4

The diagram shows the cross-section ABCD of a uniform solid object which is formed by removing a cone with cross-section DCE from the top of a larger cone with cross-section ABE. The perpendicular distance between AB and DC is h, the diameter AB is h and the diameter h is h and h is h is h is h is h in h is h in h in

Find an expression, in terms of h , for the distance of the centre of mass of the solid object from λ

© UCLES 2020 9231/33/O/N/20

The object is freely suspended from the point B and hangs in equilibrium. The angle between AB and the downward vertical through B is θ .

•	•••••
•	•••••
	 •••••
•	•••••
	 •••••
·	
•	•••••
٠	
٠	•••••