COMP9418: Advanced Topics in Statistical Machine Learning

ABayrasiamo Networksp

https://tutorcs.com

WeChat: cstutorcs

Instructor: Gustavo Batista

University of New South Wales

Introduction

- This lecture introduces Bayesian networks as a modelling tool to specify joint probability distributions
 - The size of a joint distribution is exponential in the number of variables
 - This causes modelling and computational difficulties
 - The specification of a joint distribution may filde some relevant properties such as independencies
 WeChat: cstutorcs
- Bayesian networks is a graphical modelling tool for specifying probability distributions
 - It relies on the insight that independence is a significant aspect of beliefs, and
 - Independencies can be elicited using the language of graphs

Graphs and Independence

- This figure is a directed acyclic graph (DAG)
 - Nodes represent variables
 - Let us assume (for now) that edges represent "direct causal influence"
 Assignment Project Exam Help
- Given this representation, we expect the belief dynamic to satisfy some properties
 - For instance, *C* is influenced by evidence on *R*
 - A radio report would increase belief in Alarm. In turn, increase belief in a call from a neighbour
 - However, the belief in *C* would not increase if we knew the alarm did not trigger
 - $C \perp R \mid \neg A$

Notation

- Given a variable V in a DAG G
 - Parents(V) are the parents of V in DAG G, that is, the set of variables N with an edge from N to V
 - Descendants (V) are the descendants of V in V to V to V
 - $Non_Descendants(V)$ are all $var_{location}$ var_{lo
- A DAG *G* is a compact representation of the following independence statements
 - $V \perp Non_Descendants(V) \mid Parents(V)$
 - Every variable is conditionally independent of its nondescendants given its parents
 - Markovian assumptions of G denoted by Markov(G)

Markovian Assumptions

- If we view DAG G as a causal structure
 - Parents(V) are direct causes of V
 - Descendants(V) denotes the effects of V
- Given the direct causes of a variable, our beliefs in Help that variable will no longer be influenced by any other variable except possibly by its effects
- These are all the statements in the interest in the statements in the statement in the statement

Markov Assumptions

- If we view DAG G as a causal structure
 - Parents(V) are direct causes of V
 - Descendants(V) denotes the effects of V
- Given the direct causes of a variable, our beliefs in Help that variable will no longer be influenced by any other variable except possibly by its effects

 Padic
- These are all the statements i Wto Gloat Gestutores
 - \bullet $C \perp B, E, R \mid A$
 - \blacksquare $R \perp A, B, C \mid E$
 - $A \perp R \mid B, E$
 - \blacksquare $B \perp E, R$
 - \blacksquare $E \perp B$

Markov Assumptions

- Suppose we want to make a probability distribution that captures the state of belief
 - The first step is to construct the graph, ensuring the independences on G maters by the left Project Exam Help
 - The DAG G is a partial specification. It says that P must satisfy Markov(G)
 https://tutorcs.com
- The specification of G restricts the choices for the distribution P
 - However, it does not uniquely define it
 - We need to augment G with a set of conditional probabilities
 - The conditional probabilities and *G* are guaranteed to uniquely define the distribution *P*

Causality

- The formal interpretation of a DAG is a set of conditional independences
 - It makes no reference to causality
 - However, we used causality to an interpretation
- It is perfectly possible to have a DAG that does not match our causal perception. Chat: cstutorcs
 - We will see that every independence in the first graph is also present in the second
 - We discuss next the graph parametrization (quantifying dependencies between notes and parents)
 - This process is much easier to accomplish by an expert if the DAG corresponds to causal perceptions

Parametrisation

- The conditional probabilities we need to specify are
 - For every variable X in DAG G and its parents U
 - Provide the probabilities Assignment, Pagiect Fax am Hel x of X and every instantiation \boldsymbol{u} of parents \boldsymbol{U}
- For example, for this graph, we need to the total tota specify WeChat: cstutorcsc
 - P(B|A), P(E|C), P(C|A), P(A), P(D|B, C)
 - Each table is known as a *conditional probability* table (CPT)
 - Notice that $\sum_{x} P(x|u) = 1$ for each $u \in U$
- Therefore, we only need 11 probabilities to specify the CPTs of this graph

A	В	$\Theta_{B A}$
a	b	.2
a	\overline{b}	.8
\bar{a}	b	.75 (sı
	OTTO	Linia

d

 \bar{c}

 \bar{c}

С

h

 \overline{b}

F		nkler?		\	ain?)
	$\Theta_{D B,C}$		Wet	Grass?	6	lipp
	.95			(D)	`	\
	.05	C	T.	۵	1	
	.9	<u>C</u>	<u>E</u>	$\Theta_{E C}$	<u> </u>	
	1	С	e	.7	а	\mathcal{C}

Winter?

(*A*)

E	$\Theta_{E C}$	A	С	$\Theta_{C A}$
\overline{e}	.7	a	С	.8
\bar{e}	.3	a	\bar{c}	.2
e	0	\bar{a}	С	.1
\bar{e}	1	\bar{a}	\bar{c}	.9
	. ■			

 Θ_A

.6

A

 \boldsymbol{a}

Bayesian Networks: Definition

- A Bayesian network for variables Z is a pair (G,Θ) , where
 - G is a directed acyclic graph over variables Z, called the *network struct* A signment A signment
 - Θ is a set of CPTs, one for each variable in Z, called the *network parametriza* D $\Theta_{D|B}$

We use

- $lackbox{WeChat: cstuto}_{X|oldsymbol{U}}$ to denote the CPT for variable X and its parents $oldsymbol{U}$
- XU to denote a set of variables known as network family
- $\theta_{x|u}$ is the value of P(x|u) known as *network* parameter

1					\boldsymbol{A}	Θ_{A}	4
A B	$\Theta_{B A}$	(nter?	\overline{a}	.(
a b	.2	·		A)	\bar{a}		
$a \bar{b}$.8				u	•-	т
\bar{a} b	.75 /		\prec		nin O	\	
		Sprinkler?	')	•	ain? C))	
Faxam	upib						
pm I	$\Theta_{D B}$,C	Wet	Grass?	6	lipper	/ Road?
\overline{b} c c	d .95			(D)	6		E)
BCSc d	$ar{l}$.05		_	ا م	4	0	
_	d .9	<u>_C</u>	<u>E</u>	$\Theta_{E C}$	A	<u></u>	$\Theta_{C A}$
		С	e	.7	\boldsymbol{a}	С	.8
	$\overline{l} \mid .1$	С	$ar{e}$.3	a	\bar{c}	.2
\overline{b} c c	<i>l</i> .8	-		0	\bar{a}	С	.1
\overline{b} c \overline{c}	\bar{I} .2	C	e		и _	_	

Bayesian Networks: More Definition

- Network instantiation is an assignment of all network variables
 - A network parameter $\theta_{x|u}$ is compatible with a \bar{a} b .75 network instantiation z where \bar{b} is compatible with a \bar{a} b .75 network instantiation z where \bar{b} \bar{b}
 - We write $\theta_{x|u} \sim z$

• For instance, θ_a , $\theta_{b|a}$, $\theta_{\bar{c}|a}$, $\theta_{d|a}$, $\theta_{d|a}$ and $\theta_{\bar{c}|\bar{c}}$ are parameters compatible with the instantiation $a, b, \bar{c}, d, \bar{e}$.

	A	В	$\Theta_{B A}$	(
	a	b	.2	
	a	\overline{b}	.8	
	\bar{a}	b	.75	Sprinkler?
١	Fix	am	Help	(B)

https://tutorcs.	7-	_	$\frac{D}{d}$	$\Theta_{D B,C}$		Wet	Grass?	6		(Road?
he instantiation	b \overline{b} \overline{b} \overline{b} \overline{b}	\$c \bar{c} \cap c \cap c \cap \bar{c}	$ar{d}$ d d d d d d	.05 .9 .1 .8 .2 0	C c c c c c c c	E e e e e	$egin{array}{c} \Theta_{E C} \ .7 \ .3 \ 0 \ 1 \ \end{array}$	$\frac{A}{a}$ a \bar{a} \bar{a}	C \overline{c} c \overline{c} \overline{c}	.8 .2 .1 .9

Winter?

(*A*)

.6

 \boldsymbol{a}

Rain?

Bayesian Networks: More Definition

Only one probability distribution satisfies the constrains imposed by a Bayesian network

■ The distribution is given signment Project Exam

$$P(\mathbf{z}) \stackrel{\text{def}}{=} \prod_{\Theta_{x|\mathbf{u}\sim\mathbf{z}}} \theta_{x|\mathbf{u}}$$
 https://tutorcs.cpmc $D \mid \Theta_{D|B,C}$ $b \mid c \mid d \mid .95$

This equation is known as the chief cstutor Bayesian networks

- For instance,
 - $P(a,b,\bar{c},d,\bar{e}) = \theta_a \theta_{b|a} \theta_{\bar{c}|a} \theta_{d|b,\bar{c}} \theta_{\bar{e}|\bar{c}}$ = (.6)(.2)(.2)(.9)(1)= .0216

)bc	$\mathbf{S}c$	d	.05	_	_	١٥	4	0		
b	\bar{C}	d	a	<u>C</u>	E	$\Theta_{E C}$	<u>A</u>	<u> </u>	$\Theta_{C A}$	
				С	e	.7	а	С	.8	
b	\overline{C}	$ar{d}$.1	_			а		.2	
\overline{b}	C	d	.8	C	\bar{e}		и		l	
	•			\overline{C}	e		\bar{a}		.1	
\overline{b}	С	$ar{d}$.2	\bar{c}	<u></u>	1	\bar{a}	\bar{c}	.9	
\overline{b}	\bar{C}	d	0	C	6	+	а	C	.5	
\overline{h}	\bar{c}	\bar{d}	1							

Wet Grass?

(D)

Slippery Road?

Bayesian Networks: Complexity

• The size of the CPT $\Theta_{X|U}$ is exponential in the number of parents U

If the maximal number of parents for every variable is k then the size $\frac{\partial s_i}{\partial s_i}$ $\frac{\partial s_i}{\partial s_i}$ where d is the number of values

• With n network variables, the total painter of $\frac{C_k}{b}$ variables is bounded by $O(nd^{k+1})$ we Chat: cstutor This number is reasonable if the number of $\frac{C_k}{b}$

This number is reasonable if the number of parents is small

 We will discuss techniques to represent CPTs when the number of parents is large

$egin{array}{c c} a & b & \ldots \ \hline a & \overline{b} & \ldots \ \hline \overline{a} & b & \ldots \end{array}$	8 <u>A</u> 2 8 75 Spri	inkler?		nter?	$\frac{A}{a}$ Rain?	Θ	
b c d	Θ _{D B,C}		Wet	Grass?	É		y Road?
$\mathbf{b}^{\mathbf{C}}\mathbf{S}c$ \bar{d}	.05	С	Ε	$\Theta_{E C}$	\boldsymbol{A}	$\boldsymbol{\mathcal{C}}$	$\Theta_{C A}$
$b \ \overline{c} \ d$.9	\overline{c}	\overline{e}	.7	\overline{a}	С	.8
$egin{array}{cccc} b & ar{c} & ar{d} \ ar{c} & ar{d} \end{array}$.1	С	\bar{e}	.3	a	\bar{C}	.2
$\frac{\overline{b}}{\overline{c}}$ c $\frac{d}{\overline{c}}$.8	\bar{C}	e	0	\bar{a}	С	.1
$\left[ar{b} c ar{d} \ \right]$.2	$\bar{\mathcal{C}}$	$ar{e}$	1	\bar{a}	\bar{C}	.9
$\begin{bmatrix} ar{b} & ar{c} & d \\ ar{t} & ar{z} & ar{d} \end{bmatrix}$	0			I			-

Properties of Independence

■ The distribution P specified by a Bayesian network (G,Θ) satisfies the independence assumptions in Markov(G)

 $X \perp Non_Descendants(X) | Parents(X)$

However, these are not the ship muse of the large of the

• For example, $R \perp A \mid E$ https://tutorcs.com

- This independence and other was follow the ones in Markov(G)
 - If we use a set of properties known as graphoid axioms
 - These properties include symmetry, decomposition, weak union and contraction

Properties of Independence: Symmetry

Symmetry is the simplest property of probabilistic independence

 $X \perp Y \mid Z$ if and only if $Y \perp X \mid Z$

If learning y does not influence our belief in x, then learning x does not influe Assignmente fith Project Exam Help

https://tutorcs.com

In the example graph

 \blacksquare $A \perp R \mid B, E$

 $\blacksquare R \perp A \mid B, E$

(Marko Water dpatty cott Atorcs

(using symmetry)

Properties of Independence: Decomposition

- The second property is decomposition
 - If learning yw does not influence our belief in x, then learning y alone, or learning w alone, does not influence our belief in y.
 Assignment Project Exam Help
- In the example graph

•
$$R \perp A, C, B \mid E$$
 (Markovian property for A). Com

- $R \perp A \mid E$ (using decomposition) (using decomposition)
- $R \perp C \mid E$ (using decomposition)
- $R \perp B \mid E$ (using decomposition)
- Decomposition allow us to state the following
 - $X \perp W$ for every $W \subseteq \text{Non_Descendants}(X)$
 - Notice **W** can be any subset of Non_descendants(X)

 $X \perp Y \cup W \mid Z$ only if $X \perp Y \mid Z$ and $X \perp W \mid Z$

Properties of Independence: Decomposition

 Decomposition allow us to prove the chain rule for Bayesian networks

$$P(\mathbf{z}) \stackrel{\text{def}}{=} \prod_{\mathbf{\Theta}_{\mathbf{x}|\mathbf{u} \sim \mathbf{z}}} \theta_{\mathbf{x}|\mathbf{u}}$$

For this example network we have

Assignment Project Exam Help

- $P(e,b,r,a,c) = \theta_e \theta_b \theta_{r|e} \theta_{a|e} \frac{\theta_b \theta_{r|e}}{\theta_{a|e}} \frac{\theta_b \theta_{r|$
- P(e,b,r,a,c) = P(e)P(b)P(r|e)P(a|e,b)P(c|a)WeChat: cstutorcs
- By the chain rule
 - P(e,b,r,a,c) = P(e)P(b|e)P(r|b,e)P(a|e,b,r)P(c|a,e,b,r)

Properties of Independence: Weak Union

- The next property is weak union
 - If the information yw is not relevant to our belief in x, then the partial information y will not make the rest of the information, w, relevants ignment Project Exam Help
- In the example graph
 - $C \perp B, E, R \mid A$ (Markovian property for A). Com
 - $C \perp R \mid A, B, E$ (using decomposition) We Chat: Cstutorcs
- Weka union allow us to state the following
 - $X \perp \text{Non_Descendants}(X) \setminus W \mid Parents(X) \cup W$ for every $W \subseteq \text{Non_Descendants}(X)$
 - This can be viewed as strengthening of the independences declared by Markov(G)

 $X \perp Y \cup W \mid Z$ only if $X \perp W \mid Z \cup Y$

Properties of Independence: Contraction

The fourth property is contraction

• If after learning the irrelevant information y the information w is found to be irrelevant to our belief in x, then the combined information y the irrelevant from the beginning

https://tutorcs.com

WeChat: cstutorcs

Properties of Independence: Intersection

- The final axiom is intersection
 - It holds only for the class strictly positive distributions
 - If information w is irrelevant given y and information y is irrelevant given w, then the same irrelevant to start with

https://tutorcs.com

- Symmetry, decomposition, weekenian and torcs contraction
 - Plus the property of triviality $(X \perp \emptyset \mid Z)$, form the graphoid axioms
 - Plus intersection, the set is known as positive graphoid axioms

 $X \perp Y \mid Z \cup W$ and $X \perp W \mid Z \cup Y$ only if $X \perp Y \cup W \mid Z$

Graphical Test of Independence

- P is a distribution induced by the Bayesian network (G, Θ)
 - P satisfies independences that go beyond what is in Markov(G)
 - Graphoid axioms derive new independences
 - However, this derivation Assignment Project Exam Help
- A graphical test known as d-separation can capture the inferential power of graphoid axioms
 - Let X, Y, and Z be three disjoint the Chyariable utorcs
 - X and Y are d-separated by Z in DAG G, if every path between a node in X and a node in Y is blocked by Z
 - If X and Y are d-separated by Z then $X \perp Y \mid Z$ for every probability distribution induced by G

Graphical Test of Independence: Blocking

- Consider this path (note that it ignores the edges direction)
 - lacktriangle We will view this path as a pipe and each variable W on the path as a valve
 - A valve W is either open or dosed, depending property an Help
 - If at least one of the valves on the path is closed, then the whole path is blocked
 https://tutorcs.com
 - Otherwise the path is not blocked

They are determined by its relationship to its neighbours on the path

Graphical Test of Independence: Blocking

- Consider this path (note that it ignores the edges direction)
 - lacktriangle We will view this path as a pipe and each variable W on the path as a valve
 - A valve W is either open or dosed, depending property and Help
 - If at least one of the valves on the path is closed, then the whole path is blocked
 https://tutorcs.com
 - Otherwise the path is not blocked
- There are three types of valves WeChat: cstutorcs
 - They are determined by its relationship to its neighbours on the path

Graphical Test of Independence: Blocking

- To gain more intuition, let us use a causal interpretation
 - A sequential valve $N_1 \rightarrow W \rightarrow N_2$ declares W as an intermediary between cause N_1 and its effect N_2
 - A divergent valve $N_1 \leftarrow WAssing decleret Presiect number of two effects <math>N_1$ and N_2
 - A convergent valve $N_1 \rightarrow W \leftarrow M_2$ peclar test two causes N_1 and N_2
- Now, we can better motivate the conditions for closed valves
 - A sequential valve is closed iff W appears in Z
 - A divergent valve is closed iff W appears in Z
 - A convergent valve is closed iff neither W nor any of its descendants appears in Z

D-Separation: Definition

- Formal definition of d-separation
 - Let X, Y, and Z be disjoint sets of nodes in a DAG G. We will say that X and Y are d-separated by Z, written $dsep_G(X, Z, Y)$, iff every path between a node in the node in Y is a local part of the property of the property
 - A path is blocked by Z iff at least one valve on the path is closed given Z
 https://tutorcs.com
 - Notice that a path with no valves (**Chatis fiestertorseled

D-Separation: Complexity

- The definition of d-separation calls for considering all paths connecting a node in X with a node in Y
 - The number of paths can be exponential
 - But we can implement a test with the seath Help
- Testing whether X and Y are d-separated by Z in DAG G is equivalent to testing whether X equivalent to testing whether X equivalent are disconnected in a new DAG G', obtained as follows
 - We delete any leaf node W from G if W does not belong to $X \cup Y \cup Z$. This process is repeated until no more nodes can be deleted
 - We delete all edges outgoing from nodes in Z
 - The connectivity test on DAG G' ignores edge direction
 - This procedure time and space are linear in the size of the DAG G

A, S d-separated from D, X by B, P? T, C d-separated from B by S, X?

D-Separation: Soundness and Completeness

The d-separation test is sound

- If P is a probability distribution induced by a Bayesian network (G,Θ) then $dsep_G(X,Z,Y)$ only if $X\perp Y\mid Z$
- We can safely use d-separation gentioned to reproduce the probability distributions induced by Bayesian networks
 https://tutorcs.com
- The proof is constructive and shows that every independence claimed by d-separation can be detection structures at a sioms

The d-separation test is not complete

- It is not capable of inferring every possible independence statement that holds in the induced distribution P
- The explanation is that some independences may be hidden in the network parameters

A	$ heta_A$
а	.6
\bar{a}	.4

Α	B	$\theta_{B A}$
а	b	.8
а	\overline{b}	.2
\bar{a}	b	.8
\bar{a}	\overline{b}	.2

B	$\boldsymbol{\mathcal{C}}$	$\theta_{C B}$
b	С	.7
\overline{b}	\bar{C}	.3
b	С	.1
\overline{h}	\bar{c}	.9

D-Separation: Soundness and Completeness

- Therefore, if we choose the parametrization carefully, we establish independences that d-separation cannot detect
 - This is not surprising since segmental rojects Exam Help graph parametrization
- We can conclude that, given a distribution P induced by a Bayesian network (G,Θ) WeChat: cstutorcs
 - If X and Y are d-separated by Z, then X and Y are independent given Z for any parametrization Θ
 - If X and Y are not d-separated by Z, then whether X and Y are dependent given Z depends on the specific parametrization Θ

A	$ heta_A$
a	.6
\bar{a}	.4

A	B	$\theta_{B A}$
а	b	.8
а	\overline{b}	.2
\bar{a}	b	.8
\bar{a}	\overline{b}	.2

D-Separation: Soundness and Completeness

- We can always parametrize a DAG G in such a way to ensure the completeness of d-separation
- d-separation satisfies the following Weak notion of the completeness

 https://tutores.com
 - https://tutorcs.com

 For every DAG G, there is a parametrization Θ such that $dsep_G(X, Z, Y)$ if and only if X we chat: cstutorcs
- This weaker notion of completeness implies that one cannot improve on the d-separation test
 - There is no other graphical test that can derive more independencies from *G*

A	$ heta_A$
a	.6
\bar{a}	.4

Independence Maps: I-MAPs

- Independence maps describe the relationship between independence in a DAG and in a probability distribution
 - They are useful to understand the expressive power of DAGs as a language for independence independence Project Exam Help
- Let G be a DAG and P a probability distribution over the same variables
 https://tutorcs.com
 - G is an independence map (I-MW) echiff: cstutorcs
 - It means that every independence declared by d-separation holds in P
- An I-MAP is minimal if G ceases to be an I-MAP if we delete any edges from G
 - If P is induced by a Bayesian network (G, Θ) , then G must be an I-MAP of P
 - But it may not be minimal

 $dsep_G(X, Z, Y)$ only if $X \perp Y \mid Z$

Independence Maps: D-MAPs

■ *G* is a dependency map (D-MAP) of *P* iff

- $X \perp Y \mid Z$ only if $dsep_G(X, Z, Y)$
- It means that the lack of d-separation in G implies a dependence in P
- If P is induced by the Bayes is genwoch (GP) jet Exam Help necessarily a D-MAP of P
- G can be made a D-MAP of P if we provide the same G carefully

WeChat: cstutorcs

Independence Maps: Perfect MAPs

- If a DAG G is both an I-MAP and a D-MAP of P, then G is a perfect map
 - We want G to be a P-MAP of the induced distribution to make all independences of P accessing granteental project Exam Help
 - However, there are probability distributions for which there are no P-MAPs
 https://tutorcs.com
- Suppose we have four variables and a distribution P that only satisfies these dependencies
 - There is no DAG that is a P-MAP of P in this case

$$X_1 \perp X_2 \mid Y_1, Y_2$$

 $X_2 \perp X_1 \mid Y_1, Y_2$
 $Y_1 \perp Y_2 \mid X_1, X_2$
 $Y_2 \perp Y_1 \mid X_1, X_2$

- Given a distribution P, how can we construct a DAG that is guaranteed to be a minimal I-MAP of P
 - Minimal I-MAPs tend to exhibit more independences
 - Therefore, requiring fewer parismeters in People to The Pe
- Procedure to build a minimal https://tutorcs.com
 - Given ordering X_1, \dots, X_n of variables in R_1 : cstutorcs
 - Start with an empty DAG G and consider the variable X_i for $i=1\dots n$
 - For each X_i , identify a minimal subset \boldsymbol{P} of variables X_1, \dots, X_{i-1} such that $X_i \perp X_1 \dots, X_{i-1} \setminus \boldsymbol{P} \mid \boldsymbol{P}$
 - Make P the parents of X_i in G

A, B, C, E, R

Suppose this graph is a P-MAP of some distribution P

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

A, B, C, E, R

Suppose this graph is a P-MAP of some distribution P

WeChat: cstutorcs

A, B, C, E, R

$$P = \emptyset$$

$$\mathbf{P} = A$$

$$P = A$$

$$\mathbf{P} = A$$
 $\mathbf{P} = A$ $\mathbf{P} = A, B$ $\mathbf{P} = E$

$$\mathbf{P} = E$$

Suppose this graph is a P-MAP of some distribution P

- The resulting DAG G' is guaranteed to be minimal
 - d-separation in G' leads to d-separation in G and independence in P
 - This ceases to hold if we delete any edges of *G*′
- G' is incompatible with causagrelationshipsect Exam Help
 - Yet it is sound from an independence viewpoint https://tutorcs.com
 - A person that agrees with G cannot disagree with the independences in G' WeChat: cstutorcs
- Minimal I-MAP is not unique
 - It depends of the variable ordering
 - But also we may have multiple I-MAPs for a single ordering
 - Since we may find multiple minimal sets P for the same variable X_i

Blankets and Boundaries

- An important notion for independence is the Markov blanket

 - A Markov blanket for X will rendet point X with X
 - A minimal Markov blanket is known as a Wiarkov boundary. A blanket is minimal iff no strict subset of **B** is also a Markov blanket
- If P is a distribution induced by a DAG G, then a Markov blanket for X can be constructed with its parents, children, and spouses in G.
 - A variable Y is a spouse of X if the two variables have a common child in G

Conclusion

- Bayesian networks are a graphical model with a DAG
 - The graph represents the independencies between variables
 - The parametrisation expresses the strength of the dependencies
- D-separation provides a convenient and efficient approach to detect independencies
 - However, additional independencies costytoe didden in the graph parametrisation
 - We also discussed the concepts of I-MAP, D-MAP and P-MAP
- Tasks
 - Read Chapter 4 from the textbook (Darwiche)