TIP8419 - Tensor Algebra Homework 11

Profs. André de Almeida e Henrique Goulart andre@gtel.ufc.br, henrique.goulart@irit.fr

2022.1

Alternating Least Squares (ALS) Algorithm

Problem 1 For the third-order tensor $\mathcal{X} \in \mathbb{C}^{I \times J \times K}$ provided in the file "cpd_tensor.mat", implement the plain-vanilla Alternating Least Squares (ALS) algorithm that estimates the factor matrices $\mathbf{A} \in \mathbb{C}^{I \times R}$, $\mathbf{B} \in \mathbb{C}^{J \times R}$ and $\mathbf{C} \in \mathbb{C}^{K \times R}$ by solving the following problem

$$(\hat{\mathbf{A}}, \hat{\mathbf{B}}, \hat{\mathbf{C}}) \in \operatorname*{arg\ min}_{\mathbf{A}, \mathbf{B}, \mathbf{C}} \ \left\| \mathcal{X} - \sum_{r=1}^R \mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r
ight\|_F^2,$$

where $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_R]$, $\mathbf{B} = [\mathbf{b}_1, \dots, \mathbf{b}_R]$, $\mathbf{C} = [\mathbf{c}_1, \dots, \mathbf{c}_R]$. Considering a successful run, compare the estimated matrices $\hat{\mathbf{A}}$, $\hat{\mathbf{B}}$ and $\hat{\mathbf{C}}$ with the original ones (also provided in the same Matlab file). Explain the results.

Hint: An error measure at the *i*th iteration can be calculated from the following formula:

$$e_{(i)} = \left\| [\mathcal{X}]_{(1)} - \hat{\mathbf{A}}_{(i)} (\hat{\mathbf{C}}_{(i)} \diamond \hat{\mathbf{B}}_{(i)})^T \right\|_F$$
 (1)

The convergence at the *i*th iteration can be declared when $(e_{(i-1)}-e_{(i)})/(e_{(i-1)}+\epsilon) < \delta$, where δ is a prescribed threshold value (e.g. $\delta = 10^{-4}$) and ϵ is a small constant (e.g. $\epsilon = 10^{-6}$).

Problem 2 In a Monte Carlo experiment with M = 1000 realizations, generate a tensor $\mathcal{X}_0 = \text{CPD}(\mathbf{A}, \mathbf{B}, \mathbf{C})$, where $\mathbf{A} \in \mathbb{C}^{I \times R}$, $\mathbf{B} \in \mathbb{C}^{J \times R}$ and $\mathbf{C} \in \mathbb{C}^{K \times R}$ have unit norm columns with elements randomly drawn from a normal distribution, with R = 3. Let $\mathcal{X} = \mathcal{X}_0 + \alpha \mathcal{V}$ be a noisy version of \mathcal{X}_0 , where $\alpha \mathcal{V}$ is an additive zero-mean white Gaussian noise term. The parameter α controls the power (variance) of the noise term, and is defined as a function of the signal-to-noise ratio (SNR), in dB, as follows:

$$SNR_{dB} = 10 \log_{10} \left(\frac{||\mathcal{X}_0||_F^2}{||\alpha \mathcal{V}||_F^2} \right). \tag{2}$$

Considering the SNR levels 0, 5, 10, 15, 20, 25 and 30 (in dB), find the estimates $\hat{\mathbf{A}}$, $\hat{\mathbf{B}}$ and $\hat{\mathbf{C}}$ obtained with the ALS algorithm for (I, J, K) = (10, 4, 2).

Let us define the normalized mean square error (NMSE) measure

$$NMSE(\mathbf{Q}) = \frac{1}{M} \sum_{m=1}^{M} \frac{\|\hat{\mathbf{Q}}(m) - \mathbf{Q}(m)\|_F^2}{\|\mathbf{Q}(m)\|_F^2},$$
 (3)

where $\mathbf{Q}(m)$ e $\hat{\mathbf{Q}}(m)$ denote the original data matrix and the reconstructed one at the mth Monte Carlo experiment, respectively. For each SNR value, plot NMSE(\mathbf{A}), NMSE(\mathbf{B}) and NMSE(\mathbf{C}) as a function of the SNR. Discuss the obtained results.

<u>Hint</u>: Don't forget to take into account the inherent ambiguities of the CP decomposition.