Redes de Computadores e a Internet

Prof. Paulo Sena Paulo.sena@estacio.br

Capítulo I: Introdução

Objetivo do capítulo:

- r entender o contexto, visão geral, "sacar" o que são redes
- r maior profundidade, detalhes posteriormente no curso
- r abordagem:
 - m uso da Internet como exemplo

Resumo:

- r o que é a Internet
- r o que é um protocolo?
- r a borda (periferia) da rede: hosts, rede de acesso, meio físico
- r o núcleo da rede: comutação de pacote/circuito. Estrutura da Internet
- r desempenho: atraso, perda e vazão

Roteiro do Capítulo 1

1.1 O Que é a Internet?

- 1.2 A Borda (Periferia) da Internet
- 1.3 O Núcleo da Rede
- 1.4 Atraso, perda e vazão em redes de comutação de pacotes

O que é a Internet: visão dos componentes

milhões de dispositivos de computação conectados: hospedeiros (hosts) = sistemas finais

rodando aplicações de rede

- m fibra, cobre, rádio, satélite
- Taxa de transmissão = largura de banda (bandwidth)
- Roteadores (comutadores de pacotes): encaminham pacotes (pedaços de dados)

enlaces

cabeados

Aparelhos internet interessantes

Porta retratos IP http://www.ceiva.com/

Tostadeira habilitada para a Web + Previsão do tempo

Tweet-a-watt: Monitoração do uso de energia

Geladeira Internet

Slingbox: veja, Controle remotamente sua TV a cabo.

Telefones Internet

<u>Dispositivos IoT</u> (Internet das Coisas)

Aplicações Populares

Navegação

Correio

Mensagens Instantâneas

r Armazenamento de Arquivos

r Voze Vídeo </u> 💟

Blogs

Redes Sociais

Trabalho Cooperativo W

O que é a Internet: visão dos componentes

- r Internet: "rede de redes"
 - m livremente hierárquica
 - m ISPs interconectados
- r *protocolos*: controlam o envio e o recebimento de mensagens
 - m ex., TCP, IP, HTTP, Skype, 802.11
- r Padrões Internet
 - m RFC: Request for comments
 - m IETF: Internet Engineering
 Task Force
 - m www.ietf.org

RFCs de 1° de Abril

O que é a Internet: visão dos serviços

- r a *infraestrutura* de comunicação permite o uso de aplicações distribuídas:
 - Web, e-mail, jogos, mensagens instantâneas, voz sobre IP (VoIP), redes sociais , ...
- r Provê interface de programação para aplicações
 - Permitem que programas de aplicações se conectem à Internet
 - Provê opções de serviço, de forma análoga aos Correios

Redes de Sensores e Internet das Coisas (IoT)

r Comunicação sem fio interconectando dispositivos sensoresatuadoresprocessadores de baixo custo habilitando sensoriamento e atuação no mundo real

Redes Veiculares

r Redes Intraveiculares

r Ethernet em Automóveis

r V2V e V2I

r Carros Elétricos

r IoT

O que é um protocolo?

<u>protocolos humanos:</u>

- r "que horas são?"
- r "tenho uma dúvida"
- r apresentações
- ... msgs específicas são enviadas
- ... ações específicas são realizadas quando as msgs são recebidas, ou acontecem outros eventos

Protocolos de rede:

- r máquinas ao invés de pessoas
- r todas as atividades de comunicação na Internet são governadas por protocolos

protocolos definem o formato, ordem das msgs enviadas e recebidas pelas entidades da rede, e ações tomadas quando da transmissão ou recepção de msgs

O que é um protocolo?

um protocolo humano e um protocolo de rede:

P: Apresente outro protocolo humano!

Roteiro do Capítulo 1

- 1.1 O Que é a Internet?
- 1.2 A Borda (Periferia) da Internet
- 1.3 O Núcleo da Rede
- 1.4 Atraso, perda e vazão em redes de comutação de pacotes

Uma olhada mais de perto na estrutura da rede:

r Borda da rede:

- m hospedeiros (hosts)/sistemas finais: clientes e servidores
- m Servidores frequentemente em Data Centers

r redes de acesso, meio físico:

m enlaces de comunicação cabeados e sem fio

r núcleo da rede:

- m Roteadores interconectados
- m rede de redes

Redes de acesso e meios físicos

- P: Como conectar os sistemas finais aos roteadores de borda?
- r redes de acesso residencial
- r redes de acesso corporativo (escola, empresa)
- r redes de acesso sem fio

Questões a serem consideradas:

- r largura de banda (bits por segundo) da rede de acesso.
- r compartilhada ou dedicada?

Acesso discado (alquém ainda usa?)

- r Usa a infraestrutura existente de telefonia
 - m Residência está conectada à central telefônica
- r Até 56kbps de acesso direto ao roteador (frequentemente menos)
- r Não dá para navegar e usar o telefone ao mesmo tempo: não está "sempre conectado"

0 (a) Modulação (b) (c) (d) 🗎 Phase changes

Fig. 2-18. (a) A binary signal. (b) Amplitude modulation. (c) Frequency modulation. (d) Phase modulation.

Redes de acesso: rede doméstica

Redes de acesso corporativas (Ethernet)

- r Usado tipicamente em empresas, universidades, etc.
- r Ethernet de 10Mbps, 100Mbps, 1Gbps e 10Gbps
- r Hoje tipicamente os sistemas terminais se conectam a switches Ethernet

Redes de acesso sem fio (wireless)

- r rede de acesso compartilhado sem fio conecta o sistema final ao roteador
 - m Via estação base = "ponto de acesso" sem fio

LANs sem fio:

- dentro de um edifício (200 m)
- 802.11b/g/n/ac (WiFi): taxas de transmissão de 11, 54, 450, 1.300 Mbps

para a Internet

acesso sem fio de longa distância

- provido por uma operadora (celular), 10's km
- entre I e I 0 Mbps
- 3G, 4G: LTE

Hospedeiro: envia pacotes de dados

função de transmissão do hospedeiro:

- r pega msg da aplicação
- r quebra em pequenos pedaços, conhecidos como pacotes, com L bits de comprimento
- r transmite o pacote pela rede de acesso a uma taxa de transmissão R
 - m taxa de transmissão do canal, ou capacidade do canal, ou largura de banda do canal

atraso de transmissão do pacote do pacote do pacote do canal $\frac{L \text{ (bits)}}{R \text{ (bits/sec)}}$

Meios Físicos

- r Bit: Propaga-se entre o transmissor e o receptor
- r enlace físico: o que está entre o transmissor e o receptor

r meios guiados:

m os sinais se propagam em meios sólidos: cobre, fibra, cabo coaxial

r meios não guiados:

m os sinais se propagam livremente, ex. rádio

<u>par trançado (TP - Twisted</u> <u>Pair)</u>

- r dois fios de cobre isolados
 - Categoria 5: 100Mbps e 1Gbps Ethernet
 - m Categoria 6: 10 Gbps
 - m Categoria 8: 40 Gbps

Meios físicos: cabo coaxial, fibra

Cabo coaxial:

- r fio (transporta o sinal) dentro de outro fio (blindagem)
- r bidirecional
- r banda larga (broadband):
 - m múltiplos canais num cabo
 - m HFC

Cabo de fibra óptica:

- r fibra de vidro transporta pulsos de luz
- r opera em alta velocidade:
 - transmissão ponto a ponto de alta velocidade (ex., 10's a 100's Gbps)
- r baixa taxa de erros:
 - r repetidores mais afastados;
 - r imune a ruído eletromagnético

Cabos Submarinos

Cabos OPGW

Meios físicos: rádio

- r sinal transportado em ondas eletromagnéticas
- r não há "fio" físico
- r bidirecional
- r efeitos do ambiente de propagação:
 - m reflexão
 - m obstrução por objetos
 - m interferência

Tipos de enlaces de rádio:

- r microondas
 - m ex.: canais de até 45 Mbps
- r LAN (ex., Wifi)
 - m 11Mbps, 54 Mbps, ...
- r longa distância (ex., celular)
 - m ex. 3G, ~ 1 Mbps
- r satélite
 - m canal de até 50Mbps (ou múltiplos canais menores)
 - m atraso de propagação de 270 mseg (fim-a-fim)
 - geoestacionários versus de baixa altitude (LEOS)

<u>Meios Físicos: Satélites de Baixa</u> Órbita - Iridium

- r Projeto original:
 - m 77 satélites
 - M No. atômico do Irídio
- r Projeto implementado:
 - m 66 satélites
 - Mo. atômico do Disprósio!!!

Roteiro do Capítulo 1

- 1.1 O Que é a Internet?
- 1.2 A Borda (Periferia) da Internet
- 1.3 O Núcleo da Rede
- 1.4 Atraso, perda e vazão em redes de comutação de pacotes

O Núcleo da Rede

- r Malha de roteadores interconectados
- r comutação de pacotes:
 hospedeiros quebram
 mensagens da camada de
 aplicação em pacotes
 - m Repassa os pacotes de um roteador para o próximo, através de enlaces no caminho da origem até o destino
 - m cada pacote é transmitido na capacidade máxima do enlace.

Comutação de pacotes: armazena e repassa

- r leva *L/R* seg para transmitir (botar para fora) um pacote de *L*-bits num enlace a *R* bps
- r armazena e repassa: todo o pacote deve chegar ao roteador antes que possa ser transmitido no próximo enlace
- atraso fim-a-fim = 2L/R (desprezando o atraso de propagação)

exemplo numérico para um salto/etapa:

- L = 7,5 Mbits
- R = 1,5 Mbps
- atraso de transmissão em um salto = 5 seg

mais sobre atrasos em breve...

Comutação de pacotes: atraso de enfileiramento, perdas

enfileiramento e perdas:

- Se a taxa de chegadas (em bits) no enlace exceder a taxa de transmissão do canal num certo intervalo de tempo:
 - pacotes irão enfileirar, esperar para serem transmitidos no enlace
 - pacotes poderão ser descartados (perdidos) se a memória (buffer) encher

Duas funções chave do núcleo da rede

roteamento: determina a rota origem-destino tomada pelos pacotes

algoritmos de roteamento

repasse: move pacotes da entrada do roteador para a saída apropriada do roteador

Alternativa: comutação de circuitos

recursos fim-a-fim alocados/ reservados para "chamada" entre origem-destino:

- No diagrama, cada enlace possui quatro circuitos.
 - m chamada recebe o 2º circuito no enlace superior e o 1º circuito no enlace da direita
- recursos dedicados: sem compartilhamento
 - m desempenho tipo circuito (garantido)
- r segmento do circuito fica ocioso se não for utilizado pela chamada (sem compartilhamento)
- Usado normalmente na rede telefônica tradicional

Núcleo da Rede: Comutação de

Circuitos

From Computer Desktop Encyclopedia Reproduced with permission.

Comutação de Circuitos: FDM e TDM

Comutação de pacotes versus comutação de circuitos

A comutação de pacotes permite que mais usuários

usem a rede!

r Enlace de 1 Mbit

r cada usuário:

m 100kbps quando "ativo"

m ativo 10% do tempo

r comutação por circuitos:

m 10 usuários

r comutação por pacotes:

m com 35 usuários, probabilidade > 10 ativos menor que 0,004

P: como foi obtido o valor 0,0004?

P: o que ocorre se > 35 usuários?

Comutação de pacotes versus comutação de circuitos

A comutação de pacotes ganha de lavada?

- r Ótima para dados em rajadas
 - m compartilhamento dos recursos
 - m não necessita estabelecimento de conexão
- r Congestionamento excessivo: atraso e perda de pacotes
 - m necessita de protocolos para transferência confiável de dados, controle de congestionamento
- r P: Como fornecer um comportamento do tipo circuito?
 - São necessárias garantias de banda para aplicações de áudio e vídeo
 - m ainda é um problema não resolvido (cap. 7)

- r Sistemas finais conectam-se à Internet através de ISPs (Internet Service Providers) de acesso
 - m ISP residencial, corporativo e acadêmico
- r Os ISPs de acesso devem ser interconectados
 - m De modo que quaisquer dois hospedeiros possam enviar pacotes um para o outro
- r A rede de redes resultante é muito complexa
 - m Evolução foi dirigida pela economia e por políticas nacionais
- r Seguiremos uma abordagem passo-a-passo para descrever a estrutura atual da Internet

Pergunta: dados milhões de ISPs de acesso, como interligar todos eles?

Opção: conectar cada ISP de acesso a cada um dos demais ISPs de acesso?

Opção: conectar cada ISP de acesso a um ISP de trânsito global? Os ISPs de usuário e provedor têm um acordo econômico.

Mas, se um ISP global for um negócio viável, haverá competidores...

Mas, se um ISP global for um negócio viável, haverá competidores... que precisam se interconectar

... e redes regionais podem surgir para conectar redes de acesso a ISPs

... e redes de provedores de conteúdo (ex.: Google, Microsoft, Akamai) podem criar as suas próprias redes, para levar serviços e conteúdos

- No centro: pequeno no. de grandes redes bem conectadas
 - ISPs comerciais "tier-1" (ex., Level 3, Sprint, AT&T, NTT), cobertura nacional e internacional)
 - rede de provedor de conteúdo (ex. Google): rede privada que conecta os seus centros de dados à Internet, normalmente "bypassando" ISPs tier-1 e regionais.

Roteiro do Capítulo 1

- 1.1 O Que é a Internet?
- 1.2 A Borda (Periferia) da Internet
- 1.3 O Núcleo da Rede
- 1.4 Atraso, perda e vazão em redes de comutação de pacotes

Como ocorrem as perdas e atrasos?

pacotes enfileiram nos buffers do roteador

- r taxa de chegada de pacotes ao enlace excede a capacidade do enlace de saída.
- r pacotes enfileiram, esperam pela vez

Perda de pacotes

- r fila (buffer) anterior a um canal possui capacidade finita
- quando um pacote chega numa fila cheia, o pacote é descartado (perdido)
- r o pacote perdido pode ser retransmitido pelo nó anterior, pelo sistema origem, ou não ser retransmitido

Vazão (Throughput)

r vazão: taxa (bits/unidade de tempo) na qual os bits são transferidos entre o transmissor e o receptor

m instantânea: taxa num certo instante de tempo

m média: taxa num período de tempo mais longo

Vazão (mais)

r R_s < R_c Qual é a vazão média fim-a-fim?

□ R_s > R_c Qual é a vazão média fim-a-fim?

Enlace gargalo

link no caminho fim-a-fim que restringe a vazão fim-a-fim