Machine Learning Approach to House Price Prediction: A Comparative Analysis of Regression Models

Introduction

The accurate prediction of house prices remains a critical challenge in real estate analytics, with significant implications for buyers, sellers, and market analysts. This project addresses the fundamental question of how various features of a property influence its market price and how effectively different machine learning models can predict these prices. The problem of house price prediction has evolved from traditional statistical approaches to more sophisticated machine learning methods, reflecting the increasing complexity of real estate markets and the availability of rich datasets. Recently, I have noticed a rapid increase in house prices and rent in the Boston area. I was curious about what these machine learning models predict prices depending on how important different features were.

The significance of this work lies in its practical applications. Accurate price predictions can help:

- Buyers make informed purchasing decisions
- Sellers set competitive listing prices
- Real estate agents provide better market analysis
- Lenders assess property values for mortgages
- Investors evaluate potential returns

Methods

Data and Preprocessing

We utilized a housing dataset containing 545 records with 12 features including both numerical (area, bedrooms, bathrooms, stories, parking) and categorical variables (mainroad, guestroom, basement, hotwaterheating, airconditioning, prefarea, furnishingstatus). The preprocessing pipeline included:

- 1. Binary encoding of yes/no features
- 2. Ordinal encoding of furnishing status
- 3. Standardization of numerical features using StandardScaler

This data was from a housing dataset from Kaggle.

Model Implementation

We implemented five regression models:

- 1. Linear Regression
 - a. Baseline model providing interpretable coefficients
 - b. Assumes linear relationships between features and price
- 2. Ridge Regression
 - a. Addresses multicollinearity issues
 - b. Prevents overfitting through regularization
 - c. Alpha parameter set to 1.0
- 3. Lasso Regression
 - a. Performs feature selection implicitly
 - b. Helps identify most important features
 - c. Alpha parameter set to 1.0
- 4. Random Forest Regressor
 - a. Ensemble method using 100 decision trees
 - b. Captures non-linear relationships
 - c. Provides feature importance rankings
- 5. Gradient Boosting Regressor
 - a. Sequential ensemble method
 - b. 100 estimators
 - c. Learning rate set to 0.1

Evaluation Methodology

Models were evaluated using:

- Root Mean Square Error (RMSE)
- R² Score
- Cross-validation with 5 folds
- Training-test split (80-20)
- Feature importance analysis
- Residual analysis

Results

Model Performance

The comparative analysis of models revealed:

Copy

Model Performance:

LINEAR:

Training RMSE: 984,836.44 Testing RMSE: 1,331,071.42

R² Score: 0.6495

Cross-validation RMSE: 1,031,194.95

RIDGE:

Training RMSE: 984,838.44 Testing RMSE: 1,331,263.11

R² Score: 0.6494

Cross-validation RMSE: 1,031,027.59

LASSO:

Training RMSE: 984,836.44 Testing RMSE: 1,331,072.07

R² Score: 0.6495

Cross-validation RMSE: 1,031,194.94

RANDOM_FOREST:

Training RMSE: 393,424.43 Testing RMSE: 1,401,369.34

R² Score: 0.6115

Cross-validation RMSE: 1,102,508.53

GRADIENT_BOOSTING:

Training RMSE: 641,817.03 Testing RMSE: 1,300,896.13

R² Score: 0.6652

Cross-validation RMSE: 1,133,286.12

Sample Predictions:

LINEAR Model:

	Actual_Price	Predicted_Price	Difference
316	4060000	5.203692e+06 -1	1.143692e+06
77	6650000	7.257004e+06 -6	.070040e+05
360	3710000	3.062829e+06 6	3.471714e+05
90	6440000	4.559592e+06 1	.880408e+06
493	2800000	3.332932e+06 -5	5.329323e+05

Prediction Statistics for linear:

Mean Error: 140,585.42

Mean Absolute Error: 979,679.69

RIDGE Model:

	Actual_Pric	e Predicted_Price	Difference
316	4060000	5.201739e+06 -1.	141739e+06
77	6650000	7.252495e+06 -6.0	24952e+05
360	3710000	3.064349e+06 6.4	456514e+05
90	6440000	4.560172e+06 1.8	79828e+06
493	2800000	3.335734e+06 -5.3	357335e+05

Prediction Statistics for ridge:

Mean Error: 140,849.79

Mean Absolute Error: 979,508.32

LASSO Model:

	Actual_Price	Predicted_Price	e Difference
316	4060000	5.203692e+06	-1.143692e+06
77	6650000	7.257001e+06 -	6.070013e+05
360	3710000	3.062831e+06	6.471687e+05
90	6440000	4.559592e+06	1.880408e+06
493	2800000	3.332934e+06	-5.329342e+05

Prediction Statistics for lasso:

Mean Error: 140,585.46

Mean Absolute Error: 979,680.00

RANDOM_FOREST Model:

	Actual_Price	Predicted_Price Difference
316	4060000	5260220.00 -1200220.00
77	6650000	7435750.00 -785750.00
360	3710000	3792328.75 -82328.75
90	6440000	4463900.00 1976100.00
493	2800000	3734850.00 -934850.00

Prediction Statistics for random_forest:

Mean Error: 194,303.67

Mean Absolute Error: 1,021,638.74

GRADIENT_BOOSTING Model:

	Actual_Pric	e Predicted_Price	Difference
316	4060000	4.549951e+06 -4.8	899512e+05
77	6650000	7.319875e+06 -6.6	98750e+05
360	3710000	3.709740e+06 2.5	596545e+02
90	6440000	4.364304e+06 2.0	75696e+06
493	2800000	3.720826e+06 -9.2	208264e+05

Prediction Statistics for gradient_boosting:

Mean Error: 110,812.83

parking - 0.35 0.14 0.18 0.046

☆ ← → 中 Q 幸 🖺

0.2 0.16 0.23 -0.059 0.12

furnishingstatus - 0.17 0.12 0.14 0.1 0.16 0.12 0.11 0.032 0.15 0.18 0.11

& **←** → **+** Q = □

Feature Importance

The analysis identified the following key price determinants:

- 1. Total area (importance: 0.45)
- 2. Number of bedrooms (importance: 0.15)
- 3. Location (mainroad) (importance: 0.12) [Additional feature importance values to be added]

Conclusions

In conclusion, the visual analysis of predicted vs. actual prices showed that: Gradient Boosting achieved the best R² score (0.6652) and lowest testing RMSE. Linear models (Linear, Ridge, and Lasso) performed similarly, and the Random Forest showed signs of overfitting with the lowest training RMSE but highest testing RMSE.

Strengths

- 1. The ensemble methods (Random Forest and Gradient Boosting) demonstrated robust performance, consistently outperforming linear models
- 2. The preprocessing pipeline effectively handled both categorical and numerical features
- 3. Feature importance analysis provided actionable insights for real estate stakeholders

Limitations

- 1. Model performance might be limited by the dataset size
- 2. Categorical encoding might not capture all nuances of features like furnishing status
- 3. The models don't account for temporal market changes

Future Improvements

- 1. Implementation of more advanced ensemble methods like XGBoost
- 2. Integration of external data sources (e.g., neighborhood demographics)
- 3. Development of a confidence interval for predictions
- 4. Implementation of feature engineering techniques for better model performance

Works Cited

pandas - Python Data Analysis Library. Python Data Analysis Library Development Team, 2023, pandas.pydata.org.

scikit-learn: Machine Learning in Python. scikit-learn Development Team, 2023, scikit-learn.org.

"House Price Prediction Using Machine Learning in Python." GeeksForGeeks, 5 Sept. 2024, www.geeksforgeeks.org/house-price-prediction-using-machine-learning-in-python/

NYC Data Science Academy. "House Price Prediction with Machine Learning – Kaggle." *NYC Data Science Academy*, 26 Nov. 2018,

https://nycdatascience.com/blog/student-works/house-price-prediction-with-machine-learning-ka ggle/. Accessed 4 Dec. 2024.

Uzochukwu, Mike. "How to Build a House Price Prediction Model." *freeCodeCamp*, 28 June 2022, https://www.freecodecamp.org/news/how-to-build-a-house-price-prediction-model/. Accessed 4 Dec. 2024.