Quantum computing

An introduction

Oswaldo Gomez

AI Engineering

January 20, 2020

Young's Double Slit Experiment

Particles behave like waves

Double-slit apparatus showing the pattern of electron hits on the observing screen building up over time.

Figure: Image credit: ©2012 Perimeter Institute for Theoretical Physics, via https://www.perimeterinstitute.ca/research/research-areas/quantum-foundations/more-quantum-foundations.

Quantum world if fascinating

Particles behave like waves

Quantum world if fascinating

Particles behave like waves

The state of a particle after passing through either one of the slits can be described as a *wave* function (probability distribution) namely $\Psi = (\alpha_0 \psi_0 + \alpha_1 \psi_1)$ with $\{\alpha_0, \alpha_1\} \in \mathbb{C}$

Basic Unit of information: Bits

Traditional computation works with 0 and 1 as basic units of information. A physical realization of this is voltage from 0V to 5V

Basic Unit of information: Qubits

Quantum computation works with $|0\rangle$ and $|1\rangle$ as basic units of information. A physical realization of this would be a spin 1/2 particle.

Dirac notation and linear algebra

Computational basis states

Qubits can be in different states *other* than $|0\rangle$ or $|1\rangle$. It is possible to form *linear combinations* of states, called superpositions:

$$|\psi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$$

The numbers α_0 and α_1 are complex numbers and $|\alpha_0|^2 + |\alpha_1|^2 = 1$.

Where $|0\rangle$ and $|1\rangle$ are vectors $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ in $\mathbb{C}^2.$

A superposition state is a linear combination $\psi = \alpha_0 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \alpha_1 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Bibliografía

- What is bit rate and baud rate with examples bytesofgigabytes.com. (2019). Retrieved 20 January 2020, from http://www.bytesofgigabytes.com/embedded/bit-rateand-baud-rate/
- Nielsen, M., & Chuang, I. (2010). Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511976667
- Gulde, S., Riebe, M., Lancaster, G. et al. Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer. Nature 421, 48–50 (2003) doi:10.1038/nature01336
- Tavabi, A., Boothroyd, C., Yücelen, E., Frabboni, S., Gazzadi, G., Dunin-Borkowski, R., & Pozzi, G. (2019). The Young-Feynman controlled double-slit electron interference experiment. Scientific Reports, 9(1). doi: