# **Uber Supply – Demand Gap Analysis** (Insights Report)



# **Prepared for:**

Labmentix

# Submitted by:

Samruddhi Sanap (Data Analysis Intern)

# **Executive Summary**

This report presents a comprehensive analysis of Uber's operational data to identify and understand the demand-supply gap within its ride-sharing service. Utilizing Python for data preprocessing, MySQL for detailed querying, and Excel for dynamic visualization, the analysis focuses on uncovering patterns related to request status (completed, cancelled, no cars available), hourly trends, pickup point specific issues, and driver performance.

The findings highlight significant challenges during peak hours, particularly for specific pickup points, leading to a substantial number of unfulfilled requests. Key recommendations are provided to mitigate these issues and improve service efficiency.

# **Project Objective**

The primary objective of this project was to:

- Clean and preprocess raw Uber ride request data.
- Perform in-depth analysis using SQL queries to extract meaningful insights into demand-supply dynamics.
- Visualize these insights through an interactive dashboard in Excel.
- Identify critical areas of service inefficiency and provide data-driven recommendations.

# **Data Cleaning and Preprocessing (Python)**

#### Initial Data Overview

The raw dataset contained information on Uber ride requests, including timestamps (Request timestamp, Drop timestamp), Pickup point, Driver id, Trip id, and Status. Initial inspection revealed the need for data type conversions and feature engineering to facilitate analysis.

#### Preprocessing Steps

Using Python (in a Google Colab environment) and the Pandas library, the following steps were performed to clean and prepare the data:

- Missing Values: Handled instances of missing
   Driver id and Drop timestamp for cancelled or 'no cars available' trips, which are expected in such scenarios.
- Data Type Conversion: Converted Request timestamp and Drop timestamp columns to appropriate datetime objects.

## Feature Engineering:

- RequestHour was extracted from Request timestamp (0-23).
- Trip Duration (minutes) was calculated for completed trips. Warnings about data truncation were noted during this process, indicating potential precision loss for very long decimal values.

- Request Day of Week was derived from Request timestamp for daily pattern analysis.
- Consistency Checks: Ensured consistency in categorical fields like Pickup point and Status.
  - Output

The cleaned and transformed data was saved as uber\_data\_cleaned.csv and used for subsequent SQL analysis.

# **Data Analysis and Querying (SQL - MySQL)**

## Database Setup and Data Import

A MySQL database was set up, and the uber\_data\_cleaned.csv file was successfully imported into a table named uber\_data\_cleaned.

• Key SQL Queries and Insights

Various SQL queries were executed to extract specific insights from the cleaned data:

- Query 1 (Enhanced by Query 5): Overall Request Status Distribution
  - Purpose: To understand the high-level breakdown of all Uber requests by their final status (Completed, Cancelled, No cars available), including their proportional representation.
  - Insight: Provides a fundamental understanding of service fulfillment rates and the overall scale of unfulfilled demand across the entire dataset.
  - Result: Out of all requests, 41.97% were 'Trip completed' (2831 requests), 39.29% were 'No cars available' (2650 requests), and 18.74% were 'Cancelled' (1264 requests).

| +                 | +                | ++         |  |  |  |  |
|-------------------|------------------|------------|--|--|--|--|
| Status            | NumberOfRequests | Percentage |  |  |  |  |
| Trip completed    | 2831             | 41.97      |  |  |  |  |
| No cars available | 2650             | 39.29      |  |  |  |  |
| Cancelled         | 1264             | 18.74      |  |  |  |  |
| +                 |                  |            |  |  |  |  |

- Query 2: Request Status Distribution by Pickup Point
  - Purpose: To analyze how different statuses vary between 'Airport' and 'City' pickup points, revealing location-specific challenges.
  - Insight: Highlights distinct operational challenges and success rates specific to each major location, showing where each type of unfulfillment is more prevalent.

#### Result:

- Airport: Most common status was 'No cars available' (1713 requests), followed by 'Trip completed' (1327 requests) and 'Cancelled' (198 requests).
- City: Most common status was 'Trip completed' (1504 requests), followed by 'Cancelled' (1066 requests) and 'No cars available' (937 requests).

| Pickup point      | Status            | NumberOfRequests |
|-------------------|-------------------|------------------|
| Airport           | No cars available | 1713             |
| Airport           | Trip completed    | 1327             |
| Airport           | Cancelled         | 198              |
| City              | Trip completed    | 1504             |
| City              | Cancelled         | 1066             |
| City              | No cars available | 937              |
| +6 rows in set (0 | 0.03 sec)         | ++               |

# Query 3: Overall Hourly Demand and Supply Patterns

- Purpose: To identify hourly trends in total requests, completed trips, cancellations, and "no cars available" instances across all locations.
- Insight: Reveals peak demand times and corresponding service failures, indicating precisely when the supply-demand gap is most pronounced throughout the day.
- Result: Analysis showed significant fluctuations. 'No cars available' requests sharply increased in the evening hours (e.g., from 17:00 to 22:00, reaching highs of 322 at 18:00 and 290 at 20:00). 'Cancelled' requests were notable during morning peak hours (e.g., 176 at 05:00 and 175 at 09:00).

| +<br>  RequestHour | +<br>  TripCompleted | Cancelled | NoCarsAvailable | TotalRequests |
|--------------------|----------------------|-----------|-----------------|---------------|
| +                  | +                    | ·         | ·               | ++            |
| 0                  | 40                   | 3         | 56              | 99            |
| 1                  | 25                   | 4         | 56              | 85            |
| 2                  | 37                   | 5         | 57              | 99            |
| ] 3                | 34                   | 2         | 56              | 92            |
| 4                  | 78                   | 51        | 74              | 203           |
| 5                  | 185                  | 176       | 84              | 445           |
| 6                  | 167                  | 145       | 86              | 398           |
| 7                  | 174                  | 169       | 63              | 406           |
| 8                  | 155                  | 178       | 90              | 423           |
| 9                  | 173                  | 175       | 83              | 431           |
| 10                 | 116                  | 62        | 65              | 243           |
| 11                 | 115                  | 15        | 41              | 171           |
| 12                 | 121                  | 19        | 44              | 184           |
| 13                 | 89                   | 18        | 53              | 160           |
| 14                 | 88                   | 11        | 37              | 136           |
| 15                 | 102                  | 21        | 48              | 171           |
| 16                 | 91                   | 22        | 46              | 159           |
| 17                 | 151                  | 35        | 232             | 418           |
| 18                 | 164                  | 24        | 322             | 510           |
| 19                 | 166                  | 24        | 283             | 473           |
| 20                 | 161                  | 41        | 290             | 492           |
| 21                 | 142                  | 42        | 265             | 449           |
| 22                 | 154                  | 12        | 138             | 304           |
| 23                 | 103                  | 10        | 81              | 194           |
| +                  | +                    | ·         | +               | ++            |
| 24 rows in set     | (0.03 sec)           |           |                 |               |

# Query 4: Daily Request Status Summary

- Purpose: To summarize daily request counts, cancelled, and no-cars-available requests by the day of the week.
- Insight: Reveals day-of-the-week patterns in demand and fulfillment challenges.
- Result: The data provided daily breakdowns, for instance, Thursday had 823 total requests with 252 cancelled and 571 no cars available.

| Pickup point     | AverageTripDuration                                |
|------------------|----------------------------------------------------|
| : '              | 52.2384953529264003843  <br>52.5683843085106383916 |
| 2 rows in set (0 | ).03 sec)                                          |

## Query 6: Average Trip Duration by Pickup Point

- Purpose: To compare the average duration of completed trips originating from 'Airport' vs. 'City'.
- Insight: Helps understand typical travel times and potential differences in route complexities or service patterns for different pickup locations.

#### Result:

- Airport: Average Trip Duration was approximately 52.24 minutes.
- **City:** Average Trip Duration was approximately **52.57 minutes**.
- This indicates very similar average trip durations for completed rides from both locations.

| Request Day of Week     | CancelledRequests | NoCarsAvailableRequests | TotalRequests |
|-------------------------|-------------------|-------------------------|---------------|
| Thursday                | 252               | 571                     | 823           |
| Friday                  | 240               | 580                     | 820           |
| Monday                  | 262               | 504                     | 766           |
| Wednesday               | 270               | 490                     | 760           |
| Tuesday                 | 240               | 505                     | 745           |
| +                       |                   | <del> </del>            | ++            |
| 5 rows in set (0.02 sec | :)                |                         |               |

- Query 7: Hourly Percentage of "No Cars Available" vs. "Cancelled" by Pickup Point
  - Purpose: To drill down into the percentage of service failures (cancelled and no cars available) on an hourly basis, specific to each pickup point.
  - Insight: Pinpoints exact hours and locations where supply issues or rider cancellations are most prevalent, allowing for targeted, timesensitive interventions.
  - Result: This query provided the granular percentages for both 'Pct\_Cancelled' and 'Pct\_NoCarsAvailable' per hour per pickup point. This data was crucial for creating a dynamic visual in Excel to show these percentages.

| Pickup point    | RequestHour | +<br>  TotalRequestsInHour | CompletedTrips | CancelledTrips | NoCarsAvailableTrips | Pct_Cancelled | Pct_NoCarsAvailable |
|-----------------|-------------|----------------------------|----------------|----------------|----------------------|---------------|---------------------|
| Airport         | 0           | 53                         | 23             | 0              | 30                   | 0.00          | 56.60               |
| Airport         | 1           | 42                         | 13             | 0              | 29                   | 0.00          | 69.05               |
| Airport         | 2           | 41                         | 16             | 0              | 25                   | 0.00          | 60.98               |
| Airport         | 3           | 45                         | 15             | 0              | 30                   | 0.00          | 66.67               |
| Airport         | 4           | 72                         | 36             | 2              | 34                   | 2.78          | 47.22               |
| Airport         | 5           | 92                         | 85             | 4              |                      | 4.35          | 3.26                |
| Airport         | 6           | 89                         | 81             | 4              | 4                    | 4.49          | 4.49                |
| Airport         | 7           | 83                         | 75             | 5              |                      | 6.02          | 3.61                |
| Airport         | 8           | 73                         | 67             | 2              | 4                    | 2.74          | 5.48                |
| Airport         | 9           | 89                         | 74             | 8              |                      | 8.99          | 7.87                |
| Airport         | 10          | 75                         | 53             | 9              | 13                   | 12.00         | 17.33               |
| Airport         | 11          | 64                         | 49             | 5              | 10                   | 7.81          | 15.63               |
| Airport         | 12          | 87                         | 63             | 10             | 14                   | 11.49         | 16.09               |
| Airport         | 13          | 65                         | 35             | 9              | 21                   | 13.85         | 32.31               |
| Airport         | 14          | 50                         | 37             | 6              | 7                    | 12.00         | 14.00               |
| Airport         | 15          | 76                         | 52             | 11             | 13                   | 14.47         | 17.11               |
| Airport         | 16          | 61                         | 38             | 14             | 9                    | 22.95         | 14.75               |
| Airport         | 17          | 308                        | 74             | 19             | 215                  | 6.17          | 69.81               |
| Airport         | 18          | 405                        | 81             | 15             | 309                  | 3.70          | 76.30               |
| Airport         | 19          | 366                        | 83             | 15             | 268                  | 4.10          | 73.22               |
| Airport         | 20          | 378                        | 74             | 29             | 275                  | 7.67          | 72.75               |
| Airport         | 21          | 343                        | 61             | 28             | 254                  | 8.16          | 74.05               |
| Airport         | 22          | 183                        | 80             | 3              | 100                  | 1.64          | 54.64               |
| Airport         | 23          | 98                         | 62             | 0              | 36                   | 0.00          | 36.73               |
| City            | 0           | 46                         | 17             | 3              | 26                   | 6.52          | 56.52               |
| City            | 1           | 43<br>  58                 | 12             | 4              | 27<br>32             | 9.30          | 62.79<br>55.17      |
| City<br>City    | 2           | 1 47                       | 21<br>19       | ] 2            | 26                   | 8.62<br>4.26  | 55.32               |
| City            | 1 4         | 131                        | 42             | 49             | 40                   | 37.40         | 30.53               |
| City            | 5           | 353                        | 100            | 172            | 81                   | 48.73         | 22.95               |
| City            | 6           | 309                        | 86             | 141            | 82                   | 45.63         | 26.54               |
| City            | 7           | 323                        | 99             | 164            | 60                   | 50.77         | 18.58               |
| City            | 8           | 350                        | 88             | 176            | 86                   | 50.29         | 24.57               |
| City            | 9           | 342                        | 99             | 167            | 76                   | 48.83         | 22.22               |
| City            | 10          | 168                        | 63             | 53             | 52                   | 31.55         | 30.95               |
| City            | 11          | 107                        | 66             | 10             | 31                   | 9.35          | 28.97               |
| City            | 12          | 97                         | 58             | 9              | 30                   | 9.28          | 30.93               |
| City            | 13          | 95                         | 54             | 9              | 32                   | 9.47          | 33.68               |
| City            | 14          | 86                         | 51             | 5              | 30                   | 5.81          | 34.88               |
| City            | 15          | 95                         | 50             | 10             | 35                   | 10.53         | 36.84               |
| City            | 16          | 98                         | 53             | 8<br>  16      | 37                   | 8.16          | 37.76               |
| City            | 17<br>18    | 110<br>105                 | 77<br>  83     | 16<br>  9      | 17<br>13             | 14.55<br>8.57 | 15.45<br>12.38      |
| City<br>City    | 18          | 105                        | 83             | j 9            | 13                   | 8.57          | 12.38               |
| City            | 20          | 114                        | 87             | 12             | 15                   | 10.53         | 13.16               |
| City            | 20          | 114                        | 81             | 12             | 11                   | 13.21         | 10.38               |
| City            | 22          | 121                        | 74             | 9              | 38                   | 7.44          | 31.40               |
| City            | 23          | 96                         | 41             | 10             | 45                   | 10.42         |                     |
|                 |             | +                          | +              | +              | +                    | +             |                     |
| 8 rows in set ( | (0.04 sec)  |                            |                |                |                      |               |                     |

# Query 8: Top 5 Drivers by Completed Trips

- Purpose: To identify the drivers with the highest number of completed trips, highlighting individual contributions to service delivery.
- Insight: Useful for performance review, recognizing top performers, and understanding the capacity contributions of highly active drivers.
- Result: The top 5 drivers by completed trips were: Driver 22 (16 trips), Driver 233 (15

# trips), Driver 184 (15 trips), Driver 23 (14 trips), and Driver 16 (14 trips).



# **Data Visualization and Dashboard (Excel)**

## Data Import and Preparation in Excel

The results from the SQL queries were exported as CSV files using the SELECT ... INTO OUTFILE command. These CSV files were then imported into separate sheets in Microsoft Excel. Column headers, which are not included by default with INTO OUTFILE, were manually added to each sheet to ensure proper data interpretation and chart creation in Excel.

#### Dashboard Overview

A comprehensive and interactive dashboard, named "Uber Demand-Supply Gap Analysis Dashboard," was created in Excel to visually represent the extracted insights. The dashboard facilitates easy exploration of the data.

# Dashboard Visuals Chart 1: Overall Hourly Demand and Supply (All Pickups)

- Type: Combo Chart (Columns for Cancelled, NoCarsAvailable, TotalRequests; Line for TripCompleted).
- **Purpose:** Provides a holistic view of hourly demand and fulfillment across all locations.
- Key Insight: Clearly illustrates the significant gap between TotalRequests and TripCompleted during both morning (e.g., 5-10 AM) and evening (e.g., 5-9 PM) peak hours. The chart explicitly shows the rise in NoCarsAvailable particularly in the evening and Cancelled requests dominating the morning unfulfilled demand.



# **Chart 2: Uber Request Status by Pickup Point**

- **Type:** Clustered Column Chart (generated via PivotChart).
- **Purpose:** Compares the distribution of request statuses specifically for Airport vs. City pickups.
- **Key Insight:** This chart vividly confirms the distinct problems: Airport experiences a much higher volume of No cars available requests (1713) compared to Trip completed (1327) and Cancelled (198). Conversely, City has a higher number of Trip completed (1504), but also a significant count of Cancelled requests (1066), which is higher than 'No cars available' (937) for the City.



# **Chart 3: Hourly Percentage of Unfulfilled Requests by Pickup Point**

- Type: Clustered Column Chart (generated via PivotChart with a dynamic 'Pickup Point' filter).
- Purpose: Offers a dynamic, granular view of the percentage of cancelled and no-cars-available trips throughout each hour, allowing specific analysis for Airport or City.
- **Key Insight:** When filtered for 'Airport', the chart would show very high percentages of 'No cars available' (approaching 100% in some evening hours, e.g., 18:00, 19:00). When filtered for 'City', it would show higher percentages of 'Cancelled' trips, especially during morning peaks.



# Chart 4 & 5: Request Status for City & Request Status for Airport

- Type: Pie Charts.
- Purpose: Provide granular percentage breakdowns of request statuses for each pickup point individually, offering more detailed insights than the aggregated clustered column chart (Chart 2) for specific location analysis.
- **Key Insight:** The "Request Status for City" pie shows 'Trip completed' at 43%, 'Cancelled' at 30%, and 'No cars available' at 27%. The "Request Status for Airport" pie highlights 'No cars available' as the dominant issue at 53%, with 'Trip completed' at 41%, and 'Cancelled' at a much lower 6%. This vividly contrasts the primary unfulfillment reasons at each location.





# **Chart 6: Top 5 Drivers by Completed Trips**

- Type: Bar Chart .
- Purpose: Identifies and ranks the highestperforming drivers based on their number of completed trips, highlighting individual contributions to overall service delivery.
- **Key Insight:** Clearly displays the top drivers and their completed trip counts, e.g., Driver 22 with 16 trips, and Drivers 233 and 184 both with 15 trips.



# **Key Findings and Recommendations**

Based on the comprehensive analysis, the following critical insights into Uber's demand-supply gap and operational challenges are identified, along with actionable recommendations:

- Key Findings:
- Significant Overall Unfulfillment: A substantial majority of requests (approximately 58%) are unfulfilled (39% 'No cars available', 19% 'Cancelled'), indicating a major systemic inefficiency in service delivery.
- Pronounced Peak Hour Demand-Supply
  Mismatch: The periods of highest demand,
  particularly morning (5 AM 10 AM) and evening
  (5 PM 9 PM), witness the largest discrepancies
  between total requests and completed trips.
- Airport's Severe "No Cars Available" Crisis: The
  Airport pickup point suffers critically from a lack of
  available cars, especially during the evening peak
  hours (e.g., 6 PM onwards), leading to over half
  (53%) of its requests going unfulfilled due to car
  unavailability.
- City's Predominant Cancellation Challenge: The
   City pickup point experiences a higher proportion
   of cancelled trips (30%), particularly during the
   morning peak hours. This suggests issues like long

- rider wait times or drivers declining short-distance or unfavorable trips.
- Consistent Trip Durations: Despite differing demand patterns and unfulfillment reasons, the average trip duration for completed rides is remarkably similar for both Airport and City pickups, hovering around 52 minutes.

#### • Recommendations:

- Dynamic Pricing & Incentives: Implement targeted surge pricing and attractive driver incentives for the Airport during evening peak hours (5 PM 9 PM) to encourage driver repositioning and meet the acute demand.
- Enhanced Driver Availability Forecasting: Develop and utilize predictive models to accurately anticipate demand spikes and driver availability in specific zones (Airport vs. City) on an hourly basis. This allows for proactive driver positioning and resource allocation.
- Targeted Driver Campaigns: Launch specific campaigns or bonus programs to attract drivers to operate more frequently from the Airport during critical evening periods to directly address the chronic "No cars available" issue there.
- Optimize Dispatch Algorithms for City: Review and fine-tune dispatch algorithms for City pickups, especially during morning peaks, focusing on reducing rider wait times and minimizing driver

- cancellations by optimizing route assignments and matching efficiency.
- Improved Rider Communication: Implement clearer communication to riders regarding potential wait times or car availability in specific areas during peak times. This can manage expectations, reduce frustration, and potentially decrease rider-initiated cancellations.
- Overall Driver Pool Expansion: Continue strategies for robust driver retention and recruitment to increase the overall supply, ensuring a healthier balance across all times and locations, and building resilience against demand surges.

## **Conclusion**

This comprehensive analysis has successfully identified and quantified the critical factors contributing to Uber's demand-supply gap, moving beyond anecdotal observations to data-driven insights. The interactive Excel dashboard provides a clear, visual representation of these problems, pinpointing specific hours and locations where interventions are most needed. By implementing the suggested data-driven recommendations, Uber can significantly enhance service efficiency, reduce the number of unfulfilled requests, and ultimately improve overall customer and driver satisfaction, fostering a more reliable and effective ride-sharing ecosystem.