ATFD Project : MiniCon Algorithm - A Scalable Algorithm for Answering Queries Using Views

Paridhi Mishra s1549106

University of Edinburgh

30th March 2016

Problem - Q, $V=V_1,\cdots,V_n$ over same schema, answer ${\bf Q}$ only in terms of views

Two contexts

- Query Optimization/Physical Data Independence Query Equivalence
- Data Integration Mediated Schema, Reformulation, Maximally Contained Rewriting (instead of equivalent rewriting)

Problem: Conjunctive Query - set of Conjuntive views - Large no of views NP - complete Search space - exponential no fo rewritings **Conjunctive query** - predicate, subgoals, head, body $q(\bar{X}):e_1(\bar{X_1}),\cdots,e_n(\bar{X_n})$

 $\bar{X}, \bar{X_1}, \cdots, \bar{X_n}$ have either variables or constants.

Variables \bar{X} -distinguished, existential variables.

Containment mapping $\tau \ Vars(Q_1) \rightarrow Vars(Q_2)$

maps(subgoal,head)

Query Containment $Q_1 \subseteq Q_2$ Q_2 contains Q_1 - mapping from Q_2 to Q_1

Query Equivalence $Q_1 \subseteq Q_2$ and $Q_2 \subseteq Q_1$ Query rewritings :

- **E**quivalent rewritings: Q' over $V_1(D), \dots, V_n(D)$ and Q(D).
- Maximally-contained rewritings: Given CQ , set of CV, L
 - (1) $Q_1(v_1, v_2, \dots, v_n) \subseteq Q(D)$ ($v_i \subseteq V_i(D)$, for $1 \le i \le n$)
 - (2) NO query Q_2
 - $Q_2(v_1, v_2 \cdots, v_n) \subseteq Q(v_1, v_2 \cdots, v_n)$
 - $Q(v_1, v_2 \cdots, v_n) \subseteq Q(D)$

Previous Algorithms

- Search space Maximally-contained rewriting
- Finite space no comparison predicates in the query
- every possible conjunction of n or fewer view atoms, where n is the number of subgoals in the query.
- Restrictive space to produce rewritings faster
- Scalability issues (large no of views)- not much work done in literature

Bucket Algorithm: Subgoal considered separately - Bucket

Q1(x) := cites(x,y), cites(y,x), sameTopic(x,y)

V4(a):- cites(a,b), cites(b,a)

V5(c,d) :- sameTopic(c,d)

V6(f,h) :- cites(f,g), cites(g,h), sameTopic(f,g)

Step1: Buckets for each subgoal:

- Bucket cites(x,y) = V4(x), V6(x,y)
- Bucket sameTopic(x,y) = V5(x,y), V6(x,y)

Step2: Cartesian product - Conjunctive rewriting union - Containment check.

The Inverse-Rules Algorithm: Rules - Invert view definitions: R1: cites(a, f1(a)): - V4(a) R2: cites(f1(a), a): - V4(a) R3: sameTopic(c,d): - V5(c,d)

MiniCon Algorithm

Phase 1

- Like bucket, looks views contain subgoals query subgoals
- \blacksquare finds a partial mapping g query g_1 in a view V
- looks at the variables join predicates
- finds minimal additional set of subgoals that need to be mapped to subgoals in V

Subgoals + mapping information - MiniCon Description MCD $(h_C, V(\bar{Y})_C, \phi_C, G_C)$ Phase 2-

- combine MCDs
- produce rewritings.
- no containment checks (advantange over bucket)

Contribution - Extension MiniCon algorithm- Schemas with functional dependencies

student(S, P, Y), taught(P, D), program(P, C)Functional dependencies:

- \blacksquare student: $S \to P, S \to Y$
- \blacksquare taught: $P \rightarrow D$
- $\blacksquare program : P \rightarrow C$

$$v1(S, Y, D) : -student(S, P, Y), taught(P, D)$$

v2(S, P) : -student(S, P, Y)

v3(P,C):-program(P,C)

Functional Dependency: A functional dependency

 $r: a_1, \cdots, a_n \to b$ in the mediated schema, where a1, ..., an and b refer to attributes in the relation r, states that for every two tuples t and u in r if $t.a_i = u.a_i$ for i = 1, ..., n, then t.b = u.b

Property 1. in Form MCD step for each MCD ${\it C}$

- Clause 1. For each head variable x of Q which is in the domain of ϕ_C , $\phi_C(x)$ is a head variable in $h_C(V)$
- Clause 2. If $\phi_C(x)$ is an existential variable in $h_C(V)$, then for every g, subgoal of Q, that includes x: (1) all the variables in g are in the domain of ϕ_C ; and (2) $\phi_C(g) \in h_C(V)$

Property 2. in Combine MCD step for MCD $\it C$

The only combinations of MCDs that can result in *non-redundant* rewritings of Q are of the form C_1, \dots, C_l , where:

- $\blacksquare G_{C_1} \cup \cdots \cup G_{C_l} = Subgoals(Q)$, and

MiniCon algorithm generates the following two rewritings only:

$$q1(S, D) : -v2(S, P), v5(P, D)$$

 $q3(S, D) : -v6(S, D)$

Correct rewriting query: q(S,P,Y): -v1(S,Y,D), v2(S,P) because the functional dependencies $S \to P$ and $S \to Y$ hold in the mediated schema.

When existing MinCon is implemented for this example

- MiniCon fails to generate the above rewritings.
- Not all the distinguished variables in the query subgoal can be mapped to the distinguished variables in v1
- So Clause C1 of Property 1 is violated
- No MCD for q over v1 can be used in a non-redundant rewriting of q.

Extension: Forming MCDs over Joint Views

- Construct a joint view v(1,2) of v1 and v2
- has all the distinguished variables in either v1 or v2 as its distinguished variables
- all the subgoalsof query in either v1 or v2 as its subgoals
- satisfies Clause C1 of Property 1
- generate MCD for g over v(1,2) covering the only subgoal in g
- non-redundant rewriting of g possible from MCD now

$$V_1(S, Y, D) : -student(S, P, Y), taught(P, D)$$

 $V_2(S, P) : -student(S, P, Y)$

Joint view $V_{1,2}(S,Y,D,P):-student(S,P,Y),taught(P,D)$

Implementation of extended algorithm FormMCD() in MiniCon is modified to create joint views and check for cases for Clause 1 of Property 1, allowing formation of MCD for functional dependency case.

Questions?