Qual a resistência total de duas resistências de 25 🗯 cada, quando ligadas em série ?

a)	12,5 Ω	***********************************	
১)	25 Ω	***************************************	
¢)	50 ⋅Ω	*****************************	
d)	37,5 Ω	**!***	

Nota: Os vários possíveis componentes de um circuito eléctrico podem ser ligados, entre si, de diferentes maneiras. Ligação em série: dois ou mais componentes dizem-se ligados em série quando a corrente eléctrica é obrigada a percorrê-los um após outro. Também se pode definir a ligação em série como aquele tipo de ligação onde não se pode retirar qualquer um dos componentes sem que haja uma interrupção do circuito.

ţ

×

2,2,3,2

A resistência total do circuito abaixo indicado é de:

a.,	41 11	***************************************	
ъ)	2,1 Ω	*************	
٥)	28,3 Ω	*********************************	
d)	21,2 \$	***************************************	123

Nota: Cálculo da resistência do paralelo (1)

$$Rp = \frac{R2 \times R3}{R2 + R3} = \frac{8 \times 4}{8 + 4} = \frac{32}{12} = 2,666\Omega$$

Cálculo da remistência do paralelo (2)

$$Rp2 = \frac{R4 \times R5}{R4 + R5} = \frac{15 \times 20}{15 + 20} = 8,571 \Omega$$

Cálculo da remistência total: