Chapitre 12. Réduction des endomorphismes

1 Sous-espaces stables. Polynômes d'endomorphisme

1.1 Exemples de sous-espaces stables

Définition 1.1. Soit $u \in \mathcal{L}(E)$, F un sev de E

On dit que F est stable sous u su $u(F) \subset F$

On note alors u_F l'induit de u sur F

Proposition 1.2. Si $P \in K[X]$, P(u) laisse stable F et $P(u)_F = P(u_F)$

1.2 Exemples de sous-espaces stables

- * Premier type : Soit E un K-ev, $u \in \mathcal{L}(E)$, $e \in E$ Alors $F_e = \underset{k \in \mathbb{N}}{\text{Vect}}(u^k(e))$ est un sev stable par u, c'est même le plus petit sev stable contenant e
- * Deuxième type : $\ker P(u)$ et im P(u)

Proposition 1.3. Soit $u, v \in \mathcal{L}(E)$ aveec $u \circ v = v \circ u$

Alors ker v et im v sont stables par u

Corollaire 1.4. Soit *E* un *K*-ev, $u \in \mathcal{L}(E)$ et $P \in K[X]$

Alors $\ker P(u)$ et im P(u) sont stables par u

1.3 Théorème de décomposition des noyaux

Théorème 1.5 (Théorème de décomposition des noyaux).

Soit *E* un *K*-ev, $u \in \mathcal{L}(E)$ et $P, Q \in K[X]$ Premiers entre eux.

Alors

$$\ker PQ(u) = \ker P(u) \oplus \ker Q(u)$$

Corollaire 1.6. Soit *E* un *K*-ev, $u \in \mathcal{L}(E)$ et $P_1, ..., P_r \in K[X]$ premiers entre eux 2 à 2

Alors

$$\ker P_1 P_2 ... P_r(u) = \bigoplus_{i=1}^r \ker P_i(u)$$

1

1.4 Polynôme minimal d'un endomorphisme

Théorème 1.7. Soit E est de dimension finie et Φ : $\begin{cases} K[X] \to \mathcal{L}(E) \\ P \mapsto P(u) \end{cases}$ un morphisme d'algèbres.

Alors ker $\Phi \neq \{0\}$ et il existe un unique polynôme unitaire μ_u (ou π_u) tel que ker $\Phi = \mu_u K[X]$

Si $P \in K[X]$ alors $P(u) = 0 \iff \mu_n \mid P$

 μ_u est donc le polynôme unitaire de plus petit degré (non nul) qui annule u

Par ailleurs im $\Phi = K[u] = \underset{k \in \mathbb{N}}{\text{Vect}}(u^k)$ est une sous-algèbre de $\mathcal{L}(E)$ (commutative)

de dimension deg $\mu_u = d$ et de base (Id, u, ..., u^{d-1})

Définition 1.8. Avec ces notations, μ_u s'appelle polynôme minimal de u

Proposition 1.9. Si *E* de dimension finie

$$* \quad \mu_u = 1 \iff E = \{0\}$$

$$* \boxed{\mu_u = X - \lambda \iff u = \lambda \mathrm{Id}_E, E \neq \{0\}}$$

Théorème 1.10. Soit $A \in M_n(K)$

Alors
$$\Phi: \begin{cases} K[X] \to M_n(K) \\ P \mapsto P(A) \end{cases}$$
 est un morphisme d'algèbres non injectif.

Donc ker Φ est un idéal différent de $\{0\}$ qui s'écrit $\mu_A K[X]$

Si
$$P \in K[X]$$
, $P(A) = 0 \iff \mu_A = P$

et μ_A est donc le polynôme unitaire différent de 0 de plus petit degré annulant A

Par ailleurs, si $d = \deg \mu_A$, K[A] est une sous-algèbre commutative de $M_n(K)$ de dimension d, de base $(Id, A, ..., A^{d-1})$

Définition 1.11. μ_A est appelé polynôme minimal de A (aussi noté μ_A)

Racines de polynôme minimal

Proposition 1.12. Soit *E* un *K*-ev, $u \in \mathcal{L}(E)$, $Q \in K[X]$

Si (e, λ) un couple propre de u alors

$$Q(u)(e) = Q(\lambda)e$$

Proposition 1.13.

- * Soit *E* un *K*-ev de dimension finie, $u \in \mathcal{L}(E)$, *P* un polynôme annulateur de u, $\lambda \in \operatorname{Sp}(u)$ Alors λ est racine de P : $Sp_u \in Z(P)$
- * Soit $A \in M_n(K)$, $\lambda \in \operatorname{Sp}(A)$, $P \in K[X]$ avec P(A) = 0Alors λ est racine de P

Proposition 1.14.

* Soit E un K-ev de dim finie, $u \in \mathcal{L}(E)$ Les racines de μ_u sont exactement les valeurs propres de u

$$\boxed{\operatorname{Sp} u = Z(\mu_u)}$$

* Soit $A \in M_n(K)$ Les racines de μ_A sont exactement les valeurs propres de A

$$\boxed{\operatorname{Sp} A = Z(\mu_A)}$$

Diagonalisabilité 2

Endomorphismes diagonalisables

Définition 2.1. Soit *E* un *K*-ev de dim finie, $u \in \mathcal{L}(E)$

On dit que u est diagonalisable s'il existe une base \mathcal{B} de \mathcal{E} telle que

$$\operatorname{Mat}_{\mathcal{B}}(u) = egin{pmatrix} \lambda_1 & & & 0 \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_n \end{pmatrix} \in D_n(K)$$

2

Autrement dit, s'il existe une base de vecteurs propres.

Théorème 2.2. Soit *E* un *K*-ev de dimension finie $n, u \in \mathcal{L}(E)$

Les 5 conditions suivantes sont équivalentes :

- * u est diagonalisable.
- * Il existe $\lambda_1, ... \lambda_r \in K$ 2 à 2 distincts tels que

$$E = \bigoplus_{i=1}^{r} \ker\left(u - \lambda_{i} \mathrm{Id}_{E}\right)$$

* Il existe $\lambda_1, ..., \lambda_r \in K$ 2 à 2 distincts tels que

$$\prod_{i=1}^r (u - \lambda_i \mathrm{Id}_E) = 0$$

- * Il existe $P \in K[X]$ scindé à racines simples annulant u
- * μ_u est scindé à racines simples.

Dans ces conditions

$$E = \bigoplus_{\lambda \in \operatorname{Sp} u} \ker (u - \lambda \operatorname{Id}_{E})$$

$$\mu_{u} = \prod_{\lambda \in \operatorname{Sp} u} (X - \lambda)$$

$$\mu_u = \prod_{\lambda \in \operatorname{Sp} u} (X - \lambda)$$

(On dit que "la somme des sev propres rejoint *E*")