Séries d'exercices 4ème info LIMITES

Site Web: http://maths-akir.midiblogs.com/

EXERCICE N°1

Soit la fonction définie sur R par $f(x) = \sqrt{x^2 + x + 1} - ax$

1°) Dans cette question on prend $a \neq 1$.

b) Calculer alors $\lim_{x \to +\infty} f(x)$

 2°)Dans cette question on prend a = 1.

b) Calculer alors $\lim_{x \to +\infty} f(x)$

3°)Calculer $\lim_{x \to -\infty} f(x)$

EXERCICE N°2

Soit f la fonction définie par $f(x) = \frac{x^2 - 3x - 1}{x - 2}$

Calculer $\lim_{x\to 2^+} f(x)$, $\lim_{x\to 2^-} f(x)$, $\lim_{|x|\to +\infty} f(x)$ et $\lim_{|x|\to +\infty} \frac{f(x)}{2}$ $\lim_{|x|\to +\infty} (f(x)-x-1)$

EXERCICE N°3

Calculer les limites suivantes :

Calculer les limites suivantes :
$$\lim_{x \to +\infty} \frac{1 - x^2 + 3x}{1 + x - x^2} \; ; \; \lim_{x \to 1} \frac{2 - x + x^2}{1 + x - 2x^2} \; ; \; \lim_{x \to 1} \frac{\sqrt{x^2 + 2} - \sqrt{3x}}{\sqrt{x} - 1} \; ; \; \lim_{x \to \sqrt{2}} \frac{x^2 - 2}{x\sqrt{x} - \sqrt{8}} \; ; \; \lim_{x \to 1} \frac{x - 1}{\sqrt{x + 3} - 2} \; ; \; \lim_{x \to +\infty} (\sqrt{x^2 + 2x} - x) \; ; \\ \lim_{x \to -\infty} (\sqrt{x^2 + 2} + x) \; ; \; \lim_{x \to 2} \frac{\sqrt{x + 7} - 3}{\sqrt{x + 2} - 2} \; ; \; \lim_{x \to \infty} (\sqrt{x^2 + 2} - x) \; ; \; \lim_{x \to 0} (\sqrt{x^2 + 2} - x) \; ; \; \lim_{x \to 0} (\sqrt{x^2 + 2} - x) \; ; \; \lim_{x \to 0} (\sqrt{x^2 + 2} - x) \; ; \; \lim_{x \to 0} (\sqrt{x^2 + 2} - x) \; ; \; \lim_{x \to 0} (\sqrt{x^2 + 2x} - x) \; ; \; \lim_{x \to 0} (\sqrt{x^2 + 2x} - x) \; ; \; \lim_{x \to 0} (\sqrt{x^2 + 2x} - x) \; ; \; \lim_{x \to 0} (\sqrt{x^2 + 2x} - x) \; ; \; \lim_{x \to \infty} (\sqrt{$$

EXERCICE N°4

On considère la fonction f définie sur [2; + ∞ [par : $f(x) = \frac{3x + \sin x}{x - 1}$]

Montrer que , pour tout $|f(x)-3| \le \frac{4}{x-1}$. En déduire la limite de f en $+\infty$

La fonction f est définie sur IR par : $f(x) = \frac{1}{2 - \cos x}$.

- 1°)) Montrer que, pour tout réel $x, \frac{1}{3} \le f(x) \le 1$.
- b) En détrire les limites suivantes : $\lim_{x \to +\infty} \frac{1}{x(2-\cos x)}$; $\lim_{x \to -\infty} \frac{x^2+1}{2-\cos x}$ et $\lim_{x \to 0} \frac{1}{x^2(2-\cos x)}$

EXERCICE Nº6

Soit la fonction f définie sur $\left| -\frac{1}{2}, +\infty \right|$ par : $f(x) = \frac{-x + \cos x}{2x + 1}$

- 1°) Démontrer que pour tout $x > -\frac{1}{2}$ on $a : \frac{-x-1}{2x+1} \le f(x) \le \frac{-x+1}{2x+1}$
- 2°) En déduire la limite de f en + ∞ .

