Normal distribution

- ✓ Graphical representations
- ✓ Values of the standard normal distribution function (integral), P(z) (table 1)
- ✓ Percentiles of the standard normal distribution, z(P) (table 2)
- ✓ Reading off the table
- ✓ Full examples
- ✓ Mathematical presentation

Calculation and moments
Generation of pseudo random variates

Normal distributions

z	+.000	+.001	+.002	+.003	+.004	+.005	+.006	+.007	+.008	+.009
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13	50000 50399 50798 51197 51595 51994 52392 52790 53188 53586 53983 54380 54776	50040 50439 50838 51237 51635 52034 52432 52830 53228 53625 54022 54419 54815 55211	50080 50479 50878 51276 51675 52074 52472 52870 53268 53665 54062 54459 54855 55251	50120 50519 50917 51316 51715 52113 52512 52910 53307 53705 54102 54498 54895	50160 50559 50957 51356 51755 52153 52551 52949 53347 53745 54142 54538 54934 55330	50199 50598 50997 51396 51795 52193 52591 52989 53387 53784 54181 54578 54974 55369	50239 50638 51037 51436 51834 52233 52631 53029 53427 53824 54221 54617 55013 55409	50279 50678 51077 51476 51874 52273 52671 53069 53466 53864 54261 54657 55053 55448	50319 50718 51117 51516 51914 52313 52711 53109 53506 53903 54300 54697 55093 55488	50359 50758 51157 51555 51954 52352 52751 53148 53546 53943 54340 54736 55132 55527
0.13 0.14 0.15 0.16 0.17 0.18 0.19	55172 55567 55962 56356 56749 57142 57535	55211 55607 56001 56395 56789 57182 57574	55251 55646 56041 56435 56828 57221 57613	55290 55685 56080 56474 56867 57260 57652	55725 56120 56513 56907 57299 57691	55369 55764 56159 56553 56946 57339 57730	55804 56198 56592 56985 57378 57769	55448 55843 56238 56631 57025 57417 57809	55488 55883 56277 56671 57064 57456 57848	55527 55922 56317 56710 57103 57495 57887
0.20	57926	57965	58004	58043	58082	58121	58160	58200	58239	58278
0.21	58317	58356	58395	58434	58473	58512	58551	58590	58629	58667
0.22	58706	58745	58784	58823	58862	58901	58940	58979	59018	59057
0.23	59095	59134	59173	59212	59251	59290	59328	59367	59406	59445
0.24	59483	59522	59561	59600	59638	59677	59716	59755	59793	59832
0.25	59871	59909	59948	59987	60025	60064	60102	60141	60180	60218
0.26	60257	60295	60334	60372	60411	60450	60488	60527	60565	60604
0.27	60642	60680	60719	60757	60796	60834	60873	60911	60949	60988
0.28	61026	61064	61103	61141	61179	61218	61256	61294	61333	61371
0.29	61409	61447	61486	61524	61562	61600	61638	61677	61715	61753
0.30	61791	61829	61867	61906	61944	61982	62020	62058	62096	62134
0.31	62172	62210	62248	62286	62324	62362	62400	62438	62476	62514
0.32	62552	62589	62627	62665	62703	62741	62779	62817	62854	62892
0.33	62930	62968	63006	63043	63081	63119	63156	63194	63232	63270
0.34	63307	63345	63382	63420	63458	63495	63533	63570	63608	63646
0.35	63683	63721	63758	63796	63833	63871	63908	63945	63983	64020
0.36	64058	64095	64132	64170	64207	64244	64282	64319	64356	64394
0.37	64431	64468	64505	64543	64580	64617	64654	64691	64728	64766
0.38	64803	64840	64877	64914	64951	64988	65025	65062	65099	65136
0.39	65173	65210	65247	65284	65321	65358	65395	65432	65468	65505
0.40	65542	65579	65616	65653	65689	65726	65763	65800	65836	65873
0.41	65910	65946	65983	66020	66056	66093	66129	66166	66203	66239
0.42	66276	66312	66349	66385	66422	66458	66495	66531	66567	66604
0.43	66640	66677	66713	66749	66786	66822	66858	66894	66931	66967
0.44	67003	67039	67076	67112	67148	67184	67220	67256	67292	67328
0.45	67364	67401	67437	67473	67509	67545	67581	67616	67652	67688
0.46	67724	67760	67796	67832	67868	67903	67939	67975	68011	68047
0.47	68082	68118	68154	68189	68225	68261	68296	68332	68367	68403
0.48	68439	68474	68510	68545	68581	68616	68652	68687	68723	68758
0.49	68793	68829	68864	68899	68935	68970	69005	69041	69076	69111

z	+0.000	+0.001	+0.002	+0.003	+0.004	+0.005	+0.006	+0.007	+0.008	+0.009
0.50	69146	69181	69217	69252	69287	69322	69357	69392	69427	69462
0.51	69497	69532	69567	69602	69637	69672	69707	69742	69777	69812
0.52	69847	69882	69916	69951	69986	70021	70056	70090	70125	70160
0.53	70194	70229	70264	70298	70333	70368	70402	70437	70471	70506
0.54	70540	70575	70609	70644	70678	70712	70747	70781	70815	70850
0.55	70884	70918	70953	70987	71021	71055	71089	71124	71158	71192
0.56	71226	71260	71294	71328	71362	71396	71430	71464	71498	71532
0.57	71566	71600	71634	71668	71702	71735	71769	71803	71837	71871
0.58	71904	71938	71972	72005	72039	72073	72106	72140	72173	72207
0.59	72240	72274	72307	72341	72374	72408	72441	72475	72508	72541
0.60	72575	72608	72641	72675	72708	72741	72774	72807	72841	72874
0.61	72907	72940	72973	73006	73039	73072	73105	73138	73171	73204
0.62	73237	73270	73303	73336	73369	73401	73434	73467	73500	73533
0.63	73565	73598	73631	73663	73696	73729	73761	73794	73826	73859
0.64	73891	73924	73956	73989	74021	74054	74086	74118	74151	74183
0.65	74215	74248	74280	74312	74344	74377	74409	74441	74473	74505
0.66	74537	74569	74601	74633	74665	74697	74729	74761	74793	74825
0.67	74857	74889	74921	74953	74984	75016	75048	75080	75111	75143
0.68	75175	75206	75238	75270	75301	75333	75364	75396	75427	75459
0.69	75490	75522	75553	75585	75616	75647	75679	75710	75741	75772
0.70	75804	75835	75866	75897	75928	75959	75991	76022	76053	76084
0.71	76115	76146	76177	76208	76239	76270	76300	76331	76362	76393
0.72	76424	76455	76485	76516	76547	76577	76608	76639	76669	76700
0.73	76730	76761	76792	76822	76853	76883	76913	76944	76974	77005
0.74	77035	77065	77096	77126	77156	77186	77217	77247	77277	77307
0.75	77337	77367	77397	77428	77458	77488	77518	77548	77577	77607
0.76	77637	77667	77697	77727	77757	77786	77816	77846	77876	77905
0.77	77935	77965	77994	78024	78053	78083	78113	78142	78172	78201
0.78	78230	78260	78289	78319	78348	78377	78407	78436	78465	78494
0.79	78524	78553	78582	78611	78640	78669	78698	78727	78756	78785
0.80	78814	78843	78872	78901	78930	78959	78988	79017	79045	79074
0.81	79103	79132	79160	79189	79218	79246	79275	79304	79332	79361
0.82	79389	79418	79446	79475	79503	79531	79560	79588	79616	79645
0.83	79673	79701	79730	79758	79786	79814	79842	79870	79898	79927
0.84	79955	79983	80011	80039	80067	80094	80122	80150	80178	80206
0.85	80234	80262	80289	80317	80345	80372	80400	80428	80455	
0.86	80511	80538	80566	80593	80621	80648	80675	80703	80730	80483 80758
0.87	80785	80812	80840	80867	80894	80921	80948	80976	81003	81030
0.88	81057	81084	81111	81138	81165	81192	81219	81246	81273	81300
0.89 0.90	81327	81354	81380	81407	81434	81461	81487	81514	81541	81567
0.91	81594	81621	81647	81674	81700	81727	81753	81780	81806	81832
	81859	81885	81912	81938	81964	81990	82017	82043	82069	82095
0.92	82121	82147	82174	82200	82226	82252	82278	82304	82330	82356
0.93	82381	82407	82433	82459	82485	82511	82536	82562	82588	82613
0.94	82639	82665	82690 82945	82716	82742	82767	82793	82818	82844	82869
0.95	82894	82920	83198	82970	82996	83021	83046	83072	83097	83122
0.96	83147	83172		83223	83248	83273	83298	83323	83348	83373
0.97	83398	83423	83447	83472	83497	83522	83547	83572	83596	83621
0.98	83646	83670	83695	83720	83744	83769	83793	83818	83842	83867
0.99	83891	83916	83940	83965	83989	84013	84037	84062	84086	84110

z	+.000	+.001	+.002	+.003	+.004	+.005	+.006	+.007	+.008	+.009
1.00	84134	84159	84183	84207	84231	84255	84279	84303	84327	84351
1.01	84375	84399	84423	84447	84471	84495	84519	84542	84566	84590
1.02	84614	84637	84661	84685	84708	84732	84755	84779	84803	84826
1.03	84849	84873	84896	84920	84943	84967	84990	85013	85036	85060
1.04	85083	85106	85129	85153	85176	85199	85222	85245	85268	85291
1.05	85314	85337	85360	85383	85406	85429	85452	85474	85497	85520
1.06	85543	85566	85588	85611	85634	85656	85679	85701	85724	85747
1.07	85769	85792	85814	85836	85859	85881	85904	85926	85948	85971
1.08	85993	86015	86037	86060	86082	86104	86126	86148	86170	86192
1.09	86214	86236	86258	86280	86302	86324	86346	86368	86390	86412
1.10	86433	86455	86477	86499	86520	86542	86564	86585	86607	86628
1.11	86650	86672	86693	86715	86736	86757	86779	86800	86822	86843
1.12	86864	86886	86907	86928	86949	86971	86992	87013	87034	87055
1.13	87076	87097	87118	87139	87160	87181	87202	87223	87244	87265
1.14	87286	87307	87327	87348	87369	87390	87410	87431	87452	87472
1.15	87493	87513	87534	87554	87575	87595	87616	87636	87657	87677
1.16	87698	87718	87738	87759	87779	87799	87819	87839	87860	87880
1.17	87900	87920	87940	87960	87980	88000	88020	88040	88060	88080
1.18	88100	88120	88140	88160	88179	88199	88219	88239	88258	88278
1.19	88298	88317	88337	88357	88376	88396	88415	88435	88454	88474
1.20	88493	88512	88532	88551	88571	88590	88609	88628	88648	88667
1.21	88686	88705	88724	88744	88763	88782	88801	88820	88839	88858
1.22	88877	88896	88915	88934	88952	88971	88990	89009	89028	89046
1.23	89065	89084	89103	89121	89140	89158	89177	89196	89214	89233
1.24	89251	89270	89288	89307	89325	89343	89362	89380	89398	89417
1.25	89435	89453	89472	89490	89508	89526	89544	89562	89580	89598
1.26	89617	89635	89653	89671	89688	89706	89724	89742	89760	89778
1.27	89796	89814	89831	89849	89867	89885	89902	89920	89938	89955
1.28	89973	89990	90008	90025	90043	90060	90078	90095	90113	90130
1.29	90147	90165	90182	90199	90217	90234	90251	90268	90286	90303
1.30	90320	90337	90354	90371	90388	90405	90422	90439	90456	90473
1.31	90490	90507	90524	90541	90558	90575	90591	90608	90625	90642
1.32	90658	90675	90692	90708	90725	90741	90758	90775	90791	90808
1.33	90824	90841	90857	90873	90890	90906	90923	90939	90955	90971
1.34	90988	91004	91020	91036	91053	91069	91085	91101	91117	91133
1.35	91149	91165	91181	91197	91213	91229	91245	91261	91277	91293
1.36	91309	91324	91340	91356	91372	91387	91403	91419	91434	91450
1.37	91466	91481	91497	91512	91528	91543	91559	91574	91590	91605
1.38	91621	91636	91651	91667	91682	91697	91713	91728	91743	91758
1.39	91774	91789	91804	91819	91834	91849	91864	91879	91894	91909
1.40	91924	91939	91954	91969	91984	91999	92014	92029	92043	92058
1.41	92073	92088	92103	92117	92132	92147	92161	92176	92190	92205
1.42	92220	92234	92249	92263	92278	92292	92307	92321	92335	92350
1.43	92364	92378	92393	92407	92421	92436	92450	92464	92478	92492
1.44	92507	92521	92535	92549	92563	92577	92591	92605	92619	92633
1.45	92647	92661	92675	92689	92703	92717	92730	92744	92758	92772
1.46	92785	92799	92813	92827	92840	92854	92868	92881	92895	92908
1.47	92922	92935	92949	92962	92976	92989	93003	93016	93030	93043
1.48	93056	93070	93083	93096	93110	93123	93136	93149	93162	93176
1.49	93189	93202	93215	93228	93241	93254	93267	93280	93293	93306

z	+.000	+.001	+.002	+.003	+.004	+.005	+.006	+.007	+.008	+.009
1.50	93319	93332	93345	93358	93371	93384	93397	93409	93422	93435
1.51	93448	93461	93473	93486	93499	93511	93524	93537	93549	93562
1.52	93574	93587	93600	93612	93625	93637	93650	93662	93674	93687
1.53	93699	93712	93724	93736	93749	93761	93773	93785	93798	93810
1.54	93822	93834	93846	93858	93871	93883	93895	93907	93919	93931
1.55	93943	93955	93967	93979	93991	94003	94015	94026	94038	94050
1.56	94062	94074	94086	94097	94109	94121	94133	94144	94156	94168
1.57	94179	94191	94202	94214	94226	94237	94249	94260	94272	94283
1.58	94295	94306	94318	94329	94340	94352	94363	94374	94386	94397
1.59	94408	94420	94431	94442	94453	94464	94476	94487	94498	94509
1.60	94520	94531	94542	94553	94564	94575	94586	94597	94608	94619
1.61	94630	94641	94652	94663	94674	94684	94695	94706	94717	94728
1.62	94738	94749	94760	94771	94781	94792	94803	94813	94824	94834
1.63	94845	94855	94866	94877	94887	94898	94908	94918	94929	94939
1.64	94950	94960	94970	94981	94991	95002	95012	95022	95032	95043
1.65	95053	95063	95073	95083	95094	95104	95114	95124	95134	95144
1.66	95154	95164	95174	95184	95194	95204	95214	95224	95234	95244
1.67	95254	95264	95274	95284	95293	95303	95313	95323	95333	95342
1.68	95352	95362	95372	95381	95391	95401	95410	95420	95429	95439
1.69	95449	95458	95468	95477	95487	95496	95506	95515	95525	95534
1.70	95543	95553	95562	95572	95581	95590	95600	95609	95618	95627
1.71	95637	95646	95655	95664	95674	95683	95692	95701	95710	95719
1.72	95728	95737	95747	95756	95765	95774	95783	95792	95801	95810
1.73	95818	95827	95836	95845	95854	95863	95872	95881	95889	95898
1.74	95907	95916	95925	95933	95942	95951	95959	95968	95977	95985
1.75	95994	96003	96011	96020	96028	96037	96046	96054	96063	96071
1.76	96080	96088	96097	96105	96113	96122	96130	96139	96147	96155
1.77	96164	96172	96180	96189	96197	96205	96213	96222	96230	96238
1.78	96246	96254	96263	96271	96279	96287	96295	96303	96311	96319
1.79	96327	96335	96343	96351	96359	96367	96375	96383	96391	96399
1.80	96407	96415	96423	96431	96438	96446	96454	96462	96470	96477
1.81	96485	96493	96501	96508	96516	96524	96531	96539	96547	96554
1.82	96562	96570	96577	96585	96592	96600	96607	96615	96623	96630
1.83	96638	96645	96652	96660	96667	96675	96682	96690	96697	96704
1.84	96712	96719	96726	96734	96741	96748	96755	96763	96770	96777
1.85 1.86 1.87 1.88 1.89	96784 96856 96926 96995 97062	97001 97069	96799 96870 96940 97008 97075	96806 96877 96947 97015 97082	96813 96884 96953 97022 97089	96820 96891 96960 97029 97095	96827 96898 96967 97035 97102	96834 96905 96974 97042 97109	96842 96912 96981 97049 97115	96849 96919 96988 97055 97122
1.90	97128	97135	97141	97148	97154	97161	97167	97174	97180	97187
1.91	97193	97200	97206	97213	97219	97225	97232	97238	97244	97251
1.92	97257	97263	97270	97276	97282	97289	97295	97301	97307	97313
1.93	97320	97326	97332	97338	97344	97350	97357	97363	97369	97375
1.94	97381	97387	97393	97399	97405	97411	97417	97423	97429	97435
1.95	97441	97447	97453	97459	97465	97471	97477	97483	97488	97494
1.96	97500	97506	97512	97518	97523	97529	97535	97541	97547	97552
1.97	97558	97564	97570	97575	97581	97587	97592	97598	97604	97609
1.98	97615	97620	97626	97632	97637	97643	97648	97654	97659	97665
1.99	97670	97676	97681	97687	97692	97698	97703	97709	97714	97720

z	+.000	+.001	+.002	+.003	+.004	+.005	+.006	+.007	+.008	+.009
2.00	97725	97730	97736	97741	97746	97752	97757	97763	97768	97773
2.01	97778	97784	97789	97794	97800	97805	97810	97815	97820	97826
2.02	97831	97836	97841	97846	97851	97857	97862	97867	97872	97877
2.03	97882	97887	97892	97897	97902	97907	97912	97917	97923	97927
2.04	97932	97937	97942	97947	97952	97957	97962	97967	97972	97977
2.05	97982	97987	97992	97996	98001	98006	98011	98016	98020	98025
2.06	98030	98035	98040	98044	98049	98054	98059	98063	98068	98073
2.07	98077	98082	98087	98091	98096	98101	98105	98110	98115	98119
2.08	98124	98128	98133	98137	98142	98147	98151	98156	98160	98165
2.09	98169	98174	98178	98183	98187	98191	98196	98200	98205	98209
2.10	98214	98218	98222	98227	98231	98235	98240	98244	98248	98253
2.11	98257	98261	98266	98270	98274	98279	98283	98287	98291	98295
2.12	98300	98304	98308	98312	98316	98321	98325	98329	98333	98337
2.13	98341	98346	98350	98354	98358	98362	98366	98370	98374	98378
2.14	98382	98386	98390	98394	98398	98402	98406	98410	98414	98418
2.15	98422	98426	98430	98434	98438	98442	98446	98450	98454	98457
2.16	98461	98465	98469	98473	98477	98481	98484	98488	98492	98496
2.17	98500	98503	98507	98511	98515	98518	98522	98526	98530	98533
2.18	98537	98541	98545	98548	98552	98556	98559	98563	98567	98570
2.19	98574	98577	98581	98585	98588	98592	98595	98599	98603	98606
2.20	98610	98613	98617	98620	98624	98627	98631	98634	98638	98641
2.21	98645	98648	98652	98655	98659	98662	98665	98669	98672	98676
2.22	98679	98682	98686	98689	98693	98696	98699	98703	98706	98709
2.23	98713	98716	98719	98723	98726	98729	98732	98736	98739	98742
2.24	98745	98749	98752	98755	98758	98762	98765	98768	98771	98774
2.25	98778	98781	98784	98787	98790	98793	98796	98800	98803	98806
2.26	98809	98812	98815	98818	98821	98824	98827	98830	98834	98837
2.27	98840	98843	98846	98849	98852	98855	98858	98861	98864	98867
2.28	98870	98873	98876	98878	98881	98884	98887	98890	98893	98896
2.29	98899	98902	98905	98908	98910	98913	98916	98919	98922	98925
2.30	98928	98930	98933	98936	98939	98942	98944	98947	98950	98953
2.31	98956	98958	98961	98964	98967	98969	98972	98975	98978	98980
2.32	98983	98986	98988	98991	98994	98996	98999	99002	99004	99007
2.33	99010	99012	99015	99018	99020	99023	99025	99028	99031	99033
2.34	99036	99038	99041	99044	99046	99049	99051	99054	99056	99059
2.35	99061	99064	99066	99069	99071	99074	99076	99079	99081	99084
2.36	99086	99089	99091	99094	99096	99098	99101	99103	99106	99108
2.37	99111	99113	99115	99118	99120	99123	99125	99127	99130	99132
2.38	99134	99137	99139	99141	99144	99146	99148	99151	99153	99155
2.39	99158	99160	99162	99164	99167	99169	99171	99174	99176	99178
2.40	99180	99182	99185	99187	99189	99191	99194	99196	99198	99200
2.41	99202	99205	99207	99209	99211	99213	99215	99218	99220	99222
2.42	99224	99226	99228	99230	99232	99235	99237	99239	99241	99243
2.43	99245	99247	99249	99251	99253	99255	99257	99260	99262	99264
2.44	99266	99268	99270	99272	99274	99276	99278	99280	99282	99284
2.45	99286	99288	99290	99292	99294	99296	99298	99299	99301	99303
2.46	99305	99307	99309	99311	99313	99315	99317	99319	99321	99323
2.47	99324	99326	99328	99330	99332	99334	99336	99338	99339	99341
2.48	99343	99345	99347	99349	99350	99352	99354	99356	99358	99359
2.49	99361	99363	99365	99367	99368	99370	99372	99374	99376	99377

z	+.000	+.001	+.002	+.003	+.004	+.005	+.006	+.007	+.008	+.009
2.50	99379	99381	99383	99384	99386	99388	99389	99391	99393	99395
2.51	99396	99398	99400	99401	99403	99405	99407	99408	99410	99412
2.52	99413	99415	99417	99418	99420	99422	99423	99425	99426	99428
2.53	99430	99431	99433	99435	99436	99438	99439	99441	99443	99444
2.54	99446	99447	99449	99450	99452	99454	99455	99457	99458	99460
2.55	99461	99463	99464	99466	99468	99469	99471	99472	99474	99475
2.56	99477	99478	99480	99481	99483	99484	99486	99487	99489	99490
2.57	99492	99493	99494	99496	99497	99499	99500	99502	99503	99505
2.58	99506	99507	99509	99510	99512	99513	99515	99516	99517	99519
2.59	99520	99522	99523	99524	99526	99527	99528	99530	99531	99533
2.60	99534	99535	99537	99538	99539	99541	99542	99543	99545	99546
2.61	99547	99549	99550	99551	99553	99554	99555	99556	99558	99559
2.62	99560	99562	99563	99564	99565	99567	99568	99569	99571	99572
2.63	99573	99574	99576	99577	99578	99579	99581	99582	99583	99584
2.64	99585	99587	99588	99589	99590	99592	99593	99594	99595	99596
2.65	99598	99599	99600	99601	99602	99603	99605	99606	99607	99608
2.66	99609	99610	99612	99613	99614	99615	99616	99617	99618	99620
2.67	99621	99622	99623	99624	99625	99626	99627	99629	99630	99631
2.68	99632	99633	99634	99635	99636	99637	99638	99640	99641	99642
2.69	99643	99644	99645	99646	99647	99648	99649	99650	99651	99652
2.70	99653	99654	99655	99656	99657	99658	99660	99661	99662	99663
2.71	99664	99665	99666	99667	99668	99669	99670	99671	99672	99673
2.72	99674	99675	99676	99677	99678	99678	99679	99680	99681	99682
2.73	99683	99684	99685	99686	99687	99688	99689	99690	99691	99692
2.74	99693	99694	99695	99696	99697	99697	99698	99699	99700	99701
2.75	99702	99703	99704	99705	99706	99707	99707	99708	99709	99710
2.76	99711	99712	99713	99714	99715	99715	99716	99717	99718	99719
2.77	99720	99721	99721	99722	99723	99724	99725	99726	99727	99727
2.78	99728	99729	99730	99731	99732	99732	99733	99734	99735	99736
2.79	99736	99737	99738	99739	99740	99741	99741	99742	99743	99744
2.80	99744	99745	99746	99747	99748	99748	99749	99750	99751	99752
2.81	99752	99753	99754	99755	99755	99756	99757	99758	99758	99759
2.82	99760	99761	99761	99762	99763	99764	99764	99765	99766	99767
2.83	99767	99768	99769	99769	99770	99771	99772	99772	99773	99774
2.84	99774	99775	99776	99777	99777	99778	99779	99779	99780	99781
2.85	99781	99782	99783	99783	99784	99785	99785	99786	99787	99788
2.86	99788	99789	99790	99790	99791	99791	99792	99793	99793	99794
2.87	99795	99795	99796	99797	99797	99798	99799	99799	99800	99801
2.88	99801	99802	99802	99803	99804	99804	99805	99806	99806	99807
2.89	99807	99808	99809	99809	99810	99810	99811	99812	99812	99813
2.90	99813	99814	99815	99815	99816	99816	99817	99818	99818	99819
2.91	99819	99820	99820	99821	99822	99822	99823	99823	99824	99824
2.92	99825	99826	99826	99827	99827	99828	99828	99829	99829	99830
2.93	99831	99831	99832	99832	99833	99833	99834	99834	99835	99835
2.94	99836	99836	99837	99837	99838	99839	99839	99840	99840	99841
2.95	99841	99842	99842	99843	99843	99844	99844	99845	99845	99846
2.96	99846	99847	99847	99848	99848	99849	99849	99850	99850	99851
2.97	99851	99852	99852	99853	99853	99854	99854	99854	99855	99855
2.98	99856	99856	99857	99857	99858	99858	99859	99859	99860	99860
2.99	99861	99861	99861	99862	99862	99863	99863	99864	99864	99865

For values of z from 3 to 7, see the Mathematical presentation subsection.

Percentiles of the standard normal distribution, z(P) (table 2)

_												_
	P	+.000	+.001	+.002	+.003	+.004	+.005	+.006	+.007	+.008	+.009	
	.500	.0000	$.0^{2}251$	$.0^{2}501$	$.0^{2}752$.0100		.0150	.0175	.0201	.0226	
	.510	.0251	.0276	.0301	.0326	.0351	.0376	.0401	.0426	.0451	.0476	
	.520 .530	.0502 .0753	.0527	.0552	.0577	.0602	.0627	.0652	.0677	.0702	.0728 .0979	
	.540	.1004	.0778 .1030	.0803	.0828 .1080	.0853 .1105	.0878 .1130	.0904 .1156	.0929 .1181	.0954 .1206	.1231	
	.550	.1257 .1510	.1282	.1307 .1560	.1332 .1586	.1358 .1611	.1383 .1637	.1408	.1434 .1687	.1459 .1713	.1484 .1738	
	.560 .570	.1764	.1789	.1815	.1380	.1866	.1891	.1662 .1917	.1942	.1713	.1738	
	.580	.2019	.2045	.2070	.2096	.2121	.2147	.2173	.2198	.2224	.2250	
	.590	.2275	.2301	.2327	.2353	.2378	.2404	.2430	.2456	.2482	.2508	
	.600	.2533	.2559	.2585	.2611	.2637	.2663	.2689	.2715	.2741	.2767	
	.610	.2793	.2819	.2845	.2871	.2898	.2924	.2950	.2976	.3002	.3029	
	.620	.3055	.3081	.3107	.3134	.3160	.3186	.3213	.3239	.3266	.3292	
	.630	.3319	.3345	.3372	.3398	.3425	.3451	.3478	.3505	.3531	.3558	
	.640	.3585	.3611	.3638	.3665	.3692	.3719	.3745	.3772	.3799	.3826	
	.650	.3853	.3880	.3907	.3934	.3961	.3989	.4016	.4043	.4070	.4097	
	.660	.4125	.4152	.4179	.4207	.4234	.4261	.4289	.4316	.4344	.4372	
	.670	.4399	.4427	.4454	.4482	.4510	.4538	.4565	.4593	.4621	.4649	
	.680	.4677	.4705	.4733	.4761	.4789	.4817	.4845	.4874	.4902	.4930	
	.690	.4959	.4987	.5015	.5044	.5072	.5101	.5129	.5158	.5187	.5215	
	.700	.5244	.5273	.5302	.5330	.5359	.5388	.5417	.5446	.5476	.5505	
	.710 .720	.5534 .5828	.5563 .5858	.5592	.5622	.5651	.5681 .5978	.5710	.5740	.5769	.5799	
	.720	.6128	.6158	.5888 .6189	.5918 .6219	.5948 .6250	.6280	.6008 .6311	.6038 .6341	.6068 .6372	.6098 .6403	
	.740	.6433	.6464	.6495	.6526	.6557	.6588	.6620	.6651	.6682	.6713	
	.750	.6745	.6776	.6808	.6840	.6871	.6903	.6935	.6967	.6999	.7031	
	.760	.7063	.7095	.7128	.7160	.7192	.7225	.7257	.7290	.7323	.7356	
	.770	.7388	.7421	.7454	.7488	.7521	.7554	.7588	.7621	.7655	.7688	
	.780	.7722	.7756	.7790	.7824	.7858	.7892	.7926	.7961	.7995	.8030	
	.790	.8064	.8099	.8134	.8169	.8204	.8239	.8274	.8310	.8345	.8381	
	.800	.8416	.8452	.8488	.8524	.8560	.8596	.8633	.8669	.8705	.8742	
	.810	.8779	.8816	.8853	.8890	.8927	.8965	.9002	.9040	.9078	.9116	
	.820	.9154	.9192	.9230	.9269	.9307	.9346	.9385	.9424	.9463	.9502	
	.830	.9542	.9581	.9621	.9661	.9701	.9741	.9782	.9822	.9863	.9904	
	.840	.9945		1.0027	1.0069	1.0110	1.0152	1.0194	1.0237	1.0279	1.0322	
	.850	1.0364	1.0407		1.0494	1.0537		1.0625	1.0669	1.0714	1.0758	
	.860	1.0803	1.0848			1.0985			1.1123	1.1170	1.1217	
	.870 .880	1.1264 1.1750	1.1311			1.1455		1.1552 1.2055	1.1601	1.1650	1.1700	
	.890	1.2265					1.2536		1.2646		1.2759	
	.900	1.2816					1.3106		1.3225			
	.910	1.3408			1.3595			1.3787				
	.920	1.4051			1.4255			1.4466			1.4684	
	.930	1.4758			1.4985				1.5301		1.5464	
	.940	1.5548			1.5805			1.6072	1.6164	1.6258	1.6352	
	.950	1.6449			1.6747			1.7060			1.7392	
	.960	1.7507						1.8250			1.8663	
	.970	1.8808			1.9268			1.9774				
	.980	2.0537						2.1973				
	.990	2.3263	2.3030	∠.4∪89	2.43/3	2.3121	2.5/38	2.6521	2./4/8	2.8/82	3.0902	

For extreme percentiles (up to P = 0.999999), see the Mathematical presentation subsection.

This page is intentionally left blank

Reading off the tables

Table 1 gives the probability integral P(z) of the standard normal distribution at z, for positive values z = 0.000(0.001)2.999; a hidden decimal point precedes each quantity. Such quantity P(z), in a normal distribution with mean $\mu = 0$ and standard deviation $\sigma = 1$, denotes the probability that a random element Z lies under the indicated z value, i.e. $P(z) = \Pr(Z \le z)$. For negative z values, one may use the complementary relation: P(z) = 1 - P(z).

Table 2 is the converse of table 1 and presents the quantile (or percentage point) z corresponding to each P value, for P = 0.500(0.001)0.999; when P < 0.500, use the relation: z(P) = -z(1-P).

Illustration 1. What proportion of cases lies under z = 1.614, in the standard normal distribution? In table 1, taking line 1.61 and column +.004, we obtain P = 0.94674.

Illustration 2. What percentage of area do we find under z = -2.037, in the standard normal distribution? Using table 1 and relation P(z) = 1 - P(-z), we successively obtain P(2.037) = 0.97917 (line 2.03, column +.007), 1 - 0.97917 = 0.02083, whence the percentage asked for is 100×0.02083 , or nearly 2.

Illustration 3. Which abscissa, or z value, segregates the lower 62.5 % of the cases from the 37.5 % higher in the standard normal distribution? In table 2, integral P of 0.625 points to line 0.620 and column +.005, where value z = 0.3186 is given, satisfying the relation $Pr(Z \le 0.3186) \approx 0.625$.

Illustration 4. Which z value does divide the lower third (from the upper two thirds) in the standard normal distribution? We may approximate $\frac{1}{3}$ with 0,333. Using table 2 and as 0.333 < 0.500, we first obtain 1-0.333 = 0.667, then read off z(0.667) = 0.4316 and, finally, with a change of sign, -0.4316. For more precision, we could also, in the second phase, interpolate between 0.666 (with z = 0.4289) and 0.667 (with z = 0.4316): for $P = \frac{2}{3}$, we calculate:

$$z(\%) = 0.4289 + \frac{\% - 0.666}{0.667 - 0.666} (0.4316 - 0.4289)$$
$$= 0.4307,$$

or $z(1/3) \approx -0.4307$, a value which is precise up to the fourth decimal digit.

Full examples

Example 1. A test of Intellectual Quotient (IQ) for children of a given age is set up by imposing a normal distribution of scores, a mean (μ) of 100 and a standard deviation (σ) of 16. Find the two IQ values that comprise approximately the central 50 % of the young population. Solution: The central 50 % of the area in a standard N(0,1) distribution starts at integral P = 0.25 and ends at P = 0.75. Using table 2, $z(P=0.75) \approx 0.6745$; conversely, $z(P=0.25) \approx -0.6745$. The desired values are thus (-0.6745, 0.6745) for the standard N(0,1) distribution. These values can be converted approximately into IQ scores with a $N(100,16^2)$ distribution, using QI = 100 + 16z, whence the interval is (89.208, 110.792) or, roughly, (89, 111).

Example 2. The height of people, in a given population, presents a mean of 1.655 m and a standard deviation of 0.205 m. In a representative area comprising 12 000 inhabitants, how many persons having a height of 2 m or more can one expect to find? Solution: In order to predict an approximate number, we need to stipulate a model; here, we favor the model of a normal distribution with the corresponding parameter values, i.e. $N(1.655, 0.205^2)$. Transforming height X = 2 m into a standardized z value, we get $z = (2-1.655)/0.205 \approx 1.683$. In table 1, P(1.683) = 0.95381, whence the proportion of cases with a height exceeding X = 2 m, or z = 1.683, approaches 1-0.95381 = 0.04619. Multiplying this proportion by 12 000, the number of inhabitants in the designated area, we predict that there be about 554 persons of a height of 2 m or more in that area.

Example 3. A measuring device for strength in Newtons (N) allows to estimate arm flexion strength with a standard error of measurement (σ_{ϵ}) of 2.5 N. Using 5 evaluations for each arm, Robert obtains a mean strength of 93.6 N for his right arm, and of 89.8 for his left. May we assure that Robert's right arm is the stronger? Solution: Let us suppose that the estimates of each arm's strength fluctuate according to a normal model with means μ_{j} (j=1,2) and standard deviation 2.5 (= σ_{ϵ}). The difference between the two means ($\overline{x}_{1} - \overline{x}_{2}$) is itself normally distributed, with mean $\mu_{1} - \mu_{2}$ and standard error $\sigma_{\epsilon} \sqrt{(n_{1}^{-1} + n_{2}^{-1})}$, here $2.5 \times \sqrt{(5^{-1} + 5^{-1})} \approx 1.581$. Assume, by hypothesis, that $\mu_{1} = \mu_{2}$, i.e. both arms have equal strength. The observed difference, $\overline{x}_{1} - \overline{x}_{2} = 93.6 - 89.8 = 3.80$, standardized with:

¹ A more precise conversion would need to consider the discreteness of IQ scores (who vary by units), so that it would be generally impossible to obtain an exact interval of scores. In the same vein, the normal model, which is defined for continuous variables in the real domain, cannot be rigorously imposed to any discrete variable such as a test score.

$$z = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sigma_e \sqrt{n_1^{-1} + n_2^{-1}}},$$

that is, z = (3.80 - 0)/1.581 = 2.404, is located 2.404 units of standard error from 0. Admitting a bilateral error rate of 5 %, boundaries of statistical significance fall at the 2.5 and 97.5 percentage points, which, for the standard normal distribution in table 2, point to z = -1.960 and z = 1.960 respectively. The observed difference thus exceeds the allowed-for interval of normal variation, leading us to conclude that one arm, Robert's right arm, is truly the stronger.

Mathematical presentation

The normal law, or normal distribution, has famous origins as well as innumerable applications. It first appeared in the writings of De Moivre around 1733, and was re-discovered by Laplace and Gauss. Sir Francis Galton, in view of its quasi universality, christened it "normal", synonymously to natural, expressing order, normative: it is used as a model for the distribution of a great many measurable attributes in a population. The normal model is the foremost reference for interpreting continuous random phenomena, and it underlies an overwhelming majority of statistical techniques in estimation and hypotheses testing.

Calculation and moments

The normal law, or normal distribution, has two parameters designated by μ and σ^2 , corresponding respectively to the expectation (or mean) and variance of the distributed quantity. The normal p.d.f. is:

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-1/2(x-\mu)^2/\sigma^2}$$
,

where $\pi \approx 3.1416$ and $e \approx 2.7183$. As shown in the graphs, the p.d.f. is symmetrical and reaches its maximum height at $x = \mu$, μ thus being the mode, median and (arithmetic) mean of the distribution. Integration of p(x) is not trivial. One usually resorts to a standardized form, $z = (x-\mu)/\sigma$, z being a standard score, whose density function is the so-called standard normal distribution, N(0,1),

$$p(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2}$$
.

Maximum p.d.f., at z = 0, equals $p(0) \approx 0.3989$, and it decreases steadily when z goes to $+\infty$ or $-\infty$, almost vanishing (≈ 0.0044) at $z = \pm 3$.

Precise (analytic) integration of the normal p.d.f. is impossible; nevertheless authors have evolved ways and methods of calculating the normal integral, or d.f., P(z): most methods use series expansions. The simplest of those is based on the expansion of e^x in a Taylor series around zero, i.e. $e^x = 1 + x + x^2/2! + x^3/3! + \text{etc.}$ After substitution of $x^2/2$ for x, term-by-term integration and evaluation at x = 0 and x = z, the standard normal integral is:

$$P(z) = \frac{1}{2} + \frac{z}{\sqrt{2\pi}} \left[1 - \frac{z^2}{6} + \frac{z^4}{40} - \frac{z^6}{336} + \dots + \frac{(-1)^n z^{2n}}{2^n n! (2n+1)} \right],$$

the summation within brackets being pursued until the desired precision is attained.

There exist other formulae for approximating the normal d.f. P(x), with varying degrees of complexity and precision. The following,

$$P(z) \approx \frac{1}{2} + \frac{z}{15.04} \left[1 + 4e^{-z^2/8} + e^{-z^2/2} \right],$$

elaborated according to Simpson's rule with one arc, is precise to 0.0002 for $|z| \le 1$, to 0.001 for $|z| \le 1.75$, and to 0.01 for $|z| \le 2.31$. For higher z values, one may use:

$$P(z) \approx 1 - \frac{e^{-z^2/2}}{\sqrt{2\pi}} \left[\frac{z^2 + 2}{z^3 + 3z} \right],$$

whose precision is nearly 0.0001 for $z \ge 2.31$ and which has the advantage of always keeping three significant digits for extreme |z| values. Thus, for z = 5, the approximated value is 0.9999997132755, whereas the exact 14-digit integral is 0.99999971334835.

Still another approximation formula, more involved than the preceding ones but fitting for a computer program, is due to C. Hastings. Let $z \ge 0$; then,

$$P(z) \approx 1 - \frac{e^{z^2/2}}{\sqrt{2\pi}} \cdot t(b_1 + t(b_2 + t(b_3 + t(b_4 + tb_5))))$$
,

where t = 1/(1+0.2316419z) and $b_1 = 0.31938153$, $b_2 = -0.356563782$, $b_3 = 1.781477937$, $b_4 = -1.821255978$, $b_5 = 1.330274429$. For any (positive) z value, the precision of the calculated P(z) is at least 0.000000075.

Normal distribution 15

Values reported in tables 1 and 2 have been computed with great precision (12 digits or more) with the Taylor series expansion aforementioned. The two small tables below furnish some supplementary, extreme, values of the standard normal integral (note that .9⁴6833 should be read 0.99996833).

z	3	3.5	4	4.5	5	5.5	6	6.5	7
P(z)	$.9^28650$.9 ³ 7674	.9 ⁴ 6833	.9 ⁵ 6602	.9 ⁶ 7133	.9 ⁷ 8101	.9 ⁹ 0134	.9 ¹⁰ 5984	.9 ¹¹ 8720

P	.99	.9 ² 5	.93	.9 ³ 5	.9 ⁴	.9 ⁴ 5	.9 ⁵	.9 ⁵ 5	.96
z(P)	2.32635	2.57583	3.09023	3.29053	3.71902	3.89059	4.26489	4.41717	4.75342

Moments. The expectation (μ) and variance (σ^2) are the two parameters of a normal distribution. The skewness index (γ_1) is zero. As for the kurtosis index (γ_2), the normal law is stipulated as a criterion, a reference shape for all other distributions, consequently this index is again zero.

For the curious reader, let us note that, for a normal $N(\mu,\sigma^2)$ distribution, the mean absolute difference, $\sum |x_i - \overline{x}|/n$, has expectation $\sigma \times \sqrt{(2/\pi)} \approx 0.79788\sigma$. Also, the mean (or expectation) of variates located in the upper 100α % of a normal population is given by $\mu + \sigma \times p(z_{1-\alpha})/\alpha$, $z_{1-\alpha}$ being the $100(1-\alpha)$ percentage point of distribution N(0,1). For example, for $x = z \sim N(0,1)$, the mean of the upper 10 %, denoted $\mu_{(0.10)}$, uses $z_{[1-0.10]} = z_{[0.90]} \approx 1.2818$ (in table 2), $p(1.2816) \approx 0.17549$, and $\mu_{(0.10)} \approx 0 + 1 \times 0.17549/0.10 \approx 1.7549$.

Generation of pseudo random variates

Suppose a uniform U(0,1) random variate (r.v.) generator, designated UNIF (see the section on Random numbers for information on UNIF). A normal N(0,1) r.v. is produced from two independent uniform r.v.'s using the following transformation.

Preparation : $C = 2\pi \approx 6.2831853072$

Production: Return $\sqrt{[-2 \times \ln(\text{UNIF})]} \times \sin(\text{C} \times \text{UNIF}) \rightarrow x$.

Remarks:

- 1. Standard temporal cost: $4.0 \times t(\text{UNIF})$, *i.e.* the approximate time required to produce one normal r.v. is equivalent to 4 times t(UNIF), the time required to produce one uniform r.v..
- 2. This method shown above is due to Box and Muller (Devroye 1986) and has some variants. Each invocation (with the same pair of UNIF values) allows to generate a second, independent x' value, through the substitution of "cos" instead of "sin" in the conversion formula.
- 3. In order to produce a normal $N(\mu, \sigma)$ r.v. y, one first obtains $x \sim N(0, 1)$ with the procedure outlined, then $y \leftarrow \mu + \sigma \times x$.
- 4. In order to produce pairs of normal N(0,1) r.v.'s z_1 , z_2 having mutual correlation equal to ρ , one first obtains independent r.v.'s x and x', then $z_1 \leftarrow x$ and $z_2 \leftarrow \rho \times x + \sqrt{(1-\rho^2)} \times x'$. Gentle (1998, p. 187) suggests a more elegant approach. Let $\omega = \cos^{-1}\rho$ (in radian units). Then, one first obtains $t \leftarrow \sqrt{[-2 \times \ln(\text{UNIF})]}$ and $u \leftarrow 2\pi \times \text{UNIF}$, then $z_1 \leftarrow t \times \sin(u)$, $z_2 \leftarrow t \times \sin(u \omega)$.

Chi-square (χ^2) distribution

- ✓ Graphical representations
- ✓ Selected percentiles of Chi-square (χ^2)
- ✓ Reading off the table
- ✓ Full examples
- ✓ Mathematical presentation

Calculation and moments
Generation of pseudo random variates
The distribution of *s*, the standard deviation (s.d.)
Three normal approximations to Chi-square

Chi-square (χ^2) distributions

Selected percentiles of Chi-square (χ^2)

_						1				1	(/, /				
	$m{ u} \setminus m{P}$.001	.005	.010	.025	.050	.250	.500	.750	.950	.975	.990	.995	.999	ν
	1 2 3 4	$.0^{5}16$ $.0^{2}20$ $.024$ $.091$.0 ⁴ 39 .010 .072 .21	.0 ³ 16 .020 .11 .30	.0 ³ 98 .051 .22 .48	.0 ² 39 .10 .35 .71	.10 .58 1.21 1.92	.45 1.39 2.37 3.36	1.32 2.77 4.11 5.39	3.84 5.99 7.81 9.49	5.02 7.38 9.35 11.14	6.63 9.21 11.34 13.28	7.88 10.60 12.84 14.86	10.83 13.82 16.27 18.47	1 2 3 4
	5 6 7 8 9	.21 .38 .60 .86 1.15	.41 .68 .99 1.34 1.73	.55 .87 1.24 1.65 2.09	.83 1.24 1.69 2.18 2.70	1.15 1.64 2.17 2.73 3.33	2.67 3.45 4.25 5.07 5.90	4.35 5.35 6.35 7.34 8.34	6.63 7.84 9.04 10.22 11.39	11.07 12.59 14.07 15.51 16.92	14.45	15.09 16.81 18.48 20.09 21.67	16.75 18.55 20.28 21.96 23.59	20.52 22.46 24.32 26.12 27.88	5 6 7 8 9
	10 11 12 13 14	1.48 1.83 2.21 2.62 3.04	2.16 2.60 3.07 3.57 4.07	2.56 3.05 3.57 4.11 4.66	3.25 3.82 4.40 5.01 5.63	3.94 4.57 5.23 5.89 6.57	6.74 7.58 8.44 9.30 10.17	11.34	12.55 13.70 14.85 15.98 17.12	21.03 22.36	20.48 21.92 23.34 24.74 26.12	26.22 27.69	25.19 26.76 28.30 29.82 31.32	29.59 31.26 32.91 34.53 36.12	10 11 12 13 14
	15 16 17 18 19	3.48 3.94 4.42 4.90 5.41	4.60 5.14 5.70 6.26 6.84	5.23 5.81 6.41 7.01 7.63	6.26 6.91 7.56 8.23 8.91	8.67 9.39	11.04 11.91 12.79 13.68 14.56	17.34	18.25 19.37 20.49 21.60 22.72	27.59	28.85 30.19 31.53	33.41	32.80 34.27 35.72 37.16 38.58	37.70 39.25 40.79 42.31 43.82	15 16 17 18 19
	20 21 22 23 24	5.92 6.45 6.98 7.53 8.08	7.43 8.03 8.64 9.26 9.89	9.54 10.20	9.59 10.28 10.98 11.69 12.40	11.59 12.34	15.45 16.34 17.24 18.14 19.04	21.34 22.34	24.93 26.04	32.67 33.92 35.17	36.78	38.93 40.29 41.64	40.00 41.40 42.80 44.18 45.56		20 21 22 23 24
	25 26 27 28 29	8.65 9.22 9.80 10.39 10.99	10.52 11.16 11.81 12.46 13.12	11.52 12.20 12.88 13.56 14.26	13.84 14.57 15.31	16.15	20.84	25.34 26.34 27.34	29.34 30.43 31.53 32.62 33.71	38.89 40.11	40.65 41.92 43.19 44.46 45.72	44.31 45.64 46.96 48.28 49.59	48.29	52.62 54.05 55.48 56.89 58.30	25 26 27 28 29
	30 31 32 33 34	12.20		14.95 15.66 16.36 17.07 17.79	17.54 18.29 19.05	20.07 20.87	25.39	30.34 31.34 32.34	34.80 35.89 36.97 38.06 39.14	43.77 44.99 46.19 47.40 48.60	48.23 49.48 50.73	52.19 53.49 54.78	53.67 55.00 56.33 57.65 58.96	59.70 61.10 62.49 63.87 65.25	30 31 32 33 34
	35 36 37 38 39	14.69 15.32 15.97 16.61 17.26	17.19 17.89 18.59 19.29 20.00	18.51 19.23 19.96 20.69 21.43	22.88	23.27 24.07 24.88	31.81	35.34 36.34 37.34	43.46		54.44 55.67 56.90	57.34 58.62 59.89 61.16 62.43	61.58 62.88 64.18	66.62 67.99 69.35 70.70 72.05	35 36 37 38 39
	40 41 42 43 44	18.58 19.24 19.91	21.42 22.14 22.86	22.91 23.65	25.21 26.00 26.79	27.33 28.14 28.96	34.58 35.51 36.44	40.34 41.34 42.34	46.69 47.77 48.84	56.94 58.12 59.30	60.56 61.78 62.99		68.05 69.34	74.74	40 41 42 43 44
	45 46 47 48 49 50	21.93 22.61 23.29 23.98	25.04 25.77 26.51 27.25	28.94	29.16 29.96 30.75 31.55	31.44 32.27 33.10 33.93	39.22 40.15 41.08 42.01	45.34 46.34 47.34 48.33	52.06 53.13 54.20 55.27	62.83 64.00 65.17 66.34	66.62 67.82 69.02	74.92	74.44	85.35	45 46 47 48 49 50

Selected percentiles of Chi-square (χ^2) (cont.)

$\nu \setminus P$.001	.005	.010	.025	.050	.250	.500	.750	.950	.975	.990	.995	.999	ν
51	25.37	28.73	30.48	33.16	35.60	43.87	50.33	57.40	68.67	72.62	77.39	80.75	87.97	51
52	26.07	29.48	31.25	33.97	36.44	44.81	51.33	58.47		73.81	78.62			52
53	26.76	30.23	32.02	34.78	37.28	45.74	52.33	59.53	70.99	75.00		83.25	90.57	53
54	27.47	30.98	32.79	35.59	38.12	46.68	53.33	60.60	72.15	76.19		84.50	91.87	54
55	28.17	31.73	33.57	36.40	38.96	47.61	54.33	61.66		77.38		85.75	93.17	55
56 57	28.88 29.59	32.49 33.25	34.35 35.13	37.21 38.03	39.80 40.65	48.55 49.48	55.33 56.33	62.73 63.79	74.47 75.62	78.57 79.75		86.99 88.24	94.46 95.75	56 57
58	30.30	34.01	35.13	38.84	41.49	50.42	57.33	64.86		80.94		89.48	97.04	58
59	31.02	34.77	36.70	39.66	42.34	51.36	58.33	65.92	77.93	82.12		90.72	98.32	59
60	31.74	35.53	37.48	40.48	43.19	52.29	59.33	66.98	79.08	83.30		91.95	99.61	60
61	32.46	36.30	38.27	41.30	44.04	53.23	60.33	68.04	80.23	84.48			100.89	61
62	33.18	37.07	39.06	42.13	44.89	54.17	61.33	69.10		85.65			102.17	62
63 64	33.91 34.63	37.84 38.61	39.86 40.65	42.95 43.78	45.74 46.59	55.11 56.05	62.33 63.33	70.16 71.23	82.53 83.68	86.83 88.00			103.44 104.72	63 64
65	35.36	39.38	41.44	44.60	47.45	56.99	64.33	72.28	84.82	89.18			105.99	65
66	36.09	40.16	42.24		48.31	57.93	65.33	73.34				99.33		66
67	36.83	40.94	43.04	46.26	49.16	58.87	66.33	74.40	87.11	91.52		100.55		67
68		41.71	43.84		50.02	59.81	67.33	75.46		92.69		101.78		68
69	38.30			47.92	50.88	60.76	68.33	76.52	89.39	93.86		103.00		69
70	39.04	43.28	45.44	48.76	51.74	61.70	69.33	77.58	90.53		100.43			70
71 72	39.78 40.52	44.06 44.84	46.25 47.05	49.59 50.43	52.60 53.46	62.64 63.58	70.33 71.33	78.63 79.69	91.67 92.81		101.62 102.82			71 72
73	41.26	45.63	47.86	51.26	54.33	64.53	72.33	80.75	93.95		102.82			73
74	42.01	46.42	48.67	52.10	55.19	65.47	73.33	81.80			105.20			74
75	42.76	47.21	49.48	52.94	56.05	66.42	74.33	82.86	96.22	100.84	106.39	110.29	118.60	75
76	43.51	48.00	50.29	53.78	56.92	67.36	75.33	83.91			107.58			76
77	44.26	48.79	51.10	54.62	57.79	68.31	76.33	84.97			108.77			77
78 70	45.01	49.58	51.91	55.47	58.65	69.25	77.33				109.96			78
79	45.76	50.38	52.72	56.31	59.52	70.20	78.33				111.14			79
80 81	46.52 47.28	51.17 51.97	53.54 54.36	57.15 58.00	60.39 61.26	71.14 72.09	79.33 80.33				112.33			80
82	48.04	52.77	55.17	58.84	62.13	73.04	81.33				113.51 114.69			81 82
83	48.80	53.57	55.99	59.69	63.00	73.99	82.33				115.88			83
84	49.56	54.37	56.81	60.54	63.88	74.93	83.33				117.06			84
85	50.32	55.17	57.63	61.39	64.75	75.88	84.33				118.24			85
86	51.08	55.97	58.46	62.24	65.62	76.83					119.41			86
87	51.85 52.62	56.78	59.28	63.09	66.50	77.78	86.33				120.59			87
88 89	53.39	57.58 58.39	60.10 60.93	63.94 64.79	67.37 68.25	78.73 79.68					121.77 122.94			88 89
90											124.12			90
91			62.58								125.29			91
92			63.41		70.88	82.52	91.33	100.75	115.39	120.43	126.46	130.68	139.67	92
93			64.24								127.63			93
94			65.07								128.80			94
95 96				69.92 70.78							129.97			95 06
96 97			66.73 67.56	70.78		86.33 87.28					131.14 132.31			96 97
98			68.40								133.48			98
99	61.14	66.51	69.23	73.36	77.05	89.18	98.33	108.09	123.23	128.42	134.64	138.99	148.23	99
100			70.06								135.81			100
z	-3.090	-2.576	-2.326	-1.960	-1.645	674	.000	.674	1.645	1.960	2.326	2.576	3.090	z

For degrees of freedom (v) beyond 100, percentiles of χ^2 may be approximated with: $\chi^2_{\nu[P]} = \frac{1}{2} \left(z_{[P]} + \sqrt{2\nu - 1} \right)^2$, utilizing the normal percentiles $z_{[P]}$ at the foot of the table.

Reading off the table

The table furnishes a set of percentage points of the Chi-square (χ^2_{ν}) distribution for degrees of freedom (ν) from 1 to 100. For larger ν , the approximation formula printed at the foot of the table is recommended.

Illustration 1. What is the value of $\chi^2_{6[.95]}$, i.e. the 95th percentage point of Chi-square with $\nu=6$? Looking up line 6 (= ν) in the table under column 0.95, we read off 12.59, hence $\chi^2_{6[.95]}=12.59$. In the same way, we obtain $\chi^2_{13[.99]}=27.69$ and $\chi^2_{20[.975]}=34.17$.

Illustration 2. Find $\chi^2_{110[.95]}$. As $\nu = 110 > 100$, it is necessary to calculate some estimate of the required percentage point. Using the recommended formula, with $z_{[.95]} = 1.6449$ as indicated, we calculate $\chi^2_{110[.95]} \approx \frac{1}{2}[1.6449 + \sqrt{(2\times110-1)}]^2 \approx 135.20$. The exact value (when available) is 135.48.

Full examples

Example 1. In a sample containing 50 observations, we obtain $s^2 = 16.43$ as an estimate of variance. What are the limits within which sould lie the true variance σ^2 , using a confidence coefficient of 95 %? Solution: We must suppose that the individual observations (X_i) obey the normal law, with (unknown) mean μ and variance σ^2 . Under that assumption, the sample variance s^2 is distributed as Chi-square with n-1 df, specifically $(n-1)s^2/\sigma^2 \sim \chi^2_{n-1}$. Using the appropriate percentage points of χ^2 and inverting this formula, we obtain the interval:

$$\left\{\frac{(n-1)s^2}{\chi^2_{n-1[(1+c)/2]}}; \frac{(n-1)s^2}{\chi^2_{n-1[(1-c)/2]}}\right\}$$

which comprises σ^2 with probability c. For our data, n = 50, c = 0.95, $\chi^2_{49[.975]} = 70.22$ and $\chi^2_{49[.025]} = 31.55$; the left boundary is thus $(49 \times 16.43)/70.22 \approx 11.465$, the right one, $(49 \times 16.43)/31.55 \approx 25.517$. We may state that Pr $\{11.465 < \sigma^2 < 25.517\} = 0.95$ or, by taking square roots, Pr $\{3.386 < \sigma < 5.051\} = 0.95$.

Example 2. In an opinion poll bearing on social and moral issues, 200 people must declare their views as "Against", "Uncertain" or "In favor" relatively to the death penalty. Here are the obtained frequencies of opinion, divided between the two genders:

Gender \ Option	Against	Uncertain	In favor
Men	29	17	51
Women	52	8	43

Can we suppose that, in the entire population, men and women share the same views? Solution: The statistical analysis of frequency (or contingency) tables is perhaps the foremost application of Chi-square. Here, the (null) hypothesis according to which the answers are scattered irrespective of gender, *i.e.* the *independence hypothesis*, allows to determine the theoretical frequencies (ft_{ij}) , with the multiplicative formula:

$$ft_{i,j} = N(p_{L_i} \times p_{C_i})$$
;

the quantities shown are estimated from the proportions in each line (p_{L_i}) and each colum (p_{C_j}) . Other equivalent formulae are possible. The independence hypothesis will be discarded at significance level α if the test statistic $X^2 = \sum_{i,j} [(f_{i,j} - ft_{i,j})^2 / ft_{i,j}]$ exceeds $\chi^2_{\nu[1-\alpha]}$, with $\nu = (\text{nbr. of lines} - 1) \times (\text{nbr. of columns} - 1)$. The table below summarizes the calculations. Note that quantity $ft_{i,j}$ is printed in italics at the lower right corner of each cell, and individual X^2 components, $(f_{i,j} - ft_{i,j})^2 / ft_{i,j}$, at the upper left corner.

	Column 1	Column 2	Column 3	Total
	2.693	1.960	0.642	
Line 1	29	17	51	97
	39.285	12.125	45.590	$p_{\rm L1} = 0.485$
	2.536	1.846	0.605	
Line 2	52	8	43	103
	41.715	12.875	48.410	$p_{L2} = 0.515$
Total	81	25	94	N = 200
2 3 661	$p_{\rm C1} = 0.405$	$p_{\rm C2} = 0.125$	$p_{\rm C3} = 0.470$	1, 200

Adding all six components $(f_{i,j}-ft_{i,j})^2/ft_{i,j}$, we get $X^2 = 2.693 + 1.960 + 0.642 + 2.536 + 1.846 + 0.605 = 10.282$. The appropriate tabular value significant at 5 % and with $df = (2-1)\times(3-1) = 2$, is $\chi^2_{2[.95]} = 5.99$. As the obtained value (10.282) exceeds the critical value, we may conclude that there is some dependence (or interaction, indeed correlation in a broad sense) between lines and columns, that the frequency profiles vary from one line to the other; in other words, the respondant's gender seems to bias his or her opinion on the death penalty.

Mathematical presentation

A Chi-square variate with ν degrees of freedom is equivalent to the sum of ν independent, squared, standard normal variates, $\sum_{i=1}^{\nu} z_i^2$ and it is denoted χ_{ν}^2 . As an example, the variance (s^2) from a sample of normally distributed observations is distributed as χ^2 , the parameter ν being referred to as the degrees of freedom (df) of the calculated variance. Symbolically, we write:

$$\frac{\mathbf{v}\cdot \mathbf{s}^2}{\sigma^2} \sim \chi_{\mathbf{v}}^2 .$$

In the case of the statistic s^2 based upon n observations from a $N(\mu, \sigma^2)$ distribution, where $s^2 = \sum (x_i - \overline{x})^2 / (n-1)$, the df are equal to $\nu = n-1$. The Chi-square distribution is also used for the analysis of frequency (or contingency) tables and as an approximation to the distribution of many complex statistics.

Calculation and moments

The Chi-square distribution, a particular case of the *Gamma* distribution (see Mathematical complements), has p.d.f.:

$$p_{\chi^2}(x) = [2^{\nu/2}\Gamma(\nu/2)]^{-1} x^{(\nu-2)/2} e^{-x/2} \quad \{ x \ge 0 \} ,$$

where $\Gamma(x)$ is the *Gamma* function and $e \approx 2.7183$. Integration of the χ^2 density depends on whether ν is even or odd. Integrating by parts, we obtain for even ν :

$$P_{\chi^2}(x) = \Pr(X \le x) = 1 - e^{-y} \left[1 + y + \frac{y^2}{2!} + \dots + \frac{y^{\nu/2-1}}{(\nu/2-1)!} \right],$$

and for odd v:

$$P_{\chi^{2}}(x) = \Pr(X \le x) = 2\Phi(\sqrt{x}) - 1 - e^{-y}\sqrt{y}\left[\frac{1}{\Gamma(3/2)} + \frac{y}{\Gamma(5/2)} + \dots + \frac{y^{(v-3)/2}}{\Gamma(v/2)}\right];$$

in each expression, y = x/2. When v = 1, $\chi^2 = z^2$ by definition, therefore $P_{\chi^2}(x) = 2\Phi(\sqrt{x}) - 1$, $\Phi()$ designating the normal d.f.. For v = 2, the χ^2 variable is the same as a r.v. from the (standard) exponential distribution and $P_{\chi^2}(x) = 1 - \exp(-x/2)$; centiles (C_P) of this χ^2 distribution may be obtained by inversion, i.e. $C_P = \chi^2_{2[P]} = -2\ln(1-P)$.

Moments. The expectation, variance and moments for skewness and kurtosis of a χ^2 variable with degrees of freedom ν are:

$$E(x) = \mu = v$$
; $var(x) = \sigma^2 = 2v$; $\gamma_1 = \sqrt{(8/v)}$; $\gamma_2 = 12/v$.

The distribution is positively skew, the more large and right-shifted as ν grows and approaching a normal form. The mode is seated at $\nu-2$ (for $\nu \ge 2$), and the median is approximately equal to $\nu-\frac{2}{3}+\frac{1}{9\nu}$.

Some authors "standardize" the χ^2 variable by dividing it by its parameter ν , i.e. $x' = x/\nu$: in that case, $\mu(x') = 1$ and $\text{var}(x') = 2/\nu$. This form facilitates somewhat interpolation of χ^2 for untabled values of ν ; note in that context that $\chi^2/\nu \to 1$ when $\nu \to \infty$.

Three normal approximations to χ^2

The p.d.f. and d.f. of χ^2 can be approximated by the normal distribution through diverse transformations. The simplest one is trivial and uses only the first two moments, i.e. $z = (X-v)/\sqrt{(2v)}$, $X \sim \chi^2$, and is globally not to be recommended except for large v such as v > 500.

Fisher proposes another approximation which compensates for the skewness of X. It reads like:

$$\sqrt{(2X)} - \sqrt{(2\nu - 1)} \sim N(0,1)$$
;

it is the method whose inversion formula is proposed at the foot of the table for extending it to larger ν .

The third method, attributed to Wilson and Hilferty, is quite accurate. Defining A = 2/(9v), it may be written:

$$\left[\sqrt[3]{(X/\nu)} - 1 + A\right] / \sqrt{A} \sim N(0,1)$$
.

Its inversion, for the determination of percentage points, is:

$$\chi^2_{v[P]} = v[z_P \sqrt{A} + 1 - A]^3$$
.

With the help of a pocket calculator or of a short computer program, this last method can make up for most current applications of χ^2 , even when $\nu < 100$.

The distribution of s, the standard deviation (s.d.)

Just as the χ^2 law governs the distribution of variances (s^2) originating from samples of n normal data, with v = n-1 df, the χ ("Chi") law, more precisely χ/\sqrt{v} , represents the sampling distribution of s.d.'s (s). Its p.d.f. is:

$$p_{\chi}(x) = 2(\nu/2)^{\nu/2} [\Gamma(\nu/2)]^{-1} x^{\nu-1} e^{-\nu x^2/2} \quad \{ x > 0 \} .$$

The χ variable being the positive square root of χ^2 , its centiles or percentage points may be obtained from it in that way. Thus, centile C_P of the distribution of a s/σ with ν degrees of freedom is given by $\sqrt{[\chi^2_{\nu(P)}/\nu]}$.

Moments. The first two moments of χ/\sqrt{v} are:

$$E(x) = \mu = \sqrt{(2/\nu)}\Gamma[(\nu+1)/2]/\Gamma(\nu/2) \approx 1 - 1/(4\nu)$$

$$var(x) = \sigma^2 = 1 - \mu^2 \qquad \approx (4\nu - 1)/(8\nu^2) .$$

The s.d. s being distributed as $\sigma\chi/\sqrt{\nu}$, the expectation above shows that $E(s) < \sigma$, i.e. that the sample s.d. underestimates the parameter σ , notwithstanding the fact that $E(s^2) = \sigma^2$. Lastly, the mode of $\chi/\sqrt{\nu}$ equals $\sqrt{(1-1/\nu)}$ and the median is approximated by $1-\frac{1}{3\nu}$.

Generation of pseudo random variates

The schema of a program below allows the production of r.v.'s from χ^2_{ν} , the Chi-square distribution with ν ($\nu > 2$) df, and it requires a function (designated UNIF) which generates serially r.v.'s from the standard uniform U(0,1) distribution. Particular cases, especially those with $\nu = 1$ and 2, are covered in Remark 3.

Preparation: Let $n \equiv v$ (the degrees of freedom)

$$C_1 = 1 + \sqrt{(2/e)} \approx 1,8577638850$$
; $C_2 = \sqrt{(n/2)}$
 $C_3 = (3n^2 - 2) / [3n(n-2)]$; $C_4 = 4 / (n-2)$
 $C_5 = n-2$

Remarks:

1. Standard temporal cost: 7.8 à $8.7 \times t(UNIF)$

Return $C_5 \times w \rightarrow x$.

- 2. This algorithm, known under the codename "GMK2" (Cheng et Feast 1979, in Fishman 1996), performs equally well for any value v = n. It uses up from 3 to 3.5 uniform r.v.'s per call.
- 3. There are many other methods, the following being noteworthy. Considering that " $x_{(2)} \leftarrow -2 \times \ln(\text{UNIF})$ " produces a χ^2_2 r.v. and capitalizing on the additive property of χ^2 , we can produce, for instance, a χ^2_8 r.v. with " $x_{(8)} \leftarrow -2 \times \ln(\text{UNIF} \times \text{UNIF} \times \text{UNIF} \times \text{UNIF})$ ". Also from the definition, " $x_{(1)} \leftarrow y^2$ " furnishes one r.v. from χ^2_1 using y, a standard N(0,1) normal r.v.. Lastly and for example, we may fabricate a χ^2_5 r.v. through " $x_{(5)} \leftarrow -2 \times \ln(\text{UNIF} \times \text{UNIF}) + y^2$ ", once more using $y \sim N(0,1)$.

Student's t distribution

- ✓ Graphical representations
- ✓ Selected percentiles of Student's t distribution (table 1)
- ✓ Critical values of *t* according to Dunn-Šidák's criterion (table 2)
- ✓ Minimum sample size (n) such that a given correlation coefficient r be significant at various thresholds (table 3)
- ✓ Reading off the table
- ✓ Full examples
- ✓ Mathematical presentation

Calculation and moments

Generation of pseudo random variates

Student's t distributions

Selected percentiles of Student's t distribution (table 1)

P \ P \ 7.50 9.50 9.75 9.90 9.95 P \ P \ 7.50 9.50 9.75 9.90 9.95 1 1,000 6,314 12,71 31,82 63.66 51 6.79 1.675 2.008 2.402 2.676 2 816 2.920 4.303 6.965 9.925 52 6.79 1.674 2.005 2.399 2.672 3 7.65 2.353 3.182 4.541 5.841 53 6.79 1.674 2.005 2.399 2.672 4 7.41 2.132 2.776 3.747 4.604 54 6.79 1.674 2.005 2.397 2.670 5 727 2.015 2.571 3.365 4.032 55 6.79 1.673 2.004 2.396 2.668 6 718 1.943 2.447 3.143 3.707 56 6.79 1.673 2.004 2.396 2.668 8 7.06 1.860 2.306 2.896 3.355 58 6.79 1.672 2.002 2.394 2.665 9 703 1.833 2.262 2.821 3.250 59 6.79 1.671 2.000 2.399 2.660 10 700 1.812 2.282 2.764 3.169 60 6.79 1.671 2.000 2.390 2.660 11 6.97 1.796 2.201 2.718 3.106 61 6.79 1.670 2.000 2.389 2.659 12 6.95 1.782 2.179 2.681 3.055 62 6.78 1.669 1.998 2.387 2.655 13 6.94 1.771 2.160 2.560 3.012 63 678 1.669 1.998 2.387 2.655 14 6.92 1.761 2.145 2.624 2.977 64 6.78 1.668 1.997 2.384 2.652 15 6.91 1.753 2.131 2.602 2.947 65 6.78 1.669 1.997 2.385 2.654 16 6.90 1.746 2.110 2.567 2.898 67 678 1.666 1.997 2.385 2.654 17 6.88 1.749 2.093 2.539 2.861 69 678 1.666 1.993 2.382 2.649 20 6.87 1.725 2.086 2.528 2.845 70 678 1.667 1.994 2.381 2.648 21 6.86 1.712 2.074 2.508 2.819 77 678 1.666 1.993 2.379 2.646 23 6.85 1.711 2.060 2.485 2.787 75 678 1.666 1.993 2.379 2.645 24 6.85 1.711 2.060 2.485 2.787 75 678 1.666 1.993 2.379 2.645 25 6.84 1.708 2.060 2.485 2.787 75 678 1.666 1.993 2.379 2.645 26 6.88 1.709 2.030 2.485 2.779 76 6.788 1.666 1.993 2.379 2.64							 			`			
2 816 2.920 4.303 6,965 9.925 52 6.79 1.675 2.007 2.400 2.674 3.765 2.353 3.182 4.541 5.841 53 .679 1.674 2.006 2.399 2.672 4 .741 2.132 2.776 3.747 4.604 54 .679 1.674 2.005 2.397 2.670 5 .727 2.015 2.571 3.365 4.032 55 .679 1.673 2.004 2.396 2.668 6.718 1.943 2.447 3.143 3.707 56 .679 1.673 2.004 2.396 2.668 6.718 1.943 2.447 3.143 3.707 56 .679 1.672 2.002 2.394 2.665 8 .706 1.860 2.306 2.896 3.355 58 .679 1.672 2.002 2.394 2.665 9 .703 1.833 2.262 2.821 3.250 59 .679 1.672 2.002 2.392 2.663 9 .703 1.833 2.262 2.821 3.250 59 .679 1.671 2.001 2.391 2.662 10 .700 1.812 2.228 2.764 3.169 60 .679 1.671 2.000 2.390 2.660 11 .697 1.796 2.201 2.718 3.106 61 .679 1.670 2.000 2.390 2.659 12 .695 1.782 2.179 2.681 3.055 62 .678 1.670 1.999 2.388 2.657 13 .694 1.771 2.160 2.650 3.012 63 .678 1.660 1.999 2.388 2.657 13 .694 1.771 2.160 2.650 3.012 63 .678 1.669 1.998 2.386 2.655 15 .691 1.753 2.131 2.602 2.947 65 .678 1.669 1.998 2.386 2.655 15 .691 1.753 2.131 2.602 2.947 65 .678 1.668 1.997 2.385 2.654 16 .690 1.746 2.100 2.583 2.921 66 .678 1.668 1.997 2.382 2.650 18 .688 1.734 2.101 2.557 2.898 67 .678 1.668 1.996 2.383 2.651 18 .688 1.732 2.093 2.539 2.861 69 .678 1.666 1.993 2.382 2.650 18 .688 1.729 2.093 2.539 2.861 69 .678 1.667 1.994 2.381 2.648 2.685 1.712 2.080 2.518 2.831 71 .678 1.667 1.994 2.381 2.648 2.685 1.711 2.004 2.492 2.797 74 .678 1.666 1.993 2.379 2.644 2.685 1.711 2.004 2.492 2.797 74 .678 1.666 1.993 2.379 2.644 2.685 1.711 2.044 2.492 2.797 74 .678 1.666 1.993 2.379 2.645 2.642 2.756 79 .678 1.666 1.993 2.379 2.645 2.642 2.756 79 .678 1.666 1.993 2.372 2.636 34 .682 1.692 2.035 2.445 2.753 88 .678 1.666 1.993 2.379 2.644 2.680 1.692 2.035 2.445 2.733 83 .677 1.663 1.988 2.370 2.634 2.639 3.681 1.687 2.024 2.457 2.750 89 .678 1.666 1.993 2.372 2.636 3.682 1.692 2.035 2.445 2.733 83 .677 1.663 1.988 2.370 2.634 2.639 4.688 1.688 2.024 2.429 2.719 86 .677 1.666 1.988 2.370 2.634 4.688 1.688 2.024 2.431 2.719 86 .677 1.666 1.988 2.370 2.634 4.688 1.688 2.023 2.441 2.728 84 .677 1.666 1.988 2.370 2	$\nu \setminus P$.750	.950	.975	.990	.995	$v \setminus P$.750	.950	.975	.990	.995	
2 .816 2.920 4.303 6,965 9.925 52 .679 1.675 2.007 2.400 2.674 3 .765 2.353 3.182 4.541 5.841 53 .679 1.674 2.006 2.399 2.672 4 .741 2.132 2.776 3.747 4.604 54 .679 1.674 2.005 2.397 2.670 5 .727 2.015 2.571 3.365 4.032 55 .679 1.673 2.004 2.396 2.668 6 .718 1.943 2.447 3.143 3.707 56 .679 1.673 2.004 2.396 2.668 7 .711 1.895 2.365 2.998 3.499 57 .679 1.672 2.002 2.394 2.665 8 .706 1.860 2.306 2.896 3.355 58 .679 1.672 2.002 2.394 2.663 9 .703 1.833 2.262 2.821 3.250 59 .679 1.671 2.001 2.391 2.662 10 .700 1.812 2.228 2.764 3.169 60 .679 1.671 2.001 2.391 2.662 11 .697 1.796 2.201 2.718 3.106 61 .679 1.670 2.000 2.399 2.669 12 .695 1.782 2.179 2.681 3.055 62 .678 1.670 1.099 2.388 2.657 13 .694 1.771 2.160 2.650 3.012 63 .678 1.669 1.998 2.386 2.655 14 .692 1.761 2.145 2.624 2.977 64 .678 1.669 1.998 2.386 2.655 15 .691 1.753 2.131 2.602 2.947 65 .678 1.669 1.998 2.386 2.655 15 .691 1.753 2.131 2.602 2.947 65 .678 1.668 1.997 2.385 2.654 16 .690 1.746 2.120 2.583 2.921 66 .678 1.668 1.997 2.382 2.650 18 .688 1.734 2.101 2.552 2.878 68 .678 1.668 1.997 2.382 2.650 19 .688 1.729 2.093 2.539 2.861 69 .678 1.666 1.993 2.332 2.669 20 .687 1.725 2.086 2.528 2.845 70 .678 1.667 1.994 2.381 2.648 21 .686 1.717 2.004 2.903 2.539 2.861 69 .678 1.666 1.993 2.379 2.644 22 .686 1.717 2.004 2.492 2.797 74 .678 1.666 1.993 2.379 2.644 23 .685 1.711 2.044 2.492 2.797 74 .678 1.666 1.993 2.379 2.644 24 .685 1.711 2.048 2.467 2.763 78 .678 1.666 1.993 2.379 2.644 25 .684 1.708 2.060 2.485 2.787 75 .678 1.666 1.993 2.379 2.643 26 .684 1.706 2.056 2.479 2.779 76 .678 1.666 1.993 2.372 2.639 31 .682 1.692 2.035 2.441 2.728 84 .677 1.663 1.988 2.370 2.634 32 .682 1.691 2.032 2.441 2.728 84 .677 1.663 1.988 2.370 2.634 33 .682 1.692 2.035 2.445 2.733 83 .677 1.663 1.988 2.370 2.634 34 .682 1.694 2.032 2.441 2.728 84 .677 1.663 1.988 2.370 2.634 35 .681 1.687 2.026 2.421 2.701 91 .677 1.662 1.986 2.368 2.630 44 .680 1.682 2.018 2.412 2.799 96 .677 1.661 1.985 2.366 2.639 46 .680 1.679 2.014 2.412 2.690 95 .677 1.661 1.988 2.365 2.626	1 1	.000	6.314	12.71	31.82	63.66	51	.679	1.675	2.008	2.402	2.676	
4 .741 2.132 2.776 3.747 4.604 54 .679 1.674 2.005 2.397 2.670 5 .727 2.015 2.571 3.365 4.032 55 .679 1.673 2.004 2.396 2.668 6 .718 1.943 2.447 3.143 3.707 56 .679 1.673 2.003 2.395 2.667 7 .711 1.895 2.365 2.998 3.499 57 .679 1.672 2.002 2.394 2.665 8 .706 1.860 2.306 2.896 3.355 58 .679 1.672 2.002 2.392 2.663 9 .703 1.833 2.262 2.821 3.250 59 .679 1.671 2.001 2.391 2.662 10 .700 1.812 2.228 2.764 3.169 60 .679 1.671 2.001 2.391 2.662 11 .697 1.796 2.201 2.718 3.106 61 .679 1.670 2.000 2.399 2.660 11 .697 1.796 2.201 2.718 3.106 61 .679 1.670 2.000 2.399 2.659 12 .695 1.782 2.179 2.681 3.055 62 .678 1.670 1.999 2.388 2.657 13 .694 1.771 2.160 2.650 3.012 63 .678 1.669 1.998 2.387 2.656 14 .692 1.761 2.145 2.624 2.977 64 .678 1.669 1.998 2.387 2.655 15 .691 1.753 2.131 2.602 2.947 65 .678 1.669 1.998 2.385 2.655 15 .691 1.753 2.131 2.602 2.947 65 .678 1.668 1.998 2.382 2.655 18 .688 1.734 2.101 2.557 2.898 67 .678 1.668 1.996 2.383 2.651 18 .688 1.734 2.101 2.552 2.878 68 .678 1.668 1.995 2.382 2.650 19 .688 1.729 2.093 2.539 2.861 69 .678 1.666 1.993 2.379 2.649 20 .687 1.725 2.086 2.528 2.845 70 .678 1.666 1.993 2.379 2.646 23 .685 1.711 2.074 2.508 2.819 72 .678 1.666 1.993 2.379 2.646 23 .685 1.711 2.004 2.492 2.797 74 .678 1.666 1.993 2.379 2.646 24 .684 1.706 2.056 2.479 2.779 76 .678 1.666 1.993 2.379 2.645 2.684 1.703 2.052 2.473 2.771 76 .678 1.666 1.993 2.379 2.645 2.684 1.703 2.052 2.473 2.771 76 .678 1.666 1.993 2.372 2.643 2.684 1.703 2.052 2.473 2.771 76 .678 1.666 1.993 2.372 2.636 34 .682 1.694 2.045 2.457 2.750 80 .678 1.664 1.990 2.374 2.640 30 .683 1.697 2.042 2.457 2.750 80 .678 1.666 1.993 2.372 2.636 34 .682 1.694 2.035 2.445 2.733 83 .677 1.663 1.988 2.371 2.636 34 .682 1.694 2.035 2.445 2.733 83 .677 1.663 1.988 2.371 2.636 34 .682 1.694 2.035 2.445 2.733 83 .677 1.663 1.988 2.370 2.633 39 .681 1.685 2.023 2.441 2.728 84 .677 1.662 1.985 2.334 2.639 44 .680 1.682 2.012 2.442 2.791 86 .677 1.661 1.985 2.366 2.639 44 .680 1.682 2.012 2.442 2.791 86 .677 1.661 1.985 2.366 2.630 44 .680 1.							52						
5 .727 2.015 2.571 3.365 4.032 55 .679 1.673 2.004 2.396 2.668 6 .718 1.943 2.447 3.143 3.707 56 .679 1.673 2.002 2.395 2.667 7 .711 1.895 2.365 2.998 3.499 57 .679 1.672 2.002 2.394 2.665 8 .706 1.860 2.306 2.896 3.355 58 .679 1.672 2.002 2.392 2.663 9 .703 1.833 2.262 2.821 3.250 59 .679 1.671 2.000 2.390 2.660 11 .607 1.796 2.201 2.718 3.106 61 .679 1.671 2.000 2.390 2.660 11 .607 1.796 2.201 2.718 3.106 61 .679 1.671 2.000 2.390 2.660 11 .607 1.796 2.201 2.718 3.106 61 .679 1.671 2.000 2.392 2.665 12 .695 1.782 2.179 2.681 3.055 62 .678 1.670 1.999 2.388 2.657 13 .694 1.771 2.160 2.650 3.012 63 .678 1.669 1.998 2.387 2.656 14 .692 1.761 2.145 2.624 2.977 64 .678 1.669 1.998 2.387 2.656 14 .692 1.761 2.145 2.624 2.977 64 .678 1.669 1.998 2.386 2.655 15 .691 1.753 2.131 2.602 2.947 65 .678 1.668 1.997 2.384 2.652 17 .689 1.740 2.110 2.557 2.898 67 .678 1.668 1.997 2.384 2.652 17 .688 1.729 2.093 2.569 2.889 67 .678 1.668 1.995 2.382 2.650 19 .688 1.734 2.101 2.552 2.878 68 .678 1.668 1.995 2.382 2.650 19 .688 1.729 2.093 2.539 2.861 69 .678 1.667 1.994 2.380 2.647 2.686 1.712 2.080 2.518 2.831 71 .678 1.666 1.994 2.380 2.647 2.686 1.712 2.080 2.518 2.831 71 .678 1.666 1.994 2.380 2.647 2.686 1.712 2.080 2.518 2.831 71 .678 1.666 1.994 2.380 2.647 2.684 1.706 2.069 2.500 2.807 73 .678 1.666 1.993 2.379 2.645 2.684 1.706 2.050 2.807 73 .678 1.666 1.993 2.379 2.645 2.684 1.706 2.050 2.485 2.787 75 .678 1.666 1.991 2.376 2.644 2.685 1.711 2.064 2.492 2.797 74 .678 1.666 1.993 2.379 2.645 2.684 1.706 2.050 2.445 2.733 83 .677 1.663 1.989 2.377 2.633 3 .682 1.692 2.035 2.445 2.733 83 .677 1.664 1.989 2.375 2.636 41 .682 1.694 2.037 2.449 2.738 82 .677 1.664 1.989 2.375 2.636 41 .688 1.687 2.023 2.445 2.733 83 .677 1.666 1.988 2.370 2.634 4 .680 1.682 2.024 2.429 2.719 86 .677 1.664 1.989 2.372 2.636 41 .688 1.688 2.023 2.445 2.733 83 .677 1.666 1.988 2.370 2.634 4 .680 1.682 2.035 2.445 2.733 83 .677 1.666 1.988 2.370 2.634 4 .680 1.682 2.024 2.429 2.712 88 .677 1.666 1.988 2.370 2.634 4 .680 1.688 2.021 2.442 2.70													
6 .718 1.943 2.447 3.143 3.707 56 .679 1.673 2.003 2.395 2.667 77 77 711 1.895 2.365 2.998 3.499 57 .679 1.672 2.002 2.392 2.663 8 .706 1.860 2.306 2.896 3.355 58 .679 1.672 2.002 2.392 2.663 9 .703 1.833 2.262 2.821 3.250 59 .679 1.671 2.001 2.391 2.662 10 .700 1.812 2.228 2.764 3.169 60 .679 1.671 2.000 2.390 2.660 11 .697 1.796 2.201 2.718 3.106 61 .679 1.670 2.000 2.389 2.659 12 .695 1.782 2.179 2.681 3.055 62 .678 1.670 1.999 2.388 2.657 13 .694 1.771 2.160 2.650 3.012 63 .678 1.669 1.998 2.387 2.656 14 .692 1.761 2.145 2.624 2.977 64 .678 1.669 1.998 2.387 2.656 14 .692 1.761 2.145 2.624 2.977 64 .678 1.669 1.999 2.388 2.655 15 .691 1.753 2.131 2.602 2.947 65 .678 1.669 1.997 2.385 2.654 16 .690 1.746 2.120 2.583 2.921 66 .678 1.668 1.997 2.384 2.652 17 .689 1.740 2.110 2.567 2.898 67 .678 1.668 1.995 2.382 2.650 19 .688 1.739 2.093 2.539 2.861 69 .678 1.667 1.995 2.382 2.650 19 .688 1.729 2.093 2.539 2.861 69 .678 1.667 1.995 2.382 2.650 19 .686 1.712 2.080 2.518 2.831 71 .678 1.667 1.994 2.381 2.648 21 .686 1.721 2.080 2.518 2.831 71 .678 1.667 1.994 2.380 2.647 22 .686 1.711 2.074 2.508 2.819 72 .678 1.666 1.993 2.379 2.646 23 .685 1.711 2.064 2.492 2.797 74 .678 1.666 1.993 2.378 2.644 2.668 1.701 2.056 2.492 2.797 74 .678 1.666 1.993 2.378 2.644 2.668 1.701 2.056 2.492 2.797 74 .678 1.666 1.993 2.378 2.644 2.686 1.701 2.048 2.467 2.753 78 .678 1.666 1.993 2.378 2.644 2.668 1.701 2.048 2.467 2.753 78 .678 1.666 1.993 2.378 2.644 2.668 1.706 2.056 2.479 2.779 76 .678 1.666 1.993 2.378 2.644 2.680 1.681 1.682 2.052 2.473 2.771 77 .678 1.666 1.992 2.377 2.643 2.668 1.701 2.048 2.467 2.753 78 .678 1.666 1.993 2.378 2.644 2.680 1.681 2.052 2.473 2.771 77 .678 1.666 1.992 2.377 2.633 38 .681 1.682 2.092 2.473 2.771 77 .678 1.666 1.992 2.377 2.633 38 .681 1.688 2.028 2.434 2.719 86 .677 1.663 1.988 2.370 2.634 38 .681 1.688 2.028 2.434 2.719 86 .677 1.661 1.986 2.367 2.639 39 .681 1.685 2.023 2.445 2.733 83 .677 1.661 1.986 2.367 2.639 44 .680 1.682 2.018 2.448 2.799 99 .677 1.661 1.985 2.366 2.639 44 .680 1		.741	2.132	2.776	3.747	4.604							
7 .711 1.895 2.365 2.998 3.499 57 .679 1.672 2.002 2.394 2.665 9 .703 1.833 2.262 2.821 3.250 59 .679 1.671 2.001 2.391 2.662 10 .700 1.812 2.228 2.764 3.169 60 .679 1.671 2.000 2.390 2.660 11 .697 1.796 2.201 2.718 3.106 61 .679 1.670 2.000 2.390 2.660 12 .695 1.782 2.179 2.681 3.055 62 .678 1.670 1.999 2.388 2.657 13 .694 1.771 2.160 2.650 3.012 63 .678 1.669 1.998 2.387 2.656 14 .692 1.761 2.145 2.624 2.977 64 .678 1.669 1.998 2.385 2.655 15 .691 1.753 2.131 2.602 2.947 65 .678 1.669 1.998 2.385 2.655 17 .691 1.753 2.131 2.602 2.947 65 .678 1.669 1.997 2.385 2.654 16 .690 1.746 2.120 2.583 2.921 66 .678 1.669 1.997 2.385 2.654 16 .690 1.746 2.120 2.583 2.921 66 .678 1.668 1.997 2.383 2.651 18 .688 1.734 2.101 2.552 2.878 68 .678 1.668 1.996 2.383 2.651 18 .688 1.734 2.101 2.552 2.878 68 .678 1.668 1.996 2.383 2.651 19 .688 1.729 2.093 2.539 2.861 69 .678 1.667 1.995 2.382 2.649 20 .687 1.725 2.086 2.528 2.845 70 .678 1.666 1.993 2.379 2.646 22 .686 1.717 2.074 2.508 2.819 72 .678 1.666 1.993 2.379 2.646 23 .685 1.714 2.069 2.500 2.807 73 .678 1.666 1.993 2.379 2.646 23 .685 1.714 2.069 2.500 2.807 73 .678 1.666 1.993 2.379 2.644 23 .685 1.714 2.062 2.500 2.807 73 .678 1.666 1.993 2.379 2.644 24 .685 1.711 2.064 2.492 2.797 74 .678 1.666 1.993 2.379 2.644 25 .684 1.706 2.056 2.479 2.779 76 .678 1.666 1.993 2.379 2.644 28 .684 1.706 2.056 2.479 2.779 76 .678 1.666 1.990 2.374 2.649 2.688 1.709 2.042 2.457 2.750 80 .678 1.664 1.990 2.374 2.649 2.682 1.694 2.037 2.449 2.738 82 .677 1.663 1.988 2.370 2.634 33 .682 1.699 2.045 2.442 2.756 79 .678 1.664 1.990 2.374 2.639 33 .682 1.694 2.032 2.445 2.733 83 .677 1.663 1.988 2.370 2.634 34 .682 1.691 2.032 2.441 2.728 84 .677 1.662 1.987 2.369 2.363 36 .681 1.688 2.028 2.434 2.719 86 .677 1.662 1.987 2.369 2.363 36 .681 1.688 2.022 2.429 2.712 88 .677 1.662 1.987 2.369 2.363 36 .681 1.688 2.022 2.429 2.712 88 .677 1.662 1.987 2.369 2.632 444 .680 1.682 2.012 2.442 2.711 88 .677 1.662 1.987 2.369 2.632 44 .680 1.682 2.012 2.442 2.711 88 .677 1.661 1.986 2.367 2.630 44													
8 .706 1.860 2.306 2.896 3.355 59 .679 1.672 2.002 2.392 2.663 9 .703 1.833 2.262 2.821 3.250 59 .679 1.671 2.001 2.391 2.662 10 .700 1.812 2.228 2.764 3.169 60 .679 1.671 2.000 2.390 2.660 11 .697 1.796 2.201 2.718 3.106 61 .679 1.670 2.000 2.389 2.669 12 .695 1.782 2.179 2.681 3.055 62 .678 1.670 1.999 2.388 2.657 13 .694 1.771 2.160 2.650 3.012 63 .678 1.669 1.998 2.387 2.656 14 .692 1.761 2.145 2.624 2.977 64 .678 1.669 1.998 2.387 2.656 14 .692 1.761 2.145 2.624 2.977 64 .678 1.669 1.998 2.387 2.655 15 .691 1.753 2.131 2.602 2.947 65 .678 1.669 1.999 2.388 2.655 17 .689 1.740 2.110 2.567 2.898 67 .678 1.668 1.997 2.384 2.652 17 .689 1.740 2.110 2.557 2.898 67 .678 1.668 1.997 2.384 2.652 18 .688 1.729 2.093 2.539 2.861 69 .678 1.668 1.995 2.382 2.659 19 .688 1.729 2.093 2.539 2.861 69 .678 1.667 1.995 2.382 2.649 20 .687 1.725 2.086 2.528 2.845 70 .678 1.667 1.995 2.382 2.649 20 .686 1.717 2.074 2.508 2.819 72 .678 1.666 1.993 2.379 2.646 23 .685 1.711 2.069 2.500 2.807 73 .678 1.666 1.993 2.379 2.646 24 .685 1.711 2.064 2.492 2.797 74 .678 1.666 1.993 2.379 2.646 24 .685 1.711 2.064 2.492 2.797 74 .678 1.666 1.993 2.379 2.644 25 .684 1.708 2.060 2.485 2.787 75 .678 1.665 1.992 2.376 2.644 25 .684 1.708 2.052 2.473 2.771 77 .678 1.665 1.992 2.376 2.644 25 .684 1.708 2.052 2.473 2.771 77 .678 1.665 1.992 2.376 2.644 27 .684 1.703 2.052 2.473 2.771 77 .678 1.665 1.992 2.377 2.643 2.682 1.699 2.045 2.462 2.756 79 .678 1.664 1.990 2.373 2.634 2.682 1.699 2.045 2.462 2.756 79 .678 1.664 1.990 2.373 2.634 2.682 1.694 2.037 2.449 2.738 82 .677 1.664 1.990 2.373 2.634 38 82 1.692 2.035 2.445 2.733 88 2.677 1.664 1.990 2.373 2.634 38 82 1.692 2.035 2.445 2.733 88 2.677 1.664 1.990 2.373 2.634 38 82 1.692 2.035 2.445 2.733 88 2.677 1.664 1.990 2.373 2.634 38 8.681 1.685 2.022 2.424 2.712 88 4.677 1.663 1.988 2.370 2.634 38 8.681 1.686 2.024 2.429 2.712 88 6.677 1.664 1.990 2.373 2.634 38 8.681 1.686 2.024 2.429 2.712 88 6.677 1.666 1.985 2.365 2.630 44 6.680 1.689 2.015 2.442 2.704 90 .677 1.661 1.985 2.366 2.629 46													
9 .703 1.833 2.262 2.821 3.250 59 .679 1.671 2.001 2.391 2.662 10 .700 1.812 2.228 2.764 3.169 60 .679 1.671 2.000 2.389 2.669 11 .697 1.796 2.201 2.718 3.106 61 .679 1.670 2.000 2.389 2.659 12 .695 1.782 2.179 2.681 3.055 62 .678 1.670 1.999 2.388 2.657 13 .694 1.771 2.160 2.650 3.012 63 .678 1.669 1.998 2.386 2.655 14 .692 1.761 2.145 2.624 2.977 64 .678 1.669 1.998 2.386 2.655 15 .691 1.753 2.131 2.602 2.947 65 .678 1.669 1.998 2.386 2.655 16 .690 1.746 2.120 2.583 2.921 66 .678 1.668 1.997 2.385 2.654 16 .690 1.746 2.120 2.583 2.921 66 .678 1.668 1.997 2.384 2.652 17 .689 1.740 2.110 2.557 2.898 67 .678 1.668 1.995 2.382 2.659 19 .688 1.734 2.101 2.552 2.878 68 .678 1.668 1.995 2.382 2.649 20 .687 1.725 2.086 2.528 2.845 70 .678 1.667 1.994 2.381 2.648 21 .686 1.721 2.080 2.518 2.831 71 .678 1.667 1.994 2.380 2.647 22 .686 1.717 2.074 2.508 2.819 72 .678 1.666 1.993 2.379 2.646 23 .685 1.714 2.069 2.500 2.807 73 .678 1.666 1.993 2.379 2.645 24 .685 1.711 2.064 2.492 2.797 74 .678 1.666 1.993 2.379 2.645 25 .684 1.708 2.060 2.485 2.787 75 .678 1.666 1.993 2.377 2.643 26 .684 1.708 2.056 2.479 2.779 76 .678 1.666 1.992 2.376 2.642 27 .684 1.703 2.052 2.473 2.771 77 .678 1.666 1.992 2.377 2.643 28 .683 1.701 2.048 2.467 2.750 80 .678 1.664 1.990 2.374 2.640 29 .683 1.699 2.045 2.462 2.756 79 .678 1.664 1.990 2.374 2.640 30 .683 1.699 2.045 2.452 2.750 80 .678 1.664 1.990 2.373 2.636 31 .682 1.694 2.037 2.449 2.738 82 .677 1.664 1.990 2.372 2.636 34 .682 1.694 2.037 2.449 2.738 84 .677 1.663 1.988 2.370 2.634 35 .682 1.690 2.030 2.438 2.744 81 .678 1.664 1.990 2.372 2.636 36 .681 1.687 2.022 2.423 2.704 90 .677 1.662 1.987 2.369 2.632 40 .681 1.684 2.021 2.423 2.704 90 .677 1.662 1.987 2.368 2.632 41 .681 1.688 2.022 2.424 2.715 87 .677 1.661 1.985 2.366 2.632 42 .680 1.677 2.010 2.405 2.687 99 .677 1.661 1.985 2.366 2.632 43 .680 1.679 2.013 2.410 2.685 99 .677 1.661 1.985 2.366 2.629 44 .680 1.679 2.013 2.410 2.685 99 .677 1.661 1.985 2.366 2.629 45 .680 1.679 2.012 2.402 2.685 99 .677 1.661 1.985 2.366 2.629													
10			1.860	2.306	2.896	3.355	58	.679	1.672	2.002	2.392	2.663	
11													
12		.700	1.812	2.228	2.764	3.169		.679	1.6/1	2.000	2.390	2.660	
14		.097	1.790	2.201	2./18	3.106							
14		694	1.762	2.179	2.650	3.033		678	1.669	1.999	2.366	2.656	
15 .691 1.753 2.131 2.602 2.947 65 .678 1.669 1.997 2.385 2.654 16 .690 1.746 2.120 2.583 2.921 66 .678 1.668 1.996 2.383 2.651 18 .688 1.734 2.101 2.552 2.878 68 .678 1.668 1.995 2.382 2.650 19 .688 1.729 2.093 2.539 2.861 69 .678 1.668 1.995 2.382 2.649 20 .687 1.725 2.086 2.518 2.831 71 .678 1.667 1.994 2.381 2.648 21 .686 1.717 2.074 2.508 2.819 72 .678 1.666 1.993 2.379 2.645 24 .685 1.714 2.069 2.897 74 .678 1.666 1.993 2.379 2.645 24 .685		.692	1.761	2.145	2.624	2.977	64						
16 .690 1.746 2.120 2.583 2.921 66 .678 1.668 1.997 2.384 2.652 17 .689 1.740 2.110 2.557 2.898 67 .668 1.996 2.383 2.650 19 .688 1.729 2.093 2.539 2.861 69 .678 1.667 1.995 2.382 2.649 20 .687 1.725 2.086 2.528 2.845 70 .678 1.667 1.994 2.381 2.648 21 .686 1.717 2.074 2.508 2.819 72 .678 1.666 1.993 2.379 2.646 23 .685 1.714 2.069 2.500 2.807 73 .678 1.666 1.993 2.379 2.646 24 .685 1.711 2.064 2.492 2.797 74 .678 1.666 1.993 2.379 2.643 25 .684 1.708 2.060 2.485 2.787 75 .678 1.666 1.993													
17 .689 1.740 2.110 2.567 2.898 67 .678 1.668 1.996 2.383 2.651 18 .688 1.729 2.093 2.539 2.861 69 .678 1.668 1.995 2.382 2.650 20 .687 1.725 2.086 2.528 2.845 70 .678 1.667 1.994 2.381 2.648 21 .686 1.717 2.074 2.508 2.819 72 .678 1.667 1.994 2.380 2.647 22 .686 1.717 2.074 2.508 2.819 72 .678 1.666 1.993 2.379 2.645 24 .685 1.711 2.064 2.492 2.797 74 .678 1.666 1.993 2.379 2.645 24 .685 1.711 2.064 2.492 2.797 74 .678 1.666 1.993 2.372 2.642 25 .684 1.703 2.052 2.473 2.771 77 .678 1.665													
18 .688 1.734 2.101 2.552 2.878 68 .678 1.667 1.995 2.382 2.649 20 .687 1.725 2.086 2.528 2.845 70 .678 1.667 1.994 2.381 2.648 21 .686 1.717 2.074 2.508 2.819 72 .678 1.667 1.994 2.380 2.647 22 .686 1.717 2.074 2.508 2.819 72 .678 1.666 1.993 2.379 2.645 23 .685 1.711 2.064 2.492 2.797 74 .678 1.666 1.993 2.379 2.645 24 .685 1.711 2.064 2.492 2.797 74 .678 1.666 1.993 2.378 2.645 25 .684 1.703 2.052 2.473 2.777 75 .678 1.665 1.992 2.376 2.642 27 .684 1.703 2.045 2.462 2.756 79 .678 1.665		.689	1.740	2.110	2.567	2.898							
20 .687 1.725 2.086 2.528 2.845 70 .678 1.667 1.994 2.381 2.647 21 .686 1.717 2.074 2.508 2.819 72 .678 1.666 1.993 2.379 2.646 23 .685 1.714 2.069 2.500 2.807 73 .678 1.666 1.993 2.379 2.645 24 .685 1.711 2.064 2.492 2.797 74 .678 1.666 1.993 2.372 2.644 25 .684 1.708 2.060 2.485 2.787 75 .678 1.665 1.992 2.377 2.643 26 .684 1.703 2.056 2.479 2.779 76 .678 1.665 1.991 2.376 2.641 28 .683 1.701 2.048 2.467 2.763 78 .678 1.665 1.991 2.375 2.640 29 .683 1.697 2.042 2.457 2.750 80 .678 1.664		.688	1.734	2.101	2.552	2.878							
21 .686 1.721 2.080 2.518 2.831 71 .678 1.666 1.994 2.380 2.647 22 .686 1.717 2.074 2.508 2.819 72 .678 1.666 1.993 2.379 2.645 24 .685 1.711 2.064 2.492 2.797 74 .678 1.666 1.993 2.379 2.645 24 .685 1.711 2.064 2.492 2.797 74 .678 1.666 1.993 2.379 2.645 25 .684 1.708 2.060 2.485 2.787 75 .678 1.666 1.992 2.376 2.642 26 .684 1.706 2.052 2.473 2.771 77 .678 1.665 1.992 2.376 2.641 28 .683 1.701 2.048 2.467 2.756 79 .678 1.664 1.990 2.372 2.640 29 .683 1.699 2.042 2.457 2.750 80 .678 1.664	19	.688	1.729	2.093	2.539	2.861	69	.678	1.667	1.995	2.382	2.649	
22 .686 1.717 2.074 2.508 2.819 72 .678 1.666 1.993 2.379 2.646 23 .685 1.714 2.069 2.500 2.807 73 .678 1.666 1.993 2.379 2.645 24 .685 1.711 2.064 2.492 2.797 74 .678 1.666 1.993 2.379 2.644 25 .684 1.708 2.062 2.485 2.787 75 .678 1.665 1.992 2.377 2.643 26 .684 1.703 2.052 2.473 2.771 77 .678 1.665 1.991 2.376 2.641 27 .684 1.703 2.052 2.473 2.771 77 .678 1.665 1.991 2.375 2.640 29 .683 1.690 2.045 2.462 2.756 79 .678 1.664 1.990 2.374 2.639 31 .682 1.696 2.040 2.453 2.744 81 .678 1.664													
23 .685 1.714 2.069 2.500 2.807 73 .678 1.666 1.993 2.378 2.645 24 .685 1.711 2.064 2.492 2.797 74 .678 1.666 1.993 2.378 2.644 25 .684 1.708 2.060 2.485 2.787 75 .678 1.665 1.992 2.376 2.643 26 .684 1.703 2.052 2.473 2.771 77 .678 1.665 1.991 2.376 2.641 28 .683 1.691 2.048 2.467 2.763 78 .678 1.665 1.991 2.375 2.640 29 .683 1.697 2.042 2.457 2.750 80 .678 1.664 1.990 2.374 2.639 31 .682 1.694 2.037 2.449 2.738 82 .677 1.664 1.990 2.373 2.638 32 .682 1.692 2.035 2.445 2.733 83 .677 1.663			1.721	2.080	2.518	2.831							
25 .684 1.708 2.060 2.485 2.787 75 .678 1.665 1.992 2.377 2.643 26 .684 1.706 2.056 2.479 2.779 76 .678 1.665 1.992 2.376 2.642 27 .684 1.703 2.052 2.473 2.771 77 .678 1.665 1.991 2.376 2.641 28 .683 1.701 2.048 2.467 2.763 78 .678 1.665 1.991 2.375 2.640 29 .683 1.699 2.045 2.462 2.756 79 .678 1.664 1.990 2.374 2.640 30 .683 1.697 2.042 2.457 2.750 80 .678 1.664 1.990 2.373 2.639 31 .682 1.694 2.037 2.449 2.738 82 .677 1.664 1.990 2.373 2.638 32 .682 1.691 2.032 2.441 2.728 84 .677 1.663		.686	1.717	2.074	2.508	2.819	72 72						
25 .684 1.708 2.060 2.485 2.787 75 .678 1.665 1.992 2.377 2.643 26 .684 1.706 2.056 2.479 2.779 76 .678 1.665 1.992 2.376 2.642 27 .684 1.703 2.052 2.473 2.771 77 .678 1.665 1.991 2.376 2.641 28 .683 1.701 2.048 2.467 2.763 78 .678 1.665 1.991 2.375 2.640 29 .683 1.699 2.045 2.462 2.756 79 .678 1.664 1.990 2.374 2.640 30 .683 1.697 2.042 2.457 2.750 80 .678 1.664 1.990 2.373 2.639 31 .682 1.694 2.037 2.449 2.738 82 .677 1.664 1.990 2.373 2.638 32 .682 1.691 2.032 2.441 2.728 84 .677 1.663		.685	1./14	2.069	2.500	2.807							
26 .684 1.706 2.056 2.479 2.779 76 .678 1.665 1.992 2.376 2.642 27 .684 1.703 2.052 2.473 2.771 77 .678 1.665 1.991 2.376 2.641 28 .683 1.701 2.048 2.467 2.763 78 .678 1.665 1.991 2.375 2.640 29 .683 1.699 2.045 2.462 2.756 79 .678 1.664 1.990 2.374 2.640 30 .683 1.697 2.042 2.457 2.750 80 .678 1.664 1.990 2.374 2.639 31 .682 1.694 2.037 2.449 2.738 82 .677 1.664 1.989 2.373 2.638 32 .682 1.691 2.032 2.441 2.728 84 .677 1.663 1.989 2.372 2.636 34 .682 1.691 2.038 2.438 2.724 85 .677 1.663													
30	25 26	.084	1.706	2.060	2.485	2.787							
30	20	.00 4	1.700	2.030	2.479	2.119	- 77						
30	28	683	1.703	2.032	2.473	2.771	78						
30 .683 1.697 2.042 2.457 2.750 80 .678 1.664 1.990 2.374 2.639 31 .682 1.696 2.040 2.453 2.744 81 .678 1.664 1.990 2.373 2.638 32 .682 1.694 2.037 2.449 2.738 82 .677 1.664 1.989 2.373 2.637 33 .682 1.692 2.035 2.445 2.733 83 .677 1.663 1.989 2.372 2.636 34 .682 1.691 2.032 2.441 2.728 84 .677 1.663 1.989 2.372 2.636 35 .682 1.690 2.030 2.438 2.724 85 .677 1.663 1.988 2.371 2.635 36 .681 1.688 2.028 2.434 2.719 86 .677 1.663 1.988 2.370 2.634 37 .681 1.687 2.026 2.431 2.715 87 .677 1.663	29	.683	1.699	2.045	2.462	2.756							
31 .682 1.696 2.040 2.453 2.744 81 .678 1.664 1.990 2.373 2.638 32 .682 1.694 2.037 2.449 2.738 82 .677 1.664 1.989 2.373 2.637 33 .682 1.692 2.035 2.445 2.733 83 .677 1.663 1.989 2.372 2.636 34 .682 1.691 2.032 2.441 2.728 84 .677 1.663 1.989 2.372 2.636 35 .682 1.690 2.030 2.438 2.724 85 .677 1.663 1.988 2.371 2.635 36 .681 1.688 2.028 2.434 2.719 86 .677 1.663 1.988 2.370 2.634 37 .681 1.687 2.026 2.431 2.715 87 .677 1.663 1.988 2.370 2.634 38 .681 1.684 2.021 2.429 2.712 88 .677 1.662													
32 .682 1.694 2.037 2.449 2.738 82 .677 1.664 1.989 2.373 2.637 33 .682 1.692 2.035 2.445 2.733 83 .677 1.663 1.989 2.372 2.636 34 .682 1.691 2.032 2.441 2.728 84 .677 1.663 1.989 2.372 2.636 35 .682 1.690 2.030 2.438 2.724 85 .677 1.663 1.988 2.371 2.635 36 .681 1.688 2.028 2.434 2.719 86 .677 1.663 1.988 2.370 2.634 37 .681 1.687 2.026 2.431 2.715 87 .677 1.663 1.988 2.370 2.634 38 .681 1.686 2.024 2.429 2.712 88 .677 1.662 1.987 2.369 2.632 40 .681 1.684 2.021 2.423 2.704 90 .677 1.662													
34 .682 1.691 2.032 2.441 2.728 84 .677 1.663 1.989 2.372 2.636 35 .682 1.690 2.030 2.438 2.724 85 .677 1.663 1.988 2.371 2.635 36 .681 1.688 2.028 2.434 2.719 86 .677 1.663 1.988 2.370 2.634 37 .681 1.687 2.026 2.431 2.715 87 .677 1.663 1.988 2.370 2.634 38 .681 1.686 2.024 2.429 2.712 88 .677 1.662 1.987 2.369 2.633 39 .681 1.685 2.023 2.426 2.708 89 .677 1.662 1.987 2.368 2.632 40 .681 1.684 2.021 2.423 2.704 90 .677 1.662 1.987 2.368 2.632 41 .681 1.682 2.018 2.418 2.698 92 .677 1.662													
35 .682 1.690 2.030 2.438 2.724 85 .677 1.663 1.988 2.371 2.635 36 .681 1.688 2.028 2.434 2.719 86 .677 1.663 1.988 2.370 2.634 37 .681 1.687 2.026 2.431 2.715 87 .677 1.663 1.988 2.370 2.634 38 .681 1.686 2.024 2.429 2.712 88 .677 1.662 1.987 2.369 2.633 39 .681 1.685 2.023 2.426 2.708 89 .677 1.662 1.987 2.369 2.632 40 .681 1.684 2.021 2.423 2.704 90 .677 1.662 1.987 2.368 2.632 41 .681 1.683 2.020 2.421 2.701 91 .677 1.662 1.987 2.368 2.632 41 .681 1.682 2.018 2.418 2.698 92 .677 1.662							83						
36 .681 1.688 2.028 2.434 2.719 86 .677 1.663 1.988 2.370 2.634 37 .681 1.687 2.026 2.431 2.715 87 .677 1.663 1.988 2.370 2.634 38 .681 1.686 2.024 2.429 2.712 88 .677 1.662 1.987 2.369 2.633 39 .681 1.685 2.023 2.426 2.708 89 .677 1.662 1.987 2.369 2.632 40 .681 1.684 2.021 2.423 2.704 90 .677 1.662 1.987 2.368 2.632 41 .681 1.683 2.020 2.421 2.701 91 .677 1.662 1.986 2.368 2.631 42 .680 1.682 2.018 2.418 2.698 92 .677 1.661 1.986 2.367 2.630 43 .680 1.681 2.017 2.416 2.695 93 .677 1.661													
37 .681 1.687 2.026 2.431 2.715 87 .677 1.663 1.988 2.370 2.634 38 .681 1.686 2.024 2.429 2.712 88 .677 1.662 1.987 2.369 2.633 39 .681 1.685 2.023 2.426 2.708 89 .677 1.662 1.987 2.369 2.632 40 .681 1.684 2.021 2.423 2.704 90 .677 1.662 1.987 2.368 2.632 41 .681 1.683 2.020 2.421 2.701 91 .677 1.662 1.986 2.368 2.631 42 .680 1.682 2.018 2.418 2.698 92 .677 1.662 1.986 2.368 2.630 43 .680 1.681 2.017 2.416 2.695 93 .677 1.661 1.986 2.367 2.630 44 .680 1.679 2.014 2.412 2.690 95 .677 1.661													
38 .681 1.686 2.024 2.429 2.712 88 .677 1.662 1.987 2.369 2.633 39 .681 1.685 2.023 2.426 2.708 89 .677 1.662 1.987 2.369 2.632 40 .681 1.684 2.021 2.423 2.704 90 .677 1.662 1.987 2.368 2.632 41 .681 1.683 2.020 2.421 2.701 91 .677 1.662 1.986 2.368 2.631 42 .680 1.682 2.018 2.418 2.698 92 .677 1.662 1.986 2.368 2.631 43 .680 1.681 2.017 2.416 2.695 93 .677 1.661 1.986 2.367 2.630 44 .680 1.680 2.015 2.414 2.692 94 .677 1.661 1.985 2.366 2.629 45 .680 1.679 2.013 2.410 2.687 96 .677 1.661							86						
39 .681 1.685 2.023 2.426 2.708 89 .677 1.662 1.987 2.369 2.632 40 .681 1.684 2.021 2.423 2.704 90 .677 1.662 1.987 2.368 2.632 41 .681 1.683 2.020 2.421 2.701 91 .677 1.662 1.986 2.368 2.631 42 .680 1.682 2.018 2.418 2.698 92 .677 1.662 1.986 2.368 2.630 43 .680 1.681 2.017 2.416 2.695 93 .677 1.661 1.986 2.367 2.630 44 .680 1.680 2.015 2.414 2.692 94 .677 1.661 1.986 2.367 2.629 45 .680 1.679 2.013 2.410 2.687 96 .677 1.661 1.985 2.366 2.629 46 .680 1.678 2.012 2.408 2.685 97 .677 1.661													
40 .681 1.684 2.021 2.423 2.704 90 .677 1.662 1.987 2.368 2.632 41 .681 1.683 2.020 2.421 2.701 91 .677 1.662 1.986 2.368 2.631 42 .680 1.682 2.018 2.418 2.698 92 .677 1.662 1.986 2.368 2.630 43 .680 1.681 2.017 2.416 2.695 93 .677 1.661 1.986 2.367 2.630 44 .680 1.680 2.015 2.414 2.692 94 .677 1.661 1.986 2.367 2.629 45 .680 1.679 2.014 2.412 2.690 95 .677 1.661 1.985 2.366 2.629 46 .680 1.679 2.013 2.410 2.687 96 .677 1.661 1.985 2.365 2.627 48 .680 1.677 2.011 2.407 2.682 98 .677 1.661													
41 .681 1.683 2.020 2.421 2.701 91 .677 1.662 1.986 2.368 2.631 42 .680 1.682 2.018 2.418 2.698 92 .677 1.662 1.986 2.368 2.630 43 .680 1.681 2.017 2.416 2.695 93 .677 1.661 1.986 2.367 2.630 44 .680 1.680 2.015 2.414 2.692 94 .677 1.661 1.986 2.367 2.629 45 .680 1.679 2.014 2.412 2.690 95 .677 1.661 1.985 2.366 2.629 46 .680 1.679 2.013 2.410 2.687 96 .677 1.661 1.985 2.366 2.628 47 .680 1.678 2.012 2.408 2.685 97 .677 1.661 1.984 2.365 2.627 48 .680 1.677 2.010 2.405 2.680 99 .677 1.660													
42 .680 1.682 2.018 2.418 2.698 92 .677 1.662 1.986 2.368 2.630 43 .680 1.681 2.017 2.416 2.695 93 .677 1.661 1.986 2.367 2.630 44 .680 1.680 2.015 2.414 2.692 94 .677 1.661 1.986 2.367 2.629 45 .680 1.679 2.014 2.412 2.690 95 .677 1.661 1.985 2.366 2.629 46 .680 1.679 2.013 2.410 2.687 96 .677 1.661 1.985 2.366 2.628 47 .680 1.678 2.012 2.408 2.685 97 .677 1.661 1.985 2.365 2.627 48 .680 1.677 2.011 2.407 2.682 98 .677 1.661 1.984 2.365 2.627 49 .680 1.676 2.009 2.403 2.678 99 .677 1.660													
43 .680 1.681 2.017 2.416 2.695 93 .677 1.661 1.986 2.367 2.630 44 .680 1.680 2.015 2.414 2.692 94 .677 1.661 1.986 2.367 2.629 45 .680 1.679 2.014 2.412 2.690 95 .677 1.661 1.985 2.366 2.629 46 .680 1.679 2.013 2.410 2.687 96 .677 1.661 1.985 2.366 2.628 47 .680 1.678 2.012 2.408 2.685 97 .677 1.661 1.985 2.365 2.627 48 .680 1.677 2.011 2.407 2.682 98 .677 1.661 1.984 2.365 2.627 49 .680 1.677 2.010 2.405 2.680 99 .677 1.660 1.984 2.365 2.626 50 .679 1.676 2.009 2.403 2.678 100 .677 1.660													
44 .680 1.680 2.015 2.414 2.692 94 .677 1.661 1.986 2.367 2.629 45 .680 1.679 2.014 2.412 2.690 95 .677 1.661 1.985 2.366 2.629 46 .680 1.679 2.013 2.410 2.687 96 .677 1.661 1.985 2.366 2.628 47 .680 1.678 2.012 2.408 2.685 97 .677 1.661 1.985 2.365 2.627 48 .680 1.677 2.011 2.407 2.682 98 .677 1.661 1.984 2.365 2.627 49 .680 1.677 2.010 2.405 2.680 99 .677 1.660 1.984 2.365 2.626 50 .679 1.676 2.009 2.403 2.678 100 .677 1.660 1.984 2.364 2.626 500 .675 1.648 1.965 2.334 2.586		.680	1.681	2.017	2.416	2.695							
46 .680 1.679 2.013 2.410 2.687 96 .677 1.661 1.985 2.366 2.628 47 .680 1.678 2.012 2.408 2.685 97 .677 1.661 1.985 2.365 2.627 48 .680 1.677 2.011 2.407 2.682 98 .677 1.661 1.984 2.365 2.627 49 .680 1.677 2.010 2.405 2.680 99 .677 1.660 1.984 2.365 2.626 50 .679 1.676 2.009 2.403 2.678 100 .677 1.660 1.984 2.364 2.626 500 .675 1.648 1.965 2.334 2.586	44	.680	1.680	2.015	2.414	2.692			1.661				
47 .680 1.678 2.012 2.408 2.685 97 .677 1.661 1.985 2.365 2.627 48 .680 1.677 2.011 2.407 2.682 98 .677 1.661 1.984 2.365 2.627 49 .680 1.677 2.010 2.405 2.680 99 .677 1.660 1.984 2.365 2.626 50 .679 1.676 2.009 2.403 2.678 100 .677 1.660 1.984 2.364 2.626 500 .675 1.648 1.965 2.334 2.586													
48 .680 1.677 2.011 2.407 2.682 98 .677 1.661 1.984 2.365 2.627 49 .680 1.677 2.010 2.405 2.680 99 .677 1.660 1.984 2.365 2.626 50 .679 1.676 2.009 2.403 2.678 100 .677 1.660 1.984 2.364 2.626 500 .675 1.648 1.965 2.334 2.586													
49 .680 1.677 2.010 2.405 2.680 99 .677 1.660 1.984 2.365 2.626 50 .679 1.676 2.009 2.403 2.678 100 .677 1.660 1.984 2.364 2.626 500 .675 1.648 1.965 2.334 2.586													
50 .679 1.676 2.009 2.403 2.678 100 .677 1.660 1.984 2.364 2.626 500 .675 1.648 1.965 2.334 2.586													
500 .675 1.648 1.965 2.334 2.586													
	50	.679	1.676	2.009	2.403	2.6/8							
∞ .0/4 1.045 1.500 2.520 2.570													
							 	.0/4	1.073	1.700	2.520	4.570	

Critical values of t according to Dunn-Šidák's criterion for one-tailed 5 % tests (table 2)

					-								(50	
ν	nc=2	3	4	5	6	7	8	9	10	11	12	13	14	15
2 3 4		5.292 3.716 3.169					5.349	9.300 5.580 4.436	5.793	10.29 5.993 4.701	6.180	11.20 6.357 4.929	11.63 6.525 5.034	12.04 6.685 5.132
5	2.560 2.438	2.897 2.736	3.146 2.954	3.346 3.127	3.514 3.270	3.660 3.394	3.788 3.503	3.904 3.600	4.009 3.688	4.106 3.769	4.195 3.843	4.278 3.912	4.357 3.976	4.430 4.037
7 8 9	2.356 2.298 2.254	2.630 2.555 2.499	2.828 2.739 2.673	2.984 2.883 2.809	3.112 3.002 2.920	3.223 3.103 3.015	3.097	3.269 3.170	3.340 3.235	3.553 3.404 3.295	3.463 3.349	3.678 3.517 3.400	3.735 3.568 3.447	3.787 3.615 3.490
10 11 12	2.221 2.194 2.172		2.623 2.582 2.550	2.752 2.707 2.670			2.922	3.094 3.034 2.986		3.212 3.146 3.093	3.263 3.195 3.140	3.310 3.240 3.183	3.354 3.282 3.223	3.395 3.320 3.260
13 14 15	2.153 2.138 2.125	2.370 2.351 2.334	2.523 2.500 2.480	2.640 2.614 2.592				2.946 2.912 2.884		3.050 3.013 2.982	3.095 3.057 3.025	3.136 3.097 3.064	3.175 3.134 3.100	3.211 3.169 3.134
16 17 18 19	2.113 2.103 2.094 2.087	2.320 2.307 2.296 2.286	2.463 2.449	2.573 2.557 2.543 2.530	2.663 2.645 2.629	2.738 2.718 2.702 2.687	2.802 2.782 2.764	2.859 2.838 2.819 2.802	2.910 2.887 2.868	2.955	2.997	3.035 3.011 2.989 2.969	3.071 3.045 3.023 3.003	3.104 3.077 3.054 3.034
20 22 24 26	2.080 2.068 2.058 2.049	2.277 2.262 2.250 2.239		2.518 2.499	2.603 2.582 2.564	2.673 2.651 2.632	2.734 2.710 2.690	2.788	2.835 2.809 2.787	2.878 2.850	2.917	2.952 2.923	2.985 2.955 2.931 2.910	3.016 2.985 2.960 2.939
28 30 32 34	2.042 2.036 2.031 2.026	2.231 2.223 2.216 2.210	2.360 2.351 2.343	2.458 2.448	2.537 2.527 2.517	2.603 2.592 2.582	2.660 2.648 2.638		2.754 2.741 2.729	2.793 2.780 2.768	2.829 2.815	2.862 2.848 2.835 2.824	2.893 2.878	2.921 2.905 2.892 2.880
36 38 40	2.022 2.018 2.015	2.205 2.201 2.197	2.331 2.325 2.321	2.426 2.420	2.502 2.496	2.566 2.559	2.620 2.613		2.710 2.702	2.748 2.740 2.733	2.783 2.774 2.767	2.814 2.806 2.798	2.843 2.834 2.826	2.870 2.861 2.853
42 44 46		2.193		2.410 2.406	2.485	2.547 2.542	2.601	2.648 2.642 2.637	2.689 2.683				2.819 2.813 2.807	
48 50 55 60 65	2.005 2.003 1.998 1.995 1.991	2.184 2.181 2.176 2.171 2.167	2.306 2.303 2.296 2.291 2.287	2.398 2.395 2.388 2.382 2.377	2.472 2.469 2.461 2.455 2.449	2.522 2.515	2.583 2.574	2.633 2.628 2.619 2.612 2.605		2.710 2.705 2.696 2.687 2.681	2.743 2.738 2.728 2.720 2.713	2.773 2.769 2.758 2.749 2.742	2.801 2.796 2.786 2.777 2.769	2.827 2.822 2.811 2.802 2.794
70 75 80 85 90	1.989 1.986 1.984 1.983 1.981	2.161	2.277	2.366 2.363	2.437	2.496 2.493	2.551 2.547 2.544	2.600 2.595 2.591 2.588 2.584	2.634 2.630 2.626	2.670	2.701			2.788 2.782 2.777 2.773 2.769
95 100 125 150	1.980 1.978 1.974 1.970	2.152 2.151 2.145 2.141	2.270 2.268 2.261 2.257	2.356	2.427 2.419	2.488 2.485 2.477 2.471	2.535 2.526	2.581 2.579 2.569 2.563	2.620 2.618	2.655 2.652 2.642 2.635		2.715 2.712 2.701 2.694	2.741 2.738 2.727 2.719	2.766 2.763 2.751 2.743
175 200	1.968 1.966	2.1382.136	2.2532.251	2.340 2.337	2.409 2.406	2.467 2.464	2.516 2.512	2.558 2.555	2.596 2.592	2.6302.626	2.660 2.657	2.6882.684	2.714 2.710	2.7382.734
250 300 350 400	1.964 1.962 1.961 1.960	2.133 2.131 2.130 2.129	2.247 2.245 2.244 2.242	2.331 2.329	2.400 2.398	2.453	2.505 2.503 2.501	2.550 2.547 2.545 2.543	2.584 2.582	2.621 2.618 2.615 2.613	2.651 2.648 2.645 2.643	2.679 2.675 2.673 2.671	2.704 2.701 2.698 2.696	2.728 2.724 2.721 2.719
450 500 000 ∞	1.960 1.959 1.957 1.955	2.128 2.127 2.124 2.121	2.241 2.241 2.237 2.234	2.326 2.322		2.451 2.446	2.499 2.494	2.542 2.541 2.536 2.531	2.578 2.573	2.612 2.611 2.606 2.601	2.642 2.641 2.636 2.630	2.669 2.668 2.663 2.657	2.694 2.693 2.688 2.682	2.718 2.716 2.711 2.705

2.236

00

2.491

2.388

2.569

Critical values of t according to Dunn-Sidák's criterion for two-tailed 5% tests (table 2) nc=23 4 5 6 7 8 9 10 11 12 13 14 15 ν 13.93 2 7.582 8.774 9.823 10.77 12.45 13.21 15.89 16.49 6.164 11.64 14.61 15.26 17.07 7.128 7.394 3 5.355 5.799 6.529 6.842 7.876 8.096 8.505 4.156 4.826 6.1857.642 8.306 4 3.481 3.941 4.290 4.577 4.822 5.036 5.228 5.402 5.562 5.710 5.848 5.977 6.099 5 4.855 3.518 3.791 4.012 4.197 4.358 4.501 4.630 4.747 4.955 5.049 5.136 5.219 3.1522.959 3.274 3.505 3.690 3.845 3.978 4.095 4.200 4.296 4.383 4.464 4.539 4.609 4.675 6 2.832 3.115 3.321 3.484 3.620 3.736 3.838 3.929 4.011 4.086 4.156 4.220 4.280 4.336 8 3.342 3.743 4.105 2.743 3.005 3.193 3.464 3.569 3.661 3.816 3.883 3.945 4.002 4.055 9 2.923 3.099 3.237 3.448 3.532 3.607 3.675 3.793 3.845 3.893 2.677 3.351 3.736 3.939 10 2.626 2.860 3.027 3.157 3.264 3.355 3.434 3.505 3.568 3.625 3.677 3.726 3.771 3.587 2.586 2.970 3.094 3.196 3.283 3.358 3.424 3.484 3.538 3.633 2.811 3.675 3.715 11 3.224 3.296 2.553 2.770 2.924 3.359 3.416 3.468 3.515 3.558 3.598 12 3.044 3.141 3.636 3.306 13 2.526 2.737 2.886 3.002 3.176 3.245 3.361 3.410 3.497 3.535 3.571 3.096 3.455 14 2.503 2.709 2.854 2.967 3.058 3.135 3.202 3.261 3.314 3.362 3.406 3.446 3.483 3.518 2.483 2.937 3.026 3.101 3.166 3.224 3.275 3.321 3.364 3.402 3,439 15 2.685 2.827 3.433 16 2.467 2.665 2.804 2.911 2.998 3.072 3.135 3.191 3.241 3.286 3.327 3.365 3.400 2.974 3.212 3.256 17 2.452 2.647 2.783 2.889 3.046 3.108 3.163 3.296 3.333 3.367 3.399 3.138 3.229 18 2.439 2.631 2.766 2.869 2.953 3.024 3.085 3.186 3.269 3.305 3.338 3.370 2.934 3.206 19 2.427 2.617 2.750 2.852 3.004 3.064 3.116 3.163 3.245 3.280 3.313 3.343 20 2.417 2.605 2.736 2.836 2.918 2.986 3.045 3.097 3.143 3.185 3.223 3.258 3.290 3.320 2.956 3.109 3.150 3.187 22 2.400 2.584 2.712 2.810 2.889 3.014 3.064 3.220 3.252 3.281 24 2.385 2.566 2.692 2.788 2.866 2.931 2.988 3.037 3.081 3.121 3.157 3.190 3.220 3,249 26 2.551 2.770 2.847 2.911 2.966 3.058 3.096 3.132 3.194 3.222 2.373 2.675 3.014 3.164 2.539 28 2.363 2.661 2.755 2.830 2.893 2.948 2.995 3.038 3.076 3.111 3.142 3.172 3.199 2.649 30 2.354 2.528 2.742 2.816 2.878 2.932 2.979 3.021 3.058 3.092 3.124 3.153 3.180 32 2.346 2.519 2.639 2.730 2.804 2.865 2.918 2.965 3.006 3.043 3.077 3.108 3.136 3.163 34 2.340 2.511 2.630 2.720 2.793 2.854 2.906 2.952 2.993 3.030 3.063 3.094 3.122 3.148 36 2.334 2.504 2.622 2.711 2.784 2.844 2.896 2.941 2.982 3.018 3.051 3.081 3.109 3.135 38 2.328 2.498 2.614 2.703 2.775 2.835 2.887 2.932 2.972 3.008 3.040 3.070 3.098 3.123 40 2.323 2.492 2.608 2.696 2.768 2.827 2.878 2.923 2.963 2.998 3.031 3.060 3.088 3.113 2.319 2.487 2.602 2.761 2.820 2.871 2.915 2.954 2.990 42 2.690 3.022 3.104 3.051 3.079 2.755 44 2.315 2.482 2.597 2.813 2.864 2.908 2.947 2.982 2.684 3.014 3.043 3.070 3.095 2.312 2.807 2.858 2.901 46 2.478 2.592 2.679 2.7492.940 2.975 3.007 3.036 3.063 3.088 48 2.309 2.474 2.588 2.674 2.744 2.802 2.852 2.895 2.934 2.969 3.001 3.029 3.056 3.081 2.306 2.584 2.670 2.739 2.797 2.847 2.890 2.929 2.963 2.995 2.470 3.023 3.050 3.074 55 2.299 2.463 2.575 2.660 2.729 2.786 2.835 2.878 2.916 2.951 2.982 3.010 3.036 3.060 2.971 2.294 2.568 2.906 2.940 60 2.456 2.653 2.721 2.777 2.826 2.869 2.999 3.025 3.049 2.289 2.898 2.451 2.562 2.646 2.714 2.770 2.818 2.860 2.931 2.962 2.990 65 3.016 3.039 70 2.285 2.557 2.707 2.764 2.812 2.853 2.924 2.954 2.982 2.446 2.640 2.891 3.008 3.031 2.884 75 2.282 2.552 2.918 2.442 2.635 2.702 2.758 2.806 2.847 2.948 2.975 3.001 3.024 2.753 2.912 2.279 2.439 2.548 2.631 2.698 2.801 2.842 2.879 2.942 2.969 2.995 80 3.018 85 2.277 2.436 2.545 2.627 2.694 2.749 2.796 2.838 2.874 2.907 2.937 2.964 2.989 3.012 90 2.274 2.433 2.542 2.624 2.690 2.745 2.792 2.833 2.870 2.903 2.932 2.959 2.984 3.008 95 2.272 2.431 2.539 2.621 2.687 2.742 2.789 2.830 2.866 2.899 2.928 2.955 2.980 3.003 100 2.271 2.428 2.537 2.618 2.684 2.739 2.786 2.827 2.863 2.895 2.925 2.952 2.976 2.999 125 2.264 2.420 2.527 2.608 2.673 2.727 2.774 2.814 2.850 2.882 2.911 2.938 2.962 2.985 150 2.259 2.415 2.521 2.602 2.666 2.720 2.766 2.806 2.841 2.873 2.902 2.928 2.953 2.975 2.256 2.597 2.922 175 2.411 2.517 2.661 2.715 2.760 2.800 2.835 2.867 2.896 2.946 2.968 200 2.253 2.408 2.514 2.593 2.657 2.711 2.756 2.796 2.831 2.862 2.891 2.917 2.941 2.963 250 2.250 2.509 2.588 2.705 2.750 2.790 2.825 2.856 2.884 2.934 2.956 2.404 2.6522.910 300 2.248 2.401 2.506 2.585 2.649 2.701 2.746 2.786 2.820 2.852 2.880 2.906 2.929 2.951 2.926 350 2.246 2.399 2.504 2.583 2.646 2.699 2.744 2.783 2.817 2.849 2.877 2.902 2.948 2.398 2.924 400 2.581 2.697 2.741 2.815 2.945 2.245 2.502 2.644 2.781 2.846 2.874 2.900 2.922 450 2.244 2.397 2.501 2.580 2.643 2.695 2.740 2.779 2.813 2.844 2.872 2.898 2.943 500 2.243 2.396 2.500 2.579 2.641 2.694 2.739 2.778 2.812 2.843 2.871 2.897 2.920 2.942 000 2.240 2.392 2.495 2.574 2.636 2.688 2.733 2.772 2.806 2.837 2.864 2.890 2.913 2.935

2.683

2.631

2.727

2.766

2.800

2.830

2.883

2.906

2.928

2.858

Critical values of t according to Dunn-Šidák's criterion for one-tailed 1 % tests (table 2)

Cri	ticai va	nues o	or t acc	orain	វ្ធ លេ បា	unn-Si	uak's	criter	ion ior	опе-и	aned	70 18	sis (ta	Die 2)
ν	nc=2	3	4	5	6	7	8	9	10	11	12	13	14	15
2 3 4	9.912 5.836 4.601	12.17 6.733 5.162	7.444	15.73 8.041 5.945		9.028			22.28 10.20 7.165	23.37 10.54 7.348	24.41 10.85 7.520	25.41 11.15 7.680	26.37 11.44 7.832	27.29 11.71 7.975
5	4.030	4.452	4.769	5.026	5.242	5.431	5.599	5.750	5.887	6.014	6.132	6.242	6.345	6.443
6 7	3.705 3.498	4.055 3.803	4.313 4.026	4.204	4.352	4.479	4.591		4.781	4.864	5.393 4.940	5.478 5.011	5.558 5.077	5.633 5.139
8 9	3.354 3.248	3.630 3.503						4.418 4.222			4.636 4.419		4.755 4.526	4.809 4.574
10 11	3.168 3.104	3.407 3.332	3.579	3.714 3.621	3.825	3.919 3.815	4.002		4.141 4.022	4.201 4.078	4.256 4.129	4.306 4.177	4.354 4.220	4.398 4.262
12	3.053	3.271	3.426	3.547	3.647	3.731	3.804	3.869	3.927	3.980	4.028	4.073	4.114	4.153
13 14	3.011 2.976		3.371 3.324		3.527	3.605	3.732 3.672	3.732	3.850 3.785		3.946 3.877	3.988 3.918	4.028 3.956	4.064 3.991
15 16	2.945 2.920	3.144 3.113		3.393 3.356	3.482 3.442	3.557 3.515			3.731 3.684	3.777 3.729	3.820 3.770	3.859 3.808	3.895 3.843	3.929 3.876
17 18	2.897 2.877	3.087 3.064	3.221 3.195	3.324 3.296	3.408		3.541	3.595	3.644 3.608	3.688 3.651	3.728 3.690	3.764 3.726	3.799 3.759	3.830 3.790
19 20	2.860	3.043 3.025		3.271	3.352	3.420	3.479 3.454	3.531	3.577 3.550		3.657 3.628	3.693 3.663	3.725 3.695	3.755 3.724
22	2.844 2.818	2.994	3.117	3.212	3.329 3.289	3.354	3.410	3.459	3.503	3.543	3.579	3.612	3.643	3.671
24 26	2.796 2.778	2.968 2.947	3.089 3.065		3.257 3.230	3.291	3.374 3.345	3.391	3.465 3.433		3.539 3.505	3.571 3.537	3.601 3.566	3.628 3.593
28 30	2.762 2.749	2.929 2.914	3.045 3.028		3.207 3.187		3.320 3.298	3.366 3.343	3.406 3.383	3.443 3.420	3.477 3.453	3.508 3.483	3.536 3.511	3.562 3.537
32 34	2.737 2.727	2.900 2.889	3.013 3.000	3.100	3.170 3.155		3.280	3.324			3.432 3.413	3.461 3.443	3.489 3.470	3.514 3.495
36 38	2.718 2.711	2.878 2.869	2.989 2.979	3.074	3.142 3.131	3.200		3.292	3.331 3.317		3.397	3.426 3.412	3.453 3.438	3.478 3.463
40	2.703	2.861	2.970	3.053	3.120	3.177	3.225	3.267	3.305	3.339	3.370	3.399	3.425	3.449
42 44	2.697 2.691	2.853 2.847	2.962 2.954	3.036	3.111 3.102	3.158			3.294 3.284		3.359 3.348	3.387 3.376	3.413 3.402	3.437 3.426
46 48	2.686 2.681	2.840 2.835	2.947 2.941		3.095 3.088				3.276 3.267	3.309 3.300	3.339 3.330	3.366 3.358	3.392 3.383	3.416 3.406
50 55	2.677 2.667	2.830 2.819	2.936 2.923		3.081 3.067		3.183 3.167	3.223	3.260 3.244	3.293 3.276	3.322 3.305	3.350 3.332	3.375 3.357	3.398 3.380
60 65	2.659 2.653	2.809 2.802	2.913 2.905		3.056 3.046	3.109	3.155	3.195	3.230	3.262 3.251	3.291	3.318 3.306	3.342 3.330	3.365 3.352
70	2.647	2.795	2.897	2.975	3.038	3.090	3.135	3.174	3.209	3.241	3.269	3.295	3.319	3.342
75 80	2.638	2.785	2.886	2.963	3.024	3.076	3.121	3.159	3.201 3.194	3.225	3.253	3.279	3.302	3.324
85 90	2.634 2.631	2.780 2.776	2.881 2.877	2.957 2.953	3.019 3.014	3.070 3.065	3.115 3.109		3.187 3.182		3.246 3.240	3.272 3.266	3.295 3.289	3.317 3.311
95 100	2.628 2.625	2.773	2.873 2.869	2.949	3.010 3.006	3.061	3.105 3.100	3.143	3.177 3.172	3.207 3.203	3.235 3.230	3.260 3.255	3.284 3.279	3.305 3.300
125 150	2.615 2.608	2.758 2.750	2.856	2.931	2.991 2.982	3.041	3.084	3.122	3.155	3.185 3.174	3.212	3.237 3.225	3.260 3.248	3.281 3.269
175	2.603	2.745	2.842	2.915	2.975	3.024	3.066	3.103	3.136	3.165	3.192	3.217	3.239	3.260
200250	2.600 2.595	2.7412.735			2.970 2.962	3.019	3.061 3.053		3.130 3.122	3.159	3.186 3.177	3.210 3.201	3.233 3.223	3.253 3.244
300 350	2.591 2.589	2.731 2.728	2.827 2.824	2.899 2.896	2.958 2.954	3.006 3.003	3.048 3.044	3.084 3.080	3.116 3.112	3.145 3.141		3.195 3.191	3.217 3.213	3.238 3.233
400 450	2.587 2.586		2.821 2.820	2.894	2.952 2.950	3.000	3.041	3.077	3.109 3.107		3.164	3.188 3.185	3.210 3.207	3.230 3.228
500	2.585	2.723	2.818	2.890	2.948	2.996	3.037	3.073	3.105 3.097	3.134	3.160	3.184 3.175	3.205	3.226 3.216
∞									3.089					3.210

Critical values of t according to Dunn-Šidák's criterion for two-tailed 1 % tests (table 2)

													(
v	nc=2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	14.07	17.25	19.92	22.28	24.41	26.37	28.20	29.91	31.53	33.07	34.54	35.95	37.31	38.62
3	7.447	8.565	9.453	10.20	10.85	11.44	11.97	12.45	12.90	13.33	13.72	14.10	14.46	14.80
4	5.594	6.248	6.751	7.166	7.520	7.832	8.112	8.367	8.600	8.817	9.019	9.208	9.387	9.556
5	4.771	5.243	5.599	5.888	6.133	6.346	6.535	6.706	6.862	7.006	7.139	7.264	7.381	7.491
6	4.315	4.695	4.977	5.203	5.394	5.559	5.704	5.835	5.954	6.063	6.164	6.258	6.345	6.428
7	4.027	4.353	4.591	4.782	4.941	5.078	5.198	5.306	5.404	5.493	5.576	5.652	5.724	5.791
8	3.831	4.120	4.331	4.498	4.637	4.756	4.860	4.953	5.038	5.115	5.185	5.251	5.312	5.370
9	3.688	3.952	4.143	4.294	4.419	4.526	4.619	4.703	4.778	4.846	4.909	4.967	5.021	5.072
10	3.580	3.825	4.002	4.141	4.256	4.354	4.439	4.515	4.584	4.646	4.703	4.756	4.806	4.852
11	3.495	3.726	3.892	4.022	4.129	4.221	4.300	4.371	4.434	4.492	4.545	4.594	4.639	4.682
12	3.427	3.647	3.804	3.927	4.029	4.114	4.189	4.256	4.315	4.369	4.419	4.465	4.507	4.547
13	3.371	3.582	3.733	3.850	3.946	4.028	4.099	4.162	4.218	4.270	4.317	4.360	4.400	4.438
14	3.324	3.528	3.673	3.785	3.878	3.956	4.024	4.084	4.138	4.187	4.232	4.273	4.311	4.347
15	3.285	3.482	3.622	3.731	3.820	3.895	3.961	4.019	4.071	4.118	4.160	4.200	4.237	4.271
16	3.251	3.443	3.579	3.684	3.771	3.844	3.907	3.963	4.013	4.058	4.100	4.138	4.173	4.206
17	3.221	3.409	3.541	3.644	3.728	3.799	3.860	3.914	3.963	4.007	4.047	4.084	4.118	4.150
18	3.195	3.379	3.508	3.609	3.691	3.760	3.820	3.872	3.920	3.962	4.001	4.037	4.071	4.102
19	3.173	3.353	3.479	3.578	3.658	3.725	3.784	3.835	3.881	3.923	3.961	3.996	4.029	4.059
20	3.152	3.329	3.454	3.550	3.629	3.695	3.752	3.802	3.848	3.888	3.926	3.960	3.992	4.021
22	3.118	3.289	3.410	3.503	3.579	3.643	3.698	3.747	3.790	3.830	3.865	3.898	3.929	3.957
24	3.089	3.257	3.375	3.465	3.539	3.601	3.654	3.702	3.744	3.782	3.816	3.848	3.878	3.905
26	3.066	3.230	3.345	3.433	3.505	3.566	3.618	3.664	3.705	3.742	3.776	3.807	3.835	3.862
28	3.046	3.207	3.320	3.407	3.477	3.536	3.587	3.632	3.672	3.708	3.741	3.771	3.799	3.825
30	3.029	3.188	3.298	3.384	3.453	3.511	3.561	3.605	3.644	3.680	3.712	3.742	3.769	3.794
32	3.014	3.171	3.280	3.364	3.432	3.489	3.538	3.582	3.620	3.655	3.687	3.716	3.743	3.768
34	3.001	3.156	3.264	3.346	3.414	3.470	3.518	3.561	3.599	3.633	3.665	3.693	3.720	3.744
36	2.990	3.143	3.249	3.331	3.397	3.453	3.501	3.543	3.581	3.614	3.645	3.673	3.699	3.724
38	2.979	3.131	3.237	3.318	3.383	3.438	3.485	3.527	3.564	3.597	3.628	3.656	3.681	3.705
40	2.970	3.121	3.225	3.305	3.370	3.425	3.472	3.513	3.549	3.582	3.612	3.640	3.665	3.689
42	2.962	3.111	3.215	3.295	3.359	3.413	3.459	3.500	3.536	3.569	3.599	3.626	3.651	3.674
44	2.955		3.206	3.285	3.348	3.402	3.448	3.488	3.524	3.557	3.586	3.613	3.638	3.661
46	2.948	3.095	3.197	3.276	3.339	3.392	3.438	3.478	3.513	3.546	3.575	3.601	3.626	3.649
48	2.942	3.088	3.190	3.268	3.330	3.383	3.428	3.468	3.504	3.535	3.564	3.591	3.615	3.638
50	2.936	3.082	3.183	3.260	3.322	3.375	3.420	3.459	3.495	3.526	3.555	3.581	3.606	3.628
55	2.924	3.068	3.167	3.244	3.305	3.357	3.401	3.440	3.475	3.506	3.534	3.560	3.584	3.606
60	2.914	3.056	3.155	3.230	3.291	3.342	3.386	3.425	3.459	3.489	3.517	3.543	3.567	3.589
65	2.905	3.046	3.144	3.219	3.279	3.330	3.373	3.411	3.445	3.476	3.503	3.529	3.552	3.574
70	2.898	3.038	3.135	3.209	3.269	3.319	3.362	3.400	3.434	3.464	3.491	3.516	3.539	3.561
75	2.892	3.031	3.128	3.201	3.261	3.310	3.353	3.390	3.424	3.454	3.481	3.506	3.528	3.550
80 85	2.886 2.881		3.121 3.115			3.302 3.295			3.415 3.407	3.445 3.437		3.496 3.488	3.519 3.511	3.540 3.532
90 95	2.877 2.873			3.182 3.177	3.240 3.235	3.289			3.401	3.430 3.424	3.457 3.450	3.481 3.475	3.503 3.497	3.524 3.518
100	2.870	3.006	3.101	3.172	3.230		3.320	3.357	3.389	3.418	3.445	3.469	3.491	3.512
125	2.857	2.992	3.085	3.155	3.213		3.301	3.337	3.369	3.397	3.423	3.447	3.469	3.489
150 175	2.848 2.842	2.982 2.975	3.074 3.067	3.144	3.201 3.192	3.248 3.239	3.288	3.324 3.314	3.355	3.383	3.409 3.399	3.433 3.422	3.454 3.444	3.474 3.464
200	2.838 2.831	2.970	3.061 3.053	3.130	3.186	3.233	3.273	3.307	3.339	3.366	3.392 3.381	3.415	3.436	3.456
250 300	2.827	2.963 2.958	3.048	3.122 3.116	3.177 3.171	3.217	3.263 3.257	3.298 3.291	3.329 3.322 3.317	3.356 3.349	3.374	3.404 3.397	3.425 3.418	3.445 3.438
350 400 450	2.824 2.822 2.820	2.954 2.952 2.950	3.044 3.041 3.039	3.112 3.110 3.107	3.167 3.164 3.162	3.213 3.210 3.207	3.252 3.249			3.345 3.341	3.369 3.366 3.363	3.392 3.388 3.385	3.413 3.409	3.432 3.429
450 500 000	2.820 2.819 2.812	2.930 2.948 2.941	3.039 3.038 3.030	3.107 3.105 3.097	3.162 3.160 3.151	3.207 3.205 3.196	3.247 3.244	3.281 3.279 3.269	3.309	3.338 3.336 3.326	3.361	3.385 3.383 3.373	3.406 3.404 3.393	3.426 3.423 3.412
∞	2.812	2.934	3.022	3.089					3.289			3.362	3.383	3.412

Minimum sample size (n) such that a given correlation coefficient de correlation r be significant (i.e. significantly different from zero) at various thresholds (table 3)

	significant	(i.e. sig	gumean	my anno	erent irom	Zero) a	it variou	5 thres	moras (table 3)
r	P = 0.95		0.99 num <i>n</i>	0.995		r	P = 0.95		0.99 mum <i>n</i>	0.995
.99 .98 .97	3 4 7 4	4 4 4 4	4 5 5 5	5 5 5 5		.49 .48 .47 .46	13 13 14 14	17 18 18 19	23 24 25 26	27 28 30 31
.95 .94 .93 .92	4 3 4 2 4	5 5 5 5	5 5 6 6	6 6 6 7		.45 .44 .43 .42	15 16 16 17	20 21 22 23	27 28 29 31 32	32 34 35 37 39
.90 .89 .88 .87	5 5 5 5 7 5	5 5 5 6	6 6 7 7	7 7 7 8		.41 .40 .39 .38 .37	18 19 19 20 21	24 25 26 28 29	34 36 38 40	41 43 46 48
.86 .85 .84 .83	5 5 5 5 5	6 6 6 6	7 7 7 8 8	8 8 8 9		.36 .35 .34 .33	22 24 25 26 28	31 32 34 36 39	42 44 47 50 53	51 54 57 61 64
.81 .80 .79 .78	5 0 6 0 6 8 6	7 7 7 7 7	8 8 8 9	9 9 10 10 10		.31 .30 .29 .28 .27	30 32 34 36 39	41 44 47 50 54	57 60 65 69 74	69 73 79 84 91
.76 .75 .74 .73	6 6 6 6	7 8 8 8 8	9 9 10 10 10	11 11 11 12 12		.26 .25 .24 .23 .22	42 45 49 53 58	58 63 68 74 80	80 87 94 103 112	98 106 115 125 137
.71 .70 .69 .68	7 7 3 7 7	8 9 9 9	11 11 11 12 12	12 13 13 14 14		.21 .20 .19 .18 .17	63 69 77 85 95	88 97 107 120 134	123 136 150 167 188	150 166 183 204 229
.66 .65 .63 .62	8 8 8 8	10 10 10 11 11	12 13 13 14 14	15 15 16 16 17		.16 .15 .14 .13 .12	107 122 140 162 190	151 172 197 228 268	212 241 276 321 376	259 295 338 392 460
.61 .60 .59 .58	9 9 8 10 7 10	11 12 12 12 13	15 15 16 16 17	17 18 18 19 20		.11 .10 .09 .08 .07	225 272 336 424 554	319 385 475 601 785	448 541 668 846 1105	548 663 819 1036 1354
.56 .55 .54 .53 .52 .51	10 11 11 12 12 12	13 14 14 15 15 16 16	17 18 19 19 20 21 22	21 21 22 23 24 25		.06 .05 .04 .03 .02	753 1084 1693 3008 6766 27057	1068 1538 2402 4269 9605 38416	1504 2165 3383 6014 13530 54119	1843 2654 4146 7372 16587 66349
.50	, 14	10	22	26						

Reading off the tables

Table 1 furnishes values of Student's t statistic corresponding to probability integrals P = 0.75, 0.95, 0.975, 0.99 and 0.995 for df(v) from 1 to 99, plus some others. For P < 0.50, one may use relation: $t_{[P]} = -t_{[1-P]}$ due to the symmetry of the distribution about zero.

Table 2 also gives t values for P = 0.95, 0.975, 0.99 and 0.995 following Dunn-Šidák protection criterion: the other parameters are degrees of freedom (v, or df) and number of planned comparisons (nc).

Table 3 is a significance table for the correlation coefficient r. For each significance level α ($P = 1 - \alpha = 0.95, 0.975, 0.99, 0.995$), it indicates the minimum sample size n for which any r value departs significantly from zero. This table is based on a logical inversion of the t test appropriate for this situation.

Illustration 1. Find $t_{14[.95]}$. In table 1, at line v = 14 and under P = 0.95, we read t = 1.761. Likewise, for $t_{9[.95]}$, we use $-t_{9[.95]} = -1.833$.

Illutration 2. With 72 df, what are the (two) critical values of Student's t for a two-tailed 1 % test? The total extreme probability of 1 %, assigned equally to the right and left, leads to probability grades 0.005 (on the left) and 0.995 (on the right). In table 1, under v = 72 and P = 0.995, we obtain 2.646, so the searched-for values are -2.646 and 2.646.

Illustration 3. Find $t_{DS}(20[.95];4)$, i.e. the appropriate t value under the Dunn-Šidák criterion, for v=20 df, a one-tailed 5 % threshold and nc=4 comparisons. In table 2, on the page prepared for one-tailed 5 % tests, line v=20 and column nc=4 point to $t_{DS}=2.414$.

Illustration 4. Find $n(r=\pm 0.30)$ for P=0.975 (or, equivalently, for a two-tailed 5 % test). In table 3, at line r=0.30 and under P=0.975, we read n=44. Hence, any coefficient $r \ge 0.30$ or $r \le -0.30$ differs significantly from zero (i.e. is significant) at the 5 % (bilateral) level if $n \ge 44$.

Full examples

Example 1. With a sample of 40 children in first grade of primary school, we measured an average weight (\bar{x}) of 19.89 kg, with a s.d. of 4.74. Using a confidence coefficient

c = 0.95, find the interval inside which the true mean weight (μ_X) of children in this category should lie. *Solution*: The confidence interval for a mean, or average, is given by:

$$\Pr\{ \overline{x} + t_{n-1[(1-c)/2]} s / \sqrt{n} < \mu_{X} < \overline{x} + t_{n-1[(1+c)/2]} s / \sqrt{n} \} = c .$$

Here, c = 0.95, n = 40, $\overline{x} = 19.89$, s = 4.74. In table 1, we find $t_{39[.975]} = 2.023$, hence $t_{39[.025]} = -2.023$ by symmetry. These data allow us to calculate and state that:

Pr{
$$18,37 < \mu_X < 21,41$$
 } ≈ 0.95 .

Example 2. Thirty-eight patients suffering a phobia to dogs were randomly assigned either to therapy 1 or 2. After four individual sessions of one hour, a questionnaire measuring the respondent's "bravery toward dogs" was administered to each patient. A summary of results follows:

Therapy 1
$$n_1 = 20$$
 $\overline{x}_1 = 3.49$ $s_1 = 0.96$;
Therapy 2 $n_2 = 18$ $\overline{x}_2 = 2.04$ $s_2 = 0.93$.

May we conclude that one therapy is more effective than the other? *Solution*: This simple research paradigm and the associated *t*-test procedure are among the most currently encountered in statistical practice. Under appropriate conditions (*i.e.* independent samples from a unique normally distributed population, homogeneity of variance estimates), the *t* test for the difference of means between two samples is defined by:

$$t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}},$$

and is distributed as Student's t with $n_1 + n_2 - 2$ df. Selecting a 5 % significance level with a two-tailed test (whence P = 0.025 and 0.975) and with df = 20 + 18 - 2 = 36, table 1 furnishes $t = \pm 2.028$. Calculating the above formula with our data, we get $t \approx 1.45 / \sqrt{(0.8948 \times 0.10556)} \approx 1.45 / 0.30733 \approx 4.718$. As the calculated t test exceeds the critical value, we reject the hypothesis of the equality of population means. Therefore, therapy 1 appears more effective, at least in the short term, than therapy 2.

Example 3. A researcher in experimental biology allocates 50 laboratory rats into 5 groups of 10, in a random manner. In his research protocol, he compares three experimental diets: E1, E2 and E3, and two control diets, C1 and C2. The body weight — the dependent variable in this study — is measured in grams (g) at the end of the experiment. Here is a summary of results:

Diet group	n	\vec{x}	S
E1	10	352.7	32.14
E2	10	318.2	29.56
E3	10	336.4	33.37
C1	10	308.5	28.61
C2	10	273.4	30.19

The researcher wishes to determine, using a 1 % significance threshold, whether each experimental diet has benefitted the rats' weight in contrast with each control diet. Solution: The researcher's questioning design corresponds to a set of 6 planned comparisons (and 6 one-tailed tests), each of type H_1 : $\mu(E_j) > \mu(C_r)$, j = 1,2,3 and r = 1,2; the criterion and method of Dunn-Šidák are appropriate here. The t test for this situation is:

$$t = \frac{\overline{x}_i - \overline{x}_j}{\sqrt{\hat{\sigma}^2 \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}}.$$

The (error) variance estimate, $\hat{\sigma}^2$, is given here by the Within-group mean square (MS_{Within}) of a one-way analysis of variance, here MS_{Within} = 950.06 (calculted as a weighted average of each group's s^2 , with weights equal to n_j-1), with $v=5\times9=45$ df. Table 2 furnishes, for one-tailed tests, $\alpha=0.01$ and nc=6 comparisons, the two values $t_{DS}(44[0.99];6)=3.102$ and $t_{DS}(46[0.99];6)=3.095$, whence, by interpolation for v=45, $t(45)\approx3.099$. To be significant, the t test must exceed 3.099; therefore, each difference $\overline{x}(E_j)-\overline{x}(C_r)$ must exceed $2.099\times\sqrt{[950.06\times(1/10+1/10)]}\approx42.72$. Computations show that only differences (E1-C1), (E1-C2) and (E3-C2) are significant at the prescribed level.

Example 4. The (linear) correlation between the height of 20 women and that of their consort has been calculated at r = 0.54. With this value, can we infer that there exists some relation between the statures of partners in human couples in the whole population, a non-zero correlation (using a 5 %, two-tailed test)? Solution: In table 3, under column P = 0.975, we find n(0.54) = 14, this being the minimum sample size for our correlation to be significant. As our sample is of size 20, we conclude that the obtained correlation is statistically significant, hence that the members of human couples tend moderately to be akin in stature.

Mathematical presentation

Student's t variable is basically the quotient of a random normal $N(\mu, \sigma^2)$ variable divided by an estimate s of σ having v df, that estimate itself emanating from the same statistical population¹. As the following equality shows, the t formula compensates for our ignorance of the parametric value of σ^2 :

$$t_{v} = \frac{x-\mu}{s_{v}} = \frac{(x-\mu)/\sigma}{\sqrt{\frac{v \cdot s_{v}^{2}}{\sigma^{2}}/v}} = \frac{z}{\sqrt{\chi_{v}^{2}/v}}.$$

We see, in addition, that the t variable can be manufactured, or generated, by dividing a standard normal r.v. (z) with the square root of a χ^2_{ν} r.v., itself divided by its parameter ν .

The most popular applications of Student's t distribution concern the sampling distribution of the mean \overline{x} , the distribution of a difference $(\overline{x}_1 - \overline{x}_2)$ of two independent or two paired means, and the significance of a correlation coefficient. The distribution was discovered by W. S. Gosset (alias *Student*), and R. A. Fisher established it mathematically. Fisher also established the kinship of Student's t with correlation coefficient r in a bivariate normal population where $\rho = 0$, and with the χ^2 and F distributions. Fisher promoted the use of t tests and other small-sample tests in fundamental and applied research.

Calculation and moments

The p.d.f. of t having v df is:

$$p(t_{v}) = K_{v}(1+t^{2}/v)^{-(v+1)/2}$$

where:

$$K_{\nu} = \Gamma[(\nu\!+\!1)/2]/\{\sqrt{(\nu\pi)}\Gamma(\nu/2)\}$$
 .

¹ This last clause is not mandatory. It is stated here as it evokes the habitual context in which most t tests are applied, a context wherein some sample mean is divided by the square root of the same sample's variance estimate. The reader is reminded that, in samples from a normal distribution, the sample estimates \bar{X} and s^2 are independently distributed.

The distribution has one mode, is symmetrical about zero and is somewhat wider than the normal density, tending progressively to it as $v \to \infty$. $\Gamma(x)$ indicates the Gamma function.

Integration of the above p.d.f. is not simple, that being the case for most statistical distributions. The binomial expansion of $(1 + t^2/v)^{-r}$, followed by term-by-term integration on t, results in the converging power series:

$$P(t_{v}) = \frac{1}{2} + K_{v} t \sum_{i=0}^{\infty} \frac{(-1)^{i}}{i! (2i+1)} \left(\frac{v+1}{2}\right)^{(i)} \left(\frac{t^{2}}{v}\right)^{i},$$

where $x^{(i)}$ denotes the ascending factorial function. Gosset, using the change of variables $\theta = \tan^{-1}(t/\sqrt{v})$, developped the following series, one for even v:

$$P(t_{v}) = \frac{1}{2} + \frac{\sin\theta}{2} \left\{ 1 + \sum_{i=1}^{\frac{1}{2}(v-2)} (\cos\theta)^{2i} \prod_{j=1}^{i} \frac{2j-1}{2j} \right\},\,$$

the other for odd v:

$$P(t_{v}) = \frac{1}{2} + \frac{1}{\pi} \left\{ \theta + \sin\theta \cos\theta \left[1 + \sum_{i=1}^{\frac{1}{2}(v-3)} (\cos\theta)^{2i} \prod_{j=1}^{i} \frac{2j}{2j+1} \right] \right\};$$

both series become cluttered for large ν values. For such cases, the preceding binomial expansion seems preferable, or else, the approximation proposed by Fisher:

$$P(t_{v}) \approx \Phi(t) + \varphi(t) \cdot t \left[A/(4v) + B/(96v^{2}) + C/(384v^{3}) + D/(92160v^{4}) + \cdots \right],$$

where Φ and ϕ are respectively the d.f. and the p.d.f. of the standard normal distribution, and A = t^2+1 , B = $3t^6-7t^4-5t^2-3$, C = $t^{10}-11t^8+14t^6+6t^4-3t^2-15$, D = $15t^{14}-375t^{12}+2225t^{10}-2141t^8-939t^6-213t^4+915t^2+945$. Many other computational algorithms are available.

The t variable with v = 1 has p.d.f. $1/[\pi(1+t^2)]$ and coincides with a standard Cauchy variable. This variable, which also corresponds to the quotient of two standard normal r.v.'s $(= z_1/z_2)$, has no expectation, no variance, nor moments of any order. The d.f. is simply $P(t_1) = \frac{1}{2} + (\tan^{-1}t)/\pi$, whence, by inversion, we may obtain the percentage point $t_1[P] = \tan{\pi(P - \frac{1}{2})}$.

For v = 2, through Gosset's trigonometric series, we have $P(t_2) = \frac{1}{2} + \frac{1}{2}t/\sqrt{(t^2+2)}$, and $t_2[P] = (2P-1)/\sqrt{[2P(1-P)]}$.

Note, finally, the kinship of t_v and $F_{1,v}$, from which we have, for instance, the correspondence:

$$t_{{\bf v}[P]} = + \sqrt{F_{1,{\bf v}[2P-1]}} \ \{\ P > \frac{1}{2}\ \}\ ,$$

and also $t_v \to z \sim N(0,1)$ as $v \to \infty$, reflecting the trend of t toward the normal law. These diverse relations may help to interpolate in a table of percentage points of t, when necessary.

Moments. Thanks to the symmetry of its p.d.f. centered at zero, the expectation, median and mode of t_v are all zero, as is the skewness index, γ_1 . The variance (σ^2) equals v/(v-2), and the kurtosis index (γ_2) is 6/(v-4), reflecting a leptokurtic, somewhat narrow, center. Note that the moment of order r (r = 1 for μ , 2 for σ^2 , etc.) is defined only if v > r.

With only the first two moments of t_v , we can approximate a t centile using the rough equivalence: $t_{v[P]} \approx z_{[P]} \sigma_v$, $z_{[P]}$ being the standard normal P-centile, and $\sigma_v = \sqrt{[v/(v-2)]}$. The literature offers a better approximation:

$$t_{v[P]} \approx z_{[P]} \left(1 + \frac{z_{[P]}^2 + 1}{4v - 4} \right) ,$$

which renders centile values with a ± 0.01 precision as soon as $v \ge 7$ for $P \le 0.975$, and $v \ge 21$ for $P \le 0.995$.

The Dunn-Šidák criterion (see table 2)

The t distribution is also useful in the realm of analysis of variance (ANOVA), for doing multiple comparisons of means associated with a factor or dimension of ANOVA. In some cases, a few comparisons of type "Mean vs. Mean" are planned (before obtaining the data or independently of it). A standard statistical practice consists in establishing a global error rate α for all nc comparisons or tests, and in performing each test using an effective $\alpha_C = \alpha/nc$ significance level: this is the so-called Bonferroni criterion. Now, according to a theorem by Z. Šidák:

$$\alpha_{\text{(global)}} \leq 1 - (1 - \alpha_{\text{C}})^{nc}$$
,

whether the nc comparisons be statistically independent or not. O. J. Dunn then proposes, for each comparison, to calculate a t test and apply, for the significance criterion, an individual significance level α_C obtained with:

$$\alpha_{\rm C} = 1 - \sqrt[nc]{(1-\alpha)},$$

this being slightly more powerful than Bonferroni's (α/nc) value. Table 2 was built to meet the requirements of such a procedure, with parameters ν , α and nc: the values given are simply $t_{\nu[1-\alpha_c]}$ or $t_{\nu[1-\alpha_c/2]}$, for one-tailed or two-tailed tests respectively.

The significance or r (see table 3)

The distribution of the correlation coefficient r for samples from a bivariate normal population having correlation $\rho = 0$ has been discovered by Fisher, who linked it with Student's t through the transformation:

$$\frac{r}{\sqrt{\frac{1-r^2}{n-2}}} \to t_{n-2}$$

This direct correspondance between Student's t and correlation coefficient r allowed us to set up an exhaustive significance table of r, in table 3. The table indicates the sample size n = v+2 sufficient for a given r value or a larger one to be significant (i.e. significantly different from zero) at the prescribed level. Note the approximate relation: $n_{[P]} \approx t_{n[P]}^2/r^2$; linear interpolation on r and $1/\sqrt{n}$ can also be used to determine the sufficient size n for intermediate r values.

Generation of pseudo random variates

The following program outline permits the generation of r.v.'s from Student's t(v) distribution using a function "UNIF" that produces serially independent uniform U(0,1) r.v.'s. Some particular cases are given in Remark 2.

Preparation: Let $n \equiv v$ (the degrees of freedom, df)

$$C = -2/n$$

Production:

Repeat $t \leftarrow 2 \times \text{UNIF} - 1$; $u \leftarrow 2 \times \text{UNIF} - 1$; $r \leftarrow t^2 + u^2$

Until r < 1:

Return $t \times \sqrt{[n \times (r^{C}-1)/r]} \rightarrow x$.

Remarks:

- 1. Standard temporal cost : $9.9 \times t(UNIF)$
- 2. The above method is attributed to R. W. Bailey (1994, in Gentle 1998) and is valid for any v = n value. The generation of one x variate requires an expected number of $8/\pi \approx 2.55$ calls to the UNIF generator. When v = 1 or 2, one may also exploit the simple inversion formulae given earlier, while substituting $u \sim \text{UNIF}$ instead of the required P value.

F distribution

- ✓ Graphical representations
- \checkmark Percentiles 95, 97.5, 99 and 99.5 of the F distribution
- ✓ Reading off the table
- ✓ Full examples
- ✓ Mathematical presentation

Calculation and moments
Relationship between F and binomial distributions
Generation of pseudo random variates

Percentile 95 of the F distribution													
ν_2	$\overline{v_1}$ 1	2	3	4	5	6	7	8	9	10	11	12	
1									240.5	241.9	243.0	243.9	
2							19.35			19.40	19.40	19.41	
3	10.13	9.552	9.277				8.887			8.786		8.745	
4	7.709	6.944	6.591	6.388	6.256	6.163	6.094	6.041	5.999	5.964	5.936	5.912	
5	6.608	5.786	5.409	5.192	5.050	4.950	4.876	4.818	4.772	4.735	4.704	4.678	
6	5.987						4.207			4.060	4.027	4.000	
7	5.591						3.787			3.637	3.603	3.575	
8	5.318	4.459	4.066	3.838	3.687	3.581	3.500	3.438	3.388	3.347	3.313	3.284	
9	5.117	4.256	3.863		3.482				3.179	3.137	3.102	3.073	
10	4.965	4.103	3.708	3.478	3.326	3.217	3.135	3.072	3.020	2.978	2.943	2.913	
11		3.982					3.012			2.854	2.818	2.788	
12		3.885						2.849			2.717		
13	4.667						2.832			2.671	2.635	2.604	
14	4.600	3.739	3.344	3.112	2.958	2.848	2.764	2.699	2.646	2.602	2.565	2.534	
15	4.543	3.682	3.287	3.056	2.901	2.790	2.707	2.641	2.588	2.544	2.507	2.475	
16		3.634		3.007						2.494		2.425	
17		3.592					2.614			2.450		2.381	
18							2.577			2.412	2.374		
19							2.544			2.378	2.340	2.308	
20	4.351	3.493	3.098	2.866	2.711	2.599	2.514	2,447	2.393	2.348	2.310	2.278	
22							2.464				2.259		
24	4.260						2.423			2.255	2.216		
26							2.388					2.148	
28	4.196						2.359		2.236	2.190	2.151	2.118	
30	4.171	3.316	2.922	2.690	2.534	2.421	2.334	2.266	2.211	2.165	2.126	2.092	
32	4.149						2.313				2.103		
34	4.130								2.170				
36	4.113			2.634						2.106		2.033	
38	4.098	3.245	2.852	2.619	2.463	2.349	2.262	2.194	2.138	2.091	2.051	2.017	
40	4.085	3.232	2.839	2.606	2,449	2.336	2.249	2.180	2.124	2.077	2.038	2.003	
42	4.073		2.827				2.237			2.065		1.991	
44	4.062						2.226			2.054		1.980	
46	4.052	3.200	2.807	2.574	2.417	2.304	2.216	2.147	2.091	2.044	2.004	1.970	
48	4.043	3.191	2.798	2.565	2.409	2.295	2.207	2.138	2.082	2.035	1.995	1.960	
50	4.034	3.183	2.790	2.557	2.400	2.286	2.199	2.130	2.073	2.026	1.986	1.952	
55	4.016	3.165	2.773	2.540	2.383	2.269	2.181	2.112	2.055	2.008	1.968	1.933	
60	4.001						2.167				1.952		
65	3.989						2.154			1.980		1.904	
70	3.978	3.128	2.736	2.503	2.346	2.231	2.143	2.074	2.017	1.969	1.928	1.893	
75	3.968	3.119	2.727	2.494	2.337	2.222	2.134	2.064	2.007	1.959	1.919	1.884	
80	3.960	3.111	2.719	2.486	2.329	2.214	2.126	2.056	1.999	1.951	1.910	1.875	
85							2.119				1.903	1.868	
90	3.947								1.986			1.861	
95	3.941	3.092	2.700	2.468	2.310	2.196	2.107	2.037	1.980	1.932	1.891	1.856	
100									1.975			1.850	
125	3.917	3.069	2.677	2.444	2.287	2.172	2.084	2.013	1.956		1.866	1.830	
150							2.071			1.894	1.853	1.817	
175									1.934		1.844		
200							2.056					1.801	
250	3.879						2.046				1.827		
500	3.860						2.028					1.772	
	3.841	2.996	2.605	2.372	2.214	2.099	2.010	1.938	1.880	1.831	1.789	1.752	

	Percentile 95 of the F distribution (cont.)												
$\nu_2 \setminus \nu_1$	13	14	15	16	18	20	25	30	40	50	100	∞	
1 2 3 4	244.7 19.42 8.729 5.891	19.42	19.43 8.703	19.43	19.44 8.675	19.45 8.660	19.46 8.634	19.46 8.617	19.47 8.594	19.48	253.0 19.49 8.554 5.664	19.50	
5 6 7 8 9	4.655 3.976 3.550	4.636 3.956 3.529 3.237	4.619 3.938 3.511 3.218	4.604 3.922 3.494 3.202	4.579 3.896 3.467 3.173	4.558 3.874 3.445 3.150	4.521 3.835 3.404 3.108	4.496 3.808 3.376 3.079	4.464 3.774 3.340	4.444 3.754 3.319 3.021	4.405 3.712 3.275 2.975	4.365 3.669 3.230 2.928 2.707	
10 11 12 13 14	2.887 2.761	2.865 2.739 2.637 2.554	2.845 2.719	2.828 2.701 2.599 2.515	2.798 2.671 2.568 2.484	2.774 2.646 2.544	2.730 2.601 2.498 2.412	2.700 2.570 2.466 2.380	2.661 2.531 2.426 2.339 2.266	2.637 2.507 2.401 2.314	2.588 2.457 2.350 2.261	2.538 2.404 2.296 2.206 2.131	
15 16 17 18 19	2.448 2.397 2.353 2.314 2.280	2.373 2.329 2.290 2.256	2.352 2.308 2.269 2.234	2.333 2.289 2.250 2.215	2.302 2.257 2.217 2.182	2.276 2.230 2.191 2.155	2.227 2.181 2.141 2.106	2.194 2.148 2.107 2.071	2.104 2.063 2.026	2.124 2.077 2.035 1.999	2.068 2.020 1.978 1.940	1.960 1.917 1.878	
20 22 24 26 28	2.119	2.173 2.130 2.094 2.064	2.072 2.041	2.131 2.088 2.052 2.021	2.098 2.054 2.018 1.987	1.959	2.020 1.975 1.938 1.906	1.984 1.939 1.901 1.869	1.892 1.853 1.820		1.849 1.800 1.760 1.725	1.843 1.783 1.733 1.691 1.654	
30 32 34 36 38	2.063 2.040 2.021 2.003 1.988	2.015	2.015 1.992 1.972 1.954 1.939	1.972 1.952	1.937 1.917 1.899	1.908 1.888	1.854 1.833		1.767 1.745 1.726	1.761 1.736 1.713 1.694 1.676	1.669 1.645	1.622 1.594 1.569 1.547 1.527	
40 42 44 46 48	1.974 1.961 1.950 1.940 1.930	1.948 1.935 1.924 1.913 1.904	1.924 1.912 1.900 1.890 1.880	1.891 1.879 1.869	1.844 1.833	1.839 1.826 1.814 1.803 1.793	1.758 1.747	1.731 1.718 1.707	1.666	1.660 1.646 1.633 1.621 1.610	1.589 1.574 1.560 1.547 1.536	1.477 1.463	
50 55 60 65 70	1.887 1.874 1.863	1.876 1.860 1.847 1.836	1.852 1.836 1.823 1.812	1.831 1.815 1.802 1.790	1.795 1.778 1.765 1.753	1.748 1.734 1.722	1.707 1.690 1.676 1.664	1.666 1.649 1.635 1.622	1.594 1.579 1.566	1.577 1.559 1.543 1.530	1.501 1.481 1.464 1.450	1.389 1.370 1.353	
75 80 85 90 95	1.845 1.837 1.830 1.825	1.817 1.810 1.803 1.797	1.786 1.779 1.773	1.772 1.764 1.757 1.751	1.734 1.726 1.720 1.713	1.703 1.695 1.688 1.682	1.644 1.636 1.629 1.622	1.602 1.593 1.586 1.579	1.545 1.536 1.528 1.521	1.508 1.499 1.491 1.484	1.437 1.426 1.416 1.407 1.399	1.325 1.313 1.302 1.292	
100 125 150 175 200 250 500	1.799 1.786 1.776 1.769 1.759 1.740	1.772 1.758 1.749 1.742 1.732 1.712	1.724 1.717 1.707 1.686	1.725 1.711 1.702 1.694 1.684 1.664	1.687 1.673 1.663 1.656 1.645 1.625	1.655 1.641 1.631 1.623 1.613 1.592	1.594 1.580 1.569 1.561 1.550 1.528	1.551 1.535 1.525 1.516 1.505 1.482	1.491 1.475 1.464 1.455 1.443 1.419	1.452 1.436 1.424 1.415 1.402 1.376	1.392 1.364 1.345 1.331 1.321 1.306 1.275 1.243	1.223 1.204 1.189 1.166 1.113	

reser	
riahts	
₹	
Company.	
blishing	
Δ.	
Scientific	
World	
© 2002.	
0	
opyright	

Percentile 97.5 of the F distribution												
$\overline{\nu_2 \setminus \nu_1}$	1	2	3	4	5	6	7	8	9	10	11	12
2 3	647.8 38.51 17.44	39.00 16.04	39.17 15.44	39.25 15.10	39.30 14.88	39.33 14.73	39.36 14.62	39.37 14.54	39.39 14.47		39.41 14.37	39.41 14.34
5 6 7	12.22 10.01 8.813 8.073 7.571	8.434 7.260 6.542 6.059	9.979 7.764 6.599 5.890 5.416	7.388 6.227 5.523 5.053	7.146 5.988 5.285 4.817	6.978 5.820 5.119 4.652	6.853 5.695 4.995 4.529		6.681 5.523 4.823 4.357	6.619 5.461 4.761 4.295		8.751 6.525 5.366 4.666 4.200
10 11 12 13	6.554 6.414	5.456 5.256 5.096 4.965	5.078 4.826 4.630 4.474 4.347 4.242	4.468 4.275 4.121 3.996	4.236 4.044 3.891 3.767	4.072 3.881 3.728 3.604	3.950 3.759 3.607 3.483	3.855 3.664 3.512 3.388	3.779	3.717 3.526	3.912 3.665 3.474 3.321 3.197	3.868 3.621 3.430 3.277 3.153 3.050
15 16 17 18	6.200	4.765 4.687 4.619	4.153 4.077 4.011 3.954	3.804 3.729 3.665 3.608	3.577 3.502 3.438	3.415 3.341	3.293 3.219 3.156 3.100	3.199	3.123 3.049 2.985 2.929	3.060 2.986 2.922	3.008 2.934 2.870 2.814	2.963 2.889 2.825 2.769 2.720
22 24 26		4.461 4.383 4.319 4.265 4.221	3.721 3.670	3.440 3.379 3.329	3.215 3.155 3.105	3.055 2.995 2.945	2.934 2.874 2.824	2.913 2.839 2.779 2.729 2.687	2.763 2.703 2.653	2.640 2.590	2.721 2.647 2.586 2.536 2.494	2.491
32 34 36	5.531	4.120 4.094	3.557 3.529 3.505	3.218 3.191 3.167	2.995 2.968 2.944	2.836 2.808 2.785	2.715 2.688 2.664	2.593 2.569	2.543 2.516	2.453 2.429	2.375	2.412 2.381 2.353 2.329 2.307
42 44 46	5.404 5.386 5.369		3.446 3.430 3.415	3.109 3.093 3.079	2.887 2.871 2.857	2.727 2.712 2.698	2.607 2.591 2.577	2.512 2.496 2.482	2.435 2.419 2.405	2.388 2.371 2.355 2.341 2.329	2.317 2.302 2.287	2.255 2.241
55 60 65	5.310 5.286 5.265	3.948 3.925 3.906	3.364 3.343 3.324	3.029 3.008 2.990	2.807 2.786 2.769	2.648 2.627 2.610	2.528 2.507 2.489	2.433 2.412 2.394	2.355 2.334 2.317	2.317 2.291 2.270 2.252 2.237	2.237 2.216 2.198	2.190 2.169 2.151
80 85 90	5.218 5.207	3.864 3.854 3.844	3.284 3.274 3.265	2.950 2.940 2.932	2.730 2.720 2.711	2.571 2.561 2.552	2.450 2.440 2.432	2.355 2.345 2.336	2.277 2.268 2.259	2.224 2.213 2.203 2.194 2.186	2.158 2.148 2.140	2.111 2.101 2.092
125 150 175 200 250 500	5.147 5.126 5.111 5.100 5.085 5.054	3.800 3.781 3.768 3.758 3.744 3.716	3.222 3.204 3.192 3.182 3.169 3.142	2.890 2.872 2.860 2.850 2.837 2.811	2.670 2.652 2.640 2.630 2.618 2.592	2.511 2.494 2.481 2.472 2.459 2.434	2.390 2.373 2.361 2.351 2.338 2.313	2.295 2.278 2.265 2.256 2.243 2.217	2.217 2.200 2.187 2.178 2.165 2.139	2.179 2.153 2.135 2.122 2.113 2.100 2.074 2.048	2.098 2.080 2.067 2.058 2.045 2.019	2.050 2.032 2.020 2.010 1.997 1.971

Percentile 97.5 of the F distribution (cont.) 13 14 15 18 25 40 50 100 $\nu_2 \setminus \nu_1$ 16 20 30 ∞ 979.8 982.5 984.9 986.9 990.4 993.1 998.1 1001 1006 1008 1013 1018 39.43 39.43 39.44 39.44 39.45 39.46 39.46 39.47 39.48 39.49 39.50 3 14.28 14.25 14.23 14.20 14.17 14.12 14.08 14.04 14.01 13.96 13.90 4 8.633 8.592 8.560 8.501 8.461 8.411 8.684 8.657 8.381 8.319 5 6.488 6.456 6.428 6.403 6.362 6.329 6.268 6.227 6.175 6.144 6.080 6.015 5.244 5.202 5.168 5.107 5.065 5.012 4.980 6 5.329 5.297 5.269 4.915 7 4.628 4.596 4.568 4.543 4.501 4.467 4.405 4.362 4.309 4.276 4.210 4.142 8 4.162 4.130 4.101 4.076 4.034 3.999 3.937 3.894 3.840 3.807 9 3.798 3.769 3.744 3.701 3.667 3.604 3.560 3.505 3.472 3.403 10 3.496 3.453 3.419 3.355 3.311 3.255 3.550 3.522 3.221 3.152 11 3.392 3.359 3.330 3.304 3.261 3.226 3.162 3.118 3.061 3.027 2.956 2.883 3.152 3.108 3.073 3.008 2.963 2.906 12 3.239 3.206 3.177 2.871 2.800 3.115 3.053 3.027 2.983 2.948 2.882 2.837 2.780 13 3.082 2.744 2.671 2.595 14 3.012 2.979 2.949 2.923 2.879 2.844 2.778 2.732 2.674 2.638 2.565 15 2.891 2.862 2.836 2.792 2.756 2.689 2.644 2.585 2.549 2.474 2.395 16 2.851 2.817 2.788 2.761 2.717 2.681 2.614 2.568 2.509 2.472 2.396 17 2.753 2.723 2.697 2.652 2.616 2.548 2.502 2.442 2.405 2.329 18 2.696 2.667 2.640 2.596 2.559 2.491 2.445 2.384 2.347 2.269 2.187 19 2.681 2.647 2.617 2.591 2.546 2.509 2.441 2.394 2.333 2.295 2.217 2.133 20 2.547 2.501 2.464 2.396 2.349 2.287 2.603 2.573 2.249 2.170 2.085 22 2.498 2.472 2.426 2.389 2.320 2.272 2.210 2.563 2.528 2.171 2.090 2.003 2.411 2.327 2.257 2.209 2.146 2.024 24 2.468 2.437 2.365 2.107 26 2.417 2.387 2.360 2.314 2.276 2.205 2.157 2.093 1.969 2.053 28 2.409 2.374 2.344 2.317 2.270 2.232 2.161 2.112 2.048 2.007 1.922 30 2.233 2.195 2.124 2.074 2.009 2.372 2.338 2.307 2.280 1.968 1.882 1.787 2.163 2.091 2.041 1.975 32 2.275 2.248 2.201 1.934 1.846

34 2.135 2.062 2.012 1.946 2.278 2.248 2.220 2.173 1.904 1.815 2.254 2.223 2.196 2.148 2.110 2.037 1.986 36 2.289 1.919 1.877 1.787 1.687 38 2.232 2.201 2.174 2.126 2.088 2.015 1.963 1.896 1.854 2.267 1.763 1.661 1.994 1.943 40 2.248 2.213 2.182 2.154 2.107 2.068 1.875 1.741 1.832 42 2.231 2.196 2.164 2.137 2.089 2.050 1.976 1.924 1.856 1.813 1.720 44 2.034 1.960 1.908 2.180 2.149 2.121 2.073 1.839 1.796 46 2.165 2.134 2.106 2.058 2.019 1.945 1.893 1.824 1.780 1.685 48 2.188 2.152 2.121 2.093 2.045 2.006 1.931 1.879 1.809 1.765 1.670 1.561 50 2.176 2.140 2.109 2.081 2.033 1.993 1.919 1.866 1.796 1.752 55 2.150 2.114 2.083 2.055 2.006 1.967 1.891 1.838 1.768 1.723 1.625 1.511 60 2.129 2.093 2.061 2.033 1.985 1.944 1.869 1.815 1.744 1.699 1.599 65 2.111 2.075 2.043 2.015 1.966 1.926 1.850 1.796 1.724 1.678 1.577 1.457 70 2.095 2.059 2.028 1.999 1.950 1.910 1.833 1.779 1.707 1.558 1.436 1.660 75 2.046 2.014 1.986 1.937 1.896 1.819 1.765 1.692 1.645 1.542 2.082 80 1.925 1.884 1.807 1.752 2.071 2.035 2.003 1.974 1.679 1.632 1.964 85 1.915 1.874 1.796 1.741 1.668 2.060 2.024 1.992 1.620 1.514 1.385 90 1.955 1.905 1.787 2.051 2.015 1.983 1.864 1.731 1.657 1.610 1.503 1.371 95 2.043 2.007 1.975 1.946 1.897 1.856 1.778 1.723 1.648 1.600 1.493 1.359 2.000 1.968 1.939 1.890 1.849 1.770 1.715 100 2.036 1.640 1.592 1.483 1.347 1.741 125 2.009 1.973 1.940 1.911 1.862 1.820 1.685 1.609 1.559 1.448 1.303 1.665 150 1.991 1.955 1.922 1.893 1.843 1.801 1.722 1.588 1.538 1.423 1.909 175 1.942 1.880 1.830 1.788 1.708 1.651 1.573 1.522 1.406 200 1.870 1.820 1.778 1.698 1.640 1.562 1.969 1.932 1.900 1.511 1.393 250 1.806 1.764 1.683 1.625 1.919 1.886 1.857 1.546 1.495 1.374 500 1.892 1.859 1.830 1.779 1.736 1.655 1.596 1.515 1.929 1.462 1.336 1.137 1.866 1.833 1.803 1.751 1.708 1.626 1.566 1.484 1.428 ∞

Percentile 99 of the F distribution													
$\nu_2 \setminus \nu$	1 1	2	3	4	5	6	7	8	9	10	11	12	
1 2 3 4		5000 99.00 30.82 18.00	29.46	5625 99.25 28.71 15.98	99.30 28.24	5859 99.33 27.91 15.21	99.36	5981 99.37 27.49 14.80	27.35	27.23	6083 99.41 27.13 14.45	6106 99.42 27.05 14.37	
5 6 7 8 9	16.26 13.75 12.25	13.27 10.92 9.547 8.649 8.022	12.06 9.780 8.451		10.97 8.746 7.460 6.632	10.67 8.466 7.191 6.371 5.802	10.46 8.260 6.993	10.29 8.102 6.840	10.16 7.976 6.719 5.911	10.05 7.874	9.963 7.790	9.888 7.718 6.469 5.667 5.111	
10 11 12 13 14	10.04 9.646 9.330 9.074	7.559 7.206 6.927 6.701	6.552 6.217 5.953 5.739	5.994 5.668 5.412 5.205	5.636 5.316 5.064 4.862	5.386 5.069 4.821 4.620 4.456	5.200 4.886 4.640 4.441	5.057 4.744 4.499	4.942 4.632 4.388 4.191	4.849 4.539 4.296	4.772 4.462 4.220	4.706 4.397 4.155 3.960 3.800	
15 16 17 18 19	8.683 8.531 8.400 8.285	6.359	5.417 5.292 5.185 5.092	4.893 4.773 4.669	4.556 4.437 4.336 4.248	4.318 4.202	4.142 4.026 3.927	4.004 3.890 3.791		3.805 3.691 3.593 3.508 3.434	3.730 3.616 3.519 3.434 3.360	3.666 3.553 3.455 3.371 3.297	
20 22 24 26 28	7.945 7.823 7.721	5.614	4.817 4.718 4.637	4.313 4.218 4.140	3.895	3.758 3.667 3.591			3.346 3.256 3.182		3.294 3.184 3.094 3.020 2.959	3.231 3.121 3.032 2.958 2.896	
30 32 34 36 38	7.499	5.390 5.336 5.289 5.248 5.211	4.459 4.416 4.377	3.969 3.927 3.890	3.652 3.611 3.574	3.473 3.427 3.386 3.351 3.319	3.218 3.183	3.173 3.127 3.087 3.052 3.021	2.946	2.979 2.934 2.894 2.859 2.828	2.906 2.860 2.821 2.786 2.755	2.843 2.798 2.758 2.723 2.692	
40 42 44 46 48	7.280 7.248 7.220	5.179 5.149 5.123 5.099 5.077	4.285 4.261 4.238	3.802 3.778 3.757	3.488 3.465 3.444	3.266 3.243 3.222	3.099 3.076 3.056	2.993 2.968 2.946 2.925 2.907	2.863 2.841 2.820	2.754 2.733	2.727 2.703 2.680 2.660 2.642	2.665 2.640 2.618 2.598 2.579	
50 55 60 65 70	7.119 7.077 7.041	5.013 4.977 4.947	4.159 4.126 4.098	3.681 3.649 3.622	3.370 3.339 3.313	3.149 3.119 3.093	2.983 2.953 2.928	2.853 2.823 2.798	2.7482.7182.693	2.662 2.632 2.607	2.625 2.589 2.559 2.534 2.512	2.526 2.496 2.471	
75 80 85 90 95	6.963 6.943 6.925 6.910	4.881 4.864 4.849 4.836	4.036 4.021 4.007 3.995	3.563 3.548 3.535 3.523	3.255 3.241 3.228 3.216	3.036 3.022 3.009 2.998	2.871 2.857 2.845 2.833	2.742 2.728 2.715 2.704	2.637 2.623 2.611 2.600	2.551 2.537 2.524 2.513	2.494 2.478 2.464 2.451 2.440	2.415 2.401 2.389 2.378	
100 125 150 175 200 250 500	6.842 6.807 6.782 6.763 6.737 6.686	4.779 4.749 4.728 4.713 4.691 4.648	3.942 3.915 3.895 3.881 3.861 3.821	3.473 3.447 3.428 3.414 3.395 3.357	3.167 3.142 3.123 3.110 3.091 3.054	2.950 2.924 2.906 2.893 2.875 2.838	2.785 2.761 2.743 2.730 2.711 2.675	2.657 2.632 2.614 2.601 2.583 2.547	2.552 2.528 2.510 2.497 2.479 2.443	2.466 2.441 2.424 2.411 2.393 2.356		2.330 2.305 2.288 2.275 2.257 2.220	

 α

Percentile 99 of the F distribution (cont.) 13 14 15 18 20 25 40 100 $\nu_2 \setminus \nu_1$ 16 30 50 ∞ 6126 6157 6170 6192 6209 6240 6261 6287 6303 6334 6143 6366 2 99.43 99.44 99.44 99.45 99.46 99.47 99.47 99.48 99.49 3 26.92 26.83 26.75 26.69 26.58 26.50 26.41 26.24 26.13 26.87 26.35 14.20 14.15 14.08 14.02 13.91 13.84 13.75 4 14.31 14.25 13.69 13.58 5 9.449 9.379 9.291 9.825 9.770 9.722 9.680 9.610 9.553 9.238 9.130 7.296 7.519 7.396 7.229 6.880 7.605 7.559 7.451 7.143 7.091 6.987 6 7.657 6.410 6.359 6.314 6.275 6.209 6.058 5.992 5.908 6.155 5.858 5.755 8 5,559 5,515 5,477 5,412 5,359 5,263 5,198 5,116 5.065 4.963 9 5.055 5.005 4.962 4.924 4.860 4.808 4.713 4.649 4.567 4.517 4.415 10 4.558 4.520 4.457 4.405 4.311 4.247 4.165 4.115 4.014 4.650 4.601 11 4.342 4.293 4.251 4.213 4.150 4.099 4.005 3.941 3.860 3.810 4.100 4.052 12 4.010 3.972 3.909 3.858 3.765 3.701 3.619 3.569 3.467 3.361 3.716 3.571 13 3.905 3.857 3.778 3.665 3.507 3.425 3.375 3.815 3.165 3.619 3.556 3.412 3.348 14 3.745 3.698 3.656 3.505 3.266 3.215 3.112 3.004 15 3.564 3.522 3.485 3.423 3.372 3.278 3.214 3.132 3.081 2.977 3.612 16 3.498 3.451 3.409 3.372 3.310 3.259 3.165 3.101 3.018 2.967 2.863 2.753 17 3.401 3.353 3.312 3.275 3.212 3.162 3.068 3.003 2.920 2.869 2.764 18 3.316 3.269 3.227 3.190 3.128 3.077 2.983 2.919 2.835 2.784 2.678 2.566 19 3.003 2.909 2.844 2.761 3.242 3.195 3.153 3.117 3.054 2.709 2.602 2.489 20 3.130 3.088 3.051 2.989 2.938 2.843 2.778 2.695 2.643 2.535 2.421 2.733 2.667 22 3.067 3.019 2.978 2.941 2.879 2.827 2.583 2.531 2.422 2.305 24 2.492 2.977 2.930 2.889 2.852 2.789 2.738 2.643 2.577 2.440 2.329 2.664 2.569 2.503 26 2.904 2.857 2.815 2.778 2.715 2.417 2.364 2.252 2.131 28 2.842 2.795 2.753 2.716 2.653 2.602 2.506 2.440 2.353 2.300 2.187 2.064 30 2.789 2.742 2.700 2.663 2.600 2.549 2.453 2.386 2.299 2.245 2.131 2.006 2.744 2.696 2.655 32 2.618 2.555 2.503 2.406 2.340 2.252 2.198 2.082 1.956 34 2.704 2.657 2.615 2.578 2.515 2.463 2.366 2.299 2.211 2.156 2.040 1.911 2.543 2.480 2.428 2.331 2.263 36 2.669 2.622 2.580 2.175 2.120 2.002 1.872 2.638 2.591 2.549 2.512 2.449 2.397 2.299 2.232 2.143 2.087 1.968 38 1.837 40 2.484 2.421 2.203 2.611 2.563 2.522 2.369 2.271 2.114 2.058 1.938 2.539 2.460 2.396 2.344 2.246 2.178 42 2.586 2.497 2.088 2.032 1.911 44 2.516 2.475 2.437 2.374 2.321 2.223 2.155 2.065 2.008 1.887 46 2.544 2.496 2.454 2.417 2.353 2.301 2.203 2.134 2.044 1.987 1.864 1.726 2.525 2.478 2.436 2.399 2.335 2.282 2.184 2.115 2.024 1.967 1.844 48 1.703 50 2.508 2.461 2.419 2.382 2.318 2.265 2.167 2.098 2.007 1.949 1.825 2.345 2.281 2.228 2.129 2.060 1.968 55 2.472 2.424 2.382 1.910 1.784 1.638 60 2.442 2.394 2.315 2.251 2.198 2.098 2.028 1.936 1.877 2.352 1.749 1.6012.417 2.369 2.327 2.289 2.225 2.172 2.072 2.002 1.909 1.850 1.720 65 1.568 70 2.395 2.348 2.306 2.268 2.204 2.150 2.050 1.980 1.886 1.826 1.695 2.249 2.185 2.132 2.031 75 2.377 2.329 2.287 1.960 1.866 1.806 1.674 1.516 2.271 2.233 2.169 2.115 2.015 1.944 1.849 80 2.361 2.313 1.788 1.655 85 2.299 2.257 2.219 2.154 2.101 2.000 1.929 1.834 1.773 1.638 2.286 90 2.334 2.244 2.206 2.142 2.088 1.987 1.916 1.820 1.759 1.623 1.458 95 2.233 2.195 2.130 2.077 1.976 1.904 1.808 2.323 2.275 1.746 1.610 2.185 2.120 2.067 1.965 1.893 1.797 100 2.265 2.223 1.735 1.598 1.428 2.147 2.082 2.028 1.926 1.853 125 2.276 2.228 2.185 1.756 1.551 1.693 1.371 2.003 1.331 150 2.251 2.203 2.160 2.122 2.057 1.900 1.827 1.729 1.665 1.520 175 2.105 2.039 1.985 1.882 1.808 1.645 1.498 2.185 2.143 1.709 200 2.220 2.172 2.129 2.091 2.026 1.971 1.868 1.794 1.694 1.629 1.481 250 2.073 2.007 1.953 1.849 1.774 1.674 2.202 2.154 2.111 1.608 1.244 1.457 2.036 1.970 1.915 1.810 500 2.166 2.118 2.075 1.735 1.633 1.566 1.408 1.164

2.082 2.039 2.000 1.934 1.878 1.773

1.696 1.592

1.523

1.358

Percentile 99.5 of the F distribution												
$v_2 \setminus v$	1 1	2	3	4	5	6	7	8	9	10	11	12
1 2 3	198.5	199.0	199.2	199.2	199.3	199.3	199.4	23925 199.4 44.13	199.4	199.4	199.4	199.4
4	31.33	26.28	24.26	23.15	22.46	21.97	21.62	21.35	21.14	20.97	20.82	20.70
5 6 7	16.24	18.31 14.54 12.40	10.88	12.03 10.05	9.522	11.07 9.155	8.885	13.96 10.57 8.678	10.39 8.514	10.25 8.380	10.13 8.270	
8 9	14.69 13.61	11.04 10.11	9.596 8.717		8.302 7.471	7.952 7.134		7.496 6.693		7.211 6.417		7.015 6.227
10 11 12 13 14		8.510 8.186	8.081 7.600 7.226 6.926 6.680	6.521 6.233	6.422 6.071 5.791	6.102 5.757	5.525 5.253	6.116 5.682 5.345 5.076 4.857	5.537 5.202	5.085 4.820	5.746 5.320 4.988 4.724 4.508	4.906 4.643
15 16 17 18	10.80 10.58	7.701 7.514 7.354	6.476 6.303	5.803 5.638 5.497	5.372 5.212 5.075	5.071 4.913 4.779	4.847 4.692 4.559	4.674 4.521 4.389 4.276	4.384 4.254	4.424 4.272	4.329 4.179 4.050	4.250 4.099
19 20 22	10.07 9.944 9.727	7.093 6.986 6.806	5.916 5.818 5.652	5.268 5.174 5.017	4.853 4.762 4.609	4.561 4.472 4.322	4.345 4.257 4.109	4.177 4.090 3.944	4.043 3.956 3.812	3.933 3.847 3.703	3.841 3.756 3.612	3.763 3.678 3.535
24 26 28 30	9.284	6.541 6.440	5.317	4.785 4.698	4.384 4.300	4.202 4.103 4.020 3.949	3.893 3.811	3.649	3.599 3.519	3.492	3.322	3.420 3.325 3.246 3.179
32 34 36	9.090 9.012	6.281 6.217	5.171 5.113	4.559 4.504	4.166 4.112	3.889 3.836 3.790	3.682 3.630	3.521 3.470 3.425	3.392 3.341	3.286	3.197 3.146	3.121 3.071 3.027
38 40 42		6.066 6.027	4.940	4.374 4.339	3.986 3.953	3.749 3.713 3.680	3.509 3.477	3.385 3.350 3.318	3.191	3.086	3.028 2.997	2.922
44 46 48	8.735 8.695 8.659	5.958 5.929	4.907 4.877 4.850	4.280 4.255	3.896 3.871		3.422 3.398	3.264 3.240	3.113	3.032 3.009		2.869 2.846
50 55 60 65 70	8.554 8.494 8.445	5.843 5.795 5.755	4.773 4.729 4.692	4.181 4.140 4.105	3.800 3.760 3.726	3.531 3.492	3.330 3.291 3.259	3.219 3.173 3.134 3.103 3.075	3.046 3.008 2.977	2.942 2.904 2.873	2.817 2.785	2.742 2.711
75 80 85 90	8.366 8.335 8.307	5.691 5.665 5.643	4.635 4.612 4.591	4.050 4.029 4.009	3.674 3.652 3.634	3.407 3.387 3.368	3.208 3.188 3.170	3.052 3.032 3.014 2.999	2.927 2.907 2.889	2.823 2.803 2.786	2.736 2.716 2.698	2.661 2.641 2.624
95	8.260		4.556	3.977	3.603	3.338	3.140	2.985 2.972	2.860	2.756	2.669	2.595
100 125 150 175 200	8.166 8.118 8.083	5.530 5.490 5.462	4.488 4.453 4.427	3.912 3.878 3.855	3.540 3.508 3.485	3.277 3.245	3.079 3.048 3.026	2.972 2.925 2.894 2.872 2.856	2.801 2.770 2.748	2.698 2.667 2.645	2.611 2.580 2.559	2.536 2.506 2.484
250 500 ∞	8.022 7.948	5.412 5.355	4.382 4.330	3.812 3.764	3.443 3.397	3.182 3.137	2.987 2.941	2.833 2.789 2.744	2.710 2.665	2.607 2.563	2.520 2.476	2.446 2.402

Percentile 99.5 of the F distribution (cont.) 14 100 $\nu_2 \setminus \nu_1$ 13 15 16 18 20 25 30 40 50 മ 24505 24572 24630 24682 24767 24836 24960 25044 25148 25211 25337 25465 1 199.4 199.4 199.4 199.4 199.4 199.4 199.5 199.5 199.5 199.5 199.5 2 3 43.17 43.08 43.01 42.88 42.78 42.59 42.47 42.31 42.21 42.02 41.83 4 20.60 20.51 20.44 20.37 20.26 20.17 20.00 19.89 19.75 19.67 19.50 19.32 5 13.09 12.98 12.90 12.76 12.66 12.53 12.45 13.21 13.15 6 9.950 9.877 9.814 9.758 9.664 9.589 9.451 9.358 9.241 9.170 9.026 8.879 7.754 7 8.097 8.028 7.968 7.915 7.826 7.623 7.534 7.422 7.354 7.217 7.076 8 6.938 6.872 6.814 6.763 6.678 6.608 6.482 6.396 6.288 6.222 6.088 5.951 9 6.089 6.032 5.983 5.899 5.832 5.708 5.625 5.519 5.454 5.322 5.422 5.340 5.274 5.153 5.071 4.966 4.902 4.772 10 5.589 5.526 5.471 4.639 5.049 5.001 4.921 4.855 4.736 4.654 4.551 4.488 4.359 5.165 5.103 11 4.721 4.674 4.595 4.530 4.412 4.331 4.228 12 4.836 4.775 4.165 4.037 4.513 4.413 4.334 4.270 4.153 3.970 3.908 13 4.573 4.460 4.073 3.780 3.647 14 4.359 4.299 4.247 4.200 4.122 4.059 3.942 3.862 3.760 3.698 3.569 3.436 15 4.181 4.122 4.070 4.024 3.946 3.883 3.766 3.687 3.585 3.523 3.394 3.260 3.539 3.437 3.246 16 4.031 3.972 3.920 3.875 3.797 3.734 3.618 3.375 3.112 3.844 3.492 3.412 3.311 3.119 17 3.903 3.793 3.747 3.670 3.607 3.248 3.498 18 3.793 3.734 3.683 3.637 3.560 3.382 3.303 3.201 3.139 3.009 3.287 3.208 3.106 19 3.696 3.638 3.587 3.541 3.465 3.402 3.043 2.913 2.776 20 3.553 3.502 3.457 3.380 3.203 3.123 3.022 2.959 2.828 3.318 3.315 3.239 2.982 2.880 22 3.469 3.411 3.360 3.176 3.061 2.817 2.685 2.545 24 3.296 3.246 3.201 3.125 2.947 2.868 2.765 2.702 2.569 3.354 3.062 26 3.202 3.151 3.107 3.031 2.969 2.853 2.774 2.671 2.607 2.473 3.259 28 3.180 3.123 3.028 2.952 2.890 2.775 2.695 2.592 2.527 2.392 2.247 3.073 30 3.056 3.006 2.961 2.885 2.823 2.708 2.628 2.524 2.459 2.323 3.113 2.1762.998 32 3.056 2.948 2.904 2.828 2.766 2.650 2.570 2.466 2.401 2.264 2.716 2.600 2.520 2.350 2.212 34 2.948 2.898 2.854 2.778 2.415 36 2.905 2.854 2.810 2.734 2.672 2.556 2.475 2.371 2.305 2.166 2.013 2.961 2.866 2.816 2.771 2.695 2.633 2.517 2.436 2.331 2.265 2.125 38 2.923 2.598 2.482 2.401 2.296 2.230 2.088 40 2.888 2.831 2.781 2.737 2.661 2.706 2.630 2.567 2.451 2.370 2.264 2.198 42 2.857 2.800 2.750 2.056 1.897 2.722 2.678 2.602 2.540 2.423 2.342 2.236 2.169 2.026 44 2.829 2.772 1.866 46 2.804 2.747 2.697 2.653 2.577 2.514 2.398 2.316 2.210 2.143 1.999 48 2.781 2.724 2.674 2.630 2.554 2.491 2.375 2.293 2.186 2.119 1.974 2.470 50 2.760 2.703 2.653 2.609 2.533 2.353 2.272 2.164 2.097 1.951 1.786 55 2.714 2.658 2.608 2.563 2.487 2.425 2.308 2.226 2.118 2.049 1.902 2.620 2.526 2.450 2.387 2.270 2.187 2.079 60 2.677 2.570 2.010 1.861 1.689 2.356 2.238 2.155 2.539 2.495 2.419 2.046 65 2.646 2.589 1.977 1.826 1.650 70 2.563 2.513 2.468 2.392 2.329 2.211 2.128 2.019 1.949 1.796 2.619 1.619 75 2.540 2.490 2.445 2.369 2.306 2.188 2.105 1.995 1.925 1.771 2.597 80 2.577 2.520 2.470 2.425 2.349 2.286 2.168 2.084 1.974 1.903 1.749 1.564 85 2.559 2.503 2.453 2.408 2.332 2.269 2.150 2.067 1.956 1.885 1.729 90 2.544 2.487 2.437 2.393 2.316 2.253 2.134 2.051 1.939 1.868 1.711 95 2.379 2.303 2.239 2.120 2.037 2.530 2.474 2.424 1.925 1.853 1.695 1.503 100 2.367 2.290 2.227 2.108 2.024 1.912 2.461 2.411 1.840 1.681 125 2.365 2.320 2.244 1.976 1.863 2.472 2.415 2.180 2.061 1.790 1.627 1.420 2.335 2.150 2.030 150 2.441 2.385 2.290 2.213 1.944 1.830 1.756 1.590 1.375 2.007 1.922 175 2.420 2.363 2.313 2.268 2.191 2.128 1.807 1.733 1.564 200 2.347 2.297 2.252 2.175 2.112 1.991 1.905 1.790 1.715 2.230 2.153 1.968 1.690 1.516 250 2.381 2.325 2.275 2.089 1.882 1.765 2.281 2.230 2.108 1.922 500 2.185 2.044 1.835 1.717 1.640 2.337 1.460 1.184

2.142 2.064 2.000 1.877

1.789

1.669

1.590

1.402

1.000

2.187

2.237

2.294

 ∞

Reading off the table

The preceding table gives the critical values of $F(v_1, v_2)$ at percentage points P = 0.95, 0.975, 0.99 and 0.995, for pairs of degrees of freedom (v_1, v_2) , v_1 usually referring to the numerator, v_2 to the denominator of F.

Illustration 1. Find $F_{3,8[.95]}$, i.e. the 95th percentage point of F with 3 and 8 df. Taking the first page for percentile 95, at the junction of column $v_1 = 3$ and line $v_2 = 8$, we read off 4.066. In the same manner, we find $F_{10,12[.99]} = 4.296$ and $F_{20,5[.975]} = 6.329$.

Illustration 2. Determine $F_{12,3[.05]}$. The table furnishes only percentage points over the 50th. For lower percentage points, we must resort to the inversion formula for F, *i.e.*

$$F_{v_1,v_2[P]} = 1 / F_{v_2,v_1[1-P]}$$
.

Finding first $F_{3,12[.95]}=3.490$ (note the interversion of the two df's and the transposition of percentiles .05 \rightarrow .95), we obtain $F_{12,3[.05]}=1$ / $F_{3,12[.95]}=1$ / 3.490 \approx 0.287.

Illustration 3. Determine $F_{4,160[.99]}$. At page 1 for percentile 99, we find only $F_{4,150} = 3.447$ and $F_{4,175} = 3.428$; consequently, we must interpolate. Linear interpolation seems adequate for estimating F for $\nu_2 = 160$ between values at $\nu_2 = 150$ and 175. Simplifying the notation, we calculate:

$$F_{v} \approx F_{v'} + (F_{v''} - F_{v'}) \times (v - v') / (v'' - v')$$
.

Here, $F_{160} \approx F_{150} + (F_{175} - F_{150}) \times (160 - 150) / (175 - 150) = 3.439$, a value precise to 3 decimal places.

Illustration 4. Determine if a calculated F value corresponding to $F_{22,140}$ is significant at the 5 % (one-tailed) significance level, i.e. at P=0.95. The two pages for percentage point 95 show neither $v_1=22$, nor $v_2=140$. However, many manners of solution are possible:

- a) For P = .95, the table furnishes $F_{20,125} = 1.655$ and $F_{25,150} = 1.580$. Therefore, if our test value equals, say, 2.19, we can declare it significant (because it goes beyond the more demanding $F_{20,125}$), whereas if it equals 1.50, it is certainly not significant.
- b) If it is required, we can determine approximately $F_{22,140}$ via a double interpolation scheme: first, on v_1 for each value of v_2 , then on v_2 . Harmonic interpolation is generally superior; we must resort to it anyway with our table if $v_1 > 100$ or $v_2 > 500$. However, if the interpolation gap is narrow, simple linear interpolation may suffice. For this case, on page 2 for P = .95, we find

 $F_{20,125} = 1.655$; $F_{20,150} = 1.641$; $F_{25,125} = 1.594$; $F_{25,150} = 1.580$. Using harmonic interpolation, let us first calculate $F_{22,125} \approx 1.6272$ [= 1.655 + (1.594 – 1.655)×(22⁻¹ – 20⁻¹)/(25⁻¹ – 20⁻¹)] and $F_{22,150} \approx 1.6133$; then, combining these two interpolated values, one more harmonic interpolation renders $F_{22,140} \approx 1.618$. Linear interpolation would have produced 1.622, the exact value being 1.61885.

c) Lastly, there exists a remarkable normal approximation to F (traced back to Wilson and Hilferty), whose formula is:

$$z = \frac{(1-B)F^{1/6} - (1-A)}{\sqrt{BF^{2/6} + A}},$$

where $A = 2/(9v_1)$ and $B = 2/(9v_2)$. The obtained z value is then compared to percentile $z_{[P]}$ in the appropriate table of the standard N(0,1) distribution. For example, in that table, we may read $z_{[.95]} = 1.6449$, whence any value $z \ge 1.6449$ would be declared significant at 5 %. The interpolated value $F_{22,140[.95]} \approx 1.618$, with $A = 2/(9 \times 22)$ and $B = 2/(9 \times 140)$, $z \approx 1.644$, would (correctly) be deemed non-significant, and F = 1.619, giving z = 1.646, would be declared significant.

Full examples

Example 1. A researcher wants to compare the effects of three alimentary diets by evaluating weight loss (in kg). He recruits 18 subjects, randomly assigning 6 of them to each group. Here are his summary results.

Diet	n	\bar{x}	s^2	
1	6	4.40	1.300	
2	6	6.00	1.333	
3	6	4.00	1.200	

Using the 0.05 significance level, can he confirm that the diets have truly different effects? Solution: This example illustrates the method of "analysis of variance", or ANOVA, conceived by R. A. Fisher and for which he also derived the so-called F distribution. In the research design presented here, the null hypothesis at stake, $H_0: \mu_1 = \mu_2 = \dots = \mu_k$, postulates that all data come from a common normal population (or, equivalently, from normal populations with identical parameter values). Under that hypothesis, the quotient $F = MS_{Between-groups}/MS_{Within-groups}$

is distributed as $F_{k-1,N-k}$, $N = \sum n_j = 18$; hypothesis H_0 can be rejected, or discredited, if $F > F_{k-1,N-k[1-\alpha]} = F_{2,15[.95]} = 3.682$. Formulae for calculating the two MS's are:

$$\begin{aligned} \text{MS}_{\text{Between}} &= n_{\text{h}} s^2(\overline{x}_1, \overline{x}_2, ..., \overline{x}_k) \\ \\ \text{MS}_{\text{Within}} &= \sum (n_i - 1) s_i^2 \ / \ (N - k) \ . \end{aligned}$$

Quantity n_h in MS_{Between} represents the *harmonic mean* of n_j 's, obtained with $n_h = k/(1/n_1 + 1/n_2 + ... + 1/n_k)$; when all n_j are equal to n_j , then $n_h = n$.

Calculations for the above data are: $n_h = 6$; $s^2(\overline{x}_1, \overline{x}_2, ...) = s^2(4.40; 6.00; 4.00) \approx 1.120$; $MS_{Between} = 6 \times 1.120 = 6.720$; $MS_{Within} = [5 \times 1.3 + 5 \times 1.333 + 5 \times 1.2]/[18 - 3] \approx 1.278$ and, lastly, $F = MS_{Between}/MS_{Within} = 6.720/1.278 \approx 5.258$. This value exceeds $F_{2,15[.95]} = 3.682$, and the researcher may reject H_0 and state that the various diets entail different amounts of weight loss.

There exist a very great number of research designs and a corresponding variety of procedures for ANOVA (factorial designs, with or without repeated measures, with nested factors, by latin squares, with confounded interactions, etc.). Also, different calculating formulae are possible [see B. J. Winer, D. R. Brown, & K. M. Michels, "Statistical principles in experimental design" (3rd ed.), 1991, New York, McGraw-Hill; R. E. Kirk, "Experimental design: Procedures for the behavioral sciences" (2nd ed.), 1994, Belmont (CA), Brooks/Cole].

Example 2. In order to investigate a theory on the relationship between gender and abilities, a university psychologist puts forward the idea that mechanical ability is higher in boys than in girls: a test of ability is suitably chosen. With random samples composed of 25 girls and 31 boys, all aged 12 years, she measures each subject and obtains, in brief:

Girls:
$$n = 25$$
 $\overline{x} = 18.56$ $s^2 = 86.816$;

Boys:
$$n = 31$$
 $\overline{x} = 26.43$ $s^2 = 19.431$.

Now, beyond the fact that the boys' mean ability is higher as predicted, our researcher notes that the scores' variance for girls is higher, as if ability levels were sprinkled in a more heterogeneous manner among girls. Is there a difference in scatter of ability between boys and girls? Recall that, anyhow, the t test appropriate for deciding on the difference between means $(\bar{x}_1 - \bar{x}_2)$ subsumes the condition called "homogeneity of variance", which brings us back to a comparison of variances. Solution: The null hypothesis to be tested is that s_1^2 and s_2^2 are two sample estimates of the same parametric variance σ^2 . Hence, according to hypothesis H_0 : $\sigma_1^2 = \sigma_2^2 = \sigma^2$, the quotient s_1^2/s_2^2 is distributed as $F(v_1, v_2)$, $v_1 = n_1 - 1$, $v_2 = n_2 - 1$. The appropriate test, the test of homogeneity for two variance estimates, calls for a bilateral criterion; the resulting F quotient will

be deemed significant if $F \leq F_{\nu_1,\nu_2[1-\alpha/2]}$ or $F \geq F_{\nu_1,\nu_2[\alpha/2]}$. Let us here choose $\alpha=0,10$ and put the greater variance in the numerator (to simplify the location of the critical value). We obtain $86.816/19.431 \approx 4.468$, vs. $F_{24,30[.95]} \approx 1.887$ [approximated through harmonic interpolation, between $F_{20,30}=1.932$ and $F_{25,30}=1.878$]. The girls' subpopulation thus appears more heterogeneous than the boys' as regards to mechanical ability: there are very talented girls and other much less talented, the range of variation being broader for girls than for boys. On the other hand, for the purpose of testing her first hypothesis (on $\overline{x}_1 - \overline{x}_2$), the researcher should resort to a different test procedure other than the usual t test, for instance to Welch's t^* procedure (see Winer 1991).

To test the homogeneity hypothesis for $k \ge 2$ variance estimates, other techniques are available, in particular Hartley's F_{max} test and Cochran's C (see appropriate sections of this book).

Mathematical presentation

The quotient of two variances originating from two independant normal samples is distributed according to the F distribution or, more precisely:

$$\frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2} \sim F_{v_1,v_2} ,$$

where v_1 and v_2 are the df's associated with variances s_1^2 and s_2^2 respectively, and σ_1^2 and σ_2^2 are the (unknown) true variances of the corresponding normal populations. In fact, the F r.v. corresponds to the quotient of two independent χ^2 (Chi-square) r.v.'s, each one divided by its own df:

$$F_{v_1,v_2} = \frac{\chi_1^2/v_1}{\chi_2^2/v_2}$$
.

When, by hypothesis, we postulate that $\sigma_1^2 = \sigma_2^2$, the quotient s_1^2/s_2^2 allows us to test the homogeneity of variance condition as stipulated for ANOVA. In accordance with its definition, the F variable may be *inverted*, concurrently with a swap of the two df's. Through that inversion, one obtains the lower percentage points of F (e.g. P = 0.05) from the higher ones (e.g. P = 0.95), using:

$$F_{v_1,v_2[P]} = 1 / F_{v_2,v_1[1-P]}$$
,

where the quantity within brackets designates the centile rank (reduced to range 0-1) of the given F value.

Calculation and moments

The p.d.f. of the F distribution, for given v_1 and v_2 , is:

$$p(F) = K_{\nu_1,\nu_2} F^{\nu_1/2-1} \left(1 + \frac{\nu_1}{\nu_2} F\right)^{-1/2(\nu_1+\nu_2)},$$

where:

$$K_{v_1,v_2} = \frac{(v_1/v_2)^{v_1/2}}{B(v_1/2,v_2/2)} = \frac{(v_1/v_2)^{v_1/2} \Gamma([v_1+v_2]/2)}{\Gamma(v_1/2)\Gamma(v_2/2)}.$$

According to the values of v_1 and v_2 , this function can be integrated either analytically (by integration by parts) or numerically (with the generalized Simpson's rule, for instance). We thus obtain the d.f. $P(F) = \int_0^F p(x) dx = \Pr\{x \le F | v_1, v_2\}$, enabling us to determine percentage points or critical values of F. In the formulae for constant $K(v_1, v_2)$, B(a, b) denotes the *Beta* function and $\Gamma(x)$, the *Gamma* function.

Apart from the possible swapping of df's v_1 and v_2 , a few special cases of F permit an easy computing of the d.f. and critical values. In order to find $F(v_1, v_2[P])$, we can use:

$$v_{1}=1, v_{2}=1 : \tan^{2}(\frac{1}{2}\pi P)$$

$$v_{1}=1, v_{2}\geq 1 : t_{v_{2}[(1+P)/2]}^{2}$$

$$v_{1}, v_{2}=\infty : \chi_{v_{1}[P]}^{2}/v_{1}$$

$$v_{1}=2, v_{2}\geq 1 : \frac{v_{2}}{2} \left[\frac{1}{v_{2}\sqrt{(1-P)^{2}}} - 1\right].$$

In these expressions, t_v is a Student's t variable with v df. Kendall and Stuart (1977) note one more interesting case,

$$\frac{\sqrt{v}}{2} \left[\sqrt{F_{v,v[P]}} - \sqrt{1/F_{v,v[P]}} \right] \sim t_{v[(1+P)/2]}.$$

Finally, except for the relation of F's d.f. with the binomial distribution (see below), exact integration of the F distribution is laborious¹, and we resort readily to numerical methods.

Relationship between F and binomial distributions

There exists a working relationship between F's d.f. and the binomial sum of probabilities, through an underlying Beta distribution. The respective parameters are, for F: the $df v_1, v_2$, and for the binomial: n, x, π ; the binomial distribution pertains to the probability of obtaining x (= 0, 1, ..., n) "successes" out of n independent "trials", the probability of a success being π at each trial (see section on binomial distribution). We illustrate the F - binomial relationship with three categories of applications.

- Case 1: Is the number of "successes" (x) significant?

Let us suppose a binomial process for n=10 trials and yielding x=7 successes. The hypothesized probability of success is $\pi=0.3$. Does the observed rate of success of 7/10 contradict the hypothetical $\pi=0.3$, at the significance level $\alpha=0.01$?

To answer this question, we may convert the binomial data (n, x, p) into F data (v_1, v_2, F) , with:

$$2(n-x+1) \rightarrow \operatorname{v}_1 \, ; \, 2x \rightarrow \operatorname{v}_2 \, ; \, \operatorname{v}_2(1-\pi)/(\operatorname{v}_1\pi) \rightarrow F,$$

obtaining F = 4.0833, $v_1 = 8$ and $v_2 = 14$. The critical value $F_{8,14[.99]}$ is 4.140; thus, our F = 4.0833 is not significant at the 0.01 level, and the proposed probability $\pi = 0.3$ remains plausible.

Note that the computed binomial sum for our example is $\Pr\{x \ge 7 \mid 10; 0.3\} \approx 0.010592$, a non-significant result. In (binomial) table 3a, we find π^* , the maximum value of π such that $\Pr\{r \ge x \mid n, \pi\} \le \alpha$. Here, for n = 10, x = 7 and $\alpha = 0.01$, table 3a gives $\pi^* = 0.2971$, our $\pi = 0.3$ being too high to obtain significance.

- Case 2: What is the maximum value π^* such that a number x of successes be sgnificant?

With n trials and x observed successes, the success rate (x/n) will be judged significant only if the individual probability of success (π) is small. In fact, π must lie in the interval $(0, \pi^*)$, within which $\Pr\{r \ge x \mid n, \pi\} \le \alpha$; value $\pi = \pi^*$ brings about equality with α . Take an example with n = 12, n = 3 and n = 0.05. Under what value n = 12 of n = 12 does the success rate of 3 out of 12 trials will be found significant at 5 %?

¹ For example, for $v_1 = v_2 = 3$, $P(F) = \Pr(x \le F) = K_{3,3}[(F+1)^2 \tan^{-1} \sqrt{F} + \sqrt{F(F-1)}] / (F+1)^2$, where $K_{3,3} \approx 2.54648$.

We can exploit again the $F(v_1,v_2)$ distribution, by determining as above $v_1 = 2(12-3+1) = 20$ and $v_2 = 2\times3 = 6$. Percentile 95 of $F_{20,6}$ is about 3.874, and $\pi^* = v_2/(v_2+v_1F) \approx 0.071874$, as can be found also in (binomial) table 3a. Thus, for any probability $\pi \le 0.07187$, the occurrence of 3 or more successes in 12 trials is a rare, unusual event, according to the 5 % significance level.

- Case 3 : Is a given F value significant?

The binomial-F relationship can also be serve to determine the significance of an observed F value, with the restriction that both F's v_1 and v_2 be even. For instance, let $v_1 = 6$, $v_2 = 4$ and F = 6.30. At the (one-tailed) upper 5 % significance level, does this F value reach significance?

In order to answer that question, we first compute:

$$n = \frac{1}{2}[v_1 + v_2 - 2]; x = \frac{v_2}{2}; \pi = \frac{v_2}{[v_2 + v_1 F]},$$

obtaining n = 4, x = 2, $\pi \approx 0.0957$. Then, by direct computation of the binomial sum, $\Pr\{r \ge 2 \mid 4,0.0957\} \approx 0.0482$, a significant result at $\alpha = 0.05$. Besides, in (binomial) table 3a with $(n,x,\alpha) = (4,2,0.05)$, we read an upper limit $\pi^* = 0.0976$; our $\pi = 0.0957$ falls under this upper limit and, therefore, carries significance.

Normal approximation to the F distribution. Any function for approximating the F distribution must take into account its usually marked positive skewness. Based upon the very good Wilson-Hilferty normal approximation to χ^2 , the following:

$$z = \frac{(1-B)F^{\frac{1}{6}} - (1-A)}{\sqrt{BF^{\frac{2}{6}} + A}},$$

with $A = 2/(9v_1)$ and $B = 2/(9v_2)$, is approximately distributed as a standard N(0,1) r.v..

Moments of F. The moments and shape coefficients of the F distribution depend upon its two parameters, v_1 and v_2 . They are given below, simpler expressions being obtained when both parameters are equal $(v_1 = v_2)$.

$$E(F) = \mu = \frac{v_2}{v_2 - 2};$$

$$var(F) = \frac{2v_2^2(v_1 + v_2 - 2)}{v_1(v_2 - 2)^2(v_2 - 4)}$$

$$= \frac{4v(v - 1)}{(v_2 - 2)^2(v_2 - 4)}$$
 (when $v_1 = v_2 = v$);

$$\gamma_{1} = \frac{2v_{1}+v_{2}-2}{v_{2}-6} \cdot \sqrt{\frac{8(v_{2}-4)}{v_{1}(v_{1}+v_{2}-2)}}$$

$$= \frac{2(3v-2)}{v-6} \cdot \sqrt{\frac{v-4}{v(v-1)}}; \qquad \text{(when } v_{1} = v_{2} = v);$$

$$\gamma_{2} = \frac{12[(v_{2}-2)^{2}(v_{2}-4)+v_{1}(v_{1}+v_{2}-2)(5v_{2}-22)]}{v_{1}(v_{2}-6)(v_{2}-8)(v_{1}+v_{2}-2)}$$

$$= \frac{6(11v^{3}-62v^{2}+64v-16)}{v(v-1)(v-6)(v-8)}. \qquad \text{(when } v_{1} = v_{2} = v).$$

These moments are determinate when v_2 (or v) is sufficient; for instance, var(F) exists if $v_2 \ge 5$.

Furthermore, the mode of F, Mo(F), equals $v_2(v_1-2)/[v_1(v_2+2)]$; it is used notably in the numerical integration of the p.d.f. and it represents also a lower limit for the median $F_{[0.5]}$. Note that the median satisfies inequalities: Mo(F) < $F_{[0.5]}$ < $\mu(F)$. Moreover, $F_{[0.5]}$ < 1 if $v_1 < v_2$, $F_{[0.5]} = 1$ if $v_1 = v_2$, and $F_{[0.5]} > 1$ if $v_1 > v_2$.

For the inquisitive reader, the quotient of two *correlated* variances is not distributed as F. If both variances originate from a normal bivariate population with parametric correlation ρ , the (parametric) correlation coefficient between sample variances, *i.e.* $\rho(s_1^2, s_2^2)$, equals ρ^2 . Also, postulating $E(s_1^2) = E(s_2^2)$ as for F, then the quotient s_1^2/s_2^2 has expectation $(\nu-2\rho^2)/(\nu-2)$ and variance $4[\nu(\nu-1)-\rho^2(5\nu-8)](1-\rho^2)/[(\nu-2)^2(\nu-4)]$, where ν is the common parameter of s_1^2 and s_2^2 . The p.d.f. is also known. More information, some of it about the comparative validity of tests on the equality of two correlated variances (see Supplementary examples, n^0 8), is to be found in Laurencelle (2000).

Generation of pseudo random variates

The schema of a program below allows the production of r.v.'s from the $F(v_1, v_2)$ distribution; it requires a function (designated UNIF) which generates serially r.v.'s from the standard uniform U(0,1) distribution.

Preparation: Let v_1 and v_2 (the degrees of freedom)

$$a = v_1/2$$
; $b = v_2/2$; $s = a + b$;
If $\min(a,b) \le 1$ then $\beta \leftarrow 1 / \min(a,b)$
else $\beta \leftarrow \sqrt{[(s-2)/(2 \times a \times b - s)]}$;
 $g \leftarrow a + 1/\beta$; $C = \ln(4) \approx 1,3862943611$.

Production:

Repeat $t \leftarrow \text{UNIF}$; $u \leftarrow \beta \times \ln[t/(1-t)]$; $w \leftarrow a \times \exp(u)$

Until $s \times \ln[s/(b+w)] + g \times u - C \ge \ln(t^2 \times \text{UNIF})$;

Return $w / a \rightarrow x$.

Remarks:

1. Standard temporal cost: 8.7 à 16.0 × t(UNIF), depending on values of v_1 et v_2 .

2. This method is due to R. C. H. Cheng (1978, in Bratley, Fox and Schrage 1987) and it is suitable for any (v_1, v_2) combination. There are adaptations of this method, and other methods, that are more efficient for particular values of (v_1, v_2) , like those in which $\max(v_1, v_2) < 2$ or $v_1 = v_2$ (Devroye 1986). The inversion formulae given earlier (for cases where $v_1 = v_2 = 1$ or $v_1 = 2$, $v_2 \ge 2$) allow the generation of r.v.'s from the F distribution through the simple replacement of P by one r.v. from the standard U(0,1) distribution, i.e. $u \leftarrow UNIF$.

This page is intentionally left blank