CoreLink MMU-401 System Memory Management Unit

Revision: r0p0

Technical Reference Manual

CoreLink MMU-401 System Memory Management Unit Technical Reference Manual

Copyright © 2013 ARM. All rights reserved.

Release Information

The following changes have been made to this book.

Change history

	Issue	Confidentiality	Change
14 March 2013	A	Non-Confidential	First release for r0p0.

Proprietary Notice

Words and logos marked with * or $^{\rm m}$ are registered trademarks or trademarks of ARM * in the EU and other countries, except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the product and its use contained in this document are given by ARM in good faith. However, all warranties implied or expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable for any loss or damage arising from the use of any information in this document, or any error or omission in such information, or any incorrect use of the product.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Contents

CoreLink MMU-401 System Memory Management Unit Technical Reference Manual

Prefa	ace	
	About this book	vi
	Feedback	ix
Intro	oduction	
1.1	About the MMU-401	1-2
1.2	Features of the MMU-401	1-4
1.3		
1.4	Product revisions	1-8
Fund	ctional Description	
2.1	Interfaces	2-2
2.2		
2.3		
2.4	Hit-Under-Miss	2-9
2.5	Fault handling	2-10
2.6	Dynamic programming	2-11
Prog	grammers Model	
3.1	About the programmers model	3-2
3.2	The MMU-401 address map	3-3
3.3		
3.4		
3.5	Global register space 1	3-33
3.6	Integration registers	3-36
3.7		
	Intro 1.1 1.2 1.3 1.4 Fun 2.1 2.2 2.3 2.4 2.5 2.6 Pro 3.1 3.2 3.3 3.4 3.5 3.6	1.2 Features of the MMU-401 1.3 Implementation options for synthesis 1.4 Product revisions Functional Description 2.1 Interfaces 2.2 Stream ID 2.3 Security determination 2.4 Hit-Under-Miss 2.5 Fault handling 2.6 Dynamic programming Programmers Model 3.1 About the programmers model 3.2 The MMU-401 address map 3.3 Register summary 3.4 Global register space 0 3.5 Global register space 1 3.6 Integration registers

	3.8 3.9 3.10	Security state determination address space Peripheral and component identification registers Translation context-bank registers	3-48
Appendix A	Signa	al Descriptions	
• •	A.1	Clock and resets	A-2
	A.2	AXI3 signals	
	A.3	AXI4 signals	
	A.4	ACE-Lite signals	
	A.5	APB signals	
	A.6	LPI signals	
	A.7	Miscellaneous signals	
Appendix B	Revis	sions	

Preface

This preface introduces the *CoreLink MMU-401 System Memory Management Unit (MMU-401) Technical Reference Manual* in the following sections:

- About this book on page vi.
- Feedback on page ix.

About this book

This book is for the MMU-401.

Product revision status

The rnpn identifier indicates the revision status of the product described in this book, where:

rn Identifies the major revision of the product.

pn Identifies the minor revision or modification status of the product.

Intended audience

This book is written for system designers, system integrators, and programmers who are designing or programming a device that uses the MMU-401.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction

Read this for an introduction to the MMU-401 and its features.

Chapter 2 Functional Description

Read this for an overview of the major functional blocks and the operation of the MMU-401.

Chapter 3 Programmers Model

Read this for a description of the MMU-401 memory map and registers.

Appendix A Signal Descriptions

Read this for a description of the MMU-401 signals.

Appendix B Revisions

Read this for a description of the technical changes between released issues of this book.

Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for those terms. The ARM Glossary does not contain terms that are industry standard unless the ARM meaning differs from the generally accepted meaning.

See ARM Glossary, http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.

Conventions

Conventions that this book can use are described in:

- Typographical conventions on page vii.
- Timing diagrams on page vii.
- Signals on page viii.

Typographical conventions

The following table describes the typographical conventions:

Typographical conventions

Style	Purpose
italic	Introduces special terminology, denotes cross-references, and citations.
bold	Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in descriptive lists, where appropriate.
monospace	Denotes text that you can enter at the keyboard, such as commands, file and program names, and source code.
<u>mono</u> space	Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of the full command or option name.
monospace italic	Denotes arguments to monospace text where the argument is to be replaced by a specific value.
monospace bold	Denotes language keywords when used outside example code.
<and></and>	Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For example: MRC p15, 0 <rd>, <crn>, <crm>, <opcode_2></opcode_2></crm></crn></rd>
SMALL CAPITALS	Used in body text for a few terms that have specific technical meanings, that are defined in the <i>ARM glossary</i> . For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Timing diagrams

The figure named *Key to timing diagram conventions* explains the components used in timing diagrams. Variations, when they occur, have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded area at that time. The actual level is unimportant and does not affect normal operation.

Key to timing diagram conventions

Signals

The signal conventions are:

Signal level

The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW. Asserted means:

- HIGH for active-HIGH signals.
- LOW for active-LOW signals.

Lower-case n

At the start or end of a signal name denotes an active-LOW signal.

Additional reading

This section lists publications by ARM and by third parties.

See Infocenter, http://infocenter.arm.com, for access to ARM documentation.

ARM publications

This book contains information that is specific to this product. See the following documents for other relevant information:

- CoreLink MMU-401 System Memory Management Unit Implementation Guide (ARM DII 0292).
- CoreLink MMU-401 System Memory Management Unit Integration Manual (ARM DIT 0052).
- CoreLink MMU-401 System Memory Management Unit AMBA® Designer (ADR-400) User Guide Supplement (ARM DSU 0032).
- ARM System Memory Management Unit Architecture Specification (ARM IHI 0062).
- ARM System Memory Management Unit Architecture Specification 64KB Translation Granule Supplement (ARM IHI 0067).
- *CoreSight*™ *Architecture Specification* (ARM IHI 0029).
- ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition (ARM DDI 0406).
- ARM Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile (ARM DDI 0487).
- *AMBA AXI*[™] *and ACE*[™] *Protocol Specification, AXI3*[™], *AXI4*[™], *and AXI4-Lite*[™], *ACE and ACE-Lite*[™] (ARM IHI 0022).
- *AMBA Specification* (ARM IHI 0011).
- *AMBA 3 APB*[™] *Protocol Specification* (ARM IHI 0024).

Feedback

ARM welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

- The product name.
- The product revision or version.
- An explanation with as much information as you can provide. Include symptoms and diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

ARM also welcomes general suggestions for additions and improvements.

- The title.
- The number, ARM DDI 0521A.
- The page numbers to which your comments apply.
- A concise explanation of your comments.

ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the represented document when used with any other PDF reader.

Chapter 1 **Introduction**

This chapter provides an overview of the MMU-401, described in the following sections:

- About the MMU-401 on page 1-2.
- Features of the MMU-401 on page 1-4.
- *Implementation options for synthesis* on page 1-5.
- *Product revisions* on page 1-8.

1.1 About the MMU-401

The MMU-401 controller provides the address translation that a hypervisor needs to virtualize multiple guest *operating systems* (OSs). It does so by translating the *intermediate physical address* (IPA) defined by an OS to the *physical address* (PA) defined by the hypervisor. If required, the MMU-401 can modify the memory attributes defined by the OS.

Typically:

- An OS is unaware that it is operating under the control of a hypervisor.
- Therefore, the OS performs its operations assuming that it is mapping a virtual addresses
 to a physical addresses directly (that is without the hypervisor control). The hypervisor
 performs the actual IPA to PA address mapping and hides the mapping information from
 the OS.

The addresses generated by the OS are in the IPA address space that must be translated by the MMU-401 controller when they are accessed.

The MMU-401 controller provides address virtualization to processors and other bus masters in a system. It also provides support for the 64KB translation granule. Using a larger granule size can significantly improve the address translation performance because a TLB entry can cover a large page size.

The implementer of the MMU-401 controller can optimize the features, performance, and gate count required for the intended applications.

Figure 1-1 shows the MMU-401 in an example ARM processor and the CoreLink *Cache Coherent Interconnect-400* (CCI-400) system, performing address translation functions for a DMA.

Figure 1-1 MMU-401 in system context

The MMU-401 checks access permissions, translates addresses, and provides the capability to generate or merge access attributes. The *Translation Look-aside Buffer* (TLB) maintenance is done through *Distributed Virtual-memory Messaging* (DVM) signalling or through programmable control registers.

The following are example masters for the MMU-401:

- Graphics Processor Units (GPUs).
- · Video engines.
- *Direct Memory Access* (DMA) controllers.
- Color LCD (CLCD) controllers.
- Network controllers.

Each transaction received by the MMU-401 is passed through the following logical processing steps:

- Security state determination.
- Context determination.
- Page table walk, if the translation is not cached in the TLB.
- Protection checks.
- Attribute generation or merging, depending on the programming.

You can configure the MMU-401 to bypass the translation process for a transaction or to fault a transaction regardless of the translation state.

1.2 Features of the MMU-401

The MMU-401 provides the following functionality:

- Conversion from 32-40 bit Large Physical Address Extension (LPAE) addresses for 32-bit IO devices.
 - For more information on LPAE addresses, see the ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition and the ARM Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile.
- Multiple transaction contexts that can apply to address translations for specific streams of transactions.
 - Up to eight configurable contexts are supported. Each context is mapped by using an input stream ID from the master device that requires the address translations.
- Stage 2 address translations for OS level IPA to PA translations in the ARM LPAE format.
 - For more information on LPAE addresses, see the ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition and the ARM Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile.
- Translation support for the following:
 - ARMv7 4KB, 2MB, and 1GB page sizes.
 - ARMv8 64KB and 512MB page sizes.

For more information on ARM v7 and ARM v8 virtualization extensions, LPAE addresses, see the *ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition* and the *ARM Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile*.

- Provides page table walk (PTW) cache for storing intermediate PTW data.
- Caching of PTW entries in the TLB.
- TLB *Hit-Under-Miss* (HUM) support.
 - Up to four parallel page table walks are supported.
- TLB invalidation through AMBA 4 DVM signalling or register programming.
 - For more information on the DVM, see the *AMBA AXI and ACE Protocol Specification*, *AXI3*, *AXI4*, and *AXI4-Lite*, *ACE and ACE-Lite*.
- Translation and protection checks that include support for TrustZone[®] extensions.
- Fault handling, logging, and signalling excludes demand paging support.
- Debug and performance-monitoring events.
- One AMBA slave interface for connecting a bus master device that requires address translations to support any of:
 - AXI3 protocol.
 - AXI4 protocol.
 - ACE-Lite.
- One AMBA master interface for master device transactions or PTWs that support any of:
 - AXI3 protocol.
 - AXI4 protocol.
 - ACE-Lite with optional DVM extensions the supported AXI data widths are 64 or 128 bits with a configurable depth write buffer.
- APB interface for programming that supports any of the following:
 - One APB3[™] interface each for Secure and Non-secure programming interfaces.
 - An APB4[™] protocol for both Secure and Non-secure programming interfaces.

The MMU-401 is based on the ARM System MMU Architecture Specification.

1.3 Implementation options for synthesis

Table 1-1 shows the implementation options for synthesis.

_____Note _____

In this document, the term configured means statically configured, where Table 1-1 defines a set of selected configuration options.

Table 1-1 Implementation options for synthesis

Configuration option	Range	Description
TLB options		
AXI-ACE-Lite protocol	ACE-Lite AXI3 AXI4	When a dedicated AXI master interface is selected for the PTW, the dedicated master can have a different AXI type from the common AXI interface. If the interface is used for the PTW, then you must use the same AXI types. DVM signaling is available when the dedicated PTW interface or the combined interface without the dedicated PTW interface is of ACE-Lite type. AXI3 does not support: Write data interleaving.
AXI data bus width	64 or 128	Width, in bits, of the AXI data bus. This is the same for both AXI masters if a separate PTW master is selected.
AXI ID signal width	0-23	The incoming AXI ID width is configurable from 0-23. The output AXI ID width changes based on the selected AXI type. For more information, see the <i>CoreLink MMU-401 System Memory Management Unit AMBA Designer (ADR-400) User Guide Supplement.</i>
TLB depth	2-64	The TLB depth.
Implement the TLB using a memory	RAM is used for the TLB. RAM is not used for the TLB.	You can implement the TLB data portion as RAM or flip-flops. Implementing the data portion as RAM optimizes area, but the setup and clock-to-Q delay for the RAM is higher compared to using flip-flops.
Depth of the write buffer	0, 4, 8, or 16	The write buffer can accommodate multiple bursts up to the depth of the buffer. The write data path is not stalled for transactions that the write buffer can hold. For more information, see <i>Hit-Under-Miss</i> on page 2-9.
StreamID - width of the sideband signal	1-15	The width of the StreamID. For more information, see <i>Stream ID</i> on page 2-7.
Width of AXI slave interface AWUSER signals	0-128 bits	Width of AXI slave interface AWUSER signals.
Width of AXI slave interface WUSER signals	0-128 bits	Width of AXI slave interface WUSER signals.
Width of AXI slave interface BUSER signals	0-128 bits	Width of AXI slave interface BUSER signals.
Width of AXI slave interface ARUSER signals	0-128 bits	Width of AXI slave interface ARUSER signals.

Table 1-1 Implementation options for synthesis (continued)

Configuration option	Range	Description
Width of AXI slave interface RUSER signals	0-128 bits	Width of AXI slave interface RUSER signals.
PTW options		
Number of contexts	1-8	Specifies the number of parallel contexts that are supported for a page table walk. This number is equal to the number of page table base addresses and the corresponding attributes that you can specify. MMU-401 can simultaneously execute PTWs.
Number of stream mapping registers (SMRs)	2, 4, 8, 16, 24, or 32	The number of SMR groups. ARM recommends that the number of SMRs selected must not be greater than 2x2STREAM_ID_WIDTH, because the registers exceeding this value are not used.
PTW has separate AXI or ACE port	Enable or disable	You can select a dedicated AXI interface for the PTW block. This ensures that the other AXI interface is reserved for only the device transactions.
AXI or ACE-Lite protocol	ACE-Lite AXI3 AXI4	Specifies the protocol of the dedicated AXI port for the PTW block.
APB3 or APB4 protocol	APB3 or APB4	When you specify the APB3 protocol, two independent APBs are generated, one for Secure and one for Non-secure transactions. The Secure APB has priority over the Non-secure APB. When you specify APB4, one APB interface is generated. The PPROT[1] signal differentiates between Secure and Non-secure transactions.
Security		
Use the Security State Determination (SSD) determination table	SSD table is present. SSD table is not present.	When you specify that the SSD table is not present, the Non-secure state is directly assigned to the incoming sideband signals along with the transaction.
		Writes Non-secure state = wsb_ns, where wsb_ns is the write sideband signal for security. The SSD table entry is 0 for a Secure access and it is 1 for a Non-secure master.
		Reads Non-secure state = rsb_ns, where rsb_ns is the read sideband signal for security. The SSD table entry is 0 for a Secure access and it is 1 for a Non-secure master.
		When you specify that the SSD table is present, you must program the security state in the SSD table.
SSD sideband signal width	0-15	If the Non-secure state is not directly assigned to incoming sideband signals, the SSD index is driven on the sideband signal.
SSDIndex0-31 or SSDIndex0-31	Disable Secure Programmable-Secure Programmable-Non-secure	Specifies the Secure entries of the SSD table.

Table 1-1 Implementation options for synthesis (continued)

Configuration option	Range	Description		
Registering				
AWUSER slave interface registering options	Forward Reverse	Each AXI channel has a configurable register slice in the MMU-401 slave interface. This register slice is configured to be bypass		
WUSER slave interface registering options	Bypass An I/O delay of 70 percent are driven to or driven by An I/O delay of 40 percent are bypassed.	registered, fully registered, forward registered, or reverse registered. An I/O delay of 70 percent of the clock is assumed for interfaces that are driven to or driven by a register.		
BUSER slave interface registering options		An I/O delay of 40 percent of the clock is assumed for interfaces that		
ARUSER slave interface registering options				
RUSER slave interface registering options	-			
Register the bus between PTW and TLB blocks	Reverse A register sli acknowledge	Register slice for PTW request and acknowledge bus. A register slice on the bus that carries PTW request and		
Register the bus between TLB and PTW blocks		acknowledge information. This can help if the routing delay between the TLB and the PTW logic is high.		

1.4 Product revisions

This section describes the differences in functionality between product revisions of the MMU-401:

r0p0 First release.

Chapter 2 **Functional Description**

This section describes the functional operation of the MMU-401, described in the following sections:

- *Interfaces* on page 2-2.
- Stream ID on page 2-7.
- Security determination on page 2-8.
- *Hit-Under-Miss* on page 2-9.
- Fault handling on page 2-10.
- *Dynamic programming* on page 2-11.

2.1 Interfaces

Figure 2-1 shows the MMU-401 block diagram.

Figure 2-1 MMU-401 block diagram

The MMU-401 applies the following logical processing steps to every transaction that flows in:

- 1. Determine the Secure ownership of a transaction. The Secure ownership is in addition to the security state associated with the memory transaction indicated by the **AWPROT[1]** and **ARPROT[1]** signals of the AXI or ACE-Lite channel. This ownership determination is called security state determination.
- 2. Map an incoming transaction to one of the contexts using an incoming stream ID.
- 3. Cache frequently used address ranges using the TLB. The best-case hit latency of this caching is two clocks when the address slave register slices are not specified, and it is three clocks when address slave register slices are specified.
- 4. Perform the main memory PTW automatically on an address miss.
- 5. Share with the processor the same page table formats as specified in the LPAE for maximum efficiency.
 - For more information on LPAE addresses, see the *ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition* and the *ARM Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile*.
- 6. Apply the required fault handling for every transaction.
- 7. Provide debug and performance monitoring capabilities through programmable performance counters that report statistics such as TLB refills or number of read/write accesses.

The TLB and the PTW are the major functional blocks of the MMU-401. The TLB block caches frequently used address ranges and the PTW blocks perform page table walks.

The AXI master interface, with _m suffix, drives the translated address to a downstream slave. You must connect pin-to-pin the read address channel, the write address channel, the read data channel, the write data channel, and the buffered write response channel to the corresponding AXI slave interface.

If the MMU-401 is configured to support a dedicated interface for page table walks, then you must connect the read address channel and the read data response channel of the slave interface responsible for the page table walks to the page table walk channel of the MMU-401. In this configuration, the channel that performs the page table walk contains the _ptw suffix. For example, araddr ptw and acaddr ptw.

You must connect pin-to-pin the read address channel, the write address channel, the read data channel, the write data channel, and the buffered write response channel of the AXI slave interface, with _s suffix to the corresponding AXI master interface. In a system, the master interface can be the AXI bus infrastructure output or an output of a bridge that converts another bus protocol to AXI.

There must be AXI type compatibility between the MMU-401 and the master connected to the MMU-401.

he MMU-401 contains the following interfaces:

- Programming interface.
- AXI3, AXI4, or ACE-Lite interface on page 2-4.
- Low-power interface and clock gating on page 2-5.

2.1.1 Programming interface

To enable the software to program the registers of MMU-401 and to perform debug operations in the MMU-401, use the APB interface as the programming interface.

The MMU-401 provides one of the following APB programming interfaces, which is selected during the MMU-401 configuration:

- The APB4 programming interface. For more information on integrating the MMU-401 into AMBA 4 systems, see the *AMBA Specification*.
- Two APB3 programming interfaces. One of the APB interfaces is configured as Secure, and other interface is configured as Non-secure. You must ensure that only Secure transactions are sent on the Secure interface and only Non-secure transactions on the Non-secure interface. For more information, see the AMBA 3 APB Protocol Specification.

The programming interface also contains the APB slave interface, as the following section describes:

• *APB slave interface.*

APB slave interface

You must connect the APB slave interface to an AMBA 3 APB or AMBA 4 APB master based on the APB configuration type.

If you have configured the AMBA 3 APB interface, then there are two ports with _s suffix for Secure register accesses and _ns suffix for Non-secure register accesses.

The MMU-401 provides a 32-bit address bus, **paddr[31:0**], but it only uses bits[15:2]. The MMU-401 ignores:

• Bits[31:16], but their presence facilitates the process of integrating the MMU-401 with adjacent RTL blocks, such as an interconnect.

• Bits[1:0] because the MMU-401 only permits word accesses to its internal registers.

If the APB interface is not running at the same frequency as that of the **cclk** signal, then you can divide down the frequency using the value of the **pclken** signal.

When operating at this frequency, the APB master must also use the **pclken** signal so that signal states change only on enabled clock edges. If the APB interface is to run at the same frequency as that of the **cclk** signal, then ensure that the **pclken** signal is tied high.

2.1.2 AXI3, AXI4, or ACE-Lite interface

You can configure the MMU-401 to use the AXI3, AXI4, or ACE-Lite interface to receive transactions, translate transactions, and perform page table walks. The interface information is described in the following sections:

- AXI3 interface.
- AXI4 interface.
- *ACE-Lite interface.*
- *TLB block barrier support* on page 2-5.

AXI3 interface

The MMU-401 supports the AXI3 protocol when configured to do so. In this mode, only the AXI3 signaling is present on the main data path through the MMU-401.

The MMU-401 supports DVM messages only if a dedicated ACE-Lite master port is configured for the PTW block.

The following features of AXI3 are not supported in the MMU-401:

•	Write data interleaving.
	Note
	Data corruption can occur if write data and write address ordering are not the same.
•	Locked transactions. The AxLOCK[1] signal bit cannot be set to 1. However, if any transaction has its AxLOCK[1] set, then it is ignored, and the output transaction has the AxLOCK[1] reset. The other bits of the AxLOCK signal are supported.
	Note
	If the MMU-401 receives a locked transaction, the output transaction is passed to the downstream slave as a normal access.

AXI4 interface

The MMU-401 supports the AXI4 protocol when configured to do so. In this mode, only the AXI4 signaling is present on the main data path through the MMU-401.

The MMU-401 supports DVM messages only if a dedicated ACE-Lite master port is configured for the PTW block.

ACE-Lite interface

The MMU-401 supports the ACE-Lite protocol when configured to do so. In this mode, only the ACE-Lite signaling is present on the main data path through the MMU-401.

The MMU-401 supports DVM messages with a combined master port or when a separate ACE-Lite master port is configured for the PTW block.

Note

The MMU-401 does not support invalidation by the IPA or the ARMv8 enhanced DVM messages for invalidation by the IPA.

When you configure the MMU-401 to support ACE-Lite, you must connect the AC channel of the MMU-401 to one of the following:

- The AC channel driven by the CCI.
- An ACE compatible slave interface that supports DVM messages.

ARM recommends you use the DVM channel for TLB maintenance operations. If the system cannot connect to this channel, you must tie the **ACVALID** signal low and you can use the programming interface for TLB maintenance operations.

When you configure the MMU-401 to provide a dedicated AXI channel for performing page table walks, you must specify the **ACVALID** channel to be a part of the channel that performs the page table walks.

TLB block barrier support

A TLB block in the MMU-401 receives and passes on barriers, but does not generates barriers of its own, in response to the **SYNC** signal received from the DVM channel of the PTW block.

The PTW block sends the SYNC signal to the TLB block on receiving one of the following:

- A programmed SYNC message.
- A DVM **SYNC** message that is generated by the MMU-401.

See the AMBA AXI and ACE Protocol Specification AXI3, AXI4, and AXI4-Lite ACE and ACE-Lite for more information on SYNC and DVM SYNC messages

2.1.3 Low-power interface and clock gating

The MMU-401 has two *Low-Power Interfaces* (LPIs) each of which must be connected pin-to-pin to a dedicated interface of a central clock controller. You can use the LPIs to disable the clock of each sub-block of the MMU-401. Alternatively, if there is no system control block, then you must tie the **csysreq_*** signal inputs high, and you can leave the LPI outputs, the **csysack_*** and **cactive_*** signals, unconnected.

See the AMBA AXI and ACE Protocol Specification for additional information on the function of these signals.

----- Note ------

- See the AMBA AXI and ACE Protocol Specification, AXI3, AXI4, and AXI4-Lite, ACE and ACE-Lite for the information on denial of service, that is when the following conditions are true:
 - 1. The **CACTIVE** signal is high.
 - 2. The **CSYSACK** signal is low.
- ARM recommends that you gate the clock when the CSYSACK signal falls.

The MMU-401 has two C-channels that allow you to disable the clock for the PTW and TLB blocks independently, as the following sections describe:

- *TLB block* on page 2-6.
- *PTW block* on page 2-6.

TLB block

An external clock controller can request the TLB block to enter the low-power state by de-asserting the **csysreq tbu** signal.

The TLB block can enter the low-power state under the following conditions:

- No outstanding accesses are pending.
- No input access is pending.
- No TLB maintenance operation is pending.

When the preceding conditions are met, the **cactive_tbu** signal is made low. The low-power entry request is acknowledged by turning the **csysreq_tbu** signal low. You can disable the clock when the **csysack_tbu** and **cactive_tbu** signals are low. See *LPI signals* on page A-18 for information on the C-channel signals.

PTW block

During normal operation, the PTW block is in the idle state. Hence, ARM recommends that you disable the clock for this block.

An external clock controller can request the PTW block to enter the low-power mode by de-asserting the **csysreq tcu** signal.

The PTW block pulls the **cactive tcu** signal low under the following conditions:

- The **PSELx** signal is low.
- The **ACVALID** signal is low.
- No outstanding PTW requests are pending.

The **PSELx** signal is directly connected to the **cactive_tcu** signal. Therefore, if the APB interface is synthesized at a value less than that of the **cclk** signal using the **pclken** signal, treat the **cactive_tcu** signal as one of the following to prevent metastability problems in the clock controller:

- Asynchronous.
- Sampled with the **PCLKEN** signal.

The PTW block acknowledges the low-power entry request by setting the **csysack_tcu** signal low. You can disable the clock when the **csysack_tcu** and **cactive_tcu** signals are low. See *LPI signals* on page A-18 for information on C-channel signals.

2.2 Stream ID

A stream ID is used to map an incoming transaction to a context by using a stream mapping table. The characteristics of the stream ID are as follows:

- The width of the stream ID is selected during the MMU-401 configuration.
- You must specify the stream ID on a dedicated AXI sideband signal. The sideband signal
 width can vary from 1-15, and separate sideband signals are used for read and write
 transactions.

See the ARM System Memory Management Unit Architecture Specification for information on stream ID-to-context mapping.

2.3 Security determination

The MMU-401 determines the Secure ownership of a transaction in one of the following ways:

- The Non-secure state is directly assigned to an incoming sideband signal along with a transaction:
 - For write accesses, the Non-secure state is the write sideband signal for security.
 - For read accesses, the Non-secure state is the read sideband signal for security
- The security state of a master is determined by using the input signals that index an SSD index into the SSD index table. The entry in the SSD index table determines whether the master that initiates the transaction is Secure or Non-secure.
 - The width of the SSD index is configurable from 0-15 bits.
 - The number of programmable entries in the SSD table is configurable from 1-32.
 - The SSD table entries are either programmable for security state at runtime, or non-programmable and fixed at configuration time.

After the SSD index is determined, the SSD table comprises bits from 0-2(SSD Index WIDTH)-1. You must determine the status of the bits as follows:

List of non-programmable indices

For these indices, the security state of the master is defined, and does not change.

You must supply the indices of the masters whose security states are always Secure.

List of programmable indices

An entry must not be duplicated in more than one list.

You can programme the security state of the programmable indices.

You must determine the default state of each master whose security state is programmable.

An SSD index might be programmable or non-programmable, and might be in Secure or Non-secure state. By default, an SSD index is in the

At least one programmable or fixed Non-secure entry must be available in every configuration.

The number of indices is determined by the configured SSD index width. For example, if the SSD index width is 6 bits, there are 64 indices in the range 0-63. You must programme the indices to be one of: programmable Secure, programmable Non-secure, or non-programmable Secure. Any unprogrammed indices default to non-programmable Non-secure.

See the ARM System Memory Management Unit Architecture Specification for information on security determination.

2.4 Hit-Under-Miss

Hit-Under-Miss (HUM) translates a TLB miss transaction and passes the transaction to a downstream slave if the translated TLB miss transaction results in a TLB hit. HUM characteristics for read and write transactions are as follows:

- If the transactions are read accesses, HUM is automatically enabled.
- If the transactions are write operations, HUM is enabled or disabled based on the write buffer depth. You can specify the write buffer depth during configuration.
- If the depth of the write buffer is 0, HUM for write transactions is automatically disabled.
- If the depth of the write buffer is a non-zero value, a hit write transaction is translated only if the write data from a missed transaction can be accommodated in the write buffer.
- The number of outstanding missed transactions is determined by the depth of the write buffer. For example, if the depth of the buffer is four, then it can hold two transactions of length two. Each buffer entry holds only one beat of the transaction, even if it is of a narrow width.

Example 2-1 Hit under miss

If the write buffer depth is eight, and there is a missed write transaction of length four and a
missed write transaction of length three, the transactions are stored in the write buffer when the page table walks for the transactions are performed. If another write hit transaction is performed it is passed through.
—— Note ———— If the write buffer is full with missed write transactions, then HUM cannot occur

2.5 Fault handling

The MMU-401 only supports the terminate fault handling mode that the *ARM System Memory Management Unit Architecture Specification* describes. Fault stalling is not supported.

You can specify the fault reporting characteristics using the following registers:

- The Secure configuration register for global faults.
- The system control register of the context for context faults.

A faulted transaction is aborted (reported as a fault) depending on the values programmed in these registers.

A faulted transaction causes the next incoming transaction to fault when the following conditions are true:

- The second transaction is in the same 4KB region and is in the same context as the first transaction.
- The second transaction is received before the response for the first transaction is sent by the MMU-401.

These faults can occur even if a fault clear is received between the first and second transactions.

For more information on fault handling, see the ARM System Memory Management Unit Architecture Specification.

For more information on fault reporting, see the ARM Architecture Reference Manual ARMv7-A and ARMv7-R editions and the ARM Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile.

If you use the APB4 programming interface, a register access results in a configuration access fault under the following conditions:

- Instruction accesses that set **PPROT[0]** to 0.
- Normal accesses that set **PPROT[2]** to 1.

2.6 Dynamic programming

ARM recommends that you modify the contents of a control register only when there are no outstanding transactions in the MMU-401. If any of the control registers are modified when there is an existing transaction in the MMU-401, then the following behavior occurs:

- If a transaction arrives at the MMU-401 after the **PREADY** signal when a control register is written, the MMU-401 ensures that the new register attributes are applied to the transaction.
- If a transaction is pending within the MMU-401 when a control register is written, it is unpredictable whether the old register attributes or the new register attributes are applied to the transaction.

Chapter 3 **Programmers Model**

This chapter describes the MMU-401 registers and provides information about programming the MMU-401, as the following sections describe:

- *About the programmers model* on page 3-2.
- The MMU-401 address map on page 3-3.
- Register summary on page 3-5.
- *Global register space 0* on page 3-11.
- *Global register space 1* on page 3-33.
- *Integration registers* on page 3-36.
- *Performance monitoring registers* on page 3-39.
- Security state determination address space on page 3-46.
- Peripheral and component identification registers on page 3-48.
- *Translation context-bank registers* on page 3-52.

3.1 About the programmers model

The following information applies to the MMU-401 registers:

- Registers are implemented according to the ARM System Memory Management Unit Architecture Specification with the security extensions implemented in the MMU-401 as follows:
 - Global space 0 registers summary on page 3-5.
 - Global space 1 register summary on page 3-7.
 - Integration registers summary on page 3-7.
 - Performance monitoring registers summary on page 3-8.
 - The MMU-401 security state determination address space summary on page 3-8.
 - Peripheral and component identification summary on page 3-9.
 - Translation context-bank address map summary on page 3-9.

The following information applies to the MMU-401 registers:

- Unless otherwise stated in the accompanying text:
 - Do not modify undefined register bits.
 - Ignore undefined register bits on reads.
 - All register values are UNKNOWN on reset unless otherwise stated.
- Access types of the MMU-401 registers are described as follows:

RAO Read-As-One.

RAO/SBOP Read-As-One, Should-Be-One-or-Preserved on writes.

RAO/WI Read-As-One, Writes Ignored.

RAZ Read-As-Zero.

RAZ/SBZP Read-As-Zero, Should-Be-Zero-or-Preserved on writes.

RAZ/WI Read-As-Zero, Writes Ignored.

RO Read-only.
RW Read and write.
SBO Should-Be-One.

SBOP Should-Be-One-or-Preserved.

SBZ Should-Be-Zero.

SBZP Should-Be-Zero-or-Preserved.

UNK Unknown.WI Write-ignored.WO Write-only.

• When you configure registers using the APB4 programming interface, all transactions must be privileged access and data. In other words, you must set **PPROT[0]**=1 and **PPROT[2]**=0, else the transactions are treated as RAZ/WI.

3.2 The MMU-401 address map

The address map of the programming interface is consistent with the ARM System Memory Management Unit Architecture Specification.

In addition to the registers specified in the *ARM System Memory Management Unit Architecture Specification*, the MMU-401 implements the following configuration, identification, debug, context, integration, performance, and control registers:

- Secure configuration register 0, SMMU SCR0.
- Auxiliary configuration register, SMMU_SACR.
- Identification registers:
 - Identification register 0.
 - Identification register 1.
 - Identification register 2.
 - Identification register 7.
- Debug read pointer register, SMMU DBGRPTR.
- Debug read data register, SMMU DBGRDATA
- Secure alias to Non-secure configuration register 0.
- Secure Alias to Non-secure auxiliary configuration register.
- Stream match registers, SMMU_SMR*n*.
- Stream to context registers, SMMU_S2CR*n*.
- Context-bank fault restricted syndrome registers A, SMMU_CBFRSYNRAn.
- Context-bank attribute registers, SMMU_CBAR*n*.
- Integration enable register, ITEN.
- Integration test input register, ITIP.
- Integration test output register, ITOP.
- Performance monitor event count registers, SMMU_PMEVCNT*n*.
- Performance monitor counter group configuration registers, PMCGCR*n*.
- Performance monitor counter group stream match registers, PMCGSMR*n*.
- Performance monitor configuration register, PMCFG.
- Performance monitor control register, PMCR.
- Performance monitor authentication status register, SMMU CBn AUTHSTATUS.
- Performance monitor device type register, PMDEVTYPE.
- Component identification registers, CIDn.
- Peripheral identification registers, PIDn.
 - PID0.
 - PID1.
 - PID2.
 - PID3.
 - PID4.
 - PID5-7.
- System Control Registers, SMMU CBn SCTLR.
- Translation Table Base Control Registers, SMMU CBn TTBCR.

The MMU-401 is configured through a memory-mapped register frame. The total size of the MMU-401 address range depends on the number of implemented translation contexts.

The MMU-401 address map consists of the following equally-sized portions:

The global address space

The global address space is located at the bottom of the MMU-401 address space, at SMMU_BASE. See Figure 3-1.

The translation context-bank address space

The translation context-bank address space is located above the top of the global address space, at SMMU TOP. See Figure 3-1.

Figure 3-1 MMU-401 address map

You can determine the MMU-401 address range by reading the following register fields:

- SMMU_IDR1.PAGESIZE.
- SMMU IDR1.NUMPAGENDXB.

For more information, see the ARM System Memory Management Unit Architecture Specification.

3.3 Register summary

This section describes the registers of the MMU-401 in base offset order. The register map contains the following main blocks:

- Global space 0 registers summary.
- Global space 1 registers summary on page 3-7.
- *Integration register summary* on page 3-7.
- *Performance monitoring registers summary* on page 3-8.
- Security state determination address space summary on page 3-8.
- *Peripheral and Component identification registers summary* on page 3-9.
- *Translation context-bank registers summary* on page 3-9.

3.3.1 Global space 0 registers summary

Table 3-1 shows the global space 0 registers in the base offset order.

____ Note _____

The addresses that are not described in Table 3-1 are Reserved.

Table 3-1 Global space 0 registers summary

Name	Туре	S or NS ^a	Offset	Description	Notes
SMMU_SCR0 SMMU_CR0	RW	S NS	0x00000	Secure configuration register θ on page 3-11	-Banked with security
SMMU_SCR1	RW	S	0x00004	Secure configuration register 1	Secure only
SMMU_ACR	RW	NS	0x00010	Auxiliary configuration registers on page 3-16	-
SMMU_SACR		S	_		Banked with security
SMMU_IDR0	RO	S NS	0x00020	Identification registers on page 3-18	-
SMMU_IDR1		S NS	0x00024	_	-
SMMU_IDR2		S NS	0x00028	_	-
SMMU_IDR7		S NS	0x0003C	_	-
SMMU_SGFAR[31:0] SMMU_GFAR[31:0]	RW	S	0x00040	Global fault address register	Banked with security
SMMU_SGFAR[63:32] SMMU_GFAR[63:32]			0x00044	_	
SMMU_GFSR	RW	NS	0x00048	Global fault status register	-
SMMU_SGFSR		S	=		Banked with security

Table 3-1 Global space 0 registers summary (continued)

Name	Type	S or NSª	Offset	Description	Notes
SMMU_GFSRRESTORE	WO	NS	0x0004C	Global fault status register restore	-
SMMU_SGFSRRESTORE	_	S	-		Banked with security
SMMU_GFSYNR0	RW	NS	0x00050	Global fault syndrome register 0	-
SMMU_SGFSYNR0	_	S	=		Banked with security
SMMU_GFSYNR1	RW	NS	0x00054	Global fault syndrome register 1	-
SMMU_SGFSYNR1	_	S	-		Banked with security
SMMU_STLBIALL	WO	S NS	0x00060	Invalidate entire TLB register	-
SMMU_TLBIVMID	WO	NS	0x00064	Invalidate TLB by the virtual machine identifier (VMID) register	-
SMMU_TLBIALLNSNH	WO	NS	0x00068	Invalidate entire Non-secure Non-hyp TLB register	-
SMMU_STLBGSYNC	WO	S	0x00070	Global synchronize TLB invalidate register	-
SMMU_TLBGSYNC	-	NS			-
SMMU_STLBGSTATUS	RO	S NS	0x00074	Global TLB status register	Banked with security
SMMU_TLBGSTATUS	_				-
SMMU_DBGRPTR	RW	S	0x00080	Debug registers on page 3-25	-
SMMU_DBGRDATA	RO	S	0x00084		-
SMMU_NSCR0	RW	S	0x00400	Secure alias to Non-secure configuration register 0 on page 3-29	Secure only
SMMU_NSACR	RW	S	0x00410	Secure Alias to Non-secure auxiliary configuration register on page 3-30	Secure only
SMMU_NSGFAR[31:0]b	RW	S	0x00440	Secure alias for Non-secure global fault address register	Secure only, 64-bit
SMMU_NSGFAR[63:32]b	RW	S	0x00444	Secure alias for Non-secure global fault address register	_
SMMU_NSGFSRb	WO	S	0x00448	Secure alias for Non-secure global fault status register	Secure only
SMMU_NSGFSRRESTOREb	WO	S	0x0044C	Secure alias for Non-secure global fault status register restore	Secure only
SMMU_NSGFSYNR0b	RW	S	0x00450	Secure alias for Non-secure global fault syndrome register 0	Secure only
SMMU_NSGFSYNR1b	RW	S	0x00454	Secure alias for Non-secure global fault syndrome register 1	Secure only

Table 3-1 Global space 0 registers summary (continued)

Name	Туре	S or NSa	Offset	Description	Notes
SMMU_NSTLBGSYNCb	WO	S	0x00470	Secure alias for Non-secure global synchronize TLB invalidate register	Secure only
SMMU_NSTLBGSTATUSb	RO	S	0x00474	Secure alias for Non-secure global TLB status register	Secure only
SMMU_SMRn	RW	S NS	0x00800- 0x0087C	Stream match registers on page 3-30	-
SMMU_S2CRn	RW	S NS	0x00C00- 0x00C7C	Stream to context registers on page 3-31	-

a. S stands for Secure and NS stands for Non-secure.

3.3.2 Global space 1 registers summary

Table 3-2 shows the translation context-bank address map in the base offset order.

Table 3-2 Global space 1 register summary

Name	Туре	S or NS	Offset	Description
SMMU_CBAR0-7	RW	NS	0x1000-0x101C	Context-bank attribute registers on page 3-33
SMMU_CBFRSYNRA0-7	RW	-	0x1400-0x141C	Context-bank fault restricted syndrome registers A on page 3-34
SMMU_CBA2R0-7	RW	-	0x1800-0x180C	See the ARM System Memory Management Unit Architecture Specification 64KB Translation Granule Supplement.

3.3.3 Integration register summary

Table 3-3 shows the integration registers in the base offset order.

Table 3-3 Integration registers summary

Name	Type	S or NS	Offset	Description
ITEN	RW	NS	0x2000	Integration enable register on page 3-36
ITIP	RO	S	0x2004	Integration test input register on page 3-37
ITOP	RW	_	0x2008	Integration test output register on page 3-37

b. Using Secure aliases, the Non-secure version of the banked registers are accessed.

3.3.4 Performance monitoring registers summary

Table 3-4 shows the performance monitoring registers in the base offset order.

Table 3-4 Performance monitoring registers summary

Name	Туре	S or NS	Offset	Description
PMEVCNTR0-2	RW	NS	0x3000-0x300 8	Performance monitor event count registers
PMEVTYPE0-2	RW	-	0x3400-0x340 8	Performance monitor event type select registers
PMCGCR <i>n</i>	RW	-	0x3800	Performance monitor counter group configuration registers on page 3-39
PMCGSMR <i>n</i>	RW	NS	0x3A00	Performance monitor counter group stream match registers on page 3-40
PMCNTENSET <i>n</i>	RW	-	0x3C00	Performance monitor counter enable set and clear registers
PMCNTENCLR <i>n</i>	_		0x3C20	-
PMINTENSET <i>n</i>	RW	=	0x3C40	Performance monitor interrupt enable set and clear registers
PMINTENCLR <i>n</i>	_		0x3C60	_
PMOVSCLR <i>n</i>	RW	-	0x3C80	Performance monitor overflow status set and clear registers
PMOVSSET <i>n</i>	_		0x3CC0	_
PMCFGR	RO	-	0x3E00	Performance monitor configuration register on page 3-41
PMCR	RW	-	0x3E04	Performance monitor control register on page 3-42
PMCEID0-1	RO	=	0x3E20-0x3E2	Performance monitor common event ID registers
PMAUTHSTATU S	RO	-	0x3FB8	Performance monitor authentication status register on page 3-43
PMDEVTYPE	RO	-	0x3FCC	Performance monitor device type register on page 3-45

3.3.5 Security state determination address space summary

Table 3-5 shows the MMU-401 security state address space and its attributes.

Table 3-5 The MMU-401 security state determination address space summary

Name	Туре	S or NS	Offset	Description
SMMU_SSDR0-1023	UNK/SBOP/WI/RO/RWa	S	0x04000-0x04FFC	Security state determination address space on page 3-46

a. If the SSD table is not implemented, the bits are UNK or SBOP.
 If the SSD table is implemented, the non-defined bits are UNK, SBOP, or WI. The defined bits are RO or RW.

3.3.6 Peripheral and Component identification registers summary

Table 3-6 shows the Peripheral and Component identification registers in the base offset order.

Table 3-6 Peripheral and component identification summary

Name	Type	S or NS	Offset	Description
Periph ID 4	RO	NS	0x0FFD0	Peripheral identification registers on page 3-48
Periph ID 5	=	S	0x0FFD4	•
Periph ID 6	=		0x0FFD8	
Periph ID 7	=		0x0FFDC	
Periph ID 0	=		0x0FFE0	
Periph ID 1	-		0x0FFE4	•
Periph ID 2	=		0x0FFE8	•
Periph ID 3	=		0x0FFEC	•
Component ID0	-		0x0FFF0	Component identification registers on page 3-48
Component ID1	-		0x0FFF4	•
Component ID2	=		0x0FFF8	
Component ID3	=		0x0FFFC	-

3.3.7 Translation context-bank registers summary

Table 3-7 shows the translation context-bank address map in the base offset order.

Table 3-7 Translation context-bank address map summary

Name	Type	Size	Offset	Description
SMMU_CBn_SCTLR	RW	32	0x00000	System control register on page 3-52
SMMU_CBn_TTBR0[64:0]	_	64	0x00020-0x00024	Translation Table Base Register
SMMU_CBn_TTBCR	_	32	0x00030	Translation table base control register on page 3-55
SMMU_CBn_FSRa	-	-	0x00058	Fault registers:
SMMU_CBn_FSRRESTOREa	_		0x0005C	Fault status register.Fault status restore register.
SMMU_CBn_FAR[31:0]a	<u> </u>		0x00060	Fault address register.
SMMU_CBn_FAR[63:32]a	<u> </u>		0x00064	Fault syndrome registers. See the ARM System Memory Management Unit
SMMU_CBn_FSYNR0a			0x00068 Architecture Specification.	

Table 3-7 Translation context-bank address map summary (continued)

Name	Туре	Size	Offset	Description
SMMU_CBn_PMXEVCNTRm	-	-	0x00E00-0x00E08	See Performance monitoring registers on page 3-39.
SMMU_CB <i>n</i> _PMXEVTYPER <i>m</i>	_		0x00E80-0x00E88	-
SMMU_CBn_PMCFGR	_		0x00F00	-
SMMU_CBn_PMCR	_		0x00F04	_
SMMU_CBn_PMCEID0-1	_		0x00F20	-
SMMU_CBn_PMCNTENSET	_		0x00F40	_
SMMU_CBn_PMCNTENCLR	_		0x00F44	_
SMMU_CBn_PMINTENSET	_		0x00F48	-
SMMU_CBn_PMINTENCLR	_		0x00F4C	_
SMMU_CBn_PMOVSRCLR	_		0x00F54	-
SMMU_CBn_PMOVSRSET	_		0x00F50	-
SMMU_CBn_PMAUTHSTATUS	_		0x00FB8	-

a. Follow the format that *Global register space 0* on page 3-11 describes.

3.4 Global register space 0

The MMU-401 global register space 0 provides the high-level control of the MMU-401 resources and maps device transactions to translation context-banks, as the following sections describe:

- Secure configuration register 0.
- Auxiliary configuration registers on page 3-16.
- *Identification registers* on page 3-18.
- Debug registers on page 3-25.
- Secure alias to Non-secure configuration register 0 on page 3-29.
- Secure Alias to Non-secure auxiliary configuration register on page 3-30.
- Stream match registers on page 3-30.
- Stream to context registers on page 3-31.

3.4.1 Secure configuration register 0

Attributes

The Secure configuration register 0, SMMU SCR0, characteristics are:

Purpose	Contains top-level control of the MMU-401 that is only accessible by a Secure access.			
	Note			
	The Non-secure register, SMMU_CR0, does not provide the complete top-level control of the MMU-401 for Secure transactions. In implementations that support security extensions, certain SMMU_CR0 fields apply only to Non-secure transactions.			
Configuration	Available in all configurations of the MMU-401.			
Usage constraints	There are no usage constraints.			

Figure 3-2 on page 3-12 shows the bit assignments.

See Table 3-1 on page 3-5.

Figure 3-2 Secure configuration register 0 bit assignments

Table 3-8 shows the bit assignments.

Table 3-8 Secure configuration register 0 bit assignments

Bits	Name	Reset value	Description
[31:30]	Reserved	-	Reserved.
[29:28]	NSCFG	-	Non-secure configuration. The possible values of this field are:
			Use the value of the APROT[1] signal that is presented with the transaction.
			0b01 Reserved.
			0b10 Secure.
			0b11 Non-secure.
			Note
			 This bit field is only present in the SMMU_SCR0 register. In the SMMU_CR0 register, the bit field is Reserved.
			• This bit field applies to the processing of Secure transactions that bypass the MMU-401 stream mapping process. This bypass condition can occur if:
			 The SMMU_SCR0.CLIENTPD bit is set to 0b1.
			 The transaction does not match have a match the stream mapping table and the SMMU SCR0.USFCFG bit is set to 0b0.

Table 3-8 Secure configuration register 0 bit assignments (continued)

Bits	Name	Reset value	Description		
[27:26]	WACFG	-	Write allocate configuration. This bit field controls the allocation hint for write accesses. The possible values of this bit field are:		
			Use allocation attributes that are presented with the transaction.		
			0b01 Reserved.		
			0b10 Allocate.		
			0b11 No allocate.		
			Note		
			This field applies to transactions that bypass the MMU-401 stream mapping table. The bypass condition can occur if:		
			• The SMMU_CR0.CLIENTPD bit is set to 0b1.		
			• The transaction does not have a match in the stream mapping table, and the SMMU_CR0.USFCFG bit is set to 0b0.		
[25:24]	RACFG	-	Read allocate configuration. This bit field controls the allocation hint for read accesses. The possible values of this field are:		
			0b00 Use allocation attributes that are presented with the transaction.		
			0b01 Reserved.		
			0b10 Allocate.		
			0b11 No allocate.		
			Note		
			This field applies to transactions that bypass the MMU-401 stream mapping process. This bypass condition can occur if:		
			• The SMMU_CR0.CLIENTPD bit is set to 0b1.		
			• The transaction does not have a match in the stream mapping table, and the SMMU_CR0.USFCFG bit is set to 0b0.		
[23:22]	SHCFG	-	Shared configuration. The possible values of this bit field are:		
			Use shareable attributes that are presented with the transaction.		
			0b01 Outer-shareable.		
			0b10 Inner-shareable.		
			0b11 Non-shareable.		
			Note		
			This field applies to transactions that bypass the MMU-401 stream mapping process. This bypass condition can occur if:		
			• The SMMU_CR0.CLIENTPD bit is set to 0b1.		
			• The transaction does not have a match in the stream mapping table, and the SMMU_CR0.USFCFG bit is set to 0b0.		

Table 3-8 Secure configuration register 0 bit assignments (continued)

Bits	Name	Reset value	Description		
[21]	SMCFCFG	-	Stream match conflict fault configuration. This bit field controls the handling of client transactions that match multiple entries in the stream mapping table. The possible values of this bit are:		
			0b0 Permit pass through.		
			0b1 Raise a stream match conflict fault.		
			—— Note ———		
			The MMU-401 considers this bit as RAO/WI.		
			• The MMU-401 does not guarantee detection of all occurrences of the stream match conflict fault. See the <i>ARM System Memory Management Unit Architecture Specification</i> for more information.		
[20]	MTCFG	0b0	Memory type configuration. The possible values of this bit are:		
. ,			0b0 Use the memory attributes that are presented with the transaction.		
			0b1 Use the SMMU_CR0.MemAttr field for the memory attributes.		
			Note		
			 This field applies to the processing of Non-secure transactions that bypass the MMU-401 stream mapping process. This bypass condition can occur if: The SMMU_CR0.CLIENTPD bit is set to 0b1. The transaction does not have a match in the stream mapping table and the SMMU_CR0.USFCFG bit is set to 0b0. 		
[19:16]	MemAttr	-	Memory attributes. The memory attributes might be overlaid if the SMMU_CR0.MTCF0 bit is set to 0b1.		
[15:14]	BSU	-	Barrier shareability upgrade. This bit upgrades the required shareability domain of the barriers issued by the client devices that are not mapped to a translation context, by setting the minimum shareability domain that is applied to a barrier. The possible values of this field are:		
			0b00 No effect.		
			0b01 Inner shareable.		
			0b10 Outer shareable.		
			0b11 Full system.		
			Note		
			• The MMU-401 supports this bit only in ACE-Lite configurations.		
			• This field only applies to barriers that are received by the MMU-401.		

Table 3-8 Secure configuration register 0 bit assignments (continued)

Bits	Name	Reset value	Description		
[13]	FB	-	The force broadcast of the TLB branch predictor invalidate all (BPIALL) and instruction cache invalidate all to PoU (ICIALLU) maintenance operations.		
			If the bit is set to 0b0, the affected operations are modified to the equivalent broadcast variant in the inner shareable domain. The possible values of this bit are:		
			Process affected operations that are presented with the transaction. Upgrade affected operations to broadcast within the inner shareable domain.		
			Note		
			This field applies to the processing of transactions that bypass the MMU-401 stream mapping process. For Non-secure transactions, this bypass condition can occur if: • The SMMU_CR0.CLIENTPD bit is set to 0b1.		
			 The simmo_cko.celentrib bit is set to obt. The transaction does not have a match in the stream mapping table and the SMMU_CR0.USFCFG bit is set to obt. 		
			A similar set of conditions exist for the Secure transaction bypass.		
[12]	PTM	0b0	Private TLB maintenance. The possible values of this bit are:		
			The functionality is specified by the SMMU_IDR0.BTM bit. If it is supported in the implementation, then the MMU-401 must participate in the broadcast TLB maintenance with the wider system.		
			0b1 The MMU-401 TLBs are managed privately from the wider system, and it is not necessary to respond to the broadcast TLB maintenance operations. This bit is a hint. A broadcast TLB invalidate operation can affect cached translation in the		
			MMU-401, and can apply to all unlocked entries.		
[11]	VMIDPNE	-	VMID private namespace enable. The possible values of this bit are:		
			0b0 The MMU-401 VMID values are coordinated with the wider system.		
			Ob1 The MMU-401 VMID values are in a private namespace that is not coordinated with the wider system.		
			This field is a hint. If this bit is set to 0b1, the broadcast TLB invalidate operations that specify a VMID value are not required to apply to cached translations in the MMU-401. A broadcast TLB Invalidate operation can affect cached translation in the MMU-401, and can apply to all unlocked entries.		
[10]	USFCFG	0b0	Unidentified stream fault configuration. The possible values of this bit are:		
			Permit transactions that do not match any entries in the stream mapping table to pass through.		
			Raise an unidentified stream fault on transactions that do not match any entries in the stream mapping table.		
[9]	GSE	0b0	Global stall enable. The possible values of this bit are:		
			0b0 Do not enforce global stalling across contexts.		
			0b1 Enforce global stalling across contexts. This bit is RAZ/WI.		
[8]	STALLD	0b0	Stall disable. The possible values of this bit are:		
			0b0 Enable per-context stalling on context faults.		
			0b1 Disable per-context stalling on context faults.		
			This bit is RAO/WI.		
			In implementations that support security extensions, this bit must apply to a Non-secure translation context-bank. The bit can optionally apply to a Secure translation context-bank, and can affect the value of the SMMU_SCR0.GSE bit.		

Table 3-8 Secure configuration register 0 bit assignments (continued)

Bits	Name	Reset value	Description	
[7:6]	Reserved	-	Reserved.	
[5]	GCFGFIE	0b0	Global configuration fault interrupt enable. The possible values of this bit	t are:
			ObO Do not raise an interrupt on a global configuration fault.	
			0b1 Raise an interrupt on a global configuration fault.	
[4]	GCFGFRE	0b0	Global configuration fault report enable. The possible values of this bit an	re:
			0b0 Do not return an abort on a global configuration fault.	
			0b1 Return an abort on a global configuration fault.	
[3]	Reserved	-	Reserved.	
[2]	GFIE	0b0	Global fault interrupt enable. The possible values of this bit are:	
			0b0 Do not raise an interrupt on global fault.	
			0b1 Raise an interrupt on a global fault.	
[1]	GFRE	0b0	Global fault report enable. The possible values of this bit are:	
			0b0 Do not return an abort on a global fault.	
			0b1 Return an abort on a global fault.	
[0]	CLIENTPD	0b1	Client port disable. The possible values of this bit are:	
			ObO The MMU-401 client accesses are subject to translation, a and attribute generation.	access control,
			Ob1 The MMU-401 client accesses bypass translation, access attribute generation.	control, and

3.4.2 Auxiliary configuration registers

The auxiliary configuration registers characteristics are:

Purpose For the MMU-401, the auxiliary configuration registers, SMMU_ACR

and SMMU_SACR, are defined as Table 3-9 on page 3-17 shows.

Configuration Available in all configurations of the MMU-401.

Usage constraints The WC2EN, WC1EN, and PREFETCHEN bits are Non-secure only.

Other bits are banked with security.

Attributes See *Global space 0 registers summary* on page 3-5.

Figure 3-3 shows the bit assignments.

Figure 3-3 Auxiliary configuration registers bit assignments

Note	Note	
------	------	--

Bits[0:2] are valid only for the ACR Register, whereas bits[8:10] are valid for both the ACR and SACR registers.

Table 3-9 shows the bit assignments.

Table 3-9 Auxiliary configuration registers bit assignments

Bits	Name	Descriptio	n		
[31:11]	Reserved	Reserved.			
[10]	S2CRB_TLBEN	Stream to context register bypass TLB enabled. The possible values of this bit are:			
	_	0b0	Do not update TLB with the SMMU_S2CR <i>n</i> register bypassed transaction information.		
		0b1	Update TLB with the SMMU_S2CRn register bypassed transaction information.		
[9]	MMUDISB_TLBEN	MMU disab	led bypass TLB enable.		
			401 caches in the TLB the attribute information for transactions that have been context, but the MMU_CBn_SCTLR.M bit of the context is set to 0.		
			g saves a minimum of six clock cycles for handling such transactions, but could save depending on how busy the MMU-401 is.		
			ble or disable this behavior by using SMMU_ACR.MMUDISB_TLBEN bit. The ues of this bit are:		
		0b0 0b1	Do not update the TLB with the MMU-401 disabled transaction information. Update the TLB with the MMU-401 disabled transaction information.		
[8]	SMTNMB TLBEN	Stream mate	th table no match TLB enabled. The possible values of this bit are:		
	_	0b0	Do not update the TLB with the stream match table no match bypassed transaction information.		
		0b1	Update the TLB with the stream match table no match bypassed transaction information.		
[7:3]	Reserved	Reserved.			
[2]	WC2EN	Walk cache 2 Enable. The MMU-401 caches the level 2 page table walk in the walk cache 2. You can enable or disable this behavior by using the SMMU_ACR.WC2EN bit. The possible value of this bit are:			
		0b0	Disable the walk cache 2 functionality.		
		0b1	Enable the walk cache 2 functionality.		
[1] WC1EN Walk cache 1 enable can enable or disab			1 enable. The MMU-401 caches the level 1 page table walk in the walk cache 1. You or disable this behavior by using the SMMU_ACR.WC1EN bit. The possible values e:		
		0b0	Disable the walk cache 1 functionality.		
		0b1	Enable the walk cache 1 functionality.		
[0]	PREFETCHEN	level 3 page	fer enable. The MMU-401 prefetches the next page table entry while performing a table walk. You can enable or disable this behavior by using the R.PREFETCHEN bit. The possible values of this bit are:		
		0b0	Disable the prefetch buffer.		
		0b1	Enable the prefetch buffer.		
		No	te ———		
			ess is not enabled when the SMMU CBn TTBCR.TG0 bit is set.		

3.4.3 Identification registers

The identification register characteristics are:

Purpose

The identification registers, SMMU_IDRn and SMMU_SIDRn, provide information on the capability of the MMU-401. This section describes the following identification registers:

- *Identification register 0.*
- *Identification register 1* on page 3-21.
- *Identification register 2* on page 3-23.
- *Identification register 7* on page 3-24.

The MMU-401 allows the Secure software to reserve certain MMU-401 resources for its own use. See *Identification register 0*.

The Non-secure versions of the SMMU_IDR*n* registers report the number of resources excluding the number reserved by the Secure software, that is, a number potentially lower than the number of physically-implemented resources.

Configuration Available in all configurations of the MMU-401.

Usage constraints There are no usage constraints.

Attributes Global space 0 registers summary on page 3-5.

_____Note _____

The MMU-401 does not support stage 1 followed by stage 2 translations.

Figure 3-4 shows the bit assignments.

Figure 3-4 Identification register 0 bit assignments

Table 3-10 shows the bit assignments.

Table 3-10 Identification register 0 bit assignments

Bits	Name	Reset value	Description		
[31]	SES	0b1	Security extension support.		
[30]	S1TS	0b0	Not supported in the MMU-401.		
[29] S2TS	0b1	Stage 2 translation support. The possible values of this bit are:			
			 Øb0 Stage 2 translations are not supported. Øb1 Stage 2 translations are supported. This field only applies to Non-secure client 		
			transactions.		
[28]	NTS	0b0	Stage 1 followed by stage 2 translation support. The possible values of this bit are:		
			ObO Stage 1 followed by stage 2 translations are not supported. This value is always enabled for the MMU-401.		
		Ob1 Stage 1 followed by stage translations are supported.			
			This field only applies to Non-secure client transactions.		
[27]	SMS	0b1	Stream Match Support. The possible values of this b are:		
			ObO Stream match register functionality is not present.		
		Ob1 Stream match register functionality is present.			
[26]	Reserved	-	Reserved.		
[25:24]	PTFS	0b01	Page table format support. The possible values of this bit field are:		
		0b00 The ARMv7 VMSA long descriptor translation table format (V7L) and the ARMv7 VMSA short descriptor translation table format (V7S) formats are supported.			
			0b01 V7L format are supported.		
			0b10 The ARMv8 VMSA long descriptor translation table format (V8L), V7L, and V7S formats are supported.		
			0b11 V8L and V7L formats are supported.		

Table 3-10 Identification register 0 bit assignments (continued)

Bits	Name	Reset value	Description
[23:16]	NUMIRPT	0b1	Number of implementation context interrupts. This bit field indicates the number of context fault interrupts that the MMU-401 supports (one).
			Note
			A value 0b0 indicates implementations that do not provide context-banks.
			Interaction with security extensions
			In implementations that support security extensions, this bit field indicates the value configured in the SMMU_SCR1.NSNUMIRPTO bit.
			Note
			When the Secure software provides one or more context-banks to the Non-secure software, the software must also specify at least one use of context interrupt.
[15]	Reserved	-	Reserved.
[14]	CTTW	Tied-off to the cfg_cttw signal.	Coherent translation table walk. The possible values of this bit are:
			ObO Coherent translation table walk is not supported.
			Ob1 Coherent translation table walk is supported.
[13]	BTM	TM When you select: AXI3 or AXI4 The reset value is 0b0.	Broadcast TLB maintenance. The possible values of this bit are:
		ACE-Lite The the reset value is 0b1.	ObO Broadcast TLB maintenance is not supported.
			0b1 Broadcast TLB maintenance is supported.

Table 3-10 Identification register 0 bit assignments (continued)

Bits	Name	Reset value	Description
[12:9]	NUMSIDB	Configured stream ID width	Number of stream ID bits. This bit field indicates the number of stream ID bits that are implemented. The valid range is 0-15.
			——— Note ————
			You can anticipate a 0 bit stream ID, where the sources of a single stream ID is the MMU-401.
[8]	Reserved	-	Reserved.
[7:0]	NUMSMRG	Configured number of stream mapping registers	Number of stream mapping register groups. This bit field indicates the number of entries in the stream match table.
			See the CoreLink MMU-401 System Memory Management Unit AMBA Designer (ADR-401) User Guide Supplement for valid values for the number of stream mapping registers.
			In implementations that support the stream match table, this bit field has a value of greater than or equal to 1.
			Interaction with security extensions
			In implementations that support security extensions, this bit field reflects the configured value in SMMU_SCR1.NSNUMSMRGO.
			—— Note ———
			In implementations that support the stream match table, the Secure software must provide the Non-secure software with the use of at least one stream match register group.

Figure 3-5 shows the bit assignments.

Figure 3-5 Identification register 1 bit assignments

Table 3-11 shows the bit assignments.

Table 3-11 Identification register 1 bit assignments

Bits	Name	Reset value	Description
[31]	PAGESIZE	0b0	The MMU-401 page size. This bit Indicates the size of each page in the MMU-401 register map. The possible values of this bit are:
			0b0 4KB.
			0b1 64KB.
[30:28]	NUMPAGENDXB	0b010	Number of page index bits. This bit indicates the number of PAGESIZE pages that occupy the global address space or the translation context address space: NUMPAGE = 2(NUMPAGENDXB+1)
[27:24]	Reserved	-	Reserved.
[23:16]	NUMS2CB	Configured number of context-banks	Number of stage 2 context-banks. This bit field indicates the number of context-banks that support only the stage 2 translation format. The bit field is validated by using the value of the SMMU_IDR0.S2TS bit. See the CoreLink MMU-401 System Memory Management Unit AMBA Designer (ADR-401) User Guide Supplement for information on the number of valid contexts.
[15]	SMCD	0Ь0	Stream match conflict detection. The possible values of this bit are:
			Not all Stream match conflicts are guaranteed to be detected.
			Ob1 All Stream match conflicts are guaranteed to be detected.
			See the ARM System Memory Management Unit Architecture Specification for more information.
[14:13]	Reserved	-	Reserved.

Table 3-11 Identification register 1 bit assignments (continued)

Bits	Name	Reset value	Description	n
[12]	SSDTP	As configured	Secure status values of thi	s determination table is present. The possible s bit are:
			0b0	Secure status determination address space is UNK or WI.
			0b1	Secure status determination address space is populated.
			Not	te
			This field is l register.	RAZ for Non-secure reads of the SMMU_IDR1
[11:8]	NUMSSDNDXB	4'hF	number of St bit field is or	SSD index bits. This bit field Indicates the SD index bits used to index the SSD table. This nly valid if the SMMU_IDR1.SSDTP bit is vise this bit field is Reserved.
			Not	te
			This field is register.	RAZ for non-secure reads of the SMMU_IDR1
			-	
[7:0]	NUMCB	Configured number of context-banks	number of tr	context-banks. This bit field indicates the total ranslation context-banks that are implemented. <i>tion context-bank registers</i> on page 3-52.
				eported by this bit includes the translation ks that only support the stage 2 format.
			Interaction	with security extensions
			Non-secure	ntations that support security extensions, the reads of the SMMU_IDR1 register reflect the sured in the SMMU_SCR1.NSNUMCBO bit.

Figure 3-6 shows the bit assignments.

Figure 3-6 Identification register 2 bit assignments

Table 3-12 shows the bit assignments.

Table 3-12 Identification register 2 bit assignments

Bits	Name	Reset value	Description
[31:15]	Reserved	-	Reserved.
[14]	IIPAS	0b0	Invalidation of stage 2 contexts supported. The possible values of this field are: 0b0 Not supported. The SMMU_CBn_TLBIIPAS2(L) registers are not supported. 0b1 Supported. The SMMU_CBn_TLBIIPAS2(L) registers are supported. —— Note MMU-401 does not support invalidation by the IPA and the ARMv8 enhanced DVM messages for invalidation by IPA.
[13]	XOS	0b0	ARMv8 execute-only pages are supported. The possible values of this field are: Not supported. Device accesses to pages are marked as execute only trap. Supported. Device accesses to execute only pages are supported if the final attributes of the accesses indicate an instruction. See the ARM Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile.
[12]	V8MAS	0b1	ARMv8 memory attributes are supported. The possible values of this field are: 0b0 Supports only the ARMv7 device and strongly ordered memory attributes. 0b1 Supports the ARMv8 enhanced memory attributes.
[11:5]	Reserved	-	Reserved.
[7:4]	OAS	0b0010	Output address size. The possible values of this field are: 0b0000 32 bits. 0b0001 36 bits. 0b0010 40 bits. All other values are Reserved.
[3:0]	IAS	0b0010	Input address size. The possible values of this field are: 0b0000 32 bits. 0b0001 36 bits. 0b0010 40 bits. All other values are Reserved.

Figure 3-7 shows the bit assignments.

Figure 3-7 Identification register 7 bit assignments

Table 3-13 shows the bit assignments.

Table 3-13 Identification register 7 bit assignments

Bits	Name	Reset value	Description
[31:8]	Reserved	-	Reserved.
[7:4]	MAJOR	0b0	The major part of the implementation version number.
[3:0]	MINOR	0b0	The minor part of the implementation version number.

3.4.4 Debug registers

The debug registers characteristics are:

Purpose

The MMU-401 supports TLB visibility by providing a read pointer register, and a read data register to read the values. The read pointer register is initialized at reset to zero, and increments by one word, that is, four bytes, on a read access to the TLB data register.

On a read access to the TLB data register, the TLB data present at the read pointer register is read and returned on the APB interface.

For the read pointer register, the lower two bits are RAZ/WI. This is to ensure that the address for a debug TLB fetch is always word aligned. If the read pointer register is written with an address value that is out of bounds for the TLB, APB accesses return an error when the corresponding read access is performed on the read data register.

See Global space 0 registers summary on page 3-5.

You can program the read pointer register to read a particular entry in the TLB. When the read data register is read, the TLB entry, pointed to by the read pointer, is read back and the read pointer increments. If the read data register is read again, the next TLB entry is read.

ARM recommends that the TLB read accesses happen when there are no outstanding transactions. If the TLB reads happen when the transactions are performed, the TLB read can return data before or after the data is updated.

The MMU-401 contains the following debug registers:

- SMMU DBGRPTR, Debug read pointer register.
- SMMU DBGRDATA, Debug read data register on page 3-26.

Configuration

Available in all configurations of the MMU-401.

Usage constraints

Only Secure access is possible.

Attributes

Global space 0 registers summary on page 3-5.

SMMU_DBGRPTR, Debug read pointer register

For the MMU-401, bits[31:16] are always 0 unless written specifically by an APB access.

Figure 3-8 on page 3-26 shows the bit assignments.

Figure 3-8 Debug read pointer register bit assignments

Table 3-14 shows the bit assignments.

Table 3-14 Debug read pointer register bit assignments

Bits	Name	Description
[31:16]	Reserved	Reserved.
[15:4]	TLB Pointer	Points to the specified TLB Entry.
[3:0]	TLB Entry Pointer	Points to the specified word within the TLB entry.

SMMU_DBGRDATA, Debug read data register

Table 3-15 shows the bit assignments for word 1.

Table 3-15 Debug read data register data format, word 1

Bits	Width	Description	ı	
[31:4]	28	Virtual addre	Virtual address that is used for address lookup.	
[3:2]	2	TLB_ENTRY_VALID. This bit specifies whether the TLB entry is valid. The possible value this bit field are:		
		0b00	A word that is not the first or the last word of the TLB entry.	
		0b01	First word of the TLB entry.	
		0b10	Last word of the TLB entry.	
		0b11	First word of the TLB.	
[1]	1	TLB_POINTER_VALID. This bit specifies whether the TLB pointer is valid. The pos of this bit are:		
		0b0	Valid.	
		0b1	Invalid.	
[0]	1	TLB_WORD_INFO. This bit specifies whether the TLB word information is valid. The values of this bit are:		
		0b0	Valid.	
		0b1	Invalid.	

Table 3-16 shows the bit assignments for word 2.

Table 3-16 Debug read data register data format, word 2

Bits	Width	Description		
[31:30]	2	Reserved.		
[29:28]	2	PRIVCFG, privilege configuration. See the ARM System Memory Management Unit Architecture Specification.		
[27:26]	2	INSTCFG, instruction configuration. See the ARM System Memory Management Unit Architecture Specification.		
[25:24]	2	NSCFG, Non-secure configuration. See the ARM System Memory Management Unit Architecture Specification.		
[23:17]	7	Memory attributes.		
[16:14]	3	SHCFG, shareability configuration. See the ARM System Memory Management Unit Architecture Specification.		
[13:12]	2	RACFG, read allocate configuration. See the ARM System Memory Management Unit Architecture Specification.		
[11:10]	2	WACFG, write allocate configuration. See the ARM System Memory Management Unit Architecture Specification.		
[9:8]	2	BSU, barrier shareability attributes. See the ARM System Memory Management Unit Architecture Specification.		
[7]	1	Reserved.		
[6:4]	3	Page size. The possible values of this field are: 0b000 4KB. 0b011 64KB. 0b010 Reserved. 0b011 2MB. 0b100 Reserved. 0b101 512MB. 0b110 1GB. 0b111 Reserved.		
[3:2]	2	TLB_ENTRY_VALID. This bit specifies whether the TLB entry is valid. The possible values of this bit field are: 0b00 A word that is not the first or the last word of the TLB entry. 0b01 First word of the TLB entry. 0b10 Last word of the TLB entry. 0b11 First word of the TLB.		
[1]	1	TLB_POINTER_VALID. This bit specifies whether the TLB pointer is valid. The possible values of this bit are: 0b0 Valid. 0b1 Invalid.		
[0]	1	TLB_WORD_INFO. This bit specifies whether the TLB word information is valid. The possible values of this bit are: 0b0 Valid. 0b1 Invalid.		

Table 3-17 shows the bit assignments for word 3.

Table 3-17 Debug read data register data format, word 3

Bits	Width	Description			
[31:17]	15	Stream ID.	Stream ID.		
[16]	1	Reserved.	Reserved.		
[15:8]	8	Translation co	ontext index.		
[7:5]	3	Reserved.			
[4]	1	Non-secure st	ate, security status of the master that initiates the transaction.		
[3:2]	2	TLB_ENTRY this bit field a	VALID. This bit specifies whether the TLB entry is valid. The possible values of re:		
		0b00	A word that is not the first or the last word of the TLB entry.		
		0b01	First word of the TLB entry.		
		0b10	Last word of the TLB entry.		
		0b11	First word of the TLB.		
[1]	1	TLB_POINTER_VALID. This bit specifies whether the TLB pointer is valid. The possible value of this bit are:			
		0b0	Valid.		
		0b1	Invalid.		
[0]	1	TLB_WORD values of this	_INFO. This bit specifies whether the TLB word information is valid. The possible bit are:		
		0b0	Valid.		
		0b1	Invalid.		

Table 3-18 shows the bit assignments for word 4.

Table 3-18 Debug read data register data format, word 4

Bits	Width	Description	
[31:17]	15	Stream ID mask.	
[16:13]	4	Reserved.	
[12:11]	2	Entry type. The possible values of this field are:	
		0b00 Translation is enabled.	
		0b01 Translation is disabled.	
		Ob10 Stage 2 context register bypass information is programmed in the SMMU_S2CR <i>n</i> registers.	
		0b11 USFCFG bypass. This value indicates that the SMMU_CR0.USFCFG bit is set to 0b1.	
[10]	1	Contiguous. The possible values of this field are:	
		0b0 The entries are not contiguous.	
		0b1 32 contiguous entry hint for 64KB and 512MB page sizes, and 16 contiguous entry hint for other page sizes.	
[9]	1	PXN, privilege execute never. See the ARM System Memory Management Unit Architecture Specification.	
[8]	1	XN, execute never. See the ARM System Memory Management Unit Architecture Specification.	

Table 3-18 Debug read data register data format, word 4 (continued)

Bits	Width	Description			
[7:5]	3	HAP. See the	HAP. See the ARM System Memory Management Unit Architecture Specification.		
[4]	1	AFE. See the	ARM System Memory Management Unit Architecture Specification.		
[3:2]	2	TLB_ENTRY this bit field ar	_VALID. This bit specifies whether the TLB entry is valid. The possible values of re:		
		0b00	A word that is not the first or the last word of the TLB entry.		
		0b01	First word of the TLB entry.		
		0b10	Last word of the TLB entry.		
		0b11	First word of the TLB.		
[1]	1	TLB_POINTER_VALID. This bit specifies whether the TLB pointer is valid. The possible of this bit are:			
		0b0	Valid.		
		0b1	Invalid.		
[0]	1	TLB_WORD_ values of this	INFO. This bit specifies whether the TLB word information is valid. The possible bit are:		
		0b0	Valid.		
		0b1	Invalid.		

Table 3-19 shows the bit assignments for word 5.

Table 3-19 Debug read data register data format, word 5

Bits	Width	Description	
[31:4]	28	PA.	
[3:2]	2	TLB_ENTRY this bit field at 0b00	_VALID. This bit specifies whether the TLB entry is valid. The possible values of re: A word that is not the first or the last word of the TLB entry.
		0b01	First word of the TLB entry.
		0b10	Last word of the TLB entry.
		0b11	First word of the TLB.
[1]	1	Reserved.	
[0]	1	TLB_WORD_ values of this 0 0b0 0b1	INFO. This bit specifies whether the TLB word information is valid. The possible bit are: Valid. Invalid.

3.4.5 Secure alias to Non-secure configuration register 0

The Secure alias to Non-secure configuration register 0 characteristics are:

Purpose	The Secure alias to Non-secure configuration register 0 is accessed by Secure transactions. See <i>Secure configuration register 0</i> on page 3-11
Configuration	Available in all configurations of the MMU-401.
Usage constraints	GSE is RAZ/WI. The STALLD and SMCFCFG bits are RAO/WI.
Attributes	Global space 0 registers summary on page 3-5.

3.4.6 Secure Alias to Non-secure auxiliary configuration register

Purpose The Secure alias to Non-secure auxiliary configuration register is accessed

by Secure transactions. See Auxiliary configuration registers on

page 3-16.

Configuration Available in all configurations of the MMU-401.

Usage constraints There are no usage constraints.

Attributes Global space 0 registers summary on page 3-5.

3.4.7 Stream match registers

The stream match registers characteristics are:

Purpose

The stream match registers, SMMU_SMR*n*, match a transaction with a particular context-mapping register group.

The MMU-401 supports stream ID matching, and treats these registers as R/W.

The stream match registers form a table that is searched to find a match for a transaction stream ID. The stream ID uniquely identifies the originator of a transaction.

You can identify a number of stream ID values for the same context. This permits the sharing of the state that describes the context. Mapping of multiple stream ID values to the same context is achieved by using multiple stream match register entries or by using the mask facilities available in the stream match register values.

An active stream ID, that is, a stream that has transactions in progress or that has created transactions, can match at most one entry in the stream match register table. If the stream ID of a transaction matches multiple stream mapping table entries, the following action is taken:

- 1. The multiple match condition is trapped by the MMU-401.
- 2. The transaction is terminated at the MMU-401.
- 3. A stream match register multiple match fault is recorded in the SMMU_GFSR register.

The memory or the MMU-401 state that is not accessible through the selected matching stream mapping table entry must remain unaffected.

The stream match register table can have multiple entries that match the same stream ID value during configuration, provided that the software has taken the necessary precautions before the configuration. For example:

- Disable the stream source and ensure that there are no outstanding transactions from the source are in progress.
- Disable one or more of the SMMU_SMR*n* register table entries that use the corresponding SMMU_SMR*n*.VALID bit.
- Disable the MMU-401 completely with the global MMU-401 enable.

The number of ID and MASK bits is configured as described in *Implementation options for synthesis* on page 1-5. Unimplemented bits are RAZ/WI. The implementation must provide the same number of ID and MASK bits for every implemented stream match register.

The number of SMMU_SMR*n* registers actually present is configured as described in *Implementation options for synthesis* on page 1-5. The unimplemented registers or those reserved by the Secure software, and so not visible to Non-secure access, are RAZ/WI.

Configuration

The width of MASK and ID fields is equal to the configured stream ID

width.

Usage constraints There are no usage constraints.

Attributes See *Global space 0 registers summary* on page 3-5.

Figure 3-9 shows the bit assignments.

Figure 3-9 Stream match registers bit assignments

Table 3-20 shows the bit assignments.

Table 3-20 Stream match registers bit assignments

Bits	Name	Description	
[31]	VALID	Specifies whether the entry is included in the stream mapping table search. The possible values of this bit are:	
		0b1 Inclu	uded.
		0b0 Not	included.
[30:16]	MASK	Mask. This bit field specifies whether the stream ID is ignored. The possible values of this bit fare:	
		MASK[i] == 0b1	ID[i] is ignored.
		MASK[i]==0b0	ID[i] is relevant to the match.
[15]	Reserved	Reserved.	
[14:0]	ID	Stream ID to match.	

3.4.8 Stream to context registers

The stream to context registers characteristics are:

Purpose

Specifies an initial context for processing a transaction, where the transaction matches the stream mapping group to which the register belongs.

The number of SMMU_S2CRn registers is configured as described in *Implementation options for synthesis* on page 1-5. The unimplemented registers are RAZ/WI.

The format of the SMMU_S2CR*n* registers depends on the state of its TYPE field. For more information, see the *ARM System Memory Management Unit Architecture Specification*.

Configuration The width of CBNDX field depends on the following number of contexts:

 1 or 2 contexts
 1 bit.

 3 or 4 contexts
 2 bits.

5, 6, 7, or 8 contexts

3 bits.

Usage constraints The VMID field in bypass mode is RAZ/WI.

Attributes See *Global space 0 registers summary* on page 3-5.

3.5 Global register space 1

The MMU-401 global register space 1 provides a high-level control of the MMU-401 resources and maps device transactions to the translation context-banks, as the following sections describe:

- Context-bank attribute registers
- *Context-bank fault restricted syndrome registers A* on page 3-34.

3.5.1 Context-bank attribute registers

The context-bank attribute registers characteristics are:

Purpose

The context-bank attribute registers, SMMU_CBAR*n*, specify additional configuration attributes for a translation context-bank.

The number of registers implemented is specified by the SMMU IDR.NUMCB bit field.

A context-bank of index n is associated with a context-bank attribute register of index n.

There are a number of SMMU_CBAR*n* value formats that are dependent on how the TYPE field is configured as Table 3-21 shows.

Table 3-21 Context-bank attribute register

SMMU_CBARn[TYPE]	SMMU_CBARn format	Description
0b00	Stage 2 context	Stage 2 context, TYPE==00
0b01	Reserved	Reserved
0b10	Reserved	Reserved
0b11	Reserved	Reserved

_____Note _____

The SMMU_CBAR*n* registers associated with a translation context-bank that only supports stage 2 translation have their TYPE field fixed at 0b00, and the corresponding format selected.

For the MMU-401, the IRPTNDX bit is RO.

Configuration Available in all configurations of the MMU-401.

Usage constraints There are no usage constraints.

Attributes Global space 1 registers summary on page 3-7.

Stage 2 context, TYPE==00

Figure 3-10 on page 3-34 shows the stage 2 context, TYPE==00 format that configures the associated translation context-bank to provide stage 2 translations.

Figure 3-10 Stage 2 context, TYPE==00 bit assignments

Table 3-22 shows the stage 2 context, TYPE==00 format that configures the associated translation context-bank to provide stage 2 translations.

Table 3-22 Stage 2 context, TYPE==00 bit assignments

Bits	Name	Description
[31:24]	IRPTNDX	Interrupt index. This bit field specifies the context interrupt number to assert when an interrupt raises a fault in the associated translation context-bank. The bit field is RO.
[23:20]	Reserved	Reserved.
[19:18]	SBZ	-
[17:16]	TYPE	CBAR <i>n</i> type. This bit field specifies the format of the remaining fields within the register. The bit field is RAZ/WI.
[15:8]	Reserved	Reserved.
[7:0]	VMID	The virtual machine identifier to associate with the translation context-bank. Note For the stage 2 context format, this field is used only when the associated stage 2 translation context-bank is the first specified context, that is, specified in an SMMU_S2CRn register.

3.5.2 Context-bank fault restricted syndrome registers A

The context-bank fault restricted syndrome register A characteristics are:

	3
Purpose	The context-bank fault restricted syndrome registers A, SMMU_CBFRSYNRAn, hold fault syndrome information related to the access that caused an exception in the associated translation context-bank.
	The number of registers implemented is specified by the SMMU_IDR.NUMCB bit field.
	A context-bank of index n , is associated with a context-bank fault restricted syndrome A register of index n .
	In implementations that support security extensions, the Secure software that reserves translation context-banks using the SMMU_SCR1.NSNUMCB0 bit field also reserves the associated context-bank fault restricted syndrome A registers.
	The number of context-bank fault restricted syndrome A registers that are visible to the Non-secure software is adjusted based on the number of Non-secure contexts.
Configuration	The width of Stream ID and SSD Index fields are as configured.

Configuration The width of Stream ID and SSD_Index fields are as configured.

Usage constraints There are no usage constraints.

Attribute Global space 1 registers summary on page 3-7.

Figure 3-11 shows the bit assignments.

Figure 3-11 Context-bank restricted syndrome register bit assignments

Table 3-23 shows the bit assignments.

Table 3-23 Context-bank restricted syndrome register bit assignments

Bits	Name	Description
[31]	Reserved	Reserved.
[30:16]	SSD_Index	SSD index of transaction that causes a fault.
		Note
		This field is only accessible to Secure configuration accesses. Non-secure configuration accesses treat this field as RAZ/WI.
[15]	Reserved	Reserved.
[14:0]	Stream ID	The stream ID of the transaction that causes a fault.

3.6 Integration registers

This section describes the integration registers for the MMU-401. It contains the following sections:

- Integration enable register.
- *Integration test input register* on page 3-37.
- *Integration test output register* on page 3-37.

3.6.1 Integration enable register

The ITEN Register characteristics are:

Figure 3-12 shows the bit assignments.

Figure 3-12 Integration enable register bit assignments

Table 3-24 shows the bit assignments.

Table 3-24 Integration enable register bit assignments

Bits	Name	Description	
[31:1]	Reserved	Reserved.	
[0]	Integration_mode	Enables the component to switch between functional mode and integration mode. The possible values for this field are:	
		0b0 Disable the integration mode.	
		0b1	Enable the integration mode.

3.6.2 Integration test input register

The ITIP register characteristics are:

Purpose Enables the MMU-401 to read the status of the **spniden** signal.

Configuration Available in all configurations of the MMU-401.

Usage constraints There are no usage constraints.

Attributes See *Integration register summary* on page 3-7.

Figure 3-13 shows the bit assignments.

Figure 3-13 Integration test input register bit assignments

Table 3-25 shows the bit assignment.

Table 3-25 Integration test input register bit assignments

Bits	Name	Description
[31:1]	Reserved	Reserved.
[0]	SPNIDEN	The Secure debug input, that is the value of the spniden signal.

3.6.3 Integration test output register

The ITOP register characteristics are:

Purpose Enables the MMU-401 to set the status of the signals that Table 3-26 on

page 3-38 shows.

Configuration Available in all configurations of the MMU-401.

Usage constraints There are no usage constraints.

Attributes See *Integration register summary* on page 3-7.

Figure 3-14 shows the bit assignments.

Figure 3-14 Integration test output register bit assignments

Table 3-26 shows the bit assignments

Table 3-26 Integration test output register bit assignments

Bits	Name	Description	
[31:10]	-	Reserved.	
[9]	GSF	Global Secure fault. The value of this bit is equal to the value of the glbl_flt_irpt_s signal.	
[8]	SCAF	Secure configuration access fault. The value of this bit is equal to the value of the cfg_flt_irpt_s signal.	
[7:4]	-	Reserved.	
[3]	CI	Context interrupt. The value of this bit is equal to the value of the cxt_irpt_ns signal.	
[2]	PI	Performance interrupt. The value of this bit is equal to the value of the prf_irpt signal.	
[1]	GNSF	Global Non-secure fault. The value of this bit is equal to the value of the glbl_flt_irpt_ns signal.	
[0]	NSCAF	Non-secure configuration access fault. The value of this bit is equal to the value of the cfg_flt_irpt_ns signal.	

3.7 Performance monitoring registers

This section describes the performance monitoring registers of the MMU-401, described in the following sections:

- Performance monitor counter group configuration registers.
- *Performance monitor counter group stream match registers* on page 3-40.
- *Performance monitor configuration register* on page 3-41.
- *Performance monitor control register* on page 3-42.
- *Performance monitor authentication status register* on page 3-43.
- *Performance monitor device type register* on page 3-45.

3.7.1 Performance monitor counter group configuration registers

The performance monitor counter group configuration registers characteristics are:

Purpose The performance monitor counter group configuration registers,

PMCGCR*n*, control the behavior of a counter group.

Configuration Available in all configurations of the MMU-401.

Usage constraints There are no usage constraints.

Attributes *Performance monitoring registers summary* on page 3-8.

Figure 3-15 shows the bit assignments.

Figure 3-15 Performance monitor counter group configuration registers bit assignments

Table 3-27 shows the bit assignments.

Table 3-27 Performance monitor counter group configuration register bit assignments

Bits	Name	Description	
[31:28]	-	Reserved.	
[27:24]	CGNC	Counter group number of counters. This bit field indicates the number of counters in the counter group. This bit field is RO/WI. For the MMU-401, the value of this bit field is fixed at 3.	
[23]	-	Reserved.	
[22:16]	SIDG	Stream ID group. This bit field indicates the stream ID group to which the counter group is associated. This field is RO/WI. For the MMU-401, the value of this bit field is set to 0 to indicate that only one group is present	
[15:12]	-	Reserved.	
[11]	CEN	Count enable. This bit indicates the performance monitor count enable value for the counter group.	

Table 3-27 Performance monitor counter group configuration register bit assignments (continued)

Bits	Name	Description	1
[10]	CBAEN	Context-bank	c assignment enable. The possible values of this bit are:
		0b0	Do not reveal the counter group n in translation context-bank specified by the PMCGCR n .NDX bit.
		0b1	Reveal the counter group n in the translation context-bank specified by the PMCGCR n .NDX bit.
		If PMCGCRA is Unpredict	<i>n</i> .CBAEN==0b1 and PMCGCR <i>n</i> .TCEFCFG!=0b10 or 0b01, then the value of this bit TABLE.
[9:8]	TCEFCFG	Translation c	ontext event filtering configuration. The possible values of this bit field are:
		0b00	Count events on a global basis.
		0b01	Count events restricted to a match in the corresponding PMCGSMR <i>n</i> register.
		0b10	Count Events restricted to a translation context-bank indicated by the PMCGCRn.NDX bit.
		0b11	Reserved.
[7:0]	NDX	Index. This bit is interpreted based on the value of the PMCGCRn.TCEFCFG bit, and is only valid if PMCGCRn.TCEFCFG==0b10 else it is Reserved.	

3.7.2 Performance monitor counter group stream match registers

The performance monitor counter group stream match registers characteristics are:

Figure 3-16 shows the bit assignments.

Usage constraints

Attributes

There are no usage constraints.

Figure 3-16 Performance monitor counter group stream match registers bit assignments

Performance monitoring registers summary on page 3-8.

Table 3-28 shows the performance monitor counter group stream match registers bit assignments.

Table 3-28 Performance monitor counter group stream match registers bit assignments

Bits	Name	Description		
[31]	-	Reserved.		
[15+STREAM_ID_WIDTH:16]	MASK	Mask. This bit field identifies whether the stream ID is ignored: MASK[i]==0b1 ID[i] is ignored. MASK[i]==0b0 ID[i] is relevant to the matched value.		
[15:STREAM_ID_WIDTH]	-	Reserved.		
[STREAM_ID_WIDTH-1:0]	ID	Stream ID to match.		

3.7.3 Performance monitor configuration register

The performance monitor configuration register characteristics are:

Purpose The performance monitor configuration register, PMCFG, contains

Performance Monitoring Unit (PMU)-specific configuration data.

Configuration Available in all configurations of the MMU-401.

Usage constraints There are no usage constraints.

Attributes Performance monitoring registers summary on page 3-8

Figure 3-17 shows the bit assignments.

Figure 3-17 Performance Monitor Configuration Register bit assignments

Table 3-29 shows the bit assignments.

Table 3-29 Performance Monitor Configuration Register bit assignments

Bits	Name	Reset value	Description	
[31:24]	NCG	0b0	Number of counter groups. The number of counter groups is NCG+1.	
[23:20]	Reserved	0b0	Reserved.	
[19]	UEN	0b0	User enable. Read as 0b0, indicating that the user enable is not supported.	
[18]	Reserved	0b0	Reserved.	
[17]	Reserved	0b0	Reserved.	

Table 3-29 Performance Monitor Configuration Register bit assignments (continued)

Bits	Name	Reset value	Description	
[16]	EX	0b1	Event export. Reads as 0b1, indicating that the event export is supported. This bit is writable.	
[15]	CCD	0b0	Cycle counter prescale. Reads as 0b0, indicating that the prescale cycle counter is not implemented.	
[14]	CC	0b0	Cycle Counter. Reads as 0b0, indicating that the cycle counter is not implemented.	
[13]	Reserved	0b0	Reads as 0b0.	
[12:11]	SIZE	0b11	Counter size. Reads as 0b11 indicating 32-bit event counters.	
[10:8]	Reserved	0b111	Reads as 0b111.	
[7:0]	N	0b10	Indicates the number of implemented event counters. The number of implemented event counters is N+1.	

3.7.4 Performance monitor control register

The performance monitor control register characteristics are:

Purpose The performance monitor control register, PMCR, provides information

about the performance monitor implementation, including the number of

counters implemented, and configures and controls the counters.

Configuration Available in all configurations of the MMU-401.

Usage constraints There are no usage constraints.

Attributes *Performance monitoring registers summary* on page 3-8.

Figure 3-18 shows the bit assignments.

Figure 3-18 Performance monitor control register bit assignments

Table 3-30 shows the bit assignments.

Table 3-30 Performance monitor control register bit assignments

Bits	Name	Reset value	Description	
[31:5]	Reserved, UNK/SBZP	-	Reserved.	
[4]	X	0b0	Export enable. This bit is used to permit events to export to another debug device, such as <i>Embedded Trace Macrocells</i> (ETM ^{IN}), over an event bus. If the implementation does not include the required event bus, this bit reads as 0b0 and ignores writes. This bit does not affect the generation of performance monitor interrupts that can be implemented as a signal exported from the core to an interrupt controller.	
			The possibl	le values of this bit are:
			0b0	Export of events is disabled.
			0b1	Export of events is enabled.
[3:2]	Reserved, UNK/SBZP	-	Reserved.	
[1]	P	0b0	Event coun	ter reset. This is a WO bit. The effects of writing to this bit are: No action.
			0b1	Reset all event counters to 0. If the cycle counter is implemented, the cycle counter is not reset.
			No	ote ———
			ne event counter does not clear any overflow flags to 0.	
			This bit always reads as 0b0.	
[0]	Е	0b0	Enable. The possible values of this bit are:	
			0b0	All counters, including PMCCNTR, are disabled.
			0b1	All counters are enabled.
			nterrupts are enabled only if the event counters are enabled. Writes to est a stage change. See Table 3-31.	

Table 3-31 shows the action on writes to the count enable bit.

Table 3-31 Action on writes to the count enable bit

Old value	New value	Action on write
0b0	0b0	No action.
0b0	0b1	Start event.
0b1	0b0	End event.
0b1	0b1	No action.

3.7.5 Performance monitor authentication status register

The performance monitor authentication status register characteristics are:

Purpose

The performance monitor authentication status register, SMMU_CBn_AUTHSTATUS, indicates the implemented debug features and provides the current values of the configuration inputs that determine the debug permission. The returned value depends on whether the performance monitor implements the ARM security extension authentication model.

Configuration Available in all configurations of the MMU-401.

Usage constraints There are no usage constraints.

Attributes *Performance monitoring registers summary* on page 3-8.

Figure 3-19 shows the bit assignments.

Figure 3-19 Performance monitor authentication status register assignments

Table 3-32 shows the bit assignments.

Table 3-32 Performance monitor authentication status register bit assignments

Bits	Name	Reset value	Description
[31:8]	Reserved, UNK/SBZP	-	Reserved.
[7]	SNI	0b1	Secure Non-invasive debug features implemented. This bit is RAO because Secure Non-invasive debug features are implemented.
[6]	SNE	0b0: The value of the input spniden signal is 0b0.0b1: The value of the input spniden signal is 0b1.	Secure Non-invasive debug enabled. This bit indicates whether counting of Secure transactions is permitted. The value of this bit depends on the value of the spniden signal. If the value of the spniden signal is 0, the bit is RAZ. Otherwise, the bit is RAO.
[5]	SI	0b0	Secure Invasive debug implemented. This bit is RAZ because Secure Invasive debug features are not implemented.
[4]	SE	0b0	Secure Invasive debug enabled. This bit is RAZ.
[3]	NSNI	0b0	Non-secure Non-invasive debug implemented. This bit is 0 because Non-secure Non-invasive debug is not implemented.
[2]	NSNE	0b0	Non-secure Non-invasive debug enabled. This bit is RAZ because Non-secure Non-invasive debug cannot be enabled.
[1]	NSI	0b0	Non-secure Invasive debug implemented. This bit is RAZ because Non-secure Invasive debug features are not implemented.
[0]	NSE	0b0	Non-secure Invasive debug enabled. This bit is RAZ.

3.7.6 Performance monitor device type register

The performance monitor device type register characteristics are:

Purpose The performance monitor device type register, PMDEVTYPE, provides

the CoreSight device type information for the performance monitors, and $% \left(x\right) =\left(x\right) +\left(x\right) +\left($

indicates the type of debug component. You must implement the

PMDEVTYPE register in all CoreSight components.

Configuration Available in all configurations of the MMU-401.

Usage constraints There are no usage constraints.

Attributes Performance monitoring registers summary on page 3-8

Figure 3-20 shows the bit assignments.

Figure 3-20 Performance monitor device type register bit assignments

Table 3-33 shows the bit assignments.

Table 3-33 Performance monitor device type register bit assignments

Bits	Name	Reset value	Description
[31:8]	Reserved, UNK	-	Reserved.
[7:4]	T	0x5	Sub-type, a fixed value of 0x5. This bit field indicates association with a memory management unit conforming to the ARM System Memory Management Unit Architecture Specification.
[3:0]	С	0x6	Class, a fixed value of 0x6. This bit field indicates a performance monitor device type.

3.8 Security state determination address space

The MMU-401 security state determination address space characteristics are:

Purpose

The MMU-401 security state determination address space, SMMU SSDR, is part of the translation process.

The security state determination address space provides an indication of whether each SSD index is enabled for the Secure or Non-secure domain. The address space is only accessible to Secure memory transactions.

One bit is provided for each SSD index value. The MMU-401 supports an SSD index of up to 15 bits in size, corresponding to a total possible indication state of 4KB.

The address space might not be fully populated, depending on the implemented page size and the SSD index width. The SSD index width can be read from the SMMU_IDR1.NUMSSDNDXB bit field. Unimplemented SSD index bits are read as zero. The security state determination register bits corresponding to values above the implemented SSD index size are read as UNK/SBOP.

The security state determination bits can have fixed values that correspond to SSD index values that have a fixed Secure or Non-secure ownership. Software can detect programmable bits by using a read-modify-write sequence.

The security state determination registers are implemented as shown in *Implementation options for synthesis* on page 1-5. The MMU-401 implementation and the system it is integrated in can use alternative means to resolve the security status of transactions. The SMMU_IDR1.SSDTP bit field indicates the presence of the security state determination table. In implementations where the registers are not present, this address space is UNK/SBOP.

Configuration

Available in all configurations of the MMU-401.

Usage constraints

There are no usage constraints.

Attributes

Security state determination address space summary on page 3-8.

Table 3-34 shows the security state determination address space layout in terms of offsets from SMMU GSSD BASE.

Table 3-34 Security state determination address space

Offset	Name	Description
0x000	SMMU_SSDR0	Corresponds to SSD index values in the range 0-31.
0x004	SMMU_SSDR1	Corresponds to SSD index values in the range 32-63.
0x008 - 0xFFC	SMMU_SSDR1023 - SMMU_SSDR2	Corresponds to SSD index values in the range 64-32767.
0x01000 - (<i>PAGESIZE</i> -0x4)	Reserved	Reserved.

If the security state determination register space is implemented, the behavior of each SMMU_SSDR*n* bit is:

```
// SMMU_SSDRn selected using SSD_Index<width>
if (SMMU_SSDRn[SSD_Index<width>] == 1) {
   // Transaction is Non-secure
} else {
```

```
// Transaction is Secure
}
```

In this example, the bits of the SMMU_SSDR*n* register are used to determine whether a master that performs the transactions is Secure or Non-secure. The example uses an SSD sideband signal, the width of which can be in the range 0-15. If the bit of the SMMU_SSDR*n* register is set to 0b1, the master is Non-secure, otherwise it is Secure.

3.9 Peripheral and component identification registers

This section describes the following identification registers:

- Component identification registers.
- Peripheral identification registers.

3.9.1 Component identification registers

The characteristics of the component identification (CID) registers are:

Purpose Bits[7:0] of the CID 0-3 registers hold preamble information and

bits[31:8] are Reserved.

Configuration Available in all configurations of the MMU-401.

Usage constraints There are no usage constraints.

Attributes See Peripheral and Component identification registers summary on

page 3-9.

Figure 3-21 shows the bit assignments.

Figure 3-21 Component identification register bit assignments

Table 3-35 shows the bit assignments

Table 3-35 Component identification register bit assignments

CID	Bits	Name	Reset value	Description
0	[7:0]	Preamble	0x0D	Preamble.
1	[7:0]	Preamble	0xF0	Preamble.
2	[7:0]	Preamble	0x05	Preamble.
3	[7:0]	Preamble	0xB1	Preamble.

3.9.2 Peripheral identification registers

The characteristics of the peripheral identification (PID) registers are:

Purpose Only bits[7:0] of each register are used. The peripheral ID registers 7-5 are

Reserved.

Configuration Available in all configurations of the MMU-401.

Usage constraints There are no usage constraints.

Attributes See Peripheral and Component identification registers summary on

page 3-9.

The MMU-401 contains the following peripheral identification registers:

- Peripheral identification register 0 on page 3-49.
- *Peripheral identification register 1* on page 3-49.

- *Peripheral identification register 2.*
- *Peripheral identification register 3* on page 3-50.
- Peripheral identification register 4 on page 3-50.
- *Peripheral identification registers 5-7* on page 3-51.

Peripheral identification register 0

Figure 3-22 shows the bit assignments.

Figure 3-22 Peripheral identification register 0 bit assignments

Table 3-36 shows the bit assignments.

Table 3-36 Peripheral identification register 0 bit assignments

Bits	Name	Reset value	Description
[31:8]	Reserved	-	Reserved.
[7:0]	PartNumber0	0x81	Middle and lower-packed BCD value of the device number [7:0].

Peripheral identification register 1

Figure 3-23 shows the bit assignments.

Figure 3-23 Peripheral identification register 1 bit assignments

Table 3-37 shows the bit assignments.

Table 3-37 peripheral identification register 1 bit assignments

Bits	Name	Reset value	Description
[31:8]	Reserved	-	Reserved.
[7:4]	JEP106 identity code	0xB	JEP106 identity code.
[3:0]	PartNumber1	0x4	Upper packed-BCD value of the device number [11:8].

Peripheral identification register 2

Figure 3-24 on page 3-50 shows the bit assignments.

Figure 3-24 Peripheral identification register 2 bit assignments

Table 3-38 shows the bit assignments

Table 3-38 Peripheral identification register 2 bit assignments

Bits	Name	Reset value	Description
[31:8]	Reserved	-	Reserved.
[7:4]	Revision	0x0	Revision number of the peripheral. It starts from 0x0.
[3]	JEDEC	0x1	Always set, indicates that a JEDEC-assigned value is used.
[2:0]	JEP106 identity code	0x3	JEP106 continuation code, which identifies the designer. The value of 0x3 indicates ARM.

Peripheral identification register 3

Figure 3-25 shows the bit assignments.

Figure 3-25 Peripheral identification register 3 bit assignments

Table 3-39 shows the bit assignments

Table 3-39 Peripheral identification register 3 bit assignments

Bits	Name	Reset value	Description
[31:8]	Reserved	-	Reserved.
[7:4]	RevAnd	0x0	Manufacturer revision number. This value is set to 0x0 (specified by ARM).
[3:0]	Customer Modified	0x0	Customer modified number. This value is set to 0x0 (specified by ARM).

Peripheral identification register 4

Figure 3-26 on page 3-51 shows the bit assignments.

Figure 3-26 Peripheral identification register 4 bit assignments

Table 3-40 shows the bit assignments

Table 3-40 Peripheral identification register 4 bit assignments

Bits	Name	Reset value	Description
[31:8]	Reserved	-	Reserved.
[7:4]	4KB count	0x4	Indicates the log 2Number of 4KB blocks occupied by the interface value.
[3:0]	JEP106 continuation code	0x4	JEP106 continuation code, which identifies the designer. The value of 0x4 indicates ARM.

Peripheral identification registers 5-7

Figure 3-27 shows the bit assignments.

Figure 3-27 Peripheral identification registers 5-7 bit assignments

Table 3-41 shows the bit assignments.

Table 3-41 Peripheral identification registers 5-7 bit assignments

Bits	Name	Reset value	Description
[31:0]	Reserved	0x0	Reserved.

3.10 Translation context-bank registers

This section describes the translation context-bank registers.

3.10.1 System control register

The system control register characteristics are:

Purpose The system control register, SMMU_CBn_SCTLR, provides top-level

control of the translation system for the related context-bank.

Configuration Available in all configurations of the MMU-401.

Usage constraints There are no usage constraints.

Attribute See *Translation context-bank registers summary* on page 3-9.

Figure 3-28 shows the bit assignment.

Figure 3-28 System control register bit assignment

Table 3-42 shows the bit assignment.

Table 3-42 System control register bit assignment

Bits	Name	Reset value	Description
[31:28]	Reserved	-	Reserved.
[27:26]	WACFG	-	Write allocate configuration. The possible values of this field are:
			0b00 Use the default allocation attributes.
			0b01 Reserved.
			0b10 Write allocate.
			0b11 No write allocate.
			Note
			This field applies to the processing of transactions in which the context-bank translation is disabled, that is when the SMMU_CBn_SCTLR.M bit is set to 0b0.
[25:24]	RACFG	-	Read allocate configuration. This bit field controls the allocation hint for read transactions in which the context-bank is disabled. The possible values of this bit field are:
			0b00 Use the default allocation attributes.
			0b01 Reserved.
			0b10 Read allocate.
			0b11 No read allocate.
			Note
			This field applies to the processing of transactions in which the context-bank translation is disabled, that is when the SMMU_CBn_SCTLR.M bit is set to 0b0.
[23:22]	SHCFG	-	Shared configuration. This bit field controls the shareable attributes for transactions in which the context-bank is disabled. The values of this bit field are:
			0b00 Use shareable attribute as presented with transaction.
			0b01 Outer shareable.
			0b10 Inner shareable.
			0b11 Non-shareable.
			Note
			This field applies to the processing of transactions in which the context-bank translation is disabled, that is, where SMMU_CBn_SCTLR.M is set to 0b0.
[21]	FB	-	Force broadcast. This bit field forces the broadcast of the BPIALL and the ICIALLU TLB maintenance operations. The bit does not affect the MMU-401 functionality.
[20]	Reserved	-	Reserved.
[19:16]	MemAttr	-	Memory attribute. The memory attributes can be overlaid if the SMMU_CB <i>n</i> _SCTLR.M bi is set to 0b0. Table 3-43 on page 3-54 and Table 3-44 on page 3-55 show valid values of this bit field.
[15:14]	BSU	-	Barrier shareability upgrade. This bit field upgrades the required shareability domain of barriers issued by the client devices that are mapped to the stream mapping register group. I does so by setting the minimum shareability domain that is applied to a barrier. The possible values of this field are: No effect.
			0b01 Inner shareable.
			0b10 Outer shareable.

Table 3-42 System control register bit assignment (continued)

Bits	Name	Reset value	Description
[13]	Reserved	-	Reserved.
[12:9]	Reserved	-	Reserved.
[8]	HUPCF	-	Hit under previous context fault. The possible values of this bit are:
			ObO Stall or terminate subsequent when a context fault occurs.
			0b1 Process subsequent transactions when a context fault occurs.
[7]	CFCFG	-	Context fault configuration. The possible values of this bit are:
			0b0 Terminate.
			0b1 Stall.
[6]	CFIE	0	Context fault interrupt enable. The possible values of this bit are:
			ObO Do not raise an interrupt when a context fault occurs.
			0b1 Raise an interrupt when a context fault occurs.
			This field resets to 0b0.
[5]	CFRE	0	Context fault report enable. The possible values of this bit are:
			0b0 Do not return an abort when a context fault occurs.
			0b1 Return an abort when a context fault occurs.
		-	Endianess. This field indicates the endianess format of translation table entries. The possible values of this bit are:
			0b0 Little endian format.
			0b1 Big endian format.
[3]	AFFD	-	Access flag fault disable. This field determines whether access flag faults are reported if they are raised. The possible values of this bit are:
			0b0 Access flag faults are reported.
			0b1 Access flag faults are not reported.
[2]	AFE	1	Access flag enable. This bit is UNK/SBOP.
[1]	TRE	1	Type EXtension (TEX) remap enable. This bit is UNK/SBOP.
[0]	M	0	The MMU-401 enable. This is a global enable bit for the translation context-bank. The possible values of this bit are:
			The MMU-401 behavior for the translation context-bank is disabled.
			Ob1 The MMU-401 behavior for the translation context-bank is enabled.

Table 3-43 shows MemAttr bit values.

Table 3-43 MemAttr bit values

Bits[3:2]	Meaning
0b00	Strongly-ordered or the device memory.
0b01	Outer non-cacheable normal memory.
0b10	Outer write-through normal memory.
0b11	Outer write-back normal memory.

Table 3-44 shows secondary MemAttr bit values.

Table 3-44 Secondary MemAttr bit values

Bits[1:0]	Meaning when bits[3:2] == 0b00	Meaning when bits[3:2]!= 0b00	
0b00	Strongly-ordered	Reserved.	
0b01	Device	Inner non-cacheable normal memory.	
0b10	Device	Inner write-through normal memory.	
0b11	Device	Inner write-back normal memory.	

3.10.2 Translation table base control register

The translation table base control register characteristics are:

Purpose SMMU CBn TTBCR, the translation table base control register, provides

additional configuration for the translation process.

Configuration Available in all configurations of the MMU-401.

Usage constraints Bit[31] is RAO/WI. PASize is always read as 2.

Attributes See *Translation context-bank registers summary* on page 3-9.

Figure 3-29 shows the bit assignments.

Figure 3-29 Translation table base control register bit assignments

Table 3-45 shows the bit assignments.

Table 3-45 Translation table base control register bit assignments

Bits	Name	Description
[31]	EAE	Extended address enable. This field always reads as 1. Writes are ignored. A value of 0b1 indicates that the translation system defined in the LPAE must be used. See the ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition and the ARM Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for information on LPAE.
[30:19]	Reserved	Reserved.
[18:16]	PASize	The size of the PA. This field always reads as 0b10 and specifies support for 40-bit PA size.
[15]	Reserved	Reserved.

Table 3-45 Translation table base control register bit assignments (continued)

Bits	Name	Description			
[14]	TG0	The page granule size for the SMMU_CBn_TTBR0 register. The possible values of this field are: 0b0 4KB pages. 0b1 64KB pages. The reset value of this field is 0b0. Set TG0 and CBA2Rn.RW64 bits to 0b1 to enable 64KB granule sizes. See the ARM System Memory Management Unit Architecture Specification 64KB Translation Granule Supplement for information on the CBA2Rn register.			
[13:12]	SH0	Sharebility attributes for the memory associated with the translation page table walks using the SMMU_CBn_TTBR0 register.			
[11:10]	ORGN0	Outer cacheability attributes for the memory associated with the translation page table walks using the SMMU_CBn_TTBR0 register.			
[9:8]	IRGN0	Inner cacheability attributes for the memory associated with the translation page table walks using the SMMU_CBn_TTBR0 register.			
[7:6] SL0 When the CBA2Rn.I When bit [6] is set to 2. When bit [6] is set to 1. When the CBA2Rn.I SMMU_CBn_TTBR 0b00 Leve 0b01 Leve 0b10 and 0b11 Return When the CBA2Rn.I SMMU_CBn_TTBR 0b00 Leve 0b10 and 0b11 Return Uhen the CBA2Rn.I SMMU_CBn_TTBR 0b00 Leve 0b01 Leve		When bit [6] is set to 0b1, then the starting level for the SMMU_CBn_TTBR0 register addressed region is level 1. When the CBA2Rn.RW64 bit is set to 0b1 and the page size granule is 64KB, then the starting level for SMMU_CBn_TTBR0 is as follows: 0b00			
[5:0]	T0SZ	When the CBA2R <i>n</i> .RW64 bit is set to 0b0, the addressed region is encoded as a 4-bit signed number that specifies the size of the region as 2 ^{32-TOSZ} . When the CBA2R <i>n</i> .RW64 bit is 0b1, the addressed region is encoded as a 6-bit unsigned number that specifies the size of the region as 2 ^{64-TOSZ} .			

Appendix A **Signal Descriptions**

This appendix describes the MMU-401 signals, listed in the following sections:

- *Clock and resets* on page A-2.
- *AXI3 signals* on page A-3.
- AXI4 signals on page A-8.
- *ACE-Lite signals* on page A-12.
- *APB signals* on page A-17.
- *LPI signals* on page A-18.
- *Miscellaneous signals* on page A-19.

A.1 Clock and resets

This section describes the clock and reset signals of the MMU-401.

Table A-1 shows the clock and reset signals of the PTW block.

Table A-1 PTW block clock and reset signals

Signal	Width	I/O	Description
cclk	1	Input	Clock for the PTW block.
cresetn	1	Input	Reset for the PTW block.

Table A-2 shows the clock and reset signals of the TLB block.

Table A-2 TLB block clock and reset signals

Signal	Width	I/O Description	
belk	1	Input	Clock for the TLB block.
bresetn	1	Input	Reset for the TLB block.

A.2 AXI3 signals

The following sections list the AXI3 signals:

- Write address channel signals.
- Write data channel signals on page A-4.
- Write response channel signals on page A-5.
- Read address channel signals on page A-5.
- Read data channel signals on page A-6.

See the CoreLink MMU-401 System Memory Management Unit AMBA Designer (ADR-400) User Guide Supplement for more information on the following ID widths:

- Master ID width, I M.
- Slave ID width, I_S.
- PTW ID width, I_P.

A.2.1 Write address channel signals

Table A-3 shows the AXI3 write address channel signals.

Table A-3 Write address channel signals

AXI3	TLB slave port	I/O	TLB master port	I/O	PTW master port	I/O
AWID	awid_s[I_S:0]	Input	awid_m[I_M:0]	Output	awid_ptw[I_P:0]	Output
AWADDR	awaddr_s[39:0]	Input	awaddr_m[39:0]	Output	awaddr_ptw[39:0]	Output
AWLEN	awlen_s[3:0]	Input	awlen_m[3:0]	Output	awlen_ptw[3:0]	Output
AWSIZE	awsize_s[2:0]	Input	awsize_m[2:0]	Output	awsize_ptw[2:0]	Output
AWBURST	awburst_s[1:0]	Input	awburst_m[1:0]	Output	awburst_ptw[1:0]	Output
AWLOCK	awlock_s[1:0]	Input	awlock_m[1:0]	Output	awlock_ptw[1:0]	Output
AWCACHE	awcache_s[3:0]	Input	awcache_m[3:0]	Output	awcache_ptw[3:0]	Output
AWPROT	awprot_s[2:0]	Input	awprot_m[2:0]	Output	awprot_ptw[2:0]	Output
AWVALID	awvalid_s[0]	Input	awvalid_m[0]	Output	awvalid_ptw[0]	Output
AWUSER	awuser_s[AWUSER_WIDTH- 1:0] ^a	Input	awuser_m[AWUSER_ WIDTH+5:0]	Output	-	-
AWREADY	awready_s[0]	Output	awready_m[0]	Input	awready_ptw[0]	Input

a. AWUSER_WIDTH is the width of the AXI slave interface AWUSER signal.

N	lote		
1	1010		

The PTW signals are present only when a dedicated AXI configuration option is specified.

The write address, write data, and write response signals of the PTW block are dummy signals that are not connected internally to a logic.

A.2.2 Write data channel signals

Table A-4 shows the AXI3 write data channel signals for the slave port of the TLB block.

Table A-4 Write data channel signals for the slave port of the TLB block

AXI3	TLB slave port		I/O
WID	wid_s[I_S:0]		Input
WDATA	For 64-bit For 128-bit	The data width is wdata_s[63:0]. The data width is wdata_s[127:0].	Input
WSTRB	For 64-bit For 128-bit	The data width is wstrb_s[7:0]. The data width is wstrb_s[15:0].	Input
WLAST	wlast_s[0]		Input
WVALID	wvalid_s[0]		Input
WUSER	wuser_s[WU	SER_WIDTH-1:0] ²	Input
WREADY	wready_s[0]		Output

a. WUSER_WIDTH is the width of the AXI slave interface WUSER signal.

Table A-5 shows the AXI3 write data channel signals for the master port of the TLB block.

Table A-5 Write data channel signals for the master port of the TLB block

AXI3	TLB master	port	I/O
WID	wid_m[I_M:	wid_m[I_M:0]	
WDATA	For 64-bit For 128-bit	The data width is wdata_m[63:0]. The data width is wdata_m[127:0].	Output
WSTRB	For 64-bit For 128-bit	The data width is wstrb_m[7:0] . The data width is wstrb_m[15:0] .	Output
WLAST	wlast_m[0]		Output
WVALID	wvalid_m[0]		Output
WUSER	wuser_m[Wl	USER_WIDTH-1:0]	Output
WREADY	wready_m[0]		Input

Table A-6 shows the AXI3 write data channel signals for the master port of the PTW block.

Table A-6 Write data channel signals for the master port of the PTW block

AXI3	PTW maste	I/O	
WID	wid_ptw[I_P	:0]	Output
WDATA	For 64-bit For 128-bit	The data width is wdata_ptw[63:0] . The data width is wdata_ptw[127:0] .	Output
WSTRB	For 64-bit For 128-bit	The data width is wstrb_ptw[7:0]. The data width is wstrb_ptw[15:0].	Output
WLAST	wlast_ptw[0]		Output

Table A-6 Write data channel signals for the master port of the PTW block (continued)

AXI3	PTW master port	I/O
WVALID	wvalid_ptw[0]	Output
WUSER	-	-
WREADY	wready_ptw[0]	Input

A.2.3 Write response channel signals

Table A-7 shows the AXI3 write response channel signals.

Table A-7 Write response channel signals

AXI3	TLB slave port	I/O	TLB master port	I/O	PTW master port	I/O
BID	bid_s[I_S:0]	Output	bid_m[I_M:0]	Input	bid_ptw[I_P:0]	Input
BRESP	bresp_s[1:0]	Output	bresp_m[1:0]	Input	bresp_ptw[1:0]	Input
BVALID	bvalid_s[0]	Output	bvalid_m[0]	Input	bvalid_ptw[0]	Input
BUSER	buser_s[BUSER_WIDTH- 1:0]a	Output	buser_m[BUSER_WIDTH-1:0]	Input	-	-
BREADY	bready_s[0]	Input	bready_m[0]	Output	bready_ptw[0]	Output

a. BUSER_WIDTH is the width of the AXI slave interface BUSER signal.

A.2.4 Read address channel signals

Table A-8 shows the AXI3 read address channel signals.

Table A-8 Read address channel signals

AXI3	TLB slave port	I/O	TLB master port	I/O	PTW master port	I/O
ARID	arid_s[I_S:0]	Input	arid_m[I_M:0]	Output	arid_ptw[I_P:0]	Output
ARADDR	araddr_s[39:0]	Input	araddr_m[39:0]	Output	araddr_ptw[39:0]	Output
ARLEN	arlen_s[3:0]	Input	arlen_m[3:0]	Output	arlen_ptw[3:0]	Output
ARSIZE	arsize_s[2:0]	Input	arsize_m[2:0]	Output	arsize_ptw[2:0]	Output
ARBURST	arburst_s[1:0]	Input	arburst_m[1:0]	Output	arburst_ptw[1:0]	Output
ARLOCK	arlock_s[1:0]	Input	arlock_m[1:0]	Output	arlock_ptw[1:0]	Output
ARCACHE	arcache_s[3:0]	Input	arcache_m[3:0]	Output	arcache_ptw[3:0]	Output
ARPROT	arprot_s[2:0]	Input	arprot_m[2:0]	Output	arprot_ptw[2:0]	Output
ARVALID	arvalid_s[0]	Input	arvalid_m[0]	Output	arvalid_ptw[0]	Output
ARUSER	aruser_s[ARUSER_ WIDTH-1:0] ^a	Input	aruser_m[ARUSER_WIDTH+5:0]	Output	aruser_ptw[5:0]	Output
ARREADY	arready_s[0]	Output	arready_m[0]	Input	arready_ptw[0]	Input

a. ARUSER_WIDTH is the width of the AXI slave interface ARUSER signal.

A.2.5 Read data channel signals

Table A-9 shows the AXI3 read data channel signals for the slave port of the TLB block.

Table A-9 Read data channel signals for the slave port of the TLB block

AXI3	TLB slave port	I/O
RID	rid_s[I_S:0]	Output
RDATA	For 64-bit The data width is rdata_s[63:0]. For 128-bit The data width is rdata_s[127:0].	Output
RRESP	rresp_s[1:0]	Output
RLAST	rlast_s[0]	Output
RVALID	rvalid_s[0]	Output
RUSER	ruser_s[RUSER_WIDTH-1:0] ^a	Output
RREADY	rready_s[0]	Input

a. RUSER_WIDTH is the width of the AXI slave interface **RUSER** signal.

Table A-10 shows the AXI3 read data channel signals for the master port of the TLB block.

Table A-10 Read data channel signals for the master port of the TLB block

AXI3	TLB master port	I/O
RID	rid_m[I_M:0]	Input
RDATA	For 64-bit The data width is rdata_m[63:0]. For 128-bit The data width is rdata_m[127:0].	Input
RRESP	rresp_m[1:0]	Input
RLAST	rlast_m[0]	Input
RVALID	rvalid_m[0]	Input
RUSER	ruser_m[RUSER_WIDTH-1:0]	Input
RREADY	rready_m[0]	Output

Table A-11 shows the AXI3 read data channel signals for the master port of the PTW block.

Table A-11 Read data channel signals for the master port of the PTW block

AXI3	PTW maste	PTW master port	
RID	rid_ptw[I_P:	0]	Input
RDATA	For 64-bit For 128-bit	The data width is rdata_ptw[63:0]. The data width is rdata_ptw[127:0].	Input
RRESP	rresp_ptw[1:	0]	Input
RLAST	rlast_ptw[0]		Input

Table A-11 Read data channel signals for the master port of the PTW block (continued)

AXI3	PTW master port	I/O
RVALID	rvalid_ptw[0]	Input
RUSER	-	-
RREADY	rready_ptw[0]	Output

A.3 AXI4 signals

The following sections list the AXI4 signals:

- Write address channel signals.
- Write data channel signals on page A-9.
- Write response channel signals on page A-10.
- Read address channel signals on page A-10.
- Read data channel signals on page A-11.

See the *CoreLink MMU-401 System Memory Management Unit AMBA Designer (ADR-400) User Guide Supplement* for more information on the following ID widths:

- Master ID width, I M.
- Slave ID width, I_S.
- PTW ID width, I_P.

A.3.1 Write address channel signals

Table A-12 shows the AXI4 write address channel signals.

Table A-12 Write address channel signals

AXI4	TLB slave port	I/O	TLB master port	I/O	PTW master port	I/O
AWID	awid_s[I_S:0]	Input	awid_m[I_M:0]	Output	awid_ptw[I_P:0]	Output
AWADDR	awaddr_s[39:0]	Input	awaddr_m[39:0]	Output	awaddr_ptw[39:0]	Output
AWLEN	awlen_s[7:0]	Input	awlen_m[7:0]	Output	awlen_ptw[7:0]	Output
AWSIZE	awsize_s[2:0]	Input	awsize_m[2:0]	Output	awsize_ptw[2:0]	Output
AWBURST	awburst_s[1:0]	Input	awburst_m[1:0]	Output	awburst_ptw[1:0]	Output
AWLOCK	awlock_s[0]	Input	awlock_m[0]	Output	awlock_ptw[0]	Output
AWCACHE	awcache_s[3:0]	Input	awcache_m[3:0]	Output	awcache_ptw[3:0]	Output
AWPROT	awprot_s[2:0]	Input	awprot_m[2:0]	Output	awprot_ptw[2:0]	Output
AWVALID	awvalid_s[0]	Input	awvalid_m[0]	Output	awvalid_ptw[0]	Output
AWREGION	awregion_s[3:0]	Input	awregion_m[3:0]	Output	awregion_ptw[3:0]	Output
AWQOS	awqos_s[3:0]	Input	awqos_m[3:0]	Output	awqos_ptw[3:0]	Input
AWUSER	awuser_s[AWUSER_ WIDTH-1:0]	Input	awuser_m[AWUSER_WIDTH +5:0]	Output	-	-
AWREADY	awready_s[0]	Output	awready_m[0]	Input	awready_ptw[0]	Output

A.3.2 Write data channel signals

Table A-13 shows the AXI4 write data channel signals for the slave port of the TLB block.

Table A-13 Write data channel signals for the slave port of the TLB block

AXI4	TLB slave p	ort	I/O
WDATA	For 64-bit For 128-bit	The data width is wdata_s[63:0]. The data width is wdata_s[127:0].	Input
WSTRB	For 64-bit For 128-bit	The data width is wstrb_s[7:0]. The data width is wstrb_s[15:0].	Input
WLAST	wlast_s[0]		Input
WVALID	wvalid_s[0]		Input
WREADY	wready_s[0]		Output
WUSER	wuser_s[WU	SER_WIDTH-1:0]	Input

Table A-14 shows the AXI4 write data channel signals for the master port of the TLB block.

Table A-14 Write data channel signals for the master port of the TLB block

AXI4	TLB master	port	I/O
WDATA	For 64-bit For 128-bit	The data width is wdata_m[63:0]. The data width is wdata_m[127:0].	Output
WSTRB	For 64-bit For 128-bit	The data width is wstrb_m[7:0]. The data width is wstrb_m[15:0].	Output
WLAST	wlast_m[0]		Output
WVALID	wvalid_m[0]		Output
WREADY	wready_m[0]		Input
WUSER	wuser_m[WU	USER_WIDTH-1:0]	Output

Table A-15 shows the AXI4 write data channel signals for the master port of the PTW block.

Table A-15 Write data channel signals for the master port of the PTW block

AXI4	PTW maste	PTW master port	
WDATA	For 64-bit For 128-bit	The data width is wdata_ptw[63:0]. The data width is wdata_ptw[127:0].	Output
WSTRB	For 64-bit For 128-bit	The data width is wstrb_ptw[7:0] . The data width is wstrb_ptw[15:0] .	Output
WLAST	wlast_ptw[0]		Output
WVALID	wvalid_ptw[0)]	Output
WREADY	wready_ptw	0]	Input
WUSER	-		-

A.3.3 Write response channel signals

Table A-16 shows the AXI4 write response channel signals.

Table A-16 Write response channel signals

AXI4	TLB slave port	I/O	TLB master port	I/O	PTW master port	I/O
BID	bid_s[I_S:0]	Output	bid_m[I_M:0]	Input	bid_ptw[I_P:0]	Input
BRESP	bresp_s[1:0]	Output	bresp_m[1:0]	Input	bresp_ptw[1:0]	Input
BVALID	bvalid_s[0]	Output	bvalid_m[0]	Input	bvalid_ptw[0]	Input
BUSER	buser_s[BUSER_WIDTH- 1:0]	Output	buser_m[BUSER_WIDTH-1:0]	Input	-	-
BREADY	bready_s[0]	Input	bready_m[0]	Output	bready_ptw[0]	Output

A.3.4 Read address channel signals

Table A-17 shows the AXI4 read address channel signals.

Table A-17 Read address channel signals

AXI4	TLB slave port	I/O	TLB master port	I/O	PTW master port	I/O
ARID	arid_s[I_S:0]	Input	arid_m[I_M:0]	Output	arid_ptw[I_P:0]	Output
ARADDR	araddr_s[39:0]	Input	araddr_m[39:0]	Output	araddr_ptw[39:0]	Output
ARLEN	arlen_s[7:0]	Input	arlen_m[7:0]	Output	arlen_ptw[7:0]	Output
ARSIZE	arsize_s[2:0]	Input	arsize_m[2:0]	Output	arsize_ptw[2:0]	Output
ARBURST	arburst_s[1:0]	Input	arburst_m[1:0]	Output	arburst_ptw[1:0]	Output
ARLOCK	arlock_s[0]	Input	arlock_m[0]	Output	arlock_ptw[0]	Output
ARCACHE	arcache_s[3:0]	Input	arcache_m[3:0]	Output	arcache_ptw[3:0]	Output
ARPROT	arprot_s[2:0]	Input	arprot_m[2:0]	Output	arprot_ptw[2:0]	Output
ARVALID	arvalid_s[0]	Input	arvalid_m[0]	Output	arvalid_ptw[0]	Output
ARREGION	arregion_s[3:0]	Input	arregion_m[3:0]	Output	arregion_ptw[3:0]	Output
ARQOS	arqos_s[3:0]	Input	arqos_m[3:0]	Output	arqos_ptw[3:0]	Output
ARUSER	aruser_s[ARUSER_ WIDTH-1:0]	Input	aruser_m[ARUSER_WIDTH+5:0]	Output	aruser_ptw[5:0]	Output
ARREADY	arready_s[0]	Output	arready_m[0]	Input	arready_ptw[0]	Input

A.3.5 Read data channel signals

Table A-18 shows the AXI4 read data channel signals for the slave port of the TLB block.

Table A-18 Read data channel signals for the slave port of the TLB block

AXI4	TLB slave port	I/O
RID	rid_s[I_S:0]	Output
RDATA	For 64-bit The data width is rdata_s[63:0]. For 128-bit The data width is rdata_s[127:0].	Output
RRESP	rresp_s[1:0]	Output
RLAST	rlast_s[0]	Output
RVALID	rvalid_s[0]	Output
RUSER	ruser_s[RUSER_WIDTH-1:0]	Output
RREADY	rready_s[0]	Input
	<u> </u>	•

Table A-19 shows the AXI4 read data channel signals for the master port of the TLB block.

Table A-19 Read data channel signals for the master port of the TLB block

AXI4	TLB master port	I/O
RID	rid_m[I_M:0]	Input
RDATA	For 64-bit The data width is rdata_m[63:0]. For 128-bit The data width is rdata_m[127:0].	Input
RRESP	rresp_m[1:0]	Input
RLAST	rlast_m[0]	Input
RVALID	rvalid_m[0]	Input
RUSER	ruser_m[RUSER_WIDTH-1:0]	Input
RREADY	rready_m[0]	Output

Table A-20 shows the AXI4 read data channel signals for the master port of the PTW block.

Table A-20 Read data channel signals for the master port of the PTW block

AXI4	PTW master port	I/O
RID	rid_ptw[I_P:0]	Input
RDATA	For 64-bit The data width is rdata_ptw[63:0]. For 128-bit The data width is rdata_ptw[127:0].	Input
RRESP	rresp_ptw[3:0]	Input
RLAST	rlast_ptw[0]	Input
RVALID	rvalid_ptw[0]	Input
RUSER	-	Input
RREADY	rready_ptw[0]	Output

A.4 ACE-Lite signals

The following sections list the ACE-Lite signals:

- Write address channel signals.
- Write data channel signals on page A-13.
- Write response channel signals on page A-14.
- Read address channel signals on page A-14.
- Read data channel signals on page A-15.
- Snoop channel signals on page A-16.

See the *CoreLink MMU-401 System Memory Management Unit AMBA Designer (ADR-400) User Guide Supplement* for more information on the following ID widths:

- Master ID width, I_M.
- Slave ID width, I S.
- PTW ID width, I_P.

A.4.1 Write address channel signals

Table A-21 shows the ACE-Lite write address channel signals.

Table A-21 Write address channel signals

ACE-Lite	TLB slave port	I/O	TLB master port	I/O	PTW master port	I/O
AWID	awid_s[I_S:0]	Input	awid_m[I_M:0]	Output	awid_ptw[I_P:0]	Output
AWADDR	awaddr_s[39:0]	Input	awaddr_m[39:0]	Output	awaddr_ptw[39:0]	Output
AWLEN	awlen_s[7:0]	Input	awlen_m[7:0]	Output	awlen_ptw[7:0]	Output
AWSIZE	awsize_s[2:0]	Input	awsize_m[2:0]	Output	awsize_ptw[2:0]	Output
AWBURST	awburst_s[1:0]	Input	awburst_m[1:0]	Output	awburst_ptw[1:0]	Output
AWLOCK	awlock_s[0]	Input	awlock_m[0]	Output	awlock_ptw[0]	Output
AWCACHE	awcache_s[3:0]	Input	awcache_m[3:0]	Output	awcache_ptw[3:0]	Output
AWPROT	awprot_s[2:0]	Input	awprot_m[2:0]	Output	awprot_ptw[2:0]	Output
AWVALID	awvalid_s[0]	Input	awvalid_m[0]	Output	awvalid_ptw[0]	Output
AWREGION	awregion_s[3:0]	Input	awregion_m[3:0]	Output	awregion_ptw[3:0]	Output
AWQOS	awqos_s[3:0]	Input	awqos_m[3:0]	Output	awqos_ptw[3:0]	Output
AWSNOOP	awsnoop_s[2:0]	Input	awsnoop_m[2:0]	Output	awsnoop_ptw[2:0]	Output
AWBAR	awbar_s[1:0]	Input	awbar_m[1:0]	Output	awbar_ptw[1:0]	Output
AWDOMAIN	awdomain_s[1:0]	Input	awdomain_m[1:0]	Output	awdomain_ptw[1:0]	Output
AWUSER	awuser_s[AWUSER_ WIDTH+3:0]	Input	awuser_m[AWUSER_WIDTH +3:0]	Output	-	-
AWREADY	awready_s[0]	Output	awready_m[0]	Input	awready_ptw[0]	Input

A.4.2 Write data channel signals

Table A-22 shows the ACE-Lite write data channel signals for the slave port of the TLB block.

Table A-22 Write data channel signals for the slave port of the TLB block

ACE-Lite	TLB slave p	ort	I/O
WDATA	For 64-bit For 128-bit	The data width is wdata_s[63:0]. The data width is wdata_s[127:0].	Input
WSTRB	For 64-bit For 128-bit	The data width is wstrb_s[7:0]. The data width is wstrb_s[15:0].	Input
WLAST	wlast_s[0]		Input
WVALID	wvalid_s[0]		Input
WUSER	wuser_s[WU	SER_WIDTH-1:0]	Input
WREADY	wready_s[0]		Output

Table A-23 shows the ACE-Lite write data channel signals for the master port of the TLB block.

Table A-23 Write data channel signals for the master port of the TLB block

ACE-Lite	TLB master	port	I/O
WDATA	For 64-bit For 128-bit	The data width is wdata_m[63:0]. The data width is wdata_m[127:0].	Output
WSTRB	For 64-bit For 128-bit	The data width is wstrb_m[7:0]. The data width is wstrb_m[15:0].	Output
WLAST	wlast_m[0]		Output
WVALID	wvalid_m[0]		Output
WUSER	wuser_m[Wl	USER_WIDTH-1:0]	Output
WREADY	wready_m[0]		Input

Table A-24 shows the ACE-Lite write data channel signals for the master port of the PTW block.

Table A-24 Write data channel signals for the master port of the PTW block

ACE-Lite	PTW master	r port	I/O
WDATA	For 64-bit For 128-bit	The data width is wdata_ptw[63:0]. The data width is wdata_ptw[127:0].	Output
WSTRB	For 64-bit For 128-bit	The data width is wstrb_ptw[7:0] . The data width is wstrb_ptw[15:0] .	Output
WLAST	wlast_ptw[0]		Output
WVALID	wvalid_ptw[()]	Output
WUSER	-		-
WREADY	wready_ptw[0]	Input

A.4.3 Write response channel signals

Table A-25 shows the ACE-Lite write response channel signals.

Table A-25 Write response channel signals

ACE-Lite	TLB slave port	I/O	TLB master port	I/O	PTW master port	I/O
BID	bid_s[I_S:0]	Input	bid_m[I_M:0]	Output	bid_ptw[I_P:0]	Output
BRESP	bresp_s[1:0]	Output	bresp_m[1:0]	Input	bresp_ptw[1:0]	Input
BVALID	bvalid_s[0]	Output	bvalid_m[0]	Input	bvalid_ptw[0]	Input
BUSER	buser_s[BUSER_WIDTH- 1:0]	Output	buser_m[BUSER_WIDTH-1:0]	Input	-	-
BREADY	bready_s[0]	Input	bready_m[0]	Output	bready_ptw[0]	Output

A.4.4 Read address channel signals

Table A-26 shows the ACE-Lite read address channel signals.

Table A-26 Read address channel signals

ACE-Lite	TLB slave port	I/O	TLB master port	I/O	PTW master port	I/O
ARID	arid_s[I_S:0]	Input	arid_m[I_M:0]	Output	arid_ptw[I_P:0]	Output
ARADDR	araddr_s[39:0]	Input	araddr_m[39:0]	Output	araddr_ptw[39:0]	Output
ARLEN	arlen_s[7:0]	Input	arlen_m[7:0]	Output	arlen_ptw[7:0]	Output
ARSIZE	arsize_s[2:0]	Input	arsize_m[2:0]	Output	arsize_ptw[2:0]	Output
ARBURST	arburst_s[1:0]	Input	arburst_m[1:0]	Output	arburst_ptw[1:0]	Output
ARLOCK	arlock_s[0]	Input	arlock_m[0]	Output	arlock_ptw[0]	Output
ARCACHE	arcache_s[3:0]	Input	arcache_m[3:0]	Output	arcache_ptw[3:0]	Output
ARPROT	arprot_s[2:0]	Input	arprot_m[2:0]	Output	arprot_ptw[2:0]	Output
ARVALID	arvalid_s[0]	Input	arvalid_m[0]	Output	arvalid_ptw[0]	Output
ARREGION	arregion_s[3:0]	Input	arregion_m[3:0]	Output	arregion_ptw[3:0]	Output
ARQOS	arqos_s[3:0]	Input	arqos_m[3:0]	Output	arqos_ptw[3:0]	Output
ARSNOOP	arsnoop_s[3:0]	Input	arsnoop_m[3:0]	Output	arsnoop_ptw[3:0]	Output
ARBAR	arbar_s[1:0]	Input	arbar_m[1:0]	Output	arbar_ptw[1:0]	Output
ARDOMAIN	ardomain_s[1:0]	Input	ardomain_m[1:0]	Output	ardomain_ptw[1:0]	Output
ARUSER	aruser_s[ARUSER_ WIDTH-1:0]	Input	aruser_m[ARUSER_WIDTH+ 3:0]	Output	aruser_ptw[3:0]	Output
ARREADY	arready_s[0]	Output	arready_m[0]	Input	arready_ptw[0]	Input

A.4.5 Read data channel signals

Table A-27 shows the ACE-Lite read data channel signals for the slave port of the TLB block.

Table A-27 Read data channel signals for the slave port of the TLB block

ACE-Lite	TLB slave port	I/O
RID	rid_s[I_S:0]	Output
RDATA	For 64-bit The data width is rdata_s[63:0]. For 128-bit The data width is rdata_s[127:0].	Output
RRESPa	rresp_s[1:0]	Output
RLAST	rlast_s[0]	Output
RVALID	rvalid_s[0]	Output
RUSER	ruser_s[RUSER_WIDTH-1:0]	Output
RREADY	rready_s[0]	Input

a. In the ACE-Lite specification, the **RRESP** signal is two bits wide. However, when a shared interface is used in the MMU-401 to enable DVM operations, the ACE protocol definition is used to include the AC and CR signals. As a result, the **RRESP** signal is increased in size by two bits, that is [3:0]. Bit[3] and bit[2] are not on the ACE-Lite interfaces, so you can tie the **RRESP[3:2]** signal to 0x0.

Table A-28 shows the ACE-Lite read data channel signals for the master port of the TLB block.

Table A-28 Read data channel signals for the master port of the TLB block

ACE-Lite	TLB master port	I/O
RID	rid_m[I_M:0]	Input
RDATA	For 64-bit The data width is rdata_m[63:0]. For 128-bit The data width is rdata_m[127:0].	Input
RRESPa	rresp_m[1:0]	Input
RLAST	rlast_m[0]	Input
RVALID	rvalid_m[0]	Input
RUSER	ruser_m[RUSER_WIDTH-1:0]	Input
RREADY	rready_m[0]	Output

a. In the ACE-Lite specification, the **RRESP** signal is two bits wide. However, when a shared interface is used in the MMU-401 to enable DVM operations, the ACE protocol definition is used to include the AC and CR signals. As a result, the **RRESP** signal is increased in size by two bits, that is [3:0]. Bit[3] and bit[2] are not on the ACE-Lite interfaces, so you can tie the **RRESP[3:2]** signal to 0x0.

Table A-29 shows the ACE-Lite read data channel signals for the master port of the PTW block.

Table A-29 Read data channel signals for the master port of the PTW block

ACE-Lite	PTW master port	I/O
RID	rid_ptw[I_P:0]	Input
RDATA	For 64-bit The data width is rdata_ptw[63:0]. For 128-bit The data width is rdata_ptw[127:0].	Input
RRESPa	rresp_ptw[1:0]	Input
RLAST	rlast_ptw[0]	Input
RVALID	rvalid_ptw[0]	Input
RUSER	-	-
RREADY	rready_ptw[0]	Output

a. In the ACE-Lite specification, the **RRESP** signal is two bits wide. However, when a shared interface is used in the MMU-401 to enable DVM operations, the ACE protocol definition is used to include the AC and CR signals. As a result, the **RRESP** signal is increased in size by 2 bits, that is [3:0]. Bit[3] and bit[2] are not on the ACE-Lite interfaces, so you can tie the **RRESP[3:2]** signal to 0x0.

A.4.6 Snoop channel signals

Table A-30 shows the ACE-Lite snoop channel signals.

Table A-30 Snoop channel signals

ACE-Lite	Signal	Width	I/O	Description		
Snoop addres	Snoop address channel signals					
ACADDR	acaddr_m	40	Input	Snoop address.		
ACPROT	acprot_m	3	Input	Snoop protection information.		
ACVALID	acvalid_m	1	Input	Valid signal for the snoop address channel.		
ACSNOOP	acsnoop_m	4	Input	Snoop transaction type.		
ACREADY	acready_m	1	Output	Ready signal for the snoop address channel.		
Snoop respon	se channel sig	nals				
CRRESP	crresp_m	5	Output	Snoop response.		
CRVALID	crvalid_m	1	Output	Valid signal for the snoop response channel.		
CRREADY	crready_m	1	Input	Ready signal for the snoop response channel.		

A.5 APB signals

This section describes the APB signals for the following:

- APB4 signals.
- APB3 signals.

A.5.1 APB4 signals

Table A-31 shows the APB4 signals.

Table A-31 APB4 signals

AMBA equivalent	APB4 signals	Width	I/O
PADDR	paddr	32	Input
PWDATA	pwdata	32	Input
PSTROBE	pstrobe	4	Input
PPROT	pprot	3	Input
PWRITE	pwrite	1	Input
PENABLE	penable	1	Input
PSELx	psel	1	Input
PRDATA	prdata	32	Output
PSLVERR	pslverr	1	Output
PREADY	pready	1	Output
PCLKEN	pclken	1	Input

A.5.2 APB3 signals

Table A-32 shows the APB3 Secure and Non-secure signals.

Table A-32 APB3 signals

AMBA equivalent	Secure APB3 signal	I/O	Non-secure APB3 signal	I/O
PADDR	paddr_s[31:0]	Input	paddr_ns[31:0]	Input
PWDATA	pwdata_s[31:0]	Input	pwdata_ns[31:0]	Input
PWRITE	pwrite_s[0]	Input	pwrite_ns[0]	Input
PENABLE	penable_s[0]	Input	penable_ns[0]	Input
PSELx	psel_s[0]	Input	psel_ns[0]	Input
PRDATA	prdata_s[31:0]	Output	prdata_ns[31:0]	Output
PSLVERR	pslverr_s[0]	Output	pslverr_ns[0]	Output
PREADY	pready_s[0]	Output	pready_ns[0]	Output
PCLKEN	pclken_s[0]	Input	-	-

A.6 LPI signals

Table A-33 shows the LPI signals.

Table A-33 LPI signals

AMBA equivalent	TLB block	I/O	PTW block	I/O
CACTIVE	cactive_tbu	Output	cactive_tcu	Output
CSYSREQ	csysreq_tbu	Input	csysreq_tcu	Input
CSYSACK	csysack_tbu	Output	csysack_tcu	Output

A.7 Miscellaneous signals

This section describes the non-AMBA signals as follows:

- Sideband signals.
- Interrupt signals.
- *MBIST signals* on page A-20.
- Authentication interface signal on page A-20.
- *Tie-off signals* on page A-20.
- *Performance event signals* on page A-21.

A.7.1 Sideband signals

Table A-34 shows the sideband signals.

Table A-34 Sideband signals

Signal	I/O	Width	Description
rsb_ns	Input	1	Determines the Non-secure state of an incoming read transaction. The value of this signal can change with value of the arvalid signal.
wsb_ns	Input	1	Determines the Non-secure state of an incoming write transaction. The value of this signal can change with the value of the awvalid signal.
wsb_ssd	Input	0-15	Indicates the SSD index. If the rsb_ns or wsb_ns signal exists, then this signal does not exist. The value of this signal can change with the value of the awvalid signal.
rsb_ssd	Input	0-15	Indicates the SSD index. If the rsb_ns or wsb_ns signal exists, then this signal does not exist. The value of this signal can change with the value of the arvalid signal.
wsb_sid_s	Input	1-15	Indicate the write stream ID. The value of this signal can change with the value of the awvalid signal.
rsb_sid_s	Input	1-15	Sideband signal to indicate the read stream ID. The value of this signal can change with the value of the arvalid signal.

A.7.2 Interrupt signals

Table A-35 shows the interrupt signals generated from the MMU-401. See the *ARM System Memory Management Unit Architecture Specification* for more information.

Table A-35 Interrupt signals

Signal	I/O	Width	Description
cfg_flt_irpt_s	Output	1	Secure configuration access fault interrupt.
cfg_flt_irpt_ns	Output	1	Non-secure configuration access fault interrupt.
glbl_flt_irpt_s	Output	1	Global Secure fault interrupt.
glbl_flt_irpt_ns	Output	1	Global Non-secure fault interrupt.
prf_irpt	Output	1	Performance interrupt.
cxt_irpt_ns	Output	1	Non-secure context interrupt.
comb_irpt_ns	Output	1	Non-secure combined interrupt.
comb_irpt_s	Output	1	Secure combined interrupt.

A.7.3 MBIST signals

The MMU-401 supports a standard ARM MBIST interface to ensure that timing is met after inserting an MBIST multiplexer. You must not insert any MBIST multiplexers. This interface exists only when the RAM option is selected for the TLB data. See the *CoreLink MMU-401 System Memory Management Unit Implementation Guide* for more information.

Table A-36 shows the MBIST signals.

Table A-36 MBIST signals

Signal	I/O	Width	Description
mbistreq	Input	1	MBIST request from the MBIST controller to the TLB RAM.
mbistack	Output	1	Acknowlegement from the MMU-401 that it is ready for an MBIST operation.
mbistaddr	Input	TLB_INDEX_WIDTHa-1:0	Right-justified address. This address is same as the physical address of the memory.
mbistreaden	Input	1	Read enable.
mbistwriteen	Input	1	Write enable.
mbistindata	Input	52	Write data.
mbistoutdata	Output	52	Read data, that is valid for three clocks after read enable is set.

a. Where, TLB_INDEX_WIDTH is equal to log 2^{TLB depth}.

A.7.4 Authentication interface signal

The authentication interface disables AXI accesses. Table A-37 shows the authentication interface signal. See the *CoreSight Architecture Specification* for more information.

Table A-37 Authentication interface signal

Signal	I/O	Width	Description	
spniden	Input	1	Secure privileged Non-invasive debug enable. When the spniden signal is high, it enables the counting of Secure events. The options are as follows:	
			Ob0 Secure events are not counted as part of performance counters. Ob1 Secure events are counted as part of performance counters.	

A.7.5 Tie-off signals

Table A-38 shows the tie-off signals.

Table A-38 Tie-off signals

Signal	I/O	Width	Description	
cfg_cttw	Input	-	Static configuration to indicate whether the MMU-401 performs coherent page table walks. The value of this signal cannot change after reset.	
testmode	Input	1	When this signal is high, the DFT mode is enabled within the design. The options are as follows: 0b0 Functional mode. 0b1 Test mode.	

A.7.6 Performance event signals

Table A-39 shows the performance event signals.

Table A-39 Performance event signals

Signal	I/O	Width	Description
event_clk	Output	1	Event of every clock of the TLB block.
event_clk64	Output	1	Event of every 64th clock of the TLB block.
event_wr_access	Output	1	Event of every write access that passes through the TLB block.
event_rd_access	Output	1	Event of every read access that passes through the TLB block.
event_wr_refill	Output	1	Event of the allocation in the TLB as a result of a write access.
event_rd_refill	Output	1	Event of the allocation in the TLB as a result of a read access.

Appendix B **Revisions**

This appendix describes the technical changes between released issues of this book.

Table B-1 Issue A

Change	Location	Affects
No changes, first release	-	-