Équivalents asymptotiques

 \mathbb{Q} Comment obtenir des équivalents. Ici nous ne traitons que des cas ne nécessitant pas de développement limité trop sophistiqué (voire pas de développement limité du tout).

Exercice 1. Donner un équivalent simple, quand $x \to +\infty$, de:

$$\rightarrow$$
 page 12

$$g(x) = \frac{-e^x \ln{(x+1)^4} - x^3 e^{(3x)} - e^{(6x)} - 33 e^{(2x)}}{-6 x^4 \ln{(x)} - x \ln{(x)^4} - 2 e^{(-2x)} \ln{(x)^4} - x^2 e^{(-x)} \ln{(x)} - x \ln{(x)^2}}.$$

Exercice 2. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$\rightarrow$$
 page 12

$$f(x) = \cos\left(\frac{x^3 - 6x^2 - 1}{-3x^3 + 2x + 1}\right) \times \frac{x^3 + 2x^2 - x - 5}{-x + 4}.$$

Exercice 3. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$\rightarrow$$
 page 12

$$f(x) = \arctan\left(\frac{x^3 + x^2 + x - 1}{x^3 - x^2 - x - 3}\right) \times \frac{-3x + 8}{x^4 - 9x^2 - x - 3}.$$

Exercice 4. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

$$\rightarrow$$
 page 13

$$f(x) = \frac{\ln(e^{(2x)} - 1)}{\ln(\arctan(2x))} \times \frac{\ln(\sin(2x) + 1)}{\ln(\sinh(2x) + 1)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

Exercice 5. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

$$f(x) = \frac{\ln(\ln(4x+1))}{\ln(e^{(2x)}-1)} \times \frac{\ln(\ln(x+1)+1)}{\ln(\sin(2x)+1)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

Exercice 6. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$\rightarrow$$
 page 14

$$f(x) = \cos\left(\frac{-2x^4 + 13x^3 + 2x^2}{x^3 - x^2 - 4x + 1}\right) \times \frac{-5x + 1}{-x^2 - 6}.$$

Exercice 7. Donner un équivalent simple, quand $x \to +\infty$, de

$$\rightarrow$$
 page 14

$$g(x) = \frac{x^6 - 5x^2e^x \ln(x+1)^3 - 2x^3e^x + 151xe^x \ln(x+1)^2}{-x^2e^{(-x)}\ln(x)^2 + 3x^2\ln(x)^3 + 7e^{(-2x)}\ln(x)^4 + x^2e^{(-x)}\ln(x)}.$$

Exercice 8. Donner un équivalent simple, quand $x \to +\infty$, de:

$$\rightarrow$$
 page 15

$$g(x) = \frac{-2\,x^3\ln\left(x+1\right)^2 + 4\,x^2e^{(2\,x)}\ln\left(x+1\right)^2 + 6\,x^3 - e^{(4\,x)} + e^{(3\,x)}}{5\,xe^{(-2\,x)}\ln\left(x\right)^2 - 5\,x^2e^{(-2\,x)} + 2\,e^{(-2\,x)}\ln\left(x\right)^2 + 2\,e^{(-4\,x)}}.$$

Exercice 9. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

$$f(x) = \frac{\ln(\ln(4x+1))}{\ln(\arctan(4x))} \times \frac{\ln(\ln(x+1)+1)}{\ln(\sinh(x)+1)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

Exercice 10. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

 \rightarrow page 16

$$f(x) = \frac{\ln\left(\ln\left(3\,x+1\right)\right)}{\ln\left(\sin\left(3\,x\right)\right)} \times \frac{\ln\left(\ln\left(x+1\right)+1\right)}{\ln\left(\sinh\left(x\right)+1\right)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

Exercice 11. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

 \rightarrow page 16

$$f(x) = \sin\left(\frac{-23x^3 + x^2 - x - 1}{x + 2}\right) \times \frac{-2x^3 + x^2 - x + 1}{-x - 2}.$$

Exercice 12. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

 \rightarrow page 16

$$f(x) = \frac{\ln(\sinh(3x))}{\ln(\sin(4x))} \times \frac{\ln(\ln(2x+1)+1)}{\ln(\arctan(3x)+1)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

Exercice 13. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

 \rightarrow page 17

$$f(x) = \sin\left(\frac{-x^4 + 2x^3 + x^2 - 2x - 1}{-x^4 + 3x^3 - 44x^2 - 1}\right) \times \frac{x^2}{-x}.$$

Exercice 14. Donner un équivalent simple, quand $x \to +\infty$, de:

 \rightarrow page 17

$$g(x) = \frac{-2\,e^x\ln\left(x+1\right)^5 + 15\,x^2e^{(2\,x)}\ln\left(x+1\right) + 2\,xe^{(2\,x)}\ln\left(x+1\right)^2 + 6\,e^{(3\,x)}\ln\left(x+1\right)^2 - 2\,e^{(2\,x)}\ln\left(x+1\right)^2}{-2\,x^4\ln\left(x\right)^2 + x^2\ln\left(x\right)^2 - xe^{(-3\,x)}\ln\left(x\right)^2 + e^{(-x)}\ln\left(x\right)}.$$

Exercice 15. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

 \rightarrow page 18

$$f(x) = \arctan\left(\frac{x^3 + 2x^2 + x - 1}{-x^3 - 3x^2 - 3x + 3}\right) \times \frac{-x - 1}{6x + 10}.$$

Exercice 16. Donner un équivalent simple, quand $x \to +\infty$, de:

 \rightarrow page 18

$$g(x) = \frac{x^3 e^x \ln(x+1)^2 - 21 x^4 e^{(2x)} + 2 x^2 \ln(x+1)^3 + 2 x^2 e^x - 2 x e^x \ln(x+1)}{x^4 e^{(-2x)} - x^2 e^{(-x)} \ln(x) - x^3 - e^{(-4x)}}$$

Exercice 17. Donner un équivalent simple, quand $x \to +\infty$, de:

 \rightarrow page 19

$$g(x) = \frac{x \ln(x+1)^5 + \ln(x+1)^4 - x^2 e^{(4x)} + x \ln(x+1)^2}{3 x^3 e^{(-2x)} \ln(x) + 4 x e^{(-x)} \ln(x) - x^2}.$$

Exercice 18. Donner un équivalent simple, quand $x \to +\infty$, de:

$$g(x) = \frac{x^5 \ln{(x+1)} + x^5 + x^2 e^{(3\,x)} - e^{(2\,x)} \ln{(x+1)^2}}{-2\,x e^{(-x)} \ln{(x)}^3 + 9\,x e^{(-2\,x)} \ln{(x)}^3 - 2\,x^2 e^{(-2\,x)} - 5\,x \ln{(x)} - 2\,e^{(-4\,x)} \ln{(x)}}.$$

Exercice 19. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$\rightarrow$$
 page 20

$$f(x) = \cos\left(\frac{2x^4 - 4x^3 + 24x^2 - x}{x^4 - x^3 - 4x^2 + x + 1}\right) \times \frac{-x + 1}{15x^2 - 29x}.$$

Exercice 20. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

$$\rightarrow$$
 page 20

$$f(x) = \frac{\ln(\sin(4x))}{\ln(\arctan(4x))} \times \frac{\ln(\sin(2x) + 1)}{\ln(\arctan(3x) + 1)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

 \rightarrow page 21

Exercice 21. Donner un équivalent simple, quand
$$x \to +\infty$$
, de :

$$g(x) = \frac{3x^4 + xe^{(2x)}\ln(x+1)^2}{x^3\ln(x)^3 + 3xe^{(-x)}\ln(x)^4 + 4x^2e^{(-2x)}}.$$

Exercice 22. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

Exercice 23. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

Exercice 24. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

Exercice 25. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

 \rightarrow page 21

$$f(x) = \frac{\ln(\arctan(3x))}{\ln(e^{(3x)} - 1)} \times \frac{\ln(\ln(3x + 1) + 1)}{\ln(\sinh(2x) + 1)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

 \rightarrow page 21

$$f(x) = \frac{\ln(\ln(2x+1))}{\ln(e^{(2x)}-1)} \times \frac{\ln(\sin(2x)+1)}{\ln(\ln(3x+1)+1)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

 \rightarrow page 22

$$f(x) = \frac{\ln(\sin(4x))}{\ln(\ln(4x+1))} \times \frac{\ln(\sin(3x)+1)}{\ln(\sinh(3x)+1)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

 \rightarrow page 22

$$f(x) = \arctan\left(\frac{x^3 - 3x^2 + x + 1}{4x + 1}\right) \times \frac{-x^2 - 5x + 51}{7x^2 + 3x}.$$

Exercice 26. Donner un équivalent simple, quand $x \to +\infty$, de:

 \rightarrow page 23

$$g(x) = \frac{15 e^{(3x)} \ln(x+1) - 13 e^x \ln(x+1) + e^{(2x)} - 1}{-x^2 \ln(x)^3 + x e^{(-x)} \ln(x)^3 + x \ln(x)^4}.$$

Exercice 27. Donner un équivalent simple, quand $x \to +\infty$, de s

 \rightarrow page 23

$$g(x) = \frac{13x^5 - 2e^x \ln(x+1)^3 + 4\ln(x+1)^4 - 95e^x}{-6x^3e^{(-2x)}\ln(x) + 3e^{(-x)}\ln(x) + e^{(-2x)}\ln(x) - 2e^{(-5x)}}.$$

Exercice 28. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$f(x) = \sin\left(\frac{-4x^4 - x^3 - 3x^2 + 1}{-x^4 + 2x^3 + x^2 - x - 32}\right) \times \frac{-2x^3 - x^2 - 1}{-11x^3 - x^2 + x + 1}.$$

Exercice 29. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

 \rightarrow page 24

$$f(x) = \arctan\left(\frac{-x^2 - 2x + 48}{13x^2 + 10x}\right) \times \frac{-2x^3 + x^2 + x + 1}{-x^4 - x^3 - x}.$$

Exercice 30. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

 \rightarrow page 25

$$f(x) = \frac{\ln(\ln(3x+1))}{\ln(e^{(4x)}-1)} \times \frac{\ln(\ln(2x+1)+1)}{\ln(\sinh(x)+1)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

Exercice 31. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

 \rightarrow page 25

$$f(x) = \arctan\left(\frac{2x^4 - 3x^2 + x}{x^4 + x^3 - x^2 + x - 1}\right) \times \frac{-5x^3 + 2x^2 - 2}{-2x^4 + x^3 + 8x + 2}$$

Exercice 32. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

 \rightarrow page 26

$$f(x) = \frac{\ln\left(\arctan\left(4\,x\right)\right)}{\ln\left(\cosh\left(4\,x\right) - 1\right)} \times \frac{\ln\left(\ln\left(2\,x + 1\right) + 1\right)}{\ln\left(\cos\left(x\right)\right)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

 \rightarrow page 26

$$g(x) = \frac{-x^5 - x^4 e^x + x^2 e^x \ln{(x+1)^2} - 11 e^x \ln{(x+1)^2} - x e^{(3 x)}}{x^5 \ln{(x)} + e^{(-2 x)} \ln{(x)^4} - 3 x^3 e^{(-2 x)} + 12 x e^{(-x)} - 6}.$$

Exercice 34. Donner un équivalent simple, quand $x \to +\infty$, de:

Exercice 33. Donner un équivalent simple, quand $x \to +\infty$,

 \rightarrow page 26

$$g(x) = \frac{-x^4 e^x \ln(x+1) - 2x e^x \ln(x+1)^4 - x^4 e^{(2x)} + 13x^3 e^{(2x)} \ln(x+1) - 10x e^{(5x)}}{9x^3 e^{(-x)} \ln(x)^2 + x^2 \ln(x)^4 + 2x^5 - 4x \ln(x)^3 + 2x}.$$

Exercice 35. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

 \rightarrow page 27

$$f(x) = \arctan\left(\frac{-x^2 - x - 1}{7x^3 - 1}\right) \times \frac{-x^3 + 9x^2 + 3x - 1}{x^2 + 3x - 2}.$$

Exercice 36. Donner un équivalent simple, quand $x \to +\infty$, de:

 \rightarrow page 27

$$g(x) = \frac{-x\ln(x+1)^4 + 2x^2e^{(2x)}\ln(x+1) + 2x^2\ln(x+1)}{-x^3\ln(x)^3 - xe^{(-2x)}\ln(x)^3 + e^{(-2x)}\ln(x)^3 + x^2e^{(-4x)}}$$

Exercice 37. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

$$f(x) = \frac{\ln\left(\sinh\left(2\,x\right)\right)}{\ln\left(\arctan\left(3\,x\right)\right)} \times \frac{\ln\left(\sin\left(3\,x\right) + 1\right)}{\ln\left(\sinh\left(3\,x\right) + 1\right)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

Exercice 38. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

 \rightarrow page 28

$$f(x) = \sin\left(\frac{-2x+1}{x-4}\right) \times \frac{x^2 - 3x - 1}{x-1}.$$

Exercice 39. Donner un équivalent simple, quand $x \to +\infty$, de:

 \rightarrow page 29

$$g(x) = \frac{4x^6 + \ln(x+1)^5 + xe^{(2x)}\ln(x+1)^2 + x^2e^{(2x)} - e^{(5x)}\ln(x+1)}{-x^3\ln(x)^2 - 7xe^{(-x)}\ln(x)^2 + e^{(-3x)}\ln(x)^2}$$

Exercice 40. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

Exercice 41. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

 \rightarrow page 29

$$f(x) = \frac{\ln(\ln(3x+1))}{\ln(e^{(3x)}-1)} \times \frac{\ln(\ln(x+1)+1)}{\ln(\cos(x))},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

 \rightarrow page 29

$$f(x) = \frac{\ln\left(e^{(3x)} - 1\right)}{\ln\left(\cosh\left(4x\right) - 1\right)} \times \frac{\ln\left(\ln\left(3x + 1\right) + 1\right)}{\ln\left(\sin\left(x\right) + 1\right)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

 \rightarrow page 30

$$f(x) = \cos\left(\frac{5x^3 + 3x^2 - 2x - 2}{-2x^4 + 3x^3 + x^2 + 1}\right) \times \frac{6x + 1}{x^4 + x^3 + 5x + 1}.$$

Exercice 43. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

Exercice 42. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

 \rightarrow page 30

$$f(x) = \sin\left(\frac{-x^4 - 5x^3 - x - 1}{-2x^2 - x + 2}\right) \times \frac{-x^3 + x^2 - x - 1}{2x^3 - x^2 - x}.$$

Exercice 44. Donner un équivalent simple, quand $x \to +\infty$, de:

 \rightarrow page 31

$$g(x) = \frac{x^4 \ln(x+1)^2 + 11 x^3 e^{(2x)} - x e^x \ln(x+1)^2 + e^{(2x)} \ln(x+1)^3 - 3 x e^x \ln(x+1)}{-x^3 \ln(x)^3 + 3 x^2 \ln(x)^3 - 3 x^3 - 11 e^{(-x)} \ln(x)}.$$

Exercice 45. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

 \rightarrow page 31

$$f(x) = \frac{\ln\left(\sinh\left(2\,x\right)\right)}{\ln\left(\cosh\left(3\,x\right) - 1\right)} \times \frac{\ln\left(\ln\left(3\,x + 1\right) + 1\right)}{\ln\left(\cosh\left(2\,x\right)\right)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

Exercice 46. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$f(x) = \sin\left(\frac{-x+6}{5x+1}\right) \times \frac{-x}{-x^3 - x^2 + 3x + 2}.$$

Exercice 47. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$\rightarrow$$
 page 32

$$f(x) = \cos\left(\frac{3x^2 - 9x - 11}{x}\right) \times \frac{x^3 + x}{x}.$$

Exercice 48. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$\rightarrow$$
 page 33

$$f(x) = \sin\left(\frac{x^2 + x + 1}{-2x^2 - 4x - 39}\right) \times \frac{2x^2 + x - 1}{-4x^3 + x^2 - 2x}.$$

Exercice 49. Donner un équivalent simple, quand $x \to +\infty$, de s

$$\rightarrow$$
 page 33

$$g(x) = \frac{2x^4 \ln(x+1)^2 + 37e^{(4x)} \ln(x+1)^2 - 31e^{(4x)} \ln(x+1) - 3e^{(2x)}}{5x^3 \ln(x) + xe^{(-2x)} \ln(x)^2 - 42e^{(-2x)} \ln(x)^3 - x^2e^{(-2x)} + 2xe^{(-x)}}.$$

Exercice 50. Donner un équivalent simple, quand $x \to +\infty$, de:

$$\rightarrow$$
 page 34

$$g(x) = \frac{2x^3 \ln(x+1)^3 + 57xe^{(3x)} \ln(x+1) - 3e^x \ln(x+1)^2 - 2\ln(x+1)^2 + 7e^{(5x)}}{-x^6 - 6x^3e^{(-3x)} + \ln(x)^4 + x^2 \ln(x)}.$$

Exercice 51. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$\rightarrow$$
 page 34

$$f(x) = \sin\left(\frac{-5x+1}{-9x^2+x+1}\right) \times \frac{x^4+5x^3-6x^2+x-1}{x-145}.$$

Exercice 52. Donner un équivalent simple, quand $x \to +\infty$, de:

$$\rightarrow$$
 page 35

$$g(x) = \frac{-4x^4 \ln(x+1)^2 + 4xe^x \ln(x+1)^2 - 6e^{(3x)} - 1}{-2x^3 e^{(-x)} \ln(x)^2 - 7xe^{(-x)} \ln(x)^4 - 2e^{(-x)} \ln(x)^4 + e^{(-3x)} \ln(x)^2}.$$

Exercice 53. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$\rightarrow$$
 page 35

$$f(x) = \sin\left(\frac{5x - 62}{-52x^2 + x + 1}\right) \times \frac{x^3 - 10x^2 + x - 5}{-x + 1}.$$

Exercice 54. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

Exercice 55. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

$$\rightarrow$$
 page 35

$$f(x) = \frac{\ln\left(\sin\left(2\,x\right)\right)}{\ln\left(-\cos\left(2\,x\right) + 1\right)} \times \frac{\ln\left(\arctan\left(x\right) + 1\right)}{\ln\left(\cosh\left(x\right)\right)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

 \rightarrow page 36

$$f(x) = \frac{\ln(\ln(4x+1))}{\ln(\cosh(3x)-1)} \times \frac{\ln(\sinh(3x)+1)}{\ln(\arctan(x)+1)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

Exercice 56. Donner un équivalent simple, quand $x \to +\infty$, de:

$$g(x) = \frac{2x^{2} \ln(x+1)^{4} + 9x^{2}e^{x} \ln(x+1)^{2} + xe^{(4x)} \ln(x+1) + 13x}{x^{3}e^{(-2x)} \ln(x) + xe^{(-2x)} \ln(x)^{3} + 4e^{(-2x)} \ln(x)^{4} + 29x^{3}e^{(-x)}}.$$

Exercice 57. Donner un équivalent simple, quand $x \to +\infty$, de :

$$\rightarrow$$
 page 37

$$g(x) = \frac{2 x^4 e^x \ln(x+1) + 5 e^{(3x)} \ln(x+1)^3 - 3 x^2 - 3 x e^x}{-x e^{(-x)} \ln(x)^4 + x^4 \ln(x) - x^3 e^{(-2x)} \ln(x) - e^{(-x)} \ln(x) - 1}.$$

Exercice 58. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$\rightarrow$$
 page 37

$$f(x) = \sin\left(\frac{-x^3 + 2x^2 + 57x + 19}{-x^3 + 4x + 1}\right) \times \frac{-2x^2 + x - 4}{-2x^3 + x^2 - x - 3}.$$

Exercice 59. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

$$\rightarrow$$
 page 38

$$f(x) = \frac{\ln\left(\arctan\left(2\,x\right)\right)}{\ln\left(\cosh\left(2\,x\right) - 1\right)} \times \frac{\ln\left(\arctan\left(3\,x\right) + 1\right)}{\ln\left(\cos\left(3\,x\right)\right)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

 \rightarrow page 38

$$g(x) = \frac{-x\ln(x+1)^4 + e^{(2x)}\ln(x+1)^4 + xe^{(3x)}\ln(x+1) - xe^x\ln(x+1) - 3e^{(4x)}\ln(x+1)}{-x\ln(x)^5 + \ln(x)^6 + x^4 - 2\ln(x)^2}.$$

Exercice 61. Donner un équivalent simple, quand $x \to +\infty$, de:

Exercice 63. Donner un équivalent simple, quand $x \to +\infty$, de s

Exercice 60. Donner un équivalent simple, quand $x \to +\infty$, de s

$$\rightarrow$$
 page 39

$$g(x) = \frac{-x^2 e^{(2\,x)} \ln{(x+1)^2} + 2\,x^3 \ln{(x+1)} - x e^x \ln{(x+1)^2}}{-3\,x^2 \ln{(x)^4} + \ln{(x)^4} + 13\,x^3 - 5\,x e^{(-3\,x)} - e^{(-3\,x)}}.$$

Exercice 62. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

$$\rightarrow$$
 page 39

$$f(x) = \frac{\ln\left(\sin\left(3\,x\right)\right)}{\ln\left(\arctan\left(3\,x\right)\right)} \times \frac{\ln\left(\sin\left(x\right) + 1\right)}{\ln\left(\arctan\left(2\,x\right) + 1\right)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

 \rightarrow page 40

$$g(x) = \frac{-4 x^3 e^x \ln{(x+1)^2} - 8 \ln{(x+1)^4} - x^3 - e^{(4x)} \ln{(x+1)^2} - 53 e^{(2x)}}{-5 x^2 e^{(-4x)} + x e^{(-2x)} \ln{(x)} + 2 x e^{(-3x)} \ln{(x)} - 19 e^{(-2x)}}.$$

Exercice 64. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$\rightarrow$$
 page 40

$$f(x) = \arctan\left(\frac{x-1}{-x^3 - 3x - 1}\right) \times \frac{-52x^4 + 4x^3 + x^2 - 3x - 1}{x^4 + x^3 - 4x^2}.$$

Exercice 65. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$f(x) = \arctan\left(\frac{9x^3 + 10x^2 - x + 4}{x^3 + 6x^2 + 6x}\right) \times \frac{-x^3 - 4x^2}{24x^2 - 1}.$$

Exercice 66. Donner un équivalent simple, quand $x \to +\infty$, de:

$$g(x) = \frac{2\,x^3 e^{(2\,x)} \ln{(x+1)} + 7\,x e^{(2\,x)} \ln{(x+1)}^2 + 2\,x^2 e^{(4\,x)} - x e^x \ln{(x+1)} + 15\,e^x \ln{(x+1)}}{-2\,x^2 \ln{(x)}^4 - 3\,x^4 \ln{(x)} + 2\,x e^{(-2\,x)} - 4\,e^{(-4\,x)} \ln{(x)}}.$$

Exercice 67. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

$$f(x) = \frac{\ln\left(\ln\left(3\,x+1\right)\right)}{\ln\left(-\cos\left(2\,x\right)+1\right)} \times \frac{\ln\left(\ln\left(3\,x+1\right)+1\right)}{\ln\left(\sinh\left(2\,x\right)+1\right)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

Exercice 68. Donner un équivalent simple, quand $x \to +\infty$, de:

$$g(x) = \frac{-x^2 \ln(x+1)^4 + 3e^x \ln(x+1)^3 - x^3 + x}{-x^2 e^{(-3x)} \ln(x) + e^{(-2x)} \ln(x)^3 - 2x^2 e^{(-4x)} - 2x e^{(-5x)} - 3e^{(-2x)}}.$$

Exercice 69. Donner un équivalent simple, quand $x \to +\infty$, de:

$$g(x) = \frac{-2x^2 \ln(x+1)^2 - 2\ln(x+1)^3}{x^3 e^{(-x)} \ln(x) - 18x^3 + 2x\ln(x)^2 + xe^{(-3x)}}.$$

Exercice 70. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$f(x) = \sin\left(\frac{-2x^3 - 5x - 1}{-x^3 + 10x^2 - x - 6}\right) \times \frac{x^2 + 6x + 1}{25x - 3}.$$

Exercice 71. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

$$f(x) = \frac{\ln(\ln(4x+1))}{\ln(\cosh(2x)-1)} \times \frac{\ln(\sin(3x)+1)}{\ln(\arctan(x)+1)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

Exercice 72. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$f(x) = \arctan\left(\frac{-x^2 - x + 1}{3x^4 - 7x^3 - x^2 - 2x}\right) \times \frac{4x^2 - 24x - 3}{-x^2 - 43x + 6}.$$

Exercice 73. Donner un équivalent simple, quand $x \to +\infty$, de:

$$g(x) = \frac{x^4 e^x \ln(x+1) - 3x e^x \ln(x+1)^4 - x e^{(2x)} \ln(x+1) + 128 e^x \ln(x+1)^2 - x}{524 x^4 \ln(x)^2 + 4x^3 e^{(-3x)} + 3x e^{(-3x)}}.$$

Exercice 74. Donner un équivalent simple, quand $x \to +\infty$, de:

$$g(x) = \frac{-6x^{2}e^{x}\ln(x+1)^{2} - xe^{x}\ln(x+1)^{2} - 2e^{(2x)}\ln(x+1)^{3} - x^{2}e^{(4x)} - 4\ln(x+1)^{3}}{x\ln(x)^{3} + 4\ln(x)^{3} - 9x + e^{(-x)} + 1}.$$

Exercice 75. Donner un équivalent simple, quand $x \to +\infty$, de:

 \rightarrow page 45

 \rightarrow page 41

 \rightarrow page 41

 \rightarrow page 42

 \rightarrow page 42

 \rightarrow page 43

 \rightarrow page 43

 \rightarrow page 44

 \rightarrow page 44

$$g(x) = \frac{-3 x^4 e^x \ln{(x+1)} + e^{(2x)} \ln{(x+1)}^3 - 4 x e^{(3x)} - 14 e^{(4x)}}{-x e^{(-x)} \ln{(x)}^4 - x \ln{(x)}^4 + 3 x e^{(-4x)} \ln{(x)} + x e^{(-3x)} - e^{(-4x)} \ln{(x)}}.$$

Exercice 76. Donner un équivalent simple, quand $x \to +\infty$, de:

$$g(x) = \frac{-x^3 e^{(3x)} + 18 \ln(x+1)^4 - x e^{(4x)} \ln(x+1) + e^{(3x)}}{x^5 e^{(-x)} + x^4 e^{(-x)} \ln(x) + 2 x^3 \ln(x)^2 + 2 x^3 \ln(x)}.$$

Exercice 77. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$f(x) = \cos\left(\frac{-2x^3 + x^2 + x + 2}{-18x^2 + 6x}\right) \times \frac{2x^3 - 17x^2 - 2x + 6}{-x^2 - 2x - 3}.$$

Exercice 78. Donner un équivalent simple, quand $x \to +\infty$, de:

$$g(x) = \frac{-e^x \ln{(x+1)^5} + x^2 e^x \ln{(x+1)} - x^2 e^{(3\,x)} + e^{(5\,x)}}{\ln{(x)^6} + x \ln{(x)^3} - 15\,x^2 e^{(-3\,x)} - x^2 - 5\,e^{(-x)} \ln{(x)}}.$$

Exercice 79. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$f(x) = \arctan\left(\frac{-2x^4 - 2x^3 - 5x^2 - 21x - 1}{x}\right) \times \frac{-2x^4 + x^3 + x^2 - 4x - 14}{x^2 + 2x - 2}.$$

Exercice 80. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

$$f(x) = \frac{\ln(\cosh(3x) - 1)}{\ln(-\cos(3x) + 1)} \times \frac{\ln(\ln(x + 1) + 1)}{\ln(\arctan(2x) + 1)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

Exercice 81. Donner un équivalent simple, quand $x \to +\infty$, de s

$$g(x) = \frac{x^3 \ln(x+1)^2 - xe^x \ln(x+1)^3 - x^2 + 4e^{(2x)}}{4x^4 \ln(x)^2 + 3e^{(-5x)} \ln(x)}.$$

Exercice 82. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

$$f(x) = \frac{\ln(\ln(2x+1))}{\ln(e^{(4x)} - 1)} \times \frac{\ln(\ln(x+1) + 1)}{\ln(\cosh(2x))},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

Exercice 83. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$f(x) = \sin\left(\frac{x^2 + x + 1}{2x^2 + 1}\right) \times \frac{-x^3 + x - 1}{-2x^2 + 6x + 1}.$$

Exercice 84. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$f(x) = \sin\left(\frac{x+42}{2x^3+3x^2-x}\right) \times \frac{x^2+97x-1}{x^4-x^3-x^2+14x+2}.$$

 \rightarrow page 45

 \rightarrow page 46

 \rightarrow page 47

 \rightarrow page 46

 \rightarrow page 47

 \rightarrow page 48

 \rightarrow page 48

 \rightarrow page 49

Exercice 85. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$\rightarrow$$
 page 49

$$f(x) = \arctan\left(\frac{x^4 + 5x^2}{x}\right) \times \frac{4x^3 - x}{2x^4 - 20x^3 + x^2 + 1}.$$

Exercice 86. Donner un équivalent simple, quand $x \to +\infty$, de:

$$\rightarrow$$
 page 50

$$g(x) = \frac{-x^4 - x^2 e^x \ln(x+1) + 3x e^{(3x)} \ln(x+1) - 2x + 3e^{(2x)}}{-6296 x^5 \ln(x) - x^4 e^{(-x)} \ln(x) - x \ln(x)^5 + x^2 \ln(x)^2 - x e^{(-4x)}}.$$

Exercice 87. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$\rightarrow$$
 page 50

$$f(x) = \sin\left(\frac{-x^2 - 1}{8x - 3}\right) \times \frac{-x^3 + 9x - 1}{x^2 + x + 1}.$$

Exercice 88. Donner un équivalent simple, quand $x \to +\infty$, de:

$$\rightarrow$$
 page 51

$$g(x) = \frac{-2x^3 e^x \ln(x+1)^2 + 29e^{(4x)} \ln(x+1)^2}{11xe^{(-2x)} \ln(x)^3 + x^3 + 2x \ln(x) - e^{(-3x)}}.$$

Exercice 89. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$\rightarrow$$
 page 51

$$f(x) = \arctan\left(\frac{-x^4 + 2x^3 + x^2 + 2x + 1}{-3x^2 + x - 11}\right) \times \frac{x + 1}{-x^2 + x - 1}.$$

Exercice 90. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$\rightarrow$$
 page 52

$$f(x) = \cos\left(\frac{-21x^4 - 2x^2 - x - 1}{2x}\right) \times \frac{x^2 - 5x - 2}{-x^3 - 77x + 3}.$$

Exercice 91. Donner un équivalent simple, quand $x \to +\infty$, de:

$$\rightarrow$$
 page 52

$$g(x) = \frac{e^x \ln(x+1)^4 + x^3 \ln(x+1) + 2e^x \ln(x+1)^3 + e^x}{x^5 \ln(x) - xe^{(-3x)} \ln(x) - e^{(-2x)} \ln(x)^2}.$$

Exercice 92. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$\rightarrow$$
 page 53

$$f(x) = \arctan\left(\frac{x^3 + x - 33}{x^2 - x - 2}\right) \times \frac{-x^3 - x^2 - x - 1}{-2x^3 + x^2 + 4}.$$

Exercice 93. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$\rightarrow$$
 page 53

$$f(x) = \cos\left(\frac{x^2 - x - 18}{-x + 1}\right) \times \frac{-6x^4 - 3x^3 - x^2 + 3x + 3}{-x^3 + 3x^2 - 2x - 1}.$$

Exercice 94. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

$$\rightarrow$$
 page 54

$$f(x) = \frac{\ln(\ln(4x+1))}{\ln(\sin(3x))} \times \frac{\ln(\ln(3x+1)+1)}{\ln(\arctan(x)+1)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

Exercice 95. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

 \rightarrow page 54

$$f(x) = \cos\left(\frac{-x^2 - 1}{-3x + 7}\right) \times \frac{-4x^2 - 12x - 1}{7x^2 + x - 1}.$$

Exercice 96. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

 \rightarrow page 54

$$f(x) = \sin\left(\frac{2x^2 - 1}{x^3 + x + 1}\right) \times \frac{x^2 - x - 2}{3x^4 - 2x^3 - x^2 - 2}.$$

Exercice 97. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

 \rightarrow page 55

$$f(x) = \cos\left(\frac{4x^3 - x^2 + x + 1}{x^3 - x^2 + 3x - 1}\right) \times \frac{-x^3 - x^2 - 7x - 7}{-x^4 - 2x^3 - 3x^2 + 5x - 1}.$$

Exercice 98. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

 \rightarrow page 55

$$f(x) = \sin\left(\frac{-x+1}{-x^4+2x^3-x^2+2}\right) \times \frac{x^2-5x-8}{25x^2}.$$

Exercice 99. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

Exercice 100. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

 \rightarrow page 56

$$f(x) = \frac{\ln(\sinh(4x))}{\ln(e^{(2x)} - 1)} \times \frac{\ln(\sin(2x) + 1)}{\ln(\cosh(2x))},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

 \rightarrow page 56

$$f(x) = \frac{\ln\left(\sin\left(2\,x\right)\right)}{\ln\left(\cosh\left(2\,x\right) - 1\right)} \times \frac{\ln\left(\sin\left(2\,x\right) + 1\right)}{\ln\left(\arctan\left(3\,x\right) + 1\right)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

Corrigé 1. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire : u(x) = constant constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance suivantes : constant de prépondérance suivantes : constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance sui

$$e^x \ln(x+1)^4 \ll e^{(2x)} \ll x^3 e^{(3x)} \ll e^{(6x)}$$

et:

$$e^{(-2x)} \ln(x)^4 \ll x^2 e^{(-x)} \ln(x) \ll x \ln(x)^2 \ll x \ln(x)^4 \ll x^4 \ln(x)$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$-e^{x} \ln (x+1)^{4} - x^{3} e^{(3x)} - e^{(6x)} - 33 e^{(2x)} \underset{x \to +\infty}{\sim} -e^{(6x)}.$$

De même: $-6x^4 \ln(x) - x \ln(x)^4 - 2e^{(-2x)} \ln(x)^4 - x^2 e^{(-x)} \ln(x) - x \ln(x)^2 \sim -6x^4 \ln(x)$. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{-e^{(6\,x)}}{-6\,x^4 \ln{(x)}} \underset{x \to +\infty}{\sim} \frac{e^{(6\,x)}}{6\,x^4 \ln{(x)}}.$$

Corrigé 2. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 1

$$\frac{x^3-6\,x^2-1}{-3\,x^3+2\,x+1} \underset{x\to +\infty}{\sim} \frac{x^3}{-3\,x^3} \underset{x\to +\infty}{\sim} -\frac{1}{3} \underset{x\to +\infty}{\longrightarrow} -\frac{1}{3}, \quad \frac{x^3+2\,x^2-x-5}{-x+4} \underset{x\to +\infty}{\sim} \frac{x^3}{-x} \underset{x\to +\infty}{\sim} -x^2.$$

Par composition de limites: $\lim_{x\to +\infty} \cos\left(\frac{x^3-6\,x^2-1}{-3\,x^3+2\,x+1}\right) = \cos\left(\frac{1}{3}\right) \neq 0$, et donc:

 $\cos\left(\frac{x^3-6x^2-1}{-3x^3+2x+1}\right) \underset{x\to+\infty}{\sim} \cos\left(\frac{1}{3}\right)$. On a donc:

$$f(x) \underset{x \to +\infty}{\sim} \cos\left(\frac{1}{3}\right) \times \left(-x^2\right) \underset{x \to +\infty}{\sim} -x^2 \cos\left(\frac{1}{3}\right).$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve :

$$\frac{x^3 - 6x^2 - 1}{-3x^3 + 2x + 1} \underset{x \to 0^+}{\sim} \frac{-1}{1} \underset{x \to 0^+}{\sim} -1 \underset{x \to 0}{\longrightarrow} -1, \quad \frac{x^3 + 2x^2 - x - 5}{-x + 4} \underset{x \to 0}{\sim} \frac{-5}{4} \underset{x \to 0}{\sim} -\frac{5}{4}$$

Par composition de limites : $\lim_{x\to 0^+}\cos\left(\frac{x^3-6\,x^2-1}{-3\,x^3+2\,x+1}\right)=\cos\left(1\right)\neq 0$, et donc :

$$\cos\left(\frac{x^3 - 6x^2 - 1}{-3x^3 + 2x + 1}\right) \underset{x \to 0^+}{\sim} \cos(1).$$

On conclut:

$$f(x) \underset{x \to 0^{+}}{\sim} -\frac{5}{4} \cos(1)$$
, et: $f(x) \underset{x \to +\infty}{\sim} -x^{2} \cos\left(\frac{1}{3}\right)$.

Corrigé 3. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 1

$$\frac{x^3+x^2+x-1}{x^3-x^2-x-3} \mathop{\sim}_{x\to +\infty} \frac{x^3}{x^3} \mathop{\sim}_{x\to +\infty} 1 \mathop{\longrightarrow}_{x\to +\infty} 1, \quad \frac{-3\,x+8}{x^4-9\,x^2-x-3} \mathop{\sim}_{x\to +\infty} \frac{-3\,x}{x^4} \mathop{\sim}_{x\to +\infty} -\frac{3}{x^3}.$$

Par composition de limites: $\lim_{x\to +\infty}\arctan\left(\frac{x^3+x^2+x-1}{x^3-x^2-x-3}\right)=\arctan\left(1\right)=\frac{1}{4}\pi\neq 0$, et donc: $\arctan\left(\frac{x^3+x^2+x-1}{x^3-x^2-x-3}\right)\underset{x\to +\infty}{\sim}\frac{1}{4}\pi$. On a donc:

$$f(x) \underset{x \to +\infty}{\sim} \frac{1}{4} \pi \times \left(-\frac{3}{x^3}\right) \underset{x \to +\infty}{\sim} -\frac{3 \pi}{4 x^3}.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{x^3 + x^2 + x - 1}{x^3 - x^2 - x - 3} \mathop{\sim}_{x \to 0^+} \frac{-1}{-3} \mathop{\sim}_{x \to 0^+} \frac{1}{3} \mathop{\longrightarrow}_{x \to 0} \frac{1}{3}, \quad \frac{-3x + 8}{x^4 - 9x^2 - x - 3} \mathop{\sim}_{x \to 0} \frac{8}{-3} \mathop{\sim}_{x \to 0} - \frac{8}{3}.$$

Par composition de limites : $\lim_{x\to 0^+} \arctan\left(\frac{x^3+x^2+x-1}{x^3-x^2-x-3}\right) = \arctan\left(\frac{1}{3}\right) \neq 0$, et donc :

$$\arctan\left(\frac{x^3+x^2+x-1}{x^3-x^2-x-3}\right) \underset{x\to 0^+}{\sim} \arctan\left(\frac{1}{3}\right).$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} -\frac{8}{3} \arctan\left(\frac{1}{3}\right), \text{ et}: f(x) \underset{x \to +\infty}{\sim} -\frac{3\pi}{4x^3}.$$

Corrigé 4. Commençons par la deuxième fraction. On a $\sin{(2\,x)} + 1 \underset{x \to 0}{\longrightarrow} 1$ et $\sinh{(2\,x)} + 1 \underset{x \to 0}{\longrightarrow} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u \to 1}{\sim} u - 1$, on a : $\ln{(\sin{(2\,x)} + 1)} \underset{x \to 0}{\sim} \sin{(2\,x)}$, et : $\ln{(\sinh{(2\,x)} + 1)} \underset{x \to 0}{\sim} \sinh{(2\,x)}$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\sin{(u)} \underset{u \to 0}{\sim} u$ et $\sinh{(u)} \underset{u \to 0}{\sim} u$, où l'on prend $u = 2\,x$, impliquent :

$$\frac{\ln\left(\sin\left(2\,x\right)+1\right)}{\ln\left(\sinh\left(2\,x\right)+1\right)} \underset{x\to 0}{\sim} \frac{\sin\left(2\,x\right)}{\sinh\left(2\,x\right)} \underset{x\to 0}{\sim} \frac{2\,x}{2\,x} \underset{x\to 0}{\sim} 1.$$

Passons à la première fraction. On a : $e^x = 1 + x + o_{x \to 0}(x)$, et : $\arctan(x) = x + o_{x \to 0}(x)$. Par conséquent :

$$\frac{\ln\left(e^{(2\,x)}-1\right)}{\ln\left(\arctan\left(2\,x\right)\right)} = \frac{\ln(2\,x+\mathop{o}_{x\to 0}(x)}{\ln(2\,x+\mathop{o}_{x\to 0}(x))} = \frac{\ln((2\,x)(1+\mathop{o}_{x\to 0}(1)))}{\ln((2\,x)(1+\mathop{o}_{x\to 0}(1)))} = \frac{\ln(2)+\ln\left(x\right)+\ln\left(1+\mathop{o}_{x\to 0}(1)\right)}{\ln(2)+\ln\left(x\right)+\ln\left(1+\mathop{o}_{x\to 0}(1)\right)} \underset{x\to 0}{\sim} \frac{\ln\left(x\right)}{\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(2) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(2)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x \to 0}{\sim} \frac{\ln(x)}{\ln(x)} \times 1 = 1,$$

et en outre: $\lim_{x\to 0^+} f(x) = 1$.

Corrigé 5. Commençons par la deuxième fraction. On a $\ln(x+1)+1 \underset{x\to 0}{\longrightarrow} 1$ et $\sin(2x)+1 \underset{x\to 0}{\longrightarrow} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u\to 1}{\sim} u-1$, on a : $\ln(\ln(x+1)+1) \underset{x\to 0}{\sim} \ln(x+1)$, et : $\ln(\sin(2x)+1) \underset{x\to 0}{\sim} \sin(2x)$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\ln(u+1) \underset{u\to 0}{\sim} u$ et $\sin(u) \underset{u\to 0}{\sim} u$, où l'on prend u=2x dans le second développement limité, impliquent :

$$\frac{\ln\left(\ln\left(x+1\right)+1\right)}{\ln\left(\sin\left(2\,x\right)+1\right)} \underset{x\to 0}{\sim} \frac{\ln\left(x+1\right)}{\sin\left(2\,x\right)} \underset{x\to 0}{\sim} \frac{x}{2\,x} \underset{x\to 0}{\sim} \frac{1}{2}.$$

 \leftarrow page 1

Passons à la première fraction. On a : $\ln(x+1) = x + o(x)$, et : $e^x = 1 + x + o(x)$. Par conséquent :

$$\frac{\ln\left(\ln\left(4\,x+1\right)\right)}{\ln\left(e^{(2\,x)}-1\right)} = \frac{\ln(4\,x+o_{x\to 0}(x))}{\ln(2\,x+o_{x\to 0}(x))} = \frac{\ln((4\,x)(1+o_{x\to 0}(1)))}{\ln((2\,x)(1+o_{x\to 0}(1)))} = \frac{\ln(4)+\ln\left(x\right)+\ln(1+o_{x\to 0}(1))}{\ln(2)+\ln\left(x\right)+\ln(1+o_{x\to 0}(1))} \underset{x\to 0}{\sim} \frac{\ln\left(x\right)}{\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(4) + \ln(1 + o_{x\to 0}(1)) \xrightarrow[x\to 0]{} \ln(4)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x \to 0}{\sim} \frac{\ln(x)}{\ln(x)} \times \frac{1}{2} = \frac{1}{2},$$

et en outre : $\lim_{x \to 0^+} f(x) = \frac{1}{2}$.

Corrigé 6. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 1

$$\frac{-5\,x+1}{-x^2-6} \underset{x\to +\infty}{\sim} \frac{-5\,x}{-x^2} \underset{x\to +\infty}{\sim} \frac{5}{x}.$$

Attention à ne pas penser que $\cos\left(\frac{-2\,x^4+13\,x^3+2\,x^2}{x^3-x^2-4\,x+1}\right) \underset{x\to+\infty}{\sim} \cos\left(-2\,x\right)$ sous prétexte que $\frac{-2\,x^4+13\,x^3+2\,x^2}{x^3-x^2-4\,x+1} \underset{x\to+\infty}{\sim} -2\,x$. Nous savons que les équivalents se composent mal, l'exponentielle et le logarithme donnant des contre-exemples classiques. On ne peut pas simplifier cette quantité. On a donc :

$$f(x) \underset{x \to +\infty}{\sim} \cos\left(-\frac{2x^4 - 13x^3 - 2x^2}{x^3 - x^2 - 4x + 1}\right) \times \left(\frac{5}{x}\right) \underset{x \to +\infty}{\sim} \frac{5\cos\left(-\frac{2x^4 - 13x^3 - 2x^2}{x^3 - x^2 - 4x + 1}\right)}{x}.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{-2\,x^4+13\,x^3+2\,x^2}{x^3-x^2-4\,x+1} \underset{x\to 0^+}{\sim} \frac{2\,x^2}{1} \underset{x\to 0^+}{\sim} 2\,x^2 \underset{x\to 0}{\longrightarrow} 0, \quad \frac{-5\,x+1}{-x^2-6} \underset{x\to 0}{\sim} \frac{1}{-6} \underset{x\to 0}{\sim} -\frac{1}{6}.$$

Par composition de limites: $\lim_{x\to 0^+} \cos\left(\frac{-2\,x^4 + 13\,x^3 + 2\,x^2}{x^3 - x^2 - 4\,x + 1}\right) = \cos(0) = 1 \neq 0$, et donc:

$$\cos\left(\frac{-2x^4 + 13x^3 + 2x^2}{x^3 - x^2 - 4x + 1}\right) \underset{x \to 0^+}{\sim} 1.$$

On conclut:

$$f(x) \underset{x \to 0^{+}}{\sim} -\frac{1}{6}$$
, et: $f(x) \underset{x \to +\infty}{\sim} \frac{5 \cos\left(-\frac{2x^{4} - 13x^{3} - 2x^{2}}{x^{3} - x^{2} - 4x + 1}\right)}{x}$.

Corrigé 7. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire: u(x) = constant constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance suiva

$$x^6 \ll xe^x \ln(x+1)^2 \ll x^2e^x \ln(x+1)^3 \ll x^3e^x$$

et:

$$e^{(-2x)} \ln(x)^4 \ll x^2 e^{(-x)} \ln(x) \ll x^2 e^{(-x)} \ln(x)^2 \ll x^2 \ln(x)^3$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle

dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit:

$$x^{6} - 5x^{2}e^{x} \ln(x+1)^{3} - 2x^{3}e^{x} + 151xe^{x} \ln(x+1)^{2} \underset{x \to +\infty}{\sim} -2x^{3}e^{x}.$$

De même: $-x^2e^{(-x)}\ln(x)^2 + 3x^2\ln(x)^3 + 7e^{(-2x)}\ln(x)^4 + x^2e^{(-x)}\ln(x) \sim 3x^2\ln(x)^3$. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{-2 x^3 e^x}{3 x^2 \ln(x)^3} \underset{x \to +\infty}{\sim} -\frac{2 x e^x}{3 \ln(x)^3}.$$

Corrigé 8. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire: $u(x) = e^{-x} + e^{-x} + e^{-x} + e^{-x} = e^{-x} + e^{$

$$x^3 \ll x^3 \ln(x+1)^2 \ll x^2 e^{(2x)} \ln(x+1)^2 \ll e^{(3x)} \ll e^{(4x)}$$

et:

$$e^{(-4x)} \ll e^{(-2x)} \ln(x)^2 \ll x e^{(-2x)} \ln(x)^2 \ll x^2 e^{(-2x)}$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$-2x^{3}\ln(x+1)^{2} + 4x^{2}e^{(2x)}\ln(x+1)^{2} + 6x^{3} - e^{(4x)} + e^{(3x)} \underset{x \to +\infty}{\sim} -e^{(4x)}.$$

De même: $5 x e^{(-2x)} \ln(x)^2 - 5 x^2 e^{(-2x)} + 2 e^{(-2x)} \ln(x)^2 + 2 e^{(-4x)} \sim -5 x^2 e^{(-2x)}$. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{-e^{(4x)}}{-5x^2e^{(-2x)}} \underset{x \to +\infty}{\sim} \frac{e^{(6x)}}{5x^2}.$$

Corrigé 9. Commençons par la deuxième fraction. On a $\ln(x+1)+1 \underset{x\to 0}{\longrightarrow} 1$ et $\sinh(x)+1 \underset{x\to 0}{\longrightarrow} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u\to 1}{\sim} u-1$, on a : $\ln(\ln(x+1)+1) \underset{x\to 0}{\sim} \ln(x+1)$, et : $\ln(\sinh(x)+1) \underset{x\to 0}{\sim} \sinh(x)$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\ln(u+1) \underset{u\to 0}{\sim} u$ et $\sinh(u) \underset{u\to 0}{\sim} u$, impliquent :

$$\frac{\ln\left(\ln\left(x+1\right)+1\right)}{\ln\left(\sinh\left(x\right)+1\right)} \underset{x\to 0}{\sim} \frac{\ln\left(x+1\right)}{\sinh\left(x\right)} \underset{x\to 0}{\sim} \frac{x}{x} \underset{x\to 0}{\sim} 1.$$

Passons à la première fraction. On a : $\ln(x+1) = x + \underset{x \to 0}{o}(x)$, et : $\arctan(x) = x + \underset{x \to 0}{o}(x)$. Par conséquent :

$$\frac{\ln\left(\ln\left(4\,x+1\right)\right)}{\ln\left(\arctan\left(4\,x\right)\right)} = \frac{\ln(4\,x+o_{x\to 0}\left(x\right))}{\ln(4\,x+o_{x\to 0}\left(x\right))} = \frac{\ln((4\,x)(1+o_{x\to 0}\left(1\right)))}{\ln((4\,x)(1+o_{x\to 0}\left(1\right)))} = \frac{\ln(4)+\ln\left(x\right)+\ln\left(1+o_{x\to 0}\left(1\right)\right)}{\ln(4)+\ln\left(x\right)+\ln\left(1+o_{x\to 0}\left(1\right)\right)} \underset{x\to 0}{\sim} \frac{\ln\left(x\right)}{\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(4) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(4)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x \to 0}{\sim} \frac{\ln(x)}{\ln(x)} \times 1 = 1,$$

et en outre: $\lim_{x\to 0^+} f(x) = 1$.

Corrigé 10. Commençons par la deuxième fraction. On a $\ln(x+1)+1 \underset{x\to 0}{\longrightarrow} 1$ et $\sinh(x)+1 \underset{x\to 0}{\longrightarrow} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u\to 1}{\sim} u-1$, on a : $\ln(\ln(x+1)+1) \underset{x\to 0}{\sim} \ln(x+1)$, et : $\ln(\sinh(x)+1) \underset{x\to 0}{\sim} \sinh(x)$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\ln(u+1) \underset{u\to 0}{\sim} u$ et $\sinh(u) \underset{u\to 0}{\sim} u$, impliquent :

 \leftarrow page 2

$$\frac{\ln\left(\ln\left(x+1\right)+1\right)}{\ln\left(\sinh\left(x\right)+1\right)} \sim \frac{\ln\left(x+1\right)}{\sinh\left(x\right)} \sim \frac{x}{x\to 0} \sim 1.$$

Passons à la première fraction. On a : $\ln(x+1) = x + o(x)$, et : $\sin(x) = x + o(x)$. Par conséquent :

$$\frac{\ln\left(\ln\left(3\,x+1\right)\right)}{\ln\left(\sin\left(3\,x\right)\right)} = \frac{\ln(3\,x+o_{x\to 0}(x))}{\ln(3\,x+o_{x\to 0}(x))} = \frac{\ln((3\,x)(1+o_{x\to 0}(1)))}{\ln((3\,x)(1+o_{x\to 0}(1)))} = \frac{\ln(3)+\ln\left(x\right)+\ln\left(1+o_{x\to 0}(1)\right)}{\ln(3)+\ln\left(x\right)+\ln\left(1+o_{x\to 0}(1)\right)} \sim \frac{\ln\left(x\right)}{\ln\left(x\right)}$$

le dernier équivalent venant du fait que $\ln(3) + \ln(1 + o_{x\to 0}(1)) \xrightarrow[x\to 0]{} \ln(3)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x \to 0}{\sim} \frac{\ln(x)}{\ln(x)} \times 1 = 1,$$

et en outre: $\lim_{x\to 0^+} f(x) = 1$.

Corrigé 11. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 2

$$\frac{-2x^3 + x^2 - x + 1}{-x - 2} \underset{x \to +\infty}{\sim} \frac{-2x^3}{-x} \underset{x \to +\infty}{\sim} 2x^2.$$

Attention à ne pas penser que $\sin\left(\frac{-23\,x^3+x^2-x-1}{x+2}\right) \underset{x\to+\infty}{\sim} \sin\left(-23\,x^2\right)$ sous prétexte que $\frac{-23\,x^3+x^2-x-1}{x+2} \underset{x\to+\infty}{\sim} -23\,x^2$. Nous savons que les équivalents se composent mal, l'exponentielle et le logarithme donnant des contre-exemples classiques. On ne peut pas simplifier cette quantité. On a donc :

$$f(x) \underset{x \to +\infty}{\sim} \sin\left(-\frac{23x^3 - x^2 + x + 1}{x + 2}\right) \times \left(2x^2\right) \underset{x \to +\infty}{\sim} 2x^2 \sin\left(-\frac{23x^3 - x^2 + x + 1}{x + 2}\right).$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{-23\,x^3+x^2-x-1}{x+2} \underset{r\to 0^+}{\sim} \frac{-1}{2} \underset{r\to 0^+}{\sim} -\frac{1}{2} \underset{x\to 0}{\longrightarrow} -\frac{1}{2}, \quad \frac{-2\,x^3+x^2-x+1}{-x-2} \underset{x\to 0}{\sim} \frac{1}{-2} \underset{x\to 0}{\sim} -\frac{1}{2}.$$

Par composition de limites: $\lim_{x\to 0^+} \sin\left(\frac{-23x^3+x^2-x-1}{x+2}\right) = -\sin\left(\frac{1}{2}\right) \neq 0$, et donc:

$$\sin\left(\frac{-23x^3 + x^2 - x - 1}{x + 2}\right) \underset{x \to 0^+}{\sim} -\sin\left(\frac{1}{2}\right).$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} \frac{1}{2} \sin\left(\frac{1}{2}\right), \text{ et}: f(x) \underset{x \to +\infty}{\sim} 2 x^2 \sin\left(-\frac{23 x^3 - x^2 + x + 1}{x + 2}\right).$$

Corrigé 12. Commençons par la deuxième fraction. On a $\ln{(2\,x+1)} + 1 \underset{x \to 0}{\longrightarrow} 1$ et $\arctan{(3\,x)} + 1 \underset{x \to 0}{\longrightarrow} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u \to 1}{\sim} u - 1$, on a : $\ln{(\ln{(2\,x+1)} + 1)} \underset{x \to 0}{\sim} \ln{(2\,x+1)}$, et :

 \leftarrow page 2

 $\ln(\arctan(3x)+1) \underset{x\to 0}{\sim}\arctan(3x)$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\ln(u+1) \underset{u\to 0}{\sim} u$ et $\arctan(u) \underset{u\to 0}{\sim} u$, où l'on prend respectivement u=2x et u=3x, impliquent:

$$\frac{\ln\left(\ln\left(2\,x+1\right)+1\right)}{\ln\left(\arctan\left(3\,x\right)+1\right)} \underset{x\to 0}{\sim} \frac{\ln\left(2\,x+1\right)}{\arctan\left(3\,x\right)} \underset{x\to 0}{\sim} \frac{2\,x}{3\,x} \underset{x\to 0}{\sim} \frac{2}{3}.$$

Passons à la première fraction. On a: $\sinh(x) = x + o(x)$, et: $\sin(x) = x + o(x)$. Par conséquent:

$$\frac{\ln\left(\sinh\left(3\,x\right)\right)}{\ln\left(\sin\left(4\,x\right)\right)} = \frac{\ln(3\,x + \mathop{o}_{x \to 0}(x)}{\ln(4\,x + \mathop{o}_{x \to 0}(x))} = \frac{\ln((3\,x)(1 + \mathop{o}_{x \to 0}(1)))}{\ln((4\,x)(1 + \mathop{o}_{x \to 0}(1)))} = \frac{\ln(3) + \ln\left(x\right) + \ln\left(1 + \mathop{o}_{x \to 0}(1)\right)}{\ln(4) + \ln\left(x\right) + \ln\left(1 + \mathop{o}_{x \to 0}(1)\right)} \underset{x \to 0}{\sim} \frac{\ln\left(x\right)}{\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(3) + \ln(1 + o_{x\to 0}(1)) \xrightarrow[x\to 0]{} \ln(3)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x \to 0}{\sim} \frac{\ln(x)}{\ln(x)} \times \frac{2}{3} = \frac{2}{3},$$

et en outre: $\lim_{x \to 0^+} f(x) = \frac{2}{3}$.

Corrigé 13. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$ et $x^{\beta} = \underset{x \to 0}{o} \left(x^{\alpha} \right)$ (les prépondérances entre puissances « s'inversent », selon qu'on regarde au voisinage de l'infini ou de zéro). De cela, on déduit facilement :

 \leftarrow page 2

$$\frac{-x^4+2\,x^3+x^2-2\,x-1}{-x^4+3\,x^3-44\,x^2-1} \underset{x\to +\infty}{\sim} \frac{-x^4}{-x^4} \underset{x\to +\infty}{\sim} 1 \underset{x\to +\infty}{\longrightarrow} 1, \quad \frac{x^2}{-x} \underset{x\to +\infty}{\sim} \frac{x^2}{-x} \underset{x\to +\infty}{\sim} -x.$$

Par composition de limites: $\lim_{x \to +\infty} \sin \left(\frac{-x^4 + 2x^3 + x^2 - 2x - 1}{-x^4 + 3x^3 - 44x^2 - 1} \right) = \sin(1) \neq 0$, et donc: $\sin \left(\frac{-x^4 + 2x^3 + x^2 - 2x - 1}{-x^4 + 3x^3 - 44x^2 - 1} \right) \underset{x \to +\infty}{\sim} \sin(1)$. On a donc:

$$f(x) \underset{x \to +\infty}{\sim} \sin(1) \times (-x) \underset{x \to +\infty}{\sim} -x \sin(1)$$
.

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{-x^4 + 2x^3 + x^2 - 2x - 1}{-x^4 + 3x^3 - 44x^2 - 1} \underset{x \to 0^+}{\sim} \frac{-1}{-1} \underset{x \to 0^+}{\sim} 1 \underset{x \to 0}{\longrightarrow} 1, \quad \frac{x^2}{-x} \underset{x \to 0}{\sim} \frac{x^2}{-x} \underset{x \to 0}{\sim} -x.$$

Par composition de limites : $\lim_{x\to 0^+} \sin\left(\frac{-x^4+2\,x^3+x^2-2\,x-1}{-x^4+3\,x^3-44\,x^2-1}\right) = \sin(1) \neq 0$, et donc :

$$\sin\left(\frac{-x^4 + 2x^3 + x^2 - 2x - 1}{-x^4 + 3x^3 - 44x^2 - 1}\right) \underset{x \to 0^+}{\sim} \sin(1).$$

On conclut:

$$f(x) \underset{x \to 0^{+}}{\sim} -x \sin(1)$$
, et: $f(x) \underset{x \to +\infty}{\sim} -x \sin(1)$.

Corrigé 14. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire : u(x) = constant c

$$e^{x} \ln(x+1)^{5} \ll e^{(2x)} \ln(x+1)^{2} \ll xe^{(2x)} \ln(x+1)^{2} \ll x^{2}e^{(2x)} \ln(x+1) \ll e^{(3x)} \ln(x+1)^{2}$$

et:

$$xe^{(-3x)}\ln(x)^2 \ll e^{(-x)}\ln(x) \ll x^2\ln(x)^2 \ll x^4\ln(x)^2$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$-2e^{x}\ln{(x+1)^{5}}+15x^{2}e^{(2x)}\ln{(x+1)}+2xe^{(2x)}\ln{(x+1)^{2}}+6e^{(3x)}\ln{(x+1)^{2}}-2e^{(2x)}\ln{(x+1)^{2}}\underset{x\to+\infty}{\sim}6e^{(3x)}\ln{(x+1)^{2}}.$$

De même: $-2x^4 \ln(x)^2 + x^2 \ln(x)^2 - xe^{(-3x)} \ln(x)^2 + e^{(-x)} \ln(x) \underset{x \to +\infty}{\sim} -2x^4 \ln(x)^2$.

De plus, on a $\ln(x+1) \underset{x \to +\infty}{\sim} \ln(x)$ (en effet: $\frac{\ln(x+1)}{\ln(x)} = \frac{\ln(x) + \ln(1 + \frac{1}{x})}{\ln(x)} = 1 + \frac{\ln(1 + \frac{1}{x})}{\ln(x)} \xrightarrow[x \to +\infty]{} 1$ car

 $\ln\left(1+\frac{1}{x}\right) \underset{x\to+\infty}{\longrightarrow} 0$ et $\ln(x) \underset{x\to+\infty}{\longrightarrow} +\infty$, ce qui simplifie le premier équivalent. On conclut :

$$g(x) \underset{x \to +\infty}{\sim} \frac{6 e^{(3 x)} \ln(x)^2}{-2 x^4 \ln(x)^2} \underset{x \to +\infty}{\sim} -\frac{3 e^{(3 x)}}{x^4}.$$

Corrigé 15. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 2

$$\frac{x^3+2\,x^2+x-1}{-x^3-3\,x^2-3\,x+3} \underset{x\to +\infty}{\sim} \frac{x^3}{-x^3} \underset{x\to +\infty}{\sim} -1 \underset{x\to +\infty}{\longrightarrow} -1, \quad \frac{-x-1}{6\,x+10} \underset{x\to +\infty}{\sim} \frac{-x}{6\,x} \underset{x\to +\infty}{\sim} -\frac{1}{6\,x+10} \underset{x\to +\infty}{\sim} -\frac$$

Par composition de limites: $\lim_{x\to +\infty} \arctan\left(\frac{x^3+2\,x^2+x-1}{-x^3-3\,x^2-3\,x+3}\right) = \arctan\left(-1\right) = -\frac{1}{4}\pi \neq 0$, et donc:

 $\arctan\left(\frac{x^3 + 2x^2 + x - 1}{-x^3 - 3x^2 - 3x + 3}\right) \underset{x \to +\infty}{\sim} -\frac{1}{4}\pi$. On a donc:

$$f(x) \underset{x \to +\infty}{\sim} -\frac{1}{4} \pi \times \left(-\frac{1}{6}\right) \underset{x \to +\infty}{\sim} \frac{1}{24} \pi.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{x^3 + 2\,x^2 + x - 1}{-x^3 - 3\,x^2 - 3\,x + 3} \underset{x \to 0^+}{\sim} -\frac{1}{3} \underset{x \to 0^+}{\sim} -\frac{1}{3} \underset{x \to 0}{\longrightarrow} -\frac{1}{3}, \quad \frac{-x - 1}{6\,x + 10} \underset{x \to 0}{\sim} -\frac{1}{10} \underset{x \to 0}{\sim} -\frac{1}{10}.$$

Par composition de limites: $\lim_{x\to 0^+} \arctan\left(\frac{x^3+2\,x^2+x-1}{-x^3-3\,x^2-3\,x+3}\right) = -\arctan\left(\frac{1}{3}\right) \neq 0$, et donc:

$$\arctan\left(\frac{x^3 + 2x^2 + x - 1}{-x^3 - 3x^2 - 3x + 3}\right) \underset{x \to 0^+}{\sim} -\arctan\left(\frac{1}{3}\right).$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} \frac{1}{10} \arctan\left(\frac{1}{3}\right), \text{ et: } f(x) \underset{x \to +\infty}{\sim} \frac{1}{24} \pi.$$

Corrigé 16. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire : u(x) = 0 o v(x). Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes :

$$x^{2} \ln(x+1)^{3} \ll xe^{x} \ln(x+1) \ll x^{2}e^{x} \ll x^{3}e^{x} \ln(x+1)^{2} \ll x^{4}e^{(2x)}$$

et:

$$e^{(-4x)} \ll x^4 e^{(-2x)} \ll x^2 e^{(-x)} \ln(x) \ll x^3$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$x^{3}e^{x}\ln(x+1)^{2} - 21x^{4}e^{(2x)} + 2x^{2}\ln(x+1)^{3} + 2x^{2}e^{x} - 2xe^{x}\ln(x+1) \underset{x\to+\infty}{\sim} -21x^{4}e^{(2x)}$$
.

De même: $x^4 e^{(-2x)} - x^2 e^{(-x)} \ln(x) - x^3 - e^{(-4x)} \sim x - x^3$. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{-21 \, x^4 e^{(2 \, x)}}{-x^3} \underset{x \to +\infty}{\sim} 21 \, x e^{(2 \, x)}.$$

Corrigé 17. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire : u(x) = constant c

$$\ln(x+1)^4 \ll x \ln(x+1)^2 \ll x \ln(x+1)^5 \ll x^2 e^{(4x)},$$

et:

$$x^3 e^{(-2x)} \ln(x) \ll x e^{(-x)} \ln(x) \ll x^2$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$x \ln (x+1)^5 + \ln (x+1)^4 - x^2 e^{(4x)} + x \ln (x+1)^2 \underset{x \to +\infty}{\sim} -x^2 e^{(4x)}$$
.

De même: $3x^3e^{(-2x)}\ln(x) + 4xe^{(-x)}\ln(x) - x^2 \sim -x^2$. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{-x^2 e^{(4x)}}{-x^2} \underset{x \to +\infty}{\sim} e^{(4x)}.$$

Corrigé 18. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire : u(x) = constant c

$$x^5 \ll x^5 \ln(x+1) \ll e^{(2x)} \ln(x+1)^2 \ll x^2 e^{(3x)}$$

et:

$$e^{(-4x)} \ln(x) \ll x e^{(-2x)} \ln(x)^3 \ll x^2 e^{(-2x)} \ll x e^{(-x)} \ln(x)^3 \ll x \ln(x)$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$x^{5} \ln(x+1) + x^{5} + x^{2} e^{(3x)} - e^{(2x)} \ln(x+1)^{2} \underset{x \to +\infty}{\sim} x^{2} e^{(3x)}$$
.

De même: $-2xe^{(-x)}\ln(x)^3 + 9xe^{(-2x)}\ln(x)^3 - 2x^2e^{(-2x)} - 5x\ln(x) - 2e^{(-4x)}\ln(x) \sim -5x\ln(x)$.

On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{x^2 e^{(3x)}}{-5 x \ln(x)} \underset{x \to +\infty}{\sim} -\frac{x e^{(3x)}}{5 \ln(x)}.$$

Corrigé 19. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 3

$$\frac{2\,x^4-4\,x^3+24\,x^2-x}{x^4-x^3-4\,x^2+x+1} \underset{x\to +\infty}{\sim} \frac{2\,x^4}{x^4} \underset{x\to +\infty}{\sim} 2 \underset{x\to +\infty}{\longrightarrow} 2, \quad \frac{-x+1}{15\,x^2-29\,x} \underset{x\to +\infty}{\sim} \frac{-x}{15\,x^2} \underset{x\to +\infty}{\sim} -\frac{1}{15\,x}.$$

Par composition de limites: $\lim_{x \to +\infty} \cos \left(\frac{2 x^4 - 4 x^3 + 24 x^2 - x}{x^4 - x^3 - 4 x^2 + x + 1} \right) = \cos(2) \neq 0$, et donc: $\cos \left(\frac{2 x^4 - 4 x^3 + 24 x^2 - x}{x^4 - x^3 - 4 x^2 + x + 1} \right) \sim \cos(2)$. On a donc:

$$f(x) \underset{x \to +\infty}{\sim} \cos(2) \times \left(-\frac{1}{15 x}\right) \underset{x \to +\infty}{\sim} -\frac{\cos(2)}{15 x}.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve :

$$\frac{2\,x^4 - 4\,x^3 + 24\,x^2 - x}{x^4 - x^3 - 4\,x^2 + x + 1} \underset{x \to 0^+}{\sim} \frac{-x}{1} \underset{x \to 0^+}{\sim} -x \underset{x \to 0}{\longrightarrow} 0, \quad \frac{-x + 1}{15\,x^2 - 29\,x} \underset{x \to 0}{\sim} \frac{1}{-29\,x} \underset{x \to 0}{\sim} -\frac{1}{29\,x}$$

Par composition de limites: $\lim_{x\to 0^+} \cos\left(\frac{2\,x^4-4\,x^3+24\,x^2-x}{x^4-x^3-4\,x^2+x+1}\right) = \cos(0) = 1 \neq 0$, et donc:

$$\cos\left(\frac{2x^4 - 4x^3 + 24x^2 - x}{x^4 - x^3 - 4x^2 + x + 1}\right) \underset{x \to 0^+}{\sim} 1.$$

On conclut:

$$f(x) \underset{x \to 0+}{\sim} -\frac{1}{29 x}$$
, et: $f(x) \underset{x \to +\infty}{\sim} -\frac{\cos(2)}{15 x}$.

Corrigé 20. Commençons par la deuxième fraction. On a $\sin(2x) + 1 \xrightarrow[x \to 0]{} 1$ et $\arctan(3x) + 1 \xrightarrow[x \to 0]{} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u \to 1}{\sim} u - 1$, on a: $\ln(\sin(2x) + 1) \underset{x \to 0}{\sim} \sin(2x)$, et: $\ln(\arctan(3x) + 1) \underset{x \to 0}{\sim} \arctan(3x)$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\sin(u) \underset{u \to 0}{\sim} u$ et $\arctan(u) \underset{u \to 0}{\sim} u$, où l'on prend respectivement u = 2x et u = 3x, impliquent:

$$\frac{\ln\left(\sin\left(2\,x\right)+1\right)}{\ln\left(\arctan\left(3\,x\right)+1\right)} \mathop{\sim}\limits_{x\to 0} \frac{\sin\left(2\,x\right)}{\arctan\left(3\,x\right)} \mathop{\sim}\limits_{x\to 0} \frac{2\,x}{3\,x} \mathop{\sim}\limits_{x\to 0} \frac{2}{3}.$$

Passons à la première fraction. On a : $\sin(x) = x + \underset{x \to 0}{o}(x)$, et : $\arctan(x) = x + \underset{x \to 0}{o}(x)$. Par conséquent :

$$\frac{\ln{(\sin{(4\,x)})}}{\ln{(\arctan{(4\,x)})}} = \frac{\ln{(4\,x} + \mathop{o}\limits_{x \to 0}(x)}{\ln{(4\,x} + \mathop{o}\limits_{x \to 0}(x))} = \frac{\ln{((4\,x)}(1 + \mathop{o}\limits_{x \to 0}(1)))}{\ln{((4\,x)}(1 + \mathop{o}\limits_{x \to 0}(1)))} = \frac{\ln{(4)} + \ln{(x)} + \ln{(1 + \mathop{o}\limits_{x \to 0}(1))}}{\ln{(4)} + \ln{(x)} + \ln{(1 + \mathop{o}\limits_{x \to 0}(1))}} \underset{x \to 0}{\sim} \frac{\ln{(x)}}{\ln{(x)}},$$

le dernier équivalent venant du fait que $\ln(4) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(4)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x\to 0}{\sim} \frac{\ln(x)}{\ln(x)} \times \frac{2}{3} = \frac{2}{3},$$

et en outre: $\lim_{x \to 0^+} f(x) = \frac{2}{3}$.

Corrigé 21. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire: u(x) = $o_{x\to +\infty}(v(x))$. Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes:

$$x^4 \ll xe^{(2x)} \ln(x+1)^2$$

et:

$$x^{2}e^{(-2x)} \ll xe^{(-x)}\ln(x)^{4} \ll x^{3}\ln(x)^{3}$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit:

$$3x^4 + xe^{(2x)} \ln(x+1)^2 \underset{x \to +\infty}{\sim} xe^{(2x)} \ln(x+1)^2$$
.

De même: $x^3 \ln(x)^3 + 3xe^{(-x)} \ln(x)^4 + 4x^2e^{(-2x)} \underset{x \to +\infty}{\sim} x^3 \ln(x)^3$. De plus, on a $\ln(x+1) \underset{x \to +\infty}{\sim} \ln(x)$ (en effet: $\frac{\ln(x+1)}{\ln(x)} = \frac{\ln(x) + \ln\left(1 + \frac{1}{x}\right)}{\ln(x)} = 1 + \frac{\ln\left(1 + \frac{1}{x}\right)}{\ln(x)} \underset{x \to +\infty}{\longrightarrow} 1$ car $\ln\left(1+\frac{1}{x}\right)\underset{x\to+\infty}{\longrightarrow}0$ et $\ln(x)\underset{x\to+\infty}{\longrightarrow}+\infty$), ce qui simplifie le premier équivalent. On conclut :

$$g(x) \underset{x \to +\infty}{\sim} \frac{xe^{(2x)} \ln(x)^2}{x^3 \ln(x)^3} \underset{x \to +\infty}{\sim} \frac{e^{(2x)}}{x^2 \ln(x)}.$$

Corrigé 22. Commençons par la deuxième fraction. On a $\ln(3x+1)+1 \xrightarrow[x\to 0]{} 1$ et $\sinh(2x)+1 \xrightarrow[x\to 0]{} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u\to 1}{\sim} u-1$, on a: $\ln(\ln(3x+1)+1) \underset{x\to 0}{\sim} \ln(3x+1)$, et: $\ln \left(\sinh \left(2\,x\right) + 1\right) \sim \sinh \left(2\,x\right)$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\ln(u+1) \underset{u\to 0}{\sim} u$ et $\sinh(u) \underset{u\to 0}{\sim} u$, où l'on prend respectivement u = 3x et u = 2x, impliquent :

$$\frac{\ln\left(\ln\left(3\,x+1\right)+1\right)}{\ln\left(\sinh\left(2\,x\right)+1\right)} \underset{x\to 0}{\sim} \frac{\ln\left(3\,x+1\right)}{\sinh\left(2\,x\right)} \underset{x\to 0}{\sim} \frac{3\,x}{2\,x} \underset{x\to 0}{\sim} \frac{3}{2}$$

Passons à la première fraction. On a : $\arctan(x) = x + o(x)$, et : $e^x = 1 + x + o(x)$. Par conséquent :

$$\frac{\ln\left(\arctan\left(3\,x\right)\right)}{\ln\left(e^{(3\,x)}-1\right)} = \frac{\ln(3\,x+\mathop{o}\limits_{x\to 0}(x)}{\ln(3\,x+\mathop{o}\limits_{x\to 0}(x))} = \frac{\ln((3\,x)(1+\mathop{o}\limits_{x\to 0}(1)))}{\ln((3\,x)(1+\mathop{o}\limits_{x\to 0}(1)))} = \frac{\ln(3)+\ln\left(x\right)+\ln\left(1+\mathop{o}\limits_{x\to 0}(1)\right)}{\ln(3)+\ln\left(x\right)+\ln\left(1+\mathop{o}\limits_{x\to 0}(1)\right)} \underset{x\to 0}{\sim} \frac{\ln\left(x\right)}{\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(3) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(3)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut :

$$f(x) \underset{x \to 0}{\sim} \frac{\ln(x)}{\ln(x)} \times \frac{3}{2} = \frac{3}{2},$$

et en outre : $\lim_{x \to 0^+} f(x) = \frac{3}{2}$.

Corrigé 23. Commençons par la deuxième fraction. On a $\sin(2\,x)+1 \underset{x\to 0}{\longrightarrow} 1$ et $\ln(3\,x+1)+1 \underset{x\to 0}{\longrightarrow} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u\to 1}{\sim} u-1$, on a : $\ln(\sin(2\,x)+1) \underset{x\to 0}{\sim} \sin(2\,x)$, et : $\ln(\ln(3\,x+1)+1) \underset{x\to 0}{\sim}$

 $\ln{(3\,x+1)}$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\sin{(u)} \sim u$ et $\ln{(u+1)} \sim u$, où l'on prend respectivement $u=2\,x$ et $u=3\,x$, impliquent:

$$\frac{\ln{(\sin{(2\,x)}+1)}}{\ln{(\ln{(3\,x+1)}+1)}} \mathop{\sim}_{x\to 0} \frac{\sin{(2\,x)}}{\ln{(3\,x+1)}} \mathop{\sim}_{x\to 0} \frac{2\,x}{3\,x} \mathop{\sim}_{x\to 0} \frac{2}{3}.$$

Passons à la première fraction. On a : $\ln(x+1) = x + o(x)$, et : $e^x = 1 + x + o(x)$. Par conséquent :

$$\frac{\ln\left(\ln\left(2\,x+1\right)\right)}{\ln\left(e^{(2\,x)}-1\right)} = \frac{\ln(2\,x+o_{x\to 0}(x)}{\ln(2\,x+o_{x\to 0}(x))} = \frac{\ln((2\,x)(1+o_{x\to 0}(1)))}{\ln((2\,x)(1+o_{x\to 0}(1)))} = \frac{\ln(2)+\ln\left(x\right)+\ln\left(1+o_{x\to 0}(1)\right)}{\ln(2)+\ln\left(x\right)+\ln\left(1+o_{x\to 0}(1)\right)} \underset{x\to 0}{\sim} \frac{\ln\left(x\right)}{\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(2) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(2)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut :

$$f(x) \underset{x\to 0}{\sim} \frac{\ln(x)}{\ln(x)} \times \frac{2}{3} = \frac{2}{3},$$

et en outre: $\lim_{x \to 0^+} f(x) = \frac{2}{3}$.

Corrigé 24. Commençons par la deuxième fraction. On a $\sin(3x)+1 \underset{x\to 0}{\longrightarrow} 1$ et $\sinh(3x)+1 \underset{x\to 0}{\longrightarrow} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u\to 1}{\sim} u-1$, on a : $\ln(\sin(3x)+1) \underset{x\to 0}{\sim} \sin(3x)$, et : $\ln(\sinh(3x)+1) \underset{x\to 0}{\sim} \sinh(3x)$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\sin(u) \underset{u\to 0}{\sim} u$ et $\sinh(u) \underset{u\to 0}{\sim} u$, où l'on prend u=3x, impliquent :

$$\frac{\ln(\sin(3x) + 1)}{\ln(\sinh(3x) + 1)} \sim \frac{\sin(3x)}{\sinh(3x)} \sim \frac{3x}{x \to 0} \sim 1.$$

Passons à la première fraction. On a : $\sin(x) = x + o(x)$, et : $\ln(x+1) = x + o(x)$. Par conséquent :

$$\frac{\ln{(\sin{(4\,x)})}}{\ln{(\ln{(4\,x+1)})}} = \frac{\ln{(4\,x+o_{x\to 0}(x)}}{\ln{(4\,x+o_{x\to 0}(x))}} = \frac{\ln{((4\,x)(1+o_{x\to 0}(1)))}}{\ln{((4\,x)(1+o_{x\to 0}(1)))}} = \frac{\ln{(4)} + \ln{(x)} + \ln{(1+o_{x\to 0}(1))}}{\ln{(4)} + \ln{(x)} + \ln{(1+o_{x\to 0}(1))}} \underset{x\to 0}{\sim} \frac{\ln{(x)} + \ln{(x)}}{\ln{(x)}} = \frac{\ln{(x)} + \ln{(x)}}{\ln{(x)} + \ln{(x)}} = \frac{\ln{(x)} + \ln{(x)}}{\ln{(x)} + \ln{(x)}} = \frac{\ln{(x)} + \ln{(x)}}{\ln{(x)}} = \frac{\ln{(x)}}{\ln{(x)}} = \frac{\ln{(x)} + \ln{(x)}}{\ln{(x)}} = \frac{\ln{(x)}}{\ln{(x)}} = \frac{\ln{(x)} + \ln{(x)}}{\ln{(x)}} = \frac{\ln{(x)} + \ln{(x)}}{\ln{(x)}} = \frac{\ln{(x)}}{\ln{(x)}} = \frac{\ln{(x)}}{\ln{(x)}$$

le dernier équivalent venant du fait que $\ln(4) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(4)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x \to 0}{\sim} \frac{\ln(x)}{\ln(x)} \times 1 = 1,$$

et en outre: $\lim_{x\to 0^+} f(x) = 1$.

Corrigé 25. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

$$\frac{x^3 - 3x^2 + x + 1}{4x + 1} \underset{x \to +\infty}{\sim} \frac{x^3}{4x} \underset{x \to +\infty}{\sim} \frac{1}{4}x^2 \underset{x \to +\infty}{\longrightarrow} +\infty, \quad \frac{-x^2 - 5x + 51}{7x^2 + 3x} \underset{x \to +\infty}{\sim} \frac{-x^2}{7x^2} \underset{x \to +\infty}{\sim} -\frac{1}{7}.$$

 \leftarrow page 3

Par composition de limites: $\lim_{x\to +\infty}\arctan\left(\frac{x^3-3\,x^2+x+1}{4\,x+1}\right) = \frac{1}{2}\,\pi \quad \neq \quad 0, \quad \text{et donc:}$ $\arctan\left(\frac{x^3-3\,x^2+x+1}{4\,x+1}\right) \underset{x\to +\infty}{\sim} \frac{1}{2}\,\pi. \text{ On a donc:}$

$$f(x) \underset{x \to +\infty}{\sim} \frac{1}{2} \pi \times \left(-\frac{1}{7}\right) \underset{x \to +\infty}{\sim} -\frac{1}{14} \pi.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{x^3 - 3\,x^2 + x + 1}{4\,x + 1} \underset{x \to 0^+}{\sim} \frac{1}{1} \underset{x \to 0^+}{\sim} 1 \underset{x \to 0}{\longrightarrow} 1, \quad \frac{-x^2 - 5\,x + 51}{7\,x^2 + 3\,x} \underset{x \to 0}{\sim} \frac{51}{3\,x} \underset{x \to 0}{\sim} \frac{17}{x}.$$

Par composition de limites: $\lim_{x\to 0^+} \arctan\left(\frac{x^3-3\,x^2+x+1}{4\,x+1}\right) = \arctan\left(1\right) = \frac{1}{4}\,\pi \neq 0$, et donc:

$$\arctan\left(\frac{x^3 - 3x^2 + x + 1}{4x + 1}\right) \underset{x \to 0^+}{\sim} \frac{1}{4}\pi.$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} \frac{17 \pi}{4 x}$$
, et: $f(x) \underset{x \to +\infty}{\sim} -\frac{1}{14} \pi$.

Corrigé 26. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire : u(x) = constant c

$$1 \ll e^x \ln(x+1) \ll e^{(2x)} \ll e^{(3x)} \ln(x+1)$$
,

et:

$$xe^{(-x)}\ln(x)^3 \ll x\ln(x)^4 \ll x^2\ln(x)^3$$

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$15 e^{(3x)} \ln(x+1) - 13 e^{x} \ln(x+1) + e^{(2x)} - 1 \underset{x \to +\infty}{\sim} 15 e^{(3x)} \ln(x+1).$$

De même: $-x^2 \ln(x)^3 + xe^{(-x)} \ln(x)^3 + x \ln(x)^4 \underset{x \to +\infty}{\sim} -x^2 \ln(x)^3$.

De plus, on a $\ln(x+1) \underset{x \to +\infty}{\sim} \ln(x)$ (en effet: $\frac{\ln(x+1)}{\ln(x)} = \frac{\ln(x) + \ln\left(1 + \frac{1}{x}\right)}{\ln(x)} = 1 + \frac{\ln\left(1 + \frac{1}{x}\right)}{\ln(x)} \xrightarrow[x \to +\infty]{} 1$ car $\ln\left(1 + \frac{1}{x}\right) \underset{x \to +\infty}{\longrightarrow} 0$ et $\ln(x) \underset{x \to +\infty}{\longrightarrow} +\infty$), ce qui simplifie le premier équivalent. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{15 e^{(3 x)} \ln(x)}{-x^2 \ln(x)^3} \underset{x \to +\infty}{\sim} -\frac{15 e^{(3 x)}}{x^2 \ln(x)^2}.$$

Corrigé 27. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire : u(x) = 0 o u(x) =

$$\ln(x+1)^4 \ll x^5 \ll e^x \ll e^x \ln(x+1)^3$$
,

et:

$$e^{(-5x)} \ll e^{(-2x)} \ln(x) \ll x^3 e^{(-2x)} \ln(x) \ll e^{(-x)} \ln(x)$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$13x^5 - 2e^x \ln(x+1)^3 + 4\ln(x+1)^4 - 95e^x \sim_{x \to +\infty} -2e^x \ln(x+1)^3.$$

De même: $-6x^3e^{(-2x)}\ln(x) + 3e^{(-x)}\ln(x) + e^{(-2x)}\ln(x) - 2e^{(-5x)} \underset{x \to +\infty}{\sim} 3e^{(-x)}\ln(x)$.

De plus, on a $\ln(x+1) \underset{x \to +\infty}{\sim} \ln(x)$ (en effet: $\frac{\ln(x+1)}{\ln(x)} = \frac{\ln(x) + \ln\left(1 + \frac{1}{x}\right)}{\ln(x)} = 1 + \frac{\ln\left(1 + \frac{1}{x}\right)}{\ln(x)} \xrightarrow[x \to +\infty]{} 1$ car $\ln\left(1 + \frac{1}{x}\right) \underset{x \to +\infty}{\longrightarrow} 0$ et $\ln(x) \underset{x \to +\infty}{\longrightarrow} +\infty$), ce qui simplifie le premier équivalent. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{-2 e^x \ln(x)^3}{3 e^{(-x)} \ln(x)} \underset{x \to +\infty}{\sim} -\frac{2}{3} e^{(2 x)} \ln(x)^2$$
.

Corrigé 28. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 3

$$\frac{-4\,x^4-x^3-3\,x^2+1}{-x^4+2\,x^3+x^2-x-32} \underset{x \to +\infty}{\sim} \frac{-4\,x^4}{-x^4} \underset{x \to +\infty}{\sim} 4 \underset{x \to +\infty}{\longrightarrow} 4, \quad \frac{-2\,x^3-x^2-1}{-11\,x^3-x^2+x+1} \underset{x \to +\infty}{\sim} \frac{-2\,x^3}{-11\,x^3} \underset{x \to +\infty}{\sim} \frac{2}{-11}.$$

Par composition de limites: $\lim_{x \to +\infty} \sin \left(\frac{-4x^4 - x^3 - 3x^2 + 1}{-x^4 + 2x^3 + x^2 - x - 32} \right) = \sin(4) \neq 0$, et donc: $\sin \left(\frac{-4x^4 - x^3 - 3x^2 + 1}{-x^4 + 2x^3 + x^2 - x - 32} \right) \underset{x \to +\infty}{\sim} \sin(4)$. On a donc:

$$f(x) \underset{x \to +\infty}{\sim} \sin(4) \times \left(\frac{2}{11}\right) \underset{x \to +\infty}{\sim} \frac{2}{11} \sin(4)$$
.

Ensuite, au voisinage de 0, on raisonne de même, et on trouve :

$$\frac{-4\,x^4-x^3-3\,x^2+1}{-x^4+2\,x^3+x^2-x-32} \underset{x\to 0^+}{\sim} \frac{1}{-32} \underset{x\to 0^+}{\sim} -\frac{1}{32} \underset{x\to 0}{\longrightarrow} -\frac{1}{32}, \quad \frac{-2\,x^3-x^2-1}{-11\,x^3-x^2+x+1} \underset{x\to 0}{\sim} \frac{-1}{1} \underset{x\to 0}{\sim} -1.$$

Par composition de limites : $\lim_{x\to 0^+} \sin\left(\frac{-4\,x^4-x^3-3\,x^2+1}{-x^4+2\,x^3+x^2-x-32}\right) = -\sin\left(\frac{1}{32}\right) \neq 0$, et donc :

$$\sin\left(\frac{-4\,x^4-x^3-3\,x^2+1}{-x^4+2\,x^3+x^2-x-32}\right) \underset{x\to 0^+}{\sim} -\sin\left(\frac{1}{32}\right).$$

On conclut:

$$f(x) \underset{x \to 0^{+}}{\sim} \sin\left(\frac{1}{32}\right), \text{ et}: f(x) \underset{x \to +\infty}{\sim} \frac{2}{11} \sin(4).$$

Corrigé 29. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 4

$$\frac{-x^2-2\,x+48}{13\,x^2+10\,x} \underset{x\to +\infty}{\sim} \frac{-x^2}{13\,x^2} \underset{x\to +\infty}{\sim} -\frac{1}{13} \underset{x\to +\infty}{\longrightarrow} -\frac{1}{13}, \quad \frac{-2\,x^3+x^2+x+1}{-x^4-x^3-x} \underset{x\to +\infty}{\sim} \frac{-2\,x^3}{-x^4} \underset{x\to +\infty}{\sim} \frac{2}{-x^4}$$

Par composition de limites: $\lim_{x\to +\infty} \arctan\left(\frac{-x^2-2\,x+48}{13\,x^2+10\,x}\right) = -\arctan\left(\frac{1}{13}\right) \neq 0$, et donc: $\arctan\left(\frac{-x^2-2\,x+48}{13\,x^2+10\,x}\right) \underset{x\to +\infty}{\sim} -\arctan\left(\frac{1}{13}\right)$. On a donc:

$$f(x) \underset{x \to +\infty}{\sim} -\arctan\left(\frac{1}{13}\right) \times \left(\frac{2}{x}\right) \underset{x \to +\infty}{\sim} -\frac{2\arctan\left(\frac{1}{13}\right)}{x}.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve :

$$\frac{-x^2 - 2x + 48}{13x^2 + 10x} \underset{x \to 0^+}{\sim} \frac{48}{10x} \underset{x \to 0^+}{\sim} \frac{24}{5x} \underset{x \to 0}{\longrightarrow} +\infty, \quad \frac{-2x^3 + x^2 + x + 1}{-x^4 - x^3 - x} \underset{x \to 0}{\sim} \frac{1}{-x} \underset{x \to 0}{\sim} -\frac{1}{x}.$$

Par composition de limites: $\lim_{x \to 0^+} \arctan \left(\frac{-x^2 - 2x + 48}{13x^2 + 10x} \right) = \frac{1}{2}\pi \neq 0$, et donc: $\arctan \left(\frac{-x^2 - 2x + 48}{13x^2 + 10x} \right) \underset{x \to 0^+}{\sim} \frac{1}{2}\pi$.

$$f(x) \underset{x \to 0^+}{\sim} -\frac{\pi}{2x}$$
, et: $f(x) \underset{x \to +\infty}{\sim} -\frac{2 \arctan\left(\frac{1}{13}\right)}{x}$.

Corrigé 30. Commençons par la deuxième fraction. On a $\ln(2\,x+1)+1 \xrightarrow[x\to 0]{} 1$ et $\sinh(x)+1 \xrightarrow[x\to 0]{} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u\to 1}{\sim} u-1$, on a: $\ln(\ln(2\,x+1)+1) \underset{x\to 0}{\sim} \ln(2\,x+1)$, et : $\ln(\sinh(x)+1) \underset{x\to 0}{\sim} \sinh(x)$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\ln(u+1) \underset{u\to 0}{\sim} u$ et $\sinh(u) \underset{u\to 0}{\sim} u$, où l'on prend $u=2\,x$ dans le premier développement limité, impliquent :

$$\frac{\ln\left(\ln\left(2\,x+1\right)+1\right)}{\ln\left(\sinh\left(x\right)+1\right)} \underset{x\to 0}{\sim} \frac{\ln\left(2\,x+1\right)}{\sinh\left(x\right)} \underset{x\to 0}{\sim} \frac{2\,x}{x} \underset{x\to 0}{\sim} 2.$$

Passons à la première fraction. On a : $\ln(x+1) = x + o(x)$, et : $e^x = 1 + x + o(x)$. Par conséquent :

$$\frac{\ln\left(\ln\left(3\,x+1\right)\right)}{\ln\left(e^{(4\,x)}-1\right)} = \frac{\ln(3\,x+o_{x\to 0}(x))}{\ln(4\,x+o_{x\to 0}(x))} = \frac{\ln((3\,x)(1+o_{x\to 0}(1)))}{\ln((4\,x)(1+o_{x\to 0}(1)))} = \frac{\ln(3)+\ln\left(x\right)+\ln(1+o_{x\to 0}(1))}{\ln(4)+\ln\left(x\right)+\ln(1+o_{x\to 0}(1))} \underset{x\to 0}{\sim} \frac{\ln\left(x\right)}{\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(3) + \ln(1 + o_{x\to 0}(1)) \xrightarrow[x\to 0]{} \ln(3)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x \to 0}{\sim} \frac{\ln(x)}{\ln(x)} \times 2 = 2,$$

et en outre: $\lim_{x\to 0^+} f(x) = 2$.

Corrigé 31. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 4

$$\frac{2\,x^4 - 3\,x^2 + x}{x^4 + x^3 - x^2 + x - 1} \mathop{\sim}_{x \to +\infty} \frac{2\,x^4}{x^4} \mathop{\sim}_{x \to +\infty} 2 \mathop{\longrightarrow}_{x \to +\infty} 2, \quad \frac{-5\,x^3 + 2\,x^2 - 2}{-2\,x^4 + x^3 + 8\,x + 2} \mathop{\sim}_{x \to +\infty} \frac{-5\,x^3}{-2\,x^4} \mathop{\sim}_{x \to +\infty} \frac{5}{2\,x^4} \mathop{\sim}_{x \to +$$

Par composition de limites : $\lim_{x\to +\infty} \arctan\left(\frac{2\,x^4-3\,x^2+x}{x^4+x^3-x^2+x-1}\right) = \arctan(2) \neq 0$, et donc : $\arctan\left(\frac{2\,x^4-3\,x^2+x}{x^4+x^3-x^2+x-1}\right) \underset{x\to +\infty}{\sim} \arctan(2)$. On a donc :

$$f(x) \underset{x \to +\infty}{\sim} \arctan(2) \times \left(\frac{5}{2x}\right) \underset{x \to +\infty}{\sim} \frac{5 \arctan(2)}{2x}.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{2x^4 - 3x^2 + x}{x^4 + x^3 - x^2 + x - 1} \underset{x \to 0^+}{\sim} \frac{x}{-1} \underset{x \to 0^+}{\sim} -x \underset{x \to 0}{\longrightarrow} 0, \quad \frac{-5x^3 + 2x^2 - 2}{-2x^4 + x^3 + 8x + 2} \underset{x \to 0}{\sim} \frac{-2}{2} \underset{x \to 0}{\sim} -1.$$

Le fait que la première fraction rationnelle tende vers 0 autorise à écrire, en vertu de l'équivalent $\arctan\left(u\right) \underset{u \to 0}{\sim} u$:

$$\arctan\left(\frac{2\,x^4-3\,x^2+x}{x^4+x^3-x^2+x-1}\right) \underset{x\to 0^+}{\sim} \frac{2\,x^4-3\,x^2+x}{x^4+x^3-x^2+x-1} \underset{x\to 0^+}{\sim} -x.$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} x$$
, et: $f(x) \underset{x \to +\infty}{\sim} \frac{5 \arctan(2)}{2 x}$.

Corrigé 32. Commençons par la deuxième fraction. On a $\ln(2x+1)+1 \underset{x\to 0}{\longrightarrow} 1$ et $\cos(x) \underset{x\to 0}{\longrightarrow} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u\to 1}{\sim} u-1$, on a : $\ln(\ln(2x+1)+1) \underset{x\to 0}{\sim} \ln(2x+1)$, et : $\ln(\cos(x)) \underset{x\to 0}{\sim} \cos(x)-1$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\ln(u+1) \underset{u\to 0}{\sim} u$ et $\cos(u)-1 \underset{u\to 0}{\sim} -\frac{1}{2}u^2$, où l'on prend u=2x dans le premier développement limité, impliquent :

$$\frac{\ln\left(\ln\left(2\,x+1\right)+1\right)}{\ln\left(\cos\left(x\right)\right)} \underset{x\to 0}{\sim} \frac{\ln\left(2\,x+1\right)}{\cos\left(x\right)-1} \underset{x\to 0}{\sim} \frac{2\,x}{-\frac{1}{2}\,x^2} \underset{x\to 0}{\sim} -\frac{4}{x}.$$

Passons à la première fraction. On a: $\arctan(x) = x + \underset{x \to 0}{o}(x)$, et: $\cosh(x) = 1 + \frac{1}{2}x^2 + \underset{x \to 0}{o}(x^2)$. Par conséquent:

$$\frac{\ln\left(\arctan\left(4\,x\right)\right)}{\ln\left(\cosh\left(4\,x\right)-1\right)} = \frac{\ln(4\,x + \mathop{o}\limits_{x \to 0}(x)}{\ln(8\,x^2 + \mathop{o}\limits_{x \to 0}(x^2))} = \frac{\ln((4\,x)(1 + \mathop{o}\limits_{x \to 0}(1)))}{\ln((8\,x^2)(1 + \mathop{o}\limits_{x \to 0}(1)))} = \frac{\ln(4) + \ln\left(x\right) + \ln(1 + \mathop{o}\limits_{x \to 0}(1)\right)}{\ln(8) + 2\ln\left(x\right) + \ln(1 + \mathop{o}\limits_{x \to 0}(1)\right)} \underset{\sim}{\sim} \frac{\ln\left(x\right)}{2\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(4) + \ln(1 + o_{x\to 0}(1)) \xrightarrow[x\to 0]{} \ln(4)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x \to 0}{\sim} \frac{\ln(x)}{2 \ln(x)} \times \left(-\frac{4}{x}\right) = -\frac{2}{x},$$

et en outre: $\lim_{x\to 0^+} f(x) = -\infty$.

Corrigé 33. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire : u(x) = o(v(x)). Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes :

$$x^5 \ll e^x \ln(x+1)^2 \ll x^2 e^x \ln(x+1)^2 \ll x^4 e^x \ll x e^{(3x)},$$

et:

$$e^{(-2x)} \ln(x)^4 \ll x^3 e^{(-2x)} \ll x e^{(-x)} \ll 1 \ll x^5 \ln(x)$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$-x^5 - x^4 e^x + x^2 e^x \ln(x+1)^2 - 11 e^x \ln(x+1)^2 - x e^{(3x)} \underset{x \to +\infty}{\sim} -x e^{(3x)}.$$

De même: $x^5 \ln(x) + e^{(-2x)} \ln(x)^4 - 3x^3 e^{(-2x)} + 12xe^{(-x)} - 6 \underset{x \to +\infty}{\sim} x^5 \ln(x)$. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{-xe^{(3\,x)}}{x^5 \ln{(x)}} \underset{x \to +\infty}{\sim} -\frac{e^{(3\,x)}}{x^4 \ln{(x)}}.$$

Corrigé 34. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire: u(x) = constant constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépond

$$xe^{x}\ln(x+1)^{4} \ll x^{4}e^{x}\ln(x+1) \ll x^{3}e^{(2x)}\ln(x+1) \ll x^{4}e^{(2x)} \ll xe^{(5x)}$$

et:

$$x^{3}e^{(-x)}\ln(x)^{2} \ll x \ll x\ln(x)^{3} \ll x^{2}\ln(x)^{4} \ll x^{5}$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$-x^4 e^x \ln(x+1) - 2x e^x \ln(x+1)^4 - x^4 e^{(2x)} + 13x^3 e^{(2x)} \ln(x+1) - 10x e^{(5x)} \underset{x \to +\infty}{\sim} -10x e^{(5x)}.$$

De même: $9x^3e^{(-x)}\ln(x)^2 + x^2\ln(x)^4 + 2x^5 - 4x\ln(x)^3 + 2x \sim 2x^5$. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{-10 \, x e^{(5 \, x)}}{2 \, x^5} \underset{x \to +\infty}{\sim} -\frac{5 \, e^{(5 \, x)}}{x^4}.$$

Corrigé 35. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 4

$$\frac{-x^2-x-1}{7\,x^3-1} \underset{x\to +\infty}{\sim} \frac{-x^2}{7\,x^3} \underset{x\to +\infty}{\sim} -\frac{1}{7\,x} \underset{x\to +\infty}{\longrightarrow} 0, \quad \frac{-x^3+9\,x^2+3\,x-1}{x^2+3\,x-2} \underset{x\to +\infty}{\sim} \frac{-x^3}{x^2} \underset{x\to +\infty}{\sim} -x.$$

Le fait que la première fraction rationnelle tende vers 0 autorise à écrire, en vertu de l'équivalent $\arctan\left(u\right) \underset{u \to 0}{\sim} u$: $\arctan\left(\frac{-x^2-x-1}{7\,x^3-1}\right) \underset{x \to +\infty}{\sim} \frac{-x^2-x-1}{7\,x^3-1} \underset{x \to +\infty}{\sim} -\frac{1}{7\,x}$. On a donc :

$$f(x) \underset{x \to +\infty}{\sim} -\frac{1}{7x} \times (-x) \underset{x \to +\infty}{\sim} \frac{1}{7}.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{-x^2 - x - 1}{7 x^3 - 1} \underset{x \to 0^+}{\sim} \frac{-1}{-1} \underset{x \to 0^+}{\sim} 1 \underset{x \to 0}{\longrightarrow} 1, \quad \frac{-x^3 + 9 x^2 + 3 x - 1}{x^2 + 3 x - 2} \underset{x \to 0}{\sim} \frac{-1}{-2} \underset{x \to 0}{\sim} \frac{1}{2}.$$

Par composition de limites: $\lim_{x\to 0^+} \arctan\left(\frac{-x^2-x-1}{7\,x^3-1}\right) = \arctan\left(1\right) = \frac{1}{4}\,\pi \neq 0$, et donc:

$$\arctan\left(\frac{-x^2 - x - 1}{7x^3 - 1}\right) \underset{x \to 0^+}{\sim} \frac{1}{4}\pi.$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} \frac{1}{8} \pi$$
, et: $f(x) \underset{x \to +\infty}{\sim} \frac{1}{7}$.

Corrigé 36. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire : u(x) = 0 o v(x). Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes :

$$x \ln(x+1)^4 \ll x^2 \ln(x+1) \ll x^2 e^{(2x)} \ln(x+1)$$
,

et:

$$x^{2}e^{(-4x)} \ll e^{(-2x)}\ln(x)^{3} \ll xe^{(-2x)}\ln(x)^{3} \ll x^{3}\ln(x)^{3}$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle

dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit:

$$-x \ln(x+1)^4 + 2x^2 e^{(2x)} \ln(x+1) + 2x^2 \ln(x+1) \sim 2x^2 e^{(2x)} \ln(x+1)$$
.

De même: $-x^3 \ln(x)^3 - xe^{(-2x)} \ln(x)^3 + e^{(-2x)} \ln(x)^3 + x^2 e^{(-4x)} \sim -x^3 \ln(x)^3$.

De plus, on a $\ln(x+1) \underset{x \to +\infty}{\sim} \ln(x)$ (en effet: $\frac{\ln(x+1)}{\ln(x)} = \frac{\ln(x) + \ln\left(1 + \frac{1}{x}\right)}{\ln(x)} = 1 + \frac{\ln\left(1 + \frac{1}{x}\right)}{\ln(x)} \xrightarrow[x \to +\infty]{} 1$ car $\ln\left(1 + \frac{1}{x}\right) \underset{x \to +\infty}{\longrightarrow} 0$ et $\ln(x) \underset{x \to +\infty}{\longrightarrow} +\infty$), ce qui simplifie le premier équivalent. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{2 x^2 e^{(2 x)} \ln(x)}{-x^3 \ln(x)^3} \underset{x \to +\infty}{\sim} -\frac{2 e^{(2 x)}}{x \ln(x)^2}.$$

Corrigé 37. Commençons par la deuxième fraction. On a $\sin(3x)+1 \underset{x\to 0}{\longrightarrow} 1$ et $\sinh(3x)+1 \underset{x\to 0}{\longrightarrow} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u\to 1}{\sim} u-1$, on a : $\ln(\sin(3x)+1) \underset{x\to 0}{\sim} \sin(3x)$, et : $\ln(\sinh(3x)+1) \underset{x\to 0}{\sim} \sinh(3x)$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\sin(u) \underset{u\to 0}{\sim} u$ et $\sinh(u) \underset{u\to 0}{\sim} u$, où l'on prend u=3x, impliquent :

$$\frac{\ln\left(\sin\left(3\,x\right)+1\right)}{\ln\left(\sinh\left(3\,x\right)+1\right)} \underset{x\to 0}{\sim} \frac{\sin\left(3\,x\right)}{\sinh\left(3\,x\right)} \underset{x\to 0}{\sim} \frac{3\,x}{3\,x} \underset{x\to 0}{\sim} 1.$$

Passons à la première fraction. On a : $\sinh(x) = x + o(x)$, et : $\arctan(x) = x + o(x)$. Par conséquent :

$$\frac{\ln\left(\sinh\left(2\,x\right)\right)}{\ln\left(\arctan\left(3\,x\right)\right)} = \frac{\ln(2\,x + \mathop{o}\limits_{x \to 0}(x)}{\ln(3\,x + \mathop{o}\limits_{x \to 0}(x))} = \frac{\ln((2\,x)(1 + \mathop{o}\limits_{x \to 0}(1)))}{\ln((3\,x)(1 + \mathop{o}\limits_{x \to 0}(1)))} = \frac{\ln(2) + \ln\left(x\right) + \ln\left(1 + \mathop{o}\limits_{x \to 0}(1)\right)}{\ln(3) + \ln\left(x\right) + \ln\left(1 + \mathop{o}\limits_{x \to 0}(1)\right)} \underset{x \to 0}{\sim} \frac{\ln\left(x\right)}{\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(2) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(2)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x \to 0}{\sim} \frac{\ln(x)}{\ln(x)} \times 1 = 1,$$

et en outre: $\lim_{x\to 0^+} f(x) = 1$.

Corrigé 38. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

$$\leftarrow$$
 page 5

$$\frac{-2x+1}{x-4} \underset{x \to +\infty}{\sim} \frac{-2x}{x} \underset{x \to +\infty}{\sim} -2 \underset{x \to +\infty}{\longrightarrow} -2, \quad \frac{x^2-3x-1}{x-1} \underset{x \to +\infty}{\sim} \frac{x^2}{x} \underset{x \to +\infty}{\sim} x.$$

Par composition de limites: $\lim_{x\to +\infty} \sin\left(\frac{-2\,x+1}{x-4}\right) = -\sin\left(2\right) \neq 0$, et donc: $\sin\left(\frac{-2\,x+1}{x-4}\right) \underset{x\to +\infty}{\sim} -\sin\left(2\right)$. On a donc:

$$f(x) \underset{x \to +\infty}{\sim} -\sin(2) \times (x) \underset{x \to +\infty}{\sim} -x\sin(2)$$
.

Ensuite, au voisinage de 0, on raisonne de même, et on trouve :

$$\frac{-2\,x+1}{x-4} \underset{x\to 0^+}{\sim} \frac{1}{-4} \underset{x\to 0^+}{\sim} -\frac{1}{4} \underset{x\to 0}{\longrightarrow} -\frac{1}{4}, \quad \frac{x^2-3\,x-1}{x-1} \underset{x\to 0}{\sim} \frac{-1}{-1} \underset{x\to 0}{\sim} 1.$$

Par composition de limites: $\lim_{x\to 0^+} \sin\left(\frac{-2\,x+1}{x-4}\right) = -\sin\left(\frac{1}{4}\right) \neq 0$, et donc:

$$\sin\left(\frac{-2\,x+1}{x-4}\right) \underset{x\to 0^+}{\sim} -\sin\left(\frac{1}{4}\right).$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} -\sin\left(\frac{1}{4}\right)$$
, et: $f(x) \underset{x \to +\infty}{\sim} -x\sin\left(2\right)$.

Corrigé 39. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire: u(x) = $o_{x\to +\infty}(v(x))$. Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes:

$$\ln(x+1)^5 \ll x^6 \ll xe^{(2x)} \ln(x+1)^2 \ll x^2 e^{(2x)} \ll e^{(5x)} \ln(x+1),$$

et:

$$e^{(-3x)} \ln(x)^2 \ll x e^{(-x)} \ln(x)^2 \ll x^3 \ln(x)^2$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$4x^{6} + \ln(x+1)^{5} + xe^{(2x)}\ln(x+1)^{2} + x^{2}e^{(2x)} - e^{(5x)}\ln(x+1) \underset{x \to +\infty}{\sim} -e^{(5x)}\ln(x+1)$$
.

De même: $-x^3 \ln(x)^2 - 7xe^{(-x)} \ln(x)^2 + e^{(-3x)} \ln(x)^2 \sim -x^3 \ln(x)^2$. De plus, on a $\ln(x+1) \sim \ln(x)$ (en effet: $\frac{\ln(x+1)}{\ln(x)} = \frac{\ln(x) + \ln(1 + \frac{1}{x})}{\ln(x)} = 1 + \frac{\ln(1 + \frac{1}{x})}{\ln(x)} \rightarrow 1$ car $\ln\left(1+\frac{1}{x}\right) \xrightarrow[x\to+\infty]{} 0$ et $\ln(x) \xrightarrow[x\to+\infty]{} +\infty$), ce qui simplifie le premier équivalent. On conclut :

$$g(x) \underset{x \to +\infty}{\sim} \frac{-e^{(5 x)} \ln(x)}{-x^3 \ln(x)^2} \underset{x \to +\infty}{\sim} \frac{e^{(5 x)}}{x^3 \ln(x)}.$$

Corrigé 40. Commençons par la deuxième fraction. On a $\ln(x+1)+1 \xrightarrow[x\to 0]{} 1$ et $\cos(x) \xrightarrow[x\to 0]{} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u\to 1}{\sim} u-1$, on a : $\ln(\ln(x+1)+1) \underset{x\to 0}{\sim} \ln(x+1)$, et : $\ln(\cos(x)) \underset{x\to 0}{\sim} \cos(x)-1$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\ln(u+1) \sim u \cot(u) - 1 \sim -\frac{1}{2} u^2$, impliquent:

$$\frac{\ln\left(\ln\left(x+1\right)+1\right)}{\ln\left(\cos\left(x\right)\right)} \underset{x\to 0}{\sim} \frac{\ln\left(x+1\right)}{\cos\left(x\right)-1} \underset{x\to 0}{\sim} \frac{x}{-\frac{1}{2}\,x^2} \underset{x\to 0}{\sim} -\frac{2}{x}.$$

Passons à la première fraction. On a : $\ln(x+1) = x + o(x)$, et : $e^x = 1 + x + o(x)$. Par conséquent :

$$\frac{\ln\left(\ln\left(3\,x+1\right)\right)}{\ln\left(e^{(3\,x)}-1\right)} = \frac{\ln(3\,x+\mathop{o}_{x\to 0}(x)}{\ln(3\,x+\mathop{o}_{x\to 0}(x))} = \frac{\ln((3\,x)(1+\mathop{o}_{x\to 0}(1)))}{\ln((3\,x)(1+\mathop{o}_{x\to 0}(1)))} = \frac{\ln(3)+\ln\left(x\right)+\ln(1+\mathop{o}_{x\to 0}(1)\right)}{\ln(3)+\ln\left(x\right)+\ln(1+\mathop{o}_{x\to 0}(1)\right)} \underset{x\to 0}{\sim} \frac{\ln\left(x\right)}{\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(3) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(3)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut :

$$f(x) \underset{x \to 0}{\sim} \frac{\ln(x)}{\ln(x)} \times \left(-\frac{2}{x}\right) = -\frac{2}{x},$$

et en outre: $\lim_{x\to 0^+} f(x) = -\infty$.

Corrigé 41. Commençons par la deuxième fraction. On a $\ln(3x+1) + 1 \xrightarrow[x \to 0]{} 1$ et $\sin(x) + 1 \xrightarrow[x \to 0]{} 1$. \leftarrow page 5

Donc, en vertu de l'équivalent classique $\ln(u) \underset{u \to 1}{\sim} u - 1$, on a: $\ln(\ln(3x+1)+1) \underset{x \to 0}{\sim} \ln(3x+1)$, et: $\ln(\sin(x)+1) \underset{x \to 0}{\sim} \sin(x)$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\ln(u+1) \underset{u \to 0}{\sim} u$ et $\sin(u) \underset{u \to 0}{\sim} u$, où l'on prend u=3x dans le premier développement limité, impliquent:

$$\frac{\ln\left(\ln\left(3\,x+1\right)+1\right)}{\ln\left(\sin\left(x\right)+1\right)} \underset{x\to 0}{\sim} \frac{\ln\left(3\,x+1\right)}{\sin\left(x\right)} \underset{x\to 0}{\sim} \frac{3\,x}{x} \underset{x\to 0}{\sim} 3.$$

Passons à la première fraction. On a: $e^x = 1 + x + o(x)$, et: $\cosh(x) = 1 + \frac{1}{2}x^2 + o(x^2)$. Par conséquent:

$$\frac{\ln\left(e^{(3\,x)}-1\right)}{\ln\left(\cosh\left(4\,x\right)-1\right)} = \frac{\ln(3\,x+\mathop{o}\limits_{x\to 0}(x)}{\ln(8\,x^2+\mathop{o}\limits_{x\to 0}(x^2))} = \frac{\ln((3\,x)(1+\mathop{o}\limits_{x\to 0}(1)))}{\ln((8\,x^2)(1+\mathop{o}\limits_{x\to 0}(1)))} = \frac{\ln(3)+\ln\left(x\right)+\ln(1+\mathop{o}\limits_{x\to 0}(1)\right)}{\ln(8)+2\ln\left(x\right)+\ln(1+\mathop{o}\limits_{x\to 0}(1)\right)} \underset{x\to 0}{\sim} \frac{\ln\left(x\right)}{2\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(3) + \ln(1 + o_{x\to 0}(1)) \xrightarrow[x\to 0]{} \ln(3)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x \to 0}{\sim} \frac{\ln(x)}{2 \ln(x)} \times 3 = \frac{3}{2},$$

et en outre: $\lim_{x \to 0^+} f(x) = \frac{3}{2}$.

Corrigé 42. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 5

$$\underbrace{\frac{5\,x^3+3\,x^2-2\,x-2}{-2\,x^4+3\,x^3+x^2+1}}_{\sim} \underbrace{\sim}_{\sim} \underbrace{\frac{5\,x^3}{-2\,x^4}}_{x\rightarrow+\infty} - \underbrace{\frac{5}{2\,x}}_{x\rightarrow+\infty} - \underbrace{\frac{6\,x+1}{x^4+x^3+5\,x+1}}_{\sim} \underbrace{\sim}_{x\rightarrow+\infty} \underbrace{\frac{6\,x}{x^4}}_{x\rightarrow+\infty} \underbrace{\frac{6\,x}{x^4}}_{\sim} \underbrace{\sim}_{x\rightarrow+\infty} \underbrace{\frac{6\,x}{x^4+x^3+5\,x+1}}_{\sim} \underbrace{\sim}_{x\rightarrow+\infty} \underbrace{\sim}_{x\rightarrow+\infty}$$

Par composition de limites: $\lim_{x \to +\infty} \cos \left(\frac{5 x^3 + 3 x^2 - 2 x - 2}{-2 x^4 + 3 x^3 + x^2 + 1} \right) = \cos(0) = 1 \neq 0$, et donc: $\cos \left(\frac{5 x^3 + 3 x^2 - 2 x - 2}{-2 x^4 + 3 x^3 + x^2 + 1} \right) \approx 1$. On a donc:

$$f(x) \underset{x \to +\infty}{\sim} 1 \times \left(\frac{6}{x^3}\right) \underset{x \to +\infty}{\sim} \frac{6}{x^3}.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve :

$$\frac{5\,x^3+3\,x^2-2\,x-2}{-2\,x^4+3\,x^3+x^2+1} \underset{x\to 0^+}{\sim} \frac{-2}{1} \underset{x\to 0^+}{\sim} -2 \underset{x\to 0}{\longrightarrow} -2, \quad \frac{6\,x+1}{x^4+x^3+5\,x+1} \underset{x\to 0}{\sim} \frac{1}{1} \underset{x\to 0}{\sim} 1.$$

Par composition de limites: $\lim_{x\to 0^+} \cos\left(\frac{5\,x^3 + 3\,x^2 - 2\,x - 2}{-2\,x^4 + 3\,x^3 + x^2 + 1}\right) = \cos(2) \neq 0$, et donc:

$$\cos\left(\frac{5x^3 + 3x^2 - 2x - 2}{-2x^4 + 3x^3 + x^2 + 1}\right) \underset{x \to 0^+}{\sim} \cos(2).$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} \cos(2)$$
, et: $f(x) \underset{x \to +\infty}{\sim} \frac{6}{x^3}$.

Corrigé 43. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 $\leftarrow \text{page 5}$

$$\frac{-x^3 + x^2 - x - 1}{2 x^3 - x^2 - x} \mathop{\sim}_{x \to +\infty} \frac{-x^3}{2 x^3} \mathop{\sim}_{x \to +\infty} -\frac{1}{2}$$

Attention à ne pas penser que $\sin\left(\frac{-x^4-5\,x^3-x-1}{-2\,x^2-x+2}\right)_{x\to+\infty} \approx \sin\left(\frac{1}{2}\,x^2\right)$ sous prétexte que $\frac{-x^4-5\,x^3-x-1}{-2\,x^2-x+2} \approx \frac{1}{x^2}$. Nous savons que les équivalents se composent mal, l'exponentielle et le logarithme donnant des contre-exemples classiques. On ne peut pas simplifier cette quantité. On a donc:

$$f(x) \underset{x \to +\infty}{\sim} \sin \left(\frac{x^4 + 5x^3 + x + 1}{2x^2 + x - 2} \right) \times \left(-\frac{1}{2} \right) \underset{x \to +\infty}{\sim} -\frac{1}{2} \sin \left(\frac{x^4 + 5x^3 + x + 1}{2x^2 + x - 2} \right).$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{-x^4 - 5\,x^3 - x - 1}{-2\,x^2 - x + 2} \underset{x \to 0^+}{\sim} \frac{-1}{2} \underset{x \to 0^+}{\sim} -\frac{1}{2} \underset{x \to 0}{\longrightarrow} -\frac{1}{2}, \quad \frac{-x^3 + x^2 - x - 1}{2\,x^3 - x^2 - x} \underset{x \to 0}{\sim} \frac{-1}{-x} \underset{x \to 0}{\sim} \frac{1}{x}.$$

Par composition de limites: $\lim_{x\to 0^+} \sin\left(\frac{-x^4-5\,x^3-x-1}{-2\,x^2-x+2}\right) = -\sin\left(\frac{1}{2}\right) \neq 0$, et donc:

$$\sin\left(\frac{-x^4 - 5x^3 - x - 1}{-2x^2 - x + 2}\right) \underset{x \to 0^+}{\sim} -\sin\left(\frac{1}{2}\right).$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} -\frac{\sin\left(\frac{1}{2}\right)}{x}$$
, et: $f(x) \underset{x \to +\infty}{\sim} -\frac{1}{2} \sin\left(\frac{x^4 + 5x^3 + x + 1}{2x^2 + x - 2}\right)$.

Corrigé 44. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire : u(x) = 0 o v(x). Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes :

$$x^4 \ln(x+1)^2 \ll xe^x \ln(x+1) \ll xe^x \ln(x+1)^2 \ll e^{(2x)} \ln(x+1)^3 \ll x^3 e^{(2x)}$$

et:

$$e^{(-x)} \ln(x) \ll x^2 \ln(x)^3 \ll x^3 \ll x^3 \ln(x)^3$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$x^{4} \ln(x+1)^{2} + 11 x^{3} e^{(2x)} - xe^{x} \ln(x+1)^{2} + e^{(2x)} \ln(x+1)^{3} - 3 xe^{x} \ln(x+1) \underset{x \to +\infty}{\sim} 11 x^{3} e^{(2x)}$$
.

De même: $-x^3 \ln(x)^3 + 3x^2 \ln(x)^3 - 3x^3 - 11e^{(-x)} \ln(x) \underset{x \to +\infty}{\sim} -x^3 \ln(x)^3$. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{11 x^3 e^{(2x)}}{-x^3 \ln(x)^3} \underset{x \to +\infty}{\sim} -\frac{11 e^{(2x)}}{\ln(x)^3}.$$

Corrigé 45. Commençons par la deuxième fraction. On a $\ln(3\,x+1)+1 \xrightarrow[x\to 0]{} 1$ et $\cosh(2\,x) \xrightarrow[x\to 0]{} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u\to 1}{\sim} u-1$, on a: $\ln(\ln(3\,x+1)+1) \underset{x\to 0}{\sim} \ln(3\,x+1)$, et: $\ln(\cosh(2\,x)) \underset{x\to 0}{\sim} \cosh(2\,x)-1$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\ln(u+1) \underset{u\to 0}{\sim} u$ et $\cosh(u)-1 \underset{u\to 0}{\sim} \frac{1}{2}u^2$, où l'on prend respectivement $u=3\,x$ et $u=2\,x$, impliquent:

$$\frac{\ln\left(\ln\left(3\,x+1\right)+1\right)}{\ln\left(\cosh\left(2\,x\right)\right)} \underset{x\to 0}{\sim} \frac{\ln\left(3\,x+1\right)}{\cosh\left(2\,x\right)-1} \underset{x\to 0}{\sim} \frac{3\,x}{2\,x^2} \underset{x\to 0}{\sim} \frac{3}{2\,x}.$$

Passons à la première fraction. On a: $\sinh(x) = x + o(x)$, et: $\cosh(x) = 1 + \frac{1}{2}x^2 + o(x^2)$. Par conséquent:

$$\frac{\ln\left(\sinh\left(2\,x\right)\right)}{\ln\left(\cosh\left(3\,x\right)-1\right)} = \frac{\ln(2\,x+\mathop{o}\limits_{x\to 0}(x)}{\ln(\frac{9}{2}\,x^2+\mathop{o}\limits_{x\to 0}(x^2))} = \frac{\ln((2\,x)(1+\mathop{o}\limits_{x\to 0}(1)))}{\ln((\frac{9}{2}\,x^2)(1+\mathop{o}\limits_{x\to 0}(1)))} = \frac{\ln(2)+\ln\left(x\right)+\ln\left(1+\mathop{o}\limits_{x\to 0}(1)\right)}{\ln(\frac{9}{2})+2\ln\left(x\right)+\ln\left(1+\mathop{o}\limits_{x\to 0}(1)\right)} \underset{x\to 0}{\sim} \frac{\ln\left(x\right)}{2\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(2) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(2)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut :

$$f(x) \underset{x\to 0}{\sim} \frac{\ln(x)}{2 \ln(x)} \times \frac{3}{2 x} = \frac{3}{4 x},$$

et en outre: $\lim_{x\to 0^+} f(x) = +\infty$.

Corrigé 46. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 5

$$\frac{-x+6}{5x+1} \underset{x \to +\infty}{\sim} \frac{-x}{5x} \underset{x \to +\infty}{\sim} -\frac{1}{5} \underset{x \to +\infty}{\longrightarrow} -\frac{1}{5}, \quad \frac{-x}{-x^3-x^2+3x+2} \underset{x \to +\infty}{\sim} \frac{-x}{-x^3} \underset{x \to +\infty}{\sim} \frac{1}{x^2}.$$

Par composition de limites: $\lim_{x\to +\infty} \sin\left(\frac{-x+6}{5x+1}\right) = -\sin\left(\frac{1}{5}\right) \neq 0$, et donc: $\sin\left(\frac{-x+6}{5x+1}\right) \underset{x\to +\infty}{\sim} -\sin\left(\frac{1}{5}\right)$. On a donc:

$$f(x) \underset{x \to +\infty}{\sim} -\sin\left(\frac{1}{5}\right) \times \left(\frac{1}{x^2}\right) \underset{x \to +\infty}{\sim} -\frac{\sin\left(\frac{1}{5}\right)}{x^2}.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve :

$$\frac{-x+6}{5\,x+1} \underset{x\to 0^+}{\sim} \frac{6}{1} \underset{x\to 0^+}{\sim} 6 \underset{x\to 0}{\longrightarrow} 6, \quad \frac{-x}{-x^3-x^2+3\,x+2} \underset{x\to 0}{\sim} \frac{-x}{2} \underset{x\to 0}{\sim} -\frac{1}{2}\,x.$$

Par composition de limites : $\lim_{x\to 0^+} \sin\left(\frac{-x+6}{5x+1}\right) = \sin(6) \neq 0$, et donc :

$$\sin\left(\frac{-x+6}{5x+1}\right) \underset{x\to 0^{+}}{\sim} \sin\left(6\right).$$

On conclut:

$$f(x) \underset{x \to 0^{+}}{\sim} -\frac{1}{2} x \sin(6)$$
, et: $f(x) \underset{x \to +\infty}{\sim} -\frac{\sin(\frac{1}{5})}{x^{2}}$.

Corrigé 47. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$ et $x^{\beta} = \underset{x \to 0}{o} \left(x^{\alpha} \right)$ (les prépondérances entre puissances « s'inversent », selon qu'on regarde au voisinage de l'infini ou de zéro). De cela, on déduit facilement :

 \leftarrow page 6

$$\frac{x^3 + x}{x} \underset{x \to +\infty}{\sim} \frac{x^3}{x} \underset{x \to +\infty}{\sim} x^2.$$

Attention à ne pas penser que $\cos\left(\frac{3x^2-9x-11}{x}\right) \underset{x\to+\infty}{\sim} \cos(3x)$ sous prétexte que $\frac{3x^2-9x-11}{x} \underset{x\to+\infty}{\sim} 3x$. Nous savons que les équivalents se composent mal, l'exponentielle et le logarithme donnant des contre-exemples classiques. On ne peut pas simplifier cette quantité. On a donc:

$$f(x) \underset{x \to +\infty}{\sim} \cos \left(\frac{3 x^2 - 9 x - 11}{x} \right) \times \left(x^2 \right) \underset{x \to +\infty}{\sim} x^2 \cos \left(\frac{3 x^2 - 9 x - 11}{x} \right).$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{x^3 + x}{x} \underset{x \to 0}{\sim} \frac{x}{x} \underset{x \to 0}{\sim} 1.$$

Encore une fois, ATTENTION à ne pas penser que $\cos\left(\frac{3x^2-9x-11}{x}\right) \sim \cos\left(-\frac{11}{x}\right)$ sous prétexte que $\frac{3x^2-9x-11}{x} \underset{x \to 0^+}{\sim} -\frac{11}{x}.$ On conclut :

$$f(x) \underset{x \to 0^+}{\sim} \cos\left(\frac{3x^2 - 9x - 11}{x}\right), \text{ et}: f(x) \underset{x \to +\infty}{\sim} x^2 \cos\left(\frac{3x^2 - 9x - 11}{x}\right).$$

Corrigé 48. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 6

$$\underbrace{\frac{x^2+x+1}{-2\,x^2-4\,x-39}}_{x\to+\infty} \underbrace{\frac{x^2}{-2\,x^2}}_{x\to+\infty} \underbrace{-\frac{1}{2}}_{x\to+\infty} \underbrace{-\frac{1}{2}}_{x\to+\infty} \underbrace{-\frac{1}{2}}_{x\to+\infty} \underbrace{-\frac{2\,x^2+x-1}{-4\,x^3+x^2-2\,x}}_{x\to+\infty} \underbrace{\frac{2\,x^2}{-4\,x^3}}_{x\to+\infty} \underbrace{-\frac{1}{2\,x}}_{x\to+\infty} \underbrace{-\frac{1}{2\,x^2-4\,x-3}}_{x\to+\infty} \underbrace{-\frac{1}{2\,x$$

Par composition de limites: $\lim_{x\to +\infty} \sin\left(\frac{x^2+x+1}{-2\,x^2-4\,x-39}\right) = -\sin\left(\frac{1}{2}\right) \neq 0$, et donc: $\sin\left(\frac{x^2+x+1}{-2\,x^2-4\,x-39}\right) \underset{x\to+\infty}{\sim} -\sin\left(\frac{1}{2}\right)$. On a donc:

$$f(x) \underset{x \to +\infty}{\sim} -\sin\left(\frac{1}{2}\right) \times \left(-\frac{1}{2x}\right) \underset{x \to +\infty}{\sim} \frac{\sin\left(\frac{1}{2}\right)}{2x}.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{x^2 + x + 1}{-2 x^2 - 4 x - 39} \underset{x \to 0^+}{\sim} \frac{1}{-39} \underset{x \to 0^+}{\sim} -\frac{1}{39} \underset{x \to 0}{\longrightarrow} -\frac{1}{39}, \quad \frac{2 x^2 + x - 1}{-4 x^3 + x^2 - 2 x} \underset{x \to 0}{\sim} \frac{-1}{-2 x} \underset{x \to 0}{\sim} \frac{1}{2 x}.$$

Par composition de limites: $\lim_{x\to 0^+} \sin\left(\frac{x^2+x+1}{-2\,x^2-4\,x-39}\right) = -\sin\left(\frac{1}{39}\right) \neq 0$, et donc:

$$\sin\left(\frac{x^2 + x + 1}{-2x^2 - 4x - 39}\right) \underset{x \to 0^+}{\sim} -\sin\left(\frac{1}{39}\right).$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} -\frac{\sin\left(\frac{1}{39}\right)}{2x}$$
, et: $f(x) \underset{x \to +\infty}{\sim} \frac{\sin\left(\frac{1}{2}\right)}{2x}$.

Corrigé 49. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire: u(x) = $\underset{x\to +\infty}{o}(v(x))$. Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes :

$$x^4 \ln(x+1)^2 \ll e^{(2x)} \ll e^{(4x)} \ln(x+1) \ll e^{(4x)} \ln(x+1)^2$$

et:

$$e^{(-2x)} \ln(x)^3 \ll x e^{(-2x)} \ln(x)^2 \ll x^2 e^{(-2x)} \ll x e^{(-x)} \ll x^3 \ln(x)$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle

dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit:

$$2x^4 \ln(x+1)^2 + 37e^{(4x)} \ln(x+1)^2 - 31e^{(4x)} \ln(x+1) - 3e^{(2x)} \sim 37e^{(4x)} \ln(x+1)^2$$
.

De même: $5x^3 \ln(x) + xe^{(-2x)} \ln(x)^2 - 42e^{(-2x)} \ln(x)^3 - x^2e^{(-2x)} + 2xe^{(-x)} \sim 5x^3 \ln(x)$.

De plus, on a $\ln(x+1) \underset{x \to +\infty}{\sim} \ln(x)$ (en effet: $\frac{\ln(x+1)}{\ln(x)} = \frac{\ln(x) + \ln\left(1 + \frac{1}{x}\right)}{\ln(x)} = 1 + \frac{\ln\left(1 + \frac{1}{x}\right)}{\ln(x)} \xrightarrow[x \to +\infty]{} 1$ car $\ln\left(1+\frac{1}{x}\right) \xrightarrow[x\to+\infty]{} 0$ et $\ln(x) \xrightarrow[x\to+\infty]{} +\infty$), ce qui simplifie le premier équivalent. On conclut

$$g(x) \underset{x \to +\infty}{\sim} \frac{37 e^{(4x)} \ln(x)^2}{5 x^3 \ln(x)} \underset{x \to +\infty}{\sim} \frac{37 e^{(4x)} \ln(x)}{5 x^3}.$$

Corrigé 50. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire: u(x) = \leftarrow page 6 $o_{x\to +\infty}(v(x))$. Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes:

$$\ln(x+1)^2 \ll x^3 \ln(x+1)^3 \ll e^x \ln(x+1)^2 \ll xe^{(3x)} \ln(x+1) \ll e^{(5x)}$$

et:

$$x^3 e^{(-3x)} \ll \ln(x)^4 \ll x^2 \ln(x) \ll x^6$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$2x^{3}\ln(x+1)^{3} + 57xe^{(3x)}\ln(x+1) - 3e^{x}\ln(x+1)^{2} - 2\ln(x+1)^{2} + 7e^{(5x)} \underset{x \to +\infty}{\sim} 7e^{(5x)}$$

De même: $-x^6 - 6x^3e^{(-3x)} + \ln(x)^4 + x^2\ln(x) \underset{x \to +\infty}{\sim} -x^6$. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{7 e^{(5 x)}}{-x^6}.$$

Corrigé 51. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 6

$$\frac{-5\,x+1}{-9\,x^2+x+1} \underset{x\to +\infty}{\sim} \frac{-5\,x}{-9\,x^2} \underset{x\to +\infty}{\sim} \frac{5}{9\,x} \underset{x\to +\infty}{\longrightarrow} 0, \quad \frac{x^4+5\,x^3-6\,x^2+x-1}{x-145} \underset{x\to +\infty}{\sim} \frac{x^4}{x} \underset{x\to +\infty}{\sim} x^3.$$

Le fait que la première fraction rationnelle tende vers 0 autorise à écrire, en vertu de l'équivalent $\sin\left(u\right) \underset{u \to 0}{\sim} u$: $\sin\left(\frac{-5\,x+1}{-9\,x^2+x+1}\right) \underset{x \to +\infty}{\sim} \frac{-5\,x+1}{-9\,x^2+x+1} \underset{x \to +\infty}{\sim} \frac{5}{9\,x}$. On a donc :

$$u: \sin\left(\frac{-5x+1}{-9x^2+x+1}\right) \underset{x\to+\infty}{\sim} \frac{-5x+1}{-9x^2+x+1} \underset{x\to+\infty}{\sim} \frac{5}{9x}$$
. On a donc

$$f(x) \underset{x \to +\infty}{\sim} \frac{5}{9 x} \times \left(x^3\right) \underset{x \to +\infty}{\sim} \frac{5}{9} x^2.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve

$$\frac{-5\,x+1}{-9\,x^2+x+1} \underset{x\to 0^+}{\sim} \frac{1}{1} \underset{x\to 0^+}{\sim} 1 \underset{x\to 0}{\longrightarrow} 1, \quad \frac{x^4+5\,x^3-6\,x^2+x-1}{x-145} \underset{x\to 0}{\sim} \frac{-1}{-145} \underset{x\to 0}{\sim} \frac{1}{145}.$$

Par composition de limites : $\lim_{x\to 0^+} \sin\left(\frac{-5\,x+1}{-9\,x^2+x+1}\right) = \sin\left(1\right) \neq 0$, et donc :

$$\sin\left(\frac{-5x+1}{-9x^2+x+1}\right) \underset{x\to 0^+}{\sim} \sin\left(1\right).$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} \frac{1}{145} \sin(1)$$
, et: $f(x) \underset{x \to +\infty}{\sim} \frac{5}{9} x^2$.

Corrigé 52. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire: u(x) = \leftarrow page 6 $o_{x\to +\infty}(v(x))$. Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes:

$$1 \ll x^4 \ln(x+1)^2 \ll xe^x \ln(x+1)^2 \ll e^{(3x)}$$

et:

$$e^{(-3x)} \ln(x)^2 \ll e^{(-x)} \ln(x)^4 \ll x e^{(-x)} \ln(x)^4 \ll x^3 e^{(-x)} \ln(x)^2$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit:

$$-4x^{4} \ln(x+1)^{2} + 4xe^{x} \ln(x+1)^{2} - 6e^{(3x)} - 1 \underset{x \to +\infty}{\sim} -6e^{(3x)}.$$

De même: $-2x^3e^{(-x)}\ln(x)^2 - 7xe^{(-x)}\ln(x)^4 - 2e^{(-x)}\ln(x)^4 + e^{(-3x)}\ln(x)^2 \sim -2x^3e^{(-x)}\ln(x)^2$. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{-6 e^{(3 x)}}{-2 x^3 e^{(-x)} \ln(x)^2} \underset{x \to +\infty}{\sim} \frac{3 e^{(4 x)}}{x^3 \ln(x)^2}.$$

Corrigé 53. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 6

$$\frac{5x-62}{-52x^2+x+1} \underset{x \to +\infty}{\sim} \frac{5x}{-52x^2} \underset{x \to +\infty}{\sim} -\frac{5}{52x} \underset{x \to +\infty}{\longrightarrow} 0, \quad \frac{x^3-10x^2+x-5}{-x+1} \underset{x \to +\infty}{\sim} \frac{x^3}{-x} \underset{x \to +\infty}{\sim} -x^2.$$

Le fait que la première fraction rationnelle tende vers 0 autorise à écrire, en vertu de l'équivalent
$$\sin\left(u\right) \underset{u \to 0}{\sim} u$$
: $\sin\left(\frac{5\,x-62}{-52\,x^2+x+1}\right) \underset{x \to +\infty}{\sim} \frac{5\,x-62}{-52\,x^2+x+1} \underset{x \to +\infty}{\sim} -\frac{5}{52\,x}$. On a donc :

$$f(x) \underset{x \to +\infty}{\sim} -\frac{5}{52 x} \times \left(-x^2\right) \underset{x \to +\infty}{\sim} \frac{5}{52} x.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve

$$\frac{5x - 62}{-52x^2 + x + 1} \underset{x \to 0^+}{\sim} \frac{-62}{1} \underset{x \to 0^+}{\sim} -62 \underset{x \to 0}{\longrightarrow} -62, \quad \frac{x^3 - 10x^2 + x - 5}{-x + 1} \underset{x \to 0}{\sim} \frac{-5}{1} \underset{x \to 0}{\sim} -5.$$

Par composition de limites: $\lim_{x\to 0^+} \sin\left(\frac{5x-62}{-52x^2+x+1}\right) = -\sin(62) \neq 0$, et donc:

$$\sin\left(\frac{5x-62}{-52x^2+x+1}\right) \underset{x\to 0^+}{\sim} -\sin(62).$$

On conclut:

$$f(x) \underset{x \to 0^{+}}{\sim} 5 \sin(62)$$
, et: $f(x) \underset{x \to +\infty}{\sim} \frac{5}{52} x$.

Corrigé 54. Commençons par la deuxième fraction. On a $\arctan(x) + 1 \xrightarrow[x \to 0]{} 1$ et $\cosh(x) \xrightarrow[x \to 0]{} 1$. Donc, en \leftarrow page 6

vertu de l'équivalent classique $\ln(u) \underset{u \to 1}{\sim} u - 1$, on a : $\ln(\arctan(x) + 1) \underset{x \to 0}{\sim} \arctan(x)$, et : $\ln(\cosh(x)) \underset{x \to 0}{\sim} \cosh(x) - 1$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\arctan(u) \underset{u \to 0}{\sim} u$ et $\cosh(u) - 1 \underset{u \to 0}{\sim} \frac{1}{2} u^2$, impliquent :

$$\frac{\ln\left(\arctan\left(x\right)+1\right)}{\ln\left(\cosh\left(x\right)\right)} \underset{x\to0}{\sim} \frac{\arctan\left(x\right)}{\cosh\left(x\right)-1} \underset{x\to0}{\sim} \frac{x}{\frac{1}{2}\,x^2} \underset{x\to0}{\sim} \frac{2}{x}.$$

Passons à la première fraction. On a: $\sin(x) = x + o(x)$, et: $\cos(x) = 1 - \frac{1}{2}x^2 + o(x^2)$. Par conséquent:

$$\frac{\ln\left(\sin\left(2\,x\right)\right)}{\ln\left(-\cos\left(2\,x\right)+1\right)} = \frac{\ln(2\,x+\mathop{o}\limits_{x\to 0}(x)}{\ln(2\,x^2+\mathop{o}\limits_{x\to 0}(x^2))} = \frac{\ln((2\,x)(1+\mathop{o}\limits_{x\to 0}(1)))}{\ln((2\,x^2)(1+\mathop{o}\limits_{x\to 0}(1)))} = \frac{\ln(2)+\ln\left(x\right)+\ln\left(1+\mathop{o}\limits_{x\to 0}(1)\right)}{\ln(2)+2\ln\left(x\right)+\ln\left(1+\mathop{o}\limits_{x\to 0}(1)\right)} \underset{x\to 0}{\sim} \frac{\ln\left(x\right)}{2\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(2) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(2)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x \to 0}{\sim} \frac{\ln(x)}{2 \ln(x)} \times \frac{2}{x} = \frac{1}{x},$$

et en outre: $\lim_{x\to 0^+} f(x) = +\infty$.

Corrigé 55. Commençons par la deuxième fraction. On a $\sinh{(3\,x)}+1 \xrightarrow[x\to 0]{} 1$ et $\arctan{(x)}+1 \xrightarrow[x\to 0]{} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u\to 1}{\sim} u-1$, on a : $\ln{(\sinh{(3\,x)}+1)} \underset{x\to 0}{\sim} \sinh{(3\,x)}$, et : $\ln{(\arctan{(x)}+1)} \underset{x\to 0}{\sim} \arctan{(x)}$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\sinh{(u)} \underset{u\to 0}{\sim} u$ et $\arctan{(u)} \underset{u\to 0}{\sim} u$, où l'on prend $u=3\,x$ dans le premier développement limité, impliquent :

$$\frac{\ln\left(\sinh\left(3\,x\right)+1\right)}{\ln\left(\arctan\left(x\right)+1\right)} \underset{x\to 0}{\sim} \frac{\sinh\left(3\,x\right)}{\arctan\left(x\right)} \underset{x\to 0}{\sim} \frac{3\,x}{x} \underset{x\to 0}{\sim} 3.$$

Passons à la première fraction. On a: $\ln(x+1) = x + o_{x\to 0}(x)$, et: $\cosh(x) = 1 + \frac{1}{2}x^2 + o_{x\to 0}(x^2)$. Par conséquent:

$$\frac{\ln\left(\ln\left(4\,x+1\right)\right)}{\ln\left(\cosh\left(3\,x\right)-1\right)} = \frac{\ln(4\,x+\mathop{o}\limits_{x\to 0}(x)}{\ln(\frac{9}{2}\,x^2+\mathop{o}\limits_{x\to 0}(x^2))} = \frac{\ln((4\,x)(1+\mathop{o}\limits_{x\to 0}(1)))}{\ln((\frac{9}{2}\,x^2)(1+\mathop{o}\limits_{x\to 0}(1)))} = \frac{\ln(4)+\ln\left(x\right)+\ln(1+\mathop{o}\limits_{x\to 0}(1)\right)}{\ln(\frac{9}{2})+2\ln\left(x\right)+\ln(1+\mathop{o}\limits_{x\to 0}(1)\right)} \underset{x\to 0}{\sim} \frac{\ln\left(x\right)}{2\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(4) + \ln(1 + o_{x\to 0}(1)) \xrightarrow[x\to 0]{} \ln(4)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x\to 0}{\sim} \frac{\ln(x)}{2\ln(x)} \times 3 = \frac{3}{2},$$

et en outre: $\lim_{x\to 0^+} f(x) = \frac{3}{2}$.

Corrigé 56. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire : $u(x) = e^{-6}$ v(x) » pour dire : $v(x) = e^{-6}$ v(x) » pour dire : $v(x) = e^{-6}$ » page 6 v(x) » pour dire : $v(x) = e^{-6}$ » page 6 v(x) » pour dire : $v(x) = e^{-6}$ » page 6 v(x) » pour dire : $v(x) = e^{-6}$ » page 6 v(x) » pour dire : $v(x) = e^{-6}$ » page 6 v(x) » pour dire : $v(x) = e^{-6}$ » page 6 v(x) » pour dire : $v(x) = e^{-6}$ » page 6 v(x) » pour dire : $v(x) = e^{-6}$ » page 6 v(x) » pour dire : $v(x) = e^{-6}$ » page 6 v(x) » pour dire : $v(x) = e^{-6}$ » page 6 v(x) » pour dire : $v(x) = e^{-6}$ » page 6 v(x) » pour dire : $v(x) = e^{-6}$ » page 6 v(x) » pour dire : $v(x) = e^{-6}$ » page 6 v(x) » pour dire : $v(x) = e^{-6}$ » page 6 v(x) » pour dire : $v(x) = e^{-6}$ » page 6 v(x) » pour dire : $v(x) = e^{-6}$ » page 6 v(x) » pour dire : $v(x) = e^{-6}$ » page 6 v(x) » page 6 v(x)

$$x \ll x^2 \ln(x+1)^4 \ll x^2 e^x \ln(x+1)^2 \ll x e^{(4x)} \ln(x+1)$$
,

et:

$$e^{(-2x)} \ln(x)^4 \ll x e^{(-2x)} \ln(x)^3 \ll x^3 e^{(-2x)} \ln(x) \ll x^3 e^{(-x)}$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus

« grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit:

$$2x^{2} \ln(x+1)^{4} + 9x^{2}e^{x} \ln(x+1)^{2} + xe^{(4x)} \ln(x+1) + 13x \sim xe^{(4x)} \ln(x+1)$$
.

De même: $x^3 e^{(-2x)} \ln(x) + x e^{(-2x)} \ln(x)^3 + 4 e^{(-2x)} \ln(x)^4 + 29 x^3 e^{(-x)} \sim 29 x^3 e^{(-x)}$. De plus, on a $\ln(x+1) \sim \ln(x)$ (en effet: $\frac{\ln(x+1)}{\ln(x)} = \frac{\ln(x) + \ln(1 + \frac{1}{x})}{\ln(x)} = 1 + \frac{\ln(1 + \frac{1}{x})}{\ln(x)} \xrightarrow[x \to +\infty]{} 1$ car $\ln\left(1+\frac{1}{x}\right) \xrightarrow[x\to+\infty]{} 0$ et $\ln(x) \xrightarrow[x\to+\infty]{} +\infty$), ce qui simplifie le premier équivalent. On conclut

$$g(x) \underset{x \to +\infty}{\sim} \frac{xe^{(4x)} \ln(x)}{29 x^3 e^{(-x)}} \underset{x \to +\infty}{\sim} \frac{e^{(5x)} \ln(x)}{29 x^2}.$$

Corrigé 57. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire: u(x) = -6 $\underset{x\to+\infty}{o}(v(x))$. Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes:

$$x^2 \ll xe^x \ll x^4e^x \ln(x+1) \ll e^{(3x)} \ln(x+1)^3$$

et:

$$x^{3}e^{(-2x)}\ln(x) \ll e^{(-x)}\ln(x) \ll xe^{(-x)}\ln(x)^{4} \ll 1 \ll x^{4}\ln(x)$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit:

$$2x^4e^x \ln(x+1) + 5e^{(3x)} \ln(x+1)^3 - 3x^2 - 3xe^x \sim 5e^{(3x)} \ln(x+1)^3$$
.

De même: $-xe^{(-x)}\ln(x)^4 + x^4\ln(x) - x^3e^{(-2x)}\ln(x) - e^{(-x)}\ln(x) - 1 \underset{x \to +\infty}{\sim} x^4\ln(x)$.

De plus, on a $\ln(x+1) \underset{x \to +\infty}{\sim} \ln(x)$ (en effet: $\frac{\ln(x+1)}{\ln(x)} = \frac{\ln(x) + \ln\left(1 + \frac{1}{x}\right)}{\ln(x)} = 1 + \frac{\ln\left(1 + \frac{1}{x}\right)}{\ln(x)} \xrightarrow[x \to +\infty]{} 1$ car $\ln\left(1+\frac{1}{x}\right)\underset{x\to+\infty}{\longrightarrow}0$ et $\ln(x)\underset{x\to+\infty}{\longrightarrow}+\infty$), ce qui simplifie le premier équivalent. On conclut :

$$g(x) \underset{x \to +\infty}{\sim} \frac{5 e^{(3 x)} \ln(x)^3}{x^4 \ln(x)} \underset{x \to +\infty}{\sim} \frac{5 e^{(3 x)} \ln(x)^2}{x^4}.$$

Corrigé 58. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 7

$$\frac{-x^3+2\,x^2+57\,x+19}{-x^3+4\,x+1} \underset{x\to +\infty}{\sim} \frac{-x^3}{-x^3} \underset{x\to +\infty}{\sim} 1 \underset{x\to +\infty}{\longrightarrow} 1, \quad \frac{-2\,x^2+x-4}{-2\,x^3+x^2-x-3} \underset{x\to +\infty}{\sim} \frac{-2\,x^2}{-2\,x^3} \underset{x\to +\infty}{\sim} \frac{1}{x}.$$

Par composition de limites: $\lim_{x \to +\infty} \sin \left(\frac{-x^3 + 2x^2 + 57x + 19}{-x^3 + 4x + 1} \right) = \sin(1) \neq 0$, et donc: $\sin\left(\frac{-x^3+2\,x^2+57\,x+19}{-x^3+4\,x+1}\right) \mathop{\sim}_{x\to +\infty} \sin{(1)}.$ On a donc:

$$f(x) \underset{x \to +\infty}{\sim} \sin(1) \times \left(\frac{1}{x}\right) \underset{x \to +\infty}{\sim} \frac{\sin(1)}{x}.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{-x^3 + 2\,x^2 + 57\,x + 19}{-x^3 + 4\,x + 1} \mathop{\sim}_{x \to 0^+} \frac{19}{1} \mathop{\sim}_{x \to 0^+} 19 \mathop{\longrightarrow}_{x \to 0} 19, \quad \frac{-2\,x^2 + x - 4}{-2\,x^3 + x^2 - x - 3} \mathop{\sim}_{x \to 0} \frac{-4}{-3} \mathop{\sim}_{x \to 0} \frac{4}{3}.$$

Par composition de limites : $\lim_{x\to 0^+} \sin\left(\frac{-x^3+2\,x^2+57\,x+19}{-x^3+4\,x+1}\right) = \sin\left(19\right) \neq 0$, et donc :

$$\sin\left(\frac{-x^3 + 2x^2 + 57x + 19}{-x^3 + 4x + 1}\right) \underset{x \to 0^+}{\sim} \sin(19).$$

On conclut:

$$f(x) \underset{x \to 0^{+}}{\sim} \frac{4}{3} \sin(19)$$
, et: $f(x) \underset{x \to +\infty}{\sim} \frac{\sin(1)}{x}$.

Corrigé 59. Commençons par la deuxième fraction. On a $\arctan(3\,x)+1 \xrightarrow[x\to 0]{} 1$ et $\cos(3\,x) \xrightarrow[x\to 0]{} 1$. \leftarrow page 7 Donc, en vertu de l'équivalent classique $\ln(u) \underset{u\to 1}{\sim} u-1$, on a : $\ln(\arctan(3\,x)+1) \underset{x\to 0}{\sim} \arctan(3\,x)$, et : $\ln(\cos(3\,x)) \underset{x\to 0}{\sim} \cos(3\,x)-1$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\arctan(u) \underset{u\to 0}{\sim} u$ et $\cos(u)-1 \underset{u\to 0}{\sim} -\frac{1}{2}u^2$, où l'on prend $u=3\,x$, impliquent :

$$\frac{\ln\left(\arctan\left(3\,x\right)+1\right)}{\ln\left(\cos\left(3\,x\right)\right)} \underset{x\to 0}{\sim} \frac{\arctan\left(3\,x\right)}{\cos\left(3\,x\right)-1} \underset{x\to 0}{\sim} \frac{3\,x}{-\frac{9}{2}\,x^{2}} \underset{x\to 0}{\sim} -\frac{2}{3\,x}.$$

Passons à la première fraction. On a: $\arctan(x) = x + \underset{x\to 0}{o}(x)$, et : $\cosh(x) = 1 + \frac{1}{2}x^2 + \underset{x\to 0}{o}(x^2)$. Par conséquent :

$$\frac{\ln\left(\arctan\left(2\,x\right)\right)}{\ln\left(\cosh\left(2\,x\right)-1\right)} = \frac{\ln(2\,x+\mathop{o}\limits_{x\to 0}(x)}{\ln(2\,x^2+\mathop{o}\limits_{x\to 0}(x^2))} = \frac{\ln((2\,x)(1+\mathop{o}\limits_{x\to 0}(1)))}{\ln((2\,x^2)(1+\mathop{o}\limits_{x\to 0}(1)))} = \frac{\ln(2)+\ln\left(x\right)+\ln\left(1+\mathop{o}\limits_{x\to 0}(1)\right)}{\ln(2)+2\ln\left(x\right)+\ln\left(1+\mathop{o}\limits_{x\to 0}(1)\right)} \underset{x\to 0}{\sim} \frac{\ln\left(x\right)}{2\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(2) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(2)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \mathop{\sim}_{x \to 0} \frac{\ln(x)}{2 \ln(x)} \times \left(-\frac{2}{3 x}\right) = -\frac{1}{3 x},$$

et en outre: $\lim_{x\to 0^+} f(x) = -\infty$.

Corrigé 60. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire: u(x) = constant co

$$x \ln(x+1)^4 \ll xe^x \ln(x+1) \ll e^{(2x)} \ln(x+1)^4 \ll xe^{(3x)} \ln(x+1) \ll e^{(4x)} \ln(x+1)$$

et:

$$\ln(x)^2 \ll \ln(x)^6 \ll x \ln(x)^5 \ll x^4$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$-x\ln(x+1)^{4} + e^{(2x)}\ln(x+1)^{4} + xe^{(3x)}\ln(x+1) - xe^{x}\ln(x+1) - 3e^{(4x)}\ln(x+1) \sim -3e^{(4x)}\ln(x+1) = -3e^{(4x)}\ln(x+1) =$$

De même: $-x \ln(x)^5 + \ln(x)^6 + x^4 - 2 \ln(x)^2 \sim x^4$.

De plus, on a $\ln(x+1) \underset{x \to +\infty}{\sim} \ln(x)$ (en effet: $\frac{\ln(x+1)}{\ln(x)} = \frac{\ln(x) + \ln\left(1 + \frac{1}{x}\right)}{\ln(x)} = 1 + \frac{\ln\left(1 + \frac{1}{x}\right)}{\ln(x)} \xrightarrow[x \to +\infty]{} 1$ car $\ln\left(1 + \frac{1}{x}\right) \underset{x \to +\infty}{\longrightarrow} 0$ et $\ln(x) \underset{x \to +\infty}{\longrightarrow} +\infty$), ce qui simplifie le premier équivalent. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{-3 e^{(4x)} \ln(x)}{x^4}.$$

Corrigé 61. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire: u(x) = $\underset{x\to+\infty}{o}(v(x))$. Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes :

$$x^{3} \ln(x+1) \ll xe^{x} \ln(x+1)^{2} \ll x^{2} e^{(2x)} \ln(x+1)^{2}$$

et:

$$e^{(-3x)} \ll xe^{(-3x)} \ll \ln(x)^4 \ll x^2 \ln(x)^4 \ll x^3$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit:

$$-x^{2}e^{(2x)}\ln(x+1)^{2}+2x^{3}\ln(x+1)-xe^{x}\ln(x+1)^{2} \underset{x\to+\infty}{\sim} -x^{2}e^{(2x)}\ln(x+1)^{2}$$
.

De même: $-3x^2 \ln(x)^4 + \ln(x)^4 + 13x^3 - 5xe^{(-3x)} - e^{(-3x)}$

De plus, on a $\ln(x+1) \underset{x \to +\infty}{\sim} \ln(x)$ (en effet: $\frac{\ln(x+1)}{\ln(x)} = \frac{\ln(x) + \ln\left(1 + \frac{1}{x}\right)}{\ln(x)} = 1 + \frac{\ln\left(1 + \frac{1}{x}\right)}{\ln(x)} \xrightarrow[x \to +\infty]{} 1$ car $\ln\left(1+\frac{1}{x}\right) \xrightarrow[x\to+\infty]{} 0$ et $\ln(x) \xrightarrow[x\to+\infty]{} +\infty$, ce qui simplifie le premier équivalent. On conclut :

$$g(x) \underset{x \to +\infty}{\sim} \frac{-x^2 e^{(2x)} \ln(x)^2}{13 r^3} \underset{x \to +\infty}{\sim} -\frac{e^{(2x)} \ln(x)^2}{13 r}.$$

 $\textbf{Corrigé 62.} \text{ Commençons par la deuxième fraction. On a } \sin{(x)} + 1 \underset{x \to 0}{\longrightarrow} 1 \text{ et arctan } (2\,x) + 1 \underset{x \to 0}{\longrightarrow} 1. \text{ Donc, en vertu de l'équivalent classique } \ln(u) \underset{u \to 1}{\sim} u - 1, \text{ on a : } \ln{(\sin{(x)} + 1)} \underset{x \to 0}{\sim} \sin{(x)}, \text{ et : } \ln{(\arctan{(2\,x)} + 1)} \underset{x \to 0}{\longrightarrow} 1.$ $\arctan(2x)$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\sin(u) \underset{u \to 0}{\sim} u$ et $\arctan(u) \underset{u \to 0}{\sim} u$, où l'on prend u = 2x dans le second développement limité, impliquent :

$$\frac{\ln\left(\sin\left(x\right)+1\right)}{\ln\left(\arctan\left(2\,x\right)+1\right)} \underset{x\to 0}{\sim} \frac{\sin\left(x\right)}{\arctan\left(2\,x\right)} \underset{x\to 0}{\sim} \frac{x}{2\,x} \underset{x\to 0}{\sim} \frac{1}{2}.$$

Passons à la première fraction. On a : $\sin(x) = x + \underset{x \to 0}{o}(x)$, et : $\arctan(x) = x + \underset{x \to 0}{o}(x)$. Par conséquent :

$$\frac{\ln{(\sin{(3\,x)})}}{\ln{(\arctan{(3\,x)})}} = \frac{\ln{(3\,x + \mathop{o}\limits_{x \to 0}(x)}}{\ln{(3\,x + \mathop{o}\limits_{x \to 0}(x))}} = \frac{\ln{((3\,x)(1 + \mathop{o}\limits_{x \to 0}(1)))}}{\ln{((3\,x)(1 + \mathop{o}\limits_{x \to 0}(1)))}} = \frac{\ln{(3)} + \ln{(x)} + \ln{(1 + \mathop{o}\limits_{x \to 0}(1))}}{\ln{(3)} + \ln{(x)} + \ln{(1 + \mathop{o}\limits_{x \to 0}(1))}} \underset{x \to 0}{\sim} \frac{\ln{(x)}}{\ln{(x)}},$$

le dernier équivalent venant du fait que $\ln(3) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(3)$, donc a une limite finie et est négligeable devant ln(x) (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x \to 0}{\sim} \frac{\ln(x)}{\ln(x)} \times \frac{1}{2} = \frac{1}{2},$$

et en outre: $\lim_{x\to 0^+} f(x) = \frac{1}{2}$.

Corrigé 63. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire: u(x) = 0 v(x). Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes:

$$\ln(x+1)^4 \ll x^3 \ll x^3 e^x \ln(x+1)^2 \ll e^{(2x)} \ll e^{(4x)} \ln(x+1)^2$$

et:

$$x^{2}e^{(-4x)} \ll xe^{(-3x)}\ln(x) \ll e^{(-2x)} \ll xe^{(-2x)}\ln(x)$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$-4x^{3}e^{x}\ln((x+1)^{2}-8\ln(x+1)^{4}-x^{3}-e^{(4x)}\ln((x+1)^{2}-53e^{(2x)}\underset{x\to+\infty}{\sim}-e^{(4x)}\ln((x+1)^{2}.$$

De même: $-5x^2e^{(-4x)} + xe^{(-2x)}\ln(x) + 2xe^{(-3x)}\ln(x) - 19e^{(-2x)} \sim xe^{(-2x)}\ln(x)$.

De plus, on a $\ln(x+1) \underset{x \to +\infty}{\sim} \ln(x)$ (en effet: $\frac{\ln(x+1)}{\ln(x)} = \frac{\ln(x) + \ln\left(1 + \frac{1}{x}\right)}{\ln(x)} = 1 + \frac{\ln\left(1 + \frac{1}{x}\right)}{\ln(x)} \xrightarrow[x \to +\infty]{} 1$ car $\ln\left(1 + \frac{1}{x}\right) \underset{x \to +\infty}{\longrightarrow} 0$ et $\ln(x) \underset{x \to +\infty}{\longrightarrow} +\infty$), ce qui simplifie le premier équivalent. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{-e^{(4\,x)}\ln(x)^2}{xe^{(-2\,x)}\ln(x)} \underset{x \to +\infty}{\sim} -\frac{e^{(6\,x)}\ln(x)}{x}.$$

Corrigé 64. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 7

$$\frac{x-1}{-x^3 - 3x - 1} \underset{x \to +\infty}{\sim} \frac{x}{-x^3} \underset{x \to +\infty}{\sim} -\frac{1}{x^2} \underset{x \to +\infty}{\longrightarrow} 0, \quad \frac{-52x^4 + 4x^3 + x^2 - 3x - 1}{x^4 + x^3 - 4x^2} \underset{x \to +\infty}{\sim} \frac{-52x^4}{x^4} \underset{x \to +\infty}{\sim} -52.$$

Le fait que la première fraction rationnelle tende vers 0 autorise à écrire, en vertu de l'équivalent $\arctan\left(u\right) \underset{u \to 0}{\sim} u$: $\arctan\left(\frac{x-1}{-x^3-3\,x-1}\right) \underset{x \to +\infty}{\sim} \frac{x-1}{-x^3-3\,x-1} \underset{x \to +\infty}{\sim} -\frac{1}{x^2}$. On a donc :

$$f(x) \underset{x \to +\infty}{\sim} -\frac{1}{x^2} \times (-52) \underset{x \to +\infty}{\sim} \frac{52}{x^2}.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{x-1}{-x^3-3\,x-1} \underset{x\to 0^+}{\sim} \frac{-1}{-1} \underset{x\to 0^+}{\sim} 1 \underset{x\to 0}{\longrightarrow} 1, \quad \frac{-52\,x^4+4\,x^3+x^2-3\,x-1}{x^4+x^3-4\,x^2} \underset{x\to 0}{\sim} \frac{-1}{-4\,x^2} \underset{x\to 0}{\sim} \frac{1}{4\,x^2}.$$

Par composition de limites : $\lim_{x\to 0^+} \arctan\left(\frac{x-1}{-x^3-3\,x-1}\right) = \arctan\left(1\right) = \frac{1}{4}\,\pi \neq 0$, et donc :

$$\arctan\left(\frac{x-1}{-x^3-3}\right) \underset{x\to 0^+}{\sim} \frac{1}{4}\pi.$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} \frac{\pi}{16 x^2}$$
, et: $f(x) \underset{x \to +\infty}{\sim} \frac{52}{x^2}$.

Corrigé 65. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 7

$$\frac{9\,x^3+10\,x^2-x+4}{x^3+6\,x^2+6\,x} \underset{x\to +\infty}{\sim} \frac{9\,x^3}{x^3} \underset{x\to +\infty}{\sim} 9 \underset{x\to +\infty}{\longrightarrow} 9, \quad \frac{-x^3-4\,x^2}{24\,x^2-1} \underset{x\to +\infty}{\sim} \frac{-x^3}{24\,x^2} \underset{x\to +\infty}{\sim} -\frac{1}{24}\,x.$$

Par composition de limites: $\lim_{x\to +\infty}\arctan\left(\frac{9\,x^3+10\,x^2-x+4}{x^3+6\,x^2+6\,x}\right) = \arctan\left(9\right) \neq 0$, et donc: $\arctan\left(\frac{9\,x^3+10\,x^2-x+4}{x^3+6\,x^2+6\,x}\right) \sim \arctan\left(9\right)$. On a donc:

$$f(x) \mathop{\sim}_{x \to +\infty} \arctan{(9)} \times \left(-\frac{1}{24}\,x\right) \mathop{\sim}_{x \to +\infty} -\frac{1}{24}\,x\arctan{(9)}\,.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve :

$$\frac{9\,x^3 + 10\,x^2 - x + 4}{x^3 + 6\,x^2 + 6\,x} \underset{x \to 0^+}{\sim} \frac{4}{6\,x} \underset{x \to 0^+}{\sim} \frac{2}{3\,x} \underset{x \to 0}{\longrightarrow} +\infty, \quad \frac{-x^3 - 4\,x^2}{24\,x^2 - 1} \underset{x \to 0}{\sim} \frac{-4\,x^2}{-1} \underset{x \to 0}{\sim} 4\,x^2.$$

Par composition de limites: $\lim_{x\to 0^+} \arctan\left(\frac{9\,x^3+10\,x^2-x+4}{x^3+6\,x^2+6\,x}\right) = \frac{1}{2}\,\pi \neq 0$, et donc: $\arctan\left(\frac{9\,x^3+10\,x^2-x+4}{x^3+6\,x^2+6\,x}\right) \sim \frac{1}{2}\,\pi$.

On conclut:

$$f(x) \underset{x \to 0^{+}}{\sim} 2 \pi x^{2}$$
, et: $f(x) \underset{x \to +\infty}{\sim} -\frac{1}{24} x \arctan(9)$.

Corrigé 66. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire : u(x) = 0 o v(x). Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes :

$$e^{x} \ln(x+1) \ll xe^{x} \ln(x+1) \ll xe^{(2x)} \ln(x+1)^{2} \ll x^{3} e^{(2x)} \ln(x+1) \ll x^{2} e^{(4x)}$$

et:

$$e^{(-4x)} \ln(x) \ll x e^{(-2x)} \ll x^2 \ln(x)^4 \ll x^4 \ln(x)$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$2x^{3}e^{(2x)}\ln(x+1) + 7xe^{(2x)}\ln(x+1)^{2} + 2x^{2}e^{(4x)} - xe^{x}\ln(x+1) + 15e^{x}\ln(x+1) \underset{x \to +\infty}{\sim} 2x^{2}e^{(4x)}.$$

De même: $-2x^2 \ln(x)^4 - 3x^4 \ln(x) + 2xe^{(-2x)} - 4e^{(-4x)} \ln(x) \sim -3x^4 \ln(x)$. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{2 x^2 e^{(4 x)}}{-3 x^4 \ln(x)} \underset{x \to +\infty}{\sim} -\frac{2 e^{(4 x)}}{3 x^2 \ln(x)}.$$

Corrigé 67. Commençons par la deuxième fraction. On a $\ln(3x+1)+1 \xrightarrow[x\to 0]{} 1$ et $\sinh(2x)+1 \xrightarrow[x\to 0]{} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u\to 1}{\sim} u-1$, on a: $\ln(\ln(3x+1)+1) \underset{x\to 0}{\sim} \ln(3x+1)$, et: $\ln(\sinh(2x)+1) \underset{x\to 0}{\sim} \sinh(2x)$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\ln(u+1) \underset{u\to 0}{\sim} u$ et $\sinh(u) \underset{u\to 0}{\sim} u$, où l'on prend respectivement u=3x et u=2x, impliquent:

$$\frac{\ln\left(\ln\left(3\,x+1\right)+1\right)}{\ln\left(\sinh\left(2\,x\right)+1\right)} \underset{x\to 0}{\sim} \frac{\ln\left(3\,x+1\right)}{\sinh\left(2\,x\right)} \underset{x\to 0}{\sim} \frac{3\,x}{2\,x} \underset{x\to 0}{\sim} \frac{3}{2}$$

Passons à la première fraction. On a: $\ln(x+1) = x + o(x)$, et: $\cos(x) = 1 - \frac{1}{2}x^2 + o(x^2)$. Par conséquent:

$$\frac{\ln\left(\ln\left(3\,x+1\right)\right)}{\ln\left(-\cos\left(2\,x\right)+1\right)} = \frac{\ln(3\,x+\mathop{o}_{x\to 0}(x)}{\ln(2\,x^2+\mathop{o}_{x\to 0}(x^2))} = \frac{\ln((3\,x)(1+\mathop{o}_{x\to 0}(1)))}{\ln((2\,x^2)(1+\mathop{o}_{x\to 0}(1)))} = \frac{\ln(3)+\ln\left(x\right)+\ln\left(1+\mathop{o}_{x\to 0}(1)\right)}{\ln(2)+2\ln\left(x\right)+\ln\left(1+\mathop{o}_{x\to 0}(1)\right)} \underset{x\to 0}{\sim} \frac{\ln\left(x\right)}{2\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(3) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(3)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x\to 0}{\sim} \frac{\ln(x)}{2 \ln(x)} \times \frac{3}{2} = \frac{3}{4},$$

et en outre: $\lim_{x\to 0^+} f(x) = \frac{3}{4}$.

Corrigé 68. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire: u(x) = constant o o co

$$x \ll x^2 \ln(x+1)^4 \ll x^3 \ll e^x \ln(x+1)^3$$
,

et:

$$xe^{(-5x)} \ll x^2e^{(-4x)} \ll x^2e^{(-3x)}\ln(x) \ll e^{(-2x)} \ll e^{(-2x)}\ln(x)^3$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$-x^{2} \ln (x+1)^{4} + 3 e^{x} \ln (x+1)^{3} - x^{3} + x \underset{x \to +\infty}{\sim} 3 e^{x} \ln (x+1)^{3}$$
.

De même: $-x^2e^{(-3\,x)}\ln(x) + e^{(-2\,x)}\ln(x)^3 - 2\,x^2e^{(-4\,x)} - 2\,xe^{(-5\,x)} - 3\,e^{(-2\,x)} \underset{x \to +\infty}{\sim} e^{(-2\,x)}\ln(x)^3$. De plus, on a $\ln(x+1) \underset{x \to +\infty}{\sim} \ln(x)$ (en effet: $\frac{\ln(x+1)}{\ln(x)} = \frac{\ln(x) + \ln\left(1 + \frac{1}{x}\right)}{\ln(x)} = 1 + \frac{\ln\left(1 + \frac{1}{x}\right)}{\ln(x)} \underset{x \to +\infty}{\longrightarrow} 1$ car $\ln\left(1 + \frac{1}{x}\right) \underset{x \to +\infty}{\longrightarrow} 0$ et $\ln(x) \underset{x \to +\infty}{\longrightarrow} +\infty$), ce qui simplifie le premier équivalent. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{3 e^x \ln(x)^3}{e^{(-2x)} \ln(x)^3} \underset{x \to +\infty}{\sim} 3 e^{(3x)}.$$

Corrigé 69. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire : $u(x) = o \atop x \to +\infty$ (v(x)). Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes :

 \leftarrow page 8

$$\ln (x+1)^3 \ll x^2 \ln (x+1)^2$$
,

et:

$$xe^{(-3x)} \ll x^3 e^{(-x)} \ln(x) \ll x \ln(x)^2 \ll x^3$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$-2x^{2}\ln(x+1)^{2}-2\ln(x+1)^{3} \underset{x\to +\infty}{\sim} -2x^{2}\ln(x+1)^{2}$$
.

De même: $x^3 e^{(-x)} \ln(x) - 18 x^3 + 2 x \ln(x)^2 + x e^{(-3 x)} \sim -18 x^3$. De plus, on a $\ln(x+1) \sim \ln(x)$ (en effet: $\frac{\ln(x+1)}{\ln(x)} = \frac{\ln(x) + \ln\left(1 + \frac{1}{x}\right)}{\ln(x)} = 1 + \frac{\ln\left(1 + \frac{1}{x}\right)}{\ln(x)} \xrightarrow{x \to +\infty} 1$ car $\ln\left(1+\frac{1}{x}\right)\underset{x\to+\infty}{\longrightarrow}0$ et $\ln(x)\underset{x\to+\infty}{\longrightarrow}+\infty$), ce qui simplifie le premier équivalent. On conclut

$$g(x) \underset{x \to +\infty}{\sim} \frac{-2 x^2 \ln(x)^2}{-18 x^3} \underset{x \to +\infty}{\sim} \frac{\ln(x)^2}{9 x}.$$

Corrigé 70. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 8

$$\frac{-2\,x^3-5\,x-1}{-x^3+10\,x^2-x-6} \mathop{\sim}\limits_{x\to +\infty} \frac{-2\,x^3}{-x^3} \mathop{\sim}\limits_{x\to +\infty} 2 \mathop{\longrightarrow}\limits_{x\to +\infty} 2, \quad \frac{x^2+6\,x+1}{25\,x-3} \mathop{\sim}\limits_{x\to +\infty} \frac{x^2}{25\,x} \mathop{\sim}\limits_{x\to +\infty} \frac{1}{25}\,x.$$

Par composition de limites: $\lim_{x\to +\infty} \sin\left(\frac{-2x^3-5x-1}{-x^3+10x^2-x-6}\right) = \sin(2) \neq 0$, et donc: $\sin\left(\frac{-2x^3 - 5x - 1}{-x^3 + 10x^2 - x - 6}\right) \underset{x \to +\infty}{\sim} \sin(2)$. On a donc:

$$f(x) \underset{x \to +\infty}{\sim} \sin(2) \times \left(\frac{1}{25}x\right) \underset{x \to +\infty}{\sim} \frac{1}{25} x \sin(2)$$
.

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{-2\,x^3 - 5\,x - 1}{-x^3 + 10\,x^2 - x - 6} \underset{x \to 0^+}{\sim} \frac{-1}{-6} \underset{x \to 0^+}{\sim} \frac{1}{6} \underset{x \to 0}{\longrightarrow} \frac{1}{6}, \quad \frac{x^2 + 6\,x + 1}{25\,x - 3} \underset{x \to 0}{\sim} \frac{1}{-3} \underset{x \to 0}{\sim} -\frac{1}{3}.$$

Par composition de limites: $\lim_{x\to 0^+} \sin\left(\frac{-2x^3-5x-1}{-x^3+10x^2-x-6}\right) = \sin\left(\frac{1}{6}\right) \neq 0$, et donc:

$$\sin\left(\frac{-2x^3 - 5x - 1}{-x^3 + 10x^2 - x - 6}\right) \underset{x \to 0^+}{\sim} \sin\left(\frac{1}{6}\right).$$

On conclut:

$$f(x) \underset{x \to 0^{+}}{\sim} -\frac{1}{3} \sin\left(\frac{1}{6}\right), \text{ et}: f(x) \underset{x \to +\infty}{\sim} \frac{1}{25} x \sin(2).$$

Corrigé 71. Commençons par la deuxième fraction. On a $\sin(3\,x) + 1 \underset{x \to 0}{\longrightarrow} 1$ et $\arctan(x) + 1 \underset{x \to 0}{\longrightarrow} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u \to 1}{\sim} u - 1$, on a : $\ln(\sin(3\,x) + 1) \underset{x \to 0}{\longrightarrow} \sin(3\,x)$, et : $\ln(\arctan(x) + 1) \underset{x \to 0}{\longrightarrow} \cos(x) = 1$. $\arctan(x)$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\sin(u) \underset{u \to 0}{\sim} u$ et $\arctan(u) \underset{u \to 0}{\sim} u$, où l'on prend u = 3x dans le premier développement limité, impliquent :

$$\frac{\ln\left(\sin\left(3\,x\right)+1\right)}{\ln\left(\arctan\left(x\right)+1\right)} \underset{x\to 0}{\sim} \frac{\sin\left(3\,x\right)}{\arctan\left(x\right)} \underset{x\to 0}{\sim} \frac{3\,x}{x} \underset{x\to 0}{\sim} 3.$$

Passons à la première fraction. On a: $\ln(x+1) = x + o_{x\to 0}(x)$, et: $\cosh(x) = 1 + \frac{1}{2}x^2 + o_{x\to 0}(x^2)$. Par conséquent:

$$\frac{\ln\left(\ln\left(4\,x+1\right)\right)}{\ln\left(\cosh\left(2\,x\right)-1\right)} = \frac{\ln(4\,x+o_{x\to 0}\left(x\right))}{\ln(2\,x^2+o_{x\to 0}\left(x^2\right))} = \frac{\ln((4\,x)(1+o_{x\to 0}\left(1\right)))}{\ln((2\,x^2)(1+o_{x\to 0}\left(1\right)))} = \frac{\ln(4)+\ln\left(x\right)+\ln\left(1+o_{x\to 0}\left(1\right)\right)}{\ln(2)+2\ln\left(x\right)+\ln\left(1+o_{x\to 0}\left(1\right)\right)} \underset{x\to 0}{\sim} \frac{\ln\left(x\right)}{2\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(4) + \ln(1 + o_{x\to 0}(1)) \xrightarrow[x\to 0]{} \ln(4)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x\to 0}{\sim} \frac{\ln(x)}{2 \ln(x)} \times 3 = \frac{3}{2},$$

et en outre: $\lim_{x\to 0^+} f(x) = \frac{3}{2}$.

Corrigé 72. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 8

$$\frac{-x^2-x+1}{3\,x^4-7\,x^3-x^2-2\,x} \underset{x \to +\infty}{\sim} \frac{-x^2}{3\,x^4} \underset{x \to +\infty}{\sim} -\frac{1}{3\,x^2} \underset{x \to +\infty}{\longrightarrow} 0, \quad \frac{4\,x^2-24\,x-3}{-x^2-43\,x+6} \underset{x \to +\infty}{\sim} \frac{4\,x^2}{-x^2} \underset{x \to +\infty}{\sim} -4.$$

Le fait que la première fraction rationnelle tende vers 0 autorise à écrire, en vertu de l'équivalent $\arctan\left(u\right) \underset{u \to 0}{\sim} u$: $\arctan\left(\frac{-x^2-x+1}{3\,x^4-7\,x^3-x^2-2\,x}\right) \underset{x \to +\infty}{\sim} \frac{-x^2-x+1}{3\,x^4-7\,x^3-x^2-2\,x} \underset{x \to +\infty}{\sim} -\frac{1}{3\,x^2}$. On a donc :

$$f(x) \underset{x \to +\infty}{\sim} -\frac{1}{3x^2} \times (-4) \underset{x \to +\infty}{\sim} \frac{4}{3x^2}$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve :

$$\frac{-x^2-x+1}{3\,x^4-7\,x^3-x^2-2\,x} \underset{x\to 0^+}{\sim} \frac{1}{-2\,x} \underset{x\to 0^+}{\sim} -\frac{1}{2\,x} \underset{x\to 0}{\longrightarrow} -\infty, \quad \frac{4\,x^2-24\,x-3}{-x^2-43\,x+6} \underset{x\to 0}{\sim} \frac{-3}{6} \underset{x\to 0}{\sim} -\frac{1}{2}.$$

Par composition de limites: $\lim_{x\to 0^+} \arctan\left(\frac{-x^2 - x + 1}{3x^4 - 7x^3 - x^2 - 2x}\right) = -\frac{1}{2}\pi \neq 0$, et donc:

 $\arctan\left(\frac{-x^2-x+1}{3\,x^4-7\,x^3-x^2-2\,x}\right) \underset{x\to 0^+}{\sim} -\frac{1}{2}\,\pi.$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} \frac{1}{4} \pi$$
, et: $f(x) \underset{x \to +\infty}{\sim} \frac{4}{3x^2}$.

Corrigé 73. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire : u(x) = constant constant of <math>constant constant consta

$$x \ll e^x \ln(x+1)^2 \ll xe^x \ln(x+1)^4 \ll x^4 e^x \ln(x+1) \ll xe^{(2x)} \ln(x+1)$$

et:

$$xe^{(-3x)} \ll x^3 e^{(-3x)} \ll x^4 \ln(x)^2$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$x^{4}e^{x}\ln(x+1) - 3xe^{x}\ln(x+1)^{4} - xe^{(2x)}\ln(x+1) + 128e^{x}\ln(x+1)^{2} - x \underset{x \to +\infty}{\sim} -xe^{(2x)}\ln(x+1)$$
.

De même: $524 x^4 \ln(x)^2 + 4 x^3 e^{(-3x)} + 3 x e^{(-3x)} \sim 524 x^4 \ln(x)^2$.

De plus, on a $\ln(x+1) \underset{x \to +\infty}{\sim} \ln(x)$ (en effet: $\frac{\ln(x+1)}{\ln(x)} = \frac{\ln(x) + \ln\left(1 + \frac{1}{x}\right)}{\ln(x)} = 1 + \frac{\ln\left(1 + \frac{1}{x}\right)}{\ln(x)} \xrightarrow[x \to +\infty]{} 1$ car $\ln\left(1 + \frac{1}{x}\right) \underset{x \to +\infty}{\longrightarrow} 0$ et $\ln(x) \underset{x \to +\infty}{\longrightarrow} +\infty$), ce qui simplifie le premier équivalent. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{-xe^{(2\,x)}\ln(x)}{524\,x^4\ln(x)^2} \underset{x \to +\infty}{\sim} -\frac{e^{(2\,x)}}{524\,x^3\ln(x)}.$$

Corrigé 74. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire : u(x) = 0 o v(x). Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes :

 \leftarrow page 8

$$\ln(x+1)^3 \ll xe^x \ln(x+1)^2 \ll x^2 e^x \ln(x+1)^2 \ll e^{(2x)} \ln(x+1)^3 \ll x^2 e^{(4x)},$$

et:

$$e^{(-x)} \ll 1 \ll \ln(x)^3 \ll x \ll x \ln(x)^3$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$-6x^{2}e^{x}\ln((x+1)^{2}-xe^{x}\ln((x+1)^{2}-2e^{(2x)}\ln((x+1)^{3}-x^{2}e^{(4x)}-4\ln((x+1)^{3}\underset{x\to+\infty}{\sim}-x^{2}e^{(4x)}.$$

De même: $x \ln(x)^3 + 4 \ln(x)^3 - 9x + e^{(-x)} + 1 \sim x \ln(x)^3$. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{-x^2 e^{(4x)}}{x \ln(x)^3} \underset{x \to +\infty}{\sim} -\frac{x e^{(4x)}}{\ln(x)^3}.$$

Corrigé 75. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire : u(x) = o(v(x)). Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes :

$$x^4 e^x \ln(x+1) \ll e^{(2x)} \ln(x+1)^3 \ll x e^{(3x)} \ll e^{(4x)}$$

et:

$$e^{(-4x)} \ln(x) \ll x e^{(-4x)} \ln(x) \ll x e^{(-3x)} \ll x e^{(-x)} \ln(x)^4 \ll x \ln(x)^4$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$-3x^{4}e^{x}\ln(x+1) + e^{(2x)}\ln(x+1)^{3} - 4xe^{(3x)} - 14e^{(4x)} \underset{x \to +\infty}{\sim} -14e^{(4x)}.$$

De même: $-xe^{(-x)}\ln(x)^4 - x\ln(x)^4 + 3xe^{(-4x)}\ln(x) + xe^{(-3x)} - e^{(-4x)}\ln(x) \underset{x \to +\infty}{\sim} -x\ln(x)^4$. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{-14 e^{(4 x)}}{-x \ln(x)^4} \underset{x \to +\infty}{\sim} \frac{14 e^{(4 x)}}{x \ln(x)^4}.$$

Corrigé 76. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire : u(x) = 0 v(x) = 0 O v(x). Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes :

$$\ln(x+1)^4 \ll e^{(3x)} \ll x^3 e^{(3x)} \ll x e^{(4x)} \ln(x+1),$$

et:

$$x^4 e^{(-x)} \ln(x) \ll x^5 e^{(-x)} \ll x^3 \ln(x) \ll x^3 \ln(x)^2$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus

« grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$-x^{3}e^{(3x)} + 18 \ln(x+1)^{4} - xe^{(4x)} \ln(x+1) + e^{(3x)} \underset{x \to +\infty}{\sim} -xe^{(4x)} \ln(x+1).$$

De même: $x^5 e^{(-x)} + x^4 e^{(-x)} \ln(x) + 2x^3 \ln(x)^2 + 2x^3 \ln(x) \underset{x \to +\infty}{\sim} 2x^3 \ln(x)^2$.

De plus, on a $\ln(x+1) \underset{x \to +\infty}{\sim} \ln(x)$ (en effet: $\frac{\ln(x+1)}{\ln(x)} = \frac{\ln(x) + \ln\left(1 + \frac{1}{x}\right)}{\ln(x)} = 1 + \frac{\ln\left(1 + \frac{1}{x}\right)}{\ln(x)} \xrightarrow[x \to +\infty]{} 1$ car $\ln\left(1 + \frac{1}{x}\right) \underset{x \to +\infty}{\longrightarrow} 0$ et $\ln(x) \underset{x \to +\infty}{\longrightarrow} +\infty$), ce qui simplifie le premier équivalent. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{-xe^{(4x)}\ln(x)}{2x^3\ln(x)^2} \underset{x \to +\infty}{\sim} -\frac{e^{(4x)}}{2x^2\ln(x)}.$$

Corrigé 77. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 9

$$\frac{2x^3 - 17x^2 - 2x + 6}{-x^2 - 2x - 3} \underset{x \to +\infty}{\sim} \frac{2x^3}{-x^2} \underset{x \to +\infty}{\sim} -2x.$$

Attention à ne pas penser que $\cos\left(\frac{-2\,x^3+x^2+x+2}{-18\,x^2+6\,x}\right)_{x\to+\infty}\cos\left(\frac{1}{9}\,x\right)$ sous prétexte que $\frac{-2\,x^3+x^2+x+2}{-18\,x^2+6\,x}$ $\underset{x\to+\infty}{\sim}$ $\frac{1}{9}\,x$. Nous savons que les équivalents se composent mal, l'exponentielle et le logarithme donnant des contre-exemples classiques. On ne peut pas simplifier cette quantité. On a donc:

$$f(x) \underset{x \to +\infty}{\sim} \cos \left(\frac{2 x^3 - x^2 - x - 2}{6 (3 x^2 - x)} \right) \times (-2 x) \underset{x \to +\infty}{\sim} -2 x \cos \left(\frac{2 x^3 - x^2 - x - 2}{6 (3 x^2 - x)} \right).$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{2x^3 - 17x^2 - 2x + 6}{-x^2 - 2x - 3} \underset{x \to 0}{\sim} \frac{6}{-3} \underset{x \to 0}{\sim} -2.$$

Encore une fois, ATTENTION à ne pas penser que $\cos\left(\frac{-2\,x^3+x^2+x+2}{-18\,x^2+6\,x}\right) \underset{x\to 0^+}{\sim} \cos\left(\frac{1}{3\,x}\right)$ sous prétexte que $\frac{-2\,x^3+x^2+x+2}{-18\,x^2+6\,x} \underset{x\to 0^+}{\sim} \frac{1}{3\,x}$.

On conclut:

$$f(x) \underset{x \to 0^{+}}{\sim} -2 \cos \left(\frac{2 x^{3} - x^{2} - x - 2}{6 (3 x^{2} - x)} \right), \text{ et}: f(x) \underset{x \to +\infty}{\sim} -2 x \cos \left(\frac{2 x^{3} - x^{2} - x - 2}{6 (3 x^{2} - x)} \right).$$

Corrigé 78. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire : u(x) = o(v(x)). Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes :

$$e^x \ln(x+1)^5 \ll x^2 e^x \ln(x+1) \ll x^2 e^{(3x)} \ll e^{(5x)}$$

et:

$$x^{2}e^{(-3x)} \ll e^{(-x)}\ln(x) \ll \ln(x)^{6} \ll x\ln(x)^{3} \ll x^{2}$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$-e^{x}\ln(x+1)^{5} + x^{2}e^{x}\ln(x+1) - x^{2}e^{(3x)} + e^{(5x)} \underset{x \to +\infty}{\sim} e^{(5x)}.$$

De même: $\ln(x)^6 + x \ln(x)^3 - 15 x^2 e^{(-3x)} - x^2 - 5 e^{(-x)} \ln(x) \sim -x^2$. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{e^{(5x)}}{-x^2}.$$

Corrigé 79. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 9

$$\frac{-2\,x^4-2\,x^3-5\,x^2-21\,x-1}{x}\underset{x\to+\infty}{\sim} \frac{-2\,x^4}{x}\underset{x\to+\infty}{\sim} -2\,x^3\underset{x\to+\infty}{\longrightarrow} -\infty, \quad \frac{-2\,x^4+x^3+x^2-4\,x-14}{x^2+2\,x-2}\underset{x\to+\infty}{\sim} \frac{-2\,x^4}{x^2}\underset{x\to+\infty}{\sim} -2\,x^2\underset{x\to+\infty}{\longrightarrow} -2\,x^3\underset{x\to+\infty}{\longrightarrow} -2\,x^3\underset{x\to+\infty}{\longrightarrow$$

Par composition de limites: $\lim_{x\to +\infty}\arctan\left(\frac{-2\,x^4-2\,x^3-5\,x^2-21\,x-1}{x}\right) \ = \ -\frac{1}{2}\,\pi \ \neq \ 0, \text{ et donc:}$ $\arctan\left(\frac{-2\,x^4-2\,x^3-5\,x^2-21\,x-1}{x}\right) \underset{x\to +\infty}{\sim} -\frac{1}{2}\,\pi. \text{ On a donc:}$

$$f(x) \underset{x \to +\infty}{\sim} -\frac{1}{2} \pi \times \left(-2 x^2\right) \underset{x \to +\infty}{\sim} \pi x^2.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve :

$$\frac{-2\,x^4 - 2\,x^3 - 5\,x^2 - 21\,x - 1}{x} \underset{x \to 0^+}{\sim} \frac{-1}{x} \underset{x \to 0^+}{\sim} -\frac{1}{x} \underset{x \to 0}{\longrightarrow} -\infty, \quad \frac{-2\,x^4 + x^3 + x^2 - 4\,x - 14}{x^2 + 2\,x - 2} \underset{x \to 0}{\sim} \frac{-14}{-2} \underset{x \to 0}{\sim} 7.$$

Par composition de limites: $\lim_{x\to 0^+} \arctan\left(\frac{-2x^4 - 2x^3 - 5x^2 - 21x - 1}{x}\right) = -\frac{1}{2}\pi \neq 0$, et donc:

 $\arctan\left(\frac{-2x^4 - 2x^3 - 5x^2 - 21x - 1}{x}\right) \underset{x \to 0^+}{\sim} -\frac{1}{2}\pi.$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} -\frac{7}{2}\pi$$
, et: $f(x) \underset{x \to +\infty}{\sim} \pi x^2$.

Corrigé 80. Commençons par la deuxième fraction. On a $\ln(x+1)+1 \xrightarrow[x\to 0]{} 1$ et $\arctan(2\,x)+1 \xrightarrow[x\to 0]{} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u\to 1}{\sim} u-1$, on a : $\ln(\ln(x+1)+1) \underset{x\to 0}{\sim} \ln(x+1)$, et : $\ln(\arctan(2\,x)+1) \underset{x\to 0}{\sim} \arctan(2\,x)$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\ln(u+1) \underset{u\to 0}{\sim} u$ et $\arctan(u) \underset{u\to 0}{\sim} u$, où l'on prend $u=2\,x$ dans le second développement limité, impliquent :

$$\frac{\ln\left(\ln\left(x+1\right)+1\right)}{\ln\left(\arctan\left(2\,x\right)+1\right)} \underset{x\to 0}{\sim} \frac{\ln\left(x+1\right)}{\arctan\left(2\,x\right)} \underset{x\to 0}{\sim} \frac{x}{2\,x} \underset{x\to 0}{\sim} \frac{1}{2}.$$

Passons à la première fraction. On a: $\cosh(x) = 1 + \frac{1}{2}x^2 + o_{x\to 0}(x^2)$, et: $\cos(x) = 1 - \frac{1}{2}x^2 + o_{x\to 0}(x^2)$. Par conséquent:

$$\frac{\ln\left(\cosh\left(3\,x\right)-1\right)}{\ln\left(-\cos\left(3\,x\right)+1\right)} = \frac{\ln\left(\frac{9}{2}\,x^2 + \frac{o}{x \to 0}\left(x^2\right)}{\ln\left(\frac{9}{2}\,x^2 + \frac{o}{o}\,\left(x^2\right)\right)} = \frac{\ln\left(\left(\frac{9}{2}\,x^2\right)\left(1 + \frac{o}{o}\,\left(1\right)\right)\right)}{\ln\left(\left(\frac{9}{2}\,x^2\right)\left(1 + \frac{o}{o}\,\left(1\right)\right)\right)} = \frac{\ln\left(\frac{9}{2}\right) + 2\,\ln\left(x\right) + \ln\left(1 + \frac{o}{x \to 0}\left(1\right)\right)}{\ln\left(\frac{9}{2}\,x^2 + \frac{o}{o}\,\left(x^2\right)\right)} \sim \frac{2\,\ln\left(x\right)}{2\,\ln\left(x\right)} = \frac{\ln\left(\frac{9}{2}\,x^2 + \frac{o}{o}\,\left(x^2\right)\right)}{\ln\left(\frac{9}{2}\,x^2 + \frac{o}{o}\,\left(x^2\right)\right)} = \frac{\ln\left(\frac{9}{2}\,x^2 + \frac{o}{o}\,\left(x^2\right)}{\ln\left(\frac{9}{2}\,x^2 + \frac{o}{o}\,\left(x^2\right)\right)} = \frac{\ln\left(\frac{9}{2}\,x^2 + \frac{o}{o}\,\left(x^2\right)}{\ln\left(\frac{9}{2}\,x^2 + \frac{o}{o}\,\left(x^2\right)\right)} = \frac{\ln\left(\frac{9}{2}\,x^2 + \frac{o}{o}\,\left(x^2\right)}{\ln\left(\frac{9}{2}\,x^2 + \frac{o}{o}\,\left(x^2\right)}{\ln\left(\frac{9}{2}\,x^2 + \frac{o}{o}\,\left(x^2\right)\right)} = \frac{\ln\left(\frac{9}{2}\,x^2 + \frac{$$

le dernier équivalent venant du fait que $\ln(\frac{9}{2}) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(\frac{9}{2})$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x\to 0}{\sim} \frac{2 \ln(x)}{2 \ln(x)} \times \frac{1}{2} = \frac{1}{2},$$

et en outre: $\lim_{x\to 0^+} f(x) = \frac{1}{2}$.

Corrigé 81. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire : $u(x) = o \atop x \to +\infty$ (v(x)). Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes :

← page 9

$$x^2 \ll x^3 \ln(x+1)^2 \ll xe^x \ln(x+1)^3 \ll e^{(2x)}$$

et:

$$e^{(-5x)} \ln(x) \ll x^4 \ln(x)^2$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$x^{3} \ln (x+1)^{2} - xe^{x} \ln (x+1)^{3} - x^{2} + 4e^{(2x)} \underset{x \to +\infty}{\sim} 4e^{(2x)}$$
.

De même: $4 x^4 \ln(x)^2 + 3 e^{(-5x)} \ln(x) \sim_{x \to +\infty} 4 x^4 \ln(x)^2$. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{4 e^{(2 x)}}{4 x^4 \ln(x)^2} \underset{x \to +\infty}{\sim} \frac{e^{(2 x)}}{x^4 \ln(x)^2}.$$

Corrigé 82. Commençons par la deuxième fraction. On a $\ln(x+1)+1 \underset{x\to 0}{\longrightarrow} 1$ et $\cosh(2\,x) \underset{x\to 0}{\longrightarrow} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u\to 1}{\sim} u-1$, on a : $\ln(\ln(x+1)+1) \underset{x\to 0}{\sim} \ln(x+1)$, et : $\ln(\cosh(2\,x)) \underset{x\to 0}{\sim} \cosh(2\,x)-1$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\ln(u+1) \underset{u\to 0}{\sim} u$ et $\cosh(u)-1 \underset{u\to 0}{\sim} \frac{1}{2}u^2$, où l'on prend $u=2\,x$ dans le second développement limité, impliquent :

$$\frac{\ln\left(\ln\left(x+1\right)+1\right)}{\ln\left(\cosh\left(2\,x\right)\right)} \underset{x\to 0}{\sim} \frac{\ln\left(x+1\right)}{\cosh\left(2\,x\right)-1} \underset{x\to 0}{\sim} \frac{x}{2\,x^2} \underset{x\to 0}{\sim} \frac{1}{2\,x}.$$

Passons à la première fraction. On a : $\ln(x+1) = x + o(x)$, et : $e^x = 1 + x + o(x)$. Par conséquent :

$$\frac{\ln\left(\ln\left(2\,x+1\right)\right)}{\ln\left(e^{(4\,x)}-1\right)} = \frac{\ln(2\,x+o_{x\to 0}(x)}{\ln(4\,x+o_{x\to 0}(x))} = \frac{\ln((2\,x)(1+o_{x\to 0}(1)))}{\ln((4\,x)(1+o_{x\to 0}(1)))} = \frac{\ln(2)+\ln\left(x\right)+\ln\left(1+o_{x\to 0}(1)\right)}{\ln(4)+\ln\left(x\right)+\ln\left(1+o_{x\to 0}(1)\right)} \underset{x\to 0}{\sim} \frac{\ln\left(x\right)}{\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(2) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(2)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut :

$$f(x) \underset{x \to 0}{\sim} \frac{\ln(x)}{\ln(x)} \times \frac{1}{2x} = \frac{1}{2x},$$

et en outre: $\lim_{x\to 0^+} f(x) = +\infty$.

Corrigé 83. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 9

$$\frac{x^2+x+1}{2\,x^2+1} \underset{x \to +\infty}{\sim} \frac{x^2}{2\,x^2} \underset{x \to +\infty}{\sim} \frac{1}{2} \underset{x \to +\infty}{\longrightarrow} \frac{1}{2}, \quad \frac{-x^3+x-1}{-2\,x^2+6\,x+1} \underset{x \to +\infty}{\sim} \frac{-x^3}{-2\,x^2} \underset{x \to +\infty}{\sim} \frac{1}{2}\,x.$$

Par composition de limites: $\lim_{x\to +\infty} \sin\left(\frac{x^2+x+1}{2\,x^2+1}\right) = \sin\left(\frac{1}{2}\right) \neq 0$, et donc: $\sin\left(\frac{x^2+x+1}{2\,x^2+1}\right) \underset{x\to +\infty}{\sim} \sin\left(\frac{1}{2}\right)$. On a donc:

$$f(x) \mathop{\sim}_{x \to +\infty} \sin \left(\frac{1}{2}\right) \times \left(\frac{1}{2}\,x\right) \mathop{\sim}_{x \to +\infty} \frac{1}{2}\,x \sin \left(\frac{1}{2}\right).$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{x^2 + x + 1}{2 x^2 + 1} \underset{x \to 0^+}{\sim} \frac{1}{1} \underset{x \to 0^+}{\sim} 1 \underset{x \to 0}{\longrightarrow} 1, \quad \frac{-x^3 + x - 1}{-2 x^2 + 6 x + 1} \underset{x \to 0}{\sim} \frac{-1}{1} \underset{x \to 0}{\sim} -1.$$

Par composition de limites : $\lim_{x\to 0^+} \sin\left(\frac{x^2+x+1}{2\,x^2+1}\right) = \sin\left(1\right) \neq 0$, et donc :

$$\sin\left(\frac{x^2+x+1}{2\,x^2+1}\right) \mathop{\sim}_{x\to 0^+} \sin\left(1\right).$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} -\sin(1)$$
, et: $f(x) \underset{x \to +\infty}{\sim} \frac{1}{2} x \sin\left(\frac{1}{2}\right)$.

Corrigé 84. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 9

$$\frac{x+42}{2\,x^3+3\,x^2-x} \mathop{\sim}\limits_{x\to +\infty} \frac{x}{2\,x^3} \mathop{\sim}\limits_{x\to +\infty} \frac{1}{2\,x^2} \mathop{\rightarrow}\limits_{x\to +\infty} 0, \quad \frac{x^2+97\,x-1}{x^4-x^3-x^2+14\,x+2} \mathop{\sim}\limits_{x\to +\infty} \frac{x^2}{x^4} \mathop{\sim}\limits_{x\to +\infty} \frac{1}{x^2}$$

Le fait que la première fraction rationnelle tende vers 0 autorise à écrire, en vertu de l'équivalent $\sin\left(u\right) \underset{u \to 0}{\sim} u$: $\sin\left(\frac{x+42}{2\,x^3+3\,x^2-x}\right) \underset{x \to +\infty}{\sim} \frac{x+42}{2\,x^3+3\,x^2-x} \underset{x \to +\infty}{\sim} \frac{1}{2\,x^2}$. On a donc :

$$f(x) \underset{x \to +\infty}{\sim} \frac{1}{2 \, x^2} \times \left(\frac{1}{x^2}\right) \underset{x \to +\infty}{\sim} \frac{1}{2 \, x^4}.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve :

$$\frac{x^2 + 97x - 1}{x^4 - x^3 - x^2 + 14x + 2} \underset{x \to 0}{\sim} \frac{-1}{2} \underset{x \to 0}{\sim} -\frac{1}{2}.$$

Attention à ne pas penser que $\sin\left(\frac{x+42}{2\,x^3+3\,x^2-x}\right) \underset{x\to 0^+}{\sim} \sin\left(-\frac{42}{x}\right)$ sous prétexte que $\frac{x+42}{2\,x^3+3\,x^2-x} \underset{x\to 0^+}{\sim} -\frac{42}{x}$. Nous savons que les équivalents se composent mal, l'exponentielle et le logarithme donnant des contre-exemples classiques. On ne peut pas simplifier cette quantité.

On conclut:

On a donc:

$$f(x) \underset{x \to 0^{+}}{\sim} -\frac{1}{2} \sin\left(\frac{x+42}{2x^{3}+3x^{2}-x}\right), \text{ et: } f(x) \underset{x \to +\infty}{\sim} \frac{1}{2x^{4}}.$$

Corrigé 85. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$ et $x^{\beta} = \underset{x \to 0}{o} \left(x^{\alpha} \right)$ (les prépondérances entre puissances « s'inversent », selon qu'on regarde au voisinage de l'infini ou de zéro). De cela, on déduit facilement :

 \leftarrow page 10

$$\frac{x^4 + 5x^2}{x} \underset{x \to +\infty}{\sim} \frac{x^4}{x} \underset{x \to +\infty}{\sim} x^3 \underset{x \to +\infty}{\longrightarrow} +\infty, \quad \frac{4x^3 - x}{2x^4 - 20x^3 + x^2 + 1} \underset{x \to +\infty}{\sim} \frac{4x^3}{2x^4} \underset{x \to +\infty}{\sim} \frac{2}{x}$$

Par composition de limites: $\lim_{x \to +\infty} \arctan\left(\frac{x^4 + 5x^2}{x}\right) = \frac{1}{2}\pi \neq 0$, et donc: $\arctan\left(\frac{x^4 + 5x^2}{x}\right) \underset{x \to +\infty}{\sim} \frac{1}{2}\pi$.

 $f(x) \underset{x \to +\infty}{\sim} \frac{1}{2} \pi \times \left(\frac{2}{x}\right) \underset{x \to +\infty}{\sim} \frac{\pi}{x}$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve :

$$\frac{x^4 + 5x^2}{x} \underset{x \to 0^+}{\sim} \frac{5x^2}{x} \underset{x \to 0^+}{\sim} 5x \underset{x \to 0}{\longrightarrow} 0, \quad \frac{4x^3 - x}{2x^4 - 20x^3 + x^2 + 1} \underset{x \to 0}{\sim} \frac{-x}{1} \underset{x \to 0}{\sim} -x.$$

Le fait que la première fraction rationnelle tende vers 0 autorise à écrire, en vertu de l'équivalent $\arctan(u) \underset{u \to 0}{\sim} u$:

$$\arctan\left(\frac{x^4 + 5x^2}{x}\right) \underset{x \to 0^+}{\sim} \frac{x^4 + 5x^2}{x} \underset{x \to 0^+}{\sim} 5x.$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} -5 x^2$$
, et: $f(x) \underset{x \to +\infty}{\sim} \frac{\pi}{x}$.

Corrigé 86. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire: u(x) = $o_{x\to +\infty}(v(x))$. Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes:

 \leftarrow page 10

$$x \ll x^4 \ll x^2 e^x \ln(x+1) \ll e^{(2x)} \ll x e^{(3x)} \ln(x+1)$$

et:

$$xe^{(-4x)} \ll x^4 e^{(-x)} \ln(x) \ll x \ln(x)^5 \ll x^2 \ln(x)^2 \ll x^5 \ln(x)$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$-x^4 - x^2 e^x \ln(x+1) + 3x e^{(3x)} \ln(x+1) - 2x + 3e^{(2x)} \sim_{x \to +\infty} 3x e^{(3x)} \ln(x+1)$$
.

De même: $-6296 x^5 \ln(x) - x^4 e^{(-x)} \ln(x) - x \ln(x)^5 + x^2 \ln(x)^2 - x e^{(-4x)} \underset{x \to +\infty}{\sim} -6296 x^5 \ln(x).$ De plus, on a $\ln(x+1) \underset{x \to +\infty}{\sim} \ln(x)$ (en effet: $\frac{\ln(x+1)}{\ln(x)} = \frac{\ln(x) + \ln(1+\frac{1}{x})}{\ln(x)} = 1 + \frac{\ln(1+\frac{1}{x})}{\ln(x)} \underset{x \to +\infty}{\longrightarrow} 1$ car $\ln\left(1+\frac{1}{x}\right) \xrightarrow[x \to +\infty]{} 0$ et $\ln(x) \xrightarrow[x \to +\infty]{} +\infty$), ce qui simplifie le premier équivalent. On conclut

$$g(x) \underset{x \to +\infty}{\sim} \frac{3 x e^{(3 x)} \ln(x)}{-6296 x^5 \ln(x)} \underset{x \to +\infty}{\sim} -\frac{3 e^{(3 x)}}{6296 x^4}.$$

Corrigé 87. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 10

$$\frac{-x^3+9x-1}{x^2+x+1} \underset{x \to +\infty}{\sim} \frac{-x^3}{x^2} \underset{x \to +\infty}{\sim} -x.$$

Attention à ne pas penser que $\sin\left(\frac{-x^2-1}{8\,x-3}\right) \underset{x\to+\infty}{\sim} \sin\left(-\frac{1}{8}\,x\right)$ sous prétexte que $\frac{-x^2-1}{8\,x-3} \underset{x\to+\infty}{\sim} -\frac{1}{8}\,x$. Nous savons que les équivalents se composent mal, l'exponentielle et le logarithme donnant des contre-exemples classiques. On ne peut pas simplifier cette quantité. On a donc:

$$f(x) \mathop{\sim}_{x \to +\infty} \sin \left(-\frac{x^2+1}{8\,x-3} \right) \times (-x) \mathop{\sim}_{x \to +\infty} -x \sin \left(-\frac{x^2+1}{8\,x-3} \right).$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve :

$$\frac{-x^2 - 1}{8x - 3} \underset{x \to 0^+}{\sim} \frac{-1}{-3} \underset{x \to 0^+}{\sim} \frac{1}{3} \underset{x \to 0}{\longrightarrow} \frac{1}{3}, \quad \frac{-x^3 + 9x - 1}{x^2 + x + 1} \underset{x \to 0}{\sim} \frac{-1}{1} \underset{x \to 0}{\sim} -1.$$

Par composition de limites: $\lim_{x\to 0^+} \sin\left(\frac{-x^2-1}{8x-3}\right) = \sin\left(\frac{1}{3}\right) \neq 0$, et donc:

$$\sin\left(\frac{-x^2-1}{8\,x-3}\right) \mathop{\sim}_{x\to 0^+} \sin\left(\frac{1}{3}\right).$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} -\sin\left(\frac{1}{3}\right)$$
, et: $f(x) \underset{x \to +\infty}{\sim} -x\sin\left(-\frac{x^2+1}{8x-3}\right)$.

Corrigé 88. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire: u(x) = $o_{x\to +\infty}(v(x))$. Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes:

$$x^3 e^x \ln(x+1)^2 \ll e^{(4x)} \ln(x+1)^2$$

et:

$$e^{(-3x)} \ll xe^{(-2x)} \ln(x)^3 \ll x \ln(x) \ll x^3$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit:

$$-2x^{3}e^{x}\ln(x+1)^{2} + 29e^{(4x)}\ln(x+1)^{2} \underset{x\to+\infty}{\sim} 29e^{(4x)}\ln(x+1)^{2}.$$

De même: $11 x e^{(-2x)} \ln(x)^3 + x^3 + 2 x \ln(x) - e^{(-3x)} \underset{x \to +\infty}{\sim} x^3$. De plus, on a $\ln(x+1) \underset{x \to +\infty}{\sim} \ln(x)$ (en effet: $\frac{\ln(x+1)}{\ln(x)} = \frac{\ln(x) + \ln\left(1 + \frac{1}{x}\right)}{\ln(x)} = 1 + \frac{\ln\left(1 + \frac{1}{x}\right)}{\ln(x)} \underset{x \to +\infty}{\longrightarrow} 1$ car $\ln\left(1+\frac{1}{x}\right) \underset{x\to+\infty}{\longrightarrow} 0$ et $\ln(x) \underset{x\to+\infty}{\longrightarrow} +\infty$, ce qui simplifie le premier équivalent. On conclut :

$$g(x) \underset{x \to +\infty}{\sim} \frac{29 e^{(4 x)} \ln(x)^2}{x^3}.$$

Corrigé 89. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 10

$$\frac{-x^4+2\,x^3+x^2+2\,x+1}{-3\,x^2+x-11} \underset{x\to +\infty}{\sim} \frac{-x^4}{-3\,x^2} \underset{x\to +\infty}{\sim} \frac{1}{3}\,x^2 \underset{x\to +\infty}{\longrightarrow} +\infty, \quad \frac{x+1}{-x^2+x-1} \underset{x\to +\infty}{\sim} \frac{x}{-x^2} \underset{x\to +\infty}{\sim} -\frac{1}{x}.$$

Par composition de limites: $\lim_{x\to +\infty} \arctan\left(\frac{-x^4+2\,x^3+x^2+2\,x+1}{-3\,x^2+x-11}\right) = \frac{1}{2}\pi \neq 0$, et donc:

$$\arctan\left(\frac{-x^4 + 2x^3 + x^2 + 2x + 1}{-3x^2 + x - 11}\right) \underset{x \to +\infty}{\sim} \frac{1}{2}\pi$$
. On a donc:

$$f(x) \mathop{\sim}_{x \to +\infty} \frac{1}{2} \, \pi \times \left(-\frac{1}{x} \right) \mathop{\sim}_{x \to +\infty} -\frac{\pi}{2 \, x}.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve :

$$\frac{-x^4+2\,x^3+x^2+2\,x+1}{-3\,x^2+x-11} \underset{x\to 0^+}{\sim} \frac{1}{-11} \underset{x\to 0^+}{\sim} -\frac{1}{11} \underset{x\to 0}{\longrightarrow} -\frac{1}{11}, \quad \frac{x+1}{-x^2+x-1} \underset{x\to 0}{\sim} \frac{1}{-1} \underset{x\to 0}{\sim} -1.$$

 $\text{Par composition de limites: } \lim_{x \to 0^+} \arctan\left(\frac{-x^4+2\,x^3+x^2+2\,x+1}{-3\,x^2+x-11}\right) = -\arctan\left(\frac{1}{11}\right) \neq 0, \text{ et donc: } \ln\left(\frac{1}{11}\right) = -\arctan\left(\frac{1}{11}\right) = -$

$$\arctan\left(\frac{-x^4+2\,x^3+x^2+2\,x+1}{-3\,x^2+x-11}\right) \underset{x\to 0^+}{\sim} -\arctan\left(\frac{1}{11}\right).$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} \arctan\left(\frac{1}{11}\right), \text{ et}: f(x) \underset{x \to +\infty}{\sim} -\frac{\pi}{2x}.$$

Corrigé 90. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 10

$$\frac{x^2 - 5x - 2}{-x^3 - 77x + 3} \underset{x \to +\infty}{\sim} \frac{x^2}{-x^3} \underset{x \to +\infty}{\sim} -\frac{1}{x}.$$

Attention à ne pas penser que $\cos\left(\frac{-21\,x^4-2\,x^2-x-1}{2\,x}\right) \underset{x\to+\infty}{\sim} \cos\left(-\frac{21}{2}\,x^3\right)$ sous prétexte que $\frac{-21\,x^4-2\,x^2-x-1}{2\,x} \underset{x\to+\infty}{\sim} -\frac{21}{2}\,x^3$. Nous savons que les équivalents se composent mal, l'exponentielle et le logarithme donnant des contre-exemples classiques. On ne peut pas simplifier cette quantité. On a donc :

$$f(x) \underset{x \to +\infty}{\sim} \cos\left(\frac{21\,x^4 + 2\,x^2 + x + 1}{2\,x}\right) \times \left(-\frac{1}{x}\right) \underset{x \to +\infty}{\sim} -\frac{\cos\left(\frac{21\,x^4 + 2\,x^2 + x + 1}{2\,x}\right)}{x}.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{x^2 - 5x - 2}{-x^3 - 77x + 3} \underset{x \to 0}{\sim} \frac{-2}{3} \underset{x \to 0}{\sim} -\frac{2}{3}.$$

Encore une fois, ATTENTION à ne pas penser que $\cos\left(\frac{-21\,x^4-2\,x^2-x-1}{2\,x}\right) \underset{r\to 0^+}{\sim} \cos\left(-\frac{1}{2\,x}\right)$ sous prétexte que $\frac{-21\,x^4 - 2\,x^2 - x - 1}{2\,x} \underset{x \to 0^+}{\sim} -\frac{1}{2\,x}.$ On conclut :

$$f(x) \underset{x \to 0^+}{\sim} -\frac{2}{3} \cos \left(\frac{21 x^4 + 2 x^2 + x + 1}{2 x} \right), \text{ et: } f(x) \underset{x \to +\infty}{\sim} -\frac{\cos \left(\frac{21 x^4 + 2 x^2 + x + 1}{2 x} \right)}{x}.$$

Corrigé 91. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire: u(x) = $o_{x\to +\infty}(v(x))$. Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes:

$$x^{3} \ln(x+1) \ll e^{x} \ll e^{x} \ln(x+1)^{3} \ll e^{x} \ln(x+1)^{4}$$

et:

$$xe^{(-3x)}\ln(x) \ll e^{(-2x)}\ln(x)^2 \ll x^5\ln(x)$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$e^{x} \ln(x+1)^{4} + x^{3} \ln(x+1) + 2 e^{x} \ln(x+1)^{3} + e^{x} \underset{x \to +\infty}{\sim} e^{x} \ln(x+1)^{4}$$
.

De même: $x^5 \ln(x) - xe^{(-3x)} \ln(x) - e^{(-2x)} \ln(x)^2 \sim x^5 \ln(x)$

De plus, on a $\ln(x+1) \underset{x \to +\infty}{\sim} \ln(x)$ (en effet: $\frac{\ln(x+1)}{\ln(x)} = \frac{\ln(x) + \ln\left(1 + \frac{1}{x}\right)}{\ln(x)} = 1 + \frac{\ln\left(1 + \frac{1}{x}\right)}{\ln(x)} \xrightarrow[x \to +\infty]{} 1$ car $\ln\left(1+\frac{1}{x}\right) \xrightarrow[x\to+\infty]{} 0$ et $\ln(x) \xrightarrow[x\to+\infty]{} +\infty$, ce qui simplifie le premier équivalent. On conclut :

$$g(x) \underset{x \to +\infty}{\sim} \frac{e^x \ln(x)^4}{x^5 \ln(x)} \underset{x \to +\infty}{\sim} \frac{e^x \ln(x)^3}{x^5}.$$

Corrigé 92. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 10

$$\frac{x^3+x-33}{x^2-x-2} \mathop{\sim}\limits_{x\to +\infty} \frac{x^3}{x^2} \mathop{\sim}\limits_{x\to +\infty} x \mathop{\longrightarrow}\limits_{x\to +\infty} +\infty, \quad \frac{-x^3-x^2-x-1}{-2\,x^3+x^2+4} \mathop{\sim}\limits_{x\to +\infty} \frac{-x^3}{-2\,x^3} \mathop{\sim}\limits_{x\to +\infty} \frac{1}{2}.$$

Par composition de limites: $\lim_{x\to +\infty} \arctan\left(\frac{x^3+x-33}{x^2-x-2}\right) = \frac{1}{2}\pi \neq 0$, et donc $\arctan\left(\frac{x^3+x-33}{x^2-x-2}\right) \sim \frac{1}{x^2-x-2}\pi$. On a donc:

$$f(x) \underset{x \to +\infty}{\sim} \frac{1}{2} \pi \times \left(\frac{1}{2}\right) \underset{x \to +\infty}{\sim} \frac{1}{4} \pi.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve :

$$\frac{x^3 + x - 33}{x^2 - x - 2} \underset{x \to 0^+}{\sim} \frac{-33}{-2} \underset{x \to 0^+}{\sim} \frac{33}{2} \xrightarrow[x \to 0]{} \frac{33}{2}, \quad \frac{-x^3 - x^2 - x - 1}{-2 x^3 + x^2 + 4} \underset{x \to 0}{\sim} \frac{-1}{4} \underset{x \to 0}{\sim} -\frac{1}{4}.$$

Par composition de limites: $\lim_{x\to 0^+} \arctan\left(\frac{x^3+x-33}{x^2-x-2}\right) = \arctan\left(\frac{33}{2}\right) \neq 0$, et donc:

$$\arctan\left(\frac{x^3+x-33}{x^2-x-2}\right) \underset{x\to 0^+}{\sim} \arctan\left(\frac{33}{2}\right).$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} -\frac{1}{4} \arctan\left(\frac{33}{2}\right), \text{ et}: f(x) \underset{x \to +\infty}{\sim} \frac{1}{4}\pi.$$

Corrigé 93. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 10

$$\frac{-6x^4 - 3x^3 - x^2 + 3x + 3}{-x^3 + 3x^2 - 2x - 1} \underset{x \to +\infty}{\sim} \frac{-6x^4}{-x^3} \underset{x \to +\infty}{\sim} 6x$$

Attention à ne pas penser que $\cos\left(\frac{x^2-x-18}{-x+1}\right) \underset{x\to+\infty}{\sim} \cos\left(-x\right)$ sous prétexte que $\frac{x^2-x-18}{-x+1} \underset{x\to+\infty}{\sim} -x$. Nous savons que les équivalents se composent mal, l'exponentielle et le logarithme donnant des contre-exemples classiques. On ne peut pas simplifier cette quantité. On a donc:

$$f(x) \underset{x \to +\infty}{\sim} \cos\left(-\frac{x^2 - x - 18}{x - 1}\right) \times (6x) \underset{x \to +\infty}{\sim} 6x \cos\left(-\frac{x^2 - x - 18}{x - 1}\right).$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve :

$$\frac{x^2 - x - 18}{-x + 1} \underset{x \to 0^+}{\sim} \frac{-18}{1} \underset{x \to 0^+}{\sim} -18 \underset{x \to 0}{\longrightarrow} -18, \quad \frac{-6x^4 - 3x^3 - x^2 + 3x + 3}{-x^3 + 3x^2 - 2x - 1} \underset{x \to 0}{\sim} \frac{3}{-1} \underset{x \to 0}{\sim} -3.$$

Par composition de limites: $\lim_{x\to 0^+} \cos\left(\frac{x^2-x-18}{-x+1}\right) = \cos\left(18\right) \neq 0$, et donc:

$$\cos\left(\frac{x^2-x-18}{-x+1}\right) \underset{x\to 0^+}{\sim} \cos(18).$$

On conclut:

$$f(x) \underset{x \to 0^{+}}{\sim} -3 \cos(18)$$
, et: $f(x) \underset{x \to +\infty}{\sim} 6 x \cos\left(-\frac{x^{2} - x - 18}{x - 1}\right)$.

Corrigé 94. Commençons par la deuxième fraction. On a $\ln(3\,x+1)+1 \underset{x\to 0}{\longrightarrow} 1$ et $\arctan(x)+1 \underset{x\to 0}{\longrightarrow} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u\to 1}{\sim} u-1$, on a : $\ln(\ln(3\,x+1)+1) \underset{x\to 0}{\sim} \ln(3\,x+1)$, et : $\ln(\arctan(x)+1) \underset{x\to 0}{\sim} \arctan(x)$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\ln(u+1) \underset{u\to 0}{\sim} u$ et $\arctan(u) \underset{u\to 0}{\sim} u$, où l'on prend $u=3\,x$ dans le premier développement limité, impliquent :

 $\frac{\ln\left(\ln\left(3\,x+1\right)+1\right)}{\ln\left(\arctan\left(x\right)+1\right)} \underset{x\to 0}{\sim} \frac{\ln\left(3\,x+1\right)}{\arctan\left(x\right)} \underset{x\to 0}{\sim} \frac{3\,x}{x} \underset{x\to 0}{\sim} 3.$

Passons à la première fraction. On a : $\ln(x+1) = x + o_{x\to 0}(x)$, et : $\sin(x) = x + o_{x\to 0}(x)$. Par conséquent :

$$\frac{\ln\left(\ln\left(4\,x+1\right)\right)}{\ln\left(\sin\left(3\,x\right)\right)} = \frac{\ln(4\,x+o_{x\to 0}\left(x\right))}{\ln(3\,x+o_{x\to 0}\left(x\right))} = \frac{\ln((4\,x)(1+o_{x\to 0}\left(1\right)))}{\ln((3\,x)(1+o_{x\to 0}\left(1\right)))} = \frac{\ln(4)+\ln\left(x\right)+\ln(1+o_{x\to 0}\left(1\right))}{\ln(3)+\ln\left(x\right)+\ln(1+o_{x\to 0}\left(1\right))} \underset{x\to 0}{\sim} \frac{\ln\left(x\right)}{\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(4) + \ln(1 + o_{x\to 0}(1)) \xrightarrow[x\to 0]{} \ln(4)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x \to 0}{\sim} \frac{\ln(x)}{\ln(x)} \times 3 = 3,$$

et en outre: $\lim_{x\to 0^+} f(x) = 3$.

Corrigé 95. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 11

$$\frac{-4x^2 - 12x - 1}{7x^2 + x - 1} \underset{x \to +\infty}{\sim} \frac{-4x^2}{7x^2} \underset{x \to +\infty}{\sim} -\frac{4}{7}.$$

Attention à ne pas penser que $\cos\left(\frac{-x^2-1}{-3\,x+7}\right) \underset{x\to+\infty}{\sim} \cos\left(\frac{1}{3}\,x\right)$ sous prétexte que $\frac{-x^2-1}{-3\,x+7} \underset{x\to+\infty}{\sim} \frac{1}{3}\,x$. Nous savons que les équivalents se composent mal, l'exponentielle et le logarithme donnant des contre-exemples classiques. On ne peut pas simplifier cette quantité. On a donc:

$$f(x) \underset{x \to +\infty}{\sim} \cos\left(\frac{x^2+1}{3x-7}\right) \times \left(-\frac{4}{7}\right) \underset{x \to +\infty}{\sim} -\frac{4}{7}\cos\left(\frac{x^2+1}{3x-7}\right).$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve :

$$\frac{-x^2 - 1}{-3x + 7} \underset{x \to 0^+}{\sim} \frac{-1}{7} \underset{x \to 0^+}{\sim} -\frac{1}{7} \underset{x \to 0}{\longrightarrow} -\frac{1}{7}, \quad \frac{-4x^2 - 12x - 1}{7x^2 + x - 1} \underset{x \to 0}{\sim} \frac{-1}{-1} \underset{x \to 0}{\sim} 1.$$

Par composition de limites: $\lim_{x\to 0^+} \cos\left(\frac{-x^2-1}{-3x+7}\right) = \cos\left(\frac{1}{7}\right) \neq 0$, et donc:

$$\cos\left(\frac{-x^2-1}{-3\,x+7}\right) \underset{x\to 0^+}{\sim} \cos\left(\frac{1}{7}\right).$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} \cos\left(\frac{1}{7}\right)$$
, et: $f(x) \underset{x \to +\infty}{\sim} -\frac{4}{7}\cos\left(\frac{x^2+1}{3x-7}\right)$.

Corrigé 96. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 11

$$\frac{2x^2 - 1}{x^3 + x + 1} \underset{x \to +\infty}{\sim} \frac{2x^2}{x^3} \underset{x \to +\infty}{\sim} \frac{2}{x} \underset{x \to +\infty}{\longrightarrow} 0, \quad \frac{x^2 - x - 2}{3x^4 - 2x^3 - x^2 - 2} \underset{x \to +\infty}{\sim} \frac{x^2}{3x^4} \underset{x \to +\infty}{\sim} \frac{1}{3x^2}.$$

Le fait que la première fraction rationnelle tende vers 0 autorise à écrire, en vertu de l'équivalent $\sin{(u)} \sim u$

$$u:\sin\left(\frac{2\,x^2-1}{x^3+x+1}\right) \mathop{\sim}\limits_{x\to+\infty} \frac{2\,x^2-1}{x^3+x+1} \mathop{\sim}\limits_{x\to+\infty} \frac{2}{x}.$$
 On a donc:

$$f(x) \underset{x \to +\infty}{\sim} \frac{2}{x} \times \left(\frac{1}{3x^2}\right) \underset{x \to +\infty}{\sim} \frac{2}{3x^3}.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve :

$$\frac{2x^2 - 1}{x^3 + x + 1} \underset{x \to 0^+}{\sim} \frac{-1}{1} \underset{x \to 0^+}{\sim} -1 \underset{x \to 0}{\longrightarrow} -1, \quad \frac{x^2 - x - 2}{3x^4 - 2x^3 - x^2 - 2} \underset{x \to 0}{\sim} \frac{-2}{-2} \underset{x \to 0}{\sim} 1.$$

Par composition de limites : $\lim_{x\to 0^+} \sin\left(\frac{2x^2-1}{x^3+x+1}\right) = -\sin(1) \neq 0$, et donc :

$$\sin\left(\frac{2x^2-1}{x^3+x+1}\right) \underset{x\to 0^+}{\sim} -\sin(1).$$

On conclut:

$$f(x) \underset{x \to 0^{+}}{\sim} -\sin(1)$$
, et: $f(x) \underset{x \to +\infty}{\sim} \frac{2}{3x^{3}}$.

Corrigé 97. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 11

$$\frac{4\,x^3-x^2+x+1}{x^3-x^2+3\,x-1} \mathop{\sim}_{x\to +\infty} \frac{4\,x^3}{x^3} \mathop{\sim}_{x\to +\infty} 4 \mathop{\longrightarrow}_{x\to +\infty} 4, \quad \frac{-x^3-x^2-7\,x-7}{-x^4-2\,x^3-3\,x^2+5\,x-1} \mathop{\sim}_{x\to +\infty} \frac{-x^3}{-x^4} \mathop{\sim}_{x\to +\infty} \frac{1}{x}.$$

Par composition de limites: $\lim_{x\to +\infty}\cos\left(\frac{4\,x^3-x^2+x+1}{x^3-x^2+3\,x-1}\right) = \cos\left(4\right) \neq 0, \text{ et donc:}$ $\cos\left(\frac{4\,x^3-x^2+x+1}{x^3-x^2+3\,x-1}\right) \underset{x\to +\infty}{\sim} \cos\left(4\right). \text{ On a donc:}$

$$f(x) \underset{x \to +\infty}{\sim} \cos(4) \times \left(\frac{1}{x}\right) \underset{x \to +\infty}{\sim} \frac{\cos(4)}{x}.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve

$$\frac{4\,x^3-x^2+x+1}{x^3-x^2+3\,x-1} \underset{x\to 0^+}{\sim} \frac{1}{-1} \underset{x\to 0^+}{\sim} -1 \underset{x\to 0}{\longrightarrow} -1, \quad \frac{-x^3-x^2-7\,x-7}{-x^4-2\,x^3-3\,x^2+5\,x-1} \underset{x\to 0}{\sim} \frac{-7}{-1} \underset{x\to 0}{\sim} 7.$$

Par composition de limites: $\lim_{x\to 0^+}\cos\left(\frac{4\,x^3-x^2+x+1}{x^3-x^2+3\,x-1}\right)=\cos\left(1\right)\neq 0$, et donc:

$$\cos\left(\frac{4x^3 - x^2 + x + 1}{x^3 - x^2 + 3x - 1}\right) \underset{x \to 0^+}{\sim} \cos(1).$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} 7 \cos(1)$$
, et: $f(x) \underset{x \to +\infty}{\sim} \frac{\cos(4)}{x}$.

Corrigé 98. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 11

$$\frac{-x+1}{-x^4+2\,x^3-x^2+2} \underset{x\to +\infty}{\sim} \frac{-x}{-x^4} \underset{x\to +\infty}{\sim} \frac{1}{x^3} \underset{x\to +\infty}{\longrightarrow} 0, \quad \frac{x^2-5\,x-8}{25\,x^2} \underset{x\to +\infty}{\sim} \frac{x^2}{25\,x^2} \underset{x\to +\infty}{\sim} \frac{1}{25}.$$

Le fait que la première fraction rationnelle tende vers 0 autorise à écrire, en vertu de l'équivalent $\sin{(u)}_{u\to 0}$ $u: \sin\left(\frac{-x+1}{-x^4+2\,x^3-x^2+2}\right) \underset{x\to +\infty}{\sim} \frac{-x+1}{-x^4+2\,x^3-x^2+2} \underset{x\to +\infty}{\sim} \frac{1}{x^3}$. On a donc:

 $f(x) \underset{x \to +\infty}{\sim} \frac{1}{x^3} \times \left(\frac{1}{25}\right) \underset{x \to +\infty}{\sim} \frac{1}{25 \, x^3}$

$$\frac{1}{x^4 + 2x^3 - x^2 + 2}$$
 $\xrightarrow{\sim}$ $\frac{1}{-x^4 + 2x^3 - x^2 + 2}$ $\xrightarrow{\sim}$ $\frac{1}{x^3}$. On a donc:

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{-x+1}{-x^4+2\,x^3-x^2+2} \underset{x\to 0^+}{\overset{\sim}{\sim}} \frac{1}{2} \underset{x\to 0^+}{\overset{\sim}{\sim}} \frac{1}{2} \underset{x\to 0}{\xrightarrow{\longrightarrow}} \frac{1}{2}, \quad \frac{x^2-5\,x-8}{25\,x^2} \underset{x\to 0}{\overset{\sim}{\sim}} \frac{-8}{25\,x^2} \underset{x\to 0}{\overset{\sim}{\sim}} -\frac{8}{25\,x^2}.$$

Par composition de limites: $\lim_{x\to 0^+} \sin\left(\frac{-x+1}{-x^4+2\,x^3-x^2+2}\right) = \sin\left(\frac{1}{2}\right) \neq 0$, et donc:

$$\sin\left(\frac{-x+1}{-x^4+2\,x^3-x^2+2}\right) \underset{x\to 0^+}{\sim} \sin\left(\frac{1}{2}\right).$$

On conclut:

$$f(x) \underset{x \to 0^{+}}{\sim} -\frac{8 \sin\left(\frac{1}{2}\right)}{25 x^{2}}, \text{ et}: f(x) \underset{x \to +\infty}{\sim} \frac{1}{25 x^{3}}.$$

Corrigé 99. Commençons par la deuxième fraction. On a $\sin(2x) + 1 \underset{x \to 0}{\longrightarrow} 1$ et $\cosh(2x) \underset{x \to 0}{\longrightarrow} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u \to 1}{\sim} u - 1$, on a : $\ln(\sin(2x) + 1) \underset{x \to 0}{\sim} \sin(2x)$, et : $\ln(\cosh(2x)) \underset{x \to 0}{\sim}$ $x \to 0$ $x \to$ impliquent:

$$\frac{\ln\left(\sin\left(2\,x\right)+1\right)}{\ln\left(\cosh\left(2\,x\right)\right)} \underset{x\to 0}{\sim} \frac{\sin\left(2\,x\right)}{\cosh\left(2\,x\right)-1} \underset{x\to 0}{\sim} \frac{2\,x}{2\,x^2} \underset{x\to 0}{\sim} \frac{1}{x}.$$

Passons à la première fraction. On a : $\sinh(x) = x + o_{x\to 0}(x)$, et : $e^x = 1 + x + o_{x\to 0}(x)$. Par conséquent :

$$\frac{\ln\left(\sinh\left(4\,x\right)\right)}{\ln\left(e^{(2\,x)}-1\right)} = \frac{\ln(4\,x+o_{x\to 0}(x))}{\ln(2\,x+o_{x\to 0}(x))} = \frac{\ln((4\,x)(1+o_{x\to 0}(1)))}{\ln((2\,x)(1+o_{x\to 0}(1)))} = \frac{\ln(4)+\ln\left(x\right)+\ln(1+o_{x\to 0}(1))}{\ln(2)+\ln\left(x\right)+\ln(1+o_{x\to 0}(1))} \underset{x\to 0}{\sim} \frac{\ln\left(x\right)}{\ln\left(x\right)}$$

le dernier équivalent venant du fait que $\ln(4) + \ln(1 + o_{x\to 0}(1)) \xrightarrow[x\to 0]{} \ln(4)$, donc a une limite finie et est négligeable devant ln(x) (qui a une limite infinie en 0); de même au dénominateur. On conclut :

$$f(x) \underset{x \to 0}{\sim} \frac{\ln(x)}{\ln(x)} \times \frac{1}{x} = \frac{1}{x},$$

Corrigé 100. Commençons par la deuxième fraction. On a $\sin(2x) + 1 \xrightarrow[x \to 0]{} 1$ et $\arctan(3x) + 1 \xrightarrow[x \to 0]{} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u \to 1}{\sim} u - 1$, on a: $\ln(\sin(2x) + 1) \underset{x \to 0}{\sim} \sin(2x)$, et : $\ln (\arctan (3x) + 1) \sim \arctan (3x)$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\sin(u) \underset{u \to 0}{\sim} u$ et $\arctan(u) \underset{u \to 0}{\sim} u$, où l'on prend respectivement u = 2x et u = 3x, impliquent :

$$\frac{\ln\left(\sin\left(2\,x\right)+1\right)}{\ln\left(\arctan\left(3\,x\right)+1\right)} \underset{x\to 0}{\sim} \frac{\sin\left(2\,x\right)}{\arctan\left(3\,x\right)} \underset{x\to 0}{\sim} \frac{2\,x}{3\,x} \underset{x\to 0}{\sim} \frac{2}{3}$$

Passons à la première fraction. On a: $\sin(x) = x + o(x)$, et: $\cosh(x) = 1 + \frac{1}{2}x^2 + o(x^2)$. Par conséquent:

$$\frac{\ln{(\sin{(2\,x)})}}{\ln{(\cosh{(2\,x)}-1)}} = \frac{\ln{(2\,x} + \mathop{o}\limits_{x \to 0}(x)}{\ln{(2\,x^2 + \mathop{o}\limits_{x \to 0}(x^2))}} = \frac{\ln{((2\,x)(1 + \mathop{o}\limits_{x \to 0}(1)))}}{\ln{((2\,x^2)(1 + \mathop{o}\limits_{x \to 0}(1)))}} = \frac{\ln{(2)} + \ln{(x)} + \ln{(1 + \mathop{o}\limits_{x \to 0}(1))}}{\ln{(2)} + 2\ln{(x)} + \ln{(1 + \mathop{o}\limits_{x \to 0}(1))}} \underset{x \to 0}{\sim} \frac{\ln{(x)}}{2\ln{(x)}} = \frac{\ln{(x)} + \ln{(x)} + \ln{(x)} + \ln{(x)} + \ln{(x)} + \ln{(x)}}{\ln{(x)} + \ln{(x)} + \ln{(x)}} = \frac{\ln{(x)} + \ln{(x)} + \ln{(x)} + \ln{(x)}}{\ln{(x)} + \ln{(x)} + \ln{(x)}} = \frac{\ln{(x)} + \ln{(x)} + \ln{(x)} + \ln{(x)}}{\ln{(x)} + \ln{(x)} + \ln{(x)}} = \frac{\ln{(x)} + \ln{(x)} + \ln{(x)} + \ln{(x)}}{\ln{(x)} + \ln{(x)}} = \frac{\ln{(x)} + \ln{(x)} + \ln{(x)} + \ln{(x)}}{\ln{(x)} + \ln{(x)}} = \frac{\ln{(x)} + \ln{(x)} + \ln{(x)}}{\ln{(x)} + \ln{(x)}} = \frac{\ln{(x)} + \ln{(x)}}{\ln{(x)} + \ln{(x)}} = \frac{\ln{(x)}}{\ln{(x)}} = \frac{\ln{(x)} + \ln{(x)}}{\ln{(x)} + \ln{(x)}} = \frac{\ln{(x)}}{\ln{(x)}} = \frac{\ln{(x)}}{\ln{($$

le dernier équivalent venant du fait que $\ln(2) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(2)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut :

$$f(x) \underset{x\to 0}{\sim} \frac{\ln(x)}{2 \ln(x)} \times \frac{2}{3} = \frac{1}{3},$$

et en outre: $\lim_{x\to 0^+} f(x) = \frac{1}{3}$.