Entrepreneurship, Labor Market Mobility and the Role of Entrepreneurial Insurance

Alexandre GAILLARD* & Sumudu Kankanamge*

*Toulouse School of Economics

 \approx 30 minutes

Overview

- Entrepreneurship is risky
 - exit rate is high (22 26% per year),
 - entrepreneurial earnings are right skewed distributed and
 - ▶ are much more volatile than for wage earnings
- Risk is a barrier that affect the quantity of entrepreneurs
 - Risk perception and business creation (Arenius and Minniti, 2005),
 - ▶ Bankruptcy regulation plays a crucial role (Mankart & Rodano, 2015)

Overview

- Entrepreneurship is risky
 - exit rate is high (22 26% per year),
 - entrepreneurial earnings are right skewed distributed and
 - are much more volatile than for wage earnings
- Risk is a barrier that affect the quantity of entrepreneurs
 - Risk perception and business creation (Arenius and Minniti, 2005),
 - ▶ Bankruptcy regulation plays a crucial role (Mankart & Rodano, 2015)

Research questions:

- How occupational mobility, entrepreneurial risk, skills and wealth interact?
- We have better insuring entrepreneurial risk affect occupational choice and entrepreneur's quality?
- 3 How it compares to a basic start-up subsidy?

Outline

- We build a GE occupational choice model that accounts for
 - heterogeneous agents (ability, wealth)
 - risky entrepreneurship (persistent business shock)
 - ► labor market frictions
- We match key features of occupational flows and entrepreneurship
 - replicate occupational flows as observed in CPS
 - ▶ infer (unobservable) entrepreneurial ability using occupational flows
 - replicate wealth and income distributions as observed in SCF
- What is the effect of providing a (partial) insurance / a start-up subsidy to unemployment individuals starting a business?

UI and entrepreneurship in US

Current Unemployment Insurance (UI) system:

 In almost every US states, UI benefits are lost when starting a business.

Ex: Pennsylvania Unemployment Compensation Law:

"a claimant is ineligible for any week in which he/she is engaged in self-employment. When a claimant is starting a new business, the claimant becomes self-employed with the first positive step toward starting the business."

- create a bias for paid-employment rather than self-employment.
 - unemployed individuals are more likely to search for a job

Motivation: the European experiments

Recent policies that extend UI toward entrepreneurship:

- France: "PARE" reform implemented in 2002 guarantees UI provision to (new entrepreneurs) previously unemployed.
 - ▶ Hombert et al. (2017): no effect on the pool of entrepreneurs
- Germany: "Bridging Allowance" implemented in 1985, similar to the French reform.
 - empirical study: Caliendo and Künn (2011): new entrepreneurs were more qualified and run larger firms.

This paper: theoretical model where we can assess impacts of such policy on occupational choices and the pool of entrepreneurs.

Related literature

- Modelling entrepreneurship
 - ► Entrepreneurs are heterogenous: abiliy (Lucas, 1978), wealth (Quadrini, 2002), risk aversion (Herranz et al., 2014)
 - Financial frictions: Cagetti & De Nardi (2006), Buera & Shin (2013), Mankart & Rodano (2015)
 - ▶ Labor market transitions: Poschke (2009) and Visschers et al. (2014)
- Entrepreneurship and insurance policy
 - ▶ Entrepreneurial insurance: Fairlie et al. (2011), Caliendo and Künn (2011), Hombert et al. (2014), Ejrnæs and Hochguertel (2014)
 - ▶ Bankruptcy law: Mankart & Rodano (2015).

Model

Two sectors: a corporate sector populated by workers and an entrepreneurial sector.

Households

- common heterogeneity: innate ability θ , wealth a.
- can be employed (W), unemployed (U) or self-employed (E)
- can be insured (j = i) or not (j = n)
- can access the credit market (e = A) or be excluded (e = C), depending on previous bankruptcy decision.

Government:

- Baseline model: runs a standard UI program.
- Policy experiment: also implement DRI and SUS policies

Model: Workers

- can search a business idea *on-the-job* with intensity s_e and find it at rate $\pi_e(s_e)$.
- can be laid-off with probability $\eta(\theta)$
- labor income: combines innate ability (θ) and transitory shock (y)
- pay tax τ_w on his labor income $w\theta y$ to finance UI benefits.

$$\begin{split} W(\mathbf{x_w}) &= \max_{c,a',s_e} u(c,s_e) + \beta \mathbb{E}_{\mathbf{x_w'}|\mathbf{x_w}} \Big\{ (1-\eta) \big[(1-\pi_e) W' + \pi_e \max\{E',W'\} \big] \\ &+ \eta \big[(1-\pi_e) U_i' + \pi_e \max\{E',U_i'\} \big] \Big\} \\ \text{s.t.} \qquad c &= (1-\tau_w) w \theta y + (1+r^d) a - a' \end{split}$$

Model: Unemployed individuals

- ullet Can search for a job and a business idea with effort s_w and s_e
- Find job with probability $\pi_w(s_w)$ and business idea with $\pi_e(s_e)$.
- Receive home production endowment *m*.
- If insured (j = i): receive UI benefits $b(\theta) = \mu \theta w$ and lose rights with probability ρ .

$$\begin{split} U(\mathbf{x_u}) &= \max_{c,a',s_w,s_e} u(c,s_w,s_e) + \beta \mathbb{E}_{\mathbf{x_u'}|\mathbf{x_u}} \Big\{ \pi_w \big[(1-\pi_e) W' + \pi_e \max\{E',W'\} \big] \\ &+ (1-\pi_w) \big[(1-\pi_e) U' + \pi_e \max\{E',U'\} \big] \Big\} \end{split}$$
 s.t. $c = m + \mathbb{1}_{\{j=i\}} (1-\tau_w) b(\theta) + (1+r^d) a - a'$

Model: Entrepreneur program

- Can search a job on-the-business with intensity s_w
- Face persistent business shock z and choose capital invested k (can use wealth or borrow) before z is realized.
- Borrowing rate $r^b(\Delta)$ is determined endogenously.
 - repayment: repay $(1 + r^b(\Delta))$ loan and can pursue his activity.
 - **b** bankruptcy: firm liquidation and debt renegociation. Entrepreneur recover $(1 \xi)k$ and is temporarily credit excluded.
- Production function: $f(k, \theta, z) = zg(\theta)(k)^{\nu}$, where $g(\theta)$ maps θ into entrepreneurial ability.

Parameterisation

Objective: capture the main facts concerning $\underline{\text{occupational flows}}$ and entrepreneurship.

Table: Targeted moments (time is a quarter)

Moment		Target			Model	
Unemployment rate (%)		5.0			5.06	
Entrepreneurship rate (%)		8.5			8.5	
Entrepreneur's exit rate (%)		6			5.8	
Ratio of net worth E/W		8.0			8.04	
Capital used by entrepreneurs (%)		30			29.7	
% of entrepreneurs with neg. earnings (%)		3			3.3	
EL 14/1 E.L 11/1 1 (0/)	Q1	Q2	Q 3	Q1	Q2	Q 3
Flows W to E by quantiles / avg rate (%)		0.87	1.07	1.08	0.87	1.07

The U-shaped curve in the transition W - E \rightarrow provides a mapping between working and entrepreneurial abilities.

Results: Non targeted statistics

Statistic	Data	Model
Necessity share* (%)	12-13	10
New entrepreneurs previously unemployed (%)	20	21
Median ratio ent. net worth to whole pop.	6.57	6.42
Median ratio workers over ent. income	1.65	1.61
Median debt to income ratio	0.5	0.75
Fraction total ent. wealth (%)	30	32.6
std deviation log E's income / log W's income	2 - 4	2.5

*Necessity share: when $W(\mathbf{x_w}) > E(\mathbf{x_e}) > U(\mathbf{x_u})$

Results: search behavior

Occupational flows depend on individuals' <u>ability</u> and <u>wealth</u> through search efforts.

- Financial frictions: crucial role in the business search effort intensity.
- Disincentive to search increases in wealth.

Results: transition between occupations

	W	E	U	
W	97.5 (97.6)	0.5 (0.5)	2.1 (1.9)	
Ε	97.5 (97.6) 5.2 (5.2) 44.2 (43.1)	94.2 (93.9)	0.5 (0.8)	
U	44.2 (43.1)	2.4 (2.4)	53.4 (54.5)	

Table: Generated quarterly flows between occupations. Data counterparts between braces using CPS from 2001 to 2008.

- Only W to U and entrepreneur's exit rate (6%) are targetted. Most entrepreneurs switch endogeneously to paid-employment.
- Within transitions by ability level are also close to their data counterparts.

Results: entrepreneurial earnings

Figure: Distribution of normalized entrepreneurial earnings (ratio of wage plus business income to the median) .

Right skewed distribution consistent with actual entrepreneurial risk.

Policy experiment

In the spirit of French PARE program: insure new entrepreneurs previously insured unemployed (with UI rights).

- Partial Downside Risk Insurance (DRI)
 - **1 Keeping UI rights:** in case of failure, preserve their UI rights when returning to the unemployment pool.
 - **2** Compensation $b_e(\theta, \pi_r)$ that guarantees at least UI benefits in case of low entrepreneurial income π_r .
- Start-Up Subsidy (SUS)
 - additional amount of wealth S provided to the new entrepreneur

Policy: DRI

Characterized by **duration** q and insurance **replacement rate** f

$$b_e(\theta, \pi_r) = \begin{cases} b(\theta) & \text{if} & \pi_r < 0 \\ b(\theta) - (1 - f)\pi_r & \text{if} & 0 \le \pi_r \le \frac{b(\theta)}{1 - f} & \text{with} & b(\theta) = (1 - \tau_w)h(\theta)w\mu \\ 0 & \text{if} & \pi_r > \frac{b(\theta)}{1 - f} \end{cases}$$

Figure: DRI policy. Red: f = 0, Orange f = 0.3, Grey: f = 0.45, White: $f \rightarrow 1$.

(i) full benefits if $\pi_r < 0$, (ii) full UI if $0 < \pi_r < b(\theta)$, (iii) "subsidy" if $b(\theta) < \pi_r < \frac{b(\theta)}{1-f}$

Results: policy experiments

- Standard implementation for DRI is (f, q) = (0.3, 0.5)
 - q is set to match US UI duration
 - ightharpoonup f is set to the value adopted in France. We conduct robustness on this,
- To make DRI and SUS comparable, the subsidy amount S is adjusted to generate the same share of entrepreneurs between the two policies.

Results: policy experiments

	DRI (% deviation)	SUS (% deviation)
prob. $U \to E$	10	18
Ent. exit rate	1.64	3.76
unemp. rate	-0.07	-0.43
New ent. per year	2.5	4.4
Ent. sector production	0.9	0.6
Tax rate $ au_w$ Ratio cost/GDP	2.5 0.0032	1.8 0.0026

Table: Effects on mobility and aggregates of the two policies, expressed as % deviation from the baseline economy.

- Large mobility effects on unemployed individuals.
- DRI policy is slightly more expensive tax wise (but similar over production),

Results: policy experiments - quality of entrepreneurs

% of entrepreneurs	θ_1	θ_2	θ_3
Baseline	11.60	7.55	7.24
DRI	+0.66	+1.11	+1.38
SUS	+1.30	+0.98	+0.66

Table: Percent increase (relative to the baseline economy) in the share of entrepreneurs by ability groups under different reforms.

- Resorbing the bias due to the UI system favours skilled groups.
 - ► High-skilled: high opportunity cost of abandoning their UI rights.
 - ▶ low-skilled:, on average, are too financially constrained to run businesses even under DRI (not the case with SUS).

Results: policy experiments - performance

5 years average	Baseline	Counterfactual		Selected	
		DRI	SUS	DRI	SUS
$g(\theta)$ (skill)	0.079	0.079	0.079	0.084	0.075
Wealth	12.64	12.71	12.68	9.94	8.11
Production	0.952	0.954	0.954	0.944	0.691
Production growth (in %)	2.83	3.02	2.41	2.41	2.1
Survival rate at 5 years (in %)	32.09	32.21	32.06	15.20	20.81

Table: Performance and quality of entrepreneurs. *Notes:* all values are an average over 5 years, except for the survival rate at 5 years.

- **Counterfactual:** people entering entrepreneurship even without DRI in baseline.
- Selected: only people entering entrepreneurship because of the policies

Results: policy experiments - insurance components

	Baseline	DRI	No compensation	f = 0
% of entrepreneurs prob. $U \rightarrow E$ (in %)	8.5	1.01	0.42	0.97
	2.3	9.7	7.1	9.3
Tax rate τ_w (in %)	0.91	2.53	0.11	2.53
Ratio cost/GDP		0.017	0	0.017

Table: DRI effects under three different assumptions in % deviation from baseline.

- No compensation: only offered the possibility to return to unemployment and claim UI,
 - ▶ impact is still important, resorb part of the bias towards employment.
- ullet ${f f}={f 0}$: no subsidy part in DRI, no compensation above initial UI.
 - ▶ plays a small role, results are close to the full DRI experiment.

Results: What else?

- We compute transitional dynamics,
- We compute welfare gains both at steady state and with transitions:
 both policies are implementable welfare wise,
- We conduct robustness and consider alternative policy specifications concerning bankruptcy, shocks, risk aversion, etc.

Conclusion

- GE theoretical framework with occupational choice, which accounts for heterogeneity in wealth and ability.
- Occupational flows are realistic and close to their data counterparts.
- 3 Downside Risk Insurance for unemployed workers
 - ▶ Helps resorb the bias of the current UI system,
 - ▶ Increases the fraction of unemployed starting a business by 10%,
 - ▶ Benefits to high-skilled and richer individuals as compared to SUS.

Results: transition flows by educational attainment

Figure: Transition flows by educational attainment for self-employed (dashed line), self-employed business owners (solid black line) and model (red) using θ .

Program of the entrepreneur non-excluded return

$$R(a, k, \theta, z, j) = \max_{c, a', s_w} u(c, s_w, 0) + \beta \mathbb{E}_{\theta', y', j'} \Big\{ \pi_w \max\{W', E'_{j'}\} + (1 - \pi_w) \max\{U'_{j'}, E'_{j'}\} | \theta, j \Big\}$$
(1)

s.t.
$$\pi_r^A = zg(\theta)(k)^{\nu} - \delta k - r^b(\Delta)(k - a)\mathbb{1}_{\{k \ge a\}}$$
 (2)
 $c + a' = \pi_r^A + \mathbb{1}_{\{i = i\}} b_e(\theta, \pi_r^A) + a + r^d(a - k)\mathbb{1}_{\{k \le a\}}$ (3)

$$B(a,k,\theta,z,j) = \max_{c,a',s_w} u(c,s_w,0) + \beta \mathbb{E}_{\theta',y',j'} \left\{ \pi_w W' + (1-\pi_w) U'_{j'} \mid \theta,j \right\}$$
(4)

s.t.
$$\pi_r = zg(\theta)(k)^{\nu} - \delta k$$
 (5)

$$c + a' = \max\{(1 - \chi)k + \pi_r - \xi(k - a), 0\} + \mathbb{1}_{\{j = i\}}b_e(\theta, \pi_r)$$
 (6)

$$E(a, \theta, z_{-1}, e = A, j) = \max_{k} \left\{ \sum_{z \in \mathcal{Z}} \pi_{z}(z|z_{-1}) \max\{B(a, k, \theta, z, j), R(a, k, \theta, z, j)\} \right\}$$
(7)

s.t.
$$(k-a) \le \lambda a$$
 (8)