MATH 3339 Statistics for the Sciences

Sec 9.3-9.5

Wendy Wang wwang60@central.uh.edu

Lecture 17 - 3339

Outline

Inference for the Regression Parameters

F-test

Least-Squares Regression

- The **least-squares regression line (LSRL)** of *Y* on *X* is the line that makes the sum of the squares of the vertical distances of the data points from the line as small as possible.
- The linear regression model is: $Y = \beta_0 + \beta_1 x + \varepsilon$
 - Y is dependent variable (response).
 - ► *x* is the independent variable (explanatory).
 - β_0 is the population intercept of the line.
 - β_1 is the population slope of the line.
 - ϵ is the error term which is assumed to have mean value 0. This is a random variable that incorporates all variation in the dependent variable due to factors other than x.
 - ▶ The variability: σ of the response y about this line. More precisely, σ is the standard deviation of the deviations of the errors, ϵ_i in the regression model.
- We will gather information from a sample so we will have the least squares estimates model: $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x$.

Least-Squares Regression

Formulas:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

$$\hat{\beta}_1 = cor(x, y) \cdot \frac{s_y}{s_x}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Is this good at predicting the response?

 R^2 is the percent (fraction) of variability in the response variable (Y) that is explained by the least-squares regression with the explanatory variable.

- This is a measure of how successful the regression equation was in predicting the response variable.
- The closer R^2 is to one (100%) the better our equation is at predicting the response variable.
- We will look later at how this is calculated.
- In the R output it is the Multiple R-squared value.

Is this good at predicting the response?

A **residual** is the difference between an observed value of the response variable and the value predicted by the regression line.

residual = observed
$$y$$
 - predicted y

- We can determine residuals for each observation.
- The closer the residuals are to zero, the better we are at predicting the response variable.
- We can plot the residuals for each observation, these are called the residual plots.

Residual Plot

https://www.math.uh.edu/~wwang/MATH3339_summer2020/shelf.txt

Examining a residual plot

- A curved pattern shows that the relationship is not linear.
- Increasing spread about the zero line as x increases indicates
 the prediction of y will be less accurate for larger x. Decreasing
 spread about the zero line as x increases indicates the prediction
 of y to be more accurate for larger x.
- Individual points with larger residuals are considered outliers in the vertical (y) direction.
- Individual points that are extreme in the x direction are considered outliers for the x-variable.

Example 2

The following data on x = frying time (sec) of tortilla chips and y = moisture content (%) of tortilla chips.

	5							
y	16.3	9.7	8.1	4.2	3.4	2.9	1.9	1.3

Show the residual plot.

Residual Plot

Estimating the Regression Parameters

- In the simple linear regression setting, we use the slope b_1 and intercept b_0 of the least-squares regression line to estimate the slope β_1 and intercept β_0 of the population regression line.
- The standard deviation, σ , in the model is estimated by the regression standard error

$$s = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n-2}} = \sqrt{\frac{\sum \text{all residuals}^2}{n-2}}$$

Recall that y_i is the observed value from the data set and \hat{y}_i is the predicted value from the equation.

 In R, s is the called the Residual Standard Error in the last paragraph of the summary.

Determining if the Model is Good

- For the sample we can use R^2 and the residuals to determine if the equation is a good way of predicting the response variable.
- Another way to determine if this equation is a good way of predicting the response variable is to determine if the explanatory variable is needed (significant) in the equation.
- These tests of significance and confidence intervals in regression analysis are based on assumptions about the error term ϵ .

Assumptions about the error term ϵ

1. The error term ε is a random variable with a mean or expected value of zero, that is $E(\varepsilon) = 0$, an estimate for ε is the residuals for each value of the X-variable.

$$residual = observed y - predicted y$$

- 2. The variance of ε , denoted by σ^2 , is the same for all values of x. The estimate for σ^2 is $s^2 = \text{MSE} = \frac{\text{SSE}}{n-2} = \frac{\sum (y_i \hat{y}_i)^2}{n-2}$.
- 3. The values of ε are independent.
- **4**. The error term ε is a normally distributed random variable.
- The residual plots help us assess the fit of a regression line and determine if the assumptions are met.

Definitions of Regression Output

1. The **error sum of squares**, denoted by *SSE* is

$$SSE = \sum (y_i - \hat{y}_i)^2$$

2. A quantitative measure of the total amount of variation in observed values is given by the **total sum of squares**, denoted by *SST*.

$$SST = \sum (y_i - \bar{y})^2$$

3. The **regression sum of squares**, denoted *SSR* is the amount of total variation that *is* explained by the model

$$SSR = \sum (\hat{y}_i - \bar{y})^2$$

4. The **coefficient of determination**, r^2 is given by

$$r^2 = \frac{\text{SSR}}{\text{SST}}$$

Finding these values using R

Conditions for regression inference

- The sample is an SRS from the population.
- There is a linear relationship in the population.
- The standard deviation of the responses about the population line is the same for all values of the explanatory variable.
- The response varies Normally about the population regression line.

t Test for Significance of β_1

Hypothesis

$$H_0: \beta_1 = 0 \text{ versus } H_a: \beta_1 \neq 0$$

Test statistic

$$t = \frac{\text{observed - hypothesized}}{\text{standard deviation of observed}}$$

$$\text{observed} = b_1$$

$$\text{hypothesized} = 0$$

$$\text{standard error} = SE_{b_1} = \frac{s}{\sqrt{\sum (x_i - \bar{x})^2}}$$

With degrees of freedom df = n - 2.

- P-value: based on a t distribution with n-2 degrees of freedom.
- Decision: Reject H_0 if p-value $\leq \alpha$.
- Conclusion: If H_0 is rejected we conclude that the explanatory variable x can be used to predict the response variable $\frac{\text{UNIVERSITY OF HOUSTON}}{\text{Edg. ATTMENT OF WATHEWATICS}}$

Testing β_1

- 1. We want to test: $H_0: \beta_1 = 0$ versus $H_a: \beta_1 \neq 0$ for the coffee sales.
- **2**. Test statistic: $t = \frac{(7.4-0)}{1.591} = 4.652$
- 3. P-value: 2 * P(T > 4.652) = 0.000906
- 4. Decision: Reject the Null hypothesis
- 5. Conclusion: β_1 is significantly not zero, thus shelf space can be used to predict the number of units sold.

R code

> shelf.lm=lm(sold~space)

```
> summary(shelf.lm)
Call:
lm(formula = sold ~ space)
Residuals:
Min 10 Median 30 Max
-42.00 -26.75 5.50 21.75 41.00
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 145.000 21.783 6.657 5.66e-05 ***
space 7.400 1.591 4.652 0.000906 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 30.81 on 10 degrees of freedom
Multiple R-squared: 0.6839, Adjusted R-squared: 0.6523
F-statistic: 21.64 on 1 and 10 DF, p-value: 0.0009(UNIVERSITY of HOUSTON
```

Height

Because elderly people may have difficulty standing to have their heights measured, a study looked at predicting overall height from height to the knee. Here are data (in centimeters, cm) for five elderly men:

Knee Height (cm)					l
Overall Height(cm)	192.1	153.3	146.4	162.7	169.1

1. Test $H_0: \beta_1 = 0$ versus $H_a: \beta_1 \neq 0$.

2. Give a conclusion for the relationship between using knee length to predict overall height.

Confidence Intervals for β_1

If we want to know a range of possible values for the slope we can use a confidence interval.

Remember confidence intervals are

estimate $\pm t^* \times$ standard error of the estimate

• Confidence interval for β_1 is

$$b_1 \pm t_{\alpha/2,n-2} \times SE_{b_1}$$

- Where t^* is from table D with degrees of freedom n-2 where n= number of observations.
- In R we can get this by confint(name.lm,level = 0.95).

```
> confint(shelf.lm)
2.5 % 97.5 %
(Intercept) 96.464405 193.53560
space 3.855461 10.94454
```


Inferences Concerning $\hat{\mu}_y$

Let $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x^*$ where x^* is some fixed value of x. Then,

1. The mean value of \hat{Y} is

$$E(\hat{Y}) = \beta_0 + \beta_1 x^*$$

2. The variance of \hat{Y} is

$$V(\hat{Y}) = \sigma^2 \left(\frac{1}{n} + \frac{(x^* - \bar{x})^2}{S_{xx}} \right)$$

- 3. \hat{Y} has a normal distribution.
- 4. The $100(1 \alpha)\%$ confidence interval for μ_Y that is the expected value of Y for a specific value of x^* , is

$$\hat{\mu}_{ extstyle y}(extstyle x^*) \pm t_{lpha/2,n-2} \sqrt{\sigma^2 \left(rac{1}{n} + rac{(extstyle x^* - ar{ extstyle x})^2}{ extstyle S_{ extstyle x}}
ight)}$$

UNIVERSITY of HOUSTON DEPARTMENT OF MATHEMATICS

R code

F-distribution

• The F distribution with ν_1 degrees of freedom in the numerator and nu_1 degrees of freedom in the denominator is the distribution of a random variable

$$F = \frac{U/\nu_1}{V/\nu_2},$$

where $U \sim \chi^2(df = \nu_1)$ and $V \sim \chi^2(df = \nu_2)$ are independent. That *F* has this distribution is indicated by $F \sim F(\nu_1, \nu_2)$.

- Notice $U = \frac{SSR}{2} \sim \chi^2(df = 1)$ and $V = \frac{SSE}{2} \sim \chi^2(df = n 2)$ are independent.
- Let MSE = SSE/(n-2) and MSR = SSR/1. Then

$$F = \frac{MSR}{MSE} = \frac{SSR/1}{SSE/(n-2)} \sim F(1, n-2)$$

 Then we can use the F-distribution to test the hypothesis $H_0: \beta = 0$ versus $H_a: \beta \neq 0$.

F-test for Shelf Space

Analysis of Variance Table

Response: sold

Sum Sq Mean Sq F value Pr(>F)
space 1 20535 20535 21.639 0.0009057 ***
Residuals 10 9490 949

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note: $F = t^2$ and the p-value is the same.

P-value =
$$P(F > 21.6391) = 1-pf(21.639, 1, 10)$$

= $1-P(F(21.6391)) = 0.000905$ UNIVERSITY HOUSE

Example

The following data was collected comparing score on a measure of test anxiety and exam score:

Measure of test anxiety	23	14	14	0	7	20	20	15	21
Exam score	43	59	48	77	50	52	46	51	51

We will use R to:

- Construct a scatter plot.
- Find the LSRL and fit it to the scatterplot.
- Find r and r^2 .
- Does there appear to be a linear relationship between the two variables? Based on what you found, would you characterized the relationship as positive or negative? Strong or weak?
- Draw the residual plot.
- What does the residual plot reveal?
- Test $H_0: \beta_1 = 0$ versus $H_a: \beta_1 \neq 0$.

