Victoria has a tree, T, consisting of N nodes numbered from 1 to N. Each edge from node U_i to V_i in tree T has an integer weight, W_i .

Let's define the cost, $oldsymbol{C}$, of a path from some node $oldsymbol{X}$ to some other node $oldsymbol{Y}$ as the maximum weight ($oldsymbol{W}$) for any edge in the unique path from node \boldsymbol{X} to node \boldsymbol{Y} .

Victoria wants your help processing $oldsymbol{Q}$ queries on tree $oldsymbol{T}$, where each query contains $oldsymbol{2}$ integers, $oldsymbol{L}$ and $extbf{ extit{R}}$, such that $extbf{ extit{L}} \leq extbf{ extit{R}}$. For each query, she wants to print the number of different paths in $extbf{ extit{T}}$ that have a cost, C, in the inclusive range [L, R].

It should be noted that path from some node $oldsymbol{X}$ to some other node $oldsymbol{Y}$ is considered same as path from node Y to X i.e $\{X, Y\}$ is same as $\{Y, X\}$.

Input Format

The first line contains 2 space-separated integers, N (the number of nodes) and Q (the number of queries), respectively.

Each of the N-1 subsequent lines contain 3 space-separated integers, U, V, and W, respectively, describing a bidirectional road between nodes $ar{U}$ and $ar{V}$ which has weight $m{W}$.

The Q subsequent lines each contain 2 space-separated integers denoting L and R.

Constraints

- $\begin{array}{ll} \bullet & 1 \leq N, Q \leq 10^5 \\ \bullet & 1 \leq U, V \leq N \end{array}$
- $1 \le W \le 10^9$
- $1 < L < R < 10^9$

Scoring

- $1 < N, Q < 10^3$ for 30% of the test data.
- $1 \leq N, Q \leq 10^5$ for 100% of the test data.

Output Format

For each of the $m{Q}$ queries, print the number of paths in $m{T}$ having cost $m{C}$ in the inclusive range $[m{L}, m{R}]$ on a new line.

Sample Input

- 1 2 3
- 1 4 2
- 2 5 6
- 3 4 1
- 1 1
- 2 3

Sample Output

1 3 5

Explanation

```
Q_1: \{3,4\}
Q_2: \{1,3\},\{3,4\},\{1,4\}
Q_3: \{1,4\},\{1,2\},\{2,4\},\{1,3\},\{2,3\}
```

 Q_4 : $\{1,4\},\{1,2\},\{2,4\},\{1,3\},\{2,3\}$...etc.