

MshStructure

Nicosia Haspolat via mersin 10

Project			Job Ref.			
Calc. by			Sheet no./rev.			
Asst. Prof.	Dr. Shihab Ibrahin	n (PhD, M.ACI	, Aff.M.ASCE)	1		
Section	Date	Chk'd by	Date	App'd by	Date	
	09-Jun-25					

RC ONE-WAY SLAB DESIGN (ACI 318)

In accordance with ACI318-19 (22)

Design summary

Overall design status PASS
Overall design utilization 0.944

Description	Unit	Capacity	Maximum	Utilization	Result
Moment	kNm/m	31.26	29.50	0.944	PASS
Shear	kN/m	48.75	24.80	0.509	PASS
Minimum thickness requirements					PASS
are met					

Slab definition

Slab type One-way continuous

Overall thickness of slab h = 150 mm Span of slab $l_n = 2000 \text{ mm}$ Clear cover to tension reinforcement $c_c = 25 \text{ mm}$

Materials

Specified compressive strength of concrete f'c = 20 MPaSpecified yield strength of reinforcement $f_y = 420 \text{ MPa}$ Modulus of elasticity $f_y = 420 \text{ MPa}$

Compression-controlled strain limit - 21.2.2.1 $\varepsilon_{ty} = 0.002$

Minimum tensile strain - 7.3.3.1 $\epsilon_{min} = \epsilon_{ty} + 0.003 = \textbf{0.005}$

Concrete modification factor $\lambda = 1.00$

Maximum design moment and shear in span (per 1 m width of slab)

 $\label{eq:maximum} \mbox{Maximum ultimate positive moment} \qquad \qquad \mbox{M}_{us} = \mbox{29.50 kNm/m} \\ \mbox{Maximum ultimate shear force} \qquad \qquad \mbox{V}_{u} = \mbox{24.80 kN/m} \\ \mbox{V}_{u} = \mbox{24.80 kN/m} \\ \mbox{Maximum ultimate shear force} \qquad \qquad \mbox{V}_{u} = \mbox{24.80 kN/m} \\ \mbox{Maximum ultimate shear force} \qquad \qquad \mbox{V}_{u} = \mbox{24.80 kN/m} \\ \mbox{Maximum ultimate shear force} \qquad \qquad \mbox{V}_{u} = \mbox{24.80 kN/m} \\ \mbox{Maximum ultimate shear force} \qquad \qquad \mbox{V}_{u} = \mbox{24.80 kN/m} \\ \mbox{Maximum ultimate shear force} \qquad \qquad \mbox{V}_{u} = \mbox{Maximum ultimate shear force} \\ \mbox{Maximum ultimate shear force} \qquad \qquad \mbox{V}_{u} = \mbox{Maximum ultimate shear force} \\ \mbox{Maximum ultimate shear force} \qquad \qquad \mbox{V}_{u} = \mbox{Maximum ultimate shear force} \\ \mbox{Maximum ultimate shear force} \qquad \mbox{Maximum ultimate shear force} \\ \mbox{Maximum ultimate shear force} \qquad \mbox{Maximum ultimate shear force} \\ \mbox{Maximum ultimate shear force} \\ \mbox{Maximum ultimate shear force} \qquad \mbox{Maximum ultimate shear force} \\ \$

Reinforcement calculation - positive moment

Tension steel provided 12\phi @ 150 mm o.c.

Depth to tension steel $d = (h - c_c - D / 2) = 119 \text{ mm}$

Stress block depth factor $\beta_1 = 0.85$

Reinforcement ratio at strain of ϵ_{min} $\rho_b = 0.85 \times \beta_1 \times f'_c / f_y \times (0.003 / (0.003 + \epsilon_{min})) = \textbf{0.013}$

 $\rho t = 0.0018$

Maximum reinforcement ratio $\rho_{max} = \rho_b = 0.013$

Maximum area of tension steel $A_{s_max} = \rho_{max} \times d = 1535 \text{ mm}^2/\text{m}$

Min ratio of transverse reinforcement – cl. 7.6.1.1

Min area tension steel req'd – cl. 7.6.1.1 $A_{s_min} = \rho_t \times h = 270 \text{ mm}^2/\text{m}$

Area required for bending $A_{s_req} = 39 \text{ mm}^2/\text{m}$

MshStructure

Nicosia Haspolat via mersin 10

Project				Job Ref.	
Calc. by Asst. Prof. Dr. Shihab Ibrahim (PhD, M.ACI, Aff.M.ASCE)			Sheet no./rev.	Sheet no./rev.	
Section	Date	Chk'd by	Date	App'd by	Date

Area of tension steel provided

As prov = **754** mm $^{2}/m$

PASS - area of steel provided - OK

Steel stress - cl. 24.3.2.1

 $f_s = 2/3 \times f_y = 280.0 \text{ MPa}$

Max allowable spacing - cl. 7.7.2.3 & cl. 24.3.2

 $s_{max} = min(3 \times h, 450 \text{ mm}, 380 \text{ mm} \times (280 \text{ MPa} / f_s) - 2.5 \times c_c, 300 \text{ mm} \times (280 \text{ MPa} / f_s)) = 300.0 \text{ mm}$

Actual tensile bar spacing provided s = 150 mm

PASS - spacing of bars (positive moment steel) less than maximum allowable

Library item: Steel calcs (SAG)

Check for section - positive moment

Depth of equivalent rectangular stress block $a = (A_{s_prov} \times f_y) / (0.85 \times f'_c) = 19 \text{ mm}$

Depth of neutral axis $c = a / \beta_1 = 22 \text{ mm}$

Net tensile strain in long. steel at nominal strength $\epsilon_t = 0.003 \times [(d - c) / c] = 0.0133$

Tensile strain exceeds minimum required, design OK

Required nominal flexural strength Mus = 29.50 kNm/m

Strength reduction factor $\phi = 0.9$

Nominal flexural strength $M_{ns_prov} = A_{s_prov} \times f_y \times (d - a / 2) = 34.73 \text{ kNm/m}$

Design flexural strength $\phi M_{\text{ns_prov}} = \phi \times M_{\text{ns_prov}} = 31.26 \text{ kNm/m}$

PASS - Design flexural strength exceeds required flexural strength

Transverse reinforcement - (for shrinkage and temperature)

Transverse reinforcement provided 12 ϕ @ 150 mm o.c. Transverse reinforcement provided At_prov = 754 mm²/m

Min ratio of transverse reinforcement – cl. 7.6.1.1 $\rho_t = 0.0018$

Minimum area of transverse reinforcement required $A_{t_req} = \rho_t \times h = 270 \text{ mm}^2/\text{m}$

PASS - area of inner steel provided (transverse) OK

Maximum allowable spacing of bars $s_{max_t} = min(5 \times h, 450 \text{ mm}) = 450 \text{ mm}$

Actual transverse bar spacing provided $s_t = 150 \text{ mm}$

PASS - spacing of transverse bars is less than allowable

Library item: Transverse steel calcs

Check for shear

Required shear strength $V_u = 24.80 \text{ kN/m}$

Size effect factor – cl. 22.5.5.1.3 $\lambda_s = \min(\sqrt{(2/(1 + 0.004 * d/1 mm))}, 1.0) = 1.00$

Ratio of longitudinal reinforcement $\rho_{W} = A_{s_prov} / d = 0.006$

Shear strength provided by concrete $V_c = \min(0.66 \times \lambda_s \times \lambda \times (\rho_w)^{1/3}, \ 0.42 \times \lambda) \times \sqrt{(f'_c / 1 \text{ MPa})} \times 1 \text{ MPa} \times d = 0.0000 \times 10^{-10} \times 10^{$

64.99 kN/m

Shear strength provided by shear steel (assumed) $V_s = 0.00 \text{ kN/m}$

Shear capacity of section $V = V_c + V_s = 64.99 \text{ kN/m}$ Design shear capacity of section $\phi V = 0.75 \times V = 48.75 \text{ kN/m}$

PASS - One-way shear capacity

Check of clear cover - cl. 20.5.1.1

Permissible min nominal cover to all reinforcement cmin = 20 mm

Clear cover to tension reinforcement (+ve moment) $c_c = h - d - D/2 = 25 \text{ mm}$

PASS - cover to steel resisting positive moment exceeds allowable minimum cover

Deflection

Support condition Both ends continuous

MshStructure

Nicosia Haspolat via mersin 10

Project				Job Ref.	
Calc. by Asst. Prof. Dr. Shihab Ibrahim (PhD, M.ACI, Aff.M.ASCE)				Sheet no./rev.	
Section	Date 09-Jun-25	Chk'd by	Date	App'd by	Date

Basic span-to-thickness ratio - Table 7.3.1.1	ratiobasic = 28
Type of concrete	Normal weight

Concrete density factor - Table 7.3.1.1 fdensity = 1.00

Allowable span-to-thickness ratio $ratio_{allow} = ratio_{basic} / (f_{density} \times (0.4 + f_y / 700 \text{ N/mm}^2)) = 28.000$ Actual span-to-thickness ratio $ratio_{actual} = I_n / h = 13.333$

PASS - The slab thickness is adequate to control deflection

Design summary

Slab is 150 mm thick in 20 MPa concrete

Tension steel provided (+ve) moment, 12 mm dia. @ 150 mm o.c in 420 MPa steel

Transverse steel provided, 12 mm dia. @ 150 mm o.c in 420 MPa steel