

Scikit-Learn Basics

1. Load Data Sets

a) Built-in datsets

from sklearn import datasets
dir(datasets) – will list the available data sets

dset = datasets.load_diabetes() - this is a dictionary which contains
actual data, target variable, feature names, and description

b). Other datasets can be loaded in as Numpy arrays or data frames pd.read_csv(), pd.read_table(), pd.read_excel()

2. Data Preparation

Train/test split

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y)

Standardization

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X test = scaler.transform(X test)

Polynomial Features

from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures()
X_train_poly = poly.fit_transform(X_train)
X_test_poly = poly.fit_transform(X_test)

3. Training a model

Few ML algorithms

from sklearn.cluster import Kmeans from sklearn.linear_model import LinearRegression from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier

Fitting the model & making predictions (Ex: Clustering)

kmc = Kmeans() kmc.fit(X) kmc.labels

Ex: Linear regression

Ir = LinearRegression()
Ir.fit(X_train, y_train)
y_pred = Ir.predict(X_test) - for predictions on test data
y_prob = Ir.predict_proba(X_test) - for probabilities on test data

4. Evaluation

a) Regression

from sklearn.metrics import r2_score, mean_squared_error r2_score(y_test,y_pred), mean_squared_error(y_test,y_pred)

b) Classification