BE LAB TASK # 03

Name: Shahmeer khan.

Student ID: 12113.

Class ID: 106293.

Topic: Series Resistive

Circuit.

Task:

Observations/Calculations:

Objectives:

- A, Identify Series Circuit.
- B, Calculate and Measure the resistance of a series circuit.
- C, Measure the Current Flow in a Series Circuit using an ammeter.
- D, Measure the Voltage Drop in a series circuit using Volt Meter.

Objective A:

Identify Series Circuit;

EXERCISE PROCEDURE:

OBJECTIVE A: Identify series circuit

FIG-1

Answer: a and b.

Objective B:

Calculate and Measure the resistance of a series circuit.

RESISTOR	COLOR CODE	INDICATED VALUE	TOLERANCE (PERCENT)	MEASURED VALUE
	(COLORS)	(OHMS)	(I EKCEIVI)	(OHMS)
	(COLONS)	(OTTIVIS)		(OTTIVIS)
R1	Brown,	1000	5	1000
	Black,	2000		2000
	Red,			
	Gold.			
R2	Brown,	100	5	100
	BLACK,			
	BROWN,			
	Gold.			
R3	Brown,	1500	10	1500
	GREEN,			
	Red,			
	SILVER.			

^{*}Record in Table, the color code, indicated value and tolerance and each resistor R1 through R3.

RT (INDICATED).

$$R_{T \text{ (INDICATED)}} = 2600 \text{ Ohms.}$$

R_T (MEASURED).

 $R_{T \text{ (MEASURED)}} = 2600 \text{ Ohms.}$

^{*}Use multi-meter to measure of each resistor and enter them in Table.

^{*}Adding the indicated value together, calculate total resistance,

^{*}Adding the measured value together, calculate total resistance,

*Is the indicated resistance value $R_{T \text{ (INDICATED)}}$ the same as the total measured value $R_{T \text{ (MEASURED)}}$?

Answer: Yes.

SS of above work:

$$R_{T (Circuit)} = 2.6K Ohms.$$

Or

 $R_{T (Circuit)} = 2600 \text{ Ohms.}$

^{*}Connect resistor R1 through R3 in series. Measure the total circuit resistance R_T with ohmmeter.

SS of above work:

Answer: Yes.

^{*}Does the total resistance value, $R_{T\,(CIRCUIT)}$ agrees with the result of above exercise?

Objective C:

Measure the Current Flow in a Series Circuit using an ammeter.

*Connect the circuit shown in Figure. Note that the ammeter, set to the 0-10mAdc range, is connected in series with the resistor R1 and the power source.

*Adjust the power supply to 10vdc. How much circuit current is indicated by the milli ammeter?

 $I_{\text{(Circuit)}} = 3.846 \text{ mA DC}.$

SS of above work:

*Return the voltage to zero.

*You can also find total circuit resistance by using ohm's law. Substitute the applied voltage and the circuit current measured above into Ohm's Law formula R=V/I to calculate the total circuit resistance,

R_T (Circuit)

Answer:

R=??

V=10 vdc.

I=3.846 mA dc.

R=V/I.

R=10/0.003846.

R=2600.104004 Ohms.

R=2600 Ohms. (Final Form after rounding off).

*Does the total calculated circuit resistance value, R_{T (CALCULATED)} agrees with the result of above calculated value?

Answer: Yes but a little bit not perfect but after rounding off it will be.

*List the possible factors that could account for the results not being in perfect argument.

Answer: *Tolerance.

*Human Error.

*Instrumental error/issue.

*Now measure the current at different locations, throughout the series circuit. Connect the milli-ammeter between R1 and R2.

*Adjust the power source to 10Vdc.

*Measure and record the current flowing between R1 and R2

$$I_{(R1-R2)} = 3.846 \text{ mA DC}.$$

*Repeat last step with the mill ammeter connected, in turn to the following circuit positions:

$$I_{(R1-R2)} = 3.846 \text{ mA DC}.$$

$$I_{(R2-R3)} = 3.846 \text{ mA DC}.$$

$$I_{(R3-PS)} = 3.846 \text{ mA DC}.$$

SS of above work:

Compare the current values at different locations. Are they the same?

Answer: Yes.

Objective D:

Measure the Voltage Drop in a series circuit using Volt Meter.

 $V_{R1} = 3.846 VDC.$

 $V_{R2} = 0.384615 \text{ VDC}.$

 $V_{R3} = 5.769 VDC.$

Compare the Voltage values at different locations. Are they the same?

Answer: NO.

*What important rule of the series circuit have you verified?

Answer: *Voltage changes with respect to the resistors in series at different points.

*Current (I) remains the same in series circuit.

*Resistance increases.

SS of above work:

LINK:

https://tinyurl.com/yxfxdl8b