B4 ゼミ#3

大上由人

2025年4月16日

3 確率熱力学

3.1 Shanon エントロピー

3.1.1 Stochastic エントロピー

- Def.Stochastic エントロピー

M 個の事象 $\{x_1, x_2, \cdots, x_M\}$ があるとき、事象 x_i が起こる確率を p_i とする。このとき、事象 x_i の確率的エントロピーは、

$$s(x_i) = -\ln p_i \tag{3.1}$$

と定義される。

この量は、surprisal とも呼ばれ、ある事象がどれほど"驚くべき事象か"を表している。例えば、 $p_i=1$ のとき、 $s(x_i)=0$ であるが、これは、事象 x_i が起こることが確定しているので、"驚くべき事象"ではないことがわかる。逆に、非常に確率が小さい事象 x_i が起こるとき、 $s(x_i)$ は非常に大きな値をとる。これは、事象 x_i が起こることは非常に驚くべき事象であることを表している。

Stochastic エントロピーは、以下の要素を満たす。

- 確率分布 p_i について連続関数である。
- 独立な分布 (p,p') に対して、 $s(p'_p)=s(p)+s(p')$ が成立する。

実は、この 2 つの条件を満たす関数は、 $s(p) = -\ln p + C$ の形のみであることが示される。

Thm.

f(p) が、以下の性質を持つとき、その関数形は定数項を除いて、 $-\ln p$ の形に一意に決まる。

- f(p) は、確率分布 p に対して連続関数である。
- f(p) は、独立な分布 (p,p') に対して、 $f(p'_p)=f(p)+f(p')$ が成立する。

Prf.

TODO 後で書く。

3.1.2 Shanon エントロピー

Stochastic エントロピーの平均として、Shanon エントロピーが定義される。

- Def.Shanon エントロピー -

M 個の事象 $\{x_1, x_2, \cdots, x_M\}$ があるとき、事象 x_i が起こる確率を p_i とする。このとき、確率変数 x の Shanon エントロピーは、

$$H(x) = -\sum_{j} p_j \ln p_j \tag{3.2}$$

と定義される。

エントロピーは、事象の不確定性を表す量であるといえる。例えば、二項分布のエントロピーをグラフにすると、以下のようになる。

図1 二項分布のエントロピー

このとき、 $p=\frac{1}{2}$ のとき、エントロピーは最大値をとる。例えば、これをコイン投げに例えると、 $p=\frac{1}{2}$ のとき、表と裏が均等に出るので、コインを投げる前に、表が出るか裏が出るかは全くわからない。しかし、 $p\neq\frac{1}{2}$ のとき、コインの出方が偏っているということになり、ある程度どちらが出るか予測できる。とくに、p=0または p=1 のとき、エントロピーは 0 となるが、これは、事象の不確実性が 0 であることを表している。

条件付き確率についても、Shanon エントロピーは定義できる。

· Def. 条件付き Shanon エントロピー ---

事象 y のもとでの事象 x の Shanon エントロピーは、

$$H(x|y) = -\sum_{i,j} P(x_i, y_j) \ln P(x_i|y_j)$$
(3.3)

$$= -\sum_{j}^{n} P(y_j) \sum_{i} P(x_i|y_j) \ln P(x_i|y_j)$$
 (3.4)

と定義される。ただし、 $P(x_i,y_j)$ は、事象 x_i と y_j の同時分布である。

特徴をつかむために、コイントスの例を再び考えてみる。TODO後で書く。

条件付き確率は、条件が付いている分、事象の不確実性が落ちているはずである。実際、以下が成り立つことが知られている。

- Thm. 条件付けによる Shanon エントロピーの単調性 -

任意の確率変数 (x,y) に対して、以下が成り立つ。

$$H(x|y) \le H(x) \tag{3.5}$$

この証明は、5章で行う。*1

3.2 熱の定義

3.2.1 平衡状態の時間反転対称性

 $^{^{*1}}$ KL ダイバージェンスの正値性より従う。