

SUSTAINABLE AI – TRANSPARENCY AND ENERGY-EFFICIENT PROMPT/CONTEXT ENGINEERING WITH MACHINE LEARNING

CSCN8010 - FOUNDATIONS OF MACHINE LEARNING FRAMEWORKS
PROG8245 - MACHINE LEARNING PROGRAMMING

PARTH | FENIL | ADHITYA

OVERVIEW

Al workloads consume high compute resources \rightarrow high energy & CO_2 impact.

Poorly optimized prompts waste resources.

Our system:

- 1. Analyzes prompts for complexity.
- 2. Predicts energy & CO₂ usage.
- 3. Suggests optimizations.
- 4. Flags anomalies.

Combines NLP + Regression + Anomaly Detection in a Streamlit dashboard.

PROBLEM STATEMENT

- High Compute Demand: Large Language Models (LLMs) → High cost & Environmental footprint.
- Inefficient Prompts: Poorly structured prompts increase compute time.
- Lack of Real-time Insight: Users can't see energy/CO₂ impact instantly.
- Need: A tool to measure, optimize, and detect inefficiency in AI usage.

PROJECT OBJECTIVES

Technical:

- 1. Build NLP complexity scoring system.
- 2. Train regression model for energy & CO₂.
- 3. Implement anomaly detection.
- 4. Deploy with Streamlit dashboard.

Operational:

- 1. Modular & scalable architecture.
- 2. Industry-aligned ML engineering practices.
- 3. Comprehensive documentation.

BUSINESS CASE

Cost Savings-

Our AI energy prediction and optimization system reduces wasted compute cycles by flagging inefficient prompts before they are run, cutting down on costly cloud inference charges.

Sustainability-

By lowering the energy usage of Al workloads, the system reduces CO₂ emissions, helping organizations meet ESG and sustainability targets.

Competitive Edge-

Optimized prompts deliver results faster while using fewer resources, enabling greener, more efficient Al operations that can be a market differentiator.

Scalability-

The system integrates seamlessly into enterprise Al pipelines, scaling across multiple models and workloads without disrupting existing processes.

DATASET

Source: model_energy_data.csv (synthetic, structured).

Features:

- 1. Num_Layers
- 2.FLOPs_in_TFLOPs
- 3. Training_Hours
- 4. Complexity (from NLP pipeline)

Targets: Energy_kWh, CO₂_kg.

Preprocessing: Sorting, Cleaning, Feature engineering.

METHODOLOGY

STEP 01

NLP Pipeline → complexity score.

User prompts are tokenized and analyzed for vocabulary richness, sentence length, and readability. This generates a complexity score that helps predict how resource-intensive the prompt might be.

STEP 02

Prediction Model → energy & CO₂ estimate.

Using our trained regression model, we estimate the compute energy (kWh) and resulting CO₂ emissions for the given prompt complexity and model parameters.

STEP 03

Anomaly Detection → inefficiency alerts.

Isolation Forest flags outlier prompts that consume unusually high energy for their complexity, triggering inefficiency alerts.

STEP 04

Visualization & recommendations via dashboard.

Our Streamlit dashboard visualizes energy use, CO₂ footprint, and efficiency scores while offering optimization tips to improve prompt efficiency.

SOLUTION ARCHITECTURE

NLP Pipeline

 \checkmark TOKENIZATION → BREAK TEXT INTO WORDS.

- READABILITY SCORE (FLESCH-KINCAID).
- ✓ VOCABULARY DIVERSITY → WORD VARIATION MEASURE.
- ✓ COMPLEXITY SCORE → WEIGHTED FINAL METRIC
- OUTPUT: NUMERIC FEATURE FOR PREDICTION & ANOMALY DETECTION

Regression Model

- 1. Algorithm: Linear Regression.
- 2. Variables: Num_Layers, FLOPs, Hours, Complexity.
- 3. Outputs: Energy (kWh) & CO₂ (kg).
- 4. Loss Function: Mean Squared Error (MSE).

Formula

y^=w1 · Layers+w2 · FLOPs+w3 · Hours+w4 · Complexity+b

Anomaly Detection

- 1. Algorithm: Isolation Forest.
- 2. Detects outlier configurations.
- 3. Alerts user if setup is unusually inefficient.
- 4. Integrated into dashboard in realtime.

LANGUAGE: PYTHON 3.X.

LIBRARIES: SCIKIT-LEARN, PANDAS, NUMPY, NLTK, STREAMLIT, PLOTLY.

FILES:

- 1. PARSER.PY, COMPLEXITY_SCORE.PY NLP.
- 2. TRAIN.PY REGRESSION TRAINING.
- 3. ISO_FOREST_TRAIN.PY ANOMALY DETECTION.
- 4. APP.PY STREAMLIT UI.

RESULTS & DASHBOARD

Outputs

Energy estimate (kWh)

CO₂ estimate (kg)

Efficiency score

Optimization suggestions

Visuals

Gauge chart – Efficiency rating
Bar graph – Energy & CO₂ comparison
Pie chart – Compute contribution breakdown

Anomaly Alerts

Red flag indicators for inefficiency

EVALUATION

Regression Metrics

- 1. Mean Squared Error (MSE)
- 2. Mean Absolute Error (MAE)
- 3.R² (Coefficient of Determination)

Usability Testing

- 1. Real-time predictions
- 2. Minimal delay for live use

Code Quality

- 1. Modular structure
- 2. Well-documented
- 3. Maintainable for future updates

CONCLUSION

Al Efficiency Gains

Optimized prompts significantly improve AI efficiency, reducing energy usage and CO_2 emissions while maintaining output quality. Our model proved that even small prompt adjustments can lead to measurable sustainability impact.

Sustainability + Machine Learning

The project integrates sustainability goals directly into the Al development workflow, ensuring that environmental responsibility is built into the decision-making process, not added as an afterthought.

Technical and Business Value

By combining NLP, regression predictions, and anomaly detection in a single dashboard, we deliver both operational savings for developers and strategic ESG benefits for organizations.

FUTURE WORK

Real-Time Carbon Data-

Integrate live APIs to measure CO_2 intensity based on local grid conditions for more precise environmental tracking.

Multi-Model Support-

Extend compatibility to various Al architectures, ensuring flexibility as LLM technology evolves.

Automated Model Retraining-

Deploy continuous learning pipelines to keep regression models updated with the latest data and maintain accuracy.

Historical Trend Insights-

Introduce long-term tracking to measure efficiency progress over months or years, providing stakeholders with clear performance trends.