Continuous Methods for the Quadratic Assignment Problem

John M. Conroy (conroy@super.org)
Steven G. Kratzer, Louis J. Podrazik
Institute for Defense Analyses
Bowie, MD
Center for Computing Sciences

Linear Assignment Problem

Problem: Given A and B, mxn matrices find a permutation matrix $P\varepsilon P_n$ to

$$\min \sum_{ij} (PB)_{ij} a_{ij}$$

Equivalently: Given $C = AB^T$, find a doubly stochastic matrix $X \in \mathcal{D}_n$ to

$$\min \sum_{ij} c_{ij} x_{ij}$$

Quadratic Assignment Problem (An NP-Hard Problem)

Problem: Given A and B find a permutation matrix $P_{\varepsilon}P_n$ to $\min \sum_{ij} (PBP^T)_{ij}a_{ij}$

Relaxed Problem: Given A and B find a doubly stochastic matrix $X \in \mathcal{D}_n$ to min $\sum_{ij} (X^T X^T)_{ij} a_{ij}$

Continuous Relaxed Problem

Find $X \in \mathcal{D}_n$ to

$$\min f(X) = \sum_{ij} (XBX^T)_{ij} a_{ij}$$

Continuous indefinite quadratic programming

- may have many local maxima
- may have interior solution
- quadratic cost, linear gradient

Frank Wolfe (SLP) Method

Given (A,B) and $X_0 \varepsilon \mathcal{D}_n$ For k=0,1,...

1. Find $Q \in \mathcal{P}_n$ to

$$\min \sum_{ij} \nabla f(X_k)_{ij} q_{ij}$$

2. Find $\alpha \varepsilon [0,1]$

$$\min f((1 - \alpha)X_k + \alpha Q)$$

$$X_{k+1} = (1 - \alpha)X_k + \alpha Q$$

Mapping Interior Solution to Vertex

If $X \in \mathcal{D}_n$ solves the relaxed problem, find nearest $P \in \mathcal{P}_n$ by

$$\min \| X - P \|_{F} = \max_{ij} x_{ij} p_{ij}$$

Solve a linear assignment problem.

Cost Per Iteration

Gradient:

$$\nabla f(X_k) = AX_k B^T + A^T X_k B$$

Can reduce to two matrix multiplies.

Linear Assignment: $O(n^3)$

Two Function Evaluations:

2 implicit matrix multiplies, can be reduced to $O(n^2)$.

Results

Table 1. # Starts to Best Known Solution

Name	Best Known	Lower Bound	FW	#starts
	Solution		Solution	
esc032a	130	35	132	186
esc032b	168	96	168	26
esc032c	642	464	642	2
esc032d	200	106	200	7
esc032e	2	0	2	1
esc032f	2	0	2	1
esc064a	116	47	116	2
sko42	15812	13830	15818	168
wil50	48816	47098	48816	328
sko64	48498	43668	48508	9

Summary

- Very often found best known solution
- Cubic Runtime
- Good Suboptimal Solutions
 Efficiently
- Interior point method? e.g., Boggs et.
 al. under investigation.