# To be or not to be? Mortality Prediction Challenge

Adrien Pavao

July 30 2018

Laboratoire de Recherche en Informatique

Introduction

# Project overview



# Challenges



#### Introduction

What did we learn from the mini-challenges organized?

#### • Chems:

https://competitions.codalab.org/competitions/18751



### Mortality:

https://competitions.codalab.org/competitions/19365



# Use of synthetic data

#### What we want from generated data:

- Respect of privacy
- Same behaviour

#### 3 levels of synthetic data:

- 1. Student
- 2. Research Machine Learning
- 3. Research scientific discovery

Challenge presentation

# Mortality prediction challenge



- Synthetic medical data
- Imbalanced binary classification
- Scoring metric: balanced accuracy

# Original data

#### MIMIC dataset

| HADM_ID | ADMITTIME           | DISCHTIME           | INSURANCE | LANGUAGE | RELIGION     | MARITAL_STATUS | ETHNICITY             | GENDER |  |
|---------|---------------------|---------------------|-----------|----------|--------------|----------------|-----------------------|--------|--|
| 152223  | 2153-09-03_07:15:00 | 2153-09-08_19:10:00 | Medicare  | NaN      | CATHOLIC     | MARRIED        | WHITE                 | М      |  |
| 129635  | 2160-11-02_02:06:00 | 2160-11-05_14:55:00 | Private   | NaN      | UNOBTAINABLE | MARRIED        | WHITE                 | М      |  |
| 197661  | 2126-05-06_15:16:00 | 2126-05-13_15:00:00 | Medicare  | NaN      | CATHOLIC     | SINGLE         | UNKNOWN/NOT_SPECIFIED | М      |  |
| 162569  | 2177-09-01_07:15:00 | 2177-09-06_16:00:00 | Medicare  | NaN      | CATHOLIC     | MARRIED        | WHITE                 | М      |  |
| 104557  | 2172-10-14_14:17:00 | 2172-10-19_14:37:00 | Medicare  | NaN      | CATHOLIC     | MARRIED        | UNKNOWN/NOT_SPECIFIED | М      |  |

Figure 1: First rows of MIMIC dataset

Class: "DIED" binary variable.

#### Wasserstein GAN

### Wasserstein GAN[1, 2, 3]



Figure 2: GAN architecture

- Discriminator replaced by "Earth Move" loss
- Main hyper-parameters: batch size, neural architecture

### Wasserstein distance



Figure 3: Step-by-step plan of moving dirt between piles in P and Q to make them match.

 $\textbf{Continuous} \rightarrow \text{gradient everywhere}.$ 

#### **Generated data**

| HADM_ID | ADMITTIME           | DISCHTIME           | INSURANCE | LANGUAGE | RELIGION      | MARITAL_STATUS | ETHNICITY             | GENDER |  |
|---------|---------------------|---------------------|-----------|----------|---------------|----------------|-----------------------|--------|--|
| 108398  | 2128-05-15_23:42:00 | 2132-07-23_15:00:00 | Private   | ENGL     | CATHOLIC      | DIVORCED       | WHITE                 | F      |  |
| 186416  | 2134-03-17_03:59:00 | 2113-03-06_12:05:00 | Private   | ENGL     | UNOBTAINABLE  | SINGLE         | WHITE                 | М      |  |
| 126413  | 2164-04-05_17:32:00 | 2180-09-20_16:30:00 | Medicaid  | SPAN     | CATHOLIC      | WIDOWED        | OTHER                 | М      |  |
| 109355  | 2102-09-08_00:58:00 | 2166-06-26_15:30:00 | Medicare  | ENGL     | NOT_SPECIFIED | MARRIED        | WHITE                 | М      |  |
| 123784  | 2163-08-06_12:07:00 | 2147-01-14_18:40:00 | Medicare  | ENGL     | UNOBTAINABLE  | MARRIED        | UNKNOWN/NOT_SPECIFIED | F      |  |

Figure 4: First rows of synthetic MIMIC dataset

- 100,000 rows
- Encoded and decoded as in [4]

# **Datasets comparison**





### Classes distribution



**Figure 5:** Classes distribution in original dataset (left) and synthetic dataset (right)

# Results

# Leaderboard

| RESULTS |           |         |                    |                           |            |  |  |
|---------|-----------|---------|--------------------|---------------------------|------------|--|--|
|         | User      | Entries | Date of Last Entry | Team Name                 | Accuracy ▲ |  |  |
| 1       | tianhaogu | 8       | 07/17/18           | Unstoppable league        | 0.77 (1)   |  |  |
| 2       | daiy3     | 7       | 07/17/18           |                           | 0.76 (2)   |  |  |
| 3       | Nik.G     | 7       | 07/17/18           |                           | 0.59 (3)   |  |  |
| 4       | roterj    | 1       | 07/18/18           |                           | 0.52 (4)   |  |  |
| 5       | Fitztory  | 1       | 07/17/18           | PlayerUnknown's Databases | 0.52 (4)   |  |  |

Figure 6: Leaderboard top 5 scores

# Models score

| Model          | Train on original    | Train on synthetic | Train on original |  |
|----------------|----------------------|--------------------|-------------------|--|
|                | Test on original     | Test on synthetic  | Test on synthetic |  |
| LogReg         | 0.60                 | 0.52               | 0.53              |  |
| GradBoost 150  | 0.61                 | 0.52               | 0.53              |  |
| RF 100         | 0.51                 | 0.50               | 0.50              |  |
| MLP [100]      | 0.50  ightarrow 0.80 | 0.51               | 0.51              |  |
| MLP [100, 100] | 0.53  ightarrow 0.91 | 0.51               | 0.51              |  |

Table 1: Balanced accuracy for various models

# **Oversampling**

| Model          | Train on original    | Train on synthetic      | Train on original       |  |
|----------------|----------------------|-------------------------|-------------------------|--|
|                | Test on original     | Test on synthetic       | Test on synthetic       |  |
| LogReg         | 0.76                 | 0.76                    | 0.77                    |  |
| GradBoost 150  | 0.91                 | 0.87                    | 0.65                    |  |
| RF 100         | 0.50                 | 0.50                    | 0.50                    |  |
| MLP [100]      | 0.67  ightarrow 0.82 | $0.65 \rightarrow 0.80$ | $0.61 \rightarrow 0.80$ |  |
| MLP [100, 100] | 0.78  ightarrow 0.91 | 0.54  ightarrow 0.94    | $0.55 \rightarrow 0.92$ |  |

Table 2: Balanced accuracy for various models after oversampling

Conclusion and future work

# Conclusion



# Challenges



# Chems challenge



- Predict biodegradability of molecules
- Training medical students from RPI
- Future improvement: feature selection

| X1 | X2 | Х3 | fake1 | fake2 | fake3 | fake4 | fake5 | fake6 |
|----|----|----|-------|-------|-------|-------|-------|-------|
| 3  | 4  | 5  | 5     | 4     | 3     | 5     | 6     | 7.2   |
| 5  | 6  | 7  | 1     | 2     | 5     | 3     | 4     | 2.9   |
| 1  | 2  | 3  | 3     | 6     | 7     | 1     | 2     | 5.4   |

Table 3: Adding fake features to data to create a feature selection problem

#### References i



Ishaan Gulrajani et al. "Improved Training of Wasserstein GANs".

In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9

December 2017, Long Beach, CA, USA. 2017, pp. 5769-5779. URL: http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans.

lan J. Goodfellow et al. "Generative Adversarial Networks". In: CoRR abs/1406.2661 (2014). arXiv: 1406.2661. URL: http://arxiv.org/abs/1406.2661.

#### References ii



Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. "The Synthetic Data Vault". In: 2016 IEEE International Conference on Data Science and Advanced Analytics, DSAA 2016, Montreal, QC, Canada, October 17-19, 2016. 2016, pp. 399–410. DOI: 10.1109/DSAA.2016.49. URL: https://doi.org/10.1109/DSAA.2016.49.