- 8. Modifique a implementação do procedimento original apresentado no $P_{rograma}$ grama 6.5 para que a pesquisa da chave dentro de uma página da árvore B_{seja} realizada por meio de uma pesquisa binária.
- 9. Desejamos informatizar o sistema de apoio ao serviço de auxílio à lista fornecido por uma empresa prestadora de serviços telefônicos. Neste sistema, devemos especificar um programa que gerenciará o acesso ao arquivo em disco magnético que contém informações sobre assinantes. Em uma consulta típica, o cliente fornece o nome de um assinante (ou parte dele) à telefonista que, usando este programa, consulta o arquivo em disco. A chave de acesso para esse arquivo é formada pelo primeiro nome e o último sobrenome de cada assinante. Como assinantes diferentes podem ter a mesma chave, o programa fornece uma lista com os dados de todos os assinantes cuja chave é igual à fornecida pelo cliente. De posse desta lista e consultando verbalmente o cliente, a telefonista determina o assinante que está sendo procurado e fornece o seu número do telefone.

Vamos comparar duas diferentes propostas de organização do arquivo com os dados dos assinantes. Supor que sejam 1.000.000 de assinantes e cada registro tenha 200 bytes, incluindo a chave (o nome e o sobrenome do assinante), que tem 20 bytes. Suponha que a unidade de disco tenha um bloco com 1.024 bytes e que para endereçar cada bloco sejam necessários 11 bytes.

Devemos decidir qual a melhor organização de arquivo a ser adotada entre a sequencial, indexada, árvore B ou árvore B^* .

- a) Faça um esboço de cada uma destas organizações.
- b) Qual o número esperado de acessos a disco para uma pesquisa típica em cada uma destas alternativas? Por quê?
 - c) Qual a alternativa que você sugeriria? Por quê?
- d) Ordene estas opções (da melhor para a pior), considerando cada um dos seguintes aspectos e justifique:
 - i) a rapidez de acesso a determinado registro;
 - ii) a rapidez de acesso a uma lista de registros cujas chaves sejam iguais;
 - iii) a facilidade de atualização.

Capítulo

Algoritmos em Grafos

Muitas aplicações em computação necessitam considerar um conjunto de conexões entre pares de objetos. Os relacionamentos derivados dessas conexões podem ser usados para responder a questões tais como: existe um caminho para ir de um objeto a outro seguindo as conexões? Qual é a menor distância entre um objeto e outro? Quantos outros objetos podem ser alcançados a partir de um determinado objeto? Existe um tipo abstrato chamado grafo que é usado para modelar tais situações. Entre centenas de problemas práticos que podem ser resolvidos por meio de uma modelagem em grafos, podemos citar alguns, a saber:

- Quando navegamos na Web, encontramos documentos que contêm referências a outros documentos, e o usuário da rede move-se de um documento para outro ao seguir as referências. A Web pode ser modelada como um imenso grafo no qual os objetos são documentos e as conexões são elos (do inglês links). Algoritmos para processamento de grafos constituem componentes importantes das máquinas de busca que ajudam os usuários a localizar informação relevante na Web.
- Pessoas concorrem ao processo seletivo em escolas, universidades ou algum tipo de emprego. Nesse caso, objetos são pessoas e instituições, e as conexões são as inscrições. Existem algoritmos em grafos para descobrir os melhores casamentos (do inglês matching) entre pessoas interessadas e posições disponíveis.
- Em um planejamento para visitar cidades de uma região turística, uma quer saber qual é o caminho mais curto para realizar o roteiro. Nesse caso, os objetos são cidades, e as conexões são as distâncias entre as cidades.

Algoritmos para a manipulação de grafos têm enorme importância na ciência da computação e os algoritmos para trabalhar com eles são fundamentais para a área. Neste capítulo apresentamos os algoritmos básicos para lidar com alguns dos problemas mais importantes relacionados aos grafos.