

Probabilidades e Estatística

LEAN, LEE, LEGI, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEBiom, MEEC, MEFT, MEMat, MEQ

2º semestre – 2017/2018 14/06/2018 – **09:00**

Duração: 90 minutos

2º Teste A

Justifique convenientemente todas as respostas

Grupo I 10 valores

1. Uma engenheira biológica admite que o número de certos parasitas por hospedeiro infetado é uma variável aleatória *X* com função de probabilidade dada por

$$P(X = x) = \frac{(1 - \alpha)^x}{x} (-\ln \alpha)^{-1}$$
, onde $x = 1, 2, ...$

e α é um parâmetro desconhecido tal que $0 < \alpha < 1$. Seja $(x_1, x_2, ..., x_n)$ a concretização de uma amostra aleatória de X.

- (a) Calcule a primeira derivada da função de log-verosimilhança e obtenha uma equação satisfeita pela estimativa de máxima verosimilhança de α , $\hat{\alpha}$.
 - V.a. de interesse

X = número de parasitas por hospedeiro infetado

• Função de probabilidade de \boldsymbol{X}

$$P(X = x) = \frac{(1-\alpha)^x}{x} (-\ln \alpha)^{-1}, \qquad x = 1, 2, \dots$$

· Parâmetro desconhecido

$$\alpha$$
, tal que $0 < \alpha < 1$

• Amostra

 $x = (x_1, ..., x_n)$ amostra de dimensão n proveniente da população X

• Função de verosimilhança

$$L(\alpha \mid \underline{x}) = P(\underline{X} = \underline{x})$$

$$X_{i} indep = \prod_{i=1}^{n} P(X_{i} = x_{i})$$

$$X_{i} = \prod_{i=1}^{n} P(X = x_{i})$$

$$= \prod_{i=1}^{n} \left[\frac{(1 - \alpha)^{x_{i}}}{x_{i}} (-\ln \alpha)^{-1} \right]$$

$$= (1 - \alpha)^{\sum_{i=1}^{n} x_{i}} \times (-\ln \alpha)^{-n} \times \left(\prod_{i=1}^{n} \frac{1}{x_{i}} \right), \quad 0 < \alpha < 1$$

Função de log-verosimilhança

$$\ln L(\alpha \mid \underline{x}) = \sum_{i=1}^{n} x_i \times \ln(1-\alpha) - n \ln(-\ln \alpha) - \sum_{i=1}^{n} \ln(x_i)$$

• Equação satisfeita pela estimativa de MV de α

A estimativa de MV de α será representada doravante por $\hat{\alpha}$ e satisfaz

$$\frac{d \ln L(\alpha \mid \underline{x})}{d \alpha} \bigg|_{\alpha = \hat{\alpha}} = 0$$
 (ponto de estacionaridade).

Consequentemente

$$-\frac{\sum_{i=1}^{n} x_i}{1-\hat{\alpha}} - n \frac{\left(-\frac{1}{\hat{\alpha}}\right)}{\left(-\ln \hat{\alpha}\right)} = 0$$

$$\frac{n\bar{x}}{1-\hat{\alpha}} + \frac{n}{\hat{\alpha}\ln(\hat{\alpha})} \quad = \quad 0 \qquad \qquad [\Leftrightarrow \quad \frac{\hat{\alpha}-1}{\hat{\alpha}\ln(\hat{\alpha})} = \bar{x}].$$

- (b) Uma amostra (x_1,x_2,\ldots,x_{20}) conduziu a $\hat{\alpha}\simeq 0.527804$. Calcule a estimativa de máxima (1.5) verosimilhança de $E(X)=\frac{\alpha-1}{\alpha\ln(\alpha)}$.
 - Parâmetro desconhecido

$$h(\alpha) = E(X)$$

= $\frac{\alpha - 1}{\alpha \ln(\alpha)}$

• Estimativa de MV de $h(\alpha) = E(X)$

De acordo com a propriedade de invariância dos estimadores de máxima verosimilhança, a estimativa de MV de $h(\alpha)$ é dada por:

- 2. Considere que a variável aleatória X representa a quantidade de água (em litro) de cada descarga de um novo modelo de autoclismo e que uma concretização de uma amostra aleatória de dimensão 40 da referida população conduziu aos seguintes resultados $\sum_{i=1}^{40} x_i = 450$ e $\sum_{i=1}^{40} x_i^2 = 10300$.
 - (a) Deduza um intervalo de confiança aproximado a 90% para E(X).

• V.a. de interesse

X = quantidade de água (em litro) de cada descarga de um novo modelo de autoclismo

(2.5)

• Situação

X com distribuição arbitrária $\mu = E(X)$ DESCONHECIDO

 $\sigma^2 = V(X)$ desconhecido

 $n = 40 \ge 30$

• Obtenção do IC aproximado para $\mu = E(X)$

Passo 1 — Selecção da v.a. fulcral para μ

$$Z = \frac{\bar{X} - \mu}{S/\sqrt{n}} \stackrel{a}{\sim} \text{normal}(0, 1)$$

[pois pretende-se IC aproximado para o valor esperado de pop. com distribuição arbitrária com variância desconhecida e estamos a lidar com amostra suficientemente grande.]

Passo 2 — Obtenção dos quantis de probabilidade

[Observe que os quantis simétricos que se seguem dizem respeito à distribuição aproximada da v.a. fulcral para μ e enquadram-na com probabilidade aproximadamente igual a $(1-\alpha)=0.95$:]

$$\left\{ \begin{array}{l} a_{\alpha} = -\Phi^{-1}(1-\alpha/2) = -\Phi^{-1}(0.95) \stackrel{tabela/calc.}{=} -1.6449 \\ b_{\alpha} = \Phi^{-1}(1-\alpha/2) = \Phi^{-1}(0.95) = 1.6449. \end{array} \right.$$

Passo 3 — Inversão da desigualdade $a_{\alpha} \le Z \le b_{\alpha}$

$$P(a_{\alpha} \le Z \le b_{\alpha}) \simeq 1 - \alpha$$

$$P\left[a_{\alpha} \le \frac{\bar{X} - \mu}{S/\sqrt{n}} \le b_{\alpha}\right] \simeq 1 - \alpha$$

$$P\left[\bar{X} - b_{\alpha} \times \frac{S}{\sqrt{n}} \le \mu \le \bar{X} - a_{\alpha} \times \frac{S}{\sqrt{n}}\right] \simeq 1 - \alpha$$

Passo 4 — Concretização

Tendo em conta que o IC aproximado a $(1 - \alpha) \times 100\%$ para μ é dado por

$$IC(\mu) = \left[\bar{x} \pm \Phi^{-1}(1 - \alpha/2) \times \frac{s}{\sqrt{n}}\right],$$

onde

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{450}{40} = 11.25$$

$$s^2 = \frac{1}{n-1} \left[\left(\sum_{i=1}^{n} x_i^2 \right) - n(\bar{x})^2 \right]$$

$$= \frac{1}{40-1} (10300 - 40 \times 11.25^2)$$

Assim,

$$IC(\mu) = \left[11.25 \pm 1.6449 \times \sqrt{\frac{134.2949}{40}} \right]$$

 $\approx [8.2360, 14.2640].$

- (b) Confronte as hipóteses $H_0: E(X) = 9$ e $H_1: E(X) > 9$, calculando para o efeito o valor-p.
 - V.a. de interesse e situação Ver alínea a).
 - Hipóteses

$$H_0: E(X) = \mu = \mu_0 = 9$$

 $H_1: E(X) = \mu > \mu_0 = 9$

• Estatística de teste

$$T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \stackrel{a}{\sim}_{H_0} \text{normal}(0, 1)$$

[uma vez que pretendemos efectuar um teste para o valor esperado de população com distribuição arbitrária com variância desconhecida e dispomos de uma amostra suficientemente grande.]

(3.0)

• Região de rejeição de H_0 (para valores de T)

Estamos a lidar com um teste unilateral superior $(H_1 : \mu > \mu_0)$, donde a região de rejeição de H_0 seja do tipo $W = (c, +\infty)$.

• Decisão (com base no valor-p)

O valor observado da estatística de teste é igual a

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

$$\simeq \frac{11.25 - 9}{\sqrt{134.2949}/\sqrt{40}}$$

$$\simeq 1.23$$

e a região de rejeição deste teste é um intervalo à direita. Assim,

$$valor - p = P(T > t \mid H_0)$$

$$\simeq 1 - \Phi(t)$$

$$\simeq 1 - \Phi(1.23)$$

$$tabela|calc| = 1 - 0.8907$$

$$= 0.1093.$$

Logo é suposto:

- não rejeitar H_0 a qualquer nível de significância α_0 ≤ 10.93%, nomeadamente a qualquer dos níveis usuais de significância(1%, 5% e 10%);
- rejeitar H_0 a qualquer n.s. $\alpha_0 > 10.93\%$.

Grupo II 10 valores

1. Seja X a variável aleatória que descreve o número semanal de ataques cibernéticos a um conjunto de servidores. Um engenheiro informático defende a hipótese H_0 de que X possui função de probabilidade $P(X = x) = (x + 1) \cdot 0.8^x \cdot 0.2^2$, x = 0, 1, 2, ...

A contagem do número semanal de ataques cibernéticos a este conjunto de servidores, num período de 200 semanas selecionadas casualmente, conduziu à seguinte tabela de frequências:

Número semanal de ataques cibernéticos	0	1	2	3	mais de 3
Frequência absoluta observada	7	17	8	20	148
Frequência absoluta esperada sob H_0	E_1	12.80	15.36	16.38	E_5

(a) Obtenha os valores de E_1 e E_5 (aproximando-os às centésimas).

(1.0)

(3.0)

• V.a. de interesse

X = número semanal de ataques cibernéticos a um conjunto de servidores

• F.p. conjecturada

$$P(X = x) = (x + 1) 0.8^{x} 0.2^{2}, x = 0, 1, 2, ...$$

• Frequências absolutas esperadas omissas

Atendendo à dimensão da amostra n = 200 e à f.p. conjecturada temos:

$$E_1 = n \times P(X = 0)$$

$$= 200 \times (0 + 1) 0.8^0 0.2^2$$

$$= 8.00;$$

$$E_5 = n \times P(X \ge 4)$$

$$= n - \sum_{i=1}^{4} E_i$$

$$\approx 200 - (8.00 + 12.80 + 15.36 + 16.38)$$

$$= 147.46.$$

- (b) Teste H_0 , ao nível de significância de 5%.
 - Hipóteses

$$H_0: P(X = x) = (x+1)0.8^x 0.2^2, \quad x = 0, 1, 2, ...$$

 $H_1: P(X = x) \neq (x+1)0.8^x 0.2^2, \quad \text{para algum } x \in \{0, 1, 2, ...\}$

• Nível de significância

$$\alpha_0 = 5\%$$

• Estatística de Teste

$$T = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} \stackrel{a}{\sim}_{H_0} \chi^2_{(k-\beta-1)},$$

onde:

k = No. de classes = 5

 O_i = Frequência absoluta observável da classe i

 E_i = Frequência absoluta esperada, sob H_0 , da classe i

 $\beta=$ No. de parâmetros a estimar = 0 [dado que em H_0 se conjectura uma distribuição específica.]

• Frequências absolutas esperadas sob H_0

De acordo com a tabela facultada e a alínea a), as frequências absolutas esperadas sob H_0 aproximados às centésimas são: $E_1 = 8.00$; $E_2 = 12.80$; $E_3 = 15.36$; $E_4 = 16.38$; $E_5 = 147.46$.

[Não é necessário fazer qualquer agrupamento de classes uma vez que em pelo menos 80% das classes se verifica $E_i \geq 5$ e que $E_i \geq 1$ para todo o i. Caso fosse preciso efectuar agrupamento de classes, os valores de k e $c = F_{\chi^2_{(k-\beta-1)}}^{-1} (1-\alpha_0)$ teriam que ser recalculados...]

• Região de rejeição de H_0 (para valores de T)

Tratando-se de um teste de ajustamento, a região de rejeição de H_0 é o intervalo à direita $W = (c, +\infty)$, onde

$$c = F_{\chi^{2}_{(k-\beta-1)}}^{-1} (1-\alpha_{0})$$

$$= F_{\chi^{2}_{(5-0-1)}}^{-1} (1-0.05)$$

$$tabel_{\alpha/calc}^{a/calc} = 9.488.$$

• Decisão

No cálculo do valor observado da estatística de teste convém recorrer à seguinte tabela auxiliar:

	Classe i	Freq. abs. obs.	Freq. abs.	Parcelas valor obs.
			esp. sob H_0	estat. teste
i		o_i	E_i	$\frac{(o_i - E_i)^2}{E_i}$
1	{0}	7	8.00	$\frac{(7-8.00)^2}{8.00} = 0.125$
2	{1}	17	12.80	$\frac{(17-12.80)^2}{12.80} \simeq 1.378$
3	{2}	8	15.36	3.527
4	{3}	20	16.38	0.800
5	$\{4, 5, \ldots\}$	148	147.46	0.002
		$\sum_{i=1}^k o_i = n = 200$	$\sum_{i=1}^k E_i = n = 200$	$t = \sum_{i=1}^{k} \frac{(o_i - E_i)^2}{E_i} \simeq 5.832$

Uma vez que $t \simeq 5.832 \not\in W = (9.488, +\infty)$, não devemos rejeitar H_0 ao n.s. de $\alpha_0 = 5\%$ [nem a qualquer outro n.s. inferior a α_0].

2. Um conjunto de 20 medições independentes relativas a um pequeno bairro residencial conduziu aos seguintes resultados respeitantes à temperatura média diária *x* (em grau Celsius) e ao consumo diário de eletricidade *Y* (em kWh):

$$\sum_{i=1}^{20} x_i = 633.4, \quad \sum_{i=1}^{20} x_i^2 = 20383.92, \quad \sum_{i=1}^{20} y_i = 7857.6, \quad \sum_{i=1}^{20} y_i^2 = 3126303.02, \quad \sum_{i=1}^{20} x_i y_i = 252003.88,$$

onde $\left[\min_{i=1,\dots,20} x_i, \max_{i=1,\dots,20} x_i\right] = [25.0, 40.5].$

(a) Considere o modelo de regressão linear simples de *Y* em *x* e determine a estimativa de mínimos quadrados do valor esperado do consumo diário de eletricidade num dia com temperatura média igual a 29 graus Celsius.

• Estimativa de MQ de $E(Y \mid x) = \beta_0 + \beta_1 x$ com x = 29

Uma vez que

$$n = 20$$

$$\sum_{i=1}^{n} x_i = 633.4$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{633.4}{20} = 31.67$$

$$\sum_{i=1}^{n} x_i^2 = 20383.92$$

$$\sum_{i=1}^{n} x_i^2 - n(\bar{x})^2 = 20383.92 - 20 \times 31.67^2 = 324.1420$$

$$\sum_{i=1}^{n} y_i = 7857.6$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{7857.6}{20} = 392.88$$

$$\sum_{i=1}^{n} y_i^2 = 3126303.02$$

$$\sum_{i=1}^{n} y_i^2 - n(\bar{y})^2 = 3126303.02 - 20 \times 392.88^2 = 39209.1320$$

$$\sum_{i=1}^{n} x_i y_i = 252003.88$$

$$\sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y} = 252003.88 - 20 \times 31.67 \times 392.88 = 3153.6880,$$

as estimativas de MQ de β_1 , β_0 e $\beta_0 + \beta_1 x$ são, para este modelo de RLS, iguais a:

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} x_{i} y_{i} - n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_{i}^{2} - n (\bar{x})^{2}}$$

$$= \frac{3153.6880}{324.1420}$$

$$\approx 9.729341$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \times \bar{x}$$

$$\simeq 392.88 - 9.729341 \times 31.67$$

$$\simeq$$
 84.751771

$$\hat{\beta}_0 + \hat{\beta}_1 x \simeq 84.751771 + 9.729341 \times 29$$

 $\simeq 366.902660.$

- (b) Após ter enunciado as hipóteses de trabalho que entender convenientes, teste se há evidência de (3.0) uma relação de natureza linear entre as variáveis x e Y, ao nível de significância de 5%.
 - Hipóteses de trabalho

$$\epsilon_i \stackrel{i.i.d.}{\sim} \text{Normal}(0, \sigma^2), i = 1, ..., n$$

Hipóteses

$$H_0: \beta_1 = \beta_{1,0} = 0$$

 $H_1: \beta_1 \neq 0$

• Nível de significância

$$\alpha_0 = 5\%$$

• Estatística de teste

$$T = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\frac{\hat{\sigma}^2}{\sum_{i=1}^n x_i^2 - n\bar{x}^2}}} \sim_{H_0} t_{(n-2)}$$

• Região de rejeição de H_0 (para valores da estatística de teste) Estamos a lidar com um teste bilateral $(H_1:\beta_1\neq 0)$, pelo que a região de rejeição de H_0 é uma reunião de intervalos do tipo $W=(-\infty,-c)\cup(c,+\infty)$, onde $c:P(\text{Rejeitar }H_0\mid H_0)=\alpha_0$, i.e.,

$$\begin{array}{lcl} c & = & F_{t_{(n-2)}}^{-1}(1-\alpha_0/2) \\ & = & F_{t_{(20-2)}}^{-1}(1-0.05/2) \\ & = & F_{t_{(18)}}^{-1}(0.975) \\ & \stackrel{calc.}{=} & 2.101. \end{array}$$

Decisão

Tendo em conta os valores obtidos em (a), bem como o de

$$\hat{\sigma}^2 = \frac{1}{n-2} \left[\left(\sum_{i=1}^n y_i^2 - n \, \bar{y}^2 \right) - \left(\hat{\beta}_1 \right)^2 \left(\sum_{i=1}^n x_i^2 - n \, \bar{x}^2 \right) \right]$$

$$\approx \frac{1}{20-2} \left(39209.1320 - 9.729341^2 \times 324.1420 \right)$$

$$\approx 473.656975.$$

o valor observado da estatística de teste é igual a

$$t = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\frac{\hat{\sigma}^2}{\sum_{i=1}^n x_i^2 - n\bar{x}^2}}}$$
$$= \frac{9.729341 - 0}{\sqrt{\frac{473.656975}{324.1420}}}$$

Como $t = 8.048577 \in W = (-\infty, -2.101) \cup (2.101, +\infty)$ devemos rejeitar H_0 ao n.s. de 5% [bem como a qualquer n.s. superior que 5%. De facto podemos concluir que devemos rejeitar a hipótese de a variável aleatória Y não ser influenciada linearmente pela variável explicativa x.]

(1.0)

(c) Obtenha e interprete o valor do coeficiente de determinação do modelo ajustado.

• Cálculo do coeficiente de determinação

$$r^{2} = \frac{\left(\sum_{i=1}^{n} x_{i} y_{i} - n \bar{x} \bar{y}\right)^{2}}{\left(\sum_{i=1}^{n} x_{i}^{2} - n \bar{x}^{2}\right) \times \left(\sum_{i=1}^{n} y_{i}^{2} - n \bar{y}^{2}\right)}$$

$$= \frac{3153.6880^{2}}{324.1420 \times 39209.1320}$$

$$\approx 0.782555.$$

• Interpretação coeficiente de determinação

Cerca de 78.26% da variação total da variável resposta Y é explicada pela variável x, através do modelo de regressão linear simples ajustado, donde possamos afirmar que a recta estimada parece ajustar-se bem ao conjunto de dados.