

Servidores de datos y supercomputación

Danilo González, PhD. Erica Bianco, PhD.

Servicios

Motivación

Procesar rapidamente gran cantidad de datos requiere músculo computacional

Los ordenadores comunes hacen las tareas complejas dividiéndolas en más pequeñas. Una vez divididas, se ejecutan secuencialmente.

Tarea

Hardware:

- Servidores (Nodos)
- Red
- Aceleradores (GPU/QC/FPGA)
- Almacenamiento compartido

Software:

- Sistema Operativo
- Gestor de colas
- Software cientifico

Hardware:

- Servidores (Nodos)
- Red
- Aceleradores (GPU/QC/FPGA)
- Almacenamiento compartido

Software:

- Sistema Operativo
- Gestor de colas
- Software cientifico

Hardware Nodo

Componentes:

- CPU(s)
 - Core: unidad de ejecución
- Memoria
- Opcionales:
 - Almacenamiento
 - Aceleradores (GPU/FPGA)

Hardware Red

Conecta a los nodos para compartir **recursos/datos:**

- Latencia: tiempo de respuesta entre nodos
- Ancho de banda
- Topologia: Cómo están conectados

Software

- Sistema operativo (linuxbased 99%)
 - Ejecutar las tareas
 - Asegurar que se usen los recursos asignados
- Gestor de colas
 - Asignar recursos
 - Software de interacción con el usuario
- Software científico
 - Adaptado a HPC

Gestor de colas

Slurm workload manager

Simple Linux Utility for Resource Management

Arquitectura de Slurm

- Usuarios
 - Ejecutar comandos de Slurm
- Nodos de computo
 - Execute jobs
- Nodos de control
- Base de datos
 - Guardar información de los trabajos y usuarios.

Arquitectura de Slurm

- Usuarios
 - Ejecutar comandos de Slurm
- Nodos de computo
 - Execute jobs
- Nodos de control
- Base de datos
 - Guardar información de los trabajos y usuarios.

Comandos básicos: enviar y cancelar trabajos

Command	Description
sacct	Displays accounting data for all jobs.
salloc	Allocate resources for interactive use.
sbatch	Submit a job script to a queue
scancel	Signal jobs or job steps that are under the control of SLURM (cancel jobs or job steps)
scontrol	View SLURM configuration and state
sinfo	View information about SLURM nodes and partitions
sjstat	Display statistics of jobs (data from sinfo, squeue and scontrol).
smap	Graphically view information about SLURM jobs, partitions, and set config. param
squeue	View information about jobs located in the SLURM scheduling queue.
srun	Run a parallel task

Enviar un trabajo con sbatch

```
-bash
~ $ cat testjob.sl
#!/bin/bash #Interprete
#SBATCH --nodes=4 # Opciones de Slurm
# Comandos a ejecutar
echo "running on : $(hostname)"
echo "allocation : $SLURM NODELIST"
~ $ sbatch testjob.sl
Submitted batch job 11109
~ $ cat slurm-11109.out
running on : hsw001
allocation : hsw[001-010]
```


Estado del trabajo

Revisar estado del trabajo

Command	Description
sacct	Displays accounting data for all jobs.
salloc	Allocate resources for interactive use.
sbatch	Submit a job script to a queue
scancel	Signal jobs or job steps that are under the control of SLURM (cancel jobs or job steps)
scontrol	View SLURM configuration and state
sinfo	View information about SLURM nodes and partitions
sjstat	Display statistics of jobs (data from sinfo, squeue and scontrol).
smap	Graphically view information about SLURM jobs, partitions, and set config. param
squeue	View information about jobs located in the SLURM scheduling queue.
srun	Run a parallel task

Computación en Paralelo

Computación en paralelo Memoria Compartida

- Cada "thread" tiene acceso toda la memoria
- Inicia con un proceso maestro
- Se crean "threads" que hacen la tarea en paralelo
- Una vez han terminado, se sincronizan los resultados
- Usado en procesos que se ejecutan en el mismo nodo

Computación en paralelo Memoria Compartida

- Cada thread tiene una memoria privada
- La información a compartir se expone en la memoria compartida
- El orden es importante!

Computación en paralelo Memoria Distribuida

- Cada proceso tiene acceso la memoria localmente.
- Los procesos se comunican compartiendo información usando la red
- MPI (Message Passing Interphase) es el estándar dominante
- Se usa principalmente para procesos internodo.
- Diferentes implementaciones, OpenMPI, Intel MPI, MVAPICH...

Computación en paralelo Memoria Distribuida

Punto a punto

Colectivo

- Cada proceso tiene acceso a la memoria local del nodo.
- La información se comparte vía mensajes. (orden explicito)

Computación en paralelo GGPU

General Graphical Processor Unit: GPUs para uso no gráfico

- Muchos cores de potencia limitada
- Eg:
 - AMD EPYC[™] 9654: 96 cores, 2 threads por core: **192 threads**
 - NVIDIA A100™: 1080 multiprocessor, 4096 threads por multiprocessor: 4411200 threads!
- Aplicar una sola instrucción a muchos datos (SIMD)

Computación en paralelo Limite (Ley de Amdahl)

$$s_{max} = rac{1}{(1-P)+rac{P}{N}}$$

- A mayor codigo paralelizado, mas speedup
- Un código no puede ser acelerado infinitamente
- Limitado por las partes no paralelizables (recuperar toda la información)
- Sincronización,
 Latencias, Velocidad de comunicación....

Software

Appstack centralizado

- Los centros de HPC usualmente tienen un appstack (grupo de aplicaciones) centralizado adaptado para HPC.
- El software puede ser cargado dinámicamente por los usuarios via Environment modules.
- Útil cuando se necesitan diferentes versiones del mismo software

Comandos básicos:

```
732
                                      -bash
man $MODULENAME ## or module help
module list ## currently loaded modules
module avail ## modules available to be loaded
module show $MODULEFILE.lua ## see exactly what a given modulefile will do
module load $MODULENAME ## add a module to the environment
module unload $MODULENAME ## remove a module from the environment
module switch $MODULENAME $NEW MODULENAME
module purge ## unload all active modules
```


Más allá de la paralelización: Quantum Computing

Quantum Reservoir Computing

Visión actual de la supercomputación

¿Cómo acceder a HPC?

CSUC

doitnovv Workflows

Unit	Path in the sytem	Disk quota	Backup	Observations
Home	/home/\$user	500 GB	Yes (daily)	Not suitable for the execution of jobs
Data	/data/\$group/\$ user	2 TB (can be increased according to storage prices)	Not by default (but you can ask for it)	
Scratch	/scratch/\$group /user	No limits	No	Only jobs executing under slurm can write in this directory, files are automatically removed after seven days

- Clonar repositorio de Github:
 https://github.com/HPCNow/UB_formation
- Acceder a Pirineus III

```
ssh <User>@pirineus3.csuc.cat -p 2122
```


- Copiar ficheros a Pirineus III

```
● ● ● て第2
  #LOCAL!!!!
  scp -rp -P 2122 UB formation
  curs$NUM@pirineusIII.csuc.cat:/home/<</pre>
 User>
```


- Explorar Pirineus III
 - particiones de slurm
 - software disponible via modulos
 - verificar que los ficheros copiados estén

- Iniciar una sesión interactiva

```
$ salloc --time 4:00:00 -n 1
```


- Preparar entorno de conda

```
$ ml conda
$ conda env create -f test-mpi.yml -y
```


- Scripts de python que:
 - Crea dos arreglos con 1x10⁷ elementos
 - Suma los arreglos
 - Suma todos los elementos de la suma y calcula el promedio

```
hybrid
    hybrid.py
   hybrid.slm
    mpi.py
    mpi.slm
multi
    multi.py
   multi.slm
single
 — single core.py
   single core.slm
test-mpi.yml
```


- Lanzar los trabajos
 - Ir a cada carpeta y lanzar los trabajos con sbatch
 <script>.slm
 - Revisar los outputs

```
-bash
hybrid
    hybrid.py
    hybrid.slm
   mpi.py
   - mpi.slm
multi
   multi.py
  - multi.slm
single
   single_core.py
  - single_core.slm
test-mpi.yml
```


- Modificar los scripts de slurm/python cambiando los parámetros del tamaño del arreglo/número de procesos y analizar diferencias

Preguntas