Лабораторная работа №2

Традиционные шифры с симметричным ключом

Дугаева Светлана Анатольевна, НФИмд-02-22

Содержание

Цель работы	5
Задание	6
Теоретическое введение	7
Реализация шифрования с помощью решеток	8 8 9 9
Выволы	12

Список таблиц

Список иллюстраций

0.1	код1																				8
0.2	код2																				9
0.3	код3																				10
0.4	кол4																				11

Цель работы

Цель данной работы — изучить и программно реализовать шифры перестановки.

Задание

Заданием является:

- Реализовать маршрутное шифрование
- Реализовать шифрование с помощью решеток
- Реализовать таблицу Виженера

Теоретическое введение

Шифры перестановки преобразуют открытый текст в криптограмму путём перестановки его символов. Способ, каким при шифровании переставляются буквы открытого текста, и является ключом шифра. Важным требованием является равенство длин ключа исходного текста.

Выполнение лабораторной работы

Для реализации шифров мы будем использовать Python, так как его синтаксис позволяет быстро реализовать необходимые нам алгоритмы.

Реализация маршрутного шифрования

Код маршрутного шифрования реализуем в виде функции следующего вида:

ERHYYEVNEHEEEOR

Рис. 0.1: код1

Для проверки ввели текст как в лабораторной работе, получили тот же результат.

Реализация шифрования с помощью решеток

Шифрование с помощью решеток реализуем в виде функции следующего вида:

```
def vig(text, key):
    key_len = len(key)
    key_i = [ord(i) for i in key]
    text_i = [ord(i) for i in text]
    res = ''
    for i in range(len(text_i)):
        val = (text_i[i] + key_i[i % key_len]) % 26
        res += chr(val + 65)
    return res
print(vig('HEYAREYOUSTILLHERE', 'DUCK'))
```

KYAKUYAYXMVSOFJOUY

Рис. 0.2: код2

Для проверки ввели текст как в лабораторной работе, получили тот же результат.

Реализация таблицы Виженера

Таблицу Виженера реализуем в виде функций следующего вида:

```
import numpy as np
def resh(text, key):
    ru_letters = 'абвгдеёжзийклмнопрстуфхцчшщъыьэюя'
    k_2 = [x+1 \text{ for } x \text{ in } range(k*k)]
    matr = [[0 for x in range(2*k)]for y in range(2*k)]
    matr = np.array(matr)
    for x in range(k*k):
        cou = 0
        for x in range(k):
            for y in range(k):
                 matr[x][y] = k_2[cou]
                 cou += 1
        matr = np.rot90(matr)
    d_s = \{k: 0 \text{ for } k \text{ in } k_2\}
    d_ss = \{1:2, 2:4, 3:3, 4:3\}
    for x in range(k*k):
        for y in range(k*k):
             d_s[matr[x][y]] += 1
             if d_s[matr[x][y]] != d_ss[matr[x][y]]:
                 matr[x][y] = -1
             else:
                 matr[x][y] = 0
```

Рис. 0.3: код3

```
cou_p = 0
    text1 = iter(text)
    matr_p = [['0' for y in range(k*k)] for x in range(k*k)]
    for d in range(4):
        for x in range(k*k):
            for y in range(k*k):
                if matr[x][y] == 0:
                    matr_p[x][y] = text[cou_p]
                    cou_p += 1
        matr = np.rot90(matr, -1)
    key_3 = [ru_letters.index(x) for x in key]
    key_sort = sorted(key_3)
    res = ''
    for i in key_sort:
        for x in range(k*k):
            res += matr_p[x][key_3.index(i)]
    return(res)
print(resh('приветпокаконецс', 'беги'))
```

натоексвкерппцио

Рис. 0.4: код4

Выводы

В рамках выполненной лабораторной работы мы изучили и реализовали следующие шифры: маршрутное шифрование, шифрование с помощью решеток, таблицу Виженера.