Class -18 Decision Trees (DTs)

Prof. Pedram Jahangiry

Topics

Part I

- 1. Decision Trees Definitions
- 2. Decision Trees criteria
 - MSE
 - Error Rate
 - Gini Index
 - Entropy

Part II

- 1. Regression Trees
- 2. Classification Trees

- 1. Pruning a tree
- 2. Hyperparameters

Part IV

- 1. Pros and Cons
- 2. Applications in Finance

Part I Decision Trees definitions and criteria

Decision Trees Definitions

- DTs are ML algorithms that progressively divide data sets into smaller data groups based on a descriptive feature, until they reach sets that are small enough to be described by some label.
- DTs apply a top-down approach to data, trying to group and label observations that are similar.

Decision Trees Definitions

- When the target variable consists of real numbers: regression trees
- When the target variable is categorical: classification trees
- Terminology:
 - ✓ Root node
 - ✓ Splitting
 - ✓ Branch
 - ✓ Decision node (internal node)
 - ✓ Leaf node (terminal node)
 - ✓ Sub-tree
 - ✓ Depth (level)
 - ✓ Pruning

Decision Trees Criteria

- Which split adds the most information gain (minimum impurity)?
- Regression trees: MSE
- Classification trees:
 - 1. Error rate
 - 2. Entropy
 - 3. Gini Index

They all measure impurity

Control how a Decision Tree decides to split the data

7

Decision Trees Criteria

- Entropy: Measures the impurity or randomness (uncertainty) in the data points
- Gini Index: Measure how often a randomly chosen element would be incorrectly labeled
- For both Entropy and Gini, 0 expresses all the elements belong to a specified class (pure)
- Different decision tree algorithms utilize different impurity metrics

$$entropy = -\sum_{j} p_{j} \log_{2}(p_{j})$$

$$Gini = 1 - \sum_{i} p_j^2$$

Part II

Regression / Classification Trees!

How does a decision tree work?

Regression Trees

• Baseball Salary is color-coded from low (blue, green) to high (yellow, red)

- DTs apply a top-down approach to data, trying to group and label observations that are similar.
- The main questions in every decision-making process:
- 1. Which feature to start with?
- 2. Where to put the split (cut off)?

Interpreting the results

- Based on color-coded salary, it seems that years is the most important factor in determining salary.
- For less experienced players, the number of hits seems irrelevant.
- Among more experienced players thought, players with more hits tend to have higher salaries.
- As one can see, the model is very easy to display, interpret and explain.

Tree building process

- Divide the feature space into J distinct and non-overlapping regions.
- For every observation that falls into the region R_j , we make the same prediction, which is simply the mean of the target values for the training observations in R_j .
- The goal is to find rectangles $R_1, R_2, ..., R_j$ that minimize the RSS:

$$\sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$$

• Where \hat{y}_{R_i} is the mean target for the training observations within the j^{th} rectangle.

Tree building process: Recursive Binary Splitting

- How does the algorithm select X_i and the split s?
- X_j and s are selected such that splitting the feature space into the regions $\{X|X_j < s\}$ and $\{X|X_j \ge s\}$ leads to the largest possible reduction in RSS.

$$R_1(j,s) = \{X | X_j < s\} \text{ and } R_2(j,s) = \{X | X_j \ge s\}$$

• Seeking for the value of *j* and *s* that minimized the following equation:

$$\sum_{i: x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i: x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$

• The best split is made at that particular step, rather than looking ahead and picking a split that will lead to a better tree in some future step.

Tree building process: Recursive Binary Splitting

- Next, the algorithm repeats the process, looking for the best feature and best split in order to split the data further to minimize the RSS within each of the resulting regions.
- The process continues until a stopping criterion is reached; for instance, continues until no region contains more than a fixed number of observations.

14

A Five-Region Example of Recursive Binary Splitting

A tree corresponding to the partition in the left panel.

A perspective plot of the prediction surface corresponding to that tree.

Classification Trees

- Classification trees are very similar to regression trees, except that it is used to predict a qualitative response rather than aquantitative one.
- The prediction of the algorithm at each terminal node will be the category with the majority of data points i.e., the most commonly occurring class.

Classification Trees (details)

• Just as in the regression setting, the recursive binary splitting is used to grow a classification tree. However, instead of RSS we will be using one of the following impurity criteria:

1. Classification error rate:
$$\longrightarrow$$
 $E = 1 - \max_{k}(\hat{p}_{mk})$

2. Gini index:
$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

3. Cross entropy:
$$D = -\sum_{k=1}^{\infty} \hat{p}_{mk} \log \hat{p}_{mk}$$

- \hat{p}_{mk} represents the proportion of training observations in the m^{th} region from the k^{th} class.
- Classification error rate is not sufficiently sensitive to node purity and in practice either Gini or Cross entropy is preferred.

Decision Tree Metrics (Simple Example)

Node	$Gini \\ 1 - \sum_j p_j^2$	Cross entropy $-\sum_{j}p_{j}\log(p_{i})$	Error rate $1 - \max(p_i)$
Entire training data before split	$\left\{1 - \left(\left(\frac{10}{30}\right)^2 + \left(\frac{20}{30}\right)^2\right)\right\} = 0.44$	$-\left\{ \left(\frac{10}{30} \log \frac{10}{30} + \frac{20}{30} \log \frac{20}{30} \right) \right\} = 0.64$	$1 - \max\left\{\frac{10}{30}, \frac{20}{30}\right\}$ $= 1 - \frac{20}{30} = 0.333$
Root node: $X1 > s$	$\frac{20}{30} * \left\{ 1 - \left(\left(\frac{9}{20} \right)^2 + \left(\frac{11}{20} \right)^2 \right) \right\} + $ $\frac{10}{30} * \left\{ 1 - \left(\left(\frac{1}{10} \right)^2 + \left(\frac{9}{10} \right)^2 \right) \right\} = $ $\frac{20}{30} * 0.495 + \frac{10}{30} * 0.18 = 0.39$	$-\frac{20}{30} \left\{ \left(\frac{9}{20} \log_2 \frac{9}{20} + \frac{11}{20} \log_2 \frac{11}{20} \right) \right\} + \\ -\frac{10}{30} \left\{ \left(\frac{1}{10} \log_2 \frac{1}{10} + \frac{9}{10} \log_2 \frac{9}{10} \right) \right\} = \\ \frac{20}{30} * 0.69 + \frac{10}{30} * 0.325 = 0.57$	$\frac{20}{30} * \frac{9}{20} + \frac{1}{30} * \frac{1}{10} = \frac{0.333}{0.333}$
Root node: X2 > s	$\frac{15}{30} * \left\{ 1 - \left(\left(\frac{2}{15} \right)^2 + \left(\frac{13}{15} \right)^2 \right) \right\} + $ $\frac{15}{30} * \left\{ 1 - \left(\left(\frac{8}{15} \right)^2 + \left(\frac{7}{15} \right)^2 \right) \right\} = $ $\frac{15}{30} * 0.231 + \frac{15}{30} * 0.497 = 0.37$	$-\frac{15}{30} \left\{ \left(\frac{2}{15} \log_2 \frac{2}{15} + \frac{13}{15} \log_2 \frac{13}{15} \right) \right\} + $ $-\frac{15}{30} \left\{ \left(\frac{8}{15} \log_2 \frac{8}{15} + \frac{7}{15} \log_2 \frac{7}{15} \right) \right\} = $ $\frac{15}{30} * 0.39 + \frac{15}{30} * 0.69 = 0.54$	$\frac{15}{30} * \frac{2}{15} + \frac{15}{7} = \frac{0.3}{15}$

X1

Trees Versus Linear Models

Left column: linear model; Right column: tree-based model

Part III

Pruning a tree
Tunning hyper parameters

Pruning a tree

- Decision tree may produce good predictions on the training set, but is likely to overfit the data, leading to poor test set performance. (why?)
- A smaller tree with fewer splits may lead to lower variance and better interpretation at the cost of a little bias.
- This strategy may result in smaller trees, but is too short-sighted:
 - "a seemingly worthless split early on in the tree might be followed by a very good split, a split that leads to a large reduction in RSS/impurity index later on"
- A better strategy is to grow a very large tree T_0 , and then prune it back in order to obtain a subtree.
- Cost complexity pruning is used to do this.

Cost complexity pruning (weakest link pruning)

- Consider a sequence of trees indexed by a nonnegative tuning parameter α .
- For each value of α there corresponds a subtree $T \subset T_0$ such that the following objective function is minimized.

$$\sum_{m=1}^{|T|} \sum_{i: x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|$$

- R_m is the rectangle corresponding to m^{th} terminal node and
- \hat{y}_{Rm} is the mean of the training observations in R_m

• Lastly, we return to full data set and obtain the subtree corresponding to α

Building a Regression Tree algorithm

Algorithm 8.1 Building a Regression Tree

- 1. Use recursive binary splitting to grow a large tree on the training data, stopping only when each terminal node has fewer than some minimum number of observations.
- 2. Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of α .
- 3. Use K-fold cross-validation to choose α . That is, divide the training observations into K folds. For each $k = 1, \ldots, K$:
 - (a) Repeat Steps 1 and 2 on all but the kth fold of the training data.
 - (b) Evaluate the mean squared prediction error on the data in the left-out kth fold, as a function of α .

Average the results for each value of α , and pick α to minimize the average error.

4. Return the subtree from Step 2 that corresponds to the chosen value of α .

Source: An introduction to Statistical Learning

Salary example continued

Finding the optimal α or T

FIGURE 8.5. Regression tree analysis for the Hitters data. The training, cross-validation, and test MSE are shown as a function of the number of terminal nodes in the pruned tree. Standard error bands are displayed. The minimum cross-validation error occurs at a tree size of three.

The optimal (pruned) tree

Other hyperparameters

- ✓ To avoid overfitting, regularization parameters can be added to the model such as:
 - Maximum depth of the tree
 - Minimum population at a node
 - Maximum number of decision nodes
 - Minimum impurity decrease (info gain)
 - Alpha (complexity parameter)
- ✓ Other hyperparameters are:
 - Criterion: gini, entropy
 - Splitter: best, random
 - Class weight: balanced, none

Part IV

Pros and Cons Applications in finance

DTs' Pros and Cons

Pros Cons

Pros:

- Easy to interpret and visualize
- Can easily handle categorical data without the need to create dummy variables
- Can easily capture Non-linear patterns
- Can handle data in its raw form (no preprocessing needed). Why?
- Has no assumptions about distribution because of the non-parametric nature of the algorithm

Cons:

- Poor level of predictive accuracy.
- Sensitive to noisy data. It can overfit noisy data. Small variations in data can result in the different decision tree*.
 - *This can be reduced by bagging and boosting algorithms.

DTs' Applications in finance

- Enhancing detection of fraud in financial statements,
- Generating consistent decision processes in equity and fixed-income selection
- Simplifying communication of investment strategies to clients.
- Portfolio allocation problems.

DT example in finance

Source: CFA PROGRAM. Level II . Reading 7

Students' questions

- 1. Should we be concerned about the computational expense of 'MSE' when working with large trees of continuous data?
- 2. Having hard time understanding gini impurity and what conceptually the value means.
- 3. What is the Gini impurity role in classification?
- 4. A little confused on how to pick which method should be used for a given data set.
- 5. Would like to go over when the algorithm decides to create a leaf node vs continuing the decision tree.

