

구분	머신 러닝	딥러닝
동작 원리	입력 데이터에 알고리즘을 적용하여 예측을 수 행한다.	정보를 전달하는 신경망을 사용하여 데이터 특 징 및 관계를 해석한다.
재사용	입력 데이터를 분석하기 위해 다양한 알고리즘 을 사용하며, 동일한 유형의 데이터 분석을 위 한 재사용은 불가능하다.	구현된 알고리즘은 동일한 유형의 데이터를 분석하는 데 재사용된다.
데이터	일반적으로 수천 개의 데이터가 필요하다.	수백만 개 이상의 데이터가 필요하다.
훈련 시간	단시간	장시간
결과	일반적으로 점수 또는 분류 등 숫자 값	출력은 점수, 텍스트, 소리 등 어떤 것이든 가능

^{*} 레이블은 지도 학습에서 정답을 의미

전체 데이터셋						
훈련 데이터/	테스트 데이터셋					
훈련 데이터셋	검증 데이터셋	테스트 데이터셋				

지도 학습, 비지도 학습, 강화 학습

구분	유형	알고리즘
지도 학습 (supervised learning)	분류(classification)	 K-최근접 이웃(K-Nearest Neighbor, KNN) 서포트 벡터 머신(Support Vector Machine, SVM) 결정 트리(decision tree) 로지스틱 회귀(logistic regression)
	회귀(regression)	선형 회귀(linear regression)
비지도 학습 (unsupervised learning)	군집(clustering)	K-평균 군집화(K-means clustering) 밀도 기반 군집 분석(DBSCAN)
	차원 축소 (dimensionality reduction)	주성분 분석 (Principal Component Analysis, PCA)
강화 학습 (reinforcement learning)	_	마르코프 결정 과정 (Markov Decision Process, MDP)

인간의 신경망 원리를 모방한 심층 신경망

딥러닝 모델의 학습 과정

모델 훈련에 필요한 하이퍼파라미터

신경망과 심층 신경망

역전파 계산

이미지 인식

구글과 아마존 주식에 대한 시계열 데이터 사례

훈련 데이터셋

딥러닝에서 지도 학습, 비지도 학습, 강화 학습

구분	유형	알고리즘
지도 학습(supervised learning)	이미지 분류	CNN AlexNet ResNet
	시계열 데이터 분석	• RNN • LSTM
비지도 학습 (unsupervised learning)	군집 (clustering)	 가우시안 혼합 모델(Gaussian Mixture Model, GMM) 자기 조직화 지도(Self-Organizing Map, SOM)
	차원 축소	 오토인코더(AutoEncoder) 주성분 분석(PCA)
전이 학습(transfer learning)	전이 학습	・ 버트(BERT) ・ MobileNetV2
강화 학습(reinforcement learning)	_	마르코프 결정 과정(MDP)

파이토치 'Define by Run'

벡터, 행렬, 텐서

파이토치 연산 그래프

파이토치의 아키텍처

파이토치의 아키텍처

3차원 텐서를 1차원으로 변환

A =
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
 1차원 텐서로 변환 0 1 2 3 4 5 6

$$A^{T} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$
 1차원 텐서로 변환 0 1 4 2 5 3 6

A의 전치 행렬을 1차원으로 변환

텐서 생성 및 변환

텐서는 파이토치의 가장 기본이 되는 데이터 구조 넘파이의 ndarray 와 비슷하며 GPU에서의 연산도 가능 텐서 생성은 다음과 같은 코드를 이용

텐서를 ndarray로 변환해 보자

```
temp = torch.tensor([[1,2],[3,4]])
print(temp.numpy()) ----- 텐서를 ndarray로 변환
temp = torch.tensor([[1,2],[3,4]], device="cuda:0")
print(temp.to("cpu").numpy()) ----- GPU상의 텐서를 CPU의 텐서로 변환한 후 ndarray로 변환
 [[1 2]
  [3 4]]
 [[1 2]
  [3 4]]
```

텐서의 인덱스 조작

torch.FloatTensor : 32 비트의 부동 소수점 torch.DoubleTensor : 64 비트의 부동 소수점 torch.LongTensor : 64 비트의 부호가 있는 정수

텐서 연산 및 차원 조작

```
v = torch.tensor([1, 2, 3]) ----- 길이가 3인 벡터 생성
w = torch.tensor([3, 4, 6])
print(w - v) ----- 길이가 같은 벡터 간 뺄셈 연산
```

tensor([2, 2, 3])

텐서의 차원을 조작하는 코드

```
torch.Size([2, 2])
tensor([[1],
        [2],
        [3],
        [4]])
tensor([1, 2, 3, 4])
tensor([[1, 2, 3, 4]])
tensor([[1],
        [2],
        [3],
        [4]])
```

파이토치 기초 문법

```
import pandas as pd ----- pandas 라이브러리호출

import torch ----- torch 라이브러리호출

data = pd.read_csv('../class2.csv') ----- csv 파일을 불러옵니다.

x = torch.from_numpy(data['x'].values).unsqueeze(dim=1).float() ----- 바꾸어줍니다.

y = torch.from_numpy(data['y'].values).unsqueeze(dim=1).float() ------ CSV 파일의 y 칼럼의 값을 넘파이 배열로 받아 Tensor(dtype)으로 바꾸어 줍니다.
```


파이토치 학습 절차

딥러닝 학습 절차

파이토치 학습 절차

모델, 손실 함수, 옵티마이저 정의

전방향 학습(입력 → 출력 계산)

손실 함수로 출력과 정답의 차이(오차) 계산

역전파 학습(기울기 계산)

기울기 업데이트

모델, 손실 함수, 옵티마이저 정의

optimizer.zero_grad(): 전방향 학습, 기울기 초기화

output = model(input): 출력 계산

loss = loss_fn(output, target): 오차 계산

loss.backward(): 역전파 학습

optimizer.step(): 기울기 업데이트

모델 학습 과정

np.concatenate(axis=1)

np.concatenate(axis=0)

np.stack(axis=1

np.stack(axis=0)

같은 차원을 갖는 a와 b에 대해 np.concatenate 와 np.stack을 적용

```
a = np.array([[1, 2], [3, 4]]) ----- a,shape=(2, 2)
b = np.array([[5, 6], [7, 8]]) ----- b.shape=(2, 2)
c = np.array([[5, 6], [7, 8], [9, 10]]) ----- c.shape=(3, 2)
print(np.concatenate((a, b), axis=0)) ----- shape=(4, 2)
print('----')
print(np.stack((a, b), axis=0)) ----- shape=(2, 2, 2)
                                                               [[1 2]
                                                               [3 4]
                                                               [5 6]
                                                               [7 8]]
                                                               [[[1 2]
                                                                [3 4]]
                                                               [[5 6]
                                                                [7 8]]]
```