SQL (MySQL)

Gary KL Tam

Department of Computer Science Swansea University

MySQL and Set

 SQL discussed in previous lecture are for Oracle.

- However, mysql does not support the following SQL operations!
 - minus / except
 - intersect

- What should we do?
 - Write the query in an alternative way.
 - Use our knowledge in relational algebra!

Relational algebra

- Revisit
 - Set Union U
 - Set difference (minus) -
 - Set Intersection ∩
 - Join
 - Division ÷

Union

a y y 1 A A B B C A D

(select * from a)
union
(select * from b);

х	У
1	Α
2	В
3	С
4	D

(select * from a)
union all
(select * from b);

•	•
x	У
1	Α
2	В
3	С
4	D
1	А
3	С

Difference

select * from a where (x,y) **not in** (select * from b);

х	у
2	В
4	D

For every tuple in a, check that it is **not** in b;

select * from a where **not exists** (select * from b where **b.x=a.x** and **b.y=a.y**)

x	у
2	В
4	D

For every tuple in a, check that the tuple values does not exists in b;

Intersection

select * from a
where (x,y) in (select * from b);

х	у
1	А
3	С

For every tuple in a, check that it is also in b;

select * from a
where **exists** (select * from b
where **b.x=a.x** and **b.y=a.y**)

х	У
1	Α
3	С

For every tuple in a, check that the tuple values also exists in b;

Join (recap)

Natural join

PROF

$\operatorname{\mathbf{pid}}$	name	\mathbf{dept}	rank	sal
p1	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
p3	Calvin	CS	full	10000
p4	Dorothy	EE	asst	5000
p5	Emily	EE	asso	8500

TEACH

$\operatorname{\mathbf{pid}}$	cid	year
p1	c1	2011
p2	c2	2012
p1	c2	2012

select distinct PROF.pid, name, dept, rank, sal, cid, year from PROF, TEACH where PROF.pid = TEACH.pid

pid	+ name +	dept	rank	sal	cid	year
p1	Adam	CS	asst	6000	c1	2011
p1	Adam	CS	asst	6000	c2	2012
p2	Bob	EE	asso	8000	c2	2012

Join

Join

PROF

pid	name	\mathbf{dept}	rank	sal
p1	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
p3	Calvin	CS	full	10000
p4	Dorothy	EE	asst	5000
p5	Emily	EE	asso	8500

TEACH

$\operatorname{\mathbf{pid}}$	cid	year
p1	c1	2011
p2	c2	2012
$\overline{p1}$	c2	2012

select *
from PROF *inner join* TEACH *on PROF.pid* = *TEACH.pid*;

pid	+ name 	dept	rank	sal	pid	cid	year
p1	Adam	CS	asst	6000	p1	c1	2011
	Adam	CS	asst	6000	p1	c2	2012
	Bob	EE	asso	8000	p2	c2	2012

Join

Left Outer Join (also check right outer join)

\mathbf{pid}	name	\mathbf{dept}	rank	\mathbf{sal}
p1	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
p3	Calvin	CS	full	10000
p4	Dorothy	EE	asst	5000
p5	Emily	EE	asso	8500

\mathbf{pid}	cid	year
p1	c1	2011
p2	c2	2012
p1	c2	2012

select * from PROF *left outer join* TEACH *on PROF.pid = TEACH.pid*;

pid	+ name -+	dept	rank	sal	pid	cid	year
р1	•		asst		p1	 c1	2011
p1	Adam	CS	asst	6000	p1	c2	2012
p2	Bob	EE	asso	8000	p2	c2	2012
p3	Calvin	CS	full	10000	NULL	NULL	NULL
p4	Dorothy	EE	asst	5000	NULL	NULL	NULL
p 5	Emily	EE	asso	8500	NULL	NULL	NULL

http://blog.codinghorror.com/a-visual-explanation-of-sql-joins/http://www.codeproject.com/KB/database/Visual_SQL_Joins/Visual_SQL_JOINS_orig.jpg

Join

A reminder

- Left/Right outer join does NOT equal to Inner join
- You are warned!

Make sure you know their differences

 There is something called "fuller outer join" = left U right outer join

Division (revisit)

T₁			T_2				
. 1	У	X	_	X		У	
	Α	1	•	1		Α	
	Α	2	•	2	_		
	Α	3		3			
	В	1					
	В	2					
	С	3					
	D	3				$S_1 - S_2 = \{y\}$	$\{x\} - \{x\} = \{y\}$

```
T_{1} \div T_{2} = \Pi_{S_{1}-S_{2}}(T_{1}) - \Pi_{S_{1}-S_{2}}(\Pi_{S_{1}-S_{2}}(T_{1}) \times T_{2} - T_{1})
(select distinct y from ( \subseteq (select * from (select distinct y from T_{1}), T_{2})
minus \subseteq (select * from T_{1})
```

Division (MySQL)

T₁			T_2			
_	У	X		X		y
	Α	1	•	1	_	Α
	Α	2	•	2	_	
	Α	3		3		
	В	1				
	В	2				
	С	3				
	D	3				$S_1 - S_2 = \{y, x\} - \{x\} = \{y\}$

$$T_1 \div T_2 = \Pi_{S_1-S_2}(T_1) - \Pi_{S_1-S_2}(\Pi_{S_1-S_2}(T_1) \times T_2 - T_1$$

MySQL

- does not support minus!
- But we can use **not in / not exists**.

Division (MySQL: no minus)

	T ₁		T_2			
S_1	y	X	S_2	X	у	
	Α	1	•	1	А	
	А	2	•	2		
	Α	3		3		
	В	1				
	В	2				
	С	3				
	D	3			$S_1 - S_2 = \{ y \mid S_1 = \{ y \mid S_2 = \{ y \mid S_1 = \{ y \mid S_2 = \{ y \mid S_1 = \{ y \mid S_2 = \{ y $	$(x, x) - \{x\} = \{y\}$
					-	

$$T_1 \div T_2 = \Pi_{S_1 - S_2}(T_1) - \Pi_{S_1 - S_2}(\Pi_{S_1 - S_2}(T_1) \times T_2 - T_1)$$
 select distinct y from T_1 where y **not in** (select distinct y from T_1 (select distinct y from T_1) as T_1 , T_2) where (y,x) **not in** (select * from T_1);

MySQL: Every derived table must have its own alias

Division (MySQL: no minus)

```
(select distinct y from T_1)
minus
select distinct y from (
        (select * from (select distinct y from T_1), T_2)
         minus
        (select * from T_1)
                                        Same colour shows same block
select distinct y
                                         Rewrite using not in
from T₁
where y not in (select distinct y
                  from ((select distinct y from T_1) as T_t, T_2)
                  where (y,x) not in (select * from T_1)
                 );
```

If you understand the relational algebra, you understand the above.

Division (not exists)

T₁			T_2		
*	У	X	_	X	У
	Α	1	•	1	Α
	Α	2	•	2	
	Α	3		3	
	В	1			
	В	2			
	С	3			
	D	3			

```
select distinct y from T_1 where \emph{not exists} ( select * from T_2 where \emph{not exists} ( select * from T_1 as s where \emph{s.y} = T_1.\emph{y} and \emph{s.x} = T_2.\emph{x} )
```

Division – analysis (Past Muddiest Points)

select distinct y from T_1 where *not exists* (

x empty

);


```
select distinct y from T_1 where not exists (
```

x empty

);

select *distinct* y from T_1 where *not exists* (

);

T₁				T_2				
1	У	X		2	X		У	
	Α	1	√	•	1	_	Α	
	Α	2	√	•	2	_		
	Α	3	√		3			
	В	1	X					
	В	2	X					
	С	3	X					
	D	3	X			where cla	use – tuple	filter

```
select \textit{distinct} y from T_1 where \textit{not exists} ( select * from T_2 where \textit{not exists} (select * from T_1 as s where s.y = T_1.y and s.x = T_2.x )
```

MySQL and Set

 There are at least three other techniques to rewrite Division SQL queries in MySQL.

- http://users.abo.fi/soini/divisionEnglish.pdf
- See Canvas for a cache.
- A clear pictorial explanation is also provided.