Assignment #2 (100 points): Due 11:59 pm, Sunday, March 27, 2022

1. In the false data injection (FDI) attack, assume that the normal measurement is $\mathbf{z} = \mathbf{H}\mathbf{x} + \mathbf{n}$ and the attacked measurement is $\mathbf{z}_a = \mathbf{z} + \mathbf{a}$. Assume that the weighted least square (WLS) solution is given by $\hat{\mathbf{x}} = \left(\mathbf{H}^T\mathbf{R}^{-1}\mathbf{H}\right)^{-1}\mathbf{H}^T\mathbf{R}^{-1}\mathbf{z}$ for the normal measurement \mathbf{z} , and let $\hat{\mathbf{x}}_a$ be the WLS solution obtained from the attacked measurement \mathbf{z}_a . Use your linear algebra knowledge to prove that the pre-attack residual $\mathbf{r} = \mathbf{z} - \mathbf{H}\hat{\mathbf{x}}$ is the same as the post-attack residual $\mathbf{r}_a = \mathbf{z}_a - \mathbf{H}\hat{\mathbf{x}}_a$ if $\mathbf{a} = \mathbf{H}\mathbf{c}$. (20 points)

Solution:

Given,

Pre-attack residual $\mathbf{r} = \mathbf{z} - \mathbf{H}\mathbf{x}$

Attacked measurement is $\mathbf{z}_a = \mathbf{z} + \mathbf{a}$

Normal measurement is z = Hx + n

and the Post-attack residual $\mathbf{r}_a = \mathbf{z}_a - \mathbf{H}\mathbf{x}$.

$$= > z + a - H [(H^{T}R^{-1}H)^{-1}H^{T}R^{-1}z_{a}]$$

$$= > z + a - H [(H^{T}R^{-1}H)^{-1}H^{T}R^{-1}(z + a)]$$

$$= > z + a - H [(H^{T}R^{-1}H)^{-1}H^{T}R^{-1}z + (H^{T}R^{-1}H)^{-1}H^{T}R^{-1}a]$$

$$= > z + a - H [x^{\wedge} + (H^{T}R^{-1}H)^{-1}H^{T}R^{-1}a]$$

$$= > z + a - H (x^{\wedge} + H^{-1}a)$$

$$= > z + a - H (x^{+})^{a}$$

$$= > z + a - H (x^{+} + c)$$

$$= > z - Hx^{\wedge} + a - Hc$$

Since
$$a = Hc = > z - Hx^{\wedge} + a - a$$

= $>z - Hx^{\wedge}$

Which implies $\mathbf{r} = \mathbf{r}_{\mathbf{a}}$

Hence it is proved that the pre-attack residual ${\bf r}={\bf z}-{\bf H}{\bf x}^\wedge$ is the same as the post-attack residual ${\bf r}_a={\bf z}_a-{\bf H}{\bf x}^\wedge{}_a$, if ${\bf a}={\bf H}{\bf c}$

2. A one-line diagram of a 3-bus power system is shown below. Assume that we have one meter installed on each line to measure the power flows. For bus i and j connected by a line, the power flow P_{ij} , the reactance X_{ij} , and voltage angles θ_i , θ_j are considered to approximately follow the relation below when no noise is considered:

$$P_{ij} = (\theta_i - \theta_i)/X_{ij}$$

The line reactance has been measured in advance as:

$$X_{12} = 0.50 \ p. \ u.$$

$$X_{13} = 0.10 \ p. \ u.$$

$$X_{32} = 0.25 p. u.$$

The meter readings have been reported as:

$$M_{12} = 0.60 p. u.$$

$$M_{13} = 0.05 p. u.$$

$$M_{32} = 0.40 p. u.$$

Solve the questions below. (80 points)

- a) Assume that $\theta_1=0$ is the reference angle. Using different pairs of meter readings, find the values below:
 - i. θ_2 , θ_3 and P_{12} , using only the values of M_{13} , M_{32} and the reactance X.
 - ii. θ_2 , θ_3 and P_{13} , using only the values of M_{12} , M_{32} and the reactance X.
 - iii. θ_2 , θ_3 and P_{32} , using only the values of M_{12} , M_{13} and the reactance X.

Solution:

i.

Given,

Line reactance has been measured in advance are:

$$X_{12} = 0.50 p. u.$$

$$X_{13} = 0.10 p. u.$$

$$X_{32} = 0.25 p. u.$$

Meter readings are:

$$M_{12} = 0.60 p. u.$$

$$M_{13} = 0.05 p. u.$$

$$M_{32} = 0.40 p. u.$$

$$P_{ij} = (\theta_i - \theta_j)/X_{ij}$$

$$M_{12} = (\theta_1 - \theta_2)/X_{12}$$

$$0.60 = (0 - \theta_2) / 0.50$$

$$=>> 0.300=0 - \theta_2$$

$$=>> \theta_2 = -0.3$$

$$M_{13} = (\theta 1 - \theta 3) / X_{13}$$

 $0.05 = (0 - \theta_3) / 0.10$
 $= >> 0.005 = 0 - \theta_3$
 $= >> \theta_3 = -0.005$

Similarly,

$$P32 = (\theta 3 - \theta 2) / X_{32}$$

= >> (- 0.005 + 0.300) /0.25
P32 = >> 1.18 p. u.

ii.

Given,

$$M_{12} = (\theta_1 - \theta_2)/X_{12}$$

 $0.60 = (0-\theta_2)/0.50$
 $= > 0.3 = 0-\theta_2$
 $= > \theta_2 = -0.3$

$$M_{32} = (\theta_3 - \theta_2)/X_{32}$$

$$0.40 = (\theta_3 + 0.300)/0.25$$

$$= >> 0.10 = \theta_3 + 0.3$$

$$= >> \theta_3 = -0.2$$

Similarly,

$$P_{ij} = (\theta_i - \theta_j)/X_{ij},$$

 $P13 = (\theta_1 - \theta_3)/X_{13}$
 $= >> (0+0.2)/0.1$
P13 = $>> 2p. u.$

iii.

Given,

M13=
$$(\theta 1-\theta 3)/X13$$

 $0.05= (0-\theta 3)/0.10$
=>> $0.005= 0-\theta 3$
=>> $\theta 3= -0.005$
M32 = $(\theta 3-\theta 2)/X32$

$$0.40 = (-0.005 - \theta^2)/0.25$$

= >> $0.10 = -0.005 - \theta^2$

$$=>> \theta 2 = -0.105$$

Similarly,

$$Pij = (\theta i - \theta j)/Xij,$$

$$P12 = (\theta 1 - \theta 2)/X12$$

$$= > (0+0.105)/0.50$$

$$P12 = > 0.21 p. u.$$

b) Let $\mathbf{z} = [M_{12}, M_{13}, M_{32}]^T$ be the measurement vector and $\mathbf{x} = [\theta_1, \theta_2, \theta_3]^T$ be the state variables, where T indicates the vector/matrix transpose. Then from the ideal case $\mathbf{z} = \mathbf{H}\mathbf{x}$ when there is no noise, we have:

$$\begin{bmatrix} M_{12} \\ M_{13} \\ M_{32} \end{bmatrix} = \begin{bmatrix} P_{12} \\ P_{13} \\ P_{32} \end{bmatrix} = \mathbf{H} \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix} \text{, where } \mathbf{H} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$$

Based on the relation $P_{ij} = (\theta_i - \theta_j)/X_{ij}$, find the entries h_{ij} in the 3-by-3 matrix **H**.

Solution:

Given,

line reactance has been measured are:

$$X_{12} = 0.50 \ p. \ u.$$

 $X_{13} = 0.10 \ p. \ u.$
 $X_{32} = 0.25 \ p. \ u.$

$$P_{12} \\ [P_{13}] = \mathbf{H} \begin{bmatrix} \theta_1 \\ [\theta_2], \\ \theta_3 \end{bmatrix}$$

And we have,
$$\mathbf{H} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$$

This implies,
$$egin{array}{cccccc} P_{12} & h_{11} & h_{12} & h_{13} & \theta_1 \\ [P_{13}] = & [h_{21} & h_{22} & h_{23}] & [\theta_2] \\ P_{32} & h_{31} & h_{32} & h_{33} & \theta_3 \end{array}$$

$$P_{12} \quad h_{11}\theta_{1} \quad h_{12}\theta_{2} \quad h_{13}\theta_{3}$$

$$= > P_{13} = \begin{bmatrix} h_{21}\theta_{1} & h_{22}\theta_{2} & h_{23}\theta_{3} \\ h_{31}\theta_{1} & h_{32}\theta_{2} & h_{33}\theta_{3} \end{bmatrix}$$

$$= > P_{12} = h_{11}\theta_{1} + h_{12}\theta_{2} + h_{13}\theta_{3}$$

$$= > P_{13} = h_{21}\theta_{1} + h_{22}\theta_{2} + h_{23}\theta_{3}$$

$$= > P_{32} = h_{31}\theta_{1} + h_{32}\theta_{2} + h_{33}\theta_{3}$$

We know that,

$$P_{ij} = (\theta_i - \theta_j)/X_{ij}$$

$$P_{12} = (\theta_1 - \theta_2)/X_{12}$$

$$= (\theta_1 - \theta_2)/0.50$$

$$= 2 \theta_1 - 2 \theta_2$$

$$P_{13} = (\theta_1 - \theta_3)/X_{13}$$

$$= (\theta_1 - \theta_3)/0.10$$

$$= 10 \theta_1 - 10 \theta_3$$

$$P_{32} = (\theta_3 - \theta_2)/X_{32}$$

$$= (\theta_3 - \theta_2)/0.25$$

$$= 4 \theta_3 - 4 \theta_2$$

c) As we use $\theta_1 = 0$ as the reference angle, we do not actually need to estimate θ_1 , and the state variables to be estimated are only $\mathbf{x}' = [\theta_2, \theta_3]^T$. For $\mathbf{z} = \mathbf{H}\mathbf{x}$, this suggests the column in \mathbf{H} corresponding to the coefficients of θ_1 should be removed. Find the new 3-by-2 matrix \mathbf{H}' with the column in \mathbf{H} corresponding to θ_1 is removed.

Solution:

Given,

Z = Hx

When we use,

 $\theta_1=0$ as the reference angle, the state variables to be estimated are only $\mathbf{x}'=[\theta_2,\theta_3]^T$

So, by removing the column in H corresponding to the coefficients of $heta_1$

$$z' = H' x'$$

$$\mathbf{H} = \begin{bmatrix} 2 & -2 & 0 \\ 10 & 0 & -10 \end{bmatrix}$$
$$0 & -4 & 4$$

$$\mathbf{z}' = \begin{bmatrix} -2 & 0 \\ 0 & -10 \end{bmatrix} \begin{bmatrix} \theta_2 \\ \theta_3 \end{bmatrix}$$

$$\mathbf{H}' = \begin{bmatrix} -2 & 0 \\ 0 & -10 \end{bmatrix}$$
$$-4 & 4$$

d) Let $\mathbf{R} = \left[\sigma_{ij}^2\right]$ be the 3-by-3 covariance matrix of the additive white Gaussian noise \mathbf{n} , where σ_{ii}^2 is the variance of noise of meter i and σ_{ij}^2 ($i \neq j$) is the covariance between noises on two different meters i and j. Normally we assume the noises on different meters are independent, so the covariance $\sigma_{ij}^2 = 0$ for $i \neq j$; we also know the variances of noise on meters is: $\sigma_{11}^2 = 0.05$ (for M_{12}), $\sigma_{22}^2 = 0.045$ (for M_{13}) and $\sigma_{33}^2 = 0.05$ (for M_{32}) Find the covariance matrix \mathbf{R} by specifying all its entries σ_{ij}^2 in the matrix form.

Solution:

Given,

$$\varphi_1^2 = 0.05$$

$$g_2^2 = 0.045$$

$$g_3^2 = 0.05$$

According to the above, covariance $\sigma^2 = 0$ for $i \neq j$, So

Covariance matrix,

$$\mathbf{R} = \begin{bmatrix} \sigma_{11}^2 & \sigma_{12}^2 & \sigma_{13}^2 \\ \sigma_{21}^2 & \sigma_{22}^2 & \sigma_{23}^2 \\ \sigma_{31}^2 & \sigma_{32}^2 & \sigma_{33}^2 \end{bmatrix}$$

So,

$$\mathbf{R} = \begin{bmatrix} 0.05 & 0 & 0 \\ 0 & 0.045 & 0 \end{bmatrix}$$

e) With the answers to \mathbf{H}' , \mathbf{R} , and \mathbf{z} from Questions 2-4, the weighted least square (WLS) solution is given by $\hat{\mathbf{x}} = (\mathbf{H}'^T \mathbf{R}^{-1} \mathbf{H}')^{-1} \mathbf{H}'^T \mathbf{R}^{-1} \mathbf{z}$. Use MATLAB, Excel, or any other program that can solve the matrix inverse to find \mathbf{R}^{-1} , $(\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1}$, and finally, the state variable estimate $\hat{\mathbf{x}}$.

We know that

$$\mathbf{R} = \begin{bmatrix} 0.05 & 0 & 0 \\ 0 & 0.045 & 0 \end{bmatrix}$$

So,
$$\mathbf{R}^{-1} = [\begin{array}{ccccc} 0.05 & 0 & 0 & ^{-1} & 20 & 0 & 0 \\ 0 & 0.045 & 0 &] & = [\begin{array}{ccccc} 0 & 22.22 & 0 \end{array}] \\ 0 & 0 & 0.05 & 0 & 0 & 20 \end{array}$$

Now,

$$\begin{aligned} \left(\mathbf{H}^{\mathrm{T}}\mathbf{R}^{-1}\mathbf{H}\right)^{-1} &= \begin{pmatrix} \begin{bmatrix} -2 & 0 \\ 0 & -10 \\ -4 & 4 \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} 0.05 & 0 & 0 \\ 0 & 0.045 & 0 \\ 0 & 0 & 0.05 \end{bmatrix}^{-1} \begin{bmatrix} -2 & 0 \\ 0 & -10 \\ -4 & 4 \end{bmatrix}^{-1} \\ &= > \begin{pmatrix} \begin{bmatrix} -2 & 0 & -4 \\ 0 & -10 & 4 \end{bmatrix} \begin{bmatrix} 20 & 0 & 0 \\ 0 & 22.22 & 0 \\ 0 & 0 & 20 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & -10 \\ -4 & 4 \end{bmatrix}^{-1} \\ &= > \begin{pmatrix} \begin{bmatrix} -40 & 0 & -80 \\ 0 & -222.2 & 80 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & -10 \\ -4 & 4 \end{bmatrix}^{-1} \\ &= > \begin{bmatrix} 400 & -320 \\ -320 & 2542 \end{bmatrix}^{-1} \\ &= > \begin{bmatrix} 0.00278 & 0.00034 \\ 0.00034 & 0.00043 \end{bmatrix} \end{aligned}$$

The state variable $\mathbf{\hat{x}} = (\mathbf{H}^{\mathrm{T}}\mathbf{R}^{-1}\mathbf{H})^{-1}\mathbf{H}^{\mathrm{T}}\mathbf{R}^{-1}\mathbf{z}$

$$\begin{split} & = > \begin{bmatrix} 0.00278 & 0.00034 \\ 0.00034 & 0.00043 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & -10 \\ -4 & 4 \end{bmatrix}^{T} \begin{bmatrix} 0.05 & 0 & 0 \\ 0 & 0.045 & 0 \\ 0 & 0 & 0.05 \end{bmatrix}^{-1} \begin{bmatrix} 0.21 \\ 2 \\ 1.18 \end{bmatrix} \\ & = > \begin{bmatrix} 0.00278 & 0.00034 \\ 0.00034 & 0.00043 \end{bmatrix} \begin{bmatrix} -2 & 0 & -4 \\ 0 & -10 & 4 \end{bmatrix} \begin{bmatrix} 20 & 0 & 0 \\ 0 & 22.22 & 0 \\ 0 & 0 & 20 \end{bmatrix} \begin{bmatrix} 0.21 \\ 2 \\ 1.18 \end{bmatrix} \\ & = > \begin{bmatrix} -0.00556 & -0.0034 & -0.00976 \\ -0.00068 & -0.0043 & 0.00036 \end{bmatrix} \begin{bmatrix} 20 & 0 & 0 \\ 0 & 22.22 & 0 \\ 0 & 0 & 20 \end{bmatrix} \begin{bmatrix} 0.21 \\ 2 \\ 1.18 \end{bmatrix} \\ & = > \begin{bmatrix} -0.1112 & -0.075548 & -0.1952 \\ -0.0136 & -0.095546 & 0.0072 \end{bmatrix} \begin{bmatrix} 0.21 \\ 2 \\ 1.18 \end{bmatrix} \\ & = > \begin{bmatrix} -0.404768 \\ -0.18544 \end{bmatrix} \end{aligned}$$