Computer Network Design Introduction

Yalda Edalat – Spring 23

Focus of the Course

Main Points of The Course

- 1. To learn how the Internet works
 - What really happens when you browse the web?
 - What are TCP/IP, DNS, HTTP, NAT, 802.11, ...?
- 2. To learn the fundamentals of computer networks
 - What hard problems must they solve?
 - What design strategies have proven valuable?

Computer Networks

- Computer networks:
 - A collection of autonomous computers interconnected by a single technology
 - Example: Internet

Uses of Computer Networks

- Example Uses of Networks:
 - Work:
 - Email, file sharing, printing, ...
 - Home:
 - Movies / songs, news, calls / video, e-commerce,...
 - Mobile:
 - Maps, games, videos, information access, calls / texts,...

Uses of Computer Networks (2)

- Why We Need Networks? For User Communications
 - Voice-over-ip
 - Video conferencing
 - Instant messaging
 - Social networking
- ➤ Need low latency for interactivity

Uses of Computer Networks (3)

- Why We Need Networks? For Resource Sharing
 - Many users may access the same underlying resources
 - E.g., 3D printer, search index, machines in the cloud
 - More cost effective than dedicated resources per user
 - Even network links are shared!

Uses of Computer Networks (4)

- Why We Need Networks? For Content Delivery
 - Content is delivered to users
 - Videos, songs, apps and upgrades, web pages
 - Using "replica" is more efficient than sending a copy all the way to each user

Uses of Computer Networks (5)

- Why We Need Networks? For Computer Communication
 - To let computers interact with other computers
 - E.g., e-commerce, reservations
 - Enables automated information processing across different parties

Uses of Computer Networks (6)

- Why We Need Networks? For Connecting Computers to physical World
 - For gathering sensor data, and for manipulating the world
 - E.g., webcams, location on mobile phones, door locks,...

Example Networks

- Can be categorized by:
 - Technology
 - Purpose (Scale)

Example Networks by Technology

- WiFi (802.11)
- Enterprise/Ethernet
- ISP (Internet Service Provider)
- Cable / DSL
- Mobile phone / Cellular (2G, 3G, 4G)
- Bluetooth
- Telephone
- Satellite....

Example Networks by Scale

- PAN (Personal Area Network)
- LAN (Local Area Network)
- MAN (Metropolitan Area Network)
- WAN (Wide Area Network)
- The Internet (network of all networks)

Network Components

• Parts of a network:

Component	Function	Example
Application, or app, user	Uses the network	Skype, iTunes, Amazon
Host, or end-system, edge device, node, source, sink	Supports apps	Laptop, mobile, desktop
Router, or switch, node, hub, intermediate system	Relays messages between links	Access point, cable/DSL modem
Link, or channel	Connects nodes	Wires, wireless

Networks Need Modularity

- Networks do lots of thing for applications:
 - Make and break connections
 - Find a path through the network
 - Transfer information reliably
 - Sends as fast as the network allows
 - Shares bandwidth among users
 - Secure information in transit
 - Let many hosts to be added
 - •
- There is a need for a form of modularity to manage complexity and support reuse

Protocols and Layers

- Protocols and layering are the main structuring methods used to divide up network functionality
- Each instant of a protocol talks virtually to its peer using protocol
- Each instance of a protocol uses only the services of the lower layer

Protocols and Layers (2)

• Protocols are horizontal and layers are vertical

Protocols and Layers (3)

• Set of protocols in use is called a protocol stack

Protocols and Layers (4)

- Protocols you have probably heard of:
 - TCP, 802.11, HTTP,...
- An example protocol stack:
 - Used by a web browser on a host that is wirelessly connected to the Internet

Encapsulation

- Lower layers wrap higher layers' content by adding their own information to make a new message
 - Each layer adds its own header
 - Example: Sending letter

Decapsulation

- The process of opening up encapsulated data is decapsulation
- Message "on the wire" looks like an onion
 - Lower layers are outermost

Multiplexing

- Combining data from several sources into single stream so it can be separated later
- Can occur at different layers
- **Protocol Multiplexing** allows multiple different protocols to co-exist on the same layer

Demultiplexing

- Technique to separate from common input into several outputs
 - Incoming PDU is de-multiplexed, using control information and sent to upper layer
- Incoming message must be passed to the protocol that it uses

Demultiplexing Example

Reference Models

- What functionality should be implemented at which layer?
- It is a key design question
- Reference models provide frameworks that guide us
- Two reference models:
 - OSI model
 - TCP/IP model

Reference Models

- OSI model:
 - International standard to connect devices
 - 7 layers
 - Not used in practice

7	Application	– Provides functions needed by users
6	Presentation	 Converts different representations
5	Session	 Manages task dialogs
4	Transport	 Provides end-to-end delivery
3	Network	 Sends packets over multiple links
2	Data link	 Sends frames of information
1	Physical	– Sends bits as signals

Reference Models

- TCP/IP Reference Model:
 - Four layer model which is based on the experience

This Course's Reference Model

7	Application	
4	Transport	
3	Network	
2	Link	
1	Physical	

- Programs that use network service

- Provides end-to-end data delivery

- Send packets over multiple networks

- Send frames over one or more links

Send bits using signals

Protocols (TCP/IP Model)

- IP is the "narrow waist" of the Internet
 - Supports many links below and apps above

Advantage of Layering

Information hiding and resuse

Advantage of Layering (2)

• Using information hiding to connect different systems

Advantage of Layering (3)

Disadvantage of Layering

- Adds overhead
 - But minor for long messages
- Hides information
 - App might care whether it is running over wired or wireless!

Protocol Data Unit (PDU)

Layer	PDU
Application	Message (Data)
Transport	Segment
Network	Packet
Link	Frame
Physical	Bit

Course Agenda

• Bottom-up through the layers

- Followed by some detail on
 - Security

Physical Layer

Physical Layer Overview

- Concerns how signals are used to transfer message bits over a link
 - Wires etc. carry analog signals
 - We want to send digital bits

Application
Transport
Network
Link
Physical

Types of Links

- Based on direction:
 - Full-duplex
 - Bidirectional
 - Half-duplex
 - Bidirectional
 - Simplex
 - Unidirectional
- Based on Media:
 - Wired -> can send directly
 - Wireless -> send broadcastly

Simple Link Model

- Key parameters:
 - Rate (or bandwidth, capacity, speed) in bit/second
 - Delay in seconds, related to length

- Other important properties:
 - Whether the channel is broadcast, error rate,...

Message Latency

- Latency is the delay to send a message over a link
 - Transmission delay: time to put M-bit message on the wire
 T-delay = M (bits) / Rate (bits/sec) = M/R seconds
 - Propagation delay: time for bits to propagate across the wire
 P-delay = Length / speed of signals = length / (2/3) C = D seconds
 - Combining two terms we have: L = M/R + D

Metric Unit

• The main prefixes we use:

Prefix	Exp.	prefix	exp.
K(ilo)	10 ³	m(illi)	10-3
M(ega)	10 ⁶	μ(micro)	10-6
G(iga)	10 ⁹	n(ano)	10-9

- Use power of 10 for rates, ex: 1 Mbps = 10^6 bps
- Use power of 2 for storage, ex: 1 KB = 2^{10} bytes
- "B" is for bytes and "b" is for bits

Latency Example

• "Dialup" with telephone modem:

D = 5 ms, R = 56 Kbps, M = 1250 bytes
L =
$$((1250 \times 8) / 56 \times 10^3) + 5 \text{ ms} = 184 \text{ ms}$$

• Broadband cross-country link:

D = 50 ms, R = 10 Mbps, M = 1250 bytes
L =
$$((1250 \times 8) / 10 \times 10^6) + 50 \text{ ms} = 51 \text{ ms}$$

A long link or a slow rate means high latency

Bandwidth-Delay Product

- Messages take space on the wire!
- A measurement of how many bits (bytes) can fill up a network link

$$BD = R \times D$$

• Ex: Fiber at home, cross country R=40 Mbps, D=50 ms

BD= $40x10^6x50x10^{-3}$ bits

= 2000 Kbits

= 250 KB

Key Channel Properties

- The bandwidth (B), signal strength (S) and noise strength (N)
 - B limits the rate of transitions
 - S and N limit how many signal levels we can distinguish

Shannon Capacity

 Shannon Capacity (C), tells the maximum data rate or capacity of a noisy channel whose bandwidth is B Hz and whose signal-to-noise ratio is S/N

$$C = B \log_2(1 + S/N)$$
 bits/sec

 Shannon capacity shows that it is possible to send information reliably over the channel up to this capacity but not more

Wire/Wireless Perspective

- Wires and fibers:
 - Engineer link to have requisite SNR and B
 - >Can fix data rate

Engineer SNR for data rate

- Wireless:
 - Given B, but SNR varies greatly

Can not design for worst case, must adapt data rate

Adapt data rate to SNR

Medias

- Media propagate signals that carry bits of information
- Media groups:
 - Guided
 - Wires
 - Fibers (Fiber optic cable)
 - Unguided
 - Wireless

Wires (Twisted Pair)

- Very common; used in LANs and telephone lines
 - Twists reduce radiated signal

Wires (Coaxial Cable)

- Also common
- Better shielding for better performance

Fiber

- Long, thin, pure strands of glass
 - Enormous bandwidth (high speed) over long distance

Fiber

• Two varieties: multi-mode (shorter links, cheaper) and single-mode (up to $^{\sim}100$ km)

Wireless

- Sender radiates signal over a region
 - Message is broadcast
 - Received by all nodes in the range
 - In many directions, unlike a wire
 - Nearby signals (same frequency) interfere at the receiver; need to coordinate
 use

To-do List

- Assignments:
 - Prepare for a short quiz
 - Make sure you install lockdown browser
 - Sign the academic integrity form (due next week)
- Other:
 - Post your research topic on discussion thread (due on Feb 9th)