Digital Image Processing (CSE 478) Lecture11: Interest point detection and description

Vineet Gandhi

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Applications: Feature matching

Invariance: image transformations + illumination changes

Applications: Feature matching

Applications: Object Detection

Applications: Object Recognition

Applications: Image stitching

Applications: Image puzzles

Applications: Image stitching

Applications: Structure from motion

The problem can also be framed as motion estimation or multi-view 3D reconstruction

Applications: Augmented Reality

www.intechopen.com

Applications: Face landmark detection

Figure 1. Results of our face part localizer.

Applications: Take a picture, get related content

PRENEZ EN PHOTO L'AFFICHE!

Example Challenges (recognition)

Today's Lecture

Three tasks gain importance in most of these applications:

- Feature detection
- Feature extraction
- Feature Matching

We will discuss the first two in detail!

Today's Lecture

- Feature detection
 - Harris feature detector
 - SIFT feature detector

- Feature Descriptors
 - SIFT feature descriptor

Matching patches, why interest points (corners)?

Task: find the most similar patch in the second image

?

Matching patches, why interest points (corners)?

Task: find the most similar patch in the second image

What interest points (corners)?

- Junctions of contours
- Generally more stable over changes of viewpoint
- Large variations in neighbourhood of the point in all directions
- Good features to match!

Corner detection: basic idea

Take a window around the point of interest and move around

"flat" region: no change in all directions

"edge": no change along edge direction

"corner": significant change in all directions

Harris corner detection

Harris and Stephens* proposed a mathematical approach to determine which case holds

Harris corner detection: Auto-correlation function

• Auto-correlation function for a point (x, y) and a shift $(\Delta x, \Delta y)$

$$A(x,y) = \sum_{(x_k,y_k)\in W(x,y)} (I(x_k,y_k) - I(x_k + \Delta x, y_k + \Delta y))^2$$

$$(\Delta x, \Delta y)$$

$$A(x,y) \begin{cases} & \text{small in all directions} \rightarrow \text{uniform region} \\ & \text{large in one directions} \rightarrow \text{contour} \\ & \text{large in all directions} \rightarrow \text{interest point} \end{cases}$$

Taylor series expansion

Taylor series expansion (1D)

$$F(x_0 + \Delta x) \approx F(x_0) + F'(x_0) \Delta x + \frac{1}{2!} F''(x_0) \Delta x^2 + \frac{1}{3!} F^{(3)}(x_0) \Delta x^3 + \dots + \frac{1}{n!} F^{(n)}(x_0) \Delta x^n$$

Taylor series expansion

Taylor series expansion (2D)

$$F(x_0 + \Delta x, y_0 + \Delta y) \approx F(x_0, y_0) + F_x(x_0, y_0) \Delta x + F_y(x_0, y_0) \Delta y +$$
First partial derivative

$$\frac{1}{2!} \left[F_{xx}(x_0, y_0) \Delta x^2 + F_{xy}(x_0, y_0) \Delta x \Delta y + F_{yy}(x_0, y_0) \Delta y^2 \right] +$$

Second partial derivative

$$\frac{1}{3!} \left[F_{xxx}(x_0, y_0) \Delta x^3 + F_{xxy}(x_0, y_0) \Delta x^2 \Delta y + F_{xyy}(x_0, y_0) \Delta x \Delta y^2 + F_{yyy}(x_0, y_0) \Delta y^3 \right]$$

Third partial derivative

.... + higher order terms

Harris corner detection: Auto-correlation function

$$A(x,y) = \sum_{(x_k,y_k) \in W(x,y)} (I(x_k,y_k) - I(x_k + \Delta x, y_k + \Delta y))^2$$

$$I(x_k + \Delta x, y_k + \Delta y) \approx I(x_k, y_k) + I_x(x_k, y_k) \Delta x + I_y(x_k, y_k) \Delta y$$
 First order approximation

$$A(x,y) \approx \sum_{k} \left(I(x_k, y_k) - I(x_k, y_k) - I_x(x_k, y_k) \Delta x - I_y(x_k, y_k) \Delta y \right)^2$$

$$= \sum (I_x \Delta x)^2 + (I_y \Delta y)^2 + 2 I_x I_y \Delta x \Delta = \sum [\Delta x \ \Delta y] \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

$$= [\Delta x \ \Delta y] \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

Harris corner detection: Auto-correlation matrix

$$M = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix}$$

 $M = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix}$ M is a 2×2 matrix computed from image derivatives. (It is also common practice to smooth each individual component before computing the sum). sum).

- Captures the structure of the local neighbourhood
- Measure based on Eigen values of this matrix
 - 2 strong eigenvalues → interest point
 - 1 strong eigenvalue → line (contour)
 - 0 strong eigenvalue → uniform region

Harris corner detection: Intuition

Source: Robert Collins

Harris corner detection: Intuition

Harris corner detection: Intuition

Interpreting the eigenvalues

Classification of image points using eigenvalues of autocorrelation matrix

Corner response function

$$R = \det(M) - \alpha \left(\operatorname{trace}(M) \right)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)$$

- 1. Compute horizontal and vertical derivatives of an image (I_x, I_y)
- 2. Compute products of derivatives at every pixel

$$I_{xx} = I_x \cdot I_x$$
 $I_{yy} = I_y \cdot I_y$ $I_{xy} = I_x \cdot I_y$

3. Compute local sum at each pixel (often weighted by gaussian)

$$S1 = G * I_{xx}$$
 $S2 = G * I_{yy}$ $S3 = G * I_{xy}$

4. For each pixel define R matrix

$$R = [S1 S3; S3 S1]$$

- 5. Compute the corner response function at each pixel
- 6. Threshold the resulting matrix then compute non maximal supression

Compute corner response R

Find points with large corner response: R>threshold

Take only the points of local maxima of R

Take only the points of local maxima of A	
·	· · · · · · · · · · · · · · · · · · ·

Invariance properties: Rotation

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response R is invariant of rotation

Invariance properties: Intensity Scaling

✓ Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$

✓ Intensity scale: $I \rightarrow a I$

Partially invariant to affine intensity change

Invariance properties: Scaling

All points will be classified as edges

Corner response R is not invariant of scaling

Formulates scale invariance

We go back to the ideas of scale space!

Revision: Laplacian of a Gaussian

0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

a b c d

FIGURE 10.21

(a) Threedimensional plot of the negative of the LoG. (b) Negative of the LoG displayed as an image. (c) Cross section of (a) showing zero crossings. (d) 5×5 mask approximation to the shape in (a). The negative of this mask would be used in practice.

$$\nabla^2 G(x,y) = \left[\frac{x^2 + y^2 - 2\sigma^2}{\sigma^4} \right] e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Laplacian of a Gaussian Vs Difference of Gaussian

a b

FIGURE 10.23

(a) Negatives of the LoG (solid) and DoG (dotted) profiles using a standard deviation ratio of 1.75:1.
(b) Profiles obtained using a ratio of 1.6:1.

$$DoG(x,y) = \frac{1}{2\pi\sigma_1^2} e^{-\frac{x^2+y^2}{2\sigma_1^2}} - \frac{1}{2\pi\sigma_2^2} e^{-\frac{x^2+y^2}{2\sigma_2^2}}$$

Source: David Lowe

Today's Lecture

- Feature detection
 - Harris feature detector
 - SIFT feature detector

- Feature Descriptors
 - SIFT feature descriptor

How to match the interest points across images?

- Keypoints give only the positions of strong features
- To match them across different images, we need a way to describe them
- Important to understand clear distinction between interest point detections and description
- Description is usually based on nearby image region
 - Intensity values
 - Moments
 - Derivatives
 - SIFT

SIFT descriptors

- Orientation of gradients
 - 8 orientations
 - 4×4 orientation grid
 - Dimension 128
 - Soft assignment
 - Weighted by a Gaussian

SIFT descriptors: Rotation invariance

Solution: Compute relative orientation

Compute the dominant orientation (peak in the histogram) and rotate the patch accordingly

One final example

Source: David Lowe