РОЗДІЛ 1. Множини і відношення. Функції

Пема 1. Множини. Поняття відношення

План лекції

- Поняття множини і кортежу. Декартів добуток
- Булева алгебра множин
- **Розбиття множини**
- Доведення рівностей з множинами
- Поняття відношення на множині

Об'єкти, які утворюють *множину*, називають її *елементами*. Про множину говорять, що вона *містить* ці елементи. Якщо об'єкт a є елементом множини A, то пишуть $a \in A$; а ні, то $a \notin A$. Синоніми: cykynhicmb, cucmema, habip.

Множину можна задати переліченням її елементів у фігурних дужках. Наприклад, множина $A = \{a, e, i, o, u\}$ містить елементи a, e, i, o, u й лише ці елементи. Множина не може містити двох однакових елементів, а порядок її елементів не фіксують.

Для часто використовуваних множин ϵ спеціальні позначення:

```
\emptyset – порожня множина, яка не містить жодного елемента;
```

Z – множина *цілих чисел*, Z={..., -2, -1, 0, 1, 2, ...};

R — множина дійсних чисел;

N – множина *натуральних чисел*, N={1, 2, ...};

 N_0 – множина натуральних чисел із числом $0, N_0 = \{0, 1, 2, ...\}$.

Задати множину можна, зазначивши спільну властивість усіх її елементів. Тоді множину A задають за допомогою позначення $A = \{x \mid P(x)\}$, яке читають так: "A - це множина об'єктів x, які мають властивість P(x)". Наприклад, $A = \{x \mid x \in N_0, x < 7\}$ — це множина $\{0, 1, 2, 3, 4, 5, 6\}$.

Дві множини A та B називають piвними, якщо вони складаються з одних і тих самих елементів. Рівність множин A та B записують як A=B.

Множину A називають *підмножиною* множини B, якщо кожний елемент множини A належить множині B. У такому разі пишуть $A \subset B$, причому це не виключає, що A = B. Якщо A = B або $A = \emptyset$, то A називають *невласною* підмножиною множини B. Якщо $A \neq B$ і $A \neq \emptyset$, то A називають *власною* підмножиною множини A правдиве включення $\emptyset \subset A$.

Зазначимо, що в літературі іноді використовують позначення $A \subseteq B$; тоді позначення $A \subseteq B$ резервують для випадку, коли $A \subseteq B$ і $A \ne B$.

Множини бувають скінченними й нескінченними. Cкінченною називають множину, для якої існує натуральне число, що дорівнює кількості її елементів. Множину, яка не є скінченною, називають нескінченною. Якщо множина A скінченна, то кількість її елементів позначають як |A| і називають потужністью. Поняття потужності вводять і для нескінченних множин, але ми не будемо розглядати його.

Часто всі розглядувані в певній ситуації множини являють собою підмножини якоїсь множини, яку називають універсальною множиною або універсумом. Універсальну множину позначають як U.

Множини можна зображати графічно за допомогою *діаграм Венна*, які запровадив 1881року англійський математик Дж. Венн (J. Venn). Універсальну множину позначають прямокутником, а всі інші множини – кругами в ньому.

Для заданої множини A можна розглянути множину всіх її підмножин, включно з порожньою множиною \varnothing і самою множиною A. Цю множину позначають 2^A чи P(A) й називають *множиною-степенем*, або *булеаном* множини A. Для скінченної множини A множина 2^A містить $2^{|A|}$ елементів.

Приклад. Нехай $A=\{0, 1, 2\}$. Тоді $2^A=\{\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}\}$. Ця множина містить $2^3=8$ елементів.

Кортеж – це впорядкований набір елементів. Сказане не слід розглядати як означення кортежу, оскільки тоді потрібно дати пояснення з приводу його синоніма «впорядкований набір». Поняття «кортеж» (синоніми – *вектор*, *рядок*, *ланцюжок*, *слово*) уважатимемо, як і поняття множини, первісним, тобто неозначуваним. Елементи, що утворюють кортеж, називають його *компонентами*. Компоненти нумерують, кількість компонент називають *довжиною* або *розмірністю* кортежу. Нескінченні кортежі не розглядатимемо.

Два кортежі рівні, якщо вони мають однакову довжину та відповідні їх компоненти рівні. Іншими словами, кортежі $(a_1, ..., a_m)$ та $(b_1, ..., b_n)$ рівні, якщо m = n та $a_1 = b_1$, $a_2 = b_2$, ..., $a_m = b_n$.

Декартовим добутком множин A та B (позначають $A \times B$) називають множину всіх пар (a, b) таких, що $a \in A$, $b \in B$. Зокрема, якщо A = B, то обидві компоненти належать A. Такий добуток позначають як A^2 та називають декартовим квадратом множини A. Аналогічно, декартовим добутком n множин A_1, \ldots, A_n (позначають $A_1 \times \ldots \times A_n$) називають множину всіх кортежів (a_1, \ldots, a_n) довжиною n таких, що $a_1 \in A_1, \ldots, a_n \in A_n$. Частковий випадок $A \times \ldots \times A$ позначають як A^n і називають n - m степенем множини A.

Приклад. Нехай $A=\{1, 2\}$, $B=\{a, b, c\}$. Тоді $A\times B=\{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)\}$, $B\times A=\{(a,1), (a,2), (b,1), (b,2), (c,1), (c,2)\}$. Зрозуміло, що загалом $A\times B\neq B\times A$.

Для скінченних множин потужність (кількість елементів) декартового добутку дорівнює добутку потужностей цих множин: $|A \times B| = |A| \cdot |B|$.

Приклад. Нехай $A=\{1,2\}$, $B=\{a,b,c\}$, $C=\{x,y\}$. Тоді $A\times B\times C=\{(1,a,x),(1,a,y),(1,b,x),(1,b,y),(1,c,x),(1,c,y),(2,a,x),(2,a,y),(2,b,x),(2,b,y),(2,c,x),(2,c,y)\}$

Булева алгебра множин

Будемо вважати, що всі розглядувані множини — підмножинами деякого універсума U. Для довільних множин A та B можна побудувати нові множини за допомогою *теоретико-множиних операцій*:

об'єднанням множин A та B називають множину $A \cup B = \{ x \mid (x \in A) \text{ або } (x \in B) \};$ перетином множин A та B називають множину $A \cap B = \{ x \mid (x \in A) \text{ i } (x \in B) \};$ різницею множин A та B називають множину $A \setminus B = \{ x \mid (x \in A) \text{ i } (x \notin B) \};$ доповненням множини A називають множину $\overline{A} = U \setminus A$, де U — універсальна множина.

Основні закони для операцій з множинами

	Назва закону	Формулювання закону		
1	Закони комутативності	$a) A \cup B = B \cup A$		
		$\delta A \cap B = B \cap A$		
2	Закони асоціативності	$a) A \cup (B \cup C) = (A \cup B) \cup C$		
		$6) A \cap (B \cap C) = (A \cap B) \cap C$		
3	Закони дистрибутивності	$a) A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$		
		$6) A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$		
4	Закон подвійного доповнення	$\overline{(\overline{A})} = A$		
5	Закони ідемпотентності	$a) A \cap A = A$		
		$\delta A \cup A = A$		
6	Закони де Моргана	$a) \ \overline{A \cup B} = \overline{A} \cap \overline{B}$		
		$\overline{6}) \ \overline{A \cap B} = \overline{A} \cup \overline{B}$		
7	Закони поглинання	$a) A \cap (A \cup B) = A$		
		$6) A \cup (A \cap B) = A$		
8	Закони тотожності	$a) A \cup \emptyset = A$		
		$\delta A \cap U = A$		
9	Закони домінування	$a) A \cup U = U$		
		$\delta A \cap \emptyset = \emptyset$		
10	Закони доповнення	$a) A \cup \overline{A} = U$		
		$6) \ A \cap \overline{A} = \emptyset$		

Представимо тепер теорію, формули якої побудовані із змінних за допомогою трьох операцій, які є аналогами \cap , \cup та доповнення \setminus (до U) і аналогів U (універсальна множина) і \varnothing (порожня множина). Якщо формули з наведеної таблиці залишаються правильними при заміні \cap , \cup , \setminus , U, \varnothing на їхні аналоги, то ми матимемо нову абстрактну алгебру, яку називають алгеброю Буля.

Отже, алгебра множин – це приклад алгебри Буля. Існують і інші булеві алгебри.

Розбиття множини

Систему $S=\{A_i\}$ ($i\in I$, де I – множина індексів) підмножин множини A називають розбиттям множини A якщо:

- 1) $A_i \neq \emptyset$ для всіх $i \in I$;
- 2) $A_i \cap A_j = \emptyset$, $i \neq j$;
- $3) \bigcup_{i \in I} A_i = A.$

Інакше кажучи, система S непорожніх підмножин множини A являє собою розбиття цієї множини, якщо будь-який елемент $a \in A$ належить точно одній множині A_i із системи S. **Приклад.** $A = \{a, b, c\}$. Ось (всі) різні розбиття множини A.

$$S_1 = \{\{a\}, \{b\}, \{c\}\},$$
 $S_2 = \{\{a,b\}, \{c\}\},$ $S_3 = \{\{a\}, \{b,c\}\},$ $S_4 = \{\{a,c\}, \{b\}\},$ $S_5 = \{\{a,b,c\}\}.$

Доведення рівностей з множинами

Спосіб 1. Цей спосіб ґрунтується на такій теоремі.

Теорема. Множини A і B рівні тоді й лише тоді, коли $A \subset B$ та $B \subset A$.

Приклад. Доведемо рівність множин, яка являє собою формулювання закону де Моргана $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Припустимо, що $x \in \overline{A \cap B}$. Тоді $x \notin A \cap B$, звідки випливає, що $x \notin A$ або $x \notin B$. Отже $x \in \overline{A}$ або $x \in \overline{B}$, а це означає, що $x \in \overline{A} \cup \overline{B}$. Ми довели, що $\overline{A \cap B} \subset \overline{A} \cup \overline{B}$. Навпаки, нехай $x \in \overline{A} \cup \overline{B}$. Тоді $x \in \overline{A}$ або $x \in \overline{B}$, звідки випливає, що $x \notin A$ або $x \notin B$. Це означає, що $x \notin A \cap B$, тобто $x \in \overline{A \cap B}$. Отже $\overline{A \cup B} \subset \overline{A \cap B}$.

Спосіб 2. Доведення рівності множин за допомогою *таблиць належності*. Ці таблиці містять усі можливі комбінації належності елементів множинам (1 - елемент належить множині, 0 - не належить).

Приклад. Доведемо цим способом рівність $\overline{A \cap B} = \overline{A} \cup \overline{B}$. Доведення подано в таблиці.

A	B	$A \cap B$	$\overline{A \cap B}$	\overline{A}	\overline{B}	$\overline{A} \cup \overline{B}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	O	0	0	0

Стовпчики, які у таблиці позначено $\overline{A \cap B}$ та $\overline{A} \cup \overline{B}$, однакові, отже $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Спосіб 3. Доведення рівності множин з використанням основних законів, яким задовольняють теоретико-множинні операції.

Приклад. Довести тотожність $\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$. Використовуючи закони де Моргана та комутативності, можна записати таку послідовність рівних множин:

$$\overline{A \cup (B \cap C)} = \overline{A} \cap \overline{(B \cap C)} =$$
 за законом де Моргана 6 a $= \overline{A} \cap \overline{(B \cup C)} =$ за законом де Моргана 6 b $= \overline{(B \cup C)} \cap \overline{A} =$ за законом комутативності 1 b за законом комутативності 1 a .

Поняття відношення на множині

Найпростіший спосіб задати зв'язок між елементами двох множин — записати впорядковані пари елементів, що перебувають у цьому зв'язку. Нехай A та B — множини.

Бінарне відношення з множини A в множину B — це підмножина R декартового добутку $A \times B$ цих множин: $R \subset A \times B$. Інакше кажучи, бінарне відношення з A в B — це якась множина впорядкованих пар, у якій перший елемент пари належить множині A, а другий — множині B. Якщо $(a,b) \in R$, то в контексті відношень часто пишуть aRb.

Бінарні відношення описують зв'язки між елементами двох множин. Зв'язки між елементами більше ніж двох множин задають *n*-арними відношеннями. Розглядаючи в певному контексті лише бінарні відношення, уживають термін ,,*відношення*' замість ,,бінарне відношення'.

Приклад. Нехай $A=\{0, 1, 2\}$, $B=\{a, b\}$ та задано відношення $R=\{(0, a), (0, b), (1, a), (2, b)\}$. Отже, 0Ra, оскільки $(0, a) \in R$, а $(1, b) \notin R$.

Здебільшого розглядають бінарні відношення за умови A=B.

Відношенням на множині A називають бінарне відношення з A в A. Інакше кажучи, відношенням R на множині A — це підмножина декартового квадрату множини A, тобто $R \subset A^2$.

Приклад. Нехай A={1, 2, 3, 4}. Які впорядковані пари утворюють відношення R = {(a,b) | a ділить b}?

Очевидно, що $R = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}.$

Подання відношень матрицями та орієнтованими графами

Бінарне відношення на множині A можна подати за допомогою булевої матриці або орієнтованого графа.

Булевою називають матрицю, елементи якої – нулі та одиниці.

Матриця, яка задає відношення R на n-елементній множині A, — це булева $n \times n$ матриця $M_R = [m_{ij}], i, j = 1, ..., n$, де

$$m_{ij} = \begin{cases} 1, \text{ якщо } (a_i, a_j) \in R, \\ 0, \text{ якщо } (a_i, a_j) \notin R. \end{cases}$$

Орієнтований граф складається із множини V вершин і множини E дуг; кожна дуга — це упорядкована пара вершин із V. Якщо (a,b) — дуга, то вершину a називають ініціальною (або початковою), а вершину b — термінальною (або кінцевою) вершиною дуги. Дугу (a,a), яка має ініціальною й термінальною одну й ту саму вершину a, називають петлею.

Граф G_R , який задає відношення R на множині A, будують так. Вершини графа позначають елементами цієї множини, а дуга (a_i, a_j) існує тоді й лише тоді, коли пара $(a_i, a_j) \in R$. Такий граф G_R називають графом, асоційованим із відношенням R, або просто графом відношення R.

Приклад. На рисунку зображено матрицю та граф, які задають відношення *ділить* $R = \{(a,b) \mid a$ ділить $b\} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$

з попереднього прикладу

$$\begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$