Maths - MP2I

Eliott Paquet

27 juillet 2025

Introduction

Ce document réunit l'ensemble de mes cours de Mathématiques de MP2I, ainsi que les TDs (travaux dirigés) les accompagnant. J'ai adapté certaines formulations me paraissant floues ou ne me plaisant pas mais le contenu pur des cours est strictement équivalent. Le document est organisé selon la hiérarchie suivante : chapitre, I), 1), a).

Les éléments des tables des matières initiale et présentes au début de chaque chapitre sont cliquables (amenant directement à la partie cliquée). C'est également le cas des références à des éléments antérieurs de la forme, par exemple, « Démonstration 5.22 ».

Dernier TD corrigé: aucun.

Table des matières

Ι	Cours		4
1	trigono	métrie (Rappels et compléments)	5
	1.1	Cercle trigonométrique	5
	1.1.	1 Relation de congruence modulo 2π sur \mathbb{R}	5
	1.2	Cosinus et sinus	6
	1.2.	1 Formules et valeur remarquables	6
	1.3	La fonction tangente	8
2	Inégalit	é et fonction (rappel et compléments)	10
	2.1	Inégalité	10
	2.1.	1 Relation d'ordre sur \mathbb{R}	10
	2.2	Valeur absolue d'un réel	15
	2.3	Partie entière d'un réel	16
	2.4	Généralité sur les fonctions	17
	2.5	Fonction et relation d'ordre	20
	2.6	Dérivation des fonctions d'une variable réelle	21
3	Calcul a	algébrique (rappels et compléments)	2 8
	3.1	Sommes et produit finis	28
	3.2	Cas des sommes doubles finies	33
	3.3	Système linéaire de deux équations à deux inconnues	34
	3.4	Système linéaire de trois équations à trois inconnues	35
	3.5	Algorithme du Pivot	36

4	Nombr	res complexes	38
	4.1	Généralité	38
	4.2	Conugué d'un nombre complexe	40
	4.3	module d'un nombre complexe	40
	4.4	Nombre complexe de module 1 et trigonométrie	41
	4.5	Forme trigonométrique pour les nombres complexes non nuls	44
	4.6	Fonctions d'une variable réelle à valeurs complexes	45
5	Fonction	ons usuelles : Rappel et complément	47
	5.1	Fonction exponentielle	47
	5.2	Fonction logarithmes	48
	5.3	Fonctions hyperboliques	48
	5.4	Tangente hyperbolique	50
	5.5	Arccos	51
	5.6	Arcsin	51
	5.7	Arctan	52
	5.8	Fonction puissances réelles	52
	5.9	croissance comparées	53
6	Nombr	res complexes (2)	55
	6.1	Équations algébreiques	55
	6.1	.1 Préliminaires	55
	6.1	.2 Résolution des équations du second degré dans \mathbb{C}	56
	6.1	Résolution des équations du type $z^n=z_0$ dans $\mathbb C$ avec $n\in\mathbb N^*$	57
	6.2	Exponentielle complexe	59
	6.3	Interprétations géométriques	60
7	Calcul	de primitives	63
	7.1	Primitives	63
	7.2	Primitives usuelles	64

	7.3 C	alculs de primitives	65
	7.3.1	Deux théorème important	67
	7.3.2	Primitives de $x \mapsto e^{ax} \cos(bx)$ ou $x \mapsto e^{ax} \sin(bx)$	68
	7.3.3	Primitives de $x \mapsto \frac{1}{ax^2 + bx + c}$ avec a, b et c des réels et a non nul	68
8	Complém	ents sur les nombres réels	70
	8.1 Pa	arties denses de \mathbb{R}	70
	8.2 A	pproximation décimale d'un réel	72
	8.3 B	orne inférieur et supérieure d'une partie de R	75

Première partie

Cours

Chapitre 1

trigonométrie (Rappels et compléments)

Sommaire

1.1	Cercle trigonométrique	
1.1.1	Relation de congruence modulo 2π sur \mathbb{R}	
1.2	Cosinus et sinus	
1.2.1	Formules et valeur remarquables	
1.3	La fonction tangente	

Dans ce chapitre, on rappelle ce qui a été vu en trigonométrie au lycée et on complète avec les formules d'addition et de duplication ainsi que l'étude de la fonction tangente.

1.1 Cercle trigonométrique

On se place dans le plan muni d'un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$

Définition 1.1 (Cercle trigonométrique)

On appelle cercle trigonométrique le cercle de centre O et de rayon 1

Propriétés 1.2 (enroulement de la droite des réels sur le cercle trigonométrique) Soit M un point du plan.

Le point M appartient au cercle trigonométrique si, et seulement si, il existe un réel t tel que les coordonnées de M dans le repère orthonormé (O, \vec{i}, \vec{j}) sont $(\cos t; \sin t)$

1.1.1 Relation de congruence modulo 2π sur \mathbb{R}

Définition 1.3

Deux réels a et b sont dits congrus modulo 2π s'il existe un entier relatif k tel que $a-b=2k\pi$ Notation : $a\equiv b$ [2π]

Définition/Propriétés 1.4

On dit que la relation \equiv est une relation d'équivalence sur $\mathbb R$ car elle vérifie les propriétés suivantes :

(1) Pour tout réel x, on a : $x \equiv x [2\pi]$.

(réfléxivité)

- (2) Pour tout couple de réels (x, y) tel que $x \equiv y [2\pi]$, on a $y \equiv x [2\pi]$ (symétrie)
- (3) Pour tout triplet de réels (x, y, z) tel que $x \equiv y [2\pi]$ et $y \equiv z [2\pi]$, on a : $x \equiv z [2\pi]$ (transitivité)

1.2 Cosinus et sinus

1.2.1 Formules et valeur remarquables

Formule 1.5 (Formule de base)

Pour tout réel t, on a :

(1)
$$\cos(\pi - t) = -\cos t \ et \sin(\pi - t) = \sin t$$

(2)
$$\cos (\pi + t) = -\cos t \ et \sin (\pi + t) = -\sin t$$

(3)
$$\cos\left(\frac{\pi}{2} - t\right) = \sin t \ et \sin\left(\frac{\pi}{2} - t\right) = \cos t$$

(4)
$$\cos\left(\frac{\pi}{2} + t\right) = -\sin t \ et \sin\left(\frac{\pi}{2} + t\right) = \cos t$$

t	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos t$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin t$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Remarque 1.6

Soient a et b des réels :

eight
$$a$$
 et b des réels :
$$\begin{cases}
a \equiv b \ [2\pi] \\
\text{ou}
\end{cases} & \iff \begin{cases}
\exists k \in \mathbb{Z}, \ a = b + 2k\pi \\
\text{ou}
\end{cases} \\
\exists k' \in \mathbb{Z}, \ a = -b + 2k'\pi
\end{cases}$$
• $\sin a = \sin b \iff \begin{cases}
a \equiv b \ [2\pi] \\
\text{ou}
\end{cases} & \iff \begin{cases}
\exists k \in \mathbb{Z}, \ a = b + 2k\pi \\
\exists k' \in \mathbb{Z}, \ a = b + 2k\pi
\end{cases} \\
\text{ou}$
• $\sin a = \sin b \iff \begin{cases}
a \equiv b \ [2\pi]
\end{cases} & \iff \begin{cases}
\exists k \in \mathbb{Z}, \ a = -b + 2k'\pi \\
\exists k' \in \mathbb{Z}, \ a = b + 2k'\pi
\end{cases}$

Formule 1.7 (Formule d'addition)

Pour tout couple de réels (a,b) on a:

(1)
$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

(2)
$$\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

(3)
$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$

(4)
$$\sin(a - b) = \sin(a)\cos(b) - \cos(a)\sin(b)$$

Formule 1.8 (Formule de simpson)

Pour tout couple de réels (a,b) on a :

(1)
$$\sin(a+b) + \sin(a-b) = 2\sin(a)\cos(b) \iff \frac{1}{2}(\sin(a+b) + \sin(a-b)) = \sin(a)\cos(b)$$

(2)
$$\cos(a+b) + \cos(a-b) = 2\cos(a)\cos(b) \iff \frac{1}{2}(\cos(a+b) + \cos(a-b)) = \cos(a)\cos(b)$$

Application 1.9

Calcul:

$$\int_0^{\pi} \sin(x) \cos(3x) \, dx = \int_0^{\pi} \frac{1}{2} \left(\sin(4x) + \sin(2x) \right) dx = 0$$

Formule 1.10 (Formule de duplication)

Pour tout réel a, on a :

(1)
$$\cos(2a) = \cos^2(a) - \sin^2(a) = 2\cos^2(a) - 1 = 1 - \sin^2(a)$$

$$(2) \sin(2a) = 2\cos(a)\sin(a)$$

Propriétés 1.11 (Sinus et Cosinus)

- La fonction cos est définie sur \mathbb{R} , paire et périodique de période 2π . Elle est dérivable sur \mathbb{R} et sa dérivée vérifie $\cos' = -\sin$
- La fonction sin est définie sur \mathbb{R} , impaire et périodique de période 2π . Elle est dérivable sur \mathbb{R} et sa dérivée vérifie sin' = cos

7

Propriétés 1.12 (Inégalité remarquable)

Pour tout réel t, on a : $|\sin(t)| \le |t|$

Définition/Propriétés 1.13 (Relation fondamentale de la trigonométrie)

 $\forall x \in \mathbb{R}, \cos^2(x) + \sin^2(x) = 1$

Démonstration 1.14

Soit $f: x \longmapsto \cos^2(x) + \sin^2(x)$

alors on a : $f'(x) = -2\sin(x)\cos + 2\sin(x)\cos(x) = 0$

Donc f est constante ainsi $\forall x \in \mathbb{R}, f(x) = f(0) = \cos^2(x) + \sin^2(x) = 1^2 + 0^2 = 1$

La fonction tangente 1.3

Propriétés 1.16

La fonction tan est définie sur $\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi\mid k\in\mathbb{Z}\right\}$, impaire et périodique de période π . Elle est dérivable sur $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}$ et sa dérivée vérifie $\tan' = 1 + \tan = \frac{1}{\tan^2}$

Formule 1.17

Pour tout réel t, on a :

- $(1) \tan(\pi t) = -\tan(t)$
- (2) $tan(\pi + t) = tan(t)$

(3)
$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline t & 0 & \frac{\pi}{6} & \frac{\pi}{4} & \frac{\pi}{3} & \frac{\pi}{2} \\\hline \tan t & 0 & \frac{1}{\sqrt{3}} & 1 & \sqrt{3} & NULL \\\hline \end{array}$$

Formule 1.18 (addition et duplication)

Pour tout couple de réels (a,b) n'appartenant pas à l'ensemble $\left\{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\right\}$, on a :

(1) Si
$$a+b$$
 n'appartient pas à l'ensemble $\left\{\frac{\pi}{2}+k\pi \mid k \in \mathbb{Z}\right\}$ alors $\tan(a+b) = \frac{\tan(a)+\tan(b)}{1-\tan(a)\tan(b)}$

(2) Si
$$a-b$$
 n'appartient pas à l'ensemble $\left\{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\right\}$ alors $\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}$

8

(3) Si 2a n'appartient pas à l'ensemble
$$\left\{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\right\}$$
 alors $\tan(2a) = \frac{2\tan(a)}{1 - \tan^2(a)}$

Exercice/Exemple 1.19 Soit t réel n'appartenant pas à $\left\{\frac{\pi}{4}+k\frac{\pi}{2}\;\middle|\;k\in\mathbb{Z}\right\}$:

$$\sin(t) = 2\sin\left(\frac{t}{2}\right)\cos\left(\frac{t}{2}\right)$$

$$= \frac{2\sin\left(\frac{t}{2}\right)}{\cos\left(\frac{t}{2}\right)}\cos^2\left(\frac{t}{2}\right)$$

$$= \frac{1}{1+\tan^2\left(\frac{t}{2}\right)} \times 2\tan\left(\frac{t}{2}\right)$$

$$= \frac{2\tan\left(\frac{t}{2}\right)}{1+\tan^2\left(\frac{t}{2}\right)}$$

Chapitre 2

Inégalité et fonction (rappel et compléments)

Sommaire

2.1	Inégalité
2.1.1	Relation d'ordre sur \mathbb{R}
2.2	Valeur absolue d'un réel $\dots \dots \dots$
2.3	Partie entière d'un réel
2.4	Généralité sur les fonctions
2.5	Fonction et relation d'ordre
2.6	Dérivation des fonctions d'une variable réelle

Dans ce chapitre, sont rassemblés des rappels ou compléments sur les inégalités ainsi que des fondamentaux sur les fonctions de variable réelle à valeurs réelles (sans preuve ni évocation de continuité).

2.1 Inégalité

2.1.1 Relation d'ordre sur \mathbb{R}

Définition 2.1

On dit que la relation \leq est une relation d'équivalence sur \mathbb{R} car elle vérifie les propriétés suivantes :

(1) Pour tout réel x, on a : $x \le x$.

(réfléxivité)

(2) Pour tout couple de réels (x, y) tel que $x \le y$ et $y \le x$, on a :y = x

(antisymétrie)

(3) Pour tout triplet de réels (x, y, z) tel que $x \le y$ et $y \le z$, on a : $x \le z$

(transitivité)

Propriétés 2.2 (Compatibilité avec les opérations)

Soit x, y, z, t et a des réels.

- (1) Si $x \le y$ et $z \le t$ alors $x + z \le y + t$
- (2) Si $x \le y$ et $0 \le a$ alors $ax \le ay$
- (3) Si $x \le y$ et $a \le 0$ alors $ay \le ax$
- (4) Si $0 \le x \le y$ et $0 \le z \le t$ alors $0 \le xz \le yt$

Notation 2.3 (Intervalles de \mathbb{R})

Les partie I de \mathbb{R} pouvant s'écrire sous l'une des formes suivantes sont dites intervalles de \mathbb{R} :

- \bullet $I = \emptyset$
- $I = \{x \in \mathbb{R} \mid a \le x \le b\} = [a; b] \text{ avec } (a, b) \in \mathbb{R}^2 \text{ et } a \le b$
- $I = \{x \in \mathbb{R} \mid a \le x < b\} = [a ; b[\text{avec } (a,b) \in \mathbb{R} \times (\mathbb{R} \cup \{+\infty\}) \text{ et } a < b\}]$
- $I = \{x \in \mathbb{R} \mid a < x \le b\} = a \mid a : b$ avec $(a, b) \in (\mathbb{R} \cup \{-\infty\}) \times \mathbb{R}$ et $a < b \mid a < b \mid a$
- $\bullet \ I = \{x \in \mathbb{R} \mid a < x \leq b\} \underset{\text{notation}}{=}]a \ ; \ b [\ \text{avec} \ (a,b) \in (\mathbb{R} \cup \{-\infty\}) \times (\mathbb{R} \cup \{+\infty\}) \ \text{et} \ a < b \}]$

Propriétés 2.4

(1) Passage à l'inverse dans une inégalité

$$\forall x \in \mathbb{R}_+^*, \ \forall y \in \mathbb{R}_+^*, \ x \leqslant y \iff \frac{1}{y} \leqslant \frac{1}{x}$$

$$\forall x \in \mathbb{R}_{-}^{*}, \ \forall y \in \mathbb{R}_{-}^{*}, \ x \leq y \iff \frac{1}{y} \leq \frac{1}{x}$$

(2) Passage au carré dans une inégalité

$$\forall x \in \mathbb{R}_+^*, \ \forall y \in \mathbb{R}_+^*, \ x \le y \iff x^2 \le y^2$$

$$\forall x \in \mathbb{R}_{-}^{*}, \ \forall y \in \mathbb{R}_{-}^{*}, \ x \leq y \iff y^{2} \leq x^{2}$$

(3) Passage à la racine carrée dans une inégalité

$$\forall x \in \mathbb{R}_+, \ \forall y \in \mathbb{R}_+, \ x \leq y \iff \sqrt{x} \leq \sqrt{y}$$

(4) Passage à l'exponentielle ou au logarithme népérien dans une inégalité

$$\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ x \leq y \iff e^x \leq e^y$$

$$\forall x \in \mathbb{R}_+^*, \ \forall y \in \mathbb{R}_+^*, \ x \leq y \iff \ln x \leq \ln y$$

Exercice/Exemple 2.5

Montrer $\forall x \in [0;1], \ x(1-x) \le \frac{1}{4}.$

Correction 2.6 (2 Méthode)

Soit $x \in [0;1]$

(1) Raisonnement par équivalence

$$x(1-x) \le \frac{1}{4} \iff 0 \le \frac{1}{4} - x(1-x)$$

$$\iff 0 \le x^2 - x + \frac{1}{4}$$

$$\iff 0 \le \left(x - \frac{1}{2}\right)^2$$

Ceci étant vrai $\forall x \in [0;1]$, car $\Delta = 0$ et $x_0 = \frac{1}{2}$, on conclut $\forall x \in [0;1]$, $x(1-x) \leq \frac{1}{4}$.

(2) étude de la fonction $f: [0;1] \longrightarrow \mathbb{R}$ $x \longmapsto \frac{1}{4} - x(1-x)$

Exercice/Exemple 2.7

Montrer $\forall x \in \mathbb{R}_+^*, \ x + \frac{1}{x} \ge 2.$

Correction 2.8 Soit $x \in \mathbb{R}_+^*$

$$x + \frac{1}{x} \ge 2 \iff \frac{x^2 + 1}{x} \ge 2$$

$$\iff x^2 - 2x + 1 \ge 0$$

$$\iff (x - 1)^2 \ge 0$$

12

Ceci étant vrai $\forall x \in \mathbb{R}_+^*$, on conclut $\forall x \in \mathbb{R}_+^*$, $x + \frac{1}{x} \ge 2$.

Exercice/Exemple 2.9

Encadrer $\frac{2x^2-x+1}{x^2+\sqrt{x+2}+3} \text{ pour } x \in [-1\ ; 1].$

Correction 2.10

Soit $x \in [-1; 1]$

(1) <u>numérateur</u>:

$$-1 \le x \le 1 \iff 0 \le x^2 \le 1$$

 $\iff 0 \le 2x^2 \le 2$
 $\iff 0 \le 2x^2 - x + 1 \le 4$

(2) denominateur:

$$-1 \leqslant x \leqslant 1 \iff 0 \leqslant x^2 \leqslant 1$$

$$\iff 4 \leqslant x^2 + \sqrt{x+2} + 3 \leqslant 4 + \sqrt{3}$$

$$\iff \frac{1}{4+\sqrt{3}} \leqslant \frac{1}{x^2 + \sqrt{x+2} + 3} \leqslant \frac{1}{4}$$

Ainsi par produit des deux inégalités on as $0 \le \frac{2x^2 - x + 1}{x^2 + \sqrt{x + 2} + 3} \le 1$ pour $x \in [-1; 1]$.

Exercice/Exemple 2.11

Encadrer $\frac{x - y^2 + 3}{x^2 + y^2 - y}$ pour $\forall (x, y) \in [1; 2]^2$.

Correction 2.12

Soit $x \in [-1; 1]$

 $(1) \ \underline{num\'{e}rateur}:$

$$1 - 4 + 3 \le x - y^2 + 3 \le 2 - 1 + 4 \iff 0 \le x - y^2 + 3 \le 5$$

(2) denominateur:

$$0 \le y - 1 \le 1 \iff 0 \le y^2 - y \le y$$

$$\iff 0 \le y^2 - y \le 2$$

$$\iff 1 \le x^2 + y^2 - y \le 6$$

$$\iff \frac{1}{6} \le \frac{1}{x^2 + y^2 - y} \le 1$$

13

Ainsi par produit des deux inégalités on as $0 \le \frac{x - y^2 + 3}{x^2 + y^2 - y} \le 5$ pour $\forall (x, y) \in [1; 2]^2$.

Définition 2.13 (Parties majorées, majorants, maximum)

Une partie A de $\mathbb R$ est dite majorée s'il existe un réel M tel que, pour tout réel x de A, on a : $x \leq M$. Un tel réel M est alors dit :

- majorant de A dans le cas général.
- maximum de A dans le cas particulier où M appartient à A.

Définition 2.14 (Parties minorées, minorants, minimum)

Une partie A de $\mathbb R$ est dite minorée s'il existe un réel m tel que, pour tout réel x de A, on a : $m \le x$. Un tel réel m est alors dit :

- minorant de A dans le cas général.
- minimum de A dans le cas particulier où m appartient à A.

Exercice/Exemple 2.15

Que dire de
$$B = \left\{ \frac{n}{n^2 + 1} \mid n \in \mathbb{N} \right\}$$
?

Correction 2.16

- B est minorée car $\forall n \in \mathbb{N}, \ 0 \le \frac{n}{n^2 + 1}$ par ailleurs $0 \in B$ donc 0 est un minimum.
- B est majorée par $\frac{1}{2}$. En effent en notant $U_n = \frac{n}{n^2 + 1}$, On voit que (U_n) est strictement décroissante

Exercice/Exemple 2.17

Que dire de
$$C = \left\{ \frac{e^x}{x} \mid x \in \mathbb{R}_+^* \right\}$$
?

Correction 2.18

- C est minorée car $\forall x \in \mathbb{R}_+^*$, $0 \le \frac{e^x}{x}$ donc 0 est un minorant mais pas un minimum
- Supposons que C est majorée alors $\exists M \in \mathbb{R}, \forall c \in C, c \leq M$ ainsi $\forall x \in \mathbb{R}_+^*, \frac{e^x}{x} \leq M$ donc par passage à la limite en $+\infty$ on trouve $+\infty \leq M$ ce qui est absurde donc C n'est pas majorée.

Définition 2.19 (Parties bornées)

Une partie A de \mathbb{R} est dite bornée si elle est majorée et minorée autrement dit s'il existe deux réels m et M tel que, pour tout réel x de A, on a : $m \le x \le M$.

Valeur absolue d'un réel 2.2

Définition 2.20

Pour tout x réel, la valeur absolue de x, notée |x|, est définie par : |x| = $\begin{cases} -x & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$

Propriétés 2.21

- (1) Pour tout x réel, on a : $0 \le |x|$ et $x \le |x|$
- (2) Pour tout couple(x, y) de réels, on a : |xy| = |x||y|
- (3) Pour tout couple (x, y) de réels tel que y est non nul, on a : $\left|\frac{x}{y}\right| = \frac{|x|}{|y|}$

Définition/Propriétés 2.22 (Deux inéquations élémentaires)

Pour tout réel x et tout réel positif α , on a :

- (1) $|x| \le \alpha \iff -\alpha \le x \le \alpha \iff x \in [-\alpha : \alpha]$
- (2) $|x| \ge \alpha \iff x \le -\alpha \text{ ou } \alpha \le x \iff x \in]+\infty; -\alpha] \cup [\alpha; +\infty[$

Définition/Propriétés 2.23 (Interprétation sur la droite des réels)

Soit a un réel et b un réel positif.

L'ensemble des réels x vérifiant $|x-a| \le b$ (resp. $|x-a| \ge b$) est l'ensemble des points de la droite des réels situés à une distance du point a inférieure ou égale (resp. supérieure ou égale) à b.

Propriétés 2.24 (Inégalité triangulaire)

Pour tout couple (x, y) de réels, on a :

$$|x + y| \le |x| + |y|$$

Démonstration 2.25 (inégalité triangulaire)

Soit $(x, y) \in \mathbb{R}^2$

$$|x+y| \le |x| + |y| \iff |x+y|^2 \le (|x|+|y|)^2$$

$$\iff x^2 + 2xy + y^2 \le x^2 + y^2 + 2|x||y|$$

$$\iff xy \le |xy|$$

15

Ce qui est vrai donc l'inégalité est bien démontrer

Exercice/Exemple 2.26

Encadrer
$$\frac{x\cos(x)+1}{\sin(x)+3}$$
 pour $x \in [-\pi; 2\pi]$

Correction 2.27

Soit $x \in [-\pi ; 2\pi]$

- numérateur : $|x \cos(x) + 1| \le |x| |\cos(x)| + 1 \le 2\pi + 1 = 2\pi + 1$
- dénominateur : $2 \le |\sin(x) + 3| \le 4$

Ainsi par produit des deux inégalités on as $:0 \le \frac{|x\cos(x)+1|}{|\sin(x)+3|} \le \frac{2\pi+1}{2}$ donc $-\frac{2\pi+1}{2} \le \frac{x\cos(x)+1}{\sin(x)+3} \le \frac{2\pi+1}{2}$ pour $x \in [-\pi; 2\pi]$.

Propriétés 2.28

Soit un couple (x, y) de réels.

$$||x| - |y|| \le |x - y|$$

Démonstration 2.29

Soit $(x, y) \in \mathbb{R}^2$ x = (x - y) + y donc $|x| \leq |x - y| + |y|$ d'où $|x| - |y| \leq |x - y|$ De même, y = (x - y) + x donc $|y| \leq |x - y| + |x|$ d'où $-|x - y| \leq |x| - |y|$

ainsi on a $-|x - y| \le |x| - |y| \le |x - y|$ donc $||x| - |y|| \le |x - y|$.

2.3 Partie entière d'un réel

Propriétés 2.30

Pour tout réel x, il existe un unique entier n tel que :

$$n \le x < n + 1$$

Définition 2.31

On appelle partie entière de x, notée $\lfloor x \rfloor$, l'unique entier n vérifiant la propriété précédente.

Exemple 2.32

$$[3.14] = 3, [-2.7] = -3 \text{ et } [5] = 5.$$

2.4 Généralité sur les fonctions

Définition 2.33 (Fonction)

Une fonction de variable réelle à valeurs réelles notée f est un objet mathématique qui, à tout élément x d'une partie non vide de \mathbb{R} , associe un et un seul nombre réel noté f(x).

Notation Fonctionnelle:

$$f: A \longrightarrow \mathbb{R}$$
$$x \longmapsto f(x)$$

Définition 2.34

Soit f une fonction de variable réelle à valeurs réelles.

- (1) L'ensemble des réels x pour lesquels f(x) existe est appelé ensemble/domaine de définition de f et souvent noté $D_f = \{x \in \mathbb{R} \mid f(x) \text{ existe}\}$
- (2) Soit $x \in D_f$ La valeur réelle f(x) est appelée image de x par f.
- (3) soit $y \in \mathbb{R}$ S'il existe x dans D_f tel que f(x) = y alors x est dit antécédent de y par f

Définition/Propriétés 2.35 (égalité entre fonction)

Deux fonctions f et g de variable réelle à valeurs réelles sont dites égales si les deux conditions suivantes sont réunies :

- les fonctions f et g ont le même ensemble de définition D;
- pour tout x de D, f(x) = g(x).

dans ce cas, on note f = g.

Exercice/Exemple 2.36

est-ce que les fonctions f et g définies par :

$$f: x \longmapsto \frac{1}{\sqrt{1+x}+1} \text{ et } g: x \longmapsto \frac{\sqrt{1+x}-1}{x}$$

Sont égales?

Correction 2.37

Tout d'abord $\forall x \in D_f \cap D_g$, f(x) = g(x) car :

$$g(x) = \frac{\sqrt{1+x}-1}{x}$$

$$= \frac{\left(\sqrt{1+x}-1\right)\left(\sqrt{1+x}+1\right)}{x\left(\sqrt{1+x}+1\right)}$$

$$= \frac{1+x-1}{x\left(\sqrt{1+x}+1\right)}$$

$$= \frac{x}{x\left(\sqrt{1+x}+1\right)}$$

$$= \frac{1}{\sqrt{1+x}+1} = f(x)$$

 $\text{Donc } f=g \text{ sur } D_f \cap D_g \text{ mais } D_f =]-1 \; ; +\infty] \text{ or } D_g = [-1 \; ; +\infty[\; \backslash \; \{0\} \text{ donc } D_f \neq D_g \text{ donc } f \neq g.$

Définition 2.38 (représentation graphique d'une fonction)

Dans le plan muni d'un repère orthonormé (O, \vec{i}, \vec{j}) , l'ensemble de points C_f défini par

$$C_f = \left\{ M(x \; ; \; f(x)) \; \middle| \; x \in D_f \right\}$$

est appelé représentation graphique de f (ou courbe représentative de f).

Définition 2.39 (Parité, imparité et périodicité d'une fonction)

- Une fonction f est dite paire si, pour tout x de son domaine de définition, on a : f(-x) = f(x).
- Une fonction f est dite impaire si, pour tout x de son domaine de définition, on a : f(-x) = -f(x).
- Une fonction f est dite périodique de période T si, pour tout x de son domaine de définition, on a : f(x+T) = f(x).

Exercice 2.40

Montrer que toute fonction de \mathbb{R} peut s'écrire de manière unique comme la somme d'une fonction paire et d'une fonction impaire.

Correction 2.41 (Analyse-synthèse)

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction quelqu'on que

- Analyse : Supposons qu'il existe $\begin{cases} p: \mathbb{R} \longmapsto \mathbb{R} \text{ paire} \\ i: \mathbb{R} \longmapsto \mathbb{R} \text{ impaire} \end{cases}$ telles que f = p + iAinsi $\forall x \in \mathbb{R}$ $\begin{cases} f(x) = p(x) + i(x) & (1) \\ f(-x) = p(-x) + i(-x) = p(x) - i(x)(2) \end{cases}$ $-\frac{1}{2} \left((1) + (2) \right) \text{ donne } p: x \longmapsto \frac{f(x) + f(-x)}{2}$ $-\frac{1}{2} \left((1) - (2) \right) \text{ donne } i: x \longmapsto \frac{f(x) - f(-x)}{2}$

$$--- p(-x) = p(x) \text{ et } i(-x) = -i(x)$$

Ainsi f s'écrit de manière unique comme la somme d'une fonction paire et impaire

Définition 2.42 (opération et composition)

Soit f et g deux fonctions de variable réelle à valeurs réelles de domaines de définition D_f et D_g .

- La somme de f et g est la fonction, notée f+g, définie par $f+g: x \longmapsto f(x)+g(x)$. Son domaine de définition D_{f+g} vérifie : $D_{f+g}=D_f\cap D_g$.
- La multiplication de f par le réel α est la fonction, notée αf , définie par $\alpha f: x \longmapsto \alpha f(x)$. Son domaine de définition $D_{\alpha f}$ vérifie : $D_{\alpha f} = D_f$ si $\alpha \neq 0$.
- Le produit de f et g est la fonction, notée fg, définie par $fg: x \longmapsto f(x)g(x)$. Son domaine de définition D_{fg} vérifie : $D_{fg} = D_f \cap D_g$.
- Le quotient de f par g est la fonction , notée fracfg, définie par $fracfg: x \longmapsto \frac{f(x)}{g(x)}$. Son domaine de définition D_{fracfg} vérifie : $D_{fracfg} = D_f \cap \{x \in D_g | g(x) \neq 0\}$.

19

• La composée de g et f est la fonction, notée $g \circ f$, définie par $g \circ f : x \longmapsto g(f(x))$. Son domaine de définition $D_{g \circ f}$ vérifie : $D_{g \circ f} = \{x \in D_f | f(x) \in D_g\}$.

${\bf Exercice/Exemple~2.43}$

Domaine de définition de : $f: D_f \longrightarrow \mathbb{R}$ $x \longmapsto \sqrt{x - \frac{1}{x}}$ Correction 2.44 Soit $x \in D_f$ alors $x - \frac{1}{x} \ge 0 \iff x \ne 0$ et $\frac{x^2 - 1}{x} = \frac{(x - 1)(x + 1)}{x} \ge 0$

X	-∞		- 1		0		1		+∞
(x - 1)(x+1)		+	0	_		_	0	+	
х		_		_	0	+		+	
f		_	0	+		_	0	+	

ainsi on voit bien que $D_f = [-1; 0[\cup [1; +\infty[$

2.5 Fonction et relation d'ordre

Définition 2.45 (Monotonie)

Soit f une fonction de variable réelle à valeurs réelles et D une partie de son domaine de définition D_f .

- (1) f est dite **croissante** sur D si, pour tout $(x, y) \in D^2$ tel que $x \le y$, on a $f(x) \le f(y)$.
- (2) f est dite **décroissante** sur D si, pour tout $(x, y) \in D^2$ tel que $x \le y$, on a $f(x) \ge f(y)$.
- (3) f est dite **strictement croissante** sur D si, pour tout $(x, y) \in D^2$ tel que x < y, on a f(x) < f(y).
- (4) f est dite **strictement décroissante** sur D si, pour tout $(x, y) \in D^2$ tel que x < y, on a f(x) > f(y).

Remarque : f est dite monotone (resp. strictement monotone) sur D si elle est croissante ou décroissante (resp. strictement croissante ou strictement décroissante) sur D.

Remarque 2.46 (Application de la définition)

Sous réserve que cela ait du sens :

- La somme de deux fonctions croissantes (resp. décroissantes) est croissante (resp. décroissante).
- La composée de deux fonctions croissantes (resp. décroissantes) est croissante (resp. décroissante).
- La composée d'une fonction croissante et d'une fonction décroissante est décroissante
- Le produit de deux fonctions <u>positives</u> croissantes (resp. décroissantes) est croissante(resp. décroissante).

Définition 2.47

Soit f une fonction de variable réelle à valeurs réelles de domaine de définition D_f . Soit D une partie non vide de D_f .

(1) f est dite **majorée** sur D si l'ensemble $\{f(x) \mid x \in D\}$ est majoré, c'est-à-dire s'il existe un réel M tel que, pour tout réel x de D, on a : $f(x) \leq M$. Un tel réel M est alors dit :

- majorant de f sur D dans le cas général.
- maximum de f sur D dans le cas particulier où il existe x_0 dans D tel que $M = f(x_0)$.
- (2) f est dite **minoriée** sur D si l'ensemble $\{f(x) \mid x \in D\}$ est minoré, c'est-à-dire s'il existe un réel m tel que, pour tout réel x de D, on a : $m \le f(x)$. Un tel réel m est alors dit :
 - minorant de f sur D dans le cas général.
 - minimum de f sur D dans le cas particulier où il existe x_0 dans D tel que $m = f(x_0)$.
- (3) f est dite **bornée** sur D si f est majorée et minoriée sur D, c'est-à-dire s'il existe deux réels met M tels que, pour tout réel x de D, on a : $m \le f(x) \le M$.

Propriétés 2.48

Soit f une fonction de variable réelle à valeurs réelles de domaine de définition D_f . Alors f est bornée sur D si, et seulement si, la fonction |f| est majorée sur D.

Dérivation des fonctions d'une variable réelle 2.6

Définition 2.49 (dérivée en un point)

Soit f une fonction de variable réelle à valeurs réelles de domaine de définition D_f et x_0 un point de D_f .

f est dite dérivable en x_0 si la fonction $x \mapsto \frac{f(x) - f(x_0)}{x - x_0}$ admet une limite finie en x_0 .

Dans ce cas, on note $f'(x_0)$ la valeur de cette limite et on l'appelle la dérivée de f en x_0 . Cela reient à déterminer si la fonction $h \mapsto \frac{f(x_0 + h) - f(x_0)}{h}$ admet une limite finie en 0.

Définition 2.50

fonction dérivée f est dite dérivable sur D_f si elle est dérivable en tout point de D_f . Dans ce cas, la fonction $x \mapsto f'(x)$ est appelée fonction dérivée de f et notée f'.

Définition/Propriétés 2.51 (équation de la tangente)

On se place dans le plan muni d'un repère orthonormé (O, i, j).

Soit f une fonction de variable réelle à valeurs réelles et C_f la courbe représentative de f. Soit x_0 un point de D_f .

Si f est dérivable en x_0 , alors la tangente à la courbe C_f au point $M(x_0, f(x_0))$ est la droite d'équation :

$$y = f'(x_0)(x - x_0) + f(x_0)$$

Définition/Propriétés 2.52 (opération sur les fonctions dérivable)

Soit I et J des intervalles de \mathbb{R} non vide et non réduits à un point.

(1) Combinaison linéaire:

Soit f et g deux fonctions définies sur I et à valeurs réelles et (α, β) deux réels. Si f et g sont dérivables sur I, alors $\alpha f + \beta g$ est dérivable sur I et sa dérivée vérifie :

$$\alpha f + \beta g' = \alpha f' + \beta g'$$

(2) Produit:

Soit f et g deux fonctions définies sur I et à valeurs réelles.

Si f et g sont dérivables sur I, alors fg est dérivable sur I et sa dérivée vérifie :

$$(fg)' = f'g + fg'$$

(3) quotient:

Soit f et g deux fonctions définies sur I et à valeurs réelles tel que g est non nulle sur I.

Si f et g sont dérivables sur I, alors $\frac{f}{g}$ est dérivable et sa dérivée vérifie :

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

(4) Composition:

Soit f une fonction définie sur I et à valeurs réelle tel que, pour tout x de I, f(x) appartient à J Soit g une fonction définie sur J et à valeurs réelles.

Si f est dérivable sur I et g dérivable sur J, alors la composée $g \circ f$ est dérivable sur I et sa dérivée vérifie :

$$(g\circ f)'=g'\circ f\times f'$$

Définition/Propriétés 2.53 (Caractérisation des fonctions constantes ou monotones) Soit f une fonction définie sur un intervalle I et à valeurs réelles.

- (1) f est constante sur I si, et seulement si, pour tout x de I, f'(x) = 0.
- (2) f est croissante sur I si, et seulement si, pour tout x de I, $f'(x) \ge 0$.
- (3) f est décroissante sur I si, et seulement si, pour tout x de I, $f'(x) \leq 0$.
- (4) f est strictement croissante sur I si, et seulement si, les deux conditions suivante sont réunies :
 - (a) pour tout $x \text{ de } I, f'(x) \ge 0$;
 - (b) il n'existe pas de réels a et b dans I avec a < b tels que pour tout x de [a;b], on a f'(x) = 0.
- (5) f est strictement décroissante sur I si, et seulement si, les deux conditions suivante sont réunies :
 - (a) pour tout x de I, $f'(x) \leq 0$;
 - (b) il n'existe pas de réels a et b dans I avec a < b tels que pour tout x de [a;b], on a f'(x) = 0.

Définition/Propriétés 2.54 (dérivées usuelles)

Fonction	Domaine de dérivabilitée	Fonction dérivée
$x \longmapsto a \text{ avec } a \in \mathbb{R}$	R	$x \longmapsto 0$
$x \longmapsto x^n \text{ avec } n \in \mathbb{N}^*$	\mathbb{R}	$x \longmapsto nx^{n-1}$
$x \longmapsto x^- n \text{ avec } n \in \mathbb{N}^*$	\mathbb{R}^*	$x \longmapsto -nx^{-n-1}$
$x \longmapsto \sqrt{x}$	\mathbb{R}_+^*	$x \longmapsto \frac{1}{2\sqrt{x}}$
$x \longmapsto e^x$	\mathbb{R}	$x \longmapsto e^x$
$x \longmapsto \ln(x)$	\mathbb{R}_+^*	$x \longmapsto \frac{1}{x}$
$x \longmapsto \sin(x)$	\mathbb{R}	$x \longmapsto \cos(x)$
$x \longmapsto \cos(x)$	\mathbb{R}	$x \longmapsto -\sin(x)$
$x \longmapsto \tan(x)$	$\mathbb{R} \setminus \left\{ \frac{\pi}{2} + 2k\pi \mid k \in \mathbb{Z} \right\}$	$x \longmapsto \frac{1}{\cos^2(x)} \text{ ou } x \longmapsto \frac{1}{\cos^2(x)}$

Exercice/Exemple 2.55

Calculer
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin^3(x)}{\cos^5(x)} dx$$

Correction 2.56

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin^3(x)}{\cos^5(x)} dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \tan^3(x) \times \frac{1}{\cos^2(x)} dx$$

$$= \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \tan^3(x) \times \left(\tan^2(x) + 1\right) dx$$

$$= \left[\frac{1}{4} \left(\tan^4(x)\right)\right]_{\frac{\pi}{4}}^{\frac{\pi}{3}}$$

$$= \frac{1}{4} \left(\tan^4\left(\frac{\pi}{3}\right) - \tan^4\left(\frac{\pi}{4}\right)\right)$$

$$= \frac{1}{4} \left(\left(\sqrt{3}\right)^4 - 1^4\right)$$

$$= 2$$

Définition/Propriétés 2.57 (étude pratique d'une fonction)

Le plan d'étude d'une fonction f est en général le suivant :

- \bullet Détermination du domaine de définition de f
- Réduction éventuelles du domaine d'étude selon les propriétés de f (parité, périodicité, etc.)
- Limites aux bornes du domaine d'étude
- ullet Etude de la monotonie (le plus souvent, mais pas uniquement, après calcul de la dérivée de f et détermination du signe de celle-ci)
- Construction du tableau de variation de f (limites aux bornes, valeurs remarquables, variations)
- \bullet Tracé de la courbe représentative de f

Définition/Propriétés 2.58 (dérivées d'odre supériéur)

Soit f une fonction définie sur un intervalle I et à valeurs réelles.

On note

$$f^{(0)} = f$$

puis, pour tout entier naturel k tel que la fonction $f^{(k)}$ existe et est déribable sur I, on pose :

$$f^{(k+1)} = \left(f^{(k)}\right)'$$

Si n est un entier naturel, tel que la fonction $f^{(n)}$ existe alors on dit que f est n-fois dérivable sur I et que $f^{(n)}$ est la dérivée d'ordre n (ou dérivée n-ième) de f.

Définition 2.59 (Fonction réciproque)

Soit f une fonction définie sur un intervalle I à valeurs dans J Si, pour tout y de J, l'équation y = f(x) admet une unique solution x dans I notée $x = f^{-1}(y)$ alors :

- $\bullet\,$ la fonction f est dite bijection de I sur J
- ullet la fonction f^{-1} ainsi définie sur J et à valeurs dans I, est dite bijection réciproque de f.

Exemples:

- $\sqrt{}$ est une bijection de \mathbb{R}_+ sur \mathbb{R}_+ de bijection réciproque $f:\mathbb{R}_+ \longrightarrow \mathbb{R}_+$ définie par $f(x)=x^2$.
- \bullet exp est une bijection de $\mathbb R$ sur $\mathbb R_+^*$ de bijection réciproque la fonction ln

Propriétés 2.60 (Propriétés de la bijection réciproque)

Si f est une bijection de I sur J de bijection réciproque notée f^{-1} alors on a :

- (1) pour tout x de I, $f(f^{-1}(x)) = x$;
- (2) pour tout y de J, $f^{-1}(f(y)) = y$.

Définition/Propriétés 2.61 (représentation graphique)

on se place dans le plan muni d'un repère orthonormé (O, \vec{i}, \vec{j}) .

Si f est une bijection de I sur J alors la courbe représentative de f et de sa bijection réciproque f^{-1} sont symétriques par rapport à la droite d'équation y = x.

Définition/Propriétés 2.62 (dérivée de la bijection réciproque)

Soit f une bijection de I sur J et si f est dérivable sur I alors sa bijection réciproque f^{-1} est dérivable en tout point y de J tel que $f'(f^{-1}(y)) \neq 0$ avec, dasn ce cas :

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

Démonstration 2.63

Soit f une bijection de I sur J, soit y in J tel que $f'(f^{-1}(y)) \neq 0$.

on sait que $f(f^{-1}(y)) = y$ donc en appliquant la définition de la dérivée de fonction composée on a :

$$(f(f^{-1}(y)))' = (y)' \iff f'(f^{-1}(y)) \times (f^{-1}(y))' = 1 \iff (f^{-1}(y))' = \frac{1}{f'(f^{-1}(y))}$$

Définition/Propriétés 2.64 (Trois fonction usuelles trigonométriques)

• Fonction Arccos:

La fonction Arccos est la réciproque de la fonction $c: [0; \pi] \longrightarrow [-1; 1]$ et est donc $x \longmapsto \cos(x)$ définie sur [-1; 1] à valeurs dans $[0; \pi]$ et dérivable sur]-1; 1[de dérivée :

$$\arccos': x \longmapsto \frac{-1}{\sqrt{1-x^2}}$$

• Fonction Arcsin:

La fonction Arccos est la réciproque de la fonction $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right] \longrightarrow [-1; 1]$ et est donc définie $x \mapsto \sin(x)$

sur [-1;1] à valeurs dans $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$ et dérivable sur]-1;1[de dérivée :

$$\arcsin': x \longmapsto \frac{1}{\sqrt{1-x^2}}$$

Fonction Arctan:

 $\begin{array}{c} \underline{\text{Fonction Arctan}}: \\ \text{La fonction Arccos est la réciproque de la fonction} \end{array} \Big] - \frac{\pi}{2} \, ; \, \frac{\pi}{2} \Big[\quad \underset{x}{\longrightarrow} \quad \\ \end{array}$ et est donc définie

sur \mathbb{R} à valeurs dans $\left] -\frac{\pi}{2} \right]$; $\frac{\pi}{2}$ et dérivable sur \mathbb{R} de dérivée :

$$\arctan': x \longmapsto \frac{1}{1+x^2}$$

Démonstration 2.65 (démonstration de la dérivée de la fonction Arccos)

Soit $y \in [-1; 1]$, on note $c : [0; \pi] \longrightarrow [-1; 1]$

$$\begin{split} c'(c^{-1}(y)) &= -\sin(c^{-1}(y)) \\ &= -\sqrt{\sin^2(c^{-1}(y))} \quad \text{car } c^{-1}(y) \in [0 \ ; \pi] \ \text{donc } \sin(c^{-1}(y)) \geq 0 \\ &= -\sqrt{1 - \cos^2(c^{-1}(y))} \\ &= -\sqrt{1 - y^2} \end{split}$$

Ainsi d'après la définition de la dérivée de la bijection réciproque on a : Arccos'(y) = $\frac{-1}{\sqrt{1-v^2}}$

Remarque 2.66 (démonstration d'une relation intéressante entre Arctan(x) et $Arctan(\frac{1}{x})$) Soit $f: x \longmapsto \operatorname{Arctan}\left(\frac{1}{x}\right)$, on as $D_f = \mathbb{R} \setminus \{0\}$ et f dérivable sur D_f

$$f'(x) = \operatorname{Arctan}'\left(\frac{1}{x}\right) \times \left(\frac{1}{x}\right)'$$
$$= \frac{1}{1 + \left(\frac{1}{x}\right)^2} \times \left(\frac{-1}{x^2}\right)$$
$$= \frac{-1}{x^2 + 1}$$

On remarque que $\forall x \in \mathbb{R}^*$, $f'(x) = -\arctan'(x)$ ainsi $\forall x \in \mathbb{R}^*_+$, $f'(x) + \arctan'(x) = 0$ donc $\forall x \in \mathbb{R}^*, \ (f(x) + \operatorname{Arctan}(x))' = 0$

Ainsi il existe c un réel tel que $\forall x \in \mathbb{R}_+^*$, $f(x) + \operatorname{Arctan}(x) = c$

Pour
$$x = 1$$
, $f(1) + \operatorname{Arctan}(1) = c$
$$f(1) + \frac{\pi}{4} = c$$
$$c = \frac{\pi}{2}$$

Ainsi $\forall x \in \mathbb{R}_+^*$, Arctan $\left(\frac{1}{x}\right)$ + Arctan $(x) = \frac{\pi}{2}$

De manière analogue on trouve $\forall x \in \mathbb{R}_{-}^{*}$, $\operatorname{Arctan}\left(\frac{1}{x}\right) + \operatorname{Arctan}\left(x\right) = -\frac{\pi}{2}$

Chapitre 3

Calcul algébrique (rappels et compléments)

Sommaire

3.1	Sommes et produit finis
3.2	Cas des sommes doubles finies
3.3	Système linéaire de deux équations à deux inconnues
3.4	Système linéaire de trois équations à trois inconnues
3.5	Algorithme du Pivot

3.1 Sommes et produit finis

Notation 3.1

Soit $(a_i)_{i\in I}$ une famille de réels indexée par un ensemble I fini.

La somme (resp. le produit) de tous les réels de la famille est notée $\sum_{i \in I} a_i$ (resp. $\prod_{i \in I} a_i$).

- Si I est l'ensemble vide, on convient que : $\sum_{i \in I} a_i = 0$ et $\prod_{i \in I} a_i = 1$.
- Si $I = \{1, 2, ..., n\}$ avec n un entier naturel non nul, on note $\sum_{i=1}^{n} a_i$ ou $\sum_{1 \le i \le n} a_i$ au lieu de $\sum_{i \in I} a_i$ (resp. $prod_{i=1}^n a_i$ ou $\prod_{1 \le i \le n} a_i$ au lieu de $\prod_{i \in I} a_i$).

Propriétés 3.2 (opération et calcul par paquets)

• Pour toutes familles $(a_i)_{i\in I}$ et $(b_i)_{i\in I}$ de réels indexées par I et pour tout couple (α,β) de réels, on a :

$$\sum_{i \in I} (\alpha a_i + \beta b_i) = \alpha \sum_{i \in I} a_i + \beta \sum_{i \in I} b_i \qquad \text{et} \qquad \prod_{i \in I} (a_i b_i) = \left(\prod_{i \in I} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right) = \left(\prod_{b_i} a_i \right) \left(\prod_{b_i} a_i \right)$$

• Pour toute famille $(a_i)_{i\in I}$ de réels indexée par I avec $I=I_1\cup I_2$ et $I_1\cap I_2=\emptyset,$ on a :

$$\sum_{i \in I} a_i = \sum_{i \in I_1} a_i + \sum_{i \in I_2} a_i \qquad \text{et} \qquad \prod_{i \in I} a_i = \prod_{i \in I_1} a_i \prod_{i \in I_2} a_i$$

Exercice/Exemple 3.3

Calculer :
$$\sum_{k=1}^{2n} (-1)^k k$$
 avec $n \in \mathbb{N}$

Correction 3.4

$$\sum_{k=1}^{2n} (-1)^k k = \sum_{k=0}^{n-1} (-1)^{2k+1} (2k - +) + \sum_{k=1}^n (-1)^{2k} (2k)$$

$$= -\sum_{k=0}^{n-1} (2k + 1) + \sum_{k=1}^n 2k$$

$$= -\left(2\sum_{k=0}^{n-1} k + n\right) + 2\sum_{k=1}^n k$$

$$= -\left(2\frac{(n-1)n}{2} + n\right) + 2\frac{n(n+1)}{2}$$

$$= n(n+1-n+1-1)$$

$$= n$$

Définition/Propriétés 3.5 (téléscopage)

Soit $(b_i)_{1 \le i \le n}$ une famille <u>finie</u> de réels avec n supérieur ou égal à 2.

- (1) La somme $\sum_{i=1}^n b_{i+1} b_i$ est dire somme télescopique et vaut $b_{n+1} b_1$.
- (2) Si tous les b_i sont non nuls, le produit $\prod_{i=1}^n \frac{b_{i+1}}{b_i}$ est dit produit télescopique et vaut $\frac{b_{n+1}}{b_1}$.

Définition/Propriétés 3.6 (Somme usuelles)

Pour tout entier naturel n et tout réel x différent de 1, on a :

$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2} \qquad \sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{k=0}^{n} x^k = \frac{x^{n+1}-1}{x-1}$$

Démonstration 3.7

Soit $n \in \mathbb{N}$ et $x \in \mathbb{R} \setminus \{1\}$:

• Démonstration de $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$:

$$\sum_{k=1}^{n} (k^2 - (k-1)^2) = n^2 \qquad (*) \qquad \text{(t\'elescopage)}$$

donc via (*) on as:

$$\sum_{k=1}^{n} (k^2 - (k-1)^2) = n^2 \iff \sum_{k=1}^{n} (k^2 - k^2 + 2k - 1) = n^2$$

$$\iff 2\left(\sum_{k=1}^{n} k\right) - n = n^2$$

$$\iff \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

• Démonstration, via un raisonnement similaire, de $\sum_{k=1}^{n} k^2 = \frac{n(2n+1)(n+1)}{6}$, on as :

$$\sum_{k=1}^{n} (k^3 - (k-1)^3) = n^3 \qquad (*) \qquad \text{(t\'elescopage)}$$

donc via (*) on as:

$$\sum_{k=1}^{n} (k^{3} - (k-1)^{3}) = n^{3} \iff \sum_{k=1}^{n} (k^{3} - k^{3} + 3k^{2} - 3k + 1) = n^{3}$$

$$\iff \sum_{k=1}^{n} (3k^{2} - 3k + 1) = n^{3}$$

$$\iff 3 \left(\sum_{k=1}^{n} k^{2}\right) - 3 \left(\sum_{k=1}^{n} k\right) + n = n^{3}$$

$$\iff 3 \left(\sum_{k=1}^{n} k^{2}\right) = 3 \left(\sum_{k=1}^{n} k\right) - n + n^{3}$$

$$\iff 3 \left(\sum_{k=1}^{n} k^{2}\right) = \frac{3n(n+1) - 2n + 2n^{3}}{2}$$

$$\iff 3 \left(\sum_{k=1}^{n} k^{2}\right) = \frac{n(2n+1)(n+1)}{2}$$

$$\iff \sum_{k=1}^{n} k^{2} = \frac{n(2n+1)(n+1)}{6}$$

• Démonstration, via un raisonnement similaire, de $\sum_{k=0}^{n} x^k = \frac{1-x^{n+1}}{1-x}$, on as :

$$\sum_{k=0}^{n} x^{k} - x^{k+1} = 1 - x^{n+1}$$
 (*) (télescopage)

donc via (*) on as:

$$\sum_{k=0}^{n} x^{k} - x^{k+1} = 1 - x^{n+1} \iff \left(\sum_{k=0}^{n} x^{k}\right) - \left(\sum_{k=0}^{n} x^{k+1}\right) = 1 - x^{n+1}$$

$$\iff \left(\sum_{k=0}^{n} x^{k}\right) - x \left(\sum_{k=0}^{n} x^{k}\right) = 1 - x^{n+1}$$

$$\iff \left(1 - x\right) \left(\sum_{k=0}^{n} x^{k}\right) 1 - x^{n+1}$$

$$\iff \sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x}$$

Définition/Propriétés 3.8 (Factorisation de $a^n - b^n$)

Pour tout n entier naturel non nul et tout couple (a, b) de réels, on a :

$$a^{n} - b^{n} = (a - b) \left(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1} \right)$$
$$= (a - b) \sum_{k=0}^{n-1} a^{n-1-k}b^{k}$$
$$= (a - b) \sum_{k=0}^{n-1} a^{k}b^{n-1-k}$$

Démonstration 3.9 (preuve par téléscopage)

Pour tout n entier naturel non nul et tout couple (a, b) de réels, on a :

$$(a-b)\sum_{k=0}^{n-1} a^k b^{n-1-k} = (a-b)\sum_{k=0}^{n-1} a^{n-1-k} b^k$$

$$= \sum_{k=0}^{n-1} (a-b)a^{n-1-k} b^k$$

$$= \sum_{k=0}^{n-1} \left(a^{n-(k)} b^k - a^{n-(k+1)} b^{k+1} \right)$$

$$= a^n b^0 - a^0 b^n \qquad \text{(télescopage)}$$

$$= a^n - b^n$$

Définition/Propriétés 3.10 (coefficients binomiaux)

Soit n un entier naturel non et k entière relatif, on a :

$$(1) \begin{pmatrix} k \\ n \end{pmatrix} = \begin{cases} \frac{n!}{(n-k)!k!} & \text{si } k \in \{0,1,2,\dots,n\} \\ 0 & \text{si } k < 0 \text{ ou } k > n \end{cases}$$

$$(2) \begin{pmatrix} k \\ n \end{pmatrix} = \begin{pmatrix} n-k \\ n \end{pmatrix}$$

$$(3) \begin{pmatrix} k \\ n \end{pmatrix} + \begin{pmatrix} k+1 \\ n \end{pmatrix} = \begin{pmatrix} k+1 \\ n+1 \end{pmatrix}$$

$$(relation de Pascal)$$

(4)
$$\binom{k}{n}$$
 est un entier naturel

Définition/Propriétés 3.11 (Formule du binôme de Newton)

Pour tout couple (a, b) de réels et tout entier naturel n, on a :

$$(a+b)^n = \sum_{k=0}^n \binom{k}{n} a^{n-k} b^k = \sum_{k=0}^n \binom{k}{n} a^k b^{n-k}$$

Démonstration 3.12 (Formule du binôme par récurrence) Soit a et b des réels

Montrons que
$$\forall n \in \mathbb{N}, \ (a+b)^n = \sum_{k=0}^n \binom{k}{n} a^k b^{n-k}$$

On note
$$P(n)$$
 la Propriété « $(a+b)^n = \sum_{k=0}^n \binom{k}{n} a^k b^{n-k}$ »

• Initialisation :
$$P(0)$$
 est vrai car
$$\begin{cases} (a+b)^0 &= 1\\ \sum_{k=0}^0 \binom{k}{0} a^k b^{-k} = \binom{0}{0} a^0 b^0 &= 1 \end{cases}$$

• <u>Hérédité</u> Soit $n \in \mathbb{N}$ tel que P(n) est vrai, Montrons que P(n+1) est vrai :

$$(a+b)^{n+1} = (a+b)(a+b)^{n}$$

$$= (a+b) \sum_{k=0}^{n} {k \choose n} a^{k} b^{n-k} \qquad (\text{H\'er\'edit\'e})$$

$$= \sum_{k=0}^{n} {k \choose n} \left(a^{k+1} b^{n-k} + a^{k} b^{n+1-k} \right)$$

$$= \sum_{k=0}^{n} {k \choose n} a^{k+1} b^{n-k} + \sum_{k=0}^{n} {k \choose n} a^{k} b^{n+1-k}$$

$$= \sum_{k=1}^{n} {k-1 \choose n} a^{k+1} b^{n-(k-1)} + {n \choose n} a^{n+1} b^{0} \sum_{k=1}^{n} {k \choose n} a^{k} b^{n+1-k} + {0 \choose n} a^{0} b^{n+1}$$

$$= \sum_{k=1}^{n} {k \choose n+1} a^{k} b^{n-k+1} + a^{n+1} + b^{n+1}$$

$$= \sum_{k=1}^{n} {k \choose n+1} a^{k} b^{n-k+1} + {n+1 \choose n+1} a^{n+1} + {n+1 \choose n+1} b^{n+1}$$

$$= \sum_{k=0}^{n+1} {k \choose n+1} a^{k} b^{n-k+1}$$

Donc P(n+1) vrai

3.2 Cas des sommes doubles finies

Définition 3.13

Soit A un ensemble fini de couples et $(a_{i,j})_{(i,j)\in A}$ une famille de réels indexée par A. La somme de tous les réels de la famille $(a_{i,j})_{(i,j)\in A}$ est notée $\sum_{(i,j)\in A}a_{i,j}$ et appelée somme double.

Remarque : Si A est l'ensemble vide, on convient que $\sum_{(i,j)\in A} a_{i,j} = 0$

Définition/Propriétés 3.14 (Sommes double rectangulaires)

Dans le cas où $A = \{1, 2, ..., n\} \times \{1, 2, ..., m\}$ avec n et m des entiers naturels non nuls,

• la somme double $\sum_{(i,j)\in A} a_{i,j}$ est rectangulaire

• le somme double
$$\sum_{(i,j)\in A} a_{i,j}$$
 s'écrit aussi $\sum_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant m}} a_{i,j}$

• la somme double
$$\sum_{(i,j)\in A} a_{i,j}$$
 vaut :

$$sum_{(i,j)\in A}a_{i,j} = \sum_{\substack{1 \le i \le n \\ 1 \le j \le m}} a_{i,j} = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} a_{i,j} \right) = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} a_{i,j} \right)$$

• si $(b_i)_{1 \le i \le n}$ et $(c_i)_{1 \le i \le m}$ sont des familles finies de réels, alors :

$$\left(\sum_{i=1}^{n} b_i\right) \left(\sum_{j=1}^{m} c_j\right) = \sum_{\substack{1 \le i \le n \\ 1 \le j \le m}} b_i c_j$$

Définition/Propriétés 3.15 (somme double triangulaire)

Dans le cas où $A = \{(i, j) \in \mathbb{N}^2 | 1 \le i \le j \le n \}$ avec n un entier naturel non nul,

- La somme double $\sum_{(i,j)\in A} a_{i,j}$ est dite triangulaire.
- \bullet La somme double $\sum_{(i,j)\in A} a_{i,j}$ s'écrit aussi $\sum_{1\leqslant i\leqslant j\leqslant n} a_{i,j}$ et vaut :

$$\sum_{(i,j)\in A} a_{i,i} = \sum_{1 \le i \le j \le n} a_{i,j} = \sum_{i=1}^{n} \left(\sum_{j=i}^{n} a_{i,j} \right) = \sum_{j=1}^{n} \left(\sum_{i=1}^{j} a_{i,j} \right)$$

3.3 Système linéaire de deux équations à deux inconnues

Définition/Propriétés 3.16 (rappel de première)

Dans le plan \mathbb{R}^2 muni d'un repère orthonormé (O, \vec{i}, \vec{j}) , toute droite D admet une équation de la forme

$$ax + by = c$$

où a, b et c sont des réels tels que $(a, b) \neq (0, 0)$. Avec ces notations,

- le vecteur \vec{n} de coordonnées (a,b) est un vecteur normal à D;
- le vecteur \vec{u} de coordonnées (-b,a) est un vecteur directeur de D.

Définition/Propriétés 3.17 (Système linéaire de deux équations à deux inconnues) Soit a, b, c, a', b' et c' des réels. Le système d'équations

$$(S): \begin{cases} ax + by = c \\ a'x + b'y = c' \end{cases}$$

d'inconnues les réels x et y est dit système linéaire de deux équations à deux inconnues.

Définition/Propriétés 3.18 (Interprétation géométrique)

Dans le cas où $(a,b) \neq (0,0)$ et $(a',b') \neq (0,0)$, résoudre le système (S) revient à déterminer l'intersection entre deux droites D et D' du plan. Trois cas se présentent :

- Les droites sont confondues donc (S) a une infinité de solutions qui forment une droite;
- Les droites sont sécantes donc (S) a une unique solution;
- Les droites sont parallèles non confondues donc (S) n'a pas de solutions.

3.4 Système linéaire de trois équations à trois inconnues

Définition/Propriétés 3.19 (rappel de terminale)

Dans l'espace \mathbb{R}^3 muni d'un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$, tout plan P admet une équation de la forme

$$ax + by + cz = d$$

où a, b, c et d sont des réels tels que $(a, b, c) \neq (0, 0, 0)$

- le vecteur \vec{n} de coordonnées (a, b, c) est un vecteur normal à P;
- deux vecteurs non colinéaires pris parmi les vecteurs de coordonnées (-b, a, 0), (0, -c, b) et (-c, 0, a) donnent la direction de P.

Définition/Propriétés 3.20 (Système linéaire de deux équations à trois inconnues) Soit a, b, c, d, a', b', c' et d' des réels. Le système d'équations

$$(S): \begin{cases} ax + by + cz = d \\ a'x + b'y + c'z = d' \end{cases}$$

d'inconnues les réels x, y et z est dit système linéaire de deux équations à trois inconnues.

Définition/Propriétés 3.21 (Interprétation géométrique)

Dans le cas où $(a, b, c) \neq (0, 0, 0)$ et $(a', b', c') \neq (0, 0, 0)$, résoudre le système (S) revient à déterminer l'intersection entre deux plans P et P' de l'espace. Trois cas se présentent :

- Les plans sont confondus donc (S) a une infinité de solutions qui forment un plan;
- Les plans sont sécants donc (S) a une infinité de solutions qui forment une droite;
- Les plans sont parallèles non confondus donc (S) n'a pas de solutions.

Définition/Propriétés 3.22 (Système linéaire de trois équations à trois inconnues) Soit a, b, c, d, a', b', c', d', a'', b'', c'' et d'' des réels. Le système d'équations

(S):
$$\begin{cases} ax + by + cz = d \\ a'x + b'y + c'z = d' \\ a''x + b''y + c''z = d'' \end{cases}$$

d'inconnues les réels x, y et z est dit système linéaire de trois équations à trois inconnues.

Définition/Propriétés 3.23 (Interprétation géométrique)

Dans le cas où $(a, b, c) \neq (0, 0, 0)$, $(a', b', c') \neq (0, 0, 0)$ et $(a'', b'', c'') \neq (0, 0, 0)$, résoudre le système (S) revient à déterminer l'intersection entre trois plans P, P' et P'' de l'espace. Cela conduit à distinguer huit cas de figures qui donnent quatre types d'ensemble-solution pour (S):

- Le système (S) a une infinité de solutions qui forment un plan;
- Le système (S) a une infinité de solutions qui forment une droite;
- Le système (S) a une unique solution;
- Le système (S) n'a pas de solutions.

3.5 Algorithme du Pivot

Remarque 3.24 (Remarque préliminaire)

En cycle terminal, de petits systèmes linéaires ont été rencontrés et résolus dans des cas simples, le plus souvent par "substitution".

En MP2I, nous utiliserons en priorité la méthode de résolution par "pivot". Plus efficace et élégante, cette technique sera reprise au semestre 2 dans le chapitre "Matrices" pour résoudre plus généralement des systèmes linéaires de n équations à p inconnues.

Définition/Propriétés 3.25 (Opérations élémentaires)

On reprend les notations des paragraphes III. et IV. et on note L_i la i-ème ligne du système (S). On appelle opérations élémentaires sur les lignes du système linéaire (S):

- (1) l'échange de deux lignes distinctes : $L_i \leftrightarrow L_j$ avec $i \neq j$;
- (2) la multiplication d'une ligne par un réel non nul : $L_i \leftarrow \lambda L_i$ avec $\lambda \neq 0$;
- (3) l'addition à une ligne du produit d'une autre ligne par un réel non nul : $L_i \leftarrow L_i + \lambda L_j$ avec $i \neq j$ et $\lambda \neq 0$.

Propriétés 3.26 (Propriété importante)

Toute opération élémentaire sur les lignes d'un système linéaire le transforme en un système linéaire équivalent c'est-à-dire un système ayant le même ensemble de solutions.

Définition/Propriétés 3.27 (résolution d'un système linéaire par la méthode du pivot)

La résolution d'un système linéaire par la méthode du pivot se déroule en deux phases :

• <u>phase de descente</u> : en effectuant des opérations élémentaires sur les lignes du système, on transforme le système en un système de forme "triangulaire" ou "trapézoïdale" comme, par exemple,

$$(S1) : \begin{cases} a_1x + b_1y = c_1 \\ b'_1y = c'_1 \end{cases}$$

$$(S2) : \begin{cases} a_1x + b_1y + c_1z = d_1 \\ b'_1y + c'_1z = d'_1 \end{cases}$$

$$(S3) : \begin{cases} a_1x + b_1y + c_1z = d_1 \\ b'_1y + c'_1z = d'_1 \end{cases}$$

- phase de remontée : Le système obtenu est équivalent au système initial ; il est facile à résoudre ce qui permet d'obtenir l'ensemble des solutions du système initial. Dans cette phase de remontée, on peut au choix :
 - effectuer des substitutions successives (moins élégant);
 - utiliser à nouveau des opérations élémentaires sur les lignes pour réduire le système sous forme "diagonale" (plus élégant et facile à coder).

Remarque 3.28

Les opérations élémentaires effectuées lors de la résolution d'un système linéaire par la méthode du pivot (phases de descente et de remontée) doivent systématiquement être indiquées en marge du système étudié pour faciliter la lecture des correcteurs et permettre de retrouver les éventuelles erreurs de calcul.

Remarque 3.29 (Pour aller plus loin (pour ceux qui ont suivi l'option maths expertes))

- Les petits systèmes linéaires décrits au III. et IV. peuvent se traduire matriciellement par une équation matricielle du type AX = B avec A et B des matrices à préciser et X une matrice colonne inconnue.
- \bullet L'effet des opérations élémentaires sur les lignes de ces systèmes peut se traduire matriciellement par des multiplications de la matrice A à gauche par des matrices inversibles bien

Chapitre 4

Nombres complexes

Sommaire

4.1	Généralité
4.2	Conugué d'un nombre complexe
4.3	module d'un nombre complexe
4.4	Nombre complexe de module 1 et trigonométrie
4.5	Forme trigonométrique pour les nombres complexes non nuls 44
4.6	Fonctions d'une variable réelle à valeurs complexes 45

4.1 Généralité

Définition 4.1 (Propriété de \mathbb{C})

On ADMET l'existence d'un ensemble noté \mathbb{C} , dont les éléments sont appelés nombres complexes, tel que :

- (1) \mathbb{C} contient \mathbb{R}
- (2) \mathbb{C} est muni de deux opérations + et × sur \mathbb{C} qui étendent les opérations + et × connues sur \mathbb{R} et suivent les mêmes règles de calcul que celles-ci
- (3) \mathbb{C} contient un élément noté i vérifiant $i^2 = -1$
- (4) Tout élément z de $\mathbb C$ s'écrit de manière une ique sous la forme z=a+ib avec $(a,b)\in\mathbb R^2$

Remarque 4.2

- La forme z=a+ib avec $(a,b)\in\mathbb{R}^2$ est dite forme algébrique du nombre complexe z
 - le réel a est dit partie réelle du nombre complexe z et noté a = Re(z)
 - le réel b est dit partie imaginaire du nombre complexe z et noté $b = \Im z$
- L'unicité d'écriture d'un nombre complexe sous forme algébrique se traduit par : Pour tout réels a, b, a' et b', on a :

$$a+ib=a'+ib'$$
si, et seulement si, $a=a'$ et $b=b'$

Définition/Propriétés 4.3 (Opériation sur C)

L'ensemble $\mathbb{C} = \{a+ib \mid (a,b) \in \mathbb{R}^2\}$ est muni deux opérations + et + et \times définies par, pour tout nombre complexe z de forme algébrique a+ib et tout nombre complexe z' de forme algébrique a'+ib':

$$\begin{cases} z + z' = (a+ib) + (a'+ib') = (a+a') + i(b+b') \\ z \times z' = (a+ib) \times (a'+ib') = (aa'-bb') + i(ab'+a'b) \end{cases}$$

Définition/Propriétés 4.4 (Extension des résultat vus dans R)

(1) Pour tout n entier naturel et tout nombre complexe z différent de 1, on a :

$$\sum_{k=0}^{n} z^k = \frac{1 - z^{k+1}}{1 - z}$$

(2) Pour tout n entier naturel et tout couple (z, z') nombres complexes, on a :

$$(z+z')^n = \sum_{k=0}^n \binom{k}{n} z^k (z')^{n-k} = \sum_{k=0}^n \binom{k}{n} z^{n-k} (z')^k$$

(3) Pour tout n entier naturel et tout couple (z, z') nombres complexes, on a :

$$z^{n} + (z')^{n} = (z - z') \left(z^{n-1} + z^{n-1} z' + \dots + z(z')^{n-2} + (z')^{n-1} \right) = (z - z') \sum_{k=0}^{n-1} z^{n-1-k} (z')^{k} = (z - z') \sum_{k=0}^{n-1} z^{k} (z')^{n-1-k}$$

Définition/Propriétés 4.5 (Plan complexe : affixe d'un point, d'un vecteur)

Dans toute la suite, on considère le plan usuel muni d'un repère orthonormé direct.

- A tout complexe z, on peut associer le point M de coordonnées (Re(z), Im(z)) dit image de z.
- A tout point M de coordonnées (x, y), on peut associer le complexe z = x + iy dit affixe de M. On identifie donc \mathbb{C} au plan usuel muni d'un repère orthonormé direct et on parle de "plan complexe".

A tout complexe z, on peut aussi associer le vecteur \vec{u} de coordonnées (Re (z), Im (z)) dit image de z et à tout vecteur \vec{u} de coordonnées (x,y), on peut associer le complexe z=x+iy dit affixe de \vec{u} . Ainsi :

- Pour tout vecteur \vec{u} d'affixe z et tout réel α , le vecteur $\alpha \vec{u}$ a pour affixe αz .
- Pour tous vecteurs \vec{u} et $\vec{u'}$ d'affixes respectives z et z', le vecteur $\vec{u} + \vec{u'}$ a pour affixe z + z'.
- Pour tous points M et M' d'affixes respectives z et z', le vecteur $\overrightarrow{MM'}$ a pour affixe z'-z.

4.2 Conugué d'un nombre complexe

Définition 4.6

On appelle conjugué d'un nombre complexe z et on note \overline{z} le nombre complexe défini par :

$$\overline{z} = \operatorname{Re}(z) - i \operatorname{Im}(z)$$

Pour tout nombre complexe z, le point d'affixe \overline{z} et le point d'affixe z sont symétriques par rapport à l'axe des réels dans le plan complexe.

Définition/Propriétés 4.7

Pour tous nombres complexes z et z', on a les propriétés suivantes :

- (1) $z + \overline{z} = 2 \operatorname{Re}(a)$
- $(2) z \overline{z} = -2\operatorname{Im}(z)$
- (3) $\overline{\overline{z}} = z$
- $(4) \ \overline{z+z'} = \overline{z} + \overline{z'}$
- (5) $\overline{zz'} = \overline{z}\overline{z'}$
- (6) $\frac{\overline{z}}{z'} = \frac{\overline{z}}{\overline{z'}}$

4.3 module d'un nombre complexe

Définition/Propriétés 4.8

On appelle module d'un nombre complexe z et on note |z| le nombre réel positif défini par :

$$|z| = \sqrt{\left(\operatorname{Re}\left(z\right)\right)^{2} + \left(\operatorname{Im}\left(z\right)\right)^{2}}$$

${\bf D\'efinition/Propri\'e\'t\'es~4.9~(interpr\'etation~g\'eometriques)}$

- Pour tout nombre complexe z, le module |z| est :
 - la distance entre le point d'affixe 0 et le point d'affixe z;
 - la norme de tout vecteur d'affixe z
- Pour tous nombres complexes z et z' le module |z-z'| est :

- la distance entre les points d'affixe z et z';
- la norme du vecteur d'affixe z' z
- $\bullet\,$ Soit r un réel positif, z_0 un nombre complexe et M_0 le point d'affixe $z_0.$
 - Les points du plan dont l'affixe z vérifie $|z-z_0|=r$ forment le cercle de centre M_0 et de rayon r.
 - Les points du plan dont l'affixe z vérifie $|z-z_0| \le r$ forment le disque de centre $M_0,$ de rayon r

Propriétés 4.10

Pour tous nombres complexes z et z', on a les propriétés suivantes :

- $|\operatorname{Re}(z)| \le |z|$ et $|\operatorname{Im}(z)| \le |z|$
- $|z|^2 = z\overline{z}$
- $\bullet ||zz'| = |z| ||z'||$
- $\left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$ Dans le cas où z' est non nul
- $\bullet \quad \frac{z}{z'} = \frac{z |z'|}{|z'|^2}$
- $|z+z'| \leq |z| + |z'|$ avec égalité si, et seulement si il existe un réel positif α tel que $z' = \alpha z$

4.4 Nombre complexe de module 1 et trigonométrie

Définition 4.11 (Cercle trigonométrique)

On identifie le cercle trigonométrique et l'ensemble des nombres complexes de module 1 que l'on note :

$$\mathbb{U} = \{ z \in \mathbb{C} \mid |z| = 1 \}$$

Définition/Propriétés 4.12

Pour tout nombre réel t, on appelle exponentielle imaginaire de t et on note e^{it} le nombre complexe défini par :

$$e^{it} = \cos(t) + i\sin(t)$$

Pour tous nombres réels t et t', on a l'égalité :

$$e^{i(t+t')} = e^{it}e^{it'} +$$

Définition/Propriétés 4.13 (Formule D'Euler)

Pour tout nombre réel t, on a les égalités suivantes dites formules d'Euler

$$\cos(t) = \frac{e^{it} + e^{-it}}{2}$$
 et $\sin(t) = \frac{e^{it} - e^{-it}}{2}$

Propriétés 4.14 (Technique de l'angle moitié)

La technique de l'angle moitié permet l'obtention de factorisations classiques à savoir retrouver :

- pour tout t réel, $1 + e^{it} = e^{i\frac{t}{2}} \left(e^{-i\frac{t}{2}} + e^{i\frac{t}{2}} \right) = 2\cos\left(-\frac{t}{2}\right) e^{i\frac{t}{2}} = 2\cos\left(\frac{t}{2}\right) e^{i\frac{t}{2}}$
- pour tout t réel, $1 e^{it} = e^{i\frac{t}{2}} \left(e^{-i\frac{t}{2}} e^{i\frac{t}{2}} \right) = 2\sin\left(-\frac{t}{2}\right) e^{i\frac{t}{2}} = -2\sin\left(\frac{t}{2}\right) e^{i\frac{t}{2}}$
- $\bullet \text{ pour tout réel } p \text{ et } q, \, e^{ip} + e^{iq} = e^{i\frac{p+q}{2}} \left(e^{i\frac{p-q}{2}} + e^{-i\frac{p-q}{2}} \right) = 2\cos\left(\frac{p-q}{2}\right) e^{i\frac{p+q}{2}}$
- pour tout réel p et q, $e^{ip} e^{iq} = e^{i\frac{p+q}{2}} \left(e^{i\frac{p-q}{2}} e^{-i\frac{p-q}{2}} \right) = -2\sin\left(\frac{p-q}{2}\right) e^{i\frac{p+q}{2}}$

Remarque:

En écrivant la partie réelle et la partie imaginaire de $e^{ip} \pm e^{iq}$ à partir des deux dernières factorisations, on trouve des formules de factorisation pour $\cos(p) \pm \cos(q)$ et $\sin(p) \pm \sin(q)$

Linéarisation

A l'aide des formules d'Euler et du binôme de Newton, on peut transformer une expression du type $cos(t)^n$ ou $sin(t)^n$ avec t réel et n entier naturel en une combinaison linéaire de cos(pt) ou de sin(pt) avec p un entier naturel. Cela est notamment utile pour du calcul de primitives.

Exercice/Exemple 4.15

Soit $f(x) = (\sin(x))^3$ avec $x \in \mathbb{R}$. Calculer la primitive de f

Correction 4.16

$$(\sin(x))^{3} = \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^{3}$$

$$= \frac{1}{-8i} \left(e^{3ix} + 3\left(e^{-ix}\right) - 3\left(e^{ix}\right) - e^{-3ix}\right)$$

$$= \frac{1}{-4} \left(\frac{e^{3ix} - e^{-3ix}}{2i} - 3\frac{e^{ix} - e^{ix}}{2i}\right)$$

$$= -\frac{1}{4} \sin(3x) + \frac{3}{4} \sin(x)$$

42

Donc $F_{\lambda}(x) = \frac{1}{12}\cos(3x) - \frac{3}{4}\cos(x) + \lambda$ pour $\lambda \in \mathbb{R}$

Définition/Propriétés 4.17 (Formule de Moivre)

Pour tout nombre réel t et tout entier relatif n, on a $e^{int} = (e^{it})^n$, c'est-à-dire :

$$\cos(nt) + i\sin(nt) = (\cos(t) + i\sin(t))^n$$

Démonstration 4.18 (Moivre par récurrence) Soit $n \in \mathbb{N}$ et $t \in \mathbb{R}$ Montrons que $\forall (n,t) \in \mathbb{N} \times \mathbb{R}$, $e^{int} = (e^{it})^n$ On note P(n) la Propriété « $e^{int} = (e^{it})^n$ »

- Initialisation : P(0) est vrai car $\begin{cases} \left(e^{it}\right)^0 &= 1\\ e^{it0} &= 1 \end{cases}$
- Hérédité Soit $n \in \mathbb{N}$ tel que P(n) est vrai, Montrons que P(n+1) est vrai :

$$e^{i(n+1)t} = e^{i(n+1)t}$$

$$= e^{int} \times e^{it}$$

$$= (e^{it})^n \times e^{it}$$

$$= (e^{it})^{n+1}$$

Donc P(n+1) Vrai.

Application 4.19 (Applications usuelles importantes)

Soit $C = \sum_{k=0}^{n} \cos(kt)$ et $S = \sum_{k=0}^{n} \sin(kt)$ avec $n \in \mathbb{N}$ et $t \in \mathbb{R}$

On Obtient des expressions simplifiées des sommes C et S par le calcul annexe suivant

$$C + iS = \sum_{k=0}^{n} e^{ikt} = \sum_{k=0}^{n} \left(e^{it}\right)^{k} = \begin{cases} n+1 & \text{si } t \equiv 0 \ [2\pi] \\ \frac{1 - e^{i(n+1)t}}{1 - e^{it}} & \text{sinon} \end{cases}$$

qui donne

$$C + iS = \begin{cases} n+1 & \text{si } t \equiv 0 \left[2\pi\right] \\ \frac{\left(1 - e^{i(n+1)t}\right)\left(1 - e^{it}\right)}{2\left(1 - \cos\left(t\right)\right)} & \text{sinon} \end{cases}$$

On conclut alors sur les valeurs de C et S en exhibant les parties réelle et imaginaire de C+iS.

4.5 Forme trigonométrique pour les nombres complexes non nuls

Définition/Propriétés 4.20

Tout nombre complexe non nul z peut s'écrire sous la forme

$$z = re^{i\theta}$$

avec r un réel strictement positif et θ un réel. Cette écriture est dite forme trigonométrique de z. Attention

Dans cette écriture de z.

- le réel strictement positif r est unique car il est nécessairement égal à |z|
- le réel θ n'est pas unique car si le réel θ convient alors les réels $\theta' \equiv \theta \, [2\pi]$ conviennent.

Démonstration 4.21

Soit $z \in \mathbb{C}^*$, alors $|z| \neq 0$ donc $\frac{z}{|z|}$ existe avec $\left|\frac{z}{|z|}\right| = \frac{|z|}{||z||} = \frac{|z|}{|z|} = 1$

Donc $\frac{z}{|z|} \in \mathbb{U}$ donc il existe $\theta \in \mathbb{R}$ tel que $\frac{z}{|z|} = e^{i\theta} \iff z = |z| e^{i\theta}$

Ceci prouve l'existence de l'écriture.

 $r \text{ est unique car}: \begin{cases} z = re^{i\theta} \\ z = r'e^{i\theta} \end{cases} \Longrightarrow \begin{cases} |z| = r \\ |z| = r' \end{cases} \Longrightarrow r = r'$

Définition/Propriétés 4.22 (Arguments)

Soit z un nombre complexe non nul. Tous les nombres réels θ tels que z peut s'écrire

$$z = re^{i\theta}$$

avec r réel strictement positif sont dits arguments de z

Remarque

Si θ est un argument de z complexe non nul, on peut écrire $\arg(z) \equiv \theta [2\pi]$

Propriétés 4.23

Pour tous nombres complexes non nuls z et z', on a :

(1)
$$\arg(zz') \equiv \arg(z) + \arg(z') [2\pi]$$

(2)
$$\arg\left(\frac{z}{z'}\right) \equiv \arg\left(z\right) - \arg\left(z'\right) \left[2\pi\right]$$

Définition/Propriétés 4.24 (Transformation de $a\cos(t) + b\sin(t)$ en $A\cos(t-\varphi)$)

Soit a, b et t des nombres réels avec $(a, b) \neq (0, 0)$. On peut écrire

$$a\cos(t) + b\sin(t) = \operatorname{Re}\left((a - ib)\left(\cos(t) + i\sin(t)\right)\right) = \operatorname{Re}\left((a - ib)e^{it}\right)$$

puis $a-ib=Ae^{-i\varphi}$ avec A réel strictement positif et φ un réel ce qui donne :

$$a\cos(t)+b\sin(t)=\operatorname{Re}\left((a-ib)e^{it}\right)=\operatorname{Re}\left(Ae^{i(t-\varphi)}\right)$$

Donc $a\cos(t) + b\sin(t) = A\cos(t - \varphi)$

4.6 Fonctions d'une variable réelle à valeurs complexes

Définition 4.25

Une fonction de variable réelle à valeurs complexes notée f est un objet mathématique qui, tout élément x d'une partie non vide de \mathbb{R} , associe un et un seul nombre complexes noté f(x).

Définition/Propriétés 4.26 (Ce qui s'étend aux fonctions de variable réelle à valeurs complexes

- Notation fonctionnelle
- Domaine de définition
- Image d'un réel, antécédent d'un complexe
- Parité, imparité, périodicité
- Somme, produit, quotient de fonctions et multiplication d'une fonction par un complexe
- Dérivation

Définition/Propriétés 4.27 (Ce qui ne s'étend pas aux fonctions de variable réelle à valeurs con

- Composition de fonctions
- Monotonie
- Fonction majorée, minorée ou bornée
- Fonction réciproque

Définition/Propriétés 4.28 (Dérivation)

Soit I un intervalle de \mathbb{R} non vide et non réduit à un point. Soit f une fonction définie sur I à valeurs complexe.

On note $\text{Re}(f): I \longrightarrow \mathbb{R}$ et $\text{Im}(f): I \longrightarrow \mathbb{R}$ les fonctions d'une variable réelle à valeurs réelles définies par :

$$\forall x \in I$$
, $(\text{Re}(f))(x) = \text{Re}(f(x))$ et $(\text{Im}(f))(x) = \text{Im}(f(x))$

On dit que:

- f est dérivable en x_0 si les fonctions $\operatorname{Re}(f)$ et $\operatorname{Im}(f)$ sont dérivables en x_0
- f est dérivable sur I si les fonctions $\operatorname{Re}(f)$ et $\operatorname{Im}(f)$ sont dérivables sur I

Selon le cas de figure, on appelle :

• nombre dérvée de f en x_0 et on note $f'(x_0)$ le nombre complexe suivant :

$$f'(x_0) = (\text{Re}(f)'(x_0)) + (\text{Im}(f)'(x_0))$$

• fonction dérivée de f sur I et on note f' la fonction de variable réelle à valeurs complexes suivante :

$$f' = \left(\operatorname{Re}(f)' \right) + \left(\operatorname{Im}(f)' \right)$$

Propriétés 4.29

(1) Combinaison linéaire

Soit f et g deux fonctions définies sur I et à valeurs complexes et (α, β) un couple de complexes. Si f et g sont dérivables sur I alors $\alpha f + \beta g$ est dérivable sur I et sa dérivée vérifie :

$$(\alpha f + \beta g)' = \alpha f' + \beta g'$$

(2) Produit

Soit f et g deux fonctions définies sur I et à valeurs complexes . Si f et g sont dérivables sur I alors fg est dérivable sur I et sa dérivée vérifie :

$$(fg)' = f'g + fg'$$

(3) Quotient

Soit f et g deux fonctions définies sur I et à valeurs complexes tel que g ne s'annule pas sur I. Si f et g sont dérivables sur I alors $\frac{f}{g}$ est dérivable sur I et sa dérivée vérifie :

$$\left(\frac{f}{g}\right)' = \frac{f'g - g'f}{g^2}$$

Application 4.30 (exemple important)

Soit φ une fonction définie sur I à valeurs complexes. On note $f:I\longrightarrow \mathbb{C}$ la fonction définie sur I par :

$$\forall t \in I, f(t) = e^{\operatorname{Re}(\varphi(t))} e^{i \operatorname{Im}(\varphi(t))}$$

Si φ est dérivable sur I alors f est dérivable sur I et sa dérivée vérifie :

$$\forall t \in I, f'(t) = \varphi'(t)f(t)$$

Remarque

La fonction f sera aussi notée $f = \exp(\varphi)$ après étude de l'exponentielle complexe dans le chapitre « Nombres complexes (2) » ce qui permettra d'écrire $(\exp(\varphi))' = \varphi' \exp(\varphi)$ et donc d'étendre une propriété déjà connue dans le cas où φ est à valeurs réelles.

Chapitre 5

Sommaire

Fonctions usuelles : Rappel et complément

5.1	Fonction exponentielle
5.2	Fonction logarithmes
5.3	Fonctions hyperboliques
5.4	Tangente hyperbolique
5.5	Arccos
5.6	Arcsin

5.1 Fonction exponentielle

Définition/Propriétés 5.1

Il existe une unique fonction f définie sur \mathbb{R} , dérivable sur \mathbb{R} à valeurs réelles vérifiant f' = f et f(0) = 1

Cette fonction, appelée fonction exponentielle et notée $x \mapsto \exp(x)$ ou $x \mapsto e^x$ vérifie :

- \bullet pour tout x et y des réels , $e^{x+y}=e^x e^y$
- pour tout x réel, $e^{-x} = \frac{1}{e^x}$
- pour tout x réel et tout n entier relatif, $e^{nx} = (e^x)^n$
- pour tout x réel, $e^x > 0$
- la fonction exp est définie et dérivable sur \mathbb{R} .
- la dérivée de exp sur \mathbb{R} est exp.
- la fonction exp est strictement croissante sur \mathbb{R} .
- $\lim_{x \to -\infty} e^x = 0$
- $\bullet \lim_{x \to +\infty} e^x = +\infty$
- $\bullet \lim_{x \to 0} \frac{e^x 1}{x} = 1$
- pour tout réel $x, e^x \ge 1 + x$

5.2 Fonction logarithmes

Définition/Propriétés 5.2

La fonction réciproque de la fonction exponentielle est appelée fonction logarithme népérien et notée \ln .

Elle vérifie:

- pour tous x et y réels strictement positifs, $\ell n(xy) = \ell n(x) + \ell n(y)$
- pour tout x réel strictement positif, $\ln\left(\frac{1}{x}\right) = -\ln(x)$
- $\ln(1) = 0$
- pour tout x réel strictement positif et tout n entier relatif, $\ln(x^n) = n \ln(x)$
- la fonction ln est définie et dérivable sur \mathbb{R}_{+}^{*} .
- la dérivée de ln sur \mathbb{R}_+^* est $x \longmapsto \frac{1}{x}$.
- la fonction ln est strictement croissante sur \mathbb{R}_{+}^{*} .
- $\lim_{x \to 0} \ln(x) = +\infty$
- $\lim_{x \to +\infty} e^x = +\infty$
- $\bullet \lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$
- pour tout réel x > -1, $\ln(1+x) \ge x$

Définition/Propriétés 5.3 (logarithme en base 2 et en base 10)

Les fonctions logarithme en base 2, notée \log_2 , et logarithme en base 10 notée \log_{10} sont définie sur \mathbb{R}_+^* par, pour tout réel x strictement positif :

$$\log_2(x) = \frac{\ln(x)}{\ln(2)}$$
 et $\log_{10}(x) = \frac{\ln(x)}{\ln(10)}$

On as aussi:

- $\log_2(2) = 1$ et $\log_{10}(10) = 1$
- pour tout x entier relatif, $\log_2(2^n) = n$ et $\log_{10}(10^n) = n$
- \log_2 et \log_{10} ont même monotonie et même limites aux bornes de \mathbb{R}_+^* que la fonction ln

5.3 Fonctions hyperboliques

Définition/Propriétés 5.4

(1) On appelle cosinus hyperbolique la fonction, notée ch définie \mathbb{R} par, pour tout x réel,

$$\operatorname{ch}(x) = \frac{e^x + e^{-x}}{2}$$

(2) On appelle sinus hyperbolique la fonction, notée sh définie \mathbb{R} par, pour tout x réel,

$$\operatorname{sh}(x) = \frac{e^x - e^{-x}}{2}$$

Définition/Propriétés 5.5 (Relation fondamentale de la trigonométrie hyperbolique) Pour tout réel x,on a :

$$\operatorname{ch}^2(x) - \operatorname{sh}^2(x) = 1$$

Démonstration 5.6

$$\forall x \in \mathbb{R}, \ \operatorname{ch}^2(x) - \operatorname{sh}^2(x) = (\operatorname{ch}(x) + \operatorname{sh}(x)) (\operatorname{ch}(x) - \operatorname{sh}(x)) = (e^x) (e^{-x}) = e^0 = 1$$

Définition/Propriétés 5.7 (étude de la fonction ch)

- (1) La fonction che st définie et dérivable sur \mathbb{R}
- (2) la dérivée de ch sur R est la fonction sh
- (3) la fonction che st paire avec ch(0) = 1
- (4) la fonction ch est:
 - (a) strictement décroissante sur \mathbb{R}_{-}^*
 - (b) strictement croissante sur \mathbb{R}_+^*
- (5) $\lim_{x \to -\infty} \operatorname{ch}(x) = +\infty$
- (6) $\lim_{x \to +\infty} \operatorname{ch}(x) = +\infty$

Définition/Propriétés 5.8 (étude de la fonction sh)

- (1) La fonction sh est définie et dérivable sur \mathbb{R}
- (2) la dérivée de sh sur \mathbb{R} est la fonction ch
- (3) la fonction sh est impaire avec sh(0) = 0
- (4) la fonction sh est strictement croissante sur \mathbb{R}
- $(5) \lim_{x \to -\infty} \operatorname{sh}(x) = -\infty$
- (6) $\lim_{x \to +\infty} \operatorname{sh}(x) = +\infty$

5.4 Tangente hyperbolique

Définition/Propriétés 5.9

On appelle tangente hyperbolique la fonction, notée, th, définie sur $\mathbb R$ par, pour tout x réel

$$th(x) = \frac{ch(x)}{sh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

.

Définition/Propriétés 5.10 (étude de la fonction th)

- (1) La fonction the est définie et dérivable sur \mathbb{R}
- (2) la dérivée de th
 sur \mathbb{R} est la fonction $1 th^2 = \frac{1}{ch^2}$
- (3) la fonction the est impaire avec donc th(0) = 0
- (4) la fonction the est strictement croissante sur \mathbb{R}
- (5) $\lim_{x \to -\infty} \operatorname{th}(x) = -1$
- (6) $\lim_{x \to +\infty} \operatorname{th}(x) = 1$

Définition/Propriétés 5.11 (formule d'addition et de duplication)

Pour tout couple de réel (a, b), on a :

- (1) $\operatorname{ch}(a+b) = \operatorname{ch}(a)\operatorname{ch}(b) + \operatorname{sh}(a)\operatorname{sh}(b)$
- (2) $\operatorname{ch}(a-b) = \operatorname{ch}(a)\operatorname{ch}(b) \operatorname{sh}(a)\operatorname{sh}(b)$
- (3) $\operatorname{sh}(a+b) = \operatorname{ch}(a)\operatorname{sh}(b) + \operatorname{sh}(a)\operatorname{ch}(b)$
- (4) $\operatorname{sh}(a-b) = \operatorname{ch}(a)\operatorname{sh}(b) \operatorname{sh}(a)\operatorname{ch}(b)$
- (5) $th(a+b) = \frac{th(a) + th(b)}{1 + th(a) th(b)}$
- (6) $th(a-b) = \frac{th(a) th(b)}{1 th(a) th(b)}$
- (7) $\operatorname{ch}(2a) = \operatorname{ch}^2(a) \operatorname{sh}^2(a) = 2\operatorname{ch}^2(a) 1 = 2\operatorname{sh}^2(a) + 1$
- (8) $\operatorname{sh}(2a) = 2\operatorname{sh}(a)\operatorname{ch}(a)$
- (9) $th(2a) = \frac{2 th(a)}{1 + th^2(a)}$

5.5Arccos

Définition/Propriétés 5.12

La fonction $c:[0;\pi] \longrightarrow [-1;1]$ définie par :

Pour tout
$$x$$
 dans , $c(x) = cos(x)$

est une bijection de $[0; \pi]$ sur [-1; 1] de bijection réciproque $c^{-1}: [-1; 1] \longrightarrow [0; \pi]$ notée Arccos Autrement dit:

- pour tout réel y dans [-1; 1], l'équation $y = \cos(x)$ admet une unique solution dans $[0; \pi]$
- pour tout réel y dans [-1; 1], Arccos(y) est l'unique réel de $[0; \pi]$ donc le cosinus est égal à y Par ailleurs la fonction Arccos possède ces propriétés :
 - (1) la fonction Arccos est définie sur [-1; 1] et dérivable sur]-1; 1[
 - (2) la dérivée de Arccos sur]-1; 1[est la fonction Arccos' : $x \mapsto \frac{-1}{\sqrt{1-x^2}}$
 - (3) la fonction Arccos est strictement décroissante sur [-1; 1]

Arcsin 5.6

Définition/Propriétés 5.13 La fonction $s: \left[-\frac{\pi}{2}; \frac{\pi}{2}\right] \longrightarrow [-1; 1]$ définie par :

Pour tout
$$x$$
 dans, $s(x) = \sin(x)$

est une bijection de $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ sur [-1; 1] de bijection réciproque $s^{-1}: [-1; 1] \longrightarrow \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ notée Arcsin

Autrement dit:

- pour tout réel y dans [-1; 1], l'équation $y = \sin(x)$ admet une unique solution dans $\left| -\frac{\pi}{2}; \frac{\pi}{2} \right|$
- pour tout réel y dans [-1; 1], Arcsin(y) est l'unique réel de $\left|-\frac{\pi}{2}; \frac{\pi}{2}\right|$ donc le sinus est égal à y Par ailleurs la fonction Arcsin possède ces propriétés :
 - (1) la fonction Arcsin est définie sur [-1; 1] et dérivable sur]-1; 1[
 - (2) la dérivée de Arcsin sur]-1; 1[est la fonction Arcsin' : $x \mapsto \frac{1}{\sqrt{1-x^2}}$
 - (3) la fonction Arcsin est impaire sur]-1; 1[
 - (4) la fonction Arcsin est strictement croissante sur [-1; 1]

5.7 Arctan

Définition/Propriétés 5.14

La fonction $t: \left] -\frac{\pi}{2} ; \frac{\pi}{2} \right[\longrightarrow \mathbb{R}$ définie par :

Pour tout
$$x$$
 dans $, t(x) = \tan(x)$

est une bijection de $\left] -\frac{\pi}{2} ; \frac{\pi}{2} \right[\text{ sur } \mathbb{R} \text{ de bijection réciproque } t^{-1} : \mathbb{R} \longrightarrow \left] -\frac{\pi}{2} ; \frac{\pi}{2} \right[\text{ notée Arctan Autrement dit :} \right]$

- pour tout réel y dans \mathbb{R} , l'équation $y = \tan(x)$ admet une unique solution dans $\left] -\frac{\pi}{2} \right]$; $\frac{\pi}{2}$
- pour tout réel y dans \mathbb{R} , Arctan(y) est l'unique réel de $\left] -\frac{\pi}{2} \right]$; $\frac{\pi}{2}$ donc la tangente est égal à y Par ailleurs la fonction Arctan possède ces propriétés :
 - (1) la fonction Arctan est définie et dérivable sur \mathbb{R}
 - (2) la dérivée de Arctan sur \mathbb{R} est la fonction Arctan' : $x \mapsto \frac{1}{1+x^2}$
 - (3) la fonction Arctan est impaire sur \mathbb{R}
 - (4) la fonction Arctan est strictement croissante sur \mathbb{R}
 - (5) $\lim_{x \to -\infty} \operatorname{Arctan}(x) = -\frac{\pi}{2}$
 - (6) $\lim_{x \to +\infty} \operatorname{Arctan}(x) = \frac{\pi}{2}$

5.8 Fonction puissances réelles

Définition 5.15

Soit α un réel.

La fonction f_{α} définie sur \mathbb{R}_{+}^{*} par

$$\forall x \in \mathbb{R}_+^*, \ f_\alpha(x) = e^{\alpha \ln(x)}$$

est notée $f_\alpha: x \longmapsto x^\alpha$ et appelée fonction puissances (réelle). Elle respecte ces propriétés :

- \bullet la fonction $x \longmapsto x^\alpha$ est définie et dérivable sur \mathbb{R}_+^*
- la dérivée de $x \longmapsto x^{\alpha}$ sur \mathbb{R}_{+}^{*} est $x \longmapsto \alpha x^{\alpha-1}$
- la fonction $x \mapsto x^{\alpha}$ est :
 - strictement croissante sur \mathbb{R}_+^* pour $\alpha > 0$
 - strictement décroissante sur \mathbb{R}_+^* pour $\alpha < 0$

•
$$\lim_{x \to 0} x^{\alpha} = \begin{cases} 0 & \text{pour } \alpha > 0 \\ +\infty & \text{pour } \alpha < 0 \end{cases}$$

•
$$\lim_{x \to +\infty} x^{\alpha} = \begin{cases} +\infty & \text{pour } \alpha > 0 \\ 0 & \text{pour } \alpha < 0 \end{cases}$$

Propriétés 5.16

Pour tout couple de réels α, β et tout couple de réels strictement positifs (x, y), on a :

$$\ln(x^{\alpha}) = \alpha \ln(x)$$
 $(xy)^{\alpha} = x^{\alpha}y^{\alpha}$ $x^{\alpha+\beta} = x^{\alpha}x^{\beta}$ $(x^{\alpha})^{\beta} = x^{\alpha\beta}$

Définition/Propriétés 5.17 (cas particulier des puissances entières)

Les fonctions vues ci-dessus étendent les notions de puissances entières déjà connues sur \mathbb{R} ou \mathbb{R}^* :

- pour tout entier naturel n, la fonction $f_n: x \longmapsto \prod_{k=1}^n x$ est notée $x \longmapsto x^n$ elle est définie sur \mathbb{R} , dérivable sur \mathbb{R} et de dérivée $x \longmapsto nx^{n-1}$
- pour tout entier relatif strictement négatif n, la fonction $f_n: x \longmapsto \prod_{k=1}^{-n} x^{-1}$ est notée $x \longmapsto x^n$ elle est définie sur \mathbb{R}^* , dérivable sur \mathbb{R}^* et de dérivée $x \longmapsto nx^{n-1}$

5.9 croissance comparées

Définition/Propriétés 5.18 (Cas des fonctions $x \longrightarrow \ln(x), x \longrightarrow x^{\alpha}$ et $x \longrightarrow e^{x}$ avec $\alpha > 0$) Pour tout α réel strictement positif, lems croissances comparées des fonctions $x \longmapsto \ln(x), x \longmapsto x^{\alpha}$ et $x \longmapsto e^{x}$ se résument à :

$$\lim_{x \to +\infty} \frac{\ln(x)}{x^{\alpha}} = 0 \qquad \lim_{x \to +\infty} \frac{x^{\alpha}}{e^x} = 0 \qquad \lim_{x \to 0} x^{\alpha} \ln(x) = 0$$

Remarques : On en déduit les croissances comparées en $+\infty$ des fonctions précédentes prises deux à deux :

 \bullet comparaison du logarithme népérien avec les puissances réelles ou l'exponentielle en $+\infty$:

$$\lim_{x \to +\infty} \frac{\ln(x)}{x^{\alpha}} = 0 \qquad \lim_{x \to +\infty} \frac{\ln(x)}{e^x} = 0$$

• comparaison des puissances réelles avec le logarithme népérien ou l'exponentielle en +∞

$$\lim_{x \to +\infty} \frac{x^{\alpha}}{\ln(x)} = +\infty \qquad \lim_{x \to +\infty} \frac{x^{\alpha}}{e^x} = 0$$

 \bullet comparaison de l'exponentielle avec le logarithme népérien ou les puissances réelles en $+\infty$

53

$$\lim_{x \to +\infty} \frac{e^x}{\ln(x)} = +\infty \qquad \lim_{x \to +\infty} \frac{e^x}{x^{\alpha}} = \alpha$$

Définition/Propriétés 5.19 (Cas des fonctions $x \longrightarrow |\ln(x)|^{\beta}$, $x \longrightarrow x^{\alpha}$ et $x \longrightarrow e^{\gamma x}$) Pour tous réels strictement positifs α, β et γ , les croissances comparées des fonctions $x \longmapsto |\ln(x)|^{\beta}$, $x \longmapsto x^{\alpha}$ et $x \longmapsto e^{\gamma x}$ se résument à :

$$\lim_{x \longrightarrow +\infty} \frac{|\ln(x)|^{\beta}}{x^{\alpha}} = 0 \qquad \lim_{x \longrightarrow +\infty} \frac{x^{\alpha}}{e^{\gamma x}} = 0 \qquad \lim_{x \longrightarrow 0} x^{\alpha} |\ln(x)|^{\beta} = 0$$

Chapitre 6

Nombres complexes (2)

Sommaire

6.1	Équations algébreiques
6.1.1	Préliminaires
6.1.2	Résolution des équations du second degré dans \mathbb{C}
6.1.3	Résolution des équations du type $z^n = z_0$ dans \mathbb{C} avec $n \in \mathbb{N}^*$
6.2	Exponentielle complexe
6.3	Interprétations géométriques

6.1 Équations algébreiques

6.1.1 Préliminaires

Définition 6.1 (Définition d'une fonction polynomiale)

Une fonction $P: \mathbb{C} \longrightarrow \mathbb{C}$ est dite fonction polynomiale à coefficients complexes s'il existe un entier naturel n et un n+1-uplet de nombres complexes (b_0, b_1, \ldots, b_n) tel que pour tout z de \mathbb{C} ,

$$P(z) = b_0 + b_1 z + \dots + b_n z^n = \sum_{k=0}^{n} b_k z^k$$

Propriétés 6.2 (Propriétés de factorisation)

Soit P une fonction polynomiale à coefficients complexes et a un nombre complexe.

Si a est une racine de P, autrement dit si P(a)=0, alors il existe une fonction polynomiale à coefficients complexes Q tel que, pour tout z de \mathbb{C} , on a :

$$P(z) = (z - a)Q(z)$$

6.1.2 Résolution des équations du second degré dans $\mathbb C$

Définition/Propriétés 6.3 (cas particulier des équations du type $z^2 = z_0$)

Soit z_0 et z des nombres complexes de formes algébriques respectives $x_0 + iy_0$ et x + iy

$$z^2 = z_0 \text{ six et seulement si }, \begin{cases} x^2 - y^2 &= x_0 \\ x^2 + y^2 &= \sqrt{x_0^2 + y_0^2} \\ 2xy &= y_0 \end{cases}$$

Définition/Propriétés 6.4 (Cas général)

soit a, b et c des nombres complexes avec a non nul.

• Racines

Les solutions de l'équations polynomiale $az^2 + bz + c = 0$ d'inconnue le nombre complexe z sont :

$$z_1 = \frac{-b - \delta}{2a}$$
 et $z_2 = \frac{-b + \delta}{2a}$

où δ est une "racine carré" de $\Delta=b^2-4ac$, autrement dit où δ est un nombre complexe vérifiant :

$$\delta^2 = \Delta$$

• Somme et produit des racines (formules de Viète)

Les racines z_1 et z_2 de la fonction polynomiale $P: z \longmapsto az^2 + bz + c$ vérifient :

$$z_1 + z_2 = -\frac{b}{a}$$
 et $z_1 z_2 = \frac{c}{a}$

Démonstration 6.5 (Formule des solutions du cas général) soit a, b et c des nombres complexes avec a non nul. Soit $z \in \mathbb{C}$

$$az^{2} + bz + c = a\left(z^{2} + \frac{b}{a}z + \frac{c}{a}\right)$$

$$= a\left(\left(z + \frac{b}{2a}\right)^{2} + \frac{c}{a} - \frac{b^{2}}{4a^{2}}\right)$$

$$= a\left(\left(z + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a^{2}}\right)$$

$$= a\left(\left(z + \frac{b}{2a}\right)^{2} - \frac{\Delta}{(2a)^{2}}\right) \qquad \text{on pose } \Delta = b^{2} - 4ac$$

$$= a\left(\left(z + \frac{b}{2a}\right)^{2} - \left(\frac{\delta}{2a}\right)^{2}\right) \qquad \text{on pose } \delta \text{ comme } \text{\'etant la "racine carr\'e" de } \Delta$$

$$= a\left(z + \frac{b}{2a} - \frac{\delta}{2a}\right)\left(z + \frac{b}{2a} + \frac{\delta}{2a}\right)$$

$$= a\left(z - z_{1}\right)\left(z - z_{2}\right) \text{ avec}$$

$$\begin{cases} z_{1} = \frac{-b - \delta}{2a} \\ z_{2} = \frac{-b + \delta}{2a} \end{cases}$$

Démonstration 6.6 (Formule de viète)

soit a, b et c des nombres complexes avec a non nul.

Soit $P: z \longmapsto az^2 + bz + c$

$$P(z) = az^2 + bz + c = a(z - z_1)(z - z_2) = a(z^2 - (z_1 + z_2)z + z_1z_2)$$

donc par identification:

$$\begin{cases} b = -a(z_1 + z_2) \\ c = az_1z_2 \end{cases} \iff \begin{cases} -\frac{b}{a} = z_1 + z_2 \\ \frac{c}{a} = z_1z_2 \end{cases}$$

6.1.3 Résolution des équations du type $z^n = z_0$ dans \mathbb{C} avec $n \in \mathbb{N}^*$

Définition 6.7

Soit n un entier naturel non nul et z_0 un nombre complexe.

On appelle racine n- ième de z_0 tout nombre complexe tel que $z^n = z_0$

Définition/Propriétés 6.8 (Cas particulier où $z_0 = 1$)

• Racines

Il y a n racine n-ième de l'unité qui sont les nombres complexes suivants :

$$\omega_k = e^{i\frac{2k\pi}{n}}$$
 avec $k \in [0; n-1]$

• L'ensemble des raicnes

— L'ensemble des racines n-ièmes de l'unité est noté

$$\mathbb{U}_n = \{ z \in \mathbb{R} \mid z^n = 1 \}$$

— Les points dont les affixes sont les racines n-ièmes de l'unité sont les sommets d'un polygone régulier à n côtés, de centre O et inscrit dans \mathbb{U} .

Démonstration 6.9

Soit $z \in \mathbb{C}$ tel que $z^n = 1$

z = 0 n'est pas solution donc $\exists (r, \theta) \in \mathbb{R}_+^* \times \mathbb{R}, \ z = re^{i\theta}$

$$z^{n} = 1 \iff r^{n}e^{i\theta n} = 1e^{i\times 0}$$

$$\iff \begin{cases} r^{n} = 1\\ n\theta \equiv 0[2\pi] \end{cases}$$

$$\iff \begin{cases} r\\ \theta \equiv 0 \left[\frac{2\pi}{n}\right] \end{cases} = 1$$

Ainsi
$$S = \mathbb{U}_n = \left\{ e^{i\frac{k2\pi}{n}} \mid k \in \mathbb{Z} \right\}$$

On note $f: \mathbb{Z} \longrightarrow \mathbb{C}$ alors on sait que f est n périodique car $\forall k \in \mathbb{Z}, \begin{cases} k+n \in \mathbb{Z} \\ k-n \in \mathbb{Z} \end{cases}$ et

$$f(k+n) = e^{i\frac{2(k+n)\pi}{n}}$$

$$= e^{i\frac{2k\pi}{n}} \times e^{i\frac{2n\pi}{n}}$$

$$= e^{i\frac{2k\pi}{n}} \times 1$$

$$= f(k)$$

$$\text{Donc } S = \mathbb{U}_n = \Big\{ e^{i\frac{k2\pi}{n}} \ \Big| \ k \in \llbracket 0 \ ; n-1 \rrbracket \Big\}.$$

Montrons que $\dot{\mathbb{U}}_n$ contient n élément autrement dit que :

$$\forall (k, k') \in [0; n-1]^2, k < k', \implies e^{i\frac{k2\pi}{n}} \neq e^{i\frac{k'2\pi}{n}}$$

Par l'absurde :

Soit k et k' dans $[\![0:n-1]\!]$ avec k < k', supposons que $e^{i\frac{k2\pi}{n}} = e^{i\frac{k'2\pi}{n}}$

alors
$$\frac{k2\pi}{n} \equiv \frac{k'2\pi}{n} [2\pi]$$

donc il existe
$$k'' \in \mathbb{N}^*$$
 tel que $\frac{k2\pi}{n} - \frac{k'2\pi}{n} = 2k''\pi \operatorname{car} k' - k > 0$

donc il existe
$$k'' \in \mathbb{N}^*$$
 tel que $\frac{k2\pi}{n} - \frac{k'2\pi}{n} = 2k''\pi \operatorname{car} k' - k > 0$
Ainsi $k' - k = nk''$ avec
$$\begin{cases} k' - k \in [1 ; n - 1] & \operatorname{car} 0 \leq k < k' \leq n - 1 \\ nk'' \in [n ; +\infty[] & \operatorname{car} k'' \in \mathbb{N}^* \end{cases}$$

Ce qui est absurde et prouve que $e^{i\frac{k2\pi}{n}} \neq e^{i\frac{k'2}{n}}$

Conclusion:

Il y as exactement n racine n-ièmes de l'unité qui sont les $\omega_k = e^{i\frac{k2\pi}{n}}$ pour $k \in [0; n-1]$

Définition/Propriétés 6.10 (Cas général)

Il y a n racines n- ièmes pour le nombre complexe non nul z_0 de forme trigonométrique $z_0 = r_0 e^{i\theta_0}$ qui sont les nombres complexes suivants :

$$\sqrt[n]{r_0}e^{i\left(\frac{\theta_0}{n}+\frac{2k\pi}{n}\right)}$$
 avec $k \in [0; n-1]$

Exemple 6.11

$$\mathbb{U}_3 = \left\{1, \exp\left(\frac{2i\pi}{3}\right), \exp\left(\frac{4i\pi}{3}\right)\right\}$$

$$\mathbb{U}_4 = \left\{1, \exp\left(\frac{2i\pi}{4}\right), \exp\left(\frac{4i\pi}{4}\right), \exp\left(\frac{6i\pi}{4}\right)\right\} = \{1, i, -1, -i\}$$

$$\mathbb{U}_4 = \left\{1, \exp\left(\frac{2i\pi}{5}\right), \exp\left(\frac{4i\pi}{5}\right), \exp\left(\frac{6i\pi}{5}\right), \exp\left(\frac{8i\pi}{5}\right)\right\}$$

Exponentielle complexe 6.2

Définition 6.12

Pour tout nombre complexe z, on appelle exponentielle de z le nombre complexe noté e^z le nombre complexe e^z défini par :

$$e^z = e^{\operatorname{Re}(z)} e^{i \operatorname{Im}(z)}$$

dont le module est $|e^z|=e^{\mathrm{Re}(z)}$ et les arguments vérrfient $\arg(e^z)\equiv\mathrm{Im}\,(z)\,[2\pi]$

Propriétés 6.13

Soit un couple de nombres complexe (z, z')

• on as l'égalité suivante :

$$e^{z+z'} = e^z e^{z'}$$

on en déduit les propriétés suivantes :

$$-\frac{1}{e^z} = e^{-z}$$

- pour tout entier relatif n, on a : $e^{nz} = (e^z)^n$
- $e^z = e^{z'}$ si et seulement si, $z z' \in 2i\pi\mathbb{Z}$ en notant $2i\pi\mathbb{Z} = \{2ik\pi \mid k \in \mathbb{Z}\}$

Définition/Propriétés 6.14 (Résolution de l'équations $e^z=a$ avec a un nombre complexe) Soit a un nombre complexe.

- Si a est nul alors l'équation $e^z = a$ n'a pas de solution dans $\mathbb C$
- \bullet Si a est non nul alors l'équation $e^z=a$ possède une infinité de solutions dans $\mathbb C$ qui sont les nombres complexes

$$z = \ln(z) + i\theta$$

avec r le module de a et θ un argument de a.

6.3 Interprétations géométriques

Définition/Propriétés 6.15 (Module et arguments de $\frac{z'-\omega}{z-\omega}$)

Soit ω, z et z' des nombres complexes tel que $\omega \neq z$ et $\omega \neq z'$ de points images notés Ω, M et M'. Alors:

$$\left| \frac{z' - \omega}{z - \omega} \right| = \frac{\Omega M'}{\Omega M} \text{ et } \arg \left(\frac{z' - \omega}{z - \omega} \right) = \left(\overrightarrow{\Omega M}, \overrightarrow{\Omega M'} \right) [2\pi]$$

Définition/Propriétés 6.16 (Traduction de l'alignement et l'orthogonalité)

Soit Ω, M et M' trois points du plan tels que $\Omega \neq M$ et $\Omega \neq M'$ d'affixes respectivement notées ω, z et z'

- Les points Ω, M et M' sont alignés si, et seulement si, $\frac{z'-\omega}{z-\omega}$ est un réel
- Les droites ΩM et $\Omega M'$ sont orthogonales si, et seulement si, $\frac{z'-\omega}{z-\omega}$ est un imaginaire pur.

60

Définition/Propriétés 6.17 (Ecriture complexe de transformations du plan vues au collège)

Dans ce paragraphe, M et M' sont deux points du plan complexe d'affixes respectives z et z'.

• <u>Translation</u>

Soit b un nombre complexe.

M' est l'image par M par la translation de vecteur d'affixe b si, et seulement si

$$z' = z + b$$

• Homothétie

Soit α un nombre réel et Ω un point du plan d'affixe ω .

M' est l'image par M par l'Homothétie de centre Ω et de rapport α si, et seulement si

$$z' - \omega = \alpha(z - \omega)$$

• Rotation

Soit θ un nombre réel et Ω un point du plan d'affixe ω .

M' est l'image par M par la rotation de centre Ω et d'angle θ si, et seulement si

$$z' - \omega = e^{i\theta}(z - \omega)$$

Définition/Propriétés 6.18 (Applicaitons $z \longrightarrow az + b$ avec $(a,b) \in \mathbb{C}^* \times \mathbb{C}$)

Soit $(a, b) \in \mathbb{C}^* \times \mathbb{C}$. L'application f de \mathbb{C} dans \mathbb{C} définie par

$$f(z) = az + b$$

est dite similitude directe.

Interprétation géométrique : Pour tout $z \in \mathbb{C}$, on note M le point d'affixe z et M' le point d'affixe z' = f(z)

• Cas où a = 1

On a alors l'équivalence suivante : z' = f(z) so et seulement si, z' - z = bL'application f est donc la translation de vecteur d'affixe b.

• Cas où $a \neq 1$

f admet alors un point fixe ω donné par $\omega = \frac{b}{1-a}$ dont le point image image est noté Ω On en déduit les équivalences suivantes :

$$z'=f(z)$$
 si, et seulement si, $z'-\omega=a'(z-\omega)$
si, et seulement si, $z'-\omega=|a|\left(e^{i\arg(a)}(z-\omega)\right)$

61

si, et seulement si,
$$z' - \omega = e^{i \arg(a)} (|a| (z - \omega))$$

L'application f est donc la composée commutative :

- de l'Homothétie de centre Ω et de rapport |a|
- de la rotation de centre Ω et d'angle arg(a)

Définition/Propriétés 6.19 (Applicaitons $z \longrightarrow a\overline{z} + b$ avec $(a,b) \in \mathbb{C}^* \times \mathbb{C})$

Soit $(a, b) \in \mathbb{C}^* \times \mathbb{C}$.

L'application g de $\mathbb C$ dans $\mathbb C$ définie par

$$g(z) = a\overline{z} + b$$

est dite similitude indirect. Elle peut s'écrire sous la forme de la composée non commutative.

$$g = f \circ s$$

avec:

- \bullet $s:z\longmapsto \overline{z}$ qui est la symétrie axiale d'axe de la droite des réels
- $f: z \longmapsto az + b$ qui est une similitude directe.

Chapitre 7

Calcul de primitives

Sommaire

7.1	Primitives
7.2	Primitives usuelles
7.3	Calculs de primitives
7.3.1	Deux théorème important
7.3.2	Primitives de $x \mapsto e^{ax} \cos(bx)$ ou $x \mapsto e^{ax} \sin(bx)$
7.3.3	Primitives de $x \mapsto \frac{1}{ax^2 + bx + c}$ avec a, b et c des réels et a non nul 68

Notation 7.1

- I et J désige des intervalles de \mathbb{R} , non vides et non réduits à un point
- ullet M désigne l'ensemble $\mathbb R$ ou $\mathbb C$

7.1 Primitives

Définition/Propriétés 7.2

Soit $f: I \longrightarrow \mathbb{K}$ une fonction quelconque.

On dit qu'une fonction $F: I \longrightarrow \mathbb{K}$ est une primitive de f sur I si F est dérivable sur I de dérivée f Si f admet une primitive F sur I alors l'ensemble des primitives de f sur I est $\{x \longmapsto F(x) + \lambda \mid \lambda \in \mathbb{K}\}$

Théorème 7.3 (Théorème fondamental de l'analyse)

Si f CONTINUE sur I alors:

- ullet pour tout x_0 réel, la fonction $F:\int_{x_0}^x f(t)dt$ est une primitive de f sur I
- ullet la fonction f admet des primitives sur I

Définition/Propriétés 7.4 (Application au calcul d'intégrales sur un segment)

Si f est **CONTINUE** sur I et F uine primitive de f sur I alors, pour tout réels a et b dans I, on a :

$$\int_{a}^{b} f(t)dt = F(b) - F(a) \underset{\text{notation}}{=} [F]_{b}^{a}$$

7.2 Primitives usuelles

Définition/Propriétés 7.5 (Puissances entière ou réelles)

Si la fonction f est	alors une primitive de f est	sur tout intervalle I inclus dans
$x \longmapsto x^n \text{ avec } n \in \mathbb{N}$	$x \longmapsto \frac{1}{n+1} x^{n+1}$	$\mathbb R$
$x \longmapsto x^n \text{ avec } n \in \mathbb{Z} \setminus \{-1\}$	$x \longmapsto \frac{1}{n+1} x^{n+1}$	\mathbb{R}^*
$x \longmapsto \frac{1}{x}$	$x \longmapsto \ln(x)$	\mathbb{R}^*
$x \longmapsto \frac{1}{2\sqrt{x}}$	$x \longmapsto \sqrt{x}$	\mathbb{R}_+^*
$x \longmapsto x^{\alpha} \text{ avec } \alpha \in \mathbb{R} \setminus \mathbb{Z}$	$x \longmapsto \frac{1}{\alpha + 1} x^{\alpha + 1}$	\mathbb{R}_+^*

Définition/Propriétés 7.6 (Exponentielle à valeurs réelles ou complexes et logarithme népérier

Si la fonction f est	alors une primitive de f est	sur tout intervalle I inclus dans
$x \longmapsto e^{\lambda x} \text{ avec } \lambda \in \mathbb{K}^*$	$x \longmapsto \frac{1}{\lambda} e^{\lambda x}$	$\mathbb R$
$x \longmapsto e^x$	$x \longmapsto e^x$	${\mathbb R}$
$x \longmapsto \ln(x)$	$x \longmapsto x \ln(x) - x$	\mathbb{R}_+^*

Définition/Propriétés 7.7 (Fonctions hyperboliques)

Si la fonction f est	alors une primitive de f est	sur tout intervalle I inclus dans
$x \longmapsto \operatorname{ch}(x)$	$x \longmapsto \operatorname{sh}(x)$	$\mathbb R$
$x \longmapsto \operatorname{sh}(x)$	$x \longmapsto \operatorname{ch}(x)$	$\mathbb R$
$x \longmapsto 1 - \operatorname{th}^2(x)$	$x \longmapsto \operatorname{th}(x)$	$\mathbb R$
$x \longmapsto \frac{1}{\operatorname{ch}^2(x)}$	$x \longmapsto \operatorname{th}(x)$	$\mathbb R$

Définition/Propriétés 7.8 (Fonctions circulaires et fonctions circulaires réciproques)

Si la fonction f est	alors une primitive de f est	sur tout intervalle I inclus dans
$x \longmapsto \cos(x)$	$x \longmapsto \sin(x)$	$\mathbb R$
$x \longmapsto \sin(x)$	$x \longmapsto -\cos(x)$	$\mathbb R$
$x \longmapsto 1 + \tan^2(x)$	$x \longmapsto \tan(x)$	$\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}$
$x \longmapsto \frac{1}{\cos^2(x)}$	$x \longmapsto \tan(x)$	$\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}$
$x \longmapsto \frac{-1}{\sqrt{1-x^2}}$	$x \longmapsto \operatorname{Arccos}(x)$]-1;1[
$x \longmapsto \frac{1}{\sqrt{1-x^2}}$	$x \longmapsto \operatorname{Arcsin}(x)$]-1;1[
$x \longmapsto \frac{1}{1+x^2}$	$x \longmapsto \operatorname{Arctan}(x)$	$\mathbb R$

7.3 Calculs de primitives

Définition/Propriétés 7.9

• Primitives d'une combinaison linéaire de fonctions

Si $f: I \longrightarrow \mathbb{K}$ et $g: I \longrightarrow \mathbb{K}$ sont des fonctions qui admettent des primitives sur I notées F et G alors, pour tous α et β dans \mathbb{K} , la fonction $\alpha f + \beta g: I \longmapsto \mathbb{K}$ admet pour primitive sur I la fonction $\alpha F + \beta G$

• Primitives d'une fonction dérivée de fonctions composées

Si $u: I \longrightarrow \mathbb{R}$ est une fonction dérivable sur I tel que pour tout x de I, u(x) appartient à J et si $g: J \longrightarrow \mathbb{K}$ est une fonction dérivable sur I alors une primitive de la fonction $f: x \longmapsto u'(x)g'(u(x))$ sur I est la fonction $F: x \longmapsto g(u(x))$.

Dans le tableau ci-dessous (à savoir retrouver à partir des primitives usuelles), I désigne un intervalle sur lequel u est dérivable et tel que, pour tout x de I, u(x) appartient au domaine de dérivabilité de F.

Si la fonction f est	alors une primitive de f est
$x \longmapsto u'(x) (u(x))^{\alpha} \text{ avec } \alpha \in \mathbb{R} \setminus \{-1\}$	$x \longmapsto \frac{1}{\alpha+1} \left(u(x) \right)^{\alpha+1}$
$x \longmapsto \frac{u'(x)}{u(x)}$	$x \longmapsto \ln(u(x))$
$x \longmapsto u'(x)e^{\lambda u(x)} \text{ avec } \lambda \in \mathbb{K}^*$	$x \longmapsto \frac{1}{\lambda} e^{\lambda u(x)}$
$x \longmapsto u'(x) \ln (u(x))$	$x \longmapsto u(x) \ln(u(x)) - u(x)$
$x \longmapsto u'(x) \operatorname{ch}(u(x))$	$x \longmapsto \operatorname{sh}(u(x))$
$x \longmapsto u'(x) \operatorname{sh}(u(x))$	$x \longmapsto \operatorname{ch}(u(x))$
$x \longmapsto u'(x) \left(1 + \operatorname{th}^2(u(x))\right)$	$x \longmapsto \operatorname{th}(u(x))$
$x \longmapsto u'(x) \cos(u(x))$	$x \longmapsto \sin(u(x))$
$x \longmapsto u'(x)\sin(u(x))$	$x \longmapsto -\cos(u(x))$
$x \longmapsto u'(x) \left(1 + \tan^2\left(u(x)\right)\right)$	$x \longmapsto \tan(u(x))$
$x \longmapsto \frac{-u'(x)}{\sqrt{1 - u^2(x)}}$	$x \longmapsto \operatorname{Arccos}(u(x))$
$x \longmapsto \frac{u'(x)}{\sqrt{1 - u^2(x)}}$	$x \longmapsto \operatorname{Arcsin}(u(x))$
$x \longmapsto \frac{u'(x)}{1 + u^2(x)}$	$x \longmapsto \operatorname{Arctan}(u(x))$

7.3.1 Deux théorème important

Définition 7.10 (préliminaire)

Une fonction $f:I \longrightarrow \mathbb{K}$ est dite de classe \mathscr{C}^1 sur I si f est dérivable sur I et de dérivée continue sur I

Théorème 7.11 (Intégration par parties)

Si u et v sont deux fonctions de classe \mathscr{C}^1 sur I alors, pour tous réels a et b dans I, on a :

$$\int_{a}^{b} u'(t)v(t)dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u(t)v'(t)dt$$

Démonstration 7.12

Soit u et v deux applications de $\mathscr{C}^1(I,\mathbb{R})$ alors $\forall (a,b) \in I^2$:

$$\int_{a}^{b} (uv)'(t)dt = \int_{a}^{b} (u'v + uv')(t)dt$$
$$[uv]_{a}^{b} = \int_{a}^{b} (u'v)(t)dt + \int_{a}^{b} (uv')(t)dt$$
$$\int_{a}^{b} u'(t)v(t)dt = [uv]_{a}^{b} - \int_{a}^{b} (uv')(t)dt$$

Théorème 7.13 (Changement de variable)

 $Si \ \varphi : J \longmapsto \mathbb{R} \ est \ fonction \ de \ classe \ \mathscr{C}^1 \ sur \ J \ tel \ que, \ pour \ tout \ t \ de \ J, \ \varphi(t) \ appartient \ à \ I$ et

Si $f: I \longrightarrow \mathbb{K}$ est fonction continue sur I tel que, pour touts α et β dans J, on a:

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x)dx$$

Démonstration 7.14

Soit $\varphi: J \longrightarrow \mathbb{R}$ une fonction de classe \mathscr{C}^1 sur J tel que, pour tout t de J, $\varphi(t)$ appartient à I et $f: I \longmapsto \mathbb{K}$ une fonction continue sur I tel que, pour touts α et β dans J, alors :

f possède une primitive sur I (car f est continue I) que l'on note F.

On note aussi $G: t \mapsto F(\varphi(t))$ qui est dérivable sur J par composition ainsi $G': t \mapsto F'(\varphi(t)) \times \varphi'(t)$, alors:

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt = \int_{min}^{max} G'(t)dt$$

$$= [G(t)]_{\alpha}^{\beta}$$

$$= F(\varphi(\beta)) - F(\varphi(\alpha))$$

$$= [F]_{\varphi(\alpha)}^{\varphi(\beta)}$$

$$= \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x)dx$$

7.3.2 Primitives de $x \mapsto e^{ax} \cos(bx)$ ou $x \mapsto e^{ax} \sin(bx)$

Définition/Propriétés 7.15 ()

• Préliminaire

Soit f et F des fonctions définies sur un intervalle I à valeurs complexes.

- (1) f admet des primitives sur I si, et seulement si, Re (f) et Im (f) admettent des primitives sur I.
- (2) F est une primitive de f sur I si, et seulement si, $\begin{cases} \operatorname{Re}(F) & \text{est une primitive de } \operatorname{Re}(f) & \text{sur } I \\ \operatorname{Im}(()F) & \text{est une primitive de } \operatorname{Im}(f) & \text{sur } I \end{cases}$
- Une application usuelle du résultat précédent

Soit a et b des réels tels que $(a, b) \neq (0, 0)$.

On note $\lambda = a + ib$ et f_{λ} la fonction définie sur \mathbb{R} par, pour tout x réel

$$f_{\lambda}(x) = e^{ax}\cos(bx) + ie^{ax}\sin(bx) = e^{ax}e^{bx} = e^{(a+ib)x} = e^{\lambda x}$$

La fonction $F_{\lambda}: x \longmapsto \frac{1}{\lambda}e^{\lambda x}$ est une primitive de f_{λ} sur \mathbb{R} donc :

- la fonction $\operatorname{Re}(F_{\lambda})$ est une primitive de la fonction $\operatorname{Re}(F_{\lambda}): x \longmapsto e^{ax} \cos(bx)$ sur \mathbb{R}
- la fonction $\operatorname{Im}(F_{\lambda})$ est une primitive de la fonction $\operatorname{Im}(F_{\lambda}): x \longmapsto e^{ax} \sin(bx)$ sur $\mathbb R$

7.3.3 Primitives de $x \mapsto \frac{1}{ax^2 + bx + c}$ avec a, b et c des réels et a non nul

Application 7.16

Soit a, b et c des réels avec a non nul et g la fonction $g : \mathbb{R} \longrightarrow \mathbb{R}$ définie par $g(x) = ax^2 + bx + c$ Trois cas se présentent :

(1) Si g admet deux racines réelles distinctes r_1 et r_2 alors il existe deux réels α_1 et α_2 tel que :

$$\forall x \in R \setminus \{r_1, r_2\}, \frac{1}{ax^2 + bx + c} = \frac{\alpha_1}{x - r_1} + \frac{\alpha_2}{x - r_2}$$

Dans ce cas,

une primitive de $x \mapsto \frac{1}{ax^2 + bx + c}$ sur tout intervalle I inclus dans $R \setminus \{r_1, r_2\}$ est :

$$x \longmapsto \alpha_1 \ln |x - r_1| + \alpha_2 \ln |x - r_2|$$

(2) si g admet une racine réelle double r alors il existe un réel α tel que :

$$\forall x \in R \setminus \{r\}, \frac{1}{ax^2 + bx + c} = \frac{\alpha}{(x - r)^2}$$

Dans ce cas,

une primitive de $x \mapsto \frac{1}{ax^2 + bx + c}$ sur tout intervalle I inclus dans $\mathbb{R} \setminus \{r\}$ est :

$$x \longmapsto \frac{-\alpha}{x-r}$$

(3) Si g n'admet pas de racines réelles alors, en écrivant g sous forme canonique, on peut trouver trois réels α, β et γ tel que :

$$\forall \in \mathbb{R}, \frac{1}{ax^2 + bx + c} = \frac{\alpha}{\left(\frac{x+\beta}{\gamma}\right)^2 + 1}$$

Dans ce cas,

une primitive de $x \mapsto \frac{1}{ax^2 + bx + c}$ sur tout intervalle I inclus dans \mathbb{R} est :

$$x \longmapsto \alpha \gamma \arctan\left(\frac{x+\beta}{\gamma}\right)$$

Chapitre 8

Compléments sur les nombres réels

Sommaire

8.1	Parties denses de \mathbb{R}
8.2	Approximation décimale d'un réel
8.3	Borne inférieur et supérieure d'une partie de $\mathbb R$

8.1 Parties denses de \mathbb{R}

Définition/Propriétés 8.1 (Généralité)

Une partie X de R est dite dense dans \mathbb{R} si elle rencontre tout intervalle ouvert non vide de \mathbb{R} .

En pratique:

Pour étable qu'une partie X de R est dense dans R à l'aide de cette définition, on montre que tout intervalle du type a; b avec a et b des réels tel que a < b, contient au moins un élément de A.

Exemple 8.2

- ullet Les ensembles $\mathbb N$ et $\mathbb Z$ sont des parties de $\mathbb R$ qui ne sont pas denses dans $\mathbb R$
- Les ensemble \mathbb{Q} et \mathbb{R}/\mathbb{Q} sont des parties de \mathbb{R} qui sont denses dans \mathbb{R}

Démonstration 8.3 (Preuve de Q dense dans \mathbb{R})

Soit a et b des réels avec a < b.

Montrons que]a; b[contient un élément de \mathbb{Q} , c'est à dire $\exists (p,q) \in \mathbb{Z} \times \mathbb{N}^*$ tel que $a < \frac{p}{q} < b$ autrement dit qa

Ainsi pour que p existe il faut que :

$$qa - qb > 1$$
 $\operatorname{car} p \in \mathbb{Z}$ $q(a - b) > 1$ $q > \frac{1}{b - a}$ $\operatorname{car} b > a$ Prenons $q = \left| \frac{1}{b - a} \right| + 1$ $\operatorname{car} \frac{1}{b - a} > \left| \frac{1}{b - a} \right| + 1$

Prenons
$$p = \lfloor qa \rfloor + 1$$
, donc $p - 1 \le qa < p$
or $p < qb$ car $q > \frac{1}{b - a} \iff qb - qa > 1 \iff qb > qa + 1 \ge \lfloor qa \rfloor + 1 = p$
Ainsi $qa avec $q = \left\lfloor \frac{1}{b - a} \right\rfloor + 1$ et $p = \lfloor qa \rfloor + 1$.$

Conclusion:

Tout intervalle réel de type]a; b[avec a < b contient un rationnel donc par définition, \mathbb{Q} est dense dans \mathbb{R} .

Démonstration 8.4 (preuve que $\mathbb{R}\backslash\mathbb{Q}$ est dense dans \mathbb{R})

• <u>Préliminaire</u> : Démonstration que $\sqrt{2}$ est irrationnel On suppose qu'il existe $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ avec p et q premier entre eux tel que $\frac{p}{q} = \sqrt{2}$ alors :

$$\frac{p}{q} = \sqrt{2} \iff \sqrt{2}q = p$$

$$\implies 2q^2 = p^2 \qquad \text{donc } p^2 \text{ est pair ce qui explique } p \text{ pair}$$

$$\implies 2q^2 = (2k)^2 \qquad \text{en posant } p = 2k \text{ avec } k \in \mathbb{Z}$$

$$\implies 2q^2 = 4k^2$$

$$\implies 2k^2 = q^2 \qquad \text{donc } q^2 \text{ est pair et donc } q \text{ aussi}$$

Ce qui est absurde car p et q sont premier entre eux donc ils ne peuvent pas être tous les deux pair. Conclusion : $\sqrt{2}$ est irrationnel.

• Preuve que $\mathbb{R}\backslash\mathbb{Q}$ est dense dans \mathbb{R}

Soit a et b des réels avec a < b.

Montrons que a; b[contient un irrationnel :

Par densité de \mathbb{Q} dans \mathbb{R} , $\left| \frac{a}{\sqrt{2}} \right|$; $\left| \frac{b}{\sqrt{2}} \right|$ contient un rationnel r

on a donc
$$\frac{a}{\sqrt{2}} < r < \frac{b}{\sqrt{2}} \implies a < \sqrt{2}r < b$$

 $\sqrt{2r} \in]a$; b[et $\sqrt{2}r$ est irrationnel car sinon $\sqrt{2}r$ serait rationnel et alors $\sqrt{2}r \times \frac{1}{r} = \sqrt{2}$

donc $\sqrt{2} \in \mathbb{Q}$ ce qui est faux.

Donc]a; b[contient un irrationnel.

— Si
$$r = 0$$

On résone de même manière mais sur avec un intervalle]0; b[et $|0; \frac{b}{\sqrt{2}}|$

Ainsi on trouve
$$r' \in \left[0 ; \frac{b}{\sqrt{2}}\right] \cap \mathbb{Q}$$
 puis $r'\sqrt{2} \in \left[0 ; b\right[\cap (\mathbb{R}\backslash\mathbb{Q})$

Donc]a; b[contient un irrationnel.

Conclusion : Tout intervalle réel de type a : b avec a < b contient un irrationnel donc par définition, $\mathbb{R}\backslash\mathbb{Q}$ est dense dans \mathbb{R} .

Théorème 8.5 (Caractérisation séquentiel des parties denses dans \mathbb{R})

Une partie X de \mathbb{R} est dense dans \mathbb{R} si, et seulement si, tout réel est limite d'une suite d'élément de X

Démonstration 8.6

Soit X une partie de \mathbb{R} On procède par double implication.

On suppose que X est dense dans \mathbb{R} , soit x un réel et $n \in \mathbb{N}$

alors $\left| x - \frac{1}{n+1} \right|$; $x \left[\text{ contient un élément de } (u_n) \text{ de } X \text{ par densité de } X \text{ dans } \mathbb{R} \right]$ Donc $\forall n \in \mathbb{N}, x - \frac{1}{n+1} < u_n < x \text{ or } x - \frac{1}{n+1} \xrightarrow[n \to +\infty]{} x \text{ et } x \xrightarrow[n \to +\infty]{} x \text{ donc par théorème}$ d'encadrement u_n

Conclusion:

tour réel x est limite d'une suite (u_n) d'élement de X

On suppose que tout réel est limite d'une suite d'élement de X

Soit $(a, b) \in \mathbb{R}^2$ avec a < b et $\ell \in [a; b]$

par hypothèse, il existe une suite (u_n) telle que $\forall n \in \mathbb{N}, u_n \in X$ et $u_n \underset{n \to +\infty}{\longrightarrow} \ell$

par définition de la limite, a : b qui contient ℓ contient aussi tous les termes de la suite (u_n) à

partir d'un certain rang d'où l'existence de $\begin{cases} u_{n_0} \in X \\ u_{n_0} \in]a; b[$

Conclusion:

X est dense car pour tout a : b avec a < b il existe un élément (ici u_{n_0}) de X dans a : b

Conclusion:

Par double implication le théorème est vérifié

Approximation décimale d'un réel 8.2

Définition/Propriétés 8.7 (rappel)

L'ensemble des nombres décimaux est notée \mathbb{D} et définie par $\mathbb{D} = \left\{ \frac{p}{10^n} \mid (p,n) \in \mathbb{Z} \times \mathbb{N} \right\}$

Propriétés 8.8 (Approximation décimales d'un réel)

Soit x un réel et n un entier naturel. Il existe un unique nombre décimal d_n tel que :

$$10^n d_n \in \mathbb{Z}$$
 et $d_n \le x \le d_n + 10^{-n}$

Par ailleurs pour tout réel x les suites de nombres décimaux (d_n) et $(d_n + 10^{-n})$ définie ci-dessus sont convergentes de limite égal àx donc, par caractérisation séquentielle, l'ensemble \mathbb{D} est dense dans \mathbb{R}

Définition/Propriétés 8.9 (Dévellopement décimal d'un réel)

Soit x un réel et (d_n) la suite des valeurs décimales approchées de x à 10^{-n} près par défaut. Alors :

- Pour tout k dans Ns, il existe un unique entier a_k dans [0; 9] tel que $d_k d_{k-1} = \frac{a_k}{10^k}$
- Pour tout n dans \mathbb{N} , $d_n = \sum_{k=0}^n \frac{a_k}{10^k}$ avec $a_0 = \lfloor x \rfloor$

Puisque la suite (d_n) converge vers x, on peut donc écrire que :

$$x = \lim_{n \to +\infty} \left(\sum_{k=0}^{n} \frac{a_k}{10^k} \right) = \sum_{k=0}^{+\infty} \frac{a_k}{10^k} = a_0, a_1 a_2 \dots$$

ce qu'on appelle un "dévellopement décimal illimié de x".

Par ailleurs:

L'existence et l'unicité d'un tel a_k résulte du fait que : $\forall k \in \mathbb{N}^*, 10^k (d_k - d_{k-1}) \in [0; 9]$. L'expression de d_n sous forme de somme finie s'obtient alors par sommation des égalités $d_k - d_{k-1} = \frac{a_k}{10^k}$ et télescopage

8.3 Borne inférieur et supérieure d'une partie de \mathbb{R}

Définition 8.10

Soit X une partie de \mathbb{R} . S'il existe :

- \bullet le plus petit des majorants de X est appelé borne supérieure de X et noté sup X
- \bullet le plus grand des minorants de X est appelé borne inférieure de X et noté inf X

Remarques:

- \bullet les bornes supérieure ou inférieure de X ne sont pas nécessairement dans X.
- En revanche,
 - si X admet un maximum alors X admet une borne supérieure, égale au maximum de X;
 - si X admet un minimum alors X admet une borne inférieure, égale au minimum de X.

Propriétés 8.11 (Propriété dite de la borne supérieure/inférieur)

- toute partie non vide et majorée de R admet une borne supérieure.
- \bullet Toute partie non vide et minorée de $\mathbb R$ admet une borne inférieure.

Définition/Propriétés 8.12 (Traduction séquentielle de la borne supérieure/inférieure) Soit X une partie de \mathbb{R} .

- Si X est non vide et minorée alors il existe une suite d'éléments de X de limite inf X.
- Si X est non vide et majorée alors il existe une suite d'éléments de X de limite sup X.
- Si X est non vide et non minorée alors il existe une suite d'éléments de X de limite $-\infty$.
- Si X est non vide et non majorée alors il existe une suite d'éléments de X de limite $+\infty$.

Définition/Propriétés 8.13 (Droite achevée R)

On appelle droite achevée l'ensemble noté $\overline{\mathbb{R}}$ défini par :

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$$

On y étend la relation d'ordre \leq , l'addition et la multiplication connues sur \mathbb{R} avec les conventions :

- (1) $\forall x \in \mathbb{R}, -\infty < x + \infty$
- $(2) (-\infty) + (-\infty) = -\infty$
- $(3) (+\infty) + (+\infty) = +\infty$
- (4) $\forall x \in \mathbb{R}, x + (-\infty) = (-\infty) + x = -\infty$
- (5) $\forall x \in \mathbb{R}, x + (+\infty) = (+\infty) + x = +\infty$

(6)
$$\forall x \in \mathbb{R} \setminus \{0\}, x \times (-\infty) = (-\infty) \times x = \begin{cases} +\infty & \text{si } x < 0 \\ -\infty & \text{si } x > 0 \end{cases}$$

(6)
$$\forall x \in \overline{\mathbb{R}} \setminus \{0\}, x \times (-\infty) = (-\infty) \times x = \begin{cases} +\infty & \text{si } x < 0 \\ -\infty & \text{si } x > 0 \end{cases}$$

(7) $\forall x \in \overline{\mathbb{R}} \setminus \{0\}, x \times (+\infty) = (+\infty) \times x = \begin{cases} -\infty & \text{si } x < 0 \\ -\infty & \text{si } x > 0 \end{cases}$

Définition/Propriétés 8.14 (Caractérisation des intervalles de R)

Une partie X de \mathbb{R} est un intervalle de \mathbb{R} si, et seulement si, pour tous réels a et b dans X tels que $a \leq b$ le segment [a;b] est inclus dans X

Démonstration 8.15

On rappelle que I est un intervalle de $\mathbb R$ si I est de l'une des formes suivantes :

- \bullet $I=\emptyset$
- $I = \{x \in \mathbb{R} \mid a \le x \le b\} = [a; b] \text{ avec } (a, b) \in \mathbb{R}^2 \text{ et } a \le b$
- $I = \{x \in \mathbb{R} \mid a \le x < b\} = a \in [a ; b[avec (a, b) \in \mathbb{R} \times (\mathbb{R} \cup \{+\infty\}) et a < b\}]$
- $I = \{x \in \mathbb{R} \mid a < x \le b\} = a \mid a \mid b$ avec $(a, b) \in (\mathbb{R} \cup \{-\infty\}) \times \mathbb{R}$ et $a < b \mid a \mid b$
- $\bullet \ \ I = \{x \in \mathbb{R} \mid a < x \leq b\} \underset{\text{notation}}{=} \]a \ ; \ b \ [\ \text{avec} \ (a,b) \in (\mathbb{R} \cup \{-\infty\}) \times (\mathbb{R} \cup \{+\infty\}) \text{ et } a < b \}$

Soit X une partie de \mathbb{R} . Dans le cas où X est l'ensemble vide, l'équivalence attendue est immédiate. On se place donc, dans la suite, dans le cas où X est une partie non vide de \mathbb{R} et on raisonne par double implication

- On suppose que X est un intervalle de \mathbb{R} X est alors d'une des formes 2, 3, 4 ou 5 indiquées ci-dessus. Ainsi, pour tous réels α et β dans X tels que $\alpha \leq \beta$, on a bien $[\alpha; \beta] \subseteq X$
- On suppose que : $\forall (\alpha, \beta) \in X^2, \alpha \leq \beta \implies [\alpha ; \beta] \subseteq X$ En considérant X comme partie de la droite achevée $\overline{\mathbb{R}}$, on peut noter $m = \inf X$ et $M = \sup X$ Montrons que $m : M \subseteq X \subseteq [m ; M]$
 - Soit $t \in]m$; M[Alors le réel t n'est pas un majorant de X (car t est strictement inférieur à M qui est le plus petit des majorants de X) et le réel t n'est pas un minorant de X(car t est strictement supérieur à m qui est le plus grand es minorants de X).

Il existe $\operatorname{donc}(\alpha,\beta) \in X^2$ tel que $\alpha < t < \beta$ ce qui prouve que t appartint à l'intervalle $]\alpha$; $\beta[$ donc au segment $[\alpha;\beta]$. Comme les réels α et β appartiennent à X, l'hypothèse faite sur x donne $[\alpha;\beta] \subseteq X$ ce qui prouve, en particulier, que t appartient à X Conclusion :]m; $M[\subseteq X]$

— Soit $t \in X$ Alors, par définition de m et X, on a : $m \le t \le M$ c'est à dire $t \in [m; M]$ Conclusion : $X \subseteq [m; M]$

On a donc montré que $]m ; M[\subseteq X \subseteq [m ; M]]$. Cela implique que X, vue comme partie de $\overline{\mathbb{R}}$ est égale à l'une des parties suivantes [m ; M[, m ; M]], [m ; M] ou [m ; M].

Comme X est une partie de \mathbb{R} , on en déduit que X est bien de l'une des formes 2, 3, 4 ou 5 indiquées ci-dessus donc que X est un intervalle de \mathbb{R}

 $\underline{\text{Conclusion}}: X \text{ est un intervalle de } \mathbb{R} \text{ si, et seulement si, } \forall (\alpha,\beta) \in X^2, \alpha \leqslant \beta \implies [\alpha \ ; \beta] \subseteq X$