Chemistry 605 (Reich)

THIRD HOUR EXAM

Wed. May 15, 2013

Question/Points

R-12L____/20

R-12M____/15

R-12N____/25

R-12O____/10

R-12P____/20

Total ____/90

Name_____

If you place answers anywhere else except in the spaces provided, (e.g. on the spectra or on extra pages) clearly indicate this on the answer sheets.

Problem R-12L. The 100 MHz ¹H and 19.15 MHz ⁷⁷Se NMR spectra of a mono-iodo selenophene are shown below. Both spectra are at the same Hz scale.

(a) Interpret the 1 H NMR spectrum, including the various small peaks (e.g., those at 7.45 and 8.15 δ). Report δ and all coupling constants in the standard format.

(b) Interpret the 77 Se NMR spectrum. Report all coupling constants. Draw a "coupling tree" on the spectrum.

(c) Draw the structure of R-12L below, briefly give your reasoning.

Problem R-12M. You are asked to interpret the coupled ¹³C NMR spectrum of an oxazoline.

(a) Which carbon are we looking at? _____

(b) Analyze the spectrum, report all coupling constants in the standard format (${}^{n}J_{X-Y} = 00.0 \text{ Hz}$).

(c) The spectrum below is of the same compound with one H replaced by D. Where is the deuterium? Place it on the structure, and explain briefly.

(d) What is the proton NMR frequency of the spectrometer they were using?_____

Problem R-12N. Analyze the ¹ H decoupled 32.4 MHz ³¹ P NMR spectra of a palladium-phosphine complex
shown on the next page (Bartsch, R.; Carmichael, D.; Hitchcock, P. B.; Meidine, M. F.; Nixon, J. F.; Sillett, G. J. D.
J. Chem. Soc., Chem. Commun. 1988, 1615).

(a) Identify all signals in the low temperature spectrum (-75 °C), and report approximate coupling constants using the form: δ ____, $^{\times}J_{1-2}$ =___ Hz. Use the numberings shown on the structure. For each signal briefly give your reasoning for the assignment.

 $P^{1} \xrightarrow{Me_{3}C} P^{2} P^{4}Et_{3}$ $P^{1} \longrightarrow P^{1} Pd \longrightarrow CI$ $P^{5}Et_{3}$

P²_____

P³_____

P⁴, P⁵

(b) Identify the process which is responsible for the changes in the NMR spectrum at the higher temperatures (-30 °C and +50 °C). The signal at -122 ppm in the +50 °C spectrum is a triplet. Draw a structure or an equation.

(c) What is the proton frequency (MHz) of the spectrometer which was used for these spectra?

Problem R-120 ($C_{16}H_{21}CINOPPt$). Shown below are partial ¹H NMR spectra of a platinum complex at several field strengths. All three spectra are at the same Hz scale. Only the signal for H² is shown (source: *Magn. Res. Chem.* **1985**, *23*, 671).

- (a) Explain the small outer peaks of the multiplet.
- (b) Analyze the multiplet. Give approximate coupling constants, report them in the form ${}^{n}J_{XY} =$ _ Hz. Assign the couplings.
- (c) Why do the small outer peaks become broad at higher field strength? This is not a fluxional molecule, and there is no ligand exchange under these conditions.

Problem R-12P. This question require	es you to assign the protons of compound R-12P using the 300 MHz proton
NMR spectra given. The spectrum show	s the normal ¹ H NMR, and two inserts which are difference spectra
resulting from subtraction of the normal s	pectrum from one in which the large signal at δ 0.95 or at δ 1.4 was
irradiated for a second or so, and then th	e decoupler was turned off during acquisition of the FID. The assignment
of these signals is shown on the structure	es. The integration of the insets has been expanded five times (5x)
compared to the normal spectrum	

(a)	What kind of ex	periment is being	performed here?	What information	does this ex	periment	provide?
١	\sim	TTIICE INITIA OF OA	po:::::o:::c	pontonnoa noro.	TTIME IIII CITTIALIOTT	acco tine on	P 0 1 11 1 1 0 1 1 1 1	p. 0

(b) For the NMR signals below assign each to	o one of the protons	labeled H _a to H _f .	Briefly summa	rize the
evidence you used in making each assignment.	Each of the signals	corresponds to a	single proton.	The signals
marked with an x are impurities.				

δ 1.43	
δ 2.08	
δ 2.28	
δ 2.43	
δ 2.55	
δ 2.60	

Are there any ambiguities in the assignments you have made?

(c) Comment on the chemical shift difference between the two methyl signals, as well as the protons He and Hf.

Problem R-12P (C₈H₁₂O) 300 MHZ ¹H NMR Spectrum Source: The XL Series NMR

