Homework Solutions Applied Regression Analysis

WEEK 3

Exercise Two

Use the ANOVA tables to perform the F test for the significance of each straight-line regression.

For each of the following, we are testing whether the slope coefficient is equal to zero. In other words, we are testing if the independent variable contributes significantly to the model. Notice that, because there is only one independent variable in the model, the F-test for the overall model yields the same significance as the t-test for the slope coefficient.

Looking at SBP (Y) on SMK (X)

$$H_o: \beta_1 = 0$$

 $H_A: \beta_1 \neq 0$

. regress	sbp smk					
Source	l SS	SS df MS			Number of obs	
	393.098162 6032.87059		201.095686		F(1, 30) Prob > F R-squared Adj R-squared Root MSE	= 0.1723 = 0.0612 = 0.0299
Total	6425.96875	31 207.2				
sbp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
smk cons			1.398 38.454		-3.235823 133.3223	17.28288 148.2777

With F=1.95 and p=0.1723, we fail to reject the null hypothesis. There is not sufficient evidence to conclude that there is a significant straight-line relationship between SBP and SMK.

Looking at SBP (Y) on QUET (X)

. regress	sbp quet					
Source	SS	df N	3537.94585 96.2674299		Number of obs F(1, 30) Prob > F R-squared Adj R-squared Root MSE	= 36.75 = 0.0000 = 0.5506 l = 0.5356
Model Residual		1 3537.9 30 96.267				
Total	6425.96875	31 207.28				
gds	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
quet _cons		3.545147 12.32187	6.062 5.728	0.000	14.25151 45.4118	28.73182 95.74102

With F=36.75 and p<0.0001, we reject the null hypothesis. There is sufficient evidence to conclude that there is a significant straight-line relationship between SBP and QUET.