EXPERIMENT 5

PRAKASH P. BISWAS 9947 COMPS-B

MINMAX

```
def find_min_and_max(arr):
    if not arr:
        return None, None # Return None for both min and max if the array is
empty

min_val = float('inf') # array smaller hoga initial se
max_val = float('-inf') # array larger hoga initial se

for num in arr:
    if num < min_val:
        min_val = num
    if num > max_val:
        max_val = num

return min_val, max_val

input_array = [4, 2, 9, 1, 7, 5]
min_value, max_value = find_min_and_max(input_array)

print(f"Minimum value: {min_value}")
print(f"Maximum value: {max_value}")
```

OUTPUT:

```
[Running] python -u "d:\phyton\college.py"
Minimum value: 1
Maximum value: 9
[Done] exited with code=0 in 0.182 seconds
```

POSTLAB:

	9947
	COMPS-B
	Algorithm DC_MAAMIN (A, low, high)
	1/ Input: Array A of length n, and indices low = 0 and high n-1
	(1 Output (min, max) variables holding minimum and maximum element of array
	if n==1 then
	return (AC17, AC17)
	else if $n == 2$ then-
_	if ACII < AC2I then
	return (AC17, AC27)
_	else
	return (AC2], AC(I)
	else
	mid +(low + high)/2
	[LMin, LMab] = DC_MAPMIN (A, low, mid)
	[RMin, RMab] = DC_MAPMIN (A, mid + 1, high)
	If LMap > 2Map then
	map <+LMap
	else
	map <-RMap
	end

	LMin < RMin then
	in <lmin Se</lmin
	in < RMin
	rd
	turn (min, map)
e	rd
*	For finding the minimum: O(n)
*	For finding the maximum: O(n)
	he total time complexity of the straightforward method is OC
Ы	it we simplify it to O(n) for big-0 notation.
C	omparison:
	oth methods use a linear scan through the arrays, and their t
	implebities are both O(n). However, the minimum-maximum
_	gorithm is more efficient because it performs the same task ngle pass through the arrays, whereas the straightforward me
_	quires two separate passes.
	garan september process