Jingyuan Sha

May 15, 2022

Introduction

Related Work

In order to estimate normals of an object surface.

In 2012, Holzer et al. [6] presented a read-time method, which is able to run algorithm in a high frame speed. They smooth the depth data in order to handle the noise of depth image. The speed is accelerated via integral image. The drawbacks are, as mentioned in the paper, the normals error go up when point depths change severely.

In 2018, Yu et al. [11] presented a CNN based method with guided In 2019, Ben-Shabat et al. [1] presented a CNN based method. In 2021, Zhou et al. [12]

2.0.1 Sparse Input processing

The depth-map captured by active sensors are usually full with missing pixels and holes. Thus a preprocessing for the depth map is necessary before it is fed into a neural network.

Generally, it can be solved as image inpainting problems.[10],[9]. Recently, some deep learning based method for image inpainting achieved quite good performance for the hole mending task. Notably, in 2016, Oord et al. [8] proposed a gated activation unit for a CNN model,

$$\mathbf{y} = \tanh(W_{k,f} * \mathbf{x}) \odot \sigma(W_{k,g} * \mathbf{x})$$

to substitute the standard activation layer, where σ is the sigmoid function, which constricts the output value of second part between [0, 1]. The function is inspired by Long Short-Term Memory (LSTM) [5] and Rated Recurrent Unit (GRU).[2] It is originally used for learning complex interactions as LSTM gates does. In 2018, Yu et al. [11] employed same function for free-form image inpainting, which can be used to learn mask automatically from image it self.

Different to aforementioned approaches, Knutsson et al. in 2005 introduced normalized convolution [7] dealing with missing sample case for convolution operation. In 2018, Eldesokey et al. [4] applied normalized convolution in CNN as normalized convolution layer that takes both sparse depth map and continuous confidence map as input to perform scene depth completion. In 2020, Eldesokey et al. [3] focus on modeling the uncertainty of depth data instead of assuming binary input confidence.

Approach

3.1 Dataset

3.1.1 Noise Adding

3.2 Gated Convolution

Gated Convolution layer[11], the output of the layer with input size (N, C_{in}, H, W) and output $(N, C_{out}, H_{out}, W_{out})$ can be described as:

$$o(N_i, C_{o_j}) = \sigma(\sum_{k=0}^{C_{in}-1} w_g(C_{o_j}, k) \star i(N_i, k) + b_g(C_{o_j})) \star \phi(\sum_{k=0}^{C_{in}-1} w_f(C_{o_j}, k) \star i(N_i, k) + b_f(C_{o_j}))$$
(3.1)

where ϕ is LeakyReLU function, σ is sigmoid function, thus the output values are in range [0,1], \star is the valid 2D cross-correlation operator, N is batch size, C denotes a number of channels, H is a height of input planes in pixels, and W is width in pixels, $w(C_{o_j},k)$ denotes the weight of j-th output channel corresponding k-th input channel, $i(N_i,k)$ denotes the input of i-th batch corresponding k-th input channel, $b(C_{o_j})$ denotes the bias of j-th output channel.

3.3 Architecture

Experiments

The model is trained with PyTorch 1.10.2, CUDA 10.2.89, GPU with single NVIDIA GEFORCE GTX 1080Ti.

Formular

RGB image will be stored as gray value Scene using following equation:

$$gray: \frac{r+2g+b}{4}$$

5.0.1 Normal from k neighbors

Given a point p locating on plane Π , calculate the normal n of plane Π .

First, find the nearest k neighbors $p_1, p_2, ..., p_k$ of point p using KNN-algorithms. The plane Π containing point p can be fitted using the neighbors of point p. Then the normal is available immediately.

Assume all the neighbors of point p are in plane $\Pi = ax + by + cz + d = 0$. Since we only need calculate the normal, thus with out loss of generation, we can set displacement d = 0. Then the normal $\mathbf{n} = (a, b, c)^T$.

Since all the neighbors of point p are located on plane Π , thus we have

$$P_{k\times 3} \cdot \mathbf{n}_{3\times 1} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

In order to avoid trivial solution, one more constraint should be added

$$\|\mathbf{n}_{3\times 1}\|_2^2 = 1$$

, which also let the normal to be a unit vector. In order to calculate a valid normal, 3 points are required at least. For the sake of robust, more points can be used to reduce the measuring error. In this case, the equation system is over-determined, which can be modeled as following optimization problem

min
$$||P\mathbf{n}||^2$$

s.t. $||\mathbf{n}||^2 = 1$ (5.1)

Let the decomposition of $P=U\Sigma V^T,$ The solution i.e. normal is the last column of V.

5.0.2 Normalized Convolution

Bibliography

- [1] Yizhak Ben-Shabat, Michael Lindenbaum, and Anath Fischer. Nesti-net: Normal estimation for unstructured 3d point clouds using convolutional neural networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2019.
- [2] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of neural machine translation: Encoder-decoder approaches, 2014.
- [3] Abdelrahman Eldesokey, Michael Felsberg, Karl Holmquist, and Mikael Persson. Uncertainty-aware cnns for depth completion: Uncertainty from beginning to end, 2020.
- [4] Abdelrahman Eldesokey, Michael Felsberg, and Fahad Shahbaz Khan. Confidence propagation through CNNs for guided sparse depth regression. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 42(10):2423–2436, oct 2020.
- [5] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural computation*, 9:1735–80, 12 1997.
- [6] S. Holzer, R. B. Rusu, M. Dixon, S. Gedikli, and N. Navab. Adaptive neighborhood selection for real-time surface normal estimation from organized point cloud data using integral images. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2684–2689, 2012.
- [7] H. Knutsson and C.-F. Westin. Normalized and differential convolution. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 515–523, 1993.
- [8] Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and Koray Kavukcuoglu. Conditional image generation with pixelcnn decoders, 2016.
- [9] Fei Qi, Junyu Han, Pengjin Wang, Guangming Shi, and Fu Li. Structure guided fusion for depth map inpainting. *Pattern Recognition Letters*, 34(1):70–76, 2013. Extracting Semantics from Multi-Spectrum Video.

- [10] Na-Eun Yang, Yong-Gon Kim, and Rae-Hong Park. Depth hole filling using the depth distribution of neighboring regions of depth holes in the kinect sensor. In 2012 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2012), pages 658–661, 2012.
- [11] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas Huang. Free-form image inpainting with gated convolution, 2018.
- [12] Jun Zhou, Wei Jin, Mingjie Wang, Xiuping Liu, Zhiyang Li, and Zhaobin Liu. Fast and accurate normal estimation for point cloud via patch stitching, 2021.