カッコウ探索を用いた アドホックネットワーク上のデータ配置

林原研究室 B4 黒川岳児

背景

- ■災害時の情報共有
 - ネットワークインフラが利用できない場合
 - 携帯端末でアドホックネットワークを構成[1]
 - 避難所にいる人が参加
 - 補給物資情報、復旧情報、個人の生存情報などが アップロードされ、共有される

[1] "非常時のアドホックネットワークの活用に関する研究会中間取りまとめ", 総務省 総合通信基盤局 電気通信事業部 電気通信技術システム課, 2016

背景

- 高需要・高必要性の情報
 - 一 (例)物資補給情報、復旧情報など
 - 情報のデータ要求数が多い
 - 既存の複製配置手法において、 作成される複製が多い
- ■低需要・高必要性の情報
 - (例)個人の生存情報など
 - 情報のデータ要求数が少ない
 - 一 既存の複製配置手法において、 作成される複製が少ない

既存の複製配置手法

- ■データ要求時の複製配置手法
 - Owner Replication
 - 検索要求者にだけ複製を配置する手法
 - Path Replication
 - 検索要求者から、所有者に至る、検索パス上の全てのノードに 複製を配置する手法

既存手法の問題点

- 需要が低いと複製が少ない
 - 複製が少ないと、情報がネットワークから消滅しやすい
- 低需要・高必要性の情報が消滅しやすい
 - 必要性の高い情報は,一定期間ネットワークに生存させておくべき
 - ⇨低需要情報の生存を考慮した複製配置手法の提案

需要が低い場合

関連研究[2]

- ■低需要データの生存を考慮した複製配置
 - データ要求時の複製配置手法は Owner Replication
 - 需要予測を行い,事前に低需要データなのか 判定
 - 低需要と判定されたデータは,データ要求が なくても,ノードの信頼度を元に複製配置

スーパーノード型P2Pネットワーク

■問題点

- ストレージ使用量の増加
- ノードの参加・離脱が考慮されていない
- ピュア型P2Pネットワークでの実験は行われていない

ピュア型P2Pネットワーク

提案手法

- 低需要情報を一定期間生存させる複製配置
 - データ要求時の複製配置手法は Owner Replication
 - ネットワーク上の情報ごとの複製数を監視, 低需要情報か 判定
 - 低需要情報はカッコウ探索を用いてノードを選出,複製配置
 - 一定期間データ要求がないと複製配置を取りやめ
- 情報を一定期間生存させつつ, ストレージ使用量を抑える

カッコウ探索[3]

- 連続値最適化問題を対象としたメタヒューリスティックアル ゴリズム
 - 探索による候補解の生成,候補解の更新を繰り返し最適解を 決定
- カッコウの托卵行動を元にしている
 - 他種の鳥の巣に卵を産み、育てさせる

- 探索はLevy walk
 - 広大な範囲から稀少資源を探索することに有効[4]
 - [3] Xin-She Yang, "Cuckoo search via levy flights", In Proc. of World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), pp. 210–214, 2009. [4] 信貴賢也, "ユニットディスクグラフ上のLevy Walkの分析と評価",

実験概要

- peerSim [5] を用いて実装・シミュレーション
 - peerSimとは
 - オーバーレイネットワークをシミュレート
 - サイクルに基づく離散時間シミュレータ
- ■比較内容
 - Owner Replication
 - Path Replication
 - 影山らの提案手法
 - 本提案手法

■ 評価内容

- 情報の複製数の推移
- 情報のストレージ使用量 の累積値の推移

シミュレーション

■シナリオ

- 1. 各ノードのデータ要求
- 2. 複製数の計測
- 3. 影山らの提案手法と,本提案手法のみ,低需要情報があれば複製配置
- 4. 情報の削除
- 5. ノードの参加・離脱

■ 環境

- ノード数:2000個

- サイクル数:500サイクル

- 情報の種類:50種類

シミュレーション結果

■ 複製配置手法ごとの複製数の推移

シミュレーション結果

■ 複製配置手法ごとのストレージ使用量の累積値の推移

■ 本提案手法(Cuckoo)

- 468サイクルから使用量 は増えていない
- Owner Replicationより使用量が12%増加
- 影山らの提案手法より使 用量が*22%*減少

まとめ

- 低需要情報の生存を考慮した複製配置手法を提案
 - 低需要情報の必要性が高い場合を想定

- Owner Replication, Path Replication, 関連研究の提案手法、本提案手法で評価の比較
 - 本提案手法で一定期間のデータの生存を確認
 - 本提案手法のストレージ使用量は、影山らの提案手法、 Path Replicationの使用量以下

(補足)カッコウ探索のアルゴリズム[6]

- ■卵
 - 問題に対する解

- ■巣
 - 卵がある場所
 - 例) 卵の座標、ノード