Iterative Optimization in the Polyhedral Model: Part I, One-Dimensional Time

Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen and Nicolas Vasilache

ALCHEMY, INRIA Futurs / University of Paris-Sud XI

March 12, 2007

Fifth International Symposium on Code Generation and Optimization San Jose, California

Outline: CGO'07

Outline

Context of this study:

- ► Focus on Loop Nest Optimization for regular loops
- ▶ Automatic method for parallelism extraction / loop transformation
- Combine iterative methods with the power of the polyhedral model
- Solution independent of the compiler and the target machine

Our contribution:

- Search space construction
 - ▶ 1 point in the space ⇔ 1 distinct legal program version
 - suitable for various exploration methods
- Performance
 - ▶ 99% of the best speedup attained within 20 runs of a dedicated heuristic
 - wall clock optimal transformation discoverable on small kernels

Original Schedule

```
 \begin{cases} \text{for (i=0; i<n; ++i) } \{ \\ \cdot \text{S1(i);} \\ \cdot \text{ for (j=0; j<n; ++j)} \\ \cdot \cdot \text{S2(i,j);} \end{cases} \begin{cases} \theta_{S1} = i & \text{for (i=0; i<n; ++i) } \{ \\ \cdot \text{S1(i);} \\ \cdot \text{ for (j=0; j<n; ++j)} \\ \cdot \cdot \text{S2(i,j);} \end{cases}
```

- Specify the outer-most loop only
- ► Initial outer-most loop is *i*

Distribute loops

- Specify the outer-most loop only
- All instances of S1 are executed before the first S2 instance

Distribute loops + Interchange loops for S2

```
 \begin{cases} \text{for (i=0; i<n; ++i)} \\ . \text{ S1(i);} \\ . \text{ for (j=0; j<n; ++j)} \\ . . \text{ S2(i,j);} \end{cases} \begin{cases} \theta_{S1} = i & \text{for (i=0; i<n; ++i)} \\ \theta_{S2} = \mathbf{j} + n & \text{for (j=n; j<2*n; ++j)} \\ . \text{ for (i=0; i<n; ++i)} \\ . \text{ for (i=0; i<n; ++i)} \\ . \text{ S2(i,j-n);} \end{cases}
```

- Specify the outer-most loop only
- ▶ The outer-most loop for S2 becomes j

Distribute loops + Interchange loops for S2

```
 \begin{cases} \text{for (i=0; i<n; ++i)} \\ . \text{ S1(i);} \\ . \text{ for (j=0; j<n; ++j)} \\ . . \text{ S2(i,j);} \end{cases} \begin{cases} \theta_{S1} = i & \text{for (i=0; i<n; ++i)} \\ \theta_{S2} = \mathbf{j} + n & \text{for (j=n; j<2*n; ++j)} \\ . \text{ for (i=0; i<n; ++i)} \\ . \text{ for (i=0; i<n; ++i)} \\ . \text{ S2(i,j-n);} \end{cases}
```

Transformation	Description				
reversal	Changes the direction in which a loop				
	traverses its iteration range				
skewing	Makes the bounds of a given loop depend on				
	an outer loop counter				
interchange	Exchanges two loops in a perfectly nested				
	loop, a.k.a. permutation				
peeling	Extracts one iteration of a given loop				
shifting	Allows to reorder loops				
fusion	Fuses two loops, a.k.a. jamming				
distribution	Splits a single loop nest into many,				
	a.k.a. fission or splitting				

```
. S1(i);
. for (j=0; j<n; ++j)
. . S2(i,j);
}</pre>
```

A schedule is an affine function of the iteration vector and the parameters

for (i=0; i<n; ++i) {

$$\begin{array}{rcl} \theta_{S1}(\vec{x}_{S1}) & = & \mathbf{t_{1_{S1}}}.i_{S1} + \mathbf{t_{2_{S1}}}.n + \mathbf{t_{3_{S1}}}.1 \\ \theta_{S2}(\vec{x}_{S2}) & = & \mathbf{t_{1_{S2}}}.i_{S2} + \mathbf{t_{2_{S2}}}.j_{S2} + \mathbf{t_{3_{S2}}}.n + \mathbf{t_{4_{S2}}}.1 \end{array}$$

```
. s[i] = 0;
. for (j=0; j<n; ++j)
. . s[i] = s[i]+a[i][j]*x[j];
}</pre>
```

for (i=0; i<n; ++i) {

► A schedule is an affine function of the iteration vector and the parameters

$$\begin{array}{rcl} \theta_{S1}(\vec{x}_{S1}) & = & \mathbf{t_{1_{S1}}}.i_{S1} + \mathbf{t_{2_{S1}}}.n + \mathbf{t_{3_{S1}}}.1 \\ \theta_{S2}(\vec{x}_{S2}) & = & \mathbf{t_{1_{S2}}}.i_{S2} + \mathbf{t_{2_{S2}}}.j_{S2} + \mathbf{t_{3_{S2}}}.n + \mathbf{t_{4_{S2}}}.1 \end{array}$$

▶ For $-1 \le t \le 1$, there are $3^7 =$ **2187** possible schedules

```
. s[i] = 0;
. for (j=0; j<n; ++j)
. . s[i] = s[i]+a[i][j]*x[j];
}</pre>
```

A schedule is an affine function of the iteration vector and the parameters

for (i=0; i<n; ++i) {

$$\begin{array}{rcl} \theta_{S1}(\vec{x}_{S1}) & = & \mathbf{t_{1_{S1}}}.i_{S1} + \mathbf{t_{2_{S1}}}.n + \mathbf{t_{3_{S1}}}.1 \\ \theta_{S2}(\vec{x}_{S2}) & = & \mathbf{t_{1_{S2}}}.i_{S2} + \mathbf{t_{2_{S2}}}.j_{S2} + \mathbf{t_{3_{S2}}}.n + \mathbf{t_{4_{S2}}}.1 \end{array}$$

- ▶ For $-1 \le t \le 1$, there are $3^7 =$ **2187** possible schedules
- ► But only 129 legal distinct schedules

- Search space construction
 - ▶ Efficiently construct a space of all legal, distinct affine schedules

- Search space construction
 - ▶ Efficiently construct a space of all legal, distinct affine schedules

	matmult	locality	fir	h264	crout
\vec{i} -Bounds	-1,1	-1, 1	0,1	-1, 1	-3,3
c-Bounds	-1,1	-1, 1	0,3	0,4	-3,3
#Sched.	1.9×10^{4}	5.9×10^{4}	1.2×10^{7}	1.8×10^{8}	2.6×10^{15}

- Search space construction
 - ▶ Efficiently construct a space of all legal, distinct affine schedules

	matmult	locality	fir	h264	crout
\vec{i} -Bounds	-1,1	-1, 1	0,1	-1, 1	-3,3
c-Bounds	-1,1	-1, 1	0,3	0,4	-3,3
#Sched.	1.9×10^{4}	5.9×10^{4}	1.2×10^{7}	1.8×10^{8}	2.6×10^{15}

- Search space construction
 - ▶ Efficiently construct a space of all legal, distinct affine schedules

	matmult	locality	fir	h264	crout
<i>i</i> -Bounds	-1,1	-1, 1	0,1	-1,1	-3,3
c-Bounds	-1,1	-1, 1	0,3	0,4	-3,3
#Sched.	1.9×10^{4}	5.9×10^{4}	1.2×10^{7}	1.8×10^{8}	2.6×10^{15}
					
#Legal	6561	912	792	360	798
		,	•	•	

 Rely on the polyhedral model and Integer Linear Programming to guarantee completeness and correctness of the space properties

,

- Search space construction
 - ▶ Efficiently construct a space of all legal, distinct affine schedules

	matmult	locality	fir	h264	crout
\vec{i} -Bounds	-1,1	-1, 1	0,1	-1,1	-3,3
c-Bounds	-1,1	-1, 1	0,3	0,4	-3,3
#Sched.	1.9×10^{4}	5.9×10^{4}	1.2×10^{7}	1.8×10^{8}	2.6×10^{15}
#					
#Legal	6561	912	792	360	798
,		,	•	•	

- Rely on the polyhedral model and Integer Linear Programming to guarantee completeness and correctness of the space properties
- Search space will emcoumpass unique, distinct compositions of reversal, skewing, interchange, fusion, peeling, shifting, distribution

- Search space construction
 - Efficiently construct a space of all legal, distinct affine schedules

	matmult	locality	fir	h264	crout
<i>i</i> -Bounds	-1,1	-1,1	0,1	-1,1	-3,3
c-Bounds	-1, 1	-1, 1	0,3	0,4	-3,3
#Sched.	1.9×10^{4}	5.9×10^{4}	1.2×10^{7}	1.8×10^{8}	2.6×10^{15}
.					
#Legal	6561	912	792	360	798

- Rely on the polyhedral model and Integer Linear Programming to guarantee completeness and correctness of the space properties
- Search space will emcoumpass unique, distinct compositions of reversal, skewing, interchange, fusion, peeling, shifting, distribution
- Search space exploration
 - Perform exhaustive scan to discover wall clock optimal schedule, and evidences of intricacy of the best transformation
 - Build an efficient heuristic to accelerate the space traversal

Static Control Parts

Loops have affine control only

Static Control Parts

- Loops have affine control only
- Iteration domain: represented as integer polyhedra

```
for (i=1; i<=n; ++i)

. for (j=1; j<=n; ++j)

. if (i<=n-j+2)

. . s[i] = ...
\mathcal{D}_{S1} = \begin{bmatrix} 1 & 0 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ -1 & -1 & 1 & 2 \end{bmatrix} \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} \ge \vec{0}
```


Static Control Parts

- Loops have affine control only
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of $\vec{x_S}$ and \vec{p}

```
f_{s}(\vec{x_{S2}}) = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{pmatrix} \vec{x_{S2}} \\ n \\ 1 \end{pmatrix}
for (i=0; i<n; ++i) {
. s[i] = 0;
. for (j=0; j<n; ++j)
. . s[i] = s[i]+a[i][j]*x[j];
f_{a}(\vec{x_{S2}}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \cdot \begin{pmatrix} \vec{x_{S2}} \\ n \\ 1 \end{bmatrix}
f_{x}(\vec{x_{S2}}) = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} \cdot \begin{pmatrix} \vec{x_{S2}} \\ n \\ 1 \end{bmatrix}
```

Static Control Parts

- Loops have affine control only
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of $\vec{x_S}$ and \vec{p}
- ▶ Data dependence between S1 and S2: a subset of the Cartesian product of \mathcal{D}_{S1} and \mathcal{D}_{S2} (exact analysis)

```
for (i=1; i<=3; ++i) { . s[i] = 0; . . s[i] = s[i] + 1; }  \mathcal{D}_{S1\delta S2} : \begin{bmatrix} 1 & 0 & 0 & -1 \\ -1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -1 \\ 0 & -1 & 0 & 3 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 3 \\ 1 & -1 & 0 & 0 \end{bmatrix} : \begin{bmatrix} i_{S1} \\ i_{S2} \\ i_{S3} \\ i_{S4} \\
```

Static Control Parts

- Loops have affine control only
- Iteration domain: represented as integer polyhedra
- ▶ Memory accesses: static references, represented as affine functions of $\vec{x_S}$ and \vec{p}
- ▶ Data dependence between S1 and S2: a subset of the Cartesian product of \mathcal{D}_{S1} and \mathcal{D}_{S2} (exact analysis)
- Reduced dependence graph labeled by dependence polyhedra

Property (Causality condition for schedules)

Given $R\delta S$, θ_R and θ_S are legal iff for each pair of instances in dependence:

$$\theta_R(\vec{x_R}) < \theta_S(\vec{x_S})$$

Equivalently:
$$\Delta_{R.S} = \theta_S(\vec{x_S}) - \theta_R(\vec{x_R}) - 1 \ge 0$$

Lemma (Affine form of Farkas lemma)

Let \mathcal{D} be a nonempty polyhedron defined by $A\vec{x} + \vec{b} \geq \vec{0}$. Then any affine function $f(\vec{x})$ is non-negative everywhere in \mathcal{D} iff it is a positive affine combination:

$$f(\vec{x}) = \lambda_0 + \vec{\lambda}^T (A\vec{x} + \vec{b}), \text{ with } \lambda_0 \ge 0 \text{ and } \vec{\lambda} \ge \vec{0}.$$

 λ_0 and $\vec{\lambda}^T$ are called the Farkas multipliers.

$$\theta_S(\vec{x_S}) - \theta_R(\vec{x_R}) - 1 = \lambda_0 + \vec{\lambda}^T \left(D_{R,S} \begin{pmatrix} \vec{x_R} \\ \vec{x_S} \end{pmatrix} + \vec{d}_{R,S} \right) \ge 0$$

$$\left\{ \begin{array}{cccc} D_{R\delta S} & \mathbf{i_R} & : & & \lambda_{D_{1,1}} - \lambda_{D_{1,2}} + \lambda_{D_{1,7}} \\ & \mathbf{i_S} & : & & \lambda_{D_{1,3}} - \lambda_{D_{1,4}} - \lambda_{D_{1,7}} \\ & \mathbf{j_S} & : & & \lambda_{D_{1,5}} - \lambda_{D_{1,6}} \\ & \mathbf{n} & : & & \lambda_{D_{1,2}} + \lambda_{D_{1,4}} + \lambda_{D_{1,6}} \\ & \mathbf{1} & : & & \lambda_{D_{1,0}} \end{array} \right.$$

$$\theta_{S}(\vec{\mathbf{x_S}}) - \theta_{R}(\vec{\mathbf{x_R}}) - 1 = \lambda_0 + \vec{\lambda}^T \left(D_{R,S} \begin{pmatrix} \vec{\mathbf{x_R}} \\ \vec{\mathbf{x_S}} \end{pmatrix} + \vec{d}_{R,S} \right) \ge 0$$

$$\left\{ \begin{array}{ccccc} D_{R\delta S} & \mathbf{i_R} & : & -t_{1_R} & = & \lambda_{D_{1,1}} - \lambda_{D_{1,2}} + \lambda_{D_{1,7}} \\ & \mathbf{i_S} & : & t_{1_S} & = & \lambda_{D_{1,3}} - \lambda_{D_{1,4}} - \lambda_{D_{1,7}} \\ & \mathbf{j_S} & : & t_{2_S} & = & \lambda_{D_{1,5}} - \lambda_{D_{1,6}} \\ & \mathbf{n} & : & t_{3_S} - t_{2_R} & = & \lambda_{D_{1,2}} + \lambda_{D_{1,4}} + \lambda_{D_{1,6}} \\ & \mathbf{1} & : & t_{4_S} - t_{3_R} - 1 & = & \lambda_{D_{1,0}} \end{array} \right.$$

- Solve the constraint system
- Use (optimized) Fourier-Motzkin projection algorithm
 - Reduce redundancy
 - Detect implicit equalities

➤ One point in the space ⇔ one set of legal schedules w.r.t. the dependence

Overview

Algorithm

- Add constraints obtained for each dependence
- Bound the space
- \blacktriangleright Search space: set of linear constraints on the schedule coefficients (i.e. $\mathbb{Z}\text{-polytope})$
- ► To each integral point in the space corresponds a distinct program version where the semantics is preserved

Benchmark	ī-Bounds	#Sched	#Legal	Time
matmult	-1,1	1.9×10^{4}	912	0.029
locality	-1, 1	5.9×10^{4}	6561	0.022
fir	0,1	1.2×10^{7}	792	0.047
h264	-1, 1	1.8×10^{8}	360	0.024
crout	-3,3	2.6×10^{15}	798	0.046

Workflow

- ► CLooG: http://www.cloog.org
- ▶ PiPLib: http://www.piplib.org
- ▶ PolyLib: http://icps.u-strasbg.fr/polylib

Performance Distribution [1/2]

Figure: Performance distribution for matmult and locality

Performance Distribution [2/2]

Figure: The effect of the compiler

Performance Comparison

Figure: Best Version vs Original

Heuristic Scan

Propose a decoupling heuristic:

➤ The general "form" of the schedule is embedded in the iterator coefficients

$$\begin{tabular}{l} \begin{tabular}{l} \begin{tab$$

Heuristic Scan

Propose a decoupling heuristic:

- The general "form" of the schedule is embedded in the iterator coefficients
- ▶ Decouple the schedule: $\theta_S(\vec{x}_S) = (\vec{i} \ \vec{p} \ c) \begin{pmatrix} \vec{x}_S \\ \vec{n} \\ 1 \end{pmatrix}$
- Parameters and constant coefficients can be seen as a refinement

Heuristic Scan

Propose a decoupling heuristic:

- The general "form" of the schedule is embedded in the iterator coefficients
- ▶ Decouple the schedule: $\theta_S(\vec{x}_S) = (\vec{i} \ \vec{p} \ c) \begin{pmatrix} \vec{x}_S \\ \vec{n} \\ 1 \end{pmatrix}$
- Parameters and constant coefficients can be seen as a refinement

Adressing scalability to larger SCoPs:

- \bullet impose a static or dynamic limit to the number of runs (limit to the \vec{i} part)
- ② replace an exhaustive enumeration of the \vec{i} combinations by a limited set of random draws in the \vec{i} space.

Results

Figure: Comparison between random and decoupling heuristics

Conclusion

- Optimizing and / or Enabling transformation framework on top of the compiler
- Encouraging speedups, last neuristic convergence
- On small kernels, optimal transformation can be discovered

Conclusion

- Optimizing and / or Enabling transformation framework on top of the compiler
- ► Encouraging speedups, fast heuristic convergence
- On small kernels, optimal transformation can be discovered

Conclusion

- Optimizing and / or Enabling transformation framework on top of the compiler
- ► Encouraging speedups, fast heuristic convergence
- On small kernels, optimal transformation can be discovered

Conclusion

- Optimizing and / or Enabling transformation framework on top of the compiler
- Encouraging speedups, fast heuristic convergence
- On small kernels, optimal transformation can be discovered

Ongoing and future work:

- Couple with state-of-the-art feedback-directed iterative methods
- Part II: multidimensional schedules
- ▶ Integrate into GCC GRAPHITE branch

Conclusion

- Optimizing and / or Enabling transformation framework on top of the compiler
- ► Encouraging speedups, fast heuristic convergence
- On small kernels, optimal transformation can be discovered

Ongoing and future work:

- Couple with state-of-the-art feedback-directed iterative methods
- ▶ Part II: multidimensional schedules
- ► Integrate into GCC GRAPHITE branch

Conclusion

- Optimizing and / or Enabling transformation framework on top of the compiler
- Encouraging speedups, fast heuristic convergence
- On small kernels, optimal transformation can be discovered

Ongoing and future work:

- Couple with state-of-the-art feedback-directed iterative methods
- Part II: multidimensional schedules
- Integrate into GCC GRAPHITE branch

Questions: CGO'07

Intricacy of the Transformed Code

Optimal Transformation for locality, GCC 4-O3, P4 Xeon

```
S1: B[j] = A[j]
                           for (c1=-N; c1 < min(-2, M-N); c1++)
S2: C[j] = A[j + N]
                             for (j=0; j<=M; j++)
                                S1 (c1+N, j);
                           for (c1=-1;c1<=M-N;c1++) {
                             for (j=0; j<=M; j++)
for (i=0;i<=M;i++) {
                                S2 (c1+1, j);
  for (j=0; j \le M; j++) { for (j=0; j \le M; j++)
    S1(i, i);
                                S1 (c1+N, i);
    S2 (i, j);
                           for (c1=max(M-N+1,-1);c1<=M-1;c1++)
                              for (j=0; j <= M; j++)
                                S2(c1+1, j);
```

→ 19.4% speedup, without vectorization