Complexité CM9

Antonio E. Porreca aeporreca.org/complexite

Précédemment dans Complexité...

Définition 3-A (p. 64) A Réductions (many-one) polynomiales

• Une réduction (many-one) en temps polynomial d'un problème L_1 (sur l'alphabet Σ_1) à un problème L_2 (sur l'alphabet Σ_2) est une fonction $f\colon \Sigma_1^\star\to \Sigma_2^\star$ calculable en temps polynomial telle que

$$\forall x \in \Sigma_1^* \quad x \in L_1 \iff f(x) \in L_2$$

• Si une telle f existe, on dit que L_1 se réduit à L_2 (via f) et on notera $L_1 \leq_{\rm m}^{\rm P} L_2$ (ou parfois, en bref, $L_1 \leq L_2$)

Définition 3-J (p. 67) L Difficulté et complétude

Soit L un problème et $\mathscr C$ une classe de complexité

- On dit que L est $\mathscr C$ -difficile (ou $\mathscr C$ -dur) si pour tout problème $L' \in \mathscr C$ on a $L' \le L$
- On dit que L est $\mathscr C$ -complet s'il est $\mathscr C$ -difficile et en plus on a $L \in \mathscr C$

Proposition 3-M (p. 68) La prédiction est NP-complète

Le problème suivant est NP-complet :

Et maintenant, la suite

Le théorème de Cook-Levin, ou: Enfin, un problème NP-complet intéressant!

1. Théorème 3-V (p. 72) 1. Cook 1971, Levin 1973

Stephen Cook

Леони́д Ле́вин

SAT est NP-complet

1. Théorème 3-V (p. 72) 1. Cook 1971, Levin 1973

Le fonctionnement en temps polynomial d'une machine non déterministe N sur une entrée x est décrit par une formule φ calculable en temps polynomial telle que le nombre d'affectations satisfaisant φ est égal au nombre de chemins acceptants de N(x).

Idée de la démonstration

- SAT ∈ NP car il suffit de deviner une assignation des variables et vérifier en temps polynomial qu'elle satisfait la formule
- La complétude vient du fait qu'on peut décrire par une formule de taille polynomiale le diagramme espace-temps d'une exécution d'une machine non déterministe polynomiale car celui-ci répond à des règles locales

Idée de la démonstration

- En d'autres termes, on décrit par une formule $\varphi(y)$ le fonctionnement de la machine le long du chemin (découlant du choix des transitions) décrit par y
- Pour savoir s'il existe un chemin acceptant dans le calcul de la machine, il suffit alors de savoir s'il existe une affectation des variables y de la formule pour laquelle l'état final du diagramme décrit est acceptant, ce qui est un problème de type SAT

Démonstration : SAT ∈ NP 😅

- Algo non déterministe pour SAT sur l'entrée $\varphi(x_1, ..., x_n)$:
 - deviner $(a_1, ..., a_n) \in \{0, 1\}^n$
 - accepter ssi $\varphi(a_1, ..., a_n) = 1$
- En alternative, un vérificateur déterministe sur l'entrée $(\varphi(x_1,...,x_n),a_1,...,a_n)$:
 - accepter ssi $\varphi(a_1, ..., a_n) = 1$

Démonstration : $B \leq \text{SAT pour tout } B \in \mathbf{NP}$

- Soit $B \in \mathbf{NP}$
- À toute instance x de B on associe une formule φ_x ...
- ...telle que φ_x est satisfaisable ssi $x \in B$
- Les variables de φ_{χ} désigneront en quelque sorte le chemin de calcul à suivre

Démonstration : $B \leq \text{SAT pour tout } B \in \mathbf{NP}$

- Soit N une machine non déterministe qui reconnaît B
 - en temps polynomiale p(n)
 - avec ensemble d'états Q, alphabet de travail Γ
- nous allons « simuler » le fonctionnement de N le long d'un chemin arbitraire par φ_{x}
- Pour cela, nous allons considérer le diagramme espacetemps de N(x)

espace

temps

0

espace

temps

3

2

0

			x_1	q_2	a_3	x_4	•••	x_n	
	•••		x_1	a_2	q_2	x_4	•••	\mathcal{X}_n	
	•••		a_1	$\begin{array}{c} q_1 \\ x_2 \end{array}$	x_3	x_4	•••	\mathcal{X}_n	
	•••		q_0 x_1	x_2	x_3	x_4	•••	\mathcal{X}_n	

temps $\frac{q_2}{x_2}$ 3 a_3 χ_1 \mathcal{X}_{4} 2 a_2 $\mathcal{X}_{\!arDelta}$ \mathcal{X}_n a_1 χ_3 \mathcal{X}_{4} \mathcal{X}_n 0 x_2 x_3 espace

espace

temps t a_2 $\frac{q_2}{x_2}$ 3 x_1 a_3 χ_4 \mathcal{X}_n 2 a_2 \mathcal{X}_{4} \mathcal{X}_n a_1 χ_3 χ_4 \mathcal{X}_n 0 χ_2 \mathcal{X}_n x_3 χ_4

temps t a_2 $\frac{q_2}{x_2}$ 3 x_1 a_3 χ_4 \mathcal{X}_n 2 χ_1 a_2 \mathcal{X}_{4} \mathcal{X}_n a_1 χ_3 χ_4 \mathcal{X}_n 0 x_2 x_3 χ_4 espace

- Le diagramme espace-temps du ruban de N décrit le calcul sur l'entrée \boldsymbol{x}
- Si le calcule de N(x) termine en moins de t étapes, on suppose que le diagramme espace-temps répète la dernière ligne
- Notre formule φ_x va affirmer que le calcul commence dans la configuration initiale, que le diagramme espace-temps de la machine est cohérent avec la relation de transition et qu'on termine dans un étant acceptant

La formule ϕ_{χ} a quatre parties

- cohérence, signifiant que deux valeurs ne sont pas assignés à la même case, deux positions à la même tête, deux états à la même étape
- début_x, signifiant que la configuration initiale est la bonne
- pour chaque étape j: transition $_j$, signifiant que la j-ème transition est valide
- accepte, signifiant qu'on arrive dans un état acceptant à un temps $\leq t$, ou t=p(n)

Variables de la formule ϕ_{χ}

Pour chaque étape $j \in \{0,...,t\}$, symbole $\gamma \in \Gamma$, position $i \in \{-t,...,0,...,t\}$, état $q \in Q$:

- $c_{\gamma,i,j}=1$ ssi la i-ème case du ruban contient le symbole γ au temps j
- $p_{i,j} = 1$ ssi la tête du ruban est à la position i au temps j
- $e_{q,j} = 1$ ssi l'état de la machine est q à l'instant j

En total on a $(t+1)(2t+1)|\Gamma|+(t+1)(2t+1)+(t+1)|Q|$ variables, ce qui est polynomial par rapport à x

! Notation !

Dans les formules logiques suivantes, les symboles

$$\bigwedge_{i=1}^{n} \phi_i \qquad \bigvee_{i=1}^{n} \phi_i$$

représentent succinctement les conjonctions ou disjonctions

$$\phi_1 \wedge \phi_2 \wedge \cdots \wedge \phi_n \qquad \phi_1 \vee \phi_2 \vee \cdots \vee \phi_n$$

c'est-à-dire, en réalité il faut répliquer explicitement les sous-formules ϕ_i pour toutes les valeurs de l'indice i

Par exemple:

$$\bigwedge_{i=1}^{2} \bigvee_{j=1}^{2} (x_i \wedge \neg y_j) = ((x_1 \wedge \neg y_1) \vee (x_1 \wedge \neg y_2)) \wedge ((x_2 \wedge \neg y_1) \vee (x_2 \wedge \neg y_2))$$

$$\bigwedge_{i,j} \bigvee_{\gamma} \left(c_{\gamma,i,j} \wedge \bigwedge_{\gamma' \neq \gamma} \neg c_{\gamma',i,j} \right)$$

 \bigwedge

$$\bigwedge_{j} \bigvee_{i} \left(p_{i,j} \land \bigwedge_{i' \neq i} \neg p_{i',j} \right)$$

Λ

$$\bigwedge_{j} \bigvee_{q} \left(e_{q,j} \wedge \bigwedge_{q' \neq q} \neg e_{q',j} \right)$$

$$\bigwedge_{i,j} \bigvee_{\gamma} \left(c_{\gamma,i,j} \wedge \bigwedge_{\gamma' \neq \gamma} \neg c_{\gamma',i,j} \right)$$

à tout moment chaque case contient exactement un symbole

$$\bigwedge_{j} \bigvee_{i} \left(p_{i,j} \wedge \bigwedge_{i' \neq i} \neg p_{i',j} \right)$$

$$\bigwedge_{j} \bigvee_{q} \left(e_{q,j} \wedge \bigwedge_{q' \neq q} \neg e_{q',j} \right)$$

$$e_{q_0,0}$$

Λ

$$\left(\bigwedge_{i\leq 0 \forall i>n} c_{B,i,0}\right) \wedge \left(\bigwedge_{1\leq i\leq n} c_{x_i,i,0}\right)$$

Λ

 $p_{1,0}$

 Λ

$$\left(\bigwedge_{i < 0 \lor i > n} c_{B,i,0}\right) \land \left(\bigwedge_{1 < i < n} c_{x_i,i,0}\right)$$

Λ

 $p_{1,0}$

 \wedge

$$\left(\bigwedge_{i\leq 0 \forall i>n} c_{B,i,0}\right) \wedge \left(\bigwedge_{1\leq i\leq n} c_{x_i,i,0}\right)$$

le ruban contient x entre les positions 1 et n et B ailleurs

 $p_{1,0}$

 $\left(\bigwedge_{i < 0 \lor i > n} c_{B,i,0}\right) \land \left(\bigwedge_{1 < i < n} c_{x_i,i,0}\right)$

le ruban contient x entre les positions 1 et n et B ailleurs

la tête de lecture est en position 1 au temps 0

Sous-formule accepte

 Pour alléger les notations qui suivent et par abus de notation on pose

$$\delta(q_{oui}, \gamma) = \{(q_{oui}, \gamma, 0)\}$$

$$\delta(q_{no}, \gamma) = \{(q_{no}, \gamma, 0)\}$$

- C'est-à-dire, quand on accepte ou rejette, les configurations suivantes restent identiques
- Du coup on a tout simplement accepte = $e_{q_{oui},t}$ (au temps t on est dans l'état acceptant q_{oui})

On est où ?

cohérence \wedge début_x \wedge accepte

On est où ?

deux symboles ne sont pas assignés à la même case, deux positions à la même tête, deux états à la même étape

On est où?

deux symboles ne sont pas assignés à la même case, deux positions à la même tête, deux états à la même étape

la configuration initiale est la bonne

On est où?

deux symboles ne sont pas assignés à la même case, deux positions à la même tête, deux états à la même étape

la configuration initiale est la bonne

on arrive dans un état acceptant à un temps $\leq t$

Il reste le cœur de la simulation : spécifier que le comportement de la machine correspond à la relation de transition

$$\text{\r{c}ontenu} = \bigwedge_{i} \left(\neg p_{i,j-1} \to \bigwedge_{\gamma} \left(c_{\gamma,i,j} \leftrightarrow c_{\gamma,i,j-1} \right) \right)$$

$$\psi_{\mathbf{contenu}} = \bigwedge_{i} \left(\neg p_{i,j-1} \to \bigwedge_{\gamma} \left(c_{\gamma,i,j} \leftrightarrow c_{\gamma,i,j-1} \right) \right)$$

si la tête n'est pas sur la case i à l'étape j-1...

...alors le symbole sur cette case

ne change pas à l'étape j

$$\begin{aligned} \forall \mathbf{trans} &= \bigwedge_{q,i,\gamma} \left(\left(e_{q,j-1} \land p_{i,j-1} \land c_{\gamma,i,j-1} \right) \right. \\ & \qquad \qquad \rightarrow \bigvee_{\left(g',\gamma',d' \right) \in \delta(q,\gamma)} \left(e_{q',j} \land c_{\gamma',i,j} \land p_{i+d',j} \right) \right) \end{aligned}$$

si la machine est dans l'état q à l'étape j-1... $\psi \mathbf{trans} \ = \bigwedge_{q,i,\gamma} \left(\left(e_{q,j-1} \wedge p_{i,j-1} \wedge c_{\gamma,i,j-1} \right) \right.$ $\rightarrow \qquad \qquad \left(e_{q',j} \wedge c_{\gamma',i,j} \wedge p_{i+d',j} \right) \right)$ $\left(e_{q',\gamma',d'} \right) \in \delta(q,\gamma)$

si la machine est dans l'état
$$q$$
est que sa têtes est sur la case i et lit γ ...
$$\forall \textbf{trans} = \bigwedge_{q,i,\gamma} \left(\left(e_{q,j-1} \land p_{i,j-1} \land c_{\gamma,i,j-1} \right) \right.$$

$$\qquad \qquad \qquad \qquad \left(e_{q',j} \land c_{\gamma',i,j} \land p_{i+d',j} \right) \right)$$

$$\qquad \qquad \qquad \left(e_{q',\gamma',d') \in \delta(q,\gamma)} \right.$$

 $transition_j = \psi_{contenu} \wedge \psi_{trans}$

les cases qui ne sont pas sous la tête ne changent pas

 $transition_j = \psi_{contenu} \wedge \psi_{trans}$

les cases qui ne sont pas sous la tête ne changent pas

 $transition_j = \psi_{contenu} \wedge \psi_{trans}$

celles qui le sont changent selon la relation de transition δ

Le pire est passé!

cohérence \land début_x \land \bigwedge transition_j \land accepte $1 \le j \le t$

deux valeurs ne sont pas assignés à la même case, deux positions à la même tête, deux états à la même étape

on faite une bonne transition à chaque étape

$$\bigwedge_{r,i,j}\bigvee_{\gamma}\left(c_{\gamma,i,j}^{r}\wedge\bigwedge_{\gamma'\neq\gamma}\neg c_{\gamma,i,j}^{r}\right)\wedge\bigwedge_{r,j}\bigvee_{i}\left(p_{i,j}^{r}\wedge\bigwedge_{i'\neq i}\neg p_{i',j}^{r}\right)\wedge\bigwedge_{j}\bigvee_{q}\left(e_{q,j}\wedge\bigwedge_{q'\neq q}\neg e_{q',j}\right)$$

Λ

$$e_{q_0,0} \wedge \bigwedge_{r>1,i} c^r_{B,i,0} \wedge \left(\bigwedge_{i \leq 0 \forall i>n} C^1_{B,i,0}\right) \wedge \left(\bigwedge_{1 \leq i \leq n} C^1_{x_i,i,0}\right) \wedge \bigwedge_r p^r_{1,0}$$

 Λ

$$= \bigwedge_{q,\vec{i},\vec{\gamma}} \left(\left(e_{q,j-1} \wedge \bigwedge_r \left(p_{i_r,j-1}^r \wedge c_{\gamma_r,i_r,j-1}^r \right) \right) \to \bigvee_{(q',\overrightarrow{\gamma'},\overrightarrow{d'}) \in \delta(q,\vec{\gamma})} \left(e_{q',j} \wedge \left(\bigwedge_r c_{\gamma',i_r,j}^r \wedge p_{i_r+d'_r,j}^r \right) \right) \right)$$

$$e_{q_a,t}$$

 $e_{q_a,t}$

par rapport à n

φ_x est satisfaisable ssi N accepte x!

Sous-formule cohérence

rappel : i est une position, j une étape, γ un symbole

Sous-formule début_x

 $\left(\bigwedge_{i < 0 \lor i > n} c_{B,i,0}\right) \land \left(\bigwedge_{1 < i < n} c_{x_i,i,0}\right)$

^

le ruban contient x entre les positions 1 et n et B ailleurs

la tête de lecture est en position 1 au temps 0

rappel : i est une position, j une étape, γ un symbole

Sous-formule accepte

 Pour alléger les notations qui suivent et par abus de notation on pose

$$\delta(q_{oui}, \gamma) = \{(q_{oui}, \gamma, 0)\}$$

$$\delta(q_{no}, \gamma) = \{(q_{no}, \gamma, 0)\}$$

- C'est-à-dire, quand on accepte ou rejette, les configurations suivantes restent identiques
- Du coup on a tout simplement accepte = $e_{q_{oui},t}$ (au temps t on est dans l'état acceptant q_{oui})

...alors le symbole sur cette case ne change pas à l'étape j

Conclusion de la démonstration

- On a pris $B \in \mathbf{NP}$ et une machine non déterministe N qui le reconnaît en temps polynomial p(n)
- Pour chaque entrée x de B on construit une formule φ_x de taille polynomiale qui décrit le calcul de N(x)
- Cette construction on peut la faire en temps polynomial, parce que la formule φ_x ne sera peut-être pas jolie, mais elle est régulière
- En plus on a $x \in B$ ssi $\varphi_x \in SAT$
- Donc $B \leq$ SAT, et comme B était un langage quelconque dans \mathbf{NP} , on obtient la \mathbf{NP} -complétude de SAT

Stephen Cook

Леони́д Ле́вин

SAT est NP-complete