Activités du Lundi 28 Janvier au Vendredi 1 Janvier :

Textes lus:

Chklovski et Pantel. Large-Scale Extraction of Fine-Grained Semantic Relations between Verbs

- o Ressources:
 - o Wordnet
 - o Evca (english verb classes and alternations) 3200 verbes classifiés en 191 classes
- o Savoir si un event s'est produit après tel autre (acheté :: vendre)
 - « X buys Y » happens-before « X sells Y »
- o Verbe = véhicule primaire pour décrire les events et relations entre entités
- o Troponyme : manière de (engloutir, déguster = manière de manger)
- o DIRT = algorithme qui apprend automatiquement des expressions paraphrases à partir du texte :
- o Is solved by = resolves = find a solution to = deals with ... = paraphrases

Bethard, Martin et Klingenstein, (2007). *Timelines from Text: Identification of Syntactic Temporal Relations*

- o Paires Verbe + causal
- o Utilisation de TimeBank
- o SVM model –implémentation TinySVM avec le standard one-vs-rest
- o But : produire de la représentation des connaissances en identifiant les composants sémantiques et les intégrer dans un graph
- o 895 paires extraites du corpus
- o Evaluation → tester plusieurs petites combinaisons de features : « For example, using just the syntactic path or the tense of the clausal event, models were able to achieve 75% accuracy. Accuracies around 70% were achieved using the part of speech or auxiliaries of the clausal event, or using the words between the two events. »

Chambers et Jurafsky, (2008). Jointly Combining Implicit Constraints Improves Temporal Ordering

- o Contraintes : transitivité et normalisation de la timex
- o Incorporer ces contraintes dans un ILP framework
- O Utilisent les relations de TempEval-07 (before, after, vague) sur un document entier plutôt que sur chaque phrase, la tâche inclus tous les event étiquetés de TimeBank + inclusion d'une composante de raisonnement temporel et prendre en compte les contraintes
- o Relations e-e et e-t
- o **Transitive closure**: La « fermeture transitive » a été la première proposition proposée de ne pas aborder le problème du graphe d'événements connectés, mais plutôt d'élargir la taille des données d'apprentissage pour des relations telles qu'avant. Inclus e-t et t-t pas seulement e-e.
- o ILP n'améliore pas leurs résultats, ils ont toujours une exactitude de 66,8%
 - Base : résultats avec TimeBank
 - Global : résultats de ilp avec contraintes utilisant les scores de confiance
 - Global+time: résultats ILP + e-t, t-t
 - ILP n'améliore pas les résultats seuls mais si on ajoute les relations timex ça augmente les résultats de contrainte globale.

Yoshikawa, Riedel, Asahara et Matsumoto, (2009). *Jointly Identifying Temporal Relations with Markov Logic*

- O Utilisation d'un modèle de Markov qui identifie conjointement les relations des trois types de relations simultanément
- o Markov Logic au lieu de ILP pour deux avantages :
 - if A before B and B overlap with C, then A happens before C
 - trouver les bons features et fournir des données en input + exploiter et comparer les méthodes globales d'inférences
- o SRL: Apprentissage relationnel statistique (SRL)

tempsFutur(e) -> nonBeforeDCT(e) : si le temps de l'événement est au futur alors il arrive après le DCT

Markov Logic permet d'en dire plus :

beforeDCT(e1) ^ nonBeforeDCT(e2) -> before(e1,e2) : si e1 est avant le DCT et e2 est après le DCT alors e1 est par conséquent avant e2

- → Exemple de loi de transition
- → Cette loi est le cœur de l'idée de leur approche jointe

Markov Logic Network (formule globale):

3 prédicats cachés:

- relE2T(e, t, r): relation temporelle de la classe \mathbf{r} entre un event \mathbf{e} et le timex $\mathbf{t} \rightarrow \mathbf{r}(\mathbf{e}, \mathbf{t}) \mathbf{A}$
- relDCT(e, r): relation temporelle r entre un event e et le DCT \rightarrow r(e, DCT) B
- relE2E(e1, e2, r): relation r entre 2 event e1 et e2 de phrases adjacentes → r(e1, e2) C

2 prédicats observables :

- relT2T(t1, t2, r) : relation r entre 2 timex t1 et t2 \rightarrow r(t1, t2)
- dctOrder(t, r): relation **r** entre un timex **t** et un **DCT** fixe \rightarrow **r**(**t**, **DCT**)

Résultats:

- o La formule globale n'améliore pas que les scores stricts mais aussi les scores relaxed pour toutes les tâches. Production d'étiquettes plus ambiguës dans les cas où le modèle local a été trop confiant (before-or-overlap au lieu de before ou overlap) et réduit les erreurs = plus cohérent
- o Les relations vagues sont cohérentes mais peu informatives
- o L'apprentissage de paramètres fiables sont + difficiles lorsqu'on a des données bruitées.

Mirza et Tonelli, (2014). Classifying Temporal Relations with Simple Features

o Pour obtenir les features dont A-N. Minard et P. Paramita se sont inspirées

Chambers, Wang, Jurafsky, (2007). Classifying Temporal Relations Between Events

o Amelioration des résultats de travaux déjà présentés grâce à de nouveaux features

Auteurs	Features utilisés	Observations
Auteurs Bethard, Martin et Klingenstei n, (2007). Timelines from Text: Identificatio n of Syntactic Temporal Relations	2 ensembles de features : → Description linguistique d'un event isolé • Word • Pos : the Penn TreeBank gold-standard pos label for the event • Stem -> = lemme ? non le stem coupe le mot mangeais -> mang et le lemme nous remet à la forme canonique. Pour l'anglais le stem suffit peut être. Moins précis mais peut éviter des erreurs car c'est juste du découpage • Aux : auxiliaires qui modifient l'event sont inclus • Modal : pour les modaux • Time-class : TimeBank gold-standard class label for event (state or reporting) • Time-pos : TimeBank gold-standard pos pour les events • Time-tense : TimeBank gold-standard temps pour les events • Time-aspect : TimeBank gold-standard aspect pour les events (progressive / perfective) • Time-polarity : TimeBank gold-standard polarité pour les events (pos / neg)	Résultats: SVM obtient 89,2% d'exactitude. Si un des deux events est « None » → fait baisser l'exactitude La combinaison des 10 meilleurs features = 86,7% d'accuracy, tous les features ensemble donnent un gain de 0,2%. Cela signifie que seulement les 10 meilleurs features suffisent à donner un bon résultat.
	o Compl-word: la forme textuelle du complémentateur → un complémentateur est un mot utilisé pour introduire une clause de complément (to, that, because) Compl-type: Le type du complémentateur (after, overlap) Target-path: le chemin syntaxique partant de la clause jusqu'à sa tête. Inter-words: tous les mots entre deux events Func-words: comme inter-words mais avec: Prepositions: of, at, in, without, between Pronouns: he, they, anybody, it, one Determiners: the, a, that, my, more, much, either, neither Conjunctions: and, that, when, while, although, or Auxiliary: verbs be (is, am, are), have, got, do Particles: no, not, nor, as Features Resulting Accuracy target-path time-tense (2 nd event) pos (2 nd event) pos (2 nd event) func-words func-words func-words func-words func-words func-words func-word func-word stem (2 nd event)	Sur 10 features : ○ 4 pour le mot ○ 5 pour le causal ○ 1 pour le verbe → Signifie que le causal joue un rôle + important que le verbe dans la relation temporelle. En prévisions futures : identifier les features utiles

lls essaient des petites combinaisons voir pour lesquels apportent les \rightarrow meilleurs résultats Features engineering Chambers Features de chaque event : Word: la forme textuelle des deux events et Jurafsky, Lemma : le lemme des deux events (2008).**Synset**: ensemble de synonymes issus de WordNet des deux events Jointly Pos: « 4 POS tags, 3 before, 1 event » pour les 2 events? -> 3 étiquettes des 3 Combining mots d'avant et l'étiquette de l'event *Implicit* POS bigram : le pos des bigrams de l'event et ses tags précédents (des deux Constraints events) (juste celui d'avant, et l'actuel en un seul trait) *Improves* Prep: si il y a une préposition dans chaque event Quelle est la différence entre **Tense**: le temps de chaque event l'aspect et la classe qui fait **Temporal Aspect**: l'aspect de chaque event (grammatical) référence à la classe Ordering Modal : la modalité de chaque event aspectuelle? Dans TimeMl il y a plusieurs Polarity: pos / neg Class: la classe aspectuelle de chaque event classes et y en a une qui est aspectuelle (begin, start, restart, stop) -> lié à la Features de chaque paire : **Tense pair** : les 2 temps concaténés sémantique **Aspect pair** : les 2 aspects concaténés Class pair : les 2 classes concaténées l'aspect. perfect. POS pair : les 2 pos concaténés progressif, etc. -> lié à la **Tense match** : booléen qui renvoie True si les temps des deux events sont les grammaire mêmes **Aspect match**: booléen qui renvoie True si les aspects des deux events sont les mêmes Classe match : booléen qui renvoie True si les classes des deux events sont les mêmes → Dominant selon le **Dominates** : booléen qui renvoie True si l'event 1 domine l'event 2 au niveau chemin de l'arbre syntaxique **Text order** : booléen qui renvoie True si le premier event apparait en premier syntaxique dans le document Entity match: booléen qui renvoie True si les deux events partagent une entité s'ils partagent au moins un comme argument

argument?

entité partagée par argument : sujet du verbe est un agent et ça peut être l'objet du premier événement ou du deuxième

Marie continue d'aller au sport. Continue et aller partagent la même entité Marie qui participé à cet événement.

Lieu, instrument...

Comparative Results with Closure

Same sent : booléen qui renvoie True si les deux event apparaissent dans la

même phrase

Training Set	Accuracy
Timebank Pairwise	66.8%
Global Model	66.8%
Global + time/bethard	70.4%

Figure 7: Using the base Timebank annotated tags for testing, the increase in accuracy on before/after tags.

Transitive closure : La « fermeture transitive » a été la première proposition proposée de ne pas aborder le problème du graphe d'événements connectés,

	mais plutôt d'élargir la taille des données d'apprentissage pour des relations	
	telles qu'avant. Inclus e-t et t-t pas seulement e-e.	
Yoshikawa,	relE2T(e, t, r): relation temporelle de la classe \mathbf{r} entre un event \mathbf{e} et le timex $\mathbf{t} \rightarrow$	
Riedel,	r(e, t) - A	
Asahara et	EVENT-word	
Matsumoto	EVENT-POS	
, (2009).	EVENT-stem	
Jointly	EVENT-aspect	
· ·	EVENT-tense	
Identifying	EVENT-class	
Temporal	EVENT-polarity	
Relations	TIMEX3-word	
with	TIMEX3-POS : si c'est un numeral etc	
Markov	TIMEX3-value : valeur normalisée	
Logic	TIMEX3-type : si c'est date, durée, duration, time, set	
Logic	TIME-DCT order : selon évènement est ce que l'event est after / before le DCT	
	Positional order : ordre entre événement et timex	
	In/outside: ???	
	Unigram(word) : la forme textuelle de l'event	
	Unigram(POS) : le POS de l'event	
	Bigram(POS) : (posEvent posEvent+1)	
	Trigram(POS): (posEvent posEvent+1 posEvent+2)	
	Dependency-Word : si relation type sujet : on prend la forme textuelle de la	
	relation ??	
	Dependency-POS: pos du mot avec laquelle ils ont une dépendance ??	
	reIDCT(e, r): relation temporelle r entre un event e et le DCT \rightarrow r(e, DCT) - B	
	EVENT-aspect	
	EVENT-tense	
	EVENT-class	
	TIME-DCT order	
	Dependency-Word	
	Dependency-POS	
	relE2E(e1, e2, r): relation \mathbf{r} entre 2 event $\mathbf{e1}$ et $\mathbf{e2}$ de phrases adjacentes \rightarrow \mathbf{r} (e1,	
	e2) - C	
	EVENT-word	
	EVENT-POS	
	EVENT-stem	
	EVENT-aspect	
	EVENT-tense	
	EVENT-class	
	EVENT-polarity	
	Unigram(word)	Résultats : Le model global
	Unigram(POS)	n'améliore pas que les scores
	Trigram(POS)	stricts mais aussi les scores
	Dependency-Word	relaxed pour toutes les
		tâches. Production
		d'étiquettes plus ambiguës
		dans les cas où le modèle
		local a été trop confiant
L		a see dop connain

	Tabl	a 7: Comparison	with Other System	e		(before-or-overlap au lieu de
	1401					before ou overlap) et réduit
		Strict re	Task B	_	ask C relaxed	les erreurs = plus cohérent
	TempEval Best TempEval Average CU-TMP	0.62 0.56 0.61	0.64 0.80 0 0.59 0.74 0	.81 0.55 .75 0.51 .76 0.54	0.64 0.58	Le modèle obtient les + hauts
	Local Model Global Model	0.62 0.65	0.67 0.74 0 0.69 0.76 0	.75 0.53 .78 0.57	0.60 0.63	scores dans 2 tâches /3
	Global Model (Task-Adjus			79) (0.58)	(0.64)	
Mirza et	Chaine : chaine des tokens			1.		
Tonelli,	Descripteurs grammaticaus	x : PoS tag, ch	iunk,et binaire p	our dire s	i les events on	t
(2014).	le même PoS					
Classifying	Contexte textuel : la distan			. ,		,
Temporal	Attributs d'entités (attribu		•			
Relations	Informations sur les dépe			de déper	ndances (arbre	е
	syntaxique), est-ce que e1			, ,	c / c	
with Simple	Signaux temporels: la po	osition des é	vénements, exe	emple: b	etore/atter ei	· ,
Features	before/after e2					
	Connecteurs temporels dis			es paires e	event/event	
	Feature	Accuracy	Feature	Accur	acy	
	majority class string	22.17% - 31.07% -	majority class string	36.42% 58.27%	-	
	+grammatical	36.15% 5.08%	+grammatical	61.30%	3.03%	
	+textual_context +tense	39.44% 3.29% 41.10% 1.66%	+textual_context +tense	61.71% 63.10%	0.41% 1.39%	
	+aspect +class	41.10% 0.00% 39.96% -1.14%	+aspect +class	64.51% 65.30%	1.41% 0.79%	
	+polarity	40.44% 0.48%	+polarity	64.88%	-0.42% 0.33%	
	+same_tense +same_aspect	40.55% 0.11% 40.63% 0.08%	+dct +type	65.21% 64.99%	-0.22%	
	+same_class +same_polarity	40.63% 0.00% 40.47% -0.16%	+value	64.60%	-0.39%	
	+ dependency +dependency_order	42.15% 1.68% 41.99% -0.16%	+dependecy +dependency_order	65.60% 65.47%	1.00% -0.13%	
	+dependency_is_root	42.63% 0.64%	+dependency_is_roo	ot 65.22%	-0.25%	
	+temporal_signal +temporal_discourse	42.66% 0.03% 42.82% 0.16%	+temporal_signal	65.43%	0.21%	
	+duration	41.47% -1.35%	+duration	64.19%	-1.24%	
	Table 3: Feature contributions for negative impact on accuracy and a				res in italics have	a
Chambers,	o Attributs des events ir	nspirés des tra	avaux de Pustejo	ovsky et a	l., 2003:	
Wang,		ne, present, p	•			
Jurafsky,	Grammati	i cal aspect (no	one, prog, perfe	ct, prog_p	perfect)	
(2007).	 Modality ((none, to, sho	uld, would, cou	ld, can, m	ight)	
Classifying	 Polarity (p 	ositive, negat	tive)			
Temporal	 Event clas 					
Relations	perceptio					
Between	o Features pour l'apprer	ntissage autoi	matique :			
Events	o PoS tags (2 before ever	nt)			
	o Lemmas					
	 WordNet 	synsets				
		•	t (derivation de	be et hav	e)	
			nay, might, etc)		,	
	Ils ont essayé différents er	· · · · · · · · · · · · · · · · · · ·		acun des	5 attributs. Le	s
	features qui ont été sélect		catales pour on	20411 405	2 3 C. 1. 2 G C. LC	
	Teatares qui ont ete select	.ioiiiics .				

tense: POS-2-event, POS-1-event, POS-of-event, have_word, be_word

aspect : POS-of-event, modal_word, be_word

class: synsetmodality: nonepolarity: none

- Attributs Event-Event features
 - o Event specific:
 - Booléen même temps
 - Booléen même aspect
 - Booléen même event class
 - Bigram temps (present past -> e1 present e2 past)
 - o PoS:
 - Inclus de Penn Treebank POS tag
 - Utilisation de Stanford Parser pour extraire les POS
 - Bigram pos event et token avant l'event
 - Bigram de e1 et e2
 - o E-E propriétés syntaxiques :
 - Dominance syntaxique
 - Indicateur before pour l'ordre des events
 - Est-ce que les events sont dans la même phrase
 - o Phrase prépositionnelle
 - Indicateur si l'event appartient à une PP
 - Event dominance
 - o Discours temporel

С

Exemple des features : (lemma1: require) (lemma2: compromise) (dominates: yes) (tensebigram: past-none) (aspect-bigram: none-none) (tense-match: no) (aspect-match: yes) (before: yes) (same-sent: yes)

Résultats

- 60,45% gold /
 59,13% auto /
 59,43% auto-split
- Meilleurs résultats que les autres travaux grâce aux nouveaux features qu'ils ont ajoutés

Résultats obtenus :

Bethard, Martin, Klinenstein:

Features	Resulting Accuracy
target-path	75.2%
time-tense (2 nd event)	75.0%
pos (2 nd event)	71.2%
inter-words	69.7%
aux (2 nd event)	69.3%
func-words	65.3%
word (2 nd event)	58.8%
compl-word	56.9%
stem (2 nd event)	51.7%
stem (1st event)	49.3%
top 10 features above	86.7%
all features	86.9%

Table 3. Cross-validation accuracies for various feature sets. The first ten rows are for single-feature models.

Chambers, Jurafsky:

Comparative Results with Closure

Training Set	Accuracy
Timebank Pairwise	66.8%
Global Model	66.8%
Global + time/bethard	70.4%

Figure 7: Using the base Timebank annotated tags for testing, the increase in accuracy on before/after tags.

Yoshikawa, Riedel, Matsumoto:

Table 7: Comparison with Other Systems

	Task A		Ta	sk B	Task C	
	strict	relaxed	strict	relaxed	strict	relaxed
TempEval Best	0.62	0.64	0.80	0.81	0.55	0.64
TempEval Average	0.56	0.59	0.74	0.75	0.51	0.58
CU-TMP	0.61	0.63	0.75	0.76	0.54	0.58
Local Model	0.62	0.67	0.74	0.75	0.53	0.60
Global Model	0.65	0.69	0.76	0.78	0.57	0.63
Global Model (Task-Adjusted)	(0.66)	(0.70)	(0.76)	(0.79)	(0.58)	(0.64)

Mirza, Tonelli:

event-ev	ent		event-timex			
Feature	Accuracy		Feature	Accuracy		
majority class	22.17%	-	majority class	36.42%	-	
string	31.07%	-	string	58.27%	-	
+grammatical	36.15%	5.08%	+grammatical	61.30%	3.03%	
+textual_context	39.44%	3.29%	+textual_context	61.71%	0.41%	
+tense	41.10%	1.66%	+tense	63.10%	1.39%	
+aspect	41.10%	0.00%	+aspect	64.51%	1.41%	
+class	39.96%	-1.14%	+class	65.30%	0.79%	
+polarity	40.44%	0.48%	+polarity	64.88%	-0.42%	
+same_tense	40.55%	0.11%	+dct	65.21%	0.33%	
+same_aspect	40.63%	0.08%	+type	64.99%	-0.22%	
+same_class	40.63%	0.00%	+value	64.60%	-0.39%	
+same_polarity	40.47%	-0.16%				
+ dependency	42.15%	1.68%	+dependecy	65.60%	1.00%	
+dependency_order	41.99%	-0.16%	+dependency_order	65.47%	-0.13%	
+dependency_is_root	42.63%	0.64%	+dependency_is_root	65.22%	-0.25%	
+temporal_signal	42.66%	0.03%	+temporal_signal	65.43%	0.21%	
+temporal_discourse	42.82%	0.16%				
+duration	41.47%	-1.35%	+duration	64.19%	-1.24%	

Table 3: Feature contributions for event-event and event-timex classification. Features in *italics* have a negative impact on accuracy and are not included in the final feature set.

Chambers, Wang, Jurafsky, (2007). Classifying Temporal Relations Between Events

Timebank Corpus	Gold	Auto	Auto-Split
Baseline	37.22	37.22	46.58
Mani	50.97	50.19	53.42
Mani+Lapata	52.29	51.57	55.10
All+New	60.45	59.13	59.43

Mani stage one attributes, tense/aspect-match, event strings
Lapata dominance, before, lemma, synset
New prep-phrases, same-sent, class-match, POS uni/bigrams, tense/aspect/class-bigrams

Figure 3: Incremental accuracy by adding features.

Autres textes sur les features / relations temporelles :

Ha, Baikadi, Licata, Lester, (2010). NCSU: Modeling Temporal Relations with Markov Logic and Lexical Ontology

Mirroshandel, Ghassem-Sani, (2012). *Towards Unsupervised Learning of Temporal Relations between Events*

Qu'est-ce que l'on peut en déduire ? Qu'il y a des features qui sont récurrents et essentiels :

- Mot* (tous les auteurs sauf Chambers, Wang, Jurafsky)
 - o Bethard: forme textuelle de l'event
 - o Chambers et Jurafsky : forme textuelle des deux events
 - o Yoshikawa:
 - EVENT-word
 - TIMEX-word
 - Unigram(word)
 - o Chambers, Wang, Jurafsky: pas de mot \rightarrow donnent directement les lemmes des events
 - o Mirza et Tonelli : forme textuelle des deux events
- **PoS*** (tous les auteurs)
 - o Bethard:
 - the Penn TreeBank gold-standard pos label for the event
 - Time-pos
 - o Chambers et Jurafsky:
 - « 4 POS tags, 3 before, 1 event » pour les 2 events ? -> 3 étiquettes des 3 mots d'avant et l'étiquette de l'event
 - POS bigram : le pos des bigrams de l'event et ses tags précédents (des deux events) (juste celui d'avant, et l'actuel en un seul trait)
 - POS pair : les 2 pos concaténés
 - o Yoshikawa : EVENT-POS, TIMEX3-POS, unigram POS, bigram POS, trigram POS, Dependency-POS
 - o Chambers, Wang, Jurafsky: E-E features
 - Penn Treebank POS tag
 - Utilisation de Stanford Parser pour extraire les POS
 - Bigram pos event et token avant l'event
 - Bigram POS de e1 et e2
 - o Mirza et Tonelli : POS tag de chaque event
- **Lemme ou stem** (choisir l'un ou l'autre)*
 - o Lemme (Chambers et Jurafsky Mirza et Tonelli Chambers, Wang, Jurafsky)
 - o Stem (Bethard Yoshikawa)

Comme nous traitons la temporalité, il semble également essentiel d'inclure des features liés au/à :

- Temps* (présent, passé, futur, none) (tous les auteurs)
 - o Bethard:
 - Time-tense : TimeBank gold-standard temps pour les event
 - o Chambers et Jurafsky:
 - Tense : le temps de chaque event
 - Tense pair : les 2 temps concaténés
 - o Yoshikawa:
 - EVENT-tense
 - o Chambers, Wang, Jurafsky:
 - tense: POS-2-event, POS-1-event, POS-of-event, have_word, be_word
 - o Mirza et Tonelli :
 - Attribut d'event : temps

- Aspect* (tous les auteurs)
 - o simple (i wash),
 - o perfect (i have washed),
 - o progressif (i am washing),
 - o perfect progressive (i have been washing))
 - o none
 - o Bethard
 - **Time-aspect**: TimeBank gold-standard aspect pour les event (progressive / perfective)
 - o Chambers et Jurafsky:
 - Aspect : l'aspect de chaque event (grammatical)
 - Aspect pair : les 2 aspects concaténés
 - o Yoshikawa :
 - EVENT-aspect
 - o Chambers, Wang, Jurafsky:
 - aspect : POS-of-event, modal_word, be_word
 - o Mirza et Tonelli :
 - Attributs d'event : aspect
- Classe aspectuelle* (exemples : begin, start, restart, stop, none)
 - o Chambers et Jurafsky:
 - Class: la classe aspectuelle de chaque event
- Signaux temporels+ : la position des événements : e1 before/after, e2 before/after
 - o Mirza et Tonelli :
 - Signaux temporels: la position des événements, exemple: before/after e1, before/after e2 (event-event / event-timex)
 - o Chambers, Wang, Jurafsky:
 - Indicateur before pour l'ordre des events

La prise en compte de l'environnement est intéressante :

		Entourage	lexical / synta	xique	
Bethard	Chambers et Jurafsky	Yoshikawa	Chambers, Wang, Jurafsky	Mirza et Tonelli	Nos propositions
Inter-words : tous les mots entre deux events	Pos: « 4 POS tags, 3 before, 1 event » pour les 2 events?->3 étiquettes des 3 mots d'avant et l'étiquette de l'event	Bigram(POS): (posEvent posEvent+1)		Contexte textuel: la distance en mots entre e1 et e2	4 tokens avant I'event - Aux - Adv - Str - Marqueurs de négation
Func-words: comme inter- words mais inclus uniquement: Prepositions: of, at, in, without, between Pronouns: he, they, anybody, it, one Determiners: the, a, that, my, more, much, either, neither Conjunctions: and, that, when, while, although, or Auxiliary: verbs be (is, am, are), have, got, do Particles: no, not, nor, as		Trigram(POS): (posEvent posEvent+1 posEvent+2)			4 tokens après l'event - Aux - Adv - Str - Marqueurs de négation

Nous pouvons inclure des booléens pour les paires :

- Mêmes mots+?
- Mêmes temps+?
- Mêmes aspects+?
- Inclus dans le même syntagme+? = chunking?
 - o Bethard : pas de booléen
 - o Chambers et Jurafsky:
 - Tense match : booléen qui renvoie True si les temps des deux events sont les mêmes
 - Aspect match : booléen qui renvoie True si les aspects des deux events sont les mêmes
 - Classe match : booléen qui renvoie True si les classes des deux events sont les mêmes
 - **Dominates** : booléen qui renvoie True si l'event 1 domine l'event 2 au niveau syntaxique
 - **Text order** : booléen qui renvoie True si le premier event apparait en premier dans le document
 - Entity match : booléen qui renvoie True si les deux events partagent une entité comme argument
 - Same sent : booléen qui renvoie True si les deux events apparaissent dans la même phrase
 - o Yoshikawa : pas de booléen
 - o Mirza et Tonelli :
 - events ont le même PoS ?
 - o Chambers, Wang, Jurafsky
 - Est-ce que les events sont dans la même phrase
 - Booléen même temps
 - Booléen même aspect
 - Booléen même event class

Autres:

Polarité* (positive / négative) (tous les auteurs)

Utilisation de WordNet pour les synsets (synonymes) ? (Chambers, Jurafsky / Chambers, Wang, Jurafsky)

- * : pour chaque événement
- +: pour chaque paire

Idée (peut-être mauvaise, à voir)

				Inclusion de synonymes des verbes (avec WordNet) pour essayer de
Footure , sup o	. n n.			trouver dans VerbOcean un équivalent en synonyme ?
Feature : syno	. •		01/00	Si l'avant n'act nos dans Varboscan, est es gu'un de ses sun anumes s'u
Extraction d WordNet?	le	synonymes		Si l'event n'est pas dans VerbOcean, est ce qu'un de ses synonymes s'y
wordinet:				trouve ? si oui on prend la relation
				xRy ssi match VerbOcean ou ssi synonyme match dans VerbOcean