Chapter 5: Complex Numbers

Week 9

Section 5.1

1. Find roots of the following quadratic polynomials:

(a)
$$x^2 + \pi = 0$$
.

(b)
$$3x^2 - x + 5 = 0$$
.

2. Simplify the following complex numbers by clearing the denominator:

(a)
$$\frac{\pi+i}{1-\pi i}$$

(d)
$$\frac{1}{(2+i)(3-i)}$$

(b)
$$\frac{3+i}{-i}$$

(e)
$$\frac{1}{(2+i)}$$

(c)
$$\frac{2+i}{18-5i}$$

$$(f)$$
 $\frac{\overline{(2-i)}}{\overline{(2+i)}}$

Section 5.2

3. Calculate the determinant

(a)
$$A = \begin{bmatrix} i & -3+i & -1+i \\ 6i & -7 & 2+5i \\ 2+3i & 0 & -2+6i \end{bmatrix}$$

(a)
$$A = \begin{bmatrix} i & -3+i & -1+i \\ 6i & -7 & 2+5i \\ 2+3i & 0 & -2+6i \end{bmatrix}$$
 (b) $B = \begin{bmatrix} 1 & -i & 1+2i \\ 6-i & 0 & 9+5i \\ 2+i & -2+3i & -8-6i \end{bmatrix}$

4. Find all solutions to the system of linear equations

(a)

$$(i)x + (-3+i)y + (-1+i)z = 10$$
$$(6i)x + -7y + (2+5i)z = 13$$
$$(2+3i) + (-2+6i)z = 6$$

(b)

$$x + (-i)y + (1+2i)z = 1$$
$$(6-i)x + (9+5i)z = 3$$
$$(2+i) + (-2+3i)y + (-8-6i)z = 0$$

Section 5.4

5. Evaluate z_1z_2 for the following

(a)
$$z_1 = e^{i\frac{\pi}{4}}$$
 and $z_2 = 2e^{i\frac{3\pi}{4}}$

(b)
$$z_1 = \pi e^{i\frac{\pi}{14}}$$
 and $z_2 = \frac{2}{3}e^{i\frac{\pi}{16}}$

(c)
$$z_1 = \frac{1}{\sqrt{2}} e^{i\frac{\pi}{2}}$$
 and $z_2 = -2e^{i\frac{3\pi}{2}}$

(d)
$$z_1 = \frac{1}{2\pi} e^{i\frac{\pi}{7}}$$
 and $z_2 = \frac{1+\pi}{3} e^{i\frac{\pi}{13}}$