A different type of DAG: Data pipeline principles for epidemiology

Emily Riederer

Data Science Lead at Capital One

Disclosures: No relevant financial interests exist.

Industry data science can learn a lot from epidemiology

Data Analytical Approach Precise Communication

Imperfection expected Prototypical study designs Estimands

Data Management Packaged Code Deployed Outputs

DS

Data pipelines are a different sort of DAG that encode the computational versus conceptual data generating process

Data pipelines and databases serve many needs in industry with parallels for individual analytical projects

Data Pipelines

- Data lineage and quality control
- New data ingestion, integration, and updates
- Sharing data artifacts across many users
- Sharing data artifacts across many use cases
- Produce complex outputs (models, reports)

Project Benefit

- Reproducibility
- Harmonizing disparate sources
- Collaboration
- Reuse across projects
- In-sync analysis

Today, we will discuss some useful tools and ideas throughout the data pipeline ecosystem

ARCHITECTURE: The same principles apply across platforms – all you need to get started is a hard drive

	Local	Shared	Cloud
Storage	Local Drive	✓ Network Drive☐ Google Cloud Storage☐ Amazon S3	■ Google BigQuery DB
Compute	R, python, SQL + dbt, or any scripting language duckdb		■ Google BigQuery SQL + dbt (data pipeline) Dagster (orchestration)

ARCHITECTURE: Pipelines preserve data artifacts at raw, standardized, and transformed stages

Medallion Architecture

Bronze (= Raw)

Unmodified source data

Silver (= Structure)

- Standardized file structure
- Cleaned column name
- Casted data types
- Light re-encoding

Gold (= Prepared)

- Transformed and merged data
- Derived fields
- Ready for analytical use

ARCHITECTURE: Preserving artifacts at multiple stages balances reproducibility with analytical efficiency

In Database Schema

- data.raw
- data.structured
- data.prepared

In File System

- data/raw/
- data/structured/
- 📁 data/prepared/

Raw

- Preserves full reproducibility
- Enables testing for upstream errors pre-transformation

Structured

 Preserves data flexible enough to transform in different ways

Prepared

- Ready for use without rerunning expensive computations
- Ensures collaborators made same design decisions

ARCHITECTURE: Read/write patterns make the pipelines acyclic, idempotent, resilient to re-runs

EXTRACT: Many different techniques can be used to collect data across disparate and sometimes inconvenient sources

When data is available as...

Link to a standalone file, e.g. in an S3 bucket

Exposed through a REST API

Rendered server-side in the webpage's source, e.g. a static HTML table

Rendered dynamically in a web-based UI

Trapped within a complex UI or report

Method

Download: R {readr} or python {urllib.requests}

API Call: R {httr2} or python {requests}

Scraping: Extract content from underlying webpage structure

Headless Browsing: Use code to navigate a UI

Computer Vision: Parse characters from an image or webpage based on visual characteristics

EXTRACT: Automation can save manual data collection effort

Example: Headless Browsing with Playwright


```
# pick selections from menu
 page.goto(url)
 page.select option('#idElection',
    label = "2020 NOVEMBER 3RD GENERAL ELECTION")
 page.click('#electionsInfoForm button')
 page.wait for selector('#selectedDate')
 page.select option('#selectedDate', value = target date)
 page.click('#electionsInfoForm button:nth-child(2)')
 page.wait for selector('"Generate Statewide Report"')
# download report
  with page.expect download() as download info:
   page.click('"Generate Statewide Report"')
  download = download info.value
  download.save as (target file)
```

EXTRACT: Automation can save manual data collection effort

Example: Optical Character Recognition with Tesseract


```
# take screenshot with Playwright
page.goto(url)
page.wait_for_load_state(state = 'networkidle')
time.sleep(30)
page.screenshot(path = 'ri.png')
```

```
# parse image to data with Tesseract
img = cv2.imread('ri.png')
text = pytesseract.image_to_string(img)
n_tot = re.search('Turnout\n\n(\d+)', text).group(1)
n_mail = re.search('Mail Ballots', text).group(1)
```

LOAD: Despite being the most common data storage formats, CSVs and Excel files can be brittle for computing

Wrong type inferred, leading zeros ignored

zip_code <str></str>	treated <int></int>	name <str></str>
'06830'	1	Emily
'27514'	1	Barret,M.

write_csv('persons.csv')
read_csv('persons.csv')

zip_code <int></int>	treated <int></int>	name <str></str>
6830	1	Emily
27514	1	Barret,M.

Could break file or lose data

BONUS:

DuckDB's CSV Sniffer can help identify and quarantine bad rows that keep you from opening a file

LOAD: Parquet files are like a zipfile of data and metadata

CSV

- Human readable and editable
- All data in single text file
- Row-based

```
zip_code, treated, name
06834, 1, Emily
12345, 1, Barret, M
```

Parquet

- Compressed and machine readable
- Bundles data and metadata
- Column-based

```
Metadata

zip_code: 06834 12345

treated:1 1

name:Emily Malcolm, B
```

LOAD: Parquet has numerous advantages over CSV as a standard data format

- 1 Similar scripting read/write Easily handled by R's {readr} or {arrow}
- 2 Lower risk of accidental Not easily opened in UI or modified without explicit read/write
- 3 Preserves data types Remembers column types to avoid data corruption
- Storing strategies allow efficient reads

 Allows for partitioned read/writes for pre-filtering of large files
- 5 Smaller file sizes Compressed on disk

LOAD: Partitioning improves data organization and aids in efficient reading of large files

```
arrow::write dataset(
                                              data/year=2021/
                                              //data/year=2022/
 data,
 path = 'data/',
                                              | data/year=2023/
  format = "parquet",
 partitioning = "year"
arrow::open dataset(
                                                data/year=2021/
  'data'
                                              data/year=2022/
                                               data/year=2023/
                                                data/year=2021/
arrow::open dataset(
                                                data/year=2022/
  'data/year=2022/'
                                               data/year=2023/
```

TRANSFORM: Data modeling provides a framework for integrating data from diverse sources and structures

Data Modeling

Restructure data into standard schemas representing different types of information

Table Design

Design table contents, column names, documentation, etc. for maximum usability

TRANSFORM: Data modeling principles can help us partition information into entities and relationships

id	visit	test_result	name	age
1	2025-01-05	13	Chris	35
1	2025-01-10	1	Chris	35
1	2025-01-12	2	Chris	35
2	2025-01-05	14	Jenny	27
2	2025-02-10	0	Jenny	27

id	age
1	35
2	27

id	name
1	Chris
2	Jenny

persons_pii	
(1 row / person)	
(110W/persori)	

id	visit	test_result
1	2025-01-05	13
1	2025-01-10	1
1	2025-01-12	2
2	2025-01-05	14
2	2025-02-10	0

TRANSFORM: Keep the simplest data structures as long as possible ("shift right") to preserve flexibility

Activity Schema

- 1 record per entity x event
- Long and narrow
- Flexible but may require more processing

id_person	date	event
1	2025-01-05	treatment
2	2025-01-05	treatment
3	2025-01-05	treatment
3	2025-03-14	death
4	2025-01-05	treatment
4	2025-02-10	withdraw

One Big Table (OBT)

- 1 record per entity
- Wide
- Already imposes some analytical decisions

id_person	treated	withdrew	death
1	2025-01-05		
2	2025-01-05		
3	2025-01-05		2025-03-14
4	2025-01-05	2025-02-10	

TRANSFORM: Keep the simplest data structures as long as possible ("shift right") to preserve flexibility

id_person	date	event
1	2025-01-05	treatment
1	2025-01-12	death
2	2025-01-05	treatment
3	2025-01-05	treatment
4	2025-01-05	treatment
4	2025-02-10	withdraw

Flexible to query different inclusion/exclusion criteria

Easily updated with new records (favor appends to joins)

TRANSFORM: Consistent column naming conventions across tables aids comprehension and downstream analysis code

Stub	Semantics
ID	Unique entity identifier
IND /	Binary 0/1 indicator; rest of name describes 1 condition
BIN	Binary 0/1 indicator; rest of name describes 1 condition
N	Count of quantity or event occurrences
AMT	Sum-able real number amount ("denominator free")

```
library(dplyr)
data |>
 group_by(NM_STATE) |>
 summarize(
   across(starts_with("IND"), mean),
   across(contains("_ACTL_"), sum)
#> # A tibble: 51 x 4
#> NM_STATE IND_COUNTY_HPSA N_CASE_ACTL N_DEATH_ACTL
    <chr>
                    <db1>
                              <db1>
                                        <db1>
#> 1 Alabama
                   0.149
                             455582
                                        7566
#> 2 Alaska 0.235 51338
                                         250
                             753379
#> 3 Arizona
                                       13098
```

TEST: A multistage pipeline allows us to conduct hypothesis-drive upstream data quality checks ("shift left")

10

4

TEST: A multistage pipeline allows us to conduct hypothesis-drive upstream data quality checks ("shift left")

stg_persons

ID	Age	Arm
1	57	1
2	45	0

Test Here:
Same cardinality in
stg_persons and stg_outcomes

stg_outcomes

ID	Score
1	50
2	0
3	20
4	10

LEFT JOIN

study_results

ID	Age	Arm	Score
1	57	1	50
2	45	0	0

Not Here

ORCHESTRATE: Orchestration tools help us run many steps of an analysis pipeline in order to keep dependencies consistent

ORCHESTRATE: Many different tools exist for orchestration

makefile

- General purpose config file
- Runs any shell commands based on user-defined dependencies
- Higher learning curve

dbt

- SQL framework that infers dependencies
- Compatible with any database including local compute (duckdb)
- Lower learning curve but less flexible

```
select id, name
from raw.persons
where dt_enroll = '2025-01-01'

select id, name, outcome
from {{ref('persons')}}
left join
{{ref('outcomes')}}
using (id)
results.sql
```

 $\label{localization} \mbox{Makefile example from $\underline{$https://datasciencesouth.com/blog/make/\#a-make-data-pipeline-example}$ See also R package {targets} and Dagster$

Big ideas from data pipelining can help improve data handling in projects of any size of complexity

Architecture	Start with a structured read/write process to your hard drive controlled by R , python , or SQL
Extract	Automate manual extraction with tools like playwright and tesseract
Load	Store and share Parquet files for type-safe resilience
Transform	Apply data modeling techniques like <u>entity-relationship mapping</u> , <u>Boyce-Codd normalization</u> and the <u>Activity schema</u> to standardize structure
Test	Test intermediate artifacts to detect failures at their source

Orchestrate Adopt automated tooling to run all steps in sync with <u>make</u>, <u>dbt</u>, or <u>targets</u>

A few more examples and resources are available online

Architecture Build NC data pipeline using local drive, duckdb, and Arrow

Extract Different web scraping techniques across 6 government websites

Load

TransformColumn Names as Contracts
Column Name Contracts in dbt

Test

<u>Understanding the data (error) generating process</u>

<u>Hypothesis-driven data testing with grouped checks</u>

Orchestrate

Thank you!