

Structural alphabets as tools for the analysis of protein structures

Pr Bernard OFFMANN

Unité Fonctionnalité et Ingénierie des Protéines

CNRS FRE 3478 - Université de Nantes

- ✓ Introduction
 - Classical backbone description
 - Structural alphabets
 - A structural alphabet: Protein Blocks
- ✓ Structure analysis using structural alphabets
- Mining protein structures
- ✓ Analysis of structural diversity of pentapeptides in protein structures
- √ Fold recognition

Classical description of backbone

Helices (28-35%)

 α helix $3._{10}$ —helix π helix

Polyproline II

Sheets (18-26%)

β sheets β strands E strands β bulges

Turns/coils (40-50%)

 γ , β , α , π turns Ω loops β hairpins $\alpha\alpha$ corners

Different assignment methods:

DSSP (Kabsch & Sander, 1983).

H-bond

Different assignment methods:

Greer & Levitt (1977) Distance

DSSP (Kabsch & Sander, 1983). H-bond

DEFINE (Kundrot & Ridchards, 1988). Distance

PCURVE (Sklenar, Etchebest and Lavery, 1989). Axis

CONCENSUS (Colloc'h, Etchebest et al., 1993). Mean

STRIDE (Frishmann & Argos, 1995). H-bond / dihedral

PSEA (Labesse et al., 1997). Distance / angle

PROSS (Srinivasan & Rose, 1999). Dihedral

XTLSSTR (King & Johnson, 1999). Distance / angle

DSSPcont (Andersen *et al.*, 2001). H-bond / dihedral

SECSTR (Fodje & Al-Karadaghi, 2002). H-bond / dihedral

VORO3D (Dupuis et al., 2004). Volume

KAKSI (Martin *et al.*, 2005). Distance / dihedral

SEGNO (Cubellis *et al.*, 2005). angle / multiple

Beta-Spider (2005), PALSSE (2005), Delaunay tessalation (2005)

AA	WDKYAQEVYEMNFGEKPEGDITQVNEKTIPDHDILCAGFP
DSSP3	CCHHHHHHHHHHCCCCCCCCHHHCCCCCCCCCCEEEEECC
STRID3	CCHHHHHHHHHCCCCCCCCCCCCCCCCCCCCCCCCCCCC
PSEA	EEHHHHHHHHHCCEEEEECCCCCCCCCCCCCCCCCCCCC
DEFINE	EEHHHHHHHHHHEEEEEEHHHHHHHHHEEEEEEEEE
PCURVE	CCHHHHHHHHHCCEEEECCCCCCCCCCCCCCEEEEEEE
cons.	* * * * * * * * * * *
PB	bfklmmmmmmnopacdedfklpcfklpccdfbdcdddf
PB	bfklmmmmmnopacdedfklpcfklpccdfbdcddddf
PB [C93]	bfklmmmmmnnopacdedfklpcfklpccdfbdcdddf CCHHHHHHHHHHHCEEEECCHHHCCCCCCCCEEEEEEE
PB [C93] XTLSS.	bfklmmmmmmnopacdedfklpcfklpccdfbdcdddf CCHHHHHHHHHHHCEEEECCHHHCCCCCCCCEEEEEEE CHHHHHHHH
PB [C93] XTLSS. SECSTR	bfklmmmmmmnopacdedfklpcfklpccdfbdcdddf CCHHHHHHHHHHHEEEECCHHHCCCCCCCCEEEEEEE CHHHHHHHH

Example of secondary structure assignments for the protein 10MH with DSSP, STRIDE, PSEA, DEFINE, PCURVE, XTLSSTR and SECSTR.

Fourrier, Benros & de Brevern (2004) *BMC Bioinformatics*, **5**, 58. Offmann, Tyagi & de Brevern (2007) *Current Bioinformatics*, 2(3):1-38

Offmann, Tyagi & de Brevern, (2007). Current Bioinformatics, 2(3):1-38

LEGO® bricks

- A structural alphabet is a set (or library) of small prototypes which approximate every part of the protein structures.
- They are composed by a limited number of recurrent structural elements of proteins.
- The associations between these structural "letters" are governed by logical rules and form the words of protein structures.
- A structural alphabet has no a priori in regards to the secondary structures, i.e. it is not a categorization of the coil state.

14 Current Bioinformatics, 2007, Vol. 2, No. 3

Offmann et al.

Table 4. Synopsis of the Different Available Local Protein Structure Libraries or Structural Alphabets

Team	Year	Name of Li- brary	Number of Proteins	Number of Residues	Learning Method	Distance Used	Prototypes Number	Prototypes Length
Unger et al.	1989	Building Blocks	4\82	426\12 973	k-means	rmsd on Ca	103	6
Rooman et al.	1990	Recurrent local structural motifs	75	12 978	Hierarchical clustering	rmsd on Cα	4	4, 5, 6 and 7
Prestrelski et al.	1992	Substructures	14	2 347	Function	Linear distance and α angle	113	8
Zhang et al.	1993	Structural Build- ing Blocks	74	13 114	AutoANN	Cα distances, dihedral and valence angles	6	7
Schuchhardt et al.	1996	Local structural motifs	136	24 239	Kohonen map	Dihedral angles	100	9
Fetrow et al.	1997	Structural Build- ing Blocks	116	23 335	AutoANN	Cα distances, dihedral and valence angles	6	7
Bystroff and Baker	1998	Local Structures	471	NA	k-means	Sequence profiles and rmsd / dma	13 from 82 (updated to 16 in 2000)	Structure : 3 to 15 Sequence : 8
Camproux et al.	1999	Short Structural Building Blocks	100	19 137	НММ	Cαdistances	12	4
Micheletti et al.	2000	Oligons	75	11 086	Iterative clus- tering by re- moving the biggest clus- ters	rmsd on Ca	28, 202, 932 & 2 561	4, 5, 6 and 7

14 Current Bioinformatics, 2007, Vol. 2, No. 3

Offmann et al.

Table 4. Synopsis of the Different Available Local Protein Structure Libraries or Structural Alphabets

Team	Year	Name of Li- brary	Number of Proteins	Number of Residues	Learning Method	Distance Used	Prototypes Number	Prototypes Length
de Brevern et al.	2000	Protein Blocks	342	87 996	Unsupervised classifier (~SOM + transitions)	Dihedral angles	16	5
Kolodony et al.	2002		145\200	NA (~5 000 to 9 000)	k-means simu- lated annealing clustering	rmsd on Cα.	4 to 14, 10 to 225,40 to 300, 50 to 250	4, 5, 6 and 7
Hunter and Subramaniam	2003	centroids	790	156 643	Hypercosine clustering	Hypercosine Cα	28 to 16 336 (28 for prediction)	7
Camproux et al.	2004	Short Structural Building Blocks	250 x 2	NA	НММ	Cαdistances	27	4
De Brevern, Et- chebest et al.	2005	Protein Blocks	1 407	293 507	New evalua- tion	Dihedral angles	16	5
Benros et al.	2006	LSP	675 & 1 401	139 503 & 251 497	Hybrid Protein Model	PBs and <i>rmsd</i> on Cα	120	11
Sander et al.	2006	Structural representatives	1 999	295 411	Leader algo- rithm and k- means	Cα distance matrices	28	7
Tung et al.	2007	Kappa-alpha	1 348	225 523	Nearest- neighbor clus- tering	κ and α angles	23	5

14 Current Bioinformatics, 2007, Vol. 2, No. 3

Offmann et al.

Table 4. Synopsis of the Different Available Local Protein Structure Libraries or Structural Alphabets

Team	Year	Name of Li- brary	Number of Proteins	Number of Residues	Learning Method	Distance Used	Prototypes Number	Prototypes Length
de Brevern et al.	2000	Protein Blocks	342	87 996	Unsupervised classifier (~SOM + transitions)	Dihedral angles	16	5
Kolodony et al.	2002	i.	145\200	NA (~5 000 to 9 000)	k-means simu- lated annealing clustering	rmsd on Cα	4 to 14, 10 to 225,40 to 300, 50 to 250	4, 5, 6 and 7
Hunter and Subramaniam	2003	centroids	790	156 643	Hypercosine clustering	Hypercosine Cα	28 to 16 336 (28 for prediction)	7
Camproux et al.	2004	Short Structural Building Blocks	250 x 2	NA	НММ	Cαdistances	27	4
De Brevern, Et- chebest et al.	2005	Protein Blocks	1 407	293 507	New evalua- tion	Dihedral angles	16	5
Benros et al.	2006	LSP	675 & 1 401	139 503 & 251 497	Hybrid Protein Model	PBs and <i>rmsd</i> on Cα	120	11
Sander et al.	2006	Structural representatives	1 999	295 411	Leader algo- rithm and k- means	Cα distance matrices	28	7
Tung et al.	2007	Kappa-alpha	1 348	225 523	Nearest- neighbor clus- tering	κ and α angles	23	5

- ✓ Prototypes libraries are useful for predicting protein backbone from sequence
 - e.g. I-Sites (Bystroff & Baker, 1996)
- ✓ Number of states needs to be optimized both for precision of backbone description and prediction efficiency
- ✓ Protein Blocks (de Brevern et al, 2000) has been developed towards this goal

These were obtained by unsupervised classification of dihedral angles derived from unrelated protein structures using a self organizing map (SOM) also called Kohonen map.

1 2 3 4 5 6 7 8

position

1 2 3 4 5 6 7 8

These were obtained by unsupervised classification of dihedral angles derived from unrelated protein structures using a self organizing map (SOM) also called Kohonen map.

position

1 2 3 4 5 6 7 8

Protein Blocks

