Problem Two

In the following X_n is the number of individuals in the *n*'th generation, X_0 is the initial population, $\mu = E[children\ per\ individual],\ p_j = P\{an\ individual\ has\ j\ offspring\}$. The distributions that are analyzed are listed in table 1

	p_0	p_1	p_2	p_3
Ι	0.6	0.05	0.15	0.2
\mathbf{II}	0.25	0.60	0.10	0.05

Table 1: The probability distributions given in Problem Two.

Chapter 4.7 in [?] presents some results that are used in this problem. Below is some properties of branching processes discussed.

Generally, the mean number, and the variance, of offspring of a single individual is

$$\mu = \sum_{j=0}^{\infty} j P_j$$
 and $\sigma^2 = \sum_{j=0}^{\infty} (j - \mu)^2 P_j$ (1)

respectively.

For both our distributions $\mu = 0.95$, and since $\mu < 1$ the population will eventually die out. Defining Z_i to be the number of offspring of the *i*'th individual for the (n-1)th generation, one can find

$$X_n = \sum_{i=1}^{X_{n-1}} Z_i \tag{2}$$

in the edge case where $X_0 = 1$. One can then obtain

$$E[X_n] = E[E[X_n|X_{n-1}]] = E\left[E\left[\sum_{i=1}^{X_{n-1}} Z_i|X_{i-1}\right]\right] = E[X_{n-1}]\mu \qquad (3)$$

which leads to the result

$$E[X_1] = \mu, \quad E[X_2] = \mu E[X_1] = \mu^2, \quad \cdots, \quad E[X_n] = \mu^n.$$
 (4)

It can then be shown that the variance is

$$Var(X_n) = \begin{cases} \sigma^2 \mu^{n-1} \cdot \frac{1-\mu^n}{1-\mu}, & \mu \neq 1 \\ n\sigma^2, & \mu = 1 \end{cases}$$
 (5)

When doing simulations, the estimated mean value and standard deviation is given by

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \qquad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} X_i - \bar{X},$$
 (6)

respectively.

a.

The mean and standard deviation is found analytically from eq. (1), eq. (4) and eq. (5), and is presented in table 2.

\overline{n}	$E[X_n]$	$SD_I[X_n]$	$SD_{II}[X_n]$
10	0.5987	2.7977	2.7692
100	0.0059	0.4379	0.0678
1000	5.2912e-23	4.1529e-11	2.4697e-11

Table 2: Analytical values of the mean $E[X_n]$ and the standard deviation, SD (= $Var^{\frac{1}{2}}[X_n]$) for distribution I and II.

The branching process was simulated a hundred thousand times for each of the probability distributions. The values in table 3 were computed by running

```
% No. of simulations
N = 100000;
% Size of the first population
init = 1;
% Distribution I = p1 and II = p2
p1 = [0.60 0.05 0.15 0.20];
p2 = [0.25 0.60 0.10 0.05];
% Run the simulations for I and II
branchtrials(N, init, p1);
branchtrials(N, init, p2);
```

The simulated values is indeed very close to the ones found analytically for both distributions. Given that the MATLAB rand()-function is uniform, the

n	$E_I[X_n]$	$E_{II}[X_n]$	$E_{III}[X_n]$	$SD_I[X_n]$	$SD_{II}[X_n]$	$SD_{III}[X_n]$
10	0.6007	0.5989	0.0554	2.8099	1.6708	0.4662
100	0.0060	0.0050	0	0.4583	0.2392	0
1000	0	0	0	0	0	0

Table 3: Simulated values of the mean $E[X_n]$ and the standard deviation, SD (= $Var^{\frac{1}{2}}[X_n]$) for distribution I and II.

simulated values would probably become even more accurate if the number of simulations is increased. No simulation ever reached n = 1000, but this is only natural considering the low probability for that to happen.

Case (i), (ii) and (iii) are presented in table 4 for both distributions.

	Distribution I		Distribution II		Distribution III	
Case	$E[\cdot]$	$SD[\cdot]$	$E[\cdot]$	$SD[\cdot]$	$E[\cdot]$	$SD[\cdot]$
(i)	4.5197	7.1409	8.2460	10.8820	3.5185	2.5587
(ii)	19.9991	109.4967	19.9830	65.9630	3.9787	7.0344
(iii)	2.9699	5.4466	2.3411	2.9429	1.5572	1.1611

Table 4: Simulated values of the mean $E[X_n]$ and the standard deviation, SD $(=Var^{\frac{1}{2}}[X_n])$ for distribution I and II.

b.

```
% Defining a third distribution
p3 = [0.50 0.30 0.15 0.05];
% Run the simulations for III
branchtrials(N, init, p3);
```

The three different cases are presented in figs. 1 to 3 as histograms, grouped by probability distribution.

Figure 1: Case (i), (ii) and (iii) for distribution ${\bf I}$

Figure 2: Case (i), (ii) and (iii) for distribution ${\rm II}$

Figure 3: Case (i), (ii) and (iii) for distribution III