	TP1 Aerotherm - Lothmann Vincent	Pt		A B C D	Note	
1	Préparation du travail					
1	Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.	2	Α		2	
2	Quel est le nom de la grandeur réglée ?	1	Α		0,5	
3	Quel est le principe utilisé pour mesurer la grandeur réglée ?	1	С		0,175	
4	Quelle est la grandeur réglante ?	1	D			Grandeurs réglée et réglante ne sont généralement
5	Donner une grandeur perturbatrice.	1	D		0,025	pas de même nature
6	Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs, alimentations, générateurs nécessaires. Faire apparaître les polarités.	1	Α		1	
II.	Etude du procédé					
1	Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.	1	В		0,75	Il manque le réglage de la sortie
2	Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau).	1	Α		1	
3	En déduire le gain statique du procédé autour du point de fonctionnement.	1	С		0,35	Je ne comprends rien au calcul
4	En déduire le sens d'action à régler sur le régulateur.	1	Α		1	
5	Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	С		1,05	Revoir les constructions
III.	Etude du régulateur					
1	Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	2	D		0,075	
2	En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	2	Χ		0	
IV.	Performances et optimisation					
1	Programmer votre régulateur pour assurer le fonctionnement de la régulation.	1	Χ		0	
2	Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et la précision relative.	2	X		0	
3	Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.	1	X		0	
4	Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.	2	Χ		0	
			Note	sur : 20	8,0	

Préparation du travail:

1)

- 2)La grandeur réglée est la température dans l'aérotherme
- 3) le principe utilisé pour mesuré la grandeur réglé est un transmetteur de température
- 4) la grandeur réglante est le débit d'air a l'entrée du ventilateur.
- 5) La grandeur perturbatrice est le débit d'air en sortie de l'aérotherme

2-Étude du procédé

,						
TagName	pid1		LIN Name	pid1		
Туре	PID		DBase	<local></local>		
Task	3 (110ms)		Rate	0		
Mode	AUTO		Alarms			
FallBack	AUTO					
			HAA	100.0	%	
→PV	0.0	%	LAA	0.0	%	
SP	0.0	%	HDA	100.0	%	
OP	0.0	%	LDA	100.0	%	
SL	0.0	%				
TrimSP	0.0	%	TimeBase	Secs		
RemoteSP	0.0	%	XP	100.0	%	
Track	0.0	%	TI	0.00		
			TD	0.00		
HR_SP	100.0	%				
LR_SP	0.0	%	Options	00101100		
HL_SP	100.0	%	SelMode	00000000		
LL_SP	0.0	%				
			ModeSel	00000000		
HR_OP	100.0	%	ModeAct	00000000		
LR_OP	0.0	%				
HL_OP	100.0	%	FF_PID	0.0	%	
LL_OP	0.0	%	FB_OP	0.0	%	

TagName	01M01_0A			LIN Name	01M01_0A	
Туре	AI_UIO			DBase	<local></local>	
Task	3 (110ms)			Rate	0	
MODE	AUTO			Alarms		
Fallback	AUTO			Node	>00	
				Sitello	1	
PV	0.0	%		Channel	1	
HR	100.0	%		InType	mA	
LR	0.0	%		HR_in	20.00	mA
LIN	0.0	70		LR_in	4.00	mA
HiHi	100.0	%		Al	0.00	mA
Hi	100.0	%		Res	0.000	Ohms
Lo	0.0	%				
LoLo	0.0	%		CJ_type	01M01_0A.Res	
Hyst	0.5000	%		CJ_temp	0.000	
				LeadRes	0.000	Ohms
Filter	0.000	Secs		Emissiv	1.000	
Char	Linear			Delay	0.000	Secs
UserChar	Lilloai			Delay	0.000	3603
5501 51/01				SBreak	Up	
PVoffset	0.000	%		PVErrAct	Up	
AlmOnTim	0.000	Secs		Ontions	>0000	
			_	Options		
Alm0fTim	0.000	Secs		Status	>0000	

TagName	pid1		LIN Nam	e pid1	
Туре	PID		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
	ALITO		41		
Mode	AUTO		Alarms		
FallBack	AUTO				
			HAA	100.0	%
PV	0.0	%	LAA	0.0	%
SP	0.0	%	HDA	100.0	%
OP	0.0	%	LDA	100.0	%
SL	0.0	%			
TrimSP	0.0	%	TimeBa	e Secs	
RemoteSP	0.0	%	XP	100.0	%
Track	0.0	%	TI	0.00	
			TD	0.00	
HR_SP	100.0	%			
LR_SP	0.0	%	Options	00101100	
HL_SP	100.0	%	SelMode	00000000	
LL_SP	0.0	%			
			ModeSe	00000000	
HR_OP	100.0	%	ModeAd	t 00000000	
LR_OP	0.0	%			
HL_OP	100.0	%	FF_PID	0.0	%
LL_OP	0.0	%	FB_OP	0.0	%

2)

Y	X
30	41
60	75
90	100

3)\Delta X/\Delta Y=59/60=0,98

MESURE X EN FONCTION DE LA COMMANDE Y

4)Lorsqu'on augmente la commande la mesure augmente donc le procédé est direct et le régulateur inverse

5)

3-<u>Étude du régulateur</u>

1)La structure du PID est mixte