- Def A vector field is a function \overrightarrow{F} which takes a point in IR^2 or IR^3 as an input and returns a vector in IR^2 or IR^3 as an output.
 - e.g. The gradient of of a differentiable function f.

 Force fields (gravitational, electric, magnetic, ...)

 Velocity fields (of fluids)
- Note We can study vector fields using their coordinate functions
 - · 2-dimension: Fcx, y) = (Pcx, y), Qcx, y).
 - · 3-dimension: F(x,y,z) = (P(x,y,z), Q(x,y,z), R(x,y,z))

Def Let F be a vector field.

- (1) F is <u>continuous</u> if its coordinate functions are all continuous.
- (2) F is differentiable if its coordinate functions are all differentiable.
- * In Math 215, we will only consider differentiable vector fields.

Note We can visualize a vector field by drawing arrows that represent output vectors.

(c)
$$\vec{F}(x,y) = (-y,x)$$
 (d) $\vec{F}(x,y) = (y,x)$.

circular flows around (0.0) flows towards the line y=x.

Ex Match each vector field with its plot.

(a)
$$\vec{F}(x,y) = (y, x+y)$$

(c)
$$\overrightarrow{H}(x,y) = (x-1,x)$$

Sol Idea: look for the points where the output vectors must be horizontal or vertical.

(a)
$$\vec{F}(x,y) = (y, x+y)$$

 $y=0: \vec{F}(x,y) = (0, x) \rightarrow \text{vertical}$
 $x=-y: \vec{F}(x,y) = (y, 0) \rightarrow \text{horizontal}$
 $\Rightarrow \text{Match}: (\overline{\blacksquare})$

(b)
$$\vec{G}(x,y) = (xy, y)$$

 $y = 0 : \vec{G}(x,y) = (0,0) \sim 2ero$
 $x = 0 : \vec{G}(x,y) = (0,y) \sim vertical$
 $\Rightarrow Match : (II)$

(c)
$$\overrightarrow{H}(x,y) = (x-1,x)$$

 $X = 0 : \overrightarrow{H}(x,y) = (-1,0) \longrightarrow \text{horizontal}$
 $X = 1 : \overrightarrow{H}(x,y) = (0,1) \longrightarrow \text{vertical}$
 $\Rightarrow \text{Match} : (IV)$

(d)
$$\overrightarrow{I}(x,y) = (x, \cos y)$$

 $X=0: \overrightarrow{I}(x,y) = (0, \cos y) \sim Vertical$
 $\Rightarrow Match: (I)$

$$\Rightarrow$$
 $(a): (I), (b): (I), (c): (Iv), (d): (I)$