

SEQUENCE LISTING

<110> Sheen, Jen
Ausubel, Frederick M.
Asai, Tsuneaki
Tena, Guillaume

<120> Master Activators of Pathogen Responsive
Genes

<130> 00786/397003

<150> PCT/US 02/07650
<151> 2002-03-13

<150> US 60/275,199
<151> 2001-03-12

<160> 16

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 4
<212> PRT
<213> Arabidopsis thaliana

<400> 1
Trp Arg Lys Tyr
1

<210> 2
<211> 7
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> misc_feature
<222> 7
<223> n = C or T

<400> 2
tttgacn 7

<210> 3
<211> 1101
<212> DNA
<213> Arabidopsis thaliana

<400> 3
atgagaccga ttcaatcgcc tccaggagtt tccgttccgg tgaaaagccg tccccgtcgc 60
cgtcctgatc ttacctaacc gcttcctcaa cgcgatgttt ctctcgctgt acctcttcct 120
ctcccaccta cttccgggtgg ttccgggtggc tctagtggat ctgcgccgtc ttctgggtgg 180
tcggcggtttt caacgaacac taacagctcc atagaagcga agaactattc ggatttagtg 240
agaggtaacc gtatcgaaag cggagcaggtt ggaacggtat acaaagtgtat tcaccgtccg 300
agttctcgatc tatatgcact taaggtgata tacggtaacc acgaggagac tgtgagacgt 360

cagatctgta gagagatcga gatttacga gatgtgaatc atccaaacgt tgtgaaatgt 420
 cacgagatgt ttgatcagaa cggtagatc caggtttgc ttgagttat ggataaaggt 480
 tctttagaag gtgctcatgt gtggaaagag caacaattag ctgatctatc tcgtcagatt 540
 cttagtggtt tagcttatct ccatagccgt cacatagttc atcgtgatat caaaccatcg 600
 aatctttga taaaactctgc taaaaaacgtt aagattgctg attttggagt tagtaggatc 660
 ttggctcaga ctaggatcc gtgtaattca tctgttggaa ccattgcta tatgagtctt 720
 gagaggatta acactgattt gaatcagggaa aagtatgatg gttatgctgg agatatttgg 780
 agcttaggtt ttagcatttt ggagttttac ttggggaggt ttccttccc tgtgagtaga 840
 caagggtgatt gggctagtct tatgtgtgcc atttgtatgt ctcagcctcc agaagctcca 900
 gcgactgcgt cgccggagtt tcggcatttt atctcgtgtt gcttcagag agaaccgggg 960
 aaaaggagga gtgctatgca gctattgcag catccttca tattaagagc aagtccgagc 1020
 cagaacaggt ctcctcagaa tctacatcaa ctcttcctc ctcctcgtcc tctgtcctcg 1080
 tcttcttctc caaccacata g 1101

<210> 4
 <211> 366
 <212> PRT
 <213> Arabidopsis thaliana

<400> 4
 Met Arg Pro Ile Gln Ser Pro Pro Gly Val Ser Val Pro Val Lys Ser
 1 5 10 15
 Arg Pro Arg Arg Pro Asp Leu Thr Leu Pro Leu Pro Gln Arg Asp
 20 25 30
 Val Ser Leu Ala Val Pro Leu Pro Pro Thr Ser Gly Gly Ser
 35 40 45
 Gly Gly Ser Ser Gly Ser Ala Pro Ser Ser Gly Gly Ser Ala Ser Ser
 50 55 60
 Thr Asn Thr Asn Ser Ser Ile Glu Ala Lys Asn Tyr Ser Asp Leu Val
 65 70 75 80
 Arg Gly Asn Arg Ile Gly Ser Gly Ala Gly Gly Thr Val Tyr Lys Val
 85 90 95
 Ile His Arg Pro Ser Ser Arg Leu Tyr Ala Leu Lys Val Ile Tyr Gly
 100 105 110
 Asn His Glu Glu Thr Val Arg Arg Gln Ile Cys Arg Glu Ile Glu Ile
 115 120 125
 Leu Arg Asp Val Asn His Pro Asn Val Val Lys Cys His Glu Met Phe
 130 135 140
 Asp Gln Asn Gly Glu Ile Gln Val Leu Leu Glu Phe Met Asp Lys Gly
 145 150 155 160
 Ser Leu Glu Gly Ala His Val Trp Lys Glu Gln Gln Leu Ala Asp Leu
 165 170 175
 Ser Arg Gln Ile Leu Ser Gly Leu Ala Tyr Leu His Ser Arg His Ile
 180 185 190
 Val His Arg Asp Ile Lys Pro Ser Asn Leu Leu Ile Asn Ser Ala Lys
 195 200 205
 Asn Val Lys Ile Ala Asp Phe Gly Val Ser Arg Ile Leu Ala Gln Thr
 210 215 220
 Met Asp Pro Cys Asn Ser Ser Val Gly Thr Ile Ala Tyr Met Ser Pro
 225 230 235 240
 Glu Arg Ile Asn Thr Asp Leu Asn Gln Gly Lys Tyr Asp Gly Tyr Ala
 245 250 255
 Gly Asp Ile Trp Ser Leu Gly Val Ser Ile Leu Glu Phe Tyr Leu Gly
 260 265 270
 Arg Phe Pro Phe Pro Val Ser Arg Gln Gly Asp Trp Ala Ser Leu Met
 275 280 285
 Cys Ala Ile Cys Met Ser Gln Pro Pro Glu Ala Pro Ala Thr Ala Ser
 290 295 300

Pro	Glu	Phe	Arg	His	Phe	Ile	Ser	Cys	Cys	Leu	Gln	Arg	Glu	Pro	Gly
305															320
Lys	Arg	Arg	Ser	Ala	Met	Gln	Leu	Leu	Gln	His	Pro	Phe	Ile	Leu	Arg
					325				330						335
Ala	Ser	Pro	Ser	Gln	Asn	Arg	Ser	Pro	Gln	Asn	Leu	His	Gln	Leu	Leu
															340
Pro	Pro	Pro	Arg	Pro	Leu	Ser	Ser	Ser	Ser	Ser	Pro	Thr	Thr		
														355	
														360	
														365	

<210> 5
<211> 82
<212> DNA
<213> Arabidopsis thaliana

<400> 5
cttggctca gatatggatc cgtgtaatga atctgttgg aactccaacag attcattaca 60
cgatccata tcctgagcca ag 82

<210> 6
<211> 1101
<212> DNA
<213> Arabidopsis thaliana

<400> 6
atgagaccga ttcaatcgcc tccaggagtt tccgttccgg tgaaaagccg tccccgtcgc 60
cgtcctgatc ttacccattt gcttcctcaa cgcgatgttt ctctcgctgt acctcttcct 120
ctcccaccta cttccgggtgg ttccgggtgg tctagtggat ctgcgcccgtc ttctgggtgg 180
tcggcgctt caacgaacac taacagctcc atagaagcga agaactattc ggatttagtg 240
agaggtaacc gtatcggaa cggagcagg ggaacggtat acaaagtgtat tcaccgtccg 300
agttctcgtc tatatgcact taaggtgata tacggtaacc acgaggagac tgtgagacgt 360
cagatctgta gagagatcga gattttacga gatgtgaatc atccaaacgt ttgtgaaatgt 420
cacgagatgt ttgatcagaa cggtgagatc caggtttgc ttgagtttat ggataaaaggt 480
tctttagaag gtgctcatgt gtggaaagag caacaattag ctgatctatc tcgtcagatt 540
cttagtgggt tagcttatct ccatagccgt cacatagttc atcgtgatata caaaccatcg 600
aatcttttga taaaactctgc taaaaacgtt aagattgctg attttggagt tagtaggatc 660
ttggctcagg atatggatcc gtgtaatgaa tctgttggaa ccattgctta tatgatcct 720
gagaggatta acactgatTTT gaatcaggga aagtatgatg gttatgctgg agatattgg 780
agcttagtgtt ttagcatttt ggagttttac ttggggaggt ttcctttccc ttgtgataga 840
caaggtgatt gggctagtct tatgtgtgcc atttgtatgt ctcagcctcc agaagctcca 900
gchgactgcgt cggccggatTTT atctcgatgtt gcttgcagag agaaccgggg 960
aaaaggagga gtgctatgca gctattgcag catcctttca tattaagagc aagtccgagc 1020
cagaacaggt ctcctcagaa tctacatcaa ctcttgcctc ctcctcgatcc tctgtcctcg 1080
tcttcttctc caaccacata g 1101

<210> 7
<211> 366
<212> PRT
<213> Arabidopsis thaliana

<400> 7
Met Arg Pro Ile Gln Ser Pro Pro Gly Val Ser Val Pro Val Lys Ser
1 5 10 15
Arg Pro Arg Arg Pro Asp Leu Thr Leu Pro Leu Pro Gln Arg Asp
20 25 30
Val Ser Leu Ala Val Pro Leu Pro Leu Pro Pro Thr Ser Gly Gly Ser
35 40 45
Gly Gly Ser Ser Gly Ser Ala Pro Ser Ser Gly Gly Ser Ala Ser Ser

50	55	60
Thr Asn Thr Asn Ser Ser Ile Glu Ala Lys Asn Tyr Ser Asp Leu Val		
65	70	75
Arg Gly Asn Arg Ile Gly Ser Gly Ala Gly Gly Thr Val Tyr Lys Val		80
85	90	95
Ile His Arg Pro Ser Ser Arg Leu Tyr Ala Leu Lys Val Ile Tyr Gly		
100	105	110
Asn His Glu Glu Thr Val Arg Arg Gln Ile Cys Arg Glu Ile Glu Ile		
115	120	125
Leu Arg Asp Val Asn His Pro Asn Val Val Lys Cys His Glu Met Phe		
130	135	140
Asp Gln Asn Gly Glu Ile Gln Val Leu Leu Glu Phe Met Asp Lys Gly		
145	150	155
Ser Leu Glu Gly Ala His Val Trp Lys Glu Gln Gln Leu Ala Asp Leu		160
165	170	175
Ser Arg Gln Ile Leu Ser Gly Leu Ala Tyr Leu His Ser Arg His Ile		
180	185	190
Val His Arg Asp Ile Lys Pro Ser Asn Leu Leu Ile Asn Ser Ala Lys		
195	200	205
Asn Val Lys Ile Ala Asp Phe Gly Val Ser Arg Ile Leu Ala Gln Asp		
210	215	220
Met Asp Pro Cys Asn Glu Ser Val Gly Thr Ile Ala Tyr Met Ser Pro		
225	230	235
Glu Arg Ile Asn Thr Asp Leu Asn Gln Gly Lys Tyr Asp Gly Tyr Ala		240
245	250	255
Gly Asp Ile Trp Ser Leu Gly Val Ser Ile Leu Glu Phe Tyr Leu Gly		
260	265	270
Arg Phe Pro Phe Pro Val Ser Arg Gln Gly Asp Trp Ala Ser Leu Met		
275	280	285
Cys Ala Ile Cys Met Ser Gln Pro Pro Glu Ala Pro Ala Thr Ala Ser		
290	295	300
Pro Glu Phe Arg His Phe Ile Ser Cys Cys Leu Gln Arg Glu Pro Gly		
305	310	315
Lys Arg Arg Ser Ala Met Gln Leu Leu Gln His Pro Phe Ile Leu Arg		320
325	330	335
Ala Ser Pro Ser Gln Asn Arg Ser Pro Gln Asn Leu His Gln Leu Leu		
340	345	350
Pro Pro Pro Arg Pro Leu Ser Ser Ser Ser Pro Thr Thr		
355	360	365

<210> 8
<211> 1047
<212> DNA
<213> Arabidopsis thaliana

<400> 8

```

atgaaaccga ttcaatctcc ttctggagta gcttaccta tgaagaaccg tttacgcaaa 60
cgtcctgacc taagttacc actccccacac cgcgacgtcg ctctcgccgt acctctccct 120
ctccccacctc cttcttcctc ttcatccgcgt ccggcgctt cctccgcgt ctcaaccaac 180
atctccgcgcg ctaaaagctt atccgagcta gaacgagtga accgaatcgg aagcggagcc 240
ggaggaacgg tttacaaaagt aatccacact ccgacgtcac gtcctttcgc tctcaaagtg 300
atttacggaa accacgaaga taccgtgaga cgtcagatct gtagagagat cgagatctta 360
agaagtgttg atcatccaaa cgttgtgaaa tgtcacgata tggttgatca taacggtgag 420
atccaggttt tgcttgagtt tatggatcaa ggatctctg aaggagctca tatatggcaa 480
gaacaggaat tagctgatct ctctcgtag attcttagtg gattagctta tcttcatcgt 540
cgtcatatcg ttcatcgtagtca tatcaaacct tcgaatctcc ttataaaactc agctaaaaat 600
gtgaaaatttgc ctgattttgg tgtgagtagg atcttggcac aaacaatggta 660

```

tcatctgttg gtactattgc ttatatgagt cctgagagga ttaatactga tttgaatcat 720
ggtcgttacg atggtatgc tggagatgtt tggagtttag gtgttagtat cttggagttt 780
tacttgggaa ggttccctt tgctgtgagt agacaagggtg attgggctag tcttatgtgt 840
gctatggta tgtctcagcc acctgaagct ccggctacgg cgtctcagga gttcgtcac 900
tttggttctt gttgttaca gagtgatcct cctaagagat ggtcagctca acagctttg 960
cagcatcctt tcatactaa agtaccggt ggtcctaatac tccgtcaaata gttgccgccc 1020
cctcgtccctt ttcctctgc ctcttag 1047

<210> 9
<211> 348
<212> PRT
<213> Arabidopsis thaliana

<400> 9
Met Lys Pro Ile Gln Ser Pro Ser Gly Val Ala Ser Pro Met Lys Asn
1 5 10 15
Arg Leu Arg Lys Arg Pro Asp Leu Ser Leu Pro Leu Pro His Arg Asp
20 25 30
Val Ala Leu Ala Val Pro Leu Pro Leu Pro Pro Ser Ser Ser Ser
35 40 45
Ser Ala Pro Ala Ser Ser Ala Ile Ser Thr Asn Ile Ser Ala Ala
50 55 60
Lys Ser Leu Ser Glu Leu Glu Arg Val Asn Arg Ile Gly Ser Gly Ala
65 70 75 80
Gly Gly Thr Val Tyr Lys Val Ile His Thr Pro Thr Ser Arg Pro Phe
85 90 95
Ala Leu Lys Val Ile Tyr Gly Asn His Glu Asp Thr Val Arg Arg Gln
100 105 110
Ile Cys Arg Glu Ile Glu Ile Leu Arg Ser Val Asp His Pro Asn Val
115 120 125
Val Lys Cys His Asp Met Phe Asp His Asn Gly Glu Ile Gln Val Leu
130 135 140
Leu Glu Phe Met Asp Gln Gly Ser Leu Glu Gly Ala His Ile Trp Gln
145 150 155 160
Glu Gln Glu Leu Ala Asp Leu Ser Arg Gln Ile Leu Ser Gly Leu Ala
165 170 175
Tyr Leu His Arg Arg His Ile Val His Arg Asp Ile Lys Pro Ser Asn
180 185 190
Leu Leu Ile Asn Ser Ala Lys Asn Val Lys Ile Ala Asp Phe Gly Val
195 200 205
Ser Arg Ile Leu Ala Gln Thr Met Asp Pro Cys Asn Ser Ser Val Gly
210 215 220
Thr Ile Ala Tyr Met Ser Pro Glu Arg Ile Asn Thr Asp Leu Asn His
225 230 235 240
Gly Arg Tyr Asp Gly Tyr Ala Gly Asp Val Trp Ser Leu Gly Val Ser
245 250 255
Ile Leu Glu Phe Tyr Leu Gly Arg Phe Pro Phe Ala Val Ser Arg Gln
260 265 270
Gly Asp Trp Ala Ser Leu Met Cys Ala Ile Cys Met Ser Gln Pro Pro
275 280 285
Glu Ala Pro Ala Thr Ala Ser Gln Glu Phe Arg His Phe Val Ser Cys
290 295 300
Cys Leu Gln Ser Asp Pro Pro Lys Arg Trp Ser Ala Gln Gln Leu Leu
305 310 315 320
Gln His Pro Phe Ile Leu Lys Ala Thr Gly Gly Pro Asn Leu Arg Gln
325 330 335
Met Leu Pro Pro Pro Arg Pro Leu Pro Ser Ala Ser
340 345

<210> 10
 <211> 80
 <212> DNA
 <213> Arabidopsis thaliana

<400> 10
 cttggcacaa gaaatggatc cttgtaatga atctgttgtt accaacagat tcattacaag 60
 gatccatttc ttgtgccaag 80

<210> 11
 <211> 1047
 <212> DNA
 <213> Arabidopsis thaliana

<400> 11
 atgaaaaccga ttcaatctcc ttctggagta gcttcaccta tgaagaaccg tttacgcaaa 60
 cgtcctgacc taagcttacc actccccacac cgcgacgtcg ctctcgccgt acctctccct 120
 ctcccacccctc cttcttcctc ttcatccgtt ccggcgtctt cctccgcgtt ctcaaccaac 180
 atctccgccc ctaaaagctt atccgagcta gaacgagtga accgaatcg 240
 ggaggaacgg tttacaaagt aatccacact ccgacgtcac gtccttcgc tctcaaagt 300
 atttacggaa accacaaga taccgtgaga cgtcagatct gtagagagat cgagatctta 360
 agaagtgttg atcatccaaa cgttgtgaaa tgtcacgata tggttgatca taacggtgag 420
 atccaggttt tgcttgagtt tatggatcaa ggatctctt aaggagctca tatatggcaa 480
 gaacaggaat tagctgatct ctctcgtagt attcttagt gattagctta tcttcatcgt 540
 cgtcatatcg ttcatcgta tatcaaacct tcgaatctcc ttataaactc agctaaaaat 600
 gtgaaaattt ctgattttgg tgtgagtagg atcttggcac aagaaatgga tccttgaat 660
 gaatctgttg gtactattgc ttatatgagt cctgagagga ttaatactga ttgatcat 720
 ggtcgtagt atggttatgc tggagatgtt tggagtttag gtgttagtat ctggagttt 780
 tacttgggaa ggtttccctt tgctgtgagt agacaagggtg attgggctag tcttatgtgt 840
 gctatttgtt tgtctcagcc acctgaagct ccggctacgg cgtctcaggaa gtttcgtcac 900
 ttgtttctt gttgttaca gagtgtatct cctaagagat gtcagctca acagctttt 960
 cagcatccct tcatacttaa agctaccggt ggtcctaattc tccgtcaaat gttgccgccc 1020
 cctcgccctc ttccctctgc ctcttag 1047

<210> 12
 <211> 348
 <212> PRT
 <213> Arabidopsis thaliana

<400> 12
 Met Lys Pro Ile Gln Ser Pro Ser Gly Val Ala Ser Pro Met Lys Asn
 1 5 10 15
 Arg Leu Arg Lys Arg Pro Asp Leu Ser Leu Pro Leu Pro His Arg Asp
 20 25 30
 Val Ala Leu Ala Val Pro Leu Pro Leu Pro Pro Ser Ser Ser Ser
 35 40 45
 Ser Ala Pro Ala Ser Ser Ser Ala Ile Ser Thr Asn Ile Ser Ala Ala
 50 55 60
 Lys Ser Leu Ser Glu Leu Glu Arg Val Asn Arg Ile Gly Ser Gly Ala
 65 70 75 80
 Gly Gly Thr Val Tyr Lys Val Ile His Thr Pro Thr Ser Arg Pro Phe
 85 90 95
 Ala Leu Lys Val Ile Tyr Gly Asn His Glu Asp Thr Val Arg Arg Gln
 100 105 110
 Ile Cys Arg Glu Ile Glu Ile Leu Arg Ser Val Asp His Pro Asn Val
 115 120 125
 Val Lys Cys His Asp Met Phe Asp His Asn Gly Glu Ile Gln Val Leu

130	135	140
Leu Glu Phe Met Asp Gln Gly Ser Leu Glu Gly Ala His Ile Trp Gln		
145	150	155
Glu Gln Glu Leu Ala Asp Leu Ser Arg Gln Ile Leu Ser Gly Leu Ala		160
165	170	175
Tyr Leu His Arg Arg His Ile Val His Arg Asp Ile Lys Pro Ser Asn		
180	185	190
Leu Leu Ile Asn Ser Ala Lys Asn Val Lys Ile Ala Asp Phe Gly Val		
195	200	205
Ser Arg Ile Leu Ala Gln Glu Met Asp Pro Cys Asn Glu Ser Val Gly		
210	215	220
Thr Ile Ala Tyr Met Ser Pro Glu Arg Ile Asn Thr Asp Leu Asn His		
225	230	235
Gly Arg Tyr Asp Gly Tyr Ala Gly Asp Val Trp Ser Leu Gly Val Ser		240
245	250	255
Ile Leu Glu Phe Tyr Leu Gly Arg Phe Pro Phe Ala Val Ser Arg Gln		
260	265	270
Gly Asp Trp Ala Ser Leu Met Cys Ala Ile Cys Met Ser Gln Pro Pro		
275	280	285
Glu Ala Pro Ala Thr Ala Ser Gln Glu Phe Arg His Phe Val Ser Cys		
290	295	300
Cys Leu Gln Ser Asp Pro Pro Lys Arg Trp Ser Ala Gln Gln Leu Leu		
305	310	315
Gln His Pro Phe Ile Leu Lys Ala Thr Gly Gly Pro Asn Leu Arg Gln		320
325	330	335
Met Leu Pro Pro Pro Arg Pro Leu Pro Ser Ala Ser		
340	345	

<210> 13
<211> 366
<212> PRT
<213> Arabidopsis thaliana

<400> 13		
Met Arg Pro Ile Gln Ser Pro Pro Gly Val Ser Val Pro Val Lys Ser		
1	5	10
Arg Pro Arg Arg Arg Pro Asp Leu Thr Leu Pro Leu Pro Gln Arg Asp		15
20	25	30
Val Ser Leu Ala Val Pro Leu Pro Leu Pro Pro Thr Ser Gly Gly Ser		
35	40	45
Gly Gly Ser Ser Gly Ser Ala Pro Ser Ser Gly Gly Ser Ala Ser Ser		
50	55	60
Thr Asn Thr Asn Ser Ser Ile Glu Ala Lys Asn Tyr Ser Asp Leu Val		
65	70	75
Arg Gly Asn Arg Ile Gly Ser Gly Ala Gly Gly Thr Val Tyr Lys Val		80
85	90	95
Ile His Arg Pro Ser Ser Arg Leu Tyr Ala Leu Lys Val Ile Tyr Gly		
100	105	110
Asn His Glu Glu Thr Val Arg Arg Gln Ile Cys Arg Glu Ile Glu Ile		
115	120	125
Leu Arg Asp Val Asn His Pro Asn Val Val Lys Cys His Glu Met Phe		
130	135	140
Asp Gln Asn Gly Glu Ile Gln Val Leu Leu Glu Phe Met Asp Lys Gly		
145	150	155
Ser Leu Glu Gly Ala His Val Trp Lys Glu Gln Gln Leu Ala Asp Leu		160
165	170	175
Ser Arg Gln Ile Leu Ser Gly Leu Ala Tyr Leu His Ser Arg His Ile		

180	185	190
Val His Arg Asp Ile Lys Pro Ser Asn Leu Leu Ile Asn Ser Ala Lys		
195	200	205
Asn Val Lys Ile Ala Asp Phe Gly Val Ser Arg Ile Leu Ala Gln Thr		
210	215	220
Met Asp Pro Cys Asn Ser Ser Val Gly Thr Ile Ala Tyr Met Ser Pro		
225	230	235
Glu Arg Ile Asn Thr Asp Leu Asn Gln Gly Lys Tyr Asp Gly Tyr Ala		
245	250	255
Gly Asp Ile Trp Ser Leu Gly Val Ser Ile Leu Glu Phe Tyr Leu Gly		
260	265	270
Arg Phe Pro Phe Pro Val Ser Arg Gln Gly Asp Trp Ala Ser Leu Met		
275	280	285
Cys Ala Ile Cys Met Ser Gln Pro Pro Glu Ala Pro Ala Thr Ala Ser		
290	295	300
Pro Glu Phe Arg His Phe Ile Ser Cys Cys Leu Gln Arg Glu Pro Gly		
305	310	315
Lys Arg Arg Ser Ala Met Gln Leu Leu Gln His Pro Phe Ile Leu Arg		
325	330	335
Ala Ser Pro Ser Gln Asn Arg Ser Pro Gln Asn Leu His Gln Leu Leu		
340	345	350
Pro Pro Pro Arg Pro Leu Ser Ser Ser Ser Pro Thr Thr		
355	360	365

<210> 14
<211> 348
<212> PRT
<213> Arabidopsis thaliana

<400> 14			
Met Lys Pro Ile Gln Ser Pro Ser Gly Val Ala Ser Pro Met Lys Asn			
1	5	10	15
Arg Leu Arg Lys Arg Pro Asp Leu Ser Leu Pro Leu Pro His Arg Asp			
20	25	30	
Val Ala Leu Ala Val Pro Leu Pro Leu Pro Pro Ser Ser Ser Ser			
35	40	45	
Ser Ala Pro Ala Ser Ser Ala Ile Ser Thr Asn Ile Ser Ala Ala			
50	55	60	
Lys Ser Leu Ser Glu Leu Glu Arg Val Asn Arg Ile Gly Ser Gly Ala			
65	70	75	80
Gly Gly Thr Val Tyr Lys Val Ile His Thr Pro Thr Ser Arg Pro Phe			
85	90	95	
Ala Leu Lys Val Ile Tyr Gly Asn His Glu Asp Thr Val Arg Arg Gln			
100	105	110	
Ile Cys Arg Glu Ile Glu Ile Leu Arg Ser Val Asp His Pro Asn Val			
115	120	125	
Val Lys Cys His Asp Met Phe Asp His Asn Gly Glu Ile Gln Val Leu			
130	135	140	
Leu Glu Phe Met Asp Gln Gly Ser Leu Glu Gly Ala His Ile Trp Gln			
145	150	155	160
Glu Gln Glu Leu Ala Asp Leu Ser Arg Gln Ile Leu Ser Gly Leu Ala			
165	170	175	
Tyr Leu His Arg Arg His Ile Val His Arg Asp Ile Lys Pro Ser Asn			
180	185	190	
Leu Leu Ile Asn Ser Ala Lys Asn Val Lys Ile Ala Asp Phe Gly Val			
195	200	205	
Ser Arg Ile Leu Ala Gln Thr Met Asp Pro Cys Asn Ser Ser Val Gly			

210	215	220
Thr Ile Ala Tyr Met Ser Pro Glu Arg Ile Asn Thr Asp Leu Asn His		
225	230	235 240
Gly Arg Tyr Asp Gly Tyr Ala Gly Asp Val Trp Ser Leu Gly Val Ser		
245	250	255
Ile Leu Glu Phe Tyr Leu Gly Arg Phe Pro Phe Ala Val Ser Arg Gln		
260	265	270
Gly Asp Trp Ala Ser Leu Met Cys Ala Ile Cys Met Ser Gln Pro Pro		
275	280	285
Glu Ala Pro Ala Thr Ala Ser Gln Glu Phe Arg His Phe Val Ser Cys		
290	295	300
Cys Leu Gln Ser Asp Pro Pro Lys Arg Trp Ser Ala Gln Gln Leu Leu		
305	310	315 320
Gln His Pro Phe Ile Leu Lys Ala Thr Gly Gly Pro Asn Leu Arg Gln		
325	330	335
Met Leu Pro Pro Pro Arg Pro Leu Pro Ser Ala Ser		
340	345	

<210> 15
 <211> 2562
 <212> DNA
 <213> Arabidopsis thaliana

<400> 15
 tcgtccatga tggacatata ttttgcg tatttacaca caccgcacgt atgcttattt 60
 cacacgttag aagaagaatt caaaaggatc ggttcttattt gtattcttg gagatcatca 120
 atatgacaat atcgcttat taatatacgt ataattcata ttttgtcatg gtttcacata 180
 ccatgtcgac agtgcacgta cgtacaaaag tataaatagt atgaatctaa taacagcacc 240
 aagattgaag ttcatcttct aatcaaaaact atcataaaagt gtttcaaaa tagtgtttt 300
 tctgtgaaa ctataactga gttataatca atccgaaatt atataactaa ttatatttgg 360
 gaactagata aacgcaaaaa catgaggcagt ttcttatttt ttttgcacg atttaaaaatt 420
 tggagtgtta aaatatacgg agtgcac ac aatgaaaaaca caagaagtca agaaccata 480
 agttatttta attaataata ttgtatattt aagtattt aaaaataat gtaaaaaactg 540
 attatgtt gacaaaaaac agttatgtt agttaaatag tattgtatgca tatataatact 600
 atctcattat ttggtattt ctctactc acatctttaa taaagacaaa gatgttagt 660
 gtataattca aatgcactc acagaagtca ataagcgcgt aaaaatacaa aaatatctgg 720
 cagacttttag caagggttgc ttccaaacag aaatggtcat ttccaaatc ttatcatatc 780
 catatatataa gctcttaat gttatattt gggtatggg tattgttta aataattttg 840
 ttttctgttaa atttcaaata ttaatctgtt cagtttatcc atgtgtgtt atttagtgtt 900
 ttatcatcaa tatatgacat agacagactt tcaagttgtt gcaagagggg atgaaaaattt 960
 cttcccaggc gcaagagtaa gctgactgc attttttttt tataatataat ttatttctca 1020
 aatgggtttt attattgtt ttgtgacttt aagtttttgc cttttatggg actgcaatca 1080
 cccgtgc当地 cttttaatct ccatcgccata aaaaaggaaag aaaaggctac cattatggac 1140
 cggaaatattt aagaccataa tacaaaattt tacgaatattt ttctgttaact tataatattt 1200
 atcatttgc aaaaaggatc caatcaaata aacttcaaaag aaattttagt cttataataa 1260
 gtttgcattt gttaaatata atcaaattcat taaatttttgc ttttttttttgc 1320
 catttgcattt atagataaat gaaagatagc atcgccataa atgaaaaaaac ttttttttttgc 1380
 ggcaatactt tggttacatca ttctgtttt cttatattca ttttttttttgc 1440
 ttttttttttgc 1500
 ttttttttttgc 1560
 caatatttac acagcataa atcatttata caaaaaaaaaag caaaaaaaaaata gaagaagata 1620
 ttatatttttgc 1680
 aggtatccat ccctattcta tgatagaggc gtggggatc ttttttttttgc 1740
 accacaaggc ttaagatgaa gtgataatc agtatttata ataccctccc aaatttattt 1800
 taaatatttac tcaaaaaggatc cttacggat agatcataact ttttttttttgc 1860
 ttatatttac tcaatgttgc ttacgttgc cacaaggtaa gctaatagac ttacgttgc 1920
 cattaaacac atacataattt atacaaggatc catgaaacta gtttttttttgc 1980

taaagaaatt	accatgacga	caaaagataa	ttaaaaaaaaa	aactactata	tgtcatactc	2040
atgcataatgc	atgtacaaat	gccgctttaa	atatttaatt	tagttaaagc	aatgatattt	2100
aaattctctc	tacttcataat	atattccaaa	agacatattg	tcaaattct	tttttagtt	2160
atatataaattc	atataattcat	attgttatat	tttcaatatt	taatgataga	atggacttcc	2220
ctgaatgttg	tgtatgattt	ataatttgag	atattttgtc	ggagatggat	atttgacaag	2280
ttaatgttac	tttattaaaa	ttttctaaac	attnnaggat	gaattgactt	tttcaaaagt	2340
caacacaata	aattttaaaa	gtttaatgac	ttaacgggtt	cacatggaa	acgaaaacac	2400
cctaaaccac	aaacaatcta	atcttatttc	cttctttata	taaaccgcgt	tttccccaaa	2460
ggcttgttct	cgtcatatgt	acttgtacac	caaccacca	aaagagataa	aagagggaaac	2520
aaaaactcga	aaagagagag	atatatgggt	gaggtggctt	at		2562

<210> 16

<211> 2796

<212> DNA

<213> *Arabidopsis thaliana*

<400> 16

ctgacagtga acttcattgt tcaagcgagg tgagttcct attttcttc ttctccccc 60
aattaaaatt tcagggtta tgatctctag ggttaggtt ttatcttctt aaactaaacc 120
ctaaattctt ttcttcttc ttttcttgc aattccaga tgcaactgcga acgctagagg 180
aggtgtcgata tcgaagagga agogttatac aggatcatgg gaccaaaata tatcgatata 240
attcggtct ttttcttcta taccttatga gagtagaaat ttttcttctc aagagaaaaa 300
aaaaaaaaaaag aaaaaaaaaa aagaagagta gaaatttctc ttttcttctc ttaccaaca 360
agacacaaat gaaactggc caaaaggagt gtgtataatc tctgtggaga cataactaat 420
acgttgatga atttcaagaa tacttggatt atatagatta accctgactc ccttagatag 480
agatcgaaat cgggtggta ttttcttctc ttatcttctc ttatcttctc aacgtaatga 540
taaatcttaa ttatcttctc gtttttaatg gattttctc ctctaatgt aacgtaatga 600
gattttttt tttttttgt atgtttggct tgcagacccg ggtaatgaga agtttggtaa 660
gagcaaagg cactaatctc acgtaagaaa acacttttt catcaaccat gtatataatc 720
atgtcggtt acataaaccg ttttcttctc ttatcttctc ttatcttctc aattataata 780
tttttttcag actactttc aattaagcat ctttttcttctc ttatcttctc tcacaaagg 840
agagctttaa ctttttgcatt taacttataat ttatcttctc atatcatgcatt gcataaccgac 900
ttatataaat catatggta atatcttctc ttatcttctc ttatcttctc aactaaagcat 960
cttttcagat gaggttcatg caccttgcatt agaattatcg gaccagaaga tcacatcaac 1020
gttttacaaa tcaacaaaat aatccaatcc gtccaaaaaa tttggaaact gtttggaaaga 1080
ttcgaaatgt tggagcaagg atactcattt ccaatctctc agcagaatct gatatgactc 1140
atctactcat aagacttgc gagatagacc ggtacaaaac cggttccaag gtttcataat 1200
atatggatta atgttagtta ttgtggacgt ttttcttctc ttatcttctc ttatcttctc 1260
aacactaatt agttatctcc tggatgttgc ttgtggacgt ttttcttctc ttatcttctc 1320
cgcaatctg tataattttg gtttggatgttgc ttgtggacgt ttttcttctc ttatcttctc 1380
agaaagtaat ttggaaagaa aaaagggttta agaatatctt ttatcttctc ttatcttctc 1440
caaattactt cttttttttt gtttggacat ttttcttctc ttatcttctc ttatcttctc 1500
aatttaaatt aaacgcctt ttttcttctc ttatcttctc ttatcttctc ttatcttctc 1560
aaagtattag ggacgctt ttttcttctc ttatcttctc ttatcttctc ttatcttctc 1620
tcgaccttag gatcatactt caatcttctc ttatcttctc ttatcttctc ttatcttctc 1680
acatagtgac caaatttgc ttttcttctc ttatcttctc ttatcttctc ttatcttctc 1740
actatttggt tagtgattgc tagggcgtt ttttcttctc ttatcttctc ttatcttctc 1800
tagtattctt aagtaatctt cttttttttt ttttcttctc ttatcttctc ttatcttctc 1860
aaattgtatg atcatactt aatattcattt ttttcttctc ttatcttctc ttatcttctc 1920
aatatataatc tctttgatta ttttcttctc ttatcttctc ttatcttctc ttatcttctc 1980
acttagaagt cgacaaaaaa aatatttgcatt ttttcttctc ttatcttctc ttatcttctc 2040
tatataattat taaaagaaca aatatttgcatt ttttcttctc ttatcttctc ttatcttctc 2100
aaacacatcg ttggaaacttg aatatttgcatt ttttcttctc ttatcttctc ttatcttctc 2160
cctaccaatg ttggggatgtt aatatttgcatt ttttcttctc ttatcttctc ttatcttctc 2220
tcaccgtaaac acattgatatt ttttcttctc ttatcttctc ttatcttctc ttatcttctc 2280
gtgagattt ttatcttctc ttatcttctc ttatcttctc ttatcttctc ttatcttctc 2340
atagaataaa actcaaaaagg aaatttagatg ttttcttctc ttatcttctc ttatcttctc 2400
tcttqtc当地 cattqaaaa aatactatgtt ttttcttctc ttatcttctc ttatcttctc 2460

aaaaatagat tttaagtctc gttttttat gcatatagtt tcattcgctt tattagactc 2520
aaatatactt ttaataaaat tttgcagaga attaaaggta atcatttgcc aaggaaaaac 2580
catgcaaata tgcaataagt agaaataatg ttaatgagag taagcgttga catatattac 2640
gtcctggtcc gaacattctt aaagttgcgt aacactaata accttagaag atggttggtt 2700
gactatcaac atcttattga ccaaatgtt tttttttt aattataaaa cagttgtca 2760
ttgctctagc ccagagaaag cagctcaatt aagtaa 2796