

CMP9137M Advanced Machine Learning Workshop 1: Feedforward Neural Networks

https://attendance.lincoln.ac.uk
Access Code:

School of Computer Science
Laboratory of Vision Engineering

Practice: workshop 1

The aim of this workshop is to gain practical experience with Feedforward Neural Networks. To achieve that, the following tasks are recommended:

Tasks:

- 1. Using the Backpropagation example discussed during the lecture and extend it to the MLP to generate the 1st and 2nd passes of the Forward and Backward procedures.
- 2. Homework: write your own program of the Backpropagation procedure above and train your neural net until convergence
- 3. Run the MLP_with_MNIST.ipynb program, available under the workshop materials of week 1 in Blackboard, and try diffident amounts of hidden nodes and hidden layers.

Practice: workshop

Input patterns:
$$x_1 = 1$$
, $x_2 = 0$

Bias input: $x_0 = 1$

Weights:
$$w_{13} = 3$$
, $w_{14} = 6$, $w_{03} = 1$, $w_{04} = -6$, $w_{23} = 4$, $w_{24} = 5$,

$$w_{05} = -3.93$$
, $w_{35} = 2$, $w_{45} = 4$

Unit output:

$$y_j = f(a_j) = \frac{1}{1 + e^{-a_j}}$$

Combined input:

$$a_j = \sum_i w_{ij} \cdot x_i$$

Target output: y_{target} = 1

¹use a learning rate of 0.1

Practice: workshop

- Forward Passes:
- I error in pass 1=
- I error in pass 2=

Backward Passes:

Weight	Initial Value	Backward Pass 1	Backward Pass 2
w_{45}	4		
w ₃₅	2		
w ₀₅	-3.93		
w ₀₃	1		
w ₀₄	-6		
w ₁₃	3		
w ₁₄	6		
w ₂₃	4		
w ₂₄	5		