

Introducció a l'estimació de l'error en Reconeixement de Formes

Alfons Juan Albert Sanchis Jorge Civera

Departament de Sistemes Informàtics i Computació

Objectius formatius

- Calcular l'error teòric d'un classificador
- Calcular l'error de Bayes
- Estimar l'error d'un classificador per resubstitució
- Estimar l'error d'un classificador per *holdout* i afegir-hi un interval de confiança al 95%

Índex

1	Error teòric d'un classificador	3
2	Error del classificador de Bayes	4
3	Estimació de l'error per resubstitució	5
4	Estimació de l'error per holdout	6

1 Error teòric d'un classificador

L'*error* (esperat) d'un classificador c(x), per a tot $x \in E$, és:

$$\varepsilon = \mathrm{E}(\varepsilon(c(x))) = \begin{cases} \sum_x P(x) \, \varepsilon(c(x)) & \text{si E \'es discret} \\ \int p(x) \, \varepsilon(c(x)) \, \, dx & \text{si E \'es continu} \end{cases}$$

on $\varepsilon(c(x))$ és la probabilitat d'error de c(x) per a x:

$$\varepsilon(c(x)) = 1 - P(c = c(x) \mid x)$$

Exemple (problema i classif.): $E = [0, 1]^2$, C = 2, $\eta_c(\boldsymbol{x}) \triangleq P(c \mid \boldsymbol{x})$

2 Error del classificador de Bayes

El *classificador de Bayes* tria una classe de màxima probabilitat a posteriori:

$$c^*(x) = \underset{c}{\arg\max} \ P(c \mid x)$$

La seua probabilitat d'error per a un x qualsevol és mínima:

$$\varepsilon(c^*(x)) = 1 - P(c^*(x) \mid x) = 1 - \max_{c} P(c \mid x)$$

per la qual cosa també ho és el seu error, l'error de Bayes:

$$\varepsilon^* = \mathrm{E}(\varepsilon(c^*(x))) = \begin{cases} \sum_x P(x) \, \varepsilon(c^*(x)) & \text{si } E \text{ \'es discret} \\ \int p(x) \, \varepsilon(c^*(x)) \, \, dx & \text{si } E \text{ \'es continu} \end{cases}$$

Exemple: $\varepsilon^* = \frac{1}{8}$ (per al problema exemple)

3 Estimació de l'error per resubstitució

Siga $c_N(x)$ un classificador aprés amb un conjunt de N mostres, $S_N=\{(x_1,c_1),(x_2,c_2),\ldots,(x_N,c_N)\}$, i siga ε_N el seu error.

Anomenem estimador per *resubstitució* de ε_N a:

$$\hat{\varepsilon}_N^r = \frac{1}{N} \sum_{n=1}^N \left[c_N(x_n) \neq c_n \right] = \frac{\text{nombre d'errors}}{N}$$

És *optimista*, sobretot amb classificadors complexos i N menut.

Exemple: N=4 (per al problema exemple)

x_1	x_2	$\overline{\eta_1(m{x})}$	$\eta_2(m{x})$	$P(\boldsymbol{x})$	$N_1(\boldsymbol{x})$	$N_2(\boldsymbol{x})$	$c_N(oldsymbol{x})$			
0	0	1	0	1/2	2	0	1		(\cap
0	1	3/4	1/4	1/4	1	0	1	\Rightarrow	$\hat{\varepsilon}_N^r = \frac{1}{2}$) _ 1
1	0	1/4	3/4	1/4	1	0	1			4
1	1	0	1	0	0	0				, l

4 Estimació de l'error per holdout

Siga $S_M = \{(x_1, c_1), (x_2, c_2), \dots, (x_M, c_M)\}$ un *conjunt de test* de M mostres independents de les N d'entrenament.

Anomenem estimador *holdout* de ε_N a:

$$\hat{\varepsilon}_{N,M} = \frac{1}{M} \sum_{m=1}^{M} \left[c_N(x_m) \neq c_m \right] = \frac{\text{nombre d'errors}}{M}$$

Aproxima bé ε_N quan M és gran, però "desaprofita" mostres.

Exemple: $S_M = \{((0,0)^t, 1), ((0,1)^t, 1), ((1,0)^t, 2)\} \to \hat{\varepsilon}_{N,M} = \frac{1}{3}$ (per al problema i classificador exemple)

Interval de confiança al 95%

Si $Var(\varepsilon_N)$ és menyspreable i M és gran, podem assumir que:

$$\hat{\varepsilon}_{N,M} \sim \mathcal{N}\left(\mathrm{E}(\varepsilon_N), \frac{\mathrm{E}(\varepsilon_N) \left(1 - \mathrm{E}(\varepsilon_N)\right)}{M}\right)$$

i podem construir un *interval de confiança al 95*% per a ε_N ,

$$P(\varepsilon_N \in I) = 0.95 \quad \text{amb} \quad I = \left[\hat{\varepsilon}_{N,M} \pm 1.96 \sqrt{\frac{\hat{\varepsilon}_{N,M} (1 - \hat{\varepsilon}_{N,M})}{M}} \right]$$

Exemple: $M = 2000, \, \hat{\varepsilon}_{N,M} = 0.05$

$$I = \left[0.05 \pm 1.96\sqrt{\frac{0.05 \cdot 0.95}{2000}}\right] = [0.05 \pm 0.01] = [4\%, 6\%]$$

