Syllabus: Digital Logic Design

Course No.	Title of the Course	Course Structure	Prerequisite
	Digital Logic Design	3L-0T-2P	ı

COURSE OUTCOMES (COs)

CO1: To get familiarized with number systems, codes, logic gates, logic families and Boolean algebra

CO2: To analyze and understand the design process associated with combinational Circuits.

CO3: To analyze and understand the design process associated with sequential circuit.

CO4: To understand fundamental concepts of VHDL modeling for basic digital circuits.

CO5: To develop basic understanding of programmable logic devices and convertors

UNIT	CONTENTS		
1	Introduction to Digital Systems: Number Systems: Binary, octal and hexadecimal number systems, Number-Base Conversions, Complements of Numbers.Binary addition and subtraction (unsigned and one's and two's complement), Different codes and their properties (e.g., Gray, BCD, 84-2-1, 2421 etc.), Boolean equations and terminology (SOP, POS, minterm, maxterm), Logic implementations of equations (2-level, AND/OR, NAND/NOR, etc.), Boolean algebra axioms		
2	Karnaugh Maps up to 5-variables with don't care conditions, Tabulation method, Parallel adders, BCD adder, Multiplexers, Multiplexers, Encoders, Decoders, Priority encoders, Comparators, Code converters		
3	Latch versus flip-flop, SR and D latch, D, SR, JK, and T flip-flops, Registers, Counters, Shift registers, Design & Analysis, Problem description to state table/graph, State assignment (binary, Gray), Next state and output equations, Mealy & Moore models of finite state machine, sequence detector and other examples.		
4	Hardware Language(VHDL) Introduction and its types of modeling style, VHDL implementation of adder, subtractor, multiplexer, decoders, comparators etc, VHDL Implementation of Flip Flops, latches, Registers, Counters		

	Properties and characteristics (logic thresholds, delay, Noise margin, fan-in and fan-out, power dissipation) of logic families, Transistor-level schematics of CMOS logic gates, Introduction to Digital to analog convertor, Analog to digital convertor, Introduction to Programmable Logic Devices: PROM, PLA, SRAM, DRAM
--	---

SUGGESTED READINGS:

- 1. Digital Design and Computer Architecture. David Harris and Sarah Harris (Morgan Kaufman).
- 2. Digital principles & design : Donald D. Givone, McGraw Hill
- 3. Digital logic and computer design: M. M. Mano, PHI
- 4. Charles Roth," Digital Systems Design using VHDL", 5th Edition Cengage Learning
- 5. R.P. Jain, 'Modern Digital Electronics', McGraw Hill education, 4th Edition

List of Experiments

- (1) Verify the truth table of AND, OR, NOT, NAND, NOR, X-OR, X-NOR gates
- (2) Implement all the above mentioned gates by using NAND gates and NOR gates only.
- (3) Design and Implement Half-adder, Full-adder, Half-subtractor, Full-subtractor using logic gates.
- (4) Design a 4 bit parallel adder and subtractor using IC. Further using the same IC implement BCD to excess-3 code convertor.
- (5) Design a 4 bit magnitude comparator using IC. Also implement 2 bit magnitude comparator using gates only.
- (6) Design and implement a full adder circuit using DECODER and gates. Also implement the same by using complimentary output decoder.
- (7) Design the following Flip-flop using NAND/NOR gates
- (i) S-R FF (ii) D FF (iii) J-K FF (iv) T FF
- (8) Design and implement a MOD 6 synchronous UP counter using T FF.
- (9) Design a 2 bit UP/DOWN counter using J-K FF

Implement the following circuits using VHDL

- (10) Full adder and subtractor
- (11) 4X1 MUX and 3X8 decoder
- (12) Conversion of BCD to Excess-3 code

- (14) J-K, S-R, D, T flip-flop
- (15) Mod 10 counter