IntroML Tutorial

Clustering and Dimensionality Reduction II

Nezihe Merve Gürel (nezihe.guerel@inf.ethz.ch)

April 29 - May 3, 2019

https://las.inf.ethz.ch/teaching/introml-s19

Table of Contents

- 1. Spectral Clustering
- 2. Kernel PCA
- 3. Autoencoders

Clustering

Clustering strategies

- Model-based clustering (an underlying distribution that is a mixture of two or more clusters),
- hierarchical clustering (a tree based representation of objects),
- ullet density-based clustering (identify the clusters with different shape and size),
- partitioning methods (subdivide the data sets into k groups),

Global optimal: exhaustive enumeration of all partititons

Heuristic methods: *K-means*, K-medoids, K-medians, etc.

Today's focus. Partitioning via Spectral Clustering

K-means fails in clustering the manifolds with arbitrary shape but only compact ones!

Spectral clustering identifies communities of data points that are connected

- The data points are treated as nodes of a graph
- The partitioning of data points are based on the edges connecting them
- More specifically, spectrum (eigenvalues) of a graph-based dissimilarity matrix is exploited to learn partitioning
- Suitable for clustering arbitrary manifolds, e.g., intertwined spirals!

Basic Stages.

1. Matrix Representation of a Graph

1.1 Construct an undirected similarity graph based on the similarity between nodes (data points). We represent the similarity between the nodes by a symmetric adjacency matrix $\,A\,$

1.2 Form Laplacian matrix L based on A

2. Embedding

Perform eigenvalue decomposition of the graph in order to embed data onto a lowdimensional space (*spectral embedding*) such that cluster are more obvious

3. Clustering

Apply a clustering algorithm to partition the embeddings, e.g., k-means

Matrix representations of a graph

Given set of data points $\ x_1, \cdots, x_n$ and $\ w_{ij} \geq 0$ between $\ x_i$ and $\ x_j$, form an undirected graph G = (V, E, A)

with $V=\{v_1,\cdots,v_n\}$ where $v_i=x_i$ and the edge between two vertices v_i and v_j carries a non-negative weight $w_{ij}\geq 0$ and A is the affinity matrix that is built based on edge weights.

Matrix representations of a graph.

Adjacency Matrix $A \in \mathbb{R}^{n \times n}$ symmetric matrix built upon the similarities between vertices

How to form adjacency graph?

The ε -neighborhood graph. Connect all vertices whose pairwise distances are smaller than ε .

$$A_{ij} = \left\{egin{array}{ll} w_{ij} & ext{:if } w_{ij} \leq arepsilon \ 0 & ext{:else} \end{array}
ight.$$

$$n=5$$

Matrix representations of a graph.

Adjacency Matrix $A \in \mathbb{R}^{n \times n}$ symmetric matrix built upon the similarities between vertices

How to form adjacency graph?

The ε -neighborhood graph. Connect all vertices whose pairwise distances are smaller than ε .

 $A_{ij} = \left\{egin{array}{ll} w_{ij} & ext{:if } w_{ij} \leq arepsilon \ 0 & ext{:else} \end{array}
ight.$

Disadvantage. Loss of similarity information

Matrix representations of a graph.

Adjacency Matrix $A \in \mathbb{R}^{n \times n}$ symmetric matrix built upon the similarities between vertices

How to form adjacency graph?

k-nearest neighbor graph. Connect the vertex v_i with v_j such that

$$A_{ij} = \left\{egin{array}{ll} w_{ij} & ext{:if } v_i ext{ is among } k ext{-neighbors of } v_i \ 0 & ext{:else} \end{array}
ight.$$

Disadvantage. The graph is no more undirected

Matrix representations of a graph.

Adjacency Matrix $A \in \mathbb{R}^{n \times n}$ symmetric matrix built upon the similarities between vertices

How to form adjacency graph?

k-nearest neighbor graph. Connect the vertex v_i with v_j such that

$$A_{ij} = \left\{egin{array}{ll} w_{ij} & ext{:if } v_i ext{ is among } k ext{-neighbors of } v_i \ 0 & ext{:else} \end{array}
ight.$$

Disadvantage. The graph is no more undirected

- Solution. 1. Ignore the the directions of edges ② and take all neighbors into account
 - 2. Connect them only if both are neighbors of each other (mutual k-nn) weight the edges by the similarity of end points

Matrix representations of a graph.

Adjacency Matrix $A \in \mathbb{R}^{n \times n}$ symmetric matrix built upon the similarities between vertices

How to form adjacency graph?

k-nearest neighbor graph. Connect the vertex v_i with v_j such that

$$A_{ij} = \left\{egin{array}{ll} w_{ij} & ext{:if } v_i ext{ is among } k ext{-neighbors of } v_i \ 0 & ext{:else} \end{array}
ight.$$

Matrix representations of a graph.

Adjacency Matrix $A \in \mathbb{R}^{n imes n}$ symmetric matrix built upon the similarities between vertices

How to form adjacency graph?

The fully connected graph. Weight all edges such that

$$A_{ij}=w_{ij}$$

Matrix representations of a graph.

Adjacency Matrix $A \in \mathbb{R}^{n imes n}$ symmetric matrix built upon the similarities between vertices

How to form adjacency graph?

The fully connected graph. Weight all edges such that

$$A_{ij}=w_{ij}$$

Gaussian kernel similarity function as an example:

$$w_{ij} = \exp\left(-\|x_i - x_j\|^2/(2\sigma^2)
ight)$$

where σ is the width of neighborhoods.

See [Luxburg 2007] for further reading.

Graph Laplacian

Definition

Let degree of a vertex $\,v_i \in V\,$ be given by $\,d_i = \sum\limits_{j=1}^n A_{ij}$

The degree matrix is a diagonal matrix with degrees d_1, \cdots, d_n on the diagonal: $m{D}$

Note: There is no unique description on "graph Laplacian". There are different variants with their own properties. We will first focus on the unnormalized graph Laplacian

The unnormalized graph Laplacian

$$L = D - A$$

$$L_{ij} = egin{cases} A_{ij} - d_i & ext{:if } i = j \ A_{ij} & ext{:else} \end{cases}$$

Spectrum of the Laplacian $0 = \lambda_1 < \lambda_2 < \cdots < \lambda_n$

What spectral embedding tells us?

- 1. If 0 is the eigenvalue of L with k different eigenvectors, i.e., $0 = \lambda_1 = \lambda_2 = \cdots = \lambda_k$ then has k connected components
- 2. If the graph is connected, $\lambda_2 > 0$, the so-called algebraic connectivity of G.

The corresponding eigenvector is called *Fiedler vector*.

$$0 = \lambda_1 = \lambda_2 < \lambda_3 \leq \cdots \leq \lambda_n$$

$$0 = \lambda_1 = \lambda_2 < \lambda_3 \leq \cdots \leq \lambda_n \qquad 0 = \lambda_1 < \lambda_2 \leq \lambda_3 \leq \cdots \leq \lambda_n \qquad 0 = \lambda_1 < \lambda_2 \leq \lambda_3 \leq \cdots \leq \lambda_n$$

$$0 = \lambda_1 < \lambda_2 \le \lambda_3 \le \cdots \le \lambda_n$$

The greater λ_2 the more connected G is.

 $\lambda_2(G_2) < \lambda_2(G_3)$

Resources

[Fiedler, 1973]

[de Abreu, 2006]

Spectrum of the Laplacian $0=\lambda_1\leq \lambda_2\leq \cdots \leq \lambda_n$

Bipartitioning via Spectral Decomposition

Take the second eigenvector \mathbf{u}_2 of graph Laplacian \mathbf{L} , the algebraic connectivity of G

 \rightarrow The smaller λ_2 , the better quality of partitioning

For each node i in G assign $\mathbf{u}_2(v_i)$ to the respective node

Bipartition the graph into two clusters by choosing a splitting point.

Naïve approaches: Split at 0 or median value

Split at 0

i	$\mathbf{u}_2(v_i)$
1	0.3
2	0.1
3	-0.2
4	0.15
5	-0.15
6	0.2

i	$\mathbf{u}_2(v_i)$
1	0.3
2	0.1
4	0.15
6	0.2

Cluster A

i	$\mathbf{u}_2(v_i)$
3	-0.2
5	-0.15

Cluster B

Spectrum of the Laplacian $0 = \lambda_1 < \lambda_2 < \cdots < \lambda_n$

Bipartitioning via Spectral Decomposition

Take the second eigenvector ${f u}_2$ of graph Laplacian ${f L}$, the algebraic connectivity of G

 \rightarrow The smaller λ_2 , the better quality of partitioning

For each node i in G assign $\mathbf{u}_2(v_i)$ to the respective node

Bipartition the graph into two clusters by choosing a splitting point.

Cluster A

0.2

Naïve approaches: Split at 0 or median value

Split at 0

i	$\mathbf{u}_2(v_i)$	
1	0.3	
2	0.1	
3	-0.2	
4	0.15	
5	-0.15	
6	0.2	

6

i	$\mathbf{u}_2(v_i)$
3	-0.2
5	-0.15

Cluster B

Cluster B

Spectrum of the Laplacian $0 = \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$

Partitioning via Spectral Decomposition

How to partition a graph into k clusters?

Two approaches:

1. Recursive bi-partitioning [Hagen et al. 1992]

How does $\mathbf{u}_2(v_i)$ look when there are more than two clusters?

2. Cluster multiple eigenvectors [Shi-Malik, 2000; Ng-Jordan-Weiss, 2002]

Next topic

Spectrum of the Laplacian $0 = \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$

Partitioning via Spectral Decomposition

How to partition a graph into k clusters?

Two approaches:

1. Recursive bi-partitioning [Hagen et al. 1992]

How does $\mathbf{u}_2(v_i)$ look when there are more than two clusters?

2. Cluster multiple eigenvectors [Shi-Malik, 2000; Ng-Jordan-Weiss, 2002]

Next topic

Partitioning via Spectral Decomposition

How to partition a graph into k clusters?

Two approaches:

1. Recursive bi-partitioning [Hagen et al. 1992]

How does $\mathbf{u}_2(v_i)$ look when there are more than two clusters?

2. Cluster multiple eigenvectors [Shi-Malik, 2000; Ng-Jordan-Weiss, 2002]

Partitioning via Spectral Decomposition

How to partition a graph into k clusters?

Two approaches:

1. Recursive bi-partitioning [Hagen et al. 1992]

How does $\mathbf{u}_2(v_i)$ look when there are more than two clusters?

2. Cluster multiple eigenvectors [Shi-Malik, 2000; Ng-Jordan-Weiss, 2002]

Next topic

Spectrum of the Laplacian $0 = \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$

Partitioning via Spectral Decomposition

How to partition a graph into k clusters?

Two approaches:

Disadvantages: unstable & inefficient

1. Recursive bi-partitioning [Hagen et al. 1992]

How does $\mathbf{u}_2(v_i)$ look when there are more than two clusters?

2. Cluster multiple eigenvectors [Shi-Malik, 2000; Ng-Jordan-Weiss, 2002]

Next topic

Cluster using multiple eigenvectors

- Embed the data into a low dimensional space using eigenvectors
- Apply a clustering method, i.e., k-means

Spectral Embedding via graph Laplacian (unnormalized)

- 1. Compute the eigendecomposition $\ L=D-A$
- 2. Select the k smallest eigenvalues $\lambda_1 \leq \cdots \leq \lambda_k$
- 3. Form $n \times k$ matrix $\mathbf{U} = [\mathbf{u}_1 \cdots \mathbf{u}_k]$ such that

$$\mathbf{U} = egin{bmatrix} \mathbf{u}_1(v_1) & \cdots & \mathbf{u}_k(v_1) \ dots & & dots \ \mathbf{u}_1(v_n) & \cdots & \mathbf{u}_k(v_n) \end{bmatrix}$$

4. Cluster the normalized rows of \mathbf{U} into k clusters using k-means

Cluster using multiple eigenvectors

- Embed the data into a low dimensional space using eigenvectors
- Apply a clustering method, i.e., k-means

Spectral Embedding via graph Laplacian (normalized & symmetric)

- 1. Compute the eigendecomposition $L_{norm} = D^{-1/2} L D^{-1/2}$
- 2. Select the k smallest eigenvalues $\lambda_1 \leq \cdots \leq \lambda_k$
- 3. Form $n \times k$ matrix $\mathbf{U} = [\mathbf{u}_1 \cdots \mathbf{u}_k]$ such that

$$\mathbf{U} = egin{bmatrix} \mathbf{u}_1(v_1) & \cdots & \mathbf{u}_k(v_1) \ dots & & dots \ \mathbf{u}_1(v_n) & \cdots & \mathbf{u}_k(v_n) \end{bmatrix}$$

- 4. Normalize each row of \mathbf{U} to norm 1
- 5. Cluster the normalized rows of \mathbf{U} into k clusters using k-means

Preferable & commonly used in recent papers

Graph cut point of view [Luxburg 2007]

How to cut a graph to partition data points into clusters?

Let $W(A,B):=\sum_{i\in A, j\in B} w_{ij}$ and $ar{A}$ is the complement of A

Also let k be the number of clusters we want to partition our data into

Mincut minimizes
$$cut(A_1,\cdots,A_k):=\sum\limits_{i=1}^k W(A_i,\bar{A}_i)$$
 \longrightarrow problems?

RatioCut minimizes
$$RatioCut(A_1,\cdots,A_k):=\sum\limits_{i=1}^k rac{W(A_i,ar{A}_i)}{|A_i|}=\sum\limits_{i=1}^k rac{cut(A_i,ar{A}_i)}{|A_i|}$$
 , $|A_i|$ is #vertices in A_i

Ncut minimizes
$$Ncut(A_1,\cdots,A_k):=\sum\limits_{i=1}^k rac{W(A_i,ar{A_i})}{vol(A_i)}=\sum\limits_{i=1}^k rac{cut(A_i,ar{A_i})}{vol(A_i)}\quad vol(A_i)$$
 is weights of edges in A_i

Unnormalized Laplacian \approx RatioCut

Normalized Laplacian \approx NCut

Advantages

- 1. No strong assumption on shape and statistics of clusters, hence resulting better clustering performance for connected clusters than k-means.
- 2. Easy to implement
- 3. Reasonably fast for sparse data sets of several thousand elements.

Disadvantages

- 1. Computationally expensive for large data set due to eigendecomposition
- 2. Use of k-means in the last step may lead unstability due to the sensitivity of k-means to the initial centroids (*Homework 5, Problem 2*)

Recap (Dimensionality Reduction)

Suppose $x_i \in \mathbb{R}^d, i \in \{1, \cdots, n\}$ and we want to learn a mapping $f: \mathbb{R}^d \to \mathbb{R}^k$ with k << d where we can reconstruct the data with little loss of information

Motivation: Visualization, compression, unsupervised feature discovery

Key question: How to choose the mapping f?

linear? nonlinear?

Linear dimensionality reduction?

Principal Component Analysis (PCA)

Recap (Pricipal Component Analysis)

Recall from the lecture that PCA is a linear dimensionality reduction technique

$$\mathbf{z}_i = \mathbf{W}^T \mathbf{x}_i, \ \ \mathbf{W} \in \mathbb{R}^{d imes k}$$

which minimizes the reconstruction error $\sum_i \|\mathbf{W}\mathbf{z}_i - \mathbf{x}_i\|_2^2$

Solution to PCA. For centered data: $\{\mathbf{x}_1, \cdots, \mathbf{x}_n\}$

$$\mathbf{W}^* = (\mathbf{v}_1|\cdots|\mathbf{v}_k)$$
 and $\mathbf{z}_i = \mathbf{W}^*\mathbf{x}_i$ where $\Sigma = \sum\limits_{i=1}^d \lambda_i \mathbf{v}_i \mathbf{v}_i^T, \; \lambda_1 \geq \cdots \geq \lambda_d \geq 0$

(4 points) (iii) Short questions on dimensionality reduction. Assume we apply PCA with k principal components to a data set $D = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ where $\mathbf{x}_i \in \mathbb{R}^d$.

- 1. If k < d we can exactly reconstruct x_i from k principal components.
 - ☐ True 🗹 False

Final Exam 2018

- 2. If k = d we can *exactly* reconstruct x_i from k principal components.
 - ✓ True □ False
- 3. If k > n we can *exactly* reconstruct x_i from k principal components.
 - ✓ True □ False
- 4. Suppose **X** is the $n \times d$ data matrix. Then, the eigenvectors of $\mathbf{X}\mathbf{X}^T$ and $\mathbf{X}^T\mathbf{X}$ are the same.
 - ☐ True ☑ False

Non-linear Dimensionality Reduction - Kernel PCA

Motivation. How to capture non-linear manifold structures?

Kernel PCA. Apply Kernel method to PCA!

$$egin{aligned} k(\mathbf{x},\mathbf{z}) &= (x_1^2,\sqrt{2}x_1x_2,x_2^2)^T(z_1^2,\sqrt{2}z_1z_2,z_2^2) \ &= (\mathbf{x}^T\mathbf{z})^2 \end{aligned}$$

Map data to higher dimensions where contain linear patterns

Data becomes linearly separable in the new feature space

Example. Feature mapping function $\phi:\mathbb{R}^2 o\mathbb{R}^3$ $(x_1,x_2) o(z_1,z_2,z_3)=(x_1^2,\sqrt{2}x_1x_2,x_2^2)$

Data in low dimensional space

Data in high dimensional space

The feature mapping ϕ is not necessary to know! We deal with kernel functions instead igotimes

Recall from the class that kernel principal components $\ lpha^{(1)},\cdots,lpha^{(k)}\in\mathbb{R}^n$ are given by

$$lpha^{(i)}=rac{1}{\sqrt{\lambda_i}}\mathbf{v}_i$$
 where $\lambda_i,\mathbf{v}_i,i=\{1,\cdots,n\}$ are obtained by eigendecomposition of $\mathbf{K}=\sum\limits_{i=1}^n\lambda_i\mathbf{v}_i\mathbf{v}_i^T$

A new point
$$x$$
 is projected as $z_i = \sum\limits_{j=1}^n lpha_j^{(i)} k(x,x_j)$

Kernel PCA vs. Spectral Clustering

Consider the Kernel matrix $\mathbf{K}_{ij} = k(x_i, x_j)$

In Kernel-PCA, we compute the eigenvector $\mathbf{K}\mathbf{v} = \lambda \mathbf{v}$

Generalized eigenvector
$$\mathbf{Kz} = \lambda \mathbf{Dz}, \ \mathbf{D} = diag(\sum_{j} k(x_1, x_j), \cdots, \sum_{j} k(x_n, x_j))$$
 spectral clustering

"There is a clear equivalence between the spectral embedding methods used in spectral clustering and Laplacian eigenmaps with the projection computed by the kernel PCA method." [Bengio et al. 2004]

Linear Autoencoder

Given data points $\mathbf{x}_i \in \mathbb{R}^d, i=1,\cdots,n$ compress data into k-dimensional representation $k \leq d$.

Linear auto-encoding with a single hidden layer

Eckart-Young theorem: Let $\mathbf{X} = [\mathbf{x}_1 \cdots \mathbf{x}_n] \in \mathbb{R}^{d imes n}$ and SVD of $\mathbf{X} = \mathbf{U} \Lambda \mathbf{V}$. For $k \leq \min(n,d)$

$$rg\min_{\hat{\mathbf{X}}:\operatorname{rank}(\hat{\mathbf{X}})=\mathbf{k}} \|\mathbf{X}-\hat{\mathbf{X}}\|_F^2 = \mathbf{U}_k \Lambda_k \mathbf{V}_k^T$$

Non-linear Autoencoder

Use neural network autoencoders to learn the nonlinear mapping for dimensionality reduction through an identity function

Properties of $f(\cdot)$: approximates the identitity function & performs compression

How to pick $f(\cdot)$: Composition of two nonlinear functions $f_1(\cdot)$ and $f_2(\cdot)$ such that

$$f(x; heta)=f_2(f_1(x; heta_1); heta_2)$$

where
$$f_1(\cdot): \mathbb{R}^d o \mathbb{R}^k$$
 and $f_2(\cdot): \mathbb{R}^k o \mathbb{R}^d$

How to learn $f_1(\cdot)$ and $f_2(\cdot)$? Use Neural Networks! Non-linear generalization of PCA.

Non-linear Autoencoder

$$\stackrel{f_1 = F_1 \circ \cdots \circ F_l : \mathbb{R}^d \to \mathbb{R}^k, \mathbf{x} \to \mathbf{z}}{\bullet \hspace{1cm}}$$

$$\begin{array}{c} f_1 = F_1 \circ \cdots \circ F_l : \mathbb{R}^d \to \mathbb{R}^k, \mathbf{x} \to \mathbf{z} \\ & \stackrel{}{\bullet} \\ & encoder \end{array}$$

How to train autoencoders?

e.g.,
$$\min_{\mathbf{W}} \sum_{i=1}^n \|\mathbf{x}_i - f(\mathbf{x}_i; \mathbf{W})\|_2^2$$

Optimize the weights such that
$$\hat{\mathbf{x}} = f(\mathbf{x}; \mathbf{w}^{(1)}, \mathbf{w}^{(2)}) = f_2(f_1(\mathbf{x}; \mathbf{w}^{(1)}); \mathbf{w}^{(2)}) \approx \mathbf{x}$$

via backpropagation.

Autoencoders vs. PCA

original autoencoder

PCA

image credit: http://nghiaho.com See js demo for digit images: https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoenc Questions?

References

[Bengio et al. 2003] Spectral Clustering and Kernel PCA are Learning Eigenfunctions, *Technical report, Département d'informatique et recherche opérationnelle, Université de Montréal.*

[Ding 2004] A Tutorial on Spectral Clustering. Talk presented at ICML (Slides are available: http://crd.lbl.gov/~cding/Spectral/)

[Luxburg 2007] A Tutorial on Spectral Clustering. Statistics and Computing, 17 (4)

[Fiedler 1973] Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, vol. 23 (1973), issue 2, pp. 298-305

[de Abreu 2006] Old and new results on algebraic connectivity of graphs. *Linear Algebra and its Applications Volume 423, Issue 1, Pages 53-73*

[Hagen et al. 1992] New spectral methods for ratio cut partitioning and clustering. *IEEE Trans. Computer Aided Design, 11(9), 1074-1085.*

[Shi-Malik 2000] Normalized cuts and image segmentation. *IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888 – 905.*

[Ng-Jordan-Weiss 2002] On spectral clustering: analysis and an algorithm. *Advances in Neural Information Processing Systems 14 (pp. 849 – 856)*