

VIGILADA MINEDUCACIÓN - SNIES 1732

Diferenciación e integración numéricas

Ejercicio 1

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

Ejercicio 1

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

Calcule el error
$$\int_{0}^{0.18} 0.12 + 25 \times -200 \times^{2} + 675 \times^{3} -900 \times^{4} + 400 \times^{5}$$

Ejercicio 1

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

Calcule el error
$$\int_{0}^{0.8} 0.2 + 25 \times -200 \times^{2} + 675 \times^{3} -900 \times^{4} + 400 \times^{5}$$

$$N = 10 \quad \rightarrow \Delta X = \frac{b-a}{N}$$

Ejercicio 1

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

Calcule el error
$$\int_{0}^{0.18} 0.12 + 25 \times -200 \times^{2} + 675 \times^{3} -900 \times^{4} + 400 \times^{5}$$

$$N = 10 \rightarrow \Delta X = \frac{b-a}{N} = 0.08$$

$$X_{1} = a + n\Delta X = 0 + n(0.08)$$

n	xi
0	0
1	0,08
2	0,16
3	0,24
4	0,32
5	0,4
6	0,48
7	0,56
8	0,64
9	0,72
10	0,8
	4

Ejercicio 1

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

Desde a=0, hasta b=0,8. El valor exacto de la integral es 1,640533.

Calcule el error
$$\int_{0}^{0.8} 0.2 + 25 \times -200 \times^{2} + 675 \times^{3} -900 \times^{4} + 400 \times^{5}$$

$$N = 10 \rightarrow \Delta X = \frac{b-a}{N} = 0.08$$

$$X_{1} = a + n\Delta X = 0 + n(0.08)$$

n	xi	f(xi)
0	0	0,2
1	0,08	1,23004672
2	0,16	1,29691904
3	0,24	1,34372096
4	0,32	1,74339328
5	0,4	2,456
6	0,48	3,18601472
7	0,56	3,53960704
8	0,64	3,18192896
9	0,72	1,99440128
10	0,8	0,232
	-	

Ejercicio 1

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

Desde a=0, hasta b=0,8. El valor exacto de la integral es 1,640533.

$$\int_{0}^{0.18} 0_{1}2 + 25 \times -200 \times^{2} + 675 \times^{3} - 900 \times^{4} + 400 \times^{5}$$

$$N = 10 \rightarrow \Delta X = \frac{b-a}{N} = 0.08$$

$$X_{1} = \alpha + N \Delta X = 0 + N(0.08)$$

$$A = \frac{\Delta X}{2} \left[F(X_{0}) + F(X_{0}) + 2 \sum_{i=1}^{n-1} F(X_{i}) \right] = 0$$

n	xi	f(xi)
0	0	0,2
1	0,08	1,23004672
2	0,16	1,29691904
3	0,24	1,34372096
4	0,32	1,74339328
5	0,4	2,456
6	0,48	3,18601472
7	0,56	3,53960704
8	0,64	3,18192896
9	0,72	1,99440128
10	0,8	0,232
_		

Ejercicio 1

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

Desde a=0, hasta b=0,8. El valor exacto de la integral es 1,640533.

$$\int_{0}^{0.8} 0_{1}^{2} + 25 \times -200 \times^{2} + 675 \times^{3} - 900 \times^{4} + 400 \times^{5}$$

$$N = 10 \rightarrow \Delta X = \frac{b-a}{N} = 0.08$$

$$X_{1} = \alpha + n \Delta X = 0 + n(0.08)$$

$$A = \frac{\Delta X}{2} \left[f(X_{0}) + f(X_{0}) + 2 \frac{A-1}{12} f(X_{0}) \right] =$$

$$= 0.08 \left[0.12 + 0.1232 + 2 (19.972) \right] =$$

n	xi	f(xi)
0	0	0,2
1	0,08	1,23004672
2	0,16	1,29691904
3	0,24	1,34372096
4	0,32	1,74339328
5	0,4	2,456
6	0,48	3,18601472
7	0,56	3,53960704
8	0,64	3,18192896
9	0,72	1,99440128
10	0,8	0,232
_		

Ejercicio 1

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

Desde a=0, hasta b=0,8. El valor exacto de la integral es 1,640533.

$$\int_{0}^{0.8} 0_{1}^{2} + 25 \times -200 \times^{2} + 675 \times^{3} -900 \times^{4} + 400 \times^{5}$$

$$N = 10 \rightarrow \Delta X = \frac{b-a}{N} = 0.08$$

$$X_{1} = \alpha + N\Delta X = 0 + N(0.08)$$

$$A = \frac{\Delta X}{2} \left[F(X_{0}) + F(X_{0}) + 2 \sum_{i=1}^{n-1} F(X_{i}) \right] = \frac{0.08}{2} \left[0.12 + 0.1232 + 2 (19.972) \right] = 1,615$$

n	xi	f(xi)
0	0	0,2
1	0,08	1,23004672
2	0,16	1,29691904
3	0,24	1,34372096
4	0,32	1,74339328
5	0,4	2,456
6	0,48	3,18601472
7	0,56	3,53960704
8	0,64	3,18192896
9	0,72	1,99440128
10	0,8	0,232

Ejercicio 1

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

$$\int_{0}^{0.8} \int_{1.2}^{0.12} + 25 \times -200 \times^{2} + 675 \times^{3} - 900 \times^{4} + 400 \times^{5}$$

$$N = 10 \rightarrow \Delta X = \frac{b-a}{n} = 0.08$$

$$X_{1} = \alpha + n \Delta X = 0 + n(0.08)$$

$$A = \frac{\Delta X}{2} \left[f(X_{0}) + f(X_{0}) + 2 \sum_{i=1}^{n-1} f(X_{i}) \right] = \frac{0.08}{2} \left[0.12 + 0.1232 + 2 (19.972) \right] = 1,615$$

Ejercicio 1

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

$$\int_{0}^{0.8} \int_{12}^{0.12} + 25 \times -200 \times^{2} + 675 \times^{3} - 900 \times^{4} + 400 \times^{5}$$

$$N = 10 \rightarrow \Delta X = \frac{b-a}{n} = 0.08$$

$$X_{1} = \alpha + n \Delta X = 0 + n(0.08)$$

$$A = \frac{\Delta X}{2} \left[f(X_{0}) + f(X_{0}) + 2 \sum_{i=1}^{n-1} f(X_{i}) \right] = 1.556\%$$

$$= 0.08 \left[0.12 + 0.1232 + 2 (19.972) \right] = 1.615$$

Ejercicio 2

$$\int_0^4 (1 - e^{-2x}) \, dx$$

$$N=2$$
 $\Rightarrow \Delta x = \frac{b-a}{n} = 2$

Ejercicio 2

$$\int_0^4 (1 - e^{-2x}) \, dx$$

$$N=2$$
 $\Rightarrow \Delta x = \frac{b-a}{n} = 2$

,2					
1	•	_	•	•	•
.8					
6					
4					
2					
0					

n	xi	f(xi)
0	0	0
1	2	0,98168436
2	4	0,99966454

Ejercicio 2

$$\int_0^4 (1 - e^{-2x}) \, dx$$

$$n=2$$
 $\Rightarrow \Delta x = \frac{b-a}{n} = 2$

n	xi	f(xi)
0	0	0
1	2	0,98168436
2	4	0,99966454

$$A = \frac{2}{2} \left[0 + 0,99966454 + 2(0,98168436) \right] =$$

Ejercicio 2

$$\int_0^4 (1 - e^{-2x}) \, dx$$

$$n=2$$
 $\Rightarrow \Delta x = \frac{b-a}{n} = 2$

	n	xi	f(xi)
	0	0	0
	1	2	0,98168436
3	2	4	0,99966454

$$A = \frac{2}{2} \left[0 + 0,99966454 + 2(0,98168436) \right] = 2,963033$$

Ejercicio 2

$$\int_0^4 (1 - e^{-2x}) \, dx$$

$$N=Y \rightarrow \Delta X = \frac{4}{4} = 1$$

$$A = \frac{1}{2} \left[0 + 0,99966453 + 2 \left(2,84387033 \right) \right]$$

$$= 3,3443702$$

n	xi	f(xi)
0	0	0
1	1	0,864664717
2	2	0,981684361
3	3	0,997521248
4	4	0,999664537

Ejercicio 3

$$\int_{-2}^{4} (1 - x - 4x^3 + 2x^5) \, dx$$

Con n=2 y n=4.

Halle el valor de forma analítica y aplicando la regla del trapecio compuesta.

$$\int_{-2}^{4} 1 dx - \int_{-2}^{4} x dx - \int_{-2}^{4} 4x^{3} dx + \int_{2}^{4} x^{5} dx$$