

S44: High Energy Physics Big Data and the ATLAS experiment with a hands-on tutorial - 2

Data Science School Göttingen on 21.07.2017

Gen Kawamura

II.Physikalisches Institut, Universität Göttingen

Overview of Hands-on (30-40 mins)

- Let's start Hands-on
 - Your Grid environments
 - Hello World AMI (ATLAS Metadata Interface)
 - Hello World Athena job
 - Hello World PyRoot
 - Plot of electron Pt distribution
 - Hello World prun Grid job
 - Hello World PyRoot Grid job

Your Grid environments

VMs at Göttingen University

Loging in your VM

USE your user account ssh ...@...VM

Prepare your environments

Reading ATLAS environments from CVMFS

Cloning materials

\$ cd

\$ git clone https://github.com/GenKawamura/DataScienceSummerSchool_ATLAS_2017

\$ cd DataScienceSummerSchool_ATLAS_2017

Setup CVMFS

Reading ATLAS environments from CVMFS

```
## Alias to setupCVMFS
setupCVMFS(){
    export LCG_LOCATION=
    export ATLAS_LOCAL_ROOT_BASE=/cvmfs/atlas.cern.ch/repo/ATLASLocalRootBase
    source $ATLAS_LOCAL_ROOT_BASE/user/atlasLocalSetup.sh ""

## Using EMI LCG package
    source ${ATLAS_LOCAL_ROOT_BASE}/packageSetups/atlasLocalEmiSetup.sh --emiVersion ${emiVersionVal}}

}

## Or, use a script
. setupATLASHandsOn.sh

## Using CVMFS (with EMI LCG client tools)
setupCVMFS
```

Hands-on exercise grid certificate

Checking your certificate and VO

Copying a proxy certificate
export X509_USER_PROXY=/tmp/x509_cert_\$UID
cp -v grid_proxy \$X509_USER_PROXY
chmod 600 \$X509_USER_PROXY

Check your VOMS proxy voms-proxy-info -all

Read X509 attributes if you are interested openssl x509 -in \$X509_USER_PROXY -text | less

How it works

You get a temporary key of a door now

Hello World AMI (ATLAS Metadata Interface)

Hands-on exercise pyAMI Interface

AMI CLI interface

```
## Loading the pyAMI environment
$ | Search data of 2016 and period A1
$ | ami list datasets data16_13TeV%periodA1.%
| data16_13TeV.periodA1.physics_Main.PhysCont.AOD.t0pro20_v01
| data16_13TeV.periodA1.physics_Main.PhysCont.DAOD_STDM2.grp16_v01_p2623
| data16_13TeV.periodA1.physics_Main.PhysCont.DAOD_STDM4.grp16_v01_p2623
| data16_13TeV.periodA1.physics_Main.PhysCont.DAOD_STDM5.grp16_v01_p2623
| data16_13TeV.periodA1.physics_Main.PhysCont.DAOD_STDM7.grp16_v01_p2623
```

Hands-on exercise check metadata by pyAMI

Show metadata of a dataset

\$ ami show dataset info data16_13TeV.00284285.physics_Main.merge.AOD.f662_m1453_r8067_p2645 logicalDatasetName: data16_13TeV.00284285.physics_Main.merge.AOD.f662_m1453_r8067_p2645

nFiles: 0 totalEvents: 0 totalSize: NULL runNumber: 284285

period: J6

prodsysStatus : NO EVENTS YET

dataType : AOD beamType : NULL conditionsTag : NULL geometryVersion : NULL streamName : physics_Main

version: f662_m1453_r8067_p2645 lastModified: 2016-06-09 18:35:05

amiStatus : VALID

created: 2016-06-09 18:35:04

inContainer: 0

added_comment : NULL

keyword: NULL

prodsysIdentifier_0: 8650873

taskStatus_0 : UNKNOWN:METADATA ERROR

TIDState_0 : added

task_lastModified_0: 2016-06-10 09:24:25

Hands-on exercise check metadata by pyAMI

Show RAWs

\$ ami show dataset prov data16_13TeV.00284285.physics_Main.merge.AOD.f662_m1453_r8067_p2645 ...

How it works

- Applications
 - The Monte-Carlo Dataset Number Broker
 - The ATLAS Metadata directory
 - Tag collector
- ProdDB
 - For Monte-Carlo simulation

S. Albrand, T. Doherty, J. Fulachier, F. Lambert. The ATLAS Metadata Interface. Interna-tional Conference on Computing in High Energy and Nuclear Physics (CHEP-07), Sep 2007, Victoria, Canada. IOP Publishing, 120, pp.072003, 2008, <10.1088/1742-6596/120/7/072003>. <in2p3-00192624>

Hello World Athena Job

Hands-on exercise simple Athena job

Only 5 events by Pythia MC generator

```
## Setup an Athena release
$ asetup 17.2.4,here,setup
```

Run Pythia MC event generator \$ athena ajob_options/jobOptions.pythia16.py

<u>Do not need this exercise</u>, but it works on Grid as well

- Athena job by PanDA client
 - pathena

```
## Loading PanDA client $ Isetup panda
```

For example, you can seamlessly run Athena code on Grid \$ pathena ajob_options/jobOptions.pythia16.py --outDS=user.gkawamur.evgen.pool.pythia.v1.\$\$ --split 5

How it works - 1

Quantum mechanics

Each event is depending on event probability

A given initial and final state typically can be related via several separate intermediate histories, e.g.

Cross section
$$\sigma \propto |A_t + A_s + A_u|^2 \neq |A_t|^2 + |A_s|^2 + |A_u|^2$$
.

Interference \Rightarrow not possible to know which path process took.

If one amplitude dominates then approximate simplifications (e.g. A_t dominates for scattering angle \rightarrow 0).

Trick:
$$\sigma_t \propto |A_t + A_s + A_u|^2 \frac{|A_t|^2}{|A_t|^2 + |A_s|^2 + |A_u|^2}$$

How it works - 2

The main physics components

Structure of the basic generation process: (Not in physical time order, but \sim by order of consideration.)

1) Hard subprocess: $|\mathcal{M}|^2$, Breit-Wigners, parton densities.

2) Resonance decays: includes correlations.

3) Final-state parton showers.

4) Initial-state parton showers.

How it works - 3

The main physics components

5) Multiple parton–parton interactions.

Beam remnants, with colour connections.

5) + 6) \approx Underlying Event

8) Ordinary decays: hadronic, τ , charm, . . .

Hello World PyRoot

Hands-on exercise PyRoot example

Making PyRoot environments

\$ cd pyroot

\$ source pyroot_env.sh

Getting a sample

\$./get-sample-files.sh -n 1

\$ Is valid2.117050.PowhegPythia_P2011C_ttbar.digit.AOD.e2657_s1933_s1964_r5534/* > input.txt

Extracting and counting electron energy

\$ less xAOD_electron_hist_example.py

\$./xAOD_electron_hist_example.py -i input.txt -o hist.root

Plotting electron energy distribution. (this may not work in VMs)

\$ root hist.root

root [1] TBrowser t

Plot of electron Pt distribution

How it works

 Just looping entries (events) in a Root tree and counting electron Pt in histogram object

* xAOD_electron_hist_example.py

```
# Make the "transient tree":
t = ROOT.xAOD.MakeTransientTree(f, treeName)

print( "Number of input events: %s" % t.GetEntries() )
for entry in xrange( t.GetEntries() ):
    t.GetEntry( entry )
    print( "Processing run #%i, event #%i" % ( t.EventInfo.runNumber(), t.EventInfo.eventNumber() ) )
    print( "Number of electrons: %i" % len( t.ElectronCollection ) )
# loop over electron collection
for el in t.ElectronCollection:
    pthist.Fill(el.pt()/1000.)
    pass # end for loop over electron collection
    pass # end loop over entries
f.Close()
pass
```

Hello World prun Grid Job

Hands-on exercise Using ATLAS client tools

First "Hello world" job by PanDA client

PanDA client Isetup panda ## Make a Python script cat hello world.py #!/usr/bin/pvthon print "Hello world!" chmod 755 hello world.py ./hello world.py Hello world! ## Submitting a prun job prun --outDS user.gkawamur.pruntest.\$\$ --exec hello_world.py INFO: gathering files under /home/gen/tmp/for new comer INFO: upload source files INFO: submit INFO: succeeded. new jediTaskID=5107461 ## Submitting 5 prun jobs prun --outDS user.gkawamur.pruntest.\$\$ --exec hello_world.py -nJobs=5

What will happen?

On PanDA web interface, we can find the jobs

jobstatus (1)	finished (2)
minramcount (1)	1-2GB (1)
outputfiletype (2)	? (1) log (1)
priorityrange (2)	1000:1099 (1) 2000:2099 (1)
processingtype (1)	panda-client-0.5.72-jedi-athena (2)
prodsourcelabel (2)	panda (1) user (1)
produsername (1)	Gen Kawamura (2)
reqid (1)	94 (2)
specialhandling (1)	ddm:rucio (2)
transformation (2)	buildJcb-00-00-03 (1) runAthena-00-00-12 (1)

Prodsys Jobs Handling

Hello World PyRoot Grid Job

Hands-on exercise PyRoot with Grid

First "Hello world" PyRoot job by PanDA client

```
## Making PyRoot environments
$ inDS="valid2.117050.PowhegPythia_P2011C_ttbar.digit.AOD.e2657_s1933_s1964_r5534"
$ outDS="user.gkawamur.DStutorial.pyroot.xAOD.v0.1_$$"
$ infile="input.txt"
$ outfile="hist.root"
$ prun --useRootCore --inDS=$inDS --forceStaged \
--outDS=$outDS --outputs=$outfile --nFiles=100 --nFilesPerJob=1 \
--exec="echo %IN > $infile; xAOD_electron_hist_example.py -i $infile -o $outfile"
```

How it works

Executing a task processing processing events per job (per file)

--inDS (input Dataset)

