Finite State Machine based Morphology

Background

- The problem of recognizing that *foxes* breaks down into the two morphemes *fox* and *-es* is called *morphological parsing*.
- Similar problem in the information retrieval domain: *stemming*
- Given the **surface** or **input form** *going*, we might want to produce the parsed form: VERB-go + GERUND-ing
- In this chapter
 - morphological knowledge and
 - The finite-state Machine
- It is quite inefficient to list all forms of noun and verb in the dictionary because the productivity of the forms.
- Morphological parsing is necessary more than just IR, but also
 - Machine translation
 - Spelling checking

Survey of (Mostly) English Morphology

- Morphology is the study of the way words are built up from smaller meaning-bearing units, **morphemes**.
- Two broad classes of morphemes:
 - The stems: the "main" morpheme of the word, supplying the main meaning, while
 - **The affixes:** add "additional" meaning of various kinds.
- Affixes are further divided into **prefixes**, **suffixes**, **infixes**, and **circumfixes**.
 - Suffix: eat-s
 - Prefix: *un-buckle*
 - Circumfix: *ge-sag-t* (said) *sagen* (to say) (in German)
 - Infix: hingi (borrow) humingi (the agent of an action))in Philippine language Tagalog)

Survey of (Mostly) English Morphology

- Prefixes and suffixes are often called concatenative morphology.
- A number of languages have extensive non-concatenative morphology
 - The Tagalog infixation example
 - Templatic morphology or root-and-pattern morphology, common in Arabic, Hebrew, and other Semitic languages
- Two broad classes of ways to form words from morphemes:
 - Inflection: the combination of a word stem with a grammatical morpheme, usually resulting in a word of the same class as the original tem, and usually filling some syntactic function like agreement, and
 - Derivation: the combination of a word stem with a grammatical morpheme, usually resulting in a word of a *different* class, often with a meaning hard to predict exactly.

Survey of (Mostly) English Morphology Inflectional Morphology

- In English, only nouns, verbs, and sometimes adjectives can be inflected, and the number of affixes is quite small.
- Inflections of nouns in English:
 - An affix marking plural,
 - cat(-s), thrush(-es), ox (oxen), mouse (mice)
 - waltz(-es), box(-es), butterfly(-lies)

Survey of (Mostly) English Morphology Inflectional Morphology

- Verbal inflection is more complicated than nominal inflection.
 - English has three kinds of verbs:
 - Main verbs, eat, sleep, impeach
 - Modal verbs, can will, should
 - Primary verbs, be, have, do
 - Morphological forms of regular verbs

stem	walk	merge	try	map
-s form	walks	merges	tries	maps
-ing principle	walking	merging	trying	mapping
Past form or <i>-ed</i> participle	walked	merged	tried	mapped

- These regular verbs and forms are significant in the morphology of English because of their *majority* and being *productive*.

Survey of (Mostly) English Morphology Inflectional Morphology

Morphological forms of irregular verbs

stem	eat	catch	cut
-s form	eats	catches	cuts
-ing principle	eating	catching	cutting
Past form	ate	caught	cut
-ed participle	eaten	caught	cut

Survey of (Mostly) English Morphology Derivational Morphology

• **Nominalization** in English:

The formation of new nouns, often from verbs or adjectives

Suffix	Base Verb/Adjective	Derived Noun
-action	computerize (V)	computerization
-ee	appoint (V)	appointee
-er	kill (V)	killer
-ness	fuzzy (A)	fuzziness

Adjectives derived from nouns or verbs

Suffix	Base Noun/Verb	Derived Adjective
-al	computation (N)	computational
-able	embrace (V)	embraceable
-less	clue (A)	clueless

Survey of (Mostly) English Morphology Derivational Morphology

- Derivation in English is more complex than inflection because
 - Generally less productive
 - A nominalizing affix like *-ation* can not be added to absolutely every verb. *eatation*(*)
 - There are subtle and complex meaning differences among nominalizing suffixes. For example, *sincerity* has a subtle difference in meaning from *sincereness*.

• Parsing English morphology

Input	Morphological parsed output
cats	cat +N +PL
cat	cat +N +SG
cities	city +N +PL
geese	goose +N +PL
goose	(goose +N +SG) or (goose +V)
merging	merge +V +PRESENT-PARTICIPAL
caught	(caught +V +PAST-PARTICIPAL)

- We need at least the following to build a morphological parser:
 - 1. Lexicon: the list of stems and affixes, together with basic information about them (Noun stem or Verb stem, etc.)
 - 2. Morphotactics: the model of morpheme ordering that explains which classes of morphemes can follow other classes of morphemes inside a word. E.g., the rule that English plural morpheme follows the noun rather than preceding it.
 - 3. Orthographic rules: these spelling rules are used to model the changes that occur in a word, usually when two morphemes combine (e.g., the $y\rightarrow ie$ spelling rule changes city + -s to cities).

Finite-State Morphological Parsing The Lexicon and Morphotactics

- A lexicon is a repository for words.
 - The simplest one would consist of an explicit list of every word of the language.
 Incovenient or impossible!
 - Computational lexicons are usually structured with
 - a list of each of the stems and
 - Affixes of the language together with a representation of morphotactics telling us how they can fit together.
 - The most common way of modeling morphotactics is the finite-state automaton.

Reg-noun	Irreg-pl-noun	Irreg-sg-noun	plural
fox	geese	goose	-S
fat	sheep	sheep	
fog	Mice	mouse	
fardvark			

An FSA for English nominal inflection

Finite-State Morphological Parsing The Lexicon and Morphotactics

An FSA for English verbal inflection

Reg-verb-stem	Irreg-verb-stem	Irreg-past-verb	past	Past-part	Pres-part	3sg
walk	cut	caught	-ed	-ed	-ing	-s
fry	speak	ate				
talk	sing	eaten				
impeach	sang					
	spoken					

Finite-State Morphological Parsing The Lexicon and Morphotactics

- English derivational morphology is more complex than English inflectional morphology, and so automata of modeling English derivation tends to be quite complex.
 - Some even based on CFG
- A small part of morphosyntactics of English adjectives

An FSA for a fragment of English adjective Morphology#1

big, bigger, biggest cool, cooler, coolest, coolly red, redder, reddest clear, clearer, clearest, clearly, unclear, unclearly happy, happier, happiest, happily unhappy, unhappier, unhappiest, unhappily real, unreal, really

- The FSA#1 recognizes all the listed adjectives, and ungrammatical forms like *unbig*, *redly*, and *realest*.
- Thus #1 is revised to become #2.
- The complexity is expected from English derivation.

An FSA for a fragment of English adjective Morphology#2

An FSA for another fragment of English derivational morphology

- We can now use these FSAs to solve the problem of morphological recognition:
 - Determining whether an input string of letters makes up a legitimate English word or not
 - We do this by taking the morphotactic FSAs, and plugging in each "sub-lexicon" into the FSA.
 - The resulting FSA can then be defined as the level of the individual letter.

Morphological Parsing with FSM

- Given the input, for example, cats, we would like to produce cat +N +PL.
- Two-level morphology, by Koskenniemi (1983)
 - Representing a word as a correspondence between a lexical level
 - · Representing a simple concatenation of morphemes making up a word, and
 - The surface level
 - Representing the actual spelling of the final word.
- Morphological parsing is implemented by building mapping rules that maps letter sequences like *cats* on the surface level into morpheme and features sequence like cat +N +PL on the lexical level.

Lexical 💈	С	а	t	+N	+PL		<u>}</u>
Surface {	С	а	t	s			ş

Morphological Parsing with FSM

- The automaton we use for performing the mapping between these two levels is the **finite-state Machine** or **FSM**.
 - A transducer maps between one set of symbols and another;
 - An FSM does this via a finite automaton.
- Thus an FSM can be seen as a two-tape automaton which **recognizes** or
 - **generates** *pairs* of strings.
- The FSM has a more general function than an FSA:
 - An FSA defines a formal language
 - An FSM defines a relation between sets of strings.
- Another view of an FSM:
 - A machine reads one string and generates another.

Morphological Parsing with FSM

FSM as recognizer:

 a transducer that takes a pair of strings as input and output accept if the string-pair is in the string-pair language, and a reject if it is not.

FSM as generator:

 a machine that outputs pairs of strings of the language. Thus the output is a yes or no, and a pair of output strings.

FSM as transducer:

A machine that reads a string and outputs another string.

• FSM as set relater:

A machine that computes relation between sets.

Finite-State Morphological Parsing Morphological Parsing with FSM

- A formal definition of FST (based on the **Mealy machine** extension to a simple FSA):
 - Q: a finite set of N states $q_0, q_1, ..., q_N$
 - Σ: a finite alphabet of complex symbols. Each complex symbol is composed of an input-output pair i : o; one symbol I from an input alphabet I, and one symbol o from an output alphabet O, thus $\Sigma \subseteq I \times O$. I and O may each also include the epsilon symbol ε .
 - $-q_0$: the start state
 - F: the set of final states, $F \subseteq Q$
 - $\delta(q, i:o)$: the transition function or transition matrix between states. Given a state $q \in Q$ and complex symbol $i:o \in \Sigma$, $\delta(q, i:o)$ returns a new state $q' \in Q$. δ is thus a relation from $Q \times \Sigma$ to Q.

Finite-State Morphological Parsing Morphological Parsing with FSM

- FSAs are isomorphic to regular languages, FSMs are isomorphic to regular relations.
- Regular relations are sets of pairs of strings, a natural extension of the regular language, which are sets of strings.
- FSMs are closed under union, but generally they are not closed under difference, complementation, and intersection.
- Two useful closure properties of FSMs:
 - Inversion: If T maps from I to O, then the inverse of T, T⁻¹ maps from O to I.
 - **Composition:** If T_1 is a Machine from I_1 to O_1 and T_2 a Machine from I_2 to O_2 , then $T_1 \circ T_2$ maps from I_1 to O_2

Morphological Parsing with FSM

- Inversion is useful because it makes it easy to convert a FSM-as-parser into an FSM- as-generator.
- Composition is useful because it allows us to take two transducers than run in series and replace them with one complex transducer.

$$- T_{1\circ} T_2(S) = T_2(T_1(S))$$

A Machine for English nominal number inflection T_{num}

Reg-noun	Irreg-pl-noun	Irreg-sg-noun
fox	g o:e o:e s e	goose
fat	sheep	sheep
fog	m o:i u:es:c e	mouse
aardvark		

Morphological Parsing with FSM

The transducer T_{stems} , which maps roots to their root-class

Morphological Parsing with FSM

A fleshed-out English nominal inflection

$$FSM T_{lex} = T_{num^{\circ}} T_{stems}$$

Orthographic Rules and FSM

• Spelling rules (or orthographic rules)

Name	Description of Rule	Example
Consonant doubling	1-letter consonant doubled before -ing/-ed	beg/begging
E deletion	Silent e dropped before -ing and -ed	make/making
E insertion	e added after -s, -z, -x, -ch, -sh, before -s	watch/watches
Y replacement	-y changes to -ie before -s, -i before -ed	try/tries
K insertion	Verb ending with $vowel + -c$ add $-k$	panic/panicked

These spelling changes can be thought as taking as input a simple concatenation of morphemes and producing as output a slightly-modified concatenation of morphemes.

