

2.21/d) x cn3 and h cn3 are as shown in the figures. HID 9 10 Compute the convolution (1) (1) yens = sechs * henz - 4 - (2-4) m (2) m (2-4) - 2 2 y cn3 = 2 2 2 ck3 - hcn-k3 = 2003. hcm3 + 2017. hcn-13 + 2007. hcn-2) + 20033. hcm-3] + 20143. hcm-43 = henz + hen-1 + hen-2] + hen-3] + hen-4] - yend is the sum of the current and previous 4 samples 9 10 11 12 13 14 15 16 17 18 19 20 21. 11. FOR EDUCATIONAL USE Sundaram

2.22	For each of the following pairs of waveforms, find the response y(+) of the L.T.I. system with impulse response h(t) to the input x(+). Sketch your result.
a)	$x(t) = e^{-\alpha t}$ u(t) $\begin{cases} both when \alpha \neq \beta \end{cases}h(t) = e^{-\beta t} u(t) \begin{cases} both when \alpha = \beta \end{cases}$
\rightarrow	$g(t) = \int x(\tau) \cdot h(t-\tau) \cdot d\tau$ $= \int_{-\infty}^{\infty} e^{-\alpha \tau} e^{-\beta(t-\tau)} u(\tau) \cdot u(t-\tau) \cdot d\tau$
h(t)	Now, if t zo
Гр-	CSNOW(C): W(LE-T) N=1x + for NOZ ZZ E. ED-NON - EADO = OF Motherwise. NON + E-NON + E-NON + E-NON + ENON 2
sakymps	if $t < 0$
	= 0 for t < 0.
	$y(t) = \left(\int_{a}^{t} e^{-\alpha t} \cdot e^{-\beta(t-z)} dz\right) \cdot u(t)$
7 .13	
Sundaram	FOR EDUCATIONAL USE

	Case 1: H x + Bland in the Hid bro (1) x 6
	$y(t) = \begin{pmatrix} e^{-\alpha \tau} & e^{-\beta(t-\tau)} & d\tau \\ e^{-\beta t} & e^{-(\alpha-\beta)\tau} & d\tau \end{pmatrix} \cdot u(t)$ $= e^{-\beta t} \cdot \begin{pmatrix} e^{-(\alpha-\beta)\tau} \\ e^{-(\alpha-\beta)\tau} \end{pmatrix} \cdot u(t)$ $= e^{-\beta t} \cdot \begin{pmatrix} e^{-(\alpha-\beta)\tau} \\ e^{-(\alpha-\beta)\tau} \end{pmatrix} \cdot u(t)$
0	$= e^{-\beta t} \cdot \left[e^{-(\alpha - \beta)t} - 1 \right] \cdot u(t)$ $= e^{-\beta t} \cdot \left[e^{-(\alpha - \beta)t} - 1 \right] \cdot u(t)$
	Case 2: X = B
re) (ex	$y(t) = \left(\int_{0}^{t} e^{-\beta \overline{t}} e^{-\beta(t-\overline{t})} d\overline{t} \right) \cdot u(t)$ $= (3) \times (3) + (3) \times (3) \times (3) \times (3)$
(2< 3 2	$= \left(\int_{0}^{\infty} e^{-\beta t} \cdot d\tau \right) \cdot u(t)$
	$= \left(e^{-\beta t} \int_{0}^{\infty} 1 \cdot d\tau \right) \cdot u(t)$
	++1->= > t.e-Bt. u(t)
	otherwise.
	y (5) %
	(2-7)4
	t
	57 1 01 1 2- 8-
	7+1- 7+8-
<u>Bundaram</u> ®	FOR EDUCATIONAL USE

	for t < 1 !
26	y(t) = 0 (as there is no overlap between x(z) & h(t-z)
	for 1 5 t < 3 ? 2 1
	t-1
	y(t) = 2-sin(TTt).dt
	$= 2 \cdot \left[1 - \cos\left(\pi \left(t - 1\right)\right)\right]$ where solvents we sign (TX - 1) & $\frac{\pi}{2}$ = (b) $\frac{\pi}{2}$ (85.5)
	xx
uroled et	Top and 4 to 5 5 an army remained a (1) of 1
	$y(t) = 2 \cdot \sin(\pi t) \cdot dt$
	-3+t
	= 2 · [(os (TT (t-3)) -1]
r - D.Nituro	for t >5! (as again, there is no overlap between
1-6	XLT) & h(t-z))
	1=T (6 818=T (0 S=T (d A=T (0
	$y(t) = \begin{cases} 0 & \text{for } t < 1 \end{cases}$
	2/TT [1- COS (TT (t-1))] for 14 t 4 3
	2/17 [Cos (17(t-51) -1] for 3 \(\) t \(\) \(\)
	O (HA & CH) > for (It) > 5
	26. (2-7) 4. ((1x-2) 8 3) =
Sundaram®	FOR EDUCATIONAL USE

