LOJİK DEVRE TASARIMI

Prof. Dr. Ahmet SERTBAŞ

asertbas@istanbul.edu.tr

İstanbul Üniversitesi Bilgisayar Mühendisliği Bölümü 2017-2018 Güz Yarıyılı

DEĞERLENDİRME ÖLÇÜTÜ		
Vize Sınavı	1	%30
Proje	1	%20
Yıliçi		%50
Final	1	%50

Dersin Kaynakları:

1. 'Digital Design', 5. baskı, M. Morris Mano - Micheal D. Ciletti,

Pearson Yayınevi, 2012. 'Türkçe Baskı: Sayısal Tasarım'

DERSIN İÇERİĞİ:

- Sayısal İşaret ve Sistemlere Giriş
 Sayı sistemleri ve Sayı Sistemi Dönüşümleri
- 2. Boolean Cebir Tanımlamaları, Boolean Cebrinin temel özellikleri,
 - aksiyomları, eşitlikleri vs..
- Boolean Fonksiyonları ve Özellikleri, Kanonik Fonksiyon Gösterimleri
- 4. Boolean Fonksiyonlarını Sadeleştirme Yöntemleri: Karnaugh Haritası ve Tablo (Quin-Mc Cluskey) Yöntemleri
- 5. Temel Sayısal Mantık Kapıları tanımlamaları ve devreleri
- 6. Belleksiz Mantık (Kombinezonsal) Devresi Tasarım Prosedürü ve örnek tasarımlar Toplayıcılar, Çıkarıcı, Çoğullayıcılar, Kodçözücüler, Kodlayıcılar
- 7. Programlanabilir Mantık Devreleri: PAL,PLA,PROM, EEPROM
- 8. Saatli Bellekli Mantık (Ardışıl) devrelerinin Tanımlanması ve Analizi Durum Graf ve Tablolarının Elde Edilmesi, Durum Tabloları ve Durum Kodlamaları
- 9. Bellekli Mantık (Ardışıl) Devre Tasarım prosedürü ve örnek tasarımlar
- 10. Tutucular, Flip-Floplar
- 11. Sayıcı Tasarımları
- 12. Yazmaç (Register) Tasarımı, Ötelemeli yazmaçlar.....

GİRİŞ: Temel Kavramlar

- 1.1 Sayısal Sistemler
- 1.2 İkili Sayılar
- 1.3 Sayı Taban Dönüşümleri
- 1.4 Sekizli (Octal) ve Onaltılı (Hexadecimal) Sayılar
- 1.5 Tümleme
- 1.6 İşaretli İkili Sayılar
- 1.7 İkili Kodlar
- 1.8 İkili Bilgi Saklama ve Yazmaçlar (Registers)
- 1.9 İkili Mantık

Sayısal Sistemler

- Sayısal Çağ ve Bilgi Çağı
- Sayısal Bilgisayarlar
 - Genel amaçlı
 - Çoğu bilimsel, sanayi ve ticari uygulamalar
- Sayısal Sistemler
 - Telefon anahtarlama sistemleri
 - Sayısal Kamera
 - Elektronik hesaplayıcılar
 - Sayısal TV

Sayısal Sistemler

- 1-) Daha güvenilirdir.
- 2-) Devreler ve sistemler aynen tekrarlanabilir (Her benzer sistem tıpatıp aynen çalışır).
- 3-) Sinyal kalitesi değişmez. Bu kalite istenildiği kadar iyi yapılabilir.
- 4-) Gürültü ve dış etkilerden çok az etkilenir.
- 5-) Daha ucuzdur (Pek çok uygulamada).
- 6-) Kopyalama ve iletim sırasında bozulmaz. (İlk kopya ile yüzüncü kopyanın kalitesi aynıdır)

Elektronik elemanlar gittikçe sayısal eleman haline gelmektedir. Donanımı bilmeden etkin yazılım becerisi kazanılması zordur.

İŞARET TÜRLERİ

Sürekli Zam an - Analog İşaret

Sürekli Zam an – Kuantal anmış İşaret

Ayrık Zaman - Örneklermiş İşaret

Ayrık Zaman – Sayısal İşaret ...

(Örneklenmiş ve Kuantalanmış)

Analog ve Sayısal İşaretler

- Analog sistem
 - Fiziksel büyüklükler ve işaretler belirli bir bölgede sürekli olarak değişebilirler.
- Sayısal sistem
 - Fiziksel büyüklükler ve işaretler sadece ayrık değerlerde var oldukları kabul edilir.

What Does "Digital" Mean?

- Analog signal
 - Inifinite possible values
 - Ex: voltage on a wire created by microphone

Digital Design Copyright © 2007 Frank Vahid

- Digital signal
 - Finite possible values
 - Ex: button pressed on a keypad

İkili Sayısal İşaret

- Sayısal Sistemlerde değişkenler ayrık değerler alabilir.
 İkili seviye, ikili değişken
- İkili değerler kısa olarak aşağıdaki gibi simgelenir:
 - Dijit 0 ve Dijit 1
 - Kelime (sembol) : False (F) ve True (T)
 - ◆ Kelime (sembol) : Low (L) ve High (H)
 - On ve Off

Onlu Sayı Sistemi

- Base (also called radix) = 10
 - 10 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }
- Digit Position
 - Integer & fraction
- Digit Weight
 - Weight = $(Base)^{Position}$
- Magnitude
 - Sum of "Digit x Weight"
- Formal Notation

Sekizli Sayı Sistemi

- Base = 8
 - 8 digits { 0, 1, 2, 3, 4, 5, 6, 7 }
- Weights
 - Weight = $(Base)^{Position}$
- Magnitude
 - Sum of "Digit x Weight"
- Formal Notation

İkili Sayı Sistemi

- Base = 2
 - 2 digits { 0, 1 }, called binary digits or "bits"
- Weights
 - Weight = $(Base)^{Position}$
- Magnitude
 - ◆ Sum of "Bit x Weight"
- Formal Notation
- Groups of bits 4 bits = Nibble8 bits = Byte

Onaltılı Sayı Sistemi

- Base = 16
 - 16 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F }
- Weights
 - Weight = $(Base)^{Position}$
- Magnitude
 - Sum of "Digit x Weight"
- Formal Notation

1/16 1/256

$$1*16^{2}+14*16^{1}+5*16^{0}+7*16^{-1}+10*16^{-2}$$

$$=(485.4765625)_{10}$$

$$(1E5.7A)_{16}$$

16

256

2 nin katları

n	2 ⁿ
0	20=1
1	21=2
2	22=4
3	23=8
4	24=16
5	25=32
6	26=64
7	27=128

n	2 ⁿ
8	28=256
9	29=512
10	$2^{10} = 1024$
11	211=2048
12	212=4096
20	$2^{20} = 1M$
30	$2^{30} = 1G$
40	$2^{40} = 1T$

Kilo

Mega

Giga

Tera

Toplama

Onlu Toplama

İkili Toplama

Kolon Toplama

İkili Çıkarma

İhtiyaç olduğunda borç alınır.

İkili Çarpma

• Bit bit çarpma

			1	0	1	1	1
X				1	0	1	0
			0	0	0	0	0
		1	0	1	1	1	
	0	0	0	0	0		
1	0	1	1	1			
1	1	1	0	0	1	1	0

Onludan İkiliye Dönüşüm

- Tabanla (=2) sayıyı bölme
- Kalanı bir katsayı olarak alma (0 veya1)
- Bölüm alınır ve bölme işlemine devam edilir

Örnek: (13) ₁₀	Quotient Bölüm	Remainder Kalan	Coefficient Katsayı
13 /2 =	6	1	$\mathbf{a_0} = 1$
6 / 2 =	3	0	$\mathbf{a}_1 = 0$
3 / 2 =	1	1	$a_{2} = 1$
1 / 2 =	0	1	$a_3 = 1$
Sonu	ç: (13	$(a_3 a_2 a_3)_{10} = (a_3 a_2 a_3)_{10}$	$(a_0)_2 = (1101)_2$
		1	
		MSB	LSB

Onludan (Kesirli) İkiliye Dönüşüm

- Taban ile (=2) sayı çarpılır
- Tamsayı kısmı katsayı olarak alınır (0 ve1)
- Sonucun kesir kısmı alınır ve bölmeye devam edilir

```
Örnek: (0.625)_{10}

Integer Fraction Coefficient Tamsayı Kesir Katsayı

0.625 * 2 = 1 . 25 a_{-1} = 1

0.25 * 2 = 0 . 5 a_{-2} = 0

0.5 * 2 = 1 . 0 a_{-3} = 1

Sonuç: (0.625)_{10} = (0.a_{-1}a_{-2}a_{-3})_2 = (0.101)_2

MSB LSB
```

Onludan Sekizliye Dönüşüm

Örnek: (175)₁₀

Quotient Remainder Coefficient
$$175 / 8 = 21$$
 7 $a_0 = 7$ $21 / 8 = 2$ 5 $a_1 = 5$ $2 / 8 = 0$ 2 $a_2 = 2$

Sonuç:
$$(175)_{10} = (a_2 a_1 a_0)_8 = (257)_8$$

Örnek: (0.3125)₁₀

Integer Fraction Coefficient
$$0.3125 * 8 = 2 . 5 a_{-1} = 2 \ 0.5 * 8 = 4 . 0 a_{-2} = 4$$

Sonuç:
$$(0.3125)_{10} = (0.a_{-1} a_{-2} a_{-3})_{8} = (0.24)_{8}$$

İkili-Sekizli Dönüşüm

- $8 = 2^3$
- Her 3 bitlik grup bir sekizli (octal) digit belirler..

Örnek:	Sıfır kabul edilir		
	$(10110.01)_{2}$		
	(2 6 . 2)		

Sekizli	İkili
0	0 0 0
1	0 0 1
2	010
3	0 1 1
4	100
5	1 0 1
6	110
7	1 1 1

Her iki yönde de dönüşüm çalışır. (İkili-Sekizli ve Sekizli-İkili)

İkili-Onaltılı Dönüşüm

- 16 = 24
- Each group of 4 bits represents a hexadecimal digit

Hex	Binary
0	0 0 0 0
1	0001
2	0010
3	0 0 1 1
4	0100
5	0 1 0 1
6	0 1 1 0
7	0 1 1 1
8	1000
9	1001
A	1010
В	1011
C	1 1 0 0
D	1 1 0 1
Е	1110
F	1 1 1 1

Her iki yönde de dönüşüm çalışır. (İkili-Onaltılı ve Onaltılı-İkili)

Sekizli-Onaltılı Dönüşüm

Ara bir adım olarak İkili Dönüşüm gerçeklenir.

Örnek:

Her iki yönde de dönüşüm çalışır. (Onaltılı-Sekizli ve Sekizli-Onaltılı)

Sayı Sistemleri

Decimal	Binary	Octal	Hex
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

1.5 Tümleme- Complements

- Her r tabanı için 2 farklı tümleme tanımı yapılabilir:
- Taban Tümleme -the radix complement ve Azaltılmış Taban Tümleme- diminished radix complement.
- Azaltılmış Taban Tümleme- (r-1)'e göre Tümleme
 - ightharpoonup N r tabanında verilen n dijitli bir sayı olsun.

$$(r-1)$$
'e göre tümleme işlemi : $(r^n-1)-N$

- Örnek : 6-dijit <u>onlu sayılar</u>:
 - 9'a tümleme: $(r^n-1)-N=(106-1)-N=999999-N$
 - 9'a tümleme (546700 sayısı) : 999999–546700 = 453299
- Örnek : 7-dijit <u>ikili sayılar</u>:
 - 1'e tümleme: $(r^n 1) N = (2^7 1) N = 11111111 N$
 - ◆ 1'e tümleme (1011000): 1111111−1011000 = 0100111
- Sonuç:
 - (r^n-1) den çıkarma asla bir borç getirmez
 - Azaltılmış Taban Tümleme dijit düzeyinde gerçeklenebilir.

- 1'e Tümleme (*Diminished Radix* Complement)
 - Bütün '0' lar tüm '1' ler haline dönüşür.
 - Bütün '1' ler tüm '0' lar haline dönüşür.

```
Örnek (10110000)_2

⇒ (01001111)_2
```

 $\begin{array}{c} 1\ 0\ 1\ 1\ 0\ 0\ 0\ 0\\ +\ 0\ 1\ 0\ 0\ 1\ 1\ 1\ 1\\ \hline 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\\ \end{array}$

Taban Tümleme: Radix Complement

N, r tabanında verilen n dijitli bir sayı olsun

$$r^{n} - N$$
 $N \neq 0$ ve
0 $N = 0$.
 $r^{n} - N = [(r^{n} - 1) - N] + 1$. (r-1)'e tümleyen +1

• Örnek: Taban-10

The 10's complement of 012398 is 987602 The 10's complement of 246700 is 753300

Örnek: Taban-2

The 2's complement of 1101100 is 0010100 The 2's complement of 0110111 is 1001001

- 2'e Tümleme (*Radix* Complement)
 - ♦ 1 e tümleyeni bul ve 1 ilave et..

veya

Sağdan ilk 1 in solundaki bitleri tümleyenini al

Number:	10110000	$1\ 0\ 1\ 1\ 0\ 0\ 0\ 0$
1's Comp.:	01001111	
_	<u> </u>	
	0101000	01010000

- Tümleme Yardımıyla Çıkarma
 - ↑ r tabanında n-dijitli 2 işaretsiz sayının farkı M N aşağıdaki gibi bulunur:
 - 1. Add the minuend M to the r's complement of the subtrahend N. Mathematically, $M + (r^n N) = M N + r^n$.
 - 2. If $M \ge N$, the sum will produce and end carry r^n , which can be discarded; what is left is the result M N.
 - 3. If M < N, the sum does not produce an end carry and is equal to $r^n (N M)$, which is the r's complement of (N M). To obtain the answer in a familiar form, take the r's complement of the sum and place a negative sign in front.

Örnek

♦ 10'a tümleme kullanarak, 72532 — 3250 çıkarma işlemi

$$M = 72532$$
10's complement of $N = +96750$
Sum = 169282
Discard end carry $10^5 = -100000$
Answer = 69282

Örnek

◆ 10'a tümleme kullanarak, 3250 – 72532 çıkarma işlemi.

M = 03250
10's complement of
$$N = \pm 27468$$

Sum = 30718

Sonlandırma eldesi yok

Bu yüzden, sonuç: -(10 a tümleyeni 30718) = -69282.

• Örnek

```
♦ X = 1010100 \text{ ve } Y = 1000011,
(a) X - Y; (b) Y - X, 2'e tümleme kullanarak
```

(a)
$$X = 1010100$$

 2 's complement of $Y = +0111101$
 $Sum = 10010001$
Discard end carry $2^7 = -10000000$
Answer. $X - Y = 0010001$

(b)
$$Y = 1000011$$

2's complement of $X = +0101100$
Sum = 1101111

Sonlandırma eldesi yok Y - X = -(2's complement of 1101111) = -0010001.

- İşaretsiz sayıların çıkarımı (r-1)'e tümleme yardımıyla yapılabilir: (r-1) 'e tümleme r tümlemeden 1 çıkararak bulunabilir.
- Örnek
 - 1'e tümleme kullanarak

(a)
$$X-Y=1010100-1000011$$

 $X=1010100$
1's complement of $Y=\pm 0111100$
Sum = 10010000
End-around carry = ± 1
Answer. $X-Y=0010001$

(b)
$$Y - X = 1000011 - 1010100$$

 $Y = 1000011$
1's complement of $X = +0101011$
Sum = 1101110

1.6 İşaretli İkili Sayılar

- Negatif Tamsayıları simgelemek için, negatif işareti gösterimine ihtiyaç vardır.
- Genelde sayının en solunda bulunan bit işareti göstermesi en çok kullanılan bir yoldur.
- İkili sayıların simgelenmesinde, Pozitif için 0 Negatif için 1 gösterimi kullanımı daha yaygındır.
- Örnek:

Signed-magnitude representation:	10001001
Signed-1's-complement representation:	11110110
Signed-2's-complement representation:	11110111

 Tabl 1.3 4 bitlik işaretli ikili sayıların üç farklı gösterimdeki karşılıklarını içermektedir.

İşaretli İkili Sayılar

Table 1.3 *Signed Binary Numbers*

Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0		1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111

1.7 İkili Kodlar

• BCD Code

- k basamaklı bir sayı için 4k adet
 BCD basamağı gerekir.
- → 10 tabanında gösterilen 396 sayısı BCD kodlamada 12 bit olacak şekilde 0011 1001 0110 olarak ifade edilir ve her bir 4'lü bit grubu bir rakamı temsil eder.
- Bir rakamın BCD kodlamadaki karşılığı ikili sayı sistemindeki gibidir.
- ◆ 1010'den 1111 e kadar olan BCD kodlarının herhangi bir karşılığı yoktur.

Table 1.4
Binary-Coded Decimal (BCD)

Decimal Symbol	BCD Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

İkili Kod

- Örnek:
 - ◆ 10 tabanında 185 sayısının BCD kodlamada ve ikili sistemdeki karşılığı:

$$(185)_{10} = (0001\ 1000\ 0101)_{BCD} = (10111001)_2$$

• BCD toplama:

İkili Kod

Örnek:

◆ 184 + 576 = 760 işleminin BCD kullanılarak yapılması:

BCD	1	1		
	0001	1000	0100	184
	+0101	0111	0110	+576
Binary sum	0111	10000	1010	
Add 6	×	0110	0110	
BCD sum	0111	0110	0000	760

Diğer Onlu Sistem Kodlamaları

Table 1.5Four Different Binary Codes for the Decimal Digits

Decimal Digit	BCD 8421	2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
2 3	0011	0011	0110	0101
4 5	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
Unused	1011	0110	0001	0010
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110

• Gray Code

- The advantage is that only bit in the code group changes in going from one number to the next.
 - » Error detection.
 - » Representation of analog data.
 - » Low power design.

1-1 and onto!!

Table 1.6 Gray Code

Gray Code	Decimal Equivalent
0000	0
0001	1
0011	2
0010	3
0110	4
0111	5
0101	6
0100	7
1100	8
1101	9
1111	10
1110	11
1010	12
1011	13
1001	14
1000	15

American Standard Code for Information Interchange (ASCII) Character Code

Table 1.7American Standard Code for Information Interchange (ASCII)

				b7b6b5				
b4b3b2b1	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	Р		р
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	**	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	c	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	V
0111	BEL	ETB		7	G	W	g	W
1000	BS	CAN	(8	H	X	h	X
1001	HT	EM)	9	1	Y	i	у
1010	LF	SUB		:	J	Z	j	Z
1011	VT	ESC	+		K	1	k	{
1100	FF	FS		; <	L	\	1	1
1101	CR	GS	77	=	M	1	m	}
1110	SO	RS	19	>	N	Λ	n	~
1111	SI	US	1	?	O	-	o	DEL

ASCII Character Code

Control characters

NUL	Null	DLE	Data-link escape
SOH	Start of heading	DC1	Device control 1
STX	Start of text	DC2	Device control 2
ETX	End of text	DC3	Device control 3
EOT	End of transmission	DC4	Device control 4
ENQ	Enquiry	NAK	Negative acknowledge
ACK	Acknowledge	SYN	Synchronous idle
BEL	Bell	ETB	End-of-transmission block
BS	Backspace	CAN	Cancel
HT	Horizontal tab	EM	End of medium
LF	Line feed	SUB	Substitute
VT	Vertical tab	ESC	Escape
FF	Form feed	FS	File separator
CR	Carriage return	GS	Group separator
SO	Shift out	RS	Record separator
SI	Shift in	US	Unit separator
SP	Space	DEL	Delete

ASCII Karakter Kodları

- American Standard Code for Information Interchange (Refer to Table 1.7)
- A popular code used to represent information sent as characterbased data.
- It uses 7-bits to represent:
 - 94 Graphic printing characters.
 - 34 Non-printing characters.
- Some non-printing characters are used for text format (e.g. BS = Backspace, CR = carriage return).
- Other non-printing characters are used for record marking and flow control (e.g. STX and ETX start and end text areas).

ASCII Özellikleri

- ASCII has some interesting properties:
 - Digits 0 to 9 span Hexadecimal values 30₁₆ to 39₁₆
 - ◆ Upper case A-Z span 41₁₆ to 5A₁₆
 - Lower case a-z span 61_{16} to $7A_{16}$
 - » Lower to upper case translation (and vice versa) occurs by flipping bit 6.

Error-Detecting Code

- To detect errors in data communication and processing, an <u>eighth bit</u> is sometimes added to the ASCII character to indicate its parity.
- A parity bit is an extra bit included with a message to make the total number of 1's either even or odd.

• Example:

Consider the following two characters and their even and odd parity:

	With even parity	With odd parity
ASCII $A = 1000001$	01000001	11000001
ASCII T = 1010100	11010100	01010100

Error-Detecting Code

- Redundancy (e.g. extra information), in the form of extra bits, can be incorporated into binary code words to detect and correct errors.
- A simple form of redundancy is parity, an extra bit appended onto the code word to make the number of 1's odd or even. Parity can detect all single-bit errors and some multiple-bit errors.
- A code word has even parity if the number of 1's in the code word is even.
- A code word has odd parity if the number of 1's in the code word is odd.
- Example:

Message A: 100010011 (even parity)

Message B: 100010010 (odd parity)

1.8 İkili Saklama ve Yazmaçlar

- Yazmaçlar (Registers)
 - İkili hücre iki kararlı durumdan birini saklama yeteneği olan elemandır.
 - Yazmaç bir grup ikili hücreden oluşur. Bir n hücreli yazmaç, n-bitlik ayrık bilgi miktarı saklayabilir.

- İkili hücre
 - 2 kararlı durum
 - 1-bitlik bilgi saklama
 - Örnekler: flip-flop devreleri, ferrite nüveler, kapasitör
- Yazmaç
 - Bir grup ikili hücre
 - x86 CPU içindeki AX yazmacı
- Yazmaç Transferi
 - Bir yazmaçtan diğerine bilginin iletilmesi.
 - Sayısal Sistemde en önemli işlemlerden biridir.

Sayısal Bilgisayar Örneği

Inputs: Keyboard, mouse, modem, microphone

Synchronous or Asynchronous?

Outputs: CRT, LCD, modem, speakers

Bilginin Transferi

Yazmaçlar arası bilgi transferi

Bilginin Transferi

İkili Bilgi İşleme Örneği

1.9 İkili Lojik

- İkili Mantık tanımı
 - İkili Mantık ikili değişkenler ve lojik işlem dizini içerir.
 - Değişkenler harflerle simgelenir A, B, C, x, y, z, vs...herbir değişken sadece 0 veya 1 değerini alabilir.
 - ◆ 3 temel lojik işlem: AND, OR, ve NOT.
 - AND: This operation is represented by a dot or by the absence of an operator. For example, x · y = z or xy = z is read "x AND y is equal to z," The logical operation AND is interpreted to mean that z = 1 if only x = 1 and y = 1; otherwise z = 0. (Remember that x, y, and z are binary variables and can be equal either to 1 or 0, and nothing else.)
 - OR: This operation is represented by a plus sign. For example, x + y = z is read "x OR y is equal to z," meaning that z = 1 if x = 1 or y = 1 or if both x = 1 and y = 1. If both x = 0 and y = 0, then z = 0.
 - 3. NOT: This operation is represented by a prime (sometimes by an overbar). For example, x' = z (or z = z) is read "not x is equal to z," meaning that z is what z is not. In other words, if x = 1, then z = 0, but if x = 0, then z = 1, The NOT operation is also referred to as the complement operation, since it changes a 1 to 0 and a 0 to 1.

Doğruluk Tablosu, Boolean İfadeleri, ve Lojik Kapılar

AND

X	y	Z
0	0	0
0	1	0
1	0	0
1	1	1

$$z = x \bullet y = x y$$

$$y$$
 $-z$

OR

X	y	Z
0	0	0
0	1	1
1	0	1
1	1	1

X	y	Z
0	0	0
0	1	1
1	0	1
1	1	1

$$z = x + y$$

$$y \rightarrow -z$$

X	Z
0	1
1	0

$$z=\overline{x}=x'$$

Anahtarlama Devreleri

- Lojik Kapılar
 - ♦ İkili İşaret Örnekleri

Lojik Kapılar

Grafik Semboller ve Giriş-Çıkış İşaretleri

- Lojik Kapılar
 - Grafik Semboller ve Giriş-Çıkış İşaretleri:

- (a) Three-input AND gate
- (b) Four-input OR gate

Fig. 1.6 Çok girişli Kapılar