Министерство науки и высшего образования Российской федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)» (МФТИ, Физтех)

КАФЕДРА ТВЕРДОТЕЛЬНОЙ ЭЛЕКТРОНИКИ

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ

ИЗУЧЕНИЕ ОСОБЕННОСТЕЙ ВОЗБУЖДЕНИЯ И РАСПРОСТРАНЕНИЯ АКУСТИЧЕСКИХ ВОЛН СВЧ В ТВЕРДЫХ ТЕЛАХ

D 4	и п п
Работу выполнили	И.Д. Бессонов
	Е.С. Иванова
	Е.О. Коробкина
	И.С. Потапова
	(подпись, дата)
Работу принял, оценка	
1 wool, inpilially, ordering	(подпись, дата, оценка)

Содержание

1.	Аннотация	2
2.	Теоретическая часть 2.1. Затухания УЗВ в твердых телах	2
	2.2. ЭХО-метод измерения затухания и скорости УЗВ	2
3.	Ход работы 3.1. Измерение скорости УЗВ в кристаллах	3
4.	Выводы	5
5.	Список литературы	6

1. Аннотация

Цель работы: Измерить скорость ультразвука в кварце и двух различных образах граната, снять зависимость коэффициента затухания амплитуды от частоты для кварца. По скорости звука в кристаллах определить константы упругости 2 - го порядка.

2. Теоретическая часть

2.1. Затухания УЗВ в твердых телах

Под затуханием ультразвуковых волн (УЗВ) обычно понимают уменьшение интенсивности вдоль пути ее распространения. Это связано со следующими процессами: поглощением энергии УЗВ и переходом ее в тепло, с рассеянием на неоднородностях и причинами, ответсвенными за кажущееся поглощение, связанное с методикой измерений, к примеру, разориентации образца относительно основных кристаллографических осей, дифракционные потери, потери из-за непараллельности торцевых граней образца и другие.

2.2. ЭХО-метод измерения затухания и скорости УЗВ

Первые две причины создают уменьшение интенсивности, пропорциональные самой интенсивности, то есть $-dI(x) = \gamma I(x)dx$ или $I(x) = I_0e^{-\gamma x}$. Для амплитуд выражение имеет вид $U(x) = U_0e^{-\alpha x}$. U_0 , U_0 — интенсивность и амплитуда УЗВ во входном сечении кристалла. U_0 — коэффициент затухания амплитуды, а U_0 — коэффициент затухания интенсивности. Если при измерении затухания амплитудные характеристики линейны, то для определения U_0 можно использовать следующее выражение:

$$\alpha = -\frac{1}{x_1 - x_2} ln \frac{U(x_1)}{U(x_2)} \tag{1}$$

Если регистрация амплитуды УЗВ происходит в одном и том же сечении образца, то $x_2-x_1=2L$, где L – длина образца, а величину можно найти, измеряя отношение амплитуд соответствующих импульсов на экране осциллографа. На этом и основа реализуемый в работе метод.

В работе на одном из двух торцов образца мы возбуждаем УЗВ, распространяющиеся вглубь образца. Переменное электрическое поле прикладывается к преобразователю на очень короткое время (порядка нескольких микросекунд). В результате по кристаллу распространяется короткий цуг УЗВ длиной $V_s\tau_{\rm имп}$, где V_s — скорость УЗВ. Испытав отражение от параллетьной грани и придя обратно, цуг вызывает но обкладках преобразователя переменное напряжение с частотой УЗВ. На выходе мы наблюдаем импульс длиной $\tau_{\rm имп}$. Скорость УЗВ мы находим через временную задержку (n+m)-го импульса относительно n-го. Эта задержка соответствует целому числу двойных пробегов цуга УЗВ вдоль образца, поэтому $V_s = \frac{2Lm}{T_3}$.

Рис. 1: Схема измерения поглощения и скорости УЗВ ЭХО-методом

2.3. Экспериментальная установка

Рис. 2: Схема установки

3. Ход работы

3.1. Измерение скорости УЗВ в кристаллах

При частоте 420 МГц были проведены расчеты скорости распространения УЗВ для 3-х кристаллов, путем измерения периода задержки $T_{\rm 3}$ и количества импульсов m. Результаты представлены в таблице 1.

Образец	T_3 , MKC	m	L, cm	V_s , м/с	$V_{s m reop}$, м/с
Кварц (SiO_2)	47.2	6	3	7627	5 960-6 000
Иттриево-алюминиевый гранат (YAG)	21.2	3	1	2830	5000
Гранат	3.16	1	1	6329	8000

Таблица 1: Расчет скорости УЗВ в различных образцах.

Видим, что табличные значения скоростей ультразвуковых волн в кристаллах совпадают по порядку величины с экспериментальными значениями.

По полученым скоростям УЗВ определим константы упругости 2-ого порядка для образцов по формуле: $C_{[110]} = \rho \cdot V_s^2$. Результаты представлены в таблице 2.

Образец	$ ho$, k $\Gamma/{ m M}^3$	V_s , м/с	$C_{[110]}, \Gamma \Pi a$
Кварц (SiO_2)	2600	7627	151
Иттриево-алюминиевый гранат (YAG)	4550	2830	36
Гранат	4550	6329	182

Таблица 2: Расчет констант упругости 2-ого порядка в различных образцах.

3.2. Снятие зависимости коэффициента затухания от частоты в кварце

В данной работе было предложено снять частотную зависимость $\alpha(\nu)$ в кристалле SiO_2 . В диапазоне частот от 420 до 900 МГц были получены значения соседних амплитуд сигнала на осциллографе. Коэффициент поглощения α был вычислен по формуле (1), где длина образца кварца: L=3 см. Результаты измерений приведены в Таблице 3.

ν , М Γ ц	420	500	600	700	800	900
$U(x_1)$	66	67.6	56.8		_	31.2
$U(x_2)$	55.6	59.2	44.4	_	_	19.2
α , cm ⁻¹	0.029	0.022	0.041		_	0.08

Таблица 3: Измерение коэффициента α для SiO_2 .

В твердых телах зависимость коэффициента затухания от частоты: $\alpha = \alpha_0 \nu^k$, где α_0 - некоторая константа. Тогда при построениии графика в двойном логарифмическом масштабе зависимость будет иметь вид прямой линии: $ln(\alpha) = b + kln(\nu)$. Построенная зависимость показана на Графике 1.

Коэффициент наклона экспериментальной кривой: k=1.58, что приблизительно совпадает с 2. Это значит, что в исследуемом образце преобладает квадратичная зависимость коэффициента затухания от частоты, т.е. $\alpha=\alpha_0\nu^2$.

Рис. 3: Зависимость $ln(\alpha)(ln(\nu))$.

Зная параметры образца: L=3 см, $\lambda_s=V_sT\approx 6$ см при 420 МГц и радиус преобразователя: a=0.6 см, проведем расчет $\Delta_{\rm диф}$ на частоте 420 МГц по формуле:

$$\Delta_{\text{диф}} = 20 \log(\frac{\lambda 2L}{\pi a^2}) \cdot \frac{\sin^4(\frac{\lambda 2L}{\pi a^2} \cdot \frac{\pi}{3.83})}{(\frac{\lambda 2L}{\pi a^2} \cdot \frac{\pi}{3.83})^4} = 2.4 \cdot 10^{-6}.$$

4. Выводы

1) Определили скорости распространения УЗВ в кристаллах SiO_2 , $Y_3Al_5O_{12}$ и гранате, полученные экспериментально значения сходятся с табличными по порядку величины.

Образец	V_s , м/с	$V_{s m reop}$, м/с
Кварц (SiO_2)	7627	5 960-6 000
Иттриево-алюминиевый гранат (YAG)	2830	5000
Гранат	6329	8000

Таблица 4: Скорости УЗВ в различных образцах.

2) Определили константы упругости 2-го порядка в кристаллах SiO_2 и $Y_3Al_5O_{12}$.

Образец	$C_{[110]}, \Gamma\Pi a$
Кварц (SiO_2)	151
Иттриево-алюминиевый гранат (YAG)	36
Гранат	182

Таблица 5: Константы упругости 2-ого порядка в различных образцах.

- 3) Сняли частотную характеристику коэффициента затухания амплитуды УЗВ в кристалле SiO_2 . Определили, что в данном образце преобладает квадратичная зависимость коэффициента затухания от частоты.
- 4) Оценили дифракционные потери в кристалле SiO_2 при частоте 420 МГц: $\Delta_{\text{диф}} = 2.4 \cdot 10^{-6}$.

5. Список литературы

1) Изучение особенностей возбуждения и распространения акустических волн СВЧ в твердых телах. Лабораторная работа \mathbb{N}^1 по курсу: Полупроводниковая электроника/ МФТИ. - М., 1984. - 22 с.