双线性型

Eliauk

2024年8月5日

目录

1	定义与基本理论 · · · · · · · · · · · · · · · · · · ·	1
2	二次型 · · · · · · · · · · · · · · · · · · ·	4
3	正交性 · · · · · · · · · · · · · · · · · · ·	5
4	线性泛函 · · · · · · · · · · · · · · · · · · ·	7
5	正交补与正交直和・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
6	等距 · · · · · · · · · · · · · · · · · · ·	9
7	双曲空间 · · · · · · · · · · · · · · · · · · ·	10
8	子空间的非退化完备化···································	11

1 定义与基本理论

设 V 是域 $\mathbb F$ 上的向量空间, 映射 $\langle , \rangle : V \times V \to \mathbb F$ 如果在每个分量上的都是线性的, 即满足

$$\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$$

以及

$$\langle z, ax + by \rangle = a \langle z, x \rangle + b \langle z, y \rangle,$$

那么我们说(,)是一个双线性型.如果双线性型满足

$$\langle x, y \rangle = \langle y, x \rangle \quad \forall x, y \in V,$$

那么我们说这个双线性型是对称型,如果双线性型满足

$$\langle x, y \rangle = -\langle y, x \rangle \quad \forall x, y \in V,$$

那么我们说这个双线性型是反对称型. 如果双线性满足

$$\langle x, x \rangle = 0 \quad \forall x \in V,$$

那么我们说这个双线性型是交错型.

本文所指的向量空间 V 均表示其附带一个双线性型 \langle , \rangle . 如果 V 配备对称型, 那么我们说 V 是 \mathbb{F} 上的**正交几何**. 如果 V 配备交错型, 那么我们说 V 是 \mathbb{F} 上的**产几何**. 显然, Euclid 内积空间 是 \mathbb{F} 上的正交几何. 此外, 本文出现的 "V 的子空间"均配备和 V 一样的双线性型.

例 1.1. Minkowski 空间 M_4 指的就是一个四维的正交几何 \mathbb{R}^4 , 其配备的对称型定义为

$$\langle e_1, e_1 \rangle = \langle e_2, e_2 \rangle = \langle e_3, e_3 \rangle = 1,$$

 $\langle e_4, e_4 \rangle = -1,$
 $\langle e_i, e_j \rangle = 0 \ (i \neq j).$

其中 e_1 e_4 是 \mathbb{R}^4 的标准基.

上述定义的对称型、反对称型和交错型的概念并不是相互独立的,它们取决于基域 F 的性质.

定理 1.2. *V* 是域 **F** 上的向量空间.

- (1) 若 $char(\mathbb{F}) = 2$,那么交错型都是对称型,并且对称型和反对称型等价.
- (2) 若 $char(\mathbb{F}) \neq 2$,那么交错型和反对称型等价. 此时唯一的既是交错型又是对称型的双线性型是零型: 对于任意的 $x,y \in V$ 都有 $\langle x,y \rangle = 0$.

Proof. 首先注意到交错型满足

$$0 = \langle x + y, x + y \rangle = \langle x, y \rangle + \langle y, x \rangle,$$

即 $\langle x, y \rangle = -\langle y, x \rangle$, 所以交错型总是为反对称型.

若 char(\mathbb{F}) = 2, 那么对于交错型而言,有 $\langle x,y\rangle = -\langle y,x\rangle = \langle y,x\rangle$,所以交错型总是为对称型.又因为此时-1=1,所以对称型和反对称型等价.若 char(\mathbb{F}) \neq 2,对于反对称型而言,有 $\langle x,x\rangle = -\langle x,x\rangle$,所以 $\langle x,x\rangle = 0$,故反对称型总是为交错型.

设 e_1, \ldots, e_n 是向量空间 V 的一组基, 任取 $x = \sum x_i e_i$ 以及 $y \in \sum y_i e_i$, 那么

$$\langle x, y \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j \langle e_i, e_j \rangle = (x_1 \quad x_2 \quad \cdots \quad x_n) A \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix},$$

其中矩阵

$$A = (\langle e_i, e_j \rangle) = \begin{pmatrix} \langle e_1, e_1 \rangle & \langle e_1, e_2 \rangle & \cdots & \langle e_1, e_n \rangle \\ \langle e_2, e_1 \rangle & \langle e_2, e_2 \rangle & \cdots & \langle e_2, e_n \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle e_n, e_1 \rangle & \langle e_n, e_2 \rangle & \cdots & \langle e_n, e_n \rangle \end{pmatrix}.$$

这表明这个双线性型由矩阵 A 唯一确定, 所以我们将 A 称为双线性型相对于这组基下的表示矩阵. 我们说矩阵 A 是**交错矩阵**当且仅当其是反对称矩阵并且对角线全为零(在特征不为 2 的域上显然等价于反对称矩阵). 由此我们可以看出,一个双线性型是对称型当且仅当其表示矩阵是对称矩阵, 是反对称型当且仅当其表示矩阵是反对称矩阵, 是交错型当且仅当其表示矩阵是交错矩阵.

下面我们观察改变基对表示矩阵的影响. 设 f_1, \ldots, f_n 是另一组基, 记 e_1, \ldots, e_n 到 f_1, \ldots, f_n 的过渡矩阵为 P, 即

$$(f_1,\ldots,f_n)=(e_1,\ldots,e_n)P.$$

设双线性型在 f_1, \ldots, f_n 下的表示矩阵是 B. 任取 $x = \sum x_i f_i, y = \sum y_j f_j$, 那么

$$\langle x, y \rangle = \begin{bmatrix} P \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \end{bmatrix}^T A \begin{bmatrix} P \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \end{bmatrix} = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \end{pmatrix} P^T A P \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix},$$

所以 $B = P^T A P$. 因此, 给定矩阵 $A, B \in M_n(\mathbb{F})$, 如果存在可逆矩阵 P 使得

$$A = P^T B P,$$

那么我们说 A 和 B 是合同的. 容易验证合同是一个等价关系.

设向量空间 V 有一组基 e_1,\ldots,e_n . 给定一个矩阵 A, 任取 $x=\sum x_ie_i$ 以及 $y=\sum y_je_j$, 那么我们可以定义

$$\langle x, y \rangle = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \end{pmatrix} A \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix},$$

不难验证这给出了 V 上的一个双线性型. 所以在给定一组基的前提下, V 上的双线性型和 Γ 上的 n 阶矩阵是一一对应的. 若 B 和 A 合同, 即 $B = P^T A P$, 此时考虑 V 的另一组基 f_1, \ldots, f_n , 满足

$$(f_1,\ldots,f_n)=(e_1,\ldots,e_n)P,$$

那么对于上述 x, y, 有

$$\langle x, y \rangle = \begin{bmatrix} P^{-1} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \end{bmatrix}^T P^T A P \begin{bmatrix} P^{-1} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \end{bmatrix} = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \end{pmatrix} A \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix},$$

所以合同的矩阵表示相同的双线性型. 综合起来, 两个矩阵合同当且仅当它们表示相同的双线性型.

2 二次型

向量空间 V 上的函数 $Q:V \to \mathbb{F}$ 如果满足:

(1) 对于任意的 $a \in \mathbb{F}$ 和 $x \in V$, 有

$$Q(ax) = a^2 Q(x),$$

(2) 映射

$$\langle x, y \rangle_Q = Q(x+y) - Q(x) - Q(y)$$

是一个(对称)双线性型,

那么我们说 Q 是一个二**次型**. 根据定义,每个二次型 Q 都定义了一个对应的对称型 $\langle x,y\rangle_Q$. 反 之,如果 $\mathrm{char}(\mathbb{F})\neq 2$, \langle ,\rangle 是一个对称型,那么

$$Q(x) = \frac{1}{2} \langle x, x \rangle$$

是 V 上的一个二次型. 此时 Q 定义的对称型就是 \langle , \rangle . 这表明 V 上的对称双线性型和二次型之间存在一一对应. 故知道了 V 上的二次型就相当于知道了对应的对称双线性型.

假设 char(\mathbb{F}) \neq 2, 设 e_1, \ldots, e_n 是正交几何 V 上的一组基, V 上的对称型在这组基下的表示矩阵为 $A = (a_{ii})$, 那么对于 $x = \sum x_i e_i$, 有

$$Q(x) = \frac{1}{2} \langle x, x \rangle = \frac{1}{2} \sum_{i,j=1}^{n} a_{ij} x_i x_j.$$

所以二次型 Q 是 x_1, \ldots, x_n 的二次齐次多项式.

3 正交性

下面我们拓宽内积空间的一些定义. 令 V 是向量空间,对于 $x,y \in V$,如果 $\langle x,y \rangle = 0$,那么我们说 x,y 正交,记作 $x \perp y$.对于 V 的子集 S,如果任取 $s \in S$ 有 $x \perp s$,那么我们说 x 正交于子集 S,记作 $x \perp S$.对于两个子集 S,如果任取 $s \in S$ 和 $t \in T$ 有 $s \perp t$,那么我们说 S,T 正交,记作 $S \perp T$.对于子集 $X \subseteq V$,定义正交补为

$$X^{\perp} = \{ v \in V \mid v \perp X \}.$$

时刻注意,本文中的 \langle , \rangle 仅仅表示双线性型而未必是内积. 对于一般的双线性型而言,正交不一定 具有对称型,即 $x \perp y$ 并不一定推出 $y \perp x$. 对于对称型和交错型而言, $x \perp y$ 和 $y \perp x$ 才是等价的. 这也是为什么我们主要研究对称型和交错型的原因.

对于一个向量 $x \in V$ 而言,有一种退化的情况,即自己与自己正交,此时我们给出下面的术语. 令 V 是一个向量空间,向量 $x \in V$ 如果满足 $\langle x, x \rangle = 0$,那么我们说 x 是**迷向向量**,否则称之为**非迷向向量**. 如果 V 至少包含一个非零迷向向量,那么我们说 V 是**迷向空间**,否则称之为**非迷向空间**. 如果 V 中每个向量都是迷向向量,那么我们说 V 是**完全迷向空间**(即辛几何).

注意到, 如果 $x \in V$ 是迷向向量, 那么对于任意 $a \in \mathbb{F}$, ax 都是迷向向量. 这表明 V 中的迷向向量集合对标量乘法封闭, 这样的子集称为 V 中的**锥体**.

进一步的,我们考虑更严重的退化情况,即下面的术语. 令 V 是一个向量空间,向量 x 如果满足 $x \perp V$,那么我们说 x 是**退化向量**. V 中所有退化向量的集合 V^{\perp} 我们称之为 V 的**根**,记为 rad(V). 如果 $rad(V) = \{0\}$,那么我们说 V 是**非退化的**,否则我们说 V 是**退化的**. 如果 rad(V) = V,那么我们说 V 是**完全退化的**.

定理 3.1. 向量空间 V 是非退化的当且仅当双线性型 \langle , \rangle 在任意基下的表示矩阵是可逆的.

Proof. (⇒) 设 V 的一组基为 e_1, \ldots, e_n , \langle , \rangle 在这组基下的表示矩阵为 A, 令 Ay = 0, 设 $y = (y_1, \ldots, y_n)$, 记 $y' = \sum_i y_i e_i \in V$. 任取 $x' = \sum_i x_i e_i \in V$, 记 $x = (x_1, \ldots, x_n)$, 那么

$$\langle x', y' \rangle = x^T A y = 0,$$

所以 $y' \perp V$, V 非退化表明 y' = 0, 所以 y = 0, 所以 A 可逆.

(秦) 继续采用上述记号. 若 A 可逆,令 $y' = \sum_i y_i e_i \in rad(V)$,那么任取 $x' = \sum_i x_i e_i \in V$,有 $\langle x', y' \rangle = x^T A y = 0$,特别地,令 x = A y,那么 $y^T A^T A y = 0$,即 $\|Ay\|^2 = (Ay)^T (Ay) = 0$,故 Ay = 0,A 可逆表明 y = 0,故 y' = 0,所以 $rad(V) = \{0\}$,即 V 是非退化的.

例 3.2. 非退化空间的子空间可能是退化的. 考虑有限域 \mathbb{F}_2 上的向量空间 \mathbb{F}_2^4 , 配备标准内积, 即

$$(x_1,\ldots,x_4)\cdot(y_1,\ldots,y_4)=x_1y_1+\cdots+x_4y_4,$$

这个双线性型的表示矩阵为单位阵, 所以 F4 是非退化的. 考虑子空间

$$U = \{(0,0,0,0), (1,1,0,0), (0,0,1,1), (1,1,1,1)\},\$$

不难验证这里面任意向量都是退化向量, 所以 U 甚至是完全退化空间.

若 $U \subseteq V$ 是子空间, 那么 rad(U) 表示 U 中与 U 正交的向量集合, 故

$$rad(U) = U \cap U^{\perp}$$
.

此外, 还可以发现

$$rad(U) = U \cap U^{\perp} \subseteq (U^{\perp})^{\perp} \cap U^{\perp} = rad(U^{\perp}),$$

所以如果 U 是退化的, 那么 U^{\perp} 也是退化的.

定理 3.3. 令 V 是向量空间,那么下面的说法是等价的:

(1) 两个向量正交满足对称性,即

$$x \perp y \Rightarrow y \perp x$$
;

(2) V 上的双线性型是对称型或者交错型.

Proof. (2) \Rightarrow (1) 交错型都是反对称型, 此时 $x \perp y$ 表明 $\langle x, y \rangle = 0$, 故 $\langle y, x \rangle = \pm \langle x, y \rangle = 0$, 故 $y \perp x$.

(1) ⇒ (2) 为了方便起见,定义 $x\bowtie y$ 表示 $\langle x,y\rangle = \langle y,x\rangle$, $x\bowtie V$ 表示对于任意的 $y\in V$ 有 $\langle x,y\rangle = \langle y,x\rangle$. 如果对于所有的 $x\in V$ 都有 $x\bowtie V$,即 $\langle x,y\rangle = \langle y,x\rangle$. 所以假设存在 $x\in V$ 使得 $x\bowtie V$.

我们首先说明 $x \bowtie y$ 表明 $x \perp y$. $x \bowtie V$ 表明存在 $z \in V$ 使得 $(x,z) \neq (z,x)$. 注意到

$$\langle x, y \rangle (\langle x, z \rangle - \langle z, x \rangle) = \langle x, y \rangle \langle x, z \rangle - \langle x, y \rangle \langle z, x \rangle$$
$$= \langle y, x \rangle \langle x, z \rangle - \langle x, y \rangle \langle z, x \rangle$$
$$= \langle x, \langle y, x \rangle z - \langle z, x \rangle y \rangle.$$

又因为

$$\langle \langle y, x \rangle z - \langle z, x \rangle y, x \rangle = \langle y, x \rangle \langle z, x \rangle - \langle z, x \rangle \langle y, x \rangle = 0,$$

根据正交的对称性, 所以

$$\langle x, y \rangle (\langle x, z \rangle - \langle z, x \rangle) = \langle x, \langle y, x \rangle z - \langle z, x \rangle y \rangle = 0,$$

故 $\langle x, y \rangle = 0$. 由于 $x \bowtie x$, 所以 $x \perp x$, 这表明 x 是迷向向量.

假设 V 不是正交几何,我们证明 V 中向量都是迷向向量,从而说明 V 是辛几何. V 不是正交几何表明存在 $u,v \in V$ 使得 $u \bowtie v$,所以 $u \bowtie V$ 以及 $v \bowtie V$,根据上面的叙述,u,v 都是迷向

向量. 任取 $w \in V$, 若 $w \not\sim V$, 则 w 是迷向向量. 若 $w \bowtie V$, 那么 $w \bowtie v$ 以及 $w \bowtie u$, 根据上面的叙述, 有 $w \perp v$ 以及 $w \perp u$. 注意到 $w - u \perp u$ 以及 w = (w - u) + u, 所以

$$\langle w, w \rangle = \langle w - u, w - u \rangle + \langle w - u, u \rangle + \langle u, w - u \rangle + \langle u, u \rangle = \langle w - u, w - u \rangle$$

所以我们说明 w-u 是迷向向量. 注意到

$$\langle w - u, v \rangle = -\langle u, v \rangle \neq -\langle v, u \rangle = \langle v, w - u \rangle,$$

所以 $w-u \bowtie V$, 所以w-u 是迷向向量, 这就表明w 是迷向向量.

故正交性是对称的表明 V 必然为正交几何或者辛几何.

如果一个向量空间既是正交的又是辛的, 那么这个双线性型既是对称型又是反对称型, 因此

$$\langle x, y \rangle = \langle y, x \rangle = -\langle x, y \rangle$$
.

故 char(\mathbb{F}) \neq 2 的时候, V 既是正交几何又是辛几何当且仅当 rad(V) = V, 即 V 是完全退化空间. 但是, 当 char(\mathbb{F}) = 2 的时候, 存在非退化的正交辛几何. 例如, 令 $V = \mathbb{F}_2^2$ 是 \mathbb{F}_2 上的二维向量空间. 考虑基 $e_1 = (1,0), e_2 = (0,1)$, 在这组基下的矩阵

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

导出的双线性型既是对称型又是交错型, 但是 A 可逆, 所以此时 V 非退化.

4 线性泛函

对于有限维实或者复的内积空间 V, 我们知道有 Riesz 表示定理, 即若 $f \in V^*$ 是一个线性 泛函 (即 $V \to \mathbb{F}$ 的线性映射), 那么存在唯一的 $u \in V$, 使得对于任意的 $v \in V$, 有

$$f(v) = \langle v, u \rangle.$$

下面我们说明, 对于非退化的向量空间, 有类似的结果.

令 $V \in \mathbb{F}$ 上的有限维向量空间, 给定 $x \in V$, 定义线性映射 $\langle \cdot, x \rangle : V \to \mathbb{F}$ 为

$$\langle \cdot, x \rangle v = \langle v, x \rangle.$$

然后定义线性映射 $\tau: V \to V^*$ 为

$$\tau(x) = \langle \cdot, x \rangle.$$

(,) 是双线性型就表明 τ 是线性映射, 并且

$$\ker \tau = \{ x \in V \mid \langle \cdot, x \rangle = 0 \} = V^{\perp} = \operatorname{rad}(V).$$

所以 τ 是单射 (从而是同构) 当且仅当 V 是非退化的.

定理 4.1 (Riesz 表示定理). 令 V 是有限维非退化向量空间,那么映射

$$\tau: V \to V^* \quad \tau(x) = \langle \cdot, x \rangle$$

是同构. 所以对于每个 $f \in V^*$,都存在唯一的 $x \in V$ 使得

$$f(v) = \tau(x)(v) = \langle v, x \rangle \quad \forall v \in V.$$

Proof. V 非退化当且仅当 τ 是单射,所以 τ 是同构,故存在唯一的 $x \in V$ 使得 $f = \tau(x)$.

定理 4.2 (关于子空间的 Riesz **表示定理)**. 令 U 是有限维向量空间 V 的子空间,如果 V 和 U 至少有一个非退化,那么线性映射

$$\tau: V \to U^* \quad \tau(x) = \langle \cdot, x \rangle |_U$$

是满射并且 $\ker \tau = U^{\perp}$. 因此,对于任意线性泛函 $f \in U^*$,存在(可能不唯一)向量 $x \in V$ 使得对于任意 $u \in U$ 有 $f(u) = \langle u, x \rangle$. 此外,如果 U 是非退化的,那么 x 可以唯一地从 U 中选取.

Proof. 若 V 非退化. 对于任意的 $f \in U^*$,我们可以将其延拓为 $\bar{f} \in V^*$,这只需要扩充一组基,然后令 \bar{f} 在扩充基上取值为零即可. 根据 Riesz 表示定理,存在 $x \in V$ 使得 $\bar{f} = \langle \cdot, x \rangle$,此时 $f = \langle \cdot, x \rangle |_U$,所以 τ 是满射. 令 $\langle \cdot, x \rangle |_U = 0$,即对于任意的 $u \in U$ 有 $\langle u, x \rangle = 0$,所以 $\ker \tau = U^{\perp}$. 若 U 非退化,将同构 $\tau : U \to U^*$ 延拓为 $\bar{\tau} : V \to U^*$ 即可.

5 正交补与正交直和

对于向量空间 V 的子空间 U, W, 如果 $U \perp W$ 并且 $U \oplus W = V$, 那么我们说 $V \not = U$ 和 W 的**正交直和**. 如果 V 是内积空间, 那么我们知道 $V = U \oplus U^{\perp}$. 然而, 在一般的向量空间中, 正交补也不一定是向量空间补, 例如, 如果 v 是退化向量, 那么 $\mathrm{span}\,(v)^{\perp} = V$, 所以 $\mathrm{span}\,(v) + \mathrm{span}\,(v)^{\perp}$ 并不是直和.

定理 5.1. *V* 是向量空间,那么

$$V = \operatorname{rad}(V) \oplus U$$
,

其中 U 非退化,rad(V) 完全退化.

Proof. 令 U 为 rad(V) 的向量空间补,显然 rad(V) \bot U. 注意到此时有 rad(U) \subseteq rad(V),所以 rad(U) = 0,故 U 非退化.

定理 5.2. 令 U 是有限维向量空间 V 的子空间.

(1) 若 U, V 至少有一个非退化,那么

$$\dim U + \dim U^{\perp} = \dim V,$$

这表明 $V = U + U^{\perp}$, 所以此时 $V = U \oplus U^{\perp}$ 当且仅当 $U \cap U^{\perp} = 0$.

- (2) 若 V 非退化,那么
 - (a) $(U^{\perp})^{\perp} = U$;
 - (b) $rad(U) = rad(U^{\perp});$
 - (c) U 非退化当且仅当 U^{\perp} 非退化.

Proof. (1) 根据 定理 4.2, 映射 $\tau: V \to U^*$ 是满射, 且 ker $\tau = U^{\perp}$, 故 $V/U^{\perp} \simeq U^* \simeq U$, 所以

$$\dim V - \dim U^{\perp} = \dim V/U^{\perp} = \dim U.$$

(2) 显然 $U \subseteq (U^{\perp})^{\perp}$. 由 (1), 有

$$\dim U + \dim U^{\perp} = \dim V$$
, $\dim U^{\perp} + \dim(U^{\perp})^{\perp} = \dim V$,

所以 $\dim U = \dim(U^{\perp})^{\perp}$, 故 $U = (U^{\perp})^{\perp}$. 因此

$$rad(U) = U \cap U^{\perp} = (U^{\perp})^{\perp} \cap U^{\perp} = rad(U^{\perp}).$$

6 等距

令 V,W 是向量空间,我们使用同一个记号 \langle , \rangle 分别表示 V 和 W 上的双线性型. 一个线性映射 $\varphi:V\to W$ 如果是双射并且满足

$$\langle \varphi(v), \varphi(u) \rangle = \langle v, u \rangle \quad \forall v, u \in V,$$

那么 φ 被称为**等距同构**. 注意等号两边是不同的双线性型. 显然所有 $V \to V$ 的等距同构全体构成一个群. 若 V 是非退化的正交几何, 那么 V 上的等距同构被称为**正交变换**, 所有正交变换构成的群被称为 V **上的正交群**, 记为 O(V). 若 V 是非退化的辛几何, 那么 V 上的等距同构被称为**辛变换**, 所有辛变换构成的群被称为 V **上的辛群**, 记为 Sp(V).

定理 6.1. 设 $\varphi: V \to W$ 是有限维向量空间之间的线性映射.

(1) 设 V 的一组基为 e_1, \ldots, e_n ,那么 φ 是等距同构当且仅当

$$\langle \varphi(e_i), \varphi(e_j) \rangle = \langle e_i, e_j \rangle.$$

(2) 若 V 是正交几何并且 $char(\mathbb{F}) \neq 2$,那么 φ 是等距同构当且仅当 φ 是双射并且

$$\langle \varphi(v), \varphi(v) \rangle = \langle v, v \rangle \quad \forall v \in V.$$

(3) 设 φ 是等距同构并且

$$V = U \oplus U^{\perp}, \quad W = T \oplus T^{\perp},$$

如果 $\varphi(U) = T$,那么 $\varphi(U^{\perp}) = T^{\perp}$.

Proof. (1) 是显然的. (2) 必要性显然, 对于充分性, 任取 $u, v \in V$, 那么

$$\langle u, u \rangle + 2 \langle u, v \rangle + \langle v, v \rangle = \langle u + v, u + v \rangle$$

$$= \langle \varphi(u + v), \varphi(u + v) \rangle$$

$$= \langle \varphi(u), \varphi(u) \rangle + 2 \langle \varphi(u), \varphi(v) \rangle + \langle \varphi(v), \varphi(v) \rangle$$

$$= \langle u, u \rangle + 2 \langle \varphi(u), \varphi(v) \rangle + \langle v, v \rangle,$$

这就表明 $\langle \varphi(u), \varphi(v) \rangle = \langle u, v \rangle$, 即 φ 是等距同构.

(3) 任取 $v \in U^{\perp}$, $t \in T$, 那么存在 $u \in U$ 使得 $t = \varphi(u)$, 所以

$$\langle \varphi(v), t \rangle = \langle \varphi(v), \varphi(u) \rangle = \langle v, u \rangle = 0,$$

所以 $\varphi(v) \in T^{\perp}$,故 $\varphi(U^{\perp}) \subseteq T^{\perp}$.又因为 $\dim V = \dim W$, $\dim U = \dim T$,所以 $\dim \varphi(U^{\perp}) = \dim U^{\perp} = \dim T^{\perp}$,所以 $\varphi(U^{\perp}) = T^{\perp}$.

7 双曲空间

令 V 是向量空间, 两个向量 $u, v \in V$ 如果满足

$$\langle u, u \rangle = \langle v, v \rangle = 0, \quad \langle u, v \rangle = 1,$$

那么我们说 u, v 是一个**双曲对**. 注意到如果 V 是正交几何, 那么 $\langle v, u \rangle = 1$, 如果 V 是辛几何, 那么 $\langle v, u \rangle = -1$. 现在假设 V 是正交几何或者辛几何. 双曲对 u, v 张成的子空间 span (u, v) 被称为**双曲平面**. 若子空间

$$H=H_1\oplus H_2\oplus \cdots \oplus H_k,$$

其中 H_i 是双曲平面并且两两正交,那么我们说 H 是一个**双曲空间**. 如果 u_i, v_i 是 H_i 的双曲对,那么我们说 $u_1, v_1, \ldots, u_k, v_k$ 是 H 的**双曲基** (在辛几何的情况下一般被称为辛基). 根据定义,不难验证双曲空间都是非退化的.

8 子空间的非退化完备化

令 U 是非退化向量空间 V 的子空间,如果 U 是退化的,那么寻找 V 中包含 U 的最小非退化子空间是有用的.若 V 的子空间 S 包含 U,那么我们说 S 是 U 的一个扩张.U 的非退化完备 化是 U 的所有非退化扩张中最小的子空间.

定理 8.1. V 是非退化的有限维向量空间, 当 V 是正交几何的时候我们假设 $\mathrm{char}(\mathbb{F}) \neq 2$.

- (1) 令 $S \in V$ 的子空间. 如果 v 是迷向向量并且 $\mathrm{span}(v) \oplus S$ 是正交直和,那么存在双曲平面 $H = \mathrm{span}(v,z)$ 使得 $H \oplus S$ 是正交直和. 特别地,如果 v 是迷向向量,那么存在包含 v 的 双曲平面.
- (2) 令 $U \in V$ 的子空间,根据定理 5.1,可设

$$U = \operatorname{span}(v_1, \ldots, v_k) \oplus W,$$

其中 v_1, \ldots, v_k 是 rad(U) 的一组基,W 是非退化的.那么存在双曲空间 $H = H_1 \oplus \cdots \oplus H_k$, 其双曲基为 $v_1, z_1, \ldots, v_k, z_k$,使得

$$\bar{U} = H \oplus W$$

是正交直和, 并且 \bar{U} 是 U 的非退化扩张. 此时有

$$\dim \bar{U} = \dim U + \dim(\operatorname{rad}(U)),$$

我们把 \bar{U} 称为 U 的一个**双曲扩张**. 如果 U 是非退化的,那么 $\bar{U} = U$,即 U 是自身的双曲扩张.

Proof. (1) 根据 定理 5.2, V 非退化表明 $(S^{\perp})^{\perp} = S$. $v \notin S = (S^{\perp})^{\perp}$ 表明存在 $x \in S^{\perp}$ 使得 $\langle v, x \rangle \neq 0$. 如果 V 是辛几何,令 $z = (1/\langle v, x \rangle)x$,此时 $\langle v, z \rangle = 1$,所以 v, z 是双曲对. 如果 V 是正交几何,设 $z = rv + sx \in S^{\perp}$,那么

$$\langle v, z \rangle = r \langle v, v \rangle + s \langle v, x \rangle = s \langle v, x \rangle = 1,$$

解得 $s = 1/\langle v, x \rangle$. 另一方面,

$$\langle z, z \rangle = r^2 \langle v, v \rangle + 2rs \langle v, x \rangle + s^2 \langle x, x \rangle = 2r + s^2 \langle x, x \rangle = 0,$$

表明 $r = -\langle x, x \rangle / (2 \langle v, x \rangle^2)$,所以此时 v, z 是双曲对. 故总存在 $z \in S^{\perp}$ 使得 $H = \operatorname{span}(v, z)$ 是双曲平面. 此时 $H \subseteq S^{\perp}$,所以 $S = (S^{\perp})^{\perp} \subseteq H^{\perp}$,因为 H 非退化,所以

$$H \cap S \subseteq H \cap H^{\perp} = 0,$$

所以 $H \oplus S$ 是正交直和.

(2) 对 k 归纳. k = 1 时就是 (1). 假设结论对 1, ..., k - 1 都成立. 因为

$$U = \operatorname{span}(v_k) \oplus (\operatorname{span}(v_1, \dots, v_{k-1}) \oplus W),$$

由 (1),存在双曲平面 $H_k = \operatorname{span}(v_k, z_k)$ 使得 $H_k \oplus \left(\operatorname{span}(v_1, \dots, v_{k-1}) \oplus W\right)$ 是正交直和,根据 假设,存在双曲空间 $H' = H_1 \oplus \dots \oplus H_{k-1}$,其双曲基为 $v_1, z_1, \dots, v_{k-1}, z_{k-1}$,使得 $H' \oplus W$ 是正交直和. 令 $H = H_k \oplus H'$,那么 $H \oplus W$ 就是正交直和.

定理 8.2 (非退化完备化定理). 令 U 是非退化有限维向量空间 V 的子空间,设 $U = \operatorname{rad}(U) \oplus W$ 是正交直和,那么下面的说法是等价的:

- (1) $\bar{U} = H \oplus W \neq U$ 的双曲扩张;
- (2) \bar{U} 是 U 的最小非退化扩张;
- (3) \bar{U} 是 U 的非退化扩张并且

$$\dim \bar{U} = \dim U + \dim(\operatorname{rad}(U)).$$

Proof. 设 $X \in U$ 的非退化扩张,考虑 U 在 X 中的双曲扩张 $H' \oplus W$,所以 U 的任意非退化扩张都包含一个双曲扩张. 又因为

$$\dim(H' \oplus W) = \dim U + \dim(\mathrm{rad}(U)),$$

所以 U 的双曲扩张都拥有同样的维数,这表明它们不可能互相恰当包含,故 \bar{U} 是 U 的最小非退化扩张. 这表明 $(1) \Rightarrow (2) \Rightarrow (3)$.

(3) \Rightarrow (1) 若 \bar{U} 是 U 的非退化扩张并且 $\dim \bar{U} = \dim U + \dim(\operatorname{rad}(U))$,那么可以考虑 U 在 \bar{U} 中的双曲扩张 \tilde{U} ,此时 $\dim \tilde{U}$ 的维数也为 $\dim U + \dim(\operatorname{rad}(U))$,所以 $\bar{U} = \tilde{U}$ 是 U 的双曲扩张.

参考文献

- [1] Axler S. Linear Algebra Done Right. Springer Nature; 2024.
- [2] Albert A. Regression and the Moore-Penrose Pseudoinverse.
- [3] Roman S, Axler S, Gehring FW. Advanced Linear Algebra. New York: Springer; 2005 Mar 22.
- [4] 李烔生, 查建国. 线性代数. 中国科学技术大学出版社: 1989.
- [5] 姚慕生, 吴泉水, 谢启鸿. 高等代数学. 复旦大学出版社; 2014.