Mathematics I (BSM 101)

Manju Subedi

Gandaki University

 $\begin{array}{c} {\sf Bachelor\ in\ Information\ Technology}({\sf BIT}) \\ {\sf BSM\ 101} \end{array}$

manjusubedi.061@gmail.com

January 2, 2023

Outlines

- Recap (Average rate of change)
- Rules of Differentiation
 - Constant function rule
 - Power rule
 - Constant multiple rule
 - Sum or difference rule
 - Product rule
 - Quotient rule
 - General power rule
 - Chain rule
 - Implicit differentiation
 - Derivative of parametric function
 - Exponential/ logarithmic function
- Higher Order Derivatives

Recap from last Class:

The Slope of a curve at any point: The slope provides an idea of the measure of the rate of change in the value of y with respect to a change in the value of x.

Let (x_1, y_1) and $x_2, y_2)$ be any two points on a straight line, then the slope of the line is defined as $m = \frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$

Definition: The derivative of the function f with respect to the variable x is the function f' whose value at x is

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$

provided the limit exists.

If the limits on the right hand side exist (i.e f'(x) exist) then we say f has a derivative (is differentiable) at x.

Notation: The symbol $\frac{dy}{dx}$, $\frac{df(x)}{dx}$, f'(x), y', f' are use to express the derivative.

The process of obtaining the derivative is called differentiation of the function f(x)

Manju Subedi Gandaki University January 2, 2023 3 / 8

Rules of Differentiation

- Constant Function Rule: If f(x) = c, where c is any constant then, f'(x) = 0
- Power Rule: If $f(x) = x^n$, where n is a real number, then $f'(x) = nx^{n-1}$
- Constant Multiple (Coefficient) Rule: If $f(x) = c \cdot g(x)$, where c is any constant, then $f'(x) = c \cdot g'(x)$
- Sum or Difference Rule: If $f(x) = u(x) \pm v(x)$, where u, and v are differentiable functions, then $f'(x) = u'(x) \pm v'(x)$
- Product Rule: If $f(x) = u(x) \cdot v(x)$, where u and v are differentiable functions, then f'(x) = u(x)v'(x) + v(x)u'(x)
- Quotient Rule: If $f(x) = \frac{u(x)}{v(x)}$, where u and v are differentiable functions and $v(x) \neq 0$, then $f'(x) = \frac{vu' uv'}{...2}$
- General Power Rule: If $f(x) = [u(x)]^n$, where u is a differentiable function and n is a real number, then $f'(x) = n[u(x)]^{n-1} \cdot u'(x)$

Manju Subedi Gandaki University January 2, 2023

4 / 8

Derivatives Continue...

- Chain Rule: If z = f(y) and y = g(x), then $\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$
- Implicit Differentiation: A Function which is expressed in the form f(x,y) = 0, say $x^2 + xy + xy^2 + y^2 = 0$ is called an implicit function. The process of finding value of $\frac{dy}{dx}$ without solving the equation for y is called implicit differentiation.
- Derivative of Parametric Function: Parametric funcitons are those in which both variables x and y are expressed in terms of a third variable called, the parameter (t) i.e. x = f(t), y = g(t). To find

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \text{provided } \frac{dx}{dt} \neq 0$$

• Derivative of Logarithmic Function: The derivative of ln x is

$$\frac{d}{dx}(\ln x) = \frac{1}{x}, \ x > 0$$

Also, $\frac{d}{dx}[\ln h(x)] = \frac{1}{h(x)}[\frac{d}{dx}h(x)]$, Where h is a differentiable function of x

Manju Subedi

Derivatives Continue...

- Derivative of Exponential Function: The Derivative of e^x is $\frac{d}{dx}(e^x) = e^x$ Also, $\frac{d}{dx}[e^{h(x)}] = e^{h(x)}\frac{d}{dx}\{h(x)\}$, Where h is a differentiable function of x.
- Derivative of One Function with respect to another Function: Suppose $y_1 = f_1(x)$ and $y_2 = f_2(x)$ are two functions. Derivative of y_1 with respect to y_2 is denoted by $\frac{dy_1}{dy_2}$ and defined by $\frac{dy_1}{dy_2} = \frac{\left(\frac{dy_1}{dx}\right)}{\left(\frac{dy_2}{dx}\right)}$

Increasing and Dercreasing Functions

A function f(x) is increasing in an interval if the graph continuously rises as x goes from left to right through the interval. Similarly, a function f(x) is decreasing in an interval if the graph continuously falls as x goes from left to right through the interval.

Manju Subedi Gandaki University January 2, 2023

Higher Order Derivatives

$$\frac{d}{dx}(f'(x)) = f''(x) = \frac{d^2f}{dx^2}$$
 is the second order derivative of $f(x)$

$$\frac{d}{dx}(f''(x)) = f'''(x) = \frac{d^3f}{dx^3}$$
 is the third order derivative of $f(x)$ and so on.

Manju Subedi Gandaki University January 2, 2023 7 /

Thank You