AutoML: Gaussian Processes Gaussian Processes

<u>Bernd Bischl</u> Frank Hutter Lars Kotthoff Marius Lindauer Joaquin Vanschoren

Weight-Space View

- So far, we have considered a hypothesis space \mathcal{H} of parameterized functions $f(\mathbf{x} \mid \boldsymbol{\theta})$ (in particular, the space of linear functions).
- ullet Using Bayesian inference, we derived distributions for $oldsymbol{ heta}$ after having observed data $\mathcal{D}_{\mathsf{train}}$.
- ullet Prior believes about the parameter are expressed via a prior distribution $q(m{ heta})$, which is updated according to Bayes' rule

$$\underbrace{p(oldsymbol{ heta} \mid \mathbf{X}, \mathbf{y})}_{ ext{posterior}} = \underbrace{\frac{p(\mathbf{y} \mid \mathbf{X}, oldsymbol{ heta})}{p(\mathbf{y} \mid \mathbf{X}, oldsymbol{ heta})}}_{ ext{marginal}}^{ ext{prior}} \underbrace{p(\mathbf{y} \mid \mathbf{X})}_{ ext{marginal}}$$

Function-Space View I

Let us change our point of view:

• Instead of "searching" for a parameter θ in the parameter space, we directly search in a space of "allowed" functions \mathcal{H} .

We will still use Bayesian inference, but instead of specifying a prior distribution over a
parameter, we will specify a prior distribution over functions and will update it according
to the data points that we observe.

Function-Space View II

Intuitively, imagine we could draw a huge number of functions from some prior distribution over functions (*).

Functions drawn from a Gaussian process prior

(*) We will see in a minute how distributions over functions can be specified.

Function-Space View III

After observing some data points, we are allowed to sample only those functions that are consistent with the data.

Function-Space View IV

After observing some data points, we are allowed to sample only those functions that are consistent with the data.

Function-Space View V

After observing some data points, we are allowed to sample only those functions that are consistent with the data.

Function-Space View VI

As we observe more and more data points, the number of functions that consistent with the data shrinks.

Function-Space View VII

Intuitively, there is something like the "mean" and "variance" of a distribution over functions.

Weight-Space View vs. Function-Space View

Weight-Space View	Function-Space View
Parameterize functions Example: $f(\mathbf{x} \mid \boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{x}$	
Define distributions on $ heta$	Define distributions on f
Inference in parameter space Θ	Inference in function space ${\cal H}$

Next, we will see how we can define distributions over functions mathematically.

Distributions on Functions

Discrete Functions I

For simplicity, we will firstly consider functions with finite domains.

• Let $\mathcal{X} = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}\}$ be a finite set of elements and \mathcal{H} the set of all functions $h: \mathcal{X} \to \mathbb{R}$.

• Since the domain of any $h(\cdot) \in \mathcal{H}$ has only n elements, we can represent the function $h(\cdot)$ compactly as a n-dimensional vector

$$\boldsymbol{h} = \left[h\left(\mathbf{x}^{(1)}\right), \dots, h\left(\mathbf{x}^{(n)}\right) \right].$$

Discrete Functions II

Example 1: Consider function $h: \mathcal{X} \to \mathcal{Y}$ where the input space consists of **two** points $\mathcal{X} = \{0, 1\}$.

Discrete Functions III

Example 1: Consider function $h: \mathcal{X} \to \mathcal{Y}$ where the input space consists of **two** points $\mathcal{X} = \{0, 1\}$.

Discrete Functions IV

Example 1: Consider function $h: \mathcal{X} \to \mathcal{Y}$ where the input space consists of **two** points $\mathcal{X} = \{0, 1\}$.

Discrete Functions V

Example 2: Consider $h: \mathcal{X} \to \mathcal{Y}$ where the input space consists of **five** points $\mathcal{X} = \{0, 0.25, 0.5, 0.75, 1\}.$

Discrete Functions VI

Example 2: Consider $h: \mathcal{X} \to \mathcal{Y}$ where the input space consists of **five** points $\mathcal{X} = \{0, 0.25, 0.5, 0.75, 1\}.$

Discrete Functions VII

Example 2: Consider $h: \mathcal{X} \to \mathcal{Y}$ where the input space consists of **five** points $\mathcal{X} = \{0, 0.25, 0.5, 0.75, 1\}.$

Discrete Functions VIII

Example 3: Consider $h: \mathcal{X} \to \mathcal{Y}$ where the input space consists of **ten** points.

Discrete Functions IX

Example 3: Consider $h: \mathcal{X} \to \mathcal{Y}$ where the input space consists of **ten** points.

Discrete Functions X

Example 3: Consider $h: \mathcal{X} \to \mathcal{Y}$ where the input space consists of **ten** points.

Distributions on Discrete Functions I

• One natural way to specify a probability distribution on a discrete function $h \in \mathcal{H}$ is to use the vector representation of the function:

$$\boldsymbol{h} = \left[h\left(\mathbf{x}^{(1)}\right), h\left(\mathbf{x}^{(2)}\right), \dots, h\left(\mathbf{x}^{(n)}\right) \right].$$

 Let us consider h as a n-dimensional random variable. We will further assume the following normal distribution:

$$m{h} \sim \mathcal{N}\left(m{m}, m{K}
ight)$$
 .

Note: For now, we set m=0 and take the covariance matrix K as given. We will see later how they are chosen / estimated.

Distributions on Discrete Functions II

Example 1 (continued): Let $h: \mathcal{X} \to \mathcal{Y}$ be a function that is defined on **two** points \mathcal{X} . We sample functions by sampling from a two-dimensional normal variable

$$\boldsymbol{h} = [h(1), h(2)] \sim \mathcal{N}(\boldsymbol{m}, \boldsymbol{K}).$$

Distributions on Discrete Functions III

Example 1 (continued): Let $h: \mathcal{X} \to \mathcal{Y}$ be a function that is defined on **two** points \mathcal{X} . We sample functions by sampling from a two-dimensional normal variable

$$\boldsymbol{h} = [h(1), h(2)] \sim \mathcal{N}(\boldsymbol{m}, \boldsymbol{K}).$$

Distributions on Discrete Functions IV

Example 1 (continued): Let $h: \mathcal{X} \to \mathcal{Y}$ be a function that is defined on **two** points \mathcal{X} . We sample functions by sampling from a two-dimensional normal variable

$$\boldsymbol{h} = [h(1), h(2)] \sim \mathcal{N}(\boldsymbol{m}, \boldsymbol{K}).$$

Distributions on Discrete Functions V

Example 2 (continued): Let us consider $h: \mathcal{X} \to \mathcal{Y}$ where the input space consists of **five** points. We sample functions by sampling from a five-dimensional normal variable

$$h = [h(1), h(2), h(3), h(4), h(5)] \sim \mathcal{N}(m, K).$$

Distributions on Discrete Functions VI

Example 2 (continued): Let us consider $h: \mathcal{X} \to \mathcal{Y}$ where the input space consists of **five** points. We sample functions by sampling from a five-dimensional normal variable

$$h = [h(1), h(2), h(3), h(4), h(5)] \sim \mathcal{N}(m, K).$$

Distributions on Discrete Functions VII

Example 2 (continued): Let us consider $h: \mathcal{X} \to \mathcal{Y}$ where the input space consists of **five** points. We sample functions by sampling from a five-dimensional normal variable

$$h = [h(1), h(2), h(3), h(4), h(5)] \sim \mathcal{N}(m, K).$$

Distributions on Discrete Functions VIII

Example 3 (continued): Let us consider $h: \mathcal{X} \to \mathcal{Y}$ where the input space consists of **ten** points. We sample functions by sampling from a ten-dimensional normal variable

$$h = [h(1), h(2), \dots, h(10)] \sim \mathcal{N}(m, K).$$

Distributions on Discrete Functions IX

Example 3 (continued): Let us consider $h: \mathcal{X} \to \mathcal{Y}$ where the input space consists of **ten** points. We sample functions by sampling from a ten-dimensional normal variable

$$h = [h(1), h(2), \dots, h(10)] \sim \mathcal{N}(m, K).$$

Distributions on Discrete Functions X

Example 3 (continued): Let us consider $h: \mathcal{X} \to \mathcal{Y}$ where the input space consists of **ten** points. We sample functions by sampling from a ten-dimensional normal variable

$$h = [h(1), h(2), \dots, h(10)] \sim \mathcal{N}(m, K).$$

The Role of Covariance Function I

The covariance controls the "shape" of drawn functions. Consider two extreme cases where function values are:

a) strongly correlated:
$$\boldsymbol{K} = \begin{pmatrix} 1 & 0.99 & \dots & 0.99 \\ 0.99 & 1 & \dots & 0.99 \\ 0.99 & 0.99 & \ddots & 0.99 \\ 0.99 & \dots & 0.99 & 1 \end{pmatrix}$$
 b) uncorrelated: $\boldsymbol{K} = \boldsymbol{I}$.

The Role of Covariance Function II

ullet On a numeric space ${\cal X}$, "meaningful" functions may be characterized by the following spatial property:

If $\mathbf{x}^{(i)}$ and $\mathbf{x}^{(j)}$ are close in the \mathcal{X} -space, their function values $f(\mathbf{x}^{(i)})$ and $f(\mathbf{x}^{(j)})$ should be close in \mathcal{Y} -space.

- Arr In other words, if two data points are close in \mathcal{X} -space, their corresponding values should be **correlated**!
- $\mathbf{\hat{V}}$ We can enforce this condition by choosing a covariance function for which, \mathbf{K}_{ij} is high, if $\mathbf{x}^{(i)}$ and $\mathbf{x}^{(j)}$ are close.

The Role of Covariance Function III

We can compute the entries of the covariance matrix by a function that is based on the distance between $\mathbf{x}^{(i)}$ and $\mathbf{x}^{(j)}$. For example:

c) spatial correlation:
$$K_{ij} = k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp\left(-\frac{1}{2}\left|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\right|^2\right)$$

Note: $k(\cdot, \cdot)$ is known as the covariance function or kernel. It will be studied in more detail later on.

Gaussian Processes

From Discrete to Continuous Functions

 We have already considered distributions on functions with discrete domain. We did so, by defining Gaussian distributions on the vector of the respective function values

$$\mathbf{h} = [h(\mathbf{x}^{(1)}), h(\mathbf{x}^{(2)}), \dots, h(\mathbf{x}^{(n)})] \sim \mathcal{N}(\boldsymbol{m}, \boldsymbol{K}).$$

• We can generalize this idea for $n \to \infty$.

Gaussian Processes: Intuition I

- ullet No matter how large n is, we consider functions with discrete domains.
- But, how can we extend our definition to functions with **continuous** domains $\mathcal{X} \subset \mathbb{R}$?
- ullet Intuitively, a function f drawn from a **Gaussian process** can be understood as an "infinite" long Gaussian random vector.
- It is unclear how to handle an "infinite" long Gaussian random vector!

Gaussian Processes: Intuition II

• Thus, it is required that for **any finite set** of inputs $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}\} \subset \mathcal{X}$, the vector \mathbf{f} has a Gaussian distribution with \mathbf{m} and \mathbf{K} being calculated by a mean function $m(\cdot)$ and a covariance function $k(\cdot, \cdot)$:

$$f = \left[f\left(\mathbf{x}^{(1)}\right), \dots, f\left(\mathbf{x}^{(n)}\right) \right] \sim \mathcal{N}\left(\boldsymbol{m}, \boldsymbol{K}\right).$$

• This property is called the Marginalization Property.

Gaussian Processes: Intuition III

• Thus, it is required that for any finite set of inputs $\{\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(n)}\}\subset\mathcal{X}$, the vector \mathbf{f} has a Gaussian distribution with m and K being calculated by a mean function $m(\cdot)$ and a covariance function $k(\cdot,\cdot)$:

$$f = \left[f\left(\mathbf{x}^{(1)}\right), \dots, f\left(\mathbf{x}^{(n)}\right) \right] \sim \mathcal{N}\left(\boldsymbol{m}, \boldsymbol{K}\right).$$

This property is called the Marginalization Property.

Gaussian Processes: Intuition IV

• Thus, it is required that for **any finite set** of inputs $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}\} \subset \mathcal{X}$, the vector \mathbf{f} has a Gaussian distribution with \mathbf{m} and \mathbf{K} being calculated by a mean function $m(\cdot)$ and a covariance function $k(\cdot, \cdot)$:

$$f = \left[f\left(\mathbf{x}^{(1)}\right), \dots, f\left(\mathbf{x}^{(n)}\right) \right] \sim \mathcal{N}\left(\boldsymbol{m}, \boldsymbol{K}\right).$$

This property is called the Marginalization Property.

Gaussian Processes: Formal Definitions I

The above intuitive explanation is formally defined as follows.

A function $f(\mathbf{x})$ is generated by a Gaussian process \mathcal{G} if for any finite set of inputs $\{\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(n)}\}$, the associated vector of function values has a Gaussian distribution:

$$f = (f(\mathbf{x}^{(1)}), \dots, f(\mathbf{x}^{(n)})) \sim \mathcal{N}(\mathbf{m}, \mathbf{K}),$$

with

$$\mathbf{m} := \left(m\left(\mathbf{x}^{(i)}\right)\right)_i, \quad \mathbf{K} := \left(k\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)\right)_{i,j},$$

where $m(\mathbf{x})$ is called mean function and $k(\mathbf{x}, \mathbf{x}')$ is called covariance function.

Gaussian Processes: Formal Definitions II

- A GP is **completely specified** by its mean and covariance functions.
- The mean function $m(\mathbf{x})$ and the covariance function $k(\mathbf{x}, \mathbf{x}')$ of a real process $f(\mathbf{x})$ are defined as:

$$m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$$

$$k(\mathbf{x}, \mathbf{x}') = \mathbb{E}\left[(f(\mathbf{x}) - \mathbb{E}[f(\mathbf{x})]) \left(f(\mathbf{x}') - \mathbb{E}[f(\mathbf{x}')] \right) \right]$$

We denote a GP by

$$f(\mathbf{x}) \sim \mathcal{G}\left(m(\mathbf{x}), k\left(\mathbf{x}, \mathbf{x}'\right)\right)$$

Note: For now, we assume $m(\mathbf{x}) \equiv 0$. This is not a drastic limitation. In fact, it is common to consider GPs with a zero mean function.

Sampling from a Gaussian Process Prior I

• We can draw functions from a Gaussian process prior. To do so, consider $f(\mathbf{x}) \sim \mathcal{G}\left(0, k(\mathbf{x}, \mathbf{x}')\right)$ with the squared exponential covariance function $^{(*)}$

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2\ell^2} ||\mathbf{x} - \mathbf{x}'||^2\right), \quad \ell = 1.$$

This covariance function specifies the Gaussian process completely.

*) We will talk later about different choices of covariance functions.

Sampling from a Gaussian Process Prior II

To visualize a sample function, we

- ullet choose a large number of equidistant points: $\left\{\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(n)}
 ight\}$,
- compute their corresponding covariance matrix by plugging in all pairs of $\mathbf{x}^{(i)}$ and $\mathbf{x}^{(j)}$ in $\mathbf{K} = \left(k\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)\right)_{i,j}$,
- ullet sample from a Gaussian $oldsymbol{f} \sim \mathcal{N}(oldsymbol{0}, oldsymbol{K}).$

We draw 10 times from the Gaussian, to get 10 different samples. Since we specified the mean function to be zero, the drawn functions have a zero mean.

Gaussian Processes as an Indexed Family

Gaussian Processes as an Indexed Family

- A Gaussian process is a special case of a stochastic process which is defined as a collection of random variables indexed by some index set (also called an indexed family).
- What does it mean?
- An **indexed family** is a mathematical function (or "rule") that maps indices $t \in T$ to objects in S.

Definition: an **index family** (or a family of elements in S indexed by T) is a surjective function that is defined as follows:

$$s: T \rightarrow \mathcal{S}$$

 $t \mapsto s_t = s(t)$

Index Family I

Some simple examples for indexed families are:

• Finite sequences (lists): $T = \{1, 2, \dots, n\}$ and $(s_t)_{t \in T} \in \mathbb{R}$

• Infinite sequences: $T = \mathbb{N}$ and $(s_t)_{t \in T} \in \mathbb{R}$

Index Family II

But the indexed set S can be something more complicated, for example functions or **random** variables (RV):

- $T = \{1, ..., m\}$, Y_t 's are RVs: Indexed family is a random vector.
- $T = \{1, ..., m\}$, Y_t 's are RVs: Indexed family is a stochastic process in discrete time
- $T = \mathbb{Z}^2$, Y_t 's are RVs: Indexed family is a 2D-random walk.

Index Family III

- A Gaussian process is also an indexed family, where the random variables $f(\mathbf{x})$ are indexed by the input values $\mathbf{x} \in \mathcal{X}$.
- Importantly, any indexed (finite) random vector has a multivariate Gaussian distribution (which comes with all the nice properties of Gaussianity!).

Visualization for a one-dimensional \mathcal{X} .

Index Family IV

- ullet A Gaussian process is also an indexed family, where the random variables $f(\mathbf{x})$ are indexed by the input values $\mathbf{x} \in \mathcal{X}$.
- Importantly, any indexed (finite) random vector has a multivariate Gaussian distribution (which comes with all the nice properties of Gaussianity!).

Visualization for a two-dimensional \mathcal{X} .