import pandas as pd import numpy as np **NIC Analysis** Yared Hurisa, Data Scientist, AIR **Network interaction** attributes = pd.read excel(open('NIC Clean Data.xlsx', 'rb'), sheet name='interaction') attributes.rename(columns={'Unnamed: 0':'node names'}, inplace=True) attributes['value'] = 0 attributes['index'] = range(13) attributes['col'] = range(13) A = pd.pivot_table(attributes, values = 'value', index = 'index', columns = 'col').fillna(0).astype(int) A = A.reset index().drop('index', axis=1).astype(int) df = pd.read excel(open('NIC Clean Data.xlsx', 'rb'), sheet name='interaction') node names = df.columns for i in range(13): l.append(str(i)) M = m.to numpy(g = Graph.Adjacency(((M>0).tolist()), mode='directed', weighted=True) g.es['weight'] = M[M.nonzero()] network measures = pd.DataFrame(dict) org = node names, weight in = g.strength(mode='in'), weight out = g.strength(mode='out'), in degree = g.degree(mode='in'), out degree = g.degree(mode='out'), betweenness = g.betweenness(weights='weight'), edge count = g.ecount(), TEMP=[] elist = list(e.tuple) TEMP.append(elist) color assigned = [] for i in range(129): color assigned.append(g.es["color assigned"][i][0]) edge color = [color dict[str(int(col num))] for col num in color assigned g cr = g.layout circle() layout = g_cr $visual style = {}$ visual style["vertex color"] = g.vs['color'] visual style["vertex size"] = g.vs['size'] visual style["vertex frame color"] = g.vs['color'] visual style["vertex label color"] = 'white' visual style["vertex label cex"] = 0.7 visual style["vertex label family"] = 'sans' visual style["vertex label font"] = 2 visual style["edge color"] = edge color visual style["layout"] = layout visual style["edge lty"] = 1 visual style["edge arrow size"] = 0.6 visual style["edge width"] = g.es['weight'] visual style["edge curved"] = 0.2 visual style["bbox"] = (400, 400)visual_style["margin"] = 40 network_measures.to_csv('network measures.csv') plot(g, out name, **visual style) Networking M[M>1] =In [14]: g = Graph.Adjacency(M, mode='directed', weighted=True) network_measures = pd.DataFrame(dict weight_in = g.strength(mode='in', weights='weight'), weight_out = g.strength(mode='out', weights='weight'), in_degree = g.vs.indegree(), out_degree = g.vs.outdegree(), betweenness = g.betweenness(weights='weight'), edge_count = g.ecount(), TEMP=[] elist = list(e.tuple) TEMP.append(elist) color assigned = [] i **in** range edge color = [color dict[str(int(col num))] for col num in color assigned; g_cr = g.layout_circle() visual_style = {} visual_style["vertex_color"] = g.vs['color'] visual_style["vertex_frame_color"] = g.vs['color'] visual style["vertex label cex"] = 0.7 visual_style["margin"] = 40 plot(g, out_name, **visual_style) Out[14]: MDRC WCC **GIA** UNCF GI ASC ATD Capacity In [15]: df = pd.read_excel(open(attributes = pd.DataFrame(node names).rename(columns={0:'alter'} attributes['value'] = 0 df = pd.read excel(open("NIC Clean Data.xlsx", 'rb'), sheet name="advising") df = df.append(attributes).reset index().drop('index', axis=1) df = pd.pivot table(df, values = 'value', index=['alter'], columns = 'ego').fillna(0).astype(int) $M = df.to_numpy()$ g = Graph.Adjacency(M, mode='directed', weighted=True) network measures = pd.DataFrame(dict) org = node names weight in = g.strength(mode='in', weights='weight'), weight out = g.strength(mode='out', weights='weight'), in degree = g.vs.indegree() out degree = g.vs.outdegree(), betweenness = g.betweenness(weights='weight'), edge count = g.ecount(), TEMP=[] elist = list(e.tuple) TEMP.append(elist) g.es["color assigned"] = TEMP color_assigned = [] for i in range(29): color_assigned.append(g.es["color_assigned"][i][0]) edge_color = [color_dict[str(int(col_num))] for col_num in color_assigned; g_cr = g.layout_circle() visual_style = {} visual_style["vertex_color"] = g.vs['color'] visual_style["vertex_size"] = g.vs['size'] visual style["vertex label color"] = 'white' visual style["vertex label cex"] = 0.7 visual style["vertex label family"] = 'sans' visual_style["edge_color"] = edge color visual_style["edge width"] = g.es['weight'] $visual_style["bbox"] = (400, 400)$ visual_style["margin"] = 40 Out[17]: DR GI ASC X

Import the required packages