Análise Combinatória, Probabilidades e Aplicações - Lista 01

Arthur Cardoso Leite, Cleibson Aparecido de Almeida 19 de janeiro de 2017

Exercício 03

Dados $A, B_1, ..., B_n \ge 1$, subconjuntos de $\mathcal{U} = \mathbb{Z}$, mostre que:

a)
$$(A^c)^c = A$$

Aplicando a propriedades 9 [pág.15], em [1].

Seja:
$$A^c = 1 - A$$
;

Então:
$$(1-A)^c = (1-(1-A)) = 1-1+A=A$$

b)
$$(\bigcup_{i=1}^{n} B_i)^c = \bigcap_{i=1}^{n} B_i^c \in (\bigcap_{i=1}^{n} B_i)^c = \bigcup_{i=1}^{n} B_i^c$$

Seja:
$$(\bigcup_{i=1}^{n} B_i)^c$$

Aplicando as propriedades 10 e 11 [pág.15], em [1].

$$= (B_1 \cup B_2 \cup \dots \cup B_n)^c$$

$$= B_1^c \cap B_2^c \cap \dots \cap B_n^c$$

$$=\bigcap_{i=1}^{n}B_{i}^{c}$$

e seja:
$$(\bigcap_{i=1}^{n} B_i)^c$$

$$= (B_1 \cap B_2 \cap \dots \cap B_n)^c$$

$$= B_1^c \cup B_2^c \cup \dots \cup B_n^c$$

$$=\bigcup_{i=1}^{n}B_{i}^{c}$$

c) Se $\mathcal{B} = \{B_1, ..., B_n\}$ é uma partição de \mathcal{U} , então a coleção $\{B_1 \cap A, ..., B_n \cap A\}$ é uma partição de A.

Aplicando a propriedade $(\bigcup A_i) \cup B = \bigcup_{i \in I} (A_i \cup B)$ ao problema, temos que:

$$(\bigcup B_i) \cup A$$

$$= \bigcup_{i \in I} (B_i \cup A)$$

$$= (B_1 \cap A) \cup (B_2 \cap A) \cup \dots \cup (B_n \cap A)$$

$$= \{B_1 \cap A, B_2 \cap A, \dots, B_n \cap A\}$$

Exercício 09

De quantas maneiras podemos distribuir n objetos em duas caixas de modo que nenhuma caixa fique vazia, quando:

a) Os objetos e as caixas são diferentes?

Quando os objetos e caixas são diferentes, existindo n objetos, tem, dessa forma, 2^n modos de arranjá-los em duas caixas distintas.

Porém, excluí-se duas dessas opções, uma vez que nenhuma das duas caixas pode ficar vazia. Dessa forma, têm-se como resposta do exercício $2^n - 2$ modos de distribuir n objetos distintos em duas caixas distintas.

b) Os objetos são iguais e as caixas diferentes?

Considerando as caixas A e B, têm-se:

Utilizando-se o conceito de Combinações Completas, têm-se:

$$\frac{(n+1)!}{n!} = n+1$$

Uma vez que as caixas devem ter no mínimo um objeto, deve-se desconsiderar dois arranjos. Assim sendo, a resposta do problema é n+1-2=n-1. Portanto, n-1 modos de arranjar os objetos.

Exercício 11

a) Um químico possui 10 tipos de substâncias: $/A_1, A_2, ..., A_n/$. De quantos modos poderá combinar 6 dessas substâncias se, entre as dez, duas não podem estar juntas?

1º Caso: A_1 está na reação Arranjemos do seguinte modo: $A_1 \times 8 \times 7 \times 6 \times 5 \times 4 = 6720$.

Como a ordem não importa neste caso, dividiremos o resultado por 5!, resultando em 56 modos distintos.

2º Caso: A_2 está na reação Arranjemos do seguinte modo: $A_2 \times 8 \times 7 \times 6 \times 5 \times 4 = 6720$.

Como a ordem não importa neste caso, dividiremos o resultado por 5!, resultando em 56 modos distintos.

3º Caso: Nem A_1 , nem A_2 estão na reação. Arranjemos do seguinte modo: $8 \times 7 \times 6 \times 5 \times 4 \times 3 = 20160$.

Como a ordem não importa neste caso, dividiremos o resultado por 6!, resultando em 28 modos distintos.

Assim sento, pelo Princípio Aditivo, têm-se 56 + 56 + 28 = 140 reações distintas.

b) O mesmo químico tem a hipótese de que ao dissolver 5 doses de 2 ml das substâncias $/A_1, ..., A_10/$ (as doses podem ser repetidas) em 5 ml de água, obterá uma solução útil ao combate da dengue. O químico precisa fazer um experimento no laboratório com todas as soluções possíveis. Qualé o número máximo de testes a serem feitos pelo químico? (suponha que a ordem de dissolução não afeta a solução final).

Como a ordem das substâncias não importa, temos pelo princípio da Combinação Completa a seguinte resolução:

Assim sendo, temos $\frac{14!}{5! \times 9!} = 2002$. Logo, há 2002 testes a serem feitos.

Exercício 13

Seja \mathcal{F} a classe das funções que associam o conjunto $\{1,2,...,2n+1\}$ ao conjunto $\{1,2,...,2n\}, n \geq 1$, isto é:

$$\mathcal{F} = \{f : \{1, 2, ..., 2n + 1\} \rightarrow \{1, 2, ..., 2n\}\}$$

Sejam ainda os seguintes subconjuntos de \mathcal{F} :

 \mathcal{I} : constituído pelas funções de \mathcal{F} que associam a cada número ímpar um número par,

 \mathcal{S} : constituído pelas funções sobrejetoras de \mathcal{F} .

Determine $|\mathcal{F}|$, $|\mathcal{I}|e|\mathcal{S}|$.

Para calcular $|\mathcal{F}|$, é considerado que os elementos do conjunto de tamanho 2n obrigatoriamente devem receber pelo menos 1 relacionamento com qual-

quer um dos elementos do conjunto que possuí 2n+1 elementos. Portanto, $|\mathcal{F}| = 2n^{2n+1}$.

Para encontrar $|\mathcal{I}|$, é considerado que os conjuntos de dividem em em 2 subconjuntos (elementos pares e elementos impares). Assim sendo, o conjunto que possuí 2n+1 elementos é dividido da seguinte maneira: n elementos pares e n+1 elementos ímpares. O outro conjunto, que possuí 2n elementos é dividido da seguinte maneira: n elementos pares e n elementos ímpares. Com isso, apenas a parte com n+1 (elementos ímpares) elementos do conjunto que possuí 2n+1 elementos irá se relacionar com os elementos do outro conjunto, ou seja, n^{n+1} . Resta então, permutar os demais elementos que não fazem parte da restrição, ou seja, $2n^n$. Portanto, aplicando o principio multiplicativo temos que $|\mathcal{I}| = n^{n+1} \times 2n^n$.

Para a definição de $|\mathcal{S}|$, considera-se que todos elementos do conjunto com 2n elementos terá pelo menos uma relação com os elementos do outro conjunto de tamanho 2n+1. Sendo assim, a contrapartida desta relação terá de imediato uma C_{2n-1}^2 , pois o conjunto de tamanho 2n+1 tem 1 elemento a mais do que o outro conjunto, sendo que os elementos deste outro conjunto receberão pelo menos 2 relações de cada um dos elementos do conjunto de tamanho 2n+1. Além disso, sobrarão (2n-1)! elementos do conjunto de tamanho 2n+1 que se relacionarão com todos os elementos do conjunto de tamanho 2n+1, pois são eliminados dois elementos devido a primeira restrição já aplicada. Portanto, aplicando o principio multiplicativo temos que $|\mathcal{S}| = C_{2n-1}^2 \times (2n-1)!$.

Exercício 15

Determine os números de possíveis anagramas das palavras SUSSURRO, VESTIBULAR e BATATA.

a) SUSSURRO - Esta palavra possui repetição de letras,portanto será aplicada a regra da permutação com elementos nem todos distintos.

Temos então a seguinte organização das 8 letras: SSS UU RR O (3 S, 2 U, 2 R e 1 O), e com isso a fórmula será P_8^{3221}

=
$$C_8^3 \times C_5^2 \times C_3^2 \times C_1^1$$

= $56 \times 10 \times 3 \times 1 = 1680$ anagramas

b) VESTIBULAR - Esta palavra não possui letras repetidas, portanto trata-se de uma *permutação simples*.

Temos então P_{10}

- = 10!
- $=10\times9\times...\times1$
- =3628800 anagramas
- c) BATATA Esta palavra possui repetição de letras, portanto será aplicada a regra da permutação com elementos nem todos distintos.

Temos então a seguinte organização das 6 letras: AAA TT B (3 A, 2 T e 1 B), e com isso a fórmula será P_6^{321}

- $=C_6^3\times C_3^2\times C_1^1$
- $=20\times3\times1=60$ anagramas

Exercício 20

Quantas são as soluções não negativas da inequação x + y + z < 2? Trata-se de um problema envolvendo combinações completas.

$$CR_n^p = C_{n+p-1}^p$$

E sendo
$$C_{n+p-1}^p = \binom{n+p-1}{p} = \frac{(n+p-1)!}{(n-1)! \times p!}$$

Então, são apresentadas todas as possibilidades de solução da inequação:

$$x+y+z=2 \rightarrow CR_3^2 \rightarrow C_4^2$$
; aqui tem-se n=3 e p=2

$$x + y + z = 2 \rightarrow CR_3^2 \rightarrow C_4^2$$
; aqui tem-se n=3 e p=2.
 $x + y + z = 1 \rightarrow CR_3^1 \rightarrow C_3^1$; aqui tem-se n=3 e p=1.
 $x + y + z = 0 \rightarrow CR_3^0 \rightarrow C_2^0$; aqui tem-se n=3 e p=0.

$$x + y + z = 0 \rightarrow CR_3^0 \rightarrow C_2^0$$
; aqui tem-se n=3 e p=0.

Aplicando o principio aditivo, temos que as soluções não negativas para inequação pode ser dada por $C_4^2 + C_3^1 + C_2^0 = 6 + 3 + 1 = 10$ maneiras de solucionar.

Referências

[1] A. C. de Oliveira Morgado, J. B. P. de Carvalho, P. C. P. Carvalho, and P. Fernandez. Análise Combinatória e Probabilidade. Coleção do Professor de Matemática. Editora SBM, 9 edition, 1991.