Real-time Weather Forcasting using Autonomous Deep Learning

Shijia Yan

Motivation

 Traditionally weather forcasting through physical simulations(NWP) needs huge amount of computing power

BBC BBC

Met Office and Microsoft to build climate supercomputer

The Met Office is working with Microsoft to build a weather forecasting supercomputer in the UK. They say it will provide more accurate weather ... 2 days ago

 Machine learning applications can achieve relatively high accuracy while using much less resources – suitable for online service

Architecture	Reference	Recent Developments
convolutional neural network (CNN)	AlexNet (Alex et al. 2012) VGG (Simonyan & Zisserman, 2013) ResNet (He et al. 2015) GoogleLeNet (Szegedy et al. 2015)	VGG (Shi <i>et al.</i> 2018 [66]) ResNet (Pothineni <i>et al.</i> 2019 [68]) Vgg, ResNet (Wen <i>et al.</i> 2020 [70]) Inception blocks (Kleinert <i>et al.</i> 2021 [72])
long short-term memory network (LSTM)	RNN (Bengio <i>et al.</i> 1994) LSTM (Gómez <i>et al.</i> 2003)	LSTM (Qing & Niu, 2018) PhyDNet (Le Guen, 2020)
variational autoencoder (VAE)	Vanilla VAE, 2013	None
generative adversarial neural network (GAN)	Vanilla GAN (Goodfellow et al., 2014)	MD-GAN (Xiong, 2018) conditional GAN (Schmidt <i>et al.</i> 2020)

Workflow overview

Deep Learning Core

- Implemented DEVDAN with weather data(originally in Matlab, rebuilt in Python 2.7)
- Training dataset: NOAA historical data, 3 years, 20 locations, more than 20,000 days of data
- Weather data: daily reported data, consisting of precipitation, snow, wind, sea-level pressure, cloud
- Data chunk: 14-days each chunk
- Best model saved in .h5, ready for prediction

Data Fetching

- Visualcrossing provides 1000 free results per day with 50 years of history
- Open Weather only provides past 5 days data for free
- API key was obtained by creating account at these websites
- Data was then stored and filtered to only high-low temperature, wind, cloud, precipitation and pressure
- Use tf.Session() from keras to load model and generate prediction results

Challenges

Challenges:

- Volume: large amount of data from weather history for training.
 - Data filtering using python, stored in csv file → ready for training
 - Store pre-trained model into .h5, avoid training on-the-fly with whole dataset
- Velocity: long training time
 - Use pre-trained model to generate prediction results
 - Update model by training new models in the background once in a while
- Variety: worldwide locations coverage
 - Hard to obtain worldwide weather data
 - Data in most US cities are available through multiple API websites

Online Forcasting

Weather Forcasting Page

I haven't complete the code using D3.js so we're stuck with this 🕾

Places for improvements

- Result visualization with D3: creating interactive chart page
- Construct higher-dimentional data to improve prediction accuracy
- Obtain data from more sources
- Develop into online Autonomous ML Platform for various other applications
- Q&A

