Large Cuts with Local Algorithms

Online manuscript

arXiv:1402.2542

Juho Hirvonen Joel Rybicki Jukka Suomela Aalto University

Stefan Schmid

TU Berlin & T-Labs

 $c\colon V \to \{\mathbf{0}, \mathbf{0}\}$

Input graph

- ◆ d-regular
- triangle-free

Model of computing

- \bullet n nodes = processors
- $\rightarrow m$ edges = communication links

Finding large cuts

maximise number of cut edges

Main result

- one-round randomized algorithm
- expected number of cut edges is

$$\left(\frac{1}{2} + \frac{0.23125}{\sqrt{d}}\right) m$$

Lower bound

• no sub-logarithmic time algorithm can produce a cut larger than

$$\left(\frac{1}{2} + \frac{\sqrt{d-1}}{d}\right)m$$

Computational Algorithm Design

Neighbourhood graphs

heavy cut = good local algorithm

 $(x_a \lor x_b)$: w(a,b)

 $(\overline{x}_a \vee \overline{x}_b) : w(a,b)$

Weighted MAX-SAT

find optimal algorithms for any fixed d