Recursion

Mike Burrell

Intro

Recursion

Concept

Algebraic tracing

Call stack tracing

tunctions

cases

Conclusion

Conclusion

Recursion

Functions

Mike Burrell

March 28, 2024

Readings

Recursion

Mike Burrell

Intro

Recursion
Concept
Algebraic tracing

Call stack tracin

tunctions

Base cases and induction

cases

Conclusio

Conclusion

```
■ https:
//www.youtube.com/watch?v=aCPkszeKRa4
```

```
https:
//www.youtube.com/watch?v=k0bb7U
```

//www.youtube.com/watch?v=k0bb7UYy0pY

Goals for this set of slides

Recursion

Mike Burrell

Intro

Recursion
Concept
Algebraic tracing

Call stack tracing

functions

Base cases and inductiv

Conclusio

Exercises Conclusion

- Trace through a recursive function
- Structure a function recursively
- Understand the call stack better

Recursion

Recursion

Mike Burrell

Intro

Recursion

Concept

Algebraic tracing

Call stack tracing

functions

Base cases and inductiv

Conclusion

Conclusion

- Recursion is a function that calls itself
- Recursion is also a way of breaking down a problem into smaller problems

Recursion

Recursion

Mike Burrell

Intro

Recursion

Concept

Algebraic tracing

Call stack tracing

functions

ase cases and induction

Conclusio

Exercises Conclusion

- Recursion is a function that calls itself
- Recursion is also a way of breaking down a problem into smaller problems
- The smaller problems are still problems of the same form

Recursion in math

Recursion

Mike Burrell

Intro

Recursion Concept

Algebraic tracing

Call stack tracing

functions

Base cases and inductiv

Conclusio

Exercises Conclusion

- Recursive definitions show up in mathematics a lot
- Defining something recursively sometimes gives a simpler way to explain/define it
- It can also make a good first step to writing a function recursively

Recursion in math

Recursion

Mike Burrell

Intro

Recursion

Concept Algebraic tracing

Call stack tracing

functions

Base cases and induction

Conclus

■ Recursive definitions show up in mathematics a lot

- Defining something recursively sometimes gives a simpler way to explain/define it
- It can also make a good first step to writing a function recursively
- Example (factorial):

$$n! = \left\{ egin{array}{ll} 1 & ext{, if } n \leq 1 \\ n imes (n-1)! & ext{, otherwise} \end{array}
ight.$$

Factorial example in code

Recursion

Mike Burrell

Intro

Recursion

Concept

Algebraic tracing

Call stack tracing

Rase cases and industive

cases

Conclusion

```
n! = \left\{ egin{array}{ll} 1 & 	ext{, if } n \leq 1 \\ n 	imes (n-1)! & 	ext{, otherwise} \end{array} 
ight.
```

```
static long long factorial(int n) {
   if (n <= 1)    return 1;
   else        return n * factorial(n - 1);
   }
}</pre>
```

Recursion

Mike Burrell

Intro

Recursion

Concept

Algebraic tracing

Call stack tracing

functions

~ . .

Conclusion

Recursion

Mike Burrell

Intro

Recursion

Algebraic tracing

Call stack tracin

Call stack tracing

functions

Base cases and inductiv cases

Conclusion

Conclusion

$$n! = \left\{ egin{array}{ll} 1 & ext{, if } n \leq 1 \ n imes (n-1)! & ext{, otherwise} \end{array}
ight.$$
 3!

Recursion

Mike Burrell

Intro

Recursio

Algebraic tracing

......

Call stack tracing

functions

Base cases and inductiv

Conclusio

Conclusion

$$n! = \left\{ egin{array}{ll} 1 & ext{, if } n \leq 1 \\ n imes (n-1)! & ext{, otherwise} \end{array}
ight. \ = 3 imes (3-1)! \end{array}$$

Recursion

Mike Burrell

Intro

Recursio

Algebraic tracing

Algebraic tracing

Call stack tracing

functions

cases

Conclusio

Conclusion

$$n! = \left\{ egin{array}{ll} 1 & ext{, if } n \leq 1 \\ n imes (n-1)! & ext{, otherwise} \end{array}
ight. \ = 3 imes (3-1)! \\ = 3 imes 2! \end{array}$$

Recursion

Mike Burrell

Intro

Recursio

Algebraic tracing

Call at all to a sign

Call Stack tracin

functions

cases

Conclusi

Conclusion

$$n! = \begin{cases} 1 & \text{, if } n \leq 1 \\ n \times (n-1)! & \text{, otherwise} \end{cases}$$

$$3!$$

$$= 3 \times (3-1)!$$

$$= 3 \times 2!$$

$$= 3 \times 2 \times (2-1)!$$

Recursion

Mike Burrell

Intro

Recursio

Algebraic tracing

Algebraic tracing

Call stack tracing

functions

Base cases and inductive cases

Conclusio

Conclusion

$$n! = \begin{cases} 1 & \text{, if } n \le 1 \\ n \times (n-1)! & \text{, otherwise} \end{cases}$$

$$3!$$

$$= 3 \times (3-1)!$$

$$= 3 \times 2!$$

$$= 3 \times 2 \times (2-1)!$$

$$= 3 \times 2 \times 1!$$

Recursion

Mike Burrell

Intro

Recursio

Concept

Algebraic tracing

Call stack tracing

functions

Base cases and inductiv

Conclusio

Conclusion

$$n! = \begin{cases} 1 & \text{, if } n \le 1 \\ n \times (n-1)! & \text{, otherwise} \end{cases}$$

$$= 3 \times (3-1)!$$

$$= 3 \times 2!$$

$$= 3 \times 2 \times (2-1)!$$

$$= 3 \times 2 \times 1!$$

$$= 3 \times 2 \times 1$$

Call stack tracing

Recursion

Mike Burrell

Intro

Recursion
Concept
Algebraic tracing
Call stack tracing

Writing recursive functions

Base cases and inductive cases

Conclusio Exercises ■ Of course your computer isn't actually evaluating anything algebraically

- If a recursive function has side-effects, it can't be traced easily using algebra anyway
- How the computer is actually evaluating a recursive function is through regular call stack mechanics
 - No slides for this. Let's see it on the whiteboard

Base cases and inductive cases

Recursion

Mike Burrell

Intro

Recursion

Concept

Algebraic tracin

Call stack tracin

Base cases and inductive

Conclusion

- Every recursive function needs to finish recursing at some point
 - Infinite recursion is commonly not possible because it will cause a stack overflow
 - Even large (but finite) recursions can cause a stack overflow
- Generally the recursive functions you write will always have if statements at the top to distinguish between *base cases* and *inductive cases*

Inductive case

Recursion

Mike Burrell

Intro

Recursion
Concept
Algebraic tracing

Writing recur

Base cases and inductive

Conclusio Exercises

■ An inductive case is also called a recursive case

- It is when we keep recursing (keep calling the same function)
- The most important rule is that, when recursing, the value we're recursing over *must become smaller*
 - For integers, this usually means tending towards zero
 - For arrays, this usually means having smaller elements
 - Other data structures will have other notions of becoming smaller

Inductive case example

Recursion

Mike Burrell

Intro

Recursion

.

Algebraic tracing

Call stack tracing

P--- ---- --- i-dueti

Base cases and inductive

Conclusion

Conclusion

Imagine we are writing a recursive function to define exponentiation over \mathcal{Z}^+ .

$$x^y = \underbrace{x \cdot x \cdot \ldots \cdot x}_{y}$$

Inductive case example

Recursion

Mike Burrell

Intro

Recursion

Algebraic tracing

Call stack tracing

functions

Base cases and inductive

Conclusio

Imagine we are writing a recursive function to define exponentiation over \mathcal{Z}^+ .

$$x^y = \underbrace{x \cdot x \cdot \ldots \cdot x}_{y}$$

We can rewrite this recursively (inductively) as:

$$x^y = x \cdot x^{y-1}$$

Inductive case example

Recursion

Mike Burrell

Base cases and inductive

Imagine we are writing a recursive function to define exponentiation over \mathcal{Z}^+ .

$$x^y = \underbrace{x \cdot x \cdot \ldots \cdot x}_{y}$$

We can rewrite this recursively (inductively) as:

$$x^y = x \cdot x^{y-1}$$

Note that:

- Our definition is now recursive (x^y is defined in terms of itself)
- One of our values is becoming smaller (y is getting closer to zero) 4D > 4B > 4B > 4B > 900

Inductive case

Recursion

Mike Burrell

Intro

Recursion
Concept
Algebraic tracing

functions

Base cases and inductive cases

Conclusion Exercises Conclusion

- Thinking of the inductive case first may help you figure out the general structure of the recursion
 - The hardest part of recursion is typically identifying which value is becoming smaller and how it is becoming smaller
- Some functions may have multiple inductive cases
- But the inductive case is not enough...

Base case

Recursion

Mike Burrell

Intro

Recursion
Concept
Algebraic tracing

Call stack tracin

functions

Base cases and inductive

Conclusio

- A base case is when we stop recursing
- It's identified by an if statement that will identify that the value we're recursing over is now very small

Base case example

Recursion

Mike Burrell

Intro

Recursion

Algebraic tracing

Call stack tracing

functions

Base cases and inductive cases

Conclusion

Imagine we are writing a recursive function to define exponentiation over \mathcal{Z}^+ .

$$x^y = \underbrace{x \cdot x \cdot \ldots \cdot x}_{y}$$

$$x^y = x \cdot x^{y-1}$$

Our y value is the value we're recursing over (the value which is decreasing). When does y get too small for this recursive property to hold?

Base case example

Recursion

Mike Burrell

Intro

Recursion

Algebraic tracing

Call stack tracing

functions

Base cases and inductive

Conclusion

Imagine we are writing a recursive function to define exponentiation over \mathcal{Z}^+ .

$$x^y = \underbrace{x \cdot x \cdot \ldots \cdot x}_{y}$$

$$x^y = x \cdot x^{y-1}$$

Our y value is the value we're recursing over (the value which is decreasing). When does y get too small for this recursive property to hold?

$$x^{0} = 1$$

We need to make our base case where y = 0.

Putting it together

Recursion

Mike Burrell

Intro

Recursion

Algebraic tracing

Call stack tracing

Base cases and inductive

Conclusio

So:

$$\begin{array}{ll}
x^0 &= 1 \\
x^y &= x \cdot x^{y-1}
\end{array}$$

Translated into code:

Recursion

Mike Burrell

Intro

Recursion

Algebraic tracin

Call stack tracin

Writing recur

Base cases and induction

Conclus

Exercises

Exercises

- 1 Fibonacci number
- 2 Finding a square root using a binary search
- 3 Determining if a string is a palindrome
 - We will use the c_str() method to convert a string object into a NUL-terminated char*

Conclusion

Recursion

Mike Burrell

Intro

Recursion Concept

Call stack tracin

Writing recursiv

Base cases and inductive cases

Conclusion

Conclusion

We learned:

- How to trace through recursive functions in two ways
- How recursive functions are structured