

ch2x=ch2x+sh2y

 $(\mathbf{a} + \mathbf{b})^2 = \mathbf{a}^2 + 2\mathbf{a}\mathbf{b} + \mathbf{b}^2$

- Curl and Divergence
- 2 Parametric Surfaces and Areas
- 3 Surface Integrals

1. Curl and Divergence

 $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field on \mathbb{R}^3 and the partial derivatives of P, Q, and R all exist, then the **curl** of \mathbf{F} is the vector field on defined by

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$
$$= \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)\mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\mathbf{k}$$
$$= \text{curl } \mathbf{F}$$

Theorem

If f is a function of three variables that has continuous second-order partial derivatives, then

$$curl(\nabla f) = \mathbf{0}$$

 $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field on \mathbb{R}^3 and $\partial P/\partial x, \partial Q/\partial y$, and $\partial R/\partial z$ exist, then the **divergence** of \mathbf{F} is the function of three variables defined by

$$\nabla \cdot \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

Theorem

If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field on \mathbb{R}^3 and P, Q, and R have continuous second-order partial derivatives, then

div curl
$$\mathbf{F} = 0$$

Ex 8.1 Vector field $\mathbf{F} = (x^2y, y^2z, z^2x)$, evaluate the divergence of the vector field at point (2,1,-2).

Ex 8.2 Given a rigid body rotating about the z-axis with angular velocity $\omega = (0, 0, \omega)$, find the curl of the linear velocity ν at any point M on the rigid body.

Solution 8.1 -8 Solution 8.2 $\nabla \times \nu = 2$ w

Ex 8.3 Prove the following identities. Assuming that the appropriate partial derivatives exist and are continuous. f is a scalar field and \mathbf{F} , \mathbf{G} are vector fields.

- \bullet div $(f\mathbf{F})=f$ div $\mathbf{F}+\mathbf{F}\cdot\nabla f$
- \bigcirc curl $(f\mathbf{F})=f$ curl $\mathbf{F}+(\nabla f)\times\mathbf{F}$
- 3 $div(\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot curl \mathbf{F} \mathbf{F} \cdot curl \mathbf{G}$

If f is a scalar field and \mathbf{F} , \mathbf{G} are vector fields, then $f\mathbf{F}$, \mathbf{F} · \mathbf{G} , and $\mathbf{F} \times \mathbf{G}$ are defined by

$$(f\mathbf{F})(x, y, z) = f(x, y, z)\mathbf{F}(x, y, z)$$
$$(\mathbf{F} \cdot \mathbf{G})(x, y, z) = \mathbf{F}(x, y, z) \cdot \mathbf{G}(x, y, z)$$
$$(\mathbf{F} \times \mathbf{G})(x, y, z) = \mathbf{F}(x, y, z) \times \mathbf{G}(x, y, z)$$

2. Parametric Surfaces and Areas

We suppose that

$$\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k}$$

is a vector-valued function defined on a region D in the uv-plane. The set of all points (x,y,z) in \mathbb{R}^3 is called a **parametric surface** S. Equations

$$x = x(u, v)$$
 $y = y(u, v)$ $z = z(u, v)$

.are called **parametric equations** of S.

If a smooth parametric surface S is given by the equation

$$\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k} \qquad (u,v) \in D$$

and S is covered just once as (u, v) ranges throughout the parameter domain D, then the surface area of S is

$$A = \iint_{D} |\mathbf{r}_{u} \times \mathbf{r}_{v}| dA$$

where

$$\mathbf{r}_{u} = \frac{\partial x}{\partial u}\mathbf{i} + \frac{\partial y}{\partial u}\mathbf{j} + \frac{\partial z}{\partial u}\mathbf{k}$$
 $\mathbf{r}_{v} = \frac{\partial x}{\partial v}\mathbf{i} + \frac{\partial y}{\partial v}\mathbf{j} + \frac{\partial z}{\partial v}\mathbf{k}$

Т

f the surface can be expressed with equation z = f(x, y), let u = x, v = y, we have

$$x = x$$
 $y = y$ $z = f(x, y)$

then

$$\mathbf{r}_{x} = \mathbf{i} + (\frac{\partial f}{\partial x})\mathbf{k}$$
 $\mathbf{r}_{y} = \mathbf{j} + (\frac{\partial f}{\partial y})\mathbf{k}$

We have

$$\left|\mathbf{r}_{x}\times\mathbf{r}_{y}\right|=\left|-\frac{\partial f}{\partial x}\mathbf{i}-\frac{\partial f}{\partial y}\mathbf{j}+\mathbf{k}\right|=\sqrt{1+(\frac{\partial z}{\partial x})^{2}+(\frac{\partial z}{\partial y})^{2}}$$

Ex 8.4 Find the area of the following surfaces

- The part of the plane 3x + 2y + z = 6 that lies in the first octant.
- The helicoid (or spiral ramp) with vector equation $\mathbf{r}(u, v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + v \mathbf{k}, 0 < u < 1, 0 < v < \pi$

Solution 8.4

- 3√14
- $\frac{\pi}{2}[\sqrt{2} + \ln(1+\sqrt{2})]$

3. Surface Integrals

Types

 \bullet surface integral of f over the surface S

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(\mathbf{r}(u, v)) |\mathbf{r}_{U} \times \mathbf{r}_{v}| dA$$

 \odot surface integral of F over an oriented surface S is

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S} \mathbf{F} \cdot \mathbf{n} dS$$

This integral is also called the **flux** of \mathbf{F} across S.

Oriented Surface Integral

Suppose the surface is parametrized by r(u, v) and the unit normal is given by $\hat{n} = \frac{r_u \times r_v}{||r_u \times r_v||}$.

Then
$$\iint_S F \cdot dS = \iint_S (F \cdot \hat{n}) d\sigma = \iint_D F \cdot \frac{r_u \times r_v}{||r_u \times r_v||} ||r_u \times r_v|| dA = \iint_D F \cdot (r_u \times r_v) dA$$
.

Ex 8.5 Evaluate the following surface integrals.

Calculate the surface integral

$$\iint_{S} (x+y^2) \, dS,$$

where S is the surface of the cylinder given by $x^2 + y^2 = 4$ and $0 \le z \le 3$.

2 Calculate the surface integral:

$$\iint_{S} (x^2 - z) \, dS,$$

where S is the surface with parameterization

$$\mathbf{r}(u, v) = \langle v, u^2 + v^2, 1 \rangle, \quad 0 \le u \le 2, \quad 0 \le v \le 3.$$

- **F** $(x, y, z) = xy \mathbf{i} + 4x^2 \mathbf{j} + yz \mathbf{k}$, S is the surface $z = xe^y$, $0 \le x \le 1, 0 \le y \le 1$, with upward orientation
- **Q** $\mathbf{F}(x, y, z) = xz \mathbf{i} + x \mathbf{j} + y \mathbf{k}$, S is the hemisphere $x^2 + y^2 + z^2 = 25$, $y \ge 0$, oriented in the direction of the positive y-axis

- \bigcirc 24 π
- **2** 24

$$\mathbf{F}(x, y, z) = xy \,\mathbf{i} + 4x^2 \,\mathbf{j} + yz \,\mathbf{k}, \quad z = g(x, y) = xe^y$$
, and D is the square $[0, 1] \times [0, 1]$, so by Equation 10

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} [-xy(e^{y}) - 4x^{2}(xe^{y}) + yz] dA$$

$$= \int_{0}^{1} \int_{0}^{1} (-xye^{y} - 4x^{3}e^{y} + xye^{y}) dy dx$$

$$= \int_{0}^{1} \left[-4x^{3}e^{y} \right]_{y=0}^{y=1} dx = (e-1) \int_{0}^{1} (-4x^{3}) dx = 1 - e$$

 $\mathbf{F}(x,y,z) = x\,\mathbf{i} - z\,\mathbf{j} + y\,\mathbf{k}, z = g(x,y) = \sqrt{4 - x^2 - y^2} \text{ and } D \text{ is the quarter disk}$ $\left\{ (x,y) \,\middle|\, 0 \le x \le 2, 0 \le y \le \sqrt{4 - x^2} \right\}. \quad S \text{ has downward orientation, so by Formula 10,}$

$$\begin{split} \iint_{S} \mathbf{F} \cdot d\mathbf{S} &= -\iint_{D} \left[-x \cdot \frac{1}{2} (4 - x^{2} - y^{2})^{-1/2} (-2x) - (-z) \cdot \frac{1}{2} (4 - x^{2} - y^{2})^{-1/2} (-2y) + y \right] dA \\ &= -\iint_{D} \left(\frac{x^{2}}{\sqrt{4 - x^{2} - y^{2}}} - \sqrt{4 - x^{2} - y^{2}} \cdot \frac{y}{\sqrt{4 - x^{2} - y^{2}}} + y \right) dA \\ &= -\iint_{D} x^{2} (4 - (x^{2} + y^{2}))^{-1/2} dA = -\int_{0}^{\pi/2} \int_{0}^{2} (r \cos \theta)^{2} (4 - r^{2})^{-1/2} r dr d\theta \\ &= -\int_{0}^{\pi/2} \cos^{2} \theta d\theta \int_{0}^{2} r^{3} (4 - r^{2})^{-1/2} dr \qquad \left[\text{let } u = 4 - r^{2} \right. \Rightarrow r^{2} = 4 - u \text{ and } -\frac{1}{2} du = r dr \right] \\ &= -\int_{0}^{\pi/2} \left(\frac{1}{2} + \frac{1}{2} \cos 2\theta \right) d\theta \int_{0}^{4} -\frac{1}{2} (4 - u)(u)^{-1/2} du \\ &= -\left[\frac{1}{2}\theta + \frac{1}{4} \sin 2\theta \right]_{0}^{\pi/2} \left(-\frac{1}{2} \right) \left[8\sqrt{u} - \frac{2}{3} u^{3/2} \right]_{0}^{4} = -\frac{\pi}{4} \left(-\frac{1}{2} \right) \left(-16 + \frac{16}{3} \right) = -\frac{4}{3} \pi \end{split}$$

Thank you!