Fast Object Detection With YOLO

Redmon, Divvala, Girshick, Farhadi. You Only Look Once: Unified, Real-Time Object Detection (2016)

Outline

- 1. Object detection: Problem
- 2. Previous approaches
 - 2.1. Cascade Classifiers
 - 2.2. CNN based methods
- 3. YOLO
 - 3.1. Motivation
 - 3.2. Gridcell Detection
 - 3.3. Multitask Loss
 - 3.4. Implementation details
 - 3.5. Performance

What is object detection?

- 1. Localization.
- 2. Classification
- 3. Multiple Objects

What is object detection: Pipeline

Before YOLO: Approaches to solve the problem

Previous Approaches: Cascade Classifiers (Training)

Example: Viola-Jones Face detection (2001)

Each classifier (weak) is trained independently !!!!!

Previous Approaches: Cascade Classifiers (inference)

Example: Viola-Jones Face detection (2001)

1. Extract image subwindows

2. Feed them to the cascade detector

Each test image can have thousands of subregions !!!!

Previous Approaches: Cascade Classifiers (Advantages)

Example: Viola-Jones Face detection (2001)

Advantages:

- 1. Feasible to implement in real time (15 FPS), Features on each stage are computed efficiently (Constant time).
- Invariant to scale and translation.

Disadvantages:

- Intolerance to object rotations.
- 2. Big amount of subregions in which to make inference.
- 3. Needs a Lot of training examples.
- 4. Each weak classifier does not generalize very well.

Before YOLO: Approaches with CNNs

Previous Approaches: CNN Based methods, Naive approach

- Take an image classifier (e.g. a CNN).
- Apply the classifier over several regions of the image.

Disadvantages:

- 1. Must propagate the network for each image region.
- Objects have different spatial locations and different sizes.
- 3. Amount of subregions explode.

Previous Approaches: CNN Based methods, RCNNs

Motivation:

1. Reduce the amount of subregions.

Key ideas:

- 1. Now only 2000 subregions (region proposals)
- 2. The region proposals (RP) are computed by <u>selective search</u>.
- 3. The RP are feeded to the network(trained on other dataset) to produce 4096 feature vectors.
- 4. Each Region is classified with SVMs.
- 5. Bbox regression to increase localization accuracy.

R-CNN

Rich feature hierarchies for accurate object detection and semantic segmentation (2014)

Selective Search: Bottom up approach

Runs a segmentation algorithm to find it out where an object can be located.

- 1. Generate and initial sub segmentation (small scale).
- 2. Use an strategy to recursively combine several groups (Increasing scale).
- 3. On each level choose object hypotheses to run the detection algorithm.
- 4. Positive examples IOU >= 0.5 with ground truth.

Rich feature hierarchies for accurate object detection and semantic segmentation (2014)

Advantages:

1. Introduces candidate Regions.

Disadvantages:

- 1. You still have to classify 2000 RP.
- 2. You have to pre Run the selective search.
- 3. Selective search prone to the extract bad candidate regions (no learning).
- 4. You have to train/fix three stages independently.
- 5. Each region is classified independently.
- 6. Only Selective search and feature extraction 13s/image on GPU

RCNN comes with lots of drawbacks, What to do Then?

Motivation:

- Reduce the amount of computation involving the region proposals.
- 2. Avoid multi stage training.

Key ideas:

- 1. Still uses a region proposal algorithm.
- 2. Convolutional implementation of sliding windows over RP.
- 3. ROI pooling.
- Train only a CNN that outputs a classification and a bbox coordinates.

Fast R-CNN

Convolutional Region proposals:

- 1. Extract the Region Proposals set.
- 2. Feed the whole image to the CNN.
- 3. Project each RP Over the feature map
- 4. Perform ROI pooling over the projected RP on the feature map.
- 5. Extract a ROI feature vector (fixed length).
- 6. Feed the feature vector through two sibling layers.
- 7. Produce softmax probability estimates.
- 8. Bbox regression.

Fast R-CNN

ROI Pooling:

- 1. Input: ROI over feature map (r, c, h, w). Top Left corner, height and width.
- 2. Divides the input into H, W subwindows, each one of height h/H and w/W.
- 3. Max polling over each subwindows generating the corresponding output.

Advantages:

- Avoids feeding the network with each region proposal.
- 2. Reduces computational time considerably.
- 3. Trained end to end from region proposals (Multitask loss).

Disadvantages:

- 1. You still have to extract regions proposals (expensive).
- 2. 2.3 seconds per test image.

Comparison of object detection algorithms

Motivation:

- Bottleneck: Region proposals.
- Avoid Selective search.

Key ideas:

- 1. Let the network learn the region proposals.
- One network to extract Region proposals(non object loss + region bbox loss).
- 3. Second network to make object classification(Fast rCNN loss).
- 4. Third network to extract feature maps.

Complete Model:

Fast RCNN Module

Advantages:

- 1. Reduce computational cost even more.
- 2. Shares features between both region proposal and classifier network. (*Alternate training, approximate joint training*)

Disadvantages:

- 1. 0.2 secs, Good but not terrific (5 Fps approx).
- 2. Hard to train. Train three different networks.

Comparison of test-time speed of object detection algorithms

However, Seems Good

But.... Can we do Even better?

Introducing YOLO V1: You Only look once

Motivation:

1. Avoid regions proposals and sliding windows.

Key ideas:

1. Divide the image into grid cells SxS.

S

You only look once: Unified, Real-Time object detection

Motivation:

1. Avoid regions proposals and sliding windows.

Key ideas:

- Divide the image into grid cells.
- 2. Each grid cell is responsible for detecting only ONE object.

Center of the object is located inside the gridcell

Motivation:

 Avoid regions proposals and sliding windows.

Key ideas:

- Divide the image into grid cells.
- Each grid cell is responsible for detecting only ONE object.
- 3. However, each gridcell predicts B bounding boxes.

The object in that cell can have different sizes, so B bounding boxes are predicted

You only look once: Unified, Real-Time object detection

Motivation:

- Avoid regions proposals and sliding windows.
- 2. Let a single network do the job.

Key ideas:

- 1. Divide the image into grid cells.
- Each grid cell is responsible for detecting only **ONE** object.
- 3. Each grid cell can detect B bounding boxes for the same object.

You only look once: Unified, Real-Time object detection

 P_{obj1}

 x_{obj1}

 y_{obj1}

 w_{obj1}

 h_{obj1}

YOLO: Architecture

YOLO: Multitask loss function

Motivation:

- 1. In classification or regression we have a simple output.
- Here we have several outputs for each bounding box.
- A function must be designed to measure the loss with the ground truth.
- The loss is divided in 5 parts: location loss, shape loss, object loss, non object loss and class probability loss.
- The hyperparameters λ are for training stability.

$$\begin{split} \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ + \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \\ + \sum_{i=0}^{S^2} \mathbb{1}_{i}^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2 \end{split}$$

YOLO: Loss function

Location loss

$$\sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right]$$

Shape loss

Objectedness loss

Non object loss

Classification loss

Gridcell coordinate convention 0 1 2 3

YOLO: Loss function

Location loss

$$\sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right]$$

Objectedness loss

Non object loss

Classification loss

Square root terms partially give more importance to small deviations in small boxes

YOLO: Loss function

Location loss

Shape loss

Objectedness loss
$$\sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2$$

Non object loss

Classification loss

```
def obj_loss_fn(pred_obj, iou_scores, mask):
# I think iou_scores my be replaced by simply a 1 in this
with tf.name_scope('obj_loss'):
    obj_diff = tf.boolean_mask(
        tf.square(1 - pred_obj), mask
)
return tf.reduce_sum(obj_diff)
```


YOLO: Loss function

Location loss

Shape loss

Objectedness loss

Non object loss
$$\sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2$$

Classification loss

YOLO: Loss function

Location loss

Shape loss

Objectedness loss

Non object loss

Classification loss
$$\sum_{i=0}^{S^2} \mathbb{1}_i^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2$$

Using Sum of square roots, even in classification task makes the loss easier to optimize (according to the authors)

```
def clf_loss_fn(pred_cls, true_cls, mask):
with tf.name_scope('clf_loss'):
    clf_diff = tf.boolean_mask(
        tf.square(pred_cls - true_cls), mask
)
return tf.reduce_sum(clf_diff)
```

YOLO: Loss function, putting all together

$$\begin{split} \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ + \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \\ + \sum_{i=0}^{S^2} \mathbb{1}_{ij}^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2 \end{split}$$

The bounding box and classification loss will only have effect when there is an object present in the grid cell

It seems we have everything set..... But

Earlier we said we had several bounding boxes for the same object..... So which one we choose if we are making inference?

YOLO: Non max suppression

Situations:

- 1. Sometimes is clear in which box the center of the object falls.
- In other cases the object center can be located in several boxes.
- 3. This generates ambiguity (multiple choices).

Original image

Multiple predictions

YOLO: Non max suppression

Solution: For each class

- Discard all boxes with Probability of class below a threshold.
- While there are bboxes left pick the one with the highest probability.
- 3. Discard the remaining boxes with loU above a threshold (0.5).
- 4. Repeat step 2.

Original image

After non max supr

YOLO: Non max suppression

YOLO: Performance

Model	Train	Test	mAP	FLOPS	FPS
SSD300	COCO trainval	test-dev	41.2		46
SSD500	COCO trainval	test-dev	46.5		19
YOLOv2 608x608	COCO trainval	test-dev	48.1	62.94 Bn	40
Tiny YOLO	COCO trainval	test-dev	23.7	5.41 Bn	244
SSD321	COCO trainval	test-dev	45.4	-	16
DSSD321	COCO trainval	test-dev	46.1		12
R-FCN	COCO trainval	test-dev	51.9		12
SSD513	COCO trainval	test-dev	50.4		8
DSSD513	COCO trainval	test-dev	53.3		E
FPN FRCN	COCO trainval	test-dev	59.1		6
Retinanet-50-500	COCO trainval	test-dev	50.9		14
Retinanet-101-500	COCO trainval	test-dev	53.1		11
Retinanet-101-800	COCO trainval	test-dev	57.5		
YOLOv3-320	COCO trainval	test-dev	51.5	38.97 Bn	45
YOLOv3-416	COCO trainval	test-dev	55.3	65.86 Bn	35
YOLOv3-608	COCO trainval	test-dev	57.9	140.69 Bn	20
YOLOv3-tiny	COCO trainval	test-dev	33.1	5.56 Bn	220
YOLOv3-spp	COCO trainval	test-dev	60.6	141.45 Bn	20

YOLO: Limitations

- 1. Strong spatial constraints on the bounding boxes.
- Only B (B=2 paper) bounding boxes pero gridcell and only one as well.
- 3. Problems with objects appearing in groups close to each other.
- 4. Does not generalize very well the bounding box shape.
- The mislocalization of small objects has big impact on the loss function.

When objects are too close YOLO has problems detecting the

You only look once: Unified, Real-Time object detection

YOLO: Improvements YOLOv2 (Faster, better, stronger)

Motivation:

- Address YOLO v1 downsides.
- Make it faster.

Key ideas:

- Added batch normalization in all layers.
- Pretrain a classifier network (VGG16) and retrain it end to end with the YOLO output (seen earlier).
- 3. Integrates anchor boxes (priors). Instead of predicting the bbox directly, offsets are predicted.

Multiple shapes for an object

Anchor boxes

YOLO: Improvements YOLOv3

Key ideas:

- 1. Integrates multi label classification.
- YOLOv3 uses binary cross-entropy loss for each label.
- 3. And more details

Thanks...

