

Carrera de Especialización en Sistemas Embebidos

Medidor de material particulado fino

Autor: Mg. Luis Alberto Gómez Parada

Director: Ing. Juan Manuel Cruz correo: lgomez@patagones.cl

- 1 Introducción
- 2 Interesados
- 3 Propósito
- 4 Requerimientos
- 5 Alcances
- 6 Diagrama de Activity On Node
- 7 Carta Gantt
- 8 Gestión de riesgos
- 9 Gestión de la calidad
- 10 Cierre

Introducción

- El MP2,5 es la principal causa de muertes prematuras en el mundo.
- Estos instrumentos son fundamentales para gestionar la calidad del aire urbano.
- Sin embargo, lograr una medición precisa es un desafío significativo.

Interesados

Cliente: instituciones científicas, gobiernos locales, ministerios de medioambiente.

Usuario final: corresponde a la población urbana expuesta a MP2,5.

Director: ingeniero con alta experiencia. Crucial en el diseño de SW y HW.

- Desarrollar un instrumento de MP2,5 con sensores ópticos de bajo costo.
- Incrementar la precisión y exactitud mediante técnicas estadísticas de muestreo.
- Solución económica y fiable que pueda ser utilizada en las redes de monitoreo.

Requerimientos

Funcionales:

- 1 Tres sensores incorporados a la medición de MP2,5.
- 2 Las mediciones deben contar tiempo proporcionado por un RTC.

Hardware y energéticos:

- 1 La placa de desarrollo debe permitir conectar múltiples sensores.
- 2 Fuente de energía compatible con 220 V CA y una batería recargable.
- 3 El gabinete de acuerdo a la norma protección IP65.

Software

1 Los datos de MP2,5 serán del tipo "punto flotante".

Interfaz de usuario:

1 El usuario podrá acceder a los datos históricos medidos por el instrumento.

Evaluación y documentación:

- 1 Se realizarán pruebas de calibración con sensores certificados.
- 2 Contará con un manual con las características principales del instrumento.

.UBAfiuba

Alcances del proyecto

- Diseño y desarrollo del hardware
 - Considerando consumo eléctrico, cómputo, almacenamiento y transmisión.
- Desarrollo de software
 - Programación que permita cálculos, validar y transmitir resultados.
- 3 Pruebas de calibración
 - Calibración inicial de los sensores con instrumentos de referencia.
- 4 Recolección de datos
 - Recolección de datos de MP2,5 para evaluar el funcionamiento y rendimiento.
- 5 Análisis de datos
 - Evaluación comparativa de la precisión y exactitud del dispositivo.
- 6 Documentación
 - Generación de informes técnicos que validen el rendimiento y robustez del dispositivo.

Diagrama de Activity On Node

1.	Propuesta del proyecto
	2. Diseño general

- 3. Construcción del HW
- 4. Construcción del FW
 - 5. Pruebas
 - 6. Ajustes finales

Prototipo funcional

- 7. Escritura
- 8. Proceso de cierre

Presentación tesis

Gestión de riesgos

Criterios:

- Escala para la severidad (S) y la ocurrencia (O) es de 1 a 10.
- A mayor probabilidad de O o S, más alto su valor.
- Número de prioridad de riesgo (RPN) se calcula como el producto de S y O.
- El límite tolerable de RPN es menor a 30 (escala es de 0 a 100).

Table: Resumen de la gestión del riesgos con el resultado de las medidas de mitigación. .

Riesgo		0	RPN	S*	0*	RPN*
1. Mal funcionamiento de los sensores	9	8	72	9	2	18
2. Autoridades no aceptan mediciones		8	56	6	4	24
3. Fallo en la transmisión de datos		5	30	2	5	10
4. Interrupción de energía		4	32	6	2	12
5. Manipulación o actos de vandalismo		3	24	-	-	-
6. Pérdida de sincronización del RTC		3	21	-	-	-

Gestión de la calidad

Se proponen medidas de verificación y validación para los siguientes requerimientos:

```
Req #01: exactitud y precisión para estimar las concentraciones de MP2,5.
```

Req #02: transmisión de datos segura y sin fallos a la base de datos.

Req #03: sistema de alimentación energética fiable.

Req #04: almacenamiento de datos en el instrumento.

Req #05: datos que cuentan con un índice temporal sincronizado.

Req #06: funcionamiento efectivo del equipo bajo diversas condiciones ambientales.

Reg #07: disponibilidad de un manual de usuario claro.

Req #08: disponibilidad de parámetros básicos de registro de MP2,5.

Req #09: implementación de buenas prácticas de programación en el software.

Req #10: evaluación de consumos eléctricos y de datos.

Ejemplo:

Req #1: exactitud y precisión para estimar las concentraciones de MP2,5.

Verificación: realizar tres pruebas comparativas para asegurar que los sensores miden MP2.5 con la precisión requerida. El éxito

se basa en la equivalencia con métodos de referencia

estandarizados.

Validación: presentar resultados de pruebas al cliente para su

aprobación, cumpliendo con sus expectativas.

Proceso de cierre

- Pautas de trabajo para analizar el respeto al Plan de Proyecto original
 - **Procedimiento:** documentación y cotejo de resultados con lo estipulado.
 - Registro: texto que contiene "análisis comparativo".
- Selección de técnicas y métodos de resolución de problemas
 - Procedimiento: reunión para discutir y documentar las lecciones aprendidas.
 - **Registro:** texto que contiene *"lecciones aprendidas"*.
- Acto de agradecimiento
 - **Procedimiento:** ceremonia de agradecimiento y de reconocimiento.