

FCG

EXAMEN FINAL: 1er Année FCG

SESSION: AUTOMNE 2013

PROFESSEURS: NOURDDIN SAIDOU

: DAANOUNE : BELMAHJOUB

Durée: 2HRS

Pondération: 60%

Documentation, calculatrices programmables non autorisée,

Toute tentative de fraude est assujettie aux règlements de L'UIC

Le sujet contient 9 exercices dont 4 sont à votre choix et obligatoires

EXERCICE 1

- A) Soient les fonctions suivantes : Donner le domaine de définition des fonctions
- a) $f(x) = \sqrt{(4x-1)/(x+5)}$ b) $g(x) = (-x^2-3x+1)$.
- B) Claculer la derivée des fonctions suivantes:
- a) $f(x) = (3x^5 4x 1)^7$ b) g(x) = (6x 3)/(4x + 2).
- b) Etudier la monotonie de h (x) = $4x^2 + 8$ en dressant le tableau des variations.
- c) Trouver les extremums de h s'il y en a lieu.
- d) Etudier la concavité de h

EXERCICE 2

Soit U_n une suite de raison 10 et du premier terme $U_4 = 21$

- 1) Calculer U₇₉ U₁₅ U₁₀₀₀
- 2) Calculez la somme $S = U_{22} + U_{24} + U_{24} + U_{520}$.

Soit V_n une suite géométrique de raison q = 2 du premier terme $V_8 = 10$

- 1) Calculer U₅, U₆, U₄
- 2) Calculer la somme $S = V_{115} + \dots + V_{123}$.

EXERCICE 3

Soient les suites $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ définies par : $u_n = \frac{3 \cdot 2^n - 4n + 3}{2} \quad \text{et} \quad v_n = \frac{3 \cdot 2^n + 4n - 3}{2}$

On définit les suites $(w_n)_{n\geq 0}$ et $(t_n)_{n\geq 0}$ par

$$\mathbf{w}_{\mathbf{n}} = \mathbf{u}_{\mathbf{n}} + \mathbf{v}_{\mathbf{n}}$$
 et $\mathbf{t}_{\mathbf{n}} = \mathbf{u}_{\mathbf{n}} - \mathbf{v}_{\mathbf{n}}$

- 1) Montrer que $(w_n)_{n\geq 0}$ est géométrique. Donner sa raison et son premier terme.
- 2) Montrer que $(t_n)_{n\geq 0}$ est arithmétique. Donner sa raison et son premier terme.
- 3) Calculer $S_n = u_0 + u_1 + \dots + u_n$ (Indication : remarquer que $w_n + t_n = 2u_n$)

EXERCICE 4

Soient les fonction suivantes :

$$f(x) = (x^7 + 8x^5 - x + 3e^x), g(x) = 12x^3.(3x^4 - 6), h(x) = (2x + 1) / (x^2 + x)^3$$
 Calculer
$$\int f(x) dx, \int g(x) dx, \int_1^2 h(x) dx$$

EXERCICE 5

I. Déterminez le domaine de définition des fonctions suivantes :

$$f(x) = \sqrt{1 - x^2}$$

$$g(x) = \frac{x^3 + 1}{x^2 + x - 12}$$

II. Calculez les limites suivantes :

$$\lim_{x \to 1} \frac{x-1}{x^2 - 1} \qquad \qquad \lim_{x \to +\infty} \frac{\sqrt{x^2 + x - 2}}{2x}$$

III. Donnez la dérivée des fonctions suivantes :

$$f(x) = Ln(x^3 - 7)$$
 $g(x) = \frac{x+3}{x^2 - 4}$

IV. Montrez que la fonction suivante admet une asymptote et donnez son équation :

$$f(x) = \lim_{x \to +\infty} \frac{\sqrt{x^2 + x - 2}}{2x}$$

EXERCICE 6

I. Montrez que les suites suivantes sont convergentes (avec n>1):

$$U_n = \frac{6n+5}{4n-7}$$

$$V_n = \frac{2^n - 3^n}{2^n + 3^n}$$

- II. La production d'une entreprise est de 150000 unités la première année. Cette production augmente de 10000 unités par an.
 - a) Quelle est la nature de cette série ?
 - b) Combien produira-t-elle la 10^{ème} année ?
 - c) Quelle sera la somme des productions de ces 10 premières années ?

EXERCICE 7

Soit le système linéaire suivant :

$$\begin{cases} x + 2z = 1 \\ 2x + y - z = 1 \\ 3x + 2y + z = -1 \end{cases}$$

- a) Donnez une écriture matricielle du système.
- b) Utilisez la méthode de GAUSS pour résoudre le système linéaire.
- c) Déterminez l'inverse de la matrice du système linéaire.

EXERCICE 8

Calculer les limites suivantes :

- (i) $\lim_{x \to 3} \left(\frac{x^2 4x + 3}{x 3} \right)$
- (ii) $\lim_{x \to -\infty} \left(\frac{x^4 2}{x^4} \right)$

EXERCICE 9

On donne la fonction définie par :

$$f(x) = x^3 - 3x + 3$$

- (i) Etudier la fonction f et donner son tableau de variation.
- (ii) Montrer que l'équation f(x) = 0 admet au moins une racine sur son domaine de définition.
- (iii) Déterminer les extrémums locaux de la fonction f et préciser leur nature.

BONNE CHANCE