Lógica El

	Exame de recurso — 19 de junho de 2019 ————	duração: 2 horas —	
nome:		número	

Grupo I

Este grupo é constituído por 6 questões. Em cada questão, deve dizer se a afirmação indicada é verdadeira (V) ou falsa (F), assinalando o respetivo quadrado. Em cada questão, a cotação atribuída será 1 valor, -0,25 valores ou 0 valores, consoante a resposta esteja certa, errada, ou não seja assinalada resposta, respetivamente. A cotação total neste grupo é no mínimo 0 valores.

- V F Para qualquer $\varphi \in \mathcal{F}^{CP}$, $(p_1 \wedge p_2)[\varphi/p_1]$ tem pelo menos 3 subfórmulas. Para quaisquer $\varphi, \psi \in \mathcal{F}^{CP}$, se $\varphi \vee \psi$ é contradição, então φ e ψ são ambas contradições. 2. Para qualquer $\Gamma \subseteq \mathcal{F}^{CP}$, se Γ é inconsistente, então, para qualquer $\varphi \in \mathcal{F}^{CP}$, existem 3. derivações em DNP de φ a partir de Γ . Para todo o tipo de linguagem com um símbolo de relação binário R, x_0 é livre para qualquer termo em $\exists x_0 \mathsf{R}(x_0, x_0) \land \exists x_1 \neg \mathsf{R}(x_1, x_2)$. Para todo o tipo de linguagem L e todo o conjunto não vazio e finito D, se L contém duas constantes, então o número de estruturas de tipo L com domínio D é par.
- 6. Para todo o tipo de linguagem L contendo o símbolo de relação binário =, a fórmula \Box $x_1 = x_2 \rightarrow x_2 = x_1$ é válida em qualquer estrutura cujo domínio é um conjunto singular.

Grupo II

Responda a cada uma das 4 questões deste grupo no enunciado, no espaço disponibilizado a seguir à questão, sem apresentar justificações.

Considere o tipo de linguagem $L = (\{c, s, x\}, \{P, =\}, \mathcal{N})$ em que $\mathcal{N}(c) = 0$, $\mathcal{N}(s) = 1$, $\mathcal{N}(x) = 2$ $\mathcal{N}(P) = 1$ e $\mathcal{N}(=) = 2$. Seja $E = (\mathbb{N}, \overline{})$ a estrutura de tipo L tal que:

$$\overline{\mathtt{c}} = 2 \qquad \qquad \overline{\mathtt{P}} = \{n \in \mathbb{N} : n \text{ \'e par}\}$$

$$\overline{\mathtt{s}} : \mathbb{N} \to \mathbb{N} \text{ tal que } \overline{\mathtt{s}}(n) = n+1 \qquad \qquad \overline{\mathtt{m}} = \{(m,n) \in \mathbb{N}^2 : m=n\}$$

$$\overline{\mathtt{m}} : \mathbb{N}^2 \to \mathbb{N} \text{ tal que } \overline{\mathtt{m}}(m,n) = m \times n$$

1. Dê exemplo de um termo de tipo L com exatamente 3 subtermos.

Resposta:

2. Seja a a atribuição em E tal que, para todo $i \in \mathbb{N}_0$, $a(x_i) = 3i$. Indique $\mathsf{s}(x_0) \times \mathsf{s}(x_2 \times \mathsf{c})$ [a]. Resposta:

3. Considere a fórmula do Cálculo Proposicional $\varphi = \neg p_2 \lor ((p_1 \land \neg p_3) \leftrightarrow p_2)$. Dê exemplo de uma valoração v tal que $v(\varphi) = 0$.

Resposta:

4. Seja φ a fórmula do Cálculo Proposicional $(p_1 \vee \neg p_2) \to p_3$. Indique uma forma normal conjuntiva logicamente equivalente à fórmula φ .

Resposta:

Grupo III

Responda às 5 questões deste grupo na folha de exame.

- 1. Considere as seguintes afirmações:
 - Se Joana é engenheira, então usa óculos.
 - Joana gosta de computadores se e só se: não usa óculos ou é engenheira.
 - Joana não gosta de computadores mas usa óculos.
 - (a) Exprima as afirmações anteriores através de fórmulas do Cálculo Proposicional, utilizando variáveis proposicionais para representar as frases atómicas.
 - (b) A afirmação "Joana não é engenheira" é ou não uma consequência das três afirmações acima? Justifique.
- 2. Considere a função $f: \mathcal{F}^{CP} \to \mathcal{F}^{CP}$ definida recursivamente por:
 - $f(p_i) = p_i \lor \bot \quad (i \in \mathbb{N}_0).$ (ii) $f(\bot) = \bot$.
 - (iii) $f(\neg \varphi) = \neg f(\varphi)$.
- (iv) $f(\varphi \Box \psi) = (f(\varphi) \land f(\varphi)) \Box f(\psi) \quad (\Box \in \{\land, \lor, \to, \leftrightarrow\}).$
- (a) Determine $f(p_1 \to \neg p_5)$. Justifique.
- (b) Prove, por indução estrutural, que: para todo $\varphi \in \mathcal{F}^{CP}$, $\varphi \Leftrightarrow f(\varphi)$.
- 3. Construa uma derivação que mostre que $(p_1 \leftrightarrow p_2) \rightarrow ((p_1 \lor p_2) \rightarrow p_2)$ é um teorema de DNP.
- 4. Considere de novo o tipo de linguagem $L = (\{c, s, \times\}, \{P, =\}, \mathcal{N})$ e a estrutura $E = (\mathbb{N}, \overline{})$ de tipo L do Grupo II. Seja φ a fórmula $P(x_4) \vee \forall x_0 (P(x_0) \to \exists x_1 (x_0 = c \times x_1))$ de tipo L.
 - (a) Prove que φ é válida em E.
 - (b) Mostre que φ não é universalmente válida.
- 5. Sejam L um tipo de linguagem, φ e ψ fórmulas de tipo L e x uma variável tal que $x \notin LIV(\varphi)$. Prove que $\varphi \wedge \exists x\psi \models \exists x(\varphi \wedge \psi)$.

Cotações	I	II	III
Cotações	6	1 + 1 + 1 + 1	2,5+2,5+1,5+2,5+1