Correction du TD 1 de calcul scientifique:

1 Guider le choix de la méthode de résolution

1. Soit A une matrice de rang plein (son rang est égal au nombre de colonnes). On s'intéresse à la résolution de systèmes linéaires associés à A. Précisez les questions 1 à 4 présentes dans l'arbre de décision suivant, associé au choix de la méthode de résolution :

Solution:

- $\bullet \ \ \mathit{Q1} : \mathit{La \ matrice} \ \mathit{A} \ \mathit{est-elle \ carr\'e} \ ?$
- ullet Q2 : La matrice A est-elle symétrique ?

- Q3 : La matrice A est-elle définie-positive ?
- Q4 : Plusieurs choix possibles : Voulez-vous utiliser une méthode itérative ? Le conditionnement de la matrice A permet-il d'envisager une convergence rapide de méthodes itératives ? Autres questions possibles dans cette veine..
- 2. Soit A une matrice carrée symétrique réelle. On s'intéresse à la recherche de valeurs propres de A. Précisez les questions 5 et 6 présentes dans l'arbre de décision suivant, associé au choix de la méthode de résolution : Solution:

- Q5 : Recherchez-vous la valeur propre la plus grande (en valeur absolue) et un vecteur propre associé ?
- Q6 : Recherchez-vous la valeur propre la plus petite (en valeur absolue) et un vecteur propre associé ?

$\mathbf{2}$ Décomposition en valeurs singulières et produits.

Soit A une matrice rectangulaire de $\mathbb{R}^{m\times n}$ de rang r>0. On appelle A^{\dagger} la matrice dite pseudoinverse de A.

1. Soient $x \in \mathbb{R}^{n \times 1}$ et $y \in \mathbb{R}^{n \times 1}$, tels que $x^T y \neq 0$. Calculer $(xy^T)^{\dagger}$ et $(y^T)^{\dagger} x^{\dagger}$. A-t-on selon vous pour toutes matrices A et B quelconques $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$?

 $(xy^T) \in \mathbb{R}^{n \times n}$. Pour calculer la pseudo-inverse nous pouvons utiliser la SVD réduite.

 $\overrightarrow{Pour}\ A \in \mathbb{R}^{m \times n}, \ avec \ \operatorname{rank}(A) = r > 0, \ la \ SVD \ r\'eduite \ est \ A = U\Sigma V^T \ avec \ U \in \mathbb{R}^{m \times r}, \ \Sigma \in \mathbb{R}^{r \times r}, \ V \in \mathbb{R}^{r \times n}.$ D'ici nous pouvons obtenir la pseudoinverse de A comme $A^{\dagger} = V \Sigma^{-1} U^{T}$.

Dans notre cas r = 1 et

$$xy^{T} = \|x\| \|y\| \frac{x}{\|x\|} \frac{y^{T}}{\|y\|} \tag{1}$$

donc $U = \frac{x}{\|x\|}$, $V = \frac{y^T}{\|y\|}$ et $\Sigma = \|x\| \|y\|$ et donc $(xy^T)^{\dagger} = \frac{1}{\|x\| \|y\|} \frac{y}{\|y\|} \frac{x^T}{\|x\|}$. Pour un vecteur $x \in \mathbb{R}^n$ non nul, la pseudo-inverse est définie comme suit:

$$x^{\dagger} = \frac{x^T}{\|x\|^2} \tag{2}$$

Donc

$$(y^T)^{\dagger} x^{\dagger} = \frac{y}{\|y\|^2} \frac{x^T}{\|x\|^2}.$$
 (3)

Dans ce cas $(xy^T)^{\dagger} = (y^T)^{\dagger}x^{\dagger}$, mais en général ceci n'est pas vrai pour toutes matrices A,B. Par exemple pour $A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \text{ et } B = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ l'on peut verifier que } (AB)^{\dagger} \neq B^{\dagger}A^{\dagger}.$

Dans les quatre cas suivantes l'égalité $(AB)^{\dagger}=B^{\dagger}A^{\dagger}$ est vraie:

- 1. $A^T A = I$
- 2. $BB^T = I$
- 3. les colonnes de A et les lignes de B sont indépendantes
- 4. $B = A^T$
- 2. Soit A une matrice rectangulaire de $\mathbb{R}^{m\times n}$ de rang r. Soit la matrice par blocs

$$B = \begin{bmatrix} A \\ A \end{bmatrix} \in \mathbb{R}^{2m \times n}.$$

Montrer que $B^{\dagger} = \alpha \left[A^{\dagger}, A^{\dagger} \right] \in \mathbb{R}^{n \times 2m}$, où α est un réel que vous indiquerez.

Solution:

Pour prouver que $B^{\dagger} = \alpha[A^{\dagger}, A^{\dagger}]$ il faut vérifier les quatre propriétés suivantes qui caractérisent la pseudo-inverse:

- 1. $AA^{\dagger}A = A$
- 2. $A^{\dagger}AA^{\dagger} = A^{\dagger}$
- 3. $(AA^{\dagger})^T = AA^{\dagger}$
- 4. $(A^{\dagger}A)^T = A^{\dagger}A$

Par exemple pour la première:

$$\alpha \begin{bmatrix} A \\ A \end{bmatrix} [A^{\dagger}, A^{\dagger}] \begin{bmatrix} A \\ A \end{bmatrix} = 2\alpha \begin{bmatrix} A \\ A \end{bmatrix} A^{\dagger} A = \alpha \begin{bmatrix} AA^{\dagger}A \\ AA^{\dagger}A \end{bmatrix} = 2\alpha \begin{bmatrix} A \\ A \end{bmatrix}$$
 (4)

Pour avoir la première propriété vérifiée il faut $\alpha = 1/2$.

On vérifie de même les autres propriétés.

3. Soit A une matrice rectangulaire de $\mathbb{R}^{m\times n}$ de rang r. On suppose que $A=FR^T$ où $F\in\mathbb{R}^{m\times r}$ et $R\in\mathbb{R}^{n\times r}$. Expliquer pourquoi F et R sont de rang r. Montrer que R^TR et F^TF sont inversibles. Montrer que la pseudo-inverse de A est la matrice $A^{\dagger}=R(R^TR)^{-1}(F^TF)^{-1}F^T$.

 $On \ suppose \ A \in \mathbb{R}^{m \times n}, \ A = FR^T, \ R \in \mathbb{R}^{n \times r}, \ F \in \mathbb{R}^{m \times r}, \ r = \mathrm{rank}(A).$

$$r = \operatorname{rank}(A) = \operatorname{rank}(FR^T) \le \min\{\operatorname{rank}(F), \operatorname{rank}(R^T)\} = \min\{\operatorname{rank}(F), \operatorname{rank}(R)\} \le r \tag{5}$$

 $Alors \, rank(F) = rank(R) = r.$

$$R^T R, \hat{F}^T F \in \mathbb{R}^{r \times r}$$
 et

$$rank(R^T R) = rank(R) = r (6)$$

 $(En\ effet\ ker(R^TR)=ker(R): \supset \'evident\ et\ si\ x\ est\ tel\ que\ R^TRx=0\ alors\ x^TR^TRx=0\ d'ou\ ||Rx||=0\ donc\ Rx=0\ et\ x\in ker(R).$ On conclut avec le théorème du rang: $r=dimker(R^TR)+rang(R^TR)=dimker(R)+rang(R))^1$. Donc R^TR est inversible (idem pour F^TF).

Donc R^TR est inversible (idem pour F^TF). Pour prouver que $A^{\dagger} = R(R^TR)^{-1}(F^TF)^{-1}F^T$, on passe par la caractérisation de Moore-Penrose (cf question précédente).

Par exemple, on a pour la première propriété :

$$AA^{\dagger}A = FR^{T}R(R^{T}R)^{-1}(F^{T}F)^{-1}F^{T}FR^{T} = FR^{T} = A$$
(7)

On vérifie de même les autres propriétés.

3 Factorisation QR

- 1. On suppose que l'on applique l'algorithme de la factorisation QR de Householder présenté en cours à une matrice A carrée de taille n qui possède deux colonnes j_1 et j_2 $(j_1 < j_2)$ colinéaires.
 - (a) Montrer qu'à chaque étape k de l'algorithme QR, les colonnes j_1 et j_2 de la matrice mise à jour $H_k \dots H_1A$ restent colinéaires.

Solution:

A chaque étape on effectue un opération orthogonale de réflexion sur chacune des colonnes; cette opération préserve la colinéarité (on a surement besoin d'hypothèse moins forte)

(b) On s'intéresse à l'étape j_1 de la factorisation QR. Que se passe-t-il pour le colonne j_2 ? On précisera les éléments non nuls de cette colonne.

Solution:

Tous les éléments de la colonne j_2 dans la matrice réduite A_{j_1} d'ordre $n-j_1$ sont nuls. En effet la colonne j_2 reste toujours colinéaire à la colonne j_1 et comme tous les éléments sous la diagonale de la colonne de j_1 ont été mis à 0 il en est nécessairement de même pour tous les éléments sous la ligne j_1 de la colonne j_2 .

(c) En déduire une modification de l'algorithme de la factorisation QR qui permette de détecter un ensemble de vecteurs colonnes colinéaires aux précédents et donc la dimension du noyau (espace des vecteurs v tels que Av=0) de la matrice carrée A. Indiquer comment la dimension du noyau est calculée en fin de la factorisation QR.

¹Si on avait rang(R) = n ce serait RR^T qui serait inversible. Ne pas oublier que dans le théorème du rang c'est la dimension de l'espace de départ qui apparait, qui n'est pas le même pour RR^T et R^T

Solution:

Par analogie avec la factorisation LU avec pivotage il faut permuter les colonnes pour finir avec un bloc de 0 et une structure similaire à celle de l'exercice 2 avec un bloc S nul. du coup ils ont construit une factorisation QR avec pivotage des colonnes qui permet d'obtenir

$$AP = QR = \begin{pmatrix} Q_1 & Q_2 \end{pmatrix} \begin{pmatrix} R_{11} & R_{21} \\ & 0 \end{pmatrix}$$

2. Soit $A \in M_{n,n}(\mathbb{R})$. On suppose de plus qu'il existe une matrice de permutation P des colonnes de A telle qu'après k étapes de la factorisation QR de A on obtient la décomposition suivante:

$$AP = QR = \begin{pmatrix} Q_1 & Q_2 \end{pmatrix} \begin{pmatrix} R_{11} & R_{21} \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} Q_1 & Q_2 \end{pmatrix} \begin{pmatrix} R_1 \\ 0 \end{pmatrix}$$

avec $Q_1 \in M_{n,k}(\mathbb{R})$ telle que $Q_1^TQ_1 = I_k$, $Q_2 \in M_{n,n-k}(\mathbb{R})$ telle que $Q_2^TQ_2 = I_{n-k}$, $R_{11} \in M_{k,k}(\mathbb{R})$ une matrice triangulaire inversible, $R_{12} \in M_{k,n-k}(\mathbb{R})$ et $R_1 \in M_{k,n}(\mathbb{R})$

(a) Soit A' la matrice permutée A' = AP, montrer que les colonnes de Q_1 forment une base de l'espace engendré par les colonnes de A' et en déduire le rang de A' (dimension de l'espace engendré par les colonnes de A'). (On notera que P étant une matrice de permutation on peut en déduire que les espaces engendrés par les colonnes de A' et de A sont identiques).

Solution:

Soit A' la matrice permutée,

$$A' = AP = Q_1 R_1 = (A'_1 \quad A'_2)$$

 $et\ donc$

$$a'_{ij} = \sum_{l=1}^{k} q_{il} r_{lj}$$

On peut en déduire que pour toute colonne j de la matrice permutée A':

Colonne j de
$$A' = \sum_{l=1}^{k} r_{lj} \times Colonne \ l \ de \ Q_1$$

Toute colonne j de A' est donc une combinaison linéaire des k colonnes de Q_1 . Donc $dim(Vect(A')) \leq k$. Par ailleurs R_{11} étant triangulaire inversible on a donc pour toute colonne $j \leq k$ de A' que la colonne j est combinaison linéaire des j premières colonnes de Q_1 .

Colonne j de
$$A' = \sum_{l=1}^{J} r_{lj} \times Colonne \ l \ de \ Q_1$$

Les k premières colonnes de A' sont donc linéairement indépendantes et $dim(Vect(A')) \ge k$. Et donc dim(Vect(A')) = k.

(b) Montrer que $(AP)^T \times Q_2 = 0$ (i.e. Q_2 est orthogonal à l'espace engendré par les colonnes de AP).

Solution:

$$(AP)^T \times Q_2 = \begin{pmatrix} R_1^T & 0 \end{pmatrix} \begin{pmatrix} Q_1^T \\ Q_2^T \end{pmatrix} \times Q_2 = \begin{pmatrix} R_1^T & 0 \end{pmatrix} \begin{pmatrix} Q_1^T Q_2 = 0 \\ Q_2^T Q_2 = I_k \end{pmatrix} = \begin{pmatrix} R_1^T \times 0 & 0 \times I_k \end{pmatrix} = 0$$

3. Soit $A \in M_{n,n}(\mathbb{R})$. On suppose qu'à l'issue d'une factorisation \mathbb{R} on obtient la décomposition suivante:

$$A = QR = \begin{pmatrix} Q_1 & Q_2 \end{pmatrix} \begin{pmatrix} R_1 \\ R_2 \end{pmatrix}$$

avec $Q_1 \in M_{n,k}(\mathbb{R}), Q_2 \in M_{n,n-k}(\mathbb{R}), R_1 \in M_{k,n} \text{ et } R_1 \in M_{n-k,n}$

On suppose de plus que $||R_2|| \le \epsilon ||A||$

- (a) Montrer que $||A Q_1 R_1|| \le \epsilon ||A||$
- (b) On suppose que la matrice A est approximée par la matrice Q_1R_1 . Pour quelles valeurs de k cette approximation permet elle de réduire l'espace mémoire nécessaire pour stocker la matrice A par un facteur 10?

Solution:

stockage de Q_1 et R_1 : $k \le n/20$

4 Calcul de l'inverse d'une matrice

On suppose que A est une matrice carrée de taille n inversible pour laquelle existe une factorisation LU sans pivotage de la matrice A:

$$A = LU$$

1. Montrer que l'on peut utiliser l'expression suivante $AA^{-1} = I$ et la décomposition A = LU pour calculer A^{-1} .

On détaillera les étapes du calcul de A^{-1} .

Solution:

 $L(UA^{-1}) = I$

- (a) LY = I avec Y matrice carrée d'ordre n, n résolutions de systèmes linéaires
- (b) $UA^{-1} = U$, n résolutions de systèmes linéaires
- 2. Calculer la complexité en terme de nombre d'opérations flottantes du calcul de A^{-1} de la question précédente. On prendra en compte aussi le nombre d'opérations pour la factorisation LU de A.

Solution:

$$2/3n^3 + n * n^2 + n * n^2$$

3. Soit x la solution du système $Lx = e_j$, avec e_j le j^{ieme} vecteur de la base canonique (vecteur possédant un seul élément non nul égal à 1 en position j). Montrer que les (j-1) premières composantes du vecteur x sont nulles : $\forall i \in \mathbb{N}, 1 \leq i \leq j-1, \quad x_i = 0$.

Solution:

V0: on peut le montrer avec les mains/pieds en déroulant les j-1 premières étapes de la résolution

V1: on décompose L en bloc L_{11} avec les j-1 premières lignes, L_{21} et L_{22} les lignes restantes

$$\begin{pmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{pmatrix}$$

l'equation associée aux j premières lignes $L_{11}x_1 = 0$ implique que x_1 est un vecteur nul car L_{11} est inversible, triangulaire avec des 1 sur la diagonale, déterminant égal à 1.

4. En déduire le nombre d'opérations pour calculer $Lx=e_j$, où e_j est le j^{ieme} vecteur de la base canonique.

Solution:

résolution du système triangulaire de taille n-j+1 et donc $(n-j+1)^2$

5. En déduire le coût de calcul de LX=I. On pourra noter que $X=L^{-1}$. On rappelle que $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$.

Solution:

$$\sum_{j=1}^{n} (n-j+1)^2 = 1/3n^3$$

6. En déduire le coût réel du calcul complet de $AA^{-1} = I$

Solution:

$$2/3n^3 + 1/3n^3 + n * n^2 = 2n^3$$