NEURÓNOVÉ SIETE PROJEKT 3 ECHO STATE NETWORK

Autor: Marián Kravec

Úvod

V tejto úlohe sa snažíme natrénovať echo state network ktorá produkuje L predchádzajúcich meraní, našou snahou bude určiť akú pamäťovú kapacitu má táto sieť pre rôzne hodnoty spektrálneho priemeru a riedkosti siete, a ako sa táto kapacita vyvíja so produkovania meraní viac v minulosti.

Dáta

Náš dataset tvorí 1100 náhodných navzájom nezávislých čísel z rozdelenia Uni(-1,+1), prvých 100 dátových bodov použijeme iba aby "vyčistili chuťové schopnosti" modelu, čiže aby si zvykol na typ dát, ďalších 500 dátových bodov je použitých na trénovanie modelu a posledných 500 dátových bodov je určených na evalváciu modelu, čiže v tomto prípade určenie pamäťovej kapacity modelu.

Architektúra a hyperparametre

Všeobecná architektúra

Náš model dostane na vstupe jedno číslo, rezervoár má veľkosť 100 a na výstupe vráti L čísel (skúmaný hyperparameter). Vstupná matica veľkosti (100 × 1) (z jedného vstupu na veľkosť rezervoáru) je generovaná náhodne z rozdelenia $Uni_{(100\times1)}(-0.01,+0.01)$. Matica rezervoáru veľkosti (100 × 100) je taktisto náhodná a generovaná z rozdelenia $N_{(100\times100)}(0,1)$, pričom následne je každá s hodnotou prepísaná na 0 s pravdepodobnosťou p (skúmaný hyperparameter) a výsledné hodnoty matice sú ešte prenásobená číslom ($\frac{\rho}{max(iegenval)}$) tak aby spektrálny polomer bol ρ (skúmaný hyperparameter). Výstupná matica veľkosti (100 × L) je počítaná počas trénovania analyticky pomocou výpočtu pseudoinverznej matice tvorenej priebežnými rezervoármi pre jednotlivé vstupné dátové body. Ako aktivačná funkcia na rezervoárovej vrstve je použitý hyperbolický tangens, a aktivačná funkcia na výstupnej vrstve je lineárna.

Hyperparametre

V tomto prípade budeme najskôr určovať vhodnú hodnotu L, následne určíme spektrálny polomer s najväčšou pamäťovou kapacitou a na záver sa pozrieme na vplyv riedkosti (pravdepodobnosti vynulovania hodnoty v matici rezervoáru) na pamäťovú kapacitu.

Výsledky modelu

Nastavenie L

Ako prvé potrebujeme určiť ako veľmi do minulosti sa chceme pozerať. V zadaní je veta: "Choose L that performs well". Nie je mi úplne jasné čo je týmto myslené tak sme vyskúšali viacero hodnôt, pričom riedkosť bola nastavená na 70% a to čo sme pozorovali, je ako sa vyvíja pamäťová kapacita pre hodnoty spektrálneho polomeru. Na určenie očakávanej pamäťovej kapacity pre konkrétnu hodnotu spektrálneho polomeru vypočítame priemernú pamäťovú kapacitu desiatich modelov s

týmto spektrálnym priemerom. Túto kapacitu budeme počítať pre hodnoty spektrálneho polomeru medzi hodnotami 0.01 a 1.61 s krokom 0.02.

Začnime s pomerne nízkou hodnotou L=5, dostaneme takýto graf:

Obr. 1: L = 5

Vidíme, že pamäťová kapacita je pomerne stabilne okolo TMC=5 pre všetky hodnoty spektrálneho polomeru menšieho ako 1, pre hodnoty väčšie ako jedna pamäťová kapacita rapídne klesá. Teraz skúsme o niečo vyššiu hodnotu L=20, dostaneme takýto graf:

Obr. 2: L = 20

Vidíme, že pre hodnoty spektrálneho polomeru v intervale $\rho \in (0,0.5)$ pamäťová kapacita postupne rastie, následne pre hodnoty v intervale $\rho \in (0.5,1)$ je viac-menej na stabilnej maximálnej hodnote približne TMC=19.6, a pre hodnoty väčšie ako 1 začína pamäťová kapacita rapídne klesať a okolo hodnoty 1.5 je už blízka 0.

Keďže máme stále pomerne široký interval kedy nastáva maximálna pamäťová kapacita skúsme hodnotu L zvýšiť na L=40:

Obr. 3: L = 40

Tu už vidíme, že maximálnu pamäťovú kapacitu TMC=36.6 dosiahne pre hodnotu spektrálneho polomeru $\rho=0.97$, inak je správanie podobné prechádzajúcim prípadom kde do tejto hodnoty pamäťová kapacita postupne rastie a od tejto hodnoty prudko klesá.

Môžeme skúsiť hodnotu ešte zvýšiť a skúsiť L=80:

Obr. 4: L = 80

Vidíme, že graf je takmer totožný tomu pre L=40, maximálna pamäťová kapacita je približne TMC=39.8 čo je zaujímavé keďže doteraz bola pamäťová kapacita len o trochu menšia ako hodnota L ale v tomto prípade je len približne polovičná.

Skúsme sa pozrieť na hodnoty maximálnej pamäťovej kapacity pre L medzi 10 a 100 po násobkoch 10:

L	10	20	30	40	50	60	70	80	90	100
pamäťová kapacita	9.9	19.6	28.9	36.6	39.3	39.4	39.6	39.8	40	40

Vidíme, že pamäťová kapacita spočiatku rastie s hodnotou L ale následne sa tento rast spomaľuje až dosiahne úplné maximum okolo hodnoty TMC = 40. Keďže spočiatku je kapacita podobná hodnote L a jej maximum je TMC = 40, do ďalšej časti použijeme L = 40.

Nastavenie ρ

Zopakujme si aký graf sme dostali pre L=40:

Obr. 5: L = 40

Maximálnu hodnotu pamäťovej kapacity TMC=36.6 sme dostali pre hodnotu spektrálneho polomeru $\rho=0.97$, preto ďalej už budeme pracovať s modelom využívajúcim práve túto hodnotu.

Teraz sa pozrime na to aká je pamäťová kapacita pre jednotlivé časové oneskorenia, na to aby sme dostali hodnotnejšie výsledky, tento model spustíme 20 krát a vykreslíme boxplot pre jednotlivé oneskorenia, z toho dostaneme takýto graf:

Obr. 6: Boxplot pre L=40 a $\rho=0.97$