COMPLEX ENGINEERING PROBLEM REPORT

"Designing of HVAC system for Mechanical Hall"

Submitted to

Engr. Dr. Khuram Pervez

Chairman
Department of Mechanical Engineering

in partial fulfillment of the requirements for the

Course: Heating, Ventilation and Air Conditioning

By

Sr. No	Name	Roll No.
01	Ahsan Farooq	FA20-BME-005
02	Ali Munir	FA20-BME-006
03	Ahmed Raza Janjua	FA20-BME-046
04	Dawood Kiani	FA20-BME-050

DEPARTMENT OF MECHANICAL ENGINEERING MIRPUR UNIVERSITY SCIENCE & TECHNOLOGY (MUST)

Outline

- 1. Abstract
- 2. Objective
- 3. Introduction
- 4. Calculation the total sensible heat load in kWs
- 5. Calculation the total latent heat load in kWs
- 6. Capacity of AC
- 7. Selection of appropriate size of HVAC system and its components
- 8. Drawing of the layout of HVAC system
- 9. Calculation of annual electricity consumption and electricity bill associated with this HVAC system
- 10. Environmental impact of HVAC system in tCO2 for different months of the year
- 11. Conclusion and Recommendations

1. Abstract:

This report presents a thorough examination and design proposal for the HVAC system designated for the Mechanical Hall at MUST. The focus is on achieving optimal indoor environmental conditions through rooftop installation and ducted chilled air supply. Detailed calculations of sensible and latent heat loads form the basis for the selection of HVAC components, including the Chiller, Air Handling Unit, Pumps, and Fans. Manufacturer details and technical specifications are meticulously outlined. The report further provides a visual representation of the HVAC system layout. Monthly variations in electricity consumption and associated costs are graphically presented, offering insights into operational efficiency. An environmental impact analysis, measured in tCO2 emissions, is conducted for different months, with corresponding graphical illustrations. Through this holistic approach, the report aims to provide actionable insights for the implementation of an efficient, cost-effective, and environmentally conscious HVAC solution tailored to the unique needs of the Mechanical Hall.

2. Objective:

The primary objective of this report is to provide a detailed analysis and design proposal for the installation of an HVAC system on the roof of the Mechanical Hall at MUST. The focus is on achieving optimal indoor environmental conditions, considering a design set point of 23°C Dry Bulb Temperature (DBT) and 50% Relative Humidity (RH). The report aims to address key aspects, including the calculation of sensible and latent heat loads, the selection of appropriately sized HVAC components, and the presentation of manufacturer details and technical specifications. Additionally, the report aims to analyze the energy consumption and associated costs, providing a monthly variation graph. Furthermore, an environmental impact assessment in terms of tCO2 emissions for different months will be conducted, with corresponding graphical representation.

3. Introduction:

The Mechanical Hall, serving as a hub for diverse events at MUST, demands a robust HVAC system to ensure optimal indoor conditions for various activities. This report outlines a comprehensive design approach, with the HVAC system planned for rooftop installation, delivering chilled air through ducts. The chosen design parameters, including indoor conditions of 23°C DBT and 50% RH, and outdoor conditions of 37°C DBT and 60% RH, set the stage for a meticulous analysis. This introduction provides a brief overview of the report's objectives, emphasizing the significance of a tailored HVAC system to meet the unique requirements of the Mechanical Hall. The subsequent sections delve into the technical details of the system design, component selection, layout, energy consumption, and environmental impact.

4. Calculation the total sensible heat load in kWs:

Sensible heat gain refers to the transfer of heat to a space that results in an increase in the dry bulb temperature (DBT) without any change in moisture content. In other words, it is the heat that causes a change in temperature but not humidity.

The factors in sensible cooling load include:

- 1. Sensible heat gain due to ventilation air and air infiltration through cracks in the building, doors and windows
- 2. Sensible heat gain due to lightning
- 3. Sensible heat gain due to projector
- 4. Sensible heat gain due to occupants in the building
- 5. Sensible heat gain due to walls
- 6. Sensible heat gain due to window glass
- 7. Sensible heat gain due to roof

Layout of Mechanical Hall

Dimensions of Mechanical hall

Length=60 ft. =18.288 m

Width=40 ft. =12.192 m

Height=22 ft. =6.7056m

Amount of in filtered air, (Vint) = $\frac{LxWxHxAc}{60} m^3 / min$

Ac= Number of air changes per hour

For a hall with one wall exposed take Ac=1

Amount of in filtered air, (Vint) =
$$\frac{18.288 \times 12.192 \times 6.7056 \times 1}{60}$$
 = 24.92 m^3 /min

Mark point 1 (37°C DBT and 60% RH) and point 2 (23°C DBT and 50% RH) on psychrometric chart.

From psychrometric chart, we find that specific volume of air at point 1,

 $v_{s1}=0.909 \ m^3/kg \ of \ dry \ air$

Enthalpy of air at point 1,

h₁=99.3 kJ/kg of dry air

Enthalpy of air at point 2,

h₂₌45.6 kJ/kg of dry air

and enthalpy of air at point A,

h_{A=} 60 kJ/kg of dry air

Mass of infiltrated air at point 1 is

$$m_1 = \frac{Vint}{vs1} = \frac{24.92}{0.909} = 27.4 \text{ kg/s}$$

Sensible heat gain due to air infiltration

 $Q=m_1(h_A-h_2)$

Q=27.4 (60-45.6)

Q=394.56 kJ/min=6.6 kW

Sensible heat gain due to lightning

Total lights = 141 LED bulbs+ 8 tube lights

 $Q_{lights} = (Total LED bulbs \times Watt of each bulb) + (Total tube lights \times Watt of each tube light)$

 $Q_{\text{lights}} = (141 \times 25) + (8 \times 36)$

 $Q_{lights=}3813 W=3.813kW$

Sensible heat gain due to projector

Q_{proj}= Number of Projector × Watts of each projector

 $Q_{proj}=2\times400$

 Q_{proj} =800 W=0.8kW

Sensible heat gain due to occupants

 Q_{occup} = Qs per person × Number of occupants

 $Q_{occup} = 53 \times 171 = 9063W = 9.063kW$

Sensible heat gain due to walls

Heat gain through building walls can be calculated using following equations

 $Q = U \times A \times \Delta T$

Q= heat load in watt

U= Overall heat transfer coefficient=1.53 W/m²K (For Brick Wall)

A= Surface Area of wall

 ΔT = Temperature difference

Area of windows

Length=1.447m

Height=1.1684m

Area of 1 window= $1.447 \times 1.1684 = 1.6907 \text{m}^2$

Area of 9 windows= $1.6907 \times 9 = 15.22 \text{ m}^2$

Surface Area of walls:

Surface area of East wall

Area = 18.288×6.7056

Area= 122.63 m^2

Surface area of West wall

Area = 18.288×6.7056

Area = 122.63 - 15.22 (window area)

Area = 107.41 m^2

Surface area of South wall

Area = 12.191×6.7056

Area = 81.75 m^2

Surface area of north wall

Area = 12.191×6.7056

Area = 81.75 m^2

Temperature	East Wall	South Wall	North Wall	West Wall
Indoor t _{d2} (K)	23°C=296K	23°C=296K	23°C=296K	23°C=296K
Outdoor t _{d1} (K)	25 °C=298K	30 °C=303K	30 °C=303K	40 °C=313K
Difference ΔT (K)	2	7	7	17

Total Heat gain through building walls

Wall-1 (East)

 $c = 1.53 \times 122.63 \times 2$

 $Q_e = 375.248 \text{ W}$

 $Q_e = 0.375 \text{ kW}$

Wall-2 (South)

 $Q_s = 1.53 \times 81.75 \times 7$

 $Q_s = 875.54 \text{ W}$

 $Q_s = 0.875 \text{ kW}$

Wall-3 (West)

 $Q_w = 1.53 \times 107.41 \times 17$

 $Q_{\rm w} = 2793.73 \text{ W}$

 $Q_{\rm w} = 2.793 \; {\rm kW}$

Wall-4 (North)

 $Q_n = 1.53 \times 81.75 \times 7$

 $Q_n = 875.54 \text{ W}$

 $Q_n = 0.875 \text{ kW}$

Total load of walls = $Q_{e+} Q_{s+} Q_{w+} Q_n$

Total load of walls =0.375+0.875+2.793+0.875

Total load of walls =4.918 kW

Sensible heat gain due to window glass

Sensible heat gain due to window glass consists of two components

- Conduction heat transfer
- Direct Solar transmission

By Conduction

 $Q_{cond} = U \times A \times \Delta T$

Q= heat load in watt

U= Overall heat transfer coefficient=1.2716 W/m²K (From ASHRAE fundamental 2001)

A= Surface Area of windows

 ΔT = Temperature difference

For 1 window

 Q_{cond} =1.2716×1.6907×17=36.55W

For 9 windows

 $Q_{cond} = 36.55 \times 9 = 328.95W$

 $Q_{cond}=0.328 \, kW$

By direct solar transmission

Q_{solar}=A×SHGC Q_{solar}=SR

A= Surface Area of windows

SHGC=Sensible Heat Gain Coefficient=0.6

SR= Solar radiations=350 radiations

For 1 window

 $Q_{solar} = 1.6907 \times 0.6 \times 350 = 355.047W$

For 9 windows

 $Q_{solar} = 355.047 \times 9 = 3195.423W$

Q_{solar}=3.195kW

Sensible heat gain due to window glass= Q_{cond}+ Q_{solar}

Sensible heat gain due to window glass=0.328 kW+3.195kW

Sensible heat gain due to window glass=3.523kW

Sensible heat gain due to roof

 $Q = U \times A \times \Delta T$

Q= heat load in watt

U= Overall heat transfer coefficient=1.6147 W/m²K (From ASHRAE fundamental 2001)

A= Surface Area of roof

 ΔT = Temperature difference

 $Q_{roof} = 1.6147 \times (18.288 \times 12.192) \times 2$

 $Q_{roof} = 720.05W$

 $Q_{roof} = 0.72 \text{ kW}$

Sensible heat gain due to ventilation

 $Q_{\text{vent}} = Q_{\text{air}} \times \Delta T \times 1.08$

$$Q_{\text{vent}} = \frac{L \times W \times H \times Ac}{60} \times \Delta T \times 1.08$$

 $Q_{vent} = 24.92 \times 12 \times 1.08 = 322.96W$

 $Q_{vent}=0.322kW$

Total Sensible Heat Load

Total Sensible Heat Load= Sensible heat gain due air infiltration + Sensible heat gain due to lightning + Sensible heat gain due to projector + Sensible heat gain due to occupants in the building + Sensible heat gain due to walls + Sensible heat gain due to window glass + Sensible heat gain due to roof + Sensible heat gain due to ventilation air

Total Sensible Heat Load=6.6+3.813+0.8+9.063+4.918+3.523+0.72+0.322 Total Sensible Heat Load=29.759 kW

5. Calculation the total latent heat load in kWs

Latent heat gain refers to the transfer of heat to a space that results in a change in moisture content, typically an increase in humidity, without a corresponding change in dry bulb temperature. It represents the heat associated with the phase change of water vapor.

The factors including latent cooling load are:

- 1. Latent heat gain due to ventilation air and air infiltration through cracks in the building, doors and windows
- 2. Latent heat gain due to occupants in the building
- 3. Latent heat gain due to walls

Latent heat gain due to air infiltration

 $Q=m_1(h_1-h_A)$

Q=27.4 (99.3-60) = 1076.82 kJ/min

Q=17.95 kW

Latent heat gain due to occupants in the building

 $Q_{occup} = Q_L \text{ per person} \times \text{Number of occupants}$

 $Q_{occup} = 44 \times 171 = 7524W = 7.524kW$

Latent heat gain due to ventilation air

 $Q = Q_{air} \times \Delta W \times 2500$

Q_{air}= 24.92 m³ / min (as calculated in sensible load)

ΔW= Specific Humidity Difference

From psychrometric chart,

Specific humidity of air at point 1,

W₁=0.024 kg/kg of dry air

Specific humidity of air at point 2,

 $W_2 = 0.0086 \text{ kg/kg of dry air}$

 $\Delta W = W_1 - W_2 = 0.024 - 0.0086$

 $\Delta W = 0.0154 \text{ kg/kg of dry air}$

Now

 $Q_{vent} = 24.92 \times 0.0154 \times 2500$

 $Q_{vent} = 959.42 \text{ W}$

Q_{vent}=0.959 kW

Total Latent Heat Load

Total Latent Heat Load= latent heat gain due air infiltration+ latent heat gain due to occupants in the building+ Latent heat gain due to ventilation air

Total Latent Heat Load= 17.95+7.524+0.959

Total Latent Heat Load=26.43 kW

6. Capacity of AC

Total cooling load = Total Sensible Load + Total Latent Load

Total cooling load =29.759+26.43

Total cooling load =56.189 kW

$$TR = \frac{Total\ cooling\ load\ in\ kW}{TR}$$

$$TR = \frac{56.189}{1}$$

TR = 16.054 TR

Cooling Load Calculation by HAP Software:

Air System Sizing Summary for Mechanical hall							
Project Name: HVAC Prepared by: get				09/27/2023 12:15am			
Air System Information							
Air System Name Mechanical		Number of zones					
Equipment Class		Floor Area2		ft²			
Air System TypeSZC	AV	Location Mirpur, Pak	istan				
Sizing Calculation Information							
Calculation Months Jan to	Dec	Zone CFM Sizing Sum of space airflow	rates				
Sizing DataCalcula	ted	Space CFM SizingIndividual peak space I					
Control Continue Coll Circles Date							
Central Cooling Coil Sizing Data Total coil load	10 Tone	Load occurs atJul	1600				
Total coil load14		OA DB / WB107.9		°F			
Sensible coil load12		Entering DB / WB76.4		°F			
Coil CFM at Jul 1600 7		Leaving DB / WB59.9 /	58.9				
Max block CFM 7		Coil ADP		°F			
Sum of peak zone CFM7		Bypass Factor					
Sensible heat ratio		Resulting RH					
ft²/Ton20 BTU/(hr-ft²)		Design supply temp					
Water flow @ 10.0 °F rise28		Max zone temperature deviation	0.0	°F			
	51	·····					
Supply Fan Sizing Data							
Actual max CFM7		Fan motor BHP					
Standard CFM6		Fan motor kW					
Actual max CFM/ft ²	.97 CFM/ft²	Fan static	. 0.00	in wg			
Outdoor Ventilation Air Data							
Design airflow CFM	0 CFM	CFM/person	. 0.00	CFM/person			
CFM/ft²(
CFM/II ⁻ (J.UU CFM/IL						

Zone Sizing Summary for Mechanical hall	
Project Name: HVAC	09/27/2023
Prepared by: get	12:15am

Air System Information

Air System Name Mechan	ical hall	Number of zones	1
Equipment Class	UNDEF	Floor Area2400.6	0 ft²
Air System Type	SZCAV	Location Mirpur, Pakistar	n

Sizing Calculation Information

Calculation Months	Jan to Dec	Zone CFM Sizing	Sum of space airflow rates
Sizing Data	Calculated	Space CFM SizingIn	dividual peak space loads

Zone Sizing Data

Zone Name	Maximum Cooling Sensible (MBH)	Design Airflow (CFM)	Minimum Airflow (CFM)	Time of Peak Load	Maximum Heating Load (MBH)	Zone Floor Area (ft²)	Zone CFM/ft²
Zone 1	123.9	7126	7126	Jul 1700	0.0	2400.0	2.97

Zone Terminal Sizing Data

No Zone Terminal Sizing Data required for this system.

Space Loads and Airflows

		Cooling	Time	Air	Heating	Floor	
Zone Name /		Sensible	of	Flow	Load	Area	Space
Space Name	Mult.	(MBH)	Load	(CFM)	(MBH)	(ft²)	CFM/ft ²
Zone 1							
Mechanical hall	1	123.9	Jul 1700	7126	0.0	2400.0	2.97

Air System Design Load Summary for Mechanical hall

Project Name: HVAC Prepared by: get 09/27/2023 12:15am

	DES	SIGN COOLING		DE	SIGN HEATING		
	COOLING DATA	COOLING DATA AT Jul 1600 HE			AT DES HTG		
	COOLING OA DB	/ WB 107.9 °F	/ 74.2 °F	HEATING OA DB / WB 76.0 °F / 59.8 °F			
		Sensible	Latent		Sensible	Laten	
ZONE LOADS	Details	(BTU/hr)	(BTU/hr)	Details	(BTU/hr)	(BTU/hr	
Window & Skylight Solar Loads	162 ft²	14572	-	162 ft²	-		
Wall Transmission	4147 ft²	34809	-	4147 ft²	0		
Roof Transmission	2400 ft²	6829	-	2400 ft ²	0		
Window Transmission	162 ft²	5305	-	162 ft²	0		
Skylight Transmission	0 ft²	0	-	0 ft²	0		
Door Loads	20 ft²	181	-	20 ft²	0		
Floor Transmission	0 ft²	0	-	0 ft²	0		
Partitions	O ft²	0	-	0 ft²	0		
Ceiling	0 ft²	0	-	0 ft²	0		
Overhead Lighting	2 W	8	-	0	0		
Task Lighting	3813 W	13010	-	0	0		
Electric Equipment	800 W	2730	-	0	0		
People	180	41399	21600	0	0	(
Infiltration	-	0	0	-	0	(
Miscellaneous	-	0	0	-	0	(
Safety Factor	3% / 3%	3565	648	0%	0	(
>> Total Zone Loads		122408	22248	-	0	(
Zone Conditioning	-	120003	22248	-	0	(
Plenum Wall Load	0%	0	-	0	0		
Plenum Roof Load	0%	0	-	0	0		
Plenum Lighting Load	0%	0	-	0	0		
Return Fan Load	7126 CFM	0	-	7126 CFM	0		
Ventilation Load	0 CFM	0	0	0 CFM	0	(
Supply Fan Load	7126 CFM	0	-	7126 CFM	0		
Space Fan Coil Fans	-	0		-	0		
Duct Heat Gain / Loss	0%	0		0%	0		
>> Total System Loads	-	120003	22248	-	0	(
Central Cooling Coil	-	120003	22282	-	0	(
>> Total Conditioning	-	120003	22282	-	0	(
Key:	Positive	values are clg	loads	Positive	values are htg l	oads	
	Negative	values are htg	loads	Negative values are clg loads			

System Psychrometrics for Mechanical hall

 Project Name: HVAC
 09/27/2023

 Prepared by: get
 12:15am

July DESIGN COOLING DAY, 1600

TABLE 1: SYSTEM DATA

Component	Location	Dry-Bulb Temp (°F)	Specific Humidity (lb/lb)	Airflow (CFM)	CO2 Level (ppm)	Sensible Heat (BTU/hr)	Latent Heat (BTU/hr)
Ventilation Air	Inlet	107.9	0.01145	0	400	0	0
Vent - Return Mixing	Outlet	76.4	0.01165	7126	5514	-	-
Central Cooling Coil	Outlet	59.9	0.01095	7126	5514	120003	22282
Supply Fan	Outlet	59.9	0.01095	7126	5514	0	-
Cold Supply Duct	Outlet	59.9	0.01095	7126	5514	-	-
Zone Air	-	76.4	0.01165	7126	5514	120003	22248
Return Plenum	Outlet	76.4	0.01165	7126	5514	0	-

Air Density x Heat Capacity x Conversion Factor: At sea level = 1.080; At site altitude = 1.023 BTU/(hr-CFM-F) Air Density x Heat of Vaporization x Conversion Factor: At sea level = 4746.6; At site altitude = 4493.9 BTU/(hr-CFM) Site Altitude = 1506.0 ft

TABLE 2: ZONE DATA

	Zone Sensible Load	T-stat	Zone Cond			CO2 Level	Coil	Zone Heating Unit
Zone Name	(BTU/hr)	Mode	(BTU/hr)	(°F)	(CFM)	(ppm)	(BTU/hr)	(BTU/hr)
Zone 1	122408	Cooling	120003	76.4	7126	5514	0	0

	System Psychrometrics for Mechanical hall	
Project Name: HVAC		09/27/2023
Prepared by: get		12:15am

WINTER DESIGN HEATING

TABLE 1: SYSTEM DATA

Component	Location	Dry-Bulb Temp (°F)	Humidity	Airflow	CO2 Level (ppm)		Heat
Ventilation Air	Inlet	76.0	0.00786	0	400	0	0
Vent - Return Mixing	Outlet	70.0	0.01300	7126	800	-	-
Central Cooling Coil	Outlet	70.0	0.01300	7126	800	0	0
Supply Fan	Outlet	70.0	0.01300	7126	800	0	-
Cold Supply Duct	Outlet	70.0	0.01300	7126	800	-	-
Zone Air	-	70.0	0.01300	7126	800	0	0
Return Plenum	Outlet	70.0	0.01300	7126	800	0	-

Air Density x Heat Capacity x Conversion Factor: At sea level = 1.080; At site altitude = 1.023 BTU/(hr-CFM-F) Air Density x Heat of Vaporization x Conversion Factor: At sea level = 4746.6; At site altitude = 4493.9 BTU/(hr-CFM) Site Altitude = 1506.0 ft

TABLE 2: ZONE DATA

Zone Name	Zone Sensible Load (BTU/hr)	T-stat	Zone Cond (BTU/hr)	Temp	Zone Airflow (CFM)	CO2 Level (ppm)	Terminal Heating Coil (BTU/hr)	
Zone 1	0	Deadband	0	70.0	7126	800	0	0

Location: Mirpur, Pakistan

Altitude: 1506.0 ft.

Data for: July DESIGN COOLING DAY, 1600

7. Selection of appropriate size of HVAC system and its components:

In addressing the environmental and operational demands of the extensively utilized Mechanical Hall at MUST, a Variable Refrigerant Flow (VRF) cooling-only system has been meticulously designed. This VRF system, exemplified by the Samsung DVM S2, caters to the unique requirements of the facility, where the indoor conditions mandate a constant 23°C Dry Bulb Temperature and 50% Relative Humidity, amidst challenging outdoor conditions of 37°C Dry Bulb Temperature and 60% Relative Humidity. The modular design of the VRF system offers flexibility and scalability, ensuring efficient cooling tailored to diverse event scenarios. Employing inverter technology, the system's variable-speed compressors optimize energy consumption, contributing to elevated efficiency levels, particularly during partial-load conditions. Zoning capabilities enable precise temperature control in different areas, enhancing occupant comfort and energy savings. The Samsung DVM S2's cooling-only configuration aligns seamlessly with the project's specifications, offering a sustainable and ecofriendly solution for the Mechanical Hall's HVAC needs. The system's user-friendly controls, quiet operation, and potential integration with building management systems further position it as an ideal choice for meeting the cooling demands of this dynamic and multifunctional space.

Technical specifications of our selected system are as follows:

VRF I	DVM S2								
Manufacturer	Samsung Electronics Co. Ltd 129								
Model Name	AM200AXVANC/TL								
Capacity	56 kW								
Power Input	12.18 kW								
Current Input	19.6 A								
C.O.P	4.6								
Refrigerant Type	R410A								
Operation Temperature Range	-5~53°C								
Heat Ex	Heat Exchanger								
Туре	Fin & Tube								
Material (Fin)	Aluminum (Al)								
Material Tube	Copper (Cu)								
ModelFin Treatment	Anti-corrosion								
Compressor									
Туре	Inverter Scroll x 1								
Model	DS4GM7090FV* x 1								
F	Fan								
Туре	Propeller								
Motor (Output)	620 W (0.6 kW)								
Number of Unit (EA)	2 EA								
Air Flow Rate	342 CMM								
Piping Connections									
Liquid Pipe (Φ, mm)	15.88 mm								
Liquid Pipe Type	Braze Connection								
Gas Pipe (Φ, mm)	28.58 mm								
Gas Pipe Type	Braze Connection								
Installation Maximum Length (m)	220 m								

The selected VRF cooling-only system, exemplified by the Samsung DVM S2, brings forth several benefits that make it an optimal choice for addressing the HVAC needs of the Mechanical Hall at MUST:

- **a.** Energy Efficiency: With inverter-driven compressors, the VRF system enhances energy efficiency by adjusting its speed to match the specific cooling requirements, ensuring optimal performance and reduced energy consumption.
- **b. Modular Design and Scalability:** The modular design of the VRF system enables easy customization and expansion based on the changing needs of the Mechanical Hall. This scalability ensures adaptability to the evolving requirements of various events and activities.
- c. Precise Temperature Control: The system's ability to maintain a constant indoor condition of 23°C DBT and 50% RH, even in the face of challenging outdoor conditions, ensures a comfortable and controlled environment for events and gatherings.
- **d. Quiet Operation:** The VRF system, including the Samsung DVM S2, is designed for quiet operation, minimizing disturbances during events and enhancing the overall user experience.
- **e. Smart Controls:** The system's advanced control features provide user-friendly interfaces for monitoring and adjusting settings. This can include smart control options that allow for remote management, scheduling, and optimization.
- **f. Integration Capabilities:** The VRF system can integrate seamlessly with building management systems (BMS), enabling centralized control and monitoring. This integration enhances overall system efficiency and facilitates comprehensive facility management.
- **g.** Consistent Performance: The cooling-only configuration of the Samsung DVM S2 aligns precisely with the specified requirements, ensuring consistent and reliable performance without unnecessary complexity.
- **h.** Cost-Effective Operation: Through its energy-efficient design, zoning capabilities, and precise control, the VRF system contributes to cost savings in both operational and maintenance aspects, making it a financially prudent choice for the Mechanical Hall.

In summary, the chosen VRF system offers a holistic solution that not only meets the cooling needs of the Mechanical Hall efficiently but also brings forth advantages in terms of flexibility, sustainability, and user comfort.

8. Drawing of the layout of HVAC system:

9. Calculation of annual electricity consumption and electricity bill associated with this HVAC system:

Annual Electricity Consumption

Hall operates for 6 hours a day

Daily latent load power consumption= latent load in kW × Operating hours

Daily latent load power consumption=26.43×6=158.58 kWh

Daily sensible load power consumption= sensible load in kW × Operating hours

Daily sensible load power consumption=29.759×6=178.554 kWh

Total Daily Power Consumption= Daily Latent load Power consumption + Daily sensible load Power consumption

Total Daily Power Consumption=158.58 kWh+178.554 kWh

Total Daily Power Consumption=337.134 kWh

Hall operates for 12 days a month

Monthly Power Consumption = Total daily Power Consumption × Operating days

Monthly Power Consumption=337.134×12

Monthly Power Consumption=4045.608 kWh

Annual Power Consumption= Monthly Power Consumption×12

Annual Power Consumption=4045.608×12

Annual Power Consumption=48547.3 kWh

For monthly variation of electricity bill with the electrical power consumption in the form of graph, we have to calculate data as shown in table below.

FORMULAS USED IN TABLE

Daily latent load power consumption= latent load in kW × Operating hours

Daily sensible load power consumption= sensible load in kW × Operating hours

Total Daily Power Consumption= Daily Latent load Power consumption + Daily sensible load Power consumption

Monthly Power Consumption= Total daily Power Consumption \times Operating days

Monthly total Electricity Bill= Monthly Power Consumption×60 (price of one unit in PKR)

Months	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Operating Hours	0	0	2	3	3	6	6	6	6	3	0	0
Daily latent Power	0	0	53	79	79	158	158	158	158	79	0	0
Consumption												
(kWh)												
Daily Sensible	0	0	59.5	89.3	89.3	178.5	178.5	178.5	178.5	89.3	0	0
Power												
Consumption(kWh)												
Daily total Power	0	0	112.5	168.3	168.3	336.5	336.5	336.5	336.5	168.3	0	0
Consumption(kWh)												
Monthly total	0	0	1350	2019.6	2019.6	4038	4038	4038	4038	2019.6	0	0
Power												
Consumption(kWh)												
Monthly total	0	0	81000	121176	121176	242280	242280	242280	242280	121176	0	0
Electricity												
Bill(PKR)												

10. Environmental impact of HVAC system in tCO2 for different months of the year:

The environmental impact of the VRF HVAC system, specifically the Samsung DVM S2 cooling-only system, can be assessed in terms of its carbon footprint, measured in metric tons of carbon dioxide equivalent (tCO2), for different months of the year. The analysis takes into account the energy consumption associated with the system's operation. Here's an outline of the monthly variation in tCO2 emissions:

- **1. Seasonal Variation:** The environmental impact would likely show variations across different seasons. For instance, during hotter months where the system operates more frequently, the energy consumption and associated tCO2 emissions may be higher.
- **2. Energy Efficiency Measures:** If the VRF system is equipped with energy-saving features or if there are measures in place to optimize its efficiency, certain months may exhibit lower tCO2 emissions.
- **3. Maintenance and Optimization:** Regular maintenance and optimization of the HVAC system can impact its energy efficiency, directly influencing the environmental footprint. This may lead to variations in tCO2 emissions over time.
- **4. Graphical Representation:** Represent the monthly variation in tCO2 emissions in the form of a graph. This visual representation will make it easier to identify trends and patterns, allowing for a comprehensive understanding of the system's environmental impact throughout the year.

5. Comparison and Analysis: Compare the tCO2 emissions across different months to identify peak periods and areas for potential improvement. Analyze the data to draw insights into the system's performance and its alignment with environmental sustainability goals.

Monthly CO₂ emission is calculated for all months by using following formula:

 $Monthly\ Energy\ Consumption imes CO2\ emission\ per\ kWh$

Monthly CO_2 emission=

1000

CO₂ emission per hour= 0.6 kg of CO₂ per kWh

Months	Monthly Power Consumption	Monthly CO ₂ emission				
	(kWh)	(tCO_2)				
January	0	0				
February	0	0				
March	1350	0.81				
April	2019.6	1.21				
May	2019.6	1.21				
June	4038	2.43				
July	4038	2.43				
August	4038	2.43				
September	4038	2.43				
October	2019.6	1.21				
November	0	0				
December	0	0				

11. Conclusion and Recommendations: Concluding the report, this section synthesizes the findings and offers actionable recommendations for further enhancing the HVAC system's efficiency and environmental performance. It emphasizes a holistic approach that balances operational requirements with sustainability goals. This comprehensive report provides a detailed roadmap for implementing an HVAC system that not only meets the unique needs of the Mechanical Hall but also aligns with the principles of efficiency and environmental responsibility.