Прикладная статистика и анализ данных. Задание 10.

- Дедлайн **15 мая 02:00**. После дедлайна работы не принимаются кроме случаев наличия уважительной причины.
- Выполненную работу нужно отправить на почту mipt.stats@yandex.ru, указав тему письма "[asda] Фамилия Имя задание 10". Квадратные скобки обязательны. Если письмо дошло, придет ответ от автоответчика.
- Прислать нужно ноутбук и его pdf-версию (без архивов). Названия файлов должны быть такими: 10.N.ipynb и 10.N.pdf, где N ваш номер из таблицы с оценками.
- Решения, размещенные на каких-либо интернет-ресурсах не принимаются. Кроме того, публикация решения в открытом доступе может быть приравнена к предоставлении возможности списать.
- В каждой задаче не забывайте делать пояснения и выводы.
- Все численные вычисления можно производить в Питоне или в R.
- 1. (1 балл) Случайные величины X, Y и Z имеют следующее распределение.

	Y = 0	Y=1	Y = 0	Y=1
	Z=0	Z=0	Z=1	Z=1
X = 0	0.405	0.045	0.125	0.125
X = 1	0.045	0.005	0.125	0.125

Являются ли величины X и Y

- (а) независимыми;
- (b) условно независимыми по Z?
- 2. (2 балла) При проведении испытания лекарства получены следующие данные.

Количество выздоровевших	Принимали плацебо	Принимали лекарство	
Низкое давление	81 из 87	234 из 270	
Высокое давление	192 из 263	55 из 80	

С помощью метода интервенции оцените причинно-следственный эффект влияния лекарства на выздоровление, если

- (а) Кровяное давление пациентов измерялось до начала испытания, после чего принималось решение о приеме лекарства.
- (b) Кровяное давление пациентов измерялось в конце испытания. При этом известно, что лекарство может оказывать эффект на кровяное давление, которое в свою очередь может оказывать эффект на выздоровление.

3. (3 балла) Имеется n пациентов, которым соответствую данные $(X_1, Y_1), ..., (X_n, Y_n)$, где $X_i \in \{0,1\}$ — факт проведения лечения i-го пациента, а $Y_i \in \{0,1\}$ — исход заболевания. Как известно, в общем случае нельзя оценить величину причинно-следственного эффекта θ . Тем не менее, можно получить некоторый интервал на θ . Докажите, что существуют числа a, b, для которых выполнено $\theta \in [a, b], b - a = 1$, причем для a и b существуют состоятельные оценки. Найдите эти оценки и покажите их состоятельность.

Указание. Воспользуйтесь формулой полной вероятности.

- 4. (З балла) Распределение случайного вектора V = (X, Y, Z) задается следующим образом. Случайная величина X имеет распределение $\mathcal{N}(0,1)$. Условное распределение случайной величины Y при условии X = x есть $\mathcal{N}(\alpha x, 1)$. Условное распределение случайной величины Z при условии X = x, Y = y есть $\mathcal{N}(\beta y + \gamma x, 1)$.
 - (a) Нарисуйте граф причинно-следственных связей, соответствующий данной модели. Выпишите плотность вектора V.
 - (b) Посчитайте ρ корреляцию между Y и Z. Указание. Воспользуйтесь аддитивностью параметра сдвига.
 - (c) Предположим, что величина X не наблюдаема. Можно ли утверждать, что Y влечет Z, если $\rho \neq 0$?
 - (d) Ответьте на предыдущий вопрос, если известно, что $\alpha = 0$.
- 5. **(4 балла)** В условиях предыдущей задачи посчитайте $\mathsf{E}(Z|Y=y)$ и $\mathsf{E}(Z|Y:=y)$. Сравните результаты между собой.

Внимание. Теоретические вычисления могут быть довольно затруднительными. В таком случае можно свести ответ к интегралам, которые посчитать методом Монте-Карло для некоторых значений y и параметров α, β, γ .