Data Analytics and Visualization Cohort 5 - U of MN

Project 2: St Paul Police Stops

Team: The St. Paul 99

Purpose

Tools Used

- Mongo DB
- Python, Pandas, MatPlotLib, Numpy
- · Jupyter Notebooks
- FLASK Server
- · HTML, CSS, Bootstrap
- Leaflet
- Plotly
- D3

```
In [1]: # import Dependencies
   import pandas as pd
   import requests
   import pymongo
```

Extraction

Sources used for this project:

From Saint Paul Minnesota Public Safety

Web Site: https://information.stpaul.gov/Public-Safety/Saint-Paul-Police-Grid-Shapefile/ykwt-ie3e (https://information.stpaul.gov/Public-Safety/Saint-Paul-Police-Grid-Shapefile/ykwt-ie3e)

GEOJSON Shapes: https://information.stpaul.gov/api/geospatial/ykwt-ie3e?method=export&format=GeoJSON)

Traffic Stop Dataset: https://information.stpaul.gov/api/views/kkd6-vvns/rows.csv? accessType=DOWNLOAD)

Out[2]:

_	YEAR OF STOP	STOP	RACE OF DRIVER	GENDER OF DRIVER	DRIVER SEARCHED?	VEHICLE SEARCHED?	CITATION ISSUED?	AGE OF DRIVER	REASC FC STC
	0 2003	04/26/2003 06:36:00 PM	White	Male	Yes	Yes	No	NaN	No Dε
	1 2003	05/02/2003 12:05:00 PM	Black	Female	No	No	No	NaN	No Da
	2 2003	04/30/2003 12:36:00 AM	Black	Male	No	No	No	NaN	No Da
	3 2003	04/25/2003 11:07:00 PM	White	Female	No	No	No	NaN	No Da
	4 2003	05/01/2003 10:06:00 AM	White	Female	No	No	No	NaN	No Da

Transformation

Explore the data set, clean it and prepare it for use

```
In [3]: # Start by evaluating numerical the data
traffic_stops_df.describe()
```

Out[3]:

	YEAR OF STOP	AGE OF DRIVER	POLICE GRID NUMBER	COUNT
count	741482.000000	113269.000000	741471.000000	741482.0
mean	2008.604871	33.729034	101.221829	1.0
std	5.220995	13.016151	65.868562	0.0
min	2001.000000	2.000000	1.000000	1.0
25%	2004.000000	23.000000	59.000000	1.0
50%	2008.000000	30.000000	90.000000	1.0
75%	2013.000000	42.000000	128.000000	1.0
max	2018.000000	96.000000	999.000000	1.0

```
In [4]: # list the columns
        traffic stops df.columns
Out[4]: Index(['YEAR OF STOP', 'DATE OF STOP', 'RACE OF DRIVER', 'GENDER OF DRIVER',
                'DRIVER SEARCHED?', 'VEHICLE SEARCHED?', 'CITATION ISSUED?',
                'AGE OF DRIVER', 'REASON FOR STOP', 'POLICE GRID NUMBER',
                'LOCATION OF STOP BY POLICE GRID', 'COUNT'],
              dtype='object')
In [5]: # Determine the number of NaN values in the dataset
        traffic_stops_df.isnull().sum().sum()
Out[5]: 629438
In [6]: # Check the data types
        traffic_stops_df.dtypes
Out[6]: YEAR OF STOP
                                              int64
        DATE OF STOP
                                             object
        RACE OF DRIVER
                                             object
        GENDER OF DRIVER
                                             object
        DRIVER SEARCHED?
                                             object
        VEHICLE SEARCHED?
                                             object
        CITATION ISSUED?
                                             object
        AGE OF DRIVER
                                            float64
        REASON FOR STOP
                                             object
        POLICE GRID NUMBER
                                            float64
        LOCATION OF STOP BY POLICE GRID
                                             object
        COUNT
                                              int64
        dtype: object
In [7]: # Look at counts
        traffic_stops_df.count()
Out[7]: YEAR OF STOP
                                            741482
        DATE OF STOP
                                            741482
        RACE OF DRIVER
                                            741482
        GENDER OF DRIVER
                                            741482
        DRIVER SEARCHED?
                                            741482
        VEHICLE SEARCHED?
                                            741482
        CITATION ISSUED?
                                            741482
        AGE OF DRIVER
                                            113269
                                            741482
        REASON FOR STOP
        POLICE GRID NUMBER
                                            741471
        LOCATION OF STOP BY POLICE GRID
                                            740268
        COUNT
                                            741482
        dtype: int64
```

```
In [8]: # From above it is clear that not all traffic stops include Age, a Police Grid
Number or a Location (Lat, Lon)
# From the web site documentation:
# - Reason for stop was not collected prior to 2017
# - Age is only collected for citations
# - Race is based on perception of the officer
# Based on the above information and discussion with the team
# we will eliminate the Age and Count columns, data prior to 2017 will be excluded
# and all "No Data" or NaN values will be filtered out

# Start by dropping years prior to 2017
traffic_stops_2017plus = traffic_stops_df.loc[(traffic_stops_df["YEAR OF STOP"
] > 2016)]
traffic_stops_2017plus.head()
```

Out[8]:

	YEAR OF STOP	DATE OF STOP	RACE OF DRIVER	GENDER OF DRIVER	DRIVER SEARCHED?	VEHICLE SEARCHED?	CITATION ISSUED?	AGE OF DRIVER	F
328823	2017	05/12/2017 08:35:00 PM	Other	Male	No	No	No	NaN	_
329089	2017	01/20/2017 09:13:00 PM	White	Female	No	No	No	NaN	
330943	2017	04/13/2017 02:05:00 PM	White	Male	No	No	Yes	26.0	
331296	2017	05/12/2017 08:35:00 PM	White	Female	No	No	Yes	NaN	
332033	2017	04/04/2017 01:48:00 PM	Other	Male	No	No	Yes	42.0	

Out[9]:

	YEAR OF STOP	DATE OF STOP	RACE OF DRIVER	GENDER OF DRIVER	DRIVER SEARCHED?	VEHICLE SEARCHED?	CITATION ISSUED?	REASON FOR STOP	
328823	2017	05/12/2017 08:35:00 PM	Other	Male	No	No	No	Moving Violation	_
329089	2017	01/20/2017 09:13:00 PM	White	Female	No	No	No	Moving Violation	
330943	2017	04/13/2017 02:05:00 PM	White	Male	No	No	Yes	Moving Violation	
331296	2017	05/12/2017 08:35:00 PM	White	Female	No	No	Yes	Moving Violation	
332033	2017	04/04/2017 01:48:00 PM	Other	Male	No	No	Yes	Moving Violation	

In [10]: # Now drop Nan for the entire data set
 traffic_stops_2017plus = traffic_stops_2017plus.dropna()
 traffic_stops_2017plus

Out[10]:

	YEAR OF STOP	DATE OF STOP	RACE OF DRIVER	GENDER OF DRIVER	DRIVER SEARCHED?	VEHICLE SEARCHED?	CITATION ISSUED?	REASON FOR STOP
332093	2017	02/17/2017 06:45:00 PM	White	Female	No	No	No	Equipment Violation
332094	2017	03/07/2017 07:27:00 PM	Latino	Male	No	No	No	Moving Violation
332095	2017	02/06/2017 09:28:00 AM	White	Female	No	No	Yes	Moving Violation
332096	2017	02/22/2017 01:48:00 PM	White	Male	No	No	Yes	Moving Violation
332097	2017	03/02/2017 11:39:00 AM	White	Male	No	No	No	Moving Violation
433515	2017	11/29/2017 04:56:00 PM	Black	Male	Yes	Yes	No	Moving Violation
433516	2017	11/29/2017 04:03:00 PM	Black	Male	No	No	Yes	Moving Violation
433517	2017	11/29/2017 03:44:00 PM	White	Female	No	No	Yes	Moving Violation
433518	2017	11/29/2017 02:52:00 PM	White	Male	No	No	Yes	Moving Violation
433519	2017	11/29/2017 04:27:00 PM	White	Female	No	No	Yes	Moving Violation

62696 rows × 10 columns

In [11]: # Describe the resulting data to ensure all counts are the same
 traffic_stops_2017plus.describe()

Out[11]:

YEAR OF STOP POLICE GRID NUMBER

count	62696.000000	62696.000000
mean	2017.486522	100.172738
std	0.499822	60.999176
min	2017.000000	1.000000
25%	2017.000000	54.000000
50%	2017.000000	89.000000
75%	2018.000000	131.000000
max	2018.000000	280.000000

Out[12]: YEAR OF STOP 62696 DATE OF STOP 62696 RACE OF DRIVER 62696 GENDER OF DRIVER 62696 DRIVER SEARCHED? 62696 VEHICLE SEARCHED? 62696 CITATION ISSUED? 62696 REASON FOR STOP 62696 POLICE GRID NUMBER 62696 LOCATION OF STOP BY POLICE GRID 62696 dtype: int64

Check all columns and ensure no bad data

In [13]: traffic_stops_2017plus['YEAR OF STOP'].value_counts()

Out[13]: 2017 32193 2018 30503

Name: YEAR OF STOP, dtype: int64

```
In [14]: traffic stops 2017plus['DATE OF STOP'].value counts()
Out[14]: 08/08/2018 08:26:00 AM
                                    6
         05/07/2018 02:55:00 PM
                                    5
         06/04/2017 03:37:00 PM
                                    4
         04/25/2017 09:02:00 AM
                                    4
         09/26/2018 10:27:00 AM
         08/09/2017 09:27:00 PM
                                    1
         06/01/2018 06:53:00 PM
                                    1
         09/13/2017 01:57:00 PM
                                    1
         03/21/2018 02:17:00 PM
                                    1
         11/08/2017 10:53:00 AM
                                    1
         Name: DATE OF STOP, Length: 58834, dtype: int64
In [15]: traffic stops 2017plus['RACE OF DRIVER'].value counts()
Out[15]: White
                             25951
         Black
                             21587
                              7700
         Asian
         Latino
                              3697
         Other
                              3363
         Native American
                               264
                               134
         No Data
         Name: RACE OF DRIVER, dtype: int64
In [16]: traffic stops 2017plus['GENDER OF DRIVER'].value counts()
Out[16]: Male
                     39841
         Female
                     22721
         No Data
                       134
         Name: GENDER OF DRIVER, dtype: int64
In [17]: | traffic_stops_2017plus['DRIVER SEARCHED?'].value_counts()
Out[17]: No
                     58010
                     4552
         Yes
                       134
         No Data
         Name: DRIVER SEARCHED?, dtype: int64
In [18]: | traffic_stops_2017plus['VEHICLE SEARCHED?'].value_counts()
Out[18]: No
                     58519
         Yes
                     4043
         No Data
                       134
         Name: VEHICLE SEARCHED?, dtype: int64
In [19]: traffic_stops_2017plus[ 'CITATION ISSUED?'].value_counts()
Out[19]: Yes
                33043
         No
                29653
         Name: CITATION ISSUED?, dtype: int64
```

```
In [20]: traffic_stops_2017plus['REASON FOR STOP'].value_counts()
Out[20]: Moving Violation
                                         47990
         Equipment Violation
                                         12206
         Investigative Stop
                                          2229
         911 Call / Citizen Reported
                                           137
                                           134
         Name: REASON FOR STOP, dtype: int64
In [21]: traffic stops 2017plus['POLICE GRID NUMBER'].value counts()
Out[21]: 133.0
                  2334
         94.0
                  1911
         32.0
                  1573
         54.0
                  1478
         74.0
                  1314
         189.0
                     9
         82.0
                     9
                     3
         200.0
         197.0
                     2
         175.0
                     1
         Name: POLICE GRID NUMBER, Length: 200, dtype: int64
In [22]: traffic_stops_2017plus['LOCATION OF STOP BY POLICE GRID'].value_counts()
Out[22]: (44.949881354, -93.083240019)
                                           2334
         (44.959171113, -93.071815477)
                                           1911
         (44.980704001, -93.092622034)
                                           1573
         (44.973868211, -93.071035949)
                                           1478
         (44.966643264, -93.071031663)
                                           1314
                                              9
         (44.924902368, -93.124896483)
         (44.960082673, -93.193955554)
                                              9
         (44.922464278, -93.012029259)
                                              3
         (44.926515742, -93.036180376)
                                              2
         (44.934461449, -93.060250103)
                                              1
         Name: LOCATION OF STOP BY POLICE GRID, Length: 200, dtype: int64
```

In [23]: # Since so many columns have 134 rows set to "No Data", let's see if they alig
n
first look at the those with "No Data"
traffic_stops_no_data = traffic_stops_2017plus.loc[(traffic_stops_2017plus['GE
NDER OF DRIVER'] == "No Data")]
traffic_stops_no_data

Out[23]:

	YEAR OF STOP	DATE OF STOP	RACE OF DRIVER	GENDER OF DRIVER	DRIVER SEARCHED?	VEHICLE SEARCHED?	CITATION ISSUED?	REASON FOR STOP
368548	2017	01/04/2017 11:58:00 PM	No Data	No Data	No Data	No Data	Yes	No Data
368810	2017	01/02/2017 11:52:00 PM	No Data	No Data	No Data	No Data	Yes	No Data
368869	2017	01/11/2017 10:23:00 AM	No Data	No Data	No Data	No Data	No	No Data
368996	2017	01/09/2017 02:26:00 AM	No Data	No Data	No Data	No Data	No	No Data
369168	2017	01/27/2017 11:12:00 PM	No Data	No Data	No Data	No Data	Yes	No Data
378486	2017	03/22/2017 05:52:00 AM	No Data	No Data	No Data	No Data	No	No Data
378511	2017	03/17/2017 11:27:00 PM	No Data	No Data	No Data	No Data	No	No Data
378512	2017	03/25/2017 07:39:00 AM	No Data	No Data	No Data	No Data	No	No Data
378542	2017	03/24/2017 05:27:00 PM	No Data	No Data	No Data	No Data	No	No Data
378898	2017	03/18/2017 08:55:00 PM	No Data	No Data	No Data	No Data	No	No Data

134 rows × 10 columns

In [24]: # Even though it seems they are all the same, let's validate
 traffic_stops_no_data['RACE OF DRIVER'].value_counts()

Out[24]: No Data 134

Name: RACE OF DRIVER, dtype: int64

```
In [25]: traffic stops no data['GENDER OF DRIVER'].value counts()
Out[25]: No Data
                    134
         Name: GENDER OF DRIVER, dtype: int64
        traffic_stops_no_data['DRIVER SEARCHED?'].value_counts()
In [26]:
Out[26]: No Data
                    134
         Name: DRIVER SEARCHED?, dtype: int64
In [27]: traffic stops no data['VEHICLE SEARCHED?'].value counts()
Out[27]: No Data
                    134
         Name: VEHICLE SEARCHED?, dtype: int64
In [28]: | traffic_stops_no_data['REASON FOR STOP'].value_counts()
Out[28]: No Data
                    134
         Name: REASON FOR STOP, dtype: int64
In [29]: # Confirmed - all align
         # Now let's check the dates of these stops and compare to the rest of the data
         to see if there is a cut off date
         traffic_stops_no_data['DATE OF STOP'].sort_values(ascending=True).value_counts
         ()
         print("min: " + traffic_stops_no_data['DATE OF STOP'].min())
         print("max: " + traffic stops no data['DATE OF STOP'].max())
         min:
               01/01/2017 01:29:00 AM
         max: 03/28/2017 11:43:00 PM
```

Out[30]:

REASON FOR STOP	CITATION ISSUED?	VEHICLE SEARCHED?	DRIVER SEARCHED?	GENDER OF DRIVER	RACE OF DRIVER	DATE OF STOP	YEAR OF STOP	
Equipment Violation	No	No	No	Female	White	02/17/2017 06:45:00 PM	2017	332093
Moving Violation	No	No	No	Male	Latino	03/07/2017 07:27:00 PM	2017	332094
Moving Violation	Yes	No	No	Female	White	02/06/2017 09:28:00 AM	2017	332095
Moving Violation	Yes	No	No	Male	White	02/22/2017 01:48:00 PM	2017	332096
Moving Violation	No	No	No	Male	White	03/02/2017 11:39:00 AM	2017	332097

```
In [31]: # peek at the values sorted
    traffic_stops_data['DATE OF STOP'].sort_values(ascending=True).value_counts()
    print("min: " + traffic_stops_data['DATE OF STOP'].min())
    print("max: " + traffic_stops_data['DATE OF STOP'].max())
```

min: 01/01/2017 01:17:00 AM max: 12/31/2018 12:57:00 PM

In [32]: # Not confirmed! Data missing is the first quarter of 2017,
BUT there is valid data during that timeframe.
The team decided to keep all data for 2017 and note these rows were eliminat ed

In [33]: # And now, ensure there are no Nan values let in the dataset
 traffic_stops_data.isnull().sum().sum()

Out[33]: 0

```
In [34]: # Finally, let's simplify the column names
         # rankings_pd.rename(columns = {'test':'TEST'}, inplace = True)
         columns = {'YEAR OF STOP':"Year", 'DATE OF STOP':"Date", 'RACE OF DRIVER':"Rac
         e", 'GENDER OF DRIVER': "Gender",
                'DRIVER SEARCHED?':"DriverSearched", 'VEHICLE SEARCHED?':"VehicleSearch
         ed", 'CITATION ISSUED?':"Citation",
                'REASON FOR STOP': "Reason", 'POLICE GRID NUMBER': "Grid",
                'LOCATION OF STOP BY POLICE GRID':"Location"}
         traffic stops data.rename(columns = columns, inplace=True)
         traffic_stops_data.columns
         C:\Users\katro\Anaconda3\envs\PythonData\lib\site-packages\pandas\core\frame.
         py:4223: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/st
         able/user_guide/indexing.html#returning-a-view-versus-a-copy
           return super().rename(**kwargs)
Out[34]: Index(['Year', 'Date', 'Race', 'Gender', 'DriverSearched', 'VehicleSearched',
                 'Citation', 'Reason', 'Grid', 'Location'],
               dtype='object')
```

In [35]: # Display the final data set
 traffic_stops_data

Out[35]:

	Year	Date	Race	Gender	DriverSearched	VehicleSearched	Citation	Reason
332093	2017	02/17/2017 06:45:00 PM	White	Female	No	No	No	Equipment Violation
332094	2017	03/07/2017 07:27:00 PM	Latino	Male	No	No	No	Moving Violation
332095	2017	02/06/2017 09:28:00 AM	White	Female	No	No	Yes	Moving Violation
332096	2017	02/22/2017 01:48:00 PM	White	Male	No	No	Yes	Moving Violation
332097	2017	03/02/2017 11:39:00 AM	White	Male	No	No	No	Moving Violation
433515	2017	11/29/2017 04:56:00 PM	Black	Male	Yes	Yes	No	Moving Violation
433516	2017	11/29/2017 04:03:00 PM	Black	Male	No	No	Yes	Moving Violation
433517	2017	11/29/2017 03:44:00 PM	White	Female	No	No	Yes	Moving Violation
433518	2017	11/29/2017 02:52:00 PM	White	Male	No	No	Yes	Moving Violation
433519	2017	11/29/2017 04:27:00 PM	White	Female	No	No	Yes	Moving Violation

62562 rows × 10 columns

Load

Using MongoDB to store our data and writing out to a csv for ease of reference/evidence

<NOTE: Insert App.py code here if we want to tell the story of the server side>

Save out the final clean dataset in csv form to be loaded by our server side code into MongoDB