

Az Rⁿ vektortér

Összeállította: dr. Leitold Adrien egyetemi docens

Vektorok

Rendezett szám n-esek:

•
$$\underline{a} = (a_1, a_2, ..., a_n)$$
 sorvektor

$$\underline{a} = \begin{pmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{pmatrix}$$
 oszlopvektor

 $a_1, a_2, ..., a_n$: az <u>a</u> vektor komponensei

- Rⁿ vektortér: rendezett szám n-esek, vagy más szóval ndimenziós vektorok (n-vektorok) halmaza
- Két n-vektor egyenlő, ha a megfelelő komponenseik megegyeznek.

Vektorműveletek

Két n-vektor összege:

Ha
$$\underline{a} = (a_1, a_2, ..., a_n)$$
 és $\underline{b} = (b_1, b_2, ..., b_n)$, akkor $\underline{a} + \underline{b} = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n)$.

Egy n-vektor λ-szorosa:

Ha
$$\underline{a} = (a_1, a_2, ..., a_n)$$
 és $\lambda \in R$, akkor $\lambda \cdot \underline{a} = (\lambda \cdot a_1, \lambda \cdot a_2, ..., \lambda \cdot a_n)$.

- Két n-vektor különbsége: (származtatott művelet) $\underline{a} \underline{b} = \underline{a} + (-1) \cdot \underline{b} = (a_1 b_1, a_2 b_2, \dots, a_n b_n).$
 - Minden \underline{a} n-vektorra: $\underline{a} \underline{a} = (0, ..., 0)$ nullvektor, jelölése: \underline{o}

A vektorműveletek tulajdonságai

- A vektorösszeadás és skalárral való szorzás tulajdonságai:
- 1. $(\underline{a} + \underline{b}) + \underline{c} = \underline{a} + (\underline{b} + \underline{c})$ asszociativitás
- 2. $\underline{a} + \underline{b} = \underline{b} + \underline{a}$ kommutativitás
- 3. $\underline{a} + \underline{o} = \underline{a}$
- 4. $\underline{a} + (-\underline{a}) = \underline{o}$, ahol $-\underline{a} = (-1) \cdot \underline{a}$, az \underline{a} vektor ellentettje
- 5. $(\lambda + \mu) \cdot \underline{a} = \lambda \cdot \underline{a} + \mu \cdot \underline{a}$
- 6. $\lambda \cdot (\underline{a} + \underline{b}) = \lambda \cdot \underline{a} + \lambda \cdot \underline{b}$
- 7. $\lambda \cdot (\mu \cdot \underline{a}) = (\lambda \cdot \mu) \cdot \underline{a}$
- 8. $1 \cdot \underline{a} = \underline{a}$

Lineáris kombináció

Vektorok lineáris kombinációja

Legyenek $\underline{a}_1, \underline{a}_2, \ldots, \underline{a}_k$ n-vektorok és $\lambda_1, \lambda_2, \ldots, \lambda_k$ skalárok.

Ekkor a $\lambda_1 \cdot \underline{a}_1 + \lambda_2 \cdot \underline{a}_2 + \dots + \lambda_k \cdot \underline{a}_k$ n-vektort az $\underline{a}_1, \dots, \underline{a}_k$ vektorok $\lambda_1, \dots, \lambda_k$ skalárokkal vett lineáris kombinációjának nevezzük.

Triviális lineáris kombináció

Ha a lineáris kombinációban az összes skalár nulla, akkor triviális lineáris kombinációról beszélünk.

Triviális lineáris kombináció eredménye (bármilyen $\underline{a}_1, ..., \underline{a}_k$ vektorok esetén) mindig nullvektor.

Lineáris kombináció geometriai szemléltetése 1.

A $\underline{v} = \lambda \cdot \underline{a}$ alakú vektorok egy origón átmenő \underline{a} irányvektorú egyenesre esnek.

Lineáris kombináció geometriai szemléltetése 2.

A $\underline{v} = \lambda_1 \cdot \underline{a} + \lambda_2 \cdot \underline{b}$ alakú vektorok egy origón átmenő \underline{a} és \underline{b} által kifeszített síkra esnek.

Lineáris kombináció geometriai szemléltetése 3.

 $A \underline{v} = \lambda_1 \underline{a} + \lambda_2 \underline{b}$ alakú vektorok egy origón átmenő egyenesre esnek, amelynek az irányvektora az \underline{a} vagy a b vektor.

Lineáris kombináció geometriai szemléltetése 4.

A $\underline{v} = \lambda_1 \cdot \underline{a} + \lambda_2 \cdot \underline{b} + \lambda_3 \cdot \underline{c}$ alakú vektorok kitöltik a teljes teret.

Lineáris kombináció geometriai szemléltetése 5.

A $\underline{v} = \lambda_1 \cdot \underline{a} + \lambda_2 \cdot \underline{b} + \lambda_3 \cdot \underline{c}$ alakú vektorok az origón átmenő \underline{a} és \underline{b} által kifeszített síkra esnek.

Lineáris függetlenség és összefüggőség

Lineárisan független vektorok:

Az $\underline{a}_1, ..., \underline{a}_k$ n-vektorokat lineárisan függetleneknek nevezzük, ha belőlük csak triviális lineáris kombinációval (csupa nulla együtthatóval) állítható elő a nullvektor.

Lineárisan összefüggő vektorok:

Az $\underline{a}_1, ..., \underline{a}_k$ n-vektorokat lineárisan összefüggőeknek hívjuk, ha belőlük nem triviális lineáris kombinációval is előállítható a nullvektor.

Lin. függetlenség és összefüggőség geometriai szemléltetése az *R*³ térben

1 vektor esetén

lineárisan független

lineárisan összefüggő

Lin. függetlenség és összefüggőség geometriai szemléltetése az *R*³ térben

2 vektor esetén

lineárisan független

lineárisan összefüggő

Lin. függetlenség és összefüggőség geometriai szemléltetése az R³ térben

3 vektor esetén

lineárisan összefüggő

Lin. függetlenség és összefüggőség geometriai szemléltetése az *R*³ térben

4 vagy több vektor esetén

Az R³ térben 4 vagy több vektor mindig lineárisan összefüggő.

Lin. függetlenség ill. összefüggőség: állítások

- Az <u>a</u>₁, ..., <u>a</u>_k n-vektorok pontosan akkor lineárisan összefüggőek, ha valamelyikük előáll a többi vektor lineáris kombinációjaként.
- Az <u>a</u>₁, ..., <u>a</u>_k n-vektorok pontosan akkor lineárisan függetlenek, ha egyikük sem áll elő a többi vektor lineáris kombinációjaként.
- Ha egy vektorhalmazban szerepel a nullvektor, akkor az lineárisan összefüggő.
- Lin. független vektorhalmaz részhalmaza is lin. független.
- Lin. összefüggő vektorhalmazt bővítve az összefüggőség megőrződik.
- Az R^n vektortérben n + 1 db vektor mindig lin. összefüggő.

Vektorhalmaz rangja

Vektorhalmaz rangja:

Az a szám, amely megmutatja, hogy az adott vektorok közül maximálisan hány darab lin. független vektort tudunk kiválasztani.

Megjegyzések:

- Az Rⁿ vektortérben bármely vektorhalmaz rangja kisebb vagy egyenlő, mint n.
- Lineárisan független vektorhalmaz rangja megegyezik a vektorhalmazban lévő vektorok számával.

Bázis

- **Bázis:** Legyen $B \subseteq R^n$ egy vektorhalmaz, amely
 - lineárisan független,
 - elemeiből lineáris kombinációval az Rⁿ vektortér bármely vektora előállítható.

Ekkor a B vektorhalmazt az R^n vektortér egy bázisának hívjuk.

Példa bázisra: kanonikus (standard bázis)

$$\underline{e}_{1} = \begin{pmatrix} 1 \\ 0 \\ \dots \\ 0 \end{pmatrix}, \underline{e}_{2} = \begin{pmatrix} 0 \\ 1 \\ \dots \\ 0 \end{pmatrix}, \dots, \underline{e}_{n} = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 1 \end{pmatrix}$$

Bázis, koordináták

- Rⁿ-ben minden bázis n darab vektorból áll.
- Rⁿ-ben bármely n darab lineárisan független vektor bázist alkot.
- Legyen $B = \{\underline{b}_1, \dots, \underline{b}_n\}$ bázis R^n -ben. Ekkor bármely $\underline{x} \in R^n$ vektor *egyértelműen* előállítható a bázisvektorok lineáris kombinációjával:

$$\underline{x} = \lambda_1 \, \underline{b}_1 + \lambda_2 \, \underline{b}_2 + \dots + \lambda_n \, \underline{b}_n$$

Ekkor a $\lambda_1, \lambda_2, \dots, \lambda_n$ számokat az \underline{x} vektor B bázisra vonatkozó koordinátáinak nevezzük.

Elemi bázistranszformáció

Elemi bázistranszformáció

Legyen $B = \{\underline{b}_1, \dots, \underline{b}_n\}$ egy bázis R^n -ben, $\underline{c} \in R^n$, $\underline{c} \neq \underline{o}$.

Ekkor a B bázis vektorai között van olyan, amely kicserélhető a \underline{c} vektorral úgy, hogy a vektorcsere után is bázist kapjunk.

Az új bázisra vonatkozó koordináták számolásának algoritmusát elemi bázistranszformációnak nevezzük.

Az új koordináták számolása

Legyen az <u>x</u> vektor B bázisra vonatkozó előállítása:

$$\underline{x} = \lambda_1 \, \underline{b}_1 + \lambda_2 \, \underline{b}_2 + \dots + \lambda_n \, \underline{b}_n$$

Legyen a <u>c</u> vektor <u>B</u> bázisra vonatkozó előállítása:

$$\underline{c} = \gamma_1 \, \underline{b}_1 + \gamma_2 \, \underline{b}_2 + \ldots + \gamma_n \, \underline{b}_n$$

Tegyük fel, hogy $\gamma_i \neq 0$.

Cseréljük ki a B bázisban a \underline{b}_i vektort a \underline{c} vektorral.

Ekkor az <u>x</u> vektor új bázisra vonatkozó koordinátái:

$$\hat{\lambda}_{j} = \lambda_{j} - \frac{\lambda_{i}}{\gamma_{i}} \cdot \gamma_{j}$$
 $j \neq i$

$$\hat{\lambda}_i = \frac{\lambda_i}{\gamma_i} = \delta$$

Bázistranszformációs táblázat

A régi és az új koordináták táblázatos elrendezése:

	<u>c</u>	$\frac{\mathcal{X}}{}$		<u>C</u>	$\underline{\mathcal{X}}$
$\overline{\underline{b}_1}$	γ_1	$\overline{\lambda_{_{1}}}$	$\overline{\underline{b}_1}$	0	$\lambda_1 - \delta \cdot \gamma_1$
\underline{b}_2	γ_2	λ_{2}	\underline{b}_2	0	$\lambda_2 - \delta \cdot \gamma_2$
•	$egin{pmatrix} oldsymbol{\gamma}_2 \ dots \ \end{matrix}$	•	•	•	•
\underline{b}_i	$\begin{vmatrix} \gamma_i \\ \vdots \end{vmatrix}$	$\lambda_{_i}$	<u>C</u>	1	δ
•		•	•	•	:
\underline{b}_n	γ_n	λ_{n}	\underline{b}_n	0	$egin{array}{c} & \stackrel{\underline{arphi}}{ \lambda_1 - \delta \cdot \gamma_1} \ & \lambda_2 - \delta \cdot \gamma_2 \ & arphi \ & \delta \ & arphi \ & \lambda_n - \delta \cdot \gamma_n \ \end{array}$

A γ_i számot generálóelemnek hívjuk.

Vektorok skaláris szorzata

Legyen $\underline{a} = (a_1, a_2, \dots, a_n)$ és $\underline{b} = (b_1, b_2, \dots, b_n)$ két nvektor. Ekkor az \underline{a} és \underline{b} n-vektorok skaláris szorzatán (skalárszorzatán) az alábbi számot értjük:

$$\underline{a} \cdot \underline{b} = a_1 \cdot b_1 + a_2 \cdot b_2 + \dots + a_n \cdot b_n$$

- A skaláris szorzat tulajdonságai:
- 1. $\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{a}$
- $\underline{a} \cdot (\underline{b} + \underline{c}) = \underline{a} \cdot \underline{b} + \underline{a} \cdot \underline{c}$
- 3. $(\lambda \cdot \underline{a}) \cdot \underline{b} = \underline{a} \cdot (\lambda \cdot \underline{b}) = \lambda \cdot (\underline{a} \cdot \underline{b})$
- 4. $\underline{a} \cdot \underline{a} \ge 0$, és $\underline{a} \cdot \underline{a} = 0 \Leftrightarrow \underline{a} = \underline{o}$

Vektorok hossza, két vektor távolsága

• Az $\underline{a} = (a_1, a_2, \dots, a_n)$ n-vektor hosszán (normáján) az alábbi számot értjük:

$$\|\underline{a}\| = \sqrt{\underline{a} \cdot \underline{a}}$$

azaz

$$\|\underline{a}\| = \sqrt{a_1^2 + \ldots + a_n^2}$$

Az $\underline{a} = (a_1, a_2, \dots, a_n)$ és $\underline{b} = (b_1, b_2, \dots, b_n)$ n-vektorok távolságán az alábbi számot értjük:

$$\|\underline{a} - \underline{b}\| = \sqrt{(a_1 - b_1)^2 + \ldots + (a_n - b_n)^2}$$

A Cauchy-Schwarz-egyenlőtlenség, ortogonalitás

Cauchy-Schwarz-egyenlőtlenség:

Legyen <u>a</u> és <u>b</u> két tetszőleges n-vektor. Ekkor:

$$|\underline{a} \cdot \underline{b}| \le |\underline{a}| \cdot |\underline{b}|$$

Ortogonalitás:

Az \underline{a} és \underline{b} n-vektorokat ortogonálisaknak (merőlegeseknek) nevezzük, ha $\underline{a} \cdot \underline{b} = 0$.

Jelölés: $\underline{a} \perp \underline{b}$

Két n-vektor szöge

Két n-vektor szöge

Legyen \underline{a} és \underline{b} két, nullvektortól különböző n-vektor. Ekkor azt a $\varphi \in [0,\pi]$ szöget, melyre

$$\cos \varphi = \frac{\underline{a} \cdot \underline{b}}{\|\underline{a}\| \cdot \|\underline{b}\|}$$

teljesül, az <u>a</u> és <u>b</u> vektorok szögének nevezzük.

- Speciális esetek: Legyen $\underline{a}, \underline{b} \in R^n$, $\underline{a}, \underline{b} \neq \underline{o}$.
 - Ha $\underline{a} \cdot \underline{b} = 0$, akkor $\varphi = \pi/2$, \underline{a} és \underline{b} ortogonális.
 - Ha $\underline{a} = \lambda \cdot \underline{b}$, akkor
 - $\lambda > 0$ esetén $\varphi = 0$, ilyenkor \underline{a} és \underline{b} egyirányú,
 - λ <0 esetén $\varphi = \pi$, ilyenkor \underline{a} és \underline{b} ellentétes.

Alterek az Rⁿ vektortérben

Altér

A $H \subseteq R^n$ vektorhalmazt altérnek hívjuk az R^n vektortérben, ha bármely $\underline{a}, \underline{b} \in H$ vektorok és $\lambda \in R$ esetén $\underline{a} + \underline{b} \in H$ és $\lambda \cdot \underline{a} \in H$ is teljesül.

Triviális alterek

A $H = \{\underline{o}\}$ és $H = R^n$ esetekben teljesül a fenti definíció, ezeket az altereket az R^n vektortér triviális (nem valódi) altereinek hívjuk.

Megjegyzések:

- Rⁿ minden altere tartalmazza a nullvektort.
- Alterek metszete is mindig altér.

4

Alterek az R³ térben

- $H = \{\underline{o}\}$: 0-dimenziós, triviális altér.
- Legyen $\underline{v} \in \mathbb{R}^3$, $\underline{v} \neq \underline{o}$ rögzített. $H = \{\lambda \cdot \underline{v} \mid \lambda \in \mathbb{R}\}$: origón átmenő, \underline{v} irányvektorú egyenesre eső vektorok összessége. 1-dimenziós altér.
- Legyen $\underline{a},\underline{b} \in \mathbb{R}^3$ két lineárisan független vektor. $H = \{\lambda_1 \cdot \underline{a} + \lambda_2 \cdot \underline{b} \mid \lambda_1, \lambda_2 \in \mathbb{R}\}$: origón átmenő, az \underline{a} és \underline{b} vektorok által kifeszített síkra eső vektorok összessége. 2-dimenziós altér.
- $H = R^3$: 3-dimenziós, triviális altér.

Egyenesek Rⁿ-ben

Egyenes

 R^n -ben az 1 dimenziós altereket vagy azoknak egy rögzített vektorral való eltoltját egyeneseknek hívjuk.

■ Az \underline{a} =(a_1 ,..., a_n) és \underline{b} =(b_1 ,..., b_n) pontokon átmenő egyenes egyenlete:

$$\underline{x} = (1-t) \cdot \underline{a} + t \cdot \underline{b}$$
, ahol $t \in R$.

■ Az \underline{a} =(a_1 ,..., a_n) ponton átmenő, \underline{v} =(v_1 ,..., v_n) irányvektorú egyenes egyenlete:

$$\underline{x} = \underline{a} + t \cdot \underline{v}$$
, ahol $t \in R$.

Hipersíkok Rⁿ-ben

Hipersík

 R^n -ben az n-1 dimenziós altereket vagy azoknak egy rögzített vektorral való eltoltját hipersíkoknak hívjuk.

Hipersík egyenlete

Az \underline{a} =(a_1 ,..., a_n) ponton átmenő, a \underline{p} =(p_1 ,..., p_n) $\neq \underline{o}$ vektorra merőleges hipersík egyenlete:

$$p \cdot (x - a) = 0$$

A <u>p</u> vektort a hipersík normálvektorának nevezzük.