13.2 AMOVA	13	3.	2		A	M	0	٧	Δ
------------	----	----	---	--	---	---	---	---	---

spse we would like to compare means between two independent pops with equal variances.

1. e. Y, ~ N (M, ,0,2) Y2~N (M2, 022) 0,=02=02

Under these conditions we developed the Pooled I-test

$$t = \frac{(T_1 - T_2) - 0}{5p \left[\frac{1}{n_1} + \frac{1}{n_2}\right]} - T(n_1 + n_2 - 2)$$

$$= \frac{(N_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

note: We developed the T-dist from

$$\frac{2}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \times$$

note: assume of = Tz = Tz

We will analyze the same problem using an ANOVA procedure

Yoj = jth element from ith pop. (1=1,2 j=1 to ni)

71 = sample mean for ith pop. (1=1,2)

7 = grand mean

Total 55 = \(\frac{2}{5} \) \(\frac{1}{5} - \frac{7}{7}\)^2

Total variation in Y

This quantities all the variability in Y if we put all sample date into one group. The total variability can be partitioned into variability due to treatments and variability due to error.

Total ss = = = = (Ti) = Ti + Ti = T) =

SSE

SSTAT

Svariability amongst Svariability amongst

Eus treated alike" Eus treated differently

i.e. error

$$= \frac{1}{2\sigma^2} \sqrt{(7.-72)^2} \sqrt{\frac{1}{2\sigma^2}} = \frac{1}{2\sigma^2} \frac{55\pi r}{\sigma^2} \sqrt{\frac{1}{2\sigma^2}}$$

For an ANOVA, we develop the test statistic as ...

$$\frac{\left(\frac{1}{2} - \frac{1}{2}\right)^{2}}{\left(\frac{1}{2} - \frac{1}{2}\right)^{2}} = \frac{\left(\frac{1}{2} -$$

$$= \left(\frac{F_1 - F_2}{S_P \int_{A}^{1} f^{-1}}\right)^2 = t^2 \quad \text{1.e. } \quad f = t^2 \quad \text{for } k = 2 \text{ grps}$$

note: This result holds for nitn; but algebra gets messy!

Men	Woman
1,29	12=9 1 assume 0,2=0,2=0
JI = 97,856	92 = 98.4889 " normal Lists.
5,2 = .340	52 = , 301
W: M= M2=0	
4 M M270	
va culculated	T= 97.856-98.4884 = -2.37
	(13207)(1/4 +1)
	V C1 47
رسور	
	.856+98.4889 = 98.1725
-	2-
55TCT = 9	(97.856-98.1725)2+(98.4889-98.1725)2)
= 1:8	1025
SSE = 8(.3	40)+8(.301) = 5.128
F 2 1.8025	= 5,16.2 (-2,37) = 5,62

13.3 Comparison of more than 2 means: ANOVA for one way largent Spee we are interested in testing Holy 1 = 122 ... = Me Even though we are testing means, we use a procedure called Analysis of Variance (ANOVA) The types of designs we will examine in this section are completely randomized designs or one-way ANOVA e.g. We want to compare 5 types of animal diet (I factor : diet at 5 levels or 5 tots) Ho: MI = M2 = ... = M5 e.g. Compare 5 types of corn seed and two types of soil Factor 1: corn seed (5 levels) Factor 2: soil type (2 levels) We could run this as a one-way ANOVA with 5x2=10 trts, but we could estimate the separate effects of seed and soil with a 2-way ANOVA. If we had multiple Ells in each seed / soil combination, we could also estimate interaction r.e. best type of seed changes from one soil type to the next. Buck to one-way AMOVA Data layout: -> overall ang = y .. Jini 9Lnz JKNK 35 72. J.

ľ	
	yej: jth observation in ith tot
İ	Ji = ith tot mean
İ	
İ	= £ 40;
ı	
İ	
	J. = overall mem = £ £ 413
	121 521 (ni+11+nx)
İ	
İ	Model:
	means model Jij = Mi + Eij
	Mi= true mean of ith try
	Eig = random error w/ jth mens in ith fort, 2i; ~ iid N(0,52)
	Sums of Squares
	Total 55 = \(\frac{1}{2} \) \
	Total 35 = 2 2 (90; -9) [== , == ,]
	> represents the total variability amongst all Ells when they
	are combined in one group.
	1 2 (K Mi) 2
	55 Tar = 2 no (90 - 9.1) = 2 To - (121521 715)
	55 Tar = \(\frac{1}{2} \cdot (\frac{1}{3} \cdot (-\frac{1}{3} \cdot (\frac{1}{3} \cdot (
	+ represents variability between tots; i.e. variability
	amongst EUs treated differently
	note: Yi. = { Yis = ith total
) -1

$$SSE = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \overline{y_{ij}})^2 = \sum_{i=1}^{k} (n_i - i) S_i^2$$

This is the error sum of squares and it quantifies the variability among EUs treated alike.

note: SSE = (n,-1)5,2+ --- + (nx-1) 5x2 = "pooled" sample variance

as we know, the sums of squares are additive. We showed this for k=2 in the last section, but we will now verify that it is a general result.

yej - 9 .. = (50-3..) + (40 - 50)

- (yes-5.)2= (Te-J.)2+2(Je-J.)(yes-Je)+(yes-Je)2

Now sum over i and ; . . .

Z Z (y:5-y.,) = Z · Z (y:,-y.,) = 1 = 1 = 1

+ 2 \$ \$ (9: -9.)(4:5-9:)

+ \$ \$ (40; -90)2

=> Total ss = \(\frac{1}{2}\) \(\left(\frac{1}{2}\) \(-\frac{1}{2}\) \(\frac{1}{2}\) \frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac

L			L 30 Ni NO	
	D Total SS =	SSTAT +SSE	+ 2. 2(50-50) - 2/50; - 50	.)
ľ			5-1	

DAN SS = SSTAT TSSE

Source All SS MS STAT FORMS

Tits K-1 SSTAT MSTAT K-1 MSTAT

Error N-K SSE MSE= SSE/(A-K) MSE

Total N-1 Totalss -- France

assumptions:

1) Sampling from normal paps. (robust)

(D) 0,22022 = ... = 0 k2 or n, 2 n2 = = nk

note: MSE is the pooled estimate of the common variance or 2

Example 13.2

Four grass students subjected to different individualized tutoring techniques.

Table 13.2 p.671

Ho: M= M2=M3=M4
Ha: at least one Mis different

in a we different, how about Ti2? Ti2 ... = out looks

reasonable

$$SS_{TQT} = \left(\frac{454^{2} + 544^{2} + 425^{2} + 351^{2}}{6 \cdot 7 \cdot 6 \cdot 4}\right) = \frac{(1774)^{2}}{23}$$

$$= \frac{712.6}{55_{TQT}} = \frac{(65^{2} + 87^{2} + ... + 88^{2})}{23} = \frac{1774^{2}}{23} = \frac{139.511 - 137.602}{23}$$

$$= \frac{(1909.2)}{500}$$

$$Source = \frac{36}{5} = \frac{55}{712.6} = \frac{55}{237.5} = \frac{6}{3.77}$$

$$Error = \frac{19}{19.194.6} = \frac{52.98}{22}$$

$$= \frac{1.994.2}{1.994.2}$$

$$= \frac{1.994.2}$$

(1-2t) = mu(t) · 1 =>

Multi = Multi. Multo

	7hm 7.3
	= \(\frac{2}{5} \left(\frac{1}{5} \right)^2 \\ \frac{7}{6^2} \chi^2 \\ \frac{7}{6^2} \qua
	Let Wa Total 55
	W~ x2 (n-1) and V~ x2 (n-k)
	W= U+V', U= 55+n=
	note: Since U is a fet of sample means from normal date.
	and V is a fet, of sample variances from normal dists.
	20 U, V me ml. (Thm. 7.3)
	50 by (3.5) result W=u+v => u~x^2 ~x^2 (x-1-(n-k))
	or 25+11 × 2 (K-1)
	SSTOT (KAI) SSTOT (KAI) MSTOT FEILINGE SSE (MEN)
	T.e. F = MSFCE B rates of ml. X2 Rus divided by
	their degrees of freedom, k-1 and n-k for the numerator
ā	and denounator respectively

3.5/13.6 A Statistical Model for the One-way Layout / Expected MS Meuns model from before: Yog = Mit Ec; , Ec; ~ iid N(0,02) Effects model: Yes = M+ To+ Ess, Ess ~ Eid N(0,00) M= overall mean ti = non-random effect of ith tot note: we gonorally assume \$ T:=0 i.e. The fit effects Es; = random error associated w/ joh subject in ith that For the means model Ho: M= ... = MK = M ? Equivalent For the effects model Ho: E = " Ex=0 also tests for no significant treatment differences The entire ANOVA table (55, MS, SF, F) are identical in both models. The effects model is used to compute expected mean squares, E(MsTM) and E(MSE) Expected Mean Squares Back to the effects model: y; = μ+ τ; + ε; , ε; ~ (id N(0,02) To make the algobra easier we will assume a balanced design

(N = N = = = N = n)

$$=\sum_{i=1}^{k} \frac{1}{2} - 2\sum_{i=1}^{k} \sum_{i=1}^{k} \frac{1}{2} + k \cdot \sum_{i=1}^{k} \frac{1}{2} = \sum_{i=1}^{k} \frac{1}{2} - 2k \cdot \sum_{i=1}^{k} \frac{1}{2} + k \cdot \sum_{i=1}^{k} \frac{1}{2}$$

$$z \times Q_{3} - K \cdot \left(\frac{Ky}{Q_{5}}\right) = (K-1)Q_{5}$$

Under Ho: Ti=0 => E(MSTRE)=02

note: If Ho is false MSTAT should get large!

Expected Mean Square Error (MSE)

For a balanced design :

グレア

· when Ho is true, we expect " MSTAT and MSE to

· When Ito is false, we "expect" Ms Far to be large relative MSE = 2 1 2 2 2 + 62

13.7 Estimation in the One-way Layout If we reject Ho: M: 12 = ... = Me then we conclude at least one tot mean is different. This leads us to estimating what the actual for means are. Estimate Mi note: We still have the normality assumption and equal variances re. Tig~ N (Mi, 52) > Ye, ~N (Me, 5/Ac) => 100 (ha) no cs for a (o unknown) Yi. + + 012 . 5/5/2 S= pooled sample 5td. dev. = MSE d.f. = (n,+...+nk)-k = n-k Example 13.3 Frad 95% CI for mean score of tutoring technique 1 75.67± (2.093) 562.98 =75.67±6.78

L	
	Estimate Mi-Me'.
	Ye; ~ N (Me, 02) Ye; ~ N (Me, 02)
İ	Tc. ~ N (Me, 0)
İ	
	=> 100 (1-x) 1/2 CE for Mi-Me:
	(9: - 9e.) = taiz · S) n: + ne
ı	agam, 5 = JMSE , d.f. = (n+ 111 PNK)-K = N-K
ı	
	Example 134
	Ford 9500 CF for Mi- My:
	(75.67-87.75) = 2.093 62.98 6 4
İ	-12.08 = 10.73 -> (-22.81, -1.35)
	> we believe tutoring technique 4 produces significantly
	higher scores than tutoring technique !
	note
	O Those CEs are fine if we only compute 1. If we
	make several pairwise comparisons, we need to control
	inflated type I error. (Banferroni, Tuken, Dunett, etc.)
	Disest practice: Planned Orthogonal Contrasts
İ	