CN-Advanced L45

BGP

Dr. Ram P Rustagi rprustagi@ksit.edu.in http://www.rprustagi.com https://www.youtube.com/rprustagi

Chapter 4 Wireless and Mobile Networks

KUROSE ROSS

A note on the use of these ppt slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Interdomain Routing - Challenges

- Policies for an AS
 - Send traffic via X than Y
 - Can send traffic to Y but
 - not from X to Y (no transit)
 - paid them only to carry my traffic
 - Would like to keep policies private
 - Can have more complex policies
 - Use Y only for routes R1, R2
 - Use X for other routes
 - Does not advertise all routes

Inter Domain Routing - Challenges

- Each domains runs its own protocol
- Practically impossible to calculate meaningful path costs. Why?
 - Costs of one AS could be quite different from cost of other AS
- Issues of trust
 - Relates to complex policies
 - Trust X only if it advertises routes to R1, ... Rk

BGP Basics

- Each AS has one or more border routers
 - forwards packets between AS
- BGP does not belong to DV and LS routing class. Why?
- It advertises complete path
 - enumerated list of AS to reach a n/w
 - path vector routing
 - needed to support policy decisions
 - enables to avoid routing loop

How BGP Works

- when AS3 advertises a prefix to ASI:
 - AS3 promises it will forward datagrams towards that prefix
 - AS3 can aggregate prefixes in its advertisement
- BGP session: two BGP routers ("peers") exchange BGP messages:
 - advertising paths to different destination network prefixes ("path vector" protocol)
 - exchanged over semi-permanent TCP connections

How BGP Works

- when AS3 advertises a prefix to ASI:
 - AS3 promises it will forward datagrams towards that prefix
 - AS3 can aggregate prefixes in its advertisement

BGP Basics: Distributing Path Information

- Using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1.
 - 1c can then use iBGP to distribute new prefix info to all routers in AS1
 - 1b can then re-advertise new reachability info to AS2 over 1b-to-2a eBGP session
- when router learns of new prefix, it creates entry for prefix in its forwarding table.

Path attributes and BGP routes

- Advertised prefix includes BGP attributes
 - prefix + attributes = "route"
- Two important attributes:
 - AS-PATH: contains ASs through which prefix advertisement has passed: e.g., AS 67, AS 17
 - NEXT-HOP: indicates specific internal-AS router to next-hop AS. (may be multiple links from current AS to next-hop-AS)
- Gateway router receiving route advertisement uses import policy to accept/decline
 - e.g., never route through AS x
 - policy-based routing

Path attributes and BGP routes

- Why Next -Hop?
 - Router 1d needs to know cost to 3a
 - Uses Intra-domain routing to know cost
 - Network 3a-1c is part of it

BGP route selection

- Router may learn about more than I route to destination AS, selects route based on:
 - local preference value attribute: policy decision
 - shortest AS-PATH
 - closest NEXT-HOP router: hot potato routing
 - additional criteria

BGP messages

- BGP messages exchanged between peers over TCP connection
- BGP messages:
 - OPEN: opens TCP connection to peer and authenticates sender
 - UPDATE: advertises new path (or withdraws old)
 - KEEPALIVE: keeps connection alive in absence of UPDATES; also ACKs OPEN request
 - NOTIFICATION: reports errors in previous msg; also used to close connection

BGP routing policy

- Consider 6 interconnected ASes
- A,B,C are provider networks; peer to each other
- X,W,Y are customer (Stub AS; of provider n/ws)
- X is dual-homed: attached to two networks
 - X does not want to route from B to C (via X)
 - .. so X will not advertise to B a route to C

BGP routing policy

- X will act as Stub network
 - It will not advertise any other destination
 - other than itself
 - .. so X will not advertise to B a route to C
 - .. so X will not advertise to C a route to B
- Should X aderverise XCY to B?

BGP routing policy (2)

- A advertises path AW to B
- B advertises path BAW to X
- Should B advertise path BAW to C?
 - No way! B gets no "revenue" for routing CBAW since neither W nor C are B's customers
 - B wants to force C to route to w via A
 - B wants to route only to/from its customers!

Why different Intra-, Inter-AS routing?

- policy:
- inter-AS: admin wants control over how its traffic routed, who routes through its net.
- intra-AS: single admin, so no policy decisions needed
- scale:
- hierarchical routing saves table size,
- reduced update traffic
- performance:
- intra-AS: can focus on performance
- inter-AS: policy may dominate over performance
 - Cost can't be used as criteria

Summary

- BGP basics
- Distributed path information
- Path attributes
- BGP Route selection
- BGP routing policies