EUCLID IN A TAXICAB: SPARSE BLIND DECONVOLUTION WITH SMOOTHED ℓ_1/ℓ_2 REGULARIZATION

Audrey Repetti*, Mai Quyen Pham*[†], Laurent Duval[†], Emilie Chouzenoux*, and Jean-Christophe Pesquet*

* IGM and UMR-CNRS 8049, Paris-Est Univ. France first.last@univ-paris-est.fr

† IFP Energies nouvelles, France first.last@ifpen.fr

OPTIMIZATION PROBLEM

Observation measurements $y = (y_n)_{1 \le n \le N} \in \mathbb{R}^N$:

$$y = \overline{h} * \overline{x} + w$$

- $\overline{x} \in \mathbb{R}^N$ •• original unknown sparse signal
- $w \in \mathbb{R}^N$ \longrightarrow realization of an additive noise

OBJECTIVE

Find an estimation $(\widehat{x}, \widehat{h}) \in \mathbb{R}^N \times \mathbb{R}^S$ of $(\overline{x}, \overline{h})$ from y.

CONTRIBUTIONS

- ✓ New parametrized Smoothed One-Over-Two (SOOT) penalty term
 - → Efficient for sparse blind deconvolution problems.
- ✓ Accelerated alternating minimization strategy
 - Convergence ensured for nonconvex problems.

MINIMIZATION PROBLEM

Find $(\widehat{x}, \widehat{h}) \in \underset{(x,h) \in \mathbb{R}^N \times \mathbb{R}^S}{\operatorname{Argmin}} \underbrace{\rho(x,h)}_{(x,h) \in \mathbb{R}^N \times \mathbb{R}^S} \underbrace{\rho(x,h)}_{(x,h)} \underbrace{\rho(x,$

LEAST-SQUARES OBJECTIVE FUNCTION

$$(\forall (x,h) \in \mathbb{R}^N \times \mathbb{R}^S) \quad \rho(x,h) = \frac{1}{2} \|h * x - y\|^2.$$

SMOOTHED ONE-OVER-TWO NORM RATIO PENALTY FUNCTION

$$(\forall x \in \mathbb{R}^N) \quad \varphi(x) = \lambda \log \left(\frac{\ell_{1,\mathbf{o}}(x) + \beta}{\ell_{2,\mathbf{n}}(x)} \right),$$

with $(\lambda, \alpha, \beta, \eta) \in]0, +\infty[^4]$ and $\ell_{1,\alpha}(x) = \sum_{n=1}^{N} \left(\sqrt{x_n^2 + \alpha^2} - \alpha\right) \rightsquigarrow \text{smooth approximation of } \ell_1,$

 $\ell_{2,\eta}(x) = \sqrt{\sum_{n=1}^{N} x_n^2 + \eta^2} \rightsquigarrow \text{smooth approximation of } \ell_2.$

Smooth nonconvex function.

ADDITIONAL A PRIORI INFORMATION

 $g(x,h) = g_1(x) + g_2(h)$, where $g_1 : \mathbb{R}^N \to]-\infty, +\infty]$ and $g_2 : \mathbb{R}^S \to]-\infty, +\infty]$ are proper, lsc, semi-algebraic, convex, and continuous on their domain.

→ Non necessarily smooth convex function.

OPTIMIZATION TOOLS

PROXIMITY OPERATOR

Let $A \in \mathbb{R}^{M \times M}$ be a Symmetric Positive Definite (SPD) matrix, $\gamma > 0$, and $\psi \colon \mathbb{R}^M \to]-\infty, +\infty]$ be a proper, lsc, convex function. $(\forall \widetilde{u} \in \mathbb{R}^M) \quad \operatorname{prox}_{\gamma^{-1}A,\psi}(\widetilde{u}) = \operatorname*{argmin}_{u \in \mathbb{R}^M} \psi(u) + \frac{1}{2\gamma}(u-\widetilde{u})^\top A(u-\widetilde{u}).$

MAJORIZE-MINIMIZE (MM) PRINCIPLE

Let $\psi \colon \mathbb{R}^M \to]-\infty, +\infty[$ be a differentiable function, and $\widetilde{u} \in \mathbb{R}^M.$ An SPD matrix $A(\widetilde{u}) \in \mathbb{R}^{M \times M}$ satisfies the majoration condition w.r.t. ψ if

 $(\forall u \in \mathbb{R}^M) \quad \psi(\widetilde{u}) \leq \psi(u) + (\widetilde{u} - u)^\top \nabla \psi(\widetilde{u}) + \frac{1}{2} (\widetilde{u} - u)^\top A(\widetilde{u}) (\widetilde{u} - u).$

SOOT ALGORITHM

 $\begin{array}{l} \text{Let } x^0 \in \text{dom } g_1 \text{ and } h^0 \in \text{dom } g_2. \\ \text{For } k = 0, 1, \dots \\ x^{k,0} = x^k, \ h^{k,0} = h^k, \\ \text{For } j = 0, \dots, J_k - 1 \\ \left\lfloor \text{Let } \gamma_x^{k,j} > 0, \\ \widetilde{x}^{k,j} = x^{k,j} - \gamma_x^{k,j} A_1(x^{k,j}, h^k)^{-1} \Big(\nabla_x \rho(x^{k,j}, h^k) + \nabla \varphi(x^{k,j}) \Big), \\ x^{k,j+1} = \operatorname{prox}_{(\gamma_x^{k,j})^{-1} A_1(x^{k,j}, h^k), g_1} \Big(\widetilde{x}^{k,j} \Big), \\ x^{k+1} = x^{k,J_k}. \\ \text{For } i = 0, \dots, I_k - 1 \\ \left\lfloor \text{Let } \gamma_h^{k,i} > 0, \\ \widetilde{h}^{k,i} = h^{k,i} - \gamma_h^{k,i} A_2(x^{k+1}, h^{k,i})^{-1} \nabla_h \rho(x^{k+1}, h^{k,i}), \\ h^{k,i+1} = \operatorname{prox}_{(\gamma_h^{k,i})^{-1} A_2(x^{k+1}, h^{k,i}), g_2} \Big(\widetilde{h}^{k,i} \Big), \\ h^{k+1} = h^{k,I_k}. \end{array}$

CONVERGENCE RESULT

Assume that $(\forall k \in \mathbb{N})$

- $(\forall j \in \{1, ..., J_k\})$ $A_1(x^{k,j}, h^k)$ is an SPD matrix satisfying the majoration condition w.r.t. $\rho(\cdot, h^k) + \varphi$.
- $(\forall i \in \{1, ..., I_k\})$ $A_2(x^{k+1}, h^{k,i})$ is an SPD matrix satisfying the majoration condition w.r.t. $\rho(x^{k+1}, \cdot)$.

Then, the sequence $(x^k, h^k)_{k \in \mathbb{N}}$ converges to a critical point $(\widehat{x}, \widehat{h})$ of (1).

APPLICATION TO SEISMIC DATA DECONVOLUTION

OBSERVATION MODEL

- \bigstar Sparse seismic signal \overline{x} of length N=784
- \bigstar Band-pass "Ricker" seismic wavelet \overline{h} of length S=41
 - → spectrum concentrated between 10 and 40 Hz
- \bigstar Additive noise $w \leadsto$ realization of $W \sim \mathcal{N}(0, \sigma^2 I_N)$

IMPLEMENTATION DETAILS

- $\star g_1 = \iota_{[x_{\min}, x_{\max}]^N} \text{ with } (x_{\min}, x_{\max}) \in \mathbb{R}^2$
- $\star g_2 = \iota_{\mathcal{C}} \text{ where } \mathcal{C} = \{ h \in [h_{\min}, h_{\max}]^S | ||h|| \leq \delta \},$ with $\delta > 0$ and $(h_{\min}, h_{\max}) \in \mathbb{R}^2$
- $\bigstar I_k \equiv 1 \text{ and } J_k \equiv J$
- \bigstar Stopping criterion: $||x^k x^{k-1}|| \le \sqrt{N} \times 10^{-6}$

Noise level (σ)			0.01	0.02	0.03
() bservation error (\times () 2)		ℓ_2	7.14	7.35	7.68
		ℓ_1	2.85	3.44	4.09
Signal error ($\times 10^{-2}$)	[Krishnan et al., 2011]	ℓ_2	1.23	1.66	1.84
		ℓ_1	0.38	0.47	0.53
	SOOT	ℓ_2	1.09	1.63	1.83
		ℓ_1	0.34	0.43	0.48
Kernel error ($\times 10^{-2}$)	[Krishnan et al., 2011]	ℓ_2	1.88	2.51	3.21
		ℓ_1	1.44	1.96	2.53
	SOOT	ℓ_2	1.62	2.26	2.93
		ℓ_1	1.22	1.77	2.31
Time (s.)	[Krishnan et al., 2011]		106	61	56
	SOOT		56	22	18

Comparison between [Krishnan *et al.*, 2011] and SOOT for \overline{x} and \overline{h} estimates (J=71, averaged over 200 noise realizations)

────┦╌┎┈┈┈┈┰┎┰┷╸┈╸┈╸┈╸┈╸┰╢┸┧╱┩┩┈┩╸╌╢╌┈┈┸╸┈┈┵┈┈┷┈┈┈┼

Reconstruction time for different numbers of inner-loops J (averaged over 30 noise realizations)

Signal estimation error $\overline{x} - \widehat{x}$ with estimates \widehat{x} given by (a) [Krishnan *et al.*, 2011] and (b) SOOT

Original blur \overline{h} (continuous thin), estimated blur \widehat{h} with [Krishnan *et al.*, 2011] (dashed thick) and SOOT (continuous thick)

TOOLBOX: http://lc.cx/soot