# Statistika

SIIT / IIS / SIIT LO

školska 2016/17

### Vežbe 6

# Pokretanje R-a

- 1. Unutar foldera OpenStatistics napraviti svoj folder sa oznakom XXNNYY, gde je XX oznaka smera (SW/SL), NN broj indeksa  $(7\rightarrow07)$  i YY godina upisa  $(2014\rightarrow14)$
- 2. Kopirati ikonu R-a u svoj direktorijum
- 3. Podesiti Properties kopirane ikone: u Start In uneti punu putanju do svog foldera (na primer c:\Users\statistika\Desktop\OpenStatistics\SW0014)
- 4. Pokrenuti R.
- 5. Isprobati u komandnom promptu

```
x<-sin(1)
q()
```

Save Workspace Image: Yes (biće sačuvan u fajlu .RData, istorija komandi u .Rhistory)

- 6. Ponovo pokrenuti Robjects()xtreba da je x = 0.841471.
- 7. Izračunati u R-u zadatak 4. a)
- 1-**pbinom**(21,40,.5)
- 8. Izračunati u R-u zadatak 4. c) 1-ppois(21,40\*.5)
- 9. Približno rešiti zadatak 3. simulacijom u R-u.

```
n<-10000

s<-numeric(n)

for(k in 1:n){s[k]<-sum(runif(30))<17}

p<-mean(s)
```

### Vežbe 7

# Deskriptivna statistika

1. Neka je dat uzorak

a) Odrediti modus i medijanu.

```
x<-c(87,103,130,160,180,195,132,145,211,105,145,153,152,138,87,99,93,119,129,145)
Me<-median(x)
tx<-table(x)
Mo<-as.numeric(names(tx)[which.max(tx)])
```

b) Izračunati aritmetičku sredinu i standardnu devijaciju uzorka.

```
xn<-mean(x)
n<-length(x)
sn<-sqrt(sd(x)^2*(n-1)/n)
```

c) Odrediti koeficijent spljoštenosti i koeficijent asimetrije.

```
s4 < -numeric(n)
for(k in 1:n) s4[k] < -(x[k] - xn)^4
mi4 < -mean(s4)
s3 < -numeric(n)
for(k in 1:n) s3[k] < -(x[k] - xn)^3
mi3 < -mean(s3)
s2 < -numeric(n)
for(k in 1:n) s2[k] < -(x[k] - xn)^2
mi2 < -mean(s2)
Ks < -mi4/mi2^2
Ka < -mi3/mi2^{(3/2)}
#momenti
library(e1071)
m4 < -moment(x, order = 4, center = TRUE)
m3<-moment(x, order=3, center=TRUE)
m2<-moment(x, order=2, center=TRUE)
```

### d) Nacrtati uzoračku funkciju raspodele, histogram i poligon.

```
plot.ecdf(x)
hist(x)
mi<-c(80,100,130,170,220)
hist(x,breaks=mi,probability=TRUE,labels=TRUE)
#poligon rucno docrtamo
```





# e) Naći kvartile i nacrtati Q-Q plot i Box plot.

```
summary(x)

IQR(x)

qx<-qnorm((1:n)/n)

plot(qx,sort(x))

qqnorm(x)

qqline(x)

boxplot(x)
```





2. Neka je dat intervalni uzorak

|       |    |    |   |   |   | (10,20] |
|-------|----|----|---|---|---|---------|
| $f_i$ | 15 | 11 | 7 | 7 | 6 | 4       |

a) Nacrtati uzoračku funkciju raspodele, histogram i poligon.

| $I_i$     | [0,1] | (1,2] | (2,3] | (3,5] | (5,10]                 | (10,20] |
|-----------|-------|-------|-------|-------|------------------------|---------|
| $f_i$     | 15    | 11    | 7     | 7     | 6                      | 4       |
| $x_i$     | 0.5   | 1.5   | 2.5   | 4     | 7.5                    | 15      |
| $n_{x_i}$ | 15    | 26    | 33    | 40    | 46                     | 50      |
| $f_n^*$   | 0.3   | 0.52  | 0.66  | 0.8   | 6<br>7.5<br>46<br>0.92 | 1       |

- b) Odrediti modus i medijanu.
- c) Izračunati aritmetičku sredinu i standardnu devijaciju uzorka.
- d) Odrediti koeficijent spljoštenosti i koeficijent asimetrije.
- e) Naći kvartile i nacrtati Q-Q plot i Box plot.

```
Me < -median(x)
tx < -table(x)
Mo < -as.numeric(names(tx)[which.max(tx)])
xn < -mean(x)
n < -length(x)
sn < -sqrt(sd(x)^2*(n-1)/n)
mi4<-moment(x, order=4, center=TRUE)
mi3<-moment(x, order=3, center=TRUE)
mi2<-moment(x, order=2, center=TRUE)
Ks < -mi4/mi2^2
Ka < -mi3/mi2^{(3/2)}
summary(x)
IQR(x)
qqnorm(x)
qqline(x)
boxplot(x)
```

#### Domaći rad

Zadaci 141-150 iz zbirke

# Manipulisanje podataka

Pokretanje skript fajla iz R-a:

### Čuvanje promenljivih

```
load(".RData") #ucitavanje promenljivih iz R formata
save.image("novo.RData") #cuvanje Work space u fajl novo.RData
save(xn,sn, file = "xnsn.rda") #cuvanje promenljivih xn i sn u fajl xnsn.rda
```

# Uvoženje podataka u R

| FlightDelays<-read.csv("FlightDelays.csv") | #ucitavanje csv tabele               |
|--------------------------------------------|--------------------------------------|
| summary(FlightDelays)                      | #osnovna deskriptivna statistika     |
| FlightDelays<-edit(FlightDelays)           | #otvaranje data editora              |
| str (FlightDelays)                         | #vraca strukturu podataka            |
| names(FlightDelays)                        | #vraca nazive promenljivih iz tabele |
| head(FlightDelays)                         | #prvih 6 redova                      |
| head(FlightDelays,n=10)                    | #prvih 10 redova                     |
| head(FlightDelays,n=-10)                   | #svi redovi osim poslednjih 10       |
| tail (FlightDelays)                        | #poslednjih 6 redova                 |
| FlightDelays[1:10,1:3]                     | #prvih 10 redova, prve 3 promenljive |
|                                            |                                      |

3. Izdvojiti iz kolone Delay vrednosti koje se odnose na ponedeljak i nacrtati *Box plot* za Delay po danima.

```
delay < -FlightDelays$Delay
indeks < -FlightDelays$Day == c("Mon")
delaymon < -delay[indeks]
boxplot(Delay~Day,data=FlightDelays)
```

### Vežbe 8

# Tačkaste ocene parametara

#### Metod momenta

Izjednačavamo uzoračke momente sa momentima obeležja.

### Metod maksimalne verodostojnsti

Funkcija verodostojnosti

$$L = L(x_1, x_2, \dots, x_n, \theta) = \begin{cases} \varphi(x_1, \theta) \varphi(x_2, \theta) \dots \varphi(x_n, \theta), & \text{neprekidno obeležje,} \\ p(x_1, \theta) p(x_2, \theta) \dots p(x_n, \theta), & \text{diskretno obeležje.} \end{cases}$$

Tražimo  $\theta$  za koje L dostiže maksimum.

1. Meren je prečnik sfere (u *cm*) pet puta i dobijen je uzorak:

Odrediti centrirane ocene matematičkog očekivanja i disperzije obeležja.

$$x < -c(6.33,6.37,6.36,6.32,6.37)$$
  
 $m < -mean(x)$   
 $s < -sd(x) ^2$ 

2. Anketiranjem 100 vozača automobila iz Novog Sada dobijene su prosečne dnevne potrošnje benzina (u litrima).

| potrošnja   |   |    |    |    |    |    |   |    |   |   |
|-------------|---|----|----|----|----|----|---|----|---|---|
| broj vozača | 5 | 10 | 10 | 12 | 18 | 12 | 8 | 10 | 9 | 6 |

Odrediti centrirane ocene matematičkog očekivanja i disperzije potrošnje benzina jednog vozača.

```
xi < -c(2,4,5,6,8,10,11,12,13,14)

fi < -c(5,10,10,12,18,12,8,10,9,6)

x < -rep(xi,fi)

m < -mean(x)

s < -sd(x) ^2
```

- 3. Obeležje X date populacije ima raspodelu  $X: \begin{pmatrix} -2 & 0 & 7 \\ \frac{\theta}{5} & \frac{\theta}{5} & 1 \frac{2\theta}{5} \end{pmatrix}$ . a) Metodom momenta naći ocenu nepoznatog parametra  $\theta$  na osnovu uzorka
  - b) Na osnovu istog uzorka naći ocenu nepoznatog parametra  $\theta$  metodom maksimalne verodostojnosti.

(0,-2,7,-2).

- 4. Reakcija oka na jednu vrstu nadražaja ima eksponencijalnu raspodelu  $\mathcal{E}(a)$ . Eksperiment je izvršen 10 puta i dobijeni su rezultati (izraženi u nano sekundama):
- 1.41, 1.28, 2.49, 0.95, 0.26, 3.83, 1.56, 3.87, 0.83, 3.37.

Metodom momenta i metodom maksimalne verodostojnosti naći ocenu nepoznatog parametra a.

#### deskstat.R

```
deskstat < -function(x,mi=NULL){
 #medijana
 Me < -median(x)
 print(paste0("Medijana:", Me))
 #modus
 tx < -table(x)
 Mo < -as.numeric(names(tx)[which.max(tx)])
 print(paste0("Modus:", Mo))
 #aritmeticka sredina
 xn < -mean(x)
 print(paste0("Aritmeticka sredina:",xn))
 #standardna devijacija
 sn < -sqrt(sd(x)^2*(length(x)-1)/length(x))
 print(paste0("Standardna_devijacija:",sn))
 # koeficijent spljostenosti i koeficijent asimetrije
 library(e1071)
 mi4<-moment(x, order=4, center=TRUE)
 mi3<-moment(x, order=3, center=TRUE)
 mi2<-moment(x, order=2, center=TRUE)
 Ks < -mi4/mi2^2
 Ka < -mi3/mi2^{(3/2)}
 print(paste0("Koeficijent_spljostenosti:",Ks))
 print(paste0("Koeficijent_asimetrije:",Ka))
```

```
#uzoracka funkcija raspodele
plot.ecdf(x)
#histogram
k=1
if (is.null(mi)){
 h < -hist(x)
else{
 h<-hist(x,breaks=mi,probability=TRUE,labels=TRUE)
 k=3
library(agricolae)
polygon.freq(h,frequency=k)
print(summary(x))
\#Q-Q plot
qqnorm(x)
qqline(x)
#Boxplot
boxplot(x)
```

5. Učitati iz fajla TXBirths2004.csv kolonu Weight samo za dečake i napraviti deskriptivnu statistiku

```
podaci < -read.csv("TXBirths2004.csv")
indeks < -podaci$Gender = = c("Male")
weightMale < -podaci$Weight[indeks]

source("deskstat.R")
deskstat(weightMale)</pre>
```

6. Napraviti deskriptivnu statistiku za kolonu AveKW iz fajla Turbine.csv za mesec jun.

```
podaci<-read.csv("Turbine.csv")
indeks<-substr(podaci$Date2010,1,3)==c("Jun")
podaciJun<-podaci$AveKW[indeks]

source("deskstat.R")
deskstat(podaciJun)
```

7. Napraviti tablice Gausove i Studentove raspodele.

```
#tablica Normalne raspodele
p<-pnorm(seq(from=0, by=0.01, length=350))
dim(p)<-c(10,35)
p<-t(p)
View(p)

#tablica Studentove raspodele
x<-c(1:30,40,60,120,Inf)
p<-c(.75,.9,.975,.99,.995,.9995)
qt<-t(outer(p,x,"qt"))
View(qt)
```

### Vežbe 9

### Intervali poverenja i testiranje hipoteza

Posmatra se uzorak od 100 slučajnih brojeva iz intervala (0,1).

1. Naći 90% interval poverenja za procenat brojeva koji su veći od 0.75.

```
#interval poverenja za nepoznatu verovatnocu
set.seed(12345)
x<-runif(100)
K<-length(which(x>.75))
n<-length(x)
z<-qnorm((.9+1)/2)
a<-n^2+z^2*n
b<-2*K*n-z^2*n
c<-K^2
d<-b^2-4*a*c
x1<-(-b-sqrt(d))/2/a
x2<-(-b+sqrt(d))/2/a
```

Interval poverenja I = (0.1948498, 0.3377947)

- 2. Testirati hipotezu da je procenat brojeva koji su veći od 0.75 jednak 0.3 sa pragom značajnosti 5%.
  - a) Koristeći interval poverenja rađen na predavanjima.

```
# testiranje hipoteze o nepoznatoj verovatnoci
set.seed(12345)
x < -runif(100)
K < -length(which(x>.75))
n < -length(x)
z < -qnorm((.95+1)/2)
a < -n^2+z^2*n
b < --2*K*n-z^2*n
c < -K^2
d < -b^2-4*a*c
x1 < -(-b-sqrt(d))/2/a
x2 < -(-b+sqrt(d))/2/a
```

$$H_0(p = 0.3)$$
 protiv  $H_1(p \neq 0.3)$   
 $p_0 = 0.3 \in I = (0.184047, 0.3537099) \Rightarrow$  hipoteza  $H_0$  se prihvata

b) Koristeći interval poverenja iz zbirke.

```
    \begin{array}{l}
          | p < -K/n \\
          | q < -1 - p \\
          | y1 < -p - z * sqrt(p * q/(n - 1)) \\
          | y2 < -p + z * sqrt(p * q/(n - 1))
    \end{array}
```

c) Koristeći binom. test iz R-a.

```
>binom.test(K,n,.3,conf.level=.95)

Exact binomial test

data: K and n
number of successes = 26, number of trials = 100, p-value = 0.4451
alternative hypothesis: true probability of success is not equal to 0.3
95 percent confidence interval:
0.1773944 0.3573121
sample estimates:
probability of success
0.26
```

#### Učitati fajl prijemni.csv.

3. Naći 90% interval poverenja za uspeh iz srednje škole.

```
#interval poverenja za ocekivanje m, sigma nepoznato
podaci < -read.csv("prijemni.csv")
uspehSkola < -podaci$skola
n < -length(uspehSkola)
xn < -mean(uspehSkola)
s < -sd(uspehSkola)
t < -qt((1+.9)/2,n-1)
x1 < -xn-t*s/sqrt(n)
x2 < -xn+t*s/sqrt(n)</pre>
```

Interval poverenja I = (28.1033, 30.99209)

4. Testirati hipotezu da je srednja vrednost uspeha u srednjoj školi jednaka 32 ( $\alpha = 0.05$ ).

```
#testiranje hipoteze o ocekivanju m, sigma nepoznato
podaci<-read.csv("prijemni.csv")
uspehSkola<-podaci$skola
n<-length(uspehSkola)
xn<-mean(uspehSkola)
s<-sd(uspehSkola)
t<-qt((1+.95)/2,n-1)
x1<-xn-t*s/sqrt(n)
x2<-xn+t*s/sqrt(n)
```

$$m_0=32\not\in I=(27.81335,31.28203)\Rightarrow$$
hipoteza $H_0$ se odbacuje

 $H_0(m = 32)$  protiv  $H_1(m \neq 32)$ 

5. Naći 95% interval poverenja za varijansu uspeha iz srednje škole.

```
#interval poverenja za varijansu (disperziju)
podaci <-read.csv("prijemni.csv")
uspehSkola <-podaci$skola
n <-length(uspehSkola)
s <-sd(uspehSkola) ^2*(n-1)/n
y1 <-qchisq((1+.95)/2,n-1)
y2 <-qchisq((1-.95)/2,n-1)
x1 <-n*s/y1
x2 <-n*s/y2
```

Interval poverenja I = (19.11832, 47.54454)

6. Testirati hipotezu o jednakosti srednje vrednosti uspeha na prijemnom kod muških i ženskih kandidata ( $\alpha = 0.05$ ).

```
# testiranje hipoteze o jednakosti srednjih vrednosti dva obelezja
podaci<-read.csv("prijemni.csv")
prijemniM<-podaci$prijemni[podaci$pol=="m"]
prijemniZ<-podaci$prijemni[podaci$pol=="z"]
n1<-length(prijemniM)
n2<-length(prijemniZ)
xn1<-mean(prijemniM)
xn2<-mean(prijemniZ)
s1<-sd(prijemniM) ^2*(n1-1)/n1
s2<-sd(prijemniZ) ^2*(n2-1)/n2
t<-qt((1+.95)/2,n1+n2-2)
t0<-(xn1-xn2)/sqrt((n1*s1+n2*s2)/(n1+n2-2))/sqrt(1/n1+1/n2)</pre>
```

Nulta hipoteza  $H_0(m_1=m_2)$  $t_0=-1.739699 \in I=(-2.026192,2.026192) \Rightarrow$  hipoteza  $H_0$  se prihvata 7. Nacrtati histogram za uspeh iz srednje škole ako su deobne tačke: 10, 25, 30, 35, 40.

| podaci<-read.csv("prijemni.csv") | uspehSkola<-podaci\$skola | hist(uspehSkola,c(10,25,30,35,40),probability=TRUE,labels=TRUE)



8. Testirati hipotezu da je uspeh u srednjoj školi raspoređen po normalnoj raspodeli ako su grupe za  $\chi^2$ -test: 10-25, 25-30, 30-35, 35-40 ( $\alpha=0.05$ ).

```
podaci < -read.csv("prijemni.csv")
uspehSkola<-podaci$skola
mi < -c(10,25,30,35,40)
table(cut(uspehSkola,mi,include.lowest=TRUE,right=TRUE))
fi < -c(10,11,11,7)
n<-length(uspehSkola)
k<−length(fi) #broj intervala
s<−2 #broj parametara koje treba oceniti
xn<-mean(uspehSkola)
sn < -sd(uspehSkola)
#funkcija raspodele
Fx < -function(x)
 return(pnorm((x-xn)/sn) #pnorm(x,xn,sn)
#teorijske verovatnoce
p<-numeric(length(fi))
p[1] < -Fx(mi[2]) - Fx(-Inf)
p[2] < -Fx(mi[3]) -Fx(mi[2])
p[3] < -Fx(mi[4]) - Fx(mi[3])
p[4] < -Fx(Inf) -Fx(mi[4])
```

 $|\#realizovana\ vrednost\ statistike\ y0<-sum((fi-n*p)^2/n/p)\ \#najveca\ dozvoljena\ vrednost\ statistike\ y<-qchisq(1-.05,k-1-s)$ 

 $y_0 = 1.296183 < y = 3.841459 \Rightarrow \text{hipoteza } H_0 \text{ se prihvata}$ 

### Vežbe 10

1. Testom Kolmogorov-Smirnov testirati hipotezu o saglasnosti datog uzorka sa normalnom raspodelom  $\mathcal{N}(10,4)$  ( $\alpha=0.05$ ).

```
fi <-c(3,7,10,15,5)
mi <-c(0,5,15,20,30,40)
m0 <-mi[1:length(mi)-1]
m1 <-mi[2:length(mi)]
xi <-(m0+m1)/2
f <-cumsum(fi)
n <-sum(fi)
Fn <-f/n #empirijska funkcija raspodele
Fx <-pnorm(xi,10,4) #data funkcija raspodele
#realizovana vrednost statistike
sqrt(n)*max(abs(Fn-Fx))
```

 $2.970034 > 1.36 = \lambda_{0.95} \Rightarrow \text{hipoteza } H_0 \text{ se odbacuje}$ 

2. Ispitati nezavisnost obeležja *X* i *Y* čije su realizovane vrednosti uzorka:

```
fij <-matrix(c(5,5,17,7,9,19),2,3)
#matrica kontingencije
#f < -matrix(c(5,5,10,17,7,24,9,19,28,31,31,62),3,4)
f < -matrix(nrow = nrow(fij) + 1, ncol = ncol(fij) + 1)
for (i in 1:nrow(f)){
 for (i in 1:ncol(f)){
    if (i < nrow(f) \& j < ncol(f)) \{ f[i,j] = fij[i,j] \}
   else if ((i==1 \mid i==2) \& j==ncol(f))\{f[i,j]=sum(fij[i,])\}
   else if (i==nrow(f) \& (j==1 | j==2 | j==3))\{f[i,j]=sum(fij[j])\}
   else if (i = nrow(f) \& j = ncol(f))\{f[i,j] = sum(f[1:i-1,j])\}
n<-sum(fij) #obim uzorka
#matrica sa teorijskim frekvencijama
ft < -matrix(NA,nrow(fij),ncol(fij))
for (i in 1:nrow(ft)){
 for (j in 1:ncol(ft)){
    ft[i,j]=f[i,ncol(f)]*f[nrow(f),j]/n
```

| #realizovana vrednost statistike | y0<-sum((ft-fij)^2/ft) | #najveca dozvoljena vrednost statistike | y<-qchisq(1-.05,(nrow(fij)-1)\*(ncol(fij)-1))

 $H_0$ : obeležja X i Y su nezavisna

$$y_0 = 7.738095 > y = 5.991465 \Rightarrow \text{hipoteza } H_0 \text{ se odbacuje}$$

3.  $\chi^2$ -testom ispitati saglasnost obeležja čiji je realizovani uzorak (0.12, 0.14, 0.25, 0.05, 0.02, 0.08, 0.03, 0.04, 0.51, 0.07, 0.42, 0.08, 0.33, 0.36, 0.06, 0.23) sa raspodelom:

$$\varphi(x) = \left\{ \begin{array}{cc} \theta x^{\theta-1}, & x \in [0,1] \\ 0, & x \notin [0,1] \end{array} \right., \theta > 0.$$

```
#uzorak
x < -c(0.12,0.14,0.25,0.05,0.02,0.08,0.03,0.04,0.51,0.07,0.42,0.08,0.33,0.36,0.06,0.23)
xs < -sort(x) #sortiran uzorak
fi < -c(6,5,5) #frekvencije po intervalima (sami konstruisemo intervale)
mi < -c(0,0.07,0.23,1)
n<-sum(fi) #obim uzorka
xn < -mean(x)
theta<-xn/(1-xn) #ocena parametra theta
k < -length(fi) #broj intervala
s < -1 \# broj parametara
#funkcija raspodele
Fx <- function(arg){
  if (arg<0)\{fx=0\}
 else if (0 \le arg \& arg \le 1) \{fx = arg \land theta\}
 else \{fx=1\}
 return(fx)
```

```
#teorijske verovatnoce
p<-numeric(k)
for (i in 1:k){
    p[i]<-Fx(mi[i+1])-Fx(mi[i])
}
#realizovana vrednost statistike
y0<-sum((fi-n*p)^2/n/p)
#najveca dozvoljena vrednost statistike
y<-qchisq(1-.05,k-1-s)
```

```
y_0 = 3.39369 < y = 3.841459 \Rightarrow hipoteza H_0 se prihvata
```

4. Nacrtati *Box plot* uspeha iz srednje škole po grupama.

podaci<-read.csv("prijemni.csv")
boxplot(skola~grupa,data=podaci)



5. Testirati hipotezu o jednakosti srednje vrednosti uspeha iz srednje škole po grupama (ANOVA).

```
>podaci<-read.csv("prijemni.csv")
>anova(lm(skola~grupa,data=podaci))
Analysis of Variance Table

Response: skola

Df Sum Sq Mean Sq F value Pr(>F)
grupa 2 26.6 13.300 0.4512 0.6404
Residuals 36 1061.2 29.476

#isto dobijamo i sa komandom
summary(aov(lm(skola~grupa,data=podaci)))
```

$$H_0(m_1 = m_2 = m_3)$$
 protiv  $H_1(\exists i, j, m_i \neq m_j)$ 

Tabela ANOVE:  $Df_1$  SSTR MSTR F  $\alpha^*$   $Df_2$  SSE MSE

 $Df_1, Df_2$  — broj stepeni slobode

F – realizovana vrednost Fišerove test statistike sa  $Df_1$ ,  $Df_2$  stepeni slobode  $\alpha^*$  – p-vrednost

 $\alpha^* = 0.6404 > \alpha = 0.05 \Rightarrow H_0$  se prihvata

6. Naći koeficijent korelacije uspeha iz srednje škole u zavisnosti od uspeha na prijemnom. Prognozirati kom uspehu u srednjoj školi odgovara 35 bodova osvojenih na prijemnom.

```
>podaci < -read.csv("prijemni.csv")
>lm(skola~prijemni,data=podaci)

Call:
lm(formula = skola ~ prijemni, data = podaci)

Coefficients:
(Intercept) prijemni
29.784053 -0.008009
```

Jednačina linearne regresije

skola = -0.008009 \* prijemni + 29.784053

plot(podaci\$prijemni,podaci\$skola)
abline(lm(skola~prijemni,data=podaci))



```
# koeficijent korelacije
cor(podaci$skola,podaci$prijemni)

#predikcija
```

Koeficijent korelacije r=-0.01157393  $|r|<0.3\Rightarrow$  uspeh iz srednje škole i uspeh na prijemnom nisu u korelacionoj vezi

lm(skola~prijemni,data=podaci)\$coefficients%\*%c(1,35)

Broju od 35 poena osvojenih na prijemnom odgovara 29.50375 poena iz srednje škole.

## Vežbe 11

Po jedan uzorak sa dve mašine za pakovanje deterdženta od 10 kg je izmeren na preciznoj vagi.

- 9.81, 9.83, 10.43, 11.13, 9.70, 9.59, 10.88, 10.97, 9.35, 9.34, 9.41, 9.95, 11.03, 10.12, 9.33, 9.73, 10.17, 9.48, 10.89, 10.11, 10.30, 8.87, 9.51, 10.42, 10.02, 10.84, 9.96, 10.15, 10.64, 11.30
- 9.85, 9.30, 9.08, 8.07, 9.22, 9.55, 7.88, 7.84, 8.50, 11.95, 10.92, 9.78, 10.61, 9.49, 7.81, 8.90, 8.60, 8.50, 9.31, 9.97, 8.89, 8.87, 7.23, 7.82, 7.65, 9.11, 8.65, 6.30, 9.38, 8.31, 10.48, 10.56, 9.96, 8.84, 9.10, 11.07, 9.84, 9.75, 9.07, 9.09, 8.96, 8.11, 8.17, 9.73, 9.06, 8.40, 11.12, 9.38, 7.26, 8.69

 $\begin{array}{l} uzorak1 < -\mathbf{c}(9.81, 9.83, 10.43, 11.13, 9.70, 9.59, 10.88, 10.97, 9.35, 9.34, 9.41, 9.95, 11.03, 10.12, 9.33, \\ 9.73, 10.17, 9.48, 10.89, 10.11, 10.30, 8.87, 9.51, 10.42, 10.02, 10.84, 9.96, 10.15, 10.64, 11.30) \end{array}$ 

 $\begin{array}{l} uzorak2 < -\mathbf{c}(9.85, 9.3, 9.08, 8.07, 9.22, 9.55, 7.88, 7.84, 8.5, 11.95, 10.92, 9.78, 10.61, 9.49, 7.81, 8.9, \\ 8.6, 8.5, 9.31, 9.97, 8.89, 8.87, 7.23, 7.82, 7.65, 9.11, 8.65, 6.3, 9.38, 8.31, 10.48, 10.56, 9.96, 8.84, \\ 9.10, 11.07, 9.84, 9.75, 9.07, 9.09, 8.96, 8.11, 8.17, 9.73, 9.06, 8.40, 11.12, 9.38, 7.26, 8.69) \end{array}$ 

a) Kolmogorov-Smirnov testom testirati hipotezu o saglasnosti prvog uzorka sa normalnom raspodelom  $\mathcal{N}(10,0.81)$ .

One-sample Kolmogorov-Smirnov test

data: uzorak1

D = 0.17074, p-value = 0.3097 alternative hypothesis: two-sided

$$\alpha^* = 0.3097 > \alpha = 0.05 \Rightarrow \text{hipoteza } H_0 \text{ se prihvata}$$

#### Napomena:

Vrednost D = 0.17074 je realizovana vrednost statistike  $D_n = \sup_{x} |F_n^*(x) - F(x)|$ .

Kako je  $\sqrt{n_1}D = \sqrt{30} \cdot 0.17074 = 0.9351815 < 1.36$  zaključujemo da se hipoteza  $H_0$  prihvata.

b)  $\chi^2$ -testom testirati hipotezu o saglasnosti drugog uzorka sa normalnom raspodelom (deobne tačke: 8.0, 8.5, 9.0, 9.5, 10.0).

```
xn<-mean(uzorak2)
sn < -sd(uzorak2)
m < -c(8, 8.5, 9, 9.5, 10)
pm < -pnorm(m,xn,sn)
p < -c(pm, 1) - c(0, pm)
mi<-c(floor(min(uzorak2)),m,ceiling(max(uzorak2)))
fi <-hist(uzorak2,mi)$counts
y0 < -chisq.test(fi,p=p)$statistic
y < -qchisq(.95, length(fi) - 1 - 2) #ocenili smo dva parametra
alpha < -1-pchisq(y0, length(fi)-1-2) \#p-vrednost
```

$$y_0 = 2.079539 < y = 7.814728 \Rightarrow \text{hipoteza } H_0 \text{ se prihvata}$$

### Napomena:

Pošto smo morali da ocenimo 2 parametra, p-vrednost koju vraća binom.test nije tačna (ova vrednost bi bila tačna da nije bilo nepoznatih parametara) i moramo peške izračunati  $\alpha^*$ .  $\alpha^* = 0.5560632 > \alpha = 0.05 \Rightarrow$  hipoteza  $H_0$  se prihvata

c) Testirati hipotezu da je srednja vrednost prvog uzorka veća od srednje vrednosti drugog.

$$\alpha^* = 4.929e - 07 < \alpha = 0.05 \Rightarrow$$
 hipoteza  $H_0$  se odbacuje, tj. prihvata se  $H_1$ 

 $H_0(m_1 = m_2)$  protiv  $H_1(m_1 > m_2)$ 

d) Testirati hipotezu da je srednja vrednost prvog uzorka veća od srednje vrednosti drugog, pod pretpostavkom da imaju jednake varijanse.

$$\alpha^* = 5.892e - 06 < \alpha = 0.05 \Rightarrow$$
 hipoteza  $H_0$  se odbacuje, tj. prihvata se  $H_1$ 

 $H_0(m_1 = m_2)$  protiv  $H_1(m_1 > m_2)$ 

e) Testirati hipotezu da je standardna devijacija prvog uzorka jednaka 1.

```
n<-length(uzorak1)

s<-sd(uzorak1)^2*(n-1)/n

y1<-qchisq((1+.95)/2,n-1)

y2<-qchisq((1-.95)/2,n-1)

x1<-n*s/y1

x2<-n*s/y2
```

Nulta hipoteza  $H_0(\sigma = 1)$ 

$$\sigma_0 = 1 \notin I = (0.2552004, 0.7271325) \Rightarrow \text{hipoteza } H_0 \text{ se odbacuje}$$

# f) Testirati hipotezu da su standardne devijacije kod oba uzorka jednake.

> var.test(uzorak1,uzorak2)

F test to compare two variances

#### data: uzorak1 and uzorak2

F = 0.33427, num df = 29, denom df = 49, p-value = 0.002289 alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval: 0.1776679 0.6653103 **sample** estimates:

ratio of variances

0.3342673

Nulta hipoteza 
$$H_0(\sigma_1^2 = \sigma_2^2)$$

$$\alpha^* = 0.002289 < \alpha = 0.05 \Rightarrow$$
 hipoteza  $H_0$  se odbacuje

Vežbe 9, zadatak 2. a)

0.26

```
>prop.test(K,n,.3,conf. level = .95,correct=FALSE)

1-sample proportions test without continuity correction

data: K out of n, null probability 0.3

X-squared = 0.7619, df = 1, p-value = 0.3827
alternative hypothesis: true p is not equal to 0.3

95 percent confidence interval:
0.1840470 0.3537099

sample estimates:
p
```

$$H_0(p=0.3)$$
 protiv  $H_1(p \neq 0.3)$   $\alpha^* = 0.3827 > \alpha = 0.05 \Rightarrow \text{hipoteza } H_0 \text{ se prihvata}$ 

Vežbe 9, zadatak 4.

29.54769

```
>t.test (uspehSkola,mu=32,conf.level = .95)

One Sample t—test

data: uspehSkola

t = -2.8624, df = 38, p—value = 0.006803
alternative hypothesis: true mean is not equal to 32
95 percent confidence interval:
27.81335 31.28203
sample estimates:
mean of x
```

$$H_0(m = 32)$$
 protiv  $H_1(m \neq 32)$ 

$$\alpha^* = 0.006803 < \alpha = 0.05 \Rightarrow$$
hipoteza $H_0$ se odbacuje

Vežbe 10, zadatak 2.

>chisq.test(**matrix**(**c**(5,5,17,7,9,19),2,3))

Pearson's Chi-squared test

data: fij

X-squared=7.7381, $\_df$ =2, $\_p$ -value=0.02088

 ${\cal H}_0$ : obeležja X i Y su nezavisna

 $\alpha^* = 0.02088 < \alpha = 0.05 \Rightarrow$  hipoteza  $H_0$  se odbacuje