# **Introduction to Machine Learning**

# Advanced Risk Minimization Bernoulli Loss





#### Learning goals

- Bernoulli (log, logistic, binomial, cross-entropy) loss
- Risk minimizer
- Optimal constant
- Complete separation problem

#### **ON PROBABILITIES**

Likelihood of Bernoulli RV:

$$\mathcal{L}(\boldsymbol{\theta}) = \prod_{i=1}^{n} \pi \left( \mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right)^{y^{(i)}} \left( 1 - \pi \left( \mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right) \right)^{1 - y^{(i)}} \qquad y \in \{0, 1\}$$



Transform into NLL:

$$-\ell(\boldsymbol{\theta}) = \sum_{i=1}^{n} -y^{(i)} \log \left(\pi \left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right) - \left(1 - y^{(i)}\right) \log \left(1 - \pi \left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)$$

• Bernoulli loss: loss on single sample

$$L(y, \pi(\mathbf{x})) = -y \log (\pi(\mathbf{x})) - (1-y) \log (1-\pi(\mathbf{x}))$$
  $y \in \{0, 1\}$ 

#### **ON PROBABILITIES**

Bernoulli loss

$$L(y, \pi(\mathbf{x})) = -y \log (\pi(\mathbf{x})) - (1-y) \log (1-\pi(\mathbf{x}))$$
  $y \in \{0, 1\}$ 

Confidently wrong predictions are harshly penalized





- A.k.a. Binomial, log, or cross-entropy loss
- Can also write for  $y \in \{-1, +1\}$

$$L(y, \pi(\mathbf{x})) = -\frac{1+y}{2} \log (\pi(\mathbf{x})) - \frac{1-y}{2} \log (1-\pi(\mathbf{x})) \qquad y \in \{-1, +1\}$$



#### **ON DECISION SCORES**

- Transform probs into scores (log-odds):  $f(\mathbf{x}) = \log \left( \frac{\pi(\mathbf{x})}{1 \pi(\mathbf{x})} \right)$
- Then  $\pi(\mathbf{x}) = (1 + \exp(-f(\mathbf{x})))^{-1}$
- Yields equivalent loss formulation

$$L(y, f(\mathbf{x})) = -y \cdot f(\mathbf{x}) + \log(1 + \exp(f(\mathbf{x})))$$
 for  $y \in \{0, 1\}$ 

• For these and other simple derivations, see deep dive





#### LOSS IN TERMS OF MARGIN

• For  $y \in \{-1, +1\}$ , loss becomes:

$$L(y, f(\mathbf{x})) = \log(1 + \exp(-y \cdot f(\mathbf{x})))$$

• All loss variants convex, differentiable





#### **RISK MINIMIZER ON PROBS**

• For probs and  $y \in \{0, 1\}$ , the risk minimizer is

$$\pi^*(\tilde{\mathbf{x}}) = \eta(\tilde{\mathbf{x}}) = \mathbb{P}(y = 1 \mid \mathbf{x} = \tilde{\mathbf{x}})$$

Proof: We have seen before

$$\mathcal{R}(f) = \mathbb{E}_{\mathbf{x}} \left[ L(1, \pi(\mathbf{x})) \cdot \eta(\mathbf{x}) + L(0, \pi(\mathbf{x})) \cdot (1 - \eta(\mathbf{x})) \right]$$

For fixed **x**, minimize inner part pointwise, use  $c \in (0, 1)$  for best value:

$$\frac{d}{dc} \left( -\log c \cdot \eta(\mathbf{x}) - \log(1-c) \cdot (1-\eta(\mathbf{x})) \right) = 0$$

$$-\frac{\eta(\mathbf{x})}{c} + \frac{1-\eta(\mathbf{x})}{1-c} = 0$$

$$\frac{-\eta(\mathbf{x}) + \eta(\mathbf{x})c + c - \eta(\mathbf{x})c}{c(1-c)} = 0$$

$$c = \eta(\mathbf{x})$$



#### **RISK MINIMIZER ON SCORES**

• For  $y \in \{-1, 1\}$  and scores  $f(\mathbf{x})$ : RM is pointwise log-odds

$$f^*(\mathbf{x}) = \log(\frac{\eta(\mathbf{x})}{1 - \eta(\mathbf{x})})$$

- Undefined for  $\eta(\mathbf{x}) \in \{0, 1\}$
- Monotonously increasing in  $\eta(\mathbf{x})$ , with  $f^*(\mathbf{x}) = 0$  if  $\eta(\mathbf{x}) = 0.5$





## **EMPIRICAL OPTIMAL CONSTANT MODELS**

 $\bullet$  Optimal constant probability model for labels  $\mathcal{Y} = \{0,1\}$  is

$$\hat{\theta} = \operatorname*{arg\,min}_{\theta} \mathcal{R}_{\mathsf{emp}}(\theta) = \frac{1}{n} \sum_{i=1}^{n} y^{(i)}$$

× 0 0 × × ×

- Fraction of class-1 observations in observed data
- Optimal constant score model:

$$\hat{ heta} = rg \min_{ heta} \mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta}) = \log rac{n_+}{n_-} = \log rac{n_+/n}{n_-/n}$$

 $n_{-}$  and  $n_{+}$  are nr. of neg. and pos. observations

Again shows connection to log-odds

## OPTIMIZATION PROPERTIES: CONVERGENCE

- In case of complete separation, optimization might fail
- Loss strictly decreasing in margin  $y \cdot f(\mathbf{x})$ :

$$L(y, f(\mathbf{x})) = \log(1 + \exp(-yf(\mathbf{x})))$$











• Can now construct a strictly better  $\theta$ 

$$\mathcal{R}_{\mathsf{emp}}(2 \cdot oldsymbol{ heta}) = \sum_{i=1}^n \mathit{L}(2\mathit{y}^{(i)}oldsymbol{ heta}^\mathsf{T} \mathbf{x}^{(i)}) < \mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta})$$

 $y^{(i)} f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right) = y^{(i)} \boldsymbol{\theta}^{\mathsf{T}} \mathbf{x}^{(i)} > 0 \ \forall \mathbf{x}^{(i)}$ 

- As  $||\theta||$  increases, sum strictly decreases, as argument of L is strictly larger
- Loss is bounded from below, but no global optimium, cannot converge

### **OPTIMIZATION PROPERTIES: CONVERGENCE**

• Geometrically, this translates to an ever steeper slope of the logistic/softmax function, i.e., increasingly sharp discrimination:







- In practice, data are rarely linearly separable and misclassified examples act as counterweights to increasing parameter values
- Can also use **regularization** for robust solutions