Chapter Nine: Integral Curves and Flows

Lee, An Introduction to Smooth Manifolds

9.2 Integral curves of a vector field tangent to a submanifold.

- (a) Under the identification given by the inclusion $T_pS \hookrightarrow T_pM$, the restriction of V to S is a smooth vector field on S. (Smoothness is easily seen by taking a slice chart containing $p \in S$ and projecting onto the first k factors.) Therefore for all $p \in S$ there is $\epsilon > 0$ and a curve $\eta : I = (-\epsilon, \epsilon) \to S$ such that $\eta(0) = p$ and $\eta'(s) = V_p$ for all $s \in (-\epsilon, \epsilon)$. But $i \circ \eta$ is an integral curve for V starting at p in M. By uniqueness, if γ is any integral curve $J \to M$ for V starting at p, then $\eta = \gamma$ on $I \cap J$. This implies that any such γ is contained in S for an interval around 0.
- (b) Let γ be an integral curve for V starting at $p \in S$ with domain I. Let $A = \{t \in I : \gamma(t) \in S$. The previous bullet proves that A is nonempty. A is closed, because if $(s_n) \to s$ and $\gamma(s_n) \in S$ for all n, then $\gamma(s) \in S$ since γ is continuous and S is closed. On the other hand, A is open, because if $s \in A$, then $\gamma(s) \in S$, so by Proposition 9.2 there is an integral curve η based at $\gamma(s)$ which extends γ by uniqueness. This proves that A = I.
- (c) Let $U \subset \mathbb{R}$ be open and bounded, $V = \frac{d}{dx}$, and $\gamma : \mathbb{R} \to \mathbb{R}$ be the identity map.

9.3 Computing flows.

(a)
$$\theta((x_0, y_0), t) = (x_0 + y_0 t + \frac{t^2}{2}, y_0 + t)$$

(b)
$$\theta((x_0, y_0), t) = (x_0 e^t, y_0 e^{2t})$$

(c)
$$\theta((x_0, y_0), t) = (x_0 e^t, y_0 e^{-t})$$

(d)
$$\theta((x_0, y_0), t) = (\frac{x_0 + y_0}{2}e^t + \frac{x_0 - y_0}{2}e^{-t}, \frac{x_0 + y_0}{2}e^t - \frac{x_0 - y_0}{2}e^{-t})$$

- 9.4 A nonvanishing vector field on \mathbb{S}^{2n-1} . Under the standard injection $T_p\mathbb{S}^{n-1}\hookrightarrow T_p\mathbb{C}^n\simeq\mathbb{C}^n$, $V_z=(\theta^{(z)})'(0)=iz$.
- 9.6 Proof of the Escape Lemma. Say otherwise that there exists t_0 such that $\gamma([t_0, b)) \subseteq X \subseteq M$ for some X compact. Assume without loss of generality that M is properly embedded in \mathbb{R}^N , so in particular M is closed in \mathbb{R}^N (Theorem 6.15, Proposition 5.5). Now

$$\lim_{t \to {}^+b} \gamma(t) = z$$

for some $z \in X$, because $|\gamma'(s)|$ is bounded and X is closed and bounded in \mathbb{R}^N . (Take a convergent subequence $(\gamma(t_n))$ and use bounded derivative to show that if $|t_n - b|$ is small then $|\gamma(t_n) - z|$ is small.)

Let $Z = \gamma([t_0, b)) \cup z$. Considering each possible limit point of Z shows that Z is closed. For each $p \in Z$, let U_p be a coordinate ball centered at p such that $\bar{U_p}$ is compact, let $V_p = U_p/2$ be the ball of half the original radius, and let $W_p = U_p/4$ be the ball of one-quarter the original radius. Then there is a finite collection $W_1, ..., W_n$ such that $Z \subseteq W_1 \cup ... \cup W_n$. Then $W = \bar{W_1} \cup ... \cup \bar{W_n}$ is a compact set containing Z in its interior, $V = V_1 \cup ... \cup V_n$ is an open set containing W, and $U = \bar{U_1} \cup ... \bar{U_n}$ is a compact set containing Z. Now by Lemma 8.6, there is a vector field \tilde{V} agreeing with V on W, and supported in V, which is contained in the compact set W. Clearly γ is an integral curve of \tilde{V} . By Theorem 9.16, this means that γ is defined on \mathbb{R} , so we can extend γ in a neighborhood of Z contained in W. But since \tilde{V} agrees with V in a neighborhood of this extension, this gives an extension of γ past b, contradicting maximality.

9.8 Flow neighborhood of compact submanifold is embedded. By Theorem 9.20, there is an open neighborhood \mathcal{O}_{δ} such that Θ restricted to \mathcal{O}_{δ} is an injective smooth immersion. Covering \mathcal{O}_{δ} with basis open sets of the form $(\epsilon_p, -\epsilon_p) \times U_p$, extracting a finite subcover, and taking the minimum ϵ_p in this subcover, we can assume that \mathcal{O}_{δ} is of the form $(-\epsilon, \epsilon) \times S$. Now $V = [-\epsilon/2, \epsilon/2] \times S$ is a compact subset of $\mathbb{R} \times M$ by Tychonoff's theorem, and since a continuous bijection from a compact space to a Hausdorff space is a homeomorphism, Φ_V is a homeomorphism. But then the restriction of Φ to $W = (-\epsilon, \epsilon) \times S$ is a homeomorphism as well, so Φ is an embedding $W \hookrightarrow M$.

9.10 Flow charts.

(a)
$$U = \mathbb{R}^2$$
, $\phi(x, y) = (x - \frac{y^2}{2}, x)$.

(b)

(c)

(d)
$$U = B_1(1,0), \ \phi(x,y) = \left(\frac{x}{2}\left(\sqrt{\frac{x+y}{x-y}} + \sqrt{\frac{x+y}{x-y}}^{-1}\right)^{-1}, \frac{1}{2}\log(\frac{x+y}{x-y})\right).$$

9.12 Properties of the connected sum. The smooth structure described in Theorem 9.29 has these properties. For let M_i be two manifolds, p_i the two points, U_i the coordinate balls, and W_i tubular neighborhoods of $M_i' = M_i \setminus U_i$. As in the notation of the proof of Theorem 9.29, we write $h: \delta M_1' \to \delta M_2'$ for the diffeomorphism identifying the two boundaries, $X = M_1' \coprod M_2'$ for the quotient space induced by h, $Y = \pi(W_1 \coprod W_2)$, and Ψ for the diffeomorphism $(-1,1) \to \delta M_1 \to Y$ whose existence is shown during the proof of the theorem. Define $\tilde{M}_1 = \pi(M_1' \cup W_2)$. It is clear that V_1 is open in the quotient topology on X. It is diffeomorphic to $M_1 \setminus \bar{U}_1$. For let $g: (-1,1) \to (-1,0)$ be a diffeomorphism that is equal to the identity for sufficiently small values. Define the map $F: \tilde{M}_1 \to M_1 \setminus \bar{U}_1$

$$F(x) = \begin{cases} x & \text{if } x \in M_1 \setminus V_1 \\ (g(t), p) & \text{if } x \in Y \text{ and } \Psi(x) = (t, p) \end{cases}.$$

Then F is a diffeomorphism, since for every point in \tilde{M}_1 there is a neighborhood on which F is either the identity or the map $\Psi^{-1} \circ g \times \operatorname{Id} \circ \Psi$. But an elementary argument shows that $M_1 \setminus \bar{U}_1$ is diffeomorphic to $M_1 \setminus p_1$. Similar reasoning shows that \tilde{M}_2 is diffeomorphic to $M_2 \setminus p_2$, and it is clear that $\tilde{M}_1 \cap \tilde{M}_2$ is diffeomorphic to $(-1,1) \times \mathbb{S}^{n-1}$, since $\delta M_1 \simeq \mathbb{S}^{n-1}$.

- 9.14 Using the double to prove the Whitney Embedding Theorem for manifolds with nonempty boundary. There is a diffeomorphism ϕ mapping M into its double 2M, and by the original Whitney Embedding Theorem, there is a smooth embedding $f: 2M \hookrightarrow \mathbb{R}^{2n+1}$. But then the composition $f \circ \phi$ is an embedding $M \hookrightarrow \mathbb{R}^{2n+1}$.
- 9.16 Vector fields that agree on closed subsets may have different Lie derivatives. Let $V = \delta_x + \sin(y) \delta_y$, $V' = \delta_x$, and $W = \delta y$. Taking Lie brackets (Theorem 9.38) shows that

$$L_V W(x, y) = -\cos(y) \, \delta y$$

which does not vanish at (0,0) but

$$L_{V'}W(x,y) = 0.$$