GPS-PFD 说明文档

GPS-PFD

by SAM TOKI STUDIO

v0.17 (2025/02/22) Beta Test

 $\underline{https://SamToki.github.io/GPS-PFD}$

景目

1. 简介	7	4
2. 使用	月前须知	4
2.1.	使用环境	4
	离线使用	
	安全与隐私	
2.4.	已知问题	5
3. 教程	星	6
3.1.	PFD(主界面)	6
	3.1.1. 导航栏	6
	3.1.2. 信息栏	6
	3.1.3. 模式指示器 (Mode annunciator)	7
	3.1.4. 姿态仪(Attitude indicator)	9
	3.1.5. 空速表(Airspeed indicator)	9
	3.1.6. 高度表(Altimeter)	10
	3.1.7. 垂直速度表(Vertical speed indicator/Variometer)	10
	3.1.8. 朝向指示器 (指南针, Heading indicator)	
	3.1.9. 测距仪(DME)	
	3.1.10. 无线电高度表(Radio altimeter)	11
	3.1.11. 决断高度(Decision altitude)	11
	3.1.12. 警告系统	11
	3.1.13. PFD 菜单	
3.2.	设定	13
	3.2.1. 姿态仪	
	3.2.2. 速度	
	3.2.3. 高度	15
	3.2.4. 测距仪	
	3.2.5. 飞航模式	
	3.2.6. 显示	
	3.2.7. 声音	
	3.2.8. 国际化	
	3.2.9. PWA	
	3.2.10. 开发者选项	
	3.2.11. 用户数据	
3.3.	帮助	20

4.	. 使用方式	21
	4.1. 在线使用	21
	4.2. 完全离线使用	
	4.2.1. 下载资源	
	4.2.2. 直接打开文件(File 协议)	
	4.2.3. 使用本地服务器(HTTP 协议)	
5.	. 技术说明	22
	5.1. 图解各种速度、高度之间的区别	22
	5.2. 计量单位	
	5.3. 算法	
	5.3.1. 姿态(Attitude)	
	5.3.2. 真空速(True airspeed)	
	5.3.3. 飞机外气温(Outside air temperature)	23
	5.3.4. 飞机外气压	23
	5.3.5. 飞机外空气密度	23
	5.3.6. 表速(Indicated airspeed)	24
	5.3.7. 马赫数(Mach number)	24
	5.3.8. 通过两地经纬度计算距离	
	5.4. 襟翼参考标尺	25
	5.4.1. 波音 737-800	
	5.4.2. 空客 A320	
	5.5. 警告的触发条件	26
	5.5.1. 倾角过大(Bank angle)	26
	5.5.2. 不要下降 (Don't sink)	26
	5.5.3. 偏离下滑道(Glide slope)	
	5.5.4. 下降率过大(Sink rate)、拉杆(Pull up!)	27
6.	. 参与进来	28
	6.1. 反馈	28
	6.2. 翻译	
7.	. 免责声明	28
8.	. 隐私权声明	29
9.	. 版权说明	29
1(0. Credits	29

1. 简介

GPS-PFD, 利用 GPS 与加速计, 在移动设备上模拟飞机驾驶舱的 PFD。

备注:这里的「GPS」指的是位置服务,其利用以 GPS 为代表的卫星导航系统 (GNSS)来精确定位。卫星导航系统包括美国 GPS、俄罗斯 GLONASS,以及中国北斗等。加速计亦称加速度传感器、重力感应器,用于测量姿态、速度与高度。

2. 使用前须知

2.1. 使用环境

建议在搭载了 GPS 芯片与加速计的移动设备(智能手机或平板电脑)上使用本应用程序。否则核心功能可能不可用。GPS 可能会非常耗电,因此建议使用时连接移动电源(充电宝)。

2.2. 离线使用

在没有网络连接的飞机上,您需要离线使用本应用程序。有两种方式来离线使用:

- 断网前先在线访问一次。
- 下载资源至本地,在本地运行网页。

详见「使用方式」。

2.3. 安全与隐私

本应用程序仅供娱乐用途。警报功能可能出现误报。使用时请注意安全。本应用程序可能使用位置服务。详见免责声明与隐私权声明。

2.4. 已知问题

本应用程序仍处于测试阶段。已知问题有:

- 加速计误差严重。系统已尽可能减小误差。
- 在 Firefox for Android 上, 「保持屏幕常亮」可能不起作用, 且偶尔会出错。
- 在 Brave for Android 上无法使用。

若您有其他问题或建议,请向我提供反馈。

3. 教程

3.1. PFD(主界面)

- ① 导航栏
- ② 信息栏
- ③ 模式指示器
- ④ 姿态仪

- ⑤ 空速表
- ⑥ 高度表
- ⑦ 垂直速度表
- ⑧ 朝向指示器
- ⑨ PFD 菜单

3.1.1. 导航栏

用于在「PFD」「设定」「帮助」之间导航。点击按钮即可跳转至对应的部分。右上角的「主页」用于跳转至「<u>Sam Toki 的个人网站</u>」。若您<u>完全离线使用本应用程序</u>,这个链接可能会失效。

滚动网页时,当前所在部分对应的导航栏按钮会高亮。

3.1.2. 信息栏

(1) GPS 状态

GPS 的可用状态。可能显示「正常」「信号弱」或「不可用」。在 GPS 可用时,若位置精度小等于10米,高度数据可用,且高度精度小等于20米,则显示「正常」。否则显示「信号弱」。

(2) 加速计状态

加速计的可用状态。加速计可用时显示「正常」,否则显示「不可用」。

(3) 地速 (Ground speed)

您相对于地面的水平速度。

为了显示流畅, 地速以及 PFD 面板中的大部分数据都设计了显示延迟。

(4) 平均地速

如字面意思。该信息可用于测距仪(DME)的剩余时间计算。具体取决于设定。

(5) 真空速 (True airspeed)

您相对于周围空气的速度。真空速与地速、风速、您的朝向、风向,以及垂直速度有 关。详见技术说明。

(6) 风

显示风向与风速。风向0度为正北,90度为正东,180度为正南,以此类推。若风速为0则显示「无风」。

当有风且朝向指示器可用时,这里会显示一个相对于您的朝向的风向标。例如若风向标 垂直向下,则风迎面吹来(即 head wind)。

(7) 襟翼(Flaps)

<u>襟翼</u>是飞机在低速状态下用于提升升力的装置。您可在 <u>PFD 菜单</u>调节襟翼展开的百分比。襟翼设定会影响最大<u>限速</u>。

3.1.3. 模式指示器 (Mode annunciator)

指示姿态模式、速度模式、高度模式以及飞航模式(flight mode)。

(1) 姿态模式

姿态模式有「加速计」与「手动」两种。加速计利用重力感应来判断设备的姿态。

(2) 速度模式

速度模式有「GPS」「加速计」「双通道」与「手动」四种。详见「设定」中的「<u>速度</u>模式」。

(3) 高度模式

高度模式有「GPS」「加速计」「双通道」与「手动」四种。详见「设定」中的「<u>高度</u>模式」。

(4) 飞航模式 (Flight mode)

飞航模式用于决定参考出发机场还是到达机场的数据,以及切换<u>近地警告系统</u> (GPWS)的模式。飞航模式可在特定条件下自动切换。

在默认样式的 PFD 面板,飞航模式显示于姿态仪正上方。

飞航模式有以下六种:

- 出发地面
 - o 初始模式。各种功能都参考出发机场的数据。
 - 。 在表速(indicated airspeed) 大等于80节的情况下,当飞机离地30英尺,即 切换至起飞模式。

起飞

- o 最小限速生效。「不要下降」(Don't sink)警告可用。<u>无线电报高(radio</u> altitude callout)失效。
- 。 当飞机离地3000英尺, 即切换至巡航模式。

巡航

- 各种功能转为参考到达机场的数据。「不要下降」警告失效。
- 当飞机下降至3000英尺,即切换至降落模式。

降落

- o 「偏离下滑道」(Glide slope)警告可用。无线电报高重新生效。<u>决断高度</u> (decision altitude)生效。
- 当飞机下降至30英尺,即切换至到达地面模式。

到达地面

- 最小限速失效。「偏离下滑道」警告失效。决断高度失效。
- 当表速下降至5节,即切换至出发地面模式,并对调机场数据。

• 紧急返航

各种功能都参考出发机场的数据。「偏离下滑道」警告可用。无线电报高生效。决断高度生效。

当飞机下降至30英尺,即切换至出发地面模式。

3.1.4. 姿态仪 (Attitude indicator)

(1) 地平线

<u>姿态仪</u>背景的蓝色部分代表天空,棕色部分代表地面。交界处即为地平线。地平线最大显示20度的俯仰。

(2) 飞机标志

PFD 面板中央静止不动的白色(在浅色主题下)形状即为飞机标志。

(3) 俯仰(Pitch)

中央的刻度指示俯仰姿态。若飞机抬头10度,则飞机标志位于俯仰刻度的+10度。

(4) 横滚(Roll)

顶部的刻度指示横滚姿态。若飞机右倾10度,则横滚指针(正三角)指向横滚刻度的右 10度。

3.1.5. 空速表 (Airspeed indicator)

(1) 当前表速(指示空速, Indicated airspeed)

<u>表速</u>反映单位时间内流经机翼的空气粒子的数量,从而反映机翼的升力。 由于高处空气稀薄,飞机的表速不变时,真空速在高处会更快。因此飞机在高 处运行效率更高。

白色(在浅色主题下)的速度气泡指示当前表速。空速表的量程为 0~999。若马赫数(Mach number)大等于0.5,则会在下方显示。

(2) 速度趋势 (Speed trend)

速度气泡右侧,带箭头的黑色竖线指示速度趋势。假若加速度保持不变, 速度将在10秒后抵达黑色箭头指示的值。

(3) 限速

上下两边的红条指示限速。底部的是最小表速,顶部的是最大表速。最大表速受襟翼设定的影响。例如若「襟翼收起时最大表速」为240节,「襟翼全开时最大表速」为160节,襟翼展开75%,则最大表速为180节。

3.1.6. 高度表 (Altimeter)

(1) 当前高度(Altitude)

高度反映您与海平面的垂直距离。由于系统获取的是 GPS 高度,高度表无需气压校准。高度表的量程为 -2000~50000。

(2) 高度趋势 (Altitude trend)

假若垂直速度(vertical speed)保持不变,高度将在6秒后抵达黑色箭头指示的值。

3.1.7. 垂直速度表 (Vertical speed indicator/Variometer)

垂直速度即爬升或下降的速度。垂直速度单位为英尺/分钟(默认)时,指针向上指向1,气泡显示「+1000」,表示每分钟爬升1000英尺。单位为米/秒时,指针向上指向1,气泡显示「+1.0」,表示每秒爬升1米。

3.1.8. 朝向指示器 (指南针, Heading indicator)

指示您的朝向。解读方法与<u>风向</u>相同。朝向数据来自 GPS,因此当您静止不动时系统无法得知朝向。

3.1.9. 测距仪 (DME)

<u>测距仪</u>测量您与机场之间的水平距离,并加强近地警告系统的功能(具体而言是让「偏离下滑道」警告可用)。

(1) 距离

当前您与机场之间的水平距离。若大等于10000公里则显示「距离过远」。

(2) 剩余时间(ETA)

根据当前距离与地速计算出的时间。若大等于100小时则不显示。

3.1.10. 无线电高度表 (Radio altimeter)

显示当前高度与机场高度之间的相对高度。相对高度的绝对值小等于2500时开始显示。 绝对值小于1000时显示刻度。介于 0~999 时显示进度圆环。其显示精度被刻意降低,以防止 数字剧烈跳动。但随着高度下降,显示精度会越来越高。

若启用了高度警报声音,且飞航模式为降落、到达地面或出发地面,则会有无线电报高。无线电高度下降至2500、1000、500、400、300、200、100、50、40、30、20、15(Retard)、10,以及决断高度上方100(Hundred above)、决断高度上方80(Approaching minimums)、决断高度(Minimums)时,会有语音提示。不同声音方案的无线电报高会有些许差异。

3.1.11. 决断高度 (Decision altitude)

决断高度等于机场高度加上相对决断高度(decision height)。飞机降落时,若已抵达决断高度而跑道仍然不可见,则必须复飞(go around)。

降落至决断高度时,决断高度会闪烁3秒,然后持续高亮。落地后决断高度取消高亮。

3.1.12. 警告系统

警告系统包括姿态、速度与高度三种警告。警告的触发条件详见<u>技术说明</u>。三种警告可同时显示与播放,但一种警告内的两条警告不能同时显示与播放。越靠后的警告优先级越高。例如若「偏离下滑道」与「拉杆」警告同时生效,系统只会显示与播放拉杆警告。

(1) 姿态警告

• 倾角过大 (Bank angle)

(2) 速度警告

- 空速过低(Airspeed low)
- 超速 (Overspeed)

(3) 高度警告

- 不要下降 (Don't sink)
- 偏离下滑道(Glide slope)

- 下降率过大 (Sink rate)
- 拉杆! (Pull up!)

3.1.13. PFD 菜单

(1)控制

在此可切换全屏,进行手动操作(在手动模式下),调 节襟翼,以及重置加速计速度。

襟翼滑条旁有波音 737-800 与空客 A320 两款最常见民 航客机的襟翼参考标尺。

(2) 选项

此处收录了「设定」中的部分设定项,方便快速调节。

(3) 技术信息(原始数据)

此处的信息用于开发调试用途,默认隐藏。若您感兴趣的话不妨自行研究。

3.2. 设定

3.2.1. 姿态仪

(1) 启用姿态仪

姿态仪开关。若启用姿态仪,表速的计算会将俯仰姿态考虑在内。建议在能固定好设备的情况下启用姿态仪。默认启用。

(2) 模式

切换姿态模式。可选加速计模式与手动模式。默认加速计模式。

(3) 姿态偏移

姿态偏移适用于无法自由摆放设备的情况。俯仰抬头是正值,低头是负值。横滚右倾是正值,左倾是负值。姿态模式为「手动」时此设定无效。

俯仰为-90~90之间的整数,单位为角度,默认0度。

横滚为 -90~90 之间的整数,单位为角度,默认0度。

3.2.2. 速度

(1) 模式

切换速度模式:

- GPS (默认): 仅从 GPS 获取速度数据。
- 加速计(不推荐): 仅从加速计获取速度数据。用加速计计算速度可能会有严重的误差。
- 双通道:从 GPS 与加速计获取速度数据。每次 GPS 速度更新时,加速计速度会与
 GPS 速度对齐。
- 手动:手动更改速度数据。

(2) 表速算法

GPS 与加速计只能测量地速,因此空速需要通过算法从地速转换而来。有三种表速算法 供您选择。相较于简单算法,高级算法额外需要温度、湿度以及气压数据。详见技术说明。

(3) 机场气温

设定出发机场与到达机场地面的气温。该数据在普通的天气服务上即可查询。 机场气温单位可变,默认15°C。

(4) 相对湿度

设定出发机场与到达机场的相对湿度。该数据在普通的天气服务上即可查询。 相对湿度为 0~100 之间的整数,单位为%,默认50%。

(5) QNH

设定出发机场与到达机场的 QNH(修正海平面气压)。气压数据在普通的天气服务上即可查询,但其气压可能并非 QNH。

QNH 单位可变,默认1013.25百帕(标准大气压)。

(6) 风

设定风向与风速。由于现实环境中风是不断改变的,本功能缺乏实际意义。 风向为 0~359 之间的整数,单位为角度,默认0度。风速单位可变,默认0节。

(7) 限速预设

快速切换限速。有四种预设供您快速选择:

- 不限速。
- 波音 737-800:最常见的民航客机之一。最小表速120节,襟翼收起时最大表速340节,襟翼全开时最大表速162节。
- 空客 A320:最常见的民航客机之一。最小表速120节,襟翼收起时最大表速350 节,襟翼全开时最大表速177节。
- 地面交通工具:最小表速为0公里/小时,最大表速为120公里/小时。

(8) 最小表速

若飞机的表速低于此值,飞机可能会因为升力不足而失速(掉下来)。

最小表速单位可变,默认0节。

(9) 襟翼收起时最大表速

若襟翼收起的飞机的表速高于此值,飞机可能会因为压力过大而出现结构损坏甚至解体。

襟翼收起时最大表速单位可变,默认539节(999公里/小时)。

(10) 襟翼全开时最大表速

若襟翼全开的飞机的表速高于此值,飞机可能会因为压力过大而出现结构损坏。 襟翼全开时最大表速单位可变,默认539节(999公里/小时)。

3.2.3. 高度

(1) 模式

切换高度模式:

- GPS (默认): 仅从 GPS 获取高度数据。
- 加速计(不推荐): 仅从加速计获取高度数据。用加速计计算高度可能会有严重的误差。
- 双通道:从 GPS 与加速计获取高度数据。每次 GPS 高度更新时,加速计高度会与 GPS 高度对齐。

• 手动:手动更改高度数据。

(2) 机场高度

设定出发机场与到达机场的海拔高度。您可使用网络上的各种地图工具查询该数据。这里推荐一款「Elevation Finder」。

机场高度单位可变,默认0英尺。

(3) 相对决断高度

详见「决断高度」。

相对决断高度单位可变,默认250英尺。

3.2.4. 测距仪

(1) 启用测距仪

测距仪开关。

(2) 机场坐标

设定出发机场与到达机场的经纬度坐标。北纬、东经是正值,南纬、西经是负值。您可使用网络上的各种地图工具查询该数据。

纬度为-90~90 之间的五位小数,单位为角度,默认0.00000度。

经度为-180~180之间的五位小数,单位为角度,默认0.00000度。

(3) 剩余时间的计算方法

设定剩余时间的计算是基于<u>实时地速</u>还是<u>平均地速</u>。若使用实时地速,且乘坐走走停停的交通工具,剩余时间可能会剧烈波动。默认使用平均地速。

3.2.5. 飞航模式

(1) 飞航模式

切换<u>飞航模式</u>。可选出发地面、起飞、巡航、降落、到达地面,以及紧急返航等六种模式。默认为出发地面模式。

(2) 自动切换飞航模式与对调机场数据

如字面意思。默认启用。

从这里开始涉及「Sam Toki 的个人网站」全站通用的选项,这些选项会同步至 Sam Toki 的其他网页应用(web app)。但若您完全离线使用本应用程序,用户数据同步可能不会工作。

3.2.6. 显示

(1) 主题

切换网页的整体外观。目前有以下选项:

- 自动(跟随系统)(默认):根据用户操作系统的设定,自动选择「浅色」或 「深色」主题。
- 浅色: Sam Toki 的浅色版网页样式。若浏览器不支持「自动」,则会回退至该主题。
- 深色: Sam Toki 的深色版网页样式。
- 原神:模仿「原神」游戏 UI 的样式。
- 高对比度(无障碍):适合视障人士。若用户的操作系统启用了高对比度功能,则系统会强制应用该主题。

(2) 鼠标指针

切换网页内鼠标指针的外观。「默认」表示不更换鼠标指针,其余选项对应的鼠标指针均为 SAM TOKI STUDIO 的原创鼠标指针作品。

(3) 模糊背景图像

如字面意思。若您感觉背景图像影响阅读,可启用此选项。默认启用。

(4) 快捷键提示

更改快捷键提示组件的行为。选项如下:

- 禁用:不要显示快捷键提示。
- 按下无关按键时显示:当按下在本应用程序不起作用的按键时,快捷键提示出现并持续15秒。这可以提示您可能按错了键,并寻找正确按键。按下鼠标键时快捷键提示将立即隐藏。

按下任意按键时显示(默认):当按下任意按键时,快捷键提示出现并持续15秒。按下鼠标键时快捷键提示将立即隐藏。

• 始终显示: 如字面意思。即使按下鼠标键也不会隐藏。

(5) 动画

更改动画效果的速度,或关闭动画效果(无障碍功能)。默认中速(250ms)。

(6) PFD 样式

切换 PFD 面板的外观。目前仅默认样式可用。

(7) 垂直翻转 PFD

如字面意思。当您需要从镜面查看 PFD 时,可启用该功能。默认禁用。

(8) 保持屏幕常亮

防止移动设备自动关闭屏幕(锁屏),以便您持续查看 PFD。默认禁用。

3.2.7. 声音

(1)播放声音

声音总开关。默认启用。

(2) 声音方案

更改警报声音。目前仅「波音|版本的警报声音可用。

(3) 姿态警报

控制姿态警报的音量。姿态警报即倾角过大警告。默认禁用。

请注意区分「警报」(alert)与「警告」(warning)。

(4) 速度警报

控制速度警报的音量。速度警报包括空速过低警告与超速警告。默认禁用。

(5) 高度警报

控制高度警报的音量。高度警报包括<u>无线电报高</u>、不要下降警告、偏离下滑道警告、下降率过大警告以及最为人熟知的拉杆警告。默认禁用。

3.2.8. 国际化

本应用程序目前仅支持中文(简体),因此暂无语言设定。

(1) 在 PFD 上始终使用英文术语

将 PFD 面板上的文字替换为专业的英文术语,与真实的 PFD 更加相似。例如「地速」与「真空速」会显示为「GS」与「TAS」。默认禁用。

(2) 计量单位预设

快速切换计量单位。有两种预设供您快速选择:

- 全部公制 (metric, 米制)。
- 民航:民航业惯用计量单位,偏好海里(NM)与英尺(ft)。

(3) 速度单位

切换地速、真空速、表速等的单位。可选公里/小时(km/h)、英里/小时(mph)、节(海里/小时)(kt)。默认单位为节。

(4) 距离单位

切换测距仪的距离单位。可选公里(km)、英里(mi.)、海里。默认海里。

(5) 高度单位

切换高度表的单位。可选米(m)、英尺,以及「英尺,在旁边显示米制」。默认英尺。

(6) 垂直速度单位

切换垂直速度表的单位。可选米/秒(m/s)、英尺/分钟(fpm)。默认英尺/分钟。

(7) 温度单位

切换温度单位。可选摄氏度(℃)、华氏度(℉)。默认摄氏度。

(8) 压力单位

切换航空业使用的气压单位。可选百帕(毫巴)(hPa, hectopascal 终格成为你)、英寸汞柱(inHg)。默认百帕。

3.2.9. PWA

您可将本应用程序安装至桌面,以 <u>PWA</u>(俗称小程序)的形式更方便地使用。在此安装与查看 PWA 的工作状态。

3.2.10. 开发者选项

此处的选项原则上用于开发调试用途,不建议启用。请保持它们不勾选或留空。

3.2.11. 用户数据

导人、导出或清空「Sam Toki 的个人网站」在您的浏览器中存储的所有用户数据。 导出的用户数据可能包含您此前主动输入的个人信息,因此若要分享则请务必注意。

3.3. 帮助

详见本文档的其他章节。

4. 使用方式

4.1. 在线使用

直接访问 https://SamToki.github.io/GPS-PFD 即可。

可扫描二维码:

首次载入时,系统会在您的浏览器缓存应用程序的组件。下次载入就无需网络连接了。 此外,您可将本应用程序安装至桌面,以 PWA(俗称小程序)的形式更方便地使用。

4.2. 完全离线使用

4.2.1. 下载资源

前往本应用程序最新的 GitHub Release, 下载并解压文件包。

4.2.2. 直接打开文件 (File 协议)

在解压后的文件中找到 index.html 并用浏览器打开(通常双击即可)。若发现「正在初始化」提示不消失,且点击按钮没有反应,则说明您的浏览器拒绝在使用 File 协议的网页上运行 JavaScript 脚本。这时请使用本地服务器。

4.2.3. 使用本地服务器 (HTTP 协议)

本地服务器有多种部署方法。这里推荐通过 <u>Visual Studio Code</u> 上的 <u>Live Server 插件</u>来 简单快捷地实现。

在 Visual Studio Code 上安装该插件之后,用 Visual Studio Code 打开解压后的文件 夹,定位至 index.html,点击右下角「Go Live」。等待数秒,本地服务器开始运行,浏览器自动启动并载人本应用程序。

5. 技术说明

5.1. 图解各种速度、高度之间的区别

5.2. 计量单位

程序内部的计算全部采用公制单位。然后根据公式需要或用户设定,换算为其他单位。 长度单位为米(m),无论水平或垂直。时间单位为毫秒(ms)。速度单位为米/秒 (m/s)。温度单位为<u>开尔文(Kelvin)</u>。压力单位为百帕(hPa)。角度计算采用角度制。 下文中的公式即采用这一套计量单位,除非特别标注。

5.3. 算法

5.3.1. 姿态 (Attitude)

重力加速度为 g = 9.80665m/s²。向前加速度为 a_F ,向右加速度为 a_R ,向上加速度为 a_U 。俯仰为P,横滚为R。

$$P = -\arcsin(\frac{a_F}{g})$$

$$R = \operatorname{atan2}(a_R, -a_U)$$

参考资料: https://youtube.com/watch?v=p7tjtLkIlFo

5.3.2. 真空速 (True airspeed)

地速为 v_{GS} 。风的相对朝向为WRH。若风迎面吹来,WRH为180度。风速为 v_{WS} 。垂直速度为 v_{VS} 。真空速为 v_{TAS} 。

$$v_{TAS} = \sqrt{[v_{GS} + v_{WS} \cdot \cos(WRH)]^2 + v_{VS}^2}$$

5.3.3. 飞机外气温 (Outside air temperature)

飞机高度为h。机场(地面)高度为 h_G 。机场气温为 T_G 。飞机外气温为T。

$$T = T_G - 2 \times \frac{h - h_G}{304.8}$$

参考资料: https://aviation.stackexchange.com/a/44763

5.3.4. 飞机外气压

重力加速度为 $g=9.80665 \text{m/s}^2$ 。 Molar mass of air 为 M=0.0289644 kg/mol。 Universal gas constant 为 $R=8.31432 \frac{\text{N·m}}{\text{mol·K}}$ 。 飞机高度为h。 QNH 为 p_{QNH} 。 飞机外气温为T。 飞机外气压为p。

$$p = p_{QNH} \cdot e^{\frac{-gMh}{RT}}$$

参考资料: https://www.omnicalculator.com/physics/air-pressure-at-altitude

5.3.5. 飞机外空气密度

Specific gas constant for dry air 为 $R_D=287.058\frac{J}{kg\cdot K}$, specific gas constant for water vapor 为 $R_W=461.495\frac{J}{kg\cdot K}$ 。飞机外气温为T。摄氏度的飞机外气温为 $T_C=T+273.15$ 。相对

湿度为RH(%)。飞机外气压为p。Water vapor pressure 为 p_W ,dry air pressure 为 p_D 。飞机外空气密度为 ρ 。

$$p_{W} = 6.1078 \times 10^{\frac{7.5T_{C}}{T_{C} + 237.3}} \times \frac{RH}{100}$$

$$p_{D} = p - p_{W}$$

$$\rho = \frac{100p_{D}}{R_{D}T} + \frac{100p_{W}}{R_{W}T}$$

参考资料: https://www.omnicalculator.com/physics/air-density

5.3.6. 表速 (Indicated airspeed)

 \underline{ISA} 海平面空气密度为 $\rho_{SL}=1.225$ kg/m³。ISA 海平面声速为 $v_S=340.3$ m/s。ISA QNH 为 $p_{SL}=101325$ Pa。真空速为 v_{TAS} 。飞机高度为h。飞机外空气密度为 ρ 。不考虑俯仰姿态的表速为 v_{IAS} 。

简单算法: $v_{IAS} = v_{TAS} \div \left(1 + 0.02 \times \frac{h}{304.8}\right)$

高级算法A: $v_{IAS} = v_{TAS} \cdot \sqrt{\frac{\rho}{\rho_{SL}}}$

高级算法B: $v_{IAS} = v_S \cdot \sqrt{5 \times \left[\left(\frac{\rho \div 2 \times v_{TAS}^2}{p_{SL}} + 1 \right)^{\frac{2}{7}} - 1 \right]}$

飞机速度矢量与俯仰姿态之间的夹角为 θ 。考虑了俯仰姿态的表速为 v_{LAS2} 。

$$v_{IAS2} = v_{IAS} \cdot \cos\theta$$

参考资料: https://aerotoolbox.com/airspeed-conversions/,

https://aviation.stackexchange.com/a/25811

5.3.7. 马赫数 (Mach number)

真空速为 v_{TAS} 。摄氏度的飞机外气温为 T_C 。声速为 v_S 。马赫数为MACH。

$$v_S = 331.15 + 0.61T_C$$

$$MACH = \frac{v_{TAS}}{v_S}$$

5.3.8. 通过两地经纬度计算距离

地球半径为 r=6371008.8m。甲地纬度为 Lat_1 ,经度为 Lon_1 。乙地纬度为 Lat_2 ,经度为 Lon_2 。两地距离为d。

$$x = \sin^2\left(\frac{Lat_2 - Lat_1}{2}\right) + \cos(Lat_1)\cos(Lat_2)\sin^2\left(\frac{Lon_2 - Lon_1}{2}\right)$$
$$d = 2r \cdot \operatorname{atan2}(\sqrt{x}, \sqrt{1 - x})$$

参考资料: https://stackoverflow.com/a/27943

5.4. 襟翼参考标尺

5.4.1. 波音 737-800

襟翼 位置	0	1	2	5	10	15	25	30	40
%	0	50.56	50.56	50.56	73.03	78.65	84.27	92.70	100
最大表 速(节)	340	250	250	250	210	200	190	175	162

5.4.2. 空客 A320

襟翼 位置	0	1	1+F	2	3	FULL
%	0	69.36	78.03	86.71	95.38	100
最大表 速(节)	350	230	215	200	185	177

5.5. 警告的触发条件

5.5.1. 倾角过大 (Bank angle)

本警告在飞机离地至少9.144米(30英尺)时可用。飞机离地高度为 h_R 。触发警告的倾角为BA。

$$BA = 10 + 25 \times \frac{h_R - 9.144}{36.576}, h_R \in [9.144, 45.72]$$

若 h_R 超过45.72米(150英尺),BA保持为35度。

参考资料: https://skybrary.aero/articles/bank-angle-awareness

5.5.2. 不要下降 (Don't sink)

飞航模式为「起飞」时,下降率大等于0.508米/秒(100英尺/分钟)。

5.5.3. 偏离下滑道 (Glide slope)

本警告在飞航模式为「降落」时可用。飞机离地高度为 h_R 。与机场的水平距离为d。触发条件为:

$$h_R \le d \cdot \cos(3^\circ) - 60.96$$

5.5.4. 下降率过大 (Sink rate)、拉杆 (Pull up!)

上图中,横轴为下降率(米/秒),纵轴为飞机离地高度(米)。两条黄线之间为「下降率过大」警告的触发范围,两条红线之间为「拉杆」警告的触发范围。

参考资料:

https://commons.wikimedia.org/wiki/File:FAA_excessive_sink_rate_graph.svg

6. 参与进来

6.1. 反馈

您可使用 <u>GitHub Issues</u>、<u>电子邮件</u>或<u>哔哩哔哩(B站)私信</u>来向我提供反馈,感谢您的 支持! 推荐使用前两种渠道,我能第一时间收到您的反馈。

6.2. 翻译

Help me translate the webpage into your language! Please contact me if you are interested.

7. 免责声明

本应用程序仅供娱乐用途,不能替代飞机驾驶舱仪表。

首先,系统能够测量的数据有限。空速、风、无线电高度、偏航(yaw)等无法测量。因此这些数据或是依赖算法转换,或是依赖手动设定,抑或是直接被忽略。其次,数据不保证准确。GPS 与加速计只能测量地速,因此空速需要通过算法从地速转换而来。GPS 高度也不如<u>气压高度计</u>可靠。其三,数据更新可能有延迟。一方面系统为了显示流畅而设计了显示延迟,另一方面 GPS 信号也会有延迟。

鉴于上述原因,您尤其需要注意,警报功能很可能出现误报。请勿在公共场合外放警报 声音。

在交通工具上使用时,请固定好您的设备,且不要一边驾驶交通工具一边操作设备。 若您不当使用本应用程序造成损失,SAM TOKI STUDIO 恕不负责。

8. 隐私权声明

本站为 <u>GitHub Pages</u> 静态网站,只使用浏览器的 Local Storage 功能在本地存储用户数据,您可随时手动删除。本站不使用 Cookies,不收集任何个人信息。

出于安全考虑, GitHub 的服务器可能会记录您的 IP 地址, 但我无法访问这些数据。

本应用程序可能使用位置服务。位置服务涉及敏感数据,系统不会(且没有必要)保存 这些数据。关闭网页时这些数据立即丢失。

9. 版权说明

本站的源代码遵循 GNU GPL v3 软件开源协议。本站的部分内容为他人作品,版权为原作者所有,本站遵循 fair use 原则使用并于 Credits 标注来源。

除上述内容之外,本站所有内容以及排版、美术设计均保留版权。

本文档保留版权,未经许可不得复制、分发、篡改等。

10. Credits

应用程序本体的 Credits 在此不作记载,以网页上的内容为准。

本文档「图解各种速度、高度之间的区别」中的飞机图标来自 ICOOON-MONO。