Automata & Formal Languages

Homework 3 – Closure Properties of Regular Languages

Abraham Murciano

March 31, 2020

- 1. (a) The language $\mathcal{L} = \mathcal{L}_1 \cap \mathcal{L}_2 \cap \cdots \cap \mathcal{L}_n$, where every \mathcal{L}_i is a regular language, is regular, since intersection is closed under finite intersection.
 - (b) The language $\mathcal{L} = \mathcal{L}_1 \cap \mathcal{L}_2 \cap \ldots$, where every \mathcal{L}_i is a regular language, is not regular, since intersection is not closed under infinite intersection.
 - (c) If a language \mathcal{R} is regular, and for some language \mathcal{L} , $\mathcal{L} \mathcal{R}$ is regular, then \mathcal{L} is regular. This is because $\mathcal{L} = (\mathcal{L} \mathcal{R}) \cup \mathcal{R}$, and regular languages are closed under finite union.
 - (d) If a language \mathcal{F} is finite, and for some language \mathcal{L} , $\mathcal{L} \mathcal{F}$ is regular, then \mathcal{L} must be regular. This follows from part (c) since all finite languages are regular.
- 2. If two languages \mathcal{L}_1 and \mathcal{L}_2 are regular, then the following language \mathcal{L} must be regular.

$$\mathcal{L} = \{ a_1 b_1 a_2 b_2 \dots a_n b_n \in \Sigma^* : a_1 a_2 \dots a_n \in \mathcal{L}_1 \land b_1 b_2 \dots b_n \in \mathcal{L}_2 \}$$

 \mathcal{L} can be shown to be regular since it is the intersection of two regular languages. Let these two languages be called \mathcal{L}'_1 and \mathcal{L}'_2 . We will define these as follows.

$$\mathcal{L}'_1 = \{ a_1 b_1 a_2 b_2 \dots a_n b_n \in \Sigma^* : a_1 a_2 \dots a_n \in \mathcal{L}_1 \}$$

$$\mathcal{L}'_2 = \{ a_1 b_1 a_2 b_2 \dots a_n b_n \in \Sigma^* : b_1 b_2 \dots b_n \in \mathcal{L}_2 \}$$

Each of these is the language that can be formed by taking \mathcal{L}_1 and \mathcal{L}_2 respectively and inserting any symbol in the language after or before each symbol in every word, respectively. To show that both \mathcal{L}'_1 and \mathcal{L}'_2 are regular given that \mathcal{L}_1 and \mathcal{L}_2 are regular, we will show that it is possible to 'extend' the DFA of each of \mathcal{L}_1 and \mathcal{L}_2 to create DFAs which accept \mathcal{L}'_1 and \mathcal{L}'_2 .

To construct a DFA for \mathcal{L}_1' from the DFA which accepts \mathcal{L}_1 , we can replace each transition on a symbol σ out of a state q_r to q_s in \mathcal{L}_1 into a transition on the same symbol σ from q_r to a new intermediate state q_t , and from q_t it will transition to q_s on any symbol. If q_r was a final state in the DFA for \mathcal{L}_1 it will not be for \mathcal{L}_1' , and q_t will be instead. See Figure 1.

Figure 1: Conversion from \mathcal{L}_1 to \mathcal{L}'_1

Similarly, a DFA for \mathcal{L}_2' can be constructed from the DFA which accepts \mathcal{L}_2 . We can replace each transition on a symbol σ into a state q_s from q_r in \mathcal{L}_2 into a transition on any symbol from

 q_r to a new intermediate state q_t , and from q_t it will transition to q_s on the symbol σ . The final states are unchanged, and a new start state is added to the DFA for \mathcal{L}'_2 which transitions to the original start state on any symbol. See Figure 2.

Figure 2: Conversion from \mathcal{L}_2 to \mathcal{L}_2'

Since \mathcal{L}'_1 and \mathcal{L}'_2 are regular, their intersection, \mathcal{L} , is also regular.

- 3. Let \mathcal{L} be a regular language over some alphabet Σ .
 - (a) The language containing all words which are double the length of any word in \mathcal{L} ,

$$\mathcal{L}' = \{ a^{2|w|} : w \in \mathcal{L} \}$$

is regular. If the DFA for language \mathcal{L} is modified such that every edge from q_a to q_b is exchanged for an edge leading to a new state on any symbol in Σ , and the new state also leads to q_b on any symbol in Σ , and the start state is replaced with a new state which transitions to the original start state, then an NFA which accepts \mathcal{L}' can be constructed. Since this is possible, then \mathcal{L}' must be regular.

(b) The language consisting of all prefixes of any word in \mathcal{L} ,

$$\operatorname{prefix}(\mathcal{L}) = \{ w \in \Sigma^* : \exists u \in \Sigma^*, wu \in \mathcal{L} \}$$

is regular, since a DFA can be built for it by making any state which leads to an accepted state in \mathcal{L} 's DFA into an accepted state in prefix(\mathcal{L})'s DFA.

(c) The language containing all 'superstrings' of a word in \mathcal{L} , i.e. strings that contain a word in \mathcal{L} as a substring,

$$\sup(\mathcal{L}) = \{ w \in \Sigma^* : \exists x, z \in \Sigma^*, \exists y \in \mathcal{L}, w = xyz \}$$

is a regular language. An NFA with ε transitions can easily be constructed for this language. Let \mathcal{A}_1 and \mathcal{A}_2 be two automatons that accept Σ^* , and DFA $_{\mathcal{L}}$ be an automaton that accepts \mathcal{L} . We can now 'concatenate' \mathcal{A}_1 to DFA $_{\mathcal{L}}$ and then 'concatenate' DFA $_{\mathcal{L}}$ to \mathcal{A}_2 . The way in which we will concatenate two automata is by adding an ε -transition from every accepted state in the first one to the start state of the second.

This operation will give us an NFA that accepts $\sup(\mathcal{L})$, so it must be regular.