Ekološko modeliranje i predviđanje

Sveučilišni udžbenik

Branimir Hackenberger

2025

Sadržaj

Ι	Os	snove	7	
1	Uvod u ekološko modeliranje			
	1.1	Što je model?	9	
	1.2	Povijesni razvoj modeliranja	9	
	1.3	Vrste modela u ekologiji	9	
	1.4	Prednosti i ograničenja modela	9	
2	Ma	tematičke i računalne osnove	11	
	2.1	Osnovne funkcije i jednadžbe	11	
	2.2	Diferencijalne i diskretne jednadžbe	11	
	2.3	Matrični modeli (Leslie, Lefkovitch)	11	
	2.4	Stohastički procesi	11	
	2.5	Računalni alati (R, Python, Matlab, NetLogo)	11	
II	P	opulacije i zajednice	13	
3	Pop	pulacijski modeli	15	
	3.1	Eksponencijalni i logistički rast	15	
	3.2	Lotka-Volterra modeli	15	
	3.3	Dobno-strukturni modeli	15	
	3.4	Metapopulacijski modeli	15	
4	Mo	deli zajednica	17	
	4.1	Ekološke mreže	17	
	4.2	Stabilnost zajednica	17	
	4.3	Sukcesija i bioraznolikost	17	
II	I 1	Ekosustavi i prostor	19	
5	Mo	deli ekosustava	21	
	5.1	Kruženie tvari i energije	21	

	5.2	Bioenergetski modeli	21
	5.3	DEB teorija	21
	5.4	Biogeokemijski ciklusi	21
	5.5	Ecosystem services modeli	21
6	Pros	storno-ekološki modeli	23
	6.1	GIS i prostorna analiza	23
	6.2	Modeli rasprostiranja vrsta (SDM, ENM)	23
	6.3	Fragmentacija staništa	23
	6.4	Individualno temeljeni modeli (IBM)	23
I	7 F	Predviđanje i primjena	25
7	Pred	diktivni modeli i scenariji	27
	7.1	Scenariji klimatskih promjena	27
	7.2	Predviđanje invazija	27
	7.3	Rani sustavi upozorenja	27
	7.4	Kombinacija mehanističkih i statističkih modela	27
8	Stat	zistički i AI pristupi	29
	8.1	Frekventistički i Bayesovski modeli	29
	8.2	Strojno učenje (RF, XGBoost, SVM)	29
	8.3	Duboko učenje i neuronske mreže	29
	8.4	Digitalni blizanci ekosustava	29
9	Vali	dacija i nesigurnost	31
	9.1	Kalibracija i verifikacija	
	9.2	Osjetljivost i robusnost modela	
	9.3	Nesigurnost i etika predviđanja	31
10		njene u upravljanju okolišem	33
		Zaštita prirode i bioraznolikosti	33
		Poljoprivreda i šumarstvo	
		Ekotoksikologija i procjena rizika	
	10.4	Klimatska politika i održivi razvoj	33
\mathbf{V}	St	tudije slučaja i praksa	35
11	Stud	dije slučaja	37
	11.1	Modeliranje populacije gujavica u agroekosustavu	37

	11.2	Predviđanje širenja komaraca	37
	11.3	Eutrofikacija riječnog ekosustava	37
	11.4	Fragmentacija šuma i ptice metapopulacija	37
	11.5	Bayesove mreže u ekotoksikologiji	37
12	Pra	ktične vježbe u R-u i Pythonu 3	89
	12.1	Uvod u R i Python	39
	12.2	Leslie matrica u R-u	39
	12.3	Lotka-Volterra simulacija u Pythonu	39
	12.4	SDM u R-u (paket dismo)	39
	12.5	Random Forest za invazije	39
	12.6	DEB simulacije	39
A	Dod	atci 4	1
	A.1	Matematički prilozi	11
	A.2	Upute za instalaciju softvera	11
	A.3	Primjeri koda	11
	Δ 1	Literatura i mrožni izveri	11

Predgovor

Razlozi za pisanje udžbenika, ciljana publika, način korištenja.

Dio I

Osnove

Uvod u ekološko modeliranje

- 1.1 Što je model?
- 1.2 Povijesni razvoj modeliranja
- 1.3 Vrste modela u ekologiji
- 1.4 Prednosti i ograničenja modela

Matematičke i računalne osnove

- 2.1 Osnovne funkcije i jednadžbe
- 2.2 Diferencijalne i diskretne jednadžbe
- 2.3 Matrični modeli (Leslie, Lefkovitch)
- 2.4 Stohastički procesi
- 2.5 Računalni alati (R, Python, Matlab, NetLogo)

Dio II Populacije i zajednice

Populacijski modeli

- 3.1 Eksponencijalni i logistički rast
- 3.2 Lotka-Volterra modeli
- 3.3 Dobno-strukturni modeli
- 3.4 Metapopulacijski modeli

Modeli zajednica

- 4.1 Ekološke mreže
- 4.2 Stabilnost zajednica
- 4.3 Sukcesija i bioraznolikost

Dio III Ekosustavi i prostor

Modeli ekosustava

- 5.1 Kruženje tvari i energije
- 5.2 Bioenergetski modeli
- 5.3 DEB teorija
- 5.4 Biogeokemijski ciklusi
- 5.5 Ecosystem services modeli

Prostorno-ekološki modeli

- 6.1 GIS i prostorna analiza
- 6.2 Modeli rasprostiranja vrsta (SDM, ENM)
- 6.3 Fragmentacija staništa
- 6.4 Individualno temeljeni modeli (IBM)

Dio IV Predviđanje i primjena

Prediktivni modeli i scenariji

- 7.1 Scenariji klimatskih promjena
- 7.2 Predviđanje invazija
- 7.3 Rani sustavi upozorenja
- 7.4 Kombinacija mehanističkih i statističkih modela

Statistički i AI pristupi

- 8.1 Frekventistički i Bayesovski modeli
- 8.2 Strojno učenje (RF, XGBoost, SVM)
- 8.3 Duboko učenje i neuronske mreže
- 8.4 Digitalni blizanci ekosustava

Validacija i nesigurnost

- 9.1 Kalibracija i verifikacija
- 9.2 Osjetljivost i robusnost modela
- 9.3 Nesigurnost i etika predviđanja

Primjene u upravljanju okolišem

- 10.1 Zaštita prirode i bioraznolikosti
- 10.2 Poljoprivreda i šumarstvo
- 10.3 Ekotoksikologija i procjena rizika
- 10.4 Klimatska politika i održivi razvoj

Dio V Studije slučaja i praksa

Studije slučaja

- 11.1 Modeliranje populacije gujavica u agroekosustavu
- 11.2 Predviđanje širenja komaraca
- 11.3 Eutrofikacija riječnog ekosustava
- 11.4 Fragmentacija šuma i ptice metapopulacija
- 11.5 Bayesove mreže u ekotoksikologiji

Praktične vježbe u R-u i Pythonu

- 12.1 Uvod u R i Python
- 12.2 Leslie matrica u R-u
- 12.3 Lotka-Volterra simulacija u Pythonu
- 12.4 SDM u R-u (paket dismo)
- 12.5 Random Forest za invazije
- 12.6 DEB simulacije

Dodatak A

Dodatci

- A.1 Matematički prilozi
- A.2 Upute za instalaciju softvera
- A.3 Primjeri koda
- A.4 Literatura i mrežni izvori