Rangsummen-Test von Wilcoxon

Curdin Derungs

Unterlagen: https://github.com/curdon/zhaw

Lernziele

- 1. Sie haben eine Eselsbrücke für den Wilcoxon-Test
- 2. Sie können den Wilcoxon-Test konzeptionell erklären
- 3. Sie kennen die hauptsächlichen Unterschiede zum T-Test
- 4. Sie können den Wilcoxon-Test mit der R-Software auf den Einstichprobenfall und auf gepaarte Stichproben anwenden
- 5. Sie können den Output der entsprechenden R-Funktion interpretieren und in Ihre Worte übersetzen

Zusammenfassung

- Wilcoxon RST ist das nicht-parametrisches Pendant zum T-Test
 - wenn Stichproben nicht normalverteilt sind -> sind sie fast nie!
- Kann für Einstichproben und für gepaarte Stichproben verwendet werden.
 - Nicht für ungepaarte Stichproben, siehe Mann-Whitney Test.
- Anforderung an Stichprobe(n):
 - Messungen sind i.i.d.
 - Unabhängige: X_i sagt nicht über X_{i+n} aus
 - Identisch: es gibt keinen Trend, z.B. $X_i > X_{i+n} > X_{i+n+m}$
 - Skalenniveau der Messungen mindestens ordinal, sicherer sind interval-skalierte Daten
 - Ordinal: Abstände zwischen Rängen sollten möglichst vergleichbar sein
 - Messungen sind symmetrisch um den Erwartungswert verteilt

Einstichproben vs. gepaarte Stichproben

ID	Präferenz
1	5
2	3
3	8
•••	

- Nur eine Stichprobe
- Beispielfrage: Haben die Teilnehmer eine positive Grundeinstellung zum Thema Statistik?
- → Details siehe Wandtafel

ID	Vorher	Nachher
1	5	3
2	3	3
3	8	6

- Zwei Stichproben
- Zwei Messungen pro ID (Subjekt)
- Beispielfrage: Unterscheidet sich die Einstellung zum Produkt vor und nach der Info-Veranstaltung?
- → Details siehe R-Folien

Wann kann man den Wilcoxon RST benützen?

- bei ordinalem Skalenniveau
- auch bei kleiner Stichprobe (n < 20)
- wenn es Ausreisser hat
- wenn keine "Gauss'sche Glockenkurve" vorliegt
 - → mit Visualisierung prüfen (z.B. Histogram, QQ-Plot)

```
library(ggplot2)
set.seed(1)

#Beispiel Normal- vs. Nicht-Normalverteilt
normal <- rnorm(mean = 5, sd = 1, n = 100)
uniform <- runif(min=1, max=10, n = 100)

ggplot()+
geom_histogram(aes(x=uniform), bins = 10, alpha = .5, fill='blue')+
geom_histogram(aes(x=normal), bins = 10, alpha = .5, fill='orange')+
xlab("Wert")+
ylab("Anzahl")+
theme_light()</pre>
```


Macht

- Macht: Mit welcher Wahrscheinlichkeit verwerfen wir H₀, wenn wir das sollten?
- Bei Normalverteilung haben parametrische Tests (z.B. T-Test) die grössere Macht als nichtparametrische
 - Es wird mehr Information in den Daten verwendet, nicht bloss Ränge
- Wilcoxon RST hat grössere Macht bei nicht-Normalverteilung
 - Es werden keine falschen Annahmen getroffen
- → <u>Link</u> zu Vergleichsstudie

Rechenbeispiel: Wilcoxon RST für gepaarte SP

ID	Vorher	Nachher
1	5	2
2	3	4
3	8	6
4	7	7
5	4	5

Diff	
-3	
1	
-2	
0	
1	

Rang 1.5 1.5

- Positive RS: V_{+} : 1.5 + 1.5 = 3
- Negative RS: V_{-} : 4 + 3 = 7
- RS Total: $V_+ + V_- = \frac{n \times (n+1)}{2} = \frac{4 \times 5}{2} = 10$
- Erwartete RS unter H₀: $\frac{V_{+} + V_{-}}{2} = \frac{10}{2} = 5$
- Beobachtete RS: $V = \max(V_+; V_-)$
- Test Stat.: $z = \frac{V \mu_0}{\sigma_0} = \frac{7 5}{?} = ?$

 H_0 : Es gibt keinen Unterschied zwischen Vorher und Nachher (+) Rangsummen = (-) Rangsummen

 H_A : Nachher sind die Messwerte tiefer (z.B. Blutdruck) (+) Rangsummen < (-) Rangsummen

Test Stat.:
$$z = \frac{beobachtet - erwartet}{Standardfehler}$$

In Wilcoxon RST Tabelle nachschlagen für P-Value

Wilcoxon-Test in R

R-Markdown

- HTML:
 - https://github.com/curdon/zhaw/blob/main/rcode cderungs.html
- R-Code:
 - https://github.com/curdon/zhaw/blob/main/rcode cderungs.Rmd

Links & Literatur

- Methodenberatung UZH: https://www.methodenberatung.uzh.ch/de/datenanalyse_spss/unterschiede/zentral/wilkoxon.html
- MarinStatsLectures Wilcoxon RST in Theorie: https://www.youtube.com/watch?v=v4ZHITbTOK8
- MarinStatsLectures Wilcoxon RST in R: https://www.youtube.com/watch?v=zM8OZUM514Y
- Fahrmeir et al.: Statistik: Der Weg zur Datenanalyse, S. 406ff
- Vergleichsstudie zur Macht des Wilcoxon RST bei unterschiedlichen Verteilungen: Imam et al. 2014