Tutorial questions- 10

Let
$$A=egin{bmatrix}1&0\\0&2\end{bmatrix}$$
, $B=egin{bmatrix}0&1\\1&0\end{bmatrix}$. Determine if A and B are in
$$\mathrm{span}\,\{M_1,M_2\}=\mathrm{span}\,\left\{egin{bmatrix}1&0\\0&0\end{bmatrix},egin{bmatrix}0&0\\0&1\end{bmatrix}\right\}$$

Show that
$$p(x)=7x^2+4x-3$$
 is in $\mathrm{span}\,\big\{4x^2+x,x^2-2x+3\big\}.$

Let
$$S = \{x^2 + 1, x - 2, 2x^2 - x\}$$

. Show that S is a spanning set for \mathbb{P}_2 , the set of all polynomials of degree at most 2.

Determine whether the polynomial $p_1 = 1 - x + 2x^2$, $p_2 = 5 - x + 4x^2$, $p_3 = -2 + -2x + 2x^2$ span P_2 .

For Problems 1–3, determine whether the given set of vectors spans \mathbb{R}^2 .

- 1. $\{(1, -1), (2, -2), (2, 3)\}.$
- **2.** {(2, 5), (0, 0)}.
- 3. $\{(6, -2), (-2, 2/3), (3, -1)\}.$

Show that $\mathbf{v}_1 = (-1, 3, 2)$, $\mathbf{v}_2 = (1, -2, 1)$, $\mathbf{v}_3 = (2, 1, 1)$ span \mathbb{R}^3 , and express $\mathbf{v} = (x, y, z)$ as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 .

Determine whether the vectors

$$\mathbf{v}_1 = (1, -1, 4), \, \mathbf{v}_2 = (-2, 1, 3), \, \text{and} \, \mathbf{v}_3 = (4, -3, 5)$$

span \mathbb{R}^3 .

Determine if the given set of vectors is a linearly independent set in \Re^3 .

2.
$$\{(0,0,0),(-6,4,-5)\}$$

4.
$$\left\{ (3, -2, \frac{5}{2}), (-6, -4, -5), (1, 2, 0) \right\}$$