Fundamentos de Programación Lógica

Paradigmas de Lenguajes de Programación

Paradigma lógico

- Se basa en el uso de la lógica como un lenguaje de programación
- Se especifican
 - ciertos hechos y reglas de inferencia
 - un objetivo ("goal") a probar
- Un motor de inferencia trata de probar que el objetivo es consecuencia de los hechos y reglas
- Es declarativo: se especifican hechos, reglas y objetivo sin indicar cómo se obtiene éste último a partir de los primeros

- Lenguaje de programación basado en este esquema que fue introducido a fines de 1971 (cf. "THE BIRTH OF PROLOG", A. Colmerauer y P. Roussel, www.lif-sud.univ-mrs.fr/~colmer/)
- Los programas se escriben en un subconjunto de la lógica de primer orden
- ► El mecanismo teórico en el que se basa es el método de resolución
- Para motivar y comprender este mecanismo primero lo vamos a estudiar en el ámbito de la lógica proposicional

Ejemplo de programa

```
habla(ale,ruso).
habla(juan,ingles).
habla(maria,ruso).
habla(maria,ingles).
```

Ejemplo de programa

```
habla(ale,ruso).
habla(juan,ingles).
habla(maria,ruso).
habla(maria,ingles).

seComunicaCon(X,Y):-habla(X,L),habla(Y,L),X\=Y.
seComunicaCon(X,Y):-habla(X,L),habla(Y,L),X\=Y.
```

Ejemplo de programa habla(ale, ruso). habla(juan, ingles). habla(maria, ruso). habla(maria, ingles). seComunicaCon(X,Y):-habla(X,L),habla(Y,L),X=Y.seComunicaCon(X,Y):-habla(X,L),habla(Y,L),X\=Y Ejemplo de goal

seComunicaCon(X,ale)

Sintaxis de la lógica proposicional

Dado un conjunto \mathcal{V} de variables proposicionales, podemos definir inductivamente al conjunto de fórmulas proposicionales (o proposiciones) **Prop** de la siguiente manera:

Sintaxis de la lógica proposicional

Dado un conjunto \mathcal{V} de variables proposicionales, podemos definir inductivamente al conjunto de fórmulas proposicionales (o proposiciones) **Prop** de la siguiente manera:

- 1. Una variable proposicional P_0, P_1, \ldots es una proposición
- 2. Si A, B son proposiciones, entonces:
 - ► ¬A es una proposición
 - $ightharpoonup A \wedge B$ es una proposición
 - ► *A* ∨ *B* es una proposición
 - $ightharpoonup A \supset B$ es una proposición
 - $ightharpoonup A \iff B$ es una proposición

Ejemplos: $A \vee \neg B$, $(A \wedge B) \supset (A \vee A)$

Semántica

- ▶ Una valuación es una función $v: \mathcal{V} \to \{\mathbf{T}, \mathbf{F}\}$ que asigna valores de verdad a las variables proposicionales
- ▶ Una valuación satisface una proposición A si $v \models A$ donde:

$$v \models P \quad sii \quad v(P) = \mathbf{T}$$
 $v \models \neg A \quad sii \quad v \not\models A \ (i.e. \text{ no } v \models A)$
 $v \models A \lor B \quad sii \quad v \models A \text{ o } v \models B$
 $v \models A \land B \quad sii \quad v \models A \text{ y } v \models B$
 $v \models A \supset B \quad sii \quad v \not\models A \text{ o } v \models B$
 $v \models A \supset B \quad sii \quad v \not\models A \text{ o } v \models B$

Una proposición A es

una tautología

Una proposición A es

- ightharpoonup una tautologíasi $v \models A$ para toda valuación v
- satisfactible

Una proposición A es

- ightharpoonup una tautologíasi $v \models A$ para toda valuación v
- ightharpoonup satisfactible si existe una valuación v tal que $v \models A$
- ► insatisfactible

Una proposición A es

- ightharpoonup una tautologíasi $v \models A$ para toda valuación v
- ightharpoonup satisfactible si existe una valuación v tal que $v \models A$
- insatisfactible si no es satisfactible

Un conjunto de proposiciones S es

- ▶ satisfactible si existe una valuación v tal que para todo $A \in S$, se tiene $v \models A$
- insatisfactible si no es satisfactible

Ejemplos

Tautologías

- $ightharpoonup A\supset A$
- $ightharpoonup \neg \neg A \supset A$
- $\blacktriangleright (A\supset B) \iff (\neg B\supset \neg A)$

Proposiciones insatisfactibles

- $(\neg A \lor B) \land (\neg A \lor \neg B) \land A$
- \blacktriangleright $(A\supset B)\land A\land \neg B$

Teorema

Una proposición A es una tautología sii $\neg A$ es insatisfactible

Teorema

Una proposición A es una tautología sii $\neg A$ es insatisfactible

Dem.

- \Rightarrow . Si A es tautología, para toda valuación v, $v \models A$. Entonces, $v \not\models \neg A$ (i.e. v no satisface $\neg A$).
- \leftarrow . Si $\neg A$ es insatisfactible, para toda valuación v, $v \not\models \neg A$. Luego $v \models A$.

Notar

Este resultado sugiere un método indirecto para probar que una proposición A es una tautología, a saber probar que $\neg A$ es insatisfactible

Validez por refutación

Principio de demostración por refutación:

Probar que A es válido mostrando que $\neg A$ es insatisfactible

Validez por refutación

Principio de demostración por refutación:

Probar que A es válido mostrando que $\neg A$ es insatisfactible

- Hay varias técnicas de demostración por refutación
 - ► Tableaux semántico (1960)
 - Procedimiento de Davis-Putnam (1960)
 - Resolución (1965)
- Nos vamos a concentrar en Resolución

- ► Introducido por Alan Robinson en 1965

 A MACHINE-ORIENTED LOGIC BASED ON THE RESOLUTION PRINCIPLE, J. of the ACM (12).
- Es simple de implementar.
- Popular en el ámbito de demostración automática de teoremas.
- ► Tiene una única regla de inferencia: la regla de resolución.
- ➤ Si bien no es imprescindible, es conveniente asumir que las proposiciones están en forma normal conjuntiva.

Forma normal conjuntiva (FNC)

- ▶ Un Literal es una variable proposicional P o su negación $\neg P$
- Una proposición A está en FNC si es una conjunción

$$C_1 \wedge \ldots \wedge C_n$$

donde cada C_i (llamado cláusula) es una disyunción

$$B_{i1} \vee \ldots \vee B_{in_i}$$

y cada B_{ij} es un literal

Una FNC es una "conjunción de disyunciones de literales"

Ejemplos

$$\blacktriangleright (P \lor Q) \land (P \lor \neg Q)$$

Ejemplos

- ▶ $(P \lor Q) \land (P \lor \neg Q)$ está en FNC
- $\blacktriangleright (P \lor Q) \land (P \lor \neg \neg Q)$

Ejemplos

- ▶ $(P \lor Q) \land (P \lor \neg Q)$ está en FNC
- $ightharpoonup (P \lor \neg \neg Q)$ no está en FNC
- $ightharpoonup (P \wedge Q) \vee P$

Ejemplos

- ▶ $(P \lor Q) \land (P \lor \neg Q)$ está en FNC
- $ightharpoonup (P \lor \neg \neg Q)$ no está en FNC
- ▶ $(P \land Q) \lor P$ no está en FNC

Teorema

Para toda proposición A puede hallarse una proposición A' en FNC que es lógicamente equivalente a A.

Nota

A es lógicamente equivalente a B sii $A \iff B$ es una tautología

Notación conjuntista para FNC

- ▶ Dado que tanto ∨ como ∧
 - 1. son conmutativos (i.e. $(A \lor B) \iff (B \lor A)$)
 - 2. son asociativos (i.e. $((A \lor B) \lor C) \iff (A \lor (B \lor C))$)
 - 3. son idempotentes (i.e. $(A \lor A) \iff A$)

Podemos asumir que

- 1. Cada cláusula C_i es distinta
- 2. Cada cláusula puede verse como un conjunto de literales distintos

Notación conjuntista para FNC

Consecuentemente para una FNC podemos usar la notación

$$\{C_1,\ldots,C_n\}$$

donde cada C_i es un conjunto de literales

$$\{B_{i1},\ldots,B_{in_i}\}$$

Por ejemplo, la FNC $(P \lor Q) \land (P \lor \neg Q)$ se anota

$$\{\{P,Q\},\{P,\neg Q\}\}$$

Principio fundamental del método de resolución

Se basa en el hecho de que la siguiente proposición es una tautología

$$(A \lor P) \land (B \lor \neg P) \iff (A \lor P) \land (B \lor \neg P) \land (A \lor B)$$

Principio fundamental del método de resolución

Se basa en el hecho de que la siguiente proposición es una tautología

$$(A \lor P) \land (B \lor \neg P) \iff (A \lor P) \land (B \lor \neg P) \land (A \lor B)$$

Por lo tanto, el conjunto de cláusulas

$$\{C_1,\ldots,C_m,\{A,P\},\{B,\neg P\}\}$$

es lógicamente equivalente a

$$\{C_1,\ldots,C_m,\{A,P\},\{B,\neg P\},\{A,B\}\}$$

► En consecuencia, el conjunto de cláusulas

$$\{C_1,\ldots,C_m,\{A,P\},\{B,\neg P\}\}$$

es insatisfactible sii

$$\{C_1,\ldots,C_m,\{A,P\},\{B,\neg P\},\{A,B\}\}$$

es insatisfactible

En consecuencia, el conjunto de cláusulas

$$\{C_1,\ldots,C_m,\{A,P\},\{B,\neg P\}\}$$

es insatisfactible sii

$$\{C_1,\ldots,C_m,\{A,P\},\{B,\neg P\},\{A,B\}\}$$

es insatisfactible

La cláusula $\{A, B\}$ se llama resolvente de las cláusulas $\{A, P\}$ y $\{B, \neg P\}$

En consecuencia, el conjunto de cláusulas

$$\{C_1,\ldots,C_m,\{A,P\},\{B,\neg P\}\}$$

es insatisfactible sii

$$\{C_1,\ldots,C_m,\{A,P\},\{B,\neg P\},\{A,B\}\}$$

es insatisfactible

- La cláusula $\{A, B\}$ se llama resolvente de las cláusulas $\{A, P\}$ y $\{B, \neg P\}$
- ▶ El resolvente de las cláusulas $\{P\}$ y $\{\neg P\}$ es la cláusula vacía y se anota □

Regla de resolución

- ▶ Dado un literal L, el opuesto de L (escrito \overline{L}) se define como:
 - $ightharpoonup \neg P \text{ si } L = P$
 - ightharpoonup P si $L = \neg P$
- ▶ Dadas dos cláusulas C_1 , C_2 , una cláusula C se dice resolvente de C_1 y C_2 sii, para algún literal L, $L \in C_1$, $\overline{L} \in C_2$, y

$$C = (C_1 - \{L\}) \cup (C_2 - \{\overline{L}\})$$

Regla de resolución

- ▶ Dado un literal L, el opuesto de L (escrito \overline{L}) se define como:
 - $\neg P \text{ si } L = P$
 - ightharpoonup P si $L = \neg P$
- ▶ Dadas dos cláusulas C_1 , C_2 , una cláusula C se dice resolvente de C_1 y C_2 sii, para algún literal L, $L \in C_1$, $\overline{L} \in C_2$, y

$$C = (C_1 - \{L\}) \cup (C_2 - \{\overline{L}\})$$

Ejemplos

Las cláusulas $\{A, B\}$ y $\{\neg A, \neg B\}$ tienen dos resolventes: $\{A, \neg A\}$ y $\{B, \neg B\}$.

Las cláusulas $\{P\}$ y $\{\neg P\}$ tienen a la cláusula vacía como resolvente

Regla de resolución

$$\frac{\{A_1, \dots, A_m, Q\} \quad \{B_1, \dots, B_n, \neg Q\}}{\{A_1, \dots, A_m, B_1, \dots, B_n\}}$$

Ejemplo

El resultado de aplicar la regla de resolución a $\{\{P,Q\},\{P,\neg Q\},\{\neg P,Q\},\{\neg P,Q\}\}\}$ es $\{\{P,Q\},\{P,\neg Q\},\{\neg P,Q\},\{\neg P,Q\},\{P\}\}\}$

El método de resolución

El proceso de agregar a un conjunto S el resolvente C de dos cláusulas C_1 , C_2 que pertenecen a S (i.e. de aplicar la regla de resolución a S) se llama un paso de resolución.

El método de resolución

El proceso de agregar a un conjunto S el resolvente C de dos cláusulas C_1 , C_2 que pertenecen a S (i.e. de aplicar la regla de resolución a S) se llama un paso de resolución.

Nota:

- Asumiremos que el resolvente C que se agrega a S no pertenecía ya a S
- Pasos de resolución preservan insatisfactibilidad S es insatisfactible sii $S \cup \{C\}$ es insatisfactible

El método de resolución

- Un conjunto de cláusulas se llama una refutación si contiene a la cláusula vacía (i.e. a □).
- ► El método de resolución trata de construir una secuencia de conjuntos de cláusulas, obtenidas usando pasos de resolución hasta llegar a una refutación.

$$S_1 \Rightarrow S_2 \Rightarrow \ldots \Rightarrow S_{n-1} \Rightarrow S_n \ni \square$$

- En ese caso se sabe que el conjunto inicial de cláusulas es insatisfactible dado que
 - 1. cada paso de resolución preserva insatisfactibilidad
 - 2. el último conjunto de cláusulas es insatisfactible (contiene la cláusula vacía)

Objetivo: mostrar que el conjunto de cláusulas $\{\{P,Q\},\{P,\neg Q\},\{\neg P,Q\},\{\neg P,\neg Q\}\}\}$ es insatisfactible.

Objetivo: mostrar que el conjunto de cláusulas $\{\{P,Q\},\{P,\neg Q\},\{\neg P,Q\},\{\neg P,\neg Q\}\}\}$ es insatisfactible.

1.
$$\{\{P,Q\},\{P,\neg Q\},\{\neg P,Q\},\{\neg P,\neg Q\}\}$$

Objetivo: mostrar que el conjunto de cláusulas $\{\{P,Q\},\{P,\neg Q\},\{\neg P,Q\},\{\neg P,Q\}\}\}$ es insatisfactible.

- 1. $\{\{P,Q\},\{P,\neg Q\},\{\neg P,Q\},\{\neg P,\neg Q\}\}$
- 2. $\{\{P,Q\},\{P,\neg Q\},\{\neg P,Q\},\{\neg P,\neg Q\},\{P\}\}$

Objetivo: mostrar que el conjunto de cláusulas $\{\{P,Q\},\{P,\neg Q\},\{\neg P,Q\},\{\neg P,\neg Q\}\}\}$ es insatisfactible.

- 1. $\{\{P,Q\},\{P,\neg Q\},\{\neg P,Q\},\{\neg P,\neg Q\}\}$
- 2. $\{\{P,Q\},\{P,\neg Q\},\{\neg P,Q\},\{\neg P,\neg Q\},\{P\}\}$
- 3. $\{\{P,Q\},\{P,\neg Q\},\{\neg P,Q\},\{\neg P,\neg Q\},\{P\},\{\neg P\}\}$

Objetivo: mostrar que el conjunto de cláusulas $\{\{P,Q\},\{P,\neg Q\},\{\neg P,Q\},\{\neg P,\neg Q\}\}\}$ es insatisfactible.

- 1. $\{\{P,Q\},\{P,\neg Q\},\{\neg P,Q\},\{\neg P,\neg Q\}\}$
- 2. $\{\{P,Q\},\{P,\neg Q\},\{\neg P,Q\},\{\neg P,\neg Q\},\{P\}\}$
- 3. $\{\{P,Q\},\{P,\neg Q\},\{\neg P,Q\},\{\neg P,\neg Q\},\{P\},\{\neg P\}\}\}$
- **4**. $\{\{P,Q\},\{P,\neg Q\},\{\neg P,Q\},\{\neg P,\neg Q\},\{P\},\{\neg P\},\square\}$

1.
$$\{\{A, B, \neg C\}, \{A, B, C\}, \{A, \neg B\}, \{\neg A\}\}$$

- 1. $\{\{A, B, \neg C\}, \{A, B, C\}, \{A, \neg B\}, \{\neg A\}\}$
- 2. $\{\{A, B, \neg C\}, \{A, B, C\}, \{A, \neg B\}, \{\neg A\}, \{A, B\}\}$

- 1. $\{\{A, B, \neg C\}, \{A, B, C\}, \{A, \neg B\}, \{\neg A\}\}$
- 2. $\{\{A, B, \neg C\}, \{A, B, C\}, \{A, \neg B\}, \{\neg A\}, \{A, B\}\}$
- 3. $\{\{A, B, \neg C\}, \{A, B, C\}, \{A, \neg B\}, \{\neg A\}, \{A, B\}, \{A\}\}\}$

- 1. $\{\{A, B, \neg C\}, \{A, B, C\}, \{A, \neg B\}, \{\neg A\}\}$
- 2. $\{\{A, B, \neg C\}, \{A, B, C\}, \{A, \neg B\}, \{\neg A\}, \{A, B\}\}$
- 3. $\{\{A, B, \neg C\}, \{A, B, C\}, \{A, \neg B\}, \{\neg A\}, \{A, B\}, \{A\}\}\}$
- **4**. $\{\{A, B, \neg C\}, \{A, B, C\}, \{A, \neg B\}, \{\neg A\}, \{A, B\}, \{A\}, \square\}$

Objetivo: mostrar que el conjunto de cláusulas $S = \{\{A, B, C\}, \{A\}, \{B\}\}$ es insatisfactible.

Objetivo: mostrar que el conjunto de cláusulas $S = \{\{A, B, C\}, \{A\}, \{B\}\}\}$ es insatisfactible.

- No podemos aplicar ningún paso de resolución a S.
- \triangleright Por lo tanto, no puede llegarse a una refutación a partir S.

Objetivo: mostrar que el conjunto de cláusulas $S = \{\{A, B, C\}, \{A\}, \{B\}\}\}$ es insatisfactible.

- No podemos aplicar ningún paso de resolución a S.
- \triangleright Por lo tanto, no puede llegarse a una refutación a partir S.
- S debe ser satisfactible.
- ▶ En efecto, tomar por ejemplo $v(A) = v(B) = \mathbf{T}$.

Terminación de la regla de resolución

- La aplicación reiterada de la regla de resolución siempre termina (suponiendo que el resolvente que se agrega es nuevo)
- ► En efecto, notar que
 - 1. El resolvente (i.e. la cláusula nueva que se agrega) se forma con los literales distintos que aparecen en el conjunto de cláusulas de partida S
 - 2. Hay una cantidad finita de literales en el conjunto de cláusulas de partida S
- ► En el peor de los casos, la regla de resolución podrá generar una nueva cláusula por cada combinación diferente de literales distintos de *S*

Corrección y completitud

► El siguiente resultado establece la corrección y completitud del método de resolución

Teorema

Dado un conjunto finito S de cláusulas,

S es insatisfactible sii tiene una refutación

Recapitulando

Para probar que A es una tautología hacemos lo siguiente:

- 1. Calculamos la forma normal conjuntiva de $\neg A$
- 2. Aplicamos el método de resolución
- 3. Si hallamos una refutación:
 - $ightharpoonup \neg A$ es insatisfactible,
 - Y, por lo tanto, A es una tautología
- 4. Si no hallamos ninguna refutación:
 - $ightharpoonup \neg A$ es satisfactible,
 - Y, por lo tanto, A no es una tautología

Lógica de primer orden (Repaso)

Lenguaje de primer orden

Un lenguaje de primer orden (LPO) \mathcal{L} consiste en:

- 1. Un conjunto numerable de constantes c_0, c_1, \ldots
- 2. Un conjunto numerable de símbolos de función con aridad n > 0 (indica el número de argumentos) f_0, f_1, \ldots
- 3. Un conjunto numerable de símbolos de predicado con aridad $n \ge 0$, P_0, P_1, \ldots La aridad indica el número de argumentos que toma (si n = 0, es una variable proposicional)

Lenguaje de primer orden

Un lenguaje de primer orden (LPO) \mathcal{L} consiste en:

- 1. Un conjunto numerable de constantes c_0, c_1, \ldots
- 2. Un conjunto numerable de símbolos de función con aridad n > 0 (indica el número de argumentos) f_0, f_1, \ldots
- 3. Un conjunto numerable de símbolos de predicado con aridad $n \ge 0$, P_0, P_1, \ldots La aridad indica el número de argumentos que toma (si n = 0, es una variable proposicional)

Ejemplo: Lenguaje de primer orden para la aritmética Constantes: 0; Símbolos de función: S, +, *; Símbolos de predicado: <, =.

Términos de primer orden

Sea $\mathcal{V} = \{x_0, x_1, \ldots\}$ un conjunto numerable de variables y \mathcal{L} un LPO. El conjunto de \mathcal{L} -términos se define inductivamente como:

- 1. Toda constante de \mathcal{L} y toda variable es un \mathcal{L} -término
- 2. Si $t_1, \ldots, t_n \in \mathcal{L}$ -términos y f es un símbolo de función de aridad n, entonces $f(t_1, \ldots, t_n) \in \mathcal{L}$ -términos

Términos de primer orden

Sea $\mathcal{V} = \{x_0, x_1, \ldots\}$ un conjunto numerable de variables y \mathcal{L} un LPO. El conjunto de \mathcal{L} -términos se define inductivamente como:

- 1. Toda constante de \mathcal{L} y toda variable es un \mathcal{L} -término
- 2. Si $t_1, \ldots, t_n \in \mathcal{L}$ -términos y f es un símbolo de función de aridad n, entonces $f(t_1, \ldots, t_n) \in \mathcal{L}$ -términos

Ejemplo: Aritmética (cont.) $S(0), +(S(0), S(S(0))), *(S(x_1), +(x_2, S(x_3)))$

Fórmulas atómicas

Sea \mathcal{V} un conjunto numerable de variables y \mathcal{L} un LPO. El conjunto de \mathcal{L} -fórmulas atómicas se define inductivamente como:

- 1. Todo símbolo de predicado de aridad 0 es una \mathcal{L} -fórmula atómica
- 2. Si $t_1, \ldots, t_n \in \mathcal{L}$ -términos y P es un símbolo de predicado de aridad n, entonces $P(t_1, \ldots, t_n)$ es una \mathcal{L} -fórmula atómica

Ejemplo: Aritmética (cont.) $< (0, S(0)), < (x_1, +(S(0), x_2))$

Fórmulas de primer orden

Sea \mathcal{V} un conjunto numerable de variables y \mathcal{L} un LPO. El conjunto de \mathcal{L} -fórmulas se define inductivamente como:

- 1. Toda \mathcal{L} -fórmula atómica es una \mathcal{L} -fórmula
- 2. Si $A, B \in \mathcal{L}$ -fórmulas, entonces $(A \land B), (A \lor B), (A \supset B), (A \iff B)$ y $\neg A$ son \mathcal{L} -fórmulas

Fórmulas de primer orden

Sea \mathcal{V} un conjunto numerable de variables y \mathcal{L} un LPO. El conjunto de \mathcal{L} -fórmulas se define inductivamente como:

- 1. Toda \mathcal{L} -fórmula atómica es una \mathcal{L} -fórmula
- 2. Si $A, B \in \mathcal{L}$ -fórmulas, entonces $(A \land B), (A \lor B), (A \supset B), (A \iff B)$ y $\neg A$ son \mathcal{L} -fórmulas
- 3. Para toda variable x_i y cualquier \mathcal{L} -fórmula A, $\forall x_i.A$ y $\exists x_i.A$ son \mathcal{L} -fórmulas

Fórmulas de primer orden

Sea \mathcal{V} un conjunto numerable de variables y \mathcal{L} un LPO. El conjunto de \mathcal{L} -fórmulas se define inductivamente como:

- 1. Toda \mathcal{L} -fórmula atómica es una \mathcal{L} -fórmula
- 2. Si $A, B \in \mathcal{L}$ -fórmulas, entonces $(A \land B), (A \lor B), (A \supset B), (A \iff B)$ y $\neg A$ son \mathcal{L} -fórmulas
- 3. Para toda variable x_i y cualquier \mathcal{L} -fórmula A, $\forall x_i.A$ y $\exists x_i.A$ son \mathcal{L} -fórmulas

Ejemplo: Aritmética (cont.)

- $\blacktriangleright \forall x. \forall y. ((x < y \lor y < x) \lor x = y)$

Variables libres y ligadas

Las variables pueden ocurrir libres o ligadas.

- Los cuantificadores ligan variables
- Usamos FV(A) y BV(A) para referirnos a las variables libres y ligadas, resp., de A
- FV(A) y BV(A) se pueden definir por inducción estructural en A

Ejemplo

Si
$$A = \forall x.(R(x,y) \supset P(x))$$
, entonces $FV(A) = \{y\}$ y $BV(A) = \{x\}$

Variables libres y ligadas

- Una fórmula A se dice rectificada si
 - ightharpoonup FV(A) y BV(A) son disjuntos y
 - Cuantificadores distintos de A ligan variables distintas
- ► Toda fórmula se puede rectificar (renombrando variables ligadas) a una fórmula lógicamente equivalente

Sentencias

Una sentencia es una fórmula cerrada (i.e. sin variables libres).

- Muchos resultados se formulan para sentencias
- Esto no implica una pérdida de generalidad ya que toda fórmula es lógicamente equivalente a su clausura universal

Estructura de primer orden

Dado un lenguaje de primer orden \mathcal{L} , una estructura para \mathcal{L} , \mathbf{M} , es un par $\mathbf{M} = (M, I)$ donde

- ► M (dominio) es un conjunto no vacío
- ▶ I (función de interpretación) asigna funciones y predicados sobre M a símbolos de \mathcal{L} de la siguiente manera:
 - 1. Para toda constante $c, I(c) \in M$
 - 2. Para todo f de aridad n > 0, $I(f) : M^n \to M$
 - 3. Para todo predicado P de aridad $n \ge 0$, $I(P): M^n \to \{\mathbf{T}, \mathbf{F}\}$

Satisfactibilidad

Asignación

Sea M una estructura para \mathcal{L} . Una asignación es una función $s:\mathcal{V}\to M$

Si s es una asignación y $a \in M$, usamos la notación $s[x \leftarrow a]$ para denotar la asignación que se comporta igual que s salvo en el elemento s, en cuyo caso retorna s

Satisfactibilidad

Asignación

Sea M una estructura para \mathcal{L} . Una asignación es una función $s: \mathcal{V} \to M$

Si s es una asignación y $a \in M$, usamos la notación $s[x \leftarrow a]$ para denotar la asignación que se comporta igual que s salvo en el elemento s, en cuyo caso retorna s

Satisfactibilidad

La relación $s \models_{\mathbf{M}} A$ establece que la asignación s satisface la fórmula A en la estructura \mathbf{M}

Vamos a definir la relación $s \models_{\mathbf{M}} A$ de manera informal usando inducción estructural en A

Satisfactibilidad

La relación $s \models_{\mathbf{M}} A$ se define inductivamente como:

$$s \models_{\mathsf{M}} P(t_1, \dots, t_n)$$
 sii $P_{\mathsf{M}}(s(t_1), \dots, s(t_n))$
 $s \models_{\mathsf{M}} \neg A$ sii $s \not\models_{\mathsf{M}} A$
 $s \models_{\mathsf{M}} (A \land B)$ sii $s \models_{\mathsf{M}} A$ $y s \models_{\mathsf{M}} B$
 $s \models_{\mathsf{M}} (A \lor B)$ sii $s \models_{\mathsf{M}} A$ o $s \models_{\mathsf{M}} B$
 $s \models_{\mathsf{M}} (A \supset B)$ sii $s \not\models_{\mathsf{M}} A$ o $s \models_{\mathsf{M}} B$
 $s \models_{\mathsf{M}} (A \Longleftrightarrow B)$ sii $(s \models_{\mathsf{M}} A \operatorname{sii} s \models_{\mathsf{M}} B)$
 $s \models_{\mathsf{M}} \forall x_i.A$ sii $s[x_i \leftarrow a] \models_{\mathsf{M}} A \operatorname{para} \operatorname{algún} a \in M$
 $s \models_{\mathsf{M}} \exists x_i.A$ sii $s[x_i \leftarrow a] \models_{\mathsf{M}} A \operatorname{para} \operatorname{algún} a \in M$

Validez

Una fórmula A es satisfactible en M sii existe una asignación s tal que

$$s \models_{\mathsf{M}} A$$

- ▶ Una fórmula A es satisfactible sii existe un M tal que A es satisfactible en M. En caso contrario se dice que A es insatisfactible.
- ▶ Una fórmula A es válida en M sii

$$s \models_{\mathbf{M}} A$$
, para toda asignación s

Validez

Una fórmula A es satisfactible en M sii existe una asignación s tal que

$$s \models_{\mathsf{M}} A$$

- ▶ Una fórmula A es satisfactible sii existe un M tal que A es satisfactible en M. En caso contrario se dice que A es insatisfactible.
- Una fórmula A es válida en M sii

$$s \models_{\mathbf{M}} A$$
, para toda asignación s

- ightharpoonup Una fórmula A es válida sii es válida en toda estructura M.
- **Nota:** A es válida sii $\neg A$ es insatisfactible.

Teorema de Church

No existe un algoritmo que pueda determinar si una fórmula de primer orden es válida

- Como consecuencia el método de resolución que veremos para la lógica de primer orden no es un procedimiento efectivo
- Es un procedimiento de semi-decisión:
 - > si una sentencia es insatisfactible hallará una refutación,
 - pero si es satisfactible puede que no se detenga

- Es una forma normal conjuntiva, en notación de conjuntos.
- Análogo a la forma clausal del marco proposicional.
- ▶ Pero requiere tener en cuenta los cuantificadores.

- Es una forma normal conjuntiva, en notación de conjuntos.
- Análogo a la forma clausal del marco proposicional.
- Pero requiere tener en cuenta los cuantificadores.
- El pasaje a forma clausal consiste en seis pasos de conversión.
 - 1. Escribir la fórmula en términos de $\land, \lor, \neg, \forall, \exists$ (i.e. eliminar implicación).
 - 2. Pasar a forma normal negada.
 - 3. Pasar a forma normal prenexa (opcional).
 - 4. Pasar a forma normal de Skolem.
 - 5. Pasar matriz a forma normal conjuntiva.
 - 6. Distribuir cuantificadores universales.

El conjunto de fórmulas en forma normal negada (FNN) se define inductivamente como:

- 1. Para cada fórmula atómica A, A y $\neg A$ están en FNN.
- 2. Si $A, B \in \text{FNN}$, entonces $(A \vee B), (A \wedge B) \in \text{FNN}$.
- 3. Si $A \in \text{FNN}$, entonces $\forall x.A, \exists x.A \in \text{FNN}$.

El conjunto de fórmulas en forma normal negada (FNN) se define inductivamente como:

- 1. Para cada fórmula atómica A, A y $\neg A$ están en FNN.
- 2. Si $A, B \in \text{FNN}$, entonces $(A \vee B), (A \wedge B) \in \text{FNN}$.
- 3. Si $A \in \text{FNN}$, entonces $\forall x.A, \exists x.A \in \text{FNN}$.

Ejemplos

El conjunto de fórmulas en forma normal negada (FNN) se define inductivamente como:

- 1. Para cada fórmula atómica A, A y $\neg A$ están en FNN.
- 2. Si $A, B \in \text{FNN}$, entonces $(A \vee B), (A \wedge B) \in \text{FNN}$.
- 3. Si $A \in \text{FNN}$, entonces $\forall x.A, \exists x.A \in \text{FNN}$.

- ► $\neg \exists x. ((P(x) \lor \exists y. R(x, y)) \supset (\exists z. R(x, z) \lor P(a)))$ no está en FNN.

El conjunto de fórmulas en forma normal negada (FNN) se define inductivamente como:

- 1. Para cada fórmula atómica A, A y $\neg A$ están en FNN.
- 2. Si $A, B \in \text{FNN}$, entonces $(A \vee B), (A \wedge B) \in \text{FNN}$.
- 3. Si $A \in \text{FNN}$, entonces $\forall x.A, \exists x.A \in \text{FNN}$.

- ▶ $\neg \exists x.((P(x) \lor \exists y.R(x,y)) \supset (\exists z.R(x,z) \lor P(a)))$ no está en FNN.
- ▶ $\forall x.((P(x) \lor \exists y.R(x,y)) \land (\forall z.\neg R(x,z) \land \neg P(a)))$ está en FNN.

Toda fórmula es lógicamente equivalente a otra en FNN.

Toda fórmula es lógicamente equivalente a otra en FNN.

Dem.

Por inducción estructural usando:

$$\neg(A \land B) \iff \neg A \lor \neg B
\neg(A \lor B) \iff \neg A \land \neg B
\neg \neg A \iff A
\neg \forall x.A \iff \exists x.\neg A
\neg \exists x.A \iff \forall x.\neg A$$

Toda fórmula es lógicamente equivalente a otra en FNN.

Dem.

Por inducción estructural usando:

$$\neg(A \land B) \iff \neg A \lor \neg B
\neg(A \lor B) \iff \neg A \land \neg B
\neg \neg A \iff A
\neg \forall x.A \iff \exists x.\neg A
\neg \exists x.A \iff \forall x.\neg A$$

Ejemplos

▶ $\neg \exists x. (\neg (P(x) \lor \exists y. R(x, y)) \lor (\exists z. R(x, z) \lor P(a)))$ se transforma en

Toda fórmula es lógicamente equivalente a otra en FNN.

Dem.

Por inducción estructural usando:

$$\neg(A \land B) \iff \neg A \lor \neg B
\neg(A \lor B) \iff \neg A \land \neg B
\neg \neg A \iff A
\neg \forall x.A \iff \exists x.\neg A
\neg \exists x.A \iff \forall x.\neg A$$

- ► $\neg \exists x. (\neg (P(x) \lor \exists y. R(x, y)) \lor (\exists z. R(x, z) \lor P(a)))$ se transforma en

Forma normal prenexa

Fórmula de la forma $Q_1x_1 \dots Q_nx_n.B$, $n \geq 0$, donde

- ► B sin cuantificadores (llamada matriz)
- $ightharpoonup x_1, \dots, x_n$ son variables
- $ightharpoonup Q_i \in \{\forall,\exists\}$

Forma prenexa

Toda fórmula rectificada A es lógicamente equivalente a una fórmula B en forma prenexa.

Forma prenexa

Toda fórmula rectificada A es lógicamente equivalente a una fórmula B en forma prenexa.

Demostración

Por inducción estructural usando:

$$(\forall x.A) \land B \iff \forall x.(A \land B) \qquad (\forall x.A) \lor B \iff \forall x.(A \lor B)$$

$$(A \land \forall x.B) \iff \forall x.(A \land B) \qquad (A \lor \forall x.B) \iff \forall x.(A \lor B)$$

$$(\exists x.A) \land B \iff \exists x.(A \land B) \qquad (\exists x.A) \lor B \iff \exists x.(A \lor B)$$

$$(A \land \exists x.B) \iff \exists x.(A \land B) \qquad (A \lor \exists x.B) \iff \exists x.(A \lor B)$$

Nota: Con estas equivalencias basta, si asumimos que A está en FNN.

1.
$$\forall x. \neg P(x) \land (\exists y. Q(y) \lor \forall z. P(z))$$

1.
$$\forall x. \neg P(x) \land (\exists y. Q(y) \lor \forall z. P(z))$$

2.
$$\forall x. \neg P(x) \land (\exists y. (Q(y) \lor \forall z. P(z)))$$

- 1. $\forall x. \neg P(x) \land (\exists y. Q(y) \lor \forall z. P(z))$
- 2. $\forall x. \neg P(x) \land (\exists y. (Q(y) \lor \forall z. P(z)))$
- 3. $\exists y.(\forall x.\neg P(x) \land (Q(y) \lor \forall z.P(z)))$

1.
$$\forall x. \neg P(x) \land (\exists y. Q(y) \lor \forall z. P(z))$$

2.
$$\forall x. \neg P(x) \land (\exists y. (Q(y) \lor \forall z. P(z)))$$

3.
$$\exists y.(\forall x.\neg P(x) \land (Q(y) \lor \forall z.P(z)))$$

4.
$$\exists y.(\forall x.\neg P(x) \land \forall z.(Q(y) \lor P(z)))$$

1.
$$\forall x. \neg P(x) \land (\exists y. Q(y) \lor \forall z. P(z))$$

2.
$$\forall x. \neg P(x) \land (\exists y. (Q(y) \lor \forall z. P(z)))$$

3.
$$\exists y.(\forall x.\neg P(x) \land (Q(y) \lor \forall z.P(z)))$$

4.
$$\exists y.(\forall x.\neg P(x) \land \forall z.(Q(y) \lor P(z)))$$

5.
$$\exists y. \forall z. (\forall x. \neg P(x) \land (Q(y) \lor P(z)))$$

- 1. $\forall x. \neg P(x) \land (\exists y. Q(y) \lor \forall z. P(z))$
- 2. $\forall x. \neg P(x) \land (\exists y. (Q(y) \lor \forall z. P(z)))$
- 3. $\exists y.(\forall x.\neg P(x) \land (Q(y) \lor \forall z.P(z)))$
- 4. $\exists y.(\forall x.\neg P(x) \land \forall z.(Q(y) \lor P(z)))$
- 5. $\exists y. \forall z. (\forall x. \neg P(x) \land (Q(y) \lor P(z)))$
- 6. $\exists y. \forall z. \forall x. (\neg P(x) \land (Q(y) \lor P(z)))$

Forma normal de Skolem

- Hasta ahora tenemos una fórmula que:
 - 1. está escrita en términos de $\land, \lor, \neg, \forall, \exists$,
 - 2. si tiene negaciones, solamente se aplican a átomos (forma normal negada),
 - 3. (opcionalmente) si tiene cuantificadores, se encuentran todos en el prefijo (forma normal prenexa).
- El proceso de pasar una fórmula a forma normal de Skolem se llama skolemización.
- ► El objetivo de la skolemización es
 - 1. eliminar los cuantificadores existenciales
 - 2. sin alterar la satisfactibilidad.

¿Cómo eliminamos los ∃ sin cambiar la satisfactibilidad?

- ¿Cómo eliminamos los ∃ sin cambiar la satisfactibilidad?
- Introducimos "testigos" para ellos.
 - Todo cuantificador existencial se instancia en una constante o función de skolem.

- ¿Cómo eliminamos los ∃ sin cambiar la satisfactibilidad?
- Introducimos "testigos" para ellos.
 - Todo cuantificador existencial se instancia en una constante o función de skolem.
 - Ejemplo: $\exists x.P(x)$ se skolemiza a P(c) donde c es una nueva constante que se agrega al lenguaje de primer orden.
 - Estas funciones y constantes se suelen conocer como parámetros.

¿Cómo se altera el significado de la fórmula?

Prop.

Si A' es el resultado de skolemizar A, entonces A es satisfactible sii A' es satisfactible.

- Consecuencia: La skolemización preserva insatisfactibilidad.
- Esto es suficiente para poder aplicar el método de resolución, tal como veremos.

¿Preservación de validez?

Podremos eliminar los cuantificadores existenciales, usando skolemización, sin alterar la validez?

¿Preservación de validez?

- ▶ ¿Podremos eliminar los cuantificadores existenciales, usando skolemización, sin alterar la validez?
- Esto es mucho más fuerte que preservar satisfactibilidad...
- Respuesta: No.
- ► Ejemplo: $\exists x.(P(a) \supset P(x))$ es válida pero $P(a) \supset P(b)$ no lo es.
- ► Tal como se mencionó, la skolemización sí preserva satisfactibilidad y ello es suficiente para el método de resolución.

Skolemización

Cada ocurrencia de una subfórmula

$$\exists x.B$$

en A se reemplaza por

$$B\{x \leftarrow f(x_1,\ldots,x_n)\}$$

donde

- ●{• ← •} es la operación usual de sustitución (sustituir todas las ocurrencias libres de una variable en una expresión fórmula o término por otra expresión).
- ▶ f es un símbolo de función nuevo y las x_1, \ldots, x_n son las variables de las que depende x en B.
- Si $\exists x.B$ forma parte de una fórmula mayor, x solo depende de las variables libres de B (por ejemplo, en $\forall z. \forall y. \exists x. P(y, x)$ la x depende de y).

Definición de forma normal de Skolem (1/2)

- ► Sea A una sentencia rectificada en FNN.
 - No es necesario que esté en forma prenexa.
- ▶ Una forma normal de Skolem de A (escrito SK(A)) es una fórmula sin existenciales que se obtiene recursivamente como sigue.
- ► Sea A' cualquier subfórmula de A.
 - ▶ Si A' es una fórmula atómica o su negación, SK(A') = A'.
 - Si A' es de la forma $(B \star C)$ con $\star \in \{\lor, \land\}$, entonces $SK(A') = (SK(B) \star SK(C))$.
 - ▶ Si A' es de la forma $\forall x.B$, entonces $SK(A') = \forall x.SK(B)$.
 - Sigue en siguiente diapositiva.

Definición de forma normal de Skolem (2/2)

- ► Si A' es de la forma $\exists x.B$ y $\{x, y_1, \ldots, y_m\}$ son las variables libres de B^1 , entonces
 - 1. Si m > 0, crear un nuevo símbolo de función de Skolem, f_x de aridad m y definir

$$SK(A') = SK(B\{x \leftarrow f_x(y_1, \dots, y_m)\})$$

2. Si m=0, crear una nueva constante de Skolem c_x y $\mathbf{SK}(A')=\mathbf{SK}(B\{x\leftarrow c_x\})$

Nota: dado que A está rectificada, cada f_x y c_x es única.

Considerar la fórmula
$$\forall x. \left(P(a) \lor \exists y. (Q(y) \land \forall z. (P(y,z) \lor \exists u. Q(x,u))) \right) \lor \exists w. Q(w)$$
 La forma normal de Skolem es: $\forall x. (P(a) \lor (Q(g(x)) \land \forall z. (P(g(x),z) \lor Q(x,f(x))))) \lor Q(c)$

► Considere la sentencia:

$$\forall x. \exists y. \exists z. R(x, y, z)$$

1. Alternativa 1 (rojo, azul)

Considere la sentencia:

$$\forall x. \exists y. \exists z. R(x, y, z)$$

1. Alternativa 1 (rojo, azul)

1.1
$$\forall x. \exists y. \exists z. R(x, y, z)$$

1.2
$$\forall x. \exists z. R(x, f(x), z)$$

$$\forall x. \exists y. \exists z. R(x, y, z)$$

- 1. Alternativa 1 (rojo, azul)
 - 1.1 $\forall x. \exists y. \exists z. R(x, y, z)$
 - 1.2 $\forall x. \exists z. R(x, f(x), z)$
 - 1.3 $\forall x.R(x, f(x), g(x))$

$$\forall x. \exists y. \exists z. R(x, y, z)$$

- 1. Alternativa 1 (rojo, azul)
 - 1.1 $\forall x. \exists y. \exists z. R(x, y, z)$
 - 1.2 $\forall x. \exists z. R(x, f(x), z)$
 - 1.3 $\forall x.R(x, f(x), g(x))$
- 2. Alternativa 2 (azul, rojo)

$$\forall x. \exists y. \exists z. R(x, y, z)$$

- 1. Alternativa 1 (rojo, azul)
 - 1.1 $\forall x. \exists y. \exists z. R(x, y, z)$
 - 1.2 $\forall x. \exists z. R(x, f(x), z)$
 - 1.3 $\forall x.R(x, f(x), g(x))$
- 2. Alternativa 2 (azul, rojo)
 - 2.1 $\forall x. \exists y. \exists z. R(x, y, z)$
 - 2.2 $\forall x. \exists y. R(x, y, h(x, y))$

$$\forall x. \exists y. \exists z. R(x, y, z)$$

- 1. Alternativa 1 (rojo, azul)
 - 1.1 $\forall x. \exists y. \exists z. R(x, y, z)$
 - 1.2 $\forall x. \exists z. R(x, f(x), z)$
 - 1.3 $\forall x.R(x, f(x), g(x))$
- 2. Alternativa 2 (azul, rojo)
 - 2.1 $\forall x. \exists y. \exists z. R(x, y, z)$
 - 2.2 $\forall x. \exists y. R(x, y, h(x, y))$
 - 2.3 $\forall x.R(x,k(x),h(x,k(x)))$
- 3. La skolemización no es determinística.

$$\forall x. \exists y. \exists z. R(x, y, z)$$

- 1. Alternativa 1 (rojo, azul)
 - 1.1 $\forall x. \exists y. \exists z. R(x, y, z)$
 - 1.2 $\forall x. \exists z. R(x, f(x), z)$
 - 1.3 $\forall x.R(x, f(x), g(x))$
- 2. Alternativa 2 (azul, rojo)
 - 2.1 $\forall x. \exists y. \exists z. R(x, y, z)$
 - 2.2 $\forall x. \exists y. R(x, y, h(x, y))$
 - 2.3 $\forall x.R(x,k(x),h(x,k(x)))$
- 3. La skolemización no es determinística.
- Es mejor skolemizar de afuera hacia adentro.

Hasta ahora tenemos una fórmula que:

- 1. está escrita en términos de $\land, \lor, \neg, \forall$;
- 2. si tiene negaciones, solamente se aplican a átomos (forma normal negada);
- 3. si tiene cuantificadores, son universales (forma normal de Skolem);
- 4. si está en forma normal prenexa y tiene cuantificadores, éstos se encuentran todos en el prefijo.

$$\forall x_1 \dots \forall x_n . B$$

$$\forall x_1 \dots \forall x_n . B$$

1. Pasar B (la matriz) a forma normal conjuntiva B' como si fuera una fórmula proposicional arrojando

$$\forall x_1 \dots \forall x_n . B'$$

$$\forall x_1 \dots \forall x_n . B$$

1. Pasar B (la matriz) a forma normal conjuntiva B' como si fuera una fórmula proposicional arrojando

$$\forall x_1 \dots \forall x_n.B'$$

2. Distribuir los cuantificadores sobre cada conjunción usando la fórmula válida $\forall x.(A \land B) \iff \forall x.A \land \forall x.B$ arrojando una conjunción de cláusulas

$$\forall x_1 \ldots \forall x_n. C_1 \wedge \ldots \wedge \forall x_1 \ldots \forall x_n. C_m$$

donde cada C_i es una disyunción de literales

$$\forall x_1 \dots \forall x_n . B$$

1. Pasar B (la matriz) a forma normal conjuntiva B' como si fuera una fórmula proposicional arrojando

$$\forall x_1 \dots \forall x_n . B'$$

2. Distribuir los cuantificadores sobre cada conjunción usando la fórmula válida $\forall x.(A \land B) \iff \forall x.A \land \forall x.B$ arrojando una conjunción de cláusulas

$$\forall x_1 \ldots \forall x_n. C_1 \wedge \ldots \wedge \forall x_1 \ldots \forall x_n. C_m$$

donde cada C_i es una disyunción de literales

3. Se simplifica escribiendo $\{C_1, \ldots, C_m\}$.

$$\forall x. \forall z. (P(a) \lor (Q(g(x)) \land (P(g(x), z) \lor Q(x, f(x))))) \lor Q(c)$$

1. Pasamos la matriz a forma normal conjuntiva

$$\forall x. \forall z. \big([P(a) \lor Q(g(x)) \lor Q(c)] \land [P(a) \lor P(g(x), z) \lor Q(x, f(x)) \lor Q(c)] \big)$$

$$\forall x. \forall z. (P(a) \lor (Q(g(x)) \land (P(g(x), z) \lor Q(x, f(x))))) \lor Q(c)$$

1. Pasamos la matriz a forma normal conjuntiva

$$\forall x. \forall z. \big([P(a) \lor Q(g(x)) \lor Q(c)] \land [P(a) \lor P(g(x), z) \lor Q(x, f(x)) \lor Q(c)] \big)$$

2. Distribuimos los cuantificadores

$$\forall x. \forall z. [P(a) \lor Q(g(x)) \lor Q(c)] \land \forall x. \forall z. [P(a) \lor P(g(x), z) \lor Q(x, f(x)) \lor Q(c)]$$

$$\forall x. \forall z. (P(a) \lor (Q(g(x)) \land (P(g(x), z) \lor Q(x, f(x))))) \lor Q(c)$$

1. Pasamos la matriz a forma normal conjuntiva

$$\forall x. \forall z. \big([P(a) \lor Q(g(x)) \lor Q(c)] \land [P(a) \lor P(g(x), z) \lor Q(x, f(x)) \lor Q(c)] \big)$$

2. Distribuimos los cuantificadores

$$\forall x. \forall z. [P(a) \lor Q(g(x)) \lor Q(c)] \land \forall x. \forall z. [P(a) \lor P(g(x), z) \lor Q(x, f(x)) \lor Q(c)]$$

3. Pasamos a notación de conjuntos

$$\left\{ \{ P(a), Q(g(x)), Q(c) \}, \\
\{ P(a), P(g(x), z), Q(x, f(x)), Q(c) \} \right\}$$

Forma clausal - Resumen

- 1. Escribir la fórmula en términos de $\land, \lor, \neg, \forall, \exists$ (i.e. eliminar implicación)
- 2. Pasar a forma normal negada
- 3. Pasar a forma normal prenexa
- 4. Pasar a forma normal de Skolem (puede hacerse antes de 3)
- 5. Pasar la matriz a forma normal conjuntiva
- 6. Distribuir cuantificadores universales

Nota: todos los pasos preservan validez lógica, salvo la skolemización (que preserva la satisfactibilidad).