Исправление ошибок в чтениях, полученных с помощью технологии IonTorrent

Ершов Василий Алексеевич

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н. Коробейников А. И. Рецензент: разработчик ПО Тарасов А. Л.

Задача исправления ошибок

- Неизвестный геном $g \in \mathbb{A}^*$ строка над алфавитом $\mathbb{A} = \{A, \ C, \ G, \ T\}$
- Дано множество $S = \{r_i\}_{i=1}^N$ (коротких) подстрок g, содержащих ошибки чтения.
- Всем $r_i \in \mathbb{S}$ соответствует (неизвестные) подстроки r_i^* генома g.
- Требуется по \mathbb{S} восстановить $\mathbb{S}^* = \{r_i^*\}_{i=1}^N$.

```
Геном
AGCTTTCATTAAGCGGCGAAAAGACTCAAGAAATTAGTTGCA

Чтения
GC_TTCA
GG_GAA__GAC
AAATTAGT_G

Чтения
CTTTCATAAAGCG
GAA_TTAGT_GC

Чтения
TAAGCGCGGGAAA_GAACCAAG
```

Обозначения

Определение

- Нуклеотиды (полимеры): $\mathbb{A} = \{A, C, G, T\}$
- Гомополимеры: $\mathbb{H} = \{(a, n) | a \in \mathbb{A}, n \in \mathbb{N}\}$
- k-мер последовательность из полимеров длины k строка над алфавитом $\mathbb A$ длины k
- hk-мер последовательность из гомополимеров длины k элемент пространства \mathbb{H}^k

Полимеры | Гомополимеры |
$$k$$
-мер (k = 4) | hk -мер (k = 4) | $AAAA$, CC, T | $AACG$ | $AACGGGTT$

Задача исправления ошибок

- В общем случае решить практически невозможно.
- В практических задачах есть априорная информация о чтениях:
 - Чтения получены в результате работы некоторого прибора, про который известен профиль ошибок.
 - Строчек много каждый нуклеотид в геноме покрыт достаточно много раз.

```
Геном
AGCTTTCATTAAGCGGCGAAAAGACTCAAGAAATTAGTTGCA

Чтения
GC_TTCA
GG_GAA_GAC
AAATTAGT_G

Чтения
CTTTCATAAAGCG
GAA_TTAGT_GC

Чтения
TAAGCGCGGAAA_GAACCAAG
```

Покрытие каждого нуклеотида приблизительно 2.

Hammer/BayesHammer

Алгоритмы коррекции.

- Hammer (Medvedev et al., 2011)
- BayesHammer (Nikolenko et al., 2013)

Идея алгоритмов

- Переход от чтений к подстрокам длины к.
- Оценка множества геномных *к*-меров:
 - Кластеризация множества *к*-меров.
 - Фильтрация «ошибочных» кластеров.
- Алгоритм коррекции на основе оценки k-мерного спектра генома.

IonHammer — метод коррекции ошибок для технологии IonTorrent

IonHammer

- Обобщение BayesHammer на ошибки вида «вставки» и «удаления».
- Переход от алфавита из полимеров к алфавиту из гомополимеров.

Недостатки

- Медленный шаг кластеризации.
- Необходимость подбора параметров для работы алгоритма.
- Низкое качество коррекции.

Оценка множества геномных *hk*-меров

Входные данные и параметры

- Множество hk-меров \mathcal{H} , встретившихся в чтениях.
- Статистики, посчитанные для этих чтений:
 - C(h) количество раз, которое hk-мер встретился в чтениях.
 - *Q*(*h*) некоторая оценка качества *hk*-мера.
- $d(x, y): \mathbb{H}^k \times \mathbb{H}^k \to \mathbb{R}_{\geq 0}$ некоторая мера схожести hk-меров.

*ED*₁-граф

Граф с вершинами из \mathcal{H} . Ребра проведены между всеми вершинами x и y, для которых $d(x,y) \leq 1$.

Оценка множества геномных *hk*-меров

Оценка множества геномных *hk*-меров

В рамках ВКР были предложены

- Эффективный алгоритм построения компонент связности для частного случая ED₁-графа.
- Метод фильтрации ошибочных кластеров, параметры для которого оцениваются автоматически с помощью EM-алгоритма.
- Набор эвристик для консервативного определения числа кластеров m с автоматической оценкой параметров.

Качество оценки множества геномных *hk*-меров

Организм	E. coli str. DH10B	E. coli str. DH10B	
Чтений	7247730	47730 22749163	
Всего <i>hk</i> -меров	206560123	403698029	
Геномные,	6562088	6550682	
оценные геномными	(99.78%)	(99.6%)	
Геномные,	14325	25861	
оцененные негеномными	(0.22%)	(0.4%)	
Негеномные, оцененные геномным	11971	39002	

Количество геномных и негеномных центров. Для геномных центров указана доля от общего числа геномных *hk*-меров в чтениях.

Алгоритм коррекции

- Основная идея согласовано заменить все hk-меры в чтении на оценки геномных.
- Различные исправления ранжируются с помощью функции штрафа.
- Предложен и реализован алгоритм, минимизирующий специальный вид функций штрафа.
- В общем случае временная сложность предложенного алгоритма для коррекции чтения длины n:

$$\log T(n) = \Theta(n^{\alpha}), \alpha \ge 1$$

Применен ряд эвристик, позволяющий перебирать только «наиболее важные» коррекции.

Сравнение новой и старой версий IonHammer

	Новый	Старый
Время работы (мин., 32 потока)	1:22	2:55
Кол-во геномных	6553831	6567815
<i>hk</i> -меров	(99.65%)	(99.86%)
Кол-во негеномных hk-меров	716331	3661340
Испорченные или выравненные на другую геномную позицию чтения	33676 (4.92%)	40037 (5.86%)

Качество коррекции *E. coli str. DH10B*-C24. Всего в данных 10^7 негеномных hk-меров.

Качество коррекции

Алгоритм	Геномные	Негеномные	
Алгоритм	<i>hk</i> -меры	<i>hk</i> -меры	
Coral	6557985	1578382	
(Salmela, Schoder, 2011)	(99.71%)	1376362	
Fiona	6572520	745943	
(Schulz et al., 2014)	(99.93%)	743943	
Pollux	6548650	827297	
(Marinier et al., 2015)	(99.57%)		
IonHammer	6553831	716331	
ioni iamnei	(99.65%)		

Качество коррекции *E. coli str. DH10B*-C24. Всего в данных 10^7 негеномных hk-меров.

Скорость работы

	IonHammer	Pollux	Coral	Fiona
Количество потоков	32	1	8	32
Процессорное	29298s	65866s	439084s	∞
время	232303	030003	4000043	<u>ω</u>
Время работы	0:17:33	18:19:48	15:46:34	∞
Максимальный расход памяти (GB)	15	20	33	NA

Време работы на наборе данных *E. coli DH10B*-520.

Результаты

Разработан алгоритм коррекции IonHammer 2.0

- Реализована эфективная модификация алгоритма кластеризации.
- Предложен и реализован метод автоматической оценки параметров для алгоритма кластеризации.
- Метод коррекции чтений из BaysHammer обобщен на ошибки технологии IonTorrent и реализован в новой версии IonHammer.
- Проведено сравнение алгоритма с существующим аналогами и предыдущей версией алгоритма.
- Подготовлена статья в журнал Bioinformatics