Complex Analysis

Pinaki Pal

Department of Mathematics National Institute of Technology Durgapur West Bengal, India

pinaki.pal@maths.nitdgp.ac.in

Syllabus and books

Syllabus

Functions of complex variable, Limit, Continuity and Derivative; Analytic function; Harmonic function; Complex integration; Cauchy's integral theorem; Cauchy's integral formula; Taylor's theorem, Laurent's theorem (Statement only); Singular points and residues; Cauchy's residue theorem.

Reference

- Engineering Mathematics- Babu Ram
- Engineering Mathematics (Oxford University Press)- S. Pal and S.C. Bhunia
- Advanced Engineering Mathematics- E. Kreyszig

Complex numbers

• A complex number z is an ordered pair (x, y) of real numbers x and y and the set of all complex numbers is denoted by \mathbb{C} , i.e.,

$$\mathbb{C} = \{z = (x, y) : x, y \in \mathbb{R}\}.$$

- The sets $\mathbb C$ and $\mathbb R^2=\mathbb R\times\mathbb R$ are same as sets, but the algebra in these sets are different.
- For two complex numbers $z_1 = (x_1, y_1)$ and $z_2 = (x_2, y_2)$, the addition and multiplication are defined as

$$z_1 + z_2 = (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

$$z_1 z_2 = (x_1, y_1)(x_2, y_2) = (x_1 x_2 - y_1 y_2, x_1 y_2 + x_2 y_1)$$

- The complex number (x,0) is simply denoted by x (indeed, a real number).
- Let i = (0, 1). Then $i^2 = (0, 1)(0, 1) = (-1, 0) = -1$ and so we can write $i = \sqrt{-1}$ (notation).
- Then z = (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + iy.
- The number x and y are called the real and imaginary parts of z and we write $\operatorname{Re} z = x$ and $\operatorname{Im} z = y$

Geometric representation: polar form

Figure: Argand diagram

- Let $z = x + iy \neq 0$ and $x = r \cos \theta$, $y = r \sin \theta$. Then $z = r(\cos \theta + i \sin \theta) = re^{i\theta}$ (Euler formula)
- The **modulus** (or absolute value) of z is $|z| = r = \sqrt{x^2 + y^2}$.
- The angle θ is called the **amplitude** or **argument** of the complex number z and denoted by $\arg z = \theta$ and we have $\tan \theta = \frac{y}{x}$.

- If α is an argument of an complex number z then $\alpha + 2k\pi, k \in \mathbb{Z}$ is also an argument of the same complex number z.
- Among infinitely many values of θ , the one which lies in $(-\pi, \pi]$ is called the principal argument of z and is denoted by $\operatorname{Arg} z$.
- The **conjugate** of a complex number z is defined by $\overline{z} = x iy$.

Some properties of complex numbers

- $2\overline{z} = |z|^2$
- $|z| = |\overline{z}|$
- $|z_1 z_2| = |z_1||z_2|$
- $oldsymbol{o}$ arg $z^n = n \arg z$
- $|z_1 z_2|$ represent the distance between the complex numbers z_1 and z_2 .
- $|z-z_0|=r$ represent a circle with center at z_0 and radius r.

Topology of complex plane: Some definition

- Neighbourhood: Let z_0 be a point in the complex plane. Then the set of all points z such that $|z-z_0|<\delta$ where $\delta>0$ is called neighbourhood or δ -neighbourhood of z_0 .
- Interior point: A point z_0 is called an interior point of set S if there exists a neighbourhood of z_0 lying wholly in S.
- Open set: A set S is said to be open if every point of S is an interior point.
- 4 Limit point: A point z_0 is called a limit point of a point set S if every neighbourhood of z_0 contains at least one point of S other than z_0 .
- **Solution** Closure: The union of a set S and the set of its limit points is called the closure of S and is denoted by \overline{S} .
- Closed set: A set S is said to be closed if it contains all of its limit points.
- \bigcirc A set S is said to be closed if and only if its complement S^c is open.
- 8 Bounded set: A set S is said to be bounded if there exist M > 0 such that $|z| \le M$ for all $z \in M$ i.e., S is contained in some disk of radius M.

Connected Set

- **○** Connected Set: A set *S* is said to be connected if there do not exist two non-empty disjoint open sets *A* and *B* such that $S \subseteq A \cup B$, $A \cap S \neq \phi$, $B \cap S \neq \phi$.
- 2 Domain: An open connected set is called a domain.
- Any two points in a domain can be joined by a polygonal line that lies in the domain.

Example:

$$A=\{z\in\mathbb{C}:|z|<1\},\quad B=\{z\in\mathbb{C}:|z-2|\leq1\},\quad S=A\cup B$$

A is open and connected set. B is closed and connected set. S is neither open nor closed but S is connected.

Complex Functions

Functions of a complex Variable: Let $D \subset \mathbb{C}$. A function f defined on D is a rule that assigns a complex number w to each complex number z in D.

$$w = f(z) = u + iv \iff w = f(x + iy) = u(x, y) + iv(x, y)$$

If only one value of w corresponds to each value of z, we say that w = f(z) is a single-valued function of z or that f(z) is single valued.

If more than one value of w corresponds to a value of z, then f(z) is called multiple-valued or many-valued function of z.

Example: Let $w = f(z) = z^2$.

Then $f(z) = (x + iy)^2 = (x^2 - y^2) + i2xy$. Here $u(x, y) = x^2 - y^2$ and v = 2xy.

Limit

Limit of a functions of a complex variable: Let f(z) be defined and single valued in a deleted nbd of z_0 . The function f(z) is said to have the limit I as z approaches z_0 if for given $\epsilon > 0$, there exists a $\delta > 0$ such that

$$|f(z) - I| < \epsilon$$
 whenever $0 < |z - z_0| < \delta$

We then write $\lim_{z\to z_0} f(z) = I$. Here the limit is independent of the direction of approach of z to z_0 .

Figure: limit of a function

Limit

Limit in terms of its real and imaginary parts of a complex functions:

Let
$$f(z) = u(x, y) + iv(x, y)$$
, $I = I_1 + iI_2$ and $z_0 = x_0 + iy_0$. Then

$$\lim_{z\to z_0} f(z) = I \quad \Longleftrightarrow \lim_{(x,y)\to(x_0,y_0)} u(x,y) = I_1 \quad \& \lim_{(x,y)\to(x_0,y_0)} v(x,y) = I_2.$$

Example:
$$\lim_{z \to 1+2i} |z|^2 = \lim_{(x,y) \to (1,2)} (x^2 + y^2) = 5$$

Example:

$$\lim_{z \to 1+3i} \frac{z^2 - 3z + 1}{z - 1} = \lim_{z \to 1+3i} \frac{(z - 1)(z - 2)}{z - 1} = \lim_{z \to 1+3i} (z - 2) = -1 + 3i.$$

Example: $\lim_{z\to 0} \frac{\overline{z}}{z}$ does not exist.

Along *x*-axis
$$(y = 0)$$
, we have $\lim_{z \to 0} \frac{\overline{z}}{z} = \lim_{x \to 0} \frac{x}{x} = 1$.

Along y-axis
$$(x = 0)$$
, we have $\lim_{z \to 0} \frac{\overline{z}}{z} = \lim_{y \to 0} \frac{-iy}{iy} = -1$.

Continuity

Continuous functions: Let f(z) be defined and single valued in a nbd of z_0 . The function f(z) is said to be continuous at z_0 if for given $\epsilon > 0$, there exists a $\delta > 0$ such that

$$|f(z) - f(z_0)| < \epsilon$$
 whenever $|z - z_0| < \delta$

Alternatively, the function f(z) is said to be continuous at z_0 if $\lim_{z \to z_0} f(z)$ exist and is equal to $f(z_0)$.

Theorem

A function f(z) = u(x, y) + iv(x, y) is continuous at $z_0 = x_0 + iy_0$ if and only if the functions u(x, y) and v(x, y) are continuous at (x_0, y_0) .

Continuity

Example: Let
$$f(z) = z^2 + 1 = (x^2 - y^2 + 1) + i2xy$$
.

Then

$$\lim_{z \to i} (z^2 + 1) = 0 = f(i).$$

Thus f(z) is continuous at z = i.

Example: The signum function defined by

$$f(z) = \begin{cases} \frac{|z|}{z} & z \neq 0 \\ 0 & z = 0 \end{cases}$$

is continuous in $\mathbb{C} \setminus \{0\}$.

Solution: Let $z_0 \neq 0$. Then

$$\lim_{z\to z_0}f(z)$$

But

$$\lim_{z \to 0} \frac{|z|}{z} = \begin{cases} 1 & \text{when } z = x + i.0 \& x \to 0^+ \\ -1 & \text{when } z = x + i.0 \& x \to 0^- \end{cases}$$

Thus f is not continuous at z = 0.

Differentiability

Differentiable functions: A function $f: D \to \mathbb{C}$ is said to be differentiable at $z_0 \in D$ if

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \quad \text{or} \quad \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

exists and it is denoted by $f'(z_0)$.

If f is differentiable at each point of D, we say that f is differentiable in D.

Theorem

If $f:D\to\mathbb{C}$ is differentiable at $z_0\in D$, then f is continuous at z_0 .

Proof:

$$\lim_{z \to z_0} (f(z) - f(z_0)) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}.(z - z_0)$$

$$= \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}. \lim_{z \to z_0} (z - z_0)$$

$$= f'(z_0).0 = 0.$$

Thus *f* is continuous.

Differentiability

Example: Let $f(z) = z^2, z \in \mathbb{C}$. Then

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \lim_{h \to 0} \frac{(z+h)^2 - z^2}{h}$$
$$= \lim_{h \to 0} \frac{h^2 + 2zh}{h} = \lim_{h \to 0} (h+2z) = 2z$$

Example: The function $f(z) = \overline{z}$ is continuous everywhere but not differentiable at any point.

$$\frac{f(z+h)-f(z)}{h} = \frac{\overline{z+h}-\overline{z}}{h} = \frac{\overline{h}}{h} \to \begin{cases} 1 & \text{if } h \to 0 \text{ along real axis} \\ -1 & \text{if } h \to 0 \text{ along imaginary axis} \end{cases}$$

Thus *f* is not differentiable at any point. But clearly *f* is continuous at all points.

Differentiability

Example: Let $f(z) = |z| = \sqrt{x^2 + y^2}, z \in \mathbb{C}$. Then f is continuous on \mathbb{C} but not differentiable at the origin.

Clearly, $\lim_{z\to 0} f(z) - f(0) = 0$. But,

$$\frac{f(z) - f(0)}{z - 0} = \frac{|z|}{z} \to \begin{cases} 1 & \text{if } z = x > 0, \ x \to 0^+ \\ -1 & \text{if } z = x < 0, \ x \to 0^+ \\ -i & \text{if } z = iy, \ y \to 0^+ \\ i & \text{if } z = iy, \ y \to 0^- \end{cases}$$

Thus f is not differentiable at z = 0.

Theorem

Let $f:D\to\mathbb{C}$ and $g:D\to\mathbb{C}$ be two differentiable function. Then

(i)
$$(f \pm g)' = f' \pm g'$$
;

(ii)
$$(fg)' = f'g + fg';$$

(iii)
$$\left(\frac{f}{g}\right)'=\frac{f'g-fg'}{g^2},\;g\neq 0;$$

(iv)
$$[f(g(z))]' = f'(g(z)).g'(z);$$

Pinaki Pal (NIT Durgapur)

Theorem

A real valued function of a complex variable either has derivative zero or the derivative does not exist.

Proof: Suppose that $f: D \to \mathbb{R}$ is differentiable at $z_0 \in D$. Then

$$f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

exist. If $h \to 0$ along real axis, then $f'(z_0)$ is purely real and if $h \to 0$ along imaginary axis, then $f'(z_0)$ is purely imaginary. This is possible only when $f'(z_0) = 0$.

Example: Show that f(z) = Re(z) is nowhere differentiable.

Hint:

$$\frac{f(z_0 + h) - f(z_0)}{h} = \frac{Re(h)}{h} = \begin{cases} 1 & \text{for } h = h_1 + i.0 \in \mathbb{R} \setminus \{0\} \\ 0 & \text{for } h = 0 + i.h_2 \in i \mathbb{R} \setminus \{0\} \end{cases}$$

Example: Show that the functions Im(z), \bar{z} , Arg(z) is nowhere differentiable.

Cauchy-Riemann equation

Theorem (Necessary condition for derivative)

If f(z) = u + iv is differentiable at z_0 , then $f_x = u_x + iv_x$ and $f_y = u_y + iv_y$ exists at z_0 and satisfy the Cauchy-Riemann(C-R) equation at z_0 , i.e,

$$f_y(z_0) = if_x(z_0)$$
 or, equivalently $u_x(z_0) = v_y(z_0)$ & $u_y(z_0) = -v_x(z_0)$.

Proof: Let $f'(z_0)$ exists finitely. Then

$$f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

exists and is independent of the path along which $h = h_1 + ih_2$ approaches to 0. In particular, along x-axis we have

$$f'(z_0) = \lim_{h_1 \to 0} \frac{f(x_0 + h_1, y_0) - f(x_0, y_0)}{h_1 + i.0} = f_x(z_0)$$

$$= \lim_{h_1 \to 0} \frac{u(x_0 + h_1, y_0) - u(x_0, y_0)}{h_1} + i \lim_{h_1 \to 0} \frac{v(x_0 + h_1, y_0) - v(x_0, y_0)}{h_1}$$

$$= u_x(z_0) + iv_x(z_0)$$
(1)

Cauchy-Riemann equation

Again, along y-axis we have

$$f'(z_0) = \lim_{h_2 \to 0} \frac{f(x_0, y_0 + h_2) - f(x_0, y_0)}{0 + i \cdot h_2} = \frac{1}{i} f_y(z_0)$$

$$= \frac{1}{i} \lim_{h_2 \to 0} \frac{u(x_0, y_0 + h_2) - u(x_0, y_0)}{h_2} + i \lim_{h_2 \to 0} \frac{v(x_0, y_0 + h_2) - v(x_0, y_0)}{h_2}$$

$$= \frac{1}{i} (u_y(z_0) + i v_y(z_0))$$

$$= v_y(z_0) - i u_y(z_0)$$
(2)

From (1) and (2), we have

$$f_y = if_x$$
 or equivalently $u_x = v_y$, $u_y = -v_x$.

Note 1: If a function f(z) is known to be differentiable then its derivative is given by

$$f'(z) = f_x = -if_y = u_x + iv_x = v_y - iu_y.$$

Note 2: The C-R equations are necessary condition for f to be differentiable at a point. If they are not satisfied at a point then f'(z) does not exist at that point.

If C-R equation hold a point z_0 then f may or may not be differentiable at z_0 , and

Example: Let $f(z) = \sqrt{|\operatorname{Re} z \operatorname{Im} z|} = \sqrt{|xy|}$. Then f satisfies the C-R equation at z = 0 but f'(0) does not exists.

Solution: Here $u(x, y) = \sqrt{|xy|}$ and v(x, y) = 0. Then

$$u_x(0,0) = \lim_{h\to 0} \frac{u(h,0) - u(0,0)}{h} = 0$$

$$u_y(0,0) = \lim_{k \to 0} \frac{u(0,k) - u(0,0)}{k} = 0$$

Similarly, $v_x(0,0) = v_v(0,0) = 0$. Thus, f satisfy C-R equation.

$$\lim_{z \to 0} \frac{f(z) - f(0)}{z - 0} = \lim_{(x,y) \to (0,0)} \frac{\sqrt{|xy|}}{x + iy} = \lim_{x \to 0} \frac{\sqrt{m}}{1 + im} \quad (along \ y = mx) = \frac{\sqrt{m}}{1 + im}$$

which is different for different values of m. Thus f'(0) does not exist

Example: Show that the function

$$f(z) = \begin{cases} \frac{xy}{x^2 + y^2} , & \text{for } z \neq 0 \\ 0 , & \text{for } z = 0 \end{cases}$$

satisfy C-R equation at z=0 but f'(0) does not exists.

Theorem

Let f = u + iv be differentiable in a domain D. Show that f is constant in D, if one of the following conditions hold

- (i) $f'(z) \equiv 0$ in D.
- (ii) Re f(z) is constant in D.
- (iii) Im f(z) is constant in D.
- (iv) |f(z)| is constant in D.

Proof: (i) If $f'(z) = f_x = u_x + iv_x = 0$ then $u_x = v_x = 0$ in D. The by C-R equation $u_y = v_y = 0$ in D. Thus u and v both are constant in D and consequently, f is constant in D.

- (ii) If $\operatorname{Re} f(z) = u = c$ then $u_x = u_y = 0$. By C-R equation $v_x = v_y = 0$. and so f'(z) = 0 in D. Thus f is constant in D.
- (iv) Let |f(z)| = k, a constant. Then

$$u^2 + v^2 = k^2 \implies uu_x + vv_x = 0$$
 and $uu_y + vv_y = 0$
 $\implies (u^2 + v^2)(u_x^2 + u_y^2) = 0$ [squaring and adding]
 $\implies k^2|f'(z)|^2 = 0$

Analytic Function

- Analytic Function: A function $f: D \to \mathbb{C}$ is said to be analytic at a point $z_0 \in D$ if it is differentiable at every point of some neighbourhood of z_0 .
- Alternative terms for analytic functions are regular function or holomorphic function.
- The function *f* is said to be analytic on *D* if it analytic at every point of *D*.
- A function which is analytic at every point in the complex plane is called entire function.

Example: Show that the function $f(z) = \bar{z} = x - iy$ is nowhere analytic.

Solution:

- Here u(x, y) = x and v(x, y) = -y.
- Then $u_x = 1 \& u_y = 0$ and $v_x = 0 \& v_y = -1$.
- Thus f(z) does not satisfy the CR equation at any point (alternatively, $f_{\overline{z}} = 1 \neq 0$).
- Thus *f* is not differentiable at any point and so *f* is not analytic at any point.

Analytic Function

Example: The function $f(z) = |z|^2 = z\bar{z}$ is differentiable only at the origin and hence nowhere analytic.

Solution: Here $u(x,y)=x^2+y^2$ and v(x,y)=0. Then $u_x=2x \& u_y=2y$ and $v_x=0 \& v_y=0$. Thus f(z) satisfy the CR equation only at the origin (alternatively, $f_{\overline{z}}=z$). Thus f is not differentiable at z if $z\neq 0$ and so f is not analytic at any point. You can check that f is differentiable at origin.

Example:

- Any polynomial $p(z) = a_0 + a_1 z + a_2 z^2 + ... + a_n z^n$ is entire function.
- 2 The function $\sin z$, $\cos z$, e^z are entire function.
- **3** The function $f(z) = \frac{z}{1-z}$ is analytic in $\mathbb{C} \setminus \{1\}$.
- The functions $f(z) = Rez = \frac{z+\overline{z}}{2}$, $f_2(z) = Imz = \frac{z-\overline{z}}{2i}$, $f_3(z) = e^{\overline{z}}$ are nowhere differentiable/analytic.
- **1** The function $\text{Log } z = \log |z| + i \text{Arg } z$ is analytic in $\mathbb{C} \setminus (-\infty, 0]$.
- We can not talk about the analyticity of the function $\log z = \log |z| + i \arg z$ as it is a multi-valued function.

Harmonic Function: A function $\phi:\Omega\to\mathbb{R}$ is said to be harmonic in an open set Ω if it has continuous partial derivatives of second order and satisfies the Laplace equation

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = \phi_{xx} + \phi_{yy} = 0.$$

Theorem

Both the real and imaginary parts of an analytic function are harmonic.

Proof: If f = u + iv is analytic then $f'(z) = u_x + iv_x$. By C-R equation, $u_x = v_y$, & $u_y = -v_x$. Thus $u_{xx} = v_{xy}$, $u_{yy} = -v_{yx}$. Therefore $u_{xx} + u_{yy} = 0$.

Example: The functions u(x, y) = x, v(x, y) = -y both are harmonic in \mathbb{C} . But $f = u + iv = \bar{z}$ is not analytic at any point of \mathbb{C} .

Theorem

Let u be a harmonic function in a simply connected domain (to be discussed latter). Then there exist another harmonic function v such that f = u + iv is analytic. (The function v is called the harmonic conjugate of u.)

- The harmonic conjugate v is unique, upto an addition of a real constant.
- Indeed, if v_1 is another harmonic conjugate, then $F = u + iv_1$ is also analytic in Ω and so $F f = i(v_1 v)$ becomes analytic in Ω . But then $\operatorname{Re}(F f) = 0$ and so F f = c (constant).

Example: Show that $u(x, y) = 4xy - x^3 + 3xy^2$ harmonic and find v such that f = u + iv is analytic.

- Here $u_x = 4y 3x^2 + 3y^2$, $u_y = 4x + 6xy$, $u_{xx} = -6x$, $u_{yy} = 6x$.
- So, $u_{xx} + u_{yy} = 0$ and therefore u is harmonic in \mathbb{C} .
- Now

$$u_x = 4y - 3x^2 + 3y^2 = v_y$$

$$\implies v = \int v_y dy + \phi(x) = 2y^2 - 3x^2y + y^3 + \phi(x)$$

$$\implies v_x = -6xy + \phi'(x) = -u_y = -4x - 6xy$$

$$\implies \phi'(x) = -4x$$

$$\implies \phi(x) = -2x^2 + k \quad k \text{ is a real constant}$$

Therefore $v = 2y^2 - 3x^2y + y^3 - 2x^2 + k$ and hence f = u + iv is analytic.

To find the function: Let f = u + iv is the corresponding analytic function. Then by C-R equation

$$f'(z) = u_x + iv_x = u_x - iu_y = (4y - 3x^2 + 3y^2) - i(4x + 6xy)$$

= $-3(x^2 - y^2 + 2ixy) - 4i(x + iy) = -3z^2 - 4iz$.

Thus $f(z) = -z^3 - 2iz^2 + c$.

Example: Find the analytic function f = u + iv given that $u(x, y) = x^3 - 3xy^2$.

- Here $u_x = 3x^2 3y^2$, $u_y = -6xy$, $u_{xx} = 6x$, $u_{yy} = -6x$.
- So, $u_{xx} + u_{yy} = 0$ and therefore u is harmonic in \mathbb{C} .
- Now

$$u_x = 3x^2 - 3y^2 = v_y$$

$$\implies v = \int v_y dy + \phi(x) = 3x^2y - y^3 + \phi(x)$$

$$\implies v_x = 6xy + \phi'(x) = -u_y = 6xy$$

$$\implies \phi'(x) = 0$$

$$\implies \phi(x) = k \quad k \text{ is a real constant}$$

Therefore $v = 3x^2y - y^3 + k$. Hence

$$f = u + iv = (x^3 - 3xy^2) + i(3x^2y - y^3 + k) = (x + iy)^3 + ik = z^3 + c.$$

The Extended complex plane and Stereographic projection

Figure: Stereographic projection

- The extended complex plane is the complex plane together with the point at infinity.
- The extended complex plane is denoted by \mathbb{C}_{∞} so that $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$.
- One way to visualize the extended complex plane is the Stereographic projection.
- We consider a sphere of radius 1 centered at the origin (0,0,0) in R³.
- We identify the complex number z = x + iy by (x, y, 0) in \mathbb{R}^3 .

- If P(X, Y, Z) is any point on the unit sphere other than the north pole N(0,0,1) then the straight line joining P and N meets the complex plane at exact one point, namely at z = x + iy or (x, y, 0).
- Thus to each point on sphere (except the north pole N(0,0,1)) there correspond one and only one point on the complex plane and conversely.
- For completeness, we say that the north pole N(0,0,1) correspond to the point at infinity (∞) .

Analyticity at point at infinity

- Any nbd of the point of infinity is the set of all complex number (including ∞) lies in |z| > M where M > 0.
- A function f(z) is continuous/differentiable/analytic at $z=\infty$ iff the function f(1/z) is continuous/differentiable/analytic at z=0 respectively.

Curves

Figure: Curve

Figure: Simple closed curve

Figure: Not simple closed curve

- Curve: A continuous curve or simply curve or arc in $\mathbb C$ is a continuous mapping $\gamma:[a,b]\to\mathbb C$ and is defined parametrically by $\gamma:z(t)=x(t)+iy(t),$ $t\in[a,b]$ where x(t) and y(t) are continuous real valued functions on [a,b].
- A curve may have more than one parametrization. For example, z₁(t) = t, t ∈ [0, 1] and z₂(t) = t², t ∈ [0, 1] represent the curve.
- For the parameterized curve $\gamma:[a,b]\to\mathbb{C}$, the point $\gamma(a)$ is called the initial point and $\gamma(b)$ is called the terminal point of γ .
- If $\gamma(a) = \gamma(b)$ then it is called a closed curve.
- The curve γ is called simple or Jordan arc if $\gamma(t)$ is one one (injective) with possible exception that $\gamma(a) = \gamma(b)$.
- A simple closed curve is called a Jordan curve. A domain D bounded by a Jordan curve is called a Jordan domain.

Curves

Figure: Simply connected domain

Figure: Multiply connected domain

- A domain D is called simply connected if each simple closed curve contained in D contains only points of D inside.
- A domain *D* is called simply connected if each simple closed curve contained in *D* can be contracted to a point without leaving *D*.
- A domain that is not simply connected is called multiply connected.

Curves

- The boundary C of a domain is said to have positive orientation, or to be traversed in the positive direction if a person walking on C always has the domain to his left.
- A curve z(t) = x(t) + iy(t), $t \in [a, b]$ is said to be smooth or regular or continuously differentiable on [a, b] or C^1 curve if z(t) and z'(t) are continuous.
- A curve C: z = z(t) is called piecewise smooth curve is there exists a subdivision $a = t_0 < t_1 < t_2 < < t_n = b$ of [a, b] such that z(t) is a smooth curve on $[t_{j-1}, t_j]$ for j = 1, 2, ..., n.
- A contour is just a piecewise smooth curve.