Fernando Lozano

Universidad de los Andes

16 de febrero de 2023

• En general, las probabilidades $p(s', r \mid s, a)$ (o $p(s' \mid s, a), r(s, a, s')$) no se conocen explícitamente.

- En general, las probabilidades $p(s', r \mid s, a)$ (o $p(s' \mid s, a), r(s, a, s')$) no se conocen explícitamente.
- Montecarlo: aprender a partir de experiencia:

- En general, las probabilidades $p(s', r \mid s, a)$ (o $p(s' \mid s, a), r(s, a, s')$) no se conocen explícitamente.
- Montecarlo: aprender a partir de experiencia:
 - ▶ Ejemplos de secuencias $s_t, a_t, r_{t+1}, s_{t+1}$.

- En general, las probabilidades $p(s', r \mid s, a)$ (o $p(s' \mid s, a), r(s, a, s')$) no se conocen explícitamente.
- Montecarlo: aprender a partir de experiencia:
 - \triangleright Ejemplos de secuencias $s_t, a_t, r_{t+1}, s_{t+1}$.
 - Experiencia interactuando con el ambiente (on line) o por simulación.

- En general, las probabilidades $p(s', r \mid s, a)$ (o $p(s' \mid s, a), r(s, a, s')$) no se conocen explícitamente.
- Montecarlo: aprender a partir de experiencia:
 - ▶ Ejemplos de secuencias $s_t, a_t, r_{t+1}, s_{t+1}$.
 - Experiencia interactuando con el ambiente (on line) o por simulación.
 - ▶ Promediar muestras del retorno.

- En general, las probabilidades $p(s', r \mid s, a)$ (o $p(s' \mid s, a), r(s, a, s')$) no se conocen explícitamente.
- Montecarlo: aprender a partir de experiencia:
 - \triangleright Ejemplos de secuencias $s_t, a_t, r_{t+1}, s_{t+1}$.
 - ► Experiencia interactuando con el ambiente (on line) o por simulación.
 - Promediar muestras del retorno.
 - Tareas episódicas.

- En general, las probabilidades $p(s', r \mid s, a)$ (o $p(s' \mid s, a), r(s, a, s')$) no se conocen explícitamente.
- Montecarlo: aprender a partir de experiencia:
 - \triangleright Ejemplos de secuencias $s_t, a_t, r_{t+1}, s_{t+1}$.
 - Experiencia interactuando con el ambiente (on line) o por simulación.
 - ▶ Promediar muestras del retorno.
 - Tareas episódicas.
 - Estimación de $q_{\pi}(s, a)$: Búsqueda asociativa, Contextual bandits

- En general, las probabilidades $p(s', r \mid s, a)$ (o $p(s' \mid s, a), r(s, a, s')$) no se conocen explícitamente.
- Montecarlo: aprender a partir de experiencia:
 - \triangleright Ejemplos de secuencias $s_t, a_t, r_{t+1}, s_{t+1}$.
 - Experiencia interactuando con el ambiente (on line) o por simulación.
 - ▶ Promediar muestras del retorno.
 - Tareas episódicas.
 - Estimación de $q_{\pi}(s, a)$: Búsqueda asociativa, Contextual bandits(bandits relacionados por la dinámica del MDP).

- En general, las probabilidades $p(s', r \mid s, a)$ (o $p(s' \mid s, a), r(s, a, s')$) no se conocen explícitamente.
- Montecarlo: aprender a partir de experiencia:
 - \triangleright Ejemplos de secuencias $s_t, a_t, r_{t+1}, s_{t+1}$.
 - Experiencia interactuando con el ambiente (on line) o por simulación.
 - ▶ Promediar muestras del retorno.
 - Tareas episódicas.
 - Estimación de $q_{\pi}(s, a)$: Búsqueda asociativa, Contextual bandits(bandits relacionados por la dinámica del MDP).
 - Iteración de política generalizada.

• Generar episodios de acuerdo a π .

- Generar episodios de acuerdo a π .
- ullet Una ocurrencia de s en un episodio se llama una visita a s.

- Generar episodios de acuerdo a π .
- \bullet Una ocurrencia de s en un episodio se llama una visita a s.
- Estimativo de $v_{\pi}(s)$ es promedio de retornos obtenidos después de visitas a s.

- Generar episodios de acuerdo a π .
- \bullet Una ocurrencia de s en un episodio se llama una visita a s.
- Estimativo de $v_{\pi}(s)$ es promedio de retornos obtenidos después de visitas a s.
- Dos versiones:

- Generar episodios de acuerdo a π .
- ullet Una ocurrencia de s en un episodio se llama una visita a s.
- Estimativo de $v_{\pi}(s)$ es promedio de retornos obtenidos después de visitas a s.
- Dos versiones:
 - MC de primera visita.

- Generar episodios de acuerdo a π .
- \bullet Una ocurrencia de s en un episodio se llama una visita a s.
- Estimativo de $v_{\pi}(s)$ es promedio de retornos obtenidos después de visitas a s.
- Dos versiones:
 - MC de primera visita.
 - 2 MC de todas las visitas.

- Generar episodios de acuerdo a π .
- \bullet Una ocurrencia de s en un episodio se llama una visita a s.
- Estimativo de $v_{\pi}(s)$ es promedio de retornos obtenidos después de visitas a s.
- Dos versiones:
 - MC de primera visita.
 - 2 MC de todas las visitas.

Incialice $V(s) \in \mathbb{R}$

Incialice $V(s) \in \mathbb{R}$ Incialice una lista vacía Ret(s) para cada s. repeat

Incialice $V(s) \in \mathbb{R}$

Incialice una lista vacía Ret(s) para cada s.

repeat

Episodio $\pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T,$

Incialice $V(s) \in \mathbb{R}$

Incialice una lista vacía Ret(s) para cada s.

Episodio
$$\pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T, G \leftarrow 0$$

Incialice $V(s) \in \mathbb{R}$

Incialice una lista vacía Ret(s) para cada s.

Episodio
$$\pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T,$$

$$G \leftarrow 0$$

for
$$t = T - 1, T - 2, \dots 0$$
 do

Incialice $V(s) \in \mathbb{R}$

Incialice una lista vacía Ret(s) para cada s.

Episodio
$$\pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T, G \leftarrow 0$$

for $t = T - 1, T - 2, \dots 0$ do
 $G \leftarrow \gamma G + R_{t+1}$

Incialize $V(s) \in \mathbb{R}$

Incialice una lista vacía Ret(s) para cada s.

Episodio
$$\pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T,$$

$$G \leftarrow 0$$
for $t = T - 1, T - 2, \dots 0$ do
$$G \leftarrow \gamma G + R_{t+1}$$
if S_t no aparece en S_0, S_1, \dots, S_{t-1} then

Incialice $V(s) \in \mathbb{R}$ Incialice una lista vacía Ret(s) para cada s. **repeat** Episodio $\pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T,$ $G \leftarrow 0$ **for** $t = T - 1, T - 2, \dots 0$ **do** $G \leftarrow \gamma G + R_{t+1}$ **if** S_t no aparece en S_0, S_1, \dots, S_{t-1} **then** Añada G a $Ret(S_t)$

```
Incialice V(s) \in \mathbb{R}

Incialice una lista vacía Ret(s) para cada s.

repeat

Episodio \pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T, G \leftarrow 0

for t = T - 1, T - 2, \dots 0 do

G \leftarrow \gamma G + R_{t+1}

if S_t no aparece en S_0, S_1, \dots, S_{t-1} then

Añada G a Ret(S_t)

V(S_t) \leftarrow promedio Ret(S_t)
```

```
Incialize V(s) \in \mathbb{R}
Incialice una lista vacía Ret(s) para cada s.
repeat
    Episodio \pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    for t = T - 1, T - 2, \dots 0 do
        G \leftarrow \gamma G + R_{t+1}
        if S_t no aparece en S_0, S_1, \ldots, S_{t-1} then
             Añada G a Ret(S_t)
             V(S_t) \leftarrow \text{promedio } Ret(S_t)
        end if
```

```
Incialize V(s) \in \mathbb{R}
Incialice una lista vacía Ret(s) para cada s.
repeat
    Episodio \pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    for t = T - 1, T - 2, \dots 0 do
        G \leftarrow \gamma G + R_{t+1}
        if S_t no aparece en S_0, S_1, \ldots, S_{t-1} then
             Añada G a Ret(S_t)
             V(S_t) \leftarrow \text{promedio } Ret(S_t)
        end if
    end for
```

```
Incialize V(s) \in \mathbb{R}
Incialice una lista vacía Ret(s) para cada s.
repeat
    Episodio \pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    for t = T - 1, T - 2, \dots 0 do
        G \leftarrow \gamma G + R_{t+1}
        if S_t no aparece en S_0, S_1, \ldots, S_{t-1} then
             Añada G a Ret(S_t)
             V(S_t) \leftarrow \text{promedio } Ret(S_t)
        end if
    end for
until \infty
```

```
Incialize V(s) \in \mathbb{R}
Incialice una lista vacía Ret(s) para cada s.
repeat
    Episodio \pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    for t = T - 1, T - 2, \dots 0 do
        G \leftarrow \gamma G + R_{t+1}
        if S_t no aparece en S_0, S_1, \ldots, S_{t-1} then
             Añada G a Ret(S_t)
             V(S_t) \leftarrow \text{promedio } Ret(S_t)
        end if
    end for
until \infty
```

• Retornos a partir de $S_t = s$ son muestras i.i.d. de $v_{\pi}(s)$.

- Retornos a partir de $S_t = s$ son muestras i.i.d. de $v_{\pi}(s)$.
- V(s) converge a $v_{\pi}(s)$.

- Retornos a partir de $S_t = s$ son muestras i.i.d. de $v_{\pi}(s)$.
- V(s) converge a $v_{\pi}(s)$.
- V(s) es estimador no sesgado de $v_{\pi}(s)$ con varianza $1/\sqrt{n}$, donde n es el número de visitas a s.

- Retornos a partir de $S_t = s$ son muestras i.i.d. de $v_{\pi}(s)$.
- V(s) converge a $v_{\pi}(s)$.
- V(s) es estimador no sesgado de $v_{\pi}(s)$ con varianza $1/\sqrt{n}$, donde n es el número de visitas a s.
- MC de todas las visitas converge similarmente.

Ejemplo: Blackjack

• Tarea episódica (juego=episodio).

- Tarea episódica (juego=episodio).
- Estado:
 - ▶ Suma cartas (12,...,21).

- Tarea episódica (juego=episodio).
- Estado:
 - ▶ Suma cartas $(12, \ldots, 21)$.
 - ▶ Carta que muestra el dealer (baraja infinita).

- Tarea episódica (juego=episodio).
- Estado:
 - ▶ Suma cartas $(12, \ldots, 21)$.
 - ► Carta que muestra el dealer (baraja infinita).
 - ► As usable: si o no.

- Tarea episódica (juego=episodio).
- Estado:
 - ▶ Suma cartas $(12, \ldots, 21)$.
 - ▶ Carta que muestra el dealer (baraja infinita).
 - ► As usable: si o no.
- Dealer: política fija \rightarrow pide carta sólo si total < 17.

- Tarea episódica (juego=episodio).
- Estado:
 - ▶ Suma cartas $(12, \ldots, 21)$.
 - ► Carta que muestra el dealer (baraja infinita).
 - ► As usable: si o no.
- Dealer: política fija \rightarrow pide carta sólo si total < 17.
- \bullet Recompensas +1,-1,0 al ganar, perder o empatar.

- Tarea episódica (juego=episodio).
- Estado:
 - ▶ Suma cartas $(12, \ldots, 21)$.
 - ► Carta que muestra el dealer (baraja infinita).
 - ► As usable: si o no.
- Dealer: política fija \rightarrow pide carta sólo si total < 17.
- Recompensas +1, -1, 0 al ganar, perder o empatar.
- Política a evaluar: pedir carta si total < 20.

Figure 5.2: Approximate state-value functions for the blackjack policy that sticks only on 20 or 21, computed by Monte Carlo policy evaluation.

• Estimar q_* , en lugar de v_* .

- Estimar q_* , en lugar de v_* .
- Estimar $q_{\pi}(s, a)$ promediando retornos después de visitar s, tomar acción a y seguir π .

- Estimar q_* , en lugar de v_* .
- Estimar $q_{\pi}(s, a)$ promediando retornos después de visitar s, tomar acción a y seguir π .
- Problema: Pares (s, a) relevantes pueden no ser visitados.

- Estimar q_* , en lugar de v_* .
- Estimar $q_{\pi}(s, a)$ promediando retornos después de visitar s, tomar acción a y seguir π .
- Problema: Pares (s, a) relevantes pueden no ser visitados.
- Es necesario estimar $q_{\pi}(s, a)$ para todas las acciones a posibles en s.

- Estimar q_* , en lugar de v_* .
- Estimar $q_{\pi}(s, a)$ promediando retornos después de visitar s, tomar acción a y seguir π .
- \bullet Problema: Pares (s, a) relevantes pueden no ser visitados.
- Es necesario estimar $q_{\pi}(s, a)$ para todas las acciones a posibles en s.
- Mantener exploración.

- Estimar q_* , en lugar de v_* .
- Estimar $q_{\pi}(s, a)$ promediando retornos después de visitar s, tomar acción a y seguir π .
- Problema: Pares (s, a) relevantes pueden no ser visitados.
- Es necesario estimar $q_{\pi}(s, a)$ para todas las acciones a posibles en s.
- Mantener exploración.
- Asumir episodios que comienzan en (s, a): supuesto de arranque explorativo.

- Estimar q_* , en lugar de v_* .
- Estimar $q_{\pi}(s, a)$ promediando retornos después de visitar s, tomar acción a y seguir π .
- \bullet Problema: Pares (s, a) relevantes pueden no ser visitados.
- Es necesario estimar $q_{\pi}(s, a)$ para todas las acciones a posibles en s.
- Mantener exploración.
- Asumir episodios que comienzan en (s, a): supuesto de arranque explorativo.
- En la práctica, usar políticas estocásticas.

- Estimar q_* , en lugar de v_* .
- Estimar $q_{\pi}(s, a)$ promediando retornos después de visitar s, tomar acción a y seguir π .
- \bullet Problema: Pares (s, a) relevantes pueden no ser visitados.
- Es necesario estimar $q_{\pi}(s, a)$ para todas las acciones a posibles en s.
- Mantener exploración.
- Asumir episodios que comienzan en (s, a): supuesto de arranque explorativo.
- En la práctica, usar políticas estocásticas.

 π_0

$$\pi_0 \xrightarrow{\mathbf{E}} q_{\pi_0}$$

$$\pi_0 \xrightarrow{\mathbf{E}} q_{\pi_0} \xrightarrow{\mathbf{I}} \pi_1$$

$$\pi_0 \xrightarrow{\mathbf{E}} q_{\pi_0} \xrightarrow{\mathbf{I}} \pi_1 \xrightarrow{\mathbf{E}} q_{\pi_1}$$

$$\pi_0 \xrightarrow{\mathbf{E}} q_{\pi_0} \xrightarrow{\mathbf{I}} \pi_1 \xrightarrow{\mathbf{E}} q_{\pi_1} \xrightarrow{\mathbf{I}} \pi_2$$

$$\pi_0 \xrightarrow{\mathbf{E}} q_{\pi_0} \xrightarrow{\mathbf{I}} \pi_1 \xrightarrow{\mathbf{E}} q_{\pi_1} \xrightarrow{\mathbf{I}} \pi_2 \xrightarrow{\mathbf{E}} \dots$$

$$\pi_0 \xrightarrow{\mathbf{E}} q_{\pi_0} \xrightarrow{\mathbf{I}} \pi_1 \xrightarrow{\mathbf{E}} q_{\pi_1} \xrightarrow{\mathbf{I}} \pi_2 \xrightarrow{\mathbf{E}} \dots \xrightarrow{\mathbf{I}} \pi^*$$

$$\pi_0 \xrightarrow{\mathbf{E}} q_{\pi_0} \xrightarrow{\mathbf{I}} \pi_1 \xrightarrow{\mathbf{E}} q_{\pi_1} \xrightarrow{\mathbf{I}} \pi_2 \xrightarrow{\mathbf{E}} \dots \xrightarrow{\mathbf{I}} \pi^* \xrightarrow{\mathbf{E}} q_{\pi^*}$$

$$\pi_0 \xrightarrow{\mathbf{E}} q_{\pi_0} \xrightarrow{\mathbf{I}} \pi_1 \xrightarrow{\mathbf{E}} q_{\pi_1} \xrightarrow{\mathbf{I}} \pi_2 \xrightarrow{\mathbf{E}} \dots \xrightarrow{\mathbf{I}} \pi^* \xrightarrow{\mathbf{E}} q_{\pi^*}$$

• π_{k+1} es greedy con respecto a q_{π_k} :

$$\pi_0 \xrightarrow{\mathbf{E}} q_{\pi_0} \xrightarrow{\mathbf{I}} \pi_1 \xrightarrow{\mathbf{E}} q_{\pi_1} \xrightarrow{\mathbf{I}} \pi_2 \xrightarrow{\mathbf{E}} \dots \xrightarrow{\mathbf{I}} \pi^* \xrightarrow{\mathbf{E}} q_{\pi^*}$$

• π_{k+1} es greedy con respecto a q_{π_k} :

$$\pi(s) = \operatorname*{arg\,max}_{a} q(s, a)$$

$$\pi_0 \xrightarrow{\mathbf{E}} q_{\pi_0} \xrightarrow{\mathbf{I}} \pi_1 \xrightarrow{\mathbf{E}} q_{\pi_1} \xrightarrow{\mathbf{I}} \pi_2 \xrightarrow{\mathbf{E}} \dots \xrightarrow{\mathbf{I}} \pi^* \xrightarrow{\mathbf{E}} q_{\pi^*}$$

• π_{k+1} es greedy con respecto a q_{π_k} :

$$\pi(s) = \operatorname*{arg\,max}_{a} q(s, a)$$

$$q_{\pi_k}(s, \pi_{k+1}(s)) = q_{\pi_k}(s, \arg\max_a q_{\pi_k}(s, a))$$

$$\pi_0 \xrightarrow{\mathbf{E}} q_{\pi_0} \xrightarrow{\mathbf{I}} \pi_1 \xrightarrow{\mathbf{E}} q_{\pi_1} \xrightarrow{\mathbf{I}} \pi_2 \xrightarrow{\mathbf{E}} \dots \xrightarrow{\mathbf{I}} \pi^* \xrightarrow{\mathbf{E}} q_{\pi^*}$$

• π_{k+1} es greedy con respecto a q_{π_k} :

$$\pi(s) = \operatorname*{arg\,max}_{a} q(s, a)$$

$$q_{\pi_k}(s, \pi_{k+1}(s)) = q_{\pi_k}(s, \arg\max_a q_{\pi_k}(s, a))$$
$$= \max_a q_{\pi_k}(s, a)$$

$$\pi_0 \xrightarrow{\mathbf{E}} q_{\pi_0} \xrightarrow{\mathbf{I}} \pi_1 \xrightarrow{\mathbf{E}} q_{\pi_1} \xrightarrow{\mathbf{I}} \pi_2 \xrightarrow{\mathbf{E}} \dots \xrightarrow{\mathbf{I}} \pi^* \xrightarrow{\mathbf{E}} q_{\pi^*}$$

• π_{k+1} es greedy con respecto a q_{π_k} :

$$\pi(s) = \operatorname*{arg\,max}_{a} q(s, a)$$

$$q_{\pi_k}(s, \pi_{k+1}(s)) = q_{\pi_k}(s, \arg\max_a q_{\pi_k}(s, a))$$
$$= \max_a q_{\pi_k}(s, a)$$
$$\geq q_{\pi_k}(s, \pi_k(s))$$

$$\pi_0 \xrightarrow{\mathbf{E}} q_{\pi_0} \xrightarrow{\mathbf{I}} \pi_1 \xrightarrow{\mathbf{E}} q_{\pi_1} \xrightarrow{\mathbf{I}} \pi_2 \xrightarrow{\mathbf{E}} \dots \xrightarrow{\mathbf{I}} \pi^* \xrightarrow{\mathbf{E}} q_{\pi^*}$$

• π_{k+1} es greedy con respecto a q_{π_k} :

$$\pi(s) = \operatorname*{arg\,max}_{a} q(s,a)$$

$$q_{\pi_k}(s, \pi_{k+1}(s)) = q_{\pi_k}(s, \arg\max_a q_{\pi_k}(s, a))$$
$$= \max_a q_{\pi_k}(s, a)$$
$$\geq q_{\pi_k}(s, \pi_k(s))$$
$$= v_{\pi_k}(s)$$

$$\pi_0 \xrightarrow{\mathbf{E}} q_{\pi_0} \xrightarrow{\mathbf{I}} \pi_1 \xrightarrow{\mathbf{E}} q_{\pi_1} \xrightarrow{\mathbf{I}} \pi_2 \xrightarrow{\mathbf{E}} \dots \xrightarrow{\mathbf{I}} \pi^* \xrightarrow{\mathbf{E}} q_{\pi^*}$$

• π_{k+1} es greedy con respecto a q_{π_k} :

$$\pi(s) = \operatorname*{arg\,max}_{a} q(s,a)$$

• Note que:

$$q_{\pi_k}(s, \pi_{k+1}(s)) = q_{\pi_k}(s, \arg\max_a q_{\pi_k}(s, a))$$

$$= \max_a q_{\pi_k}(s, a)$$

$$\geq q_{\pi_k}(s, \pi_k(s))$$

$$= v_{\pi_k}(s)$$

Se satisface teorema de mejoramiento de política.

Inicialize $\pi(s)$

Inicialize $\pi(s)$ Incialize $Q(s, a) \in \mathbb{R}$

Inicialice $\pi(s)$ Incialice $Q(s,a)\in\mathbb{R}$ Incialice una lista vacía Ret(s,a) para cada (s,a).

Inicialice $\pi(s)$ Incialice $Q(s,a)\in\mathbb{R}$ Incialice una lista vacía Ret(s,a) para cada (s,a). repeat

Inicialize $\pi(s)$

Incialize $Q(s, a) \in \mathbb{R}$

Incialice una lista vacía Ret(s, a) para cada (s, a).

repeat

Escoja $S_0 \in \mathcal{S}$, $A_0 \in \mathcal{A}(S_0)$ aleatoriamente.

Inicialize $\pi(s)$

Incialize $Q(s, a) \in \mathbb{R}$

Incialice una lista vacía Ret(s, a) para cada (s, a).

repeat

Escoja $S_0 \in \mathcal{S}$, $A_0 \in \mathcal{A}(S_0)$ aleatoriamente.

Episodio $\pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T,$

Inicialize $\pi(s)$

Incialize $Q(s, a) \in \mathbb{R}$

Incialice una lista vacía Ret(s, a) para cada (s, a).

repeat

Escoja $S_0 \in \mathcal{S}$, $A_0 \in \mathcal{A}(S_0)$ aleatoriamente.

Episodio $\pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T,$

 $G \leftarrow 0$

Inicialize $\pi(s)$

Incialize $Q(s, a) \in \mathbb{R}$

Incialice una lista vacía Ret(s, a) para cada (s, a).

repeat

Escoja $S_0 \in \mathcal{S}$, $A_0 \in \mathcal{A}(S_0)$ aleatoriamente.

Episodio $\pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T,$

 $G \leftarrow 0$

for $t = T - 1, T - 2, \dots 0$ do

```
Inicialice \pi(s)

Incialice Q(s,a) \in \mathbb{R}

Incialice una lista vacía Ret(s,a) para cada (s,a).

repeat

Escoja S_0 \in \mathcal{S}, A_0 \in \mathcal{A}(S_0) aleatoriamente.

Episodio \pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T, G \leftarrow 0

for t = T - 1, T - 2, \dots 0 do

G \leftarrow \gamma G + R_{t+1}
```

```
Inicialice \pi(s)

Incialice Q(s,a) \in \mathbb{R}

Incialice una lista vacía Ret(s,a) para cada (s,a).

repeat

Escoja S_0 \in \mathcal{S}, A_0 \in \mathcal{A}(S_0) aleatoriamente.

Episodio \pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T,

G \leftarrow 0

for t = T - 1, T - 2, \dots 0 do

G \leftarrow \gamma G + R_{t+1}

if S_t, A_t no aparece en S_0, A_0, S_1, A_1, \dots, S_{t-1}, A_{t-1} then
```

```
Inicialize \pi(s)
Incialize Q(s, a) \in \mathbb{R}
Incialice una lista vacía Ret(s, a) para cada (s, a).
repeat
    Escoja S_0 \in \mathcal{S}, A_0 \in \mathcal{A}(S_0) aleatoriamente.
    Episodio \pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    for t = T - 1, T - 2, \dots 0 do
         G \leftarrow \gamma G + R_{t+1}
         if S_t, A_t no aparece en S_0, A_0, S_1, A_1, \dots, S_{t-1}, A_{t-1} then
             Añada G a Ret(S_t, A_t)
```

```
Inicialize \pi(s)
Incialize Q(s, a) \in \mathbb{R}
Incialice una lista vacía Ret(s, a) para cada (s, a).
repeat
    Escoja S_0 \in \mathcal{S}, A_0 \in \mathcal{A}(S_0) aleatoriamente.
    Episodio \pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    for t = T - 1, T - 2, \dots 0 do
         G \leftarrow \gamma G + R_{t+1}
         if S_t, A_t no aparece en S_0, A_0, S_1, A_1, \dots, S_{t-1}, A_{t-1} then
             Añada G a Ret(S_t, A_t)
             Q(S_t, A_t) \leftarrow \text{promedio } Ret(S_t, A_t)
```

```
Inicialize \pi(s)
Incialize Q(s, a) \in \mathbb{R}
Incialice una lista vacía Ret(s, a) para cada (s, a).
repeat
    Escoja S_0 \in \mathcal{S}, A_0 \in \mathcal{A}(S_0) aleatoriamente.
    Episodio \pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T.
    G \leftarrow 0
    for t = T - 1, T - 2, \dots 0 do
         G \leftarrow \gamma G + R_{t+1}
         if S_t, A_t no aparece en S_0, A_0, S_1, A_1, \dots, S_{t-1}, A_{t-1} then
             Añada G a Ret(S_t, A_t)
             Q(S_t, A_t) \leftarrow \text{promedio } Ret(S_t, A_t)
             \pi(S_t) \leftarrow \arg\max_a Q(S_t, a)
         end if
```

```
Inicialize \pi(s)
Incialize Q(s, a) \in \mathbb{R}
Incialice una lista vacía Ret(s, a) para cada (s, a).
repeat
    Escoja S_0 \in \mathcal{S}, A_0 \in \mathcal{A}(S_0) aleatoriamente.
    Episodio \pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T.
    G \leftarrow 0
    for t = T - 1, T - 2, \dots 0 do
         G \leftarrow \gamma G + R_{t+1}
         if S_t, A_t no aparece en S_0, A_0, S_1, A_1, \dots, S_{t-1}, A_{t-1} then
             Añada G a Ret(S_t, A_t)
             Q(S_t, A_t) \leftarrow \text{promedio } Ret(S_t, A_t)
             \pi(S_t) \leftarrow \arg\max_a Q(S_t, a)
         end if
    end for
```

```
Inicialize \pi(s)
Incialize Q(s, a) \in \mathbb{R}
Incialice una lista vacía Ret(s, a) para cada (s, a).
repeat
    Escoja S_0 \in \mathcal{S}, A_0 \in \mathcal{A}(S_0) aleatoriamente.
    Episodio \pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T.
    G \leftarrow 0
    for t = T - 1, T - 2, \dots 0 do
         G \leftarrow \gamma G + R_{t+1}
         if S_t, A_t no aparece en S_0, A_0, S_1, A_1, \dots, S_{t-1}, A_{t-1} then
             Añada G a Ret(S_t, A_t)
             Q(S_t, A_t) \leftarrow \text{promedio } Ret(S_t, A_t)
             \pi(S_t) \leftarrow \arg\max_a Q(S_t, a)
         end if
    end for
until \infty
```

```
Inicialize \pi(s)
Incialize Q(s, a) \in \mathbb{R}
Incialice una lista vacía Ret(s, a) para cada (s, a).
repeat
    Escoja S_0 \in \mathcal{S}, A_0 \in \mathcal{A}(S_0) aleatoriamente.
    Episodio \pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T.
    G \leftarrow 0
    for t = T - 1, T - 2, \dots 0 do
         G \leftarrow \gamma G + R_{t+1}
         if S_t, A_t no aparece en S_0, A_0, S_1, A_1, \dots, S_{t-1}, A_{t-1} then
             Añada G a Ret(S_t, A_t)
             Q(S_t, A_t) \leftarrow \text{promedio } Ret(S_t, A_t)
             \pi(S_t) \leftarrow \arg\max_a Q(S_t, a)
         end if
    end for
until \infty
```


Figure 5.5: The optimal policy and state-value function for blackjack, found by Monte Carlo ES (Figure 5.4). The state-value function shown was computed from the action-value function found by Monte Carlo ES.

• Suposición de arranque explorativo no es práctica.

- Suposición de arranque explorativo no es práctica.
- Control On-policy: evalúa y mejora la política usada para tomar decisiones.

- Suposición de arranque explorativo no es práctica.
- Control On-policy: evalúa y mejora la política usada para tomar decisiones.
- Políticas soft:

$$\pi(a \mid s) > 0, \quad \forall s \in \mathcal{S}, a \in \mathcal{A}(s).$$

- Suposición de arranque explorativo no es práctica.
- Control On-policy: evalúa y mejora la política usada para tomar decisiones.
- Políticas soft:

$$\pi(a \mid s) > 0, \quad \forall s \in \mathcal{S}, a \in \mathcal{A}(s).$$

• Política ϵ -greedy:

- Suposición de arranque explorativo no es práctica.
- Control On-policy: evalúa y mejora la política usada para tomar decisiones.
- Políticas soft:

$$\pi(a \mid s) > 0, \quad \forall s \in \mathcal{S}, a \in \mathcal{A}(s).$$

• Política ϵ -greedy:

$$\pi(a \mid s) = \begin{cases} 1 - \epsilon + \frac{\epsilon}{|\mathcal{A}(s)|} & a = \arg\max_{a} q(s, a), \\ \frac{\epsilon}{|\mathcal{A}(s)|} & \text{demás acciones.} \end{cases}$$

$$q_{\pi}(s, \pi'(s)) = \sum_{a} \pi'(a \mid s) q_{\pi}(s, a)$$

$$q_{\pi}(s, \pi'(s)) = \sum_{a} \pi'(a \mid s) q_{\pi}(s, a)$$
$$= \frac{\epsilon}{|\mathcal{A}(s)|} \sum_{a} q_{\pi}(s, a) + (1 - \epsilon) \max_{a} q_{\pi}(s, a)$$

$$q_{\pi}(s, \pi'(s)) = \sum_{a} \pi'(a \mid s) q_{\pi}(s, a)$$

$$= \frac{\epsilon}{|\mathcal{A}(s)|} \sum_{a} q_{\pi}(s, a) + (1 - \epsilon) \max_{a} q_{\pi}(s, a)$$

$$\geq \frac{\epsilon}{|\mathcal{A}(s)|} \sum_{a} q_{\pi}(s, a) + (1 - \epsilon) \sum_{a} \frac{\pi(a \mid s) - \frac{\epsilon}{|\mathcal{A}(s)|}}{1 - \epsilon} q_{\pi}(s, a)$$

$$\xrightarrow{\sum_{i} \alpha_{i} \geq 0} \sum_{i} \alpha_{i} x_{i} \leq \min_{i} x_{i}$$

$$q_{\pi}(s, \pi'(s)) = \sum_{a} \pi'(a \mid s) q_{\pi}(s, a)$$

$$= \frac{\epsilon}{|\mathcal{A}(s)|} \sum_{a} q_{\pi}(s, a) + (1 - \epsilon) \max_{a} q_{\pi}(s, a)$$

$$\geq \frac{\epsilon}{|\mathcal{A}(s)|} \sum_{a} q_{\pi}(s, a) + (1 - \epsilon) \sum_{a} \frac{\pi(a \mid s) - \frac{\epsilon}{|\mathcal{A}(s)|}}{1 - \epsilon} q_{\pi}(s, a)$$

$$\xrightarrow{\sum_{i} \alpha_{i} \geq 0} \sum_{i} \alpha_{i} x_{i} \leq \max_{i} x_{i}$$

$$= \sum_{i} \pi(a \mid s) q_{\pi}(s, a)$$

$$= \sum_{a} \pi(a \mid s) q_{\pi}(s, a)$$

$$q_{\pi}(s, \pi'(s)) = \sum_{a} \pi'(a \mid s) q_{\pi}(s, a)$$

$$= \frac{\epsilon}{|\mathcal{A}(s)|} \sum_{a} q_{\pi}(s, a) + (1 - \epsilon) \max_{a} q_{\pi}(s, a)$$

$$\geq \frac{\epsilon}{|\mathcal{A}(s)|} \sum_{a} q_{\pi}(s, a) + (1 - \epsilon) \sum_{a} \frac{\pi(a \mid s) - \frac{\epsilon}{|\mathcal{A}(s)|}}{1 - \epsilon} q_{\pi}(s, a)$$

$$\xrightarrow{\sum_{i} \alpha_{i} \geq 0} \sum_{i} \alpha_{i} x_{i} \leq \min_{i} x_{i}$$

$$= \sum_{a} \pi(a \mid s) q_{\pi}(s, a)$$

$$= v_{\pi}(s)$$

$$q_{\pi}(s, \pi'(s)) = \sum_{a} \pi'(a \mid s) q_{\pi}(s, a)$$

$$= \frac{\epsilon}{|\mathcal{A}(s)|} \sum_{a} q_{\pi}(s, a) + (1 - \epsilon) \max_{a} q_{\pi}(s, a)$$

$$\geq \frac{\epsilon}{|\mathcal{A}(s)|} \sum_{a} q_{\pi}(s, a) + (1 - \epsilon) \sum_{a} \frac{\pi(a \mid s) - \frac{\epsilon}{|\mathcal{A}(s)|}}{1 - \epsilon} q_{\pi}(s, a)$$

$$\xrightarrow{\sum_{i} \alpha_{i} \geq 0} \sum_{i} \alpha_{i} x_{i} \leq \min_{i} x_{i}$$

$$= \sum_{a} \pi(a \mid s) q_{\pi}(s, a)$$

$$= v_{\pi}(s)$$

• Se puede demostrar que $q_{\pi}(s, \pi'(s)) = v_{\pi}(s) \Leftrightarrow \pi, \pi'$ son óptimas entre todas las políticas ϵ -soft

◆ロト ◆団ト ◆重ト ◆重ト 重 めので

Inicialize $\pi(s)$ ϵ – greedy

Inicialice $\pi(s)$ ϵ — greedy Incialice $Q(s,a) \in \mathbb{R}$, Incialice una lista vacía Ret(s,a) para cada (s,a).

Inicialize $\pi(s)$ ϵ – greedy

Incialice $Q(s,a) \in \mathbb{R}$, Incialice una lista vacía Ret(s,a) para cada (s,a).

Inicialize $\pi(s)$ ϵ – greedy

Incialice $Q(s, a) \in \mathbb{R}$, Incialice una lista vacía Ret(s, a) para cada (s, a).

repeat

Episodio $\pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_{T-1},$

Inicialize $\pi(s)$ ϵ – greedy

Incialice $Q(s, a) \in \mathbb{R}$, Incialice una lista vacía Ret(s, a) para cada (s, a).

Episodio
$$\pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_{T-1}, G \leftarrow 0$$

Inicialize $\pi(s)$ ϵ – greedy

Incialice $Q(s,a) \in \mathbb{R}$, Incialice una lista vacía Ret(s,a) para cada (s,a).

Episodio
$$\pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_{T-1},$$

$$G \leftarrow 0$$

for
$$t = T - 1, T - 2, \dots 0$$
 do

Inicialize $\pi(s)$ ϵ – greedy

Incialice $Q(s,a) \in \mathbb{R}$, Incialice una lista vacía Ret(s,a) para cada (s,a).

Episodio
$$\pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_{T-1}, G \leftarrow 0$$

for $t = T - 1, T - 2, \dots 0$ do
 $G \leftarrow \gamma G + R_{t+1}$

Inicialize $\pi(s) \epsilon$ – greedy

Incialice $Q(s,a) \in \mathbb{R}$, Incialice una lista vacía Ret(s,a) para cada (s,a).

Episodio
$$\pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_{T-1}, G \leftarrow 0$$

for $t = T - 1, T - 2, \dots 0$ do
$$G \leftarrow \gamma G + R_{t+1}$$
if S_t, A_t no aparece en $S_0, A_0, S_1, A_1, \dots, S_{t-1}, A_{t-1}$ then

Inicialize $\pi(s)$ ϵ – greedy

Incialice $Q(s,a) \in \mathbb{R}$, Incialice una lista vacía Ret(s,a) para cada (s,a).

Episodio
$$\pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_{T-1},$$
 $G \leftarrow 0$
for $t = T - 1, T - 2, \dots 0$ do
$$G \leftarrow \gamma G + R_{t+1}$$
if S_t, A_t no aparece en $S_0, A_0, S_1, A_1, \dots, S_{t-1}, A_{t-1}$ then
Añada G a $Ret(S_t, A_t)$

Inicialize $\pi(s)$ ϵ – greedy

Incialice $Q(s,a) \in \mathbb{R}$, Incialice una lista vacía Ret(s,a) para cada (s,a).

Episodio
$$\pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_{T-1},$$
 $G \leftarrow 0$
for $t = T - 1, T - 2, \dots 0$ do
$$G \leftarrow \gamma G + R_{t+1}$$
if S_t, A_t no aparece en $S_0, A_0, S_1, A_1, \dots, S_{t-1}, A_{t-1}$ then
$$\tilde{A}_t = A_t + A_t$$

Inicialize $\pi(s) \epsilon$ – greedy

Incialice $Q(s,a) \in \mathbb{R}$, Incialice una lista vacía Ret(s,a) para cada (s,a).

repeat

Episodio
$$\pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_{T-1}, G \leftarrow 0$$

for $t = T - 1, T - 2, \dots 0$ do

$$G \leftarrow \gamma G + R_{t+1}$$

if
$$S_t, A_t$$
 no aparece en $S_0, A_0, S_1, A_1, \dots, S_{t-1}, A_{t-1}$ then
Añada G a $Ret(S_t, A_t)$
 $Q(S_t, A_t) \leftarrow \text{promedio } Ret(S_t, A_t)$

$$\pi(a \mid S_t) = \begin{cases} 1 - \epsilon + \frac{\epsilon}{|\mathcal{A}(S_t)|} & a = \arg\max_a Q(S_t, a) \\ \frac{\epsilon}{|\mathcal{A}(s)|} & a \neq \arg\max_a Q(S_t, a) \end{cases}$$

end if

Inicialize $\pi(s)$ ϵ – greedy

Incialice $Q(s,a) \in \mathbb{R}$, Incialice una lista vacía Ret(s,a) para cada (s,a).

repeat

Episodio
$$\pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_{T-1}, G \leftarrow 0$$

for
$$t = T - 1, T - 2, \dots 0$$
 do

$$G \leftarrow \gamma G + R_{t+1}$$

if
$$S_t, A_t$$
 no aparece en $S_0, A_0, S_1, A_1, \dots, S_{t-1}, A_{t-1}$ then
Añada G a $Ret(S_t, A_t)$
 $Q(S_t, A_t) \leftarrow \text{promedio } Ret(S_t, A_t)$

$$\pi(a \mid S_t) = \begin{cases} 1 - \epsilon + \frac{\epsilon}{|\mathcal{A}(S_t)|} & a = \arg\max_a Q(S_t, a) \\ \frac{\epsilon}{|\mathcal{A}(s)|} & a \neq \arg\max_a Q(S_t, a) \end{cases}$$

end if

オロトオ団トオミトオミト ミーから

end for

Inicialize $\pi(s)$ ϵ – greedy

Incialice $Q(s,a) \in \mathbb{R}$, Incialice una lista vacía Ret(s,a) para cada (s,a).

repeat

Episodio
$$\pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_{T-1},$$

$$G \leftarrow 0$$

for
$$t = T - 1, T - 2, \dots 0$$
 do

$$G \leftarrow \gamma G + R_{t+1}$$

if
$$S_t, A_t$$
 no aparece en $S_0, A_0, S_1, A_1, \dots, S_{t-1}, A_{t-1}$ then Añada G a $Ret(S_t, A_t)$

$$Q(S_t, A_t) \leftarrow \text{promedio } Ret(S_t, A_t)$$

$$\pi(a \mid S_t) = \begin{cases} 1 - \epsilon + \frac{\epsilon}{|\mathcal{A}(S_t)|} & a = \arg\max_a Q(S_t, a) \\ \frac{\epsilon}{|\mathcal{A}(s)|} & a \neq \arg\max_a Q(S_t, a) \end{cases}$$

end if

end for

Inicialize $\pi(s)$ ϵ – greedy

Incialice $Q(s,a) \in \mathbb{R}$, Incialice una lista vacía Ret(s,a) para cada (s,a).

repeat

Episodio
$$\pi: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_{T-1},$$

$$G \leftarrow 0$$

for
$$t = T - 1, T - 2, \dots 0$$
 do

$$G \leftarrow \gamma G + R_{t+1}$$

if
$$S_t, A_t$$
 no aparece en $S_0, A_0, S_1, A_1, \dots, S_{t-1}, A_{t-1}$ then Añada G a $Ret(S_t, A_t)$

$$Q(S_t, A_t) \leftarrow \text{promedio } Ret(S_t, A_t)$$

$$\pi(a \mid S_t) = \begin{cases} 1 - \epsilon + \frac{\epsilon}{|\mathcal{A}(S_t)|} & a = \arg\max_a Q(S_t, a) \\ \frac{\epsilon}{|\mathcal{A}(s)|} & a \neq \arg\max_a Q(S_t, a) \end{cases}$$

end if

end for

• Aprendizaje de q(s,a) condicionado a comportamiento futuro óptimo.

- Aprendizaje de q(s,a) condicionado a comportamiento futuro óptimo.
- Mantener exploración (acciones no óptimas!)

- Aprendizaje de q(s,a) condicionado a comportamiento futuro óptimo.
- Mantener exploración (acciones no óptimas!): ϵ greedy.

- Aprendizaje de q(s,a) condicionado a comportamiento futuro óptimo.
- Mantener exploración (acciones no óptimas!): ϵ greedy.
- Separar en dos políticas:

- Aprendizaje de q(s,a) condicionado a comportamiento futuro óptimo.
- Mantener exploración (acciones no óptimas!): ϵ greedy.
- Separar en dos políticas:
 - Política que se aprende π (política objetivo), puede ser determinística.

- Aprendizaje de q(s,a) condicionado a comportamiento futuro óptimo.
- Mantener exploración (acciones no óptimas!): ϵ greedy.
- Separar en dos políticas:
 - Política que se aprende π (política objetivo), puede ser determinística.
 - ightharpoonup Política de comportamiento b

- Aprendizaje de q(s,a) condicionado a comportamiento futuro óptimo.
- Mantener exploración (acciones no óptimas!): ϵ greedy.
- Separar en dos políticas:
 - Política que se aprende π (política objetivo), puede ser determinística.
 - ▶ Política de comportamiento b (soft)

- Aprendizaje de q(s,a) condicionado a comportamiento futuro óptimo.
- Mantener exploración (acciones no óptimas!): ϵ greedy.
- Separar en dos políticas:
 - Política que se aprende π (política objetivo), puede ser determinística.
 - ▶ Política de comportamiento b (soft)
- Aproximación más general.

- Aprendizaje de q(s,a) condicionado a comportamiento futuro óptimo.
- Mantener exploración (acciones no óptimas!): ϵ greedy.
- Separar en dos políticas:
 - Política que se aprende π (política objetivo), puede ser determinística.
 - ▶ Política de comportamiento b (soft)
- Aproximación más general.
- Métodos aplicables a aprendizaje de otras fuentes (p.ej. comportamiento humano).

• Estimar v_{π} o q_{π} usando experiencia de acuerdo a $b \neq \pi$.

- Estimar v_{π} o q_{π} usando experiencia de acuerdo a $b \neq \pi$.
- Considere un episodio generado usando π :

$$S_0, A_0, R_1; S_1, A_1, R_2 \dots$$

 $S_{\tau}, A_{\tau}, R_{\tau+1}; S_{\tau+1}, A_{\tau+1}, R_{\tau+2} \dots S_{T-1}, A_{T-1}, R_T; S_T$

- Estimar v_{π} o q_{π} usando experiencia de acuerdo a $b \neq \pi$.
- Considere un episodio generado usando π :

$$S_0, A_0, R_1; S_1, A_1, R_2 \dots$$

 $S_{\tau}, A_{\tau}, R_{\tau+1}; S_{\tau+1}, A_{\tau+1}, R_{\tau+2} \dots S_{T-1}, A_{T-1}, R_T; S_T$

• Si $\forall s \in \mathcal{S}, \ \pi(a \mid s) > 0 \Rightarrow b(a \mid s) > 0$, es probable observar la subsequencia:

$$S_{\tau}, A_{\tau}, R_{\tau+1}; S_{\tau+1}, A_{\tau+1}, R_{\tau+2} \dots S_{T-1}, A_{T-1}, R_T; S_T$$

usando b.

- Estimar v_{π} o q_{π} usando experiencia de acuerdo a $b \neq \pi$.
- Considere un episodio generado usando π :

$$S_0, A_0, R_1; S_1, A_1, R_2 \dots$$

 $S_{\tau}, A_{\tau}, R_{\tau+1}; S_{\tau+1}, A_{\tau+1}, R_{\tau+2} \dots S_{T-1}, A_{T-1}, R_T; S_T$

• Si $\forall s \in \mathcal{S}$, $\pi(a \mid s) > 0 \Rightarrow b(a \mid s) > 0$, es probable observar la subsequencia:

$$S_{\tau}, A_{\tau}, R_{\tau+1}; S_{\tau+1}, A_{\tau+1}, R_{\tau+2} \dots S_{T-1}, A_{T-1}, R_T; S_T$$

usando b. (b tiene cubrimiento de π).

- Estimar v_{π} o q_{π} usando experiencia de acuerdo a $b \neq \pi$.
- Considere un episodio generado usando π :

$$S_0, A_0, R_1; S_1, A_1, R_2 \dots$$

 $S_{\tau}, A_{\tau}, R_{\tau+1}; S_{\tau+1}, A_{\tau+1}, R_{\tau+2} \dots S_{T-1}, A_{T-1}, R_T; S_T$

• Si $\forall s \in \mathcal{S}$, $\pi(a \mid s) > 0 \Rightarrow b(a \mid s) > 0$, es probable observar la subsequencia:

$$S_{\tau}, A_{\tau}, R_{\tau+1}; S_{\tau+1}, A_{\tau+1}, R_{\tau+2} \dots S_{T-1}, A_{T-1}, R_T; S_T$$

usando b. (b tiene cubrimiento de π).

• Aunque es la misma secuencia, en general sucede con probabilidades diferentes bajo π que bajo b.

◆□▶ ◆□▶ ◆豊▶ ◆豊▶ 豊 めらぐ

• Lanzar dado justo, valor esperado del número mostrado es:

• Lanzar dado justo, valor esperado del número mostrado es: 3.5.

- Lanzar dado justo, valor esperado del número mostrado es: 3.5.
- Suponga un segundo dado en el que la probabilidad de 4,5,6 es $\frac{2}{9}$ y la probabilidad de 1,2, 3 es $\frac{1}{9}$.

- Lanzar dado justo, valor esperado del número mostrado es: 3.5.
- Suponga un segundo dado en el que la probabilidad de 4,5,6 es $\frac{2}{9}$ y la probabilidad de 1,2, 3 es $\frac{1}{9}$.(valor esperado 4)

- Lanzar dado justo, valor esperado del número mostrado es: 3.5.
- Suponga un segundo dado en el que la probabilidad de 4,5,6 es $\frac{2}{9}$ y la probabilidad de 1,2, 3 es $\frac{1}{9}$.(valor esperado 4)
- Cómo usamos el primer dado para estimar el valor esperado del número mostrado por el segundo?

- Lanzar dado justo, valor esperado del número mostrado es: 3.5.
- Suponga un segundo dado en el que la probabilidad de 4,5,6 es $\frac{2}{9}$ y la probabilidad de 1,2, 3 es $\frac{1}{9}$.(valor esperado 4)
- Cómo usamos el primer dado para estimar el valor esperado del número mostrado por el segundo?
- Muestreo por importancia simple:

$$\frac{1}{T} \sum_{t=1}^{T} X_t$$

- Lanzar dado justo, valor esperado del número mostrado es: 3.5.
- Suponga un segundo dado en el que la probabilidad de 4,5,6 es $\frac{2}{9}$ y la probabilidad de 1,2, 3 es $\frac{1}{9}$.(valor esperado 4)
- Cómo usamos el primer dado para estimar el valor esperado del número mostrado por el segundo?
- Muestreo por importancia simple:

$$\frac{1}{T} \sum_{t=1}^{T} X_{t} \times \underbrace{\frac{\mathbf{P}_{c} \{X_{t}\}}{\mathbf{P}_{u} \{X_{t}\}}}_{\text{importance sampling ratio}}$$

- Lanzar dado justo, valor esperado del número mostrado es: 3.5.
- Suponga un segundo dado en el que la probabilidad de 4,5,6 es $\frac{2}{9}$ y la probabilidad de 1,2, 3 es $\frac{1}{9}$.(valor esperado 4)
- Cómo usamos el primer dado para estimar el valor esperado del número mostrado por el segundo?
- Muestreo por importancia simple:

$$\frac{1}{T} \sum_{t=1}^{T} X_{t} \underbrace{\times \frac{\mathbf{P}_{c} \{X_{t}\}}{\mathbf{P}_{u} \{X_{t}\}}}_{\text{importance sampling ratio}}$$

Estimador no sesgado.

- Lanzar dado justo, valor esperado del número mostrado es: 3.5.
- Suponga un segundo dado en el que la probabilidad de 4,5,6 es $\frac{2}{9}$ y la probabilidad de 1,2, 3 es $\frac{1}{9}$.(valor esperado 4)
- Cómo usamos el primer dado para estimar el valor esperado del número mostrado por el segundo?
- Muestreo por importancia simple:

$$\frac{1}{T} \sum_{t=1}^{T} X_{t} \underbrace{\times \frac{\mathbf{P}_{c} \{X_{t}\}}{\mathbf{P}_{u} \{X_{t}\}}}_{\text{importance sampling ratio}}$$

► Estimador no sesgado.

$$\mathbb{E}\left[X_{t}\frac{\mathbf{P}_{c}\left\{X_{t}\right\}}{\mathbf{P}_{u}\left\{X_{t}\right\}}\right]$$

- Lanzar dado justo, valor esperado del número mostrado es: 3.5.
- Suponga un segundo dado en el que la probabilidad de 4,5,6 es $\frac{2}{9}$ y la probabilidad de 1,2, 3 es $\frac{1}{9}$.(valor esperado 4)
- Cómo usamos el primer dado para estimar el valor esperado del número mostrado por el segundo?
- Muestreo por importancia simple:

$$\frac{1}{T} \sum_{t=1}^{T} X_{t} \times \underbrace{\frac{\mathbf{P}_{c} \{X_{t}\}}{\mathbf{P}_{u} \{X_{t}\}}}_{\text{importance sampling ratio}}$$

Estimador no sesgado.

$$\mathbb{E}\left[X_{t}\frac{\mathbf{P}_{c}\left\{X_{t}\right\}}{\mathbf{P}_{u}\left\{X_{t}\right\}}\right] = \sum_{i=1}^{6} \mathbf{P}_{u}\left\{X_{i}\right\} X_{i}\frac{\mathbf{P}_{c}\left\{X_{i}\right\}}{\mathbf{P}_{u}\left\{X_{i}\right\}}$$

- Lanzar dado justo, valor esperado del número mostrado es: 3.5.
- Suponga un segundo dado en el que la probabilidad de 4,5,6 es $\frac{2}{9}$ y la probabilidad de 1,2, 3 es $\frac{1}{9}$.(valor esperado 4)
- Cómo usamos el primer dado para estimar el valor esperado del número mostrado por el segundo?
- Muestreo por importancia simple:

$$\frac{1}{T} \sum_{t=1}^{T} X_{t} \times \underbrace{\frac{\mathbf{P}_{c} \{X_{t}\}}{\mathbf{P}_{u} \{X_{t}\}}}_{\text{importance sampling ratio}}$$

Estimador no sesgado.

$$\mathbb{E}\left[X_{t}\frac{\mathbf{P}_{c}\left\{X_{t}\right\}}{\mathbf{P}_{u}\left\{X_{t}\right\}}\right] = \sum_{i=1}^{6} \mathbf{P}_{u}\left\{X_{i}\right\} X_{i}\frac{\mathbf{P}_{c}\left\{X_{i}\right\}}{\mathbf{P}_{u}\left\{X_{i}\right\}} = \sum_{i=1}^{6} \mathbf{P}_{c}\left\{X_{i}\right\} X_{i}$$

- Lanzar dado justo, valor esperado del número mostrado es: 3.5.
- Suponga un segundo dado en el que la probabilidad de 4,5,6 es $\frac{2}{9}$ y la probabilidad de 1,2, 3 es $\frac{1}{9}$.(valor esperado 4)
- Cómo usamos el primer dado para estimar el valor esperado del número mostrado por el segundo?
- Muestreo por importancia simple:

$$\frac{1}{T} \sum_{t=1}^{T} X_{t} \times \underbrace{\frac{\mathbf{P}_{c} \{X_{t}\}}{\mathbf{P}_{u} \{X_{t}\}}}_{\text{importance sampling ratio}}$$

Estimador no sesgado.

$$\mathbb{E}\left[X_{t}\frac{\mathbf{P}_{c}\left\{X_{t}\right\}}{\mathbf{P}_{u}\left\{X_{t}\right\}}\right] = \sum_{i=1}^{6} \mathbf{P}_{u}\left\{X_{i}\right\} X_{i}\frac{\mathbf{P}_{c}\left\{X_{i}\right\}}{\mathbf{P}_{u}\left\{X_{i}\right\}} = \sum_{i=1}^{6} \mathbf{P}_{c}\left\{X_{i}\right\} X_{i}$$

 \blacktriangleright Puede tener varianza alta, cuando $\frac{\mathbf{P}_c\{X_t\}}{\mathbf{P}_u\{X_t\}} \gg$

• Muestreo por importancia pesado:

$$\sum_{i=1}^{T} X_t$$

• Muestreo por importancia pesado:

$$\sum_{i=1}^{T} X_t \frac{\frac{\mathbf{P}_c\{X_t\}}{\mathbf{P}_u\{X_t\}}}{\sum_{i=1}^{T} \frac{\mathbf{P}_c\{X_t\}}{\mathbf{P}_u\{X_t\}}}$$

• Muestreo por importancia pesado:

$$\sum_{i=1}^{T} X_t \frac{\frac{\mathbf{P}_c\{X_t\}}{\mathbf{P}_u\{X_t\}}}{\sum_{i=1}^{T} \frac{\mathbf{P}_c\{X_t\}}{\mathbf{P}_u\{X_t\}}}$$

► Estimador sesgado.

• Muestreo por importancia pesado:

$$\sum_{i=1}^{T} X_t \frac{\frac{\mathbf{P}_c\{X_t\}}{\mathbf{P}_u\{X_t\}}}{\sum_{i=1}^{T} \frac{\mathbf{P}_c\{X_t\}}{\mathbf{P}_u\{X_t\}}}$$

- ► Estimador sesgado.
- ▶ Menor varianza (coeficientes siempre <1).

$$\pi(A_t \mid S_t)$$

$$\pi(A_t \mid S_t)p(S_{t+1} \mid S_t, A_t)$$

$$\pi(A_t \mid S_t) p(S_{t+1} \mid S_t, A_t) \pi(A_{t+1} \mid S_{t+1})$$

$$\pi(A_t \mid S_t)p(S_{t+1} \mid S_t, A_t)\pi(A_{t+1} \mid S_{t+1})\dots p(S_T \mid S_{T-1}, A_{T-1})$$

$$\pi(A_t \mid S_t) p(S_{t+1} \mid S_t, A_t) \pi(A_{t+1} \mid S_{t+1}) \dots p(S_T \mid S_{T-1}, A_{T-1})$$

$$= \prod_{k=1}^{T-1} \pi(A_k \mid S_k) p(S_{k+1} \mid S_k, A_k)$$

• Probabilidad de observar secuencia $A_t, S_{t+1}, A_{t+1}, \dots S_T$ a partir de S_t bajo política π :

$$\pi(A_t \mid S_t) p(S_{t+1} \mid S_t, A_t) \pi(A_{t+1} \mid S_{t+1}) \dots p(S_T \mid S_{T-1}, A_{T-1})$$

$$= \prod_{k=1}^{T-1} \pi(A_k \mid S_k) p(S_{k+1} \mid S_k, A_k)$$

• Importance sampling ratio:

• Probabilidad de observar secuencia $A_t, S_{t+1}, A_{t+1}, \dots S_T$ a partir de S_t bajo política π :

$$\pi(A_t \mid S_t) p(S_{t+1} \mid S_t, A_t) \pi(A_{t+1} \mid S_{t+1}) \dots p(S_T \mid S_{T-1}, A_{T-1})$$

$$= \prod_{k=1}^{T-1} \pi(A_k \mid S_k) p(S_{k+1} \mid S_k, A_k)$$

• Importance sampling ratio:

$$\rho_{t:T-1} = \frac{\prod_{k=1}^{T-1} \pi(A_k \mid S_k) p(S_{k+1} \mid S_k, A_k)}{\prod_{k=1}^{T-1} b(A_k \mid S_k) p(S_{k+1} \mid S_k, A_k)}$$

• Probabilidad de observar secuencia $A_t, S_{t+1}, A_{t+1}, \dots S_T$ a partir de S_t bajo política π :

$$\pi(A_t \mid S_t) p(S_{t+1} \mid S_t, A_t) \pi(A_{t+1} \mid S_{t+1}) \dots p(S_T \mid S_{T-1}, A_{T-1})$$

$$= \prod_{k=1}^{T-1} \pi(A_k \mid S_k) p(S_{k+1} \mid S_k, A_k)$$

• Importance sampling ratio:

$$\rho_{t:T-1} = \frac{\prod_{k=1}^{T-1} \pi(A_k \mid S_k) p(S_{k+1} \mid S_k, A_k)}{\prod_{k=1}^{T-1} b(A_k \mid S_k) p(S_{k+1} \mid S_k, A_k)} = \frac{\prod_{k=1}^{T-1} \pi(A_k \mid S_k)}{\prod_{k=1}^{T-1} b(A_k \mid S_k)}$$

• Queremos estimar $v_{\pi}(s) = \mathbb{E}_{\pi} \{G_t \mid S_t = s\}$, pero muestras G_t se generan con b.

- Queremos estimar $v_{\pi}(s) = \mathbb{E}_{\pi} \{G_t \mid S_t = s\}$, pero muestras G_t se generan con b.
- Muestreo por importancia simple:

$$V(s) = \frac{1}{|\mathcal{T}(s)|} \sum_{t \in \mathcal{T}(s)} \rho_{t:T(t)-1} G_t$$

- Queremos estimar $v_{\pi}(s) = \mathbb{E}_{\pi} \{G_t \mid S_t = s\}$, pero muestras G_t se generan con b.
- Muestreo por importancia simple:

$$V(s) = \frac{1}{|\mathcal{T}(s)|} \sum_{t \in \mathcal{T}(s)} \rho_{t:T(t)-1} G_t$$

• Muestreo por importancia pesado:

$$V(s) = \frac{\sum_{t \in \mathcal{T}(s)} \rho_{t:T(t)-1} G_t}{\sum_{t \in \mathcal{T}(s)} \rho_{t:T(t)-1}}$$

• Simple: estimativo no sesgado, pero varianza puede ser infinita.

- Simple: estimativo no sesgado, pero varianza puede ser infinita.
- Pesado: sesgado, pero sesgo y varianza tienden a cero asimptóticamente.

- Simple: estimativo no sesgado, pero varianza puede ser infinita.
- Pesado: sesgado, pero sesgo y varianza tienden a cero asimptóticamente.
- En la práctica pesado tiene menor varianza y es preferible.

- Simple: estimativo no sesgado, pero varianza puede ser infinita.
- Pesado: sesgado, pero sesgo y varianza tienden a cero asimptóticamente.
- En la práctica pesado tiene menor varianza y es preferible.

Figure 5.4: Ordinary importance sampling produces surprisingly unstable estimates on the one-state MDP shown inset (Example 5.5). The correct estimate here is 1 ($\gamma = 1$), and, even though this is the expected value of a sample return (after importance sampling), the variance of the samples is infinite, and the estimates do not converge to this value. These results are for off-policy first-visit MC.

$$V_n \doteq \frac{\sum_{k=1}^{n-1} W_k G_k}{\sum_{k=1}^{n-1} W_k}$$

$$V_n \doteq \frac{\sum_{k=1}^{n-1} W_k G_k}{\sum_{k=1}^{n-1} W_k}$$

$$V_{n+1} = \frac{V_n}{}$$

$$V_n \doteq \frac{\sum_{k=1}^{n-1} W_k G_k}{\sum_{k=1}^{n-1} W_k}$$

$$V_{n+1} = \frac{V_n \sum_{k=1}^{n-1} W_k}{}$$

$$V_n \doteq \frac{\sum_{k=1}^{n-1} W_k G_k}{\sum_{k=1}^{n-1} W_k}$$

$$V_{n+1} = \frac{V_n \sum_{k=1}^{n-1} W_k + W_n G_n}{V_{n+1}}$$

$$V_n \doteq \frac{\sum_{k=1}^{n-1} W_k G_k}{\sum_{k=1}^{n-1} W_k}$$

$$V_{n+1} = \frac{V_n \sum_{k=1}^{n-1} W_k + W_n G_n}{\sum_{k=1}^{n-1} W_k + W_n}$$

$$V_n \doteq \frac{\sum_{k=1}^{n-1} W_k G_k}{\sum_{k=1}^{n-1} W_k}$$

$$V_{n+1} = \frac{V_n \sum_{k=1}^{n-1} W_k + W_n G_n}{\sum_{k=1}^{n-1} W_k + W_n}$$
$$= \frac{V_n (\sum_{k=1}^{n-1} W_k + \frac{W_n}{W_n}) + W_n G_n - \frac{V_n W_n}{\sum_{k=1}^{n-1} W_k + W_n}$$

$$V_n \doteq \frac{\sum_{k=1}^{n-1} W_k G_k}{\sum_{k=1}^{n-1} W_k}$$

$$V_{n+1} = \frac{V_n \sum_{k=1}^{n-1} W_k + W_n G_n}{\sum_{k=1}^{n-1} W_k + W_n}$$

$$= \frac{V_n (\sum_{k=1}^{n-1} W_k + W_n) + W_n G_n - V_n W_n}{\sum_{k=1}^{n-1} W_k + W_n}$$

$$= V_n + \frac{W_n}{C_n} [G_n - V_n]$$

con
$$C_{n+1} = C_n + W_{n+1}$$
, y $C_0 = 0$

Input: Política objetivo π

Input: Política objetivo π Incialice $Q(s, a) \in \mathbb{R}$,

Input: Política objetivo π

Incialize $Q(s, a) \in \mathbb{R}$, $C(s, a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$

Input: Política objetivo π Incialice $Q(s,a) \in \mathbb{R}, C(s,a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$ repeat

Input: Política objetivo π Incialice $Q(s, a) \in \mathbb{R}$, $C(s, a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$ repeat $b \leftarrow \text{política con cubrimiento de } \pi$.

Input: Política objetivo π Incialice $Q(s, a) \in \mathbb{R}$, $C(s, a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$

repeat

 $b \leftarrow \text{política con cubrimiento de } \pi.$

Episodio $b: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T,$

```
Input: Política objetivo \pi

Incialice Q(s,a) \in \mathbb{R}, C(s,a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)

repeat

b \leftarrow \text{política con cubrimiento de } \pi.

Episodio b: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T,

G \leftarrow 0, W \leftarrow 1
```

Input: Política objetivo π Incialice $Q(s,a) \in \mathbb{R}$, $C(s,a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$ repeat

 $b \leftarrow \text{política con cubrimiento de } \pi.$

Episodio $b: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T,$

$$G \leftarrow 0, \ W \leftarrow 1$$

for
$$t = T - 1, T - 2, \dots 0$$
 do

```
Input: Política objetivo \pi

Incialice Q(s,a) \in \mathbb{R}, C(s,a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)

repeat
b \leftarrow \text{política con cubrimiento de } \pi.
Episodio b: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T,
G \leftarrow 0, W \leftarrow 1
for t = T - 1, T - 2, \dots 0 do
G \leftarrow \gamma G + R_{t+1}
```

```
Input: Política objetivo \pi

Incialice Q(s,a) \in \mathbb{R}, C(s,a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)

repeat
b \leftarrow \text{política con cubrimiento de } \pi.
Episodio b: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T,
G \leftarrow 0, W \leftarrow 1
for t = T - 1, T - 2, \dots 0 do
G \leftarrow \gamma G + R_{t+1}
C(S_t, A_t) \leftarrow C(S_t, A_t) + W
```

Input: Política objetivo
$$\pi$$

Incialice $Q(s,a) \in \mathbb{R}$, $C(s,a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$
repeat

$$b \leftarrow \text{política con cubrimiento de } \pi.$$
Episodio $b: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T,$
 $G \leftarrow 0, W \leftarrow 1$
for $t = T - 1, T - 2, \dots 0$ **do**

$$G \leftarrow \gamma G + R_{t+1}$$

$$C(S_t, A_t) \leftarrow C(S_t, A_t) + W$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]$$

Input: Política objetivo
$$\pi$$

Incialice $Q(s,a) \in \mathbb{R}$, $C(s,a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$
repeat

$$b \leftarrow \text{política con cubrimiento de } \pi.$$
Episodio $b: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T,$
 $G \leftarrow 0, W \leftarrow 1$
for $t = T - 1, T - 2, \dots 0$ **do**

$$G \leftarrow \gamma G + R_{t+1}$$

$$C(S_t, A_t) \leftarrow C(S_t, A_t) + W$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]$$

$$W \leftarrow W \frac{\pi(A_t \mid S_t)}{b(A_t \mid S_t)}$$

Input: Política objetivo
$$\pi$$
Incialice $Q(s,a) \in \mathbb{R}, \ C(s,a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$
repeat

 $b \leftarrow \text{política con cubrimiento de } \pi$.

Episodio $b: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T,$
 $G \leftarrow 0, W \leftarrow 1$

for $t = T - 1, T - 2, \dots 0$ do

 $G \leftarrow \gamma G + R_{t+1}$
 $C(S_t, A_t) \leftarrow C(S_t, A_t) + W$
 $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]$
 $W \leftarrow W \frac{\pi(A_t \mid S_t)}{b(A_t \mid S_t)}$
if $W = 0$ then

```
Input: Política objetivo \pi
Incialize Q(s, a) \in \mathbb{R}, C(s, a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)
repeat
     b \leftarrow \text{política con cubrimiento de } \pi.
     Episodio b: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0, W \leftarrow 1
     for t = T - 1, T - 2, \dots 0 do
          G \leftarrow \gamma G + R_{t+1}
          C(S_t, A_t) \leftarrow C(S_t, A_t) + W
          Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]
          W \leftarrow W \frac{\pi(A_t \mid S_t)}{h(A_t \mid S_t)}
          if W=0 then break
          end if
```

```
Input: Política objetivo \pi
Incialize Q(s, a) \in \mathbb{R}, C(s, a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)
repeat
     b \leftarrow \text{política con cubrimiento de } \pi.
     Episodio b: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0, W \leftarrow 1
     for t = T - 1, T - 2, \dots 0 do
          G \leftarrow \gamma G + R_{t+1}
          C(S_t, A_t) \leftarrow C(S_t, A_t) + W
          Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]
          W \leftarrow W \frac{\pi(A_t \mid S_t)}{h(A_t \mid S_t)}
          if W = 0 then break
          end if
     end for
```

```
Input: Política objetivo \pi
Incialize Q(s, a) \in \mathbb{R}, C(s, a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)
repeat
     b \leftarrow \text{política con cubrimiento de } \pi.
     Episodio b: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0, W \leftarrow 1
     for t = T - 1, T - 2, \dots 0 do
          G \leftarrow \gamma G + R_{t+1}
          C(S_t, A_t) \leftarrow C(S_t, A_t) + W
          Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]
          W \leftarrow W \frac{\pi(A_t \mid S_t)}{h(A_t \mid S_t)}
          if W=0 then break
          end if
     end for
until \infty
```

```
Input: Política objetivo \pi
Incialize Q(s, a) \in \mathbb{R}, C(s, a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)
repeat
     b \leftarrow \text{política con cubrimiento de } \pi.
     Episodio b: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0, W \leftarrow 1
     for t = T - 1, T - 2, \dots 0 do
          G \leftarrow \gamma G + R_{t+1}
          C(S_t, A_t) \leftarrow C(S_t, A_t) + W
          Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]
          W \leftarrow W \frac{\pi(A_t \mid S_t)}{h(A_t \mid S_t)}
          if W=0 then break
          end if
     end for
until \infty
```

Incialize $Q(s, a) \in \mathbb{R}$,

Incialize $Q(s, a) \in \mathbb{R}$, $C(s, a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$

Incialize $Q(s,a) \in \mathbb{R}$, $C(s,a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$ $\pi(s) \leftarrow \arg\max_a Q(s,a)$ repeat

Incialice
$$Q(s,a) \in \mathbb{R}$$
, $C(s,a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$
 $\pi(s) \leftarrow \arg\max_a Q(s,a)$
repeat

 $b \leftarrow$ política con cubrimiento de $\pi.$

Incialize
$$Q(s, a) \in \mathbb{R}$$
, $C(s, a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$
 $\pi(s) \leftarrow \arg\max_{a} Q(s, a)$

repeat

 $b \leftarrow \text{política con cubrimiento de } \pi.$

Episodio $b: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T,$

Incialize
$$Q(s, a) \in \mathbb{R}$$
, $C(s, a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$
 $\pi(s) \leftarrow \arg\max_{a} Q(s, a)$

repeat

 $b \leftarrow \text{política con cubrimiento de } \pi.$

Episodio $b: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T,$

$$G \leftarrow 0, \ W \leftarrow 1$$

Incialize
$$Q(s, a) \in \mathbb{R}$$
, $C(s, a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$
 $\pi(s) \leftarrow \arg\max_{a} Q(s, a)$

repeat

 $b \leftarrow \text{política con cubrimiento de } \pi.$

Episodio
$$b: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T,$$

$$G \leftarrow 0, W \leftarrow 1$$

for
$$t = T - 1, T - 2, \dots 0$$
 do

Incialice
$$Q(s,a) \in \mathbb{R}$$
, $C(s,a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$
 $\pi(s) \leftarrow \arg\max_a Q(s,a)$
repeat
 $b \leftarrow \text{política con cubrimiento de } \pi.$
Episodio $b: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T,$
 $G \leftarrow 0, W \leftarrow 1$
for $t = T - 1, T - 2, \dots 0$ do
 $G \leftarrow \gamma G + R_{t+1}$

Incialice
$$Q(s,a) \in \mathbb{R}, \ C(s,a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$$

 $\pi(s) \leftarrow \arg\max_a Q(s,a)$
repeat
 $b \leftarrow \text{política con cubrimiento de } \pi.$
Episodio $b: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T,$
 $G \leftarrow 0, \ W \leftarrow 1$
for $t = T - 1, T - 2, \dots 0$ do
 $G \leftarrow \gamma G + R_{t+1}$
 $C(S_t, A_t) \leftarrow C(S_t, A_t) + W$

Incialize
$$Q(s, a) \in \mathbb{R}$$
, $C(s, a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$
 $\pi(s) \leftarrow \arg\max_a Q(s, a)$
repeat
 $b \leftarrow \text{política con cubrimiento de } \pi$.
Episodio $b: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T,$
 $G \leftarrow 0, W \leftarrow 1$
for $t = T - 1, T - 2, \dots 0$ do
 $G \leftarrow \gamma G + R_{t+1}$
 $C(S_t, A_t) \leftarrow C(S_t, A_t) + W$
 $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]$

Incialice
$$Q(s,a) \in \mathbb{R}, \ C(s,a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$$

 $\pi(s) \leftarrow \arg\max_a Q(s,a)$
repeat
 $b \leftarrow \text{política con cubrimiento de } \pi.$
Episodio $b: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T,$
 $G \leftarrow 0, W \leftarrow 1$
for $t = T - 1, T - 2, \dots 0$ do
 $G \leftarrow \gamma G + R_{t+1}$
 $C(S_t, A_t) \leftarrow C(S_t, A_t) + W$
 $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]$
 $\pi(S_t) \leftarrow \arg\max_a Q(S_t, a)$
if $A_t \neq \pi(S_t)$ then

Incialice
$$Q(s,a) \in \mathbb{R}, \ C(s,a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$$
 $\pi(s) \leftarrow \arg\max_a Q(s,a)$
repeat
$$b \leftarrow \text{política con cubrimiento de } \pi.$$
Episodio $b: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T,$
 $G \leftarrow 0, W \leftarrow 1$
for $t = T - 1, T - 2, \dots 0$ do
$$G \leftarrow \gamma G + R_{t+1}$$

$$C(S_t, A_t) \leftarrow C(S_t, A_t) + W$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]$$
 $\pi(S_t) \leftarrow \arg\max_a Q(S_t, a)$
if $A_t \neq \pi(S_t)$ then break
end if
$$W \leftarrow W \frac{1}{b(A_t \mid S_t)}$$

Incialice
$$Q(s,a) \in \mathbb{R}, \ C(s,a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$$
 $\pi(s) \leftarrow \arg\max_a Q(s,a)$
repeat
$$b \leftarrow \text{política con cubrimiento de } \pi.$$
Episodio $b: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T,$
 $G \leftarrow 0, \ W \leftarrow 1$
for $t = T - 1, T - 2, \dots 0$ do
$$G \leftarrow \gamma G + R_{t+1}$$

$$C(S_t, A_t) \leftarrow C(S_t, A_t) + W$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]$$
 $\pi(S_t) \leftarrow \arg\max_a Q(S_t, a)$
if $A_t \neq \pi(S_t)$ then break
end if
$$W \leftarrow W \frac{1}{b(A_t \mid S_t)}$$
end for

```
Incialize Q(s, a) \in \mathbb{R}, C(s, a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)
\pi(s) \leftarrow \arg\max_{a} Q(s, a)
repeat
     b \leftarrow \text{política con cubrimiento de } \pi.
     Episodio b: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T.
     G \leftarrow 0, W \leftarrow 1
     for t = T - 1, T - 2, \dots 0 do
          G \leftarrow \gamma G + R_{t\perp 1}
          C(S_t, A_t) \leftarrow C(S_t, A_t) + W
          Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]
          \pi(S_t) \leftarrow \arg\max_a Q(S_t, a)
          if A_t \neq \pi(S_t) then break
          end if
          W \leftarrow W \frac{1}{b(A_t + S_t)}
     end for
until \infty
```

```
Incialize Q(s, a) \in \mathbb{R}, C(s, a) \leftarrow 0 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)
\pi(s) \leftarrow \arg\max_{a} Q(s, a)
repeat
     b \leftarrow \text{política con cubrimiento de } \pi.
     Episodio b: S_0, A_0, R_1, S_2, A_2, R_2, \dots S_{T-1}, A_{T-1}, R_T.
     G \leftarrow 0, W \leftarrow 1
     for t = T - 1, T - 2, \dots 0 do
          G \leftarrow \gamma G + R_{t\perp 1}
          C(S_t, A_t) \leftarrow C(S_t, A_t) + W
          Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]
          \pi(S_t) \leftarrow \arg\max_a Q(S_t, a)
          if A_t \neq \pi(S_t) then break
          end if
          W \leftarrow W \frac{1}{b(A_t + S_t)}
     end for
until \infty
```