Hyperlocal Air-Quality Prediction in Houston, TX

Kaveri Chhikara, Carolyn Vilter, Vishal Vincent Joseph, Vignesh Venkatachalam

Background and Motivation

- Existing air monitoring network in the US today is shockingly sparse and the USEPA currently has < 2500 unique monitoring stations measuring criteria pollutants
- EDF and Google partnership to create hyperlocal sensor networks in multiple cities across the world using Google Street View Cars
- Our Focus:
 - o <u>Location:</u> 22 neighborhoods of Houston
 - Energy Capital of US
 - Currently lacks zoning
 - Robust project methodology
 - Target pollutant: NO2
 - Better data availability
 - Appreciably higher levels closer to pollution sources
 - o Time Period: Jul 2017 Mar 2018

Data Sources

1. Google-EDF hyperlocal NO₂ monitoring data

Data Sources

2. Traffic Intersections data

Data Sources

3. EDF Pollution Facilities data

4. DAYMET 1km-grid weather data

Models: Feature selection, CV & hyperparameters

Class	Model	Feature Selection	Cross Validation	Hyperparameters
Linear	OLS (Baseline)	Univariate Screening (Pearson's Correlation)		
	Linear Regression	w/ & w/o PCA		
	Lasso Regression	Embedded	GridSearchCV	alpha: [1e ⁻⁵ , 1e ⁻⁴ , 1e ⁻³ , 1e ⁻² , 1e ⁻¹ , 1]
	Ridge Regression	Embedded	GridSearchCV	alpha: [1e ⁻⁵ , 1e ⁻⁴ , 1e ⁻³ , 1e ⁻² , 1e ⁻¹ , 1] solver: ['auto', 'svd', 'cholesky', 'sag']
Tree Based	Random Forest	Embedded	RandomizedSearchCV	n_estimators: [100,300,500] max_features: ['auto', 'sqrt', 'log2'] max_depth: range(10,50,10)
	XGBoost	Embedded	RandomizedSearchCV	n_estimators: range(50,500,50) max_depth: range(5,50,5)
NN			,	,

Model Evaluation and Feature Importance

Results: Selecting regions for NO₂ prediction

Results: Selecting regions for NO₂ prediction

Results: NO₂ predictions for the selected regions

We observe relatively higher NO₂ concentrations in one of the regions

Results: NO₂ predictions in context of all Houston

In the larger context of all of Houston's NO₂ concentration, however, the two identified regions do not show much variation.

Future Improvements

- Resolving Missing Data:
 - Facilities classified as "unknown" are being dropped for now and will require manual work/identification

- Additional Target Variables with Policy Significance:
 - Further explore the relationship between Air Quality and key policy relevant factors like Life Expectancy, Asthma prevalence and Poverty

- Model Tuning:
 - Improve on existing Neural Network architecture by experimenting with additional layers, neurons and activation functions
 - Include more hyperparameters in sklearn models and tune using Grid Search instead of Randomized Search for tree based models