CS 480/680 Introduction to Machine Learning

Lecture 2 Linear Regression and Loss Function Design

Kathryn Simone 12 September 2024

Last lecture: The perceptron algorithm learns a hyperplane to classify linearly separable data

In regression, the goal is to predict continuous values

How can we learn in this setting?

- 1. Expand on our idea of "mistake" to deviation from ideal behavior
- 2. Select or design a loss function
- 3. Find the parameters that minimize the loss function

Lecture Aims

At the end of the lecture, we should be able to:

- ★ Write code to solve a simple regression problem numerically, given a dataset.
- Characterize and design loss functions using correct terminology and sound mathematical principles.
- ★ Adhere to best practices for model evaluation and iterative improvement.

Lecture Outline

- I. What's the basic process for solving regression?

 Models, loss functions, and empirical risk minimization
- II. What should one consider in loss function design?

 Designing for optimization, stability, and generalization
- III. How do you evaluate model performance iteratively?

 Overfitting, data splits, and cross validation
- IV. Summary + Housekeeping

Lecture Outline

- I. What's the basic process for solving regression?
 Models, loss functions, and empirical risk minimization
- II. What should one consider in loss function design?

 Designing for optimization, stability and generalization
- III. How do you evaluate model performance iteratively?

 Overfitting, data splits, and cross validation
- IV. Summary + Housekeeping

The Regression Problem

Given: $(\vec{x}_1, y_1), ...(\vec{x}_k, y_k), \vec{x}_i \in \mathbb{R}^d, y \in \mathbb{R}$ Goal: Learn $h : \mathbb{R}^d \to \mathbb{R}$ that best approximates relationship between variables.

Statistical (Batch) vs. Online Learning

Online Learning:

- Learner has access to a data stream
- Prediction is made before knowing its true value
- Interested in minimizing the number of errors

Batch Learning:

- Given a training set $(\vec{x_1}, y_1), (\vec{x_2}, y_2), ... (\vec{x_k}, y_k) \sim_{i.i.d} P$, where
 - -i.i.d: independently and identically distributed
 - P: some unknown distribution
- Goal: learn $h: \mathbb{R}^d \to \{\pm 1\}$ such that $\Pr_{(x,y)\sim P}[h(x)=y]$ to be large.

Restating the regression problem

Batch Learning:

- Given a training set $(\vec{x_1}, y_1), (\vec{x_2}, y_2), ... (\vec{x_k}, y_k) \sim_{i.i.d} P$, where
 - -i.i.d: independently and identically distributed
 - -P: some unknown distribution
- Goal: learn $h: \mathbb{R}^d \to \{\pm 1\}$ such that $\Pr_{(x,y)\sim P}[h(x)=y]$ to be large.
- (Classification) learn $h: \mathbb{R}^d \to \{\pm 1\}$
 - (Regression) learn $h: \mathbb{R}^d \to \mathbb{R}$

 $E_{(x,y)\sim P}[l_w(x,y)]$ is small

Empirical Risk Minimization:

$$\operatorname{argmin}_{w} \frac{1}{n} \sum_{i=1}^{n} l_{w}(\vec{x}_{i}, y_{i})$$

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} l_w(\vec{x}_i, y_i) = \operatorname{argmin}_w E_{(x,y) \sim P}[l_w(\boldsymbol{X}, \boldsymbol{y})]$$

Restating the regression problem

Batch Learning, Restated:

- Given: A training set $(\vec{x_1}, y_1), (\vec{x_2}, y_2), ... (\vec{x_k}, y_k) \sim_{i.i.d} P$, and loss function $l_w(x, y)$
- Goal: $\operatorname{argmin}_{w} \frac{1}{n} \sum_{i=1}^{n} l_{w}(\vec{x}_{i}, y_{i})$

The loss function defines your performance objective

Select loss function of

$$l_w(x_i, y_i) = (h(x_i) - y_i)^2$$

Where:

 $h(x_i)$: output predicted by the model given the feature vector x_i , and y_i : is the true output

Then the expected loss is given by:

$$E[l_w] = \frac{1}{n} \sum_{i=1}^n \gamma_i^2$$

Where $\gamma_i = h(x_i) - y_i$ is the residual for sample (x_i, y_i)

The linear regression predictor hypothesis class

If we assume a model of the form y = mx + b, where m, b are parameters. Then

$$E[l_w] = \sum_{i=1}^{n} \gamma_i^2$$

$$= \sum_{i=1}^{n} (h(x_i) - y_i)^2$$

$$= \sum_{i=1}^{n} (\langle (m, b), (x_i, 1) \rangle - y_i)^2$$

$$= \sum_{i=1}^{n} (\langle w, x_i' \rangle - y_i)^2$$

How to minimize the loss? Brute force search suggests a unique set of parameters

The loss function surface and the gradient

Interlude: Calculus Review

Derivative:

Let $f(x): \mathbb{R} \to \mathbb{R}$ be a scalar-valued function of one variable. Then

$$f'(x) = \frac{df}{dx} : \mathbb{R} \to \mathbb{R}$$
, is the derivative of $f(x)$

Example:
$$f(x) = x^2 + 3x + 5$$
, then $f'(x) = 2x + 3$

Gradient:

Let $f(\vec{x}) : \mathbb{R}^d \to \mathbb{R}$ be a scalar-valued function of a d-vector. Then

$$\nabla f(\vec{x}) = (\frac{\partial f}{\partial x_1}, ... \frac{\partial f}{\partial x_d}) : \mathbb{R}^d \to \mathbb{R}^d$$
, is the gradient of $f(\vec{x})$

Example:
$$f(\vec{x}) = 2x_1 + 3x_2 + 5x_3$$
, then $\nabla f(\vec{x}) = (2, 3, 5)$

Interlude: Calculus Review (Continued)

Hessian:

Let $f(\vec{x}): \mathbb{R}^d \to \mathbb{R}$ be a scalar-valued function of a d-vector. Then

 $\nabla^2 f(\vec{x}) : \mathbb{R}^d \to \mathbb{R}^{d \times d}$, is the Hessian of $f(\vec{x})$

$$\nabla^2 f(\vec{x}) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_d \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_d^2} \end{bmatrix}$$

Example:
$$f(x) = 3x_1^2 + 2x_1x_2 + 5x_2^2$$
, then $\nabla^2 f(\vec{x}) = \begin{pmatrix} 6 & 2 \\ 2 & 10 \end{pmatrix}$

Equivalent notation for loss

Let A, $\mathbb{R}^{n \times (d+1)}$, be a matrix of the padded feature vectors in the training dataset,

$$A = \left[egin{array}{cccc} -& x_1' & - \ -& x_2' & - \ dots & dots \ -& x_n' & - \ \end{array}
ight]$$

and z, $\mathbb{R}^{n\times 1}$, be a matrix of the outputs of the training dataset,

$$z = \left[\begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_n \end{array} \right]$$

then we can construct a loss matrix, L, $\mathbb{R}^{n\times 1}$ as

$$L = ||Aw - z||_2^2$$

How to find the solution? Leveraging the gradient of the loss function

We are interested in the gradient of the loss with respect to the parameters w, that is $\nabla_w L$

$$\nabla_w L = \nabla_w ||Aw - z||_2^2$$

$$= \nabla_w (Aw - z)^T (Aw - z)$$

$$= \nabla_w \left[w^T A^T Aw - 2z^T Aw + z^T z \right]$$

$$= 2A^T Aw - 2A^T z$$

The expression for the loss can be rearranged to solve for the parameters where the gradient is zero:

$$2A^{T}Aw - 2A^{T}z = 0$$
$$2A^{T}Aw = 2A^{T}z$$
$$w = (A^{T}A)^{-1}A^{T}z$$

Practical issues with minimizing the loss function

- A^TA might not be invertible
- A^TA can be computationally intensive
- Could be imprecise if ill-conditioned
- Could also solve system of linear equations with gaussian elimination

Summary of our process to solve the regression problem

Define Performance

Select a Model

Estimate Parameters

Specified a loss function in the statistical learning setting using empirical risk minimization. Linear:

$$y = mx + b$$

Generalizes to:

$$y = \langle (m,b), (x,1) \rangle$$

Used brute force to find a high-performing solution (low loss)

Computed gradient and determined parameters where it is zero.

Lecture Outline

- I. What's the basic process for solving regression?

 Models, loss functions, and empirical risk minimization
- II. What should one consider in loss function design?

 Designing for optimization, stability and generalization
- III. How do you evaluate model performance iteratively?

 Overfitting, data splits, and cross validation
- IV. Summary + Housekeeping

Can we be sure that the minimum is a global minimum?

Definition: A function is convex <u>iff</u> it satisfies Jensen's Inequality

Jensen's Inequality: $f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$

If a function is convex, its second derivative is strictly positive

For
$$x \in \mathbb{R}$$
: $f''(x) \ge 0 \,\forall x$
For $x \in \mathbb{R}^d$: $\nabla^2 f(x) \ge 0$
 $\implies v^T H v \ge 0$
(Hessian is positive semidefinite)

Convex functions are straightforward to optimize

Fermat's condition:

If x is a local extremum of f, then $\nabla f(x) = 0$

If f is convex, the converse is also true:

 $\nabla f(x) = 0 \implies \text{global extremum}$

Is the least-squares loss convex?

Recall that the least-squares loss was defined as:

$$L = ||Aw - z||_2^2$$

$$\nabla_w L = 2A^T A w - 2A^T z$$

$$\nabla_w^2 L = 2A^T A$$

Is the Hessian positive semidefinite?

$$2v^T A^T A v \ge 0 \,\forall v$$
$$2\|Av\|_2^2 \ge 0 \,\forall v$$

Lecture Outline

- I. What's the basic process for solving regression?

 Models, loss functions, and empirical risk minimization
- II. What should one consider in loss function design?

 Designing for optimization, stability and generalization
- III. How do you evaluate model performance iteratively?

 Overfitting, data splits, and cross validation
- IV. Summary + Housekeeping

Lecture Outline

- I. What's the basic process for solving regression?

 Models, loss functions, and empirical risk minimization
- II. What should one consider in loss function design?

 Designing for optimization, stability and generalization
- III. How do you evaluate model performance iteratively?

 Overfitting, data splits, and cross validation
- IV. Summary + Housekeeping

Stabilize the weights with $\boldsymbol{L}_{\!\scriptscriptstyle 2}$ Regularization

• Stabilizes the weights

Sparsify the weights with $L_{_{\! 1}}$ Regularization

Lasso Regression:

$$\operatorname{argmin}_{w} ||Aw - z||_{2}^{2} + \lambda ||w||_{1}$$

- Penalizes non-zero weights
- Sparsifies the weights (many will be zero)
- Will cause many features to be ignored

Lecture Outline

- I. What's the basic process for solving regression?

 Models, loss functions, and empirical risk minimization
- II. What should one consider in loss function design?

 Designing for optimization, stability and generalization
- III. How do you evaluate model performance iteratively?

 Overfitting, data splits, and cross validation
- IV. Summary + Housekeeping

Correct use of training and testing datasets

Incorrect use of training and testing datasets

Introducing a validation dataset

Cross-validation for small datasets

Algorithm 1 Cross-Validation.

Input:

- 1: Dataset $D = \{(x_i, y_i) \in \mathbb{R}^{d+1}\},\$
- 2: number of folds k

Output: Optimal hyperparameter λ

- 3: for $\lambda = \lambda_1, \lambda_2, \dots$ do
- 4: for i = 1, 2, ..., k do

$$w_{\lambda,i} = \operatorname{train}(\bigcup_{j \neq i}^k D_j)$$

 $\operatorname{Perf}_{\lambda,i} = \operatorname{Acc}(D_i)$

end for

$$\operatorname{Perf}_{\lambda} = \frac{1}{k} \sum_{i=1}^{k} \operatorname{Perf}_{\lambda,i}$$

- 6: end for
- 7: **return** $\operatorname{argmax}_{\lambda} \operatorname{Perf}_{\lambda}$

Lecture Outline

- I. What's the basic process for solving regression?

 Models, loss functions, and empirical risk minimization
- II. What should one consider in loss function design?

 Designing for optimization, stability and generalization
- III. How do you evaluate model performance iteratively?

 Overfitting, data splits, and cross validation
- IV. Summary + Housekeeping

Lecture Aims

At the end of the lecture, we should be able to:

- □ Write code to solve a simple regression problem numerically, given a dataset.
- Characterize and design loss functions using correct terminology and sound mathematical principles.
- Adhere to best practices for model evaluation and iterative improvement.

Lecture	Date	Topics
0	05/09/2024	Introduction + Administrative Remarks
1	10/09/2024	Halfspaces the Perceptron Algorithm
- 2	12/09/2024	Linear Regression and Convexity
3	17/09/2024	Maximum Likelihood Estimation
4	19/09/2024	k-means Clustering
5	24/09/2024	k-NN Classification and Logistic Regression
6	26/09/2024	Hard-margin SVM
7	01/10/2024	Soft-margin SVM
8	03/10/2024	Kernel methods
9	08/10/2024	Decision Trees
10	10/10/2024	Bagging and Boosting
	15/10/2024	NO LECTURE - MIDTERM BREAK
	17/10/2024	NO LECTURE- MIDTERM BREAK
11	22/10/2024	Expectation Maximization Algorithm
12	24/10/2024	MLPs and Fully-Connected NNs
	29/10/2024	NO LECTURE - MIDTERM EXAM
13	31/10/2024	Convolutional Neural Networks
14	05/11/2024	Recurrent Neural Networks
15	07/11/2024	Attention and Transformers
16	12/11/2024	Graph Neural Networks (Time permitting)
17	14/11/2024	VAEs and GANs
18	19/11/2024	Flows
19	21/11/2024	Contrastive Learning (Time permitting)
20	26/11/2024	Robustness
21	28/11/2024	Privacy (Saber Malekmohammadi)
22	03/12/2024	Fairness

Visualizing the Loss Landscape of Neural Nets

Hao Li¹, Zheng Xu¹, Gavin Taylor², Christoph Studer³, Tom Goldstein¹

¹University of Maryland, College Park ²United States Naval Academy ³Cornell University {haoli,xuzh,tomg}@cs.umd.edu,taylor@usna.edu,studer@cornell.edu

Abstract

Neural network training relies on our ability to a non-convex loss functions. It is well-known to designs (e.g., skip connections) produce loss fur chosen training parameters (batch size, learning a ers that generalize better. However, the reasons effect on the underlying loss landscape, are not wexplore the structure of neural loss functions, an generalization, using a range of visualization met "filter normalization" method that helps us visual make meaningful side-by-side comparisons bethat variety of visualizations, we explore how netwandscape, and how training parameters affect the

(b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.