Keystone Constant Relations in VAM

Omar Iskandarani

Independent Researcher, Groningen, The Netherlands ORCID: 0009-0006-1686-3961 DOI: 10.5281/zenodo.15566319

June 13, 2025

Abstract

Abstracts are not typically included in appendices, but for standalone it is needed.

Keystone Constant Relations in VAM

Throughout the main text we defined the three primitive æther parameters

$$F_{\text{max}}, \qquad r_c, \qquad C_e, \tag{1}$$

and showed how they fix all familiar quantum and gravitational constants. For completeness we collect here the four one-line identities that anchor \hbar , $E = h\nu$, the Bohr radius a_0 and Newton's constant G in terms of (1). All algebra employs only dimensional relations, the fine-structure constant $\alpha = 2C_e/c$, and the Planck time $t_P \equiv \sqrt{\hbar G/c^5}$. Figures quoted use the canonical numerics of Tab. 1.

0.1 Planck's Constant from Æther Tension

A photon of Compton frequency v_e wraps two half-wavelength helical arcs (n = 2) around the electron vortex. Matching angular momenta and adopting a Hookean core gives

$$h = \frac{4\pi F_{\text{max}} r_c^2}{C_e} = 6.626\,070 \times 10^{-34} \text{ J s};$$
 (2)

see Sec. 3.1.

0.2 Photon Energy: E = hv

Treating the helical photon as a parallel-plate capacitor of plate area $A = \lambda^2$ and spacing $d = \lambda/2$ yields

$$C = 2\varepsilon_0 \lambda, \qquad E = \frac{Q^2}{2C} = \frac{e^2}{4\varepsilon_0 C_e} \nu = h\nu, \tag{3}$$

where $e^2/4\varepsilon_0 C_e = h$ follows from Eq. (2) plus $\alpha = 2C_e/c$.

0.3 Bohr (or Sommerfeld) Radius

Combining Eq. (2) with $\alpha = 2C_e/c$ gives

$$a_0 = \frac{\hbar}{m_e c \alpha} = \frac{F_{\text{max}} r_c^2}{m_e C_e^2} = 5.291772 \times 10^{-11} \text{ m}.$$
 (4)

All hydrogenic orbital radii then follow the textbook $r_n = n^2 a_0/Z$ scaling with no further parameters.

0.4 Newton's Constant

Eliminating \hbar between Eq. (2) and the Planck-time identity $t_P^2 = \hbar G/c^5$ yields

$$G = F_{\text{max}} \alpha \frac{(ct_P)^2}{m_e^2} = \frac{C_e c^5 t_P^2}{2F_{\text{max}} r_c^2} = 6.67430 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}.$$
 (5)

Either form in Eq. (5) matches all laboratory and astronomical measurements within the quoted CODATA uncertainty.

0.5 Consequences

A single triad $(F_{\text{max}}, r_c, C_e)$ locks $\hbar, a_0, h\nu$, and G. Any independent experimental change to one of the three primitives would break *all* four constants simultaneously—making the VAM framework highly falsifiable.

Numerical Inputs (taken from Tab. 1): $F_{\rm max} = 29.053507 \,\mathrm{N}, \ r_c = 1.40897017 \times 10^{-15} \,\mathrm{m}, \ C_e = 1.09384563 \times 10^6 \,\mathrm{m \, s^{-1}}, \ m_e = 9.10938356 \times 10^{-31} \,\mathrm{kg}, \ t_P = 5.391247 \times 10^{-44} \,\mathrm{s}.$

The author first encountered the capacitor-wavelength derivation in a 2011 YouTube clip attributed to Lane Davis [?]. 's 2010 PDF later provided the written source used here.

References