UNIVERZITET CRNE GORE PRIRODNO-MATEMATIČKI FAKULTET

RAČUNARSKE MREŽE

NASTAVNIK: DR UGLJEŠA UROŠEVIĆ ugljesa@ucg.ac.me

SARADNIK: MR KOSTA PAVLOVIĆ kosta@ucg.ac.me

Šta je Internet?

■ Milioni povezanih računara:

O Izvršavaju mrežne aplikacije

Komunikacioni linkovi

- Optičko vlakno, bakarna žica, radio, satelit
- Brzina prenosa: bandwidth
- Komutatori paketa: prosleđuju pakete (djelove poruka)
 - ruteri i komutatori

Iz čega se sastoji Internet u logičkom smislu?

- Protokoli kontrolišu slanje i prijem poruka
 - o npr, TCP, IP, HTTP, FTP, PPP
- Internet: "mreža svih mreža"
 - Labava hijerarhija
 - Javni Internet
 - privatni intranet
- Internet standardi
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

Šta je Internet sa stanovišta usluge?

- Komunikaciona infrastruktura koja omogućava komunikaciju između distribuiranih aplikacija:
 - Web, email, igrice, ecommerce, baze podataka, društvene mreže, file sharing
- Omogućava pragramabilni interfejs do aplikacija
 - "veza" koja omogućava aplikacijama da šalju i primaju podatke sa Interneta
 - Omogućava opcije servisa, analogne poštanskom servisu

Šta je mrežni protokol?

Ljudski protokoli:

- "Koliko je sati?"
- "Imam pitanje"
- "Mogu li da odgovaram za A?"
- Ima li skaliranja?
- Upoznavanje
- ... šalju se posebne poruke
- ... izvršavaju se različite akcije kada poruka stigne

<u>Mrežni protokoli:</u>

- Između mašina
- Sve komunikacione aktivnosti na Internetu definišu protokoli

Protokoli definišu format, redosled poslatih i primljenih poruka između mrežnih entiteta, i akcije koje se sprovode nakon prijema poslatih poruka

Detaljniji pogled na mrežnu strukturu

- Mrežna ivica: aplikacije i hostovi (klijenti i serveri)
- Mrežna okosnica:
 - međupovezani ruteri
 - mreža međupovezanih mreža
- Pristupna mreža, fizički medijum: komunikacioni linkovi (žični i bežični)

Ivica mreže

- Krajni sistemi (hostovi):
 - o izvršavaju aplikativne programe
 - npr. Opera, Safari, Outlook,...
 - o na "ivici mreže"
- Aplikacije
 - klijent/server model
 - klijent host zahtijeva, dobija servis od "uvijek dostupnog" servera
 - npr. Web browser/server; email klijent/server
 - o peer-peer (P2P) model:
 - minimalno (ili ne) korišćenje dodijeljenih servera
 - o hibrid
 - Neke funkcije KS, a neke P2P
 - Skype, BitTorrent

Pristupne mreže i fizički medijum

Pitanje: Kako povezati krajnji sistem na edge ruter?

- Rezidencijalne pristupne mreže
- Institucionalne pristupne mreže (kompanije, ustanove,...)
- Mobilne pristupne mreže

Važno je obratiti pažnju na

- □ kapacitet (b/s) pristupne mreže?
- zajednički ili dodijeljeni?

Popularni pristupi

- DSL
- Kablovska
- Optičko vlakno
- Bežični pristup (UMTS, LTE, LTE-A, WiFi, WiMAX,...)

Pristupna mreža: digital subscriber line (DSL)

- koristi postojeću telefonsku liniju do DSLAM-a u telefonskoj centrali
 - Podaci se preko DSL linije prenose do Interneta
 - Govor se preko DSL linije prenosi do telefonske mreže

ADSL (Asymmetric Digital Subscriber Line)

- ADSL2+ (ITU G.992.5 Annex M iz 2008. godine)
- do 3.3Mb/s upstream
- do 24Mb/s downstream
- Granica između opsega upstreama i downstreama na 276kHz
- FDM (DMT Discrete MultiTone):
 - 276kHz 2208kHz downstream (512 kanala širine 4.3125kHz)
 - 25kHz 276kHz upstream (64 kanala širine 4.3125kHz)
 - 0 kHz 4 kHz za telefon

- VDSL (Very high bit rate Digital Subscriber Line)
 - VDSL2 Annex Q ili Vplus/35b (ITU 6.993.2 amandman iz 2015. godine)
 - do 100Mb/s upstream
 - do 300Mb/s downstream
 - 250m
 - VDSL2 Vectoring (ITU-T G.993.5)
 - FDM (DMT Discrete MultiTone):
 - 25kHz 35328kHz downstream (8192 kanala širine 4.3125kHz)

Kompanijska pristupna mreža

- Kompanije, univerziteti,...
- 10 Mb/s, 100Mb/s, 16b/s, 106b/s
- Danas se krajnji sistemi tipično povezuju na Ethernet komutator ili WLAN access point

Bežične pristupne mreže

Dijeljeni bežični pristup

Preko bazne stanice (pristupne tačke) ili adhoc

wireless LAN:

- Unutar objekata (30m)
- Napolju (stotinak metara)
- 802.11b/g/n (WiFi): 11/54/600

prema Internetu

WAN bežični pristup

- Celularni pristup koji nudi operator, desetine kilometara
- od nekoliko stotina kb/s do nekoliko storina Mb/s
- 3G: UMTS,
- 4G: LTE Advanced
- 4.5G: LTE Advanced Pro

www.ieee802.org/11/

FTTH – fiber to the home - optika do kuće

Fizički medijum

- Bit: prenosi se preko predajne/prijemne parice
- Fizički link: između predajnika i prijemnika
- □ "Vođeni" medijum:
 - Signali se prenose preko čvrstog medijuma: bakar, optičko vlakno, koaksijalac
- "Ne vođeni" medijum:
 - Signali se prostiru slobodno, npr., radio

<u>Upredena parica</u>

- Dvije izolovane bakarne žice
 - Kategorija 5 : 100Mb/s
 i 1Gb/s Ethernet
 - Kategorija 6: 10Gb/s
 Ethernet

http://www.ansi.org

Koaksijalni kabal:

- Dva koncentrična bakarna provodnika
- bidirekcioni
- Osnovni opseg:
 - o jedan kanal na kablu
 - rani Ethernet
- Širokopojasni:
 - više kanala na kablu
 - o HFC

Kabal sa optičkim vlaknima:

- Stakleno vlakno prenosi svjetlosne impulse, svaki impuls jedan bit
- Rad na visokim brzinama:
 - Brzi tačka-tačka prenosi (npr., nekoliko 100Gb/s)
- Nizak nivo greške: veće rastojanje između ripitera i imunitet u odnosu na elektromagnetni šum

Uvod u rač. mreže

- signal se prenosi elektromagnetnim talasom
- nema fizičke "žice"
- bidirekcioni
- Efekti propagacije:
 - o refleksija
 - o difrakcija
 - Interferencija
 - Fading
 - O ...

Radio link:

- Zemaljski mikrotalasni
 - o npr. kanali do 45 Mb/s
- WLAN
 - 2Mb/s, 11Mb/s, 54Mb/s, 600Mb/s
- WPAN
 - ZigBee(IEEE.802.15), Bluetooth
 - o 10-100m, 2,4GHZ, 10Mb/s
- WAN
 - 36: stotine kb/s
 - 3.5G nekoliko Mb/s
 - 4G (LTE Advanced i IEEE 802.15m):
 1Gb/s (DL), 0.5Gb/s (UL), 10ms
 - 4.5G (LTE Advanced Pro): 3Gb/s
 (DL), 1.5Gb/s (UL), 2ms
- satelitski
 - do 50Mb/s kanal (ili više užih kanala), RTT= 270 ms, GEO ili LEO?

Fizički medijum: radio

Celularni sistemi: Teorijske i stvarne brzine prenosal

Throughput	Occupied Bandwidth	Peak (Single user)	Average (10 users/cell)	Cell Edge (10 users/cell)	Raw Peak/ edge ratio*
GSM (1 slot) (10 users, freq. reuse = 4)	1 MHz	9.6 kbps	9.6 kbps	9.6 kbps	1
GPRS (4 slot)	4 MHz	81.6 kbps	50 kbps	36.2 kbps	2.3
EDGE (4 slot)	4 MHz	236.8 kbps	70 kbps	36.2 kbps	6.5
UMTS (Rel-99)	5 MHz	384 kbps	100 kbps	30 kbps	12.8
HSDPA (Rel-5)	5 MHz	3.6 Mbps	250 kbps	80 kbps	45
HSDPA (Rel-7)	5 MHz	42 Mbps	350 kbps	120 kbps	350
HSDPA (Rel-8)	10 MHz	84 Mbps	800 kbps	240 kbps	350
LTE (Rel-8) 4x4	20 MHz	300 Mbps	5.34 Mbps	1.6 Mbps	187
LTE-A (Rel-10) 4x4	20 MHz	600 Mbps	7.4 Mbps	2.4 Mbps	250

^{*} Ratio can be reduced at expense of cell capacity with proportional fair scheduling and fractional frequency reuse

Okosnica mreže

- Skup međupovezanih rutera
- Komutacija paketa (packet switching):
 - Poruke se šalju preko mreže u djelovima (paketima) iz kojih se na destinaciji rekonstruiše poruka
 - Poruke se prosleđuju od rutera do rutera
 - Svaki paket se prenosi maksimalnom brzinom prenosa koju obezbjeđuje link

Komutacija paketa: uskladišti i proslijedi

- Potrebno je L/R sekundi da bi se paket veličine L bita prenio na link brzine R b/s
- Uskladišti i proslijedi:

 kompletan paket mora doći do
 rutera prije nego što se on
 proslijedi na naredni link
- Kašnjenje od kraja do kraja= 2L/R (ako se zanemari kašnjenje uslijed propagacije)

Primjer:

- L = 7.5 Mb
- R = 1.5 Mb/s
- Kašnjenje uslijed prenosa= 5 s

Komutacija paketa: kašnjenje u redu čekanja, gubici

Red čekanja i gubici:

- Ako je dolazna brzina paketa približna brzini prenosa na linku u određenom intervalu vremena:
 - Paketi se smještaju u red čekanja i čekaju na oslobađanje linka
 - Paketi se odbacuju ako nema dovoljno memorijskog prostora u baferu

Mreže sa komutacijom paketa: prosleđivanje

- <u>Cilj:</u> prenos paketa pomoću rutera od izvora do destinacije
 - Razmatraće se kasnije više algoritama za selekciju puta (rutirajućih algoritama)
- Datagram mreža:
 - adresa destinacije u paketu određuje naredni hop (skok)
 - o rute se mogu mijenjati tokom sesije
 - o analogija: vožnja, traženje informacije o željenom pravcu

Mreža virtuelnih kola:

- Svaki paket nosi "etiketu" tzv.tag (ID virtuelnog kola), tag određuje naredni hop
- Fiksna putanja se određuje prilikom uspostavljanja poziva, i ostaje nepromijenjena do kraja sesije
- o ruteri održavaju "per-call" stanje

Internet arhitektura

- Aplikacija: podržava mrežne aplikacije
 - FTP, SMTP, STTP
- Transport: host-host prenos podataka
 - o TCP, UDP
- Mreža: rutiranje datagrama od izvora do destinacije
 - Internet Protocol (IP), rutirajući protokoli
- Link: prenos podataka između susjednih mrežnih elemenata
 - PPP, Ethernet
- □ Fizički: biti "po žici"

Nivo aplikacije

Nivo transporta

Nivo mreže

Nivo linka

Fizički nivo

Rad sa kompleksnim sistemima:

- eksplicitna struktura dozvoljava identifikaciju, vezu između elemenata kompleksnih sistema
 - Nivovski (višeslojni) referentni model
- Modularizacija olakšava nadzor, nadogradnju sistema
 - Promjena implementacije višenivovskog servisa je transparentna ostatku sistema
 - npr., promjena procedure ukrcavanja ne utiče na ostatak sistema

Internet struktura: mreža svih mreža

- Krajnji sistemi se povezuju na Internet preko ISP-ova (Internet Service Provider)
 - Rezidencijalni, kompanijski i univerzitetski ISP-ovi
- Pristupni ISP-ovi moraju biti međupovezani.
 - Tako da se između bilo koja dva hosta mogu razmjenjivati podaci
- Veoma kompleksna mreža svih mreža
 - Evolucija je uzrokovana ekonomskim razlozima i nacionalnim politikama

Internet struktura: mreža svih mreža

Pitanja: kako povezati milione postojećih pristupnih mreža?

Internet struktura: mreža svih mreža

Opcija 1: Povezati svakog sa svakim!?

Internet struktura: mreža svih mreža

Opcija2: povezati sve pristupne ISP na globalni tranzitni ISP? Korisnički i operatorski ISP imaju ugovoreni odnos.

Internet struktura: mreža svih mreža

ISP je primamljiv biznis koji privlači konkurenciju....

Internet struktura: mreža svih mreža

Internet struktura: mreža svih mreža

... pojavljuju se i regionalni ISP-ovi

Internet struktura: mreža svih mreža

... i content provider mreže (Google, Microsoft, Akamai,...) grade sopstvene mreže kako bi servise "primakle" korisnicima

Internet struktura: mreža svih mreža

U centru: mali broj veoma dobro povezanih velikih mreža

- "tier-1" komercijalni ISP-ovi (npr. Level 3, Sprint, AT&T, NTT), nacionalno & međunarodno pokrivanje
- content provider mreža (npr. Google): privatna mreža koja povezuje data centre na Internet, obično zaobilazeći tier-1 i regionalne ISPove

1961-1972: Prvi principi komutacije paketa

- 1961: Kleinrock teorija redova čekanja je pokazala efikasnost komutacije paketa
- 1964: Baran komutacija paketa u vojnim mrežama
- 1967: ARPAnet je zamišljena od strane Advanced Research Projects Agency
- 1969: prvi ARPAnet čvor je pušten u rad

- **1972**:
 - ARPAnet je javno prezentovan
 - NCP (Network Control Protocol) je prvi host-host protokol
 - o prvi e-mail program
 - ARPAnet ima 15 čvorišta

The ARPANET in December 1969

1972-1980: Međupovezivanje, nove i privatne mreže

- 1970: ALOHAnet satelitska mreža na Havajima
- 1973: Metcalfe u doktorskoj tezi predlaže Ethernet
- 1974: Cerf i Kahn arhitektura za međupovezivanje mreža
- Kasne 70-te: sopstvene arhitekture: DECnet, SNA, XNA
- Kasne 70-te : komutacija paketa fiksne dužine (preteča ATM tehnologije)
- 1979: ARPAnet ima 200 čvorišta

Cerf and Kahn principi međupovezivanja:

- minimalizam, autonomija – nikakve interne promjene nijesu potrebne za međupovezivanje mreža
- "best effort" model servisa
- "stateless" ruteri
- decentralizovana kontrola

U osnovi definiše današnju Internet arhitekturu

1980-1990: novi protokoli, umnožavanje mreža

- □ 1983: primjena TCP/IP
- 1982: definisan SMTP e-mail protokol
- 1983: definisan DNS za "ime-u-IP adresu" translaciju
- 1985: definisan FTP protokol
- 1988: TCP kontrola zagušenja

- nove nacionalne mreže:
 Csnet, BITnet,
 NSFnet, Minitel
- 100,000 hostova
 povezanih u
 "konfederaciju" mreža

1990, 2000's: komercijalizacija, Web, nove aplikacije

- □ Rane 1990-te: gašenje ARPAneta
- 1991: NSF skida restrikcije na komercijalno korišćenje NSFnet (ugašena, 1995)
- □ rane 1990-te: Web
 - hypertext [Bush 1945, Nelson 1960's]
 - HTML, HTTP: Berners-Lee
 - 1994: Mosaic, kasnije Netscape
 - kasne 1990-te: komercijalizacija Web-a

Kasne 90-te - 2000te:

- više "killer" aplikacija: instant messaging (ICQ), peer2peer file sharing (npr., Napster)
- zaštita
- oko 50 miliona hostova, preko 100 miliona korisnika
- linkovi okosnice funkcionišu na Gb/s

Internet danas

2005-danas

- ~ 5 milijardi povezanih hostova
 - Pametni telefoni i tableti
- Agresivna implementacija širokopojasnog pristupa
- Povećanje sveprisutnosti veoma brzog bežičnog pristupa
- Ekspanzija društvenih mreža:
 - Facebook: milijarda korisnika
- Provajderi servisa (Google, Microsoft) kreiraju sopstvene mreže
 - zaobilaze Internet, obezbjeđuju "trenutni" pristup pretraživanju, email,...
- E-commerce, univerziteti, kompanije implementiraju sopstvene servise u "cloud" (npr, Amazon EC2)
- Sve izraženiji sigurnosni problemi!!!!!!!

Zaštita računarskih mreža

- Oblasti zaštite:
 - Kako se mreža napada?
 - Kako se mreža može odbraniti?
 - Kako napraviti mrežu imunu na napade?
- Na početku Internet nije dizajniran sa zaštitom u fokusu
 - Originalna vizija Interneta: "grupa uzajamno pouzdanih korisnika povezanih na transparentnu mrežu"
 - Dizajneri Internet protokola pokušavaju da prestignu bezbjedonosne izazove
 - Zaštita na svim nivoima!

<u>Malware</u>

- Može sa Internete dospjeti u host pomoću:
 - Ovirusa: samo-replicirajuća "zaraza" prijemom/ izvršavanjem progrma (npr. e-mail attachment)
 - Oworm: samo-replicirajuća "zaraza" pasivnim prijemom objekta koji se samoizvršava
- spyware malware može evidentirati unos sa tastature, posjećene web sajtove, slati prikupljene informacije
- □inficirani host može postati botnet, koji se koristi za spamovanje ili DDoS napade

Napad na server ili mrežnu infrastrukturu

Denial of Service (DoS): napadači resurse mreže (serveri ili mrežni kapaciteti) čine nedostupnim legitimnim korisnicima preopterećenjem vještački generisanim saobraćajem

- I. Izbor mete
- 2. Upad u hostove oko mete (botnet)
- Slanje paketa meti od strane kompromitovanih hostova

Packet "sniffing":

- Zajednički medijum za prenos (dijeljeni Ethernet, bežični link)
- Promiskuitetni mrežni interfejs analizira sve pakete koji se prenose

Wireshark software je primjer bezplatnog packet-sniffera

IP spoofing: slanje paketa sa netačnom izvorišnom adresom

IP spoofing: slanje paketa sa netačnom izvorišnom adresom

