Demostración que 2-COLOR es polinomial

Nicolás Cagliero

25 de junio de 2024

Theorem 1. 2-COLOR es polinomial

Demostración. Para la demostración de este teorema, daremos un algoritmo que dado un grafo G colorea en tiempo polinomial con 2 colores y revisa si el coloreo es propio, y si no lo es, es porque el grafo tiene un ciclo impar. Esto último implicaría que el número crómatico es mayor o igual a 3. Para este algoritmo se asume que G es conexo pero en caso que no lo sea, simplemente se corre el algoritmo en todas sus componentes.

El algoritmo arranca en un vértice arbitrario x coloreandoló con el color 0. Corremos BFS a partir de x coloreando a cada vértice de la forma $c(z) = Nivel_{BFS}(z) \mod 2$. Esto nos dará un coloreo con 2 colores, pero no está garantizado que sea propio.

Ahora debemos revisar que el coloreo sea propio. Si lo es, $\chi(G)=2$. Si no lo es \Rightarrow existen u,v tal que c(u)=c(v) y además $uv\in E$

De esta forma sabemos que $Nivel_{BFS}(u) \mod 2 = Nivel_{BFS}(v) \mod 2$. tienen la misma paridad.

- \exists un camino de la forma x...u
- \exists un camino de la forma x...v
- \exists un vértice w a partir del cual se separan.

Como $uv \in E \Rightarrow$ existe un camino de la forma w...uv...w. Veamos la cantidad de lados que hay en ese camino. El lado uv suma 1 y podemos ver que $Nivel_{BFS}(u) - Nivel_{BFS}(w)$ y $Nivel_{BFS}(v) - Nivel_{BFS}(w)$ tienen la misma paridad. Luego, hay cantidad impar de lados \Rightarrow tenemos un ciclo impar en G.

Este algoritmo primero recorre todo el grafo con BFS coloreando cada vértice. Correr BFS es O(m) y colorear cada vértice es O(1). Luego revisamos si es propio, lo cual es $\sum O(d(x)) = O(m)$. Luego la complejidad total es O(m) + O(m) = O(m)