Agricultural Production and Technological Change

Advanced Producer Theory and Analysis: The Production of Annuals

Alexandra E. Hill

AREC 705: Week 6

Colorado State University

Haile et al. (2016) Overview

Haile, M.G., Kalkuhl, M. and von Braun, J. (2016), Worldwide Acreage and Yield Response to International Price Change and Volatility: A Dynamic Panel Data Analysis for Wheat, Rice, Corn, and Soybeans. *Amer. J of Ag. Econ.*, 98: 172-190.

Contributions – what question(s) is the paper addressing? –

Category – theoretical? empirical? case study? meta-study? –

Conclusions – what are the results? –

Context – what are related papers? who are the authors? –

Methods - what methods are used to analyze the problem? -

Haile et al. (2016) Questions

General thoughts on the paper? Thoughts on literature review? -

How do the authors account for dynamic decision-making conceptually? Empirically? -

Are there any robustness checks you believe are missing? -

Why might collinearity between prices and price volatility introduce an identification concern? (P. 178) -

Why do they assume that deviations in yield from the trends are good proxies for yield expectations? Does this seem reasonable? (p. 178) –

Can you think of other input controls? (P. 178-179) -

Haile et al. (2016) Background

1. Expected Prices (Handout)

- What forms of expected prices do Haile et al. use?
- What form of expected prices do they find to be most predictive of production response?
- How do these price choices overcome some of the common concerns related to the formation of price expectations?

2. Measures of output

- What measures of output do Haile et al. use? Why?
- What level of aggregation do they use for measuring output? Why?
- What are limitations to their measures or the level of aggregation?

3. Supply models

- What supply model do they use and why?
- 4. Empirical model and identification concerns
 - What empirical model do they use and why?

Haile et al. (2016) Measures of Output

- 1. acreage (Coyle 1993; Haile, Kalkuhl, and von Braun 2014)
- 2. yield (Weersink, Cabas, and Olale 2020)
- 3. total production (Coyle 1999)
- 4. total caloric production (caloric value of total production) (Roberts and Schlenker 2009 and 2013)
- 5. crop cuts (Gourlay, Kilic, and Lobell 2017)
 - What measures of output do Haile et al. use? Why?
 - What level of aggregation do they use for measuring output? Why?
 - What are limitations to their measures or the level of aggregation?

Haile et al. (2016) Models of Supply

Haile et al. summarize two possible supply models (to model annual crop production):

- 1. Nerlovian partial adjustment framework
- 2. "Supply function approach" (supply response derived from the profit-maximizing problem)
- Which model does Haile et al. employ? Why?
- What changes or improvements do they make to the model?

Haile et al. (2016) Models of Supply

$$Q_t^d = \beta_1 + \beta_2 p_t^e + \beta_3 Z_t + \epsilon_t \tag{1}$$

 $Q_t^d = \beta_1 + \beta_2 n p_t^{e,int} + \beta_3 Z_t + \epsilon_t$ (1')

$$A_t^d = \alpha_1 + \alpha_2 p_t^e + \alpha_3 Z_t + \epsilon_t$$

$$A_t^d = \alpha_1 + \alpha_2 p_t^e + \alpha_3 Z_t + \epsilon_t$$

(2)

$$A_t^d = \alpha_1 + \alpha_2 p_t^e + \alpha_3 Z_t + \epsilon_t$$

 $A_t^d = \alpha_1 + \alpha_2 \eta p_t^{e,int} + \alpha_3 Z_t + \epsilon_t$

(2')

Haile et al. (2016) Econometric Model

$$Q_{itk} = \pi_1 Q_{ikt-1} + \sum_{j=1}^{4} \alpha_{ij} p_{jkt_{ik}} + \sum_{j=1}^{4} \phi_{ij} vol(p)_{jkt_{ik}} + \lambda_{i1} w_{ikt_{ik}} + \lambda_{i2} Y S_i kt_{ik} + \mu_{it} + \eta_{ik} + \mu_{ikt}$$
(3)

- How does the model incorporate uncertainty in prices?
- How can we interpret α_{ij} ?
- Which parameter(s) represent Z_t in the conceptual model?
- Why are there subscripts on the subscript t for some variables?
- How does this model differ from the yield response model?
- Why can this not be estimated with OLS?

Haile et al. (2016) Econometric Model: System GMM

The authors summarize two potential GMM methods for estimating this equation:

- 1. Difference GMM transform all regressors by first differencing, then estimate using GMM (Arellano and Bond, 1991)
- 2. System GMM assume the first difference of instruments are uncorrelated with fixed effects, then can instrument $y_{i,t-1}$ with $\Delta y_{i,t-2}$ (Blundell and Bond, 1998)

Haile et al. (2016) Econometric Model: System GMM

Haile et al. use system GMM, some properties are:

- OLS and FE estimates should bound these estimates. If OLS lagged dependent variable is positively correlated with the error term, then after adding a FE or first differencing, the variable is negatively correlated with the error term. ← note really only matters in small samples. Judson & Owen (1999) find a bias of 20% of the coefficients of interest when T=30 (number of time periods)
- If OLS and FE do not bound the estimate, indicates specification issues
- Errors cannot be serially correlated and assumes that first differences of instruments are uncorrelated with fixed effects (here country-by-year and country-by-crop)

Haile et al. (2016) Results

Table 2. Estimates of Production and Acreage Response

	Production				Acreage			
Variable	Wheat	Corn	Soybeans	Rice	Wheat	Corn	Soybeans	Rice
Lagged dep. var.	0.961***	0.964***	0.928***	0.625***	0.990***	0.978***	0.932***	0.747***
	(0.013)	(0.030)	(0.036)	(0.089)	(0.005)	(0.033)	(0.029)	(0.045)
Lagged dep. var. (2)				0.356***				0.244***
				(0.099)				(0.039)
Wheat price	0.106**	-0.015	-0.205***		0.075***	0.009	-0.034***	
	(0.046)	(0.057)	(0.058)		(0.027)	(0.014)	(0.012)	
Corn price	0.034	0.226**	-0.054		-0.002	0.069***	-0.118***	
	(0.052)	(0.113)	(0.066)		(0.032)	(0.025)	(0.025)	
Soybean price	-0.028	0.050	0.365**		-0.047	-0.038*	0.146**	
	(0.054)	(0.062)	(0.166)		(0.029)	(0.020)	(0.074)	
Rice price	-0.020	-0.135**	-0.061	0.058***				0.024**
	(0.023)	(0.068)	(0.065)	(0.025)				(0.010)
Wheat price volatility	-0.628**	0.074	0.511***		-0.350***	0.123	-0.110	
	(0.281)	(0.283)	(0.162)		(0.124)	(0.146)	(0.151)	
Corn price volatility	0.159	0.287	-0.374**		0.249*	0.135	0.134	
	(0.438)	(0.252)	(0.175)		(0.123)	(0.095)	(0.147)	
Soy price volatility	0.366	-0.608	0.013		0.279**	-0.108	0.228**	
	(0.234)	(0.559)	(0.411)		(0.106)	(0.128)	(0.092)	
Rice price volatility				-0.197** (0.106)				-0.064 (0.062)
Fertilizer price	-0.068**	-0.010	0.040**	-0.014	-0.013	-0.017	0.013	-0.003
•	(0.023)	(0.018)	(0.018)	(0.019)	(0.011)	(0.014)	(0.029)	(0.013)

Haile et al. (2016) Results

Table 3. Estimates of Yield Response

Variable	Wheat	Corn	Soybeans	Rice
Lagged dep. var.	0.920***	0.960***	0.925***	0.724***
	(0.032)	(0.020)	(0.034)	(0.133)
Lagged dep. var. (2)				0.272
				(0.165)
Own-crop price	0.166***	0.094**	0.146***	0.043**
	(0.055)	(0.039)	(0.045)	(0.018)
Own-price volatility	-0.336**	-0.366**	-0.467**	-0.148**
	(0.168)	(0.170)	(0.226)	(0.070)
Fertilizer price	-0.069**	-0.008	-0.050**	-0.020
	(0.026)	(0.021)	(0.020)	(0.017)
Time dummies	Yes	Yes	Yes	Yes
N	1,174	1,444	1,371	1,332
F-test of joint significance: p-value	0.000	0.000	0.000	0.000
Test for $AR(1)$: p-value	0.002	0.001	0.000	0.016
Test for AR(2): p -value	0.046	0.425	0.079	0.574
Diff-in-Hansen test: p-value	0.950	0.749	0.933	0.751

Haile et al. (2016) Results

Table 4. Standardized Effect Sizes of Price and Volatility on Supply for Each Crop									
	Wheat price	Corn price	Soybean price	Rice price	Wheat price volatility	Corn price volatility	Soy price volatility	Rice price volatility	Fertilizer price
Productio	n respor	ıse							
Wheat	0.045	0.012	0.011	-0.008	-0.025	0.005	0.016		-0.044
Corn	-0.005	0.061	0.015	-0.042	0.002	0.006	-0.019		-0.005
Soybeans	-0.065	-0.015	0.108	-0.019	0.016	-0.008	0.000		0.020
Rice				0.021				-0.008	-0.008
Acreage 1	esponse								
Wheat	0.035	-0.001	-0.020		-0.015	0.008	0.013		-0.009
Corn	0.004	0.025	-0.015		0.005	0.004	-0.005		-0.011
Soybeans	-0.013	-0.040	0.053		-0.004	0.003	0.009		0.008
Rice				0.010				-0.003	-0.002
Yield resp	onse								
Wheat	0.132				-0.025				-0.084
Corn		0.054				-0.016			-0.009
Soybeans			0.109				-0.037		-0.062
Rice				0.038				-0.015	-0.028

 $\it Note$: The effect sizes that are statistically significant at the 10% level or less are typed in bold.

Haile et al. (2016) Simulation Results

Figure 1. Impacts of the 2006-2010 price dynamics on acreage and yield

Haile et al. (2016) Simulation Results

Figure 2. Impacts of the 2006–2010 price dynamics on production

Reading for Next Time

Chavas, J.P. & Holt, M.T. (1990). Acreage Decisions Under Risk: The Case of Corn and Soybeans. *American Journal of Agricultural Economics*, 72(3): 429-538. https://www.jstor.org/stable/1243021#metadata_info_tab_contents

Just, D.R., Khantachavana, S.V., & Just, R.E. (2010). Empirical Challenges for Risk Preferences and Production. *Annual Review of Resource Economics, 2*: 13-31. https://www.annualreviews.org/doi/abs/10.1146/annurev.resource. 012809.103902?journalCode=resource