Finals Revision Guide

30.102 Electromagnetics & Applications, Term 5 2020

Wei Min Cher

21 Apr 2020

Contents

1 W6: Vector Algebra			4		
	1.1	Ortl	nogonal Coordinate Systems	4	
		1.1.1	Cartesian Coordinates	4	
		1.1.2	Cylindrical Coordinates	4	
		1.1.3	Spherical Coordinates	4	
		1.1.4	Summary for Vectors in Coordinate Systems	5	
	1.2	Trai	nsformation between Coordinate Systems	6	
	1.3	Dist	tance between Two Points	6	
	1.4	Gra	dient of Scalar Field	6	
	1.5	Dive	ergence of Vector Field	7	
	1.6	Cur	l of Vector Field	7	
	1.7	Lap	lacian Operator	7	
	1.8	Sun	nmary for Advanced Vector Operations	7	
2	W8:	Physic	es II Review	8	
	2.1	Eps	ilon & Mu	8	
	2.2	Stat	ic & Dynamic Fields	8	
	2.3	Fara	aday's Law	8	
	2.4	Max	xwell-Ampere's Law	8	
	2.5	Gau	ıss' Law	9	
	2.6	Gau	iss' Law for Magnetism	9	
3	W10) - W11	: Plane Waves	10	
	3.1	Con	nplex Permittivity	10	
	3.2	Wav	ve Equations	10	
	3.3	Wav	ve Equations in Lossless Media	10	
	3.4	Intr	insic Impedance of Lossless Medium	10	

	3.5	Phase Velocity	10
	3.6	Intrinsic Impedance of Free Space	10
	3.7	Transverse Electromagnetic Waves (TEM)	11
	3.8	Instantaneous Electric and Magnetic Fields	11
	3.9	Polarization	11
		3.9.1 Linear Polarization	12
		3.9.2 Circular Polarization	12
	3.10	Plane Waves in Lossy Media	13
		3.10.1 Low-Loss Dielectric	13
		3.10.2 Good Conductor	13
	3.11	Skin Depth	14
	3.12	Current Flow in Good Conductors	14
	3.13	Power Density	15
	3.14	Power Density in Lossless Medium	15
	3.15	Power Density in Lossy Media	16
	3.16	Attenuation Rate	16
4	W11•	Boundary Conditions	17
•	4.1	Waves at Normal Incidence	17
	4.2	Boundary Conditions	18
	4.3	Snell's Law	18
	4.4	Refraction Index	19
	4.5	Critical Angle & Total Internal Reflection	19
	4.6	Optical Fibre & Modal Dispersion	19
	4.7	Plane of Incidence	
	4.8		
	4.9	Fresnel Reflection and Transmission Coefficients for TE Waves	20
	4.10	Parallel Polarization (TM Waves)	21
	4.11	Fresnel Reflection and Transmission Coefficients for TM Waves	21
	4.12	Brewster Angle	22
	4.13	Reflectivity and Transmittivity	22
5		Waveguides and Resonators	23
	5.1	Waveguides	23
	5.2	Transverse Magnetic (TM) Mode	23
	5.3	Transverse Electric (TE) Mode	24
	5.4	Properties of TM and TE Modes	24
	5.5	Propagation Velocities	25
	5.6	ω - β Diagram	25
	5.7	Zigzag Reflections	25

	5.8	Resonant Cavities	25
6	W13: A	Antennas II	26
	6.1	Normalized Radiation Intensity	26
	6.2	Reciprocity	26
	6.3	Total Radiation Power	26
	6.4	Antenna Patterns	27
	6.5	Pattern Solid Angle	27
	6.6	Half Power Beamwidth (HPBW)	27
	6.7	Directivity	28
	6.8	Radiation Efficiency	28
	6.9	Antenna Gain	28
	6.10	Effective Area of Antenna	28
	6.11	Friis Transmission Formula	29
			20
A	Appen	aix	3 0
	A.1	Derivatives	30
	A.2	Integrals	30
	A.3	Integration by Parts	30
	A.4	Phasors	30

1 W6: Vector Algebra

1.1 Orthogonal Coordinate Systems

1.1.1 Cartesian Coordinates

• Coordinate variables: x, y, z

1.1.2 Cylindrical Coordinates

- Coordinate variables:
 - ∘ r: radial distance in x-y plane, $0 \le r \le \infty$
 - ϕ : azimuth angle from positive *x*-axis, $0 \le \phi \le 2\pi$
 - ∘ z: defined in Cartesian coordinate system, $-\infty \le z \le \infty$

1.1.3 Spherical Coordinates

- Coordinate variables:
 - ∘ *R*: range coordinate, $0 \le R \le \infty$
 - θ : zenith angle from positive z-axis, $0 \le \theta \le \pi$
 - ϕ : azimuth angle from positive *x*-axis, $0 \le \phi \le 2\pi$

1.1.4 Summary for Vectors in Coordinate Systems

	Cartesian	Cylindrical	Spherical
Coordinate variables	x, y, z	r, φ, z	$R, \ \theta, \ \phi$
Position vector, $\overrightarrow{OP_1}$	$\hat{x}x_1 + \hat{y}y_1 + \hat{z}z_1$	$\hat{r}r_1 + \hat{z}z_1$	$\hat{R}R_1$
Tosition vector, or p	for $P(x_1, y_1, z_1)$	for $P(r_1, \phi_1, z_1)$	for $P(R_1, \theta_1, \phi_1)$
	$\hat{x} \cdot \hat{x} = \hat{y} \cdot \hat{y} = \hat{z} \cdot \hat{z} = 1$	$\hat{r} \cdot \hat{r} = \hat{\phi} \cdot \hat{\phi} = \hat{z} \cdot \hat{z} = 1$	$\hat{R} \cdot \hat{R} = \hat{\theta} \cdot \hat{\theta} = \hat{\phi} \cdot \hat{\phi} = 1$
	$\hat{x} \cdot \hat{y} = \hat{y} \cdot \hat{z} = \hat{z} \cdot \hat{x} = 0$	$\hat{r} \cdot \hat{\phi} = \hat{\phi} \cdot \hat{z} = \hat{z} \cdot \hat{r} = 0$	$\hat{R} \cdot \hat{\theta} = \hat{\theta} \cdot \hat{\phi} = \hat{\phi} \cdot \hat{R} = 0$
Unit vector operations	$\hat{x} \times \hat{y} = \hat{z}$	$\hat{r} \times \hat{\phi} = \hat{z}$	$\hat{R} \times \hat{\theta} = \hat{\phi}$
	$\hat{y} \times \hat{z} = \hat{x}$	$\hat{\phi} \times \hat{z} = \hat{r}$	$\hat{\theta} \times \hat{\phi} = \hat{R}$
	$\hat{z} \times \hat{x} = \hat{y}$	$\hat{z} \times \hat{r} = \hat{\phi}$	$\hat{\phi} \times \hat{R} = \hat{\theta}$
Dot product, $\overrightarrow{A} \cdot \overrightarrow{B}$	$A_x B_x + A_y B_y + A_z B_z$	$A_r B_r + A_\phi B_\phi + A_z B_z$	$A_R B_R + A_\theta B_\theta + A_\phi B_\phi$
Cross product, $\overrightarrow{A} \times \overrightarrow{B}$	$\begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \end{vmatrix}$	$\begin{vmatrix} \hat{r} & \hat{\phi} & \hat{z} \end{vmatrix}$	$\begin{vmatrix} \hat{R} & \hat{ heta} & \hat{\phi} \end{vmatrix}$
	$A_x A_y A_z$	$\begin{vmatrix} A_r & A_\phi & A_z \end{vmatrix}$	$egin{array}{c ccc} A_R & A_{ heta} & A_{\phi} \end{array}$
	$\begin{vmatrix} B_x & B_y & B_z \end{vmatrix}$	$\begin{vmatrix} B_r & B_\phi & B_z \end{vmatrix}$	$egin{array}{c ccc} B_R & B_{ heta} & B_{\phi} \end{array}$
Differential length, $d\vec{l}$	$\hat{x} dx + \hat{y} dy + \hat{z} dz$	$\hat{r} dr + \hat{\phi} r d\phi + \hat{z} dz$	$\hat{R} dR + \hat{\theta}R d\theta + \hat{\phi}R \sin\theta d\phi$
	$d_{\overrightarrow{s_x}} = \hat{x} \ dy \ dz$	$d_{\overrightarrow{s_r}} = \hat{r}r d\phi dz$	$d_{\overrightarrow{s_R}} = \hat{R}R^2 \sin\theta \ d\theta \ d\phi$
Differential areas	$d_{\overrightarrow{s_y}} = \hat{y} \ dx \ dz$	$d_{\overrightarrow{s_{\phi}}} = \hat{r}r d\phi dz$	$d_{\overrightarrow{s_{\theta}}} = \hat{\theta}R\sin\theta \ dR \ d\phi$
	$d_{\overrightarrow{s_z}} = \hat{z} dx dy$	$d_{\overrightarrow{s_z}} = \hat{z}r dr d\phi$	$d_{\overrightarrow{s_{\phi}}} = \hat{\phi} R \ dR \ d\theta$
Differential volume, $d\vec{V}$	dx dy dz	r dr dφ dz	$R^2 \sin\theta dR d\theta d\phi$

1.2 Transformation between Coordinate Systems

Transformation	Coordinate Variables	Unit Vectors	
Contacion y ordin dui col	$r = \sqrt{x^2 + y^2}$	$\hat{r} = \hat{x}\cos\phi + \hat{y}\sin\phi$	
Cartesian → cylindrical	$\phi = \tan^{-1}\left(\frac{y}{x}\right)$	$\hat{\phi} = -\hat{x}\sin\phi + \hat{y}\cos\phi$	
Cylindrical → Cartesian	$x = r \cos \phi$	$\hat{x} = \hat{r}\cos\phi - \hat{\phi}\sin\phi$	
Cymidical / Cartesian	$y = r \sin \phi$	$\hat{y} = \hat{r}\sin\phi + \hat{\phi}\cos\phi$	
	$R = \sqrt{x^2 + y^2 + z^2}$	$\hat{R} = \hat{x} \sin \theta \cos \phi + \hat{y} \sin \theta \sin \phi + \hat{z} \cos \theta$	
Cartesian → spherical	$\theta = \tan^{-1}\left(\frac{\sqrt{x^2 + y^2}}{z}\right)$	$\hat{\theta} = \hat{x}\cos\theta\cos\phi + \hat{y}\sin\phi + \hat{z}\cos\theta$ $\hat{\theta} = \hat{x}\cos\theta\cos\phi + \hat{y}\cos\theta\sin\phi - \hat{z}\sin\theta$	
	$\phi = \tan^{-1}\left(\frac{y}{x}\right)$	$\hat{\phi} = -\hat{x}\sin\phi + \hat{y}\cos\phi$	
	$x = R\sin\theta\cos\phi$	$\hat{x} = \hat{R}\sin\theta\cos\phi + \hat{\theta}\cos\theta\cos\phi - \hat{\phi}\sin\phi$	
Spherical → Cartesian	$y = R\sin\theta\sin\phi$	$\hat{y} = \hat{R}\sin\theta\sin\phi + \hat{\theta}\cos\theta\sin\phi + \hat{\phi}\sin\phi$	
	$z = R\cos\theta$	$\hat{z} = \hat{R}\cos\theta - \hat{\theta}\sin\theta$	
Culindainal conhaminal	$R = \sqrt{r^2 + z^2}$	$\hat{R} = \hat{r}\sin\theta + \hat{z}\cos\theta$	
Cylindrical → spherical	$\theta = \tan^{-1}\left(\frac{r}{z}\right)$	$\hat{\theta} = \hat{r}\cos\theta - \hat{z}\sin\theta$	
Sphariael vaylindriael	$r = R\sin\theta$	$\hat{r} = \hat{R}\sin\theta + \hat{\theta}\cos\theta$	
Spherical → cylindrical	$z = R\cos\theta$	$\hat{z} = \hat{R}\cos\theta - \hat{\theta}\sin\theta$	

1.3 Distance between Two Points

• Cartesian coordinates:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

• Cylindrical coordinates:

$$d = \sqrt{r_2^2 + r_1^2 - 2r_1r_2\cos(\phi_2 - \phi_1) + (z_2 - z_1)^2}$$

• Spherical coordinates:

$$d = \sqrt{R_2^2 + R_1^2 - 2R_1R_2 \left[\cos\theta_2\cos\theta_1 + \sin\theta_1\sin\theta_2\cos(\phi_2 - \phi_1)\right]}$$

1.4 Gradient of Scalar Field

• Gradient of T, ∇T

$$\nabla T = \hat{u}_1 \frac{\partial T}{h_1 \partial u_1} + \hat{u}_2 \frac{\partial T}{h_2 \partial u_2} + \hat{u}_3 \frac{\partial T}{h_3 \partial u_3}$$

• Directional directive of T along \hat{a}_l , $\frac{dT}{dl}$

$$\frac{dT}{dl} = \nabla T \cdot \hat{a}_l$$

1.5 Divergence of Vector Field

• Divergence of \overrightarrow{E} , $\nabla \cdot \overrightarrow{E}$

$$\nabla \cdot \overrightarrow{E} = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial u_1} (h_2 h_3 E_1) + \frac{\partial}{\partial u_2} (h_3 h_1 E_2) + \frac{\partial}{\partial u_3} (h_1 h_2 E_3) \right]$$

• Divergence Theorem

$$\int_{V} \nabla \cdot \overrightarrow{E} \ dV = \oint_{S} \overrightarrow{E} \cdot d\overrightarrow{S}$$

1.6 Curl of Vector Field

• Curl of \overrightarrow{B} , $\nabla \times \overrightarrow{B}$

$$\nabla \times \overrightarrow{B} = \frac{1}{h_1 h_2 h_3} \begin{vmatrix} h_1 \hat{u}_1 & h_2 \hat{u}_2 & h_3 \hat{u}_3 \\ \frac{\partial}{\partial u_1} & \frac{\partial}{\partial u_2} & \frac{\partial}{\partial u_3} \\ h_1 H_1 & h_2 H_2 & h_3 H_3 \end{vmatrix}$$

• Stokes' Theorem

$$\int\limits_{S} (\nabla \times \overrightarrow{B}) \cdot d\vec{s} = \oint\limits_{C} \overrightarrow{B} \cdot d\vec{l}$$

1.7 Laplacian Operator

• Laplacian of scalar field, V

$$\nabla^2 V = \nabla \cdot (\nabla V) = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial u_1} h_2 h_3 \frac{\partial V}{h_1 \partial u_1} + \frac{\partial}{\partial u_2} h_3 h_1 \frac{\partial V}{h_2 \partial u_2} + \frac{\partial}{\partial u_3} h_1 h_2 \frac{\partial V}{h_3 \partial u_3} \right]$$

• Laplacian of vector field, \overrightarrow{E}

$$\nabla^2 \overrightarrow{E} = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) \overrightarrow{E}$$

• Relation between dot and cross products

$$\nabla^2 \overrightarrow{E} = \nabla (\nabla \cdot \overrightarrow{E}) - \nabla \times (\nabla \times \overrightarrow{E})$$

1.8 Summary for Advanced Vector Operations

Orthogonal Coordinate System	Cartesian	Cylindrical	Spherical
Base Vectors $(\hat{u}_1, \ \hat{u}_2, \ \hat{u}_3)$	$\hat{x}, \ \hat{y}, \ \hat{z}$	$\hat{r},~\hat{\phi},~\hat{z}$	$\hat{R},~\hat{ heta},~\hat{\phi}$
Metric Coefficients (h_1, h_2, h_3)	1, 1, 1	1, r, 1	$1, R, R \sin \theta$
Differential Volume $(h_1h_2h_3 du_1 du_2 du_3)$	dx dy dz	r dr dφ dz	$R^2 \sin\theta dR d\theta d\phi$

2 W8: Physics II Review

2.1 Epsilon & Mu

- Electric flux density, $\overrightarrow{D} = \epsilon \overrightarrow{E}$, measured in C/m²
- Magnetic flux density, $\overrightarrow{B} = \mu \overrightarrow{H}$, measured in T

2.2 Static & Dynamic Fields

- Standard conditions:
 - o Electric and magnetic fields are independent
- Dynamic conditions:
 - o Electric and magnetic fields are coupled

2.3 Faraday's Law

$$\oint_C \overrightarrow{E} \cdot d\overrightarrow{l} = -\frac{d}{dt} \int_S \overrightarrow{B} \cdot d\overrightarrow{s}$$

- 3 scenarios:
 - 1. Time-varying magnetic field linking stationary loop

Induced transformer emf,
$$V_{emf}^{tr} = -N \int_{S} \frac{d\vec{B}}{dt} \cdot d\vec{s}$$
 (V)

2. Moving loop with time-varying surface area relative to the normal of \overrightarrow{B}

Induced motional emf,
$$V_{emf}^{m} = \oint_{C} (\overrightarrow{u} \times \overrightarrow{B}) \cdot d\overrightarrow{l} (V)$$

- \circ where \overrightarrow{u} is the velocity of the moving particle
- 3. Moving loop in a time-varying field \overrightarrow{B}

Total emf,
$$V_{emf} = V_{emf}^{tr} + V_{emf}^{m}$$

• Using Stoke's Theorem, it can be expressed in differential form as $\nabla \times \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t}$.

2.4 Maxwell-Ampere's Law

$$\oint_C \overrightarrow{B} \cdot d\overrightarrow{l} = \mu_0 \iint_S \overrightarrow{J} \cdot \hat{n} \, d\overrightarrow{s} + \epsilon_0 \mu_0 \frac{d}{dt} \iint_S \overrightarrow{E} \cdot \hat{n} \, d\overrightarrow{s}$$
$$= \mu_0 (I_c + I_d)$$

8

• Enclosed current, $I_c = \iint_S \overrightarrow{J} \cdot \hat{n} \, d\vec{s}$

- Displacement current, $I_d = \epsilon_0 \frac{d}{dt} \iint_{S} \overrightarrow{E} \cdot \hat{n} \ d\vec{s}$
- Using Stoke's Theorem, it can be expressed in differential form as $\nabla \times \overrightarrow{H} = \overrightarrow{J} + \frac{d\overrightarrow{D}}{dt}$.

2.5 Gauss' Law

$$\oint\limits_{S} \overrightarrow{D} \cdot d\vec{s} = \int\limits_{V} \rho d\vec{V}$$

• Using Divergence Theorem, it can be expressed in differential form as $\boxed{\nabla \cdot \overrightarrow{D} = \rho}$.

2.6 Gauss' Law for Magnetism

$$\oint_{S} \overrightarrow{B} \cdot d\vec{s} = 0$$

• Using Divergence Theorem, it can be expressed in differential form as $\nabla \cdot \overrightarrow{B} = 0$.

3 W10 - W11: Plane Waves

3.1 Complex Permittivity

- Complex permittivity, $\epsilon_c = \epsilon j \frac{\sigma}{\omega}$
 - Real part, $\epsilon' = \epsilon$
 - $\circ \text{ Complex part, } \epsilon'' = \frac{\sigma}{\omega}$
 - If lossless, $\epsilon'' = 0$, $\epsilon_c = \epsilon$.
- Loss tangent, $\tan \delta = \frac{\epsilon''}{\epsilon'} = \frac{\sigma}{\omega \epsilon}$

3.2 Wave Equations

$$\nabla^{2}\widetilde{E} - \gamma^{2}\widetilde{E} = 0 \quad \text{for } \widetilde{E}$$

$$\nabla^{2}\widetilde{H} - \gamma^{2}\widetilde{H} = 0 \quad \text{for } \widetilde{H}$$

3.3 Wave Equations in Lossless Media

- Wave number, $k = \omega \sqrt{\mu \epsilon}$
 - In lossless medium, $\gamma^2 = -k^2$.

$$\nabla^2 \widetilde{E} + k^2 \widetilde{E} = 0$$
$$\nabla^2 \widetilde{B} + k^2 \widetilde{B} = 0$$

• Known as β in lossy medium.

3.4 Intrinsic Impedance of Lossless Medium

• Intrinsic impedance of lossless medium, η

$$\boxed{ \eta = \frac{E_{x0}^{+}}{H_{y0}^{+}} = \frac{\omega\mu}{k} = \frac{\omega\mu}{\omega\sqrt{\mu\epsilon}} = \sqrt{\frac{\mu}{\epsilon}} \; (\Omega)}$$

3.5 Phase Velocity

Phase velocity,
$$u_p = \frac{\omega}{k} = \frac{\omega}{\omega \sqrt{\mu \epsilon}} = \frac{1}{\sqrt{\mu \epsilon}}$$
 (m/s)

• In vacuum: $\epsilon = \epsilon_0$, $\mu = \mu_0$

$$\Rightarrow u_p = \frac{1}{\sqrt{\epsilon_0 \mu_0}} = 3 \times 10^8 \text{ m/s}$$

3.6 Intrinsic Impedance of Free Space

Intrinsic impedance of free space,
$$\eta_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} = 377 \ \Omega \approx 120\pi \ \Omega$$

3.7 Transverse Electromagnetic Waves (TEM)

• Generally, \widetilde{E} and \widetilde{H} can be described in terms of \widetilde{k} :

$$\widetilde{H} = \frac{1}{\eta} \hat{k} \times \widetilde{E}$$

$$\widetilde{E} = -\eta \hat{k} \times \widetilde{H}$$

• If \widetilde{E} has a component in positive x-direction and is travelling in the z-direction, then

$$\widetilde{E}(z) = \hat{x}\widetilde{E}_{x}^{+}(z), \quad \widetilde{H}(z) = \hat{y}\frac{\widetilde{E}_{x}^{+}(z)}{\eta}$$

$$\widetilde{H}_{x}^{+} = -\frac{\widetilde{E}_{y}^{+}(z)}{\eta}, \quad \widetilde{H}_{y}^{+} = \frac{\widetilde{E}_{x}^{+}(z)}{\eta}$$

3.8 Instantaneous Electric and Magnetic Fields

• E_{x0}^+ is a complex quantity with magnitude $|E_{x0}^+|$ and phase angle ϕ^+ .

$$E_{x0}^+ = |E_{x0}^+|e^{j\phi^+}$$

• Instantaneous electric field $\overrightarrow{E}(z,t)$

$$\overrightarrow{E}(z,t) = \operatorname{Re}\left[\widetilde{E}(z)e^{j\omega t}\right] = \hat{x}|E_{x0}^{+}|\cos(\omega t - kz + \phi^{+}) \text{ (V/m)}$$

• Instantaneous magnetic field $\overrightarrow{H}(z,t)$

$$\overrightarrow{E}(z,t) = \operatorname{Re}\left[\widetilde{H}(z)e^{j\omega t}\right] = \hat{x}\frac{|E_{x0}^+|}{\eta}\cos(\omega t - kz + \phi^+) \text{ (A/m)}$$

3.9 Polarization

- Polarization: describes locus traced by tip of \overrightarrow{E} at given point in space as function of time
- Types: linear, circular, elliptical
- ullet For \widetilde{E} propagating in z-direction, we can express it in terms of \widetilde{E}_x and \widetilde{E}_y .

$$\widetilde{E}(z) = \widehat{x}\widetilde{E}_x(z) + \widehat{y}\widetilde{E}_y(z) = (\widehat{x}a_x + \widehat{y}a_ye^{j\delta})e^{-jkz}$$

• where
$$\widetilde{E}_x(z) = E_{x0}e^{-jkz} = a_x e^{-jkz}$$
,

$$\circ$$
 and $\widetilde{E}_y(z) = E_{y0}e^{-jkz} = a_x e^{j\delta}e^{-jkz}$.

• Instantaneous electric field $\overrightarrow{E}(z,t)$

$$\overrightarrow{E}(z,t) = \text{Re}\left[\widetilde{E}(z)e^{j\omega t}\right]$$
$$= \hat{x}a_x \cos(\omega t - kz) + \hat{y}a_y \cos(\omega t - kz + \delta)$$

• Magnitude of electric field $|\overrightarrow{E}(z,t)|$

$$|\overrightarrow{E}(z,t)| = \sqrt{E_x^2(z,t) + E_y^2(z,t)}$$

$$= \sqrt{a_x^2 \cos^2(\omega t - kz) + a_y^2 \cos^2(\omega - kz + \delta)}$$

• Inclination angle $\psi(z,t)$

$$\psi(z,t) = \tan^{-1} \left(\frac{E_y(z,t)}{E_x(z,t)} \right)$$

3.9.1 Linear Polarization

• When $\delta = 0$ (in phase):

$$\overrightarrow{E}(z,t) = (\hat{x}a_x + \hat{y}a_y)\cos(\omega t - kz)$$

$$|\overrightarrow{E}(z,t)| = \sqrt{a_x^2 + a_y^2}\cos(\omega t - kz)$$

$$\psi(z,t) = \tan^{-1}\left(\frac{a_y}{a_x}\right)$$

• When $\delta = \pi$ (out of phase):

$$\overrightarrow{E}(z,t) = (\hat{x}a_x - \hat{y}a_y)\cos(\omega t - kz)$$

$$|\overrightarrow{E}(z,t)| = \sqrt{a_x^2 + a_y^2}\cos(\omega t - kz)$$

$$\psi(z,t) = \tan^{-1}\left(\frac{-a_y}{a_x}\right)$$

- $|\overrightarrow{E}(z,t)|$ is changing over time
- ψ is independent of z and $t \Rightarrow$ inclination angle is fixed
- When $a_y = 0$, $\psi = 0^\circ$ or 180° , the wave is x-polarized.
- When $a_x = 0$, $\psi = \pm 90^\circ$, the wave is y-polarized.

3.9.2 Circular Polarization

• When $\delta = \frac{\pi}{2}$ (left-hand circular polarization):

$$\overrightarrow{E}(z,t) = \hat{x} a \cos(\omega t - kz) - \hat{y} a \sin(\omega t - kz)$$
$$|\overrightarrow{E}(z,t)| = a$$
$$\psi(z,t) = -(\omega t - kz)$$

• When $\delta = -\frac{\pi}{2}$ (right-hand circular polarization):

$$\overrightarrow{E}(z,t) = \hat{x} a \cos(\omega t - kz) + \hat{y} a \sin(\omega t - kz)$$
$$|\overrightarrow{E}(z,t)| = a$$
$$\psi(z,t) = \omega t - kz$$

- $\overrightarrow{E}(z,t)$ is independent of z and $t \Rightarrow$ magnitude is fixed
- ψ is changing over time

3.10 Plane Waves in Lossy Media

• General equations for α and β :

$$\alpha = \omega \left\{ \frac{\mu \epsilon'}{2} \left[\sqrt{1 + \left(\frac{\epsilon''}{\epsilon'}\right)^2 - 1} \right] \right\}^{1/2} \text{ (Np/m)}$$

$$\beta = \omega \left\{ \frac{\mu \epsilon'}{2} \left[\sqrt{1 + \left(\frac{\epsilon''}{\epsilon'}\right)^2 + 1} \right] \right\}^{1/2} \text{ (rad/m)}$$

• Intrinsic impedance of lossy medium, η_c

$$\eta_c = \sqrt{\frac{\mu}{\epsilon_c}} = \sqrt{\frac{\mu}{\epsilon}} \left(1 - j \frac{\epsilon''}{\epsilon'} \right)^{-1/2} (\Omega)$$

• Approximations can be made:

 \circ If $\frac{\epsilon''}{\epsilon'} \ll 1$, material is a low-loss dielectric.

• If $\frac{\epsilon''}{\epsilon'} \gg 1$, material is a good conductor.

3.10.1 Low-Loss Dielectric

$$\alpha \approx \frac{\omega \epsilon''}{2} \sqrt{\frac{\mu}{\epsilon'}} = \frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}} \text{ (Np/m)}$$
$$\beta \approx \omega \sqrt{\mu \epsilon'} = \omega \sqrt{\mu \epsilon} \text{ (rad/m)}$$
$$\eta_c \approx \sqrt{\frac{\mu}{\epsilon}} \text{ (}\Omega\text{)}$$

3.10.2 Good Conductor

$$\alpha \approx \omega \sqrt{\frac{\mu \epsilon''}{2}} = \omega \sqrt{\frac{\mu \sigma}{2\omega}} = \sqrt{\pi f \mu \sigma} \text{ (Np/m)}$$
$$\beta \approx \alpha = \sqrt{\pi f \mu \sigma} \text{ (rad/m)}$$
$$\eta_c \approx \sqrt{j \frac{\mu}{\epsilon''}} = (1+j) \sqrt{\frac{\pi f \mu}{\sigma}} = (1+j) \frac{\alpha}{\sigma} \text{ (}\Omega\text{)}$$
$$u_p = \sqrt{\frac{4\pi f}{\mu \sigma}} \text{ (m/s)}$$

3.11 Skin Depth

• Skin depth, δ_s : propagation distance when magnitude of field becomes $\frac{1}{\rho}$ of the maximum value

$$\delta_s = \frac{1}{\alpha} \text{ (m)}$$

• Approximations:

$$\circ \text{ At } z = \delta_s, e^{-1} \approx 0.37.$$

• At
$$z = 3\delta_s$$
, $e^{-3} \approx 0.05$.

• At
$$z = 5\delta_s$$
, $e^{-3} \approx 0.01$.

3.12 Current Flow in Good Conductors

• In perfect conductors, current flows entirely on the surface of the wire.

• Assuming a current *I* flows in the *x*-direction:

$$\widetilde{J}_x(z) = \sigma E_0 e^{-\alpha z} e^{-j\beta z}$$
$$= J_0 e^{-\alpha z} e^{-j\beta z}$$

 \circ where $J_0 = \sigma E_0$ is the amplitude of current density at the surface.

• For a good conductor, $\alpha = \beta$ and $\delta_s = \frac{1}{\alpha}$.

$$\Rightarrow \widetilde{J}_{x}(z) = J_{0}e^{-\frac{(1+j)z}{\delta s}} (A/m^{2})$$

Current crossing yz plane, $\widetilde{I} = w \int_0^\infty \widetilde{J}_x(z) dz$ $= w \int_0^\infty J_0 e^{-\frac{(1+j)z}{\delta_s}} dz$ $= \frac{J_0 w \delta_s}{1+j} \text{ (A)}$

• Voltage across length ℓ at the surface, $\widetilde{V} = E_0 \ell = \frac{J_0}{\sigma} \ell$

$$Z = \frac{\widetilde{V}}{\widetilde{I}} = \frac{1+j}{\sigma \delta_s} \frac{\ell}{w}$$
$$= Z_s \frac{\ell}{w} (\Omega)$$

• Internal/surface impedance of conductor, Z_s

$$Z_s = \frac{1+j}{\sigma \delta_s} \left(\Omega \right)$$

- \circ Defined as impedance Z for a 1 m length ℓ and 1 m width w
- A complex quantity, can be expressed in terms of R_s and L_s , where $Z_s = R_s + j\omega L_s$.

$$R_{s} = \frac{1}{\sigma \delta_{s}} = \sqrt{\frac{\pi f \mu}{\sigma}} (\Omega)$$

$$L_{s} = \frac{1}{\omega \sigma \delta_{s}} = \frac{1}{2} \sqrt{\frac{\mu}{\pi f \sigma}} (H)$$

- o Conductor equivalent to resistor in series with inductor
- AC resistance of slab of width w and length ℓ , R

$$R = R_s \frac{\ell}{w} = \frac{1}{\sigma \delta_s w} (\Omega)$$

3.13 Power Density

- For any wave with \overrightarrow{E} and \overrightarrow{H} , Poynting vector $\overrightarrow{S} = \overrightarrow{E} \times \overrightarrow{H}$ (W/m²).
 - \circ Direction of \overrightarrow{S} along direction of wave propagation
 - $\circ \overrightarrow{S}$: power density (power per unit area) carried by wave
- If wave is incident upon aperture of area with outward surface unit vector \hat{n} ,

Power intercepted by aperture,
$$P = \int_{A} \overrightarrow{S} \cdot \hat{n} \, dA$$
 (W)

- For a plane wave propagating in direction \hat{k} that makes an angle θ with \hat{n} , $P = SA \cos \theta$, where $S = |\overrightarrow{S}|$.
- Average power density of wave, \overrightarrow{S}_{av}

$$\overrightarrow{S}_{av} = \frac{1}{2} \operatorname{Re} \left[\widetilde{E} \times \widetilde{H}^* \right] (W/m^2)$$

3.14 Power Density in Lossless Medium

• Average power density carried by wave, \overrightarrow{S}_{av}

$$\overrightarrow{S_{\text{av}}} = \hat{z} \frac{1}{2\eta} (|E_{x0}|^2 + |E_{y0}|^2)$$
$$= \hat{z} \frac{|\widetilde{E}|^2}{2\eta} (W/m^2)$$

3.15 Power Density in Lossy Media

• Average power density carried by wave, \overrightarrow{S}_{av}

$$\overrightarrow{S}_{av} = \frac{1}{2} \operatorname{Re} \left[\widetilde{E} \times \widetilde{H}^* \right]$$

$$= \frac{\hat{z}(|E_{x0}|^2 + |E_{y0}|^2)}{2} e^{-2\alpha z} \operatorname{Re} \left(\frac{1}{\eta_c^*} \right) (W/m^2)$$

• Express η_c in polar form, where $\eta_c = |\eta_c|e^{j\theta\eta}$:

$$\overrightarrow{S}_{\text{av}}(z) = \hat{z} \frac{|\widetilde{E}(0)|^2}{2|\eta_c|} e^{-2\alpha z} \cos \theta_{\eta} (W/\text{m}^2)$$

• While $\widetilde{E}(z)$ and $\widetilde{H}(z)$ decay with z as $e^{-\alpha z}$, power density \overrightarrow{S}_{av} decreases as $e^{-2\alpha z}$.

3.16 Attenuation Rate

• Attenuation rate, A: rate of decrease of magnitude of $\overrightarrow{S}_{av}(z)$ as a function of propagation distance

$$A = 10 \log \left[\frac{S_{av}(z)}{S_{av}(0)} \right]$$
$$= 10 \log(e^{-2\alpha z})$$
$$= -20\alpha z \log e$$
$$= -8.68\alpha z$$

 \circ where α [dB/m] = 8.68 α [Np/m]

4 W11: Boundary Conditions

• Wave reflection and transmission can be divided into two types: normal and oblique incidences

4.1 Waves at Normal Incidence

- Wave crosses planar boundaries at an angle of 90°
- Assuming:
 - Planar boundary at z = 0,
 - Electric field propagates in positive x-direction,
 - Magnetic field propagates in positive z-direction.
- · Incident waves
 - Incident electric field, $\widetilde{E}^i(z) = \hat{x} E_0^i e^{-jk_1 z}$
 - $\quad \text{o Incident magnetic field, } \widetilde{H}^i(z) = \hat{z} \times \frac{\widetilde{E}_0^i(z)}{n_1} = \hat{y} \frac{\widetilde{E}^i(z)}{n_1} = \hat{y} \frac{E_0^i}{n_1} e^{-jk_1z}$
- Reflected waves
 - Reflected electric field, $\widetilde{E}^r(z) = \hat{x} E_0^r e^{jk_1 z}$
 - Reflected magnetic field, $\widetilde{H}^r(z) = \hat{z} \times \frac{\widetilde{E}_r(z)}{\eta_1} = -\hat{y} \frac{E_0^r}{\eta_1} e^{jk_1z}$
- Transmitted waves
 - Transmitted electric field, $\widetilde{E}^t(z) = \hat{x}E_0^t e^{-jk_2z}$
 - Transmitted magnetic field, $\widetilde{H}^t(z) = \hat{z} \times \frac{\widetilde{E}^t(z)}{n_2} = \hat{y} \frac{E_0^t}{n_2} e^{-jk_2z}$
- Waves in Medium 1
 - Total electric field in Medium 1, $\widetilde{E}_1(z) = \widetilde{E}^i(z) + \widetilde{E}^r(z) = \hat{x}(E_0^i e^{-jk_1z} + E_0^r e^{jk_1z})$
 - Total magnetic field in Medium 1, $\widetilde{H}_1(z) = \widetilde{H}^i(z) + \widetilde{H}^r(z) = \hat{y} \frac{1}{\eta_1} (E_0^i e^{-jk_1 z} E_0^r e^{jk_1 z})$

- Waves in Medium 2
 - Total electric field in Medium 2, $\widetilde{E}_2(z) = \hat{x}E_0^t e^{-jk_2z}$
 - Total magnetic field in Medium 2, $\widetilde{H}_2(z) = \hat{y} \frac{E_0^t}{\eta_2} e^{-jk_2z}$

4.2 Boundary Conditions

• At the boundary z = 0:

$$\widetilde{E}_1(0) = \widetilde{E}_2(0)$$
 or $E_0^i + E_0^r = E_0^t$
 $\widetilde{H}_1(0) = \widetilde{H}_2(0)$ or $\frac{E_0^i}{\eta_1} - \frac{E_0^r}{\eta_1} = \frac{E_0^t}{\eta_2}$

• Solving the above set of equations gives:

$$E_0^r = \left(\frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}\right) E_0^i = \Gamma E_0^i$$

$$E_0^t = \left(\frac{2\eta_2}{\eta_2 + \eta_1}\right) E_0^i = \tau E_0^i$$

- Reflection coefficient, $\Gamma = \frac{E_0^r}{E_0^i} = \frac{\eta_2 \eta_1}{\eta_2 + \eta_1}$ (normal incidence)
- Transmission coefficient, $\tau = \frac{E_0^t}{E_0^t} = \frac{2\eta_2}{\eta_2 + \eta_1}$ (normal incidence)
- Γ and τ are related: $\tau = 1 + \Gamma$ (normal incidence)
- For non-magnetic media, $\eta_1 = \frac{\eta_0}{\sqrt{\epsilon_{r1}}}$, $\eta_2 = \frac{\eta_0}{\sqrt{\epsilon_{r2}}}$ where η_0 is the intrinsic impedance of free space.

$$\Rightarrow \Gamma = \frac{\sqrt{\epsilon_{r1}} - \sqrt{\epsilon_{r2}}}{\sqrt{\epsilon_{r1}} + \sqrt{\epsilon_{r2}}} \quad \text{(non-magnetic media)}$$

4.3 Snell's Law

- Angles measured with respect to normal of planar boundaries:
 - θ_i : Angle of incidence
 - \circ θ_r : Angle of reflection
 - θ_t : Angle of transmission

Snell's Law of Reflection
$$\theta_i = \theta_r$$

Snell's Law of Refraction $\frac{\sin \theta_t}{\sin \theta_i} = \frac{u_{p1}}{u_{p2}} = \sqrt{\frac{\mu_1 \epsilon_1}{\mu_2 \epsilon_2}}$

18

• For non-magnetic materials, $\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_1}{n_2} = \sqrt{\frac{\epsilon_{r1}}{\epsilon_{r2}}}$.

4.4 Refraction Index

• Refraction index: ratio of phase velocity in free space to phase velocity in a particular medium

$$n = \frac{c}{u_p} = \sqrt{\frac{\mu \epsilon}{\mu_0 \epsilon_0}} = \sqrt{\mu_r \epsilon_r}$$

• A material is referred as more dense than another material if it has a greater index of refraction.

4.5 Critical Angle & Total Internal Reflection

• Critical angle: angle of incidence when $\theta_t = 90^\circ$

$$\sin \theta_c = \left. \frac{n_2}{n_1} \sin \theta_t \right|_{\theta_t = 90^\circ} = \frac{n_2}{n_1}$$

• For non-magnetic materials, $\mu_1 = \mu_2$:

$$\Rightarrow \sin \theta_c = \sqrt{\frac{\epsilon_{r2}}{\epsilon_{r1}}}$$

• When $\theta_i > \theta_c$, total internal reflection occurs.

4.6 Optical Fibre & Modal Dispersion

• Acceptance angle, θ_a : maximum value of θ_i for which total internal reflection remains satisfied

$$\sin \theta_a = \frac{1}{n_0} (n_f^2 - n_c^2)^{1/2}$$

- \circ where n_f is the refraction index of the fibre core,
- \circ n_c is the refraction index of cladding,
- and n_0 is the refraction index of air.
- Optical fibres have a property called modal dispersion, which causes the distortion of the shape of transmitted
 pulses of digital data.

Highest data rate,
$$f_p = \frac{1}{T} = \frac{1}{2\tau} = \frac{cn_c}{2\ell n_f(n_f - n_c)}$$
 (bits/s)

4.7 Plane of Incidence

• Plane of incidence: plane which contains normal to boundary and direction of propagation of incident wave

19

4.8 Perpendicular Polarization (TE Waves)

- Incident electric field \widetilde{E}^i is perpendicular to plane of incidence
- Also known as transverse electric waves (TE waves)
- Incident waves
 - $\circ \ \ \text{Incident electric field,} \ \widetilde{E}_{\perp}^i = \hat{y} E_{\perp}^i e^{-jk_1x_i} = \hat{y} E_{\perp 0}^i e^{-jk_1(x\sin\theta_i + z\cos\theta_i)}$

- $\quad \text{o Incident magnetic field, } \widetilde{H}_{\perp}^i = (-\hat{x}\cos\theta_i + \hat{z}\cos\theta_i) \times \frac{E_{\perp 0}^i}{\eta_1} e^{-jk_1(x\sin\theta_i + z\cos\theta_i)}$
- · Reflected waves
 - $\circ \ \ \text{Reflected electric field,} \ \widetilde{E}^r_{\perp} = \hat{y} E^r_{\perp 0} e^{-jk_1 x_r} = \hat{y} E^r_{\perp 0} e^{-jk_1 (x \sin \theta_r z \cos \theta_r)}$
 - Reflected magnetic field, $\widetilde{H}_{\perp}^r = (\hat{x}\cos\theta_r + \hat{z}\sin\theta_r) \times \frac{E_{\perp 0}^r}{n_1} e^{-jk_1(x\sin\theta_r z\cos\theta_r)}$
- Transmitted waves
 - $\circ \ \ \text{Transmitted electric field,} \ \widetilde{E}_{\perp}^t = \hat{y} E_{\perp 0}^t e^{-jk_2x_t} = \hat{y} E_{\perp 0}^t e^{-jk_2(x\sin\theta_t + z\cos\theta_t)}$
 - Transmitted magnetic field, $\widetilde{H}_{\perp}^{t} = (-\hat{x}\cos\theta_{t} + \hat{z}\sin\theta_{t}) \times \frac{E_{\perp 0}^{t}}{n_{2}} e^{-jk_{2}(x\sin\theta_{t} + z\cos\theta_{t})}$
- Tangential electric field continuous boundary conditions

$$\begin{split} (\widetilde{E}_{\perp y}^i + \widetilde{E}_{\perp y}^r)\Big|_{z=0} &= \left.\widetilde{E}_{\perp y}^t\right|_{z=0} \\ E_{\perp 0}^i e^{-jk_1 x \sin \theta_i} + E_{\perp 0}^r e^{-jk_1 x \sin \theta_r} &= E_{\perp 0}^t e^{-jk_2 \sin \theta_t} \end{split}$$

· Tangential magnetic field continuous boundary conditions

$$\begin{split} \left. (\widetilde{H}_{\perp x}^i + \widetilde{H}_{\perp x}^r) \right|_{z=0} &= \left. \widetilde{H}_{\perp x}^t \right|_{z=0} \\ -\frac{E_{\perp 0}^i}{\eta_1} \cos \theta_i e^{-jk_1 x \sin \theta_i} + \frac{E_{\perp 0}^r}{\eta_1} \cos \theta_r e^{-jk_1 x \sin \theta_r} &= -\frac{E_{\perp 0}^t}{\eta_2} \cos \theta_t e^{-jk_2 \sin \theta_t} \end{split}$$

- · Solutions of boundary equations
 - 1. Exponents are equal for all values of x.

$$k_1 \sin \theta_i = k_1 \sin \theta_r = k_2 \sin \theta_t$$

2. For the remaining terms:

$$\begin{split} E_{\perp 0}^i + E_{\perp 0}^r &= E_{\perp 0}^t \\ \Rightarrow \frac{\cos \theta_i}{\eta_1} (-E_{\perp 0}^i + E_{\perp 0}^r) &= -\frac{\cos \theta_t}{\eta_2} E_{\perp 0}^t \end{split}$$

4.9 Fresnel Reflection and Transmission Coefficients for TE Waves

- Reflection coefficient, $\Gamma_{\perp} = \frac{E_{\perp 0}^r}{E_{\perp 0}^i} = \frac{\eta_2 \cos \theta_i \eta_1 \cos \theta_t}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_t}$
- Transmission coefficient, $\tau_{\perp} = \frac{E_{\perp 0}^t}{E_{\perp 0}^t} = \frac{2\eta_2 \cos \theta_i}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_t}$
- Γ_{\perp} and τ_{\perp} are related: $\tau_{\perp} = 1 + \Gamma_{\perp}$
- For non-magnetic dielectrics, $\mu_1 = \mu_2 = \mu_0$:

$$\Rightarrow \Gamma_{\perp} = \frac{\cos \theta_i - \sqrt{\frac{\epsilon_2}{\epsilon_1} - \sin^2 \theta_i}}{\cos \theta_i + \sqrt{\frac{\epsilon_2}{\epsilon_1} - \sin^2 \theta_i}}$$

4.10 Parallel Polarization (TM Waves)

- Incident electric field \widetilde{E}^i is parallel to plane of incidence
- Also known as transverse magnetic waves (TM waves)
- Incident waves
 - $\circ~$ Incident electric field, $\widetilde{E}^i_{\parallel}$

$$\begin{aligned} \widetilde{E}_{\parallel}^{i} &= (\hat{x}\cos\theta_{i} - \hat{z}\sin\theta_{i})E_{\parallel 0}^{i}e^{-jk_{1}x_{i}} \\ &= (\hat{x}\cos\theta_{i} - \hat{z}\sin\theta_{i})E_{\parallel 0}^{i}e^{-jk_{1}(x\sin\theta_{i} + z\cos\theta_{i})} \end{aligned}$$

- $\quad \text{o Incident magnetic field, } \widetilde{H}^i_{\parallel} = \hat{y} \frac{E^i_{\parallel 0}}{\eta_1} e^{-jk_1(x\sin\theta_i + z\cos\theta_i)}$
- Reflected waves
 - $\circ~$ Reflected electric field, $\widetilde{E}^r_{\scriptscriptstyle \parallel}$

$$\widetilde{E}_{\parallel}^{r} = (\hat{x}\cos\theta_r + \hat{z}\sin\theta_i)E_{\parallel 0}^{r}e^{-jk_1x_r}$$
$$= (\hat{x}\cos\theta_r + \hat{z}\sin\theta_i)E_{\parallel 0}^{r}e^{-jk_1(x\sin\theta_r - z\cos\theta_r)}$$

- Reflected magnetic field, $\widetilde{H}_{\perp}^{r} = -\hat{y} \frac{E_{\parallel 0}^{r}}{\eta_{1}} e^{-jk_{1}(x\sin\theta_{r}-z\cos\theta_{r})}$
- Transmitted waves
 - \circ Transmitted electric field, $\widetilde{E}_{\parallel}^{t}$

$$\begin{split} \widetilde{E}_{\parallel}^t &= (\hat{x}\cos\theta_t - \hat{z}\sin\theta_t)E_{\parallel 0}^t e^{-jk_2x_t} \\ &= (\hat{x}\cos\theta_t - \hat{z}\sin\theta_t)E_{\parallel 0}^t e^{-jk_2(x\sin\theta_t + z\cos\theta_t)} \end{split}$$

 $\quad \text{o Transmitted magnetic field, } \widetilde{H}_{\parallel}^t = \hat{y} \frac{E_{\parallel 0}^t}{\eta_2} e^{-jk_2(x\sin\theta_t + z\cos\theta_t)}$

4.11 Fresnel Reflection and Transmission Coefficients for TM Waves

- Reflection coefficient, $\Gamma_{\parallel} = \frac{E_{\parallel 0}^r}{E_{\parallel 0}^i} = \frac{\eta_2 \cos \theta_t \eta_1 \cos \theta_t}{\eta_2 \cos \theta_t + \eta_1 \cos \theta_t}$
- Transmission coefficient, $\tau_{\parallel} = \frac{E_{\parallel 0}^t}{E_{\parallel 0}^t} = \frac{2\eta_2\cos\theta_t}{\eta_2\cos\theta_t + \eta_1\cos\theta_t}$
- Γ_{\parallel} and τ_{\parallel} are related: $\tau_{\parallel} = (1 + \Gamma_{\parallel}) \frac{\cos \theta_i}{\cos \theta_t}$
- For non-magnetic dielectrics, $\mu_1 = \mu_2 = \mu_0$:

$$\Rightarrow \Gamma_{\parallel} = \frac{-\frac{\epsilon_2}{\epsilon_1}\cos\theta_i + \sqrt{\frac{\epsilon_2}{\epsilon_1} - \sin^2\theta_i}}{\frac{\epsilon_2}{\epsilon_1}\cos\theta_i + \sqrt{\frac{\epsilon_2}{\epsilon_1} - \sin^2\theta_i}}$$

4.12 Brewster Angle

- The incidence angle θ_i at which the Fresnel reflection coefficient $\Gamma = 0$
- Does not exist for non-magnetic materials in perpendicular polarization (TE wave)
- In parallel polarization for $\mu_1 = \mu_2$:

$$\theta_{B||} = \sin^{-1} \sqrt{\frac{1}{1 + \frac{\epsilon_1}{\epsilon_2}}}$$

$$= \tan^{-1} \sqrt{\frac{\epsilon_2}{\epsilon_1}}$$

4.13 Reflectivity and Transmittivity

• Reflectivity: ratio of reflected power to incident power

$$\begin{split} R_{\perp} &= |\Gamma_{\perp}|^2 = \frac{P_{\perp}^r}{P_{\perp}^i} \\ R_{\parallel} &= |\Gamma_{\parallel}|^2 = \frac{P_{\parallel}^r}{P_{\parallel}^i} \end{split}$$

• Transmittivity: ratio of transmitted power to incident power

$$\begin{split} T_{\perp} &= \frac{P_{\perp}^{t}}{P_{\perp}^{i}} = |\tau_{\perp}|^{2} \left(\frac{\eta_{1} \cos \theta_{t}}{\eta_{2} \cos \theta_{i}} \right) \\ T_{\parallel} &= \frac{P_{\parallel}^{t}}{P_{\parallel}^{i}} = |\tau_{\parallel}|^{2} \left(\frac{\eta_{1} \cos \theta_{t}}{\eta_{2} \cos \theta_{i}} \right) \end{split}$$

• Reflectivity is related to transmittivity:

$$R_{\perp} + T_{\perp} = 1$$
$$R_{\parallel} + T_{\parallel} = 1$$

5 W12: Waveguides and Resonators

5.1 Waveguides

- Carries energy by non-TEM modes such as TE and TM modes or combination of both
 - \circ TE mode: when \widetilde{E} is transverse to \hat{k} but \widetilde{H} is not
 - TM mode: when \widetilde{H} is transverse to \hat{k} but \widetilde{E} is not
- e.g. optical fiber, metal waveguides
- Inner conduction of coaxial cable can couple energy from and into waveguide

5.2 Transverse Magnetic (TM) Mode

• Boundary conditions:

$$k_x = \frac{m\pi}{a}$$
, $m = 1, 2, 3, ...$ and $k_y = \frac{n\pi}{b}$, $n = 1, 2, 3, ...$ where $k_c^2 = k_x^2 + k_y^2$

- Cutoff wave number, $k_c = k^2 \beta^2 = \omega^2 \mu \epsilon \beta^2$
- For a wave propagating in z-direction with $\widetilde{H}_z=0$:

$$\circ \ \widetilde{E}_x = -\frac{j\beta}{k_c^2} \left(\frac{m\pi}{a}\right) E_0 \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

$$\circ \ \widetilde{E}_y = -\frac{j\beta}{k_a^2} \left(\frac{n\pi}{b}\right) E_0 \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

$$\circ \widetilde{E}_z = E_0 \sin\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

$$\circ \widetilde{H}_x = \frac{j\omega\epsilon}{k_c^2} \left(\frac{n\pi}{b}\right) E_0 \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

$$\circ \widetilde{H}_y = -\frac{j\omega\epsilon}{k_c^2} \left(\frac{m\pi}{a}\right) E_0 \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

- *m* and *n* are positive integers
- Each combination of m and n represents a mode, denoted as TM_{mn} .

5.3 Transverse Electric (TE) Mode

• Boundary conditions:

$$k_x = \frac{m\pi}{a}$$
, $m = 1, 2, 3, ...$ and $k_y = \frac{n\pi}{b}$, $n = 1, 2, 3, ...$ where $k_c^2 = k_x^2 + k_y^2$

- Cutoff wave number, $k_c = k^2 \beta^2 = \omega^2 \mu \epsilon \beta^2$
- For a wave propagating in z-direction with $\widetilde{E}_z = 0$:

$$\circ \widetilde{E}_{x} = \frac{j\omega\mu}{k_{c}^{2}} \left(\frac{n\pi}{b}\right) H_{0} \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

$$\circ \widetilde{E}_{y} = -\frac{j\omega\mu}{k_{c}^{2}} \left(\frac{m\pi}{a}\right) H_{0} \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

$$\circ \widetilde{H}_{x} = \frac{j\beta}{k_{c}^{2}} \left(\frac{m\pi}{a}\right) H_{0} \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

$$\circ \widetilde{H}_{y} = \frac{j\beta}{k_{c}^{2}} \left(\frac{n\pi}{b}\right) H_{0} \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

$$\circ \widetilde{H}_{z} = H_{0} \cos\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

- m and n are positive integers
- Each combination of m and n represents a mode, denoted as TE_{mn} .

5.4 Properties of TM and TE Modes

Phase constant, β

$$\beta = \sqrt{k^2 - k_c^2}$$

$$= \sqrt{\omega^2 \mu \epsilon - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2} \quad \text{(TE and TM)}$$

• Cutoff frequency, f_{mn}

$$f_{mn} = \frac{u_{p0}}{2} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$$
 (TE and TM)

- Frequency at each mode mn when $\beta = 0$
- Value of 0 for m or n is NOT allowed for TM modes
- \circ A wave can propagate through waveguide if and only if $f > f_{mn}$
- ullet Wave impedance in TM mode of waveguide, Z_{TM}

$$Z_{\text{TM}} = \frac{\widetilde{E}_x}{\widetilde{H}_y} = -\frac{\widetilde{E}_y}{\widetilde{H}_x} = \frac{\beta \eta}{k}$$
$$= \eta \sqrt{1 - \left(\frac{f_{mn}}{f}\right)^2}$$

• Wave impedance in TE mode of waveguide, Z_{TE}

$$Z_{\text{TM}} = \frac{\widetilde{E}_x}{\widetilde{H}_y} = -\frac{\widetilde{E}_y}{\widetilde{H}_x}$$
$$= \frac{\eta}{\sqrt{1 - \left(\frac{f_{mn}}{f}\right)^2}}$$

5.5 Propagation Velocities

• Phase velocity, u_p : velocity of sinusoidal pattern of wave

$$u_p = \frac{\omega}{\beta} = \frac{u_{p0}}{\sqrt{1 - \left(\frac{f_{mn}}{f}\right)^2}}$$
 (TE and TM)

• Group velocity, u_q : velocity of envelope or wave group travelling through the medium

$$u_g = \frac{d\omega}{d\beta} = u_{p0} \sqrt{1 - \left(\frac{f_{mn}}{f}\right)^2}$$

5.6 ω-β Diagram

• Phase velocity u_p : ratio of ω to β

• Group velocity u_g : slope $\frac{d\omega}{d\beta}$ of the curve

• As $f \gg f_{mn}$, ω - β curve approaches TEM case where $u_p = u_q$.

• u_p and u_g are related by the following equation: $u_p u_g = u_{p0}^2$

5.7 Zigzag Reflections

• TE₁₀₁ can be constructed as sum of two TEM waves

5.8 Resonant Cavities

• Cavities have metal walls on all 6 sides, unlike waveguides which only have 4 conducting sides

• Can be used as circuit elements in microwave oscillators, amplifiers and bandpass filters

• Resonant frequency, $f_{mnp} = \frac{u_{p0}}{2} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2 + \left(\frac{p}{d}\right)^2}$

 \circ For TE mode, m and n start at 0 while p starts at 1.

 \circ For TM mode, m and n start at 1 while p starts at 0.

• Quality factor, Q: approximately equivalent to normalized bandwidth

$$Q \approx \frac{f_{mnp}}{\Delta f}$$

25

• In TE₁₀₁ mode, $Q = \frac{1}{\delta_s} \frac{abd(a^2 + d^2)}{[a^3(d+2b) + d^3(a+2b)]}$,

• where skin depth $\delta_s = \frac{1}{\sqrt{\pi f_{mnp}\mu_0\sigma_c}}$,

• and σ_c is the electrical conductivity of the conducting walls.

6 W13: Antennas II

6.1 Normalized Radiation Intensity

- Electric field, $\widetilde{E}_{\theta} = \frac{jI_0\ell k\eta_0}{4\pi} \left(\frac{e^{-jkR}}{R}\right) \sin\theta$ (V/m)
- Magnetic field, $\widetilde{H}_{\phi} = \frac{\widetilde{E}_{\theta}}{\eta_0}$ (A/m)
- Average power density, $\overrightarrow{S}_{av} = \hat{R} S(R, \theta) = \frac{1}{2} \text{Re} \left[\widetilde{E} \times \widetilde{H}^* \right]$ (W/m²)
- Power density, $S(R, \theta)$

$$S(R, \theta) = \left(\frac{\eta_0 k^2 I_0 \ell^2}{32\pi^2 R^2}\right) \sin^2 \theta$$
$$= S_0 \sin^2 \theta \quad (\text{W/m}^2)$$

• Maximum power density, S_{max}

$$S_{\text{max}} = S_0 = \frac{\eta_0 k^2 I_0 \ell^2}{32\pi^2 R^2}$$
$$= \frac{15\pi I_0^2}{R^2} \left(\frac{\ell}{\pi}\right)^2 \quad (\text{W/m}^2)$$

• Normalized radiation intensity, $F(\theta, \phi)$:

$$F(\theta, \phi) = \frac{S(R, \theta, \phi)}{S_{\text{max}}} \quad \text{(dimensionless)}$$

6.2 Reciprocity

• Receiving antenna has same directional antnna pattern as transmitting antenna.

6.3 Total Radiation Power

• Total radiation power, P_{rad}

$$P_r ad = R^2 \int_{\phi=0^{\circ}}^{2\pi} \int_{\theta=0^{\circ}}^{\pi} S(R, \theta, \phi) \sin \theta \, d\theta \, d\phi$$
$$= R^2 S_{\text{max}} \int_0^{2\pi} \int_0^{\pi} F(\theta, \phi) \sin \theta \, d\theta \, d\phi$$
$$= R^2 S_{\text{max}} \iint_{A} F(\theta, \phi) \, d\Omega \quad (W)$$

6.4 Antenna Patterns

• Two principal planes:

1. Elevation plane (xz and yz planes): constant value of ϕ

2. Azimuth plane (xy plane): $\theta = 90^{\circ}$

• 2D pattern:

o Main lobe: where most energy is radiated

o Side lobe: where some energy is radiated

o Back lobe: opposite to main lobe

6.5 Pattern Solid Angle

• Pattern solid angle, Ω_p : integral of normalized radiation intensity $F(\theta, \phi)$ over a sphere

• Characterizes directional properties of 3D radiation pattern

$$\Omega_p = \iint_{\Delta \pi} F(\theta, \phi) \, d\Omega \, (\text{sr})$$

• For isotropic antennas, $F(\theta, \phi) = 1 \Rightarrow \Omega_p = 4\pi$ (sr)

6.6 Half Power Beamwidth (HPBW)

• Half power beamwidth, β : angular width of main lobe between two angles at which magnitude of $F(\theta, \phi)$ is equal to half its peak value

$$\beta = \phi_2 - \phi_1$$

• where θ_1 and θ_2 are the half-power angles at which $F(\theta, \phi) = 0.5 F_{\text{max}}$.

- Characterizes directional properties of 2D radiation pattern
- Also known as the 3 dB beamwidth since 0.5 corresponds to -3 dB

6.7 Directivity

• Directivity: ratio of maximum normal radiation intensity F_{max} to average value of $F(\theta, \phi)$ over all directions

$$D = \frac{F_{\text{max}}}{F_{\text{av}}}$$

$$= \frac{1}{\frac{1}{4\pi} \iint_{4\pi} F(\theta, \phi) d\Omega}$$

$$= \frac{4\pi}{\Omega_p} \text{ (dimensionless)}$$

- Directivity \uparrow , Ω_p of antenna pattern \downarrow
- For isotropic antennas, $\Omega_p = 4\pi \Rightarrow D = \frac{4\pi}{4\pi} = 1$
- For antenna with single main lobe in z-direction, $\Omega_p \approx \beta_{xz} \beta_{yz}$
 - where β_{xz} and β_{yz} are the half power beamwidths in radians.

$$D = \frac{4\pi}{\Omega_p} \approx \frac{4\pi}{\beta_{xz} \beta_{yz}}$$

6.8 Radiation Efficiency

Radiation efficiency,
$$\xi = \frac{P_{\text{rad}}}{P_{\text{t}}}$$
 (dimensionless)

- where P_{rad} is the radiated power,
- and P_t is the transmitter power.

6.9 Antenna Gain

• Antenna gain, G: accounts for ohmic lossses in antenna material, unlike directivity

$$G = \xi D$$
 (dimensionless)

• For a lossless antenna, $\xi = 1 \Rightarrow G = D$.

6.10 Effective Area of Antenna

• Effective area, A_e : ratio of intercepted power to power density of incident wave

$$A_e = \frac{P_{\text{int}}}{S_i} \quad (\text{m}^2)$$

- For short dipole antenna, $A_e = \frac{3\lambda^2}{8\pi}$ (m²).
- For any antenna, $A_e = \frac{\lambda^2 D}{4\pi}$ (m²).

6.11 Friis Transmission Formula

• Friis transmission formula:

$$\frac{P_{\rm rec}}{P_{\rm t}} = \frac{\xi_t \xi_r A_t A_r}{\lambda^2 R^2} = G_t G_r \left(\frac{\lambda}{4\pi R}\right)^2,$$

 \circ where $\frac{P_{\rm rec}}{P_{\rm t}}$ is called the power transfer ratio.

A Appendix

A.1 Derivatives

$$\frac{d}{dt}$$
 $\sin \to \cos, \quad \cos \to -\sin, \quad \tan \to \sec^2, \quad x^n \to nx^{n-1}, \quad e^{ax} \to ae^{ax}, \quad \ln x \to \frac{1}{x}$

A.2 Integrals

$$\int \sin \to -\cos, \quad \cos \to \sin, \quad \sec^2 \to \tan, \quad x^n \to \frac{1}{n} x^{n+1}, \quad e^{ax} \to \frac{1}{a} e^{ax}, \quad \frac{1}{x} \to \ln|x|$$

$$\int_0^{\pi/2} \cos^2 \theta \sin \theta \, d\theta = \left[-\frac{\cos^3 \theta}{3} \right]_0^{\pi/2} = \frac{1}{3}$$

$$\int_0^{\pi} \sin^3 \theta \, d\theta = \left[\frac{\cos^3 \theta}{3} - \cos \theta \right]_0^{\pi} = \frac{4}{3}$$

$$\int \sin \theta \cos \theta \, d\theta = \frac{\sin^2 \theta}{2} + C$$

A.3 Integration by Parts

$$\int u \, dv = uv - \int v du$$

Priority of choosing *u*:

- 1. Logarithmic terms
- 2. Inverse trigonometric terms
- 3. Algebraic terms
- 4. Trigonometric terms
- 5. Exponential terms

A.4 Phasors

- Identities: $\sin x = \cos\left(\frac{\pi}{2} x\right)$; $\cos(-x) = \cos x$
- Voltage across capacitor, $v_C(t)$:

$$\int i(t) = \operatorname{Re}\left[\frac{\widetilde{I}e^{j\omega t}}{j\omega}\right] = \operatorname{Re}\left[\frac{-j\widetilde{I}e^{j\omega t}}{\omega}\right] = \operatorname{Re}\left[\frac{-\widetilde{I}j\cos\omega t + \widetilde{I}\sin\omega t}{\omega}\right] = \frac{\widetilde{I}\sin\omega t}{\omega}$$

$$\Rightarrow v_C(t) = \frac{\int i(t)}{C} = \frac{\widetilde{I}\sin\omega t}{\omega C}$$

• Voltage across inductor, $v_L(t)$:

$$\frac{di(t)}{dt} = \operatorname{Re}\left[j\omega \widetilde{I}e^{j\omega t}\right] = \operatorname{Re}\left[j\omega \widetilde{I}\cos\omega t - \widetilde{I}\omega\sin\omega t\right] = -\widetilde{I}\omega\sin\omega t$$

$$\Rightarrow v_L(t) = L\frac{di(t)}{dt} = -L\omega \widetilde{I}\sin\omega t$$