MATEMATIKA SZIGORLAT

SZÓBELI VIZSGA

2014. június 11.

I. Matematikai analízis

PÁZMÁNY PÉTER KATOLIKUS EGYETEM

INFORMÁCIÓS TECHNOLÓGIAI ÉS BIONIKAI KAR

Fontos tudnivalók

Tisztelt Vizsgázó!

Jelen füzet a 2013/14/2. tanulmányi időszak Matematika szigorlatához lett kiadva. A füzet tartalmazza az intézmény által nyilvánosságra hozott tételjegyzéket, valamint azok kidolgozott formáját is.

A kiadvány két füzetre bontva jelenik meg, ezen I. összetevő a Matematika analízis, a II. öszszetevő pedig a Diszkrét matematika és Lineáris algebra tárgyak tételeinek jegyzékét és azok kidolgozott formáját tartalmazza.

A kiadványban bárhol, de különösen a kidolgozott tételek körében előfordulhatnak hiányosságok, bővebb magyarázatra szoruló részek. Az ezek kiegészítése illetve jegyzetelés, feladatmegoldás céljából a kidolgozott tételeket a füzetben jegyzetoldalak követik.

Eredményes felkészülést kívánunk!

A kiadványt összeállította: Naszlady Márton Bese – 2014

Ez a kiadvány a *Creative Commons Nevezd meg! – Ne add el! 4.0 Nemzetközi licenc* alá tartozik. A licenc megtekintéséhez látogasson el a http://creativecommons.org/licenses/by-nc/4.0/ oldalra.

A kiadványban szereplő tartalmi elemek harmadik személytől származó véleményt, értesülést tükröznek. Az esetlegesen előforduló tárgyi tévedésekből fakadó visszás helyzetek kialakulásáért, illetve azok következményeiért a kiadó nem vállal felelősséget!

Tartalomjegyzék

Szóbeli vizsga tételjegyzék	4
Kidolgozott tételek, tételvázlatok	6
1. tétel	
2. tétel	9
3. tétel	
4. tétel	15
5. tétel	
6. tétel	20
7. tétel	
8. tétel	26
9. tétel	29
10. tétel	
11. tétel	35
12. tétel	37
13. tétel	39
14. tétel	41
15. tétel	42
16. tétel	45
17. tétel	48
18. tétel	51
19. tétel	54
20. tétel	56
21. tétel	59
22. tétel	
23. tétel	63
Jegyzetek	65

Szóbeli vizsga tételjegyzék

- **1A.** Cantor féle közös-pont tétel. **Teljes indukció.** Alapegyenlőtlenségek. (Számtani és mértani közép-, Háromszög-, Bernioulli-egyenlőtlenség) **Infimum és supremum** (létezés: B)
- 1B. Polárkoordináták. Implicit függvény tétel. Implicit függvény deriválása.
- **2A.** Számsorozat határértéke. Divergens sorozatok, típusai. Konvergencia Cauchy feltétele. (B) Bolzano-Weierstrass tétel.
- **2B. Kétváltozós függvények folytonossága.** Egyenletes- és Lipschitz-folytonosság. Másodrendű Taylor formula többváltozós valós függvényekre.(B)
- **3A.** Összehasonlító kritériumok sorozatokra. **Rendőrelv sorozatokra** (B). Számsorozat torlódási pontja. **Az e szám:** sorozat határértéke ill. sor összege. Számtani átlag sorozat.
- **3B.** Kétváltozós függvény határértéke. Átviteli elv. **Parciális deriváltak.** Geometriai jelentés.
- **4A. Végtelen számsor összege**. Divergencia teszt. Hányados- és gyökkritérium (B). Abszolút- és feltételes konvergencia.
- **4B.** Magasabb rendű parciális deriváltak. **Parciális deriválások sorrendje, felcserélhetősége**. DE rendszerek. Állandó együtthatós lineáris DER.
- 5A. Végtelen mértani sor. Leibniz-sor (B). Függvény folytonosság, sorozatfolytonosság.
- **5B.** Komplex függvény, **kanonikus alak.** Az e^z és $\ln(z)$ függvények kiterjesztése komplex argumentumra.
- **6A. Valós függvény határértéke véges pontban**. Egyoldali határértékek. Átviteli elv. Szakadási helyek osztályozása.
- **6B. Fourier sor, valós- és komplex alak.** Trigonometrikus rendszer ortogonalitása (B). Derivált függvény Fourier sora.
- 7A. Valós függvény határérték kiterjesztése. Inverz függvény létezése. Bolzano tétel (B).
- **7B. Szükséges ill. elégséges feltétel lokális szélsőértékre magasabb dimenzióban.** (B) Stacionárius pont, nyeregpont. Lagrange-féle középérték tétel kétváltozós függvényre. (B)
- **8A.** Korlátos és zárt intervallumon folytonos függvényekre vonatkozó tételek: **Weierstrass I. II.** és Heine tétel. (egyikre B)
- **8B.** Hatványsor, **konvergencia-tartománya**, ennek jellemzése. Hatványsor konvergencia sugarának meghatározása.(B). **Gömbi polárkoordináták**, Jacobi determinánsa (B)
- 9A. Differenciálhányados. Geometriai jelentés. Folytonosság és differenciálhatóság.(B)
- **9B.** Függvény rendszer, koordináta-transzformáció. **Jacobi mátrix.** Vektormező invertálhatósága. Hengerkoordináták, Jacobi determinánsa (B)
- 10A. Differenciálási szabályok: szorzat, hányados, összetett függvény, inverz. (B)
- **10B.** Kétváltozós függvény integrálása téglalapon. **Integrálás normál tartományon.** Kétváltozós valós értékű függvény integrálja vonal mentén.
- **11A.** Középértéktételek: Rolle-(B), **Lagrange-**(B), Cauchy tétel. **Integrálszámítás alaptétele** (B)
- **11B.** Integrál transzformáció polárkoordinátákkal. Helyettesítés általános koordinátatranszformációval kettős integrálban.
- 12A. Taylor polinom, tulajdonságai. (B) Lagrange-féle maradéktag.
- 12B. Komplex vonalintegrál, kiszámítása. Cauchy-féle alaptétel. Általánosítás.

- **13A.** Monoton függvények jellemzése. Magasabb rendű deriváltak. L'Hopital szabály. (B)
- **13B.** Vektormező integrálja görbe mentén. Potenciálkeresés. Potenciál létezésének szükséges (B) és elégséges feltétele.
- 14A. Egyváltozós valós függvény lokális szélsőértékének szükséges (B) ill. elégséges feltétele.
- **14B.** Kétváltozós függvény felszínének kiszámítása.
- **15A. Primitív függvény.** Alaptulajdonságok. Konvex és konkáv függvények, ezek jellemzése.
- **15B.** Kétváltozós függvény teljes differenciálhatósága adott pontban. Érintősík. Iránymenti derivált kiszámítása (B).
- **16A.** Riemann-integrál definíció. Elégséges feltételek integrálhatóságra. **Newton-Leibniz tétel.** (B)
- **16B. Fourier transzformáció.** Alaptulajdonságok. Derivált függvény Fourier transzformáltja.(B)
- 17A. Integrálfüggvény. Integrálszámítás II. alaptétele (B).
- **17B. Magasabb rendű homogén lineáris DE megoldásai.** Állandó együtthatós HLDE alapmegoldásai (B). Karakterisztikus polinom.
- 18A. Helyettesítés integrálban. Parciális integrálás(B), alapesetek.
- **18B. Inverz Fourier transzformáció.** Parseval egyenlőség.(B)
- 19A. Integrál középértéktétel (B). Valós függvény gráfjának hossza. Forgástest térfogata.
- **19B. Magasabb rendű inhomogén lineáris DE-k megoldásai.** Állandók variálása. Próbafüggvény
- **20A.** Majoráns és minoráns kritériumok valós improprius integrálokra. Az $f(x) = x^{-\alpha}$ hatvány-függvény integrálja (0,1]-ben ill. $[1,\infty)$ -ben. (B)
- 20B. Komplex függvény differenciálhatósága. Cauchy-Riemann egyenletek. (B).
- 21A. Szeparábilis differenciálegyenlet megoldása (B).
- 21B. Feltételes szélsőérték kétváltozós függvényre (feladat kitűzése). Lagrange-féle multiplikátor szabály.
- **22A.** Homogén lineáris (elsőrendű) DE megoldása.(B) Inhomogén LDE egyenlet megoldása.
- **22B.** Cauchy-féle integrálformula. **Taylor sorfejtés analitikus függvényre.** Laurent sorfejtés. **Zérus és pólus.**
- **23A.** Valós függvény Taylor sora. Elemi függvények Taylor sora: e^x , $\sin(x)$, $\cos(x)$. (B)
- 23B. Láncszabály többváltozós függvényekre. Speciális esetek.

Kidolgozott tételek, tételvázlatok

Cantor féle közös-pont tétel. **Teljes indukció.** Alapegyenlőtlenségek. (Számtani és mértani közép-, Háromszög-, Bernioulli-egyenlőtlenség) **Infimum és supremum** (létezés: B)

Cantor-féle közös-pont tétel

Tétel

Tegyük fel, hogy a Cantor-féle axióma feltételei teljesülnek. Ezen kívül tegyük fel, hogy minden $\varepsilon > 0$ -hoz létezik olyan I_k intervallum, mely az adott ε -nál rövidebb, azaz $|I_k| = b_k - a_k < \varepsilon$. Ekkor a közös pont egyértelmű.

Teljes indukció

A természetes számok halmazán (\mathbb{N}) két művelet van értelmezve, ezek az összeadás (+) valamint a szorzás (·). Értelmezve van még a \leq rendezési reláció. A természetes számok halmazának tulajdonságai:

Létezik legkisebb elem: 1 (egység)

Minden elem után van közvetlenül rákövetkező: $n \rightarrow n+1$

A fenti két tulajdonság alapján kimondható a teljes indukciós bizonyítás elve:

Cél, hogy belássuk valamely $A_1, ..., A_n, ...$ tulajdonságok teljesülését, ahol n tetszőleges természetes szám.

Ha A_1 teljesül, és

 $\forall n \in \mathbb{N}$ esetén az A_n tulajdonságból következik A_{n+1} ,

akkor a fenti tulajdonság minden n esetén teljesül.

Alapegyenlőtlenségek

Számtani és mértani közép közti összefüggés

Tekintsünk két, nemnegatív valós számot, $x, y \ge 0$. Ezek számtani közepe (számtani átlaga)

$$A = \frac{x + y}{2}$$

és mértani közepe (mértani átlaga)

$$G = \sqrt{xy}$$

Állítás

Tetszőleges $x, y \ge 0$ valós számok esetén $\frac{x+y}{2} \ge \sqrt{xy}$, és egyenlőség pontosan akkor teljesül, ha x = y.

Háromszög egyenlőtlenség

Állítás

Tetszőleges a, b valós számokra $|a + b| \le |a| + |b|$.

Bernoulli egyenlőtlenség

Tétel

Tetszőleges $n \in \mathbb{N}$ természetes szám és $h \ge -1$ valós szám esetén teljesül az alábbi összefüggés:

$$(1+h)^n \ge 1+hn$$

A fenti kifejezésben egyenlőség csakis akkor teljesül, ha n = 0 vagy n = 1 vagy h = 0.

Infimum és supremum, ezek létezése (B)

Definíció Legyen H egy alulról korlátos, nem üres halmaz. Ekkor létezik az alsó korlátok között legnagyobb, vagyis $\exists s \in \mathbb{R}, \ s, s' \leq x, \forall x \in H$ és $s' \leq s$. Ez a halmaz *infimuma*. Jele: $\inf(H)$

Definíció Legyen H egy felülről korlátos, nem üres halmaz. Ekkor létezik a felső korlátok között legkisebb, vagyis $\exists S \in \mathbb{R}, \ x \leq S, S', \forall x \in H$ és $S \leq S'$. Ez a halmaz *supremuma*. Jele: $\sup(H)$

Tétel Tetszőleges nem üres, alulról korlátos halmaznak létezik infimuma.

Bizonyítás Konstruktív bizonyítás: A halmaz alulról korlátos, tehát létezik az a_1 alsó korlát. Ha $a_1 \in H$, akkor ez minimális elem, egyben infimum is.

Ha $a_1 \notin H$, akkor legyen $b_1 \in H$ tetszőleges elem, $b_1 > a_1$. Legyen továbbá $I_1 = [a_1, b_1]$, és $c_1 = \frac{a_1 + b_1}{2}$

Két eset lehetséges:

- 1.) Ha c_1 alsó korlát, akkor legyen $a_2 := c_1$, és $b_2 := b_1$.
- 2.) Ha c_1 nem alsó korlát, akkor legyen $a_2 := a_1$, és $b_2 := c_1$.

Látható, hogy az $I_2 = [a_2, b_2]$ intervallum hossza épp fele I_1 hosszának, ahol a_2 alsó korlát, és $b_2 \in H$.

Ezt a konstrukciót folytatva egy I_k intervallumsorozatot kapunk az alábbi tulajdonságokkal:

- i) $I_k = [a_k, b_k]$ zárt, és $I_{k+1} \subset I_k$
- ii) I_k hossza $2^{-k}|I_1|$
- iii) a_k alsó korlát, $b_k \in H$ minden k-ra

Az i) és ii) tulajdonságok miatt az intervallum-sorozat teljesíti a Cantor-féle közös-pont tétel feltételeit, tehát létezik egyetlen közös pont, legyen ez s.

Belátjuk, hogy s alsó korlát, mivel ha lenne egy olyan $h \in H$, amelyre h < s teljesülne, akkor a ii) tulajdonság miatt találhatnánk egy olyan I_k intervallumot, melyre $h < a_k \le s$ lenne, ami ellentmond annak, hogy a_k alsó korlát.

Belátjuk, hogy s infimum, azaz nincs nála nagyobb alsó korlát. Ha ugyanis indirekt módon feltesszük, hogy létezik s' > s alsó korlát, akkor találunk kell egy I_k intervallumot, melyre $s \le b_k < s'$. De mivel $b_k \in H$ minden k-ra, így ez nem lehetséges.

Polárkoordináták. Implicit függvény tétel. Implicit függvény deriválása.

Polárkoordináták

Definíció Egy adott $(x, y) \in \mathbb{R}^2$ pont *polárkoordinátái* (r, θ) , melyeket így definiálunk:

r: a pont origótól vett távolsága

 θ : az origóból az adott pontba mutató vektornak az x tengely pozitív részével bezárt szöge.

Így tehát a polárkoordinátákra $r \in \mathbb{R}^+ \cup \{0\}$ és $\theta \in [0,2\pi)$.

Implicit függvény tétel, implicit függvény deriválása

Tétel

(Implicit függvény tétel) Tegyük fel, hogy az F kétváltozós függvény differenciálható az (x_0, y_0) pont egy környezetében, és ebben a pontban $F(x_0, y_0) = 0$. Ezen felül feltesszük, hogy $F_y'(x_0, y_0) \neq 0$ (azaz az érintősík nem párhuzamos az xy síkkal). Ekkor létezik egy kétdimenziós intervallum

$$I = I_1 \times I_2 = (x_0 - \alpha, x_0 + \alpha) \times (y_0 - \beta, y_0 + \beta)$$

hogy minden $x \in I_1$ esetén az F(x,y) = 0 egyenletnek pontosan egy y = f(x) megoldása van, és $y \in I_2$. Tehát létezik egy $f: I_1 \to I_2$ valós függvény, mely a következő tulajdonságokkal rendelkezik:

- $f(x_0) = y_0$
- $f(x) \in I_2, \ \forall x \in I_1$
- $F(x, f(x)) = 0, \ \forall x \in I_1$
- $F_y'(x, f(x)) \neq 0, \ \forall x \in I_1$

Továbbá f differenciálható I_1 -ben, és deriváltja:

$$f'(x) = -\frac{F_x'(x, f(x))}{F_y'(x, f(x))}$$

2A Számsorozat határértéke. Divergens sorozatok, típusai. Konvergencia Cauchy feltétele. (B) Bolzano-Weierstrass tétel.

Számsorozat határértéke

Definíció Számsorozaton egy olyan hozzárendelést értünk, melyben minden $n \in \mathbb{N}$ természetes számhoz hozzárendelünk egy valós számot. Az (a) sorozat n-edik elekmét a_n jelöli, az egész sorozatot (a_n) -nel jelöljük.

Definíció Legyen (a_n) egy sorozat. Azt mondjuk, hogy az (a_n) sorozat *konvergens*, és határértéke az A szám, ha ez rendelkezik a következő tulajdonsággal: minden $\varepsilon > 0$ -hoz létezik $N = N(\varepsilon)$ epszilontól függő küszöbindex, melyre minden n > N esetén $|a_n - A| < \varepsilon$. Ezt így jelöljük: $\lim_{n \to \infty} a_n = A$.

Divergens sorozatok, típusai

Definíció Ha (a_n) nem konvergens, akkor *divergens*.

1.)
$$a_n = n^2$$

Definíció Az (a_n) sorozat a $+\infty$ -be divergál $(,,a_n \text{ minden határon túl nő"}), ha minden <math>K \in \mathbb{R}$ korláthoz megadható N = N(K) küszöbindex, hogy ha n > N, akkor $a_n > K$. Ezt így jelöljük:

$$\lim_{n\to\infty}a_n=+\infty$$

Definíció Az (a_n) sorozat a $-\infty$ -be divergál $(,,a_n)$ minden határon túl csökken"), ha minden $K \in \mathbb{R}$ korláthoz megadható N = N(K) küszöbindex, hogy ha $n \ge N$, akkor $a_n < K$. Ezt így jelöljük:

$$\lim_{n\to\infty}a_n=-\infty$$

2.)
$$a_n = (-1)^n$$

Az ilyen típusú sorozatok több pont körül torlódnak, például az $a_n = (-1)^n$ sorozat elemei rendre -1; 1 ... Ez nyilván nem konvergens.

Konvergencia Cauchy feltétele (B)

Definíció Az (a_n) sorozat teljesíti a *Cauchy feltételt*, ha minden $\varepsilon > 0$ -hoz létezik $N = N(\varepsilon)$ epszilontól függő küszöbindex, melyre teljesül, hogy minden $n, m \ge N$ esetén $|a_n - a_m| < \varepsilon$. Ha egy sorozat teljesíti a Cauchy feltételt, akkor a sorozatot *Cauchy sorozatnak* nevezzük.

Tétel $Ha(a_n)$ konvergens, akkor Cauchy sorozat.

Bizonyítás Legyen $\lim_{n\to\infty}a_n=A$ és legyen $\varepsilon>0$ tetszőleges. Ekkor az $\frac{\varepsilon}{2}$ számhoz létezik egy N küszöbindex, melyre $n\geq N$ és $m\geq N$ esetén $|a_n-A|<\frac{\varepsilon}{2}$, valamint $|a_m-A|<\frac{\varepsilon}{2}$. Ekkor a háromszög-egyenlőtlenség miatt

$$|a_n - a_m| = |(a_n - A) + (A - a_m)| \le |a_n - A| + |a_m - A| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Tétel $Ha(a_n)$ Cauchy sorozat, akkor konvergens.

1. Lemma $Ha(a_n)$ eleget tesz a Cauchy kritériumnak, akkor korlátos.

Bizonyítás Az $\varepsilon = 1$ -hez létezik N index, melyre minden $n \ge N$ esetén $a_n \in (a_N - 1, a_N + 1)$. Az intervallumon kívül csak véges sok eleme van a sorozatnak, ezért van legnagyobb és legkisebb elem közöttük. Tehát $K = \max\{|a_1|, ..., |a_{N-1}|\}$ korlátja a sorozatnak.

2. Lemma Ha egy (a_n) Cauchy sorozatnak van (a_{n_k}) konvergens részsorozata, és $\lim_{k\to\infty} a_{n_k} = A$, akkor a sorozat is konvergens, és $\lim_{n\to\infty} a_n = A$.

Bizonyítás Legyen $\varepsilon > 0$ tetszőleges. Ekkor a részsorozat konvergenciája miatt létezik N_1 index, melyre

$$\left|a_{n_k} - A\right| < \frac{\varepsilon}{2}$$
, ha $n_k > N_1$.

Mivel (a_n) Cauchy sorozat, ezért létezik N_2 index, melyre

$$|a_n - a_m| < \frac{\varepsilon}{2}$$
, ha $n, m > N_2$.

Legyen $N = \max\{N_1, N_2\}$. Ekkor minden $n \ge N$ esetén létezik $n_k \ge n \ge N$, így

$$|a_n - A| = \left| \left(a_n - a_{n_k} \right) + \left(a_{n_k} - A \right) \right| \le \left| a_n - a_{n_k} \right| + \left| a_{n_k} - A \right|$$
$$\left| a_n - a_{n_k} \right| + \left| a_{n_k} - A \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \blacksquare$$

Bizonyítás (A tétel bizonyítása.) Az (a_n) Cauchy sorozat, tehát korlátos (1. lemma). A Bolzano-Weierstrass tétel miatt létezik (a_{n_k}) konvergens részsorozat, és ekkor az eredeti sorozat is konvergens (2. lemma).

Bolzano-Weierstrass tétel

Tétel *Minden korlátos* (a_n) *sorozatnak van konvergens részsorozata.*

2B Kétváltozós függvények folytonossága. Egyenletes- és Lipschitz-folytonosság. Másodrendű Taylor formula többváltozós valós függvényekre.(B)

Kétváltozós függvények folytonossága

Definíció Legyen $P_0=(x_0,y_0)$ az f függvény értelmezési tartományának egy pontja. Az f függvény folytonos az (x_0,y_0) pontban, ha tetszőleges $\varepsilon>0$ -hoz létezik egy $\delta>0$ szám, melyre

$$\forall (x, y) \in D_f, \quad \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta$$

esetén teljesül, hogy

$$|f(x,y) - f(x_0,y_0)| < \varepsilon$$

Definíció Ha egy függvény értelmezési tartományának egy pontjában nem folytonos, akkor ott *szakadása* van.

Egyenletes- és Lipschitz-folytonosság

Definíció Legyen $f: S \to \mathbb{R}$ adott függvény, $S \subset \mathbb{R}^2$ tartomány. Azt mondjuk, hogy f egyenletesen folytonos S-ben, ha tetszőleges $\varepsilon > 0$ –hoz $\exists \delta > 0$, hogy ha $P, P' \in S$ pontokra $||P - P'|| < \delta$, akkor $|f(P) - f(P')| < \varepsilon$.

A $\delta = \delta(\varepsilon)$ számot az ε -hoz tartozó folytonossági modulusnak hívjuk.

Definíció Az $f: S \to \mathbb{R}$ kétváltozós függvény *Lipschitz-folytonos*, ha létezik egy olyan L > 0 szám, melyre $|f(P) - f(P')| \le L \cdot ||P - P'||$ teljesül minden $P, P' \in S$ pontra.

Az L számot Lipschitz-konstansnak hívjuk.

Állítás Ha f egyenletesen folytonos S-en, akkor S minden pontjában folytonos. Ha f Lipschitz-folytonos egy tartományban, akkor ott egyenletesen is folytonos.

Másodrendű Taylor formula többváltozós valós függvényekre (B)

Legyen $f: S \to \mathbb{R}$ kétváltozós függvény, amely elegendően sokszor differenciálható valamely (x_0, y_0) pontban. Adjunk becslést az $f(x, y) - f(x_0, y_0)$ különbségre az (x_0, y_0) pontbéli deriváltak felhasználásával.

A fenti feladatra egy megoldást az érintő sík alapján tudunk adni, eszerint

$$f(x,y) \approx f(x_0,y_0) + f'_x(x_0,y_0)(x-x_0) + f'_y(x_0,y_0)(y-y_0)$$

Ez megfelel az elsőfokú Taylor polinomnak.

Magasabb fokú Taylor polinomot úgy adjuk meg, hogy visszavezetjük feladatot az egyváltozós esetre.

Legyen

$$F(t) = f(x_0 + t\Delta x, y_0 + t\Delta y)$$

ahol

$$\Delta x = x - x_0, \quad \Delta y = y - y_0$$

Ekkor $F:[0,1] \to \mathbb{R}$ elegendően sokszor differenciálható valós függvény, $F(0) = f(x_0, y_0)$, F(1) = f(x,y). Az F függvény t = 0 pont körüli Taylor formuláját fogjuk használni. Ehhez szükségünk lesz a deriváltakra:

$$F(0) = f(x_0, y_0)$$

$$F'(t) = f_x'(x_0 + t\Delta x, y_0 + t\Delta y)\Delta x + f_y'(x_0 + t\Delta x, y_0 + t\Delta y)\Delta y$$

$$F''(t) = f_{xx}''(x_0 + t\Delta x, y_0 + t\Delta y)(\Delta x)^2 + 2f_{xy}''(x_0 + t\Delta x, y_0 + t\Delta y)\Delta x\Delta y + f_{yy}''(x_0 + t\Delta x, y_0 + t\Delta y)(\Delta y)^2$$

Ekkor a másodrendű Taylor formula így írható:

$$f(x,y) = f(x_0,y_0) + \operatorname{grad} f(x_0,y_0) \cdot {\Delta x \choose \Delta y} + \frac{1}{2} (\Delta x, \Delta y) \cdot H(x_0,y_0) \cdot {\Delta x \choose \Delta y} + L_2$$
 ahol H a Hesse-mátrix.

3A Összehasonlító kritériumok sorozatokra. Rendőrelv sorozatokra (B). Számsorozat torlódási pontja. Az e szám: sorozat határértéke ill. sor összege. Számtani átlag sorozat.

Összehasonlító kritériumok sorozatokra

Állítás (Összehasonlító kritériumok)

1. Tegyük fel, hogy (a_n) nullsorozat, (b_n) olyan sorozat, melyre $(|b_n|) \le (|a_n|)$ minden n-re (rögzített N mellett minden n > N-re). Ekkor

$$\lim_{n\to\infty}b_n=0$$

2. Tegyük fel, hogy (a_n) a ∞ -be divergál, és $\exists N$ index, hogy ha $n \geq N$, akkor $b_n \geq a_n$. Ekkor

$$\lim_{n\to\infty}b_n=+\infty$$

Rendőrelv sorozatokra (B)

Tétel Tegyük fel, hogy az (a_n) és (b_n) sorozatok közrefognak egy harmadik sorozatot

$$a_n < c_n < b_n$$
, $\forall n \in \mathbb{N}$

Tegyük fel, hogy (a_n) és (b_n) konvergens sorozatok ugyanazzal a határértékekkel.

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = A$$

Ekkor (c_n) is konvergens, és

$$\lim_{n\to\infty} c_n = A$$

Bizonyítás Legyen $\varepsilon > 0$ tetszőleges. Ekkor létezik N_1 küszöbindex, melyre $|a_n - A| < \varepsilon$, ha $n \ge N_1$. Speciálisan megfogalmazva $a_n > A - \varepsilon$. Hasonlóan létezik N_2 , melyre $|b_n - A| < \varepsilon$, speciálisan $b_n < A - \varepsilon$. Ekkor $n \ge \max(N_1, N_2)$ esetén

$$A - \varepsilon < a_n \le c_n \le b_n < A + \varepsilon$$

Ebből a konvergencia következik. ■

Számsorozat torlódási pontja

Definíció Legyen (a_n) egy sorozat. A $t \in \mathbb{R}$ valós szám *torlódási pontja* (a_n) -nek, ha t bármely környezetében, azaz a $\forall \varepsilon > 0$ $(t - \varepsilon, t + \varepsilon)$ intervallumban végtelen sok tagja van a sorozatnak.

Az e szám: sorozat határértéke ill. sor összege

Definíció Az *e* szám a következő sorozat határértéke:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Definíció Az *e* szám a következő végtelen sor összege:

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}$$

Számtani átlag sorozat

Állítás

Adott (a_n) nullsorozat. Legyen

$$A_n = \frac{a_1 + \dots + a_n}{n} = \frac{1}{n} \sum_{k=1}^n a_k$$

 $Ekkor \lim_{n\to\infty} A_n = 0.$

3B Kétváltozós függvény határértéke. Átviteli elv. Parciális deriváltak. Geometriai jelentés.

Kétváltozós függvény határértéke

Definíció Legyen $f: S \to \mathbb{R}$ ké

Legyen $f: S \to \mathbb{R}$ kétváltozós valós függvény, $P_0 = (x_0, y_0) \in \mathbb{R}^2$ az értelmezési tartomány egy torlódási pontja. Azt mondjuk, hogy az f függvény határértéke a $P_0 = (x_0, y_0)$ pontban L, azaz

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$$

ha minden $\varepsilon > 0$ -hoz lézetik $\delta > 0$ szám, hogy ha

$$(x,y) \in S$$
, $0 < \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$

akkor $|f(x, y) - L| < \varepsilon$.

Átviteli elv

Állítás

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$$

pontosan akkor teljesül, ha $\forall P_n = (x_n, y_n) \in S, P_n \neq P_0$ sorozatra, melyre

$$\lim_{n\to\infty} P_n = P_0$$

teljesül, hogy

$$\lim_{n\to\infty} f(P_n) = L$$

Parciális deriváltak

Definíció Legyen $f: S \to \mathbb{R}$ kétváltozós valós függvény. Legyen (x_0, y_0) az S halmaz belső pontja. Ha létezik a

$$\lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0}$$

véges határérték, akkor ezt a mennyiséget a függvény x szerinti parciális deriváltjának nevezzük az (x_0, y_0) pontban. Ezt így jelöljük:

$$f'_x(x_0, y_0), \qquad \frac{\partial}{\partial x} f(x_0, y_0)$$

Ha létezik a

$$\lim_{y \to y_0} \frac{f(x_0, y) - f(x_0, y_0)}{y - y_0}$$

véges határérték, akkor ezt a mennyiséget a függvény y szerinti parciális deriváltjának nevezzük az (x_0, y_0) ponban. Ezt így jelöljük:

$$f_y'(x_0, y_0), \qquad \frac{\partial}{\partial y} f(x_0, y_0)$$

Geometriai jelentés

 $f_1(x) = f(x, y_0)$ egyváltozós függvényt. Ha $(x_0, y_0) \in \text{int}(D)$, akkor x_0 belső pontja f_1 értelmezési tartományának. Ekkor $f_x'(x_0, y_0) = f_1'(x_0)$. Ez hasonlóan igaz rögzített x_0 -ra is.

Az ilyen, rögzített y_0 konstans menti parciális derivált geometriai jelentése a függvény felületéből az y_0 -ban átmenő, az xy-síkra merőleges síkkal vett metszetének, – mely egy egyváltozós függvény – a deriváltja. A parciális deriváltak tehát a felületekhez x és y irányból húzott érintősíkok meredekségét adja meg.

Végtelen számsor összege. Divergencia teszt. Hányadosés gyökkritérium (B). Abszolút- és feltételes konvergencia.

Végtelen számsor összege

Végtelen sor alatt valós számok összegét értjük, ahol az összeadandók száma végtelen:

$$a_1 + a_2 + a_3 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n$$

Divergencia teszt

Állítás $Ha \lim_{n\to\infty} a_n \neq 0$, akkor a sor divergens.

Hányados kritérium (B)

Tétel 1.) Tegyük fel, hogy $\left|\frac{a_{n+1}}{a_n}\right| \le q < 1$, $\forall n$, ahol $q \in (0,1)$ n-től független szám. Ekkor a $(\sum a_n)$ sor abszolút konvergens.

2.) Tegyük fel, hogy $\left|\frac{a_{n+1}}{a_n}\right| \ge 1$, $\forall n$. Ekkor $a\left(\sum a_n\right)$ sor divergens.

Bizonyítás 1.) A feltétel szerint

$$\left|\frac{a_2}{a_1}\right| \le q$$

$$\left|\frac{a_3}{a_2}\right| \le q$$

:

$$\left|\frac{a_{n+1}}{a_n}\right| \le q$$

Ezeket összeszorozva azt kapjuk, hogy

$$\left| \frac{a_{n+1}}{a_1} \right| \le q^n$$

azaz $|a_{n+1}| \le |a_1|q^n$. Így a majoráns kritérium szerint az abszolútértékekből álló sor konvergens.

2.) Ha $\left|\frac{a_{n+1}}{a_n}\right| \ge 1$, akkor $|a_{n+1}| \ge |a_n|$, tehát (a_n) nem lehet nullsorozat.

Gyengített változat

Tétel Tegyük fel, hogy létezik a

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = A$$

határérték. Ekkor

- ha A < 1, akkor a sor abszolút konvergens,
- ha A > 1, akkor a sor divergens,
- ha A = 1, akkor a sor lehet konvergens és divergens is.

Gyökkritérium (B)

Tétel

1.) Tegyük fel, hogy $\sqrt[n]{|a_n|} \le q < 1 \quad \forall n, \text{ ahol } q \in (0,1) \text{ } n\text{-től független szám.}$ Ekkor $(\sum a_n)$ sor abszolút konvergens.

2.) Tegyük fel, hogy $\sqrt[n]{|a_n|} \ge 1 \quad \forall n$. Ekkor $a(\sum a_n)$ sor divergens.

Bizonvítás

1.) A feltétel szerint $\sqrt[n]{|a_n|} \le q$, ahol 0 < q < 1, így igaz az is, hogy

$$|a_n| < q^n$$
, $\forall n \in \mathbb{N}$

Mivel

$$\sum_{n=1}^{\infty} q^n < \infty$$

ezért a majoráns kritérium alkalmazásával ebből következik, hogy

$$\sum_{n=1}^{\infty} |a_n| < \infty$$

Az abszolút konvergencia miatt a sor konvergens:

$$\sum_{n=1}^{\infty} a_n < \infty$$

2.) Mivel $\sqrt[n]{|a_n|} \ge 1$, így emiatt $|a_n| \ge 1$, azaz (a_n) nem nullsorozat, tehát

$$\sum_{n=1}^{\infty} a_n$$

sor nem konvergens. ■

Gyengített változat

Tétel

Tegyük fel, hogy létezik a

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = A$$

határérték. Ekkor

- ha A < 1, akkor a sor abszolút konvergens,

- ha A > 1, akkor a sor divergens,

- ha A = 1, akkor a sor lehet konvergens és divergens is.

Abszolút- és feltételes konvergencia.

Definíció A $(\sum a_n)$ végtelensor *abszolút konvergens*, ha az abszolútértékekből álló $(\sum |a_n|)$ sor konvergens.

Állítás $Ha\left(\sum a_n\right)$ abszolút konvergens, akkor konvergens is.

Definíció A $(\sum a_n)$ végtelen sor *feltételesen konvergens*, ha konvergens, de nem abszolút konvergens.

Magasabb rendű parciális deriváltak. Parciális deriválások sorrendje, felcserélhetősége. DE rendszerek. Állandó együtthatós lineáris DER.

Magasabb rendű parciális deriváltak

Ha a parciális deriváltfüggvényeknek létezik parciális deriváltja, akkor másodrendű parciális deriváltat kapunk:

$$\frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} f(x, y) \right) = \frac{\partial^2}{\partial y \partial x} f(x, y) = f_{xy}^{"}(x, y) = \lim_{h \to 0} \frac{f_x'(x, y + h) - f_x'(x, y)}{h}$$

Parciális deriválások sorrendje, felcserélhetősége

Tétel Legyen $f: S \to \mathbb{R}$ kétváltozós valós függvény, $(x, y) \in \text{int}(S)$. Ha a pont egy környezetében léteznek az f''_{xy} és f''_{yx} másodrendű parciális deriváltak, és az adott pontban folytonosak is, akkor itt a deriválások sorrendje felcserélhető, $azaz f''_{xy}(x,y) = f''_{yx}(x,y)$.

DE rendszerek

Elsőként csak kétdimenziós rendszerekkel foglakozunk. Keresünk olyan y(x) és z(x) függvényeket, melyek kielégítenek egy ilyen típusú differenciálegyenlet-rendszert:

$$y'(x) = f(x, y(x), z(x))$$

$$z'(x) = g(x, y(x), z(x))$$

ahol f és g adott háromváltozós függvények.

Állandó együtthatós lineáris DER

A könnyebb áttekinthetőség kedvéért három dimenzióban dolgozunk, de minden ugyanígy elmondható n dimenziós lineáris rendszerekre is. Tekintsük az alábbi háromdimenziós rendszert:

$$y'_1 = a_{11}y_1 + a_{12}y_2 + a_{13}y_3$$

 $y'_2 = a_{21}y_1 + a_{22}y_2 + a_{23}y_3$

$$y_3' = a_{31}y_1 + a_{32}y_2 + a_{33}y_3$$

a hozzá tartozó kezdeti feltételekkel

$$y_1(0) = y_{01}, y_2(0) = y_{02}, y_3(0) = y_{03}$$

A keresett függvényt rendezzük el egy vektorba. Ezt deriváljuk, az együtthatókat pedig mátrixba gyűjtjük:

$$Y(x) = \begin{bmatrix} y_1(x) \\ y_2(x) \\ y_3(x) \end{bmatrix}, \qquad Y'(x) = \begin{bmatrix} y'_1(x) \\ y'_2(x) \\ y'_3(x) \end{bmatrix}, \qquad A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

A differenciálegyenlet-rendszer tehát kompakt alakban így írható:

$$Y'(x) = AY(x), \qquad Y(0) = Y_0$$

Tétel A fenti (kompakt alakban írt) lineáris egyenletrendszer megoldása

$$Y(x) = e^{Ax} \cdot Y_0$$

Végtelen mértani sor. Leibniz-sor (B). Függvény folytonosság, sorozatfolytonosság.

Végtelen mértani sor

Legyen $a_n = q^{n-1}$. Kérdés, mennyi az alábbi összeg: $1 + q + q^2 + \cdots = ?$

Az első n tag összege $s_n=1+q+q^2+\cdots+q^{n-1}=\frac{1-q^n}{1-q},\ q\neq 1$

Így

$$\lim s_n = \begin{cases} \frac{1}{1-q}, & |q| < 1 \\ +\infty, & q \ge 1 \end{cases}$$

$$\nexists, & q \le -1$$

Leibniz-sor (B)

Definíció $(\sum a_n)$ *Leibniz-típusú sor*, ha az (a_n) sorozat rendelkezik az alábbi három tulajdonsággal:

- 1.) váltakozó előjelű, azaz $a_n a_{n+1} \le 0$,
- 2.) $(|a_n|)$ monoton fogyó,
- 3.) (a_n) nullsorozat.

Tétel A Leibniz-típusú sor konvergens.

Bizonyítás Feltehető, hogy $a_1 > 0$, ekkor a páratlan indexű tagokra $a_{(2n+1)} > 0$, a páros indexű tagokra $a_{2n} < 0$ teljesül. Képezzük az alábbi sorozatokat:

$$\begin{array}{l} \alpha_1 \coloneqq a_1 + a_2 \\ \beta_1 \coloneqq a_1 \end{array} \} \Rightarrow \alpha_1 \le \beta_1$$

$$\begin{array}{l} \alpha_2 \coloneqq a_1 + a_2 + a_3 + a_4 \\ \beta_2 \coloneqq a_1 + a_2 + a_3 \end{array} \} \Rightarrow \alpha_2 \le \beta_2$$

:

Másrészt az (a_n) sorozat abszolútérték-monotonitása miatt

$$\alpha_1 < \alpha_2 < \alpha_3 < \cdots$$
 $\beta_1 > \beta_2 > \beta_3 > \cdots$

A Cantor-féle közöspont tételt alkalmazzuk az $I_1 = [\alpha_1, \beta_1], I_2 = [\alpha_2, \beta_2], ...$ intervallum-sorozatra. Könnyen látható, hogy

- $-I_{n+1}$ ⊂ I_n , egymásba skatulyázott zárt intervallumok,
- az intervallumok hossza $|I_1| = |a_2|$, $|I_2| = |a_4|$, ..., ezért

$$\lim_{n\to\infty}|I_n|=0$$

Mivel a Cantor-tétel feltételei teljesülnek, ezért létezik egyetlen közös pont, s, melyre

$$s = \lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} \beta_n$$

Függvény folytonosság, sorozatfolytonosság

Definíció Adott egy $f: X \to Y$ függvény, és egy $x_0 \in D_f$ pont. Azt mondjuk, hogy az f folytonos az x_0 -ban, ha $\forall \varepsilon > 0$ -hoz létezik olyan $\delta > 0$, melyre teljesül, hogy

$$\forall x \in D_f, \qquad |x - x_0| < \delta$$

esetén

$$|f(x) - f(x_0)| < \varepsilon$$
.

Definíció Az f függvény az értelmezési tartományának egy x_0 pontjában *sorozatfolytonos*, ha minden $(x_n) \subset D_f$ sorozatra, melyre

$$\lim_{n\to\infty} x_n = x_0$$

teljesül, hogy

$$\lim_{n\to\infty} f(x_n) = f(x_0)$$

Komplex függvény, **kanonikus alak.** Az e^z és $\ln(z)$ függvények kiterjesztése komplex argumentumra.

Komplex függvény, kanonikus alak

Legyen $D \subset \mathbb{C}$ egy tartomány a komplex számsíkon. $f: D \to \mathbb{C}$ függvényt tekintjük. A független változót z = x + iy, a függő változót w = u + iv jelöli. Tehát a hozzárendelés w = f(z).

Legyen $D \subset \mathbb{C}$ tartomány és adott ezen egy hozzárendelés $f: D \to \mathbb{C}$, ami a z komplex számhoz a következőt rendeli hozzá:

$$z \mapsto f(z) = \text{Re}(f(z)) + i \text{Im}(f(z))$$

A függvény kanonikus alakja két valós értékű kétváltozós függvény megadását jelenti, f(z) = u(x, y) + i v(x, y), ahol

$$u(x,y) = \text{Re}(f(x+iy)), \quad v(x,y) = \text{Im}(f(x+iy))$$

Az e^z és $\ln(z)$ függvények kiterjesztése komplex argumentumra Az $f(z) = e^z$ függvényt a komplex számok esetén így értelmezhetjük:

$$e^z = e^{x+iy} = e^x(\cos(y) + i\sin(y))$$

Az exponenciális függvény inverzét keressük. Mivel $f(z) = e^z$ értékkészletében a 0 nincsen benne, így ez nem lesz benne a logaritmusfüggvény értelmezési tartományában. Legyen $0 \neq w \in \mathbb{C}$, és keressük azt a z-t, melyre $w = e^z$. Ha w trigonometrikus alakja $w = \rho \cdot e^{i\theta}$, akkor

$$x = \ln(\rho)$$
, $y = \theta + 2k\pi$, $k \in \mathbb{Z}$

Mivel az exponenciális függvény 2π szerint periodikus, ezért a keresett w szám nem egyértelmű. Tehát:

$$ln(w) = ln(|w|) + i(arg(w) + 2k\pi), \quad k \in \mathbb{Z}$$

sokértékű függvény. A k = 0-hoz tartozó értéket főértéknek nevezzük, és jelölése

$$Ln(w) = ln(|w|) + i arg(w)$$

Valós függvény határértéke véges pontban. Egyoldali határértékek. Átviteli elv. Szakadási helyek osztályozása.

Valós függvény határértéke véges pontban

Definíció Adott $f: X \to Y$ függvény, és $x_0 \in \mathbb{R}$. Tegyük fel, hogy létezik olyan környezet $U = (x_0 - \varepsilon, x_0 + \varepsilon)$, melyre minden $x \in U, x \neq x_0$ esetén $x \in D_f$. Azt mondjuk, hogy az f függvény határértéke x_0 -ban α , ha minden $\varepsilon > 0$ -hoz létezik $\delta > 0$, melyre ha $0 < |x - x_0| < \delta$, akkor $|f(x) - \alpha| < \varepsilon$. Ezt így jelöljük:

$$\lim_{x \to x_0} f(x) = \alpha$$

Egyoldali határértékek

Definíció Az f függvény jobboldali határértéke x_0 -ban $\alpha \in \mathbb{R}$, ha minden $\varepsilon > 0$ -hoz létezik $\delta > 0$, melyre ha $x \in D_f$, $x_0 < x < x_0 + \delta$ teljesül, akkor $|f(x) - \alpha| < \varepsilon$. Ezt így jelöljük:

$$\lim_{x \to x_0 +} f(x) = \alpha$$

Definíció Az f függvény baloldali határértéke x_0 -ban $\alpha \in \mathbb{R}$, ha minden $\varepsilon > 0$ -hoz létezik $\delta > 0$, melyre ha $x \in D_f$, $x_0 - \delta < x < x_0$ teljesül, akkor $|f(x) - \alpha| < \varepsilon$. Ezt így jelöljük:

$$\lim_{x \to x_0 -} f(x) = \alpha$$

Átviteli elv

1.) $\lim_{x\to x_0} f(x) = \alpha$ akkor és csak akkor, ha minden (x_n) sorozatra, melyre $(x_n)\subset D_f$, $\lim_{n\to\infty} x_n=x_0$, $x_n\neq x_0$

teljesül, hogy

$$\lim_{n\to\infty}f(x_n)=\alpha$$

2.) $\lim_{x\to x_0+} f(x) = \alpha$ akkor és csak akkor, ha minden (x_n) sorozatra, melyre $(x_n)\subset D_f$, $\lim_{n\to\infty} x_n=x_0$, $x_n>x_0$

teljesül, hogy

$$\lim_{n\to\infty}f(x_n)=\alpha$$

3.) $\lim_{x \to x_0^-} f(x) = \alpha$ akkor és cak akkor, ha minden (x_n) sorozatra, melyre $(x_n) \subset D_f$, $\lim_{n \to \infty} x_n = x_0$, $x_n < x_0$

teljesül, hogy

$$\lim_{n\to\infty}f(x_n)=\alpha$$

Szakadási helyek osztályozása

Elsőfajú szakadás

Elsőfajú szakadás van x_0 -ban, ha létezik

$$\lim_{x \to x_0 +} f(x) < \infty, \qquad \lim_{x \to x_0 -} f(x) < \infty$$

Megszüntethető szakadás

Megszüntethető a szakadás, ha léteznek és megegyeznek a jobb- és baloldali határértékek, de $\lim_{x\to x_0} f(x) \neq f(x_0)$

Másodfajú szakadás

A szakadás másodfajú, ha nem elsőfajú.

Fourier sor, valós- és komplex alak. Trigonometrikus rendszer ortogonalitása (B). Derivált függvény Fourier sora.

Fourier sor, valós- és komplex alak

Valós alak

Definíció Az $f: [-\pi; \pi] \to \mathbb{R}$ függvény *Fourier együtthatóit* így definiáljuk:

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx$$
, $k = 0,1,2,...$
 $b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx$, $k = 1,2,...$

feltéve, hogy a fenti integrálok léteznek.

Definíció Adott $f: \mathbb{R} \to \mathbb{R}$ 2π szerint periodikus függvény. Tegyük fel, hogy f integrálható a $[-\pi; \pi]$ intervallumon. Az f(x) függvény *Fourier sora* (formálisan):

$$f \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx))$$

ahol a_k és b_k a most definiált Fourier együtthatók.

Komplex alak

Az Euler-formula szerint

$$e^{ix} = \cos(x) + i\sin(x)$$

Ebből következik, hogy

$$e^{-ix} = e^{i(-x)} = \cos(-x) + i\sin(-x) = \cos(x) - i\sin(x)$$

ezért a trigonometrikus függvények kifejezhetők komplex alakban:

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$$

$$\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$$

Az *n*-edik Fourier polinom:

$$s_n(x) = \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos(kx) + b_k \cos(kx))$$

Helyettesítsük be a trigonometrikus függvények komplex alakjait:

$$s_n(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \frac{e^{ix} + e^{-ix}}{2} + b_k \frac{e^{ix} - e^{-ix}}{2i} = \sum_{k=-n}^n \alpha_k e^{ikx}$$

ahol az α_k együttható:

$$\alpha_k = \frac{a_k - ib_k}{2}, \qquad k > 0$$

$$\alpha_k = \frac{a_k + ib_k}{2}, \qquad k < 0$$

Tétel Tegyük fel, hogy f előáll

$$f(x) = \sum_{k=-n}^{n} \alpha_k e^{ikx}$$

alakban. Ekkor:

$$\alpha_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx$$

Trigonometrikus rendszer ortogonalitása (B)

Lemma Tetszőleges $n \neq m$ mellett

$$\int_{-\pi}^{\pi} \phi_n(x) \phi_m(x) = 0$$

Bizonyítás Ha n = 0 vagy m = 0, akkor

$$\int_{-\pi}^{\pi} \cos(0x) \ dx = 0, \qquad \int_{-\pi}^{\pi} \sin(0x) \ dx = 0$$

Egyéb esetekben az alábbi trigonometrikus azonosságokat használjuk fel:

$$\cos(nx)\cos(mx) = \frac{\cos((n+m)x) + \cos((n-m)x)}{2}$$
$$\cos(nx)\sin(mx) = \frac{\sin((n+m)x) + \sin((m-n)x)}{2}$$
$$\sin(nx)\sin(mx) = \frac{\cos((n-m)x) - \cos((n+m)x)}{2}$$

Megjegyzés Ez a tulajdonság azt jelenti, hogy a (ϕ_n) függvényrendszer ortogonális.

Derivált függvény Fourier sora

Tétel Legyen $f: \mathbb{R} \to \mathbb{R}$ valós függvény 2π szerint periodikus és tegyük fel, hogy a $[-\pi;\pi]$ intervallumon a függvény véges sok pont kivételével folytonos. Ezenkívül tegyük fel, hogy a szakadási pontok elsőfajú szakadások, és hogy véges sok pont kivételével f differenciálható. Ekkor az f' függvény Fourier sora tagonkénti deriválással kiszámítható:

$$f' \sim \sum_{k=1}^{\infty} (-a_k \cdot k \cdot \sin(kx) + b_k \cdot k \cdot \cos(kx))$$

Valós függvény határérték kiterjesztése. Inverz függvény **7A** létezése. Bolzano tétel (B).

Valós függvény határérték kiterjesztése

Definíció $(,,x_0=\pm\infty)$

$$\lim_{x\to\infty}f(x)=\alpha$$

 $\lim_{x\to\infty} f(x) = \alpha$ ha minden $\varepsilon > 0$ -hoz létezik $K \in \mathbb{R}$, hogy minden $x \in D_f$, x > K esetén teljesül, hogy $|f(x) - \alpha| < \varepsilon$. Hasonlóan,

$$\lim_{x \to -\infty} f(x) = \alpha$$

 $\lim_{x \to -\infty} f(x) = \alpha$ ha minden $\varepsilon > 0$ -hoz létezik $K \in \mathbb{R}$, hogy minden $x \in D_f$, x < K esetén teljesül, hogy $|f(x) - \alpha| < \varepsilon$.

 $(\alpha = \pm \infty)$ Definíció

$$\lim_{x \to x_0} f(x) = +\infty$$

 $\lim_{x\to x_0} f(x) = +\infty$ ha minden $K\in\mathbb{R}$ -hez létezik $\delta>0$, melyre minden $|x-x_0|<\delta$, $x\neq x_0$ esetén teljesül, hogy f(x) > K. Hasonlóan,

$$\lim_{x \to x_0} f(x) = -\infty$$

ha minden $K \in \mathbb{R}$ -hez létezik $\delta > 0$, melyre minden $|x - x_0| < \delta$, $x \neq x_0$ esetén teljesül, hogy f(x) < K.

Definíció $(,x_0 = \infty, \alpha = \pm \infty)$

$$\lim_{x\to\infty}f(x)=+\infty$$

ha minden $K \in \mathbb{R}$ -hez létezik $L \in \mathbb{R}$, hogy minden $x \in D_f$, x > L esetén teljesül, hogy f(x) > K. Hasonlóan,

$$\lim_{x \to \infty} f(x) = -\infty$$

ha minden $K \in \mathbb{R}$ esetén létezik $L \in \mathbb{R}$, hogy minden $x \in D_f$, x < L esetén teljesül, hogy f(x) < K.

Inverz függvény létezése

Ha a függvény bijektív, akkor létezik inverz függvénye: $f^{-1}: Y \to X$, melyre $f^{-1}(f(x)) = x$, illetve hasonlóképpen, $f(f^{-1}(y)) = y$

Bolzano tétel (B)

Tétel Legyen $f:[a,b] \to \mathbb{R}$ folytonos függvény. Tegyük fel, hogy f(a) < f(b) és legyen $c \in (f(a), f(b))$. Ekkor létezik olyan $\xi \in (a, b)$, melyre $f(\xi) = c$.

Meghatározzuk azt a ξ pontot, amiről a Bolzano tétel szól. Induljunk ki az Bizonyítás $I_0 = [a_0, b_0]$ intervallumból.

- Legyen $\xi_1 = \frac{a_0 + b_0}{2}$.

Ha $f(\xi_1) = c$, akkor készen vagyunk.

Ha $f(\xi_1) > c$, akkor legyen $a_1 := a_0$, $b_1 := c$

Ha $f(\xi_1) < c$, akkor legyen $a_1 := c$, $b_1 := b_0$

Ekkor az $[a_1, b_1]$ intervallum a következő tulajdonságú: $f(a_1) < c < f(b_1)$ és[a_1 , b_1] ⊂ [a, b] éppen a fele.

– Megkonstruáljuk az $[a_2, b_2]$ intervallumot úgy, hogy $f(a_2) < c < f(b_2)$ teljesüljön, akárcsak az előbb. Stb...

Ekkor két eset lehetséges:

- i) vagy véges sok lépésben vége van az iterációnak, ekkor megkapjuk ξ pontot
- ii) vagy "nincs vége", ekkor a sorozatokra teljesül, hogy

$$\{ (a_n) : f(a_n) < c \}$$

$$\{ (b_n) : f(b_n) > c \}$$

Belátjuk, hogy $f(\xi) = c$. Vegyük észre, hogy

$$\lim_{n\to\infty} a_n = \xi, \qquad \lim_{n\to\infty} b_n = \xi$$

Valóban, $[a_0, b_0] \supset [a_1, b_1] \supset \cdots$, és az intervallumok hossza tart a nullához. Ekkor a Cantor-féle közöspont-tétel szerint egyértelműen létezik a ξ közös pont, $\xi \in (a, b)$. Mivel f folytonos ξ -ben, ezért minden (x_n) sorozatra, melyre

$$\lim_{n \to \infty} (x_n) = \xi, \qquad \lim_{n \to \infty} f(x_n) = f(\xi)$$

ezért

$$\lim_{n\to\infty} f(a_n) = f(\xi), \qquad \lim_{n\to\infty} f(b_n) = f(\xi)$$

Emiatt $f(\xi) \le c$ és $f(\xi) \ge c$, ezért $f(\xi) = c$.

7B Szükséges ill. elégséges feltétel lokális szélsőértékre magasabb dimenzióban. (B) Stacionárius pont, nyeregpont. Lagrange-féle középérték tétel kétváltozós függvényre. (B)

Szükséges feltétel lokális szélsőértékre (B)

Tétel

(Szükséges feltétel lokális szélsőérték létezésére) Tegyük fel, hogy az f függvénynek (x_0, y_0) -ban lokális szélsőértéke van, és tegyük fel, hogy a függvény itt differenciálható. Ekkor grad $f(x_0, y_0) = (0,0)$, azaz

$$f'_x(x_0, y_0) = 0, \qquad f'_y(x_0, y_0) = 0$$

Bizonyítás Jelölje $f_1(x) = f(x, y_0)$ a kétváltozós függvény egyik metszetfüggvényét. Ekkor x_0 lokális szélsőértéke f_1 -nek, ezért $f_1'(x_0) = 0$, másrészt $f_1'(x) = f_x'(x, y_0)$.

Elégséges feltétel lokális szélsőértékre

Tétel

(Elégséges feltétel lokális szélsőérték létezésére) Tegyük fel, hogy az (x_0, y_0) pont stacionárius pontja f-nek, és itt f kétszer differenciálható. Ha ebben a pontban

$$f_{xx}^{"}(x_0, y_0)f_{yy}^{"}(x_0, y_0) - (f_{xy}^{"})^2(x_0, y_0) > 0$$

akkor a pontban lokális szélsőérték van. Ha emellett $f_{xx}''(x_0, y_0) > 0$, akkor lokális minimum, ha $f_{xx}''(x_0, y_0) < 0$, akkor lokális maximum van. Ha

$$f_{xx}^{"}(x_0, y_0)f_{yy}^{"}(x_0, y_0) - (f_{xy}^{"})^2(x_0, y_0) < 0$$

akkor nincs szélsőérték. Ha pedig

$$f_{xx}^{"}(x_0, y_0) f_{yy}^{"}(x_0, y_0) - (f_{xy}^{"})^2(x_0, y_0) = 0$$

akkor a szélsőérték létezésének eldöntéséhez további vizsgálat szükséges.

Bizonyítás A tételt nem bizonyítjuk.

Stacionárius pont, nyeregpont

Definíció Ha grad $f(x_0, y_0) = (0,0)$, akkor (x_0, y_0) *stacionárius pont*.

Definíció Azt a stacionárius pontot, melyben szélsőérték nincs, *nyeregpontnak* nevezzük.

Lagrange-féle középérték tétel kétváltozós függvényre (B)

Tétel (Lagrange féle középérték tétel) Adott $f: S \to \mathbb{R}$, $S \subset \mathbb{R}^2$ függvény, és az $(x_0, y_0) \in \operatorname{int}(D)$ pont. Tegyük fel, hogy létezik konvex U környezete (x_0, y_0) -nak melyben f differenciálható. Legyen továbbá egy $(x_1, y_1) \in U$ pont, és $\Delta x = x_1 - x_0$, $\Delta y = y_1 - y_0$. Ekkor $\exists \theta \in (0,1)$, amelyre

$$f(x_1, y_1) - f(x_0, y_0) = \operatorname{grad} f(x_\theta, y_\theta) \cdot \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

ahol $x_{\theta} = \theta \Delta x + x_0$, és $y_{\theta} = \theta \Delta y + y_0$

Bizonyítás Vezessük be az alábbi egyváltozós függvényt:

$$F(t) = f(x_0 + t\Delta x, y_0 + t\Delta y)$$

Ekkor $F:[0,1] \to \mathbb{R}$ folytonos és differenciálható, továbbá $F(0) = f(x_0, y_0)$ és F(1) = f(x, y). Erre a függvényre alkalmazva az egyváltozós Lagrange-féle középértéktételt; létezik $\theta \in [0,1]$, melyre

$$F(1) - F(0) = F'(\theta) \cdot 1$$

Mivel a láncszabály alkalmazásával rögzített t-re

$$F'(t) = f_x'(x_0 + t\Delta x, y_0 + t\Delta y)\Delta x + f_y'(x_0 + t\Delta x, y_0 + t\Delta y)\Delta y$$

ezért

$$F'(\theta) = f_x' \underbrace{(x_0 + \theta \Delta x, y_0 + \theta \Delta y)}_{(x_\theta, y_\theta)} \Delta x + f_y'(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \Delta y$$

amiből a tétel állítása következik. ■

Korlátos és zárt intervallumon folytonos függvényekre vonatkozó tételek: **Weierstrass I. II.** és Heine tétel. (egyikre B)

Weierstrass I. II. (B)

Tétel (Weierstrass I.) Legyen $f : [a, b] \to \mathbb{R}$ folytonos függvény. Ekkor f korlátos.

Bizonyítás Indirekt módon tegyük fel, hogy f felülről nem korlátos, vagyis minden $n \in \mathbb{N}$ -hez létezik olyan $x_n \in [a,b]$, melyre $f(x_n) > n$. Igaz, hogy $a \le x_n \le b$, ezért az (x_n) sorozat korlátos. Ekkor a Bolzano-Weierstrass tétel miatt létezik (x_{n_k}) konvergens részsorozata.

$$\lim_{n_k \to \infty} x_{n_k} = x_0$$

Az [a, b] intervallum zárt, ezért $x_0 \in [a, b]$. Az f itt folytonos és sorozatfolytonos is, tehát:

$$\lim_{n_k \to \infty} f(x_{n_k}) = f(x_0)$$

Viszont az indirekt feltevés miatt $f(x_{n_k}) > n_k$, amiből az következik, hogy

$$\lim_{n_k \to \infty} f(x_{n_k}) = \infty$$

Ez ellentmondás. ■

Tétel (Weierstrass II.) Legyen $f:[a,b] \to \mathbb{R}$ folytonos függvén. Ekkor f fölveszi minimumát és maximumát, azaz

$$\exists \xi_1, \quad f(\xi_1) = \min\{f(x) : x \in [a, b]\}\$$

 $\exists \xi_2, \quad f(\xi_2) = \max\{f(x) : x \in [a, b]\}\$

Bizonyítás Igazoljuk mondjuk a maximum létezését. Legyen $H = \{f(x) : x \in [a, b]\}$. A W1 tétel miatt ez a halmaz korlátos. Ekkor $\beta = \sup(H) < \infty$. Ez azt jelenti, hogy minden $n \in \mathbb{N}$ -re létezik $x_n \in [a, b]$, melyre

$$\beta - \frac{1}{n} < f(x_n) \le \beta$$

Erre a sorozatra $(x_n) \subset [a, b]$, ezért korlátos, vagyis létezik (x_{n_k}) konvergens részsorozata. Erre a részsorozatra

$$\lim_{n_k \to \infty} x_{n_k} = x_0$$

Az [a, b] intervallum zárt, ezért $x_0 \in [a, b]$. Az f itt folytonos és sorozatfolytonos is, tehát egyrészt:

$$\lim_{n_k \to \infty} f(x_{n_k}) = f(x_0)$$

másrészt

$$\beta - \frac{1}{n} < f(x_{n_k}) \le \beta$$

Ezért $\beta = f(x_0) \in H$, tehát valóban $\beta = \max(H)$.

Heine tétel

Tétel $Ha\ az\ f:[a,b]\to\mathbb{R}\ f\ddot{u}ggv\acute{e}ny\ folytonos,\ akkor\ egyenletesen\ is\ folytonos.$

Hatványsor, **konvergencia-tartománya**, ennek jellemzése. Hatványsor konvergencia sugarának meghatározása.(B). **Gömbi polárkoordináták**, Jacobi determinánsa (B)

Hatványsor, konvergencia-tartománya, ennek jellemzése

Definíció A hatványsor:

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n, \qquad c_n \in \mathbb{R}$$

Ahol $x_0 \in \mathbb{R}$ rögzített.

Definíció Adott egy hatványsor:

$$\sum_{n=0}^{\infty} c_n x^n$$

Ennek konvergencia halmaza (konvergencia tartománya, "ahol konvergens"):

$$\mathcal{H} = \left\{ x \in \mathbb{R} : \sum_{n=0}^{\infty} c_n x^n < \infty \right\}$$

Állítás A konvergencia halmaz tulajdonságai:

- $1.) \quad 0 \in \mathcal{H}$
- 2.) Ha $\xi \in \mathcal{H}$, akkor minden x-re, melyre $|x| < |\xi|$, igaz, hogy $x \in \mathcal{H}$.
- 3.) Ha $\eta \notin \mathcal{H}$, akkor minden x-re, melyre $|x| > |\eta|$, igaz, hogy $x \notin \mathcal{H}$.

Hatványsor konvergencia sugarának meghatározása (B)

Definíció Tegyük fel, hogy létezik $\xi \neq 0$, melyre $\xi \in \mathcal{H}$ és $\exists \eta \notin \mathcal{H}$. A hatványsor *konvergencia sugara* $\rho \coloneqq \sup\{|x| : x \in \mathcal{H}\}$

Ha $\mathcal{H} = \{0\}$, akkor $\rho \coloneqq 0$.

Ha $\mathcal{H} = \mathbb{R}$, akkor $\rho \coloneqq \infty$

Az $x_0=0$ esetben a konvergencia sugár meghatározása a gyökkritériummal lehetséges, a "szereposztás" $a_n=c_nx^n$.

Állítás Tegyük fel, hogy a $\lim_{n\to\infty} \sqrt[n]{|c_n|} = \gamma$ határérték létezik (esetleg $+\infty$). Ekkor:

- 1.) $\gamma = 0$ esetén $\rho = \infty$. A hatványsor mindenütt konvergens.
- 2.) $\gamma = \infty$ esetén $\rho = 0$.
- 3.) $0 < \gamma < \infty$ esetén $\rho = \frac{1}{\gamma}$.

Bizonyítás 1.) $\lim_{n\to\infty} \sqrt[n]{|c_n| \cdot |x|^n} = 0 \cdot |x|$, $\forall x$

- 2.) $\lim_{n\to\infty} \sqrt[n]{|c_n| \cdot |x|^n} = \infty$, $\forall x \neq 0$
- 3.) $\lim_{n\to\infty} \sqrt[n]{|c_n|\cdot|x|^n} = \gamma|x|$, $\forall x$. Ezért $|x| < \frac{1}{\gamma}$ esetén $\gamma|x| < 1$. A sor konvergens. \blacksquare

A konvergencia sugár meghatározható még a hányados kritérium módszerével is, hasonló szereposztással.

Állítás Tegyük fel, hogy a $\lim_{n\to\infty}\frac{|c_{n+1}|}{|c_n|}=\gamma$ határérték létezik (esetleg $+\infty$). Ekkor:

1.) $\gamma = 0$ esetén $\rho = \infty$. A hatványsor mindenütt konvergens.

2.)
$$\gamma = \infty$$
 esetén $\rho = 0$.

3.)
$$0 < \gamma < \infty$$
 esetén $\rho = \frac{1}{\gamma}$.

Bizonyítás

$$A = \lim_{n \to \infty} \left| \frac{c_{n+1} x^{n+1}}{c_n x^n} \right| = |x| \cdot \lim_{n \to \infty} \frac{|c_{n+1}|}{|c_n|} = \gamma |x| \Rightarrow \begin{cases} A < 1 \iff |x| < \frac{1}{\gamma}, \text{ konvergens} \\ A > 1 \iff |x| > \frac{1}{\gamma}, \text{ divergens} \end{cases}$$

Gömbi polárkoordináták, Jacobi determinánsa (B)

Definíció Egy adott $(x, y, z) \in \mathbb{R}^3$ pont *gömbi koordinátái* (r, φ, θ) , melyeket a következőképp definiálunk:

r: a pont origótól vett távolsága; $r = \sqrt{x^2 + y^2 + z^2}$

 φ : a pontba mutató helyvektor és a z tengely pozitív része által bezárt szög $\varphi \in [0,\pi]$

 θ : a pontba mutató helyvektor xy síkra vett vetületének az x tengely pozitív részével bezárt szöge. $\theta \in [0,2\pi)$

A gömbi koordinátákkal tehát az (x, y, z) pont így írható le:

$$x = r \sin(\varphi) \cos(\theta)$$
, $y = r \sin(\varphi) \sin(\theta)$, $z = r \cos(\varphi)$

A gömbi koordináta-leképezés Jacobi determinánsa

$$D(r,\varphi,\theta) = \begin{vmatrix} \sin(\varphi)\cos(\theta) & r\cos(\varphi)\cos(\theta) & -r\sin(\varphi)\sin(\theta) \\ \sin(\varphi)\sin(\theta) & r\cos(\varphi)\sin(\theta) & r\sin(\varphi)\cos(\theta) \\ \cos(\varphi) & -r\sin(\varphi) & 0 \end{vmatrix} =$$

$$= \cos(\varphi) \cdot \begin{vmatrix} r\cos(\varphi)\cos(\theta) & -r\sin(\varphi)\sin(\theta) \\ r\cos(\varphi)\sin(\theta) & r\sin(\varphi)\cos(\theta) \end{vmatrix} + r\sin(\varphi) \cdot \begin{vmatrix} \sin(\varphi)\cos(\theta) & -r\sin(\varphi)\sin(\theta) \\ \sin(\varphi)\sin(\theta) & r\sin(\varphi)\cos(\theta) \end{vmatrix} +$$

$$+ 0 \cdot \begin{vmatrix} \sin(\varphi)\cos(\theta) & r\cos(\varphi)\cos(\theta) \\ \sin(\varphi)\sin(\theta) & r\cos(\varphi)\sin(\theta) \end{vmatrix} =$$

$$= \cos(\varphi) \cdot (r^2\cos(\varphi)\sin(\varphi)\cos^2(\theta) + r^2\sin(\varphi)\cos(\varphi)\sin^2(\theta)) +$$

$$+ r\sin(\varphi) \cdot (r\sin^2(\varphi)\cos^2(\theta) + r\sin^2(\varphi)\sin^2(\theta)) =$$

$$= \cos(\varphi) \cdot r^2\cos(\varphi)\sin(\varphi) \cdot r\sin(\varphi) \cdot r\sin(\varphi) \cdot r\sin(\varphi) \cdot r\sin(\varphi) \cdot r\sin(\varphi) =$$

$$= r^2\sin(\varphi) \cdot \cos^2(\varphi) + \sin^2(\varphi) = r^2\sin(\varphi)$$

9A Differenciálhányados. Geometriai jelentés. Folytonosság és differenciálhatóság.(B)

Differenciálhányados

Definíció Adott es

Adott egy $f: H \to \mathbb{R}$ függvény és $x_0 \in D_f$ értelmezési tartományának egy belső pontja (azaz $(x_0 - \varepsilon, x_0 + \varepsilon) \subset D_f$ valamely $\varepsilon > 0$ -ra). Az x ponthoz tartozó differenciahányados:

$$\frac{f(x) - f(x_0)}{x - x_0}, \qquad x \in D_f$$

A függvény differenciálható x_0 -ban, ha a

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

határérték létezik és véges. Ennek a határértéknek a neve derivált, differenciálhányados. Jele: $f'(x_0)$

Geometriai jelentés

Geometriai jelentés: A differenciálhányados a függvény grafikonjának $P = (x_0; f(x_0))$ pontjához tartozó érintőjének meredekségét (\equiv iránytangensét) adja.

Folytonosság és differenciálhatóság (B)

Állítás Ha f differeniálhtó x_0 -ban, akkor ott folytonos is.

Bizonyítás Mivel

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = m$$

ezért tetszőleges $\varepsilon > 0$ -hoz létezik $\delta > 0$, hogy

$$m - \varepsilon \le \frac{f(x) - f(x_0)}{x - x_0} \le m + \varepsilon$$

ha $|x - x_0| < \delta$. Vegyünk $\varepsilon = 1$ -et. Azt jelenti, hogy

$$m-1 \le \frac{f(x) - f(x_0)}{x - x_0} \le m + 1$$

azaz

$$\left| \frac{f(x) - f(x_0)}{x - x_0} \right| < K$$

valamilyen K mellett, ha x elég közel van x_0 -hoz. Ezért itt

$$|f(x) - f(x_0)| < K|x - x_0|$$

amiből a folytonosság következik. Legyen ugyanis $\varepsilon > 0$ tetszőleges, ekkor válasszunk $\delta = \varepsilon/K$ -t. Ha $|x - x_0| < \delta$, akkor $|f(x) - f(x_0)| < \varepsilon$.

9B Függvény rendszer, koordináta-transzformáció. **Jacobi mátrix.** Vektormező invertálhatósága. Hengerkoordináták, Jacobi determinánsa (B)

Függvény rendszerek

Ha egyszerre több függvényt tekintünk, akkor függvényrendszerekről beszélünk. Tekintsük most azt a speciális esetet, hogy a függvények száma megegyezik a változók számával. Legyen $R \subset \mathbb{R}^2$ egy tartomány, ahol adott két függvény, $\phi, \psi: R \to \mathbb{R}$. A függvényrendszer, amit tekintünk:

$$\xi = \phi(x, y)$$

$$\eta = \psi(x, y)$$

Ezt úgy értelmezhetjük, mint \mathbb{R}^2 térbeli leképezés, mely az (x,y) ponthoz a $(\xi,\eta) = F(x,y)$ pontot rendeli hozzá. Ezt a $F: R \to \mathbb{R}^2$ leképezést szokás vektormezőnek is hívni.

Koordináta-transzformáció

A fenti függvényrendszerek koordináta-transzformációk. Az F függvény változói x és y, az F függvény koordinátafüggvényei pedig ϕ és ψ . Ekkor az F függvény az alábbi hozzárendelést valósítja meg:

$$(x,y)\mapsto (\xi,\eta)$$

Példa

A polárkoordinátákat Descartes koordinátákká képező függvényt függvényrendszerként így definiálhatjuk:

$$(r, \varphi) \mapsto (x, y)$$

ahol

$$x = r\cos(\varphi) = \phi(r, \varphi)$$
$$y = r\sin(\varphi) = \psi(r, \varphi)$$

Jacobi mátrix

Definíció A fenti rendszerhez tartozó *Jacobi mátrixot* így definiáljuk:

$$\mathcal{J}(x,y) = \begin{bmatrix} \phi_x'(x,y) & \phi_y'(x,y) \\ \psi_x'(x,y) & \psi_y'(x,y) \end{bmatrix} = \begin{bmatrix} \operatorname{grad} \phi(x,y) \\ \operatorname{grad} \psi(x,y) \end{bmatrix}$$

A fenti mátrix determinánsát Jacobi determinánsnak hívjuk:

$$D(x,y) \coloneqq \phi_x'(x,y)\psi_y'(x,y) - \psi_x'(x,y)\phi_y'(x,y)$$

Vektormező invertálhatósága

Az \mathbb{R}^2 -beli leképezés invertálható, ha a leképezés injektív, azaz különböző R-beli pontokhoz a képtérben különböző (ξ, η) pontok tartoznak. Ekkor a fenti rendszer invertálható:

$$x = g(\xi, \eta)$$

$$y = h(\xi, \eta)$$

Hengerkoordináták

Definíció Egy adott $(x, y, z) \in \mathbb{R}^3$ pont *hengerkoordinátái* (r, θ, z) , melyeket így definiálunk: (r, θ) a pont xy síkra vett vetületének polárkoordinátái, z pedig a harmadik Descartes koordináta:

$$x = r \cos(\theta)$$
, $y = r \sin(\theta)$, $z = z$

Áttérés Jacobi determinánsa (B)

A hengerkoordináta-leképezés Jacobi determinánsa

$$D(r, \theta, z) = \begin{vmatrix} \cos(\theta) & -r\sin(\theta) & 0 \\ \sin(\theta) & r\cos(\theta) & 0 \\ 0 & 0 & 1 \end{vmatrix} =$$

$$= 0 \cdot \begin{vmatrix} -r\sin(\theta) & 0 \\ r\cos(\theta) & 0 \end{vmatrix} - 0 \cdot \begin{vmatrix} \cos(\theta) & 0 \\ \sin(\theta) & 0 \end{vmatrix} + 1 \cdot \begin{vmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{vmatrix} =$$

$$= r\cos^{2}(\theta) + r\sin^{2}(\theta) = r$$

Differenciálási szabályok: szorzat, hányados, összetett függvény, inverz. (B)

Differenciálási szabályok

Tétel Legyenek f és g differenciálható függvények. Ekkor

1.)
$$(f+g)'(x) = f'(x) + g'(x)$$

$$(cf)'(x) = c \cdot f'(x)$$

3.)
$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

4.) Tegyük fel, hogy $g(x) \neq 0$, ekkor

$$\left(\frac{1}{g(x)}\right)' = \frac{g'(x)}{g^{2(x)}}$$

5.) Tegyük fel, hogy $g(x) \neq 0$, ekkor

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

6.) Láncszabály $(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$

Bizonyítás 3.)

$$(fg)'(x) = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} =$$

$$= \lim_{x \to x_0} \frac{f(x)g(x) - f(x)g(x_0) + f(x)g(x_0) - f(x_0)g(x_0)}{x - x_0} =$$

$$= \lim_{x \to x_0} f(x) \frac{g(x) - g(x_0)}{x - x_0} + g(x_0) \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Ahonnan fölhasználva f folytonosságát következik az állítás.

4.)

$$\left(\frac{1}{g(x)}\right)' = \lim_{x \to x_0} \frac{\frac{1}{g(x)} - \frac{1}{g(x_0)}}{x - x_0} = \lim_{x \to x_0} \frac{\frac{g(x_0) - g(x)}{g(x)g(x_0)}}{x - x_0} = \lim_{x \to x_0} \left(\frac{-1}{g(x)g(x_0)} \cdot \frac{g(x) - g(x_0)}{x - x_0}\right)$$

6.)
$$(f \circ g)'(x) = \left(f(g(x))\right)' = \lim_{x \to x_0} \frac{f(g(x)) - f(g(x_0))}{x - x_0} = \lim_{x \to x_0} \frac{f(g(x)) - f(g(x_0))}{g(x) - g(x_0)} \frac{g(x) - g(x_0)}{x - x_0} = \lim_{g(x) \to g(x_0)} \frac{f(g(x)) - f(g(x_0))}{g(x) - g(x_0)} \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0} \blacksquare$$

Tétel

Tegyük fel, hogy $f:[a,b] \to \mathbb{R}$ szigorúan monoton és differenciálható. Tegyük fel, hogy $f'(x) \neq 0, \forall x \in D_f$. Ekkor f^{-1} is differenciálható, és

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

Bizonyítás A differenciálhatóságot bizonyítás nélkül elfogadjuk. Induljunk ki az $f^{-1}(f(x)) = x$ azonosságból, és deriváljuk x szerint, az összetett függvény deriválási szabályát alkalmazva. Ekkor

$$(f^{-1})'(f(x)) \cdot f'(x) = (x)'$$

$$(f^{-1})'(f(x)) \cdot f'(f^{-1}(f(x))) = 1$$

$$(f^{-1})'(f(x)) = \frac{1}{f'(f^{-1}(f(x)))}$$

Mivel f(x) = y, a tétel állítása ebből már következik.

10B Kétváltozós függvény integrálása téglalapon. Integrálás normál tartományon. Kétváltozós valós értékű függvény integrálja vonal mentén.

Kétváltozós függvény integrálása téglalapon

A fenti tétel következménye, hogy téglalap alakú tartományon (intervallumon) az integrálás a következőképpen néz ki.

Tétel

Tegyük fel, hogy $R = [a,b] \times [c,d]$, $f:R \to \mathbb{R}$ integrálható függvény. Ekkor

$$\iint_{R} f(x,y) dR = \int_{a}^{b} \left(\int_{c}^{d} f(x,y) dy \right) dx = \int_{c}^{d} \left(\int_{a}^{b} f(x,y) dx \right) dy$$

Integrálás normál tartományon

Definíció Egy $R \subset \mathbb{R}^2$ részhalmaz *x szerinti normáltartomány* a síkon, ha *R* a következő tulajdonságokkal rendelkezik:

- létezik egy [a, b] intervallum,
- léteznek $\phi_1,\phi_2\colon [a,b] \to \mathbb{R}$ szakaszonként folytonos függvények, melyekre
- $\phi_1(x)$ ≤ $\phi_2(x)$ minden x-re és

$$R = \{(x, y) : a \le x \le b, \qquad \phi_1(x) \le y \le \phi_2(x)\}$$

Hasonlóan, $R \subset \mathbb{R}^2$ részhalmaz y szerinti normáltartomány a síkon, ha létezik egy [c,d] intervallum és léteznek $\psi_1,\psi_2:[c,d] \to \mathbb{R}$ szakaszonként folytonos függvények, melyekre $\psi_1(y) \le \psi_2(y)$ minden y-ra és

$$R = \{(x, y) : a \le y \le b, \qquad \psi_1(y) \le x \le \psi_2(y)\}$$

Tétel Legyen R x-szerinti (illetve y szerinti) normáltartomány a síkon. Tegyük fel, hogy az f függvény integrálható R-en. Ekkor

$$\iint_{R} f(x, y) \ dR = \int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) \ dy \ dx$$

illetve

$$\iint_{R} f(x, y) \ dR = \int_{c}^{d} \int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x, y) \ dx \ dy$$

Kétváltozós valós értékű függvény integrálja vonal mentén

Legyen adott a síkban egy Γ Jordan görbe, melyet γ függvénnyel paraméterezünk:

$$\Gamma = \{ \gamma(t) : t \in [a, b] \}$$

ahol $\gamma(t) = (x(t), y(t))$, $t \in [a, b]$. Feltesszük, hogy Γ sima görbe. Legyen $R \subset \mathbb{R}^2$ egy olyan tartomány, mely tartalmazza a Γ görbét.

Definíció Az f függvény vonalintegrálját a Γ görbe mentén így értelmezzük:

$$\int_{\Gamma} f(x, y) \, ds = \int_{a}^{b} f(x(t), y(t)) \cdot \sqrt{x'^{2}(t) + y'^{2}(t)} \, dt$$

Középértéktételek: Rolle-(B), Lagrange-(B), Cauchy tétel. **11A** Integrálszámítás alaptétele (B).

Középértéktételek (B)

Rolle tétel

Tétel

Legyen $f:[a,b] \to \mathbb{R}$ függvény. Tegyük fel, hogy f folytonos és differenciálható [a, b]-n. Tegyük fel továbbá, hogy f(a) = f(b). Ekkor $\exists \xi \in (a, b)$, melyre $f'(\xi) = 0.$

Bizonyítás

A Weierstrass II. tétel miatt létezik a függvénynek minimuma és maximuma. Ha m = M, akkor a függvény konstans, és deriváltja nulla. Ha m < M, akkor $\exists \xi$, melyre $f(\xi) = m$ vagy $f(\xi) = M$. Ekkor ξ -ben lokális szélsőérték van, és így itt a derivált nulla.

Lagrange tétel

Tétel

Legyen $f:[a,b] \to \mathbb{R}$ függvény. Tegyük fel, hogy f

- folytonos [a, b]-n,

differenciálható (a, b)-n.

Ekkor létezik olyan $\xi \in (a, b)$, melyre

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

Bizonyítás Az (a; f(a)) és (b; f(b)) pontokat összekötő egyenes egyenlete

$$h(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$

Legyen

$$g(x) \coloneqq f(x) - h(x)$$

Ekkor g differenciálható, és

$$g(a) = f(a) - h(a) = 0,$$
 $g(b) = f(b) - h(b) = 0$

tehát g-re a Rolle-tételt alkalmazva azt kapjuk, hogy $\exists \xi$, melyre $g'(\xi) = 0$, azaz

$$f'(\xi) = h'(\xi) = \frac{f(b) - f(a)}{b - a}$$

Cauchy tétel

Tétel

Legyen $f:[a,b] \to \mathbb{R}$ függvény. Tegyük fel, hogy f

- folytonos [a, b]-n,
- differenciálható (a, b)-n.
- $-g(b) \neq g(a)$
- $-g'(x) \neq 0$

Ekkor létezik olyan $\xi \in (a, b)$, melyre

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

Integrálszámítás alaptétele (B)

Tétel

A $g, f : [a, b] \to \mathbb{R}$ differenciálható függvények, melyekre f'(x) = g'(x) teljesül minden $x \in (a, b)$ -re. Ekkor $f(x) = g(x) + c, \forall x \in [a, b]$ valamely $c \in \mathbb{R}$ mellett

Bizonyítás Legyen h(x) = f(x) - g(x). Deriváljuk h-t:

$$h'(x) = f'(x) - g'(x)$$

A tétel föltevése alapján f'(x) = g'(x), amiből következik, hogy $h'(x) \equiv 0$. Ez csak akkor lehetséges, ha h konstans, vagyis létezik c = h(x), $c \in \mathbb{R}$.

11B Integrál transzformáció polárkoordinátákkal. Helyettesítés általános koordináta-transzformációval kettős integrálban.

Integrál transzformáció polárkoordinátákkal

Kettős integrálban a polárkoordinátákra való áttérés az általános helyettesítés egy speciális esete. Az áttéréshez szükség van a koordináta-transzformációra, mely polárkoordinátákra való áttérés esetén

$$x = r\cos(\theta)$$
$$y = r\sin(\theta)$$

A Jacobi determináns:

$$D(r,\theta) = \begin{vmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{vmatrix} = r\cos^2(\theta) + r\sin^2(\theta) = r$$

Így a megfelelő integrál-transzformáció

$$\iint_{\mathbb{R}} f(x,y) \ d(x,y) = \iint_{\mathbb{R}'} f(r\cos(\theta), r\sin(\theta)) \cdot r \ d(r,\theta)$$

Helyettesítés általános koordináta-transzformációval kettős integrálban

Tétel

Adott egy $f: R \to \mathbb{R}$ integrálható függvény, ahol R korlátos, zárt, mérhető tartomány. Tekintsünk egy

$$x = \phi(u, v)$$

$$y = \psi(u, v)$$

transzformációt, melyről feltesszük, hogy Jacobi mátrixa sehol sem szinguláris, azaz

$$\mathcal{J}(u,v) = \begin{bmatrix} \phi_u'(u,v) & \phi_v'(u,v) \\ \psi_u'(u,v) & \psi_v'(u,v) \end{bmatrix}$$

jelöléssel det $\mathcal{J}(u,v) \neq 0$ R-ben. Legyen továbbá

$$R' = \{(u, v) : (\phi(u, v), \psi(u, v)) \in R\}$$

Ekkor

$$\iint_{R} f(x,y) \ d(x,y) = \iint_{R'} f(\phi(u,v),\psi(u,v)) \cdot D(u,v) \ d(u,v)$$

Taylor polinom, tulajdonságai. (B) Lagrange-féle maradéktag.

Taylor polinom, tulajdonságai (B)

Egy n-ed rendű polinomot keresünk, mely olyan, mint f az x_0 -ban:

$$P_n(x_0) = f(x_0)$$

$$P'_n(x_0) = f'(x_0)$$

$$\vdots$$

$$P_n^{(n)}(x_0) = f^{(n)}(x_0)$$

Állítás Ilyen polinom egyértelműen létezik, a neve Taylor-polinom, jelölése $T_n(x)$.

Definíció Az f függvény x_0 -hoz tartozó n-ed rendű Taylor polinomja:

$$T_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k$$

Bizonyítás Az egyértelműség triviális. Létezése a következőképp igazolható:

$$T_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

 $T_n(x)$ és deriváltjai x_0 -ban:

$$T_{n}(x_{0}) = f(x_{0}) + f'(x_{0})(x_{0} - x_{0}) + \dots + \frac{f^{(n)}(x_{0})}{n!}(x_{0} - x_{0})^{n} = f(x_{0})$$

$$T'_{n}(x_{0}) = 0 + f'(x_{0}) \cdot 1 + \frac{f''(x_{0})}{2} 2(x_{0} - x_{0}) + \dots + \frac{f^{(n)}(x_{0})}{n!} n(x_{0} - x_{0})^{n-1} = f'(x_{0})$$

$$\vdots$$

$$T_{n}^{(k)}(x_{0}) = 0 + \dots + 0 + \frac{f^{(k)}(x_{0})}{k!} k! + \dots + \frac{f^{(n)}(x_{0})}{k!} (x_{0} - x_{0})^{n-k} = f^{(k)}(x_{0})$$

$$\vdots$$

$$T_{n}^{(n)}(x_{0}) = 0 + \dots + 0 + \frac{f^{(n)}(x_{0})}{n!} n! = f^{(n)}(x_{0}) \blacksquare$$

Lagrange-féle maradéktag

Definíció A Lagrange-féle maradéktag:

$$L_n(x) \coloneqq f(x) - T_n(x)$$

Tétel Tegyük fel, hogy f(n+1)-szer differenciálható. Ekkor $\exists \xi \in (x, x_0)$ vagy $\xi \in (x_0, x)$, melyre:

$$L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

12B Komplex vonalintegrál, kiszámítása. Cauchy-féle alaptétel. Általánosítás.

Komplex vonalintegrál, kiszámítása

Definíció A vonalintegrált az alábbi határérték definiálja, amennyiben létezik és véges:

$$\lim_{\substack{n \to \infty \\ \delta_n \to 0}} \sum_{k=1}^n (z_k - z_{k-1}) \cdot f(\xi_k) = \int_L f(z) \ dz$$

ahol $\delta_n = \max(s(z_{k-1}, z_k), k = 1, ..., n)$. Ha L zárt görbe, akkor a vonalintegrálra az alábbi jelölést használjuk:

$$\oint_L f(z) dz$$

Tétel Legyen az *L* görbe paraméteres megadása:

$$z(t) = x(t) + iy(t) = r(t) \cdot e^{i\theta(t)}, \quad t \in [\alpha, \beta]$$

Tegyük fel, hogy x, y illetve r, θ folytonosan differenciálhatók. Ekkor

$$\int_{L} f(z) dz = \int_{\alpha}^{\beta} f(z(t))z'(t) dt$$

$$= \int_{\alpha}^{\beta} f(x(t) + iy(t))(x'(t) + iy'(t)) dt$$

$$= \int_{\alpha}^{\beta} f(r(t) \cdot e^{i\theta(t)}) (r'(t) \cdot e^{i\theta(t)} + ir(t) \cdot e^{i\theta(t)}\theta'(t)) dt$$

Tétel

(Newton-Leibniz formula komplex vonalintegrálra) Legyen adott az $f: T \to \mathbb{C}$ függvény. Tegyük fel, hogy létezik olyan $F: T \to \mathbb{C}$ függvény, melyre minden z esetén F'(z) = f(z). Legyen A és B a tartomány két pontja. Ekkor

$$\int_{L} f(z) dz = F(B) - F(A)$$

minden olyan $L \subset T$ Jordan görbe mentén, melynek végpontjai A és B.

Cauchy-féle alaptétel

Tétel

(Cauchy-féle alaptétel vonalintegrálra) Legyen $T \subset \mathbb{C}$ egyszeresen összefüggő tartomány és ebben $G \subset T$ egy sima, zárt görbe. Tegyük fel hogy az $f: T \to \mathbb{C}$ függvény analitikus. Ekkor

$$\oint_C f(z) \, dz = 0$$

Tétel

(Cauchy-féle alaptétel általánosítása) Legyen adott egy $T \subset C$ összefüggő tartomány, melynek határa a $G \subset T$ görbe. Feltesszük, hogy T nem egyszeresen összefüggő, jelölje G_1, \ldots, G_n a lyukakat körbevevő görbéket, melyekről felteszszük, hogy ugyanolyan irányításúak, mint G. Legyen $f: T \to \mathbb{C}$ analitikus függvény. Ekkor

$$\oint_G f(z) dz = \sum_{k=1}^n \oint_{G_k} f(z) dz$$

Monoton függvények jellemzése. Magasabb rendű derivál-13A tak. L'Hopital szabály. (B)

Monoton függvények jellemzése

Tétel Adott $f: I \to \mathbb{R}$ függvény, ahol $I \subset \mathbb{R}$. Ekkor

f monoton növő akkor és csak akkor, ha $f'(x) \ge 0$, minden $x \in I$ -re,

f monoton fogyó akkor és csak akkor, ha $f'(x) \leq 0$, minden $x \in I$ -re.

Magasabb rendű deriváltak

Definíció Ha f' deriválható x_0 -ban, akkor ennek a deriváltja az eredeti f függvény második deriváltja

$$f''(x_0) = \frac{f'(x) - f'(x_0)}{x - x_0}$$

Hasonlóan, ha
$$f''$$
 is deriválható, akkor a *harmadik derivált*
$$f'''(x_0) = \frac{f''(x) - f''(x_0)}{x - x_0} = \frac{d^3f}{dx^3}$$

... és így tovább. Az n-ed rendű derivált jelölése:

$$f^{(n)} = \frac{d^n f}{dx^n}$$

L'Hopital szabály (B)

Legyenek f és g differenciálható függvények, melyekre **Tétel**

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$$

 $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$ Keressük a függvények hányadosának határértékét. Ekkor ha létezik a deriváltak hányadosának határértéke, akkor a keresett határérték is létezik, mégpedig

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \lim_{x \to x_0} \frac{f(x)}{g(x)}$$

Bizonyítás A tétel állítása miatt $f(x_0) = g(x_0) = 0$, azaz

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(x_0)}{g(x) - g(x_0)}$$

A Cauchy-féle középértéktétel szerint ekkor létezik egy $\xi \in (x, x_0)$, melyre

$$\frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(\xi)}{g'(\xi)}$$

Nyilvánvalóan

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \lim_{x \to x_0} \frac{f'(\xi)}{g'(\xi)} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \lim_{x \to x_0} \frac{f(x)}{g(x)} \blacksquare$$

Vektormező integrálja görbe mentén. Potenciálkeresés. Potenciál létezésének szükséges (B) és elégséges feltétele.

Vektormező integrálja görbe mentén

Legyen $\Gamma = \{\gamma(t): t \in [a, b]\}$ háromdimenziós Jordan görbe. Legyen továbbá F egy háromdimenziós vektormező $F: D \to \mathbb{R}^3$, ahol $D \subset \mathbb{R}^3$. F koordinátafüggvényeit jelölje $f_1, f_2, f_3: D \to \mathbb{R}$.

$$F(x, y, z) = \begin{bmatrix} f_1(x, y, z) \\ f_2(x, y, z) \\ f_3(x, y, z) \end{bmatrix}$$

Feltesszük, hogy F differenciálható D-ben. Feltesszük azt is, hogy $\Gamma \subset D$. Az egyszerűség kedvéért jelöljük \mathbb{R}^3 pontjait röviden: $\mathbf{r} = (x, y, z)$

A görbe mentén vett vonalintegrál jelölése

$$\int_{\Gamma} F(\boldsymbol{r}) d\boldsymbol{r}$$

Tétel (Vonalintegrál kiszámítása) A fenti jelölésekkel és feltételekkel

$$\int_{\Gamma} F(r) dr = \int_{a}^{b} \langle F(\gamma(t)), \dot{\gamma}(t) \rangle dt$$

ahol γ jelöli a γ függvény koordináták szerinti deriváltját.

Potenciálkeresés

Adott egy háromváltozós, valós értékű függvény $f: R \to \mathbb{R}$, $R \subset \mathbb{R}^3$. Ha a függvény differenciálható a tartományban, akkor gradiense vektormező: grad $f: R \to \mathbb{R}^3$. Ennek "fordítottja", hogy ha adott egy $F: R \to \mathbb{R}^3$ vektormező, akkor vajon létezik-e olyan $f: R \to \mathbb{R}$ differenciálható függvény, melyre $F = \operatorname{grad} f$.

Definíció Az F vektormező *potenciálos* (konzervatív), ha létezik f differenciálható skalárfüggvény, melyre F = grad f.

Potenciál létezésének szükséges (B) és elégséges feltétele (vonalintegrállal)

Tétel Adott az F vektormező egy $R \subset \mathbb{R}^3$ egyszeresen összefüggő tartományon. F-nek pontosan akkor létezik potenciálja, ha minden R-beli zárt görbe mentén az F vektormező vonalintegrálja 0.

Bizonyítás A bizonyítás során csak azt igazoljuk, hogy ha van potenciál, akkor tetszőleges zárt görbe mentén integrálva az integrál értéke nulla.

$$\int_{\Gamma} F(r) dr = \int_{a}^{b} \langle F(\gamma(t)), \dot{\gamma}(t) \rangle dt = \int_{a}^{b} \langle grad f(\gamma(t)), \dot{\gamma}(t) \rangle dt =$$

$$= \int_{a}^{b} \frac{d}{dt} f(\gamma(t)) dt = f(\gamma(b)) - f(\gamma(a))$$

Ha a görbe zárt, akkor ez azt jelenti, hogy a = b és így $\gamma(a) = \gamma(b)$, vagyis az integrál valóban nulla. \blacksquare

Egyváltozós valós függvény lokális szélsőértékének szükséges (B) ill. elégséges feltétele.

Lokális szélsőérték létezésének szükséges feltétele (B)

Tétel Legyen $f: X \to Y$ differenciálható függvény, és legyen f-nek x_0 -ban lokális szélsőértéke. Ekkor $f'(x_0) = 0$.

Bizonyítás Tegyük fel, hogy x_0 -ban mondjuk lokális maximum van. A derivált definíciója szerint:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

A lokális maximum tulajdonsága miatt létezik $U = (x_0 - \varepsilon, x_0 + \varepsilon)$ környezet, hogy ha $x \in U$, akkor $f(x) \le f(x_0)$. Így ha $x \in (x_0 - \varepsilon, x_0)$, vagyis $x < x_0$, akkor

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{\le 0}{< 0} \Rightarrow f'(x_0) \ge 0$$

Hasonlóan, ha $x \in (x_0, x_0 + \varepsilon)$, vagyis $x > x_0$, akkor

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{\le 0}{> 0} \Rightarrow f'(x_0) \le 0$$

A fentiekből következik, hogy $f'(x_0) = 0$. ■

Lokális szélsőérték létezésének elégséges feltétele

Tétel Ha az f függvény x_0 -ban kétszer differenciálható, és $f'(x_0) = 0$, azaz x_0 stacionárius pont, akkor:

- ha $f''(x_0) > 0$, akkor x_0 lokális minimum,
- ha $f''(x_0) < 0$, akkor x_0 lokális maximum,
- ha $f''(x_0) = 0$, akkor ebből nem eldönthető, vajon x_0 -ban szélsőértéke van-e.

14B Kétváltozós függvény felszínének kiszámítása.

Kétváltozós függvény felszínének kiszámítása

Legyen adott egy $F: R \to \mathbb{R}^2$ függvény, $R \subset \mathbb{R}^2$. Ennek felülete egy 3 dimenziós felület:

$$S = \{(x, y, f(x, y)) : (x, y) \in R\} \subset \mathbb{R}^3$$

Ennek nagysága a következőképp számolható:

$$A(S) = \iint_{R} \sqrt{1 + f_{x}^{\prime 2}(x, y) + f_{y}^{\prime 2}(x, y)} \ d(x, y)$$

Primitív függvény. Alaptulajdonságok. Konvex és konkáv 15A függvények, ezek jellemzése.

Primitív függvény

Definíció Legyen $f: I \to \mathbb{R}$, ahol $I \in \mathbb{R}$. Legyen $F: I \to \mathbb{R}$. Az F függvény az f függvény primitív függvénye, ha

$$F'(x) = f(x), \quad \forall x \in I$$

Alaptulajdonságok

Legyen $f: I \to \mathbb{R}$. f primitív függvényei a határozatlan integrál. Definíció

$$\int f(x) \, dx = \{ H : I \to \mathbb{R} \mid H'(x) = f(x) \} = \{ F + c : c \in \mathbb{R} \}$$

Tétel 1.)

$$\int (f+g)(x) dx = \int f(x) dx + \int g(x) dx$$
2.)

 $\int c \cdot f(x) \, dx = c \cdot \int f(x) \, dx$

3.)
$$\int f'(\varphi(x)) \cdot \varphi'(x) \, dx = f(\varphi(x)) + c$$

$$\int f^{\alpha}(x) \cdot f'(x) \, dx = \frac{f^{\alpha+1}(x)}{\alpha+1} + c$$

3/b)
$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$

$$\int f'(x) \cdot e^{f(x)} dx = e^{f(x)} + c$$

Konvex és konkáv függvények, ezek jellemzése

Az $f : [a, b] \to \mathbb{R}$ függvény *konvex*, ha minden $x_1, x_2 \in [a, b]$ esetén $f\left(\frac{x_1 + x_2}{2}\right) \le \frac{f(x_1) + f(x_2)}{2}$ Definíció

$$f\left(\frac{x_1+x_2}{2}\right) \le \frac{f(x_1)+f(x_2)}{2}$$

Az $f : [a, b] \to \mathbb{R}$ függvény *konkáv*, ha -f konvex. Definíció

Inflexió

Az $x_0 \in D_f$ inflexiós pont, ha itt az $f:D_f \to \mathbb{R}$ függvény konvexitása a pont Definíció előtt más mint a pont után, azaz ha f az

- $(x_0 \delta, x_0)$ -on konvex és $(x_0, x_0 + \delta)$ -on konkáv, vagy
- $(x_0 \delta, x_0)$ -on konkáv és $(x_0, x_0 + \delta)$ -on konvex.

Kapcsolat a deriválttal

Tétel Legyen f: [a, b] kétszer differenciálható függvény. Ekkor

- f konvex [a, b]- $n \Leftrightarrow f'$ monoton növő

- f konkáv [a, b]- $n \Leftrightarrow f'$ monoton csökkenő.

Tétel Legyen f kétszer differenciálható függvény x_0 -ban. Ekkor

- ha $f''(x_0) > 0$, akkor x_0 lokális minimum,

- ha $f''(x_0) < 0$, akkor x_0 lokális maximum,

- ha $f''(x_0) = 0$, akkor nem dönthető el, hogy van-e szélsőérték.

Tétel Legyen f kétszer differenciálható függvény x_0 -ban. Ekkor

- ha $f''(x_0) > 0$, akkor f konvex x_0 valamely környezetében,

- ha $f''(x_0) < 0$, akkor f konkáv x_0 valamely környezetében.

Állítás Legyen f háromszor differenciálható függvény x_0 -ban. Ekkor

- ha $f''(x_0) = 0$ és f'' előjelet vált x_0 -ban, akkor x_0 inflexiós pont,

- ha $f''(x_0) = 0$ és $f'''(x_0) \neq 0$, akkor x_0 inflexiós pont.

15B Kétváltozós függvény teljes differenciálhatósága adott pontban. Érintősík. Iránymenti derivált kiszámítása (B).

Kétváltozós függvény teljes differenciálhatósága adott pontban

Definíció Egy h(x) függvény kisordó 0-ban, ha

$$\lim_{x \to 0} \frac{h(x)}{x} = 0$$

Ezt úgy jelöljük, hogy h(x) = o(x).

Definíció Legyen $f: S \to \mathbb{R}$ kétváltozós függvény, és $(x,y) \in int(S)$. Azt mondjuk, hogy az f függvény differenciálható (x,y)-ban, ha léteznek olyan A,B,C számok, melyekre

$$f(x + \Delta x, y + \Delta y) = A\Delta x + B\Delta y + C + o\left(\sqrt{\Delta x^2 + \Delta y^2}\right)$$

teljesül elegendően kicsi Δx és Δy mellett, ahol A,B,C függetlenek Δx -től és Δy -tól.

Érintősík

A derivált geometriai jelentése is hasonló az egydimenziós esethez. Ha a függvény differenciálható egy pontban, akkor a pont közelében a függvény értékét az érintősík segítségével közelíthetjük. A sík megadásához megadjuk egy pontját – ez $(x_0, y_0, f(x_0, y_0))$ – és megadjuk a sík meredekségét, ami a két parciális derivált. Az érintősík egyenlete:

$$z = f(x_0, y_0) + f'_x(x_0, y_0)(x - x_0) + f'_y(x_0, y_0)(y - y_0)$$

Ezt átírva a megszokott alakba:

$$f_x'(x_0, y_0)(x - x_0) + f_y'(x_0, y_0)(y - y_0) + (-1)(z - z_0) = 0$$

ahol $z_0 = f(x_0, y_0)$. Ebből az egyenletből leolvasható, hogy a sík egyik normálvektora $\mathbf{n} = (f_x'(x_0, y_0), f_y'(x_0, y_0), -1)$

Iránymenti derivált kiszámítása (B)

Definíció Legyen $\alpha \in [0; 2\pi)$. Az α *irányú iránymenti deriváltat* így értelmezzük:

$$D_{\alpha}f(x,y) = \frac{\partial}{\partial \alpha}f(x,y) = \lim_{\rho \to 0} \frac{f(x + \rho \cos(\alpha), y + \rho \sin(\alpha)) - f(x,y)}{\rho}$$

ha ez a határérték létezik.

Definíció Adott egy $v \in \mathbb{R}^2$ irány, melyre $||v|| = \sqrt{v_1^2 + v_2^2} = 1$. A v iránymenti deriváltat egy (x, y) pontban így értelmezzük:

$$D_{v}f(x,y) = \lim_{\rho \to 0} \frac{f(x + \rho v_{1}, y + \rho v_{2}) - f(x,y)}{\rho}$$

ha ez a határérték létezik.

Állítás Tegyük fel, hogy az f függvény differenciálható (x,y)-ban. Ekkor itt létezik az iránymenti derivált tetszőleges $\alpha \in [0; 2\pi)$ esetén, és

$$D_{\alpha}f(x,y) = f_x'(x,y)\cos(\alpha) + f_y'(x,y)\sin(\alpha)$$

Bizonyítás A differenciálhatóság miatt

$$f(x + \rho \cos(\alpha), y + \rho \sin(\alpha)) =$$

$$= f(x, y) + f'_x(x, y)\rho \cos(\alpha) + f'_y(x, y)\rho \sin(\alpha) + o(|\rho|)$$

ha $|\rho|$ elegendően kicsi. Ebből következik, hogy

$$\frac{f(x+\rho\cos(\alpha),y+\rho\sin(\alpha))-f(x,y)}{\rho} =$$

$$= f'_x(x,y)\cos(\alpha) + f'_y(x,y)\sin(\alpha) + \frac{o(|\rho|)}{\rho}$$

melynek határértékeként az állítást kapjuk.

Riemann-integrál definíció. Elégséges feltételek integrálhatóságra. **Newton-Leibniz tétel.** (B)

Riemann-integrál definíció

Legyen az f függvény [a,b]-n értelmezett folytonos függvény. Az [a,b] intervallum egy felosztása $\mathcal{F}=\{x_0=a< x_1< \cdots < x_n=b\}$.

Definíció A felosztáshoz tartozó *alsó közelítő összeg*

$$s(\mathcal{F}) = \sum_{k=1}^{n} m_k (x_k - x_{k-1}) = \sum_{k=1}^{n} m_k \Delta x_k$$

ahol $m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\}$ és $\Delta x_k = x_k - x_{k-1}$

Definíció A felosztáshoz tartozó felső közelítő összeg

$$S(\mathcal{F}) = \sum_{k=1}^{n} M_k (x_k - x_{k-1}) = \sum_{k=1}^{n} M_k \Delta x_k$$

ahol $M_k = \sup\{f(x) : x \in [x_{k-1}, x_k]\}$ és $\Delta x_k = x_k - x_{k-1}$

Definíció Az \mathcal{F} felosztáshoz tartozó egyik *Riemann összeg*

$$\sigma(\mathcal{F}) = \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1}) = \sum_{k=1}^{n} f(\xi_k) \Delta x_k$$

ahol $\xi_k \in [x_{k-1}, x_k]$ tetszőleges és $\Delta x_k = x_k - x_{k-1}$

Definíció Az \mathcal{F} felosztássorozathoz tartozó *oszcillációs összeg*

$$o(\mathcal{F}) = \sum_{k=1}^{n} (M_k - m_k)(x_k - x_{k-1}) = \sum_{k=1}^{n} (M_k - m_k) \Delta x_k$$

Definíció Az \mathcal{F} felosztás *finomsága*

$$\delta(\mathcal{F}) = \max\{x_k - x_{k-1} : k = 1, ..., n\}$$

Definíció Legyen \mathbb{F} az összes lehetséges felosztás. Legyenek $s = \sup\{s(\mathcal{F}) : \mathcal{F} \in \mathbb{F}\}$ és $S = \inf\{S(\mathcal{F}) : \mathcal{F} \in \mathbb{F}\}.$

Ha s = S, akkor az $f : [a,b] \to \mathbb{R}$ korlátos függvényt *Riemann integrálhatónak* nevezzük. A függvény Riemann integrálja

$$\int_{a}^{b} f(x) \, dx = S = S$$

Megjegyzés Ahol $\delta(\mathcal{F}) \to 0$

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sigma(\mathcal{F}_n) = \lim_{n \to \infty} \sum_{k=1}^{n} f(\xi_k) \Delta x_k$$

Elégséges feltételek integrálhatóságra

Tétel $Ha \ f : [a,b] \to \mathbb{R} \ korlátos és monoton, akkor integrálható.$

Tétel $Ha f : [a, b] \to \mathbb{R}$ folytonos, akkor integrálható.

Tétel Legyen $f : [a, b] \to \mathbb{R}$ korlátos, mely véges sok szakadási helytől eltekintve folytonos. Ekkor f integrálható.

Newton-Leibniz tétel (B)

Tétel Legyen $f : [a, b] \to \mathbb{R}$ integrálható függvény. Tegyük fel, hogy létezik F primitív függvénye, $F'(x) = f(x) \ \forall x \in [a, b]$. Ekkor

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Bizonyítás Legyen $\mathcal{F}_n = \{a = x_0 < x_1 < \dots < x_n = b\}$ egy felosztás, és F primitív függvény egy rész-intervallumon: $F : [x_{k-1}, x_k] \to \mathbb{R}$.

A Lagrange-féle középérték-tétel miatt létezik $\xi_k \in [x_{k-1}, x_k]$, melyre

$$F'(\xi_k) = \frac{F(x_k) - F(x_{k-1})}{x_k - x_{k-1}} = f(\xi_k)$$

Tekintsük azt a Riemann-összeget, ahol

$$\sigma(\mathcal{F}_n) = \sum_{k=1}^n f(\xi_k)(x_k - x_{k-1}) = \sum_{k=1}^n \frac{F(x_k) - F(x_{k-1})}{x_k - x_{k-1}} (x_k - x_{k-1}) =$$

$$= \sum_{k=1}^n F(x_k) - F(x_{k-1}) = F(b) - F(a)$$

$$\int_a^b f(x) \, dx = \lim_{n \to \infty} \sigma(\mathcal{F}_n) = F(b) - F(a)$$

16B Fourier transzformáció. Alaptulajdonságok. Derivált függvény Fourier transzformáltja.(B)

Fourier transzformáció

Tegyük fel, hogy az $f: \mathbb{R} \to \mathbb{R}$ valós értékű függvény kielégíti az alábbi feltételeket:

- 1. Tetszőleges $I \subset \mathbb{R}$ véges intervallum esetén f leszűkítése az I intervallumra véges sok pontot kivéve folytonosan differenciálható.
- 2. Ha x_0 szakadási pont, akkor ez a szakadás elsőfajú, és itt a függvényérték

$$f(x_0) = \frac{f(x_0 + 0) + f(x_0 - 0)}{2}$$

3. A függvény abszolút integrálható, azaz

$$\int_{-\infty}^{\infty} |f(x)| \ dx < \infty$$

Definíció Ha f teljesíti a fenti feltételeket, akkor az f *Fourier transzformáltja* az az $\hat{f}: \mathbb{R} \to \mathbb{C}$ komplex értékű függvény, melyet így definiálunk:

$$\hat{f}(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-isx} dx$$

A Fourier transzformált jelölése $\mathcal{F}(f,s) = \hat{f}(s)$

Alaptulajdonságok

Tétel A Fourier transzformált alaptulajdonságai:

1. A hozzárendelés lineáris, azaz

$$\mathcal{F}(cf,s) = c\mathcal{F}(f,s), \qquad \mathcal{F}(f+g,s) = \mathcal{F}(f,s) + \mathcal{F}(g,s)$$

- 2. $\mathcal{F}(f)$ folytonos függvény
- 3. (Átskálázás)

$$\mathcal{F}(f(ax), s) = \frac{1}{a} \mathcal{F}\left(f(x), \frac{s}{a}\right), \quad ha \ a > 0$$

4. (Idő megfordítása)

$$\mathcal{F}(f(-x),s) = \mathcal{F}(f(x),-s)$$

5. (Idő eltolás)

$$\mathcal{F}(f(x-x_0),s)=e^{-ix_0s}\mathcal{F}(f(x),s)$$

6. (Frekvencia eltolás)

$$\mathcal{F}(e^{ikx}f(x),s) = \mathcal{F}(f(x),s-k)$$

Derivált függvény Fourier transzformáltja.(B)

Tétel *Ha*

$$\int_{-\infty}^{\infty} |f'(x)| \, dx < \infty$$

akkor

$$\mathcal{F}(f',s) = is\mathcal{F}(f,s)$$

Bizonyítás Parciálisan integrálva

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f'(x)e^{-isx} dx = \frac{1}{\sqrt{2\pi}} \left[f(x)e^{-isx} \right]_{-\infty}^{\infty} + \frac{is}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-isx} dx = is\mathcal{F}(f,s)$$

Megjegyzés Az időtartománybeli deriválás a frekvenciatartományban egy is tényezővel való szorzásnak felel meg.

17A Integrálfüggvény. Integrálszámítás II. alaptétele (B).

Integrálfüggvény

Definíció Legyen $f:[a,b] \to \mathbb{R}$ Riemann-integrálható. Az f függvény integrálfüggvénye $F:[a,b] \to \mathbb{R}$, ahol

$$F(x) = \int_{a}^{x} f(t) dt$$

Integrálszámítás II. alaptétele (B)

Tétel Az integrálfüggvény tulajdonságai:

- 1.) Folytonos [a, b]-n,
- 2.) ha f folytonos, akkor F differenciálható, és F'(x) = f(x).

Bizonyítás 1.) f korlátos: $|f(x)| \le K$. Az $x_0 \in (a, b)$, ekkor $F(x_0)$ folytonos-e?

$$F(x) - F(x_0) = \int_a^x f(t) dt - \int_a^{x_0} f(t) dt = \int_{x_0}^x f(t) dt$$

$$|F(x) - F(x_0)| = \left| \int_{x_0}^x f(t) \, dt \right| \le \int_{x_0}^x |f(t)| \, dt \le K|x - x_0|$$

A fentiekből következik, hogy $\lim_{x\to x_0} F(x) - F(x_0) = 0$, tehát F folytonos.

2.) Be kell látni a következőt:

$$\lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0} = f(x_0)$$

$$\left| \frac{F(x) - F(x_0) - f(x_0)(x - x_0)}{x - x_0} \right| = (*)$$

Ezt megbecsüljük. Legyen $\varepsilon > 0$ tetszőleges. $\exists \delta > 0$:

$$|x - x_0| \le \delta \Longrightarrow |f(x) - f(x_0)| \le \varepsilon$$

Ha $|x - x_0| \le \delta$, akkor a fenti kifejezésben:

$$(*) = \frac{\left| \int_{x_0}^{x} f(t) - f(x_0) \, dt \right|}{|x - x_0|} \le \frac{\varepsilon |x - x_0|}{|x - x_0|} = \varepsilon$$

17B Magasabb rendű homogén lineáris DE megoldásai. Állandó együtthatós HLDE alapmegoldásai (B). Karakterisztikus polinom.

Magasabb rendű homogén lineáris DE megoldásai

Tétel Az L[y] = 0 egyenletnek létezik n darab lineárisan független megoldása: $y_1, ..., y_n$. Továbbá tetszőleges y megoldás felírható ezek lineáris kombinációjaként: $y = c_1 y_1 + \cdots + c_n y_n$

Állandó együtthatós HLDE alapmegoldásai (B), karakterisztikus polinom

Tekintsük az $L[y] = y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = 0$ egyenletet, ahol $a_1, \dots, a_n \in \mathbb{R}$ adott valós számok. Speciális megoldásokat keresünk, melyek

$$y(x) = e^{\lambda x}$$

alakúak. Ekkor $y'(x) = \lambda \cdot e^{\lambda x} \dots y^{(n)}(x) = \lambda^n \cdot e^{\lambda n}$.

Ezeket visszahelyettesítve azt kapjuk, hogy

$$L[y] = e^{\lambda x}(\lambda^n + a_1\lambda^{n-1} + \dots + a_{n-1}\lambda + a_n) = 0$$

A jobboldalon álló függvény csak úgy lehet 0, hogyha a zárójelben szereplő polinom nulla.

Definiáljuk a differenciálegyenlethez tartozó karakterisztikus polinomot a következőképpen:

$$P(\lambda) = \lambda^n + a_1 \lambda^{n-1} + \dots + a_n$$

Ez egy valós együtthatós polinom, melynek a komplex számsíkon n darab gyöke van, multiplicitásokkal együtt.

Első eset

Tegyük fel, hogy $P(\lambda)$ gyökei valósak, és mind egyszeresek. Legyenek ezek $\lambda_1, ..., \lambda_n$. Ekkor fel tudjuk írni a homogén egyenlet n megoldását

$$y_1(x) = e^{\lambda_1 x}$$

$$y_2(x) = e^{\lambda_2 x}$$

$$\vdots$$

$$y_n(x) = e^{\lambda_n x}$$

és ezek lineárisan független rendszert alkotnak. Ekkor az általános megoldás:

$$y(x) = \sum_{k=1}^{n} c_k \cdot e^{\lambda_k x}, \qquad c_k \in \mathbb{R}$$

Második eset

Tegyük fel, hogy $P(\lambda)$ gyökei valósak, viszont van m darab k_m -szeres ($k_m=1,2...$) gyök. Legyen minden λ_m k_m -szeres gyöke a karakterisztikus polinomnak. Ekkor így tudjuk felírni a homogén egyenlet megoldásait:

$$y_{11}(x) = e^{\lambda_1 x}, \qquad y_{12}(x) = x \cdot e^{\lambda_1 x}, \qquad \dots, y_{1k_1} = x^{k_1 - 1} \cdot e^{\lambda_1 x}$$

$$\vdots$$

$$y_{m1}(x) = e^{\lambda_m x}, \qquad y_{m2}(x) = x \cdot e^{\lambda_m x}, \qquad \dots, y_{mk_m} = x^{k_m - 1} \cdot e^{\lambda_m x}$$

és ezek lineárisan független rendszert alkotnak. Ekkor az általános megoldás:

$$y(x) = \sum_{n=1}^{m} \sum_{l=1}^{k_n} c_{nl} \cdot x^{k_l - 1} \cdot e^{\lambda_n x}, \qquad c_k \in \mathbb{R}$$

Harmadik eset

Tekintsük azt az esetet, amikor a polinomnak komplex gyökei vannak. Ekkor ha $\lambda = \alpha + i\beta$ egy gyöke a karakterisztikus polinomnak, akkor konjugáltja, $\overline{\lambda} = \alpha - i\beta$ is gyök. Két alapmegoldást kapunk tehát:

$$u_1(x) = e^{\lambda x}, \qquad u_2(x) = e^{\overline{\lambda}x}$$

Mivel λ komplex szám, ezért ezek komplex függvények lesznek. Tudjuk, hogy ezek tetszőleges lineáris kombinációja ismét megoldás lesz. Keresünk olya lineáris kombinációt, amely valós értékű. Definiáljuk a következő alapmegoldásokat:

$$y_1(x) = \frac{u_1(x) + u_2(x)}{2} = e^{\alpha x} \cos(\beta x)$$

$$y_2(x) = \frac{u_1(x) - u_2(x)}{2i} = e^{\alpha x} \sin(\beta x)$$

Ezek a megoldások is – nyilvánvalóan – lineárisan függetlenek. Az általános megoldás ezek összege.

Negyedik eset

A negyedik eshetőség az, hogy többszörös komplex gyökök állnak elő. Ekkor a komplex gyököknél megismert módszert és a többszörös gyököknél megismert felírást ötvözve kell alkalmazni.

18A Helyettesítés integrálban. Parciális integrálás (B), alapesetek.

Helyettesítés integrálban

Tétel

A helyettesítési integrál alapformulája:

$$\int_{0}^{\infty} f(\phi(t)) \cdot \phi'(t) dt = \int_{0}^{\infty} f(x) dx \Big|_{x=\phi(t)}$$

ahol φ szigorúan monoton függvény.

Határozott alak

Tétel

Legyen $f:[a,b] \to \mathbb{R}$ integrálható függvény és $\phi:[\alpha,\beta] \to [a,b]$ szigorúan monoton, differenciálható függvény.

$$\phi(\alpha) = a, \qquad \phi(\beta) = b$$

Ekkor

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\phi(t)) \cdot \phi'(t) dt = \int_{\phi^{-1}(a)}^{\phi^{-1}(b)} f(\phi(t)) \cdot \phi'(t) dt$$

Parciális integrálás (B)

Tétel

Tegyük fel, hogy $f,g:[a,b] \to \mathbb{R}$ differenciálható függvények. Ekkor 1.) Határozatlan alak

$$\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx$$

2.) Határozott alak

$$\int_{a}^{b} f'(x)g(x) dx = f(x)g(x) \Big|_{a}^{b} - \int_{a}^{b} f(x)g'(x) dx$$

$$ahol f(x)g(x) \Big|_{a}^{b} = f(b)g(b) - f(a)g(a)$$

Bizonyítás Egyszerűen, a szorzatot deriválva:

$$(fg)' = f'g + fg'$$

Ez oldalanként kiintegrálva

$$\int_{a}^{b} f(x)g(x) dx = \left[f(x)g(x) \right]_{a}^{b}$$

A tagokat átrendezve

$$\int_a^b f'(x)g(x) dx = \left[f(x)g(x) \right]_a^b - \int_a^b f(x)g'(x) dx$$

Alapesetek

1. alapeset

$$\int polinom \cdot e^x dx$$

"Szereposztás": $f'(x) = e^x \text{ \'es } g(x) = \text{polinom}.$

2. alapeset

$$\int \operatorname{polinom} \cdot \begin{Bmatrix} \sin(x) \\ \cos(x) \end{Bmatrix} dx$$

"Szereposztás": $f'(x) = \begin{cases} \sin(x) \\ \cos(x) \end{cases}$ és g(x) = polinom.

3. alapeset

$$\int \text{polinom} \cdot \begin{cases} \ln(x) \\ \arcsin(x) \\ \arctan(x) \end{cases}$$

"Szereposztás": $f'(x) = \text{polinom \'es } g(x) = \left\{ \ln(x) \right\}$.

4. alapeset

$$\int e^x \cdot \begin{Bmatrix} \sin(x) \\ \cos(x) \end{Bmatrix}$$

"Szereposztás": $f'(x) = e^x$ és $g(x) = \begin{cases} \sin(x) \\ \cos(x) \end{cases}$.

18B Inverz Fourier transzformáció. Parseval egyenlőség.(B)

Inverz Fourier transzformáció

Tétel Tegyük fel, hogy f teljesíti az 1., 2., 3. feltételeket. Ekkor f előállítható Fourier transzformáltja segítségével:

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(s) e^{isx} ds$$

Ez az inverz Fourier transzformáció.

Parseval egyenlőség (B)

Tétel (Parseval egyenlet) Ha az 1., 2., 3. feltételek teljesülnek és a Fourier sor egyenletesen konvergens, akkor

$$\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |\hat{f}(s)|^2 ds$$

Bizonyítás A bizonyításban fel fogjuk használni mind a Fourier transzformáció, mind pedig az inverz Fourier transzformációt. Kiindulunk a fenti egyenlőség baloldalából, és az szorzat két f(x) tényezőjének egyikébe az inverz Fourier transzformáltat írjuk.

$$\int_{-\infty}^{\infty} f^2(x) \, dx = \int_{-\infty}^{\infty} f(x) \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(s) e^{isx} \, ds \, dx$$

Az egyenletes konvergencia miatt az integrálás sorrendje fölcserélhető:

$$\int_{-\infty}^{\infty} f^{2}(x) dx = \int_{-\infty}^{\infty} f(x) \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(s) e^{isx} ds dx = \int_{-\infty}^{\infty} \hat{f}(s) \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{isx} dx ds =$$

$$= \int_{-\infty}^{\infty} \hat{f}(s) \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-isx} dx ds = \int_{-\infty}^{\infty} \hat{f}(s) \overline{\hat{f}(s)} ds = \int_{-\infty}^{\infty} |\hat{f}(s)|^{2} ds$$

$$\text{mivel } \overline{\hat{f}(s)} = \hat{f}(-s). \blacksquare$$

19A Integrál középértéktétel (B). Valós függvény gráfjának hossza. Forgástest térfogata.

Integrál középérték tétel (B)

Tétel Tegyük fel, hogy az $f \in \mathcal{R}[a,b]$ függvény folytonos. Ekkor $\exists \xi \in [a,b]$, melyre

$$f(\xi) = \frac{\int_a^b f(x) \, dx}{b - a}$$

Bizonyítás A Weierstrass II. tétel szerint $\exists \xi_1, \xi_2 \in [a, b]$, melyekre $f(\xi_1) = m$, $f(\xi_2) = M$ ahol m a függvény minimuma, M a függvény maximuma. Mivel $m \le \kappa \le M$, ezért a Bolzano tétel miatt $\exists \xi \in (\xi_1, \xi_2)$, melyre $f(\xi) = \kappa$.

Függvény gráfjának hossza

Definíció Az y = f(x) és y = g(x) görbék és az x = a és x = b egyenesek közti terület nagysága:

$$A = \int_a^b f(x) \ dx - \int_a^b g(x) \ dx$$

Feltéve, hogy $f(x) \ge g(x), \forall x \in [a, b]$

Ívhossz

Tétel Legyen $f:[a,b] \to \mathbb{R}$ differenciálható függvény. A függvény gráfjának hossza ekkor

$$s = \int_a^b \sqrt{1 + \left(f'(t)\right)^2} \, dt$$

Forgástest térfogata

Állítás Tegyük fel, hogy $f : [a, b] \to \mathbb{R}$ differenciálható. Ekkor a forgástest térfogata:

$$V = \pi \int_{a}^{b} f^{2}(x) \, dx$$

19B Magasabb rendű inhomogén lineáris DE-k megoldásai. Állandók variálása. Próbafüggvény

Magasabb rendű inhomogén lineáris DE-k megoldásai

Az inhomogén lineáris differenciálegyenletek esetében a már definiált L[y] = f(x) egyenlet megoldását keressük, $f(x) \neq 0$.

Tétel $Ha y_1 \'es y_2 megold\'asai az$

$$y^{(n)}(x) + a_1(x)y^{(n-1)}(x) + \dots + a_n(x)y(x) = f(x)$$

inhomogén egyenletnek, akkor $y=y_1-y_2$ a homogén egyenlet megoldása. Ha y_1 a homogén, az y_2 pedig az inhomogén egyenlet megoldásai, akkor $y=y_1+y_2$ szintén megoldása az inhomogén egyenletnek.

Állandók variálása

Legyen az L[y] = 0 homogén egyenlet n darab lineárisan független megoldása $y_1, ..., y_n$. Az inhomogén egyenlet egyetlen megoldását keressük a következő alakban:

$$y(x) = \gamma_1(x)y_1(x) + \dots + \gamma_n(x)y_n(x)$$

A fenti megoldásban szereplő függvényekre az alábbi feltételeket tesszük:

$$\gamma'_{1}y_{1} + \dots + \gamma'_{n}y_{n} = 0$$

$$\gamma'_{1}y'_{1} + \dots + \gamma'_{n}y'_{n} = 0$$

$$\vdots$$

$$\gamma'_{1}y_{1}^{(n-2)} + \dots + \gamma'_{n}y_{n}^{(n-2)} = 0$$

$$\gamma'_{1}y_{1}^{(n-1)} + \dots + \gamma'_{n}y_{n}^{(n-1)} = f(x)$$

Így az együtthatók deriváltjaira adott n darab egyenlet. A fenti egyenletrendszert kompakt formában úgy írhatjuk fel, hogy a baloldalon az alapmegoldások Wronski mátrixa szerepel megszorozva a γ deriváltak oszlopvektorával, a jobboldalon pedig a $[0,0,0,...,f(x)]^T$ oszlopvektor áll:

$$\begin{bmatrix} y_1 & y_2 & \cdots & y_n \\ y'_1 & y'_2 & \cdots & y'_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{bmatrix} \begin{bmatrix} \gamma'_1 \\ \gamma'_2 \\ \vdots \\ \gamma'_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ f(x) \end{bmatrix}$$

Mivel ezek az alapmegoldások lineárisan függetlenek, ezért ez a mátrix nem szinguláris, tehát a fenti egyenletrendszer mindig megoldható.

Állítás Ha a fenti feltételek teljesülnek, akkor L[y] = f(x).

Megjegyzendő, hogy az állandók variálásának módszere akkor is használható, ha a lineáris differenciálegyenlet együtthatói nem konstansok, hanem adott, folytonos függvények.

Próbafüggvény

Az állandók variálása módszer ugyan minden esetben alkalmazható, de speciális jobboldal esetén, ha állandó együtthatós lineáris differenciálegyenletet tekintünk, érdemes az inhomogén egyenlet megoldását speciális alakban keresni. A megoldandó egyenlet:

$$L[y] = y^{(n)}(x) + a_1(x)y^{(n-1)}(x) + \dots + a_n(x)y(x) = f(x)$$

- Ha $f(x) = Ke^{\alpha x}$, ahol $\alpha \in \mathbb{R}$, akkor a megoldást $y(x) = Ae^{\alpha x}$ alakban keressük. A ismeretlen.
- Ha $f(x) = a_m x^m + \dots + a_1 x + a_0$, akkor a megoldást $y(x) = A_m x^m + \dots + A_0$ alakban keressük, ahol A_k -k az ismeretlen paraméterek.
- Ha $f(x) = K \sin(\alpha x)$ vagy $f(x) = K \cos(\alpha x)$, akkor a megoldást mindkét esetben $y(x) = A \sin(\alpha x) + B \cos(\beta x)$ alakban keressük, ahol A és B az ismeretlen paraméterek.

Ha f(x) ezen speciális függvények összege, akkor a próbafüggvényt is összegként keressük.

Definíció Ha a homogén differenciálegyenlet alapmegoldásai között létezik olyan függvény, mint ami a differenciálegyenlet jobboldalán szerepel, akkor *rezonanciáról* beszélünk.

Majoráns és minoráns kritériumok valós improprius integrálokra. Az $f(x) = x^{-\alpha}$ hatvány-függvény integrálja (0,1]-ben ill. $[1,\infty)$ -ben. (B)

Majoráns és minoráns kritériumok valós improprius integrálokra.

Tétel (Majoráns kritérium) Legyen $f, g: I \to \mathbb{R}$, és $I = (\alpha, \beta)$. Tegyük fel, hogy $|f(x)| \le |g(x)| \ \forall x \in I$. Ekkor ha létezik az

$$\int_{\alpha}^{\beta} g(x) \, dx$$

integrál (és véges) akkor

$$\int_{\alpha}^{\beta} f(x) \ dx$$

is véges.

Tétel (Minoráns kritérium) Legyen $f, g: I \to \mathbb{R}$, és $I = (\alpha, \beta)$. Tegyük fel, hogy $|g(x)| \le |f(x)| \ \forall x \in I$. Ekkor, ha

$$\int_{\alpha}^{\beta} g(x) \ dx = \infty$$

akkor

$$\int_{\alpha}^{\beta} f(x) \ dx = \infty$$

Hatványfüggvény improprius integrálja (0,1)-ben (B)

Adott I = (0,1) véges intervallum, és $f: I \to \mathbb{R}$ nem korlátos függvény: $f(x) = \frac{1}{x^{\alpha}}$

$$\int_0^1 \frac{1}{x^{\alpha}} dx = ?, \qquad \alpha > 0$$

Ha létezik az improprius integrál, akkor az így számolható:

$$\int_0^1 \frac{1}{x^{\alpha}} dx = \lim_{\varepsilon \to 0+} \int_{\varepsilon}^1 \frac{1}{x^{\alpha}} dx$$

A primitív függvény

$$\int \frac{1}{x^{\alpha}} dx = \begin{cases} \ln|x|, & \alpha = 1\\ \frac{x^{1-\alpha}}{1-\alpha}, & \alpha \neq 1 \end{cases}$$

Vizsgáljuk meg az érdekes eseteket, amikor $\alpha = 1$ és $\alpha \neq 1$!

1.) Ha $\alpha = 1$, akkor

$$\int_0^1 \frac{1}{x} dx = \lim_{\varepsilon \to 0+} \left[\ln(x) \right]_0^1 = \lim_{\varepsilon \to 0+} \left(\underbrace{\widehat{\ln(1)}}_{-} - \underbrace{\widehat{\ln(\varepsilon)}}_{-} \right) = +\infty$$

2.) Ha $\alpha \neq 1$, akkor

$$\int_0^1 \frac{1}{x^{\alpha}} dx = \frac{1}{1 - \alpha} \left[x^{1 - \alpha} \right]_0^1 = \frac{1}{1 - \alpha} \cdot \lim_{\varepsilon \to 0} (1 - \varepsilon^{1 - \alpha}) = \begin{cases} \frac{1}{1 - \alpha}, & 1 - \alpha > 0 \\ + \infty, & 1 - \alpha < 0 \end{cases}$$

Összefoglalva:

$$\int_0^1 \frac{1}{x^{\alpha}} dx = \begin{cases} \frac{1}{1-\alpha}, & \alpha < 1 \\ +\infty, & \alpha \ge 1 \end{cases}$$

Hatványfüggvény improprius integrálja $(1,\infty)$ -ben (B)

Adott $I = (1, \infty)$ intervallum, és $f: I \to \mathbb{R}$ nem korlátos függvény: $f(x) = \frac{1}{x^{\alpha}}$

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx = ?, \qquad \alpha > 0$$

Ha létezik az improprius integrál, akkor az így számolható:

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x^{\alpha}} dx$$

A primitív függvény

$$\int \frac{1}{x^{\alpha}} dx = \begin{cases} \ln|x|, & \alpha = 1\\ \frac{x^{1-\alpha}}{1-\alpha}, & \alpha \neq 1 \end{cases}$$

Vizsgáljuk meg az érdekes eseteket, amikor $\alpha = 1$ és $\alpha \neq 1$!

1.) Ha $\alpha = 1$, akkor

$$\int_{1}^{\infty} \frac{1}{x} dx = \lim_{b \to \infty} \left[\ln(x) \right]_{1}^{b} = \lim_{b \to \infty} \left(\underbrace{\widehat{\ln(b)}}_{-} - \underbrace{\widehat{\ln(1)}}_{-} \right) = +\infty$$

2.) Ha $\alpha \neq 1$, akkor

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx = \frac{1}{1 - \alpha} \left[x^{1 - \alpha} \right]_{1}^{\infty} = \frac{1}{1 - \alpha} \cdot \lim_{b \to \infty} (b^{1 - \alpha} - 1) = \begin{cases} +\infty, & 1 - \alpha > 0 \\ -1, & 1 - \alpha < 0 \end{cases}$$

Összefoglalva:

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx = \begin{cases} +\infty, & \alpha \le 1 \\ -1, & \alpha > 1 \end{cases}$$

20B Komplex függvény differenciálhatósága. Cauchy-Riemann egyenletek. (B)

Komplex függvény differenciálhatósága

Adott egy $T \subset \mathbb{C}$ tartomány és ezen egy $f: T \to \mathbb{C}$ komplex függvény. Legyen f kanonikus alakja f(z) = u(x, y) + i v(x, y). Tegyük fel, hogy u és v folytonosan differenciálható függvények, azaz léteznek u'_x, u'_y, v'_x, x'_y parciális deriváltak és folytonosak.

Definíció Legyen z_0 az f értelmezési tartományának egy belső pontja. f differenciálható z_0 -ban, ha létezik és véges a következő határérték:

$$\lim_{h\to 0} \frac{f(z_0+h) - f(z_0)}{h}$$

Cauchy-Riemann egyenletek (B)

Tétel

(Alaptétel a komplex függvény differenciálhatóságáról) Legyen $T \subset \mathbb{C}$ tartomány, $f: T \to \mathbb{C}$, $z_0 \in \operatorname{int} T$. Tegyük fel, hogy u és v folytonosan differenciálható függvények. Ekkor f differenciálhatósága a $z_0 = x_0 + iy_0$ pontban azzal ekvivalens, hogy az u és v kétváltozós függvények kielégítik az alábbi összefüggéseket:

$$u'_{x}(x_{0}, y_{0}) = v'_{y}(x_{0}, y_{0})$$

$$u'_{y}(x_{0}, y_{0}) = -v'_{x}(x_{0}, y_{0})$$

Az utolsó két egyenletet Cauchy-Riemann egyenleteknek nevezzük.

Bizonyítás

1. rész. Tegyük fel, hogy f differenciálható z_0 -ban. Ekkor a derivált definíciójában szereplő határérték létezik speciális irányokból is. Legyen h=r+is és legyen elsőként s=0 és $r\to 0$. Ekkor

$$f'(z_0) = \lim_{r \to 0} \frac{u(x_0 + r, y_0) + iv(x_0 + r, y_0) - u(x_0, y_0) - iv(x_0, y_0)}{r} =$$

$$= \lim_{r \to 0} \frac{u(x_0 + r, y_0) - u(x_0, y_0)}{r} + i\lim_{r \to 0} \frac{v(x_0 + r, y_0) - v(x_0, y_0)}{r} =$$

$$= u'_x(x_0, y_0) + iv'(x_0, y_0)$$

Most tegyük fel, hogy r = 0 és $s \to 0$. Ekkor az előzőhöz hasonlóan:

$$f'(z_0) = \lim_{s \to 0} \frac{u(x_0, y_0 + s) - u(x_0, y_0)}{is} + i \lim_{s \to 0} \frac{v(x_0, y_0 + s) - v(x_0, y_0)}{is} =$$
$$= -iu_v'(x_0, y_0) + v_v'(x_0, y_0)$$

Mivel a kétoldali határértékeknek egyenlőknek kell lenniük, ezért

$$u_x'(x_0, y_0) + iv_x'(x_0, y_0) = -iu_y'(x_0, y_0) + v_y'(x_0, y_0)$$

Két komplex szám egyenlősége ekvivalens azzal, hogy valós és képzetes részeik egyenlők, ebből pedig következnek a Cauchy-Riemann egyenletek. ■

Bizonyítás 2. rész. Tegyük fel, hogy a Cauchy-Riemann egyenletek teljesülnek. Számoljuk ki a differenciahányadost:

$$\frac{f(z_0+h)-f(z_0)}{h} = \frac{u(x_0+r,y_0+s)+iv(x_0+r,y_0+s)-u(x_0,y_0)-v(x_0,y_0)}{r+is}$$

Felhasználva u és v deriválhatóságát, ez így folytatható (a deriváltak argumentumát az átláthatóság kedvéért elhagyva):

$$\frac{f(z_0 + h) - f(z_0)}{h} = \frac{u'_x r + u'_y s + i v'_x r + i v'_y s}{r + i s} + \frac{\varepsilon_1(|h|)}{r + i s} + \frac{\varepsilon_2(|h|)}{r + i s} =$$

$$= u'_x + i v'_x + \frac{\varepsilon_1(|h|)}{r + i s} + \frac{\varepsilon_2(|h|)}{r + i s}$$

Ezért

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = u_x'(x_0, y_0) + iv_x'(x_0, y_0)$$

tehát a határérték létezik.

21A Szeparábilis differenciálegyenlet megoldása (B).

Szeparábilis differenciálegyenlet

Tegyük fel, hogy f(x, y)-ban szétválasztható x és y:

$$f(x,y) = \frac{\alpha(x)}{\beta(y)}, \quad \beta \neq 0$$

Ekkor a differenciálegyenlet:

$$y' = \frac{\alpha(x)}{\beta(y)}$$

alakú. Ez a szeparábilis vagy szétválasztható változójú differenciálegyenlet.

Megoldása (B)

Formális megoldás

$$y' = y'(x)$$

$$\frac{dy}{dx} = \frac{\alpha(x)}{\beta(y)}$$

$$\beta(y) dy = \alpha(x) dx$$

$$B(y) = \int \beta(y) dy, \qquad A(x) = \int \alpha(x) dx$$

Könnyen látható, hogy ha y = y(x) megoldás, akkor B(y) = A(x) + c. Ebből y meghatározható.

Nem formálisan

$$y'(x) = \frac{\alpha(x)}{\beta(y(x))}$$
$$\beta(y(x))y'(x) = \alpha(x)$$

Vegyük mindkét oldal határozatlan integrálját:

$$\int \beta(y(x))y'(x) dx = \int \alpha(x) dx$$

A jobboldal ismert, legyen az egyik primitív függvény:

$$A(x) = \int \alpha(x) \, dx$$

A baloldalon y = y(x) új változót bevezetve az integrál átírható, és ennek primitív függvénye

$$\int \beta(y) \, dy = B(y)$$

Ekkor a differenciálegyenlet megoldása B(y(x)) = A(x) + c. Ebből y(x) meghatározható, például $y(x) = B^{-1}(A(x) + c)$.

Feltételes szélsőérték kétváltozós függvényre (feladat kitűzése). Lagrange-féle multiplikátor szabály.

Feltételes szélsőérték, feladat megfogalmazása

Minta feladat: Legyen adott \mathbb{R}^2 -ben egy $\phi(x, y) = 0$ görbe. Határozzuk meg, hogy a görbe mely pontja van az origóhoz legközelebb. Ez azt jelenti, hogy meg kell határozni a

$$min(x^2 + y^2)$$

értéket, ahol x és y változók nem függetlenek, hanem fennáll a $\phi(x,y)=0$ összefüggés.

Definíció A *feltételes optimalizálás feladatát* a következőképpen értelmezzük. Legyen adott az $f: S \to \mathbb{R}$ kétváltozós differenciálható függvény. Ennek tekintjük megszorítását egy olyan halmazon, melyet egy implicit függvény ad meg, ahol $\phi(x,y) = 0$ összefüggés teljesül. Tömören a feladat tehát

$$\min_{\{(x,y):\phi(x,y)=0\}} f(x,y)$$

Tétel (Szükséges feltétel) Tegyük fel, hogy az f(x,y) függvény differenciálható, és feltételes szélsőértéke van az (x_0,y_0) pontban a $\phi(x,y)=0$ feltétel mellett. Tegyük fel, hogy grad $\phi(x,y)\neq(0,0)$. Ekkor létezik olyan $\lambda_0\in\mathbb{R}$ konstans, mely-

$$f_x'(x_0, y_0) - \lambda_0 \phi_x'(x_0, y_0) = 0$$

$$f_y'(x_0, y_0) - \lambda_0 \phi_y'(x_0, y_0) = 0$$

Lagrange-féle multiplikátor szabály

Definiáljuk az $F(x, y, \lambda) = f(x, y) - \lambda \phi(x, y)$, $F: D_f \times \mathbb{R} \to \mathbb{R}$ háromváltozós függvényt. Ha (x_0, y_0) megoldása a feltételes szélsőérték feladatnak, akkor van olyan λ_0 , melyre (x_0, y_0, λ_0) stacionárius pontja $F(x, y, \lambda)$ -nak.

Tekintsük az alábbi feltételes optimalizálási feladatot

$$\min_{\{\phi(x,y)=0\}} f(x,y) \qquad \text{vagy} \qquad \max_{\{\phi(x,y)=0\}} f(x,y)$$

Ehelyett tekinthetjük az

$$F(x, y, \lambda) = f(x, y) - \lambda \phi(x, y), \quad (x, y) \in D_f, \lambda \in \mathbb{R}$$

függvény feltétel nélküli szélsőérték feladatát.

22A Homogén lineáris (elsőrendű) DE megoldása.(B) Inhomogén LDE egyenlet megoldása.

Homogén LDE megoldása (B)

Ha $b(x) \equiv 0$, akkor a differenciálegyenlet homogén lineáris.

Állítás

A homogén lináris differenciálegyenlet általános megoldása

$$v(x) = ce^{A(x)}, c \in \mathbb{R}$$

ahol

$$A(x) = \int a(x) \, dx$$

az a függvény primitív függvénye.

Bizonyítás Az általános alak y' = a(x)y. Ez szeparábilis, tehát

$$\frac{dy}{dx} = a(x)y$$

$$\int \frac{1}{y} dy = \int a(x) dx$$

$$\ln|y| = A(x) + c$$

$$e^{\ln(y)} = e^{A(x) + c}$$

$$y = e^{A(x)}e^{c} = c^*e^{A(x)}$$

Inhomogén LDE megoldása

Ha $b(x) \not\equiv 0$, akkor a differenciálegyenlet inhomogén lineáris.

Tétel Inhomogén LDE minden megoldása fölírható $y = y_p + y_h$ alakban.

Tétel Az inhomogén lineáris differenciálegyenlet általános megoldása

$$y(x) = e^{A(x)} \left(c + \underbrace{\int b(x) e^{-A(x)} dx} \right)$$

ahol az első tag a homogén egyenletrész általános megoldása, a második tag az inhomogén egyenlet egy konkrét megoldása.

Cauchy-féle integrálformula. Taylor sorfejtés analitikus függvényre. Laurent sorfejtés. Zérus és pólus.

Cauchy-féle integrálformula

Tétel

(Cauchy-féle integrálformula) Legyen $T \subset \mathbb{C}$ egszeresen összefüggő tartomány, és $f: T \to \mathbb{C}$ analitikus függvény. ξ legyen tetszőleges belső pont T-ben. Legyen $G \subset T$ olyan zárt görbe, amelynek belseje is T-ben van, és a görbe körbeveszi ξ -t. Ekkor

$$f(\xi) = \frac{1}{2\pi i} \oint_G \frac{f(z)}{z - \xi} dz$$

Taylor sorfejtés analitikus függvényre

Tétel Legyen $f: T \to \mathbb{C}$ differenciálható z_0 egy környezetében. Ekkor ott Taylor sorba fejthető, és

$$f(z) = f(z_0) + \sum_{n=1}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

ahol

$$c_n = \frac{1}{2\pi i} \oint_G \frac{f(z)}{(z - z_0)^{n+1}} dz$$

Tegyük fel, hogy f analitikus és $f(z_0) = 0$. Ekkor egy $(z - z_0)$ tényező kiemelhető, és

$$f(z) = (z - z_0)\widetilde{f}(z)$$

alakban írható, ahol \tilde{f} analitikus.

Laurent sorfejtés

Tétel Tegyük fel, hogy f analitikus egy körgyűrűben, azaz egy

$$T = \{z : r < |z - z_0| < R\}$$

halmazon. Ekkor f ebben a körgyűrűben felírható a következő hatványsorként:

$$f(z) = \sum_{k=-\infty}^{\infty} c_k (z - z_0)^k$$

ahol

$$c_k = \frac{1}{2\pi i} \oint_G \frac{f(z)}{(z - z_0)^{k+1}} dz$$

és G egy olyan z_0 -t körbevevő zárt görbe, amely a fenti T tartomány része. Ez az ún. Laurent-sor.

Zérus és pólus

Definíció Ha $f(z) = (z - z_0)^n \tilde{f}(z)$, $\tilde{f}(z_0) \neq 0$ valamely $n \geq 1$ egész számra, akkor azt mondjuk, hogy z_0 n-szeres (vagy n-ed rendű) zérusa f-nek.

Tétel $Ha\ z_0\ az\ f\ analitikus\ függvény\ zérusa,\ akkor\ két\ eset\ lehetséges.$

1. Van z_0 -nak olyan környezete, ahol f(z) = 0 minden z-re.

2. Van z_0 -nak olyan környezete, ahol $f(z) \neq 0$ minden $z \neq z_0$ -ra.

Definíció Tegyük fel, hogy

$$f(z) = \frac{1}{(z - z_0)^n} h(z)$$

alakban írható, ahol h(z) a z_0 egy környezetében olyan analitikus függvény, melyre $h(z_0) \neq 0$. Azt mondjuk, hogy z_0 n-szeres p'olusa f-nek.

Valós függvény Taylor sora. Elemi függvények Taylor sora: e^x , $\sin(x)$, $\cos(x)$, (B)

Taylor sor

A hatványsorok a konvergencia halmaz belsejében:

- folytonosak
- differenciálhatók
- összeadhatók, skalárszorozhatók
- összeszorzás NEM lehetséges

Legyen $f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n$ és $x \in \mathcal{H} x_0$ körüli hatványsor.

$$\gamma = \lim_{n \to \infty} \sqrt[n]{|c_n|} = \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| \Rightarrow \sqrt[n]{\rho} = \frac{1}{\gamma}$$

Ekkor f akárhányszor differenciálható, éspedig

$$f^{(k)}(x) = \sum_{n=k}^{\infty} n \cdot (n-1) \cdot \dots \cdot (n-k+1) \cdot c_n \cdot (x-x_0)^{n-k}$$

 $|x - x_0| < \rho$ esetén.

Fordítva:

Adott f függvény előállítható-e hatványsor alakban? Ha x_0 körül előáll, akkor

$$f:(x_0-\rho;x_0+\rho)\to\mathbb{R}\equiv(c_n)\subset\mathbb{R}$$

Definíció Az f függvény *analitikus* x_0 -*ban*, ha $\exists (c_n)$ számsorozat, hogy

$$f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n$$
, $|x - x_0| < \rho$

Állítás Ha létezik hatványsor-előállítás, akkor az egyértelmű.

Következmény

Az analitikus függvények egyértelműen előállíthatók hatványsorral ≡ Taylor sor. A

$$T(x) := \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} \cdot (x - x_0)^k$$

alakú sor az f függvény x_0 középpontú Taylor sora. A nem analitikus függvények hatványsora csak közelítés.

Elemi függvények Taylor sora: e^x , sin(x), cos(x) (B)

Állítás $Az f(x) = e^x f \ddot{u} g y \acute{e} n y T a y lor sora$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \qquad x \in \mathbb{R}$$

Bizonyítás $f^{(n)}(x) = e^x$. Ezért $x_0 = 0$ választással $f^{(n)}(0) = 1$, $\forall n$ mellett.

Állítás $Az f(x) = \sin(x) f \ddot{u} g g v \acute{e} n y x_0 = 0 k \ddot{o} r \ddot{u} li Taylor sora$

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \cdot x^{2n+1}, \qquad x \in \mathbb{R}$$

Páratlan függvény, így Taylor sorában csak páratlan számok szerepelnek.

Bizonyítás A definíció alapján számoljuk ki a deriváltakat:

$$\sin^{(k)}(x) = \begin{cases} 1 & \text{ha } k = 4n + 1 \\ -1 & \text{ha } k = 4n + 3 \\ 0 & \text{ha } k = 2n \end{cases}$$

A konvergencia halmaz \mathbb{R} , mert a deriváltak egyenletesen korlátosak:

$$\left|\sin^{(k)}(x)\right| \le 1, \qquad k = 1, 2, \dots x \in \mathbb{R}$$

Állítás

 $Az f(x) = \cos(x)$ függvény $x_0 = 0$ körüli Taylor sora

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \cdot x^{2n}, \qquad x \in \mathbb{R}$$

Páros függvény, így Taylor sorában csak páros számok szerepelnek.

23B Láncszabály többváltozós függvényekre. Speciális esetek.

Láncszabály, speciális esetek

1. speciális eset

A külső függvény egyváltozós $f: D \to \mathbb{R}, D \subset \mathbb{R}$

Az egy darab belső függvény kétváltozós $\phi: S \to \mathbb{R}, S \subset \mathbb{R}^2$

Tétel

(1. speciális eset) Tegyük fel, hogy ϕ differenciálható az $(x,y) \in \text{int}(S)$ pontban, és f differenciálható az $u = \phi(x,y)$ pontban. Ekkor az összetett függvény is differenciálható és a parciális deriváltak:

$$F_x'(x,y) = f'(\phi(x,y))\phi_x'(x,y)$$

$$F_y'(x,y) = f'(\phi(x,y))\phi_y'(x,y)$$

2. speciális eset

A külső függvény kétváltozós $f: S \to \mathbb{R}, S \subset \mathbb{R}^2$

A két darab belső függvény egyváltozós $\phi, \psi: D \to \mathbb{R}, D \subset \mathbb{R}$

Tétel

(2. speciális eset) Tegyük fel, hogy ϕ és ψ differenciálhatóak a $t \in \text{int}(D)$ pontban, és f differenciálható az $(x,y) = (\phi(t), \psi(t))$ pontban. Ekkor az összetett függvény is differenciálható, és deriváltja:

$$F'(t) = f_x'(\phi(t), \psi(t))\phi'(t) + f_y'(\phi(t), \psi(t))\psi'(t)$$

3. speciális eset

A külső függvény kétváltozós $f: S \to \mathbb{R}, S \subset \mathbb{R}^2$

A két darab belső függvény kétváltozós $\phi, \psi: D \to \mathbb{R}, D \subset \mathbb{R}$

Tétel

(Láncszabály) Tegyük fel, hogy ϕ, ψ differenciálhatók (x,y)-ban, és f is differenciálható az $(u,v) = (\phi(x,y), \psi(x,y))$ pontban. Ekkor F is differenciálható (x,y)-ban, és parciális deriváltjai:

$$F'_{x}(x,y) = f'_{u}(\phi(x,y), \psi(x,y))\phi'_{x}(x,y) + f'_{v}(\phi(x,y), \psi(x,y))\psi'_{x}(x,y)$$

$$F_y'(x,y) = f_u'\big(\phi(x,y),\psi(x,y)\big)\phi_y'(x,y) + f_v'\big(\phi(x,y),\psi(x,y)\big)\psi_y'(x,y)$$

Jegyzetek

Félév végi eredmények Matematikai analízisből

		kredit	érdemjegy
Analízis	Matematikai analízis I.	6	
tantárgyak	Matematikai analízis II.	7	
érdemjegyei	Összesen	13	
	Érdemjegyek kreditértékkel súlyozott átlaga:		

A Matematika szigorlat tárgyra való jelentkezés előfeltétele, hogy a hallgató rendelkezzen az alábbi tárgyakból elégségesnél jobb osztályzattal:

Matematikai analízis I. Matematikai analízis II.

Lineáris algebra I. Lineáris algebra II.

Diszkrét matematika I. Diszkrét matematika II.

Amennyiben a tárgyak kreditértékkel súlyozott jegyátlaga a 4,0-t eléri vagy meghaladja, a hallgató (kérése alapján) mentesül a szigorlat írásbeli részének teljesítése alól.