Part_I_notebook

July 30, 2022

1 Part I - (Ford GoBike System Data)

1.1 by (Rilwan Shittu)

1.2 Introduction

This dataset includes information about individual rides made in a bike-sharing system covering the greater San Francisco Bay area in February 2019.

1.3 Preliminary Wrangling

```
In [45]: # import all packages and set plots to be embedded inline
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sb
         import math
        %matplotlib inline
In [46]: # load the csv file into the pandas dataframe
        df = pd.read_csv('201902-fordgobike-tripdata.csv')
        df_clean = df.copy()
In [47]: # Get an overhead view of the data
        df_clean.head()
Out[47]:
           duration_sec
                                        start_time
                                                                    end_time \
                  52185 2019-02-28 17:32:10.1450 2019-03-01 08:01:55.9750
        0
                  42521 2019-02-28 18:53:21.7890 2019-03-01 06:42:03.0560
         1
         2
                   61854 2019-02-28 12:13:13.2180 2019-03-01 05:24:08.1460
         3
                   36490 2019-02-28 17:54:26.0100 2019-03-01 04:02:36.8420
         4
                    1585 2019-02-28 23:54:18.5490 2019-03-01 00:20:44.0740
            start_station_id
                                                            start_station_name \
        0
                        21.0 Montgomery St BART Station (Market St at 2nd St)
                        23.0
                                                 The Embarcadero at Steuart St
        1
         2
                        86.0
                                                       Market St at Dolores St
```

```
4
                                                            Frank H Ogawa Plaza
                         7.0
            start_station_latitude start_station_longitude
                                                             end_station_id \
         0
                         37.789625
                                                 -122.400811
                                                                         13.0
         1
                         37.791464
                                                 -122.391034
                                                                         81.0
         2
                         37.769305
                                                 -122.426826
                                                                          3.0
         3
                         37.774836
                                                 -122.446546
                                                                         70.0
         4
                         37.804562
                                                 -122.271738
                                                                        222.0
                                         end_station_name end_station_latitude \
         0
                          Commercial St at Montgomery St
                                                                       37.794231
                                       Berry St at 4th St
         1
                                                                       37.775880
         2
           Powell St BART Station (Market St at 4th St)
                                                                       37.786375
         3
                                   Central Ave at Fell St
                                                                       37.773311
         4
                                    10th Ave at E 15th St
                                                                       37.792714
                                              user_type member_birth_year \
            end_station_longitude bike_id
         0
                      -122.402923
                                       4902
                                               Customer
                                                                     1984.0
         1
                      -122.393170
                                       2535
                                               Customer
                                                                        NaN
         2
                      -122.404904
                                       5905
                                               Customer
                                                                     1972.0
         3
                                       6638 Subscriber
                      -122.444293
                                                                     1989.0
                      -122.248780
                                       4898 Subscriber
                                                                     1974.0
           member_gender bike_share_for_all_trip
                    Male
         0
                                               Νo
         1
                     NaN
                                               Νo
         2
                    Male
                                               Νo
         3
                   Other
                                               Νo
         4
                    Male
                                              Yes
In [48]: # Check the general information regarding all variables
         df_clean.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 183412 entries, 0 to 183411
Data columns (total 16 columns):
duration_sec
                           183412 non-null int64
start_time
                           183412 non-null object
                           183412 non-null object
end_time
                           183215 non-null float64
start_station_id
                           183215 non-null object
start_station_name
                           183412 non-null float64
start_station_latitude
                           183412 non-null float64
start_station_longitude
                           183215 non-null float64
end station id
end station name
                           183215 non-null object
end station latitude
                           183412 non-null float64
                           183412 non-null float64
end_station_longitude
```

Grove St at Masonic Ave

375.0

3

```
bike_id
                           183412 non-null int64
                           183412 non-null object
user_type
                           175147 non-null float64
member_birth_year
member_gender
                           175147 non-null object
bike_share_for_all_trip
                           183412 non-null object
dtypes: float64(7), int64(2), object(7)
memory usage: 22.4+ MB
In [49]: # Drop all rows with missing values
         df_clean.dropna(inplace=True)
In [50]: # Convert start time and end time columns to datetime
         df_clean[['start_time','end_time']] = df_clean[['start_time','end_time']].apply(pd.to_d
In [51]: # convert the stations and bike id's to object types
         df_clean[['start_station_id', 'end_station_id', 'bike_id']] = df_clean[['start_station_id', 'end_station_id', 'end_station_id']]
In [52]: # Create a column for the duration of rides in minutes from their duration in seconds
         df_clean['duration_min'] = round(df_clean['duration_sec'].astype(float) / 60,2)
In [53]: # Changing the datatype of their year of birth from float to integer
         df_clean['member_birth_year'] = df_clean['member_birth_year'].astype(int)
In [54]: # Create a column for the members age from their year of birth
         df_clean['member_age'] = 2019 - df_clean['member_birth_year'].astype(int)
In [55]: # Engineer a feature that reveals the actual distance travelled in km
         def get_distance(row, r = 6371):
             """function to measure the distance between latitudinal and longitudinal degrees""
             dlon = row[1]['end_station_longitude'] - row[1]['start_station_longitude']
             dlat = row[1]['end_station_latitude'] - row[1]['start_station_latitude']
             a = ((math.sin(dlat/2))**2 + math.cos(row[1]['start_station_latitude']) * math.cos(
             c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))
             return r * c
         df_clean['dist_bet_stations'] = [round(get_distance(row),2) for row in df_clean.iterrow
In [56]: # Check for effectiveness of changes made above
         df_clean.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 174952 entries, 0 to 183411
Data columns (total 19 columns):
                           174952 non-null int64
duration sec
start_time
                           174952 non-null datetime64[ns]
                           174952 non-null datetime64[ns]
end_time
start_station_id
                           174952 non-null object
start_station_name
                           174952 non-null object
```

```
174952 non-null float64
start_station_latitude
start_station_longitude
                          174952 non-null float64
                          174952 non-null object
end_station_id
                          174952 non-null object
end_station_name
                          174952 non-null float64
end_station_latitude
end_station_longitude
                           174952 non-null float64
bike_id
                          174952 non-null object
                           174952 non-null object
user_type
                          174952 non-null int64
member_birth_year
                          174952 non-null object
member_gender
                          174952 non-null object
bike_share_for_all_trip
                          174952 non-null float64
duration_min
                           174952 non-null int64
member_age
                          174952 non-null float64
dist_bet_stations
dtypes: datetime64[ns](2), float64(6), int64(3), object(8)
```

memory usage: 26.7+ MB

1.3.1 What is the structure of your dataset?

The original dataset included 183,412 rows and 16 columns. However after wrangling the data and engineering some new features, the dataset to be used for analysis now includes 174,952 rows and 19 columns.

1.3.2 What is/are the main feature(s) of interest in your dataset?

I am most interested in determining the factors that affect the duration of the ride.

1.3.3 What features in the dataset do you think will help support your investigation into your feature(s) of interest?

I think the user type, age, gender and distance travelled will all be interesting to investigate in relation to the period the bike was being used.

1.4 Univariate Exploration

I will start with a quick descriptive summary of the numeric variables in the dataset.

In [57]: # A descriptive summary of the numeric variables in the dataset df clean.describe()

Out [57]:		${\tt duration_sec}$	${ t start_station_latitude}$	start_station_longitude	\
	count	174952.000000	174952.000000	174952.000000	
	mean	704.002744	37.771220	-122.351760	
	std	1642.204905	0.100391	0.117732	
	min	61.000000	37.317298	-122.453704	
	25%	323.000000	37.770407	-122.411901	
	50%	510.000000	37.780760	-122.398279	
	75%	789.000000	37.797320	-122.283093	

max	84548.000000	3	7.880222	-121.874119	
	end_station_la	titude end_sta	tion_longitude	member_birth_year	\
count	174952.	000000	174952.000000	174952.000000	
mean	37.	771414	-122.351335	1984.803135	
std	0.	100295	0.117294	10.118731	
min	37.	317298	-122.453704	1878.000000	
25%	37.	770407	-122.411647	1980.000000	
50%	37.	781010	-122.397437	1987.000000	
75%	37.	797673	-122.286533	1992.000000	
max	37.	880222	-121.874119	2001.000000	
	duration_min	member_age	dist_bet_stati	ons	
count	174952.000000	174952.000000	174952.000		
mean	11.733373	34.196865	107.532	067	
std	27.370085	10.118731	69.444	751	
min	1.020000	18.000000	0.000	000	
25%	5.380000	27.000000	57.930	000	
50%	8.500000	32.000000	90.360	000	
75%	13.150000	39.000000	141.430	000	
max	1409.130000	141.000000	4405.790	000	

Next, I will examine the main variables of interest which are the variables that give direct information on the duration of the rides. They include the durations in seconds and minutes.

```
In [58]: # looking at the duration of rides in seconds
    binsize = 30
    bins = np.arange(61, df_clean['duration_sec'].max()+binsize ,binsize)
    df_clean.duration_sec.hist(bins=bins)
    plt.xlabel('Duration (seconds)')
    plt.ylabel('Number of rides')
    plt.title('Duration of rides in seconds');
```


In [59]: # Taking a look the visually observed outliers to determine if they should be dropped.

```
# All the seconds figures are accurate as they are the outcome of the difference betwee
         # Therefore, they will not be dropped and a log transform will be performed on the vary
         outliers = (df_clean['duration_sec'] > 5000)
         print(outliers.sum())
         print(df_clean.loc[outliers,:])
884
        duration_sec
                                  start_time
                                                             end_time \
               52185 2019-02-28 17:32:10.145 2019-03-01 08:01:55.975
0
               61854 2019-02-28 12:13:13.218 2019-03-01 05:24:08.146
2
               36490 2019-02-28 17:54:26.010 2019-03-01 04:02:36.842
3
91
                5621 2019-02-28 21:41:16.900 2019-02-28 23:14:58.186
               15123 2019-02-28 18:23:19.035 2019-02-28 22:35:22.294
199
               13061 2019-02-28 18:28:18.728 2019-02-28 22:05:59.954
297
511
                7421 2019-02-28 19:16:02.778 2019-02-28 21:19:44.144
                6447 2019-02-28 19:30:09.314 2019-02-28 21:17:36.905
524
779
               36190 2019-02-28 10:30:03.377 2019-02-28 20:33:14.228
790
                5927 2019-02-28 18:52:30.715 2019-02-28 20:31:17.765
813
                9994 2019-02-28 17:41:05.362 2019-02-28 20:27:39.511
926
                5085 2019-02-28 18:48:01.975 2019-02-28 20:12:47.641
939
               16804 2019-02-28 15:30:33.480 2019-02-28 20:10:38.106
               16768 2019-02-28 15:30:32.430 2019-02-28 20:10:01.410
```

945

```
1023
                5029 2019-02-28 18:35:38.200 2019-02-28 19:59:27.660
                9174 2019-02-28 16:14:40.336 2019-02-28 18:47:35.285
1826
2188
                9424 2019-02-28 15:50:03.285 2019-02-28 18:27:07.429
2298
               20156 2019-02-28 12:44:12.902 2019-02-28 18:20:09.562
               31633 2019-02-28 09:20:43.087 2019-02-28 18:07:56.344
2544
               30666 2019-02-28 09:35:13.840 2019-02-28 18:06:20.011
2588
2693
               21883 2019-02-28 11:56:08.063 2019-02-28 18:00:52.007
3401
               62452 2019-02-28 00:04:01.344 2019-02-28 17:24:54.137
               13844 2019-02-28 13:27:32.213 2019-02-28 17:18:16.517
3530
3985
                8730 2019-02-28 14:21:39.135 2019-02-28 16:47:09.399
                8221 2019-02-28 14:25:20.970 2019-02-28 16:42:22.222
4040
                9472 2019-02-28 13:45:40.233 2019-02-28 16:23:32.309
4223
               26988 2019-02-28 08:52:26.557 2019-02-28 16:22:14.575
4233
                9185 2019-02-28 12:53:52.772 2019-02-28 15:26:58.516
4658
                6617 2019-02-28 13:07:44.244 2019-02-28 14:58:01.965
4828
4855
                6222 2019-02-28 13:10:37.343 2019-02-28 14:54:20.269
               13747 2019-02-02 11:02:47.927 2019-02-02 14:51:55.394
175322
               10745 2019-02-02 10:27:39.392 2019-02-02 13:26:45.166
175831
                7958 2019-02-02 11:09:28.910 2019-02-02 13:22:07.575
175857
                8059 2019-02-02 11:07:39.715 2019-02-02 13:21:59.456
175860
               59813 2019-02-01 19:54:49.848 2019-02-02 12:31:43.043
176130
176188
                5113 2019-02-02 10:56:49.725 2019-02-02 12:22:03.382
                5169 2019-02-02 09:59:54.842 2019-02-02 11:26:04.752
176490
               11063 2019-02-02 07:55:46.804 2019-02-02 11:00:10.190
176639
                5967 2019-02-02 09:10:34.954 2019-02-02 10:50:02.543
176707
               51488 2019-02-01 17:22:49.870 2019-02-02 07:40:58.473
177144
177219
                6270 2019-02-01 23:48:08.946 2019-02-02 01:32:39.506
               11168 2019-02-01 21:40:04.717 2019-02-02 00:46:13.697
177251
177279
               30767 2019-02-01 15:44:06.638 2019-02-02 00:16:53.653
                8468 2019-02-01 20:53:53.210 2019-02-01 23:15:01.934
177337
177484
               13693 2019-02-01 17:45:35.738 2019-02-01 21:33:49.027
177662
               12154 2019-02-01 16:30:44.854 2019-02-01 19:53:19.801
177908
               15565 2019-02-01 14:22:38.724 2019-02-01 18:42:03.928
               15541 2019-02-01 14:22:14.557 2019-02-01 18:41:15.818
177912
                9588 2019-02-01 15:19:32.158 2019-02-01 17:59:20.321
178099
178416
               31203 2019-02-01 08:40:28.487 2019-02-01 17:20:31.553
178649
               14321 2019-02-01 12:50:10.691 2019-02-01 16:48:51.797
               12894 2019-02-01 13:13:12.725 2019-02-01 16:48:07.003
178656
179375
                6508 2019-02-01 12:21:19.721 2019-02-01 14:09:48.338
                6974 2019-02-01 11:44:08.980 2019-02-01 13:40:23.503
179529
                6963 2019-02-01 11:43:20.012 2019-02-01 13:39:23.047
179535
               10568 2019-02-01 10:08:37.189 2019-02-01 13:04:45.198
179732
                6629 2019-02-01 09:45:11.581 2019-02-01 11:35:41.145
180303
182133
                6086 2019-02-01 07:00:02.042 2019-02-01 08:41:28.251
182411
               13609 2019-02-01 04:38:43.601 2019-02-01 08:25:33.493
183326
                5713 2019-02-01 01:02:55.168 2019-02-01 02:38:09.002
```

			,
0	start_station_id	start_station_name	\
0	21	Montgomery St BART Station (Market St at 2nd St)	
2	86	Market St at Dolores St	
3	375	Grove St at Masonic Ave	
91	252	Channing Way at Shattuck Ave	
199	28	The Embarcadero at Bryant St	
297	19	Post St at Kearny St	
511	266	Parker St at Fulton St	
524	66	3rd St at Townsend St	
779	58	Market St at 10th St	
790	5	Powell St BART Station (Market St at 5th St)	
813	241	Ashby BART Station	
926	29	O'Farrell St at Divisadero St	
939	5	Powell St BART Station (Market St at 5th St)	
945	5	Powell St BART Station (Market St at 5th St)	
1023	53	Grove St at Divisadero	
1826	284	Yerba Buena Center for the Arts (Howard St at	
2188	187	Jack London Square	
2298	358	Williams Ave at 3rd St	
2544	81	Berry St at 4th St	
2588	58	Market St at 10th St	
2693	284	Yerba Buena Center for the Arts (Howard St at	
3401	154	Doyle St at 59th St	
3530	17	Embarcadero BART Station (Beale St at Market St)	
3985	13	Commercial St at Montgomery St	
4040	87	Folsom St at 13th St	
4223	371	Lombard St at Columbus Ave	
4233	139	Garfield Square (25th St at Harrison St)	
4658	99	Folsom St at 15th St	
4828	378	Empire St at 7th St	
4855	257	Fifth St at Delaware St	
		•••	
175322	2 30	San Francisco Caltrain (Townsend St at 4th St)	
175831	. 132	24th St at Chattanooga St	
175857	53	Grove St at Divisadero	
175860	53	Grove St at Divisadero	
176130	60	8th St at Ringold St	
176188	70	Central Ave at Fell St	
176490	375	Grove St at Masonic Ave	
176639	370	Jones St at Post St	
176707	33	Golden Gate Ave at Hyde St	
177144		Broadway at Coronado Ave	
177219		Fell St at Stanyan St	
177251		16th St Mission BART	
177279		Victoria Manalo Draves Park	
177337		Grove St at Masonic Ave	
177484		16th St Mission BART Station 2	
177662		Harrison St at 17th St	
	= 		

177908	15 San F	rancisco Ferry Building (Harry Bridges Pl
177912		rancisco Ferry Building (Harry Bridges Pl
178099	99	Folsom St at 15th St
178416	78	Folsom St at 9th St
178649	263	Channing Way at San Pablo Ave
178656		Powell St BART Station (Market St at 5th St)
179375	370	Jones St at Post St
179529	19	Post St at Kearny St
179535	19	Post St at Kearny St
179732	364	China Basin St at 3rd St
180303	338	13th St at Franklin St
182133	380	Masonic Ave at Turk St
182411	106	Sanchez St at 17th St
183326	31	Raymond Kimbell Playground
		, , , , , , , , , , , , , , , , , , ,
	start_station_latitude	e start_station_longitude end_station_id \
0	37.789625	-122.400811 13
2	37.769305	-122.426826 3
3	37.774836	-122.446546 70
91	37.865847	-122.267443 244
199	37.787168	368 -122.388098
297	37.788975	-122.403452 19
511	37.862464	-122.264791 201
524	37.778742	2 -122.392741 3
779	37.776619	-122.417385 375
790	37.783899	-122.408445 126
813	37.852477	-122.270213 248
926	37.782405	-122.439446 71
939	37.783899	-122.408445 70
945	37.783899	-122.408445 70
1023	37.775946	381
1826	37.784872	2 -122.400876 22
2188	37.796248	3 -122.279352 187
2298	37.729279	-122.392896 362
2544	37.775880	-122.393170 93
2588	37.776619	
2693	37.784872	
3401	37.841924	
3530	37.792251	
3985	37.794231	
4040	37.769757	
4223	37.802746	
4233	37.751017	
4658	37.767037	
4828	37.347745	
4855	37.870407	-122.299676 239
175322	37.776598	-122.395282 24

175831	37.751819	-122.426614	134
175857	37.775946	-122.437777	53
175860	37.775946	-122.437777	53
176130	37.774520	-122.409449	43
176188	37.773311	-122.444293	72
176490	37.774836	-122.446546	377
176639	37.787327	-122.413278	6
176707	37.781650	-122.415408	77
177144	37.835788	-122.251621	253
177219	37.771917	-122.453704	377
177251	37.764710	-122.419957	223
177279	37.777791	-122.406432	63
177337	37.774836	-122.446546	380
177484	37.764765	-122.420091	223
177662	37.763847	-122.413004	145
177908	37.795392	-122.394203	15
177912	37.795392	-122.394203	15
178099	37.767037	-122.415443	99
178416	37.773717	-122.411647	11
178649	37.862827	-122.411047	254
178656	37.783899	-122.408445	5
	37.787327	-122.413278	6
179375			16
179529	37.788975	-122.403452	
179535	37.788975	-122.403452	16
179732	37.772000	-122.389970	20
180303	37.803189	-122.270579	187
182133	37.779047	-122.447291	377
182411	37.763242	-122.430675	79
183326	37.783813	-122.434559	31
			,
	_	end_station_name	\
0		mercial St at Montgomery St	
2	Powell St BART Sta	ation (Market St at 4th St)	
3		Central Ave at Fell St	
91		Shattuck Ave at Hearst Ave	
199		Myrtle St at Polk St	
297		Post St at Kearny St	
511		10th St at Fallon St	
524	Powell St BART Sta	ation (Market St at 4th St)	
779		Grove St at Masonic Ave	
790		Esprit Park	
813		Telegraph Ave at Ashby Ave	
926		Broderick St at Oak St	
939		Central Ave at Fell St	
945		Central Ave at Fell St	
1023		20th St at Dolores St	
1826		Howard St at Beale St	
2188		Jack London Square	
		-	

```
2298
                                     Lane St at Revere Ave
2544
                              4th St at Mission Bay Blvd S
                                    Davis St at Jackson St
2588
2693
             Powell St BART Station (Market St at 4th St)
3401
                                     32nd St at Adeline St
                             The Embarcadero at Sansome St
3530
3985
             Powell St BART Station (Market St at 4th St)
                                      29th St at Church St
4040
4223
                                     Fell St at Stanyan St
                                    Harrison St at 17th St
4233
4658
                                      11th St at Bryant St
                            Santa Clara St at Almaden Blvd
4828
4855
                             Bancroft Way at Telegraph Ave
175322
                                     Spear St at Folsom St
175831
                                    Valencia St at 24th St
175857
                                    Grove St at Divisadero
175860
                                    Grove St at Divisadero
        San Francisco Public Library (Grove St at Hyde...
176130
176188
                                       Page St at Scott St
176490
                                     Fell St at Stanyan St
                             The Embarcadero at Sansome St
176639
176707
                                      11th St at Natoma St
177144
                                   Haste St at College Ave
177219
                                     Fell St at Stanyan St
                            16th St Mission BART Station 2
177251
177279
                                       Bryant St at 6th St
                                    Masonic Ave at Turk St
177337
                            16th St Mission BART Station 2
177484
177662
                                      29th St at Church St
177908
        San Francisco Ferry Building (Harry Bridges Pl...
177912
        San Francisco Ferry Building (Harry Bridges Pl...
178099
                                      Folsom St at 15th St
178416
                                    Davis St at Jackson St
                                   Vine St at Shattuck Ave
178649
             Powell St BART Station (Market St at 5th St)
178656
                             The Embarcadero at Sansome St
179375
179529
                                   Steuart St at Market St
179535
                                   Steuart St at Market St
          Mechanics Monument Plaza (Market St at Bush St)
179732
180303
                                        Jack London Square
                                     Fell St at Stanyan St
182133
182411
                                      7th St at Brannan St
183326
                                Raymond Kimbell Playground
        end_station_latitude end_station_longitude bike_id
                                                                user_type \
0
                   37.794231
                                         -122.402923
                                                         4902
                                                                 Customer
2
                   37.786375
                                         -122.404904
                                                         5905
                                                                 Customer
```

2	27 772244	100 444003	6620	Chi h
3	37.773311	-122.444293	6638	Subscriber
91	37.873676	-122.268487	5244	Subscriber
199	37.785434	-122.419622	5380	Subscriber
297	37.788975	-122.403452	5830	Subscriber
511	37.797673	-122.262997	6001	Subscriber
524	37.786375	-122.404904	733	Subscriber
779	37.774836	-122.446546	5465	Subscriber
790	37.761634	-122.390648	6438	Subscriber
813	37.855956	-122.259795	6411	Subscriber
926	37.773063	-122.439078	5515	Subscriber
939	37.773311	-122.444293	6501	Customer
945	37.773311	-122.444293	2464	Customer
1023	37.758238	-122.426094	6138	Subscriber
1826	37.789756	-122.394643	6610	Customer
2188	37.796248	-122.279352	932	Customer
2298	37.731727	-122.390056	6357	Customer
2544	37.770407	-122.391198	2270	Customer
2588	37.797280	-122.398436	5522	Customer
2693	37.786375	-122.404904	4635	Subscriber
3401	37.823847	-122.281193	4683	Subscriber
3530	37.804770	-122.403234	6591	Customer
3985	37.786375	-122.404904	5857	Subscriber
4040	37.743684	-122.426806	6576	Customer
4223	37.771917	-122.453704	5860	Subscriber
4233	37.763847	-122.413004	6558	Subscriber
4658	37.770030	-122.411726	5769	Customer
4828	37.333988	-121.894902	2412	Customer
4855	37.868813	-122.258764	4543	Customer
175322	37.789677	-122.390428	5149	Customer
175831	37.752428	-122.420628	5405	Subscriber
175857	37.775946	-122.437777	5472	Subscriber
175860	37.775946	-122.437777	5004	Subscriber
176130	37.778768	-122.415929	335	Subscriber
176188	37.772406	-122.435650	2191	Customer
176490	37.771917	-122.453704	1161	Customer
176639	37.804770	-122.403234	4602	Customer
176707	37.773507	-122.416040	5271	Subscriber
177144	37.866418	-122.253799	847	Subscriber
177219	37.771917	-122.453704	4370	Subscriber
177251	37.764765	-122.433704	5351	Subscriber
177279		-122.420091		Customer
	37.775910		1401	
177337	37.779047	-122.447291	4377	Subscriber
177484	37.764765	-122.420091	4729	Subscriber
177662	37.743684	-122.426806	5382	Subscriber
177908	37.795392	-122.394203	5284	Customer
177912	37.795392	-122.394203	5132	Customer
178099	37.767037	-122.415443	4597	Customer

178416	37.797280		-122.398436	5110	Subs	criber	
178649	37.880222		-122.269592	4642	Cu	stomer	
178656	37.783899		-122.408445	5105	Subs	criber	
179375	37.804770		-122.403234	5020	Cu	stomer	
179529	37.794130		-122.394430	5059	Cu	stomer	
179535	37.794130		-122.394430	4814	Cu	stomer	
179732	37.791300		-122.399051	5561		criber	
180303	37.796248		-122.279352	4528		criber	
182133	37.771917		-122.453704	4956		criber	
182411	37.773492		-122.403673	4944		criber	
183326	37.783813		-122.434559	5366		criber	
	member_birth_year mem	ber gender	bike share fo	r all tr	cip (duration_min	\
0	1984	Male			No	869.75	•
2	1972	Male			No	1030.90	
3	1989	Other			No	608.17	
91	1997	Female			No	93.68	
199	1980	Male			No	252.05	
297	1987	Male			No	217.68	
511	1975	Male		γ	les.	123.68	
524	1994	Male		-	No	107.45	
779	1991	Female			No	603.17	
790	1994	Female			No	98.78	
813	1968	Female			No	166.57	
926	1989	Male			No	84.75	
939	1974	Male			No	280.07	
945	1974	Male			No	279.47	
1023	1983	Male		V	res.	83.82	
1826	1997	Male		-	No	152.90	
2188	1990	Male			No	157.07	
2298	1992	Female			No	335.93	
2544	1984	Female			No	527.22	
2588	1988	Male			No	511.10	
2693	1980	Female		γ	es.	364.72	
3401	1989	Female		-	No	1040.87	
3530	1995	Female			No	230.73	
3985	1966	Male			No	145.50	
4040	1985	Male			No	137.02	
4223	1994	Male			No	157.87	
4233	1986	Male		γ	les.	449.80	
4658	1978	Male		-	No	153.08	
4828	1982	Female			No	110.28	
4855	1988	Male			No	103.70	
						100.10	
175322	1994	Female			No	229.12	
175831	1990	Male			res	179.08	
175857	1986	Female		1	No	132.63	
175860	1991	Male			No	134.32	
110000	1991	nare			110	107.02	

176130		1990	Female	No	996.88
176188		1991	Female	No	85.22
176490		1993	Female	No	86.15
176639		2001	Male	No	184.38
176707		1971	Female	No	99.45
177144		1997	Male	Yes	858.13
177219		1971	Other	No	104.50
177251		1995	Female	No	186.13
177279		1988	Male	No	512.78
177337		1971	Other	No	141.13
177484		1995	Female	No	228.22
177662		1978	Male	No	202.57
177908		1987	Female	No	259.42
177912		1984	Male	No	259.02
178099		1965	Male	No	159.80
178416		1989	Male	No	520.05
178649		1977	Other	No	238.68
178656		1996	Other	Yes	214.90
179375		2001	Male	No	108.47
179529		1954	Male	No	116.23
179535		1954	Male	No	116.05
179732		1989	Male	No	176.13
180303		1964	Other	Yes	110.48
182133		1971	Other	No	101.43
182411		1982	Male	Yes	226.82
183326		1972	Male	No	95.22
	mombow ogo	diat bo	+ atotiona		
0	member_age 35	aist_be	t_stations 32.26		
2	33		52.20		
	47				
ત્ર	47 30		176.67		
3 91	30		176.67 17.30		
91	30 22		176.67 17.30 50.31		
91 199	30 22 39		176.67 17.30 50.31 200.38		
91 199 297	30 22 39 32		176.67 17.30 50.31 200.38 0.00		
91 199 297 511	30 22 39 32 44		176.67 17.30 50.31 200.38 0.00 412.94		
91 199 297 511 524	30 22 39 32 44 25		176.67 17.30 50.31 200.38 0.00 412.94 91.26		
91 199 297 511 524 779	30 22 39 32 44 25 28		176.67 17.30 50.31 200.38 0.00 412.94 91.26 185.59		
91 199 297 511 524 779 790	30 22 39 32 44 25 28		176.67 17.30 50.31 200.38 0.00 412.94 91.26 185.59 181.41		
91 199 297 511 524 779 790 813	30 22 39 32 44 25 28 25 51		176.67 17.30 50.31 200.38 0.00 412.94 91.26 185.59 181.41 69.22		
91 199 297 511 524 779 790 813 926	30 22 39 32 44 25 28		176.67 17.30 50.31 200.38 0.00 412.94 91.26 185.59 181.41 69.22 59.56		
91 199 297 511 524 779 790 813 926 939	30 22 39 32 44 25 28 25 51 30		176.67 17.30 50.31 200.38 0.00 412.94 91.26 185.59 181.41 69.22 59.56 237.45		
91 199 297 511 524 779 790 813 926 939 945	30 22 39 32 44 25 28 25 51 30 45		176.67 17.30 50.31 200.38 0.00 412.94 91.26 185.59 181.41 69.22 59.56 237.45 237.45		
91 199 297 511 524 779 790 813 926 939 945 1023	30 22 39 32 44 25 28 25 51 30 45		176.67 17.30 50.31 200.38 0.00 412.94 91.26 185.59 181.41 69.22 59.56 237.45 237.45 135.06		
91 199 297 511 524 779 790 813 926 939 945	30 22 39 32 44 25 28 25 51 30 45 45		176.67 17.30 50.31 200.38 0.00 412.94 91.26 185.59 181.41 69.22 59.56 237.45 237.45 135.06 50.33		
91 199 297 511 524 779 790 813 926 939 945 1023 1826	30 22 39 32 44 25 28 25 51 30 45 45 36 22		176.67 17.30 50.31 200.38 0.00 412.94 91.26 185.59 181.41 69.22 59.56 237.45 237.45 135.06		
91 199 297 511 524 779 790 813 926 939 945 1023 1826 2188	30 22 39 32 44 25 28 25 51 30 45 45 36 22 29		176.67 17.30 50.31 200.38 0.00 412.94 91.26 185.59 181.41 69.22 59.56 237.45 135.06 50.33 0.00		
91 199 297 511 524 779 790 813 926 939 945 1023 1826 2188 2298	30 22 39 32 44 25 28 25 51 30 45 45 22 29		176.67 17.30 50.31 200.38 0.00 412.94 91.26 185.59 181.41 69.22 59.56 237.45 237.45 135.06 50.33 0.00 23.88		

2693 39 27.31 3401 30 123.02 3530 24 88.77 3985 53 51.60 4040 34 180.57 4223 25 321.59 4233 33 82.04 4658 41 30.36 4828 37 91.00 4855 31 257.07 175322 25 88.84 175831 29 38.28 175857 33 0.00 175860 28 0.00 175860 28 0.00 176130 29 49.26 176490 26 49.14 176639 18 128.09 176707 48 52.03 177144 22 195.62 177219 48 0.00 177251 24 0.92 177737 48 27.24 177908 32 0.00 177912 35 <td< th=""><th></th><th>0.0</th><th>07.04</th></td<>		0.0	07.04
3530 24 88.77 3985 53 51.60 4040 34 180.57 4223 25 321.59 4233 33 82.04 4658 41 30.36 4828 37 91.00 4855 31 257.07 175322 25 88.84 175831 29 38.28 175857 33 0.00 175860 28 0.00 176130 29 49.26 176490 26 49.14 176639 18 128.09 176707 48 52.03 177144 22 195.62 177219 48 0.00 177251 24 0.92 177279 31 27.27 177337 48 27.24 177908 32 0.00 177912 35 0.00			
3985 53 51.60 4040 34 180.57 4223 25 321.59 4233 33 82.04 4658 41 30.36 4828 37 91.00 4855 31 257.07 175322 25 88.84 175831 29 38.28 175857 33 0.00 175860 28 0.00 175860 28 0.00 176130 29 49.26 176188 28 55.22 176490 26 49.14 176639 18 128.09 176707 48 52.03 177144 22 195.62 177219 48 0.00 177251 24 0.92 1777279 31 27.27 177337 48 27.24 177908 32 0.00 178099 54 0.00 178416 30			
4040 34 180.57 4223 25 321.59 4233 33 82.04 4658 41 30.36 4828 37 91.00 4855 31 257.07 175322 25 88.84 175831 29 38.28 175857 33 0.00 175860 28 0.00 176130 29 49.26 176188 28 55.22 176490 26 49.14 176639 18 128.09 176707 48 52.03 177144 22 195.62 177219 48 0.00 177279 31 27.27 177337 48 27.24 177484 24 0.00 177908 32 0.00 177912 35 0.00 178099 54 0.00 178416 30 171.95 178656 23			
4223 25 321.59 4233 33 82.04 4658 41 30.36 4828 37 91.00 4855 31 257.07 175322 25 88.84 175831 29 38.28 175857 33 0.00 175860 28 0.00 176130 29 49.26 176188 28 55.22 176490 26 49.14 176639 18 128.09 176707 48 52.03 177144 22 195.62 177219 48 0.00 177279 31 27.27 177337 48 27.24 177484 24 0.00 177908 32 0.00 177912 35 0.00 178416 30 171.95 178649 42 170.47 178656 23 0.00 179375 18			
4233 33 82.04 4658 41 30.36 4828 37 91.00 4855 31 257.07 175322 25 88.84 175831 29 38.28 175857 33 0.00 175860 28 0.00 176130 29 49.26 176188 28 55.22 176490 26 49.14 176639 18 128.09 176707 48 52.03 177144 22 195.62 177219 48 0.00 177279 31 27.27 177337 48 27.24 177484 24 0.00 177908 32 0.00 177912 35 0.00 178416 30 171.95 178649 42 170.47 178656 23 0.00 179375 18 128.09 179529 65 <td></td> <td></td> <td></td>			
4658 41 30.36 4828 37 91.00 4855 31 257.07 175322 25 88.84 175831 29 38.28 175857 33 0.00 175860 28 0.00 176130 29 49.26 176188 28 55.22 176490 26 49.14 176639 18 128.09 176707 48 52.03 177144 22 195.62 177219 48 0.00 177251 24 0.92 177279 31 27.27 177337 48 27.24 177484 24 0.00 177908 32 0.00 177912 35 0.00 178099 54 0.00 178416 30 171.95 178649 42 170.47 178656 23 0.00 179375 18			
4828 37 91.00 4855 31 257.07 175322 25 88.84 175831 29 38.28 175857 33 0.00 175860 28 0.00 176130 29 49.26 176188 28 55.22 176490 26 49.14 176639 18 128.09 176707 48 52.03 177144 22 195.62 177219 48 0.00 177279 31 27.27 177337 48 27.24 177484 24 0.00 177662 41 155.60 177908 32 0.00 178099 54 0.00 178416 30 171.95 178649 42 170.47 178656 23 0.00 179375 18 128.09 179529 65 65.99 179535 6			
4855 31 257.07 175322 25 88.84 175831 29 38.28 175857 33 0.00 175860 28 0.00 176130 29 49.26 176188 28 55.22 176490 26 49.14 176639 18 128.09 176707 48 52.03 177144 22 195.62 177219 48 0.00 177279 31 27.27 177337 48 27.24 177484 24 0.00 177662 41 155.60 177908 32 0.00 178099 54 0.00 178416 30 171.95 178649 42 170.47 178656 23 0.00 179375 18 128.09 179529 65 65.99 179535 65 65.99 179732 <td< td=""><td></td><td></td><td></td></td<>			
175322 25 88.84 175831 29 38.28 175857 33 0.00 175860 28 0.00 176130 29 49.26 176188 28 55.22 176490 26 49.14 176639 18 128.09 176707 48 52.03 177144 22 195.62 177219 48 0.00 177251 24 0.92 177279 31 27.27 177337 48 27.24 177484 24 0.00 177908 32 0.00 177912 35 0.00 178099 54 0.00 178416 30 171.95 178649 42 170.47 178656 23 0.00 179375 18 128.09 179529 65 65.99 179535 65 65.99 179732 30 135.81 180303			
175831 29 38.28 175857 33 0.00 175860 28 0.00 176130 29 49.26 176188 28 55.22 176490 26 49.14 176639 18 128.09 176707 48 52.03 177144 22 195.62 177219 48 0.00 177279 31 27.27 177337 48 27.24 177484 24 0.00 177908 32 0.00 177908 32 0.00 178099 54 0.00 178416 30 171.95 178649 42 170.47 178656 23 0.00 179375 18 128.09 179529 65 65.99 179535 65 65.99 179732 30 135.81 180303 55 71.05 182133 48 61.02 182411	4855	31	257.07
175831 29 38.28 175857 33 0.00 175860 28 0.00 176130 29 49.26 176188 28 55.22 176490 26 49.14 176639 18 128.09 176707 48 52.03 177144 22 195.62 177219 48 0.00 177279 31 27.27 177337 48 27.24 177484 24 0.00 177908 32 0.00 177908 32 0.00 178099 54 0.00 178416 30 171.95 178649 42 170.47 178656 23 0.00 179375 18 128.09 179529 65 65.99 179535 65 65.99 179732 30 135.81 180303 55 71.05 182133 48 61.02 182411	 175322	 25	88.84
175857 33 0.00 175860 28 0.00 176130 29 49.26 176188 28 55.22 176490 26 49.14 176639 18 128.09 176707 48 52.03 177144 22 195.62 177219 48 0.00 177251 24 0.92 177279 31 27.27 177337 48 27.24 177484 24 0.00 177662 41 155.60 177908 32 0.00 177912 35 0.00 178416 30 171.95 178649 42 170.47 178656 23 0.00 179375 18 128.09 179529 65 65.99 179732 30 135.81 180303 55 71.05 182133 48 61.02 182411 37 183.62			
175860 28 0.00 176130 29 49.26 176188 28 55.22 176490 26 49.14 176639 18 128.09 176707 48 52.03 177144 22 195.62 177219 48 0.00 177251 24 0.92 177279 31 27.27 177337 48 27.24 177484 24 0.00 177662 41 155.60 177908 32 0.00 177912 35 0.00 178099 54 0.00 178416 30 171.95 178649 42 170.47 178656 23 0.00 179375 18 128.09 179529 65 65.99 179732 30 135.81 180303 55 71.05 182133 48 61.02 182411 37 183.62			
176130 29 49.26 176188 28 55.22 176490 26 49.14 176639 18 128.09 176707 48 52.03 177144 22 195.62 177219 48 0.00 177251 24 0.92 177279 31 27.27 177337 48 27.24 177484 24 0.00 177908 32 0.00 177912 35 0.00 178099 54 0.00 178416 30 171.95 178649 42 170.47 178656 23 0.00 179375 18 128.09 179529 65 65.99 179732 30 135.81 180303 55 71.05 182133 48 61.02 182411 37 183.62			
176188 28 55.22 176490 26 49.14 176639 18 128.09 176707 48 52.03 177144 22 195.62 177219 48 0.00 177251 24 0.92 177279 31 27.27 177337 48 27.24 177484 24 0.00 177662 41 155.60 177908 32 0.00 177912 35 0.00 178099 54 0.00 178416 30 171.95 178649 42 170.47 178656 23 0.00 179375 18 128.09 179529 65 65.99 179732 30 135.81 180303 55 71.05 182133 48 61.02 182411 37 183.62			
176490 26 49.14 176639 18 128.09 176707 48 52.03 177144 22 195.62 177219 48 0.00 177251 24 0.92 177279 31 27.27 177337 48 27.24 177484 24 0.00 177908 32 0.00 177912 35 0.00 178099 54 0.00 178416 30 171.95 178649 42 170.47 178656 23 0.00 179375 18 128.09 179529 65 65.99 179732 30 135.81 180303 55 71.05 182133 48 61.02 182411 37 183.62			
176639 18 128.09 176707 48 52.03 177144 22 195.62 177219 48 0.00 177251 24 0.92 177279 31 27.27 177337 48 27.24 177484 24 0.00 177662 41 155.60 177908 32 0.00 177912 35 0.00 178099 54 0.00 178416 30 171.95 178649 42 170.47 178656 23 0.00 179375 18 128.09 179529 65 65.99 179732 30 135.81 180303 55 71.05 182133 48 61.02 182411 37 183.62			
176707 48 52.03 177144 22 195.62 177219 48 0.00 177251 24 0.92 177279 31 27.27 177337 48 27.24 177484 24 0.00 177662 41 155.60 177908 32 0.00 177912 35 0.00 178099 54 0.00 178416 30 171.95 178649 42 170.47 178656 23 0.00 179375 18 128.09 179529 65 65.99 179732 30 135.81 180303 55 71.05 182133 48 61.02 182411 37 183.62			
177144 22 195.62 177219 48 0.00 177251 24 0.92 177279 31 27.27 177337 48 27.24 177484 24 0.00 177662 41 155.60 177908 32 0.00 177912 35 0.00 178099 54 0.00 178416 30 171.95 178649 42 170.47 178656 23 0.00 179375 18 128.09 179529 65 65.99 179732 30 135.81 180303 55 71.05 182133 48 61.02 182411 37 183.62			
177219 48 0.00 177251 24 0.92 177279 31 27.27 177337 48 27.24 177484 24 0.00 177662 41 155.60 177908 32 0.00 177912 35 0.00 178099 54 0.00 178416 30 171.95 178649 42 170.47 178656 23 0.00 179375 18 128.09 179529 65 65.99 179732 30 135.81 180303 55 71.05 182133 48 61.02 182411 37 183.62	177144		
177251 24 0.92 177279 31 27.27 177337 48 27.24 177484 24 0.00 177662 41 155.60 177908 32 0.00 177912 35 0.00 178099 54 0.00 178416 30 171.95 178649 42 170.47 178656 23 0.00 179375 18 128.09 179529 65 65.99 179732 30 135.81 180303 55 71.05 182133 48 61.02 182411 37 183.62			
177279 31 27.27 177337 48 27.24 177484 24 0.00 177662 41 155.60 177908 32 0.00 177912 35 0.00 178099 54 0.00 178416 30 171.95 178649 42 170.47 178656 23 0.00 179375 18 128.09 179529 65 65.99 179535 65 65.99 179732 30 135.81 180303 55 71.05 182133 48 61.02 182411 37 183.62			
177337 48 27.24 177484 24 0.00 177662 41 155.60 177908 32 0.00 177912 35 0.00 178099 54 0.00 178416 30 171.95 178649 42 170.47 178656 23 0.00 179375 18 128.09 179529 65 65.99 179732 30 135.81 180303 55 71.05 182133 48 61.02 182411 37 183.62			
177484 24 0.00 177662 41 155.60 177908 32 0.00 177912 35 0.00 178099 54 0.00 178416 30 171.95 178649 42 170.47 178656 23 0.00 179375 18 128.09 179529 65 65.99 179732 30 135.81 180303 55 71.05 182133 48 61.02 182411 37 183.62	177337		
177662 41 155.60 177908 32 0.00 177912 35 0.00 178099 54 0.00 178416 30 171.95 178649 42 170.47 178656 23 0.00 179375 18 128.09 179529 65 65.99 179732 30 135.81 180303 55 71.05 182133 48 61.02 182411 37 183.62	177484	24	
177912 35 0.00 178099 54 0.00 178416 30 171.95 178649 42 170.47 178656 23 0.00 179375 18 128.09 179529 65 65.99 179535 65 65.99 179732 30 135.81 180303 55 71.05 182133 48 61.02 182411 37 183.62	177662	41	
177912 35 0.00 178099 54 0.00 178416 30 171.95 178649 42 170.47 178656 23 0.00 179375 18 128.09 179529 65 65.99 179732 30 135.81 180303 55 71.05 182133 48 61.02 182411 37 183.62	177908	32	0.00
178099 54 0.00 178416 30 171.95 178649 42 170.47 178656 23 0.00 179375 18 128.09 179529 65 65.99 179535 65 65.99 179732 30 135.81 180303 55 71.05 182133 48 61.02 182411 37 183.62	177912	35	
178649 42 170.47 178656 23 0.00 179375 18 128.09 179529 65 65.99 179535 65 65.99 179732 30 135.81 180303 55 71.05 182133 48 61.02 182411 37 183.62	178099	54	0.00
178656 23 0.00 179375 18 128.09 179529 65 65.99 179535 65 65.99 179732 30 135.81 180303 55 71.05 182133 48 61.02 182411 37 183.62	178416	30	171.95
179375 18 128.09 179529 65 65.99 179535 65 65.99 179732 30 135.81 180303 55 71.05 182133 48 61.02 182411 37 183.62	178649	42	170.47
1795296565.991795356565.9917973230135.811803035571.051821334861.0218241137183.62	178656	23	0.00
1795356565.9917973230135.811803035571.051821334861.0218241137183.62	179375	18	128.09
179732 30 135.81 180303 55 71.05 182133 48 61.02 182411 37 183.62	179529	65	65.99
180303 55 71.05 182133 48 61.02 182411 37 183.62	179535	65	65.99
182133 48 61.02 182411 37 183.62	179732	30	135.81
182133 48 61.02 182411 37 183.62	180303	55	71.05
	182133	48	
183326 47 0.00	182411	37	183.62
	183326	47	0.00

[884 rows x 19 columns]

```
df_clean.duration_sec.hist(bins=bins)
plt.xscale('log')
x_ticks = [100,200,500,1000,2000,5000]
plt.xticks(x_ticks, x_ticks)
plt.xlim(50,5000)
plt.xlabel('Duration (seconds)')
plt.ylabel('Number of rides')
plt.title('Duration of rides in seconds (Log transformed)');
```


The initial plot of the duration variable was right skewed with large gaps between bins and some value(s) over 80,000 secs and thus revealed the presence of outlier(s). This meant it had to be log transformed. From the log transformed distribution, a unimodal distribution is observed and it can be seen that most rides were between 240 to 1200 seconds.

Next up, the duration in minutes will be examined.

```
In [61]: # Examining the distribution of the duration in minutes
    binsize = 10
    bins = np.arange(1, df_clean['duration_min'].max()+binsize ,binsize)
    df_clean.duration_min.hist(bins=bins)
    plt.xlabel('Duration (minutes)')
    plt.ylabel('Number of rides')
    plt.title('Duration of rides in minutes');
```



```
In [62]: # Log transformation of the duration in minutes variable
    log_binsize = 0.05
    bins = 10 ** np.arange(0, np.log(df_clean['duration_min'].max())+log_binsize, log_binsidf_clean.duration_min.hist(bins=bins)
    plt.xscale('log')
    x_ticks = [1,2,5,10,20,50,100]
    plt.xticks(x_ticks, x_ticks)
    plt.xlabel('Duration (minutes)')
    plt.ylabel('Number of rides')
    plt.title('Duration of rides in minutes (Log transformed)')
    plt.xlim(0.9,200);
```


Similar to what was observed in the plots of the duration in seconds. The graph had to be transformed into a logarithmic scale since the standard plot was hightly right skewed and outlier(s) were present. A unimodal distribution is observed with its peaks between 4 to 20 minutes. This outcome was expected because the minutes variable was created from the duration in seconds variable.

Next up, their gender will be explored.

The number of men are at least 3 times more than the number of women that use the bikes with a count of over 120,000 and 40,000 respectively.

Further, I will be digging into the user types of users.

The pie chart reveals that about a whopping 90% of the users are subscribers while only about 10% are single use customers. I believe this is because subscribers will get a cheaper rate. Hence, it is more economical to be a subscriber if you intend to use the service frequently.

The distribution of ages will be plotted next.

```
In [65]: # Plotting the distribution of ages
         plt.figure(figsize=[15,5])
         plt.subplot(1,2,1)
         binsize = 1 # Every bin represents an age
         bins = np.arange(15, df_clean['member_age'].max()+binsize ,binsize)
         df_clean['member_age'].hist(bins=bins)
         plt.xlabel('Age')
         plt.ylabel('Count')
         plt.title('Distribution of ages')
         plt.subplot(1,2,2) # Zooming in to the plot for more clarity
         df_clean['member_age'].hist(bins=bins)
         plt.xlim(15,60)
         plt.xlabel('Age')
         plt.ylabel('count')
         plt.title('Distribution of ages')
Out[65]: Text(0.5,1,'Distribution of ages')
```


The first subplot (left) above looks right skewed. This was expected because the minimum age to access the bike sharing service was 18 but there was no maximum age. There were also outliers with the highest at over 140. This meant we had to zoom into the plot to understand and interpret it better. Thus, it can be seen from the right plot that most users were aged between 23 and 40.

An examination of the distribution of the distance travelled between stations follows.


```
In [67]: # Log transformation of the distance travelled
    log_binsize = 0.1
    bins = 10 ** np.arange(0, np.log(df_clean['dist_bet_stations'].max())+log_binsize, log_
    df_clean.dist_bet_stations.hist(bins=bins)
    plt.xscale('log')
    x_ticks = [10,20,50,100,200,500,1000,2000]
    plt.xticks(x_ticks, x_ticks)
    plt.xlabel('Distance (km)')
    plt.ylabel('count')
    plt.title('Distance travelled between stations (log transformed)')
    plt.xlim(10,500)
Out [67]: (10, 500)
```


The log transformation shows a unimodal distribution with the average distance travelled from one station to the other is between 40km and 200km.

```
In [68]: df_clean.head()
Out[68]:
            duration_sec
                                       start_time
                                                                  end_time
                    52185 2019-02-28 17:32:10.145 2019-03-01 08:01:55.975
         2
                    61854 2019-02-28 12:13:13.218 2019-03-01 05:24:08.146
         3
                    36490 2019-02-28 17:54:26.010 2019-03-01 04:02:36.842
                     1585 2019-02-28 23:54:18.549 2019-03-01 00:20:44.074
         4
         5
                    1793 2019-02-28 23:49:58.632 2019-03-01 00:19:51.760
           start_station_id
                                                             start_station_name
         0
                          21
                              Montgomery St BART Station (Market St at 2nd St)
         2
                          86
                                                        Market St at Dolores St
         3
                         375
                                                        Grove St at Masonic Ave
         4
                           7
                                                            Frank H Ogawa Plaza
         5
                          93
                                                   4th St at Mission Bay Blvd S
            start_station_latitude
                                     start_station_longitude end_station_id
         0
                          37.789625
                                                  -122.400811
                                                                           13
         2
                          37.769305
                                                  -122.426826
                                                                            3
         3
                          37.774836
                                                  -122.446546
                                                                           70
         4
                          37.804562
                                                  -122.271738
                                                                          222
         5
                          37.770407
                                                  -122.391198
                                                                          323
```

		end	d_stati	on_name	e end	_station_latitude	\	
0	Commercial S	t at	Montgo	mery St	t	37.794231		
2	Powell St BART Station (Ma	rket	St at	4th St))	37.786375		
3	Cent	ral <i>l</i>	Ave at 1	Fell St	t	37.773311		
4	10t	h Ave	e at E	15th St	t	37.792714		
5		Broad	dway at	Kearny	У	37.798014		
			-					
	end_station_longitude bike	_id	user_	type r	nember	_birth_year member.	_gender	\
0	-122.402923 4	902	Cust	omer		1984	Male	
2	-122.404904 5	905	Cust	omer		1972	Male	
3	-122.444293 6	638	Subscr	iber		1989	Other	
4	-122.248780 4	898	Subscr	iber		1974	Male	
5	-122.405950 5	200	Subscr	iber		1959	Male	
	bike_share_for_all_trip du	ratio	on_min	member	r_age	dist_bet_stations		
0	No	8	369.75		35	32.26		
2	No	10	030.90		47	176.67		
3	No	6	308.17		30	17.30		
4	Yes		26.42		45	163.95		
5	No		29.88		60	199.25		

1.4.1 Discuss the distribution(s) of your variable(s) of interest. Were there any unusual points? Did you need to perform any transformations?

The primary variable of interest is the duration of rides (minutes). This was engineered from the duration of rides (seconds) which was provided in the original dataset. As expected, both variables had a similar distributions. They were both right skewed and had outliers. Hence, they had to be plotted on logarithmic scales. From the log transformed distributions, unimodal distributions were observed and it was clear that most rides were between 240 to 1200 seconds and between 5 to 16 minutes. However, only the minutes variable will be used in our analysis moving forward because it is a better descriptor of time. For instance, it is better to say "10 minutes" than "600 seconds".

1.4.2 Of the features you investigated, were there any unusual distributions? Did you perform any operations on the data to tidy, adjust, or change the form of the data? If so, why did you do this?

A number of variables were right skewed with strong outliers. However, an examination of the outliers revealed that they were legitimate observations. Thus, they remained as part of the dataset.

1.5 Bivariate Exploration

This section seeks to investigate relationships between pairs of variables that were introduced in the previous section (univariate exploration).

I will start by viewing the correlation of the numeric variables in a heatmap.

There seems to be little to no correlation between the pairs of numeric variables plotted in the heatmap.

Let's take a look at the scatterplots between the pairs.

```
In [70]: # Scatter plots of age and distance between stations in relation to the main feature of
    plt.figure(figsize=[12,5])

    plt.subplot(1,2,1) # Left plot
    plt.scatter(data=df_clean, x='dist_bet_stations', y='duration_min', alpha=0.04)
    plt.xlabel('Distance (km)')
    plt.ylabel('Duration (minutes)')
    plt.title('Duration of bike usage per distance between stations')
    plt.xlim(0,1000);

    plt.subplot(1,2,2) # Right plot
    plt.scatter(data=df_clean, x='member_age', y='duration_min', alpha=0.04)
    plt.xlabel('Age')
    plt.ylabel('Duration (minutes)')
    plt.title('Duration of bike usage per age');
```


The absence of a relationship between the pairs is confirmed here. Nonetheless, it is noteworthy from the left plot that most people used the bikes for less than 100 minutes and travelled between 0 to 400km. Many rented a bike and returned it to the same station, this is the reason for the concentration of zero distances at the bottom left of the plot. The right plot also reveals that most users were aged below 80 and also used the bikes for about 100 minutes or less.

An investigation into the relationship between the categorical variables and the primary variable of interest follows.

```
In [71]: # Violin plots of the user types and gender in relation to the duration in minutes
    plt.figure(figsize=[13,5])

plt.subplot(1,2,1) # Left plot
    sb.violinplot(data=df_clean, x='user_type', y='duration_min')
    plt.xlabel('User type')
    plt.ylabel('Duration (minutes)')
    plt.title('Bike usage duration per user type');

plt.subplot(1,2,2) # Right plot
    sb.violinplot(data=df_clean, x='member_gender', y='duration_min')
    plt.xlabel('Gender')
    plt.ylabel('Duration (minutes)')
    plt.title('Bike usage duration per gender');
```


An upside-down "T" is observed for all variables in both plots. This indicates a deep concentration at the base below 100 minutes regardless of their subscription status or gender.

Finally, let's look at the relationship be the two qualitative variables: user type and gender.

The plot above shows that more subscribers are males. This is not a surprise because men are generally more physically active.

1.5.1 Talk about some of the relationships you observed in this part of the investigation. How did the feature(s) of interest vary with other features in the dataset?

No real relationship was observerd between the key feature of interest and other features in the dataset. However, one thing stood out amongst the plots relating to the main feature of interest regardless of age, gender, subscription status or distance and that is the average rider uses the bike for less than 100 minutes before returning it to a station.

1.5.2 Did you observe any interesting relationships between the other features (not the main feature(s) of interest)?

Most of the users were subscribers and most of the subscribers are males. However, this was not much of a surprise because males are generally sportier than females.

1.6 Multivariate Exploration

This section seeks to investigate relationships between three variables or more that have been introduced in the previous sections.

We see a strong concentration at the base of the plot just below 100 minutes and before 400km. It also looks like males have a much higher chance of using the bikes for more than 100 munites.

```
In [74]: # point plots of the user types and gender in relation to the duration, age and distant
    plt.figure(figsize=[18,5])

plt.subplot(1,3,1) # Left plot
    sb.pointplot(data=df_clean, x='member_gender', y='duration_min', hue='user_type', palet
    plt.xlabel('Gender')
    plt.ylabel('Avg duration (minutes)')
    plt.title('Average duration per gender and user type');

plt.subplot(1,3,2) # Centre plot
    sb.pointplot(data=df_clean, x='member_gender', y='member_age', hue='user_type', palette
    plt.xlabel('Gender')
    plt.ylabel('Avg age')
    plt.title('Average age per gender and user type');

plt.subplot(1,3,3) # Right plot
```

```
sb.pointplot(data=df_clean, x='member_gender', y='dist_bet_stations', hue='user_type',
    plt.xlabel('Gender')
    plt.ylabel('Avg distance between stations')
    plt.title('Average distance between stations per gender and user type');
   Average duration per gender and user type
                                                                    Average distance between stations per gender and user type
                                       Average age per gender and user type
                                 36.0
                        Subscriber
                                                           Subscriber
                                                                                              Subscriber
                                 35.5
                                                                     125
                                 35.0
25
                                                                     120
                                 34.5
                                 34.0
                                                                     115
20
                                 33.5
                                                                   A 110
```

Female

105

Other

Female

From the left plot, we see that subscribers generally use the bike sharing service for an average of about 15 minutes which is 10 minutes less than the average usage of non-subscribers at 25 minutes. We also see from the centre plot that subscribers are generally older than non-subscribers. Finally, the last plot reveals that subscribers generally also rode the bikes over shorter distances between stations than non-subscribers.

Talk about some of the relationships you observed in this part of the investigation. Were there features that strengthened each other in terms of looking at your feature(s) of interest?

Although the average time per ride was less than 100 minutes, males were more likely to use the bikes for longer than females.

Were there any interesting or surprising interactions between features?

33.0

Female

Gender

It's interesting to not that subscribers were generally older, travelled for fewer distances between stations and also used the service for about 10 minutes less per ride than non-subscribers.

1.7 **Conclusions**

15

Male

The number of men that used the bike sharing service are at least 3 times more than the number of women with about 130,000 and 40,000 respectively. The average user of the service was between 23 and 40 years old. Although most rides were were less than 100 minutes, its peak was between 4 to 20 minutes and the average distance travelled from one station to another was between 40km and 200km. About 90% of the bike sharing service users are subscribers while only about 10% are single use customers. Subscribers are largely males and are generally older than non-subscribers, they also rode the bikes over shorter distances between stations than non-subscribers and generally used the bikes for an average of about 15 minutes which is 10 minutes less than the average time of non-subscribers at 25 minutes.

In []: