MTE 203 – Advanced Calculus Homework 3 - Questions

Differentiation and Integration of Vectors

Problem 1 [11.9, Prob. 7, 19]

If $f(t) = t^2 + 3$, $g(t) = 2t^3 + 3t$, $u(t) = t\hat{\imath} - t^2\hat{\jmath} + 2t\hat{k}$, and $v(t) = \hat{\imath} - 2t\hat{\jmath} + 3t^2\hat{k}$, find the scalar or the components of the vector in the following exercises:

- a. $\frac{d}{dt}[f(t)\boldsymbol{v}(t)]$
- b. $\int [f(t)\boldsymbol{u}\cdot\boldsymbol{v}]dt$

Problem 2 [11.9, Prob. 25]:

Prove that if a differentiable function $\mathbf{v}(t)$ has constant length, then at any point at which $\frac{d\mathbf{v}}{dt} \neq 0$, the vector $\frac{d\mathbf{v}}{dt}$ is perpendicular to \mathbf{v}

Arc Length and Length of Curves

Problem 3 [S. 11.11, Prob. 11, 13]:

Find the length of the following curves. Draw the curves.

- a. $x = 2\cos t$, $y = 2\sin t$, z = 3t, $0 \le t \le 2\pi$
- b. $x = t^3$, $y = t^2$, $z = t^3$, $0 \le t \le 1$

Displacement, Velocity and Acceleration

Problem 4 [11.13, Prob. 13]

A particle moves along the curve x(t) = t, $y(t) = t^3 - 3t^2 + 2t$, $0 \le t \le 5$ in the xy plane (where t is the time). Is there any point at which its velocity is parallel to its displacement?

Problem 5 [11.13, Prob. 17]

A particle travels around the circle $x^2 + y^2 = 4$ counterclockwise at constant speed, making 2 revolutions each second. If x and y are measured in meters, what is the velocity of the particle when it is at the point $(1, -\sqrt{3})$

Problem 6 [11.13, Prob. 21]

A plane flies with speed 600 km/h in still air. The plane is to fly in a straight line from city A to city B, where B is 1000 km northwest of A. What should be its bearing if the wind is blowing from the west at 50 km/h? How long will the trip take?

Extra Practice Problems

Solutions to these problems can be found at the back of your textbook

- 1. S. 11.9, Probs. 10, 18, 24
- 2. S. 11.11, Probs. 12,14
- 3. S. 11.13, Probs. 4, 14, 38