

Diego Bertolini

diegobertolini@utfpr.edu.br
http://www.inf.ufpr.br/diegob/

Aula 011

- Aula Anterior:
 - Aprendizagem não supervisionado
- Aula de Hoje:
 - Medidas de desempenho

Objetivo

O que vocês devem saber ao final da aula:

Conceitos básicos de medidas de desempenho.

Problema 1

Reconhecimento de dígitos:

A base que passei pra vocês tem 10 classes e cada classe possui 100 amostras (lebalanceada). A acurácia pode ser uma boa medida de desempenho.

Medida de Desempenho

Acurácia (accuracy):

- A mais simples e intuitiva das medidas;
- Consiste na taxa obtida pela divisão entre o número de amostras corretamente classificadas pelo sistema pelo número total de amostras classificadas;
- Entretanto, se o número de amostras por classe for desbalanceado, essa taxa pode apresentar um resultado distorcido;

Problema 2: COVID

COVID

Normal

Amostra: 100 pacientes;

9 Positivos;

91 Negativos.

	Covid Positivo	Covid Negativo
Covid Positivo	1	1
Covid Negativo	8	90

Problema 2: COVID

	Covid Positivo	Covid Negativo
Covid Positivo	1	1
Covid Negativo	8	90

Acurácia???

91%

Nosso modelo é bom???

Recall e Precision

Problema com duas classes

- p classe positiva
- n classe negativa

Introdução

- Uma amostra Positiva ser classificada como Positiva, contabiliza-se então uma amostra Verdadeira Positiva.
 (True Positives - TP).
- Uma amostra Positiva sendo classificada como Negativa, será contada como Falso Negativo. (False Negatives -FN).
- Uma amostra Negativa sendo classificada como Negativa, é contada como Verdadeiro Negativo. (True Negatives - TN).
- Por fim, para uma amostra Negativa sendo classificada como Positiva, é contada como Falso Positivo. (False Positives - FP)

Introdução

Problema com duas classes

- p classe positiva
- n classe negativa

$tp\ rate \approx$	Positives correctly classified
	Total positives

 $fp \; rate \approx \frac{\text{Negatives incorrectly classified}}{\text{Total negatives}}$

		True class			
	p n				
Hypothesized class	Υ	True Positives	False Positives		
	N	False Negatives	True Negatives		

fp rate =
$$\frac{FP}{N}$$
 tp rate = $\frac{TP}{P}$

precision =
$$\frac{TP}{TP+FP}$$
 recall = $\frac{TP}{P}$
accuracy = $\frac{TP+TN}{P+N}$

Precision x Recall

PRECISION (precisão)

Dentre os **previstos** como positivo, qual a proporção de acerto?

 Deixar passar um vídeo para criança que contém conteúdo adulto ? Alta precisão

RECALL (Sensibilidade)

Dentre os positivos **reais**, qual a proporção de acerto ?

Diminuir a quantidade de FN

Dizer que a pessoa não tem a doença e ela realmente tem.

Recall x Precision

TP	FP
FN	PN

	Covid Positivo	Covid Negativo
Covid Positivo	1	1
Covid Negativo	8	90

fp rate =
$$\frac{FP}{N}$$
 tp rate = $\frac{TP}{P}$

precision = $\frac{TP}{TP+FP}$ recall = $\frac{TP}{P}$

accuracy = $\frac{TP+TN}{P+N}$

Precision =
$$1/(1+1) = 0.5$$

Recall =
$$1/(1+8) = 0.11$$

F-measure

Covid Negativo

A medida que combina precisão e revocação é a média harmónica de precisão e revocação, a tradicional F-measure ou F-score balanceada:

90

$$F_i = 2 \frac{\text{Re } call_i \cdot \text{Pr } ecision_i}{\text{Re } call_i + \text{Pr } ecision_i}$$

	Covid Positivo	Covid Negativo
Covid Positivo	1	1

8

Precision =
$$1/(1+1) = 0.5$$

Recall =
$$1/(1+8) = 0.11$$

$$F$$
-measure = 0.1803

ROC (Receiver Operating Characteristics)

- Curva ROC é uma técnica para a visualização e a seleção de classificadores baseado no seu desempenho
- A Curva ROC tem sido bastante usada pela comunidade de Aprendizagem de Máquina "Pois, em geral, avaliar apenas a taxa de acerto de um classificador é uma métrica muito simples"
- A Curva ROC é bastante útil no trato com domínios cujas classes estejam desbalanceadas e que possuam custos de classificação diferentes por classe

Um classificador atribui um objeto a uma das categorias ou classes pré-definidas ;

Exemplos:

Uma assinatura pode ser genuína ou falsa;

A leitura do valor do cheque pode ser efetuada de forma correta ou incorreta;

Uma transação de cartão de crédito pode ser aprovada ou negada;

Um teste médico pode dar um parecer positivo ou negativo.

Todos os problemas de classificação podem ser reduzidos para problemas com duas classes.

ROC (Receiver Operating Characteristics)

- Curva ROC é uma técnica para a visualização e a seleção de classificadores baseado no seu desempenho
- A Curva ROC tem sido bastante usada pela comunidade de Aprendizagem de Máquina "Pois, em geral, avaliar apenas a taxa de acerto de um classificador é uma métrica muito simples"
- A Curva ROC é bastante útil no trato com domínios cujas classes estejam desbalanceadas e que possuam custos de classificação diferentes por classe

Performance de um Classificador

Saída

Contínua: Uma estimativa da classe do padrão avaliado

*Nesse caso, diferentes *thresholds* podem ser usados para predizer a classe

Discreta

Informa o rótulo da classe

Introdução

Medidas escalares

Taxa de Acerto (Accuracy)

Área sobre a curva ROC (AUC)

Técnicas de Visualização

Curvas ROC

Por que não escalares?

Um escalar não conta toda a história

Existem dois números em jogo (FP e TP). Quando apenas um número é usado, informação preciosa pode ser descartada.

Como está o comportamento do erro nas classes?

Como o classificador se comportará em diferentes ambientes?

O que se quer é identificar ?? Sobre quais condições um é melhor do que o outro

Por que visualizar?

Curvas são mais informativas do que um simples número Informações contidas na curva

Todos os possíveis custos de erro de classificação;

Sobre quais condições C1 supera C2

Curva ROC

É um gráfico bidimensional no qual **tp rate** é colocada no eixo Y e **fp rate** é colocada no eixo X

Curva ROC

Curva ROC

Inst#		Class	Scor	e	Inst#		Class	Score	
	1	p	.9			11	p	.4	
	2	p	.8			12	n	.39	
	3	n	.7			13	p	.38	
	4	p	.6			14	n	.37	
	5	p	.55			15	n	.36	
	6	р	.54			16	n	.35	
	7	n	.53	ĺ		17	p	.34	
	8	n	.52			18	n	.33	
	9	р	.51			19	p	.30	
	10	n	.505			20	n	.1	

Área abaixo da curva ROC

AUC

Para comparar classificadores é desejável reduzir a curva ROC a um simples escalar ;

Um método é calcular a área sobre a curva ROC;

Qual classificador é melhor?

Resumindo....

A curva ROC é uma ferramenta bastante útil para visualização e avaliação de classificadores

Medida de desempenho baseada em escalares não devem ser usadas se o custo e a distribuição das classes não são completamente conhecidas, ou podem variar com o tempo e o ambiente

Bibliografia e Materiais.

Estes slides foram adaptados do artigo:

Tom Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, Vol. 27, No. 8., pp. 861-874, 2006.

Adaptado das Aulas do Professor: George Cavalcanti – UFPE;