Разработка алгоритма прогнозирования выполнения задачи

«Цифровой прорыв», г. Владивосток 8 сентября — 6 октября 2022 г. Задача «Collector»

Постановка задачи

- Предсказать время выполнения задачи в секундах (целое число) на основе исторических данных
- Требуется максимизировать метрику R2
- Перед нами задача регрессии

Признаки из набора issues

Поле	Описание	Not Null	Признак(и)
id	Идентификатор задачи	+	Выбрасываем сразу
created	Дата создания задачи	+	Разбить на день, месяц, год
summary	Заголовок задачи в Jira	+	Представить текст, как вектор
project_id	Идентификатор проекта	+	номинальный признак
assignee_id	Идентификатор исполнителя	+	Выбрасываем, используем для связи
creator_id	Идентификатор создателя	+	Выбрасываем, используем для связи
overall_worklogs	Число секунд, потраченных на	+	Количественный признак, целевой
	задачу		параметр, предсказываем

Признаки из набора employees

Поле	Описание	Not Null	Признак(и)
Id	Идентификатор сотрудника	+	Выбрасываем, используем только для связи
Active	Работает или уволен	+	Сразу выбрасываем (бинарный признак)
full_name	Имя и фамлиля сотрудника	+	Сразу выбрасываем
position	Должность	-	Номинальный признак
hiring_type	Схема найма	-	Номинальный признак
payment_type	Схема оплаты	-	Номинальный признак
salary_calculation_type	Схема рассчёта ЗП	-	Номинальный признак
english_level	Уровень английского	-	Порядковый признак
passport		+	Бинарный признак
is_nda_signed	Подписано NDA	+	Бинарный признак
is_labor_contract_signed		+	Бинарный признак
is_added_to_internal_chats		+	Бинарный признак
is_added_one_to_one		+	Бинарный признак

Признаки из набора comments

Поле	Описание	Not Null	Признак(и)
comment_id	Идентификатор комментария	+	Выбрасываем сразу
Text	Текст комментария	+	Представим, как вектор
issue_id	Идентификатор задачи	+	Выбрасываем, используем только для связи
author_id	Идентификатор автора задачи	+	Выбрасываем, используем только для связи

Преобразование текста в векторы doc2vec

- Используется алгоритм doc2vec: обобщение алгоритма word2vec
- Используется реализация алгоритма doc2vec из библиотеки genism
- Преобразуется текст из заголовка задачи issue.summary в вектор. Так как данные summary заполнены, каждой задаче сопоставляется вектор
- Преобразуется текст из текста комментария comment.text в вектор. Так как все данные text заполнены, каждому комментарию сопоставляется вектор
- Используется модель «distributed bag of words» (PV-DBOW). Порядок слов в тексте не учитываем. Пробовал учитывать, т.е. использовать «distributed memory» (PV-DM) результат хуже

Кластеризация текстов K-Means

- Кластеризация это разбиение заданной выборки объектов на непересекающиеся множества, чтобы кластер состоял из похожих объектов, а объекты разных кластеров существенно различались
- Тексты преобразованы в векторы, кластеризуются векторы
- Используется алгоритм «k-средних» из библиотеки h2o.ai
- К = 100 исходя из числа задач и комментариев. Попробовал разные К
- Каждому комментарию сопоставляется номер кластера комментариев
- Каждой задаче сопоставляется номер кластера задачи

Модель данных

Модель данных

Связи:

- Employee Issue (по creator_id): один ко многим
- Employee Issue (по assignee_id): один ко многим
- Employee Comment: один ко многим
- Issue Comment: один ко многим

Новые признаки из связей и по результатам кластеризации текстов

- Employee: Для каждого сотрудника считаем количество задач, в которых он assignee, и группируем по номеру кластера задачи (+N новых признаков)
- Employee: Для каждого сотрудника считаем количество задач, в которых он creator, и группируем по номеру кластера задачи (+N новых признаков)
- Employee: Для каждого сотрудника считаем количество комментариев, которые он написал, и группируем по номеру кластера комментариев (+М новых признаков)
- Issue: Для каждой задачи считаем количество комментариев и группируем их по кластеру комментария (+К новых признаков)

Новые признаки и проблемы

Проблема:

- По результатам экспериментов становится понятно, что результаты хуже, если просто добавить новые фичи в датасет
- Алгоритмы начинают считать их множеством признаков, таким образом сильно усиливается влияние одного признака (номера кластера)
- Нужно снова превратить группу признаков в один

Решение:

• Кластеризовать по количеству задач/комментариев в каждом кластере

Кластеризуем сущности по количеству в каждом кластере

Дано:

- Задачи, каждая из которых сопоставлена с номером кластера (по заголовку summary) и сотрудником исполнителем
- Сотрудники

ISSUES								
ID	I	CLUSTER	I	ASSIGNEE				
1	1	15	ı	11				
2		16	Ì	11				
2 3 3		16		11				
3		16		12				

До

Группировка задач по паре "кластер-исполнитель" и подсчёт таких пар

После

ASSIGNEE	1	CLUSTER	1	COUNT
11	Т	16	ī	2
11		15	T	1
12	- [16	1	1

Для каждого осрудника получаем количество задач из каждого кластера. Или ставим 0, если не находим

Кластеризуем!!!

			C1	١	C2	۱	(C15	(216		Cn	I	С
	A1	Ī	0	T	0	۱	ı	0	1	0		0	1	1
-		Τ	0	Τ	0		Τ	0	-	0		0	-	1
	A11	1	0	1	0	1	1	1		2		0	1	3
	A12	\perp	0	1	0	1	1	0		1		0	1	2
		-	0	-	0	1	-	0		0		0	-	1
	An	-	0	-1	0	1	-	0	-	0		0	-1	1

Результаты кластеризации по количеству в каждом кластере

- Employee: Для каждого сотрудника есть номер кластера задач, в которых он исполнитель (assignee_cluster), один признак
- Employee: Для каждого сотрудника есть номер кластера задач, в которых он создатель (creator_cluster), один признак
- Employee: Для каждого сотрудника есть номер кластера комментариев, которые он писал (comments_cluster), один признак
- Employee: Каждого сотрудника можно дополнительно кластеризовать по кластерам assignee, creator и comments (employee_cluster)
- Issue: Для каждой задачи есть номер кластера комментариев, которые к ней оставлены, один признак

Результаты экспериментов с объединёнными признаками

• Использование единого кластера employee_cluster даёт результаты хуже, чем использование assignee_cluster, creator_cluster и comments_cluster по отдельности

Восстановление пропусков в данных

- Значение корреляции Пирсона должности сотрудника (position) со временем выполнения задачи одно из самых больших среди всех известных данных
- При этом поле position у примерно половины сотрудников не заполнено, т.к. они уже не работают в компании
- Многие другие поля также не заполнены у (в основном, уволенных) сотрудников
- Восстанавливать будем, используя машинное обучение, сведя эту задачу к задаче классификации. Признаки: assignee_cluster, creator_cluster и comments_cluster. Целевая переменная: position. Помимо признаков-кластеров есть not null поля, которые тоже будем использовать

Классификация полей employee по кластерам

- Предсказываем пропуски position
- Предсказываем пропуски hiring_type
- Предсказываем пропуски payment_type
- Предсказываем пропуски salary_calculation_type
- Предсказываем english_level
- Все признаки заполнены! Пустых полей больше нет

Кодирование признаков: порядковые

- Уровень английского (english_level) порядковый признак. Чтобы алгоритм машинного обучения понимал, какой уровень английского выше, а какой ниже, преобразуем данные столбца по правилу:
 - A1 \rightarrow 0
 - A2 \rightarrow 1
 - B1 \rightarrow 2
 - B2 \rightarrow 3
 - $C1 \rightarrow 4$

Кодирование признаков: номинальные

• У номинальных признаков нет отношения порядка, поэтому преобразуем их в набор столбцов через one hot encoding

EMPLOYEES	
ID POSITION	
1 3 2 5 3 7 4 5	EMPLOYEES ID P1 P2 P3 P4 P5 P6 P7 P8
	1 0 0 1 0 0 0 0 0 0

Результаты экспериментов с после кодирования признаков employee

- Однозначно отбрасываем все признаки employee, кроме position, так как алгоритм машинного обучения работает намного хуже
- Финальные признаки employee: position, assignee_cluster, creator_cluster, comments_cluster
- Добавление employee.position (one hot encoding) в набор признаков тоже ухудшает результат
- Отказ от one hot encoding и переход на label encoding для position
- Идея: вероятно, можно попробовать кодировать position через frequency encoding (не реализовано)

Поиск решения с помощью LightAutoML

- По итоговому набору признаков ищем решение задачи регрессии с помощью LightAutoML
- LightAutoML строит ансамбль из моделей ансамбль моделей LightGBM и CatBoost
- Точность решения (R2): 0.024783761079684496

```
INFO:lightautoml.automl.base:Layer 1 training completed.
INFO:lightautoml.automl.blend:Blending: optimization starts with equal weights and score 0.024783761079684496
INFO:lightautoml.automl.blend:Blending: iteration 0: score = 0.028225012245828185, weights = [0.
                                                                                                                    0.4035965 0.4430443 0.15335923]
INFO:lightautoml.automl.blend:Blending: iteration 1: score = 0.028226348864145878, weights = [0.
                                                                                                                   0.39829376 0.4535524 0.14815387]
INFO:lightautoml.automl.blend:Blending: iteration 2: score = 0.028226378090335125, weights = [0.
                                                                                                                  0.3975065 0.4550901 0.1474034]
INFO:lightautoml.automl.blend:Blending: iteration 3: score = 0.028226377929846502, weights = [0.
                                                                                                                   0.3973499 0.4553048 0.14734533]
INFO:lightautoml.automl.blend:Blending: iteration 4: score = 0.028226377877376696, weights = [0.
                                                                                                                   0.39736453 0.45529374 0.14734176]
INFO:lightautoml.automl.presets.base:Automl preset training completed in 243.71 seconds
INFO:lightautoml.automl.presets.base:Model description:
Final prediction for new objects (level 0) =
        0.39736 * (5 averaged models Lvl_0_Pipe_1_Mod_1_Tuned_LightGBM) +
        0.45529 * (5 averaged models Lvl 0 Pipe 1 Mod 2 CatBoost) +
        0.14734 * (5 averaged models Lvl 0 Pipe 1 Mod 3 Tuned CatBoost)
```

Что нового я узнал, пока решал задачу

- Алгоритмы машинного обучения очень чувствительны к качеству данных. Предварительная подготовка данных для анализа самый важный этап работы
- Алгоритмы word2vec и doc2vec требуют большого количества тестовых данных. Чем меньше данных, тем более случайным получается результат
- Алгоритмы word2vec и doc2vec требуют тщательной настройки, которую трудно автоматизировать. Подбор гиперпараметров почти искусство. Без понимания внутренней работы алгоритма лучше использовать значения гиперпараметров по-умолчанию

Контактная информация

• Почта: <u>valeriy@manenkov.com</u>

• Telegram: @vmanenkov

• Все контакты: http://v.manenkov.com