Least and Greatest Fixpoints

Transfinite Approximates

Giuseppe De Giacomo

Sapienza Università di Roma Laurea Magistrale in Ingegneria Informatica

Fixpoints

We briefly recall few notions on fixpoints.

Consider the equation:

$$X = f(X)$$

where f is an operator from 2^{S} to 2^{S} (2^{S} denotes the set of all subsets of a set S).

- ullet Every solution ${\mathcal E}$ of this equation is called a **fixpoint** of the operator f
- ullet every set ${\mathcal E}$ such that $f({\mathcal E})\subseteq {\mathcal E}$ is called **pre-fixpoint**, and
- every set \mathcal{E} such that $\mathcal{E} \subseteq f(\mathcal{E})$ is called **post-fixpoint**.
- In general, an equation as the one above may have either no solution, a finite number of solutions, or an infinite number of them. Among the various solutions, the smallest and the greatest solutions (with respect to set-inclusion) have a prominent position, if they exist.
- The the smallest and the greatest solutions are called **least fixpoint** and **greatest fixpoint**, respectively.

Tarski-Knaster fixpoint theorem

We say that f is **monotonic** wrt \subseteq (set-inclusion) whenever $\mathcal{E}_1 \subseteq \mathcal{E}_2$ implies $f(\mathcal{E}_1) \subseteq f(\mathcal{E}_2)$.

Theorem (Tarski'55)

Let S be a set, and f an operator from 2^S to 2^S that is monotonic wrt \subseteq . Then:

- There exists a unique least fixpoint of f, which is given by $\bigcap \{\mathcal{E} \subseteq \mathcal{S} \mid f(\mathcal{E}) \subseteq \mathcal{E}\}.$
- There exists a unique greatest fixpoint of f, which is given by $\bigcup \{\mathcal{E} \subseteq \mathcal{S} \mid \mathcal{E} \subseteq f(\mathcal{E})\}.$

G. De Giacomo (UNIROMA1)

Fixpoint:

3 / 1

Proof of Tarski-Knaster theorem: least fixpoint

We start by showing the proof for the **least fixpoint** part. (The proof for the greatest fixpoint is analogous, see later).

Let us define $\mathcal{L} = \bigcap \{ \mathcal{E} \subseteq \mathcal{S} \mid f(\mathcal{E}) \subseteq \mathcal{E} \}.$

Lemma

 $f(\mathcal{L}) \subseteq \mathcal{L}$

Proof.

- For every $\mathcal E$ such that $f(\mathcal E)\subseteq \mathcal E$, we have $\mathcal L\subseteq \mathcal E$, by definition of $\mathcal L$.
- By monotonicity of f, we have $f(\mathcal{L}) \subseteq f(\mathcal{E})$.
- Hence $f(\mathcal{L}) \subseteq \mathcal{E}$ (for every \mathcal{E} such that $f(\mathcal{E}) \subseteq \mathcal{E}$).
- But then $f(\mathcal{L})$ is contained in the intersection of all such \mathcal{E} , so we have $f(\mathcal{L}) \subseteq \mathcal{L}$.

Proof of Tarski-Knaster theorem: least fixpoint

Lemma

 $\mathcal{L} \subseteq f(\mathcal{L})$

Proof.

- By the previous lemma, we have $f(\mathcal{L}) \subseteq \mathcal{L}$.
- But then $f(f(\mathcal{L})) \subseteq f(\mathcal{L})$, by monotonicity.
- ullet Hence, $ar{\mathcal{E}}=f(\mathcal{L})$ is such that $f(ar{\mathcal{E}})\subseteq ar{\mathcal{E}}$.
- Thus, $\mathcal{L} \subseteq f(\mathcal{L})$, by definition of \mathcal{L} .

G. De Giacomo (UNIROMA1)

Fixpoints

5 / 1

Proof of Tarski-Knaster theorem: least fixpoint

The previous two lemmas together show that \mathcal{L} is indeed a fixpoint: $\mathcal{L} = f(\mathcal{L})$. We still need to show that is the **least** fixpoint.

Lemma

 \mathcal{L} is the **least** fixpoint: for every $f(\mathcal{E}) = \mathcal{E}$ we have $\mathcal{L} \subseteq \mathcal{E}$.

Proof.

By contradiction.

- Suppose not. Then there exists an $\hat{\mathcal{E}}$ such that $f(\hat{\mathcal{E}}) = \hat{\mathcal{E}}$ and $\hat{\mathcal{E}} \subset \mathcal{L}$.
- Being $\hat{\mathcal{E}}$ a fixpoint (i.e., $f(\hat{\mathcal{E}}) = \hat{\mathcal{E}}$), we have in particular $f(\hat{\mathcal{E}}) \subseteq \hat{\mathcal{E}}$.
- ullet Hence by definition of \mathcal{L} , we get $\mathcal{L}\subseteq\hat{\mathcal{E}}$. Contradiction.

Proof of Tarski-Knaster theorem: greatest fixpoint

Now we prove the **greatest fixpoint** part.

Let us define $\mathcal{G} = \bigcup \{ \mathcal{E} \subseteq \mathcal{S} \mid \mathcal{E} \subseteq f(\mathcal{E}) \}.$

Lemma

 $\mathcal{G} \subseteq f(\mathcal{G})$

Proof.

- ullet For every $\mathcal E$ such that $\mathcal E\subseteq f(\mathcal E)$, we have $\mathcal E\subseteq \mathcal G$, by definition of $\mathcal G$.
- Consider now $e \in \mathcal{G}$. Then there exists an $\hat{\mathcal{E}}$ such that $\hat{\mathcal{E}} \subseteq f(\hat{\mathcal{E}})$, $e \in \hat{\mathcal{E}}$, by definition of \mathcal{G} .
- But $\hat{\mathcal{E}} \subseteq \mathcal{G}$, and by monotonicity $f(\hat{\mathcal{E}}) \subseteq f(\mathcal{G})$, hence $e \in f(\mathcal{G})$.

G. De Giacomo (UNIROMA1)

Fixpoints

7 / 1

Proof of Tarski-Knaster theorem: greatest fixpoint

Lemma

 $f(\mathcal{G})\subseteq\mathcal{G}$

Proof.

- ullet By the previous lemma we have $\mathcal{G}\subseteq f(\mathcal{G})$
- But then, we have that $f(\mathcal{G}) \subseteq f(f(\mathcal{G}))$, by monotonicity.
- Hence, $\bar{\mathcal{E}} = f(\mathcal{G})$ is such that $\bar{\mathcal{E}} \subseteq f(\bar{\mathcal{E}})$.
- Thus, $f(\mathcal{G}) \subseteq \mathcal{G}$, by definition of \mathcal{G} .

Proof of Tarski-Knaster theorem: greatest fixpoint

The previous two lemmas together show that \mathcal{L} is indeed a fixpoint: $\mathcal{G} = f(\mathcal{G})$. We still need to show that is the **greatest** fixpoint.

Lemma

 \mathcal{G} is the **greatest** fixpoint: for every $\mathcal{E} = f(\mathcal{E})$ we have $\mathcal{E} \subseteq \mathcal{G}$.

Proof.

By contradiction.

- Suppose not. Then there exists an $\hat{\mathcal{E}}$ such that $\hat{\mathcal{E}} = f(\hat{\mathcal{E}})$ and $\mathcal{G} \subset \hat{\mathcal{E}}$.
- Being $\hat{\mathcal{E}}$ a fixpoint, we have $\hat{\mathcal{E}} \subseteq f(\hat{\mathcal{E}})$.
- ullet Hence by definition of \mathcal{G} , we get $\hat{\mathcal{E}}\subseteq\mathcal{G}$. Contradiction.

G. De Giacomo (UNIROMA1)

Fixpoints

9 / 1

Ordinals

We will need to do more iterations than the natural numbers, so we will use ordinals.

Ordinals

```
\begin{array}{l} 0 \doteq \emptyset \\ 1 \doteq \{0\} = \{\emptyset\} \\ 2 \doteq \{0,1\} = \{\emptyset,\{\emptyset\}\} \\ 3 \doteq \{0,1,2\} = \{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\} \\ \dots \\ \omega \doteq \{0,1,2,3,\dots\} \quad \text{-these are the natural numbers, sometimes denoted by } \omega_0 \\ \omega + 1 \doteq \{\omega,\{\omega\}\} \\ \omega + 2 \doteq \{\omega,\{\omega\},\{\omega,\{\omega\}\}\} \\ \omega + 3 = \{\omega,\{\omega\},\{\omega,\{\omega\}\},\{\omega,\{\omega\},\{\omega,\{\omega\}\}\}\} \\ \dots \\ \omega_1 \\ \omega_1 + 1 \doteq \{\omega_1,\{\omega_1\}\} \\ \omega_1 + 2 \doteq \{\omega_1,\{\omega_1\},\{\omega_1,\{\omega_1\}\}\} \\ \omega_1 + 3 \doteq \{\omega_1,\{\omega_1\},\{\omega_1,\{\omega_1\}\},\{\omega_1,\{\omega_1\},\{\omega_1,\{\omega_1\},\{\omega_1,\{\omega_1\}\}\}\} \\ \dots \end{array}
```

An ordinal λ is a limit ordinal iff $\lambda = \bigcup_{i < \lambda} i$, otherwise is a successor ordinal.

Eg.: $1,2,3,\ldots$ are successor ordinals, ω is the first limit ordinal, $\omega+1,\omega+2,\omega+3,\ldots$ are successor ordinals, ω_1 is the second limit ordinal, etc.

G. De Giacomo (UNIROMA1)

Fixpoints

Approximates of least fixpoints

Approximates for a least fixpoint

The approximates for a least fixpoint $\mathcal{L} = \bigcap \{\mathcal{E} \subseteq \mathcal{S} \mid f(\mathcal{E}) \subseteq \mathcal{E}\}$ are as follows:

$$egin{aligned} Z_0 &\doteq \emptyset \ Z_1 &\doteq f(Z_0) \ Z_2 &\doteq f(Z_1) \ \dots \ Z_\omega &\doteq igcup_{i < \omega} Z_i \ Z_{\omega + 1} &\doteq f(Z_\omega) \ Z_{\omega + 2} &\doteq f(Z_{\omega + 1}) \ \dots \ Z_{\omega_1} &\doteq igcup_{i < \omega_1} Z_i \ Z_{\omega_1 + 1} &\doteq f(Z_{\omega_1}) \ Z_{\omega_1 + 2} &\doteq f(Z_{\omega_1 + 1}) \end{aligned}$$

◆□ → ◆□ → ◆ ■ → ● → 9 へ ○

G. De Giacomo (UNIROMA1)

Fixpoint

11 / 1

Approximates of least fixpoints

Lemma

For all successor ordinals i, $Z_i \subseteq Z_{i+1}$ and for all limit ordinals λ , $Z_j \subseteq Z_{\lambda}$ for all $j < \lambda$.

Proof.

By transfinite induction on i.

- Zero: i = 0. By definition $Z_0 = \emptyset$, and trivially $\emptyset \subseteq Z_1$.
- Successor ordinals: i = k + 1. By tranfinite-inductive hypothesis we assume $Z_{k-1} \subseteq Z_k$, and we show that $Z_k \subseteq Z_{k+1}$.
 - ► $f(Z_{k-1}) \subseteq f(Z_k)$, by monotonicity.
 - But $f(Z_{k-1}) = Z_k$ and $f(Z_k) = Z_{k+1}$, hence we have $Z_k \subseteq Z_{k+1}$.
- Limit ordinals: $i = \lambda$, $Z_{\lambda} = \bigcup Z_{j < \lambda}$ hence $Z_j \subseteq Z_{\lambda}$ for all $j < \lambda$.

Approximates of least fixpoints

Lemma

For all ordinals $i, Z_i \subseteq \mathcal{L}$.

Proof.

By transfinite induction on i.

- Zero: i = 0. By definition $Z_0 = \emptyset$, and trivially $\emptyset \subseteq \mathcal{L}$.
- Successor ordinals: i = k + 1. By transfinite-inductive hypothesis we assume $Z_k \subseteq \mathcal{L}$, and we show that $Z_{k+1} \subseteq \mathcal{L}$.
 - $f(Z_k) \subseteq f(\mathcal{L})$, by monotonicity.
 - ▶ But then $f(Z_k) \subseteq \mathcal{L}$, since $\mathcal{L} = f(\mathcal{L})$.
 - ▶ Hence, considering that $f(Z_k) = Z_{k+1}$, we have $Z_{k+1} \subseteq \mathcal{L}$.
- Limit ordinals: $i = \lambda$, $Z_{\lambda} = \bigcup Z_{j < \lambda}$, since $Z_j \subseteq \mathcal{L}$ for all $j < \lambda$, by transfinite-induction we have that $Z_{\lambda} \subseteq \mathcal{L}$.

G. De Giacomo (UNIROMA1)

Fixpoints

12 / 1

Approximates of least fixpoints

Theorem (Tarski-Knaster on approximates of least fixpoints)

If for an ordinal α , $Z_{\alpha+1}=Z_{\alpha}$, then $Z_{\alpha}=\mathcal{L}$. Moreover such ordinal α always exists!

Proof.

We show only the first part of the theorem (the second part is highly nontrivial).

- $Z_{\alpha} \subseteq \mathcal{L}$ by the above lemma.
- On the other hand, since $Z_{\alpha+1} = f(Z_{\alpha}) = Z_{\alpha}$, we trivially get $f(Z_{\alpha}) \subseteq Z_{\alpha}$, and hence $\mathcal{L} \subseteq Z_{\alpha}$ by definition of \mathcal{L} .

Observe also that once for some α , $Z_{\alpha+1}=Z_{\alpha}$, then for all $\beta \geq \alpha$ we have $Z_{\beta+1}=Z_{\beta}$, by definition of approximates.

Approximates of least fixpoints

The above theorem gives us a simple sound procedure to compute the least fixpoint:

Least fixpoint algorithm

```
Z_{old} := \emptyset;

Z := f(Z_{old});

while (Z \neq Z_{old})\{

Z_{old} := Z;

Z := f(Z);

}
```

If in $\mathcal{L} = \bigcap \{ \mathcal{E} \subseteq \mathcal{S} \mid f(\mathcal{E}) \subseteq \mathcal{E} \}$ the set \mathcal{S} is finite then the above procedure **terminates** in $|\mathcal{S}|$ steps and becomes **sound and complete**.

Notice the above procedure is **polynomial** in the size of S.

G. De Giacomo (UNIROMA1)

ixpoints

15 / 1

Approximates of greatest fixpoints

Approximates for a greatest fixpoint

The approximates for the greatest fixpoint $\mathcal{G} = \bigcup \{\mathcal{E} \subseteq \mathcal{S} \mid \mathcal{E} \subseteq f(\mathcal{E})\}$ are:

 $Z_0 \doteq S$

$$Z_1 \doteq f(Z_0)$$
 $Z_2 \doteq f(Z_1)$
...
 $Z_{\omega} \doteq \bigcap_{i < \omega} Z_i$
 $Z_{\omega+1} \doteq f(Z_{\omega})$
 $Z_{\omega+2} \doteq f(Z_{\omega+1})$
...
 $Z_{\omega_1} \doteq \bigcap_{i < \omega_1} Z_i$
 $Z_{\omega_1+1} \doteq f(Z_{\omega_1})$
 $Z_{\omega_1+2} \doteq f(Z_{\omega_1})$

Approximates of greatest fixpoints

Lemma

For all successor ordinals i, $Z_{i+1} \subseteq Z_i$ and for all limit ordinals λ , $Z_{\lambda} \subseteq Z_j$ for all $j < \lambda$.

Proof.

By transfinite induction on i.

- Zero: i = 0. By definition $Z_0 = S$, and trivially $Z_1 \subseteq S$.
- Successor ordinals: i = k + 1: by inductive hypothesis we assume $Z_k \subseteq Z_{k-1}$, and we show that $Z_{k+1} \subseteq Z_k$.
 - ▶ $f(Z_k) \subseteq f(Z_{k-1})$, by monotonicity.
 - But $f(Z_k = Z_{k+1} \text{ and } f(Z_{k-1}) = Z_k \text{ hence } Z_{k+1} \subseteq Z_k$.
- Limit ordinals: $i = \lambda$, $Z_{\lambda} = \bigcap Z_{j < \lambda}$ hence $Z_{\lambda} \subseteq Z_{j}$ for all $j < \lambda$.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● める()

G. De Giacomo (UNIROMA1)

Fixpoints

17 / 1

Approximates of greatest fixpoints

Lemma

For all ordinals $i, \mathcal{G} \subseteq Z_i$.

Proof.

By transfinite induction on i.

- Zero: i=0. By definition $Z_0=\mathcal{S}$, and trivially $\mathcal{G}\subseteq\mathcal{S}$.
- Successor ordinals: i = k + 1: by inductive hypothesis we assume $\mathcal{G} \subseteq Z_k$, and we show that $G \subseteq Z_{k+1}$.
 - $f(\mathcal{G}) \subseteq f(Z_k)$, by monotonicity.
 - ▶ But then $\mathcal{G} \subseteq f(Z_k)$, since $\mathcal{G} = f(\mathcal{G})$.
 - Hence, considering that $f(Z_k) = Z_{k+1}$, we get $\mathcal{G} \subseteq Z_{k+1}$.
- Limit ordinals: $i = \lambda$, $Z_{\lambda} = \bigcap Z_{j < \lambda}$, since $\mathcal{G} \subseteq Z_{j}$ for all $j < \lambda$, by transfinite-induction we have that $\mathcal{G} \subseteq Z_{\lambda}$.

Approximates of greatest fixpoints

Theorem (Tarski-Knaster on approximates of greatest fixpoint)

If for some ordinal α , $Z_{\alpha+1}=Z_{\alpha}$, then $Z_{\alpha}=\mathcal{G}$. Moreover such ordinal α always exists!

Proof.

We show only the first part of the theorem (the second part is highly nontrivial).

- $\mathcal{G} \subseteq Z_{\alpha}$ by the above lemma.
- On the other hand, since $Z_{\alpha+1} = f(Z_{\alpha}) = Z_{\alpha}$, we trivially get $Z_{\alpha} \subseteq f(Z_{\alpha})$, and hence $Z_{\alpha} \subseteq \mathcal{G}$ by definition of \mathcal{G} .

Observe also that once for some α , $Z_{\alpha+1} = Z_{\alpha}$, then for all $\beta \geq$ alpha we have $Z_{\beta+1} = Z_{\beta}$, by definition of approximates.

◆□ → ◆□ → ◆ = → ■ りへで

G. De Giacomo (UNIROMA1)

ixpoints

19 / 1

Approximates of greatest fixpoints

The above theorem gives us a simple sound procedure to compute the greatest fixpoint:

Greatest fixpoint algorithm

```
Z_{old} := S;

Z := f(Z_{old});

while (Z \neq Z_{old}) \{

Z_{old} := Z;

Z := f(Z);

}
```

If in $\mathcal{G} = \bigcup \{\mathcal{E} \subseteq \mathcal{S} \mid \mathcal{E} \subseteq f(\mathcal{E})\}$ the set \mathcal{S} is finite then the above procedure **terminates** in $|\mathcal{S}|$ steps and becomes **sound and complete**.

Notice the above procedure is **polynomial** in the size of \mathcal{S} .

Discussion

For simplicity we have considered fixpoint wrt set-inclusion. In fact, the only property of set inclusion that we have used is the **lattice** implicitly defined by it.

We recall that a lattice is a the partial order (defined by set inclusion in our case), with the minimal element (\emptyset in our case) and maximal element (\mathcal{S} in our case).

We can immediately extend all the results presented here to arbitrary lattices substituting to the relation \subseteq the relation \le of the lattice.

