Exploração de dados - Banco Czech

Bruno Santos Wance de Souza Lucas de Jesus Matias Luiz Cesar Costa Raymundo

21 de novembro de 2018

Contents

Pagamento de Empréstimo
Leitura dos dados
Criação do modelo
Análise das variáveis
Predição do modelo
Verificação da previsão
Conclusão

Pagamento de Empréstimo

Leitura dos dados

Carregaremos os dados do csv gerado a partir da planilha para a variável "pagamentoEprestimo".

```
pagamentoEmprestimo <-
    read.csv2("./dados/pagamento_emprestimo.csv", stringsAsFactors = FALSE)</pre>
```

Criação do modelo

Utilizaremos a funcionalidade glm para geração do modelo de regressão e vincularemos à variável glmPagamento.

```
glm(data = pagamentoEmprestimo,
   formula = pagamento ~ estadocivil + idade + sexo, family = binomial) ->
glmPagamento
```

Análise das variáveis

Os valores Ps das variáveis reijeitam a hipótese inicial de que são irrelevantes para o modelo, portanto consideramos todas as variáveis úteis para a predição.

```
summary(glmPagamento)
##
## Call:
  glm(formula = pagamento ~ estadocivil + idade + sexo, family = binomial,
##
       data = pagamentoEmprestimo)
##
## Deviance Residuals:
       Min
               1Q
                     Median
                                   3Q
                                           Max
                                        2.1662
## -2.4892 -0.4015
                      0.4166
                               0.5905
##
```

```
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.96591
                         1.12267
                                  -1.751 0.07993
## estadocivil -2.95095
                          0.58293 -5.062 4.14e-07 ***
## idade 0.11614
                          0.04432
                                   2.621 0.00877 **
## sexo
               1.30123
                          0.43861
                                   2.967 0.00301 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
  (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 212.70 on 179 degrees of freedom
## Residual deviance: 146.65 on 176 degrees of freedom
## AIC: 154.65
```

Predição do modelo

Para testar o modelo, realizamos a predição.

Number of Fisher Scoring iterations: 5

```
glmprobsPagamento <- predict(glmPagamento, type="response")</pre>
```

Consideramos a predição acima de 0.5 como predição para o pagamento do empréstimo e menor ou igual a 0.5 como não pagamento.

```
nLinhasPagamento <- nrow(pagamentoEmprestimo)
glmpredPagamento <- rep(0, nLinhasPagamento)
glmpredPagamento[glmprobsPagamento > 0.5] <- 1
```

Verificação da previsão

Comparando a predição com os dados que já possuíamos, obtivemos 24 True Negatives, 125 True Positives, de um total de 180. Conseguímos prever os pagamentos com aproximadamente 82,8% de sucesso

```
table(glmpredPagamento, pagamentoEmprestimo$pagamento)
```

```
## ## glmpredPagamento 0 1 ## 0 24 5 ## 1 26 125
```

Conclusão

O modelo gerado obteve um sucesso de 82,8% de sucesso sobre os dados que possuíamos.