

presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma

- Background
- Related Work
- Architecture
- Experiment

- Background
- Related Work
- Architecture
- Experiment

Background

- From left to right
 - Semantic segmentation
 - Single object detection
 - Multiple objects detection
 - Instance segmentation
- Video Demo: https://www.youtube.com/watch?v=OOT3UIXZztE&t=410s

Background

• The R-CNN family

- Background
- Related Work
- Architecture
- Experiment

Region-based CNN (RCNN)

Input image

- Selective Search for region of interests
- Extracts CNN features from each region independently for classification

Limitations

- Training is expensive and slow because of selective search and lack of shared computation
- Slow detection speed which is not suitable for real-time usage

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.

Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Fast R-CNN

- Share computation of convolutional layers between proposals as a result of Rol Pooling
- The system is trained end-to-end Limitations
 - The improvement in speed is not large because the region proposals are generated separately by another model

Faster R-CNN: Fast R-CNN + RPN

- Region Proposal Network (RPN) after last convolutional layer
- RPN produces region proposals directly
- Can be extended for Instance Segmentation

Limitations

 Box Classification and Regression are being done 2 times. The two stage object detection is time-consuming.

- backbone+RPN
- Parallel heads for box regression and classification
- RolAlign

Summary of R-CNN family

Instance Segmentation

Methods driven by R-CNN

- SDS [Hariharan et al, ECCV'14]
- HyperCol [Hariharan et al, CVPR'15]
- Convolutional Feature Masking (CFM) [Dai et al,CVPR'15]
- Multi-task Network Cascades (MNCs) [Dai et al,CVPR'16]

Methods driven by FCN

- InstanceCut [Kirillov et al, CVPR'17]
- Fully Convolutional Instance-aware Semantic Segmentation (FCIS) [Li et al, CVPR'17]
- Dynamically Instantiated Network (DIN)
 [Arnab & Torr, CVPR'17]

SDS FCIS

- Background
- Related Work
- Architecture
- Experiment

- Stage I
 - Region Proposal Network
- Stage II
 - Bounding Box Regression
 - Class Prediction
 - Binary Mask Prediction

- Stage I
 - Region Proposal Network
- Stage II
 - Bounding Box Regression
 - Class Prediction
 - Binary Mask Prediction

Region Proposal Network

Region Proposal Network

- Feature Extractor
 - Used to extract high-level features from a input image
 - End up with MxNxC
 - M and N are related to the size of the image
 - C is the number of kernel used
 - Note that M and N are odd numbers
- Region Proposal
 - o In the last layer of feature extractor, use a 3x3 sliding window to traverse the whole image
 - While traversing, try k anchor boxes
 - Anchor boxes can have different ratios and areas
 - Thus, the size of bounding-box regression will be 4k, and the size of class prediction will be 2k

Region Proposal Network

- Why 3x3 and odd MxN?
 - Don't want to miss information from center
- Why k anchor boxes?
 - Objects can be in different shapes, and thus by using different anchor settings we can find a better bounding-box match to the objects
- Why 2k scores and 4k coordinates?
 - 2 refers to whether background or not.
 - 4 refers to (x, y, w, h)
 - For each anchors, we predict scores and offsets, that counts for k.

Feature Extractor

- Before jumping to stage II, let's talk about feature extractor
- In this paper, the authors try two network settings (backbone)
 - ResNet
 - Feature Pyramid Network with ResNet and ResNeXt

Feature Pyramid Network

- Why pyramid?
 - Objects with different scales can fall naturally into one of the levels in the pyramid
- Why skip connections?
 - All levels are semantically strong
- Why not using it?
 - Computation cost and memory cost
- Solution
 - 1x1 convolution
- Why prediction is made in every scale?
 - To handle objects in multi-scale

- Stage I
 - Region Proposal Network
- Stage II
 - Bounding Box Regression
 - Class Prediction
 - Binary Mask Prediction

RolAlign

RolAlign

- Very first step in Stage II
- Why use RolAlign?
 - Keep the size of the feature map the same so that the same sub-network can be used to predict class, mask and regress bounding box
 - Focus on translation variance the location of the object matters
 - Avoid quantization that causes misalignment

RolAlign

- Use bilinear interpolation to sample points in one bin
 - In the right image, 4 points are sampled for each bin
- Then, perform max pooling to select a point to represent that bin

RolAlign

- RolAlign is performed on feature extractor for Stage II
- How does this feature extractor differ from the one in Stage I
 - They have exactly same structure
 - They can share weights to decrease training time
 - In this paper, the authors compare performance between model that share weights and model that does not share
 - Sharing features improves accuracy by a small margin
 - Feature sharing also reduces the testing time

Bounding Box Regression & Class Prediction

Bounding Box Regression

- Further refine the bounding box offsets to get a more accurate bounding box
- Produce 4 values
 - Top left x value
 - Top left y value
 - Width of bounding box
 - Height of bounding box

Class Prediction

• Predict label from the label set

Binary Mask Prediction

Binary Mask Prediction

- Dimension: Km²
 - K represents for class number
 - o m² represents the spatial resolution
- Mask is resized to fit the shape of the original objects

Loss Function

- $L = L_{cls} + L_{box} + L_{mask}$
- Classification Loss
 - Multiclass cross-entropy loss

- $L_{loc}(t^u, v) = \sum_{i \in \{x, y, w, h\}} \operatorname{smooth}_{L_1}(t_i^u v_i),$
- $\mathrm{smooth}_{L_1}(x) = \begin{cases} 0.5x^2 & \text{if } |x| < 1 \\ |x| 0.5 & \text{otherwise,} \end{cases}$

- Bounding Box Loss
 - Smooth L1 loss between ground-truth bounding boxes and predicted bounding boxes
 - Smooth L1 loss is a robust L1 loss that is less sensitive to outliers than the L2 loss
 - Prevent gradient explosion
- Mask Loss
 - Only defined at Kth class, where K is the class with ground-truth label
 - Defined as average binary cross-entropy loss
 - Thus, masks acrosses classes do not compete
 - Good for instance segmentation

- Background
- Related Work
- Architecture
- Experiment

Highlights from Main Results

- Major Experiments: Microsoft COCO Dataset:
 - A Dataset aims to address the question of scene understanding
 - Depict complex everyday scenes of common objects in their natural context. (91 Categories)
 - Instance segmentation with Mask
 - Object Detection Challenge (object segmentation and bounding box output)
 - Human Body Key Point Challenge
- Outperforms winners of COCO 2015 and 2016 segmentation challenges
 - FCIS and MNC
 - considered to the state-of-the-art methods
- Eliminates artifacts on overlapping instances
- Fast training and inference speed
- Can be extended to other problems:
 - Human Pose Estimation as a example

Figure 5. More results of Mask R-CNN on COCO test images, using ResNet-101-FPN and running at 5 fps, with 35.7 mask AP (Table 1).

Mask R-CNN results on COCO

kite.88 kite.82 kite.99 kite.85 ersonp&9son.96 personer. Wel-on P. 80 person1.00 handbag.80

small

objects

Mask R-CNN results on COCO

False Alerts

Metrics from COCO Dataset (Average Precision)

```
Average Precision (AP):
                       % AP at IoU=.50:.05:.95 (primary challenge metric)
  AP
  APIOU=.50
                       % AP at IoU=.50 (PASCAL VOC metric)
  APIOU=.75
                       % AP at IoU=.75 (strict metric)
AP Across Scales:
                                                                       IoU > Threshold
  APSMAIL
                       \% AP for small objects: area < 32^2
                                                                       => HIT!
  Apmedium
                       % AP for medium objects: 32^2 < area < 96^2
                                                                            Area of Overlap
  APlarge
                       % AP for large objects: area > 96^2
                                                                       IoU = -
Average Recall (AR):
                                                                            Area of Union
  ARmax=1
                       % AR given 1 detection per image
  AR<sup>max=10</sup>
                       % AR given 10 detections per image
  AR<sup>max=100</sup>
                       % AR given 100 detections per image
                                                                       AP =
AR Across Scales:
                       % AR for medium objects: 32^2 < area < 96^2 \frac{\#IP(c)}{\#IP(c) + \#IP(c)}
  ARsmall
  ARmedium
  ARlarge
                       % AR for large objects: area > 96^2
```

Majorly used for experiment analysis

Instance Segmentation Results on COCO(test-dev)

	backbone	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
MNC [10]	ResNet-101-C4	24.6	44.3	24.8	4.7	25.9	43.6
FCIS [26] +OHEM	ResNet-101-C5-dilated	29.2	49.5	-	7.1	31.3	50.0
FCIS+++ [26] +OHEM	ResNet-101-C5-dilated	33.6	54.5	-	-	-	-
Mask R-CNN	ResNet-101-C4	33.1	54.9	34.8	12.1	35.6	51.1
Mask R-CNN	ResNet-101-FPN	35.7	58.0	37.8	15.5	38.1	52.4
Mask R-CNN	ResNeXt-101-FPN	37.1	60.0	39.4	16.9	39.9	53.5

Bell and Whistles: multi-scale train/test, horizontal flip test, and online hard example mining (OHEM)

Ablation Experiments

- Change of the backbone networks structures
 - various ResNet CNN + (Conv4 or FPN)
 - Best AP result with ResNeXt
- Class-Specific vs. Class-Agnostic Masks
 - Nearly as effective for agnostic mask
- Multinomial vs. Independent Masks
 - Multinomial Masks raises a severe loss
 - Enough to use the result from cls layer for class labeling
- Rol Pooling vs. Rol align
 - Rol align reduces the information loss in resizing and significantly improves AP
- MLP vs FCN
 - MLP cannot perform as good to capture the spatial layout of the mask

Ablation: Backbone and Mask size per class

Backbone

 Not all frameworks automatically benefit from deeper or advanced networks

net-depth-features	AP	AP_{50}	AP_{75}
ResNet-50-C4	30.3	51.2	31.5
ResNet-101-C4	32.7	54.2	34.3
ResNet-50-FPN	33.6	55.2	35.3
ResNet-101-FPN	35.4	57.3	37.5
ResNeXt-101-FPN	36.7	59.5	38.9

Class-Specific vs. Class-Agnostic Masks

- Default instantiation predicts specific masks (m x m per class)
- Agnostic mask: (m x m in <u>regardless</u> of the class)
- As effectiveness for agnostic mask
- o On ResNet-50-C4:
 - **29.7** (agnostic) vs **30.3** (specific)
 - Nearly as effective

Ablation: Multinomial vs Independent Mask

Multinomial vs. Independent Masks

 multinomial: mask competing among classes (softmax)

box classification is sufficient to predict

binary mask (sigmoid)

	AP	AP_{50}	AP_{75}
softmax	24.8	44.1	25.1
sigmoid	30.3	51.2	31.5
	+5.5	+7.1	+6.4

Ablation: Rol Pooling vs Rol Align

RolPool vs. RolAlign (one of the distinguished contribution of the paper)

baseline: ResNet-50-Conv5 backbone, stride=32

	mask AP			box AP			
	AP	AP_{50}	AP ₇₅	AP ^{bb}	$\mathrm{AP_{50}^{bb}}$	$\mathrm{AP^{bb}_{75}}$	
RoIPool	23.6	46.5	21.6	28.2	52.7	26.9	
RoIAlign	30.9	51.8	32.1	34.0	55.3	36.4	
	+7.3	+ 5.3	+10.5	+5.8	+2.6	+9.5	
				,			

nice box AP without dilation/upsampling

Ablation: MLP vs FCN

- MultiLayer Perceptron vs. Fully Convolutional Network
 - Fully Convolutional Networks improves results as they take advantage of explicit encoding spatial layout

MLP: lose "place-coded" info, too abstract

	mask branch	AP	AP_{50}	AP_{75}	
MLP	fc: $1024 \rightarrow 1024 \rightarrow 80.28^2$	31.5	53.7	32.8	'
MLP	fc: $1024 \rightarrow 1024 \rightarrow 1024 \rightarrow 80.28^2$	31.5	54.0	32.6	
FCN	conv: $256 \rightarrow 256 \rightarrow 256 \rightarrow 256 \rightarrow 256 \rightarrow 80$	33.6	55.2	35.3	

FCN: translation-equivariant

Bounding Box Results

	backbone	AP ^{bb}	AP_{50}^{bb}	AP_{75}^{bb}	AP_S^{bb}	$\mathrm{AP}^{\mathrm{bb}}_{M}$	$\mathrm{AP}^{\mathrm{bb}}_{L}$
Faster R-CNN+++ [19]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [27]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [21]	Inception-ResNet-v2 [41]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [39]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
Faster R-CNN, RoIAlign	ResNet-101-FPN	37.3	59.6	40.3	19.8	40.2	48.8
Mask R-CNN	ResNet-101-FPN	38.2	60.3	41.7	20.1	41.1	50.2
Mask R-CNN	ResNeXt-101-FPN	39.8	62.3	43.4	22.1	43.2	51.2

- Rol Align
- Rol Align + Multi-task training w/ mask

Timing (ResNet-101-FPN model)

Inference:

- 4-step training of Faster R-CNN
- 195 ms per image on single Nvidia Tesla M40 GPU
- 15 ms per image for CPU resizing
- Not the most optimized method in regard of inference speed, but still very fast
- (resizing images, toggling the number of proposed regions)

• Training:

- Fast to train
- COCO trainval35k
- Synchronized 8-GPU configuration
- 44 hours of training time

Extension: Human Keypoint Detection

- COCO Keypoint Detection (2nd Challeng from COCO dataset)
 - localization of person keypoints in challenging, uncontrolled conditions
 - simultaneously detect body location and keypol
- Implementation of Mask R-CNN
 - o 1 keypoint = 1 'hot' mask (m x m)
 - Human pose (17 keypoints) => 17 Masks
 - Training:
 - m^2 softmax over spatial location
 - encourage 1 point detection

Extension: Human Keypoint Detection Result

 AP_{50}^{kp}

84.9

84.0

87.0

87.3

 AP^{kp}

61.8

62.4

62.7

63.1

- CMU-Pose+++(COCO 2015 Winner)
- G-RMI (COCO 2016 Winner)

CMU-Pose+++ [6]

Mask R-CNN, keypoint-only

Mask R-CNN, keypoint & mask

G-RMI [32][†]

B	OST B		DESUP SOUP SO
AP^{kp}_{75}	AP^{kp}_M	AP^{kp}_L	
67.5	57.1	68.2	TOTAL PROPERTY OF THE PERSON O
68.5	59.1	68.1	
68.4	57.4	71.1	
68.7	57.8	71.4	

Experiments on Cityscapes

- Mask R-CNN with ResNet-FPN-50 backbone
- Better result is achieved with the pre-trained model on COCO and then fine-tuned for the Cityscapes data
- Demonstrate the real world application effectiveness

person	rider	car	truck	bus	train	mcycle	bicycle
17.9k	1.8k	26.9k	0.5k	0.4k	0.2k	0.7k	3.7k

Summary

- Mask R-CNN Advantages
 - Good Inference Speed
 - Good Accuracy
 - o Intuitive and easy to implement
 - Extension Capability
- Limitations:
 - False alerts
 - Missing labels

Questions?

Thank you very much!

Reference

- S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In TPAMI, 2017.
- R. Girshick, "Fast R-CNN," in IEEE International Conference on Computer Vision (ICCV), 2015.
- Stanford slides Fei Fei Li & Andrej Karpathy & Justin Johnson
- https://lilianweng.github.io/lil-log/2017/12/31/object-recognition-for-dummies-part-3.html
- http://kaiminghe.com/iccv17tutorial/maskrcnn_iccv2017_tutorial_kaiminghe.pdf
- K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask ´R-CNN. arXiv:1703.06870, 2017.
- S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 2015.