2022-July Session-07-27-2022-shift-1

AI24BTECH11006 - Bugada Roopansha

I. SECTION - A

- 1) Let R_1 and R_2 be two relations defined on \mathbb{R} , defined as follows: $aR_1b \iff ab \ge 0$ and $aR_2b \iff a \ge b$. Then,
 - a) R_1 is an equivalence relation but not R_2
 - b) R_2 is an equivalence relation but not R_1
 - c) Both R_1 and R_2 are equivalence relation
 - d) Neither R_1 and R_2 are equivalence relation
- 2) Let $f, g : \mathbb{N} = \{1\} \to \mathbb{N}$ be functions defined by f(a) = a, where a is the maximum of the powers of those primes p such that p^a divides a, and g(a) = a + 1, for all $a \in N - \{1\}$. Then the function f+g is
 - a) One-one but not onto
 - b) Onto but not one-one
 - c) Both one-one and onto
 - d) Neither one-one nor onto
- 3) Let the minimum value v_0 of $v = |z|^2 + |z 3|^2 +$ $|z - 6i|^2$, $z \in \mathbb{C}$ is attained at $z = z_0$. Then $|2z_0^2 - \bar{z}_0^3 + 3|^2 + v_0^2$ is equal to
 - a) 1000
 - b) 1024
 - c) 1105
 - d) 1196
- 4) Let $A = \begin{pmatrix} 1 & 2 \\ -2 & -5 \end{pmatrix}$. Let $\alpha, \beta \in \mathbb{R}$ be such that $\alpha A^2 + \beta A = 2I$. Then $\alpha + \beta$ is equal to
 - a) -10
 - b) -6
 - c) 6
 - d) 10
- 5) The remainder when $(2021)^{2022} + (2022)^{2021}$ is divided by 7 is
 - a) 0
 - b) 1
 - c) 2
 - d) 6
- 6) Suppose $a_1, a_2, \ldots, a_n, \ldots$ be an arithmetic progression of natural numbers. If the ration of the sum of first five terms to the sum of first nine terms of the progression is 5 : 17 and 110 $< a_{15}$

<120, then the sum of the first ten terms of the progression is equal to

- a) 290
- b) 380
- c) 460
- d) 510
- 7) Let $\mathbb{R} \to \mathbb{R}$ be function defined as f(x) = $a \sin\left(\frac{\pi[x]}{2}\right) + [2-x], a \in \mathbb{R}$ where [t] is the greatest integer less than or equal to t. If $\lim_{x\to 1} f(x)$ exists, then the value of $\int_0^4 f(x) dx$ is equal to
 - a) -1
 - b) -2
 - c) 1
 - d) 2
- 8) Let $I = \int_{\pi/4}^{\pi/3} \left(\frac{8 \sin x \sin 2x}{x}\right) dx$ Then a) $\frac{\pi}{2} < I < \frac{3\pi}{4}$ b) $\frac{\pi}{5} < I < \frac{5\pi}{12}$ c) $\frac{5\pi}{4} < I < \pi$ d) $\frac{3\pi}{4} < I < \pi$
- 9) The area of the smaller region enclosed by the curves $y^2 = 8x + 4$ and $x^2 + y^2 + 4\sqrt{3}x - 4 = 0$ is equal to
 - a) $\frac{1}{3} (2 12\sqrt{3} + 8\pi)$
 - b) $\frac{1}{3} (2 12\sqrt{3} + 6\pi)$ c) $\frac{1}{3} (4 12\sqrt{3} + 8\pi)$

 - d) $\frac{1}{3} \left(4 12 \sqrt{3} + 6\pi \right)$
- 10) Let $y = y_1(x)$ and $y = y_2(x)$ be two distinct solution of the differential equation $\frac{dy}{dx} = x + y$, with $y_1(0) = 0$ and $y_2(0) = 1$ respectively. Then, the number of points of intersection of $y = y_1(x)$ and $y = y_2(x)$ is
 - a) 0
 - b) 1
 - c) 2
 - d) 3
- 11) Let P(a, b) be a point on the parabola $y^2 = 8x$ such that the tangent at P passes through the centre of the circle $x^2 + y^2 - 10x - 14y + 65 = 0$. Let A be the product of all possible values of

a and B be the product of all possible values of b. Then the value of A + B is equal to

- a) 0
- b) 25
- c) 40
- d) 65
- 12) Let $\mathbf{a} = \alpha \hat{i} + \hat{j} + \beta \hat{k}$ and $\mathbf{b} = 3\hat{i} + 5\hat{j} + 4\hat{k}$ be two vectors, such that $\mathbf{a} \times \mathbf{b} = -\hat{i} + 9\hat{j} + 12\hat{k}$. Then the projection of $\mathbf{b} - 2\mathbf{a}$ on $\mathbf{b} + \mathbf{a}$ is equal to
 - a) 2
 - b) $\frac{39}{5}$ c) 9

 - d) $\frac{46}{5}$
- 13) Let $\mathbf{a} = 2\hat{i} \hat{j} + 5\hat{k}$ and $\mathbf{b} = \alpha\hat{i} + \beta\hat{j} + 2\hat{k}$. If $\left((\mathbf{a} \times \mathbf{b}) \times \hat{i} \right) \cdot \hat{k} = \frac{23}{2}$, then $\left| \mathbf{b} \times 2\hat{j} \right|$ is equal to
 - a) 4
 - b) 5
 - c) $\sqrt{21}$
 - d) $\sqrt{17}$
- 14) Let S be the sample space of all five digit numbers. It p is the probability that a randomly selected number from S, is multiple of 7 but not divisible by 5, then 9p is equal to
 - a) 1.0146
 - b) 1.2085
 - c) 1.0285
 - d) 1.1521
- 15) Let a vertical tower AB of height 2h stands on a horizontal ground. Let from a point P on the ground a man can see upto height h of the tower with an angle of elevation 2α . When from P, he moves a distance d in the direction of \overrightarrow{AP} he can see the top B of the tower with an angle of elevation α . if $d = \sqrt{7} h$, then $\tan \alpha$ is equal to
 - a) $\sqrt{5} 2$
 - b) $\sqrt{3} 1$
 - c) $\sqrt{7} 2$
 - d) $\sqrt{7} \sqrt{3}$