Texture classification using Local Binary Patterns

Jo Gay and Hugo Harlin

Project supervised by Joakim Lindblad and Nataša Sladoje

Centre for Image Analysis, Department of Information Technology, Uppsala University

Local Binary Patterns

- A way to train a neural network to recognise textures
- Instead of using the image intensity values, measure the difference between a pixel and each of its P neighbours
- If the difference is positive, encode as 1, else 0

Consider 10010010 the same as 00100101 (rotation invariant)

Ojala, T., Pietikainen, M. and Maenpaa, T., 2002. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on pattern analysis and machine intelligence, 24(7), pp.971-987.

Supervised learning with LBPs

- Use the histogram of the patterns found in an image as a feature set to train a neural network
- Vary the radius (scale) to suit the resolution of the source images, and/or concatenate histograms derived from multiple scales
- Combine less common patterns to reduce noise

Oral cancer data

Healthy cells

Cancerous cells

Limitations of LBPs

- The LBP histograms do not contain enough information to classify our images accurately
- Positional data (where in the image a pattern was located, which other patterns are neighbouring) is not retained
- In our case significant parts of the image are not of interest and the signal from these may overwhelm the real signal
- Noise in images affects the patterns
- Strength of pattern is not known: signal from pixels with intensity 0 & 255 same as with 127 & 128

Methods inspired by LBPs

- One related approach is to use a set of fixed filters in a CNN, where the central pixel has weight -1 and one other pixel has weight 1
- A linear combination of these filters, activated with a step function, is conceptually similar to LBPs, but retains positional information, allowing later layers to find combinations of patterns
- Juefei-Xu et al developed local binary convolutional neural networks which allow more general filters, with randomly placed +1s and -1s

Juefei-Xu, F., Boddeti, V.N. and Savvides, M., 2017, July. Local binary convolutional neural networks. In Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on (Vol. 1). IEEE.

Other methods

- Marcos, D., Volpi, M., Komodakis, N. and Tuia, D., 2017, June. Rotation Equivariant Vector Field Networks. In *ICCV*(pp. 5058-5067).
 - Uses rotated filters with tied weights (not LBPs)
- Li, L., Feng, X., Xia, Z., Jiang, X., Hadid, A.: Face spoofing detection with local binary pattern network. *Journal of Visual Communication and Image Representation* 54, 182–192 (2018)
 - Swaps histogram of pattern indices for histogram of sum of outputs of sigmoid activations (not binary)

Results

- Work in progress!
- Using pure LBPs we find that a radius of 10 pixels gives the greatest signal
- This is much greater than the filter sizes generally used in the LBP methods we have looked at (3x3)
- To do:
 - Combine histograms for two or three different scales
 - Combine LBP data with other features