Universität Augsburg Lehrstuhl für Algebra und Zahlentheorie Prof. Marc Nieper-Wißkirchen Ingo Blechschmidt

Übungsblatt 7 zur Algebra II

Abgabe bis 3. Dezember 2013, 17:00 Uhr

Aufgabe 1. (1+1) Urbilder und Bilder von Idealen

- a) Zeige, dass Urbilder von Idealen unter Ringhomomorphismen wieder Ideale sind.
- b) Zeige, dass Bilder von Idealen unter Ringhomomorphismen im Allgemeinen aber keine Ideale sind.

Aufgabe 2. (1+2+1) Beispiele für Ideale

Skizziere alle endlich erzeugten Ideale von folgenden Ringen zusammen mit ihren Inklusionsbeziehungen:

- a) \mathbb{Z} .
- S b) $\mathbb{Z}_{(p)}$ (aus Blatt 6, Aufgabe 4), wobei p eine Primzahl ist.
 - b) K, wobei K ein beliebiger Körper ist.

Aufgabe 3. (2+2+2) Nilpotente und reguläre Elemente

- a) Zeige, dass der Restklassenring $\mathbb{Z}[i]/(2)$ genau vier Elemente hat. Welche Elemente sind regulär?
- b) Sei $n \geq 0$. Bestimme das Nilradikal von $\mathbb{Z}/(n)$.
- c) Sei R ein kommutativer Ring. Sei $f \in R$. Zeige: Der Ring $R[f^{-1}]$ ist genau dann der Nullring, wenn f in R nilpotent ist.

Aufgabe 4. (1+3) Charakteristik von Körpern

Sei K ein Körper.

- a) Gib den eindeutig bestimmten Ringhomomorphismus $\epsilon: \mathbb{Z} \to K$ explizit an.
- b) Zeige, dass K genau dann von Charakteristik n ist, wenn ker $\epsilon = (n)$.

Aufgabe 5. (4) Geometrische Komponenten

Sei R ein kommutativer Ring. Zeige, dass folgende Aussagen äquivalent sind:

- a) Es gibt $e, f \in R$ mit $e \neq 0, f \neq 0, ef = 0, e^2 = e, f^2 = f$ und e + f = 1.
- b) Es gibt kommutative Ringe S und T, die jeweils nicht der Nullring sind, mit $R\cong S\times T.$