Arquitectura del Computador II

¿Por qué Arqui II?.

Siete tecnologías que están transformando a las

industrias

Autonomous vehicles

Big data analytics and cloud

Custom manufacturing and 3D printing

Internet of Things (IoT) and connected devices

Robots and drones

Social media and platforms

De la industria 1.0 a la industria 4.0

Grado de complejidad

Primera

Revolución Industrial

basada en la introducción de equipos de producción mecánicos impulsados por agua y la energía de vapor

Primer telar mecánico, 1784

Segunda

Revolución Industrial

basada en la producción en masa que se alcanza gracias al concepto de división de tareas y el uso de energía eléctrica

Tercera

Revolución Industrial

basada en el uso de electrónica e informática (IT) para promover la producción automatizada.

Cuarta

Revolución Industrial

basada en el uso de sistemas físicos cibernéticos (cyber physical systems - CPS).

Primer controlador lógico programable (PLC) Modicon 084,

Primera cinta transportadora. Matadero de Cincinnati, 1870 1969

Arquitectura del Computador II

Microcontroladores

- Las características básicas:
- 1) La Unidad de Proceso Central (CPU),
- 2) La Unidad de Memoria (UM),
- 3) La Unidad de Entrada/Salida (UE/S),
- 4) La Unidad de Buses (UB), y
- 5) El Programa Almacenado en UM (PA)

 El 5to elemento, también conocido como Software.

Fig. 7.1. Estructura básica de una computadora.

- Las principales características con que cuenta el 16F87X son:
- Procesador de arquitectura RISC avanzada
- Juego de 35 instrucciones con 14 bits de longitud. Todas ellas se ejecutan en un ciclo de instrucción menos las de salto que tardan 2.
- Frecuencia de 20 Mhz
- Hasta 8K palabras de 14 bits para la memoria de codigo, tipo flash.
- Hasta 368 bytes de memoria de datos RAM
- Hasta 256 bytes de memoria de datos EEPROM
- Hasta 14 fuentes de interrupción internas y externas
- Pila con 8 niveles
- Modos de direccionamiento directo, indirecto y relativo
- Perro guardian (WDT)
- Código de protección programable
- Modo Sleep de bajo consumo
- Programación serie en circuito con 2 patitas
- Voltaje de alimentación comprendido entre 2 y 5.5 voltios
- Bajo consumo (menos de 2 mA a 5 V y 5 Mhz)

PIC

PIN	DESCRIPCION
OSC1/CLKIN(9)	Entrada para el oscilador o cristal externo.
OSC2/CLKOUT (10)	Salida del oscilador. Este pin debe conectarse al cristal o resonador. En caso de usar una red RC este pin se puede usar como tren de pulsos o reloj cuya frecuencia es 1/4 de OSC1
PIN	DESCRIPCION
VSS(8,19)	Tierra.
VDD(20,32)	Fuente (5V).
PIN	DESCRIPCION
MCLR/VPP/ THV(1)	Este pin es el reset del microcontrolador, también se usa como entrada o pulso de grabación al momento de programar el dispositivo.
RA0/AN0(2)	Puede actuar como línea digital de E/S o como entrada analógica del conversor AD (canal 0)
RA1/AN1(3)	Similar a RA0/AN0
RA2/AN2/VREF-(4)	Puede actuar como línea dígital de E/S o como entrada analógica del conversor AD (canal 2) o entrada negativa de voltaje de referencia
RA3/AN3/VREF+(5)	Puede actuar como línea digital de E/S o como entrada analógica del conversor AD (canal 3) o entrada positiva de voltaje de referencia

Línea digital de E/S o entrada del reloj del timer 0. Salida con colector abierto

Línea digital de E/S, entrada analógica o selección como esclavo de la puerta serie

Puerto B pin 0, bidireccional. Este pin puede ser la entrada para solicitar una

RA4/T0CKI (6)

RB0/INT(21)

RA5/SS#/AN4(7)

síncrona.

interrupción.

La memoria interna de datos, también llamada archivo de registros (register file), esta dividida en dos grupos: los registros especiales, y los registros de propósito generales. Los primeros ocupan las 11 osiciones primeras que van desde la 00 a la 0B, y los segundos las posiciones que siguen, o sea de la 08 a la 4F. Los registros especiales contienen la palabra de estado (STATUS), los registros de datos de los tres puertos de entrada salida (Puerto A, Puerto B, Puerto C), los 8 bits menos significativos del program counter (PC), el contador del Real Time Clock/Counter (RTCC) y un registro puntero llamado File Select Register (FSR). La posición 00 no contiene ningún registro en especial y es utilizada en el mecanismo de direccionamiento indirecto.

Los registros de propósito general se dividen en dos grupos : los registros de posición fija y los bancos de registros. Los primeros ocupan las 8 posiciones que van de la 08 a la 0F. los bancos de registros consisten en hasta cuatro grupos o bancos de 16 registros cada uno, que se encuentran superpuestos en las direcciones que van de la 10 a la 1F. Se puede operar con un solo banco a la vez, el cual se selecciona mediante los bits 5 y 6 del File Select Register (FSR)

,	File Address		File Address		File Address		File Address
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h		107h		187h
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188h
PORTE ⁽¹⁾	09h	TRISE(1)	89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽²⁾	18Eh
TMR1H	0Fh		8Fh	EEADRH	10Fh	Reserved ⁽²⁾	18Fh
T1CON	10h		90h		110h		190h
TMR2	11h	SSPCON2	91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h		95h		115h		195h
CCPR1H	16h		96h	0	116h	0	196h
CCP1CON	17h		97h	General Purpose	117h	General Purpose	197h
RCSTA	18h	TXSTA	98h	Register	118h	Register	198h
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	199h
RCREG	1Ah		9Ah		11Ah		19Ah
CCPR2L	1Bh		9Bh		11Bh		19Bh
CCPR2H	1Ch	CMCON	9Ch		11Ch		19Ch
CCP2CON	1Dh	CVRCON	9Dh		11Dh		19Dh
ADRESH	1Eh	ADRESL	9Eh		11Eh		19Eh
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fh
	20h		A0h		120h		1A0h
		General		General		General	
General		Purpose		Purpose		Purpose	
Purpose		Register		Register		Register	
Register		80 Bytes		80 Bytes		80 Bytes	
96 Bytes			EFh		16Fh		1EFh
		accesses	F0h	accesses	170h	accesses	1F0h
		70h-7Fh		70h-7Fh		70h - 7Fh	
Donk 0	7Fh	Bank 1	FFh	Bank 2	17Fh	Bank 3	1FFh
Bank 0		Dank I		Dank Z		Dank 3	

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY												
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR, I		Details on page:
Bank 0												
00h ⁽³⁾	INDF	Addressing	g this locatio	n uses cont	ents of FSR t	to address da	ata memory (not a physic	cal register)	0000	0000	31, 150
01h	TMR0	Timer0 Mo	dule Regist	er						XXXXX	XXXX	55, 150
02h ⁽³⁾	PCL	Program C	Counter (PC)	Least Signi	ificant Byte					0000	0000	30, 150
03h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001	1ххх	22, 150
04h ⁽³⁾	FSR	Indirect Da	ta Memory	Address Poi	inter					xxxx :	xxxx	31, 150
05h	PORTA	_	_	PORTA Da	ita Latch whe	en written: P(ORTA pins w	hen read		0x	0000	43, 150
06h	PORTB	PORTB Da	ata Latch wh	nen written: I	PORTB pins	when read				xxxxx :	xxxx	45, 150
07h	PORTC	PORTC D	ata Latch wh	nen written:	PORTC pins	when read				xxxx :	xxxx	47, 150
08h ⁽⁴⁾	PORTD	PORTD D	ata Latch wh	nen written:	PORTD pins	when read				xxxx :	хххх	48, 150
09h ⁽⁴⁾	PORTE	_	_	_	_	_	RE2	RE1	RE0		-xxx	49, 150
0Ah ^(1,3)	PCLATH	_	_	_	Write Buffer	for the uppe	r 5 bits of the	Program C	ounter	0	0000	30, 150
0Bh ⁽³⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	24, 150
0Ch	PIR1	PSPIF(3)	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	26, 150
0Dh	PIR2	_	CMIF	_	EEIF	BCLIF	_	_	CCP2IF	-0-0	00	28, 150
0Eh	TMR1L	Holding Re	egister for th	e Least Sigr	nificant Byte	of the 16-bit	TMR1 Regis	ter		xxxx :	xxxx	60, 150
0Fh	TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register					xxxx :	xxxx	60, 150			
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	00	0000	57, 150
11h	TMR2	Timer2 Mo	dule Regist	er						0000	0000	62, 150
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	61, 150
13h	SSPBUF	Synchrono	ous Serial Po	ort Receive I	Buffer/Transr	nit Register				xxxx :	хххх	79, 150
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000	0000	82, 82, 150
15h	CCPR1L	Capture/C	ompare/PW	M Register	1 (LSB)	•			•	xxxx :	xxxx	63, 150
16h	CCPR1H	Capture/C	ompare/PW	M Register	1 (MSB)					xxxxx :	xxxx	63, 150
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	64, 150
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000	000x	112, 150
19h	TXREG	USART Tr	ansmit Data	Register	•				•	0000	0000	118, 150
1Ah	RCREG	USART Receive Data Register					0000	0000	118, 150			
1Bh	CCPR2L	Capture/Compare/PWM Register 2 (LSB)					xxxx :	xxxx	63, 150			
1Ch	CCPR2H	Capture/C	ompare/PW	M Register:	2 (MSB)					xxxx :	xxxx	63, 150
1Dh	CCP2CON	_	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00	0000	64, 150
1Eh	ADRESH	A/D Result	Register Hi	gh Byte						xxxx :	xxxx	133, 150
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000	00-0	127, 150

- El PIC16F877 contine 5 puertos que pueden ser configurados como entrada o salida digitales (A, B, C, D, E). El puerto A contiene 6 bists (RAO-5). El puerto B (RBO-7), el puerto C (RCO-7) y el puerto D (RDO-7) tiene cada uno 8 líneas. El puerto E solo cuenta con 3 líneas (REO-2) La operación de configuración de los puertos en general implica la siguiente secuencia:
- Ingresar al banco 1
- Configurar los puertos (registros TRISA, TRISB, TRISC, TRISD y TRISE)
- Regresar al banco 0
- Escribir o leer datos desde los puertos. (registros PORTA, PORTB, PORTC, PORTD y PORTE)

Se ha indicado que la memoria de datos del PIC16F877 se divide en cuatro bancos: 0, 1, 2 y 3. En las posiciones inferiores de ambos bancos se encuentran los registros especiales de función (SFR). En la posición 0x05, 0x06, 0x07, 0x08 y 0x09 respectivamente se encuentran los registros PORTA, PORTB, PORTC, PORTD y PORTE que se usan para leer o escribir datos en tanto que en las posiciones 0x85, 0x86, 087, 0x88 y 0x89 se encuentran los registros TRISA, TRISB, TRISC, TRISD y TRISE respectivamente, es allí donde se configuran los puertos.

Posmem	Banco 0	Banco 1	Posmem
0x05	PORTA	TRISA	0x85
0x06	PORTB	TRISB	0x86
0x07	PORTC	TRISC	0x87
0x08	PORTD	TRISD	0x88
0x09	PORTE	TRISE	0x89
		ADCON1	0x1F

- Cada una de las líneas de los puertos puede ser configurado como entrada o como salida. En el registros TRIS determinamos la configuración de los puertos. Los registros son una especie de mascara. Por ejemplo si se escribe un 0 en el bit 0 del TRISA la línea RAO se comportará como una línea de salida. Si se coloca a 1 el bit 0 del TRISA a la línea RAO se comportará como entrada.
- A través de los valores que se escriban en los registros TRIS se determina el comportamiento de los puertos. La escritura y lectura de valores desde los puertos se hace a través de los registros PORT que se encuentran en el Banco 0 (y banco 2 para el puerto B). Desde luego si se configura un puerto como entrada (lectura) los valores que se escriban en el no tendrán efecto porque
- fue configurado como entrada y no como salida.

14-Bit	
Opcode	

Mnemonic,								Status	
		Description	Cycles						Notes
Operands								Affected	
				MS	b		LSb		
		BYTE-ORIENTI	ED FILE REGIS	TER					
		OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	\mathbf{f}	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	XXXX	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	\mathbf{ffff}	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	C	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	C	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
									-

BIT-ORIENTED FILE REGISTER OPERATIONS

BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff	1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff	1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1(2)	01	10bb	bfff	ffff	3
BTFSS	f, b	Bit Test f, Skip if Set	1(2)	01	11bb	bfff	ffff	3
		LITERAL AND	CONTROL OPER	RATIONS				
ADDLW	\mathbf{k}	Add literal and W	1	11	111x	kkkk	kkkk C,DC,Z	
ANDLW	\mathbf{k}	AND literal with W	1	11	1001	kkkk	kkkk Z	
CALL	\mathbf{k}	Call subroutine	2	10	0kkk	kkkk	kkkk	
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100 TO,PD	
GOTO	\mathbf{k}	Go to address	2	10	1kkk	kkkk	kkkk	
IORLW	\mathbf{k}	Inclusive OR literal with W	1	11	1000	kkkk	kkkk Z	
MOVLW	\mathbf{k}	Move literal to W	1	11	00xx	kkkk	kkkk	
RETFIE	-	Return from interrupt	2	00	0000	0000	1001	
RETLW	\mathbf{k}	Return with literal in W	2	11	01xx	kkkk	kkkk	
RETURN	-	Return from Subroutine	2	00	0000	0000	1000	
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011 TO,PD	
SUBLW	\mathbf{k}	Subtract W from literal	1	11	110x	kkkk	kkkk C,DC,Z	
XORLW	\mathbf{k}	Exclusive OR literal with W	1	11	1010	kkkk	kkkk Z	

У Tweet

- Home
- AVR Simulator IDE
- PIC Simulator IDE
- Help Topics
- BASIC Compiler Reference Manual
- External Modules Manual
- External Modules
- Getting Started
- PIC Basic Compiler Examples
- PIC16 Simulator IDE
- PIC18 Simulator IDE
- PIC10 Simulator IDE
- Z80 Simulator IDE 8085 Simulator IDE
- Function Grapher
- Digital Oscilloscope
- Serial Port Monitor
- Hardware Projects
- Downloads
- Licenses
- Comments
- Cities
- About the Author
- Contact Form

PIC SIMULATOR IDE

(with pic basic compiler)

HOMEPAGE

PIC Simulator IDE is powerful application that supplies Microchip microcontroller users with user-friendly graphical development environment for Windows with integrated simulator (emulator), pic basic compiler, assembler, disassembler and debugger. PIC Simulator IDE supports the extensive number of microcontrollers (MCUs) from the Microchip 8-bit PIC Mid-Range architecture product line (selected PIC16F, PIC12F, PIC10F models).

SCREENSHOTS

ı Like

Share

- Home
- AVR Simulator IDE
- PIC Simulator IDE
- PIC16 Simulator IDE
 PIC18 Simulator IDE
- PIC10 Simulator IDE
- Z80 Simulator IDE
- 8085 Simulator IDE
- Function Grapher
- Digital Oscilloscope
- Serial Port Monitor
- Hardware Projects
- Downloads
- Licenses
- Comments
- Cities
- About the Author
- Contact Form

Downloads Page

AVR Simulator IDE (The current version is 2.883) - version history

PIC Simulator IDE (The current version is 7.883) - version history

PIC16 Simulator IDE (The current version is 1.883) - version history

PIC18 Simulator IDE (The current version is 3.883) - version history

PIC10 Simulator IDE (The current version is 2.883) - version history

Z80 Simulator IDE (The current version is 11.573) - version history

8085 Simulator IDE (The current version is 4.573) - version history

Function Grapher (The current version is 1.41)

Digital Oscilloscope (The current version is 1.27)

Serial Port Monitor (The current version is 1.14)

(The software was last updated on September 23, 2020.)

To download the software evaluation packages you need to perform 2 steps...

STEP 1

Please type the following number in the box below: 126164 ... change if too fuzzy

STEP 2

Please select software package to download:

PIC Simulator IDE

Download Software

Ejemplo a implementar:

```
; CONFIGURACION
;INICIO DE PROGRAMA
    ORG 0X00
            START
    GOTO
; CODIGO
START
    BSF STATUS, 5
    CLRF
            TRISB
                         ; TODOS SON SALIDA
    BCF STATUS, RP0
    BCF STATUS, 5
    MOVLW
            0X00
   MOVWF
            PORTB
    GOTO
            INC
INC
    ADDLW
            0X01
    MOVWF
            PORTB
    GOTO
            INC
END
```


THANKS!

Any questions?

