Image Enhancement:

Spatial domain

Dr. Tushar Sandhan

Introduction

Introduction

Introduction

Intensity transformations

- Transformations
 - intensity transformations
 - negatives
 - logs
 - power-law (gamma)
 - contrast stretching
 - level slicing
 - bit-plane slicing
 - distribution transformations
 - histogram equalization
- Spatial filtering
 - image filtering

- Transformations
 - intensity transformations
 - negatives
 - logs
 - power-law (gamma)
 - contrast stretching
 - level slicing
 - bit-plane slicing
 - distribution transformations
 - histogram equalization
- Spatial filtering
 - o image filtering

 $g(x,y) = T_i(f(x,y))$

- Transformations
 - intensity transformations
 - negatives
 - logs
 - power-law (gamma)
 - contrast stretching
 - level slicing
 - bit-plane slicing
 - distribution transformations
 - histogram equalization
- Spatial filtering
 - o image filtering

- Transformations
 - intensity transformations
 - negatives
 - logs
 - power-law (gamma)
 - contrast stretching
 - level slicing
 - bit-plane slicing
 - distribution transformations
 - histogram equalization
- Spatial filtering
 - o image filtering

$$g(x,y) = T_i(f(x,y))$$

$$s \leftarrow r$$

$$g(x,y) = T_i \left(p(f(x,y)) \right)$$

$$s = L - 1 - r$$

$$s = L - 1 - r$$

$$s = L - 1 - r$$

$$s = L - 1 - r$$

$$s = c \cdot log(1+r)$$

- Log transformations
 - used to expand values of dark pixels
 - o simultaneously compressing bright pixels
 - o compresses dynamic range of images
 - Fourier spectrum

$$s = c \cdot log(1+r)$$

- Log transformations
 - used to expand values of dark pixels
 - o simultaneously compressing bright pixels
 - o compresses dynamic range of images
 - Fourier spectrum

$$s = c \cdot log(1+r)$$

- Log transformations
 - used to expand values of dark pixels
 - o simultaneously compressing bright pixels
 - o compresses dynamic range of images
 - Fourier spectrum

$$s = c \cdot log(1+r)$$

- Log transformations
 - used to expand values of dark pixels
 - o simultaneously compressing bright pixels
 - o compresses dynamic range of images
 - Fourier spectrum

$$s = c \cdot log(1+r)$$

- Log transformations
 - o used to expand values of dark pixels
 - o simultaneously compressing bright pixels
 - o compresses dynamic range of images
 - Fourier spectrum

 $s = c \cdot r^{\gamma}$

- Power-law transformations
 - o sensors respond according to power law
 - CMOS, scanners, printing, displays
 - CRT: intensity to voltage response as power function ($\gamma' = 1.8 \sim 2.5$)
 - o gamma correction
 - \circ device dependent γ
 - \circ γ variation also varies the color ratios
 - \circ correct color reproduction needs knowledge of γ
 - gamma injection
 - o post image processing for contrast manipulation

 $s = c \cdot r^{\gamma}$

Power-law transformations

- o sensors respond according to power law
 - CMOS, scanners, printing, displays
 - CRT: intensity to voltage response as power function ($\gamma' = 1.8 \sim 2.5$)

o gamma correction

- \circ device dependent γ
- \circ γ variation also varies the color ratios
- \circ correct color reproduction needs knowledge of γ

o gamma injection

o post image processing for contrast manipulation

 $s = c \cdot r^{\gamma}$

• γ correction

 $s = c \cdot r^{\gamma}$

lacksquare γ injection

 $s = c \cdot r^{\gamma}$

• γ injection

 $s = c \cdot r^{\gamma}$

• γ injection

 $s = c \cdot r^{\gamma}$

• γ injection

Transformations

- Compositions
 - o piecewise combinations
 - piecewise linear
 - many T_i formulated with this
 - need more user input paras

Contrast

- low contrast images
 - due to poor illumination, low dynamic range sensors
 - wrong setting of lens aperture

- o full range stretching
 - $(r_1, s_1) = (r_{min}, 0)$
 - $(r_2, s_2) = (r_{max}, L 1)$
- thresholding

•

- Contrast
 - low contrast images
 - due to poor illumination, low dynamic range sensors
 - wrong setting of lens aperture
 - o full range stretching
 - $(r_1, s_1) = (r_{min}, 0)$
 - $(r_2, s_2) = (r_{max}, L 1)$
 - thresholding

•

- Contrast
 - low contrast images
 - due to poor illumination, low dynamic range sensors
 - wrong setting of lens aperture
 - o full range stretching
 - $(r_1, s_1) = (r_{min}, 0)$
 - $(r_2, s_2) = (r_{max}, L 1)$
 - thresholding

•

Contrast

- low contrast images
 - due to poor illumination, low dynamic range sensors
 - wrong setting of lens aperture
- o full range stretching
 - $(r_1, s_1) = (r_{min}, 0)$
 - $(r_2, s_2) = (r_{max}, L 1)$
- thresholding
 - $r_1 = r_2$, $s_1 = 0$, $s_2 = L 1$

Contrast

- low contrast images
 - due to poor illumination, low dynamic range sensors
 - wrong setting of lens aperture
- o full range stretching
 - $(r_1, s_1) = (r_{min}, 0)$
 - $(r_2, s_2) = (r_{max}, L 1)$
- thresholding
 - $r_1 = r_2$, $s_1 = 0$, $s_2 = L 1$

Contrast

- low contrast images
 - due to poor illumination, low dynamic range sensors
 - wrong setting of lens aperture
- o full range stretching
 - $(r_1, s_1) = (r_{min}, 0)$
 - $(r_2, s_2) = (r_{max}, L 1)$
- thresholding
 - $r_1 = r_2$, $s_1 = 0$, $s_2 = L 1$

SEM image of pollen grains

- Intensity levels
 - o local thresholding, stretching
 - o enhancing only specific intensities
 - e.g. detecting water, wetland in sat. images

- Intensity levels
 - o local thresholding, stretching
 - o enhancing only specific intensities
 - e.g. detecting water, wetland in sat. images

- Intensity levels
 - o local thresholding, stretching
 - o enhancing only specific intensities
 - e.g. detecting water, wetland in sat. images

- Intensity levels
 - o local thresholding, stretching
 - o enhancing only specific intensities
 - e.g. detecting water, wetland in sat. images

- Intensity levels
 - o local thresholding, stretching
 - o enhancing only specific intensities
 - e.g. detecting water, wetland in sat. images

Level slicing

- Intensity levels
 - o local thresholding, stretching
 - o enhancing only specific intensities
 - e.g. detecting water, wetland in sat. images

- Bitplanes
 - contribution of each bit for total image appearance
 - o gives clue for a compression

Bitplanes

- contribution of each bit for total image appearance
- o gives clue for a compression

slicing

- Bitplanes
 - contribution of each bit for total image appearance
 - o gives clue for a compression

reconstruction

- Bitplanes
 - contribution of each bit for total image appearance
 - o gives clue for a compression

reconstruction

bitplanes (8+7)

- Bitplanes
 - contribution of each bit for total image appearance
 - o gives clue for a compression

reconstruction

• bitplanes (8+7)

bitplanes (8+7+6)

- Bitplanes
 - contribution of each bit for total image appearance
 - o gives clue for a compression

reconstruction

- bitplanes (8+7)
- bitplanes (8+7+6)
- bitplanes (8+7+6+5)

Spatial domain enhancements

- Transformations
 - intensity transformations
 - negatives
 - logs
 - power-law (gamma)
 - contrast stretching
 - level slicing
 - bit-plane slicing
 - distribution transformations
 - histogram equalization
- Spatial filtering
 - o image filtering

$$g(x,y) = T_i(f(x,y))$$

$$s \leftarrow r$$

$$g(x,y) = T_i(p(f(x,y)))$$

- distribution of discrete intensities
 - o distribution is also discrete

4	1	3	2
3	1	1	1
0	1	5	2
1	1	2	2

- distribution of discrete intensities
 - o distribution is also discrete

4	1	з	2
3	1	1	1
0	1	5	2
1	1	2	2

- distribution of discrete intensities
 - o distribution is also discrete

4	1	3	2
3	1	1	1
0	1	5	2
1	1	2	2

Color images

Color images

s = T(r)

- Assume
 - \circ T(r) is monotonic ↑
 - o bounded $0 \le T(r) \le L 1$
 - o variable equivalence
 - to cover all notations

$$0 \le r \le L - 1$$

- Assume
 - \circ T(r) is monotonic ↑
 - o bounded $0 \le T(r) \le L 1$
 - o variable equivalence
 - to cover all notations

$$Y = T(X)$$

$$s = T(r)$$

$$0 \le r \le L - 1$$

- Assume
 - \circ T(r) is monotonic ↑
 - o bounded $0 \le T(r) \le L 1$
 - o variable equivalence
 - to cover all notations

$$Y = T(X)$$

$$S = T(r)$$

$$0 \le r \le L - 1$$

- Assume
 - \circ T(r) is monotonic ↑
 - o bounded $0 \le T(r) \le L 1$
 - o variable equivalence
 - to cover all notations

$$Y = T(X)$$

$$s = T(r)$$

$$\downarrow$$

$$p_s(s) \qquad p_r(r)$$

$$0 \le r \le L - 1$$

- Assume
 - \circ T(r) is monotonic ↑
 - o bounded $0 \le T(r) \le L 1$
 - o variable equivalence
 - to cover all notations

- Assume
 - \circ T(r) is monotonic ↑
 - o bounded $0 \le T(r) \le L 1$
 - o variable equivalence
 - to cover all notations

$$Y = T(X)$$

$$s = T(r)$$

$$\downarrow$$

$$p_s(s) \qquad p_r(r)$$

$$p_Y(y) \qquad p_X(x)$$

$$0 \le r \le L - 1$$

T(r) is cts & differentiable

- Assume
 - \circ T(r) is monotonic ↑
 - o bounded $0 \le T(r) \le L 1$
 - o variable equivalence
 - to cover all notations

Y = T(X) s = T(r) $p_s(s) \qquad p_r(r)$ $p_Y(y) \qquad p_X(x)$

$$0 \le r \le L - 1$$

T(r) is cts & differentiable

• cumulative function satisfies above properties for T(r)

- Assume
 - \circ T(r) is monotonic ↑
 - o bounded $0 \le T(r) \le L 1$
 - variable equivalence
 - to cover all notations

• cumulative function satisfies above properties for T(r)

$$Y = T(X)$$

$$s = T(r)$$

$$\downarrow$$

$$p_s(s) \qquad p_r(r)$$

$$p_Y(y) \qquad p_X(x)$$

$$0 \le r \le L - 1$$

T(r) is cts & differentiable

$$s = T(r) = (L - 1) \int_0^r p_r(w) dw$$

$$Y = T(X) = (L-1) \int_0^X p_X(x) dx$$

- Assume
 - \circ T(r) is monotonic ↑
 - o bounded $0 \le T(r) \le L 1$
 - variable equivalence
 - to cover all notations

$$Y = T(X)$$

$$S = T(r)$$

 $p_r(r)$

 $p_X(x)$

 $p_s(s)$

 $p_Y(y)$

$$0 \le r \le L - 1$$

T(r) is cts & differentiable

• cumulative function satisfies above properties for T(r)

$$s_k = T(r_k) = (L - 1) \sum_{j=0}^k p_r(r_j)$$

$$= \frac{(L-1)}{MN} \sum_{j=0}^{k} n_j \qquad k = 0, 1, 2, \dots, L-1$$

$$s = T(r) = (L - 1) \int_0^r p_r(w) dw$$

$$Y = T(X) = (L-1) \int_0^X p_X(x) dx$$

$$Y = T(X) = (L - 1) \int_0^X p_X(x) dx$$

$$Y = T(X)$$

$$\downarrow \qquad \qquad \downarrow$$

$$p_Y(y) \qquad p_X(x)$$

Y = T(X) T(X) is cts & differentiable

What is $p_Y(y)$?

$$Y = T(X) = (L-1) \int_0^X p_X(x) dx$$

$$Y = T(X)$$

$$\downarrow$$

$$p_Y(y) \qquad p_X(x)$$

Y = T(X) T(X) is cts & differentiable

$$\int_0^y p_Y(z)dz = \text{ probability that } 0 \le Y \le y$$

$$Y = T(X) = (L - 1) \int_0^X p_X(x) dx$$

$$Y = T(X)$$

$$\downarrow$$

$$p_Y(y) \qquad p_X(x)$$

Y = T(X) T(X) is cts & differentiable

$$\int_0^y p_Y(z)dz = \text{ probability that } 0 \le Y \le y$$

$$= \text{ probability that } 0 \le X \le T^{-1}(y)$$

$$Y = T(X) = (L-1) \int_0^X p_X(x) dx$$

$$\int_0^y p_Y(z)dz = \text{ probability that } 0 \le Y \le y$$

= probability that
$$0 \le X \le T^{-1}(y)$$

$$=\int_{0}^{T^{-1}(y)} p_X(w)dw$$

$$Y = T(X) = (L-1) \int_0^X p_X(x) dx$$

$$Y = T(X)$$

$$\downarrow \qquad \qquad \downarrow$$

$$p_Y(y) \qquad p_X(x)$$

Y = T(X) T(X) is cts & differentiable

$$\int_0^y p_Y(z)dz = \int_0^{T^{-1}(y)} p_X(w)dw$$

$$Y = T(X) = (L - 1) \int_0^X p_X(x) dx$$

$$Y = T(X)$$

$$\downarrow$$

$$p_Y(y) \qquad p_X(x)$$

Y = T(X) T(X) is cts & differentiable

$$\int_{0}^{y} p_{Y}(z)dz = \int_{0}^{T^{-1}(y)} p_{X}(w)dw$$

$$\frac{d}{dy} \left(\int_0^y p_Y(z) dz \right)$$

$$Y = T(X) = (L - 1) \int_0^X p_X(x) dx$$

$$Y = T(X)$$

$$\downarrow$$

$$p_Y(y) \qquad p_X(x)$$

Y = T(X) T(X) is cts & differentiable

$$\int_{0}^{y} p_{Y}(z)dz = \int_{0}^{T^{-1}(y)} p_{X}(w)dw$$

$$\frac{d}{dy}\left(\int_0^y p_Y(z)dz\right) = p_X(T^{-1}(y))\frac{d}{dy}(T^{-1}(y))$$

$$Y = T(X) = (L - 1) \int_0^X p_X(x) dx$$

$$Y = T(X)$$

$$\downarrow$$

$$p_Y(y) \qquad p_X(x)$$

Y = T(X) T(X) is cts & differentiable

$$\int_0^y p_Y(z)dz = \int_0^{T^{-1}(y)} p_X(w)dw$$

$$\frac{d}{dy}\left(\int_0^y p_Y(z)dz\right) = p_X(T^{-1}(y))\frac{d}{dy}(T^{-1}(y))$$

$$p_Y(y)$$

$$Y = T(X) = (L - 1) \int_0^X p_X(x) dx$$

$$Y = T(X)$$

$$\downarrow$$

$$p_Y(y) \qquad p_X(x)$$

Y = T(X) T(X) is cts & differentiable

$$\int_{0}^{y} p_{Y}(z)dz = \int_{0}^{T^{-1}(y)} p_{X}(w)dw$$

$$\frac{d}{dy}\left(\int_0^y p_Y(z)dz\right) = p_X(T^{-1}(y))\frac{d}{dy}(T^{-1}(y))$$

$$p_Y(y) = p_X(T^{-1}(y)) \frac{d}{dy}(T^{-1}(y))$$

$$Y = T(X) = (L - 1) \int_0^X p_X(x) dx$$

$$Y = T(X)$$

$$\downarrow$$

$$p_Y(y) \qquad p_X(x)$$

Y = T(X) T(X) is cts & differentiable

$$p_Y(y) = p_X(T^{-1}(y)) \frac{d}{dy}(T^{-1}(y))$$

$$Y = T(X) = (L - 1) \int_0^X p_X(x) dx$$

$$Y = T(X)$$

$$\downarrow \qquad \qquad \downarrow$$

$$p_Y(y) \qquad p_X(x)$$

Y = T(X) T(X) is cts & differentiable

$$p_Y(y) = p_X(T^{-1}(y)) \frac{d}{dy}(T^{-1}(y))$$

$$= \frac{1}{L-1} \cdot \frac{dT}{dx}|_{x=T^{-1}(y)} \frac{d}{dy} (T^{-1}(y))$$

$$Y = T(X) = (L-1) \int_0^X p_X(x) dx$$

$$Y = T(X)$$

$$\downarrow \qquad \qquad \downarrow$$

$$p_Y(y) \qquad p_X(x)$$

Y = T(X) T(X) is cts & differentiable

$$p_Y(y) = p_X(T^{-1}(y)) \frac{d}{dy}(T^{-1}(y))$$

$$= \frac{1}{L-1} \cdot \frac{dT}{dx}|_{x=T^{-1}(y)} \frac{d}{dy} (T^{-1}(y))$$

$$\frac{d}{dy}T(T^{-1}(y)) = \frac{d}{dy}y = 1$$

$$Y = T(X) = (L-1) \int_0^X p_X(x) dx$$

$$Y = T(X)$$

$$\downarrow \qquad \qquad \downarrow$$

$$p_Y(y) \qquad p_X(x)$$

Y = T(X) T(X) is cts & differentiable

$$p_Y(y) = p_X(T^{-1}(y)) \frac{d}{dy}(T^{-1}(y))$$

$$= \frac{1}{L-1} \cdot \frac{dT}{dx}|_{x=T^{-1}(y)} \frac{d}{dy} (T^{-1}(y))$$

$$\frac{d}{dy}T(T^{-1}(y)) = \frac{d}{dy}y = 1$$

$$=\frac{1}{L-1}$$

$$Y = T(X) = (L-1) \int_0^X p_X(x) dx$$

$$Y = T(X)$$

$$\downarrow \qquad \qquad \downarrow$$

$$p_Y(y) \qquad p_X(x)$$

Y = T(X) T(X) is cts & differentiable

$$Y = T(X) = (L-1) \int_0^X p_X(x) dx$$

$$Y = T(X)$$

$$\downarrow \qquad \qquad \downarrow$$

$$p_Y(y) \qquad p_X(x)$$

Y = T(X) T(X) is cts & differentiable

- Color conversions
 - colors can be mapped with certain functions
 - mapped images then histogram equalized

Global

Global

Image constructed using Equalized Histogram

Local

Global

Image constructed using Equalized Histogram

Local

Local

Ref: wikipedia

Local

Bilinear interpolation

Ref: wikipedia

Local

Bilinear interpolation

Local

Bilinear interpolation

$$f(x,y_1) = rac{x_2-x}{x_2-x_1}f(Q_{11}) + rac{x-x_1}{x_2-x_1}f(Q_{21}), \ f(x,y_2) = rac{x_2-x}{x_2-x_1}f(Q_{12}) + rac{x-x_1}{x_2-x_1}f(Q_{22}).$$

Local

Bilinear interpolation

$$f(x,y_1) = rac{x_2-x}{x_2-x_1}f(Q_{11}) + rac{x-x_1}{x_2-x_1}f(Q_{21}), \ f(x,y_2) = rac{x_2-x}{x_2-x_1}f(Q_{12}) + rac{x-x_1}{x_2-x_1}f(Q_{22}).$$

$$\begin{split} f(x,y) &= \frac{y_2 - y}{y_2 - y_1} f(x,y_1) + \frac{y - y_1}{y_2 - y_1} f(x,y_2) \\ &= \frac{y_2 - y}{y_2 - y_1} \left(\frac{x_2 - x}{x_2 - x_1} f(Q_{11}) + \frac{x - x_1}{x_2 - x_1} f(Q_{21}) \right) + \frac{y - y_1}{y_2 - y_1} \left(\frac{x_2 - x}{x_2 - x_1} f(Q_{12}) + \frac{x - x_1}{x_2 - x_1} f(Q_{22}) \right) \\ &= \frac{1}{(x_2 - x_1)(y_2 - y_1)} \left(f(Q_{11})(x_2 - x)(y_2 - y) + f(Q_{21})(x - x_1)(y_2 - y) + f(Q_{12})(x_2 - x)(y - y_1) + f(Q_{22})(x - x_1)(y - y_1) \right) \\ &= \frac{1}{(x_2 - x_1)(y_2 - y_1)} \left[x_2 - x - x - x_1 \right] \left[f(Q_{11}) - f(Q_{12}) - f(Q_{22}) \right] \left[y_2 - y - y_1 \right]. \end{split}$$

Ref: wikipedi

AHE

Adaptive hist eq

AHE

Adaptive hist eq

CL

Clip limit

AHE

Adaptive hist eq

CL

Clip limit

Interpolation

Bilinear

- AHE
 - Adaptive hist eq

- CL
 - Clip limit

- Interpolation
 - Bilinear

- AHE
 - Adaptive hist eq

- CL
 - Clip limit

- Interpolation
 - Bilinear

Input

- AHE
 - Adaptive hist eq

- CL
 - Clip limit

- Interpolation
 - Bilinear

Input GHE

AHECLAdaptive hist eqClip limit

Bilinear

Interpolation

AHE CL Interpolation Bilinear Adaptive hist eq Clip limit Input AHE CLAHE GHE

Conclusion

- Intensity transforms
- Distribution transforms

Conclusion

- Intensity transforms
- Distribution transforms

Conclusion

- Intensity transforms
- Distribution transforms

- ☐ Intensity transformations
 - negatives
 - logs
 - power-law (gamma)
 - contrast stretching
 - level slicing
 - bit-plane slicing

- Distribution transformations
 - Histogram equalization

