1+1	2					
sum(b3:b7)						
	2					
	2					
	2					
	2					
	2					
SUM(B3:B7)	10					
count(b3:b7)	5					
exponent						
2^2	4					
You can calculat	e the logarithm of	a number for a ba	ase using the LOC	E() function, defau	ılting	
to base 10. Rem	ember that the log	is the inverse op	eration of raising	a number to a pov	wer.	
For example the	expression =LOG	(4,2) will calculate	e the logarithm of	4 using base 2 ar	nd	
will evaluate as 2	2					
log(4,2)	2					
You can calculat	e the square root o	of a number using	the SQRT()√fu	nction. For examp	ole,	
	SQRT(4) evaluate					
sqrt(2)	1.414213562					
Latin to word in	:41- 41 41-	tical constant 5				
Let's try working	with the mathema	licai constant Eul	er's number (e)			
We can raise a r	number to e using t	the function EXP(). For example th	e expression =EX	(P(2)	
will evaluate as 7	7.389056099. This	can also be writte	en as e 2			

exp(2)	7.389056099				
We can calculate	e the natural logar	thm of a number	using the function	LN(). Remember	
that the natural I	ogarithm is the inv	erse operation of	raising e to a pow	er. For example	
the expression =	LN(7.389056099)	will evaluate as 2			
In(7.3890)	2				
pi()	3.141592654				
Statistical Summ	naries				
	te the mean or ave				tion.
	the average is the		•		
	pression =AVERA	GE(1,2,3) will eva	luate as 2. Often t	the mean is referr	ed
to as μ (mu					
average(1,2,3)	2				
				5	
	te the mode of a lis				
	a list of numbers		on value in the lis	t. For example the	
expression =MO	DE(2,2,3) will eva	uate as 2.			
	_				
mode(2,3,4,5,5)	5				
Van am order to	 	dation of the Co		OTDEWA (
	te the standard de				
	the standard devia				an
	ple the expression	· · · · · · · · · · · · · · · · · · ·	evaluates as 1. Of	ten the standard	
deviation is refer	red to as σ (sigma).			

stdev(1,2,3)	1					
You can calcu	late the correlation b	etween two lists o	of numbers using	the PEARSON()		
function. Rem	ember that a correlat	tion of 1 and -1 ind	dicate a perfect po	ositive and neg-		
ative correlation	on respectively. For ϵ	example the expre	ession =PEARSOI	N({2,3,4},{4,5,6})		
evaluates as	1 (perfectly positively	correlated).				
pearson({2,3,4	4},{4,5,6})	1				
				<u>-</u>		
Random Num	bers					
You need san	nple data when imple f controlled sample d	ementing machine ata is to use rando	learning algorithr	ns in a spreadshe	et. The	
			on namboro.			
rand()	0.03150608108					
rand()	0.4664283909					
You can calcu	ılate a Gaussian rand	tom number using	the NORMINV()	function Remem	her	
	refers to distribution					
	sume a Gaussian dis		•			
	erate Gaussian rand		• •	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `		
of 1.		7212 11111				
NORMINV(RA	AND(),10,1)	8.540094961				
NORMINV(RAND(),10,1)		9.473765096				
					1	1

Flow Control							
You can conditionally evaluate a cell using the IF() function. It takes three arguments, the first is the condition to evaluate, the second is the expression to use if the condition evaluates true, and the final argument is the expression to use if the condition evaluates false. For example the expression =IF(1>2,"YES","NO") evaluates as NO.							
IF(1>2,"yes","no")		no					
IF(10>2,"yes","no")		yes					