Massively Multilingual Neural Machine Translation

Roee Aharoni NLP Lab, Bar Ilan University

Joint work with Melvin Johnson, Orhan Firat Google Translate

DL Course

 "Since thinking in terms of machines might perhaps be difficult for the reader, let him imagine an utterly moronic student without the slightest knowledge of either the source-language or the target-language..." Bar Hillel, 1953

- "Since thinking in terms of machines might perhaps be difficult for the reader, let him imagine an utterly moronic student without the slightest knowledge of either the source-language or the target-language..." Bar Hillel, 1953
- Yehoshua Bar Hillel from the Hebrew University/MIT was the first academic to work full-time on Machine Translation. He organized the first "International Conference on Machine Translation" in 1952. (He also fought with the Haganah, losing an eye)

- "Since thinking in terms of machines might perhaps be difficult for the reader, let him imagine an utterly moronic student without the slightest knowledge of either the source-language or the target-language..." Bar Hillel, 1953
- Yehoshua Bar Hillel from the Hebrew University/MIT was the first academic to work full-time on Machine Translation. He organized the first "International Conference on Machine Translation" in 1952. (He also fought with the Haganah, losing an eye)
- Wer'e trying to make computers translate for more than 70 years!

 Bernard Vauquois has been one of the pioneers of machine translation from 1960 until his death in 1985.

- Bernard Vauquois has been one of the pioneers of machine translation from 1960 until his death in 1985.
- He is known for the "Vauquois Triangle" which described possible pipelines for (rule-based) MT

- Bernard Vauquois has been one of the pioneers of machine translation from 1960 until his death in 1985.
- He is known for the "Vauquois Triangle" which described possible pipelines for (rule-based) MT
- Proposed an "Interlingua" stage which can be shared between multiple languages

- Bernard Vauquois has been one of the pioneers of machine translation from 1960 until his death in 1985.
- He is known for the "Vauquois Triangle" which described possible pipelines for (rule-based) MT
- Proposed an "Interlingua" stage which can be shared between multiple languages

• We want to find the best translation **f** given a source sentence **e**:

• We want to find the best translation **f** given a source sentence **e**:

```
e = (Economic, growth, has, slowed, down, in, recent, years, .)
```

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

We want to find the best translation f given a source sentence e:

e = (Economic, growth, has, slowed, down, in, recent, years, .)

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

$$f = \underset{f'}{\operatorname{argmax}} p(f'|e)$$

We want to find the best translation f given a source sentence e:

e = (Economic, growth, has, slowed, down, in, recent, years, .)

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

$$f = \operatorname*{argmax}_{f'} p(f'|e)$$

• How do we estimate p(f'|e) from data?

We want to find the best translation f given a source sentence e:

e = (Economic, growth, has, slowed, down, in, recent, years, .)

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

$$f = \operatorname*{argmax}_{f'} p(f'|e)$$

- How do we estimate p(f'|e) from data?
- First, lets recap on...

• "Horizontally deep" architecture

- "Horizontally deep" architecture
- Recurrence equations:

- "Horizontally deep" architecture
- Recurrence equations:
 - Transition function: $h_t = H(h_{t-1}, x_t) = tanh(Wx_t + Uh_{t-1} + b)$

- "Horizontally deep" architecture
- Recurrence equations:
 - Transition function: $h_t = H(h_{t-1}, x_t) = tanh(Wx_t + Uh_{t-1} + b)$
 - Output function: $y_t = Y(h_t)$

- "Horizontally deep" architecture
- Recurrence equations:
 - Transition function: $h_t = H(h_{t-1}, x_t) = tanh(Wx_t + Uh_{t-1} + b)$
 - Output function: $y_t = Y(h_t)$
 - How can we predict a sentence with an RNN?

• Enables to output a **probability distribution** over **k possible classes** (words, in our case)

- Enables to output a probability distribution over k possible classes (words, in our case)
- y_i (the network output vector in position i) is expected to hold the log-likelihood (probability) for a specific class (in our case, word):

$$p(x=i) = rac{e^{y_i}}{\sum\limits_{j=1}^k e^{y_j}}$$

- Enables to output a probability distribution over k possible classes (words, in our case)
- y_i (the network output vector in position i) is expected to hold the log-likelihood (probability) for a specific class (in our case, word):

$$p(x=i) = \frac{e^{y_i}}{\sum\limits_{j=1}^k e^{y_j}} \quad \text{ aardvark Bernanke } \dots \quad \text{Rosenthal Yellen zebra} \\ \dots \\ \dots \\ \dots \\ \dots \\ \dots$$

 The network's loss function is usually the sum of negative log softmax values for the correct sequence

Inspired by RNN language modeling

- Inspired by RNN language modeling
- First (modern) models for NMT presented by Kalchbrenner et. al. 2013, Sutskever et al., 2014, Cho et al., 2014

- Inspired by RNN language modeling
- First (modern) models for NMT presented by Kalchbrenner et. al. 2013, Sutskever et al., 2014, Cho et al., 2014
- 2 RNN's, one for "reading" the input and one for "writing" the output (a.k.a the encoder-decoder architecture)

- Inspired by RNN language modeling
- First (modern) models for NMT presented by Kalchbrenner et. al. 2013, Sutskever et al., 2014, Cho et al., 2014
- 2 RNN's, one for "reading" the input and one for "writing" the output (a.k.a the encoder-decoder architecture)

- Inspired by RNN language modeling
- First (modern) models for NMT presented by Kalchbrenner et. al. 2013, Sutskever et al., 2014, Cho et al., 2014
- 2 RNN's, one for "reading" the input and one for "writing" the output (a.k.a the encoder-decoder architecture)

- Inspired by RNN language modeling
- First (modern) models for NMT presented by Kalchbrenner et. al. 2013, Sutskever et al., 2014, Cho et al., 2014
- 2 RNN's, one for "reading" the input and one for "writing" the output (a.k.a the encoder-decoder architecture)

- Inspired by RNN language modeling
- First (modern) models for NMT presented by Kalchbrenner et. al. 2013, Sutskever et al., 2014, Cho et al., 2014
- 2 RNN's, one for "reading" the input and one for "writing" the output (a.k.a the encoder-decoder architecture)

- Inspired by RNN language modeling
- First (modern) models for NMT presented by Kalchbrenner et. al. 2013, Sutskever et al., 2014, Cho et al., 2014
- 2 RNN's, one for "reading" the input and one for "writing" the output (a.k.a the encoder-decoder architecture)

- Inspired by RNN language modeling
- First (modern) models for NMT presented by Kalchbrenner et. al. 2013, Sutskever et al., 2014, Cho et al., 2014
- 2 RNN's, one for "reading" the input and one for "writing" the output (a.k.a the encoder-decoder architecture)

- Inspired by RNN language modeling
- First (modern) models for NMT presented by Kalchbrenner et. al. 2013, Sutskever et al., 2014, Cho et al., 2014
- 2 RNN's, one for "reading" the input and one for "writing" the output (a.k.a the encoder-decoder architecture)

Encoder

- Inspired by RNN language modeling
- First (modern) models for NMT presented by Kalchbrenner et. al. 2013, Sutskever et al., 2014, Cho et al., 2014
- 2 RNN's, one for "reading" the input and one for "writing" the output (a.k.a the encoder-decoder architecture)

Encoder

- Inspired by RNN language modeling
- First (modern) models for NMT presented by Kalchbrenner et. al. 2013, Sutskever et al., 2014, Cho et al., 2014
- 2 RNN's, one for "reading" the input and one for "writing" the output (a.k.a the encoder-decoder architecture)

Encoder

- Inspired by RNN language modeling
- First (modern) models for NMT presented by Kalchbrenner et. al. 2013, Sutskever et al., 2014, Cho et al., 2014
- 2 RNN's, one for "reading" the input and one for "writing" the output (a.k.a the encoder-decoder architecture)

Encoder

- Inspired by RNN language modeling
- First (modern) models for NMT presented by Kalchbrenner et. al. 2013, Sutskever et al., 2014, Cho et al., 2014
- 2 RNN's, one for "reading" the input and one for "writing" the output (a.k.a the encoder-decoder architecture)

Encoder

- Inspired by RNN language modeling
- First (modern) models for NMT presented by Kalchbrenner et. al. 2013, Sutskever et al., 2014, Cho et al., 2014
- 2 RNN's, one for "reading" the input and one for "writing" the output (a.k.a the encoder-decoder architecture)

Encoder

- Inspired by RNN language modeling
- First (modern) models for NMT presented by Kalchbrenner et. al. 2013, Sutskever et al., 2014, Cho et al., 2014
- 2 RNN's, one for "reading" the input and one for "writing" the output (a.k.a the encoder-decoder architecture)

Encoder

- Inspired by RNN language modeling
- First (modern) models for NMT presented by Kalchbrenner et. al. 2013, Sutskever et al., 2014, Cho et al., 2014
- 2 RNN's, one for "reading" the input and one for "writing" the output (a.k.a the encoder-decoder architecture)

Encoder

- Inspired by RNN language modeling
- First (modern) models for NMT presented by Kalchbrenner et. al. 2013, Sutskever et al., 2014, Cho et al., 2014
- 2 RNN's, one for "reading" the input and one for "writing" the output (a.k.a the encoder-decoder architecture)

Encoder

- Inspired by RNN language modeling
- First (modern) models for NMT presented by Kalchbrenner et. al. 2013, Sutskever et al., 2014, Cho et al., 2014
- 2 RNN's, one for "reading" the input and one for "writing" the output (a.k.a the encoder-decoder architecture)

Encoder

$$y = y_1...y_N$$

$$y = y_1...y_N$$

$$p(y|x) = p(y_1|x)p(y_2|y_1,x)p(y_3|y_1,y_2,x)\dots p(y_N|y_1...y_{N-1},x)$$

$$y = y_1...y_N$$

$$p(y|x) = p(y_1|x)p(y_2|y_1,x)p(y_3|y_1,y_2,x)\dots p(y_N|y_1...y_{N-1},x)$$

$$p(y_i = word_k | y_{< i}, x) = softmax_k(NN_{\Theta}(y_{< i}, x))$$

"chat"

input symbol embedding

le

1-hot vec for symbol at time t

embedding size

input vocabulary size

The problem with "vanilla" seq2seq

"You can't cram the meaning of a whole %&!\$# sentence into a single \$&!#* vector!" Ray Mooney

Instead of using a single vector as a fixed representation of the input sequence,
 "attend" at each step to the relevant parts of the input

- Instead of using a single vector as a fixed representation of the input sequence,
 "attend" at each step to the relevant parts of the input
- The "relevance" of each input element to the current prediction is computed via a feed-forward network that gets the input element and the current decoder state

- Instead of using a single vector as a fixed representation of the input sequence,
 "attend" at each step to the relevant parts of the input
- The "relevance" of each input element to the current prediction is computed via a feed-forward network that gets the input element and the current decoder state
- Coined as "Resolution Preserving" longer sequences get longer representations

- Instead of using a single vector as a fixed representation of the input sequence,
 "attend" at each step to the relevant parts of the input
- The "relevance" of each input element to the current prediction is computed via a feed-forward network that gets the input element and the current decoder state
- Coined as "Resolution Preserving" longer sequences get longer representations

- Instead of using a single vector as a fixed representation of the input sequence,
 "attend" at each step to the relevant parts of the input
- The "relevance" of each input element to the current prediction is computed via a feed-forward network that gets the input element and the current decoder state
- Coined as "Resolution Preserving" longer sequences get longer representations

- Instead of using a single vector as a fixed representation of the input sequence,
 "attend" at each step to the relevant parts of the input
- The "relevance" of each input element to the current prediction is computed via a feed-forward network that gets the input element and the current decoder state
- Coined as "Resolution Preserving" longer sequences get longer representations

- Instead of using a single vector as a fixed representation of the input sequence,
 "attend" at each step to the relevant parts of the input
- The "relevance" of each input element to the current prediction is computed via a feed-forward network that gets the input element and the current decoder state
- Coined as "Resolution Preserving" longer sequences get longer representations

- Instead of using a single vector as a fixed representation of the input sequence,
 "attend" at each step to the relevant parts of the input
- The "relevance" of each input element to the current prediction is computed via a feed-forward network that gets the input element and the current decoder state
- Coined as "Resolution Preserving" longer sequences get longer representations

- Instead of using a single vector as a fixed representation of the input sequence,
 "attend" at each step to the relevant parts of the input
- The "relevance" of each input element to the current prediction is computed via a feed-forward network that gets the input element and the current decoder state
- Coined as "Resolution Preserving" longer sequences get longer representations

- Instead of using a single vector as a fixed representation of the input sequence,
 "attend" at each step to the relevant parts of the input
- The "relevance" of each input element to the current prediction is computed via a feed-forward network that gets the input element and the current decoder state
- Coined as "Resolution Preserving" longer sequences get longer representations

- Instead of using a single vector as a fixed representation of the input sequence,
 "attend" at each step to the relevant parts of the input
- The "relevance" of each input element to the current prediction is computed via a feed-forward network that gets the input element and the current decoder state
- Coined as "Resolution Preserving" longer sequences get longer representations

- Instead of using a single vector as a fixed representation of the input sequence,
 "attend" at each step to the relevant parts of the input
- The "relevance" of each input element to the current prediction is computed via a feed-forward network that gets the input element and the current decoder state
- Coined as "Resolution Preserving" longer sequences get longer representations

- Instead of using a single vector as a fixed representation of the input sequence,
 "attend" at each step to the relevant parts of the input
- The "relevance" of each input element to the current prediction is computed via a feed-forward network that gets the input element and the current decoder state
- Coined as "Resolution Preserving" longer sequences get longer representations

- Instead of using a single vector as a fixed representation of the input sequence,
 "attend" at each step to the relevant parts of the input
- The "relevance" of each input element to the current prediction is computed via a feed-forward network that gets the input element and the current decoder state
- Coined as "Resolution Preserving" longer sequences get longer representations

- Instead of using a single vector as a fixed representation of the input sequence, "attend" at each step to the relevant parts of the input
- The "relevance" of each input element to the current prediction is computed via a feed-forward network that gets the input element and the current decoder state
- Coined as "Resolution Preserving" longer sequences get longer representations

- Instead of using a single vector as a fixed representation of the input sequence,
 "attend" at each step to the relevant parts of the input
- The "relevance" of each input element to the current prediction is computed via a feed-forward network that gets the input element and the current decoder state
- Coined as "Resolution Preserving" longer sequences get longer representations

Bi-Directional Encoder

- Instead of using a single vector as a fixed representation of the input sequence,
 "attend" at each step to the relevant parts of the input
- The "relevance" of each input element to the current prediction is computed via a feed-forward network that gets the input element and the current decoder state
- Coined as "Resolution Preserving" longer sequences get longer representations

- Instead of using a single vector as a fixed representation of the input sequence,
 "attend" at each step to the relevant parts of the input
- The "relevance" of each input element to the current prediction is computed via a feed-forward network that gets the input element and the current decoder state
- Coined as "Resolution Preserving" longer sequences get longer representations

Bi-Directional Encoder

- Instead of using a single vector as a fixed representation of the input sequence, "attend" at each step to the relevant parts of the input
- The "relevance" of each input element to the current prediction is computed via a feed-forward network that gets the input element and the current decoder state
- Coined as "Resolution Preserving" longer sequences get longer representations

- Instead of using a single vector as a fixed representation of the input sequence,
 "attend" at each step to the relevant parts of the input
- The "relevance" of each input element to the current prediction is computed via a feed-forward network that gets the input element and the current decoder state
- Coined as "Resolution Preserving" longer sequences get longer representations

And a bit more formally - in each decoder step:

- And a bit more formally in each decoder step:
 - Compute attention scores for each input element:

$$\operatorname{score}(\boldsymbol{h}_t, \bar{\boldsymbol{h}}_s) = \operatorname{tanh}(\boldsymbol{W_a}[\boldsymbol{h}_t; \bar{\boldsymbol{h}}_s])$$

- And a bit more formally in each decoder step:
 - Compute attention scores for each input element:

$$\operatorname{score}(\boldsymbol{h}_t, \bar{\boldsymbol{h}}_s) = \operatorname{tanh}(\boldsymbol{W_a}[\boldsymbol{h}_t; \bar{\boldsymbol{h}}_s])$$

Normalize the attention scores so they sum up to 1:

$$m{a}_t(s) = ext{align}(m{h}_t, ar{m{h}}_s) = rac{\exp\left(ext{score}(m{h}_t, ar{m{h}}_s)
ight)}{\sum_{s'} \exp\left(ext{score}(m{h}_t, ar{m{h}}_{s'})
ight)}$$

- And a bit more formally in each decoder step:
 - Compute attention scores for each input element:

$$\operatorname{score}(\boldsymbol{h}_t, \bar{\boldsymbol{h}}_s) = \tanh(\boldsymbol{W}_{\boldsymbol{a}}[\boldsymbol{h}_t; \bar{\boldsymbol{h}}_s])$$

Normalize the attention scores so they sum up to 1:

$$m{a}_t(s) = ext{align}(m{h}_t, ar{m{h}}_s) = rac{\exp\left(ext{score}(m{h}_t, ar{m{h}}_s)
ight)}{\sum_{s'} \exp\left(ext{score}(m{h}_t, ar{m{h}}_{s'})
ight)}$$

Compute ct:

$$c_t = \sum_{j=1}^{T_x} a_j \bar{h}_j$$

- And a bit more formally in each decoder step:
 - Compute attention scores for each input element:

$$\operatorname{score}(\boldsymbol{h}_t, \bar{\boldsymbol{h}}_s) = \operatorname{tanh}(\boldsymbol{W_a}[\boldsymbol{h}_t; \bar{\boldsymbol{h}}_s])$$

Normalize the attention scores so they sum up to 1:

$$m{a}_t(s) = ext{align}(m{h}_t, ar{m{h}}_s) = rac{\exp\left(ext{score}(m{h}_t, ar{m{h}}_s)
ight)}{\sum_{s'} \exp\left(ext{score}(m{h}_t, ar{m{h}}_{s'})
ight)}$$

Compute ct:

$$c_t = \sum_{j=1}^{T_x} a_j \bar{h}_j$$

Compute attention output state:

$$ilde{m{h}}_t = anh(m{W_c}[m{c}_t;m{h}_t])$$

- And a bit more formally in each decoder step:
 - Compute attention scores for each input element:

$$\operatorname{score}(\boldsymbol{h}_t, \bar{\boldsymbol{h}}_s) = \tanh(\boldsymbol{W}_{\boldsymbol{a}}[\boldsymbol{h}_t; \bar{\boldsymbol{h}}_s])$$

Normalize the attention scores so they sum up to 1:

$$m{a}_t(s) = ext{align}(m{h}_t, ar{m{h}}_s) = rac{\exp\left(ext{score}(m{h}_t, ar{m{h}}_s)
ight)}{\sum_{s'} \exp\left(ext{score}(m{h}_t, ar{m{h}}_{s'})
ight)}$$

Compute ct:

$$c_t = \sum_{j=1}^{T_x} a_j \bar{h}_j$$

Compute attention output state:

$$ilde{m{h}}_t = anh(m{W_c}[m{c}_t;m{h}_t])$$

• Compute output probability distribution:

$$p(y_t|y_{< t}, x) = \operatorname{softmax}(\boldsymbol{W_s}\tilde{\boldsymbol{h}}_t)$$

Decoding with Beam Search

- Instead of keeping one best option on each time step, keep k best options which are updated as-you-go
- Usually a small beam size is enough (5-12)

Greedy Search

Beam Search (k=2)

Decoding with Beam Search

BLEU by Sentence Length - No Attention

 Long sentences are very hard as they are "compressed" to a fixed length vector

BLEU by Sentence Length - With Attention

The attention mechanism overcomes the issue

Results - With Attention

 The model learns nice alignments as a by-product (important for interpretation):

Edinburgh's* WMT results over the years

Edinburgh's* WMT results over the years

Edinburgh's* WMT results over the years

 BPE - work at sub-word level to enable an open vocabulary

 BPE - work at sub-word level to enable an open vocabulary

 Use monolingual data for training through backtranslation

 BPE - work at sub-word level to enable an open vocabulary

 Use monolingual data for training through backtranslation

 BPE - work at sub-word level to enable an open vocabulary

 Use monolingual data for training through backtranslation

• Bi-directional decoding:

a b c
$$\rightarrow$$
 x y z

 BPE - work at sub-word level to enable an open vocabulary

'I o w e s t
$$'$$
 'low est $'$

 Use monolingual data for training through backtranslation

• Bi-directional decoding:

a b c
$$\rightarrow$$
 x y z
a b c \rightarrow z y x

Vaswani et al. (2017)

- Vaswani et al. (2017)
- Main idea: use multiple **self-attention** layers instead of recurrence

- Vaswani et al. (2017)
- Main idea: use multiple **self-attention** layers instead of recurrence

- Vaswani et al. (2017)
- Main idea: use multiple **self-attention** layers instead of recurrence

The Transformer Architecture

- Vaswani et al. (2017)
- Main idea: use multiple **self-attention** layers instead of recurrence

The Transformer Architecture

- Vaswani et al. (2017)
- Main idea: use multiple **self-attention** layers instead of recurrence
- Similar representation power as a bi-LSTM (both left and right context)
- Can be **parallelized** at the sequence level faster training

Positional encodings

- Positional encodings
- Multi-head attention

- Positional encodings
- Multi-head attention
- Layer normalization

- Positional encodings
- Multi-head attention
- Layer normalization
- Decoder masked self attention

- Positional encodings
- Multi-head attention
- Layer normalization
- Decoder masked self attention
- Unlike LSTM based models-

- Positional encodings
- Multi-head attention
- Layer normalization
- Decoder masked self attention
- Unlike LSTM based models-
 - encoder-decoder-attention in each layer!

- Positional encodings
- Multi-head attention
- Layer normalization
- Decoder masked self attention
- Unlike LSTM based models-
 - encoder-decoder-attention in each layer!
 - Less interpretable

- Positional encodings
- Multi-head attention
- Layer normalization
- Decoder masked self attention
- Unlike LSTM based models-
 - encoder-decoder-attention in each layer!
 - Less interpretable
- Learning rate schedule harder to optimize than LSTM-based models

Multilingual Neural Machine Translation

Why Multilingual NMT?

- Why Multilingual NMT?
 - Allows transfer learning: better performance (especially for low resource language pairs)

- Why Multilingual NMT?
 - Allows transfer learning: better performance (especially for low resource language pairs)
 - Reduces hardware requirements: much simpler deployment

Up to 5 languages and 20 translation directions

- Up to 5 languages and 20 translation directions
 - One outlier:)

- Up to 5 languages and 20 translation directions
 - One outlier:)
- Why stop here?

"Massively Multilingual" NMT

- "Massively Multilingual" NMT
- Scale a single NMT model to support 103 languages - still works!

- "Massively Multilingual" NMT
- Scale a single NMT model to support 103 languages - still works!
- Effective in low resource settings state of the art results with 58 languages in a single model

Multilinguality - How many languages? (our main focus)

- Multilinguality How many languages? (our main focus)
- Data settings Many-to-one/one-to-many/many-to-many?

- Multilinguality How many languages? (our main focus)
- Data settings Many-to-one/one-to-many/many-to-many?
- Vocabulary Joint wpm/separate wpms/characters?

- Multilinguality How many languages? (our main focus)
- Data settings Many-to-one/one-to-many/many-to-many?
- Vocabulary Joint wpm/separate wpms/characters?
- Capacity effect of model size?

- Multilinguality How many languages? (our main focus)
- Data settings Many-to-one/one-to-many/many-to-many?
- Vocabulary Joint wpm/separate wpms/characters?
- Capacity effect of model size?
- Parameter Sharing share everything or separate components?

- Multilinguality How many languages? (our main focus)
- Data settings Many-to-one/one-to-many/many-to-many?
- Vocabulary Joint wpm/separate wpms/characters?
- Capacity effect of model size?
- Parameter Sharing share everything or separate components?
- Loss Functions tailored multilingual loss functions?

- Multilinguality How many languages? (our main focus)
- Data settings Many-to-one/one-to-many/many-to-many?
- Vocabulary Joint wpm/separate wpms/characters?
- Capacity effect of model size?
- Parameter Sharing share everything or separate components?
- Loss Functions tailored multilingual loss functions?
- Optimization Individual pair in a single batch or mixed batches?

Multilingual NMT Methods

- **Separate** Encoder/Decoder per language (Dong et al. 2015, Firat et al. 2016)
 - Pros each language its own parameters, no interference
 - Cons complex models, less parameter sharing

Multilingual NMT Methods

- Joint Encoder/Decoder/Attention model (Ha et al. 2016, Johnson et al. 2017)
 - Use a special "language token"
 - Pros Full parameter sharing, simple (unchanged) model
 - Cons Languages may interfere each other

Multilingual NMT Methods

- "In Between" Share only some of the parameters, i.e. all but the attention mechanism (i.e. Blackwood et al. 2018, Sachan & Neubig 2018)
 - Pros may reduce interference
 - Cons adds implementation complexity

Data Settings

Many-to-Many

The TED talks dataset

- The TED talks dataset
 - 58 languages, to and from English

- The TED talks dataset
 - 58 languages, to and from English
 - 3k-214k training examples per language imbalanced

- The TED talks dataset
 - 58 languages, to and from English
 - 3k-214k training examples per language imbalanced
 - 258k original sentences in train set → mostly multi-way parallel

- The TED talks dataset
 - 58 languages, to and from English
 - 3k-214k training examples per language imbalanced
 - 258k original sentences in train set → mostly multi-way parallel
- Transformer-Base models, similar capacity (93M parameters)

- The TED talks dataset
 - 58 languages, to and from English
 - 3k-214k training examples per language imbalanced
 - 258k original sentences in train set → mostly multi-way parallel
- Transformer-Base models, similar capacity (93M parameters)
 - Shared wordpiece vocabulary, 32k symbols

- The TED talks dataset
 - 58 languages, to and from English
 - 3k-214k training examples per language imbalanced
 - 258k original sentences in train set → mostly multi-way parallel
- Transformer-Base models, similar capacity (93M parameters)
 - Shared wordpiece vocabulary, 32k symbols
 - Many-to-Many (English-Centric), Many-to-One, One-to-Many, One-to-One

- The TED talks dataset
 - 58 languages, to and from English
 - 3k-214k training examples per language imbalanced
 - 258k original sentences in train set → mostly multi-way parallel
- Transformer-Base models, similar capacity (93M parameters)
 - Shared wordpiece vocabulary, 32k symbols
 - Many-to-Many (English-Centric), Many-to-One, One-to-Many, One-to-One
 - Joint Multilingual models

 Multilingual models significantly outperform baselines

	Az-En	Be-En	Gl-En	Sk-En	Avg.
# of examples	5.9k	4.5k	10k	61k	20.3k
Neubig & Hu 18					
baselines	2.7	2.8	16.2	24	11.42
many-to-one	11.7	18.3	29.1	28.3	21.85
Ours					
many-to-one	11.24	18.28	28.63	26.78	21.23
many-to-many	12.78	21.73	30.65	29.54	23.67

- Multilingual models significantly outperform baselines
- Many-to-Many models outperform fine-tuned Many-to-One models

	Az-En	Be-En	Gl-En	Sk-En	Avg.
# of examples	5.9k	4.5k	10k	61k	20.3k
Neubig & Hu 18					
baselines	2.7	2.8	16.2	24	11.42
many-to-one	11.7	18.3	29.1	28.3	21.85
Ours					
many-to-one	11.24	18.28	28.63	26.78	21.23
many-to-many	12.78	21.73	30.65	29.54	23.67

- Multilingual models significantly outperform baselines
- Many-to-Many models outperform fine-tuned Many-to-One models
- Similar result in language pairs with more data (baselines stronger here)

	Az-En	Be-En	Gl-En	Sk-En	Avg.
# of examples	5.9k	4.5k	10k	61k	20.3k
Neubig & Hu 18					
baselines	2.7	2.8	16.2	24	11.42
many-to-one	11.7	18.3	29.1	28.3	21.85
Ours					
many-to-one	11.24	18.28	28.63	26.78	21.23
many-to-many	12.78	21.73	30.65	29.54	23.67

	Ar-En	De-En	He-En	It-En	Avg.
# of examples	213k	167k	211k	203k	198.5k
baselines	27.84		34.37		
many-to-one			30.19		
many-to-many	28.32	32.97	33.18	35.14	32.4

- Multilingual models significantly outperform baselines
- Many-to-Many models outperform fine-tuned Many-to-One models
- Similar result in language pairs with more data (baselines stronger here)
- Why? many-to-many is "harder"

	Az-En	Be-En	Gl-En	Sk-En	Avg.
# of examples	5.9k	4.5k	10k	61k	20.3k
Neubig & Hu 18					
baselines	2.7	2.8	16.2	24	11.42
many-to-one	11.7	18.3	29.1	28.3	21.85
Ours					
many-to-one	11.24	18.28	28.63	26.78	21.23
many-to-many	12.78	21.73	30.65	29.54	23.67

	Ar-En	De-En	He-En	It-En	Avg.
# of examples	I				I
baselines	27.84	30.5	34.37	33.64	31.59
many-to-one	25.93	28.87	30.19	32.42	29.35
baselines many-to-one many-to-many	28.32	32.97	33.18	35.14	32.4

 The models we used are very large - prone to overfitting on the small datasets

- The models we used are very large - prone to overfitting on the small datasets
- Having many target languages makes it harder to memorize, even with small data

- The models we used are very large - prone to overfitting on the small datasets
- Having many target languages makes it harder to memorize, even with small data
- Also easy to memorize since multi-way parallel

 One-to-Many outperform Many-to-Many and baselines

	En-Az	En-Be	En-Gl	En-Sk	Avg.
# of examples	5.9k	4.5k	10k	61k	20.3k
baselines	2.16	2.47	3.26	5.8	3.42
one-to-many	5.06	10.72	26.59	24.52	16.72
many-to-many	3.9	7.24	23.78	21.83	14.19
	'				'
	En-Ar	En-De	En-He	En-It	Avg.
# of examples	213k	167k	211k	203k	198.5k
baselines	12.95	23.31	23.66	30.33	22.56
one-to-many	16.67	30.54	27.62	35.89	27.68

many-to-many | 14.25

24.16

- One-to-Many outperform Many-to-Many and baselines
- Many-to-Many models are biased towards English in the target

	En-Az	En-Be	En-Gl	En-Sk	Avg.
# of examples	5.9k	4.5k	10k	61k	20.3k
baselines	2.16	2.47	3.26	5.8	3.42
one-to-many	5.06	10.72	26.59	24.52	16.72
many-to-many	3.9	7.24	23.78	21.83	14.19
-	'				
	En-Ar	En-De	En-He	En-It	Avg.
# of examples	En-Ar 213k	En-De 167k	En-He 211k	En-It 203k	Avg. 198.5k
# of examples baselines					
	213k	167k	211k	203k	198.5k

- One-to-Many outperform Many-to-Many and baselines
- Many-to-Many models are biased towards English in the target
- When English memorization is not an issue, better to train on fewer directions

	En-Az	En-Be	En-Gl	En-Sk	Avg.
# of examples	5.9k	4.5k	10k	61k	20.3k
baselines	2.16	2.47	3.26	5.8	3.42
one-to-many	5.06	10.72	26.59	24.52	16.72
many-to-many	3.9	7.24	23.78	21.83	14.19
	'				
	En-Ar	En-De	En-He	En-It	Avg.
# of examples	En-Ar 213k	En-De 167k	En-He 211k	En-It 203k	Avg. 198.5k
# of examples baselines					
-	213k	167k	211k	203k	198.5k

• We saw that:

- We saw that:
 - Massively multilingual many-to-many models win when going into-English (reduce memorization)

- We saw that:
 - Massively multilingual many-to-many models win when going into-English (reduce memorization)
 - One-to-many models are better when going out of English (not biased to English)

- We saw that:
 - Massively multilingual many-to-many models win when going into-English (reduce memorization)
 - One-to-many models are better when going out of English (not biased to English)
- Does this hold:

- We saw that:
 - Massively multilingual many-to-many models win when going into-English (reduce memorization)
 - One-to-many models are better when going out of English (not biased to English)
- Does this hold:
 - With even more languages?

- We saw that:
 - Massively multilingual many-to-many models win when going into-English (reduce memorization)
 - One-to-many models are better when going out of English (not biased to English)
- Does this hold:
 - With even more languages?
 - With larger, balanced, "real-world" datasets?

Transformer Big(ger) models

- Transformer Big(ger) models
 - 473.7M parameters (vs. 213M in Big)

- Transformer Big(ger) models
 - 473.7M parameters (vs. 213M in Big)
 - Joint subword vocabulary with 64k symbols (24k unique characters)

- Transformer Big(ger) models
 - 473.7M parameters (vs. 213M in Big)
 - Joint subword vocabulary with 64k symbols (24k unique characters)
- In-house dataset

Experiments - High Resource

- Transformer Big(ger) models
 - 473.7M parameters (vs. 213M in Big)
 - Joint subword vocabulary with 64k symbols (24k unique characters)
- In-house dataset
 - English-Centric: 102 Languages to/from English (mirrored)

Experiments - High Resource

- Transformer Big(ger) models
 - 473.7M parameters (vs. 213M in Big)
 - Joint subword vocabulary with 64k symbols (24k unique characters)
- In-house dataset
 - English-Centric: 102 Languages to/from English (mirrored)
 - ~1M examples per language pair (balanced)

Experiments - High Resource

- Transformer Big(ger) models
 - 473.7M parameters (vs. 213M in Big)
 - Joint subword vocabulary with 64k symbols (24k unique characters)
- In-house dataset
 - English-Centric: 102 Languages to/from English (mirrored)
 - ~1M examples per language pair (balanced)
 - Not multi-way parallel

										Tr	_
baselines	23.34	16.3	21.93	30.18	31.83	36.47	36.12	34.59	24.01	27.13	28.19
many-to-one											
many-to-many	22.17	21.45	23.03	37.06	30.71	35.0	36.18	36.57	29.87	27.64	29.97

Many-to-one model outperforms baselines and Many-to-Many

										Tr	_
										27.13	
many-to-one											
many-to-many	22.17	21.45	23.03	37.06	30.71	35.0	36.18	36.57	29.87	27.64	29.97

- Many-to-one model outperforms baselines and Many-to-Many
 - When the data is large enough and not multi-way-parallel, memorization is not an issue and "less is more"

										Tr	_
baselines	23.34	16.3	21.93	30.18	31.83	36.47	36.12	34.59	24.01	27.13	28.19
many-to-one											
many-to-many	22.17	21.45	23.03	37.06	30.71	35.0	36.18	36.57	29.87	27.64	29.97

- Many-to-one model outperforms baselines and Many-to-Many
 - When the data is large enough and not multi-way-parallel, memorization is not an issue and "less is more"
- German and Italian outliers due to interference

										Tr	_
baselines	23.34	16.3	21.93	30.18	31.83	36.47	36.12	34.59	24.01	27.13	28.19
many-to-one											
many-to-many	22.17	21.45	23.03	37.06	30.71	35.0	36.18	36.57	29.87	27.64	29.97

- Many-to-one model outperforms baselines and Many-to-Many
 - When the data is large enough and not multi-way-parallel, memorization is not an issue and "less is more"
- German and Italian outliers due to interference
 - Many-to-one reached 38 BLEU when evaluated using German only dev-set, but degraded

				De							_
baselines	10.57	8.07	15.3	23.24	19.47	31.42	28.68	27.92	11.08	15.54	19.13
one-to-many	12.08	9.92	15.6	31.39	20.01	33	31.06	28.43	17.67	17.68	21.68
many-to-many	10.57	9.84	14.3	28.48	17.91	30.39	29.67	26.23	18.15	15.58	20.11

Clear advantage to the one-to-many model in all cases

				De							_
baselines	10.57	8.07	15.3	23.24	19.47	31.42	28.68	27.92	11.08	15.54	19.13
one-to-many	12.08	9.92	15.6	31.39	20.01	33	31.06	28.43	17.67	17.68	21.68
many-to-many	10.57	9.84	14.3	28.48	17.91	30.39	29.67	26.23	18.15	15.58	20.11

- Clear advantage to the one-to-many model in all cases
- Up to 6-8 BLEU improvement over baseline (Slovak, German)

				De							_
baselines	10.57	8.07	15.3	23.24	19.47	31.42	28.68	27.92	11.08	15.54	19.13
one-to-many	12.08	9.92	15.6	31.39	20.01	33	31.06	28.43	17.67	17.68	21.68
many-to-many	10.57	9.84	14.3	28.48	17.91	30.39	29.67	26.23	18.15	15.58	20.11

- Clear advantage to the one-to-many model in all cases
- Up to 6-8 BLEU improvement over baseline (Slovak, German)
- Less burden, not biased towards English

 The previous experiments present an extreme case (100+ languages in a single model)

- The previous experiments present an extreme case (100+ languages in a single model)
- What is the trade-off between the number of languages and model performance?

- The previous experiments present an extreme case (100+ languages in a single model)
- What is the trade-off between the number of languages and model performance?
 - Both supervised and Zero-Shot

- The previous experiments present an extreme case (100+ languages in a single model)
- What is the trade-off between the number of languages and model performance?
 - Both supervised and Zero-Shot
- Keep model fixed, measure performance on 5 languages while varying the number of additional languages

	Ar-En	En-Ar	Fr-En	En-Fr	Ru-En	En-Ru	Uk-En	En-Uk	Avg.
5-to-5	23.87	12.42	38.99	37.3	29.07	24.86	26.17	16.48	26.14
25-to-25	23.43	11.77	38.87	36.79	29.36	23.24	25.81	17.17	25.8
50-to-50	23.7	11.65	37.81	35.83	29.22	21.95	26.02	15.32	25.18
75-to-75	22.23	10.69	37.97	34.35	28.55	20.7	25.89	14.59	24.37
103-to-103	21.16	10.25	35.91	34.42	27.25	19.9	24.53	13.89	23.41

	Ar-En	En-Ar	Fr-En	En-Fr	Ru-En	En-Ru	Uk-En	En-Uk	Avg.
5-to-5	23.87	12.42	38.99	37.3	29.07	24.86	26.17	16.48	26.14
25-to-25	23.43	11.77	38.87	36.79	29.36	23.24	25.81	17.17	25.8
50-to-50	23.7	11.65	37.81	35.83	29.22	21.95	26.02	15.32	25.18
75-to-75	22.23	10.69	37.97	34.35	28.55	20.7	25.89	14.59	24.37
103-to-103	21.16	10.25	35.91	34.42	27.25	19.9	24.53	13.89	23.41

 Clear trade-off between number of languages and model accuracy

	Ar-En	En-Ar	Fr-En	En-Fr	Ru-En	En-Ru	Uk-En	En-Uk	Avg.
5-to-5	23.87	12.42	38.99	37.3	29.07	24.86	26.17	16.48	26.14
25-to-25	23.43	11.77	38.87	36.79	29.36	23.24	25.81	17.17	25.8
50-to-50	23.7	11.65	37.81	35.83	29.22	21.95	26.02	15.32	25.18
75-to-75	22.23	10.69	37.97	34.35	28.55	20.7	25.89	14.59	24.37
103-to-103	21.16	10.25	35.91	34.42	27.25	19.9	24.53	13.89	23.41

- Clear trade-off between number of languages and model accuracy
- Maybe we need even bigger models? 1M examples per language pair is not very large... (in MT scale)

 50-to-50 strikes a good balance between capacity and generalization

	Ar-Fr	Fr-Ar	Ru-Uk	Uk-Ru	Avg.
5-to-5	1.66	4.49	3.7	3.02	3.21
25-to-25	1.83	5.52	16.67	4.31	7.08
50-to-50	4.34	4.72	15.14	20.23	11.1
75-to-75	1.85	4.26	11.2	15.88	8.3
103-to-103	2.87	3.05	12.3	18.49	9.17

 50-to-50 strikes a good balance between capacity and generalization

	Ar-Fr	Fr-Ar	Ru-Uk	Uk-Ru	Avg.
5-to-5	1.66	4.49	3.7	3.02	3.21
25-to-25	1.83	5.52	16.67	4.31	7.08
50-to-50	4.34	4.72	15.14	20.23	11.1
75-to-75	1.85	4.26	11.2	15.88	8.3
103-to-103	2.87	3.05	12.3	18.49	9.17

 Similar languages are much easier

- 50-to-50 strikes a good balance between capacity and generalization
- Similar languages are much easier
- General trend more languages, more generalization (interlingua?)

	Ar-Fr	Fr-Ar	Ru-Uk	Uk-Ru	Avg.
5-to-5	1.66	4.49	3.7	3.02	3.21
25-to-25	1.83	5.52	16.67	4.31	7.08
50-to-50	4.34	4.72	15.14	20.23	11.1
75-to-75	1.85	4.26	11.2	15.88	8.3
103-to-103	2.87	3.05	12.3	18.49	9.17

update

Massively multilingual NMT is possible!

- Massively multilingual NMT is possible!
- Especially helpful in low-resource settings

- Massively multilingual NMT is possible!
- Especially helpful in low-resource settings
- Can scale to high resource settings, 100+ languages (with some trade-off)

- Massively multilingual NMT is possible!
- Especially helpful in low-resource settings
- Can scale to high resource settings, 100+ languages (with some trade-off)
- Zero-shot analysis: more languages more generalization?

• Improving zero-shot performance with interlingual-losses

- Improving zero-shot performance with interlingual-losses
 - Bring zero-shot performance on-par with bridging

- Improving zero-shot performance with interlingual-losses
 - Bring zero-shot performance on-par with bridging
- Smarter clustering of language pairs and data (typology, overlapping content)

- Improving zero-shot performance with interlingual-losses
 - Bring zero-shot performance on-par with bridging
- Smarter clustering of language pairs and data (typology, overlapping content)
- Methods to reduce interference

- Improving zero-shot performance with interlingual-losses
 - Bring zero-shot performance on-par with bridging
- Smarter clustering of language pairs and data (typology, overlapping content)
- Methods to reduce interference
 - Multilingual distillation

- Improving zero-shot performance with interlingual-losses
 - Bring zero-shot performance on-par with bridging
- Smarter clustering of language pairs and data (typology, overlapping content)
- Methods to reduce interference
 - Multilingual distillation
 - Clever parameter sharing schemes

- Improving zero-shot performance with interlingual-losses
 - Bring zero-shot performance on-par with bridging
- Smarter clustering of language pairs and data (typology, overlapping content)
- Methods to reduce interference
 - Multilingual distillation
 - Clever parameter sharing schemes
- Massively multilingual NLP

- Improving zero-shot performance with interlingual-losses
 - Bring zero-shot performance on-par with bridging
- Smarter clustering of language pairs and data (typology, overlapping content)
- Methods to reduce interference
 - Multilingual distillation
 - Clever parameter sharing schemes
- Massively multilingual NLP
 - Multilingual BERT

- Improving zero-shot performance with interlingual-losses
 - Bring zero-shot performance on-par with bridging
- Smarter clustering of language pairs and data (typology, overlapping content)
- Methods to reduce interference
 - Multilingual distillation
 - Clever parameter sharing schemes
- Massively multilingual NLP
 - Multilingual BERT
 - Zero-shot Transfer Learning (Eriguchi et al 2018, Artetxe et al 2019)

