CPE301 - FALL 2019

Design Assignment 6

Student Name: Jacob Patrick Reed

Student #: 1008448895

Student Email: reedj35@unlv.nevada.edu

Primary Github address: https://github.com/reedjacobp/ Directory: https://github.com/reedjacobp/submission_da

Submit the following for all Labs:

1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.

- Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/DA, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

ATmega328PB Xplained Mini MPU6050

2. DEVELOPED CODE OF TASK 1

```
* DA6.c
 * Created: 12/5/2019 4:58:33 PM
 * Author : jreed
#define F CPU 16000000UL
#include <avr/io.h>
#include <util/delay.h>
#include <inttypes.h>
#include <stdlib.h>
#include <stdio.h>
#include "MPU6050_res_define.h"
#include "I2C_Master_H_file.h"
#include "USART RS232 H file.h"
float Acc_x,Acc_y,Acc_z,Temperature,Gyro_x,Gyro_y,Gyro_z;
void MPU6050 Init()
      _delay_ms(150);
       /* Power up time >100ms
                                                 */
       I2C_Start_Wait(0xD0);
                                                                                     /*
                                   */
Start with device write address
       I2C Write(SMPLRT DIV);
                                                                                     /*
Write to sample rate register
       I2C Write(0x07);
1KHz sample rate
                                                 */
       I2C_Stop();
       I2C Start Wait(0xD0);
       I2C Write(PWR MGMT 1);
Write to power management register
                                         */
                                                                                     /* X
       I2C Write(0x01);
axis gyroscope reference frequency */
       I2C_Stop();
       I2C Start Wait(0xD0);
       I2C_Write(CONFIG);
                                                                                     /*
Write to Configuration register */
       I2C_Write(0x00);
                                                                                     /* Fs
= 8KHz
                                             */
       I2C_Stop();
       I2C Start Wait(0xD0);
       I2C_Write(GYRO_CONFIG);
                                                                                     /*
Write to Gyro configuration register */
```

```
/*
       I2C_Write(0x18);
                                            */
Full scale range +/- 2000 degree/C
       I2C Stop();
       I2C_Start_Wait(0xD0);
       I2C Write(INT ENABLE);
                                                                                               /*
Write to interrupt enable register */
       I2C Write(0x01);
       I2C Stop();
}
void MPU Start Loc()
       I2C_Start_Wait(0xD0);
                                                                                               /* I2C
start with device write address
                                                           */
                                                                                       /* Write
       I2C_Write(ACCEL_XOUT_H);
start location address from where to read */
       I2C_Repeated_Start(0xD1);
                                                                                       /* I2C start
with device read address
                                                   */
void Read RawValue()
{
                                                                                               /*
       MPU_Start_Loc();
Read Gyro values */
       Acc_x = (((int)I2C_Read_Ack() << 8) | (int)I2C_Read_Ack());
       Acc_y = (((int)I2C_Read_Ack() << 8) | (int)I2C_Read_Ack());
       Acc_z = (((int)I2C_Read_Ack()<<8) | (int)I2C_Read_Ack());</pre>
       Gyro_x = (((int)I2C_Read_Ack()<<8) | (int)I2C_Read_Ack());
Gyro_y = (((int)I2C_Read_Ack()<<8) | (int)I2C_Read_Ack());
Gyro_z = (((int)I2C_Read_Ack()<<8) | (int)I2C_Read_Nack());</pre>
        I2C Stop();
}
int main()
{
        char buffer[20], float_[10];
       float Xa,Ya,Za,t;
       float Xg=0,Yg=0,Zg=0;
       I2C_Init();
       MPU6050_Init();
       USART_Init(9600);
       while(1)
       {
               Read_RawValue();
                                                                                               /*
               Xa = Acc_x/16384.0;
Divide raw value by sensitivity scale factor to get real values */
               Ya = Acc y/16384.0;
               Za = Acc_z/16384.0;
               Xg = Gyro_x/16.4;
               Yg = Gyro y/16.4;
               Zg = Gyro z/16.4;
```

```
/* Takes the
               dtostrf( Xa, 3, 2, float_ );
first parameter and formats it to be 3 characters, 2 decimal points of precision and puts
it in float */
               sprintf(buffer," Ax = %s g\t",float_);
                                                                             /* This is where the
value is being put as a string onto the buffer variable */
               USART_SendString(buffer);
                                                                                     /* This is
where it is being displayed on the serial terminal */
               dtostrf( Ya, 3, 2, float_ );
sprintf(buffer," Ay = %s g\t",float_);
               USART_SendString(buffer);
               dtostrf( Za, 3, 2, float_ );
sprintf(buffer," Az = %s g\t",float_);
               USART SendString(buffer);
               dtostrf( Xg, 3, 2, float_ );
               sprintf(buffer, "Gx = %s%c/s\t",float_,0xF8);
               USART SendString(buffer);
               dtostrf( Yg, 3, 2, float_ );
sprintf(buffer," Gy = %s%c/s\t",float_,0xF8);
               USART_SendString(buffer);
               dtostrf( Zg, 3, 2, float_ );
               sprintf(buffer, " Gz = %s%c/s\r\n",float ,0xF8);
               USART_SendString(buffer);
               _delay_ms(1000);
       }
}
```

3. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

4. SCREENSHOT OF EACH DEMO (BOARD SETUP)

5. VIDEO LINKS OF EACH DEMO

https://youtu.be/eIUL17CZyB4

6. GITHUB LINK OF THIS DA

https://github.com/reedjacobp/submission_da/tree/master/DesignAssignments/DA6

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Jacob Reed