STAT 30400: Distribution Theory

Fall 2019

Homework 1

Solutions by

JINHONG DU

12243476

STAT 30400, Homework 1

1. (10 pts) Let $F_1, F_2, \ldots, F_n, \cdots$ and F be distribution functions with corresponding left-continuous inverses $F_1^-, F_2^-, \ldots, F_n^-, \cdots$ and F^- . Show that

$$\lim_{n\to\infty} F_n(x) = F(x) \text{ for all continuity points } x \text{ of } F$$

if and only if

 $\lim_{n\to\infty} F_n^-(u) = F^-(u) \text{ for all continuity points } u \text{ of } F^-$

Proof. First we have the following fact.

Let B be either \mathbb{R} or (0,1). Let f be a non-decreasing mapping from B into \mathbb{R} . Then $\mathcal{D}_f = \{x \in B : f \text{ is discontinuous at } x\}$ is at most countable and \mathcal{D}_f^c is a dense set. To see this, first look at a bounded interval $[n, n+1) \ \forall \ n \in \mathbb{Z}$. If $f(n+1) \neq f(n)$, let D_n denote the set of points at which f has a discontinuity. For each positive integer m, let $D_{n,m}$ denote the set of points $x \in [n, n+1)$ such that f has a jump of at least $\frac{1}{m}(f(n+1) - f(n))$ at x and let $N_{n,m}$ denote the number of elements in $D_{n,m}$. Note that

$$D_n = \bigcup_{m=1}^{\infty} D_{n,m},$$

we have $N_{n,m} \leq m$. It follows that the number of points of discontinuity is bounded by $\sum_{n} \sum_{m=1}^{\infty} m$. The result follows. Then \mathcal{D}_{F} and $\mathcal{D}_{F^{-}}$ are both countable.

 \Longrightarrow

Suppose that $u \in (0,1)$ and that w is a continuity point of F with $F^-(u) > w$. Since

$$F^-(u) > w \iff F(w) < u$$

and $\lim_{n \to \infty} F_n(x) = F(x)$ for all continuity points x of F, we have $\lim_{n \to \infty} F_n(w) < u$. Therefore, $\exists N_1 = N_1(w) \in \mathbb{Z}_+$, s.t. $\forall n > N_1$, $F_n(w) < u$, i.e. $F_n^-(u) > w$.

Suppose that $u \in (0,1)$ and that y is a continuity point of F with $F^-(u+) < y$. Since

$$F^-(u) \le y \iff F(y) \ge u$$

Similarly, we have $\lim_{n\to\infty} F_n(y) \ge u$. Therefore, $\exists N_2 = N_2(y) \in \mathbb{Z}_+$, s.t. $\forall n > N_2$, $F_n(y) \ge u$, i.e. $F_n^-(u) \le y$.

Since the set \mathcal{D}_F of jumps of the distribution function F is at most countable, the complement of countable set $\mathbb{R} \setminus \mathcal{D}_F$ is dense. $\forall \epsilon > 0$, which makes $w = F^-(u) - \epsilon$, $y = F^-(u+) + \epsilon \in \mathbb{R} \setminus \mathcal{D}_F$, $\exists N = \max\{N_1, N_2\}$, s.t. $\forall n > N$,

$$F^{-}(u) - \epsilon \le F_n^{-}(u) \le F^{-}(u+) + \epsilon.$$

Since $\mathbb{R} \setminus \mathcal{D}_F$ is dense, such ϵ can be arbitrarily small. Let $\epsilon \to 0$, we have

$$F^{-}(u) \le \liminf_{n} F_{n}^{-}(u) \le \limsup_{n} F_{n}^{-}(u) \le F^{-}(u+),$$

which implies

 $\lim_n F_n^-(u) = F^-(u) \text{ for all continuity points } u \text{ of } F^-.$

 \leftarrow

Solution (cont.)

Suppose that $x \in \mathbb{R}$ and that w' is a continuity point of F^- with F(x) < w'. Since

$$F(u) < w' \iff F^-(w') > x$$

and $\lim_{n\to\infty} F_n^-(x) = F^-(x)$ for all continuity points u of F^- , we have $\lim_{n\to\infty} F_n^-(w') > x$. Therefore, $\exists N_3 = N_3(w') \in \mathbb{Z}_+$, s.t. $\forall n > N_3$, $F_n^-(w') > x$, i.e. $F_n(x) < w'$.

Suppose that $x \in \mathbb{R}$ and that y' is a continuity point of F^- with $F(x-) \geq y'$. Since

$$F(x) \ge y' \iff F^-(y') \le x$$

Similarly, we have $\lim_{n\to\infty} F_n^-(y') \le x$. Therefore, $\exists N_4 = N_4(y') \in \mathbb{Z}_+$, s.t. $\forall n > N_4$, $F_n^-(y') \le x$, i.e. $F_n(x) \ge y'$.

Since the set \mathcal{D}_{F^-} of jumps of the distribution function F^- is at most countable, the complement of countable set $(0,1) \setminus \mathcal{D}_{F^-}$ is dense. $\forall \epsilon' > 0$, which makes $w' = F(x) + \epsilon$, $y' = F(x-) - \epsilon \in (0,1) \setminus \mathcal{D}_{F^-}$, $\exists N' = \max\{N_3, N_4\}$, s.t. $\forall n > N'$,

$$F(x-) - \epsilon' \le F_n(x) \le F(x) + \epsilon'$$
.

Since $(0,1) \setminus \mathcal{D}_F$ is dense, such ϵ' can be arbitrarily small. Let $\epsilon' \to 0$, we have

$$F(x-) \le \liminf_{n} F_n(x) \le \limsup_{n} F_n(x) \le F(x),$$

which implies

 $\lim_{n} F_n(x) = F(x)$ for all continuity points x of F.

2. (10 pts) Let X be a random variable with df F. Find the distribution functions of |X| and X^+ , where X^+ is equal to X if X > 0 and is equal to 0 otherwise.

$$\begin{split} F(x) &= \mathbb{P}(X \leq x) \\ F_{|X|}(x) &= \mathbb{P}(|X| \leq x) \\ &= \mathbb{P}(-x \leq X \leq x) \mathbb{1}_{\{x \geq 0\}} \\ &= [F(x) - F((-x) -)] \mathbb{1}_{\{x \geq 0\}} \\ F_{X^{+}}(x) &= \mathbb{P}(X^{+} \leq x) \\ &= [\mathbb{P}(X \leq 0) + \mathbb{P}(X \leq x | X > 0) \mathbb{P}(X > 0)] \mathbb{1}_{\{x \geq 0\}} \\ &= F(x) \mathbb{1}_{\{x \geq 0\}} \end{split}$$

3. (10 pts) Suppose that X_1, \ldots, X_n are independent and that each has distribution function F. Let $X_{(k)}$ be the k-th order statistic. Show that $X_{(k)}$ has the distribution function

$$G_k(x) = \sum_{j=k}^n \binom{n}{j} [F(x)]^j [1 - F(x)]^{n-j}.$$

Proof.

$$G_{k}(x) = \mathbb{P}(X_{(k)} < x)$$

$$= \mathbb{P}(X_{(1)} \le X_{(2)} \le \dots \le X_{(k)} < x, X_{(k)} \le X_{(k+1)} \le \dots \le X_{(n)})$$

$$= \sum_{j=k}^{n} \mathbb{P}(X_{(1)} \le X_{(2)} \le \dots \le X_{(j)} \le x < X_{(j+1)} \le \dots \le X_{(n)})$$

$$= \sum_{j=k}^{n} \binom{n}{j} \mathbb{P}(X_{1} \le x, X_{2} \le x, \dots, X_{j} \le x, x < X_{j+1}, \dots, x \le X_{n})$$

$$= \sum_{j=k}^{n} \binom{n}{j} \mathbb{P}(X_{1} \le x) \dots \mathbb{P}(X_{j}) \le x) \mathbb{P}(x < X_{j+1}) \dots \mathbb{P}(x \le X_{n})$$

$$= \sum_{j=k}^{n} \binom{n}{j} [F(x)]^{j} [1 - F(x)]^{n-j}$$

where the fourth equality comes from the fact that the event $X_{(1)} \leq \cdots \leq X_{(j)} \leq x < X_{(j+1)} \leq \cdots \leq X_{(n)}$ is simply the event that j observations fall in the interval $(-\infty, x]$ and n-j observations fall in the interval $(x, +\infty)$.

4. (10 pts) The Levy distance d(F,G) between two distribution functions is the infimum of those ϵ such that

$$G(x - \epsilon) - \epsilon \le F(x) \le G(x + \epsilon) + \epsilon, \quad \forall x.$$

(a) Verify that this is a metric on the set of distribution functions.

Let \mathcal{D} be the set of distribution functions. For any $F, G\mathcal{D}$, the Levy distance is given by

$$d(F,G) = \inf_{\mathcal{E}} \mathcal{E}(F,G)$$

where $\mathcal{E}(F,G) = \{\epsilon | G(x-\epsilon) - \epsilon \le F(x) \le G(x+\epsilon) + \epsilon, \ \forall x. \}.$

1. Nonnegativity

Suppose $F \neq G$. since G is non-decreasing, we have $\forall \epsilon < 0$,

$$G(x - \epsilon) - \epsilon \ge G(x + \epsilon) - \epsilon > G(x + \epsilon) + \epsilon$$

thus $\epsilon < 0$ cannot satisfy the condition that $G(x-\epsilon)-\epsilon \le F(x) \le G(x+\epsilon)+\epsilon$, $\forall x.$, i.e., $d(F,G) \ge 0$. Analogously, $d(F,F) \ge 0$.

Next we show that $d(F,G) \neq 0$. Otherwise, if d(F,G) = 0, then either $0 \in \mathcal{E}(F,G)$ or $\exists \{\epsilon_n \in \mathcal{E}(F,G), n=1,2,\cdots\}$, s.t. $\epsilon_n \downarrow 0$. In the former case, we have F(x)=G(x), which is a contradiction. In the latter case, it implies $G(x-) \leq F(x) \leq G(x)$, $\forall x$. Since $G(x)-F(x) \geq 0$ and $\int_{\mathbb{R}} [G(x)-F(x)] dx = 0$, we have G(x)=F(x), almost everywhere in \mathbb{R} . Then, $\forall x$ such that $G(x-) \leq F(x) < G(x)$, $\exists \{\delta_n, n=1,2,\cdots\}$, s.t. $\delta_n \downarrow 0$ and $F(x+\delta_n)=G(x+\delta_n)$ (otherwise F(x) < G(x) at a small right neighborhood of x, which has positive measurement.). Since F and G are right-continuous function, it implies F(x)=G(x) as $\delta_n \downarrow 0$, which is a contradiction again. Therefore, d(F,G)>0 for $F\neq G$.

From the above argument, if d(F,G)=0, then F=G. Apparently $0\in\mathcal{E}(F,F)$, so d(F,F)=0. Therefore, d(F,G)=0 \iff F=G.

2. Symmetry

 $\forall \epsilon \in \mathcal{E}(F,G), \forall x \in \mathbb{R}, G(x-\epsilon)-\epsilon \leq F(x) \leq G(x+\epsilon)+\epsilon.$ Let $y=x-\epsilon$, from the left hand side, we have $G(y) \leq F(y+\epsilon)+\epsilon, \forall y$. Let $y=x+\epsilon$, from the left hand side, we have $F(y-\epsilon)-\epsilon \leq G(y)$, $\forall y$. Therefore, $F(x-\epsilon)-\epsilon \leq G(x) \leq F(x+\epsilon)+\epsilon, \ \forall x$, i.e., $\epsilon \in \mathcal{E}(G,F)$, i.e., $\mathcal{E}(F,G) \subseteq \mathcal{E}(G,F)$. Similarly, $\mathcal{E}(F,G) \supseteq \mathcal{E}(G,F)$. Then, $\mathcal{E}(F,G) = \mathcal{E}(G,F)$, which means d(E,F) = d(F,E).

3. Triangle Inequality

For any $F, G, HD, \forall \epsilon_1 \in \mathcal{E}(F, G), \epsilon_2 \in \mathcal{E}(G, H)$, we have $\forall x \in \mathbb{R}$,

$$G(x - \epsilon_1) - \epsilon_1 \le F(x) \le G(x + \epsilon_1) + \epsilon_1,$$
 (1)

$$H(x - \epsilon_2) - \epsilon_2 \le G(x) \le H(x + \epsilon_2) + \epsilon_2. \tag{2}$$

Substituting (2) into (1),

$$H(x - (\epsilon_1 + \epsilon_2)) - (\epsilon_1 + \epsilon_2) < F(x) < H(x + (\epsilon_1 + \epsilon_2)) + (\epsilon_1 + \epsilon_2),$$

i.e., $\epsilon_1 + \epsilon_2 \in \mathcal{E}(F, H)$. Therefore,

$$\mathcal{E}(F,G) + \mathcal{E}(G,H) \triangleq \{\epsilon_1 + \epsilon_2 | \epsilon_1 \in \mathcal{E}(F,G), \epsilon_2 \in \mathcal{E}(G,H)\} \subseteq \mathcal{E}(F,H). \tag{3}$$

Next we prove the fact that $\inf(\mathcal{E}(F,G) + \mathcal{E}(G,H)) = \inf \mathcal{E}(F,G) + \inf \mathcal{E}(G,H)$ given every set has finite infimum. $\forall \ \epsilon > 0$, by definition of the infimum, there exists x in $\mathcal{E}(F,G)$ and y in $\mathcal{E}(G,H)$ such that

$$x < \inf \mathcal{E}(F, G) + \frac{\epsilon}{2}, \qquad y < \inf \mathcal{E}(G, H) + \frac{\epsilon}{2}.$$

Solution (cont.)

By summing,

$$x + y < \inf \mathcal{E}(F, G) + \inf \mathcal{E}(G, H) + \epsilon.$$

Let z = x + y. Then, for all $z \in \inf(\mathcal{E}(F,G) + \mathcal{E}(G,H))$, $z < \inf \mathcal{E}(F,G) + \inf \mathcal{E}(G,H) + \epsilon$. Since $\inf \mathcal{E}(F,G) \le x$, $\inf \mathcal{E}(G,H) \le y$, we also have $\inf \mathcal{E}(F,G) + \inf \mathcal{E}(G,H) \le z$. Let $\epsilon \to 0$, we have

$$\inf(\mathcal{E}(F,G) + \mathcal{E}(G,H)) = \inf \mathcal{E}(F,G) + \inf \mathcal{E}(G,H). \tag{4}$$

From (3) and (4), we have

$$\inf \mathcal{E}(F,G) + \inf \mathcal{E}(G,H) = \inf(\mathcal{E}(F,G) + \mathcal{E}(G,H))$$

$$\geq \inf \mathcal{E}(F,H),$$

i.e.,

$$d(F,H) \le d(F,G) + d(G,H).$$

So, the Levy distance is a metric.

(b) Let F be a continuous distribution function, and $(F_n)_n$ a sequence of distribution functions. Show that $F_n(x)$ converges to F(x) for any x if and only if $d(F_n, F) \to 0$.

 $Proof. \implies$

 $\forall \epsilon > 0$, since F is continuous, we can choose $x_0, y_0 \in \mathbb{R}$ such that $F(x_0) = \epsilon$ and $F(y_0) = 1 - \epsilon$.

(1) For $x > y_0$, since $F_n \to F$, we have that for y_0 , $\exists N_y \in \mathbb{Z}_+$, s.t. $\forall n > N_y$, $|F_n(y_0) - F(y_0)| < \epsilon$. So,

$$F(x) \le 1 = F(y_0) + \epsilon \le F_n(y_0) + 2\epsilon \le F_n(x + 3\epsilon) + 3\epsilon$$

and

$$F(x) \ge 1 - \epsilon = F(y_0) \ge F_n(y_0) - \epsilon \ge F_n(x) - 3\epsilon \ge F_n(x - 3\epsilon) - 3\epsilon$$

where the third inequality comes from that for $x > y_0$, $F_n(x) - 2\epsilon \le 1 - 2\epsilon \le F_n(y_0)$ since $F_n(y_0) \ge F(y_0) - \epsilon = 1 - 2\epsilon$.

(2) For $x < x_0$. For $x_0, \exists N_0 \in \mathbb{Z}_+$, s.t. $\forall n > N_0, |F_n(x_0) - F(x_0)| < \epsilon$. So,

$$F(x) > 0 = F(x_0) - \epsilon > F_n(x_0) - 2\epsilon > F_n(x) - 2\epsilon > F_n(x - 3\epsilon) - 3\epsilon$$

and

$$F(x) < \epsilon = F(x_0) < F_n(x_0) + \epsilon < F_n(x) + 3\epsilon < F_n(x + 3\epsilon) + 3\epsilon$$

where the third inequality comes from that for $x < x_0$, $F_n(x) + 2\epsilon \ge 2\epsilon \ge F_n(x_0)$ since $F_n(x_0) \le F(x_0) + \epsilon = 2\epsilon$.

(3) Let $x_0 < x_1 < \dots < x_m = y_0$ such that $x_{i+1} - x_i < \epsilon$ $(i = 1, \dots, m-1)$. For $x_i, \exists N_i \in \mathbb{Z}_+$, s.t. $\forall n > N_i, |F_n(x_i) - F(x_i)| < \epsilon$. For $x \in [x_i, x_{i+1}]$,

$$F(x) \le F(x_{i+1}) \le F(x_i) + \epsilon \le F_n(x_i) + 2\epsilon \le F_n(x) + 2\epsilon \le F_n(x + 3\epsilon) + 3\epsilon$$

Solution (cont.)

and

$$F(x) \ge F(x_i) \ge F_n(x_{i+1}) - \epsilon \ge F_n(x) - \epsilon \ge F_n(x - 3\epsilon) - 3\epsilon$$

Then $\exists N = \max\{N_0, \dots, N_m, N_y\}$, s.t.

$$F_n(x-3\epsilon) - 3\epsilon \le F(x) \le F_n(x+3\epsilon) + 3\epsilon, \quad \forall x \in \mathbb{R},$$

which implies that $3\epsilon \in \mathcal{E}(F_n, F)$ and $d(F_n, F) = \inf \mathcal{E}(F_n, F) \leq 3\epsilon$. Let $\epsilon \to 0$, we have $d(F_n, F) \to 0$.

 \leftarrow

Since $d(F_n, F) \to 0, \forall \epsilon > 0, \exists N \in \mathbb{Z}_+, \text{ s.t. } \forall n > N, d(F_n, F) < \epsilon. \text{ Then } \forall x \in \mathbb{R},$

$$F(x - \epsilon) - \epsilon \le F_n(x) \le F(x + \epsilon) + \epsilon,$$

Since F is a continuous function, let $\epsilon \to 0$, we have

$$F(x) \le \liminf_{n} F_n(x) \le \limsup_{n} F_n(x) \le F(x),$$

So

$$\lim_{n \to \infty} F_n(x) = F(x),$$

i.e. $F_n(x)$ converges to F(x) for any x.

- 5. (10 pts) Suppose Z is a standard normal variable, with density $\phi(z)$.
 - (a) Show that as $z \to \infty$,

$$\mathbb{P}(Z \ge z) = (1 + o(1)) \frac{\phi(z)}{z}$$

where o(1) denotes a quantity that tends to 0 as $z \to \infty$. (Hint: integration by parts).

$$\mathbb{P}(Z \ge z) = \int_{z}^{+\infty} \phi(x) dx$$

$$= \int_{z}^{+\infty} \left(-\frac{1}{x} \right) \left(-x \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^{2}} \right) dx$$

$$= \int_{z}^{+\infty} \left(-\frac{1}{x} \right) d \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^{2}} \right)$$

$$= \left(-\frac{1}{x} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^{2}} \right) \Big|_{z}^{+\infty} - \int_{z}^{+\infty} \frac{\phi(x)}{x^{2}} dx$$

$$= \frac{\phi(z)}{z} - \int_{z}^{+\infty} \frac{\phi(x)}{x^{2}} dx$$

Since

$$\lim_{z \to \infty} \frac{-\int_{z}^{+\infty} \frac{\phi(z)}{x^{2}} dx}{\frac{\phi(z)}{z}} = \lim_{z \to \infty} \frac{\frac{\phi(z)}{z^{2}}}{\frac{-z^{2}\phi(z) - \phi(z)}{z^{2}}}$$
$$= \lim_{z \to \infty} \frac{1}{-z^{2} - 1}$$
$$= 0.$$

$$-\int_{z}^{+\infty} \frac{\phi(x)}{x^{2}} \mathrm{d}x = o(1) \frac{\phi(z)}{z}.$$

So as $z \to \infty$.

$$\mathbb{P}(Z \ge z) = (1 + o(1)) \frac{\phi(z)}{z}.$$

(b) Let q_{α} be the $(1-\alpha)$ quantile of Z. Show that, as $\alpha \to 0$,

$$q_{\alpha} = \sqrt{2\log(\frac{1}{\alpha}) - \log(\log(\frac{1}{\alpha})) - \log(4\pi) + o(1)},$$

where o(1) denotes a quantity that tends to 0 as $\alpha \to 0$.

Since q_{α} is the $(1 - \alpha)$ quantile of Z, we have

$$\mathbb{P}(Z \ge q_{\alpha}) = \alpha,$$

i.e.,

$$(1 + o(1))\frac{\phi(q_{\alpha})}{\alpha} = \alpha$$
$$\frac{(1 + o(1))}{\alpha} = \sqrt{2\pi}e^{\frac{1}{2}q_{\alpha}^2}q_{\alpha}.$$

Squaring both sides,

$$\frac{(1+o(1))}{\alpha^2} = 2\pi e^{q_{\alpha}^2} q_{\alpha}^2.$$

Let $x = q_{\alpha}^2$,

$$\frac{(1+o(1))}{\alpha^2} = 2\pi e^x x.$$

Take the log transform,

$$\log(1 + o(1)) + 2\log\frac{1}{\alpha} = \log(2\pi) + \log x + x,\tag{1}$$

then the right side is dominated by the term x as $x \to \infty$ (equivalently, $\alpha \to 0$). Suppose that $x = 2\log\frac{1}{\alpha} - \log\left(2\log\frac{1}{\alpha}\right) - \log(2\pi) + g(\alpha)$ such that $\lim_{\alpha \to 0+} \frac{g(\alpha)}{2\log\frac{1}{\alpha}} = 0$ and substitute it in (1), we have

$$\log(1 + o(1)) = \log\left(2\log\frac{1}{\alpha} - \log\left(2\log\frac{1}{\alpha}\right) - \log(2\pi) + g(\alpha)\right) - \log\left(2\log\frac{1}{\alpha}\right) + g(\alpha).$$

Since as $\alpha \to 0$,

$$\begin{split} \log(1+o(1)) &\to 0 \\ \log\left(2\log\frac{1}{\alpha} - \log\left(2\log\frac{1}{\alpha}\right) - \log(2\pi) + g(\alpha)\right) - \log\left(2\log\frac{1}{\alpha}\right) &\to 0, \end{split}$$

we have $g(\alpha) \to 0$, i.e. $g(\alpha) = o(1)$ where o(1) denotes a quantity that tends to 0 as $\alpha \to 0$. Therefore, as $\alpha \to 0$,

$$x = 2\log\frac{1}{\alpha} - \log\left(2\log\frac{1}{\alpha}\right) - \log(2\pi) + o(1).$$

For $\alpha < \frac{1}{2}$, $q_{\alpha} > 0$. So as $\alpha \to 0$,

$$q_{\alpha} = \sqrt{2\log(\frac{1}{\alpha}) - \log(2\log(\frac{1}{\alpha})) - \log(2\pi) + o(1)}$$
$$= \sqrt{2\log(\frac{1}{\alpha}) - \log(\log(\frac{1}{\alpha})) - \log(4\pi) + o(1)}.$$