Data Mining and Machine Learning

Gréta Pataki

September 22, 2021

Weka 3

- Machine Learning Software in Java
- open source
- homepage: https://www.cs.waikato.ac.nz/ml/weka/
- youtube videos: WekaMOOC
- Book: <u>The WEKA Workbench</u>

Applications

Preprocess

File sources

- open file from computer
- URL
- DB
- generate data
- edit (+save)

Attributes

Visualization

Algorithms

Algorithms - 1R

Classifier output

```
=== Run information ===
Scheme:
           weka.classifiers.rules.OneR -B 6
Relation: wine
Instances:
Attributes:
             alcohol content
             sweetness
             type
            popular
Test mode: evaluate on training data
=== Classifier model (full training set) ===
type:
             -> yes
       rose
       red
               -> yes
       white -> no
(6/9 instances correct)
```

Algorithms - 1R

Classifier output

```
=== Run information ===
             weka classifiers rules OneR -B 6
Scheme:
Relation:
             wine
Instances:
Attributes:
              alcohol content
              sweetness
              type
             popular
             evaluate on training data
Test mode:
=== Classifier model (full training set) ===
type:
             -> yes
        rose
        red
               -> ves
       white -> no
(6/9 instances correct)
```

Attribute	Rules		errors	total errors
Alcohol_content	low	\rightarrow NO	2/5	4/9
	high	\rightarrow NO (or YES)	2/4	
Sweetness	sweet	\rightarrow YES	2/4	4/9
	semi-sweet	\rightarrow YES	1/2	
	dry	\rightarrow NO	1/3	
Туре	rosé	\rightarrow YES	1/2	3/9
	red	→ YES	2/5	
	white	\rightarrow NO	0/2	

Selected attribute: Type

Rules:

If Type = rosé Then Popular = Yes

If Type = red Then Popular = Yes

If Type = white Then Popular = No

Decision tree:

Algorithms - Naive Bayes

=== Classifier :	model (full	training	set)	===
Naive Bayes Cla	ssifier			
	Class			
Attribute	yes	no		
	(0.45) (0	.55)		
alcohol content				
low	3.0	4.0		
high	3.0	3.0		
[total]	6.0	7.0		
sweetness				
sweet	3.0	3.0		
semi-sweet	2.0	2.0		
dry	2.0	3.0		
[total]	7.0	8.0		
type				
rose	2.0	2.0		
red	4.0	3.0		
white	1.0	3.0		
[total]	7.0	8.0		

Alcoh	nol_conte	nt	Swe	etness			Туре		Pop	ular
	YES	NO		YES	NO		YES	NO	YES	NO
low	2	3	sweet	2	2	rosé	1 (2)	1		
high	2	2	semi-sweet	1	1	red	3 (4)	2	4	5
		dry	1	2	white	0 (1)	2			
low	2/4	3/5	sweet	2/4	2/5	rosé	2/7	1/5		
high	igh 2/4 2/5	2/5	semi-sweet	1/4	1/5	red	4/7	2/5	4/9	5/9
			dry	1/4	2/5	white	1/7	2/5		

Alcohol_content	Sweetness	Туре	Popular	
low	dry	rosé	no	

Likelihood of the two classes

For "yes" = $2/4 \times 1/4 \times 2/7 \times 4/9 = 0.0159$

For "no" = $3/5 \times 2/5 \times 1/5 \times 5/9 = 0.0267$

Conversion into a probability by normalization:

P("yes") = 0.0159/(0.0159 + 0.0267) = 0.373

P("no") = 0.0267 / (0.0159 + 0.0267) = 0.627

Knowledge Flow

