Forward review Sigmoid W3, D3 PE [O1] Dense 1 dxds 21 = J(W, X + b1 P-0 (WT 22+ b3) = o (Ng 21+b)

Parameters: $\theta = \{ w_i, b_i ; i \leq i \leq 3 \} = \| dl \|$

Loss function: $J(\theta) = -\frac{\log(Z(\theta))}{1}$. Rs Birory Classification pb: $\frac{1}{J(f)} = \frac{1}{N} \left\{ \frac{N}{1-1} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\} = \frac{1}{N} \left\{ \frac{N}{1-1} \log \left(\frac{1-N}{1-1} \right) \right\}$ Dalaset : {Xi, Xi, Si, LiZN Y_{i} f_{0} $P_{i} = (f_{0})(x_{i})$

La Hulliclars classification pb: (With K categoines) $\frac{1}{3}$ $\frac{1}{3}$ Dataset: SXinyiticien Xi Jos Pi= Pi J(b) = J = J = 1 (Pib)

Dataset: Approach in Programming Jession 4. doc, "Newal Networks are Lu" = [-] doz. Affection models are awesome => [-]v Later processed is of shape (N, V)

~50-300 Decap representation of each word (as a center word)
(~ users) D. Lin representati of each word (as a context word)

 $, \mathcal{D})$ tuset (T,D) wess. T D \sim >>