<Cited Document 1>

Microfilm in Japanese Utility Model Application No. S63-015324 (Japanese Utility Model Publication No. H01-120328)

(Operation)

Spraying ceramic material on the surface of electrode or the inner surface of chamber makes it possible to form a high-purity ceramic coating.

(Embodiment)

Fig. 1 is a sectional view of a plasma processing unit with the device applied, in which the plasma processing unit includes: an opening 2 formed on a table 1; a chamber 3 made of aluminum alloy fixed on the table 1 to surround the opening 2; a conductive holder 4 provided on the chamber 3; an upper electrode 5 held on the holder 4; a lower electrode 6 placing a sample W such as semiconductor wafer, grounded and inserted to the opening 2 from below; a gas introduction hole 7 formed in the holder 4 so as to introduce reaction gas into the chamber 3; and an exhaust path 8 formed in the table 1 so as to depressurize in the chamber 3.

In addition, there is formed a sprayed film 9 made by ceramic material and having the thickness of 300 μm at the inner surface of the chamber 3 and the lower surface of the upper electrode 5. For forming this sprayed film 9, for example, a spraying gun 10 is used as shown in Fig. 2.

In the example of Figure, although there has been exemplified an example of forming the sprayed film 9 at the inner surface of the chamber 3 and the lower surface of the upper electrode 5, the sprayed film 9 may be formed at the part other than those. Further, the device is applicable to an RIE processing unit as well as a plasma processing

unit.

According to the device as described above, ceramic material is sprayed to form a coating on the part exposed by plasma, ion, electron or active radical such as an inner surface of chamber and a surface of electrode of plasma processing unit, etc. Therefore, the material composing a chamber or an electrode is not attached to the surface of sample, and in the case of forming a coating by spraying a high-purity coating can be formed without the use of binder. In addition, the coating can be made thicker than by CVD method or epitaxial coating to improve durability.

⑨ B 本 国 特 許 庁 (JP) ⑪実用新案出願公開

◎ 公開実用新案公報(U) 平1-120328

⑤Int. Cl.⁴

識別記号

庁内整理番号

@公開 平成1年(1989)8月15日

H 01 L 21/302

C - 8223 - 5F

審査請求 未請求 請求項の数 1 (全2頁)

60考案の名称 試料処理装置

> 顧 昭63-15324 ②実

②出 願 昭63(1988)2月8日

何考 案 者 土 方 神奈川県相模原市相模大野7丁目36番1-230号

⑰考 案 者 植 原

晃 神奈川県横浜市旭区若葉台2丁目24番204号

切出 顧 人 東京応化工業株式会社 神奈川県川崎市中原区中丸子150番地

197代 理 人 弁理士 下田 容一郎

外2名

勧実用新案登録請求の範囲

半導体ウエハー等の試料にプラズマ処理或いは リアクテイブイオンエッチング処理等を施す装置 において、この装置の処理空間を形成するか処理 空間に臨む部材の表面にはセラミツク材料からな る溶射皮膜が形成されていることを特徴とする試 料処理装置。

図面の簡単な説明

第1図は本考案に係る処理装置の断面図、第2 図は溶射被膜の形成工程を示す図である。

尚、図面中、3はチャンパー、4はホルダー、 5は上部電極、9は溶射被膜、10は溶射ガン、 Wは試料である。

⑩ 日本 国 特 許 庁 (JP) ⑪実用新案出願公開

@ 公開実用新案公報 (U) 平1-120328

Solnt. Cl.⁴

識別配号

庁内整理番号

@公開 平成1年(1989)8月15日

H 01 L 21/302

C - 8223 - 5F

審査請求 未請求 請求項の数 1 (全 頁)

日考案の名称 試料処理装置

> 迎実 頤 昭63-15324

22出 顧 昭63(1988) 2月8日

方 案 者 ②考

神奈川県相模原市相模大野7丁目36番1-230号 勇

原 72考

晃 神奈川県横浜市旭区若葉台2丁目24番204号

勿出 顕

東京応化工業株式会社 神奈川県川崎市中原区中丸子150番地

弁理士 下田 容一郎 外2名 個代 理 人

- お案の名称
 試料処理装置
- 2. 実用新案登録請求の範囲

半導体ウェハー等の試料にプラズマ処理或いは リアクティブイオンエッチング処理等を施す装置 において、この装置の処理空間を形成するか処理 空間に臨む部材の表面にはセラミック材料からな る溶射皮膜が形成されていることを特徴とする試 料処理装置。

3. 考案の詳細な説明

(産業上の利用分野)

本考案は半導体ウエハー等の試料にプラズマ エッチング処理やリアクティブイオンエッチング (RIE) 処理等を施すための装置に関する。

(従来の技術)

半導体ウエハー等の試料表面にドライエッチング処理を行う装置としてブラズマ処理装置やRIE処理装置が知られており、これらの装置はチャンバー内に電極を配設しており、これらチャン

313

バー及び電極をアルミニウム合金、ステンレがが成して構成している。しかしまって構成している。になる。しかには、アルミニウム合金やファンクががあれて、では、アルションがは、アングではないのでは、アングでは、アングでは

そこで、チャンバー内周面や電極表面に有機膜コーティングを施したり、アルマイト処理を行ったり更にはCVDによるコーティングを施すことが考えられる。

(考案が解決しようとする課題)

チャンバ内周面や電極表面に有機膜コーティングを施した場合には、有機膜自体弱く傷つきやすく、プラズマ放電によって下地が露出し、またアルマイト処理によって形成した A L 20s の膜は耐久性に劣りスパッタされて消失してしまい、更に

C V D による場合には膜の厚みを大きくすることができない。

(課題を解決するための手段)

上記課題を解決すべく本考案は、試料処理装置 の電極表面又はチャンバー内面にセラミック材料 からなる浴射被膜を形成するようにした。

(作用)

セラミック材料を電極表面或いはチャンバー内 面に溶射することで、バインダー等を含まない 高純度のセラミック被膜を形成することができる。 (実施例)

以下に本考案の実施例を添付図面に基づいて説明する。

第1図は本考案を適用したブラズマ処理装置の断面図であり、ブラズマ処理装置はテーブル1に開口2を形成し、この開口2を囲むようにテーブル1上にアルミニウム合金製のチャンバー3を固定し、このチャンバー3の上部に導電性ホルダー4を設け、このホルダー4に上部電極5を保持し、また前記開口2には下方から半導体ウエハー

等の試料Wを載置するアースされた下部電極 6 を 挿入し、更にホルダー4にはチャンバー3内に反 応ガスを導くガス導入孔7を形成し、テーブル1 にはチャンバー3内を減圧するための排気路 8 を 形成している。

ところで、前記チャンバー3内面及び上部電極5の下面にはセラミック材料からなる厚さ… μ m の溶射被膜9が形成されている。この溶射被膜9を形成するには、例えば第2図に示す溶射ガン10を用いる。

溶射ガン10は銃身11の後端にセラミック材料供給用パイプ12を接続し、銃身11の後下部にはチッ素ガス導入用のバルブ機構13、アセチレンガス導入用のバルブ機構14及び酸素ガス導入用のバルブ機構15を設け、更に銃身11の後上部にはスパークブラグ16を取付けている。

而して、銃身11の後端部に供給されたAℓ₂03 或いはSiC 等の粉末状のセラミック材料はチッ素ガス雰囲気中を通ってアセチレンガスと酸素との混合ガス中に供給される。そして、この

混合ガスをスパークブラグ16によって、爆発させると、銃身11内は3300℃以上の高温になるともに高速の衝撃波が発生し、セラミッ材料は半溶融状態となり高速でチャンバー3内で以は半溶融が変更し、溶射被膜9を形成する装置としては図ったものに限らず、ブラズマ溶射装置を用いてもよい。

また、図示例にあってはチャンバー3内面及び上部電極5下面に溶射被膜9を形成した例を示したが、これら以外の部分に形成してもよく、更に本考案はブラズマ処理装置に限らずRIE処理装置等にも適用される。

実施例1

平行平板型アルミニウム電極に A L 2 O 3 を溶射 して 2 O O μ m 厚の溶射被膜を形成したものと、 溶射被膜を形成していないアルミニウム電極を用 いたプラズマエッチング装置にて、CF 4: O 2 が容量 比で 9 2 : 8 の混合ガスを用い、出力 2 O O W、 O . 3 Torrの条件でシリコン窒化膜をエッチング

処理した。溶射被膜を形成した電極を用いて製造 した半導体素子は、溶射被膜を形成していない電 極を用いて製造した半導体素子に比べてコンタク ト抵抗値等の電気特性が良好であった。

実施例 2

実施例1と20。の被形を120。の被形を120。の被形を120。の被形を120。の被形を120。の被形を120。の被形を120。の被形を120。で極いるでは一次では一次では一次では120。

素子は溶射被膜が形成された電極を用いてエッチング処理した半導体素子に比べて 5 %低下していた。その理由は電極から飛び出した金属原子の汚染によるためと思われる。

(考案の効果)

4. 図面の簡単な説明

第1図は本考案に係る処理装置の断面図、第2 図は溶射被膜の形成工程を示す図である。

尚、図面中、3はチャンパー、4はホルダー、

5 は上部電極、 9 は溶射被膜、 1 0 は溶射ガン、 W は試料である。

実用新案登録出願人 東京応化工業株式会社 下 H 容 一 郎 代 理 人 弁理士 大 弁理士 楀 邦 同 弁理士 小小 山 同

321 実開1-120328

手続補正書(開)

昭和63年 3月 18日

特許庁長官 小川邦夫 殿

1. 事件の表示

実願昭63-15324号

2. 考案の名称

試料 処理装置

3. 補正をする者

事件との関係 実用新案登録出願人 東京応化工業株式会社

4. 代 理 人

東京都港区麻布台2丁目4番5号 〒106 メソニック3 9森ビル2階 電話(03)438-9181 (代表) (6735)弁理士 下 田

- 5. 補正命令の日付 自発
- 6. 補正の対象 明細書の考案の詳細な説明の欄
- 7. 補正の内容 明細書第4頁第7行目に「…μ」」とあるを「300 μョ」と訂正する。

実開1-120328

