2020春季学期"数理逻辑"期中考试试卷(开卷)

1. 证明下列命题为永真式:

$$(1) ((\neg Q \to \neg P) \land P) \to Q;$$

证: 构造真值表如下所示:

Table 1: 1-(1)对应真值表)

P	Q	$\neg P$	$\neg Q$	$\neg Q \to \neg P$	$(\neg Q \to \neg P) \land P$	原命题
Т	Т	F	F	Т	Т	Т
Т	F	F	Т	F	F	Т
F	Т	Т	F	Т	F	Т
F	F	Т	Т	Т	F	Т

故原命题永真易见

Q.E.D.

 $(2) \neg (A \land B) \rightarrow (\neg A \lor \neg B).$

证: 构造真值表如下所示:

Table 2: 1-(2)对应真值表)

A	В	$\neg(A \land B)$	$\neg A \lor \neg B$	原命题
Т	Т	F	F	Т
Т	F	Т	Т	Т
F	Т	Т	Т	Т
F	F	Т	Т	Т

故原命题永真易见

Q.E.D.

2. 证明 $\{\neg, \lor\}$ 为命题逻辑的连接词完全组, 且 $\{\lor, \to\}$ 不为命题逻辑的连接词完全组.

$$A \wedge B \Leftrightarrow \neg(\neg A \vee \neg B)$$

$$A \to B \Leftrightarrow \neg A \lor B$$

故{¬,∨}命题逻辑的连接词完全组.

又 $\{\lor, \to\}$ 不为命题逻辑的连接词完全组 $\Leftrightarrow \neg A$ 不可用 $\{\lor, \to\}$ 表示

反设 $\neg A$ 可用 $\{\lor, \to\}$ 表示

 \Rightarrow 存在命题P由命题符A和 $\{\lor, \to\}$ 组成,且 $\models_{A=T} P$ 为F

对命题P做结构归纳, 证明 $\models_{A=T} P$ 为 $T(\star)$

Base: P仅包含命题符A, 易见*成立

I.H.: 对于包含n-1个命题符的 P_{n-1} , *成立

I.S.:

Case 1: $P \equiv P_{n-i} \vee P_i$

 $\models_{A=T} P$

 $\Leftrightarrow \models_{A=T} P_{n-i} \vee P_i$

 $\Leftrightarrow B_{\vee}(\models_{A=T} P_{n-i}, \models_{A=T} P_i)$

 $\Leftrightarrow B_{\vee}(T,T) = T$

故*成立;

Case 2: $P \equiv P_{n-i} \rightarrow P_i \ \vec{\boxtimes} P \equiv P_i \rightarrow P_{n-i}$

同Case 1易证.

故 $\models_{A=T} P$ 不为F,矛盾!

故{∨,→}不为命题逻辑的连接词完全组

Q.E.D.

3. 在命题逻辑中定义逻辑连接词→如下:

P	Q	$P \not\rightarrow Q$
T	T	F
T	F	T
F	T	F
F	F	F

(1)求证 $P \rightarrow P$ 为永假式, $(P \rightarrow P) \rightarrow P$ 为永真式;

证: 构造真值表如下所示:

Table 3: 3-(1)对应真值表)

		,
P	$P \not\rightarrow P$	$(P \nrightarrow P) \to P$
Т	F	Т
F	F	Т

故易见
$$P \rightarrow P$$
永假, $(P \rightarrow P) \rightarrow P$ 永真

Q.E.D.

(2)求 $P \rightarrow (P \rightarrow P)$ 的真值表.

证: 构造真值表如下所示:

Table 4: 3-(2)对应真值表)

P	$P \not \rightarrow P$	$P \to (P \nrightarrow P)$	
Т	F	F	
F	F	Т	

4. 在G系统中证明:

$$(1) \vdash \neg (A \lor B) \to (\neg A \land \neg B)$$

证:

$$\frac{ \frac{B \vdash A, B}{\vdash A, B, \neg B} \neg R \quad \frac{A \vdash A, B}{\vdash A, B, \neg A} \neg R}{\frac{\vdash A, B, \neg A \land \neg B}{\vdash A \lor B, \neg A \land \neg B} \lor R} \land R} \frac{}{\vdash A \lor B, \neg A \land \neg B} \neg L} \frac{}{\neg (A \lor B) \vdash \neg A \land \neg B} \rightarrow R$$

Q.E.D.

$$(2)$$
 $\forall xA \rightarrow \exists xB \vdash A \rightarrow \exists xB, C, 其中x ∉ FV(A)$

iF:

$$\frac{A \vdash \exists xB, C, A}{A \vdash \exists xB, C, \forall A} \, \forall R, \, A[y/x] = A \qquad \qquad \underbrace{A, \exists xB \vdash \exists xB, C}_{\exists xB \vdash A \to \exists xB, C, \forall A} \to R \qquad \qquad \underbrace{\exists xB \vdash A \to \exists xB, C}_{\exists xB \vdash A \to \exists xB, C} \to R$$

Q.E.D.

5. 设 φ 为一阶谓词逻辑公式

$$(\forall x (P(x) \to Q(x)) \land \forall x (R(x) \to S(x))) \to ((Q(x) \land S(x)) \to (P(x) \land R(x)))$$

判断并证明结论:

(1) φ 是否可满足;

证: φ 可满足.

构造模型 (M,σ) 如下:

$$M = 0, P_M = 0, Q_M = 0, R_M = 0, S_M = 0, \sigma(x) = 0$$

易见
$$M \models_{\sigma} (\forall x (P(x) \to Q(x)) \land \forall x (R(x) \to S(x))),$$

$$\exists M \models_{\sigma} (Q(x) \land S(x)) \rightarrow (P(x) \land R(x))),$$

故 φ 可满足. Q.E.D.

(2) φ 是否永真;

证: φ 不用真.

构造模型 (M,σ) 如下:

$$M = 0, 1, 2, 3, 4, P_M = 0, Q_M = 0, 1, 2, R_M = 3, S_M = 2, 3, 4, \sigma(x) = 2$$

易见
$$M \models_{\sigma} (\forall x (P(x) \to Q(x)) \land \forall x (R(x) \to S(x))),$$

$$\exists M \nvDash_{\sigma} (Q(x) \land S(x)) \rightarrow (P(x) \land R(x))),$$

故 φ 不用真. Q.E.D.

(3) ⊢ φ 是否可有效;

 $证: \vdash \varphi$ 非有效.

由
$$(2)$$
易见. $Q.E.D.$

(4) ⊢ φ 是否可证.

 $证: \vdash \varphi$ 不可证.

由一阶谓词逻辑的可靠性定理易见. Q.E.D.

- **6.** 设 Γ , Δ 均为有穷的一阶谓词逻辑公式集合,A为一阶谓词逻辑公式,请在语法层面证明下列结论:
 - (1) 若 Γ ⊢可证, 则 Γ ⊢ A可证;

$$iE: \diamondsuit \Gamma = \{B_1, B_2, ..., B_n\}$$

可构造如下证明树

$$\frac{\frac{\Gamma \vdash}{\bigwedge_{i=1}^{n} B_{i} \vdash} \land L \text{ n times} \quad \frac{\{\Gamma \vdash A, B_{1}, \Gamma \vdash A, B_{2}, ..., \Gamma \vdash A, B_{n}\}}{\Gamma \vdash A, \bigwedge_{i=1}^{n} B_{i}} \land R \text{ n times}}{\Gamma \vdash A}$$

Q.E.D.

(2) $\Xi\Gamma$, $\neg A$ \vdash 可证且 Δ , A \vdash 可证, 则 Γ , Δ \vdash 可证.

证:

可构造如下证明树

$$\frac{\Delta, A \vdash}{\Delta \vdash \neg A} \neg R \qquad \Gamma, \neg A \vdash}{\Gamma, \Delta \vdash} Cut$$

Q.E.D.

7. 请将推理"*所有练习生都会唱跳rap*, 有些偶像是练习生, 因此有些偶像会唱跳rap"用一阶谓词逻辑符号化, 并判断并证明该**推理过程**是否有效.

解:

令*P*(*X*) \triangleq *x*是练习生;

 $Q(X) \triangleq x$ 是偶像;

 $R(X) \triangleq x$ 会唱跳rap.

三句话分别为下列三条公式:

 $\alpha: \forall x (P(x) \to R(x));$

 $\beta: \exists x (P(x) \land Q(x));$

 $\gamma: \exists x (Q(x) \land R(x));$

即推理序贯 $\alpha, \beta \vdash \gamma$

构造证明树如下:

$$\frac{R(y), \alpha, P(y), Q(y) \vdash \gamma, R(y) \quad \alpha, P(y), Q(y) \vdash \gamma, R(y), P(y)}{P(y) \rightarrow R(y), \alpha, P(y), Q(y) \vdash \gamma, R(y)} \rightarrow L$$

$$\frac{P(y) \rightarrow R(y), \alpha, P(y), Q(y) \vdash \gamma, R(y)}{\alpha, P(y), Q(y) \vdash \gamma, R(y)} \forall L$$

$$\frac{\alpha, P(y), Q(y) \vdash \gamma, Q(y) \land R(y)}{\alpha, P(y), Q(y) \vdash \gamma} \exists R$$

$$\frac{\alpha, P(y), Q(y) \vdash \gamma}{\alpha, P(y), Q(y) \vdash \gamma} \land L$$

$$\frac{\alpha, P(y), Q(y) \vdash \gamma}{\alpha, \beta \vdash \gamma} \exists L$$

Q.E.D.

8. 请在1-7题中任选两题,用**自然语言**对自己的解题过程进行说明和解释.