Practice Problems for chap. 3.

- 1. Let $I=[a_1,b_1]\times[a_2,b_2]$, a closed interval (i.e. rectangle) in IR^2 . Given \$>0, construct an interval I_{ϵ} such that
 - (i) $I \subset \mathring{I}_{\varepsilon}$ (the interior of I_{ε}), (ii) $v(I_{\varepsilon}) - v(z) < \varepsilon$.
- 2. Use the result in Prob.1 to show that Given a sequence of intervals $\{I_{\kappa}\}_{\kappa=1}^{\infty}$ in I_{κ}^{2} and $\epsilon>0$, there exists a sequence of intervals $\{I_{\kappa}\}_{\kappa=1}^{\infty}$ such that
 - (i) $I_k \subset \mathring{I}_k^{\varepsilon}$, k=1,2,...
 - (ii) $\sum_{k=1}^{\infty} v(I_k^{\varepsilon}) < \sum_{k=1}^{\infty} v(I_k) + \varepsilon.$
- 3. Use the definition of the outer measure to show:
 - (i) Let E be a countable set in $1R^2$. Then $|E|_{e} = 0$.
 - (ii) Let E be the edge (4 boundaries) of

an interval I	CIR2.	Then	
\El.	e = 0.		