Matemáticas II

Marcos Bujosa

Universidad Complutense de Madrid

15/01/2025

1/33

L-13

L-11 L-12

1 Esquema de la Lección 11

Esquema de la Lección 11

- Vectores y subespacios ortogonales
- Espacio nulo ⊥ espacio fila

$$\mathcal{N}\left(\mathbf{A}\right) \perp \mathcal{C}\left(\mathbf{A}^{\intercal}\right)$$

ullet espacio nulo por la izquierda ot espacio columna

$$\mathcal{N}\left(\mathbf{A}^{\intercal}\right)\perp\mathcal{C}\left(\mathbf{A}\right)$$

L-11 L-12 L-1

Puede encontrar la última versión de este material en

https://github.com/mbujosab/MatematicasII/tree/main/Esp

_ Marcos Bujosa. Copyright © 2008–2025
Algunos derechos reservados. Esta obra está bajo una licencia de Creative Commons Reconocimiento-CompartirIgual 4.0
Internacional. Para ver una copia de esta licencia, visite
http://creativecommons.org/licenses/by-sa/4.0/ o envie una carta a Creative Commons, 559 Nathan Abbott Way,
Stanford, California 94305, USA.

1/33

L-11 L-12 L-13

2 Algunas definiciones

Producto punto

$$\boldsymbol{a} \cdot \boldsymbol{b} = \sum_{i=1}^{n} a_i b_i$$

- Longitud de un vector $\|a\| = \sqrt{a \cdot a}$
- $oldsymbol{a} \cdot oldsymbol{a} = \|oldsymbol{a}\|^2.$
- Vector unitario: $\| {m a} \| = 1$ $\frac{1}{\| {m x} \|} \cdot {m x}$
- Vectores ortogonales (perpendiculares): $x \cdot y = 0$.

L-11 L-12 L-13

3 Vectores ortogonales

$$x \cdot y = 0 \iff x \perp y$$

Tma. Pitágoras:
$$m{x}\cdot m{y} = 0 \iff \|m{x}\|^2 + \|m{y}\|^2 = \|m{x} + m{y}\|^2$$
 $m{x}\cdot m{x} + m{y}\cdot m{y} = (m{x} + m{y})\cdot (m{x} + m{y}).$

L-11 L-12 L-13

5 Subespacios ortogonales

Cuando el subespacio S es ortogonal al subespacio T:

Cada vector de ${\mathcal S}$ es ortogonal a cada vector de ${\mathcal T}$

¿Son ortogonales el plano de la pizarra y el suelo?

L-11 L-12 L-13

4 Norma al cuadrado de un vector

$$\|\boldsymbol{v}\|^2 = \boldsymbol{v} \cdot \boldsymbol{v}$$

$$oldsymbol{x} = egin{pmatrix} 1 \ 2 \ 3 \end{pmatrix} \quad
ightarrow \quad \|oldsymbol{x}\|^2 = \qquad ; \qquad oldsymbol{y} = egin{pmatrix} 2 \ -1 \ 0 \end{pmatrix} \quad
ightarrow \quad \|oldsymbol{y}\|^2 = \qquad ;$$

¿Son estos vectores ortogonales?

$$oldsymbol{x} + oldsymbol{y} = \left(egin{array}{c} \|oldsymbol{x} + oldsymbol{y}\|^2 = \end{array}
ight. ;$$

$$\begin{array}{ll} \text{(Pitágoras)} & \text{(Ortogonalidad)} \\ \boldsymbol{x} \cdot \boldsymbol{x} + \boldsymbol{y} \cdot \boldsymbol{y} = (\boldsymbol{x} + \boldsymbol{y}) \cdot (\boldsymbol{x} + \boldsymbol{y}) & \Longleftrightarrow & \boldsymbol{x} \cdot \boldsymbol{y} = 0. \end{array}$$

5/33

L-11 L-12 L-13

6 Espacio nulo ortogonal a espacio fila

• $\mathcal{N}(\mathbf{A}) \perp \text{filas de } \mathbf{A}$

$$\mathbf{A} \mathbf{x} = \mathbf{0} \implies \begin{pmatrix} (_{1}|\mathbf{A}) \cdot \mathbf{x} \\ \vdots \\ (_{m}|\mathbf{A}) \cdot \mathbf{x} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

ullet $\mathcal{N}\left(\mathbf{A}
ight)\perp d\mathbf{A}, \quad orall d\in\mathbb{R}^m \;\; ext{(cualquier combinación lineal de las filas)}$

$$x \in \mathcal{N}(\mathbf{A}) \Rightarrow d\mathbf{A}x = d \cdot \mathbf{0} = 0.$$

espacio nulo
$$\perp$$
 espacio fila $\mathcal{N}\left(\mathbf{A}\right) \perp \mathcal{C}\left(\mathbf{A}^\intercal\right)$

También:
$$x\mathbf{A} = \mathbf{0}$$
 \Rightarrow $\mathcal{N}\left(\mathbf{A}^{\intercal}\right) \perp \mathcal{C}\left(\mathbf{A}\right)$

7 El gran esquema: suma directa de complementos ortogonales

$$egin{aligned} \mathcal{C}\left(\mathbf{A}^{\intercal}
ight) \perp \mathcal{N}\left(\mathbf{A}
ight) & \mathcal{C}\left(\mathbf{A}
ight) \perp \mathcal{N}\left(\mathbf{A}^{\intercal}
ight) \ f \cdot x = y \mathbf{A} x = y \cdot \mathbf{0} & y \cdot b = y \mathbf{A} x = \mathbf{0} \cdot x \end{aligned}$$

$$egin{aligned} \mathcal{C}\left(\mathbf{A}
ight) oldsymbol{\perp} \mathcal{N}\left(\mathbf{A}^{\intercal}
ight) \ oldsymbol{\iota} \cdot oldsymbol{b} = oldsymbol{u} \mathbf{A} oldsymbol{x} = \mathbf{0} \cdot oldsymbol{x} \end{aligned}$$

8/33

L-11

Problemas de la Lección 11

(L-11) Problema 1. Describa el conjunto de vectores en \mathbb{R}^3 ortogonales a (Hefferon, 2008, ejercicio 2.15 del conjunto de problemas II.2.)

(L-11) PROBLEMA 2. Hay algún vector que sea perpendicular a si mismo?

(L-11) PROBLEMA 3. Calcule la longitud de cada uno de estos vectores

(a)
$$\binom{1}{3}$$
.

(b)
$$\binom{-1}{2}$$
.

(c)
$$\begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix}$$

$$\text{(d)} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$
 \tag{e} \text{(e)} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix}

(Hefferon, 2008, ejercicio 2.11 del conjunto de problemas II.2.)

(L-11) PROBLEMA 4. Encuentre un vector unitario (de norma uno) con la misma dirección que v = (2, -1, 0, 4, -2).

(L-11) Problema 5. Encuentre el valor de k de manera que estos vectores sean perpendiculares.

8 Revisitando la eliminación gaussiana

Algoritmo que encuentra una base del complemento ortogonal

Dame varios vectores y los escribo como filas de una matriz M ...

$$\frac{\left[\mathbf{M} \right]}{\left[\mathbf{I} \right]} = \underbrace{ \begin{bmatrix} 1 & -3 & 0 & -1 \\ 0 & -1 & 1 & 1 \\ 1 & -4 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} }_{ \begin{bmatrix} (3)1+2 \\ [(1)1+4] \\ [(1)2+3] \\ [(1)2+4] \\ \end{bmatrix}} \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 1 & 3 & 3 & 4 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} }_{ \begin{bmatrix} \mathbf{E} \right]} = \underbrace{ \begin{bmatrix} \mathbf{C} & \mathbf{0} \\ \mathbf{D} & \mathbf{N} \end{bmatrix} }_{ \begin{bmatrix} \mathbf{D} \\ \mathbf{N} \end{bmatrix}$$

Base del espacio generado por los vectores (fila): \mathcal{V} Base del complemento ortogonal: \mathcal{V}^{\perp}

MN = 0

Pero si me das $N_{|1}$ y $N_{|2}$ y empiezo de nuevo... obtendré una base de. . .

9/33

L-11

(Hefferon, 2008, ejercicio 2.14 del conjunto de problemas II.2.)

(L-11) Problema 6. Escriba una matriz con las propiedades requeridas, o explique por qué es imposible:

- (a) El espacio columna contiene $\begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$ y $\begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix}$, el espacio nulo contiene $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
- $\begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix}$, y el espacio nulo contiene $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ (b) El espacio fila contiene $\begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$
- tiene solución, y AT
- (d) Cada fila es ortogonal a cada columna (y A no es la matriz cero)
- (e) La suma de columnas da una columna de ceros, la suma de filas suma una fila de unos.

(Strang, 2003, ejercicio 3 del conjunto de problemas 4.1.)

(L-11) PROBLEMA 7. Si AB = 0, las columnas de B pertencen a _ filas de A están contenidas en el de **B**. Por qué no es posible que **A** y **B** sean matrices 3 por 3 de rango 2? (Strang, 2003, ejercicio 4 del conjunto de problemas 4.1.)

(L-11) PROBLEMA 8. Suponga que $u\cdot v=u\cdot w$ y que $u\neq 0$. ¿Debe ocurrir que v=w?

(Hefferon, 2008, ejercicio 2.20 del conjunto de problemas II.2.)

(L-11) Problema 9.

- (a) Si $\mathbf{A}x = \mathbf{b}$ tiene solución y $\mathbf{A}^{\mathsf{T}}y = \mathbf{0}$, entonces y es perpendicular a _____.
- (b) Si $\mathbf{A}^{\intercal}y=c$ tiene solución y $\mathbf{A}x=0$, entonces x es perpendicular a _____.

(Strang, 2003, ejercicio 5 del conjunto de problemas 4.1.)

(L-11) PROBLEMA 10. Demuestre, para \mathbb{R}^n , que si u y v son perpendiculares, entonces $||u+v||^2=||u||^2+||v||^2$.

(Hefferon, 2008, ejercicio 2.33 del conjunto de problemas II.2.)

(L-11) PROBLEMA 11. Encuentre una matriz de 1 por 3 cuyo espacio nulo conste de todos los vectores de \mathbb{R}^3 tales que $x_1+2x_2+4x_3=0$. Encuentre una matriz de 3 por 3 con el mismo espacio nulo.

(Strang, 2007, ejercicio 9 del conjunto de problemas 2.4.)

(L-11) PROBLEMA 12. Consider \mathbf{A} with exactly two special solutions for $x\mathbf{A} = \mathbf{0}$:

$$s_1 = (3, 1, 0, 0), \text{ and } s_2 = (6, 0, 2, 1).$$

- (a) Find the reduced row echelon form R of A.
- (b) What is the row space of A?
- (c) What is the complete solution to $x\mathbf{R} = (3, 6,)$?

9 / 33

L-11 L-12 L

1 Esquema de la Lección 12

Esquema de la Lección 12

- De las ecuaciones paramétricas a las cartesianas (o implícitas)
- Escogiendo ente las ecuaciones paramétricas

L-11 L-12 L-13

(d) Find a combination of rows 2, 3, 4 that equals 0. (Not OK to use $0(_{2|}\mathbf{A})+0(_{3|}\mathbf{A})+0(_{4|}\mathbf{A}).$ The problem is to show that these rows are dependent.)

(L-11) PROBLEMA 13. Suponga que $\mathbf{A}x=b$ tiene solución (quizá tiene muchas). Puede demostrase que cualquier solución x de dicho sistema puede descomponerse como suma de dos vectores $(x=x_f+x_n)$ donde x_f es combinación lineal de las filas de \mathbf{A} y x_n pertenece al subespacio vectorial de soluciones de $\mathbf{A}x=0$.

- (a) (0.5^{pts}) Demuestre que $\mathbf{A}(\boldsymbol{x}_f) = \boldsymbol{b}$.
- (b) (1^{pts}) Suponga que \boldsymbol{v}_f es combinación lineal de las filas de \mathbf{A} y que además $\mathbf{A}(\boldsymbol{v}_f) = \boldsymbol{b}$. ¿A qué subespacios vectoriales pertenece la diferencia $(\boldsymbol{v}_f \boldsymbol{x}_f)$? Demuestre que \boldsymbol{x}_f y \boldsymbol{v}_f son iguales.
- (c) (1^{pts}) Encuentre la solución x_f del subespacio vectorial generado por las filas de **A**, para el siguiente sistema $\mathbf{A}x = \mathbf{b}$, encontrando los valores c y d que cumplen

$$\left[\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 1 & -1 \end{array}\right] \boldsymbol{x}_f = \begin{pmatrix} 14 \\ 9 \end{pmatrix} \quad \text{con} \quad \boldsymbol{x}_f = c \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + d \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}.$$

.-11 L-12 L-13

2 Ecuaciones cartesianas (implícitas) y paramétricas de rectas y planos

Ecuaciones cartesianas (implícitas) $\{x \in \mathbb{R}^n \mid \mathbf{A}x = \mathbf{b}\}$:

Por ejemplo

$$\left\{ \boldsymbol{x} \in \mathbb{R}^3 \; \left| \; \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \boldsymbol{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right. \right\} = \mathsf{c. sol. de} \; \left\{ \begin{matrix} x_1 - x_2 + x_3 = 1 \\ x_3 = 1 \end{matrix} \right.$$

Ecuaciones paramétricas:

Para el conjunto del ejemplo anterior

$$\left\{oldsymbol{x} \in \mathbb{R}^3 \; \middle| \; \exists oldsymbol{p} \in \mathbb{R}^1 : oldsymbol{x} = egin{bmatrix} 0 \ 0 \ 1 \end{pmatrix} + egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} oldsymbol{p}
ight\}$$

En este caso dimensión 1 Una recta (sólo hay un parámetro a) recta

o bien

$$\left\{oldsymbol{x} \in \mathbb{R}^3 \; \middle| \; \exists oldsymbol{p} \in \mathbb{R}^1 : oldsymbol{x} = egin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + egin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} oldsymbol{p}
ight\}$$

o bien

$$\left\{oldsymbol{x} \in \mathbb{R}^3 \; \middle| \; \exists oldsymbol{p} \in \mathbb{R}^1 : oldsymbol{x} = egin{pmatrix} -1 \ -1 \ 1 \end{pmatrix} + egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} oldsymbol{p}
ight.
ight\}$$

12/33

L-13

L-11 L-12

o bien

$$\left\{oldsymbol{x} \in \mathbb{R}^3 \; \middle| \; \exists oldsymbol{p} \in \mathbb{R}^2 : oldsymbol{x} = egin{pmatrix} 1 \ 1 \ 1 \end{pmatrix} + egin{bmatrix} 1 & -1 \ 1 & 0 \ 0 & 1 \end{bmatrix} oldsymbol{p}
ight\}$$

pero también

$$\left\{oldsymbol{x} \in \mathbb{R}^3 \; \middle| \; \exists oldsymbol{p} \in \mathbb{R}^2 : oldsymbol{x} = egin{pmatrix} -1 \ -1 \ 1 \end{pmatrix} + egin{bmatrix} 1 & -1 \ 1 & 0 \ 0 & 1 \end{bmatrix} oldsymbol{p}
ight.
ight\}$$

L-11 L-12 L-13

3 Ecuaciones cartesianas (implícitas) y paramétricas de rectas y planos

Ecuaciones cartesianas (implícitas) $\{oldsymbol{x} \in \mathbb{R}^n \mid oldsymbol{\mathsf{A}}oldsymbol{x} = oldsymbol{b}\}$:

Por ejemplo

$$\left\{oldsymbol{x}\in\mathbb{R}^3\ \middle|\ egin{bmatrix}1&-1&1\end{bmatrix}oldsymbol{x}=\left(1,
ight)
ight\}=\mathsf{c.}$$
 sol. de $\left\{x_1-x_2+x_3=1\right\}$

Ecuaciones paramétricas:

Para el conjunto del ejemplo anterior

$$\left\{oldsymbol{x} \in \mathbb{R}^3 \; \middle| \; \exists oldsymbol{p} \in \mathbb{R}^2 : oldsymbol{x} = egin{bmatrix} 0 \ 0 \ 1 \end{pmatrix} + egin{bmatrix} 1 & -1 \ 1 & 0 \ 0 & 1 \end{bmatrix} oldsymbol{p}
ight\}$$

En este caso dimensión 2 Un plano (hay dos parámetros a y b) plano plano

13 / 33

L-11 L-12 L-13

4 De las ecuaciones paramétricas a las cartesianas

$$\left|\mathcal{C}\left(\mathbf{A}^{\intercal}\right)\perp\mathcal{N}\left(\mathbf{A}
ight)
ight|$$

Considere

$$H = \left\{ oldsymbol{x} \in \mathbb{R}^n \; \left| \; \exists oldsymbol{p} \in \mathbb{R}^k : oldsymbol{x} = oldsymbol{s} + ig[oldsymbol{n}_1; \; \ldots \; oldsymbol{n}_k; ig] oldsymbol{p}
ight\}.$$

Si encontramos **A** tal que $\mathbf{A}n_i = \mathbf{0}$ entonces si $x \in H$

$$\mathbf{A}x = \mathbf{A}s + \underbrace{\mathbf{A}[n_1; \dots n_k;]}_{\mathbf{0}} p \quad \Rightarrow \quad \mathbf{A}x = \mathbf{b}, \quad \mathsf{donde} \ \mathbf{b} = \mathbf{A}s.$$

Por tanto

$$H = \{ oldsymbol{x} \in \mathbb{R}^n \mid \mathbf{A} oldsymbol{x} = oldsymbol{b} \}$$
 .

5 De la solución al sistema de ecuaciones

Ecuaciones implícitas del plano P paralelo al generado por (1, 2, 0, -2) y (0, 0, 1, 3) que pasa por s = (1, 3, 1, 1).

$$P = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \middle| \exists a, b \in \mathbb{R} : \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 1 \\ 1 \end{pmatrix} + a \begin{pmatrix} 1 \\ 2 \\ 0 \\ -2 \end{pmatrix} + b \begin{pmatrix} 0 \\ 0 \\ 1 \\ 3 \end{pmatrix} \right\}$$

$$=\left\{oldsymbol{x}\in\mathbb{R}^4\;\left|\;\existsoldsymbol{p}\in\mathbb{R}^2:oldsymbol{x}=egin{pmatrix}1\3\1\1\end{pmatrix}+egin{bmatrix}1&0\2&0\0&1\-2&3\end{bmatrix}oldsymbol{p}
ight\}$$

Necesitamos vectores perpendiculares a (1, 2, 0, -2) y a (0, 0, 1, 3)

16/33

L-11 L-12 L-

7 Un problema de Microeconomía

Resuelva Y en términos de X para obtener la FPP

$$\begin{cases} X & = 4L_x \\ Y & = 3L_y \\ L_x + L_y = 80 \end{cases} \rightarrow \begin{cases} X & -4L_x = 0 \\ Y & -3L_y = 0 \\ L_x + L_y = 80 \end{cases}$$

("en términos de" X significa X libre)

$$\begin{bmatrix} 1 & 0 & -4 & 0 & 0 & 0 \\ 0 & 1 & 0 & -3 & 0 & 0 \\ 0 & 0 & 1 & 1 & -80 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0$$

L-11 L-12 L-1

6 De la solución al sistema de ecuaciones

$$x = (x, y, z, w,);$$
 $s = (1, 3, 1, 1,).$

$$\begin{bmatrix} 1 & 2 & 0 & -2 \\ 0 & 0 & 1 & 3 \\ \hline x & y & z & w \\ \hline 1 & 3 & 1 & 1 \end{bmatrix} \xrightarrow{[(-2)\mathbf{T}+2]} \begin{bmatrix} [(-2)\mathbf{T}+2] \\ [(2)\mathbf{1}+4] \\ \hline \vdots \\ [(2)\mathbf{T}+2] \\ \hline 1 & 1 & 1 & 3 \end{bmatrix} \xrightarrow{[(-3)\mathbf{3}+4]} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \hline x & y-2x & z & w+2x \\ \hline 1 & 1 & 1 & 3 \end{bmatrix} \xrightarrow{[(-3)\mathbf{3}+4]} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \hline x & y-2x & z & w+2x-3z \\ \hline 1 & 1 & 1 & 0 \end{bmatrix}$$

$$\text{Así } \mathbf{A} = \begin{bmatrix} -2 & 1 & 0 & 0 \\ 2 & 0 & -3 & 1 \end{bmatrix}; \text{ y entonces } \mathbf{A} \boldsymbol{x} = \begin{pmatrix} -2x + y \\ 2x + w - 3z \end{pmatrix} \text{ y }$$

$$\boldsymbol{b} = \mathbf{A} \boldsymbol{s} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}. \text{ Por tanto } \begin{cases} -2x + y & = 1 \\ 2x & -3z + w = 0 \end{cases}$$

$$P = \left\{ \boldsymbol{x} \in \mathbb{R}^4 \ \middle| \ \begin{bmatrix} -2 & 1 & 0 & 0 \\ 2 & 0 & -3 & 1 \end{bmatrix} \boldsymbol{x} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}.$$

17 / 33

L-11 L-12 L-13

8 Variable libre

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 4 & -4 & 320 \\ 0 & 1 & 0 & 3 & 0 \\ 0 & 0 & 1 & -1 & 80 \\ \hline 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\tau} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 4 & 1 & 0 \\ \hline 0 & 1 & 0 & -3/4 & 240 \\ 0 & 0 & 1 & 1/4 & 0 \\ \hline 0 & 0 & 0 & -1/4 & 80 \\ \hline 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{pmatrix} X \\ Y \\ L_x \\ L_y \end{pmatrix} = \begin{pmatrix} 0 \\ 240 \\ 0 \\ 80 \end{pmatrix} + a \begin{pmatrix} 1 \\ -\frac{3}{4} \\ \frac{1}{4} \\ -\frac{1}{4} \end{pmatrix} \implies a = X \implies \begin{pmatrix} X \\ Y \\ L_x \\ L_y \end{pmatrix} = \begin{pmatrix} X \\ \frac{240 - \frac{3}{4}X}{\frac{1}{4}X} \\ 80 - \frac{1}{4}X \end{pmatrix}$$

"en términos de" X

9 Variables libres

$$\begin{cases} x + 2y - z + w = -1 \\ -x - 2y + 3z + 5w = -5 \\ -x - 2y - z - 7w = 7 \end{cases}$$

- 1. Resuelva en función de y y w
- 2. Resuelva en función de x y w
- 3. Resuelva en función de x y z
- 4. Resuelva en función de x y y

20 / 33

L-11 L-12 L-13

$$\begin{bmatrix} -2 & -4 & | & 4 \\ 1 & 0 & 0 & 0 \\ 0 & -3 & | & 3 \\ 0 & 1 & | & 0 \end{bmatrix} \begin{cases} \frac{\tau}{[(4)1+2]} & \begin{bmatrix} & 1 & 0 & | & 0 \\ \frac{-1}{2} & -2 & | & 2 \\ 0 & -3 & | & 3 \\ 0 & 1 & | & 0 \end{bmatrix} & \frac{\tau}{[(1)2+3]} & \begin{bmatrix} & 1 & 0 & | & 0 \\ \frac{-1}{2} & \frac{2}{3} & | & 0 \\ 0 & -3 & | & 3 \\ 0 & 1 & | & 0 \end{bmatrix} \\ \frac{\tau}{[(-4)1+3]} & \begin{bmatrix} & 1 & 0 & | & 0 \\ \frac{-1}{2} & -2 & | & 2 \\ 0 & -3 & | & 3 \\ 0 & 1 & | & 0 \end{bmatrix} & \frac{\tau}{[(-2)2+3]} & \begin{bmatrix} & 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & -\frac{1}{3} & | & 1 \end{bmatrix} \\ \frac{\tau}{[(-4)1+3]} & \begin{bmatrix} & 1 & 0 & | & 0 \\ \frac{-1}{2} & -2 & | & 2 \\ 0 & -3 & | & 3 \\ 0 & 1 & | & 0 \end{bmatrix} & \frac{[(-2)2+3]}{[(-2)2+3]} & \begin{bmatrix} & 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ \frac{3}{4} & \frac{3}{2} & | & 0 \\ \frac{-1}{4} & -\frac{1}{2} & | & 1 \end{bmatrix}$$

-11 **L-12** L-13

$$\begin{bmatrix} 1 & 2 & -1 & 1 & -1 \\ -1 & -2 & 3 & 5 & -5 \\ -1 & -2 & -1 & -7 & 7 \\ \hline 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\tau} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 2 & 6 & -6 \\ -1 & 0 & -2 & -6 & 6 \\ \hline 1 & -2 & 1 & -1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

21 / 33

L-11 L-12 L-13

Problemas de la Lección 12

(L-12) Problema 1.

- (a) Encuentre una representación paramétrica de la recta que pasa por los puntos $m{x}_P = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ y $m{x}_Q = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$.
- (b) Encuentre una representación implícita de la recta anterior.

(L-12) Problema 2.

- (a) Encuentre una representación paramétrica de la recta que pasa por los puntos ${m x}_P=\begin{pmatrix}1,&-3,&1,\end{pmatrix}$ y ${m x}_Q=\begin{pmatrix}-2,&4,&5,\end{pmatrix}$.
- (b) Encuentre una representación implícita (ecuaciones Cartesianas) de la recta.

(L-12) Problema 3.

- (a) Ecuación paramética de la recta paralela a 2x-3y=5 que pasa por el punto (1,1).
- (b) Encuentre una representación implícita de la recta.

(L-12) Problema 4.

- (a) Encuentre las ecuaciones paramétricas del plano que pasa por el punto (0, 1, 1,) y tiene por vectores directores (0, 1, 2,) y (1, 1, 0,)
- (b) Escriba la ecuación implicita del mismo plano.

(L-12) Problema 5.

- (a) Encuentre las ecuaciones paramétricas del plano que pasa por el punto (2, 1, 3,) y es perpendicular a (3, 1, 1,).
- (b) Escriba la ecuación implicita del mismo plano.

(L-12) PROBLEMA 6. Considere el sistema de ecuaciones $\mathbf{A}x = \mathbf{b}$, donde

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 & 1 & 1 \\ 0 & 0 & 2 & 3 & 1 \\ 0 & 0 & 1 & 4 & 2 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}, \qquad \mathbf{b} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}.$$

- (a) (1^{pts}) Obtenga la solución al sistema.
- (b) (0.5^{pts}) Explique por qué el conjunto de vectores solución al sistema anterior es una recta en \mathbb{R}^5 . Indique un vector director y un punto por el que pasa la recta.
- (c) (1^{pts}) Encuentre los vectores perpendiculares al vector director anterior. Pruebe que el conjunto de vectores perpendiculares a dicho vector forman un subespacio vectorial de dimensión 4. Encuentre una base de dicho subespacio.

L-11 L-12 L-13

1 Esquema de la Lección 13

Esquema de la Lección 13

- Proyecciones
- Matrices proyección

22/33

L-11 L-12 L-13

2 Suma directa de subespacios

 \mathbb{R}^n es suma directa de \mathcal{A} y \mathcal{B} $(\mathbb{R}^n = \mathcal{A} \oplus \mathcal{B})$

si todo $x \in \mathbb{R}^n$ tiene una descomposición **única** x = a + b,

con $a \in \mathcal{A}$ y $b \in \mathcal{B}$.

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 5 \\ 2 & 4 & 10 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & -2 & -5 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow \text{Base de } \mathbb{R}^3; \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}; \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}; \begin{bmatrix} -5 \\ 0 \\ 1 \end{bmatrix} \end{bmatrix}$$

$$\forall \boldsymbol{x} \in \mathbb{R}^3, \ \exists c_1, c_2, c_3 \ \middle| \ \boldsymbol{x} = c_1 \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix} + c_2 \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} + c_3 \begin{pmatrix} -5 \\ 0 \\ 1 \end{pmatrix} = \boldsymbol{a} + \boldsymbol{b}$$

donde $a \in C(A^{T})$ y $b \in \mathcal{N}(A)$.

También
$$\mathbb{R}^{m}=\mathcal{C}\left(\mathbf{A}
ight)\oplus\mathcal{N}\left(\mathbf{A}^{\intercal}
ight)$$

11 L-12 L-13

3 El gran esquema: suma directa de complementos ortogonales

$$egin{aligned} \mathcal{C}\left(\mathbf{A}^{\intercal}
ight) \perp \mathcal{N}\left(\mathbf{A}
ight) & \mathcal{C}\left(\mathbf{A}
ight) \perp \mathcal{N}\left(\mathbf{A}^{\intercal}
ight) \ f \cdot x = y \mathbf{A} x = y \cdot \mathbf{0} & y \cdot b = y \mathbf{A} x = \mathbf{0} \cdot x \end{aligned}$$

L-11 L-12 L-13

4 Proyección ortogonal sobre $C(\mathbf{A})$

Sea \mathbf{A} ; como $\mathbb{R}^m = \mathcal{C}\left(\mathbf{A}\right) \oplus \mathcal{N}\left(\mathbf{A}^\intercal\right)$, para todo $oldsymbol{y} \in \mathbb{R}^m$

$$y = \hat{y} + e;$$
 $(e = y - \hat{y})$

 $\mathsf{con} \quad \boxed{\widehat{\pmb{y}} \in \mathcal{C} \left(\mathbf{A} \right) \; \mathsf{y} \; \pmb{e} \perp \widehat{\pmb{y}} \; }, \quad \mathsf{asi} \; \mathsf{que} \; \pmb{e} \in \mathcal{N} \left(\mathbf{A}^\intercal \right).$

¿Cómo calcular $\widehat{m{y}} \in \mathcal{C} (\mathbf{A})$?

26 / 33

L-11 L-12 L-13

6 Solución a las ecuaciones normales (rango completo por columnas))

 $\mathbf{A}^{\mathsf{T}}\mathbf{A}\widehat{x} = \mathbf{A}^{\mathsf{T}}y$ (A de rango completo por columnas)

La solución

$$\hat{\boldsymbol{x}} = (\mathbf{A}^{\mathsf{T}}\mathbf{A})^{\mathsf{-}1}\mathbf{A}^{\mathsf{T}}\boldsymbol{y}$$

La proyección

$$\widehat{\boldsymbol{y}} = \mathbf{A}\widehat{\boldsymbol{x}} = \mathbf{A}(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\boldsymbol{y}$$

La matriz de proyección

$$\mathbf{P} = \mathbf{A} (\mathbf{A}^{\mathsf{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathsf{T}}$$

$$\widehat{m{y}} = {\sf P} m{y}$$

P: Simétrica e idempotente.

L-11 L-12 L-13

5 Ecuaciones normales

Sea \mathbf{A} . Buscamos la descomposición $\mathbf{y} = \widehat{\mathbf{y}} + \mathbf{e}$ donde

$$\widehat{m{y}} \in \mathcal{C} \left(m{A}
ight)$$
 y $\left(\widehat{m{y}} - m{y}
ight) \in \mathcal{N} \left(m{A}^\intercal
ight)$

Por tanto

$$\mathbf{A}\widehat{\mathbf{x}} = \widehat{\mathbf{y}} \qquad \Leftrightarrow \qquad (\mathbf{A}\widehat{\mathbf{x}} - \mathbf{y}) \in \mathcal{N}(\mathbf{A}^{\mathsf{T}})$$

Es decir

$$\mathbf{A}\widehat{x} = \widehat{y} \Leftrightarrow \mathbf{A}^{\mathsf{T}} (\mathbf{A}\widehat{x} - y) = \mathbf{0} \Leftrightarrow (\mathbf{A}^{\mathsf{T}} \mathbf{A})\widehat{x} = \mathbf{A}^{\mathsf{T}} y$$

¡Sistemas equivalentes!
$$\Rightarrow \mathcal{N}(\mathbf{A}) = \mathcal{N}(\mathbf{A}^{\mathsf{T}}\mathbf{A}) \Rightarrow \operatorname{rg}(\mathbf{A}) = \operatorname{rg}(\mathbf{A}^{\mathsf{T}}\mathbf{A})$$

solución única \widehat{x} si y sólo si ${f A}$ tiene columnas independientes

27 / 33

L-11 L-12 L-13

7 Matriz proyección

$$\mathbf{P} = \mathbf{A} \big(\mathbf{A}^\intercal \mathbf{A} \big)^{-1} \mathbf{A}^\intercal$$

La proyección $\mathbf{P} y$ es el punto \hat{y} de \mathcal{C} (A) más próximo a y

Casos extremos:

- ullet Si $oldsymbol{y} \in \mathcal{C}\left(oldsymbol{\mathsf{A}}
 ight)$ entonces $oldsymbol{\mathsf{P}}oldsymbol{y} =$
- Si $m{y} \perp \mathcal{C} (\mathbf{A})$ entonces $\mathbf{P} m{y} =$

8 Proyección sobre una recta

Queremos encontrar el punto \widehat{y} sobre la linea más próximo a y

$$\widehat{m{y}} \in \mathcal{C}\left(\left[m{a}
ight]
ight) \quad \perp \quad e = (m{y} - \widehat{m{y}}) \in \mathcal{N}\left(\left[m{a}
ight]^\intercal
ight).$$

 \hat{y} es algún múltiplo de a: $\hat{y} = [a](\hat{x},)$

Cómo: $[a]^{\mathsf{T}}[a]\widehat{x} = [a]^{\mathsf{T}}y$

La solución $\widehat{m{x}} = \left(ig[m{a}ig]^{\mathsf{T}}ig[m{a}ig]^{\mathsf{T}}m{y}
ight.$

La proyección $\widehat{y} = ig[aig] \widehat{x} = ig[aig] ig(ig[aig]^{ op} ig[aig]^{ op}$

La matriz de proyección $\mathbf{P} = ig[aig] ig(ig[aig]^{\mathsf{T}} ig[aig]^{\mathsf{T}}$

30 / 33

L-11

L-12

10 Ecuaciones normales

¿Qué es la proyección de y sobre el espacio columna de $\mathbf{A} = \begin{bmatrix} | & | \\ \mathbf{A}_{|1} & \mathbf{A}_{|2} \\ | & | \end{bmatrix}$?

"Encontrar una combinación de columnas tal que $e \perp \mathcal{C} \left(\mathbf{A} \right)$ "

$$e\perp\mathcal{C}\left(\mathsf{A}
ight) \ \ \Rightarrow \ \ e\in$$

$$\mathbf{A}^{\mathsf{T}}e = \mathbf{A}^{\mathsf{T}}(\boldsymbol{y} - \widehat{\boldsymbol{y}}) \quad = \quad \mathbf{A}^{\mathsf{T}}(\boldsymbol{y} - \mathbf{A}\widehat{\boldsymbol{x}}) = \mathbf{0} \quad \Leftrightarrow \quad \boxed{(\mathbf{A}^{\mathsf{T}}\mathbf{A})\widehat{\boldsymbol{x}} = \mathbf{A}^{\mathsf{T}}\boldsymbol{y}}$$

L-11

9 Proyección sobre un plano

¿Por qué proyectar?

Así que resolveremos

$$\mathbf{A}x = \Big(ext{Proy. de } y ext{ sobre } \mathcal{C} \left(\mathbf{A} \right) \Big).$$

 $(y - \hat{y}) = e \perp C(A)$... ese es el hecho fundamental.

L-12 L-13

11 Dos proyecciones

y tiene un componente \widehat{y} en $\mathcal{C}\left(\mathbf{A}\right)$, y otro e en $\mathcal{C}\left(\mathbf{A}\right)^{\perp}$.

$$egin{aligned} \widehat{m{y}} + m{e} &= m{y} \\ \widehat{m{y}} &= \mathbf{P} m{y} \end{aligned} \qquad ext{es la proyección sobre } \mathcal{C}\left(\mathbf{A}
ight)^{\perp} \\ m{e} &= (\mathbf{I} - \mathbf{P}) m{y} \end{aligned} \qquad ext{es la proyección sobre } \mathcal{C}\left(\mathbf{A}
ight)^{\perp}$$

L-13

Problemas de la Lección 13 (L-13) PROBLEMA 1. Proyecte el primer vector (b) sobre la recta generada por el segundo vector (a). Compruebe que e es perpendicular a a. Encuentre la matriz

proyección $P = [a]([a]^{\mathsf{T}}[a])^{-1}[a]^{\mathsf{T}}$ sobre la recta generada por cada vector a. Verifique en cada caso que $P^2 = P$. Multiplique Pb en cada caso para calcular la provección \hat{b} .

(a)
$$\boldsymbol{b} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}; \ \boldsymbol{a} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

(b)
$$b = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
; $a = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$.

(c)
$$\boldsymbol{b} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$$
; $\boldsymbol{a} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$

(d)
$$\boldsymbol{b} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}; \boldsymbol{a} = \begin{pmatrix} 3 \\ 3 \\ 12 \end{pmatrix}.$$

(Hefferon, 2008, ejercicio 1.6 del conjunto de problemas VI.1.)

(L-13) PROBLEMA 2. Proyecte ortogonalmente el vector sobre la recta.

(a)
$$\begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$$
, La recta : $\left\{ oldsymbol{v} \in \mathbb{R}^3 \; \middle| \; \exists oldsymbol{p} \in \mathbb{R}^1, \; oldsymbol{v} = \left[\begin{array}{c} -3 \\ 1 \\ -3 \end{array} \right] oldsymbol{p} \right\}$.

(b)
$$\begin{pmatrix} -1 \\ -1 \end{pmatrix}$$
, la recta descrita por la ecuación $y = 3x$.

33 / 33

L-13

(L-13) Problema 6.

- (a) Calcule las matrices proyección $\mathbf{P} = [a]([a]^{\mathsf{T}}[a])^{-1}[a]^{\mathsf{T}}$ sobre las rectas que pasan por $a_1 = \begin{pmatrix} -1, & 2, & 2 \end{pmatrix}$ y $a_2 = \begin{pmatrix} 2, & 2, & -1 \end{pmatrix}$. Compruebe que $a_1 \perp a_2$. Multiplique esas matrices proyección y explique por qué su producto $\mathbf{P}_1\mathbf{P}_2$ es lo que es.
- (b) Proyecte b = (1, 0, 0) sobre las rectas generadas por a_1 , y a_2 y también por $a_3 = (2, -1, 2)$. Sume las tres proyecciones $\hat{b_1} + \hat{b_2} + \hat{b_3}$.
- (c) Encuentre la matriz proyección P_3 sobre $\mathcal{L}([a_3;]) = \mathcal{L}([(2, -1, 2,);])$. Verifique que $P_1 + P_2 + P_3 = I$. ¡La base a_1, a_2, a_3 es ortogonal!

(Strang. 2003, ejercicio 5-7 del conjunto de problemas 4.2.)

(L-13) PROBLEMA 7. Proyecte b sobre el espacio columna de A resolviendo $\mathbf{A}^{\mathsf{T}}\mathbf{A}\widehat{x} = \mathbf{A}^{\mathsf{T}}b$ y después calculando $\widehat{b} = \mathbf{A}\widehat{x}$. Encuentre $e = b - \widehat{b}$.

(a)
$$\mathbf{A}_1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 y $\mathbf{b}_1 = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$
(b) $\mathbf{A}_2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$ y $\mathbf{b}_2 = \begin{pmatrix} 4 \\ 4 \\ 6 \end{pmatrix}$

(b)
$$\mathbf{A}_2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 y $\mathbf{b}_2 = \begin{pmatrix} 4 \\ 4 \\ 6 \end{pmatrix}$

(c) Calcule las matrices proyección P₁ y P₂ sobre los espacios columna. Verifique que $\mathbf{P}_1 \mathbf{b}_1$ da la primera proyección $\widehat{\mathbf{b}_1}$. Verifique también que $(\mathbf{P}_2)^2 = \mathbf{P}_2$.

(Strang, 2003, ejercicio 11-12 del conjunto de problemas 4.2.)

(L-13) PROBLEMA 3. Aunque los dibujos nos han guiado el desarrollo del tema, no estamos restringidos a espacios que podamos dibujar. En \mathbb{R}^4 proyecte el vector sobre la recta.

$$egin{pmatrix} 1 \ 2 \ 1 \ 3 \end{pmatrix}; \quad \left\{ oldsymbol{v} \in \mathbb{R}^4 \; \middle| \; \exists oldsymbol{p} \in \mathbb{R}^1, \; oldsymbol{v} = \left[egin{array}{c} -1 \ 1 \ -1 \ 1 \end{array}
ight] oldsymbol{p}
ight\}.$$

(L-13) Problema 4.

- (a) Proyecte el vector b = (1, 1,) sobre las rectas generadas por $a_1 = (1, 0,)$ y $a_2 = (1, 2,)$. Sume las proyecciones: $\widehat{b_1} + \widehat{b_2}$. Las proyecciones no suman bporque los vectores a_1 y a_2 no son ortogonales.
- (b) La proyección de b sobre el plano generado por a_1 y a_2 será igual a b. Encuentre $\mathbf{P} = \mathbf{A}(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}$ para $\mathbf{A} = [a_1; a_2;]$.

(Strang, 2003, ejercicio 8-9 del conjunto de problemas 4.2.)

(L-13) Problema 5.

- (a) Si $P^2 = P$ demuestre que $(I P)^2 = I P$. Cuando P proyecta sobre el espacio columna de A, (I - P) proyecta sobre el
- (b) Si $P^{T} = P$ demuestre que $(I P)^{T} = I P$.

(Strang, 2003, ejercicio 17 del conjunto de problemas 4.2.)

33 / 33

L-13

Hefferon, J. (2008). Linear Algebra. Jim Hefferon, Colchester, Vermont USA. This text is Free. URI

ftp://joshua.smcvt.edu/pub/hefferon/book/book.pdf

Strang, G. (2003). Introduction to Linear Algebra. Wellesley-Cambridge Press, Wellesley, Massachusetts. USA, third ed. ISBN 0-9614088-9-8

Strang, G. (2007). Álgebra Lineal y sus Aplicaciones. Thomsom Learning, Inc, Santa Fe, México, D. F., fourth ed. ISBN 970686609-4.