Linear Regression

Nipun Batra and the teaching staff

IIT Gandhinagar

July 29, 2025

weight; $\approx \theta_0 + \theta_1 \cdot height_i$

$$\hat{\mathbf{y}}_{n\times 1} = \mathbf{X}_{n\times d}\mathbf{\theta}_{d\times 1}$$

$$\hat{\mathbf{y}}_{n\times 1} = \mathbf{X}_{n\times d} \boldsymbol{\theta}_{d\times 1}$$

 $ightharpoonup heta_0$ - Bias Term/Intercept Term

$$\hat{\mathbf{y}}_{n\times 1} = \mathbf{X}_{n\times d}\mathbf{\theta}_{d\times 1}$$

- \triangleright θ_0 Bias Term/Intercept Term
- $ightharpoonup heta_1$ Slope

One example is to predict the water demand of the IITGN campus

One example is to predict the water demand of the IITGN campus

Demand = f(# occupants, Temperature)

One example is to predict the water demand of the IITGN campus

Demand = f(# occupants, Temperature)

 $\mathsf{Demand} = \mathsf{Base} \ \mathsf{Demand} + \mathsf{K}_1 * \# \ \mathsf{occupants} + \mathsf{K}_2 * \mathsf{Temperature}$

$$\begin{bmatrix} \hat{y_1} \\ \hat{y_2} \\ \vdots \\ \hat{y_N} \end{bmatrix}_{N \times 1} = \begin{bmatrix} 1 & x_{1,1} & x_{1,2} & \dots & x_{1,M} \\ 1 & x_{2,1} & x_{2,2} & \dots & x_{2,M} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & x_{N,1} & x_{N,2} & \dots & x_{N,M} \end{bmatrix}_{N \times (M+1)} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_M \end{bmatrix}_{(M+1) \times 1}$$

$$\begin{bmatrix} \hat{y_1} \\ \hat{y_2} \\ \vdots \\ \hat{y_N} \end{bmatrix}_{N \times 1} = \begin{bmatrix} 1 & x_{1,1} & x_{1,2} & \dots & x_{1,M} \\ 1 & x_{2,1} & x_{2,2} & \dots & x_{2,M} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & x_{N,1} & x_{N,2} & \dots & x_{N,M} \end{bmatrix}_{N \times (M+1)} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_M \end{bmatrix}_{(M+1) \times 1}$$

$$\hat{Y} = X\theta$$

 $Y = X\theta + \epsilon$

$$Y = X\theta + \epsilon$$

To Learn: θ

$$Y = X\theta + \epsilon$$

To Learn: θ

Objective: minimize $\epsilon_1^2 + \epsilon_2^2 + \cdots + \epsilon_N^2$

Objective: Minimize $\epsilon^T \epsilon$

The above table represents the data after transformation

The above table represents the data after transformation Now, we can write $\hat{s}=f(t,t^2)$

The above table represents the data after transformation Now, we can write $\hat{s} = f(t, t^2)$ Other transformations: $\log(x), x_1 \times x_2$

A linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_i$ is of the following form

A linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_i$ is of the following form

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \dots + \alpha_i \mathbf{v}_i$$

where $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_i \in \mathbb{R}$

$$\{\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_i \mathbf{v}_i \mid \alpha_1, \alpha_2, \dots, \alpha_i \in \mathbb{R}\}$$

$$\{\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_i \mathbf{v}_i \mid \alpha_1, \alpha_2, \dots, \alpha_i \in \mathbb{R}\}$$

It is the set of all vectors that can be generated by linear combinations of v_1, v_2, \ldots, v_i .

$$\{\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_i \mathbf{v}_i \mid \alpha_1, \alpha_2, \dots, \alpha_i \in \mathbb{R}\}$$

It is the set of all vectors that can be generated by linear combinations of v_1, v_2, \ldots, v_i .

If we stack the vectors v_1, v_2, \ldots, v_i as columns of a matrix V, then the span of v_1, v_2, \ldots, v_i is given as $V\alpha$ where $\alpha \in {\rm I\!R}^i$

Can we obtain a point (x, y) s.t. x = 3y?

Can we obtain a point (x, y) s.t. x = 3y? No Can we obtain a point (x, y) s.t. x = 3y? No Span of the above set is along the line y = 2x

The span is the plane z = x or $x_3 = x_1$

This condition arises when the $|X^TX| = 0$.

$$X = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 4 \\ 1 & 3 & 6 \end{bmatrix} \tag{1}$$

This condition arises when the $|X^TX| = 0$.

$$X = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 4 \\ 1 & 3 & 6 \end{bmatrix} \tag{1}$$

The matrix X is not full rank.

 $P = \theta_0 + \theta_1 *\# Vehicles + \theta_1 *\ \textit{Wind speed} + \theta_3 *\ \textit{Wind Direction}$

 $P = \theta_0 + \theta_1 * \# Vehicles + \theta_1 * \textit{Wind speed} + \theta_3 * \textit{Wind Direction}$ But, wind direction is a categorical variable.

 $P = \theta_0 + \theta_1 *\# Vehicles + \theta_1 * Wind speed + \theta_3 * Wind Direction$

But, wind direction is a categorical variable. It is denoted as follows $\{N:0, E:1, W:2, S:3\}$

 $P = \theta_0 + \theta_1 *\# Vehicles + \theta_1 * Wind speed + \theta_3 * Wind Direction$

But, wind direction is a categorical variable. It is denoted as follows $\{N:0, E:1, W:2, S:3\}$

Can we use the direct encoding?

$$P = \theta_0 + \theta_1 *\# Vehicles + \theta_1 * Wind speed + \theta_3 * Wind Direction$$

But, wind direction is a categorical variable. It is denoted as follows $\{N:0, E:1, W:2, S:3\}$

Can we use the direct encoding? Then this implies that S>W>E>N

The N-1 variable encoding is better because the N variable encoding can cause multi-collinearity.

The N-1 variable encoding is better because the N variable encoding can cause multi-collinearity.

Is it S = 1 - (Is it N + Is it W + Is it E)

W and S are related by one bit.

W and S are related by one bit.

This introduces dependencies between them, and this can cause confusion in classifiers.

Encoding

Encoding

Is Female	height
1	
1	
1	
0	
0	

s Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

Is Female	height	_
1	5	_
1	5.2	
1	5.4	
0	5.8	
0	6	
$height_i = \theta_0$	$\theta_1 + \theta_1 *$	(Is Female) $+ \epsilon_i$
$height_i = \theta_0^{'} + \theta_1 * (Is Female) + \epsilon_i$		

Is Female	height		
1	5		
1	5.2		
1	5.4		
0	5.8		
0	6		
$height_i = \theta_0$	$\theta_1 * \theta_1$	(Is Female)	$+ \epsilon_i$
M	F 0 1	0 07	

We get
$$\theta_0 = 5.9$$
 and $\theta_1 = -0.7$

Is Female	height	
1	5	•
1	5.2	
1	5.4	
0	5.8	
0	6	
$height_i = \theta_0 + \theta_1 * (Is Female) + \epsilon_i$		
We get $\theta_0 = 5.9$ and $\theta_1 = -0.7$		

We get
$$\theta_0 = 5.9$$
 and $\theta_1 = -0.7$
 $\theta_0 = \text{Avg height of Male} = 5.9$

Is Female	height	·
1	5	_
1	5.2	
1	5.4	
0	5.8	
0	6	
$height_i = \theta_0$	$\theta_1 + \theta_1$	* (Is Female) $+ \epsilon_i$

We get
$$\theta_0=5.9$$
 and $\theta_1=-0.7$ $\theta_0=$ Avg height of Male $=5.9$ $\theta_0+\theta_1$ is chosen based (equal to) on 5, 5.2, 5.4 (for three records).

Is Female	height	_
1	5	_
1	5.2	
1	5.4	
0	5.8	
0	6	
$height_i = \theta_0$	$\theta_1 * \theta_1$	(Is Female) $+ \epsilon_i$

We get
$$\theta_0=5.9$$
 and $\theta_1=-0.7$ $\theta_0=$ Avg height of Male $=5.9$ $\theta_0+\theta_1$ is chosen based (equal to) on 5, 5.2, 5.4 (for three records). θ_1 is chosen based on 5-5.9, 5.2-5.9, 5.4-5.9

Is Female	height	·
1	5	_
1	5.2	
1	5.4	
0	5.8	
0	6	
$height_i = \theta_0$	θ_1 ,	* (Is Female) $+$ ϵ_{i}

We get
$$\theta_0=5.9$$
 and $\theta_1=-0.7$ $\theta_0=$ Avg height of Male $=5.9$ $\theta_0+\theta_1$ is chosen based (equal to) on 5, 5.2, 5.4 (for three records). θ_1 is chosen based on 5-5.9, 5.2-5.9, 5.4-5.9 $\theta_1=$ Avg. female height $(5+5.2+5.4)/3$ - Avg. male height (5.9)

$$x_i = \begin{cases} 1 & \text{if } i \text{ th person is female} \\ -1 & \text{if } i \text{ th person is male} \end{cases}$$

$$x_i = \left\{ \begin{array}{ll} 1 & \text{if } i \text{ th person is female} \\ -1 & \text{if } i \text{ th person is male} \end{array} \right.$$

$$y_i = \theta_0 + \theta_1 x_i + \epsilon_i = \left\{ \begin{array}{ll} \theta_0 + \theta_1 + \epsilon_i & \text{if } i \text{ th person is female} \\ \theta_0 - \theta_1 + \epsilon_i & \text{if } i \text{ th person is male.} \end{array} \right.$$

$$x_i = \left\{ \begin{array}{ll} 1 & \text{if i th person is female} \\ -1 & \text{if i th person is male} \end{array} \right. \\ y_i = \theta_0 + \theta_1 x_i + \epsilon_i = \left\{ \begin{array}{ll} \theta_0 + \theta_1 + \epsilon_i & \text{if i th person is female} \\ \theta_0 - \theta_1 + \epsilon_i & \text{if i th person is male.} \end{array} \right. \\ \text{Now, θ_0 can be interpreted as average person height. θ_1 as the amount that female height is above average and male height is below average.}$$

When does the normal equation have a unique solution?

When does the normal equation have a unique solution?

When does the normal equation have a unique solution? How do polynomial features help with non-linear relationships? When does the normal equation have a unique solution? How do polynomial features help with non-linear relationships? When does the normal equation have a unique solution? How do polynomial features help with non-linear relationships? What are the assumptions behind linear regression?

Biased coefficient estimates

- Biased coefficient estimates
- Invalid confidence intervals

- Biased coefficient estimates
- Invalid confidence intervals

- Biased coefficient estimates
- Invalid confidence intervals
- ► Poor prediction performance

► Linear Model: Assumes linear relationship between features and target

► Linear Model: Assumes linear relationship between features and target

- ► Linear Model: Assumes linear relationship between features and target
- ▶ Least Squares: Minimizes sum of squared residuals

- ► Linear Model: Assumes linear relationship between features and target
- ▶ Least Squares: Minimizes sum of squared residuals

- ► Linear Model: Assumes linear relationship between features and target
- ▶ Least Squares: Minimizes sum of squared residuals
- **Normal Equation**: Closed-form solution when $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible

- ► Linear Model: Assumes linear relationship between features and target
- ▶ Least Squares: Minimizes sum of squared residuals
- **Normal Equation**: Closed-form solution when $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible

- ► Linear Model: Assumes linear relationship between features and target
- ▶ Least Squares: Minimizes sum of squared residuals
- **Normal Equation**: Closed-form solution when $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible
- ▶ Geometric View: Projection onto column space of design matrix

- ► Linear Model: Assumes linear relationship between features and target
- ▶ Least Squares: Minimizes sum of squared residuals
- **Normal Equation**: Closed-form solution when $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible
- ▶ Geometric View: Projection onto column space of design matrix

- ► Linear Model: Assumes linear relationship between features and target
- ▶ Least Squares: Minimizes sum of squared residuals
- **Normal Equation**: Closed-form solution when $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible
- ► Geometric View: Projection onto column space of design matrix
- ► Feature Engineering: Basis expansion enables non-linear modeling

- ► Linear Model: Assumes linear relationship between features and target
- ▶ Least Squares: Minimizes sum of squared residuals
- **Normal Equation**: Closed-form solution when $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible
- ► Geometric View: Projection onto column space of design matrix
- ► Feature Engineering: Basis expansion enables non-linear modeling

- ► Linear Model: Assumes linear relationship between features and target
- ▶ Least Squares: Minimizes sum of squared residuals
- **Normal Equation**: Closed-form solution when $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible
- ► Geometric View: Projection onto column space of design matrix
- Feature Engineering: Basis expansion enables non-linear modeling
- ▶ **Foundation**: Building block for more complex models