Name: _	 Student I.D. #:

EE 599 Deep Learning, Quiz 1

Wednesday, Feb. 20, 2019
50 minutes
Closed Book; Open notes
Calculators O.K.
No connected devices (laptops, phones, tablets, etc.)

Figure 1: Three training results for the same dataset and ML task.

- 1. Figure 1 shows three the learning curves for the same dataset and the same binary classification task. Label each as "under-fitting", "over-fitting", or "desired behavior".
 - (a)
 - (b)
 - (c)
- 2. L1 regularization may be viewed as an a-priori distribution on the weights of the type (circle one):
 - (a) Poisson
 - (b) Gaussian
 - (c) Uniform
 - (d) Laplacian
- 3. A typical split for training/validation/test is (circle one):
 - (a) 80/10/10
 - (b) 33/33/33
 - (c) 20/40/40
 - (d) 95/2.5/2.5
- 4. An MLP has two input nodes, one hidden layer, and two outputs. The activation for the hidden layer is ReLu. The output layer is linear (*i.e.*, identity activation). The two sets of weights and biases are given by

$$\mathbf{W}_1 = \left[\begin{array}{cc} 1 & -2 \\ 3 & 4 \end{array} \right], \quad \mathbf{b}_1 = \left[\begin{array}{c} 1 \\ 0 \end{array} \right]$$

$$\mathbf{W}_2 = \begin{bmatrix} 2 & 2 \\ 3 & -3 \end{bmatrix}, \quad \mathbf{b}_2 = \begin{bmatrix} 0 \\ -4 \end{bmatrix}$$

What is the output activation when the input is $\mathbf{x} = [+1 -1]^{t}$?

$$y^{(2)} =$$

- 5. "Neural Nets are lazy" means (circle one):
 - (a) they will favor variance in the bias-variance trade-off
 - (b) they train fast because they do not need to find a global minimum of the loss function
 - (c) they will find the easiest way to classify data, even if the method is an artifact of the data coverage
 - (d) they often will not learn properly, even after many epochs
- 6. Suppose an MLP has a linear output layer (identity activation) and uses an L1 cost function. If the true label is \mathbf{y} and the final layer activation is $\mathbf{a}^{(L)}$, specify how the back-prop recursion will be initialized.

$$oldsymbol{\delta}^{(L)} =$$

- 7. Give the name for each of the activation functions in Figure 2:
 - (a)
 - (b)
 - (c)
 - (d)
 - (e)
- 8. The main difference between the PCA and LDA methods for reducing dimensionality is (circle one):
 - (a) PCA uses the SVD factorization while LDA is based on a QR decomposition
 - (b) PCA is more numerically stable than LDA due to regularization
 - (c) PCA does not use the class labels while LDA takes those into account
 - (d) LDA is another name for PCA, so there is no difference
- 9. Circle all of the following techniques that can be viewed as regularization
 - (a) Adding an L2 penalty function to the loss

Figure 2: Example activation functions.

- (b) Using $tanh(\cdot)$ normalization
- (c) Early stopping
- (d) Using the adam optimizer
- 10. When using drop-out, if a node in a neural network has 0.6 probability of drop-out, then this is accounted for in the model used for inference by (circle one):
 - (a) using the node 60% of the time in inference
 - (b) scaling the weights associated with this node by 0.6
 - (c) scaling the weights associated with this node by 1/0.6
 - (d) no accounting is needed, you just use the trained network as if drop-out was not applied during training
- 11. Consider the case when the LMS algorithm is used for on-line linear regression of y_n against x_n with 1 tap -i.e.,

$$\hat{y}_n = w_0 x_n$$

Below is data for y_n and x_n , provide the LMS updates to w_0 by filling in the table below. Assume that $x_{-1} = 0$, use $\eta = 0.5$, and take the initial value of w_0 to be 0 as shown.

n:	0	1	2	3	4
w:	0				
$x_n:$	1	-1	1	-2	-2
y_n :	2	-2	2	-4	-4
\hat{y}_n :					