

Intelligent Robots – Introduction to ROS

- § ROS architecture & philosophy
- § ROS master, nodes, and topics
- § Console commands
- § Catkin workspace and build system
- § Launch-files
- § Gazebo simulator

What is ROS?

ROS = Robot Operating System

ros.org

- § Process management
- § Inter-process communication
- § Device drivers

- § Simulation
- § Visualization
- § Graphical user interface
- § Data logging

- § Control
- § Planning
- § Perception
- § Mapping
- § Manipulation

- § Package organization
- § Software distribution
- § Documentation
- § Tutorials

History of ROS

- § Originally developed in 2007 at the Stanford Artificial Intelligence Laboratory
- § Since 2013 managed by OSRF
- § Today used by many robots, universities and companies
- § De facto standard for robot programming

ros.org

ROS Philosophy

- § Peer to peer Individual programs communicate over defined API (ROS messages, services, etc.).
- § **Distributed**Programs can be run on multiple computers and communicate over the network.
- § Multi-lingual ROS modules can be written in any language for which a client library exists (C++, Python, MATLAB, Java, etc.).
- § Light-weight Stand-alone libraries are wrapped around with a thin ROS layer.
- § Free and open-source
 Most ROS software is open-source and free to use.

ROS Workspace Environment

- § Defines context for the current workspace
- S Default workspace loaded with
 - > source /opt/ros/indigo/setup.bash

Overlay your catkin workspace with

- > cd ~/catkin ws
- > source devel/setup.bash

Check your workspace with

> echo \$ROS_PACKAGE_PATH

This is already setup in the provided installation.

See setup with

> cat ~/.bashrc

More info http://wiki.ros.org/indigo/Installation/Ubuntu http://wiki.ros.org/catkin/workspaces

ROS Master

- § Manages the communication between nodes
- § Every node registers at startup with the master

Start a master with

> roscore

ROS Master

More info http://wiki.ros.org/Master

ROS Nodes

- § Single-purpose, executable program
- § Individually compiled, executed, and managed
- Solution Organized in packages

Run a node with

> rosrun package_name node_name

See active nodes with

> rosnode list

Retrieve information about a node with

> rosnode info node_name

More info http://wiki.ros.org/rosnode

ROS Topics

- § Nodes communicate over *topics*
 - § Nodes can publish or subscribe to a topic
 - § Typically, 1 publisher and *n* subscribers
- Solution Topic is a name for a stream of *messages* in the stream of the

List active topics with

> rostopic list

Subscribe and print the contents of a topic with

> rostopic echo /topic

Show information about a topic with

> rostopic info /topic

More info http://wiki.ros.org/rostopic

ROS Messages

- § Data structure defining the *type* of a topic
- S Compromised of a nested structure of integers, floats, booleans, strings etc. and arrays of objects
- § Defined in *.msg files

See the type of a topic

> rostopic type /topic

Publish a message to a topic

> rostopic pub /topic type args

ROS Messages Pose Stamped Example

geometry_msgs/Point.msg

```
float64 x
float64 y
float64 z
```

sensor_msgs/lmage.msg

```
std_msgs/Header header
uint32 seq
time stamp
string frame_id
uint32 height
uint32 width
string encoding
uint8 is_bigendian
uint32 step
uint8[] data
```

geometry_msgs/PoseStamped.msg

```
std_msgs/Header header
uint32 seq
time stamp
string frame_id
geometry_msgs/Pose pose

→ geometry_msgs/Point position
float64 x
float64 y
float64 z
geometry_msgs/Quaternion orientation
float64 x
float64 y
float64 y
float64 y
float64 z
float64 w
```


Console Tab Nr. 1 - Starting a roscore

Start a roscore with

> roscore

```
student@ubuntu:~/catkin ws$ roscore
 .. logging to /home/student/.ros/log/6c1852aa-e961-11e6-8543-000c297bd368/ros
 aunch-ubuntu-6696.log
Checking log directory for disk usage. This may take awhile.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.
started roslaunch server http://ubuntu:34089/
ros comm version 1.11.20
 UMMARY
 -----
PARAMETERS
 * /rosdistro: indigo
  /rosversion: 1.11.20
NODES
auto-starting new master
process[master]: started with pid [6708]
ROS MASTER URI=http://ubuntu:11311/
setting /run id to 6c1852aa-e961-11e6-8543-000c297bd368
process[rosout-1]: started with pid [6721]
started core service [/rosout]
```


Console Tab Nr. 2 - Starting a talker node

Run a talker demo node with

> rosrun roscpp_tutorials talker

```
student@ubuntu:~/catkin_ws$ rosrun roscpp_tutorials talker
[ INFO] [1486051708.424661519]: hello world 0
[ INFO] [1486051708.525227845]: hello world 1
[ INFO] [1486051708.624747612]: hello world 2
[ INFO] [1486051708.724826782]: hello world 3
[ INFO] [1486051708.825928577]: hello world 4
[ INFO] [1486051708.925379775]: hello world 5
[ INFO] [1486051709.024971132]: hello world 6
[ INFO] [1486051709.125450960]: hello world 7
[ INFO] [1486051709.225272747]: hello world 8
[ INFO] [1486051709.325389210]: hello world 9
```


Console Tab Nr. 3 - Analyze talker node

See the list of active nodes

> rosnode list

Show information about the talker node

> rosnode info /talker

See information about the *chatter* topic

> rostopic info /chatter

```
student@ubuntu:~/catkin_ws$ rosnode list
/rosout
/talker

student@ubuntu:~/catkin_ws$ rosnode info /talker

...
Node [/talker]
Publications:
  * /chatter [std_msgs/String]
  * /rosout [rosgraph_msgs/Log]

Subscriptions: None

Services:
  * /talker/get_loggers
  * /talker/set_logger level
```

```
student@ubuntu:~/catkin_ws$ rostopic info /chatter
Type: std_msgs/String

Publishers:
* /talker (http://ubuntu:39173/)

Subscribers: None
```


Console Tab Nr. 3 - Analyze chatter topic

Check the type of the *chatter* topic

> rostopic type /chatter

student@ubuntu:~/catkin_ws\$ rostopic type /chatter std_msgs/String

Show the message contents of the topic

> rostopic echo /chatter

student@ubuntu:~/catkin_ws\$ rostopic echo /chatter
data: hello world 11874
--data: hello world 11875
--data: hello world 11876

Analyze the frequency

> rostopic hz /chatter

```
student@ubuntu:~/catkin_ws$ rostopic hz /chatter
subscribed to [/chatter]
average rate: 9.991
    min: 0.099s max: 0.101s std dev: 0.00076s window: 10
average rate: 9.996
    min: 0.099s max: 0.101s std dev: 0.00069s window: 20
```


Console Tab Nr. 4 - Starting a *listener* node

Run a listener demo node with

> rosrun roscpp_tutorials listener

```
student@ubuntu:~/catkin_ws$ rosrun roscpp_tutorials listener

[ INFO] [1486053802.204104598]: I heard: [hello world 19548]

[ INFO] [1486053802.304538827]: I heard: [hello world 19549]

[ INFO] [1486053802.403853395]: I heard: [hello world 19550]

[ INFO] [1486053802.504438133]: I heard: [hello world 19551]

[ INFO] [1486053802.604297608]: I heard: [hello world 19552]
```


ExampleConsole Tab Nr. 3 - Analyze

See the new *listener* node with

> rosnode list

Show the connection of the nodes over the chatter topic with

> rostopic info /chatter

```
student@ubuntu:~/catkin_ws$ rosnode list
/listener
/rosout
/talker
```

```
student@ubuntu:~/catkin_ws$ rostopic info /chatter
Type: std_msgs/String

Publishers:
  * /talker (http://ubuntu:39173/)

Subscribers:
  * /listener (http://ubuntu:34664/)
```


Console Tab Nr. 3 - Publish Message from Console

Close the talker node in console nr. 2 with Ctrl + C

Publish your own message with

> rostopic pub /chatter std_msgs/String
"data: 'ETH Zurich ROS Course'"

student@ubuntu:~/catkin_ws\$ rostopic pub /chatter std_msgs/String "data: 'ETH Zurich ROS Course'" publishing and latching message. Press ctrl-C to terminate

Check the output of the listener in console nr. 4

```
[ INFO] [1486054667.604322265]: I heard: [hello world 28202]
[ INFO] [1486054667.704264199]: I heard: [hello world 28203]
[ INFO] [1486054667.804389058]: I heard: [hello world 28204]
[ INFO] [1486054707.646404558]: I heard: [ETH Zurich ROS Course]
```


catkin Build System

- § catkin is the ROS build system to generate executables, libraries, and interfaces
- S We suggest to use the Catkin Command Line Tools
 - → Use catkin build instead of catkin_make

Navigate to your catkin workspace with

> cd ~/catkin ws

Build a package with

- > catkin build package name
- Whenever you build a **new** package, update your environment
 - > source devel/setup.bash

The catkin command line tools are pre-installed in the provided installation.

More info http://wiki.ros.org/catkin/Tutorials https://catkin-tools.readthedocs.io/

catkin Build System

The catkin workspace contains the following spaces

Work here

The source space contains the source code. This is where you can clone, create, and edit source code for the packages you want to build.

Don't touch

The *build space* is where CMake is invoked to build the packages in the source space. Cache information and other intermediate files are kept here.

Don't touch

The development (devel) space is where built targets are placed (prior to being installed).

If necessary, clean the entire build and devel space with

> catkin clean

More info http://wiki.ros.org/catkin/workspaces

catkin Build System

The catkin workspace setup can be checked with

> catkin config

For example, to set the *CMake build type* to Release (or Debug etc.), use

More info

http://catkin-tools.readthedocs.io/en/latest/verbs/catkin_config.html http://catkin-tools.readthedocs.io/en/latest/cheat_sheet.html

```
student@ubuntu:~/catkin ws$ catkin config
Profile:
                            default
                       [env] /opt/ros/indigo:/home/student/catkin ws/devel
                             /home/student/catkin ws
 orkspace:
Source Space:
                    [exists] /home/student/catkin ws/src
og Space:
                    [exists] /home/student/catkin ws/logs
                    [exists] /home/student/catkin ws/build
Build Space:
                    [exists] /home/student/catkin ws/devel
                    unused] /home/student/catkin ws/install
 ESTDIR.
Devel Space Layout:
                            linked
Install Space Layout:
                             -GEclipse CDT4 - Unix Makefiles -DCMAKE CXX COM
Additional CMake Args:
ILER ARG1=-std=c++11 -DCMAKE BUILD TYPE=Release
dditional Make Args:
                             None
Additional catkin Make Args: None
internal Make Job Server:
                                                              Already
                             True
                            False
ache Job Environments:
                                                           setup in the
hitelisted Packages:
                             None
                                                             provided
llacklisted Packages:
                             None
                                                           installation.
Workspace configuration appears valid.
```


Open a terminal and browse to your git folder

> cd ~/git

Clone the Git repository with

> git clone https://github.com/ethzasl/ros_best_practices.git

Symlink the new package to your catkin workspace

> ln -s ~/git/ros_best_practices/ ~/catkin_ws/src/

Note: You could also directly clone to your catkin workspace, but using a common git folder is convenient if you have multiple catkin workspaces.

https://github.com/ethz-asl/ros_best_practices

Go to your catkin workspace

> cd ~/catkin_ws

Build the package with

> catkin build ros_package_template

Re-source your workspace setup

> source devel/setup.bash

Launch the node with

> roslaunch ros_package_template
ros_package_template.launch

```
[build] Found '1' packages in 0.0 seconds.
[build] Updating package table.
Starting >>> catkin tools prebuild
inished <<< catkin tools prebuild
                                                  [ 1.0 seconds ]
Starting >>> ros package template
inished <<< ros package template
                                                  [ 4.1 seconds ]
[build] Summary: All 2 packages succeeded!
[build] Ignored: None.
build
         Warnings: None.
build Abandoned: None.
[build] Failed:
[build] Runtime: 5.2 seconds total.
[build] Note: Workspace packages have changed, please re-source setup files to u
se them.
tudent@ubuntu:~/catkin ws$
```

```
*/rosdistro: indigo

*/rosversion: 1.11.20

NODES

/ ros_package_template (ros_package_template/ros_package_template)

auto-starting new master
process[master]: started with pid [27185]

ROS_MASTER_URI=http://localhost:11311

setting /run_id to e43f937a-ed52-lle6-9789-000c297bd368
process[rosout-1]: started with pid [27198]
started core service [/rosout]
process[ros_package_template-2]: started with pid [27201]
[ INFO] [1486485095.843512614]: Successfully launched node.
```


ROS Launch

- § launch is a tool for launching multiple nodes (as well as setting parameters)
- § Are written in XML as *.launch files
- § If not yet running, launch automatically starts a roscore

Browse to the folder and start a launch file with

> roslaunch file_name.launch

Start a launch file from a package with

> roslaunch package_name file_name.launch

More info

http://wiki.ros.org/roslaunch

Example console output for roslaunch roscpp tutorials talker listener.launch

```
student@ubuntu:~/catkin ws$ roslaunch roscpp tutorials talker listener.launch
 .. logging to /home/student/.ros/log/794321aa-e950-11e6-95db-000c297bd368/ros
Checking log directory for disk usage. This may take awhile.
ress Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.
started roslaunch server http://ubuntu:37592/
 ARAMETERS
   /rosdistro: indigo
  /rosversion: 1.11.20
   listener (roscpp tutorials/listener)
   talker (roscpp tutorials/talker)
auto-starting new master
process[master]: started with pid [5772]
ROS MASTER URI=http://localhost:11311
setting /run id to 794321aa-e950-11e6-95db-000c297bd368
process[rosout-1]: started with pid [5785]
started core service [/rosout]
process[listener-2]: started with pid [5788]
process[talker-3]: started with pid [5795]
 INFO] [1486044252.537801350]: hello world 0
 INFO] [1486044252.638886504]: hello world 1
 INFO] [1486044252.738279674]: hello world 2
        [1486044252.838357245]: hello world 3
```


ROS LaunchFile Structure

Attention when copy & pasting code from the internet

talker_listener.launch

- Notice the syntax difference for self-closing tags:
 - <tag></tag> and <tag/>

- § launch: Root element of the launch file
- § node: Each <node> tag specifies a node to be launched
- § name: Name of the node (free to choose)
- § pkg: Package containing the node
- **type**: Type of the node, there must be a corresponding executable with the same name
- § output: Specifies where to output log messages (screen: console, log: log file)

More info

http://wiki.ros.org/roslaunch/XML

http://wiki.ros.org/roslaunch/Tutorials/Roslaunch%20tips%20for%20larger%20projects

ROS Launch

Arguments

Solution
Solution
Create re-usable launch files with <arg> tag
which works like a parameter (default optional)

```
<arg name="arg_name" default="default_value"/>
```

Use arguments in launch file with

```
$(arg arg_name)
```

When launching, arguments can be set with

```
> roslaunch launch_file.launch arg_name:=value
```

range_world.launch (simplified)

```
<?xml version="1.0"?>
<launch>
 <arg name="use sim time" default="true"/>
  <arg name="world" default="gazebo ros range"/>
  <arg name="debug" default="false"/>
  <arg name="physics" default="ode"/>
 <group if="$(arg use sim time)">
    <param name="/use sim time" value="true" />
  </group>
 <include file="$(find gazebo ros)</pre>
                               /launch/empty world.launch">
    carg name="world name" value="$(find gazebo plugins)/
                     test/test worlds/$(arg world).world"/>
    <arg name="debug" value="$(arg debug)"/>
    <arg name="physics" value="$(arg physics)"/>
  </include>
</launch>
```

More info

http://wiki.ros.org/roslaunch/XML/arg

ROS Launch Including Other Launch Files

§ Include other launch files with <include> tag to organize large projects

```
<include file="package_name"/>
```

- Find the system path to other packages with
 - \$(find package_name)
- Pass arguments to the included file

```
<arg name="arg_name" value="value"/>
```

range_world.launch (simplified)

```
<?xml version="1.0"?>
<launch>
 <arg name="use sim time" default="true"/>
  <arg name="world" default="gazebo ros range"/>
  <arg name="debug" default="false"/>
  <arg name="physics" default="ode"/>
  <group if="$(arg use sim time)">
    <param name="/use sim time" value="true" />
  </group>
 -<include file="$(find gazebo ros)</pre>
                               /launch/empty world.launch">
    carg name="world name" value="$(find gazebo plugins)/
                     test/test worlds/$(arg world).world"/>
    <arg name="debug" value="$(arg debug)"/>
    <arg name="physics" value="$(arg physics)"/>
 </include>
</launch>
```

More info

http://wiki.ros.org/roslaunch/XML/include

Gazebo Simulator

- § Simulate 3d rigid-body dynamics
- § Simulate a variety of sensors including noise
- §3d visualization and user interaction
- § Includes a database of many robots and environments (Gazebo worlds)
- § Provides a ROS interface
- S Extensible with plugins

Run Gazebo with

> rosrun gazebo_ros gazebo

Further References

- **§ ROS Wiki**
 - § http://wiki.ros.org/
- § Installation
 - § http://wiki.ros.org/ROS/Installation
- § Tutorials
 - § http://wiki.ros.org/ROS/Tutorials
- § Available packages
 - § http://www.ros.org/browse/

- § ROS Cheat Sheet
 - § https://github.com/ros/cheatsheet/releases/dow nload/0.0.1/ROScheatsheet_catkin.pdf
- § ROS Best Practices
 - § https://github.com/ethzasl/ros_best_practices/wiki
- **§ ROS Package Template**
 - § https://github.com/ethzasl/ros_best_practices/tree/master/ros_packag e_template

