

Dolphin: A Programmable Framework for Scalable Neurosymbolic Learning

Aaditya Naik, Jason Liu, Claire Wang, Amish Sethi, Saikat Dutta, Mayur Naik, Eric Wong

Motivation: Scaling Neurosymbolic Programming **Task** Training Time with Scallop Video-Text Alignment 4.0E+4 Video Sequence 3.0E+4 2.0E+4 Neurosymbolic **Text** Program Aligned Mugen-1K Mugen-5K Mugen jumps a few times to the right, and walks to the right, and jumps Dataset Size to the right, and jumps up to the right 1.3E+5 Visual Path-Finding 1.0E+5 7.5E+4 5.0E+4 Neurosymbolic ____

0.0E+0

Task Complexity

An Example Dolphin Program

Task: Add N MNIST Digits

Tight integration with PyTorch Intuitive Pythonic Primitives

Recursion, Control-Flow,
Blackbox Functions

GPU-driven Vectorized
Probablistic Computations

Experimental Results

Dolphin Speeds up Training

Dolphin Training Scales Better as Complexity Grows

Dolphin achieves SOTA Accuracies

Dolphin Splits Execution over CPU and GPU to allow Scaling

