

Example 2 33: As shown in the figure, the circle O inscribes the quadrilateral ABCD, AD intersects BC at E, AB intersects CD at F, AC intersects BD at G, the circumcircle of \triangle ABG and the circumcircle of \triangle CDG intersect at G, H, \triangle The circumscribed circle of ADG and the circumscribed circle of \triangle BCG intersect at G, I, and prove that: F, I, O are collinear; O is the orthocenter of \triangle EFG.

Proof: First prove that A, B, I, O are four points in a circle.

$$\frac{\frac{I-A}{I-B}}{\frac{O-A}{O-B}} \frac{\frac{D-A}{I-G}}{\frac{I-A}{I-G}} \frac{\frac{I-B}{C-A}}{\frac{C-B}{C-G}} \frac{C-A}{D-B} \frac{\frac{O-A}{O-B}}{\frac{C-A}{C-B}} = 1,$$

Similarly, four points D, C, I, O share a circle. According to the circular power theorem, F is on the root axis of the circumcircle of \triangle ABI and \triangle DCI, so the three points F, I, O are collinear. Similarly, the three points E, G, and I are collinear. The three points E, H and O are collinear.

$$\frac{I-O}{I-G} = -\frac{\frac{I-O}{I-C}}{\frac{D-O}{D-C}} \frac{\frac{I-C}{B-C}}{\frac{B-C}{G-B}} \frac{B-D}{B-G} \left(\frac{B-C}{B-D} \frac{D-O}{D-C} \right), \text{ so } IO \perp IG \text{, similarly } HO \perp HG \text{,}$$

so O is the orthocenter of \triangle EFG.