Exercise Sheet 6 due: 01.12.2016

Classification

Exercise T6.1: Radial basis function networks

(tutorial)

- (a) Describe and discuss the *general architecture* of an RBF-network. Would more than two layers improve the performance?
- (b) Describe and discuss the *two-step learning procedure* for RBF-networks with k basis functions. Derive the analytical solution of the output-weights w for the cost function E^T , i.e.

$$E^{T} = \frac{1}{2p} \sum_{\alpha=1}^{p} \left(y_T^{(\alpha)} - \sum_{j=0}^{k} w_j \phi_j(\boldsymbol{x}^{(\alpha)}) \right)^2.$$

(c) In which cases of *regression* or *classification* outperform *MLP networks* with sigmoid transfer functions RBF networks significantly? What are the advantages of RBF networks? In which situations are they preferable to MLP?

Exercise T6.2: Multi-class classification

(tutorial)

- (a) Describe how a k nearest neighbor classifier predicts the class of previously unseen inputs?
- (b) A "Parzen window" classifier extends the *electoral committee* approach of kNN. How are the different votes *weighted*?
- (c) Describe and discuss the multi-class predictor presented in the lecture. How is validation performed in this case? How can you predict the class of a previously unseen sample?

Exercise H6.1: Training data

(homework, 1 point)

Create a sample of P=120 training patterns $\{\underline{\mathbf{x}}_{\alpha}, t_{\alpha}\}, \ \alpha=1,\ldots,P$. The input values $\underline{\mathbf{x}}_{\alpha} \in \mathbb{R}^2$ should be drawn from a mixture of Gaussians with centers in an XOR-configuration according to the following scheme:

• Generate 60 samples from each of the following two conditional distributions:

$$p_{1} := p(\underline{\mathbf{x}}|\mathcal{C}_{1}) = \frac{1}{2}[\mathcal{N}(\underline{\mathbf{x}}|\underline{\mu}_{1}, \sigma^{2}) + \mathcal{N}(\underline{\mathbf{x}}|\underline{\mu}_{2}, \sigma^{2})],$$

$$p_{2} := p(\underline{\mathbf{x}}|\mathcal{C}_{2}) = \frac{1}{2}[\mathcal{N}(\underline{\mathbf{x}}|\underline{\mu}_{3}, \sigma^{2}) + \mathcal{N}(\underline{\mathbf{x}}|\underline{\mu}_{4}, \sigma^{2})],$$

with $\underline{\mu}_1=(0,1)^\top,\underline{\mu}_2=(1,0)^\top,\underline{\mu}_3=(0,0)^\top,\underline{\mu}_4=(1,1)^\top$ and a variance of $\sigma^2=0.1$.

- The corresponding target values $t_{\alpha} \in \{-1, 1\}$ describe the assignment to the two classes C_1, C_2 and indicate from which distribution $(p_1 \text{ vs. } p_2)$ the data point was drawn.
- (a) (1 point) Plot the resulting 120 input samples $\underline{\mathbf{x}}_{\alpha}$ in a scatter plot, in which the markers and/or colors represent the corresponding samples' labels t_{α} .

Exercise H6.2: k nearest neighbors (kNN)

(homework, 2 points)

Build a kNN classifier that classifies new data (query points) by voting of the k nearest neighbors from the training set. Thus the electoral committee is selected from the training patterns $\{\underline{\mathbf{x}}_{\alpha}, t_{\alpha}\}, \ \alpha = 1, \dots, P$ according their Euclidean distance to the query point. The predicted class is determined by the target values of the majority of those k nearest patterns.

(a) (2 points) Plot the training patterns and the decision boundary (e.g. using a contour plot or a high-resolution image of equidistant query points) in input space for k = 1, 3, 5.

Exercise H6.3: "Parzen window" classifier

(homework, 3 points)

This classifier implements a *weighted voting scheme*. All training points (not only the k nearest ones) make a vote for the query point but their vote is weighted by a *Parzen window* or kernel function depending on the distance between the training samples $\underline{\mathbf{x}}_{\alpha}$ and query point $\underline{\mathbf{x}}$. The Gaussian window function based on Euclidean norm $\|\cdot\|$ is:

$$\kappa(\underline{\mathbf{x}},\underline{\mathbf{x}}_{\alpha}) = \exp\left(-\frac{1}{2\sigma_{\kappa}^2}||\underline{\mathbf{x}} - \underline{\mathbf{x}}_{\alpha}||^2\right).$$

- (a) (2 points) Plot the training patterns and the decision boundary (e.g. using a contour plot or a high-resolution image of equidistant query points) in input space for Gaussian window functions parameterized with the variances $\sigma_{\kappa}^2 = 0.5, 0.1$ and 0.01.
- (b) (1 point) Rerun kNN and Parzen-window classification after adding 60 more data points from a third class centered on $\underline{\mu}_3 = (0.5, 0.5)^{\mathsf{T}}$ with variance $\tilde{\sigma}^2 = 0.05$. Plot the classification boundaries as above and compare them with your previous results.

Exercise H6.4: RBF networks

(homework, 4 points)

Similar to the Parzen window, RBF networks classify data according to a weighted vote, but the voting committee now consists of k < P "representatives", which parametrize the RBFs. These representatives do not have to be previously seen data points and can be "prototypes" $\underline{\mathbf{v}}_j \in \mathbb{R}^2$ derived from the training data via k-means clustering. Construct a RBF-net as follows:

- Determine the k representatives $\underline{\mathbf{v}}_j$ via k-means clustering (you can implement the online-algorithm described in the lecture notes or use available packages).
- For a given weight vector $\underline{\mathbf{w}}$, the predicted classification for a query point $\underline{\mathbf{x}}$ is:

$$y(\underline{\mathbf{x}}) = \operatorname{sign}(\underline{\mathbf{w}}^{\top} \phi(\underline{\mathbf{x}})),$$

where $\phi(\underline{\mathbf{x}})$ is a $(k+1) \times 1$ vector containing the bias and the basis function values $\phi_i(\underline{\mathbf{x}})$.

• Determine the weight vector as: $\underline{\mathbf{w}} = (\underline{\Phi}\underline{\Phi}^{\top})^{-1}\underline{\Phi}\underline{\mathbf{t}} \equiv \underline{\Phi}^{\dagger\top}\underline{\mathbf{t}}$ where $\underline{\mathbf{t}} \in \mathbb{R}^P$ is the vector of target values and $\underline{\Phi} \in \mathbb{R}^{k+1 \times P}$ is the $k+1 \times P$ design matrix with

$$\Phi_{0\alpha} := 1$$
, and $\Phi_{j\alpha} := \phi_j(\underline{\mathbf{x}}_{\alpha}) \equiv \kappa(\underline{\mathbf{x}}_{\alpha},\underline{\mathbf{v}}_{j})$, $j = 1,\ldots,k$; $\alpha = 1,\ldots,P$.

You can use predefined functions to calculate the pseudo-inverse $\underline{\Phi}^{\dagger}$ (e.g. linalg.pinv in Python or pinv in Matlab).

- (a) (2 points) Plot the decision boundaries together with the training patterns and locations of the representatives for $k \in \{2,3,4\}$. Do this for two different (reasonable) kernel widths σ_{κ} of the radial basis functions ϕ_i , yielding a total of six plots.
- (b) (2 points) Construct a RBF-network with 2 RBFs and set the centers to $\underline{\mu}_1=(0,0)$ and $\underline{\mu}_2=(1,1)$. For $\sigma_\kappa=0.45$, make a scatter plot of the data in the space of RBF-activations, i.e. for each data point α plot $\phi_1(x_\alpha)$ vs. $\phi_2(x_\alpha)$ and indicate their class-assignment via their color. Plot also the predicted labels after training in a similar second plot. Feel free to reduce the data-variance σ (e.g. to 0.2) to make the cluster-structure more prominent.

Total 10 points.