- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, manuali, solo il foglio A4 di appunti.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

31 gennaio 2023

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	0	\bigcirc	
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10						

1. Per quali $\alpha \geq 0$ la serie

$$\sum_{n=32}^{\infty} \sin\left(\frac{1}{n^{\alpha}} + 1\right)$$

risulta convergente

A: $0 < \alpha < 1$ B: $\alpha > 0$ C: $\alpha > 1$ D: N.A. E: $\alpha \ge 0$

2. Per t>1 le soluzioni dell'equazione differenziale $x'(t)=(t\log(t))^{-1}$ sono

A: N.E. B: $\log(\log(t)) + c$ C: $t \log(t) + c$ D: N.A. E: $\frac{t^2}{\log(t^2)} + c$

3. La funzione $f(x) = \begin{cases} \frac{\pi}{e^2}x^2 + 1 & \text{per } x < 0 \\ \cos(2^{\pi}x) & \text{per } x \ge 0 \end{cases}$

A: è derivabile, ma non continua. B: non è né continua né derivabile. C: N.A. D: è continua, ma non derivabile. E: è continua e derivabile.

4. Data $f(x) = (\log(x))^{\sin(x)}$. Allora $f'(\pi/2)$ è uguale a

A: $2/\pi$ B: $\log(3\pi/2)$ C: $\log(\pi/2)$ D: N.A. E: $\pi/2$

5. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} \setminus \{0\} : \log(x^4) - 1 < 0\}$$

valgono

A: $\{-\sqrt[4]{e}, N.E., \sqrt[4]{e}, N.E.\}$ B: N.A. C: $\{0, N.E., \sqrt[4]{e}, N.E., \}$ D: $\{-\infty, N.E., +\infty, N.E.\}$ E: $\{-\sqrt[4]{e}, -\sqrt[4]{e}, \sqrt[4]{e}, \sqrt[4]{e}\}$

6. La funzione $f: \mathbb{R}\setminus\{0\} \to \mathbb{R}$ definita da $f(x) = \log(|x|)$ è

A: N.A. B: iniettiva C: monotona crescente D: convessa E: surgettiva

7. La retta tangente al grafico di $y(x) = \cos(3x)$ nel punto $x_0 = \pi/2$ vale

A:
$$2x + \frac{\pi}{3}$$
 B: $\frac{3}{2}(x - \frac{\pi}{2})$ C: N.A. D: $3x$ E: $3(x - \frac{\pi}{2})$

8. L'integrale

$$\int_{-2}^{2} \sqrt{(x+1)^2} \, dx$$

vale

A: 5/2 B: N.A. C: 4 D: 28/3 E: -5

9. Modulo e argomento del numero complesso $z=1+i^{2023}$ sono

A: N.A. B: $(1, \pi/4)$ C: $(2, -\pi/4)$ D: $(2, \pi/4)$ E: $(\sqrt{2}, \pi/4)$

10. Il limite

$$\lim_{x \to +\infty} \frac{\log(x)e^x + e^{-x}}{e^{2x} + e^{-4x}\log(x)}$$

vale

A: N.E. B: N.A. C: 1/3 D: $+\infty$ E: 0

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, manuali, solo il foglio A4 di appunti.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

31 gennaio 2023

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10					\bigcirc	

- 1. La funzione $f: \mathbb{R}\setminus\{0\} \to \mathbb{R}$ definita da $f(x) = \log(|x|)$ è
 A: iniettiva B: monotona crescente C: convessa D: surgettiva E: N.A.
- 2. Il limite

$$\lim_{x \to +\infty} \frac{\log(x)e^x + e^{-x}}{e^{2x} + e^{-4x}\log(x)}$$

vale

A: N.E. B:
$$+\infty$$
 C: $1/3$ D: N.A. E: 0

- 3. La retta tangente al grafico di $y(x)=\cos(3x)$ nel punto $x_0=\pi/2$ vale A: 3x B: $3\left(x-\frac{\pi}{2}\right)$ C: $\frac{3}{2}\left(x-\frac{\pi}{2}\right)$ D: $2x+\frac{\pi}{3}$ E: N.A.
- 4. Modulo e argomento del numero complesso $z=1+i^{2023}$ sono A: N.A. B: $(2,\pi/4)$ C: $(\sqrt{2},\pi/4)$ D: $(1,\pi/4)$ E: $(2,-\pi/4)$
- 5. L'integrale

$$\int_{-2}^{2} \sqrt{(x+1)^2} \, dx$$

vale

A:
$$5/2$$
 B: -5 C: 4 D: N.A. E: $28/3$

6. La funzione
$$f(x) = \begin{cases} \frac{\pi}{e^2}x^2 + 1 & \text{per } x < 0 \\ \cos(2^{\pi}x) & \text{per } x \ge 0 \end{cases}$$

A: è continua, ma non derivabile. B: non è né continua né derivabile. C: N.A. D: è derivabile, ma non continua. E: è continua e derivabile.

7. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} \setminus \{0\} : \log(x^4) - 1 < 0\}$$

valgono

A:
$$\{0, N.E., \sqrt[4]{\mathrm{e}}, N.E., \}$$
 B: $\{-\sqrt[4]{\mathrm{e}}, N.E., \sqrt[4]{\mathrm{e}}, N.E.\}$ C: $\{-\infty, N.E., +\infty, N.E.\}$ D: N.A. E: $\{-\sqrt[4]{\mathrm{e}}, -\sqrt[4]{\mathrm{e}}, \sqrt[4]{\mathrm{e}}, \sqrt[4]{\mathrm{e}}, \sqrt[4]{\mathrm{e}}\}$

8. Per t > 1 le soluzioni dell'equazione differenziale $x'(t) = (t \log(t))^{-1}$ sono

A:
$$\frac{t^2}{\log(t^2)} + c$$
 B: $\log(\log(t)) + c$ C: $t\log(t) + c$ D: N.E. E: N.A.

9. Data $f(x) = (\log(x))^{\sin(x)}$. Allora $f'(\pi/2)$ è uguale a

A:
$$2/\pi$$
 B: N.A. C: $\log(\pi/2)$ D: $\pi/2$ E: $\log(3\pi/2)$

10. Per quali $\alpha \geq 0$ la serie

$$\sum_{n=32}^{\infty} \sin\left(\frac{1}{n^{\alpha}} + 1\right)$$

risulta convergente

A:
$$0 < \alpha < 1$$
 B: $\alpha \ge 0$ C: N.A. D: $\alpha > 1$ E: $\alpha > 0$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, manuali, solo il foglio A4 di appunti.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

31 gennaio 2023

			(Co	ogno	ome)				_			(No	me)			_	ume		trice	ola)

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10					\bigcirc	

1. Data $f(x) = (\log(x))^{\sin(x)}$. Allora $f'(\pi/2)$ è uguale a A: $\pi/2$ B: N.A. C: $2/\pi$ D: $\log(\pi/2)$ E: $\log(3\pi/2)$

2. Modulo e argomento del numero complesso $z=1+i^{2023}$ sono

A: N.A. B: $(2, -\pi/4)$ C: $(\sqrt{2}, \pi/4)$ D: $(1, \pi/4)$ E: $(2, \pi/4)$

3. La retta tangente al grafico di $y(x) = \cos(3x)$ nel punto $x_0 = \pi/2$ vale

A: N.A. B: $3\left(x - \frac{\pi}{2}\right)$ C: $2x + \frac{\pi}{3}$ D: $\frac{3}{2}\left(x - \frac{\pi}{2}\right)$ E: 3x

4. La funzione $f(x) = \begin{cases} \frac{\pi}{e^2}x^2 + 1 & \text{per } x < 0 \\ \cos(2^{\pi}x) & \text{per } x \ge 0 \end{cases}$

A: N.A. B: è continua e derivabile. C: è derivabile, ma non continua. D: non è né continua né derivabile. E: è continua, ma non derivabile.

5. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} \setminus \{0\} : \log(x^4) - 1 < 0\}$$

valgono

A: $\{-\sqrt[4]{\mathrm{e}}, -\sqrt[4]{\mathrm{e}}, \sqrt[4]{\mathrm{e}}\}$ B: $\{-\sqrt[4]{\mathrm{e}}, N.E., \sqrt[4]{\mathrm{e}}, N.E.\}$ C: $\{-\infty, N.E., +\infty, N.E.\}$ D: N.A. E: $\{0, N.E., \sqrt[4]{\mathrm{e}}, N.E., \}$

6. La funzione $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definita da $f(x) = \log(|x|)$ è

A: surgettiva B: N.A. C: convessa D: monotona crescente E: iniettiva

7. Per quali $\alpha \geq 0$ la serie

$$\sum_{n=32}^{\infty} \sin\left(\frac{1}{n^{\alpha}} + 1\right)$$

risulta convergente

A: $\alpha > 0$ B: $0 < \alpha < 1$ C: $\alpha > 1$ D: N.A. E: $\alpha \ge 0$

8. L'integrale

$$\int_{-2}^2 \sqrt{(x+1)^2} \, dx$$

vale

A: 28/3 B: 5/2 C: -5 D: N.A. E: 4

9. Per t>1le soluzioni dell'equazione differenziale $x'(t)=(t\log(t))^{-1}$ sono

A: $t \log(t) + c$ B: N.E. C: $\frac{t^2}{\log(t^2)} + c$ D: N.A. E: $\log(\log(t)) + c$

10. Il limite

$$\lim_{x \to +\infty} \frac{\log(x)e^x + e^{-x}}{e^{2x} + e^{-4x}\log(x)}$$

vale

A: N.E. B: $+\infty$ C: N.A. D: 1/3 E: 0

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, manuali, solo il foglio A4 di appunti.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

31 gennaio 2023

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10					\bigcirc	

1. La funzione
$$f(x) = \begin{cases} \frac{\pi}{\mathrm{e}^2} x^2 + 1 & \text{per } x < 0 \\ \cos(2^{\pi} x) & \text{per } x \geq 0 \end{cases}$$

A: è continua, ma non derivabile. B: N.A. C: non è né continua né derivabile. D: è continua e derivabile. E: è derivabile, ma non continua.

2. Per quali $\alpha \geq 0$ la serie

$$\sum_{n=32}^{\infty} \sin\left(\frac{1}{n^{\alpha}} + 1\right)$$

risulta convergente

A:
$$0 < \alpha < 1$$
 B: $\alpha > 1$ C: N.A. D: $\alpha > 0$ E: $\alpha \ge 0$

3. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} \setminus \{0\} : \log(x^4) - 1 < 0\}$$

valgono

A:
$$\{0, N.E., \sqrt[4]{e}, N.E., \}$$
 B: $\{-\sqrt[4]{e}, N.E., \sqrt[4]{e}, N.E.\}$ C: $\{-\sqrt[4]{e}, -\sqrt[4]{e}, \sqrt[4]{e}, \sqrt[4]{e}\}$ D: $\{-\infty, N.E., +\infty, N.E.\}$ E: N.A.

4. L'integrale

$$\int_{-2}^{2} \sqrt{(x+1)^2} \, dx$$

vale

A:
$$28/3$$
 B: -5 C: N.A. D: 4 E: $5/2$

5. Modulo e argomento del numero complesso $z=1+i^{2023}$ sono

A:
$$(\sqrt{2}, \pi/4)$$
 B: N.A. C: $(1, \pi/4)$ D: $(2, \pi/4)$ E: $(2, -\pi/4)$

6. Data $f(x) = (\log(x))^{\sin(x)}$. Allora $f'(\pi/2)$ è uguale a

A:
$$2/\pi$$
 B: $\log(\pi/2)$ C: $\log(3\pi/2)$ D: $\pi/2$ E: N.A.

7. La retta tangente al grafico di $y(x) = \cos(3x)$ nel punto $x_0 = \pi/2$ vale

A:
$$3\left(x - \frac{\pi}{2}\right)$$
 B: $3x$ C: $\frac{3}{2}\left(x - \frac{\pi}{2}\right)$ D: N.A. E: $2x + \frac{\pi}{3}$

8. La funzione $f: \mathbb{R}\setminus\{0\} \to \mathbb{R}$ definita da $f(x) = \log(|x|)$ è

A: iniettiva B: convessa C: monotona crescente D: N.A. E: surgettiva

9. Il limite

$$\lim_{x \to +\infty} \frac{\log(x)e^x + e^{-x}}{e^{2x} + e^{-4x}\log(x)}$$

vale

A: 0 B: N.E. C:
$$+\infty$$
 D: N.A. E: $1/3$

10. Per t>1 le soluzioni dell'equazione differenziale $x'(t)=(t\log(t))^{-1}$ sono

A: N.E. B: N.A. C:
$$\frac{t^2}{\log(t^2)} + c$$
 D: $\log(\log(t)) + c$ E: $t\log(t) + c$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, manuali, solo il foglio A4 di appunti.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

31 gennaio 2023

			(Co	gnoi	me)				-			(No	me)			=	ume	ro d	i ma	trice	ola)

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	0	\bigcirc	0	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	0	\bigcirc	\bigcirc	\bigcirc	
8	0	0	\bigcirc	\bigcirc	\bigcirc	
9	0	0	\bigcirc	0	\bigcirc	
10			\bigcirc			

1. L'integrale

$$\int_{-2}^{2} \sqrt{(x+1)^2} \, dx$$

vale

A: N.A. B: 28/3 C: 4 D: -5 E: 5/2

2. Per quali $\alpha > 0$ la serie

$$\sum_{n=32}^{\infty} \sin\left(\frac{1}{n^{\alpha}} + 1\right)$$

risulta convergente

A: $\alpha > 1$ B: N.A. C: $\alpha \ge 0$ D: $\alpha > 0$ E: $0 < \alpha < 1$

3. Per t > 1 le soluzioni dell'equazione differenziale $x'(t) = (t \log(t))^{-1}$ sono A: $\frac{t^2}{\log(t^2)} + c$ B: $t \log(t) + c$ C: $\log(\log(t)) + c$ D: N.A. E: N.E.

4. La retta tangente al grafico di $y(x)=\cos(3x)$ nel punto $x_0=\pi/2$ vale A: $2x+\frac{\pi}{3}$ B: 3x C: $\frac{3}{2}\left(x-\frac{\pi}{2}\right)$ D: $3\left(x-\frac{\pi}{2}\right)$ E: N.A.

5. Il limite

$$\lim_{x \to +\infty} \frac{\log(x)e^x + e^{-x}}{e^{2x} + e^{-4x}\log(x)}$$

vale

A: N.A. B: 0 C: $+\infty$ D: 1/3 E: N.E.

6. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} \setminus \{0\} : \log(x^4) - 1 < 0\}$$

valgono

A: N.A. B: $\{-\sqrt[4]{\mathrm{e}}, -\sqrt[4]{\mathrm{e}}, \sqrt[4]{\mathrm{e}}\}$ C: $\{0, N.E., \sqrt[4]{\mathrm{e}}, N.E., \}$ D: $\{-\infty, N.E., +\infty, N.E.\}$ E: $\{-\sqrt[4]{\mathrm{e}}, N.E., \sqrt[4]{\mathrm{e}}, N.E.\}$

7. Data $f(x) = (\log(x))^{\sin(x)}$. Allora $f'(\pi/2)$ è uguale a

A: $2/\pi$ B: $\log(\pi/2)$ C: N.A. D: $\pi/2$ E: $\log(3\pi/2)$

8. Modulo e argomento del numero complesso $z=1+i^{2023}$ sono

A: N.A. B: $(2, -\pi/4)$ C: $(1, \pi/4)$ D: $(\sqrt{2}, \pi/4)$ E: $(2, \pi/4)$

9. La funzione $f(x) = \begin{cases} \frac{\pi}{e^2}x^2 + 1 & \text{per } x < 0 \\ \cos(2^{\pi}x) & \text{per } x \ge 0 \end{cases}$

A: è derivabile, ma non continua. B: è continua e derivabile. C: non è né continua né derivabile. D: N.A. E: è continua, ma non derivabile.

10. La funzione $f: \mathbb{R}\setminus\{0\} \to \mathbb{R}$ definita da $f(x) = \log(|x|)$ è

A: surgettiva B: N.A. C: monotona crescente D: iniettiva E: convessa

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, manuali, solo il foglio A4 di appunti.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

31 gennaio 2023

	•		(Co	gnor	ne)		•	•	•	•	_		•	(No	me)	•		•	(N	ume	ro d	ma	trico	ola)

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc

1. Per quali $\alpha \geq 0$ la serie

$$\sum_{n=32}^{\infty} \sin\left(\frac{1}{n^{\alpha}} + 1\right)$$

risulta convergente

A: N.A. B: $\alpha > 1$ C: $0 < \alpha < 1$ D: $\alpha > 0$ E: $\alpha > 0$

2. Data $f(x) = (\log(x))^{\sin(x)}$. Allora $f'(\pi/2)$ è uguale a A: $2/\pi$ B: $\log(\pi/2)$ C: $\pi/2$ D: $\log(3\pi/2)$ E: N.A.

3. L'integrale

$$\int_{-2}^{2} \sqrt{(x+1)^2} \, dx$$

vale

A: 5/2 B: N.A. C: 4 D: -5 E: 28/3

4. Modulo e argomento del numero complesso $z=1+i^{2023}$ sono A: $(2,-\pi/4)$ B: $(\sqrt{2},\pi/4)$ C: N.A. D: $(2,\pi/4)$ E: $(1,\pi/4)$

5. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} \setminus \{0\} : \log(x^4) - 1 < 0\}$$

valgono

A: $\{0, N.E., \sqrt[4]{\mathrm{e}}, N.E., \}$ B: $\{-\sqrt[4]{\mathrm{e}}, -\sqrt[4]{\mathrm{e}}, \sqrt[4]{\mathrm{e}}, \sqrt[4]{\mathrm{e}}\}$ C: N.A. D: $\{-\infty, N.E., +\infty, N.E.\}$ E: $\{-\sqrt[4]{\mathrm{e}}, N.E., \sqrt[4]{\mathrm{e}}, N.E.\}$

6. La funzione $f: \mathbb{R}\setminus\{0\} \to \mathbb{R}$ definita da $f(x) = \log(|x|)$ è

A: monotona crescente B: surgettiva C: iniettiva D: convessa E: N.A.

7. La retta tangente al grafico di $y(x) = \cos(3x)$ nel punto $x_0 = \pi/2$ vale

A: $2x + \frac{\pi}{3}$ B: 3x C: N.A. D: $3(x - \frac{\pi}{2})$ E: $\frac{3}{2}(x - \frac{\pi}{2})$

8. La funzione $f(x) = \begin{cases} \frac{\pi}{e^2}x^2 + 1 & \text{per } x < 0 \\ \cos(2^{\pi}x) & \text{per } x \ge 0 \end{cases}$

A: non è né continua né derivabile. B: è derivabile, ma non continua. C: N.A. D: è continua, ma non derivabile. E: è continua e derivabile.

9. Per t > 1 le soluzioni dell'equazione differenziale $x'(t) = (t \log(t))^{-1}$ sono

A: $t \log(t) + c$ B: N.A. C: N.E. D: $\frac{t^2}{\log(t^2)} + c$ E: $\log(\log(t)) + c$

10. Il limite

$$\lim_{x \to +\infty} \frac{\log(x)e^x + e^{-x}}{e^{2x} + e^{-4x}\log(x)}$$

vale

A: N.E. B: $+\infty$ C: 0 D: 1/3 E: N.A.

31 gennaio 2023

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

0	\bigcirc	\bigcirc	•	\bigcirc
0	•	\bigcirc	0	0
0	\bigcirc	\bigcirc	\bigcirc	
•	\bigcirc	\bigcirc	\bigcirc	\bigcirc
•	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	
0	\bigcirc	\bigcirc	\bigcirc	
0	•	\bigcirc	\bigcirc	\bigcirc
•	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	•
			0000	

31 gennaio 2023

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

1	0	0	0	•	0	
2	0	\bigcirc	\bigcirc	\bigcirc	•	
3	0	•	\bigcirc	\bigcirc	\bigcirc	
4	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	•	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	•	
7	0	•	\bigcirc	\bigcirc	\bigcirc	
8	0	•	0	\bigcirc	0	
9	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10		\bigcirc				

31 gennaio 2023

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

0	\bigcirc	•	\bigcirc	\bigcirc
•	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	•	\bigcirc	\bigcirc	\bigcirc
0	•	\bigcirc	\bigcirc	\bigcirc
0	•	\bigcirc	\bigcirc	\bigcirc
•	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	0	0	•	\bigcirc
0	\bigcirc	\bigcirc		\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	•
0	\bigcirc	\bigcirc	\bigcirc	•

31 gennaio 2023

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

1	0	0	0	•	0	
2	0	\bigcirc	•	\bigcirc	0	
3	0	•	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	•	\bigcirc	\bigcirc	
5	0	•	\bigcirc	\bigcirc	\bigcirc	
6	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	•	0	0	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	•	
9	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10						

31 gennaio 2023

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

1		0	\bigcirc	\bigcirc	\bigcirc	
2	0	•	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc		\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	•	\bigcirc	
5	0	•	\bigcirc	\bigcirc	\bigcirc	
6	0	0	\bigcirc	0	•	
7		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8		0	\bigcirc	0	\bigcirc	
9	0	•	\bigcirc	\bigcirc	\bigcirc	
10						

31 gennaio 2023

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

1	•	0	\bigcirc	\bigcirc	0	
2	•	0	\bigcirc	0	0	
3	0	•	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	•	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	•	
6	0	•	\bigcirc	\bigcirc	\bigcirc	
7	0	0	\bigcirc	•	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	•	
9	0	\bigcirc	\bigcirc	\bigcirc	•	
10						

31 gennaio 2023

PARTE B

1 Determinare se esistono dei λ tali che la funzione

$$f(x) = (x^2 - \lambda x) e^{\lambda x}$$
 $x \in \mathbb{R}$,

ha minimo assoluto.

Soluzione. La funzione si può riscrivere come

$$f(x) = x(x - \lambda) e^{\lambda x}$$

e osserviamo che per $\lambda=0$ è la parabola $y(x)=x^2$, mentre per $\lambda>0$ è negativa per $0< x<\lambda$ e positiva altrove. Pertanto si ha, per $\lambda>0$

$$\lim_{x \to -\infty} f(x) = 0 \qquad \lim_{x \to +\infty} f(x) = +\infty$$

e quindi la funzione non ha sicuramente massimo assoluto. Inoltre f si annulla per $x=0,\lambda$ ed è negativa in $]0,\lambda[$; essendo continua in $[0,\lambda]$ assume minimo che è negativo ed è pertanto anche minimo assoluto.

Per $\lambda < 0$ la situazione è simile: f(x) è negativa per $\lambda < x < 0$ e positiva altrove e inoltre

$$\lim_{x \to -\infty} f(x) = +\infty \qquad \lim_{x \to +\infty} f(x) = 0,$$

e con lo stesso ragionamento non c'è massimo assoluto ma minimo assoluto in $[\lambda, 0]$.

Quindi senza l'uso delle derivate si può risolvere l'esercizio. Calcolando le derivate si ha $f'(x) = e^{\lambda x} \left(-\lambda + \lambda x^2 - \left(\lambda^2 - 2 \right) x \right)$ che si annulla per

$$x_{1/2} = \frac{\lambda^2 \pm \sqrt{\lambda^4 + 4} - 2}{2\lambda}$$

e si può mostrare con lo studio del segno che per $\lambda > 0$ la radice maggione rappresenta punto di minimo assoluto, mentre per $\lambda < 0$ è la minore che è il punto di minimo assoluto.

 $2\,$ Determinare per quali x converge la serie

$$\sum_{n=1, n\neq 4}^{+\infty} \frac{1}{(n^2 - 4n)^{x^3 - x + 1/2}}.$$

Soluzione. La serie è definitivamente a segno costante e si comporta come

$$\sum_{n=5}^{+\infty} \frac{1}{n^{2(x^3-x+1/2)}}$$

che converge se e solo se $2x^3 - 2x + 1 > 1$, e quindi se $x(x^2 - 1) > 0$, cioè per -1 < x < 0 e per x > 1.

3 Risolvere il problema di Cauchy

$$\begin{cases} y''(x) - 3y'(x) + 2y(x) = \cos(2x), \\ y(0) = 0, \\ y'(0) = 1. \end{cases}$$

Soluzione. L'equazione caratteristica ha come soluzioni $\lambda=1$ e $\lambda=2$ e quindi le soluzioni dell'omogenea sono

$$y(x) = c_1 e^x + c_2 e^{2x}.$$

In questo caso non c'è risonanza dato che $\cos(2x)$ corrisponde al numero 0+2i e non a 2+0i. La soluzione particolare va cercata della forma $y_f(x) = A\cos(2x) + B\sin(2x)$ e sostituendo otteniamo

$$-2((B-3A)\sin(2x) + (A+3B)\cos(2x)) = \cos(2x),$$

da cui il sistema -2(B-3A)=0 e -2(A+3B)=1 che porta alla soluzione

$$y_f(x) = \frac{1}{20}(-3\sin(2x) - \cos(2x)).$$

Imponendo le condizioni iniziali sull'integrale generale si trova infine

$$y(x) = \frac{1}{20} \left(-24e^x + 25e^{2x} - 3\sin(2x) - \cos(2x) \right).$$

4 Studiare la convergenza dell'integrale

$$\int_{1}^{3} e^{\{\log(x)\}} dx$$

e se converge calcolarlo. (Si ricorda che $\{x\}$ denota la parte frazionaria di x)

Soluzione. La funzione $\{\log(x)\}$ è continua eccetto nei punti dove $\log(x) \in \mathbb{N}$, cioè per $x_n = e^n$ e rimane limitata nell'intorno di ciascun punto di discontinuità. La funzione $e^{\{\log(x)\}}$ è pertanto continua a tratti e dunque integrabile su ogni intervallo della forma [1,b]. Per calcolare l'integrale lo scomponiamo in

$$\int_{1}^{e} e^{\{\log(x)\}} dx + \int_{e}^{3} e^{\{\log(x)\}} dx$$

e osserviamom che per $x \in]1, e[$ si ha $\{\log(x)\} = \log(x)$, mentre per $x \in]e, 3[$ si ha $\{\log(x)\} = \log(x) - 1$. Dobbiamo quindi calcolare

$$\int_{1}^{e} e^{\log(x)} dx + \int_{e}^{3} e^{\log(x)-1} dx = \int_{1}^{e} x dx + \int_{e}^{3} \frac{x}{e} dx = \frac{1}{2} \left(e^{2} - 1 \right) + \frac{9 - e^{2}}{2e} = \frac{9 - e - e^{2} + e^{3}}{2e}.$$