



## **Project Initialization and Planning Phase**

| Date          | 14 Dec 2024                         |  |
|---------------|-------------------------------------|--|
| Team ID       | 739696                              |  |
| Project Title | Smart Lender – Automative Kickstart |  |
| Maximum Marks | 3 Marks                             |  |

## **Project Proposal (Proposed Solution) template**

This project proposal outlines a solution to address a specific problem. With a clear objective, defined scope, and a concise problem statement, the proposed solution details the approach, key features, and resource requirements, including hardware, software, and personnel.

| <b>Project Overview</b>  |                                                                                                                                                                                                                                                            |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective                | To develop an AI-driven solution for accurately classifying plant seedlings to improve crop management and sustainability                                                                                                                                  |
| Scope                    | The project focuses on building a scalable and efficient system for farmers and researchers to automate seedling identification using deep learning.                                                                                                       |
| Problem Statement        |                                                                                                                                                                                                                                                            |
| Description              | Accurate classification of plant seedlings is essential for efficient crop management but remains a challenge due to manual processes and the lack of automated tools.                                                                                     |
| Impact                   | Solving this problem will streamline seedling identification, save time, reduce errors, and enhance decision-making in early-stage crop management, contributing to higher agricultural yields and sustainability.                                         |
| <b>Proposed Solution</b> |                                                                                                                                                                                                                                                            |
| Approach                 | Utilize convolutional neural networks (CNNs) for image classification.  Train the model on a dataset of seedling images categorized by species and growth stages.  Implement a user-friendly interface for uploading images and receiving classifications. |
| Key Features             | Accuracy: High precision in identifying species and growth stages.  Scalability: Capable of handling large datasets and multiple plant types.                                                                                                              |

## **Resource Requirements**

| Resource Type | Description | Specification/Allocation |
|---------------|-------------|--------------------------|
| Hardware      |             |                          |





| Computing Resources     | CPU/GPU specifications, number of cores | e.g., 2 x NVIDIA V100 GPUs        |  |  |
|-------------------------|-----------------------------------------|-----------------------------------|--|--|
| Memory                  | RAM specifications                      | e.g., 8 GB                        |  |  |
| Storage                 | Disk space for data, models, and logs   | e.g., 1 TB SSD                    |  |  |
| Software                |                                         |                                   |  |  |
| Frameworks              | Python frameworks                       | e.g., Flask                       |  |  |
| Libraries               | Additional libraries                    | e.g., TensorFlow,glob             |  |  |
| Development Environment | IDE, version control                    | e.g., Jupyter Notebook, Git       |  |  |
| Data                    |                                         |                                   |  |  |
| Data                    | Source, size, format                    | e.g., Kaggle dataset, 5500 images |  |  |