This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (03710)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶: C07K 14/22, C12N 15/31

A1

(11) Internati nal Publication Number:

WO 99/31132

(43) International Publication Date:

24 June 1999 (24.06.99)

(21) International Application Number:

PCT/AU98/01031

(22) International Filing Date:

14 December 1998 (14.12.98)

(30) Priority Data:

9726398.2

12 December 1997 (12.12.97) GB

(71) Applicants (for all designated States except US): THE UNI-VERSITY OF QUEENSLAND [AU/AU]; St. Lucia, Brisbane, QLD 4072 (AU). ISIS INNOVATION LIMITED [GB/GB]; 2 South Parks Road, Oxford, Oxfordshire OX1 3UB (GB).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): PEAK, Ian, Richard, Anselm [GB/AU]; Unit 10, 81 Armadale Street, St. Lucia, QLD 4067 (AU). JENNINGS, Michael, Paul [AU/AU]; 20 Picasso Street, Carina, QLD 4152 (AU). MOXON, E., Richard [GB/GB]; 17 Moreton Road, Oxford, Oxfordshire OX2 7AX (GB).
- (74) Agent: FISHER ADAMS KELLY; AMP Place, Level 13, 10 Eagle Street, Brisbane, QLD 4000 (AU).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: NOVEL SURFACE PROTEIN OF NEISSERIA MENINGITIDIS

(57) Abstract

The invention provides a novel surface polypeptide from *Neisseria meningitidis* as well as nucleic acid and nucleic acid sequence homologues encoding this protein. Pharmaceutical compositions containing the polypeptide and nucleic acids of the invention are also disclosed as well as methods useful in the treatment, prevention and diagnosis of *N. meningitidis* infection.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

TITLE

"NOVEL SURFACE ANTIGEN"

FIELD OF THE INVENTION

5 The present invention relates to novel polypeptides as for example obtainable from Neisseria meningitidis, to nucleotide sequences encoding such polypeptides, to the use of these in diagnostics, in therapeutic and prophylactic vaccines and in the design and/or screening of medicaments.

BACKGROUND OF THE INVENTION

Neisseria meningitidis is a Gram-negative bacterium and the causative agent of meningococcal meningitis and septicemia. Its only known host is the human, and it may be carried asymptomatically by approximately 10% of the population (Caugant, D. et al, 1994, Journal of Clinical Microbiology, 32:323-30).

N. meningitidis may express a polysaccharide capsule, and this allows classification of the bacteria according to the nature of the capsule expressed. There are at least thirteen serogroups of N. meningitidis: A,B,C,29-E,H,I,K,L,W135,X,Y and Z, of which serogroups A, B, and C cause 90% of meningococcal disease (Poolman, J.T. et al, 1995, Infectious Agents and Disease, 4:13-28). Vaccines directed against serogroups A and C are available, but the serogroup B capsular polysaccharide is poorly immunogenic and does not induce protection in humans.

Other membrane and extracellular components are therefore being examined for their suitability for

15

20

25

10

15

25

30

inclusion in vaccines. Examples include the outer membrane proteins of classes 1, 2 and 3 (porins), and classes 4 (Rmp) and 5 (Opacity proteins). However, to date, none of these candidates is able to induce complete protection, particularly in children (Romero, J.D., 1994, Clinical Microbiology Review, 7:559-575; Poolman, J.T. et al, 1995, supra).

create an effective vaccine, To it necessary to identify components of N. meningitidis which are present in a majority of strains, and which are capable of inducing a protective immune response (bactericidal antibodies). In this regard, reference made to Brodeur et al. (International be may Publication WO 96/29412) who disclose a 22 kDa surface protein which is highly conserved across 99% of all known strains of N. meningitidis. Injection of purified recombinant 22 kDa surface protein protected 80% of immunized mice against development of a lethal infection by N. meningitidis. Notwithstanding the discovery of this protein, there is still a need to isolate more surface proteins of N. meningitidis which are highly conserved across a plurality of strains, and which have immuno-protective profiles against N. meningitidis, and/or which may be used in combination with other components of N. meningitidis to enhance the efficacy of protection against this organism.

SUMMARY OF THE INVENTION

The present inventors have discovered a new gene which is present in all tested strains of N. meningitidis and which encodes a novel polypeptide having a predicted molecular weight of about 62 kDa. Based upon its sequence characteristics and homologies, this polypeptide is predicted to be an

15

20

25

adhesin and this, together with experimental data suggests that it constitutes a surface protein which may be useful for the production of therapeutic and/or prophylactic vaccines against *N. meningitidis* as described hereinafter.

Accordingly, in one aspect of the invention, there is provided an isolated polypeptide or fragment thereof, or variant or derivative of these, said polypeptide selected from the group consisting of:

10 (a) a polypeptide according to SEQ ID NO 2;

- (b) a polypeptide according to SEQ ID NO 5;
- (c) a polypeptide according to SEQ ID NO 7;
- (d) a polypeptide according to SEQ ID NO 9;
- (e) a polypeptide according to SEQ ID NO 11;

(f) a polypeptide according to SEQ ID NO 13;

- (g) a polypeptide according to SEQ ID NO 15;
- (h) a polypeptide according to SEQ ID NO 17;
- (i) a polypeptide according to SEQ ID NO 19; and
- (j) a polypeptide according to SEQ ID NO 21.

Preferably, said polypeptide, fragment, variant or derivative displays immunological activity against one or more members selected from the group consisting of:-

30 (i) N. meningitidis;

- (ii) said polypeptide;
- (iii) said fragment;
- (iv) said variant; and
- (v) said derivative;

According to another aspect, the invention provides an isolated nucleic acid sequence encoding a polypeptide or fragment thereof, or variant or derivative of said fragment or polypeptide, according to the first-mentioned aspect. Suitably, said sequence is selected from the group consisting of:

- (1) the nucleotide sequence of SEQ ID NO 1;
- (2) the nucleotide sequence of SEQ ID NO 3;
- (3) the nucleotide sequence of SEQ ID NO 4;
- (4) the nucleotide sequence of SEQ ID NO 6;
- (5) the nucleotide sequence of SEQ ID NO 8;
- (6) the nucleotide sequence of SEQ ID NO 10;
- (7) the nucleotide sequence of SEQ ID NO 12;
- (8) the nucleotide sequence of SEQ ID NO 14;
- (9) the nucleotide sequence of SEQ ID NO 16;
- (10) the nucleotide sequence of SEQ ID NO 18;
- (11) the nucleotide sequence of SEQ ID NO 20;
- (12) a nucleotide sequence fragment of any one of SEQ ID NOS 1, 3, 4, 6, 8, 10, 12, 14, 16, 18 and 20; and

(13) a nucleotide sequence homologue of any of the foregoing sequences

Preferably, said sequences encode a product displaying immunological activity against one or more members selected from the group consisting of:-

- (i) N. meningitidis;
- (ii) said polypeptide of the firstmentioned aspect;
- (iii) said fragment of said first-mentioned
 aspect;
- (iv) said variant of said first-mentioned
 aspect; and
- (v) said derivative of said firstmentioned aspect.

30

5

10

15

20

PCT/AU98/01031

5

15

30

In yet another aspect, the invention resides in an expression vector comprising a nucleic acid sequence according to the second-mentioned aspect wherein said sequence is operably linked to transcriptional and translational regulatory nucleic acid.

In a further aspect, the invention provides a host cell containing an expression vector according to the third-mentioned aspect.

- In yet a further aspect of the invention, there is provided a method of producing a recombinant polypeptide according to the first-mentioned aspect, said method comprising the steps of:
 - (A) culturing a host cell containing an expression vector according to the third-mentioned aspect such that said recombinant polypeptide is expressed from said nucleic acid; and
 - (B) isolating said recombinant polypeptide.
- In a still further aspect, the invention provides an antibody or fragment thereof that binds to one or more members selected from the group consisting of:-
 - (1) N. meningitidis;
- 25 (2) said polypeptide of the first-mentioned aspect;
 - (3) said fragment of the first-mentioned aspect;
 - (4) said variant of the first-mentioned aspect; and
 - (5) said derivative of the first-mentioned aspect.

In yet another aspect, the invention provides a method of detecting N. meningitidis in a biological

sample suspected of containing same, said method comprising the steps of:-

- (A) isolating the biological sample from a patient;
- (B) mixing the above-mentioned antibody or fragment with the biological sample to form a mixture; and
- (C) detecting specifically bound antibody or bound fragment in the mixture which indicates the presence of N. meningitidis.

According to a further aspect, there is provided a method of detecting *N. meningitidis* bacteria in a biological sample suspected of containing said bacteria, said method comprising the steps of:-

- (I) isolating the biological sample from a patient;
- (II) detecting a nucleic acid sequence according to the second-mentioned aspect in said sample which indicates the presence of said bacteria.

The invention further contemplates a method for diagnosing infection of patients by N. meningitidis, said method comprising the steps of:-

- (1) contacting a biological sample from a patient with a polypeptide, fragment, variant or derivative of the invention; and
- 30 (2) determining the presence or absence of a complex between said polypeptide, fragment, variant or derivative and N. meningitidis-specific antibodies in said sample, wherein the presence of

5

20

25

PCT/AU98/01031

5

15

20

25

said complex is indicative of said infection.

The invention also extends to the use of the polypeptide according to the first-mentioned aspect, the use of the nucleic acids according to the second-mentioned aspect or the use of the antibody or antibody fragment mentioned above in a kit for detecting N. meningitidis bacteria in a biological sample.

According to a further aspect of the invention, there is provided a pharmaceutical composition comprising an isolated polypeptide or fragment thereof, or a variant or derivative of these, according to the first mentioned aspect.

Preferably, said pharmaceutical composition is a vaccine.

In yet a further aspect, the invention provides a method of preventing infection of a patient by N. meningitidis, comprising the step of administrating a pharmaceutically effective amount of the above-mentioned vaccine.

In a further aspect, the invention provides a method of identifying an immunoreactive fragment of a polypeptide, variant or derivatives according to the first mentioned aspect, comprising the steps of:-

- (a) generating a fragment of said polypeptide, variant or derivative;
- (b) administering said fragment to a mammal; and
- (c) detecting an immune response in said mammal which response includes production of elements which specifically bind N. meningitidis and/or said polypeptide, variant or

derivative, and/or a protective effect against N. meningitidis infection.

BRIEF DESCRIPTION OF THE DRAWINGS

5 "FIG. 1 depicts plasmid maps and cloning strategy. Primers A3A and A3B (SEQ ID NOS 28 and 29, respectively) were used to amplify from MC58 the region identified in the TIGR database as a homologue of AIDA-I". PCR product was cloned to give pNMAIDA3. Primers A3C (SEQ ID NO 30) and A3D (SEQ ID NO 31) were 10 used in inverse PCR to amplify a 3kbp EagI fragment encompassing hiaNm. This product was cloned to give piEAGA3. piEAGA3 was subcloned to give piEagA3.8 and piEagA3.9. Primers HiaNm:M and HiaNm:P (SEQ ID NOS 22 and 23, respectively) were used to amplify the 15 contiguous region from MC58 and the product cloned to create pHiaNm. Primers Hia-MBPA (SEQ ID NO 24) and Hia-MBPB (SEQ ID NO 25) were used to amplify the open reading frame of hiaNm, and the product was cloned into pMALC2 to create pMBP-HiaNm; 20

FIG. 2 is a Southern blot of genomic DNA of a number of strains of N. meningitidis. 2A: serogroup B strains. Lane 1 PMC28, Lane 2 PMC27, Lane 3 PMC25, Lane 4 PMC24, Lane 5 PMC16, Lane 6 PMC13, Lane 7 PMC12, Lane 8 MWt standards, Lane 9 2970, Lane 10 1000, Lane 11 528 Lane 12 SWZ107, Lane 13 H41, Lane 14 H38, Lane 15 NGH36, Lane 16 H15, Lane 17 NGG40, Lane 18 NGF26, Lane 19 NGE30, Lane 20 Lane NGE28 2B: Strains of serogroups other than B. Lane 1 PMC3, Lane 2 PMC17, Lane 3 PMC20, Lane 4 PMC23, Lane 5 PMC8, Lane 6 PMC9, Lane 7 PMC11, Lane 8 PMC14, Lane 9 PMC18, Lane 10 PMC21, Lane 11 PMC29, Lane 12 MWt standards, Lane 13 PMC19, Lane 14 PMC1, Lane 15 PMC6, Lane 16 PMC10, Lane 17 PMC22, Lane 18 PMC26, Lane 19 PMC2. Molecular

25

WO 99/31132 PCT/AU98/01031

9

weight markers indicated in kilobase pairs (kb). Genomic DNA was hybridized with a probe corresponding to ntp 276-2054 of SEQ ID NO 1;

FIG. 3 shows a Coomassie stained gel of MBP-HiaNm. Cells containing pMALC2 (Lane 2) or pMBP-HiaNm (Lane 3) after induction with IPTG. Lane 1 molecular weight standards (kDa). Arrows indicate MBP and MBP-HiaNm;

FIG. 4 is a western blot of MC58 and MC58 Δ HiaNm proteins incubated with rabbit immune sera. Lane 1; molecular weight standards indicated in kDa, Lane 2 total cellular protein of MC58, Lane 3 total cellular protein of MC58 Δ HiaNm Lane 4, OMC preparation of MC58, Lane 5 OMC preparation of MC58 Δ HiaNm, each lane contained 50 μ L of protein suspension of A₂₈₀= 3.75;

FIG. 5 shows a Coomassie stained gel run in parallel to the gel that was Western blotted in FIG 4. Lanes are the same as for FIG 4;

FIG. 6 shows a sequence comparison of polypeptides of HiaNm, Hia, Hsf using the PILEUP alignment program; and

FIG. 7 shows a sequence comparison of polypeptide sequences of HiaNm from 10 strains of N. meningitidis using the PILEUP program

DETAILED DESCRIPTION OF THE INVENTION

Throughout this specification and the appendant claims, unless the context requires otherwise, the words "comprise", "comprises" and "comprising" will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.

5

10

15

PCT/AU98/01031

5

10

15

20

25

Polypeptide sequences

The present invention provides an isolated polypeptide according to SEQ ID NOS 2, 5, 7, 9, 11, 13, 15, 17, 19 and 21, or fragment respectively thereof, or variant or derivative of these. In a preferred embodiment, the polypeptide, fragments, variants and derivatives of the invention display immunological activity against any one member selected from the group consisting of N. meningitidis, said polypeptide, said fragment, said variant and said derivative.

SEQ ID NO 2 corresponds to the novel about 62 kDa surface polypeptide of the *hiaNm* gene obtained from *N. meningitidis* strain MC58, as described more fully hereinafter. SEQ ID NOS 5, 7, 9, 11, 13, 15, 17, 19, and 21 correspond to homologous polypeptides deduced from nucleotide sequences obtained from *N. meningitidis* strains BZ10, BZ198, EG327, EG329, H15, H38, H41, P20, and PMC21, respectively.

For the purposes of this invention, the term "immunological activity" refers to the ability of the polypeptide, fragment, aforementioned variant derivative to produce an immune response in a mammal to which it is administered, wherein the response includes the production of elements which specifically meningitidis bind N.and/or said polypeptide, fragment, variant or derivative, and/or a protective effect against N. meningitidis infection.

By "isolated" is meant material which is substantially or essentially free from components which normally accompany it in its native state.

By "polypeptide" is meant long chain peptides including proteins.

10

15

25

30

As used herein, the term "fragment" includes deletion mutants and small peptides, for example of at least 6, preferably at least 10 and more preferably at least 20 amino acids in length, which comprise antigenic determinants or epitopes. Several such fragments may be joined together. Peptides of this type may be obtained through the application of standard recombinant nucleic acid techniques or synthesized using conventional liquid or solid phase synthesis techniques. For example, reference may be made to solution synthesis or solid phase synthesis as described, for example, in Chapter 9 entitled "Peptide Synthesis" by Atherton and Shephard which is included in a publication entitled "Synthetic Vaccines" edited by Nicholson and published by Blackwell Scientific Publications. Alternatively, peptides can be produced by digestion of a polypeptide of the invention with proteinases such as endoLys-C, endoArg-C, endoGlu-C staphylococcins V8-protease. The digested and fragments can be purified by, for example, high performance liquid chromatographic (HPLC) techniques.

The term "variant" refers to polypeptides in which one or more amino acids have been replaced by different amino acids. It is well understood in the art that some amino acids may be changed to others with broadly similar properties without changing the nature of the activity of the polypeptide (conservative substitutions). Exemplary conservative substitutions in the polypeptide may be made according to the following table:

TABLE 1

Original Residue	Exemplary Substitutions
Ala	Ser

Arg	Lys
Asn	Gln, His
Asp	Glu
Cys	Ser
Gln	Asn
Glu	Asp
Gly	Pro
His	Asn, Gln
Ile	Leu, Val
Leu	Ile, Val
Lys	Arg, Gln, Glu
Met	Leu, Ile,
Phe	Met, Leu, Tyr
Ser	Thr
Thr	Ser
Trp	Tyr
Tyr	Trp, Phe
Val	Ile, Leu

Substantial changes in function are made by selecting substitutions that are less conservative than those shown in TABLE 1. Other replacements would be non-conservative substitutions and relatively fewer of these be tolerated. may Generally, the substitutions which are likely to produce the greatest changes in a polypeptide's properties are those in which (a) a hydrophilic residue (e.g., Ser or Thr) is substituted for, or by, a hydrophobic residue (e.g., Ala, Leu, Ile, Phe or Val); (b) a cysteine or proline is substituted for, or by, any other residue; (c) a residue having an electropositive side chain (e.g., Arg, His or Lys) is substituted for, or by, an electronegative residue (e.g., Glu or Asp) or (d) a residue having a bulky side chain (e.g., Phe or Trp) is substituted for, or by, one having a smaller side chain (e.g., Ala, Ser) or no side chain (e.g., Gly).

DIA200010; <AA0__8831125V1_1^>

10

In general, variants will be at least 75% homologous, more suitably at least 80%, preferably at least 85%, and most preferably at least 90% homologous to the basic sequences as for example shown in SEQ ID NOS 2, 5, 7, 9, 11, 13, 15, 17, 19 and 21. Homology is defined as the percentage number of amino acids which identical are constitute conservative orsubstitutions as defined in Table 1. Homology may be determined using sequence comparison programs such as GAP (Deveraux et al. 1984, Nucleic Acids Research 12, 387-395) which is incorporated herein by reference. In this way sequences of a similar or substantially different length to those cited herein may be compared by insertion of gaps into the alignment, such gaps being determined, for example, by the comparison algorithm used by GAP. What constitutes suitable variants may be determined by conventional techniques. example, nucleic acids encoding polypeptides For according to SEQ ID NOS 2, 5, 7, 9, 11, 13, 15, 17, 19 and 21 can be mutated using either random mutagenesis for example using transposon mutagenesis, or sitedirected mutagenesis. The resultant DNA fragments are then cloned into suitable expression hosts such as E. coli using conventional technology and clones which retain the desired activity are detected. Where the clones have been derived using random mutagenesis techniques, positive clones would have to be sequenced in order to detect the mutation. The term "variant" also includes naturally occurring allelic variants.

By "derivative" is meant a polypeptide which has been derived from the basic sequence by modification, for example by conjugation or complexing with other chemical moieties or by post-translational modification techniques as would be understood in the

5

10

15

20

25

10

15

25

30

35

Such derivatives include amino acid deletions art. and/or additions to polypeptides according to SEQ ID NOS 2, 5, 7, 9, 11, 13, 15, 17, 19 and 21 or variants thereof wherein said derivatives retain immunological activity. "Additions" of amino acids may include fusion of the polypeptides or variants thereof with other polypeptides or proteins. In this regard, it will be appreciated that the polypeptides or variants of the invention may be incorporated into larger polypeptides, and such larger polypeptides may also be expected to retain immunological activity against, for example, N. meningitidis. The polypeptides described above may be fused to a further protein, for example, which is not derived from N. meningitidis. The other protein may, by way of example, assist in the purification of the protein. For instance a polyhistidine tag, or a maltose binding protein may be used in this respect as described in more detail Alternatively, it may produce an below. response which is effective against N. meningitidis or it may produce an immune response against another pathogen. Other possible fusion proteins are those which produce immunomodulatory an response. Particular examples of such proteins include Protein A or glutathione S-transferase (GST). In addition, the polypeptide may be fused to an oligosaccharide based vaccine component where it acts as a carrier protein.

Other derivatives contemplated by the invention include, but are not limited to, modification to side chains, incorporation of unnatural amino acids and/or their derivatives during peptide, polypeptide or protein synthesis and the use of crosslinkers and other methods which conformational constraints on the polypeptides, fragments and variants of the invention.

10

15

20

Examples of chain side modifications contemplated by the present invention include modifications of amino groups such as by acylation with acetic anhydride; acylation of amino groups with succinic anhydride and tetrahydrophthalic anhydride; amidination with methylacetimidate; carbamoylation of amino groups with cyanate; pyridoxylation of lysine with pyridoxal-5-phosphate followed by reduction with reductive alkylation by reaction with NaBH₄; followed by reduction with aldehyde NaBH₄; and trinitrobenzylation of amino groups with 2, 4, 6trinitrobenzene sulphonic acid (TNBS).

The carboxyl group may be modified by carbodimide activation via O-acylisourea formation followed by subsequent derivitization, by way of example, to a corresponding amide.

The guanidine group of arginine residues may be modified by formation of heterocyclic condensation products with reagents such as 2,3-butanedione, phenylglyoxal and glyoxal.

Sulphydryl groups may be modified by methods such as performic acid oxidation to cysteic acid; of formation mercurial derivatives using chloromercuriphenylsulphonic acid, 4 – 25 chloromercuribenzoate; 2-chloromercuri-4-nitrophenol, phenylmercury chloride, and other mercurials; formation of a mixed disulphides with other thiol compounds; reaction with maleimide, maleic anhydride other substituted maleimide; carboxymethylation 30 iodoacetic acid or iodoacetamide; with and carbamoylation with cyanate at alkaline pH.

Tryptophan residues may be modified, for example, by alkylation of the indole ring with 2-hydroxy-5-nitrobenzyl bromide or sulphonyl halides or by oxidation with N-bromosuccinimide.

10

15

Tyrosine residues, may be modified by nitration with tetranitromethane to form a 3-nitrotyrosine derivative.

The imidazole ring of a histidine residue may be modified by N-carbethoxylation with diethylpyrocarbonate or by alkylation with iodoacetic acid derivatives.

Examples of incorporating unnatural amino acids and derivatives during peptide synthesis include but are not limited to, use of 4-amino butyric acid, 6-aminohexanoic acid, 4-amino-3-hydroxy-5-phenylpentanoic acid, 4-amino-3-hydroxy-6-methylheptanoic acid, t-butylglycine, norleucine, norvaline, phenylglycine, ornithine, sarcosine, 2-thienyl alanine and/or D-isomers of amino acids. A list of unnatural amino acids contemplated by the present invention is shown in TABLE 2.

TABLE 2

Non-conventional amino acid	Non-conventional amino acid
α-aminobutyric acid	L-N-methylalanine
α -amino- α -methylbutyrate	L-N-methylarginine
aminocyclopropane-carboxylate	L-N-methylasparagine
aminoisobutyric acid	L-N-methylaspartic acid
aminonorbornyl-carboxylate	L-N-methylcysteine
cyclohexylalanine	L-N-methylglutamine
cyclopentylalanine	L-N-methylglutamic acid
L-N-methylisoleucine	L-N-methylhistidine
D-alanine	L-N-methylleucine
D-arginine	L-N-methyllysine
D-aspartic acid	L-N-methylmethionine
D-cysteine	L-N-methylnorleucine
D-glutamate	L-N-methylnorvaline
D-glutamic acid	L-N-methylornithine
D-histidine	L-N-methylphenylalanine
D-isoleucine	L-N-methylproline
D-leucine	L-N-medlylserine

_		
ı	D-lysine	L-N-methylthreonine
	D-methionine	L-N-methyltryptophan
ı	D-ornithine	L-N-methyltyrosine
	D-phenylalanine	L-N-methylvaline
İ	D-proline D-serine	L-N-methylethylglycine
	D-threonine	L-N-methyl-t-butylglycine L-norleucine
	D-tryptophan	L-norvaline
	D-tyrosine	α-methyl-aminoisobutyrate
١	D-valine	_
	D-α-methylalanine	α-methyl-γ-aminobutyrate
	D-α-methylarginine	α-methylcyclohexylalanine
		α-methylcylcopentylalanine
	D-α-methylasparagine	α -methyl- α -napthylalanine
	D-α-methylaspartate	α-methylpenicillamine
	D-α-methylcysteine	N-(4-aminobutyl)glycine
	D-α-methylglutamine	N-(2-aminoethyl)glycine
	D-α-methylhistidine	N-(3-aminopropyl)glycine
	D-α-methylisoleucine	N-amino-α-methylbutyrate
	D-α-methylleucine	α-napthylalanine
	D-α-methyllysine	N-benzylglycine
	D-α-methylmethionine	N-(2-carbamylediyl)glycine -
	D-α-methylornithiine	N-(carbamylmethyl)glycine
	D-α-methylphenylalanine	N-(2-carboxyethyl)glycine
	D-α-methylproline	N-(carboxymethyl)glycine
	D-α-methylserine	N-cyclobutylglycine
	D-α-methylthreonine	N-cycloheptylglycine
	D-α-methyltryptophan	N-cyclohexylglycine
	D-α-methyltyrosine	N-cyclodecylglycine
	L-α-methylleucine	L-α-methyllysine
	L-α-methylmethionine	L-α-methylnorleucine
ı	L-α-methylnorvatine	L-α-methylornithine
	$L-\alpha$ -methylphenylalanine	L-α-methylproline
	$ extsf{L-}\alpha extsf{-methylserine}$	L-α-methylthreonine
	L-α-methyltryptophan	L-α-methyltyrosine
	$L-\alpha$ -methylvaline	L-N-methylhomophenylalanine
	N-(N-(2,2-diphenylethyl	N-(N-(3,3-diphenylpropyl

25

carbamylmethyl)glycine	carbamylmethyl)glycine
1-carboxy-1-(2,2-diphenyl-ethyl	
amino) cyclopropane	

The invention also contemplates covalently modifying a polypeptide, fragment or variant of the invention with dinitrophenol, in order to render it immunogenic in humans

Preferably the invention comprises a polypeptide selected from any one of the polypeptides according to SEQ ID NOS 2, 5, 7, 9, 11, 13, 15, 17, 19 and 21.

- Polypeptides of the inventions may be prepared by any suitable procedure known to those of skill in the art. For example, the polypeptides may be prepared by a procedure including the steps of:
- (a) preparing a recombinant nucleic acid containing a nucleotide sequence encoding a polypeptide according to any one of SEQ ID NOS 2, 5, 7, 9, 11, 13, 15, 17, 19 and 21, or fragment thereof, or variant or derivative of these, which nucleotide sequence is operably linked to transcriptional and translational regulatory nucleic acid;
 - (b) transfecting or transforming a suitable host cell with the recombinant nucleic acid;
 - (c) culturing the host cell to express recombinant polypeptide from said recombinant nucleic acid; and
 - (d) isolating the recombinant polypeptide.

Suitably said nucleotide sequence is selected from the group consisting of SEQ ID NOS 1, 3, 4, 6, 8, 10, 12, 14, 16, 18 and 20.

By "recombinant polypeptide" is meant a polypeptide made using recombinant techniques, i.e., through the expression of a recombinant nucleic acid.

10

15

25

The term "recombinant nucleic acid" as used herein refers to nucleic acid formed in vitro by the manipulation of nucleic acid into a form not normally found in nature. In this regard, the recombinant nucleic acid preferably comprises an expression vector may be either a self-replicating which extrachromosomal vector such as a plasmid, or a vector which integrates into a host genome. Generally, such expression vectors include transcriptional translational regulatory nucleic acid operably linked to the said nucleotide sequence.

By "operably linked" is meant that the transcriptional and translational regulatory nucleic acid is positioned relative to the nucleotide sequence encoding the said polypeptide, fragment, variant or derivative in such a manner that such transcription is initiatable. The transcriptional and translational regulatory nucleic acid will generally be appropriate for the host cell used for expression. Numerous types of appropriate expression vectors, and suitable regulatory sequences are known in the art for a variety of host cells.

Typically, the transcriptional and translational regulatory nucleic acid may include, but is not limited to, promoter sequences, leader or signal sequences, ribosomal binding sites, transcriptional start and stop sequences, translational start and stop sequences, and enhancer or activator sequences.

Constitutive or inducible promoters as known in the art are contemplated by the invention. The promoters may be either naturally occurring promoters, or hybrid promoters which combine elements of more than one promoter.

10

15

35

In a preferred embodiment, the expression vector contains a selectable marker gene to allow the selection of transformed host cells. Selection genes are well known in the art and will vary with the host cell used.

The expression vector may also include a fusion partner (typically provided by the expression vector) so that the recombinant polypeptide of the invention is expressed as a fusion polypeptide with said fusion partner. The main advantage of fusion partners is that they assist identification and/or purification of said fusion polypeptide.

In order to express said fusion polypeptide, it is necessary to ligate a nucleotide sequence according to the invention into the expression vector so that the translational reading frames of the fusion partner and the nucleotide sequence of the invention coincide.

known examples of fusion Well partners 20 but are not limited to, glutathione-Stransferase (GST), Fc potion of human IgG, maltose binding protein (MBP) and hexahistidine (HIS6), which are particularly useful for isolation of the fusion polypeptide by affinity chromatography. For 25 of fusion polypeptide purification purposes affinity chromatography, relevant matrices for affinity chromatography are glutathione-, amylose-, and nickel- or cobalt-conjugated resins respectively. Many such matrices are available in "kit" form, such 30 as the QIAexpressTM system (Qiagen) useful with (HIS₆) fusion partners and the Pharmacia GST purification system.

Another fusion partner well known in the art is green fluorescent protein (GFP). This fusion partner serves as a fluorescent "tag" which allows the

10

15

20

25

30

fusion polypeptide of the invention to be identified by fluorescence microscopy or by flow cytometry. GFP tag is useful when assessing subcellular localization of fusion polypeptide of the invention, or for isolating cells which express the fusion polypeptide of the invention. Flow cytometric methods such as fluorescence activated cell sorting (FACS) are particularly useful in this latter application.

Preferably, the fusion partners also have protease cleavage sites, such as for Factor X_a or Thrombin, which allow the relevant protease to partially digest the fusion polypeptide of the invention and thereby liberate the recombinant polypeptide of the invention therefrom. The liberated polypeptide can then be isolated from the fusion partner by subsequent chromatographic separation.

Fusion partners according to the invention also include within their scope "epitope tags", which are usually short peptide sequences for which a specific antibody is available. Well known examples of epitope tags for which specific monoclonal antibodies are readily available include c-myc, influenza virus haemagglutinin and FLAG tags.

Recombinant polypeptides of the invention may be produced by culturing a host cell transformed with an expression vector containing nucleic acid encoding a polypeptide, fragment, variant or derivative according to the invention. The conditions appropriate for protein expression will vary with the choice of expression vector and the host cell. This is easily ascertained by one skilled in the art through routine experimentation.

Suitable host cells for expression may be prokaryotic or eukaryotic. One preferred host cell

10

15

25

30

for expression of a polypeptide according to the invention is a bacterium. The bacterium used may be *Escherichia coli*. Alternatively, the host cell may be an insect cell such as, for example, *SF9* cells which may be utilized with a baculovirus expression system.

The recombinant protein may be conveniently prepared by a person skilled in the art using standard protocols as for example described in Sambrook, et al., MOLECULAR CLONING. A LABORATORY MANUAL (Cold Spring Harbor Press, 1989), incorporated herein by reference, in particular Sections 16 and 17; Ausubel et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (John Wiley & Sons, Inc. 1994-1998), incorporated herein by reference, in particular Chapters 10 and 16; and Coligan et al., CURRENT PROTOCOLS IN PROTEIN SCIENCE (John Wiley & Sons, Inc. 1995-1997) which is incorporated by reference herein, in particular Chapters 1, 5 and 6.

Nucleotide sequences

The invention further provides a nucleotide sequence which encodes a polypeptide, fragment, variant or derivative as defined above. Suitably said sequence is selected from the group consisting of:-SEQ ID NOS 1, 3, 4, 6, 8, 10, 12, 14, 16, 18 and 20; a nucleotide sequence fragment of any one of SEQ ID NOS 1, 3, 4, 6, 8, 10, 12, 14, 16, 18 and 20; and a nucleotide sequence homologue of the foregoing sequences. Preferably, these sequences encode a product displaying immunological activity as defined above.

As will be more fully described hereinafter, SEQ ID NO 1 corresponds to the hiaNm gene obtained from N. meningitidis strain MC58. This gene encodes

15

20

25

30

the novel 62 kDa (approximately) surface polypeptide of SEQ ID NO 2. SEQ ID NO 3 corresponds to the hiaNm open reading frame sequence of strain MC58, HiaNm. SEQ ID NOS 4, 6, 8, 10, 12, 14, 16, 18, and 20 correspond to the homologous hiaNm open reading frame sequences obtained from N. meningitidis strains BZ10, BZ198, EG327, EG329, H15, H38, H41, P20, and PMC21, respectively.

The term "nucleotide sequence" as used 10 herein designates mRNA, RNA, cRNA, cDNA or DNA.

The term "nucleotide sequence homologues" generally refers to nucleotide sequences which hybridize with a wild-type nucleotide sequence according to the invention under substantially stringent conditions. Suitable hybridization conditions will be discussed hereinafter.

The nucleotide sequence homologues of the invention may be prepared according to the following procedure:

- (i) obtaining a nucleic acid extract from a suitable host;
 - (ii) creating primers which are optionally degenerate wherein each comprises a portion of a wild-type nucleotide sequence of the invention; and
 - (iii) using said primers to amplify, via nucleic acid amplification techniques, one or more amplification products from said nucleic acid extract.

Suitably, the host may be a bacterium. Preferably, the host is from the genus *Neisseria*, more preferably from *N. meningitidis*.

BNSDOCID: <WO__9931132A1_I_>

20

25

30

Preferably, the primers are selected from the group consisting of:-

- (1) 5'-TTAGATTCCACGTCCCAGATT-3' (SEQ ID NO 22);
- 5 (2) 5'-CTTCCCTTCAAACCTTCC-3' (SEQ ID NO 23);
 - (3) 5'-GGTCGCGGATCCATGAACAAAATATACCGCAT-3' (SEQ ID NO 24);
 - (4) 5'-TCACCCAAGCTTAAGCCCTTACCACTGATAAC-3' (SEQ ID NO 25);
 - (5) 5'-CCAAACCCCGATTTAACC-3' (SEQ ID NO 26);
 - (6) 5'-AATCGCCACCCTTCCCTTC-3' (SEQ ID NO 27);
- 15 (7) 5'-TTTGCAACGGTTCAGGCA-3' (SEQ ID NO 28);
 - (8) 5'-TATTCAGCAGCGTATCGG-3' (SEQ ID NO 29);
 - (9) 5'-TGCCTGAACCGTTGCAAA-3' (SEQ ID NO 30); and
 - (10) 5'-CCGATACGCTGCTGAATA-3' (SEQ ID NO 31).

Suitable nucleic acid amplification techniques are well known to the skilled addressee, and include polymerase chain reaction (PCR) as for example described in Ausubel et al. (1994-1998, supra, Chapter 15) which is incorporated herein by reference; strand displacement amplification (SDA) as for example described in U.S. Patent No 5,422,252 which is incorporated herein by reference; rolling circle replication (RCR) as for example described in Liu et al., (1996, J. Am. Chem. Soc. 118:1587-1594 and International application WO 92/01813) and Lizardi et al., (International Application WO 97/19193) which are

15

25

30

incorporated herein by reference; nucleic acid sequence-based amplification (NASBA) as for example described by Sooknanan et al., (1994, Biotechniques 17:1077-1080) which is incorporated herein by reference; and $Q-\beta$ replicase amplification as for example described by Tyagi et al., (1996, Proc. Natl. Acad. Sci. USA 93:5395-5400) which is incorporated herein by reference.

As used herein, an "amplification product"

refers to a nucleic acid product generated by nucleic acid amplification techniques.

"Hybridize" or "hybridization" is used here to denote the pairing of complementary bases of distinct nucleotide sequences to produce a DNA-DNA hybrid, a DNA-RNA hybrid, or an RNA-RNA hybrid according to base-pairing rules.

In DNA, complementary bases are:

- (i) A and T; and
- (ii) C and G.
- In RNA, complementary bases are:
 - (i) A and U; and
 - (ii) C and G.

In RNA-DNA hybrids, complementary bases are:

- (i) A and U;
- (ii) A and T; and
 - (iii) G and C.

nucleotide sequences are identified by blotting techniques that include a step whereby nucleotides are immobilized on a matrix (preferably a synthetic membrane such as nitrocellulose), a hybridization step, and a detection step. Southern blotting is used to identify a complementary DNA sequence; northern blotting is used to identify a complementary RNA

10

15

20

25

sequence. Dot blotting and slot blotting can be used to identify complementary DNA/DNA, DNA/RNA or RNA/RNA polynucleotide sequences. Such techniques are well known by those skilled in the art, and have been described in Ausubel et al. (1994-1998, supra) at pages 2.9.1 through 2.9.20.

According to such methods, Southern blotting involves separating DNA molecules according to size by gel electrophoresis, transferring the size-separated DNA to a synthetic membrane, and hybridizing the membrane bound DNA to a complementary nucleotide sequence labeled radioactively, enzymatically or fluorochromatically. In dot blotting and slot blotting, DNA samples are directly applied to a synthetic membrane prior to hybridization as above.

An alternative blotting step is used when identifying complementary nucleotide sequences in a cDNA or genomic DNA library, such as through the process of plaque or colony hybridization. A typical example of this procedure is described in Sambrook et al., (1989, supra) Chapters 8-12.

Typically, the following general procedure can be used to determine hybridization conditions. Nucleotide sequences are blotted/transferred to a synthetic membrane, as described above. A wild type nucleotide sequence of the invention is labeled as described above, and the ability of this labeled nucleotide sequence to hybridize with an immobilized nucleotide sequence analyzed.

A skilled addressee will recognize that a number of factors influence hybridization. The specific activity of radioactively labeled polynucleotide sequence should typically be greater than or equal to about 10⁸ dpm/mg to provide a detectable signal. A radiolabeled nucleotide sequence

of specific activity 10^8 to 10^9 dpm/mg can detect approximately 0.5 pg of DNA. It is well known in the art that sufficient DNA must be immobilized on the membrane to permit detection. It is desirable to have excess immobilized DNA, usually $10\mu g$. Adding an inert polymer such as 10% (w/v) dextran sulfate (MW 500,000) or polyethylene glycol 6000 during hybridization can also increase the sensitivity of hybridization (see Ausubel supra at 2.10.10).

10 achieve meaningful To results from hybridization between a nucleotide sequence immobilized on a membrane and a labeled nucleotide sufficient sequence, a amount of the labeled nucleotide sequence must be hybridized to the immobilized nucleotide sequence 15 following washing. Washing ensures that the labeled nucleotide sequence hybridized only to the immobilized nucleotide sequences with a desired degree of complementarity to the labeled nucleotide sequence.

"Stringency" as used herein, refers to the temperature and ionic strength conditions, and presence or absence of certain organic solvents, during hybridization. The higher the stringency, the higher will be the degree of complementarity between the immobilized nucleotide sequences and the labeled polynucleotide sequence.

"Stringent conditions" designates those conditions under which only nucleotide sequences having a high frequency of complementary bases will hybridize.

Typical stringent conditions include, for example, (1) 0.75 M dibasic sodium phosphate/0.5 M monobasic sodium phosphate/1 mM disodium EDTA/1% sarkosyl at about 42°C for at least 30 minutes; or (2)

30

10

15

6.0 M urea/0.4 % sodium lauryl sulfate/0.1x SSC at about 42°C for at least 30 minutes; or (3) 0.1x SSC/0.1% SDS at about 68°C for at least 20 minutes; or (4) 1x SSC/0.1% SDS at about 55°C for about 60 minutes; (5) 1x SSC/0.1% SDS at about 62°C for about 60 minutes; or (6) 1x SSC/0.1% SDS at about 68°C for about 60 minutes; or (7) 0.2X SSC/0.1% SDS at about 55°C for about 60 minutes; or (8) 0.2x SSC/0.1% SDS at about 62°C for about one hour; or (9) 0.2X SSC/0.1% SDS at about 68°C for about 60 minutes. For a detailed example, see CURRENT PROTOCOLS IN MOLECULAR BIOLOGY supra at pages 2.10.1 to 2.10.16, and Sambrook et al. in MOLECULAR CLONING. A LABORATORY MANUAL (Cold Spring Harbour Press, 1989) at sections 1.101 to 1.104, which are hereby incorporated by reference.

While stringent washes are typically carried out at temperatures from about 42°C to 68°C, one in the art will appreciate that other skilled temperatures may be suitable for stringent conditions. Maximum hybridization typically occurs at about 20°C to 20 25°C below the T_m for formation of a DNA-DNA hybrid. It is well known in the art that the T_m is the melting temperature, or temperature at which two complementary polynucleotide sequences dissociate. Methods estimating T_m are well known in the art (see CURRENT 25 PROTOCOLS IN MOLECULAR BIOLOGY supra at page 2.10.8). Maximum hybridization typically occurs at about 10°C to 15°C below the T_m for a DNA-RNA hybrid.

Other stringent conditions are well-known in the art. A skilled addressee will recognize that various factors can be manipulated to optimize the specificity of the hybridization. Optimization of the stringency of the final washes can serve to ensure a high degree of hybridization.

10

15

20

25

30

Methods for detecting labeled nucleotide sequences hybridized to an immobilized nucleotide sequence are well known to practitioners in the art. methods Such include autoradiography, chemiluminescent, fluorescent colorimetric and detection.

Antibodies

invention also contemplates antibodies against the aforementioned polypeptides, fragments, variants and derivatives. Such antibodies may include any suitable antibodies which bind to or conjugate with a polypeptide, fragment, variant or derivative of invention. the For example, the antibodies may comprise polyclonal antibodies. Such antibodies may be prepared for example by injecting a polypeptide, fragment, variant or derivative of the invention into a production species, which may include mice rabbits, to obtain polyclonal antisera. Methods of producing polyclonal antibodies are well known to those skilled in the art. Exemplary protocols which may be used are described for example in Coligan et al., CURRENT PROTOCOLS IN IMMUNOLOGY, (John Wiley & Sons, Inc, 1991) which is incorporated herein by reference, and Ausubel et al., (1994-1998, supra), in particular Section III of Chapter 11.

In lieu of the polyclonal antisera obtained in the production species, monoclonal antibodies may be produced using the standard method as for example, described in an article by Köhler and Milstein (1975, Nature 256, 495-497) which is herein incorporated by reference, or by more recent modifications thereof as for example, described in Coligan et al., (1991, supra) by immortalizing spleen or other antibody

10

15

20

25

producing cells derived from a production species which has been inoculated with one or more of the polypeptides, fragments, variants or derivatives of the invention.

The invention also includes within its scope antibodies which comprise Fc or Fab fragments of the polyclonal or monoclonal antibodies referred to above. Alternatively, the antibodies may comprise single chain Fv antibodies (scFvs) against the peptides of the invention. Such scFvs may be prepared, for example, in accordance with the methods described respectively in United States Patent No 5,091,513, European Patent No 239,400 or the article by Winter and Milstein (1991, Nature, 349 293) which are incorporated herein by reference.

The antibodies of the invention may be used for affinity chromatography in isolating natural or recombinant *N. meningitidis* polypeptides. For example reference may be made to immunoaffinity chromatographic procedures described in Chapter 9.5 of Coligan et al., (1995-1997, supra).

The antibodies can be used to screen expression libraries for variant polypeptides of the invention. The antibodies of the invention can also be used to detect *N. meningitidis* infection described hereinafter.

Detection of N. meningitidis

The presence or absence of *N. meningitidis* in a patient may determined by isolating a biological sample from a patient, mixing an antibody or antibody fragment described above with the biological sample to form a mixture, and detecting specifically bound antibody or bound fragment in the mixture which

10

15

20

indicates the presence of N. meningitidis in the sample.

The term "biological sample" as used herein refers to a sample which may be extracted, untreated, treated, diluted or concentrated from a patient. Suitably, the biological sample is selected from the group consisting of whole blood, serum, plasma, saliva, urine, sweat, ascitic fluid, peritoneal fluid, synovial fluid, amniotic fluid, cerebrospinal fluid, skin biopsy, and the like.

Any suitable technique for determining formation of the complex may be used. For example, an antibody fragment according to the antibody or invention having a label associated therewith may be immunoassays. utilized in Such immunoassays include, but are not limited to, radioimmunoassays enzyme-linked immunosorbent assays (ELISAs) and immunochromatographic techniques (ICTs) which are well known those of skill in the art. For example, may be made to "CURRENT PROTOCOLS IN reference IMMUNOLOGY" (1994, supra) which discloses a variety of immunoassays that may be used in accordance with the invention. Immunoassays may include present competitive assays as understood in the art.

The label associated with the antibody or antibody fragment may include the following:

- i. direct attachment of the label to the antibody or antibody fragment;

iii. attachment to a subsequent reaction product of the antibody or antibody fragment.

The label may be selected from a group including a chromogen, a catalyst, an enzyme, a fluorophore, a chemiluminescent molecule, a lanthanide ion such as Europium (Eu³⁴), a radioisotope and a direct visual label.

In the case of a direct visual label, use may be made of a colloidal metallic or non-metallic particle, a dye particle, an enzyme or a substrate, an organic polymer, a latex particle, a liposome, or other vesicle containing a signal producing substance and the like.

15 A large number of enzymes suitable for use labels is disclosed in United States as Patent Specifications U.S. 4,366,241, U.S. 4,843,000, and U.S. 4,849,338, all of which are herein incorporated by reference. Suitable enzyme labels useful in the invention present alkaline 20 include phosphatase, horseradish peroxidase, luciferase, β -galactosidase, glucose oxidase, lysozyme, malate dehydrogenase and the like. The enzyme label may be used alone or in combination with a second enzyme which is in solution.

Suitably, the fluorophore is selected from a group including fluorescein isothiocyanate (FITC), tetramethylrhodamine isothiocyanate (TRITL) or R-Phycoerythrin (RPE).

The invention also extends to a method for detecting infection of patients by N. meningitidis, said method comprising the steps of contacting a biological sample from a patient with a polypeptide, fragment, variant or derivative of the invention, and determining the presence or absence of a complex

between said polypeptide, fragment, variant or derivative and *N. meningitidis*-specific antibodies in said serum, wherein the presence of said complex is indicative of said infection.

In a preferred embodiment, detection of the above complex is effected by detectably modifying said polypeptide, fragment, variant or derivative with a suitable label as is well known in the art and using such modified compound in a suitable immunoassay as for example described above.

In another aspect, the invention provides a method of detecting *N. meningitidis* bacteria in a biological sample suspected of containing said bacteria, said method comprising the steps of isolating the biological sample from a patient, detecting a nucleic acid sequence according to the invention in said sample which indicates the presence of said bacteria.

Detection of the said nucleic acid sequence may be determined using any suitable technique. 20 example, a labeled nucleic acid sequence according to the invention may be used as a probe in a Southern blot of a nucleic acid extract obtained from a patient as is well known in the art. Alternatively, a labeled nucleic acid sequence according to the invention may 25 be utilized as a probe in a Northern blot of a RNA extract from the patient. Preferably, a nucleic acid extract from the patient is utilized in concert with oligonucleotide primers corresponding to sense and antisense sequences of a nucleic 30 acid sequence according to the invention, or flanking sequences thereof, in a nucleic acid amplification reaction such as PCR, or the ligase chain reaction (LCR) as for example described International Application in WO89/09385 which is incorporated by reference herein. 35

5

10

10

15

20

25

30

A variety of automated solid-phase detection techniques are also appropriate. For example, very large scale immobilized primer arrays (VLSIPSTM) are used for the detection of nucleic acids as for example described by Fodor et al., (1991, Science 251:767-777) and Kazal et al., (1996, Nature Medicine 2:753-759). The above generic techniques are well known to persons skilled in the art.

Pharmaceutical compositions

A further feature of the invention is the polypeptide, fragment, the οf variant use or derivative of the invention ("immunogenic agents") as actives in a pharmaceutical composition for protecting patients against infection bу N.meningitidis. Suitably, the pharmaceutical composition comprises a pharmaceutically-acceptable carrier.

By "pharmaceutically-acceptable carrier" is solid liquid filler, or diluent meant or encapsulating substance which may be safely used in systemic administration. Depending upon the particular route of administration, a variety of pharmaceutically-acceptable carriers, well known in the art may be used. These carriers may be selected from a group including sugars, starches, cellulose and its derivatives, malt, gelatine, talc, calcium sulfate, vegetable oils, synthetic oils, polyols, phosphate buffered solutions, alginic acid, emulsifiers, isotonic saline, and pyrogen-free water.

Any suitable route of administration may be employed for providing a patient with the composition of the invention. For example, oral, rectal, parenteral, sublingual, buccal, intravenous, intraarticular, intra-muscular, intra-dermal, subcutaneous,

10

15

20

25

30

35

inhalational, intraocular, intraperitoneal, intracerebroventricular, transdermal and the like may be employed. Intra-muscular and subcutaneous injection is appropriate, for example, for administration of immunogenic compositions, vaccines and DNA vaccines.

Dosage forms include tablets, dispersions, suspensions, injections, solutions, syrups, troches, capsules, suppositories, aerosols, transdermal patches These dosage forms may also include and the like. injecting or implanting controlled releasing devices designed specifically for this purpose or other forms implants modified to act additionally in this fashion. Controlled release of the therapeutic agent may be effected by coating the same, for example, with hydrophobic polymers including acrylic resins, waxes, higher aliphatic alcohols, polylactic and polyglycolic and certain cellulose derivatives such acids hydroxypropylmethyl cellulose. In addition, the controlled release may be effected by using other polymer matrices, liposomes and/or microspheres.

Pharmaceutical compositions of the present suitable for invention oral or parenteral administration may be presented as discrete units such as capsules, sachets or tablets each containing a predetermined amount of one or more therapeutic agents of the invention, as a powder or granules or as a solution or a suspension in an aqueous liquid, a nonaqueous liquid, an oil-in-water emulsion or a waterin-oil liquid emulsion. Such compositions may be prepared by any of the methods of pharmacy but all methods include the step of bringing into association one or more immunogenic agents as described above with the carrier which constitutes one or more necessary ingredients. In general, the compositions are

10

15

25

30

BINODOCID. < YYO____880 | 1024 | _ |_>

prepared by uniformly and intimately admixing the immunogenic agents of the invention with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product into the desired presentation.

The above compositions may be administered in a manner compatible with the dosage formulation, and in such amount as is immunogenically-effective to protect patients from N. meningitidis infection. dose administered to a patient, in the context of the present invention, should be sufficient to effect a beneficial response in a patient over time such as a reduction in the level of N. meningitidis, or to inhibit infection by N. meningitidis. The quantity of the immunogenic agent(s) to be administered may depend on the subject to be treated inclusive of the age, sex, weight and general health condition thereof. In regard, precise amounts of the this immunogenic agent(s) required to be administered will depend on the judgement of the practitioner. In determining the effective amount of the immunogenic agent to administered in the treatment or prophylaxis against meningitidis, the N.physician may evaluate circulating plasma levels, progression of disease, and the production of anti-N. meningitidis antibodies. any event, suitable dosages of the immunogenic agents of the invention may be readily determined by those of skill in the art. Such dosages may be in the order of nanograms to milligrams of the immunogenic agents of the invention.

The above compositions may be used as therapeutic or prophylactic vaccines. Accordingly, the invention extends to the production of vaccines containing as actives one or more of the immunogenic

10

15

20

25

30

agents of the invention. Any suitable procedure is contemplated for producing such vaccines. Exemplary procedures include, for example, those described in NEW GENERATION VACCINES (1997, Levine et al., Marcel Dekker, Inc. New York, Basel Hong Kong) which is incorporated herein by reference.

An immunogenic agent according to the invention can be mixed, conjugated or fused with other antigens, including B or T cell epitopes of other antigens. In addition, it can be conjugated to a carrier as described below.

When an haptenic peptide of the invention is used (i.e., a peptide which reacts with cognate antibodies, but cannot itself elicit an immune response), it can be conjugated with an immunogenic carrier. Useful carriers are well known in the art and include for example: thyroglobulin; albumins such as human serum albumin; toxins, toxoids or any mutant of crossreactive material (CRM) the toxin tetanus, diptheria, pertussis, Pseudomonas, E. coli, Staphylococcus, and Streprococcus; polyamino acids poly(lysine:glutamic acid); influenza; such as Rotavirus VP6, Parvovirus VP1 and VP2; hepatitis B virus core protein; hepatitis B virus recombinant vaccine and the like. Alternatively, a fragment or epitope of a carrier protein or other immnogenic protein may be used. For example, a haptenic peptide of the invention can be coupled to a T cell epitope of a bacterial toxin, toxoid or CRM. In this regard, reference may be made to U.S. Patent No 5,785,973 which is incorporated herein by reference.

In addition, a polypeptide, fragment, variant or derivative of the invention may act as a carrier

10

protein in vaccine compositions directed against Neisseria, or against other bacteria or viruses.

The immunogenic agents of the invention may be administered as multivalent subunit vaccines combination with antigens of N. meningitidis, antigens of other organisms inclusive of the pathogenic bacteria H. influenzae, M. catarrhalis, N. gonorrhoeae, E. coli, S. pneumoniae etc. Alternatively or additionally, they may be concert with oligosaccharide administered in or polysaccharide components of N. meningitidis.

The vaccines can also contain a physiologically-acceptable diluent or excipient such as water, phosphate buffered saline and saline.

15 The vaccines and immunogenic compositions may include an adjuvant as is well known in the art. Suitable adjuvants include, but are not limited to: surface active substances such as hexadecylamine, octadecylamine, octadecyl amino acid esters, lysolecithin, dimethyldioctadecylammonium bromide, N, N-dicoctadecyl-N', N'bis (2-hydroxyethylpropanediamine), methoxyhexadecylglycerol, and polyols; polyamines pluronic such as pyran, dextransulfate, poly IC carbopol; peptides such as muramyl dipeptide and derivatives, dimethylglycine, 25 tuftsin; oil emulsions; and mineral gels such as aluminum phosphate, aluminum hydroxide or lymphokines, QuilA and immune stimulating complexes (ISCOMS).

The immunogenic agents of the invention may be expressed by attenuated viral hosts. By "attenuated viral hosts" is meant viral vectors which are either naturally, or have been rendered, substantially avirulent. A virus may be rendered

substantially avirulent by any suitable physical (e.g., heat treatment) or chemical means (e.g., formaldehyde treatment). By "substantially avirulent" is meant a virus whose infectivity has been destroyed. Ideally, the infectivity of the virus is destroyed without affecting the proteins which carry the immunogenicity of the virus. From the foregoing, it will be appreciated that attenuated viral hosts may comprise live viruses or inactivated viruses.

Attenuated viral hosts which may be useful in 10 a vaccine according to the invention may comprise viral vectors inclusive of adenovirus, cytomegalovirus and preferably pox viruses such as vaccinia (see for example Paoletti and Panicali, U.S. Patent 15 4,603,112 which is incorporated herein by reference) and attenuated Salmonella strains (see for example Stocker, U.S. Patent No. 4,550,081 which is herein incorporated by reference). Live vaccines are particularly advantageous because they lead to a prolonged stimulus which can confer substantially long-lasting immunity.

Multivalent vaccines can be prepared from one or more microorganisms that express different epitopes of N. meningitidis (e.g., other surface proteins or epitopes of N. meningitidis). In addition, epitopes of other pathogenic microorganisms can be incorporated into the vaccine.

In a preferred embodiment, this will involve the construction of a recombinant vaccinia virus to express a nucleic acid sequence according to the invention. Upon introduction into a host, the recombinant vaccinia virus expresses the immunogenic agent, and thereby elicits a host CTL response. For example, reference may be made to U.S. Patent No

25

10

15

25

30

4,722,848, incorporated herein by reference, which describes vaccinia vectors and methods useful in immunization protocols.

A wide variety of other vectors useful for therapeutic administration or immunization with the immunogenic agents of the invention will be apparent to those skilled in the art from the present disclosure.

In a further embodiment, the nucleotide sequence may be used as a vaccine in the form of a "naked DNA" vaccine as is known in the art. For example, an expression vector of the invention may be introduced into a mammal, where it causes production of a polypeptide in vivo, against which the host mounts an immune response as for example described in Barry, M. et al., (1995, Nature, 377:632-635) which is hereby incorporated herein by reference.

Detection kits

The present invention also provides kits for the detection of N. meningitidis in a biological These will contain one or more particular sample. agents described above depending upon the nature of the test method employed. In this regard, the kits may include one or more of a polypeptide, fragment, variant, derivative, antibody, antibody fragment or nucleic acid according to the invention. The kits may optionally include appropriate reagents also detection of labels, positive and negative controls, washing solutions, dilution buffers and the like. For example, a nucleic acid-based detection kit include (i) a nucleic acid according to the invention (which may be used as a positive control), (ii) an oligonucleotide primer according to the invention, and

10

15

25

30

optionally a DNA polymerase, DNA ligase etc depending on the nucleic acid amplification technique employed.

Preparation of immunoreactive fragments

The invention also extends to a method of identifying immunoreactive fragment an polypeptide, variant or derivatives according to the invention. This method essentially comprises generating a fragment of the polypeptide, variant or derivative, administering the fragment to a mammal; and detecting an immune response in the mammal. response will include production of elements which specifically bind N.meningitidis and/or said derivative, polypeptide, variant and/or or protective effect against N. meningitidis infection.

Prior to testing a particular fragment for immunoreactivity in the above method, a variety of predictive methods may be used to deduce whether a particular fragment can be used to obtain an antibody that cross-reacts with the native antigen. predictive methods may be based on amino-terminal or carboxy-terminal sequence as for example described in Chapter 11.14 of Ausubel et al., (1994-1998, supra). Alternatively, these predictive methods may be based on predictions of hydrophilicity as for example described by Kyte and Doolittle (1982, J. Mol. Biol. 157:105-132) and Hopp and Woods (1983, Mol. Immunol. 20:483-489) which are incorporated by reference herein, or predictions of secondary structure as for example described by Choo and Fasman (1978, Ann. Rev. Biochem. 47:251-276) which is incorporated herein by reference.

Generally, peptide fragments consisting of 10 to 15 residues provide optimal results. Peptides as

small as 6 or as large as 20 residues have worked successfully. Such peptide fragments may then be chemically coupled to a carrier molecule such as keyhole limpet hemocyanin (KLH) or bovine serum albumin (BSA) as for example described in Sections 11.14 and 11.15 of Ausubel et al., (1994-1998, supra).

The peptides may be used to immunize an animal as for example discussed above. Antibody titers against the native or parent polypeptide from which the peptide was selected may then be determined by, for example, radioimmunoassay or ELISA as for instance described in Sections 11.16 and 114 of Ausubel et al., (1994-1998, supra).

Antibodies may then be purified from a suitable biological fluid of the animal by ammonium sulfate fractionation or by chromatography as is well known in the art. Exemplary protocols for antibody purification is given in Sections 10.11 and 11.13 of Ausubel et al., (1994-1998, supra).

Immunoreactivity of the antibody against the native or parent polypeptide may be determined by any suitable procedure such as, for example, western blot.

Functional blockers

The polypeptides according to SEQ ID NOS 2, 5, 7, 9, 11, 13, 15, 17, 19 and 21 are believed to have adhesin properties. They in fact have some similarity to adhesins of Haemophilus influenzae which are surface antigens. Specifically they are approximately 67% homologous to the Hia protein of H. influenzae (Barenkamp, S. and St. Geme III, J. 1996 Molecular Microbiology 19: 1215-1233), and 74% homologous to the Hsf protein of H. influenzae (St. Geme III, J. et al, 1996, Journal of Bacteriology 178: 6281-6287; and U.S.

5

10

10

15

20

25

30

Patent No 5,646,259). For these comparisons, a gap weight of 3, and length weight of 0.01 was used using the GAP program (Deveraux, 1984, supra). Aligned sequences of these proteins are illustrated in FIG. 6. Thus, interruption of the function of these polypeptides would be of significant therapeutic benefit since they would prevent N. meningitidis bacteria from adhering to and invading cells. Interruption of the function may be effected in several ways.

example, moieties such chemical For as reagents or polypeptides which block receptors on the cell surface which interact with a polypeptides according to SEQ ID NOS 2, 5, 7, 9, 11, 13, 15, 17, 19 and 21 may be administered. These compete with the infective organism for receptor sites. Such moieties comprise polypeptides for example of the may invention, in particular fragments, or functional equivalents of these as well as mimetics.

The term "mimetics" is used herein to refer to chemicals which are designed to resemble particular functional regions of the proteins or peptides. Antiidiotypic antibodies raised against the abovedescribed antibodies which block the binding of the bacteria to a cell surface may also be used. Alternatively, moieties which interact with the receptor binding sites in the polypeptides according to SEQ ID NO 2, 5, 7, 9, 11, 13, 15, 17, 19 and 21 may effectively prevent infection of a cell by N. meningitidis. Such moieties may comprise blocking antibodies, peptides or other chemical reagents.

All such moieties, pharmaceutical compositions in which they are combined with pharmaceutically acceptable carriers and methods of

10

15

treating patients suffering from N. meningitidis infection by administration of such moieties or compositions form a further aspect of the invention.

The polypeptides of the invention may be used in the screening of compounds for their use in the above methods. For example, polypeptides of the invention may be combined with a label and exposed to a cell culture in the presence of a reagent under The ability of reagent to inhibit the binding of the labeled polypeptide to the cell surface can then be observed. In such a screen, the labeled polypeptides may be used directly on an organism such as E. coli. Alternatively, N. meningitidis itself may be engineered to express a modified and detectable form of the polypeptide. The use of engineered N. meningitidis strains in this method is preferred as it is more likely that the tertiary structure of the protein will resemble more closely that expressed in wild-type bacteria.

In order that the invention may be readily understood and put into practical effect, particular preferred embodiments will now be described by way of the following non-limiting examples.

25

BN9DOOID: <WO___9931132A1_1_>

EXAMPLE 1

Molecular cloning and subcloning and hiaNm mutant construction.

The hiaNm gene was initially isolated by PCR amplification using standard methods. Briefly, due to our previous work on homologues of the AIDA-I protein of E. coli (Jennings, M. et al, 1995, Microbial Pathogenesis, 19: 391-407, Peak, I. et al, Microbial Pathogenesis, in press) we performed a homology

identifying search, a sequence of interest in preliminary data from the project to sequence the genome of MC58¢3 (The Institute for Genomic Research, (ftp://ftp.tigr.org/pub/data/n meningitidis/) and 5 amplified the region of homology by PCR (polymerase chain reaction) using oligonucleotides A3A (5' -TTTGCAACGGTTCAGGCA-3', SEQ ID NO 28) and A3B (5'-TATTCAGCAGCGTATCGG-3', SEQ ID NO 29). The resulting 449 base pairs (bp) product was cloned into pT7Blue, to create plasmid pNMAIDA3. To clone the full length 10 gene, further oligonucleotides were designed and used in an inverse PCR reaction. These oligonucleotides were A3C (SEQ ID NO 30) and A3D (SEQ ID NO 31) correspond to the complementary sequence of A3A (SEQ 15 ID NO 28) and A3B (SEQ ID NO 31) respectively. template for this reaction was chromosomal DNA of MC58 which had been restriction digested with EagI and then The resulting 3kbp PCR product was self ligated. cloned into the vector pCRII (Invitrogen), producing plasmid piEagA3. This was digested with EagI and EcoRI and the resulting fragments of 1.4kbp and 1.6kbp containing cloned DNA cloned were into pBluescriptSKII, M13minus (Stratagene), resulting in piEagA3.8 and piEagA3.9. Plasmid pHiaNm was generated by PCR amplifying hiaNm and sequence 5' and 3' to it 25 using oligonucleotide primers HiaNm:P TTAGATTCCACGTCCCAGATT-3', SEQ ID NO 22) and HiaNm:M (5'-CTTCCCTTCAAACCTTCC-3', SEQ ID NO 23), corresponding to nucleotide position (ntp) 113-133 and 2102-2085 respectively of SEQ ID NO 1, and cloning the 30 product into pT7Blue. Plasmid pHiaNm∆Kan was created by insertion of a kanamycin resistance cassette into the unique BglII site of pHiaNm corresponding to ntp 680 of SEQ ID No 1. The kanamycin resistance cassette

excised from pUC4Kan (Pharmacia) with BamHI. was pHiaNm∆Kan was transformed into N. meningitidis strain MC58 by incubating bacteria with plasmid DNA for 3 hours Brain Infusion agar Heart on (Acumedia Manufacturer's Inc) supplemented with 10% heated horse blood ("BHI plates") at 37°C in 5% CO2. colony was picked onto fresh selective media, grown, and used for further studies. This mutant strain is designated MC58\(\Delta\) HiaNm. Disruption of the hiaNm gene in this strain was confirmed by Southern blot using a probe corresponding to ntp 276-2054 of SEQ ID NO 1.

EXAMPLE 2

Nucleotide sequence analysis

15 Nucleotide sequence analysis was performed using the PRISM Dye terminator sequencing Kit with AmpliTaq DNA polymerase FS or BigDye terminator sequencing kit as suggested by the manufacturer's instructions (Perkin Elmer), in conjunction with a 20 model 373a automated sequencer (Applied Biosystems). each strain, hiaNm was amplified in three For independent PCR reactions using primers HiaNm5'A2: 5'-CCAAACCCCGATTTAACC-3' (SEQ ID NO 26) and HiaNm3'A: 5'-AATCGCCACCCTTCCCTTC-3' (SEQ ID NO 27), as indicated on FIG. 1, and corresponding to ntp 230-247 and 2114-2097 25 of SEQ ID No 1, and the resulting products purified and pooled. This was used as template for direct sequencing on both strands. Data were analysed using the GCG programs (Deveraux et al. (1984) Nucleic Acids Research 12, 387-395) and AssemblyLIGN (Oxford 30 Molecular). Several oligonucleotides were generated as necessary to complete sequences. Sequences of hiaNm of 10 strains are shown in SEQ ID NOS 1, 3, 4,

PCT/AU98/01031

47

6, 8, 10, 12, 14, 16, 18, and 20, and the deduced amino acid sequences of those genes are shown in SEQ ID NO 2, 5, 7, 9, 11, 13, 15, 17, 19 and 21.

Comparison of hiaNm from these strains 5 indicated that they share 90-99% identity with hiaNm of MC58. In addition, hiaNm of MC58 is 62% and 68% homologous to hia and hsf of Haemophilus influenzae However, in the strains examined, hiaNm is 1770-1800 bp long. This is markedly different from the hia and 10 hsf which are 3294 and 7059 bp long respectively. The predicted polypeptide of hiaNm, HiaNm, also exhibits homology to several other bacterial proteins, including AIDA-I, the adhesin involved in diffuse adherence of the diarrhoeagenic Escherichia coli 15 strain 2787 (O126:H27), HMW1, another Haemophilus adhesin, UspAl, a high molecular weight protein of Moraxella catarrthalis, and SepA involved in tissue invasion of Shigella flexneri (Benz, I. and Schmidt, M.A., 1992, Molecular Microbiology 6:1539-20 1546, Barenkamp, S.J. and Leininger, E.1992, Infection Immunity 1302-1313, Aebi,C. and 60: 1997, Infection and Immunity 65: 4367-4377, Benjelloun-Touimi, Z et al 1995, Molecular Microbiology 17:123-135). Homology to these (and several other proteins) 25 occurs over the first fifty amino acids of HiaNm. Analysis of this sequence reveals the presence of a predicted signal sequence, with cleavage sites at amino acid 50 in all HiaNm sequences examined. Such long signal sequences are common to proteins located 30 in the outer membrane of Gram-negative bacteria (Henderson, I et al, 1998, Trends in Microbiology 6: 370-8). The proteins mentioned above to which the first fifty amino acids of HiaNm is homologous are all members of the "autotransporter" outer-membrane

protein family (Henderson, I, supra). This strongly suggests that HiaNm is located in the outer membrane of N. meningitidis.

5

10

15

20

25

EXAMPLE 3

Southern blot analysis

Southern blot analysis was performed using standard techniques (Sambrook et al., supra, Ausubel et al., supra). Briefly, genomic DNA was prepared from 70 strains of N. meningitidis of several serogroups, restriction digested arid separated electrophoretically on an agarose gel prior capillary transfer to a nylon membrane. These membranes were hybridized with a labeled probe. The probe used corresponded to ntp 276-2054 of SEQ ID NO 1, encompassing the entire open reading frame of hiaNm strain MC58. of This labeled with was DIG (dioxygenin) according to manufacturer's instructions (Boehringer Mannheim). Stringent washes were performed (two washes of 5 minutes at 22°C in 2 x SSC/0.1% SDS followed by two washes of 30 minutes, 68°C, 0.2 x SSC/0.1% SDS). Hybridization was detected colorimetrically using nitro-blue-tetrazolium/ bromochloryl-indolyl-phosphate (NBT/BCIP) as recommended by the manufacturer. Signals were detected in all strains examined. (FIG. 2 for example). In addition to the prototypic strain MC58, the following strains were investigated:-

30 TABLE 3

Strain Name	Source	Sero- group	Strain name	Source	
PMC 3 (J1079)	2 ^A	A	NGF26	1	В

PCT/AU98/01031

PMC17 (K874)	2	A	NGG40	1	В
PMC 20 ((H79)	2	A	н15	1	В
PMC23 (K750)	2	A	SWZ107	1	В
PMC 12 (K852)	2	В	528	1	В
PMC 13 (K859)	2	В	2970	1	В
PMC 16 (K873)	2	В	1000	1	В
PMC 24 (K782)	2	В	MPJB28	3 ^c	В
PMC 25 (K791)	2	В	MPJB56	3	В
PMC 27 (K816)	2	В	MPJB88	3	В
PMC 28 (K837)	2	В	MPJB157	3	В
BZ10	1 ^B	В	MPJB328	3	В
BZ47	1	В	MPJB627	3	В
BZ83	1	В	MPJB820	3	В
BZ133	1	P	MPJB945	3	В
BZ147	1	В	PMC 8 (K157)	2	С
BZ163	1	В	PMC 9 (K497)	2	С
BZ169	1	В	PMC 11 (K848)	2	С
BZ198	1	В	PMC 14 (K860)	2	С
BZ232	1	В	PMC 18 (K879)	2	C
NG3/88	1	В	PMC 21 (K656)	2	С
NG4/88	1	В	PMC 29 (K841)	2	C
NG6/88	1	В	MPJC05	3	С
EG327	1	В	MPJC14	3	С
EG329	1	В	MPJC154	3	С
DK353	1	В	MPJC302	3	С
179/82	1	В	мрјС379	3	С
66/84	1	В	PMC19	2	W
DK24	1	В	MPJW025	3	W
NGH36	1	В	PMC 1 (J603)	2 .	х
н38	1	В	PMC 6 (K131)	2	Х
H41	1	В	PMC 10 (K526)	2	Y
NGE28	1	В	PMC 22 (K685)	2	Y
NGE30	1	В	PMC 26 (K810)	2	Y
NGP20	1	В	PMC 2 ((J1049)	2	Z

A World Health Organization Collaborating Centre for Reference and Research on Meningococci, Oslo, Norway

B Public Health Laboratory Service Meningococcal

⁵ Reference Laboratory, Manchester, UK

^c Brisbane Hospitals, now in strain collection of M.P. Jennings, Department of Microbiology, University of Queensland, Brisbane, Australia.

5

EXAMPLE 4

Expression and partial purification of MBP-HiaNm

A plasmid vector was constructed which permitted the expression of a protein consisting of a 10 fusion of Maltose Binding Protein and HiaNm (MBP-HiaNm). The plasmid pHiaMBP was generated by amplifying hiaNm from MC58 using primers Hianm-MBPA 5'-GGTCGCGGATCCATGAACAAAATATACCGCAT-3' (SEQ ID NO 24) and HiaNm-MBPB 5'-TCACCCAAGCTTAAGCCCTTACCACTGATAAC-3' 15 (SEQ ID NO 25). These primers encompass the start and stop codons of hiaNm of N. meningitidis strain MC58 and engineered restriction sites for ease of cloning. Plasmid restriction maps and positions oligonucleotides are shown in FIG. 1. The resultant 20 PCR product was ligated into BamHI/HindIII restriction digested plasmid pMALC2 (New England Biolabs), and the resultant plasmid, pHiaMBP (See FIG. 1) reintroduced coli strain DH5 α . This E. coli strain to containing pHiaMBP was induced to express the HiaNm-MBP fusion protein under conditions recommended by the 25 manufacturer (New England Biolabs). Cell extracts from cultures containing pHiAMBP were separated by 10% SDS-PAGE, and the fusion protein was partially purified by elution using the Mini-Gel Electro-eluter 30 (BioRad) according to manufacturer's instructions. Fractions containing the HiaNm-MBP fusion protein were detected by Western blot using rabbit anti-MBP sera (New England Biolabs). The purity of the HiaNm-MBP

fusion protein was determined by SDS-PAGE followed by Coomassie staining, and the amount of recovered protein estimated by BCA assay (Sigma) or absorbance at a wavelength of 280nm.

5

10

15

20

25

30

EXAMPLE 5

Generation of polyclonal sera

The partially purified HiaNm-MBP fusion protein obtained in Example 4 was used to generate polyclonal sera in rabbits. Samples of eluted HiaNmMBP fusion protein were dialyzed against sterile phosphate buffered saline pH 7.4, (PBS) (Sigma). This was then mixed with adjuvant (MPL+TDM+CWS, Sigma), at concentration of 50-150µg/mL and inoculated at two weekly intervals into two New Zealand White rabbits. from these rabbits. Serum Blood taken was was extracted by clotting at room temperature for one hour followed by overnight incubation 4°C before at centrifugation at 4000 x rpm at 4°C. The supernatant was removed and re-centrifuged. Serum was stored in aliquots at -80°C. Sera obtained were used in bactericidal assays and Western blots (see below).

To test the specificity of the sera obtained, Briefly, Western blot analysis was undertaken. proteins of N. meningitidis strains MC58 MC58 AHianm were separated electrophoretically on SDS-PAGE before electrophoretic transfer to nitrocellulose membrane using a Semi-Dry Blotter (BioRad). then incubated sequentially with sera and were alkaline-phosphatase conjugated anti-Rabbit (Sigma) before colorimetric detection with NBT/BCIP (Sigma). These experiments demonstrated that antibodies were elicited by the HiaNm-MBP fusion protein which

10

15

20

were specific for, and detected a band in, MC58 but in MC58 Δ HiaNm (see FIG. 4). not The predicted molecular weight of the deduced polypeptide of HiaNm is 62.3 kDa. The band detected by the sera migrates at an apparent MW in excess of 150 kDa. At least three of the homologous "autotransporter" proteins reported in the literature also display such anomalous migration: the high molecular weight outer membrane proteins UspA1 and UspA2 of Moraxella catarrhalis have predicted molecular weights of 62.5 kDa and 88.3 kDa respectively but migrate at 85 kDa and 120 kDa, respectively and as the UspA complex at between 350 kDa and 720 kDa (Aebi, C. et al., 1997, Infection and Immunity, 65: 4367-4377, Klingman, K.L. and Murphy, T.F., 1994, Infection and Immunity, 62: 1150-1155). Similarly, Hia of Haemophilus influenzae predicted molecular weight of 116 kDa but when expressed in a phage, Hia migrates at greater than 200 kDa (Barenkamp, S. and St. Geme III, J. 1996 Molecular Microbiology 19: 1215-1233).

In order to confirm that HiaNm is associated with the outer membrane of N. meningitidis, outer membrane complexes (omc) were prepared, essentially as previously described (van der Ley, P. et al, 1991, 25 Immunity, 59:2963-71). Infection and bacteria were grown overnight on Brain Heart Infusion agar (Acumedia Manufacturer's Inc) supplemented with 10% heated horse blood BHI plates, resuspended in 10 mM Tris pH 8.0 and heat killed, before sonication to 30 disrupt the membrane. Cellular debris were removed by centrifugation at 10,000 X (rcf, relative g centrifugal force), and the supernatant recentrifuged at 50,000 x g. This pellet was resuspended in 1% sarkosyl/10 mM Tris pH8.4 and centrifuged at 10,000 x

The supernatant was centrifuged at 75,000 x g and q. pellet resuspended in Tris pH 8.4, before the quantification spectrophotometrically at a wavelength 280nm. aliquot of the sarkosyl-insoluble of An fraction, which contains outer membrane proteins, (50 μ l of A_{280} =3.75) was subjected to SDS-PAGE and Western blotted as described above. The results, shown in FIG. 4 demonstrate that reactivity with the anti-HiaNmMBP antisera is observed with wild type MC58, but with MC58∆HiaNm, in which hiaNm not has been The increase in reactivity with the inactivated. anti-HiaMBP sera observed between whole cell samples, and the omc samples containing the same amount of total protein, in MC58 cultures is consistent with the membrane association of HiaNm.

EXAMPLE 6

Bactericidal assay

5

10

15

To determine whether the anti-HiaMBP antisera 20 contained bactericidal antibodies specific for HiaNm, bactericidal assays were performed with wild type MC58 and MC58∆HiaNm. This assay was performed by a modification of the method described by Hoogerhout et. al. (1995, Infection and Immunity, 63: 3473-3478). 25 Briefly, MC58 and MC58 AHiaNm were grown overnight on BHI plates at 37°C in 5% CO2. Bacteria from this overnight culture were subcultured under the conditions for 4-6 hours before suspension in 1 mL PBS. Numbers of bacteria were estimated by lysis of a 30 sample in 0.2N NaOH/1% SDS and absorbance at a wavelength of 260 nm, where $A_{260}=1 = 10^9$ cfu/mL. The bacterial suspension was adjusted to approximately 105 cfu/mL in PBS. Rabbit sera to be tested was heat

inactivated at 56°C for 45 minutes. Serum from four week old, New Zealand White rabbits was pooled and used as a source of complement (Central Animal Breeding House, University of Queensland). The assay 5 was carried out in sterile polystyrene flat-bottomed 96 well microtitre plate. The total volume in each well was 24 μL : 12 μL of twofold serially diluted serum in PBS and 6 μL of bacterial suspension (containing between 300-900 bacteria). Sera and bacteria were 10 incubated at room temperature for 10 minutes before addition of 6 μ L of 80% complement in PBS (final concentration 20% vol/vol). Controls were bacteria and complement, b) PBS, bacteria and serum. After addition of all components and mixing, a 7 µL aliquot from each control well was spread on a BHI 15 plate. The microtitre plate was then incubated at 37°C in 5% CO2 for 60 minutes. After this incubation, a 7 μL aliquot from each well was spread on BHI plates. All BHI plates were then incubated for 14-18 hours at 37°C in 5% CO2, and bacterial colonies counted. Serum 20 bactericidal killing is reported as the highest reciprocal dilution at which at least 90% of bacteria were killed. Serum used was from the same rabbit and same test bleed as used for Western blot the 25 experiments as reported in Example 5 above. These experiments consistently demonstrated reduced titers (approximately 3 fold, Table 4) of killing against MC58ΔHiaNm in comparison to the wild type strain, MC58, indicating that the anti-HiaMBP antisera 30 contained bactericidal antibodies specific for HiaNm.

TABLE 4

	_			
A CONTRACT FRANCISCO CONTRACT OF THE PROPERTY	100.00	Proprie de la constant		April 10 person and a second
The state of the s			and the state of t	
DITICITIES			TILL	
			to the control to the state of the control of the con-	
ાં કે માના કરાત કરતા છે. તેને પાર્ટિક પાર્ટિક વાર્ટિક કરતા હતા છે. તેને પાર્ટિક કરતા હતા છે. જો માના કરતા હતા પાર્ટિક કરતા હતા છે. તેને પાર્ટિક કરતા હતા હતા હતા હતા હતા હતા હતા હતા હતા હ				and the first of the second of
ang terretarian distribution of the first		and the contract of the contract of	and the second of the second of the second of the	

55

MC58	12 (+/- 4.6)
MC58∆HiaNm	3.5 (+/- 1)

30

DISCUSSION

5 Repetitive DNA has been associated with virulence determinants in some pathogenic bacteria. Southern blots using such a repetitive DNA motif revealed the presence of at least three loci which contained this motif in N. meningitidis strain MC58 10 (Peak, I. et al., 1996, FEMS Microbiology Letters, 137:109-114). These genes were cloned and sequence analysis of two of these repeat associated loci (nmrep2 and nmrep3) revealed open reading frames of approximately 670 amino acids (Jennings, M. et al, 1995, Microbial Pathogenesis, 19: 391-407, Peak, I. et 15 al, Microbial Pathogenesis, in press). These exhibited homology to each other and homology to the carboxyl-terminal of the adhesin AIDA-I of E. coli. AIDA-I is 1286 amino acids long. The carboxyl-20 terminal region constitutes a putative outer membrane transport domain and the amino-terminal domain of the mature protein constitutes the adhesin domain. The amino-terminal domain crosses the membrane through the putative transport domain and is designated the 25 passenger domain.

As Nmep2 and Nmep3 share sequence homology with the transporter domain of AIDA-I, they are thought to form membrane pores. Nmrep2 and Nmrep3 are approximately half the size of AIDA-I, and are homologous to the membrane spanning domain of AIDA-I. We hypothesized that there existed in N. meningitidis

a Mean of four independent experiments

PCT/AU98/01031

a locus with homology to the amino-terminal domain of AIDA-I. We searched for such a homologue in the data from the project to sequence N. meningitidis strain MC58¢3 (TIGR, supra) and found one region with homology to a gene designated AIDA-I in Haemophilus influenzae strain Rd (HI1732) because of its homology to AIDA-I of E. coli, (Fleischmann et. al., 1995 Science 269:496-512,). In view of the homologies noted above, the applicants decided to investigate further.

was initially isolated by PCR The gene amplification of the DNA corresponding to the 471 base pair fragment, named gnmaa84r, from N. meningitidis MC58 3 and the sequence was confirmed. Further PCR experiments enabled larger fragments to be amplified. These were cloned and sequence analysis undertaken as shown in FIG 1. The gene exhibited homology to the amino-terminal region of AIDA-I of E. coli and we designated it aida3, as it represented the third AIDAhomologue in N. meningitidis (with nmrep2 nmrep3). Since then, the discovery of two further genes, hia and hsf from H. influenzae has been published (Barenkamp, S. and St. Geme III, J. 1996 Molecular Microbiology 19: 1215-1233, St. Geme III, J. et al, 1996, Journal of Bacteriology 178: 6281-6287), to which aida3 is more similar. We have therefore redesignated this gene hiaNm. (HI1732, the H. influenzae gene first identified as an homologue of AIDA-I has also been re-designated hia in light of the reports of Barenkamp and St. Geme III).

30

10

15

20

25

Throughout the specification the aim has been to describe the preferred embodiments of the invention without limiting the invention to any one embodiment or specific collection of features. It will therefore

5

57

be appreciated by those of skill in the art that, in light of the instant disclosure, various modifications and changes can be made in the particular embodiments exemplified without departing from the scope of the present invention. All such modifications and changes are intended to be included within the scope of the appendant claims

CLAIMS

- 1. An isolated polypeptide or fragment thereof, or variant or derivative of these, said polypeptide selected from the group consisting of:
- 5 (a) a polypeptide according to SEQ ID NO 2;
 - (b) a polypeptide according to SEQ ID NO 5;
 - (c) a polypeptide according to SEQ ID NO 7;
 - (d) a polypeptide according to SEQ ID NO 9;
 - (e) a polypeptide according to SEQ ID NO 11;
 - (f) a polypeptide according to SEQ ID NO 13;
 - (g) a polypeptide according to SEQ ID NO 15;
 - (h) a polypeptide according to SEQ ID NO 17;
 - (i) a polypeptide according to SEQ ID NO 19; and
- (j) a polypeptide according to SEQ ID NO 21.
 - 2. A polypeptide, fragment, variant or derivative according to claim 1, displaying immunological activity against one or more members selected from the group consisting of:-
 - (i) N. meningitidis;
 - (ii) said polypeptide;
 - (iii) said fragment;
 - (iv) said variant; and
- 25 (v) said derivative;

10

20

30

- 3. A polypeptide, fragment, variant or derivative according to claim 1, displaying immunological activity against N. meningitidis.
- An isolated nucleic acid sequence encoding a polypeptide or fragment thereof, or variant or derivative of these, said polypeptide selected from the group consisting of:

Substitute Sheet (Rule 26) RO/AU

		(a)	a	polypeptide	according	y to	SEQ	ID	NO	2;
		(b)	a	polypeptide	according	g to	SEQ	ID	NO	5;
		(c)	a	polypeptide	according	g to	SEQ	ID	NO	7;
		(d)	a	polypeptide	according	, to	SEQ	ID	NO	9;
5		(e)	a	polypeptide	according	, to	SEQ	ID	NO	11;
		(f)	a	polypeptide	according	y to	SEQ	ID	NO	13;
		(g)	a	polypeptide	according	y to	SEQ	ID	NO	15;
		(h)	a	polypeptide	according	g to	SEQ	ID	NO	17;
		(i)	a	polypeptide	according	g to	SEQ	ID	NO	19;
10			ar	ıd						
		(j)	a	polypeptide	according	y to	SEQ	ID	NO	21.
	5.	An is	so.	lated nucle:	ic acid s	eque	ence	aco	cord	ling
	to clai	m 4	,	encoding	a pro	duct	: (disp	olay	ving
15	immunolog	ical	ac	ctivity aga:	inst one	or	more	e n	nemb	ers
	selected	from t	h	e group cons	isting of	: -				
		(i)		N. meningi	tidis;					
		(ii)		said polype	eptide;					
		(iii)		said fragme	ent;					
20		(iv)		said variar	nt; and					
		(V)		said deriva	ative.					
	6.	An i	50	lated nucle	ic acid s	eque	ence	ac	cord	ding
	to clas	im 4	,	encoding	a pro	duct	t (dis	play	ying
25	immunolog	sical a	ac.	tivity again	st N. men	ingi	tidi	s.		
	7.	An i	sc	lated nucle	eic acid	sequ	ience	s S	ele	cted
	from the	group	C	onsisting of	•					
		(1)	tl	he nucleotid	le sequenc	e of	SEQ	ID	NO	1;
30		(2)	t]	he nucleotid	le sequenc	e of	SEQ	ID	ИО	3;
		(3)	t]	he nucleotid	le sequenc	e of	SEQ	ID	NO	4;
		(4)	t]	he nucleotic	le sequenc	e of	SEQ	ID	NO	6;
		(5)	t]	he nucleotic	le sequenc	e of	SEQ	ID	ИО	8;
		(6)	t!	he nucleotic	le sequenc	e of	SEQ	ID	NO	10;
.35		(7)	t!	he nucleotio	le sequenc	e of	SEQ	ID	NO	12;

10

20

- the nucleotide sequence of SEQ ID NO 14; (8)
- (9)the nucleotide sequence of SEQ ID NO 16;
- (10) the nucleotide sequence of SEQ ID NO 18;
- (11) the nucleotide sequence of SEQ ID NO 20;
- (12) a nucleotide sequence fragment of any one of SEQ ID NOS 1, 3, 4, 6, 8, 10, 12, 14, 16, 18 and 20; and
 - (13) a nucleotide sequence homologue of any of the foregoing sequences
- 8. A nucleic acid sequence according to claim 7, encoding a product displaying immunological activity against one or more members selected from the group consisting of:-
- 15 (i) N. meningitidis;
 - (ii) said polypeptide;
 - (iii) said fragment;
 - said variant; and (iv)
 - said derivative. (v)
 - A nucleic acid sequence according to claim 7, 9. encoding a product displaying immunological activity against N. meningitidis.
- The nucleic acid sequence of claim 7, wherein 25 10. said homologue is obtained from the genus Neisseria.
- The nucleic acid sequence of claim 5 or claim 11. 7, wherein said homologue is obtained from a strain of 30 N. meningitidis.
 - A method of obtaining a nucleotide sequence 12. homologue comprising the steps of:
 - obtaining a nucleic acid extract from (i)a suitable host;

Substitute Sheet (Rule 26) **RO/AU**

61

- (ii) creating primers which are optionally degenerate wherein each comprises a portion of a nucleic acid sequence according to claim 5 or claim 7; and
- (iii) using said primers to amplify, via a nucleic acid amplification technique, one or more amplification products from said nucleic acid extract.

5

15

- 10 13. The method of claim 12, wherein said nucleic acid extract is obtained from the genus *Neisseria*.
 - 14. The method of claim 12, wherein said nucleic acid extract is obtained from a strain of N. meningitidis.
 - The method of claim 12, wherein said primers are selected from the group consisting of SEQ ID NOS 22, 23, 24, 25, 26, 27, 28, 29, 30, and 31.
 - 16. The method of claim 12, wherein the nucleic acid amplification technique is PCR.
- 17. An expression vector comprising a nucleic acid sequence according to claim 4 or claim 7, wherein said sequence is operably linked to transcriptional and translational regulatory nucleic acid.
- 18. A host cell transfected or transformed with an expression vector comprising a nucleic acid sequence according to claim 4 or claim 7, wherein said sequence is operably linked to transcriptional and translational regulatory nucleic acid.

62

- 19. A method of producing a recombinant polypeptide comprising the steps of:
 - (A) culturing a host cell according to claim

 18 such that said recombinant
 polypeptide is expressed from said
 nucleic acid; and
 - (B) isolating said recombinant polypeptide.
- 20. An antibody or antibody fragment which binds to one or more members selected from the group consisting of:-
 - (1) N. meningitidis;
 - (2) a polypeptide according to claim 1;
 - (3) a fragment of said polypeptide;
 - (4) a variant of said polypeptide or said fragment; and
 - (5) a derivative of said polypeptide or said fragment.
- 20 21. The antibody of claim 20, wherein said antibody or antibody fragment binds N. meningitidis.
- 22. A method of detecting N. meningitidis in a biological sample suspected of containing same, said method comprising the steps of:-
 - (A) isolating the biological sample from a
 patient;
 - (B) mixing the antibody or antibody fragment of claim 20 or claim 21 with the biological sample to form a mixture; and
 - (C) detecting specifically bound antibody or bound fragment in the mixture which indicates the presence of N. meningitidis.

30

5

63

23. A method of detecting N. meningitidis bacteria in a biological sample suspected of containing said bacteria, said method comprising the steps of:-

5

10

15

20

- (I) isolating the biological sample from a patient;
- (II) detecting a nucleic acid sequence according to claim 4 or claim 7 in said sample which indicates the presence of said bacteria.
- 24. A method for diagnosing infection of patients by N. meningitidis, said method comprising the steps of:-
 - (1) contacting a biological sample from a patient with a polypeptide, fragment, variant or derivative according to claim 1; and
 - determining the presence or absence of a complex between said polypeptide, fragment, variant or derivative and N. meningitidis-specific antibodies in said sample, wherein the presence of said complex is indicative of said infection.
- 25. Use of the polypeptide, fragment, variant or derivative according to claim 1 for the manufacture of a kit for the detection or diagnosis of N. meningitidis infection in humans.
 - Use of the nucleic acid sequence according to claim 4 or claim 7 for the manufacture of a kit for

PCT/AU98/01031

64

the detection or diagnosis of N. meningitidis infection in humans.

- Use of one or more oligonucleotide primers selected from the group consisting of SEQ ID NOS 22, 23, 24, 25, 26, 27, 28, 29, 30 and 31, and optionally a thermostable polymerase, in a kit for the detection or diagnosis of *N. meningitidis* infection in humans.
- 10 28. Use of the antibody or antibody fragment according to claim 20 or claim 21 for the manufacture of a kit for the detection or diagnosis of N. meningitidis infection in humans.
- Use of a pharmaceutically effective amount of a polypeptide, fragment, variant or derivative according to claim 1 for the prevention or treatment of N. meningitidis infection in humans.
- 20 30. Use of a pharmaceutically effective amount of an antibody or antibody fragment according to claim 20 or claim 21 for the prevention or treatment of N. meningitidis infection in humans.
- 25 31. A pharmaceutical composition comprising an isolated polypeptide or fragment thereof, or a variant or derivative of these, according to claim 1.
- 32. The pharmaceutical of claim 31, which is a vaccine.
 - 33. A method of preventing or treating infection of a patient by N. meningitidis, comprising the step

65

of administrating a pharmaceutically effective amount of a vaccine according to claim 32.

34. A method of identifying an immunoreactive fragment of a polypeptide, variant or derivatives according to claim 1, comprising the steps of:-

10

15

- (a) generating a fragment of said polypeptide, variant or derivative;
- (b) administering said fragment to a mammal; and

detecting an immune response in said mammal which response includes production of elements which specifically bind *N. meningitidis* and/or said polypeptide, variant or derivative, and/or a protective effect against *N. meningitidis* infection.

1/15

2/15

FIG. 2A

3/15

FIG. 2B

FIG. 3

FIG. 4

FIG. 5

FIG. 6

Hsf Hia HiaNm	1 MNKIFNVIWN MNKIFNVIWN MNKIYRIIWN	VMTQTWVVVS VVTQTWVVVS SALNAWVVVS	ELTRTHTKRA ELTRTHTKCA ELTRNHTKRA	SATVAVAVLA	TLLSATVEAN
Hsf Hia HiaNm	51 ATDEDEELDP	VVRTAPVLSF	HSDKEGTGEK	EVTENSNWGI	100 YFDNKGVLKA
Hsf Hia HiaNm	101 GAITLKAGDN	LKIKQNTDES	TNASSFTYSL	KKDLTDLTSV	150 ATEKLSFGAN
Hsf Hia HiaNm	151 GDKVDITSDA	NGLKLAKTGN	GNVHLNGLDS	TLPDAVTNTGNNTP	200 VLSSSSFTPN V
Hsf Hia HiaNm	201 DVEKTRAATV	KDVLNAGWNI	KGAKTAGGNV	ESVDLVSAYN	250 NVEFITGDKN
Hsf Hia HiaNm	251 TLDVVLTAKE	NGKTTEVKFT	PKTSVIKEKD	GKLFTGKENN	300 DTNKVTSNTA .TNK
Hsf Hia HiaNm	301 TDNTDEGNGL	VTAKAVIDAV	NKAGWRVKTT	TANGQNGDFA	350 TVASGTNVTF
Hsf Hia HiaNm	351 ESGDGTTASV	TKDTNGNGIT	VKYDAKVGDG	LKFDSDKKIV	400 ADTTALTVTG
Hsf Hia HiaNm	401 GKVAEIAKED	DKKKLVNAGD	LVTALGNLSW	KAKAEADTDG	450 ALEGISKDQE
Hsf Hia HiaNm	451 VKAGETVTFK	AGKNLKVKQI		••••••	500 GGTTNGGNDA
Hsf Hia HiaNm	501 KTVINKDGLT	•	GTNTISVTKI		550 NVASGLRAYD LKAYG

FIG. 6 cont'd 600 551 Hsf DANFDVLNNS ATDLNRHVED AYKGLLNLNE KNANKQPLVT DSTAATVGDL DANFNFTNNS IADAEKQVQE AYKGLLNLNE KNASDKLLVE DNTAATVGNL Hia HiaNm DPVQRTVAVL 650 601 Hsf RKLGWVVSTK NGTKEE.SNQ VKQAD.EVLF TGAGAATVTS KSENGKHTIT Hia RKLGWVLSSK NGTRNEKSQQ VKHAD. EVLF EGKGGVQVTS TSENGKHT.. HiaNm I....VNSDK EGT.GEKEKV EENSDWAVYF NEKGVLT... 700 651 Hsf VSVAETKADC GLEKDGDTIK LKVDNQNTDN VLTVGNNGTA VTKGGFETVK Hia 750 701 HST TGATDADRGK VTVKDATAND ADKKVATVKD VATAINSAAT FVKTENLTTS Hia HiaNm 800 751 IDEDNPTDNG KDDALKAGDT LTFKAGKNLK VKRDGKNITF DLAKNLEVKT Hsf HiaITF ALAKDLGVKT HiaNmARE ITLKAGDNLK IKQNGTNFTY SLKKDLTDLT 850 801 HSf AKVSDTLTIG GNTPTGGTTA TPKVNITSTA DGLNFAKETA DASGSKNVYL Hia ATVSDTLTIG GGAAAGATT. TPKVNVTSTT DGLKFAKDAA GANG..... Hianm SVGTEKLSFS ANGN..... .. KVNITSDT KGLNFAKETA GTNG..... 900 851 Hsf KGIATTLTEP SAGAKSSHVD LNVDATKKSN AASIEDVLRA GWNIQGNGNN HiaNm 950 901 Hsf VDYVATYDTV NFTDDSTGTT TVTVTQKADG KGADVKIGAK TSVIKDHNGK Hia HiaNm 1000 951 Hsf LFTGKDLKDA NNGATVSEDD GKDTGTGLVT AKTVIDAVNK SGWRVTGEGA Hia HiaNm 1050 1001 TAETGATAVN AGNAETVTSG TSVNFKNGNA TTATVSKDNG NINVKYDVNV Hsf Hia HiaNm 1100 1051 GDGLKIGDDK KIVADTTTLT VTGGKVSVPA GANSVNNNKK LVNAEGLATA Hsf Hia HiaNm

9/15

FIG. 6 cont'd

	1101				1150
Hsf	LNNLSWTAKA	DKYADGESEG	ETDQEVKAGD	KVTFKAGKNL	KVKQSEKDFT
Hia	• • • • • • • • •	• • • • • • • •	• • • • • • • • • •	• • • • • • • • •	• • • • • • • •
HiaNm	• • • • • • • • •	• • • • • • • •	• • • • • • • • •	• • • • • • • • •	• • • • • • • •
	1151				1200
Hsf	YSLQDTLTGL	TSITLGGTAN	GRNDTGTVIN	KDGLTITLAN	
Hia	• • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	
HiaNm	• • • • • • • • •				
					_
** 6	1201		********		1250
Hsf Hia	GNTISVTKDG		VKSALKTYKD	TQNTADETQD	KEFHAAVKNA
nıa HiaNm	• • • • • • • • •	• • • • • • • •			
117 011111	• • • • • • • • •				
	1251				1300
Hsf	NEVEFVGKNG	ATVSAKTDNN	GKHTVTIDVA	EAKVGDGLEK	DTDGKIKLKV
Hia	• • • • • • • • •	• • • • • • • •	• • • • • • • • •	• • • • • • • • •	• • • • • • • •
HiaNm	• • • • • • • • •	• • • • • • • • •	• • • • • • • • •	• • • • • • • • •	• • • • • • • •
	1301				1350
Hsf		VDATKGASVA	KGEFNAVTTD	ATTAOGTNAN	
Hia					
HiaNm				• • • • • • • • •	
	1351				1400
Hsf		KKVATVGDVA			DUSPTUDGAN
Hia HiaNm			4		
птами					
	1401				1450
Hsf		LKAGKNLKVK			
Hia		• • • • • • • •			
HiaNm		• • • • • • • • •	• • • • • • • • •	• • • • • • • •	• • • • • • • • •
	1451				1500
Hsf		KGLNFAKDSK	TGDDANIHLN	GIASTLTDTL	
Hia					VGSPATHIDG
HiaNm					LNTGATTNVT
					1550
	1501			N CONSISTENT	1550
Hsf	GNGITDNEKK	(RAASVKUVLN	AGWNVRGVKE ACWNTYCVYN	, ΥΣΥΜΝΟΛΕΝΙ Σ	DFVATYDTVD DFVHTYDTVE
Hia HiaNm	GDQSTHII	. ΒΡΡΟΙΝΚΟΙΙΥΝ . ΚΑΚΡΟΙΥΠΛΤΙΝ	AGWNIKGVKE AGWNIKGVKE	CTTASDNV	DEVRTYDTVE
птами	MDNVIDDER	(ICATO A ICA TIL	11011112110111		
	1551				1600
Hsf	FVSGDKDTTS	VTVESKDNGK	RTEVKIGAKT	SVIKDHNGKI	J FTGKELKDAN
Hia	FLSADTETTI	VTVDSKENGE	RTEVKIGAKT	SVIKEKDGKI	FTGKANKETN
HiaNm	FLSADTKTTI	T VNVESKDNG!	K KTEVKIGVKI	. SATKEKDGKI	VTGKD.KGEN
•	1601				1650
Hsf	1601 NNGVTVTETI	GKDEGNGIAM	RAKAVIDAVNI	K AGWRVKTTG	A NGQNDDF
Hia	KVD.GANATI	E DADEGKGLVI	' AKDVIDAVNI	K TGWRIKTTD/	NGQNGDF
HiaNm	GS	STDEGEGLV	r AKEVIDAVNI	K AGWRMKTTT	A NGQTGQADKF

FIG. 6 cont'd

	1651				1700
Hsf	ATVASGTNVT	FADGNGTTAE	VTKANDGSIT	VKYNVKVADG	LKLDGDKIVA
Hia	ATVASGTNVT	FASGNGTTAT	VTNGTDG.IT	VKYDAKVGDG	LKLDGDKIAA
HiaNm	ETVTSGTNVT	FASGKGTTAT	VSKDDQGNIT	VMYDVNVGDA	LNVNQ
	1701				1750
Hsf	1701 DTTVLTVAD.	CKA	TAPNNGDGKK	ביישא פכן א הא	1750 LNKLSWTATA
Hia	DTTALTVNDG		ADVASTDEKK	LVTAKGLVTA	
HiaNm	DITABLANDO			.LONSGW	NLDSKAVA
	1751				1800
Hsf	GKEGTGEVDP		GDKVTFKAGD		
Hia	AEADGGTLD.	-	GDKVTFKAGK	_	FTYSLQDALT
HiaNm	GSSGKVIS	GNVSPSKGKM	DETVNINAGN	NIEITRNGKN	IDIATSMT
	1801				1850
Hsf	.DLTSVEFKD	ANGGTGSEST	KITKDGLTIT	PANGAGAAGA	NTANTISVTK
Hia	.GLTSITLGT	GNNGAKT	EINKDGLTIT	PANGAGA	NNANTISVTK
HiaNm	PQFSSVSLG.			AGA	D.APTLSV
	1851				1900
Hsf	DGISAGNKAV		GDGHTLANGT	VAD. FEKHYD	
Hia	DGISAGGQSV	KNVVSGLKKF	GDANFDPLTS	SADNLTKQND	DAYKGLTNLD
HiaNm		• • • • • • • • •	• • • • • • • • •	• • • • • • • • •	
	1901				1950
Hsf	EKGADNN.PT	VADNTAATVG	DLRGLGWVIS	ADKTTGEPNQ	EYNAQVRNAN
Hia	EKGTDKQTPV	VADNTAATVG	DLRGLGWVIS	ADKTTGGST.	EYHDQVRNAN
HiaNm			• • • • • • • • •	• • • • • • • •	
	1051				2000
11 - £	1951	NVSGKTLNGT	RVITFELAKG	EVVKSNEFTV	
Hsf Hia	EVKFKSGNGI EVKFKSGNGI				
HiaNm	DGDAI				• • • • • • • •
117 (111111					
	2001				2050
Hsf	VKVGDMYYSK	EDIDPATSKE		: KYKVENGKVV	
Hia	VKVGDKYYSK	EDIDLTTGQE	KLKDGNTVAF		
HiaNm			• • • • • • • •	KDNKPV	7 R
	2051				2100
Hsf	2051 LTNKGSGYVT	GNOVADAIA	SGFELGLADA	A AEAEKAFAES	
ны Ніа	ITNKGSGYV			E ADAKRAFDD.	
HiaNm					
	2101				2150
Hsf	AETVNAHDK	/ RFANGLNTK	J SAATVESTDA	A NGDKVTTTF	V KTDVELPLTQ
Hia					V KTDVELPLTQ
HiaNm					
	2151				2200
Hsf	IYNTDANGN	K IVKKADO	G KWYELNADG'	r as.nkevtl	G NVDANGKKVV
Hia	IYNTDANGK	K ITKVVKDGQ	r kwyelnadg'	T ADMTKEVTL	G NVDSDGKKVV
HiaNm					

FIG. 6 cont'd

2351

Hsf GKVIIRLSGT TNSQGKTGVA AGVGYQW*

Hia GKVIIRLSGT TNSQGKTGVA AGVGYQW*

HiaNm GNWIIKGTAS GNSRGHFGAS ASVGYQW*

PCT/AU98/01031

11/15

Hia GVVIDNVANG DISATSTDAI NGSQLYAVAK GVTNLAGQVN NLEGKVNKVG HiaNm ...VTNVA. ...QLKGVA. ...Q NLNNRIDNVD 2301 KRADAGTASA LAASQLPQAT MPGKSMVAIA GSSYQGQNGL AIGVSRISDN HiaNm GNARAGIAQA IATAGLVQAY LPGKSMMAIG GGTYRGEAGY AIGYSSISDG

2378

FIG. 7

	1				50
eg329	MNEILRIIWN	SALNAWVVVS	ELTRNHTKRA	SATVKTAVLA	
pmc21	MNKIYRIIWN	SALNAWVVVS	ELTRNHTKRA	SATVKTAVLA	
HiaNm	MNKIYRIIWN	SALNAWVVVS	ELTRNHTKRA	SATVKTAVLA	
h15	MNKIYRIIWN	SALNAWVVVS	ELTRNHTKRA		TLLFATVQAN
BZ10	MNKISRIIWN	SALNAWVVVS	ELTRNHTKRA		TLLFATVQAN
bz198	MNKIYRIIWN	SALNAWVVVS	ELTRNHTKRA		TLLFATVOAN
eg327	MNKIYRIIWN	SALNAWVAVS	ELTRNHTKRA		TLLFATVQAS
h38	MNKIYRIIWN	SALNAWVAVS	ELTRNHTKRA		TLLFATVQAN
h41	MNKIYRIIWN	SALNAWVAVS	ELTRNHTKRA		TLLFATVQAN
, in the second second	MNKIYRIIWN	SALNAWVVVS	ELTRNHTKRA		TLLSATVQAN
p20	MANTINIAN	SADMAN A A S	PHIMILINA	DAI VAIAVIA	I TIDNI AĞMI
	51				100
eg329	ANNE.EQEED	LYLDPVLRTV	AVLIVNSDKE	GTGEKEKVEE	NSDWAVYFNE
pmc21	ANNE.EQEED	LYLDPVQRTV	AVLIVNSDKE	GTGEKEKVEE	NSDWAVYFNE
HiaNm	ANNERPRKKD	LYLDPVQRTV		GTGEKEKVEE	NSDWAVYFNE
h15	ATDDDD	LYLEPVORTA		GTGEKE.GTE	DSNWAVYFDE
BZ10	ATDDDD	LYLEPVORTA		GTGEKE.GTE	DSNWAVYFDE
bz198	ATDDDD	LYLEPVORTA		GTGEKE.GTE	DSNWAVYFDE
eg327	TTDDDD	LYLEPVORTA		GTGEKE.VTE	DSNWGVYFDK
h38	ATDEDEE	EELEPVVRSA		GNGENE.STG	NIGWSIYYDN
h41		EELESVQRS.	-	GSVELETI	SLSMTNDS
p20		EELESVARSA			DIGWSIYYDD
•					
	101				150
eg329	KGVLTA.REI	TLKAGDNLKI	KQ		LKKDLTDLTS
pmc21	KGVLTA.REI	*	KQ	NGTNFTYS	LKKDLTDLTS
HiaNm	KGVLTA.REI	TLKAGDNLKI	KQ	NGTNFTYS	LKKDLTDLTS
h15	KRVLKA.GAI		KONTNENTNE		LKKDLTDLTS
BZ10	KRVLKA.GAI	TLKAGDNLKI	KQNTNENTNE		LKKDLTDLTS
bz198	KRVLKA.GAI		KQNTNE		LKKDLTDLTS
eg327	KGVLTA.GTI	TLKAGDNLKI	KQNTNE		
h38	HNTLHG.ATV	TLKAGDNLKI	KQNTNKNTNE		
h41	KEFVDPYIVV	TLKAGDNLKI	KQNTNE		
p20	HNTLHG.ATV	TLKAGDNLKI	KQ	SGKDFTYS	LKKELKDLTS
	1 - 1				200
2.0.0	151	NICHTE DITTE	TKGLNFAKET	AGTNGDTTVH	
eg329		NGNKVNITSD			
pmc21		NGNKVNITSD			
HiaNm		NGNKVNITSD			
h15		NGNKVNITSD			· · · · · · · · · · · · · · · · · · ·
BZ10		NGNKVNITSD			
bz198	·	NGNKVNITSD			
eg327	VGTEKLSFSA	NSNKVNITSD	TKGLNFAKKI		
h38	VETEKLSFGA	NGNKVNITSD	TKGLNEAKET	AGTNGDTTVI	LNGIGSTLTD
h41	<u> </u>			4 2 National Actions 1.	1 1 K[X X C Y I I X
p20		NGKKVNIISD	TKGLNFAKET	AGTNGDTTVI	I LNGIGSTLTD

FIG. 7 cont'd

	201				250
eg329	TLLNTGATTN	VTNDNVTDDE	KKRAASVKDV	LNAGWNIKGV	KPGTTASD
pmc21	TLLNTGATTN	VTNDNVTDDE	KKRAASVKDV	LNAGWNIKGV	KPGTTASD
HiaNm	TLLNTGATTN	VTNDNVTDDE	KKRAASVKDV	LNAGWNIKGV	KPGTTASD
h15	TLLNTGATTN	VTNDNVTDDE	KKRAASVKDV	LNAGWNIKGV	KPGTTASD
BZ10	TLLNTGATTN	VTNDNVTDDE	KKRAASVKDV	LNAGWNIKGV	KPGTTASD
bz198	TLLNTGATTN	VTNDNVTDDE	KKRAASVKDV	LNAGWNIKGV	KPGTTASD
eg327	TLLNTGATTN	VTNDNVTDDE	KKRAASVKDV	LNAGWNIKGV	KPGTTASD
	TLLNTGATTN	VTNDNVTDDK	KKRAASVKDV	LNAGWNIKGV	KPGTTASD
h41	MLLNTGATTN	VTNDNVTDDE	KKRAASVKDV	LNAGWNIKGV	KPGTTASD
p20	TLAGSSASHV	DAGNOSTHY.	.TRAASIKDV	LNAGWNIKGV	KTGSTTGQSE
-		-			
	251				300
eg329	NVDFVRTYDT	VEFLSADTKT	TTVNVESKDN	GKKTEVKIGA	KTSVIKEKDG
pmc21	NVDFVRTYDT	VEFLSADTKT	TTVNVESKDN	GKKTEVKIGA	KTSVIKEKDG
HiaNm	NVDFVRTYDT	VEFLSADTKT	TTVNVESKDN	GKKTEVKIGV	KTSVIKEKDG
h15	NVDFVRTYDT	VEFLSADTKT	TTVNVESKDN	GKKTEVKIGA	KTSVIKEKDG
BZ10	NVDFVRTYDT	VEFLSADTKT	TTVNVESKDN	GKRTEVKIGA	KTSVIKEKDG
bz198	NVDFVRTYDT	VEFLSADTKT	TTVNVESKDN	GKKTEVKIGA	KTSVIKEKDG
eg327	NVDFVRTYDT	VEFLSADTKT	TTVNVESKDN	GKRTEVKIGA	KTSVIKEKDG
h38	NVDFVHTYDT	VEFLSADTKT	TTVNVESKDN	GKRTEVKIGA	KTSVIKEKDG
h41	NVDFVRTYDT	VEFLSADTKT	TTVNVESKDN	GKKTEVKIGA	KTSVIKEKDG
p20	NVDFVRTYDT	VEFLSADTKT	TTVNVESKDN	GKRTEVKIGA	KTSVIKEKDG
-					
	301				350
eg329	KLVTGKDKGE	NGSSTDEGEG		VNKAGWRMKT	TTANGQTGQA
pmc21	KLVTGKDKGE	NGSSTDEGEG		VNKAGWRMKT	TTANGQTGQA
HiaNm	KLVTGKDKGE	NGSSTDEGEG	LVTAKEVIDA		TTANGQTGQA
h15	KLVTGKGKDE	NGSSTDEGEG		VNKAGWRMKT	TTANGQTGQA
BZ10	KLVTGKGKGE			VNKAGWRMKT	TTANGQTGQA
bz198	KLVTGKGKDE				TTANGQTGQA
eg327	KLVTGKDKGE			VNKAGWRMKT	TTANGQTGQA
h38	KLVTGKGKGE			VNKAGWRMKT	TTANGQTGQA
h41	KLVTGKGKGE				TTANGQTGQA
p20	KLVTGKGKGE	NGSSTDEGEG	LVTAKEVIDA	. VNKAGWRMKT	TTANGQTGQA
	251				400
.200	351	これが かいまれる これので	TATVSKDDQG	NITVMYDVNV	
eg329	DKFETVTSGT	_			
pmc21	DKFETVTSGT				
HiaNm	DKFETVTSGT	_			
h15	DKFETVTSGI		-		
BZ10	DKFETVTSGI				
bz198	DKFETVTSGT				
eg327	DKFETVTSGT				
h38	DKFETVTSG	NVTEASGKG'	L TATVSKUDQ(- VILUINAALIVU 1 NTTAVITAVA	GDALNVNQLQ
h41	DKFETVTSGT	r KVTFASGNGT	L LAIASKANDA L MYMAKANDA	- MILWAMANIUMA MTIAVIDAM/	GDALNVNQLQ
p 20	DKFETVTSG	r KVTFASGNG	΄ Μυτασυμυ <u>ν</u>	2 MITAVIDAM	/ GDALNVNQLQ

14/15

FIG. 7 cont'd

	401				450
eg329	NSGWNLDSKA	VAGSSGKVTS	GNVSPSKGKM	DETVNINAGN	NIEITRNGKN
pmc21	NSGWNLDSKA		GNVSPSKGKM	DETVNINAGN	NIEITRNGKN
HiaNm	NSGWNLDSKA		GNVSPSKGKM	DETVNINAGN	NIEITRNGKN
h15	NSGWNLDSKA		GNVSPSKGKM	DETVNINAGN	NIEITRNGKN
BZ10	NSGWNLDSKA		GNVSPSKGKM	DETVNINAGN	NIEITRNGKN
bz198	NSGWNLDSKA	-	GNVSPSKGKM	DETVNINAGN	NIEITRNGKN
eg327	NSGWNLDSKA		GNVSPSKGKM	DETVNINAGN	NIEITRNGKN
eg327 h38	NSGWNLDSKA		GNVSPSKGKM	DETVNINAGN	NIEITRNGKN
	NSGWNLDSKA		GNVSPSKGKM	DETVNINAGN	NIEITRNGKN
h41	NSGWNLDSKA		GNVSPSKGKM	DETVNINAGN	NIEITRNGKN
p20	NOCANATION	AVGSSGVATS	GNVSESKGKI	DETAILING	MINITIMOM
	451				500
eg329	IDIATSMTPQ	FSSVSLGAGA	DAPTLSVDGD	.ALNVGSKKD	NKPVRITNVA
pmc21	IDIATSMTPQ		DAPTLSVDGD	.ALNVGSKKD	NKPVRITNVA
HiaNm	IDIATSMTPQ	FSSVSLGAGA		.ALNVGSKKD	NKPVRITNVA
h15	IDIATSMTPQ	FSSVSLGAGA		GALNVGSKDA	
BZ10	IDIATSMTPQ	FSSVSLGAGA	DAPTLSVDDE	GALNVGSKDA	
bz198	IDIATSMAPQ	FSSVSLGAGA	DAPTLSVDDE	GALNVGSKDT	NKPVRITNVA
	IDIATSMTPQ	FSSVSLGAGA	DAPTLSVDDE	GALNVGSKDA	
eg327	IDIATSMTPQ				
h38	- ·			GALNVGSKDA	NKPVRITNVA
h41	IDIATSMTPQ	FSSVSLGAGA			
p20	IDIATSMTPQ	FSSVSLGAGA	DWLITPADDE	GALINVGSADA	MULAUTINAM
	501				550
eg329	PGVKEGDVTN	VAQLKGVAQN	LNNRIDNVDG	NARAGIAQAI	ATAGLVQAYL
pmc21	PGVKEGDVTN	VAQLKGVAQN	LNNRIDNVDG	NARAGIAQAI	ATAGLVQAYL
HiaNm	PGVKEGDVTN		LNNRIDNVDG	NARAGIAQAI	ATAGLVQAYL
h15	PGVKEGDVTN		LNNRIDNVDG	NARAGIAQAI	ATAGLAQAYL
BZ10	PGVKEGDVTN	-	LNNRIDNVDG	NARAGIAQAI	ATAGLAQAYL
bz198	PGVKEGDVTN	-		- -	ATAGLVQAYL
eg327	PGVKEGDVTN	-			ATAGLVQAYL
h38	PGVKEGDVTN	-			
h41	PGVKEGDVIN	-			
	PGVKEGDVIN				
p20	FGAVEGDATA	AMÖTIKO ALIĞIL	111111111111111111111111111111111111111		
	551				600
eg329	PGKSMMAIGG	GTYRGEAGYA	IGYSSISDGG	NWIIKGTASO	NSRGHFGASA
pmc21	PGKSMMAIGG		IGYSSISDGG	NWIIKGTASC	NSRGHFGASA
HiaNm	PGKSMMAIGG			NWIIKGTASO	NSRGHFGASA
h15	PGKSMMAIG			NWVIKGTASO	NSRGHFGASA
BZ10	PGKSMMAIG				NSRGHFGTSA
bz198	PGKSMMAIG		• -		NSRGHFGASA
	PGKSMMAIG				NSRGHFGASA
eg327 h38	DCK GWWD I CO	GTYRCEACY2			S NSRGHFGASA
h41	DCKCWWDIC	GTYLCEACYE	IGYSSISAGO	NWIIKGTAS	S NSRGHFGASA
		CTILCHACIA CTVI.CEACVI	IGYSSISDTO	NWVIKGTAS	S NSRGHFGTSA
p20	L G V DIMINIT G (a errhemuer.			

15/15

FIG. 7 cont'd

601 eg329 SVGYQW* pmc21 SVGYQW* HiaNm SVGYQW* h15 SVGYQW* BZ10 SVGYQW* bz198 SVGYQW* eg327 SVGYQW* SVGYQW* h38 h41 SVGYQW* SVGYQW* p20

i

SEQUENCE LISTING

<pre><110> Peak, Ian R. (U.S. only) Jennings, Michael P. (U.S. only) Moxom, Edward R. (U.S. only) University of Queensland (except U.S.) Isis Innovations Limited (except U.S.)</pre>	
<120> Novel surface antigen	
<130> Neisseria meningitidis HiaNm antigen	
<140> PCT/AU98/01031 <141> 1998-12-14	
<150> GB 9726398.2 <151> 1997-12-12	
<160> 31	
<170> PatentIn Ver. 2.0	
<210> 1 <211> 2308 <212> DNA <213> Neisseria meningitidis	
<220> <221> CDS <222> (276)(2054)	
<400> 1 gaaaaaccac aggaatttat cagcaaaaac agaaacccca ccgccgtcat tcccgcaaaa	60
gcgggaatcc agacccgtcg gcacggaaaa cttaccgaat aaaacagttt ccttagattc	120
cacgtcccag attcccgcct tcgcggggaa tgacgagatt ttaagttggg ggaatttatc	180
agaaaacccc caacccccaa aaaccgggcg gatgccgcac catccgcccc caaaccccga	240
tttaaccatt caaacaaacc aaaagaaaaa acaaa atg aac aaa ata tac cgc Met Asn Lys Ile Tyr Arg 1 5	293
atc att tgg aat agt gcc ctc aat gcc tgg gtc gtc gta tcc gag ctc Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp Val Val Val Ser Glu Leu 10 15 20	341
aca cgc aac cac acc aaa cgc gcc tcc gca acc gtg aag acc gcc gta Thr Arg Asn His Thr Lys Arg Ala Ser Ala Thr Val Lys Thr Ala Val 25 30 35	389
ttg gcg aca ctg ttg ttt gca acg gtt cag gca agt gct aac aat gaa Leu Ala Thr Leu Leu Phe Ala Thr Val Gln Ala Ser Ala Asn Asn Glu 40 45 50	437
aga cca aga aag aaa gat tta tat tta gac ccc gta caa cgc act gtt Arg Pro Arg Lys Lys Asp Leu Tyr Leu Asp Pro Val Gln Arg Thr Val 55 60 65 70	485
gcc gtg ttg ata gtc aat tcc gat aaa gaa ggc acg gga gaa aaa gaa Ala Val Leu Ile Val Asn Ser Asp Lys Glu Gly Thr Gly Glu Lys Glu 75 80 85	533

ii

										ttc Phe					581
										ggc Gly					629
										ctg Leu 130			_		677
										tcg Ser			_		725
										ggc Gly					773
										gtt Val		_			821
										acc Thr					869
										aaa Lys 210					917
										att Ile					965
										gtc Val					1013
										acg Thr				gtg Val	1061
_	Lys	Asp	Asn		Lys	Lys	Thr	Glu	Val	aaa Lys	Ile	Gly	_	_	1109
				_				_	_	gtt Val 290					1157
										gaa Glu					1205
										ggt Gly					1253
										gac Asp					1301

iii

							•									
gtt Val	aca Thr	tca Ser 345	ggc Gly	aca Thr	aat Asn	gta Val	acc Thr 350	ttt Phe	gct Ala	agt Ser	ggt Gly	aaa Lys 355	ggt Gly	aca Thr	act Thr	1349
														tat Tyr		1397
														agc Ser	ggt Gly 390	1445
														gtc Val 405		1493
														gtc Val		1541
														aat Asn		1589
											_	-	_	ctc Leu		1637
														ttg Leu		1685
														gtc Val 485		1733
														aaa Lys		1781
														aac Asn		1829
	Ala	Gly		Ala	Gln	Ala		Ala		Ala	Gly			cag Gln		1877
														tat Tyr		1925
														ggc Gly 565		1973
														cat His		2021
							tat Tyr 590			taa	gggc	cttta	atc q	gccto	gtctgc	2074

tgttgggaca ggcggaaggt ttgaagggaa gggtggcgat ttgccgcctg agacctttgc 2134

iv

aaaatccccc caaaatcccc taaattccca ccaagacatt taggggattt ctcatgagca 2194 ccttcttccg gcaaaccgcg caagccatga ttgccaaaca catcaaccgt ttcccgctat 2254 tgaagttgga ccaagtgatt gattggcagc cgatcgagca gtacctgaac cgtc 2308 <210> 2 <211> 592 <212> PRT <213> Neisseria meningitidis <400> 2 Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 1 10 15 Val Val Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 20 25 Thr Val Lys Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln 35 40 45 Ala Ser Ala Asn Asn Glu Arg Pro Arg Lys Lys Asp Leu Tyr Leu Asp 50 55 Pro Val Gln Arg Thr Val Ala Val Leu Ile Val Asn Ser Asp Lys Glu 65 70 75 80 Gly Thr Gly Glu Lys Glu Lys Val Glu Glu Asn Ser Asp Trp Ala Val 85 90 95 Tyr Phe Asn Glu Lys Gly Val Leu Thr Ala Arg Glu Ile Thr Leu Lys 100 105 110 Ala Gly Asp Asn Leu Lys Ile Lys Gln Asn Gly Thr Asn Phe Thr Tyr 115 120 125

Ser Leu Lys Lys Asp Leu Thr Asp Leu Thr Ser Val Gly Thr Glu Lys 130 135 140

Leu Ser Phe Ser Ala Asn Gly Asn Lys Val Asn Ile Thr Ser Asp Thr 145 150 155

Lys Gly Leu Asn Phe Ala Lys Glu Thr Ala Gly Thr Asn Gly Asp Thr 165 170 175

Thr Val His Leu Asn Gly Ile Gly Ser Thr Leu Thr Asp Thr Leu Leu 180 185 190

Asn Thr Gly Ala Thr Thr Asn Val Thr Asn Asp Asn Val Thr Asp Asp 195 200 205

Glu Lys Lys Arg Ala Ala Ser Val Lys Asp Val Leu Asn Ala Gly Trp 210 220

Asn Ile Lys Gly Val Lys Pro Gly Thr Thr Ala Ser Asp Asn Val Asp 235 230 235

Phe Val Arg Thr Tyr Asp Thr Val Glu Phe Leu Ser Ala Asp Thr Lys 245 250 255

Thr Thr Val Asn Val Glu Ser Lys Asp Asn Gly Lys Lys Thr Glu 260 265 270

٦,

v

Val	Lys	Ile 275	Gly	Val	Lys	Thr	Ser 280	Val	Ile	Lys	Glu	Lys 285	Asp	Gly	Lys
Leu	Val 290	Thr	Gly	Lys	Asp	Lys 295	Gly	Glu	Asn	Gly	Ser 300	Ser	Thr	Asp	Glu
Gly 305	Glu	Gly	Leu	Val	Thr 310	Ala	Lys	Glu	Val	Ile 315	Asp	Ala	Val	Asn	Lys 320
Ala	Gly	Trp	Arg	Met 325	Lys	Thr	Thr	Thr	Ala 330	Asn	Gly	Gln	Thr	Gly 335	Gln
Ala	Asp	Lys	Phe 340	Glu	Thr	Val	Thr	Ser 345	Gly	Thr	Asn	Val	Thr 350	Phe	Ala
Ser	Gly	Lys 355	Gly	Thr	Thr	Ala	Thr 360	Val	Ser	Lys	Asp	Asp 365	Gln	Gly	Asn
Ile	Thr 370	Val	Met	Tyr	Asp	Val 375	Asn	Val	Gly	Asp	Ala 380	Leu	Asn	Val	Asn
Gln 385		Gln							Asp						Gly 400
Ser	Ser	Gly	Lys	Val 405	Ile	Ser	Gly	Asn	Val 410	Ser	Pro	Ser	Lys	Gly 415	Lys
Met	Asp	Glu	Thr 420	Val	Asn	Ile	Asn	Ala 425	Gly	Asn	Asn	Ile	Glu 430	Ile	Thr
Arg	Asn	Gly 435	Lys	Asn	Ile	Asp	Ile 440	Ala	Thr	Ser	Met	Thr 445	Pro	Gln	Phe
Ser	Ser 450	Val	Ser	Leu	Gly	Ala 455	Gly	Ala	Asp	Ala	Pro 460	Thr	Leu	Ser	Val
						455					460				
Asp 465	450	Asp	Ala	Leu	Asn 470	455 Val	Gly	Ser	Lys	Lys 475	460 Asp	Asn	Lys	Pro	Val 480
Asp 465 Arg	450 Gly	Asp	Ala Asn	Leu Val 485	Asn 470 Ala	455 Val Pro	Gly Gly	Ser Val	Lys Lys 490	Lys 475 Glu	460 Asp Gly	Asn Asp	Lys Val	Pro Thr 495	Val 480 Asn
Asp 465 Arg Val	450 Gly Ile	Asp Thr Gln	Ala Asn Leu 500	Leu Val 485 Lys	Asn 470 Ala Gly	455 Val Pro Val	Gly Gly Ala	Ser Val Gln 505	Lys Lys 490 Asn	Lys 475 Glu Leu	460 Asp Gly Asn	Asn Asp	Lys Val Arg 510	Pro Thr 495 Ile	Val 480 Asn
Asp 465 Arg Val	450 Gly Ile Ala	Asp Thr Gln Asp 515	Ala Asn Leu 500 Gly	Leu Val 485 Lys Asn	Asn 470 Ala Gly	455 Val Pro Val	Gly Gly Ala Ala 520	Ser Val Gln 505 Gly	Lys Lys 490 Asn	Lys 475 Glu Leu Ala	460 Asp Gly Asn	Asn Asp Asn Ala 525	Lys Val Arg 510 Ile	Pro Thr 495 Ile	Val 480 Asn Asp
Asp 465 Arg Val Asn	450 Gly Ile Ala Val	Asp Thr Gln Asp 515 Leu	Ala Asn Leu 500 Gly Val	Leu Val 485 Lys Asn	Asn 470 Ala Gly Ala	455 Val Pro Val Arg Tyr 535	Gly Gly Ala Ala 520 Leu	Ser Val Gln 505 Gly Pro	Lys Lys 490 Asn Ile	Lys 475 Glu Leu Ala	460 Asp Gly Asn Gln Ser 540	Asn Asp Asn Ala 525 Met	Lys Val Arg 510 Ile Met	Pro Thr 495 Ile Ala	Val 480 Asn Asp Thr
Asp 465 Arg Val Asn Ala Gly 545	450 Gly Ile Ala Val Gly 530	Asp Thr Gln Asp 515 Leu Gly	Ala Asn Leu 500 Gly Val	Leu Val 485 Lys Asn Gln	Asn 470 Ala Gly Ala Ala Arg 550	Val Pro Val Arg Tyr 535 Gly	Gly Gly Ala Ala 520 Leu Glu	Ser Val Gln 505 Gly Pro	Lys Lys 490 Asn Ile Gly	Lys 475 Glu Leu Ala Lys Tyr 555	Asp Gly Asn Gln Ser 540 Ala	Asn Asp Asn Ala 525 Met	Lys Val Arg 510 Ile Met Gly	Pro Thr 495 Ile Ala Ala	Val 480 Asn Asp Thr Ile Ser 560

<210> 3

<211> 1779

<212> DNA

<213> Neisseria meningitidis

vi

<400> 3						
atgaacaaaa	tataccgcat	catttggaat	agtgccctca	atgcctgggt	cgtcgtatcc	60
gagctcacac	gcaaccacac	caaacgcgcc	tccgcaaccg	tgaagaccgc	cgtattggcg	120
acactgttgt	ttgcaacggt	tcaggcaagt	gctaacaatg	aaagaccaag	aaagaaagat	180
ttatatttag	accccgtaca	acgcactgtt	gccgtgttga	tagtcaattc	cgataaagaa	240
ggcacgggag	aaaaagaaaa	agtagaagaa	aattcagatt	gggcagtata	tttcaacgag	300
aaaggagtac	taacagccag	agaaatcacc	ctcaaagccg	gcgacaacct	gaaaatcaaa	360
caaaacggca	caaacttcac	ctactcgctg	aaaaaagacc	tcacagatct	gaccagtgtt	420
ggaactgaaa	aattatcgtt	tagcgcaaac	ggcaataaag	tcaacatcac	aagcgacacc	480
aaaggcttga	attttgcgaa	agaaacggct	gggacgaacg	gcgacaccac	ggttcatctg	540
aacggtattg	gttcgacttt	gaccgatacg	ctgctgaata	ccggagcgac	cacaaacgta	600
accaacgaca	acgttaccga	tgacgagaaa	aaacgtgcgg	caagcgttaa	agacgtatta	660
aacgctggct	ggaacattaa	aggcgttaaa	cccggtacaa	cagcttccga	taacgttgat	720
ttcgtccgca	cttacgacac	agtcgagttc	ttgagcgcag	atacgaaaac	aacgactgtt	780
aatgtggaaa	gcaaagacaa	cggcaagaaa	accgaagtta	aaatcggtgt	gaagacttct	840
gttattaaag	aaaaagacgg	taagttggtt	actggtaaag	acaaaggcga	gaatggttct	900
tctacagacg	aaggcgaagg	cttagtgact	gcaaaagaag	tgattgatgc	agtaaacaag	960
gctggttgga	gaatgaaaac	aacaaccgct	aatggtcaaa	caggtcaagc	tgacaagttt	1020
gaaaccgtta	catcaggcac	aaatgtaacc	tttgctagtg	gtaaaggtac	aactgcgact	1080
gtaagtaaag	atgatcaagg	caacatcact	gttatgtatg	atgtaaatgt	cggcgatgcc	1140
ctaaacgtca	atcagctgca	aaacagcggt	tggaatttgg	attccaaagc	ggttgcaggt	1200
tcttcgggca	aagtcatcag	cggcaatgtt	tcgccgagca	agggaaagat	ggatgaaacc	1260
gtcaacatta	atgccggcaa	caacatcgag	attacccgca	acggtaaaaa	tatcgacatc	1320
gccacttcga	tgaccccgca	gttttccagc	gtttcgctcg	gcgcgggggc	ggatgcgccc	1380
actttgagcg	tggatgggga	cgcattgaat	gtcggcagca	agaaggacaa	caaacccgtc	1440
cgcattacca	atgtcgcccc	gggcgttaaa	gagggggatg	ttacaaacgt	cgcacaactt	1500
aaaggcgtgg	cgcaaaactt	gaacaaccgc	atcgacaatg	tggacggcaa	cgcgcgtgcg	1560
ggcatcgccc	aagcgattgc	aaccgcaggt	ctggttcagg	cgtatttgcc	cggcaagagt	1620
atgatggcga	tcggcggcgg	cacttatcgc	ggcgaagccg	gttacgccat	cggctactcc	1680
agtatttccg	acggcggaaa	ttggattatc	aaaggcacgg	cttccggcaa	ttcgcgcggc	1740
catttcaata	cttccgcatc	tatcaattat	cadtddtaa			1770

<210> 4 <211> 1797

vii

<212> DN <213> Ne		meningi	tidis									
<220> <221> CD <222> (1		7)										
<400> 4 atg aac Met Asn 1						Ser						48
gtc gtc Val Val												96
acc gtg Thr Val			Leu A	_	_	_		_		_	_	144
gcg aat Ala Asn 50							_		_		_	192
act gct Thr Ala 65			Phe A						_		_	240
aaa gaa Lys Glu				_	_	-			_			288
aga gta Arg Val												336
aaa atc Lys Ile				.u Asn								384
agt agc Ser Ser 130												432
gtt gaa Val Glu 145	Thr Glu		Ser Ph	e Gly	Ala	Asn	Gly	Asn	Lys	Val		480
atc aca Ile Thr												528
acg aac Thr Asn												576
acc gat				y Ala				_			_	624
aac gtt Asn Val 210												672
tta aac	gca ggc	tgg aac	att aa	a ggc	gtt	aaa	ccc	ggt	aca	aca	gct	720

viii

Leu 225	Asn	Ala	Gly	Trp	Asn 230	Ile	Lys	Gly	Val	Lys 235	Pro	Gly	Thr	Thr	Ala 240	
tcc Ser	gat Asp	aac Asn	gtc Val	gat Asp 245	ttc Phe	gtc Val	cgc Arg	act Thr	tac Tyr 250	gac Asp	aca Thr	gtc Val	gag Glu	ttc Phe 255	ttg Leu	768
agc Ser	gca Ala	gat Asp	acg Thr 260	aaa Lys	aca Thr	acg Thr	act Thr	gtt Val 265	aat Asn	gtg Val	gaa Glu	agc Ser	aaa Lys 270	gac Asp	aac Asn	816
ggc Gly	aag Lys	aga Arg 275	acc Thr	gaa Glu	gtt Val	aaa Lys	atc Ile 280	ggt Gly	gcg Ala	aag Lys	act Thr	tct Ser 285	gtt Val	att Ile	aaa Lys	864
gaa Glu	aaa Lys 290	gac Asp	ggt Gly	aag Lys	ttg Leu	gtt Val 295	act Thr	ggt Gly	aaa Lys	ggc Gly	aaa Lys 300	ggc Gly	gag Glu	aat Asn	ggt Gly	912
tct Ser 305	tct Ser	aca Thr	gac Asp	gaa Glu	ggc Gly 310	gaa Glu	ggc Gly	tta Leu	gtg Val	act Thr 315	gca Ala	aaa Lys	gaa Glu	gtg Val	att Ile 320	960
gat Asp	gca Ala	gta Val	aac Asn	aag Lys 325	gct Ala	ggt Gly	tgg Trp	aga Arg	atg Met 330	aaa Lys	aca Thr	aca Thr	acc Thr	gct Ala 335	aat Asn	1008
														ggc Gly		1056
aaa Lys	gta Val	acc Thr 355	ttt Phe	gct [.] Ala	agt Ser	ggt Gly	aat Asn 360	ggt Gly	aca Thr	act Thr	gcg Ala	act Thr 365	gta Val	agt Ser	aaa Lys	1104
gat Asp	gat Asp 370	caa Gln	ggc Gly	aac Asn	atc Ile	act Thr 375	gtt Val	aag Lys	tat Tyr	gat Asp	gta Val 380	aat Asn	gtc Val	ggc Gly	gat Asp	1152
gcc Ala 385	cta Leu	aac Asn	gtc Val	aat Asn	cag Gln 390	ctg Leu	caa Gln	aac Asn	agc Ser	ggt Gly 395	tgg Trp	aat Asn	ttg Leu	gat Asp	tcc Ser 400	1200
aaa Lys	gcg Ala	gtt Val	gca Ala	ggt Gly 405	tct Ser	tcg Ser	ggc Gly	aaa Lys	gtc Val 410	atc Ile	agc Ser	ggc Gly	aat Asn	gtt Val 415	tcg Ser	1248
ccg Pro	agc Ser	aag Lys	gga Gly 420	aag Lys	atg Met	gat Asp	gaa Glu	acc Thr 425	gtc Val	aac Asn	att Ile	aat Asn	gcc Ala 430	ggc Gly	aac Asn	1296
aac Asn	atc Ile	gag Glu 435	att Ile	acc Thr	cgc Arg	aac Asn	ggc Gly 440	aaa Lys	aat Asn	atc Ile	gac Asp	atc Ile 445	gcc Ala	act Thr	tcg Ser	1344
atg Met	acc Thr 450	ccg Pro	caa Gln	ttt Phe	tcc Ser	agc Ser 455	gtt Val	tcg Ser	ctc Leu	ggc Gly	gcg Ala 460	ggg ggg	gcg Ala	gat Asp	gcg Ala	1392
ccc Pro 465	act Thr	tta Leu	agc Ser	gtg Val	gat Asp 470	gac Asp	gag Glu	ggc Gly	gcg Ala	ttg Leu 475	aat Asn	gtc Val	ggc Gly	agc Ser	aag Lys 480	1440
gat Asp	gcc Ala	aac Asn	aaa Lys	ccc Pro	gtc Val	cgc Arg	att Ile	acc Thr	aat Asn	gtc Val	gcc Ala	ccg Pro	ggc Gly	gtt Val	aaa Lys	1488

ix

	485	490	495
		a caa ctt aaa ggt a Gln Leu Lys Gly 505	
		g gac ggc aac gcg l Asp Gly Asn Ala 0	
		t ttg gct cag gcc y Leu Ala Gln Ala 540	
		c ggt act tat cgc y Gly Thr Tyr Arg 555	
		t tct gac act ggg e Ser Asp Thr Gly 570	
		g cgc ggt cat ttc r Arg Gly His Phe 585	
tct gtc ggt tat Ser Val Gly Tyr 595			1797
<210> 5 <211> 598 <212> PRT <213> Neisseria	meningitidis		
<211> 598 <212> PRT <213> Neisseria <400> 5	-	e Trp Asn Ser Ala 10	Leu Asn Ala Trp 15
<211> 598 <212> PRT <213> Neisseria <400> 5 Met Asn Lys Ile 1	Ser Arg Ile Ile	_	15
<211> 598 <212> PRT <213> Neisseria <400> 5 Met Asn Lys Ile 1 Val Val Val Ser 20	Ser Arg Ile Ile 5 Glu Leu Thr Arg	10 g Asn His Thr Lys 25 a Thr Leu Leu Phe	15 Arg Ala Ser Ala 30
<211> 598 <212> PRT <213> Neisseria <400> 5 Met Asn Lys Ile 1 Val Val Val Ser 20 Thr Val Ala Thr 35	Ser Arg Ile Ile 5 Glu Leu Thr Arg Ala Val Leu Ala	10 g Asn His Thr Lys 25 a Thr Leu Leu Phe	15 Arg Ala Ser Ala 30 Ala Thr Val Gln 45
<211> 598 <212> PRT <213> Neisseria <400> 5 Met Asn Lys Ile 1 Val Val Val Ser 20 Thr Val Ala Thr 35 Ala Asn Ala Thr 50	Ser Arg Ile Ile 5 Glu Leu Thr Arg Ala Val Leu Ala 40 Asp Asp Asp Asp 55	g Asn His Thr Lys 25 a Thr Leu Leu Phe 0 p Leu Tyr Leu Glu	Arg Ala Ser Ala 30 Ala Thr Val Gln 45 Pro Val Gln Arg
<211> 598 <212> PRT <213> Neisseria <400> 5 Met Asn Lys Ile 1 Val Val Val Ser 20 Thr Val Ala Thr 35 Ala Asn Ala Thr 50 Thr Ala Val Val 65	Ser Arg Ile Ile 5 Glu Leu Thr Arg Ala Val Leu Ala 40 Asp Asp Asp Asp 55 Leu Ser Phe Arg 70	g Asn His Thr Lys 25 Thr Leu Leu Phe 0 P Leu Tyr Leu Glu 60 g Ser Asp Lys Glu	Arg Ala Ser Ala 30 Ala Thr Val Gln 45 Pro Val Gln Arg Gly Thr Gly Glu 80
<211> 598 <212> PRT <213> Neisseria <400> 5 Met Asn Lys Ile 1 Val Val Val Ser 20 Thr Val Ala Thr 35 Ala Asn Ala Thr 50 Thr Ala Val Val 65 Lys Glu Gly Thr	Ser Arg Ile Ile 5 Glu Leu Thr Arg Ala Val Leu Ala 40 Asp Asp Asp Asp 55 Leu Ser Phe Arg 70 Glu Asp Ser Asp 85	g Asn His Thr Lys 25 Thr Leu Leu Phe 0 P Leu Tyr Leu Glu 60 G Ser Asp Lys Glu 75 Trp Ala Val Tyr	Arg Ala Ser Ala 30 Ala Thr Val Gln 45 Pro Val Gln Arg Gly Thr Gly Glu 80 Phe Asp Glu Lys 95
<211> 598 <212> PRT <213> Neisseria <400> 5 Met Asn Lys Ile	Ser Arg Ile Ile 5 Glu Leu Thr Arg Ala Val Leu Ala 40 Asp Asp Asp Asp 55 Leu Ser Phe Arg 70 Glu Asp Ser Ass 85 Ala Gly Ala Ile	JO Grant His Thr Lys 25 Thr Leu Leu Phe Co Draw Leu Tyr Leu Glu 60 Grant Asp Lys Glu 75 Trp Ala Val Tyr 90 Thr Leu Lys Ala 105 La Asn Thr Asn Glu	Arg Ala Ser Ala 30 Ala Thr Val Gln 45 Pro Val Gln Arg Gly Thr Gly Glu 80 Phe Asp Glu Lys 95 Gly Asp Asn Leu 110
<211> 598 <212> PRT <213> Neisseria <400> 5 Met Asn Lys Ile	Ser Arg Ile Ile 5 Glu Leu Thr Arg Ala Val Leu Ala 40 Asp Asp Asp Asp 55 Leu Ser Phe Arg 70 Glu Asp Ser Asr 85 Ala Gly Ala Ile Asn Thr Asn Glu 120	JO Grant His Thr Lys 25 Thr Leu Leu Phe Co Draw Leu Tyr Leu Glu 60 Grant Asp Lys Glu 75 Trp Ala Val Tyr 90 Thr Leu Lys Ala 105 La Asn Thr Asn Glu	Arg Ala Ser Ala 30 Ala Thr Val Gln 45 Pro Val Gln Arg Gly Thr Gly Glu 80 Phe Asp Glu Lys 95 Gly Asp Asn Leu 110 Asn Thr Asn Asp 125

X

145					150					155					160
Ile	Thr	Ser	Asp	Thr 165	Lys	Gly	Leu	Asn	Phe 170	Ala	Lys	Glu	Thr	Ala 175	Gly
Thr	Asn	Gly	Asp 180	Pro	Thr	Val	His	Leu 185	Asn	Gly	Ile	Gly	Ser 190	Thr	Leu
Thr	Asp	Thr 195	Leu	Leu	Asn	Thr	Gly 200	Ala	Thr	Thr	Asn	Val 205	Thr	Asn	Asp
Asn	Val 210	Thr	Asp	Asp	Glu	Lys 215	Lys	Arg	Ala	Ala	Ser 220	Val	Lys	Asp	Val
Leu 225	Asn	Ala	Gly	Trp	Asn 230	Ile	Lys	Gly	Val	Lys 235	Pro	Gly	Thr	Thr	Ala 240
Ser	Asp	Asn	Val	Asp 245	Phe	Val	Arg	Thr	Tyr 250	Asp	Thr	Val	Glu	Phe 255	Leu
Ser	Ala	Asp	Thr 260	Lys	Thr	Thr	Thr	Val 265	Asn	Val	Glu	Ser	Lys 270	Asp	Asn
Gly	Lys	Arg 275	Thr	Glu	Val	Lys	Ile 280	Gly	Ala	Lys	Thr	Ser 285	Val	Ile	Lys
Glu	Lys 290	Asp	Gly	Lys	Leu	Val 295	Thr	Gly	Lys	Gly	Lys 300	Gly	Glu	Asn	Gly
Ser 305	Ser	Thr	Asp	Glu	Gly 310	Glu	Gly	Leu	Val	Thr 315	Ala	Lys	Glu	Val	Ile 320
Asp	Ala	Val	Asn	Lys 325	Ala	Gly	Trp	Arg	Met 330	Lys	Thr	Thr	Thr	Ala 335	Asn
Gly	Gln	Thr	Gly 340	Gln	Ala	Asp	Lys	Phe 345	Glu	Thr	Val	Thr	Ser 350	Gly	Thr
		355	Phe				360					365			-
Asp	Asp 370	Gln	Gly	Asn	Ile	Thr 375	Val	Lys	Tyr	Asp	Val 380	Asn	Val	Gly	Asp
Ala 385	Leu	Asn	Val	Asn	Gln 390	Leu	Gln	Asn	Ser	Gly 395	Trp	Asn	Leu	Asp	Ser 400
Lys	Ala	Val	Ala	Gly 405	Ser	Ser	Gly	Lys	Val 410	Ile	Ser	Gly	Asn	Val 415	Ser
Pro	Ser	Lys	Gly 420	Lys	Met	Asp	Glu	Thr 425	Val	Asn	Ile	Asn	Ala 430	Gly	Asn
Asn	Ile	Glu 435	Ile	Thr	Arg	Asn	Gly 440	Lys	Asn	Ile	Asp	Ile 445	Ala	Thr	Ser
Met	Thr 450	Pro	Gln	Phe	Ser	Ser 455	Val	Ser	Leu	Gly	Ala 460	Gly	Ala	Asp	Ala
Pro 465	Thr	Leu	Ser	Val	Asp 470	Asp	Glu	Gly	Ala	Leu 475	Asn	Val	Gly	Ser	Lys 480
Asp	Ala	Asn	Lys	Pro 485	Val	Arg	Ile	Thr	Asn 490	Val	Ala	Pro	Gly	Val 495	Lys

хi

Glu	Gly	Asp	Val 500	Thr	Asn	Val	Ala	Gln 505	Leu	Lys	Gly	Val	Ala 510	Gln	Asn	
Leu	Asn	Asn 515	Arg	Ile	Asp	Asn	Val 520	Asp	Gly	Asn	Ala	Arg 525	Ala	Gly	Ile	
Ala	Gln 530	Ala	Ile	Ala	Thr	Ala 535	Gly	Leu	Ala	Gln	Ala 540	Tyr	Leu	Pro	Gly	
Lys 545	Ser	Met	Met	Ala	Ile 550	Gly	Gly	Gly	Thr	Tyr 555	Arg	Gly	Glu	Ala	Gly 560	
Tyr	Ala	Ile	Gly	Tyr 565	Ser	Ser	Ile	Ser	Asp 570	Thr	Gly	Asn	Trp	Val 575	Ile	
Lys	Gly	Thr	Ala 580	Ser	Gly	Asn	Ser	Arg 585	Gly	His	Phe	Gly	Thr 590	Ser	Ala	
Ser	· Val	Gly 595	Tyr	Gln	Trp											
<21 <21	0> 6 1> 1 2> DI 3> Ne	AV	eria	men	ingi	tidis	3									
	0> 1> CI 2> (1		(178!	5)												
	0> 6															
	aac Asn				-					_	_			_		48
	gtc Val											_	_		_	96
	gtg Val									_		_	_	_	-	144
	aat Asn 50			_	_	_	_				_		_		_	192
	gct Ala													-		240
	gaa Glu															288
	gta Val															336
	atc Ile															384
tac																

xii

Tyr	Ser 130	Leu	Lys	Lys	Asp	Leu 135	Thr	Asp	Leu	Thr	Ser 140	Val	Glu	Thr	Glu	
aaa Lys 145	tta Leu	tcg Ser	ttt Phe	ggc Gly	gca Ala 150	aac Asn	ggt Gly	aat Asn	aaa Lys	gtc Val 155	aac Asn	atc Ile	aca Thr	agc Ser	gac Asp 160	480
acc Thr	aaa Lys	ggc Gly	ttg Leu	aat Asn 165	ttt Phe	gcg Ala	aaa Lys	gaa Glu	acg Thr 170	gct Ala	ggg Gly	acg Thr	aac Asn	ggc Gly 175	gac Asp	528
ccc Pro	acg Thr	gtt Val	cat His 180	ctg Leu	aac Asn	ggt Gly	atc Ile	ggt Gly 185	tcg Ser	act Thr	ttg Leu	acc Thr	gat Asp 190	acg Thr	ctg Leu	576
ctg Leu	aat Asn	acc Thr 195	gga Gly	gcg Ala	acc Thr	aca Thr	aac Asn 200	gta Val	acc Thr	aac Asn	gac Asp	aac Asn 205	gtt Val	acc Thr	gat Asp	624
gac Asp	gag Glu 210	aaa Lys	aaa Lys	cgt Arg	gcg Ala	gca Ala 215	agc Ser	gtt Val	aaa Lys	gac Asp	gta Val 220	tta Leu	aac Asn	gca Ala	ggc Gly	672
tgg Trp 225	aac Asn	att Ile	aaa Lys	ggc Gly	gtt Val 230	aaa Lys	ccc Pro	ggt Gly	aca Thr	aca Thr 235	gct Ala	tcc Ser	gat Asp	aac Asn	gtt Val 240	720
gat Asp	ttc Phe	gtc Val	cgc Arg	act Thr 245	tac Tyr	gac Asp	aca Thr	gtc Val	gag Glu 250	ttc Phe	ttg Leu	agc Ser	gca Ala	gat Asp 255	acg Thr	768
aaa Lys	aca Thr	acg Thr	act Thr 260	gtt Val	aat Asn	gtg Val	gaa Glu	agc Ser 265	aaa Lys	gac Asp	aac Asn	ggc Gly	aag Lys 270	aaa Lys	acc Thr	816
gaa Glu	gtt Val	aaa Lys 275	atc Ile	ggt Gly	gcg Ala	aag Lys	act Thr 280	tct Ser	gtt Val	att Ile	aaa Lys	gaa Glu 285	aaa Lys	gac Asp	ggt Gly	864
aag Lys	ttg Leu 290	gtt Val	act Thr	ggt Gly	aaa Lys	ggc Gly 295	aaa Lys	gac Asp	gag Glu	aat Asn	ggt Gly 300	tct Ser	tct Ser	aca Thr	gac Asp	912
gaa Glu 305	ggc Gly	gaa Glu	ggc Gly	tta Leu	gtg Val 310	act Thr	gca Ala	aaa Lys	gaa Glu	gtg Val 315	att Ile	gat Asp	gca Ala	gta Val	aac Asn 320	960
aag Lys	gct Ala	ggt Gly	tgg Trp	aga Arg 325	atg Met	aaa Lys	aca Thr	aca Thr	acc Thr 330	gct Ala	aat Asn	ggt Gly	caa Gln	aca Thr 335	ggt Gly	1008
caa Gln	gct Ala	gac Asp	aag Lys 340	ttt Phe	gaa Glu	acc Thr	gtt Val	aca Thr 345	tca Ser	ggc Gly	aca Thr	aat Asn	gta Val 350	acc Thr	ttt Phe	1056
gct Ala	agt Ser	ggt Gly 355	aaa Lys	ggt Gly	aca Thr	act Thr	gcg Ala 360	act Thr	gta Val	agt Ser	aaa Lys	gat Asp 365	gat Asp	caa Gln	Gly	1104
aac Asn	atc Ile 370	act Thr	gtt Val	aag Lys	tat Tyr	gat Asp 375	gta Val	aat Asn	gtc Val	ggc Gly	gat Asp 380	gcc Ala	cta Leu	aac Asn	gtc Val	1152
aat Asn	cag Gln	ctg Leu	caa Gln	aac Asn	agc Ser	ggt Gly	tgg Trp	aat Asn	ttg Leu	gat Asp	tcc Ser	aaa Lys	gcg Ala	gtt Val	gca Ala	1200

xiii

385	390	395	400
ggt tct tcg ggc aaa Gly Ser Ser Gly Lys 405	Val Ile Ser Gly A	aat gtt tcg ccg agc Asn Val Ser Pro Ser 410	aag gga 1248 Lys Gly 415
		gcc ggc aac aac atc Ala Gly Asn Asn Ile 430	
		occ act tcg atg gcg Ala Thr Ser Met Ala 445	
ttt tcc agc gtt tcg Phe Ser Ser Val Ser 450	ctc ggt gcg ggg c Leu Gly Ala Gly A 455	gcg gat gcg ccc act Ala Asp Ala Pro Thr 460	ttg agc 1392 Leu Ser
		ggc agc aag gat acc Gly Ser Lys Asp Thr 475	
ccc gtc cgc att acc Pro Val Arg Ile Thr 485	Asn Val Ala Pro G	ggc gtt aaa gag ggg Gly Val Lys Glu Gly 190	
		gcg caa aac ttg aac Ala Gln Asn Leu Asn 510	
		gcg ggc atc gcc caa Ala Gly Ile Ala Gln 525	
		ctg ccc ggc aag agt Leu Pro Gly Lys Ser 540	
gcg atc ggc ggc gac Ala Ile Gly Gly Asp 545	act tat cgc ggc g Thr Tyr Arg Gly 6 550	gaa gcc ggt tac gcc Glu Ala Gly Tyr Ala 555	atc ggc 1680 Ile Gly 560
	Asp Gly Gly Asn T	gg att atc aaa ggc Trp Ile Ile Lys Gly	
tcc ggc aat tcg cgc Ser Gly Asn Ser Arg 580	ggc cat ttc ggt g Gly His Phe Gly A 585	gct tcc gca tct gtc Ala Ser Ala Ser Val 590	ggt tat 1776 Gly Tyr
caa tgg taa Gln Trp 595			1785
<210> 7 <211> 594 <212> PRT <213> Neisseria men	ingitidis		
<400> 7 Met Asn Lys Ile Tyr 1 5	Arg Ile Ile Trp A	sn Ser Ala Leu Asn 10	Ala Trp 15
Val Val Val Ser Glu	Leu Thr Arg Asn H	is Thr Lys Arg Ala	Ser Ala

xiv

			20					25					30		
Thr	Val	Ala 35	Thr	Ala	Val	Leu	Ala 40	Thr	Leu	Leu	Phe	Ala 45	Thr	Val	Gln
Ala	Asn 50	Ala	Thr	Asp	Asp	Asp 55	Asp	Leu	Tyr	Leu	Glu 60	Pro	Val	Gln	Arg
Thr 65	Ala	Val	Val	Leu	Ser 70	Phe	Arg	Ser	Āsp	Lys 75	Glu	Gly	Thr	Gly	Glu 80
Lys	Glu	Gly	Thr	Glu 85	Asp	Ser	Asn	Trp	Ala 90	Val	Tyr	Phe	Asp	Glu 95	Lys
Arg	Val	Leu	Lys 100	Ala	Gly	Ala	Ile	Thr 105	Leu	Lys	Ala	Gly	Asp 110	Asn	Leu
Lys	Ile	Lys 115	Gln	Asn	Thr	Asn	Glu 120	Asn	Thr	Asn	Asp	Ser 125	Ser	Phe	Thr
Tyr	Ser 130	Leu	Lys	Lys	Asp	Leu 135	Thr	Asp	Leu	Thr	Ser 140	Val	Glu	Thr	Glu
Lys 145	Leu	Ser	Phe	Gly	Ala 150	Asn	Gly	Asn	Lys	Val 155	Asn	Ile	Thr	Ser	Asp 160
Thr	Lys	Gly	Leu	Asn 165	Phe	Ala	Lys	Glu	Thr 170	Ala	Gly	Thr	Asn	Gly 175	Asp
Pro	Thr	Val	His 180	Leu	Asn	Gly	Ile	Gly 185	Ser	Thr	Leu	Thr	Asp 190	Thr	Leu
Leu	Asn	Thr 195	Gly	Ala	Thr	Thr	Asn 200	Val	Thr	Asn	Asp	Asn 205	Val	Thr	Asp
Asp	Glu 210	Lys	Lys	Arg	Ala	Ala 215	Ser	Val	Lys	Asp	Val 220	Leu	Asn	Ala	Gly
Trp 225	Asn	Ile	Lys	Gly	Val 230	Lys	Pro	Gly	Thr	Thr 235	Ala	Ser	Asp	Asn	Val 240
Asp	Phe	Val	Arg	Thr 245	Tyr	Asp	Thr	Val	Glu 250	Phe	Leu	Ser	Ala	Asp 255	Thr
Lys	Thr	Thr	Thr 260	Val	Asn	Val	Glu	Ser 265	Lys	Asp	Asn	Gly	Lys 270	Lys	Thr
Glu	Val	Lys 275	Ile	Gly	Ala	Lys	Thr 280	Ser	Val	Ile	Lys	Glu 285	Lys	Asp	Gly
Lys	Leu 290	Val	Thr	Gly	Lys	Gly 295	Lys	Asp	Glu	Asn	Gly 300	Ser	Ser	Thr	Asp
Glu 305	Gly	Glu	Gly	Leu	Val 310	Thr	Ala	Lys	Glu	Val 315	Ile	Asp	Ala	Val	Asn 320
Lys	Ala	Gly	Trp	Arg 325	Met	Lys	Thr	Thr	Thr 330	Ala	Asn	Gly	Gln	Thr 335	Gly
Gln	Ala	Asp	Lys 340	Phe	Glu	Thr	Val	Thr 345	Ser	Gly	Thr	Asn	Val 350	Thr	Phe
Ala	Ser	Gly 355	Lys	Gly	Thr	Thr	Ala 360	Thr	Val	Ser	Lys	Asp 365	Asp	Gln	Gly

xv

Asn	Ile	Thr	Val	I.ve	ጥ∪≁	Asn	Val	Δen	۷a٦	ഭിച	Den	<u> 21-</u>	T ~··	λ	Val	
,,,,,,,	370	1112	V G I	цуз	ıyı	375	Vai	ASII	Vai	Gly	380	Ald	rea	ASII	vai	
Asn 385	Gln	Leu	Gln	Asn	Ser 390	Gly	Trp	Asn	Leu	Asp 395	Ser	Lys	Ala	Val	Ala 400	
Gly	Ser	Ser	Gly	Lys 405	Val	Ile	Ser	Gly	Asn 410	Val	Ser.	Pro	Ser	Lys 415	Gly	
Lys	Met	Asp	Glu 420	Thr	Val	Asn	Ile	Asn 425	Ala	Gly	Asn	Asn	Ile 430	Glu	Ile	
Thr	Arg	Asn 435	Gly	Lys	Asn	Ile	Asp 440	Ile	Ala	Thr	Ser	Met 445	Ala	Pro	Gln	
Phe	Ser 450	Ser	Val	Ser	Leu	Gly 455	Ala	Gly	Ala	Asp	Ala 460	Pro	Thr	Leu	Ser	
Val 465	Asp	Asp	Glu	Gly	Ala 470	Leu	Asn	Val	Gly	Ser 475	Lys	Asp	Thr	Asn	Lys 480	
Pro	Val	Arg	Ile	Thr 485	Asn	Val	Ala	Pro	Gly 490	Val	Lys	Glu	Gly	Asp 495	Val	
Thr	Asn	Val	Ala 500	Gln	Leu	Lys	Gly	Val 505	Ala	Gln	Asn	Leu	Asn 510	Asn	Arg	
Ile	Asp	Asn 515	Val	Asp	Gly	Asn	Ala 520	Arg	Ala	Gly	Ile	Ala 525	Gln	Ala	Ile	
Ala	Thr 530	Ala	Gly	Leu	Val	Gln 535	Ala	Tyr	Leu	Pro	Gly 540	Lys	Ser	Met	Met	
Ala 545	Ile	Gly	Gly	Asp	Thr 550	Tyr	Arg	Gly	Glu	Ala 555	Gly	Tyr	Ala	Ile	Gly 560	
Tyr	Ser	Ser	Ile	Ser 565	Asp	Gly	Gly	Asn	Trp 570	Ile	Ile	Lys	Gly	Thr 575	Ala	
Ser	Gly	Asn	Ser 580	Arg	Gly	His	Phe	Gly 585	Ala	Ser	Ala	Ser	Val 590	Gly	Tyr	
Gln	Trp															
<212	> 17 > DN	A	eria	meni	ıngit	idis	3									
	> CI) .)((1785	5)												
<400	> 8															
atg Met 1	aac Asn	aaa Lys	ata Ile	tac Tyr 5	cgc Arg	atc Ile	att Ile	tgg Trp	aat Asn 10	agt Ser	gcc Ala	ctc Leu	aat Asn	gcc Ala 15	tgg Trp	48
gtc	gcc	gta	tcc	gag	ctc	aca	cac	aac	cac	acc	aaa	cac	acc	tcc	acs.	96
Val	Āla	Val	Ser 20	Glu	Leu	Thr	Arg	Asn 25	His	Thr	Lys	Arg	Ala 30	Ser	Ala	70
acc Thr	gtg Val	gcg Ala	acc Thr	gcc Ala	gta Val	ttg Leu	gcg Ala	aca Thr	ctg Leu	ttg Leu	ttt Phe	gca Ala	acg Thr	gtt Val	cag Gln	144
													· - -			

xvi

35		40	45	
			tat tta gaa ccc Tyr Leu Glu Pro 60	
act gct gtc Thr Ala Val 65	gtg ttg agc Val Leu Ser 70	ttc cgt tcc Phe Arg Ser	gat aaa gaa ggc Asp Lys Glu Gly 75	acg gga gaa 240 Thr Gly Glu 80
aaa gaa gtt Lys Glu Val	aca gaa gat Thr Glu Asp 85	tca aat tgg Ser Asn Trp	gga gta tat ttc Gly Val Tyr Phe 90	gac aag aaa 288 Asp Lys Lys 95
			ctc aaa gcc ggc Leu Lys Ala Gly	
			acc aat gcc agt Thr Asn Ala Ser 125	
tac tcg ctg Tyr Ser Leu 130	aaa aaa gac Lys Lys Asp	ctc aca gat Leu Thr Asp 135	ctg acc agt gtt Leu Thr Ser Val 140	gga act gaa 432 Gly Thr Glu
			aaa gtc aac atc Lys Val Asn Ile 155	
			acg gct gag acc Thr Ala Glu Thr 170	
acc acg gtt Thr Thr Val	cat ctg aac His Leu Asn 180	ggt atc ggt Gly Ile Gly 185	tcg act ttg acc Ser Thr Leu Thr	gat acg ctg 576 Asp Thr Leu 190
ctg aat acc Leu Asn Thr 195	gga gcg acc Gly Ala Thr	aca aac gta Thr Asn Val 200	acc aac gac aac Thr Asn Asp Asn 205	gtt acc gat 624 Val Thr Asp
			aaa gac gta tta Lys Asp Val Leu 220	
			aca aca gct tcc Thr Thr Ala Ser 235	
gat ttc gtc Asp Phe Val	cgc act tac Arg Thr Tyr 245	gac aca gtc Asp Thr Val	gag ttc ttg agc Glu Phe Leu Ser 250	gca gat acg 768 Ala Asp Thr 255
aaa aca acg Lys Thr Thr	act gtt aat Thr Val Asn 260	gtg gaa agc Val Glu Ser 265	aaa gac aac ggc Lys Asp Asn Gly	aag aga acc 816 Lys Arg Thr 270
			gtt atc aaa gaa Val Ile Lys Glu 285	
aag ttg gtt Lys Leu Val 290	act ggt aaa Thr Gly Lys	gac aaa ggc Asp Lys Gly 295	gag aat gat tct Glu Asn Asp Ser 300	tct aca gac 912 Ser Thr Asp

Substitute Sheet (Rule 26) RO/AU

xvii

_	_	_		act Thr	_		_			_	_	_		960
				aaa Lys										1008
				acc Thr				_			-			1056
				act Thr										1104
				gat Asp 375			•		_	_			•	1152
				ggt Gly			_	_				_	_	1200
				atc Ile								_		1248
				aac Asn								_		1296
				atc Ile					_	-		_		1344
				ggc Gly 455										1392
				ttg Leu							_			1440
			Asn	gtc Val	Ala	Pro		Val	Lys		Gly			1488
				aaa Lys										1536
				aac Asn										1584
				cag Gln 535										1632
				tat Tyr										1680

xviii

tac tca agc att tcc gac ggc gga aat tgg att atc aaa ggc acg gct Tyr Ser Ser Ile Ser Asp Gly Gly Asn Trp Ile Ile Lys Gly Thr Ala 565 570 575	1728
tcc ggc aat tcg cgc ggc cat ttc ggt gct tcc gca tct gtc ggt tat Ser Gly Asn Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr 580 585 590	1776
cag tgg taa Gln Trp 595	1785
<210> 9 <211> 594 <212> PRT <213> Neisseria meningitidis	
<400> 9	
Met Asn Lys Ile Tyr Arg Ile Ile Trp Asn Ser Ala Leu Asn Ala Trp 1 10 15	
Val Ala Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala 20 25 30	
Thr Val Ala Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln 35 40 45	
Ala Ser Thr Thr Asp Asp Asp Leu Tyr Leu Glu Pro Val Gln Arg 50 55 60	
Thr Ala Val Val Leu Ser Phe Arg Ser Asp Lys Glu Gly Thr Gly Glu 65 70 75 80	·
Lys Glu Val Thr Glu Asp Ser Asn Trp Gly Val Tyr Phe Asp Lys Lys 85 90 95	
Gly Val Leu Thr Ala Gly Thr Ile Thr Leu Lys Ala Gly Asp Asn Leu 100 105 110	
Lys Ile Lys Gln Asn Thr Asn Glu Asn Thr Asn Ala Ser Ser Phe Thr 115 120 125	
Tyr Ser Leu Lys Lys Asp Leu Thr Asp Leu Thr Ser Val Gly Thr Glu 130 135 140	
Lys Leu Ser Phe Ser Ala Asn Ser Asn Lys Val Asn Ile Thr Ser Asp 145 150 155 160	
Thr Lys Gly Leu Asn Phe Ala Lys Lys Thr Ala Glu Thr Asn Gly Asp 165 170 175	
Thr Thr Val His Leu Asn Gly Ile Gly Ser Thr Leu Thr Asp Thr Leu 180 185 190	
Leu Asn Thr Gly Ala Thr Thr Asn Val Thr Asn Asp Asn Val Thr Asp 195 200 205	
Asp Glu Lys Lys Arg Ala Ala Ser Val Lys Asp Val Leu Asn Ala Gly 210 215 220	
Trp Asn Ile Lys Gly Val Lys Pro Gly Thr Thr Ala Ser Asp Asn Val 225 230 235 240	
Asp Phe Val Arg Thr Tyr Asp Thr Val Glu Phe Leu Ser Ala Asp Thr	

xix

				245					250					255	
Lys	Thr	Thr	Thr 260	Val	Asn	Val	Glu	Ser 265	Lys	Asp	Asn	Gly	Lys 270	Arg	Thr
Glu	Val	Lys 275	Ile	Gly	Ala	Lys	Thr 280	Ser	Val	Ile	Lys	Glu 285	Lys	Asp	Gly
Lys	Leu 290	Val	Thr	Gly	Lys	Asp 295	Lys	Gly	Glu	Asn	Asp 300	Ser	Ser	Thr	Asp
Lys 305	Gly	Glu	Gly	Leu	Val 310	Thr	Ala	Lys	Glu	Val 315	Ile	Asp	Ala	Val	Asn 320
Lys	Ala	Gly	Trp	Arg 325	Met	Lys	Thr	Thr	Thr 330	Ala	Asn	Gly	Gln	Thr 335	Gly
Gln	Ala	Asp	Lys 340	Phe	Glu	Thr	Val	Thr 345	Ser	Gly	Thr	Asn	Val 350	Thr	Phe
Ala	Ser	Gly 355	Lys	Gly	Thr	Thr	Ala 360	Thr	Val	Ser	Lys	Asp 365	Asp	Gln	Gly
Asn	Ile 370	Thr	Val	Met	Tyr	Asp 375	Val	Asn	Val	Gly	Asp 380	Ala	Leu	Asn	Val
Asn 385	Gln	Leu	Gln	Asn	Ser 390	Gly	Trp	Asn	Leu	Asp 395	Ser	Lys	Ala	Val	Ala 400
Gly	Ser	Ser	Gly	Lys 405	Val	Ile	Ser	Gly	Asn 410	Val	Ser	Pro	Ser	Lys 415	Gly
Lys	Met	Asp	Glu 420	Thr	Val	Asn	Ile	Asn 425	Ala	Gly	Asn	Asn	Ile 430	Glu	Ile
Thr	Arg	Asn 435	Gly	Lys	Asn	Ile	Asp 440	Ile	Ala	Thr	Ser	Met 445	Thr	Pro	Gln
	Ser 450	Ser	Val	Ser	Leu	Gly 455	Ala	Gly	Ala	Asp	Ala 460	Pro	Thr	Leu	Ser
Val 465	Asp	Asp	Glu	Gly	Ala 470	Leu	Asn	Val	Gly	Ser 475	Lys	Asp	Ala	Asn	Lys 480
Pro	Val	Arg	Ile	Thr 485	Asn	Val	Ala	Pro	Gly 490	Val	Lys	Glu	Gly	Asp 495	Val
Thr	Asn	Val	Ala 500	Gln	Leu	Lys	Gly	Val 505	Ala	Gln	Asn	Leu	Asn 510	Asn	His
Ile	Asp	Asn 515	Val	Asp	Gly	Asn	Ala 520	Arg	Ala	Gly	Ile	Ala 525	Gln	Ala	Ile
Ala	Thr 530	Ala	Gly	Leu	Val	Gln 535	Ala	Tyr	Leu	Pro	Gly 540	Lys	Ser	Met	Met
Ala 545	Ile	Gly	Gly	Gly	Thr 550	Tyr	Arg	Gly	Glu	Ala 555	Gly	Tyr	Ala	Ile	Gly 560
Tyr	Ser	Ser	Ile	Ser 565	Asp	Gly	Gly	Asn	Trp 570	Ile	Ile	Lys	Gly	Thr 575	Ala
Ser	Gly	Asn	Ser 580	Arg	Gly	His	Phe	Gly 585	Ala	Ser	Ala	Ser	Val 590	Gly	Tyr

Substitute Sheet (Rule 26) RO/AU

₽Z9	dsg dsg	gac	tap qaA	502 Thr 305	gtt Val	aac Asn	gac Asp	ysu ysu	500 Туг 90С	gta Val	ggc Usy	все тит	дух Тух	gcg Ala 295	ej l das	gcc Thr
949	tss nsA	ren	100 ren cra	дуг Тух	tsp qsA	дук чсс	ren ffd	act Thr 185	2er fcd	стл аағ	att Ile	ejl aaf	sac Asn 180	ren cfd	cat	gtt Val
228	цук чсд	acc Thr 375	dsc dsc	GJ \\ ddc	aac Asn	Трх чсд	710 CJA ddd	jop Ala	Lpr scg	ggn daa	гуs	gcg Ala 261	ъре 111	taa neA	nəq ffd	C7λ ddc
08Þ	aaa Lys 160	ург Трг	gac gaf	26r 9dc	aca Thr	stc 125 126	nsA	gtc Val	Γλε	nsA	120 GJ \\ ddc	aac Asn	gcs Ala	26r sdc	Phe ttt	145 Ser tcd
432		ааа Lys														
18 €	ger Ser	tac Tyr	зсс Трк	152 bye ffc	aac AsA	вса Тћг	gγλ ddc	aac Asn	150 GJ <i>u</i>	ззэ	atc Ile	ваа Гуѕ	ctg	aac Asn 211	gae gaA	ejl ddc
988	occ gcc	aaa Lys	IIO ren	дук Тук	stc Ile	gaa Glu	aga Arg	occ Ala 201	зсэ	cta Leu	gta Val	eJy dds	100 P\x2	dag Glu	aac Asn	ьре стс
588	tat Tyr	gta Val 95	gca Ala	Lrb rdd	tsp qsA	tca Ser	tss nsA 06	ggn Qgn	gyn das	gta Val	ràs 999	82 67 <i>n</i> dss	гλа ззз	dsa GJ <i>n</i>	CJ \\ dds	Thr acg
240	80 e _J y ggc	dsa dsa	ggg Lys	dst qsA	Ser	taa neA 27	Agg Afc	ata Ile	nəq ffd	∆gj ∆gj	gcc Ala	gtt Val	act Thr	yrd cdc	cta	gtg Val 65
76 T	bro ccc	dse dsy	tta Leu	tat Tyr	tta Deu 09	тър qsА	egn dss	ggn dgg	CJu Css	22 GJ <i>n</i> dsd	gyn dgg	tss nsA	aac Asn	gct Ala	agt Ser 50	дся УЈя
БÞТ	eyu csd	gtt Val	gcd Thr	gca Ala 24	Phe ttt	ren rtd	crd ren	дрк Трк	9c9 Ala 04	ren ttd	gta Val	gcc Ala	дук чес	32 7 32	gtg Val	дух Зсс
96	gca Ala	ser	gcc Ala 30	cdc yrd	гуз	асс Тћг	cac	aac Asn 25	cdc	тук Тук	ctc	dag Glu	Ser Ser	gta Val	gtt Val	gtc Val
8₽	Lrb rad	gcc Ala	aat Asn	ctc ren	yjs dcc	2er gdc	tes Asn Ol	Lrp Ldd	att 511	atc Ile	cdc	ptt Leu S	ata Ile	gaa Glu	aac Asn	atg Met I
												(9) 	(-)> 10 ;> <1	2 22>
														3(<22(
									ş	τρτ	ŗ n āţ	, uəw	зств	9 L I	3> NE 5> DN 1> 12 0> 10	<515 <511

cju Trp

Substitute Sheet UA/OR (82 olu H)

OPPI	cđc	drc	၁၁၁	999	9 90	dsc	ಆಕರ	ಕಕರ	gdc	aac	arc	J ee	££đ	dcs	dsc	aaa
7392							gcg Ala									
1344					Lyr		ger Ser									
7596	yrd cdc	зсс Тух	att 11e 430	сŢπ	IJe	asA	aac Asn	e_{J}	gcc Ala	das Asn	att Ile	aac Asn	420 Val gtc	зсс	dss dss	jap qeA
7248			сŢλ				410 Ser £cd									
7200		e_{J}					tcc		ren	nsA						
ZSTT							jap qaA									
₽ΟΤΤ							ggg Lys									
9901	ser sat	dct Ala	320 bye fff	Thr	Val	tss nsA	дрг Түх	342 CJA ddc	zec	аса Тћг	gtt Val	тук Тук	340 67 <i>n</i> dgg	ъре ггг	r\s ssd	osp gsA
1008			сŢλ				taa Ran 330	sIA					Met			
096		ŗλa		Val	sIA	qsA	att all		ntə	Γλε						
216							GJX ddf									Val
⊅ 98					rys	egn	гуз	IŢĠ	LsV	zes	дуд	Γλε		CJA		
918							aac Ash									
89 <i>L</i>							520 ren rrd									_
07 <i>L</i>							gct									
Z <i>L</i> 9							gta Val									

Substitute Sheet UA\OA (82 eluA)

332

T30

J40

	Гел	rγs	ејп	дуд	740 CJ	Лаl	zes	Thr	гел	qeA 251	дуд	Гел	qsA	гуѕ	I30 FÅs	пәп
	zer	Tyr	лит	152 Буе	nsA	Thr	сγλ	neA	150 eju	гуз	əĮI	Γλε	ηeη	nsA Zli	qsA	сту
	εlÆ	гуз	IIO ren	тут	əĮI	nT9	yrd	s1A 201	дуц	пәп	Val	суу	J00 FXs	ღუთ	nsA	ьуе
	Ιλι	LaV 29	ьſА	dıT	qsA	zəs	neA 0e	еŢп	сŢп	Val	гλз	82 071	гĀз	сŢп	сτλ	дуд
	80 CJ	nŢŋ	Γλε	qsA	zes	nsA 27	Val	IJe	пәq	lsV	sIA 07	Val	дуц	yrd	ren	Val 85
	ько	qeA	nəq	ΤΫ́Σ	nəq	qsA	nŢĐ	eŢ'n	ети	25 67 <i>n</i>	ејп	nsA	иsĄ	ьlА	26 26x	БĺА
	етр	IsV	дуд	sIA 2₽	ьре	пәт	Гел	туг	slA Op	Гел	Val	ьſА	Тhт	32 72	laV	дит
	ьſА	Ser	sIA 08	βıΨ	гүз	лцт	siH	naA 2S	yxd	Thr	пәт	сŢл	Ser Ser	Val	Val	Val
	Trp	sÍA čí	nsA	ren	sIA	zəs	nsÆ 01	qıT	əŢI	9ŢI	pxA	g nəq	IJe		II <(
									\$	sipt:	ŢĎU	ŗuəw	siri	I (9N <8 4d <6 12 <6 11 <6	<212>
9 <i>LL</i> T	taa	tgg Trp	290 GJn csd	tat Tyr	GJY ddf	gtc Val	tct Ser	gcs Ala 283	tcc Ser	gct Ala	GJX dd¢	phe Phe	cat His 580	ejl ddc	yrd cdc	Ser
377£	пsА	575 \$75	GJn Csg	Ala	ddr Lyr	дçc _{СJ} Х	Lys 570 tct	IJe gca Ala	Ile	dct Lxb	Asn	265 565 575	sīH	ddc yeb	cdc	fcd IJe
	Ser 560 Taa Taa	£dd eJl ddc ddc	Tyr tcc Ser cag	Gly gct Ala tat	agt acg Thr	Ala ggc ggc Gly gtc	Tyr aaa Lys 570 tot	Gly Gly Gly	Ala att ell sor	dcf fdd Trp	Gly Sat Asn Asn	Arg G1y 565 565	GJY Cat His	ddc ysb dsc	cdc ger fcc	tcd att Ile Gly Gly
1728	agt Ser 560 560 Asn	rad eTA adc adc rcc rcc	Ala tac Tyr tec Ser Ser cag	Met ggc ggc ggc fat	ddr gcd gcd gfc 176 840	dfc ddc ddc dcc yrs dcc	Lys Tyr 570 Lys 570	gcs gcs gcc gfy ggt gfy	Pro gcc Ala att Ile Ile	dcf fdd fgg ggg ggg fen	Tyr Gay Asn Gay Asn Gay	Ala cgc Arg gga Gly 565 565	Tyr ggc Gly Ggt His	dac dsc Thr act	cdc 2er fcc ddc 230 Pen	tcd gtc gtc gtc gtc gtc
1680	Ala ggc sgt Ser 560 560 aat Asn	tag ely gac gac tcc ser atc	Ala geg Ala Tyr tec Tyr tec Ser	Ile 525 atg ggc ggc ggc Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala	Ala Aet S40 atc atc Ile Atr Atr	Gln ggc ggc gcc Ala gcc Ala gcc Ala gcc	aag Lys Lys Tyr Lys 570	gcs gcs gcs gtc gtc gtc gtc	Gly S20 Gcc Pro gcc Ala att Ile Ile	Ala Leu 535 gaa Glu Trp	Arg Ast Agc Gly Gat Gat Agr Agr	Ala geg Gly Gly Gly Gly Gly Gly Gly	tat Tyr ggc Gly cat His	aac asc gct act aff aff	cdc fcc ddc Pen 230 cfd yzb	tcg gty ggt ggy ggt ggy ggt
1632 1632	Asn gca yla ggt ggt sgt sat sat sat	tag elly atc fcc fcc fcc fcc fcc fcc	oca gca gca gca fic foc foc foc foc foc foc foc foc foc fo	Arg atg Age atg Age atg Age atg Age atg Age Age Age Age Age Age Age Age Age Ag	Asn gcg Ala atc atc atc atc atc atc	Asn caa ggc ggc gcc Ala sgt Ser Gly gcc Ala	Lys aag Lys Tyr Tyr Tyr Tyr	Acs Acs Stc	Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly	Ala ged ged ged ged ged ged ged ged ged ged	cgt Arg Gard Gard Ash Ash Ash	GIY GCG Ala C A C Ala GCG Ala C Ala GCG Ala C Ala C Ala C Ala C Ala C A C Ala C Ala C A C Ala C A C Ala C A C A C A C A C A C A C A C A C A C	Asn Cat Tyr Tyr Tyr Cat Tyr	ddc ysb dsc Lyr dfr dfr dfr ddc cry dfr ddc cry dfr dfr	cdc cfd cfd cfd dsc yzb	tcg att agt ggy ggy ggy ggy ggy ggy ggy
1680 1584	Ash get Aca get get get set set set set set	Asp gac gac gac fac gac fac gac fac gac fac fac fac fac fac fac fac fac fac f	Thractocage Gin Tocage Gin Tyr	tat cgc dgy atg atg Ala atg Ala atg	Aso ato ato ato Ala ato Ala ato The Ato ato The Ato ato The Ato a	get get get get get get get get get get	Glu 490 teu gec Ala Ala Ala Lys Lys Lys Lys Lys Lys Lys Lys	Acs Ale acs A	val caa gcc gcc gcc gcc gcc gcc gcc gcc gcc	Giy ged ged ged ged ged ged ged ged ged ged	Pro Que Que Que Que Que Que Que Que	485 ggc Gly	Lys dgc dgy cad cat Tyr cat Tyr	adc dac dac dac dac dac dac dac dac dac	cdc cds ddc cfd dgc dgc cfd dg	tcg gca gca gca gca gca gca gca gca gca g

iixx

Substitute Sheet (Rule 26) RO/AU

S67 067 Ile Thr Asn Val Ala Pro Gly Val Lys Glu Gly Asp Val Thr Asn Val 08₽ SLD 0LbGly Asp Ala Leu Asn Val Gly Ser Lys Lys Asp Asn Lys Pro Val Arg 09 Þ 55Þ Ser Val Ser Leu Gly Ala Gly Ala Asp Ala Pro Thr Leu Ser Val Asp 9440 Asn Gly Lys Asn 11e Asp 11e Ala Thr Ser Met Thr Pro Gln Phe Ser 430 425 420 Asp Glu Thr Val Asn Ile Asn Ala Gly Asn Asn Ile Glu Ile Thr Arg OID Ser Gly Lys Val 1le Ser Gly Asn Val Ser Pro Ser Lys Gly Lys Met 001 330 385 ren eju yau zer eja Trp Asn Leu Asp ser Lys Ala Val Ala Gly Ser 380 375 Thr Val Met Tyr Asp Val Asn Val Gly Asp Ala Leu Asn Val Asn Gln 365 360 Gly Lys Gly Thr Thr Ala Thr Val Ser Lys Asp Asp Gln Gly Asn Ile 320 345 340 Asp Lys Phe Glu Thr Val Thr Ser Gly Thr Asn Val Thr Phe Ala Ser 332 330 Gly Trp Arg Met Lys Thr Thr Ala Asn Gly Gln Thr Gly Gln Ala 320 310 315 305 Glu Gly Leu Val Thr Ala Lys Glu Val Ile Asp Ala Val Asn Lys Ala 562 300 Val Thr Gly Lys Asp Lys Gly Glu Asn Gly Ser Ser Thr Asp Glu Gly 285 280 Lys ile Gly Ala Lyr Ser Val ile Lys Glu Lys Asp Gly Lys Leu 072 Thr Thr Val Asn Val Gl' Ser Lys Asp Asn Gly Lys Lys Thr Glu Val 255 220 542 Val Arg Thr Tyr Asp Thr Val Glu Phe Leu Ser Ala Asp Thr Lys Thr 240 235 230 225 Ile Lys Gly Val Lys Pro Gly Thr Thr Ala Ser Asp Asn Val Asp Phe SIZ Lys Lys Arg Ala Ala Ser Val Lys Asp Val Leu Asn Ala Gly Trp Asn 202 Thr Gly Ala Thr Asn Val Thr Asn Asp Asn Val Thr Asp Asp Glu 06 T **S8T** Val His Leu Asn Gly Ile Gly Ser Thr Leu Thr Asp Thr Leu Leu Asn SLI OLT Gly Leu Asn Phe Ala Lys Glu Thr Ala Gly Thr Asn Gly Asp Thr Thr 09 T SSI 0ST SPT Ser Phe Ser Ala Asn Gly Asn Lys Val Asn Ile Thr Ser Asp Thr Lys

Substitute Sheet UA\OA (82 eluA)

132

Ido

432	agt	дук Тук	ren ctd	dat qsA	140 140 909	ctc	ysp dsc	гуѕ	ggg Lys	132 ren crd	rcc	tac	дук Тук	ъре трс	130 ger ggc	ggr Ser
384	ysb dsc	tss nzA	зсс Тук	aac Asn 125	egn daa	dat Asn	scc Thr	ggc Yau	150 GJ <i>n</i> dss	tss nsA	ург ЗСС	aac Asn	csa csa	II2 Fàa Fàa	atc Ile	ваа Lys
358	ren crd	aac Asn	IIO Yeb dsc	ejl ddc	occ gcc	гүз	ctc Leu	105 Thr Tos	atc Ile	дся УГЭ	СŢλ dds	gcc Ala	100 r\s sss	cta	gra	aga Arg
288	ааа Гуз	95 03 03 03 03	gac Asp	ъре еца	tat Tyr	gta Val	дся У79 90	LGG LGG	aat Asn	tca Ser	gat Asp	985 GJ <i>u</i> 88	дрк Трк	GJ \\ ddf	gyn dss	ese Lys
240	989 67 <i>n</i> 80	gyy ggs	цук scd	gj ddc	ggn dgg	233 19 19 19	jep qsA	ser	cdr cdr	ъре стс	10 Ser sdc	ren ffd	gtg Val	drc Agr	gct Ala	act Thr 65
792		сва				пәт		Γ e π	qsA							
ÞÞT		gtt Val														
96	gca 81A	tec	gcc 818 30	yrd cdc	ааа Гуѕ	црк ЗСС	cac	aac Asn 2S	cdc	дук зсэ	ctc	egn død	S0 26r fcc	gta Val	gtc Val	gfc Val
8 †	LEP LGG	aap efA ef	taa naA	ctc Leu	ују	agt Ser	tss nsA 01	tgg Trp	att Elle	atc Ile	yrd cdc	tac Tyr 5	ata Ile	999	ose Asn Asn	atg
												(1	L6LT)		5> (1 1> CI 0>	
									S	i, di	ιτδα	ruəw	эктэ	761 A1	8> N < 6	<515 <511
		qrT	290 CJn	ιλι	стх	Val	Ser	sIA 282	zeç	БſĀ	ςγλ	Бує	siH 082	сτλ	Arg	zəg
	nsA	275 GJ Y	ser	ьſА	дуц	сŢЛ	270 770	IJG	IJG	đац	nsA	265 GJ	стл	qsA	zes	əŢI
	26r Ser	zes	ΤΥΥ	сτλ	IJG	s Í Á 2	Lλr	сту	ьſА	етп	220 CJ	Arg	Ţλτ	дуд	етл	242 27λ
	сту	ell	εſĀ	Met	Met 540	zes	гуз	сτλ	B ro	232 Fen	Tyr	ьſА	еји	Val	230 Ten	суλ
	εſĄ	Thr	БĹÁ	252 IJG	ьſА	eju	εÍĀ	IJe	250 CJÀ	slA	Arg	sÍÁ	usĄ	212 212	qsA	Val
	nsA	qsA	510 210	Arg	пеА	nsA	ηeη	π εΑ 303	еуи	БÍÁ	Val	ету	200 r\s	пәŢ	еји	ьſА

Substitute Sheet UA/OR (82 eluA)

7500				tss nsA							
7725				Jaa naA							
FOTT				365 Thr 365							
9501				дрк Трк			rγs				
1008		_		дух Тух						_	
096				ggg Fys							
216			_	dse dsy				-			дур
₽ 98				Ser Ser Ser							GJÀ đđc
918		_		ger sgc			LyL				26r 9dc
89 <i>L</i>	_			afc Afc							zez
07 <i>L</i>		ццт		CTX ddf		Val		_	dzT		
Z <i>L</i> 9											ggc Ysu
₽Z9				gta Val 205							
9 <i>L</i> S				CJ \\ ddf							дук чед
228				ggg							
081				tes neA							

Substitute Sheet (Rule 26) RO/AU

	sſÁ	zes	sIA 0E	yĸd	глз	туг	siH	nsA 2S	Arg	дуL	Гел	пτэ	Ser Ser	Val	Val	Val
	dıŢ	sIA 2I	пеА	гел	ьſА	ser	neA 01	Ţrp	əll	ell	βxĄ	Τγr 5	IJe		I <(
									\$	sţpţ:	tpa.	iaəm	stia	86 T/	9> N < 6	<515 <511
L6 L T										ьвэ				295 GJN ddf	-	
9 <i>LL</i> I	gcs Ala	ger	jop Ala 062	GTY ddf	ьре ггс	cat	CJV ddc	cdc Frd 989	zes fcd	taa neA	gγλ ddc	ger	gct Ala 082	цук scd	ejz ddc	aag Lys
1728	atc Ile	gtt Val S7S	dag £dd	taa RsA	суλ ааа	зсt Трх	gac Asp 670	tot	att Ile	26r 9dc	2er £cd	tac Tyr 365	gγλ ddc	gţc gţc	acc Age	tac
1680							дид				əŢI		Met			242 Lys 545
7632						uŢĐ		reu	CJX	sIA	дуд	slA		БĹĀ		dcc Ala
728¢	atc Ile	GJ \\ ddf	gcg Ala	cdc 979 979	ьſА	nsA	CJY ddc	qsA	220 781 949	tss nsA	gac gac	atc Ile	cdc	aac Asn S1S	ggc Yau	ren
9891	ysy	csa Gln	gcg Ala 510	ard Ard	су ааг	руs Вад	ctt	202 GJu C99	ьſА	gtc Val	asA	Тhr	9tt Val 500	jap qaA	ejl ada	eyn dad
1488	saa Lys	Λsl	сŢλ	Ero ccd	sΙΑ	ſεV	nsA	ТЪг	IJG	JE G	ſέV	485 Pro 485	999 Fys	aac Asn	gcc ala	gat Asp
7440												[6V	zəs		Дµк	465 Pro
7392	gcg ALa	gat Asp	gcg gcd	CJ À	đcđ Vgg đcđ	сул aac	ctc	2er tcd	gtt Val	422 261 9dc	ger	bye fff	cgs	bro ccd	300 Thr 150	atg Met
1344	26r £cd	дрк Дух	gcc Ala	atc Ile 445	gac gac	stc 11e	dat naA	ggg	₹₹0 СŢλ ààc	aac neA	cdc Std	дук зсс	att Ile	432 07 <i>n</i> ded	atc 511	yan Yan
1596	aac Asn	ejl ddc	gcc 430	daa neA	att	yeu yeu	dfc dfc	acc Thr 324	дуя дуу	dsf.	atg Met	rys Lys	450 677 dds	sag Lys	ger	bro ccd
1248	ger rcd	415 Val 9tt	dat naA	CJÀ dàc	ger	atc 1le	410 Agj Afc	ваа Lys	gŢЛ ādc	ger rcd	2er Fot	402 CJV ddr	gca Ala	grt Val	gcg £1â	ggg

BNSDOCID: <WO__9931132A1_i_>

380 375 Asp Asp Gln Gly Asn 1le Thr Val Lys Tyr Asp Val Asn Val Gly Asp 365 360 Lys Val Thr Phe Ala Ser Gly Asn Gly Thr Thr Ala Thr Val Ser Lys 320 342 gjy Gln Thr Gly Gln Ala Asp Lys Phe Glu Thr Val Thr Ser Gly Thr 332 330 Asp Ala Val Asn Lys Ala Gly Trp Arg Met Lys Thr Thr Ala Asn 350 305 312 310 Ser Ser Thr Asp Glu Gly Glu Gly Leu Val Thr Ala Lys Glu Val Ile 562 Glu Lys Asp Gly Lys Leu Val Thr Gly Lys Gly Lys Asp Glu Asn Gly 285 280 SLZGly Lys Lyr Glu Val Lys 11e Gly Ala Lyr Ser Val 11e Lys 270 760 597 Ser Ala Asp Thr Lys Thr Thr Val Asn Val Glu Ser Lys Asp Asn 255 220 542 Ser Asp Asn Val Asp Phe Val Arg Thr Tyr Asp Thr Val Glu Phe Leu 225 240 235 230 Leu Asn Ala Gly Trp Asn 1le Lys Gly Val Lys Pro Gly Thr Thr Ala 220 SIZ Ash Val Thr Asp Asp Glu Lys Lys Arg Ala Ala Ser Val Lys Asp Val 202 200 56 T Thr Ash Thr Leu Leu Asn Thr Gly Ala Thr Thr Ash Val Thr Asn Asp **180** 06T **58**T Thr Asn Gly Asp Pro Thr Val His Leu Asn Gly Ile Gly Ser Thr Leu OLT Ile Thr Ser Asp Thr Lys Gly Leu Asn Phe Ala Lys Glu Thr Ala Gly 09 T SPT Val Glu Thr Glu Lys Leu Ser Phe Gly Ala Asn Gly Asn Lys Val Asn OPI 132 Ser Ser Phe Thr Tyr Ser Leu Lys Lys Asp Leu Thr Asp Leu Thr Ser 150 152 Lys Ile Lys Gln Asn Thr Asn Glu Asn Thr Asn Glu Asn Thr Asn Asp SOT Arg Val Leu Lys Ala Gly Ala Ile Thr Leu Lys Ala Gly Asp Asn Leu 56 Lys Glu Gly Thr Glu Asp Ser Asn Trp Ala Val Tyr Phe Asp Glu Lys 98 Thr Ala Val Val Leu Ser Phe Arg Ser Asp Lys Glu Gly Thr Gly Glu Ala Asn Ala Thr Asp Asp Asp Leu Tyr Leu Glu Pro Val Gln Arg 01

Thr Val Ala Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln

LLVXX

PCT/AU98/01031

itivxx

ንቅፒ	csg	grt Val	gcg Thr	sop sla 24	944 111	ren	ren cçd	Lyr scd	gcg Ala 40	ren	gta Val	gcc gcc	дук Тук	aag 25 35	ara Ngj	Трх чсс
96	Ala gca	ccc	oce Ala 30	cdc	ваа Гуѕ	дух чсс	cac	aac Asn 2S	yrd cdc	дрг Трг	ctc	egn ded	SG SGI FCC	gta Val	gcc Ala	gtc
81	tgg Trp	oop sfA	tas AsA	ctc	gcc Ala	sgt	tas neA 01	Trp tgg	att 911	atc Ile	yrd cdc	tac Tyr S	ata 11e	999	yzu 990)>]†	atg
												((008T)		[> CI	
									Ş	sibi:	ţţbu [.]	inəm	етле	008 AI	3> NE 5> DN 1> 16	<515 <511
											Trp	ети	LXr	295 GJV	LaV	zes
	ьſĄ	zəs	Ala 062	сту	әұа	siH	сту	p1A 282	Zer	neA	еуу	zəg	61A 082	дуд	сŢλ	гуз
	IJG	LaV 273	Trp	asA	ету	дуц	gsÆ 078	zəs	IJG	zes	zəs	77r 595	суу	ΙJG	БĺÁ	Τζτ
	260 61y	ьlА	ejπ	сух	Arg	Tyr 555	тит	суу	еух	суу	220 IJ¢	slA	JəM	Met	zəs	545
	етх	Бко	пәт	Τγτ	Ala 012	сји	ьſА	ηen	сух	Ala 252	дŲД	sIA	IJe	ьſА	230 CJU	ьſА
	IJe	суу	slA	Arg 525	sſĄ	nsA	суу	qsA	787 520	nsA	qsA	all	yrd	neA 313	nsA	пəq
	nsA	суи	Ala Old	Val	етл	εγί	геп	202 CJu	БĺÄ	ſsV	nsA	лчт	200 200	qsA	суу	ejn
	rλa	16V 29£	суу	ько	ьſА	ſsV	nsA 0eþ	дуц	IJG	yrd	Val	485 Pro	εγJ	nsA	slA	qeA
	480 FÀ2	zes	сτλ	ſsV	nsA	Ten 412	ßlĀ	сух	nŢĐ	qsA	qsÆ 07₽	Val	zes	ren	тут	465 465
	БĹА	qsA	БſА	сту	ь1А 09Þ	сτλ	Гел	zəs	Val	395 361	zəs	Бує	еји	ько	420 1420	Met
	Ser	лцΙ	вſĄ	442 176	qsA	IJe	nsA	rys	440 CJÀ	nsA	Arg	лиТ	IJę	432 CJn	IJG	nsA
	usĄ	сγλ	slA 0£4	nsA	IJ6	nsA	Val	4SP Thr	суп	qsA	Met	гүs	∜50 €7λ	εγΊ	zes	ько
	zer	Val	nsA	ејλ	Zer	IJe	410 410	εĶΊ	сту	zes	Ser	₫02 ሮፓλ	ьlА	Val	slA	ГŻз
	400 861	qsÁ	Гел	nsA		395 CJV	zes	nsA	еји	Гел	390 CJ ^u	nsA	Val	nsA	ren	ь1А 28£

хтхх

216		ejn dsd														
598	att 511	gtt Val	Ser	36t Thr 285	Γλε	slA	ejl ddf	IJG	580 Fys	grt Val	gga GJn	дук Зсс	aga Arg	275 Lys 275	CJ \\ ddc	aac Asn
918		гуз														
89 <i>L</i>		522 GJ <i>n</i> dsd						siH		ьре	qsA					gct Ala
02 <i>L</i>		дук Дук											_			
Z <i>L</i> 9		aaa 2VJ				slA		εγJ	Γλε							dsc Asp
P Z 9		Дук чсс								asA						nəq ttd
915		2er fcd					_			_						CJ X
228	_	IVE Thr acg						_								
08ħ		ааа Гуѕ														
432		ren crd	_			qsA		Γλε	ren							gac gac
\$8£																ctg ctg
988		osp qsA														
288		asa geA 36														gyn dss
540		tss neA														
76T		gta Val												_	-	_

Substitute Sheet UA/OA (82 sluA)

1728	att	гда	aat	dds	aac	дяс	pot	att	agt	tcc	tac	aac	atc	dcc	tac	ddf
089τ	oop s1A 033	gg <i>r</i> dgg	ej dac	cdc	tat Tyr	act Thr 333	ejž ddc	eyl ddc	ej X ddc	atc Ile	gcg Ala 022	JeM	atg Met	sgt	sag	242 CJ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1632	ccc	ren cçd	tat TYr	gcg Ala	240 Cyu csd	grt Grt	ren crd	gg ddf	gcs	232 Тук 232	ьſА	att 11e	gcg Ala	css Css	gcc Ala 530	IJe
₱8 \$ T	ej dac	gcg £1Æ	gat Gat	pop sIA 2S2	aac Asn	GJX ddc	gac Asp	Λ ^g J ὰ¢ὰ	nsA	qsA	IJe	cdc	aac Asn	aac Asn 315	req ret	aac Asn
9891	суу Суу	gcg gcg	gtg Val	СŢЛ	ааа Lys	ctt	сва Сав	sop sIA 202	gtc	эвс Азп	Трк эсэ	gtt Val	gat Asp 500	ст ^д ааа	ggn ded	saa Lys
1488								əĮI		Val	DIO		aac Asn			
OPPI	480 2er 9dc	gγλ ddc	A ^g J dfc	tss nsA	reg	gcg Ala 275	gγλ ddc	гуз Гуз	gac Asp	tsp qsA	470 Afd	ser	ren	дук Тук	bro ccc	gcg Ala 265
1392	jap qsA	gcg Ala	ejl aaa	gcg Ala	₹ 60 67λ āāc	ctc	2er ¢cd	gtt gtt	sgc	425 Ser tcc	ьре	суд	5ro ccd	ург Трг	420 Wet	2er £cd
1344	tos Thr	gcc Ala	atc Ile	dsc ysb	atc 11e	das Asn	ааа Lys	gjl aaf	aac Asn 440	yrd cdc	дук чсс	att 11e	eyn ded	atc 11e 435	aac neA	sac Asn
1296									qsA				420 Lys aag			
1248	gtt Val	taa naA 219	сŢλ	sgc	atc Ile	Agj Afc	Γλε	ejl ddc	zes	zes	$e_J\lambda$	gca Ala 405	grt	pop alA	ааа Гуѕ	Ser
1500	jap qsA 00p	red Leu	tss пsA	Lxb râd	GJY Gğt	362 261 9dc	aac neA	сяя	ren crd	csg Gln	jaa naA 09£	Val	aac Ash	cta Leu	gcc Ala	gat Asp 385
TIZS	ej ^λ ddc	gtc Val	tss nsA	gta Val	dat qeA 380	TYr	rys	gtt gtt	дуL	IJG	ggc Yau	ejl ddc	css	jep qsA	gat qsA 076	ваа Гуѕ
POTT	26r 9dr	gta LaV	уст Трг	969 978 365	дук Тук	дук Тук	CJY ddf	гуз	360 GJ \\ ddf	agt Ser	Jop ElA	apye Fre	дук зес	gta Val 355	aat neA	дух чсэ
9501	ejl ddc	tca Ser	320 Тук 360	A97 dff	зсс Тух	два Сјп	ъуе 111	342 r\s	gac qsA	gct Ala	eyu css	ety agt	340 1pr 340	суя	CJ À ddf	dat Asn
1008	gct alA	332 Дух 360	аса Тћг	дух ЗСЗ	ааа Lys	atg Met	ара ртА 025	Lrp taa	CTλ ddf	gct	rys	aac Asn 325	gta Val	gce Ala	gat qsA	att Ile
096	350 Agj d£d	gaa Gju	ggg Lys	sop sIA	Дук Зас	312 Ag1 312	tta Leu	ejl ddc	egn dss	CJÀ dàc	310 Cjn dss	gac Asp	aca Thr	tct Ser	Ser	302 GJ \\ ddf

J800

9441

İXXX

~ 40	(5	[-11	~~ ATP	~~ v	~	~ 4Ш	-;n	[~11	~40	~5 <u>V</u>	(~ II	~ ~ V	~~ u		~ L V
Thr 240	хцТ	суу	ько	гλз	Val 255	сту	глз	IJG	nsA	Trp 230	сτλ	ьſĄ	nsA	Гел	787 225
qsA	гλг	ЛЗТ	zes	s1A 0SS	sIA	Arg	rys	гλз	SJ2 rls	qsA	qsA	хүд	Val	nsA 01S	qsA
иsĄ	дуц	Val	nsA 20S	дуд	дуц	ьſА	стх	200 Thr	neA	ren	геп	лчт	qeA 261	дуд	Геп
дуц	zes	730 CJX	IJG	етх	nsA	nəŋ	eiH 281	Val	дуц	дцΣ	qsA	780 CJÀ	nsA	дуд	етх
slA	Tyz	сŢп	rys	вſĄ	ьре	neA 071	рел	сŢλ	гХз	дŲД	qeA 231	ser	дуц	IJe	nsA
16V 160	гλг	nsA	сух	nsA	s[A 221	суλ	ьуе	zeg	Гел	120 Fλa	σŢπ	дуц	nŢĐ	LsV	145 Ser
дуц	Гел	qsA	дцт	Ţ₹0 Ţ€ŋ	qsA	гұз	гуз	πəŢ	132 261	Lλr	дŲĮ	Бре	zəs	130 261	qsA
nsA	дуL	nsA	152 GJ <i>n</i>	nsA	дуц	nsA	гуз	nsA 0SI			етр		112 116	Гуs	пәт
nsA	qeA	110 CJ	БĹÁ	ςΛη	гел	zγL	Val 201	дŲL	БĺА	сτλ	siH	100 100	дуц	nsA	siH
nsA	qeA 26	Lλr	Lλr	əŢI	zes	дтТ 06	сту	IJG	пеA	суу	тћт 85	zes	ста	nsA	cJn
80 CT	nsA	сту	ејп	rλa	geA 27	IJG	Met	ьре	етр	0 <i>L</i> η ς ση	Val	nəŢ	вÍА	ser	prA 23
Val	Val	Бко	сŢπ	09 nəq	еуп	ејп	етп	ღუთ	q eA 33	сγп	qsA	дух	sIA	neA 02	slA
сти	ΛgΊ	лцц	slA 21	ьре	ren	Гел	дух	sLA 0p	гел	Val	вſА	хцL	32 32	Val	πут
ьſА	zes	ε1 Α 0ε	Arg	гλз	дŲТ	siH	neA 3S	Arg	πух	ren	етп	Ser Ser	۸۹J	БĹĀ	ΛgJ
qıT	s[A 21	nsA	пәд	ьſА	zes	neA Oí	qıT	əŢI	eli	Arg	Z L L	IJe		31 <(
								•	sibi:	ţţbu [.]	теп	हर्यः	5 T	?> NG ?> 5B ?> 28	<515 <511
								£ва 600					_	tct	_
	gct Ala														
IJe	drT 273	nsA	еуλ	етъ	qsA	Ser 570	IJe	zer	zəg	Туг	265 GJX	IJe	εſĀ	ΤΥΥ	сτλ

Substitute Sheet (Rule 26) RO/AU

Ala Ser Asp Asn Val Asp Phe Val His Thr Tyr Asp Thr Val Glu Phe

245

520

222

BN2DOCID: <MO___6831133V1_I_>

BNSDOCID: <WO___9931132A1___>

Ala Ser Val Gly Tyr Gln Trp

UA\OA (82 sluA) Substitute Sheet

282 069 089 lle Lys Gly Thr Ala Ser Gly Asn Ser Arg Gly His Phe Gly Ala Ser 049 Gly Tyr Ala 1le Gly Tyr Ser Ser 1le Ser Asp Gly Gly Asn Trp 1le 095 555 099 515 Gly Lys Ser Met Met Ala 1le Gly Gly Gly Thr Tyr Arg Gly Glu Ala 075 535 lle Ala Gln Ala Ile Ala Thr Ala Gly Leu Val Gln Ala Tyr Leu Pro 250 Asn Leu Asn Arg Ile Asp Asn Val Asp Gly Asn Ala Ala Gly OIS 202 Lys Glu Gly Asp Val Thr Asn Val Ala Gln Leu Lys Gly Val Ala Gln 06₽ Lys Asp Ala Asn Lys Pro Val Arg Ile Thr Asn Val Ala Pro Gly Val 480 9L7 0 L F Ala Pro Thr Leu Ser Val Asp Asp Lys Gly Ala Leu Asn Val Gly Ser 997 Ser Met Thr Pro Gln Phe Ser Ser Val Ser Leu Gly Ala Gly Ala Asp 055 Asn Asn Ile Glu Ile Thr Arg Asn Gly Lys Asn Ile Asp Ile Ala Thr 430 425 Ser Pro Ser Lys Gly Lys Met Asp Glu Thr Val Asn 11e Asn Ala Gly **OIP** Ser Lys Ala Val Ala Gly Ser Ser Gly Lys Val Ile Ser Gly Asn Val 00Þ Asp Ala Leu Asn Val Asn Gln Leu Gln Asn Ser Gly Trp Asn Leu Asp 375 Lys Asp Gln Gly Asn 1le Thr Val Lys Tyr Asp Val Ash Gly 398 360 Thr Asn Val Thr Phe Ala Ser Gly Lys Gly Thr Thr Ala Thr Val Ser 345 Asn Gly Gln Thr Gly Gln Ala Asp Lys Phe Glu Thr Val Thr Ser Gly 332 330 Ile Asp Ala Val Asn Lys Ala Gly Trp Arg Met Lys Thr Thr Ala 320 312 310 305 Gly Ser Ser Thr Asp Glu Gly Glu Gly Leu Val Thr Ala Lys Glu Val 567 rka ejn rka yab ejk rka ren kal Thr ely Lys ely Lys ely Glu Aan SLZ yau cja ras yrg Thr Glu Val Lys Ile Gly Ala Lys Thr Ser Val Ile 592 Leu Ser Ala Asp Thr Lys Thr Thr Val Asn Val Glu Ser Lys Asp

İİXXX

itixxx

₽29	ejn ded		_		_		_				aac Asn					
915		_	_	_	_		nəq		_		atc 11e			_		
228			qsA		nsA	дуд		ьſА		ejn	aaa Lys					
084	160 Lys		_	_							120 CJλ ddc		_			_
725			_		_	Val	nsA		гел	сŢλ	дух чов		_			
₽8 £	_				_	_	_				dss dss					
988			_								gtt Val	_				
288											tta Leu					_
240		_	_								sgc 2er 70			_		_
76T	сва	_		_		сŢπ	ејп		суп		gyn dss			_		
उउउ	_	_	_								gta Val	_		_		
96	_		_								ctc					Afc
85									_	=	yrd cdc			999		atg
									·			(€	5 ८८ Т)) ** (1 SC	1) <1	
									Ś	rigi:	tngi	uəw	sria	6 T T A1	3> NG 5> DF 1> TC 0> TG	<515 <511

Substitute Sheet UA/OA (82 eluA)

7440	дŗс	၁၁၁	999	990	acc	det	aag	эдс	aac	arc	jee	בבמ	dcd	ddc	død	дяс
1392				tta Leu		D LO		qsA	БĺА							sgc
1344					Thr											aac Asn
1596	gkg	дук эсс	att Ile 430	CJn	IJe	sac Asn	nzA	$e_J\lambda$	sIA	tss nsA	ŢŢĠ	asA	gtc Val	у Трх	дуя дуу	dst qsA
1548	atg Met	412 Pla ssd	дду адэ	аад Гуѕ	ser	5ro ccd	410 Ser fcd	gtt Val	taa naA	ςŢλ aac	26r 9dc	atc 11e	λg Λg Λ	гуз ава	gγλ ddc	ger tcd
1500		суу		AFF AFF			Zer		nəq	nsA		сŢλ				
II2S	СŢIJ CSd	taa naA	grc	aac Asn	cta Leu 380	occ 818	jsp qsA	gjλ ādc	gtc Val	tss nsA 37£	gta Val	tsp qsA	tat Tyr	гуs	9tt Val 370	зсt Тhr
POTT										дуд						ст ^х ддғ
9901	agt Ser	gct Ala	320 bye fff	дуц	gta Val	ааа Lys	аса Тћг	342 GJA ddc	tca Ser	sca Thr	gtt gtt	трк чсс	340 egn das	ъре 111	sag Lys	gac qsA
800T																GJ \\ ddf
096		Γλε					IJG		n75	εγJ		дуд				302 СТ <i>п</i> двя
216																gtt Val
 98					Lys		Γλε	IJG								rys
918																у Трт
89 <i>L</i>																Agj Afc
720				aac Asn												
2 <i>L</i> 9	aac Asn	Trp Tag	gγλ ddc	дся	SSC Yau SSC	rta Leu	gta Val	gac gab	гуs	SIS Val	ger sgc	sce Ala	gcg Ala	yrg car	510 F\u00e4s	ааа Еүл

$\mathbf{V}\mathbf{X}\mathbf{X}\mathbf{X}$

6 <i>LL</i> I																56J
9441		_	եձէ Т <u>ү</u> ۲ 590													
1728			top slA													
0891			ej ddc													
1632			atg Met								slA					
J28¢		_	att 511e							_			_			
1236			cdc GTO													
38 5 T			gtt Val													
	15V 08£	ько	rys	nsA	ьÍА	qeA 374	гуз	zes	суу	Val	neA 074	ren	ьſА	сту	eŢn	qeA 294

TA9 <212> <511> 265 <112> <210> 17

<213> Neisseria meningitidis

SII

Lys Gln Asn Thr Asn Glu Asn Thr Asn Ala Ser Ser Phe Thr Tyr Ser SOI Asp Pro Tyr 1le Val Thr Leu Lys Ala Gly Asp Asn Leu Lys 1le 56 06 Leu Glu Thr ile Ser Leu Ser Met Thr Asn Asp Ser Lys Glu Phe Val 08 Arg Ser Val Val Gly Ser Ile Gln Ala Ser Met Glu Gly Ser Val Glu 55 Ala Asn Ala Thr Asp Glu Asp Glu Glu Glu Leu Glu Ser Val Gln Thr Val Lys Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln 52 Val Ala Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala OT SI Met Asn Lys 1le Tyr Arg 1le 1le Trp Asn Ser Ala Leu Asn Ala Trp LT <000>>

Substitute Sheet (Rule 26) RO/AU

150

ŢΛΧΧΧ

ren rys hsp Leu Thr Gly Leu Ile Asn Val Glu Thr Glu Lys Leu

480 5 L B 0 L D Yap Glu Gly Ala Leu Asn Val Gly Ser Lys Asp Ala Asn Lys Pro Val 09 b 954 Ser Val Ser Leu Gly Ala Gly Ala Asp Ala Pro Thr Leu Ser Val Asp 577 075 Yan Gly Lys Asn 11e Asp 11e Ala Thr Ser Met Thr Pro Gln Phe Ser 455 420 Asp Glu Thr Val Asn Ile Asn Ala Gly Asn Asn Ile Glu Ile Thr Arg SID Ser Gly Lys Val Ile Ser Gly Asn Val Ser Pro Ser Lys Gly Lys Met 00Þ 395 Leu Gln Asn Ser Gly Trp Asn Leu Asp Ser Lys Ala Val Ala Gly Ser Thr Val Lys Tyr Asp Val Asn Val Gly Asp Ala Leu Asn Val Asn Gln 392 360 Gly Asn Gly Thr Ala Thr Val Ser Lys Asp Asp Gln Gly Asn Ile 320 345 340 Asp Lys Phe Glu Thr Val Thr Ser Gly Thr Lys Val Thr Phe Ala Ser 332 330 325 Gly Trp Arg Met Lys Thr Thr Ala Asn Gly Gln Thr Gly Gln Ala 350 312 370 Glu Gly Leu Val Thr Ala Lys Glu Val Ile Asp Ala Val Asn Lys Ala 300 567 067 Asi Thr Gly Lys Gly Lys Gly Glu Asn Gly Ser Ser Thr Asp Glu Gly 280 Lys ile Gly Ala Lyr Ser Val ile Lys Glu Lys Asp Gly Lys Leu 0LZ592 092 Thr Thr Val Asn Val Glu Ser Lys Asp Asn Gly Lys Lys Thr Glu Val 255 Val Arg Thr Tyr Asp Thr Val Glu Phe Leu Ser Ala Asp Thr Lys Thr 240 235 230 Ile Lys Gly Val Lys Pro Gly Thr Thr Ala Ser Asp Asn Val Asp Phe 220 512 SIO Lys Lys Arg Ala Ser Val Lys Asp Val Leu Asn Ala Gly Trp Asn 202 200 Thr Gly Ala Thr Asn Val Thr Asn Asp Asn Val Thr Asp Glu **581** 180 Val His Leu Asn Gly Ile Gly Ser Thr Leu Thr Asp Met Leu Leu Asn SLI 071 Gly Leu Asn Phe Ala Lys Glu Thr Ala Gly Thr Asn Gly Asp Thr Thr 09 I SSI 0SI Ser Phe Gly Ala Asn Gly Lys Lys Val Asn Ile Ile Ser Asp Thr Lys 0 P T 132 **T30**

iivxxx

186															rys	
988				_											aac Asn	
882															atc Ile	
240	80 С77 ддя													_	tct Ser	
767	_	_				_	_								taa neA 02	
7 d d															grg Val	
96							_					_		_	gtc Val	_
8 t										-				999	33c 33c Asn	ard
												((OLLT) • • (-	5> (1 [> CL	<222
									\$:idi	t i pa.	іпел	stis	O C I	3> N€ NO <3 LT <1 S T <0	<515>
	Lrp	eŢu	17r 590	етл	Λ ^g J	zes	ьſА	282 261	ьſА	стх	Бре	siH	280 CJ	Prq	zes	nsA
	сτλ	24S	ьſА	хцТ	сту	гλз	210 210	IJe	ДIL	nsA	сту	265 GJX	slA	zəs	IJe	zəç
	260 261	ΤΫ́Υ	суу	IJe	ьſА	17r 555	стλ	БĺĀ	σŢη	сту	7en	Τλτ	дуд	сух	етл	242 CJ \
	IJG	ьlА	J⊖M	Met	240 261	гХз	суу	B LO	ren	77r 388	БſĀ	ети	Val	пәŢ	230 CJÀ	БÍĀ
	дŲТ	εſĄ	IJe	Ala 2S2	сти	БĺА	IJG	сту	Ala 0S2	Arg	БÍA	nsA	етл	neA 212	Val	nsA
	qsA	IJG	210 YEd	nsA	nsA	ren	nsA	202 CJu	БÍA	Val	етл	гλз	200 Pen	ети	ьſА	Val
	псы	56Þ	7 2 7	dsw	ετλ	פדח	₹80 782	TEA	eτλ	NIO.	БТА	787 782	nsa	JU.T.	атт	PIG

Substitute Sheet (Rule 26) RO/AU

1500	999	ddc	fcd	tot	đđρ	дся	đεε	dcd	999	tcc	gat	τŗα	aat	гđđ	άđρ	эдс
7725	gsc Ysu	csa Gln	ren	Cyn Cyd	tss nsA 085	gtc Val	sac Asn	cta Leu	gcc Ala	dat qsA 375	gγλ ddc	dfc Agj	tss neA	gta Val	tap qaA 076	tat Tyr
FOTT	gee Lys	gtt Val	act Thr	365 11e	aac Asn	су Adc	csa	gat qeA	tap qeA 06£	888 Lys	sgt	gta Val	трк	gcg £14 355	act	вса Тћг
9901	CJ À	taa naA	320 GJ \ ddf	sgt	Jop sIA	ъре ггг	дук зсс	gta Val 345	гуз	вса Тћг	ejl aac	tca	340 19 340 340	grt Val	зсс	дуя дуу
1008	Бұд ССС	332 r\s 932	qsA	Jop Bla	Cyn Cys	GJ \\ ddf	330 17 330	сва	дŢЛ ddf	tss nsA	dct Ala	325 Thr 325	цу Туг	у Трх	aaa Lys	atg Met
096	aga Arg 320	raa Laa	GJ \\ ddf	gct Ala	rys	ggc yau 312	ara Val	gcs Ala	jap gaA	att 11e	310 Agj 310	dgg dgg	ааа Гуз	gcs Ala	act Thr	305 Agj 302
216	tta Leu	e _T y ggc	daa G7 <i>n</i>	ejl ddc	300 GJ <i>n</i> das	gac gac	вса Тйг	tct Ser	tot Ser	595 GJY ddf	tss nsA	ern død	GJÀ ddc	ваа Гуѕ	530 Gγλ ddc	у гуз
₽ 98	ejy aaf	зсt Тйг	get	782 ren ffd	r\s ssd	GJX dd£	gac gac	888 Lys	580 GJ <i>n</i> dss	гуз	att Ile	gtt Val	tot 198	S75 Thr 375	аад Гуѕ	gcg Ala
918	ejy ddf	atc Ile	570 Lys	מבר מבר	dss GJ <i>n</i>	эсс Туг	aga Prg	592 Tys	gγλ dὰc	sac Asn	gae gsA	aaa Lys	Ser Ser sdc	dsa GIU	A97 aca	tss asA
89 <i>L</i>	Arr Agj	sct Thr 255	gcd 1pr	ург Трг	aaa Lys	acg Thr	tap qaA 02S	дся УГ	ger sgc	ttg ren	phe ttc	542 67 <i>n</i> dad	gtc Val	Трк зсч	gac gac	tac Tyr
0 <i>7L</i>	S¢0 Thr act	prA	drc Agr	ъре стс	ds4	gtc Val 235	nsA	gyn das	zəs	eŢv	530 GJA ddf	дрк Црк	дук эсэ	Ser	ej ddc	sct Thr Z25
Z <i>L</i> 9	aaa Lys	gtt Val	GJ Å ädr	rys	att Ile 220	aat Asn	LTP Ldd	gjλ ddf	gcg Ala	aat Asn 21S	reg	arg Ag	jap qsA	rys	210 116	agt Ser
Þ Z 9	sop sfA	gcs	gat Gat	act Thr 205	Tyr	siH	аса Тћг	zes	сŢи	ggc Yan	CJ AA£	yjs dcd	gat qeA	195 94£ 94£	cac	tet Ser
978	gct Ala	tct	190 Ser 190	ety ggt	gcg ££4	ctt	zyr Tyr	gat Asp 281	цук	nəq ttd	аст Тћг	ger	180 CJ X ddf	atc Ile	CJ X ddf	aac Asn
828	crd crd	cat His 175	grt Val	Thr acg	Pro ccc	gac gar	110 CJ \\ ddc	ysu ysu	цуц scd	стл ddd	yya dct	165 Thr 3cg	дуя	дду	gcg Ala	eya aaa
085	tsa naA 031	ren	gyλ ddc	aaa Lys	трк Трк	gac Asp 355	26r 9dc	тух чсэ	atc Ile	aac Asn	120 A91 Afc	ggg	taa naA	CJY ddf	aac Asn	gca Ala Ala
435	ej ddc	əya ııı	26x ¢cd	tta Leu	140 Lys	gyn dys	act Thr	eyn dss	gtt Val	132 261 3df	дук чсс	ren ctd	gac gac	ваа Гуѕ	I30 ren	ejn død

iiivxxx

хххх

									•		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, a o u	e i a c	9 9 T <i>5</i>	A < 6 35 < 1 51 < 0	<515 <511
0771			590 590				GJ \\ aar									
82 <i>L</i> I							acg Thr 570									osp qsA
089τ			_	_			atc	_				_				
7632							atg Met									
788T																ejl ddc
1236									nəq							ctt Leu
1488			Val				tap qaA 064	CŢĂ	eŢn		Λsλ					Jaa RaA
0661		IJe	_	_	၁၁၁		sas Asn									_
1392				gat			tta Leu			slA	qsA	БĺА		εlA		nəŢ
7344										zəs						Jaa Asn
1596				prA		IJG	cŢπ									grc
JS48	тук чсс	933 61u 61c	dst Asp	atg Met	gag Lys	СŢλ	410 rls	26r 9dc	bro ccd	ser	get get	tss nsA 201	ejl ddc	Ser	atc Ile	grc
	tys 400	суу	zes	zer	суу	alA 295	Val	s[A `	гλз	zəs	qsA 0e£	геп	nsA	Trp	суγ	382 382

Substitute Sheet UA/OR (82 olu R)

20

<213> Neisseria meningitidis

6T <00\$>

Thr Val Ala Thr Ala Val Leu Ala Thr Leu Leu Ser Ala Thr Val Gln

Val Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala

Met Asn Lys 1le Tyr Arg 1le 1le Trp Asn Ser Ala Leu Asn Ala Trp

(Rule 26) RO/AU Substitute Sheet

375 Tyr Asp Val Asn Val Gly Asp Ala Leu Asn Val Asn Gln Leu Gln Asn Thr Thr Ala Thr Val Ser Lys Asp Asp Gln Gly Asn Ile Thr Val Lys 320 342 Glu Thr Val Thr Ser Gly Thr Lys Val Thr Phe Ala Ser Gly Asn Gly 330 325 Met Lys Thr Thr Ala Asn Gly Gln Thr Gly Gln Ala Asp Lys Phe 320 SIE 310 302 Val Thr Ala Lys Glu Val Ile Asp Ala Val Asn Lys Ala Gly Trp Arg 567 rks cjk rks cjk cjn ysu cjk set set thr Asp clu cly cly Leu 280 yla Lys Thr Ser Val Ile Lys Glu Lys Asp Gly Lys Leu Val Thr Gly 072 597 $\hbox{ Ash Glu Ser Lys Asp Asn Gly Lys Arg Thr Glu Val Lys Ile Gly } \\$ 222 720 245 Tyr Asp Thr Val Glu Phe Leu Ser Ala Asp Thr Lys Thr Thr Val 240 235 230 Thr Gly Ser Thr Thr Gly Gln Ser Glu Ash Val Asp Phe Val Arg Thr Ser Ije rys Asp Val Leu Asn Ala Gly Trp Asn Ile Lys Gly Val Lys 200 Ser His Val Asp Ala Gly Asn Gln Ser Thr His Tyr Thr Arg Ala Ala **581** Asn Gly 11e Gly Ser Thr Leu Thr Asp Thr Leu Ala Gly Ser Ser Ala SLT OLT **59T** bye yjs rks ejn Thr Ala Gly Thr Asn Gly Asp Pro Thr Val His Leu 09 T SST Ala Asn Gly Asn Lys Val Asn Ile Thr Ser Asp Thr Lys Gly Leu Asn 132 Gin Leu Lys Asp Leu Thr Ser Val Glu Thr Glu Lys Leu Ser Phe Gly 125 ren rha 11e rha eju 2er ejh rha yab bye 11 11t 2er ren rha rha OIT SOT His Asn Thr Leu His Gly Ala Thr Val Thr Leu Lys Ala Gly Asp Asn Glu 11e Glu Ser Thr Gly Asp 11e Gly Trp Ser 11e Tyr Asp Asp 08 Arg Ser Ala Leu Val Leu Gln Phe Met Ile Asp Lys Glu Gly Asn Gly Ala Asn Ala Thr Asp Glu Asp Glu Glu Leu Glu Ser Val Ala 57 01

90

Substitute Sheet UA/OA (82 eluA)

767										•				gct Ala		
ръТ														ged Lys		
96														gta Val		
8 Þ									_	_			_	у 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		atg
												(9	OLLT)	· · · (τ sc	r> CI	
									\$	sipi	ŋţbu ⁻	tnəm	sria	9 4 4	3> NG 5> DI 1> J. 0> S(<575 <573
				d ıT	ети	Ίλι	сту	Val 585	ser	sIA	ser	дуц	280 CJÀ	ьуе	siH	стх
	Arg	26r 36r	пеA	сту	ser	ьſА	240 Thr	стх	гХз	IJG	LsV	7rp 595	nsA	сух	дуд	qsA
	26r 26r		zəs	zəg	Lλι	222 CJ	all	εlA	Lλι	сух	sIA 022	сŢп	етх	nəq	Τλτ	ZVZ ZVZ
	сŢХ	сту	сту	əŢI	blÆ 0₽∂	Met	Met	zəg	ГУз	232 GJX	Pro	ren	Ιλι	ьſА	230 CJu	ьſА
	рел	етх	sIA	Thr 225	БĹА	all	síA	стр	s IA 0S2	IJe	сту	ьſА	bzĄ	sIA SIS	nsA	сŢλ
	nsA	Val	n eA 013	dsA	IJe	Arg	пгА	πεÆ 808	гел	nsA	цŢЭ	ьſА	787 500	етх	rys	ren
	стр	slA 261	ЛaV	nsA	дуд	۸۹J	qsA 06₽	сту	етп	гλз	Val	₹82 CJλ	ько	sſА	Val	usĄ
	7hr 084	əĮI	Þī	Val	B IO	rys 475	nsA	slA	qsA	Гуs	Ser 470	сту	Val	nsÆ	ηeπ	614 204
	ςŢλ	gjn	qsA	qsA	16V 960	zəs	Γeπ	дуд	Бко	slA 22p	qsA	sſĄ	суλ	ьſĄ	₹20 CJÀ	ren
	zes	Val	zəs	Ser	әүа	еји	Бко	дуд	Met 440	zəs	дŲД	ьſА	IJG	qaA 2£4	IJG	nsA
	гλг	сту	naA 0£4	Ązd	луд	IJe	nŢĐ	97I 425	п гА	nsA	сту	slA	nsA 0SÞ	IJe	asA	Val
	ДУK	412 CJn	qsA	⊅⊖M	Γλε	стх	rys 410	zəs	δτο	zəs	Val	neÆ 20≱	етъ	zəs	IJG	Val
	400 700	сту	zəs	Ser	сту	sIA 26£	Val	БſА	гλз	zəg	q sA 06£	Гел	nsA	Trb	еул	382 261

7EI1E/66 OM

xŢţŢ

096	gct Ala 320	sag Lys	aac Asa	gta Val	gca Ala	dat gsA 315	att Ile	∆gj d¢d	ggn	гуз газ	gca Ala 310	дук ЗСС	grg	tta Leu	ejl aac	302 GJ <i>n</i>
875		ges des														
1 98	ren rea	sag	gyy agt	gac Asp 285	ааа Lys	dsa dsa	гуз	att Ile	1280 1280 1380	tot Ser	дрг Трг	aag Lys	gcg &LA	512 CJ ddf	atc Ile	ааа Гуѕ
918	grt Val	gaa	270 Thr 072	rλs	аад Гуѕ	$e_{J}\lambda$	nsA	gac Asp 265	гуз	2 6 I 9dc	gaa GJn	grg	tss nsA 03S	gtt Val	дуг	Lyr
89 <i>L</i>		888 Lys 285						ьре								
720		jap qaA														
Z <i>L</i> 9		Lzp Ldd														saa Lys
ÞZ9		gac qsA														
9 <i>L</i> S		ren crd														gtt Val
228	дуц	scc Thr 271	ysp dsc	ej ddc	aac neA	туг чсд	710 677 888	gct Ala	Дук чсд	ggs	ggg FÀ2	929 73 765 765	Phe ttt	taa Asn	rtg ren	eγλ ddc
084		дук чсс														
432	tta nəq	ggg Lys	gsa	дук Дук	140 €∫λ ∂∂9	Val	zəs	дук зсс	Γ e π	tap Asp 281	aca Thr	ctc Leu	ysb dsc	ggg	130 Lys	ren cçd
\$8£		tac Tyr														
988	gcc Ala	ааа Гуѕ	110 ren	дух зсс	atc	дуя дуу	aga Arg	gcc Ala 201	gcs Thr	cta Leu	gta Val	дς ddg	100 Fås	ejn ded	aac Asn	bye ffc
288		gta Val 89														
540	80 CJÀ đđc	дуя дуу	ggg	gat Asp	tcc Ser	taa naA ∂7	drc Agg	sta 911	ren ttd	grg grg	occ Bla 07	gtt	act Thr	yrd cdc	C99	gta Val 65

Substitute Sheet UA/OA (82 sluA)

9 <i>LL</i> T	E B J	гãа	csd	tat	ddr	dfc	tot	дся	pot	đc£	dar	בבכ	cst	aac	ငရင	£cd
82 <i>L</i> T		212 CJ \ ddc			_									_		
089τ	_	zer Ser														
7632		atc Ile			Met	zəş		еух	Pro	ren	TYr				_	суγ
788T		зсс		IJG		стр			_			_			_	
9 2 91			IJG		asA	nsA	nəŢ	nsA	сŢи		Val	сŢλ				gca Ala
7488		aac Asn 394	лųL		qsA	СŢЛ	$e_{I}\pi$	Γλε	Val	CJÀ	Pro					
7440		arc Val					εγJ		zəg	сτλ				_		
1392		ara Nej														
73¢¢		ъуе 111		_	дуд	JeM	_	дит		IJe						ggc ggc
1596																jsp qsA
1248			сŢλ					Val	nsA		zəs					26r rcd
7500		CJX ddf										=				382 ren cfd
7777																sct Thr
1104										дуд						стл ddf
9501																gac Asp
3001								slA								ej dar

Substitute Sheet UA/OA (82 sluA)

Agg The Gly Lys Asp Lys Gly Glu Asn Gly Ser Ser The Asp Glu Gly

ras ile Gly Ala Lar Ser Val ile Lys Glu Lys Asp Gly Lys Leu

280

282

270 597 Thr Thr Val Asn Val Glu Ser Lys Asp Asn Gly Lys Thr Glu Val 720 Val Arg Thr Tyr Asp Thr Val Glu Phe Leu Ser Ala Asp Thr Lys Thr 240 235 230 225 ITE THE CIN NUT THE LIO CIN LUL LUL BIG SEL WED WED AND PAGE 512 Lys Lys Arg Ala Ser Val Lys Asp Val Leu Asn Ala Gly Trp Asn 205 200 Thr Gly Ala Thr Asn Val Thr Asn Asp Asn Val Thr Asp Asp Glu **581** Val His Leu Asn Gly Ile Gly Ser Thr Leu Thr Asp Thr Leu Leu Asn OLT Gly Leu Asn Phe Ala Lys Glu Thr Ala Gly Thr Asn Gly Asp Thr Thr 09 T SST 120 Ser Phe Ser Ala Asn Gly Asn Lys Val Asn Ile Thr Ser Asp Thr Lys **321** ren ris ris yeb ren Lyr yep Leu Thr Ser Val Gly Thr Glu Lys Leu 150 GJA wap wan rea rys Ile Lys Gln Asn Gly Thr Asn Phe Thr Tyr Ser SOT 00T Phe Asn Glu Lys Gly Val Leu Thr Ala Arg Glu Ile Thr Leu Lys Ala Thr Gly Glu Lys Glu Lys Val Glu Glu Asn Ser Asp Trp Ala Val Tyr 08 Val Gln Arg Thr Val Ala Val Leu Ile Val Asn Ser Asp Lys Glu Gly Ala Ser Ala Asn Glu Glu Glu Glu Glu Asp Leu Tyr Leu Asp Pro SÞ Thr Val Lys Thr Ala Val Leu Ala Thr Leu Leu Phe Ala Thr Val Gln 52 Val Val Ser Glu Leu Thr Arg Asn His Thr Lys Arg Ala Ser Ala SI 0 T Met Asn Lys 11e Tyr Arg 11e 11e Trp Asn Ser Ala Leu Asn Ala Trp <400> <213> Neisseria meningitidis

282

vilx

Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr Gln Trp

065

<211> S91 <211> TAG <212>

(Rule 26) RO/AU Substitute Sheet

oligonucleotide primer for PCR <223> Description of Artificial Sequence: 5'

<220>

<213> Artificial Sequence

<212> DNA

<511> 51

<510> 55 069 585 Ser Arg Gly His Phe Gly Ala Ser Ala Ser Val Gly Tyr Gln Trp 578 019 lle Ser Asp Gly Gly Asn Trp lle lle Lys Gly Thr Ala Ser Gly Asn 099 999 099 GIY GLY Thr Tyr Arg Gly Glu Ala Gly Tyr Ala Ile Gly Tyr Ser Ser 075 253 Gly Leu Val Gln Ala Tyr Leu Pro Gly Lys Ser Met Met Ala Ile Gly 225 220 Val Asp Gly Asn Ala Arg Ala Gly Ile Ala Gln Ala Ile Ala Thr Ala 200 OTS 202 Ala Gln Leu Lys Gly Val Ala Gln Asn Leu Asn Asn Arg Ile Asp Asn 96 b 061 Ile Thr Ash Val Ala Pro Gly Val Lys Glu Gly Asp Val Thr Ash Val 08₹ SLD 015 Gly Asp Ala Leu Asn Val Gly Ser Lys Lys Asp Asn Lys Pro Val Arg SSF Ser Val Ser Leu Gly Ala Gly Ala Asp Ala Pro Thr Leu Ser Val Asp S D D 055 Asn Gly Lys Asn Ile Asp Ile Ala Thr Ser Met Thr Pro Gln Phe Ser 924 Asp Glu Thr Val Asn Ile Asn Ala Gly Asn Asn Ile Glu Ile Thr Arg SIP OID Ser Gly Lys Val Ile Ser Gly Asn Val Ser Pro Ser Lys Gly Lys Met 368 390 Leu Gln Asn Ser Gly Trp Asn Leu Asp Ser Lys Ala Val Ala Gly Ser SLE 310 380 Thr Val Met Tyr Asp Val Asn Val Gly Asp Ala Leu Asn Val Asn Gln 360 Gly Lys Gly Thr Thr Ala Thr Val Ser Lys Asp Asp Gln Gly Asn Ile 320 345 340 Asp Lys Phe Glu Thr Val Thr Ser Gly Thr Asn Val Thr Phe Ala Ser 332 330 Gly Trp Arg Met Lys Thr Thr Ala Asn Gly Gln Thr Gly Gln Ala 320 315 310 Glu Gly Leu Val Thr Ala Lys Glu Val Ile Asp Ala Val Asn Lys Ala

562

300

Substitute Sheet UA\OA (82 oluA)

```
oligonucleotide primer for PCR
                        <223> Description of Artificial Sequence: 3'
                                                               <220>
                                           <213> Artificial Sequence
                                                           <SIS> DNY
                                                            <511> 16
                                                            <210> 27
81
                                                 ccaaaccccg atttaacc
                                                            <4005>
                              2.ojidonucleotide primer for PCR
                           <223> Description of Artificial Sequence:
                                                               <220>
                                           <213> Artificial Sequence
                                                           <212> DNA
                                                            <211> 18
                                                            <210> 26
32
                                 teacceaage ttaagecett aceaetgata ac
                                                            <400> 25
                                oligonucleotide primer for PCR
                        <223> Description of Artificial Sequence: 3'
                                                               <220>
                                           <213> Artificial Sequence
                                                           <SIS> DNA
                                                            <511>
                                                            <210> 25
32
                                 ddrededdar ceardaacaa aararacede ar
                                                            <400> 24
                                oligonucleotide primer for PCR
                        <223> Description of Artificial Sequence: 5'
                                                               <220>
                                           <213> Artificial Sequence
                                                           <212> DNA
                                                            <211>
                                                            <510> 54
81
                                                 cttcccttca aaccttcc
                                                            <400> 23
                                oligonucleotide primer for PCR
                        <223> Description of Artificial Sequence: 3'
                                                               <220>
                                           <213> Artificial Sequence
                                                           <212> DNA
                                                            <211> 18
                                                            <570> 53
77
                                             ttagattcca cgtcccagat t
                                                            <400> 22
```

PCT/AU98/01031

tivix

8 T ccgatacgct gctgaata <400> 31 oligonucleotide primer for PCR <223> Description of Artificial Sequence: <5250> <213> Artificial Sequence <212> DNA <211> 18 <510> 31 rdccrdgacc grrdcaaa 3 T <400>> oligonucleotide primer for PCR <223> Description of Artificial Sequence: <220> <213> Artificial Sequence <212> DNA <511> 18 <570> 30 3 T tattcagcag cgtatcgg <400>> oligonucleotide primer for PCR <223> Description of Artificial Sequence: <220> <213> Artificial Sequence <212> DNA <511> 18 <210> 29 8 T tttgcaacgg ttcaggca <400>> oligonucleotide primer for PCR <223> Description of Artificial Sequence: <550> <213> Artificial Sequence <SIS> DNY <5115 18 <210> 28 6 T aatogocaco cttocotto <400p>

Substitute Sheet UA/OH (82 elu**R**)

BN2DOCID: <MO __ 6831135V1_I_>

International application No.

INTERNATIONAL SEARCH REPORT

···										
	Telephone No.: (02) 6283 2266	6762 3879 (70)	AUSTRALIA Facsimile No.:							
	CILLIAN ALLEN	MODEN YCL 7000								
		O BOX 300 OZIBATIAN PATENT OFFICE								
	Authorized officer	UA\AZI of the saddress of the ISA\AU MALLA graft.								
	9991 NAL 1 S	6	7 January 199							
cy report	Date of mailing of the international sear	dompletion of the international search	Date of the act							
the application but cited to iderlying the invention cannot sidered invention cannot taken alone step when the document is step when the document is the documents, such an skilled in the art	priority date and not in conflict with understand the principle or theory undecument of particular relevance; the inventive step when the document is document of particular relevance; the be considered to involve an inventive combined with one or more other and combined with one or more other and combination being obvious to a personant of particular relevance; the personant inventive combination being obvious to a personant combination being obvious to a personant particular with one or more other and combination being obvious to a personant combination being obvious to a personant combination being obvious to a personant combination being obvious to a personant combination personant combinatio	near defining the general state of the art which is maidered to be of particular relevance in application or patent but published on or after "X ternational filing date ich is cited to establish the publication date of ich is cited to establish the publication date of ich is cited to establish the publication date of ich is cited to establish the publication date of ich is cited to other special reason (as specified) it of the international filing it on other means it or other means in the international filing it on the priority date claimed in a later than the priority date claimed "& "A later than the priority date claimed "" " " " " " " " " " " " " " " " " "	"F" documents of what in the information of what in the information of what in the information of what in the information of what in the information of what in the information of what in the information of what in the information of what in the information of what in the information of what in the information is a second of what in the information of which in the information of what is a second of which in the information of which is a second of which in the information of which is a second of which is a sec							
	-: - than Qo ka daild an tanan mak notal	al categories of cited documents:	sipaq2 *							
xəu	See patent family an	Further documents are listed in the continuation of Box C								
TTV	\$6L Z-\$8 .	VIRGI, M. et al. Mol Microbiol. 1992. 6(19): 27	A							
TTV		RUDEL, T. et al. Mature 1995. 373: 357-359	A							
TTV	113-175	VIRGI, M. Adv. in Exp. Med and Biol. 1996. 40	A							
Relevant to claim No.	propriate, of the relevant passages	Citation of document, with indication, where ap	*Krogoty*							
		DOCUMENTS CONSIDERED TO BE RELEVANT	.o.							
rems used)	LKEWBT)) Neisseria meningitidis adhesins (Electronic data CA WPAT Medline							
the fields searched	tent that such documents are included in t	searched other than minimim documentation to the ex	Documentation As below							
	:lassification symbols)	COTK 14/22; C12N 15/31 mentation searched (classification system followed by c	Minimum docu Int Cl ^{6:}							
		LIEIDS SEVECHED	B.							
	national classification and IPC	International Patent Classification (IPC) or to both	According to							
		C01K 14/55; C15N 15/31	ाणः टार्ः							
		CLASSIFICATION OF SUBJECT MATTER	v							

Form PCT/ISA/210 (second sheet) (July 1998) cophin

payment of any additional fee. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite searchable claims As all required additional search fees were timely paid by the applicant, this international search report covers all This International Searching Authority found multiple inventions in this international application, as follows: Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet) (B)4.8 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule Claims Nos.: continued against themselves or their parent organism (Neisseria meningitidis). This concept is virtually meaningless. (A) Claims 2, 3, 5, 6, 7, 9 are not clear. They are essentially to polypeptides which have immunological activity such an extent that no meaningful international search can be carried out, specifically: because they relate to parts of the international application that do not comply with the prescribed requirements to 7. Claims Nos.: (A) 2, 3, 5, 6, 7, 9; (B) 20(1) and 21 because they relate to subject matter not required to be searched by this Authority, namely: Claims Nos.: .1 reasons: This international search report has not been established in respect. I certain claims under Article 17(2)(a) for the following Observations where certain claims were f und unsearchable (Continuation of item 1 of first sheet) Box 1 PCT/AU 98/01031 international application No. INTERNATIONAL SEARCH REPORT

No protest accompanied the payment of additional search fees.

report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

report covers only those claims for which fees were paid, specifically claims Nos.:

The additional search fees were accompanied by the applicant's protest.

No required additional search fees were timely paid by the applicant. Consequently, this international search

As only some of the required additional search fees were timely paid by the applicant, this international search

Form PCTASAZ10 (continuation of first sheet(1)) (July 1998) cophin

.ε

Remark on Protest

International applicati n No.

INTERNATIONAL SEARCH REPORT

(B) Claims 20(1) and 21 are to any antibodies against Neisseria meningitidis. They lack support from the description as they are not limited to antibodies to the polypeptides of the invention.
coverage of the claims in toto.
Since these concepts are covered by other claims the lack of search on these claims does not affect the search
(ii) antibodies to such antigenic polypeptides.
(i) antigenic polypeptides or their encoding nucleic acids according to claims 1, 4 or 7, which provide provide
Antigens do not display immunological activity against themselves, or the organism from which they derive. However, as I can determine, these claims are intended to encompass either:
Box BOX 1 (2)
PCT/AU 98/01031

Form PCT/ISA/210 (extra sheet) (July 1998) cophin