Sheet1

REC	Age	Income	Student	Credit rating	Buys computer
r1	<=30	High	No	Fair	No
r2	<=30	High	No	Excellent	No
r3	3140	High	No	Fair	Yes
r4	>40	Medium	No	Fair	Yes
r5	>40	Low	Yes	Fair	Yes
r6	>40	Low	Yes	Excellent	No
r7	3140	Low	Yes	Excellent	Yes
r8	<=30	Medium	No	Fair	No
r9	<=30	Low	Yes	Fair	Yes
r10	>40	Medium	Yes	Fair	Yes
r11	<=30	Medium	Yes	Excellent	Yes
r12	3140	Medium	No	Excellent	Yes
r13	3140	High	Yes	Fair	Yes
r14	>40	Medium	No	Excellent	No
r15	<=30	Medium	No	Excellent	No
r16	<=30	Low	No	Fair	No
r17	<=30	Low	No	Excellent	No
r18	3140	Low	Yes	Fair	Yes
r19	>40	Medium	Yes	Excellent	Yes
r20	3140	High	No	Excellent	Yes

Aufgabe A

Gesucht: Entscheidung ob jemand einen Computer kauft ja oder nein.

$$E(S) = \sum_{i=1}^{c} -p(i)*(\log_{2}*p(i))$$

Sheet1

Kauft Computer ja nein 12 8 Entropie = E E(KaufComputer) = E(12,8) = E(0.6,0.4) = - $(0.6 \log_2(0.6))$ - $(0.4 \log_2(0.4))$ = 0.97095059

0.001609492 0.03030514 0.224371171

Zugewinn(T,X) = Z(T,X) = Entropie(T) - Entropie(T,X)

		Kauft Computer			
		ja	nein		
	<=30	2	6		0.3245
Alter	31-40	6	0		
	>40	4	2	+	0.2754
Z(KaufComputer, Alter) =			=		
E(KaufComputer) – E(KaufComputer,Alter) =					
0.97095059 - 0.6 = 0.37095059					

		Kauft Computer		
		ja	nein	
	Niedrig	4	3	0.3448298
Einkommen	Mittel	5	3	+ 0.3817736
	Hoch	3	2	+ 0.2427376
Z(KaufComputer, Einkommen) =			= 0.9693410	
E(KaufComputer) – E(KaufComputer,Einkommen) =				
0.97095059 - 0.969341098 = 0.00169492				

	Kauft Computer		
	ja	nein	
ja	8	1	
Student nein	4	7	
Z(KaufComputer, Student) =			
E(KaufComputer) – E(KaufComputer,Student) =			
0.97095059 - 0.746579419 = 0.224371171			

	Kauft Computer			
	ja	nein		
Fair	7	3		0.44064545
Kredit-Rating Excellent	5	5	+	0.5
Z(KaufComputer, Kredit-Ratio	=	0.94064545		
E(KaufComputer) – E(KaufCo				
0.97095059 - 0.94064545				

Aus den Berechnungen ergibt sich die Reihenfolge: Alter, Student, Kredit-Ranking, Einkommen

Daraus ergibt sich dann nachfolgender Entscheidungsbau:

Page 3

Aufgabe B

```
In [1]: 1 import pandas as pd
         2 import numpy as np
         4 from sklearn.tree import DecisionTreeClassifier
         5 from sklearn import preprocessing
         7 data = pd.read csv("dataset.csv")
         8 data = data.drop('REC', axis=1)
         9 data2 = pd.read csv("dataset.csv")
        10 data2 = data2.drop('REC', axis=1)
        11 le = preprocessing.LabelEncoder()
        12 le.fit(["<=30","31...40",">40","Low","Medium","High","Fair","Excellent","Yes","No"])
        13 data = data.values.reshape(-1,1)
        14 new values = le.transform(data).reshape(-1,5)
        15
        16
        17
In [2]: 1 X = new values[:, 0:4] # petal length and width
         2 y = new values[:, 4:5]
         4 tree clf = DecisionTreeClassifier(max depth=8)
         5 tree clf.fit(X, y)
         6
Out[2]: DecisionTreeClassifier(max_depth=8)
In [3]: 1 from sklearn.tree import export graphviz
             export graphviz(
                     tree clf,
         5
                 out_file="/media/max/PROJECTS/coden/Data Science Modul/MM_11_Decision_Trees_Exercise/test.dot",
         6
                     feature names=data2.columns.values[0:4].tolist(),
         7
                     class names=["Kaufen", "Nicht kaufen"],
         8
                     rounded=True,
         9
                     filled=True
        10 )
```

Sheet1

