Resumen de SQL

Álvaro González Sotillo

5 de febrero de 2021

Índice

1. Orden de ejecución de una $query$	1
2. Funciones sobre valores	2
3. Funciones de texto	2
4. Funciones sobre grupos	2
5. Producto cartesiano	3
6. Vistas	5
7. Query en un from	5
$8. \ \ with$	5
9. Query traducida a valor	6
$10. Query { m traducida} { m a} { m lista}$	6
11.Having	6
12.Referencias	6
1. Orden de ejecución de una $query$	
1. from	
2. where	
3. group by	
4. having	
5. select	
6 order by	

```
select
  location, count(*) as ocupacion
from
  section
where
  capacity > 10
group by
  location
having
  count(*) < 10
order by
  ocupacion;</pre>
```

2. Funciones sobre valores

- upper, lower: Mayúsculas y minúsculas
- trunc: quita decimales a números, horas y minutos a las fechas
- mod, sqrt...: funciones matemáticas
- to_number: Convierte una cadena a número
- extract: Extrae partes de una fecha
- nvl: Pone un valor por defecto si un valor es null

3. Funciones de texto

- to_char: Formatea fechas o números y los convierte en fechas
- instr: Busca el comienzo de una cadena dentro de otra cadena
- to_date: Convierte una cadena en una fecha
- substr: partes de un varchar
- regexp_like: como like, pero con expresiones regulares

4. Funciones sobre grupos

- avg: media
- max: mínimo
- min: máximo
- count: cuenta valores de columnas
- count (distict): cuenta valores distintos
- count (*): cuenta todas las filas, incluidos los valores null

5. Producto cartesiano

- Es una operación de conjuntos
- \bullet Para calcular $P = A \times B$
 - Por cada elemento $a \in A$
 - $\circ\:$ Por cada elemento $b\in B$
 - \diamond (ab) es un elemento de P
- Ejemplo
 - $A = \{ Juan, María \}$
 - $B = \{González, Pérez, García\}$
 - $P = \{ \text{Juan González, Juan Pérez, Juan García, María González, María Pérez, María García} \}$
- Se llama producto porque $|P| = |A| \cdot |B|$

5.1. Tabla original

- Solo un pedido al día
- No respeta 2FN (Precio depende de parte de la clave)

Cuadro 1: VENTAS					
$\underline{ ext{Producto}}$	Precio	$\operatorname{Cantidad}$	Fecha pedido	$\underline{ ext{Cliente}}$	
Pera	1	2	1-1	Pepe	
Manzana	2	4	1-1	Pepe	
Naranja	3	3	1-1	María	
Manzana	2	6	1-2	María	
Pera	1	5	1-2	Juan	
Naranja	3	3	1-2	$_{ m Juan}$	

5.2. Tablas normalizadas

Cuadro 2: PRO	ODUCTOS
$\underline{ ext{Producto}}$	Precio
Pera	1
Manzana	2
Naranja	3

5.3. Cómo recuperar información original

- La tabla original VENTAS puede seguir siendo necesaria para un informe
- Se puede recuperar con los siguientes pasos:
 - \bullet Se calcula la tabla PRODUCTOS \times PEDIDOS
 - Quitamos las filas que no respeten la foreign key

Cuadro 3: PEDIDOS					
$\underline{ ext{Producto}}$	Cantidad	Fecha pedido	$\underline{\text{Cliente}}$		
Pera	2	1-1	Pepe		
Manzana	4	1-1	Pepe		
Naranja	3	1-1	María		
Manzana	6	1-2	María		
Pera	5	1-2	$_{ m Juan}$		
Naranja	3	1-2	$_{ m Juan}$		

5.3.1. PRODUCTOS \times PEDIDOS

PRODUCTO.producto	PRODUCTO.precio	PEDIDOS.producto	PEDIDOS.cantidad	PEDIDOS.Fecha pedido	Pl
Pera	1	Pera	2	1-1	Р
Pera	1	Manzana	4	1-1	Р
Pera	1	Naranja	3	1-1	Μ
Pera	1	Manzana	6	1-2	Μ
Pera	1	$\underline{\mathbf{Pera}}$	5	1-2	Jυ
Pera	1	Naranja	3	1-2	Jυ
Manzana	2	Pera	2	1-1	Р
Manzana	2	Manzana	4	1-1	Р
Manzana	2	Naranja	3	1-1	Μ
Manzana	2	Manzana	6	1-2	Μ
Manzana	2	Pera	5	1-2	Jυ
Manzana	2	Naranja	3	1-2	Jυ
Naranja	3	Pera	2	1-1	Р
Naranja	3	Manzana	4	1-1	Р
Naranja	3	<u>Naranja</u>	3	1-1	Μ
Naranja	3	Manzana	6	1-2	Μ
Naranja	3	Pera	5	1-2	Jυ
<u>Naranja</u>	3	<u>Naranja</u>	3	1-2	Ju

$\textbf{5.3.2.} \quad \textbf{PRODUCTOS} \times \textbf{PEDIDOS}, \, \textbf{filtrado}$

■ Nos quedamos solo con las filas where PRODUCTO.producto = PEDIDOS.producto

PRODUCTO.producto	PRODUCTO.precio	PEDIDOS. producto	PEDIDOS.cantidad	PEDIDOS.Fecha pedido	P.
Pera	1	Pera	2	1-1	Pe
Pera	1	Pera	5	1-2	Jυ
Manzana	2	Manzana	4	1-1	Р
Manzana	2	Manzana	6	1-2	Μ
Naranja	3	Naranja	3	1-1	Μ
Naranja	3	Naranja	3	1-2	Jυ

5.4. Sintaxis SQL

select
*

```
from
   PRODUCTOS, PEDIDOS
where
   PRODUCTOS.producto = PEDIDOS.producto;
```

```
select
  *
from
  PRODUCTOS join PEDIDOS on PRODUCTOS.producto = PEDIDOS.producto;
```

6. Vistas

- Una query puede guardarse como una vista
- Las vistas se comportan como tablas con la orden select, extrayendo información de las tablas originales
- En general, no se pueden modificar datos de una vista, hay que modificar las tablas de origen.

```
create view ALUMNOS as
select student_id as clave, first_name as nombre, last_name as apellidos from student;
select * from alumnos;
```

7. Query en un from

- En el from no es obligatorio poner tablas
- Se puede poner cualquier cosa con filas y columnas:
 - Tablas
 - Vistas
 - Otras queries

```
select * from (
    select student_id as clave, first_name as nombre, last_name as apellidos from student
);
```

8. with

■ Si no se quiere definir una vista o usar una query dentro de from

```
select nombre, apellidos from (
    select student_id as clave, first_name as nombre, last_name as apellidos from student
)
where clave > 10;

with estudiantes as(
    select student_id as clave, first_name as nombre, last_name as apellidos from student
)
select nombre, apellidos
from estudiantes
where clave > 10;
```

9. Query traducida a valor

• Se puede poner una consulta que devuelva una fila y una columna en cualquier lugar donde se necesite un valor simple

```
select * from student
where upper(last_name) = (
    select max(upper(last_name)) from student
);
```

10. Query traducida a lista

■ Se puede poner una consulta que devuelva una columna y muchas filas en una condición in

```
select distinct course_no from section where capacity = 25 order by course_no;
select * from course where course_no = 20 or course_no = 220 or course_no = 134;
select * from course where course_no in (20,220,134);
select * from course where course_no in (
    select distinct course_no from section where capacity = 25
);
```

11. Having

- having sirve para poner condiciones a los grupos de una consulta
- Se puede simular con una subconsulta en el from

```
select * from
(
    select
        location, count(*) as ocupacion
    from
        section
        group by
        location
)
where ocupacion < 10;

select
    location, count(*) as ocupacion
from
    section
group by
    location
having
    count(*) < 10;</pre>
```

12. Referencias

- Formatos:
 - Transparencias
 - PDF

- EPUB
- Creado con:
 - Emacs
 - org-re-reveal
 - Latex
- Alojado en Github