ELE 538B: Mathematics of High-Dimensional Data

Fall 2018

Homework 3

Due date: Wednesday, Nov. 28, 2018 (at the beginning of class)

You are allowed to drop 1 subproblem without penalty. In addition, up to 1 bonus point will be awarded to each subproblem for clean, well-organized, and elegant solutions.

1. Gaussian graphical models (20 points)

(a) Consider a p-dimensional Gaussian vector $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{\Sigma})$. For any $1 \leq u, v \leq p$, show that

$$x_u \perp \!\!\!\perp x_v \mid \boldsymbol{x}_{\mathcal{V}\setminus\{u,v\}}$$

(namely, x_u and x_v are conditionally independent given all other variables) if and only if $\Theta_{u,v} = 0$. Here, $\Theta = \Sigma^{-1}$.

(b) In graphical lasso, the objective function includes a term $\log \det \Theta$. Show that $g(\Theta) := \log \det(\Theta)$ $(\Theta \succ 0)$ is a concave function.

Hint: A function $g(\mathbf{\Theta})$ is concave if $h(t) := g(\mathbf{\Theta} + t\mathbf{V})$ is concave for all t and \mathbf{V} obeying $\mathbf{\Theta} + t\mathbf{V} \succ \mathbf{0}$.

2. Restricted isometry properties (30 points)

Recall that the restricted isometry constant $\delta_s \geq 0$ of A is the smallest constant such that

$$(1 - \delta_s) \|\boldsymbol{x}\|_2^2 \le \|\boldsymbol{A}\boldsymbol{x}\|_2^2 \le (1 + \delta_s) \|\boldsymbol{x}\|_2^2 \tag{1}$$

holds for all s-sparse vector $\boldsymbol{x} \in \mathbb{R}^p$.

(a) Show that

$$|\langle Ax_1, Ax_2 \rangle| \le \delta_{s_1+s_2} ||x_1||_2 ||x_2||_2$$

for all pairs of x_1 and x_2 that are supported on disjoint subsets $S_1, S_2 \subset \{1, \dots, n\}$ with $|S_1| \leq s_1$ and $|S_2| \leq s_2$.

(b) For any \boldsymbol{u} and \boldsymbol{v} , show that

$$|\langle \boldsymbol{u}, (\boldsymbol{I} - \boldsymbol{A}^{\top} \boldsymbol{A}) \boldsymbol{v} \rangle| \leq \delta_s \|\boldsymbol{u}\|_2 \cdot \|\boldsymbol{v}\|_2,$$

where s is the cardinality of support $(u) \cup \text{support}(v)$.

- (c) Suppose that each column of A has unit norm. Show that $\delta_2 = \mu(A)$, where $\mu(A)$ is the mutual coherence of A.
- 3. Statistical dimension (10 points) Recall that for any convex cone K, its statistical dimension and Gaussian width are defined respectively as

$$\operatorname{stat-dim}(\mathcal{K}) := \mathbb{E}[\|\mathcal{P}_{\mathcal{K}}(\boldsymbol{g})\|_{2}^{2}]$$

and

$$w(\mathcal{K}) := \mathbb{E} \Bigg[\sup_{\boldsymbol{z} \in \mathcal{K}, \|\boldsymbol{z}\|_2 = 1} \langle \boldsymbol{z}, \boldsymbol{g} \rangle \Bigg],$$

where $m{g} \sim \mathcal{N}(m{0}, m{I})$ and $\mathcal{P}_{\mathcal{K}}$ denotes the projection to \mathcal{K} as

$$\mathcal{P}_{\mathcal{K}}(oldsymbol{g}) = \operatorname*{arg\,min}_{oldsymbol{z} \in \mathcal{K}} \lVert oldsymbol{g} - oldsymbol{z}
Vert_2.$$

- (a) Prove that $w^2(\mathcal{K}) \leq \operatorname{stat-dim}(\mathcal{K})$.
- (b) (Optional (10 bonus points)) Prove the reverse inequality stat-dim(\mathcal{K}) $\leq w^2(\mathcal{K}) + 1$. hint: Let $f(\cdot)$ be a function that is Lipschitz with respect to the Euclidean norm:

$$|f(\boldsymbol{u}) - f(\boldsymbol{v})| \le M \|\boldsymbol{u} - \boldsymbol{v}\|_2 \qquad \forall \boldsymbol{u}, \boldsymbol{v}$$

Then, $Var(f(\boldsymbol{g})) \leq M^2$.