Преобразование базисов

Содержание

81	матрица перехода	1
§2	Изменение координат при изменении базиса	2
§3	Невырожденные матрицы	3

§1. Матрица перехода

Рассмотрим линейное пространство $V(\mathbb{K})$. Очевидно, что выбор базиса в линейном пространстве является неоднозначным, но также в силу того, что все базисы равномощны, можно предположить возможность существования операции перехода из одного базиса в другой.

Пусть $e = \{e_1, e_2, \dots, e_n\}$ — некоторый базис в V и $\widetilde{e} = \{\widetilde{e}_1, \widetilde{e}_2, \dots, \widetilde{e}_n\}$ — другая, в общем случае отличная от первой, система векторов из V. Выразим векторы системы $\{\widetilde{e}_i\}_{i=1}^n$ через базисные векторы.

$$\begin{cases} \widetilde{e}_1 = c_{11}e_1 + c_{21}e_2 + \dots + c_{n1}e_n \\ \widetilde{e}_2 = c_{12}e_1 + c_{22}e_2 + \dots + c_{n2}e_n \\ \dots \\ \widetilde{e}_n = c_{1n}e_1 + c_{2n}e_2 + \dots + c_{nn}e_n \end{cases}$$

и составим матрицу $T=(\tau_{ij})$. Подчеркнем, что матрица T получается выписыванием координат векторов системы относительно базиса в столбцы. Если распространить правило умножения матриц на случай, когда элементами одной из них являются векторы (что имеет смысл ввиду операций, определенных в линейном пространстве), то можно записать

$$(\widetilde{e}_1, \dots, \widetilde{e}_n) = (e_1, \dots, e_n)T \tag{1}$$

Лемма 1.1. Система векторов $\{\tilde{e}_i\}_{i=1}^n$ линейно независима тогда и только тогда, когда матрица T невырождена.

Доказательство. Если матрица T вырождена, то существует такой столбец $x \neq 0$ высоты n, что Tx = 0. Тогда, умножая обе части (1) справа на x, получаем нетривиальную линейную зависимость между векторами $\{\widetilde{e}_i\}_{i=1}^n$.

Наоборот, если система $\{\tilde{e}_i\}_{i=1}^n$ линейно зависима, то существует ненулевой столбец x высоты n такой, что $(\tilde{e}_1,\ldots,\tilde{e}_n)x=0$. Тогда из (1) и линейной независимости системы $\{e_i\}_{i=1}^n$ получаем, что Tx=0, то есть столбцы матрицы T линейно зависимы, а значит эта матрица вырождена.

Опр. 1.1. Невырожденная матрица T называется **матрицей перехода** от базиса $\{e_i\}_{i=1}^n$ к базису $\{\widetilde{e}_i\}_{i=1}^n$.

NtB 1.1. Для явного указания базисов, между которыми совершается преобразование перехода, будем вводить следующее обозначение для матрицы перехода

$$T = (e \leadsto \widetilde{e})$$

NtB 1.2. В силу последней леммы для двух линейно независимых систем $\{e_i\}_{i=1}^n$ и $\{\widetilde{e}_i\}_{i=1}^n$ матрица перехода всегда единственна и невырожденна. Мы получили биекцию между множеством базисов в n-мерном пространстве V и множеством невырожденных матриц порядка n над данным полем (над которым определено пространство V).

Лемма 1.2. (свойства матрицы перехода)

- 1. $(e \leadsto e) = E$;
- 2. $(e \leadsto f) = (e \leadsto g)(g \leadsto f);$
- 3. $(e \leadsto f)$ обратима $u (e \leadsto f)^{-1} = (f \leadsto e)$.

Доказательство. 1. Очевидно.

2. Пусть $(g_1, \ldots, g_n) = (e_1, \ldots, e_n)(e \leadsto g)$ и $(f_1, \ldots, f_n) = (g_1, \ldots, g_n)(g \leadsto f)$. Тогда $(f_1, \ldots, f_n) = (e_1, \ldots, e_n)(e \leadsto g)(g \leadsto f)$. В силу единственности матрицы перехода, $(e \leadsto f) = (e \leadsto g)(g \leadsto f)$.

3. Следует из 1 и 2.

§2. Изменение координат при изменении базиса

Теперь мы можем связать координаты одного и того же вектора в разных базисах. Обозначим через X и \widetilde{X} координатные столбцы вектора $x \in V$ в базисах e и \widetilde{e} соответственно.

Теорема 2.1. Пусть V- конечномерное векторное пространство, $e\ u\ \widetilde{e}-$ базисы. Тогда для любого вектора $x\in V$ выполнено $\widetilde{X}=(\widetilde{e}\leadsto e)X.$

Доказательство.

 $x=(e_1,\ldots,e_n)X=(\widetilde{e}_1,\ldots,\widetilde{e}_n)\widetilde{X}=((e_1,\ldots,e_n)(e\leadsto\widetilde{e}))\widetilde{X}.$ По ассоциативности умножения матриц и единственности разложения вектора по базису получаем, что $X=(e\leadsto\widetilde{e})\widetilde{X}$ или $\widetilde{X}=(\widetilde{e}\leadsto e)X.$

NtB. Обратим внимание: чтобы получить столбец координат в новом базисе, нужно **слева** умножить столбец его координат в старом базисе на матрицу, **обратную** к матрице перехода от старого базиса к новому. Ещё говорят, что координаты вектора в базисе преобразуются **контравариантно**. Полный смысл этого понятия будет раскрыт в следующих темах.

§3. Матричные группы

Как было показано, матрицы перехода являются невырожденными матрицами. Сформулируем утверждение, которое касается матриц, обладающих таким свойством.

Пемма 3.1. Множество квадратных невырожденных матриц с операцией умножения образует некоммутативную группу.

Доказательство. Умножение квадратных невырожденных матриц является внутренним законом композиции. Иными словами, это множество замкнуто относительно операции умножения в силу того, что для любых $A_1, A_2 \in M_n(\mathbb{K})$ таких, что $\det A_i \neq 0$ справедливо

$$\det A_1 \cdot A_2 = \det A_1 \cdot \det A_2 \neq 0$$

Умножение квадратных матриц всегда ассоциативно. Единичная матрица, являющаяся нейтральным элементом по операции умножения для всех квадратных матриц, также является невырожденной и следовательно принадлежит этому множеству. А также в силу невырожденности матриц этого множества мы можем утверждать, что все они обратимы. Некоммутативность умножения матриц очевидна.

- **Опр. 3.1.** Множество невырожденных квадратных матриц n-го порядка с операцией умножения называется **полной линейной группой** и обозначается $\mathrm{GL}(n)$.
- **NtB 3.1.** Любая матрица перехода является элементом этой группы $T \in GL(n)$ и, наоборот, любая матрица $A \in GL(n)$ может быть матрицей перехода между какими-то базисами.
- **Опр. 3.2. Специальной линейной группой** $\mathrm{SL}(n)$ называется группа, которая образована подмножеством $\mathrm{GL}(n)$ квадратных матриц, определитель которых равен 1.

Очевидно, что матрицы A_i такие, что $\det A_i = 1$ в результате умножения дают матрицу с таким же свойством. Ассоциативность, существование нейтрального элемента (единичной матрицы) и обратимость таких матриц очевидно. Отсюда и следует, что данное подмножество является группой.

- **Опр. 3.3.** Подмножество группы, которое само является группой с тем же внутренним законом композиции, называется подгруппой.
- ${f NtB}$ 3.2. Специальная линейная группа является подгруппой ${
 m GL}(n)$.

Перечислим еще ряд других важных подгрупп полной линейной группы:

• Диагональная группа D(n) — множество всех диагональных невырожденных матриц n-го порядка.

- Треугольная группа T(n) множество (верхне) треугольных невырожденных матриц n-го порядка.
- Унитреугольная группа UT(n) множество верхнетреугольных матриц, все диагональные элементы которых равны 1. В этом смысле, UT(n) является подгруппой как T(n), так и SL(n).

Опр. 3.4. Вещественная квадратная матрица C называется *ортогональной*, если $C^T = C^{-1}$, то есть $C^T C = CC^T = E$.

Пемма 3.2. Произведение ортогональных матриц является ортогональной матрицей.

Доказательство. Пусть A и B — ортогональные матрицы. Тогда

$$(AB)^{-1} = B^{-1}A^{-1} = B^TA^T = (AB)^T$$

Откуда следует ортогональность произведения по определению.

Опр. 3.5. Множество ортогональных матриц n-ного порядка называется op-mогональной группой и обозначается O(n).

Нетрудно заметить, что ортогональные матрицы 2×2 имеют один из следующих видов: $\begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix}$, $\begin{pmatrix} \cos\varphi & \sin\varphi \\ \sin\varphi & -\cos\varphi \end{pmatrix}$, угол можно считать принадлежащим $[0,2\pi)$. В первом случае смысл — поворот на угол φ , и сама матрица называется **матрицей поворота**. Во втором случае происходит композиция поворота на угол φ и симметрии относительно e_1 , повернутого на угол φ — можно показать, что это симметрия относительно направления $(\cos\frac{\varphi}{2},\sin\frac{\varphi}{2})^T$. Определитель любой ортогональной матрицы равен ± 1 . Ортогональная матрица с определителем 1 называется **специальной ортогональной**. Множество таких матриц n-ного порядка обозначается SO(n) и называется **специальной ортогональной ортогональной** SO(2) является группой вращений плоскости, SO(3) — группой вращений пространства.

Опр. 3.6. Евклидовой группой $\mathrm{E}(n)$ называется множество преобразований вида

$$x \mapsto Ax + b$$
.

где $x, b \in \mathbb{R}^n$ и $A \in \mathrm{O}(n)$ — ортогональная матрица.

Несложно проверяется, что композиция таких преобразований также является преобразованием такого типа, а также выполняются другие групповые свойства.

NtB 3.3. Геометрический смысл евклидовой группы заключается в совокупном описании операций поворотов и параллельны переносов векторов.