Lecture 0 - Overview of Machine Learning

Dahua Lin
The Chinese University of Hong Kong

1 About this Course

•	This is a	graduate	level	introduction	to	advanced	statistical	learning.
---	-----------	----------	-------	--------------	----	----------	-------------	-----------

. . .

- No Exams!
- Topic driven
- For each topic:
 - Introductory lecture
 - Paper reading and Homework
 - In-class discussion
- You will present a paper/subject at the end of the course

2 What is Machine Learning?

Machine learning is a scientific discipline that explores the construction and study of algorithms that can learn from data. Such algorithms operate by building a model based on inputs and using that to make predictions and decisions, rather than following only explicitly programmed instructions. – Wikipedia

3 Elements of Machine Learning

- Elements:
 - Data
 - Model
 - Learning Algorithms
 - Prediction
- Learn from old data, make predictions on new data. The common aspects of both the old and new data are captured by the model.

${\bf Please}$	write	down	five	${\rm machine}$	learning	${\it algorithms}$	that	you	know.

Don't write Deep Learning.

4 Overview of Machine Learning

- Tasks
 - Supervised learning
 - Unsupervised learning
 - Semi-supervised learning
 - Reinforcement learning
- Problems
 - Classification
 - Regression
 - Clustering
 - Dimension Reduction
 - Density Estimation

5 What this Course is About

- The course is *not* to teach you:
 - Support Vector Machine
 - Linear Regression
 - _
 - Deep Learning
- Instead, you are going to learn foundational theories and tools for developing your own models and algorithms.

6 Topics

- Exponential family distributions and conjugate prior
- Generalized linear model
- Empirical risk minimization and Stochastic gradient descent
- Proximal methods for optimization
- Graphical models: Bayesian Networks and Markov random fields
- Sum-product and max-product algorithms, Belief propagation
- Variational inference methods
- Markov Chain Monte Carlo
- Gaussian Processes and Copula Processes
- Handling Big Data: Streaming process and Core sets