Written by: Lars Holden.

Date: 25.10.2009

UP, uniform positioning of points within the bin and between bins

Tracks

1. Track 1: unmarked points

Questions

- Q-1 Where in the genome are the points in track 1 positioned more towards the borders of the bin than expected by chance?
- Q-2 Where in the genome are the points in track 1 positioned more towards the middle of the bin than expected by chance?
- Q-3 Where in the genome are the points in track 1 positioned more towards the left part of the bin than expected by chance?
- Q-4 Where in the genome are the points in track 1 positioned more towards the right part of the bin than expected by chance?
- Q-5 Where in the genome are the points in track 1 positioned more non-uniformly inside the bin than expected by chance?
- Q-6 Is the number of point in the bin larger/smaller/different than expected from the total number of points in the genome?

Comments:

- In question 1-5 we assume the points as independently, uniformly distributed in the bin and in question 6 independently, uniformly distributed in the genome.
- Significance is determined by means of p-values. For Q-1, small p-values identify regions where the points in track 1 are closer to the borders of the bin than expected. Similar for Q-2, Q-3, Q-4 and Q-5 and for Q-6 if the number of points in the bin are too many/few than expected.

Bins

The genome (or the areas of the genome under study) are divided into small regions, called bins. The tests are performed in each bin.

Hypothesis tested

 \mathbf{H}_0 : Points have a uniform distribution in the bin. For question 5, the hypothesis is

 \mathbf{H}_0 : Points have a uniform distribution in the genome.

Remarks

• Question 1-5 is similar to a UP, US question if the entire bin is inside a segment.

Alternative hypotheses

 \mathbf{H}_1 : Points tend to be positioned towards the borders of the bin.

 \mathbf{H}_2 : Points tend to be positioned towards the middle of the bin.

 \mathbf{H}_3 : Points tend to be positioned towards the left part of the bin.

 \mathbf{H}_4 : Points tend to be positioned towards the right part of the bin.

 \mathbf{H}_5 : Points are unequally distributed within bin.

 \mathbf{H}_5 : Points are unequally distributed between the bins.

Testing against H_1 , H_2 , H_3 and H_4

When testing against H_1 and H_2 , let d_i , 1 = 1, ... n, be the relative position, but now scaled such that the value is -1 at both borders and 1 in the middle of the bin (and thus 0 halfway between the middle and the border).

When testing against H_3 and H_4 , let d_i , $1 = 1 \dots n$, be the relative position of points within the bin scaled such that the value is -1 at the left end and 1 at the right end.

To test the first four hypotheses above, we may use the Wilcoxon sign-rank test. For n larger than 20-30, we may also use the t-test, which is markedly less time-consuming.

The Wilcoxon test is done in the following way: Rank the d_i without regard to sign; with 1 assigned to the observation closest to 0 (any zeros are neglected). Then compute W+ and W- as the sums of the value of the ranks of the originally positive and negative observations, respectively. Significance levels are based on the fact that if H_0 is true, then there are 2n equally likely ways for the n ranks to receive signs. As test statistic, we use W = MIN(W-,W+). For small samples $(N \leq 30)$, the critical regions must be found from some table. For N > 30, the test statistic W approaches a normal distribution with a mean of n(n+1)/4 and a variance of n(n+1)(2n+1)/24. However, to increase speed, we should consider using the t-test when n > 20. The t-test to use is the standard one-sample test.

Testing H₅

To test against the alternative H_5 , one may use the Kolmogorov test.

Testing H₆

To test against the alternative H_6 , one may use a binomial test where n is the total number of points in the bin and p = n * B/L where B in number of base pairs in the bin and T is number of based pairs in the genome.

Remark

The alternatives are formulated such that a one-sided test may appear most appropriate, except for H_5 and H_6 .