Fake Google Reviews Detection

Team Members: Nick Sietsema, Rebecca Toland, and Amber Tin

Project Description

- 95% of customers read online reviews before buying a product
- More than 30% of online reviews deemed fake
- 2021 Google local reviews dataset for Alaska used to detect and flag fake reviews
- Dataset URL:
 - https://datarepo.eng.ucsd.edu/mcauley_group/gdrive/googlelo_ cal/

Question(s) sought to answer

- Is the customers username significant?
- How many reviews per day would we expect the normal customer to post?
- Are there sudden spikes in review activity from multiple accounts within a short period of time?

Ultimately...

Can we uncover patterns and use data mining to detect fake reviews?

Data Preparation Work

- Reducing the size of our dataset from 89.9 MB to 68.5 MB
- Chunking the data allowing it to run our on specific server
- Drop duplicates and null values
- Dropped irrelevant columns such as the pictures and business responses
- Changed the unix date to a more readable time -> Year-Month-Day
- Creating new columns with our different classifications
- Feature Engineering:
 - Review frequency by user
 - Mean word count in text reviews

Dataset Distribution

- 1.03 million reviews within dataset
 - 621,209 reviews after dropping NA
 - 411,557 reviews with no content
 - o 571,540 unique reviews
 - Means there are duplicate entries for reviews
- 278,478 Unique User IDs
- 1,032,766 Timestamps
 - o 1,032,412 unique timestamps
 - Duplicate timestamps very fishy!

df.count()

Business II	1032766
Name	1032766
Rating	1032766
Review	621209
Time	1032766
User ID	1032766

dtype: int64

Dataset Distribution Cont.

5 star reviews: 651555 4 star reviews: 201298 3 star reviews: 85478 1 star reviews: 62473 2 star reviews: 31962

Tools Used

- Python 3
- Pandas for data cleaning and preprocessing
 - Allowed us to use a variety of mathematical operations on arrays
 - Open up compressed files
 - Chunking our data to readable sets and concatenating them back into one array
- NumPy
 - Used np.where() to create a new conditional array for features like fake names, mean word count, flag users with more than 1 name and user IDs with a mean rating >3.

- Matplotlib used for data visualization
 - Visualize our K means visualization
- Datetime
 - Changing unix time to ms
- Sklearn
 - Cluster package for K means Data Mining Technique
 - Preprocessing for Standard Scaler
- Github
 - o Committing all changes made by each individual
- Slack
 - Main communication platform

Unsupervised Learning (K-means)

New Features - User Level:

Average word count

Average number of reviews per day

Fake name flag More than one user name per ID K-means Clustering

Classify: Fake or Real

Feature Engineering

Averages by User

	Reviews per Day	Words per Review
Mean	1	38
50%	1	22
Maximum	46	1,489

Knowledge gained

Purple: Fake Reviewers

Yellow: Legitimate Reviewers

<u>Estimated Fake Google Reviewers: 10.7%</u> (CX solutions report) <u>K-means Clustering Result: 8% Fake Reviewers</u>

0 = Fake Reviewers (8%) 1 = Legitimate Reviewers (92%)

How that knowledge can be applied

Protect Consumers and Honest Businesses:

- Prevent wasteful spending
- Consumers need access to honest review platforms -> higher quality products & services
- Support honest businesses and prevent competitors from tarnishing honest ratings

Apply Knowledge Towards Further Research:

- Machine learning for analyzing text / user profiles
- Exploring other unsupervised learning models