Министерство науки и высшего образования Российской Федерации

Федеральное государственное вюджетное образовательное учреждение высшего образования Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет) (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления» «Программное обеспечение ЭВМ и информационные технологии»		
КАФЕДРА			
НАПРАВЛЕНІ	ИЕ ПОДГОТОВКИ «09.03.04 Программная инженерия»		

ОТЧЕТ по лабораторной работе №2

Название:	Интервальные оценки			
Дисциплина:	Математическа	я статистика		
Студент	<u>ИУ7-66Б</u> Группа	Подпись, дата	А.Д. Ковель И.О.Фамилия	
Преподаватель		Подпись, дата	Т. В. Андреева И. О. Фамилия	

1 Содержание

Цель работы: построение доверительных интервалов для математического ожидания и дисперсии нормальной случайной величины

- 1. Для выборки объема n из генеральной совокупности X реализовать в виде программы на ЭВМ:
 - а) вычисление точечных оценок $\hat{\mu}(\vec{X}_n)$ и $S^2(\vec{X}_n)$ математического ожидания MX и дисперсии DX соответственно;
 - b) вычисление нижней и верхней границ $\underline{\mu}(\vec{X}_n), \overline{\mu}(\vec{X}_n)$ для γ -доверительного интервала для математического ожидания MX;
 - с) вычисление оценок $\hat{\mu}$ и S^2 математического ожидания МХ и дисперсии DX;
 - d) вычисление нижней и верхней границ $\underline{\sigma}^2(\vec{X}_n)$, $\overline{\sigma}^2(\vec{X}_n)$ для γ -доверительного интервала для дисперсии DX;
- 2. вычислить $\hat{\mu}$ и S^2 для выборки из индивидуального варианта;
- 3. для заданного пользователем уровня доверия γ и N объёма выборки из индивидуального варианта:
 - а) на координатной плоскости Oyn построить прямую $y = \hat{\mu}(\vec{x_N})$, также графики функций $y = \hat{\mu}(\vec{x_n})$, $y = \underline{\mu}(\vec{x_n})$ и $y = \overline{\mu}(\vec{x_n})$ как функций объема n выборки, где n изменяется от 1 до N;
 - b) на другой координатной плоскости Ozn построить прямую $z=S^2(\vec{x_N})$, также графики функций $z=S^2(\vec{x_n}),\ z=\underline{\sigma}^2(\vec{x_n})$ и $z=\overline{\sigma}^2(\vec{x_n})$ как функций объема n выборки, где n изменяется от 1 до N.

2 Теоретические сведения

Дана случайная величина X, закон распределения которой известен с точностью до неизвестного параметра θ .

Интервальной оценкой с коэффициентом доверия γ (γ -доверительной интервальной оценкой) параметра θ называют пару статистик $\underline{\theta}(\vec{X}), \overline{\theta}(\vec{X})$ таких, что

$$P\{\underline{\theta}(\vec{X}) < \theta < \overline{\theta}(\vec{X})\} = \gamma$$

Формулы для вычисления границ γ -доверительного интервала для математического ожидания:

$$\underline{\mu}(\vec{X}_n) = \overline{X} - \frac{S(\vec{X})t_{\frac{1+\gamma}{2}}^{St(n-1)}}{\sqrt{n}}; \quad \overline{\mu}(\vec{X}_n) = \overline{X} + \frac{S(\vec{X})t_{\frac{1+\gamma}{2}}^{St(n-1)}}{\sqrt{n}}$$
(2.1)

 \overline{X} – точечная оценка математического ожидания;

 $S^2(\vec{X})$ – точечная оценка дисперсии;

n – объем выборки;

 γ – уровень доверия;

 $t_{\frac{1+\gamma}{2}}^{St(n-1)}$ — квантили соответствующих уровней распределения Стьюдента с n - 1 степенями свободы.

Формулы для вычисления границ γ -доверительного интервала для дисперсии:

$$\underline{\sigma}(\vec{X}_n) = \frac{(n-1)S^2(\vec{X})}{t_{\frac{1+\gamma}{2}}^{\chi^2(n-1)}}; \ \overline{\sigma}(\vec{X}_n) = \frac{(n-1)S^2(\vec{X})}{t_{\frac{1-\gamma}{2}}^{\chi^2(n-1)}}$$
(2.2)

 $S^2(\vec{X})$ – точечная оценка дисперсии;

n – объем выборки;

 γ – уровень доверия;

 $t_{\frac{1+\gamma}{2}}^{\chi^2(n-1)}$ – квантили соответствующих уровней распределения $\chi^2(n-1)$ с n - 1 степенями свободы.

3 Результаты расчетов

- 1. Точечные оценки $\hat{\mu}(\vec{x}_n)$ и $S^2(\vec{x}_n)$ математического ожидания МХ и дисперсии DX соответственно: $\hat{\mu}(\vec{x}_n) = -4.758, S^2(\vec{x}_n) = 0.812$
- 2. Вычисление нижней и верхней границ $\underline{\mu}(\vec{x}_n), \overline{\mu}(\vec{x}_n)$ для γ -доверительного интервала для математического ожидания DX: $\underline{\mu}(\vec{x}_n) = -4.894, \overline{\mu}(\vec{x}_n) = -4.622$
- 3. Вычисление нижней и верхней границ $\underline{\sigma}(\vec{x}_n)$, $\overline{\sigma}(\vec{x}_n)$ для γ -доверительного интервала для математического ожидания МХ: $\underline{\sigma}(\vec{x}_n) = 0.664$, $\overline{\sigma}(\vec{x}_n) = 1.019$

Рисунок 3.1 – Прямая $y = \hat{\mu}(\vec{x}_N)$ и графики функций $y = \hat{\mu}(\vec{x}_n), y = \underline{\mu}(\vec{x}_n), y = \overline{\mu}(\vec{x}_n)$ как функций объема п выборки, где п изменяется от 1 до N.

Рисунок 3.2 – Прямая $z=\hat{S}^2(\vec{x}_N)$ и графики функций $z=S^2(\vec{x}_n), z=\underline{\sigma}^2(\vec{x}_n), z=\overline{\sigma}^2(\vec{x}_n)$ как функций объема п выборки, где п изменяется от 1 до N.