부정적분
(Indefinite Integral)

부정적분	

f(x)의 부정적분 :

f(x)의 부정적분 : F'(x)

$$f(x)$$
의 부정적분 : $F'(x) = f(x)$

$$f(x)$$
의 부정적분 : $F'(x) = f(x)$ 일 때,

<u>부</u>정적분

$$f(x)$$
의 부정적분: $F'(x) = f(x)$ 일 때, $F(x)$

<u>부</u>정적분

$$f(x)$$
의 부정적분 : $F'(x) = f(x)$ 일 때, $F(x) + C$

<u>부</u>정적분

$$f(x)$$
의 부정적분 : $F'(x) = f(x)$ 일 때, $F(x) + C$ (단, C 적분 상수)

$$f(x)$$
의 부정적분 : $F'(x) = f(x)$ 일 때, $F(x) + C$ (단, C 적분 상수) 기호로

$$f(x)$$
의 부정적분 : $\mathbf{F}'(x)=f(x)$ 일 때, $\mathbf{F}(x)+C$ (단, C 적분 상수) 기호로 $\int f(x)dx$

$$f(x)$$
의 부정적분 : $\mathbf{F}'(x)=f(x)$ 일 때, $\mathbf{F}(x)+C$ (단, C 적분 상수) 기호로 $\int f(x)dx$ 로 나타냄.

$$f(x)$$
의 부정적분 : $\mathbf{F}'(x)=f(x)$ 일 때, $\mathbf{F}(x)+C$ (단, C 적분 상수) 기호로 $\int f(x)dx$ 로 나타냄.

즉,

$$f(x)$$
의 부정적분 : $F'(x) = f(x)$ 일 때, $F(x) + C$ (단, C 적분 상수) 기호로 $\int f(x)dx$ 로 나타냄.

$$\stackrel{\mathbf{Z}}{\lnot}$$
, $\int f(x)dx =$

$$f(x)$$
의 부정적분 : $F'(x) = f(x)$ 일 때, $F(x) + C$ (단, C 적분 상수) 기호로 $\int f(x)dx$ 로 나타냄.

$$\preceq$$
, $\int f(x)dx = F(x)$

$$f(x)$$
의 부정적분 : $F'(x) = f(x)$ 일 때, $F(x) + C$ (단, C 적분 상수)

기호로
$$\int f(x)dx$$
 로 나타냄.

$$rac{1}{2}$$
, $\int f(x)dx = F(x) + C$

$$f(x)$$
의 부정적분 : $\mathbf{F}'(x)=f(x)$ 일 때, $\mathbf{F}(x)+C$ (단, C 적분 상수) 기호로 $\int f(x)dx$ 로 나타냄.

즉,
$$\int f(x)dx = F(x) + C$$
 (단, C 적분 상수)

$$f(x)$$
의 부정적분 : $\mathbf{F}'(x)=f(x)$ 일 때, $\mathbf{F}(x)+C$ (단, C 적분 상수) 기호로 $\int f(x)dx$ 로 나타냄.

즉,
$$\int f(x)dx = F(x) + C$$
 (단, C 적분 상수)

Github:

https://min7014.github.io/math20200921001.html

Click or paste URL into the URL search bar, and you can see a picture moving.