

CONTENTS

A Study of Methods for the Determination of the Available Potassium of Soils. LAWRENCE C. WHEETING.....	1
The Fixation of Phosphate by a Peat Soil. J. L. DOUGHTY.....	23
Can <i>Bacterium Radicola</i> Assimilate Nitrogen in the Absence of the Host Plant? MARIE P. LÖHNIS.....	37
Dehydration and Soil Acidity. H. G. COLES AND C. G. T. MORISON.....	59
The Effect of Phosphate and Lime upon the Rate Curve of Solubility of Phosphorus from a Wooster Silt Loam Soil. R. H. SIMON.....	71
The Microflora of Leached Alkali Soils: II. A Leached Sodium-Chloride Soil. J. DUDLEY GREAVES.....	79
Impressions of Certain Soil Conferences in Europe, During the Summer of 1929. SELMAN A. WAKSMAN.....	85
Exchangeable Calcium and Potassium in Soils as Affected by Cropping and Fertilization. BENJAMIN D. WILSON.....	91
Soil Moisture Determination by the Alcohol Method. ALFRED SMITH AND FRED W. FLINT.....	101
The Fixation of the Potash of a Green Manure by Liming Materials. W. H. MACINTIRE AND K. B. SANDERS.....	109
An Index of Friability of Soils. OSWALD CHRISTENSEN.....	119
Neutralizing Values and Rates of Reaction with Acid Soils of Different Grades and Kinds of Liming Materials. W. H. PIERRE.....	137
Book Reviews.....	159
Factors Affecting the Estimation of Lime Requirement from pH Values. M. F. MORGAN.....	163
Periodicity of the Nitrate Content of Soils. H. N. BATHAM AND L. S. NICAM.....	181
A Holder for Soil Sample Bags. NELSON MCKAIG, JR.....	191
The Nitrogen Content of the Soil as Related to the Precipitation-Evaporation Ratio. HANS JENNY.....	193
Plant-Food Requirement of Rice. W. F. GERICKE.....	207
Soil Moisture Phenomena in a Saturated Atmosphere. LEON B. LINFORD.....	227
Determining Soil Organic Matter by Means of Hydrogen Peroxide and Chromic Acid. W. TH. DEGTJAREFF.....	239
Chilean Nitrate of Soda Nitrogen Research Award.....	247
Replaceable Bases of Irrigated Soil. W. H. METZGER.....	251
Effect of Leaking Natural Gas Upon the Soil. C. J. SCHOLLENBERGER.....	261
Soil and Crop Studies with Ammonium Sulfate. A. L. PRINCE AND A. W. BLAIR.....	267
Effect of Burning Upon the Accumulation of Organic Matter in Forest Soils. R. M. BARNETTE AND J. B. HESTER.....	281
Method for the Determination of Inorganic Nitrogen in Dried Plant Tissue. A. C. SESSIONS.....	285
Relation of the Amount and Nature of Exchangeable Cations to the Structure of a Colloidal Clay. L. D. BAVER.....	291
Removal of Ions from Solutions of Calcium Dihydrogen Phosphate by Treatment with Hydrous Gels of Alumina, Silica, and Their Mixtures. J. C. GHOSH AND P. B. BHATTACHARYYA.....	311
Equipment and Procedure for Obtaining the Displaced Soil Solution. JOHN P. CONRAD, E. L. PROEBSTING AND L. R. MCKINNON.....	323

Translocation of Calcium in Soils as Measured by Electrodialysis and Plant Growth. BENJAMIN D. WILSON.....	331
Determination of Calcium in the Presence of Iron and Aluminum. R. C. WILEY.....	339
A Method of Studying the Activity and Rate of Diffusion of Protozoa and Bacteria in the Soil. L. LOSINA-LOSINSKY AND P. F. MARTINOV.....	349
The Effect of Alfalfa and Sweet Clover Roots and Tops on Carbon Dioxide Evolution and Accumulation of Nitrates in the Soil. THOMAS L. MARTIN.....	363
Effect of Cropping with Various Fertilizer, Manure, and Lime Treatments upon the Exchangeable Bases of Plot Soils. C. J. SCHOLLENBERGER AND F. R. DREIBELBIS.....	371
The Purdue Technique for Taking and Mounting Monolithic Soil Profile Samples. T. M. BUSHNELL.....	395
The Approximate Size of Soil Particles at which the Heat of Wetting is Manifested. LAWRENCE C. KAPP.....	401
Book Reviews.....	413
Equilibrium Between Soil and Electrolytes, and Its Influence Upon Some Lime Require- ment Methods. NORMAN ASHWELL CLARK AND EMERSON R. COLLINS.....	417
The Nature of Calcium Hydroxide Absorption by Hydrated Silica. W. M. SHAW AND W. H. MACINTIRE.....	429
The Results of X-Ray and Microscopical Examinations of Soil Colloids. STERLING B. HENDRICKS AND WILLIAM H. FRY.....	457
Properties of Organic Hardpan Soils with Special Reference to Their Formation. L. A. RICHARDSON.....	481

ILLUSTRATIONS

PLATES

A STUDY OF METHODS FOR THE DETERMINATION OF THE AVAILABLE POTASSIUM OF SOILS

Plate 1. Fig. 1. The growth of rye on soil No. 7 in Neubauer tests modified to include the fertilizers indicated.....	21
2. The growth of rye on soil No. 3 in Neubauer tests modified to include the fertilizers indicated.....	21

THE FIXATION OF THE POTASH OF A GREEN MANURE BY LIMING MATERIALS

Plate 1. The Lysimeter Equipment Used in the Experiment.....	117
Fig. 1. Exterior view.....	117
2. Interior view.....	117

AN INDEX OF FRIABILITY OF SOILS

Plate 1. Fig. 1. Soil samples after being dried. Greenville loam (left), Preston Clay (right); Greenville and Preston clay mixtures (center).....	135
2. Manner of rupture of samples.....	135
3. Fragments of drier samples after test.....	135

PLANT-FOOD REQUIREMENT OF RICE

Plate 1. Rice Plants 16 Weeks Old Grown in Nutrient Solutions of Different Salt Composition.....	221
Fig. 1. Set 1—Complete nutrient solution; sets 2, 3, 4, and 5—Grown initially 4, 6, 8, and 10 weeks, respectively, in complete nutrient solution, then subsequently grown to maturity in culture solution devoid of potassium.....	221
2. Set 1—Complete nutrient solution; sets 2, 3, 4, and 5—Grown initially 4, 6, 8, and 10 weeks, respectively, in complete nutrient solution, then subsequently grown to maturity in culture solution devoid of calcium.....	221
3. Set 1—Complete nutrient solution; sets 2, 3, and 4—Grown initially, 4, 6, and 8 weeks, respectively, in complete nutrient solution, then subsequently grown to maturity in culture solution devoid of iron.....	221
Plate 2. Rice Plants 16 Weeks Old Grown in Nutrient Solutions of Different Salt Composition.....	223
Fig. 1. Set 1—Complete nutrient solution; sets 2, 3, and 4—Grown initially 4, 6, and 8 weeks, respectively, in complete nutrient solution, then subsequently grown to maturity in culture solution devoid of magnesium.....	223
2. Set 1—Complete nutrient solution; sets 2, 3, and 4—Grown initially 4, 6, and 8 weeks, respectively, in complete nutrient solution, then subsequently grown to maturity in culture solution devoid of phosphorus.....	223
3. Set 1—Complete nutrient solution; sets 2, 3, 4, and 5—Grown initially 4, 6, 8, and 10 weeks, respectively, in complete nutrient solution, then subsequently grown to maturity in culture solution devoid of nitrogen.....	223

SOIL MOISTURE PHENOMENA IN A SATURATED ATMOSPHERE

Plate 1. Effect of Water Seeping Down into a Closed Vessel.....	236
---	-----

SOIL AND CROP STUDIES WITH AMMONIUM SULFATE

Plate 1. Effect on Plants of Different Amounts of Ammonium Sulfate on a Silt Loam Soil.....	275
Fig. 1. Barley.....	275
2. Rape.....	275
3. Lettuce.....	275
Plate 2. Effect on Plants of Different Amounts of Ammonium Sulfate on a Sassafras Sand.....	277
Fig. 1. Barley.....	277
2. Rape.....	277
Plate 3. Effect on Plants of Different Amounts of Ammonium Sulfate on a Sassafras Sandy Loam.....	279
Fig. 1. Barley.....	279
2. Lettuce.....	279

EQUIPMENT AND PROCEDURE FOR OBTAINING THE DISPLACED SOIL SOLUTION

Plate 1. A Battery of Large Soil Displacement Tubes.....	329
--	-----

THE PURDUE TECHNIQUE FOR TAKING AND MOUNTING MONOLITHIC SOIL PROFILE SAMPLES

Plate 1. Soil Profiles Taken and Mounted by the Purdue Method.....	399
--	-----

**EQUILIBRIUM BETWEEN SOIL AND ELECTROLYTES, AND ITS INFLUENCE UPON SOME LIME
REQUIREMENT METHODS**

Plate 1. Stirring Apparatus.....	427
----------------------------------	-----

THE RESULTS OF X-RAY AND MICROSCOPICAL EXAMINATIONS OF SOIL COLLOIDS

Plate 1. Type Clay Mineral and Soil "Colloid" Diffraction Patterns.....	477
Fig. 1. Type Clay Mineral Diffraction Patterns.....	477
2. Diffraction Patterns of Soil "Colloids".....	477
Plate 2. Diffraction Patterns of Cecil "Colloids," Amorphous Aluminum Silicate, and Nickel Oxide.....	479
Fig. 1. Series of diffraction Patterns of Cecil "Colloids;" Mo K _a Radiation....	479
2. Quartz with Amorphous Aluminum Silicate and Nickel Oxide Showing Small Particle Size.....	479

TEXT-FIGURES**A STUDY OF METHODS FOR THE DETERMINATION OF THE AVAILABLE POTASSIUM OF SOILS**

Fig. 1. Potash Removed from 100-Gm. Samples of Soils by Methods Indicated.....	7
--	---

THE FIXATION OF PHOSPHATE BY A PEAT SOIL

Fig. 1. Phosphate Dissolved from 10 Gm. Water-Leached Peat by 1:5 Extract Using Hydrochloric Acid and Sodium Hydroxide of Various Concentrations.....	25
2. Fixation of Phosphate by 10 Gm. Water-Leached Peat.....	25
3. Effect of Leaching Peat with 0.5 Normal Hydrochloric Acid.....	26
4. Effect of Leaching Peat with Ferric Chloride.....	27
5. Effect of Leaching Peat with Aluminum Chloride.....	28
6. Solubility of Ferric Phosphate.....	29
7. Solubility of Aluminum Phosphate.....	29

ILLUSTRATIONS

vii

8. Effect of Adding 50 cc. 0.25 Normal Hydrochloric Acid and 20 Mgm. Phosphate to 10 Gm. Peat.....	30
9. Fixation of Phosphate by Unleached Peat and by Water Extract.....	31
10. Fixation of Phosphate by Hydrochloric Acid Extract.....	34

CAN BACTERIUM RADICICOLA ASSIMILATE NITROGEN IN THE ABSENCE OF THE HOST PLANT?

Fig. 1. Form of U-Tube Used for Reducing Volume of Liquid to Be Titrated.....	46
---	----

DEHYDRATION AND SOIL ACIDITY

Fig. 1. Effect of Heating Upon the Acidity of Soils 4, 6, 8, and 9.....	63
2. Effect of Heating Upon the Acidity of Soils 3, 7, and 11.....	63

THE EFFECT OF PHOSPHATE AND LIME UPON THE RATE CURVE OF SOLUBILITY OF PHOSPHORUS FROM A WOOSTER SILT LOAM SOIL

Fig. 1. The "Rate Curve of Solubility" of Wooster Silt Loam Soil under Two Widely Different Treatments.....	75
2. The Rate Curves from Treatments—(1) Superphosphate and Lime, (2) Super-phosphate, (3) Unfertilized—Wooster Silt Loam Soil.....	76

IMPRESSIONS OF CERTAIN SOIL CONFERENCES IN EUROPE, DURING THE SUMMER OF 1929, AND SOME PLANS FOR THE SECOND INTERNATIONAL CONGRESS OF SOIL SCIENCE IN 1930

Fig. 1. Excursions of the Second International Congress of Soil Science, 1930	88
---	----

THE FIXATION OF THE POTASH OF A GREEN MANURE BY LIMING MATERIALS

Fig. 1. Cumulative Outgo of Potash from Limed and Unlimed Single Additions of Red Clover Over a 4-Year Period.....	111
--	-----

AN INDEX OF FRIABILITY OF SOILS

Fig. 1. Testing Machine.....	122
2. Stress-Strain Diagram for Preston Red Clay.....	123
3. Stress-Strain Diagram for 75 Per Cent Clay and 25 Per Cent Loam.....	124
4. Stress-Strain Diagram for 50 Per Cent Clay and 50 Per Cent Loam.....	125
5. Stress-Strain Diagram for 25 Per Cent Clay and 75 Per Cent Loam.....	127
6. Stress-Strain Diagram for Greenville Loam.....	128
7. Stress-Moisture Diagram for 100 Per Cent Clay.....	129
8. Stress-Moisture Diagram for 75 Per Cent Clay and 25 Per Cent Loam.....	130
9. Stress-Moisture Diagram for 50 Per Cent Clay and 50 Per Cent Loam.....	131
10. Stress-Moisture Diagram for 25 Per Cent Clay and 75 Per Cent Loam.....	132
11. Stress-Moisture Diagram for 100 Per Cent Loam.....	132
12. Maximum Compressive Strength of Soil of Different Moisture Content, in Relation to Percentage of Clay and Loam.....	133
13. Friability Diagram.....	133
14. Friability and Moisture Percentage for Different Soils.....	134

NEUTRALIZING VALUES AND RATES OF REACTION WITH ACID SOILS OF DIFFERENT GRADES AND KINDS OF LIMING MATERIALS

Fig. 1. Relation Between the Amounts of Precipitated Calcium Carbonate Added, the Yield of Austrian Winter Peas, and the H-ion Concentration of the Soil.....	153
---	-----

FACTORS AFFECTING THE ESTIMATION OF LIME REQUIREMENT FROM pH VALUES

Fig. 1. The Relationship Between Jones CaCO_3 Requirement and pH for 124 Tobacco Fields—Fine Sandy Loam Soil of Medium Organic Content.....	168
2. Relationship Between Moisture Equivalents and " CaCO_3 Absorption Factors" for Fifty-Six Connecticut Soils.....	176

PERIODICITY OF THE NITRATE CONTENT OF SOILS	
Fig. 1. Reciprocity of the Changes in Nitric Nitrogen of Soils of the Northern and Southern Hemispheres According to the Reciprocity of the Seasons	188
A HOLDER FOR SOIL SAMPLE BAGS	
Fig. 1. A Holder for Soil Sample Bags.....	192
THE NITROGEN CONTENT OF THE SOIL AS RELATED TO THE PRECIPITATION-EVAPORATION RATIO	
Fig. 1. Map of Rain Factors (Precipitation-Temperature Quotients) of the United States.....	195
2. Humidity Factor Map (N.S.Q.) of the United States and Annual Isotherms of 4°, 12°, 20°C.....	196
3. Graphical Comparison Between Precipitation-Evaporation Quotient of Transeau, Precipitation-Saturation Deficit Quotient of Meyer (N.S.Q.) and Precipitation-Temperature Quotient of Lang (Rain Factor).....	197
4. Map Showing the Location of the Counties from Which Soil Nitrogen Analyses Were Obtained.....	198
5. Soil Nitrogen-Humidity Factor Relation Along the Annual Isotherm of 11°C.....	202
6. Soil Nitrogen-Humidiy Factor Relation Along the 19°C. Annual Isotherm.....	203
SOIL MOISTURE PHENOMENA IN A SATURATED ATMOSPHERE	
Fig. 1. Rate of Capillary Rise of Water in Tubes of Soil.....	230
EFFECT OF BURNING UPON THE ACCUMULATION OF ORGANIC MATTER IN FOREST SOILS	
Fig. 1. Nitrogen and Organic Matter from Burned and Unburned Areas of Norfolk Medium Fine Sand	283
METHOD FOR THE DETERMINATION OF INORGANIC NITROGEN IN DRIED PLANT TISSUE	
Fig. 1. The Aspiration System.....	286
RELATION OF THE AMOUNT AND NATURE OF EXCHANGEABLE CATIONS TO THE STRUCTURE OF A COLLOIDAL CLAY	
Fig. 1. Change in Reaction of Clays Containing Various Amounts of Different Cations	293
2. Specific Conductivity of Clays Containing Different Amounts of Bases.....	295
3. Migration Velocity of Clay Particles as Affected by the Amount and Nature of Exchangeable Cations.....	298
4. Effect of Exchangeable Calcium and Sodium upon the Filtration Velocity of Clays.	301
5. Viscosity of Clay Containing Different Amounts of Bases.....	303
REMOVAL OF IONS FROM SOLUTIONS OF CALCIUM DIHYDROGEN PHOSPHATE BY TREATMENT WITH HYDROUS GELS OF ALUMINA, SILICA, AND THEIR MIXTURES	
Fig. 1. Effect on Adsorption Capacity, of Adding Silica to an Alumina Gel.....	320
EQUIPMENT AND PROCEDURE FOR OBTAINING THE DISPLACED SOIL SOLUTION	
Fig. 1. Diagram of a Large Tube for Obtaining the Displaced Soil Solution.....	325
A METHOD OF STUDYING THE ACTIVITY AND RATE OF DIFFUSION OF PROTOZOA AND BACTERIA IN THE SOIL	
Fig. 1. Arrangement of Capillaries for Facilitating the Taking of Soil Samples	352
2. The Rate of Diffusion of Protozoa and Bacteria in the Soil.....	358
3. The Rate of Diffusion of Protozoa and Bacteria in the Soil.....	358

ILLUSTRATIONS

ix

4. The Rate of Diffusion of Protozoa and Bacteria in the Soil.....	358
5. The Rate of Diffusion of Protozoa and Bacteria in the Soil.....	358

THE EFFECT OF ALFALFA AND SWEET CLOVER ROOTS AND TOPS ON CARBON DIOXIDE EVOLUTION AND ACCUMULATION OF NITRATES IN THE SOIL

Fig. 1. Nitrates Accumulated during a 16-Week Period after Being Incorporated with 1 Per Cent Quantities of Different Kinds of Organic Matter.....	364
2. Amount of Carbon Dioxide Evolved Daily over a 22-Day Period from Soil Treated with 1 Per Cent Quantities of Different Kinds of Organic Matter....	366
3. Amount of Carbon Dioxide Evolved Daily over a 21-Day Period from Soil Treated with 1 Per Cent Quantities of Different Kinds of Organic Matter.....	366
4. Nitrates Accumulated during a 10-Week Period after Being Incorporated with 1 Per Cent Quantities of Different Kinds of Organic Matter.....	367
5. Amount of Carbon Dioxide Evolved Daily over a 21-Day Period from Soil Treated with 1 Per Cent Quantities of Different Kinds of Organic Matter....	368

EQUILIBRIUM BETWEEN SOIL AND ELECTROLYTES, AND ITS INFLUENCE UPON SOME LIME REQUIREMENT METHODS

Fig. 1. Quinhydrone Electrode.....	421
2. pH Values of an Acid Soil (No. 12), in Water, in 0.4 N CaCl_2 , and in 0.4 N NaCl Suspensions With Varying Quantities of Hydroxide.....	423
3. pH Values of a Soil Approximately Neutral (No. 1), in Water, in 0.4 N CaCl_2 , and in 0.4 N NaCl Suspensions with Varying Quantities of Hydroxide	423
4. pH Values of an Alkaline Soil (No. 10), in Water, in 0.4 N CaCl_2 and in 0.4 N NaCl Suspensions with Varying Quantities of Hydroxide.....	424
5. Buffer Curves for an Acid Soil (No. 9), in Water, in 0.4 N CaCl_2 , and in 0.4 N NaCl.....	424

THE NATURE OF CALCIUM HYDROXIDE ABSORPTION BY HYDRATED SILICA

Fig. 1. Effect of Equilibrium Alkalinites upon $\text{Ca}(\text{OH})_2$ Absorption by Silica Hydrógel A.	435
2. Effect of Equilibrium Alkalinites upon $\text{Ca}(\text{OH})_2$ Absorption by Silica Hydrogel B.	437
3. Effect of Equilibrium Alkalinites upon $\text{Ca}(\text{OH})_2$ by Dialized Silica Hydrosol.....	439
4. Logarithmic Plot of Concentration-Absorption Data to Test Applicability of Freundlich Absorption Equation.....	442
5. Effect of Increasing Experimental CaO/SiO_2 Ratio and (a) Effect of Equilibrium Alkalinites upon the Apparent CaO/SiO_2 Absorption Ratio.....	448
6. Effect of Increasing CaO/SiO_2 Ratio of $\text{Ca}(\text{OH})_2$ to Silica Hydrogel upon Total Alkalinity, Hydroxyl Ion, and Dissolved Silica.....	451
7. Effect of Increasing CaO/SiO_2 Ratio of $\text{Ca}(\text{OH})_2$ to Silica Hydrogel upon Solution-Phase (Alkali-Soluble) and Solid-Phase (Acid-Soluble) Silica.....	453
8. Effect of 0.25 N CaCl_2 upon Calcium Hydroxide-Soluble and Total Reacted SiO_2 at Different Experimental $\text{Ca}(\text{OH})_2/\text{SiO}_2$ Ratios.....	453

PROPERTIES OF ORGANIC HARDPAN SOILS WITH SPECIAL REFERENCE TO THEIR FORMATION

Fig. 1. A Cross-Section or Profile of a Hardpan and Non-Hardpan Soil Adjoining.....	482
---	-----