MLMC: Machine Learning Monte Carlo for Lattice Gauge Theory

Xiao-Yong Jin, James C. Osborn

Background: MCMC

Markov Chain Monte Carlo (MCMC)

७ Goal

Generate **independent** samples $\{x_i\}$, such that 1

$$\{x_i\} \sim p(x) \propto e^{-S(x)}$$

where S(x) is the *action* (or potential energy)

ullet Want to calculate observables \mathcal{O} : $\langle \mathcal{O}
angle \propto \int \left[\mathcal{D} x
ight] \;\; \mathcal{O}(x) \, p(x)$

If these were independent, we could approximate: $\langle \mathcal{O}
angle \simeq rac{1}{N} \sum_{n=1}^N \mathcal{O}(x_n)$

$$\sigma_{\mathcal{O}}^2 = rac{1}{N} \mathrm{Var}[\mathcal{O}(x)] \Longrightarrow \sigma_{\mathcal{O}} \propto rac{1}{\sqrt{N}}$$

1. Here, \sim means "is distributed according to"

Markov Chain Monte Carlo (MCMC)

© Goal

Generate **independent** samples $\{x_i\}$, such that 1

$$\{x_i\} \sim p(x) \propto e^{-S(x)}$$

where S(x) is the *action* (or potential energy)

• Want to calculate observables \mathcal{O} : $\langle \mathcal{O}
angle \propto \int \left[\mathcal{D} x
ight] \; \mathcal{O}(x) \, p(x)$

Instead, nearby configs are correlated, and we incur a factor of $au_{ ext{int}}^{\mathcal{O}}$:

$$\sigma_{\mathcal{O}}^2 = rac{ au_{ ext{int}}^{\mathcal{O}}}{N} ext{Var}[\mathcal{O}(x)]$$

1. Here, \sim means "is distributed according to"

Background: HMC

Hamiltonian Monte Carlo (HMC)

Want to (sequentially) construct a chain of states:

$$x_0
ightarrow x_1
ightarrow x_i
ightarrow \cdots
ightarrow x_N$$

such that, as $N o\infty$:

$$\{x_i, x_{i+1}, x_{i+2}, \cdots, x_N\} \stackrel{N o \infty}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-} p(x) \propto e^{-S(x)}$$

</> Trick

- ullet Introduce fictitious momentum $v \sim \mathcal{N}(0,1)$
 - Normally distributed **independent** of x, i.e.

$$p(x,v) = p(x) \, p(v) \propto e^{-S(x)} e^{-rac{1}{2} v^T v} = e^{-\left[S(x) + rac{1}{2} v^T v
ight]} = e^{-H(x,v)}$$

Hamiltonian Monte Carlo (HMC)

- Idea: Evolve the (\dot{x},\dot{v}) system to get new states $\{x_i\}$!
- Write the **joint distribution** p(x, v):

$$p(x,v) \propto e^{-S[x]} e^{-rac{1}{2}v^T v} = e^{-H(x,v)}$$

Hamiltonian Dynamics
$$H=S[x]+rac{1}{2}v^Tv\Longrightarrow$$
 $\dot{x}=+\partial_v H,\;\dot{v}=-\partial_x H$

Figure 1: Overview of HMC algorithm

Leapfrog Integrator (HMC)

</> Hamiltonian Dynamics

$$(\dot{x},\dot{v})=(\partial_v H,-\partial_x H)$$

© Leapfrog Step

input (x,v) o (x',v') output

$$ilde{v}:=oldsymbol{\Gamma}(x,v)\,=v-rac{arepsilon}{2}\partial_xS(x)$$

$$x' := {\color{red} oldsymbol{\Lambda}}(x, ilde{v}) \, = x + arepsilon \, ilde{v}$$

$$v':=\Gamma(x', ilde{v})= ilde{v}-rac{arepsilon}{2}\partial_x S(x')$$

₩ Warning!

Resample $v_0 \sim \mathcal{N}(0,1)$ at the <code>beginning</code> of each trajectory

Note: $\partial_x S(x)$ is the *force*

HMC Update

ullet We build a trajectory of $N_{
m LF}$ leapfrog steps $^{\!1}$

$$(x_0,v_0) o (x_1,v_1) o \cdots o (x',v')$$

ullet And propose x' as the next state in our chain

$$egin{aligned} \Gamma:(x,v) &
ightarrow v' := v - rac{arepsilon}{2} \partial_x S(x) \ lacksquare 1:(x,v) &
ightarrow x' := x + arepsilon v \end{aligned}$$

ullet We then accept / reject x' using Metropolis-Hastings criteria,

$$A(x'|x) = \min\left\{1, rac{p(x')}{p(x)} \left| rac{\partial x'}{\partial x}
ight|
ight\}$$

1. We **always** start by resampling the momentum, $v_0 \sim \mathcal{N}(0,1)$

HMC Demo

Figure 2: HMC Demo

Issues with HMC

- What do we want in a good sampler?
 - Fast mixing (small autocorrelations)
 - Fast burn-in (quick convergence)
- Problems with HMC:
 - ullet Energy levels selected randomly o ullet slow ullet mixing
 - ullet Cannot easily traverse low-density zones o **slow convergence**

HMC Samples with arepsilon=0.5

Figure 3: HMC Samples generated with varying step sizes ε

Topological Freezing

Topological Charge:

$$Q = rac{1}{2\pi} \sum_P \lfloor x_P
floor \in \mathbb{Z}$$

note:
$$\lfloor x_P
floor = x_P - 2\pi \left \lfloor rac{x_P + \pi}{2\pi}
floor$$

© Critical Slowing Down

- ullet Q gets stuck!
 - lacksquare as $eta \longrightarrow \infty$:

$$\circ \ Q \longrightarrow \mathrm{const.}$$

$$\circ \ \delta Q = (Q^* - Q)
ightarrow 0 \Longrightarrow$$

lacktriangledown # configs required to estimate errors grows exponentially: $au_{
m int}^Q \longrightarrow \infty$

Note $\delta Q
ightarrow 0$ at increasing eta

Can we do better?

 Introduce two (invertible NNs) vNet and xNet¹:

$$lacksquare$$
 vNet: $(x,F) \longrightarrow (s_v,\,t_v,\,q_v)$

$$lacksquare \mathsf{xNet:}\ (x,v) \longrightarrow (s_x,\, t_x,\, q_x)$$

• Use these (s,t,q) in the generalized MD update:

$$lacksquare \Gamma^\pm_ heta:(x, {m v}) \stackrel{s_v, t_v, q_v}{\longrightarrow} (x, {m v'})$$

$$lacksquare \Lambda_ heta^\pm : (x,v) \stackrel{s_x,t_x,q_x}{\longrightarrow} (x',v)$$

Figure 4: Generalized MD update where $\Lambda_{ heta}^{\pm}$, $\Gamma_{ heta}^{\pm}$ are **invertible NNs**

1. L2HMC: (Foreman, Jin, and Osborn 2021, 2022)

L2HMC: Generalizing the MD Update

L2HMC Update

ullet Introduce $d \sim \mathcal{U}(\pm)$ to determine the direction of our update

1.
$$v' = \Gamma^{\pm}(x,v)$$
 update v

2.
$$x' = x_B + \Lambda^\pm(x_A,v')$$
 update first **half**: x_A

3.
$$x'' = x_A' + \Lambda^\pm(x_B', v')$$
 update other half: x_B

4.
$$v'' = \Gamma^{\pm}(x'',v')$$
 update v

Figure 5: Generalized MD update with $\Lambda_{ heta}^{\pm}$, $\Gamma_{ heta}^{\pm}$ invertible NNs

1. d resampled at start of each trajectory, to ensure reversibility

L2HMC: Leapfrog Layer

1. Update \mathbf{v} : $\mathbf{v}' = \boxed{\Gamma^{\pm}[\mathbf{v}; \zeta_{\mathbf{v}}]}$

2. Update **half** of \mathbf{x} via $\overline{m}_k \odot \mathbf{x}_k$:

$$oxed{\mathbf{x}' \,=\, \mathbf{x}_m + ar{m} \odot oxed{\Lambda^{\pm} \left[\mathbf{x}_{ar{m}}; \zeta_{ar{\mathbf{x}}_k}
ight]}}$$

3. Update (other) half via $m^k \odot \mathbf{x}'_k$:

$$egin{aligned} \mathbf{x''} &= \mathbf{x'_m} + ar{m} \odot oldsymbol{\Lambda^{\pm}} \left[\mathbf{x'_m}; oldsymbol{\zeta_{\mathbf{x'}}}
ight] \end{aligned}$$

4. Half-step full **v** update:

$$\mathbf{v}'' = oxed{\Gamma^{\pm}[\mathbf{v}'; \zeta_{\mathbf{v}'}]}$$

$$\Gamma^{+}[\mathbf{v}_{k};\,\zeta_{\mathbf{v}}] \equiv \mathbf{v}_{k} \odot \exp\left(\frac{\varepsilon_{\mathbf{v}}^{k}}{2}s_{\mathbf{v}}^{k}(\zeta_{\mathbf{v}_{k}})\right) - \frac{\varepsilon_{\mathbf{v}}^{k}}{2} \left[\partial_{x}S(x_{k}) \odot \exp\left(\varepsilon_{\mathbf{v}}^{k}q_{\mathbf{v}}^{k}(\zeta_{\mathbf{v}_{k}})\right) + \frac{t_{\mathbf{v}}^{k}(\zeta_{\mathbf{v}_{k}})}{t_{\mathbf{v}}^{k}(\zeta_{\mathbf{v}_{k}})}\right]$$

$$\Gamma^{+}[\mathbf{v}_{k};\,\zeta_{\mathbf{v}_{k}}] \equiv \mathbf{v}_{k} \odot \exp\left(\varepsilon_{\mathbf{x}}^{k}s_{\mathbf{x}}^{k}(\zeta_{\mathbf{x}_{k}})\right) + \varepsilon_{\mathbf{x}}^{k} \left[v_{k}' \odot \exp\left(\varepsilon_{\mathbf{x}}^{k}q_{\mathbf{x}}^{k}(\zeta_{\mathbf{x}_{k}})\right) + \frac{t_{\mathbf{x}}^{k}(\zeta_{\mathbf{x}_{k}})}{t_{\mathbf{x}}^{k}(\zeta_{\mathbf{x}_{k}})}\right]$$

$$\Gamma^{+}[\mathbf{v}_{k};\,\zeta_{\mathbf{x}_{k}}] \equiv \mathbf{v}_{k} \odot \exp\left(\varepsilon_{\mathbf{x}}^{k}s_{\mathbf{x}}^{k}(\zeta_{\mathbf{x}_{k}})\right) + \frac{t_{\mathbf{x}}^{k}(\zeta_{\mathbf{x}_{k}})}{t_{\mathbf{x}}^{k}(\zeta_{\mathbf{x}_{k}})}$$

L2HMC Update

Algorithm

1. input: x

ullet Resample: $v \sim \mathcal{N}(0,1); \; d \sim \mathcal{U}(\pm)$

• Construct initial state: $\xi=(x,v,\pm)$

2. forward: Generate proposal ξ' by passing initial ξ through N_{LF} leapfrog layers

$$\xi \stackrel{ ext{LF layer}}{\longrightarrow} \xi_1 \longrightarrow \cdots \longrightarrow \xi_{N_{ ext{LF}}} = oldsymbol{\xi}' := (x'', v'')$$

• Accept / Reject:

$$A(oldsymbol{\xi}'|\xi) = \min \left\{ 1, rac{\pi(oldsymbol{\xi}')}{\pi(oldsymbol{\xi})} \left| \mathcal{J}\left(oldsymbol{\xi}', oldsymbol{\xi}
ight)
ight|
ight\}$$

- 3. backward (if training):
 - ullet Evaluate the **loss function** $\mathcal{L} \leftarrow \mathcal{L}_{ heta}(oldsymbol{\xi'}, oldsymbol{\xi})$ and backprop
- 4. return: x_{i+1}

Evaluate MH criteria $\left(1\right)$ and return accepted config,

$$x_{i+1} \leftarrow egin{cases} x'' & ext{w/prob } A(m{\xi}''|m{\xi}) & lacksqrup \ x & ext{w/prob } 1 - A(m{\xi}''|m{\xi}) & lacksqrup \end{cases}$$

Figure 6: **Leapfrog Layer** used in generalized MD update

1. For simple $\mathbf{x} \in \mathbb{R}^2$ example, $\mathcal{L}_{ heta} = A(\xi^*|\xi) \cdot \left(\mathbf{x}^* - \mathbf{x}
ight)^2$

4D SU(3) Model

© Link Variables

ullet Write link variables $U_{\mu}(x) \in SU(3)$:

$$egin{aligned} U_{\mu}(x) &= \exp\left[i\,\omega_{\mu}^k(x)\lambda^k
ight] \ &= e^{iQ}, \quad ext{with} \quad Q \in \mathfrak{su}(3) \end{aligned}$$

where $\omega^k_{\mu}(x) \in \mathbb{R}$, and λ^k are the generators of SU(3)

</> Conjugate Momenta

ullet Introduce $P_{\mu}(x)=P_{\mu}^k(x)\lambda^k$ conjugate to $\overline{\omega_{\mu}^k(x)}$

Wilson Action

$$S_G = -rac{eta}{6} \sum {
m Tr} \left[U_{\mu
u}(x) + U^\dagger_{\mu
u}(x)
ight]$$

where $U_{\mu
u}(x)=U_{\mu}(x)U_{
u}(x+\hat{\mu})U_{\mu}^{\dagger}(x+\hat{
u})U_{
u}^{\dagger}(x)$

Figure 7: Illustration of the lattice

HMC: 4D SU(3)

Hamiltonian: $H[P,U]=rac{1}{2}P^2+S[U]\Longrightarrow$

•
$$U$$
 update: $\frac{d\omega^k}{dt} = \frac{\partial H}{\partial P^k}$

$$\frac{d\omega^k}{dt}\lambda^k = P^k\lambda^k \Longrightarrow \frac{dQ}{dt} = P$$

$$Q(\varepsilon) = Q(0) + \varepsilon P(0) \Longrightarrow$$

$$-i \log U(\varepsilon) = -i \log U(0) + \varepsilon P(0)$$

$$U(\varepsilon) = e^{i\,\varepsilon P(0)}U(0) \Longrightarrow$$

$$oldsymbol{\Lambda}:\;U\longrightarrow U'\coloneqq e^{iarepsilon P'}U$$

•
$$P$$
 update: $\frac{dP^k}{dt} = -\frac{\partial H}{\partial \omega^k}$
$$\frac{dP^k}{dt} = -\frac{\partial H}{\partial \omega^k} = -\frac{\partial H}{\partial Q} = -\frac{dS}{dQ} \Longrightarrow$$

$$P(\varepsilon) = P(0) - \varepsilon \left. \frac{dS}{dQ} \right|_{t=0}$$

$$= P(0) - \varepsilon F[U]$$

arepsilon is the step size

F[U] is the force term

 $egin{array}{c} \Gamma : \ P \longrightarrow P' \coloneqq P - rac{arepsilon}{2} F[U] \end{array}$

HMC: 4D SU(3)

Momentum Update:

$$oldsymbol{\Gamma}:P\longrightarrow P':=P-rac{arepsilon}{2}F[U]$$

• Link Update:

$$\Lambda:U\longrightarrow U':=e^{iarepsilon P'}U$$

- We maintain a batch of Nb lattices, all updated in parallel
 - U.dtype = complex128
 - lacktriangle U.shape = [Nb, 4, Nt, Nx, Ny, Nz, 3, 3]

Networks 4D $S\overline{U(3)}$

U-Network:

UNet: $(\overline{U},P) \longrightarrow (s_U,\,\overline{t_U},\,q_U)$

P-Network:

PNet: $(U,P) \longrightarrow (s_P,\, t_P,\, q_P)$

Networks 4D $\overline{SU(3)}$

U-Network:

UNet: $(U,P) \longrightarrow (s_U,\, t_U,\, q_U)$

P-Network:

PNet: $(U,P) \longrightarrow (s_P,\, t_P,\, q_P)$

tet's look at this

P-Network (pt. 1)

$$(U,F) \longrightarrow \boxed{ P-Network } \longrightarrow (s_P,t_P,q_P)$$

ullet input 1 : $(U,F)\coloneqq (e^{iQ},F)$

$$h_0 = \sigma \left(w_Q Q + w_F F + b
ight)$$

$$h_1=\sigma\left(w_1h_0+b_1
ight)$$

•

$$egin{aligned} h_n &= \sigma \left(w_{n-1} h_{n-2} + b_n
ight) \ & oldsymbol{z} \coloneqq \sigma \left(w_n h_{n-1} + b_n
ight) \longrightarrow \end{aligned}$$

- ullet output 2 : (s_P,t_P,q_P)
 - $ullet s_P = \lambda_s anh(w_s oldsymbol{z} + b_s)$
 - $ullet t_P = w_t z + b_t$
 - $lacksquare q_P = \lambda_q anh(w_q oldsymbol{z} + b_q)$

- 1. $\sigma(\cdot)$ denotes an activation function
- 2. $\lambda_s,\ \lambda_q\in\mathbb{R}$ are trainable parameters

P-Network (pt. 2)

$$(U,F) \longrightarrow \boxed{ P-Network } \longrightarrow (s_P,t_P,q_P)$$

- ullet Use (s_P,t_P,q_P) to update $\Gamma^\pm:(U,P) o (U,P_\pm)$ 1:
 - forward (d = +):

$$\Gamma^{+}(U,P)\coloneqq P_{+}=P\cdot e^{rac{arepsilon}{2}s_{P}}-rac{arepsilon}{2}\left[F\cdot e^{arepsilon q_{P}}+t_{P}
ight]$$

• backward (d = -):

$$\Gamma^-(U,P)\coloneqq P_-=e^{-rac{arepsilon}{2}s_P}\left\{P+rac{arepsilon}{2}\left[F\cdot e^{arepsilon q_P}+t_P
ight]
ight\}$$

1. Note that ${(\Gamma^+)}^{-1}=\Gamma^-$, i.e. $\Gamma^+\left[\Gamma^-(U,P)\right]=\Gamma^-\left[\Gamma^+(U,P)\right]=(U,P)$

2D U(1): Integrated Autocorrelation time: $au_{ ext{int}}$

(a) Improvement

We can measure the performance by comparing au_{int} for the **trained model** vs. **HMC**.

Note: lower is better

Interpretation

Figure 8: Illustration of how different observables evolve over a single L2HMC trajectory.

Interpretation

Average plaquette: $\langle x_P \rangle$ vs LF step

Average energy: $H - \sum \log |\mathcal{J}|$

Figure 9: The trained model artifically increases the energy towards the middle of the trajectory, allowing the sampler to tunnel between isolated sectors.

4D SU(3) Results

(b) **500** train iters

(c) **1000** train iters

Figure 10: $\log |\mathcal{J}|$ vs. $N_{ ext{LF}}$ during training

4D SU(3) Results: $\delta U_{\mu u}$

Figure 11: The difference in the average plaquette $\left|\delta U_{\mu
u}
ight|^2$ between the trained model and HMC

4D SU(3) Results: $\delta U_{\mu u}$

Figure 12: The difference in the average plaquette $\left|\delta U_{\mu
u}
ight|^2$ between the trained model and HMC

Next Steps

- Further code development
- Continue to use / test different network architectures
 - lacksquare Gauge equivariant NNs for $U_{\mu}(x)$ update
- Continue to test different loss functions for training
- Scaling:
 - Lattice volume
 - Network size
 - Batch size
 - # of GPUs

Thank you!

foremans@anl.gov

12hmc-qcd

```
111 / 21003 ( ) I2hmc-qcd codefactor A

arXiv 2112.01582 arXiv 2105.03418

Config Hydra ( ) PyTorch TensorFlow III Visualize in W&B
```


Acknowledgements

- Links:
 - Link to github
 - reach out!
- References:
 - Link to HMC demo
 - Link to slides
 - link to github with slides

- Huge thank you to:
 - Yannick Meurice
 - Norman Christ
 - Akio Tomiya
 - Luchang Jin
 - Chulwoo Jung
 - Peter Boyle
 - Taku Izubuchi
 - ECP-CSD group
 - ALCF Staff + Datascience Group

Acknowledgements

This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

Links + References

- This talk: Saforem2/lattice23
- Code repo G saforem2/12hmc-qcd
- Slides saforem2.github.io/lattice23
- Title Slide Background (worms) animation

References

- Boyda, Denis et al. 2022. "Applications of Machine Learning to Lattice Quantum Field Theory." In *Snowmass 2021*. https://arxiv.org/abs/2202.05838.
- Foreman, Sam, Taku Izubuchi, Luchang Jin, Xiao-Yong Jin, James C. Osborn, and Akio Tomiya. 2022. "HMC with Normalizing Flows." *PoS* LATTICE2021: 073. https://doi.org/10.22323/1.396.0073.
- Foreman, Sam, Xiao-Yong Jin, and James C. Osborn. 2021. "Deep Learning Hamiltonian Monte Carlo." In 9th International Conference on Learning Representations. https://arxiv.org/abs/2105.03418.
- ——. 2022. "LeapfrogLayers: A Trainable Framework for Effective Topological Sampling." *PoS* LATTICE2021 (May): 508. https://doi.org/10.22323/1.396.0508.
- Shanahan, Phiala et al. 2022. "Snowmass 2021 Computational Frontier CompF03 Topical Group Report: Machine Learning," September. https://arxiv.org/abs/2209.07559.

Extras

Integrated Autocorrelation Time

Figure 13: Plot of the integrated autocorrelation time for both the trained model (colored) and HMC (greyscale).

Comparison

Figure 14: Comparison of $\langle \delta Q \rangle = rac{1}{N} \sum_{i=k}^N \delta Q_i$ for the trained model Figure 14 (a) vs. HMC Figure 14 (b)

Plaquette analysis: x_P

Deviation from $V o\infty$ limit, x_P^* Average $\langle x_P
angle$, with x_P^* (dotted-lines)

Figure 15: Plot showing how **average plaquette**, $\langle x_P \rangle$ varies over a single trajectory for models trained at different eta, with varying trajectory lengths $N_{
m LF}$

Loss Function

• Want to maximize the *expected* squared charge difference¹:

$$\mathcal{L}_{ heta}\left(\xi^{*}, \xi
ight) = \mathbb{E}_{p(\xi)}ig[-oldsymbol{\delta Q}^{2}\left(\xi^{*}, \xi
ight) \cdot A(\xi^{*}|\xi)ig]$$

- Where:
 - lacksquare δQ is the tunneling rate:

$$oldsymbol{\delta Q}(\xi^*,\xi) = |Q^* - Q|$$

• $A(\xi^*|\xi)$ is the probability² of accepting the proposal ξ^* :

$$A(\xi^*|\xi) = \min\left(1, rac{p(\xi^*)}{p(\xi)} \left| rac{\partial \xi^*}{\partial \xi^T}
ight|
ight)$$

- 1. Where ξ^* is the *proposed* configuration (prior to Accept / Reject)
- 2. And $\left|rac{\partial \xi^*}{\partial \xi^T}
 ight|$ is the Jacobian of the transformation from $\xi o\xi^*$

v-Update 1

• forward (d = +):

$$\Gamma^+:(x,v) o v'\coloneqq v\cdot e^{rac{arepsilon}{2}s_v}-rac{arepsilon}{2}\left[F\cdot e^{arepsilon q_v}+t_v
ight]$$

ullet backward (d=-):

$$\Gamma^{-}:(x,v)
ightarrow v'\coloneqq e^{-rac{arepsilon}{2}s_{v}}\left\{v+rac{arepsilon}{2}\left[F\cdot e^{arepsilon q_{v}}+t_{v}
ight]
ight\}$$

1. Note that $(\Gamma^+)^{-1}=\Gamma^-$, i.e. $\Gamma^+\left[\Gamma^-(x,v)
ight]=\Gamma^-\left[\Gamma^+(x,v)
ight]=(x,v)$

x-Update

• forward (d = +):

$$\Lambda^+(x,v) = x \cdot e^{rac{arepsilon}{2} s_x} - rac{arepsilon}{2} \left[v \cdot e^{arepsilon q_x} + t_x
ight]$$

• backward (d = -):

$$\Lambda^-(x,v) = e^{-rac{arepsilon}{2} s_x} \left\{ x + rac{arepsilon}{2} \left[v \cdot e^{arepsilon q_x} + t_x
ight]
ight\}$$

Lattice Gauge Theory (2D U(1))

© Link Variables

$$U_{\mu}(n)=e^{ix_{\mu}(n)}\in\mathbb{C},\quad ext{where}$$
 $x_{\mu}(n)\in[-\pi,\pi)$

Wilson Action

$$S_{eta}(x) = eta \sum_{P} \cos x_{P},$$

$$m{x_P} = [x_{\mu}(n) + x_{
u}(n + \hat{\mu}) - x_{\mu}(n + \hat{
u}) - x_{
u}(n)]^{-1}$$

Note: x_P is the product of links around 1×1 square, called a "plaquette"

2D Lattice

Figure 16: Jupyter Notebook

Annealing Schedule

• Introduce an annealing schedule during the training phase:

$$\left\{\gamma_{t}
ight\}_{t=0}^{N}=\left\{\gamma_{0},\gamma_{1},\ldots,\gamma_{N-1},\gamma_{N}
ight\}$$

where
$$\gamma_0 < \gamma_1 < \dots < \gamma_N \equiv 1$$
, and $|\gamma_{t+1} - \gamma_t| \ll 1$

- Note:
 - ullet for $|\gamma_t| < 1$, this rescaling helps to reduce the height of the energy barriers \Longrightarrow
 - easier for our sampler to explore previously inaccessible regions of the phase space

Networks 2D U(1)

ullet Stack gauge links as shape (U_μ) =[Nb, 2, Nt, Nx] $\in \mathbb{C}$

$$x_{\mu}(n)\coloneqq [\cos(x),\sin(x)]$$

with shape (x_{μ}) = [Nb, 2, Nt, Nx, 2] $\in \mathbb{R}$

• x-Network:

$$ullet \psi_{ heta}:(x,v)\longrightarrow (s_x,\,t_x,\,q_x)$$

• v-Network:

$$ullet arphi_{ heta}:(x,v)\longrightarrow (s_v,\,t_v,\,q_v)$$

Networks 2D U(1)

ullet Stack gauge links as shape (U_μ) =[Nb, 2, Nt, Nx] $\in \mathbb{C}$

$$x_{\mu}(n)\coloneqq [\cos(x),\sin(x)]$$

with shape (x_{μ}) = [Nb, 2, Nt, Nx, 2] $\in \mathbb{R}$

- x-Network:
 - $ullet \psi_{ heta}:(x,v)\longrightarrow (s_x,\,t_x,\,q_x)$
- v-Network:
 - $lacksquare arphi_{ heta}:(x,v)\longrightarrow (s_v,\,t_v,\,q_v) \longleftarrow$ lets look at this

Toy Example: $\mathsf{GMM} \in \mathbb{R}^2$

Physical Quantities

- To estimate physical quantities, we:
 - calculate physical observables at increasing spatial resolution
 - perform extrapolation to continuum limit

Figure 17: Increasing the physical resolution ($a \to 0$) allows us to make predictions about numerical values of physical quantities in the continuum limit.

