	Lecture 5 - Evaluation
	Last time: $MSE = \frac{1}{N} \sum_{n=1}^{N} (y_n - \hat{y}_n)^2$ $\hat{y}_n = \hat{f}(x_n)$ training data: $\hat{s}(y_n, x_n) \hat{s}_{n=1}$
	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}$
	What do I care about when evaluating a wethod.
	things I don't cave about:
	performence of f on the trains dater Things I care about: The arguer of yn performence of f an new data I havent seen before.
	Things I care about: the arguer of you
	performence of f an new data I havent seen before.
	SI don't Know the
	Defer: training data: data fed to approach to create for furetor of training data
	3(7h, yn)3n=1 traing data
	fest data! data from the some data generally process but that wasn't used to "train" f. S(x, y, y, s) S=1
1	but fleet wasn't used to "train" f.
	S(2(* 1, *\>\)

reletionship

I'm not follows the five metry trevel, I'm chasing the norse.

when I generate new data:
it want follow house, but the underly frend.

We call this over fitting.

mderfitting overfitting training metric

f=armin te [L(b)] test
metric

sweet spot

espect spot

especial spot

espect spot

espect spot

espect spot

espect spot

especial s training less flexible more flexibility - KNN w/ low K-1 - KNN w/ high K= N lin. reg. u/ lots of added covs. - lin. rg. w/ (av p (uct many coss.) inflexible

Lecture Notes Page 4

(1) train on all folds but randomly datak Split in "folds" evaluate on & the feld -> after this I get K metrics M1, M2, -- 3 MK Sunmarize into a final metric eig. m = median (m,, -, mx).