# Diszkrét matematika 1

4. előadás Komplex számok I.

Mérai László

merai@inf.elte.hu

2024 tavasz

# Komplex számok I.

$$(\cos t + i \cdot \sin t)^n = \cos(n \cdot t) + i \cdot \sin(n \cdot t)$$

# Komplex számok

• az  $i \in \mathbb{C}$ :  $i^2 = -1$  számmal szimbolikus számolási szabályokkal

#### Definíció

A komplex számok halmaza a  $\mathbb{C}=\{a+bi:a,b\in\mathbb{R}\}$ Legyen  $z=a+bi\in\mathbb{C}$ . Ekkor



• z képzetes része Im(z) = b

• 
$$z$$
 abszolút értéke  $|z| = \sqrt{a^2 + b^2}$ .



#### Műveletek:

• 
$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

• 
$$(a + bi) \cdot (c + di) = ac + (ad + bc)i + bdi^2 = (ac - bd) + (ad + bc)i$$

# Számolás komplex számokkal

Legyen  $z = a + bi \neq 0$ . Ekkor 1/z kiszámolása a nevező gyöktelenítésével:

$$\frac{1}{z} = \frac{1}{a+bi} = \frac{a-bi}{a-bi} \cdot \frac{1}{a+bi} = \frac{a-bi}{(a-bi)(a+bi)} = \frac{a-bi}{a^2-i^2b^2} = \frac{a-bi}{a^2+b^2}$$

#### Definíció

• Egy  $z = a + bi \in \mathbb{C}$  szám konjugáltja:

$$\overline{z} = \overline{a + bi} = a - bi.$$

• Ezzel  $z \neq 0$  esetén  $1/z = \overline{z}/|z|^2$ .



#### Példa

- z=i. Ekkor  $\overline{i}=-1$ , |i|=1, így  $-b=\mathrm{Im}(\overline{z})$
- z = 2. Ekkor  $\overline{2} = 2$ , |2| = 2, így 1/2 = 2/4 = 2.

# Műveletek komplex számokkal

Hasznos összefüggések:

Legyen  $z=a+bi\in\mathbb{C}$  és  $w=c+di\in\mathbb{C}.$  Ekkor

• 
$$z \cdot \overline{z} = a^2 + b^2 = |z|^2$$

$$\bullet \ \frac{w}{z} = w \cdot \frac{1}{z} = w \cdot \frac{\overline{z}}{|z|^2} = \frac{w \cdot \overline{z}}{|z|^2}$$

• 
$$\overline{z \cdot w} = \overline{(ac - bd) + (ad + bc)i} = (ac - bd) - (ad + bc)i = (ac - (-b)(-d)) + (a(-d) + (-b)c)i = \overline{z} \cdot \overline{w}$$

$$\bullet \ |z\cdot w|^2 = (z\cdot w)\cdot \overline{z\cdot w} = (z\cdot w)\cdot \overline{z}\cdot \overline{w} = |z|^2|w|^2$$

• speciálisan 
$$|z \cdot w| = |z| \cdot |w|$$

• . . .

(További hasznos összefüggéseket ld. a kiegészítésben.)

### Számfogalom bővítése

#### Tétel (Algebra alaptétele, biz.: NB)

Adott  $c_0, c_1, \ldots, c_n \in \mathbb{R}, n \ge 1, c_n \ne 0$ , a

$$c_n z^n + \dots + c_1 z + c_0 = 0, \quad z \in \mathbb{C}$$

egyenlet mindig megoldható.

### Komplex számok trigonometrikus alakja

Legyen  $z = a + bi \in \mathbb{C} \setminus \{0\}.$ 

- Az r = |z| az  $(a, b) \in \mathbb{R}^2$  vektor hossza.



• Ekkor  $a = r \cos \varphi$  és  $b = \sin \varphi$ , így

$$z = r(\cos\varphi + i\sin\varphi)$$

#### Definíció

Az  $z = a + bi \in \mathbb{C} \setminus \{0\}$  komplex szám trigonometrikus alakja:

$$z = r(\cos \varphi + i \sin \varphi)$$
, ahol  $a = \text{Re}(z) = r \cos \varphi$  és  $b = \text{Im}(z) = r \sin \varphi$ 

# Komplex számok trigonometrikus alakja, példák Példa



$$z = 1$$
:  $|z| = 1$ ,  $\arg(z) = 0$   
 $\implies z = 1(\cos 0 + i \sin 0)$ 



$$z=1$$
:  $|z|=1$ ,  $\arg(z)=0$   $z=i$ :  $|z|=1$ ,  $\arg(z)=\pi/2$   $\implies z=1(\cos 0+i\sin 0)$   $\implies z=1(\cos(\pi/2)+i\sin(\pi/2))$ 



$$z = 1 + i$$
:  $|z| = \sqrt{2}$ ,  $\arg(z) = \pi/4$   
 $\implies z = \sqrt{2}(\cos(\pi/4) + i\sin(\pi/4))$ 



$$z = -1 - i$$
:  $|z| = \sqrt{2}$ ,  $\arg(z) = 5\pi/4$   
 $\implies z = \sqrt{2}(\cos(5\pi/4) + i\sin(5\pi/4))$ 

# Komplex számok trigonometrikus alakja, szorzás

Legyen  $z,w\in\mathbb{C}\setminus\{0\}$  nem-nulla komplex számok:

$$z = |z|(\cos \varphi + i \sin \varphi), \quad w = |w|(\cos \psi + i \sin \psi)$$

A szorzatuk:

$$zw = |z|(\cos\varphi + i\sin\varphi) \cdot |w|(\cos\psi + i\sin\psi)$$
$$= |z||w|(\cos\varphi\cos\psi - \sin\varphi\sin\psi + i(\cos\varphi\sin\psi + \sin\varphi\cos\psi))$$

#### Addíciós képletek:

 $\cos(\varphi + \psi) = \cos\varphi\cos\psi - \sin\varphi\sin\psi \quad \sin(\varphi + \psi) = \cos\varphi\sin\psi + \sin\varphi\cos\psi$ Így

$$zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$$

#### Tétel (Biz: ld fent)

Legyenek  $z, w \in \mathbb{C} \setminus \{0\}$  nem-nulla komplex számok:

$$z = |z|(\cos \varphi + i \sin \varphi), \quad w = |w|(\cos \psi + i \sin \psi)$$
  
Ekkor  $zw = |z||w|(\cos(\varphi + \psi) + i \sin(\varphi + \psi)).$ 

### Komplex számok trigonometrikus alakja, szorzás

$$zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$$

Ekkor

- A szorzat abszolút értéke: |zw| = |z||w|.
- A szorzat argumentuma:
  - ha  $0 \le \arg z + \arg w < 2\pi$ , akkor  $\arg(zw) = \arg z + \arg w$ ;
  - ha  $2\pi \le \arg z + \arg w \le 4\pi$ , akkor  $\arg(zw) = \arg z + \arg w 2\pi$ .

A  $\sin$ ,  $\cos$  függvények  $2\pi$  szerint periodikusak, az argumentum meghatározásnál redukálni kell az argumentumok összegét.

#### Példa

- $(1+i)^2 = 1 + 2i + i^2 = 2i$
- $(1+i)^3 = 1 + 3i + 3i^2 + i^3 = -2 + 2i$
- $(1+i)^4 = 1 + 4i + 6i^2 + 4i^3 + i^4 = -4$

Általában,

- $z = 1 + i = \sqrt{2}(\cos(\pi/4) + i\sin(\pi/4))$
- Így  $(1+i)^4 = \sqrt{2}^4(\cos(4 \cdot \pi/4) + i\sin(4 \cdot \pi/4)) = 4(\cos \pi + i\sin \pi) = -4$

### Moivre-azonosságok

#### Tétel (Biz: HF)

Legyen  $z, w \in \mathbb{C} \setminus \{0\}$  nem-nulla komplex számok:  $z = |z|(\cos \varphi + i \sin \varphi)$ ,  $w = |w|(\cos \psi + i \sin \psi)$ , és legyen  $n \in \mathbb{N}$ . Ekkor

- $zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi))$
- $\frac{z}{w} = \frac{|z|}{|w|} (\cos(\varphi \psi) + i\sin(\varphi \psi))$
- $z^n = |z|^n (\cos n\varphi + i\sin n\varphi)$

A szögek rendre összeadódnak, kivonódnak, szórzódnak. Az argumentumot ezek után *redukcióval* kapjuk!

# Komplex számok hatványa

#### Példa

Legyen  $z = \cos(\pi/6) + i\sin(\pi/6) = \sqrt{3}/2 + i/2$ . Ekkor z hatványai:



• 
$$z^2 = \cos(2\pi/6) + i\sin(2\pi/6)$$

• 
$$z^3 = \cos(3\pi/6) + i\sin(3\pi/6) = i$$

• 
$$z^4 = \cos(4\pi/6) + i\sin(4\pi/6)$$

• 
$$z^5 = \cos(5\pi/6) + i\sin(5\pi/6)$$

• 
$$z^6 = \cos(6\pi/6) + i\sin(6\pi/6) = -1$$

• 
$$z^9 = \cos(9\pi/6) + i\sin(9\pi/6) = -i$$

• 
$$z^{12} = \cos(12\pi/6) + i\sin(12\pi/6) = 1 = z^0$$

# Számolás komplex számokkal – kiegészítés

#### **Tétel**

1. 
$$\overline{\overline{z}} = z$$
;

2. 
$$\overline{z+w} = \overline{z} + \overline{w}$$
;

3. 
$$\overline{z \cdot w} = \overline{z} \cdot \overline{w}$$
;

4. 
$$z + \overline{z} = 2 \cdot \operatorname{Re}(z)$$

5. 
$$z - \overline{z} = 2i \cdot \operatorname{Im}(z);$$

6. 
$$z \cdot \overline{z} = |z|^2$$
;

7. 
$$z \neq 0$$
 esetén  $z^{-1} = \overline{z}/|z|^2$ ;

8. 
$$|0| = 0$$
 és  $z \neq 0$  esetén  $|z| > 0$ ;

9. 
$$|\overline{z}| = |z|$$
;

$$10. |z \cdot w| = |z| \cdot |w|;$$

11. 
$$|z+w| \le |z| + |w|$$
 (háromszög egyenlőtlenség).