Análisis de las Funciones Trigonométricas Grado 10

Generalidades

Introduccio

Linea

Actividades

Análisis de las Funciones Trigonométricas

Grado 10

Matemáticas

2019

íneas.

Actividades

Generalidades

Introducción

Líneas

Sección 1

- Dominio. Los ángulos adoptan casi todos los valores reales.
- ▶ Rango. Valores acotados (sen, cos); Valores NO acotados (tan, cot, sec, cosec).
- Funciones inversas. Se identifican como arcalgo; con dominio y rango finitos.
- ► Aplicaciones. Astronomía: ubicación de astros, Física: análisis fenómenos periódicos (luz, electricidad, corazón), Arquitectura: (diseño contemporáneo).

Figura 1 : Puente de la Paz, Tiflis, Georgia.

Análisis de las Funciones Trigonométricas

Grado 10

Generalidades

Introducciór

Líneas

Introducción: el círculo

Sección 2

Circulo Goniométrico (CG)

- Unidad ángulo: radian (rad)
- Expresados en fracciones de π : $\frac{\pi}{2}$, $\frac{2\pi}{3}$, ...

Factor de conversión

Grados	Radianes	$\times \frac{\pi}{180}$
Radianes	Grados	$ imes rac{180}{\pi}$

- ► Ángulos medidos desde eje x+.
- Ángulos +: sentido antihorario.
- ▶ Ángulos -: sentido horario.

Ejemplos Sección 2

 Hallar las relaciones trigonométricas para el ángulo cuyo radio intersecta el CG en P(-3,-7).

Si $\sec \theta = \frac{8}{5}$ y θ es un ángulo de la región IV, Calcular las otras relaciones trigonométricas,

Sección 3

Son aquellos segmentos de recta, cuyos valores corresponden a las funciones trigonométricas representadas en el CG. Permiten comprender geométricamente cada función. En cada función el radio del CG vale 1 y se distingue por la línea roja.

Análisis de las Funciones Trigonométricas

Grado 10

Generalidades

Introducción

Líneas

Sección 3

Son aquellos segmentos de recta, cuyos valores corresponden a las funciones trigonométricas representadas en el CG. Permiten comprender geométricamente cada función. En cada función el radio del CG vale 1 y se distingue por la línea roja.

 Seno. Del latín "sinus" que significa cavidad; es la ordenada v.

Sección 3

Son aquellos segmentos de recta, cuyos valores corresponden a las funciones trigonométricas representadas en el CG. Permiten comprender geométricamente cada función. En cada función el radio del CG vale 1 y se distingue por la línea roja.

1 Seno Del latín "sinus" que significa cavidad: es la ordenada v.

Líneas trigonométricas

2 Coseno Es el complemento del seno. es decir. $\cos \alpha = \text{sen}(90 - \alpha);$ es la abscisa x

Sección 3

Son aquellos segmentos de recta, cuyos valores corresponden a las funciones trigonométricas representadas en el CG. Permiten comprender geométricamente cada función. En cada función el radio del CG vale 1 y se distingue por la línea roja.

 Seno. Del latín "sinus" que significa cavidad; es la ordenada v.

2. Coseno. Es el complemento del seno, es decir, $\cos \alpha = \text{sen}(90 - \alpha)$; es la abscisa x.

 Tangente. Del latín "tangens" que significa que toca; es vertical y fuera del CG.

Sección 3

4. Cotangente. La tangente del ángulo complementario $(90-\alpha)$; es horizontal y fuera del CG.

Análisis de las Funciones Trigonométricas

Grado 10

Generalidades

Introducció

Líneas

Sección 3

 Cotangente. La tangente del ángulo complementario (90-α); es horizontal y fuera del CG.

 Secante. Del latín "secans" que significa que corta; atraviesa el CG hacia la línea vertical.

Sección 3

 Cotangente. La tangente del ángulo complementario (90-α); es horizontal v fuera del CG.

 Secante. Del latín "secans" que significa que corta; atraviesa el CG hacia la línea vertical.

6. Cosecante. Es la secante del complemento de α ; atraviesa el CG hacia la línea horizontal.

Sección 4

Actividad 1

- 1. Calcular el valor de las relaciones trigonométricas para el punto que intersecta el circunferencia trigonométrica.
 - a) P(3.1)
 - b) $Q(-\frac{1}{2},-4)$
- 2. Si cot $\eta = -\frac{2}{5}$ con η un ángulo del segundo cuadrante, hallar las relaciones trigonométricas restantes.
- 3. Tarea. Según la relación trigonométrica, completar el cuadro escribiendo + ó -, según el cuadrante del ángulo.

Región	sen	cos	tan	CSC	sec	cot
I: $0 < \omega < \frac{\pi}{2}$						
II: $\frac{\pi}{2} < \omega < \pi$						
III: $\pi < \omega < \frac{3\pi}{2}$						
IV: $\frac{3\pi}{2} < \omega < 2\pi$						

Actividad 2

Sección 4

Análisis de las Funciones Trigonométricas

Grado 10

Generalidade

Introducción

Líneas