Solubility Rules for Ionic Compounds in Water

Compounds Containing the Following lons Are Generally <u>Soluble</u>	Exceptions
Li+, Na+, K+, and NH ₄ +	None
NO ₃ -, CH ₃ COO-	None
CI-, Br-, and I-	When these ions pair with Ag+, Hg ₂ ²⁺ , or Pb ²⁺ => insoluble compounds
SO ₄ ² -	When SO ₄ ²⁻ pairs with Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺ , or Ag ⁺ => insoluble

Compounds Containing the Following Ions Are Generally <i>Insoluble</i>	Exceptions
OH- and S ²⁻	When these ions pair with Li+, Na+, K+, or NH ₄ + => soluble
	When S ²⁻ pairs with Ca ²⁺ , Sr ²⁺ or Ba ²⁺ => soluble
	When OH- pairs with Ca ²⁺ , Sr ²⁺ or Ba ²⁺ => slightly soluble
CO ₃ ² - and PO ₄ ³ -	When these ions pair with Li⁺, Na⁺, K⁺, or NH₄⁺ => soluble

PbCl2 not soluble
Cucl2 soluble
Cucl2 soluble
Ca CNO3)2 soluble
Ba Soy insoluble

Nis insoluble

Mg3 CPO4)2 insoluble

Liz CO3 soluble

NH4Ce soluble

Solubility Rules for Ionic Compounds in Water

Compounds Containing the Following Ions Are Generally <u>Soluble</u>	Exceptions
Li+, Na+, K+, and NH ₄ +	None
NO₃⁻, CH₃COO⁻	None
Cl-, Br-, and l-	When these ions pair with Ag+, Hg ₂ ²⁺ , or Pb ²⁺ => insoluble compounds
SO ₄ ² -	When SO ₄ ²⁻ pairs with Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺ , or Ag ⁺ => insoluble

Compounds Containing the Following Ions Are Generally <i>Insoluble</i>	Exceptions
OH- and S ² -	When these ions pair with Li⁺, Na⁺, K⁺, or NH₄⁺ => soluble
	When S ²⁻ pairs with Ca ²⁺ , Sr ²⁺ or Ba ²⁺ => soluble
	When OH- pairs with Ca ²⁺ , Sr ²⁺ or Ba ²⁺ => slightly soluble
CO ₃ ²⁻ and PO ₄ ³⁻	When these ions pair with Li⁺, Na⁺, K⁺, or NH₄⁺ => soluble

Hard Water: $Ca^{2+}Caq$) and $Mg^{2+}(aq)$ => odd Na_2Co_3 to Caundry clebegent: $Ca^{2+}(aq) + Co_3^{2-}(aq) \rightarrow Ca Co_3(s)$ $Mg^{2+}(aq) + Co_3^{2-}(aq) \rightarrow Mg Co_3(s)$

Precipitation Reaction

$$2KI(aq) + Pb(NO_3)_2(aq) \rightarrow 2KNO_3(aq) + PbI_2(s)$$
In contrast:
$$2KI(aq) + 2NaNO_3(aq) \rightarrow no \ reaction$$

$$K^+(aq) + NO_3(aq) \rightarrow no \ reaction$$

$$Na^+(aq) + I^-(aq) \rightarrow no \ reaction$$

$$Na^+(aq) + I^-(aq) \rightarrow no \ reaction$$

Examples of Precipitation Reaction

Write an equation for the precipitation reaction that occurs (if any) when solutions of potassium carbonate and nickel(II)chloride are mixed.

- 1. Write the formulas of the two compounds being mixed as reactants in a chemical equation
- 2. Below the equation, write the formulas of the products that could form for the reactants (cation + anion). Make sure to write correct formulas.
- 3. Refer to the solubility rules to determine whether any of the possible products are insoluble
- 4. If all of the possible products are soluble, there will be no precipitate. Write "No Reaction" after the arrow.
- 5. If any of the possible products are insoluble, write their formulas as the products of the reaction, using (s) to indicate solid. Write any soluble products with (aq) to indicate aqueous.
- 6. Balance the equation

Molecular, Complete Ionic and Net Ionic Equation

Molecular Equation: Chemical equation showing the complete, neutral formulas for every compound in the reaction.

$$Pb(NO_3)_2(aq) + 2KCl(aq) \rightarrow PbCl_2(s) + 2KNO_3(aq)$$

<u>Complete Ionic Equation:</u> Chemical equation showing all the species as they are actually present in solution.

$$Pb^{2+}(aq) + 2NO_3^-(aq) + 2K^+(aq) + 2Cl^-(aq) \rightarrow PbCl_2(s) + 2K^+(aq) + 2NO_3^-(aq)$$

Net Ionic Equation: Equation showing only the species that actually change during the reaction.

$$Pb^{2+}(aq) + 2NO_3^{-}(aq) + 2K^{+}(aq) + 2Cl^{-}(aq) \rightarrow PbCl_2(s) + 2K^{+}(aq) + 2NO_3^{-}(aq)$$
Spectator lons

$$Pb^{2+}(aq) + 2Cl^{-}(aq) \rightarrow PbCl_{2}(s)$$

SrClz Caq) + Liz PoyCaq) -> SrzCPOy)(s) + Lice (aq)
Balanced Molecular Formula
3Srclz Caq) + 2Liz PoyCaq) -> SrzCPOy)(s) + 6Lice(aq)

Complete lonie Equation

Net ionic equation

Spectrator lous: Li^{\dagger} , Ce^{-} $3sr^{2\uparrow}(aq) + 2P0y^{3}-Caq) \longrightarrow Sr_3CP0y)_2(s)$

Example 21 Acid/Base reaction Unbalanced: HI (aq) + BacoH), (aq) -> H20(e) + Balz (aq) base water solt Molecular Equation 241 (ag) + Ba coH), (ag) -> 2420(e) + Balz (ag) Complete louic 2H+(aq)+21-Caq)+Bo2r(aq)+20H-Caq) -> 2420(e) + Ba24(ag) + 21 (ag)

Net lowic:
Spectator: Bot, 1

2H+Caq) + 20H-Caq) -> 2H20(e)

Example 3

2AgNo3 (aq) 2 Mg (le caq) -> 2Ag (e (s) + Mg(No3)2 (aq)
Complete louic:

$$2Ag^{\dagger}(cog) + 2Nv_3^{-}(cog) + Mg^{\prime\prime}(cog) + 2ce^{-}(cog) - >$$

 $2Ag(ce(s)) + Mg^{\prime\prime}(cog) + 2Nv_3^{-}(cog)$

Net louic

249+ (aq) + 2 Ce - (aq) -> 249 Ce (s)