

Faculty of Engineering and Technology

Applied Chemistry Laboratory Subject: Engineering Chemistry

CO-1: Understand the Importance of water in industry and methods to produce soft water and hard water.

Batch: C5-3 Roll no: 54

Name: Rajat Kumar

Date:

Experiment No: 8

<u>Title:</u> Water analysis - Determination of Chemical parameters

<u>Aim</u>: To determine the total hardness of water sample

Theory:

It is needless to emphasize the importance of water in our life. Without water, there is no life on our planet. We need water for different purposes. We need water for drinking, for industries, for irrigation, for swimming and fishing, etc.

Water for different purposes has its own requirements for composition and purity. Each body of water needs to be analyzed on a regular basis to confirm to suitability. The types of analysis could vary from simple field testing for a single analyte to laboratory based multi-component instrumental analysis. The measurement of water quality is a very exacting and time-consuming process, and a large number of quantitative analytical methods are used for this purpose.

Total hardness: Hardness in water is that characteristic, which "prevents the lathering of soap". This is due to presence in water of certain salts of calcium, magnesium and other heavy metals dissolved in it. A sample of hard water, when treated with soap does not produce lather, but on other hand forms a white scum or precipitate. This precipitate is formed, due to the formation of insoluble soaps of calcium and magnesium.

Faculty of Engineering and Technology

Applied Chemistry Laboratory Subject: Engineering Chemistry

Thus, water which does not produce lather with soap solution readily, but forms a white curd, is called hard water. On the other hand, water which lathers easily on shaking with soap solution, is called soft water. Such water consequently does not contain dissolved calcium and magnesium salts in it.

Temporary or carbonate hardness: It is caused by the presence of dissolved bicarbonates of calcium, magnesium and other heavy metals and the carbonate of iron. Temporary hardness is mostly destroyed by mere boiling of water, when bicarbonates are decomposed, will produce insoluble carbonates or hydroxides, which are deposited as a crust at the bottom of the vessel.

Permanent or non-carbonate hardness: It is due to the presence of chlorides and sulphates of calcium, magnesium, iron, and other heavy metals. Unlike temporary hardness, permanent hardness is not destroyed on boiling.

The degree of hardness of drinking water has been classified in terms of the equivalent CaCO₃ concentration as follows:

Soft	0-60mg/L
Medium	60-120mg/L
Hard	120-180mg/L
Very Hard	>180mg/L

In a hard water sample, the total hardness can be determined by titrating the Ca^{2+} and Mg^{2+} present in an aliquot of the sample with Na_2EDTA solution, using $NH_4Cl^-NH_4OH$ buffer solution of pH 10 and Eriochrome Black-T as the metal indicator.

 Na_2H_2Y (Disodium EDTA solution) $\rightarrow 2Na^+$

 $H_2Y-Mg^{2+} + HD^{2-}$ (blue) $\rightarrow MgD$ (wine red) + H^+D (metal-indicator complex, wine red color) + $H_2Y^ \rightarrow Y^-$ (metal EDTA complex colorless) + HD^- (blue color) + H^+

Faculty of Engineering and Technology

Applied Chemistry Laboratory Subject: Engineering Chemistry

Ethylenediamine tetra-acetic acid (EDTA) and its sodium salts form a chelated soluble complex when added to a solution of certain metal cations. If a small amount of a dye such as Eriochrome black T is added to an aqueous solution containing calcium and magnesium ions at a pH of 10 ± 0.1 , the solution will become wine red. If EDTA is then added as a titrant, the calcium and magnesium will be complexed. After sufficient EDTA has been added to complex all the magnesium and calcium, the solution will turn from wine red to blue. This is the end point of the titration.

Units of Hardness:

- **1. Parts per million (ppm):** Is the parts of calcium carbonate equivalent hardness per 10^6 parts of water, i.e., **1 ppm** = 1 part of CaCO₃ eq hardness in 10^6 parts of water.
- 2. Milligram per litre (mg/L): Is the number of milligrams of CaCO₃ equivalent hardness present per litre of water. Thus:

 $1 \text{ mg/L} = 1 \text{ mg of CaCO}_3 \text{ eq hardness per L of water.}$

3. Clarke's degree (°Cl): Is number of grains (1/7000 lb) of CaCO₃ equivalent hardness per gallon (10 lb) of water. Or it is parts of CaCO₃equivalent hardness per 70,000 parts of water. Thus,

 $1^{\circ}Cl = 1$ grain of CaCO₃ eq hardness per gallon of water.

4. Degree French (${}^{\circ}$ **Fr**): Is the parts of CaCO₃ equivalent hardness per 10^5 parts of water. Thus, $\mathbf{1}^{\circ}$ **Fr** = 1 part of CaCO₃ hardness eq per 10^5 parts of water.

Relationship Between Various Units of Hardness:

1ppm = 1 mg/L = 0.1°Fr = 0.07°Cl

Faculty of Engineering and Technology

Applied Chemistry Laboratory Subject: Engineering Chemistry

Total hardness as
$$CaCO_3$$
 (ppm) = $\frac{Vol. \text{ of EDTA}(\text{mL}) \times 0.1 \times \text{molarity of EDTA} \times 10^6}{Vol. \text{ of the sample (mL)}}$

Procedure:

Under the chemical content, select the tests- Hardness, Alkalinity or COD.

A. Determination of Hardness of Water Sample -

- 1. Select the titrant.
- 2. Adjust the speed of the drops from the burette.
- 3. Adjust the molarity of titrant.
- 4. Select a definite volume of water sample.
- 5. Choose the indicator & start the titration.
- 6. When color changes from wine red to blue click the "stop" button & note the volume of EDTA used.
- 7. Then calculate the hardness of the water sample in ppm using the equation as follows.

Total hardness as
$$CaCO_3$$
 (ppm) = $\frac{Vol. of EDTA(mL) \times 0.1 \times molarity of EDTA \times 10^6}{Vol. of the sample (mL)}$

Faculty of Engineering and Technology

Applied Chemistry Laboratory Subject: Engineering Chemistry

Points to Remember while Performing the Experiment in a Real Laboratory:

- 1. Always wear a lab coat and gloves when you are in the lab. When you enter the lab, switch on the exhaust fan and make sure that all the chemicals and reagents required for the experiment are available. If it is not available, prepare the reagents using the components for reagent preparation.
- 2. Properly adjust the flame of the Bunsen burner. The proper flame is a small blue cone; it is not a large plume, nor is it orange.
- 3. Make sure to clean all your working apparatus with chromic acid and distilled water and ensure that all the apparatus are free from water droplets while performing the experiment.
- 4. Make sure to calibrate the electronic weight balance before taking the measurements.
- 5. Clean all glass wares with soap and distilled water. Once the experiment is completed recap the reagent bottles. Switch off the light, exhaust fan and Gas cylinder before leaving the lab.
- 6. Discard the used gloves in a waste bin.

Faculty of Engineering and Technology

Applied Chemistry Laboratory Subject: Engineering Chemistry

Self-Evaluation:

•	1) The hardness of a water sample is usually a measure of	
V	2) If the methyl orange alkalinity of the water equals or exceeds the total hardness, all the l	hardness is present as
	Hydroxide hardnessBicarbonate hardnessNone of the above	
√ 3	3) COD is expressed in	
	● mg/L O2 ○ mg/L○ mg ○ L	
√ ′	4) In COD, the quantity of oxidant consumed is expressed in terms of its	
	 Oxygen equivalence None of the above Dissolved oxygen equivalence Carbon equivalence 	
✓	5) Alkalinity can be measured by titrating a sample with	
	● Strong acid ○ Strong base ○ Weak acid ○ Weak base	

EC Sem I (2024-25)

Page No.: ___

Faculty of Engineering and Technology

Applied Chemistry Laboratory Subject: Engineering Chemistry

Observation:

PART 1: WELL WATER

Screenshot -

Burette : 0.01 M EDTA solution

Conical flask : 10 mL of sample + Indicator Indicator : EBT (Eriochrome Black T)

End point : Wine Red to Blue

Reaction:

 $(Ca^{+2} + Mg^{+2})$ + EBT + Buffer(pH 9-10) \rightarrow (Ca-EBT + Mg-EBT) complex (Hard water) (Unstable wine-red complex)

EC Sem-I (2024-25)

Page No.: ____

Faculty of Engineering and Technology

Applied Chemistry Laboratory Subject: Engineering Chemistry

[Ca-EBT + Mg-EB (Unstable wine-red	- I	EDTA (Blue)	→ EBT + (Indicator)	[Ca-EDTA + Mg-EDTA] complex (Stable colorless complex)
Pilot Reading	: (mL) t	о	(mL)	

Reading	I (mL)	II (mL)	Constant (mL)
Initial	0.00	0.00	
Final			
Difference			

Faculty of Engineering and Technology

Applied Chemistry Laboratory Subject: Engineering Chemistry

PART 2 - TAP WATER

Screenshot -

Burette : 0.01 M EDTA solution

Conical flask : 10 mL of sample + Indicator

Indicator : EBT

End point : Wine Red to Blue

Reaction:

 $(Ca^{+2} + Mg^{+2}) + EBT + Buffer(pH 9-10) \rightarrow (Ca-EBT + Mg-EBT) complex$ (Hard water) (Unstable wine-red complex)

EC Sem-I (2024-25)

Page No.: ____

Faculty of Engineering and Technology

Applied Chemistry Laboratory Subject: Engineering Chemistry

_	- Mg-EBT] comp vine-red complex)		_	DTA + Mg-EDT Stable colorless con		
Pilot Reading : (mL) to (mL)						
	Reading	I (mL)	II (mL)	Constant (mL)		

Faculty of Engineering and Technology

Applied Chemistry Laboratory Subject: Engineering Chemistry

PART 3 - SEA WATER

Screenshot -

Burette : 0.01 M EDTA solution

Conical flask : 10 mL of sample + Indicator

Indicator : EBT

End point : Wine Red to Blue

Reaction:

$$(Ca^{+2} + Mg^{+2}) + EBT + Buffer(pH 9-10) \rightarrow (Ca-EBT + Mg-EBT) complex$$
(Hard water) (Unstable wine-red complex)

Faculty of Engineering and Technology

Applied Chemistry Laboratory Subject: Engineering Chemistry

_	- Mg-EBT] comp vine-red complex)		_	DTA + Mg-EDT Stable colorless com	_	
Pilot Reading : (mL) to (mL)						
	Reading	I (mL)	II (mL)	Constant (mL)		

Faculty of Engineering and Technology

Applied Chemistry Laboratory Subject: Engineering Chemistry

Calculation:

Formula:

Total Hardness (ppm) = $\underline{\text{Vol.of EDTA (ml) x 0.1 x M}_{\text{EDTA}} \text{ x } 10^6}$ $\underline{\text{Vol. of Sample (ml)}}$

Part-1: Well water

Total Hardness (ppm) = $(2.5 \times 0.1 \times 0.01 \times 10^6) / 10 = 2500/10$ = **250 ppm**

Part-2: Tap water

Total Hardness (ppm) = $(1.5 \times 0.1 \times 0.01 \times 10^6) / 10 = 1500/10$ = **150 ppm**

Part-3: Sea water

Total Hardness (ppm) = $(6 \times 0.1 \times 0.01 \times 10^6) / 10 = 6000/10$ = **600 ppm**

Result: The hardness of **Sea Water** is the highest = 600 ppm.

Faculty of Engineering and Technology

Applied Chemistry Laboratory Subject: Engineering Chemistry

Assignment:

1. Convert the total hardness of water samples in ppm and meq/L from the following: A) 20.23 °Cl; B) 31.8 °Fr

Ans: We know, 1 ppm = 0.07 °Cl = 0.1 °Fr = 0.02 meq/L

A) 20.23 °Cl

Since, 1 ppm = 0.07 °Cl

By unitary method, $20.23 \, ^{\circ}\text{Cl} = 20.23/0.07 = 289 \, \text{ppm}$

And now since, 1 ppm = 0.02 meg/L

By unitary method, 289 ppm = 289*0.02 = 5.78 meq/L

B) 31.8 °Fr

Since, 1 ppm = 0.1 °Fr

By unitary method, $31.8 \, {}^{\circ}\text{Fr} = 31.8/0.1 = 318 \, \text{ppm}$

And now since, 1 ppm = 0.02 meq/L

By unitary method, 318 ppm = 318*0.02 = 6.36 meq/L

2. A sample of water has hardness 208ppm CaCO₃ eqv. Find the hardness in terms of mg/L, °Fr, °Cl, meq/L.

Ans: We know, 1 ppm = 1 mg/L = $0.1 \, {}^{\circ}\text{Fr} = 0.07 \, {}^{\circ}\text{Cl} = 0.02 \, \text{meq/L}$ $\therefore 208 \, \text{ppm} = 208 \, \text{mg/L} = 20.8 \, {}^{\circ}\text{Fr} = 14.56 \, {}^{\circ}\text{Cl} = 4.16 \, \text{meq/L}$

Faculty of Engineering and Technology

Applied Chemistry Laboratory Subject: Engineering Chemistry

3. How many grams of FeSO4 dissolved per litre gives 210.5ppm of hardness?

Ans: We know, 1 ppm = 1 mg/L

Therefore, 210.5 ppm of hardness = 210.5 mg of Fe²⁺ ions per litre of solution

Now,

Moles of Fe²⁺ =
$$\frac{210.5 mg}{Molar \ mass \ of \ Fe^{2+}} = \frac{210.5 mg}{55.85 \ g/mol} = \frac{0.2105 \ g}{55.85 \ g/mol}$$

Moles of Fe²⁺ = **0.003769 mol**

Each mole of FeSO₄ provides one mole of Fe²⁺, so the moles of FeSO₄ required are the same (i.e., 0.003769 mol)

Now, we have – Moles of $FeSO_4 = 0.003769$ mol Molar mass of $FeSO_4 = 55.85+32+64 = 151.85$ g/mol

Now, Mass of FeSO₄ = moles of FeSO₄ × molar mass of FeSO₄
=
$$0.003769 \times 151.85$$

= $\mathbf{0.572} \, \mathbf{g}$

Thus, to achieve a hardness of 210.5 ppm, you would need to dissolve approximately **0.572 grams** of FeSO₄ per liter of water.

Faculty of Engineering and Technology

Applied Chemistry Laboratory Subject: Engineering Chemistry

- 4. Three samples were analyzed for their salt content:
- (i) Sample A contains 168mg of magnesium carbonate per litre.
- (ii) Sample B contains 820mg of calcium nitrate and 2mg of silica per litre.
- (iii) Sample C contains 20g potassium nitrate and 2g calcium carbonate per 500ml. Determine the hardness in ppm and grains per gallon.

Ans: We know, 1 ppm = 0.58 gpg (since, 1 gpg = 17.1 ppm) Therefore, hardness in gpg = hardness in ppm / 17.1

(i) Sample A: MgCO₃

Given: 168 mg/L of MgCO₃

Molar Mass of $MgCO_3 = 84.31$ g/mol Molar Mass of Mg = 24.31 g/mol

Hardness in ppm: $168 \text{ mg/L} \times (24.31 / 84.31) = 48.44 \text{ ppm}$

Hardness in gpg: 48.44 / 17.1 = 2.83 gpg

(ii) Sample B: Ca(NO₃)₂ and SiO₂

Given: 820 mg/L of Ca(NO₃)₂ (Since, Silica does not contribute to hardness)

Molar Mass of $Ca(NO_3)_2 = 164.1 \text{ g/mol}$

Molar Mass of Ca = 40.08 g/mol

Hardness in ppm = $820 \text{ mg/L} \times (40.08 / 164.1) = 200.28 \text{ ppm}$

Hardness in gpg = 200.28 / 17.1 = 11.71 gpg

(iii) Sample C: KNO3 and CaCO3

Given: 2 g of CaCO₃ in 500 mL (Since, KNO₃ does not contribute to hardness)

Concentration in 1 L: $2 \times 2 = 4$ g/L = 4000 mg/L

Molar Mass of $CaCO_3 = 100.09$ g/mol

Hardness in ppm = $4000 \text{ mg/L} \times (40.08 / 100.09) = 800.88 \text{ ppm}$

Hardness in gpg = 800.88 / 17.1 = 46.84 gpg

Faculty of Engineering and Technology

Applied Chemistry Laboratory Subject: Engineering Chemistry

5. Classify the following into temporary, permanent and non-hardness causing impurities: Ca(HCO₃)₂, MgSO₄, CaCl₂, CO₂, HCl, Mg(HCO₃)₂, CaSO₄, NaCl. How many grams of CaCl₂ dissolved per litre gives 150ppm of hardness?

Ans: Classification of given impurities in Water Hardness:

Temporary Hardness: Ca(HCO₃)₂, Mg(HCO₃)₂ **Permanent Hardness:** MgSO₄, CaCl₂, CaSO₄ **Non-Hardness Causing:** CO₂, HCl, NaCl

Mass of CaCl₂ for 150 ppm Hardness:

Mass of
$$CaCl_2 = (\frac{150 \ mg/L \ CaCO3}{100.1 \ g/mol}) \times 110.98 \ g/mol = 0.274 \ g/L$$

6. Classify the following into carbonate and non-carbonate impurities and calculate all types of hardness-

$$Mg(HCO_3)_2 = 7.1mg/L$$
, $Ca(HCO_3)_2 = 8.1mg/L$, $MgCO_3 = 4.2mg/L$, $CaCO_3 = 10mg/L$, $MgSO_4 = 24mg/L$.

Ans:

Classification -

Carbonate impurities: Mg(HCO₃)₂, Ca(HCO₃)₂, MgCO₃, CaCO₃

Non-carbonate impurities: MgSO₄

Faculty of Engineering and Technology

Applied Chemistry Laboratory Subject: Engineering Chemistry

Hardness calculation –

For Carbonate Hardness:

 $Mg(HCO_3)_2$: 7.1 $mg/L \times (100.1 / 146.34) = 4.85 mg/L as CaCO₃ Ca(HCO₃)₂: 8.1 <math>mg/L \times (100.1 / 162.11) = 5.00 mg/L as CaCO₃$

MgCO₃: $4.2 \text{ mg/L} \times (100.1 / 84.31) = 4.98 \text{ mg/L} \text{ as CaCO}_3$

CaCO₃: 10 mg/L (Given)

Total Carbonate Hardness = 4.85 + 5.00 + 4.98 + 10 = 24.83 mg/L or 24.83 ppm

For Non-Carbonate Hardness:

MgSO₄: 24 mg/L × (100.1 / 120.37) = 19.95 mg/L as CaCO₃

Total Non-Carbonate Hardness = 19.95 mg/L or 19.95 ppm

Thus, Total Hardness = 24.83 + 19.95 = 44.78mg/L or 44.78ppm

7. 0.28g CaCO₃ was dissolved in HCl and made upto 1L with distilled water. 100ml of this solution required 28ml EDTA solution. 100ml of hard water sample required 33ml of EDTA solution. After boiling, cooling and filtering, 100ml of the solution required 10ml of EDTA. Calculate hardness.

Faculty of Engineering and Technology

Applied Chemistry Laboratory Subject: Engineering Chemistry

Ans: Given: 1000 ml of SHW (Standard Hard Water) contains 0.28 gm of CaCO₃

i.e., 1000 ml of SHW contains $0.28 \times 1000 = 280$ mgs of CaCO₃

 \therefore 1 ml of SHW = 0.28 mg of CaCO₃

Now, 28 ml of EDTA = 100 ml of the SHW = $100 \times 0.28 = 28$ mgs of CaCO₃ 1 ml of EDTA = 1 mgs of CaCO₃.

100 ml of hard water = 33 ml of EDTA = $33 \times 1 = 33$ mgs of CaCO₃

 \therefore 1000 ml of hard water = 33 × 1000/100 = 330 mgs of CaCO₃

Total hardness = 330 mg/L = 330 ppm

100 ml of the same water, after boiling, cooling and filtering required

= 10 ml of EDTA = 10×1 mgs of CaCO₃ = 10 mgs of CaCO₃

∴ 1000 ml of the water = $10 \times 1000/100 = 100$ mgs of CaCO₃

Permanent hardness = 100 mg/L = 100 ppm

Temporary hardness = Total hardness - permanent hardness

Temporary hardness = 330 - 100 = 230 mg/L = 230 ppm