

Stąd otrzymujemy alternatywę równań liniowych $x+\frac{\pi}{4}=2x+2k\pi$ lub $x+\frac{\pi}{4}=\pi-2x+2k\pi$, gdzie $k\in\mathbf{Z}$. Po standardowych przekształceniach mamy $x=\frac{\pi}{4}+2k\pi$ lub $x=\frac{\pi}{4}+k\frac{2\pi}{3}$. Zauważmy, że pierwsza seria zawiera się w drugiej (rys. 27), a ta z kolei jest zawarta w dziedzinie równania.

Odp.
$$x = \frac{\pi}{4} + k \frac{2\pi}{3}, \ k \in \mathbf{Z}.$$

Rozwiazanie zadania 26.4

Oznaczmy przez O spodek wysokości czworościanu, a przez K, L jego rzuty prostokątne odpowiednio na przyprostokątne BC i AC podstawy (rys. 28). Ponieważ O jest środkiem okręgu wpisanego w $\triangle ABC$, więc

|OK| = |OL| = r, czyli punkty O, K, L i wierzchołek kąta prostego C tworzą kwadrat o boku r. Stąd

$$|KC| = |LC|. (6)$$

Mamy $\triangle DOK \equiv \triangle DOL$, gdyż oba są prostokątne i mają takie same przyprostokątne. Stąd |DK| = |DL|. Ponieważ wysokość DO jest prostopadła do podstawy, więc $DO \perp BC$. Ponadto $OK \perp BC$. Z twierdzenia o trzech prostopadłych wnioskujemy, że $DK \perp BC$. Analogicznie stwierdzamy, że $DL \perp AC$.

Wynika stąd, że $\triangle DKC$ i $\triangle DLC$ są przystającymi trójkątami prostokątnymi i w konsekwencji

$$\angle DCK = \angle DCL. \tag{7}$$

Niech E oznacza rzut prostokątny punktu K na krawędź DC. Ze wzorów (6) i (7) oraz z II cechy przystawania trójkątów (bkb) wynika, że $\triangle KCE \equiv \triangle LCE$, a stąd $LE \perp DC$. To oznacza, że krawędź DC jest