

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

Document Database and Map-Reduce

Hogeschool Rotterdam Rotterdam, Netherlands

Introduction

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

Lecture topics

- CAP Theorem ACID vs BASE
- Document Databases
- MongoDB
- Map-Reduce
- Summery

NoSQL database and CAP theorem

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

Motivation

- As we mentioned before relational database systems are designed to run on a single server
- RDBMS satisfy the ACID rules to provide consistency and availability of the data for the users
- But how do NoSQL databases deal with the data in their implementation?

NoSQL database and CAP theorem

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

CAP theorem

- States that it is impossible for a distributed computer system to simultaneously provide all three of the following guarantees:
 - Consistency every read receives the most recent write or an error
 - Availability every request receives a response, without guarantee that it contains the most recent version of the information
 - Partition tolerance (the system continues to operate despite arbitrary partitioning due to network failures

NoSQL database and CAP theorem

Document
Database and
Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

ACID vs BASE

- Basically Available, Soft State and Eventual Consistent
- Because of this characteristic the query language must be able to process data saved locally and in a cluster (to be discussed in another slide)

Figure: CAP Theorem

RDBMS vs Document database

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

ACID vs BASE

- Relational databases are considered to be structural
- Document databases uses semi-structured formats
- text files such as logs are unstructured

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

Introduction

- A document database is a nonrelational database that stores data as structured documents such as in XML or JSON formats
- Document databases are free to implement ACID transactions or other characteristics of a traditional RDBMS
- A document database allows some form of data description without enforcing a schema
- The alignment with web-development programming practices has resulted in JSON and document databases/storage

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

Introduction

- Let us see what are those formats and how they are used!
- We will start with eXtensible Markup Language
- Then we will look at JavaScript Object Notation and it's Binary version

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

eXtensible Markup Language (XML)

- Defined by the WWW Consortium (W3C)
- Extensible, unlike HTML, users can add new tags, and separately specify how the tag should be handled for display
- XML has become the basis for all new generation data interchange formats. For instance bank transfers and secure document exchange
- Documents have tags giving extra information about sections of the document. Those tags can also be nested

HTML as XML

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

```
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
        <meta charset="UTF-8"/>
        <title>Polyglot (X)HTML Template</title>
    </head>
    <body>
        content....
        </body>
        </body>
        </html>
```


Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

XML

- Each XML based standard defines what are valid elements, using XML type specification languages to specify the syntax
- DTD (Document Type Descriptors): describes the structure of an XML document
- XML Schema (newer than DTD): a special type of XML document that describes the elements that may be present
- Sample implementation database BaseX (basex.org)

Document Type Descriptors

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

```
<! ELEMENT department(dept_name, building, budget)>
<! ELEMENT dept_name (#PCDATA)>
<! ELEMENT budget (#PCDATA)>
<!ELEMENT university ( ( department | course | instructor | teaches )+)>
```

```
Notation:
```

```
: alternatives
```

+ : 1 or more occurrences

* : 0 or more occurrences

#PCDATA : Parsed charachter data i.e.

parsed string

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

XML Processing

- XPath: A syntax for retrieving specific elements from an XML document using wildcards.
- XQuery: A query language provides mechanisms for modifying a document. XQuery is sometimes referred to as "the SQL of XML".
- XSLT (Extensible Stylesheet Language Transformations):
 A language for transforming XML documents into alternative formats, including non-XML formats such as HTML.
- DOM (Document Object Model): An object-oriented API that programs can use to interact with XML, XHTML, and similarly structured documents.

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

Tree Model of XML Data

- Query and transformation languages are based on a tree model of XML data
- An XML document is modeled as a tree, with nodes corresponding to elements and attributes

Figure: DOM sample of an HTML document

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

XML Processing: XPath

- XPath: is used to address (select) parts of documents using path expressions
 - The initial denotes root of the document (above the top-level tag)
 - Think of file names in a directory hierarchy
 - Selection predicates may follow any step in a path, in []
 - It is possible to apply selection criteria on the values using comparison operators ^a

^aDemonstrate an example

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

XML Processing: XQuery and XPath

- XQuery is derived from the Quilt query language, which itself borrows from SQL, XQL and XML-QL
- XQuery uses a: for ... let ... where ... order by ... result ... a b
 - for = from
 - where = where
 - order by = order by
 - result = select

^alet: allows temporary variables, and has no equivalent in SQL

^bDemonstrate an example

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

JavaScript Object Notation JSON

- JSON is an open-standard format that uses human-readable text to transmit data objects consisting of attribute-value pairs
- JSON Schema is based on the concepts from XML Schema, but is JSON-based
- Document databases use JSON documents in order to store records, just as tables and rows store records in a relational database

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

BSON

- BSON: binary-encoded format used in MongoDB instead of JSON
- BSON extends the JSON model to provide additional data types such as integer and float to be efficient for encoding and decoding within different languages.
- BSON implementation supports embedding objects and arrays within other objects and arrays

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

MongoDB

- A MongoDB instance may have zero or more databases
- A database may have zero or more collections.
 - Can be thought of as the relation (table) in DBMS, but with many differences.
- A collection may have zero or more documents.
 - Docs in the same collection don't even need to have the same fields
 - Docs are the records in RDBMS
 - Docs can embed other documents
 - Documents are addressed in the database via a unique key differences
- A document may have one or more fields.
- Threre is no join provided in MongoDB. You have to implement it manually.

Document Data-Model

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

Relational Model

Suppose you have the following entities and their relationships

• How would we model this in a document structure?

Document Data-Model

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

Embedded

 First mapping possibility is to map to one embedded collection.

 document database are not designed to be normalized and data repetition is accepted, but could have side effects.

Document Data-Model

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

Linking using object _id

 Second mapping possibility is to map to different collections and link the documents

- This approach is less suited for document databases since the binary data of those collections are not stored as a continuous stream.
- Another disadvantage of this approach is the lack of join query

Querying collections and objects

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

Selecting data

Select queries in MongoDB and SQL

Querying collections and objects

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

Inserting data

Adding query examples or live demo

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

Introduction

- Map-Reduce is a data processing paradigm for condensing large volumes of data into useful aggregated results.
- Map- and Reduce-functions are commonly used in functional programming
- In INFDEV02-2 and INDEV02-3 we already introduced HOFs
- Higher Order Functions HOFs are very powerful in the context for NoSQL databases.
- The following functions will be further discussed : FlatMap, Map and Reduce

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

Map Function

- Apply the function f to each element of list x
- map(f, x[0...n-1])
- in Python:

def square(x): return x * x map(square, [1, 2, 3, 4]) would return [1, 4, 9, 16]

map/reduce images src: Apache Hadoop tutorials

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

Reduce Function

- Repeatedly apply binary func9on f to pairs of items in x, replacing the pair of items with the result until only one item remains
- reduce(f, x[0...n-1])
- in Python: def add(x,y): return x+y reduce(add, [1,2,3,4]) would result in a 10

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

MapReduce Function in MongoDB

Not done yet

Document Database and Map-Reduce

Introduction

NoSQL database and CAP theorem

NoSQL database and CAP theorem

NoSQL database and CAP theorem

RDBMS vs Document database

Document Database

Document Data-Model

Querying collections and

MapReduce Function in a Cluster

- The distributed MapReduce idea is similar to (but not the same as!): reduce(f2, map(f1, x))
- Key idea: "data-centric" architecture Send function f1 directly to the data: Execute it concurrently
- Then merge results with reduce: Also concurrently