Représentation des entiers relatifs

Christophe Viroulaud

Première - NSI

DonRep 02

Représentation des entiers relatifs

Addition de deux nombres binaires

Une représentation naïve des entiers négatifs

Inconvénients de la représentation

Le complément à l' puissance *n*

Définition

Calculer le complément à Intérêt de la méthode

Un système *64 bits* peut représenter 2⁶⁴ entiers.

```
1 >>> import sys
2 >>> sys.maxsize
3 9223372036854775807
```

Code 1 – Cette valeur correspond à $2^{63} - 1$.

Observation

Un des bits ne semble pas utilisé.

Représentation des entiers relatifs

Addition de deux nombres binaires

naïve des entiers négatifs

Inconvénients de la représentation

e complément à 2 uissance *n*

finition

Calculer le complément à 2 Intérêt de la méthode

Représentation des entiers relatifs

Addition de deux nombres binaires

Une représentation naïve des entiers négatifs

Bit de poids fort Inconvénients de la représentation

Le complément à 2 puissance *n*

tófinition

Calculer le complément à 2 Intérêt de la méthode

Comment sont représentés les entiers négatifs en mémoire?

Représentation des entiers relatifs

Addition de deux nombres binaires

1. Addition de deux nombres binaires

Une addition en base 2 applique les mêmes principes qu'en base 10 :

- 0 + 0 = 0
- 1+0=1
- ightharpoonup 1+1=0 et une retenue de 1
- ▶ 1 + 1 + 1 = 1 et une retenue de 1

Représentation des entiers relatifs

Addition de deux nombres binaires

Une représentation naïve des entiers négatifs

Bit de poids fort Inconvénients de la représentation

Le complément à 2 puissance *n*

Définition

Intérêt de la méthode

Dans un mot mémoire de 1 octet :

$25_{10} = 00011001_2$

Activité 1:

- 1. Convertir 25 et 12 en base 2.
- 2. Effectuer l'addition binaire de ces nombres.
- 3. Convertir le résultat en base 10. Le résultat est-il correct?

Représentation des entiers relatifs

Addition de deux nombres binaires

Une représentation naïve des entiers négatifs

Inconvénients de la représentation

Le complément à 2 puissance *n*

éfinition

Calculer le complément à : Intérêt de la méthode

Correction

			1	1				
	0	0	0	1	1	0	0	1
+	0	0	0	0	1	1	0	0
	0	0	1	0	0	1	0	1

Représentation des entiers relatifs

Addition de deux nombres binaires

Une représentation naïve des entiers négatifs

Bit de poids fort Inconvénients de la représentation

Le complément à 2 puissance *n*

Définition

Correction

Représentation des entiers relatifs

$$0 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 37$$

Addition de deux nombres binaires

Une représentation naïve des entiers négatifs

Bit de poids fort Inconvénients de la représentation

e complément à 2

ófinition

- Représentation des entiers relatifs
- Une représentation naïve des entiers négatifs

- 2. Une représentation naı̈ve des entiers négatifs

Bit de poids fort

Le bit le plus à gauche de la représentation n'est pour l'instant pas utilisé. C'est le **bit de poids fort**.

À retenir

Pour représenter un nombre entier, il faut connaître la taille du mot mémoire.

Représentation des entiers relatifs

Addition de deux nombres binaires

Une représentation naïve des entiers négatifs

Bit de poids fort

Inconvénients de la représentation

Le complément à 2 puissance *n*

Définition

Calculer le complément à 2 Intérêt de la méthode

Représentation des entiers relatifs

Une première idée serait d'utiliser ce bit comme marqueur de signe :

- 0 pour un entier positif,
- ▶ 1 pour un entier négatif.

Ainsi l'entier -25 serait encodé dans un mot mémoire de 1 octet :

$$-25_{10} = 10011001_2$$

Addition de deux nombres binaires

Une représentation naïve des entiers négatifs

Bit de poids fort

Inconvénients de la représentation

Le complément à 2 puissance *n*

Définition

Calculer le complément à 2 Intérêt de la méthode

- Représentation des entiers relatifs

- Inconvénients de la représentation

- 2. Une représentation naı̈ve des entiers négatifs
- 2.2 Inconvénients de la représentation

Le zéro

Dans un système 8 bits le zéro est représenté par 00000000_2 . Cependant 10000000_2 se traduit par -0. Il y a donc deux représentations pour zéro.

Représentation des entiers relatifs

Addition de deux nombres binaires

Une représentation naïve des entiers

Bit de poids fort Inconvénients de la représentation

Le complément à 2 puissance *n*

Définition

naïve des entiers négatifs

Bit de poids fort Inconvénients de la représentation

puissance *n*

Définition

Calculer le complément à Intérêt de la méthode

Avec cette représentation :

$$2^{5} + 2^{2} + 2^{0} = 37$$
$$10100101_{2} = -37_{10}$$
$$-25 + 12 \neq -37$$

À retenir

Cette représentation est erronée.

- 1. Addition de deux nombres binaires
- 2. Une représentation naïve des entiers négatifs
- 3. Le complément à 2 puissance n
- 3.1 Définition
- 3.2 Calculer le complément à 2
- 3.3 Intérêt de la méthode

Représentation des entiers relatifs

Addition de deux nombres binaires

Une représentation naïve des entiers négatifs

Bit de poids fort Inconvénients de la représentation

Le complément à 2 puissance *n*

Le complément à 2 puissance n est une représentation qui ne change rien pour les entiers positifs. Ainsi sur 8 bits :

0	1	1	1	1	1	1	1	=	127
0								=	
0	0	0	0	0	0	1	0	=	2
0	0	0	0	0	0	0	1	=	1
0	0	0	0	0	0	0	0	=	0

Addition de deux nombres binaires

aïve des entiers égatifs

Inconvénients de la représentation

e complement a 2 uissance *n*

Définition

Calculer le complément à 2 Intérêt de la méthode Par contre la valeur $2^n-|x|$ représente l'entier négatif x. Ainsi sur 8 bits, -1 s'écrit

$$2^8 - 1 = 256 - 1 = 255_{10} = 11111111_2$$

	Bit de poids fort
255	Inconvénients de la représentation
254	Le complément à 2 puissance <i>n</i>
	Définition

1	1	1	1	1	1	1	1	=	-1	$ 2^8 - -1 = 255$
1	1	1	1	1	1	1	0	=	-2	$ 2^8 - -2 = 254$
1								=		Définit Calcul
1	0	0	0	0	0	0	1	=	-127	$ 2^8 - -127 = 129$ interêt
1	0	0	0	0	0	0	0	=	-128	$ 2^8 - - 128 = 128$
0	1	1	1	1	1	1	1	=	127	
0								=		
0	0	0	0	0	0	1	0	=	2	
0	0	0	0	0	0	0	1	=	1	
0	0	0	0	0	0	0	0	=	0	

- 1. Addition de deux nombres binaires
- 2. Une représentation naïve des entiers négatifs
- 3. Le complément à 2 puissance n
- 3.1 Définition
- 3.2 Calculer le complément à 2
- 3.3 Intérêt de la méthode

Représentation des entiers relatifs

Addition de deux nombres binaires

Une représentation naïve des entiers négatifs

Bit de poids fort Inconvénients de la représentation

Le complément à 2

Définition

Calculer le complément à 2

Pour coder (-20):

▶ Prendre le nombre positif 20 : 00010100

▶ Inverser les bits : 11101011

► Ajouter 1 : 11101100

-20:11101100

Représentation des entiers relatifs

Addition de deux nombres binaires

naïve des entiers négatifs

Inconvénients de la représentation

Le complément à 2 puissance *n*

Définition

Calculer le complément à 2

▶ Prendre le nombre positif 20 : 00010100

(compris) puis d'inverser tous les suivants.

Garder la partie à droite telle quelle : 00010100

Garder tous les chiffres depuis la droite jusqu'au premier 1

- Inverser la partie de gauche après le premier un : 11101100
- -20:11101100

Activité 2 : Calculer le complément à 2 (sur 1 octet) de -25.

Représentation des entiers relatifs

Addition de deux nombres binaires

Une représentation naïve des entiers négatifs

Inconvénients de la représentation

Le complément à 2

Définition

Correction

- \triangleright 25₁₀ = 00011001₂
- ▶ 00011001
- $-25_{10} = 11100111$

Représentation des entiers relatifs

Addition de deux nombres binaires

Une représentation naïve des entiers négatifs

Bit de poids fort Inconvénients de la représentation

Le complément à : puissance *n*

éfinition

- 1 Addition de deux nombres binaires
- 2. Une représentation naïve des entiers négatifs
- 3. Le complément à 2 puissance n
- 3.1 Définition
- 3.2 Calculer le complément à 2
- 3.3 Intérêt de la méthode

Représentation des entiers relatifs

Addition de deux nombres binaires

Une représentation naïve des entiers négatifs

Bit de poids fort Inconvénients de la représentation

Le complément à 2

)éfinition

Intérêt de la méthode

Il n'y a qu'un seul zéro.

Représentation des entiers relatifs

Addition de deux nombres binaires

Une représentation naïve des entiers négatifs

Bit de poids fort Inconvénients de la représentation

Le complément à 2 puissance *n*

Péfinition

Calculer le complément à 2 Intérêt de la méthode

$$-25 + 12$$
1 1

Avec cette représentation :

$$2^7 + 2^6 + 2^5 + 2^4 + 2^1 + 2^0 = 243$$

 $243 - 2^8 = 243 - 256 = -13$

Intérêt de la méthode

À retenir

Les nombres entiers négatifs sont représentés par le complément à 2.

Représentation des entiers relatifs

Addition de deux nombres binaires

naïve des entiers négatifs

Inconvénients de la représentation

Le complément à 2 puissance *n*

Définition

Calculer le complément à 2

Intérêt de la méthode