

#### **Description**

The NEC µPD4168 is an 8,192 word by 8-bit NMOS XRAM designed to operate from a single +5 V power supply. The NEC µPD4168 is termed an XRAM because it incorporates some of the best features of both SRAMs (Non-multiplexed addresses, simple interface requirements) and DRAMs (the one-transistor core cell provides high density at low cost). The negative voltage substrate bias is internally generated and provides automatic and transparent operation.

The incorporation of an internal refresh address counter and refresh multiplexer allows the user to select one of three refresh modes. The self-refresh mode provides transparent refresh without system overhead. Internal latches for address, data, and chip select allow for use in systems incorporating multiplexed address/data buses.

#### **Features**

 8,192 words by 8-bit organization Single  $+5 V \pm 10\%$  power supply On-chip substrate bias generator Fast access times Low power dissipation: 28 mW max-Standby 19 mW max-Self refresh □ TTL-compatible 28-pin SRAM/ROM/EPROM compatible package Built-in refresh multiplexer and refresh address counter □ Power-down self-refresh mode Automatic precharge allows cycle time to be independent of system skews Latched address, CS, and OE functions allow use on multiplexed address/data bus

#### Performance Ranges

refresh, and self-refresh cycles

| Device       | †CEA   | toma to |        |       |  |
|--------------|--------|---------|--------|-------|--|
| PD4168C-12عر | 120 ns | 45 ns   | 220 ns | 65 mA |  |
| PD4168C-15   | 150 ns | 56 ns   | 260 ns | 60 mA |  |
| ₽D4168C-20   | 200 ns | 70 ns   | 330 ns | 55 mA |  |

Read, early write, late write, external refresh, pulse

## Pin Configuration



#### Pin Identification

| No.                | Symbol                          | Function          |   |  |  |  |  |  |
|--------------------|---------------------------------|-------------------|---|--|--|--|--|--|
| 1                  | RESH                            | Internal refresh  |   |  |  |  |  |  |
| 2-10, 21,<br>23-25 | A <sub>0</sub> -A <sub>12</sub> | Address inputs    |   |  |  |  |  |  |
| 11-13, 15-19       | 1/00-1/07                       | Data in /out      |   |  |  |  |  |  |
| 14                 | GND                             | Ground            |   |  |  |  |  |  |
| 20                 | CE                              | Chip enable       |   |  |  |  |  |  |
| 22                 | ŌĒ                              | Output enable     | , |  |  |  |  |  |
| 26                 | CS                              | Chip select       |   |  |  |  |  |  |
| 27                 | WE                              | Write enable      |   |  |  |  |  |  |
| 28                 | Vcc                             | +5 V power supply |   |  |  |  |  |  |

#### Pin Functions

#### RFSH (Refresh Input)

A built-in refresh control circuit enables this input. Two refresh modes are available: pulse refresh, using the RFSH input as a clock input, and power-down self-refresh, using the RFSH input as logic level input. RFSH is high (inactive) during normal read and write cycles.

## A<sub>0</sub>-A<sub>12</sub> (Address Inputs)

The µPD4168 requires 13 address inputs to select a word of data. Because these address inputs are internally, read onto the chip at the falling edge of a CE clock pulse, the CE clock determines their address setup and hold times. Inputs A<sub>0</sub>-A<sub>6</sub> perform external refresh.



## I/O<sub>0</sub>-I/O<sub>7</sub> (Data Inputs/Outputs)

Common I/O pins require WE and OE to control data. The CE clock and WE determine the data setup and hold times (tpsc, tphc, tpsw, tphw) for these pins during a memory write cycle; OE determines the access time (toea) during a read cycle.

# GND (Ground)

All voltages are referenced to GND.

# CE (Chip Enable)

The chip enable clock initiates read/write cycles and external refresh cycles. It allows addresses, CS, and (during an early write cycle) data inputs to be internally read onto the chip.

# OE (Output Enable)

OE controls the output timing for I/O<sub>0</sub>-I/O<sub>7</sub>. Access time (t<sub>CEA</sub>, t<sub>OEA</sub>) is determined by the CE clock or by the OE input, according to OE input timing.

## CS (Chip Select)

When CS is high (active) while the CE clock is enabled, the µPD4168 can perform read/write operations. If CS is latched low (inactive) while the CE clock is enabled, I/O<sub>0</sub>-I/O<sub>7</sub> remain in the high-impedance state, regardless of the status of WE and OE.

# WE (Write Enable)

WE controls read/write operations. WE input timing determines whether a write cycle is an early write or a late write.

# V<sub>CC</sub> (Power Supply)

+5 V power supply.

μPD4168 Functional Modes

| Mode                    | RFSH | CE | CS | WE | ŌĒ | 110      | Comments                           |
|-------------------------|------|----|----|----|----|----------|------------------------------------|
| Read cycle              | Н    | C, | Н  | н  | L  | Data out | OE: low logic level or clock pulse |
| Early write             | Н    | C, | н  | L  | Н  | Data in  |                                    |
| Late Write              | Н    | C, | Н  | Ĉ, | Н  | Data in  |                                    |
| External refresh        | Н    | C, | Н  | Н  | Н  | High-Z   |                                    |
|                         | Н    | C, | L  | X  | х  | High-Z   | Standby                            |
| Pulse refresh           | C'   | н  | Х  | X  | X  | High-Z   |                                    |
|                         | C,   | C, | н  | Н  | Н  | High-Z   | After external refresh cycle       |
|                         | C'   | C, | Н  | Н  | L  | (Note 1) | After read cycle                   |
|                         | C'   | C' | Н  | L  | н  | Data in  | After early write cycle            |
|                         | C'   | C' | н  | C. | Н  | Data in  | After late write cycle             |
| Power down self-refresh | L    | Н  | x  | X  | X  | High-Z   |                                    |
| Standby                 | Н    | Н  | Х  | X  | X  | High-Z   |                                    |

 $H = V_{ijk}$ ,  $L = V_{ijk}$ ,  $C' = negative edge of clock pulse, <math>X = V_{ijk}$  or  $V_{ijk}$ 

#### Note:

(1) Depends on previous cycle



# **Block Diagram**



# **Absolute Maximum Ratings**

| Voltage on any pin relative to GND            | -1.010 +7.0V  |
|-----------------------------------------------|---------------|
| Operating temperature, Topp                   | 0 to +70°C    |
| Storage temperature, T <sub>STG</sub>         | -55 to +125°C |
| Short circuit output current, 1 <sub>0S</sub> | 50 mA         |
| Power dissipation, P <sub>D</sub>             | 1W            |

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## **DC Characteristics**

 $T_A = 0$  to +70°C;  $V_{CC} = 5V \pm 10\%$ 

| Parameter              |                 |      | Limits |     |      | Test              |  |
|------------------------|-----------------|------|--------|-----|------|-------------------|--|
|                        | Symbol          | Min  | Тур    | Max | Unit | Conditions        |  |
| Supply voltage         | Vcc             | 4.5  | 5.0    | 5.5 | ٧    | Referenced to GND |  |
| Input voltage,<br>low  | V <sub>IL</sub> | -1.0 |        | 8.0 | ٧    | Referenced to GND |  |
| Input voltage,<br>high | V <sub>IH</sub> | 2.4  |        | 5.5 | ٧    | Referenced to GND |  |
| Output voltage,<br>low | VOL             | 0    |        | 0.4 | ٧    | loL=2mA           |  |



# DC Characteristics (cont)

| Parameter                                            |                   |      | Limits |     |      | Test                                                          |
|------------------------------------------------------|-------------------|------|--------|-----|------|---------------------------------------------------------------|
|                                                      | Symbol            | Min  | Тур    | Max | Vnit | Conditions                                                    |
| Output voltage,<br>high                              | V <sub>OH</sub>   | 2.4  |        | VCC | ٧    | I <sub>OH</sub> = -1mA                                        |
| Average V <sub>CC</sub><br>supply current,<br>active | ICC1              |      |        | 65  | mA   | t <sub>C</sub> = 220 ns                                       |
|                                                      |                   |      |        | 60  | mA   | t <sub>C</sub> =260 ns                                        |
|                                                      |                   |      |        | 55  | mA   | t <sub>C</sub> =330 ns                                        |
| Standby current                                      | ICC2              |      |        | 5   | mA   | <u>ČE</u> ≥V <sub>IH</sub> min.<br>RFSH ≥ V <sub>IH</sub> min |
| Self-refresh<br>average current                      | I <sub>CC3</sub>  |      |        | 3.5 | mA   | RFSH ≤ V <sub>IL</sub> max                                    |
| Input leakage<br>current                             | I <sub>I(L)</sub> | - 10 |        | 10  | μΑ   | $V_{IN} = 0$ to 5.5 V;<br>others = 0 V                        |
| Output leakage<br>current                            | <sub>\$0(L)</sub> | -10  |        | 10  | μĀ   | $V_{QUT} = 0$ to 5.5 V;<br>$D_{QUT} = High \cdot Z$           |

Capacitance T<sub>A</sub> = 0 to +70°C, V<sub>CC</sub> = 5.0 V ±10%

| Parameter            |         |     | Limits |     |      | Test       |  |  |
|----------------------|---------|-----|--------|-----|------|------------|--|--|
|                      | \$ymbol | Min | Тур    | Max | Unit | Conditions |  |  |
| Input<br>capacitance | Ct      |     |        | 10  | pF   | f=1 MHz    |  |  |
| Data I/O capacitance | C1/0    |     | ·      | 10  | pF   | f=1MHz     |  |  |

# **AC Characteristics**

 $T_A = 0$  to +70°C,  $V_{CC} = 5 V \pm 10$ %

|                                                |                  |       |        | Lin    | nits  |                |       |      | Test<br>Conditions                   |
|------------------------------------------------|------------------|-------|--------|--------|-------|----------------|-------|------|--------------------------------------|
|                                                |                  | µPD41 | 168-12 | PD41يز | 68-15 | μ <b>PD4</b> 1 | 68-20 |      |                                      |
| Parameter                                      | \$ymbol          | Min   | Max    | Min    | Max   | Min            | Mex   | Unit |                                      |
| Average V <sub>CC</sub> supply current, active | loc1             |       | 65     |        | 60    |                | 55    | mA   | t <sub>C</sub> =t <sub>C</sub> (min) |
| Read, write, or refresh cycle time             | tc               | 220   |        | 260    |       | 330            | ,,-   | ns   |                                      |
| Access time from CE                            | TCEA             |       | 120    |        | 150   |                | 200   | ns   | (Note 5)                             |
| Cata off time from CE                          | †CEZ             |       | 30     |        | 35    |                | 45    | ns   | (Note 6)                             |
| Access time from CE                            | TOEA             |       | 45     |        | 55    |                | 70    | ns   | (Note 5)                             |
| Data off time from OE                          | t <sub>OEZ</sub> |       | 30     |        | 35    |                | 45    | n\$  | (Note 6)                             |
| CE pulse width                                 | tce              | 120   | 10000  | 150    | 10000 | 200            | 10000 | ns   |                                      |
| CE precharge time                              | tρ               | 90    |        | 100    |       | 120            |       | ns   |                                      |
| Address setup time to CE                       | tasc             | 0     |        | 0      |       | 0              |       | ns   |                                      |
| Address hold time from CE                      | <sup>t</sup> AHC | 35    |        | 45     |       | 55             |       | ns   |                                      |
| CS setup time to CE                            | tese             | 0     |        | 0      |       | 0              |       | ns   |                                      |
| CS hald time from CE                           | СНС              | 35    | *      | 45     |       | 55             |       | ns   |                                      |
| Data setup time to CE, early write             | tosc             | - 10  |        | -10    |       | -10            |       | ns   |                                      |
| Data hold time from CE, early write            | ₹DHC             | 90    |        | 100    |       | 120            |       | ns   |                                      |
| Data setup time to WE, late write              | 10SW             | 0     |        | 0      |       | 0              |       | ns   |                                      |
| Data hold time from WE, late write             | 1 <sub>DHW</sub> | 50    |        | 60     |       | 70             |       | ns   |                                      |
| WE setup time to CE, early write               | twsc             | -30   |        | - 30   |       | -30            |       | ns   | (Note 7)                             |
| WE hold time from CE, early write              | twic             | 90    |        | 100    |       | 125            |       | ns   |                                      |
| WE pulse duration                              | two              | 60    |        | 70     |       | 90             |       | ns   |                                      |
| CE hold time from WE, late write               | tchw             | 90    |        | 105    |       | 135            |       | ns   |                                      |
| WE setup time to CE, read cycle                | tacs             | 0     |        | 0      |       | 0              |       | ns   |                                      |
| WE hold time from CE, read cycle               | TRCH             | 0     |        | 0      |       | 0              |       | ns   |                                      |
| CE hold time from OE, read cycle               | <b>І</b> СНО     | 45    |        | 55     |       | 70             |       | ns   |                                      |
| OE setup time to CE, write cycle               | t <sub>OES</sub> | 0     |        | 0      |       | 0              |       | ns   |                                      |
| OE hold time from CE, write cycle              | 10EH             | 0     |        | 0      |       | 0              |       | ns   |                                      |
|                                                |                  |       |        |        |       |                |       |      |                                      |



# AC Characteristics (cont)

 $T_A = 0$  to +70°C,  $V_{CC} = 5V \pm 10\%$ 

| Parameter                           |                  | _          |      | Lie  | nits   |            |      |      |            |
|-------------------------------------|------------------|------------|------|------|--------|------------|------|------|------------|
|                                     |                  | µPD4168-12 |      | µPD4 | 168-15 | µPD4168-20 |      |      | Test       |
|                                     | Symbol           | Min        | Max  | Min  | Max    | Min        | Mex  | Unit | Conditions |
| E delay to RFSH, pulse refresh      | t <sub>CRD</sub> | 50         |      | 65   |        | 80         |      | ns.  |            |
| FSH pulse width, pulse refresh      | tade             | 50         | 4000 | 65   | 4000   | 80         | 4000 | AS   |            |
| FSH recovery time, pulse refresh    | tapa             | 90         |      | 100  |        | 120        |      | ns   |            |
| FSH pulse width, self refresh       | tacs             | 40         |      | 40   |        | 40         |      | μS   | (Note 8)   |
| FSH recovery time, self refresh     | trsr             | 2          |      | 2    |        | 2          |      | μS   |            |
| E hold time from RFSH, self refresh | t <sub>CSH</sub> | 40         |      | 40   |        | 40         |      | μS   |            |
| E setup time to RFSH, self refresh  | tcss             | 35         |      | 40   |        | 50         |      | ns   |            |
| ransition time, rise and fall       | 1 <sub>T</sub>   | 3          | 50   | 3    | 50     | 3          | 50   | ns   | (Note 4)   |
| Refresh period                      | 1 <sub>REF</sub> |            | 2    |      | 2      |            | 2    | ms   |            |
| RESH precharge time                 | tgp              | 90         |      | 100  |        | 120        |      | ns   |            |
| E lead time to refresh cycle        | t <sub>OEL</sub> | 170        |      | 210  |        | 260        |      | ns   |            |
| NE lead time to refresh cycle       | 1WEL             | 170        |      | 210  |        | 260        |      | ns   |            |
| RFSH setup time to CE               | t <sub>RC</sub>  | 280        |      | 320  |        | 410        |      | ns   |            |

#### Note:

- (1) All voltages referenced to GND (0 V).
- (2) An initial pause of 2ms is required after power up, followed by any 8 CE cycles and 64 RFSH cycles before proper device operation is achieved. Read, write, and external refresh cycles may be used as CE dummy cycles for initialization. The 64 refresh dummy cycles can be performed before or after the 8 CE dummy cycles. Both dummy cycles must be within AC parameters. See figure 1, below.
- (3) AC measurements assume  $t_T = 5$  ns.
- (4)  $V_{IH}$  (min) and  $V_{IL}$  (max) are reference levels for measuring input signal timing. Transition times are measured between  $V_{IH}$  and  $V_{IL}$ .
- (5) Load = 2 TTL loads and 50 pF.
- (6) t<sub>CEZ</sub> (max) and t<sub>OEZ</sub> (max) define the time at which the output achieves the open circuit condition and are not referenced to V<sub>OH</sub> of V<sub>OL</sub>.
- (7)  $t_{WSC} \le t_{WSC}$  (min), the cycle is a late write cycle.
- (8) A power down self-refresh cycle is initiated when the RFSH input is active low for a period of 40 ps. The refresh interval is about 15.6 ps.

Figure 1. Power-up Dummy Cycles





# **Timing Waveforms**

## Read Cycle



# Early Write Cycle



## Late Write Cycle



## External Refresh Cycle



# Pulse Refresh Cycle after Read Cycle Complete



# Pulse Refresh Cycle after Early Write Cycle Complete





# Timing Waveforms (cont)

# Pulse Refresh Cycle after Late Write Cycle Complete



# Pulse Refresh Cycle after External Refresh Cycle Complete



#### Power-down Self Refresh

