# Satellite Communications - RRY100 -



2024 Study Period 1 Lecturer: Rüdiger Haas

Lecture-3: Noise on satellite links

## Noise in satellite communications



## Noise model:

- We usually work with limited bandwidth only
- An appropriate model is 'white noise'
- Real noise over larger bandwidth usually is 'coloured', i.e. not constant over frequency



# Different noise models



## Concept of 'Noise Temperature':

- All objects with a physical temperature T generate electromagnetic radiation
- We compare the noise power of the source of noise (its physical temperature may be different from T) with an object that has a physical temperature T
- If they have the same noise power N we identify the amount of noise by the 'noise temperature T' in Kelvin



available noise power: N=k T B [W]

Ludwig Boltzmann (1844-1906)

$$N_0 = k \cdot T$$
 [Ws] or [W Hz<sup>-1</sup>]  
 $N = k \cdot B \cdot T$  [W]

Boltzmann's constant:

$$k = 1.3806 \times 10^{-23}$$
 [W s K<sup>-1</sup>]  
 $k = -228.599$  [dB W Hz<sup>-1</sup> K<sup>-1</sup>]

## Concept of 'Effective Input Noise Temperature':

- Is a measure of the noise generated by internal components of a two-port element
- Thermodynamic temperature of resistance connected at the input to the four-port element (assumed to be noiseless) that gives the same noise power at the output of the element



#### Planck's radiation law:

 The noise power N of an electric circuit in thermodynamical equilibrium at a temperature T within a given bandwidth B is:

$$N = k \times T \times B \times p(f)$$

- With a frequency dependent Planck's factor p(f)
- For satellite communications with frequencies f < 100 GHz the simple formula for noise is good enough

$$N = k \times T \times B$$



Planck's factor as function of temperature and frequency.

## Noise figure:

- The ratio of total noise at the output of a 4-port element to the contribution of the input noise with reference temperature T<sub>0</sub>
- Reference temperature is  $T_0=290$  K, (in Japan  $T_0=293$  K)
- For electronic equipment often given in dB

$$F = \frac{G \cdot k \cdot (T_e + T_0) \cdot B}{G \cdot k \cdot T_0 \cdot B} = \frac{T_e + T_0}{T_0}$$
$$= 1 + \frac{T_e}{T_0} \quad [/]$$



Noise figure *F* versus noise temperature *T*.

- System noise temperature,
  - For example at receiving earth station or satellite
  - At the receiver input (useful convention)
  - Contributions from antenna, feeder and receiving system



Figure: Schematic drawing of an earth station receiver.

## Cascaded systems:

- Compare the power at the output of
  - a) the series of individual elements

and

b) one combined element



- First element should have high gain and low effective input noise temperature (==> low noise amplifier – LNA)
- The temperatures and gains of the following elements are less important

## Noise temperature of an attenuator:

- Attenuator contains passive elements at ambient physical temperature  $T_p$
- Attenuation  $L_{att}$  (gain  $G_{att} = 1/L_{att}$ )
- Effective input noise temperature

$$T_{e,att} = (L_{att} - 1) \times T_P$$

- An antenna picks up noise from all radiating bodies within its radiation pattern
- Brightness temperature of a radiating body in a specific direction  $T_b(\theta, \phi)$
- Antenna gain in this direction  $G(\theta, \phi)$
- Antenna noise temperature  $T_A$

$$T_A = \frac{1}{4 \times D} \grave{0} \grave{0} T_b(q, f) \times G(q, f) \sin(q) dq df$$

## Example-1:

Calculate the system noise temperature for the following receiving system



- Figure of merit (G/T):
  - Relation of gain to system noise temperature (G/T)
  - Useful as a measure for the quality of a receiving station
  - Quality of the overall link (C/N<sub>0</sub>) can be split up in contributions from (equation in dB):
    - sending side (EIRP, losses)
    - path loss (L<sub>FS</sub>, L<sub>A</sub>)
    - receiving side (Figure of merit G/T, losses)

$$\frac{C}{N_0} = \frac{(P_{tx} + G_{t.max} - L_t - L_{f.tx})}{(-L_{FS} - L_A)}$$
 sending side path loss 
$$\frac{(+G_{r.max} - L_r - L_{pol} - L_{f.rx} - k - T_s)}{(+G_{r.max} - L_r - L_{pol} - L_{f.rx} - k - T_s)}$$
 receiving side

#### Some examples:

| Туре          | f [GHz] | Te [K] | G [dB] | cost   |
|---------------|---------|--------|--------|--------|
| Cryogenic     | 4       | 15     | 30     | high   |
| Parametric    | 20      | <100   | 30     |        |
| Cooled        | 4       | 35     | 30     | medium |
| Parametric    | 12      | 85     | 30     |        |
| (Peltier)     | 20      | 150    | 30     |        |
| Ambient       | 4       | 55     | 30     | medium |
| Parametric    | 12      | 150    | 30     |        |
|               |         |        |        |        |
| FET cryogenic | 20      | 200    | 30     |        |
| FET cooled    | 4       | 40     | 60     | low    |
| (Peltier)     | 12      | 120    | 60     |        |
|               | 12      | 160    | 60     |        |
|               | 20      | 180    | 45     |        |
| FET ambient   | 4       | 70     | 60     | low    |
|               | 12      | 130    | 60     |        |
|               | 12      | 180    | 60     |        |
|               | 20      | 350    | 22     |        |
| HEMT          | 22      | 300    | 16     | low    |



FIGURE 9.20 Noise temperature and noise figure ( $T_R = 290 \text{ K}$ ) for RF amplifiers and mixers.

- Cryogenically cooled paramp
- O = Thermoelectrically cooled paramp
- ☐ = Tunnel diode amplifier
- $\triangle = Mixer$
- Uncooled paramp
- ☐ = Travelling wave tube amplifier
- × = High electron mobility transistor (HEMT) low noise converter (1993)

• Contributions to the antenna noise temperature of an earth station:





Example for cosmic and galactic noise temperatures

Example for atmospheric noise temperature ("clear-sky") as function of frequency and elevation





FIGURE 9.8 Earth station antenna noise temperature.

Assumptions:

Antenna has no earth-looking sidelobes or a backlobe (zero ground noise)
Antenna is lossless

h is antenna elevation angle (deg)

Sun not considered

Cool, temperate-zone troposphere



#### Rain has two effects:

- Rain acts as an attenuator with temperature  $T_m = 275$  K and contributes with a noise temperature:

$$T_{Rain} = T_m \cdot (1 - 1/A_{Rain})$$

Rain increases the sky noise (for downlink)

$$T_{skyrain} = T_{sky}/A_{Rain}$$

- Noise from the ground T<sub>G</sub>:
  - Picked up from mainlobe in low elevations
  - Picked up from back- and sidelobes
  - Approximate calculation:

$$T_{Ground} = \sum_{i}^{lobes} G_i \cdot \frac{\Omega_i}{4 \cdot \pi} \cdot T_G$$

– Where  $G_i$  and  $\Omega_i$  are the mean gain and the solid angle of the lobe, respectively,  $T_G$  the ground contribution is depending on elevation

$$T_G = 290 \text{ K}$$
 for  $\varepsilon < -10^\circ$ 

$$T_{\rm G} = 150 \text{ K for } -10^{\circ} < \varepsilon < 0^{\circ}$$

$$T_G = 50 \text{ K}$$
 for  $0^{\circ} < \varepsilon 10^{\circ}$ 

$$T_G = 10 \text{ K for} \quad 10^{\circ} < \varepsilon < 90^{\circ}$$

- Satellite antenna noise temperature:
  - Satellite captures noise from the earth and space
  - Satellites "sees" the earth approximately as "black body" of about 290 K
  - Thus there is always high antenna noise temperature onboard satellites
  - Not much can be gained by using LNAs onboard satellites



#### Additional noise due to sun interference



0.5 degree 
$$\Delta T_A = T_{sun} \left( \frac{0.5}{\theta_{3dB}} \right)^2 \text{ if } \theta_{3dB} > 0.5^{\circ}$$

$$\Delta T_A = T_{sun} \qquad \text{if } \theta_{3dB} \le 0.5^{\circ}$$

$$\Delta T_A = T_{sun}$$
 if  $\theta_{3dB} \le 0.5^\circ$ 

The mean brightess temperature of the sun is frequency dependent, e.g.:

$$T_{Sun} = \frac{1.9610^5}{f} \left[ 1 + \frac{\sin 2\pi \left( \frac{\log 6(f - 0.1)}{2.3} \right)}{2.3} \right]$$



- Interference noise:
  - Between different satellite systems
  - Between satellite and terrestrial systems



#### Intermodulation noise:

- Due to non-linearity of satellite transponders
- Transponders have a saturation point

Intermodulation products are generated when the transponder is operated in the

saturation region

output power / saturated output power with 1 carrier output saturated power 0 dBsingle carrier mode  $P_{1,out}$ - 5 dB one out of two carriers  $P_{IMP.3rd}$ -10 dB one out of the 3rd order intermodulation products -15 dB -10 dB -5 dB 0 dB-15 dB input power 1(2) / input power at saturation with 1 carrier

3rd order interception point

Simplified model of a satellite channel:

- Output in linear region is the amplified carriers
- Output in the saturation region is amplified carriers plus intermodulation products f<sub>IM</sub>:

$$f_{IM} = m_1 \cdot f_1 + m_2 \cdot f_2 + \cdots + m_n \cdot f_n$$

- Only odd products of intermodulation noise are dangerous
- 3rd and 5th order intermodulation products are most important
- Of interest is the third order interception point



- Repeater as non-linear device:
  - Input voltage of e.g. two carriers with  $f_i=\omega_i$

$$V_i = A \times \cos(W_1 \times t) + B \times \cos(W_2 \times t)$$

Output voltage includes higher order products

$$V_{o} = a \times \left( A \times \cos(W_{1} \times t) + B \times \cos(W_{2} \times t) \right)$$

$$+b \times \left( A \times \cos(W_{1} \times t) + B \times \cos(W_{2} \times t) \right)^{2}$$

$$+c \times \left( A \times \cos(W_{1} \times t) + B \times \cos(W_{2} \times t) \right)^{3}$$

$$+ \dots + \frac{3}{4} c \times A^{2} \times B \times \cos\left((2 \times W_{1} - W_{2}) \times t\right)$$

$$+ \dots + \frac{3}{4} c \times B^{2} \times A \times \cos\left((2 \times W_{1} - W_{2}) \times t\right)$$

## Example for a satellite payload:

16 transponders with 36 MHz each, uplink frequencies 12.90–13.25 GHz and downlink frequencies 11.25–11.70 GHz



29

```
f1=12918.00 MHz f5=13097.43 MHz
f2=12962.86 MHz f6=13142.29 MHz
f3=13007.71 MHz f7=13187.14 MHz
f4=13052.57 MHz f8=13232.00 MHz
```

- 2nd order intermodulation products:=> outside carriers
- 3rd order intermodulation products: => affect f2 and f5
- 4th order intermodulation products:=> outside carriers
- 5th order intermodulation products: => affect f6 and f1

# Example-2

A satellite transponder with power  $P_{tx} = 10$  W is connected via a feeder (feeder loss  $L_{f,tx} = 1$  dB) to a transmitting antenna with maximal gain  $G_{max} = 33$  dBi and depointing loss  $L_t = 3$  dB. An earth station with a reflector of diameter D = 3.6 m and aperture efficiency of 0.6 is connected via a feeder of loss  $L_{frx}$ =0.5 dB with physical temperature  $T_{ph.fd}$  = 290 K to a receiver with effective input noise temperature of  $T_{erx}$  = 60 K. The depointing loss of the antenna is  $L_t = 1$  dB and the half-power beam-width of the reflector is  $\theta_{3dB} = 0.5$ degrees. The sky temperature is  $T_{skv} = 8$  K and the ground noise temperature is  $T_{Ground} = 20 \text{ K}$ . The free space loss is  $L_{FS} = 206 \text{ dB}$ .

## Questions:

- 1. What is the system noise temperature  $T_{sys}$  of the earth station under clear-sky conditions?
- 2. What is the system noise temperature of the earth station under rain conditions, assuming a rain attenuation of  $A_{rain} = 6 \, dB$  and thermodynamic temperature of  $T_{ph} = 275 \, K$ ?
- 3. What does the the rain mean for the link performance of this downlink?

Antenna temperature in clear sky:  $T_A = T_{sky} + T_{ground} = 28 \text{ K}$  $T_{A.clear-skv} = 28 \text{ K}$ 

Antenna temperature in rain:  $T_A = T_{sky}/A_{rain} + T_m (1-1/A_{rain}) + T_{ground}$  $T_{A rain} = 228 \text{ K}$ 

System noise temperature:  $T_S = T_A/L_{f.rx} + T_{ph.frx} (1-1/L_{ph.frx}) + T_{e.RX}$ 

- 1)  $T_S$  in clear sky:  $T_S = 117 \text{ K}$
- 2)  $T_S$  in rain:  $T_S = 295 \text{ K}$

Satellite EIRP:  $EIRP = P_{tx} + G_{t.max} - L_{ftx} - L_t$ 

EIRP = 39 dBW

Gain of earth station:  $G_{r.max} = \eta \cdot ((\pi \cdot 70^{\circ})/\theta_{3dB})^{2}$  [/]

 $G_{r,max} = 51 \text{ dBi}$ 

$$G_r = G_{r,max} - L_r - L_{frx} = 49.5 \text{ dBi}$$

Figure of merit of earth station:  $(G/T)_{es} = G_r - T_S$ 

 $(G/T)_{es}$  in clear sky:  $(G/T)_{es} = 28.5 dBi K^{-1}$ 

 $(G/T)_{es}$  in rain:  $(G/T)_{es} = 24.5 dBi K^{-1}$ 

Path loss:

 $L_{path}$  in clear sky:  $L_{path} = L_{FS}$  = 206 dB

 $L_{path}$  in rain:  $L_{path} = L_{FS} + A_{rain} = 212 \text{ dB}$ 

Downlink performance:  $(C/N_0)_{down} = EIRP - L_{path} + (G/T_S)_{es} - k$ 

 $(C/N_0)_{down}$  in clear sky:  $(C/N_0)_{down} = 90.1 dBHz$ 

 $(C/N_0)_{down}$  in rain:  $(C/N_0)_{down} = 80.1 dBHz$ 

3) Rain reduces the system performance by 10 dB.

# Short summary of today's topics

- Noise models
- Noise temperature, effective input noise temperature
- Noise figure
- System noise temperature T<sub>sys</sub>
- Cascades systems
- Figure of merit
- Gases and rain
- Non-linear devices, intermodulation noise