Линейные анизотропные среды. Кристаллооптика

Образование — это то, что остается, когда мы уже забыли все, чему нас учили.

Джордж Галифакс (XVIII в.)

Показатели преломления кристаллов

Индикатриса показателей преломления

$$\frac{x^2}{n_x^2} + \frac{y^2}{n_y^2} + \frac{z^2}{n_z^2} = 1$$

Уравнения Френеля

Уравнения Максвелла

Характеристическая (нормальная) поверхность

А. Ярив, П. Юх. Оптические волны в кристаллах. М. Мир. 1987

Индикатрисы кристаллов

- 1. Кубические кристаллы с наивысшей симметрией.
- 2. Одноосные кристаллы со средним свойством симметрии.
- 3. Двухосные кристаллы с низшим свойством симметрии.

Одноосные и двухосные кристаллы

Положительные кристаллы: $n_x = n_y < n_z$

 n_{χ}

Отрицательные кристаллы: $n_x = n_y > n_z$

<u>Двухосные кристаллы</u>: $n_x < n_y < n_z$ - положительные $n_x > n_y > n_z$ - отрицательные

Собственные поляризации (одноосные кристаллы)

Сечение нормальной (характеристической) поверхности (не зависит от угла ϕ).

Главные значения показателей преломления собственных волн – длины полуосей эллипса. При θ =0° n_e = n_x = n_v . При θ =90° n_e = n_z

Индикатриса показателей преломления. В сечении (перпендикулярном вектору \overline{k}) всегда эллипс.

Е_і - собственные волны (собственные поляризации).

Ориентация – полуоси эллипса сечения.

Характеристические поверхности – одноосные кристаллы

Поверхности волновых нормалей

Обыкновенная и необыкновенная волны

$$\frac{x^2}{n_x^2} + \frac{y^2}{n_x^2} + \frac{z^2}{n_z^2} = 1$$

$$n_o = n_x = n_y$$
 $n_e(\theta) = \frac{n_z n_x}{\sqrt{n_x^2 + (n_z^2 - n_x^2)\cos^2 \theta}}$

 n_{o} — обыкновенная волна $(n_{o} \neq f(\theta))$. n_{e} — необыкновенная волна $(n_{e} = n_{e}(\theta))$.

Положительный кристалл

Обыкновенная и необыкновенная волны

$$n_o = n_x = n_y$$

Положительные кристаллы

$$n_z \ge n_e(\theta) \ge n_x$$

$$n_e(0^\circ) = n_e$$

$$n_e(90^\circ) = n_z$$

Отрицательные кристаллы

$$n_z \ge n_e(\theta) \ge n_x$$
 $n_e(0^\circ) = n_x$ $n_e(90^\circ) = n_z$ $n_z \le n_e(\theta) \le n_x$ $n_e(0^\circ) = n_z$ $n_z \le n_e(90^\circ) = n_x$ 8

$$n_e(0^\circ) = n_z$$

$$n_e(90^\circ) = n_x$$

Дисперсия показателей преломления

Йодат лития ($LiIO_3$)

Селенид кадмия (CdSe)

Дигидрофосфат цезия (DCDA)

Тиогаллат серебра (AGS)

Показатели преломления

Видимый и ИК

λ , mkm	$n_x = n_y$	n _z	Δn		
ВВО					
0,5	1,678	1,558	0,1203		
1,0	1,656	1,543	0,1132		
2,0	1,638	1,536	0,1022		
CLBO					
0,5	1,500	1,447	0,0531		
1,0	1,486	1,436	0,0502		
2,0	1,472	1,427	0,0447		
KDP (KH ₂ PO ₄)					
0,5	1,514	1,472	0,0422		
1,0	1,496	1,461	0,0351		
1,5	1,481	1,458	0,0230		
LilO ₃					
0,5	1,906	1,754	0,1520		
1,0	1,859	1,718	0,1410		
1,5	1,849	1,711	0,1379		
4,0	1,810	1,692	0,1185		
6,0	1,761	1,670	0,0908		

Средний ИК

	• • •				
λ , MKM	$n_x = n_y$	n_z	Δn		
AGSe (AgGaSe ₂)					
1,0	2,713	2,691	0,0218		
1,5	2,655	2,624	0,0306		
4,0	2,619	2,587	0,0316		
6,0	2,612	2,580	0,0318		
10,0	2,595	2,562	0,0328		
15,0	2,560	2,525	0,0349		
ZGP (ZnGeP ₂)					
0,75	3,374	3,433	0,0596		
1,0	3,248	3,296	0,0475		
1,5	3,173	3,214	0,0415		
4,0	3,122	3,160	0,0383		
6,0	3,110	3,148	0,0383		
10,0	3,079	3,118	0,0392		

 Δn - двулучепреломление

Снос необыкновенной волны

$$n_e(\theta) = n_e(\theta_1) + \frac{dn_e}{d\theta} \Delta\theta + \frac{1}{2} \frac{d^2 n_e}{d\theta^2} \Delta\theta^2 + \dots$$

$$n_e\left(\theta\right) = n_e\left(\theta_0\right) + dn/d\theta \cdot \Delta\theta$$

Снос необыкновенной волны

Поверхности волновых нормалей

 $ar{S}_{e}$ - вектор Умова-Пойнтинга

$$\beta = \frac{1}{n_e(\theta_1)} \frac{dn_e(\theta_1)}{d\theta} \qquad \beta = \frac{1}{2} n_e^2(\theta_1) \frac{n_z^2 - n_x^2}{n_z^2 n_x^2} \sin 2\theta_1$$

$$\beta \approx \frac{n_z - n_x}{n_x} \sin 2\theta_1 = \frac{\Delta n}{n_x} \sin 2\theta_1$$

$$\theta$$
 = 45°

λ , MKM	β, °	Δn			
ВВО					
0,5	-4,255	0,1203			
1,0	-4,048	0,1132			
2,0	-3,687	0.1022			
KDP					
0,25	-1,744	0,0512			
0,5	-1,621	0,0422			
1,0	-1,360	0,0351			
LilO ₃					
0,5	-4,751	0,1520			
2,0	-4,356	0,1311			
6,0	-3,032	0,0908			
ZnGeP ₂					
1,0	0,832	0,0475			
3,0	0,703	0,0391			
6,0	0,702	0,0383 ₁₂			

Снос необыкновенной волны

$$\varphi_o = 2\pi n_o L/\lambda \quad \varphi_e = 2\pi n_e L/\lambda$$

<u>Перекрытие пучков</u>:

$$\lambda = 1$$
 MKM,

$$d = 1 MM$$

$$\theta$$
 = 1 мрад.

$$\beta$$
= 1°= 17 мрад.

L=10 cm.

$$\Delta d = 1.7 \text{ MM}$$
 - choc,

$$d_{x'} = 2 \text{ мм}$$
 - размер по x' .

(дифракция + снос)

<u>L=1 mm</u>,

$$\Delta d = 17 \text{ MKM} - \text{CHOC}$$

$$d_{x'} = 1$$
 мм - размер по x' .

(дифракция + снос)

L2- 13

Пространственно-временная аналогия: анизотропные среды

X Групповая задержка Снос X^2 Дисперсионное расплывание Дифракция

Поляризационные параметры излучения

Изменение поляризации

$$\theta = 90^\circ$$

$$\Delta \psi_1 = k_0 \cdot L \cdot (n_e - n_o) = 2\pi \cdot p, \qquad p-$$
иелое

Кристалл	λ, ΜΚΜ	L _n , MKM
BBO	1,0	8,82
KDP	1,0	28,5
LilO ₃	1,0	7,1

 L_n = период изменения состояния поляризации

При
$$\theta = 0^{\circ}$$
 ($n_o = n_e = n_x = n_y$) $L_n = \infty$

Распространение пучков излучения

Поляризация:

- А) линейная вертикальная
- В) линейная горизонтальная
- С) линейная эллиптическая круговая ...

Распространение импульсов излучения

$$\left|\Delta\tau\right| = L\left(\frac{1}{\upsilon_{\rm rp,i}} - \frac{1}{\upsilon_{\rm rp,j}}\right) = \frac{L}{c}\left(\left(n_{\rm i} - \lambda dn_{\rm i}/d\lambda\right) - \left(n_{\rm j} - \lambda dn_{\rm j}/d\lambda\right)\right)$$

Двухосные кристаллы

Индикатрисса показателей преломления $(n_x < n_y < n_z)$

Характеристические поверхности двухосных кристаллов

Характеристические (нормальные) поверхности двухосного кристалла:

Показатели преломления s- и f-волн

Из уравнения Френеля

$$\frac{s_x^2}{n^{-2}(s) - n_x^{-2}} + \frac{s_y^2}{n^{-2}(s) - n_y^{-2}} + \frac{s_z^2}{n^{-2}(s) - n_z^{-2}} = 0$$

где:
$$s_x=\sin\theta\cdot\cos\varphi$$
 $s_y=\sin\theta\cdot\sin\varphi$ $s_z=\cos\theta$ - направляющие косинусы волнового вектора $|\bar{k}|(\bar{s}=\bar{k}|/|\bar{k}|)$ n_x,n_y,n_z - главные значения показателей преломления, $n(s)$ - значения показателей преломления в направлении $|\bar{k}|\cdot(\bar{s})$

$$n_f = \frac{\sqrt{2}}{\sqrt{B + \sqrt{B^2 - 4C}}}$$
 $n_s = \frac{\sqrt{2}}{\sqrt{B - \sqrt{B^2 - 4C}}}$

$$B = s_x^2 (n_y^{-2} + n_z^{-2}) + s_y^2 (n_x^{-2} + n_z^{-2}) + s_z^2 (n_x^{-2} + n_y^{-2})$$

$$C = \frac{s_x^2}{n_y^2 n_z^2} + \frac{s_y^2}{n_x^2 n_z^2} + \frac{s_z^2}{n_x^2 n_y^2}$$

Характеристические поверхности двухосных кристаллов

$$0^{\circ} \le \varphi \le 90^{\circ}, \quad \theta = 90^{\circ}$$

$$n_{s} = n_{z}$$

$$0^{\circ} \le \varphi \le 90^{\circ}, \quad \theta = 90^{\circ}$$

$$n_{f}(\varphi) = \frac{n_{y}n_{x}}{\sqrt{n_{x}^{2} + (n_{y}^{2} - n_{x}^{2})\sin^{2}\varphi}}$$

s-волна

f-волна

XZ

$$\varphi = 90^{\circ}, \quad 0^{\circ} \le \theta \le 90^{\circ} \qquad n_{s}(\theta) = \frac{n_{y}n_{z}}{\sqrt{n_{y}^{2} + (n_{z}^{2} - n_{y}^{2})\cos^{2}\theta}}$$

$$n_{f} = n_{x}$$

<u>s-волна</u>

f-волна

$$\varphi = 0^{\circ}, \ V_z < \theta < 90^{\circ}$$

$$n_s(\theta) = \frac{n_z n_x}{\sqrt{n_x^2 + (n_z^2 - n_x^2)\cos^2 \theta}}$$

$$n_f = n_y$$

<u>s-волна</u>

<u>f-волна</u>

s-волна

$$\varphi = 0^{\circ}, \ V_z > \theta > 0^{\circ}$$

$$n_f(\theta) = \frac{n_z n_x}{\sqrt{n^2 + (n^2 - n^2)\cos^2 \theta}}$$

 $n_s = n_v$

f-волна

Типы волн

Типы волн

Типы волн

Ориентации собственных поляризаций

 $ctg2\delta = (ctg^2V_z \cdot \sin^2\theta + \sin^2\varphi - \cos^2\theta \cdot \cos^2\varphi)/\cos\theta \cdot \sin^2\varphi$

Двухосные кристаллы

Оптические оси

 $n_x < n_y < n_z$

Угол между оптическими осями

Оптическая ось - направление в главной плоскости, вдоль которого $n_{\rm s}$ = $n_{\rm f}$

В главной плоскости хz.

$$\cos V_{z} = \frac{n_{x}}{n_{y}} \sqrt{\frac{n_{y}^{2} - n_{z}^{2}}{n_{x}^{2} - n_{z}^{2}}}$$

Дисперсия угла между оптическими осями

Дисперсия угла между оптическими осями

SBO

