Formal Semantics of CCS

Moonzoo Kim School of Computing, KAIST

Review of the Previous Class

- Sequential system v.s. Reactive system
 - ♣ Ex1. Mathematical functions with given inputs generate outputs
 - Usually no environment consideration and timing consideration.
 - Ex2. Ad-hoc On-Demand Vector routing protocol
 - Should model multiple concurrent nodes (environment)
 - Should model communication among the nodes
 - Should model timely behavior (e.g. time-out, etc)
- Modeling of a complex system
 - Concurrency => interleaving semantics
 - Communication => synchronization
 - Hierarchy => refinement

Process Algebra

- A process algebra consists of
 - a set of operators and syntactic rules for constructing processes
 - a semantic mapping which assigns meaning or interpretation to every process
 - a notion of equivalence or partial order between processes
- Advantages: A large system can be broken into simpler subsystems and then proved correct in a modular fashion. Also, correctness can be checked
 - A hiding or restriction operator allows one to abstract away unnecessary details.
 - Equality for the process algebra is also a congruence relation; and thus, allows the substitution of one component with another equal component in large systems.

Notations (1/2)

- A system is described as a set of communicating processes
 - Each process executes a sequence of actions
 - Actions represents either inputs/outputs or internal computation steps
- A set of actions/events $Act = L U L' U \{\tau\}$
 - ↓ L ={a,b,...} is a set of names and L' ={a',b',...} is a set of co-names
 - a∈ L can be considered as the act of receiving a signal
 - a'∈ L' can be considered as the act of emitting a signal
 - *T* is a special action to represent internal hidden action
 - + $Act \{\tau\}$ represents the set of externally visible actions:

Notations (2/2)

- Operational (transitional) semantics of CCS process
 - Define the "execution steps" that processes may engaged in
 - P -a-> P' holds if a process P is capable of engaging in action a and then behaving like P'
 - ♣ Define –a-> inductively using inference rules for operators
 - premises----- (side condition)conclusion

Example 1:

Choice_R
$$Q - \alpha - > Q'$$

P+Q - $\alpha - > Q'$

Example 2:

Prefix
$$\alpha.P-\alpha-P$$

Operators for Sequential Process

The idea: 7 elementary ways of producing or putting together labelled transition systems

1.Nil

No transitions (deadlock)

2.Prefix
$$\alpha . P \ (\alpha \in Act)$$

Prefix -----
$$\alpha$$
.P $-\alpha$ -> P

3. Defn A = P

Buffer = in.out'.Buffer

Buffer-in->out'.Buffer-out'->Buffer

Operators for Sequential Process (cont.)

4.Choice
$$P + Q$$

BadBuf = in.(τ .0 + out.BadBuf)

BadBuf $\leq in > \tau.0 + out.BadBuf$

Obs: No priorities between τ 's, a's or a's !

May use Σ notation to comactly represent sequential

$$P = \sum_{i \in I} \alpha_i . P_i$$

Example: Boolean Buffer of Size 2

Action and Process Def.

in₀ :0 is coming as input in₁ :1 is coming as input

out₀:0 is going out as output out₁:1 is going out as output

Buf²: Empty 2-place buffer

Buf²₀: 2-place buffer holding 0

Buf²₀₁: 2-place buffer holding

0 at head and 1 at tail

$$Buf^{2} = in_{0}.Buf^{2}_{0} + in_{1}.Buf^{2}_{1}$$

$$Buf^{2}_{0} = out_{0}.Buf^{2} + in_{0}.Buf^{2}_{00} + in_{1}.Buf^{2}_{01}$$

$$Buf^{2}_{1} = out_{1}.Buf^{2} + in_{0}.Buf^{2}_{10} + in_{1}.Buf^{2}_{11}$$

$$Buf^{2}_{00} = out_{0}.Buf^{2}_{0}$$

$$Buf^{2}_{01} = out_{0}.Buf^{2}_{0}$$

$$Buf^{2}_{10} = out_{1}.Buf^{2}_{0}$$

 $Buf^{2}_{11} = out_{1}.Buf^{2}_{1}$

Operators for Concurrent Process

5. Parallel composition

P-
$$\alpha$$
->P'
Par_L $\frac{P - \alpha - > P'}{P|Q - \alpha - > P'|Q}$
Par_R $\frac{Q - \alpha - > Q'}{P|Q - \alpha - > P|Q'}$
P- α ->P', Q- α '->Q'
Par τ $\frac{P - \alpha - > P'|Q'}{P|Q - \tau - > P'|Q'}$

Buf₁ = in.comm'.Buf₁ Buf₂ = comm.out.Buf₂ Buf = Buf₁ | Buf₂ Buf -in-> comm'.Buf₁ | Buf₂ - τ > Buf₁ | out.Buf₂ -out-> Buf₁ | Buf₂

-out-> Buf, | Buf,

comm'.Buf₁|Buf₂

Buf₁|out.Buf₂

Operators for Concurrent Process (cont.)

6. Restriction P\L

KAIST

Res
$$P - \alpha - P'$$

P\L $-\alpha - P'$ \L

$$Buf_1 = in.comm'.Buf_1$$

 $Buf_2 = comm.out.Buf_2$
 $Buf_new=(Buf_1 | Buf_2)\setminus\{comm\}$

```
Buf_new
-in-> (comm.Buf<sub>1</sub> | Buf<sub>2</sub>)\{comm}
-\tau-> (Buf<sub>1</sub> | out.Buf<sub>2</sub>)\{comm}
-out-> (Buf<sub>1</sub> | Buf<sub>2</sub>)\{comm}
```

Buf
-<u>comm'-> Buf₁ | out.Buf₂</u>

(Buf1 | Buf2)\{comm} : a design for buffer with separated input/output ports

ReqBuf = in.out.ReqBuf : a requirement for buffer design

(Buf1 | Buf2)\{comm} == ReqBuf means that buffer design satisfies the requirement

Operators for Concurrent Process (cont.)

7. Relabelling

$$Buf_0 = in.out.Buf_0$$

Rel
$$P - \alpha - P'$$

P[f] $-f(\alpha) - P'[f]$

$$Buf_2 = Buf[comm/in]$$

Relabelling function f must preserve complements:

$$f(a') = f(a)'$$

Relabelling function often given by name substitution as above

Summary of CCS Semantics

Act
$$\alpha P - \alpha > P$$

Choice_L
$$P - \alpha - > P'$$
 $P - \alpha - > P'$ Choice_R $Q - \alpha - > Q'$ in.P + out.Q -in-> P or -out-> Q $P + Q - \alpha - > P'$

$$P - \alpha - > P'$$

 $P - \alpha - > P'$
 $P - \alpha - > P'$

$$P-a->P', Q-a'->Q'$$
 $Par\tau$ -----
 $P|Q-\tau->P'|Q'$

in.P | in'.Q - τ -> P|Q

Res -----
$$\alpha \notin L \cup L'$$

P\| -\alpha -> P'\|

(in.P | in'.Q)\{in} - τ -> (P|Q)\{in} only

Rel
$$P - \alpha - P'$$

P[f] $-f(\alpha) - P'[f]$

in.P [out/in] -out-> P[out/in]

Inference of Process Execution

Proof of ((a.E + b.0)| a'.F)\{a} -
$$\tau$$
-> (E|F)\{a}

Derive following process execution from the inference rules

```
# (a.E + b.0) | a'.F -a-> E | a'.F
# (a.E + b.0) | a'.F -a'-> (a.E + b.0) | F
# (a.E + b.0) | a'.F -b-> 0 | a'.F
# ((a.E + b.0) | a'.F)\{a} -b-> (0 | a'.F)\{a}
```

Draw corresponding labeled transition diagrams

```
♣ (a.E + b.0) | a'.F
```

$$+ ((a.E + b.0) | a'.F) (a)$$

$$A = a.c'.A, B = c.b'.B$$

A|B, (A|B)\{c}

Proofs

Proof 1

Prefix
$$a.E -a-> E$$
Choice $(a.E + b.0) -a-> E$
Par $(a.E + b.0) | a'.F -a-> E | a'.F$

Proof 2

Prefix
$$a'.F - a'-> F$$

Par_R $(a.E + b.0) | a'.F - a'-> (a.E + b.0) | F$

Proof 3

Prefix
$$b.0 -b-> 0$$
Choice_R $a.E + b.0) -b-> 0$
Par_L $a.E + b.0) | a'.F -b-> 0 | a'.F$

Labeled Transition Systems

Simple Protocol Example

```
proc PROTOCOL =

(SENDER | MEDIUM | RECEIVER) \ {from,to,ack_from,ack_to}

proc SENDER = send.'from.ack_to.SENDER

proc MEDIUM = from.'to.MEDIUM + ack_from.'ack_to.MEDIUM

proc RECEIVER = to.'receive.'ack_from.RECEIVER

proc NEW_PROTOCOL =

(SENDER | NEW_MEDIUM | RECEIVER) \ {to, from, ack_to, ack_from}

proc NEW_MEDIUM = MESSAGE_BUFFER | ACK_BUFFER

proc MESSAGE_BUFFER = from.'to.MESSAGE_BUFFER

proc ACK_BUFFER = ack_from.'ack_to.ACK_BUFFER
```


KAIST

Example: 2-way Buffers

1-place 2-way buffer:

$$Buf_{ab} = a_+.b_{\underline{}}'.Buf_{ab} + b_+.a_{\underline{}}'.Buf_{ab}$$

$$Buf_{bc} = b_.c_.'.Buf_{bc} + c_+.b_+'.Buf_{bc}$$

$$Sys = (Buf_{ab} \mid Buf_{bc}) \setminus \{b_+, b_-\}$$

But what's wrong? Deadlock occurs In other words, Sys == Buf_{ac}?

Example: Faulty Mutual Exclusion Protocol (1/2)

```
char cnt=0.x=0.v=0.z=0;
void enter crit sect() {
     char me = pid^2 + 1; /* me is 1 or 2*/
again:
    x = me:
                                Software
     If (y ==0 || y== me);
                                locks
     else goto again;
     z = me;
     If (x == me):
     else goto again;
     y=me;
     lf(z==me);
     else goto again;
     /* enter critical section */
     cnt++:
                                Critical
     assert( cnt ==1);
                                section
     cnt --;
     goto again;
                    Mutual
                    Exclusion
KAIST
                    Algorithm
```


Counter **Example**

Example: Faulty Mutual Exclusion Protocol

```
byte cnt, byte x,y,z;
active[2] proctype user()
     byte me = pid +1; /* me is 1 or 2*/
again:
      x = me;
      :: (y ==0 || y== me) -> skip
      :: else -> goto again
      z = me;
      :: (x == me) -> skip
      :: else -> goto again
      y=me;
If
      :: (z==me) -> skip
      :: else -> goto again
      /* enter critical section */
      cnt++
      assert( cnt ==1);
      cnt --:
      goto again
```

```
proc Sys = (P1|P2|X0|Y0|Z0|CNT0){x [0-2],y [0-2],z [0-2],
test x [0-2],test y [0-2],test z [0-2], inc cnt,dec cnt}
proc P1 = x_1.(test_y_0.P1' + test_y_1.P1' + test_y_2.P1)
proc P1' = z 1.(test x 0.P1 + test x 1.P1" + test x 2.P1)
P1'' = y \cdot 1.(test z \cdot 0.P1 + test z \cdot 1.P1''' + test z \cdot 2.P1)
proc P1" = inc cnt.dec cnt.P1
proc P2 = x_2.(test_y_0.P2' + test_y_1.P2 + test_y_2.P2')
P2' = z \cdot 2.(test \times 0.P2 + test \times 1.P2 + test \times 2.P2")
proc P2" = y 2.(test z 0.P2 + test z 1.P2 + test z 2.P2")
proc P2" = inc cnt.dec cnt.P2
* Variable x, y,z, and cnt
proc UpdateX = 'x 0.X0 + 'x 1.X1 + 'x 2.X2
proc X0 = 'test_x_0.X0 + UpdateX
proc X1 = test x 1.X1 + UpdateX
proc X2 = test x 2.X2 + UpdateX
proc UpdateY = 'y 0.Y0 + 'y 1.Y1 + 'y 2.Y2
proc Y0 = 'test y 0.Y0 + UpdateY
proc Y1 = 'test y 1.Y1 + UpdateY
proc Y2 = 'test y 2.Y2 + UpdateY
proc UpdateZ = 'z 0.Z0 + 'z 1.Z1 + 'z 2.Z2
proc Z0 = 'test z 0.Z0 + UpdateZ
proc Z1 = 'test z 1.Z1 + UpdateZ
proc Z2 = 'test z 2.Z2 + UpdateZ
proc CNT0 = 'inc cnt.cnt 1.CNT1
proc CNT1 = 'inc cnt.cnt 2.CNT2 + 'dec_cnt.cnt_0.CNT0
proc CNT2 = 'dec cnt.cnt 1.CNT1
```


CWB-NC Commands

- help <command>
- load <ccs filename>
- cat crocess>
- compile compile compile
- es <script file> <output file>
- eq -S <trace|bisim|obseq> proc1>
- le –S may <proc1> <proc2> /* Trace subset relation */
- quit
- sim process>
 - semantics <bisim|obseq>
 - ♣ random <n>
 - back <n>
 - break <act list>
 - history
 - quit

Observational Trace Equivalence

- Sys is a design for buffer with separated input/output ports
 Sys = (Buf₁|Buf₂)
 - \blacksquare Sys= (Buf₁ | Buf₂)\{comm₁,comm₂}
 - Buf₁ = in.comm₁.Buf₁', Buf₁' = comm₂.Buf₁
 - Buf₂ = comm₁'.Buf₂,Buf₂ = out.comm₂'.Buf₂
- Spec is a requirement for the buffer design
- Sys =_{TR} Spec?
 - ♣ No. Sys has τ which Spec does not
 - Exec(Sys) = $\{in,in.\tau, in.\tau.out, in.\tau.out.\tau,...\}$
 - Exec(Spec) = {in, in.out, ...}
 - Yes. τ is an internal hidden action not visible outside (not observable). Thus, τ is not inc_cntluded in an execution
 - If $s \in Act^*$, then $\hat{s} \in (Act \{\tau\})^*$ is the action sequence obtained by deleting all occurrences of τ from s.
 - Ex> s = $a.\tau.b.\tau.c$, then \hat{s} = a.b.c
 - A set of observable executions: Exec'(P) = {\$ | s ∈ Exec(P)}
 - Exec'(Sys) = {in, in.out,...}

 Exec'(Spec) = {in, in.out, ...}

Observational Bisimulation Equivalence

- P = α => Q iff P(- τ ->)*P'- α ->Q'(- τ ->)*Q where $\alpha \in Act$ -{ τ }
 - \clubsuit Let s∈(Act-{τ})*. Then q =s=> q' if there exists s' s.t. q-s'->q' and s=ŝ'
- \mathbf{I} is an internal hidden action which affects internal behaviors, although itself is not visible outside.
 - P = a.P + b.P, $Q1 = a.Q1 + \tau.b.Q1$
 - Suppose that 'a' means pushing button 'a'. Similarly for 'b'
 - P always allows a user to push any buttons.
 - Q1 allows a user to push button 'a' sometimes, button 'b' sometimes.
 - Thus, we need to distinguish P from Q1 (P and Q1 are not observationally bisimilar), which can be done using = α => instead of - α ->
 - Q1-a->Q1 implies Q1=a=>Q1. Similary Q2-b->Q1 implies Q2=b=>Q1
 - Q1-a->Q1-τ->Q2 implies Q1=a=>Q2. Q2-b->Q1- τ->Q2 implies Q2=b=>Q2

Observational Bisimulation Equivalence

- \blacksquare Sys =_{RS} Spec? (see slide 8)
 - **4** No. Sys has τ which Spec does not (i.e. not strongly bisimilar)
 - Yes. Sys is observationally bismilar to Spec
 - BS = { (s0,Spec), (s1,Spec'),(s3,Spec),(s2,Spec')}
 - s0 –in->s1 implies s0=in=> s1. Similarly, s2-out->s3 implies s2=out=>s3
 - s0 -in->s1 - τ ->s2 implies s0=in=>s2.
 - s2-out->s3- τ -> s0 implies s2=out=>s0

out