

# **Implementation and Solder Reflow Guidelines for Pb-Free Packages**

Author: Amjad Esfahani

#### **Summary**

Recent legislative directives and corporate driven initiatives around the world have called for the elimination of Pb and other hazardous substances in electronics used in many sectors of the electronics industry. The Pb-free program at Xilinx was established in 1999 as a proactive effort to develop and qualify suitable material sets and processes for Pb-free applications. Xilinx has taken the leadership position by quickly forming partnerships with our customers and suppliers, and by participating in industry consortiums to provide technical solutions that are aligned with industry requirements.

Xilinx has researched alternatives to Pb compounds and has selected matte Sn lead finish for lead-frame packages and SnAgCu solder balls for BGA packages. In addition, suitable material sets have been chosen and qualified for higher reflow temperatures (240°C–260°C) that are required by Pb-free soldering processes. Pb-free products from Xilinx are designated with an additional "G" or "V" in the package designator portion of the part number.

For reflow soldering applications, SnAgCu solder has been chosen by the industry as the most viable Pb-free solder to replace eutectic SnPb solder. Compared with other Pb-free alloys, SnAgCu has better characteristics in terms of cost and processability as well as comparable or better reliability than eutectic SnPb solder. However, SnAgCu alloy has a much higher melting temperature (217°C) than the standard eutectic SnPb solder. Thus, assembly processes must be optimized accordingly to achieve the best yields and reliability.

This document contains guidelines on reflow soldering, inspection, and rework process for Pb-free packages.

#### **Backward Compatibility**

Backward compatibility, as described in this application note, refers to the soldering of Pb-free packages or components to a printed circuit board (PCB) using SnPb solder paste. Pb-free devices from Xilinx have the same form, fit, and function as standard Pb-based products. No changes are required for board design when using Pb-free products from Xilinx. However, finish materials for boards might need to be adjusted. Xilinx standard packages with eutectic solder balls are not recommended for use in a Pb-free process.

Lead-frame packages (PQG, TQG, VQG, PCG, etc.) from Xilinx are backward compatible, meaning that the component can be soldered with SnPb solder using SnPb soldering process. Lead-frame packages from Xilinx use a matte Sn plating on the leads, which is compatible with both Pb-free soldering alloys and SnPb soldering alloy.



BGA packages (CPG, FTG, FGG, BGG, etc.), however, are not recommended to be soldered with SnPb solder using a SnPb soldering process. The traditional SnPb soldering process usually has a peak reflow temperature of 205°C–220°C. At this temperature range, the SnAgCu BGA solder balls do not properly melt and wet to the soldering surfaces. As a result, reliability and assembly yields are compromised.

In cases that need backward-compatible assembly, a proper reflow profile is critical to ensure reliable solder joints. For BGA packages, the typical Pb-free solder ball alloy is SnAgCu (SAC305). Because the liquidus temperature of SnAgCu is around 217°C, the typical reflow peak temperature for SnAgCu is between 230°C and 250°C. However, there are two concerns with using this Pb-free reflow profile with backward-compatible assemblies. First, the reflow temperature might be too high for the PCB and for any SnPb components on the PCB. Second, the flux in SnPb solder paste might not function properly at such a high reflow temperature. On the other hand, if the peak reflow temperature is too low, the SnAgCu solder ball will only partially melt and will not be self-aligned, adversely affecting reliability. Therefore, for backward-compatible assemblies, it is important to find the minimum reflow peak temperature that will achieve complete mixing of the SnPb paste with the Pb-free solder ball to ensure good self-alignment.

Special considerations for Pb-free soldering are shown in the Reflow Soldering Considerations section.

# **Reflow Soldering Considerations**

The reflow soldering process for Pb-free components is very similar to the conventional eutectic solder reflow process. However, there are some important differences that must be taken into consideration for Pb-free soldering because the soldering material used for Pb-free soldering is different and higher reflow temperatures are required.

The optimal profile must take into account the solder paste/flux used, the size of the board, the density of the components on the board, and the mix between large components and smaller, lighter components. Profiles should be established for all new board designs using thermocouples at multiple locations on the component. In addition, if there is a mixture of devices on the board, then the profile should be checked at various locations on the board. Ensure that the minimum reflow temperature is reached to reflow the larger components and at the same time, the temperature does not exceed the threshold temperature that might damage the smaller, heat sensitive components.

In general, a gradual, linear ramp into a spike has been shown by various sources to be the optimal reflow profile for Pb-free solders (Figure 1). This profile has been shown to yield better wetting and less thermal shock than conventional ramp-soak-spike profile for a SnPb system. SnAgCu alloy reaches full liquidus temperature at 230°C. When profiling, identify the possible locations of the coldest solder joints and ensure that those solder joints reach a minimum peak temperature of 230°C for at least 10 seconds. It might not be necessary to ramp to peak temperature of 260°C and above. Reflowing at high peak temperature of 260°C and above can damage the heat sensitive components and cause the board to warp. Users should reference the latest IPC/JEDEC J-STD-020 standard for the allowable peak temperature on the component



body. The allowable peak temperature on the component body is dependent on the size of the component. Refer to Table 2 for peak package reflow body temperature information. In any case, a reflow profile with the lowest peak temperature possible should be used.

For backward-compatible assembly, a Pb-free reflow profile may be used. A minimum peak reflow temperature of 230°C is recommended to achieve complete mixing of SnPb paste with SnAgCu ball. It is also recommended to check with the SnPb solder paste manufacturer to confirm the paste is suitable for high reflow temperatures.

For sophisticated boards with a substantial mix of large and small components, it is critical to minimize the  $\Delta T$  across the board (less than 10°C) to minimize board warpage and thus, attain higher assembly yields. Minimizing the  $\Delta T$  is accomplished by using a slower rate in the warm-up and preheating stages. A heating rate of less than 1°C/sec during the preheating and soaking stages, in combination with a heating rate of not more than 2°C/sec throughout the rest of the profile is recommended.

It is also important to minimize the temperature gradient on the component, between top surface and bottom side, especially during the cooling down phase. In fact, cooling is a crucial part of the reflow process and must be optimized accordingly. While a slow cooling rate can result in high assembly yields, it could lead to formation of thick intermetallic layers with large grain size; thereby, reducing the solder joint strength. On the other hand, a faster cooling rate leads to smaller solder joint grain size, and results in higher solder joint fatigue resistance. However, overly aggressive cooling on stiff packages with large thermal mass can lead to cracking or package warpage because of the differential cooling effects between the top surface and bottom side of the component and between the component and the PCB materials.

The key is to optimize cooling with minimal temperature differential between the top surface of the package and the solder joint area. The temperature differential between the top surface of the component and the solder balls should be maintained at less than 7°C during the critical region of the cooling phase of the reflow process. This critical region is the phase in which the balls are not completely solidified to the board yet, usually between the 200°C–217°C range. The best solution might be to divide the cooling section into multiple zones, with each zone operating at different temperatures to efficiently cool the parts.

Table 1 and Figure 1 provide guidelines for profiling Pb-free solder reflow.

Table 1: Pb-Free Reflow Soldering Guidelines

| Profile Feature                            | Convection, IR/Convection                                                     |
|--------------------------------------------|-------------------------------------------------------------------------------|
| Ramp-up rate                               | 2°C/s maximum<br>1°C/s maximum for lidless packages with stiffener ring       |
| Preheat Temperature<br>150°–200°C          | 60–120 seconds                                                                |
| Temperature maintained above 217°C         | 60–150 seconds (60–90 seconds typical)                                        |
| Time within 5°C of actual peak temperature | 30 seconds max                                                                |
| Peak Temperature (lead/ball)               | 230°C—245°C typical (depends on solder paste, board size, components mixture) |



Table 1: Pb-Free Reflow Soldering Guidelines (Cont'd)

| Profile Feature               | Convection, IR/Convection                                    |
|-------------------------------|--------------------------------------------------------------|
| Peak Temperature (body)       | 240°C–260°C, package body size dependent (reference Table 2) |
| Ramp-down Rate                | 2°C/second max                                               |
| Time 25°C to Peak Temperature | 3.5 minutes min, 5.0 minutes typical, 8 minutes max          |



Figure 1: Typical Conditions for Pb-Free Reflow Soldering

Table 2: Peak Package Reflow Body Temperature for Xilinx Pb-Free Packages (Based on J-STD-020 Standard)<sup>(1)</sup>

| Package            |                                      | Peak Package Reflow<br>Body Temperature | JEDEC Moisture<br>Sensitivity Level (MSL) |  |  |
|--------------------|--------------------------------------|-----------------------------------------|-------------------------------------------|--|--|
| Lead Frame         | Lead Frame                           |                                         |                                           |  |  |
| PLCC               | PCG20<br>PCG44<br>PCG68<br>PCG84     | 245°C                                   | 3                                         |  |  |
| Plastic DIP        | PDG8                                 | 250°C                                   | 1                                         |  |  |
| PQFP               | PQG100<br>PQG160<br>PQG208<br>PQG240 | 245°C                                   | 3                                         |  |  |
| PQFP<br>(Heatsink) | HQG208<br>HQG240<br>HQG304           | 245°C                                   | 3                                         |  |  |
| TQFP               | TQG100<br>TQG128<br>TQG144           | 260°C                                   | 3                                         |  |  |
| VQFP               | VQG44<br>VQG64<br>VQG100             | 260°C                                   | 3                                         |  |  |



Table 2: Peak Package Reflow Body Temperature for Xilinx Pb-Free Packages (Based on J-STD-020 Standard)<sup>(1)</sup> (Cont'd)

| Package              |                                                                                                                             | Peak Package Reflow<br>Body Temperature | JEDEC Moisture<br>Sensitivity Level (MSL) |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------|
| VO/SO                | VOG8<br>VOG20<br>VOG48<br>SOG20                                                                                             | 260°C                                   | 3                                         |
| BGA/FlipChip         |                                                                                                                             |                                         |                                           |
| BGA<br>(Cavity Up)   | FTG64<br>FTG256<br>FGG256<br>FGG320                                                                                         | 260°C                                   | 3                                         |
|                      | BGG225<br>BGG256<br>BGG575<br>FGG324<br>FGG400<br>FGG456<br>FGG484<br>FGG556<br>FGG676<br>FGG900                            | 250°C                                   | 3                                         |
|                      | BGG728<br>FGG1156                                                                                                           | 245°C                                   | 3                                         |
| BGA<br>(Cavity Down) | BGG352<br>BGG432<br>BGG560<br>FGG680                                                                                        | 245°C                                   | 3                                         |
| Chip Scale           | CLG225<br>CLG400<br>CLG484<br>CPG56<br>CPG132<br>CPG196<br>CSG48<br>CSG144<br>CSG225<br>CSG280<br>CSG324<br>CSG484<br>FSG48 | 260°C                                   | 3                                         |



Table 2: Peak Package Reflow Body Temperature for Xilinx Pb-Free Packages (Based on J-STD-020 Standard)<sup>(1)</sup> (Cont'd)

| Package       |                                                                                                                                                                                                                                                           | Peak Package Reflow<br>Body Temperature | JEDEC Moisture<br>Sensitivity Level (MSL) |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------|
|               | SFG363                                                                                                                                                                                                                                                    | 260°C                                   | 4                                         |
|               | FBG484<br>FBG676                                                                                                                                                                                                                                          |                                         |                                           |
|               | FFG323/FFV323<br>FFG324/FFV324<br>FFG484/FFV484<br>FFG665/FFV665<br>FFG668<br>FFG672<br>FFG676/FFV676                                                                                                                                                     | 250°C                                   | 4                                         |
|               | SBG484                                                                                                                                                                                                                                                    |                                         |                                           |
| Flip-Chip BGA | BFG957 FBG900 FFG784/FFV784 FFG896 FFG900 FFG1136/FFV1136 FFG1148 FFG1152 FFG1153/FFV1153 FFG1154 FFG1155 FFG1156/FFV1156 FFG1157 FFG1513 FFG1517 FFG1696 FFG1704 FFG1738/FFV1738 FFG1759/FFV1759 FFG1760/FFV1760 FFG1761 FFG1923 FFG1924 FFG1926 FFG1927 | 245°C                                   | 4                                         |
| QFN           | QFG32<br>QFG48                                                                                                                                                                                                                                            | 260°C                                   | 3                                         |

#### Notes:

<sup>1.</sup> For Zynq®-7000 All programmable (AP) SoC packages, refer to the Zynq-7000 All Programmable SoC Packaging and Pinout Product Specification (UG865) [Ref 1] and for 7 series FPGA packages, refer to the 7 Series FPGAs Packaging and Pinout Product Specification (UG475) [Ref 2]. For other device families, refer to the specific Packaging and Pinout Product Specification.



# Post Reflow Cleaning/Washing

Many PCB assembly subcontractors use a no-clean process in which no post-assembly washing is required. Although a no-clean process is recommended, if cleaning is required, Xilinx recommends a water-soluble paste and a washer using a deionized-water. Baking after the water wash is recommended to prevent fluid accumulation.

Cleaning solutions or solvents are not recommended because some solutions contain chemicals that can compromise the lid adhesive, thermal compound, or components inside the package.

## **Conformal Coating**

Xilinx has no information about the reliability of flip-chip BGA packages on a board after exposure to conformal coating. Any process using conformal coating should be qualified for the specific use case to cover the materials and process steps.

**Note:** Xilinx does not recommend using Toluene-based conformal coatings because they can weaken the lid adhesive used in Xilinx packages.

#### **Reflow Oven**

To achieve consistently high assembly yields, an upgrade to newer equipment with more zones might be necessary to have better process control (minimizing  $\Delta T$ ). A forced convection reflow oven is recommended while IR reflow might not be suitable.

# Nitrogen

Although nitrogen is not required, it is recommended to achieve better wettability and widen the process window. Nitrogen is especially beneficial when temperature differential across the board can be large. Additionally, nitrogen improves the appearance of solder joints by inhibiting the effects of oxidation.

# Inspection

Pb-free solder joint looks duller and grainier than SnPb solder joints. This is mainly due to surface roughness of the high tin Pb-free solder alloy. Additionally, wetting spread is generally not as great as with SnPb solder joints. Training must be provided to technicians/operators to distinguish Pb-free solder joints from SnPb solder joints. More detailed information can be found in the latest IPC-A-610D Standard [Ref 3].



## **Hand Soldering**

Two important factors in hand soldering are the quality of the soldering iron and the skill of the technician. Tight temperature and time control is especially critical for Pb-free applications due to the higher temperature. Excessive soldering iron tip temperature can result in dewetting and thermal damage to boards and components. When the tip temperature is not high enough, or when flux activation is insufficient, poor wetting can occur. Using the correct solder tip temperature with adequate heat transfer is essential for creating reliable solder joints [Ref 4]. Preheating is recommended to reduce the  $\Delta T$  and to avoid having to use higher operating tip temperature. The tip temperature and duration depends on the size of the joint. In general, the tip temperature is higher than SnPb soldering and it is in the range of 350°C–375°C for duration of up to 5 seconds. It might be necessary in some cases to use different solder sized tips for best result. Larger tips are more suitable for larger joints.

There are new soldering systems available in the market today that allow for variable power, constant tip temperature regardless of the load. Constant tip temperature is important for Pb-free soldering since it reduces operator intervention and eliminates the risk of causing thermal damage to delicate components.

Finally, it is critical to maintain a clean tip since Pb-free is more sensitive to dirty soldering iron tips.

#### **Pb-Free Rework**

The key to successful rework is to minimize the temperature difference between the solder joint and the component body. When setting up the profile, place thermocouples at the following locations: Top of the package, bottom center of the solder joint, and corner areas of the solder joint. To achieve good wetting, a peak temperature of 230°C–235°C minimum at the solder joint is necessary. Additionally, time above liquidus (217°C) should be in the 45–90 seconds range.

To minimize the temperature differential between the solder joint and the component body, adequate bottom side heating of the board is recommended. Before engaging the top nozzle, users should apply bottom-side heat until the top of the board reaches 150°C. The top nozzle should be optimized so that heat goes mainly to the solder joint areas.

Xilinx Pb-Free components are compatible with Pb-free assembly rework per section 4 of IPC/JEDEC J-STD-020D.1. In addition, it is important to ensure that the component body temperature does not exceed its allowable limit (240°C–260°C, package size dependent, see Table 2). Allowable maximum component body temperature is dependent on package size and volume. This information can be found in the latest J-STD-020 standard.

A thermal profile must be developed for component removal to ensure the maximum temperature recommendation of 240°C–260°C is not exceeded.



#### **More Information**

Reliability information for Pb-free products is available in the Device Reliability Report which can be found on the Xilinx web site at <a href="https://www.xilinx.com/support/quality.html">https://www.xilinx.com/support/quality.html</a>.

For more information about Pb-free products from Xilinx, visit the Pb-free web site at https://www.xilinx.com/support/quality/pb-free-rohs-compliant.html.

#### **Documentation Navigator and Design Hubs**

Xilinx<sup>®</sup> Documentation Navigator provides access to Xilinx documents, videos, and support resources, which you can filter and search to find information. To open the Xilinx Documentation Navigator (DocNav):

- From the Vivado<sup>®</sup> IDE, select Help > Documentation and Tutorials.
- On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
- At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics, which you can use to learn key concepts and address frequently asked questions. To access the Design Hubs:

- In the Xilinx Documentation Navigator, click the Design Hubs View tab.
- On the Xilinx website, see the Design Hubs page.

**Note:** For more information on Documentation Navigator, see the Documentation Navigator page on the Xilinx website.

#### References

- 1. Zyng-7000 All Programmable SoC Packaging and Pinout Product Specification (UG865)
- 2. 7 Series FPGAs Packaging and Pinout Product Specification (UG475)
- 3. IPC-A-610D "Acceptability of Electronic Assemblies", Association Connecting Electronics Industries, February 2005.
- 4. Bath, Jasbir et al., "Lead-Free Soldering", Springer-Verlag, 2007.
- 5. American Competitive Institute, "Initiatives in Lead Free Soldering," www.aciusa.org.
- 6. Bath, Jasbir, Handerwer, Carol, and Bradley, Edwin, "Research Update: Lead-Free Solder Alternatives," www.circuitassembly.com, May 2000.
- 7. Gilleo, Ken, *Area Array Packaging Handbook*, copyrighted 2002 by McGraw-Hill Co., pages 14.14-14.16.



- 8. Hall, James, "Concentrating on Reflow's Cooling Zones," EP&P, 3/01/2001
- 9. Narrow, Phil, "Soldering," SMT Magazine, August 2000
- 10. Parker, Richard, "The Next No-Lead Hurdle: The Components Supply Chain," www.circuitree.com, August 1, 2000.
- 11. Peo, Mark, and DeAngelo, Don, "New Reflow Profiles and Oven Configurations Must be Explored to Meet the Needs of Lead-Free Solder Paste," http://smt.iconnect007.com, May 2000.
- 12. Selig, Karl and Suraski, David, "A Practical Guide to Achieving Lead Free Electronics Assembly," www.aimsolder.com.

# **Revision History**

The following table shows the revision history for this document.

| Date       | Version | Revision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12/09/2002 | 1.0     | Initial Xilinx release.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 09/16/2004 | 2.0     | General revision to conform to revised Pb-free document standards.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12/09/2005 | 2.1     | Ramp-up rate data in Table 1 and Figure 1 revised. Peak reflow temps revised, added packages, and changed flip chip lead free designations from FFR and BFR to FFG and BFG in Table 2.                                                                                                                                                                                                                                                                                                                                                                                      |
| 01/30/2006 | 2.2     | Table 2 updated to include VOG8 MSL value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11/17/2008 | 2.3     | Table 2 updated to include CSG484,FFG323, FFG324 and FFG1738 information, and removed +0/–5°C tolerance from peak temperatures. Added [Ref 3] and [Ref 4]. Added more information to Inspection, page 7 and Hand Soldering, page 8.                                                                                                                                                                                                                                                                                                                                         |
| 02/12/2009 | 2.4     | Table 2 updated to include FTG64, FFG665, FFG1136, FFG1153, and FFG1759. Revised Table 1, page 3 and Figure 1 to latest JEDEC standards.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 02/04/2010 | 2.5     | Table 2 updated to include CPG196, CSG225, and CSG324 chip-scale BGA packages on page 5, and FFG484, FFG784, FFG1154, FFG1155, FFG1156, FFG1923, and FFG1924 flip-chip BGA packages on page 6. Added reference to IPC/JEDEC J-STD-020D.1, section 4 to Pb-Free Rework, page 8.                                                                                                                                                                                                                                                                                              |
| 09/04/2012 | 2.6     | In Table 2, updated BGA (Cavity Down), Chip Scale, and Flip-Chip BGA package lists. Revised Pb-Free Rework section. Updated Please Read: Important Legal Notices.                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12/20/2017 | 2.7     | Updated Summary and Backward Compatibility sections. Updated Reflow Soldering Considerations section including Table 1 and Figure 1, revised ramp-up rate from 3°C/sec to 2°C/sec and ramp-down rate from 6°C/sec to 2°C/sec, added the ramp-up rate for lidless packages with stiffener ring, and updated the Peak Temperature (lead/ball) and Peak Temperature (body) values. Added "V" Pb-free packages (i.e., package types starting with FFV) to Flip-Chip BGA in Table 2. Added a note to Table 2. Added Post Reflow Cleaning/Washing and Conformal Coating sections. |



## **Please Read: Important Legal Notices**

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.

#### **AUTOMOTIVE APPLICATIONS DISCLAIMER**

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.

© Copyright 2017 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.