Investigating Optimal Visual Inputs for Cortical Neurons

A CNN-based Approach for MEI-Gabor Comparison

Agnese Adorante 3158575
Martina Del Gaudio 3174092
Tommaso Giacomello 3173616
Kristian Gjika 3116656
Clara Montemurro 3179680

Bocconi University

08/05/2024

Scope of the Study

- Goal: Identify and generate the Most Excitatory Input (MEI) for a single neuron. MEIs are specific visual stimuli that are designed to maximally activate the neurons.
- Methods: Deep learning techniques on most informative neurons.
- Validation: We test the robustness of our findings using Gabor filters as benchmarks.

Most Important Neurons (MINs)

We developed a two step method:

- **1 Oracle Correlation**: Compute the *Pearson correlation* of a neuron's response across images, comparing a random response to the average on other trials.
- 2 Average (50 runs): Repeats the analysis 50 times (typical trial count) and calculates average scores.

Filter neurons above 60-th percentile of oracle correlation and above 50-th percentile of variance and choose neurons which perform best with the **CNN**.

Convolutional Neural Network (CNN)

From CNN to MEI

Most Excitatory Inputs (MEIs)

Gabor Comparison

Metrics and Results I

Comparative Analysis:

	MEI	Gabor
Luminance	0.4496	0.4097
Contrast	0.1511	0.1323
1-Fold Symmetry Index	0.9696	0.9992
2-Fold Symmetry Index	0.9845	0.9975

Metrics and Results II

Luminance and Contrast:

Power Spectrum:

(Bocconi University)

Final

Thank you for the attention!