Portrait of Economic Academia: Evidence from Top 20 Economics Journals

Collaboration Network & Topic Modeling Analysis

Table of Contents

- 1. Topic Overview
- 2. Research Questions and Social Science Relevance
- 3. Data Sources and Descriptions
- 4. Data Collection
- 5. Data Cleaning and Wrangling
- 6. Collaboration Network Analysis
- 7. Topic Modeling Analysis
- 8. Take-home Points

Research topic:

Examine the characters of the economic research collaboration structure

What are the network features and collaboration patterns at the institutional level?

Question 2

What economics research topics are actively studied? How these topics vary and evolve across time and institutions?

Data Description -Top 20 Economics Journals Data

- We collected the data of top 20 economics journals ranked by h5-index (2017 2021).
- Our raw data have 79,565 publications from 1886 till now.
- We select 18,086 publications from 2012 to 2022 as the research sample.
- We have three databases:
 - Top 20 Economics Journals Data
 - Google Scholar Author Data
 - > Authors' Affiliations Data

Data Description Top 20 Economics Journals Data

Data sources

Official Websites:

- American Economic Association
- Oxford Academic
- Science Direct

Third-party database:

- ideas.repec.org
- econpapers.repec.org

Data Description Google Scholar Author Data

Links of two databases

We input the DOI in Top 20
 Economics Journals Database to search the Authors of the publications in Google Scholar.

Data sources

- Google Scholar Author Database
- Semantics Scholar Database (For incompleteness data)

^{*} If the author has Multiple Affiliations, we use the Affiliation of the Email.

Data Description - Google Scholar Author Data

- Our raw data have 19,585 records of authors
- We select 13,654 authors who have publications from 2012 to 2022 as the research sample.

Data Sources and Description - Authors' Affiliations Data

Data sources

Google Scholar Institutions Information

Data description:

- Our raw data have 1,392 records of institutions.
- We select 1,329 institutions that have authors who publish Top articles from 2012 to 2022 as the research sample.

Advantages

Data Collection Roadmap

Building Authors Database

- (1) Retrieve Authors' Google Scholar Page
- Iterate through the article database. For every article, search the article's DOI (if available) in Google Scholar.
- Since the DOI is unique for every article, the researching result is either one or none.
- Scholars that has their own Google Scholar page will have the links embedded in their names.
- Collected *all the embedded links* to revisit later.

DOI: 10.1257/000282802320188961

Scholar

Bank bailouts and aggregate liquidity

<u>DW Diamond, RG Rajan</u> - American Economic Review, 2002 - pubs.aeaweb.org
Governments sometimes bail out banks by recapitalizing them, or by offering to insure their liabilities. The government's goal may be to rescue borrowers, bankers, or depositors, and economists have developed rationales why each of these constituencies may merit protection (eg, Diamond, 2001). These potential benefits have to be weighed against the costs of a bailout, which are typically thought to be the damage to long-run incentives that such intervention engenders. In this paper, we present a different effect of bank bailouts ...

☆ Save 夘 Cite Cited by 82 Related articles All 9 versions

Showing the best result for this search. See all results

Building Authors Database

- (2) Collect author's info from Google Scholar page
- Revisit the embedded URLs collected.
- Collected information includes
 - the *email address* for this scholar. (Google Scholar affiliation section is messy)
 - Citations by year
 - h-index and i10-index listed
- Finally, search the email address collected directly in the Google Scholar.
- The affiliation match with this address will appear in the top box.

Building Institution Database

- IDEAS ranking
 - Academic Oriented
 - Comprehensive ranking that include non-university institutions
- Full record linkage
 - Common word is removed ("university of")
 - Take the highest score
 - Exactly 200 institutions were matched

affiliationid	name	email	match	univer_ins	Rank
7	Y	Y	7	Y	Y
au.aalto.fi	Aalto University	aalto.fi	0.7962962	Carleton University	309
kriot.kth.se	KTH Royal Institu	kth.se	0.7470084	Beijing Institute of	78
uocla.ucla.edu	University of Calif	ucla.edu	0.682900	Boston College	100
aei.aei.org	American Enterpr	aei.org	0.7599879	Economic and Soci	212
miot.mit.edu	Massachusetts In	mit.edu	1	Massachusetts Inst	8
ciot.caltech.edu	California Institut	caltech.edu	0.8677729	Beijing Institute of	78
hu.harvard.edu	Harvard University	harvard.edu	1	Harvard University	5
su.stanford.edu	Stanford University	stanford.edu	1	Stanford University	14
uop.upenn.edu	University of Pen	upenn.edu	1	University of Penns	55
ai.amazon.com	Amazon Inc.	amazon.com	0.6931818	Chapman University	448
au.american.edu	American Univers	american.e	0.746666	Academia Romana	129
ac.amherst.edu	Amherst College	amherst.edu	0.8002011	Dartmouth College	83
cmu.cmu.edu	Carnegie Mellon	cmu.edu	1	Carnegie Mellon Un	360
anu.anu.edu.au	Australian Nation	anu.edu.au	1	Australian National	99
au.ariel.ac.il	Ariel University	ariel.ac.il	0.7460317	Drexel University	196
uoa.arizona.edu	University of Ariz	arizona.edu	0.7925925	University of Alberta	416
asu.asu.edu	Arizona State Uni	asu.edu	1	Arizona State Unive	177
frboa.atl.frb.org	Federal Reserve	atl.frb.org	1	Federal Reserve Ba	257
auob.aub.edu.lb	American Univers	aub.edu.lb	0.666379	Central Bank of Irel	386

Constructing Co-authorship links

Article – Author – Institution – Ranking

LSE (Whole Dataset)

Name	Number of links
LSE	10
UChicago	5
MIT	5

(example)

• Compile to Institution Level links

Centralities Analysis

Quantifying Collaboration links

(1) Institution level analysis

LSE (Whole Dataset)

Name	Number of links	Contribution To the score
LSE (Rank 1)	10	0
UChicago (Rank 9)	5	(9-1) * 5
MIT (Rank 8)	5	(8-1) * 5

(example)

Cross-rank score = (0 + (9-1) * 5 + (8-1) * 5) / 20 = 3.75

Cross-rank Scores Distributuion

Quantifying Collaboration links

(1) Institution level analysis

- Institutions that rank higher tend to collaborate more with each other a low cross-rank score.
- Cross-ranking collaboration is more common for institutions that rank later.

Quantifying Collaboration links

(2) Institution Tier level analysis

BERTopic Modeling

- An emerging TM technique that uses language embedding and class-based TF-IDF
- Original Paper (Grootendorst 2022): https://arxiv.org/abs/2203.05794
- Documentation: https://maartengr.github.io/BERTopic/index.html

Advantages over LDA TM

- Easy to fit in model: only need to clear stopwords and re-concatenate into paragraphs
- Much more stable: results may vary a little across runs but not as much as LDA
- Much less training time: 15,000+ abstracts take less than 1 minute to train

BERTopic Although BERT is typically **Embed** used for embedding documents, any embedding **Documents** technique can be used. **Cluster Topics** UMAP **HDBSAN** into semantically Reduce dimenionality of similar clusters embeddings Create topic representations from clusters

Source: https://hackernoon.com/nlp-tutorial-topic-modeling-in-python-wit h-bertopic-372w3519

Dominating, but **NON-trivial!** Need

Top 5 Keywords for each Topic:

Similarity and Intertopic Distance

All topics do NOT overlap on Intertopic Distance Map, so the training result should be fine!

Specialization Areas of Different Institutions

- Every document is assigned with a <u>single MOST RELEVANT</u> topic.
- We can use this result to see what topics an institution is focusing on.

FED is mostly researching about "financial policy, risk, shocks", macro related topics. Make sense!

UChicago has a much broader interests of topics, almost covering all 21 topics we identify!

Take-home Points

From Technical Experience:

- **SQL** is really convenient to structure datasets and extract relevant information!
- Except for speed, Selenium is way better than Requests for web scraping!
- Plotly is fantastic for fancier visualization and interactive plots!
- When doing Topic Modeling, try out **BERTopic** package! Do NOT stick to Gensim LDA.

Social Science Significance:

- We form a whole picture of the current Economic academia by 1): identifying its collaboration patterns on Top Econ Journals through network analysis 2): research topics evolvement across time and institutions through dynamic topic modeling.
- *From network*, Top tier institutions are more likely to collaborate with institutions of similar levels; but for lower tier institutions, they often collaborate with those from very different tiers. In other words, an institution's cross-rank/tier collaboration likelihood decreases as its tier/rank gets higher.
- *From topic modeling*, we see topics are <u>stable in trends across time</u> with some fluctuations but can <u>vary a lot across different institutions</u>.
- Future work: 1) explore more parameters in network like centrality, shortest path; 2) further split the dominating topic into subtopics for better classification; 3) combing network and TM, see collaboration patterns under different topics.

This is the end of Presentation. Thanks for Listening!

Q&A

