CS3402 Tutorial 4:

1. Examine the table shown below.

Branch

Branch No	BranchAddress	TelNo
B001	8 Jefferson Way, Portland, OR 97201	503-555-3618, 503-555-2727, 503-555-6534
B002	City Center Plaza, Seattle, WA 98122	206-555-6756, 206-555-8836
B003	14 – 8th Avenue, New York, NY 10012	212-371-3000
B004	16 – 14th Avenue, Seattle, WA 98128	206-555-3131, 206-555-4112

- (a) Why this table is not in 1NF?
- (b) Describe and illustrate the process of normalizing the data shown in this table to third normal form (3NF).

Answer:

- (a) *TelNo* is not an attribute with atomic values, but with multi-values. So, the table is NOT in 1NF.
- (b) Create another relation specifically for TelNo with BranchNo as a foreign key

Branch

BranchNo	BranchAddress
B001	8 Jefferson Way, Portland, OR 97201
B002	City Center Plaza, Seattle, WA 98122
B003	14 – 8th Avenue, New York, NY 10012
B004	16 – 14th Avenue, Seattle, WA 98128

BranchTel

BranchNo	<u>TelNo</u>
B001	503-555-3618
B001	503-555-2727
B001	503-555-6534
B002	206-555-6756
B002	206-555-8836
B003	212-371-3000
B004	206-555-3131
B004	206-555-4112

2. Examine the table shown below.

StaffBranchAllocation

StaffNo	BranchNo	BranchAddress	Name	Position	HoursPer
---------	----------	---------------	------	----------	----------

					Week
S4555	B002	City Center Plaza, Seattle, WA 98122	Ellen Layman	Assistant	16
S4555	B004	16 – 14th Avenue, Seattle, WA 98128	Ellen Layman	Assistant	9
S4612	B002	City Center Plaza, Seattle, WA 98122	Dave Sinclair	Assistant	14
S4612	B004	16 – 14th Avenue, Seattle, WA 98128	Dave Sinclair	Assistant	10

- <StaffNo, BranchNo> is the primary key.
- <StaffNo> -> <Name, Position>; <BranchNo> -> <BranchAddress>
- (a) Why this table is not in 2NF?
- (b) Describe and illustrate the process of normalizing the data shown in this table to third normal form (3NF).

Answer:

- (a) The primary key of StaffBranchAllocation table is *<StaffNo, BranchNo>*. There exist the partial functional dependencies: *StaffNo → Name, Position* and *BranchNo → BranchAddress*. The non-key attributes are not fully dependent on the key. So, the table is NOT in 2NF.
- (b) Remove *BranchAddress*, *Name*, *Position* from StaffBranchAllocation relation to capture the partial functional dependencies separately.

Branch

<u>BranchNo</u>	BranchAddress
B002	City Center Plaza, Seattle, WA 98122
B004	16 – 14th Avenue, Seattle, WA 98128

Staff

<u>StaffNo</u>	Name	Position	
S4555	Ellen Layman	Assistant	
S4612	Dave Sinclair	Assistant	

StaffBranchAllocation

<u>StaffNo</u>	BranchNo	HoursPerWeek
S4555	B002	16
S4555	B004	9
S4612	B002	14
S4612	B004	10

3. Examine the table shown below.

BranchManager

Branch No	BranchAddress		MgrStaff No	MgrName
B001	8 Jefferson Way, Portland, OR 97201	503-555-3618	S1500	Tom Daniels
B002	City Center Plaza, Seattle, WA 98122	206-555-6756	S0010	Mary Martinez
B003	14 – 8th Avenue, New York, NY 10012	212-371-3000	S0145	Art Peters
B004	16 – 14th Avenue, Seattle, WA 98128	206-555-3131	S2250	Sally Stern

- <BranchNo> is the primary key; <MgrStaffNo> -> <MgrName>
- (a) Why this table is not in 3NF?
- (b) Describe and illustrate the process of normalizing the data shown in this table to third normal form (3NF).

1. Answer:

- (a) There exists a non-key attribute transitively dependent on the key, i.e., *MgrName* depends on *MgrStaffNo* and *MgrStaffNo* depends on *BranchNo*.
- (b) Create another relation which specifically captures the dependency MgrStaffNo → MgrName

Branch

BranchNo	BranchAddress	TelNo	MgrStaffNo
B001	8 Jefferson Way, Portland, OR 97201	503-555-3618	S1500
B002	City Center Plaza, Seattle, WA 98122	206-555-6756	S0010
B003	14 – 8th Avenue, New York, NY 10012	212-371-3000	S0145
B004	16 – 14th Avenue, Seattle, WA 98128	206-555-3131	S2250

ManagerStaff

<u>MgrStaffNo</u>	MgrName
S1500	Tom Daniels
S0010	Mary Martinez
S0145	Art Peters
S2250	Sally Stern

4. Examine the table shown below and the set of functional dependency on its attributes:

CourseRmAlloc (CourseId, CourseName, Year, Lecturer, Enrollment, RoomId, RoomCapacity, Day, Time)

FD = {CourseId -> CourseName, CourseName -> CourseId,

Courseld, Year -> Lecturer, Courseld, Year -> Enrollment,

RoomId -> RoomCapacity, RoomId, Year, Day, Time -> CourseId,

CourseId, Year, Day, Time -> RoomId }

- (a) Find all candidate keys of this table.
- (b) Decompose this table into a design into BCNF.

Answer:

(a) There are three candidate keys in this table:

```
(Year, Day, Time, CourseId)(Year, Day, Time, CourseName)(Year, Day, Time, RoomId)
```

(b) This table can be decomposed into the following in BCNF (so also in 3NF):

CourseTeaching (CourseId, Year, Lecturer, Enrollment)

Room (RoomId, RoomCapacity)

CourseRoomAlloc (CourseId, Year, Day, Time, RoomId)

Course (CourseId, CourseName)