Linear Regression

Aleksandr Fisher

4/17/2020

Introduction

- How can we use one variable to predict another?
- Big technical tool: linear regression

Predicting Happiness

Read Happiness Data

\$ Perceptions.of.corruption

Can we use a country's income to predict it's citizens' level of happiness?

```
happ2019 = read.csv("C:/Users/afisher/Documents/R Code/Resources/Data/Happiness/2019.csv")
# Structure of dataset
str(happ2019)
## 'data frame':
                 156 obs. of 9 variables:
  $ Overall.rank
                                : int 1 2 3 4 5 6 7 8 9 10 ...
   $ Country.or.region
                                : Factor w/ 156 levels "Afghanistan",..: 44 37 106 58 99 134 133 100 24
  $ Score
                                : num 7.77 7.6 7.55 7.49 7.49 ...
## $ GDP.per.capita
                                : num 1.34 1.38 1.49 1.38 1.4 ...
  $ Social.support
                                : num 1.59 1.57 1.58 1.62 1.52 ...
  $ Healthv.life.expectancv
                                : num 0.986 0.996 1.028 1.026 0.999 ...
  $ Freedom.to.make.life.choices; num 0.596 0.592 0.603 0.591 0.557 0.572 0.574 0.585 0.584 0.532 ...
  $ Generosity
                                : num 0.153 0.252 0.271 0.354 0.322 0.263 0.267 0.33 0.285 0.244 ...
```

: num 0.393 0.41 0.341 0.118 0.298 0.343 0.373 0.38 0.308 0.226 ...

Predicting using bivariate relationship

- Goal: What's our best guess about Y if we know what X is?
 - what's our best guess about a country's happiness if I know its income level?
- Terminology:
 - Dependent/outcome variable: the variable we want to predict (happiness).
 - Independent/explanatory variable: the variable we're using to predict (GDP per capita).

Plotting the data

Correlation and scatter-plots:

Recall the definition of correlation:

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 (y_i - \overline{y})^2}}$$

- positive correlation ~ upward slope
- negative correlation ~ downward slope
- high correlation ~ tighter, closer to a line
- correlation cannot capture nonlinear relationship.

Must be linear!

Linear Regression Model

- Prediction: for any value of X, what's the best guess about Y?
- Simplest possible way to relate two variables: a line.

$$y = mx + b$$

- Where:
 - y = how far up
 - x = how far along
 - m = Slope or Gradient (how steep the line is)
 - b = the Y Intercept (where the line crosses the Y axis)

Linear Regression Model

- Problem: for any line we draw, not all the data is on the line.
 - Some weights will be above the line, some below.
 - Need a way to account for chance variation away from the line

Linear Regression Model

Model for the line of best fit:

Population regression line:

$$Y_i = \underbrace{\beta_0}_{\text{intercept}} + \underbrace{\beta_1}_{\text{slope}} X_i + \underbrace{\epsilon_i}_{\text{error term}}$$

- Coefficients/parameters(α, β): true unknown intercept/slope of the line of best fit.
- Chance error (ϵ) : accounts for the fact that the line doesn't perfectly fit the data.
 - Each observation allowed to be off the regression line.
 - Chance errors are 0 on average.

Interpreting the regression line

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

- Intercept α: average of Y when X is 0
 - Average happiness when I GDP is 0.
- **Slope** β : average change in Y when X increase by one unit.
 - Average increase in happiness when gdp increases by 1 unit (what unit is your variable in?)
- But we don't know α or β is. How do we estimate it?

Estimated Coefficients

- Parameters: α, β
 - Unknown features of the data-generating process
 - Chance error makes these impossible to observe directly
- Estimates $\hat{\alpha}, \hat{\beta}$
 - An estimate is a function of the data that is our best guess about some parameter
- Regression line: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\epsilon}_i$
- Average value of Y when X is equal to x
- Represents the best guess or predicted value of the outcome at x

Plotting our data

Least Squares

- How do we figure out the best line to draw?
 - **Fitted/predicted value** for each observation:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\epsilon}_i$$

- Residual/prediction error: $\hat{\epsilon}_i = Y_i \hat{Y}_i$
- Get these estiamtes by the least squares method
- Minimize the sum of the squared resisduals (SSR):

$$\sum_{j=1}^{n} (y_j - \beta_0 - \beta_1 x_j)^2.$$

 This find the line that minimizes the magnitude of the prediction errors

Minimize the errors

Linear Regression in R

- R will calculate least squares line for a data set using lm().
- Jargon: "fit the model"
- Syntax: $lm(y \sim x, data = mydata)$
- y is the name of the dependent variance, x is the name of the independent variable and mydata is the data.frame where they live

Linear Regression in R

```
fit = lm(Score ~ GDP.per.capita, data=happ2019)
fit

##
## Call:
## lm(formula = Score ~ GDP.per.capita, data = happ2019)
##
## Coefficients:
## (Intercept) GDP.per.capita
## 3.399 2.218
```

What does this mean?

Coefficients and fitted values

• Use coef() to extract estimated coefficients:

```
coef(fit)
## (Intercept) GDP.per.capita
## 3.399345 2.218148
```

R can show you eachof the fitted values as well:

```
head(fitted(fit))
## 1 2 3 4 5 6
## 6.371663 6.467044 6.699949 6.460389 6.495880 6.620096
```

Properties of least squares

- Least squares line always goes throught (\bar{X}, \bar{Y})
- Estimated slop is related to correlation

$$\hat{\beta} =$$
(correlation of X AND Y) $\times \frac{\text{SD of Y}}{\text{SD of X}}$

- mean of residuals is always 0

Looking at the 2016 Election

White Population and Trump Vote (Base R)

White Population and Trump Vote (ggplot)

Let's run our first regression!

```
## Linear Regression
m1 = lm(Trump ~ White, data=votes)
m1
##
## Call:
## lm(formula = Trump ~ White, data = votes)
##
## Coefficients:
## (Intercept)
                     White
       18.779 0.525
##
plot(votes$White, votes$Trump, xlab = "% White Population"
     ylab = "Trump Vote")
abline(m1, col='red')
```

Making Predictions

What is the predicted Trump vote for a county thats 30% white

```
coef(m1)
## (Intercept)
                    White
## 18.7788513 0.5250146
a.hat <- coef(m1)[1] ## estimated intercept
b.hat <- coef(m1)[2] ## estimated slope
pred30 = a.hat + b.hat * 0.3
pred30
## (Intercept)
     18.93636
##
```

Making Predictions

What is the predicted Trump vote for a county thats 80% white

```
pred80 = a.hat + b.hat * 0.8
pred80
## (Intercept)
## 19.19886
```

Plotting our predictions

Breaking it down by State

3.631840 0.724387

How does the relationship between racial composition of a county and vote for Trump change from state to state?

```
penn = lm(Trump ~ White, data=votes,
         subset = state abbr == 'PA')
coef (penn)
## (Intercept)
                    White
## -53.30359 1.27029
florida = lm(Trump ~ White, data=votes,
            subset = state abbr == 'FL')
coef(florida)
## (Intercept)
                    White
```

Breaking it down by State

Why do we care about prediction?

- Prediction is broadly across different fields.
- Policy:
 - Can policymakers predict where crime is likely occur in a city to deploy police resources?
 - Can a school district predict which students will drop out of school to target counseling interventions?
- Business:
 - Can Amazon predict what product a customer is going to buy based on their past purchases (Amazon)?
 - Can Netflix/YouTube/Spotify predict what movies/TV show/song a person will like based on what they have viewed/listened to in the past?
- Linear regression often used to do these predictions, but how well does our model predict the data?

Racial identity or Education?

Does counties' racial compositon or education better predict vote for Trump?

```
# Race
race = lm(Trump ~ White, data=votes)
race
##
## Call:
## lm(formula = Trump ~ White, data = votes)
##
## Coefficients:
## (Intercept)
                     White
       18.779
##
                     0.525
# Education
educ = lm(Trump ~ educ bach, data=votes)
educ
##
## Call:
## lm(formula = Trump ~ educ bach, data = votes)
##
## Coefficients:
## (Intercept) educ bach
##
      80.6644 -0.8636
```

Comparing Models

Model Fit

- How well does the model "fit the data"?
 - More specifically, how well does the model predict the outcome variable in the data?
- Coefficient of determination or R^2 ("R-squared"):
 - $R^2 = \text{Explained variation} / \text{Total variation}$
 - R-squared gives you the percentage variation in y explained by x-variables.
 - The range is 0 to 1 (i.e. 0% to 100% of the variation in y can be explained by the x-variables.

Correlation and R-Squared

- The coefficient of determination, R², is similar to the correlation coefficient, R
 - The correlation coefficient formula will tell you how strong of a linear relationship there is between two variables.
 - R Squared is the square of the correlation coefficient, r (hence the term r squared).
 - The more variance that is accounted for by the regression model the closer the data points will fall to the fitted regression line

How to calculate R-squared

- The R-Squared formula compares our fitted regression line to a baseline model
 - The baseline model is a flat-line that predicts every value of y will be the mean value of y.
 - R-Squared checks to see if our fitted regression line will predict y better than the mean will

$$R^{2} = 1 - \frac{SS_{RES}}{SS_{TOT}} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \overline{y})^{2}}$$

Model fit in R

■ To access R² from the lm() output, first pass it to the summary() function:

```
# R-squared for race model
race.sum = summary(race)
race.sum$r.squared

## [1] 0.280542
# R-squared for educ model
educ.sum = summary(educ)
educ.sum$r.squared
```

```
## [1] 0.2374113
```

Which does a better job predicting midterm election outcomes?

Is R-squared useful?

Does not prove causality.

Are Low R-squared Values Always a Problem?

- Regression models with low R-squared values can be perfectly good models for several reasons
- Some thing are hard to predict (...human behavior)
- if you have a low R-squared value but the independent variables are statistically significant, you can still draw important conclusions about the relationships between the variables.

Are High R-squared Values Always Great?

- You can be predicting one variable by unintentionally using a different form of the same variable
 - ex. Predict party affiliation with political ideology
- There are too many variables in your model compared to the number of observations.
 - This will lead to an overfitted model
 - Can predict the modeled data well BUT it will not predict new data well
- If you keep adding more and more independent variables,
 R-Squared will go up

Adjusted R-squared

- Adjusted R-Squared takes into account the number of independent variables you employ in your model and can help indicate if a variable is useless or not
- The more variables you add to your model without predictive quality the lower your Adjusted R-Squared will be
- You can see that the number of independent variables, k, is included in the Adjusted R-Squared formula below

Adjusted
$$R^2 = 1 - \frac{(n-1)}{[n-(k+1)]} (1-R^2)$$

Formula 9-6

where n = sample sizek = number of independent (x) variables

In-sample/Out-of-sample Fit

- In-sample fit: how well your estimated model helps predict the data used to estimate the model.
 - R^2 is a measure of in-sample fit.
- Out-of-sample fit: how well your estimated model help predict outcomes outside of the sample used to fit the model.

Overfitting

- Overfitting: OLS and other statistical procedures designed to predict in-sample outcomes really well, but may do really poorly out of sample.
 - Example: predicting winner of Democratic presidential primary with gender of the candidate.
 - Until 2016, gender of the canidate was a perfect predictor of who wins the primary.
 - Prediction for 2016 based on this: Bernie Sanders as Dem. nominee.
 - Bad out-of-sample prediction due to overfitting!
- Could waste tons of governmental or corporate resources with a bad prediction model!

Avoiding overfitting

- Several procedure exist to guard against overfitting.
- Cross validation is the most popular:
 - Randomly choose half the sample to set aside (test set)
 - Estimate the coefficients with the remaining half of the units (training set)
 - Assess the model fit on the held out test set.
 - Switch the test and training set and repeat, average the results.
- Congrats, you know machine learning/artificial intelligence!

Multiple Predictors

• What if we want to predict Y as a function of many variables

$$Y = \alpha + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots \beta_k X_{ik} + \epsilon_i$$

- Why include more than one predictor?
 - Better predictions
 - Better interpretation: β_1 is the effect of X_1 holding all other independent variables constant (ceteris paribus)

Multiple Regression in R

```
mult.fit = lm(Trump ~ White + educ bach, data=votes)
summary(mult.fit)
##
## Call:
## lm(formula = Trump ~ White + educ_bach, data = votes)
##
## Residuals:
      Min 1Q Median 3Q
##
                                    Max
## -61.283 -6.569 0.614 7.306 37.391
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 35.85222 1.15817 30.96 <2e-16 ***
## White 0.52450 0.01235 42.47 <2e-16 ***
## educ_bach -0.86257 0.02208 -39.06 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.88 on 3109 degrees of freedom
## Multiple R-squared: 0.5174, Adjusted R-squared: 0.5171
## F-statistic: 1667 on 2 and 3109 DF, p-value: < 2.2e-16
```

Interpreting the output

- $\hat{\alpha} = 35.9$: percent vote for Trump in a county that is 0% white and 0% have a bachelor degree (does this exist?)
- $\hat{\beta}_1 = 0.52$: percent vote *increase* for Trump for additional percentage point of white population, **holding education** fixed
- $\hat{\beta}_2 = -0.86$: percent vote *decrease* for Trump for additional percentage point of bachelor degrees, **holding racial** composition fixed

Least squares with multiple regression

- How do we estimate the coefficients?
- The same exact way as before: minimize prediction error!
- Residuals (aka prediction error) with multiple predictors:
- Find the coefficients that minimizes the sum of the squared residuals:

$$SSR = \sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} = (Y_{i} - \alpha - \beta_{1}X_{i1} - \beta_{2}X_{i2})^{2}$$

Model fit with multiple predictors

- R^2 mechanically increases when you add a variables to the regression.
 - But this could be overfitting!!
- Solution: penalize regression models with more variables.
 - Occam's razor: simpler models are preferred
- Adjusted R²: lowers regular R² for each additional covariate.
 - If the added covariates doesn't help predict, adjusted R²goes down!

Outputting regression results

```
library(stargazer)
race.fit = lm(Trump ~ White, data=votes)
educ.fit = lm(Trump ~ educ_bach, data=votes)
mult.fit = lm(Trump ~ White + educ_bach, data=votes)
stargazer(race.fit, educ.fit, mult.fit, header=FALSE)
```

Table

Table 1: Regression Results

	Dependent variable: Percentage Vote for Trump		
	(1)	(2)	(3)
Percent White Population	0.525***		0.525***
	(0.015)		(0.012)
Percent with Bachelor Degree		-0.864***	-0.863***
		(0.028)	(0.022)
Constant	18.779***	80.664***	35.852***
	(1.309)	(0.600)	(1.158)
Observations	3,112	3,112	3,112
R^2	0.281	0.237	0.517
Adjusted R ²	0.280	0.237	0.517
•		* **	- ***

Note:

 $^*p{<}0.1;\ ^{**}p{<}0.05;\ ^{***}p{<}0.01$

Other resources...

- https://data.library.virginia.edu/is-r-squared-useless/
- https://medium.com/@erika.dauria/looking-at-r-squared-721252709098
- https://medium.com/@vince.shields913/why-we-dont-reallycare-about-the-r-squared-in-econometrics-social-science-593e2db0391f
- http://svmiller.com/blog/2014/08/reading-a-regression-tablea-guide-for-students/
- https://scholar.princeton.edu/sites/default/files/bstewart/files/lecture8slides.pdf
- https://cran.rproject.org/web/packages/stargazer/vignettes/stargazer.pdf