	$\sigma_{1^{+}\alpha\beta}^{\sharp 1}$	$\sigma^{\#2}_{1^+lphaeta}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1}^{\#1}{}_{lpha}$	$\sigma_{1}^{\#2}{}_{\alpha}$	$\tau_{1-\alpha}^{\#1}$	τ ₁ - α
$\sigma_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{1}{k^2(2r_1+r_5)}$	$\frac{1}{\sqrt{2} (k^2 + k^4) (2r_1 + r_5)}$	$\frac{i}{\sqrt{2} (k+k^3) (2r_1+r_5)}$	0	0	0	0
$\sigma_{1}^{\#2} \dagger^{\alpha\beta}$	$\frac{1}{\sqrt{2} (k^2 + k^4) (2 r_1 + r_5)}$	$\frac{6k^2(2r_1+r_5)+t_1}{2(k+k^3)^2(2r_1+r_5)t_1}$	$\frac{i (6 k^2 (2 r_1 + r_5) + t_1)}{2 k (1 + k^2)^2 (2 r_1 + r_5) t_1}$	0	0	0	0
$ au_{1}^{\#1} \dagger^{lphaeta}$	$-\frac{i}{\sqrt{2} (k+k^3) (2 r_1 + r_5)}$	$-\frac{i(6k^2(2r_1+r_5)+t_1)}{2k(1+k^2)^2(2r_1+r_5)t_1}$	$\frac{6 k^2 (2 r_1 + r_5) + t_1}{2 (1 + k^2)^2 (2 r_1 + r_5) t_1}$	0	0	0	0
$\sigma_1^{\sharp 1} \dagger^{lpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	0	$\frac{2ik}{t_1+2k^2t_1}$
$\sigma_1^{\#2} \uparrow^{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$-\frac{i\sqrt{2} k(2k^2(r_1+r_5)-t_1)}{(t_1+2k^2t_1)^2}$
$\tau_1^{\#1} \uparrow^{\alpha}$	0	0	0	0	0	0	0
$\tau_{1}^{#2} + \alpha$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2}k(2k^2(r_1+r_5)-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4 k^4 (r_1 + r_5) + 2 k^2 t_1}{(t_1 + 2 k^2 t_1)^2}$

_	$\sigma_{0}^{\#1}$	$ au_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
$\sigma_0^{\#1}$ †	0	0	0	0

	$\omega_{0^+}^{\sharp 1}$	$f_{0}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_{0}^{#1}$
$\omega_{0^+}^{\#1}\dagger$	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0^{+}}^{#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0+}^{#2}\dagger$	0	0	0	0
$\omega_0^{\#1}$ †	0	0	0	0

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2^{-}lphaeta\chi}^{\#1}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

Total #:	$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	+ik o	$t_1^{\#1}{}^{\alpha} == 0$	$\tau_1^{\#2\alpha} + 2ik \sigma_1^{\#2\alpha} == 0$	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$\tau_{0+}^{\#2} == 0$	$\sigma_{0^{-}}^{\#1} == 0$	SO(3) irreps	Source constraints
17	5	ω	ω	ω	1	Ъ	一	#	

$f_{1-}^{#2} +^{\alpha}$	$f_{1}^{#1} + ^{\alpha}$	$\omega_{1^{-}}^{#2} \dagger^{\alpha}$	$\omega_{1^{-}}^{\sharp 1} \dagger^{lpha}$	$f_{1+}^{#1} \dagger^{\alpha\beta}$	$\omega_{1+}^{\#2} + ^{\alpha\beta}$	$\omega_{1}^{*1} + \alpha^{\beta}$	
0	0	0	0	$\frac{ikt_1}{3\sqrt{2}}$	$-\frac{t_1}{3\sqrt{2}}$	+ <u>t1</u>	$\omega_{1^{+}lphaeta}^{\#1}$
0	0	0	0	$-\frac{1}{3}ikt_1$	<u>t1</u> 3	$-\frac{t_1}{3\sqrt{2}}$	$\omega_{1+\alpha\beta}^{\#2} f$
0	0	0	0	$\frac{k^2t_1}{3}$	<u> </u>	$-\frac{ikt_1}{3\sqrt{2}}$	$f_{1}^{\#1}{}_{\alpha\beta}$
$-ar{\imath} k t_1$	0	$\frac{t_1}{\sqrt{2}}$	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	0	0	0	$\omega_{1^-~\alpha}^{\#1}$
0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0	$\omega_{1^-\alpha}^{\#2} f_{1^-\alpha}^{\#1} f_{1^-\alpha}^{\#2}$
0	0	0	0	0	0	0	$f_{1^-\alpha}^{\#1}$
0	0	0	ikt_1	0	0	0	$f_{1^-\alpha}^{#2}$

_	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_{2}^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

_	Massive partic	le
? $J^P = 2^{-/}$	Pole residue:	$-\frac{1}{r_1} > 0$
?	Polarisations:	5
\vec{k}^{μ}	Square mass:	$-\frac{t_1}{2r_1} > 0$
?	Spin:	2
·	Parity:	Odd

Unitarity conditions								
$r_1 < 0 & r_5 > -2 r_1 & t_1 $	>	0						