Table of Contents

Setup	1
Vary Cd	1
Simulation	2
Extraction	3
Vary initial heading	7
Simulation	8
Extraction	9
Plotting	18
Plot the trajectory/thrust with varied Cd	18
Plot the trajectory/thrust with varied initial heading	20

By: Ian Faber and Jack Walsh SID: 108577813, 10040714 Started: 12/5/21, 13:30 Finished: 12/7/21, 16:38

Runs a varied bottle rocket simulation subject to a set of initial parameters through 3 different phases of flight: water thrust, air thrust, and ballistic flight. This specific script utilizes a custom ODE45 EOM function and varies the rocket's coefficient of drag and intial launch angle, then plots them all together to see trends in trajectory and thrust.

Setup

```
% Housekeeping
clc; clear; close all;
% Get all constants from the const structure
const = getConst();

target = 85;

cDragSim = struct('Cdrag', 0, 'rocketX', [], 'rocketZ', []);
initialAngleSim = struct('initialAngle', 0, 'rocketX', [], 'rocketZ', []);
```

Vary Cd

```
Cds = 0.2:0.1:0.8;
for k = 1:length(Cds)
```

```
const.Cdrag = Cds(k);
    fprintf("Simulation with a Cd of %.3f\n", const.Cdrag);
    % Store simulated Cd
    cDragSim(k).Cdrag = const.Cdrag;
    % Difference of Bottle and initial water volumes
    VAirInit = const.Vbottle - const.VWaterInit;
    % Need absolute pressure of air, also convert psi to Pa
    PAirInit = (const.PGageInit+const.PAmb)*6894.76;
    % Calculate rho w/ Ideal Gas EOS
    rhoAirInit = (PAirInit)/(const.R*const.TAirInit);
    % Calculate initial masses
    mAirInit = rhoAirInit*VAirInit;
    mWaterInit = const.rhoWater*const.VWaterInit;
    mRocketInit = const.mBottle + mAirInit + mWaterInit;
    % Calculate initial x and z velocities
    vx0 = const.vInit*cosd(const.thetaInit);
    vz0 = const.vInit*sind(const.thetaInit);
    % Format the initial conditions vector, and by extension variables
 to
    % integrate
    X0 = [const.xInit; const.zInit; vx0; vz0; mRocketInit; mAirInit;
 VAirInit];
    % Define events worthy of stopping integration
    options = odeset('Events',@phase);
Simulation with a Cd of 0.200
Simulation with a Cd of 0.300
Simulation with a Cd of 0.400
Simulation with a Cd of 0.500
Simulation with a Cd of 0.600
Simulation with a Cd of 0.700
Simulation with a Cd of 0.800
```

Simulation

```
% Integrate! Solves for the trajectory of the rocket by integrating the
```

 $[\]mbox{\ensuremath{\$}}\xspace$ variables in XO over tspan according to the derivative information

```
% contained in rocketEOM. Also stops integration according to
"options," a
   % predefined set of stopping conditions
   [time, state, timePhases, ~, ~] =
ode45(@(t,state)rocketEOM(t,state,const), const.tspan, X0, options);
   % Extract intermediate variables from rocketEOM for debugging,
particularly
   % weight, drag, thrust, and air pressure. Found this approach on
the MATLAB
   % forums.
   [~,gravCell, dragCell, thrustCell, PairCell] =
cellfun(@(t,state)rocketEOM(t,state.',const), num2cell(time),
num2cell(state,2), 'uni', 0);
   %Allocate space for intermediate variables
   gravity = zeros(length(time),1);
   drag = zeros(length(time),1);
   thrust = zeros(length(time),1);
   Pair = zeros(length(time),1);
   % Extract intermediate variables from their cells
   for i = 1:length(time)
       gravity(i) = norm(gravCell{i});
       drag(i) = norm(dragCell{i});
       thrust(i) = norm(thrustCell{i});
       Pair(i) = norm(PairCell{i});
   end
```

Extraction

```
% Extract variables of interest
rocketX = state(:,1);
rocketZ = state(:,2);
rocketVx = state(:,3);
rocketVz = state(:,4);
rocketM = state(:,5);
rocketMair = state(:,6);
rocketV = state(:,7);
% Find maximum values of interest
maxRange = max(rocketX)
maxHeight = max(rocketZ)
maxVx = max(rocketVx)
maxVy = max(rocketVz)
maxThrust = max(thrust)
% Update structure entry
cDragSim(k).time = time;
cDragSim(k).timePhases = timePhases;
cDragSim(k).rocketX = rocketX;
cDragSim(k).rocketZ = rocketZ;
cDragSim(k).thrust = thrust;
```

<u> </u>	
maxRange =	
84.5941	
maxHeight =	
21.2554	
maxVx =	
26.2184	
maxVy =	
21.0934	
maxThrust =	
191.0459	
maxRange =	
74.2976	
maxHeight =	
19.6761	
maxVx =	
26.0314	
maxVy =	
20.9326	
maxThrust =	
191.0459	
maxRange =	

66.4193			
maxHeight =			
18.3493			
maxVx =			
25.8125			
maxVy =			
20.7559			
maxThrust =			
191.0459			
maxRange =			
60.2658			
maxHeight =			
17.2294			
maxVx =			
25.6057			
maxVy =			
20.5830			
maxThrust =			
191.0459			
maxRange =			

maxHeight =
16.2586
maxVx =
25.3982
maxVy =
20.4139
maxThrust =
191.0459
_
maxRange =
51.1411
maxHeight =
maxHeight = 15.4329
15.4329
15.4329 maxVx =
15.4329 maxVx = 25.1953
15.4329 maxVx = 25.1953 maxVy =
15.4329 maxVx = 25.1953 maxVy = 20.2484
15.4329 maxVx = 25.1953 maxVy = 20.2484 maxThrust =

```
maxHeight =
    14.7077

maxVx =
    24.9970

maxVy =
    20.0866

maxThrust =
    191.0459
```

end

Vary initial heading

```
headings = 5:5:85;
const.Cdrag = 0.5; % Reset Cd
for k = 1:length(headings)
    const.thetaInit = headings(k);
    fprintf("Simulation with an initial heading of %.2f degrees \n",
 const.thetaInit);
    % Store simulated initial angle
    initialAngleSim(k).initialAngle = const.thetaInit;
    % Difference of Bottle and initial water volumes
    VAirInit = const.Vbottle - const.VWaterInit;
    % Need absolute pressure of air, also convert psi to Pa
    PAirInit = (const.PGageInit+const.PAmb)*6894.76;
    % Calculate rho w/ Ideal Gas EOS
    rhoAirInit = (PAirInit)/(const.R*const.TAirInit);
    % Calculate initial masses
    mAirInit = rhoAirInit*VAirInit;
    mWaterInit = const.rhoWater*const.VWaterInit;
    mRocketInit = const.mBottle + mAirInit + mWaterInit;
    % Calculate initial x and z velocities
    vx0 = const.vInit*cosd(const.thetaInit);
```

vz0 = const.vInit*sind(const.thetaInit);

```
% Format the initial conditions vector, and by extension variables
 t.o
    % integrate
   X0 = [const.xInit; const.zInit; vx0; vz0; mRocketInit; mAirInit;
VAirInit];
    % Define events worthy of stopping integration
    options = odeset('Events',@phase);
Simulation with an initial heading of 5.00 degrees
Simulation with an initial heading of 10.00 degrees
Simulation with an initial heading of 15.00 degrees
Simulation with an initial heading of 20.00 degrees
Simulation with an initial heading of 25.00 degrees
Simulation with an initial heading of 30.00 degrees
Simulation with an initial heading of 35.00 degrees
Simulation with an initial heading of 40.00 degrees
Simulation with an initial heading of 45.00 degrees
Simulation with an initial heading of 50.00 degrees
Simulation with an initial heading of 55.00 degrees
Simulation with an initial heading of 60.00 degrees
Simulation with an initial heading of 65.00 degrees
Simulation with an initial heading of 70.00 degrees
Simulation with an initial heading of 75.00 degrees
Simulation with an initial heading of 80.00 degrees
Simulation with an initial heading of 85.00 degrees
```

Simulation

```
% Integrate! Solves for the trajectory of the rocket by
integrating the
   % variables in X0 over tspan according to the derivative
information
   % contained in rocketEOM. Also stops integration according to
"options," a
   % predefined set of stopping conditions
   [time, state, timePhases, ~, ~] =
ode45(@(t,state)rocketEOM(t,state,const), const.tspan, X0, options);
```

```
% Extract intermediate variables from rocketEOM for debugging,
particularly
   % weight, drag, thrust, and air pressure. Found this approach on
the MATLAB
   % forums.
   [~,gravCell, dragCell, thrustCell, PairCell] =
cellfun(@(t,state)rocketEOM(t,state.',const), num2cell(time),
num2cell(state,2), 'uni', 0);
   %Allocate space for intermediate variables
   gravity = zeros(length(time),1);
   drag = zeros(length(time),1);
   thrust = zeros(length(time),1);
   Pair = zeros(length(time),1);
   % Extract intermediate variables from their cells
   for i = 1:length(time)
       gravity(i) = norm(gravCell{i});
       drag(i) = norm(dragCell{i});
       thrust(i) = norm(thrustCell{i});
       Pair(i) = norm(PairCell{i});
   end
```

Extraction

```
% Extract variables of interest
    rocketX = state(:,1);
    rocketZ = state(:,2);
    rocketVx = state(:,3);
    rocketVz = state(:,4);
    rocketM = state(:,5);
    rocketMair = state(:,6);
    rocketV = state(:,7);
    % Find maximum values of interest
    maxRange = max(rocketX)
    maxHeight = max(rocketZ)
    maxVx = max(rocketVx)
    maxVy = max(rocketVz)
    maxThrust = max(thrust)
    % Update structure entry
    initialAngleSim(k).time = time;
    initialAngleSim(k).timePhases = timePhases;
    initialAngleSim(k).rocketX = rocketX;
    initialAngleSim(k).rocketZ = rocketZ;
    initialAngleSim(k).thrust = thrust;
maxRange =
    6.1186
```

maxHeight	=		
0.2619)		
maxVx =			
33.9884	Į.		
maxVy =			
0.1930)		
maxThrust	=		
191.0459)		
maxRange =	=		
17.6459)		
maxHeight	=		
0.5513			
maxVx =			
33.5487	7		
maxVy =			
1.2978	3		
1.2570	,		
maxThrust	=		
191.0459)		
maxRange =	=		
31.2750)		
morelle i ekt	_		
maxHeight	-		

1.6150			
maxVx =			
33.8271			
maxVy =			
4.2108			
maxThrust =			
191.0459			
maxRange =			
40.9733			
maxHeight =			
3.2757			
maxVx =			
32.6997			
maxVy =			
7.1240			
-1			
maxThrust =			
191.0459			
_			
maxRange =			
48.1205			
maxHeight =			

maxVx =
31.5515
maxVy =
9.9878
maxThrust =
191.0459
maxRange =
53.5534
maxHeight =
8.0438
maxVx =
30.3145
maxVy =
12.8211
maxThrust =
191.0459
maxRange =
57.2735

	tial launch angle simulation	
maxVx =		
28.8933		
maxVy =		
15.6005		
maxThrust =		
191.0459		
maxRange =		
60.2915		
maxHeight =		
14.3567		
maxVx =		
27.5405		
maxVy =		
18.4191		
maxThrust =		
191.0459		
maxRange =		
60.2658		
maxHeight =		
17.2294		
maxVx =		

		tiai fauticii aligie siffufatio)II	
2:	5.6057			
maxV	y =			
20	0.5830			
maxTi	hrust =			
19.	1.0459			
maxRa	ange =			
5	9.2442			
тахНе	eight =			
20	0.5144			
maxV	x =			
	3.4752			
maxV				
22	2.9134			
maxTi	hrust =			
19.	1.0459			
	ange =			
56	5.3814			
тахНе	eight =			
2.	3.9165			

maxVx =

maxVy =		
25.1361		
maxThrust =		
191.0459		
maxRange =		
51.0232		
maxHeight =		
26.2558		
maxVx =		
18.0698		
maxVy =		
26.5881		
maxThrust =		
191.0459		
maxRange = 46.6467		
40.040/		
maxHeight =		
29.7155		
maxVx =		
15.6246		
maxVy =		

28.6024			
maxThrust =			
191.0459			
_			
maxRange = 38.4524			
30.4324			
maxHeight =			
31.6699			
maxVx =			
12.5615			
maxVy =			
29.5976			
maxThrust =			
191.0459			
maxRange =			
29.7251			
maxHeight =			
33.4412			
maxVx =			
9.4984			
maxVy =			
20 5020			

maxThrust =		
191.0459		
maxRange =		
20.6852		
maxHeight =		
35.9347		
maxVx =		
6.5330		
maxVy =		
31.9262		
maxThrust =		
191.0459		
maxRange =		
10.3505		
maxHeight =		
35.5280		
maxVx =		
3.1916		
maxVy =		
31.5049		
31.5049		

```
maxThrust = 191.0459
```

end

Plotting

Plot the trajectory/thrust with varied Cd

```
f = figure();
f.Position = [100 100 740 740]; % Start at (100, 100), end at (100 +
740, 100 + 740)
sgtitle("Simulation with varied Cd");
% Thrust
subplot(1,2,1);
hold on
title("Bottle Rocket Thrust Curve")
label = strings(1,length(cDragSim) + 1);
label(length(cDragSim) + 1) = sprintf("Target distance of %.2f m",
plots = zeros(1,length(cDragSim));
for k = 1:length(cDragSim)
    plots(k) = plot(cDragSim(k).time, cDragSim(k).thrust);
    label(k) = sprintf("Cd = %.3f, max thrust = %.3f N",
 cDragSim(k).Cdrag, max(cDragSim(k).thrust));
end
xlim([0 0.4]);
ylim([0 250]);
xlabel('Time (sec)')
ylabel('Thrust (N)')
legend(plots, label, 'Location', 'best');
hold off
subplot(1,2,2);
hold on;
title("Bottle Rocket Full Trajectory")
label = strings(1,length(cDragSim) + 1);
label(length(cDragSim) + 1) = sprintf("Target distance of %.2f m",
 target);
plots = zeros(1,length(cDragSim));
% Trajectory
for k = 1:length(cDragSim)
```

```
hold on;
  rocketX = cDragSim(k).rocketX;
  rocketZ = cDragSim(k).rocketZ;
  label(k) = sprintf("Cd = %.3f, range = %.3f m", cDragSim(k).Cdrag,
  max(rocketX));
  plots(k) = plot(rocketX, rocketZ);
end

plots(k+1) = xline(target, 'k--');

xlim([0, 90]);
ylim([0, 30]);
xlabel("Range (m)");
ylabel("Height (m)");
legend(plots, label, 'Location', 'best');
hold off;
```

Warning: Ignoring extra legend entries.

Simulation with varied Cd

Plot the trajectory/thrust with varied initial heading

```
f = figure();
f.Position = [100 100 1240 740]; % Start at (940, 100) end at (940 +
 940, 100 + 940)
sgtitle("Simulation with varied initial heading");
label = strings(1,length(initialAngleSim) + 1);
label(length(initialAngleSim) + 1) = sprintf("Target distance of %.2f
m", target);
plots = zeros(1,length(initialAngleSim));
% Thrust
subplot(1,2,1);
hold on
title("Bottle Rocket Thrust Curve");
for k = 1:length(initialAngleSim)
    plots(k) = plot(initialAngleSim(k).time,
 initialAngleSim(k).thrust);
    label(k) = sprintf("Initial angle = %.3f, max thrust = %.3f m",
 initialAngleSim(k).initialAngle, max(initialAngleSim(k).thrust));
end
xlabel("Time (sec)")
ylabel("Thrust (N)")
xlim([0 0.4])
ylim([0 250])
legend(plots, label, 'Location', 'best')
hold off
subplot(1,2,2);
hold on
title("Bottle Rocket Full Trajectory");
% Trajectory
for k = 1:length(initialAngleSim)
    hold on;
    rocketX = initialAngleSim(k).rocketX;
    rocketZ = initialAngleSim(k).rocketZ;
    time = initialAngleSim(k).time;
    label(k) = sprintf("Initial angle = %.3f, range = %.3f m",
 initialAngleSim(k).initialAngle, max(rocketX));
    plots(k) = plot(rocketX, rocketZ);
end
plots(k+1) = xline(target, 'k--');
```

```
xlim([0, 90]);
ylim([0, 40]);
xlabel("Range (m)");
ylabel("Height (m)");
legend(plots, label, 'Location', 'best');
hold off;
```

Warning: Ignoring extra legend entries.

Published with MATLAB® R2021a