2011-1012 学年第二学期高等数学 (2-2) 期末考试 A 卷

- 一. 填空题(共6小题,每小题3分,共计18分)
- 1. $\vec{a} = (1,4,5)$, $\vec{b} = (1,1,2)$, 若 $\vec{a} + \lambda \vec{b} = \vec{a} \lambda \vec{b}$ 垂直,则 $\lambda = \underline{}$
- 2. 设 $z = \arctan \sqrt{xy} + (x-1)(y-1)\ln(x+y)$, 则 $dz|_{(1,1)} = \underline{\hspace{1cm}}$
- 3. 设 z(x,y) 由方程 $xe^y + yz + ze^x = 0$ 所确定,则 $\frac{\partial z}{\partial y} = \underline{\qquad}$.
- 4. 设 $f(x) = x + 1 \ (0 \le x \le \pi)$, 而 $s(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$, $-\infty < x < +\infty$, 其中
- 5. 已知 D 是长方形 $a \le x \le b$, $0 \le y \le 1$, $\iint_D yf(x)dxdy = 1$,则 $\int_a^b f(x)dx =$ ______
- 6. 设曲线 C 为圆周 $x^2 + y^2 = R^2$,则 $\oint_C (x^2 + y^2 3x) ds = _____.$
- 二. 选择题(共4小题,每小题3分,共计12分)
- 1. 下列级数中,绝对收敛的级数是().
- (A) $\sum_{n=1}^{\infty} (-1)^n \left(\frac{n}{n+1}\right)^n$; (B) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$; (C) $\sum_{n=1}^{\infty} (\sqrt[n]{2} 1)^n$; (D) $\sum_{n=1}^{\infty} \frac{1}{n}$.
- 2. 设 $\sum_{n=1}^{\infty} a_n$ 是正项级数,则下列结论中错误的是().
 - (A) 若 $\sum_{n=1}^{\infty} a_n$ 收敛,则 $\sum_{n=1}^{\infty} a_n^2$ 也收敛; (B) 若 $\sum_{n=1}^{\infty} a_n$ 收敛,则 $\lim_{n \to \infty} a_n = 0$;
 - (C) 若 $\sum_{n=1}^{\infty} a_n$ 收敛,则部分和 S_n 有界; (D) 若 $\sum_{n=1}^{\infty} a_n$ 收敛,则 $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \rho < 1$.
- 3. 设曲线型构件 Γ 的密度函数为 $\rho(x,y,z)$,则构件对 z 轴的转动惯量为 ().
 - (A) $\int_{\Gamma} \rho(x, y, z) ds \sqrt{a^2 + b^2}$; (B) $\int_{\Gamma} (x^2 + y^2) \rho(x, y, z) ds$;
 - (C) $\int_{\Gamma} \rho(x, y, z) z^2 ds$; (D) $\int_{\Gamma} \rho(x, y, z) z dz$.
- 4. 设有直线 L: $\begin{cases} x+y-5=0 \\ 2x-z+8=0 \end{cases}$ 及平面 $\Pi: 2x+y+z-3=0$,则直线 L ().
 - (A) 平行于平面 Π ; (B) 与平面 Π 的夹角为 $\frac{\pi}{6}$;

- (D) 与平面 Π 的夹角为 $\frac{\pi}{3}$.
- 三. 解答题(共8小题,每小题8分,共计64分)
- 1. 计算二重积分 $I = \iint_{D} (x y) dx dy$. 其中积分区域 D 为

$$D = \{(x, y)|x^2 + y^2 \le R^2, x \ge 0, y \ge 0\} \boxtimes \emptyset.$$

- 2. 设 \vec{n} 为曲面 $\Sigma: 2x^2 + 3y^2 + z^2 = 6$ 在点P(1,1,1)处指向外侧的法向量,求
 - (1) 函数 $u = e^{\frac{y}{x}} + \ln(x^2 + y^2) + 2\sqrt{z}$ 在点P(1, 1, 1)的梯度;
 - (2) 函数 $u = e^{\frac{y}{x}} + \ln(x^2 + y^2) + 2\sqrt{z}$ 在点 P 处沿方向 n 的方向导数;

3. 计算三次积分 $I = \int_0^1 dx \int_0^{\sqrt{1-x^2}} dy \int_{\sqrt{x^2+y^2}}^{\sqrt{2-x^2-y^2}} z^2 dz$ 的值.

- 4. 设有幂级数 $\sum_{n=1}^{\infty} \frac{x^{n+1}}{n(n+1)}$,
- (1) 求该幂级数的收敛半径 (2) 求该幂级数的收敛域 (3) 求该幂级数的

和

5. 设 Σ 为曲面 $z = \sqrt{2 - x^2 - y^2}$, 上侧为曲面正侧,计算

$$I = \iint_{\Sigma} \frac{x dy dz + z^2 dx dy}{x^2 + y^2 + z^2}$$

6. 设有函数
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & x^2 + y^2 \neq 0 \\ 0 & x^2 + y^2 = 0 \end{cases}$$
 , 问

- (1) 函数 f(x, y) 在点 (0,0) 是否连续? 说明理由.
- (2) 求函数 f(x,y) 对 x 的偏导函数 $f'_x(x,y)$

7. 设有力场 $F(x,y) = (y^2+1)\vec{i} + y(2x+1)\vec{j}$, 求变力沿曲线 L: $y = \sqrt{1-x^2}$ 从(1,0)到

8.求函数 $f(x,y) = xy^2(4-x-y)$ 在由直线 x+y=6及 坐标轴所围成的有界闭域 D 上的最大值、最小值.

四. 证明题 (本题 6 分)设
$$f(x) > 0$$
,且连续试证
$$\iint_D \frac{f(x)}{f(x) + f(y)} dx dy = \frac{1}{2},$$