط بلوک افقی 2×1 پوشانده شده. در نتیجه پایین-چپ ترین مربع از این مستطیل نیز باید حتما توسط بلوک افقی $2 \times (n-2)$ پوشانده شود. هیچ محدودیتی برای چگونگی پوشانده شدن بالا-چپ ترین مربع از مستطیل $2 \times (n-2)$ باقی مانده وجود ندارد. در نتیجه در این حالت a_{n-2} روش وجود دارد.

حالت سوم:

بالا-چپ ترین مربع از مستطیل n imes 2 imes 2 توسط بلوک 2 imes 2 پوشانده شده. استدلالی مشابه با استدلال استفاده شده در حالت یک نشان می دهد که a_{n-2} روش وجود دارد.

پس باید داشته باشیم $a_n=a_{n-1}+2a_{n-2}=0$. این معادله بازگشتی را میتوان به صورت $a_n=a_{n-1}+2a_{n-2}=0$ نوشت که معادله مشخصه $a_n=A\cdot$ آن برابر با $a_n=a_{n-1}+2a_{n-2}=0$ میباشد. جواب عمومی معادله بازگشتی برابر با $a_n=a_n=a_n=1$ و ریشههای مشخصه آن برابر با $a_n=a_n=1$ و $a_n=a_n=1$ میباشد که $a_n=a_n=1$ و $a_n=a_n=1$ و $a_n=a_n=1$ و $a_n=a_n=1$ میباشد که $a_n=a_n=1$ و $a_n=a_n=1$ و $a_n=a_n=1$ و $a_n=a_n=1$ میباشد که $a_n=a_n=1$ و $a_n=1$ و

$$\begin{cases} 2A - B = 1 \\ 4A + B = 3 \end{cases}$$

 $B=rac{1}{3}$ با حل دستگاه مشخص می شود

در نتیجه داریم:

$$n \ge 1$$
 به ازای هر $a_n = \frac{1}{3}(2^{n+1} + (-1)^n)$

(۴

 $lpha_2=-1$ و $lpha_1=2$ است و ریشه های مشخصه آن $lpha_1=2$ و $lpha_1=2$ است و ریشه های مشخصه برای دنباله بازگشتی $lpha_1=a_{n-1}+2a_{n-2}$ برابر $lpha_1=a_{n-1}+2a_{n-2}$ است. در نتیجه جواب عمومی رابطه بازگشتی توسط $lpha_1=a_{n-1}+a_{n-2}+a_{n-2}$ مشخص می شود. حال برای به دست آوردن $lpha_1=a_{n-1}+a_{n-2}+a_{n-2}+a_{n-2}$ است. در نتیجه جواب عمومی رابطه بازگشتی توسط $lpha_1=a_{n-1}+a_{n-2}+a_{n-2}+a_{n-2}+a_{n-2}$

$$\begin{cases} A+B=1\\ 2A-B=1 \end{cases} \Rightarrow A = \frac{2}{3}, B = \frac{1}{3} \Rightarrow a_n = \frac{1}{3}(2^{n+1} + (-1)^n) \qquad n \ge 0$$

معادله مشخصه برای دنباله بازگشتی b برابر b برابر $x^2-2x-3=0$ است و ریشههای مشخصه آن a و a و a است. در نتیجه جواب عمومی رابطه بازگشتی توسط a برابر a برابر a مشخص می شود. حال برای به دست آوردن a و a است. در نتیجه جواب عمومی رابطه بازگشتی توسط a برابر مرابر a بر

$$\begin{cases} C + D = 1 \\ 3C - D = 7 \end{cases} \Rightarrow C = 2, D = -1 \Rightarrow b_n = 2 \cdot 3^n + (-1)^{n+1} \qquad n \ge 0$$

حال متغیر $\,k$ را در نظر می $\,$ گیریم که در هر دو دنباله ظاهر می شود، پس داریم:

$$k = a_m = b_n \Rightarrow \frac{1}{3}(2^m + (-1)^{m+1}) = 2 \cdot 3^{n-1} + (-1)^n \Rightarrow 2^m = 2 \cdot 3^n + 3(-1)^n + (-1)^m \quad m, n \in \mathbb{N}$$

اگر m=1,2 تنها جواب معادله بالا برابر n=1 میباشد که نتیجه می دهد k=1 حال خلاف آن را تصور می کنیم و فرض می کنیم عدد مثبتی m=1,2 وجود دارد به طوری که m=1,2 نیز جواب معادله بالا باشد به طوری که $m\geq m$ در نتیجه $m\geq m$ (همه مبناها m=1,1) است. از طرفی با استفاده از اینکه m=1,1 میباشد برای همه m=1,1 های فرد، پس در نتیجه m=1,1 و از آنجایی که m=1,1 و از آنجایی که m=1,1 بس باید داشته باشیم m=1,1 برابر m=1,1 و از m=1,1 بی بابر این تنها جواب برای m=1,1 برابر m=1,1 است که یعنی m=1,1 تنها جواب است.

(Δ

طبق قضایایی که قبلا مورد بحث قرار گرفتهاند، میدانیم:

$$(2-1)^{-n} = 2^{-n} \left(1 - \frac{1}{2}\right)^{-n} = 2^{-n} \sum_{r=0}^{+\infty} {r+n-1 \choose r} \left(\frac{1}{2}\right)^r \forall n \ge 1$$

اكنون قرار مىدهيم:

$$a_n = 2^{-n} \sum_{r=0}^{n-1} {r+n-1 \choose r} \left(\frac{1}{2}\right)^r \forall n \ge 1$$

آنگاه برای هر n>1 داریم:

$$a_{n} = 2^{-n} \sum_{r=0}^{n-1} {r+n-1 \choose r} \left(\frac{1}{2}\right)^{r}$$

$$2^{-n} \sum_{r=0}^{n-1} {r+n-2 \choose r} \left(\frac{1}{2}\right)^{r} + 2^{-n} \sum_{r=0}^{n-1} {r+n-2 \choose r-1} \left(\frac{1}{2}\right)^{r}$$

$$2^{-n} \sum_{r=0}^{n-2} {r+n-2 \choose r} \left(\frac{1}{2}\right)^{r} + {2n-3 \choose n-1} 2^{-2n+1} + 2^{-n} \sum_{r=1}^{n-1} {r+n-2 \choose r-1} \left(\frac{1}{2}\right)^{r}$$

$$\frac{1}{2} a_{n-1} + {2n-3 \choose n-1} 2^{-2n+1} + 2^{-n-1} \sum_{r=0}^{n-2} {r+n-1 \choose r} \left(\frac{1}{2}\right)^{r}$$

$$\frac{1}{2} a_{n-1} + {2n-3 \choose n-1} 2^{-2n+1} + 2^{-n-1} \sum_{r=0}^{n-1} {r+n-1 \choose r} \left(\frac{1}{2}\right)^{r} - {2n-2 \choose n-1} 2^{-2n}$$

$$\frac{1}{2} a_{n-1} + {2n-3 \choose n-1} 2^{-2n+1} + \frac{1}{2} a_{n} - \frac{2n-2}{n-1} {2n-3 \choose n-2} 2^{-2n}$$

$$\frac{1}{2} a_{n-1} + \frac{1}{2} a_{n}$$

$$a_{n-1}=a_n$$
یا معادلاً،

در نتیجه داریم:

$$a_1 = a_n = \frac{1}{2} \forall n \ge 1$$