Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

nplémentatio

Parcours d'arbres

Algorithmes sur les arbres binaires

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Licence ST-A, USTL - API2

23 novembre 2009

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implémentatio

Parcours d'arbres

Algorithmes sur les arbres binaires

1 Implémentation

- Représentation chaînée
- Implémentation des opérations primitives
 - Constructeur
 - Sélecteurs
 - Prédicat
 - Opérations modificatrices
- 2 Parcours d'arbres
 - Parcours préfixé
 - Parcours postfixé
 - Parcours infixé
- 3 Algorithmes sur les arbres binaires
 - Taille d'un arbre
 - Hauteur d'un arbre

Représentation chaînée

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implémentation

Parcound'arbres

Algorithmes sur les arbres binaires

■ l'arbre vide est représenté par un pointeur vers rien

$$\Delta =$$

Représentation chaînée

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implémentation

Parcours d'arbres

Algorithmes sur les arbres hinaires

■ l'arbre vide est représenté par un pointeur vers rien

$$\Delta =$$

■ un arbre non vide < e; g; d > est représenté par un pointeur vers un nœud

$$A = \boxed{\begin{array}{c|c} e \\ g \mid d \end{array}}$$

Représentation concrète d'un arbre binaire

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implémentation

Parcours d'arbres

Algorithmes sur les arbres binaires

Fig.: Représentation concrète de

$$A = <1; <2; \Delta; \Delta>; <3; <4; \Delta; \Delta>; \Delta>>$$

Déclaration en Pascal

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implémentation

Parcours d'arbres

Algorithmes sur les arbres binaires

```
Définition de types

const
   ARBREVIDE = NIL;

type
   ARBRE = ^NOEUD;
   NOEUD = record
     info : ELEMENT;
     gauche, droit : ARBRE;
end {NOEUD};
```

Le type ELEMENT doit être déclaré par ailleurs.

Constructeur

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implémentation

Parcours d'arbres

Algorithmes sur les arbres binaires

Créer un arbre

```
// creerArbre (e,g,d) = \langle e;g;d \rangle
function creerArbre(e : ELEMENT;
                      g,d: ARBRE): ARBRE;
var
   a1 : ARBRE;
begin
   new(a1);
   a1^.info := e;
   a1^.gauche := g;
   a1 ^ . droit := d;
   creerArbre := a1;
end {creerArbre};
```

Sélecteurs

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implémentation

Parcours d'arbres

Algorithmes sur les arbres binaires

Racine d'un arbre

```
// racine(a)= élément situé à la racine de a
// CU : a non vide
function racine(a : ARBRE) : ELEMENT;
begin
   racine := a^.info;
end {racine};
```

Sélecteurs

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implémentation

Parcours d'arbres

Algorithmes sur les arbres binaires

Sous-arbre gauche d'un arbre

```
// gauche(a) = sous-arbre gauche de a
// CU : a non vide
function gauche(a : ARBRE) : ARBRE;
begin
    gauche := a^.gauche;
end {gauche};
```

Sélecteurs

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implémentation

Parcours d'arbres

Algorithmes sur les arbres binaires

Sous-arbre droit d'un arbre

```
// droit(a) = sous-arbre droit de a
// CU : a non vide
function droit(a : ARBRE) : ARBRE;
begin
    droit := a^.droit;
end {droit};
```

Prédicat

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implémentation

Parcours d'arbres

Algorithmes sur les arbres binaires

Test de vacuité d'un arbre

Opérations modificatrices

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implémentation

Parcours d'arbres

Algorithmes sur les arbres binaires

Modifier la racine d'un arbre

Opérations modificatrices

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implémentation

Parcours d'arbres

Algorithmes sur les arbres binaires

```
Modifier le sous-arbre gauche d'un arbre
```

Opérations modificatrices

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implémentation

Parcours d'arbres

Algorithmes sur les arbres binaires

Modifier le sous-arbre droit d'un arbre

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plar

nplémentation

Parcours d'arbres

Algorithmes sur les arbres hinaires

Contrairement aux listes que l'on parcourt de manière séquentielle, il y a plusieurs parcours possibles d'un arbre :

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implementatio

Parcours d'arbres

Algorithmes sur les arbres binaires Contrairement aux listes que l'on parcourt de manière séquentielle, il y a plusieurs parcours possibles d'un arbre :

le parcours préfixé;

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implementatio

Parcours d'arbres

Algorithmes sur les arbres binaires Contrairement aux listes que l'on parcourt de manière séquentielle, il y a plusieurs parcours possibles d'un arbre :

- le parcours préfixé;
- le parcours postfixé;

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implementation

Parcours d'arbres

Algorithmes sur les arbres binaires Contrairement aux listes que l'on parcourt de manière séquentielle, il y a plusieurs parcours possibles d'un arbre :

- le parcours préfixé;
- le parcours postfixé;
- et le parcours infixé.

Un exemple d'arbre à parcourir

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implémentatio

Parcours d'arbres

Algorithmes sur les arbres binaires

Fig.: Exemple d'arbre à parcourir

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implémentation

Parcours d'arbres

Algorithmes sur les arbres binaires

Définition

Parcours consistant à

1 traiter la racine

Les arbres (II) $\,$

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implementation

Parcours d'arbres

Algorithmes sur les arbres binaires

Définition

Parcours consistant à

- 1 traiter la racine
- 2 parcourir le sous-arbre gauche

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implementation

Parcours d'arbres

Algorithmes sur les arbres binaires

Définition

Parcours consistant à

- 1 traiter la racine
- 2 parcourir le sous-arbre gauche
- 3 parcourir le sous-arbre droit

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plar

Implémentation

Parcours d'arbres

Algorithmes sur les arbres binaires

Définition

Parcours consistant à

- 1 traiter la racine
- 2 parcourir le sous-arbre gauche
- 3 parcourir le sous-arbre droit

Exemple

Sur l'arbre de la figure 2, dans un parcours préfixé, les nœuds sont traités dans l'ordre

1, 2, 4, 8, 5, 9, 10, 3, 6, 11, 7

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implémentation

Parcours d'arbres

Algorithmes sur les arbres binaires

Définition

Parcours consistant à

1 parcourir le sous-arbre gauche

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implementatio

Parcours d'arbres

Algorithmes sur les arbres binaires

Définition

Parcours consistant à

- 1 parcourir le sous-arbre gauche
- 2 parcourir le sous-arbre droit

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implementation

Parcours d'arbres

Algorithmes sur les arbres binaires

Définition

Parcours consistant à

- 1 parcourir le sous-arbre gauche
- 2 parcourir le sous-arbre droit
- 3 traiter la racine

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implémentation

Parcours d'arbres

Algorithmes sur les arbres binaires

Définition

Parcours consistant à

- parcourir le sous-arbre gauche
- 2 parcourir le sous-arbre droit
- 3 traiter la racine

Exemple

Sur l'arbre de la figure 2, dans un parcours postfixé, les nœuds sont traités dans l'ordre

8, 4, 9, 10, 5, 2, 11, 6, 7, 3, 1

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implementatio

Parcours d'arbres

Algorithmes sur les arbres binaires

Définition

Parcours consistant à

1 parcourir le sous-arbre gauche

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implementatio

Parcours d'arbres

Algorithmes sur les arbres binaires

Définition

Parcours consistant à

- 1 parcourir le sous-arbre gauche
- 2 traiter la racine

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implementation

Parcours d'arbres

Algorithmes sur les arbres binaires

Définition

Parcours consistant à

- 1 parcourir le sous-arbre gauche
- 2 traiter la racine
- 3 parcourir le sous-arbre droit

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plar

Implementation

Parcours d'arbres

Algorithmes sur les arbres binaires

Définition

Parcours consistant à

- 1 parcourir le sous-arbre gauche
- 2 traiter la racine
- 3 parcourir le sous-arbre droit

Exemple

Sur l'arbre de la figure 2, dans un parcours infixé, les nœuds sont traités dans l'ordre

8, 4, 2, 9, 5, 10, 1, 6, 11, 3, 7

Spécification

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

nplémentatio

5

d'arbres

Algorithmes sur les arbres binaires

Spécification

taille : $AB(E) \longrightarrow \mathbb{N}$

 $a \longmapsto \text{taille de } a = \text{nbre de nœuds}$

Spécification

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Algorithmes sur les arbres binaires

Spécification

taille :
$$AB(E) \longrightarrow \mathbb{N}$$

 $a \mapsto \text{taille de } a = \text{nbre de nœuds}$

Exemples

$$taille(\Delta) = 0$$

 $taille(<1; <3; \Delta; \Delta>; \Delta>) = 2$

Algorithme

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Schéma récursif du calcul de la taille d'un arbre a

impiementatio

Parcours d'arbres

Algorithmes sur les arbres binaires

Algorithme

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

plémentatio

d'arbres

Algorithmes sur les arbres binaires Schéma récursif du calcul de la taille d'un arbre a

1 si
$$a = \Delta$$
, alors

$$taille(a) = 0$$

Algorithme

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

plémentation

Parcours d'arbres

Algorithmes sur les arbres binaires Schéma récursif du calcul de la taille d'un arbre a

$$\mathbf{1}$$
 si $a = \Delta$, alors

$$taille(a) = 0$$

2 si
$$a = \langle e; g; d \rangle$$
, alors

$$taille(a) =$$

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

plémentatio

Parcours d'arbres

Algorithmes sur les arbres binaires Schéma récursif du calcul de la taille d'un arbre a

$$\mathbf{1}$$
 si $a = \Delta$, alors

$$taille(a) = 0$$

2 si
$$a = \langle e; g; d \rangle$$
, alors

$$taille(a) = 1$$

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

iplémentatio

Parcours d'arbres

Algorithmes sur les arbres binaires Schéma récursif du calcul de la taille d'un arbre a

1 si
$$a = \Delta$$
, alors

$$taille(a) = 0$$

2 si
$$a = \langle e; g; d \rangle$$
, alors

$$taille(a) = 1 + taille(g)$$

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

plémentatio

Parcours d'arbres

Algorithmes sur les arbres binaires Schéma récursif du calcul de la taille d'un arbre a

$$\mathbf{1}$$
 si $a = \Delta$, alors

$$taille(a) = 0$$

2 si
$$a = \langle e; g; d \rangle$$
, alors

$$taille(a) = 1 + taille(g) + taille(d)$$

Implémentation en Pascal

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implémentatio

Parcours d'arbres

Algorithmes sur les arbres binaires

```
Taille
 // taille(a) = nbre de noeuds dans a
 function taille(a : ARBRE) : CARDINAL;
 begin
   if estArbreVide(a) then
      taille := 0
   else
      taille := 1
                 + taille(gauche(a))
                 + taille(droit(a));
 end {taille};
```

Coût du calcul de la taille

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

rian

Implémentatio

Parcours d'arbres

Algorithmes sur les arbres binaires c(a) =nombre de tests de la condition estArbreVide(a).

Coût du calcul de la taille

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

mplémentation

Parcours d'arbres

Algorithmes sur les arbres binaires c(a) = nombre de tests de la condition estArbreVide(a).

$$c(\Delta) = 1$$

 $c() = 1 + c(g) + c(d)$

Coût du calcul de la taille

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

nplémentati

Parcours d'arbres

Algorithmes sur les arbres binaires c(a) = nombre de tests de la condition estArbreVide(a).

$$c(\Delta) = 1$$

 $c() = 1 + c(g) + c(d)$

Conclusion

Le coût de la fonction taille est linéaire en le nombre de nœuds de l'arbre.

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

nplémentation

Parcours

Algorithmes sur les arbres binaires

Définition de la hauteur

La hauteur d'un arbre est la longueur de sa plus longue branche.

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

plémentatio

d'arbres

Algorithmes sur les arbres binaires

Définition de la hauteur

La hauteur d'un arbre est la longueur de sa plus longue branche.

cela impose que l'arbre n'est pas vide

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implementatio

d'arbres

Algorithmes sur les arbres binaires

Définition de la hauteur

La hauteur d'un arbre est la longueur de sa plus longue branche.

- cela impose que l'arbre n'est pas vide
- en conséquence la hauteur de l'arbre vide n'est pas définie par cette définition

Spécification

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

nplémentati

d'arbres

Algorithmes sur les arbres binaires

Spécification

 $\texttt{hauteur} \; : \; \; AB(E) \; \; \longrightarrow \; \; \; \mathbb{N}$

 $a \longmapsto \text{hauteur de } a$

Spécification

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

mplémentatio

d'arbres

Algorithmes sur les arbres binaires

Spécification

hauteur : $AB(E) \longrightarrow \mathbb{N}$

 $a \longmapsto \text{hauteur de } a$

Exemples

$$hauteur(<1; \Delta; \Delta>) = 0$$

$$hauteur(<1;<3;\Delta;\Delta>;\Delta>) = 1$$

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implémentatio

Parcours d'arbres

Algorithmes sur les arbres binaires

Convention

Pour faciliter le calcul (récursif) de la hauteur d'un arbre, nous conviendrons que la hauteur de l'arbre vide est égale à -1.

$$hauteur(\Delta) = -1$$

Spécification

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

plémentation

Parcours d'arbres

Algorithmes sur les arbres binaires

Spécification

 $\texttt{hauteur} \; : \; \; \textit{AB}(\textit{E}) \; \; \longrightarrow \; \; \; \mathbb{N} \cup \{-1\}$

 $a \longmapsto \text{hauteur de } a$

Spécification

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

nplémentatio

d'arbres

Algorithmes sur les arbres binaires

Spécification

hauteur :
$$AB(E) \longrightarrow \mathbb{N} \cup \{-1\}$$
 $a \longmapsto \text{hauteur de } a$

Exemples

$$\label{eq:hauteur} \begin{array}{rcl} \text{hauteur}(\Delta) & = & -1 \\ \text{hauteur}(<1;\Delta;\Delta>) & = & 0 \\ \text{hauteur}(<1;<3;\Delta;\Delta>;\Delta>) & = & 1 \\ \end{array}$$

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

nplémentation

Parcours d'arbres

Algorithmes sur les arbres binaires

Schéma récursif du calcul de la hauteur d'un arbre a

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

plémentatio

Parcours d'arbres

Algorithmes sur les arbres binaires

Schéma récursif du calcul de la hauteur d'un arbre a

1 si
$$a = \Delta$$
, alors

$$hauteur(a) = -1$$

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

plémentatio

Parcours d'arbres

Algorithmes sur les arbres binaires Schéma récursif du calcul de la hauteur d'un arbre a

1 si
$$a = \Delta$$
, alors

$$hauteur(a) = -1$$

2 si
$$a = \langle e; g; d \rangle$$
, alors

$$hauteur(a) = 1 + max(hauteur(g), hauteur(d))$$

Implémentation en Pascal

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implémentatio

Parcours d'arbres

Algorithmes sur les arbres binaires

```
Hauteur
 // hauteur(a) = hauteur de a
 function hauteur(a : ARBRE) : INTEGER:
 begin
   if estArbreVide(a) then
      hauteur := -1
   else
      hauteur := 1
                + max(hauteur(gauche(a)),
                       hauteur(droit(a)));
 end {hauteur};
```

Coût du calcul de la hauteur

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Implémentation

Parcours d'arbres

Algorithmes sur les arbres binaires c(a) = nombre de tests de la condition estArbreVide(a).

Coût du calcul de la hauteur

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

mplémentation

Parcours d'arbres

Algorithmes sur les arbres binaires c(a) = nombre de tests de la condition estArbreVide(a).

$$c(\Delta) = 1$$

 $c() = 1 + c(g) + c(d)$

Coût du calcul de la hauteur

Les arbres (II)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

nplémentati

Parcours d'arbres

Algorithmes sur les arbres binaires c(a) = nombre de tests de la condition estArbreVide(a).

$$c(\Delta) = 1$$

 $c() = 1 + c(g) + c(d)$

Conclusion

Le coût de la fonction hauteur est linéaire en le nombre de nœuds de l'arbre.