

Current Transducer LTS 6-NP

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Flectrical data

Primary nominal r.m.s. current	6	At
Primary current, measuring range	0 ± 19.2	At
Analog output voltage @ I _P	2.5 ± (0.62	$5 \cdot I_p / I_{pN}) V$
$I_p = 0$	2.5 1)	· · · · V
Number of secondary turns (± 0.1 %)	2000	
Load resistance	≥ 2	kΩ
Internal measuring resistance (± 0.5 %)	208.33	Ω
Thermal drift of R _{IM}	< 50	ppm/K
Supply voltage (± 5 %)	5	V
Current consumption @ $V_c = 5 \text{ V}$ Typ	$20 + I_S^{(2)} + (V_O)$	_{лт} / R ,)mA
R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn	3	kV
R.m.s. rated voltage	525 ³⁾	V
	Primary current, measuring range Analog output voltage @ $\mathbf{I}_{\rm p} = 0$ Number of secondary turns (\pm 0.1 %) Load resistance Internal measuring resistance (\pm 0.5 %) Thermal drift of $\mathbf{R}_{\rm IM}$ Supply voltage (\pm 5 %) Current consumption @ $\mathbf{V}_{\rm C} = 5$ V Typ R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn	Primary current, measuring range 0 ± 19.2 Analog output voltage @ I_p $2.5\pm (0.628)$ $I_p = 0$ 2.5^{-1} Number of secondary turns (\pm 0.1 %) 2000 Load resistance ≥ 2 Internal measuring resistance (\pm 0.5 %) 208.33 Thermal drift of \mathbf{R}_{IM} < 50 Supply voltage (\pm 5 %) 5 Current consumption @ \mathbf{V}_{C} = 5 V Typ $20+I_{\mathrm{S}}^{(2)}+(\mathbf{V}_{\mathrm{OL}})$ R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn

Ac	curacy - Dynamic perform	nance data			
X	Accuracy @ I _{PN} , T _A = 25°C			± 0.2	
X	Accuracy with $\mathbf{R}_{\text{IM}} @ \mathbf{I}_{\text{PN}}$, $\mathbf{T}_{\text{A}} = 25^{\circ}\text{C}$			± 0.7	
$\epsilon_{\scriptscriptstyle \! \scriptscriptstyle L}$	Linearity		< 0.1		%
			Тур	Max	
TCV	Thermal drift of \mathbf{V}_{OUT} @ \mathbf{I}_{P} = 0	- 10°C + 85°C	200	300	ppm/K
TCE _G	Thermal drift of the gain	- 10°C + 85°C		50 ⁴⁾	ppm/K
V _{OM}	Residual voltage @ Ip = 0, after an	overload of 3 x I _{PN}		± 0.5	mV
· · · ·	·	5 x I _{PN}		± 2.0	mV
		10 x I _{PN}		± 2.0	mV
t _{ra}	Reaction time @ 10 % of I _{PN}		< 50)	ns
t _{ra}	Response time @ 90 % of I _{PN}		< 40	0	ns
di/dt	di/dt accurately followed		> 15	5	A/µs
f	Frequency bandwidth (0 0.5 dl	B)	DC	100	kHz

	General data				
T _A	Ambient operating temperature	- 10 + 85	°C		
T _s	Ambient storage temperature	- 25 + 100	°C		
m	Mass	10	g		
	Standards	EN 50178			
		EN 60950			

 $I_{PN} = 2 - 3 - 6 A$

Features

- Closed loop (compensated) multirange current transducer using the Hall effect
- · Unipolar voltage supply
- Compact design for PCB mounting
- Insulated plastic case recognized according to UL 94-V0
- Incorporated measuring resistance
- Extended measuring range.

Advantages

- Excellent accuracy
- Very good linearity
- Very low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

DC .. 200

kHz

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Copyright protected.

Notes : 1) Absolute value @ $T_A = 25$ °C, 2.475 < V_{OUT} < 2.525

2) Please see the operation principle on the other side

(- 0.5 .. 1 dB)

3) Pollution class 2, Overvoltage category III

4) Only due to TCR

000209/2

Dimensions LTS 6-NP (in mm. 1 mm = 0.0394 inch)

Number of primary turns	Primary nominal r.m.s. current I _{PN} [A]	Nominal output voltage \mathbf{V}_{OUT} [V]	Primary resistance \mathbf{R}_{P} [$\mathrm{m}\Omega$]	Primary insertion inductance L _P [μH]	Recommended connections
1	± 6	2.5 ± 0.625	0.18	0.013	6 5 4 OUT O
2	± 3	2.5 ± 0.625	0.81	0.05	6 5 4 OUT O 0 1 1 2 3
3	± 2	2.5 ± 0.625	1.62	0.12	6 5 4 OUT 0 0 IN 1 2 3

Mechanical characteristics

• General tolerance ± 0.2 mm

• Fastening & connection of primary 6 pins 0.7 x 0.8 mm 1.3 mm

Recommended PCB hole

• Fastening & connection of secondary 3 pins 0.5 x 0.35 mm Recommended PCB hole 0.8 mm

• Additional primary through-hole Ø 3.2 mm

Remark

 \bullet $\,{\bf V}_{{\rm OUT}}$ is positive when ${\bf I}_{\rm P}$ flows from terminals 1, 2, 3 to terminals 6, 5, 4.

