

	$V_{1}^{\prime} = V_{1t}$; $V_{1b}^{\prime} = V_{1b}$; $V_{2t}^{\prime} = V_{2t}$; $V_{2b}^{\prime} = V_{2b}$.
	Vc = Vneh + Vit et + Vib eb; and so on.
→ N	o no net external unpulse in En direction also for the
	system of two bodies. => momentum along en for the system
	is conserved.
	m, Vm + m2 V2n = m, VIn + m2 V2n (b)
	Ho of each object is conserved since the external angular impulse about the fixed point 0 is zew. (impulse is through 0)
7	$H_0' = H_{c_1}' + r_{c_10} \times m_{c_1}' = H_{c_1} + r_{c_10} \times m_{c_1}'$ $H_0' = H_{c_1}' + r_{c_10} \times m_{c_1}' = H_{c_1} + r_{c_10} \times m_{c_1}'$ $H_0' = H_{c_1}' + r_{c_10} \times m_{c_1}' = H_{c_1} + r_{c_10} \times m_{c_1}'$
frw 6	<u></u>
	$\frac{H'_{c_2} + r_{c_2} \circ \times m r'_{c_2}}{H_{c_2} + r_{c_2} \circ \times m r'_{c_2}} = \frac{H_{c_2} + r_{c_2} \circ \times m r'_{c_2}}{H_{c_2} + r_{c_2} \circ \times m r'_{c_2}}$
	Hcz + rczo x m rzn en = Hcz + rczo x m rznen
	O → 6 egns; Q — 4 egns. D — legh > lleghs
	12 interiors! = one equation short
	Define an empirical parameter called the co-efficient of
	rostitution. Just lefter unpart
	rostitution. $e = \frac{Vs}{Va} = \frac{\text{Velouty of separation}}{\text{Velouty of approach}} $ from A towards B along en.
	fint before timp aut
	e= - (VBn- VAn)
	(VBn - VAn)
	Note: These are defined at A & B; not at C1, (2.

