Why polls really work

A model for a poll

Fixed but unknown proportion q = 1 - p

Bernoulli(p) trials: $X_1, X_2, ..., X_n = \begin{cases} 1 & \text{with probability p,} \\ 0 & \text{with probability q.} \end{cases}$

Accumulated successes: $S_n = X_1 + X_2 + \cdots + X_n$

How are the error ϵ , the confidence 1 – δ , and the sample size n related?

Error ϵ	Confidence 1 – δ	Sample size n
0.10	0.90	250
0.05	0.95	2000
0.03	0.95	5556

$$P\left\{ \left| \frac{3n}{n} - p \right| > \epsilon \right\} \le \frac{1}{4n\epsilon^2} \le \delta$$
Chebyshev!

If $n \ge 1/(4\varepsilon^2\delta)$ then the estimate has an error of no more than ε with confidence at least $1 - \delta$.

How are the error ϵ , the confidence 1 – δ , and the sample size n related?

Error E	Confidence 1 – δ	Sample size n
0.10	0.90	250
0.05	0.95	2000
0.03	0.95	5556

If $n \ge 1/(4\varepsilon^2\delta)$ then the estimate has an error of no more than ε with confidence at least $1 - \delta$.