

Universidade Federal da Paraíba

Cálculo Numérico

Atividade 1

Professora: Tatiana Araújo Simões $\begin{array}{c} Aluno: \\ \text{João Wallace Lucena Lins} \\ 20180027213 \end{array}$

8 de outubro de 2023

1 Questão 1

Resolva a equação abaixo utilizando as Fórmulas de Bhaskara, e compare com o valor obtido através da equação alternativa pelas relações de Girard, conforme fizemos em sala. Calcule o erro relativo das aproximações, para os dois métodos, em relação ao valor exato, o qual considera um sistema de ponto flutuante mais robusto).

$$x^{2} + 300.01x + 3 = 0$$
 em $F(10, 5, -1, 5)$

Resposta: Primeiramente, iremos calcular o delta. Levaremos em conta as limitações do sistema de ponto flutuante e fazendo aproximações quando necessário:

$$\Delta = 300.01^2 - 4 * 1 * 3$$

$$\Delta = 90006 - 12 = 89994$$

Com ele, podemos então calcular as raízes x' e x'' a partir da fórmula de Bhaskara:

$$x^{'} = \frac{-300.01 + \sqrt{89994}}{2} = -0.01$$

$$x'' = \frac{-300.01 - \sqrt{89994}}{2} = -300$$

E agora usando o as relações de Girard na raíz onde há subtração:

$$x' + x'' = -\frac{b}{a}$$

$$x^{'} - 300 = -\frac{300.01}{1}$$

$$x^{'} = -0.01$$

Podemos observar que obtivemos o mesmo valor para a raíz com os dois métodos. Obtivemos os seguintes valores atráves de um script Python:

$$x'' = -300.0$$

Agora só nos resta calcular o erro absoluto e relativo:

$$E_{abs} = -0.01 + 0.009999999999999005 \approx 0$$

$$E_{rel} = \frac{E_{abs}}{0.01} = 0$$

2 Questão 2

Use três iterações pelo método da Falsa Posição e pelo Método de Newton para determinar até que profundidade o tanque deve estar cheio para que ele armazene 30.213 m³. Determine o gráfico do erro absoluto para cada método.

Resposta: Primeiramente, iremos anotar as funções do problema:

- $V(h) = 2\pi h^2 \frac{(3R-h)}{3}$;
- R = 3 m;
- $V_f = 30.213 \text{ m}^3$.

Então, começaremos tentando encontrar o valor de h que atinja o volume V_f :

$$30.213 = 2\pi h^2 \frac{(3R - h)}{3}$$

$$2\pi h^2 \frac{(3R-h)}{3} - 30.213 = 0$$

Tendo a função que desejamos em mãos, só nos resta aplicar os métodos. Abaixo seguem as tabelas e gráficos pedidos. Será utilizado o intervalo (1, 2) para o método da Falsa Posição.

Método de Newton				
X	f(x)	$\mathbf{E}_{absoluto}$		
1	-11.3634440784612			
1.20094981062616	2.43643702313862	0.200949810626159		
1.17107651776798	0.0601031773925058	0.0298732928581813		
1.17030151276023	3.97668190963429e-5	0.000775005007747520		

Método da Falsa Posição

X	f(x)	$\mathbf{E}_{absoluto}$
1	-11.363444078461242	
1.0861213474112112	-6.061941370469565	0.08612134741121125
1.1298645809131322	-3.024809342882328	0.043743233501921
1.1511576062754365	-1.458522168633305	0.021293025362304263

Método de Newton

Método da Falsa Posição

3 Questão 3

Calcule uma aproximação para a raiz de f(y) pelo Método da Bisseção e pelo método das Secantes com $\epsilon=10^{-5}$ e critério de parada $|f(x_k)|<\epsilon$. Informe a largura da rua, para essa aproximação.

Resposta: Primeiramente, iremos anotar as variáveis do problema:

•
$$f(y) = y^4 - 16y^3 + 500y^2 - 8000y + 32000$$
;

$$\bullet \ \ x = \sqrt{400 - y^2}.$$

Utilizando o método da secante:

X	f(x)	$\mid \mathbf{E}_{relativo} \mid$
10	-4000	
12	1088	
11.572327044025156	-481.03303520930785	0.03563941299790363
11.703442715571274	-29.754374471653136	0.01133010422599604
11.712087628636535	0.9137759859513608	0.0007386641072510322
11.711830048252919	-0.001643173411139287	2.1992696074646397e-05
11.711830510608587	-9.045470505952835e-08	3.947766203173207e-08

Já usando o método da bisseção no intervalo (10, 18), temos:

x	f(x)	$\mid \mathbf{E}_{relativo} \mid$
10	-4000	
14.0	12512.0	0.4
12.0	1088.0	0.14285714285714285
11.0	-2155.0	0.0833333333333333
11.5	-718.9375	0.045454545454545456
11.75	136.75390625	0.021739130434782608
11.625	-302.855224609375	0.010638297872340425
11.6875	-86.01390075683594	0.005376344086021506
11.71875	24.62637424468994	0.00267379679144385
11.703125	-30.879317224025726	0.00133333333333333333
11.7109375	-3.172904070466757	0.0006675567423230974
11.71484375	10.715121425921097	0.000333555703802535
11.712890625	3.7682059521466726	0.00016672224074691563
11.7119140625	0.2969253456394654	8.337502084375521e-05
11.71142578125	-1.4381707504362566	4.169098640873843e-05
11.711669921875	-0.5706680507573765	2.0846362309776944e-05
11.7117919921875	-0.13688268981059082	1.0422963874007213e-05
11.71185302734375	0.08001849357970059	5.2114276184818065e-06
11.711822509765625	-0.028432806699129287	2.60570022982276e-06
11.711837768554688	0.025792666296183597	1.3028535097570699e-06
11.711830139160156	-0.0013201144902268425	6.514259061660068e-07
11.711833953857422	0.012236264832608867	3.2571316526099723e-07
11.711832046508789	0.005458072409965098	1.6285652958598287e-07
11.711831092834473	0.0020689782613771968	8.142827805411821e-08
11.711830615997314	0.00037443172186613083	4.071414234234161e-08
11.711830377578735	-0.0004728414278361015	2.035707199999153e-08
11.711830496788025	-4.92048857267946e-05	1.017853620720096e-08
11.71183055639267	0.00016261341806966811	5.089268051799181e-09
11.711830526590347	5.6704280723351985e-05	2.5446340129492657e-09
11.711830511689186	3.7496938602998853e-06	1.272317009712214e-09

Assim, podemos concluir que a rua tem aproximadamente 11.7118m de largura.

Observação: Todas as questões foram resolvidas através de uma implementação no Python, caso queira ver os códigos é só pedir.