

Department of Computer Engineering

BLG 222E Computer Organization Project Report

Project : 2

Date : 12.04.2017

Group Members:

 ID
 Name
 Surname

 040140003
 Burak Mert Gönültaş

 150140025
 Elif Kılıç

 150150701
 Yunus Güngör

 150130029
 Muhammed Emin Küçük

1. INTRODUCTION

In this Project, we designed an 8-bit ALU that has 4 flags, "Zero", "Carry", "Negative", "Overflow". After that, we placed that ALU into a predefined structure containing several memory units and multiplexers.

2. REQUIREMENTS

ADDER WITH OVERFLOW

To achieve the desired ALU goals, we had to first design a special adder that contains discrete carry and overflow outputs. The overflow output is dependent on the overflow detection network.

After that, we designed the ALU with following capabilities, tied to FunSel selections.

FunSel	OutALU	Z	С	N	0
0000	A	٧	-	٧	-
0001	A + B	٧	٧	٧	٧
0010	A + B + Carry	٧	٧	٧	٧
0011	A - B	٧	٧	٧	٧
0100	A AND B	٧	_	٧	-
0101	A OR B	٧	-	٧	-
0110	NOT A	٧	_	٧	-
0111	A XOR B	٧	_	٧	-
1000	LSL A	٧	٧	٧	-
1001	LSR A	٧	_	٧	-
1010	ASL A	٧	_	٧	٧
1011	ASR A	٧	_	_	٧
1100	CSL A	٧	٧	٧	٧
1101	CSR A	٧	٧	٧	٧
1110	В	٧	_	٧	_
1111	NOT B	٧	-	٧	-

ORGANIZATION

MuxASel	MuxAOut	MuxBSel	MuxBOut
00	OutALU	00	OutALU
01	Address	01	ф
10	Memory Output	10	Memory Output
11	IROut (0-7)	11	IROut (0-7)
10	Memory Output	10	Memory Outpo

The ALU and the parts from the previous project are brought together in the desired form.

3. CONCLUSIONS

We implemented an ALU that is capable of doing ADD, SUBTRACT, AND, OR, NOT, XOR, LSR, LSL, ASR, ASL, CSR, CSL operations, depending on user defined FunSel bits. Prior to designing the ALU, we had to design a special adder with overflow detection and output. With this homework we improved our Logisim skills.