https://github.com/savthe/discrete_math

Конечные кольца и поля

- **1.** Докажите, что $\mathbb{F}_5[x]/(x+2) \cong \mathbb{F}_5$.
- 2. Пусть k поле, (p(x)) идеал кольца k[x]. Обозначим $\alpha = x + I$ класс эквивалентности x. Покажите, что α является корнем многочлена p(t) в кольце k[x]/(p(x)).
- 3. Объясните следствие из предыдущей задачи: кольцо k[x]/(p(x)) можно понимать как минимальное кольцо, содержащее k и корень многочлена p(x).
- **4.** Для каждого многочлена второй степени в $p(x) \in \mathbb{F}_2[x]$ посройте кольцо $\mathbb{F}[\alpha]$, где α корень многочлена p(x). Укажите кольца, которые являются полями, найдите идемпотенты и идеалы в каждом полученном кольце. Укажите, какие кольца изоморфны $\mathbb{F}_2 \times \mathbb{F}_2$.
- 5. Постройте поле из 4-х элементов и найдите порядок каждого элемента.
- **6.** В поле $\mathbb{F}_3[\alpha]$, где α корень многочлена $x^2 + 1$, найдите порядок элемента α . Найдите элемент наибольшего порядка.
- 7. Найдите порядок элементов α и $2\alpha 1$ в поле $\mathbb{F}_5[\alpha]$, где α корень многочлена $x^2 + 3x + 3$.
- **8.** Для кольца $\mathbb{k} = \mathbb{F}_5[\alpha]$, где α корень многочлена $x^3 + 3x 2$ выполните задания:
- а) Докажите, что \mathbb{k} поле.
- б) Найдите порядок элемента $\alpha^2 + 2$ и его минимальный многочлен.
- в) Найдите все корни многочлена $x^3 + 3x 2$.

- г) Найдите $(\alpha + 3)^{-1}$.
- **9.** Постройте поле из 49 элементов и найдите в нем элемент порядка а) 3, б) 4, в) 6.

Задачу можно сильно упростить, выбрав «удобный» многочлен для построения поля.

- **10.** В поле $\mathbb{F}_2[\alpha]$, где α корень многочлена $p(x) = x^4 + x + 1$, найдите минимальный многочлен элемента $\alpha^3 + 1$ и все его корни.
- **11.** Найдите мультипликативную группу и идемпотенты кольца $\mathbb{F}_2[\alpha]$, где α корень многочлена x^3+1 .
- **12.** Найдите порядок мультипликативной группы кольца $\mathbb{F}_3[\alpha]$, где α корень многочлена $x^3 + x + 1$
- **13.** Рассмотрим отображение $\varphi : \mathbb{F}_3[x] \to GL(2,\mathbb{F}_3)$, заданное так:

$$\varphi(p) = p \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$$

Докажите, что $Im(\varphi)$ — поле.

- **14.** Определите количество неприводимых многочленов второй степени над \mathbb{F}_p , где: a) p = 2, б) p = 3, в) p = 3 произвольное простое число.
- **15.** Постройте поле \Bbbk , не содержащее подполей, в котором существует элемент t порядка 5. Найдите этот элемент.
- **16.** Постройте поле \Bbbk , содержащее одно подполе $\mathbb L$ и элемент $t \notin \mathbb L$ порядка 4. Найдите этот элемент.
- **17.** Постройте поле \Bbbk , содержащее более одного подполя и элемент t порядка 5, не содержащийся ни в одном подполе. Найдите этот элемент.