Coloración de vértices, número cromático

J. A. Rodríguez-Velázquez

URV

Supongamos que tenemos el siguiente mapa de países.

El problema de colorear las regiones de modo que dos países de frontera común tenga colores diferentes se puede trasladar a un problema de coloración de los vértices de un grafo de modo que vértices adyacentes tengan diferente color.

Definición

Una **vértice-coloración** de un grafo G=(V,E) es una función $f:V\to\mathbb{N}$ con la propiedad de que $f(u)\neq f(v)$ siempre que $\{u,v\}\in E.$ Sea $\mathcal{F}(G)$ el conjunto de vértice-coloraciones de G. El **número cromático** de G se define como

$$\chi(G) = \min_{f \in \mathcal{F}(G)} |Im(f)|,$$

donde Im(f) denota el conjunto imagen de f.

Ejemplo: Número cromático de algunas familias de grafos.

- Para todo grafo nulo $\chi(G) = ?$
- Para todo grafo bipartito, no nulo, $\chi(G) = ?$
- Para todo n, $\chi(K_n) = ?$
- Para ciclos de orden par $\chi(C_{2k}) = ?$ y para ciclos de orden impar $\chi(C_{2k+1}) = ?$

Ejemplo: Número cromático de algunas familias de grafos.

- Para todo grafo nulo $\chi(G) = 1$
- Para todo grafo bipartito, no nulo, $\chi(G) = 2$.
- Para todo n, $\chi(K_n) = n$.
- Para ciclos de orden par $\chi(C_{2k})=2$ (son grafos bipartitos) y para ciclos de orden impar $\chi(C_{2k+1})=3$.

$$N_{4} = \chi(N_{4}) = 1$$

$$\chi(S) = 1$$

$$\chi(C_{6}) = 3$$

$$\chi(C_{6}) = 3$$

$$\chi(C_{6}) = 3$$

Probar que la medida de todo grafo G es mayor o igual que $\frac{\chi(G)(\chi(G)-1)}{2}.$

Probar que la medida de todo grafo G es mayor o igual que $\frac{\chi(G)(\chi(G)-1)}{2}$.

Solución

Por cada par de colores que componen una vértice-coloración de cardinal mínimo existe al menos una arista del grafo, por lo tanto,

$$m \ge {\chi(G) \choose 2} = {\chi(G)(\chi(G) - 1) \over 2}$$

Dados dos grafos G y H, determina una fórmula para $\chi(G+H)$.

Dados dos grafos G y H, determina una fórmula para $\chi(G+H)$.

Solución

En una coloración de los vértices de G+H, ningún color usado para los vértices de G se puede usar para los vértices de H, de ahí que $\chi(G+H) \ge \chi(G) + \chi(H)$.

Dados dos grafos G y H, determina una fórmula para $\chi(G+H)$.

Solución

En una coloración de los vértices de G+H, ningún color usado para los vértices de G se puede usar para los vértices de H, de ahí que $\chi(G+H) \geq \chi(G) + \chi(H)$.

Por otro lado, para toda coloración de los vértices de G, y toda coloración de los vértices de H que no comparta colores con la coloración de G, se obtiene una coloración de los vértices de G+H. Por lo tanto, $\chi(G+H) \leq \chi(G) + \chi(H)$.

Dados dos grafos G y H, determina una fórmula para $\chi(G+H)$.

Solución

En una coloración de los vértices de G+H, ningún color usado para los vértices de G se puede usar para los vértices de H, de ahí que $\chi(G+H) \geq \chi(G) + \chi(H)$.

Por otro lado, para toda coloración de los vértices de G, y toda coloración de los vértices de H que no comparta colores con la coloración de G, se obtiene una coloración de los vértices de G+H. Por lo tanto, $\chi(G+H) \leq \chi(G) + \chi(H)$.

En resumen, $\chi(G+H) = \chi(G) + \chi(H)$.

Demuestra que $\chi(G \square H) = \max\{\chi(G), \chi(H)\}$ para todo par de grafos G y H.

Demuestra que $\chi(G \square H) = \max\{\chi(G), \chi(H)\}$ para todo par de grafos G y H.

Solución

 $\mathsf{Como}\ G \square H \ \mathsf{tiene}\ \mathsf{subgrafos}\ \mathsf{isomorfos}\ \mathsf{a}\ G\ \mathsf{y}\ \mathsf{a}\ H,\ \mathsf{se}\ \mathsf{cumple}\ \chi(G \square H) \geq \mathsf{m\'{a}} \mathsf{x}\{\chi(G),\chi(H)\}.$

Demuestra que $\chi(G \square H) = \max\{\chi(G), \chi(H)\}$ para todo par de grafos G y H.

Solución

Como $G \square H$ tiene subgrafos isomorfos a G y a H, se cumple $\chi(G \square H) \ge \max\{\chi(G), \chi(H)\}$. Falta probar que $\chi(G \square H) \le \max\{\chi(G), \chi(H)\}$. Podemos asumir que $\chi(G) = k \ge \chi(H)$. Sean $f_G: V(G) \longrightarrow \{1, 2, \ldots, k\}$ y $f_H: V(H) \longrightarrow \{1, 2, \ldots, \chi(H)\}$ coloraciones de los vértices. Vamos a definir la función $f: V(G) \times V(H) \longrightarrow \{1, 2, \ldots, k\}$ como

$$f(g,h) = f_G(g) + f_H(h)$$
 (mód k).

Demuestra que $\chi(G \square H) = \max\{\chi(G), \chi(H)\}$ para todo par de grafos G y H.

Solución

Como $G \square H$ tiene subgrafos isomorfos a G y a H, se cumple $\chi(G \square H) \ge \max\{\chi(G), \chi(H)\}$. Falta probar que $\chi(G \square H) \le \max\{\chi(G), \chi(H)\}$. Podemos asumir que $\chi(G) = k \ge \chi(H)$. Sean $f_G : V(G) \longrightarrow \{1, 2, \ldots, k\}$ y $f_H : V(H) \longrightarrow \{1, 2, \ldots, \chi(H)\}$ coloraciones de los vértices. Vamos a definir la función $f : V(G) \times V(H) \longrightarrow \{1, 2, \ldots, k\}$ como

$$f(g,h) = f_G(g) + f_H(h)$$
 (mód k).

Como $f_G(g_1) \neq f_G(g_2)$ para todo $g_1g_2 \in E(G)$, tenemos que para todo $h \in V(H)$,

$$f_G(g_1) + f_H(h) \neq f_G(g_2) + f_H(h)$$
 (mód k).

Así, $f(g_1, h) \neq f(g_2, h)$.

Demuestra que $\chi(G \square H) = \max\{\chi(G), \chi(H)\}$ para todo par de grafos G y H.

Solución

Como $G \square H$ tiene subgrafos isomorfos a G y a H, se cumple $\chi(G \square H) \ge \max\{\chi(G), \chi(H)\}$. Falta probar que $\chi(G \square H) \le \max\{\chi(G), \chi(H)\}$. Podemos asumir que $\chi(G) = k \ge \chi(H)$.

Sean $f_G: V(G) \longrightarrow \{1, 2, ..., k\}$ y $f_H: V(H) \longrightarrow \{1, 2, ..., \chi(H)\}$ coloraciones de los vértices. Vamos a definir la función $f: V(G) \times V(H) \longrightarrow \{1, 2, ..., k\}$ como

$$f(g,h) = f_G(g) + f_H(h)$$
 (mód k).

Como $f_G(g_1) \neq f_G(g_2)$ para todo $g_1g_2 \in E(G)$, tenemos que para todo $h \in V(H)$,

$$f_G(g_1) + f_H(h) \neq f_G(g_2) + f_H(h)$$
 (mód k).

Así, $f(g_1,h)\neq f(g_2,h)$. Por otro lado, como $\chi(H)\leq k$ y $f_H(h_1)\neq f_H(h_2)$ para todo $h_1h_2\in E(H)$, tenemos que para todo $g\in V(G)$,

$$f_G(g) + f_H(h_1) \neq f_G(g) + f_H(h_2)$$
 (mód k).

De ahí que $f(g, h_1) \neq f(g, h_2)$.

Demuestra que $\chi(G \square H) = \max\{\chi(G), \chi(H)\}$ para todo par de grafos G y H.

Solución

Como $G \square H$ tiene subgrafos isomorfos a G y a H, se cumple $\chi(G \square H) \ge \max\{\chi(G), \chi(H)\}$. Falta probar que $\chi(G \square H) < \max\{\chi(G), \chi(H)\}$. Podemos asumir que $\chi(G) = k > \chi(H)$.

Sean $f_G: V(G) \longrightarrow \{1, 2, ..., k\}$ y $f_H: V(H) \longrightarrow \{1, 2, ..., \chi(H)\}$ coloraciones de los vértices. Vamos a definir la función $f: V(G) \times V(H) \longrightarrow \{1, 2, ..., k\}$ como

$$f(g,h) = f_G(g) + f_H(h)$$
 (mód k).

Como $f_G(g_1) \neq f_G(g_2)$ para todo $g_1g_2 \in E(G)$, tenemos que para todo $h \in V(H)$,

$$f_G(g_1) + f_H(h) \neq f_G(g_2) + f_H(h)$$
 (mód k).

Así, $f(g_1,h)\neq f(g_2,h)$. Por otro lado, como $\chi(H)\leq k$ y $f_H(h_1)\neq f_H(h_2)$ para todo $h_1h_2\in E(H)$, tenemos que para todo $g\in V(G)$,

$$f_G(g) + f_H(h_1) \neq f_G(g) + f_H(h_2)$$
 (mód k).

De ahí que $f(g,h_1) \neq f(g,h_2)$. Por lo tanto, f es una coloración de los vértices de $G \square H$, y por eso $\chi(G \square H) < k = \max\{\chi(G), \chi(H)\}$, lo que completa la demostración.

Determina el valor de $\chi(G\odot H)$ para todo par de grafos G y H.

Determina el valor de $\chi(G \odot H)$ para todo par de grafos G y H.

Solución

Como $G\odot H$ tiene subgrafos isomorfos a G y a K_1+H , se cumple $\chi(G\odot H)\geq \max\{\chi(G),\chi(H)+1\}.$

Determina el valor de $\chi(G \odot H)$ para todo par de grafos G y H.

Solución

Como $G\odot H$ tiene subgrafos isomorfos a G y a K_1+H , se cumple $\chi(G\odot H)\geq \max\{\chi(G),\chi(H)+1\}.$

Por otro lado, a partir de cualquier coloración de los vértices de G con $\chi(G)$ colores, podemos completar una coloración de $G\odot H$ con $k=\max\{\chi(G),\chi(H)+1\}$ colores, teniendo en cuenta que el color usado para un vértice $v_i\in V(G)$ no puede ser usado en la copia de H asociada a v_i .

Determina el valor de $\chi(G \odot H)$ para todo par de grafos G y H.

Solución

Como $G\odot H$ tiene subgrafos isomorfos a G y a K_1+H , se cumple $\chi(G\odot H)\geq \max\{\chi(G),\chi(H)+1\}.$

Por otro lado, a partir de cualquier coloración de los vértices de G con $\chi(G)$ colores, podemos completar una coloración de $G\odot H$ con $k=\max\{\chi(G),\chi(H)+1\}$ colores, teniendo en cuenta que el color usado para un vértice $v_i\in V(G)$ no puede ser usado en la copia de H asociada a v_i .

Por lo tanto,
$$\chi(G \odot H) = \max\{\chi(G), \chi(H) + 1\}.$$

 ${\sf Demuestra\ que\ } 2\chi(H) \leq \chi(G \circ H) \leq \chi(G)\chi(H) \ {\sf para\ todo\ grafo\ no\ vac\'io\ } G \ {\sf y\ todo\ grafo\ } H.$

Demuestra que $2\chi(H) \le \chi(G \circ H) \le \chi(G)\chi(H)$ para todo grafo no vacío G y todo grafo H.

Solución

Sean $f_G:V(G)\longrightarrow \{1,2,\ldots,\chi(G)\}$ y $f_H:V(H)\longrightarrow \{1,2,\ldots,\chi(H)\}$ coloraciones.

$$f(g,h) = (f_G(g), f_H(h)).$$

Veamos que f es una coloración de los vértices de $G \circ H$.

Demuestra que $2\chi(H) \le \chi(G \circ H) \le \chi(G)\chi(H)$ para todo grafo no vacío G y todo grafo H.

Solución

Sean $f_G: V(G) \longrightarrow \{1, 2, ..., \chi(G)\}$ y $f_H: V(H) \longrightarrow \{1, 2, ..., \chi(H)\}$ coloraciones. Construimos la función $f: V(G) \times V(H) \longrightarrow \{1, 2, ..., \chi(G)\} \times \{1, 2, ..., \chi(H)\}$ definida por

$$f(g,h) = (f_G(g), f_H(h)).$$

Veamos que f es una coloración de los vértices de $G\circ H$. Sean (g,h) y (g',h') dos vértices adyacentes en $G\circ H$.

Demuestra que $2\chi(H) \le \chi(G \circ H) \le \chi(G)\chi(H)$ para todo grafo no vacío G y todo grafo H.

Solución

Sean $f_G: V(G) \longrightarrow \{1, 2, ..., \chi(G)\}$ y $f_H: V(H) \longrightarrow \{1, 2, ..., \chi(H)\}$ coloraciones. Construimos la función $f: V(G) \times V(H) \longrightarrow \{1, 2, ..., \chi(G)\} \times \{1, 2, ..., \chi(H)\}$ definida por

$$f(g,h) = (f_G(g), f_H(h)).$$

Veamos que f es una coloración de los vértices de $G\circ H$. Sean (g,h) y (g',h') dos vértices adyacentes en $G\circ H$.

• Si g = g', entonces $h \sim h'$, y por eso $f_H(h) \neq f_H(h')$. En este caso, $f(g,h) = (f_G(g),f_H(h)) \neq (f_G(g),f_H(h')) = f(g',h')$.

Demuestra que $2\chi(H) \le \chi(G \circ H) \le \chi(G)\chi(H)$ para todo grafo no vacío G y todo grafo H.

Solución

Sean $f_G: V(G) \longrightarrow \{1, 2, ..., \chi(G)\}$ y $f_H: V(H) \longrightarrow \{1, 2, ..., \chi(H)\}$ coloraciones. Construimos la función $f: V(G) \times V(H) \longrightarrow \{1, 2, ..., \chi(G)\} \times \{1, 2, ..., \chi(H)\}$ definida por

$$f(g,h) = (f_G(g), f_H(h)).$$

Veamos que f es una coloración de los vértices de $G\circ H$. Sean (g,h) y (g',h') dos vértices adyacentes en $G\circ H$.

- Si g = g', entonces $h \sim h'$, y por eso $f_H(h) \neq f_H(h')$. En este caso, $f(g,h) = (f_G(g),f_H(h)) \neq (f_G(g),f_H(h')) = f(g',h')$.
- Si $g \sim g'$, entonces $f_G(g) \neq f_G(G')$, lo que implica $f(g,h) = (f_G(g),f_H(h)) \neq (f_G(g'),f_H(h')) = f(g',h')$.

Demuestra que $2\chi(H) \le \chi(G \circ H) \le \chi(G)\chi(H)$ para todo grafo no vacío G y todo grafo H.

Solución

Sean $f_G: V(G) \longrightarrow \{1, 2, ..., \chi(G)\}$ y $f_H: V(H) \longrightarrow \{1, 2, ..., \chi(H)\}$ coloraciones. Construimos la función $f: V(G) \times V(H) \longrightarrow \{1, 2, ..., \chi(G)\} \times \{1, 2, ..., \chi(H)\}$ definida por

$$f(g,h) = (f_G(g), f_H(h)).$$

Veamos que f es una coloración de los vértices de $G\circ H$. Sean (g,h) y (g',h') dos vértices adyacentes en $G\circ H$.

- Si g = g', entonces $h \sim h'$, y por eso $f_H(h) \neq f_H(h')$. En este caso, $f(g,h) = (f_G(g),f_H(h)) \neq (f_G(g),f_H(h')) = f(g',h')$.
- Si $g \sim g'$, entonces $f_G(g) \neq f_G(G')$, lo que implica $f(g,h) = (f_G(g),f_H(h)) \neq (f_G(g'),f_H(h')) = f(g',h')$.

Por lo tanto, f es una coloración de los vértices de $G\circ H$ y por eso $\chi(G\circ H)\leq \chi(G)\chi(H)$.

Demuestra que $2\chi(H) \leq \chi(G \circ H) \leq \chi(G)\chi(H)$ para todo grafo no vacío G y todo grafo H.

Solución

Sean $f_G: V(G) \longrightarrow \{1, 2, ..., \chi(G)\}$ y $f_H: V(H) \longrightarrow \{1, 2, ..., \chi(H)\}$ coloraciones. Construimos la función $f: V(G) \times V(H) \longrightarrow \{1, 2, ..., \chi(G)\} \times \{1, 2, ..., \chi(H)\}$ definida por

$$f(g,h) = (f_G(g), f_H(h)).$$

Veamos que f es una coloración de los vértices de $G \circ H$. Sean (g,h) y (g',h') dos vértices adyacentes en $G \circ H$.

- Si g=g', entonces $h \sim h'$, y por eso $f_H(h) \neq f_H(h')$. En este caso, $f(g,h) = (f_G(g),f_H(h)) \neq (f_G(g),f_H(h')) = f(g',h')$.
- Si $g \sim g'$, entonces $f_G(g) \neq f_G(G')$, lo que implica $f(g,h) = (f_G(g), f_H(h)) \neq (f_G(g'), f_H(h')) = f(g',h')$.

Por lo tanto, f es una coloración de los vértices de $G \circ H$ y por eso $\chi(G \circ H) \leq \chi(G)\chi(H)$.

Para deducir la cota inferior solo hay que observar que si $g \sim g'$ en G, entonces el subgrafo de $G \circ H$ inducido por $\{g, g'\} \times V(H)$ es isomorfo a H + H, por lo tanto, $\chi(G \circ H) > \chi(H + H) = 2\chi(H)$.

Corolario

Sea ${\cal G}$ un grafo no vacío. Si ${\cal G}$ es bipartito, entonces para todo grafo ${\cal H}$,

$$\chi(G\circ H)=2\chi(H).$$

Determina $\chi(C_7 \circ H)$ para todo grafo H con $\chi(H) = 3$.

Determina $\chi(C_7 \circ H)$ para todo grafo H con $\chi(H) = 3$.

Solución

Ya sabemos que $\chi(C_7 \circ H) \ge 2\chi(H) = 6$. Ahora bien, si $\chi(C_7 \circ H) = 6$, toda coloración óptima de $C_7 \circ H$ asigna 3 tres colores para cada copia de H en $C_7 \circ H$, y para $u, u' \in N_{C_7}(v)$ el conjunto de 3 colores asignados a $\{u'\} \times V(H)$ es igual al conjunto de 3 colores asignados a $\{u'\} \times V(H)$, lo que es imposible, ya que C_7 tiene orden impar. Por lo tanto, $\chi(C_7 \circ H) \ge 7$.

Determina $\chi(C_7 \circ H)$ para todo grafo H con $\chi(H) = 3$.

Solución

Ya sabemos que $\chi(C_7 \circ H) \geq 2\chi(H) = 6$. Ahora bien, si $\chi(C_7 \circ H) = 6$, toda coloración óptima de $C_7 \circ H$ asigna 3 tres colores para cada copia de H en $C_7 \circ H$, y para $u, u' \in N_{C_7}(v)$ el conjunto de 3 colores asignados a $\{u\} \times V(H)$ es igual al conjunto de 3 colores asignados a $\{u'\} \times V(H)$, lo que es imposible, ya que C_7 tiene orden impar. Por lo tanto, $\chi(C_7 \circ H) \geq 7$.

Por otro lado, si $\chi(H)=3$, entonces es fácil colorear $C_7\circ H$ con los colores $0,1,\ldots,6$. Sea $V(C_7)=\{u_0,\ldots,u_6\}$, donde vértices adyacentes son consecutivos.

Los colores asignados a $\{u_i\} \times V(H)$ son i, i+2 y i+4, donde la suma se toma módulo modulo 7.

En resumen, si $\chi(H) = 3$, entonces $\chi(C_7 \circ H) = 7$.

Teorema de los 4 colores

Para todo grafo planar G se cumple $\chi(G) \leq 4$.

Teorema de los 4 colores

Para todo grafo planar G se cumple $\chi(G) \leq 4$.

Algunos datos

- 1852: Francis Guthrie planteó el problema.
- 1878: Arthur Cayley publicó el enunciado de la conjetura.
- 1879: Sir Alfred Bray Kempe publicó su demostración.
- 1890: Percy Heawood descubrió un error insalvable en la prueba dada por Kempe.
- 1976: Ken Appel y Wolfgang Haken demostraron el teorema con ayuda de un ordenador: 50 días de cálculo, diferenciando más de 1900 configuraciones distintas.
- 1996: Robertson, Sanders, Seymour y Thomas obtuvieron una demostración más corta.

