Math 4000/6000 - Homework #7

posted April 10, 2018; due at the start of class on April 18, 2018

Many who have never had occasion to learn what mathematics is confuse it with arithmetic, and consider it a dry and arid science. In reality, however, it is the science which demands the utmost imagination.

- Sofia Kovalevskaya (1850–1891)

Assignments are expected to be neat and stapled. **Illegible work may not be marked**. Starred problems (*) are required for those in MATH 6000 and extra credit for those in MATH 4000.

- 1. Prove the following proposition stated in class: If F is a field and $f(x) \in F[x]$ has degree $n \ge 1$, then the elements of F[x]/f(x)F[x] all have the form $a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$, where $a_0, \ldots, a_{n-1} \in F$. Moreover, show that this representation is unique; i.e., distinct choices of a_i lead to distinct elements of $F[x]/\langle f(x) \rangle$.
 - Hint for the first half: For any $a(x) \in \underline{F[x]}$, we can write a(x) = f(x)q(x) + r(x), where r(x) = 0 or deg r(x) < n. Argue that $\overline{a(x)} = \overline{r(x)}$.
- 2. Let F be a field and let p(x) be an irreducible polynomial in F[x]. Prove that F[x]/p(x)F[x] is a field.

Hint: Imitate our earlier proof that \mathbb{Z}_p is a field when p is a prime. Namely, suppose $\overline{a(x)}$ is not $\overline{0}$ in F[x]/p(x)F[x]. Then p(x) does not divide a(x). What does this mean about $\gcd(p(x), a(x))$? Go from there.

- 3. Let F be a subfield of K. Let $\alpha \in K$.
 - (a) Let $I = \{f(x) \in F[x] : f(\alpha) = 0\}$. Show that I is an ideal of F[x].
 - (b) Suppose that there is an irreducible polynomial $p(x) \in F[x]$ with $p(\alpha) = 0$. Show that then I = p(x)F[x], where I has the same meaning as in part (a).
- 4. Let R be a commutative ring, and let I be an ideal of R. Prove that R/I is the zero ring if and only if I = R.
- 5. Let R be a commutative ring, not the zero ring. We say that an ideal $I \subseteq R$ is a **prime ideal** if
 - (i) $I \neq R$,
 - (ii) whenever a and b are elements of R for which $ab \in I$, either $a \in I$ or $b \in I$ (or both).

Show that for every ideal I of R,

R/I is a domain \iff I is a prime ideal of R.

6. Find, with proof, all of the prime ideals of \mathbb{Z} .

7. (a) (Isomorphism is symmetric) Suppose $\phi: R \to S$ is an isomorphism. Since ϕ is a bijection, it has an inverse; in other words, there is a map $\psi: S \to R$ satisfying

$$(\psi \circ \phi)(r) = r \text{ for all } r \in R, \text{ and } (\phi \circ \psi)(s) = s \text{ for all } s \in S.$$

Prove that ψ is an isomorphism from S to R.

Hint: You may assume as known that ψ is a bijection.

(b) (Isomorphism is transitive) Suppose $\phi \colon R \to S$ and $\psi \colon S \to T$ are isomorphisms. Prove that $\psi \circ \phi$ is an isomorphism from R to T.

Hint: You may take as known that the composition of bijections is a bijection.

- 8. Let $\phi \colon R \to S$ be an isomorphism of rings.
 - (a) Give a detailed proof that r is a zero divisor in $R \iff \phi(r)$ is a zero divisor in S.
 - (b) Give a detailed proof that r is a unit in $R \iff \phi(r)$ is a unit in S.
- 9. Exercise 4.2.1.
- 10. Use the Fundamental Homomorphism Theorem to establish the following ring isomorphisms.
 - (a) $\mathbb{R}[x]/\langle x^2 + 6 \rangle \cong \mathbb{C}$. Hint: Consider the "evaluation at $i\sqrt{6}$ " homomorphism taking $f(x) \in \mathbb{R}[x]$ to $f(i\sqrt{6}) \in \mathbb{C}$.
 - (b) $R[x]/\langle x \rangle \cong R$ for every commutative ring R.
 - (c) $\mathbb{Q}[x]/\langle x^2 1 \rangle \cong \mathbb{Q} \times \mathbb{Q}$. Hint: Consider the homomorphism from $\mathbb{Q}[x]$ to $\mathbb{Q} \times \mathbb{Q}$ given by $f(x) \mapsto (f(1), f(-1))$.
- 11. (*) Let m and n be positive integers. Show that if $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$, then $\gcd(m, n) = 1$. (This is the converse of an assertion we will prove in class.)

Hint: Look at the number of times you have to add an element to itself to return to 0.

12. (*) Exercise 3.3.7.