Closure Properties of Regular Languages:

- The union of two regular languages is regular.
- The concatenation of regular languages is regular.
- The closure (star) of a regular language is regular.
- The complement of a regular language is regular.
- The intersection of two regular languages is regular.
- The difference of two regular languages is regular.
- The reversal of a regular language is regular.
- The closure (star) of a regular language is regular.
- A homomorphism (substitution of strings for symbols) of a regular language is regular.
- The inverse homomorphism of a regular language is regular.

The complement of a regular language is regular:

Let us consider Language L with the following DFA:

What will be its complement L'?

- Change all original final states to non-final.
- Change all original non-final states to final.

Task: What is the RE of this DFA?

The intersection of two regular languages is regular

Consider RE for L₁: (a + b)*aa(a + b)*Consider RE for L₂: b*(ab*ab*)*

What will be the RE for $L_1 \cap L_2$?

 $A \cap B = (A' \cup B')'$

 $(A' \cup B')' = (A')' \cap (B')' = A \cap B$

Step 1: A'

Step 2: B' Step 3: A' U B'

Step 4: (A' U B')'

DFA1:

DFA2:

Step 1: DFA1':

Step 2: DFA2':

Step 3: DFA₁' ∪ DFA₂':

Step 4 – (DFA₁' \cup DFA₂')' = DFA₁ \cap DFA₂:

Finding out the RE for L1 \cap L2

Step 1: Bypassing z2 and z6

Step 2: Bypassing z3

Step 3: Bypassing z4

Finding out the RE for $L_1 \cap L_2$

Step 1: Bypassing z₂ and z₆ gives

Step 2: Bypassing z₃ gives

Step 3: Bypassing z₄ gives: (b+abb*ab)*a(a+bb*aab*a)(b+ab*a)*

The difference of two regular languages is regular:

If L and M are regular languages then L-M is also a regular language.

Proof:

- We know that
 - o If M is regular language then M' is also regular
 - o If L and M are regular languages then L ∩ M is also regular
- Because $L M = L \cap M'$, so L M is also regular.

Task: Implement this on DFA for the language accepting strings containing aa.

Decidability:

- 1. Is this language empty?
- 2. Is the string w in the language?
- 3. Are the languages equivalent?

Q1. Is this language empty?

RE:
$$(a+\lambda)(ab^*+ba^*)(\lambda+b^*)^*$$

Step 1: Remove all *

Step 2: Remove all + and its right side

Applying step 1 on the RE: $(a+\lambda)(ab+ba)(\lambda+b)$

Applying step 2 on the RE: $(a)(ab)(\lambda)$

 $= aab\lambda$

= aab The language accepts aab at least !!!

So, The language is not empty.

Note:

- \circ $a\lambda = a$
- \circ $\lambda a = a$
- \circ a λ b = ab
- \circ b $\lambda a = ba$

Q3. Are the languages equivalent?

L₁ and L₂ are not equivalent because

- although all members L₁ are in L₂,
- but all members of L2 are not in L1.

 $L1 \cap L2 = \{\}$ Does it mean that they are equivalent?

$$L1 = \{1,2,3\}$$

$$L2 = \{6,7,8\} \dots L1 \cap L2 = \{\} \dots$$
 They are NOT equivalent?

If $(L_1 \cap L_2') + (L_1' \cap L_2) = \{\}$ then it means both languages are equivalent !!!

$$U = \{1,2,3,4,5\}$$

$$L1 = \{1,2,3\}$$
 $L1' = \{4,5\}$

$$L2 = \{1,2,3\}$$
 $L2' = \{4,5\}$

$$L1 \cap L2' = \{\}$$
 $L1' \cap L2 = \{\}$

$$(L1 \cap L2') \cup (L1' \cap L2) = \{\}$$

...... Both languages are equivalent