The Plan 9 Front Concurrent C Extensions

Benjamin Purcell (spew) benjapurcell@gmail.com

ABSTRACT

The Plan 9 Front compilers extend the C programming language to provide built-in CSP style concurrency operations. This paper describes the usage and implementation of the extension.

1. Introduction and Motivation

CSP-style concurrency operations are an essential part of many programs in the Plan 9 operating system. Concurrent programs were originally written in Alef which had built-in concurrency operations. When Alef was retired, a library was written to allow access to CSP operations from programs written in C (see *thread*(2)). However, there are a number of deficiencies with *thread*(2); thread creation is inflexible, receiving or sending of multiple channels requires an awkward definition of an array of structures, and the send/receive operations are not type-safe. The extension aims to address those concerns to make threaded programs easier and safer to write without the need to maintain a separate compilier infrastructure such as Alef. This document assumes familiarity with *thread*(2).

2. The Extensions

The compiler extension provides for launching new threads and processes, declaring and allocating storage for typed channels, and type-safe sending and receiving from channels. It also provides a new control structure for type-safe sending or receiving of multiple channels.

2.1. Thread and Process Creation

Threads and processes are created using the keywords coproc and cothread which has the syntax of a function that takes two arguments. The first argument a function application, and the second is an unsigned int that specifies the stack size for the process or thread. The calls coproc and cothread return the resultant thread id.

```
int tid, pid
void fn(int arg1, double arg2, char *arg3);
...
tid = cothread(fn(a, b, c), 8192);
pid = coproc(fn(a, b, c), 8192);
```

The function passed to coproc and cothread can have any signature, though its return value will not be used. Instead of applying the function to its arguments, the calls to cothread and coproc tell the compiler to check the arguments to the function and then compile a call to thread to start the function in a new thread or process with a memory allocated stack (see *malloc*(2)). Thus, if a, b, and c, are of an incompatible type to int, double, and char* respectively, then the above will not compile.

2.2. Channel Declarations

The extension reserves the character @ for declarations of typed Channels. A typed channel has a type associated with it; only values of that type may be sent or received from the channel. The @ symbol has the same precedence as the pointer de-reference * and functions similarly. Thus

```
int @c;
```

declares c to be a channel for sending/receiving an int;

```
char *@c;
```

declares c to be a channel for sending/receiving a pointer to a char; and

```
int *(*@c[3])(int);
```

declares c to be an array of three channels for sending/receiving pointers to functions that take an int and return a pointer to an int.

The @ symbol can be viewed as a special kind of de-reference. It represents the value in the channel.

2.3. Channel Allocation

Once a channel is declared, it must be configured for use by applying the compiler extension chanset to the channel. The usage is

```
int @c;
chanset(c, nelem);
```

Where nelem is an int that sets the number of values the channel can hold and whether the channel is buffered or unbuffered. See chancreate in thread(2).

2.4. Channel Operations

The compiler extensions allows for sending into and receiving typed values from channels. The syntax for receiving a channel mimics that of channel declarations. That is, for a channel for sending ints and an int as follows:

```
int @c, i;
```

the statement

$$i = @c;$$

receives an int from the channel c and assigns the value to i. This can be thought of as a kind of de-reference that first calls into the *thread*(2) library in order to retrieve have the value available in the channel.