Kolloquium Masterarbeit

Untersuchung quelloffener verteilter geografischer Informationssysteme zur Verarbeitung agrartechnischer Kennzahlen

Kurt Junghanns, B.Sc. (kjungha@htwk-leipzig.de)

5. Juli 2015

Inhaltsverzeichnis

- 1 Einleitung
- 2 Methodisches Vorgehen
- 3 Ausgangsszenario
- 4 Systemauswahl
- 5 Untersuchung von Postgres-XL
- 6 Tests
- 7 Fazit

Betreuer:

M. Sc. Volkmar Herbst

Prof. Dr. rer. nat. Thomas Riechert

Unternehmen:

Agri Con GmbH http://agricon.de

Precision Farming

Abbildung: Aktueller Stand bei Agri Con

Abbildung: Ziel Installation

Abbildung : Relevante GIS

Anforderungen:

- große Datenmengen
- räumliche Funktionen
- geringe Laufzeiten

Anforderungen bedingen Untersuchung alternativer Datenhaltung:

- NoSQL
- verteiltes System

Methodisches Vorgehen

Untersuchung quelloffener verteilter geografischer Informationssysteme zur Verarbeitung agrartechnischer Kennzahlen:

- Untersuchung bestehender Frameworks anhand von Qualitätsmerkmalen
- 2 Auswahl eines Frameworks
- 3 Entwurf eines Prototypen
- Prototypische Implementierung

Ausgangsszenario

Anforderungen an die Technologie:

- PostgreSQL mit PostGIS zum Datenimport und -export nutzbar
- Gruppierung und Filterung mit geringer Laufzeit
- Parallele Berechnung über große Datenmengen mit geringer Laufzeit
- Räumliche Berechnungen wie Verschneidung und Overlays
- Nutzbare Schnittstelle zur Darstellung mit dem UMN MapServer

Ausgangsszenario

Softwarequalitätsmerkmale:

Funktionsumfang, Fehlertoleranz, Dokumentation, Zeitverhalten, Analysier- und Modifizierbarkeit.

Qualitätsmetriken:

Richtigkeit, Interoperabilität, Funktionsumfang, Fehlertoleranz, Dokumentation, Zeitverhalten und Modifizierbarkeit.

Testfälle:

Funktions- und Leistungstests.

Ausgangsszenario

Stand der Forschung

Abbildung: Relevante GIS nach Recherche

https://en.wikipedia.org/wiki/Spatial_database

Nutzwert GeoMesa: 56

Metrik	erreichter Wert	Erfüllung in %	gewichteter Teilnutzen
Interoperabilität	7	58	17
Funktionsumfang	48	79	16
Dokumentation	4	31	11
Modifizierbarkeit	4	80	12

Tabelle : Nutzwertanalyse GeoMesa

Nutzwert Postgres-XL: 86

Metrik	erreichter	Erfüllung in %	gewichteter
	Wert		Teilnutzen
Interoperabilität	12	100	30
Funktionsumfang	53	87	17
Dokumentation	9	69	24
Modifizierbarkeit	5	100	15

Tabelle: Nutzwertanalyse Postgres-XL

Nutzwert Rasdaman: 51

Metrik	erreichter Wert	Erfüllung in %	gewichteter Teilnutzen
Interoperabilität	7	58	17
Funktionsumfang	10	16	3
Dokumentation	8	62	22
Modifizierbarkeit	3	60	9

Tabelle: Nutzwertanalyse Rasdaman