

自动控制原理

Principle of Automatic Control

第四章 CHAPTER 4

连续时间控制系统的稳定性与稳态误差

稳态误差

▶ 控制系统的性能: 稳 快(准)

> 典型输入的全响应=自由响应+强迫响应

$$y(t) = y_{ss}(t) + y_{tr}(t)$$

对于稳定系统,自由响应将最终衰减至零,即有

$$\lim_{t \to \infty} y(t) = \lim_{t \to \infty} y_{ss}(t)$$

稳态误差

系统误差有两种定义方法

- \triangleright 从输出端定义,将误差定义为期望输出与实际输出之差 $e(t) = y_a(t) y(t)$ 但这种误差通常无法直接得到
- > 从输入端定义,将误差定义为输入信号与反馈信号之差

$$e(t) = r(t) - z(t)$$
 $E(s) = R(t) - Z(s) = R(t) - H(s)Y(s)$

从输入端定义的误差又称为偏差,偏差可直接得到,常为工程上采用

- \triangleright 如果系统是单位负反馈系统,则z(t)=y(t), $r(t)=y_d(t)$,两种定义方法无差别
- 本课程采用从输入端定义的方法
- ho 稳态误差(静态误差或余差)定义为 $e_{ss} = \lim_{t \to \infty} e(t) = \lim_{t \to \infty} [r(t) z(t)]$

稳态误差

- ightharpoonup 系统输出 $Y(s) = Y_r(s) + Y_f(s)$
- > 系统误差的拉普拉斯变换形式为

$$E(s) = R(s) - H(s)Y(s) = R(s) - H(s)Y_r(s) - H(s)Y_f(s) = E_r(s) + E_f(s)$$

由参考输入产生

$$E_{r}(s) = R(s) - H(s)Y_{r}(s)$$

$$= R(s) - H(s)Y_{r}(s)$$

$$= R(s) - H(s) \frac{G_{c}(s)G_{p}(s)}{1 + G_{c}(s)G_{p}(s)H(s)} R(s)$$

$$= \frac{1}{1 + G_{c}(s)G_{p}(s)H(s)} R(s)$$

$$e_{SSr} = \lim_{t \to \infty} e_r(t)$$

$$e_{ss} = e_{ssr} + e_{ssf}$$

由扰动产生

$$E_{f}(s) = -H(s)Y_{f}(s) = \frac{-G_{f}(s)H(s)}{1 + G_{c}(s)G_{p}(s)H(s)}F(s)$$

$$e_{ssf} = \lim_{t \to \infty} e_f(t)$$

终值定理方法

- - (1) F(s)的所有极点在左半开平面
 - (2) F(s)有一个极点在原点,其它极点在左半开平面则f(t)存在有界终值并且

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$$

终值定理的等价表述:

若L[f(t)] = F(s)且sF(s)的所有极点在左半开平面则f(t)存在有界终值并且

$$\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$$

如图系统,已知
$$G_p(s) = \frac{3}{10s+1}$$
, $G_f(s) = \frac{2}{5s+1}$, $H(s) = \frac{0.5}{0.3s+1}$, $G_C(s) = \frac{2s+1}{s}$,求如下情形的余差

(1)
$$r(t) = u_{-1}(t), f(t) = 0.5u_{-1}(t)$$

(2)
$$r(t) = u_{-2}(t), f(t) = 0.5u_{-1}(t)$$

(3)
$$r(t) = \sin t, f(t) = 0.5u_{-1}(t)$$

解(1)

$$\frac{E_r(s) = R(s) - H(s)Y_r(s)}{1 + G_c(s)G_p(s)H(s)}R(s) = \frac{1}{1 + \frac{2s+1}{s} \frac{3}{10s+1} \frac{0.5}{0.3s+1}} \frac{1}{s} = \frac{3s^2 + 10.3s + 1}{3s^3 + 10.3s^2 + 4s + 1.5}$$

$$10.3 \times 4 > 3 \times 1.5 \Rightarrow E_r(s)$$
的极点均在左半开平面

$$e_{ssr} = \lim_{t \to \infty} e_r(t) = \lim_{s \to 0} sE_r(s) = 0$$

$$E_f(s) = -H(s)Y_f(s) = \frac{-G_f(s)H(s)}{1 + G_c(s)G_p(s)H(s)}F(s) = \frac{-5s - 0.5}{15s^4 + 54.5s^3 + 30.3s^2 + 11.5s + 1.5}$$

$$x^4$$
 x^3
 x^3
 x^4
 x^3
 x^4
 x^4
 x^3
 x^4
 x^4
 x^4
 x^4
 x^2
 x^4
 x^4

终值定理方法

(3)

 $E_r(s) = \frac{1}{1 + \frac{2s+1}{s} \frac{3}{10s+1} \frac{0.5}{0.3s+1}} \frac{1}{s^2 + 1}$ $= \frac{3s^3 + 10.3s^2 + s}{3s^5 + 10.3s^4 + 7s^3 + 11.8s^2 + 4s + 1.5}$

 $E_r(s)$ 有一对极点在虚轴上, $e_r(t)$ 有界但不收敛 e_{ssr} 不存在,终值定理不能用

 $E_f(s) = 0$ $\exists e_{ssf} = 0$

余差ess不存在

稳态误差不仅取决于输入 r(t) 和 f(t),还取决于系统传递函数

如图系统,已知
$$G_p(s) = \frac{3}{10s+1}$$
, $G_f(s) = \frac{2}{5s+1}$, $H(s) = \frac{0.5}{0.3s+1}$, $G_C(s) = 2$,求如下情形的余差 $r(t) = u_{-1}(t)$, $f(t) = 0.5u_{-1}(t)$

$$E_r(s) = \frac{1}{1 + G_c(s)G_p(s)H(s)}R(s) = \frac{1}{1 + 2\frac{3}{10s + 1}\frac{0.5}{0.3s + 1}} \frac{1}{s} = \frac{3s^2 + 10.3s + 1}{s(3s^2 + 10.3s + 4)}$$

 $E_{c}(s)$ 有一极点在原点,其它极点均在左半开平面

$$e_{ssr} = \lim_{t \to \infty} e_r(t) = \lim_{s \to 0} sE_r(s) = 0.25$$

$$E_f(s) = \frac{-G_f(s)H(s)}{1 + G_c(s)G_p(s)H(s)} F(s) = \frac{-5s - 0.5}{s(15s^3 + 54.5s^2 + 30.3s + 4)}$$

$E_f(s)$ 有一极点在原点,其它极点均在左半开平面

$$e_{ssf} = \lim_{t \to \infty} e_f(t) = \lim_{s \to 0} sE_f(s) = -0.125$$

余差
$$e_{ss} = e_{ssr} + e_{ssf} = 0.125$$

终值定理方法

在闭环系统中,若参考输入和干扰均为阶跃, 控制器中的积分可使e_{ssr}、e_{ssf}和e_{ss}均等于零

单位负反馈系统的型别

▶ 对于下图所示的单位负反馈系统(称为"跟踪系统"),系统的开 环传递函数为: G(s)=Y(s)/E(s), 仅考虑参考输入

开环传递函数

$$G(s) = \frac{K \prod_{k} (T_k s + 1) \prod_{l} (T_l^2 s^2 + 2\zeta T_l s + 1)}{\prod_{i} (T_i s + 1) \prod_{l} (T_j^2 s^2 + 2\zeta T_l s + 1)} s^q = \frac{K \beta(s)}{s^m \alpha(s)} \qquad m = -q$$

$$= \frac{K\beta(s)}{s^m\alpha(s)} \qquad m = -q$$

若
$$s=0$$
,则 $\alpha(s)=\beta(s)=1$

闭环传递函数 $\Phi(s) = \frac{G(s)}{1+G(s)}$

称K是闭环系统 $\Phi(s)$ 的开环增益

称m ∈ {···, −2, −1, 0, 1, 2, ···}是闭环系统Φ(s)的型别

实际中, 闭环控制系统的型别多为0、1或2, 称之为"0"型系统、"1"型系统或"2"型系统

- "0"型系统的开环增益K也记为 K_0
- "1"型系统的开环增益K也记为K
- "2"型系统的开环增益K也记为K。

单位负反馈系统的型别

当m ≥ 0时

$$E(s) = \frac{R(s)}{1 + G(s)} = \frac{R(s)}{1 + \frac{K\beta(s)}{s^m \alpha(s)}} = \frac{s^m \alpha(s)R(s)}{s^m \alpha(s) + K\beta(s)} = \frac{s^m \alpha(s)R(s)}{A(s)}$$

当闭环系统稳定时,A(s) = 0的根均在左半开平面

若
$$e_{ss}$$
存在

$$e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \frac{s^{m} \alpha(s) R(s)}{s^{m} \alpha(s) + K \beta(s)} = \lim_{s \to 0} \frac{s^{m+1}}{s^{m} + K} R(s)$$

用上面公式,可在阶跃、斜坡、抛物线等输入 下对各型别系统进行分析

0型系统(m=0)

$$E(s) = \frac{s^m \alpha(s) R(s)}{A(s)}$$

若
$$e_{ss}$$
存在, $e_{ss} = \lim_{s \to 0} \frac{s^{m+1}}{s^m + K} R(s)$

阶跃输入: $r(t)=R_0, R(s)=R_0/s$

闭环稳定 $\Rightarrow E(s) = \frac{\alpha(s)}{A(s)} \frac{R_0}{s}$ 满足终值定理条件

$$e_{ss} = \lim_{s \to 0} \frac{s}{1 + K_0} \frac{R_0}{s} = \frac{R_0}{1 + K_0} \neq 0$$

能有差跟踪阶跃,余差与R₀和K₀有关

斜坡输入: $r(t) = R_1 t, R(s) = R_1/s^2$

闭环稳定 $\Rightarrow E(s) = \frac{\alpha(s)}{A(s)} \frac{R_1}{s^2}$ 不满足终值定理条件

e(t)中有模态t(斜坡模态), $\lim_{t\to\infty} e(t) = \infty$

不能跟踪斜坡

▶ 抛物线输入: $r(t)=0.5R_2t^2$, $R(s)=R_2/s^3$

同理可证,e(t)中有模态 t^2 (抛物线模态), $\lim_{t\to\infty}e(t)=\infty$

不能跟踪抛物线

1型系统(m=1)

$$E(s) = \frac{s^m \alpha(s) R(s)}{A(s)}$$

$$E(s) = \frac{s^m \alpha(s) R(s)}{A(s)}$$
 若 e_{ss} 存在, $e_{ss} = \lim_{s \to 0} \frac{s^{m+1}}{s^m + K} R(s)$

阶跃输入: $r(t)=R_0, R(s)=R_0/s$

$$e_{ss} = \lim_{s \to 0} \frac{s^2}{s + K_1} \frac{R_0}{s} = 0$$

 \rightarrow 斜坡输入: $r(t)=R_1t, R(s)=R_1/s^2$

$$e_{ss} = \lim_{s \to 0} \frac{s^2}{s + K_1} \frac{R_1}{s^2} = \frac{R_1}{K_1}$$

闭环稳定 $\Rightarrow E(s) = \frac{s\alpha(s)}{A(s)} \frac{R_0}{s}$ 满足终值定理条件

能无差跟踪阶跃

闭环稳定 $\Rightarrow E(s) = \frac{s\alpha(s)}{A(s)} \frac{R_1}{s^2}$ 满足终值定理条件

能有差跟踪斜坡,余差与R₁和K₁有关

▶ 抛物线输入: $r(t)=0.5R_{\gamma}t^{2}, R(s)=R_{\gamma}/s^{3}$

闭环稳定 $\Rightarrow E(s) = \frac{s\alpha(s)}{A(s)} \frac{R_2}{s^3}$ 不满足终值定理条件

e(t)中有模态t(斜坡模态), $\lim_{t\to\infty}e(t)=\infty$

不能跟踪抛物线

2型系统(m=2)

$$E(s) = \frac{s^m \alpha(s) R(s)}{A(s)}$$

$$E(s) = \frac{s^m \alpha(s) R(s)}{A(s)}$$
 若 e_{ss} 存在, $e_{ss} = \lim_{s \to 0} \frac{s^{m+1}}{s^m + K} R(s)$

ightharpoonup 阶跃输入: $r(t)=R_0, R(s)=R_0/s$

$$e_{ss} = \lim_{s \to 0} \frac{s^3}{s^2 + K_2} \frac{R_0}{s} = 0$$

$$e_{ss} = \lim_{s \to 0} \frac{s^3}{s^2 + K_2} \frac{R_1}{s^2} = 0$$

闭环稳定 $\Rightarrow E(s) = \frac{s^2 \alpha(s)}{A(s)} \frac{R_0}{s}$ 满足终值定理条件

能无差跟踪阶跃

》 斜坡输入: $r(t)=R_1t$, $R(s)=R_1/s^2$ 闭环稳定 $\Rightarrow E(s)=\frac{s^2\alpha(s)}{A(s)}\frac{R_1}{s^2}$ 满足终值定理条件

能无差跟踪斜坡

 \rightarrow 抛物线输入: $r(t)=0.5R_2t^2$, $R(s)=R_2/s^3$

闭环稳定 $\Rightarrow E(s) = \frac{s^2 \alpha(s)}{A(s)} \frac{R_2}{s^3}$ 满足终值定理条件

$$e_{ss} = \lim_{s \to 0} \frac{s^3}{s^2 + K_2} \frac{R_2}{s^3} = \frac{R_2}{K_2}$$

 $e_{ss} = \lim_{s \to 0} \frac{s^3}{s^2 + K} \frac{R_2}{s^3} = \frac{R_2}{K}$ 能有差跟踪抛物线,余差与 R_2 和 K_2 有关

误差系数

系统误差系数是在给定的参考输入(常数或慢时变)

下,单位负反馈稳定控制系统稳态精度的一种度量

2型系统对抛物线输入的响应

对稳定单位负反馈系统输入 $\frac{R_p}{s^{p+1}}$,若余差 e_{ss} 为有界常数, 则强迫输出(强迫响应)的p阶微分必为常数

稳态输出的p阶微分 = 常数

阶跃误差系数(位置误差系数)

- ▶误差系数与系统型别无关,据输入的形式来定义,如阶跃、斜坡和抛物线
- ▶误差系数只针对稳定的单位负反馈系统

阶跃误差系数定义为
$$K_p = \frac{\lim_{t \to \infty} y(t)}{e_{ss}}$$
 仅适用于阶跃输入

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s) = \lim_{s \to 0} s \left[\frac{G(s)}{1 + G(s)} \frac{R_0}{s} \right] = \lim_{s \to 0} \left[\frac{G(s)}{1 + G(s)} R_0 \right]$$

$$e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \left[\frac{1}{1 + G(s)} \frac{R_0}{s} \right] = \lim_{s \to 0} \left[\frac{1}{1 + G(s)} R_0 \right]$$

$$K_p = \lim_{s \to 0} \left[\frac{G(s)}{1 + G(s)} R_0 \right] / \lim_{s \to 0} \left[\frac{1}{1 + G(s)} R_0 \right] = \lim_{s \to 0} G(s)$$

$$G(s) = \frac{K\beta(s)}{s^m \alpha(s)}$$

$$K_p = \begin{cases} K_0 \\ \infty \\ \infty \\ \infty \end{cases}$$
 1 型系统 2 刑系统

- 0型系统
- 2型系统

斜坡误差系数(速度误差系数)

斜坡误差系数定义为
$$K_v = \frac{\lim_{t \to \infty} \frac{\mathrm{d}y(t)}{\mathrm{d}t}}{e_{ss}}$$
 仅适用于斜坡输入

$$\lim_{t \to \infty} \frac{dy(t)}{dt} = \lim_{s \to 0} s^2 Y(s) = \lim_{s \to 0} s^2 \left[\frac{G(s)}{1 + G(s)} \frac{R_1}{s^2} \right] = \lim_{s \to 0} \left[\frac{G(s)}{1 + G(s)} R_1 \right]$$

$$e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \left[\frac{1}{1 + G(s)} \frac{R_1}{s^2} \right] = \lim_{s \to 0} \left[\frac{1}{1 + G(s)} \frac{R_1}{s} \right]$$

$$K_{v} = \lim_{s \to 0} \left[\frac{G(s)}{1 + G(s)} R_{1} \right] / \lim_{s \to 0} \left[\frac{1}{1 + G(s)} \frac{R_{1}}{s} \right] = \lim_{s \to 0} sG(s)$$

$$sG(s) = s \frac{K\beta(s)}{s^m \alpha(s)}$$

- 2型系统

抛物线误差系数(加速度误差系数)

抛物线误差系数定义为
$$K_a = \frac{\lim_{t \to \infty} \frac{d^2 y(t)}{dt^2}}{e_{ss}}$$

仅适用于抛物线输入

$$\lim_{t \to \infty} \frac{d^2 y(t)}{dt^2} = \lim_{s \to 0} s^3 Y(s) = \lim_{s \to 0} s^3 \left[\frac{G(s)}{1 + G(s)} \frac{R_2}{s^3} \right] = \lim_{s \to 0} \left[\frac{G(s)}{1 + G(s)} R_2 \right]$$

$$e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \left[\frac{1}{1 + G(s)} \frac{R_2}{s^3} \right] = \lim_{s \to 0} \left[\frac{1}{1 + G(s)} \frac{R_2}{s^2} \right]$$

$$K_{v} = \lim_{s \to 0} \left[\frac{G(s)}{1 + G(s)} R_{2} \right] / \lim_{s \to 0} \left[\frac{1}{1 + G(s)} \frac{R_{2}}{s^{2}} \right] = \lim_{s \to 0} s^{2} G(s)$$

$$s^{2}G(s) = s^{2} \frac{K\beta(s)}{s^{m}\alpha(s)}$$

$$K_{a} = \begin{cases} 0 & 0 \text{ 型系统} \\ 0 & 1 \text{ 型系统} \end{cases}$$

$$\boldsymbol{K}_a = \begin{cases} \boldsymbol{0} \\ \boldsymbol{0} \\ \boldsymbol{K}_2 \end{cases}$$

- 0型系统
- 2型系统

	误差系数			稳态误差		
系统 型别	K_{p}	$K_{_{\scriptscriptstyle u}}$	K_a	阶跃输入 R ₀ (t)	斜坡输入 <i>R_it</i>	抛物线输入 ^{R₂} t ²
0	K_0	0	0	$\frac{R_0}{1+K_p}$	∞	∞
1	∞	K_1	0	0	$\frac{R_1}{K_v}$	∞
2	∞	8	K_2	0	0	$\frac{R_2}{K_a}$

例 已知单位负反馈系统的开环传递函数:

$$G(s) = \frac{50}{(0.1s+1)(2s+1)}$$

试求位置(step)误差系数 K_p , 速度(ramp)误差系数 K_v , 加速度 (parabolic)误差系数Ka

解: 首先判断系统的稳定性

m=0, 这是 "0" 型系统,

位置误差系数 K_p

$$K_p = \lim_{s \to 0} G(s) = \lim_{s \to 0} \frac{50}{(0.1s+1)(2s+1)} = 50$$

速度误差系数 K_{ν}

$$K_{v} = \lim_{s \to 0} s \cdot G(s) = 0$$

加速度误差系数
$$K_a = \lim_{s \to 0} s^2 \cdot G(s) = 0$$

例 已知单位负反馈系统的开环传递函数:

$$G(s) = \frac{K}{s(s^2 + 4s + 200)}$$

试求位置误差系数 K_p , 速度误差系数 K_v , 加速度误差系数 K_a

解: 首先判断系统的稳定性

m=1, 这是"1"型系统,

位置误差系数 K_p

$$K_p = \lim_{s \to 0} G(s) = \infty$$

速度误差系数 K_{ν}

$$K_{v} = \lim_{s \to 0} s \cdot G(s) = \lim_{s \to 0} s \cdot \frac{K}{s(s^{2} + 4s + 200)} = \frac{K}{200}$$

加速度误差系数 K_a

$$K_a = \lim_{s \to 0} s^2 \cdot G(s) = 0$$

例 已知单位负反馈系统的开环传递函数:

$$G(s) = \frac{10(2s+1)(4s+1)}{s^2(s^2+2s+10)}$$

试求位置误差系数 K_p , 速度误差系数 K_v , 加速度误差系数 K_a

解: 首先判断系统的稳定性

m=2, 这是 "2" 型系统,

位置误差系数 K_n

$$K_p = \lim_{s \to 0} G(s) = \infty$$

速度误差系数 K_{ν}

$$K_{v} = \lim_{s \to 0} s \cdot G(s) = \infty$$

加速度误差系数 K_a

$$K_a = \lim_{s \to 0} s^2 \cdot G(s) = \lim_{s \to 0} s^2 \cdot \frac{10(2s+1)(4s+1)}{s^2(s^2+2s+10)} = 1$$

例 已知单位负反馈系统的开环传递函数:

$$G(s) = \frac{100}{(0.1s+1)(s+5)}$$

试求输入分别为 r(t) = 2t和 $r(t) = 2 + 2t + t^2$ 时, 系统的稳态误差

解: 首先判断系统的稳定性

因为m=0,这是"0"型系统,故有

位置误差系数
$$K_p$$

$$K_p = \lim_{s \to 0} G(s) = \lim_{s \to 0} \frac{100}{(0.1s+1)(s+5)} = 20$$

速度误差系数 K_v 与加速度误差系数 K_a 均为零。又因是线性系统,满足迭加原理,故当输入分别为 r(t)=2t 和 $r(t)=2+2t+t^2$ 时,系统的稳态误差为

$$e(\infty) = \infty$$

这是因为"0"型系统不能跟踪斜坡 输入与抛物线输入之故

例 已知单位负反馈系统的开环传递函数:

$$G(s) = \frac{50}{s(0.1s+1)(s+5)}$$

试求输入分别为 r(t) = 2t 和 $r(t) = 2 + 2t + t^2$ 时,系统的稳态误差

解: 首先判断系统的稳定性

因为m=1,这是"1"型系统,故有

位置误差系数
$$K_p$$
 $K_p = \lim_{s \to 0} G(s) = \infty$

速度误差系数 K_v

$$K_{v} = \lim_{s \to 0} sG(s) = \lim_{s \to 0} s \frac{50}{s(0.1s+1)(s+5)} = 10$$

加速度误差系数 K_a 为零。当输入为 r(t) = 2t时,系统稳态误差:

$$e(\infty) = \frac{R_1}{K_v} = \frac{2}{10} = 0.2$$

当输入为
$$r(t) = 2 + 2t + t^2$$
 $e(\infty) = \infty$

因"1"型系统不能跟踪抛物线输入

例 已知单位负反馈系统的开环传递函数:

$$G(s) = \frac{10(2s+1)}{s^2(s^2+6s+100)}$$

试求输入分别为 r(t) = 2t 和 $r(t) = 2 + 2t + t^2$ 时, 系统的稳态误差

解: 首先判断系统的稳定性

因为m=2,这是"2"型系统,故有

位置误差系数 K_p 与速度误差系数 K_v

$$K_p = K_v = \infty$$

加速度误差系数 K_a

$$K_a = \lim_{s \to 0} s^2 \cdot G(s) = \lim_{s \to 0} s^2 \cdot \frac{10(2s+1)}{s^2(s^2+6s+100)} = 0.1$$

当输入为 r(t) = 2t $e(\infty) = 0$

当输入为
$$r(t) = 2 + 2t + t^2$$

$$e(\infty) = \frac{R_2}{K_a} = \frac{2}{0.1} = 20$$

▶ m型系统可以以零稳态误差跟踪具有 t^{m-1} 及更低次形式的输入

 \triangleright m 型系统可以可以跟踪具有 t^m 形式的输入,但存在常数稳态误差

> m 型系统不能跟踪具有 t^{m+1} 及更高次形式的输入,因为稳态误差趋向于无穷值

考虑比例控制器

0型系统!

应用比例积分控制器

1型系统!

非单位负反馈系统

》 非单位负反馈系统可以通过数学变换转换为等价的单位负反馈系统, 再通过分析等价系统的型别和稳态误差系数来分析原系统的误差。

$$\frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)} = \frac{N(s)}{D(s)}$$

$$\frac{Y(s)}{R(s)} = \frac{G_{eq}(s)}{1 + G_{eq}(s)}$$

$$G_{eq}(s) = \frac{N(s)}{D(s) - N(s)}$$

当非单位负反馈系统稳定时,其稳态性能特征可以基于上式进行分析

非单位负反馈系统

> 非单位负反馈系统的等效表示

➢ 当 H 为常数时,有利于利用单位负反馈系统方法进行系统设计。

