MP du lycée Berthollet, 2015/2016 http://mpberthollet.wordpress.com

Résumé 11 : Topologie (2)

 $(E, \|.\|)$ est un espace vectoriel sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On note d la distance associée. On note aussi B(x, r) et $\bar{B}(x, r)$ les boules ouvertes et fermées.

Quand nous parlerons de l'espace vectoriel normé $\mathbb R$ ou $\mathbb C$, nous supposerons toujours qu'il est muni de la valeur absolue.

I TOPOLOGIE D'UN ESPACE VECTORIEL NORMÉ

§ 1. **Equivalence de normes.**— Toutes les notions topologiques que nous définirons (comme ouvert, fermé, compact, continue,...) dépendent de la norme choisie sur E (je vous encourage à revoir le résumé sur les normes à ce propos). Cependant, elles sont invariantes si on remplace la norme par une norme qui lui est équivalente. Or, lun des théorèmes centraux de ce cours est le suivant :

Théorème I.1

Soit E un $\mathbb{K}-$ espace vectoriel de dimension finie. Toutes les normes sur E sont équivalentes.

Ainsi, dans un espace de dimension finie E, la phrase " Ω est ouvert", ou "K est compact", a un sens sans que l'on ait besoin de préciser une norme. C'est absolument faux en dimension infinie où des parties de E peuvent être ouvertes pour une normes N_1 et ne pas l'être pour une norme N_2 .

§ 2. *Ouverts et Jermés.*— On généralise ici certaines propriétés des intervalles ouverts ou fermés.

Définition I.2 (Voisinage, point intérieur, ouvert)

- ▶ Soit V une partie de E et $a \in E$. On dit que V est un voisinage de a, ou que a est un point intérieur à V, lorsque V contient une boule ouverte de centre a.
- ▶ Une partie Ω de E est dite **ouverte** lorsqu'elle est un voisinage de chacun de ses points, i.e lorsque pour tout $a \in \Omega$, il existe r > 0 tel que $B(a, r) \subset \Omega$.
- ightharpoonup Une partie F de E est fermée lorsque F^c est ouvert.

EXEMPLES:

- 1. Les intervalles du type]a,b[avec $a,b\in \bar{\mathbb{R}},$ sont des ouverts.
- 2. Dans \mathbb{R} , l'ensemble des points intérieurs à]a,b] est]a,b[. Dans \mathbb{R}^2 muni de la norme infinie, le segment $[0,1]\times\{0\}$ n'admet aucun point intérieur.
- 3. Les boules ouvertes sont des ouverts. La réciproque est fausse, mais tout ouvert est une union de boules.
- 4.]0,1] n'est ni ouvert, ni fermé.
- 5. Les boules fermées, les sphères et les ensembles finis sont fermés.

Enonçons quelques propriétés des ouverts et des fermés :

- (i) E et \emptyset sont ouverts et fermés.
- (ii) La réunion d'une famille quelconque d'ouverts est un ouvert. L'intersection d'une famille FINIE d'ouverts est un ouvert.
- (iii) L'intersection d'une famille quelconque de fermés est un fermé. La réunion d'une famille FINIE de fermés est un fermé.

Théorème I.3 (Caractérisation séquentielle des fermés)

Une partie F de E est fermée \iff toute limite de suite convergente d'éléments de F appartient à F.

§ 3. *Intérieur*, adhérence. – Grâce à ces propriétés, on peut définir :

Définition I.4

Soit $\Omega \subset E$.

- ▶ On appelle intérieur de Ω et on note $\mathring{\Omega}$ la réunion de tous les ouverts de E contenus dans Ω . $\mathring{\Omega}$ est l'ensemble de tous les points intérieurs à Ω . Ainsi, $\mathring{\Omega}$ est le plus grand ouvert de $(E.\|.\|)$ contenu dans Ω .
- ▶ On appelle adhérence $de \Omega$ et on note $\bar{\Omega}$ l'intersection de tous les fermés de E contenant Ω . Les points de E appartenant à $\bar{\Omega}$ sont appelés points adhérents à Ω .

 $\bar{\Omega}$ est donc le plus petit fermé contenant Ω .

▶ On appelle frontière de *A* l'intersection entre son adhérence et l'adhérence de son complémentaire.

- L'intérieur de $\overline{B}(x_0, r)$ est $B(x_0, r)$.
- ightharpoonup L'adhérence de A^c est le complémentaire de \mathring{A} .
- L'intérieur de A^c est le complémentaire de \bar{A} .
- ightharpoonup Soient A, B deux parties de E.
 - (i) $\mathring{A} \subset A \subset \bar{A}$.

Résumé 11 : Topologie (2)

MP du lycée Berthollet, 2015/2016 http://mpberthollet.wordpress.com

- (ii) $\mathring{A} = A \iff A$ est un ouvert, et $\overline{A} = A \iff A$ est un fermé.
- (iii) Si $A \subset B$, alors $\mathring{A} \subset \mathring{B}$ et $\bar{A} \subset \bar{B}$.
- (iv) $x \in \bar{A} \iff$ Pour tout $\varepsilon > 0$, il existe un point de A à une distance $\leqslant \varepsilon$ de $x. \iff$ Il existe une suite d'éléments de A convergeant vers x.
- ▶ Une partie de E est dite **dense dans** $(E, \|.\|)$ lorsque $\bar{A} = E$.

- \mathbb{O}^n est dense dans \mathbb{R}^n .
- $GL_n(\mathbb{K})$ est dense dans $\mathcal{M}_n(\mathbb{K})$.

II LIMITES ET CONTINUITÉ

On se donne ici deux espaces vectoriels normés E et F, et une partie non vide $A \operatorname{de} E$.

Soit $a \in \bar{A}$. Nous avons défini les voisinages de a dans A. On parlera aussi de voisinages de $+\infty$, de $-\infty$ lorsque $E=\mathbb{R}$.

§ 1. Limite en un point adhérent. — On étend naturellement la définition de la limite d'une fonction de la variable réelle.

Définition II.1

Soit $f:A\to F$. Soit $a\in \bar{A}$ et $\ell\in F$. On dit que f tend vers ℓ en a lorsque pour tout $\varepsilon > 0$, il existe $\alpha > 0$ tel que pour tout $x \in A, ||x - a|| \leqslant \alpha \Longrightarrow$ $||f(x) - \ell|| \leq \varepsilon$.

C'est équivalent à dire que pour tout voisinage V_{ℓ} de ℓ , il existe un voisinage V_a de a dans E tel que $f(V_a \cap A) \subset V_\ell$.

Ce vecteur ℓ , lorsqu'il existe, est unique et est appelé limite de f en a. On note $f(x) \xrightarrow[r \to a]{} \ell$.

- ▶ La dernière formulation est celle qui permet de définir les limites infinies.
- \triangleright Si f admet une limite finie en a, alors f est bornée sur un voisinage de a.
- On a une formulation séquentielle de la limite : $f(x) \xrightarrow[x \to a]{} \ell \iff$ Pour toute suite (x_n) d'éléments de A convergeant vers a, la suite $(f(x_n))_{n\in\mathbb{N}}$ converge vers ℓ .

§ 2. Continuité et conservation de la topologie.— Définition II.2

Soit $f:A\to F$ et $a\in A$. On dit que f est continue en a lorsque $f(x)\xrightarrow[x\to a]{}$ f(a).

f est dite continue sur A lorsqu'elle l'est en tout point de A. On note $\mathscr{C}^0(A,F)$ l'ensemble de ces fonctions.

REMARQUES:

- \triangleright C'est une définition locale, i.e que f est continue en $a \iff$ il existe un voisinage de a dans A tel que la restriction de f à ce voisinage est continue en a.
- ▶ On peut décliner dans ce cadre les propriétés énoncées pour les limites :
 - f est continue en $a \iff$ pour toute suite (x_n) d'éléments de A convergeant vers a, le suite $f(x_n)$ converge vers f(a).
 - $\mathscr{C}^0(A, F)$ est un sous-espace vectoriel de $\mathscr{F}(A, F)$.
 - Si f est continue sur A et si g est continue sur une partie B de F contenant f(A), alors $g \circ f$ est continue sur A.
 - $\mathscr{C}^0(A,\mathbb{R})$ est stable par produit.
 - Si $f \in \mathscr{C}^0(A, E)$ et $\lambda \in \mathscr{C}^0(A, \mathbb{C})$, alors $\lambda \cdot f \in \mathscr{C}^0(A, E)$.
 - Si $f \in \mathscr{C}^0(A,\mathbb{C})$ ne s'annule pas, alors $\frac{1}{f} \in \mathscr{C}^0(A,\mathbb{C})$.

EXEMPLES:

- 1. Les applications Lipschitziennes sont continues.
- 2. Les applications coordonnées dans \mathbb{K}^n , ou les applications "composantes" dans n'importe quelle base d'un espace vectoriel de dimension finie.
- 3. Les fonctions polynomiales en les composantes de la variable dans une base, comme le déterminant, ou la trace.
- 4. La norme $||.|| \sin (E, ||.||)$.
- 5. Pour toute partie $A \subset E$ non vide, l'application d(.,A) car elle est 1—Lipschitzienne.
- 6. $f: x \in A \to (f_1(x), \dots, f_n(x)) \in \mathbb{R}^n$ est continue \iff tous les f_i le sont.

Théorème II.3

Soit A une partie non vide de E et $f: A \to F$. Alors, il y a équivalence entre :

- (i) f est continue sur A.
- (ii) L'image réciproque de tout ouvert de F est un ouvert de A.
- (iii) L'image réciproque de tout fermé de F est un fermé de A.

EXEMPLES:

- ▶ Pour toute function continue $f: A \to \mathbb{R}$ et tout $y \in \mathbb{R}, \{x \in A | f(x) = y\}$ est un fermé de A, ainsi que $\{x \in A | f(x) \ge y\}$ et $\{x \in A | f(x) \le y\}$. De même, $\{x \in A | f(x) > y\}$ et $\{x \in A | f(x) < y\}$ sont des ouverts de A.
- $ightharpoonup GL_n(\mathbb{R})$ est ouvert. $SL_n(\mathbb{R})$ est fermé.

Résumé 11: Topologie (2)

MP du lycée Berthollet, 2015/2016 http://mpberthollet.wordpress.com

Théorème II.4

Soient $f,g:A\to F$ continues sur A. S'il existe $B\subset A$, dense dans A tel que f(x)=g(x) pour tout $x\in B$, alors f(x)=g(x) pour tout $x\in A$.

§ 3. **Continuité uniforme sur** A.— A mettre en parallèle avec la continuité sur A.

Définition II.5

 $f:A \to F$ est uniformément continue lorsque

pour tout $\varepsilon > 0, \exists \alpha > 0, \forall x, y \in A, ||x - y|| \leqslant \alpha \Longrightarrow ||f(x) - f(y)|| \leqslant \varepsilon$.

REMARQUES:

- Les fonctions Lipschitziennes sont uniformément continues.
- ▶ Pour montrer que *f* est ou n'est pas uniformément continue, on utilisera l'équivalence entre
 - (i) f est uniformément continue.
 - (ii) Pour toutes suites (x_n) et (y_n) d'éléments de A, si $x_n y_n \xrightarrow[n \to +\infty]{} 0$, alors $f(x_n) f(y_n) \xrightarrow[n \to +\infty]{} 0$.
- ▶ C'est donc une propriété globale. Evidemment, toute application uniformément continue est continue, mais la réciproque est fausse. Par exemple, $x\mapsto x^2$ n'est pas uniformément continue sur $\mathbb R$ (poser $x_n=n$ et $y_n=n+1/n$ et utiliser la remarque précédente).
- § 4. *Continuité d'applications linéaires.* La continuité des applications linéaires relève du tout ou rien : une application linéaire est continue nulle part ou partout.

Nous noterons $\mathscr{L}_c(E,F)$ l'ensemble des applications linéaires de E dans F qui sont continues. C'est un sous-espace vectoriel de $\mathscr{L}(E,F)$.

Proposition II.6

Soit $f \in \mathcal{L}(E, F)$. on a équivalence entre

- (i) f est continue.
- (ii) f est continue en 0_E .
- (iii) Il existe C > 0 telle que pour tout $x \in E, ||f(x)|| \le C||x||$.
- (iv) f est Lipschitzienne.
- (v) f est uniformément continue.

(vi) f est bornée sur la boule unité fermée de centre 0_E est de rayon 1.

REMARQUES:

Pour montrer que f n'est pas continue, on trouvera une suite (x_n) bornée telle que $(f(x_n))$ ne l'est pas.

Résumé 11 : Topologie (2)

ANNEXE

A LES FIGURES IMPOSÉES

EXERCICES:

CCP Analyse 34 Soit A une partie non vide d'un espace vectoriel normé E.

- 1. Rappeler la définition d'un point adhérent à A, en termes de voisinages ou de boules.
- 2. Démontrer que : $x \in \bar{A} \iff \exists (x_n)_{n \in \mathbb{N}}$ telle que, $\forall n \in \mathbb{N}, x_n \in A$ et $\lim_{n \to +\infty} x_n = x$.
- 3. Démontrer que si A est un sous-espace vectoriel de E, alors \bar{A} est un sous-espace vectoriel de E.
- 4. Démontrer que, si A est convexe alors \bar{A} est convexe.

EXERCICES:

CCP 35

E et F désignent deux espaces vectoriels normés.

- 1. Soient f une application de E dans F et a un point de E. On considère les propositions suivantes :
 - **P1.** f est continue en a.
 - **P2.** Pour toute suite (x_n) d'éléments de E telle que $\lim_{n\to +\infty} x_n=a$, alors $\lim_{n\to +\infty} f(x_n)=f(a)$.

Prouver que les propositions P1 et P2 sont équivalentes.

2. Soit A une partie dense d'un sous-espace vectoriel normé E, et soient f et g deux applications continues de E dans F, F désignant un espace vectoriel normé. Démontrer que si, pour tout $x \in A$, f(x) = g(x), alors f = g.

EXERCICES:

CCP Analyse 41

Énoncer quatre théorèmes différents ou méthodes permettant de prouver qu'une partie d'un espace vectoriel normé est fermée et pour chacun d'eux, donner un exemple concret d'utilisation dans \mathbb{R}^2 .

Les théorèmes utilisés pourront à atre énoncés oralement à travers les exemples choisis. **Remarques**

- 1. On utilisera au moins une fois des suites.
- 2. On pourra utiliser au plus une fois le passage au complémentaire
- 3. Ne pas utiliser le fait que \mathbb{R}^2 et l'ensemble vide sont des parties ouvertes et fermées.

EXERCICES:

CCP Analyse 54 Soit E l'ensemble des suites à valeurs réelles qui convergent vers 0.

- 1. Prouver que E est un sous-espace vectoriel de l'espace vectoriel des suites à valeurs réelles.
- 2. On pose $\forall u = (u_n)_{n \in \mathbb{N}} \in E$, $||u|| = \sup_{n \in \mathbb{N}} |u_n|$.
 - (a) Prouver que ||.|| est une norme sur E.
 - (b) Prouver que $\forall u = (u_n)_{n \in \mathbb{N}} \in E$, $\sum \frac{u_n}{2^{n+1}}$ converge.
 - (c) On pose alors $\forall u=(u_n)_{n\in\mathbb{N}}\in E, f(u)=\sum_{n=0}^{+\infty}\frac{u_n}{2^{n+1}}.$ Prouver que f est continue sur E.