Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 07.03.2008

Name:	
Vorname(n):	
Matrikelnummer:	Note:

Aufgabe	1	2	3	4	\sum
erreichbare Punkte	10	9	9	12	40
erreichte Punkte					

Bearbeitungshinweise:

- Bitte Name, Vorname und Matrikelnummer auf dem Deckblatt eintragen.
- Für jede Aufgabe eine neue Seite beginnen.
- Auf jedem Blatt den Namen, sowie die Matrikelnummer angeben.
- Begründen Sie Ihre Antworten ausführlich!

Viel Erfolg!

1. Abbildung 1 zeigt eine Operationsverstärkerschaltung, die als invertierender PID-Regler (multiplikative Form) verwendet werden kann. Beachten Sie, dass die Kapazität C_2 eine Funktion der Spannung ist, wobei gilt:

$$C_2(u_{C2}) = C_{20} + C_{21}u_{C2}^2, \quad C_{20}, C_{21} > 0.$$
 (1)

Der Operationsverstärker sei ideal (unendliche Verstärkung, keine Input-Bias Ströme, keine Offset Spannungen). Der Eingang des Systems ist die Spannung u, der Ausgang die Spannung y.

Abbildung 1: Operationsverstärkerschaltung eines invertierenden PID-Reglers.

(a) Wählen Sie für die in Abbildung 1 dargestellte Schaltung geeignete Zustandsgrößen **x** und bestimmen Sie das zugehörige mathematische Modell der Form

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, u) \tag{2a}$$

$$y = q(\mathbf{x}, u). \tag{2b}$$

(b) Bestimmen Sie alle Ruhelagen des Systems für u = 0, linearisieren Sie das System um die Ruhelage $u = u_{C1} = u_{C2} = 0$ und schreiben Sie es in der Form

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u \tag{3a}$$

$$y = \mathbf{c}^T \mathbf{x} + du \tag{3b}$$

an.

(c) Berechnen Sie die Übertragungsfunktion des PID-Reglers und ermitteln Sie die Beziehungen zwischen den Bauteilwerten R_0 , R_1 , R_2 , C_1 und C_{20} und den Parametern V_P , T_I , T_D und T_R der Reglerübertragungsfunktion

$$R(s) = V_P \frac{(1 + sT_D)(1 + sT_I)}{s(1 + sT_R)}$$
(4)

an.

(d) Ist das linearisierte System (3) vollständig erreichbar?

- 2. Bearbeiten Sie die folgenden Teilaufgaben:
 - (a) Unter welchen drei Bedingungen ist ein System der Form

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, t)$$

 $\mathbf{y} = \mathbf{h}(\mathbf{x}, \mathbf{u}, t)$

linear? Wann nennt man ein lineares System zeitinvariant?

Abbildung 2: Regelkreis 1

Abbildung 3: Regelkreis 2

- (b) Unter welchen Bedingungen ist der Regelkreis nach Abbildung 2 intern stabil?
- (c) Gegeben ist der Regelkreis nach Abbildung 3. Bestimmen Sie mithilfe des Verfahrens nach Routh-Hurwitz den Bereich des Parameters K, für den der geschlossene Regelkreis stabil ist. Wählen Sie als Parameter K=-0.5 und bestimmen Sie die bleibende Regelabweichung für das Testsignal $r(t)=\sigma(t)$.
- (d) Zeichnen Sie den Verlauf der Lösungstrajektorie $\mathbf{x}(t)$ in der (x_1, x_2) -Ebene für die Systeme

$$\dot{x}_1 = -x_2,$$
 $x_1(0) = 0$
 $\dot{x}_2 = x_1,$ $x_2(0) = 1$

und

$$\dot{x}_1 = -\pi x_1,$$
 $x_1(0) = 1$
 $\dot{x}_2 = -\pi x_2,$ $x_2(0) = 1.$

Verwenden Sie dazu die beiliegende Vorlage!

3. Gegeben ist die Ausgangsfolge

$$(y_k) = \left(0, \frac{3}{2}, -\frac{1}{4}, 0, \frac{1}{4}, 0, 0, 0, 0, \dots\right)$$

eines linearen zeitinvarianten zeitdiskreten Systems auf die Eingangsfolge

$$(u_k) = (3, -2, 1, 0, 0, 0, 0, 0, 0, \dots).$$

Abbildung 4: Eingangs- und Ausgangsfolge.

- (a) Welche der in Abbildung 5 dargestellten Impulsantworten gehört zu dem durch die obige Eingangs- und Ausgangsfolge charakterisierten System? Begründen Sie ihre Antwort ausführlich.
 - Hinweis: Nutzen Sie hier die Eigenschaft der Superposition linearer Systeme aus. Sollten Sie keine Lösung erhalten, so verwenden Sie für die weiteren Berechnungen eine beliebige Impulsantwort aus Abbildung 5.
- (b) Berechnen Sie die z-Übertragungsfunktion des Systems.
- (c) Ist dieses System BIBO-stabil? Begründen Sie Ihre Antwort sowohl über die Impulsantwort als auch über die Übertragungsfunktion.

5

Abbildung 5: Impulsantworten.

- (d) Berechnen Sie die eingeschwungene Lösung des Systems auf eine Eingangsfolge der Form $u_k = 2\sin\left(k\frac{\pi}{2}\right) 1^k \,.$
- (e) Gegeben ist die s-Übertragungsfunktion G(s) eines zeitkontinuierlichen Systems und die z-Übertragungsfunktion G(z) des daraus durch Abtastung mit der Abtastzeit T_a gewonnenen Abtastsystems. Was können Sie über den Zusammenhang zwischen den Polstellen der s- und z-Übertragungsfunktion des abgetasteten Systems aussagen? Was können Sie über die Nullstellen der Übertragungsfunktion des abgetasteten Systems aussagen?

4. Gegeben ist die Streckenübertragungsfunktion

$$G(s) = \frac{0.5}{s\left(\frac{s}{2} + 1\right)} .$$

- a) Was versteht man unter einer phasenminimalen Übertragungsfunktion? Ist die obige Übertragungsfunktion phasenminimal?
- b) Zeichnen Sie das Bode-Diagramm der Streckenübertragungsfunktion. Verwenden Sie hierzu die beiliegende Vorlage.
- c) Reglerentwurf:

i) Führen Sie den Reglerentwurf für

$$R(s) = V_R \frac{1 + \frac{s}{2}}{1 + sT_R}$$

mit Hilfe des Frequenzkennlinienverfahrens für folgende Anforderungen durch: Anstiegszeit $t_r = 1$ s, prozentuales Überschwingen $\ddot{u} = 10\%$.

- ii) Wie lautet das Nyquist-Kriterium in Frequenzkennliniendarstellung? Können Sie mit diesem Kriterium die Stabilität des hier vorliegenden geschlossenen Regelkreises nachweisen? Begründen Sie Ihre Antwort.
- iii) Füllen Sie nachfolgende Tabelle aus und zeichnen Sie die Nyquist-Ortskurve des offenen Regelkreises.

ω	$\operatorname{Re}\left(L\left(I\omega\right)\right)$	$\operatorname{Im}\left(L\left(I\omega\right)\right)$
-0		
+0		
1		
$\sqrt{3}$		
$-\infty$		
∞		

- iv) Überprüfen Sie anhand der Nyquist-Ortskurve die Stabilität des geschlossenen Regelkreises.
- v) Wie groß ist die bleibende Regelabweichung e_{∞} für eine sprungförmige Störung $d(t) = \sigma(t)$?

7

