EBU6018 Advanced Transform Methods

Linear Algebra

Andy Watson

Linear Algebra

- Many Time-Frequency Transforms are linear, like matrices – so we need to know about vectors & matrices
- This lecture is a quick reminder of some of these concepts – called "Linear Algebra"
- Will keep to real-valued examples here
- The concept of "Bases" is a fundamental aspect of Transforms.
- The Bases of a Transform are the functions used to perform any Transform, and it is important to know if these functions are orthogonal or not.

Scalars, Vectors and Matrices

- Scalar completely determined by a single number.
 E.g. length, volume, brightness.
- Typical notation: lower case italic: a
- Matlab example: Assign a single value: » a=5.3
- Vector determined by magnitude and direction.
 Often given as several values (elements or components)
- Dimensionality number of elements needed.
- Typical notation: lower case bold: b
 (or alternatively underline: b
)
- Matlab example: » b=[4; 3; 5]
- This is a column vector

Example:
$$\mathbf{b} = \begin{bmatrix} 4 \\ 3 \\ 5 \end{bmatrix}$$

Geometrical Representation

- Components 4, 3,
 5 are the coordinates of a point in 3-dimensional space.
- Coordinates indicated by subscripts, e.g. b₃ = 5 Notation:
 Scalar b₃ is a component

of vector b

Matrices

- Matrix a rectangular array of scalars (its elements)
- Matrices said to be m x n ("m by n")
 m rows and n columns, with a total of mn elements.
- Notation: upper case bold: A (or double-underline: \underline{A})

Example of
$$3 \times 4$$
 matrix : $\mathbf{A} = \begin{bmatrix} 2 & 5 & 3 & 6 \\ 7 & 3 & 2 & 1 \\ 5 & 2 & 0 & 3 \end{bmatrix}$

- Matlab: » A=[2 5 3 6; 7 3 2 1; 5 2 0 3]
- Elements indicated by subscripts: a_{ij} e.g. $a_{2,4}=1$ Use comma if necessary: $a_{2,4}$ vs a_{24}

Notation: Sometimes useful: $\mathbf{A} = [a_{ij}]$ or $a_{ij} = [\mathbf{A}]_{ij}$

Transpose

 Transpose flips matrix along its diagonal: swaps rows and columns:

If
$$\mathbf{A} = \begin{bmatrix} 2 & 5 & 3 & 6 \\ 7 & 3 & 2 & 1 \\ 5 & 2 & 0 & 3 \end{bmatrix}$$
 then transpose is $\mathbf{A}^t = \begin{bmatrix} 2 & 7 & 5 \\ 5 & 3 & 2 \\ 3 & 2 & 0 \\ 6 & 1 & 3 \end{bmatrix}$

- Typical notation superscript t or T: A^t or A^T
- Matlab: use single quote » A'
- Column vector is 1 x n, transpose is n x 1 row vector:

$$\mathbf{b} = \begin{bmatrix} 4 \\ 3 \\ 5 \end{bmatrix} \text{ with transpose } \mathbf{b}^t = \begin{bmatrix} 4 & 3 & 5 \end{bmatrix}$$

If $A^t = A$, the matrix A is called *symmetric*.

Matrix and vector addition

Vectors and matrices are added by adding elements

Example:
$$\begin{bmatrix} 1 & 4 & 3 \\ 5 & 4 & 0 \end{bmatrix} + \begin{bmatrix} 2 & 4 & 1 \\ 2 & 6 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 8 & 4 \\ 7 & 10 & 3 \end{bmatrix}$$

We write: $\mathbf{v} + \mathbf{w} = \mathbf{z}$ (vectors) or $\mathbf{A} + \mathbf{B} = \mathbf{C}$ (matrices)

Expands to: $v_i + w_i = z_i$ for all i, and $a_{ij} + b_{ij} = c_{ij}$ for all i, j

- Matrices and vectors added must have same shape!
- Matlab: » A+B

Addition is commutative: A + B = B + A

Addition is associative: (A+B)+C=A+(B+C)

Scalar multiplication: $c\mathbf{A} = [ca_{ij}]$ (scales each element)

Inner Product ("dot product")

For two (real) vectors **a** and **b** of same dimension *n* inner product is $\langle \mathbf{a}, \mathbf{b} \rangle = \sum_{i} a_i b_i$

Sometimes write as $\mathbf{a} \cdot \mathbf{b}$ ("dot product") or as $\mathbf{a}^t \mathbf{b}$

Example: given
$$\mathbf{a} = \begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 4 \\ 3 \\ 5 \end{bmatrix}$ we get

$$\mathbf{a}^{t}\mathbf{b} = \begin{bmatrix} 2 & 5 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 5 \end{bmatrix} = 2 \times 4 + 5 \times 3 + 1 \times 5 = 28$$

Matlab: » a'*b

Norm (length) of a vector

Norm $\|\mathbf{a}\|$ of a vector \mathbf{a} (strictly: its "2-norm") is given by

$$\sqrt{\langle \mathbf{a}, \mathbf{a} \rangle} = \sqrt{\mathbf{a}^t \mathbf{a}} = \left(\sum_i a_i^2\right)^{1/2}$$

Norm of a vector is commonly known as its length

• Matlab: » norm(a) or » sqrt(a'*a) Can show that $\|\langle a,b\rangle\| \le \|a\| \cdot \|b\|$

This is called the Cauchy-Schwarz Inequality.

The two sides are equal only if a and b are linearly dependent.

Orthogonal and Orthonormal Vectors

Vectors a and b are orthogonal to each other if

 $\mathbf{a}^t \mathbf{b} = 0$ i.e. their inner product $\langle \mathbf{a}, \mathbf{b} \rangle$ is zero.

Vectors are orthonormal if orthogonal and of unit length.

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$, [i.e. $\{\mathbf{v}_i\}$ with $i = 1, 2, \dots, m$] is orthonormal if

$$\mathbf{v}_{i}^{t}\mathbf{v}_{j} = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{otherwise} \end{cases}$$
 This is called the Kronecker Delta Function

Example: The 3-dimensional basis system given by

$$\mathbf{v}_1 = [1 \ 0 \ 0], \ \mathbf{v}_2 = [0 \ 1 \ 0], \ \mathbf{v}_3 = [0 \ 0 \ 1]$$

is orthonormal. (For example, x, y, z axes).

For *n*-dimensional vectors, we can have no more than

n vectors in any set of orthogonal vectors.

Matrix Multiplication

Two matrices \mathbf{A} and \mathbf{B} can be multiplied if the number of columns of \mathbf{A} matches the number of rows of \mathbf{B} ,

i.e. A is $m \times n$ and B is $n \times p$ for some integers m, n, p.

Element
$$ik$$
 of product \mathbf{AB} is: $[\mathbf{AB}]_{ik} = \sum_{i} a_{ij} b_{jk}$

[Or: in Einstein's summation convention: $[\mathbf{AB}]_{ik} = a_{ij}b_{jk}$]

Matrix multiplication is Sum repeated

Associative: (AB)C = A(BC) Indices (here: j)

Distributive: A(B+C) = AB + AC

but not Commutative: $AB \neq BA$ (except in special cases)

Useful identities:

$$(\mathbf{A}^t)^t = \mathbf{A}$$
 $(\mathbf{A} + \mathbf{B})^t = \mathbf{A}^t + \mathbf{B}^t$ $(\mathbf{A}\mathbf{B})^t = \mathbf{B}^t \mathbf{A}^t$

Special Matrices

Diagonal matrix: non-zero elements only occur on diagonal.

Example:
$$\mathbf{D} = \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 7 & 0 \end{bmatrix}$$
 Note $d_{ij} = 0$ if $i \neq j$

Diagonal matrices are often square. (But not necessarily.)

Matlab: diag(.) gets diagonal elements or makes matrix

Identity matrix I: square diagonal matrix with ones on diagonal.

Example for 3x3:
$$\mathbf{I}_3 = \mathbf{I}_{3\times 3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Multiplication by identity matrix leaves a matrix unchanged:

$$\mathbf{A}_{m \times n} \mathbf{I}_{n \times n} = \mathbf{A}_{m \times n} = \mathbf{I}_{m \times m} \mathbf{A}_{m \times n}$$

Matrix Inverse

Inverse A^{-1} of a matrix A is the matrix where $A^{-1}A = AA^{-1} = I$ For A^{-1} to exist, A must be square.

If **A** has an inverse, it is said to be *invertible*, and A^{-1} is unique.

The product of invertible matrices has an inverse:

$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1} \qquad (\mathbf{A}\mathbf{B}\mathbf{C})^{-1} = \mathbf{C}^{-1}\mathbf{B}^{-1}\mathbf{A}^{-1}$$

The identity matrix is its own inverse: $I^{-1} = I$

(Methods exist for calculating inverses)

For example, $A^{-1} = \frac{Adjoint A}{Determinant A}$

Matlab: inv (A) calculates the inverse of a matrix.

Linear Independence

Given a set of vectors $\{\mathbf v_i\}$ i=1,2,...,k if we can find a set of scalars $\{c_i\}$ i=1,2,...,k (excluding $c_1=c_2=\cdots=0$) such that $c_1\mathbf v_1+c_2\mathbf v_2+\cdots+c_k\mathbf v_k=\mathbf 0$

then the set of vectors is called *linearly dependent*. If there is none, they are called *linearly independent*.

Visualialization: 2-dimensional plane

Linearly independent

Linearly dependent $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = 0$ (using $c_3 = -1$)

Max n linearly independent vectors in n-dimensional space

Spanning a vector space

The real vector space \mathbb{R}^n is the space of vectors which each have n real components. The exponent n is called the *dimension* of the space.

E.g. \mathbb{R}^3 is our "usual" three - dimensional space.

Given an n-dimensional real vector space \mathbb{R}^n , a set of vectors $\{\mathbf{w}_i\}$ i=1,2,...,k is said to span the space if every vector \mathbf{v} in \mathbb{R}^n can be written as

 $\mathbf{v} = c_1 \mathbf{w}_1 + c_2 \mathbf{w}_2 + \dots + c_k \mathbf{w}_k$ for some set of scalars $\{c_i\}$ $i = 1, 2, \dots, k$ Spans R^2

Does not
span R²
(also linearly dependent)

Basis vectors

A set of vectors $\{\mathbf w_i\}$ i = 1, 2, ..., n is said to be

a *basis* for a vector space \mathbb{R}^n if the set of vectors $\{\mathbf{w}_i\}$

- (a) is linearly independent, and
- (b) spans the space \mathbb{R}^n .

There must be exactly n vectors in the basis.

Each vector \mathbf{v} in R^n has a unique set of *coordinates* $\{c_i\}$ in the basis $\{\mathbf{w}_i\}$, where $\mathbf{v} = c_1\mathbf{w}_1 + c_2\mathbf{w}_2 + \cdots + c_n\mathbf{w}_n$

Not a basis for R^2 (Doesn't span R^2)

Not a basis for R^2 (linearly dependent)

Row Space & Column Space; Rank

The column space $R(\mathbf{A})$: space spanned by the columns of \mathbf{A} .

The row space $R(\mathbf{A}^t)$ is the space spanned by the rows of \mathbf{A} . The row space and column space have the same dimensionality r, the rank of \mathbf{A} .

This fact sometimes expressed as "row rank = column rank". *

(2,1,2)

Example:
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 2 \end{bmatrix}$$

Columns span entire R^2

Rows span 2-d subspace of R^3

Row rank = 2

(1,2,0)

Null Space; Orthogonal Subspaces

The *nullspace* $N(\mathbf{A})$ of \mathbf{A} is the space *not* spanned by the rows of \mathbf{A} . This has dimension n-r.

Two subspaces V and W are orthogonal if every vector \mathbf{v} in V is orthogonal to every vector \mathbf{w} in W.

I.e. we must have $\mathbf{v}^t \mathbf{w} = 0$ for all $\mathbf{v} \in V$, $\mathbf{w} \in W$.

So, the nullspace $N(\mathbf{A})$ and row space $R(\mathbf{A}^t)$ are orthogonal.

Example: 2-d subspace V (plane) is orthogonal to 1-d subspace W (line)

In the diagram, W is the *orthogonal* complement V^{\perp} of V (the space of all vectors orthogonal to V).

Bases and Hilbert Spaces

Changing the nomenclature (but not the theory) to that of Transform Theory:

• A set of vectors or functions $\{\Psi_n\}$ pans a vector space if any element of that space can be expressed as a linear combination of members of that set

$$s = \sum_{n} c_{n} \Psi_{n}$$

• $\{\Psi_n\}$ is a basis set if the c_n are unique.

- The set is an orthogonal basis if $n \neq m \Rightarrow \langle \Psi_n, \Psi_m \rangle = 0$
- The set is an orthonormal basis if $n=m \Rightarrow \langle \Psi_n, \Psi_m \rangle = 1$ That is, the Kronecker Delta Function
- A space which has all these properties is a type of Hilbert space
- Real numbers, complex numbers and integrable functions form Hilbert Spaces

Properties of Orthonormal Bases

• If $\{\psi_n\}$ constitutes a basis for V, then any vector or function in V can be written as

$$s = \sum_{n} c_{n} \Psi_{n}$$

• However, c_n may be difficult to compute. If $\{\psi_n\}$ form an orthonormal basis, this difficulty is eliminated, since then

$$c_n = \langle s, \Psi_n \rangle$$

• Thus if $\{ \psi_n i \}$ a set of orthonormal basis for V, then any \mathbf{s} in V can be written as

$$s = \sum_{j} \langle s, \Psi_{j} \rangle \Psi_{j}$$

$$= \langle s, \Psi_{1} \rangle \Psi_{1} + \langle s, \Psi_{2} \rangle \Psi_{2} + \dots + \langle s, \Psi_{n} \rangle \Psi_{n}$$

Biorthogonal Bases

- Sometimes, orthonormal bases are not available. A generalization is the concept of biorthogonal bases, which are actually a pair of bases, each set not being orthogonal, but the two sets being orthogonal to each other
- (strictly speaking, they need to be normalised to satisfy the Kronecker Delta Function).
- If $\{\Psi_n\}$ ("psi") and $\{\hat{\Psi}_n\}$ ("psi hat") are both basis vectors themselves for V, and satisfy $\langle \Psi_i, \hat{\Psi}_j \rangle = \delta_{ij}$

then any **s** in *V* can be written as

$$s = \sum_{j=1}^{n} \left\langle s, \Psi_{j} \right\rangle \hat{\Psi}_{j}$$

Dual Base example

•So, a basis set $\{\hat{\Psi}_i\}$ is said to be the dual basis of $\{\Psi_i\}$ if the biorthogonality condition

$$\langle \Psi_i, \hat{\Psi}_j \rangle = \sum_k \Psi_i(k) \hat{\Psi}_j(k) = \delta_{ij}$$

is satisfied. (The Kronecker Delta Function)

An example of a dual basis

$$\{\Psi_i\} = \{(1,0),(1,1)\}$$
 These vectors are not orthogonal. They are linearly independent

$$\{\hat{\Psi}_i\} = \{(1,-1),(0,1)\}$$
 These vectors are not orthogonal. They are linearly independent

Show that these are biorthogonal:

Frames

 Sometimes, biorthogonal bases are not available either. We'd like to represent any vector in V as a linear combination of some simpler vectors / functions, while giving up orthogonality and even linear independence:

$$S = \sum_{j=1}^{n} \left\langle S, \Psi_{j} \right\rangle \hat{\Psi}_{j} = \sum_{j=1}^{n} \left\langle S, \hat{\Psi}_{j} \right\rangle \Psi_{j}$$

Vectors $\{\psi_n\}$ form a **frame** with frame bounds A, B if for any vector s in V:

$$|A||s||^2 \le \sum_{j} \left| \left\langle s, \Psi_j \right\rangle \right|^2 \le B||s||^2$$

Frames

- If A=B, the frame is tight. If removing an element from the frame makes it no longer a frame, then the original frame is said to be exact.
- If the original frame is a basis, then the two frames form a biorthogonal basis system
- Any vector can be written as a linear combination of frame vectors. However, coefficients are no longer unique, vectors no longer independent, and the frame does not constitute a basis. Only exact frames are bases.

Tight Frame example

- In finite dimensions, vectors can always be removed from a frame to get a basis, but in infinite dimensions, that is not always possible.
- Example of a frame in finite dimensions is a matrix more rows than columns but with independent rows.
- Example of tight frame is a matrix with more rows than columns but with orthogonal rows.
- A 3d tight frame in 2d space
 - a family of three vectors in the plane which are obtained by successive rotations of a third of turn of one vector

$$\Psi_1 = (0,1)$$

$$\Psi_2 = (-\sqrt{3/4}, -1/2)$$

$$\Psi_3 = (\sqrt{3/4}, -1/2)$$

