

# **ATLAS Note**



Search for flavor-changing neutral currents tHq interactions with  $H \to \tau^+\tau^-$  in proton-proton collisions at  $\sqrt{s} = 13$  TeV

The ATLAS Collaboration

#### 18th November 2020

A search is presented for flavor-changing neutral currents tHq interactions with  $H \to \tau^+\tau^-$  using a data set collected with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 140 fb<sup>-1</sup> of proton-proton collisions at a center-of-mass energy of 13 TeV. The search is performed in the decay chain  $t\bar{t} \to Wb + Hq$  or  $qg \to tH \to Wb + H$  (q = c/u), where the W boson decays inclusively and H decays to  $\tau^+\tau^-$ . Upper limits at 95 % confidence level for the coupling coefficient are measured to be XXX and XXX, while the expected limits are  $XXX_{-XXX}^{+XXX}$ % and  $XXX_{-XXX}^{+XXX}$ %, respectively.

To be done:

10

13

15

- 1) Theory systematics
- 2) Systematics for lepton channels

© 2020 CERN for the benefit of the ATLAS Collaboration.

17 Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

# 18 Contents

| 19 | 1  | Intr | oduction                                                                      | 4  |
|----|----|------|-------------------------------------------------------------------------------|----|
| 20 | 2  | Dete | ector, data set and Monte Carlo simulation                                    | 5  |
| 21 |    | 2.1  | ATLAS detector                                                                | 5  |
| 22 |    | 2.2  | Data set                                                                      | 6  |
| 23 |    | 2.3  | Signal and background simulation                                              | 7  |
| 24 | 3  | Obje | ect reconstruction                                                            | 8  |
| 25 |    | 3.1  | Jets                                                                          | 9  |
| 26 |    | 3.2  | b-tagging b-tagging                                                           | 9  |
| 27 |    | 3.3  | Electrons                                                                     | 9  |
| 28 |    | 3.4  | Muons                                                                         | 9  |
| 29 |    | 3.5  | Hadronic tau decays                                                           | 10 |
| 30 |    | 3.6  | Missing transverse energy                                                     | 10 |
| 31 |    | 3.7  | Overlap removal                                                               | 10 |
| 32 | 4  | Blin | ding strategy                                                                 | 12 |
| 33 | 5  | Reco | onstruction of event topology                                                 | 12 |
| 34 | 6  | Sele | ection of events                                                              | 17 |
| 35 |    | 6.1  | Trigger                                                                       | 17 |
| 36 |    | 6.2  | Event cuts and regions                                                        | 19 |
| 37 | 7  | FCN  | NC signal samples                                                             | 25 |
| 38 | 8  | Back | kground estimation                                                            | 25 |
| 39 |    | 8.1  | Origin of fake $\tau_{\rm had}$                                               | 26 |
| 40 |    | 8.2  | MC fake $\tau_{\rm had}$ estimation                                           | 26 |
| 41 |    | 8.3  | QCD fake $\tau_{\text{had}}$ estimate in $\tau_{\text{had}}\tau_{\text{had}}$ | 29 |
| 42 |    | 8.4  | Fake lepton background                                                        | 29 |
| 43 |    | 8.5  | Summary of signal and background events                                       | 29 |
| 44 | 9  | MV   | A analysis                                                                    | 37 |
| 45 | 10 | Syst | sematic uncertainties                                                         | 46 |
| 46 |    | 10.1 | Luminosity                                                                    | 46 |
| 47 |    | 10.2 | Detector-related uncertainties                                                | 46 |
| 48 |    | 10.3 | Uncertainties on fake background estimations                                  | 48 |
| 49 |    | 10.4 | Theoretical uncertainties on the background                                   | 48 |

| 51 | 11 Fit model and signal extraction | 50 |
|----|------------------------------------|----|
| 52 | 12 Results                         | 54 |
|    |                                    |    |
| 53 | Appendix                           | 55 |

#### 4 1 Introduction

Since the discovery of the Higgs boson in 2012, great efforts are made to study its properties. As the mass of the Higgs boson is about 125 GeV [1], it is kinematically allowed that a top quark decays to a Higgs boson and an up-type quark via the flavour-changing neutral current (FCNC). In the Standard Model (SM), the FCNC interaction is forbidden at tree level and suppressed at higher orders due to the Glashow-Iliopoulos-Maiani (GIM) mechanism [2]. The  $t \rightarrow u/c + H$  branching fraction in the SM is calculated to be around  $10^{-15}$  [3]. It would be enhanced in many models beyond the SM (BSM). Examples are the quark-singlet model [4, 5], the two-Higgs doublet model with or without the flavour violation [6, 7], the minimal supersymmetric standard model (MSSM) [8], supersymmetry with R-parity violation [9], the Topcolour-assisted Technicolour model [10] or models with warped extra dimensions [11], the little Higgs model with T-parity conservation [12] and the composite Higgs models [13]. Especially, the ansatz of Cheng and Sher [14] allows a branching fraction of about  $10^{-3}$  [15]. Therefore, an observation of this decay would be a clear evidence for new physics.

On the other hand, if the tHq interaction exists, the single-top, Higgs associated production through this interaction should also be enhanced. The tH associated production in the SM prediction is expected to be small at LHC[16]. So the study on this process will also contribute to the FCNC interaction searches.

Upper 95% CL limits on BR( $t \to Hq$ ) have been obtained by ATLAS based on the data from 2015 and 2016, in the  $H \to \gamma\gamma$  [17],  $H \to WW/\tau_{\rm lep}\tau_{\rm lep}$  multilepton [18] and  $H \to \tau\tau$ ,  $H \to b\bar{b}$  [19] channels. The combined expected (observed) limits are 0.083% (0.11%) and 0.083% (0.12%) for  $t \to Hc$  and  $t \to Hu$ , respectively.

The  $t \to Hq$  decay and  $gq \to tH$  production are also searched by CMS based on the data from 2015 and 2016[20].

The FCNC coupling is parametrised using dim-6 operators [21]. The effective Lagrangian regarding tqH interaction before spontaneously symmetry breaking is:

$$\mathcal{L}_{EFT} = \frac{C_{u\phi}^{i3}}{\Lambda^2} (\phi^{\dagger} \phi) (\bar{q}_i t) \tilde{\phi} + \frac{C_{u\phi}^{3i}}{\Lambda^2} (\phi^{\dagger} \phi) (\bar{Q} u_i) \tilde{\phi} + H.c$$
 (1)

Where the operator notation is consistent with [21].  $C^{i3}$  is the Wilson coefficient of the 6-dim operator with i=1,2 denoting the flavor of upper type quark.  $\Lambda$  is the scale of the new physics where the UV cut off happens which is set as 1 TeV as benchmark.  $\phi$  is the SM higgs doublet.  $\tilde{\phi} = \epsilon \phi^*$  where  $\epsilon$  is the antisymmetric matrix with  $\epsilon_{12} = -\epsilon_{21} = 1$ .

The Wilson coefficient  $C_{u\phi}$ 's can be extracted as

$$(C_{u\phi}^{i3})^{2} + (C_{u\phi}^{3i})^{2} = 1946.6 \text{ BR}(t \to qH)$$

$$(C_{u\phi}^{13})^{2} + (C_{u\phi}^{31})^{2} = \sigma(ug \to tH)/365.2 \text{ fb}$$

$$(C_{u\phi}^{23})^{2} + (C_{u\phi}^{32})^{2} = \sigma(cg \to tH)/52.9 \text{ fb}$$
(2)

To give a better impression on the numbers, we use BR( $t \to qH$ ) = 1(0.2)% as benchmark, which is corresponding to  $(C_{u\phi}^{13})^2 + (C_{u\phi}^{31})^2 = 19.47(3.89)$ ,  $\sigma(ug \to tH) = 7109.0(1421.8)$  pb,  $\sigma(cg \to tH) = 1029.8(206.0)$  pb.

In this article, a search for the decay  $t \to qH$  in the  $t\bar{t}$  production (TT) and single-top, Higgs associated production (ST) with  $H \to \tau\tau$  as shown in Fig 1 using 140 fb<sup>-1</sup> of proton-proton collision data at 13 TeV, taken with the ATLAS detector at the Large Hadron Collider (LHC), is presented. The final state is characterized by one top and one Higgs. In TT, there is an additional u/c quark forming a top resonance with Higgs.



Figure 1: Diagrams of FCNC TT(left) and ST(right) process.

### 91 2 Detector, data set and Monte Carlo simulation

### 92 2.1 ATLAS detector

The ATLAS detector [22] at the LHC covers nearly the entire solid angle around the collision point. It consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer incorporating three large superconducting toroid magnets.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides charged particle tracking in the range  $|\eta| < 2.5$ . A high-granularity silicon pixel detector covers the vertex region and typically provides three measurements per track. It is followed by a silicon microstrip tracker, which usually provides four two-dimensional measurement points per track. These silicon detectors are complemented by a transition radiation tracker, which enables radially extended track reconstruction up to  $|\eta| < 2.0$ . The transition radiation tracker also provides electron identification information based on the fraction of hits above a higher energy-deposit threshold corresponding to transition radiation. Compared to Run-1, an Insertable B-Layer [23] (IBL) is inserted as the innermost pixel layer during LS1 for Run-2, which significantly improves the tracking performance.

The calorimeter system covers the pseudorapidity range  $|\eta| < 4.9$ . Within the region  $|\eta| < 3.2$ , electromagnetic calorimetry is provided by barrel and endcap high-granularity liquid-argon (LAr) electromagnetic calorimeters, with an additional thin LAr presampler covering  $|\eta| < 1.8$ , to correct for energy loss in material upstream of the calorimeters. Hadronic calorimetry is provided by a scintillator-tile calorimeter, segmented into three barrel structures within  $|\eta| < 1.7$ , and two LAr hadronic endcap calorimeters.

A muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers measuring the deflection of muons in a magnetic field generated by superconducting air-core toroids. The precision chamber system covers the region  $|\eta| < 2.7$  with three layers of monitored drift tubes, complemented by cathode strip chambers in the forward region, where the background is highest. The muon trigger system covers the range  $|\eta| < 2.4$  with resistive-plate chambers in the barrel, and thin-gap chambers in the endcap regions.

#### 2.2 Data set

121

122

This analysis is based on the full proton-proton data at a center-of-mass energy  $\sqrt{s} = 13$  TeV with a bunch spacing of 25 ns collected by ATLAS in Run-2. The following good run list (GRL) was used for the 2015 dataset:

```
data15 13TeV.periodAllYear DetStatus-v89-pro21-02
```

\_Unknown\_PHYS\_StandardGRL\_All\_Good\_25ns.xml

which corresponds to an integrated luminosity of  $3.22 \text{ fb}^{-1}$ .

The GRL used for the 2016 dataset:

```
data16_13TeV.periodAllYear_DetStatus-v89-pro21-01

_DQDefects-00-02-04_PHYS_StandardGRL_All_Good_25ns.xml
```

corresponds to an integrated luminosity of 32.88 fb<sup>-1</sup>.

These GRLs exclude data where the IBL was not fully operational. The uncertainty in the combined 2015+2016 integrated luminosity, 36.1 fb<sup>-1</sup>, is 2.1%. It is derived, following a methodology similar to that detailed in Ref. [24], from a calibration of the luminosity scale using x-y beam-separation scans performed in August 2015 and May 2016.

The GRL used for the 2017 dataset:

```
data17_13TeV.periodAllYear_DetStatus-v99-pro22-01

_Unknown_PHYS_StandardGRL_All_Good_25ns_Triggerno17e33prim.xml
```

corresponds to an integrated luminosity of 44.307 fb<sup>-1</sup>.

The GRL used for the 2018 dataset:

```
data18_13TeV.periodAllYear_DetStatus-v102-pro22-04

_Unknown_PHYS_StandardGRL_All_Good_25ns_Triggerno17e33prim.xml
```

corresponds to an integrated luminosity of  $59.937 \text{ fb}^{-1}$ . The final luminosity used for the analysis is  $140.45 \text{ fb}^{-1}$ .

### 2.3 Signal and background simulation

The overview of the major samples generated is summarized in table 1.

The TopFCNC UFO model [25, 26] with 5-flavour scheme is used for signal simulation.

The FCNC ST signal is simulated using MadGraph5\_aMC@NLO v2.6.2 [27] interfaced with Pythia 8 [28] with the A14 tune [29] for the generation of parton showers, hadronisation and multiple interactions and the NNPDF30NLO [30] parton distribution functions (PDF) is used to generate *qg* events at next-to-leading order (NLO) in QCD. Depending on either up quark or charm quark involved in the FCNC decay and either the *W* bosons decaying hadronically or leptonically, 4 samples are generated for each term of effective Lagrangian, so eight samples in total.

The FCNC TT signal is simulated using Powheg-Box [31] V2 interfaced with Pythia8 [28] with the A14 tune [29] for the generation of parton showers, hadronisation and multiple interactions and the NNPDF30NLO [30] parton distribution functions (PDF) is used to generate  $t\bar{t}$  events at next-to-leading order (NLO) in QCD. Depending on either the top or the anti-top quark decaying to bW, either up quark or charm quark involved in the FCNC decay and either the W bosons decaying hadronically or leptonically, eight samples are produced with the Higgs going to a  $\tau$ -lepton pair.

The dominant background is the  $t\bar{t}$  production. The  $t\bar{t}$  process and the single top process are generated with Powheg-Box [31] V2, and Pythia8 is used for the parton shower. NNPDF30NLO [30] and A14 tune [29] are used for  $t\bar{t}$  (single top). The  $t\bar{t}$  sample is also generated with different generators and parton showers models, as well as different amount of radiations, for systematics as detailed in Sec. 10.

The  $t\bar{t}X$ , where X=W, ee,  $\mu\mu$ ,  $\tau\tau$  or  $Z(qq, \nu\nu)$  ( $\tau\tau$  has the Higgs resonance excluded), are generated with MadGraph5\_aMC@NLO and inferfaced with Pythia8 for the parton shower. The NNPDF30NLO [30] is used for the matrix element PDF. The  $t\bar{t}$ , single top and  $t\bar{t}X$  are combined into a single process named top background in the analysis.

The W+jets, Z+jets and diboson backgrounds are simulated using Sherpa 2.2.1 [32] with NNPDF30NNLO PDF [30].

| Process     | Generator             |         | PDF         | set         | Tune        | Order  |
|-------------|-----------------------|---------|-------------|-------------|-------------|--------|
| riocess     | ME                    | PS      | ME          | PS          | Tune        | Order  |
| TT Signal   | Powheg                | Pythia8 | NNPDF30NLO  | NNPDF23LO   | A14         | NLO    |
| ST Signal   | MadGraph5_aMC@NLO     | Pythia8 | NNPDF30NLO  | NNPDF23LO   | A14         | NLO    |
| W/Z+jets    | W/Z+jets Sherpa 2.2.1 |         | NNPDF30NNLO |             | Sherpa      | NLO/LO |
| $t\bar{t}$  | Powheg                | Pythia8 | NNPDF30NLO  | NNPDF23LO   | A14         | NLO    |
| Single top  | Powheg                | Pythia6 | CT10(NLO)   | CTEQ6L1[44] | Perugia2012 | NLO    |
| $t\bar{t}X$ | MadGraph5_aMC@NLO     | Pythia8 | NNPDF30NLO  | NNPDF23LO   | A14         | NLO    |
| Diboson     | Diboson Sherpa 2.2.1  |         | NNPDF30NNLO |             | Sherpa      | NLO/LO |

Table 1: Overview of the MC generators used for the main signal and background samples

The  $\tau$  decay in the single top samples is handled by Tauola [33]. All samples showered by Pythia8 (Sherpa) have the  $\tau$  decays also handled by Pythia8 (Sherpa). All the decay modes of the  $\tau$  lepton are allowed in the event generators (but may be subject to generator filters). The summary of used generators for matrix element and parton shower is given in Tab. 1.

The SM higgs background includes ggH, VH, VBF and  $t\bar{t}H$ , generated from Powheg-Box [31] V2 interfaced with Pythia8. The overall contribution is pretty small. Various PDF and tune options are use for those samples depending on the decay modes.

The *tH* associated production is negligible but we still considered it. The sample is generated using MadGraph5 and interfaced with pythia8 for parton shower. CT10 PDF and A14 tune are used. It is treated as part of SM higgs background explained in above.

All Monte-Carlo (MC) samples were passed through the full GEANT4 [34] simulation of the ATLAS detector, except for two extra  $t\bar{t}$  samples with Pythia8 and Herwig7 [35] parton showering which are simulated with ATLFAST-II [36] for systematics (Sec. 10). In the analysis, the simulated events were reweighted based on their pile-up to match the pile-up profile observed in data.

The full list of MC samples and their corresponding cross sections are given in App. ??. The single boson and diboson cross sections are calculated to NNLO [37]. The  $t\bar{t}$  cross section is calculated at NNLO in QCD including resummation of NNLL soft gluon terms for a top-quark mass of 172.5 GeV [38]. The  $t\bar{t}H$  and  $t\bar{t}V$  are normalized to NLO cross sections according to [39] and [40]. The t-channel and t-channel single top cross sections are calculated at NLO with Hathor v2.1 [41, 42], while the t-channel is calculated at NLO+NNLL [43].

### 3 Object reconstruction

In this section, various objects used in this analysis are defined, namely jets, electrons, muons, hadronically decaying taus and missing transverse energy.

### 189 3.1 Jets

Jets are reconstructed using the anti- $k_t$  algorithm [45] with a distance parameter R=0.4 applied to the particle flow candidates. Only jets with  $p_T>25$  GeV and  $|\eta|<4.5$  are considered by the analysis. To suppress jets produced in additional pile-up interactions, jets with  $p_T<60$  GeV and  $|\eta|<2.4$  are required to have a Jet Vertex Tagger (JVT [46]) parameter larger than 0.2 (Medium working point). The JVT is the output of the jet vertex tagger algorithm used to identify and select jets originating from the hard-scatter interaction through the use of tracking and vertexing information. About 10% of selected jets in the signal are in the forward detector region. After the above selection and overlap removal, a "jet cleaning" cut is applied on all the jets, and the events with jets not passing this cut are discarded.

### 198 3.2 b-tagging

The DL1r [47] algorithm is used to identify the jets initiated by b-quarks. A working point corresponding to an average efficiency of 70% for jets containing b-quarks is chosen.

#### 201 3.3 Electrons

Electron candidates are identified by tracks reconstructed in the inner detector and the matched cluster of energy deposited in the electromagnetic calorimeter. Electrons candidates are required to have  $E_T > 15$  GeV and  $|\eta| < 2.47$ . The transition region,  $1.37 < |\eta| < 1.52$ , between the barrel and end-cap calorimeters is excluded. They are further required to pass a loose + b-layer likelihood-based identification point [48] and a FCLoose isolation working point [49]. The electrions are further removed if its cluster is affected by the presence of a dead frontend board in the first or second sampling or by the presence of a dead high voltage region affecting the three samplings or by the presence of a masked cell in the core.

#### 209 **3.4 Muons**

Muon reconstruction begins with tracks reconstructed in the MS and is matched to tracks reconstructed in the inner detector. Muon candidates are required to have  $p_T > 10$  GeV and  $|\eta| < 2.5$ . A Loose identification selection [50] based on the requirements on the number of hits in the ID and the MS is satisfied. A Gradient isolation [49] criterion is also required.

### 3.5 Hadronic tau decays

The hadronic tau candidates [51] are seeded by jets reconstructed by the anti- $k_t$  algorithm [45], which is applied on calibrated topo clusters [52] with a distance parameter of R=0.4. They are required to have  $p_T > 20$  GeV and  $|\eta| < 2.5$ . The transition region between the barrel and end-cap calorimeters 217  $(1.37 < |\eta| < 1.52)$  is excluded. An identification algorithm based on Recursive Neural Network [53] 218 is applied to discriminate the visible decay products of hadronically decaying tau lepton  $\tau_{had}$  from jets 219 initiated by quarks or gluons. Different RNN working points are provided and required at different levels depending on the analysis channel. The Loose ID taus are used for the overlap removal and missing 221 transverse energy calculation. In the analysis event selection, the hadronic tau candidates are required to 222 have one or three charged tracks and an absolute charge of one, and pass the Medium tau ID to reject the 223 jets. For the Medium ID, the tau efficiency is about 75% (60%) for 1-prong (3-prong) candidates. The ID 224 efficiencies are optimized to be flat versus the tau  $p_T$  and pileup. The tau candidates are required to not overlap with a very loose electron candidate, and a dedicated BDT variable is also used to veto the taus which are actually electrons. If the  $\tau_{had}$  candidate is also tagged as a b-jet, then this tau object is also not 227 used. Efficiency scale factors for tau reconstruction, ID and electron BDT rejection [54] are applied on 228 tau candidates in MC.

# 3.6 Missing transverse energy

The missing transverse energy  $E_{\rm T}^{\rm miss}$  is computed using the fully calibrated and reconstructed physics objects as described above. The TrackSoftTerm (TST) algorithm is used to compute the SoftTerm of the  $E_{\rm T}^{\rm miss}$  [55].

# 3.7 Overlap removal

240

241

For the objects passing the selection above, a geometric overlap removal is applied to eliminate the ambiguity in the object identification. When two objects are close geometrically with  $\Delta R$  less than a certain threshold, or satisfy some certain requirements, one of them will be removed. The overlap removal is done by the official overlap removal tool provided by ASG group. The "Standard" working point is used. The rules are discribed as follows in sequence:

- If two electrons have overlapped second-layer cluser, or shared tracks, the electron with lower p<sub>T</sub> is removed.
  - $\tau_{\text{had}}$  within a  $\Delta R = 0.2$  cone of an electron or muon are removed.

- If a muon sharing an ID track with an electron and the muon is calo-tagged, the muon is removed.

  Otherwise the electron is removed.
- Jets within a  $\Delta R = 0.2$  cone of an electron are removed.
- Electrons within a  $\Delta R = 0.4$  cone of a jet are removed.
- When a muon ID track is ghost associated to a jet or within a  $\Delta R = 0.2$  cone of a jet, the jet is removed if it has less than 3 tracks with  $p_{\rm T} > 500$  MeV or has a relative small  $p_{\rm T}$  ( $p_{\rm T}^{\mu} > 0.5p_{\rm T}^{\rm jet}$  and  $p_{\rm T}^{\mu} > 0.7$ [the scalar sum of the  $p_{\rm T}$ 's of the jet tracks with  $p_{\rm T} > 500$  MeV]).
- Muons within a  $\Delta R = 0.4$  cone of a jet are removed.
- Jets within a  $\Delta R = 0.2$  cone of the leading  $\tau_{had}$  ( $\tau_{lep}\tau_{had}$ ), or with the two leading  $\tau_{had}$ 's ( $\tau_{had}\tau_{had}$ ), are excluded. The overlap also works for the reverted tau ID regions used in the analysis, since the tau ID information is not used.
  - If a tau object is also tagged as a *b*-jet, then this tau object is removed.
- Note that the  $E_{\rm T}^{\rm miss}$  calculation package has its own overlap removal procedure. Taus that fail Loose ID are also passed to the package. Only two leading taus are considered in the calculation.

Table 2: Overview of the final states of signal events

| # of particles |                          | alias | b-jet | jets | lepton | taus |
|----------------|--------------------------|-------|-------|------|--------|------|
| ST             | $W \rightarrow l \nu$    | STL   | 1     | 1    | 1      | 2    |
| 31             | $W \rightarrow q\bar{q}$ | STH   | 1     | 3    | 0      | 2    |
| TT             | $W \rightarrow l \nu$    | TTL   | 1     | 2    | 1      | 2    |
| 11             | $W \rightarrow q\bar{q}$ | TTH   | 1     | 4    | 0      | 2    |

Table 3: Overview of the signal regions

| # of particles                               | b-jet | jets | lepton | hadronic taus |
|----------------------------------------------|-------|------|--------|---------------|
| lτ <sub>had</sub> 2j                         | 1     | ≥ 2  | 1      | 1             |
| lτ <sub>had</sub> 1j                         | 1     | 1    | 2      | 1             |
| $l	au_{ m had}	au_{ m had}$                  | 1     | ≥ 1  | 1      | 2             |
| STH $	au_{ m had}	au_{ m had}$               | 1     | 3    | 0      | 2             |
| TTH $	au_{ m had}	au_{ m had}$               | 1     | ≥ 4  | 0      | 2             |
| STH $\tau_{\mathrm{lep}}\tau_{\mathrm{had}}$ | 1     | 3    | 1      | 1             |
| TTH $\tau_{\rm lep} \tau_{\rm had}$          | 1     | ≥ 4  | 1      | 1             |

### 57 4 Blinding strategy

In order to keep the analysis unbiased from artificial cut tunings, data histogram bins with significances greater than 1 when decaying branching ratio is 0.2% are blinded. In addition, the signal enriched high BDT region are blinded (BDT > 0.2).

# 5 Reconstruction of event topology

Depending on the production modes and the decay of the W boson from top quark, the analysis is split into 4 categories as shown in table 3. All of the 8 decay modes are considered in the analyses. The selection requirement dedicated for each decay mode is also listed in talbe 3. Due to the low statistics when STL cuts are applied, the STL and TTL are included in a single region  $l\tau_{\rm had}\tau_{\rm had}$  for  $H\to\tau_{\rm had}\tau_{\rm had}$  where there is no light jet multiplicity requirement. However due to the low tau reconstruction rate, it is not rare that one of tau fails the reconstruction and remains as a jet. So the  $l\tau_{\rm had}$  1j and  $l\tau_{\rm had}$  2j are included as signal regions where the lepton and  $\tau_{\rm had}$  are same charged to reduce background.

For the future convenience, STH  $\tau_{lep}\tau_{had}$  and TTH  $\tau_{lep}\tau_{had}$  are indicated by  $\tau_{lep}\tau_{had}$ ; STH  $\tau_{had}\tau_{had}$  and TTH  $\tau_{had}\tau_{had}$  are indicated by  $\tau_{had}\tau_{had}$ ;  $t_{had}\tau_{had}$  are indicated by  $t_{had}\tau_{had}$ . All the channels involving leptons (including  $\tau_{lep}$ ) are indicated by leptonic channels.

To comply with the signal topology, in each channel, exactly one jet should be tagged as a b-jet.

In TTH channel, all jets from the top hadronic decay and the jet from  $t \to Hq$ , denoted as the FCNC jet, pass the jet selection, there should be at least four jets among which the one with smallest  $\Delta R(p_{\rm jet}^{\mu}, p_{\tau 1}^{\mu} + p_{\tau 2}^{\mu})$ is considered as FCNC jet. If there are more than 2 jets beside FCNC jet and *b*-jet, the jets from *W* boson decay are chosen based on *W* boson resonance. There is the chance that one of the jets fails the  $p_{\rm T}$  requirement and not reconstructed. This kind of events will fall into STH channel. The FCNC top resonance is still reconstructed given the big chance that the jet which is missing is from *W* decay.

In STH events, there are 3 jets coming from top decay including the b-jet. So a Higgs resonance formed by the taus and a top resonance formed by the jets are expected.

In STH and TTH channels, the  $\chi^2$  fit is used to recontruct the ditau mass and momentum by taking the  $\tau$  decay kinematics into account. To determine the 4-momenta of the invisible decay products of the tau decays, the following  $\chi^2$  in Eq. 3, based on the collinear approximation is used.

$$\chi^2 = \left(\frac{m_H^{\text{fit}} - 125}{\sigma_{\text{Higgs}}}\right)^2 + \left(\frac{E_{x,\text{miss}}^{\text{fit}} - E_{x,\text{miss}}}{\sigma_{\text{miss}}}\right)^2 + \left(\frac{E_{y,\text{miss}}^{\text{fit}} - E_{y,\text{miss}}}{\sigma_{\text{miss}}}\right)^2,\tag{3}$$

In Eq. 3, the free parameters scanned are the energy ratio of invisible decay products for each tau decay.

If the tau decays leptonically, the neutrino mass is also introduced in the fit which is constrained to be smaller than tau mass. The Higgs mass resolution is set to 1.8 GeV and 20 GeV respectively. The  $E_{\rm T}^{\rm miss}$  resolution is parametrized as

$$\sigma_{\text{miss}} = 13.1 + 0.50\sqrt{\Sigma E_{\text{T}}},\tag{4}$$

where  $\Sigma E_{\mathrm{T}}$  (in GeV) is the scalar sum of transverse energy depositions of all objects and clusters. The invisible 4-momenta are obtained by minimizing the combined  $\chi^2$  for each event<sup>1</sup>. By adding the Higgs mass constraint term in the kinematic fit, not only is the Higgs mass resolution improved, but also the resolutions of the Higgs boson's four-momentum, and the mass of the top from which the Higgs comes. Figure 3 shows the distributions of  $\chi^2$  in different regions. Good agreement between data and background predictions are achieved.

In  $l\tau_{had}\tau_{had}$  channels, a Higgs resonance formed by the taus is expected. Additionally for TTL  $\tau_{had}\tau_{had}$  events, a top resonance formed by the c/u jet and Higgs is expected.

Due to the large amount of neutrinos produced in leptonic channels with a huge degree of freedom. The kinematic fit to reconstruct the neutrinos is given up in  $l\tau_{had}\tau_{had}$  and  $l\tau_{had}$  channels. The kinematics calculated directly from visible particles and  $E_T^{miss}$  are used as BDT input.

With the event topology reconstructed, a number of variables are defined for signal and background separation. Their distributions can be found in Sec. 8, and some of their explanations are as follows. In the following explanations, di-tau point to the visible decay product of both  $\tau_{had}$  and  $\tau_{lep}$ .

<sup>&</sup>lt;sup>1</sup> The coarse global minimum of the  $\chi^2$  in Eq. 3 is first obtained by scanning the  $(\eta, \phi)$  of the netrino(s) from one tau, and repeating for the other tau. Then a final minimum is obtained around it with the MINUIT packge [56].



Figure 2: The distributions of  $\chi^2$  in Eq. 3 in the hadronic channels.

- 1.  $E_{miss}^{T}$  is the missing transverse momentum.
- 2.  $p_{T,\tau}$  is the transverse momentum of the leading tau candidate.
- 3.  $p_{T,sub-\tau}$  is the transverse momentum of the sub-leading tau candidate.
- 4.  $p_{T,l}$  is the transverse momentum of the leading lepton.
- $\chi^2$  is derived from kinematic fitting for the neutrinos.
- 6.  $m_{t,SM}$  is the invariant mass of the b-jet and the two jets from the W decay, and reflects the top mass in the decay  $t \to Wb \to j_1j_2b$ . This variable is only defined for the 4-jet STH and TTH events.
- 7.  $m_W^T$  is the transverse mass calculated from the lepton and  $E_T^{\text{miss}}$  in the leptonic channels, defined as

$$m_W^T = \sqrt{2p_{\rm T,lep} E_{\rm T}^{\rm miss} \left(1 - \cos \Delta \phi_{\rm lep,miss}\right)}.$$
 (5)

- 8.  $m_{\tau,\tau}$  is the invariant mass of the tau candidates and reconstructed neutrinos in STH and TTH channels.
- 9.  $m_W$  is the reconstructed invariant mass of the hadronic W boson from SM top quark.
- $m_{t,FCNC}$  is the visible invariant mass of the FCNC-decaying top quark reconstructed from di-tau candidates, FCNC-jet and reconstructed neutrinos.
- 11.  $m_{\tau\tau,vis}$  is the visible invariant mass of the di-tau candidates
- 12.  $p_{T,\tau\tau,vis}$  is the  $p_T$  of the di-tau candidates.
- 13.  $m_{t,FCNC,vis}$  is the reconstructed invariant mass of the FCNC-decaying top quark.
- 14.  $m_{t,SM,vis}$  is the invariant mass of the lepton and the b-jet, which reflects the visible SM top mass.
- 15.  $M(\tau \tau light jet, min)$  is the invariant mass of the di-tau candidates (include leptonic tau) and the light-flavor jet, minimized by choosing different jet.
- 16. M(light jet, light jet, min) is the invariant mass of two light-flavor jet, minimized by choosing different jets.
- 17.  $E_{miss}^{T}$  centrality is a measure of how central the  $E_{T}^{miss}$  lies between the two tau candidates in the transverse plane, and is defined as

$$E_{\rm T}^{\rm miss} \ {\rm centrality} = (x+y)/\sqrt{x^2+y^2}, \\ {\rm with} \ x = \frac{\sin(\phi_{\rm miss}-\phi_{\tau_1})}{\sin(\phi_{\tau_2}-\phi_{\tau_1})}, \ y = \frac{\sin(\phi_{\tau_2}-\phi_{\rm miss})}{\sin(\phi_{\tau_2}-\phi_{\tau_1})},$$
 (6)

- 18.  $E_{\nu,i}/E_{\tau,i}$ , i=1,2 is the momentum fraction carried by the visible decay products from the tau mother. It is based on the best-fit 4-momentum of the neutrino(s) according to the event reconstruction algorithm in this section. For the  $\tau_{had}$  decay mode, the visible decay products carry most of the tau energy since there is only a single neutrino in the final state, which is evident in the excess around 1 in Fig. 4.
- 19.  $\Delta R(l+b-jet,\tau+\tau)$  is the angular distance between the lepton+b-jet and di-tau candidates.
- 20.  $\Delta R(l, b jet)$  is the angular distance between the lepton and b-jet.
- 21.  $\Delta R(\tau, b jet)$  is the angular distance between the tau and b-jet.
- 22.  $\eta_{\tau,max}$  is the larger polar angle among the tau candidates.
- 23.  $\Delta R(l, \tau)$  is the angular distance between the lepton and the closest tau candidate in the leptonic channels.
- 24.  $\Delta R(\tau, fcnc j)$  is the angular distance between the tau and the reconstructed fcnc jet.

- 25.  $\Delta R(\tau, \tau)$  is the angular distance between two tau candidates.
- 26.  $\Delta R(\tau, light jet, min)$  is the angular distance between the closest tau candidate and light-flavor jet.
- <sup>340</sup> 27.  $\Delta\phi(\tau\tau, P_{miss}^T)$  is the azimuthal angle between the  $E_{\rm T}^{\rm miss}$  and di-tau  $p_{\rm T}$ .

### **6 Selection of events**

- In the leptonic channels, the  $p_{\rm T}$  of the lepton is required to be 1 GeV above the trigger threshold. The leptons are required to have Tight ID as defined in Sec. 3.
- In the hadronic channels, no leptons (as defined in Sec. 3) should be present in the event, and the two tau
- candidates with the highest  $p_T$  are chosen. They should also pass the Medium tau ID and overlap removal.
- To account for the trigger thresholds, the two hadronic taus are required to pass the  $p_{\rm T} > 40$  GeV and
- $p_{\rm T} > 30 \text{ GeV cuts.}$

# 348 6.1 Trigger

- In the leptonic channels, the single-lepton triggers and di-lepton triggers are required to select the candidate events. In general, the lowest unprescaled triggers are used in every data-taking periods:
- To be updated:
- 352 Single election:
- 353 2016,2017,2018:
- HLT\_e26\_lhtight\_nod0\_ivarloose
- HLT\_e60\_lhmedium\_nod0
- HLT\_e140\_lhloose\_nod0
- 357 2015:
- HLT\_e24\_lhmedium\_L1EM20VH
- HLT\_e60\_lhmedium
- HLT\_e120\_lhloose
- 361 Single muon:
- 362 2016,2017,2018:
- HLT\_mu26\_ivarmedium
- HLT\_mu50
- 365 2015,2017,2018:
- HLT\_mu60\_0eta105\_msonly

```
2015:
       • HLT_mu20_iloose_L1MU15
368
       • HLT_mu40
369
   Di-electron:
   2018:
371
       • HLT_2e17_lhvloose_nod0_L12EM15VHI
372
   2017,2018:
       • HLT_2e24_lhvloose_nod0
374
   2016:
375
       • HLT_2e17_lhvloose_nod0
376
   2015:
377
       • HLT_2e12_lhloose_L12EM10VH
378
   Di-muon:
   2016,2017,2018:
       • HLT_2mu14
381
       • HLT_mu22_mu8noL1
382
   2015:
383
       • HLT_2mu10
384
       • HLT_mu18_mu8noL1
385
   Election+Muon:
   2016,2017,2018:
       • HLT_e17_lhloose_nod0_mu14
388
       • HLT_e7_lhmedium_nod0_mu24
       • HLT_e26_lhmedium_nod0(_L1EM20VHI in 2016)_mu8noL1
390
   2015:
391
       • HLT_e17_lhloose_mu14
392
```

• HLT\_e7\_lhmedium\_mu24

393

402

416

418

419

420

The trigger matching between the offline and trigger level lepton objects is also required for the corresponding leptons selected for the analysis. The minimum offline lepton  $p_T$  should be 1 GeV above the trigger threshold. For the  $\tau_{\mu}\tau_{had}$  channel in 2016, the offline muon  $p_T$  is 2 GeV above the trigger threshold due to the trigger scale factors' binning<sup>2</sup>.

The trigger used for hadronic channels in each year are listed as follow:

- 2015: HLT\_tau35\_medium1\_tracktwo\_tau25\_medium1\_tracktwo\_L1TAU20IM\_2TAU12IM
- 2016: HLT\_tau35\_medium1\_tracktwo\_tau25\_medium1\_tracktwo
- 2017: HLT\_tau35\_medium1\_tracktwo\_tau25\_medium1\_tracktwo\_03dR30\_L1DR\_TAU20ITAU12I\_J25
  - 2018: HLT\_tau35\_medium1\_tracktwoEF\_tau25\_medium1\_tracktwoEF\_03dR30\_L1DR\_TAU20ITAU12I\_J2

The two  $\tau_{\rm had}$  candidates are matched to the respective legs of the di-tau trigger using the individual single tau trigger objects. The  $p_{\rm T}$  thresholds are chosen such that the selected  $\tau_{\rm had}$  candidate  $p_{\rm T}$  already lies in the plateau of the respective trigger efficiency curve. Due to the rising instantaneous luminosity, the trigger used in the 2016 data taking includes a requirement for an additional level-1 calorimeter trigger jet with  $p_{\rm T} > 25$  GeV and  $|\eta| < 3.2$ . The leading jet in the 2016 events is required to be matched within  $\Delta R < 0.4$  with the jet ROI that fulfilled the jet part of the trigger criteria (trigger jet). Figure ?? shows the turn-on curves of the additional jet as in [57], and the leading jet  $p_{\rm T}$  in the  $\tau_{\rm had}\tau_{\rm had}$  channel. A cut of  $p_{\rm T}^{\rm Lljet} > 50$  GeV is required on the trigger jet, and a leading-jet  $p_{\rm T} > 60$  GeV cut is applied to remove the effect of turn on curve.

### **6.2** Event cuts and regions

A number of event cuts are applied before getting to the signal enhanced regions with the background suppressed. Then the DAOD\_HIGG8D1 (DAOD\_HIGG4D3) derivation is feed to ttHMultiAna (xTauFramework) to produce n-tuples for analysis. The list of event-level selection criteria is as follows:

- 1. DAOD\_HIGG8D1 (leptonic channels) and DAOD\_HIGG4D3 ( $\tau_{had}\tau_{had}$ ) derivations are used for this analysis. At the derivation level, the following cuts are applied:
  - In DAOD\_HIGG8D1, trigger skimming: all election, muon, tau triggers; Offline skimming: at least 2 light leptons or at least 1 lepton plus 1 tau.
  - In DAOD\_HIGG4D3, no trigger skimming. Offline skimming: 2taus

<sup>&</sup>lt;sup>2</sup> The trigger  $p_T$  cuts on the leptons are independent of and additional to the other  $p_T$  cuts introduced previously. For example, the  $p_T$  cuts used in the overlap removal are still as those in Sec. 3. It is also the case for the cuts introduced in the AOD derivations (Sec. 6.2).

- 2. At the xTauFramework level, skim cuts are applied to reduce the ntuple size:
  - No leptons, at least 1 medium tau and 1 loose tau, at least 3 jets with  $p_T > 30$  GeV,  $|\eta| < 4.5$  and passing either central or forward JVT cuts and with at least 1 b-tagged, pass di-tau trigger, LooseBad Event Cleaning, leading tau  $p_T > 40$  GeV, sub-leading tau  $p_T > 30$  GeV, two taus comes from a single vertex, leading jet  $p_T > 60$  GeV, leading jet  $|\eta| < 3.2$ ,  $E_T^{\text{miss}} > 15$  GeV. In the case of data, GRL cut as defined in Sec. 2.2 is also applied.
- 3. At the ttHMultiAna level, skim cuts [58] are applied to reduce the ntuple size.
- 4. At least one primary vertex exists in the event. The primary vertex is defined as the vertex that has the largest sum of track  $p_T^2$  associated to it, and has at least 4 tracks with  $|z_0| < 100$  mm.
- 5. The tau candidtes expected from Higgs decay should pass the Medium ID and the other quality cuts in Sec. 3.
  - 6. It is required that the tau objects are not b-tagged, otherwise the event is rejected.
- 7. Exactly one b-tagged jets.

421

422

423

424

426

432

- The cutflow for the preselection and each channel are given in Table ?? ??.
- For the TT channel tcH coupling search, the FCNC jet is from a c-quark. Regarding the similarity between the b-jet and c-jet, the very loose b-tagging is attempted on the FCNC jet in order to further select the tcH signal. However, the dominating background is  $t\bar{t}$  where there are 2 b-jets. This resort does not help with the significance.

Table 4: The cutflow tables for the preselection in the leptonic channels.

|                      | SM Higgs             | W+jets                   | Diboson                | $Z \rightarrow ll$       |
|----------------------|----------------------|--------------------------|------------------------|--------------------------|
| n-tuple              | 17152.85 ± 102.09    | 2549803.66 ± 9945.07     | 259417.38 ± 334.63     | $5076218.50 \pm 8306.74$ |
| pass trigger         | 16477.69 ± 100.32    | $2518835.54 \pm 9889.11$ | $248536.30 \pm 333.15$ | 4704322.06 ± 7984.34     |
| leadtauOLR           | $16087.82 \pm 99.05$ | 2419309.44 ± 9772.39     | 240069.04 ± 325.01     | 4414736.28 ± 7728.34     |
| subtauOLR            | 16082.01 ± 99.04     | $2418923.49 \pm 9772.00$ | 239973.79 ± 324.92     | 4413931.08 ± 7727.78     |
| trigger match        | $15981.81 \pm 98.70$ | $2406789.97 \pm 9746.08$ | $239082.36 \pm 324.18$ | 4405527.85 ± 7722.63     |
| tight lepton         | $14974.32 \pm 95.86$ | $2325820.71 \pm 9589.35$ | $225676.03 \pm 318.63$ | $3596467.15 \pm 6321.88$ |
| Medium,25GeV leadtau | $11671.30 \pm 82.68$ | $705359.50 \pm 4980.18$  | 149254.77 ± 199.43     | $2765958.95 \pm 4754.76$ |
| Medium,25GeV subtau  | $11613.22 \pm 82.49$ | $702120.36 \pm 4970.87$  | 148609.89 ± 198.85     | 2763634.87 ± 4751.81     |
| SR+CR                | $392.77 \pm 9.55$    | 9148.62 ± 258.83         | 1442.22 ± 22.99        | 3501.90 ± 106.01         |

|                      | Z 	o 	au	au         | Rare               | $t\bar{t}$              | $t\bar{t}V$          |
|----------------------|---------------------|--------------------|-------------------------|----------------------|
| n-tuple              | 569469.50 ± 2600.27 | 279736.04 ± 187.62 | $3580387.63 \pm 698.29$ | 18645.78 ± 15.01     |
| pass trigger         | 559082.94 ± 2582.60 | 267927.73 ± 183.83 | 3404908.11 ± 681.77     | 17674.85 ± 14.65     |
| leadtauOLR           | 546917.05 ± 2556.75 | 261995.50 ± 181.81 | $3331840.00 \pm 674.43$ | 17395.55 ± 14.52     |
| subtauOLR            | 546819.15 ± 2556.61 | 261936.09 ± 181.79 | $3330895.23 \pm 674.33$ | $17387.40 \pm 14.51$ |
| trigger match        | 539963.88 ± 2537.77 | 260875.18 ± 181.43 | $3312474.25 \pm 672.52$ | 17278.52 ± 14.47     |
| tight lepton         | 515237.69 ± 2485.89 | 240749.74 ± 174.41 | $3036019.50 \pm 644.25$ | 15835.21 ± 13.85     |
| Medium,25GeV leadtau | 332992.81 ± 1959.33 | 207144.85 ± 161.77 | 2646376.07 ± 601.22     | $14330.23 \pm 13.00$ |
| Medium,25GeV subtau  | 331682.04 ± 1956.04 | 206920.51 ± 161.68 | $2643224.28 \pm 600.86$ | 14286.45 ± 12.98     |
| SR+CR                | $3598.56 \pm 52.46$ | 8348.47 ± 32.26    | 161797.56 ± 148.42      | $1122.99 \pm 4.12$   |

|                      | $\bar{t}t \rightarrow bWcH$ | $cg \rightarrow tH$ | tcH merged signal  | $\bar{t}t \rightarrow bWuH$ |
|----------------------|-----------------------------|---------------------|--------------------|-----------------------------|
| n-tuple              | $2697.69 \pm 4.51$          | $124.01 \pm 0.33$   | $2821.70 \pm 4.53$ | $2697.40 \pm 4.47$          |
| pass trigger         | $2591.28 \pm 4.43$          | $119.06 \pm 0.33$   | $2710.34 \pm 4.44$ | $2592.75 \pm 4.38$          |
| leadtauOLR           | 2561.17 ± 4.40              | $117.83 \pm 0.32$   | $2678.99 \pm 4.42$ | $2565.50 \pm 4.36$          |
| subtauOLR            | $2554.93 \pm 4.40$          | $117.50 \pm 0.32$   | $2672.43 \pm 4.41$ | $2560.52 \pm 4.36$          |
| trigger match        | $2499.80 \pm 4.35$          | $114.99 \pm 0.32$   | 2614.78 ± 4.36     | $2507.98 \pm 4.31$          |
| tight lepton         | $2299.96 \pm 4.17$          | $105.90 \pm 0.31$   | $2405.86 \pm 4.18$ | $2308.31 \pm 4.13$          |
| Medium,25GeV leadtau | $1889.15 \pm 3.75$          | $88.14 \pm 0.28$    | $1977.29 \pm 3.76$ | 1895.11 ± 3.72              |
| Medium,25GeV subtau  | $1826.74 \pm 3.69$          | $84.68 \pm 0.27$    | 1911.43 ± 3.70     | 1829.31 ± 3.66              |
| SR+CR                | $553.80 \pm 2.08$           | $25.73 \pm 0.15$    | $579.53 \pm 2.09$  | $552.12 \pm 2.05$           |

|                      | $ug \rightarrow tH$ | tuH merged signal  | Data                      |
|----------------------|---------------------|--------------------|---------------------------|
| n-tuple              | $631.43 \pm 1.70$   | $3328.82 \pm 4.78$ | $14388438.00 \pm 3793.21$ |
| pass trigger         | 608.67 ± 1.67       | $3201.42 \pm 4.69$ | $13747432.00 \pm 3707.75$ |
| leadtauOLR           | 601.45 ± 1.66       | $3166.96 \pm 4.67$ | 13183266.00 ± 3630.88     |
| subtauOLR            | 599.85 ± 1.66       | $3160.37 \pm 4.66$ | 13181031.00 ± 3630.57     |
| trigger match        | 589.11 ± 1.65       | $3097.09 \pm 4.62$ | 13113541.00 ± 3621.26     |
| tight lepton         | 541.21 ± 1.58       | $2849.51 \pm 4.42$ | $11318527.00 \pm 3364.30$ |
| Medium,25GeV leadtau | $442.90 \pm 1.42$   | 2338.01 ± 3.98     | $7534936.00 \pm 2744.98$  |
| Medium,25GeV subtau  | 427.94 ± 1.40       | $2257.24 \pm 3.92$ | $7524509.00 \pm 2743.08$  |
| SR+CR                | $129.71 \pm 0.78$   | $681.83 \pm 2.19$  | $186660.00 \pm 432.04$    |

Table 5: The cutflow tables in the  $l\tau_{\rm had}$  1j signal region.

|             | SM Higgs                    |    | W+jets              |    | Diboson             | $Z \rightarrow ll$          |
|-------------|-----------------------------|----|---------------------|----|---------------------|-----------------------------|
| this region | $9.06 \pm 1.77$             | 18 | $880.37 \pm 103.4$  | 14 | $122.06 \pm 9.92$   | $487.10 \pm 39.28$          |
| tau b-veto  | $7.18 \pm 1.42$             | 1  | $1813.01 \pm 98.27$ |    | 118.61 ± 9.91       | $469.90 \pm 39.05$          |
|             | $Z \rightarrow \tau \tau$   |    | Rare                |    | $t\bar{t}$          | $t\bar{t}V$                 |
| this region | $58.59 \pm 16.0$            | 1  | $467.01 \pm 7.56$   |    | 4164.41 ± 24.09     | $32.78 \pm 0.50$            |
| tau b-veto  | $56.33 \pm 15.7$            | 7  | $422.87 \pm 7.21$   |    | $3468.88 \pm 22.05$ | $31.25 \pm 0.48$            |
|             | $\bar{t}t \rightarrow bWcH$ |    | $cg \rightarrow tH$ | tc | H merged signal     | $\bar{t}t \rightarrow bWuH$ |
| this region | $61.43 \pm 0.6$             | 1  | $2.38 \pm 0.04$     |    | $63.81 \pm 0.61$    | $62.49 \pm 0.62$            |
| tau b-veto  | $59.37 \pm 0.6$             | 0  | $2.31 \pm 0.04$     |    | $61.69 \pm 0.60$    | $60.87 \pm 0.61$            |

|             | $ug \rightarrow tH$ | tuH merged signal | Data                |
|-------------|---------------------|-------------------|---------------------|
| this region | $12.03 \pm 0.21$    | $74.52 \pm 0.65$  | $8402.00 \pm 91.66$ |
| tau b-veto  | $11.64 \pm 0.21$    | $72.51 \pm 0.65$  | $7563.00 \pm 86.97$ |

Table 6: The cutflow tables in the STH  $\tau_{lep}\tau_{had}$  signal region.

|             | SM Higgs         | W+jets              | Diboson           | $Z \rightarrow ll$ |
|-------------|------------------|---------------------|-------------------|--------------------|
| this region | $44.95 \pm 4.35$ | $1596.58 \pm 75.51$ | $268.69 \pm 9.94$ | $709.14 \pm 30.23$ |
| tau b-veto  | $43.32 \pm 4.25$ | $1548.17 \pm 75.28$ | $259.86 \pm 9.83$ | $700.87 \pm 30.17$ |

|             | Z 	o 	au	au         | Rare                | $t \bar{t}$          | $t\bar{t}V$       |
|-------------|---------------------|---------------------|----------------------|-------------------|
| this region | $1622.59 \pm 34.11$ | $3562.03 \pm 21.28$ | $54565.58 \pm 86.65$ | $150.08 \pm 1.39$ |
| tau b-veto  | $1585.45 \pm 33.27$ | $3431.48 \pm 20.90$ | $52130.19 \pm 84.74$ | $143.86 \pm 1.36$ |

|             | $\bar{t}t \rightarrow bWcH$ | $cg \rightarrow tH$ | tcH merged signal | $\bar{t}t \to bWuH$ |
|-------------|-----------------------------|---------------------|-------------------|---------------------|
| this region | $111.46 \pm 0.99$           | $6.06 \pm 0.08$     | $117.52 \pm 0.99$ | $114.44 \pm 0.98$   |
| tau b-veto  | $108.10 \pm 0.97$           | $5.91 \pm 0.08$     | $114.01 \pm 0.98$ | $110.93 \pm 0.96$   |

|             | $ug \rightarrow tH$ | tuH merged signal | Data                  |
|-------------|---------------------|-------------------|-----------------------|
| this region | $30.89 \pm 0.41$    | $145.33 \pm 1.06$ | $57335.00 \pm 239.45$ |
| tau b-veto  | $29.91 \pm 0.40$    | $140.84 \pm 1.04$ | $54806.00 \pm 234.11$ |

Table 7: The cutflow tables in the  $l\tau_{\rm had}$  2j signal region.

|             | SM Higgs                    | W+jets              | Diboson             | $Z \rightarrow ll$  |
|-------------|-----------------------------|---------------------|---------------------|---------------------|
| this region | $15.04 \pm 2.18$            | $945.47 \pm 45.6$   | 7 99.84 $\pm$ 8.34  | $237.32 \pm 21.03$  |
| tau b-veto  | $14.31 \pm 2.15$            | $908.98 \pm 45.3$   | 1 97.52 $\pm$ 8.33  | $231.64 \pm 20.99$  |
|             | $Z \rightarrow \tau \tau$   | Rare                | $t\bar{t}$          | $t\bar{t}V$         |
| this region | $25.37 \pm 3.63$            | $356.68 \pm 6.59$   | $5402.45 \pm 27.28$ | $57.87 \pm 0.71$    |
| tau b-veto  | $24.25 \pm 3.60$            | $318.29 \pm 6.23$   | 4479.10 ± 24.93     | $54.67 \pm 0.69$    |
|             | $\bar{t}t \rightarrow bWcH$ | $cg \rightarrow tH$ | tcH merged signal   | $\bar{t}t \to bWuH$ |
| this region | $56.24 \pm 0.59$            | $1.44 \pm 0.03$     | $57.68 \pm 0.59$    | $58.60 \pm 0.60$    |
| tau b-veto  | $54.47 \pm 0.58$            | $1.41 \pm 0.03$     | $55.87 \pm 0.58$    | $56.81 \pm 0.59$    |

|             | $ug \rightarrow tH$ | tuH merged signal | Data                |
|-------------|---------------------|-------------------|---------------------|
| this region | $7.95 \pm 0.17$     | $66.55 \pm 0.62$  | $7077.00 \pm 84.12$ |
| tau b-veto  | $7.74 \pm 0.17$     | $64.55 \pm 0.61$  | $6150.00 \pm 78.42$ |

Table 8: The cutflow tables in the TTH  $\tau_{lep}\tau_{had}$  region.

|             | SM Higgs         | W+jets             | Diboson            | $Z \rightarrow ll$ |
|-------------|------------------|--------------------|--------------------|--------------------|
| this region | $78.09 \pm 3.57$ | $949.53 \pm 23.63$ | $256.48 \pm 10.66$ | $366.66 \pm 12.55$ |
| tau b-veto  | $74.43 \pm 3.45$ | $922.72 \pm 23.54$ | $249.33 \pm 10.59$ | $362.06 \pm 12.52$ |

|             | $Z \rightarrow \tau \tau$ | Rare                | $t\bar{t}$           | $t\bar{t}V$       |
|-------------|---------------------------|---------------------|----------------------|-------------------|
| this region | $979.60 \pm 14.38$        | $1746.76 \pm 14.80$ | $40069.19 \pm 73.92$ | $293.97 \pm 2.32$ |
| tau b-veto  | 942.69 ± 14.18            | $1677.04 \pm 14.50$ | $38188.59 \pm 72.21$ | $281.59 \pm 2.27$ |

|             | $\bar{t}t \rightarrow bWcH$ | $cg \rightarrow tH$ | tcH merged signal | $\bar{t}t \to bWuH$ |
|-------------|-----------------------------|---------------------|-------------------|---------------------|
| this region | $143.63 \pm 1.20$           | $4.69 \pm 0.07$     | $148.32 \pm 1.21$ | $150.75 \pm 1.19$   |
| tau b-veto  | $138.88 \pm 1.18$           | $4.55 \pm 0.07$     | $143.44 \pm 1.19$ | $145.97 \pm 1.18$   |

|             | $ug \rightarrow tH$ | tuH merged signal | Data                  |
|-------------|---------------------|-------------------|-----------------------|
| this region | $25.91 \pm 0.40$    | 176.67 ± 1.26     | $40395.00 \pm 200.99$ |
| tau b-veto  | $25.18 \pm 0.39$    | 171.15 ± 1.24     | $38458.00 \pm 196.11$ |



Figure 3: The distributions of  $x_{1,2}^{\rm fit}$  in the TTH  $\tau_{\rm lep}\tau_{\rm had}$  (top) and  $\tau_{\rm had}\tau_{\rm had}$  (bottom) channels.

Table 9: The cutflow tables in the  $l\tau_{\rm had}\tau_{\rm had}$  signal region.

|             | nad nad E    |                    |                       |               |     |            |          |                    |      |
|-------------|--------------|--------------------|-----------------------|---------------|-----|------------|----------|--------------------|------|
|             | S            | M Higgs            |                       | W+jets        |     | Dibos      | son      | $Z \rightarrow ll$ |      |
| this region | 9.           | $75 \pm 0.20$      | 34.                   | $72 \pm 14.2$ | 21  | 16.00 ±    | 1.36     | $16.32 \pm 6$      | .83  |
| tau b-veto  | 9.           | $09 \pm 0.20$      | $33.79 \pm 14.$       |               | 20  | 14.93 ±    | 1.35     | $14.91 \pm 6$      | .72  |
|             |              | $Z \to \tau \tau$  |                       | Rare          |     | $t\bar{t}$ |          | $t\bar{t}V$        |      |
| this region | 17           | $.45 \pm 4.85$     | 23                    | $.67 \pm 1.4$ | 9   | 322.81 =   | £ 6.63   | $18.31 \pm 0$      | .42  |
| tau b-veto  | 16           | $.38 \pm 4.81$     | $21.81 \pm 1.43$      |               | 3   | 253.77 =   | 5.91     | $16.97 \pm 0$      | .41  |
|             | $\bar{t}t$ — | → bWcH             | $cg \rightarrow tH$ t |               | tc  | H mergeo   | l signal | $\bar{t}t \to bV$  | VuH  |
| this region | 61.4         | $2 \pm 0.61$       | 4.74                  | $\pm 0.06$    |     | 66.16 ±    | 0.61     | 63.89 ±            | 0.62 |
| tau b-veto  | 57.5         | $61 \pm 0.59$      | 4.46                  | $6 \pm 0.06$  |     | 61.97 ±    | 0.59     | 60.13 ±            | 0.61 |
|             | ·            | $ug \rightarrow t$ | Н                     | tuH me        | rge | d signal   | Ι        | Data               |      |
| this reg    | gion         | 21.93 ± 0          | 0.29                  | 85.8          | 1 ± | 0.69       | 407.00   | $0 \pm 20.17$      |      |

 $80.89 \pm 0.67$ 

 $322.00 \pm 17.94$ 

 $20.76 \pm 0.28$ 

tau b-veto

# **7 FCNC signal samples**

The targeted signal in this analysis is tqH/tH with  $H \to \tau\tau$  (samples 411170-411177 and 412098-411 412105) in App. ??). However, if the FCNC processes exists, the other decays of the Higgs can be part of the signal. Therefore, samples xxxxxx-xxxxxx (App. ??) with inclusive W and Higgs decays are also included. These sample have a one-lepton (electron or muon) filter at truth level (either coming from W or Higgs decays). Events overlapping with xxxxxx-xxxxxx are removed based on truth information.

It is checked that after the final selection, there are 110 overlapped signal events caused by different overlap removal and object definition in xTauFramework and ttHMultiAna (27140 in total for hadhad channel and 95253 in total for lepton channels) but there is no overlap in the signal enriched region (BDT > 0.5).

The total FCNC signal with fake taus in this analysis is not used in the MVA training, but is regarded as part of the total signal in the fit. The normalization factor of the other components is common with the signal, so that their yields are fully correlated in the fit. In Sec. ??, this signal is summed with the nominal signal in the control plots. The signal fake tau shares the same normalisation and systematics as described in ??.

### **8 Background estimation**

The background events with real tau leptons are represented by Monte Carlo (MC) samples. These include  $t\bar{t}$ ,  $t\bar{t}+H/V$  and single top events with real taus, and  $Z\to\tau\tau$ +jets. The  $Z\to ee$ ,  $\mu\mu$  processes are included for lepton faking tau background, and the contribution from jet faking tau. The fake background with one or more taus faked by jets consists of the top fake (with at least one fake tau from jets in the top events), QCD multijet, W+jets and diboson events. Where the top is dominant as shown in  $\ref{MCD}$ ?

However, the charge of two taus candidates might be correlated in the  $t\bar{t}$  events when one of taus is a real tau from the  $W \to \tau \nu$  decay while the other tau is a fake from a jet from other  $W \to jj$  decay. They are likely to carry the opposite charges to each other. Because of this charge asymmetry we have to calibrate the fake-tau modeling using a Data-Driven (DD) Scale Factor (SF) method by comparing the normalization of fake-tau events in MC to data in the control regions. This SF is then applied to correct the normalization of tau fakes in the MC yields. The excess of the events over these MC background in is then from the multi-jets (QCD) fake-tau background.

# $_{ ext{ iny 466}}$ 8.1 Origin of fake $au_{ ext{ iny had}}$

Top fake is the largest fake background in the total fake in the leptonic channels. Within the top fake events, fake taus can come from different origins, i.e., from jets (heavy/light flavor quark or gluon initiated) or

- leptons (electron or muon). The tau fake origins are checked with the top MC. Three dedicated top pair production control regions are define for:
- W-jet faking tau: exactly 1 lepton, exactly 1 tau candidate, at least 4 jets with exactly 2 b-tagged.

  Tau candidate and lepton have the same charge.
- B-jet faking tau: 2 leptons with different flavors or away from Z pole ( $M_{ll} > 100$ GeV or  $M_{ll} < 90$ GeV), exactly 1 tau candidate, exactly 1 b-tagged jet.
- Radiation faking tau: 2 leptons with different flavors or away from Z pole, exactly 1 tau candidate, at least two jets with exactly 2 b-tagged jets.

 $E_{\rm T}^{\rm miss}$  > 20GeV is required for the top control regions to ensure that QCD contribution is negligible. The detailed categorisation and plots are shown in section 8.2. Most of the fake taus come from quark initiated jets, but the flavor distributions in OS are similar to those in SS.

### 8.2 MC fake $\tau_{\rm had}$ estimation

Although the method mentioned in the ?? was adopted by the tthML analysis, a new method is needed in this case. As shown in the Figure ??, the data is generally over-estimated in the OS regions while it is 482 opposite in the SS region. If the fake taus are corrected by the same scale factors, this mismodelling will 483 never get solved. This asymmetry of the SS and OS fake taus can be interpreted by the mis-modelling of 484 the fake tau charges. Since the fake taus mainly come from light-flavored jets as shown in Figure ??, the mis-modelling is related to the charge carried by the jets. In conclusion, the mis-modelling is originated 486 from the charge correlation between the jet which is faking a tau and the lepton. So the parent of the jet 487 is believed to be charge correlated with the lepton. Considering the main background is  $\bar{t}t$  process. The 488 only suspect is the hadronic W boson. In order to find the contribution of w-jet faking taus  $(\tau_W)$ , the truth 489 information is used to match between the w-jet and the fake tau with  $\Delta R < 0.4$ . As shown in the Figure 6, there is a considerable amount of  $\tau_W$ 's in both SS and OS regions. There are four kinds of fake taus 491 that need to be calibrated: Type1)  $\tau_W$ 's with the opposite charge of the lepton; Type2)  $\tau_W$ 's with the same 492 charge of the lepton; Type 3) the fake taus from b-jets; Type4) the fake taus from other origins(mainly 493 radiations). Many control regions are used to calibrate the four types. 494

- 2l1tau1bnj: 2 leptons with different flavors or away from Z pole, exactly 1 tau candidate, exactly 1 b-tagged jets.
- 2l1tau2bnj: 2 leptons with different flavors or away from Z pole, exactly 1 tau candidate, exactly 2 b-tagged jets.
- 111tau2b2jSS: Exactly 1 lepton, exactly 1 tau candidate, exactly 4 jets with exactly 2 b-tagged.

  Tau candidate and lepton have the same charge.

495

496

35 - 45 GeV 25 - 35 GeV45GeV- $0.61 \pm 0.10$  $0.83 \pm 0.10$  $0.84 \pm 0.07$  $\tau_{b\ f\ ake}$  $1.19 \pm 0.02$  $1.00 \pm 0.04$  $0.77 \pm 0.03$  $au_{other}$  $0.67 \pm 0.01$  $0.62 \pm 0.02$  $0.37 \pm 0.02$  $\tau_W$  os  $0.50 \pm 0.07$  $0.74 \pm 0.07$  $0.82 \pm 0.05$  $\tau_W$  ss

Table 10: The scale factors for 1 prong fake taus derived from the fit.

Table 11: The scale factors for 3 prong fake taus derived from the fit.

|                    | 25 – 35 GeV     | 35 – 45 GeV     | 45GeV-          |
|--------------------|-----------------|-----------------|-----------------|
| $\tau_{b\ f\ ake}$ | $1.04 \pm 0.14$ | $1.33 \pm 0.13$ | $1.22 \pm 0.11$ |
| $	au_{other}$      | $1.24 \pm 0.07$ | $0.70 \pm 0.08$ | $0.73 \pm 0.08$ |
| $	au_W$ os         | $0.92 \pm 0.03$ | $1.07 \pm 0.04$ | $0.21 \pm 0.05$ |
| $	au_W$ ss         | $1.00 \pm 0.10$ | $1.07 \pm 0.09$ | $0.73 \pm 0.08$ |

- 111tau2b2jOS: Exactly 1 lepton, exactly 1 tau candidate, exactly 4 jets with exactly 2 b-tagged. Tau candidate and lepton have the opposite charge.
- 111tau2b3jSS: Exactly 1 lepton, exactly 1 tau candidate, at least 5 jets with exactly 2 b-tagged. Tau candidate and lepton have the same charge.
  - 111tau2b3jOS: Exactly 1 lepton, exactly 1 tau candidate, at least 5 jets with exactly 2 b-tagged. Tau candidate and lepton have the opposite charge.

Where di-lep regions (2l1tau1b) and 2l1tau2b) are used to calibrate the Type3 and Type4 fake taus. As 507 explained in the 8.1, these regions are dominated by the bjet and the radiation jet faking taus. 2bOS 508 regions (111tau2b2jOS and 111tau2b3jOS) are used to calibrate Type1 fake taus. Compared to the 509 signal region, this region has an additional b-jet. So the  $\bar{t}t$  background is enhanced in this region and signal is depleted. Similarly for the Type2 we can use 2bSS regions (1l1tau2b2jSS and 1l1tau2b3jSS) 511 to calibrate. The components of these regions are shown in Figure 7. Then a simultaneous fit is made to 512 derive the scale factors for the fake taus. There are four parameters needed to be decided (the scale factors 513 for the 4 types). But considering the  $p_T$  and number of tracks dependence of the tau reconstruction, the 514 scale factors are derived in 3  $p_T$  slices (25-35,35-45,45-inf)GeV and 1/3 prong taus. So there are 24 515 parameters to be decided. The results is shown in table ?? and ??. All of the CP and theory uncerntainties 516 are used to derive the uncertainty of the scale factors. The post-fit plots are shown in Figure 8. Then the 517 scale factors are applied to the corresponding single b-jet regions. In  $l\tau_{had}\tau_{had}$  channel, both taus can be 518 fake, so the calibration is done to them separately, following the same procedure as  $\tau_{lep}\tau_{had}$  channels using the lepton and fake tau charges, then the scale factors are multiplied together.

After the fake tau calibration, the fake lepton contribution from QCD is also estimated using ABCD

501

502

503

504

506

Electron Muon  $1\tau_{\rm had}$ j ss  $0.76 \pm 0.19$  $0.57 \pm 0.11$  $0.60 \pm 0.47$  $1.39 \pm 0.35$ STH  $\tau_{lep}\tau_{had}$  os  $1\tau_{\rm had}2i$  ss  $0.74 \pm 0.42$  $0.54 \pm 0.23$ TTH  $\tau_{lep}\tau_{had}$  os  $1.12 \pm 0.90$  $1.18 \pm 0.52$ Combined  $0.75 \pm 0.18$  $0.64 \pm 0.25$ 

Table 12: The QCD transfer factor derived from different low  $E_T^{miss}$  control regions

method. For each  $\tau_{\text{lep}}\tau_{\text{had}}$  and  $l\tau_{\text{had}}$  signal regions, 4 blocks are defined as follows:

- A:  $E_T^{miss}$  < 20GeV, PLV not tight
- B:  $E_T^{miss}$  < 20GeV, PLV tight

525

- C:  $E_T^{miss} > 20$ GeV, PLV not tight
- D:  $E_T^{miss} > 20$ GeV, PLV tight

The transfer factors are measured in each signal region as  $r = \frac{N_B}{N_A}$ . Where  $N_A$  and  $N_B$  are the yields calculated by data-MC where MC includes all real tau background and calibrated fake tau background. The results are shown in 12. The uncertainties in the table for each region contains statistical uncertainties 529 during the calculation and the potential signal contribution (BR = 0.2%). In principle for the QCD 530 estimation, the transfer factor should not depend on the number of jets and charge. At the same time, 531 we see little pt dependence in the CRs. So all of the measurements are taken into consideration and the transfer factor central value and stat uncertainty are derived using likelihood method separately for election 533 and muons. The systematics variation is take by calculating the second moment. The combined result is 534 shown as the last line in the table with both stats and systematics considered, where the stats. uncertainty 535 for electron and muon are 0.13 and 0.07 respectively. So the systematic uncertainties are comparable with 536 the stats uncertainties, which indicates that there is no big deviation among the 4 measurements.

Then the QCD contribution in D is then estimated as rC. After the ABCD QCD estimation, the signal region is redefined as D. The data-MC comparison after the fake tau and fake lepton estimation is show in Figure 9.

# 8.3 QCD fake $au_{ m had}$ estimate in $au_{ m had} au_{ m had}$

Figure 10 shows the  $\tau_{had}$   $p_T$  spectra in the  $\tau_{had}\tau_{had}$  SS and OS. The fake tau background events from QCD multi-jets is not added yet so the data have more than the background prediction. The top fake are dominated by fakes with one real tau. It is found, based on the MC prediction, that the QCD fake is the dominant fake process in the  $\tau_{had}\tau_{had}$  channel.

The excess of the SS events over MC with truth taus are used to estimate the fake tau background in OS from QCD multi-jets in the  $\tau_{had}\tau_{had}$  + jets channel:

$$N_{\text{OCD fake}}^{\text{OS}} = f_{\text{norm}} \cdot (N_{\text{data}}^{\text{SS}} - N_{\text{MC}}^{\text{SS}}), \tag{7}$$

where  $f_{\text{norm}}$  is a ratio of OS and SS from multi-jets QCD,  $N_{\text{data}}^{\text{SS}}$ , and  $N_{\text{MC}}^{\text{SS}}$  are observed data and estimated MC predictions in the SS regions.

The  $f_{\text{norm}}$  is measured separately to be  $1.32 \pm 0.03$  in the signal-depleted one b-tag events with BDT < 0.5 and  $1.6 \pm 0.1$  in the double b-tagged  $\tau_{\text{had}}\tau_{\text{had}} + \geq 3$  jets events, which provides a good closure test of QCD fake tau estimation. We take the difference between these two values as a systematics for the method and assign  $f_{\text{norm}} = 1.3 \pm 0.3$  for the analysis.

### **8.4 Fake lepton background**

The fake lepton background in  $\tau_{lep}\tau_{had}$  and lepton+ $\tau_{had}\tau_{had}$ , which is estimated from MC<sup>3</sup>, is about 0.3-0.5% of the total background. It constitutes such a negligible fraction because a very high lepton  $p_T$ threshold is already required at the trigger level. This background is varied by 100% as a conservative systematics.

### **8.5** Summary of signal and background events

We estimate the expected signal and background events in different regions, which are summarized in Table 14.

Figure 11 shows the leading  $\tau_{had}$   $p_T$  distribution from the OS events in the  $\tau_{had}$  signal regions where the points are data and the histograms as the expected various backgrounds.

<sup>&</sup>lt;sup>3</sup> This includes fake lepton + real tau events from all MC samples, namely, top, W/Z+jets, diboson



Figure 4: The distributions of  $\tau$   $p_{\rm T}$  in the signal regions.



Figure 5: The distributions of  $\tau$   $p_{\rm T}$  in the signal regions with fake tau origin shown.



Figure 6: The distributions of  $\tau$   $p_{\rm T}$  in the control regions used to calibrate the fake taus.



Figure 7: The post-fit distributions of  $\tau$   $p_{\rm T}$  in the control regions after the fake tau correction.



Figure 8: The data-MC comparison of  $\tau$   $p_T$  in the signal regions after the fake tau correction and QCD estimation.



Figure 9: The distributions of  $\tau$   $p_T$  in the STH  $\tau_{had}\tau_{had}$  (SS)(a), STH  $\tau_{had}\tau_{had}$  (OS) (b), TTH  $\tau_{had}\tau_{had}$  (SS) (c) and TTH  $\tau_{had}\tau_{had}$  (OS) (d), to illustrate the background composition. Data is more than the prediction because the fake tau backgrounds are missing.



Figure 10: The distributions of leading  $\tau$   $p_T$  in the  $\tau_{had}\tau_{had}$  + 3 jets (a), and 4 jets OS (b)

# 9 MVA analysis

In this section, we investigate the sensitivity of probing signal using one of the Multi-Variate Analysis (MVA) methods, the Gradient Boosted Decision Trees (BDT) method [59, 60], with the TMVA software package. The BDT output score is in the range between -1 and 1. The most signal-like events have scores near 1 while the most background-like events have scores near -1.

The signal topology and kinematics are different across all the channels. To maximize the overall sensitivity, separated BDTG trainings are applied to each the signal region. A number of variables as the BDT inputs are used to train and test events in each signal region for maximal signal acceptance and background rejection. They are listed in Tab. ??. The most sensitive variables distributions are shown in Fig. 12-14

The signal and background samples are randomly divided into two equal parts (denoted as even and odd parity events). The BDT is trained with one part, and tested on the other part. It is always ensured that the BDT derived from the training events is not applied to the same events, but only to the independent test ones. The sum of all background processes, corrected normalized, are used in the training and testing. With the IgnoreNegWeightsInTraining option, only MC events with positive MC weights are used in the training. The comparison of BDT performances in test-odd and test-even samples is given in Fig. 15-17. The BDT parameters NTrees and nCuts are tuned such that the test-odd and test-even agrees, and the signal sensitivity is optimised.

The importance factors<sup>4</sup> of different variables used in the training is listed in Tab. ??. The two numbers in each block represent the importance factor of the two models trained from even and odd parts. The consistency of these factors implies that the training models are stable.

As a cross check, the comparisons between BDT distributions in testing samples, as well as the test even and test odd ROC curves, are shown in Fig. 15 and 16.

The final yield and stats only significance is shown in Table 14 and Table 15

<sup>&</sup>lt;sup>4</sup> The importance is evaluated as the total separation gain that this variable had in the decision trees (weighted by the number of events). It is normalized to all variables together, which have an importance of 1.

Table 13: The importance (in %) of each variables used in the BDTG training, the two numbers in the each block are from the two training folds.

|                                  | lτ <sub>had</sub> j ss | STH $\tau_{\rm lep} \tau_{\rm had}$ os | lτ <sub>had</sub> 2j ss | TTH $\tau_{\rm lep} \tau_{\rm had}$ os | $l	au_{ m had}	au_{ m had}$ os |
|----------------------------------|------------------------|----------------------------------------|-------------------------|----------------------------------------|--------------------------------|
| $p_{T,\tau}$                     | 19.59 / 17.68          | 8.23 / 7.95                            | 13.37 / 13.70           | 7.66 / 7.97                            | 6.72 / 8.40                    |
| $E_{miss}^{T}$                   | 7.83 / 9.26            | 6.91 / 6.34                            | 4.64 / 3.58             | 7.59 / 7.32                            | 5.87 / 7.05                    |
| $m_{\tau\tau,vis}$               | 7.00 / 7.01            | 8.68 / 9.00                            | 2.32 / 3.75             | 9.19 / 9.36                            | 13.23 / 11.76                  |
| $\Delta R(\tau, light jet, min)$ | 15.88 / 15.37          | 7.20 / 7.40                            | 9.76 / 10.27            | 6.88 / 6.37                            | 7.16 / 8.36                    |
| $\Delta R(l, b \ jet)$           | 17.01 / 18.42          | 4.69 / 6.24                            | 12.88 / 12.30           | 6.30 / 4.87                            | 6.03 / 6.74                    |
| $\Delta R(l, 	au)$               | 14.56 / 11.39          | 7.93 / 8.17                            | 7.06 / 7.33             | 7.89 / 7.71                            | 2.92 / 2.47                    |
| $\Delta R(\tau, b \ jet)$        | 12.73 / 12.95          | 7.50 / 6.50                            | 7.12 / 8.37             | 5.48 / 5.31                            | 4.99 / 2.33                    |
| <i>PT</i> , <i>l</i>             | 5.40 / 7.92            | 3.62 / 3.74                            | 5.86 / 7.20             | 2.28 / 3.13                            | 1.55 / 2.78                    |
| $\Delta\phi(	au	au, P_{miss}^T)$ | /                      | 6.55 / 5.28                            | 4.02 / 3.57             | 5.76 / 5.08                            | /                              |
| $E_{miss}^{T} centrality$        | /                      | 6.62 / 6.02                            | 4.03 / 4.97             | 5.14 / 5.72                            | /                              |
| $m_{	au,	au}$                    | /                      | 4.20 / 4.01                            | 1.90 / 2.40             | 2.94 / 3.64                            | /                              |
| $E_{\nu,1}/E_{\tau,1}$           | /                      | 9.75 / 10.16                           | 9.55 / 9.12             | 8.51 / 9.81                            | /                              |
| $E_{\nu,2}/E_{\tau,2}$           | /                      | 8.38 / 9.14                            | 8.02 / 9.85             | 8.41 / 8.39                            | /                              |
| $m_{t,SM}$                       | /                      | 5.56 / 5.64                            | 3.37 / 0.79             | 4.50 / 4.60                            | /                              |
| M(light jet, light jet, min)     | /                      | 4.19 / 4.39                            | 6.11 / 2.80             | 5.65 / 4.86                            | /                              |
| $m_W$                            | /                      | /                                      | /                       | 3.28 / 3.27                            | /                              |
| $\chi^2$                         | /                      | /                                      | /                       | 2.55 / 2.58                            | /                              |
| $\Delta R(	au,	au)$              | /                      | /                                      | /                       | /                                      | 9.19 / 9.45                    |
| $m_{t,SM,vis}$                   | /                      | /                                      | /                       | /                                      | 8.70 / 7.74                    |
| $M(\tau light\ jet, min)$        | /                      | /                                      | /                       | /                                      | 4.94 / 1.57                    |
| $\eta_{	au,max}$                 | /                      | /                                      | /                       | /                                      | 6.26 / 6.03                    |
| $m_W^T$                          | /                      | /                                      | /                       | /                                      | 2.94 / 6.74                    |
| $\Delta R(l+b\ jet, \tau+\tau)$  | /                      | /                                      | /                       | /                                      | 6.71 / 8.06                    |
| $P_{t,\tau\tau,vis}$             | /                      | /                                      | /                       | /                                      | 5.61 / 4.78                    |
| $m_{t,FCNC,vis}$                 | /                      | /                                      | /                       | /                                      | 7.19 / 5.75                    |

Table 14: The yield of the background, data and each signal before the final fit.

|                             | $1\tau_{\text{had}} 1 \text{j } E_T^{miss} > 20 GeV$ | STH $\tau_{\text{lep}}\tau_{\text{had}} E_T^{miss} > 20 GeV$ | $1\tau_{\text{had}} \ 2j \ E_T^{miss} > 20 GeV$ |
|-----------------------------|------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|
| data                        | $5703.00 \pm 75.52$                                  | $41628.00 \pm 204.03$                                        | $4649.00 \pm 68.18$                             |
| background                  | $6226.42 \pm 123.87$                                 | 51650.01 ± 129.16                                            | $5436.79 \pm 58.67$                             |
| $\bar{t}t \rightarrow bWcH$ | $53.79 \pm 0.57$                                     | $95.89 \pm 0.91$                                             | $49.40 \pm 0.55$                                |
| $cg \rightarrow tH$         | $2.09 \pm 0.04$                                      | $5.25 \pm 0.07$                                              | $1.29 \pm 0.03$                                 |
| tcH merged signal           | $55.88 \pm 0.57$                                     | $101.14 \pm 0.91$                                            | $50.69 \pm 0.55$                                |
| $\bar{t}t \rightarrow bWuH$ | $55.75 \pm 0.58$                                     | $98.45 \pm 0.90$                                             | $51.77 \pm 0.56$                                |
| $ug \rightarrow tH$         | $10.62 \pm 0.20$                                     | $26.90 \pm 0.38$                                             | $7.01 \pm 0.16$                                 |
| tuH merged signal           | $66.37 \pm 0.62$                                     | $125.34 \pm 0.98$                                            | $58.78 \pm 0.58$                                |

|                             | TTH $\tau_{\text{lep}}\tau_{\text{had}}$ os $E_T^{miss} > 20 GeV$ | $l	au_{ m had}	au_{ m had}$ os |
|-----------------------------|-------------------------------------------------------------------|--------------------------------|
| data                        | $30059.00 \pm 173.38$                                             | $196.00 \pm 14.00$             |
| background                  | $36535.54 \pm 88.63$                                              | $337.43 \pm 21.16$             |
| $\bar{t}t \rightarrow bWcH$ | $123.95 \pm 1.11$                                                 | $57.26 \pm 0.59$               |
| $cg \rightarrow tH$         | $4.16 \pm 0.07$                                                   | $4.45 \pm 0.06$                |
| tcH merged signal           | 128.11 ± 1.11                                                     | $61.71 \pm 0.59$               |
| $\bar{t}t \rightarrow bWuH$ | $129.95 \pm 1.10$                                                 | $59.88 \pm 0.60$               |
| $ug \rightarrow tH$         | $23.35 \pm 0.38$                                                  | $20.67 \pm 0.28$               |
| tuH merged signal           | $153.31 \pm 1.17$                                                 | $80.55 \pm 0.66$               |

Table 15: The stat. only significance of signal before the final fit.

|                             | $1\tau_{\text{had}} 1 \text{j } E_T^{miss} > 20 GeV$ | STH $\tau_{\text{lep}}\tau_{\text{had}} E_T^{miss} > 20 GeV$ | $1\tau_{\text{had}} \ 2j \ E_T^{miss} > 20 GeV$ |
|-----------------------------|------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|
| $\bar{t}t \rightarrow bWcH$ | 1.34                                                 | 0.74                                                         | 1.28                                            |
| $cg \rightarrow tH$         | 0.05                                                 | 0.06                                                         | 0.03                                            |
| tcH merged signal           | 1.39                                                 | 0.80                                                         | 1.31                                            |
| $\bar{t}t \rightarrow bWuH$ | 1.43                                                 | 0.76                                                         | 1.38                                            |
| $ug \rightarrow tH$         | 0.29                                                 | 0.39                                                         | 0.22                                            |
| tuH merged signal           | 1.71                                                 | 1.12                                                         | 1.59                                            |

|                             | TTH $\tau_{\text{lep}}\tau_{\text{had}}$ os $E_T^{miss} > 20 GeV$ | $l	au_{ m had}	au_{ m had}$ os |
|-----------------------------|-------------------------------------------------------------------|--------------------------------|
| $\bar{t}t \rightarrow bWcH$ | 1.55                                                              | 6.08                           |
| $cg \rightarrow tH$         | 0.07                                                              | 0.58                           |
| tcH merged signal           | 1.62                                                              | 6.48                           |
| $\bar{t}t \rightarrow bWuH$ | 1.65                                                              | 6.47                           |
| $ug \rightarrow tH$         | 0.40                                                              | 2.43                           |
| tuH merged signal           | 2.04                                                              | 8.26                           |



Figure 11: The BDT input distributions for the background and merged signal in the STH  $\tau_{had}\tau_{had}$  (a1-3), TTH  $\tau_{had}\tau_{had}$  (b1-3)



Figure 12: The BDT input distributions for the background and merged signal in the STH  $\tau_{lep}\tau_{had}$  (a1-3), TTH  $\tau_{lep}\tau_{had}$  (b1-3).



Figure 13: The BDT input distributions for the background and merged signal in the  $l\tau_{had}\tau_{had}$  (a1-3),  $l\tau_{had}$  1j (b1-3),  $l\tau_{had}\tau_{had}$  2j (c1-3) channels.



Figure 14: The BDT output distributions for the background and TT signal (a1, b1), background and ST signal (a2, b2) and ROC curves (a3, b3) in the STH  $\tau_{had}\tau_{had}$  (a1-3), TTH  $\tau_{had}\tau_{had}$  (b1-3).



Figure 15: The BDT output distributions for the background and TT signal (a1, b1, c1), background and ST signal (a2, b2, c2) and ROC curves (a3, b3, c3) in the STH  $\tau_{lep}\tau_{had}$  (a1-3), TTH  $\tau_{lep}\tau_{had}$  (b1-3).



Figure 16: The BDT output distributions for the background and TT signal (a1, b1, c1), background and ST signal (a2, b2, c2) and ROC curves (a3, b3, c3) in the  $l\tau_{had}\tau_{had}$  (a1-3),  $\tau_{had}$  1j (b1-3),  $\tau_{had}$  2j (c1-3) channels.

# 10 Systematic uncertainties

- The signal efficiency and the background estimations are affected by uncertainties associated with the detector simulation, the signal modelling and the data-driven background determination. In the combined fit, these uncertainties are called Nuisance Parameters (NP), as opposed to the parameter of interest, the signal strength, which is a scaling factor applied on the total signal events.
- Any systematic effect on the the overall normalisation or shape of the final BDT distribution in the signal region is considered. In TRExFitter [61], the NP pruning is applied, which means that NPs whose impact are less than a certain threshold are discarded. The lower thresholds to remove a shape systematic and a normalisation systematic from the fit are both 1% in the fit.
- Table ?? gives the QCD fake estimation for  $\tau_{\text{had}}\tau_{\text{had}}$  channel in 8.3 and 24 scale factor NPs and 2 transfer factor for fake method mentioned in 8.2. The lists of systematic NPs that survive the pruning are in Tab. ?? and ??, and their meanings are given below. All the NPs in Tab. ?? and the fake method NP in ?? are fully correlated in all signal regions.

#### 601 10.1 Luminosity

The integrated luminosity measurement has an uncertainty of 1.7% for the combined Run-2 data, and it is applied to all simulated event samples.

#### 10.2 Detector-related uncertainties

- Uncertainties related to the detector are included for the signal and backgrounds that are estimated using simulation. These uncertainties are also taken into account for the simulated events that enter the data-driven background estimations. All instrumental systematic uncertainties arising from the reconstruction, identification and energy scale of electrons, muons, (b-)jets and the soft term of the  $E_{\rm T}^{\rm miss}$  measurement are considered. The effect of the energy scale uncertainties on the objects is propagated to the  $E_{\rm T}^{\rm miss}$  calculation. These systematics include uncertainty associated with:
- The electron and muon trigger, reconstruction, identification and isolation efficiencies. These are estimated with the tag-and-probe method on the  $Z \to ll$ ,  $J/\psi \to ll$  and  $W \to l\nu$  events [62].
  - Electron and muon momentum scales. They are estimated from the early 13 TeV  $Z \rightarrow ll$  events.

- Jet energy scale (JES) and resolution (JER). The JES uncertainty is estimated by varying the jet energies according to the uncertainties derived from simulation and in-situ calibration measurements using a model with a reduced set of 38 orthogonal NPs [63] which has up to 30% correlation losses, which are assumed to be uncorrelated, and the induced changes can be added in quadrature. The individual scale variations on the jets are parameterised in *p*<sub>T</sub> and *η*. The total JES uncertianty is below 5% for most jets and below 1% for central jets with pT between 300 GeV and 2 TeV. The difference between the JER in data and MC is represented by one NP. It is applied on the MC by smearing the jet *p*<sub>T</sub> within the prescribed uncertainty. JVT is applied in the analysis to select jets from hard-scattered vertices. It was found that different MC generators (and different fragmentation models) lead to efficiency differences of up to 1%, and the uncertainty on the efficiency measurement was found to be around 0.5%. Two NPs are assigned for the JVT efficiency, one for the central and the other for the forward jets.
- Calibration of the  $E_{\rm T}^{\rm miss}$ . The uncertainties on  $E_{\rm T}^{\rm miss}$  due to systematic shifts in the corrections for leptons and jets are accounted for in a fully correlated way in their evaluation for those physics objects, and are therefore not considered independently here. The systematic uncertainty assigned to the track-based soft term used in the  $E_{\rm T}^{\rm miss}$  definition quantifies the resolution and scale of the soft term measurement by using the balance between hard and soft contributions in  $Z \to \mu\mu$  events. The uncertainties are studied using the differences between Monte Carlo generators, using Powheg+Pythia8 as the nominal generator [64]. One NP is assigned for the soft-track scale, and two NPs for the soft-track resolution.
- Jet flavour tagging systematics. The uncertainties on the *b*-tagging are assessed independently for *b*, *c* and light-flavour quark jets, with extrapolation factors [65]. The efficiencies and mis-tag rates are measured in data using the methods described in [66]-[67] with the 2015, 2016 and 2017 data set. There are 19 NPs assigned for the flavour tagging systematics (so-called "Loose" reduced set, with 5 NPs for light flavor, 4 for *c*, 9 for *b*, and 1 for extrapolation).
- Pileup. The uncertainty on the pileup reweighting is evaluated by varying the pileup scale factors by  $1\sigma$  based on the reweighting of the average interactions per bunch crossing. However, this uncertainty is highly correlated with the luminosity uncertainty and may be an overestimate.
- Tau object systematics. These include the τ<sub>had</sub> reconstruction, identification and trigger efficiencies, the efficiency for tau-electron overlap removal of true τ<sub>had</sub>, the one for tau-electron overlap removal of true electrons faking τ<sub>had</sub>, and the one for a "medium" BDT electron rejection. There are also three NPs that cover the tau energy scale (TES) systematics due to the modeling of the detector geometry (TAU\_TES\_DETECTOR), the measurement in the tag-and-probe analysis (TAU\_TES\_INSITU) and the Geant 4 shower model (TAU\_TES\_MODEL). The systematics are based on detailed MC variation study, as well as the Run-2 Z → ττ data for insitu calibrations of the tau TES and trigger efficiencies, as documented in [51] and the dedicated software tools [53] recommended by the Tau CP Woking Group [54].

# 10.3 Uncertainties on fake background estimations

Systematic uncertainties resulting from the data-driven background estimation and usage of SS events as described in Sec. 8. They are named fakeSF\*prong\*Ptbin and norm\_factor\_hh in Tab. ??.

## 10.4 Theoretical uncertainties on the background

Theoretical uncertainties have been applied to the MC background in this analysis. The NNPDF3.0 systematic set (which has 100 variations) is used to get the variation envelope around the nominal PDF, and the renormalization and factorization scales are varied by a factor of 0.5 and 2.0 around the nominal values. There are eight such variations. In the final BDT distributions, the largest variations of the eight per bin are taken.

The default  $t\bar{t}$  sample is generated with Powheg. A separate full-sim  $t\bar{t}$  sample generated with Sherpa (0 and 1-jet at NLO, and  $\geq 2$  jets at LO) is compared with the Powheg sample, and the difference in final results is treated as the hard scattering systematics [68].

The default  $t\bar{t}$  MC events are showered with Pythia8. A separate sample showered with Herwig7 is compared with the Pythia8 sample, and the difference is treated as fragmentation and hadronization systematics [68]. These two samples are both generated with ATLFAST-II [36], and their difference is then applied to the default full-simulation  $t\bar{t}$  sample.

The Powheg+Pythia8  $t\bar{t}$  MC is also generated with different shower radiations (initial and final-state radiation modelling). For a sample with increased radiation, the factorisation and renormalization scales are scaled by 0.5 with respect to their nominal values, the hdamp parameter (which controls the amount of radiation produced by the parton shower in POWHEG-BOX v2) is set to  $3m_{\text{top}}$  and the A14var3cUp tune is used. Conversely, for a sample with decreased radiation, the two scales are scaled by 2 with respect to their nominal values, the hdamp is kept at the nominal value of  $1.5m_{\text{top}}$  and the A14var3cDown tune is used [68].

Uncertainty affecting the normalisation of the V+jets background is estimated to be about 30% according to the study done in the FCNC  $H \to b\bar{b}$  channel [69]. The uncertainty on the diboson cross section is 5% [70], on single top +5%/-4% [43][71, 72], on  $t\bar{t}V$  15% [73, 74], and on  $t\bar{t}H$  +10%/-13% [75].

# 10.5 Uncertainties on the signal modelling

Since the signal samples share the same production as the  $t\bar{t}$  process, the systematics listed above for  $t\bar{t}$  also apply to the signal. However, because the systematics variation samples are only generated for the

- SM decays of  $t\bar{t}$ , only the integral change of the yields observed for the  $t\bar{t}$  background with real taus in the FR is used, and applied on the signal in the same region in a fully correlated way. An additional 1.6% uncertainty on BR( $H \to \tau \tau$ ) is also assigned [39].
- The fake calibration is also applied to the fake tau part of the signal the same way as the background. The 6 NPs are also applied to the signal and fully correlated with the background.

# 11 Fit model and signal extraction

The parameter of interest in this search is the signal strength of the FCNC interactions,  $BR(t \to Hq)$  and corresponding production mode cross section. The statistical analysis of the data employs a binned likelihood function constructed as the product of Poisson probability terms, in bins of the BDT output.

To take into account the systematic uncertianties associated with the MC estimation from different sources for both the signal and background samples, the fit model incorporates these systematics as extra Gaussian or Log-Normal constraint terms multiplied with the combined likelihood. The fitted central values and errors of the systematics parameters, or NPs, are expected to follow a normal distribution centered around 0 with unit width, when the Asimov data is used. The fit model construction is obtained with the RooFit and RooStats software, and the model configuration and persistence files (as input to RooStats) are produced by TRExFitter [61], which is a software package interface with HistFactory. The TRExFitter includes additional features such as histogram smoothing, NP pruning and error symmetrization before the fits.

The correlated bin-by-bin histogram variation corresponds to the up and down variation of each NP. The independent bin-by-bin fluctuations in the combined MC templates are also treated as NPs. They are incorporated in the model as extra Poisson constraint terms, and are expected to have a fitted value of 1 and a fitted error reflecting the relative statistical error in each particular bin. There is one parameter if interest (POI) freely floating in the fit without any constraints, namely, the signal strength  $\mu$  (SigXsecOverSM) which is a multiplicative factor on a presumed branching ratio of BR( $t \rightarrow Hq$ )=1% in this analysis. The errors associated with the different systematics will be properly propagated to the fitted error of  $\mu$  in a simultaneous fit of multiple regions via a profiled likelihood scan by the minimization program MINUIT.

The one-sided NPs in the analysis, namely, fakeSFXprongXPtbin, ttbar fragmentation, ttbar
hard scattering, JET\_BJES\_Response, JET\_JER\_DataVsMC\_MC16, JET\_SingleParticle\_HighPt,
JET\_TILECORR\_Uncertainty, MET\_SoftTrk\_ResoPara, MET\_SoftTrk\_ResoPerp are symmetrized.
This is done manually on the MC components of the background. By default, all the kinematic NPs (shape
NPs due to, e.g., energy scales) are smoothed using the default smoothing parameters in TRExFitter.
This helps removing the artificial NP constraints due to statistical fluctuations in the systematic variations,
and makes the fit well behaved. The NPs pull distributions before the smoothing for each SR are given in
App. ??.

Figure 21 shows the ranking of the 25 top NPs along with their pull distributions, produced also with TRExFitter. The highest ranked NP is defined to have the largest impact on  $\mu$ . The impact is evalated by varying the NP under consideration by one  $\sigma$  (either pre or post-fit error) up and down, and afterwards looking at the relative change in  $\mu$  under the conditional fit where the NP under consideration is fixed to its varied new value. Figure ?? shows the pull distributions of all NPs in asimov fit. Normalization and

- shape systematics whose impact is less than 1% are removed from the fit. The list of removed NPs are given in App. ??.
- The NP ranking and constraints can be qualitatively understood from the variations of the BDT distributions due to the relevant NPs. Figures ??-?? show the systematic variations due to the top ranked NPs.
- Figure 22 shows the correlation matrix for diffrent NPs. Except for self-correlations, and the correlations between the normalization factors (including POI) and the others, all the NPs have relatively small correlations with each other, which justifies the fit models for independent systematics.



Figure 17: The asimov prefit (left) and postfit (right) BDT distributions in the STH  $\tau_{lep}\tau_{had}$  (a1-2) and TTH  $\tau_{lep}\tau_{had}$  (b1-2),  $l\tau_{had}\tau_{had}$  (c1-2)



Figure 18: The asimov prefit (left) and postfit (right) BDT distributions in the TTH  $\tau_{had}\tau_{had}$  (a1-2) and STH  $\tau_{had}\tau_{had}$  (b1-2)



Figure 19: The asimov fit pull distributions of different NPs for  $\tau_{had}\tau_{had}$  channels (left) combined and lepton channels combined (right).

| D      |          |          | г |
|--------|----------|----------|---|
| I I IK | $\Delta$ | $\vdash$ | ı |
|        |          |          |   |



Figure 20: The asimov fit ranking of the top 25 NPs for  $\tau_{had}\tau_{had}$  channels (left) combined and lepton channels combined (right). The scale of the relative impact on  $\mu$  (the pull) of the NPs is shown on the top (bottom) axis.



Figure 21: The asimov fit correlation matrix (%) of different NPs, with a threshold of 20% for  $\tau_{had}\tau_{had}$  channels (left) combined and lepton channels combined (right).

#### 26 12 Results

The significance of any small observed excess in data is evaluated by quoting the p-values to quantify the

level of consistency of the data with the BR=0 hypothesis. The asymptotic approximation in [76] is used.

The test statistic used for the exclusion limits derivation is the  $\tilde{q}_{\mu}$  test statistic and for the *p*-values the  $q_0$  test statistic<sup>5</sup> [76].

The 95% CL upper limits on tqH interaction with BR $(t \rightarrow Hq) = 0.2\%$  as reference are given in Tab. 17.

The best asimov fit values with S+B hypothesis are given in Tab. ??

Table 16: The expected 95% CL exclusion upper limits on BR( $t \to Hc$ ) and BR( $t \to Hu$ ) (0.2%) with the Asimov (B-only).

|                            | tcH                    | tuH                    |
|----------------------------|------------------------|------------------------|
| $	au_{ m had}	au_{ m had}$ | $0.80^{+0.41}_{-0.22}$ | $0.64^{+0.33}_{-0.18}$ |
| leptonic channels          | $0.77^{+0.33}_{-0.21}$ | $0.60^{+0.26}_{-0.17}$ |

Table 17: The best asimov fit values with S+B hypothesis.

|                            | tcH                              | tuH                              |
|----------------------------|----------------------------------|----------------------------------|
| $	au_{ m had}	au_{ m had}$ | $1.00^{+0.23+0.51}_{-0.22-0.38}$ | $1.00^{+0.18+0.44}_{-0.18-0.33}$ |
| leptonic channels          | $1.00^{+0.56+X.XX}_{-0.54-X.XX}$ | $1.00^{+0.47+X.XX}_{-0.46-X.XX}$ |

The search for the FCNC decay  $t \to Hq$ ,  $H \to \tau\tau$  with the ATLAS detector at the LHC using 13 TeV data was presented in this note. The best-fit values for BR( $t \to Hc$ ) and BR( $t \to Hu$ ) are found to be  $-X.XX_{-X.XX}^{+X.XX}\%$  and  $-X.XX_{-X.XX}^{+X.XX}\%$  respectively, based on 140 fb<sup>-1</sup> of data collected from 2015 to 2018. The observed (expected) 95% CL upper limits on BR( $t \to Hc$ ) and BR( $t \to Hu$ ) are found to be X.XX% ( $X.XX_{-X.XX}^{+X.XX}\%$ ) and X.XX% ( $X.XX_{-X.XX}^{+X.XX}\%$ ), respectively.

$$\tilde{q}_{\mu} = \left\{ \begin{array}{ll} -2\ln(\mathcal{L}(\mu,\hat{\hat{\theta}})/\mathcal{L}(0,\hat{\hat{\theta}})) & \quad \text{if } \hat{\mu} < 0 \\ -2\ln(\mathcal{L}(\mu,\hat{\hat{\theta}})/\mathcal{L}(\hat{\mu},\hat{\theta})) & \quad \text{if } 0 \leq \hat{\mu} \leq \mu \\ 0 & \quad \text{if } \hat{\mu} > \mu \end{array} \right.$$

and

$$q_0 = \begin{cases} -2\ln(\mathcal{L}(0,\hat{\theta})/\mathcal{L}(\hat{\mu},\hat{\theta})) & \text{if } \hat{\mu} \ge 0\\ 0 & \text{if } \hat{\mu} < 0 \end{cases}$$

where  $\mathcal{L}(\mu, \theta)$  denotes the binned likelihood function,  $\mu$  is the parameter of interest (i.e. the signal strength parameter), and  $\theta$  denotes the nuisance parameters. The pair  $(\hat{\mu}, \hat{\theta})$  corresponds to the global maximum of the likelihood, whereas  $(x, \hat{\theta})$  corresponds to a conditional maximum in which  $\mu$  is fixed to a given value x.

<sup>&</sup>lt;sup>5</sup> The definition of the test statistics used in this search is the following:

# 738 Appendix

#### References

- ATLAS Collaboration, Combined Measurement of the Higgs Boson Mass in pp Collisions at  $\sqrt{s}$ =7 and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. **114** (2015) 191803, arXiv: 1503.07589 [hep-ex].
- [2] S. Glashow, J. Iliopoulos and L. Maiani, Weak Interactions with Lepton-Hadron Symmetry,
   Phys. Rev. D 2 (1970) 1285.
- [3] J. Aguilar-Saavedra,
   Top flavor-changing neutral interactions: Theoretical expectations and experimental detection,
   Acta Phys. Polon. B 35 (2004) 2695, arXiv: 0409342 [hep-ph].
- F. del Aguila, J. A. Aguilar-Saavedra, and R. Miquel,

  Constraints on top couplings in models with exotic quarks, Phys. Rev. Lett. **82** (1999) 1628,

  arXiv: 9808400 [hep-ph].
- [5] J. Aguilar-Saavedra, Effects of mixing with quark singlets, Phys. Rev. D 67 (2003) 035003,
   arXiv: 0210112 [hep-ph].
- S. Bejar, J. Guasch and J. Sola, *Loop induced flavor changing neutral decays of the top quark in a general two Higgs doublet model*, Nucl. Phys. B **600** (2001) 21, arXiv: **0011091** [hep-ph].
- I. Baum, G. Eilam and S. Bar-Shalom, Scalar flavor changing neutral currents and rare top quark decays in a two Higgs doublet model 'for the top quark', Phys. Rev. D 77 (2008) 113008, arXiv: 0802.2622 [hep-ph].
- J. J. Cao et al., SUSY-induced FCNC top-quark processes at the large hadron collider, Phys. Rev. D **75** (2007) 075021, arXiv: **0702264** [hep-ph].
- G. Eilam et al., *Top quark rare decay t*  $\rightarrow$  *ch in R-parity violating SUSY*, Phys. Lett. B **510** (2001) 227, arXiv: **0102037** [hep-ph].
- G. Lu et al., The rare top quark decays  $t \to cV$  in the topcolor-assisted technicolor model, Phys. Rev. D **68** (2003) 015002, arXiv: **0303122** [hep-ph].
- K. Agashe, G. Perez and A. Soni,
   Collider signals of top quark flavor violation from a warped extra dimension,
   Phys. Rev. D 75 (2007) 015002, arXiv: 0606293 [hep-ph].
- B. Yang, N. Liu and J. Han, *Top quark flavor-changing neutral-current decay to a 125 GeV Higgs boson in the littlest Higgs model with T parity*, , Phys. Rev. D **89** (2014) 034020, arXiv: 1308.4852 [hep-ph].
- K. Agashe and R. Contino, *Composite Higgs-mediated flavor-changing neutral current*, Phys. Rev. D **80** (2009) 075016, arXiv: 0906.1542 [hep-ph].

- T. P. Cheng and Marc Sher,

  Mass Matrix Ansatz and Flavor Nonconservation in Models with Multiple Higgs Doublets,

  Phys. Rev. D **35** (1987) 3484.

  Wei-Shu Hou, Tree level  $t \rightarrow ch$  or  $h \rightarrow t\bar{c}$  decays, Phys. Lett. B **296** (1992) 179.

  Federico Demartin, Fabio Maltoni, Kentarou Mawatari, Marco Zaro,
- Federico Demartin, Fabio Maltoni, Kentarou Mawatari, Marco Zaro,

  Higgs production in association with a single top quark at the LHC, (2015),

  arXiv: 1504.00611 [hep-ph].
- ATLAS Collaboration, Search for top quark decays  $t \to qH$ , with  $H \to \gamma\gamma$ , in  $\sqrt{s} = 13$  TeV pp collisions using the ATLAS detector, JHEP (2017) 129, arXiv: 1707.01404 [hep-ex].
- [18] ATLAS Collaboration,

  Search for flavor-changing neutral currents in top quark decays  $t \to Hc$  and  $t \to Hu$  in

  multilepton final states in proton–proton collisions at sqrts = 13 TeV with the ATLAS detector,

  Phys. Rev. D (2018) 36, arXiv: 1805.03483 [hep-ex].
- <sup>785</sup> [19] ATLAS Collaboration, Search for top-quark decays  $t \to qH$  with 36 fb-1 of pp collision data at  $\sqrt{s}$ =13 TeV with the ATLAS detector, (), arXiv: 1812.11568 [hep-ex].
- CMS Collaboration, Search for the flavor-changing neutral current interactions of the top quark and the Higgs boson which decays into a pair of b quarks at  $\sqrt{s} = 13$  TeV, JHEP **06** (2018) 102, arXiv: 1712.02399 [hep-ex].
- Celine Degrande, Fabio Maltoni, Jian Wang, Cen Zhang, Automatic computations at next-to-leading order in QCD for top-quark flavor-changing neutral processes,

  Phys. Rev. D (2015) 6, arXiv: 1412.5594 [hep-ex].
- 793 [22] ATLAS Collaboration, *The ATLAS Experiment at the CERN Large Hadron Collider*, JINST **3** (2008) S08003.
- 795 [23] ATLAS Collaboration, *ATLAS Insertable B-Layer Technical Design Report*,
  796 CERN-LHCC-2010-013; ATLAS-TDR-19, 2010,
  797 URL: https://cds.cern.ch/record/1291633.
- 798 [24] ATLAS Collaboration, 799 Luminosity determination in pp collisions at  $\sqrt{s} = 8$  TeV using the ATLAS detector at the LHC, 800 (2016), arXiv: 1608.03953 [hep-ex].
- <sup>801</sup> [25] Celine Degrande et al., *Automatic computations at next-to-leading order in QCD for top-quark*<sup>802</sup> *flavor-changing neutral processes*, Phys. Rev. D **91** (2015) 034024, arXiv: 1412.5594 [hep-ph].
- Celine Degrande et al., Effective theory for top flavor changing interactions, 2016, URL: https://feynrules.irmp.ucl.ac.be/wiki/TopFCNC.
- J. Alwall et al., *The automated computation of tree-level and next-to-leading order differential* cross sections, and their matching to parton shower simulations, JHEP **07** (2014) 079, arXiv: 1405.0301 [hep-ph].

- 808 [28] T. Sjostrand et al., *An introduction to PYTHIA* 8.2, Comp. Phys. Commun. **191** (2015) 159, arXiv: 1410.3012 [hep-ph].
- 810 [29] ATLAS Collaboration, *ATLAS Pythia 8 tunes to 7 TeV data*, ATL-PHYS-PUB-2014-021, 2014, URL: https://cdsweb.cern.ch/record/196641.
- 812 [30] R. D. Ball et al., *Parton distributions for the LHC Run II*, JHEP **04** (2015) 040, arXiv: 1410.8849 [hep-ph].
- 814 [31] C. Oleari, *The POWHEG-BOX*, Nucl. Phys. Proc. Suppl. **205-206** (2010) 36–41, arXiv: 1007.3893 [hep-ph].
- <sup>816</sup> [32] T. Gleisberg et al., *Event generation with Sherpa 1.1*, JHEP **02** (2009) 007, arXiv: **0811.4622** [hep-ph].
- N. Davidson et al., *Universal interface of TAUOLA: Technical and physics documentation*, Comp. Phys. Commun. **183** (2012) 821.
- 820 [34] S. Agostinelli et al., GEANT4 A simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250.
- [35] J. Bellm et al., *Herwig 7.0/Herwig++ 3.0 release note*, Eur. Phys. J. C **76** (2016) 196.
- ATLAS Collaboration,

  The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim,

  ATL-PHYS-PUB-2010-013, 2010, URL: http://cds.cern.ch/record/1300517.
- J Butterworth et al.,

  Single Boson and Diboson Production Cross Sections in pp Collisions at √s=7 TeV,

  ATL-COM-PHYS-2010-695, 2010, URL: http://cds.cern.ch/record/1287902.
- M. Czakon and A. Mitov,

  Top++: a program for the calculation of the top-pair cross-section at hadron colliders,

  Comput. Phys. Commun **185** (2014) 2930, arXiv: 1112.5675 [hep-ph].
- D. de Florian et al.,

  Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector,

  CERN-2017-002-M (2017), arXiv: 1610.07922 [hep-ph],

  URL: https://cds.cern.ch/record/2227475.
- J. Alwall et al., *The automated computation of tree-level and next-to-leading order differential* cross sections, and their matching to parton shower simulations, JHEP **07** (2014) 079, arXiv: 1405.0301 [hep-ph].
- M. Aliev et al., *HATHOR HAdronic Top and Heavy quarks crOss section calculatoR*, Comput. Phys. Commun **182** (2011) 1034, arXiv: 1007.1327 [hep-ph].
- P. Kant et al., HATHOR for single top-quark production: Updated predictions and uncertainty
   estimates for single top-quark production in hadronic collisions,
   Comput. Phys. Commun 191 (2015) 74, arXiv: 1406.4403 [hep-ph].

```
[43] N. Kidonakis,
          Two-loop soft anomalous dimensions for single top quark associated production with a W^- or H^-,
844
          Phys. Rev. D 82 (2010) 054018, arXiv: 1005.4451 [hep-ph].
845
   [44]
         J. Pumplin et al.,
846
         New Generation of Parton Distributions with Uncertainties from Global QCD Analysis,
847
          JHEP 07 (2002) 012, arXiv: 0201195 [hep-ph].
848
   [45] M. Cacciari, G. P. Salam, and G. Soyez, The Anti-k(t) jet clustering algorithm,
          JHEP 04 (2008) 063, arXiv: 0802.1189 [hep-ph].
850
         ATLAS Collaboration, Tagging and suppression of pileup jets with the ATLAS detector,
851
          ATLAS-CONF-2014-018, 2014, URL: http://cds.cern.ch/record/1700870.
852
         ATLAS Collaboration, Optimisation of the ATLAS b-tagging performance for the 2016 LHC Run,
853
          ATL-PHYS-PUB-2016-012, 2016, URL: https://cds.cern.ch/record/2160731.
   [48] Electron and Photon Selection and Identification for Run2, Accessible on 2017-11-24,
855
          URL: https:
856
          //twiki.cern.ch/twiki/bin/view/AtlasProtected/EGammaIdentificationRun2.
         Official Isolation Working Points, Accessible on 2017-11-24, URL: https://twiki.cern.ch/
858
          twiki/bin/viewauth/AtlasProtected/IsolationSelectionTool#Leptons.
859
         MuonSelectionTool, Accessible on 2017-11-24.
   [50]
860
          URL: https://twiki.cern.ch/twiki/bin/view/Atlas/MuonSelectionTool.
861
         ATLAS Collaboration, Reconstruction, Energy Calibration, and Identification of Hadronically
862
          Decaying Tau Leptons in the ATLAS Experiment for Run-2 of the LHC,
863
          ATL-PHYS-PUB-2015-045, 2015, URL: https://cds.cern.ch/record/2064383.
864
        ATLAS Collaboration,
   [52]
865
          Jet energy measurement with the ATLAS detector in proton-proton collisions at \sqrt{s} = 7 TeV,
866
          Eur. Phys. J. C 73 (2013) 2304, arXiv: 1112.6426 [hep-ex].
867
         TauAnalysisTools, Accessible on 2017-11-24,
   [53]
868
          URL: https://svnweb.cern.ch/trac/atlasoff/browser/PhysicsAnalysis/TauID/
869
          TauAnalysisTools/tags/TauAnalysisTools-00-02-62/README.rst.
870
   [54] 2017 Tau Recommendations, Accessible on 2017-11-24, URL: https://twiki.cern.ch/
871
          twiki/bin/view/AtlasProtected/TauRecommendationsMoriond2017.
872
         Usage of Missing ET in analyses: rebuilding and systematics, Accessible on 2017-11-24,
   [55]
873
          URL: https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/METUtilities.
874
         James, F. and Roos, M., Minuit: A System for Function Minimization and Analysis of the
875
          Parameter Errors and Correlations, Comput. Phys. Commun. 10 (1975) 343,
876
```

URL: http://lcgapp.cern.ch/project/cls/work-packages/mathlibs/minuit.

- 878 [57] ATLAS Collaboration,

  879 *Measurement of the H*  $\rightarrow$   $\tau^+\tau^-$  *cross-section in 13TeV Collisions with the ATLAS Detector*,

  880 ATL-COM-PHYS-2017-446, 2017, URL: https://cds.cern.ch/record/2261605.
- ATLAS Collaboration, Search for the Associated Production of a Higgs Boson and a Top Quark

  Pair in multilepton final states in 80 fb<sup>-1</sup> pp Collisions at  $\sqrt{s} = 13$  TeV with the ATLAS Detector,

  ATL-COM-PHYS-2018-410, 2018, URL: https://cds.cern.ch/record/2314122.
- <sup>884</sup> [59] J. Friedman, Stochastic gradient boosting, Comput. Stat. Data Anal. **38** (2002) 367.
- A. Hoecker et al., *TMVA Toolkit for Multivariate Data Analysis*, PoS A CAT **040** (2007), arXiv: **0703039** [physics].
- ATLAS Collaboration, *Electron efficiency measurements with the ATLAS detector using the 2015*LHC proton-proton collision data, ATLAS-CONF-2016-024, 2016,

  URL: https://cds.cern.ch/record/2157687.
- ATLAS Collaboration, Jet Calibration and Systematic Uncertainties for Jets Reconstructed in the ATLAS Detector at  $\sqrt{s} = 13$  TeV, ATL-PHYS-PUB-2015-015, 2015, URL: https://cds.cern.ch/record/2037613.
- ATLAS Collaboration, Performance of missing transverse momentum reconstruction for the ATLAS detector in the first proton-proton collisions at  $\sqrt{s} = 13$  TeV, ATL-PHYS-PUB-2015-027, 2015, URL: https://cds.cern.ch/record/2037904.
- ATLAS Collaboration, *Expected performance of the ATLAS b-tagging algorithms in Run-2*, ATL-PHYS-PUB-2015-022, 2015, URL: https://cds.cern.ch/record/2037697.
- 900 [66] ATLAS Collaboration,
  901 Calibration of the performance of b-tagging for c and light-flavour jets in the 2012 ATLAS data,
  902 ATLAS-CONF-2014-046, 2014, URL: https://cds.cern.ch/record/1741020.
- ATLAS Collaboration, *Calibration of b-tagging using dileptonic top pair events in a*combinatorial likelihood approach with the ATLAS experiment, ATLAS-CONF-2014-004, 2014,

  URL: https://cds.cern.ch/record/1664335.
- 906 [68] ATLAS Collaboration,
  907 Studies on top-quark Monte Carlo modelling with Sherpa and MG5\_aMC@NLO,
  908 ATL-PHYS-PUB-2017-007, 2017, URL: https://cds.cern.ch/record/2261938.
- 909 [69] ATLAS Collaboration, Search for flavor-changing neutral current  $t \to Hq$  (q=u,c) decays, with  $H \to b\bar{b}$ , in the lepton+jets final state in pp collisions at  $\sqrt{s} = 13$  TeV with the ATLAS detector, 911 ATL-COM-PHYS-2017-346, 2017, URL: https://cds.cern.ch/record/2257631.
- J. M. Campbell and R. K. Ellis, An Update on vector boson pair production at hadron colliders,
   Phys. Rev. D 60 (1999) 113006, arXiv: 9905386 [hep-ph].

- N. Kidonakis, *Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel* single top quark production, Phys. Rev. D **83** (2011) 091503, arXiv: 1103.2792 [hep-ph].
- 916 [72] N. Kidonakis, NNLL resummation for s-channel single top quark production,
  917 Phys. Rev. D **81** (2010) 054028, arXiv: **1001.5034** [hep-ph].
- 918 [73] M. V. Garzelli et al.,  $t\bar{t}W^{\pm}$  and  $t\bar{t}Z$  Hadroproduction at NLO accuracy in QCD with Parton 919 Shower and Hadronization effects, JHEP **1211** (2012) 056, arXiv: **1208.2665** [hep-ph].
- 920 [74] J. M. Campbell and R. K. Ellis,  $t\bar{t}W^{\pm}$  production and decay at NLO, JHEP **1207** (2012) 052, arXiv: 1204.5678 [hep-ph].
- [75] LHC Higgs Cross Section Working Group,
   Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, (2011),
   arXiv: 1101.0593 [hep-ph].
- G. Cowan, K. Cranmer, E. Gross and O. Vitells,
   Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554,
   arXiv: 1007.1727 [physics.data-an].

# **List of contributions**

929

934

- Boyang Li: main analyser, signal generation; ntuple production; fake tau estimation; BDT analysis; systematics; fit; support note.
- Weiming Yao: main analyser, ttHML ntuple skimming and support; fake tau estimation; BDT analysis; cross check; support note.
  - MingMing Xia: main analyser, xTauFramework n-tuple production; production validation.
  - Xin Chen: Supervisor of Boyang Li and MingMing Xia