تمرینهای درس «مباحثی در منطق» نیمسال دوم تحصیلی ۹۶-۹۵، دانشگاه صنعتی امیرکبیر مدرس: مسعود پورمهدیان دستیار: محسن خانی

توجه: همواره پاسخ به دو تمرین اول برای کسب اجازه ی حضور در کلاس الزامی است. همواره تمرینهای ۱ تا ۴ در کلاس حل خواهند شد، و باقی برای دانشجویان علاقهمند نوشته شدهاند و تنها در صورتی که وقت اجازه دهد یا مستمعان به دانستن راه حل آنها کنجکاو باشند بدانها پرداخته خواهد شد.

۱ مفاهیم اولیهی نظریهی مدلی

تاریخ تحویل: شنبه ۲۳ بهمن

سامانه های تمرین ۱: دو ساختار $\mathfrak B$ و $\mathfrak B$ را **به طور جزئی ایزومُرف** می خوانیم، هرگاه یک مجموعه ی ناتهی Γ شامل رفت و برگشتی برخی ایزومرفیسمهای میان برخی زیرساختارهای $\mathfrak B$ و $\mathfrak B$ موجود باشد، که ویژگی رفت و برگشتی دارد؛ یعنی

- هرگاه $f \in \Gamma$ و $A \in A$ ، آنگاه توسیعی از تابع f در Γ موجود باشد که عنصر a در دامنهاش بیفتد.
- هرگاه $f\in \Gamma$ و $B\in B$ ، آنگاه توسیعی از تابع f در Γ موجود باشد که عنصر g در بُردش واقع شود.

نشان دهید که دو ساختارِ بهطورجزئی ایزومرف، هم ارزمقدماتیند، و دو ساختارِ شمارای به طور جزئی ایزومرف به طور جزئی ایزومرف و دارای اندازه ی برابر با هم ایزومرفند). ۱

تمرین ۲:

۱ ادامهی این تمرین را در برگهی تمرینهای جلسهی دوم مشاهده کنید.

- ۱. کلاسِ C از C ساختارها را **دارای اصلبندی متناهی** میخوانیم، هرگاه برابر با کلاسِ همه ی مدلهای یک تئوریِ متناهی باشد. نشان دهید که C دارای اصلبندی متناهی است، اگروتنها اگر هم C و هم متمم آن، کلاسهایی مقدماتی باشند.
 - ۲. نشان دهید که تئوری میدانهای دارای مشخصه ی صفر، دارای اصلبندی متناهی نیست.

زنجیرهایی تمرین ۳: ullet فرض کنید (I, \leq) یک ترتیب جزئی جهتدار باشد؛ یعنی از $\forall i,j \in I \quad \exists k \in I \quad i,j \leq k.$ ساختارها،

قضیه ی خانواده ی $i \leq j$ از ساختارها را جهتدار میخوانیم، هرگاه برای هر $i \leq j$ داشته باشیم خانواده ی خانواده ی $\mathfrak{A} = \bigcup_{i \in I} A_i$ نشان دهید که هرگاه $\mathfrak{A}(\mathfrak{A}_i)_{i \in I}$ خانواده ای جهتدار باشد، آنگاه $\mathfrak{A}(\mathfrak{A}_i)_{i \in I}$ تارسکی جهان زمینه ی یک $\mathfrak{A}(\mathfrak{A}_i)_{i \in I}$ ساختار است (که به طور یکتا تعیین می شود) که همه ی $\mathfrak{A}(\mathfrak{A}_i)_{i \in I}$ ها را به عنوان زیرساختار در بر می گیرد. این ساختار را با $\mathfrak{A}(\mathfrak{A}_i)_{i \in I}$ نشان خواهیم داد.

• خانواده ی جهتدارِ $\mathfrak{A}_i)_{i\in I}$ را مقدماتی میخوانیم، هرگاه برای هر $i\leq j$ داشته باشیم خانواده ی جهتدارِ مقدماتی، گسترشی است مقدماتی از هر یک از اعضای این خانواده.

تمرین ۴: نشان دهید که کلاسِ گرافهای همبند، مقدماتی نیست. (منظور از گراف، زوجی چون (V,R) است که در آن V یک مجموعه و R رابطهای است دوتاییِ تقارنی و غیرانعکاسی. چنین گراف را همبند میخوانیم هرگاه برای هر $(x,y) \in X$ یک دنباله $(x,y) \in X$ به گونهای موجود باشد که $(x,y) \in X$ برای $(x,y) \in X$ برای $(x,y) \in X$ برای ورجود باشد که $(x,y) \in X$

آناليز

نااستاندارد تمرین ۵: ساختارِ $\mathfrak{A}=(\mathbb{R}, {f \cdot}, <, f^{\mathfrak{A}})$ را در نظر بگیرید، که در آن f تابعی است تک متغیره. عنصرِ $\mathfrak{A}=(\mathbb{R}, {f \cdot}, <, f^{\mathfrak{A}})$ را بی نهایت کوچک می خوانیم هرگاه $x\in\mathfrak{A}^*\succ n$ برای هر عدد طبیعیِ عنصرِ $x\in\mathfrak{A}^*\succ n$ را بی نهایت کوچک می خوانیم هرگاه $f^{\mathfrak{A}}({f \cdot})={\bf \cdot}$ برای هر توسیعِ مقدماتی $x\in\mathfrak{A}^*\succ n$ تابع $x\in\mathfrak{A}^*$ بی نهایت کوچکها را به بی نهایت کوچکها ببرد.

تمرین ۶: نشان دهید که روی هر گروه آبلی (G,+) میتوان یک ترتیب خطی تعریف کرد (که البته حافظ جمع است، یعنی هرگاه $a < b, c \leq d$ آنگاه $a < b, c \leq d$

رابطهي

فشردگی تمرین ۷: برای یک زبان ثابت ِ L مجموعه ی زیر را در نظر بگیرید:

نظريهي

 $S. = \{ \operatorname{Th}(\mathfrak{A}) | S. = L یک L یک <math>\mathfrak{A} \}.$

مدلی با

فشردگی مجموعههای $\{ (\mathfrak{A} \models \phi \} \mid \mathfrak{A} \models \phi \}$ تشکیل پایهای برای یک توپولوژی روی S. میدهند.

توپولوژیک توجیهی بیاورید که چرا لم فشردگی، معادل فشردگی S است.

٣