

Árvores de Steiner

Felipe Schmidt, Gabriel Veras, João Gross

O Problema

Dado:

- Grafo não direcionado G=(V,E)
- Custos das arestas C_E
- Set de terminais T contido em V

Conectar todos nós de T, minimizando custo das arestas na solução.

Formulação Matemática

Com G=(V,E), criamos um grafo bidirecionado G=(V,A).

Minimize

$$\sum_{e \in E} c_e x_e$$

subject to:

$$\sum_{i \in V} f_{ij}^k - \sum_{i \in V} f_{ji}^k = \left\{ \begin{array}{ll} -1 & \text{if } j = 1 \\ 1 & \text{if } j = k \\ 0 & \text{otherwise for } j \in V \setminus \{1\} \end{array} \right. \quad \text{for every 'k' in T - \{1\}}$$

 $f_{ij}^k \leq x_e \;\;$ for every edge e = (i,j), commodity k

$$f_{ij}^k \geq 0$$
 for every i,j in A, k in T

 x_e integer

Heurística - Busca Tabu

- Procedimento adaptativo, de busca local
 - Permite piora se não há melhora (sair de mínimos locais)
 - Noção de vizinhança
- A cada iteração:
 - Solução atual s muda para vizinha s'
 - s' difere de s por uma modificação
- Dado solução inicial s:
 - Explora vizinhança N(s)
 - Função de avaliação f(s) escolhe melhor solução de N(s)
 - s' vira nova solução atual, mesmo que f(s') > f(s) em um problema de minimização

Heurística - Solução Inicial

- Método iterativo de inserção e remoção de arestas
 - Testa se há ciclo após aresta inserida
 - Se sim, aresta removida
 - Se não, insere nova aresta
 - Continua até que todos nodos terminais estejam na solução

Heurística - Vizinhança

- Começa a partir de uma solução inicial
- Função iterativa consulta arestas da tabela de adjacência
 - Aresta não pertencente à solução inicial: inserida
 - Aresta pertencente à solução inicial: removida
 - Nova solução possível é inserida na vizinhança se:
 - Sem loops
 - Conexa
 - Conectar todos nós terminais
- Processo continua até que todas as arestas da lista de adjacência tenham sido testadas na solução inicial

Heurística - Lista Tabu

- Lista Tabu: lista de soluções diferentes encontradas
 - Usada para determinar se uma nova solução deve ser ou não explorada
 - Tempo de vida da solução na lista:
 - No mínimo o tamanho da lista *em iterações*
 - e.g: |Lista Tabu| = 10. Cada elemento fica na lista por pelo menos 10 iterações.

Heurística - Algoritmo

- Busca da melhor solução da vizinhança, fora da Lista Tabu
- Se achar solução melhor que atual
 - Quantidade de iterações é zerada
 - Valor ótimo global é atualizado na Lista Tabu
 - Recomeço das iterações
- Se não achar solução vizinha menor que a inicial
 - Procurada a menor solução vizinha
 - sem se preocupar com a solução inicial.
 - Se encontrar uma solução vizinha menor que não pertença à lista tabu
 - ela será a solução inicial da próxima iteração
 - Iterações seguem incrementando

Heurística - Critério de Parada

 Após N iterações sem atualização da solução ótima encontrada atingimos o ponto de parada.

No nosso algoritmo, impomos limite N = 100.

Algoritmo - Busca Tabu Recursiva

- Primeira implementação realizada
 - Produziu resultados satisfatórios
- Porém, ...
 - Muitos laços empilhados
 - Consumo excessivo de recursos de memória
- Das 10 instâncias apenas 4 chegaram no ponto de paradas
 - As demais geraram estouro de memória

Algoritmo - Busca Tabu Iterativa

- Segunda implementação realizada
- Resultados melhores
 - Das 10 instâncias, 7 chegaram no ponto de parada do algoritmo
- Não houve mais estouro de memória, mas...
 - Convergência muito lenta em alguns casos
 - As 3 instâncias que não atingiram o ponto de parada ficaram rodando indefinidamente
- Gargalo observado:
 - Muito tempo de processamento para geração da vizinhança

Algoritmo - Busca Tabu Iterativa Otimizada

- Terceira implementação realizada
 - Variação otimizada da segunda implementação
 - 90% das instâncias chegaram ao ponto de parada
 - Solução encontrada muito mais rapidamente
 - Sem perda em qualidade dos resultados
- Geração da vizinhança:
 - Imposto um limite de variações na solução inicial para gerar candidatos a soluções vizinhas
 - Fator determina a proporção do limite
 - e.g: se há 1000 variações possíveis na solução inicial, mas o fator for ¼, apenas 250 variações serão realizadas
 - Assim, são gerados menos candidatos à vizinhança e consequentemente menos vizinhos
 - Variações são aleatórias

Ótima vs. GLPK vs. Heurística

Instância	Valor Ótimo	GLPK	Recursiva	Iterativa	Iterativa Otimizada
b14	235	240	243	250	237
c01	85	85	estouro	104	97
d10	2110	estouro	estouro	running	2223
e20	1342	running	estouro	running	running
mc11	11689	running	estouro	11994	12052
brasil58	13655	running	13943	13781	13950
cc3-4p	2338	2350	2553	2360	2342
hc10p	60679	running	estouro	running	78160
i160-003	2297	2297	3085	2612	2396
i160-033	2101	2101	estouro	2345	2345

Comparando Desvios

Solução Ótima vs. GLPK

Instância	Valor Ótimo	Sol. Encontrada	Tempo Exec (s)	Desvio %
b14	235	240	3600	-2.128
c01	85	85	36	0.000
d10	2110	estouro	*	*
e20	1342	running	*	*
mc11	11689	running	*	*
brasil58	13655	running	*	*
cc3-4p	2338	2350	3600	-0.513
hc10p	60679	running	*	*
i160-003	2297	2297	53	0.000
i160-033	2101	2101	1775	0.000

Ótima vs. Busca Tabu Iterativa Otimizada

Instância	Valor Ótimo	Sol. Inicial	Melhor Sol. Encontrada	Tempo Exec (s)	Desvio %	Redução de Vizinhança
b14	235	511	237	3.6	-0.851	1/4
c01	85	2840	97	637.7	-14.118	1/4
d10	2110	5512	2223	31746	-5.355	1/8
e20	1342	13611	running	*	*	1/16
mc11	11689	33696	12052	1872.6	-3.105	1/4
brasil58	13655	135559	13950	22.8	-2.160	1/4
cc3-4p	2338	7801	2342	2	-0.171	1/4
hc10p	60679	107323	78160	32410	-28.809	1/16
i160-003	2297	17273	2396	9.6	-4.310	1/4
i160-033	2101	15240	2345	10.5	-11.614	1/4

Referências

[1] - Sunil Chopra and Chih-Yang Tsai, "Polyhedral Approaches for the Steiner Tree Problem on Graphs", *Kluwer Academic Publisher*

RESULTADOS COMPLEMENTARES

Solução Ótima vs. Busca Tabu Recursiva

Instância	Valor Ótimo	Sol. Encontrada	Tempo Exec (s)	Desvio %
b14	235	243	21	-3.404
c01	85	estouro	*	*
d10	2110	estouro	*	*
e20	1342	estouro	*	*
mc11	11689	estouro	*	*
brasil58	13655	13943	203	-2.109
cc3-4p	2338	2553	54	-9.196
hc10p	60679	estouro	*	*
i160-003	2297	3085	192	-34.306
i160-033	2101	estouro	*	*

Solução Ótima vs. Busca Tabu Iterativa

Instância	Valor Ótimo	Sol. Encontrada	Tempo Exec (s)	Desvio %
b14	235	250	17	-6.383
c01	85	104	11325	-22.353
d10	2110	running	running	*
e20	1342	running	running	*
mc11	11689	11994	16783	-2.609
brasil58	13655	13781	110	-0.923
cc3-4p	2338	2360	17	-0.941
hc10p	60679	running	running	*
i160-003	2297	2612	131	-13.714
i160-033	2101	2345	141	-11.614

Ótima vs. Busca Tabu Iterativa Otimizada (Completa)

Instância	Valor Ótimo	Sol. Inicial	Sol. Encontrada (mín)	Sol. Encontrada (máx)	Sol. Encontrada (média)	Tempo Exec (s)	Desvio %	Redução de Vizinhança
b14	235	511	237	254	244.3	3.6	-0.851	1/4
c01	85	2840	97	110	100.7	637.7	-14.118	1/4
d10	2110	5512	2223	2223	2223	31746	-5.355	1/8
e20	1342	13611	running	running	running	*	*	1/16
mc11	11689	33696	12052	12259	12202.6	1872.6	-3.105	1/4
brasil58	13655	135559	13950	14856	14378	22.8	-2.160	1/4
cc3-4p	2338	7801	2342	2446	2374.9	2	-0.171	1/4
hc10p	60679	107323	78160	78160	78160	32410	-28.809	1/16
i160-003	2297	17273	2396	2815	2595.9	9.6	-4.310	1/4
i160-033	2101	15240	2345	2871	2558.1	10.5	-11.614	1/4

^{*10} execuções por instância, exceto d10 e hc10p, que rodaram apenas uma vez.