Step-1

We need to find all the odd permutations of $\{1,2,3,4\}$

The odd permutations on four symbols are $\frac{1}{2}(4!)=12$ in number

They are

One inter change (1,2,4,3),(1,3,4,2)(1,4,3,2),(2,1,3,4),(3,2,1,4),(4,2,3,1)

Three interchanges (2,3,4,1),(2,4,1,3),(3,1,4,2),(3,4,2,1),(4,1,2,3),(4,3,1,2)

Step-2

The permutations that lead to $\det P = -1$ are odd permutations.

The row interchanges are shown by $1 \hat{a} \in \mathbb{T}^M$ s in the respective places of the 4×4 matrix.

If only one interchange has taken place, then $\det P = (-1)^1 = -1$ and so, P is an odd permutation.

 $1^{\text{st}} \text{ and } 2^{\text{nd}} \text{ rows interchange} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

 $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

3rd and 4th rows interchange

Step-3

 $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ 2nd and 4th rows interchange

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$
 1st and 4th rows interchange

Step-4

$$2^{nd} \text{ and } 3^{rd} \text{ rows interchange} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$2^{nd} \text{ and } 3^{rd} \text{ rows interchange} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Step-5

Three row interchange:

$$\begin{bmatrix}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}$$

$$1234 \rightarrow 1243 \rightarrow 1423 \rightarrow 4123 \Rightarrow \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}$$

$$1234 \rightarrow 2134 \rightarrow 2143 \rightarrow 2413 \Rightarrow \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}$$

Step-6

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$1234 \rightarrow 2134 \rightarrow 2314 \rightarrow 2134 \Rightarrow \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Step-7

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$1234 \rightarrow 1324 \rightarrow 1342 \rightarrow 3142 \Rightarrow \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

We easily see that det $P = \begin{pmatrix} -1 \end{pmatrix}^{\text{number of row interchanges}}$

Step-8

$$= (-1)^3$$
$$= -1$$