Teoría causal

Fernando Adrián Frías Ochoa

4 de septiembre de 2020

El ambiente usual serán las variedades lorentzianas, estas son variedades suaves n-dimensionales dotadas de una métrica semiriemanniana de índice 1. Además pediremos que estén orientandas temporalmente, i.e., existe un campo $X \in \mathfrak{X}(M)$ temporal en cada punto.

Relaciones de causalidad

Notación: sean $p, q \in M$, escribimos:

- $p \ll q$ si existe una curva temporal en M que une p con q.
- $p \le q$ si p = q, o bien existe una curva causal en M que une p con q.

OBS:
$$p \ll q \Rightarrow p < q$$
. Para un subconjunto $A \subseteq M$

$$I^+A=\{q\in M: ext{ hay un } p\in A ext{ tal que } p\ll q\}, ext{futuro cronológico}$$

$$J^+A=\{q\in M: \text{ hay un } p\in A \text{ tal que } p\leq q\}, \text{futuro causal.}$$

Similarmente definimos el pasado cronológico I^-A y el pasado causal J^-A .

Siempre se tiene que $A \cup I^+A \subseteq J^+A$.

Ejemplo 1.1

Consideremos el cilindro lorentziano $M = S_1^1 \times \mathbb{R}$, para todo $p \in M$ se tiene que $I^+(p) = J^+(p) = M$. Decimos que M tiene causalidad trivial.

Corolario 1.1 ($\ll y \leq sontransitivas$)

Si $x \ll y$ y $y \leq z$, o bien $x \leq y$ y $y \ll z$, entonces $x \ll z$.

Dicho de otro modo, dado $A \subseteq M$

$$I^{+}A = I^{+}I^{+}A = I^{+}J^{+}A = J^{+}I^{+}A \subseteq J^{+}J^{+}A = J^{+}A.$$

Recordemos que si $U\subseteq M$ es abierto, entonces U es una subvariedad lorentziana orientada temporalmente, entonces podemos considerar la causalidad en U dado un conjunto $A\subseteq U$ como

$$I^+(A,U)=\{q\in U: \text{ hay un } p\in A \text{ tal que } p\ll q\}, \text{futuro cronológ}$$

$$J^+(A,U)=\{q\in U: \text{ hay un } p\in A \text{ tal que } p\leq q\}, \text{futuro causal.}$$

Similarmente definimos el pasado cronológico $I^-(A, U y el pasado causal <math>J^-(A, U)$.

Lema 1.1

Sea $C \subseteq M$ convexo, es cierto que:

- para $p \neq q$, $q \in J^+(p, C) \Leftrightarrow \overrightarrow{pq}$ es causal al futuro, lo mismo para $q \in I^+(p, C)$.
- $I^+(p, C)$ es abierto en C y por tanto en M.
- En C, $\overline{I^+(p,C)} = J^+(p,C)$.
- La relación es cerrada en C, i.e., si $\{p_n\}$ y $\{q_n\}$ son tales que $p_n \to p$ y $q_n \to q$ con $q_n \in J^+(p_n, C) \Rightarrow q \in J^+(p, C)$.

Lema 1.2

 \ll es abta en M Sean $p, q \in M$ con $p \ll q$, entonces $\exists U, V \subseteq M$ vecindades de p y q respectivamente tales que $p' \ll q'$ para todo $p' \in U$ y $q' \in V$.

Demostración.

I^+A es abto

Corolario 1.2

Dado $A \subseteq M$, I^+A es abierto en M.

Demostración.

Basta ver que si $p \in M$, entonces $I^+(p)$ es abierto. Por definición $intI^+(p) \subseteq I^+(p)$, solo resta ver que $I^+(p) \subseteq intI^+(p)$.

Obs: J^+A puede no ser cerrado.

Lema 1.3

Dado $A \subseteq M$

- $int J^+ A = I^+ A$.
- $J^+A \subseteq \overline{I^+A}$, la igualdad si y sólo si J^+A es cerrado.

Definición 2.1

Sea $\{\alpha_n\}$ una sucesión infinita de curvas causales al futuro en M y sea R una cubierta convexa de M. Decimos que $\{p_n\}$ con $p=p_0< p_1< ...< p_n< ...$ es una sucesión límite en M si

- 1.- para cada p_i existe una subsucesión $\{\alpha_m\}$ de $\{\alpha_n\}$ tal que para cada m hay $s_{m0} < ... < s_{mj}, j \le i$, entonces
 - a.- $\lim_{m\to\infty} \alpha_m(s_{mj}) = p_j$ para cada $j \leq i$.
 - b.- Para cada j < i, los puntos p_j y p_{j+1} y los segmentos $\alpha_m \mid_{[s_{mj}, s_{mj+1}]}$ están contenidos en algún $C_i \in R$.

2.- Si $\{p_i\}$ es infinita, entonces esta no converge. Si es finita, esta sucesión tiene más de un punto y ninguna sucesión que contenga estrictamente a $\{p_i\}$ cumple (1).

Existencia de sucesiones límite

Proposición 2.1

Sea $\{\alpha_n\}$ una sucesión de curvas causales al futuro tales que $\alpha_n(0) \to p$. Si existe una vecindad de p que contiene un número finito de curvas α_n , entonces relativas a cualquier cubierta convexa R hay una sucesión límite que empieza en p.

Uniendo los puntos de la sucesión límite p_i por medio de segmentos geodésicos λ_i obtenemos una curva causal $\lambda = \sum \lambda_i$ obtenemos una curva geodésica causal a trozos con vértices en p_i . A tal curva le llamamos **cuasi-límite**. Una primera observación es que si $\{p_i\}$ es infinita, entonces λ es inextendible y si es finita entonces une dos puntos p y un p_k .

Definición 3.1

Decimos que la condición de cronología (causalidad) se cumple en M, si no hay curvas cerradas temporales (causales) en M.

OBS: cond de causalidad implica cond de cronología.

Lema 3.1

Si M es compacta, entonces no se cumple la condición de cronología en M.

Demostración.

La colección $\{I^+(p): p \in M\}$ forma una cubierta abta de M, así obtenemos una subcubierta abta $\{I^+(p_i)\}_{1 \leq i \leq n}$. Si $p_1 \in I^+(p_1)$ \checkmark .

Si
$$p_1 \in I^+(p_i)$$
 con $i \neq 1$, entonces $I^+(p_1) \subseteq I^+(p_i)$, así sucesivamente obtenemos que $p_j \in I^+(p_j)$, o bien $M = I^+(p_k)$ $\Rightarrow p_k \in I^+(p_k)$.

Definición 3.2 (Condición fuerte de causalidad)

Decimos que la condición fuerte de causalidad se cumple en $p \in M$ si dada $U \subseteq M$ vecindad de $p \exists V \subseteq U$ vecindad de p tal que cada segmento de curva causal con puntos finales en V está totalmente contenida en U.

Obs.- La condición fuerte de causalidad nos dice que si una curva α empieza en un p donde se cumple tal condición y deja cierta vecindad fija de p, entonces no puede regresar arbitrariamente cerca de p, dicho de otro modo no hay curvas "casi-cerradas" en p. Por lo tanto

Condición fuerte de causalidad ⇒ Condición de causalidad.

Nota:

Condición de causalidad #> Condición fuerte de causalidad.

Separación temporal

Definición 4.1

Sean $p, q \in M$, la separación temporal de p a q está definida como

 $au(p,q)=\sup\{L(\alpha): \alpha \text{ es curva causal que une } p \text{ con } q.\}$ Tenemos que $au(p,q)=\infty$ si el conjunto de curvas causales que unen p con q no está acotado y au(p,q)=0 si p=q. Nota: au(p,q) se puede pensar como el tiempo propio del viaje más largo de p a q. En $M=\mathbb{S}^1_1\times\mathbb{R},\ au(p,q)=\infty$.

Lema 4.1

La función separación temporal es semicontinua inferior

 $\tau: M \times M \to [0, \infty].$

Notación $J(p,q) = J^+(p) \cap J^-(q)$.

Ejemplo 4.1

Proposición 4.1

Si p < q, J(p,q) es compacto y se cumple la condición fuerte de causalidad, entonces existe una geodésica causal de p a q con longitud $\tau(p,q)$.

Lo que motiva la siguiente definición

Definición 4.2 (globalmente hiperbólico)

Decimos que M es globalmente hiperbólico si cumple la condición fuerte de causalidad $y \forall p, q \in M \ J(p,q)$ es compacto.

Si M es globalmente hiperbólico, dados $p, q \in M$ siempre existe una geodésica causal de p a q con longitud $\tau(p, q)$. Remover puntos destruye globalmente hiperbólico

Lema 4.2

Si $U \subseteq M$ es globalmente hiperbólico, entonces $\tau(p,q): U \times U \to \mathbb{R}$ es continua.

Lema 4.3

La relación de causalidad \leq es cerrada en conjuntos abiertos globalmente hiperbólicos.

Definición 5.1

Decimos que $A \subseteq M$ es acronal (acausal) si $\forall p, q \in A$ NO se cumple que $p \ll q$ (p < q).

Intuitivamente toda curva temporal cruza solo una vez al conjunto A.

Definición 5.2

El borde de un conjunto acronal A (denotado por bd(A)) consta de puntos $p \in \overline{A}$ tales que cada vecindad U de p contiene una curva temporal que va de $I^-(p, U)$ a $I^+(q, U)$ sin cruzar A.

Ejemplo.-

$$A = [0, 1)$$

$$q = (1, 0)$$

$$I^{-}(p, U)$$

Considerando $A \subseteq \mathbb{R}^3_1 \ bd(A) = \overline{A}$.

Corolario 5.1

Un conjunto A es una hipersuperficie topológica cerrada acronal $\Leftrightarrow A \cap bd(A) = \emptyset$.

Corolario 5.2

El borde (no vacío) de un conjunto futuro ($I^+A \subseteq A$) es una hipersuperficie topológica cerrada acronal.

Definición 6.1

Decimos que $S \subseteq M$ es una hipersuperficie de Cauchy si S es intersecado una sola vez por cada curva temporal inextendible en M.

Obs.-

- 1.- S es en particular acronal.
- 2.- Los hiperplanos t=const en \mathbb{R}^2_1 son hipersuperficies de Cauchy.
- 3.- $\Lambda^+(p)$ y \mathbb{H}^1 no son hipersuperficies de Cauchy.

Lema 6.1

Una hipersuperficie de Cauchy S es efectivamente una hipersuperficie topológica, además es cerrada, acronal y es intersecada por cada curva causal inextendible.

Lema 6.2

Sea α una curva causal pasado inextendible que empieza en p y no interseca a un conjunto C cerrado.

- 1) Si $p_0 \in I^+(p, M \setminus C)$, hay una curva temporal-pasado inextendible que empieza en p_0 y que no interseca C.
- 2) Si α NO es una geodésica nula libre de puntos conjugados, entonces hay una curva temporal pasado-inextendible que empieza en $\alpha(0)$ y que no interseca a C.

Proposición 6.1

Sea $S \subseteq M$ una hipersuperficie de Cauchy y $X \in \mathfrak{X}(M)$ temporal. Si $p \in M$ entonces las curvas integrales maximales de X que pasan por p intersecan a S en único punto p(p). Entonces el mapa que proyecta M en S $p: M \to S$ es un mapa continuo y abto sobre S que deja fijo S. En particular S es conexa.

Corolario 6.1

Cualesquiera dos hipersuperficies de Cauchy en M son homeomorfas.

Definición 7.1

Sea $A \subseteq M$ acronal, el **desarrollo futuro de Cauchy** de A es el conjunto D^+A de puntos $p \in M$ tales que cada curva causal pasado inextendible que pasa por p cruza A. En particular $A \subseteq D(A)$.

Ejemplo 7.1 (El cilindro menos un punto p)

$$D^-S = J^-S$$
.

El desarrollo de Cauchy D(S) se puede pensar como el dominio de influencia más grande para el cual S juega el rol de hipersuperficie de Cauchy.

En particular, S es una hipersuperficie de Cauchy \Leftrightarrow D(S) = M.

Teorema 7.1

Si A es acronal, entonces int $D(A) \neq \emptyset$ es globalmente hiperbólico.

Lema 7.1

Una hipersuperficie $S \subseteq M$ espacial acronal es acausal.

Lema 7.2

Si S es una hipersuperficie topológica acausal en M, entonces D(S) es abierto.

Obs.- Esto nos dice que si S es hipersuperficie topológica acausal, entonces intD(S) = D(S) pero por teorema 7.1 intD(S) = D(S) es globalmente hiperbólico.

Teorema 7.2

Si M tiene una hipersuperficie de Cauchy espacial, entonces M es globalmente hiperbólico.

Demostración.

Sea S la hipersuperficie de Cauchy de M, por lema 6.1~S es hipersuperficie topológica cerrada acronal, aplicando entonces el lema 7.1 concluimos que S es acausal y por el lema 7.2 D(S) es abierto, i.e., intD(S) = D(S) = M por ser S una hipersuperficie de Cauchy.

TEOREMA DE PENROSE

Definición 8.1

Una subvariedad espacial de M es **futura convergente** siempre que su vector de curvatura media H es temporal y apunta al pasado.

Notación: para un subconjunto $A \subseteq M$, $E^+A = J^+A \setminus I^+A$.

Definición 8.2

Un subconjunto cerrado acronal $A \subseteq M$ es **futuro atrapado** si E^+A es compacto.

La siguiente proposición será útil para probar el teorema de Penrose.

Proposición 8.1

Supongamos lo siguiente

- $Ric(v, v) \ge 0$ para todo $v \in TM$ nulo,
- M es futura completa.

Si P es una (n-2) subvariedad espacial completa de M futura convergente, entonces P es futura atrapada.

Teorema 8.1 (Penrose)

Supongamos lo siguiente:

- 1.- $Ric(v, v) \ge 0$ para todo $v \in TM$ nulo,
- 2.- M tiene una hipersuperficie de Cauchy,
- 3.- P es una (n-2) subvariedad espacial compacta acronal en M que es futura convergente,
- 4.- M es nula completa al futuro.

Entonces E^+P es una hipersuperficie de Cauchy.

Demostración.

En vista del que M tiene una hip de Cauchy, por el teorema 7.2 M es globalmente hiperbólico, aplicando el lema $4.3 \ge es$ cerrada en M y esto implica que $J^+(p)$ y $J^-(p)$ son cerrados. Como P es compacta, entonces J^+P es cerrada. Tenemos también que $intJ^+P = I^+P$. $\therefore E^+P = bdP$. Usando que E^+P es el borde de un conjunto futuro, obtenemos que E^+P es una hipersuperficie topológica cerrada acronal y compacta, ya que por la proposición $8.1\ P$ es futura atrapada.

Demostración.

Dado un $X \in \mathfrak{X}(M)$ temporal sus curvas integrales son temporales, si consideramos $p \in M$ el mapa ρ tal que $p \mapsto p' \in S$ como el punto de intersección de S con la única curva integral que pasa por p, el mapa $\rho \mid_{E^+P}: E^+P \to \rho(E^+P) \subseteq S$ es un homeomorfismo. $\therefore \rho(E^+P)$ es abierto; y cerrado también pues E^+P es compacto $\Rightarrow \rho(E^+P)$ es compacto, en particular cerrado. Como S es conexa $\Rightarrow \rho(E^+P) = S$. Como E^+P es acronal, la condición fuerte de causalidad y S hip de Cauchy garantiza que E^+P es intersecada por cada curva temporal inextendible, i.e., E^+P es una hip de Cauchy.

Corolario 8.1

Suponiendo 1), 2) y 3) y que la hipersuperficie de Cauchy es no compacta, entonces M es nula incompleta al futuro.

Demostración.

En la prueba anterior vimos que $\rho(E^+P)=S$, entonces $\rho(E^+P)$ es no compacto pues S no lo es, como ρ es continuo se sigue que E^+P no es compacto, por lo tanto no es futura atrapada. Pero si suponemos 1), 2) y 3) podemos aplicar la proposición 8.1 y obtenemos que P es futura atrapada, lo cual es absurdo. Así M tiene que ser nula incompleta al futuro. \square

Corolario 8.2

Suponiendo 1), 2), 3) y que hay una curva causal inextendible que no interseca E^+P , entonces M es nula futura incompleta.

Demostración.

Si suponemos que M es futura nula completa, dado que estamos suponiendo ciertas 1), 2) y 3) podemos aplicar el teorema de Penrose y obtener que E^+P es una hipersuperficie de Cauchy, pero por el lema $6.1\ E^+P$ al ser hipersuperficie de Cauchy debe ser intersecada por cada curva causal inextendible , esto contradice la hipótesis que dice que hay una de esas curvas que no interseca E^+P . Por lo tanto M tiene que ser nula incompleta al futuro.

Bibliografía

Referencia principal y pruebas tomadas de [1].

B. O'neill.

Semi-Riemannian geometry with applications to relativity. Academic press, 1983.