

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter 3

Subword parallelism

(This set contains adaptations of ten slides from MK Publishers' originals and 25 new, complementary slides by Luiz Santos)

Streaming SIMD Extension 2 (SSE2)

- Adds 8 × 128-bit registers
 - Extended to 16 registers in AMD64/EM64T
- Can be used for multiple FP operands
 - 2 × 64-bit double precision (double in C)
 - 4 × 32-bit single precision (float in C)
 - Instructions operate on them simultaneously
 - Single-Instruction Multiple-Data

Example: Matrix Multiplication

- $C = C + A \times B (DGEMM)$
 - Double precision General Matrix Multiply
- Hypothesis:
 - All 32 × 32 matrices, 64-bit double-precision elements
- C code:

```
void mm (double c[][],
         double a[][], double b[][]) {
  int i, j, k;
  for (i = 0; i! = 32; i = i + 1)
    for (j = 0; j! = 32; j = j + 1)
      for (k = 0; k! = 32; k = k + 1)
        c[i][j] = c[i][j]
                  + a[i][k] * b[k][j];
```


Matrix: vectorial representation

- For higher performance:
 - Single-dimensional representation of a matrix
 - Column-major transformation

Example: $c_{12} = C[1+2*3] = C[7]$

Unoptimized code:

```
1. void dgemm (int n, double* A, double* B, double* C)
2. {
3. for (int i = 0; i < n; ++i)
4. for (int j = 0; j < n; ++j)
5. {
6. double cij = C[i+j*n]; /* cij = C[i][j] */
7. for(int k = 0; k < n; k++)
8. cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */
9. C[i+j*n] = cij; /* C[i][j] = cij */
10. }
11. }</pre>
```


x86 assembly code: (generated with gcc, 2014 version)

```
1. vmovsd (%r10), %xmm0 # Load 1 element of C into %xmm0
2. mov %rsi, %rcx # register %rcx = %rsi
3. xor %eax, %eax # register %eax = 0
4. vmovsd (%rcx), %xmm1 # Load 1 element of B into %xmm1
5. add %r9, %rcx # register %rcx = %rcx + %r9
6. vmulsd (%r8,%rax,8),%xmm1,%xmm1 # Multiply %xmm1,
element of A
7. add \$0x1, \$rax # register \$rax = \$rax + 1
8. cmp %eax, %edi # compare %eax to %edi
9. vaddsd %xmm1, %xmm0, %xmm0 # Add %xmm1, %xmm0
10. jg 30 \langle dgemm + 0x30 \rangle # jump if eax > edi
11. add \$0x1,\$r11d # register \$r11 = \$r11 + 1
12. vmovsd %xmm0, (%r10) # Store %xmm0 into C element
```


x86 assembly code: (generated with gcc, 2014 version)

```
1. vmovsd (%r10), %xmm0 # Load 1 element of C into %xmm0
2. mov %rsi, %rcx # register %rcx = %rsi
3. xor %eax, %eax
                 # register %eax = 0
4. vmovsd (%rcx), %xmm1 # Load 1 element of B into %xmm1
5. add %r9, %rcx # register %rcx = %rcx + %r9
6. vmulsd (%r8,%rax,8),%xmm1,%xmm1 # Multiply %xmm1,
element of A
7. add \$0x1, \$rax # register \$rax = \$rax + 1
8. cmp %eax, %edi # compare %eax to %edi
9. vaddsd %xmm1, %xmm0, %xmm0 # Add %xmm1, %xmm0
10. jg 30 \langle dgemm + 0x30 \rangle # jump if eax > edi
11. add \$0x1,\$r11d # register \$r11 = \$r11 + 1
12. vmovsd %xmm0, (%r10) # Store %xmm0 into C element
```


x86 assembly code: (generated with gcc, 2014 version)

```
1. vmovsd (%r10), %xmm0 # Load 1 element of C into %xmm0
2. mov %rsi, %rcx # register %rcx = %rsi
3. xor %eax, %eax
                 # register %eax = 0
4. vmovsd (%rcx), %xmm1 # Load 1 element of B into %xmm1
5. add %r9, %rcx # register %rcx = %rcx + %r9
6. vmulsd (%r8,%rax,8),%xmm1,%xmm1 # Multiply %xmm1,
element of A
7. add \$0x1, \$rax # register \$rax = \$rax + 1
8. cmp %eax, %edi # compare %eax to %edi
9. vaddsd %xmm1, %xmm0, %xmm0 # Add %xmm1, %xmm0
10. jg 30 \langle dgemm + 0x30 \rangle # jump if eax > edi
11. add \$0x1,\$r11d # register \$r11 = \$r11 + 1
12. vmovsd %xmm0, (%r10) # Store %xmm0 into C element
```


x86 assembly code: (generated with gcc, 2014 version)

```
1. vmovsd (%r10), %xmm0 # Load 1 element of C into %xmm0
2. mov %rsi, %rcx # register %rcx = %rsi
3. xor %eax, %eax # register %eax = 0
4. vmovsd (%rcx), %xmm1 # Load 1 element of B into %xmm1
5. add %\mathbf{r9},%rcx # register %rcx = %rcx + %r9
6. vmulsd (%r8,%rax,8),%xmm1,%xmm1 # Multiply %xmm1,
element of A
7. add \$0x1, \$rax # register \$rax = \$rax + 1
8. cmp %eax, %edi # compare %eax to %edi
9. vaddsd %xmm1, %xmm0, %xmm0 # Add %xmm1, %xmm0
10. jg 30 \langle dgemm + 0x30 \rangle # jump if eax > edi
11. add \$0x1,\$r11d # register \$r11 = \$r11 + 1
12. vmovsd %xmm0, (%r10) # Store %xmm0 into C element
```


x86 assembly code: (generated with gcc, 2014 version)

```
1. vmovsd (%r10), %xmm0 # Load 1 element of C into %xmm0
2. mov %rsi, %rcx Cij(right) # register %rcx = %rsi
3. xor %eax, %eax
                  # register %eax = 0
4. vmovsd (%rcx), %xmm1 # Load 1 element of B into %xmm1
5. add %r9, %rcx # register %rcx = %rcx + %r9
6. vmulsd (%r8,%rax,8),%xmm1,%xmm1 # Multiply %xmm1,
element of A
                          bkj product
                aik
7. add \$0x1, \$rax # register \$rax = \$rax + 1
8. cmp %eax, %edi # compare %eax to %edi
9. vaddsd %xmm1, %xmm0, %xmm0 # Add %xmm1, %xmm0 sum-of-products
                                                   accumulator
10. jg 30 \langle dgemm + 0x30 \rangle # jump if %eax \rangle %edi
11. add \$0x1,\$r11d # register \$r11 = \$r11 + 1
12. vmovsd %xmm0, (%r10) # Store %xmm0 into C element
   (Inner loop only, i.e. it corresponds to lines 6 to 9 from source code)
```


How to fully exploit AVX?

- Can be used for multiple FP operands
 - 4 × 64-bit double precision (double in C)
 - 8 × 32-bit single precision (float in C)
- How to exploit vector operations?
 - Cannot compute scalar times scalar
 - Classic (scalar) matrix traversal inadequate...

 $c_{31} c_{32} c_{33} c_{34} c_{35}$ $C_{40} C_{41} C_{42} C_{43} C_{44} C_{45}$ C₅₀ C₅₁ C₅₂ C₅₃ C₅₄ C₅₅

 c_{00} c_{01} c_{02} c_{03} c_{04} c_{05} c_{00} c_{01} c_{02} c_{03} c_{04} c_{05} c_{10} c_{11} c_{12} c_{13} c_{14} c_{15} c_{20} c_{21} c_{22} c_{23} c_{24} c_{25} c_{20} a_{21} a_{22} a_{23} a_{24} a_{25} a_{20} a_{21} a_{22} a_{23} a_{24} a_{25} (a₃₀) a₃₁ a₃₂ a₃₃ a₃₄ a₃₅ a₄₀ a₄₁ a₄₂ a₄₃ a₄₄ a₄₅ $a_{50} a_{51} a_{52} a_{53} a_{54} a_{55}$

 $(\mathbf{b_{00}})$ $\mathbf{b_{01}}$ $\mathbf{b_{02}}$ $\mathbf{b_{03}}$ $\mathbf{b_{04}}$ $\mathbf{b_{05}}$ $\mathbf{b_{10}} \, \mathbf{b_{11}} \, \mathbf{b_{12}} \, \mathbf{b_{13}} \, \mathbf{b_{14}} \, \mathbf{b_{15}}$ $\mathbf{b_{20}} \, \mathbf{b_{21}} \, \mathbf{b_{22}} \, \mathbf{b_{23}} \, \mathbf{b_{24}} \, \mathbf{b_{25}}$ $\mathbf{b_{30}} \, \mathbf{b_{31}} \, \mathbf{b_{32}} \, \mathbf{b_{33}} \, \mathbf{b_{34}} \, \mathbf{b_{35}}$ $\mathbf{b_{40}} \, \mathbf{b_{41}} \, \mathbf{b_{42}} \, \mathbf{b_{43}} \, \mathbf{b_{44}} \, \mathbf{b_{45}}$ $\mathbf{b_{50}} \, \mathbf{b_{51}} \, \mathbf{b_{52}} \, \mathbf{b_{53}} \, \mathbf{b_{54}} \, \mathbf{b_{55}}$

$$i = 0,1,2,3$$
 $j = 0$ $k = 0$

 $(c_{00}) c_{01} c_{02} c_{03} c_{04} c_{05} = a_{00} (a_{01}) a_{02} a_{03} a_{04} a_{05}$ $c_{10} c_{11} c_{12} c_{13} c_{14} c_{15}$ $a_{10} a_{11} a_{12} a_{13} a_{14} a_{15}$ $c_{20} c_{21} c_{22} c_{23} c_{24} c_{25}$ $a_{20} a_{21} a_{22} a_{23} a_{24} a_{25}$ $c_{40} c_{41} c_{42} c_{43} c_{44} c_{45}$ $a_{40} a_{41} a_{42} a_{43} a_{44} a_{45}$ C₅₀ C₅₁ C₅₂ C₅₃ C₅₄ C₅₅

 $c_{31} c_{32} c_{33} c_{34} c_{35} = a_{30} a_{31} a_{32} a_{33} a_{34} a_{35}$ $a_{50} a_{51} a_{52} a_{53} a_{54} a_{55}$

 $\mathbf{b_{00}} \, \mathbf{b_{01}} \, \mathbf{b_{02}} \, \mathbf{b_{03}} \, \mathbf{b_{04}} \, \mathbf{b_{05}}$ (b_{10}) b_{11} b_{12} b_{13} b_{14} b_{15} $\mathbf{b_{20}} \, \mathbf{b_{21}} \, \mathbf{b_{22}} \, \mathbf{b_{23}} \, \mathbf{b_{24}} \, \mathbf{b_{25}}$ $\mathbf{b_{30}} \, \mathbf{b_{31}} \, \mathbf{b_{32}} \, \mathbf{b_{33}} \, \mathbf{b_{34}} \, \mathbf{b_{35}}$ $\mathbf{b_{40}} \, \mathbf{b_{41}} \, \mathbf{b_{42}} \, \mathbf{b_{43}} \, \mathbf{b_{44}} \, \mathbf{b_{45}}$ $\mathbf{b_{50}} \, \mathbf{b_{51}} \, \mathbf{b_{52}} \, \mathbf{b_{53}} \, \mathbf{b_{54}} \, \mathbf{b_{55}}$

$$i = 0,1,2,3$$
 $j = 0$ **k = 1**

$$\begin{array}{c} \textbf{b_{00}} \ b_{01} \ b_{02} \ b_{03} \ b_{04} \ b_{05} \\ \textbf{b_{10}} \ b_{11} \ b_{12} \ b_{13} \ b_{14} \ b_{15} \\ \textbf{b_{20}} \ b_{21} \ b_{22} \ b_{23} \ b_{24} \ b_{25} \\ \textbf{b_{30}} \ b_{31} \ b_{32} \ b_{33} \ b_{34} \ b_{35} \\ \textbf{b_{40}} \ b_{41} \ b_{42} \ b_{43} \ b_{44} \ b_{45} \\ \textbf{b_{50}} \ b_{51} \ b_{52} \ b_{53} \ b_{54} \ b_{55} \end{array}$$

$$i = 0,1,2,3$$
 $j = 0$ $k = 2$

 $(c_{00}) c_{01} c_{02} c_{03} c_{04} c_{05}$ $a_{00} a_{01} a_{02} (a_{03}) a_{04} a_{05}$ c_{10} c_{11} c_{12} c_{13} c_{14} c_{15} c_{10} c_{11} a_{12} a_{13} a_{14} a_{15} a_{20} a_{21} a_{22} a_{23} a_{24} a_{25} a_{20} a_{21} a_{22} a_{23} a_{24} a_{25} $c_{40} c_{41} c_{42} c_{43} c_{44} c_{45}$ $a_{40} a_{41} a_{42} a_{43} a_{44} a_{45}$ C₅₀ C₅₁ C₅₂ C₅₃ C₅₄ C₅₅

 $c_{31} c_{32} c_{33} c_{34} c_{35}$ $c_{30} c_{31} c_{32} c_{33} c_{34} c_{35}$ $a_{50} a_{51} a_{52} a_{53} a_{54} a_{55}$

 $b_{00} b_{01} b_{02} b_{03} b_{04} b_{05}$ $\mathbf{b_{10}} \, \mathbf{b_{11}} \, \mathbf{b_{12}} \, \mathbf{b_{13}} \, \mathbf{b_{14}} \, \mathbf{b_{15}}$ $\mathbf{b_{20}} \, \mathbf{b_{21}} \, \mathbf{b_{22}} \, \mathbf{b_{23}} \, \mathbf{b_{24}} \, \mathbf{b_{25}}$ $(b_{30})b_{31}b_{32}b_{33}b_{34}b_{35}$ $\mathbf{b_{40}} \, \mathbf{b_{41}} \, \mathbf{b_{42}} \, \mathbf{b_{43}} \, \mathbf{b_{44}} \, \mathbf{b_{45}}$ $\mathbf{b_{50}} \, \mathbf{b_{51}} \, \mathbf{b_{52}} \, \mathbf{b_{53}} \, \mathbf{b_{54}} \, \mathbf{b_{55}}$

$$i = 0,1,2,3$$
 $j = 0$ **k = 3**

 $(c_{00}) c_{01} c_{02} c_{03} c_{04} c_{05}$ $a_{00} a_{01} a_{02} a_{03} (a_{04}) a_{05}$ c_{10} c_{11} c_{12} c_{13} c_{14} c_{15} c_{10} c_{11} c_{12} c_{13} c_{14} c_{15} c_{20} c_{21} c_{22} c_{23} c_{24} c_{25} c_{25} c_{25} c $c_{40} c_{41} c_{42} c_{43} c_{44} c_{45}$ $a_{40} a_{41} a_{42} a_{43} a_{44} a_{45}$ C₅₀ C₅₁ C₅₂ C₅₃ C₅₄ C₅₅

 $c_{31} c_{32} c_{33} c_{34} c_{35}$ $c_{30} a_{31} a_{32} a_{33} a_{34} a_{35}$ $a_{50} a_{51} a_{52} a_{53} a_{54} a_{55}$

 $b_{00} b_{01} b_{02} b_{03} b_{04} b_{05}$ $\mathbf{b_{10}} \, \mathbf{b_{11}} \, \mathbf{b_{12}} \, \mathbf{b_{13}} \, \mathbf{b_{14}} \, \mathbf{b_{15}}$ $\mathbf{b_{20}} \, \mathbf{b_{21}} \, \mathbf{b_{22}} \, \mathbf{b_{23}} \, \mathbf{b_{24}} \, \mathbf{b_{25}}$ $\mathbf{b_{30}} \, \mathbf{b_{31}} \, \mathbf{b_{32}} \, \mathbf{b_{33}} \, \mathbf{b_{34}} \, \mathbf{b_{35}}$ (b_{40}) b_{41} b_{42} b_{43} b_{44} b_{45} $\mathbf{b_{50}} \, \mathbf{b_{51}} \, \mathbf{b_{52}} \, \mathbf{b_{53}} \, \mathbf{b_{54}} \, \mathbf{b_{55}}$

$$i = 0,1,2,3$$
 $j = 0$ **k = 4**

$$\begin{array}{c} \textbf{b_{00}} \ b_{01} \ b_{02} \ b_{03} \ b_{04} \ b_{05} \\ \textbf{b_{10}} \ b_{11} \ b_{12} \ b_{13} \ b_{14} \ b_{15} \\ \textbf{b_{20}} \ b_{21} \ b_{22} \ b_{23} \ b_{24} \ b_{25} \\ \textbf{b_{30}} \ b_{31} \ b_{32} \ b_{33} \ b_{34} \ b_{35} \\ \textbf{b_{40}} \ b_{41} \ b_{42} \ b_{43} \ b_{44} \ b_{45} \\ \textbf{b_{50}} \ b_{51} \ b_{52} \ b_{53} \ b_{54} \ b_{55} \end{array}$$

$$i = 0,1,2,3$$
 $j = 0$ **k = 5**

 a_{00} a_{01} a_{02} a_{03} a_{04} a_{05} a_{10} a_{11} a_{12} a_{13} a_{14} a_{15} a_{20} a_{21} a_{22} a_{23} a_{24} a_{25} a_{31} a_{32} a_{33} a_{34} a_{35} a_{40} a_{41} a_{42} a_{43} a_{44} a_{45} a_{50} a_{51} a_{52} a_{53} a_{54} a_{55}

 $\begin{array}{c} b_{00} \stackrel{\color{red} \color{blue} \color{blue}$

$$i = 0,1,2,3$$
 $j = 1$ $k = 0$

 a_{00} a_{01} a_{02} a_{03} a_{04} a_{05} a_{10} a_{11} a_{12} a_{13} a_{14} a_{15} a_{20} a_{21} a_{22} a_{23} a_{24} a_{25} a_{30} a_{31} a_{32} a_{33} a_{34} a_{35} a_{40} a_{41} a_{42} a_{43} a_{44} a_{45} a_{50} a_{51} a_{52} a_{53} a_{54} a_{55}

 $\begin{array}{c} b_{00} \ \textbf{b_{01}} \ b_{02} \ b_{03} \ b_{04} \ b_{05} \\ b_{10} \ \textbf{b_{11}} \ b_{12} \ b_{13} \ b_{14} \ b_{15} \\ b_{20} \ \textbf{b_{21}} \ b_{22} \ b_{23} \ b_{24} \ b_{25} \\ b_{30} \ \textbf{b_{31}} \ b_{32} \ b_{33} \ b_{34} \ b_{35} \\ b_{40} \ \textbf{b_{41}} \ b_{42} \ b_{43} \ b_{44} \ b_{45} \\ b_{50} \ \textbf{b_{51}} \ b_{52} \ b_{53} \ b_{54} \ b_{55} \end{array}$

$$i = 0,1,2,3$$
 $j = 1$ $k = 1$

 $C_{00}(C_{01})C_{02}C_{03}C_{04}C_{05}$ C₅₀ C₅₁ C₅₂ C₅₃ C₅₄ C₅₅

 $a_{00} a_{01} (a_{02}) a_{03} a_{04} a_{05}$ $c_{10} c_{11} c_{12} c_{13} c_{14} c_{15}$ $a_{10} a_{11} a_{12} a_{13} a_{14} a_{15}$ $c_{20} c_{21} c_{22} c_{23} c_{24} c_{25}$ $c_{20} a_{21} a_{22} a_{23} a_{24} a_{25}$ $c_{30} c_{31} c_{32} c_{33} c_{34} c_{35}$ $a_{30} a_{31} a_{32} a_{33} a_{34} a_{35}$ $c_{40} c_{41} c_{42} c_{43} c_{44} c_{45}$ $a_{40} a_{41} a_{42} a_{43} a_{44} a_{45}$ $a_{50} a_{51} a_{52} a_{53} a_{54} a_{55}$

 $b_{00} b_{01} b_{02} b_{03} b_{04} b_{05}$ b_{10} b_{14} b_{12} b_{13} b_{14} b_{15} $b_{20}(b_{21})b_{22}b_{23}b_{24}b_{25}$ $b_{30} b_{31} b_{32} b_{33} b_{34} b_{35}$ b_{40} b_{41} b_{42} b_{43} b_{44} b_{45} b_{50} b_{51} b_{52} b_{53} b_{54} b_{55}

$$i = 0,1,2,3$$
 $j = 1$ $k = 2$

$$\begin{array}{c} \mathbf{a_{00}} \ \mathbf{a_{01}} \ \mathbf{a_{02}} \ \mathbf{a_{03}} \ \mathbf{a_{04}} \ \mathbf{a_{05}} \\ \mathbf{a_{10}} \ \mathbf{a_{11}} \ \mathbf{a_{12}} \ \mathbf{a_{13}} \ \mathbf{a_{14}} \ \mathbf{a_{15}} \\ \mathbf{a_{20}} \ \mathbf{a_{21}} \ \mathbf{a_{22}} \ \mathbf{a_{23}} \ \mathbf{a_{24}} \ \mathbf{a_{25}} \\ \mathbf{a_{30}} \ \mathbf{a_{31}} \ \mathbf{a_{32}} \ \mathbf{a_{33}} \ \mathbf{a_{34}} \ \mathbf{a_{35}} \\ \mathbf{a_{40}} \ \mathbf{a_{41}} \ \mathbf{a_{42}} \ \mathbf{a_{43}} \ \mathbf{a_{44}} \ \mathbf{a_{45}} \\ \mathbf{a_{50}} \ \mathbf{a_{51}} \ \mathbf{a_{52}} \ \mathbf{a_{53}} \ \mathbf{a_{54}} \ \mathbf{a_{55}} \end{array}$$

$$\begin{array}{c} b_{00} \ \boldsymbol{b_{01}} \ b_{02} \ b_{03} \ b_{04} \ b_{05} \\ b_{10} \ \boldsymbol{b_{11}} \ b_{12} \ b_{13} \ b_{14} \ b_{15} \\ b_{20} \ \boldsymbol{b_{21}} \ b_{22} \ b_{23} \ b_{24} \ b_{25} \\ b_{30} \ \boldsymbol{b_{31}} \ b_{32} \ b_{33} \ b_{34} \ b_{35} \\ b_{40} \ \boldsymbol{b_{41}} \ b_{42} \ b_{43} \ b_{44} \ b_{45} \\ b_{50} \ \boldsymbol{b_{51}} \ b_{52} \ b_{53} \ b_{54} \ b_{55} \end{array}$$

$$i = 0,1,2,3$$
 $j = 1$ $k = 3$

 $c_{00}(c_{01})c_{02}c_{03}c_{04}c_{05}$ $a_{00}a_{01}a_{02}a_{03}(a_{04})a_{05}$ $c_{10} c_{11} c_{12} c_{13} c_{14} c_{15}$ $a_{10} a_{11} a_{12} a_{13} a_{14} a_{15}$ $c_{20} c_{21} c_{22} c_{23} c_{24} c_{25}$ $c_{20} a_{21} a_{22} a_{23} a_{24} a_{25}$ $c_{30} c_{31} c_{32} c_{33} c_{34} c_{35}$ $a_{30} a_{31} a_{32} a_{33} a_{34} a_{35}$ $c_{40} c_{41} c_{42} c_{43} c_{44} c_{45}$ $a_{40} a_{41} a_{42} a_{43} a_{44} a_{45}$ C₅₀ C₅₁ C₅₂ C₅₃ C₅₄ C₅₅

 $a_{50} a_{51} a_{52} a_{53} a_{54} a_{55}$

 $b_{00} b_{01} b_{02} b_{03} b_{04} b_{05}$ b_{10} b_{11} b_{12} b_{13} b_{14} b_{15} $b_{20} b_{21} b_{22} b_{23} b_{24} b_{25}$ b_{30} b_{31} b_{32} b_{33} b_{34} b_{35} $b_{40}(b_{41})b_{42}b_{43}b_{44}b_{45}$ b_{50} b_{51} b_{52} b_{53} b_{54} b_{55}

$$i = 0,1,2,3$$
 $j = 1$ **k = 4**

 $c_{00}(c_{01})c_{02}c_{03}c_{04}c_{05}$ $a_{00}a_{01}a_{02}a_{03}a_{04}(a_{05})$ C_{10} C_{11} C_{12} C_{13} C_{14} C_{15} C₅₀ C₅₁ C₅₂ C₅₃ C₅₄ C₅₅

 $a_{10} a_{11} a_{12} a_{13} a_{14} \underbrace{a_{15}}$ $c_{20} c_{21} c_{22} c_{23} c_{24} c_{25}$ $a_{20} a_{21} a_{22} a_{23} a_{24} a_{25}$ $c_{30} c_{31} c_{32} c_{33} c_{34} c_{35}$ $a_{30} a_{31} a_{32} a_{33} a_{34} a_{35}$ $c_{40} \ c_{41} \ c_{42} \ c_{43} \ c_{44} \ c_{45} \qquad a_{40} \ a_{41} \ a_{42} \ a_{43} \ a_{44} \ a_{45}$ $a_{50} a_{51} a_{52} a_{53} a_{54} a_{55}$

 $b_{00} b_{01} b_{02} b_{03} b_{04} b_{05}$ b_{10} b_{11} b_{12} b_{13} b_{14} b_{15} $b_{20} b_{21} b_{22} b_{23} b_{24} b_{25}$ b_{30} b_{31} b_{32} b_{33} b_{34} b_{35} b_{40} b_{41} b_{42} b_{43} b_{44} b_{45} b_{50} b_{51} b_{52} b_{53} b_{54} b_{55}

$$i = 0,1,2,3$$
 $j = 1$ **k = 5**

$$\begin{array}{c} b_{00} \ b_{01} \ b_{02} \ b_{03} \ b_{04} \ b_{05} \\ b_{10} \ b_{11} \ b_{12} \ b_{13} \ b_{14} \ b_{15} \\ b_{20} \ b_{21} \ b_{22} \ b_{23} \ b_{24} \ b_{25} \\ b_{30} \ b_{31} \ b_{32} \ b_{33} \ b_{34} \ b_{35} \\ b_{40} \ b_{41} \ b_{42} \ b_{43} \ b_{44} \ b_{45} \\ b_{50} \ b_{51} \ b_{52} \ b_{53} \ b_{54} \ b_{55} \end{array}$$

$$i = 0,1,2,3$$
 $j = 31$ $k = 31$

 $C_{00} C_{01} C_{02} C_{03} C_{04} C_{05}$ $C_{00} C_{01} C_{02} C_{03} C_{04} C_{05}$ C₁₀ C₁₁ C₁₂ C₁₃ C₁₄ C₁₅ $c_{20} c_{21} c_{22} c_{23} c_{24} c_{25}$ $a_{20} a_{21} a_{22} a_{23} a_{24} a_{25}$ C_{30} C_{31} C_{32} C_{33} C_{34} C_{35} C_{30} C_{31} C_{32} C_{33} C_{34} C_{35} C_{30} C_{31} C_{32} C_{33} C_{34} C_{35} (c_{40}) c_{41} c_{42} c_{43} c_{44} c_{45} c_{40} c_{41} c_{42} c_{43} c_{44} c_{45} C_{50} C_{51} C_{52} C_{53} C_{54} C_{55}

 $a_{10} a_{11} a_{12} a_{13} a_{14} a_{15}$ $a_{50} a_{51} a_{52} a_{53} a_{54} a_{55}$

 $b_{00} b_{01} b_{02} b_{03} b_{04} b_{05}$ b_{10} b_{11} b_{12} b_{13} b_{14} b_{15} $b_{20} b_{21} b_{22} b_{23} b_{24} b_{25}$ b_{30} b_{31} b_{32} b_{33} b_{34} b_{35} b_{40} b_{41} b_{42} b_{43} b_{44} b_{45} b_{50} b_{51} b_{52} b_{53} b_{54} b_{55}

$$i = 4,5,6,7$$
 $j = 0$ $k = 0$

```
1. #include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
3. {
4. for (int i = 0; i < n; i+=4)
5.
     for ( int j = 0; j < n; j++ ) {
6.
       m256d c0 = mm256 load pd(C+i+j*n); /* c0 = C[i][j]
* /
7.
  for ( int k = 0; k < n; k++ )
8.
     c0 = mm256 \text{ add } pd(c0, /* c0 += A[i][k]*B[k][j] */
9.
                mm256 mul pd(mm256 load pd(A+i+k*n),
                mm256 broadcast sd(B+k+j*n)));
10.
     mm256 store pd(C+i+j*n, c0); /* C[i][j] = c0 */
11.
12.
13. }
```



```
1. #include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
3. {
4. for (int i = 0; i < n; i+=4)
5.
     for ( int j = 0; j < n; j++ ) {
6.
       m256d c0 = mm256 load pd(C+i+j*n); /* c0 = C[i][j]
* /
7.
  for ( int k = 0; k < n; k++ )
8.
     c0 = mm256 \text{ add } pd(c0, /* c0 += A[i][k]*B[k][j] */
9.
                mm256 mul pd(mm256 load pd(A+i+k*n),
                mm256 broadcast sd(B+k+j*n)));
10.
     mm256 store pd(C+i+j*n, c0); /* C[i][j] = c0 */
11.
12.
13. }
```



```
1. #include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
3. {
4. for (int i = 0; i < n; i+=4)
     for ( int j = 0; j < n; j++ ) {
5.
6.
       m256d c0 = mm256 load pd(C+i+j*n); /* c0 = C[i][j]
* /
7.
  for ( int k = 0; k < n; k++ )
8.
     c0 = mm256 \text{ add } pd(c0, /* c0 += A[i][k]*B[k][j] */
9.
                mm256 mul pd(mm256 load pd(A+i+k*n),
                mm256 broadcast sd(B+k+j*n));
10.
     mm256 store pd(C+i+j*n, c0); /* C[i][j] = c0 */
11.
12.
13. }
```



```
1. #include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
3. {
4. for (int i = 0; i < n; i+=4)
5.
     for ( int j = 0; j < n; j++ ) {
6.
       m256d c0 = mm256 load pd(C+i+j*n); /* c0 = C[i][j]
* /
7.
  for ( int k = 0; k < n; k++ )
     c0 = mm256 \text{ add } pd(c0, /* c0 += A[i][k]*B[k][j] */
8.
9.
                mm256 mul pd(mm256 load pd(A+i+k*n),
                mm256 broadcast sd(B+k+j*n)));
10.
11.
     mm256 store pd(C+i+j*n, c0); /* C[i][j] = c0 */
12.
13. }
```



```
1. #include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
3. {
4. for (int i = 0; i < n; i+=4)
5.
     for ( int j = 0; j < n; j++ ) {
6.
       m256d c0 = mm256 load pd(C+i+j*n); /* c0 = C[i][j]
* /
7.
  for ( int k = 0; k < n; k++ )
8.
     c0 = mm256 \text{ add } pd(c0, /* c0 += A[i][k]*B[k][j] */
9.
                mm256 mul pd( mm256 load pd(A+i+k*n),
                mm256 broadcast sd(B+k+j*n)));
10.
     mm256 store pd(C+i+j*n, c0); /* C[i][j] = c0 */
11.
12.
13. }
```



```
1. #include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
3. {
4. for (int i = 0; i < n; i+=4)
5.
     for ( int j = 0; j < n; j++ ) {
6.
       m256d c0 = mm256 load pd(C+i+j*n); /* c0 = C[i][j]
* /
7.
  for ( int k = 0; k < n; k++ )
8.
     c0 = mm256 \text{ add } pd(c0, /* c0 += A[i][k]*B[k][j] */
9.
                mm256 mul pd( mm256 load pd(A+i+k*n),
10.
                mm256 broadcast sd(B+k+j*n));
     mm256 store pd(C+i+j*n, c0); /* C[i][j] = c0 */
11.
12.
13. }
```



```
1. #include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
3. {
4. for (int i = 0; i < n; i+=4)
     for ( int j = 0; j < n; j++ ) {
5.
6.
       m256d c0 = mm256 load pd(C+i+j*n); /* c0 = C[i][j]
* /
7.
  for ( int k = 0; k < n; k++ )
     c0 = mm256 \text{ add } pd(c0, /* c0 += A[i][k]*B[k][j] */
8.
9.
                mm256 mul pd (mm256 load pd (A+i+k*n),
                mm256 broadcast sd(B+k+j*n)));
10.
     mm256 store pd(C+i+j*n, c0); /* C[i][j] = c0 */
11.
12.
13. }
```



```
1. #include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
3. {
4. for (int i = 0; i < n; i+=4)
5.
     for ( int j = 0; j < n; j++ ) {
6.
       m256d c0 = mm256 load pd(C+i+j*n); /* c0 = C[i][j]
* /
7.
  for ( int k = 0; k < n; k++ )
8.
     c0 = mm256 add pd(c0, /* c0 += A[i][k]*B[k][j] */
9.
                mm256 mul pd (mm256 load pd (A+i+k*n),
                mm256 broadcast sd(B+k+j*n));
10.
     mm256 store pd(C+i+j*n, c0); /* C[i][j] = c0 */
11.
12.
13. }
```


Optimized x86 assembly code:

```
1. vmovapd (%r11),%ymm0
                           # Load 4 elements of C into %ymm0
2. mov %rbx, %rcx
                         # register %rcx = %rbx
                         # register %eax = 0
3. xor %eax, %eax
4. vbroadcastsd (%rax, %r8,1), %ymm1 # Make 4 copies of B element
5. add $0x8, %rax
                 # register %rax = %rax + 8
6. vmulpd (%rcx), %ymm1, %ymm1 # Parallel mul %ymm1, 4 A elements
7. add %r9,%rcx
                      # register %rcx = %rcx + %r9
8. cmp %r10,%rax
                        # compare %r10 to %rax
9. vaddpd %ymm1, %ymm0, %ymm0 # Parallel add %ymm1, %ymm0
10. jne 50 <dgemm+0x50> # jump if not %r10 != %rax
                           # register % esi = % esi + 1
11. add $0x1, %esi
12. vmovapd %ymm0, (%r11) # Store %ymm0 into 4 C elements
```

[Generated with gcc (2014 version) when using C Intrinsics to induce full AVX exploitation]

Impact of subword parallelism

- Experiment: 32 x 32 matrices
 - 2.6GHz Intel Core i7 (Sandy Bridge)
 - Using a single core
- Unoptimized DGEMM
 - 1.7 GigaFLOPS
- Optimized DGEMM
 - 6.4 GigaFLOPS
- Speed up: 3.85 times as fast!

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter 3

Subword parallelism

Arithmetic for Multimedia

- Graphics and media processing operates on vectors of 8-bit and 16-bit data
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
 - SIMD (single-instruction, multiple-data)
- Saturating operations
 - On overflow, result is largest representable value
 - c.f. 2s-complement modulo arithmetic
 - E.g., clipping in audio, saturation in video

Floating Point (brief review)

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation

- In binary
 - \bullet ±1. $xxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0</p>
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Subword Parallellism

- Graphics and audio applications can take advantage of performing simultaneous operations on short vectors
 - Example: 128-bit adder:
 - Sixteen 8-bit adds
 - Eight 16-bit adds
 - Four 32-bit adds
- Also called data-level parallelism, vector parallelism, or Single Instruction, Multiple Data (SIMD)

x86 FP Architecture

- Originally based on 8087 FP coprocessor
 - 8 x 80-bit extended-precision registers
 - Used as a push-down stack
 - Registers indexed from TOS: ST(0), ST(1), ...
- FP values are 32-bit or 64 in memory
 - Converted on load/store of memory operand
 - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
 - Result: poor FP performance

x86 FP Instructions

Data transfer	Arithmetic	Compare	Transcendental
FILD mem/ST(i) FISTP mem/ST(i) FLDPI FLD1 FLDZ	FIADDP mem/ST(i) FISUBRP mem/ST(i) FIMULP mem/ST(i) FIDIVRP mem/ST(i) FSQRT FABS FRNDINT	FICOMP FSTSW AX/mem	FPATAN F2XMI FCOS FPTAN FPREM FPSIN FYL2X

Optional variations

- I: integer operand
- P: pop operand from stack
- R: reverse operand order
- But not all combinations allowed

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter 3

Arithmetic for Computers

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001⇒ actual exponent = 1 - 127 = -126
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 111111110 \Rightarrow actual exponent = 254 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001⇒ actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $= \pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value

 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to 23 x log₁₀2 ≈ 23 x 0.3 ≈ 6 decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to 52 x log₁₀2 ≈ 52 x 0.3 ≈ 16 decimal digits of precision

Floating-Point Example

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 011111110_2$
 - Double: $-1 + 1023 = 1022 = 0111111111110_2$
- Single: 1011111101000...00
- Double: 10111111111101000...00

Floating-Point Example

 What number is represented by the singleprecision float

11000000101000...00

- S = 1
- Fraction = $01000...00_2$
- Fxponent = $10000001_2 = 129$

$$x = (-1)^{1} \times (1 + 01_{2}) \times 2^{(129 - 127)}$$

$$= (-1) \times 1.25 \times 2^{2}$$

$$= -5.0$$

Floating-Point Addition

- Consider a 4-digit decimal example
 - $-9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- 1. Align decimal points
 - Shift number with smaller exponent
 - \bullet 9.999 × 10¹ + 0.016 × 10¹
- 2. Add significands
 - $\mathbf{9.999 \times 10^1 + 0.016 \times 10^1 = 10.015 \times 10^1}$
- 3. Normalize result & check for over/underflow
 - \bullet 1.0015 × 10²
- 4. Round and renormalize if necessary
 - 1.002×10^{2}

Floating-Point Addition

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $-1.000_2 \times 2^{-4}$ (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

FP Adder Hardware

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - Release 2 of MIPs ISA supports 32 x 64-bit FP reg's
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - lwc1, ldc1, swc1, sdc1
 - e.g., ldc1 \$f8, 32(\$sp)

FP Instructions in MIPS

- Single-precision arithmetic
 - add.s, sub.s, mul.s, div.s
 - e.g., add.s \$f0, \$f1, \$f6
- Double-precision arithmetic
 - add.d, sub.d, mul.d, div.d
 - e.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
 - c.xx.s, c.xx.d (xx is eq, 1t, 1e, ...)
 - Sets or clears FP condition-code bit
 - e.g. c.lt.s \$f3, \$f4
- Branch on FP condition code true or false
 - bc1t, bc1f
 - e.g., bc1t TargetLabel

FP Example: °F to °C

C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

```
f2c: lwc1  $f16, const5($gp)
    lwc2  $f18, const9($gp)
    div.s  $f16, $f16, $f18
    lwc1  $f18, const32($gp)
    sub.s  $f18, $f12, $f18
    mul.s  $f0, $f16, $f18
    jr  $ra
```

FP Example: Array Multiplication

- $X = X + Y \times Z$
 - All 32 × 32 matrices, 64-bit double-precision elements
- C code:

Addresses of x, y, z in \$a0, \$a1, \$a2, and i, j, k in \$s0, \$s1, \$s2

FP Example: Array Multiplication

MIPS code:

```
li $t1, 32
                    # $t1 = 32 (row size/loop end)
   li $s0, 0
                     # i = 0; initialize 1st for loop
L1: li $s1, 0
                     # j = 0; restart 2nd for loop
L2: li \$s2, 0 # k = 0; restart 3rd for loop
   sll t2, s0, t2 # t2 = i * 32 (size of row of x)
   addu t2, t2, t2, t2 = i * size(row) + j
   sll $t2, $t2, 3 # $t2 = byte offset of [i][j]
   addu t2, a0, t2 \# t2 = byte address of <math>x[i][j]
   1.d f4, 0(f2) # f4 = 8 bytes of x[i][j]
L3: s11 $t0, $s2, 5 # $t0 = k * 32 (size of row of z)
   addu t0, t0, s1 # t0 = k * size(row) + j
   sll $t0, $t0, 3 # $t0 = byte offset of [k][j]
   addu t0, a2, t0 # t0 = byte address of <math>z[k][j]
   1.d f16, 0(t0) # f16 = 8 bytes of z[k][j]
```

...

FP Example: Array Multiplication

```
\$11 \$t0, \$s0, 5  # \$t0 = i*32 (size of row of y)
addu $t0, $t0, $s2  # $t0 = i*size(row) + k
sll $t0, $t0, 3 # $t0 = byte offset of [i][k]
addu $t0, $a1, $t0  # $t0 = byte address of y[i][k]
1.d f18, 0(t0) # f18 = 8 bytes of y[i][k]
mul.d f16, f18, f16 # f16 = y[i][k] * z[k][j]
add.d f4, f4, f4 # f4=x[i][j] + y[i][k]*z[k][j]
addiu $s2, $s2, 1 # $k k + 1
bne $s2, $t1, L3 # if (k != 32) go to L3
s.d f4, 0(t2) # x[i][j] = f4
addiu \$s1, \$s1, 1 # \$j = j + 1
bne $s1, $t1, L2 # if (j != 32) go to L2
addiu $s0, $s0, 1
                    # $i = i + 1
bne $s0, $t1, L1 # if (i != 32) go to L1
```

Accurate Arithmetic

- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - Choice of rounding modes
 - Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

Right Shift and Division

- Left shift by i places multiplies an integer by 2ⁱ
- Right shift divides by 2ⁱ?
 - Only for unsigned integers
- For signed integers
 - Arithmetic right shift: replicate the sign bit
 - e.g., -5 / 4
 - \blacksquare 11111011₂ >> 2 = 111111110₂ = -2
 - Rounds toward -∞
 - c.f. $11111011_2 >>> 2 = 001111110_2 = +62$

Associativity

- Parallel programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail

		(x+y)+z	x+(y+z)
X	-1.50E+38		-1.50E+38
У	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

 Need to validate parallel programs under varying degrees of parallelism

Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!" ⊗
- The Intel Pentium FDIV bug
 - The market expects accuracy
 - See Colwell, The Pentium Chronicles

Concluding Remarks

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent

bla

C^{00}	C ₀₁	C_{02}	c_{03}	C ₀₄	C ₀₅
C ₁₀	C ₁₁	C ₁₂	C ₁₃	C ₁₄	C ₁₅
\mathbf{C}_{20}	C ₂₁	\mathbf{C}_{22}	C ₂₃	\mathbf{C}_{24}	C ₂₅
C ₃₀	C ₃₁	C_{32}	C ₃₃	C_{34}	C ₃₅
\mathbf{C}_{40}	C ₄₁	\mathbf{C}_{42}	C ₄₃	\mathbf{C}_{44}	C ₄₅
C ₅₀	C ₅₁	C ₅₂	C ₅₃	C ₅₄	C ₅₅

a_{00}	a ₀₁	a ₀₂	a ₀₃	a ₀₄	a ₀₅
a ₁₀	a ₁₁	a ₁₂	a ₁₃	a ₁₄	a ₁₅
a_{20}	a ₂₁	a ₂₂	a ₂₃	a ₂₄	a ₂₅
a ₃₀	a ₃₁	a ₃₂	a ₃₃	a ₃₄	a ₃₅
a_{40}	a ₄₁	a ₄₂	a ₄₃	a_{44}	a ₄₅
a ₅₀	a ₅₁	a ₅₂	a ₅₃	a ₅₄	a ₅₅

$b_{00} b_{01}$	b ₀₂	b ₀₃	b ₀₄	b ₀₅
$b_{10} b_{11}$	b_{12}	b_{13}	b_{14}	b ₁₅
$b_{20} b_{21}$	b_{22}	b ₂₃	b ₂₄	b ₂₅
$b_{30} b_{31}$	b_{32}	b ₃₃	b ₃₄	b ₃₅
$b_{40} b_{41}$	b_{42}	b ₄₃	b ₄₄	b ₄₅
$b_{50} b_{51}$	b ₅₂	b ₅₃	b ₅₄	b ₅₅