Comp3320/6370 Computer Graphics

Lecture: Transforms I

Mostly based on the book "Real-time Rendering" and the lecture slides by Tomas Akenine-Möller et al.

Some slides are from Hill's book.

Why transforms?

- We want to be able to animate objects and the camera
 - Translations
 - Rotations
 - Shears
 - And more…
- We want to be able to use projection transforms

Motivation for Transforms

We can model objects using a bunch of vectors.

Motivation for Transforms

- We can model objects using a bunch of vectors.
- We want to move an object around...

Motivation for Transforms

- We can model objects using a bunch of vectors.
- We want to move it around... without having to build the object again from scratch.

Transformations

- Transformations change 2D or 3D points and vectors, or change coordinate systems.
 - An object transformation alters the coordinates of each point on the object according to the same rule, leaving the underlying coordinate system fixed.
 - A coordinate transformation defines a new coordinate system in terms of the old one, then represents all of the object's points in this new system.
- Object transformations are easier to understand, so we will do them first.

Transformations (2)

A (2D or 3D) transformation T() alters each point, P into a new point, Q, using a specific formula or algorithm: Q = T(P).

Transformations (3)

- An arbitrary point P in the plane is mapped to Q.
- Q is the **image** of P under the mapping T.
- We transform an object by transforming each of its points, using the same function T() for each point.
- The **image** of line *L* under *T*, for instance, consists of the images of *all* the individual points of *L*.

Transformations (4)

- Most mappings of interest are continuous, so the image of a straight line is still a connected curve of some shape, although it's not necessarily a straight line.
- Affine transformations, however, do preserve lines: the image under T of a straight line is also a straight line.

Transformations (5)

- We use an explicit "coordinate frame", also called an "orthonormal basis", when performing transformations.
- A coordinate frame consists of a point *O*, called the **origin**, and some mutually perpendicular vectors (called **i** and **j** in the 2D case; **i**, **j**, and **k** in the 3D case) that serve as the axes of the coordinate frame.
- Computer graphics uses homogeneous notation in order to distinguish points from vectors. We describe two 2D points by adding a "1" as a third "homogeneous" coordinate (and for vectors we would add a "0" as additional "homogeneous" coordinate.) Here we have two points in 2D:

$$\widetilde{P} = \begin{pmatrix} P_x \\ P_y \\ 1 \end{pmatrix}, \widetilde{Q} = \begin{pmatrix} Q_x \\ Q_y \\ 1 \end{pmatrix}$$

Transformations (6)

- Recall that this means that point P is at location $= P_x \mathbf{i} + P_y \mathbf{j} + O$, and similarly for Q.
- P_x and P_y are the coordinates of P.
- To get from the origin to point P, move amount P_x along axis \mathbf{i} and amount P_y along axis \mathbf{j} .

Transformations (7)

 Suppose that transformation T operates on any point P to produce point Q:

•
$$\begin{pmatrix} Q_x \\ Q_y \\ 1 \end{pmatrix} = T(\begin{pmatrix} P_x \\ P_y \\ 1 \end{pmatrix})$$
 or $Q = T(P)$.

• T may be any transformation: e.g.,

$$\begin{pmatrix} Q_x \\ Q_y \\ 1 \end{pmatrix} = \begin{pmatrix} \cos(P_x)e^{-P_x} \\ \frac{\ln(P_y)}{1 + P_x^2} \\ 1 \end{pmatrix}$$

Transformations (8)

- To make **affine transformations** we restrict ourselves to much simpler families of functions, those that are *linear* in P_x and P_y .
- Affine transformations make it easy to scale, rotate, and reposition figures.
- Successive affine transformations can be combined into a single overall affine transformation.

Transformations (9)

- Affine transformations have a compact matrix representation.
- Consequence of representing the vectors and points in homogeneous coordinates:
 - The matrix associated with an affine transformation operating on 2D vectors or points (in 2D space) must be a three-by-three matrix.
 - The matrix associated with an affine transformation operating on 3D vectors or points (in 3D space) must be a four-by-four matrix.

Transformations (10)

- Affine transformations have a simple form.
- Example in 2D: Because the coordinates of Q are *linear* combinations of those of P, the transformed point may be written in the form:

$$\begin{pmatrix} Q_x \\ Q_y \\ 1 \end{pmatrix} = \begin{pmatrix} m_{11}P_x + m_{12}P_y + m_{13} \\ m_{21}P_x + m_{22}P_y + m_{23} \\ 1 \end{pmatrix}$$

Transformations (11)

- Every affine transformation is composed of elementary operations.
- A matrix may be factored into a product of elementary matrices in various ways. One particular way of factoring the matrix associated with a 2D affine transformation yields
 - M = (shear)(scaling)(rotation)(translation)
- That is, any 3 x 3 matrix that represents a 2D affine transformation can be written as the product of (reading right to left) a translation matrix, a rotation matrix, a scaling matrix, and a shear matrix.

How implement transforms?

- Matrices!
- Can you really do everything with a matrix?
- Not everything, but a lot!
- We use 3x3 (for 2D homogeneous notation or for normal 3D notation) and 4x4 matrices (for 3D homogeneous notation).

$$\mathbf{p} = \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} \qquad \mathbf{M} = \begin{pmatrix} m_{00} & m_{01} & m_{02} \\ m_{10} & m_{11} & m_{12} \\ m_{20} & m_{21} & m_{22} \end{pmatrix}$$

How do I use transforms practically?

 Say you have a circle with origin at (0,0,0) and with radius 1 – i.e. the unit circle

```
\bullet glTranslatef(8,0,0);
```

- RenderCircle();
- \bullet glTranslatef(3,2,0);
- glScalef(2,2,2);
- RenderCircle ();

Cont'd from previous slide A simple 2D example

• A circle in model space

Derivation of rotation matrix in 2D

$$\mathbf{n} = \mathbf{R}_z \mathbf{p}$$
?

$$\mathbf{p} = re^{i\phi} = r(\cos\phi + i\sin\phi) \text{ [rotation is mult by } e^{i\alpha} \text{]}$$

$$\mathbf{n} = e^{i\alpha}p = re^{i\alpha}e^{i\phi} =$$

$$= r[(\cos\alpha + i\sin\alpha)(\cos\phi + i\sin\phi)] =$$

$$= r(\cos\alpha\cos\phi - \sin\alpha\sin\phi) + ir(\cos\alpha\sin\phi + \sin\alpha\cos\phi)$$

$$= re^{i(\alpha+\phi)}$$

$$\mathbf{p} = (p_x, p_y)^T = (r\cos\phi, r\sin\phi)^T$$

$$\mathbf{n} = (n_x, n_y)^T = (r(\cos\alpha\cos\phi - \sin\alpha\sin\phi), r(\cos\alpha\sin\phi + \sin\alpha\cos\phi))^T$$

Derivation 2D rotation, cont'd

$$\mathbf{p} = (p_x, p_y)^T = (r\cos\phi, r\sin\phi)^T$$

$$\mathbf{n} = (n_x, n_y)^T = [r(\cos\alpha\cos\phi - \sin\alpha\sin\phi),$$

$$r(\cos\alpha\sin\phi + \sin\alpha\cos\phi)]^T$$

$$\mathbf{n} = \mathbf{R}_{z} \mathbf{p} \quad \text{what is } \mathbf{R}_{z}?$$

$$\begin{pmatrix} n_{x} \\ n_{y} \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} p_{x} \\ p_{y} \end{pmatrix}$$

$$\mathbf{R}$$

Rotations in 3D (standard notation)

Same as in 2D for Z-rotations, but with a 3x3 matrix

$$\mathbf{R}_{z}(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \Rightarrow \mathbf{R}_{z}(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

For X

For Y

$$\mathbf{R}_{x}(\alpha) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}$$

$$\mathbf{R}_{y}(\alpha) = \begin{pmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{pmatrix}$$

The Euler Transform

 Assume the view looks down the negative z-axis, with up in the y-direction, x to the right.

$$\mathbf{E}(h, p, r) = \mathbf{R}_z(r)\mathbf{R}_x(p)\mathbf{R}_y(h)$$

- *h*=head, *p*=pitch, *r*=roll are called "Euler angles".
- Gimbal lock can occur looses one degree of freedom (Example: $h=0,p=\pi/2$, then the z-rotation becomes rotation around y-axis)

Building Rotations

- Euler's Theorem: Any rotation (or sequence of rotations)
 about a point is equivalent to a single rotation about some
 coordinate axis through that point.
- Any 3D rotation around an axis (passing through the origin) can be obtained from the product of five matrices for the appropriate choice of Euler angles; we shall see a method to construct the matrices.
- This implies that three values are required (and only three) to completely specify a rotation!

Rotating about an arbitrary axis

- We wish to rotate around axis u
 to make P coincide with Q.
- u can have any direction; it appears difficult to find a matrix that represents such a rotation.
- But it can be found in two ways, a classic way and a constructive way.

Rotating about an Arbitrary Axis (the classic way)

- *The classic way:* Decompose the required rotation into a sequence of known steps:
 - Perform two rotations so that u becomes aligned with the z-axis.
 - Do a z-roll through angle β .
 - Undo the two alignment rotations to restore u to its original direction.

- $R_{\mathbf{u}}(\beta) = R_{\mathbf{z}}(\theta) R_{\mathbf{y}}(\Phi) R_{\mathbf{z}}(\beta) R_{\mathbf{y}}(-\Phi) R_{\mathbf{z}}(-\theta)$ is the desired rotation.
- (The constructive way will be addressed in one of the following lectures).

Rotating about an arbitrary axis

- Open-GL provides a rotation about an arbitrary axis: glRotated (beta, ux, uy, uz);
- beta is the angle of rotation.
- ux, uy, uz are the components of a vector u normal to the plane containing P and Q.

Combinations of (Affine) Transformations

The house has been scaled, rotated and translated, in both 2D and 3D.

Translations must be simple?

Translation

Rotation

$$\begin{pmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{pmatrix} \mathbf{p} = \mathbf{p} + \mathbf{t} \qquad \mathbf{R}\mathbf{p} = \mathbf{n}$$

- Rotation is matrix mult, translation is add
- Would be nice if we could only use matrix multiplications...
- Turn to homogeneous coordinates (!)
- Add a new component to each vector

Homogeneous notation for 3D space

A point:

$$\mathbf{p} = \begin{pmatrix} p_x & p_y & p_z & 1 \end{pmatrix}^T$$

Translation becomes:

$$\begin{pmatrix}
1 & 0 & 0 & t_x \\
0 & 1 & 0 & t_y \\
0 & 0 & 1 & t_z \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
p_x \\
p_y \\
p_z \\
1
\end{pmatrix} = \begin{pmatrix}
p_x + t_x \\
p_y + t_y \\
p_z + t_z \\
1
\end{pmatrix}$$

$$\mathbf{T(t)}$$

A vector (direction):

$$\mathbf{d} = \begin{pmatrix} d_x & d_y & d_z & 0 \end{pmatrix}^T$$

Translation of vector:

$$Td = d$$

Also allows for projections (later)

Rotations in 4x4 form

Just add a row at the bottom, and a column at the right:

$$\mathbf{R}_{z}(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 & 0 \\ \sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- Similar for X and Y
- det(R)=1 (for 3x3 matrices)
- trace(R)=1+2cos(alpha) (for any axis,3x3)

3D Rotations in homogeneous notation

- z-roll: the x-axis rotates to the y-axis.
- *x*-roll: the *y*-axis rotates to the *z*-axis.
- *y*-roll: the *z*-axis rotates to the *x*-axis.

$$R_{x} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, R_{y} = \begin{pmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

$$R_z = \begin{pmatrix} \cos \vartheta & -\sin \vartheta & 0 & 0 \\ \sin \vartheta & \cos \vartheta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Rotations

- Note that 12 of the terms in each matrix are the zeros and ones of the identity matrix.
- They guarantee that the corresponding coordinate of the point being transformed will not be altered.
- The cos and sin terms always appear in a rectangular pattern in the other rows and columns.

Example

A barn in its original orientation, and after a -70° x-roll, a 30° y-roll, and a -90° z-roll.

a) the barn

b) -70^0 x-roll

$$d) -90^0 z$$
-roll

Exercise 11 (Basic Rotations in 3D)

Describe the 3D rotation matrices around the *x*, *y*, and *z* axis for 90, 180, 270, and 360 degrees (in standard and in homogeneous notation).

Exercise 14 (Homogeneous coordinates)

Below several points (or vectors?) are given in homogeneous coordinates. Determine for each of them the corresponding non-homogeneous 3D Cartesian coordinates.

- a) (3, 6, 5, 1)
- b) (2, 4, 6, 4)
- c) (0, 0, 2, 0.25)
- d) (0, 0, 0, 1)
- e) (1, 0, 0, 0)

More basic transforms

Scaling

Shear

Rigid-body: rotation then translation

$$X = TR$$

- Concatenation of matrices
 - Not commutative, i.e., $\mathbf{RT} \neq \mathbf{TR}$
 - In X = TR, the rotation is done first

3D Transformations

We use **coordinate frames**, and suppose that we have an origin *O* and three mutually perpendicular axes in the directions **i**, **j**, and **k**. A point *P* in this frame is given by $P = O + P_x \mathbf{i} + P_y \mathbf{j} + P_z \mathbf{k}$, and a vector V by $V_x \mathbf{i} + V_y \mathbf{j} + V_z \mathbf{k}$.

$$P = \begin{pmatrix} P_x \\ P_y \\ P_z \\ 1 \end{pmatrix}, V = \begin{pmatrix} V_x \\ V_y \\ V_z \\ 0 \end{pmatrix}$$

3-D Transformations

The matrix representing a general 3D transformation in homogeneous notation is 4 x 4.

$$M = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

The fourth row of the matrix is a string of zeroes followed a lone one.

Translation and Scaling

Translation and scaling transformation matrices are given below. The values s_x , s_y , and s_z cause scaling about the origin of the corresponding coordinates.

$$T = \begin{pmatrix} 1 & 0 & 0 & t_{x} \\ 0 & 1 & 0 & t_{y} \\ 0 & 0 & 1 & t_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix}, S = \begin{pmatrix} s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Shear

- The shear matrix is given below.
 - a: y along x; b: z along x; c: x along y; d: z along y; e: x along z; f: y along z
- Usually only one of {a,...,f} is non-zero.

$$H = \begin{pmatrix} 1 & a & b & 0 \\ c & 1 & d & 0 \\ e & f & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Composing 3D (Affine) Transformations

- 3D affine transformations can be composed, and the result is another 3D affine transformation.
- The matrix of the **overall transformation** is the product of the individual matrices M_1 and M_2 that perform the two transformations: $\mathbf{M} = M_2 M_1$ (executed from right to left)
- Any number of affine transformations can be composed in this way, and a single matrix results that represents the overall transform(ation).

Example

• A barn is first transformed using some M_1 , and the transformed barn is again transformed using M_2 . The result is the same as the barn transformed once using M_2M_1 .

Building Rotations

- Two 2D rotations combine to make a rotation given by the sum of the rotation angles, and the matrices commute.
- In 3D the situation is more **complicated**, because rotations can be about different axes. Here the order in which two rotations about different axes are performed *does* matter: **3D rotation matrices do not commute**.

Homework:

Is the set of matrices together with "+" or "." a group? Any differences for 2D or 3D?

Literature

- Tomas Akenine-Möller, Eric Haines, Naty Hoffman: Real-time rendering.
 AK Peters, 3rd edition, 2008, ISBN 978-156881-424-7.
 - [This is an excellent but also slightly more advanced graphics book. Please check out the associated webpage at http://www.realtimerendering.com/. It is a source of up to date information and additional links.].
- Tomas Akenine-Möller, Eric Haines, Naty Hoffman, Angelo Pesce,
 Sebastien Hillaire, Michal Iwanicki: Real-time rendering. AK Peters/CRC Press, 4th edition, 2018, ISBN 9781138627000.
- F.S. Hill: **Computer graphics using OpenGL**. Prentice-Hall, 3rd edition, 2006.