Joshua S. Rule

Department of Psychology University of California, Berkeley 2121 Berkeley Way Berkeley, CA 94704 rule@berkeley.edu https://joshrule.com

Research Interests

Computational cognitive science, conceptual development, mathematical development, probabilistic modeling, program induction, programming language theory, foundations of computation

Academic Positions

2020-PRES. University of California, Berkeley

Postdoctoral Scholar

Advisors: Alison Gopnik, Steven T. Piantadosi

2013-2020 Massachusetts Institute of Technology

Graduate Student

Advisor: Joshua B. Tenenbaum

2010-2013 Georgetown University

Research Assistant & Lab Manager Advisor: Maximilian Riesenhuber

2009 University of Illinois, Urbana-Champaign

Research Assistant Advisor: Dan Roth

Education

2020 Massachusetts Institute of Technology

PhD, Brain & Cognitive Sciences, Thesis Advisor: Joshua B. Tenenbaum

2009 University of Illinois Urbana-Champaign

BS, Computer Science, Summa cum Laude

BA, Philosophy, Magna cum Laude

Awards & Honors

2016 Angus MacDonald Award for Excellence in Undergraduate Teaching, MIT

2015 Glushko Student Travel Award, Cognitive Science Society

2014 Graduate Research Fellowship, National Science Foundation

Eugene Stark Graduate Fellowship, MIT

2013 Leventhal Graduate Fellowship, MIT

2010 University Honors, UIUC, top 3% of graduating class

Journal Articles & Book Chapters

Piantadosi, S. T., Muller, D. C. Y., Rule, J. S., Kaushik, K., Gorenstein, M., Leib, E. R., & Sanford, E. (under review). How cognitive science (probably) figured out concepts.

- Rule, J. S., Goddu, M. K., Chu, J., Pinter, V., Reagan, E. R., Bonawitz, E., Gopnik, A., & Ullman, T. (under review). Winning isn't fun: Children selectively manipulate task difficulty when "playing for fun" vs. "trying to win".
- Rule, J. S., & Piantadosi, S. T. (under review). The end of radical concept nativism.
- Rule, J. S., Piantadosi, S. T., & Tenenbaum, J. B. (under review). Efficient learning of symbolic concepts via metaprogram search.
- Piantadosi, S. T., Rule, J. S., & Tenenbaum, J. B. (2024). Learning as Bayesian inference over programs. In T. L. Griffiths, N. Chater, & J. B. Tenenbaum (Eds.), Bayesian models of cognition: Reverse-engineering the mind. MIT Press.
- Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A. M., Abid, A., Fisch, A., Brown, A. R., Santoro, A., Gupta, A., Garriga-Alonso, A., Kluska, A., Lewkowycz, A., Agarwal, A., Power, A., Ray, A., Warstadt, A., Kocurek, A. W., Safaya, A., Tazarv, A., ... Wu, Z. (2023). Beyond the imitation game: Quantifying and extrapolating the capabilities of language models. Transactions on Machine Learning Research.
- Rule, J. S., & Riesenhuber, M. (2021). Leveraging prior concept learning improves ability to generalize from few examples in computational models of human object recognition. Frontiers in Computational Neuroscience.
- Rule, J. S., Piantadosi, S. T., & Tenenbaum, J. B. (2020). The child as hacker. Trends in Cognitive Sciences.
- Glezer, L. S., Kim, J., Rule, J., Jiang, X., & Riesenhuber, M. (2015). Adding words to the brain's visual dictionary: Novel word learning selectively sharpens orthographic representations in the VWFA. Journal of Neuroscience, 35(12).

Conference Papers

- Rule, J., Schulz, E., Piantadosi, S. T., & Tenenbaum, J. B. (2018). Learning list concepts through program induction. Proceedings of the Cognitive Science Society.
- Rule, J., Dechter, E., & Tenenbaum, J. B. (2015). Representing and learning a large system of number concepts with Latent Predicate Networks. Proceedings of the Cognitive Science Society.
- Sammons, M., Vydiswaran, V. G. V., Vieira, T., Johri, N., Chang, M.-W., Goldwasser, D., Srikumar, V., Kundu, G., Tu, Y., Small, K., Rule, J., Do, Q., & Roth, D. (2009). Relation alignment for textual entailment recognition. Proceedings of the Textual Alignment Conference.

Abstracts & Posters

- Rule, J. S., & Piantadosi, S. T. (2023). Algorithmic foundations of mathematical development [Symposium chair]. Proceedings of the Mathematical Cognition and Learning Society.
- Goddu, M. K., Rule, J. S., Bonawitz, E., Gonik, A., & Ullman, T. (2022a). Fun isn't easy: Children optimize for difficulty when "playing for fun" vs. "playing to win" in a game design task [Talk and abstract]. Budapest CEU Conference on Cognitive Development Programs and Abstracts.
- Goddu, M. K., Rule, J. S., Bonawitz, E., Gonik, A., & Ullman, T. (2022b). Fun isn't easy: Children optimize for difficulty when "playing for fun" vs. "playing to win" in a game design task [Poster and abstract]. Cognitive Development Society Abstract Book.
- Goddu, M. K., Rule, J. S., Bonawitz, E., Gonik, A., & Ullman, T. (2022c). Fun isn't easy: Children optimize for difficulty when "playing for fun" vs. "playing to win" in a game design task [Poster and abstract]. Society for Research in Child Development's Learning through Play and Imagination: Expanding Perspectives.
- Rule, J. S., Piantadosi, S. T., & Tenenbaum, J. B. (2022). Learning as programming: Efficient search in models of human concept learning [Talk and abstract]. Proceedings of the Cognitive Science Society.
- Rule, J. S., Piantadosi, S. T., & Tenenbaum, J. B. (2019). Learning a novel rule-based conceptual system [Poster and abstract]. Proceedings of the Cognitive Science Society.

Dechter, E., Rule, J., & Tenenbaum, J. B. (2015). Latent Predicate Networks: Concept learning with probabilistic context-sensitive grammars [Poster and abstract]. Proceedings of the AAAI Spring Symposium Series.

Dechter, E., Rule, J., & Tenenbaum, J. B. (2014). Unsupervised learning of probabilistic programs with Latent Predicate Networks [Poster and abstract]. Proceedings of the NIPS Workshop on Probabilistic Programming.

Glezer, L. S., Kim, J. S., Rule, J., Jiang, X., & Riesenhuber, M. (2013). Novel word learning selectively sharpens orthographic representations in the VWFA [Poster and abstract]. Neuroscience 2013 Abstracts.

Dissertation

The child as hacker: Building more human-like models of learning Committee: Susan Carey, Steven T. Piantadosi, Laura Schulz (chair), Joshua B. Tenenbaum

Invited Talks

Oct. 2023 Apr. 2022	The child as hacker, Dagstuhl, Approaches and Applications of Inductive Programming The child as hacker, UC Berkeley, CogSci C131 guest lecture
Oct. 2021	The child as hacker, UC Berkeley, Computational Cognitive Neuroscience Lab
Mar. 2021	Learning as hacking, NSF Expeditions: Understanding the world through code, Cognitive
	science working group
Jan. 2021	The child as hacker, MPI Tübingen, Computational Principles of Intelligence Lab
Oct. 2020	The child as hacker, UC Berkeley, Institute for Human Development & Developmental
	Psychology Colloquium
Feb. 2019	Learning in a flexible language of thought, UC Berkeley, Computation and Cognition Lab
Jul. 2018	Learning list concepts through program induction, Cognitive Science Society, Learning as
	Program Induction Workshop
May 2018	Learning structured concepts through program induction, MIT, Brain and Cognitive
	Sciences CogLunch
Jul. 2015	Representing and learning a large system of number concepts with Latent Predicate
	Networks, Cognitive Science Society

Reviewing

CogSci, Trends in Cognitive Sciences, IJCAI-ECAI Workshops, Cognition, OpenMind, eLife

Mentoring

2023 - PRES.	Justine Krieger (Project Manager)
2022	Li Chenyi (BS), MSCS student at NYU Tandon
2020 - 2021	Shardul Chiplunkar (BS), PhD student at EFPL, Switzerland
2018 - 2019	Nicholas Alvarado (BS), Software Engineer, Google
2017	Benjamin Kaplan (BS), Data, Thrive Capital

Teaching

Fall 2015	9.660 - Computational Cognitive Science Teaching Assistant with Joshua Tenenbaum, MIT
Fall 2014	9.660 - Computational Cognitive Science Teaching Assistant with Joshua Tenenbaum, MIT
Spring 2009	CS225 - Data Structures Teaching Assistant with Cinda Heeren, UIUC
Fall 2008	CS225 - Data Structures Teaching Assistant with Cinda Heeren, UIUC
Spring 2008	CS225 - Data Structures Teaching Assistant with Cinda Heeren, UIUC