Project: Predictive Analytics Capstone

Task 1: Determine Store Formats for Existing Stores

1. What is the optimal number of store formats? How did you arrive at that number?

K-Means Cluster Assessment Report					
Summary Stat	tistics				
Adjusted Rand	Indices:				
	2	3	4	5	
Minimum	-0.017008	0.071616	0.116349	0.177641	
1st Quartile	0.086202	0.287111	0.263166	0.31469	
Median	0.457611	0.374366	0.328232	0.375368	
Mean	0.394123	0.40335	0.358394	0.394509	
3rd Quartile	0.607578	0.510747	0.447002	0.45718	
Maximum	1	0.811418	0.672495	0.735269	
Calinski-Harabasz Indices:					
	2	3	4	5	
Minimum	9.056197	9.683921	9.162814	9.495153	
1st Quartile	16.705863	14.902161	13.821953	12.489711	
Median	19.749349	16.487413	14.813432	13.421335	
Mean	18.256151	16.035768	14.557953	13.356815	
3rd Quartile	20.834246	17.560295	15.777219	14.375168	
Maximum	21.878321	18.941224	17.112162	16.325684	

Analyzing with K-Centroid Diagnostics tool, seems n_clusters=3 is the best since it has enough mean adjusted rand and tight range.

2. How many stores fall into each store format?

Cluster	CountDistinctNonNull_Store
1	23
2	29
3	33

Using K-centroids cluster analysis, the final result is shown above.

3. Based on the results of the clustering model, what is one way that the clusters differ from one another?

Cluster 3 has much tighter sales range, but with higher total sales.

4. Please provide a Tableau visualization (saved as a Tableau Public file) that shows the location of the stores, uses color to show cluster, and size to show total sales.

Task 2: Formats for New Stores

1. What methodology did you use to predict the best store format for the new stores? Why did you choose that methodology? (Remember to Use a 20% validation sample with Random Seed = 3 to test differences in models.

We predict cluster using Decision Tree, Forest Model and Boosted Model. The model comparison report is shown below.

Fit and erro	or measures				
Model	Acc	curacy F1	Accuracy_1	Accuracy_	
Decision_Tree		0.7059 0.7327	0.6000	0.660	
Boosted Forest		0.8235 0.8543 0.8235 0.8251	0.8000 0.7500	0.660 0.800	
Model: model r	names in the current	comparison.			
		of correct predictions of	all classes divided by	total sample num	ber.
	2.	of Class [class name], num	•	•	
3		s predited to be Class [cla	•		
-		y available for two-class o			
			adomication.		
- I: F1 score, pre	ecision * recall / (prec	ision + recall)			
Confusion	matrix of Boo	eted			
Confusion	matrix of Boo			A-1	Actorel
Confusion		ested Actual		Actual_2	Actual_
Confusion	Predicted_1		4	0	Actual_
Confusion	Predicted_1 Predicted_2		4 0	0 4	Actual_
Confusion	Predicted_1		4	0	Actual_
	Predicted_1 Predicted_2	Actual	4 0	0 4	Actual_
	Predicted_1 Predicted_2 Predicted_3	Actual	4 0 0	0 4	
	Predicted_1 Predicted_2 Predicted_3	Actual ision_Tree	4 0 0	0 4 0	
	Predicted_1 Predicted_2 Predicted_3 matrix of Dec	Actual ision_Tree	4 0 0	0 4 0 Actual_2	
	Predicted_1 Predicted_2 Predicted_3 matrix of Dec	Actual ision_Tree	4 0 0	0 4 0 Actual_2	
Confusion	Predicted_1 Predicted_2 Predicted_3 matrix of Dec Predicted_1 Predicted_2	Actual ision_Tree Actual	4 0 0	0 4 0 Actual_2 0 4	
Confusion	Predicted_1 Predicted_2 Predicted_3 matrix of Dec Predicted_1 Predicted_2 Predicted_3	Actual ision_Tree Actual	4 0 0 0	0 4 0 Actual_2 0 4	Actual_
Confusion	Predicted_1 Predicted_2 Predicted_3 matrix of Dec Predicted_1 Predicted_2 Predicted_3	Actual ision_Tree Actual	4 0 0 0	0 4 0 Actual_2 0 4 0	Actual_
Confusion	Predicted_1 Predicted_2 Predicted_3 matrix of Dec Predicted_1 Predicted_2 Predicted_3 matrix of Fore	Actual ision_Tree Actual	4 0 0 0	0 4 0 Actual_2 0 4 0	Actual_ Actual_ Actual_

Judge from the report, the Boosted model has the high accuracy and high F1-score. Thus, we will use the Boosted model for store cluster prediction.

2. What format do each of the 10 new stores fall into? Please fill in the table below.

Store Number	Segment
S0086	1
S0087	2
S0088	3
S0089	2
S0090	2
S0091	1
S0092	2
S0093	1
S0094	2
S0095	2

Task 3: Predicting Produce Sales

1. What type of ETS or ARIMA model did you use for each forecast? Use ETS(a,m,n) or ARIMA(ar, i, ma) notation. How did you come to that decision?

First, we decomposed the time series plot. We can find that there is no obvious trend, a clear periodic seasonality and increased error element. Thus, the ETS model should be ETS(M,N,M). From the Autocorrelation plot, there is a high serial correlation and seems

to be seasonal. The PACF plot also indicates seasonal trend. The ACF plot indicates an exponential decay and sine oscillation. This indicates seasonal difference. Thus we choose ARIMA (0,1,1)(0,1,1) [12] model.

Model	ME	RMSE	MAE	MPE	MAPE	MASE
ETS	1983592.6926	2226512.5538	1983592.6926	8.4729	8.4729	1.2691
ARIMA	2878344.1382	3061362.1418	2878344.1382	12.5815	12.5815	1.8416

Judge from the comparison table above, it can be observed that ETS model has lower ME, RMSE, MASE, MPE, MAPE and MASE values. Consequently, ETS model is chosen for forecasting.

2. Please provide a table of your forecasts for existing and new stores. Also, provide visualization of your forecasts that includes historical data, existing stores forecasts, and new stores forecasts.

Year	Month	New Stores	Existing Stores
2016	1	2580411	21539936
2016	2	2494753	20413771
2016	3	2876480	24325953
2016	4	2742890	22993466
2016	5	3103562	26691951
2016	6	3124176	26989964
2016	7	3168777	26948631
2016	8	2820029	24091579
2016	9	2491912	20523492
2016	10	2442136	20011749
2016	11	2551509	21177435
2016	12	2520758	20855799

Appendix: Alteryx Workflows

Task 1

Task 2

Task 3

