# Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

#### Отчёт

#### По лабораторной работе №4

#### «Выполнение комплекса программ»

по дисциплине «Основы профессиональной деятельности»

Вариант: 11003

Работу выполнил:

Поленов Кирилл Александрович

Группа Р3113

Работу приняла:

Ткешелашвили Нино Мерабиевна

## Оглавление

| Задание                                     | 3 |
|---------------------------------------------|---|
| Определение функции, вычисляемой программой | 3 |
| ОП и ОДЗ исходных данных и результата       | 6 |
| Трассировка программы                       | 7 |
| Выводы                                      | 8 |

## Задание

Введите номер варианта 11003

| 1EB: + | - 0200      | 1 | 1F9: | 6E0C | 1 |      |      | 1 | 670: | 00A4 |
|--------|-------------|---|------|------|---|------|------|---|------|------|
| 1EC:   | EE19        | ĺ | 1FA: | EE0B | Ī | 663: | AC01 | ĺ |      |      |
| 1ED:   | <b>AE17</b> | Ì | 1FB: | AE08 | Ĺ | 664: | F001 | Ì |      |      |
| 1EE:   | 0C00        | ĺ | 1FC: | 0740 | ĺ | 665: | F306 | Ì |      |      |
| 1EF:   | D663        | 1 | 1FD: | 0C00 | ı | 666: | 7E08 | ı |      |      |
| 1F0:   | 0800        | 1 | 1FE: | D663 | ı | 667: | F804 | ı |      |      |
| 1F1:   | 6E14        | 1 | 1FF: | 0800 | 1 | 668: | F003 | 1 |      |      |
| 1F2:   | EE13        | 1 | 200: | 6E05 | ı | 669: | 4C01 | ı |      |      |
| 1F3:   | AE0F        | 1 | 201: | EE04 | 1 | 66A: | 4E05 | ı |      |      |
| 1F4:   | 0740        | 1 | 202: | 0100 | ı | 66B: | CE01 | ı |      |      |
| 1F5:   | 0C00        | 1 | 203: | ZZZZ | 1 | 66C: | AE02 | Ι |      |      |
| 1F6:   | D663        | 1 | 204: | YYYY | 1 | 66D: | EC01 | 1 |      |      |
| 1F7:   | 0800        | 1 | 205: | XXXX | 1 | 66E: | 0A00 | Ι |      |      |
| 1F8:   | 0700        | 1 | 206: | 00A3 | ı | 66F: | F38F | ı |      |      |
|        |             |   |      |      |   |      |      |   |      |      |

## Определение функции, вычисляемой программой

## Описание программы

| Адрес | Содержимое | Мнемоника   | Описание                                |
|-------|------------|-------------|-----------------------------------------|
| 1EB   | 0200       | CLA         | Очистка аккумулятора                    |
| 1EC   | EE19       | ST (IP+19)  | AC -> MEM(IP+19 = 206) Загрузили 0000 в |
|       |            |             | ячейку 206 (обнулили R)                 |
| 1ED   | AE17       | LD (IP+17)  | MEM(IP+17 = 205) -> AC                  |
|       |            |             | Загрузили число Х в аккумулятор         |
| 1EE   | 0C00       | PUSH        | AC -> -(SP)                             |
|       |            |             | Положили содержимое АС на вершину       |
|       |            |             | стека                                   |
| 1EF   | D663       | CALL 663    | SP-1 -> SP                              |
|       |            |             | IP -> SP                                |
|       |            |             | 663 -> IP                               |
|       |            |             | Вызов подпрограммы                      |
| 1F0   | 0800       | POP         | (SP)+ -> AC                             |
|       |            |             | Взяли результат со стека                |
| 1F1   | 6E14       | SUB (IP+14) | AC - MEM(IP+14=205) -> AC               |
|       |            |             | F(X) - R                                |
| 1F2   | EE13       | ST (IP+13)  | AC + MEM(IP+13=205) -> AC               |
| 1F3   | AE0F       | LD (IP+15)  | MEM(IP+15=203) -> AC                    |
|       |            |             | Закинули Z                              |
| 1F4   | 0740       | DEC         | AC-1 -> AC                              |
|       |            |             | Z-1                                     |
| 1F5   | 0C00       | PUSH        | AC -> -(SP)                             |
|       |            |             | Положили содержимое АС на вершину       |
|       |            |             | стека                                   |
| 1F6   | D663       | CALL 663    | SP-1 -> SP                              |

|       |         |                  | ID OD                                      |
|-------|---------|------------------|--------------------------------------------|
|       |         |                  | IP -> SP                                   |
|       |         |                  | 663 -> IP                                  |
| 4.00  | 0000    | DOD              | Вызов подпрограммы                         |
| 1F7   | 0800    | POP              | (SP)+ -> AC                                |
| . = - |         |                  | Взяли результат со стека                   |
| 1F8   | 0700    | DEC              | AC-1 -> AC                                 |
|       |         |                  | F(Z-1)-1                                   |
| 1F9   | 6E0C    | SUB (IP+12)      | AC - MEM(IP+12=206) - >                    |
|       |         |                  | F(Z-1)-1 - F(X)                            |
| 1FA   | EE0B    | ST (IP+11)       | AC -> MEM(IP+11=206)                       |
| 1FB   | AE08    | LD (IP+8)        | MEM(IP+8=204) -> AC                        |
|       |         |                  | Взяли Ү                                    |
| 1FC   | 0740    | DEC              | AC-1 -> AC                                 |
|       |         |                  | Y-1                                        |
| 1FD   | 0C00    | PUSH             | AC -> -(SP)                                |
|       |         |                  | Положили содержимое АС на вершину          |
|       |         |                  | стека                                      |
| 1FE   | D663    | CALL 663         | SP-1 -> SP                                 |
| 112   | D005    | GILL 003         | IP -> SP                                   |
|       |         |                  | 663 -> IP                                  |
|       |         |                  | Вызов подпрограммы                         |
| 1FF   | 0800    | POP              | (SP)+ -> AC                                |
| 111   | 0000    | 101              | Взяли результат со стека                   |
| 200   | 6E05    | SUB (IP+5)       | AC-MEM(IP+5=206) -> AC                     |
| 200   | 0000    | 30B (IF+3)       | ,                                          |
| 201   | EEO4    | CT (ID : 4)      | F(Z-1)-1 - F(X) - F(Y-1)                   |
| 201   | EE04    | ST (IP+4)        | AC -> MEM(IP+4=206)                        |
| 202   | 0100    | HLT              | Остановить выполнение программы            |
| 203   | ZZZZ    | Z                | Число                                      |
| 204   | YYYY    | Y                | Число                                      |
| 205   | XXXX    | X                | Число                                      |
| 206   | 00A3    | R                | Число                                      |
|       |         | Подпрограм       |                                            |
| 663   | AC01    | LD (SP+1)        | $MEM(SP+1 = 7FF) \rightarrow AC$           |
|       |         |                  | Загрузили число NUM из стека               |
| 664   | F001    | BEQ (IP+1)       | Переход в (IP+1 = 666), если Z==1 (NUM ==  |
|       |         |                  | 0)                                         |
| 665   | F306    | BPL (IP+6)       | Переход в (IP+6 = 66C), если N==0 (NUM >=  |
|       |         | , ,              | 0)                                         |
| 666   | 7E08    | CMP (IP+8)       | AC - MEM(IP + 8 = 66F) -> N, Z, V, C       |
|       |         | ,                | Сравниваем с F38F = -3185                  |
| 667   | F804    | BLT (IP+4)       | Переход в (IP+4 = 66C), если N != V (NUM < |
|       |         | ( )              | -3185)                                     |
| 668   | F003    | BEQ(IP+3)        | Переход в (IP+3= 66C), если Z==1 (NUM ==   |
|       | 1000    | 224( 3)          | 0)                                         |
| 669   | 4C01    | ADD (SP+1)       | AC + MEM(SP+1) -> AC                       |
| 007   | 1001    | 1100 (61 11)     | NUM + NUM = 2*NUM                          |
| 66A   | 4E05    | ADD (IP+5)       | AC + MEM(IP+5=670) -> AC                   |
| UUA   | 400     | <b>Д</b> (11 +3) | 2*NUM + 164                                |
| 66D   | CEO1    | IIIMD (ID : 1)   |                                            |
| 66B   | CE01    | JUMP (IP+1)      | Переход в (IP+1= 66E)                      |
| 66C   | AE02    | LD (IP+2)        | MEM(IP+2 = 66F) ->                         |
| CCD   | EC04    | Cm (CD 4)        | Return -3185                               |
| 66D   | EC01    | ST (SP+1)        | AC -> MEM(SP+1)                            |
|       |         |                  | Положили преобразованный NUM на            |
|       | 0.4.0.7 | -                | вершину стека                              |
| 66E   | 0A00    | RET              | (SP)+ -> IP                                |
|       |         |                  | Выход из подпрограммы                      |
| 66F   | F38F    | A                | Константа для сравнения                    |
|       |         |                  |                                            |
| 670   | 00A4    | В                | Константа для вычитания                    |

Программа выполняет следующую функцию:

R = F(Y-1) - F (Z-1)-1 – F(X), где 
$$F(n) = \begin{cases} 2n+164, & n \in (-3185;0] \\ -3185, & n>0 \cup n \leq -3185 \end{cases}$$



#### ОП и ОДЗ исходных данных и результата

#### Область представления:

• X, Y, Z, R, A, B – 16-ричные знаковые числа

#### Область определения:

$$A = F38F_{16} = -3185_{10}$$
 (константа)

$$B = 00A4_{16} = 164_{10}$$
 (константа)

Основная программа вычисляет выражение

$$R = F(Y-1) - F(Z-1) - 1 - F(X)$$

При значении n в промежутке  $n > 0 \cup n \le -3185$  функция вернёт -3185. То есть при вводе любого значения из этого промежутка не произойдет переполнения.

В остальных случаях, а именно  $n \in (-3185; 0]$ , она вернёт 2n + 164. Найдем ОДЗ для аргумента функции в этом случае:

$$\min = f(-3184) = -6204$$

$$\max = f(0) = 164$$

$$Min R = -6204 - 1 - 164 - 164 = -6533$$

$$Max R = 164 - 1 - (-6204) - (-6204) = 12571$$

В обоих случаях переполнения нету.

Итого:

$$\begin{cases} R \in [-6533; 12571] \\ X \in [-2^{15}; 2^{15} - 1] \\ Y, Z \in [-2^{15} + 1; 2^{15}] \end{cases}$$

# Трассировка программы

## Таблица трассировки

| Выпол | няемая | Содержимое регистров после выполнения команды |      |     |      |     |      |      |     |      | Ячейка, |                |  |
|-------|--------|-----------------------------------------------|------|-----|------|-----|------|------|-----|------|---------|----------------|--|
| ком   | анда   |                                               |      |     |      |     |      |      |     |      | эжимое  |                |  |
|       |        |                                               |      |     |      |     |      |      |     |      |         | горой          |  |
|       |        |                                               |      |     |      |     |      |      |     |      |         | нилось<br>осле |  |
|       |        |                                               |      |     |      |     |      |      |     |      |         | лнения         |  |
|       | _      |                                               |      |     |      |     |      |      |     |      |         | анды           |  |
| Адрес | Содерж | IP                                            | CR   | AR  | DR   | SP  | BR   | AC   | PS  | NZVC | Адре    | Содер          |  |
|       | имое   |                                               |      |     |      |     |      |      |     |      | С       | жимое          |  |
| xxx   | xxxx   | XXX                                           | xxxx | XXX | xxxx | XXX | xxxx | xxxx | XXX | XXXX | XXX     | XXXX           |  |
| 1EB   | 0200   | 1EB                                           | 0000 | 000 | 0000 | 000 | 0000 | 0000 | 004 | 0100 |         |                |  |
| 1EB   | 0200   | 1EC                                           | 0200 | 1EB | 0200 | 000 | 01EB | 0000 | 004 | 0100 |         |                |  |
| 1EC   | EE19   | 1ED                                           | EE19 | 206 | 0000 | 000 | 0019 | 0000 | 004 | 0100 | 206     | 0000           |  |
| 1ED   | AE17   | 1EE                                           | AE17 | 205 | F380 | 000 | 0017 | F380 | 008 | 1000 |         |                |  |
| 1EE   | 0C00   | 1EF                                           | 0C00 | 7FF | F380 | 7FF | 01EE | F380 | 008 | 1000 | 7FF     | F380           |  |
| 1EF   | D663   | 663                                           | D663 | 7FE | 01F0 | 7FE | D663 | F380 | 008 | 1000 | 7FE     | 01F0           |  |
| 663   | AC01   | 664                                           | AC01 | 7FF | F380 | 7FE | 0001 | F380 | 008 | 1000 |         |                |  |
| 664   | F001   | 665                                           | F001 | 664 | F001 | 7FE | 0664 | F380 | 008 | 1000 |         |                |  |
| 665   | F306   | 666                                           | F306 | 665 | F306 | 7FE | 0665 | F380 | 008 | 1000 |         |                |  |
| 666   | 7E08   | 667                                           | 7E08 | 66F | F38F | 7FE | 0008 | F380 | 008 | 1000 |         |                |  |
| 667   | F804   | 66C                                           | F804 | 667 | F804 | 7FE | 0004 | F380 | 008 | 1000 |         |                |  |
| 66C   | AE02   | 66D                                           | AE02 | 66F | F38F | 7FE | 0002 | F38F | 008 | 1000 |         |                |  |
| 66D   | EC01   | 66E                                           | EC01 | 7FF | F38F | 7FE | 0001 | F38F | 008 | 1000 | 7FF     | F38F           |  |
| 66E   | 0A00   | 1F0                                           | 0A00 | 7FE | 01F0 | 7FF | 066E | F38F | 008 | 1000 |         |                |  |
| 1F0   | 0800   | 1F1                                           | 0800 | 7FF | F38F | 000 | 01F0 | F38F | 008 | 1000 |         |                |  |
| 1F1   | 6E14   | 1F2                                           | 6E14 | 206 | 0000 | 000 | 0014 | F38F | 009 | 1001 |         |                |  |
| 1F2   | EE13   | 1F3                                           | EE13 | 206 | F38F | 000 | 0013 | F38F | 009 | 1001 | 206     | F38F           |  |
| 1F3   | AE0F   | 1F4                                           | AE0F | 203 | 0016 | 000 | 000F | 0016 | 001 | 0001 |         |                |  |
| 1F4   | 0740   | 1F5                                           | 0740 | 1F4 | 0740 | 000 | 01F4 | 0015 | 001 | 0001 |         |                |  |
| 1F5   | 0C00   | 1F6                                           | 0C00 | 7FF | 0015 | 7FF | 01F5 | 0015 | 001 | 0001 | 7FF     | 0015           |  |
| 1F6   | D663   | 663                                           | D663 | 7FE | 01F7 | 7FE | D663 | 0015 | 001 | 0001 | 7FE     | 01F7           |  |
| 663   | AC01   | 664                                           | AC01 | 7FF | 15   | 7FE | 0001 | 0015 | 001 | 0001 |         |                |  |
| 664   | F001   | 665                                           | F001 | 664 | F001 | 7FE | 0664 | 0015 | 001 | 0001 |         |                |  |
| 665   | F306   | 66C                                           | F306 | 665 | F306 | 7FE | 0006 | 0015 | 001 | 0001 |         |                |  |
| 66C   | AE02   | 66D                                           | AE02 | 66F | F38F | 7FE | 0002 | F38F | 009 | 1001 |         |                |  |
| 66D   | EC01   | 66E                                           | EC01 | 7FF | F38F | 7FE | 0001 | F38F | 009 | 1001 | 7FF     | F38F           |  |
| 66E   | 0A00   | 1F7                                           | 0A00 | 7FE | 01F7 | 7FF | 066E | F38F | 009 | 1001 |         |                |  |
| 1F7   | 0800   | 1F8                                           | 0800 | 7FF | F38F | 000 | 01F7 | F38F | 009 | 1001 |         |                |  |
| 1F8   | 0740   | 1F9                                           | 0740 | 1F8 | 0740 | 000 | 01F8 | F38E | 009 | 1001 |         |                |  |
| 1F9   | 6E0C   | 1FA                                           | 6E0C | 206 | F38F | 000 | 000C | FFFF | 800 | 1000 |         |                |  |
| 1FA   | EEOB   | 1FB                                           | EE0B | 206 | FFFF | 000 | 000B | FFFF | 800 | 1000 | 206     | FFFF           |  |
| 1FB   | AE08   | 1FC                                           | AE08 | 204 | FFAE | 000 | 8000 | FFAE | 800 | 1000 |         |                |  |
| 1FC   | 0740   | 1FD                                           | 0740 | 1FC | 0740 | 000 | 01FC | FFAD | 009 | 1001 |         |                |  |

| 1FD | 0C00 | 1FE | 0C00 | 7FF | FFAD | 7FF | 01FD | FFAD | 009 | 1001 | 7FF | FFAD |
|-----|------|-----|------|-----|------|-----|------|------|-----|------|-----|------|
| 1FE | D663 | 663 | D663 | 7FE | 01FF | 7FE | D663 | FFAD | 009 | 1001 | 7FE | 01FF |
| 663 | AC01 | 664 | AC01 | 7FF | FFAD | 7FE | 0001 | FFAD | 009 | 1001 |     |      |
| 664 | F001 | 665 | F001 | 664 | F001 | 7FE | 0664 | FFAD | 009 | 1001 |     |      |
| 665 | F306 | 666 | F306 | 665 | F306 | 7FE | 0665 | FFAD | 009 | 1001 |     |      |
| 666 | 7E08 | 667 | 7E08 | 66F | F38F | 7FE | 8000 | FFAD | 001 | 0001 |     |      |
| 667 | F804 | 668 | F804 | 667 | F804 | 7FE | 0667 | FFAD | 001 | 0001 |     |      |
| 668 | F003 | 669 | F003 | 668 | F003 | 7FE | 0668 | FFAD | 001 | 0001 |     |      |
| 669 | 4C01 | 66A | 4C01 | 7FF | FFAD | 7FE | 0001 | FF5A | 009 | 1001 |     |      |
| 66A | 4E05 | 66B | 4E05 | 670 | 00A4 | 7FE | 0005 | FFFE | 008 | 1000 |     |      |
| 66B | CE01 | 66D | CE01 | 66B | 066D | 7FE | 0001 | FFFE | 800 | 1000 |     |      |
| 66D | EC01 | 66E | EC01 | 7FF | FFFE | 7FE | 0001 | FFFE | 800 | 1000 | 7FF | FFFE |
| 66E | 0A00 | 1FF | 0A00 | 7FE | 01FF | 7FF | 066E | FFFE | 008 | 1000 |     |      |
| 1FF | 0800 | 200 | 0800 | 7FF | FFFE | 000 | 01FF | FFFE | 008 | 1000 |     |      |
| 200 | 6E05 | 201 | 6E05 | 206 | FFFF | 000 | 0005 | FFFF | 800 | 1000 |     |      |
| 201 | EE04 | 202 | EE04 | 206 | FFFF | 000 | 0004 | FFFF | 800 | 1000 | 206 | FFFF |
| 202 | 0100 | 203 | 0100 | 202 | 0100 | 000 | 0202 | FFFF | 800 | 1000 |     |      |

Таблица 2

### Выводы

В ходе данной лабораторной работы я:

- Познакомился с реализацией подпрограмм в БЭВМ
- Познакомился с такой структурой данных, как стек
- Закрепил знания о режимах адресации в БЭВМ