Devoir à la maison n° 4

À rendre le 11 octobre

I. Nombres de Catalan.

On pose $C_0 = 1$ et l'on définit par récurrence, pour tout $n \in \mathbb{N}$, $C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}$.

- 1) Calculer C_1, C_2, C_3, C_4 et C_5 .
- 2) Montrer par récurrence simple que, pour tout $n \in \mathbb{N}$, $C_n \geqslant 2^{n-1}$.
- 3) Montrer par récurrence (forte ou multiple, à vous de choisir) que, pour tout $n \in \mathbb{N}, C_n \geqslant 3^{n-2}$.
- 4) Tenter de montrer par une récurrence similaire à celle de 3) que pour tout $n \in \mathbb{N}, C_n \geqslant 4^{n-2}$. À quel endroit ceci échoue-t-il?

II. Calcul de deux tangentes.

On définit le polynôme $P(X) = \frac{1}{2i} ((X+i)^5 - (X-i)^5).$

- 1) Donner la définition et les expressions des racines 5^{èmes} de l'unité.
- 2) Soit $z \in \mathbb{C}$ une racine de P, i.e. P(z) = 0. Que peut-on dire de $Z = \frac{z+i}{z-i}$?
- 3) Exprimer z en fonction de Z.
- 4) Déterminer les racines du polynôme P.
- 5) Vérifier que ces racines sont toutes réelles.
- 6) Vérifier que le polynôme P peut s'écrire sous la forme $P(X) = aX^4 + bX^2 + c$ avec a, b et c des réels que l'on calculera. Déterminer alors une autre écriture des racines de P.
- 7) Déduire des résultats précédents les valeurs exactes de $\tan \frac{\pi}{5}$ et $\tan \frac{2\pi}{5}$.

— FIN —