Modèle de Von Neumann - Résumé

qkzk

Modèle de Von Neumann

- Unité de commande : contrôle la séquence d'instruction
- Unité arithmétique : exécution de ces instruction
- Processeur : réalise les calculs
- Mémoire : contient les données et les programmes
- Entrées : clavier, cartes perforées, etc.
 Sorties : affichages, imprimantes, écran

Cycle

La machine fonctionne par cycle :

- fetch
- read
- execute

Durant chaque cycle elle récupère une instruction, la décode et la réalise.

Unité de commande

Elle contrôle les instructions réalisées par la machine.

C'est elle qui récupère les instructions et les décode.

Elle s'occupe donc des parties "fetch" et "read"

Unité arithmétique et logique

Elle s'occupe de réaliser les calculs à effectuer.

Tous les calculs correspondent à des circuits électroniques dont on contrôle les entrées et sorties.

EX: l'additionneur 1 bit.

Mémoire

La mémoire est constituée de cellule de 1 octet disposant d'une adresse.

On peut lire et écrire dans chaque cellule.

On y trouve à la fois les données et les programmes.

Les composants

L'ordinateur utilise seulement des 0 et des 1. Les composants fonctionnent souvent en 5V (parfois 12V, parfois 3.3V, plus rarement autre chose).

+5V:1: True 0V:0: False

Le transistor

Figure 1: transistor

C'est un interrupteur contrôlable. Il dispose de 3 broches (2 entrées, 1 sortie.)

Il existe différent modèle mais, par exemple, si la base est alimentée, le courant circule entre le collecteur et l'emeteur. Sinon, il ne circule pas.

Circuit intégré

Composé de plusieurs transistors.

Opérations booléennes

En combinant les transistors on forme les portes logiques.

Mémoire vive

La mémoire vive est elle-même un circuit électronique. Tant qu'elle est alimentée, elle permet de conserver de l'information. Dès qu'elle n'est plus alimentée, l'information est perdue. Unité minimale : l'octet.

Le processeur

Les processeurs modernes comportent tous les éléments du modèles de Von Neumann :

- des registres (mémoire vive)
- Unité arithmétique et logique
- Unité de commande

Les bus

L'information circule dans des bus. Physiquement, des câbles. Il existe différents bus (au moins adresses, données, contrôle)

L'évolution des performances

A explosé depuis l'invention des premiers ordinateurs. Avant ça, les progrès étaient déjà fulgurants.

Loi de Moore (1965) :

tous les 18 mois, le nombre de transistor par processeur double

Restée valable jusqu'en 2005.

Problème de la chaleur

Depuis : insoluble problème de la dissipation de la chaleur.

La surface de contact a diminué, on ne peut plus dissiper la chaleur.

Évolution moderne : multicoeur

Autre approche : multiplier les coeurs dans un processeur.

Coeur = UAL, registres et unité de commande.

Un coeur peut exécuter des programmes de façon autonome.

Difficulté : programmer les machines en parallèle.

Assembleur

Quelques principes

- Les instructions machines sont propres à chaque processeur (heureusement, il existe des principes communs de grandes familles).
- Les humains programment les machines dans des langages plus haut niveau.

Langages de différents niveaux

- 1. langage machine: 01111111 11001010 01001000
- 2. assembleur : ADD, RO, RO, #3 : ajoute le contenu de RO au nombre 3, stocke le dans RO.
- 3. langage haut niveau:
- 4. C, Rust etc. : on peut contrôler directement la mémoire et piloter du matériel La majorité des pilotes matériels sont écrits en C (à ma connaissance).
- 5. langages haut niveau : pas d'accès direct aux composants.

Donc, pour contrôler du matériel directement, un humain écrit en assembleur. Un programme ('l'assembleur') le compile en langage machine.

Un *compilateur* est un programme qui traduit du langage haut niveau en langage machine. Ex : gcc (linux) compile du C en langage machine.

Exemples d'instructions en assembleur

- SUB R1, R0, #30
 réalise la soustraction R0 30 et stocke le résultat dans R1.
- LDR R0, 70

 Place le contenu de la mémoire 70 dans le registre R0
- STR RO, 123
- Stocke le contenu de R0 à l'adresse mémoire 123.
- CMP RO, #24

Compare le registre R0 et le nombre 24

• BEQ label

Deux parties:

- BEQ: Branch Equal (BNE, BGT, BLT etc.):
- label : un label = une adresse spécifique de la mémoire.

Si la dernière 'comparaison' est égale, continue au label Sans "branchement", la machine exécute les instructions en allant d'une adresse à la suivante.