

BEST AVAILABLE COPY

- 間シリコン型のGrown-in欠陥フリー領域(PI領域)である。
- [0005] このような欠陥分布は、次の二つの因子によって制御されることが知られている。一つは結晶引上げ速度であり、今一つは凝固直後の結晶内温度分布である。結晶引上げ速度の影響を図2により説明すると、以下の如くである。
- [0006] 図2は、引上げ速度を徐々に低下させながら成長させた単結晶の縦断面における欠陥分布を示している。引上げ速度が速い段階では、リングOSF発生領域は結晶外周部に位置する。したがって、高速引上げ条件で育成した単結晶から採取されたウェーハは、結晶径方向のほぼ全域にCOPを発生する。引上げ速度の低下に伴ってリングOSF発生領域は結晶中心部へ徐々に移動し、最終的には結晶中心部で消滅する。したがって、低速引上げ条件で育成した単結晶から採取されたウェーハは、結晶径方向のほぼ全域に転位クラスタを発生する。ちなみに、図1の結晶横断面は、図2中のA位置での断面図に相当している。
- [0007] 転位クラスタもCOPも共にデバイス特性を悪化させる有害なGrown-in欠陥であるが、有害度はCOPの方が小さく、生産性に対する要求もあって、従来はもっぱら図2中にD位置以上で示されるようなOSF発生領域を結晶外周部に位置させるか結晶外へ排除する高速引上げ条件での育成が行われていた。
- [0008] しかしながら、近年における集積回路の著しい微細化に伴い、COPの有害性さえもが指摘され始め、転位クラスタと共にCOPの発生を防止する必要性が生じてきた。この要求に応える技術の一つが、特許文献1及び特許文献2に記載されているような欠陥分布制御による欠陥フリー結晶の育成である。
- [0009] 特許文献1及び特許文献2に記載されている育成結晶におけるGrown-in欠陥フリー化は、前述した凝固直後の結晶内温度分布によって欠陥分布が制御される現象を利用したものである。
- [0010] 即ち、通常のCZ引上げでは、凝固直後の結晶は外周面から放熱される。このため、凝固直後の結晶内の軸方向温度勾配は、中心部での温度勾配Gcより外周部での温度勾配Geが大となる傾向を示す。その結果、引上げ速度を徐々に低下させながら成長させた単結晶の縦断面における欠陥分布、特にリングOSF発生領域は、下方に凸で且つ先が尖ったV字形状になる。その結果、リングOSF発生領域が結晶中心

明細書

シリコンウェーハ及びその製造方法、並びにシリコン単結晶育成方法 技術分野

[0001] 本発明は、半導体デバイスの素材であるシリコンウェーハ及びその製造方法、並びにシリコンウェーハの素材であるシリコン単結晶の育成方法に関し、特に欠陥のないいわゆるGrow-in欠陥フリーウェーハの製造に用いて好適な技術に関する。

本願は、2004年8月25日に出願された日本国特許出願第2004-246017号、2005年6月2日に出願された日本国特許出願第2005-163152号、2005年8月22日に出願された日本国特許出願第2005-239529号に対し優先権を主張し、その内容をここに援用する。

背景技術

[0002] シリコンウェーハの素材であるシリコン単結晶の製造方法として代表的なものは、CZ法と呼ばれる回転引上げ法である。CZ法によるシリコン単結晶の製造では、周知のとおり、石英ルツボ内に形成したシリコン融液に種結晶を浸漬し、ルツボ及び種結晶を回転させながら種結晶を引上げることにより、種結晶の下方にシリコン単結晶を育成する。

[0003] こうして製造されるシリコン単結晶には、デバイス形成工程で問題となる様々な種類のGrow-in欠陥が生じることが知られている。代表的なGrow-in欠陥は、格子間シリコン優勢領域に発生する転位クラスタ及び空孔優勢領域に発生するCOPまたはボイドの二つであり、両領域の間はリングOSF発生領域となる。さらに空孔型及び格子間シリコン型のGrow-in欠陥フリー領域がある。結晶径方向における典型的な欠陥分布を図1により説明すると、以下の如くである。

[0004] 結晶径方向の中間位置にリング(状)OSF発生領域がリング状に存在している。リングOSF発生領域の内側は無欠陥領域を介してCOPまたはボイド発生領域になっている。一方、リングOSF発生領域の外側は酸素析出促進領域、および酸素析出抑制領域(Pi領域)を介して転位クラスタ発生領域になっている。酸素析出促進領域は、空孔型のGrow-in欠陥フリー領域(PV領域)であり、酸素析出抑制領域は格子

部に消滅する臨界速度近傍の引上げ条件を採用しても、Grown-in欠陥フリーの領域は結晶中心部に限定的に生じるだけであり、結晶径方向の全域を欠陥フリー化することはできない。

- [0011] ちなみに、転位クラスタ及びCOPは、リングOSF発生領域内側の無欠陥領域に発生しないのは勿論のこと、リングOSF発生領域自体、更にはその外側の酸素析出促進領域及び酸素析出抑制領域にも生じない。即ち、これら4つの領域がGrown-in欠陥フリー領域である。
- [0012] これに対し、結晶引上げ炉におけるホットゾーン構造の工夫により、凝固直後の結晶を外面側から積極的に保温するようにすると、中心部での温度勾配Gcを外周部での温度勾配Geと同一かこれより大きくすることが可能となる。そうすると、引上げ速度を徐々に低下させながら成長させた単結晶の縦断面におけるリング(状)OSF発生領域の形状は、図3に示すように、下方に凸の傾向のままで先がフラット化してU字形状になる。そしてこの状態で、リングOSF発生領域が結晶中心部に消滅する臨界速度近傍の引上げ条件を採用することにより、結晶径方向の全域を欠陥フリー化することが可能になる。ちなみに図3では、この引上げ速度条件はB-Cの範囲内となる。
- [0013] なお、育成結晶における欠陥フリー化の他の技術としては、例えば特許文献3及び特許文献4に示されるような結晶引き上げ時の水素雰囲気での引き上げがある。これは引上げ炉内に導入する不活性ガス中に微量の水素ガスを混入するものであり、シリコン融液への窒素ドープと同様に空孔欠陥の形成を抑制できる。
- [0014] 特許文献1及び特許文献2に記載されているような欠陥分布制御によるGrown-in欠陥フリー結晶の育成技術では、引上げ条件としてOSF発生領域が結晶中心部に消滅する臨界速度近傍の低速引上げ条件を選択する必要がある。このため、生産性の低下が避けられない。
- [0015] 加えて、Grown-in欠陥フリー化のための引上げ速度範囲(マージン:図3中のB-Cの範囲)が狭く、Grown-in欠陥フリー結晶の安定な育成が難しい。その結果、Grown-in欠陥フリー結晶を結晶全長に渡って得ることが困難であり、Grown-in欠陥フリー結晶の製造歩留まりが低くなる。このために、Grown-in欠陥フリー結晶

の製造コストの削減が困難となる問題があった。特に、結晶直径が200mm、300mmと大きくなるに従って、 $Ge \leq Gc$ の関係を満足することが困難となり、欠陥フリー化のための引き上げ速度範囲B-Cはさらに狭くなる傾向があり、これをブレークスルーする技術が望まれていた。

- [0016] さらに、Grown-in欠陥フリー単結晶のための引上げ速度範囲のうち、従来のGrown-in欠陥フリー結晶を製造するための速度範囲(マージン:図3中のE-Cの範囲)が狭いため、引き上げた従来のGrown-in欠陥フリー結晶において、空孔型のGrown-in欠陥フリー領域(PV領域)である酸素析出促進領域と、格子間シリコン型のGrown-in欠陥フリー領域(PI領域)である酸素析出抑制領域(および、 12×10^{17} atoms/cm³以下の低酸素結晶の場合にはリングOSF領域)とが混在してしまい、ウェーハ面内における酸素析出物の密度およびサイズ、およびDZ幅等の酸素析出特性が均一でなくなる可能性があるという問題があった。
- [0017] つまり、PV領域とPI領域とが、ウェーハ内に混在することで、デバイスプロセスでの酸素析出物の分布が不均一になり、ゲッタリング能が強い部分と弱い部分が混在することになる。また、デバイスの表層近傍の活性領域は、COPや転位クラスタだけでなく、酸素析出物やその2次欠陥であるOSFやパンチアウト転位などがフリーである必要があるが、このような欠陥が存在しない領域の幅、すなわちDZ幅がウェーハ面内で不均一となる。これらのIG能とDZ幅の不均一分布によって、デバイス特性がばらつき、歩留まりの低下を招く。このような不均一性を回避するためには、PV領域、または、PI領域のみからなるGrown-in欠陥フリー結晶が製造できれば良い。しかし、仮に、PV領域のみからなるGrown-in欠陥フリー結晶が製造できたとしても、非常に酸素析出しやすいために、デバイス活性領域で、酸素析出物およびその2次欠陥を発生させないようにする必要があり、このために、許容される酸素濃度の範囲が低酸素領域(例えば、 $[O_i] \leq 12 \times 10^{17}$ atoms/cm³)に制限され、高酸素領域が使えないという問題が生じていた。

このため、高酸素領域であってもデバイス活性領域で酸素析出物およびその2次欠陥を発生させないPI領域のみからなるGrown-in欠陥フリー結晶が生産性よく安定に育成できることが望まれていたが、従来、PI領域のみからなるGrown-in欠陥

フリー結晶を得るための引き上げ速度マージン幅は非常に狭く、PI領域のみからなるウェーハは製造できなかった。

特許文献1:特開2001-220289号公報

特許文献2:特開2002-187794号公報

特許文献3:特開2000-281491号公報

特許文献4:特開2001-335396号公報

発明の開示

発明が解決しようとする課題

[0018] 本発明の目的は、Grown-in欠陥フリー結晶のうち、PI領域からなるGrown-in欠陥フリー結晶を生産性よく安定に育成できるシリコン単結晶の育成方法を提供することにある。本発明の別の目的は、そのようなシリコン単結晶育成方法により製造された高品質で低成本な鏡面研磨シリコンウェーハ及びその製造方法を提供することにある。

課題を解決するための手段

[0019] 欠陥分布制御によるGrown-in欠陥フリー結晶の育成技術で問題となる生産性・歩留まりの低さを改善することを目的として、本発明者らは水素含有雰囲気での引き上げ技術に着目し、検討を行った結果、以下の二つの結論に到達した。

[0020] 第1に、結晶中心部での温度勾配Gcを結晶外周部での温度勾配Geと同一かこれより大きくするように工夫されたホットゾーン構造を用いて、引上げ速度を徐々に低下させながら単結晶を成長させたときの結晶縦断面におけるOSF発生領域をU字形化する場合に、引上げ炉内に導入する不活性ガス中に微量の水素ガスを混入すると、その結晶縦断面における欠陥分布は、図4に示すように、欠陥フリー化のための引上げ速度範囲B' - C' が、水素を含まない状態のときの図3中のB-Cに比べて結晶軸方向に拡大する。

[0021] 第2に、この引上げ速度範囲の拡大は、OSFリング発生領域が結晶中心部に消滅する臨界速度Voが上がることと、転位クラスタが発生する臨界速度Vdが低下することにより実現される。つまり、欠陥フリー化のための引上げ速度範囲B' - C' は、水素雰囲気でない場合のときの図3中のB-Cに比べて高速側、即ち図3中の上方、お

より低速側、即ち図3中の下方へ拡大する。この現象を図5により説明すると、以下の如くである。

- [0022] 図5は引上げ速度とOSFリング径の関係に及ぼす欠陥分布の影響度を示している。図中、破線は結晶中心部での温度勾配 G_c が結晶外周部での温度勾配 G_e より小さい場合、即ち、引上げ速度を徐々に低下させながら成長させた単結晶の縦断面におけるOSF発生領域の形状が下に凸のV字形の場合である。この場合は、引上げ速度が低下するにつれてOSFリング径が徐々に縮小し、臨界速度 V_o で0に収束する。
- [0023] 実線(細線)は、結晶中心部での温度勾配 G_c を結晶外周部での温度勾配 G_e と同一かこれより大きくした場合、即ち、引上げ速度を徐々に低下させながら成長させた単結晶の縦断面におけるOSF発生領域の形状をU字形形状化した場合で、且つ水素雰囲気でない場合である。この場合は、OSFリング径が縮小を開始する引上げ速度が低下し、その開始速度より急激に縮小が起こり、破線の場合とほぼ同じ臨界速度 V_o で0に収束する。即ち、臨界速度 V_o が一定のままでリング径の減少勾配が急になる。これにより、臨界速度 V_o の近傍で、結晶径方向全域で転位クラスタ及びCOPが存在しない欠陥フリーの単結晶が育成されるが、臨界速度 V_o が上がるわけではないので、低速引上げを強いられる。
- [0024] これに対し、実線(太線)は、結晶中心部での温度勾配 G_c を結晶外周部での温度勾配 G_e と同一かこれより大きくした場合、即ち、引上げ速度を徐々に低下させながら成長させた単結晶の縦断面におけるOSF発生領域の形状をU字形形状にした場合で、且つ水素雰囲気である場合である。この場合は、実線(細線)と比べて、リング径の減少勾配が急勾配のままで臨界速度が V_o から V_o' へ上がる。実線(細線)が高速側へ平行移動したのが実線(太線)である。
- [0025] このように、Grown-inフリー欠陥結晶の育成に水素雰囲気での引き上げを組み合わせることにより、リングOSF領域が結晶中心部で消滅する臨界速度が上がり、これにより、as grownで結晶径方向全域に転位クラスタ及びCOPが存在しないGrown-in欠陥フリーの単結晶が、従来より高速の引上げにより育成可能となる。さらに、水素雰囲気での引き上げにより、転位クラスタの発生する下限の引き上げ速度 V_d が V_d' に低下することにより、欠陥フリー化のための引上げ速度範囲がB-CからB

'-C'に広がる結果、無欠陥結晶が安定して育成可能となり、Grown-in欠陥フリー結晶の製造歩留まりが著しく向上する。

- [0026] 水素雰囲気での引き上げを組み合わせることによりGrown-in欠陥フリー化のための引上げ速度範囲が拡大する理由、すなわちリングOSFの臨界速度 V_o が増大し、転位クラスタが発生する臨界速度 V_d が低下する理由は以下のように考えられる。
- [0027] 1300～1390°Cの高温水素中でシリコンウェーハを熱処理し急冷した場合、空孔または格子間シリコンと水素が反応して空孔-水素または格子間シリコン-水素複合体が形成される(文献1:末澤正志 1999年6月3日 応用物理学会結晶工学分科会第1100回研究会テキスト P11)。従って、水素を含む不活性雰囲気中でCZ結晶を育成した場合、結晶冷却過程のCOP(約1100°C)または転位クラスタ(約1000°C)等のGrown-in欠陥が形成される温度よりも高温部において、シリコン結晶中で過剰に存在する空孔または格子間シリコンと水素が反応し、空孔-水素または格子間シリコン-水素などの複合体が形成されるために、空孔および格子間シリコンの濃度が低下することになる。このために、空孔や格子間シリコンの凝集は抑制され、COPおよび転位クラスタのない、またはサイズが小さいCZ結晶が育成できることになる。
- [0028] しかし、水素を含む不活性雰囲気中で V/G が充分大きい空孔優勢条件下でCZ結晶を育成するとき、水素濃度が高くなると水素欠陥と呼ばれる大きさ数 μm ～数10 μm の巨大空洞(空孔の凝集体と考えられる)ができる(文献2:E.Iino, K.Takano, M.Kimura, H.Yamagishi : Material Science and Engineering B36 (1996) 146～149及び文献3:T.H.Wang, T.F.Ciszak, and T.Schuyler : J. Cryst. Growth 109 (1991) 155～161)、また V/G が充分小さい格子間シリコン優勢条件下では、格子間シリコン型の水素欠陥(格子間シリコンの凝集体と考えられる転位対)ができることが知られている(文献4:Y.Sugit : Jpn. J. Appl. Phys. 4 (1965) p962)。
- [0029] このため、引き上げ速度をリングOSF領域の発生する臨界速度以下に低下させなくても、水素を十分含む雰囲気中でCZ法で引き上げた場合、COPの生成を抑制できるが、巨大空洞が発生するために半導体用のウェーハとして使えないことになる。また、低速引き上げの場合にも、転位クラスタの生成は抑制されるが、転位対の発生によって半導体用のウェーハとして使えないことになる。

- [0030] 図6は、CZ結晶育成時の結晶中心部における1100°C以上の温度での、空孔および格子間シリコンの濃度CvおよびCiと引き上げ速度Vと固液界面近傍での結晶側の温度勾配Gとの比V/Gとの関係であり、水素が結晶中に存在する場合のCOPおよび転位クラスタの生成抑制効果を示している。この図を用いて、COPおよび転位クラスタの生成が抑制される理由を説明する。ここで、Vo、Vc及びVdはそれぞれリングOSF領域、COP及び転位クラスタが結晶中心部または径方向の一部に生成し始める臨界速度であり、Cv-OSF、Cv-COP及びCi-dislは、それぞれOSFリング領域、COP及び転位クラスタが生成する臨界点欠陥濃度を示す。
- [0031] Grown-in欠陥フリー結晶が育成できるように結晶径方向にV/Gが、 $G_c \geq G_e$ の関係を満たすように設計されたホットゾーンからなるCZ炉を用いて、結晶を育成する場合、引き上げ速度をVoより大きくした場合(図6の[H2]=0の場合)、空孔が優勢な点欠陥種であるCOPが通常発生する。しかしながら、水素を含む雰囲気中でCZ結晶を育成する場合(図6のH1、H2の場合)には、空孔と水素が複合体を形成するため、自由な空孔の濃度は低下する。この自由空孔の濃度の低下は結晶中の水素濃度に依存し、水素濃度が増大するほど空孔濃度の低下は大きくなる。このため、水素が存在する場合、OSFリングが生成するための引き上げ速度Voは V_o' 、 V_o'' のように高速側にシフトし、COPが生成するための引き上げ速度Vcも V_c' 、 V_c'' のように高速側にシフトすることになる。
- [0032] 一方、引き上げ速度をVdよりも小さくした場合(図6の[H2]=0の場合)には、格子間シリコンが優勢な点欠陥種となり、格子間シリコンの濃度は $C_i > C_{i-disl}$ となり、格子間シリコンの2次欠陥として転位クラスタが通常発生する。しかし、水素を含む雰囲気中で育成する場合(図6の[H2]=H1またはH2場合)には、格子間シリコンと水素が複合体を形成するために、自由な格子間シリコンの濃度が低下する。従って、転位クラスタを生成するための引き上げ速度Vdは、臨界濃度 C_{i-disl} と一致するように、より低速側の V_d' 又は V_d'' にシフトすることになる。
- [0033] 図6の[H2]=H1、H2のように水素濃度が相対的に低い場合、V/Gが充分大きくなると、空孔濃度がCOPを生成するための臨界濃度Cv-COPよりも高くなるために、COPの生成は完全には抑制されないが、水素が存在しない場合よりも空孔濃度

が低下するために、COPのサイズは小さくなる。

- [0034] OSFリング発生の臨界速度 V_o' または V_o'' 以下、および転位クラスタ発生の臨界速度 V_d' または V_d'' 以上の引き上げ速度の範囲では、空孔および格子間シリコンの濃度は十分低いので、COPおよび転位クラスタは発生せず、さらに巨大空洞である空孔型の水素欠陥、または転位対である格子間シリコン型の水素欠陥も発生することはない。また、水素雰囲気での引き上げをしない場合よりも、Grown-in欠陥フリーとなる引き上げ速度の範囲(マージン)が顕著に拡大するので、無欠陥結晶をより安定に高歩留まりで育成することができる。
- [0035] またOSFリングが閉じる臨界 V/G 条件よりも V/G が大きいが比較的近い場合には、リングOSFは結晶中心部で閉じずCOPがその内側領域に発生するが、そのサイズは水素雰囲気での引き上げによって空孔濃度が低下するために小さくなる。また、この場合にも、空孔濃度が充分に低いために巨大空洞を発生することはない。
- [0036] 本発明はかかる知見を基礎にして完成されたものであり、そのシリコンウェーハは、水素を含む不活性雰囲気中でCZ法により育成されたシリコン単結晶のウェーハであり、as grown状態、即ち引き上げたままの熱処理を受けない状態で、ウェーハ厚さ方向全域で結晶径方向の全域にCOPを含まない完全Grown-in欠陥フリーウェーハに関するものである。
- [0037] 本発明のシリコンウェーハは、水素を含む不活性雰囲気中でCZ法により育成されたシリコン単結晶のウェーハであって、
ウェーハ厚さ方向全域で結晶径方向の全域にCOPおよび転位クラスタを含まない完全Grown-in欠陥フリーウェーハとされ、かつ、ウェーハ全域が格子間シリコン優勢領域(格子間シリコン型のGrown-in欠陥フリー領域)からなることにより上記課題を解決した。
本発明において、前記ウェーハが熱処理された場合に、前記ウェーハの面内方向における酸素析出物の密度とサイズおよびDZ幅の分布が均一とされてなることがより好ましい。
- [0038] 本発明のシリコン単結晶育成方法は、CZ法により格子間シリコン優勢領域からなるGrown-in欠陥フリー単結晶を育成する方法であって、

水素を含む不活性雰囲気中でシリコン単結晶を引き上げることにより、結晶径方向全域にCOPおよび転位クラスタを含まず、かつ、格子間シリコン優勢領域(格子間シリコン型のGrown-in欠陥フリー領域)の単結晶を引き上げ可能なPI領域引き上げ速度の範囲を拡大して、この拡大されたPI領域引き上げ速度範囲の引き上げ速度で引き上げることにより、単結晶直胴部を格子間シリコン優勢領域(PI領域)とすることにより上記課題を解決した。

- [0039] 前記シリコン単結晶を育成する際の雰囲気を、不活性ガス中に水素含有物質が含まれてなる水素含有雰囲気とし、前記水素含有雰囲気中の水素含有物質の濃度を、水素ガス換算濃度で後述する所定の濃度の範囲とすることができる。前記水素含有物質が水素ガスであり、前記水素含有雰囲気中における水素ガス濃度が所定の濃度範囲とすることができます。
- [0040] ここで、水素含有物質とは、水素原子をその分子中に含む物質であって、シリコン融液中に溶け込んだ際に熱分解されて、シリコン融液中に水素原子を供給できる物質である。この水素含有物質には水素ガス自体も含まれる。この水素含有物質を不活性ガスに混合してシリコン単結晶育成時の雰囲気中に導入することにより、シリコン融液中に水素原子を溶解させることができる。水素含有物質の具体例としては、水素ガス、 H_2O 、HCl等の水素原子を含む無機化合物や、シランガス、 CH_4 、 C_2H_2 などの炭化水素、アルコール、カルボン酸等の水素原子を含む有機化合物を例示できるが、特に水素ガスを用いることが望ましい。また、不活性ガスとしては、安価なArガスが好ましく、これ以外にもHe、Ne、Kr、Xeなどの各種希ガス単体、またはこれらの混合ガスを用いることができる。
- [0041] また本発明では、水素含有雰囲気中における水素含有物質の濃度を、水素ガス換算濃度で所定の濃度の範囲としている。ここで、水素ガス換算濃度としたのは、水素含有物質がシリコン融液中で熱分解して得られる水素原子の量が、水素含有物質に元来含まれる水素原子の数量等によって左右されるためである。例えば、 H_2O の1モルには1モル分の H_2 が含まれるが、HClの1モルには0.5モル分の H_2 しか含まれない。従って本発明においては、水素ガスが所定の濃度で不活性ガス中に導入されて

なる水素含有雰囲気を基準とし、この基準となる雰囲気と同等の雰囲気が得られるよう、水素含有物質の濃度を決めることが望ましく、このときの好ましい水素含有物質の濃度を水素ガス換算濃度として規定したものである。

即ち、本発明においては、水素含有物質がシリコン融液に溶解し高温のシリコン融液中で熱分解して水素ガスとなると仮定した上で、変換後の雰囲気中の水素ガス換算濃度が所定の濃度範囲になるように水素含有物質の添加量を調整すればよい。

- [0042] 本発明の単結晶の製造方法によれば、水素ガス換算濃度で所定の濃度の水素含有物質が不活性ガス中に含まれてなる水素含有雰囲気においてシリコン単結晶を育成することにより、水素含有物質に由来する水素原子がシリコン融液に溶け込まれ、更にこの水素原子が、シリコンが凝固する際にシリコンの格子間に取り込まれる。
- [0043] また、本発明において、前記PI領域引き上げ速度の範囲を、水素を含まない不活性雰囲気中に比べて、水素を含む不活性雰囲気中で2倍以上に拡げる手段を採用することもできる。

また、前記不活性雰囲気中における水素濃度が炉内圧力4.0～9.33kPa(30～70torr)に対して3%以上20%以下の範囲に設定されてなることができる。

- [0044] また、本発明における上記の育成方法において、
前記水素濃度VH(体積%)と、大気VAir(体積%)と、アルゴンVAr(体積%)と、
が、添付図面図12に各点(VH, VAr, VAir)で示すように、
点A(100, 0, 0)、点B(0, 100, 0)、点C(0, 0, 100)、点D(4, 0, 96)、点E(4, 84, 12)、点F(75, 0, 25)で囲まれる水素の不燃焼の範囲内の値に設定されること
ができる。

ここで、上記の所定の濃度範囲は、図12における三角形ABCから三角形DEFを
除いた範囲となっている。

- [0045] ここで、上記の範囲にしたのは、燃焼範囲の希釈限界点が点E(4, 84, 12)となっ
ているからである。

水素雰囲気で育成したCZ単結晶において、Grown-in欠陥のない結晶領域が得ら
れる引き上げ速度の範囲(マージン)は、水素濃度が高いほど大きくなる。このために
、品質および生産性(歩留まり)の観点からは、水素濃度に上限はなく100%でもよ

い。一方、安全性の観点からは、下記のように水素濃度の範囲に上限が生じる。

[0046] (1) 水素濃度が図12の点A, F, L, Jで囲まれる範囲の場合

減圧下にあるCZ炉において、図12の点A, F, L, Jで囲まれた範囲内の任意の点Maの濃度で操業中に、何らかの原因で大気リークが発生した場合、点Maから大気100%の点C(0, 0, 100)に向かって炉内の雰囲気組成が変化し、必ず点G(18, 0, 82)、点H(18, 50, 32)、点I(59, 0, 41)、で囲まれた範囲に含まれる爆轟域内を通過することになる。しかし、CZ炉が大気リークしない構造であれば、水素濃度は、100%であっても良い。このような、大気がリークしない構造を有するCZ炉であれば、水素濃度に上限はなく100%であっても安全に操業が可能である。

ここで、点Jは、大気100%の点C(0, 0, 100)と爆轟の希釈限界の点H(18, 50, 32)を結ぶ直線が軸ABと交差する点である。また、点Lは、大気100%の点C(0, 0, 100)と爆轟の希釈限界の点H(18, 50, 32)を結ぶ直線が、燃焼上限界の境界線EFと交差する点である。

[0047] (2) 水素濃度が、図12の点J, L, E, Kで囲まれた範囲の場合

減圧下にあるCZ炉において、図12の点J, L, E, Kで囲まれた範囲の任意の点Mbの濃度で操業中に、何らかの原因で大気リークが発生した場合、点Mbから大気100%の点C(0, 0, 100)に向かって炉内の雰囲気組成は変化し、必ず点DEFで囲まれた燃焼域を通過する。この場合、大気リークしない構造であれば、もちろん安全に操業することは可能である。また、大気リークする可能性がある構造であっても、燃焼による圧力増加が大気圧を越えなければ、安全に操業可能である。また、燃焼による圧力変動が大気圧を越える場合であっても、その圧力を逃がす構造であれば、圧力変動を安全に減少させることが可能である。このような、安全対策のための構造を有するCZ炉であれば、水素濃度の上限を図12の点Jで示される値に設定しても、安全に操業が可能である。ここで、点Kは、大気100%の点C(0, 0, 100)と燃焼の希釈限界の点E(4, 84, 12)を結ぶ直線が軸ABと交差する点である。

[0048] (3) 水素濃度が図12の点K, E, D, C, Bで囲まれた範囲の場合

減圧下にあるCZ炉において、図12の点K, E, D, C, Bで囲まれた範囲内の任意の点Mcの濃度で操業中に、何らかの原因で大気リークが発生した場合、点Mcから大

気100%の点C(0, 0, 100)に向かって炉内の雰囲気組成が変化するが、この場合には燃焼域も爆轟域も通過することはない。従って、炉内の水素濃度を制御する機構が設置されていれば、安全に操業が可能となる、しかし、炉内での水素濃度を制御する機構が、正しく機能しない場合や、精度が低い場合には、実際よりも低い水素濃度を指示する恐れがあり、点Kの上限を超えて水素が供給される可能性があるが、この場合には、上記(2)と同様の状態となるため、同様の安全対策がなされれば、安全に操業が可能となる。

- [0049] 炉内圧力は、10torr以上、好ましくは30torr～200torr、さらに、好ましくは、30torr～70torrが望ましい。炉内圧力の下限は、水素の分圧が低くなると、融液および結晶中の水素濃度が低くなるため、これを防止するために上記の下限の圧力を規定した。炉内圧力の上限は、炉内の圧力が増大するとAr等の不活性ガスの融液上でのガス流速が低下することにより、カーボンヒーターやカーボン部材から脱ガスした炭素や、融液から蒸発したSiO等の反応物ガスが排気しにくくなることにより、結晶中の炭素濃度が高くなり、また、SiOが炉内の融液上部の1100°C程度またはより低温の部分に凝集することで、ダストを発生させ融液に落下することで結晶の有転位化を引き起こすため、これらを防止するために上記の上限の圧力を規定した。
- [0050] 本発明においては、上記の育成方法におけるPI領域引き上げ速度範囲とされた引き上げ速度により、複数の単結晶を引き上げることが望ましい。
さらに、本発明のシリコンウェーハの製造方法は、上記のシリコン単結晶育成方法によって育成された単結晶からウェーハをスライスすることが可能である。
また、アニール処理を施すことがある。
- [0051] 水素を含む不活性雰囲気中で育成時のシリコン単結晶中の水素濃度は、雰囲気中の水素分圧によって制御できる。この水素分圧は水素濃度と炉内圧力により制御できる。水素の結晶への導入は、雰囲気中の水素がシリコン融液に溶解して定常(平衡)状態となり、さらに、結晶へは凝固時に濃度偏析によって液相と固相中の濃度が分配される。
- [0052] 融液中の水素濃度は、ヘンリーの法則から気相中の水素分圧に依存して決まり、

$$P_{H_2} = kC_{LH_2}$$
 と、表される。ここで、 P_{H_2} は雰囲気中の水素分圧、 C_{LH_2} は

シリコン融液中の水素濃度、 k は両者の間の係数である。

一方、結晶中の濃度は融液中濃度と偏析の関係で決まり、

$C_{\text{SH}_2} = k' C_{\text{LH}_2} = (k' / k) P_{\text{H}_2}$ と、表される。ここで、 C_{SH_2} は結晶中の水素濃度、 k' は水素のシリコン融液－結晶間の偏析係数である。

- [0053] 以上から、凝固直後の結晶中水素濃度は雰囲気中の水素分圧を制御することで結晶の軸方向に一定に所望する濃度で制御できる。
- [0054] 本発明のシリコンウェーハは、PW (Polished Wafer、鏡面ウェーハ) に使用できる。
- [0055] 本発明のシリコンウェーハは、水素を含む不活性雰囲気中で育成されウェーハ全域が格子間シリコン優勢領域(PI領域)のみからなることにより、PV領域を含まないため、ウェーハにおける均一性を維持することが可能となる。
ここで、ウェーハの均一性は、酸素濃度と熱処理時の温度と時間等をパラメータとして、それぞれ、酸素濃度は $10 \sim 20 \times 10^{17} \text{ atoms/cm}^3$ (Old ASTM F121-1979)、より好ましくは、 $12 \sim 18 \times 10^{17} \text{ atoms/cm}^3$ 、熱処理温度: $450^\circ\text{C} \sim 1400^\circ\text{C}$ 、より好ましくは、 $1100^\circ\text{C} \sim 1250^\circ\text{C}$ 、時間: 0秒以上の範囲になるように設定することで維持できる。これにより、酸素析出物の密度とサイズおよびDZ幅がウェーハの面内で著しく均一になるという優れたウェーハとすることができる。
- [0056] また、この際、単結晶中における酸素濃度[O_i]を $10 \sim 20 \times 10^{17} \text{ atoms/cm}^3$ の高い範囲に設定して、RTA処理をおこなうことにより、DZ層形成における酸素外方拡散のための高温で長時間の熱処理を行うことなく、ゲッタリング能を充分に確保できる酸素析出物の密度、サイズ、および、デバイス活性領域が完全に無欠陥とできる充分なDZ幅が均一に確保できるという優れたウェーハとすることができる。
- [0057] また、この際、単結晶中における酸素濃度[O_i]を $10 \times 10^{17} \text{ atoms/cm}^3$ 以下の低い範囲に設定することで、デバイスでの熱処理を行ってもデバイス活性領域での酸素析出物の発生を抑えてこれを低減または消滅させることができとなり、デバイスの特性が劣化しないという優れたウェーハとすることができる。
- [0058] 本発明のシリコン単結晶育成方法は、水素を含む不活性雰囲気中でシリコン単結晶を引き上げることにより、結晶径方向全域にCOPおよび転位クラスタを含まず、かつ、格子間シリコン優勢領域(PI領域)の単結晶を引き上げ可能なPI領域引き上げ

速度の範囲を拡大して引き上げて、単結晶直胴部を転移クラスタを含まない格子間シリコン優勢領域(PI領域)とすることにより、従来、Grown-in欠陥フリー単結晶を引き上げる際には、非常に狭い範囲に設定しなくてはならなかったPI領域引き上げ速度を広げて、極めて容易に、かつ従来よりもはやい引き上げ速度でGrown-in欠陥フリー単結晶を育成することが可能となる。

なお、ここで、PI領域引き上げ速度範囲は水素雰囲気中と水素のない不活性雰囲気中とで比較する際に、上述した凝固直後の結晶内の軸方向温度勾配Gの値が一定で変化しない状態で比較するものとする。

[0059] 具体的には、格子間シリコン型のGrown-in欠陥フリー領域(PI領域)からなるGrown-in欠陥フリー単結晶を引き上げ可能なPI領域引き上げ速度範囲を、水素雰囲気とすることによって、水素のない時に比べて2倍以上、さらには、図10に示すように、4.5倍のマージンに拡大して引き上げをおこなうことができる。

このとき、OSFリングの発生領域を小さくすることもできる。なお、PV領域(空孔型のGrown-in欠陥フリー領域)の大きさは水素雰囲気での引き上げによって変化しない。

[0060] また、本発明においては、前記不活性雰囲気中における水素濃度を炉内圧10Torr以上、または30～200Torr、より好ましくは30～70Torrに対して3%以上10%以下、または、図12の点A(100, 0, 0)、点B(0, 100, 0)、点C(0, 0, 100)、点D(4, 0, 96)、点E(4, 84, 12)、点F(75, 0, 25)で囲まれる水素の不燃焼範囲内の値に設定することで、上記の範囲に引き上げ速度を拡大してGrown-in欠陥フリーシリコン単結晶を引き上げることが可能となる。

なお、図12に示した三角組成図は便宜上、常温、大気圧下のものであるが、減圧された操業炉内では燃焼域、爆轟域は抑制される傾向となるので、実操業での炉内の高温雰囲気を考慮しても、実操業時においては、図に示した三角図中で爆轟域、燃焼域に入らないように回避することが可能である。したがって、炉内操業条件を考慮しても、図に記載した範囲を適用することで、実操業での爆轟、燃焼を回避することが可能である。

[0061] 本発明においては、上記の育成方法におけるPI領域引き上げ速度範囲のように、

Grown-in欠陥フリーシリコン単結晶を引き上げるのに必要なPI領域引き上げ速度範囲を大きくすることができるため、複数の単結晶の引き上げ時に同一の引き上げ条件として引き上げることができ、引き上げ速度の設定をより容易におこなってGrown-in欠陥フリー単結晶を引き上げることが可能となる。すなわち、同一実機で複数回、または、同時に複数の実機でGrown-in欠陥フリー単結晶を引き上げる際に、従来よりも引き上げ条件設定を簡略化して設定をおこなってもGrown-in欠陥フリー単結晶の引き上げ可能な引き上げ速度範囲とことができ、所望の品質を有する単結晶の引き上げをおこなうことができ、作業効率を向上して、シリコン単結晶、あるいはこのシリコン単結晶から製造するシリコンウェーハの製造コストを大幅に削減することが可能となる。

- [0062] 水素ガス添加量については、不足すると臨界速度を上げる効果が不十分となる。このため下限については0.1体積%以上が好ましく、3体積%以上が特に好ましい。0.1%以下では水素の効果がほとんどなく、また3%未満で0.1%以上では水素の効果はある程度あるが、十分ではない。上限については、大気リークを防止する炉の構造および水素濃度の制御機構などの安全対策が施されたCZ炉を用いれば、水素濃度が100%でも安全な操業が可能である。
- [0063] また、本発明のシリコンウェーハ製造方法は、本発明のシリコン単結晶製造方法により製造された高品質で経済的な単結晶からシリコンウェーハをスライスして採取するものであり、シリコンウェーハの品質及び経済性を高い次元で両立させることができる。
- [0064] なお、結晶中心部での温度勾配 G_c が外周部での温度勾配 G_e より小であり、引上げ速度を徐々に低下させながら成長させた単結晶の縦断面におけるリングOSF発生領域が、下方に尖ったV字形状になる通常のホットゾーン構造を用いて、臨界速度近傍で引上げを行う場合に、水素雰囲気での引き上げを組み合わせると、以下のようにになり、本発明が狙う効果を得ることは難しい。
- [0065] $G_e > G_c$ の場合にも、水素の効果によって、リングOSF発生領域およびCOPが結晶中心部で発生し始める臨界速度 V_o 、 V_c は増大し、転位クラスタが結晶の一部に発生しはじめる臨界速度 V_d は低下する。従って、 $G_e > G_c$ であっても両者が比較的

近い場合には、COPや転位クラスタの無い完全Grown-in欠陥フリー結晶が得られる場合もあるが、引き上げ速度のマージンは、 $Ge \leq Gc$ を満たす場合に比較すると、安定してGrown-in欠陥フリーの結晶を製造できない。また、 $Ge > Gc$ で Ge と Gc の差が大きい場合には、たとえ水素を添加してもGrown-in欠陥フリーとなる速度マージンは得られない。

[0066] 本発明のシリコンウェーハの製造方法においては、アニール処理を施すことがある。

ここで、アニール処理としては、例えばRTA (Rapid Thermal Annealing)とされることができ、1100°Cから1350°Cで、0秒以上、ArまたはHe、またはNH₃を含むArまたはHe雰囲気中というようなレシピを用いておこなうことができ、この際、DZ層形成における酸素外方拡散のための高温で長時間の熱処理を行うことなく、ゲッタリング能を充分に確保できる酸素析出物の密度、サイズ、および、デバイス活性領域が完全に無欠陥とできる充分なDZ幅が均一に確保できるという特性を有するウェーハを得ることができる。

この際、従来のPVおよびPI、またはリングOSF領域が混在した従来のGrown-in欠陥フリーウェーハで、上記と同様のRTA処理を行うと、結晶育成時に空孔優勢なPV領域およびリングOSF領域では、酸素析出物の密度とサイズがPI領域と比較して大きくなり、また、DZ幅が狭くなる、更には、デバイスでの酸化処理によって、リングOSF領域でOSFが発生すると言った欠陥分布の不均一な発生の問題があつたが、本発明によるPi領域のみのウェーハ面内で均一なGrown-in欠陥フリーウェーハでは、このような問題が解消される。

発明の効果

[0067] 本発明によれば、水素を含む不活性雰囲気中でシリコン単結晶を引き上げることにより、転移クラスタを含まない格子間シリコン優勢領域引き上げ速度の範囲を拡大し、結晶径方向全域にCOPおよび転位クラスタを含まない格子間シリコン優勢領域の単結晶を引き上げ可能とする。これにより、従来、いわゆるGrown-in欠陥フリー単結晶を引き上げる際には、引き上げ速度を非常に狭い範囲に設定しなくてはならなかつたが、この引き上げ速度を広げて、極めて容易に、かつ従来よりもはやい引き上げ

速度でGrown-in欠陥フリー単結晶を育成することが可能となる、という効果を奏することができる。

図面の簡単な説明

[0068] [図1]結晶径方向における欠陥分布図である。

[図2]引上げ速度を徐々に低下させながら成長させた単結晶の縦断面における欠陥分布図であり、結晶中心部での温度勾配 G_c が結晶外周部での温度勾配 G_e より小の場合を示している。

[図3]引上げ速度を徐々に低下させながら成長させた単結晶の縦断面における欠陥分布図であり、結晶中心部での温度勾配 G_c が結晶外周部での温度勾配 G_e と同一かこれより大きい場合を示している。

[図4]引上げ速度を徐々に低下させながら成長させた単結晶の縦断面における欠陥分布図であり、結晶中心部での温度勾配 G_c が結晶外周部での温度勾配 G_e と同一かこれより大きい場合で、且つ水素雰囲気での引き上げの場合を示している。

[図5]引上げ速度とOSFリング径の関係に及ぼす欠陥分布の影響度を示す図表である。

[図6]点欠陥濃度および各種欠陥領域の発生条件に及ぼす V/G の影響を示す図表であって、水素雰囲気での引き上げによる欠陥発生のための臨界 V/G のシフトを示す。

[図7]本発明のシリコン単結晶製造方法を実施するのに適したCZ引上げ炉の縦断面図である。

[図8]各種欠陥の発生領域を V/G と水素濃度の関係により示す図表であって、水素雰囲気での引き上げによる欠陥発生のための V/G 領域の拡大を示す。

[図9]結晶位置とGrown-in欠陥フリー領域の得られる引き上げ速度範囲(マージン)との関係を示す図表である。

[図10]水素雰囲気での引き上げによる引き上げ速度領域の変化を示す模式図である。

[図11]水素雰囲気での引き上げによる各結晶領域の変化を検証するためのV字引き上げ評価の結晶断面写真である。

[図12]水素濃度VH(体積%)と、大気VAir(体積%)と、アルゴンVAr(体積%)の3成分系における燃焼と爆轟の濃度範囲を示す三角組成図である。

符号の説明

- [0069] 1 坩堝、1a 石英坩堝、1b 黒鉛坩堝、2 ヒータ、3 原料融液、4 引上げ軸、5 シードチャック、6 単結晶、7 热遮蔽体

発明を実施するための最良の形態

- [0070] 以下、本発明に係る一実施形態を、図面に基づいて説明する。

図7は、本実施形態におけるシリコン単結晶製造方法を実施するのに適したCZ炉の縦断面図である。

- [0071] まず、CZ炉の構造について説明する。

CZ炉は、チャンバー内の中心部に配置された坩堝1と、坩堝1の外側に配置されたヒータ2とを備えている。坩堝1は、内側に原料融液3を収容する石英坩堝1aを外側の黒鉛坩堝1bで保持する二重構造であり、ペディスタルと呼ばれる支持軸により回転および昇降駆動される。坩堝1の上方には、円筒形状の熱遮蔽体7が設けられている。熱遮蔽体7は、黒鉛で外殻を作り、内部に黒鉛フェルトを充填した構造である。熱遮蔽体7の内面は、上端部から下端部にかけて内径が漸減するテーぺ一面になっている。熱遮蔽体7の上部外面は内面に対応するテーぺ一面であり、下部外面は、熱遮蔽体7の厚みを下方に向かって漸増させるようにほぼストレート面に形成されている。

- [0072] このCZ炉は、例えば、目標直径が210mm、ボディ長が例えば1200mmの200mmの単結晶育成が可能なものとされる。そして、熱遮蔽体7により、結晶中心部での温度勾配Gcが結晶外周部での温度勾配Geと同一かこれより大きくなるホットゾーン構造が構成される。

その際の、熱遮蔽体7の仕様例を挙げると次のとおりである。るっぽに入る部分の外径は例えば470mm、最下端における最小内径Sは例えば270mm、半径方向の幅Wは例えば100mm、逆円錐台面である内面の垂直方向に対する傾きは例えば21°とする。また、るっぽ1の内径は例えば550mmであり、熱遮蔽体7の下端の融液面からの高さHは例えば60mmである。

- [0073] 上記断面構造の単結晶育成装置を用いて引き上げを行う場合、融点から1370°Cまでの軸方向温度勾配は、単結晶中心部(Gc)で3.0~3.2°C/mmであり、周辺部(Ge)では2.3~2.5°C/mmで、Gc/Geは約1.3となる。この状態は、引き上げ速度を変えてもほとんど変わらない。
- [0074] 次に、Grown-in欠陥フリー結晶を育成するための操業条件の設定方法について説明する。
- [0075] まず水素濃度と無欠陥結晶が得られる引き上げ速度の許容範囲を把握するために、水素濃度をたとえば0、0.1、3、5、8、10体積%の混合比率とし、それぞれの条件で目標直径、例えば210mmの単結晶を育成する。
- [0076] 即ち、るっぽ内に高純度シリコンの多結晶を例えれば130kg装入し、単結晶の電気抵抗率を所望の値、例えれば $10\Omega\text{ cm}$ になるようにp型(B, Al, Ga等)またはn型(P, As, Sb等)のドーパントを添加する。装置内をアルゴン雰囲気で、減圧の1.33~26.7kPa(10~200torr)とし、水素をアルゴンに対して10体積%以下の上記の所定混合比率となるように設定して炉内に流入させる。
- [0077] 次いでヒータ2により加熱してシリコンを溶融させ、融液3とする。次に、シードチャック5に取り付けた種結晶を融液3に浸漬し、るっぽ1および引き上げ軸4を回転させつつ結晶引き上げをおこなう。結晶方位は{100}、{111}または{110}のいずれかとし、結晶無転位化のためのシード絞りをおこなった後、ショルダー部を形成させ、肩変えて目標ボディ径とする。
- [0078] ボディ長さが例えれば300mmに達した時点で、引き上げ速度を臨界速度よりも充分大きな、例えれば1.0mm/minに調整する。その後引き上げ長さに応じてほぼ直線的に引き上げ速度を低下させ、ボディ長さが例えれば600mmに達したときに臨界速度よりも小さい例えれば0.3mm/minとなるようにする。その後はこの引き上げ速度で例えれば1200mmまでボディ一部を育成し、通常条件でテイル絞りを行った後、結晶成長を終了する。
- [0079] このようにして異なる水素濃度で育成された単結晶を引き上げ軸に沿って縦割りし、引き上げ軸近傍を含む板状試片を作製し、Grown-in欠陥の分布を観察するために、Cuデコレーションを行う。まず、それぞれの試片を硫酸銅水溶液に浸漬した後

自然乾燥し、窒素雰囲気中で900°Cで、20分程度の熱処理を施す。その後、試片表層のCuシリサイド層を除去するために、HF/HNO₃混合溶液中に浸漬し、表層数十ミクロンをエッチング除去する。その後、X線トポグラフ法によりOSFリングの位置や各欠陥領域の分布を調査する。また、このスライス片のCOPの密度を、例えばOPP法、転位クラスタの密度を例えばSeccoエッチング法にてそれぞれ調査する。

[0080] このGe/Gc≥1を満たす単結晶引き上げ装置を用いて育成された結晶の欠陥分布は、図3に示すようにリング状OSFがU字の状態に発生し、水素濃度が大きくなると無欠陥となる部位が図4のB' - C'のように拡大し、無欠陥結晶となる引き上げ速度の範囲(マージン)の拡大が起こる。

つまり、図4のE' - C'で示すように、空孔型のGrown-in欠陥フリー領域(PV領域)である酸素析出促進領域と、格子間シリコン型のGrown-in欠陥フリー領域(PI領域)とからなるGrown-in欠陥フリー単結晶のうち、本実施形態では、図4のF' - C'で示すPI領域のみからなるGrown-in欠陥フリー単結晶を引き上げるための格子間シリコン優勢領域引き上げ速度範囲を拡大する。具体的には、図10に示すように水素なしの場合に比べて、4.5倍以上PI領域のマージンは拡大する。

上記のような引き上げ実験によって、COP領域、OSFリング領域、V型Grown-in欠陥フリー領域(PV領域)およびI型Grown-in欠陥フリー領域(PI領域)、転位クラスタ領域等の各欠陥領域のV/Gと水素濃度との関係(図8)が得られる。

[0081] また、引き上げ速度を変化させる位置を、300mmから600mm、500mmから800mmおよび700mmから1000mmのように異なる部位で数箇所実施することで、Grown-in欠陥フリー化のための引き上げ速度範囲(マージン)と結晶軸方向位置との関係(図9)が求められる。この図9から、Grown-in欠陥フリー単結晶を得るための操業条件の設定が可能となる。

[0082] 次に、各種ウェーハの製造方法について説明する。

[0083] 図9中の実線で示す速度範囲内で引き上げ速度を対応する結晶位置で設定することによって、トップからボトムまで一本全てがGrown-in欠陥フリーの結晶の育成が可能となる。

[0084] そして、水素を雰囲気での引き上げすることによってGrown-in欠陥フリーとなる

引き上げ速度の範囲(マージン)が図9に示すように、従来の水素雰囲気なしの点線の範囲から実線に示すように顕著に拡大することによって、Grown-in欠陥フリー結晶の製造歩留まりは飛躍的に増大する。

- [0085] また、図9の実線で示された上限値以上で上限値の1.7倍程度以内の速度に引き上げ速度を設定した場合、Grown-in欠陥は完全にはフリーにならないが、サイズが $0.1\text{ }\mu\text{m}$ 以下のCOPが含まれる結晶の育成が可能となる。このような結晶を用いると、水素またはアルゴン等の雰囲気中でのアニールによって、すくなくとも $1\text{ }\mu\text{m}$ 以上の深さの表層近傍領域をGrown-in欠陥フリーとすることが可能となる。しかも、欠陥のサイズが $0.1\text{ }\mu\text{m}$ 以下であるために、 $1110^\circ\text{C}/2\text{hr}$ 程度のアニールで表層から $1\text{ }\mu\text{m}$ 程度の深さの領域で完全にCOPを消滅させることが可能となる。このようなウェーハはこのまま通常のPW(ポリッシュウェーハ、鏡面ウェーハ)としてデバイス製造に用いることができるし、SOI用の基板としても有用である。
- [0086] 本発明においてチョクラルスキ法によって水素を雰囲気での引き上げしたシリコン単結晶を育成する場合、融液に磁場が印加されているか否かは問われないのであり、いわゆる磁場を印加するMCZ法も含まれる。
- [0087] CZ法により所望濃度の水素と酸素を含有する、シリコン単結晶棒が得られると、これを通常の加工方法にしたがい、IDソーまたはワイヤソー等の切断装置でスライスした後、面取り、ラッピング、エッチング、研磨等の工程を経てシリコン単結晶ウェーハに加工する。尚、これらの工程の他にも洗浄等種々の工程があり、工程順の変更、省略等目的に応じ適宜工程は変更使用される。
- [0088] 本実施形態においては、水素を含む不活性雰囲気中でシリコン単結晶を引き上げることにより、結晶径方向全域にCOPおよび転位クラスタを含まず、かつ、格子間シリコン優勢領域(PI領域)の単結晶を引き上げ可能なPI領域引き上げ速度の範囲を2倍以上さらに好ましくは4倍以上に拡大する。この条件でシリコン単結晶を引き上げて、単結晶直胴部を全て格子間シリコン優勢領域(PI領域)とする。これにより、従来、いわゆるGrown-in欠陥フリー単結晶を引き上げる際にはPI領域引き上げ速度を非常に狭い範囲に設定しなくてはならなかつたが、このPI領域引き上げ速度を広げて、極めて容易に、かつ従来よりもはやい引き上げ速度でGrown-in欠陥フリー単

結晶を育成することが可能となる。

実施例

- [0089] 本発明を検証するために6インチ結晶が育成できる16インチ石英坩堝を用いたシリコン単結晶引き上げ装置により、引き上げ速度をV字状に変化させた結晶引き上げを行い、Grown-in欠陥分布の評価をおこなった。
- [0090] 引き上げ速度を最大引き上げ速度の0.7→0.35→0.7の比になるように変化させて、このとき、引き上げ時の水素濃度と炉内圧力をそれぞれ、(a)0%、4.0kPa(30torr)、(b)6%、4.0kPa(30torr)(c)6%9.3kPa(70torr)として、それぞれを引き上げ、結晶軸方向に結晶を縦割りし、その断面で欠陥分布を観察した。その結果を図11に示す。ここで、切断表面には、以下の処理を施したものである。このようにして、異なる水素濃度で育成された単結晶を引き上げ軸に沿って縦割りし、引き上げ軸近傍を含む板状試片を作製した。そしてGrown-in欠陥の分布を観察するために、Cuデコレーションを行った。まず、それぞれの試片を硫酸銅水溶液に浸漬した後自然乾燥し、窒素雰囲気中で900°Cで、20分程度の熱処理を施す。その後、試片表層のCuシリサイド層を除去するために、HF/HNO₃混合溶液中に浸漬し、表層数十ミクロンをエッチング除去した。その後、X線トポグラフ法によりO SFリングの位置や各欠陥領域の分布を調査した。
- [0091] また、このときの、図8に対応する各領域と引き上げ速度が水素雰囲気での引き上げによって、どの程度変化したかの結果を図10および表1に示す。尚、表1の各欠陥領域における引き上げ速度マージンは、結晶中心部での結晶軸方向に見た各欠陥領域の幅を測定して算出した。
- [0092] [表1]

水素濃度	炉内圧力	各領域の引き上げ速度マージン (mm/min)		
		PI領域	PV領域	R-OSF領域
ノードープ	30 torr	0. 009	0. 005	0. 024
	6%	0. 040	0. 006	0. 018
水素雰囲気	70 torr	0. 063	0. 006	0. 020

[0093] 図10と表1に示す結果から、水素雰囲気での引き上げをおこなうことにより、PV領域およびリングOSF領域の引き上げ速度マージンは大きく変化しなかつたが、PI領域の引き上げ速度マージンは、炉内圧が30torrの場合には水素雰囲気での引き上げ

をしない場合に比べて約4.4倍に、また70torrの場合には約7倍に拡大している。このことから、水素分圧に依存してPI領域の幅が顕著に拡大する事が分かる。

産業上の利用可能性

- [0094] 本発明によれば、Grown-in欠陥フリー単結晶を引き上げるための引き上げ速度を広げることができ、その結果、極めて容易に、かつ従来よりもはやい引き上げ速度でGrown-in欠陥フリー単結晶を育成できる。このため、特にGrown-in欠陥フリー・ウェーハの製造工程に好適に適用できる。

請求の範囲

- [1] 水素を含む不活性雰囲気中でCZ法により育成され、
ウェーハ厚さ方向全域で結晶径方向の全域にCOPおよび転位クラスタを含まない
完全Grown-in欠陥フリーウェーハとされ、かつ、ウェーハ全域が格子間シリコン優
勢領域からなることを特徴とするシリコンウェーハ。
- [2] 前記ウェーハの面内方向における酸素析出物の密度とサイズおよびDZ幅の分布
が均一とされてなることを特徴とする請求項1記載のシリコンウェーハ。
- [3] 水素を含む不活性雰囲気中でCZ法によりシリコン単結晶を引き上げることにより、
結晶径方向全域にCOPおよび転位クラスタを含まず、かつ、格子間シリコン優勢領
域の単結晶を引き上げ可能なPI領域引き上げ速度の範囲を拡大して、
この拡大されたPI領域引き上げ速度範囲の引き上げ速度で引き上げることにより、
単結晶直胴部を格子間シリコン優勢領域として、格子間シリコン優勢領域からなるGr
own-in欠陥フリーシリコン単結晶を育成することを特徴とするシリコン単結晶育成
方法。
- [4] 前記PI領域引き上げ速度の範囲を、水素を含まない不活性雰囲気中に比べて、
水素を含む不活性雰囲気中で2倍以上に拡げることを特徴とする請求項3記載のシ
リコン単結晶育成方法。
- [5] 前記PI領域引き上げ速度範囲とされた引き上げ速度により、複数の単結晶を引
き上げることを特徴とする請求項3記載のシリコン単結晶育成方法。
- [6] 前記水素濃度VH(体積%)と、大気VAir(体積%)と、アルゴンVAr(体積%)とが
、添付図面 図12に各点(VH, VAr, VAir)で示すように、
点A(100, 0, 0)、点B(0, 100, 0)、点C(0, 0, 100)、点D(4, 0, 96)、点E(4,
84, 12)、点F(75, 0, 25)で囲まれる不燃焼範囲内の値に、前記水素を含む不活
性雰囲気の組成を設定することを特徴とする請求項3記載のシリコン単結晶育成方
法。
- [7] 請求項3記載のシリコン単結晶育成方法によって育成された単結晶からウェーハを
スライスすることを特徴とするシリコンウェーハの製造方法。
- [8] アニール処理を施すことを特徴とする請求項7記載のシリコンウェーハの製造方法

[図1]

[図2]

[図3]

[図4]

[図5]

OSF 1/2 フレーム

[図6]

C_i , C_v

[図7]

[図8]

[図9]

[図10]

[図11]

[図12]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/015346

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl⁷ C30B29/06, 15/20, H01L21/322, 21/324

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ C30B29/06, 15/20, H01L21/322, 21/324

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho	1922-1996	Jitsuyo Shinan Toroku Koho	1996-2005
Kokai Jitsuyo Shinan Koho	1971-2005	Toroku Jitsuyo Shinan Koho	1994-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
WPI (DIALOG)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 2001-151597 A (Mitsubishi Material Silicon Kabushiki Kaisha), 05 June, 2001 (05.06.01), Claims 1, 3; Figs. 1, 3 (Family: none)	1, 2
Y	JP 2004-182525 A (Sumitomo Mitsubishi Silicon Corp.), 02 July, 2004 (02.07.04), Claims 1 to 8; Fig. 2 (Family: none)	3-8
Y	JP 11-189495 A (Sumitomo Metal Industries, Ltd.), 13 July, 1999 (13.07.99), Claim 1; Par. Nos. [0037] to [0050] (Family: none)	3-8

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
"A"	document defining the general state of the art which is not considered to be of particular relevance
"E"	earlier application or patent but published on or after the international filing date
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O"	document referring to an oral disclosure, use, exhibition or other means
"P"	document published prior to the international filing date but later than the priority date claimed
"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X"	document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y"	document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&"	document member of the same patent family

Date of the actual completion of the international search
13 September, 2005 (13.09.05)Date of mailing of the international search report
04 October, 2005 (04.10.05)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

A. 発明の属する分野の分類（国際特許分類（IPC））

Int.Cl.⁷ C30B29/06, 15/20, H01L21/322, 21/324

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int.Cl.⁷ C30B29/06, 15/20, H01L21/322, 21/324

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922-1996年
日本国公開実用新案公報	1971-2005年
日本国実用新案登録公報	1996-2005年
日本国登録実用新案公報	1994-2005年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

WPI (DIALOG)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 2001-151597 A (三菱マテリアルシリコン株式会社) 2001. 06. 05, 請求項1, 3, 図1, 図3 (ファミリーなし)	1, 2
Y	JP 2004-182525 A (三菱住友シリコン株式会社) 2004. 07. 02, 請求項1-8, 図2 (ファミリーなし)	3-8
		3-8

※ C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

13. 09. 2005

国際調査報告の発送日

04.10.2005

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

田中 則充

4G 9730

電話番号 03-3581-1101 内線 3416

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
 - IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
 - FADED TEXT OR DRAWING**
 - BLURRED OR ILLEGIBLE TEXT OR DRAWING**
 - SKEWED/SLANTED IMAGES**
 - COLOR OR BLACK AND WHITE PHOTOGRAPHS**
 - GRAY SCALE DOCUMENTS**
 - LINES OR MARKS ON ORIGINAL DOCUMENT**
 - REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
 - OTHER:** _____
-

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.