12 nov 2020 - Campo Magnetico

Moto circolare uniforme

Nel caso semplice in cui la particella entri nel campo magnetico con un angolo $\alpha \$ allora la particella si muoverà di **moto circolare uniforme**. Questo vuol dire che la particella sarà soggetta ad una forza centripeta, che coincide con la forza F_B di deflessione.

$$F_L = qvB$$

Dal momento che è un moto circolare uniforme so che posso dire che

$$F_C = m\left(\frac{v^2}{r}\right)$$

Eguagliando $F_L = F_C$

$$qvB = m\left(\frac{v^2}{r}\right)$$

Semplificando v

$$qB = \frac{mv}{r}$$

Questo principio è utilizzato negli acceleratori di particelle.

Nel moto circolare uniforme succede che

$$v = \frac{2\pi r}{T} = 2\pi r f$$

Sostituendo

$$qB = \frac{mv}{r} = \frac{m}{r} \frac{2\pi r}{T} = \frac{2\pi m}{T}$$
$$T = \frac{2\pi m}{qB}$$

Moto qualunque

Facendo entrare la particella conun angolo α qualunque, diverso da 90°, la particella si muoverà di moto elicoidale

Scompongo la velocità nelle componenti parallele e perpendicolari al campo magnetico $\c \B$.

P è il passo dell'elica

Le formule che regolano questo moto sono:

$$v_{\parallel} = v \cos \theta$$
 $v_{\perp} = v \sin \theta$ $v_{\perp} = \frac{2\pi r}{T}$ $v_{\parallel} = \frac{P}{T}$ $qB = \frac{mv_{\perp}}{r}$