Curvas diferenciables

Una *curva* en \mathbb{R}^n es una función $\alpha: I \to \mathbb{R}^n$, donde I es un intervalo abierto en \mathbb{R} . Decimos que α es derivable en el punto $t_0 \in I$ si existe el límite

$$\alpha'(t_0) = \lim_{h \to 0} \frac{\alpha(t_0 + h) - \alpha(t_0)}{h},$$

llamado la derivada de α .

$$\alpha(t) = (\alpha_1(t), \alpha_2(t), \dots, \alpha_n(t)).$$

La derivada $\alpha'(t_0)$ existe si y sólo si existen las derivadas $\alpha'_i(t_0)$ esto es,

$$\alpha_i'(t_0) = \lim_{h \to 0} \frac{\alpha_i(t_0 + h) - \alpha_i(t_0)}{h}, \qquad i = 1, \dots, n$$

donde $\alpha_i = p_i \circ \alpha : I \to \mathbb{R}$. Entonces α_i es derivable en el sentido que ya conocemos como función de I en \mathbb{R} .

Derivadas parciales

Sea un abierto $U \subseteq \mathbb{R}^n$. Como U es abierto, dado un $a \in U, B_r(a) \subseteq U$. \Rightarrow existe un $\delta > 0$ tal que $a + te_i \in U$ para $t \in (-\delta, \delta)$ y donde e_i denota el vector de la base canónica: $e_i = (0, \dots, 1, \dots, 0)$, con 1 en lugar i.

Si ahora $f: U \subset \mathbb{R}^n \to \mathbb{R}$ es una función cualquiera, están bien definidas la funciones $f \circ \lambda_i : \mathbb{R} \to \mathbb{R}$ en un entorno de 0.

La i-ésima derivada parcial de f

en el punto $a \in U$ es la derivada en t = 0 de $f \circ \lambda_i$ y se denota por $\frac{\partial f}{\partial x_i}(a)$:

$$\frac{\partial f}{\partial x_i}(a) = \lim_{t \to 0} \frac{f(a + te_i) - f(a)}{t} = \lim_{t \to 0} \frac{f(a_1, a_2, \dots, a_i + te_i, \dots, a_n) - f(a)}{t}$$

si esta derivada existe.

Ejemplo 117: Sea $f : \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x, y) = xy/(x^2 + y^2)$, si $(x, y) \neq (0, 0)$, y f(0, 0) = 0.

Existen las derivadas parciales pero f No es CONTINUA en (0,0).

 \Rightarrow Diferenciabilidad en \mathbb{R}^2 debe ser mejor.

Diferenciable

Una función $f: U \to \mathbb{R}$ definida en el abierto $U \subseteq \mathbb{R}^n$ se dice diferenciable en el punto $a \in U$ cuando cumple las siguientes condiciones

- Existen las derivadas parciales $\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a)$.
- 2 Para todo $v = (v_1, \dots, v_n)$ tal que $a + v \in U$, se tiene

$$f(a+v)-f(a)=\sum_{i=1}^n rac{\partial f}{\partial x_i}(a).v_i+r(v), \qquad ext{donde} \quad \lim_{|v|\to 0} rac{r(v)}{|v|}=0.$$

Toda función diferenciable en el punto a es continua en ese punto. $f: U \to \mathbb{R}^n$ definida en el abierto $U \subseteq \mathbb{R}^m$ se dice de clase C^1 cuando cada una $f_0: U \to \mathbb{R}$ es de clase C^1 o sea las derivadas

cada una $f_1, \ldots, f_n : U \to \mathbb{R}$ es de clase C^1 , o sea, las derivadas parciales de las f_i son continuas.

Toda función $f: U \to \mathbb{R}$ de clase C^1 es diferenciable.

Gradiente

Sea $f: U \to \mathbb{R}$ en el punto a y donde $U \subseteq \mathbb{R}^n$ es un abierto, el gradiente es el vector

$$\operatorname{grad} f(a) = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right).$$

Si v es cualquier vector en \mathbb{R}^n , la *derivada direccional* de f en el punto a en la dirección de v es por definición

$$\frac{\partial f}{\partial v}(a) = \lim_{t \to 0} \frac{f(a + tv) - f(a)}{t}.$$
 (1)

Corolario 122. Sea $f: U \to \mathbb{R}$ diferenciable en el abierto $U \subseteq \mathbb{R}^n$ con $a \in U$. Si $\lambda: (-\delta, \delta) \to U$ es cualquier curva diferenciable tal que $\lambda(0) = a$ y $\lambda'(0) = v$, se tiene

$$(f \circ \lambda)'(0) = \langle \operatorname{grad} f(a), v \rangle = \frac{\partial f}{\partial v}(a) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a) v_i.$$
 (2)

Propiedades del gradiente

Sea $f: U \to \mathbb{R}$ una función diferenciable de clase C^1 . Fijemos $a \in U$ y supongamos $\operatorname{grad} f(a) \neq 0$. Entonces

- El gradiente apunta en la dirección en la cual la función es creciente.
- De entre todas las direcciones a lo largo de las cuales f crece, la dirección del gradiente es la de crecimiento más rápido.
- El gradiente de f en el punto a es ortogonal al conjunto de nivel que pasa por a.

Una aplicación $f: U \to \mathbb{R}^n$ definida en un abierto $U \subseteq \mathbb{R}^m$ se dice *diferenciable* en el punto $a \in U$ cuando cada una de sus funciones coordenadas $f_1, \ldots, f_n: U \to \mathbb{R}$ son diferenciables en ese punto a.

Si este es el caso entonces para todo $v = (v_1, v_2, ..., v_n)$ tal que $a + v \in U$ y para cada i = 1, ..., n se tiene

$$f_i(a+v)-f_i(a)=\sum_{j=1}^m\frac{\partial f_i}{\partial x_j}(a)v_j+r_i(v)\quad\text{ con }\lim_{v\to 0}\frac{r_i(v)}{||v||}=0.$$

La matrix $n \times m$ cuya fila i es el vector gradiente de f_i y que se denota $Jf(a) = \left[\frac{\partial f_i}{\partial x_j}(a)\right]$ se denomina matriz jacobiana de f en el punto a. La transformación lineal $f'(a): \mathbb{R}^m \to \mathbb{R}^n$ cuya matriz en las bases canónicas de \mathbb{R}^m y \mathbb{R}^n es Jf(a), se llama la diferencial de f en el punto a. A veces f'(a) también se escribe df_a .

De acuerdo con la definición de matriz de una transformación real, para todo $v = (v_1, \dots, v_m) \in \mathbb{R}^m$, tenemos

$$f'(a)v = (w_1, \dots, w_n)$$
 donde $w_i = \sum_{j=1}^m \frac{\partial f_i}{\partial x_j}(a)v_j = \frac{\partial f_i}{\partial v}(a).$

La *derivada direccional* de *f* en el punto *a* y en la dirección del vector *v* como

$$\frac{\partial f}{\partial \mathbf{v}}(\mathbf{a}) = \lim_{t \to 0} \frac{f(\mathbf{a} + t\mathbf{v}) - f(\mathbf{a})}{t},$$

de donde obtenemos inmediatamente que

$$\frac{\partial f_i}{\partial v}(a) = \left(\frac{\partial f_1}{\partial v}(a), \dots, \frac{\partial f_n}{\partial v}(a)\right) = f'(a)v.$$

De la regla de la cadena y de la definición de arriba, surge que

$$\frac{\partial f}{\partial \mathbf{v}}(\mathbf{a}) = (f \circ \lambda)'(0)$$

Teorema

Sea $U \subseteq \mathbb{R}^m$ un abierto y sea $f: U \to \mathbb{R}^n$ una función. Son equivalentes:

- f es diferenciable.
- Existe una transformación lineal $T_a : \mathbb{R}^m \to \mathbb{R}^n$ tal que cada vez que $a + v \in U$, el siguiente límite existe y vale

$$\lim_{v\to 0}\frac{||f(a+v)-f(a)-T_a(v)||}{||v||}=0.$$
 (3)

Observemos que si se satisface (3) entonces la transformación lineal que da el límite debe satisfacer

$$T_a = f'(a)$$
.