Analog to Digital Converter

What is ADC?

Types of ADCs

Denis BISSIERES

Ian CAMPBELL

Yohan LESPERAT

Contents

What is ADC?

Types of ADCs

- What is ADC?
- Types of ADCs

What is ADC?

What is ADC?

Types of ADCs

- Definition
- Examples of use
- Conversion process
- Accuracy

Definition

What is ADC?

Types of ADCs

- Most signals we want to process are analog
- i.e.: they are continuous and can take an inifinity of values

Definition

What is ADC?

Types of ADCs

- Digital systems require discrete digital data
- ADC converts an analog information into a digital information

Examples of use

Voltmeter

What is ADC?

Types of ADCs

HC11 & ADC

Cell phone (microphone)

Conversion process

What is ADC?

Types of ADCs

HC11 & ADC

3 steps:

- Sampling
- Quantification
- Coding

These operations are all performed in a same element: the A to D Converter

Conversion process: Sampling

Digital system works with discrete states

- The signal is only defined at determined times
- The sampling times are proportional to the sampling period (T_s)

What is ADC?

Types of ADCs

Conversion process: Quantification

The signal can only take determined values Belonging to a range of conversion (ΔV_r)

- Based on number of bit combinations that the converter can output
- Number of possible states:
 N=2ⁿ where n is number of bits
- Resolution: Q= ΔV_r/N

What is ADC?

Types of ADCs

Conversion process: Coding

- Assigning a unique digital word to each sample
- Matching the digital word to the input signal

Types of ADCs
HC11 & ADC

What is ADC?

Accuracy

What is ADC?

Types of ADCs

HC11 & ADC

The accuracy of an ADC can be improved by increasing:

- The sampling rate (T_s)
- The resolution (Q)

Accuracy

What is ADC?

Types of ADCs

HC11 & ADC

Higher Sampling rate

Higher Resolution

Sampling rate

Nyquist-Shannon theorem: Minimum sampling rate should be at least twice the highest data frequency of the analog signal

 $f_s > 2 \cdot f_{max}$

What is ADC?

Types of ADCs

Sampling rate

- Analog signals are composed of an infinity of harmonics
- Need to limit the frequency band to its useful part
- Use of an analog filter

Analog Analog Analog Digital

In practice: $f_s \approx (3...5)_* f_{filter}$

What is ADC?

Types of ADCs

Example

- 8 bits converter: n=8
- Range of conversion: △Vr=5V
- Sampling time: T_s=1ms
- Number of possible states: N=28=256
- Resolution: Q=ΔVr/N=19.5 mV
- Analog Filter: f_{filter} ≈ fs/5 = 200 Hz

What is ADC?

Types of ADCs

Types of ADCs

What is ADC?

Types of ADCs

- Flash ADC
- Sigma-delta ADC
- Dual slope converter
- Successive approximation converter

Flash ADC

What is ADC?

Types of ADCs

- "parallel A/D"
- Uses a series of comparators
- Each comparator compares V_{in} to a different reference voltage, starting w/ V_{ref} = 1/2 lsb

Flash ADC

What is ADC?

Types of ADCs

HC11 & ADC

Comparator is one use of an Op-Amp

lf	Output
$V_{IN} > V_{REF}$	High
$V_{IN} < V_{REF}$	Low

Flash ADC

What is ADC?

Types of ADCs

HC11 & ADC

Advantages

Very fast

Disadvantages

- Needs many parts (255 comparators for 8-bit ADC)
- Lower resolution
- Expensive
- Large power consumption

Sigma-Delta ADC

What is ADC?

Types of ADCs

- Oversampled input signal goes in the integrator
- Output of integration is compared to GND
- Iterates to produce a serial bitstream
- Output is serial bit stream with # of 1's proportional to V_{in}

Sigma-Delta ADC

What is ADC?

Types of ADCs

HC11 & ADC

Advantages

- High resolution
- No precision external components needed

Disadvantages

 Slow due to oversampling

Dual Slope converter

What is ADC?

Types of ADCs

- The sampled signal charges a capacitor for a fixed amount of time
- By integrating over time, noise integrates out of the conversion.
- Then the ADC discharges the capacitor at a fixed rate while a counter counts the ADC's output bits. A longer discharge time results in a higher count.

Dual Slope converter

What is ADC?

Types of ADCs

HC11 & ADC

Advantages

- Input signal is averaged
- Greater noise immunity than other ADC types
- High accuracy

Disadvantages

- Slow
- High precision external components required to achieve accuracy

Successive Approximation

What is ADC?

Types of ADCs

HC11 & ADC

Analog

input

- Sets MSB
- Converts MSB to analog using DAC
- Compares guess to input
- Set bit
- Test next bit

Successive Approximation

What is ADC?

Types of ADCs

HC11 & ADC

Advantages

- Capable of high speed
- Medium accuracy compared to other ADC types
- Good tradeoff between speed and cost

Disadvantages

- Higher resolution successive approximation ADCs will be slower
- Speed limited ~5Msps

ADC Types Comparison

What is ADC?

Types of ADCs

Туре	Speed (relative)	Cost (relative)
Dual Slope	Slow	Med
Flash	Very Fast	High
Successive Appox	Medium – Fast	Low
Sigma-Delta	Slow	Low