Chapter 1

Solution approximation

1.1 The Bisection Method

Exercise 1

Use the Bisection method to find p_3 for $f(x) = \sqrt{x} - \cos x$ on [0, 1].

Solution 1

Table of iteration for $f(x) = \sqrt{(x) - \cos x}$ on [0, 1]:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0	1	0.5	-0.170475781
2	0.5	1	0.75	0.134336535
3	0.5	0.75	0.625	-0.020393704

So $p_3 = 0.625$.

Exercise 2

Let $f(x) = 3(x+1)(x-\frac{1}{2})(x-1)$. Use the bisection method to find p_3 in the following intervals:

- (a) [-2, 1.5]
- (b) [-1.5, 2.5]

Solution 2

(a) We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-2	1.5	-0.25	2.109375
2	-2	-0.25	-1.125	-1.294921875
3	-1.125	-0.25	-0.6875	1.878662109

So $p_3 = -0.6875$.

(b) We have the following table:

n	a_n	b_n	p_n	$f(p_n)$
1	-1.5	2.5	0.5	0

The solution is found in the first iteration so p_3 doesn't exist.

Exercise 3

Use the Bisection method to find solutions accurate to within 10^{-2} for $x^3-7x^2+14x-6=0$ in the following intervals:

- (a) [0,1]
- (b) [1, 3.2]
- (c) [3.2, 4]

Solution 3

(a) The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{1 - 0}{2^n} < 10^{-2} \iff n \ge 7$$

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0	1	0.5	-0.625
2	0.5	1	0.75	0.984375
3	0.5	0.75	0.625	0.259766
4	0.5	0.625	0.5625	-0.161865
5	0.5625	0.625	0.59375	0.054047
6	0.5625	0.59375	0.578125	-0.052624
7	0.578125	0.59375	0.5859375	0.001031

So $p \approx 0.5859$.

1.1. THE BISECTION METHOD

3

(b) The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{3.2 - 1}{2^n} < 10^{-2} \iff n \ge 8$$

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	1	3.2	2.1	1.791
2	2.1	3.2	2.65	0.552125
3	2.65	3.2	2.925	0.085828
4	2.925	3.2	3.0625	-0.054443
5	2.925	3.0625	2.99375	0.006328
6	2.99375	3.0625	3.028125	-0.026521
7	2.99375	3.02813	3.010938	-0.010697
8	2.99375	3.010938	3.002344	-0.002333

So $p \approx 3.0023$.

(c) The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{4 - 3.2}{2^n} < 10^{-2} \iff n \ge 7$$

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	3.2	4	3.6	0.336
2	3.2	3.6	3.4	-0.016
3	3.4	3.6	3.5	0.125
4	3.4	3.5	3.45	0.046125
5	3.4	3.45	3.425	0.013016
6	3.4	3.425	3.4125	-0.001998
7	3.4125	3.425	3.41875	0.005382

So $p \approx 3.4188$.

Exercise 4

Use the Bisection method to find solutions accurate to within 10^{-2} for $x^4 - 2x^3 - 4x^2 + 4x + 4 = 0$ for the following intervals:

- (a) [-2, -1]
- (b) [0,2]

- (c) [2,3]
- (d) [-1,0]

Solution 4

(a) The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{-1 - (-2)}{2^n} < 10^{-2} \iff n \ge 7$$

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-2	-1	-1.5	0.8125
2	-1.5	-1	-1.25	-0.902344
3	-1.5	-1.25	-1.375	-0.288818
4	-1.5	-1.375	-1.4375	0.195328
5	-1.4375	-1.375	-1.40625	-0.062667
6	-1.4375	-1.40625	-1.421875	0.062263
7	-1.421875	-1.40625	-1.414063	-0.001208

So $p \approx -1.4141$.

(b) The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{2 - 0}{2^n} < 10^{-2} \iff n \ge 8$$

We have the following table:

				- / >
n	a_n	b_n	p_n	$f(p_n)$
1	0	2	1	3
2	1	2	1.5	-0.6875
3	1	1.5	1.25	1.285156
4	1.25	1.5	1.375	0.312744
5	1.375	1.5	1.4375	-0.186508
6	1.375	1.4375	1.40625	0.063676
7	1.40625	1.4375	1.421875	-0.061318
8	1.40625	1.421875	1.414063	0.001208

So $p \approx 1.4141$.

1.1. THE BISECTION METHOD

5

(c) The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{3 - 2}{2^n} < 10^{-2} \iff n \ge 7$$

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	2	3	2.5	-3.1875
2	2.5	3	2.75	0.347656
3	2.5	2.75	2.625	-1.757568
4	2.625	2.75	2.6875	-0.795639
5	2.6875	2.75	2.71875	-0.247466
6	2.71875	2.75	2.734375	0.044125
7	2.71875	2.734375	2.726563	-0.103151

So $p \approx 2.7266$.

(d) The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{0 - (-1)}{2^n} < 10^{-2} \iff n \ge 7$$

We have the following table:

n	a_n	b_n	p_n	$f(p_n)$
1	-1	0	-0.5	1.3125
2	-1	-0.5	-0.75	-0.089844
3	-0.75	-0.5	-0.625	0.578369
4	-0.75	-0.625	-0.6875	0.232681
5	-0.75	-0.6875	-0.71875	0.068086
6	-0.75	-0.71875	-0.734375	-0.011768
7	-0.734375	-0.71875	-0.726563	0.027943

So $p \approx -0.7266$.

Exercise 5

Use the Bisection method to find solutions accurate to within 10^{-5} for the following problems:

(a)
$$x - 2^{-x} = 0, x \in [0, 1]$$

(b)
$$e^x - x^2 + 3x - 2 = 0, x \in [0, 1]$$

(c)
$$2x\cos 2x - (x+1)^2 = 0, x \in [-3, -2]$$

(d)
$$x\cos x - 2x^2 + 3x - 1 = 0, x \in [0.2, 0.3]$$

Solution 5

(a) The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{1 - 0}{2^n} < 10^{-5} \iff n \ge 17$$

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0	1	0.5	-0.207107
2	0.5	1	0.75	0.155396
3	0.5	0.75	0.625	-0.02342
4	0.625	0.75	0.6875	0.066571
5	0.625	0.6875	0.65625	0.021725
6	0.625	0.65625	0.640625	-0.00081
7	0.640625	0.65625	0.648438	0.010467
8	0.640625	0.648438	0.644531	0.004831
9	0.640625	0.644531	0.642578	0.002011
10	0.640625	0.642578	0.641602	0.000601
11	0.640625	0.641602	0.641113	-0.000105
12	0.641113	0.641602	0.641357	0.000248
13	0.641113	0.641357	0.641235	0.000072
14	0.641113	0.641235	0.641174	-0.000017
15	0.641174	0.641235	0.641205	0.000028
16	0.641174	0.641205	0.64119	0.000006
17	0.641174	0.64119	0.641182	-0.000005

So $p \approx -0.641182$.

(b) The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{1 - 0}{2^n} < 10^{-5} \iff n \ge 17$$

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0	1	0.5	0.898721
2	0	0.5	0.25	-0.0284746
3	0.25	0.5	0.375	0.439366
4	0.25	0.375	0.3125	0.206682
5	0.25	0.3125	0.28125	0.0894332
6	0.25	0.28125	0.265625	0.0305642
7	0.25	0.265625	0.257812	0.00106637
8	0.25	0.257812	0.253906	-0.0136987
9	0.253906	0.257812	0.255859	-0.00631481
10	0.255859	0.257812	0.256836	-0.00262388
11	0.256836	0.257812	0.257324	-0.000778673
12	0.257324	0.257812	0.257568	0.000143868
13	0.257324	0.257568	0.257446	-0.000317397
14	0.257446	0.257568	0.257507	-0.000086763
15	0.257507	0.257568	0.257538	0.000028553
16	0.257507	0.257538	0.257523	-0.000029105
17	0.257523	0.257538	0.25753	-0.000000276

So $p \approx 0.25753$.

(c) The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{-2 - (-3)}{2^n} < 10^{-5} \iff n \ge 17$$

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-3	-2	-2.5	-3.66831
2	-2.5	-2	-2.25	-0.613919
3	-2.25	-2	-2.125	0.630247
4	-2.25	-2.125	-2.1875	0.0380755
5	-2.25	-2.1875	-2.21875	-0.280836
6	-2.21875	-2.1875	-2.20312	-0.119557
7	-2.20312	-2.1875	-2.19531	-0.0402785
8	-2.19531	-2.1875	-2.19141	-0.000985195
9	-2.19141	-2.1875	-2.18945	0.0185743
10	-2.19141	-2.18945	-2.19043	0.00880185
11	-2.19141	-2.19043	-2.19092	0.00391015
12	-2.19141	-2.19092	-2.19116	0.00146293
13	-2.19141	-2.19116	-2.19128	0.000238981
14	-2.19141	-2.19128	-2.19135	-0.000373078

15	-2.19135	-2.19128	-2.19131	-0.000067041
16	-2.19131	-2.19128	-2.1913	0.000085972
17	-2.19131	-2.1913	-2.19131	0.000009466

So $p \approx -2.19131$.

(d) The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{0.3 - 0.2}{2^n} < 10^{-5} \iff n \ge 14$$

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0.2	0.3	0.25	-0.132772
2	0.25	0.3	0.275	-0.0615831
3	0.275	0.3	0.2875	-0.0271127
4	0.2875	0.3	0.29375	-0.010161
5	0.29375	0.3	0.296875	-0.00175623
6	0.296875	0.3	0.298438	0.00242831
7	0.296875	0.298438	0.297656	0.000337524
8	0.296875	0.297656	0.297266	-0.000708983
9	0.297266	0.297656	0.297461	-0.000185637
10	0.297461	0.297656	0.297559	0.000075967
11	0.297461	0.297559	0.29751	-0.000054829
12	0.29751	0.297559	0.297534	0.000010570
13	0.29751	0.297534	0.297522	-0.000022129
14	0.297522	0.297534	0.297528	-0.000005779

So $p \approx 0.297528$.