TD 9

IPESUP - PC

17/01/24

1 Jet d'eau sur une plaque

On suspend une plaque rectangulaire de dimensions $l \times L$ par une extrémité, puis on dirige sur la plaque un jet d'eau horizontal d'épaisseur e à une vitesse $\vec{v_0}$, et à une distance h du point d'accroche. Au contact de la plaque, le jet d'eau se scinde en deux jets d'épaisseur e' et e''. Sous l'impact du jet, la plaque s'incline d'un angle α par rapport à la verticale. On néglige l'influence de la gravité sur le jet

- 1. En appliquant le TMC, calculer α .
- 2. Calculer la force exercée par l'eau sur la plaque
- 3. Calculer e et e''.

FIGURE 1 - Schéma du jet d'eau

2 Manomètre

Considérons un écoulement avec un débit Q, à travers une contraction. Les pressions à l'amont et à l'aval de la contraction sont mesurées à l'aide d'un manomètre (voir figure) contenant de l'huile de masse volumique $\rho_e < \rho_h$. Les sections amont et aval sont notées respectivement A1 et A2. Déterminer la hauteur h donnée par le manomètre

FIGURE 2 – Manomètre

3 Vortex de Rankine:

On considère un grand récipient rempli d'eau dans lequel on créé un tourbillon de vecteur de vorticité $\vec{\Omega} = \omega \vec{u_z}$, dans un cylindre de rayon a. La vorticité est nulle pour r>a. On considèrre que le récipient est suffisament grand pour que le fluide occupe tout le demi-espace z<0.

- 1. Déterminer le champ de pression on tout point du fluide.
- 2. Quelle est la forme de la surface libre?

4 Centrale PC 1 2023

On traitera les questions 27 à 33.