Recitation: Relations

The world is a hierarchy

April 1, 2022

Definitions/Important Concepts

Partition and Equivalence Classes

Equivalent: If R is an equivalence relation, a is equivalent to b if aRb.

Partition: A partition of a set S is a collection of disjoint nonempty subsets of S that have S as their union

Equivalence Class of a w.r.t R ($[a]_R$): The set of all elements of A that are equivalent to a.

Ordering

Poset: A set S together with a partial ordering R is called a partially ordered set, or poset, and is denoted by (S, R). Members of S are called elements of the poset.

Comparable: The elements a and b of a poset (S, \preceq) are called comparable if either $a \preceq b$ or $b \preceq a$.

Total Order: If (S, \preceq) is a poset and every two elements of S are comparable, S is called a totally ordered or linearly ordered set, and \preceq is called a total order or a linear order.

Maximal Element: An element of a poset that is not less than any other element of the poset.

Alternate: a is maximal in the poset (S, \preceq) if $\nexists b \in S : a \prec b$.

Minimal Element: An element of a poset that is not greater than any other element of the poset.

Alternate: a is minimal in the poset (S, \preceq) if $\nexists b \in S : b \prec a$.

Greatest Element: An element of a poset greater than all other elements in this set.

<u>Alternate</u>: a is the greatest element if $\forall b \in A : b \leq a$

Least Element: An element of a poset less than all other elements in this set.

<u>Alternate</u>: a is the least element if $\forall b \in A : a \leq b$

Upper Bound of a set: An element in a poset greater than all other elements in the set.

<u>Alternate:</u> Assume $A \subseteq (S, \preceq).u \in S$ is an upper bound of A if $\forall a \in A : a \preceq u$

Lower Bound of a set: An element in a poset less than all other elements in the set.

<u>Alternate:</u> Assume $A \subseteq (S, \preceq).l \in S$ is a lower bound of A if $\forall a \in A : l \preceq u$

Least Upper Bound of a set: An upper bound of the set that is less than all other upper bounds.

Greatest Lower Bound of a set: A lower bound of the set that is greater than all other lower bounds.

Questions

1. Justify that for an equivalence relation R for an equivalence class $[\mathbf{c}] \ \forall a, b \in [\mathbf{c}](a, b) \in R$, or every element in the equivalence class has relation with every element in the equivalence class

Recitation: Relations

- 2. Determine the number of different equivalence relations on a set with three elements a, b, c by listing them.
- 3. Let us assume that F is a relation on the set \mathbb{R} real numbers defined by xFy if and only if x-y is an integer. Prove that F is an equivalence relation on \mathbb{R} .
 - (a) What is the equivalence class of 1 for this equivalence relation?
 - (b) What is the equivalence class of 1/2 for this equivalence relation?
- 4. Can you draw the Hasse diagram for the relation $\{(a,b) \mid a > b\}$ on $\{1,2,3,4,6,8,12\}$? If not, then why?
- 5. Which of these relations (R) on $\{0,1,2,3\}$ are partial orderings? Determine the properties of a partial ordering that the others lack.
 - 1. $\{(0,0),(2,2),(3,3)\}$
 - b) $\{(0,0),(1,1),(2,0),(2,2),(2,3),(3,3)\}$
 - c) $\{(0,0),(1,1),(1,2),(2,2),(3,1),(3,3)\}$
 - d) $\{(0,0),(1,1),(1,2),(1,3),(2,0),(2,2),(2,3),(3,0),(3,3)\}$
 - e) $\{(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,2),(3,3)\}$
- 6. Is (S,R) a poset if S is the set of all people in the world and $(a,b) \in R$, where a and b are people, if
 - a) a is no shorter than b?
 - b) a weighs more than b?
 - c) a = b or a is a descendant of b?
 - d) a and b do not have a common friend?
- 7. Which of these are posets?
 - 1. $(\mathbf{Z}, =)$
 - 2. $({\bf Z}, \nmid)$
- 8. Determine whether the relations represented by these zero-one matrices are partial orders.

a.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

b.

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

9. Determine whether relations with the following directed graph is a partial order.

(d) \bigcirc_c $\stackrel{d}{\longrightarrow}$

(c)

- 10. **EXAMPLE:** Draw the Hasse diagram representing the partial ordering $\{(a, b) \mid a \text{ divides b}\}$ on $\{1, 2, 3, 4, 6, 8, 12\}$.
- 11. Prove that the greatest element is unique when it exists.
- 12. Prove the least element is unique when it exists.
- 13. Draw a Hasse Diagram for the following cases.
 - (a) Divisibility on the set $\{1, 2, 3, 5, 7, 11, 13\}$
 - (b) less than or equal to relation on $\{0, 2, 5, 10, 11, 15\}$.
- 14. Answer these questions for the poset $(\{\{1\}, \{2\}, \{4\}, \{1, 2\}, \{1, 4\}, \{2, 4\}, \{3, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}, \subseteq)$.
 - (a) Draw a Hasse Diagram representing this poset.
 - (b) Find the maximal elements.
 - (c) Find the minimal elements.
 - (d) Is there a greatest element?
 - (e) Is there a least element?
 - (f) Find all upper bounds of $\{\{2\}, \{4\}\}$.
 - (g) Find the least upper bound of $\{\{2\}, \{4\}\}\$, if it exists.
 - (h) Find all lower bounds of $\{\{1,3,4\},\{2,3,4\}\}$.
 - (i) Find the greatest lower bound of $\{\{1,3,4\},\{2,3,4\}\}$, if it exists
- 15. Let \mathbf{R} be the relation on the set of all colorings of the 2×2 checkerboard where each of the four squares is colored either red or blue so that (C1, C2), where C1 and C2 are 2×2 checkerboards with each of their four squares colored blue or red, belongs to R if and only if C2 can be obtained from C1 either by rotating the checkerboard or by rotating it and then reflecting it.
 - (a) Show that \mathbf{R} is an equivalence relation.
 - (b) What are the equivalence classes of **R**?

Recitation: Relations

16. Show that the partition of the set of bit strings of length 16 formed by equivalence classes of bit strings that agree on the last eight bits is a refinement of the partition formed from the equivalence classes of bit strings that agree on the last four bits.

Definition: A partition P1 is called a refinement of the partition P2 if every set in P1 is a subset of one of the sets in P2.