Group actions on models

ABSTRACT. A set is *strongly generic* if the intersection of any finitely many of its translations is generic.

Theorem 18 shows that the condition *strongly generic* = *generic* is robust. It might be of some interest (it is reminiscent of *forking* = *dividing*). Does it have interesting examples?

Proposition 26 looks interesting. Can it be strengthened to obtain a type-definable group?

The connections with topological dynamics have not been explored :(

1. The dual perspective on invariance

The notions in this section are well-known but sometimes the terminology differs.

In this chapter $\Delta \subseteq L_{xz}(\mathcal{U})$. Let $\mathcal{Z} \subseteq \mathcal{U}^z$. We write $\Delta(\mathcal{Z})$ for the set of formulas of the form $\varphi(x;b)$ for some $\varphi(x;z) \in \Delta$ and some $b \in \mathcal{Z}$. We write $\Delta^{\pm}(\mathcal{Z})$ for the set of formulas in $\Delta(\mathcal{Z})$ or negation thereof. Furthermore, we write $S_{\Delta}(\mathcal{Z})$ for the set of complete $\Delta^{\pm}(\mathcal{Z})$ -types.

We write $\Delta^{\mathbb{B}}(\mathbb{Z})$ for the set of Boolean combinations of formulas in $\Delta(\mathbb{Z})$.

1 Assumption Let G be a group that acts on some sets $\mathfrak{X} \subseteq \mathfrak{U}^x$ and $\mathfrak{Z} \subseteq \mathfrak{U}^z$. We require that for every $\varphi(x;z) \in \Delta$ the set $\varphi(\mathfrak{X};\mathfrak{Z})$ is invariant under the action of G. For convenience, we will assume that G is the identity outside \mathfrak{X} and \mathfrak{Z} .

When $p(x) \subseteq \Delta^{B}(\mathcal{Z})$ and $\mathcal{D} \subseteq \mathcal{U}^{x}$ we write $p(x) \vdash x \in \mathcal{D}$ if the inclusion $\psi(\mathcal{X}) \subseteq \mathcal{D}$ for some $\psi(x)$ that is conjunctions of formulas in p(x).

Let $\mathcal{D} \subseteq \mathcal{U}^z$. We say that \mathcal{D} is invariant under the action of G, or G-invariant, if \mathcal{D} is fixed setwise by G. That is, $g\mathcal{D} = \mathcal{D}$ for every $g \in G$. Yet in other words, if

is1.
$$a \in \mathcal{D} \leftrightarrow ga \in \mathcal{D}$$
 for every $a \in \mathcal{Z}$ and every $g \in G$.

A formula is *G*-invariant if the set it defines is *G*-invariant. We say that $p(x) \subseteq \Delta^{B}(\mathbb{Z})$ is invariant under the action of *G*, or *G*-invariant, if for every $\Delta^{B}(\mathbb{Z})$ -formula $\vartheta(x;\bar{a})$.

it1.
$$\vartheta(x;\bar{a}) \in p \Leftrightarrow \vartheta(x;g\bar{a}) \in p$$
 for every $g \in G$.

It should be clear that invariant under the action of Aut(U/A) coincides with invariant over A and Lascar invariant over A coincides with invariant under the action of Autf(U/A).

Note that p(x) is G-invariant exactly when the sets $\mathcal{D}_{p,\vartheta} = \{b : \vartheta(x;b) \in p\} \subseteq \mathcal{U}^z$ are. Now we would like to discuss invariance using sets $\mathcal{D} \subseteq \mathcal{U}^x$.

An immediate consequence of the invariance of $\varphi(\mathfrak{X}; \mathcal{Z})$ is that any G-translate of a $\Delta^{\mathsf{B}}(\mathcal{Z})$ -definable set is again $\Delta^{\mathsf{B}}(\mathcal{Z})$ -definable. In particular for every $\Delta^{\mathsf{B}}(\mathcal{Z})$ -formula $\vartheta(\boldsymbol{x}; \bar{b})$ and every $g \in G$

1

$$g[\vartheta(\mathbf{X};\bar{b})] = \vartheta(\mathbf{X};g\bar{b}).$$

Therefore, a type $p(x) \subseteq \Delta^{B}(\mathcal{Z})$ is *G*-invariant if

$$p(x) \vdash x \in \mathcal{D} \iff p(x) \vdash x \in g \cdot \mathcal{D} \text{ for every } \Delta^{\mathsf{B}}(\mathcal{Z})\text{-definable } \mathcal{D} \subseteq \mathcal{X} \text{ and } g \in G.$$

A set $\mathcal{D} \subseteq \mathcal{X}$ is **generic** under the action of G, or G-generic for short, if finitely many G-translates of \mathcal{D} cover \mathcal{X} ; we say n-G-generic if $\leq n$ translates suffices. Dually, we say that \mathcal{D} is **persistent** under the action of G, or G-persistent for short, if the intersection of any finitely many G-translates of \mathcal{D} is nonempty; we say n-G-persistent when the request is limited to $\leq n$ translates. When \mathcal{X} and \mathcal{X} are not clear from the context, we say that these notions are **relative** to \mathcal{X} and \mathcal{X} .

The same properties may be attributed to formulas (as these are identified with the set they define). When these properties are attributed to a type p(x), we understand that they hold for every conjunction of formulas in p(x).

The terminology above is non-standard. In [1] the authors write *quasi-non-dividing* for *persistent* under the action of Aut(U/A). Their terminology has good motivations, but it would be a mouthful if adapted to our context. In topological dynamics similar notions have been introduced with different terminology: *syndetic* corresponds to *generic* and *thick* corresponds to *persistent*.

2 Example If $p(x) \subseteq L(\mathcal{U})$ is finitely satisfiable in A then p(x) is persistent under the action of $G = \operatorname{Aut}(\mathcal{U}/A)$ relative to any $\mathcal{X} \supseteq A^x$. In fact, the same $a \in A^x$ that satisfies $\varphi(x)$ also satisfies every $\operatorname{Aut}(\mathcal{U}/A)$ -translate of $\varphi(x)$.

Notation: for $\mathfrak{D} \subseteq \mathcal{U}^x$ and $H \subseteq G$ we write $H\mathfrak{D}$ for $\{h\mathfrak{D} : h \in H\}$.

In this chapter many proofs require some juggling with negations as epitomized by the following fact.

- 3 Fact The following are equivalent
 - 1. \mathcal{D} is not *G*-generic
 - 2. $\neg \mathbb{D}$ is *G*-persistent.

Proof. Immediate by spelling out the definitions

- 1. there are no finite $H \subseteq G$ such that $\mathfrak{X} \subseteq \cup H\mathfrak{D}$.
- 2. $\emptyset \neq \mathfrak{X} \cap (\cap H \neg \mathfrak{D})$ for every finite $H \subseteq G$.

Define the following type

$$\gamma_G(x) = \{\vartheta(x) \in \Delta^B(\mathcal{Z}) : \vartheta(x) \text{ is } G\text{-generic}\}$$

4 Corollary Let $p(x) \subseteq \Delta^{\mathsf{B}}(\mathcal{Z})$ be such that $\gamma_G(x) \cup p(x)$ is finitely satisfiable in \mathcal{X} . Then p(x) is G-persistent.

Proof. Let $\vartheta(x)$ be a conjunction of formulas in p(x). As $\gamma_G(x)$ is finitely satisfiable in $\vartheta(\mathfrak{X})$, it cannot be that $\neg \vartheta(x)$ is *G*-generic. From Fact 3, we obtain that $\vartheta(x)$ is *G*-persistent.

The converse implication holds for complete types.

- **5 Theorem** Let $p(x) \in S_{\Delta}(\mathcal{Z})$. Then the following are equivalent
 - 1. p(x) is *G*-invariant and finitely satisfiable in X
 - 2. $p(\mathbf{x}) \vdash \gamma_G(\mathbf{x})$
 - 3. p(x) is *G*-persistent.

Proof. $1\Rightarrow 2$. Let $H\subseteq G$ be finite such that $\mathfrak{X}\subseteq \cup H\mathfrak{D}$. By completeness and finite satisfiability, $p(x)\vdash x\in \cup H\mathfrak{D}$. Again by completeness, $p(x)\vdash x\in h\mathfrak{D}$ for some $h\in H$. Finally, by invariance, $p(x)\vdash x\in \mathfrak{D}$.

2⇒3. Let $\mathbb D$ be defined by a conjunction of formulas in p(x). If $\mathbb D$ is not G-persistent then, by Fact 3, $\neg \mathbb D$ is G-generic. By 2, $p(x) \vdash x \notin \mathbb D$, a contradiction.

 $3\Rightarrow 1$. First note that *G*-persistent types are finitely satisfiable in \mathfrak{X} . Now, suppose p(x) is not *G*-invariant. Then, by completeness, $p(x) \vdash \varphi(x;b) \land \neg \varphi(x;gb)$ for some $g \in G$. Clearly $\varphi(x;b) \land \neg \varphi(x;gb)$ is not 2-*G*-persistent as it is inconsistent with its *g*-translate.

- **6 Corollary** The following are equivalent for every $\Delta^{B}(\mathcal{Z})$ -definable set \mathfrak{D}
 - 1. $\gamma_G(x) \vdash x \in \mathcal{D}$
 - 2. $p(x) \vdash x \in \mathcal{D}$ for every *G*-persistent $p(x) \in S_{\Delta}(\mathcal{Z})$.

Proof. $1\Rightarrow 2$. This is an immediate consequence of Theorem 5.

```
2⇒1. Suppose \gamma_G(x) \not\vdash x \in \mathcal{D}. Then there is a type p(x) \in S_{\Delta}(\mathcal{Z}) consistent with \gamma_G(x) \cup \{x \notin \mathcal{D}\}. By Corollary 4 p(x) is G-persistent. Then ¬2.
```

The theorem yields a necessary condition for the existence of *G*-invariant global $\Delta^{B}(\mathcal{Z})$ -types.

- **7 Corollary** If there exists a *G*-invariant type $p(x) \in S_{\Delta}(\mathbb{Z})$ finitely satisfiable in \mathfrak{X} then for every $\Delta^{\mathsf{B}}(\mathbb{Z})$ -definable set \mathfrak{D}
 - 1. \mathcal{D} and $\neg \mathcal{D}$ are not both *G*-generic
 - 2. if \mathfrak{D} is *G*-generic then it is *G*-persistent
 - 3. $\gamma_G(x)$ is finitely satisfiable in X.

Proof. Clearly, 1 and 2 are equivalent by Fact 3 and follow from 3. Finally, 3 is an immediate consequence of 2 of Theorem 5. \Box

The following theorem gives a necessary and sufficient condition for the existence of global G-invariant $\Delta^B(\mathbb{Z})$ -type. Ideally, we would like to have that every G-persistent $\Delta^B(\mathbb{Z})$ -type extends to a global persistent type. Unfortunately this is not true in general (it requires stronger assumptions, see Section 4). A set \mathbb{D} is G-wide if every finite cover of \mathbb{D} by $\Delta^B(\mathbb{Z})$ -definable sets contains a G-persistent set. In [1] a similar property is called *quasi-non-forking*. Our use of the term *wide* is consistent with [2], though we apply it to a narrow context. A type is G-wide if every conjunction of formulas in the type is G-wide.

- **8 Theorem** Let \mathcal{D} be a $\Delta^{\mathbb{B}}(\mathbb{Z})$ -definable set. Then the following are equivalent
 - 1. $\gamma_G(x)$ is finitely satisfied in $\mathfrak{D} \cap \mathfrak{X}$
 - 2. there exists a *G*-persistent type $p(x) \in S_{\Delta}(\mathcal{Z})$ containing $x \in \mathcal{D}$
 - 3. \mathfrak{D} is *G*-wide.

Proof. 1 \Rightarrow 2. By Corollary 4, it suffices to pick any $p(x) \in S_{\Delta}(\mathcal{Z})$ containing $\gamma_G(x)$ and finitely satisfied in $\mathfrak{D} \cap \mathfrak{X}$.

 $2 \Rightarrow 1$. By Theorem 5.

2⇒3. Let $\mathcal{C}_1, \ldots, \mathcal{C}_n$ be $\Delta^{\mathbb{B}}(\mathcal{Z})$ -definable sets that cover \mathfrak{D} . Pick p(x) as in 2. By completeness, $p(x) \vdash x \in \mathcal{C}_i$ for some i. Then, by Theorem 5, $\neg \mathcal{C}_i$ is not G-generic. Therefore, by Fact 3, \mathcal{C}_i is G-persistent.

 $3\Rightarrow 2$. Let p(x) be maximal among the $\Delta^B(\mathcal{Z})$ -types that are finitely satisfiable in $\mathcal{X}\cap \mathcal{D}$ and are such that $\vartheta(\mathcal{U}^x)$ is G-wide for every $\vartheta(x)$ that is conjunction of formulas in p(x). We claim that p(x) is a complete $\Delta^B(\mathcal{Z})$ -type. Suppose for a contradiction that $\vartheta(x)$, $\neg \vartheta(x) \notin p$. By maximality there is some formula $\psi(x)$, a conjunction of formulas in p(x), and some $\Delta^B(\mathcal{Z})$ -definable sets $\mathcal{C}_1, \ldots, \mathcal{C}_n$ that cover both $\psi(\mathcal{U}^x) \cap \vartheta(\mathcal{U}^x)$ and $\psi(\mathcal{U}^x) \setminus \vartheta(\mathcal{U}^x)$ and such that no \mathcal{C}_i is G-persistent. As $\mathcal{C}_1, \ldots, \mathcal{C}_n$ cover $\psi(\mathcal{U}^x)$ this is a contradiction. It is only left to show that p(x) is G-invariant. This follows from completeness and Theorem 5.

9 Corollary Let \mathcal{D} be a G-wide $\Delta^{\mathsf{B}}(\mathcal{Z})$ -definable set. Then $\mathcal{D} \cap g \cdot \mathcal{D}$ is G-wide for every $g \in G$.

Proof. Let $p(x) \in S_{\Delta}(\mathcal{Z})$ be a *G*-persistent type such that $p(x) \vdash x \in \mathcal{D}$. By *G*-invariance $p(x) \vdash x \in g \cdot \mathcal{D}$.

- **10 Fact** Let \mathcal{D} be a $\Delta^{\mathsf{B}}(\mathcal{Z})$ -definable set. The following are equivalent
 - 1. \mathcal{D} is G-wide;
 - 2. every finite cover of \mathfrak{D} by $\Delta^{\pm}(\mathfrak{Z})$ -definable sets contains a G-persistent set.

Let $q(x) \subseteq \Delta^{\mathsf{B}}(\mathcal{Z})$ be G-invariant. We say that q(x) is G-prime if for every $\Delta^{\mathsf{B}}(\mathcal{Z})$ -definable set \mathcal{D} and every $g \in G$ if $q(x) \vdash x \in (\mathcal{D} \cup g \cdot \mathcal{D})$ then $q(x) \vdash x \in \mathcal{D}$.

11 Proposition The type $\gamma_G(x)$ is *G*-prime.

Proof. Suppose $\gamma_G(x) \vdash x \in (\mathcal{D} \cup g \cdot \mathcal{D})$. Assume that $\gamma_G(x)$ is consistent, otherwise the claim is trivial. Let $p(x) \in S_{\Delta}(\mathcal{Z})$ be G-persistent. We claim that $p(x) \vdash x \in \mathcal{D}$. The proposition follows from the claim by Corollary 6. By completeness $p(x) \vdash x \in \mathcal{D}$ or $p(x) \vdash x \in g \cdot \mathcal{D}$. If the latter occurs, $p(x) \vdash x \in \mathcal{D}$ follows from invariance. \square

2. Strong genericity

Unfortunately, *G*-genericy is not preserved under intersection. To obtain closure under intersection, we need to push the concept to a higher level of complexity.

A set $\mathcal{D} \subseteq \mathcal{U}^x$ is strongly *G*-generic if for every finite $H \subseteq G$ the set $\cap H \mathcal{D}$ is generic (recall that $H \mathcal{D}$ stands for $\{h \cdot \mathcal{D} : h \in H\}$). Dually, we say that \mathcal{D} is

weakly *G*-persistent if for some finite $H \subseteq G$ the set $\cup H \mathcal{D}$ is persistent. Again, the same properties may be attributed to formulas and types.

12 Lemma The intersection of two strongly *G*-generic sets is strongly *G*-generic.

Proof. We may assume that all sets mentioned below are subsets of \mathfrak{X} . Let \mathfrak{D} and \mathfrak{C} be strongly G-generic and let $K \subseteq G$ be an arbitrary finite set. It suffices to prove that $\mathfrak{B} = \cap K(\mathfrak{C} \cap \mathfrak{D})$ is G-generic. Clearly $\mathfrak{B} = \mathfrak{C}' \cap \mathfrak{D}'$, where $\mathfrak{C}' = \cap K\mathfrak{C}$ and $\mathfrak{D}' = \cap K\mathfrak{D}$. Note that \mathfrak{C}' and \mathfrak{D}' are both strongly G-generic. In particular $\mathfrak{X} = \bigcup H\mathfrak{D}'$ for some finite $H \subseteq G$. Now, from

As \mathfrak{C}' is strongly G-generic, $\cap H \mathfrak{C}'$ is G-generic. Therefore $\cup H \mathfrak{B}$ is also G-generic. The G-genericity of \mathfrak{B} follows.

Define the following type

$${}^{\mathbf{s}}\gamma_G(x) = \{\vartheta(x) \in \Delta^{\mathbf{B}}(\mathbb{Z}) : \vartheta(x) \text{ is strong } G\text{-generic}\}$$

13 Corollary The type ${}^{s}\gamma_{G}(x)$ is finitely satisfiable in X, strongly G-generic, and G-invariant.

Proof. The strong G-genericity is an immediate consequence of Lemma 12. The finite satisfiability is a consequence of G-genericity. As for invariance, note that any translate of a strongly G-generic formula is also strongly G-generic.

14 Corollary Let $p(x) \subseteq L(\mathcal{U})$ be such that ${}^s\gamma(x) \cup p(x)$ is finitely satisfiable in \mathcal{X} . Then p(x) is weakly G-persistent.

Proof. Similar to Corollary 4. Let $\vartheta(x)$ be a conjunction of formulas in p(x). As ${}^{s}\gamma(\mathfrak{X})$ is finitely satisfiable in $\vartheta(\mathfrak{X})$, it cannot be that $\neg\vartheta(x)$ is strongly *G*-generic. From Fact 3, we obtain that $\neg\vartheta(x)$ not being strongly *G*-generic is equivalent to $\vartheta(x)$ being weakly *G*-persistent.

3. The diameter of a Lascar type

As an application we prove an interesting theorem of Newelski's on Lascar types. Let $\mathcal{L}(a/A)$, the set of tuples with the same Lascar strong type as a over A. This set is the union of a chain of type-definable sets of the form $\{x: d_A(a,x) \leq n\}$, where d_A is the distance in the Lascar graph. In this section we prove that $\mathcal{L}(a/A)$ is type-definable (if and) only this chain is finite. In other words, only if the connected component of a in the Lascar graph has finite diameter.

It is convenient to address the problem in more general terms. We work under Assumption 1 and also assume that G acts transitively on \mathfrak{X} i.e. $Ga = \mathfrak{X}$ for every $a \in \mathfrak{X}$. Let $K \subseteq G$ be a set of generators that is

- 1. symmetric i.e. it contains the unit and is closed under inverse
- 2. conjugacy invariant i.e. $g K g^{-1} = K$ for every $g \in G$

We define a discrete metric on \mathfrak{X} . For $a,b \in \mathfrak{X}$ let d(a,b) be the minimal n such that $a \in K^n b$. This defines a metric which is G-invariant by 2. The diameter of a set $\mathfrak{C} \subseteq \mathfrak{X}$ is the supremum of d(a,b) for $a,b \in \mathfrak{C}$.

We are interested in sufficient conditions for \mathcal{X} to have finite diameter. The notions introduced in Section 2 offer some hint.

15 Proposition If X has a weakly persistent subset of finite diameter, then X itself has finite diameter.

Proof. Let $\mathcal{C} \subseteq \mathcal{X}$ be a weakly persistent set of diameter n. Let $H \subseteq G$ be finite such that $\cup H$ \mathcal{C} is persistent. We claim that also $\cup H$ \mathcal{C} has finite diameter. Let $a \in \mathcal{C}$ be arbitrary. Let m be larger than d(ha,ka) for all $h,k,\in H$. Now, let hb and kc, for some $h,k,\in H$ and $b,c\in \mathcal{C}$, be two arbitrary elements of $\cup H$ \mathcal{C} . As $h\mathcal{C}$ and $k\mathcal{C}$ have the same diameter of \mathcal{C} ,

$$d(hb, kc) \leq d(hb, ha) + d(ha, ka) + d(ka, kc)$$

$$< n + m + n.$$

This proves that \cup H \mathfrak{C} has finite diameter. Therefore, without loss of generality, we may assume that \mathfrak{C} itself is persistent.

By the transitivity of the action, any two elements of \mathfrak{X} are of the form ha, ka for some $h, k \in G$ and some $a \in \mathfrak{C}$. By persistency, there are $c \in \mathfrak{C} \cap h\mathfrak{C}$ and $d \in \mathfrak{C} \cap k\mathfrak{C}$. Then

$$d(ha, ka) \leq d(ha, c) + d(c, d) + d(d, ka)$$

$$\leq n + n + n.$$

Therefore the diameter of \mathcal{X} does not exceed 3n.

16 Theorem Suppose that \mathfrak{X} and the sets $\mathfrak{X}_n = K^n a$, for some $a \in \mathfrak{X}$, are type-definable. Then \mathfrak{X} has finite diameter.

Proof. By Proposition 15, it suffices to prove that \mathcal{X}_n is weakly persistent. By Corollary 14 it suffices to show that for some n the type ${}^{\mathrm{s}}\gamma_G(x)$ is finitely satisfied in \mathcal{X}_n . Suppose not. Let $\psi_n(x) \in {}^{\mathrm{s}}\gamma_G$ be a formula that is not satisfied in \mathcal{X}_n . Then the type $p(x) = \{\psi_n(x) : n \in \omega\}$ is finitely satisfied in \mathcal{X} . From the type-definablity of \mathcal{X} it follows that p(x) has a realization in \mathcal{X} . As this realization belongs to some \mathcal{X}_n we contradict the definition of $\psi_n(x)$.

17 Example Let $K \subseteq \operatorname{Aut}(\mathcal{U}/A)$ be the set of automorphisms that fix a model containing A. Then the group G generated by K is $\operatorname{Autf}(\mathcal{U}/A)$ and $G \cdot a = \mathcal{X}$ is $\mathcal{L}(a/A)$. Let $\Delta = L_{xz}$ and $\mathcal{Z} = \mathcal{U}^z$. Then d(a,b) coincides with the distance in the Lascar graph. The sets $K^n \cdot a = \{x : d(x,a) \le n\}$ are type definable. Then from Theorem 16 it follows that $\mathcal{L}(a/A)$ is type definable (if and) only if it has a finite diameter.

4. A tamer landscape

Under suitable assumptions some notion introduced in this chapter coalesce, and we are left with a tamer landscape. In general, we have the following.

18 Theorem Assume

1. *G*-persistent $\Delta^{B}(\mathbb{Z})$ -definable sets are *G*-wide.

Then the following hold

- 2. *G*-generic $\Delta^{B}(\mathbb{Z})$ -definable sets are closed under intersection
- 3. *G*-generic $\Delta^{B}(\mathcal{I})$ -definable sets are strongly *G*-generic
- 4. weakly persistent $\Delta^{B}(\mathbb{Z})$ -definable sets are *G*-persistent.

Proof. Clearly 2⇔3⇔4.

1⇒2. Let \mathcal{C} and \mathcal{D} be G-generic $\Delta^{\mathbb{B}}(\mathbb{Z})$ -definable sets. Suppose for a contradiction that $\mathcal{C} \cap \mathcal{D}$ is not G-generic. Then $\neg(\mathcal{C} \cap \mathcal{D})$ is G-persistent. By 1 and Theorem 8 there is a G-invariant global $\Delta^{\mathbb{B}}(\mathbb{Z})$ -type p(x) containing $x \notin \mathcal{C} \cap \mathcal{D}$. By completeness either $p(x) \vdash x \notin \mathcal{C}$ or $p(x) \vdash x \notin \mathcal{D}$. This is a contradiction because by Theorem 5 $p(x) \vdash x \in \mathcal{C}$ and $p(x) \vdash x \in \mathcal{D}$.

19 Question Is 1 in Theorem 18 equivalent to 2-4?

20 Remark Assume 2-4 in Theorem 18 hold. Then the types $\gamma_G(x)$ and ${}^s\gamma_G(x)$ coincide, and therefore *G*-invariant global types exist. It is also worth mentioning that every positive Boolean combination of *G*-generic sets is *G*-generic.

5. The action of normal subgroups

Let $H \subseteq G$. The following is an immediate consequence of normality.

21 Remark For every $\mathfrak{D} \subseteq \mathcal{U}^x$ and every $g \in G$

 \mathfrak{D} is H-foo $\Leftrightarrow g \cdot \mathfrak{D}$ is H-foo,

where foo can be replaced by generic, invariant, persistent, wide. In particular, the type $\gamma_H(x)$ is G-invariant.

Recall that if $\gamma_H(x)$ is finitely satisfiable in X, then H-generic sets are H-wide, cf. Theorem 8. As it happens, we can slightly strengthen this fact.

22 Proposition Assume that $\gamma_H(x)$ is consistent. Let \mathfrak{D} be a $\Delta^{\mathsf{B}}(\mathbb{Z})$ -definable set. Then if \mathfrak{D} is G-generic it is also H-wide.

Proof. Let $p(x) \in S_{\Delta}(\mathbb{Z})$ be consistent with $\gamma_H(x)$. As \mathbb{D} is G-generic, by completeness $p(x) \vdash x \in g \cdot \mathbb{D}$ for some $g \in G$. Equivalently, $g^{-1} \cdot p \vdash x \in \mathbb{D}$. As p(x) is H-persistent, by Remark 21 $g^{-1} \cdot p(x)$ is also H-persistent. Then the proposition follows from Theorem 8.

6. Definable groups

In this section we assume that \mathcal{Z} and \mathcal{X} are type-definable over some set of parameters A. Moreover we assume that \mathcal{Z} is a group that act on \mathcal{X} . The group operations and the group action are assumed definable over A. We use the symbol \cdot for both the group multiplication and the group action.

Let $\Psi \subseteq L_x(\mathcal{U})$ be some small set of formulas. In this section Δ contains formulas $\varphi(x;z)$ of the form $\psi(z^{-1} \cdot x)$ for $\psi(x) \in \Psi$. The sets $\varphi(\mathfrak{X};\mathcal{Z})$ are \mathcal{Z} -invariant. We write 1 for the identity of \mathcal{Z} . If $\varphi(\mathfrak{X};1) \in \Delta^B(1)$ then $\varphi(\mathfrak{X};g) = g \cdot \varphi(\mathfrak{X};1)$.

The following auxiliary structure is useful. Let $\mathcal{U}^{\Delta} = \langle \mathfrak{X}; \mathfrak{Z} \rangle$ be a 2-sorted structure whose signature L^{Δ} contains relation symbols for every formula $\varphi(x;z) \in \Delta$. As there is little risk of confusion, these relations symbols are also denoted by $\varphi(x;z)$. In L^{Δ} we include also symbols for the formulas

$$\zeta_n(z_1,\ldots,z_n,z'_1,\ldots,z'_n) = \exists w \bigwedge_{i=1}^n w \cdot z_i = z'_i$$

Finally, note that as \mathcal{X} and \mathcal{Z} are assumed to be type-definable, \mathcal{U}^{Δ} is a saturated L^{Δ} -structure. In this section $G = \operatorname{Aut}(\mathcal{U}^{\Delta})$.

To each $h \in \mathbb{Z}$ we associate the L^{Δ} -automorphism $\langle a; g \rangle \mapsto \langle h \cdot a; h \cdot g \rangle$. Therefore \mathbb{Z} is, up to isomorphism, a subgroup of G. In fact, it is a normal subgroup.

23 Remark It is worth noticing that automorphisms of \mathcal{U}^{Δ} do not preserve the group operations nor the group action. However the formulas $\zeta_n(z_1,\ldots,z_n,z_1',\ldots,z_n')$ ensure that for every automorphism in $f \in G$ and finite set $B \subseteq \mathcal{Z}$, there is an automorphism in $g \in \mathcal{Z}$ that coincides with f on g. By saturation this is true also for any small set g. Therefore the g-orbit and the g-orbit of g-orbit of generic, persistent, wide under the actions of g and g coincide.

We also consider the action some other normal subgroup $H \subseteq G$.

- **24 Proposition** Let \mathfrak{D} be a Δ^{B} -definable set. Assume that $\gamma_H(x)$ is consistent. Then 1 \Rightarrow 2 holds, where
 - 1. D is Z-generic
 - 2. $g \cdot \mathbb{D}$ is *H*-wide for every $g \in \mathbb{Z}$.

Under the assumption of stability and with $H = \operatorname{Autf}(\mathcal{U}^{\Delta})$ a stronger claim obtains – the consistency of $\gamma_H(\mathbf{x})$ is guaranteed, and also the converse implication holds

Proof. Let g be given. If \mathfrak{D} is \mathbb{Z} -generic, then so is $g \cdot \mathfrak{D}$. Then $g \cdot \mathfrak{D}$ is, a fortiori, G-generic. Therefore 2 follows from Proposition 22.

We write $(g)_H$ for the *H*-orbit of *g*, that is, the set $\{f(g): f \in H\}$.

- **25 Proposition** Let $\vartheta(x; z_1, ..., z_n)$ be a Boolean combination of formulas $\varphi_i(x; z_i)$ for some $\varphi_i(x; z) \in \Delta$. Then for every $h_i \in (g_i)_H$ the following are equivalent
 - 1. $\vartheta(\mathbf{x}; g_1, \dots, g_n)$ is *H*-wide
 - 2. $\vartheta(\mathbf{x}; h_1, \dots, h_n)$ is *H*-wide.

Proof. Let $f_i \in H$ be such that $h_i \in f_i(g_i)$. Without loss of generality we can assume that only conjunctions occur in $\vartheta(x; g_1, \ldots, g_n)$. Let $\mathfrak{C}_i = \varphi_i(\mathfrak{X}; 1)$. Then 1 says that $\mathfrak{C} = g_1 \cdot \mathfrak{C}_1 \cap \cdots \cap g_n \cdot \mathfrak{C}_n$ is H-wide. Let $f_i \in H$ be such that $h_i = f_i(g_i)$. Then, by Corollary 9 also the intersection of the sets $f_i[\mathfrak{C}]$ is H-wide. A fortiori the intersection of the sets $f_i[g_i \cdot \mathfrak{C}_i]$ is H-wide. Then $1 \Rightarrow 2$ follows from Remark 23. By symmetry, this proves the equivalence.

If $A \subseteq \mathcal{I}$, we write $\langle A \rangle$ for the subgroup generated by A.

26 Proposition Let $\vartheta(x; z_1, ..., z_n)$ be a Boolean combination of formulas $\varphi_i(x; z_i)$ for some $\varphi_i(x; z) \in \Delta$. Let $g \in \mathbb{Z}$ be arbitrary. Assume that $\vartheta(x; 1, ..., 1)$ is H-wide. Then $\vartheta(x; h_1, ..., h_n)$ is H-wide for every

$$h_1,\ldots,h_n \in \left\langle \bigcup_{g\in\mathcal{Z}} (g)_H^{-1} \cdot (g)_H \right\rangle.$$

Proof. We proceed by induction on the number of factors of the form $a^{-1} \cdot b$, for some $a, b \in (g)_H$, that occur in h_1, \ldots, h_n . Without loss of generality we can assume that only conjunctions occur in $\vartheta(x; g_1, \ldots, g_n)$. Let $\mathfrak{C}_i = \varphi_i(\mathfrak{X}; 1)$. Assume inductively that $h_1 \cdot \mathfrak{C}_1 \cap \cdots \cap h_n \cdot \mathfrak{C}_n$ is H-wide. Pick two arbitrary $a, b \in (g)_H$. By Remark 21

$$a \cdot \mathcal{C}_1 \cap a \cdot h_1^{-1} \cdot h_2 \cdot \mathcal{C}_2 \cap \dots \cap a \cdot h_1^{-1} \cdot h_n \cdot \mathcal{C}_n$$
 is *H*-wide.

By Proposition 25, we can replace $a \cdot \mathcal{C}_1$ by $b \cdot \mathcal{C}_1$. Then, again by Remark 21

$$h_1 \cdot a^{-1} \cdot b \cdot \mathcal{C}_1 \cap h_2 \cdot \mathcal{C}_2 \cap \dots \cap h_n \cdot \mathcal{C}_n$$
 is *H*-wide.

27 Question Can we replace the group $\langle \bigcup_{g \in \mathbb{Z}} (g)_H^{-1} \cdot (g)_H \rangle$ in Proposition 26 with an *H*-invariant group?

7. Notes and references

- [1] Artem Chernikov and Itay Kaplan, Forking and dividing in NTP₂ theories, J. Symbolic Logic 77 (2012), 1–20.
- [2] Ehud Hrushovski, *Stable group theory and approximate subgroups*, J. Amer. Math. Soc. **25** (2012), no. 1, 189–243.