Demography estimation

Shyam Gopalakrishnan Aug 8th 2025

Outline

- Background What + Why demography?
- Various ways to estimate demography
- Recap coalescent + HMM
- Estimate from one genome
 - PSMC
- Exercise

• What do we mean by demography?

- What do we mean by demography?
 - Population sizes
 - Migration rates
 - Population split times

• What do we mean by demography?

present V

Zimbabwe

- Demography for a single population?
 - Effective population size

Why care about demography?

 Demography allows us to characterize the neutral variation in the genome

How to estimate demography?

• Can you think of a way to estimate demography based on your lectures this week?

- Usually using summary statistics
 - SFS
 - Linkage disequilibrium
 - A whole plethora of other summary statistics
- Define a model and find parameters that best fit the observed summary statistics
 - Various statistical techniques

- SFS based demography estimation
 - dadi: diffusion approximation for demographic inference

- SFS based demography estimation
 - momi2: Moran models for inference

https://momi2.readthedocs.io/en/latest/tutorial.html

Kamm et al. 2020, JASA

- SFS based demography estimation
 - fastsimcoal2

Excoffier et al. 2021, Bioninformatics

- Other metrics to estimate demography
 - Linkagedisequilibrium(LD)

Coalescent based (*)

- PSMC

Li and Durbin 2011, Nature Freedman et al. 2014, PLoS Genet.

- Coalescent based (*)
 - MSMC

Quick coalescent detour

Figure courtesy of Marie Louis

Coalescent to demography

Group discussion

Consider a pair of chromosomes

- Mutations
- Recombinations

How would you use this information to estimate the demography, specifically Ne of one population?

Coalescent to demography

• Effect of changing effective population size, N

Coalescent to demography

• Effect of changing effective population size, N

How will the mutations look on this

How will the mutations look on this

What about the size of the recombination

Reconstruct population history

Reconstruct population history

Time to

PSMC: Pairwise Sequentially Markovian Coalescent

- Use recombination block sizes and density of mutations in genome to estimate population size, N
 - Hidden Markov Model (HMM)

PSMC

Quick detour #2: HMM

Eisner ice cream problem

Climatologist in 2800 AD who wants to understand the day to day temperature in 2000s, but all he has is the journal of Eisner who notes how many ice creams he eats every day.

Some simplifications + assumptions:

Only 2 day types - HOT or COLD

Eisner's ice cream consumption depends on day type

Day states form a markov chain – so today's day type affects tomorrow's day type.

Quick detour #2: HMM

Quick detour #2: HMM

Quick detour #2: HMM

Three problems we need to solve in a HMM:

- 1. **Likelihood**: Given observations O, and parameters Θ of the HMM, we need to be able to compute the P(O | Θ)
- 2. **Decoding**: Given observations O, and parameters Θ , compute the best hidden state sequence $X_1, X_2 ... X_n$
- 3. **Learning**: Given observations O and the set of states in the HMM, learn the parameters Θ .

What is the hidden state?

What is the hidden state?

What is the hidden state? The time to coalescence for that part of the genome.

Let us know try and understand the transition probabilities. We know that the first locus has a time to coalescence of T1.

If recombination, then what? Time to coalescence Recombination

If recombination, then what? Depends on population size history. Recombination

Using recombination map (probability of recombination at any locus) and N_e, we can compute transition probabilities. $p(t|s) = (1 - e^{-\rho t})q(t|s) + e^{-\rho s}\delta(t-s)$ $q(t|s) = \frac{1}{\lambda(t)} \int_{0}^{\min(s,t)} \frac{1}{s} \times e^{-\int_{u}^{t} \frac{dv}{\lambda(v)}}$

P(site is heterozygous | time to coalescence = T)

PSMC: Some missing bits

• Time is discretized

- On log scale, so expected number of coalescent events in

each bin ~ equal

PSMC: Some missing bits

- Time is discretized
 - On log scale, so expected number of coalescent events in each bin ~ equal
- Mutation rate and mutation/recombination ratio are additional parameters
 - What happens if recombination rate is similar to mutation rate?

PSMC: Putting it all together

PSMC on simulated data

PSMC on human populations

Conclusions

- Many ways to skin a cat
 - SFS based, LD based, coalescent based, summary statistics based
- Pairwise Sequentially Markovian Coalescent
 - Lots of information in 1 genome
 - Remove problem with tree topology
 - Lots of methods in same framework MSMC, SMC++, MiSTI

Exercises after the break