1)Różnice pomiędzy wykresem BME w numerycznej stabilności a numerycznej niestabilności wynikają z wielkości kroku δt . W zadaniu 1 z Zestawu 10) obliczyłem przedziały dla jakich BME dla tego równania miało dawać wyniki numerycznie stabilne, $\delta t \leq \frac{t^2+1}{t^2+2}$ co w najlepszym wypadku daje wartość ok. $\delta t <= 0.1$. Wykonałem wykres dla bardzo małego (ro)t i dla $\delta t = 0.13$, wykres dobrze ukazuję, że na początku przy tak dużym kroku wyniki są znacznie niepoprawne.

2) rzędy dokładności wyznaczone na podstawie wykresów

BME (teoretycznie rząd 1)

$$\frac{y_A - y_B}{x_A - x_B} = \frac{(-1.17 + 1.52)}{(-1.8 + 2.12)} \approx 1.09 \approx 1$$

PME (teoretycznie rząd 1)

$$\frac{y_A - y_B}{x_A - x_B} = \frac{(-1.87 + 1.08)}{(-2.42 + 1.57)} \approx 0.93 \approx 1$$

PMT (teoretycznie rząd 2)

$$\frac{y_A - y_B}{x_A - x_B} = \frac{(-4.06 + 1.93)}{(-2.52 + 1.51)} \approx 2.11 \approx 2$$

Jak widać wyznaczone doświadczalnie rzędy dla wszystkich 3 metod są w przybliżeniu zgodne z przewidywaniami teoretycznymi

3)wartości kroku sieci poniżej których pojawia się wpływ błędów maszynowych

Widoczność błędów maszynowych pojawiła się na wykresie błędów dla PMT dla kroków mniejszych od 10⁻⁸, ale dopiero po zwiększeniu ilości iteracji przy obliczaniu kolejnych wartości funkcji do np. 5000. W przypadku 500 kroków błędy maszynowe nie były tak dobrze widoczne. Dla BME i PME wpływ błędów maszynowych nie jest tak dobrze widoczny.