CSC 4780/6780 Fall 2022 Homework 10

October 25, 2022

This homework is due at 11:59 pm on Sunday, Nov 6. It must be uploaded to iCollege by then. No credit will be given for late submissions. A solution will be released by noon on Monday, Nov 7

it is always a good idea to get this done and turned in early. You can turn it in as many times as you like – iCollege will only keep the last submission. If, for some reason, you are unable to upload your solution, email it to me before the deadline.

Incidentally, I rarely check my iCollege mail, but I check my dhillegass@gsu.edu email all the time. Send messages there.

Be sure to rename your solution directory to match your name.

1 AutoML for Regression

I once worked with an old engineer who would quietly listen to younger engineers arguing over what each thought was the best solutions to a problem. Eventually, he would say, "There is no point in arguing about things that can be tested." And then he would go and do an experiment that ended the argument.

As we get better and better at working with these models, we can begin to guess which will be best. However, a lot of the time we can just try all of them.

In this exercise, you will get a data set for regression and you will use pycaret to find the best candidates and test them against each other.

1.1 Training and Comparing

train_concrete.csv and test_concrete.csv contain data about the compressive strength of several different concrete mixes: https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength

You will write a program called concrete_train.py that will use pycaret's compare_models (no turbo!) to try a large variety of regression algorithms on train_concrete.csv.

It will pick the best six (based on R^2) and it will tune (using at least 24 different parameter combinations) and finalize each before saving the finalized model to a pickle file. Thus six .pkl files will be created.

Run the program and save the output to train.txt.

train.txt should look like this:

*** Setti	ng up session***					
	Description	Value				
0	Session id	8371				
1	Target	csMPa				
2	Target type	Regression				
18	USI	6171				
*** Set u	p: 1.89 seconds					
		Model	MAE	MSE	RMSE	\
catboost	CatBoos	t Regressor	2.8945	18.6345	4.2833	
lightgbm	Light Gradient Boost	ing Machine	3.4278	24.0534	4.8647	
et	Extra Tree	s Regressor	3.5456	26.9685	5.1605	
rf	Random Fores	t Regressor	3.8756	27.8363	5.2477	
gbr	Gradient Boostin	g Regressor	3.9316	28.5122	5.3121	
mlp	ML	P Regressor	5.1949	46.8561	6.8208	
dt	Decision Tre	e Regressor	5.0301	56.0932	7.3678	
ada	AdaBoos	t Regressor	6.3680	61.0570	7.7998	
knn	K Neighbor	s Regressor	7.3850	96.5281	9.7726	
br	Bay	esian Ridge	8.1946	108.8475	10.4094	
kr	K	ernel Ridge	8.2325	108.9195	10.4127	
en		Elastic Net	8.2139	109.0079	10.4165	
ridge	Ridge	Regression	8.2163	109.0042	10.4161	
lr	Linear	Regression	8.2163	109.0043	10.4161	
lasso	Lasso	Regression	8.2147	109.0795	10.4200	
ard	Automatic Relevance De	termination	8.2609	109.4030	10.4368	
huber	Hube	r Regressor	8.1080	116.0969	10.6962	
par	Passive Aggressiv	-	9.6928	149.4162	12.0777	
lar	Least Angle	Regression	9.9147	163.0199	12.6530	
omp	Orthogonal Match	-	12.0965	216.9526	14.6893	
svm	Support Vector	Regression	12.0595	227.7054	15.0594	
tr	TheilSe	n Regressor	9.0357	232.6367	14.6477	
llar	Lasso Least Angle		13.6897	286.5223	16.8957	
dummy	Dumm	y Regressor	13.6897	286.5223	16.8957	
ransac	Random Sampl	e Consensus	10.4945	352.2832	17.8668	
	R2 RMSLE MAPE	TT (Sec)				
catboost	0.9337 0.1358 0.1003	0.227				

```
lightgbm
         0.9143 0.1576 0.1191
                                    0.016
         0.9043 0.1622 0.1235
                                    0.032
et
rf
         0.9010 0.1772 0.1404
                                    0.035
gbr
         0.8986 0.1760 0.1383
                                    0.016
mlp
         0.8327 0.2217 0.1769
                                    0.090
dt
         0.8006 0.2311 0.1713
                                    0.007
ada
         0.7840 0.2828 0.2631
                                    0.017
knn
         0.6541 0.3188 0.2843
                                    0.007
         0.6097 0.3320 0.3135
                                    0.007
br
kr
         0.6092 0.3307 0.3135
                                    0.009
         0.6091 0.3315 0.3134
                                    0.090
en
         0.6091 0.3312 0.3131
ridge
                                    0.089
         0.6091 0.3312 0.3131
                                    0.219
lr
         0.6088 0.3318 0.3137
lasso
                                    0.095
ard
         0.6073 0.3314 0.3149
                                    0.007
huber
         0.5809 0.3235 0.3038
                                    0.010
par
         0.4758 0.3902 0.3636
                                    0.007
         0.4182 0.4281 0.3720
                                    0.007
lar
         0.2359 0.4757 0.5022
                                    0.007
omp
svm
         0.1996 0.4822 0.5051
                                    0.009
         0.1558 0.3313 0.3066
tr
                                    0.171
llar
        -0.0068 0.5397 0.6003
                                    0.007
dummy
        -0.0068 0.5397 0.6003
                                    0.006
        -0.2651 0.3615 0.3362
                                    0.017
ransac
```

*** compare_models: 16.59 seconds

*** Best:

CatBoostRegressor LGBMRegressor ExtraTreesRegressor RandomForestRegressor GradientBoostingRegressor MLPRegressor

*** 0 - CatBoostRegressor ***

Fitting 10 folds for each of 24 candidates, totalling 240 fits MAE MSE RMSE R2 RMSLE MAPE Fold 0 3.4779 28.4514 5.3340 0.9139 0.1772 0.1307 . . . 2.5817 15.6806 3.9599 0.9387 9 0.1492 0.1040 Mean 3.0409 19.2967 4.3551 0.9313 0.1484 0.1077 Std 0.3354 5.1192 0.5742 0.0193 0.0199 0.0141

*** 1 - LGBMRegressor ***

Fitting 10 folds for each of 24 candidates, totalling 240 fits $${\rm MAE}$$ ${\rm MSE}$ ${\rm RMSE}$ ${\rm R2}$ ${\rm RMSLE}$ ${\rm MAPE}$

Fold

```
0
     3.5398 29.0514 5.3899 0.9121 0.1635 0.1275
. . .
     2.9727 19.1409 4.3750 0.9252 0.1640 0.1160
Mean 3.1203 21.8118 4.6207 0.9222 0.1522 0.1100
     0.3422
              6.4237 0.6787 0.0236 0.0230 0.0142
Std
*** 2 - ExtraTreesRegressor ***
Fitting 10 folds for each of 24 candidates, totalling 240 fits
        MAE
                 MSE
                       RMSE
                                 R2
                                      RMSLE
                                              MAPE
Fold
0
     5.3227 53.8647 7.3393 0.8370 0.2351 0.2000
1...
     5.0418 38.2233 6.1825 0.8506 0.2439 0.2172
Mean 4.9365 41.6118 6.4389 0.8523 0.2119 0.1816
            5.1511 0.3898 0.0196 0.0268 0.0253
Std
     0.2409
*** 3 - RandomForestRegressor ***
Fitting 10 folds for each of 24 candidates, totalling 240 fits
        MAE
                 MSE
                       RMSE
                                 R2
                                      RMSLE
                                              MAPE
Fold
0
     4.6211 46.6803 6.8323 0.8588 0.2290 0.1846
. . .
     4.6621 32.9120 5.7369 0.8714 0.2293 0.2000
Mean 4.5181 35.5683 5.9522 0.8745 0.2030 0.1707
Std
     0.1097
              4.5604 0.3733 0.0121 0.0318 0.0272
*** 4 - GradientBoostingRegressor ***
Fitting 10 folds for each of 24 candidates, totalling 240 fits
                 MSE
                       RMSE
                                      RMSLE
        MAE
                                 R2
                                              MAPE
Fold
     3.3277 25.1146 5.0114 0.9240 0.1740 0.1271
     2.9214 19.6030 4.4275 0.9234 0.1694 0.1215
Mean 3.1014 20.4411 4.4966 0.9272 0.1542 0.1114
     0.2730 4.1364 0.4706 0.0171 0.0203 0.0145
Std
*** 5 - MLPRegressor ***
Fitting 10 folds for each of 24 candidates, totalling 240 fits
        MAE
                 MSE
                       RMSE
                                 R2
                                      RMSLE
                                              MAPE
Fold
     5.6160 56.9794 7.5485 0.8276 0.2771 0.1929
0
. . .
     5.1128 37.7620 6.1451 0.8524 0.2474 0.2167
Mean 5.1949 46.8561 6.8208 0.8327 0.2217 0.1769
             7.8475 0.5772 0.0343 0.0291 0.0239
Transformation Pipeline and Model Successfully Saved
*** Tuning and finalizing: 165.12 seconds
*** Total time: 183.60 seconds
```

(Yes, depending on the versions of the libraries that you have installed, there may be some warnings from this process. I'm not showing those here.)

When I run this, I end up with a pickle file for the top six models:

- LGBMRegressor.pkl
- CatBoostRegressor.pkl
- MLPRegressor.pkl
- ExtraTreesRegressor.pkl
- RandomForestRegressor.pkl
- GradientBoostingRegressor.pkl

1.2 Testing

You will write a program called concrete_test.py that will scan the current directory for .pkl files. It will use pycaret to load those in one at time.

Each model will be tested on concrete_test.py. The program will print the time that inference required and the R^2 value.

Run the program and save the output to test.txt

My test.txt looks like this:

GradientBoostingRegressor:

Inference: 0.0095 seconds
R2 on test data = 0.9110

RandomForestRegressor:

Inference: 0.0319 seconds
R2 on test data = 0.8815

AdaBoostRegressor:

Inference: 0.0147 seconds
R2 on test data = 0.7239

ExtraTreesRegressor:

Inference: 0.0170 seconds
R2 on test data = 0.9007

MLPRegressor:

Inference: 0.0052 seconds
R2 on test data = 0.7861

CatBoostRegressor:

Inference: 0.0030 seconds
R2 on test data = 0.9079

LGBMRegressor:

Inference: 0.0071 seconds
R2 on test data = 0.9101

Which would you use if accuracy was most important? What if speed was also really important?

2 X^2 testing for independence between categorical variables

Some times we will look at two categorical variables and try to figure out if they are related. Does knowing that the mouse has a particular gene tell us anything about the probability that it will get cancer?

You are given a csv with the results of this sort of experiment called mice.csv. Write a program check_mice.py that does the analysis. Put the analysis into a LaTeX file. (mice.tex) Convert that to a PDF mice.pdf). Include bot files in your zip file.

For example, you should start out with a contingency table: (I did these examples with different data.)

Gene	No Cancer	Has Cancer	
R	34	2	36
J	4	45	49
K	17	18	35
	55	65	120

Then show conditional proportions:

Gene	No Cancer	Has Cancer	
R	94.4%	5.6%	30.0%
$\rm J$	8.2%	91.8%	40.8%
K	48.6%	51.4%	29.2%
	45.8%	54.2 %	

Then show the expected counts if the gene and cancer were independent:

Gene	No Cancer	Has Cancer	
R	16.5	19.5	36
J	22.5	26.5	49
K	16.0	19.0	35
	45.8%	54.2%	

Use the two tables to find X^2 :

$$X^2 = 62.379$$

Note the degrees of freedom. (It is 2.)

And do a p-test:

```
p = 2.853273173286652 \times 10^{-14}
```

And then give proclamation: "It seems very, very unlikely that we would have seen these numbers if the gene and cancer were independent."

3 Criteria for success

If your name is Fred Jones, you will turn in a zip file called HW10_Jones_Fred.zip of a directory called HW10_Jones_Fred. It will contain:

- concrete_train.py
- concrete_test.py
- check_mice.py
- test.txt
- train.txt
- mice.tex
- mice.pdf
- train_concrete.csv
- test_concrete.csv
- mice.csv

Be sure to format your python code with black before you submit it.

We would run your code like this:

```
cd HW10_Jones_Fred
python3 concrete_train.py
python3 concrete_test.py
python3 check_mice.py
```

Do this work by yourself. Stackoverflow is OK. A hint from another student is OK. Looking at another student's code is *not* OK.

The template files for the python programs have import statements. Do not use any frameworks not in those import statements.