CH402 Chemical Engineering Process Design

Class Notes L9

Heat Exchanger Design – You are expected to know this!

Problem 14-15 using CHEMCAD

"3-Step" Heat Exchanger Design Method

(use desktop computer unless laptops have v8.1 on laptop)

Problem Statement 14-15

The overhead vapor from the C2 splitter in Figure 3-13 is partially condensed in E-601. The process conditions for the vapor entering the condenser are

Temperature, °C -30.1 Pressure, kPa 1945*

Species Flow rates, kg/s

 CH_4 0.003 C_2H_6 0.0626 C_2H_4 64.53 * Value has been changed from the book value. The authors report 2944 kPa.

A shell-and-tube heat exchanger is to be used to condense 73.5 % of the overhead vapor. Use an appropriate software package (based on TEMA guidelines) to obtain the overall heat transfer coefficient and the area required for the condensation if the tubes have an outside diameter of 0.0127 m and an inside diameter of 0.0094 m. Assuming that the maximum length of the tubes is 3.05 m long, how many tubes will be required and what shell diameter is recommended? Propylene at -46 °C and 125 kPa serves as the coolant for the condensation process.

Additional Questions: (1) Identify the largest resistance to heat transfer in the exchanger and, (2) determine the total purchase cost of the exchanger in Feb. 2025.

Process Background - Conventional Ethylene Process - Fig. 3-7.

Figure 3-13. Product Separation Section

Figure 3-13. Product separation section.

On my computer, I have Common SI set as the default.

[&]quot;Thermodynamic Suggestions" window launches automatically when you click OK.

Thermodynamic Suggestions

Thermodynamic suggestions: Check defaults in both tabs and click OK.

Set Feed Stream 1: Propylene

(Propylene at -46 °C and 125 kPa is available as a coolant.)

Place propylene coolant tubeside (Stream 1)

Tube-side coolant in a condenser is a good idea.

Two specs needed: Set temperature and vapor fraction.

We don't know the propylene flow rate. Set it to 1 kg/s.

CHEMCAD will solve for the actual flow rate later.

Complete Specs on Heat Exchanger and Coolant Flow Rate

Note 1: The largest "thermal reservoir" in the coolant is the latent heat of the phase transition. Any further warming of the coolant beyond the phase change will involve relatively small enthalpy changes.

Click OK, then Run

Run the Simulation and Confirm Results (1/3)

Confirm Results (2/3)

Confirm Results (3/3)

Numbers in gray fields were calculated by CHEMCAD

STOP HERE

Confirm results in slides 12 to 14 before proceeding

Step 1 (L8 Slide 3) is complete:

Determined the flow rates and heat transfer rates necessary to meet the given conditions.

TEMA Type AEL Exchanger. Take all defaults.

Heating-cooling curve can be seen by clicking "Heat Curve Specification."

Design Results – CHEMCAD 8.1.2

TABULATED ANALYSIS										
Overall Data:										
Area Total	m2	2758.72	% Excess			8.57				
Area Required	m2	2482.72	U Calc.	W/m2-K		492.75				
Area Effective	m2	2695.50	U Service	W/m2-K		453.85				
Area Per Shell	m2	2695.50	Heat Duty	J/sec		1.57E+07				
Weight LMTD C	12.80	LMTD CORR Fa	MTD C	12.80						
Shell:										
Shell O.D.	m	3.99	Orientation			H				
Shell I.D.	m	3.96	Shell in Series			1				
Bonnet I.D.	m	3.96	Shell in Parallel			1				
Type		AEL	Max. Heat Flux Btu/ft2-hr			0.00				
Imping. Plate	Impin	ngement Plate	Sealing Strip			5				
Tubes:										
Number		22685	Tube Type			Bare				
Length	m	3.05	Free Int. Fl Area m2		m2	0.00				
Tube O.D.	m	0.013	Fin Efficiency			0.000				
Tube I.D.	m	0.009	Tube Pattern			TRI60				
Tube Wall Thk.	m	0.002	Tube Pito	ch	m	0.024				
No. Tube Pass		1								
Inner Roughness	m	0.0000016								
Number of tubesheets 2		Tubesheet thickness, m			0.019					
Resistances:										
Shell-side Film			m2-K/W 0.00091		0.00091					
Shell-side Fouling			m2-K/W 0.00018		0.00018					
Tube Wall			m2-K/W 0.00004							
Tube-side Fouling			m2-K/W 0.00018							
Tabe brac rours										

Answers to first three questions are found here. How many tubes? Shell diameter? Largest resistance?

Design Results – CHEMCAD NXT 1.1.3

TABULATED ANALYSIS									
Area Total	m2		% Excess			6.13			
Area Required				W/m2-K		566.94			
Area Effective			U Service			534.21			
Area Per Shell			Heat Duty			.57E+07			
Weight LMTD C	12.80 L	MTD CORR FA	ctor 1.000	0 CORR I	MIDC	.2.80			
Shell:									
Shell O.D.	m	3.68	Orientat	ion		H			
Shell I.D.	m	3.66	Shell in Series			1			
Bonnet I.D.	m	3.66	Shell in Parallel			1			
Type AEL						0.00			
Imping. Plate	Impinger	ment Plate	Sealing Strip			5			
Tubes:									
Number		19314	Tube Ty	pe		Bare			
Length	m	3.05	Free Int	. Fl Area	m2	0.00			
Tube O.D.	m	0.013	Fin Effi	ciency		0.000			
Tube I.D.	m	0.009	Tube Pat	tern		TRI60			
Tube Wall Thk.	m	0.002	Tube Pit	ch	m	0.024			
No. Tube Pass		1							
Inner Roughness	m	0.0000016							
Number of tubesh	eets	2	Tubeshee	t thicknes	ss, m	0.019			
Resistances:									
Shell-side Film			m2-K/W		0.00068				
Shell-side Fouling			m2-K/W		0.00018				
Tube Wall			m2-K/W		0.00004				
Tube-side Foulir	ıg		m2-K/W		0.00018				
			m2-K/W		0.00047				

Answers to first three questions are found here. How many tubes? Shell diameter? Largest resistance?

STOP HERE

Confirm results in slide 25 and save your simulation before proceeding

Steps 2-5 of L8 Slide 3 are now complete:

Type of exchanger, geometric details, overall U, thermal driving force, area, and P-drops.

Exchanger Simulation

Copying and pasting is an important step.

It preserves the design work down in exchanger 2 as a backup.

Heat Exchanger Before Running

Heat Exchanger After Running

Click "Run All" in the Home tab

Click OK then run the simulation.

Cost Results

Answer to last question is found here (total purchase cost in Feb 2025).

STOP HERE

Finished.

Submit CHEMCAD file, tabulated results report, and answers to the four (4) questions