Instance-level Attribution

Outline

- Influence Functions in Deep Learning Are Fragile
- Input Similarity from the Neural Network Perspective
- Representer Point Selection for Explaining Deep Neural Networks

Influence Functions in Deep Learning Are Fragile

Samyadeep Basu, Phillip Pope & Soheil Feizi

Department of Computer Science University of Maryland, College Park {sbasu12, pepope, sfeizi}@cs.umd.edu

Overview

- Influence Functions: measuring the influence of a training instance on the performance of test instance.
- Main contributions: evaluating the factors that affect the quality of IF on large-scale models.
- Experimental settings:
 - FFN on the Iris dataset
 - Shallow CNN on the MNIST dataset
 - Deep models, e.g., ResNets and VGG, on the MNIST & CIFAR-10 datasets

Influence Functions

 The intuition behinds influence functions is to estimate the change in model parameters when training the model with and without a training instance:

$$\Delta\theta = \theta^{\epsilon}_{\{z\}} - \theta^*$$

 Exactly computing this change is expensive, thus IF proposed to estimate this change using first-order Taylor's approximation.

Influence Functions

 The standard empirical risk minimization solves the following optimization problem:

$$\theta^* = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^n \ell(h_{\theta}(z_i)).$$

• Up-weighting a training example z by an infinitesimal amount epsilon leads to a new set of model parameters:

$$\theta_{\{z\}}^{\epsilon} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \ell(h_{\theta}(z_i)) + \epsilon \ell(h_{\theta}(z)).$$

Influence Functions

 First-order Taylor's series expansion around the optimal model parameters can be represented by:

$$\theta_{\{z\}}^{\epsilon} \approx \theta^* - \epsilon H_{\theta^*}^{-1} \nabla_{\theta} \ell(h_{\theta^*}(z)),$$

Then Influence Function can be defined as follows:

$$\mathcal{I}(z) = \frac{d\theta_{\{z\}}^{\epsilon}}{d\epsilon}|_{\epsilon=0} = -H_{\theta^*}^{-1} \nabla_{\theta} \ell \left(h_{\theta^*}(z) \right).$$

Influence Functions

 The change in the loss value for a particular test point z_t when a training point z is up-weighted can be approximated as a closed form expression by the chain rule:

$$\mathcal{I}(z, z_t) = -\nabla \ell(h_{\theta^*}(z_t))^T H_{\theta^*}^{-1} \nabla \ell(h_{\theta^*}(z)).$$

Potential issues

- Non-convexity of the loss function may lead to significantly different model parameters with similar loss values
- Eigenvalues of Hessian matrix may be very large, leading to a substantial Taylor's approximation error
- Computing the exact inverse-Hessian matrix is expensive.

Global settings

- Datasets:
 - Iris
 - MNIST
 - CIFAR-10
- Evaluation Metrics:
 - Pearson correlation
 - Spearman rank-order correlation

Small size

- Setup:
 - Dataset: Iris dataset
 - Model: Feed-forward neural network
 - IF: Exact Hessian in a non-convex setup
 - Golden-truth: retrain-model for 7.5k steps from the optimal model
 - Selection of Test Data: maximum loss
 - Evaluation: evaluate the accuracy of influence estimates with the ground-truth amongst of the top 16.6% of the training points.

Small size

Figure 1: Iris dataset experimental results - (a,b) Comparison of norm of parameter changes computed with influence function vs re-training; (a) trained with weight-decay; (b) trained without weight-decay. (c) Spearman correlation vs. network depth. (d) Spearman correlation vs. network width.

Small size

Figure 2: Iris dataset experimental results; (a) Spearman correlation of influence estimates with the ground-truth estimates computed with stochastic estimation vs. exact inverse-Hessian vector product. (b) Top eigenvalue of the Hessian vs. the network depth. (c) Spearman correlation between the norm of parameter changes computed with influence function vs. re-training.

Medium size

- Setup:
 - Dataset: 10% of MNIST
 - Model: CNN with 2600 parameters
 - IF: Exact Hessian in a non-convex setup
 - Golden-truth: select 100 training samples with the highest influence scores and compute the ground-truth influence by re-training the model
 - Selection of Test Data: a set of test-points with high test-losses computed at the optimal model parameters.
 - Evaluation: evaluate the accuracy of influence estimates with the groundtruth.

Medium size

Figure 3: Experiments on small MNIST using a CNN architecture. (a) Estimation of influence function with and without weight decay on (a) the top influential points, (b) training points at 30^{th} percentile of influence score distribution. (c) Correlation vs the weight decay factor (evaluated on the top influential points).

Large size

- Setup:
 - Dataset: MNIST & CIFAR-10
 - Model: ResNets, VGGNets
 - IF: Exact Hessian in a non-convex setup
 - Golden-truth: select 40 training samples with the highest influence scores and compute the ground-truth influence by re-training the model
 - Selection of Test Data: the test-point with highest test-losses computed at the optimal model parameters.
 - Evaluation: evaluate the accuracy of influence estimates with the groundtruth.

Large size

Dataset	MNIST						CIFAR-10					
	A (With		B (With		A (Without		A (With		B (With		A (Without	
	Decay)		Decay)		Decay)		Decay)		Decay)		Decay)	
Architecture	P	S	P	S	P	S	P	S	P	S	P	S
Small CNN	0.95	0.87	0.92	0.82	0.41	0.35	-	-	-	-	-	-
LeNet	0.83	0.51	0.28	0.29	0.18	0.12	0.81	0.69	0.45	0.46	0.19	0.09
VGG13	0.34	0.44	0.29	0.18	0.38	0.31	0.67	0.63	0.66	0.63	0.79	0.73
VGG14	0.32	0.26	0.28	0.22	0.21	0.11	0.61	0.59	0.49	0.41	0.75	0.64
ResNet18	0.49	0.26	0.39	0.35	0.14	0.11	0.64	0.42	0.25	0.26	0.72	0.69
ResNet50	0.24	0.22	0.29	0.19	0.08	0.13	0.46	0.36	0.24	0.09	0.32	0.14

Table 1: Correlation estimates on MNIST And CIFAR-10; A=Test-point with highest loss; B=Test-point at the 50^{th} percentile of test-loss spectrum; P=Pearson correlation; S=Spearman correlation

Conclusions

- Re-train from optimal model achieves similar results with that from scratch
- Several factors such as weight-decay, depth, width, and so on have strong effects on the quality of IF
- IF is fairly accurate on shallow architectures.