Quantum state discrimination and Holevo–Helstrom theorem

Ryuhei Mori

Tokyo Institute of Technology

22, Oct., 2021

Discrimination of probability distributions

Discrimination of probability distributions:

- Input: $x \in \mathcal{X}$ drawn from probability dstribution p_0 with probability λ , and from p_1 with probability 1λ .
- Output: $i \in \{0, 1\}$ that indicates the probability distribution p_i .

Maximum probability of success: Discrimination of probability distributions

Theorem

The maximum probability of success is equal to

$$\frac{1 + \|\lambda p_0 - (1 - \lambda)p_1\|_1}{2}$$

where $||a||_1 := \sum_{x} |a(x)|$.

Proof.

Let $d: \mathcal{X} \to \{0,1\}$ be a discriminator. Assume we get 1 point if succeeds, and loose 1 point if fails. Then, expected point is bounded by

$$\begin{split} &\lambda \sum_{x \in \mathcal{X}} p_0(x) (-1)^{d(x)} + (1 - \lambda) \sum_{x \in \mathcal{X}} p_1(x) (-1)^{d(x)+1} \\ &= \sum_{x \in \mathcal{X}} (\lambda p_0(x) - (1 - \lambda) p_1(x)) (-1)^{d(x)} \le \|\lambda p_0 - (1 - \lambda) p_1\|_1. \end{split}$$

The equality is achieved by d(x) that is 0 iff $\lambda p_0(x) \ge (1 - \lambda)p_1(x)$. On the other hand, the expected point is $p_{\text{succ}} - p_{\text{fail}} = 2p_{\text{succ}} - 1$.

Discrimination of quantum states

Discrimination of quantum states:

- Input: A quantum state ρ_0 is given with probability λ , and ρ_1 is given with probability 1λ .
- Output: $i \in \{0, 1\}$ that indicates the given state ρ_i .

Maximum probability of success: Discrimination of quantum states

Theorem (Holevo-Helstrom theorem)

The maximum probability of success is equal to

$$\frac{1 + \|\lambda \rho_0 - (1 - \lambda)\rho_1\|_1}{2}$$

where $||A||_1 := \text{Tr}(\sqrt{A^{\dagger}A})$, which is a sum of the singular values of A.

Proof.

Once a measurement $(P_y)_{y\in\mathcal{Y}}$ is fixed, we get a classical probability distribution $p_0(y):=\operatorname{Tr}(\rho_0P_y)$ and $p_1(y):=\operatorname{Tr}(\rho_1P_y)$. In this case, the maximum probability of success is given by

$$\frac{1 + \|\lambda p_0 - (1 - \lambda)p_1\|_1}{2}$$

Hence, it's sufficient to show

$$\max_{(P_y)_{y \in \mathcal{Y}}} \|\lambda p_0 - (1 - \lambda)p_1\|_1 = \|\lambda \rho_0 - (1 - \lambda)\rho_1\|_1.$$

Holevo-Helstrom theorem

$$\begin{split} & \max_{(P_y)_{y \in \mathcal{Y}}} \|\lambda p_0 - (1 - \lambda)p_1\|_1 = \max_{(P_y)_{y \in \mathcal{Y}}} \sum_{y \in \mathcal{Y}} |\lambda p_0(y) - (1 - \lambda)p_1(y)| \\ & = \max_{(P_y)_{y \in \mathcal{Y}}} \sum_{y \in \mathcal{Y}} |\lambda \text{Tr}(\rho_0 P_y) - (1 - \lambda)\text{Tr}(\rho_1 P_y)| \\ & = \max_{(P_y)_{y \in \mathcal{Y}}} \sum_{y \in \mathcal{Y}} |\text{Tr}((\lambda \rho_0 - (1 - \lambda)\rho_1)P_y)| \end{split}$$

Let

$$\lambda \rho_0 - (1 - \lambda)\rho_1 = \sum_{\mathsf{x} \in \mathcal{X}} \mu_\mathsf{x} \ket{\psi_\mathsf{x}} \bra{\psi_\mathsf{x}}$$

be a spectral decomposition. Then,

$$\begin{aligned} & \max_{(P_y)_{y \in \mathcal{Y}}} \sum_{y \in \mathcal{Y}} |\mathsf{Tr}\left((\lambda \rho_0 - (1 - \lambda)\rho_1)P_y\right)| = \max_{(P_y)_{y \in \mathcal{Y}}} \sum_{y \in \mathcal{Y}} \left| \sum_{x \in \mathcal{X}} \mu_x \left\langle \psi_x \right| P_y \left| \psi_x \right\rangle \right| \\ & \leq \max_{(P_y)_{y \in \mathcal{Y}}} \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} |\mu_x| \left\langle \psi_x \right| P_y \left| \psi_x \right\rangle = \sum_{x \in \mathcal{X}} |\mu_x| = \|\lambda \rho_0 - (1 - \lambda)\rho_1\|_1. \end{aligned}$$

The maximum is achieved by
$$\mathcal{Y}=\mathcal{X}$$
 and $P_x=|\psi_x\rangle\,\langle\psi_x|$, and $\mathcal{Y}=\{0,1\}$ and $P_0=\sum_{x:\mu_x\geq 0}|\psi_x\rangle\,\langle\psi_x|$, $P_1=\sum_{x:\mu_x<0}|\psi_x\rangle\,\langle\psi_x|$.

Discrimination of pure states

The maximum probability of success for discrimination of $|\psi\rangle\,\langle\psi|$ and $|\varphi\rangle\,\langle\varphi|$ is given by

$$\|\lambda |\psi\rangle \langle \psi| - (1-\lambda) |\varphi\rangle \langle \varphi|\|_{1}$$

Let $A:=\lambda |\psi\rangle \langle \psi|-(1-\lambda)|\varphi\rangle \langle \varphi|$. Then, A has rank at most two. From

$$\begin{split} \operatorname{Tr}(A) &= \mu_0 + \mu_1 = \lambda - (1 - \lambda) \\ \operatorname{Tr}(A^2) &= \mu_0^2 + \mu_1^2 = \lambda^2 + (1 - \lambda)^2 - 2\lambda(1 - \lambda)|\langle \psi | \varphi \rangle|^2, \end{split}$$

$$\begin{split} 2\mu_0\mu_1 &= (\mu_0 + \mu_1)^2 - (\mu_0^2 + \mu_1^2) = -2\lambda(1-\lambda)(1-|\langle\psi|\varphi\rangle|^2) \leq 0.\\ (\mu_0 - \mu_1)^2 &= (\mu_0^2 + \mu_1^2) - 2\mu_0\mu_1 = (\lambda + (1-\lambda))^2 - 4\lambda(1-\lambda)|\langle\psi|\varphi\rangle|^2\\ \|A\|_1 &= |\mu_0| + |\mu_1| = |\mu_0 - \mu_1| = \sqrt{1 - 4\lambda(1-\lambda)|\langle\psi|\varphi\rangle|^2}. \end{split}$$

Unitary discrimination

Discrimination of unitary operators:

- Input: A unitary operator U_0 is given with probability λ , and U_1 is given with probability 1λ as an oracle \mathcal{O} that can be used once.
- Output: $i \in \{0, 1\}$ that indicates the given unitary U_i .

Unitary discrimination

If algorithm call the oracle $\mathcal O$ on a state $|\psi\rangle$, we get either of $U_0\,|\psi\rangle$ or $U_1\,|\psi\rangle$.

Then, the maximum probability of success is given by

$$\begin{split} & \max_{|\psi\rangle} \|\lambda \textit{U}_0 \left| \psi \right\rangle \left\langle \psi \right| \, \textit{U}_0^\dagger - (1-\lambda) \textit{U}_1 \left| \psi \right\rangle \left\langle \psi \right| \, \textit{U}_1^\dagger \|_1 \\ & = \max_{|\psi\rangle} \sqrt{1 - 4\lambda (1-\lambda) |\left\langle \psi \right| \, \textit{U}_0^\dagger \textit{U}_1 \left| \psi \right\rangle |^2} \end{split}$$

For $V:=U_0^\dagger U_1$, let $V=\sum_x \mu_x \left| \varphi_x \right\rangle \left\langle \varphi_x \right|$ be a spectral decomposition. Note that $|\mu_x|=1$ for all x. Let $|\psi\rangle=\sum_x \alpha_x \left| \varphi_x \right\rangle$. Then, $\langle \psi |\ U_0^\dagger U_1 \left| \psi \right\rangle = \sum_x |\alpha_x|^2 \mu_x$, which is a convex combination of $(\mu_x)_x$. Let θ_{cover} be the smallest angle that covers all eigenvalues $(\mu_x)_x$. Then, $\min_{|\psi\rangle} |\langle \psi |\ U_0^\dagger U_1 \left| \psi \right\rangle| = \cos(\frac{\theta_{\text{cover}}}{2})$ if $\theta_{\text{cover}} \leq \pi$, and 0 otherwise.

Assignment

- ① Show the maximum probability of success for discriminating $|0\rangle$ and $|+\rangle$ given with the uniform probability.
- 2 Show a binary optimal measurement for the discrimination of $|0\rangle$ and $|+\rangle$ given with the uniform probability.
- 3 Show the maximum probability of success for discriminating I and $R_Z(\theta)$ given with the uniform probability. Show the input state $|\psi\rangle$ for the oracle as well.