Computer Vision Assignment – 2

Part -A

Name: Ishu Goyal

Github link: https://github.com/ishu98goyal/Computer-Vision-CSC8830/tree/main/Assignment%202

For Part A, a patch was created.

Patch creation process is shown in Jupyter Notebook: Patch_Creation.ipynb and it creates an image called corner.jpg

Q1: Code: GitHub repo → Part A → Canny Edge detection.ipynb

Outputs:

Image Patch:

Blurred Patch:

img Shape : (5, 5)
Kernel Shape : (3, 3)
Output img size : (5, 5)


```
img Shape : (5, 5)
Kernel Shape : (3, 3)
Output img size : (5, 5)
```


Final Image:

Q2 Code: GitHub repo \rightarrow Part A \rightarrow Harris Corner Detection.ipynb

Output:

PART B

Q3: Code: GitHub repo → Part B → canny_edge.mlx (Github)

Output:

Ι	=	5×5	uint8	matrix		
		42	46	97	171	191
		43	47	98	172	191
		43	47	100	173	191
		42	46	100	175	191
		42	46	101	176	192

edge_	img	=	5×5	log	ical	array
0	0		0	0	0	
0	0		1	0	0	
0	0		1	0	0	
0	0		1	0	0	
0	0		0	0	0	

Q4 Code: GitHub repo \rightarrow Part B \rightarrow corner_detection.mlx

I = 5×5 I(:,:,1		nt8 array	7	
255 231 255 0 24	245 240 255 11 18	239 14	0 0 8 0 6	4 13 0 4 7
I(:,:,2) =			
255 231 255 0 24		255 239	0 0 8 0 6	4 13 0 4 7
I(:,:,3) =			
255 231 255 0 24 I = 5×5	245 240 255 11 18	255	0 0 8 0 6	4 13 0 4 7
255 231 255 0 24	245 240	255 255	0 0 8 0 6	4 13 0 4 7

Q5: Code: GitHub repo \rightarrow Part B \rightarrow image_stitching.mlx ()

Output:

1. Arts and Humanitarian Building

2. Normal Building

3. 25 Park Place

4. Law School Building

5. Rialto Building

Part C

Q6: Code + Video : GitHub repo \rightarrow Part C \rightarrow integral_images.py (Github)

Output:

Q7: Code + Video: GitHub repo \rightarrow Part C \rightarrow panaroma.py

Output:

