Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

Распознавание объектов интереса по данным аэрофотосъемки

Выполнил: Власов Роман Александрович, гр. 7383

Руководитель: Яценко Игорь Владимирович, к.т.н., доцент

Консультант: Матросов Валерий Витальевич, к.т.н.

Актуальность

Инструменты распознавания объектов на фотоснимках

- имеют закрытый исходный код,
- не являются отечественными разработками,
- не могут применяться в отечественных системах.

Цели и задачи

Цель: разработка макета программного комплекса обнаружения и распознавания объектов интереса по данным аэрофотосъемки.

Для достижения цели необходимо:

- 1. Изучить существующие подходы к распознаванию объектов на изображениях
- 2. Разработать архитектуру нейронной сети для распознавания объектов
- 3. Разработать макет программного модуля визуализации и контроля обучения
- 4. Разработать макет программного модуля распознавания объектов интереса
- 5. Оценить качество разработанного решения

Подходы к распознаванию объектов

Классификация изображения

Семантическая сегментация

Детектирование объектов

Сегментация экземпляров

Разработка архитектуры нейронной сети

Архитектура сети: DeepLabV3+

Доступные функции потерь:

- Кросс-энтропия
- Функция потерь Дайса
- Фокальная функция потерь

Пример аэрофотоснимка

Набор данных для обучения:

- Поселок им. Морозова
- 75 аэрофотоснимков
- Выделены здания и дороги

Пример разметки

Макет программного модуля визуализации и контроля обучения

Доступные настройки модели обучения:

- Тип данных
- Архитектура
- Базовая модель

Форма настройки модели обучения

- Тип аппаратного вычислителя
- Параметры процесса обучения
- Функция потерь

Форма визуализации и контроля обучения

Макет программного модуля распознавания объектов интереса

Поддерживаемые форматы изображений:

- GeoTIFF
- ERDAS Imagine
- **ECW**

- MrSID
 - Jpeg2000
- Gdal Virtual Raster
 JPEG
 - PNG

Форма результатов распознавания объектов

Качество разработанного решения

Таблица с результатами оценки характеристик качества

Требование	Результат	Критерий	Соответствие
«Быстрое обучение»	84 часа	Не более 100 часов	Да
«Быстрая обработка»	245 секунд	Не более 300 секунд	Да
«Точная обработка»	0.84	Не менее 0.80	Да

Пример распознавания дорог и зданий

Пример распознавания только зданий

Заключение

- 1. Обзор подходов к распознаванию объектов на изображениях показал целесообразность использовать подход семантической сегментации
- 2. Разработана архитектура нейронной сети для распознавания объектов интереса на данных аэрофотосъемки
- 3. Разработан макет программного модуля визуализации и контроля обучения
- 4. Разработан макет программного модуля распознавания объектов интереса
- 5. Результат измерения характеристик качества показал, что разработанное решение соответствует всем предъявляемым требованиям

Дальнейшее направление разработки включает распознавание объектов на данных космической фотосъемки

Апробация работы

- «Почему важно указывать все свои результаты во время защиты диплома?» // Конференция ППС СПбГЭТУ «ЛЭТИ», 2019
- Иванов И.И., Петров П.П. Как сформировать впечатление в процессе защиты // Известия СПБГЭТУ "ЛЭТИ". 2019. Т. 42. № 13. С. 299–315.
- Репозиторий проекта https://github.org/my_diploma_sources_repo.
- Опубликованное приложение <u>LINK</u>
- Развернутое приложение в сети Интернет https://my-web-app.com/

DEMO

Запасные слайды

Практическая значимость

Ускорение обработки при горизонтальном масштабировании.