Eigen-Dev

Ali Taqi

2/23/2021

Standard Normal, Different Norms (Standard and Power-4)

P <- RM_norm(100, cplx = T)
P %>% dispersion.histogram()

Distribution of Eigenvalue Spacings

P %>% dispersion.scatterplot()

P %>% dispersion.varplot()

Warning: Removed 1 rows containing missing values (geom_point).

$100 \times 100; \, \mathrm{N}(10{,}1)$ Complex Hermitian

```
P <- RM_norm(100, mean = 10, cplx = T, herm = T)
P %>% spectrum.scatterplot()
```


P %>% dispersion.histogram()

P %>% dispersion.scatterplot()

P %>% dispersion.varplot()

Warning: Removed 1 rows containing missing values (geom_point).

Beta = 4 (Standard Norm)

```
ens <- RME_beta(N = 20, beta = 4, size = 100)
ens %>% spectrum.scatterplot()
```


ens %>% dispersion.histogram()

ens %>% dispersion.scatterplot()

Distribution of Eigenvalue Spacings by Ranking Difference Class

ens %>% dispersion.varplot()

Variance of Eigenvalue Spacings by Ranking Difference Class

Beta = 4 (Power-4 Norm)

ens %>% spectrum.scatterplot()

ens %>% dispersion.scatterplot()

Distribution of Eigenvalue Spacings by Ranking Difference Class

ens %>% dispersion.varplot(norm = 4)


```
ens <- RME_beta(N = 20, beta = 4, size = 100)
ens %>% spectrum.scatterplot()
```


ens %>% dispersion.histogram()

ens %>% dispersion.scatterplot()

Distribution of Eigenvalue Spacings by Ranking Difference Class

ens %>% dispersion.varplot()

