Numerical Analysis Review

Chapter 1: Error Analysis

- Taylor Expansion: $f(x\pm h)=f(x)+hf'(x)+rac{1}{2}h^2f''(x)+\cdots=\sumrac{1}{k!}h^kf^{(k)}(x)$
- Mean Value Theorem
 - $\circ \ \ f \in C^1([a,b])$ implies $\exists c \in (a,b)$ such that (b-a)f'(c) = f(b) f(a).
- Rolle's Theorem
 - $f \in C^1([a,b])$ and f(a) = f(b) implies $\exists c \in (a,b)$ such that f'(c) = 0.
 - Just apply mean value theorem, so f(b) f(a) = 0.
- Extreme values: occur at boundaries or where f' = 0.
- $f\in C^n([a,b])$ implies $\exists \xi(x)$ such that $f(x)=P_n(x)+rac{f^{n+1}(\xi(x))(x-x_0)^{n+1}}{(n+1)!}$, where P_n is the n-th order Taylor expansion of f about x_0 , i.e. $P_n(x)=\sum rac{1}{k!}f^k(x_0)(x-x_0)^k$.
- For any operation \star , in floating point we have $x \star y = fl(fl(x) \star fl(y))$.
- Magnifying error:
 - o Subtracting nearly equal numbers results in small absolute error, but large relative error
 - o Adding a large number to a small number results in large absolute error, but small relative error
 - Multiplying by big numbers or dividing by small numbers magnifies absolute error.
 - o Can rationalize the quadratic formula to avoid near-equal subtractions
 - Always express polynomials in nested form before evaluating
- Convergence: if $\{a_i\} \to a$ and there is a sequence $\{b_i\} \to 0$ and a constant K such that $|a_i-a| \le K|b_i|$, then the order of convergence is $O(b_i)$. Usually, just take $b_i=1/i^k$ for some k.

Chapter 2: Equations in 1 Variable

- Bisection Method: Given $f \in C^0([a,b])$ and f(a), f(b) of differing signs, want to find a root.
 - \circ Set $a_1 = a, b_1 = b, p_1 := (1/2)(a_1 + b_1)$, and evaluate $f(p_1)$
 - \circ If zero (or $|f(p_1)|<arepsilon$), done. Otherwise, look at the sign of $f(p_1)$:
 - If equal to sign of $f(a_1)$, repeat search on interval $[p_1,b_1]$
 - Else search $[a_1, p_1]$.
 - \circ For an actual root p, we have $|p_i p| < \frac{b-a}{2^i}$.
- Fixed point iteration: at least one for every $g \in C^1([a,b])$, at most one if |g'| < 1. To find roots of a function f, just let g = f(x) x and find a fixed point of g. Easy, since $\{\circ_i g(p_0)\}_{i=1}^\infty \to p = g(p)$ linearly for any choice of $p_0 \in [a,b]$.
- Newton's Method:
 - $\circ \ \ p_i = p_{i-1} rac{f(p_{i-1})}{f'(p_{i-1})}.$ Stop when $|f(p_i)| < arepsilon$
 - \circ This is just the x intercept of the tangent line at p_{i-1} .

o Converges quadratically.

• Secant Method:

- o Newton's method, but replace $f'(p_i) = rac{f(p_{i-1}) f(p_{i-2})}{p_{i-1} p_{i-2}}$.
- \circ This gives the x intercept of the line joining $(p_{i-1},f(p_{i-1}))$ and $(p_{i-2},f(p_{i-2}))$.

• Method of False Position:

- Secant method, but always bracket a root.
- \circ If the signs of $f(p_{i-1})$ and $f(p_{i-2})$, proceed as usual
- \circ Else, chose p_i as the x intercept involving p_{i-3} and p_{i-1} , then relabel $p_{i-2}:=p_{i-3}$ and continue.
- Order of convergence: if $\lim_{n\to\infty}\left|\frac{p_{n+1}-p}{(p_n-p)^k}\right|=\lambda$, then $\{p_n\}$ converges to p with order k and asymptotic error constant λ .
 - E.g., k = 1 is linear convergence and k = 2 is quadratic.
- Fixed-point convergence can be linear if g'(p) = 0, g'' is bounded, and the initial guess is δ -close to the actual solution.
- Zeros of order m occur where $f^{(k)}(x) = 0$ and $f^{(m)}(x)
 eq 0$ for k < m.

Chapter 3: Interpolation and Polynomial Approximation

• Lagrange polynomial:

$$\circ \ \ L_{n,k}(x) = \prod_{i=0, i
eq k}^n rac{x-x_i}{x_k-x_i}.$$

 \circ Can then express $P_n(x) = \sum_{k=0}^n f(x_k) L_{n,k}(x)$ for a set of n+1 nodes $\{x_i\}_{i=0}^n$.

$$\circ$$
 Error: $f(x) = P_n(x) + rac{1}{(n+1)!} f^{(n+1)}(\xi(x)) \prod_{i=0}^n (x-x_i).$

• Divided differences:

f(x)	First divided differences	Second divided differences	Third divided differences
$f[x_0]$	$f[r_i] = f[r_i]$		
	$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$	$f[x_1, x_2] - f[x_0, x_1]$	
$f[x_1]$	$f[x_1, x_1] = f[x_2] - f[x_1]$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$	$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_1 + x_2}$
$f[x_2]$	$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_2 - x_3}$	$f[x_0, x_1, x_2, x_3] = \frac{1}{x_3 - x_0}$
<i>y</i> 6-21	$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{f[x_3] - f[x_2]}$	$x_3 - x_1$	$f[x_1, x_2, x_3, x_4] = \frac{f[x_2, x_3, x_4] - f[x_1, x_2, x_3]}{x_1 - x_2}$
$f[x_3]$	$x_3 - x_2$	$f[x_2, x_3, x_4] = \frac{f[x_3, x_4] - f[x_2, x_3]}{x_1 - x_2}$	$x_4 - x_1$
	$f[x_3, x_4] = \frac{f[x_4] - f[x_3]}{x_4 - x_2}$	$x_4 - x_2$	$f[x_2, x_3, x_4, x_5] = \frac{f[x_3, x_4, x_5] - f[x_2, x_3, x_4]}{x_5 - x_5}$
$f[x_4]$	24 23	$f[x_3, x_4, x_5] = \frac{f[x_4, x_5] - f[x_3, x_4]}{x_5 - x_3}$	22 22
	$f[x_4, x_5] = \frac{f[x_5] - f[x_4]}{x_5 - x_4}$		
$f[x_5]$			

o Can use this to make an interpolating polynomial: use the top diagonal as coefficients

Then
$$P_n(x)=f[x_0]+\sum_{i=1}^n f[x_0\cdots x_n]\prod_{k=0}^i (x-x_i)$$
 \circ I.e. $P_n(x)=f[x_0]+f[x_0x_1](x-x_0)+f[x_0x_1x_2](x-x_0)(x-x_1)+\cdots$

- Hermite polynomial:
 - \circ Just take x_i and defined $z_{2i}=z_{2i+1}=x_i$, and replace differences having zero denominators with derivative.
- Cubic Spline, satisfies
 - o Spline agrees with f at all n points
 - \circ First derivative agrees with f' at all n-2 interior points
 - \circ Second derivative agrees with f'' at all n-2 interior points
 - Boundary conditions:
 - 2nd derivative equals zero at 2 endpoints, or
 - First derivative agrees with f' at 2 endpoints
- · Counting degrees of freedom

Chapter 4: Numerical differentiation/integration

- Differentiation
 - $\circ \ \ f''(x)pprox rac{1}{h^2}(f(x-h)-2f(x)+f(x+h))$
- Richardson's Extrapolation:
 - Combine O(h) approximations into $O(h^2)$ or better.
 - \circ Let $M=N_1(h)+\sum K_ih^i$
 - Then $M = N_1(h/2) + \sum Kh^i 2^{-i}$. Multiply by 2, add -1 times first equation to cancel K_1 term.
 - So let $N_2(h) = 2N_1(h/2) N_1(h)$
- Midpoint rule:

$$\circ \int_a^b f pprox (b-a)f\left(rac{a+b}{2}
ight)$$

• Trapezoidal Rule:

$$\circ \int_a^b f pprox rac{h}{2}(f(a)+f(b))+O(h^3).$$

- o Can derive by integrating 1st Lagrange interpolating polynomial.
- Simpson's Rule:

$$\circ \int_a^b f pprox rac{b-a}{6} igg(f(a) + 4f(rac{a+b}{2}) + f(b)igg) + O(h^5)$$

- o Can derive by integrating 2nd Lagrange polynomial
- Composite: break up into piecewise approximations
 - o Composite trapezoidal rule:
 - lacktriangle Take nodes $a = x_0 < \cdots < x_n = b$

$$lacksquare \int_a^b f pprox \sum_{k=1}^n rac{h}{2} (f(x_{k-1}) + f(x_k)) = rac{h}{2} \Biggl(f(x_0) + f(x_n) + 2 \sum_{i=1}^{n-1} f(x_i) \Biggr)$$

o Composite Simpson's Rule:

$$lacksquare \int_a^b f pprox rac{h}{3} \Biggl(f(x_0) + 2 \sum_{i ext{ even}} f(x_i) + 4 \sum_{i ext{ odd}} f(x_i) + f(x_n) \Biggr)$$

Chapter 5: ODEs

General setup: we are given y'(t) = f(t,y) and $y(t_0) = y_0$.

• Trapezoidal Method:

$$\circ \ \ y_{k+1} = y_k + \left(rac{h}{2}
ight) (f(t_k,y_k) + f(t_{k+1},y_{k+1}))$$

• Midpoint Method:

$$egin{aligned} \circ & ilde{y}_{k+1} = y_k + rac{h}{2}f(t_k,y_k) \ \circ & y_{k+1} = y_k + hf\left(t_k + rac{h}{2}, \ ilde{y}_{k+1}
ight) \end{aligned}$$

• Euler's Method:

$$\circ$$
 Set $\omega_0=y_0$, $t_i=y_0+ih$. \circ Let $w_{i+1}=w_i+hf(t_i,w_i)$

Modified Euler's Method:

- o Predictor/Corrector with Euler's Method / Trapezoidal Rule
- \circ Let $w_0=y_0$
- \circ Let $ilde{w}_{i+1} = w_i + hf(t_i, w_i)$
- \circ Let $w_{i+1}=rac{h}{2}(f(t_i,w_i)+f(t_{i+1}, ilde{w}_{i+1}))$

Predictor-Corrector

- o Just do the same sort of thing that's going on in modified Euler's method above use any explicit method to get an estimate \tilde{w}_{i+1} , and substitute that in to any implicit method for a better estimate.
- Linear Systems of ODEs
 - o Just do everything by components, it works out.

Chapter 6: Linear Systems

- The number of flops for Gaussian elimination is $O(n^3)$
- LU factorization is $O(n^2)$
 - \circ Howto: Given a matrix A, eliminate entries below the diagonal
 - o Only use operations of the form $R_i \leftarrow R_i lpha R_j$, then $L_{ij} = lpha$
- PLU factorization: keep track of permutation matrices
 - Start with I, whenever an operation $R_i \leftrightarrow R_j$ is done on A, do this on I as well.
- Partial Pivoting: Always swap rows so that largest magnitude element is in pivot position
- Forward and backward substitution for solving Ax = b:
 - Given A = LU, first solve Ly = b for y using forward-substitution.
 - Then solve Ux = y for x using backward-substitution

Chapter 7: Matrix Techniques

- Spectral radius $\rho(A) = \max\{|\lambda_i|\}$
- Jacobi Method: an iterative way to x for Ax = b.
 - \circ Write A = D + R where D is the diagonal of A, and so the diagonal of R is all zeros.

$$\circ \;\; x_k = D^{-1}(b - Rx_{k-1}) = rac{1}{a_{ii}}(b_i - \sum_{j=1, j
eq i}^n a_{ij}(x_{k-1})_j).$$

- \circ Possibly easier to write R=L+U, then $x_i=D^{-1}b-D^{-1}(L+U)x_{i-1}$
- Define the iteration matrix $T = D^{-1}R$.
- \circ Converges when ho(A) < 1
- Gauss-Seidel Method: another iterative method
 - $\circ \;\; {
 m Write} \; A = D + L + U$
 - $x_i = (D+L)^{-1}(b-Ux_{i-1})$
 - Iteration matrix $T = -(D + L^{-1})U$.

Chapter 8: Discrete Least Squares

Normal equations