Introduction to Large Language Models

Mixed Precision Training

Kun Yuan

Peking University

Full precision training and low precision training

- Large language model is difficult to train
 - o take massive resource to compute
 - o take massive resource to store
- Full precision training (e.g. FP32)
 - o used in training most DNNs; very precise
 - o takes a lot of computations and memories
- Low precision training (e.g. FP16)
 - o able to train larger models due to computational and memory efficiency
 - not precise enough; overflow and underflow occur occasionally

Full precision training and low precision training

- Large language model is difficult to train
 - o take massive resource to compute
 - o take massive resource to store
- Full precision training (e.g. FP32)
 - o used in training most DNNs; very precise
 - o takes a lot of computations and memories
- Low precision training (e.g. FP16)
 - o able to train larger models due to computational and memory efficiency
 - not precise enough; overflow and underflow occur occasionally

Full precision training and low precision training

- Large language model is difficult to train
 - o take massive resource to compute
 - o take massive resource to store
- Full precision training (e.g. FP32)
 - o used in training most DNNs; very precise
 - o takes a lot of computations and memories
- Low precision training (e.g. FP16)
 - o able to train larger models due to computational and memory efficiency
 - o not precise enough; overflow and underflow occur occasionally

- Sign: 1 bit; 0 for positive and 1 for negative
- Exponent: 5 bits; range: 00001(1)-11110(30); value range: $2^{-14} \sim 2^{15}$

Example:
$$00111(7) \longrightarrow 2^{7-15} = 2^{-8}$$

where -15 is the offset

• Fraction: 10 bits

Example:
$$10010000000 \longrightarrow 1.10010000000$$

 $\longrightarrow 1 + 576/1024 = 1.5625$

where binary 1001000000 translates into decimal 57

- Sign: 1 bit; 0 for positive and 1 for negative
- **Exponent**: 5 bits; range: 00001(1)-11110(30); value range: $2^{-14} \sim 2^{15}$

Example: $00111(7) \longrightarrow 2^{7-15} = 2^{-8}$

where -15 is the offset

• Fraction: 10 bits;

Example:
$$1001000000 \longrightarrow 1.1001000000$$

 $\longrightarrow 1 + 576/1024 = 1.562$

where binary 1001000000 translates into decimal 57

- Sign: 1 bit; 0 for positive and 1 for negative
- **Exponent**: 5 bits; range: 00001(1)-11110(30); value range: $2^{-14} \sim 2^{15}$

Example:
$$00111(7) \longrightarrow 2^{7-15} = 2^{-8}$$

where -15 is the offset

• Fraction: 10 bits;

Example:
$$1001000000 \longrightarrow 1.1001000000$$

 $\longrightarrow 1 + 576/1024 = 1.5625$

where binary 1001000000 translates into decimal 576

• Translation law

$$(-1)^{\text{sign}} \times 2^{\text{exponent}-15} \times \left(1 + \frac{\text{fraction}}{1024}\right)$$

Largest positive number:

$$(-1)^0 \times 2^{15} \times (1 + \frac{1023}{1024}) = 65504$$

The range of FP16 is [-65504, +65504].

Smallest positive number

$$(-1)^0 \times 2^{-14} \times (1 + \frac{1}{1024}) \approx 6.1 \times 10^{-1}$$

• Translation law

$$(-1)^{\text{sign}} \times 2^{\text{exponent}-15} \times (1 + \frac{\text{fraction}}{1024})$$

• Largest positive number:

$$(-1)^0 \times 2^{15} \times (1 + \frac{1023}{1024}) = 65504$$

The range of FP16 is [-65504, +65504].

Smallest positive number

$$(-1)^0 \times 2^{-14} \times (1 + \frac{1}{1024}) \approx 6.1 \times 10^{-1}$$

• Translation law

$$(-1)^{\text{sign}} \times 2^{\text{exponent}-15} \times \left(1 + \frac{\text{fraction}}{1024}\right)$$

• Largest positive number:

$$(-1)^0 \times 2^{15} \times (1 + \frac{1023}{1024}) = 65504$$

The range of FP16 is [-65504, +65504].

Smallest positive number:

$$(-1)^0 \times 2^{-14} \times (1 + \frac{1}{1024}) \approx 6.1 \times 10^{-5}$$

Binary	Hex	Value	Notes	
0 00000 0000000000	0000	0		
0 00000 0000000001	0001	$2^{-14}\times (0+\frac{1}{1024})\approx 0.000000059604645$	smallest positive subnormal number	
0 00000 1111111111	03ff	$2^{-14}\times (0+\tfrac{1023}{1024})\approx 0.000060975552$	largest subnormal number	
0 00001 0000000000	0400	$2^{-14} \times (1 + \frac{0}{1024}) \approx 0.00006103515625$	smallest positive normal number	
0 01101 0101010101	3555	$2^{-2} \times (1 + \frac{341}{1024}) \approx 0.33325195$	nearest value to 1/3	
0 01110 1111111111	3bff	$2^{-1} \times (1 + \frac{1023}{1024}) \approx 0.99951172$	largest number less than one	
0 01111 0000000000	3c00	$2^0 \times (1 + \frac{0}{1024}) = 1$	one	
0 01111 0000000001	3c01	$2^0 \times (1 + \frac{1}{1024}) \approx 1.00097656$	smallest number larger than one	
0 11110 1111111111	7bff	$2^{15} \times (1 + \frac{1023}{1024}) = 65504$	largest normal number	
0 11111 0000000000	7c00	∞	infinity	

Translation law

$$(-1)^{\text{sign}} \times 2^{\text{exponent}-127} \times (1 + \frac{\text{fraction}}{2^{23}})$$

- Range: $[-3.40282 \times 10^{38}, +3.40282 \times 10^{38}]$
- Smallest positive number: 1.17549×10^{-38}
- FP 32 is much more powerful than FP 16; but takes too much memory

• Translation law

$$(-1)^{\text{sign}} \times 2^{\text{exponent}-127} \times (1 + \frac{\text{fraction}}{2^{23}})$$

- Range: $[-3.40282 \times 10^{38}, +3.40282 \times 10^{38}]$
- Smallest positive number: 1.17549×10^{-38}
- FP 32 is much more powerful than FP 16; but takes too much memory

• Translation law

$$(-1)^{\text{sign}} \times 2^{\text{exponent}-127} \times (1 + \frac{\text{fraction}}{2^{23}})$$

• Range: $[-3.40282 \times 10^{38}, +3.40282 \times 10^{38}]$

• Smallest positive number: 1.17549×10^{-38}

• FP 32 is much more powerful than FP 16; but takes too much memory

• Translation law

$$(-1)^{\text{sign}} \times 2^{\text{exponent}-127} \times \left(1 + \frac{\text{fraction}}{2^{23}}\right)$$

• Range: $[-3.40282 \times 10^{38}, +3.40282 \times 10^{38}]$

• Smallest positive number: 1.17549×10^{-38}

• FP 32 is much more powerful than FP 16; but takes too much memory

Mixed precision training

- When both FP32 and FP16 are used in training, we get **Mixed precision training** (Micikevicius et al., 2017)
- Save memory and computations without hurting performance
- Three key techniques:
 - FP32 weight copies
 - Loss scaling
 - o Arithmetic precisioin

Mixed precision training

- When both FP32 and FP16 are used in training, we get **Mixed precision training** (Micikevicius et al., 2017)
- Save memory and computations without hurting performance
- Three key techniques:
 - FP32 weight copies
 - Loss scaling
 - o Arithmetic precisioin

Mixed precision training

- When both FP32 and FP16 are used in training, we get Mixed precision training (Micikevicius et al., 2017)
- Save memory and computations without hurting performance
- Three key techniques:
 - o FP32 weight copies
 - Loss scaling
 - o Arithmetic precisioin

• An FP32 weight copy is maintained and updated with gradient

Figure 1: Mixed precision training iteration for a layer.

- Reason I: maintain small values in the weight update
- Weight update = learning rate \times gradient; typically very small in late phase
- Values less than $2^{-24} \approx 5.96 \times 10^{-8}$ become 0 when using FP16
- About 5% values are less than 2^{-24}

- Reason I: maintain small values in the weight update
- Weight update = learning rate \times gradient; typically very small in late phase
- Values less than $2^{-24} \approx 5.96 \times 10^{-8}$ become 0 when using FP16
- About 5% values are less than 2^{-24}

- Reason I: maintain small values in the weight update
- ullet Weight update = learning rate imes gradient; typically very small in late phase
- \bullet Values less than $2^{-24} \approx 5.96 \times 10^{-8}$ become 0 when using FP16
- About 5% values are less than 2^{-24}

- Reason I: maintain small values in the weight update
- ullet Weight update = learning rate imes gradient; typically very small in late phase
- \bullet Values less than $2^{-24} \approx 5.96 \times 10^{-8}$ become 0 when using FP16
- About 5% values are less than 2^{-24}

• Reason II: big value-to-update ratio

¹This figure is from wikipedia

- Reason II: big value-to-update ratio
- The resolution in each period is shown as follows¹

Min	Max	interval	
0	2-13	2-24	
2-13	2-12	2-23	
2-12	2-11	2-22	
2-11	2-10	2-21	
2-10	2-9	2-20	
2-9	2-8	2-19	
2-8	2-7	2-18	
2-7	2-6	2-17	
2-6	2-5	2-16	
2-5	2-4	2-15	
2-4	1 8	2-14	

1 8	1 4	2-13
1 4	1/2	2-12
1/2	1	2-11
1	2	2-10
2	4	2-9
4	8	2-8
8	16	2-7
16	32	2-6
32	64	2-5
64	128	2-4
128	256	1 8
256	512	1 4

512	1024	1/2
1024	2048	1
2048	4096	2
4096	8192	4
8192	16384	8
16384	32768	16
32768	65519	32
65519	000	∞

 $^{^{1}\}mathrm{This}$ figure is from wikipedia

• If the value-to-update ratio is bigger than $2^{11} = 2048$, it holds that

$$value + update = value$$

- The update has no influence on the value
- For reasons I and II, we maintain FP32 copies for both the weight and weight decay

• If the value-to-update ratio is bigger than $2^{11} = 2048$, it holds that

$$value + update = value$$

- The update has no influence on the value
- For reasons I and II, we maintain FP32 copies for both the weight and weight decay

• If the value-to-update ratio is bigger than $2^{11} = 2048$, it holds that

$$value + update = value$$

- The update has no influence on the value
- For reasons I and II, we maintain FP32 copies for both the weight and weight decay

- FP16 representation range $[2^{-24}, 2^{15}]$
- \bullet The activation gradient is typically very small; most values are smaller than 2^{-24}

- FP16 representation range $[2^{-24}, 2^{15}]$
- \bullet The activation gradient is typically very small; most values are smaller than 2^{-24}

- Scale-up the loss value before the back-propagation
- Unscale the gradient after back-propagation but before the update

$$g = \frac{\partial L}{\partial x} = \frac{1}{c} \frac{\partial (c \cdot L)}{\partial x}$$

- Effectively shift the graient value to the FP representation range
- Tricky to choose the scale-up coefficient
- c = 8 typically works

- Scale-up the loss value before the back-propagation
- Unscale the gradient after back-propagation but before the update

$$g = \frac{\partial L}{\partial x} = \frac{1}{c} \frac{\partial (c \cdot L)}{\partial x}$$

- Effectively shift the graient value to the FP representation range
- Tricky to choose the scale-up coefficient
- c = 8 typically works

- Scale-up the loss value before the back-propagation
- Unscale the gradient after back-propagation but before the update

$$g = \frac{\partial L}{\partial x} = \frac{1}{c} \frac{\partial (c \cdot L)}{\partial x}$$

- Effectively shift the graient value to the FP representation range
- Tricky to choose the scale-up coefficient
- c = 8 typically works

- Scale-up the loss value before the back-propagation
- Unscale the gradient after back-propagation but before the update

$$g = \frac{\partial L}{\partial x} = \frac{1}{c} \frac{\partial (c \cdot L)}{\partial x}$$

- Effectively shift the graient value to the FP representation range
- Tricky to choose the scale-up coefficient
- c = 8 typically works

- Scale-up the loss value before the back-propagation
- Unscale the gradient after back-propagation but before the update

$$g = \frac{\partial L}{\partial x} = \frac{1}{c} \frac{\partial (c \cdot L)}{\partial x}$$

- Effectively shift the graient value to the FP representation range
- Tricky to choose the scale-up coefficient
- c = 8 typically works

Figure 5: bigLSTM training perplexity

- Not as important as the above two techniques
- Three key computation steps: vector dot-products; reductions; point-wise operations
- It is suggested in (Micikevicius et al., 2017) that vector dot-products and reductions are read and written in FP16 but carried out in FP32
- Point-wise operations can be carried in FP16

- Not as important as the above two techniques
- Three key computation steps: vector dot-products; reductions; point-wise operations
- It is suggested in (Micikevicius et al., 2017) that vector dot-products and reductions are read and written in FP16 but carried out in FP32
- Point-wise operations can be carried in FP16

- Not as important as the above two techniques
- Three key computation steps: vector dot-products; reductions; point-wise operations
- It is suggested in (Micikevicius et al., 2017) that vector dot-products and reductions are read and written in FP16 but carried out in FP32
- Point-wise operations can be carried in FP16

- Not as important as the above two techniques
- Three key computation steps: vector dot-products; reductions; point-wise operations
- It is suggested in (Micikevicius et al., 2017) that vector dot-products and reductions are read and written in FP16 but carried out in FP32
- Point-wise operations can be carried in FP16

Numerical studies

Table 1: ILSVRC12 classification top-1 accuracy.

Model	Baseline	Mixed Precision	Reference
AlexNet	56.77%	56.93%	(Krizhevsky et al., 2012)
VGG-D	65.40%	65.43%	(Simonyan and Zisserman, 2014)
GoogLeNet (Inception v1)	68.33%	68.43%	(Szegedy et al., 2015)
Inception v2	70.03%	70.02%	(Ioffe and Szegedy, 2015)
Inception v3	73.85%	74.13%	(Szegedy et al., 2016)
Resnet50	75.92%	76.04%	(He et al., 2016b)

Numerical studies

Table 2: Detection network average mean precision.

Model	Baseline	MP without loss-scale	MP with loss-scale
Faster R-CNN	69.1%	68.6%	69.7%
Multibox SSD	76.9%	diverges	77.1%

Nvidia AMP²

AMP FOR PYTORCH

As simple as two lines of code

Wrap the model and optimizer

```
model, optimizer = amp.initialize(model, optimizer)
```

Apply automatic loss scaling and backpropagate with scaled loss

```
with amp.scaled_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
```

 $^{^2 {\}tt https://nvlabs.github.io/iccv2019-mixed-precision-tutorial/}$

Nvidia AMP³: An example

³https://nvlabs.github.io/iccv2019-mixed-precision-tutorial/

References I

- P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh et al., "Mixed precision training," arXiv preprint arXiv:1710.03740, 2017.
- T. Dettmers, M. Lewis, S. Shleifer, and L. Zettlemoyer, "8-bit optimizers via block-wise quantization," *arXiv preprint arXiv:2110.02861*, 2021.
- J. Liu, C. Zhang *et al.*, "Distributed learning systems with first-order methods," *Foundations and Trends® in Databases*, vol. 9, no. 1, pp. 1–100, 2020.