MB86R03 'Jade-L' DATA SHEET

November, 2009 The 1.1 edition

Trademarks

ARM is a registered trademark of ARM Limited in UK, USA and Taiwan. ARM is a trademark of ARM Limited in Japan and Korea. ARM926EJ-S and ETM9 are trademarks of ARM Limited.

- The contents of this document are subject to change without notice.
 Customers are advised to consult with sales representatives before ordering.
- The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.
- Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
- The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
- Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
- Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
- Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.
- The company names and brand names herein are the trademarks or registered trademarks of their respective owners

All rights reserved, Copyright FUJITSU MICROELECTRONICS LIMITED 2009

Revision History

Date	Ver.	Contents
2009/11/04	1.0	Newly issued
2009/11/24	1.1	7.2.21. Unused pin • Revised table 7-29 [Pin No.] [JEDEC] [Pin name] [Pin name] 112 N2 VINFID0, GI1[3], MLB_CLK -> VINFID0, GI1[3] 202 M3 VINVSYNC0, GI1[5], MLB_DATA -> VINVSYNC0, GI1[5] 203 N3 VINHSYNC0, GI1[4], MLB SIG -> VINHSYNC0, GI1[4]

Contents

1.	Outlin	le	1
2.	Featu	re	1
3.	Block	diagramdiagram	2
4.	Funct	ion list	4
5.	Packa	ge dimension	6
6.	Pin as	ssignment	7
7.	Pin fu	nction	10
7	'.1. Pin	Multiplex	10
		function	
	7.2.1.	External bus interface related pin	
	7.2.2.	SD memory controller related pin	
	7.2.3.	External interrupt controller related pin	
	7.2.4.	UART related pin	
	7.2.5.	CAN related pin	
	7.2.6.	I2S related pin	
	7.2.7.	I ² C related pin	
	7.2.8.	SPI related pin	
	7.2.9.	PWM related pin	19
	7.2.10.	A/D converter related pin	19
	7.2.11.	DDR2 related pin	20
	7.2.12.	DISPLAY related pin	21
	7.2.13.	Video capture related pin.	22
	7.2.14.	System related pin	22
	7.2.15.	JTAG related pin	23
	7.2.16.	ICE related pin	23
	7.2.17.	Multiplex setting related pin	23
	7.2.18.	ETM related pin	24
	7.2.19.	Power supply related pin	24
	7.2.20.	GPIO related pin	24
	7.2.21.	Unused pin	25
	7.2.22.	Unused pin in the duplex case with pin multiplex function	33
8.	Electr	ical Characteristics	34
8	8.1. Ma	ximum Ratings	34
		commended Operating Conditions	
		cautions at Power On	
	8.3.1.	Recommended Power On/Off Sequence	

8.3.2.	Power On Reset	38
8.4. DC	Characteristics	39
8.4.1.	3.3V Standard CMOS I/O	39
8.4.1.	1. 3.3V Standard CMOS I/O V-I Characteristic (Driving Capability 1)	40
8.4.1.		
8.4.1.	3. 3.3V Standard CMOS I/O V-I Characteristics (Driving Capability 3)	42
8.4.2.	DDR2SDRAM IF I/O (SSTL_18)	43
8.4.3.	ADC	45
8.4.4.	I ² C Bus Fast Mode I/O	46
8.4.4.	1. I ² C IO V-1 Characteristic Figure	47
8.5. AC	CHARACTERISTIC	48
8.5.1.	Memory Controller Signal Timing	48
8.5.2.	DDR2SDRAM IF	52
8.5.2.	1. DDR2SDRAM IF Timing Diagram	53
8.5.3.	GPIO Signal Timing	56
8.5.4.	PWM Signal Timing	57
8.5.4.	1. Output Signal	57
8.5.5.	GDC Display Signal Timing	58
8.5.5.	1. Clock	58
8.5.5.	2. Input Signal	58
8.5.5.	3. Output Signal	59
8.5.6.	GDC Video Capture Signal Timing	61
8.5.6.	1. Clock	61
8.5.6.	2. Input Signal	61
8.5.7.	I2S Signal Timing	63
8.5.8.	UART Signal Timing	65
8.5.9.	I ² C Bus Timing	66
8.5.10.	SPI Signal Timing	67
8.5.11.	CAN Signal Timing	68
8.5.12.	SD Signal Timing	69
8.5.12	2.1. Clock	69
8.5.12	2.2. Input/Output Signal	69
8.5.13.	ETM9 Trace Port Signal Timing	70
8.5.14.	EXIRC Signal Timing	71

1. Outline

MB86R03 is LSI product for the graphics applications with ARM Limited's CPU ARM926EJ-S and Fujitsu's GDC MB86296 as its core. This product contains peripheral I/O resources, such as in-vehicle LAN; therefore only a single chip of MB86R03 controls main graphics application system which usually requires 2 chips (CPU and GDC.)

2. Feature

MB86R03 has following features:

- CMOS 90nm technology
- Package: PBGA484
- Power-supply voltage: (IO: 3.3 ± 0.3 V, core: 1.2 ± 0.1 V, DDR2: 1.8 ± 0.1 V)
- Operation frequency: 333MHz (CPU), 83MHz (AHB), 41.5MHz (APB)
- CPU core
 - ARM926EJ-S
 - 16KB instruction cache/16KB data cache
 - 16KB ITCM/16KB DTCM
 - ETM9CS Single and JTAG ICE interface
 - Java acceleration (Jazelle technology)
- · Bus architecture
 - Multi-layer AHB bus architecture
- Interrupt
- Built-in SRAM
- Clock/Reset control function
- Remap/Boot control function
- 16 bit external bus interface with decoding engine
- 32 bit DDR2 memory interface (target: 166MHz: 333Mbps)
- Graphics display controller
 - 2D/3D rendering engine of Fujitsu MB86296
 - RGB66 video output × 1ch (extensible to RGB888 with using option I/O)
 - ITU RBT-656 video capture × 1ch (extensible to RGB666 with using option I/O)
- SD memory controller (SDIO/CPRM: unsupported) × 1ch
- 10 bit A/D converter (1MS/s) × 2ch
- I^2C (I/O voltage: 3.3V) × 2ch
- UART × 3ch (extensible up to 6ch with using option I/O)
- 32/16 bit timer \times 2ch
- DMAC × 8ch

Optional I/O (with pin multiplex)

- RGB666 video output is extensible to 2ch
- Video capture is extensible to 2ch
- CAN (I/O voltage: 3.3V) × 2ch is addable
- GPIO is addable up to 24
- SPI × 1ch is addable
- PWM × 2ch is addable
- I2S is addable up to 3ch
- The number of UART channel is extensible up to 6ch
- The data width in the external bus interface is extensible to 32 bit

3. Block diagram

Figure 3-1 shows block diagram of MB86R03.

Figure 3-1 Block diagram of MB86R03

CPU core

CPU core block of ARM926EJ-S is connected to each I/O through AHB bus in LSI. Instruction (I)/Data (D) function as a separate bus master for Harvard architecture.

GDC_TOP

MB86296 compatible GDC has 2 functions: AHB slave function which writes required display list for drawing to GDC with having CPU or DMA controller as master, and AXI master function which reads display list arranged in DDR2 memory with having GDC as master.

AXI bus

This bus bridges main memory and internal resource. Following 4 bus masters are connected.

- AHB1: Each bus master of AHB bus such as CPU and DMA controller
- HBUS: HOST IF on GDC
- DRAW & GEO: Draw (2D/3D drawing) and GEO (geometry engine) on GDC
- MBUS: DISP (display controller) and CAP (video capture) on GDC

AHB1 bus

Following resources are connected.

- CPU core: Bus masters of instruction (I)/data (D)
- GDC: GDC register part
- AHB2AXI: AXI port for main memory access
- CCPB: Encrypted ROM decoding block
- External BUS I/F: External bus interface (connected through CCPB)
- SRAM: General purpose internal SRAM 32KB × 2
- DMAC: General purpose DMA × 8ch It operates as bus master at data transfer
- Boot ROM: Built-in boot ROM
- I2S 0/1/2: Serial audio controller × 3ch
- AHB2
- APBBRG0/1/2: AHB-APB bridge circuit × 3ch

AHB2 bus

- CCPB: Encrypted ROM decoding block
- SDMC: SD memory controller
- DDR2 controller: DDR2 controller's register part

APB TOP 0

This block bridges between APBBRG0 bus and the AHB1 bus, and following low-speed peripheral resources are connected.

- Interrupt controller (IRC) × 2ch
- External interrupt controller (EXTIRC)
- Clock reset generator (CRG)
- UART (ch0 and ch1) × 2ch
- Remap boot controller (RBC)
- 32 bit general-purpose timer (32 bit timer) × 2ch

APB_TOP_1

This block bridges between APBBRG1 bus and AHB1 bus, and following low-speed peripheral resources are connected.

- I^2C controller × 2ch
- CAN controller × 2ch
- UART (ch2 and ch3) × 2ch
- A/D converter (ADC) × 2ch

APB_TOP_2

This block bridges between APBBRG2 bus and AHB1 bus, and following low-speed peripheral resources are connected.

- PWM controller (PWM)
- SPI controller (SPI)
- Chip control module (CCNT)
- UART (ch4 and ch5) × 2ch

4. Function list

Function list of MB86R03 is shown below.

Table 4-1 MB86R03 function list

Function	Outline
CPU core	 ARM926EJ-STM processor core Core operation frequency: 333MHz 16KB instruction cache 16KB data cache Tightly-Coupled memory for 16KB instruction (ITCM) Tightly-Coupled memory for 16KB data (DTCM) ETM9CS Single and JTAG ICE debugging interface Java acceleration (Jazelle technology)
Bus architecture	 Multilayer AHB bus architecture Speeding up data transfer between main memory and each bus master with 64 bit AXI bus
Interrupt	 High-speed interrupt × 1ch (software interrupt) Normal interrupt × 64ch (external interrupt × 4ch + built-in internal interrupt × 60ch) Up to 16 interrupt levels are settable by channel
Clock	 PLL multiplication: selectable from ×15 ~ 49 Operation frequency: 333MHz (CPU), 83MHz (AHB), 41.5MHz (APB) Low power consumption mode (clock to ARM and module is stoppable)
Reset	Hardware reset, software reset, and watchdog reset
Remap	ROM area is able to be mapping to built-in SRAM area
External bus interface	 Three chip select signals Provided 32M byte address space in each chip select Supported 16/32 bit width SRAM/Flash ROM connection Programmable weight controller Encrypted ROM compound engine
DDR2 controller	 Supported DDR2SDRAM (DDR2-400) Connectable capacity: 256 ~ 512M bit × 2 or 256 ~ 512M bit × 1 I/O width: Selectable from ×16/×32 bit Max. transfer rate: 166MHz/333Mbps
Built-in SRAM	• Mounted general purpose SRAM of 32KB × 2 (32 bit bus)
DMAC	 AHB connection × 8ch Transfer mode: Block, burst, and demand
Timer	• 32/16 bit programmable × 2 channels
GPIO(*2)	Max. 24 is usableInterrupt function
PWM(*2)	 Built-in 2 channels Duty ratio and phase are configurable
A/D converter	 10 bit successive approximation type A/D converter × 2ch Sampling rate: 648KS/s (max. sampling plate) Nonlinearity error: ± 2.0LSB (max.)

Function	Outline
GDC (*1)	 Display controller RGB666 or RGB888 output Max. resolution is 1024 × 768 Max. 6 layered display Max. 2 screen output Digital video capture function BT.601, BT.656, and RGB666 Max. 2 inputs Geometry engine (MB86296 compatible display list is usable) 2D/3D drawing function (MB86296 compatible display list is usable)
I ² S (*2)	 Audio output × 3ch (L/R) /Audio input × 3ch (L/R) Supported three-wire serial (I2S, MSB-Justified) and serial PCM data transfer interface Master/Slave operations are selectable Resolution capability: Max. 32 bit/sample
UART (*2)	 Max. 6 channels (dedicated channel: 3ch, option: 3ch) 1 channel: capable of input/output CTS/RTS signals 8 bit pre-scaler for baud rate clock generation Enabled DMA transfer
12C	 3.3V pin × 2ch Supported standard mode (max. 100kbps)/high-speed mode (max. 400kbps)
SPI (*2)	 Full duplex/Synchronous transmission Transfer data length: 1 bit unit (max. 32 bit) (programmable setting)
CAN (*2)	 Mounted BOSCH C_CAN module × 2ch Conformed to CAN protocol version 2.0 part A and B I/O voltage: 3.3V
SD memory	 Conformed to SD memory card physical layer specification 1.0 Equipped 1 channel Supported SD memory card and multimedia card Unsupported SPI mode, SDIO mode, and CPRM
CCNT	 Mode selection of multiplex pin group 2 and 4 Software reset control AXI interconnection control (priority and WAIT setting)
JTAG	 Conformed to IEIEEE1149.1 (IEEE Standard Test Access Port and Boundary-Scan Architecture) Supported JTAG ICE connection

^{*1:} Number of layer of simultaneous display and number of output display as well as capture input for displaying in high resolution may be restricted due to data supply capacity of graphics memory (DDR2 controller).

^{*2:} A part of external pin functions of this LSI is multiplexed. Max. number of usable channel is limited by pin multiplex function setting.

5. Package dimension

Package dimension of MB86R03 is shown below.

BGA-484P-M07

Figure 5-1 BGA-484P-M07 package dimension

6. Pin assignment

Pin assignment of MB86R03 is shown below.

(Top view)

Figure 6-1 MB86R03 pin assignment (pin number)

(Top view)

Figure 6-2 MB86R03 pin assignment (pin name)

Table 6-1 Pin assignment table

The color The	able	0-1	Pin assign	nmei	it tai	oie									
2	Pin NO	JEDEC					Pin NO	JEDEC	PIN NAME	Pin NO	JEDEC	PIN NAME	Pin NO	JEDEC	PIN NAME
A DECEMBER 1921 202 DECEMBER 202 PA WINDOWS DECEMBER 1921 VODE PA WINDOWS DECEMBER 1921 VODE PA WINDOWS DECEMBER 1921 VODE PA WINDOWS DECEMBER VODE PA WINDOWS P	1	A1		101	B2	DE0	201	L3	VIN0[3]	301	AC9	(Unused)	401	H22	VSS
4 10	2	B1		102	C2	GV0	202	М3	VINVSYNC0	302	AC10	(Unused)	402	G22	VSS
1															VDDI
B															VDDI
To															
B															
19															
10															VDDI
12 MI	10	K1	VIN0[5]	110	L2	VIN0[2]	210	Y3	VIN1[1]	310		SD_DAT[3]	410	E16	VDDI
13 N. VSS	11	L1		111	M2	VDDE	211	AA3	VINVSYNC1	311			411	E15	VDDE
14. P VSS 111 P2 VSS 214 A03 P2 S SEN 314 A022 DOTCONT 414 E12 VSS 115 P1 VSS 115 P1 VSS 115 P1 VSS P1 P1 P1 P1 P1 P1 P1															VDDE
19															
16															
17															
19 VI															
19 W															
22															
22 ABI			VSS												
224 ADI 128 SCR2 123 ADI PMM OD 223 ADI2 PLINPASS 322 R23 MOG 14 a23 MIO VOD											U23				VDDI
22. ARI															VDDI
28 AFI															
22															
227 APZ															
28 Ar3															
289 AF4 CURSAGE 129 AF5 GEND FO[17] 229 AD18 SD.ANT[2] 329 J.33 MOD[27] 429 U11 VDD 30 AF5 GEND FO[10] 311 AF6 GEND FO[10] 312 AF6 GEND FO[10] 313 AF6 GEND FO[10] 314 AF6 GEND FO[10] 315 A															VDDE
30			(Unused)												VDDI
31 AFB GPIO PDIO20															VDDI
22						PWM_O0		AD20	I2C_SDA0		G23	MDQ[30]			VDDE
34 AF9 CUmused 334 AE12 BIGEND 234 AD23 MAI9 334 D23 MR EDITO 434 U16 VDD 35 AF10 LDMSeed 535 AE13 AD780 235 AD24 MAI6 335 D22 MB EDITO 355 U17 DDRW 36 AF11 MPX MODE (51) 138 AE14 AD V/981 236 AC24 MAI2 338 D21 MR MERQ 435 U17 DDRW 37 AF13 ADRW 336 AE14 AD V/981 236 AC24 MAI2 338 D21 MR MERQ 439 P17 DDRW 38 AF14 AD AWS 138 AE14 AD W/981 238 AC24 MAI2 338 D21 MR MERQ 439 P17 DDRW 39 AF14 AD AWS 139 AE17 UART SOUTH 239 V24 MOD(51 339 D18 MR MERQ 149 P17 DDRW 40 AF15 UART SOUTH 41 AE19 SD XMCD 241 V24 MOD(51 349 D17 MRM EACS 149 M17 DDRW 41 AF16 UART SIND 411 AE19 SD XMCD 241 V24 MOD(71 341 D18 MRM EACS 144 K17 VDD 42 AF17 UART SIND 412 AE20 UZC SCLIO 242 U124 MOD(10 342 D18 MRM EACS 144 K17 VDD 44 AF18 SD XMCD VALUE VALUE VALUE MOD(71 341 D18 MRM EACS 144 K17 VDD 45 AF20 LD SOUTH 414 AE21 MCKE START VALUE VALUE MOD(71 341 D18 MRM EACS 144 K17 VDD 46 AF18 UCS SCLI 146 AE22 MCKE START VALUE VSL															VDDE
250 AFIG CUMBER 135 AFIG AD VIRH 235 AD24 MAIS 335 022 MEM EASS M35 U17 DDFM															VDDI
38 AF11 MPX MODE 61 1 38 AF14 AD VIPH 238 AC24 MA(2) 336 D21 MEME E(0) 430 R17 DDPM															
37															
38 AF13 AD AND 38 AF16 UART XOTRO 238 AA24 MRAS 338 D19 MEM EA[17] 438 P17 DDPM 40 AF15 UART SOUTO 140 AF18 SD DAT[1] 240 W24 MDQ[1] 340 D17 MEM EA[26] 440 M17 DDPM 441 AF16 UART SOUTO 440 MDQ[1] 340 D17 MEM EA[26] 440 M17 DDPM 441 AF16 SD DAT[1] 241 W24 MDQ[1] 341 D18 MEM EA[26] 440 M17 DDPM 441 AF16 SD DAT[1] 241 W24 MDQ[1] 341 D18 MEM EA[26] 440 M17 DDPM 441 AF16 SD DAT[1] 442 AF18 SD DAT[1] 443 AF21 M17 AF18 M17															VDDI
38 AF14															VDDI
44 AF16 UART SINU 141 AE19 SD XMCD 241 V24 MDO[71 341 D16 MEM XCSIO] 441 L17 V2D 42 AF17 VART SINU 142 AE20 UZC SGLO 242 U24 MDO[91 343 D14 GRIPM 442 K16 V70 V7	39	AF14		139	AE17		239	Y24	MDQ[5]	339	D18		439	N17	DDRVDE
42	40	AF15	UART_SOUT0	140	AE18	SD_DAT[1]	240	W24		340	D17	MEM_EA[24]	440	M17	DDRVDE
44 AFI9 SD DATIO 143 A821 NIT A[3] 243 T74 MD0[9] 343 D14 CREMI 443 KI6 VODI 444 AFI9 SD WP 144 A822 MA[13] 245 P24 VSS 345 D12 PLITOTRST 445 KI14 VOD 440 AF20 I2C SGL1 145 A823 MA[13] 245 P24 VSS 345 D12 PLITOTRST 445 KI14 VOD 440 AF22 INT A[0] 147 A825 MA[11] 247 M44 WOSI 340 D11 TRACEDATA[2] 448 KI14 VOD 447 AF22 INT A[0] 147 A825 MA[11] 247 M44 MD0[18] 347 D10 D10 D10 D10 M16 M18 M28 M18 M18 M28 M48 M48 M28 M48 M28 M48 M28 M48 M28															VDDI
44 AF19															
48															
44 AF21 I2C SDA1 146 AE24 MA(4) 246 N24 VSS 346 D11 TRACEDATA(2) 446 K13 VDD 448 AF23 MA(8) 147 AE25 MA(11) 247 M24 MDO(18) 347 D10 RTOK 447 K12 VDD 448 AF23 MA(8) 148 AD25 MA(6) 248 L24 MDO(17) 348 D9 DOUTBO(7) 449 K14 VDD 448 AF24 MA(12) 149 AC25 MA(10) 249 K24 MDO(17) 348 D9 DOUTBO(7) 449 K11 VDD 449 K24 MDO(17) 349 D8 DOUTBO(7) 449 K11 VDD 449 K24 MDO(17) 349 D8 DOUTBO(7) 449 K11 VSS S15 AF25 VSS S150 AR25 MA(10) 250 L24 MDO(16) 350 D7 DOUTBO(7) 449 K11 VSS MDO(18) MC(18) MC(18															
48 AF22 NAT AIO 147 AE25 MA[11] 247 MA[4 MDQ[18] 347 D10 RTCK 447 K12 VDDD 48 AF24 MA[12] 149 AC25 MA[5] 248 L24 MDQ[17] 348 D9 DDUTBQ[17] 449 L11 VSS DAF25 VSS 150 A825 MBA[0] 249 K24 MDQ[12] 349 D8 DDUTBQ[17] 449 L11 VSS S5 AF25 VSS 151 AA25 MCKE 251 H24 MDQ[28] 350 D7 DDUTBQ[17] 449 L11 VSS S5 AF26 VSS 151 AA25 MCKE 251 H24 MDQ[28] 351 D6 DDUTBQ[3] 451 M11 VSS S5 A626 MA[7] 152 Y25 MDQ[2] 252 G24 MDM[3] 352 D5 DDUTBQ[3] 451 M11 VSS S5 A626 MA[7] 152 Y25 MDQ[2] 252 G24 MDM[3] 352 D5 DDUTBQ[3] 451 M11 VSS S5 A626 MA[7] 155 W25 MDQ[2] 253 G24 MDM[3] 352 D5 DDUTBQ[3] 451 M11 VSS S5 A626 MA[7] 155 W25 MDQ[2] 253 G24 MDM[3] 352 D5 DDUTBQ[3] 451 M11 VSS MDQ[2] 253 C24 MDM[3] 352 D5 MDQ[2] 453 M11 VSS MDQ[2] 255 D244 MEM ED[1] 353 E5 VDDE 453 M11 VSS MDQ[2] 456 MDQ[
48 AF22 MA(8 148 AD25 MA(5 248 L24 MDQ(23) 349 D8 DOUTBQ(3) 448 KI1 VDD 459 KZ4 MA(12 XF5 MA(10 249 KZ4 MDQ(23 349 D8 DOUTBQ(3) 448 KI1 VDD MA(12 KS5 S50 AF25 VS\$ 150 AB25 MB(0 250 J24 MDQ(26 350 D7 DOUTBQ(3) 450 MI1 VS\$ S50 AF26 VS\$ 151 AA25 MCKE Z51 HZ4 MDQ(26 350 D7 DOUTBQ(3) 450 MI1 VS\$ S52 AE26 MA(17) 152 V25 MDQ(21 Z52 G24 MDM(31 352 D5 DOUTBQ(3) 450 MI1 VS\$ S50 AB26 MA(31 154 V25 VFEF0 Z54 E24 MEM ED(1) 353 E5 DOUTBQ(6) 452 P11 VS\$ S50 AB26 MB(41) 154 V25 VFEF0 Z54 E24 MEM ED(1) 353 E5 VDDE 453 R11 VS\$ S55 AB26 MB(41) 155 U25 MDQ(13 255 D24 MEM ED(1) 355 G5 DOUTBQ(6) 455 T12 VS\$ S50 AA26 VS\$ 156 T25 MDQ(13) Z55 D24 MEM ED(1) 355 G5 H5 VDDI 456 T13 VS\$ S50 AA26 VS\$ 156 T25 MDQ(13) Z56 C24 MEM ED(13) 356 H5 VDDI 456 T13 VS\$ S50 AA26 WS\$ 156 WS\$ MDQ(13) Z56 C24 MEM ED(13) 356 H5 VDDI 456 T13 VS\$ S50 AA26 WS\$ MS (15) WS\$ MDQ(13) Z56 C24 MEM ED(13) 356 H5 VDDI 456 T13 VS\$ MS (15) WS\$ MS (15)															
50															VDDE
	49	AF24	MA[12]	149	AC25	MA[10]	249	K24	MDQ[23]	349	D8	DOUTB0[7]	449	L11	
S2															
State															
55															
55 AB28															
56															
57 Y26 MDOSNIO 157 R25 MDO[15] 257 C23 MEMEAI(2) 357 J5 VSS 457 T14 VSS 58 W26 MDOSPIO 158 P25 DDR/DE 258 C22 MEMEAI(6) 358 K5 VSS 488 T15 VSS 59 V26 VSS 159 N25 DDR/DE 259 C21 MEMEAI(1) 359 L5 VDDE 459 T16 VSS C25 MDOSPIO 160 MDOSNI(1) 160 M25 MDO[21] 260 C20 MEMEAI(1) 359 L5 VDDE 459 T16 VSS C26 MDOSPIO 161 L25 MDO[16] 261 C19 MEMEAI(18) 361 N5 VDDI 461 P16 VSS VSS 162 K25 VSS 162 K25 VSS															
58 W26 MOQSPIQ 158 P25 DDRVDE 258 C22 MEM EAI(6] 358 K5 VSS 458 T15 VSS 59 V26 VSS 159 N25 DDRVDE 259 C21 MEM EAI(10] 380 M5 VDDE 459 T16 VSS C21 MEM EAI(11] 380 M5 VDDE 450 R16 VSS C21 R25 MOQSPIQ R16 VSS C21 MEM EAI(11] 380 M5 VDDE 450 R16 VSS C21 R25 MOQSPIQ R16 VSS C21 R25 MOQSPIQ R16 VSS R26 VSS R27 VREFI 282 C18 MEM EAI(11] 380 M5 VDDE 482 N18 VSS R32 VSS R32 VREFI 282 C18 MEM EAI(11] 381 N5 VDDE 482 N18 VSS R33 VSS R33 VSS R33 VSS R33 M5 VSS R34 M16 VSS R34 VSS R34 VSS R34 M16 VSS R34 VSS R34 VSS R34 M16 VSS R34 VSS R34 M16 VSS R34 VSS R34 M16 VSS R34 VSS R34 VSS R34 M16 VSS R34 VSS R34 VSS R34 M16 VSS R34 VSS R															
60															
Fig.															
62 R26 VSS 192 K25 VREF1 262 C18 MEM_EA[22] 362 P5 VSS or VDDE 462 N16 VSS		U26						C20			M5				
63 P26 MCKN 163 J25 MDO[29] Z63 C17 MEM_XWR[0] 363 R5 VSS 463 M16 VSS															
64 N26 MCKP 164 H25 MDG[24] 264 C16 MEM XCS[2] 364 T5 VSS 464 L16 VSS R55 M26 VSS 165 G25 MOG[31] 265 C15 CRIPMQ 366 V5 VDD1 465 L15 VSS 66 L26 MDGSN[2] 166 F25 MEM ED[0] 266 C14 CRIPM2 366 V5 VDD1 466 L14 VSS C16 VSS 168 D25 MEM ED[4] 267 C13 TCK 367 W5 VDDE 468 L14 VSS C16 VSS L16 VSS															
65 M26 VSS 165 G25 MDG[31] 265 C15 CRIPMO 365 U5 VDDI 465 L15 VSS C16 C26 MDGSN[2] 166 F25 MEM ED[0] 266 C14 CRIPMZ 366 V5 VDDI 466 L14 VSS C17 C18 C1															
Fig.															
Fig. Ref. Modsprig 167 E25 MEM ED[4] 267 C13 TCK 367 W5 VDDE 467 L13 VSS 68 J26 VSS 168 D25 MEM ED[8] 268 C12 JTAGSEL 368 Y5 VDDE 468 L12 VSS C19 VSS VSS MEM ED[12] 269 C11 TRACEDATA[1] 369 AA5 VSS 469 M12 VSS V															
Ref															
TO G26 MDQSP[3] 170 B25 MEM ED[14] 270 C10 TRACECLK 370 AB5 VSS 470 N12 VSS 71 F26 VSS 171 B24 MEM ED[15] 271 C9 DOUTB0[2] 371 AB6 VDDE 471 P12 VSS 72 E26 MEM ED[3] 172 B23 MEM EA[3] 272 C8 DOUTB0[6] 372 AB7 VDDE 472 R12 VSS 73 D26 MEM ED[7] 173 B22 MEM EA[7] 273 C7 DOUTG0[4] 373 AB8 VDDI 473 R13 VSS 74 C26 MEM ED[11] 174 B21 MEM EA[11] 274 C6 DOUTR0[2] 374 AB9 VDDI 474 R14 VSS 75 B26 VSS 175 B20 MEM EA[15] 275 C5 DOUTR0[2] 374 AB9 VDDI 474 R14 VSS 76 A26 VSS 176 B19 MEM EA[15] 276 C4 DOUTR0[7] 376 AB11 VSS 476 P15 VSS 77 A25 VSS 177 B18 MEM EA[23] 277 D4 DOUTB1[3] 377 AB12 VDDE 477 N15 VSS 78 A24 MEM EA[1] 178 B17 MEM XWR[1] 278 E4 DOUTB1[7] 378 AB13 AD VRL0 478 M15 VSS A27 A28 MEM EA[8] B19 MEM EA[8] 279 F4 DOUTB1[7] 378 AB13 AD VRL0 478 M15 VSS A27 A28 A28 A24 MEM EA[8] 180 B15 VDDE 280 G4 DOUTB1[7] 379 AB14 AD VRL1 479 M14 VSS A28 A24 MEM EA[16] 181 B14 CRIPM3 281 H4 DOUTR1[6] 381 AB16 VSS 480 M13 VSS A28 A24 MEM EA[12] 181 B14 CRIPM3 281 H4 DOUTB1[6] 381 AB16 VSS 480 M13 VSS A38 A319 MEM EA[16] 182 B13 VINITH 282 J4 HSYNC1 382 AB17 VSS 482 P13 VSS A34 A			VSS												VSS
T1															
T2															
T3															
The first color of the first c															
T5															
The															
T7															VSS
The control of the			VSS			MEM_EA[23]			DOUTB1[3]						VSS
The first color of the first c	78	A24	MEM_EA[1]	178	B17	MEM_XWR[1]	278	E4	DOUTB1[7]	378	AB13	AD_VRL0	478	M15	VSS
81	79	A23	MEM_EA[4]	179	B16		279	F4		379	AB14	AD_VRL1	479	M14	VSS
82 A20 MEM EA[16] 182 B13 VINITHI 282 J4 HSYNC1 382 AB17 VSS 482 P13 VSS 83 A19 MEM EA[20] 183 B12 TMS 283 K4 DE1 383 AB18 VDDE 483 P14 VSS 84 A18 VSS 184 B11 TRACEDATA[0] 284 L4 VINO[0] 384 AB19 VDDE 483 P14 VSS 85 A17 MEM XRD 185 B10 TRACECTL 285 M4 VINO[0] 385 AB20 VDDI 86 A16 CLK 186 B9 XTRST 286 N4 VDDI 386 AB21 VDDI 87 A15 VSS 187 B8 DOUTB0[5] 287 P4 VSS 387 AB22 DDRVDE 88 A14 TDO 188 B7 DOUTG0[3] 288 R4															VSS
83 A19 MEM EA[20] 183 B12 TMS 283 K4 DE1 383 AB18 VDDE 483 P14 VSS															
84															
85 A17 MEM XRD 185 B10 TRACECTL 285 M4 VINO[0] 385 AB20 VDDI 86 A16 CLK 186 B9 XTRST 286 N4 VDDI 386 AB21 VDDI 87 A15 VSS 187 B8 DOUTB0[5] 287 P4 VSS 387 AB22 DDRVDE 88 A14 TDO 188 B7 DOUTG0[3] 288 R4 VSS 388 AA22 DDRVDE 89 A13 PLLVDD 189 B6 DOUTG0[3] 289 T4 VSS 389 Y22 VSS 90 A12 PLLVSS 190 B5 DOUTR0[4] 290 U4 VSS 389 Y22 VSS 91 A11 XRST 191 B4 VDDE 291 V4 VSS 390 W22 VSS 93 A9 XSRST 193 C3															
86 A16 CLK 186 B9 XTRST 286 N4 VDDI 386 AB21 VDDI 87 A15 VSS 187 B8 DOUTB0[5] 287 P4 VSS 387 AB22 DDRVDE 88 A14 TDO 188 B7 DOUTG0[7] 289 T4 VSS 388 AA22 DDRVDE 89 A13 PLLVDD 189 B6 DOUTG0[7] 289 T4 VSS 389 Y22 VSS 90 A12 PLLVSS 190 B5 DOUTR0[4] 290 U4 VSS 390 W22 VSS 91 A11 XRST 191 B4 VDDE 291 V4 VSS 391 V22 MDG[6] 92 A10 TRACEDATA[3] 192 B3 HSYNCO 292 W4 VINI[0] 393 T22 DDRVDE 94 A8 DOUTB0[4] 194													704	1114	VOO
87															
88 A14 TDO 188 B7 DOUTG0[3] 288 R4 VSS 388 A22 DDRVDE 89 A13 PLLVDD 189 B6 DOUTG0[7] 289 T4 VSS 389 Y22 VSS 90 A12 PLLVSS 190 B5 DOUTR0[4] 290 U4 VSS 390 W22 VSS 91 A11 XRST 191 B4 VDDE 291 V4 VSS 391 V22 MDQ[6] 92 A10 TRACEDATA[3] 192 B3 HSYNCO 293 W4 VINI[3] 392 U22 DDRVDE 93 A9 XSRST 193 C3 VSYNCO 293 Y4 VINI[0] 393 T22 DDRVDE 94 A8 DOUTB[4] 194 D3 DOUTB[16] 294 AA4 VINHSYNCI 394 R22 VSS 95 A7 DOUTG0[2] 1													1		
89 A13 PLLVDD 189 B6 DOUTG0[7] 289 T4 VSS 389 Y22 VSS 90 A12 PLLVSS 190 B5 DOUTR0[4] 290 U4 VSS 390 W22 VSS 91 A11 XRST 191 B4 VDDE 291 VSS 391 V22 MDQ[6] 92 A10 TRACEDATA[3] 192 B3 HSYNC0 292 W4 VIN1[3] 392 U22 DDRVDE 93 A9 XSRST 193 C3 VSYNC0 293 Y4 VIN1[0] 393 T22 DDRVDE 94 A8 DOUTB0[4] 194 D3 DOUTB1[4] 294 AA4 VINHSYNC1 394 R22 VSS 95 A7 DOUTG0[6] 195 E3 DOUTG1[6] 295 AB4 12S MS2 395 P22 VDDI 96 A6 DOUTG0[6] 196													1		
91	89	A13	PLLVDD	189	В6	DOUTG0[7]	289	T4	VSS	389	Y22	VSS			
92 A10 TRACEDATA[3] 192 B3 HSYNC0 292 W4 VINI[3] 392 U22 DDRVDE 93 A9 XSRST 193 C3 VSYNC0 293 Y4 VINI[0] 393 T22 DDRVDE 94 A8 DOUTB[4] 194 D3 DOUTB[4] 294 AA4 VINISVNC1 394 R22 VSS 95 A7 DOUTG[2] 195 E3 DOUTG[2] 295 AB4 12S WS2 395 P22 VDDI 96 A6 DOUTG[6] 196 F3 DOUTG[6] 296 AC4 12S SDO1 396 N22 VDDI 97 A5 DCLKIN0 197 G3 DOUTRI[4] 297 AC5 CAN TXO 397 M22 VSS 98 A4 VSS 198 H3 DOUTRI[7] 298 AC6 GPIO PD[23] 398 L22 MDQ[22]	90	A12	PLLVSS	190	B5	DOUTR0[4]	290	U4	VSS	390	W22	VSS			
93 A9 XSRST 193 C3 VSYNC0 293 Y4 VINI[0] 393 T22 DDRVDE 94 A8 DOUTB0[4] 194 D3 DOUTB1[4] 294 AA4 VINHSYNC1 394 R22 VSS 95 A7 DOUTG0[2] 195 E3 DOUTG1[2] 295 AB4 12S WS2 395 P22 VDDI 96 A6 DOUTG0[6] 196 F3 DOUTG1[6] 296 AC4 12S SDD1 396 N22 VDDI 97 A5 DCLKINO 197 G3 DOUTR1[4] 297 AC5 CAN TXO 397 M22 VSS 98 A4 VSS 198 H3 DOUTR1[7] 298 AC6 GPIO PD[23] 398 L22 MDQ[22]													1		
94 A8 DOUTB0[4] 194 D3 DOUTB1[4] 294 AA4 VINHSYNC1 394 R22 VSS 95 A7 DOUTG0[2] 195 E3 DOUTG1[2] 295 AB4 12S WS2 395 P22 VDDI 96 A6 DOUTG0[6] 196 F3 DOUTG1[6] 296 AC4 12S SDO1 396 N22 VDDI 97 A5 DCLKINO 197 G3 DOUTR1[4] 297 AC5 CAN TXO 397 M22 VSS 98 A4 VSS 198 H3 DOUTR1[7] 298 AC6 GPIO PD[23] 398 L22 MD0[22]													1		
95 A7 DOUTG0[2] 195 E3 DOUTG1[2] 295 AB4 12S WS2 395 P22 VDDI 96 A6 DOUTG0[6] 196 F3 DOUTG1[6] 296 AC4 12S SDO1 396 N22 VDDI 97 A5 DCLKIN0 197 G3 DOUTR1[4] 297 AC5 CAN TXO 397 M22 VSS 98 A4 VSS 198 H3 DOUTR1[7] 298 AC6 GPIO PD[23] 398 L22 MDQ[22]													1		
96 A6 DOUTG0[6] 196 F3 DOUTG1[6] 296 AC4 12S SDO1 396 N22 VDDI 97 A5 DCLKINO 197 G3 DOUTR1[4] 297 AC5 CAN TXO 397 M22 VSS 98 A4 VSS 198 H3 DOUTR1[7] 298 AC6 GPIO PD[23] 398 L22 MDQ[22]															
97 A5 DCLKINO 197 G3 DOUTR1[4] 297 AC5 CAN TXO 397 M22 VSS 98 A4 VSS 198 H3 DOUTR1[7] 298 AC6 GPIO PD[23] 398 L22 MDQ[22]															
98 A4 VSS 198 H3 DOUTR[7] 298 AC6 GPIO PD[23] 398 L22 MDQ[22]													1		
99 A3 DCLKOO 199 J3 VSYNC1 299 AC7 GPIO PD[19] 399 K22 DDRVDE													1		
. 1 1 1 1			DCLK00										1		
100 A2 VSS 200 K3 VIN0[7] 300 AC8 GPIO_PD[15] 400 J22 DDRVDE													l		

7. Pin function

External pin function of MB86R03 is described below.

7.1. Pin Multiplex

This LSI adopts pin multiplex function, and a part of external pin function is multiplexed.

The external pin function is categorized into following four groups. Each group is able to set the external pin function individually; therefore, the function can be flexibly set depending on the peripheral I/O resource to be used.

- 1. Pin multiplex group #1 (setting pin: MPX_MODE_1[1:0])
 - Mode 0: Pin related to DISPLAY1
 - Mode 1: Pin related to external bus interface
 - Mode 2: Pin related to I2SO, GPIO, and DISPLAYO data width extension
- 2. Pin multiplex group #2 (setting register: CMUX_MD.MPX_MODE_2[2:0])
 - Mode 0: Pin related to CAP1, CAP0 synchronizing signal, PWM, and I2S2
 - Mode 1: Pin related to CAP1 (NRGB666)
 - Mode 2: Pin related to GPIO, CAN, I2S1, and I2S2
 - Mode 3: Pin related to GPIO, CAN, I2S1, and SPI
 - Mode 4: Pin related to GPIO, CAN, I2S1, and I2S2 (input)
- 3. Pin multiplex group #3 (Reserved)
- 4. Pin multiplex group #4 (setting register: CMUX MD.MPX MODE 4[1:0])
 - Mode 1: Pin related to I2S1, CAN, GPIO, and PWM
- 5. Pin multiplex group #5 (setting pin: MPX_MODE_5[1:0])
 - Mode 0: Pin related to ETM
 - Mode 1: Pin related to UART3, UART4, and UART5
 - Mode 2: Pin related to UART3, UART4, and PWM

Note:

Mode should be changed when each pin is not in operation.

PWM, I2S1, and CAN pins may be duplicated and allocated to external pin depending on group combination; in this case, use either of them. For unused pin, follow the procedure in 7.2.22, Unused pin in the duplex case with pin multiplex function.

Pin multiplex group #1 (setting pin: MPX_MODE_1 [1:0])

Table 7-1 Pin function of pin multiplex group #1 by mode

		Mode 0	Mode 1		Mod	le 2	
Pin No.	JEDEC	Pin related to DISPLAY1	Pin related to external bus interface	Pin related to I2S0	Pin related to GPIO	Pin related to DISPLAY0	Pin related to external bus interface
198	Н3	DOUTR1[7]	MEM_ED[31]	I2S_ECLK0	-	-	-
281	H4	DOUTR1[6]	MEM_ED[30]	I2S_SCK0	-	-	-
106	G2	DOUTR1[5]	MEM_ED[29]	I2S_WS0	-	-	-
197	G3	DOUTR1[4]	MEM_ED[28]	I2S_SDI0	-	-	-
280	G4	DOUTR1[3]	MEM_ED[27]	I2S_SDO0	-	-	-
6	F1	DOUTR1[2]	MEM_ED[26]	-	GPIO_PD[12]	-	-
105	F2	DOUTG1[7]	MEM_ED[25]	-	GPIO_PD[11]	-	-
196	F3	DOUTG1[6]	MEM_ED[24]	-	GPIO_PD[10]	-	-
279	F4	DOUTG1[5]	MEM_ED[23]	-	GPIO_PD[9]	-	-
5	E1	DOUTG1[4]	MEM_ED[22]	-	GPIO_PD[8]	-	-
104	E2	DOUTG1[3]	MEM_ED[21]	-	GPIO_PD[7]	-	-
195	E3	DOUTG1[2]	MEM_ED[20]	-	GPIO_PD[6]	-	-
278	E4	DOUTB1[7]	MEM_ED[19]	-	-	DOUTR0[1]	-
4	D1	DOUTB1[6]	MEM_ED[18]	-	-	DOUTR0[0]	-
103	D2	DOUTB1[5]	MEM_ED[17]	-	-	DOUTG0[1]	-
194	D3	DOUTB1[4]	MEM_ED[16]	-	-	DOUTG0[0]	-
277	D4	DOUTB1[3]	MEM_XWR[3]	-	-	DOUTB0[1]	-
3	C1	DOUTB1[2]	MEM_XWR[2]	-	-	DOUTB0[0]	-
283	K4	DE1	XDACK[7]	-	-	-	XDACK[7]
282	J4	HSYNC1	DREQ[6]	-	-	-	DREQ[6]
199	J3	VSYNC1	XDACK[6]	-	-	-	XDACK[6]
108	J2	GV1	DREQ[7]	-	-	-	DREQ[7]

Pin multiplex group #1 mode setting

This mode is set with external pin, MPX_MODE_1[1:0].

Table 7-2 Mode setting of pin multiplex group #1

MPX_MODE_1[1] pin	MPX_MODE_1[0] pin	Pin multiplex group #1 mode
"L"	"L"	Mode 0
"L"	"H"	Mode 1
"H"	"L"	Mode 2
"H"	"H"	Mode 0

Pin multiplex group #2 (setting register: PIN MPX Select.MPX_MODE_2 [2:0])

Table 7-3 Pin function of pin multiplex group #2 by mode

	Mode 0				Mode 1 Mode 2				Mode 3				Mode 4		
Pin No.	JEDEC	Pin related to CAP0/1		Pin related to I2S2	Pin related to CAP1 (NRGB666)	Pin related to GPIO	Pin related to CAN	Pin related to I2S1/2	Pin related to GPIO			Pin related to SPI	Pin related to GPIO		Pin related to I2S1/2
208	V3	VIN1[7]			RI1[7]	GPIO_PD[5]			GPIO_PD[5]				GPIO_PD[5]		
19	W1	VIN1[6]	-		RI1[6]	GPIO_PD[4]			GPIO_PD[4]	•	-		GPIO_PD[4]		-
118	W2	VIN1[5]			RI1[5]		CAN_TX0			CAN_TX0	-			CAN_TX0	-
209	W3	VIN1[4]			RI1[4]		CAN_RX0			CAN_RX0	-			CAN_RX0	-
292	W4	VIN1[3]	-	-	RI1[3]		CAN_TX1		-	CAN_TX1	-	-		CAN_TX1	-
119	Y2	VIN1[2]	-	-	RI1[2]		CAN_RX1		-	CAN_RX1	-	-		CAN_RX1	-
210	Y3	VIN1[1]			GI1[7]	-		I2S_SCK1			I2S_SCK1	-			I2S_SCK1
293	Y4	VIN1[0]	-	-	GI1[6]		-	12S_WS1	-		12S_WS1	-		-	I2S_WS1
211	AA3	VINVSYNC1	-	-	VINVSYNC1		-	I2S_ECLK1	-		I2S_ECLK1	-		-	I2S_ECLK1
294	AA4	VINHSYNC1	-	-	VINHSYNC1		-	I2S_SDI1	-		I2S_SDI1	-		-	I2S_SDI1
22	AB1	VINFID1	-	-	VINFID1		-	I2S_SD01	-		I2S_SD01	-		-	I2S_SDO1
202	M3	VINVSYNC0	-	-	GI1[5]		-		-		-	-		-	-
203	N3	VINHSYNC0	-	-	GI1[4]		-		-		-	-		-	-
112	N2	VINFID0	-	-	GI1[3]		-		-		-	-		-	-
123	AD2	-	PWM_O0		GI1[2]	GPIO_PD[3]	-		GPIO_PD[3]			-	GPIO_PD[3]	-	
122	AC2	-	PWM_01	-	BI1[7]	GPIO_PD[2]	-		GPIO_PD[2]		-	-	GPIO_PD[2]	-	-
121	AB2	-	-	12S_SD02	BI1[6]		-	I2S_SDO2	-		-	SPI_DO	GPIO_PD[1]	-	-
24	AD1			I2S_ECLK2	BI1[5]		-	I2S_ECLK2			-	Reserved (入出力)	GPIO_PD[0]	-	-
23	AC1	-	-	I2S_SCK2	BI1[4]			I2S_SCK2			-	SPI_SCK			I2S_SCK2
295	AB4	-	-	12S_WS2	BI1[3]			12S_WS2			-	SPI_SS			I2S_WS2
212	AB3	-	-	I2S_SDI2	BI1[2]	-		I2S_SDI2		-	-	SPI_DI	-		I2S_SDI2

Pin multiplex group #2 mode setting

This mode is set with MPX_MODE_2 bit (bit 2-0) in the Multiplex mode setting register (CMUX_MD.)

Table 7-4 Mode setting of pin multiplex group #2

The strain of his married at the strain of t							
MPX_MODE_2 (bit 2-0) of the CMUX_MD register	Pin multiplex group #2 mode						
000	Mode 0						
001	Mode 1						
010	Mode 2						
011	Mode 3						
100	Mode 4						
101 – 110	Reserved						
111	(Initial value)						

Pin multiplex group #4 (setting register: PIN_MPX_Select.MPX_MODE_4 [1:0])

Table 7-5 Pin function of pin multiplex group #4 by mode

		Mode 1								
Pin No.	JEDEC	Pin related to I2S1	Pin related to CAN	Pin related to GPIO	Pin related to PWM					
28	AF3	I2S_SDI1	-	-	-					
125	AE3	I2S_WS1	-	-	-					
215	AD4	I2S_ECLK1	-	-	-					
296	AC4	I2S_SDO1	-	-	-					
214	AD3	I2S_SCK1	-	-	-					
297	AC5	•	CAN_TX0	-	-					
216	AD5	-	CAN_RX0	-	-					
127	AE5	-	CAN_TX1	-	-					
30	AF5	-	CAN_RX1	-	-					
298	AC6	-	-	GPIO_PD[23]	-					
217	AD6	-	-	GPIO_PD[22]	-					
128	AE6	-	-	GPIO_PD[21]	-					
31	AF6	•	-	GPIO_PD[20]	-					
299	AC7	•	-	GPIO_PD[19]	-					
218	AD7	•	-	GPIO_PD[18]	-					
129	AE7	-	-	GPIO_PD[17]	-					
32	AF7	-	-	GPIO_PD[16]	-					
300	AC8	-	-	GPIO_PD[15]	-					
219	AD8	-	-	GPIO_PD[14]	-					
130	AE8	-	-	GPIO_PD[13]	-					
220	AD9	-	-	-	PWM_O1					
131	AE9	-	-	-	PWM_O0					

Pin multiplex group #4 mode setting

This mode is set with MPX_MODE_4 bit (bit 5-4) in the Multiplex mode setting register (CMUX_MD.)

Table 7-6 Mode setting of pin multiplex group #4

	1 9 1
MPX_MODE_4 (Bit 5-4) of the CMUX_MD register	Pin multiplex group #4 mode
00	Reserved
01	Mode 1
10	Reserved
11	(Initial value)

Pin multiplex group #5 (setting pin: MPX_MODE_5 [1:0])

Table 7-7 Pin function of pin multiplex group #5 by mode

		Mode 0	Mode 1	Mo	de 2
Pin No.	JEDEC	Pin related to ETM	Pin related to	Pin related to UART3/4	Pin related to PWM
			UART3/4/5		
270	C10	TRACECLK	UART_SIN3	UART_SIN3	-
185	B10	TRACECTL	UART_SOUT3	UART_SOUT3	-
92	A10	TRACEDATA[3]	UART_SIN4	UART_SIN4	-
346	D11	TRACEDATA[2]	UART_SOUT4	UART_SOUT4	-
269	C11	TRACEDATA[1]	UART_SIN5	-	PWM_O1
184	B11	TRACEDATA[0]	UART_SOUT5	-	PWM_O0

Pin multiplex group #5 mode setting

This mode is set with external pin, MPX_MODE_5[1:0].

Table 7-8 Mode setting of pin multiplex group #5

MPX_MODE_5[1] pin	MPX_MODE_5[0] pin	Pin multiplex group #5 mode
"L"	"L"	Mode 0
"L"	"H"	Mode 1
"H"	"L"	Mode 2
"H"	"H"	Mode 0

7.2. Pin function

Format

Pin function list is shown in the following format.

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description
----------	-----	----------	--------------------	------	------------------------------	-------------

Meaning of item and sign

Pin name

Name of external pin.

I/O

Input/Output signal's distinction based on this LSI.

- I: Pin that can be used as input
- O: Pin that can be used as output
- IO: Pin that can be used as input and output (interactive pin)

Polarity

Active polarity of external pin's input/output signals

- P: "H" active pin (positive logic)
- N: "L" active pin (negative logic)
- PN: "H" and "L" active pins

Analog/Digital

Signal type of external pin

- A: Analog signal
- D: Digital signal

Type

Input/Output circuit type of external pin.

- CLK: Clock
- POD: Pseudo Open Drain
- PU: Pull Up
- PD: Pull Down
- ST: Schmitt Type
- Tri: Tri-state

Pin status after reset

Pin status after external pin reset

- H: "H" level
- L: "L" level
- HiZ: High impedance
- X: "H" level or "L" level
- A: Clock output

Description

Outline of external pin function

7.2.1. External bus interface related pin

Table 7-9 External bus interface related pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description
MEM_XCS[4]	О	N	D	-	Н	Chip select 4
MEM_XCS[2]	О	N	D	ı	Н	Chip select 2
MEM_XCS[0]	О	N	D	ı	Н	Chip select 0
MEM_XRD	O	N	D	1	Н	Read strobe
MEM_XWR[3:2]	О	N	D	-	Н	Write strobe MEM_XWR[3] → MEM_ED[31:24], MEM_XWR[2] → MEM_ED[23:16] (optional pin)
MEM_XWR[1:0]	О	N	D	-	Н	Write strobe $MEM_XWR[1] \rightarrow MEM_ED[15:8]$ $MEM_XWR[0] \rightarrow MEM_ED[7:0]$
MEM_RDY	I	P	D	-	-	Ready input for slow device
MEM_EA[24:1]	О	-	D	-	L	Address bus
MEM_ED[31:16]	Ю	-	D	-	HiZ	Bi-directional data bus (optional pin)
MEM_ED[15:0]	IO	-	D	-	HiZ	Bi-directional data bus
DREQ[7:6]	I	-	D	-	-	External DMA request
XDACK[7:6]	О	P	D	-	L	External DMA acknowledge

7.2.2. SD memory controller related pin

Table 7-10 SD memory controller related pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description
SD_CLK	О	N	D	-	L	Media clock
SD_CMD	Ю	1	D	1	HiZ	Media command
SD_DAT[3:0]	IO	-	D	-	HiZ	Media data
SD_WP	I	P	D	1	-	Media write protection
SD_XMCD	I	N	D	1	-	Media card detection

7.2.3. External interrupt controller related pin

Table 7-11 External interrupt controller related pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description
INT_A[3:0]	I	PN	D	-	-	Asynchronous external interrupt requests

7.2.4. UART related pin

Table 7-12 UART related pin's function

Tuble / 12 (crute a pri	i s ruiretto.			
Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Explanation
UART_SIN0	I	P	D	-	-	Input data signal
UART_SOUT0	О	P	D	-	Н	Output data signal
UART_XCTS0	I	N	D	-	-	Clear to send
UART_XRTS0	О	N	D	-	Н	Request to send
UART_SIN1	I	P	D	-	-	Input data signal
UART_SOUT1	О	P	D	-	Н	Output data signal
UART_SIN2	I	P	D	-	-	Input data signal
UART_SOUT2	О	P	D	-	Н	Output data signal
UART_SIN3	I	P	D	-	-	Input data signal (optional)
UART_SOUT3	О	P	D	-	Н	Output data signal (optional)
UART_SIN4	I	P	D	-	-	Input data signal (optional)
UART_SOUT4	О	P	D	-	Н	Output data signal (optional)
UART_SIN5	I	P	D	-	-	Input data signal (optional)
UART_SOUT5	О	P	D	-	Н	Output data signal (optional)

7.2.5. CAN related pin

Table 7-13 CAN related pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Explanation
CAN_TX0	О	-	D	PD	Н	Transmission (optional)
CAN_RX0	I	-	D	PD	-	Reception (optional)
CAN_TX1	О	-	D	PD	Н	Transmission (optional)
CAN_RX1	I	-	D	PD	-	Reception (optional)

7.2.6. I2S related pin

Table 7-14 I2S related pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Explanation
I2S_ECLK0	I	-	D	-	-	External clock (optional)
I2S_SCK0	IO	-	D	-	HiZ	Clock (optional)
I2S_WS0	IO	PN	D	-	HiZ	Sync (optional)
I2S_SDI0	I	P	D	-	-	Input data signal (optional)
I2S_SDO0	О	P	D	-	Hiz	Output data signal (optional)
I2S_ECLK1	I	-	D	-	-	External clock (optional)
I2S_SCK1	IO	-	D	PD	L	Clock (optional)
I2S_WS1	IO	PN	D	PD	L	Sync(optional)
I2S_SDI1	I	P	D	-	-	Input data signal (optional)
I2S_SDO1	О	P	D	PD	L	Output data signal (optional)
I2S_ECLK2	I	-	D	PD	-	External clock (optional)
I2S_SCK2	IO	-	D	PD	L	Clock (optional)
I2S_WS2	IO	PN	D	PD	L	Sync (optional)
I2S_SDI2	I	P	D	-	-	Input data signal (optional)
I2S_SDO2	О	P	D	PD	L	Output data signal (optional)

7.2.7. I²C related pin

Table 7-15 I²C related pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Explanation
I2C_SCL0	Ю	-	D	POD	HiZ	I2C clock
I2C_SDA0	IO	-	D	POD	HiZ	I2C data
I2C_SCL1	IO	-	D	POD	HiZ	I2C clock
I2C_SDA1	IO	-	D	POD	HiZ	I2C data

7.2.8. SPI related pin

Table 7-16 SPI related pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Explanation
SPI_DO	О	P	D	PD	L	Serial data output (optional)
SPI_DI	I	P	D	-	-	Serial data input (optional)
SPI_SCK	О	-	D	PD	L	Serial clock (optional)
SPI_SS	О	PN	D	PD	L	Slave select (optional)

7.2.9. PWM related pin

Table 7-17 PWMrelated pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Explanation
PWM_O0	О	-	D	PD (*1)	L	PWM out 0 (optional)
PWM_O1	О	-	D	PD (*1)	L	PWM out 1 (optional)

^{*1:} Only PWM pin of the pin multiplex group #2 is with pull-down resistance

7.2.10. A/D converter related pin

Table 7-18 A/D converter related pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Explanation
AD_VIN0	I	-	A	1	-	A/D analog input
AD_VRH0	I	-	A	-	-	Reference voltage "H" input
AD_VRL0	I	-	A	1	-	Reference voltage "L" input
AD_AVD	I	-	A	1	-	Analog power supply
AD_VR0	О	-	A	-	-	Reference output
AD_VIN1	I	-	A	-	-	A/D analog input
AD_VRH1	I	-	A	-	-	Reference voltage "H" input
AD_VRL1	I	-	A	-	-	Reference voltage "L" input
AD_AVS	I	-	A	-	-	Analog ground
AD_VR1	О	-	A	-	-	Reference output

7.2.11. DDR2 related pin

Table 7-19 DDR2 related pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Explanation
MA[13:0]	О	P	D	-	Н	Address
MBA[1:0]	О	P	D	-	Н	Bank address
MDQ[31:0]	IO	P	D	-	Н	Data (*5)
MDM[3:0]	О	P	D	-	HiZ	Data mask (*6)
MDQSP[3:0]	IO	P	D	-	HiZ	Data strobe (*5)
MDQSN[3:0]	Ю	N	D	-	HiZ	Data strobe (*5)
MCKP	О	P	D	CLK	L	Clock output
MCKN	О	N	D	CLK	Н	Clock output
MCKE	О	P	D	-	L	Clock enable
MCS	О	N	D	-	L	Chip select
MRAS	О	N	D	-	Н	Row address strobe
MCAS	О	N	D	-	Н	Column address strobe
MWE	О	N	D	-	Н	Write enable
DDRVDE	I	-	A	-	-	SSTL_18 1.8V power supply
VREF1	I	-	A	-	-	Reference voltage input (DDRVDE/2)
VREF0	I	-	A	-	-	Reference voltage input (DDRVDE/2)
OCD	I	-	A	-	-	Off chip driver reference voltage input (*1)
ODT	I	-	A	-	-	On-die termination reference voltage input (*2)
ODTCONT	0	P	D	-	L	On-die termination control (*3)
MCKE_START	I	P	D	-	-	Set a state of MCKE in reset 0: Low (*4) 1: High (reserved)
DDRTYPE	I	P	D	-	-	Pull up pin to VDDE via high resistance

^{*1:} Pull up the pin to DDRVDE (1.8V power supply), via 200Ω resistance.

^{*2:} PCB impedance $Z = 100\Omega$ or 50Ω : Pull up pin to DDRVDE (1.8V power supply), via 180Ω resistance. PCB impedance $Z = 150\Omega$ or 75Ω : Pull up pin to DDRVDE (1.8V power supply), via 240 Ω resistance.

^{*3:} It connects it with the ODT pin of DDR2SDRAM.

^{*4:} Pull down pin to VSS, via high resistance.

^{*5:} This is process of unused pin at 16 bit mode. Pull down the pin to VSS via high resistance. Unused pins at 16 bit mode are as follows: "MDQ[31:16], MDQSP[3:2], MDQSN[3:2]"

^{*6:} This is process of MDM[3:2] at 16 bit mode. Be sure to open this pin.

7.2.12. DISPLAY related pin

Table 7-20 DISPLAY related pin's function

14516 7 20	e 7-20 Dist LAT Tetateu pin Stunction								
Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Explanation			
HSYNC0	Ю	-	D	-	HiZ	Video output interface horizontal sync output Horizontal sync input in external sync mode			
VSYNC0	IO		D	-	HiZ	Video output interface vertical sync output Vertical sync input in external sync mode			
GV0	О	-	D	-	L	Video output interface graphics/video switch			
DCLKIN0	I	-	D	CLK	-	Video output interface dot clock input			
DCLKO0	О	-	D	CLK	X	Video output interface dot clock output			
DE0	О	-	D	-	X	DE/CSYNC			
DOUTR0[7:2]	О	-	D	-	X	Digital RGB output0 DataR[7:2]			
DOUTR0[1:0]	О	-	D	-	X	Digital RGB output0 DataR[1:0] (optional)			
DOUTG0[7:2]	О	-	D	-	X	Digital RGB output0 DataG[7:2]			
DOUTG0[1:0]	О	-	D	-	X	Digital RGB output0 DataG[1:0] (optional)			
DOUTB0[7:2]	О	-	D	-	X	Digital RGB output0 DataB[7:2]			
DOUTB0[1:0]	О	-	D	-	X	Digital RGB output0 DataB[1:0] (optional)			
HSYNC1	Ю	-	D	-	HiZ	Video output interface horizontal sync output Horizontal sync input in external sync mode			
VSYNC1	Ю	-	D	-	HiZ	Video output interface vertical sync output Vertical sync input in external sync mode			
GV1	О	-	D	-	L	Video output interface graphics/video switch			
DCLKIN1	I	-	D	CLK	-	Video output interface dot clock input			
DCLKO1	О	-	D	CLK	X	Video output interface dot clock output			
DE1	О	-	D	-	X	DE/CSYNC			
DOUTR1[7:2]	О	-	D	-	X	Digital RGB output1 DataR[7:2]			
DOUTG1[7:2]	О	-	D	-	X	Digital RGB output1 DataG[7:2]			
DOUTB1[7:2]	О	-	D	-	X	Digital RGB output1 DataB[7:2]			

7.2.13. Video capture related pin

Table 7-21 Video capture related pin's function

1able 7-21	Viaco c	nueo capture relateu pin s function								
Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description				
VIN0[7:0]	I	-	D	-	-	Video capture Data[7:0]				
VINVSYNC0	I	-	D	PD	-	Video capture vertical sync input				
VINHSYNC0	I	-	D	PD	1	Video capture horizontal sync input				
VINFID0	I	-	D	-	-	Video input field identification signal 0 in odd field				
CCLK0	I	-	D	CLK	-	Video capture input clock				
VIN1[7:0]	I	-	D	PD	-	Video capture Data[7:0]				
VINVSYNC1	I	-	D	-	-	Video capture vertical sync input				
VINHSYNC1	I	-	D	-	-	Video capture horizontal sync input				
VINFID1	I	-	D	PD	-	Video input field identification signal 0 in odd field				
CCLK1	I	-	D	CLK	-	Video capture input clock				
RI1[7:2]	I	-	D	PD	-	NRGB666 capture DataR[7:2] (optional)				
GI1[7:2]	I	-	D	PD (*1)	-	NRGB666 capture DataG[7:2] (optional)				
BI1[7:2]	I	-	D	PD (*2)	-	NRGB666 capture DataB[7:2] (optional)				

7.2.14. System related pin

Table 7-22 System related pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description
CLK	I	-	D	CLK	-	Input clock
XRST	I	N	D	ST	-	System reset
CRIPM[3:0]	I	-	D	-	-	PLLMODE setting
VINITHI	I	-	D	-	-	Boot high address
PLLBYPASS	I	-	D	-	-	PLL bypass mode setting
BIGEND	I	-	D	-	-	LSI endian setting Low: Little endian High: Big endian
PLLVSS	I	-	A	-	-	PLL ground
PLLTDTRST	I	-	D	-	-	Test pin Pull up the pin to VDDE, via high resistance
PLLVDD	I	-	A	-	-	PLL power supply

^{*1:} GI1[3] is not applicable. *2: BI1[2] is not applicable.

7.2.15. JTAG related pin

Table 7-23 JTAG related pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description
TCK	I	1	D	ST, PU	-	Test clock
XTRST	I	N	D	ST, PU	-	Test reset
TMS	I	N	D	PU	-	Test mode
TDI	I	-	D	PU	-	Test data input
TDO	О	-	D	Tri	HiZ	Test data output

7.2.16. ICE related pin

Table 7-24 ICE related pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description
RTCK	О	1	D	-	Н	Return test clock
XSRST	Ю	N	D	ST, PU	Н	System reset

7.2.17. Multiplex setting related pin

Table 7-25 Multiplex setting related pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description
JTAGSEL	I	-	D	-		JTAG selection 1: DFT, 0: Normal Pull it down to VSS, via high resistance
MPX_MODE_5[1:0]	I	-	D	-	-	External pin multiplex mode 5
MPX_MODE_1[1:0]	I	-	D	-	-	External pin multiplex mode 1
TESTMODE[2:0]	I	-	D	-	-	Test mode selection pin Pull it down to VSS, via high resistance
VPD	I	-	D	-	-	Test mode selection pin Pull it down to VSS, via high resistance

7.2.18. ETM related pin

Table 7-26 ETM related pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description
TRACECLK	О	-	D	-	L	Exported clock for TRACEDATA[3:0] and TRACECTL They are valid on bath edges of TRACECLK for max. integrity.
TRACECTL	О	-	D	-	Н	Trace control signal used by the trace tool such as RealView supplied by ARM Limited.
TRACEDATA[3:0]	О	-	D	-	LHHH	Trace data used by the trace tool such as RealView supplied by ARM Limited.

7.2.19. Power supply related pin

Table 7-27 Power supply related pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description
VSS	I	-	D	-	-	Ground
VDDE	I	-	D	1	-	External pin power supply
VDDI	I	-	D	-	-	Internal power supply

7.2.20. GPIO related pin

Table 7-28 GPIO related pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description
GPIO_PD[23:0]	IO	-	D	PD (*1)	HiZ	General purpose I/O port (optional)

^{*1:} GPIO_PD[12:6] is not applicable.

7.2.21. Unused pin

Proceed following processes for unused pin.

Table 7-29 MB86R03 unused pin's process

D.	Table 7-	-29 MB86R03 unused pin's process	
Pin No.	JEDEC	Pin name	Process
3	C1	DOUTB1[2], MEM_XWR[2], DOUTB0[0]	Pull up to VDDE or pull down to VSS through high resistance.
4	D1	DOUTB1[6], MEM_ED[18], DOUTR0[0]	Pull up to VDDE or pull down to VSS through high resistance.
5	E1	DOUTG1[4], MEM_ED[22], GPIO_PD[8]	Pull up to VDDE or pull down to VSS through high resistance.
6	F1	DOUTR1[2], MEM_ED[26], GPIO_PD[12]	Pull up to VDDE or pull down to VSS through high resistance.
7	G1	DCLKIN1	Pull up to VDDE or pull down to VSS through high resistance.
9	J1	DCLK01	Keep the pin open.
10	K1	VIN0[5]	Pull up to VDDE or pull down to VSS through high resistance.
11	L1	VIN0[1]	Pull up to VDDE or pull down to VSS through high resistance.
12	M1	CCLK0	Pull up to VDDE or pull down to VSS through high resistance.
14	P1	VSS	Connect to VSS.
15	R1	VSS	Connect to VSS or Pull down to VSS through 10kΩ resistance. (*2)
16	T1	VSS	Connect to VSS or Pull down to VSS through 10kΩ resistance. (*2)
17	U1	VSS	Connect to VSS.
18	V1	VSS	Connect to VSS.
19	W1	VIN1[6], RI1[6], GPIO_PD[4]	Keep the pin open.
21	AA1	CCLK1	Pull up to VDDE or pull down to VSS through high resistance.
22	AB1	VINFID1, I2S_SDO1	Keep the pin open.
23	AC1	I2S_SCK2, BI1[4], SPI_SCK	Keep the pin open.
24	AD1	I2S_ECLK2, BI1[5], Reserved (input/output), GPIO_PD[0]	Keep the pin open.
28	AF3	I2S_SDI1	Pull up to VDDE or pull down to VSS through high resistance.
29	AF4	(Unused)	Keep the pin open.
30	AF5	CAN_RX1	Keep the pin open.
31	AF6	GPIO_PD[20]	Keep the pin open.
32	AF7	GPIO_PD[16]	Keep the pin open.
33	AF8	(Unused)	Keep the pin open.
34	AF9	(Unused)	Keep the pin open.
35	AF10	(Unused)	Keep the pin open.
36	AF11	MPX_MODE_5[1]	Pull up to VDDE or pull down to VSS through high resistance.
38	AF13	AD_AVD	Connect to VSS.
39	AF14	AD_AVS	Connect to VSS.
40	AF15	UART_SOUT0	Keep the pin open.
41	AF16	UART_SIN0	Pull up to VDDE or pull down to VSS through high resistance.
42	AF17	UART_SIN1	Pull up to VDDE or pull down to VSS through high resistance.
43	AF18	SD_DAT[0]	Pull up to VDDE or pull down to VSS through high resistance.
44	AF19	SD_WP	Pull up to VDDE or pull down to VSS through high resistance.
45	AF20	I2C_SCL1	Pull up to VDDE or pull down to VSS through high resistance.

Pin No.	JEDEC	Pin name	Process
46	AF21	I2C_SDA1	Pull up to VDDE or pull down to VSS through high resistance.
47	AF22	INT_A[0]	Pull up to VDDE or pull down to VSS through high resistance.
48	AF23	MA[8]	Keep the pin open.
49	AF24	MA[12]	Keep the pin open.
52	AE26	MA[7]	Keep the pin open.
53	AD26	MA[3]	Keep the pin open.
54	AC26	MA[1]	Keep the pin open.
55	AB26	MBA[1]	Keep the pin open.
57	Y26	MDQSN[0]	Pull down to VSS through high resistance.
58	W26	MDQSP[0]	Pull down to VSS through high resistance.
60	U26	MDQSN[1]	Pull down to VSS through high resistance.
61	T26	MDQSP[1]	Pull down to VSS through high resistance.
63	P26	MCKN	Keep the pin open.
64	N26	MCKP	Keep the pin open.
66	L26	MDQSN[2]	Pull down to VSS through high resistance.
67	K26	MDQSP[2]	Pull down to VSS through high resistance.
69	H26	MDQSN[3]	Pull down to VSS through high resistance.
70	G26	MDQSP[3]	Pull down to VSS through high resistance.
72	E26	MEM_ED[3]	Pull up to VDDE or pull down to VSS through high resistance.
73	D26	MEM_ED[7]	Pull up to VDDE or pull down to VSS through high resistance.
74	C26	MEM_ED[11]	Pull up to VDDE or pull down to VSS through high resistance.
78	A24	MEM_EA[1]	Pull up to VDDE or pull down to VSS through high resistance.
79	A23	MEM_EA[4]	Pull up to VDDE or pull down to VSS through high resistance.
80	A22	MEM_EA[8]	Pull up to VDDE or pull down to VSS through high resistance.
81	A21	MEM_EA[12]	Pull up to VDDE or pull down to VSS through high resistance.
82	A20	MEM_EA[16]	Pull up to VDDE or pull down to VSS through high resistance.
83	A19	MEM_EA[20]	Pull up to VDDE or pull down to VSS through high resistance.
85	A17	MEM_XRD	Pull up to VDDE or pull down to VSS through high resistance.
88	A14	TDO	Keep the pin open.
92	A10	TRACEDATA[3], UART_SIN4	Pull up to VDDE or pull down to VSS through high resistance.
94	A8	DOUTB0[4]	Keep the pin open.
95	A7	DOUTG0[2]	Keep the pin open.
96	A6	DOUTG0[6]	Keep the pin open.
97	A5	DCLKIN0	Pull up to VDDE or pull down to VSS through high resistance.
99	A3	DCLKO0	Keep the pin open.
101	B2	DE0	Keep the pin open.
102	C2	GV0	Keep the pin open.
103	D2	DOUTB1[5], MEM_ED[17], DOUTG0[1]	Pull up to VDDE or pull down to VSS through high resistance.
104	E2	DOUTG1[3], MEM_ED[21], GPIO_PD[7]	Pull up to VDDE or pull down to VSS through high resistance.
105	F2	DOUTG1[7], MEM_ED[25], GPIO_PD[11]	Pull up to VDDE or pull down to VSS through high resistance.
106	G2	DOUTR1[5], MEM_ED[29], I2S_WS0	Pull up to VDDE or pull down to VSS through high resistance.
108	J2	GV1, DREQ[7]	Pull up to VDDE or pull down to VSS through high resistance.

Pin No.	JEDEC	Pin name	Process
109	K2	VIN0[6]	Pull up to VDDE or pull down to VSS through high resistance.
110	L2	VIN0[2]	Pull up to VDDE or pull down to VSS through high resistance.
112	N2	VINFID0, GI1[3]	Pull up to VDDE or pull down to VSS through high resistance.
113	P2	VSS or VDDI	Connect to VSS or VDDI. (*1) Do not open the pin.
114	R2	VSS	Connect to VSS or Pull down to VSS through 10kΩ resistance. (*2)
115	T2	VSS	Connect to VSS or Pull down to VSS through 10kΩ resistance. (*2)
116	U2	VSS	Connect to VSS.
117	V2	VSS	Connect to VSS.
118	W2	VIN1[5], RI1[5], CAN_TX0	Keep the pin open.
119	Y2	VIN1[2], RI1[2], CAN_RX1	Keep the pin open.
121	AB2	I2S_SDO2, BI1[6], SPI_DO, GPIO_PD[1]	Keep the pin open.
122	AC2	PWM_O1, BI1[7], GPIO_PD[2]	Keep the pin open.
123	AD2	PWM_O0, GI1[2], GPIO_PD[3]	Keep the pin open.
125	AE3	I2S_WS1	Keep the pin open.
126	AE4	(Unused)	Keep the pin open.
127	AE5	CAN_TX1	Keep the pin open.
128	AE6	GPIO_PD[21]	Keep the pin open.
129	AE7	GPIO_PD[17]	Keep the pin open.
130	AE8	GPIO_PD[13]	Keep the pin open.
131	AE9	PWM_O0	Keep the pin open.
132	AE10	(Unused)	Keep the pin open.
133	AE11	MPX_MODE_5[0]	Pull up to VDDE or pull down to VSS through high resistance.
135	AE13	AD_VRH0	Connect to VSS.
136	AE14	AD_VRH1	Connect to VSS.
137	AE15	UART_XRTS0	Keep the pin open.
138	AE16	UART_XCTS0	Pull up to VDDE or pull down to VSS through high resistance.
139	AE17	UART_SOUT1	Keep the pin open.
140	AE18	SD_DAT[1]	Pull up to VDDE or pull down to VSS through high resistance.
141	AE19	SD_XMCD	Pull up to VDDE or pull down to VSS through high resistance.
142	AE20	I2C_SCL0	Pull up to VDDE or pull down to VSS through high resistance.
143	AE21	INT_A[3]	Pull up to VDDE or pull down to VSS through high resistance.
144	AE22	MCKE_START	Pull down to VSS through high resistance.
145	AE23	MA[13]	Keep the pin open.
146	AE24	MA[4]	Keep the pin open.
147	AE25	MA[11]	Keep the pin open.
148	AD25	MA[5]	Keep the pin open.
149	AC25	MA[10]	Keep the pin open.
150	AB25	MBA[0]	Keep the pin open.
151	AA25	MCKE	Keep the pin open.
152	Y25	MDQ[2]	Pull down to VSS through high resistance.
153	W25	MDQ[0]	Pull down to VSS through high resistance.
		ļ	

Pin No.	JEDEC	Pin name	Process
154	V25	VREF0	Connect to DDRVDE/2[V]Reference voltage.
155	U25	MDQ[13]	Pull down to VSS through high resistance.
156	T25	MDQ[8]	Pull down to VSS through high resistance.
157	R25	MDQ[15]	Pull down to VSS through high resistance.
160	M25	MDQ[21]	Pull down to VSS through high resistance.
161	L25	MDQ[16]	Pull down to VSS through high resistance.
162	K25	VREF1	Connect to DDRVDE/2[V]Reference voltage.
163	J25	MDQ[29]	Pull down to VSS through high resistance.
164	H25	MDQ[24]	Pull down to VSS through high resistance.
165	G25	MDQ[31]	Pull down to VSS through high resistance.
166	F25	MEM_ED[0]	Pull up to VDDE or pull down to VSS through high resistance.
167	E25	MEM_ED[4]	Pull up to VDDE or pull down to VSS through high resistance.
168	D25	MEM_ED[8]	Pull up to VDDE or pull down to VSS through high resistance.
169	C25	MEM_ED[12]	Pull up to VDDE or pull down to VSS through high resistance.
170	B25	MEM_ED[14]	Pull up to VDDE or pull down to VSS through high resistance.
171	B24	MEM_ED[15]	Pull up to VDDE or pull down to VSS through high resistance.
172	B23	MEM_EA[3]	Pull up to VDDE or pull down to VSS through high resistance.
173	B22	MEM_EA[7]	Pull up to VDDE or pull down to VSS through high resistance.
174	B21	MEM_EA[11]	Pull up to VDDE or pull down to VSS through high resistance.
175	B20	MEM_EA[15]	Pull up to VDDE or pull down to VSS through high resistance.
176	B19	MEM_EA[19]	Pull up to VDDE or pull down to VSS through high resistance.
177	B18	MEM_EA[23]	Pull up to VDDE or pull down to VSS through high resistance.
178	B17	MEM_XWR[1]	Pull up to VDDE or pull down to VSS through high resistance.
179	B16	MEM_XCS[4]	Pull up to VDDE or pull down to VSS through high resistance.
183	B12	TMS	Pull up to VDDE or pull down to VSS through high resistance.
184	B11	TRACEDATA[0], UART_SOUT5, PWM_O0	Pull up to VDDE or pull down to VSS through high resistance.
185	B10	TRACECTL, UART_SOUT3	Keep the pin open.
187	В8	DOUTB0[5]	Keep the pin open.
188	В7	DOUTG0[3]	Keep the pin open.
189	В6	DOUTG0[7]	Keep the pin open.
190	В5	DOUTR0[4]	Keep the pin open.
192	В3	HSYNC0	Pull up to VDDE or pull down to VSS through high resistance.
193	C3	VSYNC0	Pull up to VDDE or pull down to VSS through high resistance.
194	D3	DOUTB1[4], MEM_ED[16], DOUTG0[0]	Pull up to VDDE or pull down to VSS through high resistance.
195	E3	DOUTG1[2], MEM_ED[20], GPIO_PD[6]	Pull up to VDDE or pull down to VSS through high resistance.
196	F3	DOUTG1[6], MEM_ED[24], GPIO_PD[10]	Pull up to VDDE or pull down to VSS through high resistance.
197	G3	DOUTR1[4], MEM_ED[28], I2S_SDI0	Pull up to VDDE or pull down to VSS through high resistance.
198	НЗ	DOUTR1[7], MEM_ED[31], I2S_ECLK0	Pull up to VDDE or pull down to VSS through high resistance.
199	J3	VSYNC1, XDACK[6]	Pull up to VDDE or pull down to VSS through high resistance.
200	К3	VIN0[7]	Pull up to VDDE or pull down to VSS through high resistance.
201	L3	VIN0[3]	Pull up to VDDE or pull down to VSS through high resistance.
202	M3	VINVSYNC0, GI1[5]	Keep the pin open.
193 194 195 196 197 198 199 200 201	C3 D3 E3 F3 G3 H3 J3 K3 L3	VSYNC0 DOUTB1[4], MEM_ED[16], DOUTG0[0] DOUTG1[2], MEM_ED[20], GPIO_PD[6] DOUTG1[6], MEM_ED[24], GPIO_PD[10] DOUTR1[4], MEM_ED[28], I2S_SDI0 DOUTR1[7], MEM_ED[31], I2S_ECLK0 VSYNC1, XDACK[6] VIN0[7] VIN0[3]	Pull up to VDDE or pull down to VSS through high resist Pull up to VDDE or pull down t

Pin No.	JEDEC	Pin name	Process
203	N3	VINHSYNC0, GI1[4]	Keep the pin open.
204	Р3	VSS	Connect to VSS.
205	R3	VSS or VDDE	Connect to VSS or VDDE. (*1) Do not open the pin.
206	Т3	VSS	Connect to VSS.
207	U3	VSS or VDDI	Connect to VSS or VDDI. (*1) Do not open the pin.
208	V3	VIN1[7], RI1[7], GPIO_PD[5]	Keep the pin open.
209	W3	VIN1[4], RI1[4], CAN_RX0	Keep the pin open.
210	Y3	VIN1[1], GI1[7], I2S_SCK1	Keep the pin open.
211	AA3	VINVSYNC1, I2S_ECLK1	Pull up to VDDE or pull down to VSS through high resistance.
212	AB3	I2S_SDI2, BI1[2], SPI_DI	Pull up to VDDE or pull down to VSS through high resistance.
213	AC3	(Unused)	Connect to VSS.
214	AD3	12S_SCK1	Keep the pin open.
215	AD4	I2S_ECLK1	Pull up to VDDE or pull down to VSS through high resistance.
216	AD5	CAN_RX0	Keep the pin open.
217	AD6	GPIO_PD[22]	Keep the pin open.
218	AD7	GPIO_PD[18]	Keep the pin open.
219	AD8	GPIO_PD[14]	Keep the pin open.
220	AD9	PWM_O1	Keep the pin open.
221	AD10	(Unused)	Keep the pin open.
222	AD11	MPX_MODE_1[1]	Pull up to VDDE or pull down to VSS through high resistance.
224	AD13	AD_VIN0	Connect to VSS.
225	AD14	AD_VIN1	Connect to VSS.
227	AD16	UART_SOUT2	Keep the pin open.
228	AD17	SD_CMD	Pull up to VDDE or pull down to VSS through high resistance.
229	AD18	SD_DAT[2]	Pull up to VDDE or pull down to VSS through high resistance.
230	AD19	(Unused)	Keep the pin open.
231	AD20	I2C_SDA0	Pull up to VDDE or pull down to VSS through high resistance.
232	AD21	INT_A[1]	Pull up to VDDE or pull down to VSS through high resistance.
234	AD23	MA[9]	Keep the pin open.
235	AD24	MA[6]	Keep the pin open.
236	AC24	MA[2]	Keep the pin open.
237	AB24	MWE	Keep the pin open.
238	AA24	MRAS	Keep the pin open.
239	Y24	MDQ[5]	Pull down to VSS through high resistance.
240	W24	MDQ[1]	Pull down to VSS through high resistance.
241	V24	MDQ[7]	Pull down to VSS through high resistance.
242	U24	MDQ[10]	Pull down to VSS through high resistance.
243	T24	MDQ[9]	Pull down to VSS through high resistance.
244	R24	MDM[1]	Pull down to VSS through high resistance.
247	M24	MDQ[18]	Pull down to VSS through high resistance.
248	L24	MDQ[17]	Pull down to VSS through high resistance.

Pin No.	JEDEC	Pin name	Process
249	K24	MDQ[23]	Pull down to VSS through high resistance.
250	J24	MDQ[26]	Pull down to VSS through high resistance.
251	H24	MDQ[28]	Pull down to VSS through high resistance.
252	G24	MDM[3]	Pull down to VSS through high resistance.
253	F24	MEM_ED[1]	Pull up to VDDE or pull down to VSS through high resistance.
254	E24	MEM_ED[5]	Pull up to VDDE or pull down to VSS through high resistance.
255	D24	MEM_ED[9]	Pull up to VDDE or pull down to VSS through high resistance.
256	C24	MEM_ED[13]	Pull up to VDDE or pull down to VSS through high resistance.
257	C23	MEM_EA[2]	Pull up to VDDE or pull down to VSS through high resistance.
258	C22	MEM_EA[6]	Pull up to VDDE or pull down to VSS through high resistance.
259	C21	MEM_EA[10]	Pull up to VDDE or pull down to VSS through high resistance.
260	C20	MEM_EA[14]	Pull up to VDDE or pull down to VSS through high resistance.
261	C19	MEM_EA[18]	Pull up to VDDE or pull down to VSS through high resistance.
262	C18	MEM_EA[22]	Pull up to VDDE or pull down to VSS through high resistance.
263	C17	MEM_XWR[0]	Pull up to VDDE or pull down to VSS through high resistance.
264	C16	MEM_XCS[2]	Pull up to VDDE or pull down to VSS through high resistance.
267	C13	TCK	Pull up to VDDE or pull down to VSS through high resistance.
269	C11	TRACEDATA[1], UART_SIN5, PWM_O1	Pull up to VDDE or pull down to VSS through high resistance.
270	C10	TRACECLK, UART_SIN3	Pull up to VDDE or pull down to VSS through high resistance.
271	C9	DOUTB0[2]	Keep the pin open.
272	C8	DOUTB0[6]	Keep the pin open.
273	C7	DOUTG0[4]	Keep the pin open.
274	C6	DOUTR0[2]	Keep the pin open.
275	C5	DOUTR0[5]	Keep the pin open.
276	C4	DOUTR0[7]	Keep the pin open.
277	D4	DOUTB1[3], MEM_XWR[3], DOUTB0[1]	Pull up to VDDE or pull down to VSS through high resistance.
278	E4	DOUTB1[7], MEM_ED[19], DOUTR0[1]	Pull up to VDDE or pull down to VSS through high resistance.
279	F4	DOUTG1[5], MEM_ED[23], GPIO_PD[9]	Pull up to VDDE or pull down to VSS through high resistance.
280	G4	DOUTR1[3], MEM_ED[27], I2S_SDO0	Pull up to VDDE or pull down to VSS through high resistance.
281	H4	DOUTR1[6], MEM_ED[30], I2S_SCK0	Pull up to VDDE or pull down to VSS through high resistance.
282	J4	HSYNC1, DREQ[6]	Pull up to VDDE or pull down to VSS through high resistance.
283	K4	DE1, XDACK[7]	Keep the pin open.
284	L4	VIN0[4]	Pull up to VDDE or pull down to VSS through high resistance.
285	M4	VIN0[0]	Pull up to VDDE or pull down to VSS through high resistance.
287	P4	VSS	Connect to VSS.
288	R4	VSS	Connect to VSS.
289	T4	VSS	Connect to VSS.
292	W4	VIN1[3], RI1[3], CAN_TX1	Keep the pin open.
293	Y4	VIN1[0], GI1[6], I2S_WS1	Keep the pin open.
294	AA4	VINHSYNC1, I2S_SDI1	Pull up to VDDE or pull down to VSS through high resistance.
295	AB4	I2S_WS2, BI1[3], SPI_SS	Keep the pin open.
296	AC4	I2S_SDO1	Keep the pin open.

305 AC13 AD_VR0 Connect to VSS. 306 AC14 AD_VR1 Connect to VSS. 308 AC16 UART_SIN2 Pull up to VDDE or pull down to VSS through high resistan 309 AC17 SD_CLK Keep the pin open. 310 AC18 SD_DAT[3] Pull up to VDDE or pull down to VSS through high resistan 312 AC20 INT_A[2] Pull up to VDDE or pull down to VSS through high resistan 313 AC21 DDRTYPE Pull up to VDDE through high resistance. 314 AC22 ODTCONT Keep the pin open. 315 AC23 MA[0] Keep the pin open. 316 AB23 MCS Keep the pin open. 317 AA23 MCAS Keep the pin open. 318 Y23 MDQ[3] Pull down to VSS through high resistance. 319 W23 MDQ[4] Pull down to VSS through high resistance. 320 V23 MDM[0] Pull down to VSS through high resistance. 321 U23 MDQ[11] Pull down to VSS through high resistance. <th>Pin No.</th> <th>JEDEC</th> <th>Pin name</th> <th>Process</th>	Pin No.	JEDEC	Pin name	Process
299 AC7 GPIO_PD[19] Keep the pin open. 300 AC8 GPIO_PD[15] Keep the pin open. 301 AC9 (Unused) Keep the pin open. 302 AC10 (Unused) Keep the pin open. 303 AC11 MPX_MODE_I[0] Pull up to VDDE or pull down to VSS through high resistan 305 AC13 AD_VR0 Connect to VSS. 306 AC14 AD_VR1 Connect to VSS. 308 AC16 UART_SIN2 Pull up to VDDE or pull down to VSS through high resistan 309 AC17 SD_CLK Keep the pin open. 310 AC18 SD_DAT[3] Pull up to VDDE or pull down to VSS through high resistan 312 AC20 INT_A[2] Pull up to VDDE or pull down to VSS through high resistance. 313 AC21 DDRTYPE Pull up to VDDE or pull down to VSS through high resistance. 314 AC22 ODTCONT Keep the pin open. 315 AC23 MA[0] Keep the pin open. 316 AB23 MCS Keep the pin open. <	297	AC5	CAN_TX0	Keep the pin open.
300 ACS GPIO_PD[15] Keep the pin open. 301 AC9 (Unused) Keep the pin open. 302 AC10 (Unused) Keep the pin open. 303 AC11 MPX_MODE_I[0] Pull up to VDDE or pull down to VSS through high resistan 305 AC13 AD_VR0 Connect to VSS. 306 AC14 AD_VR1 Connect to VSS. 308 AC16 UART_SIN2 Pull up to VDDE or pull down to VSS through high resistan 309 AC17 SD_CLK Keep the pin open. 310 AC18 SD_DAT[3] Pull up to VDDE or pull down to VSS through high resistan 312 AC20 INT_A[2] Pull up to VDDE or pull down to VSS through high resistance. 314 AC22 ODTCONT Keep the pin open. 315 AC23 MA[0] Keep the pin open. 316 AB23 MCS Keep the pin open. 317 AA23 MCAS Keep the pin open. 318 Y23 MDQ[3] Pull down to VSS through high resistance. 3	298	AC6	GPIO_PD[23]	Keep the pin open.
301 AC9 (Unused) Keep the pin open.	299	AC7	GPIO_PD[19]	Keep the pin open.
302 AC10 (Unused) Keep the pin open.	300	AC8	GPIO_PD[15]	Keep the pin open.
303 AC11 MPX_MODE_1[0] Pull up to VDDE or pull down to VSS through high resistan 305 AC13 AD_VR0 Connect to VSS. 306 AC14 AD_VR1 Connect to VSS. 308 AC16 UART_SIN2 Pull up to VDDE or pull down to VSS through high resistan 309 AC17 SD_CLK Keep the pin open. 310 AC18 SD_DAT[3] Pull up to VDDE or pull down to VSS through high resistan 311 AC20 INT_A[2] Pull up to VDDE or pull down to VSS through high resistan 312 AC20 INT_A[2] Pull up to VDDE through high resistance. 313 AC21 DDRTYPE Pull up to VDDE through high resistance. 314 AC22 ODTCONT Keep the pin open. 315 AC23 MA[0] Keep the pin open. 316 AB23 MCS Keep the pin open. 317 AA23 MCAS Keep the pin open. 318 Y23 MDQ[3] Pull down to VSS through high resistance. 319 W23 MDQ[4] Pull down to VSS through high resistance. 320 V23 MDM[0] Pull down to VSS through high resistance. 321 U23 MDQ[11] Pull down to VSS through high resistance. 322 T23 MDQ[12] Pull down to VSS through high resistance. 323 R23 MDQ[14] Pull down to VSS through high resistance. 324 P23 OCD Keep the pin open. 325 N23 ODT Keep the pin open. 326 M23 MDQ[19] Pull down to VSS through high resistance. 327 L23 MDQ[19] Pull down to VSS through high resistance. 328 Keep the pin open. 329 MDQ[19] Pull down to VSS through high resistance. 320 V23 MDQ[20] Pull down to VSS through high resistance. 321 U23 MDQ[20] Pull down to VSS through high resistance. 322 MDQ[20] Pull down to VSS through high resistance. 323 MDQ[20] Pull down to VSS through high resistance. 324 P23 OCD Keep the pin open. 325 MDQ[20] Pull down to VSS through high resistance. 326 M23 MDQ[20] Pull down to VSS through high resistance. 327 L23 MDQ[20] Pull down to VSS through high resistance. 328 MDQ[20] Pull down to VSS through high resistance. 329 MDQ[20] Pull down to VSS through high	301	AC9	(Unused)	Keep the pin open.
305 AC13 AD_VR0 Connect to VSS. 306 AC14 AD_VR1 Connect to VSS. 308 AC16 UART_SIN2 Pull up to VDDE or pull down to VSS through high resistan 309 AC17 SD_CLK Keep the pin open. 310 AC18 SD_DAT[3] Pull up to VDDE or pull down to VSS through high resistan 312 AC20 INT_A[2] Pull up to VDDE or pull down to VSS through high resistan 313 AC21 DDRTYPE Pull up to VDDE through high resistance. 314 AC22 ODTCONT Keep the pin open. 315 AC23 MA[0] Keep the pin open. 316 AB23 MCS Keep the pin open. 317 AA23 MCAS Keep the pin open. 318 Y23 MDQ[3] Pull down to VSS through high resistance. 319 W23 MDQ[4] Pull down to VSS through high resistance. 320 V23 MDM[0] Pull down to VSS through high resistance. 321 U23 MDQ[11] Pull down to VSS through high resistance. <td>302</td> <td>AC10</td> <td>(Unused)</td> <td>Keep the pin open.</td>	302	AC10	(Unused)	Keep the pin open.
306 AC14 AD_VR1 Connect to VSS. 308 AC16 UART_SIN2 Pull up to VDDE or pull down to VSS through high resistan 309 AC17 SD_CLK Keep the pin open. 310 AC18 SD_DAT[3] Pull up to VDDE or pull down to VSS through high resistan 312 AC20 INT_A[2] Pull up to VDDE through high resistance. 314 AC21 DDRTYPE Pull up to VDDE through high resistance. 315 AC23 MA[0] Keep the pin open. 316 AB23 MCS Keep the pin open. 317 AA23 MCAS Keep the pin open. 318 Y23 MDQ[3] Pull down to VSS through high resistance. 319 W23 MDQ[4] Pull down to VSS through high resistance. 320 V23 MDM[0] Pull down to VSS through high resistance. 321 U23 MDQ[11] Pull down to VSS through high resistance. 322 T23 MDQ[12] Pull down to VSS through high resistance. 323 R23 MDQ[14] Pull down to V	303	AC11	MPX_MODE_1[0]	Pull up to VDDE or pull down to VSS through high resistance.
308 AC16 UART_SIN2 Pull up to VDDE or pull down to VSS through high resistan 309 AC17 SD_CLK Keep the pin open. 310 AC18 SD_DAT[3] Pull up to VDDE or pull down to VSS through high resistan 312 AC20 INT_A[2] Pull up to VDDE or pull down to VSS through high resistance. 314 AC21 DDRTYPE Pull up to VDDE through high resistance. 315 AC23 MA[0] Keep the pin open. 316 AB23 MCS Keep the pin open. 317 AA23 MCAS Keep the pin open. 318 Y23 MDQ[3] Pull down to VSS through high resistance. 319 W23 MDQ[4] Pull down to VSS through high resistance. 320 V23 MDM[0] Pull down to VSS through high resistance. 321 U23 MDQ[11] Pull down to VSS through high resistance. 322 T23 MDQ[12] Pull down to VSS through high resistance. 323 R23 MDQ[14] Pull down to VSS through high resistance. 324 P23	305	AC13	AD_VR0	Connect to VSS.
309 AC17 SD_CLK Keep the pin open. 310 AC18 SD_DAT[3] Pull up to VDDE or pull down to VSS through high resistan 312 AC20 INT_A[2] Pull up to VDDE or pull down to VSS through high resistan 313 AC21 DDRTYPE Pull up to VDDE through high resistance. 314 AC22 ODTCONT Keep the pin open. 315 AC23 MA[0] Keep the pin open. 316 AB23 MCS Keep the pin open. 317 AA23 MCAS Keep the pin open. 318 Y23 MDQ[3] Pull down to VSS through high resistance. 319 W23 MDQ[4] Pull down to VSS through high resistance. 320 V23 MDM[0] Pull down to VSS through high resistance. 321 U23 MDQ[11] Pull down to VSS through high resistance. 322 T23 MDQ[12] Pull down to VSS through high resistance. 323 R23 MDQ[14] Pull down to VSS through high resistance. 324 P23 OCD Keep the pin ope	306	AC14	AD_VR1	Connect to VSS.
AC18 SD_DAT[3] Pull up to VDDE or pull down to VSS through high resistant	308	AC16	UART_SIN2	Pull up to VDDE or pull down to VSS through high resistance.
AC20 INT_A[2]	309	AC17	SD_CLK	Keep the pin open.
September Pull up to VDDE through high resistance.	310	AC18	SD_DAT[3]	Pull up to VDDE or pull down to VSS through high resistance.
314 AC22 ODTCONT Keep the pin open. 315 AC23 MA[0] Keep the pin open. 316 AB23 MCS Keep the pin open. 317 AA23 MCAS Keep the pin open. 318 Y23 MDQ[3] Pull down to VSS through high resistance. 319 W23 MDQ[4] Pull down to VSS through high resistance. 320 V23 MDM[0] Pull down to VSS through high resistance. 321 U23 MDQ[11] Pull down to VSS through high resistance. 322 T23 MDQ[12] Pull down to VSS through high resistance. 324 P23 OCD Keep the pin open. 325 N23 ODT Keep the pin open. 326 M23 MDQ[19] Pull down to VSS through high resistance. 327 L23 MDQ[20] Pull down to VSS through high resistance. 328 K23 MDM[2] Pull down to VSS through high resistance. 329 J23 MDQ[25] Pull down to VSS through high resistance. 330	312	AC20	INT_A[2]	Pull up to VDDE or pull down to VSS through high resistance.
Seep the pin open. Seep the pin open.	313	AC21	DDRTYPE	Pull up to VDDE through high resistance.
AB23 MCS Keep the pin open.	314	AC22	ODTCONT	Keep the pin open.
September Sept	315	AC23	MA[0]	Keep the pin open.
Pull down to VSS through high resistance.	316	AB23	MCS	Keep the pin open.
319 W23 MDQ[4] Pull down to VSS through high resistance. 320 V23 MDM[0] Pull down to VSS through high resistance. 321 U23 MDQ[11] Pull down to VSS through high resistance. 322 T23 MDQ[12] Pull down to VSS through high resistance. 323 R23 MDQ[14] Pull down to VSS through high resistance. 324 P23 OCD Keep the pin open. 325 N23 ODT Keep the pin open. 326 M23 MDQ[19] Pull down to VSS through high resistance. 327 L23 MDQ[20] Pull down to VSS through high resistance. 328 K23 MDM[2] Pull down to VSS through high resistance. 329 J23 MDQ[27] Pull down to VSS through high resistance. 330 H23 MDQ[25] Pull down to VSS through high resistance. 331 G23 MDQ[30] Pull down to VSS through high resistance. 332 F23 MEM_ED[6] Pull up to VDDE or pull down to VSS through high resistance. 334 D23 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance. 334 D23 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance. 335 Pull up to VDDE or pull down to VSS through high resistance. 336 Pull up to VDDE or pull down to VSS through high resistance. 337 Pull up to VDDE or pull down to VSS through high resistance. 338 Pull up to VDDE or pull down to VSS through high resistance. 339 Pull up to VDDE or pull down to VSS through high resistance. 320 Pull up to VDDE or pull down to VSS through high resistance.	317	AA23	MCAS	Keep the pin open.
320 V23 MDM[0] Pull down to VSS through high resistance. 321 U23 MDQ[11] Pull down to VSS through high resistance. 322 T23 MDQ[12] Pull down to VSS through high resistance. 323 R23 MDQ[14] Pull down to VSS through high resistance. 324 P23 OCD Keep the pin open. 325 N23 ODT Keep the pin open. 326 M23 MDQ[19] Pull down to VSS through high resistance. 327 L23 MDQ[20] Pull down to VSS through high resistance. 328 K23 MDM[2] Pull down to VSS through high resistance. 329 J23 MDQ[27] Pull down to VSS through high resistance. 330 H23 MDQ[25] Pull down to VSS through high resistance. 331 G23 MDQ[30] Pull down to VSS through high resistance. 332 F23 MEM_ED[2] Pull up to VDDE or pull down to VSS through high resistance 333 E23 MEM_ED[6] Pull up to VDDE or pull down to VSS through high resistance 334 D23 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance 336 Pull up to VDDE or pull down to VSS through high resistance 337 Pull up to VDDE or pull down to VSS through high resistance 338 Pull up to VDDE or pull down to VSS through high resistance 339 Pull up to VDDE or pull down to VSS through high resistance 340 Pull up to VDDE or pull down to VSS through high resistance 341 Pull up to VDDE or pull down to VSS through high resistance 342 P23 Pull up to VDDE or pull down to VSS through high resistance 343 P23 Pull up to VDDE or pull down to VSS through high resistance 344 P25 Pull up to VDDE or pull down to VSS through high resistance 345 Pull up to VDDE or pull down to VSS through high resistance 346 Pull up to VDDE or pull down to VSS through high resistance 347 Pull up to VDDE or pull down to VSS through high resistance 348 P26 Pull up to VDDE or pull down to VSS through high resistance 349 Pull up to VDDE or pull down to VSS through high resistance	318	Y23	MDQ[3]	Pull down to VSS through high resistance.
321 U23 MDQ[11] Pull down to VSS through high resistance. 322 T23 MDQ[12] Pull down to VSS through high resistance. 323 R23 MDQ[14] Pull down to VSS through high resistance. 324 P23 OCD Keep the pin open. 325 N23 ODT Keep the pin open. 326 M23 MDQ[19] Pull down to VSS through high resistance. 327 L23 MDQ[20] Pull down to VSS through high resistance. 328 K23 MDM[2] Pull down to VSS through high resistance. 329 J23 MDQ[27] Pull down to VSS through high resistance. 330 H23 MDQ[25] Pull down to VSS through high resistance. 331 G23 MDQ[30] Pull down to VSS through high resistance. 332 F23 MEM_ED[2] Pull up to VDDE or pull down to VSS through high resistance. 333 E23 MEM_ED[6] Pull up to VDDE or pull down to VSS through high resistance. 334 D23 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance.	319	W23	MDQ[4]	Pull down to VSS through high resistance.
322 T23 MDQ[12] Pull down to VSS through high resistance. 323 R23 MDQ[14] Pull down to VSS through high resistance. 324 P23 OCD Keep the pin open. 325 N23 ODT Keep the pin open. 326 M23 MDQ[19] Pull down to VSS through high resistance. 327 L23 MDQ[20] Pull down to VSS through high resistance. 328 K23 MDM[2] Pull down to VSS through high resistance. 329 J23 MDQ[27] Pull down to VSS through high resistance. 330 H23 MDQ[25] Pull down to VSS through high resistance. 331 G23 MDQ[30] Pull down to VSS through high resistance. 332 F23 MEM_ED[2] Pull up to VDDE or pull down to VSS through high resistance. 333 E23 MEM_ED[6] Pull up to VDDE or pull down to VSS through high resistance. 344 D25 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance.	320	V23	MDM[0]	Pull down to VSS through high resistance.
R23 MDQ[14] Pull down to VSS through high resistance. 324 P23 OCD Keep the pin open. 325 N23 ODT Keep the pin open. 326 M23 MDQ[19] Pull down to VSS through high resistance. 327 L23 MDQ[20] Pull down to VSS through high resistance. 328 K23 MDM[2] Pull down to VSS through high resistance. 329 J23 MDQ[27] Pull down to VSS through high resistance. 330 H23 MDQ[25] Pull down to VSS through high resistance. 331 G23 MDQ[30] Pull down to VSS through high resistance. 332 F23 MEM_ED[2] Pull up to VDDE or pull down to VSS through high resistance. 333 E23 MEM_ED[6] Pull up to VDDE or pull down to VSS through high resistance. 334 D23 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance. 335 Pull up to VDDE or pull down to VSS through high resistance. 336 Pull up to VDDE or pull down to VSS through high resistance. 337 Pull up to VDDE or pull down to VSS through high resistance. 338 Pull up to VDDE or pull down to VSS through high resistance. 339 Pull up to VDDE or pull down to VSS through high resistance.	321	U23	MDQ[11]	Pull down to VSS through high resistance.
324 P23 OCD Keep the pin open.	322	T23	MDQ[12]	Pull down to VSS through high resistance.
325 N23 ODT Keep the pin open.	323	R23	MDQ[14]	Pull down to VSS through high resistance.
326 M23 MDQ[19] Pull down to VSS through high resistance. Pull up to VDDE or pull down to VSS through high resistance. Pull up to VDDE or pull down to VSS through high resistance. MEM_ED[6] Pull up to VDDE or pull down to VSS through high resistance. Pull up to VDDE or pull down to VSS through high resistance. Pull up to VDDE or pull down to VSS through high resistance.	324	P23	OCD	Keep the pin open.
327 L23 MDQ[20] Pull down to VSS through high resistance. 328 K23 MDM[2] Pull down to VSS through high resistance. 329 J23 MDQ[27] Pull down to VSS through high resistance. 330 H23 MDQ[25] Pull down to VSS through high resistance. 331 G23 MDQ[30] Pull down to VSS through high resistance. 332 F23 MEM_ED[2] Pull up to VDDE or pull down to VSS through high resistance. 333 E23 MEM_ED[6] Pull up to VDDE or pull down to VSS through high resistance. 334 D23 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance.	325	N23	ODT	Keep the pin open.
328K23MDM[2]Pull down to VSS through high resistance.329J23MDQ[27]Pull down to VSS through high resistance.330H23MDQ[25]Pull down to VSS through high resistance.331G23MDQ[30]Pull down to VSS through high resistance.332F23MEM_ED[2]Pull up to VDDE or pull down to VSS through high resistance.333E23MEM_ED[6]Pull up to VDDE or pull down to VSS through high resistance.334D23MEM_ED[10]Pull up to VDDE or pull down to VSS through high resistance.	326	M23	MDQ[19]	Pull down to VSS through high resistance.
329 J23 MDQ[27] Pull down to VSS through high resistance. 330 H23 MDQ[25] Pull down to VSS through high resistance. 331 G23 MDQ[30] Pull down to VSS through high resistance. 332 F23 MEM_ED[2] Pull up to VDDE or pull down to VSS through high resistance. 333 E23 MEM_ED[6] Pull up to VDDE or pull down to VSS through high resistance. 334 D23 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance.	327	L23	MDQ[20]	Pull down to VSS through high resistance.
330 H23 MDQ[25] Pull down to VSS through high resistance. 331 G23 MDQ[30] Pull down to VSS through high resistance. 332 F23 MEM_ED[2] Pull up to VDDE or pull down to VSS through high resistance 333 E23 MEM_ED[6] Pull up to VDDE or pull down to VSS through high resistance 334 D23 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance 334 D23 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance 335 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance 336 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance 337 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance 338 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance 339 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance 339 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance 339 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance 339 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance 330 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance 330 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance 330 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance 330 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance 330 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance 330 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance 330 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance 330 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance 330 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance 330 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance 330 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance 330 MEM_ED[10] Pull up to VDDE or pull down to VSS through 330 MEM_ED[10] Pull up to VDDE or pu	328	K23	MDM[2]	Pull down to VSS through high resistance.
331 G23 MDQ[30] Pull down to VSS through high resistance. 332 F23 MEM_ED[2] Pull up to VDDE or pull down to VSS through high resistance 333 E23 MEM_ED[6] Pull up to VDDE or pull down to VSS through high resistance 334 D23 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance 334 D23 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistance 335 MEM_ED[10] 336 MEM_ED[10] 337 MEM_ED[10] 338 MEM_ED[10] 339 MEM_ED[10	329	J23	MDQ[27]	Pull down to VSS through high resistance.
332 F23 MEM_ED[2] Pull up to VDDE or pull down to VSS through high resistant 333 E23 MEM_ED[6] Pull up to VDDE or pull down to VSS through high resistant 334 D23 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistant	330	H23	MDQ[25]	Pull down to VSS through high resistance.
333 E23 MEM_ED[6] Pull up to VDDE or pull down to VSS through high resistant Pull up to VDDE or pull down to VSS through through the VDDE or pull up to VDDE or pull	331	G23	MDQ[30]	Pull down to VSS through high resistance.
334 D23 MEM_ED[10] Pull up to VDDE or pull down to VSS through high resistant	332	F23	MEM_ED[2]	Pull up to VDDE or pull down to VSS through high resistance.
	333	E23	MEM_ED[6]	Pull up to VDDE or pull down to VSS through high resistance.
335 D22 MEM_EA[5] Pull up to VDDE or pull down to VSS through high resistant	334	D23	MEM_ED[10]	Pull up to VDDE or pull down to VSS through high resistance.
	335	D22	MEM_EA[5]	Pull up to VDDE or pull down to VSS through high resistance.
336 D21 MEM_EA[9] Pull up to VDDE or pull down to VSS through high resistant	336	D21	MEM_EA[9]	Pull up to VDDE or pull down to VSS through high resistance.
337 D20 MEM_EA[13] Pull up to VDDE or pull down to VSS through high resistant	337	D20	MEM_EA[13]	Pull up to VDDE or pull down to VSS through high resistance.
338 D19 MEM_EA[17] Pull up to VDDE or pull down to VSS through high resistant	338	D19	MEM_EA[17]	Pull up to VDDE or pull down to VSS through high resistance.
339 D18 MEM_EA[21] Pull up to VDDE or pull down to VSS through high resistant	339	D18	MEM_EA[21]	Pull up to VDDE or pull down to VSS through high resistance.
340 D17 MEM_EA[24] Pull up to VDDE or pull down to VSS through high resistant	340	D17	MEM_EA[24]	Pull up to VDDE or pull down to VSS through high resistance.
341 D16 MEM_XCS[0] Pull up to VDDE or pull down to VSS through high resistant	341	D16	MEM_XCS[0]	Pull up to VDDE or pull down to VSS through high resistance.

Pin No.	JEDEC	Pin name	Process
342	D15	MEM_RDY	Pull up to VDDE or pull down to VSS through high resistance.
344	D13	TDI	Pull up to VDDE or pull down to VSS through high resistance.
346	D11	TRACEDATA[2], UART_SOUT4	Pull up to VDDE or pull down to VSS through high resistance.
347	D10	RTCK	Keep the pin open.
348	D9	DOUTB0[3]	Keep the pin open.
349	D8	DOUTB0[7]	Keep the pin open.
350	D7	DOUTG0[5]	Keep the pin open.
351	D6	DOUTR0[3]	Keep the pin open.
352	D5	DOUTR0[6]	Keep the pin open.
362	P5	VSS or VDDE	Connect to VSS or VDDE. (*1) Do not open the pin.
363	R5	VSS	Connect to VSS or Pull down to VSS through $10k\Omega$ resistance. (*2)
364	T5	VSS	Connect to VSS.
378	AB13	AD_VRL0	Connect to VSS.
379	AB14	AD_VRL1	Connect to VSS.
391	V22	MDQ[6]	Pull down to VSS through high resistance.
398	L22	MDQ[22]	Pull down to VSS through high resistance.

^{*1)} If any of these pins is connected to VSS, P2, R3, U3 and P5 should be connected to VSS. If any of these pins is connected to VDD, P2, R3, U3 and P5 should be connected to VDD.

^{*2)} If P2, R3, U3 and P5 are connected to VDD, this pin should be pulled down to VSS through $10k\Omega$ resistance. If P2, R3, U3 and P5 are connected to VSS, this pin can be connected to VSS or $10k\Omega$ pull-down resistance.

7.2.22. Unused pin in the duplex case with pin multiplex function

PWM, I2S1, and CAN pins may be duplicated and allocated to external pin depending on pin multiplex function's group combination. In this case, follow the procedure below.

Table 7-30 Unused pin process in the duplex case with pin multiplex function

Table /	ole 7-30 Unused pin process in the duplex case with pin multiplex function					
Pin No.	JEDEC	Pin multiplex group: pin name	Process			
122	AC2	Pin multiplex group #2:PWM_O1	Keep the pin open.			
123	AD2	Pin multiplex group #2:PWM_O0	Keep the pin open.			
220	AD9	Pin multiplex group #4:PWM_O1	Keep the pin open.			
131	AE9	Pin multiplex group #4:PWM_O0	Keep the pin open.			
269	C11	Pin multiplex group #5:PWM_O1	Pull down to VSS through high resistance.			
184	B11	Pin multiplex group #5:PWM_O0	Pull down to VSS through high resistance.			
118	W2	Pin multiplex group #2:CAN_TX0	Keep the pin open.			
292	W4	Pin multiplex group #2:CAN_TX1	Keep the pin open.			
209	W3	Pin multiplex group #2:CAN_RX0	Keep the pin open.			
119	Y2	Pin multiplex group #2:CAN_RX1	Keep the pin open.			
297	AC5	Pin multiplex group #4:CAN_TX0	Keep the pin open.			
127	AE5	Pin multiplex group #4:CAN_TX1	Keep the pin open.			
216	AD5	Pin multiplex group #4:CAN_RX0	Keep the pin open.			
30	AF5	Pin multiplex group #4:CAN_RX1	Keep the pin open.			
210	Y3	Pin multiplex group #2:I2S_SCK1	Keep the pin open.			
293	Y4	Pin multiplex group #2:I2S_WS1	Keep the pin open.			
211	AA3	Pin multiplex group #2:I2S_ECLK1	Pull down to VSS through high resistance.			
294	AA4	Pin multiplex group #2:I2S_SDI1	Pull down to VSS through high resistance.			
22	AB1	Pin multiplex group #2:I2S_SDO1	Keep the pin open.			
28	AF3	Pin multiplex group #4:I2S_SDI1	Pull down to VSS through high resistance.			
125	AE3	Pin multiplex group #4:I2S_WS1	Keep the pin open.			
215	AD4	Pin multiplex group #4:I2S_ECLK1	Pull down to VSS through high resistance.			
214	AD3	Pin multiplex group #4:I2S_SCK1	Keep the pin open.			
296	AC4	Pin multiplex group #4:I2S_SDO1	Keep the pin open.			

8. Electrical Characteristics

8.1. Maximum Ratings

Table 8-1 and Table 8-2 show the maximum ratings.

Table 8-1 Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	VDDI, PLLVDD VDDE DDRVDE	-0.5 to 1.8 (*1) -0.5 to 4.0 (*2) -0.5 to 2.5 (*3)	V
Input voltage	V _I	-0.5 to VDDI + 0.5 (< 1.8V) -0.5 to VDDE + 0.5 (< 4.0V) -0.5 to DDRVDE + 0.5 (< 2.5V)	V
Output voltage	Vo	-0.5 to VDDI + 0.5 (< 1.8V) -0.5 to VDDE + 0.5 (< 4.0V) -0.5 to DDRVDE + 0.5 (< 2.5V)	V
Storage temperature	T_{ST}	-55 to 125	°C
Junction temperature	T_{J}	-40 to 125	°C
Power consumption	P_{D}	1.5	W
Supply current	I_D	1.2V: 690.1 (*4) 1.8V: 508 (*4) 3.3V: 125.3 (*4)	mA

^{*1:} Power supply for internal part or PLL

Note:

- Applying stress exceeding the maximum ratings (voltage, current, temperature, etc.) may cause damage to semiconductor devices. Never exceed the ratings above.
- Since thermal destruction of elements might occur, do not connect IC output or I/O pin directly, or connect them to V_{DD} or V_{SS} directly, except the pin designed output timing to prevent such incident.
- Provide ESD protection, such as grounding when handling the product; otherwise externally-charged electric charge flows into the IC and discharges, which may cause circuit destruction.
- Applying voltage higher than V_{DD} or lower than V_{SS} to I/O pins of CMOS IC, or applying voltage higher than the ratings between V_{DD} and V_{SS} may cause latch up. The latch up increases supply current, resulting in thermal destruction of elements. When handling the product, never exceed the maximum ratings.

^{*2:} Power supply for I/O part

^{*3:} Power supply for SSTL_18 I/O part

^{*4:} Current specification necessary for each voltage power supply

Table 8-2 ADC Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	AD_AVD0	-0.5 to 4.0	V
Input voltage	AD_VRH0 AD_VRH1 AD_VRL0 AD_VRL1 AD_VIN0 AD_VIN1	-0.5 to VDDE + 0.5 (< 4.0V)	V
Output voltage	AD_VR0 AD_VR1	-0.5 to VDDE + 0.5 (< 4.0V)	V
Junction temperature	T_{J}	-40 to 125	°C

8.2. Recommended Operating Conditions

Table 8-3 3.3V Standard CMOS I/O Recommended Operating Conditions

Parameter		Crowhol	Rating			Unit
rar	ameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage		VDDE VDDI, PLLVDD	3.0 1.1	3.3 1.2	3.6 1.3	V
Input voltage (High level)	3.3V CMOS	VIH	2.0	_	VDDE + 0.3	V
Input voltage (Low level)	3.3V CMOS	VIL	-0.3	_	0.8	V
Operating ambient temperature		T_{A}	-40	_	85	°C
Junction temperature		T_{J}	-40	_	125	°C

Table 8-4 SSTL_18 Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	VDE (DDRVDE)	1.7	1.8	1.9	V
Tower suppry voltage	VDDI	1.10	1.20	1.30	V
Junction temperature	T_{J}	-40	_	125	°C

The recommended operating conditions for the standard SSTL_18 (excerpted from JESD8-15a).

Note:

The recommended operating conditions are primarily intended to assure the normal operation of semiconductor device. The values of electrical characteristics are guaranteed under the requirements above, so use the product accordingly. Using the product without observing the conditions may affect the product's reliability.

Performance of this product is not guaranteed using under the unspecified conditions and unspecified combination of logic. Be sure to contact Fujitsu when using the product under such conditions.

8.3. Precautions at Power On

8.3.1. Recommended Power On/Off Sequence

Follow the power on/off sequence as shown below:

 $\langle \text{ON} \rangle$: VDDI (internal and PLLVDD) \rightarrow DDRVDE (external) \rightarrow VDDE (external) \rightarrow Signal $\langle \text{OFF} \rangle$: Signal \rightarrow VDDE (external) \rightarrow DDRVDE (external) \rightarrow VDDI (internal and PLLVDD)

Figure 8-1 Recommended Power On/Off Sequence (1)

There is no limitation on the sequence of power on/off of VDDI, VDDE, and DDRVDE if the following condition is met. (Figure 8-2)

• Do not apply VDDE and DDRVDE (external) continuously more than 1 second when VDDI (internal) is off.

Figure 8-2 Recommended Power On/Off Sequence (2)

Perform power on/off for VREF according to the DDR2-SDRAM regulation.

Perform power on/off so that power for PLLVDD (PLL) does not exceed VDDI.

Turn on all power. Turning on only a part of them is prohibited.

CMOS IC becomes unstable immediately after power-on so that proceed reset immediately.

Set the reset pins (XTRST and XRST) to Low when power-on.

Input clock to CLK pin immediately after power-on.

It requires at least 100 clocks (input clock to CLK pin) for the reset signal "L" applied to the XRST pin to be transmitted to all internal circuits.

8.3.2. Power On Reset

Figure 8-3 Power On Sequence

Input XRST pin to Low when power-on.

Keep XRST pin High after setting to Low level for $2\mu s$ or more.

Access the other registers or memory controller after PLL Lockup Time.

When MB86R03 is in DFT mode, XTRST should be input as well as XRST.

8.4. DC Characteristics

8.4.1. 3.3V Standard CMOS I/O

Table 8-5 shows 3.3V standard CMOS I/O DC characteristics.

Table 8-5 Standard CMOS I/O DC Characteristics

Measurement condition: VDDE = 3.3 ± 0.3 V, VSS = 0V, T_J = -40 to 125°C

Parameter	Symbol	Condition		Rating			Unit
1 ar ameter	Symbol	Condition	J11	Min.	Тур.	Max.	Omt
H level input voltage	VIH			2.0	ı	VDDE + 0.3	V
L level input voltage	VIL			-0.3	-	0.8	V
H level output voltage	VOH	IOH = -100μA		VDDE - 0.2	-	VDDE	V
L level output voltage	VOL	$IOL = 100 \mu A$		0	-	0.2	V
II lovel system VI	-	Driving capability 1	IOH = 4mA				
H level output V-I characteristic		Driving capability 2	IOH = 6mA]			-
		Driving capability 3	IOH = 8mA	See Figure 8-4			
T 11		Driving capability 1	IOL = 4mA	characteristics			
L level output V-I characteristic	_	Driving capability 2	IOL = 6mA				-
characteristic		Driving capability 3	IOL = 8mA				
Input leakage current	IL			_	-	±4	μΑ

Driving capabilities 1 to 3 in the table above indicate the following external pins:

Driving capability 1: TDO, MEM EA[24:1], MEM ED[15:0], MEM RDY, MEM XCS0,

MEM_XCS2, MEM_XCS4, MEM_XRD, MEM_XWR0, MEM_XWR1

Driving capability 2: VINHSYNC0, VINVSYNC0, VIN10-7, VINFID1, DOUTB1[7:2],

DOUTG1[7:2], DOUTR1[7:2], GV1, HSYNC0, HSYNC1,

SD_CMD、SD_DAT[3:0]、TRACECLK、TRACEDATA[3:0]、

VIN0[7:0], VSYNC0, VSYNC1, XSRST, DE0, DE1, DOUTB0[7:2], DOUTG0[7:2], DOUTR0[7:2], GV0, RTCK, SD_CLK, TRACECTL, UART_SOUT[2:0], UART_XRTS0,

I2S_ECLK2、I2S_SCK1、I2S_SCK2、I2S_SDO1、I2S_SDO2、I2S_WS1、I2S_WS2、PWM_O0、PWM_O1、CAN_TX0、CAN_TX1、

CAN_RX0、CAN_RX1、GPIO_PD[23:13]

Driving capability 3: DCLKO[1:0]

8.4.1.1. 3.3V Standard CMOS I/O V-I Characteristic (Driving Capability 1)

Conditions MIN: Process = Slow $T_J = 125^{\circ}C$ VDDE = 3.0 V TYP: Process = Typical $T_J = 25^{\circ}C$ VDDE = 3.3 V MAX: Process = Fast $T_J = -40^{\circ}C$ VDDE = 3.6 V

Figure 8-4 3.3V Standard CMOS I/O V-I Characteristic (Driving Capability 1)

8.4.1.2. 3.3V Standard CMOS I/O V-I Characteristic (Driving Capability 2)

Conditions MIN: Process = Slow $T_J = 125^{\circ}C$ VDDE = 3.0 V TYP: Process = Typical $T_J = 25^{\circ}C$ VDDE = 3.3 V MAX: Process = Fast $T_J = -40^{\circ}C$ VDDE = 3.6 V

Figure 8-5 3.3V Standard CMOS I/O V-I Characteristic (Driving Capability 2)

8.4.1.3. 3.3V Standard CMOS I/O V-I Characteristics (Driving Capability 3)

Conditions MIN: Process = Slow $T_J = 125^{\circ}C$ VDDE = 3.0 V TYP: Process = Typical $T_J = 25^{\circ}C$ VDDE = 3.3 V MAX: Process = Fast $T_J = -40^{\circ}C$ VDDE = 3.6 V

Figure 8-6 3.3 V Standard CMOS I/O V-I Characteristic (Driving Capability 3)

8.4.2. DDR2SDRAM IF I/O (SSTL_18)

SSTL_18 DC characteristics (excerpted from JESD8-15a).

Table 8-6 SSTL18 Input DC Logic Levels (Single Ended)

Symbol	Parameter	Min.	Max.	Unit
VIH (DC)	DC input logic High	VREF + 125	VDDQ + 300	mV
VIL (DC)	DC input logic Low	-300	VREF - 125	mV

Table 8-7 SSTL18 Input AC Logic Levels (Single Ended)

Symbol	Parameter	Min.	Max.	Unit
VIH (AC)	AC input logic High	VREF + 250	-	mV
VIL (AC)	AC input logic Low	_	VREF - 250	mV

Table 8-8 SSTL18 Input AC Test Conditions (Single Ended)

Symbol	Condition	Value	Unit
VREF	Input reference voltage	$0.5 \times VDDQ$	V
VSWING (max.)	Input single maximum peak to peak swing	1.0	V
SLEW	Input single minimum slew rate	1.0	V/ns

Table 8-9 SSTL18 Input DC Logic Levels (Differential Ended)

·		. '		
Symbol	Parameter	Min.	Max.	Unit
VIN (DC)	DC input signal voltage	-300	VDDQ + 300	mV
VID (DC)	DC differential input voltage	250	VDDQ + 600	mV

Table 8-10 SSTL18 Input AC Logic Levels (Differential Ended)

Symbol	Parameter	Min.	Max.	Unit
VID (AC)	AC differential input voltage	500	VDDQ + 600	mV
VIX (AC)	AC differential cross point voltage	0.5 × VDDQ - 175	$0.5 \times VDDQ + 175$	mV

Table 8-11 SSTL18 Input AC Test Conditions (Differential Ended)

Symbol	Parameter	Min.	Max.	Unit
Vr	Input timing measurement reference level	VIX (cro	oss point)	V
VSWING	Input signal peak to peak swing voltage	_	1.0	V
SLEW	Input signal slew rate	1.0	_	V/ns

Table 8-12 SSTL18 Output DC Current Drive

Tuble 0 12 bb	TETO Output De current Brive				
Symbol Parameter		Min.	Max.	Unit	Notes
IOH (DC)	Output minimum source DC current	-11.4 (*3)	-	mA	(*1)
IOL (DC)	Output minimum sink DC current	11.4 (*3)	_	mA	(*2)

^{*1:} VDDQ = 1.7V, VOUT = 1420mV

^{*2:} VDDQ = 1.7V, VOUT = 280mV

^{*3:} The value is different from JESD8-15a. (JESD8-15a: ± 13.4 mA)

Table 8-13 SSTL18 Differential AC parameters

Symbol	Parameter	Min.	Max.	Unit
VOX	AC differential cross point voltage	0.5 × VDDQ - 125	$0.5 \times VDDQ + 125$	mV

Note:

External pin for DDR2SDRAM IO buffer is as follows.

MDQSP[3:0], MDQSN[3:0], MDM[3:0], MDQ[31:0], MCKP, MCKN, MA[13:0], MBA[1:0], MCAS, MCKE, MCS, MRAS, MWE, ODTCONT, OCD, ODT, VREF0, VREF1

8.4.3. ADC

Table 8-14 Recommended Operating Conditions

Parameter	Symbol		Value		Unit
rarameter	Symbol	Min.	Тур.	Max.	Omt
Power supply voltage	AD_AVD0	2.70	3.00	3.60	V
Reference voltage (H)	AD_VRH0 AD_VRH1	AD_AVD0*0.75	_	AD_AVD0	V
Reference voltage (L)	AD_VRL0 AD_VRL1	V _{SS} (*1)	_	AD_AVD0*0.25	V
Decoupling capacitor	AD_VR0 (*2) AD_VR1 (*2)	0.05	_	_	μF
Analog input voltage	AD_VIN0 AD_VIN1	AD_VRL0 AD_VRL1	-	AD_VRH0 AD_VRH1	V
Analog input frequency	AD_VIN0 AD_VIN1	0	_	500	kHz

Note:

immediately after power-on or at the resumption from power down mode.

Because charge current for decoupling capacitors is supplied through the reference resistance, it takes about 2ms to get correct result (it is the case decoupling capacitor is $0.1\mu F$.).

Table 8-15 ADC Characteristics

 $(VDD = 1.2V, AVD = 3.0V, FS = 100KS/s, FC = 1.4MHz, FVIN = 1 kHz, T_A = 25^{\circ}C (*1))$

Parameter	Symbol		Value		Unit
1 at affecter	Symbol	Min.	Typ.	Max.	Omt
Supply current	AD_AVD0	_	0.8	1.2	mA
(included reference current)		-1	_	50	μΑ
Reference voltage (M)	AD_VR0	_	AD_AVD0/2	-	V
	AD_VR1	-3	_	3	%
Reference resistance	AD_VRH0 AD_VRH1 AD_VRL0 AD_VRL1	7.3	9	10.7	kΩ
Zero transition voltage (*2)		Typ. -20	AD_VRL0+1LSB AD_VRL1+1LSB	Typ. +20	mV
Full scale transition Voltage (*2)		Typ20	AD_VRH0-1LSB AD_VRH1-1LSB	Typ. +20	mV
Integral non linearity (*3)		-2.0	_	+2.0	LSB
Differential non linearity (*3)		-1.5	_	+1.5	LSB

^{*1:} VR is connected to AVS with decoupling capacitor (0.1 μ F). Unique voltage is supplied to VRH and VRL by voltage source.

^{*1:} V_{SS} = AD AVS1 (analogue GND)

^{*2:} In the case that VR is decoupled with AVS by decoupling capacitor, A/D outputs incorrect result at

^{*2:} VZT and VFST are dependent on chip layout and wiring resistance.

^{*3:} 1LSB = (VFST-VZT)/1022, INLn = ((1LSBxn + VZT) - Vn)/1LSB, DNLn = (Vn + 1 - Vn)/1LSB - 1

8.4.4. I²C Bus Fast Mode I/O

Table 8-16 I²C I/O DC Characteristics

Parameter & Condition	Symbol	Standar	d Mode	Fast Mo	ode (*1)	Unit	
rarameter & Condition	Symbol	Min.	Max.	Min.	Max.	Omt	
"L" level input voltage	VIL	-0.5	0.3 VDDE	-0.5	0.3 VDDE	V	
"H" level input voltage	VIH	0.7 VDDE	(*2)	0.7 VDDE	(*2)	V	
Schmitt trigger hysteresis VDDE > 2[v]	Vhys	n/a	n/a	0.05 VDDE	_	V	
"L" level output voltage Sink current 3[mA] VDDE > 2[v]	VOL1	0	0.4	0	0.4	V	
Output slew rate (Tfall) Bus capacitance 10[pF] ~ 400[pF] VIH (min.) to VIL (max.)	tof	_	250	20 + 0.1Cb (*3)	250	ns	
Data line leakage Input voltage 0.1 ~ 0.9 VDDE (max.)	Ii	-10	10	-10	10	μΑ	
I/O pin capacitance	Ci	_	10	_	10	pF	

^{*1:} The I²C Bus Fast Mode I/O buffer is downward compatible with standard mode.

Note:

External pin for I²C IO buffer is as follows. I2C_SCL0, I2C_SDA0, I2C_SCL1, I2C_SDA1

^{*2: 90}nm Technology: Complies with the maximum ratings 4[V].

^{*3:} Cb: Capacitance for 1 bus line (Unit: pF).

^{*4:} The I²C Bus Fast Mode I/O buffer itself has no function to prevent spike of 50ns pulse width (max.). Therefore, provide any input filter to prevent spike for both internal and external semiconductor device.

8.4.4.1. I²C IO V-1 Characteristic Figure

Figure 8-7 I²C V-I Characteristic Figure

8.5. AC CHARACTERISTIC

In this chapter, the AC timing of external ports is described.

8.5.1. Memory Controller Signal Timing

Table 8-17 Memory Controller AC Timing

Signal Name	Symbol	Description		Value		Unit
Signal Name	Symbol	Description	Min	Тур	Max	Omi
MEM_XCS0 MEM_XCS2 MEM_XCS4	t_{cso}	Chip Select delay time	ı	ı	10	ns
MEM_EA[24:1]	t_{ao}	Address delay time	-	_	11	ns
	t_{do}	Data output delay time	-	_	11	ns
	t_{doz}	Data output HiZ time	ı	_	12	ns
MEM ED[31:0]	t_{dsr}	SRAM/NOR Flash data setup time	12	_	_	ns
MEM_ED[31.0]	t_{dhr}	SRAM/NOR Flash data hold time	0	_	_	ns
	t_{dsp}	NOR Flash page Read data setup time	13	-	-	ns
	t_{dhp}	NOR Flash page Read data hold time	0	_	_	ns
MEM_XRD	t_{rdo}	XRD delay time	_	-	10	ns
MEM_XWR[3:0]	$t_{ m wro}$	XWR delay time	_	_	10	ns

Standard clock of output delay is internal clock. Standard clock of MEM RDY is internal clock.

Figure 8-8 SRAM/NOR Flash Read

Figure 8-9 SRAM/NOR Flash Write

Figure 8-10 Low speed device Read

Figure 8-11 Low speed device Write

Figure 8-12 NOR Flash Page Read

8.5.2. DDR2SDRAM IF

This is able to connect with DDR2 SDRAM which is in conformance with DDR2-400 in the JEDEC (JESD79-2C.) Timing regulation is described below, and output load condition is according to the PCB design guideline.

Table 8-18 Write Spec (1 and 2): CK-CMD/ADD and CK-DQS

Item	Symbol Spec formula —		Crit	Unit		
Item	Symbol	Spec formula	Min.	Тур.	Max.	Omt
CMD/ADD setup valid-data from CK↑	tVD_setup_CMD	(tCK/2) - 828	2172	-	-	ps
CMD/ADD hold valid-data from CK↑	tVD_hold_CMD	(tCK/2) - 545	2455	_	_	ps
Skew between DQS↑ vs. CK↑	tSkew_DQS_CK	Not tCK dependent	-1083	_	772	Ps

^{*1:} Spec for tck = 6ns (333Mbps) is indicated

Table 8-19 Write Spec (3): DQ-DQS

Item	Symbol	Spec formula	Crit	eria value	(*1)	Unit
	Symbol	Spec formula	Min.	Тур.	Max.	Omt
DQ/DM setup valid-data from DQS	tVD_setup_DQ	(tCK/4) - 884	616	-	-	ps
DQ/DM hold valid-data from DQS	tVD_hold_DQ	(tCK/4) - 776	724	_	_	ps

^{*1:} Spec for tck = 6ns (333Mbps) is indicated

Table 8-20 Read Spec (1): DQ-DQS

Item	Crombal	Spec formula	Crit	eria value	(*1)	Unit
Item	Symbol	Spec formula	Min.	Тур.	Max.	Omt
tSETUP DQ from DQS	tSETUP_DQ	- (0.1875*tCK – 208)	-917	-	-	ps
tHOLD DQ from DQS	tHOLD_DQ	0.1875*tCK + 503	1628	_	_	Ps

^{*1:} Spec for tck = 6ns (333Mbps) is indicated

Table 8-21 Read Spec (2): DQ-R.T.T (RoundTrip Time)

Item	Symbol	Spec formula	Crit	eria value	(*1)	Unit
Item	Symbol	Spec formula	Min.	Тур.	Max.	Cilit
DQS RoundTripTime @CL = 3 (CK_out DRAM DQS_in)	tRTT_DQS	<max.> 1112 <min.> -595</min.></max.>	-355	ı	+1426	ps

^{*1:} Spec for tck = 6ns (333Mpbs) is indicated

^{*2:} Spec shows total delay value including tDQSCK delay of DRAM

8.5.2.1. DDR2SDRAM IF Timing Diagram

Figure 8-13 Timing Regulation Point

Figure 8-14 Write Spec (1 and 2): CK-CMD/ADD and CK-DQS

Figure 8-15 Write Spec (3): DQ-DQS

Figure 8-16 Read Spec (1): DQ-DQS

Figure 8-17 Read Spec (2): DQS-R.T.T (RoundTrip Time)

8.5.3. **GPIO Signal Timing**

Table 8-22 AC Timing

Signal Symbo	Symbol	ymbol Description		Value			
Signai	Symbol	Description	Min.	Тур.	Max.	Unit	
GPIO PD[23:0]	t_{do}	Data output delay time	-	-	13	ns	
GI 10_1 D[23.0]	$t_{\rm dw}$	Input data-width	A	_	_	Ns	

Internal clock is the standard of output delay.

A indicates APB bus clock cycle, and it is different from the output delay standard clock.

Figure 8-18 GPIO Timings

8.5.4. PWM Signal Timing

8.5.4.1. Output Signal

Table 8-23 AC Timing of PWM Output Signal

Signal	Symbol	Description	Value			
			Min.	Тур.	Max.	Unit
PWM_O0	ТО	Output delay of PWM_O0 based on APB-BusClock	2.0	-	14.0	ns
PWM_O1	T1	Output delay of PWM_O1 based on APB-BusClock	2.0	-	14.0	ns

Figure 8-19 PWM Output Timing

8.5.5. GDC Display Signal Timing

8.5.5.1. Clock

Table 8-24 AC timing of Video Interface Clock Signal

Signal	Symbol	Description		Value		Unit
Signai	Symbol	Description	Min.	Тур.	Max.	Ome
	Fdclki0	DCLKI frequency	ı	I	80	MHz
DCLKI0	Thdclki0	DCLKI H width	5	ı	ı	ns
	Tldclki0	DCLKI L width	5	I	ı	ns
	Fdclki1	DCLKI frequency	ı	I	80	MHz
DCLKI1	Thdclki1	DCLKI H width	5	ı	ı	ns
	Tldclki1	DCLKI L width	5	ı	ı	ns
DCLK (internal)	Tldclk0	DCLK frequency (*1)	-	-	80	MHz
DCLK (internal)	Tldclk1	DCLK frequency (*1)	ı	ı	80	MHz
DCLKO0	Fdclko	DCLKO frequency	ı	ı	80	MHz
DCLKO1	Fdclko	DCLKO frequency	_	_	80	MHz

^{*1:} Internal display clock of PLL synchronization mode is generated by division of internal PLL in the display clock prescaler.

8.5.5.2. Input Signal

1) Applied the signal only in PLL synchronization mode (CKS = 0) (Reference clock = Clock output from internal PLL)

Table 8-25 AC Timing of Video Interface Input Signal (1)

Signal	Symbol	Description			Unit	
			Min.	Тур.	Max.	Cint
HSYNC0 (i)	Twhsync0	HSYNC input pulse width	3.0	ı	_	Clock
HSYNC1 (i)	Twvsync1	VSYNC input pulse width	3.0	-	_	Clock
VSYNC0 (i)	Twvsync	VSYNC input pulse width	1	ı	_	HSYNC
VSYNC1 (i)	Twvsync	VSYNC input pulse width	1	_	_	HSYNC

2) Applied the signal only in DCLKI synchronization mode (CKS = 1) (Reference clock = DCLKI)

Table 8-26 AC Timing of Video Interface Input Signal (2)

Signal	Symbol	Description		Value		Unit
Signai	Symbol	Description	Min.	Тур.	Max.	Cilit
HSYNC0 (i)	Twhsync0	HSYNC input pulse width	3.0	ı	_	Clock
	Tshsync0	HSYNC Input setup time	6.0	-	_	ns
	Thhsync0	HSYNC Input hold time	1.0	-	-	ns
	Twhsync1	HSYNC input pulse width	3.0	ı	_	Clock
HSYNC1 (i)	Tshsync1	HSYNC Input setup time	6.0	Ī	_	ns
	Thhsync1	HSYNC Input hold time	1.0	-	-	ns
VSYNC0 (i)	Twvsync0	VSYNC input pulse width	1	_	_	HSYNC
VSYNC1 (i)	Twvsync1	VSYNC input pulse width	1	-	_	HSYNC

^{*2:} DCLKI or internal display clock of PLL is output.

8.5.5.3. Output Signal

Table 8-27 AC Timing of Video Interface Input Signal

Signal	Symbol	Description		Value		Unit
Signai	Symbol	Description	Min.	Тур.	Max.	Omt
DOUTR0[5:0], DOUTG0[5:0], DOUTB0[5:0]	Tdrgb0	RGB output delay time	0	ı	5.5	ns
DOUTR1[5:0], DOUTG1[5:0], DOUTB1[5:0]	Tdrgb1	RGB output delay time	0	ı	5.5	ns
HSYNC0 (o)	Tdhsync0	HSYNC output delay time	0	ı	5.5	ns
HSYNC1 (o)	Tdhsync1	HSYNC output delay time	0	-	5.5	ns
VSYNC0 (o)	Tdvsync0	VSYNC output delay time	0	_	5.5	ns
VSYNC1 (o)	Tdvsync1	VSYNC output delay time	0	1	5.5	ns
CSYNC0	Tdcsync0	CSYNC output delay time	0	_	5.5	ns
CSYNC1	Tdcsync1	CSYNC output delay time	0	_	5.5	ns
GV0	Tdgv0	GV output delay time	0	_	5.5	ns
GV1	Tdgv1	GV output delay time	0	_	5.5	Ns

Note: If hold time is deficient, inverting DCLKO clock is recommended.

Figure 8-20 Display Input Signal Timing

Figure 8-21 Display Output Signal Timing

There is no definition of AC characteristics about analog signal.

8.5.6. GDC Video Capture Signal Timing

8.5.6.1. Clock

Table 8-28 AC Timing of Video Capture Interface Clock Signal

Signal	Symbol	Description		Unit		
Signai			Min.	Тур.	Max.	Cilit
	f_{CCLK}	Capture clock frequency	_	_	80	MHz
CCLK0, CCLK1	t _{HCCLK}	Capture clock H width	3	_	-	ns
CCEITI	t_{LCCLK}	Capture clock L width	3	_	-	ns

Note: It depends on the resolution of the video source.

8.5.6.2. Input Signal

Table 8-29 AC Timing of Video Capture Interface Input Signal

Signal	Symbol	Description		Value		Unit
Signai	Symbol	Description	Min.	Тур.	Max.	Ullit
VIN0[7:0],	t_{SVI}	Input setup time	6	_	_	ns
VIN1[7:0]	t_{HVI}	Input hold Time	1	_	_	ns
RI1[7:2]	t_{SRI}	Input setup time	6	_	_	ns
K11[7.2]	t_{HRI}	Input hold Time	1	_	_	ns
GI1[7:2]	t_{SGI}	Input setup time	6		ns	
G11[7.2]	$t_{ m HGI}$	Input hold Time	1	_	_	ns
BI1[7:2]	t_{SBI}	Input setup time	6	_	ns	
D11[7.2]	$t_{ m HBI}$	Input hold Time	1	_	_	ns
VINHSYNC0,	$t_{ m SHSI}$	Input setup time	6	-	_	ns
VINHSYNC1	$t_{ m HHSI}$	Input hold Time	1	_	_	ns
VINVSYNC0,	t_{SVSI}	Input setup time	6	-	_	ns
VINVSYNC1	t_{HVSI}	Input hold Time	1	_	_	ns
VINFID0,	$t_{ m SFI}$	Input setup time	6	_	_	ns
VINFID1	$t_{ m HFI}$	Input hold Time	1	-	_	ns

Figure 8-22 Video Capture Clock Input Signal Timing

Figure 8-23 Video Capture Input Signal Timing

8.5.7. I2S Signal Timing

Table 8-30 Timing Requirements

Signal	Symbol	Description		Value		Unit
Signai	Symbol	Description	Min.	Тур.	Max.	Omt
	t_{scyc}	Operating frequency, I2S_SCKx (slave Mode)	_	_	0.5*B	MHz
I2S_SCKx	$t_{\rm shw}$	Pulse duration, I2S_SCKx High (slave Mode)	0.45*T	_	0.55*T	ns
	$t_{\rm slw}$	Pulse duration, I2S_SCKx Low (slave Mode)	0.45*T	_	0.55*T	ns
I2S WSx	$t_{ m sfi}$	Setup time, external I2S_WSx High before I2S_SCKx Low (slave mode)	8	-	ı	ns
125_W5X	$t_{ m hfi}$	Hold time, external I2S_WSx High after I2S_SCKx Low (slave Mode)	4	-	-	ns
	t	Setup time, I2S_SDIx valid before I2S_SCKx Low (master mode)	8	ı	I	ns
12S SDIv	$t_{ m sdi}$	Setup time, I2S_SDIx valid before I2S_SCKx Low (slave Mode)	8	I	I	ns
I2S_SDIx	t	Hold time, I2S_SDIx valid after I2S_SCKx Low (master mode)	4			ns
	$t_{ m hdi}$	Hold time, I2S_SDIx valid after I2S_SCKx Low (slave mode)	4	_	_	ns

B indicates AHB bus clock frequency.

Table 8-31 Switching Characteristics

Signal	Symbol	Description			Unit	
Signai	Symbol	Description	Min.	Тур.	Max.	Omt
	t _{mcyc}	Operating frequency, I2S_SCKx (master mode)	-	-	0.5*B	MHz
I2S_SCKx	$t_{ m mhw}$	Pulse duration, I2S_SCKx high (master mode)	0.45*T	_	0.55*T	ns
	$t_{ m mlw}$	Pulse duration, I2S_SCKx low (master mode)	0.45*T	_	0.55*T	ns
I2S_WSx	$t_{ m dfs}$	Delay time, I2S_SCKx High to I2S_WSx transition (master mode)	-12	-	12	ns
	$t_{ m ddo}$	Delay time, I2S_SCKx High to I2S_SDOx valid except the first bit of transmit frame. (master mode)	-12	-	17	ns
I2S_SDOx		Delay time, I2S_SCKx high to I2S_SDOx valid except the first bit of transmit frame. (slave mode)	3	-	32	ns
_	$t_{ m dfb1}$	Delay time, I2S_SCKx high to the first bit of a transmit frame when FSPH bit of I2Sx_CNTREG register is 1. (master mode)	-14	_	17	ns

B indicates AHB bus clock frequency.

T indicates I2S_SCKx cycle.

T indicates I2S_SCKx cycle.

FSPH is bit 2 of I2Sx_CNTREG register. FSLN is bit 1 of I2Sx_CNTREG register.

Figure 8-24 Master Mode Timing

Figure 8-25 Slave Mode Timing

8.5.8. UART Signal Timing

Table 8-32 AC Timing

Signal	Symbol	Description		Value		Unit
Signai	Symbol	Description	Min.	Тур.	Max.	Omt
UART_SOUT0 UART_SOUT1 UART_SOUT2 UART_SOUT3 UART_SOUT4 UART_SOUT5	t_{do}	Data output delay time	-	-	12	ns
UART_SIN0 UART_SIN1 UART_SIN2 UART_SIN3 UART_SIN4 UART_SIN5	$t_{ m dw}$	Input data width	16*A	ı	-	ns
UART_XRTS0	t_{rtso}	XRTS output delay time	_	_	11	ns
UART_XCTS0	t_{ctsw}	Input XCTS data width	A	_	_	ns

Internal clock is the standard of output delay.

A indicates APB bus clock cycle, and it is different from the output delay standard clock.

Figure 8-26 UART Timing

8.5.9. I²C Bus Timing

Table 8-33 AC timing of I²C signal

Signal				V	alue		Unit
Signai	Symbol	Des	cription	Min.	Typ.	Max.	Unit
	т	SDAI setup time	Normal mode	250 (*1)	-	-	ns
	T_{S2SDAI}	SDAI setup time	High-speed mode	100 (*1)	-	-	ns
I2C_SDA0 I2C_SDA1	Т	SDAI hold time	Normal mode	0.0 (*1)	-	_	ns
I2C_SDA1	1 H2SDAI	SDAI noid time	High-speed mode	0.0 (*1)	-	-	ns
	т	BUS free time	Normal mode	4.7 (*1)	_	-	μs
	T_{WBFI}	BOS free time	High-speed mode	1.3 (*1)	-	-	μs
	т	SCLI cycle time	Normal mode	1.0 (*1)	_	-	μs
	T_{CSCLI}		High-speed mode	2.5 (*1)	_	-	μs
	т	SCLI H width	Normal mode	4.0 (*1)	_	-	μs
	1 WHSCLI		High-speed mode	0.6 (*1)	_	-	μs
	Т	SCLI L width	Normal mode	4.7 (*1)	_	-	μs
	1 WLSCLI	SCLI L WIGHT	High-speed mode	1.3 (*1)	_	-	μs
	т	SCLO cycle time	Normal mode	2*m + 2 (*2)	-	-	PCLK (*3)
I2C_SCL0	T_{CSCLO}	SCLO cycle time	High-speed mode	Int $(1.5*m) + 2 (*2)$	-	-	PCLK (*3)
I2C_SCL1	т	SCLO H width	Normal mode	m + 2 (*2)	-	-	PCLK (*3)
	1 WHSCLO	SCLO II widiii	High-speed mode	Int $(0.5*m) + 2 (*2)$	-	-	PCLK (*3)
	т	SCLO L width	Normal mode	m (*2)	_	-	PCLK (*3)
	1 WLSCLO	SCLO L WIGHT	High-speed mode	m (*2)	-	-	PCLK (*3)
	Т	SCLI setup time	Normal mode	4.0 (*2)	_	-	μs
	T _{S2SCLI}	SCLI setup time	High-speed mode	0.6 (*2)	-	-	μs
	Т	SCLI hold time	Normal mode	4.7 (*2)	_	_	μs
	T _{H2SCLI}	SCLI HOIG HITE	High-speed mode	1.3 (*2)	_	_	μs

^{*1:} I²C bus specification value

^{*3:} PCLK = APB bus clock cycle

Figure 8-27 I²C Access Timing

^{*2:} See I²C bus interface's clock control register (I2CxCCR) of the MB86R03 'Jade-L' LSI product specifications for the "m" value

8.5.10. SPI Signal Timing

Table 8-34 SPI AC Timing

Signal	Symbol	Description			Unit	
Signal	Symbol		Min.	Тур.	Max.	Omt
SPI_SCK	$t_{\rm cyc}$	Operating frequency	-	-	0.5*A	MHz
SPI DI	t_{sdi}	Setup time, SPI_DI valid before SPI_SCK	15	ı	ı	ns
311_D1	t_{hdi}	Hold time, SPI_DI valid after SPI_SCK	15	-	-	ns
SPI_DO	t_{do}	Delay time, SPI_SCK	-2	ı	5	ns
SPI_SS	t_{sso}	Delay time, SPI_SCK	-2	_	5	ns

A indicates APB bus clock frequency.

Figure 8-28 SPI Timing

Polarity of SPI_SCK is determined by the register setting.

8.5.11. CAN Signal Timing

Table 8-35 CAN AC Timing

Signal	Symbol	Description		Unit		
			Min.	Тур.	Max.	Omt
CAN_TX0 CAN_TX1	t_{do}	Data output delay time	-	-	17	ns
CAN_RX0 CAN_RX1	t_{dw}	Input data width	1000	-	-	ns

Internal clock is the standard of output delay.

Figure 8-29 CAN Timing

8.5.12. SD Signal Timing

8.5.12.1. Clock

Table 8-36 AC Timing of Clock Signal

Signal Name	Symbol	Description		Unit		
			Min.	Тур.	Max.	Omi
SD_CLK	t_CLK	SD_CLK cycle	-	_	20.83 (*1)	MHz

^{*1: 20.83}MHz for SD memory card and 20MHz for multimedia card (MMC)

8.5.12.2. Input/Output Signal

Table 8-37 AC Timing of Data Signal

Signal Name	Symbol	Description		Unit		
Signal Name			Min.	Тур.	Max.	Omi
SD_DAT[3:0]	tD_DAT	Output data delay (standard of SD_CLK falling edge)	-6.0	-	3.0	ns
	tS_DAT	Input data setup (standard of SD_CLK rising edge)	13.0	-	-	ns
	tH_DAT	Input data hold (standard of SD_CLK rising edge)	19.0	-	-	ns

Figure 8-30 Output Timing to Media

Figure 8-31 Input Timing from Media

8.5.13. ETM9 Trace Port Signal Timing

Table 8-38 AC Timing of Trace Signal

Signal Name	Symbol	Description	Value			Unit
Signal Name	Symbol	Description		Тур.	Max.	Cilit
TRACECTL	Tctlsr	TRACECTL setup time to rising edge of TRACECLK.	2	-	-	ns
	Tetlhr	TRACECTL hold time to rising edge of TRACECLK.	1	-	-	ns
	Tctlsf	TRACECTL setup time to falling edge of TRACECLK.	2	-	-	ns
	Tetlhf	TRACECTL hold time to falling edge of TRACECLK.	1	-	-	ns
TRACEDATA[3:0]	Tdatasr	TRACEDATA setup time to rising edge of TRACECLK.	2	-	-	ns
	Tdatahr	TRACEDATA hold time to rising edge of TRACECLK.	1	-	-	ns
	Tdatasf	TRACEDATA setup time to falling edge of TRACECLK.	2	-	-	ns
	Tdatahf	TRACEDATA hold time to falling edge of TRACECLK.	1	-	-	ns

[NOTE] MB86R03 supports only half-rate clocking mode.

Figure 8-32 Trace Signal Timing

8.5.14. EXIRC Signal Timing

Table 8-39 AC Timing

Signal Name	Symbol	Description		Unit		
			Min.	Тур.	Max.	Cint
INT_A[3:0]	t_{dw}	Input data-width	A	-	-	ns

The case that external interrupt input request is edge (rising edge and falling edge), input data width (tdw) is regulated as follows. When level ("H" or "L") is selected as the request, it should be held until interrupt process is completed. A indicates APB bus clock cycle.

Figure 8-33 EXIRC Timing

FUJITSU