Простые числа. Функции делителей.

С++. Базовые алгоритмы теории чисел. Простые числа, функ...

Натуральное число p называется простым, если у него ровно 2 различных натуральных делителя: 1 и оно само.

Рассмотрим алгоритм проверки числа на простоту. Пусть дано натуральное число n. Необходимо проверить, является ли оно простым.

Утверждение. Если n — составное, то у него найдётся натуральный делитель d>1 такой, что $d\leq \sqrt{n}$.

Доказательство. Предположим, что это не так, и все делители составного числа числа n, кроме единицы, строго больше \sqrt{n} . Выберем теперь такой делитель d, что 1 < d < n. Так как число n составное, то такой делитель существует. Тогда, так как $d > \sqrt{n}$, то число n/d меньше \sqrt{n} и при этом является делителем n. Таким образом, мы пришли к противоречию, значит, утверждение доказано от противного.

Теперь понятно, как проверить число n на простоту за вычислительную сложность $O(\sqrt{n})$. Для этого достаточно перебрать все числа в интервале $[2;\sqrt{n}]$ и проверить, есть ли среди них хотя бы один делитель n. Если делитель нашёлся, то число n составное, а иначе — простое.

Рассмотрим некоторые функции, связанные с делителями:

- $\sigma_0(n)$ количество делителей числа n.
- $\sigma_1(n)$ сумма делителей числа n.

Выпишем некоторые соотношения, связанные с $\sigma_0(n)$ и $\sigma_1(n)$.

Напомним, что по основной теореме арифметики любое натуральное число n>1 можно едиственным образом представить в виде произведения $n=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_s^{\alpha_s}$, где $p_1< p_2<\dots< p_s$ — простые числа, а $\alpha_1,\alpha_2,\dots,\alpha_s$ — натуральные числа.

Докажем, что
$$\sigma_0(n) = (\alpha_1 + 1)(\alpha_2 + 1)\dots(\alpha_s + 1).$$

Заметим, что любой делитель d числа n представим в виде $d=p_1^{\beta_1}p_2^{\beta_2}\dots p_s^{\beta_s}$, где $0\leq \beta_i\leq \alpha_i$ для всех i в интервале [0;s]. Таким образом, значения каждого β_i можно выбрать α_i+1 способом. А значит, по правилу произведения из курса комбинаторики получаем формулу: $\sigma_0(n)=(\alpha_1+1)(\alpha_2+1)\dots(\alpha_s+1).$

Выпишем формулу для
$$\sigma_1(n)$$
:

$$\sigma_1(n) = (1+p_1+p_1^2+\ldots+p_1^{lpha_1})(1+p_2+\ldots+p_2^{lpha_2})\ldots(1+p_s+\ldots+p_s^{lpha_s})$$

Для доказательства этого факта достаточно раскрыть скобки у этого выражения и понять, что получается сумма из слагаемых $p_1^{\beta_1}p_2^{\beta_2}\dots p_s^{\beta_s}$, каждое из которых является делителем числа n, и при этом в этой сумме будут встречаться все делители.

Определение. Функция f **мультипликативна**, если для любых натуральных чисел a и b, таких что $\gcd(a,b)=1$, выполнено f(ab)=f(a)f(b).

Заметим, что функции $\sigma_0(n)$ и $\sigma_1(n)$ мультипликативны.