Exercícios Folha 1

1 Linguagens Formais e Expressões Regulares

- 1.1 Seja $A = \{a, b\}$. Determine o número de palavras sobre A tais que:
 - a) o comprimento é 3;
 - b) o comprimento é no máximo 3;
 - c) o comprimento não excede um dado número natural m.
- **1.2** Responda ao exercício anterior assumindo que A é um alfabeto com n letras.
- **1.3** Seja $A = \{a, b\}$. Para cada um dos seguintes conjuntos de palavras, dê exemplos de elementos e apresente uma sua caracterização alternativa.
 - a) $\{u \in A^* : |u| \in \mathbb{N}\}$
 - **b)** $\{u \in A^* : |u| = |u|_a\}$
 - c) $\{u \in A^* : u = u^2\}$
 - **d)** $\{u \in A^* : |u|_a + |u|_b < 10\}$
- **1.4** Sejam A um alfabeto, $x, y, z \in A^*$ e $a \in A$. Prove por indução em palavras que:
 - a) $x.\epsilon = x = \epsilon.x$;
 - **b)** $|x.y|_a = |x|_a + |y|_a;$
 - **c)** x.(y.z) = (x.y).z.
- **1.5** Sejam A um alfabeto e $x, y, z \in A^*$. Prove por indução no comprimento de palavras que:
 - a) $x.y = x.z \Rightarrow y = z$;
 - **b)** $y.x = z.x \Rightarrow y = z.$
- **1.6** Sejam A um alfabeto, $u \in A^*$ e $n, m \in \mathbb{N}_0$. Prove que:
 - a) $|u^n| = n|u|$;
 - **b)** $u^n.u^m = u^{n+m};$
 - **c)** $(u^n)^m = u^{n \times m}$.
- **1.7** Sejam A um alfabeto e $x, y \in A^*$. Prove que:
 - a) $|x^I| = |x|$;
 - **b)** $(x^I)^I = x$;
 - **c)** $(x.y)^I = y^I.x^I.$
- **1.8** Sejam A um alfabeto e $x \in A^*$. Prove que, para qualquer fator y de x, existe um prefixo w de x e existe um sufixo z de x tais que x = w.y.z.

Autómatos e Linguagens Formais

LCC/LMAT 2022/2023

Exercícios Folha 2

1.9 Considere o alfabeto $A = \{a, b\}$ e a condição P(x), sobre palavras em A, dada por:

$$|x|_a > |x|_b \Longrightarrow \exists u, v \in A^* : x = uav \land |u|_a = |u|_b.$$

- a) Verifique que P(x) é verdadeira para $x \in \{baaab, baaa, baa, aab\}$.
- b) Mostre que P(x) é verdadeira, para todo $x \in A^*$, usando indução no comprimento de palavras.
- **1.10** Seja $A = \{a, b\}$. Dê uma caracterização indutiva de cada uma das seguintes linguagens sobre A.
 - a) $\{a^n : n \in \mathbb{N}_0\}$
 - **b**) A^{+}
 - c) $\{u \in A^* : bb \text{ \'e sufixo de } u\}$
 - **d)** $\{a^nb^m: n, m \in \mathbb{N} \land n > m\}$
- **1.11** Cada uma das alíneas seguintes define indutivamente uma linguagem L sobre $A = \{a, b\}$. Apresente uma caracterização não indutiva de cada uma destas linguagens.
 - a) 1. $a \in L$ 2. $x \in L \Rightarrow bx \in L$ 3. $x \in L \Rightarrow xb \in L$
 - **b)** 1. $a \in L$ 2. $x \in L \Rightarrow bx \in L$ 3. $x \in L \Rightarrow xb \in L$ 4. $x \in L \Rightarrow xa \in L$
 - c) 1. $a \in L$ 2. $b \in L$ 3. $x \in L$ e $y \in L \Rightarrow xay \in L$ 4. $x \in L$ e $y \in L \Rightarrow xby \in L$
- **1.12** Sejam $A = \{a, b\}$ e L a linguagem sobre A definida indutivamente pelas regras que se seguem.
 - 1. $a \in L$ 2. $x \in L \Rightarrow xa \in L$ 3. $x \in L \Rightarrow xb \in L$
 - a) Prove que $ababa \in L$ e que $baba \notin L$.
 - b) Enuncie o Princípio de indução para L.
 - c) Prove que, para qualquer $x \in L$, existe $y \in A^*$ tal que x = ay.
 - **d)** Prove que $L = \{ay : y \in A^*\}.$
- **1.13** Sejam $A = \{0,1\}$ e L a linguagem sobre A definida indutivamente pelas regras que se seguem.
 - 1. $\epsilon \in L$ 2. $x \in L$ e $y \in L \Rightarrow 0x1y \in L$ 3. $x \in L$ e $y \in L \Rightarrow 1x0y \in L$
 - a) Determine $\{u \in L : |u| \le 4\}$.
 - b) Enuncie o Princípio de indução para L.
 - c) Prove que, para qualquer $x \in L$, |x| é par.
 - d) Apresente uma caracterização de L que não seja indutiva e prove que, de facto, a caracterização apresentada corresponde a L.

Exercícios

Folha 3

- **1.14** Seja $A = \{0, 1\}$ e sejam $L_1 = \{\epsilon, 1, 01\}$ e $L_2 = \{\epsilon, 0, 10\}$. Determine as seguintes linguagens sobre $A: L_1 \cup L_2, L_1 \cap L_2, L_1 \setminus L_2, L_1 L_2, L_2 L_1, 0L_1 \in L_10L_2$.
- **1.15** Sejam A um alfabeto e $L, L_1, L_2 \subseteq A^*$. Mostre que:
 - a) se $L_1 \subseteq L_2$, então $LL_1 \subseteq LL_2$ e $L_1L \subseteq L_2L$;
 - **b)** pode ter-se $LL_1 \subseteq LL_2$ e $L_1L \subseteq L_2L$ e $L_1 \not\subseteq L_2$;
 - c) se $L_1 \neq \emptyset$, então $L_1 \subseteq L_1L_2$ se e só se $\epsilon \in L_2$.
- **1.16** Seja $A = \{0, 1\}$ e seja L a linguagem sobre A dada por $\{1^{2n} : n \in \mathbb{N}\}$. Determine:
 - a) L^0 , L^1 e L^2 ;
 - **b)** $L^+ \in L^*$.
- 1.17 Seja A o alfabeto $\{0,1\}$. Dê exemplos de linguagens L_1 e L_2 sobre A de tal modo que:
 - a) L_1 seja uma linguagem finita e $L_1^* = A^*$;
 - b) L_2 seja uma linguagem infinita e $L_2 \neq L_2^*$.
- **1.18** Sejam A um alfabeto e L uma linguagem sobre A. Mostre que $L=L^*$ se e só se são satisfeitas as seguintes condições:
 - i) $\epsilon \in L$; ii) para todo $u, v \in L$, $uv \in L$.
- **1.19** Sejam A um alfabeto e L uma linguagem sobre A. Mostre que:
 - a) para todo $n, m \in \mathbb{N}_0, L^nL^m = L^{n+m}$;
 - **b)** $L^*L^* = L^*;$
 - c) para todo $n \in \mathbb{N}$, $(L^*)^n = L^*$;
 - **d**) $(L^*)^* = L^*$.
- ${\bf 1.20}\,$ SejamAum alfabeto e L,L_1,L_2 linguagens sobre A. Mostre que:
 - a) $(L_1 \cup L_2)^I = L_1^I \cup L_2^I$;
 - **b)** $(L_1L_2)^I = L_2^IL_1^I$;
 - c) para todo $n \in \mathbb{N}_0$, $(L^n)^I = (L^I)^n$;
 - **d)** $(L^*)^I = (L^I)^*.$

Univ. Minho Dep. Matemática

Autómatos e Linguagens Formais

LCC/LMAT 2022/2023

Exercícios Folha 4

1.21 Seja $A = \{0, 1\}$. Para cada uma das seguintes palavras u, sobre o alfabeto $A \cup \{\emptyset, \epsilon, (\cdot, \cdot), +, \cdot, *\}$, indique: i) se $u \in ER(A)$ e ii) se u abrevia um elemento de ER(A) (de acordo com as convenções estabelecidas), indicando um elemento de ER(A) abreviado por u.

- **d**) Ø*Ø **e**) 10^3 **f**) $01^* + \epsilon + 10^+$ \mathbf{a}) $(\epsilon.1)$ **b**) (0.) \mathbf{c}) (*0)
- **1.22** Para cada uma das seguintes expressões regulares r, sobre o alfabeto $\{a, b, c\}$, determine $\mathcal{L}(r)$.
 - a) $abc\epsilon$ **b)** $a(b + \emptyset c)$
 - a) $abc\epsilon$ b) $a(b + \emptyset c)$ c) ab^*c d) $(a+b)^n a (com <math>n \in \mathbb{N}_0)$ e) $a(a+b+c)^+(b+c)$ f) $(a+b+c)^*aa(a+b+c)^*$
- 1.23 Dê exemplos de palavras de "comprimento mínimo", sobre o alfabeto {0,1}, que não pertençam à linguagem representada por cada uma das seguintes expressões regulares:
 - a) $\epsilon + (0^* + 1^*)(0^* + 1^*)$;
- **b)** $1^*(01)^*0^*$;
- c) 0*(100*)*1*.
- **1.24** Prove que cada uma das seguintes linguagens sobre o alfabeto $\{a, b, c\}$ é regular.
 - a) O conjunto das palavras que têm, pelo menos, uma ocorrência de b ou de c.
 - b) O conjunto das palavras de comprimento impar.
 - c) O conjunto das palavras nas quais, pelo menos, uma das letras não ocorre.
- **1.25** Sejam A um alfabeto e $r, r_1, r_2, s, s_1, s_2 \in ER(A)$. Prove que:

- a) $r \le r^{\circ}$; b) $r \le s \Rightarrow r^{\circ} \le s$, c) $r_1 \le s_1 \ e \ r_2 \le s_2 \Rightarrow r_1 + r_2 \le s_1 + s_2$; d) $r_1 \le s_1 \ e \ r_2 \le s_2 \Rightarrow r_1 r_2 \le s_1 s_2$; e) $r_1 \le s \ e \ r_2 \le s \Rightarrow r_1 + r_2 \le s$; f) $r_1 \le s^{\circ} \ e \ r_2 \le s^{\circ} \Rightarrow r_1 r_2 \le s^{\circ}$.

- **1.26** Seja A um alfabeto e sejam $r, s \in ER(A)$. Prove que:
 - a) $r^* = r^*r^*$;
- **b)** $r^* = (r^*)^*;$ **c)** $(r+s)^* = (r^* + s^*s)^* = (r^*s^*)^*.$
- 1.27 Prove que, dadas expressões regulares r e s sobre um alfabeto A, as seguintes igualdades não são necessariamente válidas:
 - a) $(r+s)^* = r^* + s^*;$ b) $(rs)^* = r^*s^*.$
- 1.28 Prove que o conjunto das linguagens regulares sobre um alfabeto é fechado para as operações de união, concatenação, e fecho de Kleene.
- 1.29 Para cada uma das seguintes equações lineares à direita, indique soluções alternativas em $ER(\{a,b\})$, se possível, e determine uma solução mínima em $ER(\{a,b\})$.

 - a) $X_1 = aX_1 + a + \epsilon$; b) $X_2 = (b+a)X_2 + a^*$; c) $Y = (ab)^*Y + a + b$.
- 1.30 Utilize sistemas de equações para encontrar expressões regulares que provem que cada uma das seguintes linguagens sobre o alfabeto $\{a, b, c\}$ é regular:
 - a) o conjunto das palavras onde o número de ocorrências de a é par;
 - **b)** o conjunto das palavras em que não ocorre o fator *abc*;
 - c) o conjunto das palavras nas quais o fator ab ocorre exatamente uma vez e c não ocorre.

Exercícios Folha 5

2 Autómatos Finitos

2.1 Considere o autómato $\mathcal{A} = (\{0,1,2\},\{a,b\},\delta,0,\{2\})$ em que a função transição δ é dada pela tabela que se segue.

$$\begin{array}{c|ccccc} \delta & 0 & 1 & 2 \\ \hline a & \{1\} & \{1,2\} & \{2\} \\ b & \emptyset & \{1\} & \emptyset \\ \end{array}$$

- a) Represente o autómato \mathcal{A} através de um grafo.
- **b)** Para $q \in \{0, 1, 2\}$ e $u \in \{\epsilon, a, b, ab, ba, aab, abb\}$, determine $\delta(q, u)$.
- c) Dê exemplo de palavras u de comprimento 2 tais que:
 - i) u é etiqueta de caminho com origem 1 e destino 2;
 - ii) uba é etiqueta de caminho bem sucedido;
 - iii) não há caminhos com origem 0 e etiqueta ua;
 - iv) $0 \stackrel{abu}{\longrightarrow} 2;$
 - \mathbf{v}) au é aceite por \mathcal{A} ;
 - **vi)** au é rejeitada por \mathcal{A} .
- d) Mostre que:
 - i) $\forall u \in \{a, b\}^*. 1 \in \delta(0, au);$
 - ii) $\forall n \in \mathbb{N}. \ 2 \in \delta(1, a^n);$
- e) Mostre que, para todo $u \in \{a, b\}^*, n \in \mathbb{N}$, a palavra aua^n é reconhecida por A.
- f) Mostre que:
 - i) $\forall x \in \{a,b\}^*$. $0 \xrightarrow{x} 1 \Longrightarrow \exists u \in \{a,b\}^*$. x = au;
 - ii) $\forall x \in \{a,b\}^*$. $0 \xrightarrow{x} 2 \Longrightarrow \exists u \in \{a,b\}^*, n \in \mathbb{N}. x = aua^n$.
- **g)** Indique L(A) e prove a sua afirmação.
- **2.2** Considere o autómato $\mathcal{A} = (\{0, 1, 2\}, \{a, b\}, \delta, 0, \{2\})$ em que a função transição δ é dada pela tabela que se segue.

- a) Represente o autómato A através de um grafo.
- b) Indique se \mathcal{A} é: i) determinista; ii) completo; iii) acessível; iv) co-acessível.
- c) Dê exemplos de palavras aceites por \mathcal{A} e de palavras rejeitadas por \mathcal{A} .
- d) Descreva a linguagem reconhecida por \mathcal{A} e prove a sua afirmação.

Autómatos e Linguagens Formais

LCC/LMAT 2022/2023

Exercícios Folha 6

2.3 Considere o autómato $\mathcal{A} = (\{Q, \{a, b\}, \delta, i, F)$ representado pelo seguinte grafo.

- a) Explicite Q, δ , $i \in F$.
- b) Dê exemplos de palavras aceites por \mathcal{A} e de palavras rejeitadas por \mathcal{A} .
- c) Mostre que para qualquer $u \in \{a, b\}^*$ que seja não vazia e aceite por \mathcal{A} , existe $v \in \{a, b\}^*$ tal que u = ava.
- d) Descreva a linguagem reconhecida por A.
- e) Classifique o autómato em relação a determinismo e a completude.
- **2.4** Seja $A = \{a, b\}$. Prove que é reconhecível por autómatos finitos a linguagem constituída por todas as palavras em que:
 - a) ocorre o fator aa;
 - **b)** não ocorre o fator aa;
 - c) têm um número ímpar de ocorrências de a;
 - d) cada ocorrência de a é precedida de uma ocorrência de b.
- 2.5 Para cada uma das linguagens dos dois exercícios anteriores, indique um autómato determinista e acessível que a reconheça.
- 2.6 Considere uma máquina de venda de café que aceita moedas de 10, 20 e 50 cêntimos, custando cada café 50 cêntimos e sendo as moedas depositadas sequencialmente. Quando a quantia depositada atinge ou excede os 50 cêntimos, a máquina fornece um café, mas não devolve troco. Construa um autómato que simule o funcionamento desta máquina.
- **2.7** Seja \mathcal{A} o autómato com transições- ϵ e alfabeto $\{a,b\}$, dado pelo seguinte grafo:

- a) Calcule o fecho- ϵ de cada um dos estados de A.
- b) Para cada $u \in \{a, b\}^*$ tal que $|u| \leq 2$, indique todos os caminhos com origem 0 e etiqueta u e diga se u é aceite por A.
- c) Prove que \mathcal{A} aceita todas as palavras da linguagem $\mathcal{L}((ab)^*)$.
- d) Indique uma expressão regular r tal que $L(A) = \mathcal{L}(r)$.
- e) Construa um autómato sem transições vazias que reconheça L(A).
- **2.8** Seja $A = \{a, b\}$. Prove que as linguagens associadas às seguintes expressões regulares sobre A são reconhecíveis por autómatos com transições vazias:
 - a) $aa + ab^*$;
- **b)** $(aa + ab^*)^*$;
- c) $(aa + ab^*)^*bb$.

Exercícios Folha 7

- **2.9** Sejam A um alfabeto, r e s expressões regulares sobre A e \mathcal{A} e \mathcal{B} autómatos com transições vazias e alfabeto A, que reconheçam $\mathcal{L}(r)$ e $\mathcal{L}(s)$ respectivamente. Construa autómatos com transições vazias para reconhecer cada uma das seguintes linguagens:
 - a) $\mathcal{L}(r^* + s)$;
 - **b)** $\mathcal{L}((rs)^*)$.
- **2.10** Considere o alfabeto $A = \{a, b\}$. Para cada cada um dos autómatos \mathcal{A} considerado no Exercício 2.4, determine uma expressão regular r tal que $\mathcal{L}(r) = L(\mathcal{A})$, recorrendo ao método das equações lineares.
- **2.11** Seja $A = \{a, b\}$ seja L_0 a linguagem sobre A constituída pelas palavras que não têm prefixo aa.
 - a) Construa um autómato que reconheça L_0 .
 - b) A partir do autómato construído na alínea anterior e recorrendo ao método das equações lineares, obtenha uma expressão regular r tal que $\mathcal{L}(r) = L_0$.
 - c) Para cada expressão regular r abaixo apresentada, justifique se $\mathcal{L}(r) = L_0$.
 - **i)** $b^*ab^+(a+b)^* + \epsilon$
 - ii) $(\epsilon + a)(\epsilon + b)(a + b)^*$
 - iii) $(\epsilon + a)(\epsilon + b(a+b)^*)$
- **2.12** Considere o alfabeto $A = \{a, b\}$, a linguagem L_0 constituída pelas palavras que começam por a e considere ainda o autómato com transições- ϵ $\mathcal{A} = (\{1, 2, 3\}, A, \delta, 1, \{3\})$ onde δ é dada por:

Para cada uma das linguagens que se segue, indique um autómato que a reconheça e indique uma expressão regular que lhe esteja associada

- a) $L(A) \cup L_0$
- **b)** $(L(A)L_0)^*$

Univ. Minho Dep. Matemática

Autómatos e Linguagens Formais

LCC/LMAT 2022/2023

Exercícios

Folha 8

2.13 Considere o alfabeto $A = \{a, b\}$ e os autómatos deterministas completos e acessíveis que se seguem.

Para cada um dos autómatos:

- a) dê exemplo de estados distintos que sejam equivalentes e dê exemplo de estados que não sejam equivalentes;
- b) para cada $k \in \mathbb{N}_0$, indique o conjunto quociente para a relação \sim_k ;
- c) indique o conjunto quociente para a relação ~;
- d) construa o seu autómato quociente (para a relação ~).
- 2.14 Construa autómatos minimais que reconheçam cada uma das linguagens consideradas no Exercício 2.12.
- **2.15** Seja $\mathcal{A} = (Q, A, \delta, q_0, F)$ um autómato determinista, completo e acessível. Prove que:
 - a) a relação \sim e as relações \sim_k , para cada $k \in \mathbb{N}_0$, são relações de equivalência.
 - **b)** para qualquer $k \in \mathbb{N}_0, \sim_{k+1} \subseteq \sim_k$.
 - **c)** para quaisquer $q, q' \in Q$, $q \sim q'$ se e só se para qualquer $k \in \mathbb{N}_0$ $q \sim_k q'$.
- **2.16** Prove que se L é uma linguagem (sobre um alfabeto finito) que é infinita e reconhecível por autómatos finitos, então existem $j \in \mathbb{N}_0$ e $k \in \mathbb{N}$ tais que, para cada $i \in \mathbb{N}_0$, L contém palavras de comprimento j + ki.
- **2.17** Mostre que as seguintes linguagens sobre o alfabeto $A = \{a, b\}$ não são regulares.
 - a) $\{a^n b^m : n, m \in \mathbb{N}_0 \land n < m\}$
 - **b)** $\{u \in A^* : u = u^I\}$
 - c) $\{a^p : p \text{ \'e primo}\}$ (sugestão: utilize o exercício anterior)

Exercícios Folha 9

3 Gramáticas

3.1 Seja $G = (\{S, B\}, \{a, b\}, S, P)$ a gramática com produções

$$S \rightarrow aSb \mid B$$

$$B \rightarrow bB \mid b$$

- a) Determine os elementos de $\{\alpha \in \{S, B, a, b\}^* : S \stackrel{2}{\Rightarrow} \alpha\}$.
- **b)** Determine os elementos de $\{\alpha \in \{a,b\}^* : S \stackrel{k}{\Rightarrow} \alpha \land k \leq 3\}.$
- c) Prove que para qualquer $n \in \mathbb{N}, B \stackrel{n}{\Rightarrow} b^n$.
- d) Dê exemplos de palavras que pertençam à linguagem gerada por G e de palavras que não pertençam à linguagem gerada por G.
- e) Prove que para qualquer $u \in L(G)$, existem $m, n \in \mathbb{N}_0$ tais que m < n e $u = a^m b^n$.
- **f)** Prove que a linguagem gerada por $G \in \{a^m b^n : m, n \in \mathbb{N}_0 \land m < n\}$.

3.2 Considere o alfabeto $A = \{(,)\}$ e a gramática $G = (\{S\}, A, S, P)$, com produções

$$S \rightarrow SS \mid (S) \mid \epsilon$$

- a) Indique derivações da palavra (())() a partir de S que tenham comprimentos diferentes.
- **b)** Determine os elementos de $\{u \in L(G) : |u| = 6\}$.
- c) Prove que para qualquer $u \in L(G)$, $|u|_{\ell} = |u|_{\ell}$.
- **d)** Justifique se $L(G) = \{u \in A^* : |u|_{(} = |u|_{)}\}.$
- e) Seja $G' = (\{S\}, A, S, P')$ a gramática com produções

$$S \rightarrow (S)S \mid \epsilon$$

Prove que L(G) = L(G').

3.3 De entre as seguintes gramáticas, indique as equivalentes.

$$G_{1} = (\{S\}, \{a, b\}, S, P_{1})$$
 $G_{3} = (\{S\}, \{a, b\}, S, P_{3})$
 $S \rightarrow aS \mid Sa \mid b$ $S \rightarrow aS \mid ab$
 $G_{2} = (\{S, A, B\}, \{a, b\}, S, P_{2})$ $G_{4} = (\{S, A, B\}, \{a, b\}, S, P_{4})$
 $S \rightarrow AB \mid BA$ $S \rightarrow AB \mid BA$
 $A \rightarrow a \mid aA$ $A \rightarrow a \mid aA$
 $A \rightarrow ab \rightarrow ab$ $B \rightarrow b$

Exercícios

Folha 10

3.4 Considere as gramáticas seguintes.

$$G_{1} = (\{S\}, \{a, b\}, S, P_{1}) \qquad G_{2} = (\{S\}, \{a, b\}, S, P_{2})$$

$$S \rightarrow aS \mid bS \mid a \qquad S \rightarrow aSa \mid bSb \mid \epsilon$$

$$G_{3} = (\{S, A, B, C\}, \{a, b, c\}, S, P_{3})$$

$$S \rightarrow ABC$$

$$A \rightarrow a \mid aA$$

$$aB \rightarrow ab$$

$$bC \rightarrow bc$$

- a) Para cada gramática G acima e para cada gramática G do exercício anterior, diga se G é uma gramática independente de contexto e se G é uma gramática linear à esquerda ou à direita.
- b) Para cada gramática G acima, determine a linguagem gerada por G.
- 3.5 Para cada uma das linguagens geradas pelas gramáticas do exercício anterior,
 - a) construa, se possível, uma gramática regular que gere a linguagem;
 - b) construa, se possível, um autómato finito que reconheça a linguagem.
- **3.6** Apresente gramáticas para gerar as seguintes linguagens sobre o alfabeto $A = \{a, b\}$.
 - a) A linguagem das palavras que têm aa como fator.
 - b) A linguagem das palavras que não têm aa como fator.
 - c) $\{u \in A^* : |u|_a = |u|_b\}$
 - **d)** $\{u \in A^* : |u|_a = 2|u|_b\}$
 - e) $\{a^m b^n : m, n \in \mathbb{N}_0 \land m < n\}$
 - **f)** $\{a^m b^n : m, n \in \mathbb{N}_0 \land m < n\}^*$
 - **g)** $\{a^m b^n : m, n \in \mathbb{N}_0 \land m < n\}\{a\}^*$
- **3.7** Para cada gramática G considerada nos exercícios 3.1 a 3.4, que seja independente de contexto:
 - a) se possível, apresente derivações distintas de elementos de L(G);
 - b) construa as árvores de derivação determinadas pelas derivações indicadas na alínea anterior;
 - c) de entre as derivações indicadas na alínea a), diga se existem derivações essencialmente iguais;
 - d) diga se G é ambígua;
 - e) apresente uma gramática equivalente a G que seja não ambígua.

Autómatos e Linguagens Formais

Exercícios Folha 11

4 Autómatos de Pilha

4.1 Considere o autómato de pilha $E = (\{1, 2, 3\}, \{a, b\}, \{z, a\}, \delta, 1, z, \{3\})$ tal que

$$\begin{split} \delta(1,b,z) &= \{(1,bz)\}, & \delta(2,a,b) &= \{(2,\epsilon)\}, \\ \delta(1,b,b) &= \{(1,bb)\}, & \delta(2,a,z) &= \{(2,z)\}, \\ \delta(1,a,z) &= \{(2,z)\}, & \delta(2,\epsilon,z) &= \{(3,z)\}, \\ \delta(1,a,b) &= \{(2,\epsilon)\}, & \emptyset \quad \text{nos restantes casos,} \end{split}$$

e que reconhece palavras utilizando o critério dos estados finais.

- a) Determine todas as configurações que podem ser computadas a partir das configurações (1, aab, z) e (1, baa, z).
- **b)** Justifique se $aab \in L(E)$ e se $baa \in L(E)$.
- c) Mostre que:
 - i) E reconhece a^n , para todo $n \in \mathbb{N}$;
 - ii) E reconhece bba^n , para todo $n \ge 2$.
- d) Descreva a linguagem L(E) reconhecida pelo autómato.
- e) Observe que, considerando o critério da pilha vazia, a linguagem reconhecida por E é a linguagem vazia e indique um autómato de pilha que use o critério da pilha vazia e reconheça a mesma linguagem que E.
- 4.2 A tabela de transição seguinte diz respeito a um autómato de pilha com estado inicial 1, símbolo inicial da pilha z e estado final 2 (que utiliza o critério dos estados finais). Determine a linguagem (regular) reconhecida pelo autómato.

Estado	Entrada	Símbolo da pilha	Movimento(s)
1	a	z	(2,z)
1	b	z	(1,z)
2	a	z	(2,z)
2	b	z	(2,z)

Todas as outras combinações: nenhum

- 4.3 Indique tabelas de transição para autómatos de pilha que reconheçam cada uma das linguagens seguintes, descrevendo sucintamente as respetivas estratégias.
 - a) $L_1 = \{a^n u : u \in A^* \land |u| \le n\}$ sobre o alfabeto $A = \{a, b\}$;
 - **b)** $L_2 = \{a^i b^j c^k : \exists i, j, k \in \mathbb{N} : j = i + k\}$ sobre o alfabeto $\{a, b, c\}$.
- **4.4** Considere a GIC G do exercício 3.2, nomeadamente, $G = (\{S\}, \{(,)\}, S, P)$ com produções: $S \to SS \mid (S) \mid \epsilon$.
 - a) Construa um autómato de pilha que reconheça L(G). (Sugestão: recorde a demonstração da proposição que estabelece que a linguagem gerada por uma GIC é reconhecível por um autómato de pilha.)
 - b) Mostre que u = ()() é reconhecida pelo autómato indicado na alínea a).