BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-197862

(43) Date of publication of application: 31.07.1998

(51)Int.CI.

G02F 1/1335 G02B 5/30

(21)Application number: 09-002814

(71)Applicant: MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing:

10.01.1997

(72)Inventor: TSUDA KEISUKE

KUMAKAWA KATSUHIKO

(54) LIQUID CRYSTAL DISPLAY DEVICE AND PRODUCTION OF PHASE PLATE USED FOR THE SAME

(57) Abstract:

PROBLEM TO BE SOLVED: To expand the visual field angle of a liquid crystal display device and to provide a process for production of inexpensive and high-performance phase plates used for expanding the visual field angle.

SOLUTION: This liquid crystal display device has a liquid crystal layer 1 in which liquid crystal molecules having positive refractive index anisotropy and position dielectric constant anisotropy are bend oriented at the time of operation, the phase plates 6, 7 which are laminated on both sides of the layer and consist of optical media having negative refractive index anisotropy of hybrid oriented main axes and means for impressing voltage on the liquid crystal layer 1. The product of the refractive index anisotropy Δn of the liquid crystals and the thickness (d) of the liquid crystal cell 1 is specified to 790 to 1190nm. As a result, the dependence of the optical propagation characteristics of the liquid crystal cell 1 existing in an on or off state on visual field angles is compensated and the visual field angle characteristic of the liquid crystal display device is improved. A high-polymer network is formed while an electric field or magnetic field is impressed on the mixture composed of the high polymer and nematic liquid crystals on the substrates subjected to an orientation treatment and thereafter, the nematic liquid crystals are replaced with discotic liquid crystals, by which the phase plates 6. 7 are manufactured.

LEGAL STATUS

[Date of request for examination]

18.12.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3650499

[Date of registration]

25.02.2005

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-197862

(43)公開日 平成10年(1998) 7月31日

(51) Int.Cl.6

G02B

識別記号

G02F 1/1335

5/30

5 1 0

G02F 1/1335

FΙ

510

G02B 5/30.

審査請求 未請求 請求項の数8 OL (全 14 頁)

(21)出願番号

特願平9-2814

(22)出願日

平成9年(1997)1月10日

(71) 出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72)発明者 津田 圭介

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 熊川 克彦

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 宮井 暎夫

(54) 【発明の名称】 液晶表示装置及びそれに用いる位相板の製造方法

(57) 【要約】

液晶表示装置の視野角を拡大するとともに、 視野角拡大に用いられる位相板の安価で高性能な製造方 法を提供する。

【解決手段】 正の屈折率異方性と正の誘電率異方性を もつ液晶分子がその動作時にはベンド配列した液晶層1 と、この両側に積層され主軸がハイブリッド配列した負 の屈折率異方性をもつ光学媒体よりなる位相板6,7 と、液晶層1に電圧を印加する手段とを有し、液晶の屈 折率異方性Δnと液晶層1の厚みdとの積を790nm 以上1190nm以下にした。これによりオンまたはオ フ状態にある液晶層 1 の光学伝搬特性の視野角依存性を 補償して、液晶表示装置の視野角特性が向上する。配向 処理された基板上の高分子とネマティック液晶の混合物 に、電界または磁界を印加しながら高分子ネットワーク を形成した後に、ネマティック液晶をディスコティック 液晶に置換することにより位相板6,7を作製する。

【特許請求の範囲】

【請求項1】 正の屈折率異方性と正の誘電率異方性をもつ液晶分子がその動作時にはベンド配列した液晶層と、この両側に積層され主軸がハイブリッド配列した負の屈折率異方性をもつ光学媒体よりなる位相板と、前記液晶層に電圧を印加する手段とを有し、前記液晶の屈折率異方性と液晶層の厚みとの積を790nm以上1190nm以下にしたことを特徴とする液晶表示装置。

【請求項2】 正の屈折率異方性と正の誘電率異方性をもつ液晶分子がその動作時にはベンド配列した液晶層と、これに積層され主軸がベンド配列した負の屈折率異方性をもつ光学媒体よりなる位相板と、前記液晶層に電圧を印加する手段とを有し、前記液晶の屈折率異方性と液晶層の厚みとの積を790nm以上1190nm以下にしたことを特徴とする液晶表示装置。

【請求項3】 正の誘電率異方性を10以上にした請求項1または2記載の液晶表示装置。

【請求項4】 液晶層の厚みを 6μ m以下にした請求項1, 2または3記載の液晶表示装置。

【請求項5】 正の屈折率異方性と負の誘電率異方性をもつ液晶分子がベンド配列した液晶層と、この両側に積層され主軸がハイブリッド配列した負の屈折率異方性をもつ光学媒体よりなる位相板と、前記液晶層に電圧を印加する手段とを有することを特徴とする液晶表示装置。

【請求項6】 正の屈折率異方性と負の誘電率異方性をもつ液晶分子がベンド配列した液晶層と、これに積層され主軸がベンド配列した負の屈折率異方性をもつ光学媒体よりなる位相板と、前記液晶層に電圧を印加する手段とを有することを特徴とする液晶表示装置。

【請求項7】 正の屈折率異方性と負の誘電率異方性をもつ液晶分子が基板に対しほぼ垂直にかつベンド配列した液晶層と、これに積層され主軸が水平に配列した負の屈折率異方性をもつ光学媒体よりなる位相板と、前記液晶層に電圧を印加する手段とを有することを特徴とする液晶表示装置。

【請求項8】 配向処理された基板上にネマティック液晶と高分子の混合物を塗布する工程と、電界あるいは磁界の少なくとも一方を印加しながら高分子ネットワークを形成する工程と、前記高分子ネットワーク内のネマティック液晶をディスコティック液晶に置換する工程とを40含むことを特徴とする位相板の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、映像や文字情報 を表示する液晶表示装置及びそれに用いる位相板の製造 方法に関するものである。

[0002]

【従来の技術】液晶表示装置は、薄型軽量の特長により、薄型テレビ、カー・ナビゲーション・システム、パーソナル・コンピュータやワード・プロセッサなどのフ 50

2

ラット・ディスプレイとして広く用いられるようになっている。液晶表示には、それぞれに特長のある数多くの表示モードが提案されている。中でも、米国特許公報 4566758 号公報に開示されているパイセル(Pit ル、あるいは π セル)は、そのスイッチング速度が 2m sec 程度と高速であるため、動画表示用のディスプレイとして注目され、研究開発がさかんである。

【0003】このパイセルにおいては液晶分子はベンド 配列しており、法線方向からの等価的なリターデーショ ンを印加電圧の大きさにより制御して透過光量を変え、 表示を行っている。特開平7-49509号公報には、 このパイセルに固定の負の位相差を発生する部材を付加 して、動作電圧を低下させたり、視野角特性を拡大する 技術が開示されている。これにより、駆動電圧が5ボル ト以下に低下し、階調表示でのコントラスト反転を考え た視野角範囲は位相板のない場合に比べて広がってい る。しかしながら黒表示特性の視野角依存はまだ大きい ため、法線方向からの傾き角が増すにつれて表示に黒浮 きが発生してしまう。負の位相差を発生する部材として は、正の複屈折媒体をパイセルの光学軸と直交させる、 あるいは負の複屈折媒体をパイセルの光学軸に平行に配 置するなどの方法が考えられるが、この特許には詳細は 開示されていない。

[0004]

【発明が解決しようとする課題】しかしながら、上記のような構成ではいまだ視野角特性が不十分であり、特に、黒表示特性の視野角依存が大きいため、正面からはずれた方向から表示を見た場合に黒表示状態の透過率が大きく増加する。このため、正面からはずれた方向からディスプレイを見た場合に黒浮きが発生し、表示が白っぱくなって色相が極端に淡くなったり、コントラストが大きく低下するといった課題を有している。

【0005】また、電圧を印加する前の液晶層の配向状態はスプレイ配向であり、実際にはこの状態からベンド配向させるのは容易ではなく、スプレイからベンドへの配向転移を促すためには、表示を白黒させる動作電圧よりもはるかに高い電圧を加える必要があるといった課題を有する。したがって、この発明の目的は、視野角特性の向上を図ることができる液晶表示装置及びそれに用いる位相板の製造方法を提供することである。

[0006]

【課題を解決するための手段】請求項1記載の液晶表示装置は、正の屈折率異方性と正の誘電率異方性をもつ液晶分子がその動作時にはベンド配列した液晶層と、この両側に積層され主軸がハイブリッド配列した負の屈折率異方性をもつ光学媒体よりなる位相板と、液晶層に電圧を印加する手段とを有し、液晶の屈折率異方性と液晶層の厚みとの積を790nm以上1190nm以下にしたものである。

□ 【0007】このように、正の屈折率異方性と正の誘電

率異方性をもつ液晶分子がその動作時にはベンド配列し た液晶層の両側に、主軸がハイプリッド配列した負の屈 折率異方性をもつ光学媒体よりなる位相板を積層したの で、オンまたはオフ状態にある液晶層の光学伝搬特性の 視野角依存性を補償して良好な黒表示を行い、液晶表示 装置の視野角特性を改善するという作用を有する。この 場合、液晶層を上下に二分する中心面から液晶表示装置 を見た場合、上側において液晶層の上半分の液晶分子の 方向と上側の位相板の光学媒体の光学軸方向が対応し、 下側において液晶層の下半分の液晶分子の方向と下側の 位相板の光学媒体の光学軸方向が対応することにより、 2枚の位相板のそれぞれが液晶層の半分を補償する役割 を果たしているため、位相板特性のばらつきの表示特性 への影響が少ないという利点や、2枚の位相板をうまく 組み合わせることにより位相板の特性ばらつきをキャン セルすることができる。同時に、液晶の複屈折と液晶層 の厚みの積を790~1190nmの間に設定すること により、液晶表示装置の正面輝度を高くし、かつ白表示 の視野角による色相変化を少なくするという作用を有す

【0008】請求項2記載の液晶表示装置は、正の屈折率異方性と正の誘電率異方性をもつ液晶分子がその動作時にはベンド配列した液晶層と、これに積層され主軸がベンド配列した負の屈折率異方性をもつ光学媒体よりなる位相板と、液晶層に電圧を印加する手段とを有し、液晶の屈折率異方性と液晶層の厚みとの積を790nm以上1190nm以下にしたものである。

【0009】このように、正の屈折率異方性と正の誘電率異方性をもつ液晶分子がその動作時にはベンド配列した液晶層に、主軸がベンド配列した負の屈折率異方性をもつ光学媒体よりなる位相板を積層したので、液晶層の液晶分子の方向と位相板の光学媒体の光学軸方向が対応し、オンまたはオフ状態にある液晶層の光学伝搬特性の視野角依存性を補償して良好な黒表示を行い、液晶表示装置の視野角特性を改善することかできる。同時に、液晶の複屈折と液晶層の厚みの積を790~1190nmの間に設定することにより、液晶表示装置の正面輝度を高くし、かつ白表示の視野角による色相変化を少なくするという作用を有する。

【0010】請求項3記載の液晶表示装置は、請求項1または2において、正の誘電率異方性を10以上にした。このように、液晶の誘電率異方性を10以上に設定することで、動作時のベンド配向転移を容易にすると同時に、動作電圧を低くするという作用を有する。請求項4記載の液晶表示装置は、請求項1、2または3において、液晶層の厚みを6 μ m以下にした。このように、液晶層の厚みを6 μ m以下にすることで、液晶層の厚みを6 μ m以下にすることで、液晶層の厚みを6 μ m以下にすることで、液晶層の厚みを6 μ m以下にすることができ、その結果液晶層内の電界強度が強まるため、動作時のベンド配向転移を容易にすると同時に、動作電圧を低くするという作用を

有する。

【0011】請求項5記載の液晶表示装置は、正の屈折率異方性と負の誘電率異方性をもつ液晶分子がベンド配列した液晶層と、この両側に積層され主軸がハイブリッド配列した負の屈折率異方性をもつ光学媒体よりなる位相板と、液晶層に電圧を印加する手段とを有することを特徴とする。このように、正の屈折率異方性と負の誘電率異方性をもつ液晶分子がベンド配列した液晶層の両側に、主軸がハイブリッド配列した負の屈折率異方性をもつ光学媒体よりなる位相板を積層したので、請求項1と同様にオンまたはオフ状態にある液晶層の光学伝搬特性の視野角依存性を補償して良好な黒表示を行い、液晶表示装置の視野角特性を改善するという作用を有すると同時に、電圧印加前の状態から安定なベンド配向が存在する作用を有する。

【0012】請求項6記載の液晶表示装置は、正の屈折率異方性と負の誘電率異方性をもつ液晶分子がベンド配列した液晶層と、これに積層され主軸がベンド配列した負の屈折率異方性をもつ光学媒体よりなる位相板と、液晶層に電圧を印加する手段とを有することを特徴とする。このように、正の屈折率異方性と負の誘電率異方性をもつ液晶分子がベンド配列した液晶層に、主軸がベンド配列した負の屈折率異方性をもつ光学媒体よりなる位相板を積層したので、請求項2と同様にオンまたはオフ状態にある液晶層の光学伝搬特性の視野角依存性を補償して良好な黒表示を行い、液晶表示装置の視野角特性を改善するという作用を有する同時に、電圧印加前の状態から安定なベンド配向が存在する作用を有する。

【0013】請求項7記載の液晶表示装置は、正の屈折 率異方性と負の誘電率異方性をもつ液晶分子が基板に対 しほぼ垂直にかつベンド配列した液晶層と、これに積層 され主軸が水平に配列した負の屈折率異方性をもつ光学 媒体よりなる位相板と、液晶層に電圧を印加する手段と を有することを特徴とする。このように、正の屈折率異 方性と負の誘電率異方性をもつ液晶分子が基板に対しほ ぼ垂直にかつベンド配列した液晶層に、主軸が水平に配 列した負の屈折率異方性をもつ光学媒体よりなる位相板 を積層したので、オンまたはオフ状態にある液晶層の光 学伝搬特性の視野角依存性を補償して良好な黒表示を行 い、液晶表示装置の視野角特性を改善するという作用を 有する同時に、電圧印加前の状態から安定なベンド配向 存在する作用を有する。また、液晶層がほぼ垂直配向し ていることにより位相板もわずかな傾斜を無視した水平 配向にできるので、位相板の作製が容易という利点を持 つ。

【0014】請求項8記載の位相板の製造方法は、配向処理された基板上にネマティック液晶と高分子の混合物を塗布する工程と、電界あるいは磁界の少なくとも一方を印加しながら高分子ネットワークを形成する工程と、高分子ネットワーク内のネマティック液晶をディスコテ

ィック液晶に置換する工程とを含む。このように、配向 処理された基板上にネマティック液晶と高分子の混合物 を塗布し、電界あるいは磁界の少なくとも一方を印加し ながら高分子ネットワークを形成した後に、高分子ネットワークを形成した後に、高分子ネットワークを形成した後に、高分子ネットローク内のネマティック液晶をディスコティック液晶 に置換することにより、ハイブリット配列したディスカ に置換することにより、ハイブリット配列したディンク液晶の層を容易に得ることができる。すなわ ち、配列制御が困難なディスコティック液晶を、比較的 容易に配列制御できるネマティック液晶とで、比較的 により、所望の配列分布させることができるので、負の 屈折率異方性をもつ光学媒体がハイブリッド配列した位 相板を容易に得ることができる。また、この位相板を2 枚貼り合わせることによりベンド配列の位相板を得る。 【0015】

【発明の実施の形態】この発明の第1の実施の形態の液晶表示装置を図1から図9に基づいて説明する。図1にこの発明の第1の実施の形態である液晶表示装置の構成を示す。図において、4,5は基板であり、液晶層1を挟持している。基板4,5上には液晶層1に電圧を供給するための電極2,3が形成されている。8,9は偏光表示を行うための偏光板、10は照明用のバックライトである。6,7は位相板であり、液晶層1のリターデーションや視野角依存を補償して、表示の白黒化や視野角特性の拡大を行っている。いずれか一方の基板4,5上には、図示されていないが、薄膜トランジスタやダイオードなどのスイッチング素子が形成されている。

【0016】図2は、各光学要素の配置角を示すために、図1を偏光板8の側から見た平面図で、11は液晶分子の光軸の正射影の方向を、12と13は位相板6,7における負の光学媒体の光軸の正射影の方向を示しており、これらの光軸の正射影の方向11,12,13はほぼ平行となっている。また、14と15は偏光板7,8の偏光軸方向である。なお、図中の破線は、液晶層1の背面(バックライト側)にある素子を示している。

【0017】図3は、液晶層1の図2のA-A、線での断面における、液晶分子16の配列状態を示す模式図である。図中の(a)には液晶層1にオフ電圧が印加された場合、(b)にはオン電圧が印加された場合が示されており、いずれも正の屈折率異方性と正の誘電率異方性を持つ液晶分子16が厚み方向にベンド配列している。オン状態はオフ状態より高い電圧が印加されているので、オン状態は液晶分子16がより立ち上がった状態となり、法線方向から液晶層1を見た場合の等価的なリターデーションが小さくなっている。

【0018】液晶層1に電圧を印加していない場合の液晶分子16の配列は、図4(a)に示す180度ねじれ配列、(b)に示すスプレイ配列のいずれであっても構わないが、オフ状態では図3(a)のベンド配列を安定化させるのに十分なオフ電圧が印加されていることが必要である。位相板6,7は、負の屈折率異方性をもつ光50

6

学媒体17を図5に示すようにハイブリッド配列させた 構成をとっている。位相板6と7のリターデーションの 和は、オン状態の液晶層1とほぼ等しくなっている。負 の光学媒体17の光学軸方向は、位相板6では液晶層1 の上半分の液晶分子16のオン状態の分子配列(液晶分 子の光学軸方向) に、位相板7では液晶層1の下半分の 液晶分子16のオン状態の分子配列に、それぞれ対応す るように配列している。即ち、それぞれの近接面におい ては、液晶層1の上面の液晶分子16の方向と位相板6 の下面の光学媒体17の主軸方向、および液晶層1の下 面の液晶分子16の方向と位相板7の上面の光学媒体1 7の主軸方向は、ほぼ平行となっている。さらに、この 近接面から液晶層1と位相板6,7の内部に等しいリタ ーデーションだけ進んだ層においても、液晶分子16の 方向と位相板6,7の光学媒体17の主軸方向はほぼ平 行になっている。

【0019】図6は、位相板6,7による視野角特性向上の原理を説明するための図である。図にはオン状態の液晶層1の液晶分子16と位相板6,7の光学媒体17の配列が示されており、説明の便宜上、液晶層1は21a,22a……25a,26a……29a,30aの10個の薄層に、位相板6は21b,22b……25bの5つの薄層に、位相板7は26b……29b,30bの5つの薄層に分割されている。ここで、薄層21aと21bの組、薄層22aと25bの組、……薄層25aと25bの組、薄層26aと26bの組、……薄層29aと29bの組、薄層30aと30bの組を考えると、それぞれの組は主軸が平行で等しいリターデーションを持つ正負の複屈折媒体となっている。

【0020】まず、液晶層1の下半分と位相板7につい て偏光の伝播を考えると、薄層30aと30bは隣接し ているので、あらゆる方向に進む光に対して理想的には 互いの複屈折の影響を打ち消し合う。従って、偏光伝播 を考える場合に薄層30aと30bの組はないものとし て取り扱うことができる。薄層30aと30bをないも のと考えると、次は薄層29aと29bとが隣接するも のとして取り扱うことができる。この組も主軸の方向が 平行で等しいリターデーションを持つ正負の複屈折媒体 なので、あらゆる方向に進む光に対して理想的には互い の複屈折の影響を打ち消し合う。従って、光学伝播を考 える場合に薄層29aと29bの組はないものとして取 り扱うことができる。同様に考えて、薄層28aと28 bの組から薄層26aと26bの組までもお互いに視野 角特性を打ち消し合い、理想的にはないものとして取り 扱うことができる。さらに、液晶層1の上半分と位相板 6についても同様に考えると、薄層21aと21bの組 から薄層25aと25bの組までもお互いに視野角特性 を打ち消し合い、理想的にはないものとして取り扱うこ とができる。

□ 【0021】偏光の伝播は、数学的には4行4列の要素

からなる各薄層の伝播行列T21a , T22a , ……T30a , T21b , T22b , ……T30b を用いて(数 1) で表される。Ex とEy はそれぞれx方向とy方向に振動面をもつ電界成分、Hx とHy はそれぞれx方向とy方向 *

*に振動面をもつ磁界成分を表し、添字のinとout はそれ ぞれ入射光と出射光を示している。

[0022]

【数1】

 $\begin{bmatrix} E & x(out) \\ E & y(out) \\ H & x(out) \\ H & y(out) \end{bmatrix} = T & 25b \times \cdots \times T & 22b \times T & 21b \times T & 21a \times T & 22a \times \cdots \times T & 25a$

 \times T 26a×·····× T 29a× T 30a× T 30b× T 29b×·····× T 26b× $\begin{bmatrix} E \times (in) \\ E \cdot y(in) \\ 1I \cdot x(in) \\ H \cdot y(in) \end{bmatrix}$

【0023】この式を用いて考えると、上記の現象は行列の掛け算の(p)の部分から、T21aとT21bの積、T22aとT22bの積、……T25aとT25bの積の順に単位行列となり、(q)の部分から、T30aとT30bの積、T29aとT29bの積、……T26aとT26bの積の順に単位行列となり、理想的には入射偏光と出射偏光が等しくなるものと考えられる。

【0024】このとき、偏光板8,9の偏光軸14と15が直交するように配置しておけば、電圧無印加時には上記のように液晶層1と位相板6,7の特性は完全に補償し合うので、表示は黒となる。この黒表示は偏光板特性で定まるものであり、非常に良好な視野角特性を持っており、視野角によらずコントラストの高い液晶表示装置を得ることができる。また、赤(R)・緑(G)・青(B)のカラーフィルターを形成した3つの画素の混色を用いて色表示を行う場合に、オフ状態となっている色が視野角を振っても漏れにくいので、例えば赤表示を行った場合に緑や青の画素からの漏れ光がほとんどなく、視野角による色相変化の小さい液晶表示装置を得ることができる。

【0025】液晶層1がオフ状態にある場合には、先に説明したように液晶層1のリターデーションがオン状態より大きくなっているので、位相板6,7との間での光学伝搬特性が上記の補償条件からずれる。このため、液晶層1と位相板6,7を通過した光は偏光板8を通過するようになり、白表示が行われる。このリターデーションの変化を有効に利用するため、入射側の偏光板9の偏光軸15が液晶層1の液晶分子16の射影の方向(図2の11の方向)となす角度はほぼ45°に設定されている。

【0026】図7は、この実施の形態の液晶表示装置における白表示時と黒表示時の輝度の視野角依存を示したものである。液晶の複屈折(屈折率異方性) Δ nと液晶層1の厚みdとの積(Δ n \times d)は840nmに設定した。図中の ϕ は、図2においてAからA に向かう方向を0度として反時計回りにとった方位角であり、 θ は法線方向からの倒れ角である。縦軸はバックライト10の

輝度を100%としたときの表示面の輝度である。この実施の形態に示す液晶表示装置は、各方位とも黒表示特性が非常に良好であり、コントラストの視野角依存も従来のものに比べて格段に少ない。白黒反転は左右方向(0度-180度方向)すなわち図7(a)に示す ϕ =0。の特性図において、倒れ角70度付近で生じるのみであり、非常に視野角の広い液晶表示装置を得ることができた。

【0027】図8は、上記の液晶表示装置において、 Δ n×dを変化させて白表示(オフ状態)の正面輝度を測定した結果である。位相板6, 7の複屈折量も液晶層 1に合わせて、上記の補償条件となるように変化させている。オン電圧は8ボルト、オフ電圧は2ボルトである。ベンド配向の安定性の面からオフ電圧を2ボルト以下にすることは好ましくなかった。 Δ n×dが1230nmのとき、輝度は最大値28%を示した。この図では、この最大値を100%とした相対輝度を縦軸にとっている。

【0028】 Δ n×dが1230nm以上の場合には、オン状態とオフ状態の間での偏光変調が過変調状態にあるので、オフ電圧を2ポルトより高く設定することにより、図中の破線に示すように、白表示輝度を相対値でほぼ100%にすることができる。従って、 Δ n×dの値を790nm以上に設定すれば正面輝度が最大値の70%以上となり実用上十分な明るさが得られるし、これを910nm以上に設定すれば正面輝度が限界値の80%以上、990nm以上に設定すれば正面輝度が限界値の90%以上となり、さらに明るい表示を得ることができる

【0029】一方、このような液晶表示装置では、白表示の色相が観察方向によって変化する。特に、方位角のが90度と270度の方向では、倒れ角が増すとともに表示がやや黄色味がかる。図9は、色度の視野角依存のΔn×d依存を示すものである。縦軸は、液晶表示装置を倒れ角30度のコーン状の方向から、方位角0度から360度まで5度おきに測定した色差の平均である。以下、これを平均色差と呼ぶ。色差は、正面方向の表示特

8

相変化を少なくするという作用を有する。

性を基準として算出してあり、表色系はL * a * b * 色度系に基づいている。また、色差は輝度差を考慮しないで計算したもの(Δ C)である。図中の破線は、 Δ n × d が 1 2 3 0 n m以上の場合に、オフ電圧を調整した場合の特性を示している。

【0030】図からわかるように、 Δ n×dの値が大きすぎる場合には白表示の色相変化が大である。フィルム位相板により視野角特性を改善したTN型の液晶表示装置について同様の測定を行うと、平均色差は3.5程度であった。この実施の形態の液晶表示装置では、 Δ n×dが1190nm以上の場合は、平均色差が位相板付きTN型の2倍以上(7以上)となるので、白表示の色相変化の面からこれは好ましくない。 Δ n×dを1030nm以下としておけば、平均色差が5以下(即ち位相板付きTN型の約1.5倍以下)となり、色相変化の面からもかなり良好な視野角特性が得られる。さらに、 Δ n×dを910nm以下としておけば平均色差は3.5以下で、位相板付きTN型に優る特性を得ることができる。

【0031】従って、正面輝度と白表示の色相変化の両面を総合すると、 $\Delta n \times d$ の値は $790 \sim 1190$ nmの間に設定するのが、正面の相対輝度が70%以上で平均色差が7以下となるので望ましい。しかしながら、例えば個人用のノートパソコン用のディスプレイ等のように正面への光利用効率が重視される用途では、 $\Delta n \times d$ を $910 \sim 1190$ nmの間に設定しておけば、相対輝度が80%以上で色相変化が実用上十分な液晶表示装置を得ることができる。 $\Delta n \times d$ が990 nm以上であれば、明るさの面からはさらに望ましい。一方、テレビなど複数の人間が見ることの多い用途では視野角特性が重要であるので、色相変化を重視して、 $\Delta n \times d$ の値は $790 \sim 1030$ nmの間に設定するのがよい。特に、910 nm以下に設定した場合には、非常に色相変化の少ない液晶表示装置を得ることができる。

【0032】この実施の形態においては、液晶層1を上 下に2分する中心面から液晶表示装置を見た場合、上側 には液晶層1の半分とそれを補償する位相板6,7が配 置され、下側には上側の液晶層1と位相板6,7を鏡面 対称にしたものが配置されている。このように構成上の 対称性がよいため、位相板6,7を片側に配置したもの に比べて、表示における視野角特性の対称性がよく、見 やすい表示ができるという利点がある。また、2枚の位 相板6,7のそれぞれが液晶層1の半分を補償する役割 を果たしているため、位相板特性のばらつきの表示特性 への影響が少ないという利点や、2枚の位相板6,7を うまく組み合わせることにより位相板6,7の特性ばら つきをキャンセルすることができるという利点がある。 また、液晶の複屈折 An と液晶層 1 の厚み d の積を 7 9 0~1190nmの間に設定することにより、液晶表示 装置の正面輝度を高くし、かつ白表示の視野角による色 【0033】なお、この実施の形態では、位相板6, 7がオン状態にある液晶層1の光学特性を補償するものとしたが、これはこのように限定されるものではなく、オフ状態にある液晶層1の光学特性を補償してこれを黒表示とするように位相板6, 7を構成しても同様の効果を得ることができる。オフ状態を補償する構成においても、偏光板8, 9の配置角などの構成はオン状態を補償する構成と同様にすればよく、液晶層1の Δ n×dも上記の範囲に設定するのが望ましい。

10

【0034】以下、オン状態を補償する構成(オン補償構成)とオフ状態を補償する構成(オフ補償構成)を比較する。液晶層1の分子配列は印加電圧とともに飽和するが、オン補償構成はこの飽和領域にある液晶を補償している。このため、オン補償構成は補償の安定度がよく非常に良好な黒表示が得られる。これに対し、オフ補償構成は、オフ電圧印加時の液晶を補償しているので黒表示が行われる電圧レベルが低い。このため、駆動ICの耐圧や電源電圧の制限のため十分高い電圧が印加できない場合にも黒表示は良好なレベルにあり、駆動の低電圧化を図る場合に有効である。

【0035】一方、実際の表示動作をするためには、液晶層1がその動作範囲でベンド配向となっていることが必要である。このベンド配向が安定に存在させるためには、電圧印加前の初期のスプレイ配向からベンド配向への転移を促す必要があるが、容易にベンド配向になるためにはできるだけ液晶分子16を法線方向に立たせることが必要になる。通常は電圧印加により、液晶分子16を立たせ、ベンド配向転移を促す方法がとられる。

【0036】そこで、スプレイーベンド転移がいかなる条件で容易となるかを、液晶の誘電率異方性 Δ ϵ 、液晶層 1 の厚み d を変えて観察した。実際の動作でスプレイーベンド転移するには、電圧を印加した状態でベンド配向の核が発生し、かつその核が絵素全体に拡がることが必要である。従って、各条件でのベンド配向の転移しやすさを、核発生の有無、核発生後の絵素全体への拡がる時間で判断した。なお絵素サイズは、通常のTFTパネルで設計されているもので、 $0.3\mu m \times 0.1\mu m$ とした。また、印加電圧は7Vとした。また、検討したを 晶はTFT用である2LI4792を基準に、弾性定数の変化の少ないもので、誘電率異方性 Δ ϵ を変えたものを使用した。また、通常の表示パネルが電源を入れた後、遅くとも 10 のか以内に正常に動作する必要があることも評価する上で考慮した。

【0037】評価結果を表1に示す。表より、 $\Delta \epsilon$ が9以上で核発生が起こった後10 秒以内に絵素全体がベンド配向となる条件がでる。この条件の内、実際パネル作製に適している液晶層1 の厚みd=4 μ m以上を勘案すると、 $\Delta \epsilon 10$ 以上が望ましいことがわかる。また、 $\Delta \epsilon$ が10 以上でも確実にベンド配向させるためには、液

晶層の1厚みdは6 μ m以下が望ましい。

* 【表 1 】

[0038]

液晶層の厚み d [μm] 誘電率異方性Δ ε	4	5	6	7
7	Δ	×	×	×
8	Δ	Δ	×	х
9	0	Δ	Δ	×
10	0	0	0	Δ

×=核発生せず △=核発生後、絵素全体に転移するまで10秒以上かかる 〇=10秒以内に絵素全体が転移する

【0039】この発明の第2の実施の形態の液晶表示装置を図10および図11に基づいて説明する。図10は、この発明の第2の実施の形態の液晶表示装置の構成を示すものである。この実施の形態は、第1の実施の形態において2枚に分割されていた位相板6を1枚にまとめ、液晶層1の片側に配置した構造をもっている。図11に、この実施の形態における液晶分子16と負の光学媒体17の配列状態を示す。負の光学媒体17は液晶分子16と同様にベンド配列している。

【0040】光学補償の原理は、第1の実施の形態で説明したように、液晶層1と位相板6を薄層に分割し、液晶層1と位相板6の近接面から薄層の組がその光学特性を順次キャンセルするものと考えることができる。偏光板8の配置角については、偏光板8の偏光軸と、液晶層1の液晶分子軸方向のなす角度を45°程度に設定すれば、第1の実施の形態と同様に、液晶層1のリターデーションの変化を有効に利用することができる。

【0041】この実施の形態の液晶表示装置においても、図7に示す第1の実施の形態と同様に、非常に視野角特性の良好な黒表示を行うことができた。 $\Delta n \times d$ が正面輝度および色度の視野角特性に及ぼす影響も、第1の実施の形態で説明したものと同様で、基本的には $790 \times 1190 \times 119$

【0042】なお、この実施の形態では、位相板6がオン状態にある液晶層1の光学特性を補償するものとしたが、これはこのように限定されるものではなく、オフ状態にある液晶層1の光学特性を補償してこれを黒表示とするように位相板6を構成しても同様の効果を得ることができる。オフ状態を補償する構成においても、偏光板

8の配置角などの構成はオン状態を補償する構成と同様にすればよく、液晶層1の Δ n×dも上記の説明の範囲に設定するのが望ましい。第1の実施形態で説明したのと同様の理由で、オン状態を補償する構成では補償の安定度がよく非常に良好な黒表示が得られるし、オフ状態を補償する構成は駆動の低電圧化を図る場合に有効である。

【0043】また、位相板6の配置についても、この実施の形態では、位相板6が液層層1からみて観察者の側に配置されているものとしたが、これは液層層1からみてバックライト10の側に配置してもかまわない。この発明の第3の実施の形態の液晶表示装置を図12に基づいて説明する。この実施の形態では、液晶材料として負の誘電率異方性を有するものを用い、かつ電圧印加前の初期の状態での液晶の配向を図12(a)のようにしている。また、電圧印加時には液晶分子16は図12

(b) のようになる。

0 【0044】このとき、初期配向状態を得るために、配向膜には垂直配向剤を用い、その配向膜を液晶層1を挟持する両基板に塗布した後、配向膜をラビング処理した。ラビング処理した方向は、それぞれの基板で図12の矢印で示した方向18である。このときの配向膜上の液晶分子のプレチルト角は約85°であった。この状態でも、第1の実施の形態と同様な補償原理で、液晶層1の両側に(数1)を満たす配向を有する、ハイブリッド配向した位相板を配置すれば良好な黒表示が得られる。また、第2の実施の形態と同様な補償原理で液晶層1にペンド配向した位相板を配置しても良好な黒表示が得られる。

【0045】本来は、液晶層1の両側に位相板を配置する場合、上記のように厳密な補償には位相板の配向は、各層で変化しているハイブリッド配列していることが望ましいが、この実施の形態のようにプレチルトが非常に高い場合、液晶層自体、若干の傾きはあるが、ほぼ垂直配向していると考えられるので、位相板も、わずかな傾斜を無視した水平配向であっても、ほぼ良好な黒表示が得られる。これは位相板の作製が容易というメリットを持つ。

12

【0046】以上の場合は、電圧無印加状態で既にペン ド配向となり、かつこの状態で補償して黒表示としてい るが、勿論この実施の形態でも電圧を印加したところ で、光学補償させるような位相板を用いてもかまわな い。つぎに、この発明の第4の実施の形態として第1の 実施の形態の液晶表示装置に用いた位相板の製造方法を 図13ないし図18に基づいて説明する。第1の実施の 形態に用いた負の複屈折をもつ光学媒体をハイブリッド 配列させた位相板は、配向処理された基板の上のネマテ ィック液晶と高分子の混合物に電界や磁界を印加してネ マティック液晶を所定の配列に保ちながら高分子ネット ワークを形成した後に、高分子ネットワーク内のネマテ イック液晶をディスコティック液晶に置換することによ り作製することができる。これは、配列制御が困難なデ ィスコティック液晶を、比較的容易に配列制御できるネ マティック液晶と置換することにより、所望の配列分布 させるものである。より具体的で好ましい作製方法とし ては、図13~図18に工程図を示した方法がある。

【0047】まず、図13に示すように、例えばセルロース・トリアセテートなどの光学的に等方的なフィルム基材101の表面を、ラビングなどにより配向処理する。102はラビングロールである。このときフィルム基材101の表面にポリイミドなどの配向膜を形成しておいてもよい。次いで、ネマティック液晶と光重合型の高分子の混合物103を、図14に示すように、ロールコート法により上記フィルム基材101の上に塗布する。104はロールコータのロールである。混合物103は必要により溶媒に溶かしても構わないし、塗布はスピンコートや各種の印刷法を用いてもよい。光重合型の高分子としては紫外線硬化型のアクリル樹脂などを用いることができる。溶剤を用いた場合には、次工程の前に塗布溶液を乾燥させて溶媒をとばしておく。

【0048】次に、図15に示すように、フィルム法線 方向に電界または磁界を印加しながら紫外光105を照 射することにより高分子のネットワーク107を形成す る。図には電界印加の場合が記してあり、111,11 2は電極である。図のように紫外光の照射経路中に電極 111がある場合には、この電極111は紫外光を透過 するように透明電極、またはメッシュ状の電極などで構 成するのがよい。このとき、混合層103の上面はフリ 一界面となっているので液晶には界面からの束縛がな く、電界や磁界の方向に平行、即ちフィルム法線方向 に、ネマティック液晶は液晶分子長軸を整列して並ぶ。 一方、混合層103の下面では、ネマティック液晶はフ ィルム基材101の表面のアンカリング効果により、所 定のチルト角をもって1方向に整列する。この結果、ハ イブリッド構造をもった配列が安定化するように高分子 のネットワーク107が形成される。電界や磁界の強度 を変化させれば、このハイブリッド配列の状態を制御で き、高分子ネットワーク107の状態を制御できるの

で、オン補償とオフ補償に対応する位相板を得たり、液 晶材料や駆動電圧の違いによる表示セルの特性差に対応 した位相板を得ることができる。また、必要に応じて電 界や磁界の方向は法線方向から若干ずらしてもかまわな い。なお、照射光は高分子がネットワーク形成する波長 であれば可視光でもかまわないし、電界と磁界は併用す ることも可能である。

【0049】その後、図16に示すように、例えばメタ ノールなどの溶媒106に上記フィルムを浸析して、上 記のフィルム上に形成された高分子にネマティック液晶 が混在したもの103からネマティック液晶を除去す る。浸析する代わりに、第2の溶媒を上記フィルム上に シャワー状に注いでも同様の結果を得ることができる。 次いで、図17に示すように、例えばトリフェニレン系 の化合物やベンゼン環の側鎖として長鎖型あるいは板状 の官能基を放射状に配置したベンゼン誘導体などのディ スコティック液晶108をシリンジ109より滴下す る。このディスコティック液晶108は、ネマティック 液晶の抜けた高分子ネットワーク107の中に浸入、分 散する。高分子ネットワーク107には上記ネマティッ ク液晶のハイブリッド構造に対応した異方性を備えてい るので、ディスコティック液晶108にもハイブリッド 構造が与えられる。このハイブリッド構造は、上記に述 べたように電磁界の印加条件により、高分子ネットワー ク107の状態を変えて制御することができる。なお、 シリンジ109やフィルム基材101の加熱によりディ スコティック液晶108の流動性を高めることはプロセ ス時間短縮のために有効である。滴下の代わりに、ディ スコティック液晶108の中に上記のフィルムを浸析し たり、上記フィルム上にディスコティック液晶108を ロールコート法や印刷法により塗布してもよい。また、 ディスコティック液晶単体を用いる代わりに、ディスコ ティック液晶108を適当な溶媒に溶かしたものを用い て、後に溶媒を除去する方法を用いることもできる。 【0050】この後、余分な液晶を除去して図18に示 すように、高分子ネットワーク107内にハイブリッド

構造をもったディスコティック液晶108が分散した光学層110がフィルム基材101の上に乗った構造の位相板を得ることができる。ディスコティック液晶108の流動性が低く、位相板の物理的安定性が良好な場合は、このまま位相板として用いても構わないが、上記のように形成されたフィルムの他方の面(図18では上面)に、例えばセルロース・トリアセテートなどの光さいに等方的なフィルムを形成し、ディスコティック液晶108を含む層を上下から保護すれば、位相板の安定度が増加する。偏光板や他の位相板を積層する場合には、これらを上側の保護フィルムの代用とすることもできる。ディスコティック液晶108の流動性が高い場合には、所定の大きさに裁断の後フィルム側面を封止するのが望ましい。

【0051】なお、図13~図18を用いた上記の説明 では、光学層110を形成する基板として個片に加工さ れたフィルム基材101を用いているが、フィルム基材 101に代えて位相板、偏光板、または液晶パネルの表 面に光学層110を形成しても構わない。さらに、この 実施の形態は図19に工程概念図を示すように、ロール 状のフィルム基材に連続的に位相板を形成するのに特に 適している。図では、図13~図18と同じ要素には同 じ番号を付けており、説明を省略する。送り出し側の口 ール121から、フィルム基材101が連続的に供給さ れ、図13~図18で説明したのと同様のプロセスを経 て、受け取り側のロール122に巻きとられる。このと き、フィルム基材101の表面には、図示しないが光学 層110が形成されている。この後すぐに、裁断等の加 工を行っても構わないし、ロールの形状で他のフィルム と貼合せしてもよい。このように連続生産を行えば生産 量が大幅に拡大し、位相板を安価に大量に供給できると いう利点が生じる。この発明の第5の実施の形態の位相 板の製造方法について説明する。この実施の形態では、 第4の実施形態に示した位相板の製造方法において、末 端に反応基が形成されたディスコティック液晶を用い る。これを高分子ネットワーク中に分散させて図18に 示す構造を得た後、ディスコティック液晶相互、および 高分子ーディスコティック液晶間で架橋反応させる。架 橋反応は、加熱や光照射により生じさせることができ る。架橋により安定性の良好な位相板を得ることができ る。この場合は、位相板側面を封止する必要はない。ま た、特に上面(または下面)をキズ等から保護する必要 がない場合には、フィルム基材101と反対側の保護フ ィルムを形成しなくてもよい。

【0052】この発明の第6の実施の形態の位相板の製造方法について説明する。この実施の形態では、第5の実施形態に示した位相板の製造方法において、高分子材料やディスコティック液晶末端基の選定や、架橋反応を視して、一個では、第5枚の設定により、図18の構造を得た後にディスの後に、図16と同様の工程により、光学層110の中にある合うでは、光学薄層がディスコティック液晶のみのでは、図17と同様の工程によりで、図17と同様の工程によりであるようになる。次いで、図17と同様の工程によりですると、光学薄層内に分散させ、この音がディスコティック液晶を光学薄層内に分散させ、図18に置かると、光学層110の高分子がディスコティック液晶にで変なる。結果的に得られる位相板は、図18に置かる光学層110全体がディスコティック液晶に置換され、位相板の光学層110全体がディスコティック液晶に過から形成されたものになる。

【0053】第4、第5の実施形態の方法で形成された 位相板は、高分子ネットワークとディスコティック液晶 との間の屈折率差により光の散乱等で偏光状態が変化し て、表示特性が劣化することがあるが、当実施形態の方 法で得られた位相板は均質性がよく、さらに良好な表示 50

特性を得ることができる。つぎに、この発明の第7の実施の形態として第2の実施の形態の液晶表示装置に用いた位相板の製造方法について説明する。すなわち、第4から第6の実施形態で説明した製造方法で得られたハイブリッド配列位相板を、ディスコティック液晶の光学軸が垂直になった側を内側にして、2枚の位相板を貼り合わせる。これにより、ベンド配列の位相板を得ることができる。この場合は、ハイブリッド配列位相板の製造時に上面への保護フィルムを形成しなくても、できあがったベンド位相板の両面には保護層が形成されているという利点がある。

[0054]

【発明の効果】この発明の請求項1記載の液晶表示装置 によれば、正の屈折率異方性と正の誘電率異方性をもつ 液晶分子がその動作時にはベンド配列した液晶層の両側 に、主軸がハイブリッド配列した負の屈折率異方性をも つ光学媒体よりなる位相板を積層したので、オンまたは オフ状態にある液晶層の光学伝搬特性の視野角依存性を 補償して良好な黒表示を行い、液晶表示装置の視野角特 性を改善するという効果を有する。この場合、液晶層を 上下に二分する中心面から液晶表示装置を見た場合、上 側において液晶層の上半分の液晶分子の方向と上側の位 相板の光学媒体の光学軸方向が対応し、下側において液 晶層の下半分の液晶分子の方向と下側の位相板の光学媒 体の光学軸方向が対応することにより、2枚の位相板の それぞれが液晶層の半分を補償する役割を果たしている ため、位相板特性のばらつきの表示特性への影響が少な いという利点や、2枚の位相板をうまく組み合わせるこ とにより位相板の特性ばらつきをキャンセルすることが できる。同時に、液晶の複屈折と液晶層の厚みの積を7 90~1190nmの間に設定することにより、液晶表 示装置の正面輝度を高くし、かつ白表示の視野角による 色相変化を少なくするという効果を有する。

【0055】この発明の請求項2記載の液晶表示装置によれば、正の屈折率異方性と正の誘電率異方性をもつ液晶分子がその動作時にはベンド配列した液晶層に、主軸がベンド配列した負の屈折率異方性をもつ光学媒体よりなる位相板を積層したので、液晶層の液晶分子の方向と位相板の光学媒体の光学軸方向が対応し、オンまたはオフ状態にある液晶層の光学伝搬特性の視野角依存性を補償して良好な黒表示を行い、液晶表示装置の視野角特性を改善することができる。同時に、液晶の複屈折と液晶層の厚みの積を790~1190nmの間に設定することにより、液晶表示装置の正面輝度を高くし、かつ白表示の視野角による色相変化を少なくするという効果を有する。

【0056】請求項3では、液晶の誘電率異方性を10以上に設定することで、動作時のベンド配向転移を容易にすると同時に、動作電圧を低くするという効果を有する。請求項4では、液晶層の厚みを6μm以下にするこ

とで、液晶層の厚みを従来のTN並まで薄くすることができ、その結果液晶層内の電界強度が強まるため、動作時のベンド配向転移を容易にすると同時に、動作電圧を低くするという効果を有する。

【0057】この発明の請求項5記載の液晶表示装置によれば、正の屈折率異方性と負の誘電率異方性をもつ液晶分子がベンド配列した液晶層の両側に、主軸がハイブリッド配列した負の屈折率異方性をもつ光学媒体よりなる位相板を積層したので、請求項1と同様にオンまたはオフ状態にある液晶層の光学伝搬特性の視野角依存性を補償して良好な黒表示を行い、液晶表示装置の視野角特性を改善するという効果を有すると同時に、電圧印加前の状態から安定なベンド配向存在する効果を有する。

【0058】この発明の請求項6記載の液晶表示装置によれば、正の屈折率異方性と負の誘電率異方性をもつ液晶分子がベンド配列した液晶層に、主軸がベンド配列した負の屈折率異方性をもつ光学媒体よりなる位相板を積層したので、請求項2と同様にオンまたはオフ状態にある液晶層の光学伝搬特性の視野角依存性を補償して良好な黒表示を行い、液晶表示装置の視野角特性を改善するという効果を有する同時に、電圧印加前の状態から安定なベンド配向存在する効果を有する。

【0059】この発明の請求項7記載の液晶表示装置によれば、正の屈折率異方性と負の誘電率異方性をもつ液晶分子が基板に対しほぼ垂直にかつベンド配列した液晶層に、主軸が水平に配列した負の屈折率異方性をもつ光学媒体よりなる位相板を積層したので、オンまたはオフ状態にある液晶層の光学伝搬特性の視野角依存性を補償して良好な黒表示を行い、液晶表示装置の視野角特性を改善するという効果を有する同時に、電圧印加前の状態から安定なベンド配向存在する効果を有する。また、液晶層がほぼ垂直配向していることにより位相板もわずかな傾斜を無視した水平配向にできるので、位相板の作製が容易という利点を持つ。

【0060】この発明の請求項8記載の位相板の製造方法によれば、配向処理された基板上にネマティック液晶と高分子の混合物を塗布し、電界あるいは磁界の少なくとも一方を印加しながら高分子ネットワークを形成した後に、高分子ネットワーク内のネマティック液晶を置換することにより、ハイブリッとができる。すなわち、配列制御が困難なディスコティック液晶を、比較的容易に配列制御できるネマティック液晶を置換することにより、所望の配列分布させることががきるので、負の屈折率異方性をもつ光学媒体がハイブリッド配列した位相板を容易に得ることができる。また、この位相板を2枚貼り合わせることによりベンド配列の位相板を得る。

【図面の簡単な説明】

【図1】この発明の第1の実施の形態の液晶表示装置の 50

18

構成を示す断面図である。

【図2】この発明の第1の実施の形態の液晶表示装置の 光学部材の配置方向を示す平面図である。

【図3】この発明の第1の実施の形態の液晶表示装置の 液晶層における液晶の電圧印加時の配列状態を模式的に 示す断面図である。

【図4】この発明の第1の実施の形態の液晶表示装置の 液晶層における液晶の電圧無印加時の配列状態を模式的 に示す断面図である。

【図5】この発明の第1の実施の形態の位相板における 光学媒体の配列状態を模式的に示す断面図である。

【図6】この発明の第1の実施の形態における液晶層と 位相板の分子および光学軸の配列関係を模式的に示す断 面図である。

【図7】この発明の第1の実施の形態の液晶表示装置の 白表示輝度と黒表示輝度の視野角依存性を示す特性図で ある

【図8】この発明の第1の実施の形態の液晶表示装置の白表示輝度と液晶層の $\Delta n \times d$ との関係を示す特性図である。

【図9】この発明の第1の実施の形態の液晶表示装置の 平均色差と液晶層の $\Delta n \times d$ との関係を示す特性図である

【図10】この発明の第2の実施の形態の液晶表示装置 の構成を示す断面図である。

【図11】この発明の第2の実施の形態の液晶表示装置における液晶層と位相板の分子および光学軸の配列関係を模式的に示す断面図である。

【図12】この発明の第3の実施の形態の液晶表示装置 の液晶層における液晶の配列状態を模式的に示す断面図 である。

【図13】この発明の第4の実施の形態の位相板の製造 方法においてフィルム基材表面を配向処理する工程説明 図である。

【図14】図13の次工程でネマティック液晶と光重合型の高分子の混合物を塗布する工程説明図である。

【図15】図14の次工程で高分子ネットワークを形成する工程説明図である。

【図16】図15の次工程でネマティック液晶を除去する工程説明図である。

【図17】図16の次工程でディスコティック液晶を滴下する工程説明図である。

【図18】図17の次工程で高分子ネットワーク内にディスコティック液晶が分散した光学層が形成された状態の工程説明図である。

【図19】この発明の第4の実施の形態の位相板の製造 方法の別の例の工程図である。

【符号の説明】

液晶層

50 2.3 電極

【図7】

