Parallel Programming Exercise 4-8

Author:	林子傑 (r10525069@ntu.edu.tw)					
Student ID	R10525069					
Department	Engineering Science and Ocean Engineering					

(If you and your team member contribute equally, you can use (co-first author), after each name.)

1 Problem and Proposed Approach

(Brief your problem, and give your idea or concept of how you design your program.)

Problem: 找出 1 到 n 所有數對 (I,I+2) 滿足 I 和 I+2 都是質數。

Proposed Approach:每個 processor 負責 in/p 到 (i+1)n/p-1 的範圍,如果邊界是偶數,就往外 +1 或 -1,利用迴圈判斷每個奇數是不是質數,如果連續兩個奇數都是質數,代表成功找到一組數對,最後用 reduction 將所有 processor 的找到的對數進行加總。

2 Theoretical Analysis Model

(Try to give the time complexity of the algorithm, and analyze your program with iso-efficiency metrics)

Sequential algorithm complexity : $\Theta(n\sqrt{n})$

Parallel computational complexity : $\Theta(n\sqrt{n/p})$

Parallel communication complexity : $\Theta(\log p)$

Parallel overhead : $To(n, p) = \Theta(p log p)$

Iso-efficiency relation ∶ p>=Cp log p

M(n)=1

 $M(Cp \log p)/p = C \log p/p$

3 Performance Benchmark

(Give your idea or concept of how you design your program.)

The time to determine whether a number x is prime : χ

Sequential execution time: nx

Parallel:

The computation time for each process: χ [n/p]

Necessary communication time : λ Parallel execution time : $\chi [n/p] + \lambda$

Table 1. The execution time

Processors	1	2	3	4	5	6	7	8
Real execution time	0.171128	0.105235	0.073259	0.056167	0.045521	0.038271	0.032821	0.028995

Estimate execution time	0.075	0.05	0.0375	0.03	0.025	0.021429	0.01875
Speedup	1.626151	2.335931	3.046771	3.75932	4.47148	5.213979	5.901983
Karp-flatt metrics	0.229898	0.142142	0.104288	0.082507	0.068368	0.057091	0.050782

Figure 1. The performance of diagram

4 Conclusion and Discussion

(Discuss the following issues of your program

- 1. What is the speedup respect to the number of processors used?
- 2. How can you improve your program further more
- 3. How does the communication and cache affect the performance of your program?
- 4. How does the Karp-Flatt metrics and Iso-efficiency metrics reveal?

從 speedup 的數據來看,當 processor 增加,speedup 的數據也會增加,本問題適合用平行計算。 從 Iso-efficiency metrics 顯示出這個程式有很好的 Scalability。

Appendix(optional):

)

(If something else you want to append in this file, like picture of life game)