Chapter 7

Written Exercises, Pages 243-244

1. 5:3 3, 1:5 5, 3:16 7, 2 to 1 9, $\frac{1}{3}$ 11, $\frac{17}{1}$ 13, 12:6:5 15, 1:9 17, 3:4

19. 8:5 **21.** $\frac{3}{4b}$ **23.** $\frac{3}{a}$ **25.** 132, 48 **27.** 37.5, 52.5 **29.** 72, 90, 90, 144, 162, 162 **31.** 50,

70, 110, 130; 2 s-s. int. \(\Lambda \) are supp. 33. a. 104 b. 0.310 35. 52.5

Written Exercises, Pages 247-248

1. 6 3. 21 5. $\frac{4}{7}$ 7. $\frac{y+3}{3}$ 9. $2\frac{2}{5}$ 11. $\frac{14}{15}$ 13. -3 15. 2 17. 11 19. 3

21. 21; 12; 28 **23.** 8; 24; 20 **25.** 8; 4; 15 **27.** 27; 36; 12 **29.** By the means-ext. prop., $\frac{a+b}{b}$

 $\frac{c+d}{d}$ is equiv. to ad + bd = bc + bd, or ad = bc. 33. 20 35. $\frac{1}{2}$ 37. 4 or $-\frac{9}{5}$ 39. x = 16, y = 4 43. 3:2

Written Exercises, Pages 250-252

1. always 3. sometimes 5. always 7. sometimes 9. always 11. never 13. sometimes

15. 4:5 17. 135 19. 12 21. 4k 23. Prop. 2 25. x = 8, y = 18, z = 12 27. $x = 6\frac{1}{4}$

 $y = 6\frac{2}{3}, z = 5$ 29. 31. RS = RS, but ZR > XR, so $\frac{RS}{RS} = 1 \neq \frac{ZR}{XR}$.

33. C'(9, 1), D'(8, 2), or C'(5, 1), D'(6, 2) 35. 90; sq. 37. a. $-3 + 3\sqrt{5}$ b. $\frac{1 + \sqrt{5}}{2}$; 1.62

Self-Test 1, Page 252

1. 3:5 2. 3 to 10 3. $\frac{2a}{3b}$ 4. 6 5. 10 6. 3 7. No 8. Yes 9. Yes 10. 45, 60, 75

11. 2:3 **12.** 12 **13.** 15 **14.** 12 **15.** 100, 100, 100, 120, 140, 160

Written Exercises, Pages 257-260

1. ~ 3. ~ 5. No concl. 7. ~ 9. No concl. 11. x = 6, y = 4 13. x = 9, y = 5 15. 27 m 17. 0.55 cm 19. x = 2, y = 6 21. a. 1. $\overline{EF} \parallel \overline{RS}$ (Given) 2. $\angle XFE \cong \angle XSR$; $\angle XEF \cong \angle XRS$ (If lines \parallel , corr. $\angle \cong$.) 3. $\triangle FXE \sim \triangle SXR$ (AA \sim) b. 1. $\triangle FXE \sim \triangle SXR$ (Part (a), above) 2. $\frac{FX}{SY} = \frac{EF}{PS}$ (Corr. sides of $\sim \triangle$ are in prop.) 23. 1. $\angle B \cong \angle C$ (Given) 2. $\angle 1 \cong \angle 2$ (Vert. $\triangle \cong$.)

3. $\triangle MLC \sim \triangle MNB$ (AA \sim) 4. $\frac{NM}{LM} = \frac{BM}{CM}$ (Corr. sides of $\sim \triangle$ are in prop.) 5. $NM \cdot CM = LM \cdot BM$ (means-ext. prop.) 25. Key steps of proof: 1. $\angle B \cong \angle Y$ (Corr. \triangle of $\sim \triangle$ are \cong .) 2. $\triangle ADB \sim \triangle XWY$ (AA \sim) 3. $\frac{AD}{XW} = \frac{AB}{XY}$ (Corr. sides of $\sim \triangle$ are in prop.) 27. Key steps of proof: 1. $\triangle AHE \sim \triangle ADG$

(AA \sim) 2. $\frac{AE}{AG} = \frac{HE}{DG}$ (Corr. sides of $\sim \triangle$ are in prop.) 3. $AE \cdot DG = AG \cdot HE$ (means-ext. prop.)

29. Key steps of proof: 1. $\triangle ABC \sim \triangle ADB$ (AA \sim) 2. $\frac{AB}{AD} = \frac{AC}{AB}$ (Corr. sides of $\sim \triangle$ are in prop.) 3. $(AB)^2 = AD \cdot AC$ (means-ext. prop.) 31. 20

Written Exercises, Pages 266-267

1. $\triangle BAC \sim \triangle EDC$; SAS \sim 3. $\triangle LKM \sim \triangle NPO$; SAS \sim 5. $\triangle ABC \sim \triangle AEF$; AA \sim

7. $\triangle ABC \sim \triangle TRI$; 2:3 9. $\triangle ABC \sim \triangle ITR$; 2:5 11. 1. $\frac{DE}{GH} = \frac{DF}{GI} = \frac{EF}{HI}$ (Given)