SynapSense

ADDENDUM TEST REPORT TO 93248-9

Thermanode EZ Model: 0944

Tested To The Following Standards:

FCC Part 15 Subpart C Sections 15.209, 15.247 and RSS-210 Issue 8

Report No.: 93248-9A

Date of issue: August 16, 2012

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Revision History	
Report Authorization	3
Test Facility Information	4
Site Registration & Accreditation Information	4
Summary of Results	5
Conditions During Testing	5
Equipment Under Test	6
Peripheral Devices	6
FCC Part 15 Subpart C	7
15.209 Radiated Emissions	7
15.247 RF Power Output	14
6dBc & 99% RSS 210 Occupied Bandwidth	17
Bandedge	21
15.249 Power Spectral Density	24
Supplemental Information	28
Measurement Uncertainty	28
Emissions Test Details	28

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

SynapSense Dianne Dudley
340 Palladio Parkway, Suite 540 CKC Laboratories, Inc.
Folsom, CA 95630 5046 Sierra Pines Drive

Mariposa, CA 95338

Representative: Michele Clemente Project Number: 93248

Customer Reference Number: 10524

DATE OF EQUIPMENT RECEIPT: June 25, 2012

DATE(S) OF TESTING: June 25-27, 2012

Revision History

Original: Testing of the Thermanode EZ, Model: 0944 to FCC Part 15 Subpart C Sections 15.209, 15.247 and RSS-210 Issue 8.

Addendum A: To correct the information in the Power Output and Power Spectral Density sections.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance & Engineering Services
CKC Laboratories, Inc.

Steve 2 Be

Page 3 of 29 Report No.: 93248-9A

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Site Registration & Accreditation Information

Location	ocation CB # Taiwan		Canada	FCC	Japan
Mariposa A	US0103	SL2-IN-E-1147R	3082A-2	90477	R-563 C-578 T-1492 G-87

Page 4 of 29 Report No.: 93248-9A

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C

Description	Test Procedure/Method	Results
Radiated Emissions	FCC Part 15 Subpart C Section 15.209 / ANSI C63.4 (2003)	Pass
RF Power Output	FCC Part 15 Subpart C Section 15.247(b)(3) / 558074 DO1 / DTS MEAS GUIDEANCE V01	Pass
6dBc / 99% Occupied Bandwidth	FCC Part 15 Subpart C Section 15.247 (a)(2) / 558074 DO1 / DTS MEAS GUIDEANCE V01 / RSS 210 Issue 8	Pass
Bandedge	FCC Part 15 Subpart C / ITU-R-55/1 / 558074 DO1 / DTS MEAS GUIDEANCE V01	Pass
Power Spectral Density	FCC Part 15 Subpart C 15.247(e) / 558074 DO1 / DTS MEAS GUIDEANCE V01	Pass

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Condition	ns
None	

Page 5 of 29 Report No.: 93248-9A

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

Thermanode EZ

Manuf: SynapSense Model: 0944 Serial: 001

PERIPHERAL DEVICES

The EUT was not tested with peripheral devices.

Page 6 of 29 Report No.: 93248-9A

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

15.209 Radiated Emissions

Test Data Sheets

Test Location: CKC Laboratories • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • (209) 966-5240

Customer: SynapSense Corporation
Specification: 15.209 Radiated Emissions

 Work Order #:
 93248
 Date: 6/27/2012

 Test Type:
 Maximized Emissions
 Time: 13:16:44

Equipment: Thermanode EZ Sequence#: 7

Manufacturer: SynapSense Corp. Tested By: Chuck Kendall

Model: 0944 S/N: 001

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02660	Spectrum Analyzer	E4446A	11/3/2011	11/3/2013
T2	AN03155	Preamp	83017A	8/3/2011	8/3/2013
Т3	AN00327	Horn Antenna	3115	4/13/2012	4/13/2014
T4	AN03012	Cable	32022-2-29094K-	2/28/2012	2/28/2014
			36TC		
T5	ANP01403	Cable	58758-23	6/22/2011	6/22/2013
T6	ANP05904	Cable	32022-2-29094K-	6/22/2011	6/22/2013
			144TC		
T7	AN00062	Preamp	8447D	6/6/2012	6/6/2014
Т8	AN01991	Biconilog Antenna	CBL6111C	3/14/2012	3/14/2014
Т9	AN00226	Loop Antenna	6502	3/28/2012	3/28/2014
T10	ANP05686	Cable	RG214/U	1/24/2012	1/24/2014
	AN02046	Horn Antenna-ANSI	MWH-1826/B	11/10/2010	11/10/2012
		C63.5 Antenna			
		Factors (dB)			

Equipment Under Test (* = EUT):

() ·			
Function	Manufacturer	Model #	S/N	
Thermanode EZ*	SynapSense Corp.	0944	001	

Support Devices:

Γ unction Γ introduct Γ	Function	Manufacturer	Model #	S/N	
---	----------	--------------	---------	-----	--

Page 7 of 29 Report No.: 93248-9A

Test Conditions / Notes:

EUT is set up on Styrofoam foam some 80 cm from the ground plane. The sensor and cable is attached. A new set of batteries are installed.

CISPR bandwidths used.

Transmitter is transmitting at 100 % duty cycle on the following frequencies: 2405 MHz, 2445 MHz, or 2480 MHz. Frequency range: 9 kHz to 25 MHz

Environmental Conditions: Temperature = 20.4°C Relative Humidity = 35% Pressure = 97.7 kPa

Evt Attn: 0 dB

	ttn: 0 dB	_					_		23.6		
	rement Data:			ted by ma					e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
	MII	1D V	T9	T10	1D	JTD.	T.1.1.	1D 17/	1D 11/	1D	A 4
	MHz	dBμV	dB	dB	dB	dB	Table	•	dBμV/m	dB	Ant
1	47.805M	58.3	+0.0	+0.0	+0.0	+0.1	+0.0	37.9	40.0	-2.1	Horiz
(QP		+0.3	+0.4	-30.6	+9.4					
	47.00014	57.0	+0.0	+0.0	0.0	0.1	0.0	26.6	40.0	2.4	** .
2	47.800M	57.0	+0.0	+0.0	+0.0	+0.1	+0.0	36.6	40.0	-3.4	Horiz
(QP		+0.3	+0.4	-30.6	+9.4					
	47.00714	50.0	+0.0	+0.0	0.0	0.1	0.0	20.0	40.0	1.2	** .
٨	47.807M	59.2	+0.0	+0.0	+0.0	+0.1	+0.0	38.8	40.0	-1.2	Horiz
			+0.3	+0.4	-30.6	+9.4					
	47.002) 4	57.5	+0.0	+0.0	0.0	0.1	0.0	27.1	40.0	2.0	** .
٨	47.803M	57.5	+0.0	+0.0	+0.0	+0.1	+0.0	37.1	40.0	-2.9	Horiz
			+0.3	+0.4	-30.6	+9.4					
	0.00614	22.1	+0.0	+0.0	0.0	0.0	20.0	22.0	20.5		** .
5	8.986M	33.1	+0.0	+0.0	+0.0	+0.0	-20.0	23.0	29.5	-6.5	Horiz
			+0.0	+0.0	+0.0	+0.0					
	C4.7(0) 4	55.1	+9.9	+0.0	. 0. 0	. 0. 1	. 0. 0	22.4	40.0	7.6	X7 .
6	64.760M	55.1	+0.0	+0.0	+0.0	+0.1	+0.0	32.4	40.0	-7.6	Vert
			+0.3	+0.4	-30.4	+6.9					
7	47.02014	50.1	+0.0	+0.0	. 0. 0	. 0. 1	. 0. 0	21.7	40.0	0.2	X 7
7	47.820M	52.1	+0.0	+0.0	+0.0	+0.1	+0.0	31.7	40.0	-8.3	Vert
			+0.3 +0.0	$+0.4 \\ +0.0$	-30.6	+9.4					
8	CO 250M	<i>52.6</i>			.00	ı O 1	.00	20.9	40.0	0.2	V 2
8	68.250M	53.6	+0.0	+0.0	+0.0	+0.1 +6.6	+0.0	30.8	40.0	-9.2	Vert
			+0.3 +0.0	+0.5 +0.0	-30.3	+0.0					
9	125.022M	51.1	+0.0	+0.0	+0.0	+0.1	+0.0	32.9	43.5	-10.6	Vert
9	125.022M	31.1	+0.0	+0.0		+0.1	+0.0	32.9	43.3	-10.6	vert
			+0.3	+0.0	-30.1	+10.7					
10	64.761M	52.0			ι Ο Ο	ı O 1	ι Ο Ο	20.2	40.0	10.7	Homin
10	64.761M	52.0	+0.0 +0.3	$+0.0 \\ +0.4$	+0.0 -30.4	+0.1 +6.9	+0.0	29.3	40.0	-10.7	Horiz
			+0.3 +0.0	+0.4 +0.0	-30.4	+0.9					
11	1121 02014	15 1			+247	٠,0,5	ι Ο Ο	42.0	540	11.0	II.on!-
11	1121.920M	45.4	+0.0	-31.2	+24.7	+0.5	+0.0	43.0	54.0	-11.0	Horiz
			+1.8	+1.8	+0.0	+0.0					
			+0.0	+0.0							

Page 8 of 29 Report No.: 93248-9A

	1000 2003 5	47.0	0.0	21.2	210		0.0	40.0			** .
12	1089.280M	45.2	+0.0	-31.2	+24.9	+0.5	+0.0	42.8	54.0	-11.2	Horiz
			+1.7	+1.7	+0.0	+0.0					
			+0.0	+0.0							
13	500.004M	44.7	+0.0	+0.0	+0.0	+0.3	+0.0	34.7	46.0	-11.3	Vert
			+1.0	+1.0	-30.0	+17.7					
		 00	+0.0	+0.0							
14	124.995M	50.0	+0.0	+0.0	+0.0	+0.1	+0.0	31.8	43.5	-11.7	Horiz
			+0.5	+0.6	-30.1	+10.7					
1.5		12.2	+0.0	+0.0	0.0	0.4	0.0	2.1.2	1.5.0		**
15	659.996M	42.3	+0.0	+0.0	+0.0	+0.4	+0.0	34.3	46.0	-11.7	Vert
			+1.1	+1.2	-30.0	+19.3					
			+0.0	+0.0							
16	600.004M	42.6	+0.0	+0.0	+0.0	+0.4	+0.0	34.3	46.0	-11.7	Vert
			+1.1	+1.1	-30.1	+19.2					
			+0.0	+0.0							
17	80.020M	49.8	+0.0	+0.0	+0.0	+0.1	+0.0	28.1	40.0	-11.9	Vert
			+0.4	+0.5	-30.3	+7.6					
- 10			+0.0	+0.0							
18	600.004M	42.1	+0.0	+0.0	+0.0	+0.4	+0.0	33.8	46.0	-12.2	Horiz
			+1.1	+1.1	-30.1	+19.2					
- 10		• • •	+0.0	+0.0							
19	2322.291M	38.5	+0.0	-30.8	+28.1	+0.7	+0.0	41.6	54.0	-12.4	Horiz
			+2.5	+2.6	+0.0	+0.0					
			+0.0	+0.0							
20	1041.080M	43.6	+0.0	-31.4	+25.1	+0.5	+0.0	40.8	54.0	-13.2	Horiz
			+1.5	+1.5	+0.0	+0.0					
			+0.0	+0.0							
21	600.000M	40.7	+0.0	+0.0	+0.0	+0.4	+0.0	32.4	46.0	-13.6	Horiz
			+1.1	+1.1	-30.1	+19.2					
	5 00 000 f	20.7	+0.0	+0.0	0.0	0.4	0.0	21.5	1.50	110	**
22	700.020M	39.5	+0.0	+0.0	+0.0	+0.4	+0.0	31.7	46.0	-14.3	Vert
			+1.2	+1.2	-29.9	+19.3					
22	27.7443.6	20.2	+0.0	+0.0	0.0	0.0	20.0	1.1.0	20.5	116	TT .
23	27.744M	28.2	+0.0	+0.0	+0.0	+0.0	-20.0	14.9	29.5	-14.6	Horiz
			+0.0	+0.0	+0.0	+0.0					
24	700 4003 4	20.7	+6.6	+0.1		. 0. 4	.00	20.0	46.0	15 1	XI c =4
24	700.400M	38.7	+0.0	+0.0	+0.0	+0.4	+0.0	30.9	46.0	-15.1	Vert
			$+1.2 \\ +0.0$	+1.2	-29.9	+19.3					
25	660,0021/	20 6		+0.0	ΙΩΩ	+Ω 4	+0.0	20.6	16.0	15 /	Цота
25	660.002M	38.6	+0.0	+0.0	+0.0	+0.4	+0.0	30.6	46.0	-15.4	Horiz
			$+1.1 \\ +0.0$	+1.2 +0.0	-30.0	+19.3					
26	1099.940M	39.9			1240	+0.5	+0.0	37.5	54.0	-16.5	Horiz
20	1077.74UW	39.9	$+0.0 \\ +1.7$	-31.2 +1.8	+24.8 +0.0	+0.5 $+0.0$	+0.0	31.3	34.0	-10.3	попи
			+1.7	+0.0	+0.0	+0.0					
27	700 01 4M	37.0			ΙΩΩ	+Ω 4	100	20.2	16 O	-16.8	Horiz
2/	700.014M	37.0	$+0.0 \\ +1.2$	+0.0 +1.2	+0.0 -29.9	+0.4 +19.3	+0.0	29.2	46.0	-10.8	HOUZ
			+1.2 +0.0	+0.0	-47.7	±17.3					
28	184.860M	45.6	+0.0	+0.0	+0.0	+0.2	+0.0	26.7	43.5	-16.8	Vert
20	104.000101	45.0	+0.6	+0.0	+0.0 -29.5	+0.2 +9.1	+0.0	20.7	43.3	-10.0	v ei i
			+0.0 +0.0	+0.7	-27.3	⊤ ブ.1					
<u></u>			+0.0	+0.0							

Page 9 of 29 Report No.: 93248-9A

20	(0.2223.7	45.0	. 0. 0				.00	22.1	40.0	160	
29	68.232M	45.9	+0.0	+0.0	+0.0	+0.1	+0.0	23.1	40.0	-16.9	Horiz
			+0.3	+0.5	-30.3	+6.6					İ
20	£40.0003.£	20.7	+0.0	+0.0	. 0. 0	.0.2	.0.0	20.0	460	17.0	T7
30	540.800M	38.5	+0.0	+0.0	+0.0	+0.3	+0.0	29.0	46.0	-17.0	Vert
			+1.0	+1.0	-30.1	+18.3					İ
21	1020 0203 4	20.0	+0.0	+0.0	125.2	. 0. 7	.0.0	26.0	F 4 0	17.1	TT'
31	1028.920M	39.8	+0.0	-31.4	+25.2	+0.5	+0.0	36.9	54.0	-17.1	Horiz
			+1.4	+1.4	+0.0	+0.0					İ
22	101 44034	45.0	+0.0	+0.0	.00	.0.2	.0.0	26.2	42.5	17.0	17. 4
32	181.440M	45.2	+0.0	+0.0	+0.0	+0.2	+0.0	26.3	43.5	-17.2	Vert
			+0.5	+0.7	-29.5	+9.2					
22	000 000 4	24.4	+0.0	+0.0	.00	.0.4	.0.0	20.4	46.0	17.6	17. 4
33	800.008M	34.4	+0.0	+0.0	+0.0	+0.4	+0.0	28.4	46.0	-17.6	Vert
			+1.2	+1.2	-29.4	+20.6					ŀ
2.4	670.00634	25.0	+0.0	+0.0	100	10.4	100	20.0	160	10.0	17 =4
34	679.996M	35.9	+0.0	+0.0	+0.0	+0.4 ±10.3	+0.0	28.0	46.0	-18.0	Vert
1			+1.1 +0.0	+1.2	-29.9	+19.3					ļ
25	90 00 cl 4	12.6	+0.0	+0.0	100	ι Ω 1	+0.0	21.0	40.0	10 1	Horiz
35	80.006M	43.6	$+0.0 \\ +0.4$	$+0.0 \\ +0.5$	+0.0 -30.3	+0.1 +7.6	+0.0	21.9	40.0	-18.1	попт
			+0.4 +0.0	+0.5 $+0.0$	-50.5	+7.0					ļ
36	350.004M	40.6	+0.0	+0.0	+0.0	+0.3	+0.0	27.7	46.0	-18.3	Vert
30	JJU.UU4IVI	40.0	$^{+0.0}_{+0.8}$	+0.0 +1.0	+0.0 -29.4	+0.3 +14.4	+∪.∪	41.1	40.0	-10.3	v ert
			+0.8 +0.0	+0.0	<i>-∠</i> ヲ.4	⊤14.4					ļ
27	1099.940M	38.0	+0.0	-31.2	+24.8	+0.5	+0.0	35.6	54.0	-18.4	Vert
3/	1 UZZ.Z4UIVI	J0.U	+0.0 +1.7	-31.2 +1.8	+24.8 +0.0	+0.5	+0.0	55.0	54.0	-10.4	v ert
			+1.7	+0.0	FU.U	FU.U					
38	375.600M	39.7	+0.0	+0.0	+0.0	+0.3	+0.0	27.4	46.0	-18.6	Vert
38	J.J.OUUIVI	37.1	+0.0 +0.9	+0.0 +1.1	+0.0 -29.6	+0.3 +15.0	.₩.	21.4	-1 0.0	-10.0	v CI l
			+0.9	+0.0	27.0	113.0					ļ
30	1089.280M	37.5	+0.0	-31.2	+24.9	+0.5	+0.0	35.1	54.0	-18.9	Vert
37	1007.200IVI	51.5	+0.0	-31.2 +1.7	+24.9	+0.5	10.0	55.1	57.0	10.7	v 011
			+0.0	+0.0	1 0.0	10.0					ļ
40	800.006M	32.8	+0.0	+0.0	+0.0	+0.4	+0.0	26.8	46.0	-19.2	Horiz
40	555.000IVI	54.0	+0.0	+0.0	-29.4	+20.6	10.0	20.0	+0.0	17.4	TOTIL
			+0.0	+0.0	- ∠T	. 20.0					
41	500.004M	36.7	+0.0	+0.0	+0.0	+0.3	+0.0	26.7	46.0	-19.3	Horiz
71	200.007171	50.1	+0.0	+0.0		+17.7	10.0	20.7	10.0	17.3	TIOTIZ
			+0.0	+0.0	50.0	. 11.1					ļ
42	1028.920M	36.4	+0.0	-31.4	+25.2	+0.5	+0.0	33.5	54.0	-20.5	Vert
1	_ 0_0.720141	20.7	+0.0	+1.4	+0.0	+0.0	. 0.0	23.3	21.0	20.5	, 511
			+0.0	+0.0	. 0.0	. 0.0					
43	80.006M	41.2	+0.0	+0.0	+0.0	+0.1	+0.0	19.5	40.0	-20.5	Horiz
.5	20.00011		+0.4	+0.5	-30.3	+7.6	. 0.0	- >		_5.5	
			+0.0	+0.0	2 3.0						ļ
44	679.996M	32.8	+0.0	+0.0	+0.0	+0.4	+0.0	24.9	46.0	-21.1	Horiz
		0	+1.1	+1.2	-29.9	+19.3			. 5.0		
			+0.0	+0.0							ļ
45	400.004M	35.8	+0.0	+0.0	+0.0	+0.3	+0.0	24.0	46.0	-22.0	Vert
.5			+0.9	+1.1	-29.7	+15.6					
			+0.0	+0.0	- • •	0					ļ

Page 10 of 29 Report No.: 93248-9A

46	480.004M	34.5	+0.0	+0.0	+0.0	+0.3	+0.0	24.0	46.0	-22.0	Vert
			+0.9	+1.0	-30.0	+17.3					
			+0.0	+0.0							
47	479.996M	34.5	+0.0	+0.0	+0.0	+0.3	+0.0	24.0	46.0	-22.0	Horiz
			+0.9	+1.0	-30.0	+17.3					
			+0.0	+0.0							
48	399.996M	34.8	+0.0	+0.0	+0.0	+0.3	+0.0	23.0	46.0	-23.0	Horiz
			+0.9	+1.1	-29.7	+15.6					
			+0.0	+0.0							
49	350.003M	32.1	+0.0	+0.0	+0.0	+0.3	+0.0	19.2	46.0	-26.8	Horiz
			+0.8	+1.0	-29.4	+14.4					
			+0.0	+0.0							
50	999.990M	37.0	+0.0	-31.5	+0.0	+0.5	+0.0	8.6	54.0	-45.4	Horiz
			+1.3	+1.3	+0.0	+0.0					
			+0.0	+0.0							

CKC Laboratories Date: 6/27/2012 Time: 13:16:44 SynapSense Corporation WO#: 93248 15.209 Radiated Emissions Test Distance: 3 Meters Sequence#: 7 Ext ATTN: 0 dB

Test Setup Photos

15.247 RF Power Output

Test Data

Test Location: CKC Laboratories • 5046 Sierra Pines Dr • Mariposa, CA 95338 • (209) 966-5240

Customer: SynapSense Corporation

Specification: 15.247(b)(3) Power Output (2400-2483.5 MHz DTS)

Work Order #: 93248 Date: 6/26/2012
Test Type: Maximized Emissions Time: 09:04:20
Equipment: Thermanode EZ Sequence#: 2

Manufacturer: SynapSense Corp. Tested By: Chuck Kendall

Model: 0944

001

Test Equipment:

S/N:

	P				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02660	Spectrum Analyzer	E4446A	11/3/2011	11/3/2013
T1	AN03155	Preamp	83017A	8/3/2011	8/3/2013
T2	AN00327	Horn Antenna	3115	4/13/2012	4/13/2014
Т3	AN03012	Cable	32022-2-29094K- 36TC	2/28/2012	2/28/2014
T4	ANP01403	Cable	58758-23	6/22/2011	6/22/2013
T5	ANP05904	Cable	32022-2-29094K- 144TC	6/22/2011	6/22/2013

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Thermanode EZ*	SynapSense Corp.	0944	001

Support Devices:

Function Manufacturer Model # S/N

Test Conditions / Notes:

EUT is set up on 10cm of Styrofoam foam some 80 cm from the ground plane. The sensor and cable is attached. A new set of batteries are installed.

RBW is set to 3MHz; VBW is set to 50 MHz and the span is 0 Hz.

Transmitter is transmitting at 100 % duty cycle on the following frequencies: 2405 MHz, 2445 MHz, or 2480 MHz.

Measurements made IAW KDB558074, PK1 method.

Antenna Gain: 3.3dBi Calculations used: $E(dB) = dB\mu V/m$ at 3m $P = (E*D)^2/30G$

Environmental Conditions: Temperature = 20.4°C Relative Humidity = 35% Pressure = 97.7 kPa

> Page 14 of 29 Report No.: 93248-9A

Antenna Gain: 3.3dBi

Frequency	Power in dBm	Limit in dBm
2405 MHz	2.9	30
2445 MHz	4.7	30
2480 MHz	3.8	30

Test Setup Photos

Page 15 of 29 Report No.: 93248-9A

6dBc & 99% RSS 210 Occupied Bandwidth

Test Conditions / Setup

EUT is set up on Styrofoam foam some 80 cm from the ground plane. The sensor and cable is attached. A new set of batteries are installed.

Bandwidths as stated in the plots. RBW = 100kHz, VBW = 1 MHz, and a span of 10 MHz

Frequency range: 2400 MHz to 2483.5 MHz

Transmitter is transmitting at 100 % duty cycle on the following frequencies: 2405 MHz, 2445 MHz, or 2480 MHz.

Frequency range:

Environmental Conditions: Temperature = 20.4°C Relative Humidity = 35% Pressure = 97.7 kPa

Engineer Name: C. Kendall

	Test Equipment				
Asset/Serial # Description		Model	Manufacturer	Cal Date	Cal Due
AN02660	Spectrum Analyzer	E4446A	Agilent	11/3/2011	11/3/2013
AN03155	Preamp	83017A	HP	8/3/2011	8/3/2013
AN00327	Horn Antenna	3115	EMCO	4/13/2012	4/13/2014
AN03012	Cable	32022-2-29094K-36TC	AstroLab	2/28/2012	2/28/2014
ANP01403	Cable	58758-23	Semflex	6/22/2011	6/22/2013
ANP05904	Cable	32022-2-29094K-144TC	AstroLab	6/22/2011	6/22/2013

Frequency in MHz	6dB EBW in MHz
2405	1649
2445	1645
2480	1648

Frequency in MHz	99% EBW in MHz
2405	2839.5
2445	2807.7
2480	2794.8

Page 17 of 29 Report No.: 93248-9A

Test Plots

Page 18 of 29 Report No.: 93248-9A

Test Setup Photos

Page 19 of 29 Report No.: 93248-9A

Page 20 of 29 Report No.: 93248-9A

Bandedge

Test Conditions / Setup

EUT is set up on 10cm of Styrofoam foam some 80 cm from the ground plane. The sensor and cable is attached. A new set of batteries are installed.

RBW is set to 10 kHz; VBW is set to either 30kHz or 3 MHz and the span is 10MHz.

Transmitter is transmitting at 100 % duty cycle on the following frequencies: 2405 MHz, 2445 MHz, or 2480 MHz.

Frequencies of Interest: 2395 to 2488 MHz

Measurements made IAW Marker Delta method on the high frequency. Fundamental Peak was measured at $101.26 \text{ dB}\mu\text{V}$ using 1 MHz Bandwidth: Changing the RBW/VBW bandwidths to 1%/3% of the span the delta was $48.98 \text{ dB}\mu\text{V}$. Subtracting this from $101.26 \text{ dB}\mu\text{V}$ left a reading of $52.28 \text{ dB}\mu\text{V}$ which is below the limit of $54 \text{ dB}\mu\text{V}$.

Environmental Conditions: Temperature = 20.4°C Relative Humidity = 35% Pressure = 97.7 kPa

Engineer Name: C. Kendall

	Test Equipment				
Asset/Serial # Description		Model	Manufacturer	Cal Date	Cal Due
AN02660	Spectrum	E4446A	Agilent	11/3/2011	11/3/2013
	Analyzer				
AN03155	Preamp	83017A	HP	8/3/2011	8/3/2013
AN00327	Horn Antenna	3115	EMCO	4/13/2012	4/13/2014
AN03012	Cable	32022-2-29094K-36TC	AstroLab	2/28/2012	2/28/2014
ANP01403	Cable	58758-23	Semflex	6/22/2011	6/22/2013
ANP05904	Cable	32022-2-29094K-144TC	AstroLab	6/22/2011	6/22/2013

Page 21 of 29 Report No.: 93248-9A

Test Data

Test Setup Photos

Page 23 of 29 Report No.: 93248-9A

15.249 Power Spectral Density

Test Conditions / Setup

EUT is set up on 10cm of Styrofoam foam some 80 cm from the ground plane. The sensor and cable is attached. A new set of batteries are installed.

-15.2 dB correction used in accordance with KDB 558074.

EUT antenna gain is 3.3 dBi

Calculations used:

Power Density(dBm) = E(dBuV) + 20log(d) - 104.8 + 10log(3kHz/100kHz)

where:

EIRP = the equivalent isotropic radiated power in dBm,

E = electric field strength in dBuV/m,

d = measurement distance in meters.

RBW is set to 100 kHz; VBW is set to 300 kHz and the span is approximately 3.6 MHz.

Transmitter is transmitting at 100 % duty cycle on the following frequencies: 2405 MHz, 2445 MHz, or 2480 MHz

Environmental Conditions: Temperature = 20.4°C Relative Humidity = 35% Pressure = 97.7 kPa

Engineer Name: C. Kendall

	Test Equipment				
Asset/Serial #	Description	Model	Manufacturer	Cal Date	Cal Due
AN02660	Spectrum Analyzer	E4446A	Agilent	11/3/2011	11/3/2013
AN03155	Preamp	83017A	HP	8/3/2011	8/3/2013
AN00327	Horn Antenna	3115	EMCO	4/13/2012	4/13/2014
AN03012	Cable	32022-2-29094K-36TC	AstroLab	2/28/2012	2/28/2014
ANP01403	Cable	58758-23	Semflex	6/22/2011	6/22/2013
ANP05904	Cable	32022-2-29094K-144TC	AstroLab	6/22/2011	6/22/2013
ANPSDCORR	Test Data	NA	NA	NCR	NCR
	Adjustment				

NCR = No calibration required; correction factor.

Frequency	Power in dBm	Limit in dBm
2405 MHz	-12.64	8
2445 MHz	-11.09	8
2480 MHz	-12.36	8

Page 24 of 29 Report No.: 93248-9A

Test Data

Page 25 of 29 Report No.: 93248-9A

Test Setup Photos

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 28 of 29 Report No.: 93248-9A

SAMPLE CALCULATIONS			
	Meter reading (dBμV)		
+	Antenna Factor	(dB)	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
=	Corrected Reading	(dBμV/m)	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE				
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING	
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz	
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz	
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz	
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz	
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz	

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("A") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 29 of 29 Report No.: 93248-9A