**22.**  $4\pi \rho_0 m R^2/r^2$ , если r > R; 0, если r < R;  $2\pi \rho_0 m$ , если r = R; r — расстояние точки от центра сферы.

**23.** 1) 
$$\frac{4}{3}\pi\rho_0 ac\sqrt{a^2+c^2}$$
; 2)  $2\pi\rho_0\left(\sqrt{3}-\frac{1}{3}\right)a^3$ .

**24.** 1) 
$$\frac{4\pi\mu_0R^2}{a}$$
, если  $a\geqslant R$ ;  $a=\sqrt{x_0^2+y_0^2+z_0^2}$ ;

2) 
$$4\pi(\mu_1R_1 + \mu_2R_2)$$
, если  $a \leqslant R_1$ ;  $4\pi\left(\frac{\mu_1R_1^2}{a} + \mu_2R_2\right)$ , если  $R_1 \leqslant a \leqslant R_2$ ;  $\frac{4\pi}{a}(\mu_1R_1^2 + \mu_2R_2^2)$ ,  $a \geqslant R_2$ ;  $a = \sqrt{x_0^2 + y_0^2 + z_0^2}$ .

25. 1) 
$$2\pi\mu_0 R \ln \frac{\sqrt{R^2 + (H-z)^2} + H - z}{\sqrt{R^2 + z^2} - z}$$
;

2) 
$$\frac{4\pi\mu_0R^2}{3z}\Big(1+\frac{2R^2}{5z^2}\Big),$$
 если  $|z|\geqslant R;$ 

$$rac{4\pi\mu_0R}{3}\Big(1+rac{2z^2}{5R^2}\Big),$$
 если  $|z|\leqslant R.$ 

**26.**  $-8\pi$ . **27.** 128/3. **28.** 1) -1/24; 2) 0.

**29.**  $(f_1(a) - f_1(0))bc + (f_2(b) - f_2(0))ac + (f_3(c) - f_3(0))ab$ .

**30.** 1)  $4\pi R^3/3$ ; 2) 0. **31.** 1)  $-2\pi R^7/7$ ; 2)  $-2\pi R^7/105$ .

**32.**  $-\pi R^4$ . **33.**  $8\pi(a+b+c)R^3/3$ . **34.**  $-\pi R^4/2$ . **35.**  $-2\pi/5$ .

**36.** 1) 0; 2)  $4\pi abc/3$ ; 3) 0; 4)  $4\pi ab/c$ .

**37.** 1)  $\pi abc^2/4$ ; 2)  $2\pi(a^2+b^2)abc/5$ . **38.**  $-3\pi H^4/2$ . **39.** 0.

**40.**  $-\pi r^5/6$ . **41.**  $(\pi H/8 - r/3)r^2H$ . **42.**  $-\pi/3$ . **43.**  $-a^4/3$ .

**44.** 1) 3abc/2; 2)  $-3a^3$ . **45.** 1)  $128\pi$ ; 2)  $-48\pi$ ; 3)  $56\pi$ .

**46.** 1) (a+b+c)abc; 2)  $\pi abc^2/2$ . **47.** 1)  $3a^5/20$ ; 2)  $12\pi R^5/5$ .

**48.** 1) 0; 2)  $\pi R^6/3$ . **50.** 1)  $2a^3/9$ ; 2)  $2\pi^2a^2b$ ; 3)  $2\pi(2a^2+b^2)|c|/3$ .

**51.** 1)  $12\pi$ ; 2)  $\pi(24+7\pi)/2$ .

**52.** 1)  $-\pi R^4/2$ ; 2)  $\pi a^4/12$ ; 3)  $-\pi H^4/2$ . **53.** 0. **54.**  $-R^5/3$ .

**55.** 0. **57.** 2)  $4\pi$ , если  $(x; y; z) \in \overline{G}$ ; 0, если  $(x; y; z) \notin \overline{G}$ .

**61.**  $-\pi ab$ . **62.**  $-a^3$ . **63.** 1)  $\pi \sqrt{3}R^2$ ; 2)  $2\pi$ . **64.**  $-45a^3/8$ .

**65.** 1)  $2\sqrt{2}\pi a^2 \sin(\pi/4 - \varphi)$ ; 2)  $2(a+c)a\pi$ . **66.**  $2\pi a^2$ . **67.**  $2\pi ab^2$ .

**68.**  $3\pi R^4/2$ . **69.**  $-\pi a^2$ . **70.** 0. **71.** 0. **72.**  $h^3$ .

# § 12. Скалярные и векторные поля

# СПРАВОЧНЫЕ СВЕДЕНИЯ

**1.** Скалярное и векторное поле. Пусть  $\Omega$  — область в трехмерном пространстве.

Скалярным полем на  $\Omega$  называют числовую функцию u(M), заданную на точках  $M \in \Omega.$ 

Векторным полем на  $\Omega$  называют векторную функцию  $\mathbf{a}(M),$  заданную на точках  $M\in\Omega.$ 

Если в пространстве введена какая-либо декартова система координат, то скалярное поле u(M) или векторное поле  $\mathbf{a}(M)$  на  $\Omega$  становятся функциями координат точек:

$$u(x; y; z), \quad \mathbf{a}(x; y; z) = (a_x(x; y; z); a_y(x; y; z); a_z(x; y; z)).$$

При выборе другой декартовой системы координат меняются, вообще говоря, координаты точек M(x;y;z) на M(x';y';z'), но значения скалярного или векторного поля в точках не меняются, т. е.

$$u'(x'; y'; z') = u(x; y; z), \quad \mathbf{a}'(x'; y'; z') = \mathbf{a}(x; y; z).$$

Множество точек M, задаваемое уравнением  $u(M)=\mathrm{const},$  называют *поверхностью уровня* скалярного поля u.

Векторной или силовой линией векторного поля  ${\bf a}$  называют гладкую кривую, которая в каждой своей точке M касается вектора поля  ${\bf a}(M)$ . Если  ${\bf r}=(x;y;z)$  — радиус-вектор переменной точки векторной линии поля  ${\bf a}=(a_x;a_y;a_z)$ , то

$$\frac{dx}{a_x} = \frac{dy}{a_y} = \frac{dz}{a_z} \tag{1}$$

(дифференциальные уравнения силовых линий).

Пусть  $\gamma$  — плоская кусочно гладкая простая \*) замкнутая кривая, нигде не касающаяся векторных линий поля **a**. Поверхность, образованную векторными линиями, пересекающими  $\gamma$ , называют векторной толя **a**.

**2.** Символ  $\nabla$ . Операции над полями. Векторный дифференциальный символ  $\nabla$  называют *набла* по обозначающей его букве, а также символом или оператором Гамильтона.

В прямоугольной декартовой системе координат

$$\nabla \equiv \mathbf{i} \, \frac{\partial}{\partial x} + \mathbf{j} \, \frac{\partial}{\partial y} + \mathbf{k} \, \frac{\partial}{\partial z}, \tag{2}$$

где  $\mathbf{i}$ ,  $\mathbf{j}$ ,  $\mathbf{k}$  — ортонормированный базис. Координатные символы этого оператора  $\frac{\partial}{\partial x}$ ,  $\frac{\partial}{\partial y}$ ,  $\frac{\partial}{\partial z}$  — символы частных производных — при замене одного *ортонормированного базиса* на другой *ортонормированный* меняются по тем же правилам, что и координаты векторов. Сам же оператор  $\nabla$  не меняет своего вида  $(2)^{**}$ ).

 $\mathit{Градиентом}$  дифференцируемого на  $\Omega$  скалярного поля U в точке  $M\in\Omega$  называют вектор, обозначаемый  $\mathrm{grad}\,U$  или  $\nabla U$  и задаваемый в прямоугольной декартовой системе координат формулой

$$\operatorname{grad} U \equiv \nabla U \equiv \mathbf{i} \, \frac{\partial U}{\partial x} + \mathbf{j} \, \frac{\partial U}{\partial x} + \mathbf{k} \, \frac{\partial u}{\partial z}, \tag{3}$$

где производные поля U вычислены в точке M(x;y;z). Значение  $\mathrm{grad}\,U(M)$  в точке M не зависит от выбора прямоугольной системы координат, т. е. вектор-функция  $\mathrm{grad}\,U$  является векторным полем на  $\Omega$ .

<sup>\*)</sup> Простой называют кривую, не имеющую точек самопересечений.

<sup>\*\*)</sup> Детальнее см. [9, ч. 2].

Для производной дифференцируемого поля U в точке M по направлению произвольного единичного вектора  $\mathbf 1$  верна формула

$$\frac{\partial U}{\partial \mathbf{l}} = (\mathbf{l}, \operatorname{grad} U). \tag{4}$$

Вводя скалярный дифференциальный символ  $(l, \nabla)$ , имеющий в прямоугольной декартовой системе координат вид

$$(1,\nabla) \equiv l_x \frac{\partial}{\partial x} + l_y \frac{\partial}{\partial y} + l_z \frac{\partial}{\partial z}, \qquad (5)$$

где  $\mathbf{l}=(l_x;l_y;l_z),$  равенство (4) записывают в виде

$$\frac{\partial u}{\partial \mathbf{l}} = (\mathbf{l}, \nabla) u. \tag{6}$$

Градиент поля в точке M направлен по нормали к поверхности уровня, проходящей через M, в сторону возрастания поля, и его модуль  $|\operatorname{grad} u| \equiv |\nabla u|$  равен наибольшей производной по направлению в этой точке.

Кроме символа (5) используют аналогичный скалярный дифференциальный символ, имеющий в прямоугольной системе координат вид

 $(\mathbf{b}, \nabla) \equiv b_x \frac{\partial}{\partial x} + b_y \frac{\partial}{\partial y} + b_z \frac{\partial}{\partial z}, \tag{7}$ 

где  $\mathbf{b}=(b_x;b_y;b_z)$  — произвольное векторное поле. Результат его применения к дифференцируемому векторному полю  $\mathbf{a}$ 

$$(\mathbf{b}, \nabla) \mathbf{a} = b_x \frac{\partial \mathbf{a}}{\partial x} + b_y \frac{\partial \mathbf{a}}{\partial y} + b_z \frac{\partial \mathbf{a}}{\partial z}, \tag{8}$$

являющийся вектор-функцией, называют иногда  $\it cpaduehmom$  а  $\it no$  b.

Дивергенцией или расходимостью дифференцируемого на  $\Omega$  векторного поля **a** в точке  $M \in \Omega$  называют число, обозначаемое div **a** или  $(\nabla, \mathbf{a})$  и задаваемое в прямоугольной декартовой системе координат формулой  $\partial a_{xx} = \partial a_{xy} = \partial a_{xz}$ 

 $\operatorname{div} \mathbf{a} \equiv (\nabla, \mathbf{a}) \equiv \frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z}, \tag{9}$ 

где  $\mathbf{a} = (a_x; a_y; a_z)$  и производные вычислены в точке M(x; y; z).

Значения числовой функции  $\operatorname{div} \mathbf{a}$  в точках  $\Omega$  не зависят от выбора прямоугольной системы координат, т. е.  $\operatorname{div} \mathbf{a}$  — скалярное поле на  $\Omega$ .

Ротором (говорят также — вихрем, ротацией) дифференцируемого на  $\Omega$  векторного поля  $\mathbf{a}$  в точке  $M \in \Omega$  называют вектор, обозначаемый гот  $\mathbf{a}$  или  $[\nabla, \mathbf{a}]$  (а иногда  $\nabla \times \mathbf{a}$ ) и задаваемый в прямоугольной положительно ориентированной (правой) системе координат формулой

$$\operatorname{rot} \mathbf{a} \equiv \left[\nabla, \mathbf{a}\right] \equiv \mathbf{i} \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) - \mathbf{j} \left(\frac{\partial a_z}{\partial x} - \frac{\partial a_x}{\partial z}\right) + \mathbf{k} \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right), \tag{10}$$

где  $\mathbf{a} = (a_x; a_y; a_z)$  и производные вычислены в точке M(x; y; z).

Значения векторной функции  ${\rm rot}\, {\bf a}$  в точках  $\Omega$  не зависят от выбора прямоугольных систем координат одинаковой ориентации, но  ${\rm rot}\, {\bf a}$  меняет знак при смене ориентации системы координат.

Для записи rot a используют такой же символический определитель, как и для векторного произведения векторов:

$$\operatorname{rot} \mathbf{a} \equiv [\nabla, \mathbf{a}] \equiv \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ a_x & a_y & a_z \end{vmatrix}. \tag{11}$$

При раскрытии определителя по первой строке результатом "умножения" символов второй строки на элементы третьей является дифференцирование, например,

 $\frac{\partial}{\partial y} \cdot a_z = \frac{\partial a_z}{\partial y}.$ 

Формулы (3), (9), (10) определяют над скалярными и векторными полями три основные дифференциальные операции первого порядка — действия  $\nabla$  на скаляр или вектор. Для этих операций используют такие же обозначения, как и для произведений вектора на скаляр или вектор, и обладают эти операции такими же свойствами, как и эти произведения. Но последнее — с учетом, во-первых, невозможности перестановки символа  $\nabla$  с тем скаляром или вектором, на который он действует, и, во-вторых, дифференциального характера символа  $\nabla$ .

Операции (3), (9), (10) линейны.

Результатом их применения к произведению двух сомножителей является сумма двух слагаемых, в каждом из которых  $\nabla$  действует только на один из сомножителей. После отметки этого сомножителя (здесь будет использована вертикальная стрелка сверху) к получившемуся выражению применимы все те преобразования, что и для векторных выражений. В итоге преобразований символ  $\nabla$  и отмеченный сомножитель должны быть совмещены под знаком одной из операций (3), (9), (10), (7). После этого метку можно снять.

Символ  $\nabla$  может встречаться в выражении не раз, создавая дифференциальные символы второго и более высоких порядков.

Для скалярного символа

$$\operatorname{div}\operatorname{grad} \equiv (\nabla, \nabla) \equiv \nabla^2 \tag{12}$$

вводят обозначение  $\Delta$  и называют его *оператором Лапласа* или *лапласианом*. Легко надеть, что

$$\Delta u \equiv \nabla^2 u \equiv \operatorname{div} \operatorname{grad} u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}.$$
 (13)

Символ  $[\nabla, \nabla]$ , как нетрудно проверить, нулевой, что естественно с точки зрения векторной алгебры. Имеем

$$\operatorname{rot} \operatorname{grad} u = [\nabla, \nabla u] = [\nabla, \nabla] u = \mathbf{0}, \tag{14}$$

$$\operatorname{div}\operatorname{rot}\mathbf{a} = (\nabla, [\nabla, \mathbf{a}]) = ([\nabla, \nabla], \mathbf{a}) = 0. \tag{15}$$

3. Циркуляция и поток векторного поля. Пусть а — непрерывное векторное поле в области  $\Omega$ ,  $\Gamma$  — кусочно гладкая ориентированная кривая в  $\Omega$ . Линейным интегралом от а по  $\Gamma$  (работой поля вдоль  $\Gamma$ ) называют интеграл

$$\int_{\Gamma} (\mathbf{a}, d\mathbf{r}) = \int_{\Gamma} a_x \, dx + a_y \, dy + a_z \, dz. \tag{16}$$

Если  $\Gamma$  — замкнутая кривая, то этот интеграл называют *цирку-ляцией поля* **a** *no*  $\Gamma$ .

Пусть S — кусочно гладкая ориентированная поверхность\*) в  $\Omega$ ,  $\mathbf{n}$  — единичный вектор нормали к поверхности, задающий ее ориентацию,  $\mathbf{n} = (\cos\alpha; \cos\beta; \cos\gamma)$ . Потоком векторного поля  $\mathbf{a}$  через S в направлении  $\mathbf{n}$  называют интеграл

$$\iint_{S} (\mathbf{a}, \mathbf{n}) dS = \iint_{S} (a_x \cos \alpha + a_y \cos \beta + a_z \cos \gamma) dS.$$
 (17)

**4. Интегральные формулы.** Пусть u — непрерывно дифференцируемое скалярное поле в  $\Omega$ ,  $\Gamma$  — кусочно гладкая ориентированная кривая в  $\Omega$  с началом A и концом B. Тогда

$$\int_{\Gamma} (\operatorname{grad} u, d\mathbf{r}) = \int_{\Gamma} (\nabla u, d\mathbf{r}) = u(B) - u(A).$$
 (18)

Если кривая  $\Gamma$  лежит на поверхности уровня поля u, то работа поля  $\operatorname{grad} u$  вдоль  $\Gamma$  равна нулю.

Пусть **а** — непрерывно дифференцируемое векторное поле в области  $\Omega$ , S — кусочно гладкая ориентированная единичным вектором нормали **n** поверхность в  $\Omega$  с краем  $\partial S$ , ориентированным согласованно с ориентацией поверхности (§ 11). Тогда по формуле Стокса (формула (14) § 11 с учетом формулы (10))

$$\oint_{\partial S} \mathbf{a} \, d\mathbf{r} = \iint_{S} \mathbf{n} \cdot \operatorname{rot} \mathbf{a} \, dS = \iint_{S} (\mathbf{n}, [\nabla, \mathbf{a}]) \, dS. \tag{19}$$

Таким образом, циркуляция поля  ${\bf a}$  по краю поверхности S равна потоку ротора поля  ${\bf a}$  через эту поверхность.

Пусть точка  $M \in \Omega$ ,  $\mathbf{n}$  — единичный вектор. В плоскости, проходящей через M перпендикулярно  $\mathbf{n}$ , рассмотрим те ее области S, которые содержат M и для которых верна формула (19). Обозначим d(S) — диаметр,  $\mu S$  — площадь S. Справедлива формула

$$\operatorname{rot}_{\mathbf{n}} \mathbf{a}(M) = \lim_{d(S) \to 0} \frac{1}{\mu S} \int_{\partial S} \mathbf{a} \, d\mathbf{r}. \tag{20}$$

Здесь  $\operatorname{rot}_{\mathbf{n}} \mathbf{a} = (\operatorname{rot} \mathbf{a}, \mathbf{n})$  — проекция  $\operatorname{rot} \mathbf{a}$  на вектор  $\mathbf{n}$ .

При тех же предположениях о поверхности S, что и в формуле (19), для непрерывно дифференцируемых полей  ${\bf a}$  и u верны фор-

 $<sup>^{*})</sup>$  В этом параграфе рассматриваются поверхности, ограниченные как множества в пространстве.

мулы

$$\iint_{S} \left[ [\mathbf{n}, \nabla], \mathbf{a} \right] dS = - \oint_{\partial S} [\mathbf{a}, d\mathbf{r}], \tag{21}$$

$$\iint_{S} \left[ \mathbf{n}, \nabla u \right] dS = \oint_{\partial S} u \, d\mathbf{r}. \tag{22}$$

Пусть G — ограниченная область,  $\overline{G} \subset \Omega$ , с кусочно гладкой границей  $\partial G$ , ориентированной внешней нормалью  $\mathbf{n}$ . По формуле Гаусса-Остроградского с учетом обозначения (9) имеем

$$\iint_{\partial G} (\mathbf{a}, \mathbf{n}) dS = \iiint_{G} \operatorname{div} \mathbf{a} dV = \iiint_{G} (\nabla, \mathbf{a}) dV, \tag{23}$$

т. е. поток поля  $\mathbf{a}$  через границу области равен интегралу от дивергенции поля  $\mathbf{a}$  по этой области.

Пусть точка  $M \in \Omega$ , рассмотрим совокупность содержащих M областей  $G \subset \Omega$ , для которых справедлива формула (23). Пусть d(G) — диаметр,  $\mu G$  — объем G. Тогда

$$\operatorname{div} \mathbf{a}(M) = \lim_{d(G) \to 0} \frac{1}{\mu G} \iint_{\partial G} (\mathbf{a}, \mathbf{n}) \, dS. \tag{24}$$

При тех же условиях на область G, что и в формуле (23), для непрерывно дифференцируемых полей  $\mathbf{a},\ u$  и v и верны формулы

$$\iiint\limits_{G} \left[ \nabla, \mathbf{a} \right] dV = \iint\limits_{\partial G} \left[ \mathbf{n}, \mathbf{a} \right] dS, \tag{25}$$

$$\iiint\limits_{G} \nabla u \, dV = \iint\limits_{\partial G} \mathbf{n} u \, dS,\tag{26}$$

$$\iiint_{G} (\nabla u, \nabla v) \, dV = \iint_{\partial G} u(\mathbf{n}, \nabla v) \, dS - \iiint_{G} u \, \Delta v \, dV, \qquad (27)$$

$$\iiint_{G} (u \, \Delta v - v \, \Delta u) \, dV = \iint_{\partial G} (u \, \nabla v - v \, \nabla u, \mathbf{n}) \, dS. \tag{28}$$

Равенства (27), (28) называют формулами Грина. Из них следует, что

$$\iiint_{G} |\nabla u|^{2} dV = \iint_{\partial G} u(\mathbf{n}, \nabla u) dS - \iiint_{G} u\Delta u dV, \qquad (29)$$

$$\iiint_{G} \Delta u \, dV = \iint_{\partial G} (\mathbf{n}, \nabla u) \, dS. \tag{30}$$

**5. Потенциальные и соленоидальные поля.** Все поля в этом пункте считаем непрерывно дифференцируемыми.

Поле **а** в  $\Omega$  называют *безвихревым*, если

$$\operatorname{rot} \mathbf{a} = \mathbf{0}$$
 b  $\Omega$ .

Поле  ${\bf a}$  в  $\Omega$  называют *потенциальным*, если существует на  $\Omega$  скалярное поле u такое, что  ${\bf a}=\operatorname{grad} u.$ 

Функцию u называют *потенциалом* поля a.

Для потенциальности поля  ${\bf a}$  в  $\Omega$  необходимо и достаточно, чтобы его циркуляция по любому кусочно гладкому замкнутому контуру равнялась нулю:  $\oint\limits_{\Gamma} {\bf a} \, d{\bf r} = 0.$ 

Если это условие выполнено, то потенциал поля определяется по формуле  $_{M}$ 

 $u = \int_{M_0}^{M} \mathbf{a} \, d\mathbf{r} + \text{const}, \tag{32}$ 

где  $M_0$  — фиксированная точка  $\Omega$ , интеграл берется по любой кусочно гладкой кривой, соединяющей  $M_0$  и M.

Условие 
$$\operatorname{rot} \mathbf{a} = \mathbf{0} \tag{33}$$

необходимо для потенциальности поля, но, вообще говоря, не достаточно.

Если область  $\Omega$  односвязна, то условие (33) достаточно для потенциальности поля. Говорят, что область  $\Omega$  односвязна, если любой принадлежащий ей кусочно гладкий замкнутый контур можно стянуть в точку этой области так, что во всех промежуточных положениях при стягивании контур будет оставаться в  $\Omega$  (в этом случае говорят, что любой замкнутый контур *гомотопен точке*). Например, всякая выпуклая область односвязна.

В односвязной области безвихревое поле потенциально. Поле  ${\bf a}$  в  $\Omega$  называют *соленоидальным*, если для любой области  $G\subset \Omega$  с кусочно гладкой границей  $\partial G$  поток поля  ${\bf a}$  через эту границу равен нулю, т. е.

 $\iint\limits_{\partial G} (\mathbf{a}, \mathbf{n}) \, dS = 0,$ 

где  $\mathbf{n}$  — внешняя нормаль к  $\partial G$ .

Для соленоидальности поля необходимо и достаточно, чтобы

$$\operatorname{div} \mathbf{a} = 0 \quad \mathbf{B} \quad \Omega. \tag{34}$$

Векторное поле **A** называют *векторным потенциалом* поля **a**, если  $\mathbf{a} = \operatorname{rot} \mathbf{A}$ .

Условие (34) необходимо, но, вообще говоря, не достаточно для существования векторного потенциала.

Любое гладкое поле **a** в  $\Omega$  является суммой безвихревого и соленоидального полей (*теорема Гельмгольца*).

Потенциальное соленоидальное поле называют *гармоническим* (*лапласовым*). В односвязной области поле **a**, у которого

$$rot \mathbf{a} = \mathbf{0} \quad u \quad div \mathbf{a} = 0,$$

гармонично.

### ПРИМЕРЫ С РЕШЕНИЯМИ

Пример 1. Пусть скалярное поле u, а также векторные поля а и **b** дифференцируемы на  $\Omega$ , **c** — постоянный вектор. Показать, используя правила действия с  $\nabla$ , что:

1)  $\operatorname{div}(u\mathbf{a}) = (\operatorname{grad} u, \mathbf{a}) + u \operatorname{div} \mathbf{a}$ ,  $\tau$ . e.

$$(\nabla, u\mathbf{a}) = (\nabla u, \mathbf{a}) + u(\nabla, \mathbf{a}); \tag{35}$$

2)  $\operatorname{div}[\mathbf{a}, \mathbf{b}] = (\mathbf{b}, \operatorname{rot} \mathbf{a}) - (\mathbf{a}, \operatorname{rot} \mathbf{b})$ ,  $\tau$ . e.

$$(\nabla, [\mathbf{a}, \mathbf{b}]) = (\mathbf{b}, [\nabla, \mathbf{a}]) - (\mathbf{a}, [\nabla, \mathbf{b}]); \tag{36}$$

3)  $rot[\mathbf{c}, \mathbf{a}] = \mathbf{c} \operatorname{div} \mathbf{a} - (\mathbf{c}, \nabla) \mathbf{a}$ , т. е.

$$[\nabla, [\mathbf{c}, \mathbf{a}]] = \mathbf{c}(\nabla, \mathbf{a}) - (\mathbf{c}, \nabla)\mathbf{a}. \tag{37}$$

**1**) Сначала преобразуем выражение  $(\nabla, u\mathbf{a})$  с учетом дифференциального характера  $\nabla$ :

$$(\nabla, u\mathbf{a}) = (\nabla, \overset{\downarrow}{u}\mathbf{a}) + (\nabla, u\overset{\downarrow}{\mathbf{a}}). \tag{38}$$

В первом слагаемом перенесем скаляр  $\mathring{u}$  к  $\nabla$ , не переставляя их:

$$(\nabla, \overset{\downarrow}{u} \mathbf{a}) = (\nabla \overset{\downarrow}{u}, \mathbf{a}).$$

Здесь  $\nabla$  соединен операцией (3) с u, поэтому опускаем метку:

$$(\nabla \overset{\downarrow}{u}, \mathbf{a}) = (\nabla u, \mathbf{a}) = (\operatorname{grad} u, \mathbf{a}).$$

Во втором слагаемом из (38) выносим скаляр u, переставляя его с  $\nabla$ :

$$(\nabla, u \stackrel{\downarrow}{\mathbf{a}}) = u(\nabla, \stackrel{\downarrow}{\mathbf{a}}),$$

и, поскольку  $\nabla$  соединен операцией (9) с вектором  ${\bf a}$ , опускаем метку:  $(\nabla, u \stackrel{\downarrow}{\bf a}) = u(\nabla, {\bf a}) = u \, {\rm div} \, {\bf a}.$ 

Складывая результаты, получаем равенство (35).

2) Имеем

$$(\nabla, [\mathbf{a}, \mathbf{b}]) = (\nabla, [\overset{\downarrow}{\mathbf{a}}, \mathbf{b}]) + (\nabla, [\mathbf{a}, \overset{\downarrow}{\mathbf{b}}]).$$

Для первого слагаемого воспользуемся формулой циклической перестановки в смешанном произведении

$$(\mathbf{p}, [\mathbf{a}, \mathbf{b}]) = (\mathbf{b}, [\mathbf{p}, \mathbf{a}])$$

и получим

$$(\nabla, [\overset{\downarrow}{\mathbf{a}}, \mathbf{b}]) = (\mathbf{b}, [\nabla, \overset{\downarrow}{\mathbf{a}}]).$$

Здесь  $\nabla$  соединен с **a** операцией (10), поэтому метку можно опустить:  $(\nabla, [\dot{\mathbf{a}}, \mathbf{b}]) = (\mathbf{b}, [\nabla, \mathbf{a}]) = (\mathbf{b}, \operatorname{rot} \mathbf{a}).$ 

Во втором слагаемом сначала совершим перестановку

$$[\mathbf{a}, \overset{\downarrow}{\mathbf{b}}] = -[\overset{\downarrow}{\mathbf{b}}, \mathbf{a}],$$

затем преобразуем его, как и первое, и получим

$$(\nabla, [\mathbf{a}, \overset{\downarrow}{\mathbf{b}}]) = -(\nabla, [\overset{\downarrow}{\mathbf{b}}, \mathbf{a}]) = -(\mathbf{a}[\nabla, \overset{\downarrow}{\mathbf{b}}]) = -(\mathbf{a}, [\nabla, \mathbf{b}]) = -(\mathbf{a}, \mathrm{rot}\,\mathbf{b}).$$
 Сложив результаты, придем к равенству (36).

3) Имеем  $[\nabla, [\mathbf{c}, \mathbf{a}]] = [\nabla, [\overset{\downarrow}{\mathbf{c}}, \mathbf{a}]] + [\nabla, [\mathbf{c}, \overset{\downarrow}{\mathbf{a}}]].$ 

Поскольку  ${\bf c}={\rm const},$  результат действия  $\nabla$  на  ${\bf c}$  есть нуль, поэтому и первое слагаемое равно нулю. Для второго слагаемого воспользуемся формулой преобразования двойного векторного произведения

$$[\mathbf{p}, [\mathbf{c}, \mathbf{a}]] = (\mathbf{p}, \mathbf{a})\mathbf{c} - (\mathbf{p}, \mathbf{c})\mathbf{a}.$$

Получим

 $[\nabla, [{f c}, {f a}]] = [\nabla, [{f c}, \stackrel{\downarrow}{{f a}}]] = (\nabla, \stackrel{\downarrow}{{f a}}){f c} - (\nabla, {f c}) \stackrel{\downarrow}{{f a}}.$  Переставив  $\nabla$  и  ${f c}$  в произведении  $(\nabla, {f c})$  (это будет символ вида (7)), придем к требуемому результату:

$$[\nabla, [\mathbf{c}, \mathbf{a}]] = (\nabla, \mathbf{a})\mathbf{c} - (\mathbf{c}, \nabla)\mathbf{a}.$$

Пример 2. Найти поток поля  $\mathbf{a} = y\,\mathbf{i} + z\,\mathbf{j} + x\,\mathbf{k}$  через поверхность  $S = \{\sqrt{x} + \sqrt{y} + \sqrt{z} = \sqrt{r}\}$ , нормаль на которой направлена от начала координат.

ightharpoonup Очевидно, div m a=0. Воспользуемся теоремой Гаусса-Остроградского. Рассмотрим область G — "криволинейный



Рис. 12.1

тетраэдр" OABC (рис. 12.1). Часть его границы, лежащую в плоскости Oxy, обозначим  $S_1$ , в плоскости  $Oyz-S_2$ , в плоскости  $Ozx-S_3$ . Потоки поля а через  $S,\ S_1,\ S_2,\ S_3$  (нормаль — внешняя к G) обозначим соответственно  $\Pi,\ \Pi_1,\ \Pi_2,\ \Pi_3$ . По теореме Гаусса-Остроградского

$$\iint_{\partial G} (\mathbf{a}, \mathbf{n}) dS = \iiint_{G} \operatorname{div} \mathbf{a} dV = 0,$$

т. е.  $\Pi + \Pi_1 + \Pi_2 + \Pi_3 = 0$ , а  $\Pi = -(\Pi_1 + \Pi_2 + \Pi_3)$ . Вычислим, например,  $\Pi_3$ :

$$\Pi_3 = \iint\limits_{S_3} (\mathbf{a}, \mathbf{n}) \, dS.$$

Здесь  $\mathbf{n}=(0;-1;0),\ \mathbf{a}=z\,\mathbf{j}+x\,\mathbf{k}.$  За параметры на  $S_3$  — криволинейном треугольнике AOC — возьмем x и z. Дуга AC задается

уравнением  $\sqrt{x}+\sqrt{z}=\sqrt{r},$  т. е.  $x=(\sqrt{r}-\sqrt{z})^2,~0\leqslant z\leqslant r.$  Находим

$$\Pi_3 = \iint\limits_{OAC} \; (-z) \, dx \, dz = - \int\limits_0^r z \, dz \int\limits_0^{(\sqrt{r} - \sqrt{z})^2} dx = - rac{r^3}{30} \, .$$

Таковы же  $\Pi_1$  и  $\Pi_2$ . Следовательно,  $\Pi = 3 \cdot r^3/30 = r^3/10$ .  $\blacktriangle$ 

Пример 3. Доказать формулу (27).

**A** По формуле (35), полагая  $a = \nabla v$ , получаем

$$\operatorname{div}(u \, \nabla v) = (\nabla u, \nabla v) + u(\nabla, \nabla v).$$

Отсюда, учитывая, что  $(\nabla, \nabla v) = \operatorname{div} \operatorname{grad} v = \Delta v$ , находим

$$(\nabla u, \nabla v) = \operatorname{div}(u\nabla v) - u\,\Delta v,$$

и, следовательно,

$$\iiint\limits_{G} (\nabla u, \nabla v) \, dV = \iiint\limits_{G} \operatorname{div}(u \nabla v) \, dV - \iiint\limits_{G} u \, \Delta v \, dV.$$

Полагая  $\mathbf{a} = u \, \nabla v$  и применяя к первому слагаемому правой части формулу (23), получаем (27).  $\blacktriangle$ 

 $\Pi$  р и мер 4. Пусть  $\gamma$  — часть линии пересечения эллипсоида  $x^2+y^2/4+z^2=1$  с цилиндром  $x^2+y^2=1$ , лежащая в замкнутой



Рис 12.2

области  $x \geqslant 0, \ z \geqslant 0$  (рис. 12.2) и ориентированная по возрастанию ординат точек. Найти работу поля  $\mathbf{a} = y \, \mathbf{i} + x \, \mathbf{j} + z \, \mathbf{k}$ :

- 1) вдоль  $\gamma;$  2) вдоль  $\gamma_1$  части  $\gamma,$  лежащей в первом октанте.
- **A** 1) Легко найти, что  $\cot {\bf a}=0$ . Воспользуемся формулой Стокса (19). Замкнем  $\gamma$  дугой  $\gamma'=AC$  (см. рис. 12.2), лежащей в пересечении эллипсоида с плоскостью Oyz. Контур  $\Gamma=ABCA$  это край части S поверхности эллипсоида. По формуле (19)

$$\int_{\Gamma} \mathbf{a} d\mathbf{r} = \int_{S} (\mathbf{n}, \operatorname{rot} \mathbf{a}) dS = 0.$$

$$\int_{\gamma} \mathbf{a} d\mathbf{r} + \int_{\gamma'} \mathbf{a} d\mathbf{r} = 0.$$

Отсюда

Дугу  $\gamma'$  замкнем отрезком AC, направленным от A к C. Получившийся контур служит краем части плоскости Oyz. Из того, что  $\cot \mathbf{a} = 0$ , как и выше, получаем

$$\int_{\gamma'} \mathbf{a} \, d\mathbf{r} + \int_{AC} \mathbf{a} \, d\mathbf{r} = 0.$$

Ha отрезке AC

$$\mathbf{a}=y\,\mathbf{i}+rac{\sqrt{3}}{2}\,\mathbf{k},\quad d\mathbf{r}=(0;dy;0),$$
  $\mathbf{a}\,d\mathbf{r}=0$  и  $\int\limits_{AC}\mathbf{a}\,d\mathbf{r}=0.$ 

поэтому

Отсюда следует, что и

$$\int_{\gamma'} \mathbf{a} \, d\mathbf{r} = 0, \quad \int_{\gamma} \mathbf{a} \, d\mathbf{r} = 0.$$

2) Способ І. Вычислим работу по  $\gamma'$  непосредственно, используя параметризацию  $\gamma'$ . Полагая

$$x = \cos \varphi, \quad y = \sin \varphi, \quad 0 \leqslant \varphi \leqslant \pi/2,$$

из уравнения эллипсоида получаем  $z=\frac{\sqrt{3}}{2}\,\sin\varphi$ . Тогда на  $\gamma'$ 

$$\mathbf{a} = \sin \varphi \, \mathbf{i} + \cos \varphi \, \mathbf{j} + \frac{\sqrt{3}}{2} \, \sin \varphi \, \mathbf{k},$$
$$d\mathbf{r} = \left( -\sin \varphi \, \mathbf{i} + \cos \varphi \, \mathbf{j} + \frac{\sqrt{3}}{2} \, \cos \varphi \, \mathbf{k} \right) d\varphi,$$

поэтому

$$\int_{\gamma'} = \int_{0}^{\pi/2} \left( -\sin^2 \varphi + \cos^2 \varphi + \frac{3}{4} \sin \varphi \cos \varphi \right) d\varphi = \frac{3}{8}.$$

Способ II. Контур  $\gamma$  взаимно однозначно проектируется на ось Oy. Опустим перпендикуляры из точек контура на эту ось. Они образуют гладкую поверхность, край которой состоит, кроме  $\gamma'$ , еще из ломаной CDOB. Используя формулу (19) и то, что  $\cot \mathbf{a} = \mathbf{0}$ , получаем

$$\int_{\gamma'} \mathbf{a} \, d\mathbf{r} + \int_{CD} \mathbf{a} \, d\mathbf{r} + \int_{DO} \mathbf{a} \, d\mathbf{r} + \int_{OB} \mathbf{a} \, d\mathbf{r} = 0.$$

Ha OB  $\mathbf{a} = x\mathbf{j}$ ,  $d\mathbf{r} = \mathbf{i} dx$ , поэтому

$$\mathbf{a} d\mathbf{r} = 0$$
 и  $\int_{OB} \mathbf{a} d\mathbf{r} = 0.$ 

Аналогично, 
$$\int\limits_{DO}\mathbf{a}\,d\mathbf{r}=0$$
. Поэтому 
$$\int\limits_{\gamma'}\mathbf{a}\,d\mathbf{r}=-\int\limits_{CD}\mathbf{a}\,d\mathbf{r}=\int\limits_{DC}\mathbf{a}\,d\mathbf{r}.$$

На DC  $\mathbf{a} = \mathbf{i} + z \mathbf{k}$ ,  $d\mathbf{r} = \mathbf{k} dz$ , поэтому

$$\int_{CD} \mathbf{a} \, d\mathbf{r} = \int_{0}^{\sqrt{3}/2} z \, dz = \frac{3}{8}.$$

Таким образом, как и ранее,  $\int_{C} \mathbf{a} \, d\mathbf{r} = \frac{3}{8}$ .  $\blacktriangle$ 

### ЗАДАЧИ

- **1.** Найти поверхность уровня поля  $u = x^2 y^2 + z^2$ , содержащую точку: a) (1;1;1); б) (1;2;1).
- **2.** Написать уравнение нормали в точке (2;2;-2) к поверхности уровня поля  $u=\arccos(z/\sqrt{x^2+y^2})$ , проходящей через эту точку.
  - **3.** Пусть **a** и **b** постоянные векторы,  $\mathbf{a} \neq \mathbf{0}, \ \mathbf{b} \neq \mathbf{0}, \ \mathbf{r} = (x; y; z).$ Найти поверхность уровня поля:
  - 1)  $u = \frac{(\mathbf{a}, \mathbf{r})}{(\mathbf{b}, \mathbf{r})}$ ; 2)  $u = e^{(\mathbf{a}, \mathbf{b}, \mathbf{r})}$ .
- **4.** Найти поверхности уровня поля  $u = \sqrt{(x+1)^2 + y^2 + z^2} +$  $+\sqrt{((x-1)^2+y^2+z^3}$  и  $\max u$  на сфере  $x^2+y^2+z^2=R^2$ .
- **5.** Найти поверхности уровня поля  $u = z/\sqrt{x^2 + y^2 + z^2}$  и  $\max u$ ,  $\min u$  в шаре  $(x-1)^2 + (y-1)^2 + (z-\sqrt{2})^2 \le 1$ .
  - **6.** Найти grad  $u(M_0)$ , если:
  - 1) u = xy + yz + zx;  $M_0(1;1;1)$ ;

  - 2)  $u = \ln(x^2 + y^2 + z^2)$ ;  $M_0(1; 1; -1)$ ; 3)  $u = 9(x + y + z) / \sqrt{x^2 + y^2 + z^2}$ ;  $M_0(1; -2; -2)$ ;
  - 4)  $u = ze^{x^2+y^2+z^2}$ ;  $M_0(0;0;0)$ .
  - **7.** B каких точках  $grad(x + y^2 + 18z^3 3xyz)$ :
  - а) перпендикулярен оси Oz;
  - б) параллелен оси Oz; в) равен нулю?
- 8. Найти угол между  $\operatorname{grad} u(M_1) \operatorname{arctg} (x/(y+x))$  и  $\operatorname{grad} u(M_2)$ , если:
  - 1)  $u = (x+y)e^{x+y}$ ;  $M_1(0;0)$ ,  $M_2(1;1)$ ;
  - 2)  $u = \operatorname{arctg}(x/(y+z)); M_1(1;1;0), M_2(-1;0;1);$

  - 3)  $u = x/(x^2 + y^2 + z^2)$ ;  $M_1(1; 2; 2)$ ,  $M_2(-3; 1; 0)$ ; 4)  $u = z/\sqrt{x^2 + y^2 + z^2}$ ;  $M_1(3; \sqrt{3}; -2)$ ,  $M_2(\sqrt{3}; 1; 2\sqrt{3})$ .
- **9.** На поверхности уровня поля  $u = x/(x^2 + y^2 + z^2)$ , проходящей через точку (1;1;1), найти наименьшее значение  $|\operatorname{grad} u|$ .
- 10. Найти  $\inf |\operatorname{grad} u|$  и  $\sup |\operatorname{grad} u|$  в области 1 < z < 2, если  $u = z/\sqrt{x^2 + y^2 + z^2}$ .

- **11.** Пусть u и v дифференцируемые поля,  $\alpha$  и  $\beta$  числа. Доказать, что:
- 1)  $\operatorname{grad}(u+v) = \operatorname{grad} u + \operatorname{grad} v$ ; 2)  $\operatorname{grad}(\alpha u) = \alpha \operatorname{grad} u$ ;
- 3)  $\operatorname{grad}(\alpha u + \beta v) = \alpha \operatorname{grad} u + \beta \operatorname{grad} v;$
- 4)  $\operatorname{grad}(uv) = v \operatorname{grad} u + u \operatorname{grad} v;$
- 5) grad  $\left(\frac{u}{v}\right) = \frac{v \operatorname{grad} u u \operatorname{grad} v}{v^2}, \ v \neq 0.$
- **12.** Указать в  $R^3$  такие дифференцируемые поля u и v, что векторы  $\nabla u$  и  $\nabla v$  не коллинеарны ни в одной точке (для обычного вектора **р** векторы  $\mathbf{p}u$  и  $\mathbf{p}v$  обязательно коллинеарны).
- **13.** Пусть u дифференцируемое поле, f(t) дифференцируемая функция,  $t \in R$ . Доказать, что

$$\operatorname{grad} f(u) = f'(u) \operatorname{grad} u.$$

**14.** Пусть u и v — дифференцируемые поля, f(t;s) — дифференцируемая функция,  $(t;s) \in R^2$ . Доказать, что

$$\operatorname{grad} f(u; v) = \frac{\partial f}{\partial t}(u; v) \operatorname{grad} u + \frac{\partial f}{\partial s}(u; v) \operatorname{grad} v.$$

- **15.** Пусть **a** и **b** постоянные векторы,  $\mathbf{r} = \mathbf{i} \, x + \mathbf{j} \, y + \mathbf{k} \, z$ ,  $r = |\mathbf{r}|$ . Найти grad u, если:
- 1) u = r; 2)  $u = \mathbf{r}^2$ ; 3) u = 1/r; 4)  $u = \ln r$ ; 5)  $u = (\mathbf{a}, \mathbf{r})$ ;
- 6)  $u = (\mathbf{a}, \mathbf{b}, \mathbf{r}); 7) u = (\mathbf{a}, \mathbf{r})(\mathbf{b}, \mathbf{r}); 8) u = |[\mathbf{a}, \mathbf{r}]|^2.$
- **16.** Доказать, что  $\operatorname{grad} u(M)$  перпендикулярен поверхности уровня поля u, проходящей через точку M.
- **17.** Пусть u непрерывно дифференцируемое поле,  $u_0 = u(M_0)$ ,  $\nabla u(M_0) \neq 0$ ;  $l_0$  нормаль в точке  $M_0$  к поверхности уровня  $u = u_0$ .
- 1) Доказать, что существуют такие окрестность точки  $M_0$  и число  $\varepsilon_0 > 0$ , что при всех  $\varepsilon$ ,  $|\varepsilon| < \varepsilon_0$ , в этой окрестности есть только одна точка пересечения  $M = M(\varepsilon)$  нормали  $l_0$  с поверхностью уровня  $u = u_0 + \varepsilon$ ;
  - 2) найти длину отрезка  $MM_0$  с точностью до  $o(\varepsilon)$  при  $\varepsilon \to 0$ .
- **18.** Пусть  $\mathbf{r}_1$  и  $\mathbf{r}_2$  радиус-векторы двух фиксированных точек,  $\mathbf{r} = \mathbf{i} \, x + \mathbf{j} \, y + \mathbf{k} \, z$ ,

$$|\mathbf{r} - \mathbf{r}_j| = \sqrt{(x - x_j)^2 + (y - y_j)^2 + (z + z_j)^2}, \quad j = 1, 2,$$

$$u = |\mathbf{r} - \mathbf{r}_1| + |\mathbf{r} - \mathbf{r}_2|.$$

Доказать, что grad u в точке с радиус-вектором  $\mathbf{r}$  составляет равные углы с векторами  $\mathbf{r} - \mathbf{r}_1$  и  $\mathbf{r} - \mathbf{r}_2$ . Объяснить, используя это, оптическое свойство эллипсоида.

**19.** Пусть функция f(r) дифференцируема,  $\mathbf{r} = \mathbf{i} \, x + \mathbf{j} \, y + \mathbf{k} \, z, \ r = |\mathbf{r}|.$ 

Доказать, что  $\nabla f(r) = f'(r) \frac{\mathbf{r}}{r}$ .

- **20.** Пусть вектор-функции  $\mathbf{a}(r)$  и  $\mathbf{b}(r)$  дифференцируемы,  $\mathbf{r}=\mathbf{i}\,x+\mathbf{j}\,y+\mathbf{k}\,z,\ r=|\mathbf{r}|$ . Доказать, что:
  - 1)  $\nabla(\mathbf{a}(r), \mathbf{r}) = \mathbf{a}(r) + (\mathbf{a}'(r), \mathbf{r}) \frac{\mathbf{r}}{r};$
  - 2)  $\nabla(\mathbf{a}(r), \mathbf{b}(r)) = ((\mathbf{a}', \mathbf{b}) + (\mathbf{a}, \mathbf{b}')) \frac{\mathbf{r}}{r}$ .
  - **21.** Выразить grad u:
  - 1) в цилиндрических координатах  $r, \varphi, z;$
- 2) в сферических координатах  $r, \varphi, \psi$ , используя соответствующие орты  $\mathbf{e}_r, \mathbf{e}_\varphi, \mathbf{e}_z$  и  $\mathbf{e}_r, \mathbf{e}_\varphi, \mathbf{e}_\psi$ , касательные к координатным линиям.
- **22.** Проверить, что вектор  $\operatorname{grad} u$  не зависит от выбора декартовой системы координат.
- $oldsymbol{23.}$  Доказать, что для дважды дифференцируемых полей u и v

$$\Delta(uv) \equiv \nabla^2(uv) = v \nabla^2 u + 2(\nabla u, \nabla v) + u \nabla^2 v.$$

- **24.** Найти производную поля u по направлению единичного вектора  $\mathbf{n} = (\cos \alpha; \cos \beta; \cos \gamma)$ , если  $r = \sqrt{x^2 + y^2 + z^2}$ ,  $\mathbf{r} = (x; y; z)$ :
  - 1) u = r; 2) u = 1/r; 3)  $u = (\mathbf{a}, \mathbf{r})$ ,  $\mathbf{a} = \text{const}$ ; 4) u = f(r).
- **25.** Найти производную поля  $u=x^2/a^2+y^2/b^2+z^2/c^2$  в точке M(x;y;z) по направлению радиус-вектора этой точки.
- **26.** Пусть u и v дифференцируемые поля. Найти производную поля u по направлению вектора  $\operatorname{grad} v$ .
- **27.** По какой кривой следует двигаться из точки  $M_0(x_0;y_0;z_0),$  чтобы поле  $u=x^2/2+y^2-z^2$  имело наибыстрейшее убывание, если:
  - a)  $M_0(1;1;0)$ ; 6)  $M_0(1;1;1)$ ?
  - 28. Найти линии наибыстрейшего изменения плоских полей:
  - 1)  $u = x^2 y^2$ ; 2) u = xy; 3)  $u = x^2/2 + y^2$ ; 4)  $u = y^2/x$ .
  - 29. Найти линии наибыстрейшего изменения трехмерных полей:
  - 1)  $u = x^2 + 2y^2 + z^2$ ; 2)  $u = x^2 + y^2 + z^2$ ; 3) u = xyz.
- **30.** Пусть в звездной \*) относительно точки A области  $\Omega$  задано гладкое поле u и  $|\nabla u| \leqslant c$ . Доказать, что для любой точки  $B \subset \Omega$

$$|u(B) - u(A)| \le c|B - A|,$$

где |B-A| — расстояние между A и B. Для выпуклой области доказать справедливость этого неравенства для любых A и B из  $\Omega$ .

Найти векторные линии поля a (31, 32).

- **31.** 1)  $\mathbf{a} = x \mathbf{i} + z \mathbf{k}$ ; 2)  $\mathbf{a} = z \mathbf{j} y \mathbf{k}$ ; 3)  $\mathbf{a} = 2x \mathbf{i} + y \mathbf{j}$ ;
- 4)  $\mathbf{a} = x \, \mathbf{i} y \, \mathbf{j}$ ; 5)  $\mathbf{a} = x^3 \, \mathbf{i} + y^2 \, \mathbf{j}$ .

 $<sup>^*</sup>$ ) Область называют звездной относительно точки A, если для любой точки B этой области отрезок AB принадлежит области.

- **32.** 1)  $\mathbf{a} = \mathbf{r} = \mathbf{i}x + \mathbf{j}y + \mathbf{k}z$ ; 2)  $\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k} = \text{const}$ ;
- 3)  $\mathbf{a} = f(r)\mathbf{r}, \ \mathbf{r} = \mathbf{i} x + \mathbf{j} y + \mathbf{k} z, \ r = |\mathbf{r}|;$
- 4)  $\mathbf{a} = [\mathbf{c}, \mathbf{r}], \ \mathbf{c} = \text{const}, \ \mathbf{r} = \mathbf{i} x + \mathbf{j} y + \mathbf{k} z;$
- 5)  $\mathbf{a} = (\mathbf{b}, \mathbf{r})\mathbf{c}$ ,  $\mathbf{b}$  и  $\mathbf{c}$  постоянные векторы,  $\mathbf{r} = \mathbf{i} x + \mathbf{j} y + \mathbf{k} z$ ;
- 6)  $\mathbf{a} = (z y)\mathbf{i} + (x z)\mathbf{j} + (y x)\mathbf{k}$ ; 7)  $\mathbf{a} = x\mathbf{i} + 2y\mathbf{j} + z\mathbf{k}$ .
- **33.** Найти векторную линию поля  ${\bf a}$ , проходящую через точку M, если:
  - 1)  $\mathbf{a} = -y\,\mathbf{i} + x\,\mathbf{j} + c\,\mathbf{k}, \ c = \text{const}, \ M(1;0;0);$
  - 2)  $\mathbf{a} = x^2 \mathbf{i} y^3 \mathbf{j} + z^2 \mathbf{k}; \ M(1/2; -1/2; 1);$
  - 3)  $\mathbf{a} = xz \,\mathbf{i} + yz \,\mathbf{j} + (x^2 + y^2) \,\mathbf{k}; M(1; 1; 0).$
- **34.** Найти векторные линии напряженности магнитного поля бесконечного прямолинейного проводника постоянного тока.
- **35.** Для поля  $\mathbf{a} = \mathbf{r}$  найти уравнение векторной трубки, содержащей окружность  $z = 1, \ x^2 + y^2 = 4.$
- **36.** Для поля  $\mathbf{a}=\mathbf{j}/z-\mathbf{k}/y$  найти векторную трубку, содержащую кривую  $y=z,\ x^2+(y-1)^2+(z-1)^2=1.$
- **37.** Проверить указанные равенства в координатной форме, а также записать их и проверить, используя символ  $\nabla$  и правила действия с ним ( $\alpha$ ,  $\beta$  числа, u,  $\mathbf{a}$ ,  $\mathbf{b}$  дифференцируемые скалярное и векторные поля):
  - 1)  $\operatorname{div}(\alpha \mathbf{a} + \beta \mathbf{b}) = \alpha \operatorname{div} \mathbf{a} + \beta \operatorname{div} \mathbf{b};$
  - 2)  $\operatorname{div}(u \mathbf{a}) = (\operatorname{grad} u, \mathbf{a}) + u \operatorname{div} \mathbf{a}.$
  - **38.** Полагая  ${\bf r}=x\,{\bf i}+y\,{\bf j}+z\,{\bf k},\ r=|{\bf r}|,$  найти div  ${\bf a},$  если:
  - 1)  $\mathbf{a} = \mathbf{r}$ ; 2)  $\mathbf{a} = r\mathbf{r}$ ; 3)  $\mathbf{a} = \mathbf{r}/r$ ; 4)  $\mathbf{a} = (-x\mathbf{i} + y\mathbf{j} + z\mathbf{k})/\sqrt{x^2 + y^2}$ ;
  - 5)  $\mathbf{a} = (6x^2y^2 z^3 + yz 5)\mathbf{i} + (4x^3 + xz + 2)\mathbf{j} + (xy 3xz^2 3)\mathbf{k}$ .
  - **39.** Выразить в координатной форме  $\operatorname{div}\operatorname{grad} u$ .
  - **40.** Найти:
  - 1)  $\operatorname{div}(u\operatorname{grad} u)$ ; 2)  $\operatorname{div}(u\operatorname{grad} v)$ .
  - **41.** Найти  $(\mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}), r = |\mathbf{r}|)$ :
  - 1) div grad  $r^2$ ; 2) div grad (1/r); 3) div  $r\mathbf{c}$ ,  $\mathbf{c} = \text{const}$ ; 4) div  $(f(r)\mathbf{r})$ ;
  - 5)  $\operatorname{div} \operatorname{grad} f(r)$ ; 6)  $\operatorname{div}(f(r)\mathbf{c})$ ,  $\mathbf{c} = \operatorname{const}$ ; 7)  $\operatorname{div}[\mathbf{c}, \mathbf{r}]$ ,  $\mathbf{c} = \operatorname{const}$ ;
  - 8)  $\operatorname{div}[\mathbf{r}, [\mathbf{c}, \mathbf{r}]], \mathbf{c} = \operatorname{const.}$
  - **42.** Решить уравнение  $(\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}, \ r = |\mathbf{r}|)$ :
  - 1)  $\operatorname{div}(u(r)\mathbf{r}) = 0$ ; 2)  $\operatorname{div} \operatorname{grad} u(r) = 0$ ; 3)  $\operatorname{div}(u(r)\mathbf{r}) = \lambda u(r)$ ,  $\lambda \neq 3$ .
- **43.** Найти дивергенцию гравитационного поля нескольких точечных масс.
- **44.** Среда вращается как твердое тело вокруг оси с постоянной угловой скоростью  $\omega$ . Найти в фиксированный момент времени дивергенцию поля линейных скоростей  $\mathbf{v}$  и поля ускорений  $\mathbf{w}$  точек среды.

- **45.** Доказать, что div  ${\bf a}$  не зависит от выбора декартовой системы координат.
  - **46.** Найти div **a** плоского поля **a** в полярных координатах.
  - **47.** Найти div **a** трехмерного поля:
  - 1) в цилиндрических координатах; 2) в сферических координатах.
  - **48.** Найти  $(r = \sqrt{x^2 + y^2 + z^2})$ :
  - 1) div  $\mathbf{a}(r)$ ; 2) div $(u(r)\mathbf{a}(r))$ .
- **49.** Проверить указанные равенства в координатной форме, а также записать и проверить их, используя символ  $\nabla$  и правила действия с ним ( $\alpha$ ,  $\beta$  числа, u,  $\mathbf{a}$ ,  $\mathbf{b}$  дифференцируемые скалярное и векторные поля,  $\mathbf{c}$  постоянный вектор):
  - 1)  $\operatorname{rot}(\alpha \mathbf{a} + \beta \mathbf{b}) = \alpha \operatorname{rot} \mathbf{a} + \beta \operatorname{rot} \mathbf{b}; 2) \operatorname{rot}(u \mathbf{c}) = [\operatorname{grad} u, \mathbf{c}];$
  - 3)  $\operatorname{rot}(u \mathbf{a}) = u \operatorname{rot} \mathbf{a} + [\operatorname{grad} u, \mathbf{a}]; 4) \operatorname{rot}[\mathbf{c}, \mathbf{a}] = \mathbf{c} \operatorname{div} \mathbf{a} (\mathbf{c}, \nabla) \mathbf{a};$
  - 5)  $\operatorname{rot}[\mathbf{a}, \mathbf{b}] = \mathbf{a} \operatorname{div} \mathbf{b} \mathbf{b} \operatorname{div} \mathbf{a} + (\mathbf{b}, \nabla) \mathbf{a} (\mathbf{a}, \nabla) \mathbf{b};$
  - 6)  $\operatorname{div}[\mathbf{a}, \mathbf{b}] = (\mathbf{b}, \operatorname{rot} \mathbf{a}) (\mathbf{a}, \operatorname{rot} \mathbf{b}).$
- **50.** Найти ( $\mathbf{r} = x \, \mathbf{i} + y \, \mathbf{j} + z \, \mathbf{k}$ ,  $r = |\mathbf{r}|$ , **a** и **b** постоянные векторы, u(r) дифференцируемое поле):
  - 1)  $\operatorname{rot} \mathbf{r}$ ; 2)  $\operatorname{rot}(r\mathbf{a})$ ; 3)  $\operatorname{rot}((\mathbf{r}, \mathbf{a})\mathbf{b})$ ; 4)  $\operatorname{rot}(u(r)\mathbf{a})$ ; 5)  $\operatorname{rot}(u(r)\mathbf{r})$ .
  - **51.** Вычислить rot **a** в точке  $M_0$ , если:
  - 1)  $\mathbf{a} = xyz\,\mathbf{i} + (2x + 3y z)\,\mathbf{j} + (x^2 + z^2)\,\mathbf{k}; \ M_0(1;3;2);$
  - 2)  $\mathbf{a} = \frac{y}{z} \mathbf{i} + \frac{z}{x} \mathbf{j} + \frac{x}{y} \mathbf{k}; \ M_0(1; 2; -2).$
- **52.** Для любого вектора  $\mathbf p$  векторы  $[\mathbf p, \mathbf a]$  и  $\mathbf a$  перпендикулярны (если они не нулевые). Верно ли это для векторов  $[\nabla, \mathbf a]$  и  $\mathbf a$ ?
  - **53.** Найти угол между  $\operatorname{rot} \mathbf{a}(M_1)$  и  $\operatorname{rot} \mathbf{a}(M_2)$ , если:
  - 1)  $\mathbf{a} = (x^2 + y^2)\mathbf{i} + (y^2 + z^2)\mathbf{j} + (z^2 + x^2)\mathbf{k};$

$$M_1(1;2;3), M_2(1;1;-1);$$

- 2)  $\mathbf{a} = z^3 \mathbf{i} + (x^3 + y^3) \mathbf{j} + xyz \mathbf{k}; \ M_1(1;2;0), \ M_2(1;12;4).$
- **54.** Найти:
- 1)  $rot[\mathbf{c}, \mathbf{r}], \ \mathbf{c} = const; \ 2) \ rot[\mathbf{r}, [\mathbf{c}, \mathbf{r}]], \ \mathbf{c} = const.$
- 55. Проверить в координатной форме:
- 1) формулу (14); 2) формулу (15).
- **56.** Равенство rot rot  ${\bf a}=\operatorname{grad}\operatorname{div}{\bf a}-\Delta{\bf a}$  проверить в координатной форме, а также записать и получить его, используя символ  $\nabla$  и правила действия с ним.
  - **57.** Найти  $\operatorname{rot} \operatorname{grad}(1/r)$ .
  - 58. Получить формулы:
  - 1)  $\nabla(\nabla, u \mathbf{c}) = (\mathbf{c}, \nabla)\nabla u, \mathbf{c} = \text{const};$
  - 2)  $\nabla(\nabla, u \mathbf{a}) = u \nabla(\nabla, \mathbf{a}) + (\nabla, \mathbf{a}) \nabla u + [\nabla u, [\nabla, \mathbf{a}]] + (\nabla u, \nabla) \mathbf{a} + (\mathbf{a}, \nabla) \nabla u;$

- 3)  $[\nabla, [\nabla u, \mathbf{c}]] = (\mathbf{c}, \nabla) \nabla u \mathbf{c} \Delta u.$
- **59.** Показать, что:
- 1)  $\operatorname{div}[\nabla u, \nabla v] = 0;$
- 2) векторы  $\mathbf{a} = u \operatorname{grad} v$  и  $\operatorname{rot} \mathbf{a}$  перпендикулярны.
- **60.** Найти компоненты  $\cot \mathbf{a}$  плоского поля  $\mathbf{a}$  в полярных координатах.
  - 61. Найти компоненты rot a трехмерного поля a:
  - 1) в цилиндрических координатах; 2) в сферических координатах.
  - **62.** Найти  $rot(u(r)\mathbf{a}(r)), r = \sqrt{x^2 + y^2 + z^2}.$
  - **63.** Записать  $\Delta u = \operatorname{div} \operatorname{grad} u$ :
  - 1) в цилиндрических координатах; 2) в сферических координатах.
- **64.** Среда вращается как твердое тело вокруг оси с постоянной угловой скоростью  $\omega$ . Пусть  $\mathbf{v}$  поле линейных скоростей точек в фиксированный момент времени. Найти  $\mathrm{rot}\,\mathbf{v}$  (воспользоваться цилиндрическими координатами).
- **65.** В простейшем случае система уравнений Максвелла электромагнитного поля имеет вид

$$\frac{\varepsilon}{c} \frac{\partial \mathbf{E}}{\partial t} = [\nabla, \mathbf{H}], \quad -\frac{\mu}{c} \frac{\partial \mathbf{H}}{\partial t} = [\nabla, \mathbf{E}], \quad (\nabla, \mathbf{E}) = 0, \quad (\nabla, \mathbf{H}) = 0.$$

Здесь  ${\bf E}$  и  ${\bf H}$  — векторные поля электрической и магнитной напряженности,  $\varepsilon,\ \mu,\ c={\rm const}>0.$  Полагая все функции достаточно гладкими, доказать, что  ${\bf E}$  и  ${\bf H}$  удовлетворяют волновому уравнению

$$\frac{\partial^2 \mathbf{E}}{\partial t^2} = \frac{c^2}{\varepsilon \mu} \, \Delta \mathbf{E}, \quad \frac{\partial^2 \mathbf{H}}{\partial t^2} = \frac{c^2}{\varepsilon \mu} \, \Delta \mathbf{H}.$$

**66.** Пусть в области  $\Omega$  введена ортогональная система криволинейных координат  $(\xi; \eta; \zeta)$ :

$$x = x(\xi; \eta; \zeta), \quad y = y(\xi; \eta; \zeta), \quad z = z(\xi; \eta; \zeta),$$

где правые части — непрерывно дифференцируемые функции. Пусть  $\mathbf{e}_{\xi}, \mathbf{e}_{\eta}, \mathbf{e}_{\zeta}$  — единичные орты этой системы (векторы, касательные к координатным линиям и направленные по возрастанию координат,  $\mathbf{e}_{\xi} \perp \mathbf{e}_{\eta}, \ \mathbf{e}_{\eta} \perp \mathbf{e}_{\zeta}, \ \mathbf{e}_{\zeta} \perp \mathbf{e}_{\xi})^*$ ). Пусть  $H_{\xi}, \ H_{\eta}, \ H_{\zeta}$  — коэффициенты Ламэ, т. е.  $H_{\xi} = \sqrt{\left(\frac{\partial x}{\partial \xi}\right)^2 + \left(\frac{\partial y}{\partial \xi}\right)^2 + \left(\frac{\partial z}{\partial \xi}\right)^2}$  и т. д. Доказать, что:

1) grad 
$$u = \frac{1}{H_{\mathcal{E}}} \frac{\partial u}{\partial \xi} \mathbf{e}_{\xi} + \frac{1}{H_{\eta}} \frac{\partial u}{\partial \eta} \mathbf{e}_{\eta} + \frac{1}{H_{\zeta}} \frac{\partial u}{\partial \zeta} \mathbf{e}_{\zeta};$$
 (39)

2) div 
$$\mathbf{a} = \frac{1}{H_{\xi}H_{\eta}H_{\zeta}} \left( \frac{\partial (H_{\eta}H_{\zeta}a_{\xi})}{\partial \xi} + \frac{\partial (H_{\zeta}H_{\xi}a_{\eta})}{\partial \eta} + \frac{\partial (H_{\xi}H_{\eta}a_{\zeta})}{\partial \zeta} \right); (40)$$

<sup>\*)</sup> Все ортонормированные базисы исходной и вводимой систем координат положительно ориентированы (правые), в частности, якобиан функций, задающих криволинейную систему координат, положителен.

3) rot 
$$\mathbf{a} = \frac{1}{H_{\xi}H_{\eta}H_{\zeta}} \begin{vmatrix} H_{\xi}\mathbf{e}_{\xi} & H_{\eta}\mathbf{e}_{\eta} & H_{\zeta}\mathbf{e}_{\zeta} \\ \frac{\partial}{\partial \xi} & \frac{\partial}{\partial \eta} & \frac{\partial}{\partial \zeta} \\ H_{\xi}a_{\xi} & H_{\eta}a_{\eta} & H_{\zeta}a_{\zeta} \end{vmatrix}.$$
 (41)

- **67.** Пользуясь формулами (39)–(41), получить выражения для grad u, div  $\mathbf{a}$ , rot  $\mathbf{a}$ :
  - 1) в цилиндрических координатах; 2) в сферических координатах.

Найти поток поля **a** через ориентированную нормалью **n** поверхность S ( $\mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}, r = |\mathbf{r}|$ ) (68, 69).

- **68.** 1)  $\mathbf{a} = a_x \, \mathbf{i} + a_y \, \mathbf{j} + a_z \, \mathbf{k}$ , где  $a_x$ ,  $a_y$ ,  $a_z = \mathrm{const}$ , S круг радиуса R, лежащий в плоскости  $(\mathbf{r}, \mathbf{n}) = d$ ;
  - 2)  $\mathbf{a} = \mathbf{r}, \ S$  внешняя сторона конуса  $\sqrt{x^2 + y^2} \leqslant z \leqslant h;$
- 3)  ${\bf a}={\bf r},\ S$  внешняя сторона поверхности цилиндра  $x^2+y^2\leqslant R^2,\ 0\leqslant z\leqslant h;$ 
  - 4)  $\mathbf{a} = \mathbf{r}/r^3$ , S внешняя сторона сферы  $x^2 + y^2 + z^2 = R^2$ ;
  - 5)  $\mathbf{a} = f(r)\mathbf{r}$ , S внешняя сторона сферы  $x^2 + y^2 + z^2 = R^2$ .
- **69.** 1)  $\mathbf{a} = (x 2z; x + 3y + z; 5x + y); S$  противоположная началу координат сторона плоского треугольника с вершинами (1;0;0), (0;1;0), (0;0;1);
- 2)  $\mathbf{a}=(x^2;y^2;z^2);\ S$  внешняя сторона полной поверхности пирамиды, ограниченной плоскостями  $x+y+z=1,\ x=0,\ y=0,\ z=0;$
- 3)  $\mathbf{a}=(y^2;x^2;z^2); S$  часть внешней стороны цилиндра  $x^2+y^2=z^2$  , расположенная в первом октанте между плоскостями z=0 и  $z=a,\ a>0;$
- 4)  $\mathbf{a}=(0;y^2;z);\ S$  ограниченная часть внешней стороны параболоида  $z=x^2+y^2,$  отсеченная плоскостью z=2;
- 5)  $\mathbf{a}=(x;y;\sqrt{x^2+y^2-1});\ S$  часть внешней стороны гиперболоида  $x^2+y^2-z^2=1,$  заключенная между плоскостями z=0 и  $z=\sqrt{3};$
- 6)  $\mathbf{a}=(y;z;x);\ S$  часть внутренней стороны цилиндра  $x^2+y^2=R^2;$  расположенная в области x>|z|;
- 7) **a** = (3x; -y; -z); S часть внешней стороны параболоида  $x^2 + y^2 = 9 - z$ , расположенная в первом октанте;
- 8)  ${\bf a}=(xy;yz;zx);\;S$  часть внешней стороны сферы  $x^2+y^2+z^2=1,\;$  расположенная в первом октанте;
- 9)  ${\bf a}=(xz;yz;z^2);\; S$  часть внешней стороны сферы  $x^2+y^2+z^2=9,\;$  расположенная в области z>2;
- 10)  $\mathbf{a}=(x;y;xyz);\ S$  часть внешней стороны цилиндра  $x^2+y^2=R^2,$  расположенная в области x>|y| и отсеченная плоскостью z=0 и параболоидом  $z=x^2-y^2;$
- 11)  $\mathbf{a}=(xy-y^2;-x^2+xy+2x;z);\ S$  часть внешней стороны цилиндра  $x^2+y^2=1,$  отсеченная конусом  $z^2=x^2/2+y^2.$

- **70.** Найти поток поля **a** через поверхность S непосредственно или по теореме Гаусса-Остроградского, если:
- 1)  $\mathbf{a} = x^3 \, \mathbf{i} + y^3 \, \mathbf{j} + z^3 \, \mathbf{k}$ , S внешняя поверхность куба |x| < a, |y| < a, |z| < a;
- 2)  $\mathbf{a} = (z y)\mathbf{i} + (x z)\mathbf{j} + (y x)\mathbf{k}$ ; S полная внешняя поверхность тетраэдра, ограниченного плоскостями x + y + z = 1, x + y z = 1, y = 0, z = 0;
- 3)  $\mathbf{a} = y^2z\,\mathbf{i} yz^2\,\mathbf{j} + x(y^2 + z^2)\,\mathbf{k};\ S$  полная внешняя поверхность цилиндра  $y^2 + z^2 \leqslant a^2,\ 0 \leqslant x \leqslant a;$
- 4)  ${\bf a}=2x\,{\bf i}+2y\,{\bf j}-z\,{\bf k};\;S$  полная внешняя поверхность конуса  $\sqrt{x^2+y^2}\leqslant z\leqslant H;$
- 5)  ${f a}=(x+z)\,{f i}+(y+x)\,{f j}+(z+y)\,{f k};\,\,S$  внешняя поверхность тела  $x^2+y^2\leqslant R^2,\,\,0\leqslant z\leqslant y;$
- 6)  $\mathbf{a}=x^2y\,\mathbf{i}+xy^2\,\mathbf{j}+xyz\,\mathbf{k};\;S$  внешняя поверхность тела  $x^2+y^2+z^2\leqslant R^2,\;x\geqslant 0,\;y\geqslant 0,\;z\geqslant 0;$
- 7)  $\mathbf{a}=x^2yz\,\mathbf{i}+xy^2z\,\mathbf{j}+xyz^2\,\mathbf{k};~S$  часть внешней стороны эллипсоида  $x^2/a^2+y^2/b^2+z^2/c^2=1,$  расположенная в первом октанте;
- 8)  $\mathbf{a}=x^3\,\mathbf{i}+y^3\,\mathbf{j}+z^3\,\mathbf{k};\;S$  половина внешней стороны сферы  $x^2+y^2+z^2=R^2,\;z\geqslant 0;$
- 9)  $\mathbf{a}=(z^n-y^n)\,\mathbf{i}+(x^n-z^n)\,\mathbf{j}+(y^n-x^n)\,\mathbf{k};\ S$  половина внешней стороны сферы  $x^2+y^2+z^2=R^2,\ z\geqslant 0.$
- 71. Пусть  $A(\mathbf{r}) = \sum_{i,j=1}^{3} a_{ij} x_i x_j$  положительно определенная квадратичная форма,  $\mathbf{r} = x_1 \mathbf{i} + x_2 \mathbf{j} + x_3 \mathbf{k}$ . Найти поток поля  $\mathbf{a} = \mathbf{r} \cdot (A(\mathbf{r}))^{-3/2}$  через единичную сферу  $|\mathbf{r}| = 1$ .
- 72. Указать с точностью до  $o(\varepsilon^3)$  приближенное значение потока поля  ${\bf a}$ :
- 1) из задачи 38,4) через внешнюю сторону сферы с центром (3;4;0) и радиусом  $\varepsilon$ ;
- 2) из задачи 38,5) через внешнюю сторону поверхности куба с центром (1;1;2) и ребром длины  $\varepsilon$ .
  - **73.** Доказать формулу (24).
- **74.** Пусть поле **a** непрерывно дифференцируемо в  $\Omega$ , G произвольная область с кусочно гладкой границей,  $\overline{G} \subset \Omega$ . Доказать, что поток rot **a** через  $\partial G$  равен нулю.
- **75.** Пусть ограниченная область G имеет кусочно гладкую границу  $\partial G$ , ориентированную внешней нормалью. Доказать, что поток радиус-вектора  $\mathbf{r}$  через  $\partial G$  равен  $3\mu G$ , где  $\mu G$  объем G.
  - 76. Пусть кусочно гладкая граница  $\partial G$  области G, ориентирована

нормалью  $\mathbf{n},\ c$  — постоянный вектор. Доказать, что

$$\iint_{\partial G} \cos(\widehat{\mathbf{n}, \mathbf{c}}) \, dS = 0.$$

- 77. Доказать формулы: 1) (25); 2) (26); 3) (28); 4) (29); 5) (30).
- 78. Пусть поле u дважды непрерывно дифференцируемо в  $\Omega$ , G область из  $\Omega$  такая, что  $\overline{G} \subset \Omega$  и граница  $\partial G$  является поверхностью уровня поля u. Доказать, что

$$\iiint\limits_{G} \Delta u\,dV = \pm \iint\limits_{\partial G} |\nabla u|\,dS,$$

где следует выбрать один из знаков. Объяснить выбор знака.

79. Доказать, что

$$\iiint\limits_{G} (\nabla u, [\nabla, \mathbf{a}]) \, dV = \iint\limits_{\partial G} (\mathbf{a}, \nabla u, \mathbf{n}) \, dS.$$

80. Пусть u и  $\mathbf{a}$  — непрерывно дифференцируемые поля в  $\Omega,$  G — область из  $\Omega,$   $\overline{G}\subset\Omega,$   $\partial G$  — кусочно гладкая поверхность, ориентированная внешней нормалью. Доказать, что

$$\iint\limits_{\partial G} (u \, \mathbf{a}, \mathbf{n}) \, dS = \iiint\limits_{G} (u(\nabla, \mathbf{a}) + (\mathbf{a}, \nabla u)) \, dV.$$

**81.** Пусть S — гладкая поверхность, ориентированная нормалью  ${\bf n}$ , и пусть замыкание S не содержит начала координат. Показать, что интеграл  $\iint \frac{\cos(\widehat{{\bf r},{\bf n}})}{r^2} dS$ 

есть поток некоторого поля через S.

**82.** Пусть G — ограниченная область с кусочно гладкой границей, ориентированной внешней нормалью  $\mathbf{n},\ O\not\in\overline{G},\ \mathbf{r}=(x;y;z),\ r=|\mathbf{r}|.$ 

Доказать, что:

1) 
$$\iiint_{G} \frac{1}{r} dV = \frac{1}{2} \iint_{\partial G} \cos(\widehat{\mathbf{r}, \mathbf{n}}) dS;$$

2) 
$$\iiint\limits_{G} \frac{1}{r^{p}} dV = \frac{1}{3-p} \iint\limits_{\partial G} \frac{\cos(\widehat{\mathbf{n}, \mathbf{r}})}{r^{p-1}} dS, \quad p \neq 3.$$

- 83. Пусть ограниченная область G имеет кусочно гладкую границу  $\partial G$ , ориентированную внешней нормалью,  $M_0$  фиксированная точка G,  $\mathbf{a}(M) = \overline{M_0 M}/|M_0 M|^3,$
- $S_{\varepsilon}(M_0)$  сфера с центром  $M_0$  и радиусом  $\varepsilon$ , лежащая в G, ориентированная внешней нормалью. Доказать, что поток **a** через  $\partial G$  равен потоку a через  $S_{\varepsilon}(M_0)$ .
- **84.** Пусть ограниченная область G имеет кусочно гладкую границу  $\partial G$ , ориентированную внешней нормалью,  $M_0$  фиксированная

точка,

$$\mathbf{a}(M) = \overline{M_0 M} / |M_0 M|^3.$$

Найти поток поля **a** через  $\partial G$ , если: 1)  $M_0 \notin \overline{G}$ ; 2)  $M_0 \in G$ .

- **85.** В условиях задачи 83 пусть  $M_0 \in \partial G$  и в окрестности  $M_0$ граница  $\partial G$  дважды непрерывно дифференцируема. Пусть  $\partial G_{\varepsilon}$  часть границы  $\partial G$ , лежащая внутри шара  $|\overline{M_0M}|\leqslant \varepsilon$ , а  $\Pi_{\varepsilon}$  — поток поля  $\mathbf{a}$  через  $\partial G \setminus \partial G_{\varepsilon}$ . Найти  $\lim_{\longrightarrow} \Pi_{\varepsilon}$ .
- 86. Сформулировать аналог теоремы Гаусса-Остроградского для плоских областей и полей.
- 87. Пусть  $\gamma$  гладкая плоская простая (с. 295) кривая, замыкание которой не содержит начала координат, п — непрерывная единичная нормаль к  $\gamma$ . Показать, что интеграл Гаусса

$$\int_{\gamma} \frac{\cos(\mathbf{r}, \mathbf{n})}{r} \, ds$$

есть поток некоторого поля через  $\gamma$ .

- 88. Пусть в условиях задачи  $87 \gamma$  есть граница ограниченной области G. Вычислить интеграл Гаусса, если:
  - 1)  $O \notin \overline{G}$ ; 2)  $O \in G$ .
- 89. Покажите, что значение интеграла Гаусса из задачи 87 равно полярному углу, под которым видна кривая  $\gamma$  из начала координат.

Найти работу поля  ${f a}$  вдоль прямой от точки  $A({f r}_1)$  до точки  $B({f r}_2)$  $(r = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}, r = |\mathbf{r}|) (90, 91).$ 

- **90.** 1)  $\mathbf{a} = \mathbf{r}$ ; 2)  $\mathbf{a} = \mathbf{r}/r$ ; 3)  $\mathbf{a} = \mathbf{r}/r^3$ ;
- 4)  $a = f(r)\mathbf{r}, f(r)$  непрерывная функция,  $r \geqslant 0$ ;
- 5)  $\mathbf{a} = [\mathbf{c}, \mathbf{r}], \ \mathbf{c} = \text{const.}$

**91.** 1) 
$$\mathbf{a} = \frac{\mathbf{i}}{y+z} + \frac{\mathbf{j}}{z+x} + \frac{\mathbf{k}}{x+y}$$
;  $A(-1;0;3)$ ,  $B(0;-1;2)$ ;

- 2)  $\mathbf{a} = \mathbf{i} e^{y-z} + \mathbf{j} e^{z-x} + \mathbf{k} e^{x-y}$ ; A(0;0;0), B(1;3;2); 3)  $\mathbf{a} = (y \mathbf{i} + z \mathbf{j} + x \mathbf{k}) / \sqrt{x^2 y^2 + z^2 x + z}$ ; A(1;1;1), B(6;6;6).
- **92.** Вычислить работу плоского поля a вдоль кривой  $\gamma$ , если:
- 1)  $\mathbf{a} = (x+y)\mathbf{i} + (x-y)\mathbf{j}$ ;  $\gamma$  часть графика y = |x| от точки (-1;1) до точки (2;2);
- 2)  $\mathbf{a} = (y^2 \mathbf{i} x^2 \mathbf{j}) / \sqrt{x^2 + y^2}$ ;  $\gamma$  полуокружность  $x^2 + y^2 = 1$  от точки (1;0) до точки (-1;0) в области y>0;
- 3)  $\mathbf{a} = f(x)\,\mathbf{i} + f(y)\,\mathbf{j};\;\gamma$  дуга астроиды  $x^{2/3} + y^{2/3} = 1$  от точки (1;0) до точки (0;1), расположенная в первом квадранте (f(x) непрерывная функция).
- **93.** Вычислить работу поля  $\mathbf{a} = y \, \mathbf{i} + z \, \mathbf{j} + x \, \mathbf{k}$  от точки A(a; 0; 0)до точки  $B(a; 0; 2\pi b)$ :
  - 1) вдоль винтовой линии  $x = a \cos t$ ,  $y = a \sin t$ , z = bt;

2) вдоль отрезка AB.

Является ли данное поле потенциальным?

- 94. Найти по формуле Стокса (19) циркуляцию поля а вдоль контура Г, ориентированного по часовой стрелке при взгляде на него из начала координат, если:
  - 1)  $\mathbf{a} = \hat{z}^2 \mathbf{i} + x^2 \mathbf{j} + y^2 \mathbf{k}$ ;  $\Gamma = \{x^2 + y^2 + z^2 = 1, x + y + z = 1\}$ ;
- 2)  $\mathbf{a} = (y+z)\mathbf{i} + (z+x)\mathbf{j} + (x+y)\mathbf{k}; \ \Gamma = \{4(x^2+y^2) = z^2, \ x+y+1\}$ +z=1;

  - 3)  $\mathbf{a} = x^3 \mathbf{i} + y^3 \mathbf{j} + z^3 \mathbf{k}$ ;  $\Gamma = \{z = x^2 + y^2, z + y = 2\}$ ; 4)  $\mathbf{a} = y \mathbf{i} x \mathbf{j} + z \mathbf{k}$ ;  $\Gamma = \{x^2 + y^2 + z^2 = 4, x^2 + y^2 = z^2, z \ge 0\}$ ;
  - 5)  $\mathbf{a} = z^2 \mathbf{j} + x^2 \mathbf{k}$ ;  $\Gamma = \{y^2 + z^2 = 9, 3z + 4x = 5\}$ ;
  - 6)  $\mathbf{a} = zx \, \mathbf{i} + xy \, \mathbf{j} + yz \, \mathbf{k}; \ \Gamma = \{y^2 + z^2 = 1, \ x + y + z = 1\}.$
  - **95.** Для поля  $\mathbf{a} = -y \mathbf{i}/(x^2 + y^2) + x \mathbf{j}/(x^2 + y^2)$  найти циркуляцию:
- 1) по окружности  $x^2 + y^2 = R^2$ ,  $z = z_0$ , ориентированной против часовой стрелки при взгляде из точек оси Oz, где  $z > z_0$ ;
- 2) по окружности  $(x-R)^2 + (y-2R)^2 = R^2$ ,  $z=z_0$ , ориентация произвольна.
- **96.** Найти циркуляцию поля  $\mathbf{a} = (-y\,\mathbf{i} + x\,\mathbf{j})/(x^2 + y^2) + z\mathbf{k}$  по окружности  $\Gamma = \{x^2 + y^2 + z^2 = 1, x + y + z = 0\},\$

ориентированной против часовой стрелки при взгляде из точек оси Oz, где z > 1.

- 97. В условиях задачи 64 найти циркуляцию поля **v**:
- 1) по окружности радиуса R, которая лежит в плоскости, перпендикулярной оси вращения, и ориентирована по направлению вращения;
- 2) по окружности радиуса R, которая ориентирована так же, как и в 1), но плоскость которой составляет угол  $\alpha$  с осью вращения.
- **98.** В условиях задачи 64 примем ось вращения за ось Oz, направив ее по вектору угловой скорости. Пусть G — ограниченная односвязная область в плоскости Oxy с границей  $\gamma$  — кусочно гладким простым замкнутым контуром,  $\coprod$  — цилиндр с основанием  $\overline{G}$  и образующими, параллельными оси вращения. Пусть  $\Gamma$  — замкнутая кусочно гладкая кривая на поверхности цилиндра Ц, которая взаимно однозначно проектируется на  $\gamma$ . Доказать, что циркуляция поля  ${\bf v}$ по  $\Gamma$  равна  $2\omega \cdot \mu G$ , где  $\mu G$  — площадь G.
- 99. Магнитное поле прямого бесконечного проводника постоянного тока I(I>0) задается как поле вектора напряженности **H**. Если ось Oz совместить с проводником по направлению тока, то

$$\mathbf{H} = 2I \, \frac{-y \, \mathbf{i} + x \, \mathbf{j}}{x^2 + y^2}.$$

1) Убедиться, что  $rot \mathbf{H} = \mathbf{0}$  (в отличие от  $rot \mathbf{v}$  из задачи 64).

- 2) Найти циркуляцию поля  ${\bf H}$  по окружности радиуса R с центром на оси Oz:
  - а) лежащей в плоскости, перпендикулярной оси Oz;
  - б) лежащей в плоскости, которая составляет угол  $\alpha$  с осью Oz.
- 3) Взяв такие же, как и в задаче 98, область G с границей  $\gamma$ , цилиндр Ц и кривую  $\Gamma$  на его поверхности и допустив, что ось Oz не является образующей цилиндра Ц, доказать, что циркуляция  $\mathbf H$  по  $\Gamma$  равна циркуляции  $\mathbf H$  по  $\gamma$ .
- 4) Допустив, что  $O \in G$ , и взяв окружность с центром O, лежащую в G, доказать, что циркуляции  $\mathbf H$  по  $\gamma$  и по этой окружности равны.
- 5) Доказать, что если контур  $\Gamma$  (из 3)) не охватывает ось Oz, т. е. проводник с током, то циркуляция H по  $\Gamma$  равна нулю, а если  $\Gamma$  охватывает ось Oz, то циркуляция H по  $\Gamma$  такая же, как и по окружности из п. 2).
- **100.** Найти с точностью до  $o(\varepsilon^2)$  абсолютную величину циркуляции поля **a** по окружности  $(x-1)^2+(y-1)^2+(z-1)^2=\varepsilon^2, \quad x+y+z=3,$  если:

1) 
$$\mathbf{a} = \frac{1}{y} \mathbf{i} + \frac{1}{z} \mathbf{j} + \frac{1}{x} \mathbf{k}$$
; 2)  $\mathbf{a} = \frac{y}{\sqrt{z}} \mathbf{i} - \frac{x}{\sqrt{z}} \mathbf{j} + \sqrt{xy} \mathbf{k}$ .

- 101. Доказать формулу: 1) (20); 2) (21); 3) (22).
- **102.** Пусть u и  $\mathbf{a}$  непрерывно дифференцируемые поля в  $\Omega$ ,  $M \in \Omega$ . Рассмотрим совокупность содержащих M областей  $G \subset \Omega$ , для которых справедлива формула (23). Пусть d(G) диаметр,  $\mu(G)$  объем G. Доказать, что:
  - 1) grad  $u(M) = \lim_{d(G)\to 0} \frac{1}{\mu(G)} \iint_{\partial G} u\mathbf{n} \, dS;$
  - 2)  $\operatorname{rot} \mathbf{a}(M) = \lim_{d(G) \to 0} \frac{1}{\mu(G)} \iint_{\partial G} [\mathbf{n}, \mathbf{a}] dS.$

**103.** Какие из указанных полей потенциальны в  $R^3$ :

- 1)  $\mathbf{a} = x^2 \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k};$  2)  $\mathbf{a} = xz \mathbf{i} + zy \mathbf{j} + yx \mathbf{k};$
- 3)  $\mathbf{a} = (ax + y + bz)\mathbf{i} + (2x + cy + dz)\mathbf{j} + (bx + dy + cz)\mathbf{k};$
- 4)  $\mathbf{a} = yz \cos xy \,\mathbf{i} + xz \cos xy \,\mathbf{j} + \sin xy \,\mathbf{k}$ ?
- **104.** Потенциально ли поле  $\mathbf{H} = 2I \; \frac{-y \, \mathbf{i} + x \, \mathbf{j}}{x^2 + y^2} \,, \quad (x; y) \neq (0; 0)$ :
- 1) в полупространстве x > 0;
- (2) во всем пространстве без оси (Oz)?
- **105.** Проверить, что поле  $\mathbf{H} = 2I(-y\,\mathbf{i} + x\,\mathbf{j})/(x^2 + y^2)$  потенциально в полупространстве y>0, и найти его потенциал.
  - 106. Проверить потенциальность и найти потенциал поля:
  - 1)  $\mathbf{a} = (y+z)\mathbf{i} + (z+x)\mathbf{j} + (x+y)\mathbf{k};$

2) 
$$\mathbf{a} = \frac{yz\,\mathbf{i} + zx\,\mathbf{j} + xy\,\mathbf{k}}{1 + x^2y^2z^2}; \ \ 3) \ \mathbf{a} = y\,\mathbf{i} + x\,\mathbf{j} + e^z\,\mathbf{k};$$

4) 
$$\mathbf{a} = \mathbf{r}/r$$
; 5)  $\mathbf{a} = r\mathbf{r} \ (\mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}, \ r = |\mathbf{r}|)$ .

- **107.** Пусть f(r), r>0, дифференцируемая функция. Доказать, что поле (центральное)  $\mathbf{a}=f(r)\mathbf{r}$  потенциально при r>0 ( $\mathbf{r}=x\,\mathbf{i}+y\,\mathbf{j}+z\,\mathbf{k},\ r=|\mathbf{r}|$ ). Найти потенциал  $\mathbf{a}$ .
- **108.** Доказать, что потенциал u непрерывно дифференцируемого поля  ${\bf a}$  удовлетворяет уравнению  $\Delta u = {\rm div}\, {\bf a}.$
- 109. Доказать, что если поле **a** потенциально в звездной (см. задачу 30) относительно точки  $M_0(r_0)$  области  $\Omega$ , то его потенциал в точке  $M(\mathbf{r})$  определяется формулой

$$u(\mathbf{r}) = \int_{0}^{1} (\mathbf{a}(\mathbf{r}_{0} + t(\mathbf{r} - \mathbf{r}_{0})), \mathbf{r} - \mathbf{r}_{0}) dt + \text{const.}$$

- ${f 110.}$  Доказать, что положения устойчивого равновесия частицы в потенциальном силовом поле  ${f F}=-\operatorname{grad} u$  находятся в точках минимума потенциала u.
- **111.** Доказать, что потенциальное поле не имеет замкнутых векторных линий.
- **112.** Является ли поле **a** потенциальным, соленоидальным, если ( $\mathbf{r} = x \, \mathbf{i} + y \, \mathbf{j} + z \, \mathbf{k}, \ r = |\mathbf{r}|$ ):
  - 1)  $\mathbf{a} = \mathbf{r}/r^3$ ; 2)  $\mathbf{a} = \mathbf{r}/r$ ?
  - 113. Является ли поле а соленоидальным, если:
  - 1)  $\mathbf{a} = x(z^2 y^2)\mathbf{i} + y(x^2 z^2)\mathbf{j} + z(y^2 + x^2)\mathbf{k};$
  - 2)  $\mathbf{a} = (1 + 2xy)\mathbf{i} y^2z\mathbf{j} + (z^2y 2yz + 1)\mathbf{k};$
  - 3)  $\mathbf{a} = x^2 yz \,\mathbf{i} + zy^2 z \,\mathbf{j} xyz^2 \,\mathbf{k}$ ; 4)  $\mathbf{a} = (-y \,\mathbf{i} + x \,\mathbf{j})/(x^2 + y^2) + xy\mathbf{k}$ .
- **114.** Доказать, что условие (34) необходимо и достаточно для соленоидальности поля.
- **115.** Найти такую дифференцируемую функцию  $\Phi$ , чтобы поле  $\mathbf{a} = \Phi(r)\mathbf{r}$ ,  $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ ,  $r = |\mathbf{r}|$ , было соленоидальным.
- **116.** Поток поля  $\mathbf{a} = \mathbf{r}/r^3$ ,  $r = |\mathbf{r}|$ , определенного в области r > 0, через сферу r = 1 равен  $4\pi$ . Означает ли это, что данное поле несоленоидально при том определении соленоидальности, которое принято в этом параграфе?
- **117.** 1) Пусть  $\mathbf{A}_1$  и  $\mathbf{A}_2$  векторные потенциалы поля  $\mathbf{a}$ ; доказать, что поле  $\mathbf{b} = \mathbf{A}_1 \mathbf{A}_2$  безвихревое;
- 2) пусть  $\mathbf{A}$  векторный потенциал поля  $\mathbf{a}$ , поле  $\mathbf{b}$  безвихревое; доказать, что  $\mathbf{A} + \mathbf{b}$  также векторный потенциал поля  $\mathbf{a}$ .
- **118.** Проверить соленоидальность поля **a** и найти его векторный потенциал, если:
  - 1)  $\mathbf{a} = \mathbf{c}$ ,  $\mathbf{c}$  постоянный вектор; 2)  $\mathbf{a} = 2yx\,\mathbf{k}$ ;

- 3)  $\mathbf{a} = z \mathbf{i} + x \mathbf{j}$ ; 4)  $\mathbf{a} = y \mathbf{i} + z \mathbf{j} + x \mathbf{k}$ ;
- 5)  $\mathbf{a} = 3y^2 \mathbf{i} 3x^2 \mathbf{j} (y^2 + 2x) \mathbf{k}$ ; 6)  $\mathbf{a} = ye^z \mathbf{i} + ze^x \mathbf{j} + xe^y \mathbf{k}$ .
- **119.** Доказать, что если векторное поле **a** непрерывно дифференцируемо и соленоидально в области G, звездной (см. задачу 30) относительно точки  $M_0(\mathbf{r}_0) \in G$ , то

$$\mathbf{A}(M) = \int_{0}^{1} \left[ \mathbf{a}(\mathbf{r}_{0} + t(\mathbf{r} - \mathbf{r}_{0})), \mathbf{r} \right] t dt$$

- один из его векторных потенциалов ( $\mathbf{r}_0$  и  $\mathbf{r}$  радиус-векторы точек  $M_0$  и M).
- **120.** Найти векторный потенциал магнитного поля бесконечного прямого проводника постоянного тока I (ось Oz направить по проводнику, см. задачу 99).
- **121.** Электрический заряд q, движущийся с постоянной скоростью  $\mathbf{v}$ , создает в пространстве (вакууме) в фиксированный момент времени магнитное поле напряженности

$$\mathbf{H}(M) = \frac{[q\mathbf{v}, \mathbf{r}]}{4\pi r^3},$$

- где  ${\bf r}$  вектор с началом в заряде, а концом в  $M,\ r=|{\bf r}|.$  Найти векторный потенциал этого поля.
- **122.** Доказать, что векторные линии соленоидального поля либо замкнуты, либо оканчиваются на границе области определения поля.
- **123.** Доказать, что поток соленоидального поля через поперечное сечение его векторной трубки одинаков вдоль всей трубки.
- **124.** Пусть u дважды непрерывно дифференцируемое поле в  $\Omega$ , **a** и **b** дифференцируемые поля в  $\Omega$ , **a** = **b** + grad u. Доказать, что для того, чтобы поле **b** было соленоидальным, необходимо и достаточно, чтобы поле u удовлетворяло уравнению  $\Delta u = \operatorname{div} \mathbf{a}$ .
  - 125. Доказать гармоничность плоского поля

$$\mathbf{a} = \mathbf{r}/r^2, \quad \mathbf{r} = (x; y), \quad r = |\mathbf{r}|.$$

- **126.** Доказать гармоничность поля сил тяготения точечной массы и поля кулоновых сил точечного заряда.
- **127.** Доказать, что потенциал гармонического поля есть функция гармоническая, т. е.  $\Delta u = 0$ .
- **128.** Пусть ограниченная область G имеет кусочно гладкую границу  $\partial G$ , функция u, определенная в  $\overline{G}$ , гармонична в G, а grad u непрерывен в  $\overline{G}$ . Доказать, что:

1) 
$$\iint\limits_{\partial C} \frac{\partial u}{\partial \mathbf{n}} \, dS = 0$$
, где  $\mathbf{n}$  — нормаль к  $\partial G$ ;

2) если u=0 на  $\partial G$ , то u=0 в  $\overline{G}$ , т. е. гармоническая функция однозначно определяется своими значениями на границе;

- 3) если  $\frac{\partial u}{\partial \mathbf{n}} = 0$  на  $\partial G$ , то  $u = \mathrm{const}$  в  $\overline{G}$ , т. е. гармоническая функция определяется с точностью до постоянной значениями своей нормальной производной на границе.
- **129.** В условиях задачи 128 пусть  $x \in G$ ,  $\Omega_{\varepsilon}(x)$  шар с центром x и радиусом  $\varepsilon$ , лежащий в G. Взяв

$$v = \frac{1}{4\pi|x-y|}, \quad y \in \overline{G}, \quad y \neq x,$$

и применив формулу Грина (28) к области  $G \setminus \Omega_{\varepsilon}(x)$ , доказать, что

$$u(x) = \frac{1}{4\pi} \int_{\partial G} \left( u(y) \nabla_y \frac{1}{|x-y|} - \frac{1}{|x-y|} \nabla u(y), \mathbf{n}(y) \right) dS_y,$$

где нижний символ y указывает переменную точку,  $\mathbf{n}(y)$  — единичная внешняя нормаль к границе в точке y.

**130.** Пусть функция u гармонична в окрестности точки  $x \in \mathbb{R}^3$ ,  $S_R(x)$  и  $\Omega_R(x)$  — сфера и шар радиуса R с центром x, лежащие в этой окрестности. Доказать теоремы о среднем для гармонических функций:

$$1) \ \ u(x) = \frac{1}{4\pi R^2} \iint\limits_{S_R(x)} \ u(y) \, dS; \ \ 2) \ \ u(x) = \frac{3}{4\pi R^3} \iint\limits_{\Omega_R(x)} \ u(y) \, dV.$$

131. Из уравнений электростатики

$$(\nabla, \mathbf{E}) = \rho/\varepsilon_0, \quad [\nabla, \mathbf{E}] = \mathbf{0},$$

где  ${\bf E}$  — поле электрической напряженности,  $\rho$  — плотность распределения зарядов,  $\varepsilon_0 = {\rm const} > 0$ , вывести закон  $\Gamma$ аусса

$$\iint\limits_{\partial G} (\mathbf{n}, \mathbf{E}) \, dS = \frac{Q}{\varepsilon_0}$$

о пропорциональности потока напряженности через границу области G (с внешней нормалью  $\mathbf{n}$ ) и полного заряда Q, находящегося в этой области.

**132.** Пусть поле скоростей  $\mathbf{v}$  движущейся сплошной среды потенциально. Доказать, что если среда несжимаема, то потенциал u поля  $\mathbf{v}$  гармоничен (можно воспользоваться тем, что объемный расход среды через любую замкнутую поверхность равен нулю).

#### ОТВЕТЫ

- **1.** a)  $x^2 y^2 + z^2 = 1$ ; 6)  $x^2 y^2 + z^2 = -2$ .
- **2.** x-2=y-2=(z+2)/2.
- **3.** 1) Объединение двух плоскостей  $(\mathbf{a}-C\mathbf{b},\mathbf{r})=0,\ (\mathbf{b},\mathbf{r})\neq 0,\ C=$  = const;
  - 2) плоскость  $(\mathbf{a}, \mathbf{b}, \mathbf{r}) = \text{const.}$

- 4.  $\{u=2\}$  отрезок  $y=z=0, -1 \leqslant x \leqslant 1; \{u=\text{const}>2\}$  эллипсоиды  $(4x^2)/(u^2) + 4(y^2 + z^2)/(u^2 - 4) = 1$ ;  $\max u = 2\sqrt{1 + R^2}$ .
- **5.** Однополостные конусы с вершиной (0;0;0) и осью  $Oz; \max u =$  $= \cos(\pi/12) = (\sqrt{6} + \sqrt{2})/4, \ \min u = \sin(\pi/12) = (\sqrt{6} - \sqrt{2})/4.$ 
  - **6.** 1) (2;2;2); 2) (2/3;2/3;-2/3); 3) (4;1;1); 4) (0;0;1).
  - **7.** a)  $xy = 18z^2$ ; 6)  $x = 2y^2$ ; z = 1/(3y),  $y \neq 0$ ,  $y \neq 1$ ; B) (2; 1; 1/3).
  - **8.** 1) 0; 2)  $\arccos(-1/3)$ ; 3)  $\arccos(-8/9)$ ; 4)  $\pi/2$ .
  - **9.** 1/9. **10.**  $\inf |\operatorname{grad} u| = 0$ ,  $\sup |\operatorname{grad} u| = 1/2$ .
  - **15.** 1)  $\mathbf{r}/r$ ; 2)  $2\mathbf{r}$ ; 3)  $-\mathbf{r}/r^3$ ; 4)  $\mathbf{r}/r^2$ ; 5)  $\mathbf{a}$ ; 6)  $[\mathbf{a}, \mathbf{b}]$ ;
  - 7) a(b,r) + b(a,r); 8) 2[a,[r,a]].
  - **17.**  $\varepsilon/| \operatorname{grad} u(M_0)|$ .
  - **21.** 1)  $\frac{\partial u}{\partial r} \mathbf{e}_r + \frac{1}{r} \frac{\partial u}{\partial \varphi} \mathbf{e}_{\varphi} + \frac{\partial u}{\partial z} \mathbf{e}_z;$
  - 2)  $\frac{\partial u}{\partial r} \mathbf{e}_r + \frac{1}{r \cos \psi} \frac{\partial u}{\partial \varphi} \mathbf{e}_{\varphi} + \frac{1}{r} \frac{\partial u}{\partial \psi} \mathbf{e}_{\psi}$ .
  - **24.** 1)  $\cos(\mathbf{r}, \mathbf{n}) = (\mathbf{r}, \mathbf{n})/r$ ; 2)  $-(\mathbf{r}, \mathbf{n})/r^3$ ; 3)  $(\mathbf{n}, \mathbf{a})$ ; 4)  $f'(r)(\mathbf{n}, \mathbf{r})/r$ . **25.** 2u/r,  $r = \sqrt{x^2 + y^2 + z^2}$ .

  - **26.**  $(\operatorname{grad} u, \operatorname{grad} v)/|\operatorname{grad} v|$ .
  - **27.** a) z = 0;  $y = x^2$ ,  $x \in (0, 1]$ ; 6) z = 1/x,  $y = x^2$ ,  $x \in (0, 1]$ .
  - **28.** 1) xy = C; 2)  $x^2 y^2 = C$ ; 3)  $y = Cx^2$  if x = 0,  $x^2 + y^2 \neq 0$ ;
  - 4)  $2x^2 + y^2 = C$ ,  $x \neq 0$ .
  - **29.** 1)  $(as; bs^2; cs)$ , s > 0; 2) (as; bs; c/s), s > 0;
  - 3)  $x^2 y^2 = C_1$ ,  $x^2 z^2 = C_2$ .
  - **31.** 1) x = as, y = b, z = cs, s > 0; 2) x = a,  $y^2 + z^2 = b^2$ ;
  - 3)  $x = as^2$ , y = bs, z = c, s > 0; 4) x = as, y = b/s, z = c, s > 0;
  - 5)  $1/x 1/y = C_1$ ,  $z = C_2$ .
  - **32.** 1)  $\mathbf{r} = s\mathbf{r}_0, \ s > 0; \ 2) \ \mathbf{r} = \mathbf{r}_0 + \mathbf{a}t, \ \mathbf{a} = (a_1; a_2; a_3);$
  - 3)  $\mathbf{r} = s\mathbf{r}_0, \ s > 0; \ 4) \ \mathbf{r}^2 = \text{const}, \ (\mathbf{c}, \mathbf{r}) = \text{const}; \ 5) \ \mathbf{r} = \mathbf{r}_0 + \mathbf{c}t;$
  - 6)  $x^2 + y^2 + z^2 = R^2$ , x + y + z = C;
  - 7) x = as,  $y = bs^2$ , z = cs, s > 0.
  - **33.** 1)  $x = \cos t$ ,  $y = \sin t$ , z = ct;
  - 2) 1/x 1/z = 1,  $1/x + 1/(2y^2) = 4$ ; 3) y = x,  $z^2 = 2(x^2 1)$ .
- **34.**  $x^2 + y^2 = R^2$ , z = C (ось Oz совпадает с проводником, а по направлению — с током).
  - **35.**  $x^2 + y^2 = 4z^2$ .
  - **36.** Четверть тора  $8(y^2 + z^2) = (x^2 + y^2 + z^2 + 1)^2$ .
  - **38.** 1) 3; 2) 4r; 3) 2/r; 4)  $2x^2/(x^2+y^2)^{3/2}$ ; 5)  $12xy^2+4x^3-6xz$ .
  - **39.**  $\Delta u \equiv \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial u^2} + \frac{\partial^2 u}{\partial z^2}$ .
  - **40.** 1)  $(\operatorname{grad} u)^2 + u \operatorname{div} \operatorname{grad} u \equiv (\nabla u)^2 + u \Delta u;$
- 21 Под ред. Л.Д.Кудрявцева, т. 3