$$\beta \in \mathscr{B}_{\Theta} \cap (\Theta + 1) \land \alpha \in \mathscr{B}_{b^{St}} \Rightarrow \alpha^{V} \in \mathscr{B}_{\beta^{V}}^{V}$$
 (9.41)

$$\beta \in \mathscr{B}_{\Theta+1} \wedge \alpha \in Cr(\beta) \Rightarrow \alpha^{V} \in Cr(\beta^{V}).$$
 (9.42)

Property (9.42) holds true since $\alpha \in Cr(\beta)$ implies that there is a $\beta_0 \geq \beta$ such that $\alpha \in Cr(\beta_0) \setminus Cr(\beta_0 + 1)$. Then $\alpha = \bar{\varphi}_{\beta_0}(\eta)$ for some η and thus $\alpha^V = \lceil \alpha \rceil^V = \bar{\varphi}_{\beta_0} \rceil_V(\lceil \eta \rceil^V) \in Cr(\beta_0^V) \subseteq Cr(\beta^V)$ since $\beta^V \leq \beta_0^V$ by (9.40).

For $\beta \in \mathcal{B}_{\Theta} \cap (\Theta + 1)$ the interpretation V is thus an embedding from \mathcal{B}_{β} into $\mathcal{B}_{\beta^V}^V$ which preserves principality, strong criticality and β -criticality. We will now prove that this embedding is also onto. The proof will need a relativized version of Lemma 9.6.2 saying that if $\psi_V(\alpha) \in \mathcal{B}_{\beta}^{V,n}$ there is an $\alpha_0 \in \mathcal{B}_{\beta}^{V,n}$ such that $\alpha_0 \in \mathcal{B}_{\alpha_0}^V$ and $\psi_V(\alpha) = \psi_V(\alpha_0)$, where $\mathcal{B}_{\beta}^{V,n}$ is defined analogously to \mathcal{B}_{β}^n . Since the proof of Lemma 9.6.2 only needs $\psi(\alpha) < \Omega$ it relativizes easily to interpretations which are good relative to some Θ .

9.7.8 Lemma Let V be a good interpretation relative to Θ and $\beta \in \mathscr{B}_{\Theta} \cap (\Theta + 1)$. Then for every $\alpha \in \mathscr{B}^{V}_{\beta^{V}}$ there is a $\gamma \in \mathscr{B}_{\beta}$ such that $\alpha = \gamma^{V}$. Moreover we have $\alpha \in SC$ iff $\gamma \in SC$ and $\alpha \in \mathbb{H}$ iff $\gamma \in \mathbb{H}$.

Proof Let $\alpha \in \mathscr{B}_{\beta}^{V,n}$. We prove the lemma by induction on β^V with side induction on n.

If $\alpha=0$ we put $\gamma:=0$ and if $\alpha=V(\Omega)$ we put $\gamma:=\omega_1$. Now assume $\alpha=_{NF}$ $\alpha_1+\cdots+\alpha_n$. Then $\mathbb{H}\ni\alpha_i<\alpha$ for $i=1,\ldots,n$. By the main induction hypothesis there are ordinals $\gamma_i\in\mathscr{B}_\beta$ such that $\alpha_i=\gamma_i^V$ and $\gamma_i\in\mathbb{H}$. By equation (9.40) we obtain $\gamma_1\geq\cdots\geq\gamma_n$ and put $\gamma:=\gamma_1\cdots+\gamma_n$. Then $\gamma=_{NF}\gamma_1\cdots+\gamma_n$ and $\gamma^V=\gamma_1^V\cdots+\gamma_n^V$, $\gamma\in\mathscr{B}_\beta$ and $\gamma\notin\mathbb{H}$.

Next assume $\alpha = \bar{\varphi}_{\alpha_1}(\alpha_2)$. Then $\alpha \in \mathbb{H} \setminus SC$ and $\alpha_i < \alpha$. By the main induction hypothesis there are ordinals $\gamma_1, \gamma_2 \in \mathscr{B}_{\beta}$ such that $\gamma_i^V = \alpha_i$ for i = 1, 2. Let $\gamma = \bar{\varphi}_{\gamma_1}(\gamma_2)$. Then $\gamma \in \mathscr{B}_{\beta}$ and $\gamma_i < \gamma$ for i = 1, 2.

Let $\alpha = \psi_V(\eta)$ such that $\eta \in \mathcal{B}_{\beta^V}^{V,n-1} \cap \beta^V$. Then $\alpha \in SC$. By Lemma 9.6.2 there is an $\eta_0 \in \mathcal{B}_{\beta^V}^{V,n-1} \cap \beta^V$ such that $\eta_0 \in \mathcal{B}_{\eta_0}^V$ and $\alpha = \psi_V(\eta_0)$. By induction hypothesis there is an α_0 such that $\eta_0 = \alpha_0^V$, hence $\alpha_0^V \in \mathcal{B}_{\alpha_0^V}^V$, which implies $\alpha_0 \in \mathcal{B}_{\alpha_0}$. So $\gamma := \psi(\alpha_0)$ implies $\gamma \in SC$ and $\gamma =_{NF} \psi(\alpha_0)$ and we obtain $\alpha = \psi_V(\eta_0) = \psi_V(\alpha_0^V) = \psi(\alpha_0)^V = \gamma^V$.

9.7.9 Theorem Let V be an interpretation which is good relative to Θ and $\beta \in \mathscr{B}_{\Theta} \cap (\Theta + 1)$. Then $(\mathscr{B}_{\beta})^V = \mathscr{B}_{\beta^V}^V$.

Proof From $\alpha \in \mathscr{B}_{\beta}$ we obtain $\alpha^{V} \in \mathscr{B}_{\beta^{V}}^{V}$ by (9.41). Hence $(\mathscr{B}_{\beta})^{V} := \{\alpha^{V} \mid \alpha \in \mathscr{B}_{\beta}\} \subseteq \mathscr{B}_{\beta^{V}}^{V}$. Conversely we obtain for $\alpha \in \mathscr{B}_{\beta^{V}}^{V}$ a $\gamma \in \mathscr{B}_{\beta}$ such that $\alpha = \gamma^{V} \in (\mathscr{B}_{\beta})^{V}$ by Lemma 9.7.8. Hence $\mathscr{B}_{\beta^{V}}^{V} \subseteq (\mathscr{B}_{\beta})^{V}$.