6.5 Power Series

• A power series is a function of the form $f(x) = \sum_{n=0}^{\infty} Q_n x^n = Q_0 + Q_1 x + Q_2 x^2 + Q_3 x^3 + \dots$

Theorem 6.5.1: If a power series £~=0 anx? converges at xo &IR, then it converges absolutely for 1x1<1x01.

Proof:

If $\leq_{n=0}^{\infty} a_n x_0^n$ converges, then $|a_n x_0^n| \leq M$ for $M \geq 0$, $n \in \mathbb{N}$. If $|x| < |x_0|$, then $|a_n x_0^n| < |a_n x_0^n| |\frac{x}{x_0}|^n \leq M |\frac{x}{x_0}|^n$.

But since $\sum_{n=0}^{\infty} M \left| \frac{x}{x_0} \right|^n$ is a geometric series with |r| < 1, then by the componer on test $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely n

*morn implication of this theorem is that the set of paints for which a given power series converges is £03, IR, or some bounded interval centered at 0: (-R,R), [-R,R), (-R,R), or [-R,R] - value of R is the radius of convergence

Theorem 6.5.2: If a power series converges absolutely at a point Xo, then it converges uniformly on [-C, C], where C=1Xo]

Proof: (Exercise 6.5.3)

Define $M_n = |a_n x_0^n|$. Since for any $x \in [-c, c]$, $|a_n x^n| \le M_n$, and $\le \sum_{n=0}^{\infty} |a_n x_0^n|$ converges, then by the M-test $\ge \sum_{n=0}^{\infty} |a_n x_n^n|$ converges uniformly for $x \in [-c, c]$

- · Some nice results follow from Thm 6.5.2
 - -power scries that converges on open interval is necessarily continuous on that interval
- · don't really know what to say about endpoint behavior
- Note that if power series converges conditionally at x=R, then it is possible for it to diverge at -R.
 - example $\underset{n=1}{\overset{\infty}{\leq}} (-1)^n x^n$ with R=1

Lemma 6.5.3 (Abel's Lemma)

Let be softisfy bizbzz...? O, and let Z_{n} . an be a series for which the portion sums are bounded, ie assume $\exists A > 0 \text{ s.t.}$. $|a_1 + a_2 + \dots + a_n| \leq A \forall n \in \mathbb{N}$. Then $\forall n \in \mathbb{N}$, $|a_1b_1 + a_2b_2 + \dots + a_nb_n| \leq Ab_1$

Proof:

$$\left| \begin{array}{l} \widehat{\mathcal{Z}} \text{ akbk} \right| = \left| \text{Snbn+1} + \widehat{\mathcal{L}} \text{Sk(bk-bk+1)} \right| \text{ by } \widehat{\text{Exercise } 2.7.12} \\ \widehat{\mathcal{L}} \text{ Abn+1} + \widehat{\mathcal{L}} \text{A(bk-bk+1)} = \text{Abn+1} + \text{Ab1} - \text{Abn+1} = \text{Ab1} \text{ D} \\ \widehat{\mathcal{L}} \text{ Abn+1} + \widehat{\mathcal{L}} \text{ A(bk-bk+1)} = \text{Abn+1} + \text{Ab1} - \text{Abn+1} = \text{Ab1} \text{ D} \\ \widehat{\mathcal{L}} \text{ Abn+1} + \widehat{\mathcal{L}} \text{ Abn+1} + \widehat{\mathcal{L}} \text{ Abn+1} = \text{Ab1} \\ \widehat{\mathcal{L}} \text{ Abn+1} + \widehat{\mathcal{L}} \text{ Abn+1} = \text{Ab1} \\ \widehat{\mathcal{L}} \text{ Abn+1} + \widehat{\mathcal{L}} \text{ Abn+1} = \text{Ab1} \\ \widehat{\mathcal{L}} \text{ Abn+1} + \widehat{\mathcal{L}} \text{ Abn+1} = \text{Ab1} \\ \widehat{\mathcal{L}} \text{ Abn+1} + \widehat{\mathcal{L}} \text{ Abn+1} = \text{Ab1} \\ \widehat{\mathcal{L}} \text{ Abn+1} + \widehat{\mathcal{L}} \text{ Abn+1} = \text{Ab1} \\ \widehat{\mathcal{L}} \text{ Abn+1} + \widehat{\mathcal{L}} \text{ Abn+1} = \text{Ab1} \\ \widehat{\mathcal{L}} \text{ Abn+1} + \widehat{\mathcal{L}} \text{ Abn+1} = \text{Ab1} \\ \widehat{\mathcal{L}} \text{ Abn+1} + \widehat{\mathcal{L}} \text{ Ab1} \\ \widehat{\mathcal{L}} \text{ Abn+1} + \widehat{\mathcal{L}} \text{ Ab1} \\ \widehat{\mathcal{L}} \text{ Abn+1} + \widehat{\mathcal{L}} \text{ Ab1} \\ \widehat{\mathcal{L}} \text$$

Theorem 6.5.4 (Abel's Theorem)

Let $g(x) = \sum_{n=0}^{\infty} g_n x^n$ be a power series that converges at x = R > 0.

Then the series converges uniformly on [G, R]. A similar result holds if the series converges at x = -R.

Proof: $g(x) = \sum_{n=0}^{\infty} a_n x_n = \sum_{n=0}^{\infty} (a_n R^n) (\frac{x}{R})^n$ Rewrite $e^{-n} = \sum_{n=0}^{\infty$

• summarize Thm 6.5.2 and Abel's Theorem with the following

Theorem 6.5.5: If a power series converges pointwise on A SIR, then it converges uniformly on army compact set KSA.

Proof:

A compact set K has a maximum x_i and a minimum x_0 . Since $x_0, x_1 \in A$, Abel's theorem implies that the power series converges uniformly on $[x_0, x_1]$, which must contain KD

· heads to desirable conclusion that power series are continuous on every point at which it converges.

Theorem 6.5.6: If $\sum_{n=0}^{\infty} a_n \chi^n$ converges $\forall x \in (-R,R)$, then the differentiated series $\sum_{n=1}^{\infty} n a_n \chi^{n-1}$ converges at each $\chi \in (-R,R)$ as well. Consequently, the convergence is uniform on compact sets in (-R,R)

Proof: Exercise 6.5.5

Theorem 6.5.7: Assume $f(x) = \sum_{n=0}^{\infty} a_n x^n$ converges on interval $A \leq R$. f is continuous on A and differentiable on any $(-R,R) \leq A$. The derivative is given by $f'(x) = \sum_{n=0}^{\infty} n a_n x^{n-1}$. Moreover, f is infinitely differentiable on (-R,R), and successive derivatives are obtained by term-by-term differentiation.

Proof: Home already shown why fix continuous. Them 6.5.6 establishes f'converges uniformly, so Them 6.4.3 claims fix differentiable. f'is still a power series, and Them 6.5.6 shows the radius of convergence doesn't change, so it is infinitely differentiable of

1) Consider $g(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{9} + \frac{x^5}{5} - \dots$

a) Is g defined on (-1,1)? Is it continuous on this set? Is g defined on (-1,1)? Is it continuous on this set? What happens on [-1,1]? Can the power series possibly converge for my 121>1?

Since 9(1) converges, then g is defined on 1-1,1) by Theorem 6.5.1. It is also defined on (-1,1]. By theorem 6.5.7, g is continuous on both of these intervals. 9(-1) diverges, so g is not well defined or continuous on [-1,1]. The series connot converge for |x|>1. By Alembert's Rule, if |x|=n and |x|=n then a sequence diverges. Consider the subsequence |x|=n. Applying Alembert's rule, we get |x|=n |x|=n

b) For what values of α is $g'(\alpha)$ defined? Find a formula for $g'(\alpha)$.

By Thm 6.5.7, g'(x) & defined on (-1,1). g'(x)=1-x+(-x)2+(-x)3+...

so by sum of geometric series, this equals 11-(-x) - 1/1+x.

- 2) Find suitable coefficients (an) so that the resulting power scries Eanx has the given properties, or explain why impossible
 - a) Converges $4x \in \mathbb{R}$. Non-trivially, $x^n = e^x$ $\frac{1}{n!}$ works $x^n = e^x$
 - b) Diverges #x ∈ IR. Impossible. Eanx" will always converge when x=0.
 - c) Converges absolutely $\forall x \in [-1,1]$, and diverges off this set. $a_n = \frac{1}{n^2}$
 - d) Cornerges conditionally at x= 1 and absolutely at x=1

Impossible. If it converges absolutely at x=1, this implies the series also must converge absolutely at x= inhich contradicts the given statement.

(e) Converges conditionally at both x=1 and x=1an = $\left\{\frac{(-1)^{n/2}}{6}\right\}$ n is even

a) If s satisfies $0 \le S \le 1$, show ns^{n-1} is bounded $\forall n \ge 1$ Again use Alembert's rule. $n > n \mid \frac{a_{n+1}}{a_n} \mid = \lim_{n \to \infty} \frac{(n+1)s^n}{ns^{n-1}} \mid = \lim_{n \to \infty} \frac{(n+1)s}{n} \mid = \lim_{n \to \infty} \frac{(n+1)s}{n$

b) Given $x \in (-R,R)$, pick t to satisfy 1x1 < t < R. Use this to construct a proof for Thm 6.5.6.

We want to show that if $\sum_{n=0}^{\infty} \operatorname{On} X^n$ converges $\forall x \in (-R,R)$, then $\sum_{n=1}^{\infty} \operatorname{nan} X^{n-1}$ converges $\forall x \in (-R,R)$. Given any $x \in (-R,R)$, pick t so that |x| < t < R. It is apparent that $\sum_{n=1}^{\infty} \operatorname{ant}^{n-1}$ converges, and that $\operatorname{O}\left(\frac{|x|}{t}\right)^{n-1} \leq M$ $\forall n \in \mathbb{N}$ from (a). These facts will be used shortly. Notice $\sum_{n=1}^{\infty} \operatorname{nan} X^{n-1} \leq \sum_{n=1}^{\infty} \operatorname{nan} |x|^{n-1} = \sum_{n=1}^{\infty} \operatorname{nan} \left(\frac{|x|}{t}\right)^{n-1} t^{n-1}$

2 didn't get Enzi n'zn strokegy & M Enzi ant n-1, which converges

6) The geometric series $1+x+x^2+x^3+...=1-x$ $1/x|^21$.

Use the results about power series proved in this section to find values for $\Sigma_{n=1}^{\infty}$ $1/2^n$ and $\Sigma_{n=1}^{\infty}$ $n^2/2^n$.

 $\frac{d}{dx}(\frac{1}{1-x}) = \frac{1}{(1-x)^2} = \frac{1}{1} \frac{1}{2} x + 3x^2 + \dots$ $\frac{1}{2}(\frac{1}{1-x})^2) = \frac{1}{2} + x + \frac{3}{2} x^2 + \dots \text{ Now use } x = \frac{1}{2}$ $= \frac{1(\frac{1}{2})^4}{4} + \frac{2(\frac{1}{2})^2}{4} + \frac{3(\frac{1}{2})^3}{4} = \frac{5}{2} \frac{n}{2} n$ $S_{\sigma} \frac{1}{2}(\frac{1}{(1-\frac{1}{2})^2})^2 = 2.$

Take $\frac{1}{3}x(\frac{1}{1-x})=\overline{(1-x)^2}=1+2x+3x^2+...$ Multiply by x to get $\frac{x}{(1-x)^2}=x+2x^2+3x^3+4x^4+...$ Differentiate again to get $\frac{1}{(1-x)^2}+\frac{2x}{(1-x)^3}=1+4x+9x^2+16x^3+...$ Then multiply by x to get $\frac{x}{(1-x)^2}+\frac{2x^2}{(1-x)^3}=x+4x^2+9x^3+16x^4+...$ Plug in $x=\frac{1}{2}$ to get $\frac{x}{(1-x)^2}+\frac{2x^2}{(1-x)^3}=6$.

a) Show power series representations are unique. If we have $\underset{n=0}{\overset{\infty}{\sum}} a_n x^n = \underset{n=0}{\overset{\infty}{\sum}} b_n x^n \quad \forall x \in (-R,R)$, prove that $a_n = b_n \quad \forall n = 0,1,2,...$

Plug in x=0 and see that $a_0=b_0$. Now differentiate both sides of $\sum_{n=0}^{\infty} a_n x^n : \sum_{n=0}^{\infty} b_n x^n$ to get $\sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=1}^{\infty} n b_n x^{n-1}$. Again plugging in 0 yields $a_1=b_1$. Since power series are infinitely differentiable, we can write the k^{th} derivatives as $\sum_{n=0}^{\infty} \frac{n!}{(n-k)!} x^{n-k} = \sum_{n=0}^{\infty} b_n \frac{n!}{(n-k)!} x^{n-k}$. Plugging in x=0 will give $a_1=b_1$ for all k=0,1,2,...

b) Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ converge on (-R, R) and assume f'(x) = f(x) $\forall x \in (-R, R)$ and f(0) = 1. Deduce values of a_n

Since $Q_0 = 1$, and f'(x) = f(x), then $\sum_{n=0}^{\infty} Q_n x^n = \sum_{n=1}^{\infty} nQ_n x^{n-1}$ and from part (a) this gives us (by plugging in x = 0) that $Q_0 = Q_1 = 1$.

Doing this openin gives $\sum_{n=1}^{\infty} Q_n n x^{n-1} = \sum_{n=2}^{\infty} Q_n (n)(n-1) x^{n-2} = \sum_{n=3}^{\infty} Q_n (n)(n-1) x^{n-3} = \sum$