

Exercise 11C

Question 26:

Given: Let ABCD be a cyclic quadrilateral whose diagonals AC and BD intersect at O at right angles.

Let OL ⊥ AB such that LO produced meets CD at M.

To Prove: CM = MD Proof: $\angle 1 = \angle 2$ [angles in the same segment] $\angle 2 + \angle 3 = 90^{\circ}$ [: $\angle OLB = 90^{\circ}$] $\angle 3 + \angle 4 = 90^{\circ}$ [: LOM is a straight line and $\angle BOC = 90^{\circ}$] : $\angle 2 + \angle 3 = \angle 3 + \angle 4$

Question 27:

...

Chord AB of a circle is produced to E.

If one side of a cyclic quadrilateral is produced then the exterior angle is equal to the interior opposite angle.

Chord CD of a circle is produced to E

Consider the triangles \triangle EDB and \triangle EAC.

$$\angle BDE = \angle CAE \quad [from(1)]$$

 $\angle DBE = \angle ACE \quad [from(2)]$
 $\angle E = \angle E \quad [common]$
 $\triangle EDB \sim \triangle EAC.$

******* END ******