ISP (In System Programmable)	1
DesignExpert V8.1® - Schematic – Blockschaltbilder	2
Schaltnetze	2
Schaltwerke	2
Ausgangs-Makrozelle	5
Pinbelegung des 1016-Exp.Board	
8051 - Controller	7
Befehlssatz	7
Datentransport	8
Arithmetische Operationen	
Logische Operationen	
Sprungbefehle	11
Speicheraufteilung	
Internes RAM	
Interrupt & Timer	
Interrupt Enable (IE) Register	
Interruptstruktur des 8051	
Register zur Zählerkontrolle: TMOD und TCON:	
Blockschaltbild 8051	
Beschaltung MC-Board (BubMini)	
Besonderheiten des C-Compilers von Keil	

ISP (In System Programmable)

DesignExpert V8.1® - Schematic - Blockschaltbilder

Schaltnetze

Schaltwerke

ABEL-Syntax

The Header Section

- Module (required)
- Interface (lower level, optional)
- Title

The Declarations Section

- **Declarations Keyword**
- **Device Declaration**
- **Hierarchy Declarations**
- **Signal** Declarations
- **Constant** Declarations
- Symbolic State Declarations
- Macro Declarations
- Library Declarations

The Logic Description Section

- **Dot Extensions**
- **Equations**
- **Truth Tables**
- **State Descriptions**
- **Fuses Declarations**
- **XOR Factors**

The Test Vectors Section

- **Test Vectors**
- **Trace Statement**

The End Statement

Keyword: end

Beispiel

module szd07vr;

```
pin;
Takt
u,QC,QB,QA
             pin istype 'com,dc';
```

equations

QC.Clk = Takt; QB.Clk = Takt; QA.Clk = Takt;

```
truth_table
([u,QC,QB,QA] :> [QC,QB,QA])
                    [0,0,1];
       0,0,0
             ]
 [0,
       0,0,1
                    [0,1,0];
                :>
                    [0,1,1];
 [0,
       0,1,0
                :>
 [0,
       0,1,1
                :>
                    [1,0,0];
 [0,
       1,0,0
                :>
                    [1,0,1];
 [0,
       1,0,1
                :>
                    [1,1,0];
              ]
 [0,
       1,1,0
                    [1,1,1];
                :>
       1,1,1 ]
                    [0,0,0];
 [0.
                :>
 [1,
       0,0,0
              ]
       0,0,1
                    [0,0,0];
 [1,
                :>
 [1,
       0,1,0
                :>
                    [0,0,1];
                    [0,1,0];
       0,1,1
 [1,
                :>
                    [0,1,1];
 [1,
       1,0,0
                :>
                :>
 [1,
       1,0,1
             ]
                    [1,0,0];
       1,1,0
 [1,
                :>
                    [1,0,1];
       1,1,1 ] :>
 [1,
                    [1,1,0];
```

end

Syntax:

```
TRUTH TABLE(inputs ->
                                  outputs)
                                                 invalues -> outvalues :
                                                                                     Funktionstabelle
                  or
TRUTH TABLE(inputs :>
                                  reg outs)
                                                 invalues, reg values:> reg values; Zustandsübergangstabelle
         inputs
                       Input signal names to the logic function.
         outputs
                       Output signal names from the logic function.
         reg_outs
                       Registered (clocked) output signal names.
                       Indicates the input to output function for combinational outputs.
                       Indicates the input to output function for registered outputs.
         :>
```


.PIN Extension

If a signal is specified with the .PIN extension (for example, **count := count.pin+1**;), the pin feed-back path will be used. If the specified device does not feature pin feedback, an error will be generated. Output enables frequently affect the operation of fed-back signals that originate at a pin.

.Q Extension

Signals specified with the .Q extension (for example, **count.d = count.q + 1**;) will originate at the Q output of the associated flip-flop. The fed-back value may or may not correspond to the value you observe on the associated output pin; if an inverter is located between the Q output of the flip-flop and the output pin (as is the case in most registered PAL-type devices), the value of the fed-back signal will be the complement of the value you observe on the pin.

Spezielle Konstanten

Syntax	Beschreibung		
.U. .C.	Clock up edge (low-high transition) Clocked input (low-high-low transition)	 Clk Toggle Ena Qout	<pre>pin 1; pin 2; pin 11; pin 19 istype 'reg';</pre>
.D.	Clock down edge (high-low transition)	equation	
.K.	Clocked input (high-low-high transition)		<pre>Qout := !Qout.FB & Toggle; Qout.CLK = Clk; Oout.OE = !Ena;</pre>
.P.	Register preload		,
.X.	Don't care condition	test_v	ectors([Clk,Ena,Toggle] -> [Qout]) [.c., 0 , 0] -> 0;
.Z.	Tristate value	end	[.c., 0 , 1] -> 1; [.c., 0 , 1] -> 0; [.c., 0 , 1] -> 0; [.c., 0 , 1] -> 0; [.c., 1 , 1] -> .Z.; [0 , 0 , 1] -> 1; [.c., 1 , 1] -> .Z.; [0 , 0 , 1] -> 0;
		end	

Ausgangs-Makrozelle

FOSA--8051-Lokal-V31-5-05.doc

Pinbelegung des 1016-Exp.Board

8051 - Controller

Befehlssatz

Operand	Bedeutung							
Α	Akkumulator (E0)							
dadr	8 Bit – Adresse im internen RAM oder im SFR-Ber.							
adr11	11 Bit - Adresse							
adr16	16 Bit - Adresse							
AC	Auxiliary Carry (Hilfsübertrag-Flag) (D6)							
В	Register B							
badr	Bitadresse im internen RAM (20-2F) oder im SFR-Bereich(80-FF)							
/badr	Invertierter Inhalt der Bitadresse (Komplement)							
CY	Carry-Flag (D7)							
#c8	8 Bit - Konstante							
#c16	16 Bit - Konstante							
D	Kennzeichnung für ein 4 Bit - Digit (Nibble)							
DPTR	Datenpointerregister							
HB	Highbyte eines Datenwortes							
I	Interrupt							
LB	Lowbyte eines Datenwortes							
LSB	Bit 0 eines Bytes							
MSB	Bit 7 eines Bytes							
MZ	Maschinenzyklen							
OV	Overflow (Überlauf)- Flag (D2)							
Р	Port							
PC	Programmzähler							
PSW	Programmstatuswort							
rel	Signiertes 8 Bit - Offset für Sprungbefehle							
@Ri	Adressregister für internes und externes RAM							
Rn	Register 0 bis 7 der aktuellen Registerbank							
SFR	Spezialfunktionsregister							
SP	Stackpointer							
T	Timer							
TF	Timer - Flag							
	Flag wird beeinflusst							
	Flag wird nicht beeinflusst							
WB	Wortbreite des Befehls in Bytes							

Datentransport

		Hex-			Beeinflussung		ussung			
Mnemoni	scher Befehl	Code	W	М			ndbits	Befehlsbeschreibung		
OpCode	Operanden		В	Z	CY	OV	AC	•		
MOV	A,#c8	74	2	1				Akku direkt mit Konstante laden		
MOV	Rn,#c8	78-7F	2	1				Direktes Laden des Registers mit einer Konstanten		
MOV	dadr,#c8	75	3	2				Internen Speicher mit Konstante laden		
MOV	A,Rn	E8-EF	1	1				Kopieren Registerinhalt in den Akku		
MOV	Rn,A	F8-FF	1	1				Kopieren des Akkuinhaltes in ein Register		
MOV	A,dadr	E5	2	1				Inhalt interner Speicherplatze in den Akku kopieren		
MOV	dadr,A	F5	2	1				Inhalt Akku in einen internen Speicherplatz kopieren		
MOV	Rn,dadr	A8-AF	2	2				internen Speicherplatz in ein Register kopieren		
MOV	dadr,Rn	88-8F	2	2				Registerinhalt in internen Speicherplatz kopieren		
MOV	dadr,dadr	85	3	2			1	Inhalt interner Speicherplatz in einen anderen kopieren		
MOV	A,@R0	E6	1	1			-	Speicherinhalt des internen RAM in den Akku kopieren(R0 bzw. R1 enthält die Quellenadresse)		
MOV	A,@R1	E7	1	1				, , , , , , , , , , , , , , , , , , ,		
MOV	@R0,A	F6	1	1				Akkuinhalt in Speicherplatz des internen RAM kopieren(R0 bzw. R1 enthält die Zieladresse)		
MOV	@R1,A	F7	1	1						
MOV	dadr,@R0	86	2	2				Inhalt eines interner Speicherplatz in einen anderen kopieren(R0 bzw. R1 enthält die Quellenadresse)		
MOV	dadr,@R1	87	2	2						
MOV	@R0,#c8	76	2	1				Konstante in internen RAM laden R0 bzw. R1 bestimmen die Ziel Adresse		
MOV	@R1,#c8	77	2	1				The SZW. The Section and Zier Adirected		
IVIOV	<u>ω</u> τττ,που	.,	_	<u> </u>				Inhalt interner Speicherplatz in einen anderen kopie-		
MOV	@R0,dadr	A6	2	2				ren (R0 bzw. R1 enthält die Zieladresse)		
MOV	@R1,dadr	A7	2	2						
POP	dadr	D0	2	2				Speicherinhalt vom Stack holen		
PUSH	dadr	C0	2	2				Speicherinhalt auf den Stack schreiben		
NOP		00	1	1				Keine Aktivität		
MOV	badr,C	92	2	2				Carry-Inhalt in angegebene Bitadresse kopieren		
MOV	C,badr	A2	2	1				Der Inhalt Bitadresse in das Carry kopieren		
MOV	DPTR,#c16	90	3	2				16Bit-Konstante in Datenpointer laden		
XCH	A,Rn	C8-CF	1	1				Akku- und Registerinhalt austauschen		
XCH	A,dadr	C5	2	1			-	Internen Speicher mit dem Akkuinhalt tauschen		
XCH	A,@R0	C6	1	1				Inhalt interner Speicherplatzes Akku austauschen		
XCH	A,@R1	C7	1	1				(R0 bzw. R1 enthält die Zieladresse		
XCHD	A,@R0	D6	1	1				Das LOW-Nibble eines Speicherplatzes im internen RAM gegen das LOW-Nibble des Akkus		
XCHD	A,@R1	D7	1	1				austauschen. Die HIGH-Nibble beider Speicher werden nicht verändert. (R0 bzw. R1 enthält die Zieladresse)		
MOVX	A,@R0	E2	1	2				Inhalt eines externen Speicherplatzes in den Akku		
MOVX	A,@R1	E3	1	2				kopieren		
MOVX	@R0,A	F2	1	2				Inhalt des Akkus in einen externen Speicherplatz		
MOVX	@R1,A	F3	1	2				kopieren.		
MOVX	A,@DPTR	E0	1	2				Inhalt eines externen Speicherplatzes in den Akku kopieren		
MOVX	@DPTR,A	F0	1	2				Inhalt des Akkus in einen externen Speicherplatz kopieren		
MOVC	A,@A+DPTR	93	1	2				Hole Konstante aus einer Tabelle im EEPROM.		
MOVC	A,@A+PC	83	1	2				Hole Konstante aus einer Tabelle im EEPROM.		

Arithmetische Operationen

	Hex- Beeinflussung								
Mnemoniso	cher Befehl	Code	w	М		Zustandbits		Befehlsbeschreibung	
	Operanden	Jour	В	Z	CY			Bolomoscoomolsang	
CLR	A	E4	1	1				Löschen des Akku-Inhaltes	
CPL	A	F4	1	1				Komplementieren des Akku-Inhaltes	
INC	A	04	1	1				Inhalt des Akku um "1" erhöhen	
INC	Rn	08-0F	1	1				Inhalt des Registers um "1" erhöhen	
INC	dadr	05	2	1				Inhalt intern. Speicherstelle um "1" erhöhen	
INC	DPTR	A3	1	2				Inhalt des Datenpointers um "1" erhöhen	
INC	@R0	06	1	1				Inhalt einer Speicherstelle im internen	
INC	@R1	07	1	1				RAM um "1" erhöhen	
DEC	Ā	14	1	1				Inhalt des Akku um "1" vermindern	
DEC	Rn	18-1F	1	1				Inhalt des Registers um "1" vermindern	
DEC	dadr	15	2	1				Inhalt interne Speicherst. um "1" vermindern	
DEC	@R0	16	1	1				Inhalt int. Speicherstelle um "1" vermindern	
DEC	@R1	17	1	1				Inhalt int. Speicherstelle um "1" vermindern	
ADD	A,#c8	24	2	1			•	Addition einer Konstante zum Akkuinhalt	
ADDC	A,#c8	34	2	1				Addition einer Konstante plus Carry	
ADD	A,Rn	28-2F	1	1				Addition eines Registerinhaltes zum Akkuinhalt	
ADDC	A,Rn	38-3F	1	1				Add. eines Registerinh. plus Übertrag zum Akkuinhalt	
ADD	A,dadr	25	2	1				Inhalt int. Speicherstelle zum Akkus addieren	
ADDC	A,dadr	35	2	1				Inhalt int. Speicherstelle plus CY zum Akku addieren	
ADD	A,@R0	26	1	1				Inhalt einer Speicherstelle im internen	
ADD	A,@R1	27	1	1				RAM zum Inhalt des Akkus addieren	
ADDC	A,@R0	36	1	1				Inhalt einer Speicherstelle im internen RAM	
ADDC	A,@R1	37	1	1				plus CY zum Akku addieren	
DA	Α	D4	1	1			-	Dezimalkorrektur des Akku <i>nur</i> nach einer BCD- Addition	
SUBB	A,#c8	94	2	1				Subtraktion Konstante plus Carry vom Akku	
SUBB	A,dadr	95	2	1				Subtrakt. Int. Speicherinhalt plus Carry vom Akku	
SUBB	A,Rn	98-9F	1	1				Subtrakt. eines Registers plus Carry vom Akku	
SUBB	A,@R0	96	1	1				Subtraktion eines Speicherinhaltes des	
SUBB	A,@R1	97	1	1				internen RAM plus Carry vom Akkuinhalt	
SWAP	Α	C4	1	1	-			Vertausche die Nibbles des Akkus	
MUL	AB	A4	1	4				Multipliziere den Akku B- Register	
DIV	AB	84	1	4				Teile Akkuinhalt durch den B-Registerinhalt	
RL	Α	23	1	1	-			Rotiere Akku-Inhalt eine Stelle nach links	
RLC	Α	33	1	1				Rotiere Akku-Inhalt durch Carry nach links	
RR	Α	03	1	1	-			Rotiere Akku-Inhalt eine Stelle nach rechts	
RRC	Α	13	1	1			1	Rotiere Akku-Inhalt durch Carry nach rechts	
SETB	С	D3	1	1				Setze das CY-Bit auf "1"	
CLR	С	C3	1	1			-	Setze das CY-Bit auf "0"	
CPL	С	В3	1	1				Komplementiere das CY-Bit	
SETB	badr	D2	2	1				Setze das adressierte Bit auf "1"	
CLR	badr	C2	2	1				Setze das adressierte Bit auf "0"	
CPL	badr	B2	2	1				Komplementiere das adressierte Bit	

Logische Operationen

							Bitweise UND-Verknüpfung Konstante und
ANL	A,#c8	54	2	1		 	Akku
ANL	A,Rn	58-5F	1	1		 	Bitweise UND-Verknüpfung zwischen
	,						Akku und Register. Ergebnis im Akku.
ANL	A,dadr	55	2	1		 	Bitweise UND-Verknüpfung zwischen Akku inter. Spei-
7 11 12	7 1, 444	"	_	Ŀ			cherst., Ergebnis im Akku
ANL	dadr,#c8	53	3	2		 	Bitweise UND-Verkn. Konstante und int. Speicherst.,
				l .			das Ergebnis steht in der Speicherst. Bitweise UND-Verknüpfung zwischen Akku und RAM-
ANL	dadr,A	52	2	1		 	internem Speicher, Ergebnis im Speicher
ANL	C,badr	82	2	2		 	UND-Verknüpfung zwischen Carry und Bit
ANL	C,/badr	В0	2	2			UND-Verknüpfung zwischen Carry und invert. Bit.
	-				_	 	Ergebnis jeweils im Carry-Bit
ANL	A,@R0	56	1	1		 	Bitweise UND-Verknüpfung
ANL	A,@R1	57	1	1		 	Bitweise UND-Verknüpfung
ODI	A 44-0	44		4			Bitweise ODER-Verknüpfung Akku und
ORL	A,#c8	44	2	1		 	Konstante
ORL	dodr #00	43	3	2			Bitweise ODER-Verknüpfung Konstante und int. Spei-
	dadr,#c8		3	2		 	cherst. Das Ergebnis steht in der Speicherstelle
ORL	A,Rn	48-4F	1	1		 	Bitweise ODER-Verknüpfung zwischen
							Akku und Register. Ergebnis im Akku.
ORL	A,dadr	45	2	1		 	Bitweise ODER-Verknüpfung zwischen Akku und
	7 1,000						RAM-internem Speicher, Ergebnis im Akku
ORL	dadr,A	42	2	1		 	Bitweise ODER-Verknüpfung Akku und int.
	·				_		Speicherst., Ergebnis im Speicher
ORL	C,badr	72	2	2		 	ODER-Verknüpfung zwischen Carry Bit
ORL	C,/badr	A0	2	2		 	ODER-Verknüpfung zwischen Carry invertiertem
ORL	A,@R0	46	1	1			Bit. Ergebnis jeweils im Carry-Bit. Bitweise ODER-Verknüpfung
						 	, c
ORL	A,@R1	47	1	1		 	Bitweise ODER-Verknüpfung
XRL	A,#c8	64	2	1		 	Bitweise EXKLUSIV-ODER-Verknüpfung
XRL	dadr,#c8	63	3	2		 	Bitweise EXKLUSIV-ODER-Verknüpfung Konst.
	· ·						und int. Speicherst. Ergebnis in Speicherstelle.
XRL	A,Rn	68-6F	1	1		 	Bitweise EXKLUSIV-ODER-Verknüpfung Akku
							und angeg. Register. Ergebnis im Akku.
							Bitweise EXKLUSIV-ODER-Verknüpfung zw.
XRL	A,dadr	65	2	1		 	Akku und RAM-internem Speicher, Ergebnis im
			<u> </u>	ļ			Akku
VDI	al = al A	00		_			Bitweise EXKLUSIV-ODER-Verknüpfung zw.
XRL	dadr,A	62	2	1		 	Akku und RAM-internem Speicher, <i>Ergebnis im</i>
VDI	A @D0	66	1	1			Speicher Pituoine EVKLUSIV ODER Verknünfung
XRL	A,@R0	66	1	1		 	Bitweise EXKLUSIV-ODER-Verknüpfung
XRL	A,@R1	67	1	1		 	Bitweise EXKLUSIV-ODER-Verknüpfung

Sprungbefehle

		Hex-			Beeinflussung		ussung	
Mnemoniso	cher Befehl	Code	W		Zı	ustar	ndbits	Befehlsbeschreibung
OpCode	Operanden		В	Ζ	CY	OV	AC	
LJMP	adr16	02	3	2				Programmsprung im 64K-Block
SJMP	rel	80	2	2				relativer Programmsprung im Bereich -128 bis +127 zur nachfolgenden Befehlsadresse
AJMP	adr11	01-E1	2	2				Sprung im 2k-Block
JMP	@A+DPTR	73	1	2				Springe zur Adresse, die aus Akku- und Datenpointerinhalt gebildet wird.
JBC	badr,rel	10	3	2				Springe bei gesetztem Bit und lösche es
JB	badr,rel	20	3	2				Springe bei <i>gesetztem</i> Bit
JNB	badr,rel	30	3	2				Springe bei <i>gelöschtem</i> Bit
JC	rel	40	2	2				Springe bei <i>gesetztem</i> Carry-Bit
JNC	rel	50	2	2				Springe bei <i>gelöschtem</i> Carry-Bit
JZ	rel	60	2	2				Springe, wenn Akkuinhalt gleich Null
JNZ	rel	70	2	2				Springe, wenn Akkuinhalt ungleich Null
DJNZ	Rn,rel	D8-DF	2	2				Vermindere Register um Eins und springe, wenn der Rest ungleich Null
DJNZ	dadr,rel	D5	3	2				Vermindere den Speicherinhalt im inter- nen RAM um Eins und springe, wenn der Rest ungleich Null.
CJNE	A,#c8,rel	B4	3	2			-	Vergleiche Akku mit Konstante und verzweige bei Ungleichheit. Andernfalls fahre im Programm fort.
CJNE	Rn,#c8,rel	B8-BF	3	2				Vergleiche Register mit Konstante und verzweige bei Ungleichheit, andernfalls fahre fort.
CJNE	A,dadr,rel	B5	3	2	-			Vergleiche Akku- und Speicherinhalt und verzweige bei Ungleichheit.
CJNE	@R0,#c8,rel	В6	3	2				Vergleiche den Inhalt des RAM-internen
CJNE	@R1,#c8,rel	B7	3	2	-			Speichers mit der Konstante und verzweige bei Ungleichheit. (R0 bzw. R1 enthält die Quellenadresse)
LCALL	Adr16	12	3	2				Unterprogrammaufruf im 64k-Block
ACALL	adr11	11-F1	2	2				Unterprogrammaufruf im 2k-Block
RET		22	1	2				Ende Unterprogramm
RETI		32	1	2				Ende UP plus löschen des INT-Flags

Speicheraufteilung

Internes RAM

Interrupt & Timer

Abfallende Flanken oder Low-Signale können externe Interruptereignisse auslösen, überlaufende Timer lösen Timer-Interrupts aus, über die serielle Schnittstelle gesendete oder empfangene Zeichen können Interrupts auslösen.

Die Interrupt-Anfoderungs-Bits (s.u.) werden immer gesetzt, der entsprechende Interrupt wird jedoch nur dann bearbeitet, wenn die Interrupts freigegeben sind und die globale Interrupt-Freigabe EA = 1 ist. Zur Bearbeitung der Interrupts springt der Controller zu den festgelegten Adressen (s.u.).

Interrupt Enable (IE) Register

EA(L)	 	ES	ET1	EX1	ET0	EX0

Enable Bit = 1 (enables the interrupt) Enable Bit = 0 (disables the interrupt)

Symbol	Position	Function
EA(L)	IE.7	EA = 1 (generelle Freigabe)
ES	IE.4	Serielle Schnittstelle
ET1	IE.3	Timer 1 (Überlauf-Interrupt Freigabe)
EX1	IE.2	Externer Interrupt 1 (Freigabe)
ET0	IE.1	Timer 0 (Überlauf-Interrupt Freigabe)
EX0	IE.0	Externer Interrupt 0 (Freigabe)

IP Inter	Interrupt-Prioritäten-Register, bitadressierbar,0B8h									
Bit	7	6	5	4	3	2	1	0		
	-	-	-	PS	PT1	PX1	PT0	PX0		
Bit-Adr.	0BFh	0BEh	0BDh	0BCh	0BBh	0BAh	0B9h	0B8h		
Priorität von				Serial Port	Timer1	Ext.Interrupt1	Timer0	Ext.Interrupt0		

0: niedrige Priorität 1: höhere Priorität

Interrupts können nur von anderen Interrupts mit höherer Ebene unterbrochen werden. Treten 2 Interrupts gleicher Priorität gleichzeitig auf, so werden sie in folgender Reigenfolge bearbeitet:

ExtInt0 → Timer0 → ExtInt1 → Timer1

Interrupt	Einsprungadresse	Interrupt-Anforderungs-Bit
Externer Interrupt 0	0003h	IE0
Timer0 - Überlauf	000Bh	TF0
Externer Interrupt 1	0013h	IE1
Timer1 – Überlauf	001Bh	TF1
Serieller Schnittstellen-Interrupt	0023h	RI oder TI

Externe Interrupts beim 8051

Mit den Portpins P3.2 und P3.3, können externe Interrupts ausgelöst werden.

Die Interrupts werden nur ausgelöst, wenn sie durch Setzen der Bits EX0 bzw. EX1 freigegeben sind.

Port Pin	Alternate Functions					
P3.0	RXD (serial input port)					
P3.1	TXD (serial output port)					
P3.2	/INT0 (external interrupt 0)					
P3.3	/INT1 (external interrupt 1)					
P3.4	T0 (timer 0 external input)					
P3.5	T1 (timer 1 external input)					
P3.6	/WR (external data memory write strobe)					
P3.7	/RD (external data memory read strobe)					

Interruptstruktur des 8051

IENO (0A8h): Interrupt Enableregister							
0AFh	0AEh	0ADh	0ACh	0ABh	0AAh	0A9h	0A8h
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
EA(L)	-	-	-	ET1	EX1	ET0	EX0

Register zur Zählerkontrolle: TMOD und TCON:

TMOD (89h): Timermodus-Kontrollregister für Timer1 & Timer0							
	Kontrolle	Timer 1			Kontrolle	Timer 0	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Gate	C/T	M1	МО	Gate	C/T	M1	МО

Gate	C/T	M1	МО			
		0	0	Modus 0		
		0	1	Modus 1: 16 Bit-Timer ohne Nachladen		
		1	0	Modus 2: 8-Bit-Timer mit Auto-Reload		
		1	1	Modus 3: 2 Stück 8-Bit-Timer		
	0	Timer-B	etrieb			
	1	Zähler-E	Betrieb			
0	Timer nur durch TR-Bit ein- und ausschalten					
1	Timer mit TR-Bit und Portpin ein- und ausschalten					

TCON (88	sh): Time	r-Kontrollre	gister für	Timer	1 & 0 /	ext Interru	pt 1 & 0
Kontrolle Timer 1 und 0					ext. Interru	pt-Kontrolle	•
8Fh	8Eh	8Dh	8Ch	8Bh	8Ah	89h	88h
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

IEx	ITx	
	0 → Interrup1 → Interrup	ot bei Lowpegel ot bei abfallender Flanke
0,1		J gesetzt wenn Flanke rrupt1 erkannt

TFx	TRx			
	0	Timer x stopp		
	1	Timer x läuft		
0,1	Wird beim Timer x-Überlauf gesetzt			

Interrupt	Einsprung Adresse	PortBit	Freigabe mit	Flanken-gesteuert	Auslösende Flanke	gesetzes Bit bei Interrupt-Anforderung
/INT0	0003h	P3.2	SETB EX0	SETB IT0	abfallend	IE0
/INT1	0013h	P3.3	SETB EX1	SETB IT1	abfallend	IE1

Blockschaltbild 8051

Beschaltung MC-Board (BubMini)

Besonderheiten des C-Compilers von Keil

spezielle Datentypen des C-51-Comilers für den Zugriff auf den SFR-Bereich

Datentyp	Größe	Wertebereich
sbit	1 Bit	0 oder 1
sfr	1 Byte	0 bis 255
sfr 16	2 Byte	0 bis 65535

Speichertypen bei C-51 (nach C-51-Bedienungsanleitung)

Speichertyp	Beschreibung
data	direkt adressierbarer interner Datenspeicher; ermöglicht schnellste Zugriffe auf
	Variablen (128 Byte) von 00h - 7Fh
bdata	bitadressierbarer, interner Datenspeicher, ermöglicht gemischten Bit und Byte- Zugriff von 20h - 2Fh.
idata	indirekt adressierbarer interner Datenspeicher; ermöglicht den Zugriff auf den vollen, internen Adressbereich bei beispielsweise 80535 von 00h - 0FFh.
pdata	'paged' (256 Byte) externer Datenspeicher, Zugriff mit dem Befehl movx @Ri.
xdata	externer Datenspeicher (64 KByte); Zugriff mit dem Befehl movx @dptr.
code	Programmspeicher (64Kbyte); Zugriff mit dem Befehl movc @A+DPTR.

Bei Variablendeklarationen ohne Angabe des Speichertyps werden in Abhängigkeit des Speichermodeslls die Voreingestellten Speichertypen verwendet.

Anmerkung zu Schiebe- und Bitbasierenden Befehlen:

Im gegensatz zur PC-Programmierung ist das Schieben, sowie alle bitbasierenden Befehle nur mit Variablen erlaubt, die sich im Bitaddressierbaren Speicher befinden.

Speichermodelle bei C-51 (nach C-51 Bedienungsanleitung)

Speichermodell	Beschreibung der Pragma-Anweisung
SMALL	Parameter und lokale Variablen werden im direkt adressierbaren, internen Datenspeicher plaziert (max. 128 Byte; default Speichertyp: data)
	tenspeicher plaziert (max. 120 byte, default Speichertyp. data)
COMPACT	Parameter und lokale Variablen werden im 'paged' externen Datenspeicher
	plaziert (max. 256 Byte; default Speichertyp: pdata)
LARGE	Parameter und lokale Variablen werden im externen Datenspeicher plaziert
	(max. 64 KByte; default Speichertyp: xdata)

Beispiel: #pragma large

Beispiele: Hexadezimale Adresse beginnen mit 0x (0x90 für P1)

Bolopiolo: HoxaaoElinaio / tai	coo beginner mic ex (exec fair 1)
Variablendeklaration	Wirkung
char data VAR1	8 Bit-Variable namens VAR1 in unteren int. Datenspeicher
char code Text[]="Eingabe!"	schreibt die Zeichenfolge Eingabe! in den Programmspeicher
float idata x,y,z	definiert 3 4-Byte-Variablen im internen Datenspeicher
sfr P1 = 0x90	Weist dem String P1 die SFR-Adresse 90 zu (= Port 1)
sbit P10 = P1^0	Erstes Bit von Port 1 kann mit P10 angesprochen werden
sbit RD = 0xB0	Weist dem String RD die SFR-Adresse B0 zu (= P3.0)
sbit WR = 0xB1	Weist dem String WR die SFR-Adresse B1 zu (= P3.1)
char bdata FLAGS	8-Bit variable im Bitadressierbaren internen Datenspeicher
bit FLAG0 = FLAGS^0	bit 0 der Bitadressierten char-Variablen