[5]

End Semester Examination, Spring, 2021–22

Full marks: 50 Exam duration: 3 Hours

Answer all questions. Figures next to each question in square bracket indicate marks.

All Parts of a question should be answered at one place.

This question paper contains TWO pages.

1. State the conditions when a function would be said linear map. What are zero map and identity map? Define $T: \mathbb{R}^3 \to \mathbb{R}^2$ and $b, c \in \mathbb{R}$

T(x, y, z) = (2x - 4y + 3z + b, 6x + cxyz)

Show that T is linear if and only if b = c = 0. [5]

2. Test the linearity of the following maps.

- (a) $T: \mathbb{R}^3 \to \mathbb{R}^2$, $T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} 1 & 4 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$
- (b) $T: \mathbb{R}^3 \to \mathbb{R}^2$, $T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} 1 \\ y \end{pmatrix}$
- 3. Answer the following using the fundamental theorem of linear maps: [10]
 - (a) Let V and W are finite dimensional vector spaces such that dim $V > \dim W$. Then no linear maps $T: V \to W$ is injective.
 - (b) Let V and W are finite dimensional vector spaces such that dim $V < \dim W$. Then no linear maps $T: V \to W$ is surjective.
 - (c) If $T: V \to W$ is injective and $\{v_1, v_2, \dots, v_n\}$ is linearly independent in V then prove that $\{T(v_1), T(v_2), \dots, T(v_n)\}$ is linearly independent in W.
 - (d) Give a few examples of $T: \mathbb{R}^4 \to \mathbb{R}^4$ such that $\mathrm{Im}(T) = \mathrm{Null}(T)$
- 4. Let $T:V\to W$ be a linear map. If $\{v_1,v_2,\cdots,v_k\}$ spans V then $\{T(v_1),T(v_2),\cdots,T(v_k)\}$ spans $\mathrm{Im}(T)\subseteq W$.
- 5. Find the Image and Kernel of the following linear maps along with their geometric interpretations: [6]
 - (a) $T: \mathbb{R}^3 \to \mathbb{R}^3$, $T\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x \\ y\cos\theta z\sin\theta \\ y\sin\theta + z\cos\theta \end{pmatrix}$
 - (b) $T: \mathbb{R}^3 \to \mathbb{R}^3$, $T\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$
 - (c) $T: \mathbb{R}^3 \to \mathbb{R}^3$, $T\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} -x \\ y \\ z \end{pmatrix}$

[2]

[2]

[3]

- 6. Let $T: V \to V$. A subspace U of V is called invariant under T if $u \in U \Rightarrow T(u) \in U$. Show that the following subspace of V are invariant under T.
 - (a) $\{0\}$
 - (b) V
 - (c) Null(T)
 - (d) Im(T)
- 7. Find x so that (-1, x, 3) is orthogonal to (1, 2, 3).
- 8. Given a matrix $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a & b & c \end{pmatrix}$

and its characteristic polynomial as $-\lambda^3 + 4\lambda^2 + 5\lambda + 6$.

Write the values of a, b, and c.

9. Find the values of x and y if $A = \begin{pmatrix} x & 1 \\ -2 & y \end{pmatrix}$ and $B = \frac{1}{25} \begin{pmatrix} 114 & 48 \\ 48 & 86 \end{pmatrix}$

have the same eigenvalues.

10. A discrete random variable X has the probability function — [4]

$$P(X = x) = \begin{cases} kx & \text{if } x = 2, 4, 6\\ k(x - 2) & \text{if } x = 8\\ 0 & \text{otherwise} \end{cases}$$

where k is constant.

- (a) what is the value of k?
- (b) find CDF F(5).
- (c) find expectation E(X).
- (d) find $E(X^2)$
- 11. Let X be a discrete random variable with the following PMF

x	0.2	0.4	0.5	0.8	1	otherwise
P(X=x)	0.1	0.1	0.2	0.3	0.3	0

- (a) find the range of the random variable X.
- (b) find $P(X \le 0.5)$.
- (c) find P(0.25 < X < 0.75).
- 12. You take an exam that contains 20 multiple-choice questions. Each question has 4 possible options. You know the answer to 10 questions, but you have no idea about the other 10 questions so you choose answers randomly. Your score X on the exam is the total number of correct answers. Find the PMF of X. What is P(X > 15)? [3]

##