Small exercise on torque control for a stall controlled WT

This is a small exercise that models the rotational speed during start up and running in a turbulent wind for a wind turbine with fixed pitch (stall regulated)

Instead of the BEM code just assume that you can simply use a Cp- λ curve for constant pitch angle.

Values for $C_p(\lambda)$ are uploaded in the file Cp-Lambda.txt In the file usim.dat is given a turbulent wind history

The rotor radius is R=9.5m, the density ρ =1.225kg/m³. For a given ω the aerodynamic torque can be computed as $M_R = P/\omega = \frac{1}{2} \rho V_o^3 \pi R^2 C_p(\lambda)/\omega$

An asynchronous generator is assumed having following characteristics

$$M_G(\omega) = \begin{cases} 0 \text{ Nm} & \omega < 5 \text{ rad/s} \\ 2.55 \cdot 10^5 (\omega - 5) & \omega > 5 \text{ rad/s} \end{cases}$$

The equation determining the rotational speed as function of time is

$$I\frac{d\omega}{dt} = M_R - M_G$$

Where I=15000 kgm² is the moment of inertia for the drive train (mainly the blades)

- Plot Cp(λ)
- 2) Plot Vo(t) (turbulent wind)
- 3) Discuss how to solve numerically $\omega(t)$
- 4) Calculate $\omega(t)$, $M_B(t)$ and $M_G(t)$ for an initial angular velocity of $\omega(0)=1$ rad/s for $V_0=10$ m/s.
- 5) Calculate the slip SL
- 6) Repeat Q#4, but now using the turbulent inflow wind speed, $V_o(t)$ caused by atmospheric turbulence. Compare and discuss $V_o(t)$ and $\omega(t)$
- 7) Simulate a free running turbine for V_0 =const=10m/s and $\omega(0)$ =1