Observe that for any nonempty finite subset $J \subseteq \Sigma$ with |J| = n, we have

$$L_I(u_J) = \begin{cases} 1 & \text{if } I = J \\ 0 & \text{if } I \neq J. \end{cases}$$

Note that when $\dim(E) = d$ and $n \leq d$, or when E is infinite-dimensional, the forms $u_{i_1}^*, \ldots, u_{i_n}^*$ are all distinct, so the above does hold. Since $L_I(u_I) = 1$, we conclude that $u_I \neq 0$. If we have a linear combination

$$\sum_{I} \lambda_{I} u_{I} = 0,$$

where the above sum is finite and involves nonempty finite subset $I \subseteq \Sigma$ with |I| = n, for every such I, when we apply L_I we get $\lambda_I = 0$, proving linear independence.

As a corollary, if E is finite dimensional, say $\dim(E) = d$, and if $1 \le n \le d$, then we have

$$\dim(\bigwedge^n(E)) = \binom{n}{d},$$

and if n > d, then $\dim(\bigwedge^n(E)) = 0$.

Remark: When n = 0, if we set $u_{\emptyset} = 1$, then $(u_{\emptyset}) = (1)$ is a basis of $\bigwedge^{0}(V) = K$.

It follows from Proposition 34.7 that the family $(u_I)_I$ where $I \subseteq \Sigma$ ranges over finite subsets of Σ is a basis of $\bigwedge(V) = \bigoplus_{n>0} \bigwedge^n(V)$.

As a corollary of Proposition 34.7 we obtain the following useful criterion for linear independence.

Proposition 34.8. For any vector space E, the vectors $u_1, \ldots, u_n \in E$ are linearly independent iff $u_1 \wedge \cdots \wedge u_n \neq 0$.

Proof. If $u_1 \wedge \cdots \wedge u_n \neq 0$, then u_1, \ldots, u_n must be linearly independent. Otherwise, some u_i would be a linear combination of the other u_j 's (with $j \neq i$), and then, as in the proof of Proposition 34.7, $u_1 \wedge \cdots \wedge u_n$ would be a linear combination of wedges in which two vectors are identical, and thus zero.

Conversely, assume that u_1, \ldots, u_n are linearly independent. Then we have the linear forms $u_i^* \in E^*$ such that

$$u_i^*(u_j) = \delta_{i,j} \qquad 1 \le i, j \le n.$$

As in the proof of Proposition 34.7, we have a linear map $L_{u_1,...,u_n}: \bigwedge^n(E) \to K$ given by

$$L_{u_1,\dots,u_n}(v_1 \wedge \dots \wedge v_n) = \det(u_j^*(v_i)) = \begin{vmatrix} u_1^*(v_1) & \dots & u_1^*(v_n) \\ \vdots & \ddots & \vdots \\ u_n^*(v_1) & \dots & u_n^*(v_n) \end{vmatrix},$$

for all $v_1 \wedge \cdots \wedge v_n \in \bigwedge^n(E)$. As $L_{u_1,\dots,u_n}(u_1 \wedge \cdots \wedge u_n) = 1$, we conclude that $u_1 \wedge \cdots \wedge u_n \neq 0$.