MAC0105 - Exercícios para 17/05

Gabriel Haruo Hanai Takeuchi - NUSP: 13671636

Exercício 31

Prove por indução que todo polígono convexo com n lados pode ser dividido em triângulos usando n-3 diagonais.

Proof. Base: Para n = 3, diretamente é um triângulo.

Passo: Fixe $n \ge 4$ e suponha para n-1. Vamos aumentar o polígono da H.I. (de n-1 lados e n-4 diagonais) para termos mais um triângulo interno. Observe a imagem abaixo:

Adote o vértice que espana todas as diagonais como vértice A. Ao criar uma nova aresta de A (no caso AF) e criar outra aresta EF, o antigo lado vermelho tornou-se uma diagonal. Logo, temos um novo polígono com n lados, n-3 diagonais e dividido em triângulos, como queríamos.

Exercício 33

Prove que para inteiro $n \ge 10$ temos que $100n \le 2^n$.

Proof. Vamos provar por indução em n.

Base: Para n = 10, diretamente $100 \cdot 10 = 1000 \le 1024 = 2^{10}$.

Passo: Fixe $n \ge 11$ e suponha a H.I. para n - 1.

Por hipótese, temos que

$$100(n-1) \le 2^{n-1} \implies 100(n-1) \cdot 2 \le 2^{n-1} \cdot 2 \implies 200n - 200 \le 2^n$$
.

Seria muito bom se, para $n \ge 11$, $100n \le 200n - 200$. Vamos verificar:

$$100n \le 200n - 200 \iff n \ge 2.$$

Logo, se é satisfeito para $n \geq 2$, também é para $n \geq 11$.

Portanto, temos finalmente que

$$100n \le 200n - 200 \le 2^n \implies 100n \le 2^n$$

, como queríamos.

Exercício 35

Uma árvore é um grafo conexo com n vértices e n-1 arestas. Uma folha de uma árvore é um vértice de grau 1. Um caminho é uma árvore com exatamente 2 folhas. Prove os seguintes resultados: Seja T uma árvore com n vértices. Então,

(a) T tem pelo menos 2 folhas (por indução);

Proof. Vamos provar por indução.

Base: Para n=2, temos apenas 2 vértices com 1 aresta os ligando. Diretamente, ambos os vértices têm grau 1.

Passo: Fixe $n \ge 3$ e suponha para n-1. Suponha um árvore T' com n-1 vértices e n-2 arestas que tenha pelo menos 2 folhas. Queremos uma árvore T com n vértices e n-1 arestas que também tenha pelo menos 2 folhas. Note, devemos adicionar exatamente 1 vértice e 1 aresta em T' para podermos ter T.

Atente-se que, como uma árvore é um grafo conexo, então a adição de um vértice v deve ser seguida de uma aresta em v, e portanto v tem grau 1. Vamos separar a adição de um vértice em casos:

Caso I: ligar um novo vértice a um vértice não-folha

Diretamente, ao conectar um novo vértice a um já existente de grau maior que 1, teremos pelo menos 3 vértices de grau maior que 1.

Caso II: ligar um novo vértice a um vértice folha

Suponha que v_f seja uma folha em T'. Ao conectar um novo vértice v_n a v_f , logo v_f não é mais folha. Entretanto, v_n se torna uma nova folha, assim mantendo a condição de pelo menos 2 folhas.

Em ambos os casos, a nova árvore T ainda mantém o mínimo de 2 folhas, como queríamos.

(b) existe exatamente um caminho entre quaisquer dois vértices de T .

Proof. Vamos provar por indução.

Base: Para n=2, diretamente há um único caminho entre os vértices.

Passo: Fixe $n \ge 3$ e suponha uma árvore T' com n-1 vértices tal que existe um único caminho entre dois vértices de T.

Novamente, iremos adicionar 1 vértice v_n e 1 aresta que liga v_n a algum nó de T'.

Seja v_x um vértice qualquer de T'. Ao conectarmos v_n e v_x , então diretamente temos um único caminho entre eles. Note que, por hipótese, existe um único caminho entre v_x e qualquer outro nó de T'. Se temos um único caminho entre v_n e v_x e temos um único caminho entre v_x e qualquer outro nó de T', então temos um único caminho entre v_n e qualquer outro nó de T'.

Logo, temos uma nova árvore T com n vértices e exatamente um único caminho entre qualquer par de vértices, como queríamos.

Exercício 37

Prove por indução que $F_n \leq 2n$ para todo inteiro positivo n, em que F_n é o n-ésimo número de Fibonacci.

Proof. Vamos provar por indução em n.

Base: Para n = 1, $F_1 = 1 < 2 = 2 \cdot 1 = 2n$. Para n = 2, $F_2 = 2 < 4 = 2 \cdot 2 = 2n$.

Passo: Fixe $n \geq 3$ e suponha para n-1 e n-2.

$$F_{n-1} \le 2(n-1)$$

$$F_{n-1} + F_{n-2} \le 2n - 2 + F_{n-2}$$

$$F_n \le 2n - 2 + F_{n-2}$$

Por hipótese, $F_{n-2} \leq 2(n-2) = 2n-4$. Logo, temos o resultado

$$F_n \le 2n - 2 + F_{n-2} \le 2n - 2 + 2n - 4 = 4n - 6 = 2(n-3) \le 2n$$

, como queríamos. $\hfill\Box$