CLAIMS

What is claimed is:

1. A method for reducing feature size in a thin film magnetic write head using
low temperature deposition coating of photolithographically-defined trenches, comprising the
steps of:
forming a base layer;
applying a plating seed layer over said base layer;
applying a photoresist layer over said plating seed layer to a desired thickness;
defining a trench in said photoresist layer that exposes said plating seed layer, said
trench having substantially vertical side walls and a bottom defined by said plating seed layer
depositing an insulative spacer layer using a low temperature chemical vapor
deposition process to cover said trench side walls;
anisotropically etching horizontal portions of said spacer layer to remove spacer layer
material from said trench bottom to expose said plating seed layer while leaving intact vertical
portions of said spacer layer that cover said trench side walls, thereby defining a narrowed
trench;
electroplating metallic material onto said plating seed layer to form a structure in said
narrowed trench;
stripping away said photoresist layer; and
stripping away said spacer layer vertical portions;
whereby a structure of reduced feature size is formed.

3

1	· 2.	A method in accordance with Claim 1 wherein said feature is a pole piece or a
2	coil.	
1	3.	A method in accordance with Claim 1 wherein said spacer layer comprises a
2	material from	m the group consisting of semiconductors, metal oxides and metal nitrides.
1	4.	A method in accordance with Claim 1 wherein said spacer layer comprises a
2	material from	m the group consisting of including tantalum oxide, silicon dioxide and silicon
3	nitride.	
1	5.	A method in accordance with Claim 1 wherein said chemical vapor deposition
2	process is a	n atomic layer chemical vapor deposition process.
1	6.	A method in accordance with Claim 1 wherein said spacer layer is deposited at
2	a thickness	of up to about 200 nm.
1	7.	A method in accordance with Claim 1 wherein said chemical vapor deposition
2	process is po	erformed at a temperature that does not cause deformation of said trench defined

in said photoresist layer.

1

2

1

1	8.	A method in accordance with Claim 1 wherein said chemical vapor deposition
2	process is per	formed without exceeding a temperature of about 120° Celsius.

- 9. A method in accordance with Claim 1 wherein said write head is part of an integrated read/write head having a thin film read sensor, and said chemical vapor deposition process is performed without exceeding a temperature that could cause degradation of material layers in said read sensor.
 - 10. A method in accordance with Claim 1 wherein said photoresist layer and said spacer layer vertical portions are stripped away in a single step.
 - 11. A magnetic recording transducer, said transducer having a thin film magnetic

 write head of reduced feature size formed by a process that comprises the steps of:

 forming a base layer;
- applying a plating seed layer over said base layer;
- applying a photoresist layer over said plating seed layer to a desired thickness;
- defining a trench in said photoresist layer that exposes said plating seed layer, said
- 7 trench having substantially vertical side walls and a bottom defined by said plating seed layer;
- depositing an insulative spacer layer using a low temperature chemical vapor
- 9 deposition process to cover said trench side walls;

10	anisotropically etching horizontal portions of said spacer layer to remove spacer layer				
11	material from said trench bottom to expose said plating seed layer while leaving intact vertice				
12	portions of said spacer layer that cover said trench side walls, thereby defining a narrowed				
13	trench;				
14	electroplating a metallic material onto said plating seed layer to form a structure in				
15 said narrowed trench;					
16	stripping away said photoresist layer; and				
17	stripping away said spacer layer vertical portions;				
18	whereby a structure of reduced feature size is formed.				
	12. A transducer in accordance with Claim 11 wherein said pole piece is a pole				
្ន រួ	piece or a coil.				
	13. A transducer in accordance with Claim 11 wherein said spacer layer comprises				
2	a material from the group consisting of semiconductors, metal oxides and metal nitrides.				
	en de la companya de La companya de la co				
1	14. A transducer in accordance with Claim 11 wherein said spacer layer comprises				
2	a material from the group consisting of tantalum oxide, silicon dioxide and silicon nitride.				
1	15. A transducer in accordance with Claim 11 wherein said chemical vapor				

deposition process is an atomic layer chemical vapor deposition process.

2

deposited at a thickness of up to about 200 nm.

housing, an actuator carrying an actuator arm, a suspension, and a read/write head disposed in

In a disk drive having a housing, a rotatable magnetic recording medium in the

A transducer in accordance with Claim 11 wherein said spacer layer is

A transducer in accordance with Claim 11 wherein said chemical vapor

deposition process is performed at a temperature that does not cause deformation of said

21.

1

2

1

2

1

2

17.

3	adjacent relationship with the recording medium, an improved thin film magnetic write head			
4	having reduced feature size formed by a process that comprises the steps of:			
5	forming a base layer;			
6	applying a plating seed layer over said base layer;			
7	applying a photoresist layer over said plating seed layer to a desired thickness;			
8	defining a trench in said photoresist layer that exposes said plating seed layer, said			
9	trench having substantially vertical side walls and a bottom defined by said plating seed layer			
10	depositing an insulative spacer layer using a low temperature chemical vapor			
]] 11	deposition process to cover said trench side walls;			
12	anisotropically etching horizontal portions of said spacer layer to remove spacer layer			
13	material from said trench bottom to expose said plating seed layer while leaving intact vertical			
14	portions of said spacer layer that cover said trench side walls, thereby defining a narrowed			
1-5	_ trench;			
16	electroplating a metallic material onto said plating seed layer to form a structure in			
17	said narrowed trench;			
18	stripping away said photoresist layer; and			
19	stripping away said spacer layer vertical portions;			
20	whereby a structure of reduced track width feature size is formed.			
1	22. A disk drive in accordance with Claim 21 wherein said pole piece is a pole			
2	piece or a coil.			

18

SJ09-2001-0034US1

A disk drive in accordance with Claim 21 wherein said spacer layer comprises

- deposition process is performed without exceeding a temperature that could cause degradation
- 2 of material layers in said read sensor.
- 1 30. A disk drive in accordance with Claim 21 wherein said photoresist layer and
- 2 said spacer layer vertical portions are stripped away in a single step.