CAPÍTULO 6

PRÁCTICA 5. CARACTERIZACIÓN DE CIRCUITOS CON MOSFETS

EJERCICIOS DE PRELABORATORIO

Realice una representación de la característica de transferencia que espera observar al realizar las medidas propuestas sobre en montaje 6.2.

Al ir aplicando un voltaje desde Vi e ir incrementándolo V_0 se mantiene igual. En cambio V_{DD} va disminuyendo a la vez que Vi aumenta. Esto provoca que la intensidad aumente a la que aumenta Vi.

¿Qué valor de tensión espera medir entre los extremos de RG? Justifique su respuesta.

La tensión entre los extremos de R_G no cambia prácticamente nada su valor, este valor será igual a V_I .

En el montaje 6.3, ¿cómo calcularía la intensidad de drenador a partir de las medidas propuestas en el apartado Procedimiento Experimental?

Dependerá de la relación entre los valores de los terminales:

- Región de corte: no hay corriente entre la fuente y el drenador.
- Región de triado: $I_D = ((V_{GS} V_{TH}) * V_{DS} \frac{V_{DS}^2}{2})$
- Región de saturación: $I_D = K * (V_{GS} V_{TH})^2$

En el montaje 6.3, se supone que el transistor está en saturación. ¿Es adecuada esta suposición? Justifique su respuesta.

Esta suposición es adecuada si se cumple que V_I es mayor o igual que V_T para que el NMOS esté en saturación.

En el montaje 6.3, se supone que el transistor está en saturación por lo que la relación entre intensidad y voltaje puerta-fuente no es lineal sino cuadrática. ¿Cómo aplicaría entonces el método de mínimos cuadrados para estimar la tensión umbral y la constante?

Se toman los valores de V_I , luego se vuelven a tomar los valores pero de la tensión ente los extremos de R_D y la tensión puerta-fuente. A partir de los datos anteriores, se realizará un ajuste por mínimos cuadrados de la relación entre la intensidad del frenador y la tensión puerta-fuente para estimar la tensión umbral y la constante.

TRABAJO DE LABORATORIO

Los valores en la figura 6.2 de R_G y R_D

$$R_G = 10 \text{K}\Omega = R_D$$

¿Coinciden los valores calculados de la intensidad de puerta con los esperados teóricamente?

Si, los valores se aproximan a los calculados teóricamente.

Los valores en la figura 6.3 de R_D

 R_D = 10K Ω

Vi	Vg	Vd
0	0	5
0,5	0,5	5
1	1	5
1,2	1,2	4,8
1,4	1,4	4,3
1,6	1,6	3,62
1,8	1,8	2,47
2	2	0,67
2,2	2,2	0,36
2,4	2,4	0,26
2,6	2,6	0,21
2,8	2,8	0,19
3	3	0,17
3,5	3,5	0,14
4	4	0,12
4,5	4,5	0,11
5	5	0,10

Vi	Vg = Vd	Id = (Vi - Vd)/R	sqrt(Id)
0	0	0	0
1	1	0	0
2	1,42	0,000058	0,007615773
3	1,63	0,000137	0,0117047
4	1,77	0,000223	0,014933185
5	1,89	0,000311	0,017635192
6	2	0,0004	0,02
7	2,09	0,000491	0,02215852
8	2,18	0,000582	0,024124676
9	2,26	0,000674	0,02596151
10	2,34	0,000766	0,027676705

