10.RflySimSwarm 集群控制算法开发

包含了集群控制相关的例程和源码

序号	实验名称	简介	文件地址	版本
1	API 文件	集群控制开发所使用的 API 接口文档	<u>API.pdf</u>	nan
2	课件	该文件全面的讲解了基于 RflySim 平台的集群控	PPT.pdf	nan
		制开发的实验以及效果展示。		
3	基础接口类实验	本文件夹中的所有实验均为本讲中接口使用类的	0.ApiExps\Readme.pdf	免费版
		实验,旨在帮助用户快速熟悉本讲各种接口以便		
		于后续实验开发。		
4	基础功能性实验	本文件夹中的所有实验均为本讲中基础性的功能	1.BasicExps\Readme.pdf	免费版
		实验,用户可快速上手熟悉一些简单的功能性实		
		验,本讲中包含有使用不同通信模式控制多旋翼		
		进行飞行编队, 灯光秀, 固定翼集群控制等实验。		
5	进阶性实验	本文件夹中的所有实验均为本讲中进阶的实验,	2.AdvExps\Readme.pdf	个人集合版
		基于 0.ApiExps、1.BasicExps 文件夹中的实验,用		
		户在已经熟悉基于 RflySim 平台开发本章中的实		
		验,该文件夹中的实验均为本讲的进阶例程。		
6	定制性实验	本文件夹中的所有实验均为部分项目中的拆解实	3.CustExps\Readme.pdf	完整版
		验,相比其他文件夹中的实验,该文件夹中的实		
		验更加完整、复杂,满足更多的项目或者科研需		
		求。		

++ -IUL는 V chaA		0.4 (5.) 0. 1. 16	5 # IIC
基础接口类头验		<u>U.ApiExps\Readme.pdf</u>	免费版
	实验,旨在帮助用户快速熟悉本讲各种接口以便		
	于后续实验开发。		
基础功能性实验	本文件夹中的所有实验均为本讲中基础性的功能	1.BasicExps\Readme.pdf	免费版
	实验,用户可快速上手熟悉一些简单的功能性实		
	验,本讲中包含有使用不同通信模式控制多旋翼		
	进行飞行编队, 灯光秀, 固定翼集群控制等实验。		
进阶性实验	本文件夹中的所有实验均为本讲中进阶的实验,	2.AdvExps\Readme.pdf	个人集合版
	基于 0.ApiExps、1.BasicExps 文件夹中的实验,用		
	户在已经熟悉基于 RflySim 平台开发本章中的实		
	验,该文件夹中的实验均为本讲的进阶例程。		
进阶接口实验	本文件夹中的所有实验均为本讲中进阶接口类实	2.AdvExps\e0_AdvApiExps\Readme.pdf	个人版
	验, 基于 0.ApiExps、1.BasicExps 文件夹中的实验,		
	本文件夹中均为针对本章的进阶性接口类实验。		
定制性实验	本文件夹中的所有实验均为部分项目中的拆解实	3.CustExps\Readme.pdf	完整版
	验,相比其他文件夹中的实验,该文件夹中的实		
	验更加完整、复杂,满足更多的项目或者科研需		
	求。		
例程检索文件	通过本文件,您可快速了解并掌握本讲全部的例	readme.pdf	nan
	程简介和例程文件地址。		
	进阶接口实验定制性实验	实验,旨在帮助用户快速熟悉本讲各种接口以便于后续实验开发。 基础功能性实验 本文件夹中的所有实验均为本讲中基础性的功能实验,用户可快速上手熟悉一些简单的功能性实验,本讲中包含有使用不同通信模式控制多旋翼进行飞行编队,灯光秀,固定翼集群控制等实验。 基于 0.ApiExps、1.BasicExps 文件夹中的实验,用户在已经熟悉基于 RflySim 平台开发本章中的实验,该文件夹中的实验均为本讲的进阶例程。 进阶接口实验 本文件夹中的所有实验均为本讲中进阶接口类实验,基于 0.ApiExps、1.BasicExps 文件夹中的实验,本文件夹中的实验均为本讲的进阶例程。 本文件夹中的所有实验均为本讲中进阶接口类实验,基于 0.ApiExps、1.BasicExps 文件夹中的实验,本文件夹中的实验,本文件夹中的实验,本文件夹中的实验,本文件夹中的实验,这文件夹中的实验,相比其他文件夹中的实验,该文件夹中的实验更加完整、复杂,满足更多的项目或者科研需求。 例程检索文件 通过本文件,您可快速了解并掌握本讲全部的例	实验,旨在帮助用户快速熟悉本讲各种接口以便于后续实验开发。 基础功能性实验 本文件夹中的所有实验均为本讲中基础性的功能性实验,本讲中包含有使用不同通信模式控制多旋翼进行飞行编队,灯光秀,固定翼集群控制等实验。 进阶性实验 本文件夹中的所有实验均为本讲中进阶的实验,基于 0.ApiExps、1.BasicExps 文件夹中的实验,对在已经熟悉基于 RflySim 平台开发本章中的实验,该文件夹中的所有实验均为本讲的进阶例程。 法阶接口实验 本文件夹中的所有实验均为本讲的进阶例程。 是制性实验 本文件夹中的所有实验均为本讲中进阶接口类实验。本文件夹中的为针对本章的进阶性接口类实验。本文件夹中均为针对本章的进阶性接口类实验。本文件夹中均为针对本章的进阶性接口类实验。本文件夹中的所有实验均为部分项目中的拆解实验,相比其他文件夹中的实验,该文件夹中的实验,3.CustExps\Readme.pdf

所有文件列表

序号	实验名称	简介	文件地址	版本
1	集群控制算法开	包含了集群控制相关的例程	readme.pdf	免费版
	发	和源码		
2	基础接口类实验	本文件夹中的所有实验均为	0.ApiExps\Readme.pdf	免费版
		本讲中接口使用类的实验,		
		旨在帮助用户快速熟悉本讲		
		各种接口以便于后续实验开		
		发。		
3	基础功能性实验	本文件夹中的所有实验均为	1.BasicExps\Readme.pdf	免费版
		本讲中基础性的功能实验,		
		用户可快速上手熟悉一些简		
		单的功能性实验,本讲中包		
		含有使用不同通信模式控制		
		多旋翼进行飞行编队,灯光		
		秀,固定翼集群控制等实验。		
4	进阶性实验	本文件夹中的所有实验均为	2.AdvExps\Readme.pdf	个人集
		本讲中进阶的实验,基于		合版
		0.ApiExps、1.BasicExps 文件		
		夹中的实验,用户在已经熟		
		悉基于 RflySim 平台开发本		
		章中的实验,该文件夹中的		
		实验均为本讲的进阶例程。		

5	进阶接口实验	本文件夹中的所有实验均为	2.AdvExps\e0_AdvApiExps\Readme.pdf	个人版
		本讲中进阶接口类实验,基		
		于 0.ApiExps、1.BasicExps 文		
		件夹中的实验, 本文件夹中		
		均为针对本章的进阶性接口		
		类实验。		
6	定制性实验	本文件夹中的所有实验均为	3.CustExps\Readme.pdf	完整版
		部分项目中的拆解实验, 相		
		比其他文件夹中的实验,该		
		文件夹中的实验更加完整、		
		复杂,满足更多的项目或者		
		科研需求。		
7	例程检索文件	通过本文件,您可快速了解	readme.pdf	nan
		并掌握本讲全部的例程简介		
		和例程文件地址。		
8	API 文件	集群控制开发所使用的 API	<u>API.pdf</u>	nan
		接口文档		
9	课件	该文件全面的讲解了基于	PPT.pdf	nan
		RflySim平台的集群控制开发		
		的实验以及效果展示。		
10	基础接口类实验	本文件夹中的所有实验均为	0.ApiExps\Readme.pdf	免费版
		本讲中接口使用类的实验,		
		旨在帮助用户快速熟悉本讲		
		各种接口以便于后续实验开		
		发。		
11	SIL 仿真 Log 日志	在进行 SIL 仿真时, RflySim	0.ApiExps\1.SwarmLogGet\Readme.pdf	免费版

	获取实验	将自动记录每个飞机的 Log		
		日志,并生成.ulg 格式文件。		
12	MATLAB 集群接	在 MATLAB 的 C++ S 函数通	0.ApiExps\2.MatRflySwarmAPIPack\Readme.pdf	免费版
	口模型封装实验	信模块具有效率高		
13	.exe 文件生成实	MATLAB 本身会占用大量的	0.ApiExps\3.EXEFileGener\Readme.pdf	免费版
	验	CPU 和内存		
		资源 (见右图),在运行复杂		
		的 Simulink 控制程序时,一		
		方面计算量太大导致算法运		
		行缓慢,无法达到实时要求		
		(Simulink 中运行 1s 中大于		
		现实时钟 1s), 这样就无法实		
		时控制仿真系统(或真实系		
		统) 的集群飞机。第二方面,		
		在仿真时 Simulink 如果占用		
		大量的计算资源,会导致		
		RflySim3D和CopterSim的计		
		算资源分配较少,导致飞机		
		仿真变差,飞机剧烈抖动甚		
		至坠机。将 Simulink 控制器		
		编译生成 exe 之后,算法可		
		以脱离 MATLAB 运行,而且		
		本身是二进制可执行文件,		
		运行效率非常高,即使大型		
		的控制算法,也能保证实时		
		控制。本实验将以 4 架无人		

		机仿真实验 demo 进行.exe		
		文件生成。		
14	飞控硬件远程重	虽然 RflySim 平台做了较多	0.ApiExps\4.RebootPixViaUDP\Readme.pdf	免费版
	启接口实验	的优化来实现硬件在环仿真		
		的稳定性,但是同一 Pixhawk		
		飞控在进行多次仿真(特别		
		是上次仿真坠机或者进入失		
		效模式) 之后, 由于飞控内部		
		参数混乱,易导致无法起飞,		
		或者飞行异常的故障,这时		
		候需要重启飞控来重新初始		
		化 HITL 仿真。本实验采用广		
		播方式,可实现重启局域网		
		内所有 HITL 仿真。		
15	多机地形高度获	在进行多个飞机的集群控制	0.ApiExps\5.GetTerrainAPI\Readme.pdf	免费版
	取接口实验	例子时,往往需要输入每个		
		飞机得初始位置矩阵列表		
		InitPosList, RflySim 平台提供		
		了高度信息获取接口,使得		
		可以像 bat 启动脚本一样,		
		给定飞机数量和间距,自动		
		配置飞机初始摆放位置,并		
		根据当前地形求出地形高		
		度。本实验以 12 架飞机的高		
		度信息获取为例进行实验步		
		骤详解。		

16	基于 Simulink 数 据分析实验	在进行软件在环和硬件在环 仿真时,飞机的飞行日志通 常是我们需要进行导出分析 处理的,RflySim 平台具有丰 富的飞行日志获取和分析功 能。本实验将基于 Simulink 实现飞行日志的实时获取并 进行存储分析。	0.ApiExps\6.DataAnalysis_Mat\Readme.pdf	免费版
17	基于 Python 数据 分析实验	在进行软件在环和硬件在环 仿真时,飞机的飞行日志通 常是我们需要进行导出分析 处理的,RflySim 平台具有丰 富的飞行日志获取和分析功 能。本实验将基于 Python 实 现飞行日志的实时获取并进 行存储分析。	0.ApiExps\7.DataAnalysis_Py\Readme.pdf	免费版
18	集群接口实验	通 过 利 用 RflySim 平 台 mavlink 通信函数接口进行 无人机位置控制、速度控制、 航向控制。	0.ApiExps\8.MAVLinkFull4Swarm\Readme.pdf	免费版
19	基础功能性实验	本文件夹中的所有实验均为 本讲中基础性的功能实验, 用户可快速上手熟悉一些简 单的功能性实验,本讲中包 含有使用不同通信模式控制 多旋翼进行飞行编队,灯光	1.BasicExps\Readme.pdf	免费版

		秀, 固定翼集群控制等实验。		
20	通信接口的飞行	通过平台提供的 RflyUdpFast	1.BasicExps\e1_RflyUdpSwarmExp\Readme.pdf	免费版
	实验	传输模块,使用多种通信模		
		式,接收无人机的状态信息,		
		然后进行对单个或多个无人		
		机的局部位置运动控制进行		
		simulink 建模发送控制指令		
		到该模块,然后进行仿真。		
21	通信接口的	通过平台提供的 RflyUdpFast	1.BasicExps\e1_RflyUdpSwarmExp\1.RflyUdpFullOne_Mat\Readme.pdf	免费版
	FullData 模式单	传输模块,接收无人机的状		
	机实验	态信息,然后进行对单个无		
		人机的局部位置运动控制进		
		行 simulink 建模发送控制指		
		令到该模块, 然后进行仿真。		
22	通信接口的	通过平台提供的 RflyUdpFast	1.BasicExps\e1_RflyUdpSwarmExp\2.RflyUdpFullFour_Mat\Readme.pdf	免费版
	FullData 模式 4	传输模块,接收无人机的状		
	机仿真实验	态信息,然后进行对 4 个无		
		人机的局部位置运动控制进		
		行 simulink 建模发送控制指		
		令到该模块, 然后进行仿真。		
23	通信接口	通过平台提供的 RflyUdpFast	1.BasicExps\e1_RflyUdpSwarmExp\3.RflyUdpFullFourGPos_Mat\Readme.pdf	免费版
	FullData 模式全	传输模块,接收无人机的状		
	局坐标控制 4 机	态信息,然后进行对无人机		
	实验	的全局位置运动控制进行		
		Simulink 建模发送控制指令		
		到该模块,然后进行仿真。		

24	通信接口的	通过平台提供的 RflyUdpFast	1.BasicExps\e1_RflyUdpSwarmExp\4.RflyUdpSimpleOne_Mat\Readme.pdf	免费版
	SimpleData 模式	传输模块,接收无人机的状		
	单机画圆实验	态信息,然后进行对单个无		
		人机的局部位置运动控制进		
		行 simulink 建模发送控制指		
		令到该模块,然后进行仿真。		
25	通信接口的	通过平台提供的 RflyUdpFast	1.BasicExps\e1_RflyUdpSwarmExp\5.RflyUdpUltraSimpleOne_Mat\Readme.pdf	免费版
	UltraSimple 模式	传输模块,接收无人机的状		
	单机画圆实验	态信息,然后进行对单个无		
		人机的局部位置运动控制进		
		行 simulink 建模发送控制指		
		令到该模块, 然后进行仿真。		
26	通信接口的	通过平台提供的 RflyUdpFast	1.BasicExps\e1_RflyUdpSwarmExp\6.RflyUdpUltraSimpleFour_Mat\Readme.pdf	免费版
	UltraSimple 模式	传输模块,接收无人机的状		
	四机画圆实验	态信息,然后进行对单个无		
		人机的局部位置运动控制进		
		行 Simulink 建模发送控制指		
		令到该模块, 然后进行仿真。		
27	通信接口的	通过平台提供的 RflyUdpFast	1.BasicExps\e1_RflyUdpSwarmExp\1.RflyUdpFullOne_Mat\Readme.pdf	免费版
	FullData 模式单	传输模块,接收无人机的状		
	机实验	态信息,然后进行对单个无		
		人机的局部位置运动控制进		
		行 simulink 建模发送控制指		
		令到该模块, 然后进行仿真。		
28	通信接口的	通过平台提供的 RflyUdpFast	1.BasicExps\e1_RflyUdpSwarmExp\2.RflyUdpFullFour_Mat\Readme.pdf	免费版
	FullData 模式 4	传输模块,接收无人机的状		

	机仿真实验	态信息,然后进行对 4 个无		
		人机的局部位置运动控制进		
		行 simulink 建模发送控制指		
		令到该模块, 然后进行仿真。		
29	通信接口	通过平台提供的 RflyUdpFast	1.BasicExps\e1_RflyUdpSwarmExp\3.RflyUdpFullFourGPos_Mat\Readme.pdf	免费版
	FullData 模式全	传输模块,接收无人机的状		
	局坐标控制 4 机	态信息,然后进行对无人机		
	实验	的全局位置运动控制进行		
		Simulink 建模发送控制指令		
		到该模块,然后进行仿真。		
30	通信接口的	通过平台提供的 RflyUdpFast	1.BasicExps\e1_RflyUdpSwarmExp\4.RflyUdpSimpleOne_Mat\Readme.pdf	免费版
	SimpleData 模式	传输模块,接收无人机的状		
	单机画圆实验	态信息,然后进行对单个无		
		人机的局部位置运动控制进		
		行 simulink 建模发送控制指		
		令到该模块,然后进行仿真。		
31	通信接口的	通过平台提供的 RflyUdpFast	1.BasicExps\e1_RflyUdpSwarmExp\5.RflyUdpUltraSimpleOne_Mat\Readme.pdf	免费版
	UltraSimple 模式	传输模块,接收无人机的状		
	单机画圆实验	态信息,然后进行对单个无		
		人机的局部位置运动控制进		
		行 simulink 建模发送控制指		
		令到该模块,然后进行仿真。		
32	通信接口的	通过平台提供的 RflyUdpFast	1.BasicExps\e1_RflyUdpSwarmExp\6.RflyUdpUltraSimpleFour_Mat\Readme.pdf	免费版
	UltraSimple 模式	传输模块,接收无人机的状		
	四机画圆实验	态信息,然后进行对单个无		
		人机的局部位置运动控制进		

		行 Simulink 建模发送控制指		
		令到该模块,然后进行仿真。		
33	4 机质点集群实	从模型精度的角度, 使用高	1.BasicExps\e2_NoPX4SITL4Swarm\Readme.pdf	免费版
	验	精度 6DOF 模型 (CopterSim)		
		+真实飞控系统(PX4)的软		
		/硬件在环仿真闭环的方式,		
		能够有效提高模型可信度,		
		从而减小仿真与真机实验的		
		差距。本实验基于 RflySim 平		
		台实现 4 架质点模型的四旋		
		翼飞机起飞悬停几秒后下		
		降。		
34	集群轨迹灯光展	在进行集群编队飞行时,初	1.BasicExps\e3_LightShowSwarm\Readme.pdf	免费版
	示实验	步生成(或者仿真实验)得到		
		了一系列的多无人机的轨迹		
		数据,有时需要在三维引擎		
		中进行预览(回看),或者根		
		据场景调整最优估计。		
35	固定翼质点模型	本实验中搭建了固定翼的质	1.BasicExps\e4_FixWingGMSwarm\Readme.pdf	免费版
	集群实验	点模型,可通过速度偏航高		
		度或位置指令来控制固定翼		
		进行预定轨迹飞行。		
36	进阶性实验	本文件夹中的所有实验均为	2.AdvExps\Readme.pdf	个人集
		本讲中进阶的实验, 基于		合版
		0.ApiExps、1.BasicExps 文件		
		夹中的实验,用户在已经熟		

		悉基于 RflySim 平台开发本章中的实验,该文件夹中的实验均为本讲的进阶例程。		
37	进阶接口实验	本文件夹中的所有实验均为 本讲中进阶接口类实验,基 于 0.ApiExps、1.BasicExps 文 件夹中的实验,本文件夹中 均为针对本章的进阶性接口 类实验。	2.AdvExps\e0_AdvApiExps\Readme.pdf	个人版
38	飞机碰撞实验	实验通过使用飞机间的不同通信模式实现飞机碰撞的实验。演示了通过调用 RflySim平台的碰撞 API 接口,来实现无人机在三维引擎中的碰撞效果。	2.AdvExps\e0_AdvApiExps\1.CollisionExpAPI\Readme.pdf	个人版
39	RflySim3D 碰撞 接口实验	本实验中演示了通过调用 RflySim 平台的碰撞 API 接 口,来实现无人机在三维引 擎中的碰撞效果。	2.AdvExps\e0_AdvApiExps\1.CollisionExpAPI\1.CrashMonitorAPI\Readme.pdf	个人版
40	MAVLink 模式 2 机碰撞实验	RflySim平台的三维场景仿真软件 RflySim3D 是基于UE进行开发而成的,在进行开发过程中,使其具有碰撞引擎模式,本例程中详细展示了两个飞机从起飞到碰撞的详细过程。	2.AdvExps\e0_AdvApiExps\1.CollisionExpAPI\2.CollMAVLinkAPI_Py\Readme.pdf	个人版

41	UDP 模式 2 机碰	RflySim 平台的三维场景仿真	2.AdvExps\e0_AdvApiExps\1.CollisionExpAPI\3.CollUDPModeAPI_Py\Readme.pdf	个人版
	撞实验	软件 RflySim3D 是基于 UE 进		
		行开发而成的,在进行开发		
		过程中,使其具有碰撞引擎		
		模式,本例程中详细展示了		
		两个飞机从起飞到碰撞的详		
		细过程。		
42	UDP 模式 2 机碰	RflySim 平台的三维场景仿真	2.AdvExps\e0_AdvApiExps\1.CollisionExpAPI\4.CollUDPModeAPI_Mat\Readme.pdf	个人版
	撞(Simulink)实验	软件 RflySim3D 是基于 UE 进		
		行开发而成的,在进行开发		
		过程中,使其具有碰撞引擎		
		模式,本例程中详细展示了		
		两个飞机从起飞到碰撞的详		
		细过程。		
43	单台电脑控制 8	通过平台提供的 RflyUdpFast	2.AdvExps\e1_RflyUdpSwarmAdvExp\Readme.pdf	个人集
	飞机仿真实验	传输模块,接收无人机的状		合版
		态信息,然后进行对单个无		
		人机的局部位置运动控制进		
		行 Simulink 建模发送控制指		
		令到该模块, 然后进行仿真。		
44	通信接口的	通过平台提供的 RflyUdpFast	2.AdvExps\e1_RflyUdpSwarmAdvExp\1.RflyUdpUltraSimpleEight_Mat\Readme.pdf	个人集
	UltraSimple 模式	传输模块,接收无人机的状		合版
	八机画圆实验	态信息,然后进行对单个无		
		人机的局部位置运动控制进		
		行 Simulink 建模发送控制指		
		令到该模块,然后进行仿真。		

45	8 机 SITL 仿真实	通过利用 RflySim 平台 UDP	2.AdvExps\e1_RflyUdpSwarmAdvExp\2.UDPSimple8Swarm_Py\Readme.pdf	个人集
	验	通信函数接口进行无人机飞		合版
		机起飞,然后飞同心圆。		
46	分布式局域网点	单台电脑得性能毕竟是有限	2.AdvExps\e1_RflyUdpSwarmAdvExp\3.UDPSimple16Swarm2PC_Py\Readme.pdf	个人集
	对点通信 16 机	的,RflySim 平台的集群仿真		合版
	仿真实验	功能支持再局域网内指定电		
		脑之间进行联合仿真,只需		
		要知道局域网中电脑的 IP 地		
		址,通过在程序中进行设置		
		就可实现仿真。本实验可实		
		现在局域网内指定的两台电		
		脑(如下统称为电脑 A、电脑		
		B)联合进行 8 架飞机画圆飞		
		行。		
47	通信接口的	通过平台提供的 RflyUdpFast	2.AdvExps\e1_RflyUdpSwarmAdvExp\1.RflyUdpUltraSimpleEight_Mat\Readme.pdf	个人集
	UltraSimple 模式	传输模块,接收无人机的状		合版
	八机画圆实验	态信息,然后进行对单个无		
		人机的局部位置运动控制进		
		行 Simulink 建模发送控制指		
		令到该模块, 然后进行仿真。		
48	8 机 SITL 仿真实	通过利用 RflySim 平台 UDP	2.AdvExps\e1_RflyUdpSwarmAdvExp\2.UDPSimple8Swarm_Py\Readme.pdf	个人集
	验	通信函数接口进行无人机飞		合版
		机起飞,然后飞同心圆。		
49	分布式局域网点	单台电脑得性能毕竟是有限	2.AdvExps\e1_RflyUdpSwarmAdvExp\3.UDPSimple16Swarm2PC_Py\Readme.pdf	个人集
	对点通信 16 机	的,RflySim 平台的集群仿真		合版
	仿真实验	功能支持再局域网内指定电		

		脑之间进行联合仿真,只需要知道局域网中电脑的 IP 地址,通过在程序中进行设置就可实现仿真。本实验可实现在局域网内指定的两台电脑(如下统称为电脑 A、电脑B)联合进行 8 架飞机画圆飞		
		一 行。		
50	多机质点集群实验	从模型精度的角度,使用高精度 6DOF模型(CopterSim)+真实飞控系统(PX4)的软/硬件在环仿真闭环的方式,能够有效提高模型可信度,从而减小仿真与真机实验的差距。本实验基于 RflySim 平台实现多架质点模型的四旋翼飞机起飞和画圆飞行。	2.AdvExps\e2_NoPX4SITLSwarm\Readme.pdf	个人集 合版
51	12 机质点集群实 验	从模型精度的角度,使用高精度 6DOF模型(CopterSim)+真实飞控系统(PX4)的软/硬件在环仿真闭环的方式,能够有效提高模型可信度,从而减小仿真与真机实验的差距。本实验基于 RflySim 平台实现 12 架质点模型的四旋翼飞机起飞和画圆飞行。	2.AdvExps\e2_NoPX4SITLSwarm\1.NoPX4SITL12Swarm\Readme.pdf	个人集 合版

52	30 机质点集群实	从模型精度的角度,使用高	2.AdvExps\e2_NoPX4SITLSwarm\2.NoPX4SITL30Swarm\Readme.pdf	个人集
	验	精度 6DOF 模型(CopterSim)		合版
		+真实飞控系统(PX4)的软		
		/硬件在环仿真闭环的方式,		
		能够有效提高模型可信度,		
		从而减小仿真与真机实验的		
		差距。本实验基于 RflySim 平		
		台实现30架质点模型的四旋		
		翼飞机起飞和画圆飞行。		
53	100 机质点集群	从模型精度的角度, 使用高	2.AdvExps\e2_NoPX4SITLSwarm\3.NoPX4SITL100Swarm\Readme.pdf	个人集
	实验	精度 6DOF 模型 (CopterSim)		合版
		+真实飞控系统(PX4)的软		
		/硬件在环仿真闭环的方式,		
		能够有效提高模型可信度,		
		从而减小仿真与真机实验的		
		差距。本实验基于 RflySim 平		
		台实现 100 架质点模型的四		
		旋翼飞机起飞和画圆飞行。		
54	200 机质点集群	从模型精度的角度,使用高	2.AdvExps\e2_NoPX4SITLSwarm\4.NoPX4SITL200Swarm2PC\Readme.pdf	个人集
	实验	精度 6DOF 模型(CopterSim)		合版
		+真实飞控系统(PX4)的软		
		/硬件在环仿真闭环的方式,		
		能够有效提高模型可信度,		
		从而减小仿真与真机实验的		
		差距。本实验基于 RflySim 平		
		台实现在局域网内两台电脑		

		200 架质点模型的四旋翼飞		
		机起飞和画圆飞行。		
55	12 机质点集群实	从模型精度的角度, 使用高	2.AdvExps\e2_NoPX4SITLSwarm\1.NoPX4SITL12Swarm\Readme.pdf	个人集
	验	精度 6DOF 模型(CopterSim)		合版
		+真实飞控系统(PX4)的软		
		/硬件在环仿真闭环的方式,		
		能够有效提高模型可信度,		
		从而减小仿真与真机实验的		
		差距。本实验基于 RflySim 平		
		台实现12架质点模型的四旋		
		翼飞机起飞和画圆飞行。		
56	30 机质点集群实	从模型精度的角度,使用高	2.AdvExps\e2_NoPX4SITLSwarm\2.NoPX4SITL30Swarm\Readme.pdf	个人集
	验	精度 6DOF 模型(CopterSim)		合版
		+真实飞控系统(PX4)的软		
		/硬件在环仿真闭环的方式,		
		能够有效提高模型可信度,		
		从而减小仿真与真机实验的		
		差距。本实验基于 RflySim 平		
		台实现30架质点模型的四旋		
		翼飞机起飞和画圆飞行。		
57	100 机质点集群	从模型精度的角度,使用高	2.AdvExps\e2_NoPX4SITLSwarm\3.NoPX4SITL100Swarm\Readme.pdf	个人集
	实验	精度 6DOF 模型(CopterSim)		合版
		+真实飞控系统(PX4)的软		
		/硬件在环仿真闭环的方式,		
		能够有效提高模型可信度,		
		从而减小仿真与真机实验的		

		差距。本实验基于 RflySim 平		
		台实现 100 架质点模型的四		
		旋翼飞机起飞和画圆飞行。		
58	200 机质点集群	从模型精度的角度,使用高	2.AdvExps\e2_NoPX4SITLSwarm\4.NoPX4SITL200Swarm2PC\Readme.pdf	个人集
	实验	精度 6DOF 模型 (CopterSim)		合版
		+真实飞控系统(PX4)的软		
		/硬件在环仿真闭环的方式,		
		能够有效提高模型可信度,		
		从而减小仿真与真机实验的		
		差距。本实验基于 RflySim 平		
		台实现在局域网内两台电脑		
		200 架质点模型的四旋翼飞		
		机起飞和画圆飞行。		
59	分布式局域网通	单台电脑得性能毕竟是有限	2.AdvExps\e3_DistributedLANSwarm\Readme.pdf	个人集
	信8机仿真实验	的,RflySim 平台的集群仿真		合版
		功能提供两种支持再局域网		
		内联合仿真的模式。本实验		
		可实现在局域网内两台电脑		
		(如下统称为电脑 A、电脑 B)		
		联合进行8架飞机画圆飞行。		
60	分布式局域网广	单台电脑得性能毕竟是有限	2.AdvExps\e3_DistributedLANSwarm\1.BroadNetSwarm_Mat\Readme.pdf	个人集
	播通信 8 机仿真	的,RflySim 平台的集群仿真		合版
	实验	功能支持再局域网内联合仿		
		真, 且配置较为简单, 不需要		
		查看局域网中电脑的地址,		
		可以直接运行,理论上可以		

		实现局域网内多机联合仿 真。本实验可实现在局域网 内两台电脑(如下统称为电脑 A、电脑 B)联合进行 8 架飞机		
		画圆飞行。		
61	分布式局域网点	单台电脑得性能毕竟是有限	2.AdvExps\e3_DistributedLANSwarm\2.UseIPNetSwarm_Mat\Readme.pdf	个人集
	对点通信 8 机仿	的,RflySim 平台的集群仿真		合版
	真实验	功能支持再局域网内指定电		
		脑之间进行联合仿真,只需		
		要知道局域网中电脑的 IP 地		
		址,通过在程序中进行设置		
		就可实现仿真。本实验可实		
		现在局域网内指定的两台电		
		脑(如下统称为电脑 A、电脑		
		B)联合进行 8 架飞机画圆飞		
		行。		
62	分布式局域网广	单台电脑得性能毕竟是有限	2.AdvExps\e3_DistributedLANSwarm\1.BroadNetSwarm_Mat\Readme.pdf	个人集
	播通信 8 机仿真	的,RflySim 平台的集群仿真		合版
	实验	功能支持再局域网内联合仿		
		真, 且配置较为简单, 不需要		
		查看局域网中电脑的地址,		
		可以直接运行,理论上可以		
		实现局域网内多机联合仿		
		真。本实验可实现在局域网		
		内两台电脑(如下统称为电脑		
		A、电脑 B)联合进行 8 架飞机		

		画圆飞行。		
63	分布式局域网点	单台电脑得性能毕竟是有限	2.AdvExps\e3_DistributedLANSwarm\2.UseIPNetSwarm_Mat\Readme.pdf	个人集
	对点通信 8 机仿	的,RflySim 平台的集群仿真		合版
	真实验	功能支持再局域网内指定电		
		脑之间进行联合仿真,只需		
		要知道局域网中电脑的 IP 地		
		址,通过在程序中进行设置		
		就可实现仿真。本实验可实		
		现在局域网内指定的两台电		
		脑(如下统称为电脑 A、电脑		
		B)联合进行 8 架飞机画圆飞		
		行。		
64	自动防撞下控制	本文件夹中的实验中通过	2.AdvExps\e4_SwarmFormCollCtrl\Readme.pdf	个人集
	进行集群编队仿	软、硬件在环仿真分别演示		合版
	真实验	了无人机不同队形的变换以		
		及编队功能。		
65	自动防撞下控制	本实验中通过软、硬件在环	2.AdvExps\e4_SwarmFormCollCtrl\2.SwarmBodyVelCtrlColl_Mat\Readme.pdf	个人集
	机体速度进行集	仿真分别演示了无人机不同		合版
	群编队仿真实验	队形的变换以及编队功能。		
66	自动防撞下控制	本实验中通过软、硬件在环	2.AdvExps\e4_SwarmFormCollCtrl\3.SwarmEarthVelCtrlColl_Mat\Readme.pdf	个人集
	地球速度(NED	仿真分别演示了无人机不同		合版
	坐标系)进行集群	队形的变换以及编队功能。		
	编队仿真实验			
67	自动防撞下控制	本实验中通过软、硬件在环	2.AdvExps\e4_SwarmFormCollCtrl\4.SwarmEarthVelCtrlCollUdp_Mat\Readme.pdf	个人集
	地球速度(NED	仿真分别演示了无人机不同		合版
	坐标系)的集群编	队形的变换以及编队功能。		

	队仿真实验(UDP			
	模式)			
68	8 机绕"8"字编队	通过平台提供的 RflyUdpFast	2.AdvExps\e4_SwarmFormCollCtrl\1.UAV8Swarm3D_Mat\Readme.pdf	个人集
	飞行仿真实验	传输模块,基于		合版
		MATLAB/Simulink 实现控制		
		8 架四旋翼无人机的绕 8 字		
		编队飞行控制实验, 同时, 本		
		算法可以用于 1~10 个飞机		
		的编队控制,可自行阅读内		
		部实现。		
69	8 机绕"8"字编队	通过平台提供的 RflyUdpFast	2.AdvExps\e4_SwarmFormCollCtrl\1.UAV8Swarm3D_Mat\Readme.pdf	个人集
	飞行仿真实验	传输模块,基于		合版
		MATLAB/Simulink 实现控制		
		8 架四旋翼无人机的绕 8 字		
		编队飞行控制实验,同时,本		
		算法可以用于 1~10 个飞机		
		的编队控制,可自行阅读内		
		部实现。		
70	自动防撞下控制	本实验中通过软、硬件在环	2.AdvExps\e4_SwarmFormCollCtrl\2.SwarmBodyVelCtrlColl_Mat\Readme.pdf	个人集
	机体速度进行集	仿真分别演示了无人机不同		合版
	群编队仿真实验	队形的变换以及编队功能。		
71	自动防撞下控制	本实验中通过软、硬件在环	2.AdvExps\e4_SwarmFormCollCtrl\3.SwarmEarthVelCtrlColl_Mat\Readme.pdf	个人集
	地球速度(NED	仿真分别演示了无人机不同		合版
	坐标系)进行集群	队形的变换以及编队功能。		
	编队仿真实验			
72	自动防撞下控制	本实验中通过软、硬件在环	2.AdvExps\e4_SwarmFormCollCtrl\4.SwarmEarthVelCtrlCollUdp_Mat\Readme.pdf	个人集

	地球速度(NED	仿真分别演示了无人机不同		合版
	坐标系)的集群编	队形的变换以及编队功能。		
	队仿真实验(UDP			
	模式)			
73	集群智能例程	本文件夹中的实验使用了智	2.AdvExps\e5_AlSwarmCtrlExp\Readme.pdf	个人集
		能算法来实现集群控制,包		合版
		括在路径规划,避障,避碰以		
		及深度强化学习训练无人机		
		防守模型等。		
74	蚂蚁算法多无人	通过蚂蚁算法规划出一条可	2.AdvExps\e5_AlSwarmCtrlExp\1.AntAlgorithmMutUAVPathPlan\Readme.pdf	个人集
	机路径规划实验	行且较优的路径,这条路径		合版
		需要符合避障以及避碰的要		
		求。		
75	Olfati-Saber 集	采用 Olfati-Saber 算法实现	2.AdvExps\e5_AlSwarmCtrlExp\2.Olfati_SaberSwarmUAVObsAvoid\Readme.pdf	个人集
	群算法	多无人机的避障、避碰、向目		合版
		标点聚集。		
76	无人机区域防守	采用深度强化学习训练无人	2.AdvExps\e5_AlSwarmCtrlExp\3.MultiUAVRegionDefense\Readme.pdf	个人集
		机防守模型,使得能够采用		合版
		更少的无人机抵御攻击型无		
		人机,能够取得很好的防守		
		效果。		
77	蚂蚁算法多无人	通过蚂蚁算法规划出一条可	2.AdvExps\e5_AlSwarmCtrlExp\1.AntAlgorithmMutUAVPathPlan\Readme.pdf	个人集
	机路径规划实验	行且较优的路径,这条路径		合版
		需要符合避障以及避碰的要		
		求。		
78	Olfati-Saber 集	采用 Olfati-Saber 算法实现	2.AdvExps\e5_AlSwarmCtrlExp\2.Olfati_SaberSwarmUAVObsAvoid\Readme.pdf	个人集

	群算法	多无人机的避障、避碰、向目		合版
		标点聚集。		
79	无人机区域防守	采用深度强化学习训练无人	2.AdvExps\e5_AlSwarmCtrlExp\3.MultiUAVRegionDefense\Readme.pdf	个人集
		机防守模型,使得能够采用		合版
		更少的无人机抵御攻击型无		
		人机,能够取得很好的防守		
		效果。		
80	定制性实验	本文件夹中的所有实验均为	3.CustExps\Readme.pdf	完整版
		部分项目中的拆解实验,相		
		比其他文件夹中的实验,该		
		文件夹中的实验更加完整、		
		复杂,满足更多的项目或者		
		科研需求。		

备注

注 1: 各版本区别说明详见: http://rflysim.com/doc/RflySimVersions.xlsx。更高版本获取请见: https://rflysim.com/download.html, 或咨询service@rflysim.com。