聚类分析

翟祥

目录

- * 聚类分析概述
- * 聚类分析数据准备
- * 聚类分析技术
- * 聚类结果探索
- * 聚类结果部署

何为聚类分析

- * 聚类分析又称群分析,它是研究对样品或指标进行 分类的一种多元统计方法。
- * 所谓的"类",通俗地说就是相似元素的集合. 聚类分析是按照观测样品取值的相似程度,对观测样品进行分类,使在同一类内的观测样品是相似的,不同类间的观测是不相似的。
- * 什么是分类?它只不过是将一个观测对象指定到某一类(组)。

何为聚类分析

分类的问题可以分成两种:

一种是对当前所研究的问题已知它的类别数目,且知道各类的特征(如分布规律,或知道来自各类的训练样本).

另一种是事先不知道研究的问题应分为几类,更不知道观测到的个体的具体分类情况,我们的目的正是需要通过对观测数据所进行的分析处理,选定一种度量个体接近程度的量,确定分类数目,建立一种分类方法,并按亲近程度对观测对象给出合理的分类.这种问题在实际中大量存在,它正是聚类分析所要解决的问题.

聚类分析

Agglomerative

Divisive

聚类分析流程

- 1、聚类分析的数据准备 变量和观测选择 分布分析 量纲剔除
- 2、聚类分析过程
- 3、聚类后处理 类数确认

标签确定

4、模型部署

聚类分析

聚类分析根据一批样品的许多观测指标,按照一定的数学公式具体地计算一些样品或一些参数(指标)的相似程度,把相似的样品或指标归为一类,把不相似的归为一类。

例如对上市公司的经营业绩进行分类;据经济信息和市场行情,客观地对不同商品、不同用户及时地进行分类。又例如当我们对企业的经济效益进行评价时,建立了一个由多个指标组成的指标体系,由于信息的重叠,一些指标之间存在很强的相关性,所以需要将相似的指标聚为一类,从而达到简化指标体系的目的。

定义距离的准则

定义距离要求满足第i个和第j个样品之间的距离如下四个条件(距离可以自己定义,只要满足距离的条件)

$$d_{ij} \geq 0$$
对一切的 i 和 j 成立;

$$d_{ij} = 0$$
当且仅当 $i = j$ 成立;

$$d_{ii} = d_{ii}$$
0对一切的 i 和 j 成立;

$$d_{ij} \leq d_{ik} + d_{kj}$$
对于一切的 i 和 j 成立.

距离矩阵

至此,我们已经可以根据所选择的距离构成样本点间的距离表,样本点之间被连接起来。

$G_{_q}$	$G_{_{1}}$	G_{2}	• • •	G_{n}
$G_{_{1}}$	0	$d_{_{12}}$	• • •	$d_{_{1n}}$
G_{2}	$d_{_{21}}$	0		d_{2n}
•	:	i		
G_{n}	$d_{_{n1}}$	d_{n2}	• • •	0

(1) 明氏距离测度

设 $\mathbf{x}_{i} = (x_{i1}, x_{i2}, \dots, x_{ip})$ 和 $\mathbf{x}_{j} = (x_{j1}, x_{j2}, \dots, x_{jp})'$ 是第i和 j 个样品的观测值,则二者之间的距离为:

明氏距离
$$d_{ij} = \left(\sum_{k=1}^{p} |x_{ik} - x_{jk}|^{g}\right)^{\frac{1}{g}}$$

特别,欧氏距离
$$d_{ij} = \sqrt{\sum_{k=1}^{p} (x_{ik} - x_{jk})^2}$$

(2)杰氏距离

这是杰斐瑞和马突斯塔(Jffreys & Matusita) 所定义的一种距离,其计算公式为:

$$d_{ij}(J) = \left[\sum_{k=1}^{p} (\sqrt{x_{ik}} - \sqrt{x_{jk}})^{2}\right]^{-1/2}$$

(3)兰氏距离

这是兰思和维廉姆斯(Lance & Williams)所给定的一种距

离, 其计算公式为:

$$d_{ij}(L) = \sum_{k=1}^{p} \frac{|x_{ik} - x_{jk}|}{x_{ik} + x_{jk}}$$

这是一个自身标准化的量,由于它对大的奇异值不敏感,这样使得它特别适合于高度偏倚的数据。虽然这个距离有助于克服明氏距离的第一个缺点,但它也没有考虑指标之间的相关性。

(4)马氏距离

这是印度著名统计学家马哈拉诺比斯 (P. C. Mahalanobis)所定义的一种距离,其计算公式为: $d_{ij}^2 = (\mathbf{x_i} - \mathbf{x_j})'\Sigma^{-1}(\mathbf{x_i} - \mathbf{x_j})$

分别表示第i个样品和第j样品的p指标观测值所组成的列向量,即样本数据矩阵中第i个和第j个行向量的转置,Σ表示观测变量之间的协方差短阵。 在实践应用中,若总体协方差矩阵Σ未知,则可用样本协方差矩阵作为估计代替计算。

(5) 斜交空间距离

由于各变量之间往往存在着不同的相关关系,用正交空间的距离来计算样本间的距离易变形,所以可以采用斜交空间距离。 71/2

以采用斜交空间距离。
$$d_{ij} = \left[\frac{1}{p^2} \sum_{h=1}^{p} \sum_{k=1}^{p} (x_{ih} - x_{jh})(x_{ik} - x_{jk})\gamma_{hk}\right]^{1/2}$$

当各变量之间不相关时,斜交空间退化为欧氏距离。

常见相似程度

(1) 個似系数

设 $\mathbf{x}_{i} = (x_{i1}, x_{i2}, \dots, x_{ip})$ 和 $\mathbf{x}_{j} = (x_{j1}, x_{j2}, \dots, x_{jp})'$ 是第 i 和 j 个样品的观测值,则二者之间的相似测度为:

常见相似程度

(2) 夹角余弦

夹角余弦时从向量集合的角度所定义的一种 测度变量之间亲疏程度的相似系数。设在n维空 间的向量

$$\mathbf{x}_{i} = (x_{1i}, x_{2i}, \dots, x_{ni})'$$
 $\mathbf{x}_{j} = (x_{1j}, x_{2j}, \dots, x_{nj})'$

$$c_{ij} = \cos \alpha_{ij} = \frac{\sum_{k=1}^{n} x_{ki} x_{kj}}{\sqrt{\sum_{k=1}^{n} x_{ki}^{2} \sum_{k=1}^{n} x_{kj}^{2}}} \qquad d_{ij}^{2} = 1 - C_{ij}^{2}$$

聚类分析概况

目录

- * 聚类分析概述
- * 聚类分析数据准备
- * 聚类分析技术
- * 聚类结果探索
- * 聚类结果部署

聚类分析数据准备

- 1. 数据和样本选择(Who am I clustering?)
- 2. 变量选择(What characteristics matter?)
- 3. 数据探索(What shape/how many clusters?)
- 4. 标准化(Are variable scales comparable?)
- 5. 数据变换(Are variables correlated? Are clusters elongated?)

数据探索(降维)

主成分分析或者多维标度分析(降维)

标准化

1. 中心化变换
$$x_{ij}^* = x_{ij} - \overline{x}_j$$
 $(i = 1, 2, \dots, n; j = 1, \dots, m)$

变换后数据的均值为0,而协差阵不变.

2. 标准化变换

$$x_{ij}^* = \frac{x_{ij} - \bar{x_j}}{s_j} \quad \begin{pmatrix} i = 1, 2, \dots, n \\ j = 1, 2, \dots, m \end{pmatrix}$$

变换后的数据,每个变量的样本均值为0,标准差为1,而且标准化变换后的数据 $\{x^*_{ii}\}$ 与变量的量纲无关.

3. 极差标准化变换 $x_{ij}^* = \frac{x_{ij} - \bar{x_{ij}}}{R_j}$ $\begin{pmatrix} i = 1, 2, \dots, n \\ j = 1, 2, \dots, m \end{pmatrix}$

变换后的数据,每个变量的样本均值为0,极差为1,变换后的数据也是无量纲的量.

标准化方法

METHOD	LOCATION	SCALE
MEAN	mean	1
MEDIAN	median	1
SUM	0	sum
EUCLEN	0	Euclidean Length
USTD	0	standard deviation about origin
STD	mean	standard deviation
RANGE	minimum	range
MIDRANGE	midrange	range/2
MAXABS	0	maximum absolute value
IQR	median	interquartile range
MAD	median	median absolute deviation from median
ABW(c)	biweight 1-step M-estimate	biweight A-estimate
AHUBER(c)	Huber 1-step M-estimate	Huber A-estimate
AWAVE(c)	Wave 1-step M-estimate	Wave A-estimate
AGK(p)	mean	AGK estimate (ACECLUS)
SPACING(p)	mid minimum-spacing	minimum spacing
L(p)	L(p)	L(p) (Minkowski distances)
IN(ds)	read from data set	read settings from data set "ds"

数据变换(处理变量间的相关)

* Before ACECLUS

After ACECLUS

目录

- * 聚类分析概述
- * 聚类分析数据准备
- * 聚类分析技术
- * 聚类结果探索
- *聚类结果部署

分层聚类

分层聚类

1、最短距离 (Nearest Neighbor)

最长距离 (Furthest Neighbor)

组间平均连接(Between-group Linkage)

$$\frac{d_1 + \dots + d_9}{9}$$

组内平均连接法(Within-group Linkage)

$$\frac{d_1 + d_2 + d_3 + d_4 + d_5 + d_6}{6}$$

重心法 (Centroid clustering):均值点的距离

层次聚类示例

设抽取5个样品,每个样品观察2个指标,

 X_1 : 您每月大约喝多少瓶啤酒,

 x_2 : 您对"饮酒是人生的快乐"这句话的看法如何? 观察数据如下,对这5个样品分类。

	\mathcal{X}_1	x_2
1	20	7
2	18	10
3	10	5
4	4	5
5	4	3

1.计算5个样品两两之间的距离 d_{ij} (采用欧氏距离),

记为距离矩阵

	<u> </u>			
	2	3	4	5
1	3.6	10.2	16.12	16.49
2		9.43	14.87	15.65
3			6	6.32
4				2

2. 合并距离最小的两类为新类,按顺序定为第6类。

$$d_{45} = 2$$
为最小, ⑥= $\{4,5\}$

3、计算新类⑥与各当前类的距离,

$$d_{61} = \min\{d_{41}, d_{51}\} = \min\{16.12, 16.49\} = 16.12$$

$$d_{62} = \min\{d_{42}, d_{52}\} = \min\{14.87, 15.65\} = 14.87$$

$$d_{63} = \min\{d_{43}, d_{53}\} = 6$$

得距离矩阵如下:

	2	3	6
1	3.6	10.2	16.12
2		9.43	14.87
3			6

4、重复步骤2、3,合并距离最近的两类为新类,直到所有的类并为一类为止。

$$d_{12} = 3.6$$
 为最小, ⑦= $\{1,2\}$

$$d_{73} = \min\{d_{13}, d_{23}\} = 9.43$$
 $d_{76} = \min\{d_{16}, d_{26}\} = 14.87$

	6	7	
3	6	9 .43	
6		14.87	

$$d_{87} = \min\{d_{37}, d_{67}\} = 9.43$$

6、按聚类的过程画聚类谱系图

 $d_{4,5} = 2$

$$d_{1,2} = 3.6$$

$$d_{3.6} = 6$$

$$d_{3,6} = 6$$
$$d_{7,8} = 9.43$$

7、决定类的个数与类。

观察此图,我们可以把5个样品分为3类,

 $\{1,2\},\{3\},\{4,5\}$.

Distance Between Cluster Centroids

划分聚类

(a) 空间的群点

(b) 任取两个凝聚点

(c) 第一次分类

(d) 求各类中心

(e) 第二次分类

- 1. Select inputs.
- 2. Select *k* cluster centers.
- 3. Assign cases to closest center.
- 4. Update cluster centers.
- 5. Reassign cases.
- 6. Repeat steps 4 and 5 until convergence.

- 1. Select inputs.
- 2. Select *k* cluster centers.
- 3. Assign cases to closest center.
- 4. Update cluster centers.
- 5. Reassign cases.
- 6. Repeat steps 4 and 5 until convergence.

- 1. Select inputs.
- 2. Select *k* cluster centers.
- 3. Assign cases to closest center.
- 4. Update cluster centers.
- 5. Reassign cases.
- 6. Repeat steps 4 and 5 until convergence.

- 1. Select inputs.
- 2. Select *k* cluster centers.
- 3. Assign cases to closest center.
- 4. Update cluster centers.
- 5. Reassign cases.
- 6. Repeat steps 4 and 5 until convergence.

- 1. Select inputs.
- 2. Select *k* cluster centers.
- 3. Assign cases to closest center.
- 4. Update cluster centers.
- 5. Reassign cases.
- 6. Repeat steps 4 and 5 until convergence.

- 1. Select inputs.
- 2. Select *k* cluster centers.
- 3. Assign cases to closest center.
- 4. Update cluster centers.
- 5. Reassign cases.
- 6. Repeat steps 4 and 5 until convergence.

- 1. Select inputs.
- 2. Select *k* cluster centers.
- 3. Assign cases to closest center.
- 4. Update cluster centers.
- 5. Reassign cases.
- 6. Repeat steps 4 and 5 until convergence.

- 1. Select inputs.
- 2. Select *k* cluster centers.
- 3. Assign cases to closest center.
- 4. Update cluster centers.
- 5. Reassign cases.
- 6. Repeat steps 4 and 5 until convergence.

- 1. Select inputs.
- 2. Select *k* cluster centers.
- 3. Assign cases to closest center.
- 4. Update cluster centers.
- 5. Reassign cases.
- 6. Repeat steps 4 and 5 until convergence.

- 1. Select inputs.
- 2. Select *k* cluster centers.
- 3. Assign cases to closest center.
- 4. Update cluster centers.
- 5. Reassign cases.
- 6. Repeat steps 4 and 5 until convergence.

When no clusters exist, use the *k*-means algorithm to partition cases into contiguous groups.

非参聚类

目录

- * 聚类分析概述
- * 聚类分析数据准备
- * 聚类分析技术
- * 聚类结果探索
- * 聚类结果部署

类别轮廓分析

- 1. For the cluster being profiled (cluster k), classify each observation as being a member of cluster k (with a value of 1) or not a member of cluster k (with a value of 0).
- 2. Use logistic regression analysis to rank order the input variables in their ability to distinguish cluster *k* from the others.
- 3. Generate a comparative plot of cluster *k* and the rest of the data.

示例: 客户聚类分析

- *在众多客户当中,如果不进行分类,通常无法进行行为和习惯的分析。
 - * Bargain hunter
 - * Man/woman on a mission
 - * Impulse shopper
 - * Weary parent
 - * DINK (dual income, no kids)

示例:商店聚类分析

- *You want to open new grocery stores in the U.S. based on demographics. Where should you locate the following types of new stores?
 - * low-end budget grocery stores
 - * small boutique grocery stores
 - * large full-service supermarkets

Example: 时尚分类

*Based on the four styles of pants that your customers can purchase, can you identify stores as serving similar fashion types?

* country-club dresser

* fashion trendsetter

* comfort kick-back dresser

16组中呈现出明显的优势、弱势特征

组号	优势特征	弱势特征	描述性名称
#1	语音每次呼叫时间、香港(澳门)呼叫、非繁忙时段呼叫	繁忙时呼叫、IP呼叫、短信、转移	业余活跃组
#2	繁忙时段月均呼叫次数、漫游地区呼叫、香港呼叫次数	转移呼叫、短信、转移	业务繁忙组
#4	IP呼叫、转移呼叫		贵中求惠组
#6	IP呼叫	短信、转移	IP手机组
#9	IP呼叫、短信	非繁忙时段呼叫	新生潜力组
#12	非繁忙时段呼叫	漫游地区呼叫、转移、短信	夜间积极组
#14	繁忙时段月均呼叫次数	漫游呼叫、非繁忙呼叫、转移	本地繁忙组
#16	繁忙时段月均呼叫次数、转移呼叫、 香港(澳门)呼叫	IP呼叫	繁忙大客户组
#8	短信	转移呼叫、IP	短信专家组
#11	转移呼叫	繁忙时段月均呼叫次数、短信	热衷转移组
#15	漫游地区呼叫	短信、繁忙呼叫次数	频繁出差组
#3	语音每次呼叫时间	繁忙时段次数、短信	情深语长组
#5		繁忙时段次数、每次呼叫时间、短信	消极等待组
#7	呼入/呼出比	短信	等待接听组
#10		繁忙时段次数、呼入/呼出比、每次呼叫时间	休眠组
#13		繁忙时段月均呼叫次数	寂寞无声组

聚类结果分析

根据每个类中变量的取值情况,为每个类取名称

聚类均值							
聚类	入会之日算	费距今时间	一定时间内	在一定时间 内的升级里 程	在一定时间 内所乘航班 的平均舱位 折扣系		
1	-0.60	-0.92	1.31	1.33	0.34 重要价值		
2	-0.45	-0.12	-0.05	-0.35	-1.19重要发展		
3	1.19	-1.34	1.74	1.75	0.63 重要价值		
4	-1.23	0.36	-0.37	-0.21	0.49一般发展		
5	0.19	1.27	-1.29	-1.18	1.05 一般挽留		
6	1.26	-0.12	0.26	0.25	-0.18重要保持		
7	-0.22	1.34	-1.37	-1.35	-0.88一般保持		
8	0.05	-0.49	0.25	0.33	0.39一般价值		

目录

- * 聚类分析概述
- * 聚类分析数据准备
- *聚类分析技术
- * 聚类结果探索
- * 聚类结果部署

*谢谢各位

* Q&A