Math2033 TA note 6

Yang Yunfei, Chen Yipei, Liu Ping March 18, 2019

1 LIMIT

Example 1. For each of the following sequence $\{x_n\}$, show it converges and find its limit.

$$x_1 = 1, x_2 = 2$$
 and $x_{n+1} = \sqrt{x_n} + \sqrt{x_{n-1}}$ for $n = 2, 3, \cdots$

Solution: We have

$$x_{n+1} - x_n = \sqrt{x_n} + \sqrt{x_{n-1}} - (\sqrt{x_{n-1}} + \sqrt{x_{n-2}}) = \sqrt{x_n} - \sqrt{x_{n-2}}.$$
 (1.1)

Then we state

$$x_n > x_{n-1}, x_n > x_{n-2}.$$

Firstly, $x_3 = \sqrt{2} + 1 > x_2, x_3 > x_1$. Then if for n = k, the statement is true, i.e.,

$$x_k > x_{k-1}, x_k > x_{k-2}.$$

by equation (1.1), we have

$$x_{k+1} - x_k = \sqrt{x_k} - \sqrt{x_{k-2}} > 0 \implies x_{k+1} > x_k$$

and by $x_k > x_{k-1}$ and $x_{k+1} > x_k$, we have

$$x_{k+1} > x_{k-1}$$
.

So the statement is true when n = k + 1. By induction principle, we prove the statement is true for all $n = 3, 4, \cdots$. Then we prove the sequence is monotone increasing. If $x_n < 4, x_{n-1} < 4$ then $x_{n+1} < 4$. So the sequence is bounded. Then by monotone convergence theorem, there is a limit denoted as a. By

$$a = \sqrt{a} + \sqrt{a}$$
.

we have a = 4. This is the limit.

Example 2. For each of the following sequence $\{x_n\}$, show it converges and find its limit.

$$x_1 = 1$$
 and $x_{n+1} = \frac{2-x_n}{3+x_n}$ for $n = 1, 2, 3, \cdots$

Solution: Firstly calculate that

$$x_{n+1} = -1 + \frac{5}{3 + x_n}.$$

When $0 < x_n < 2$, by $x_{n+1} = -1 + \frac{5}{3+x_n}$, we can show that $0 < x_{n+1} < 2$. By induction principle, $0 < x_n < 2, \forall n = 1, 2, 3, \cdots$.

Secondly, we consider the monotone property of the sequence.

$$x_{n+1} - x_n = \frac{5}{3 + x_n} - \frac{5}{3 + x_{n-1}}$$

indicates that if $x_n > x_{n-1}$ for some fixed n, then $x_{n+1} < x_n$ as a consequence, which doesn't have the monotone property. But we can consider the odd sequence and even sequence, they may have monotone property. That is

$$x_{n+2} - x_n = \frac{5}{3 + x_{n+1}} - \frac{5}{3 + x_{n-1}}$$

$$= \frac{5(x_{n-1} - x_{n+1})}{(3 + x_{n+1})(3 + x_{n-1})}$$

$$= \frac{5}{(3 + x_{n+1})(3 + x_{n-1})} (\frac{5}{3 + x_{n-2}} - \frac{5}{3 + x_n})$$

$$= \frac{5}{(3 + x_{n+1})(3 + x_{n-1})} \frac{5}{(3 + x_{n})(3 + x_{n-2})} (x_n - x_{n-2})$$
(1.2)

By $0 < x_n < 2$, we have $\frac{5}{(3+x_{n+1})(3+x_{n-1})} \frac{5}{(3+x_n)(3+x_{n-2})} > 0$. Then by equation (1.2),

$$x_{n+2} > x_n$$
 if $x_n > x_{n-2}$

or

$$x_{n+2} < x_n$$
 if $x_n < x_{n-2}$.

Then by $x_1 = 1$, $x_2 = \frac{1}{4}$, $x_3 = \frac{7}{13}$, $x_4 = \frac{19}{46}$, for sequence

$$x_1, x_3, x_5, x_7, \cdots,$$

because of $x_1 > x_3$, according to our analysis we have $x_5 < x_3, x_7 < x_5, \cdots$ and it's a monotone decreasing sequence. For the sequence

$$x_2, x_4, x_6, x_8, \cdots,$$

in the same fashion, it's a monotone increasing sequence. Because $0 < x_n < 2$ and the monotone property of odd sequence and even sequence, there is a limit for each sequence based on monotone convergence theorem. Suppose a is the limit of odd sequence and b is the limit of even sequence, then by

$$a = -1 + \frac{5}{3+b}$$
 and $b = -1 + \frac{5}{3+a}$,

we can solve that $a = b = \sqrt{6} - 2$ as $0 < x_n < 2$. By intertwining theorem, the sequence converges and the limit is $\sqrt{6} - 2$.

Example 3. Let $\{x_n\}$ be a bounded sequence in \mathbb{R} , $M_n = \sup\{x_n, x_{n+1}, x_{n+2}, ...\}$ and $m_n = \inf\{x_n, x_{n+1}, x_{n+2}, ...\}$ for $n \in \mathbb{N}$.

- (a) Prove that both sequence $\{M_n\}$ and $\{m_n\}$ converge. (The limit of M_n is called the limit superior of x_n and is denoted by $\limsup_{n\to\infty} x_n$, while the limit of m_n is called the limit inferior of x_n and is denoted by $\liminf_{n\to\infty} x_n$.)
- (b) Prove that $\lim_{n\to\infty} x_n = x$ if and only if $\lim_{n\to\infty} M_n = x = \lim_{n\to\infty} m_n$. (i.e. $\limsup_{n\to\infty} x_n = x = \liminf_{n\to\infty} x_n$.)

Solution: (a) Since $\{x_n\}$ is bounded, $\{M_n\}$ and $\{m_n\}$ are bounded. M_n is an upper bound of $\{x_{n+1}, x_{n+2}, \ldots\}$ and m_n is a lower bound of $\{x_{n+1}, x_{n+2}, \ldots\}$ imply $M_{n+1} \leq M_n$ and $m_n \leq m_{n+1}$. So $\{M_n\}$ is decreasing, $\{m_n\}$ is increasing. By the monotone limit theorem, both sequence $\{M_n\}$ and $\{m_n\}$ converge.

(b) Since $m_n \le x_n \le M_n$, $\lim_{n \to \infty} M_n = x = \lim_{n \to \infty} m_n \Rightarrow \lim_{n \to \infty} x_n = x$ by sandwich theorem

Conversely, if $\lim_{n\to\infty} x_n = x$, then $\forall \epsilon > 0$, $\exists K$ such that $x - \epsilon/2 < x_n < x + \epsilon/2$ holds for all $n \ge K$. Thus, for all $n \ge K$, we have $M_n, m_n \in [x - \epsilon/2, x + \epsilon/2] \subseteq (x - \epsilon, x + \epsilon)$. Therefore, $\lim_{n\to\infty} M_n = x = \lim_{n\to\infty} m_n$.

Remark 4. We can use this example to prove the Bolzano-Weierstrass theorem: Every bounded sequence in \mathbb{R} has a convergent subsequence.

Proof. Let $\{x_n\}$ be a bounded sequence in \mathbb{R} , then by the example, the sequence M_n converges to some real number M. So, $\forall \epsilon > 0$, there exists $K(\epsilon)$ such that $n \geq K(\epsilon) \Rightarrow |M_n - M| < \epsilon$. We choose a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ as follow: let $x_{n_1} = x_1$; suppose x_{n_1}, \ldots, x_{n_i} have been selected, we choose $j \geq \max\{n_i+1, K(\frac{1}{2i})\}$, then $|M_j - M| < \frac{1}{2i}$. Since M_j is the supreme of $\{x_j, x_{j+1}, \ldots\}$, there exists $m \geq j$ such that $|x_m - M_j| < \frac{1}{2i}$. We let $x_{n_{i+1}} = x_m$, then $|x_{n_{i+1}} - M| \leq |x_{n_{i+1}} - M_j| + |M_j - M| < 1/i$ for all $i \geq 2$. Therefore, $\{x_{n_i}\}$ converges to M.

Example 5. Prove that if $\{a_n\}$ converges to A, then $\{\alpha_n\}$ converges to A, where $\alpha_n = \frac{a_1 + a_2 + \dots + a_n}{n}$. Show that the converse false.

Solution: Let $b_n = a_n - A$ and $\beta_n = \frac{b_1 + b_2 + \dots + b_n}{n}$, then $\lim_{n \to \infty} \alpha_n = A \Leftrightarrow \lim_{n \to \infty} (\alpha_n - A) \Leftrightarrow \lim_{n \to \infty} \beta_n = 0$, which is to be shown.

Since $\lim_{n\to\infty} b_n = \lim_{n\to\infty} (a_n - A) = 0$, by boundedness theorem, $\{b_n\}$ is bounded, say $|b_n| \le M$, M > 0 for all $n \in \mathbb{N}$. Moreover, for any $\epsilon > 0$, there is $K_1 \in \mathbb{N}$ such that $n \ge K_1$ implies

$$|b_n-0|<\frac{\epsilon}{2}$$

Let $K = [max(K_1, \frac{2(K_1-1)M}{\epsilon})]$, then for $n \ge K$, we have

$$|\beta_n - 0| = |\frac{b_1 + b_2 + \dots + b_{K_1 - 1}}{n} + \frac{b_{K_1} + \dots + b_n}{n}| < \frac{(K_1 - 1)M}{n} + \frac{(n - K_1 + 1)\frac{\epsilon}{2}}{n} \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Therefore, $\lim_{n\to\infty} \beta_n = 0$.

To see the converse is false, take $a_n = (-1)^n$. Then

$$\alpha_n = \begin{cases} 0 & \text{if } n \text{ is even} \\ -\frac{1}{n} & \text{if } n \text{ is odd} \end{cases}$$

So $\lim_{n\to\infty} \alpha_n = 0$ but $\{a_n\}$ doesn't converge.