Mathématiques disctères 2 - graphes Cours 1 - introduction et vocabulaire

N. de Rugy-Altherre

- Introduction et rappels
 - Graphes
 - Nombre d'Erdos
 - Kevin Bacon's game
 - Le jeu de la vue
- 2 vocabulaire
 - Orienté et non orienté
 - Chemins dans les graphes
 - Sous-graphes
 - Arbres et forêts

Vu en MD1

Ce que vous avez vu en MD1 :

- Définitions graphes non orientés
- Représentation des graphes non orientés
- Graphes eulériens, graphes coloriables
- Graphes planaires

Ce qu'on va voir en MD2 :

- Graphes orientés
- Représentation algorithmique des graphes
- Parcours de graphes (BFS, DFS, etc)
- a=Algorithmes sur les graphes (Dijstra, Bellman Ford, etc)

Évaluation

- Note 1 : examen le 11/04 (apriori)- 40%
- Note 2 : TP maison 20%
- 3 Note 3 : examen le 31/05 40%
- Seconde chance (...)

Les examens porteront sur ce qui a été vu en TD et en CM. La démonstration d'un théorème vous sera aussi demandé.

Définitions

Définition d'un graphe

Un graphe est un couple (V, E):

- ullet V est un ensemble de sommets (ou noeuds) les composantes du modèle (vertices)
- E est un ensemble d'arêtes (ou arcs) (edges). $E \subseteq V \times V$ est une relation binaire entre les sommets.

Les sommets et/ou les arêtes peuvent être étiquetés par des propriétés.

Définitions

Définition d'un graphe

Un graphe est un couple (V, E):

- ullet V est un ensemble de sommets (ou noeuds) les composantes du modèle (vertices)
- E est un ensemble d'arêtes (ou arcs) (edges). $E \subseteq V \times V$ est une relation binaire entre les sommets.

Les sommets et/ou les arêtes peuvent être étiquetés par des propriétés.

- Si la relation est symétrique, le graphe est non orienté.
- Si la relation n'est pas symétrique, le graphe est orienté.
- Soit v un sommet. Une arête de v à v est appelée une boucle.

Définitions

Définition d'un graphe

Un graphe est un couple (V, E):

- V est un ensemble de sommets (ou noeuds) les composantes du modèle (vertices)
- E est un ensemble d'arêtes (ou arcs) (edges).
 E ⊆ V × V est une relation binaire entre les sommets.

Les sommets et/ou les arêtes peuvent être étiquetés par des propriétés.

- Si la relation est symétrique, le graphe est non orienté.
- Si la relation n'est pas symétrique, le graphe est orienté.
- Soit v un sommet. Une arête de v à v est appelée une boucle.

Orienté = directed

Nombre d'arête d'un graphe

Un graphe de n sommets non orienté et sans boucles a au plus $\frac{n(n-1)}{2}$ arêtes.

Nombre d'arête d'un graphe

Un graphe de n sommets non orienté et sans boucles a au plus $\frac{n(n-1)}{2}$ arêtes.

Démonstration par récurrence : Posons $\mathcal{P}(n)$ la propriété : un graphe de n sommets sans boucle et non orienté a au plus $\frac{n(n-1)}{2}$ arêtes.

Nombre d'arête d'un graphe

Un graphe de n sommets non orienté et sans boucles a au plus $\frac{n(n-1)}{2}$ arêtes.

Démonstration par récurrence : Posons $\mathcal{P}(n)$ la propriété : un graphe de n sommets sans boucle et non orienté a au plus $\frac{n(n-1)}{2}$ arêtes.

• Cas de base : si n = 1, alors le graphe n'a pas d'arête. $\frac{1(1-1)}{2} = 0$. $\mathcal{P}(1)$ est vérifiée.

Nombre d'arête d'un graphe

Un graphe de n sommets non orienté et sans boucles a au plus $\frac{n(n-1)}{2}$ arêtes.

Démonstration par récurrence : Posons $\mathcal{P}(n)$ la propriété : un graphe de n sommets sans boucle et non orienté a au plus $\frac{n(n-1)}{2}$ arêtes.

- Cas de base : si n=1, alors le graphe n'a pas d'arête. $\frac{1(1-1)}{2}=0$. $\mathcal{P}(1)$ est vérifiée.
- Supposons P(n) vraie. Soit G = (S, A) un graphe tel que |S| = n + 1. Soit v une de ses arêtes. Soit S' = S/{v} l'ensemble des sommets de G sans v. Soit G' = (S', A ∩ S' × S'). G' est un graphe de n sommets. D'après l'hypothèse de récurrence, il a au plus n(n-1)/2 arêtes. G a un sommet de plus que G', v. Les arêtes de G qui n'existent pas dans G' sont celles entre v et un autre sommet. Il v a au plus n telles arêtes.

Donc le nombre d'arêtes de
$$G$$
 est au plus de
$$\frac{n(n-1)}{n} + n = \frac{2n+n(n-1)}{n} = \frac{2n+n^2-n}{n} = \frac{n+n^2}{n} = \frac{(n+1)n}{n}$$

Donc
$$\mathcal{P}(n+1)$$
 est vérifiée si $\mathcal{P}(n)$ est vérifiée. QED.

Exemples de graphes : graphes sociaux

Définition

- Modèle : un ensemble de personnes $(p_i)_{i \in E}$
- Un sommet : une personne p_i
- Une arête entre p_i et p_j si ces personnes se connaissent.

L'ensemble $A = \{p_i, p_j \text{ tel que } p_i \text{ connait } p_j\}$ est-elle une relation symétrique? Le graphe est-il orienté?

- Introduction et rappels
 - Graphes
 - Nombre d'Erdos
 - Kevin Bacon's game
 - Le jeu de la vue
- 2 vocabulaire
 - Orienté et non orienté
 - Chemins dans les graphes
 - Sous-graphes
 - Arbres et forêts

Nombre d'Erdos

Pal Erdos est un mathématicien hongrois (1913-1996) extrêmement prolifique (500 articles). Le nombre de Erdos est défini en son honneur comme suit :

- 0 : Pal Erdos
- 1 : ses collaborateurs
- 2 : les collaborateurs de ses collaborateurs
- etc.

Nombre d'Erdos

Pal Erdos est un mathématicien hongrois (1913-1996) extrêmement prolifique (500 articles). Le nombre de Erdos est défini en son honneur comme suit :

- 0 : Pal Erdos
- 1 : ses collaborateurs
- 2 : les collaborateurs de ses collaborateurs
- etc.

Modélisation

- Modèle : l'ensemble des chercheurs $(c_i)_{i \in E}$
- Un sommet : un chercheur c_i
- Une arête entre c_i et c_j (non orienté) si ces personnes ont écrit un article ensemble.
- Nombre de Erdos du chercheur *c* : taille du plus cours chemin entre *c* et Erdos.

Nombre d'Erdos

Modélisation

- Modèle : l'ensemble des chercheurs $(c_i)_{i \in E}$
- Un sommet : un chercheur c_i
- Une arête entre c_i et c_j (non orienté) si ces personnes ont écrit un article ensemble.
- Nombre de Erdos du chercheur c : taille du plus cours chemin entre c et Erdos.

Exemples de nombre de Erdos :

- Bernard Girau: 5
- Marie Duflot: 4
- Emmanuel Jeandel, Damien Jamet et moi : 3

Outils pour le calculer :

https://mathscinet.ams.org/mathscinet/freeTools.html?version=2

- Introduction et rappels
 - Graphes
 - Nombre d'Erdos
 - Kevin Bacon's game
 - Le jeu de la vue
- 2 vocabulaire
 - Orienté et non orienté
 - Chemins dans les graphes
 - Sous-graphes
 - Arbres et forêts

Le Kevin Bacon Game

Kevin Bacon est un acteur américain prolifique. Le Kevin Bacon Game est une transposition du nombre de Erdos à Hollywood.

Modélisation

- Modèle : l'ensemble des acteurs de cinéma (a_i)_{i∈E}
- Un sommet : un acteur ai
- Une arête entre a; et a; (non orienté) si ces acteurs ont tourné dans un film ensemble.
- Nombre de Bacon de c : taille du plus cours chemin entre c et Kevin Bacon.

Par exemple :

- Laurent Lafitte: 3
- Mickey Mouse : 4
- Tom Cruise: 1

Outils pour calculer: http://oracleofbacon.org/movielinks.php

- Introduction et rappels
 - Graphes
 - Nombre d'Erdos
 - Kevin Bacon's game
 - Le jeu de la vue
- 2 vocabulaire
 - Orienté et non orienté
 - Chemins dans les graphes
 - Sous-graphes
 - Arbres et forêts

Le jeu de la vue

Modélisation

- Modèle : l'ensemble des humains $(h_i)_{i \in E}$
- Un sommet : un humain h_i
- Un arc entre h_i et h_j si h_i a vu au moins une fois h_j .
- Nombre d'Obama de h : taille du plus court chemin entre h et Barack Obama.

Par exemple:

- Emmanuel Macron: 1
- Carole Grandjean: 2
- Moi : 3
- Vous : 4 (ou moins)

Non orienté

- Introduction et rappels
 - Graphes
 - Nombre d'Erdos
 - Kevin Bacon's game
 - Le jeu de la vue
- 2 vocabulaire
 - Orienté et non orienté
 - Chemins dans les graphes
 - Sous-graphes
 - Arbres et forêts

Définition d'un graphe non orienté

Un graphe G=(V,E) est non orienté si la relation binaire E est symétrique :

$$\forall (s_i, s_j) \in V \times V, (s_i, s_j) \in E \Leftrightarrow (s_j, s_i) \in E$$

Exemple:

$$S = \{1,2,3,4,5,6\}$$

$$A = \{(1,2),(2,1),(1,5),(5,1),$$

$$(5,2),(2,5),(3,6),(6,3)\}$$

Soit G = (V, E) un graphe.

- Les éléments de E sont appelés arêtes
- s_i est adjacent à s_j si $(s_i, s_j) \in E$.
- L'ensemble des adjacents à s_i est $adj(s_i) = \{s_j \mid (s_i, s_j) \in E\}$
- Le degré d'un sommet est le nombre des sommets adjacents : $deg(s_i) = |adj(s_i)|$
- Le graphe est complet s'il a toutes les arêtes possibles : $E = \{(s_i, s_j) \in V \times V \mid s_i \neq s_j\}$

Remarque : arêtes d'un graphe (ou d'un poisson), un r. Arrête (de jouer pendant mon cours) deux r.

The Oracle of Bacon (rappel):

Modélisation

- Modèle : l'ensemble des acteurs de cinéma $(a_i)_{i \in E}$
- Un sommet : un acteur ai
- Une arête entre a; et a; (non orienté) si ces acteurs ont tourné dans un film ensemble.
- Nombre de Bacon de c : taille du plus cours chemin entre c et Kevin Bacon.
- Boon et Aniston sont adjacents.
- La liste des adjacents à Boon est l'ensemble des acteurs avec qui il a joué dans un film.
- Le degré de Boon est le nombre d'acteurs avec qui il a joué dans un film.
- Le graphe serait complet si tous les acteurs avaient joué ensemble.

Graphes orientés

Définition d'un graphe orienté (directed)

Un graphe G=(V,E) est orienté si la relation binaire E n'est pas symétrique :

$$\exists (s_i, s_j) \in E \times E, (s_i, s_j) \in E \text{ et } (s_j, s_i) \notin E$$

Soit G = (V, E) un graphe.

- Les éléments de E sont appelés arcs
- s_i est le successeur de s_j si $(s_i, s_j) \in E$.
- s_i est le *prédécesseur* de s_j si $(s_j, s_i) \in E$.
- Le demi-degré extérieur d'un sommet est le nombre des sommets successeurs : $d^e g + (s_i) = |succ(s_i)|$
- Le demi-degré intérieur d'un sommet est le nombre des sommets successeurs : $deg^-(s_i) = |pred(s_i)|$

Exemple

Le jeu de la vue (rappel)

Modélisation

- Modèle : l'ensemble des humains $(h_i)_{i \in E}$
- Un sommet : un humain h_i
- Un arc entre h_i et h_j si h_i a vu au moins une fois h_j .
- Nombre d'Obama de h : taille du plus cours chemin entre h et Barack Obama.
- Macron est le successeur et le prédécesseur de Grandjean. Par contre Grandjean est mon successeur mais je ne suis pas son prédécesseur.
- Mon demi-degré extérieur est le nombre de personne que j'ai vu.
- Mon demi-degré intérieur est le nombre de personnes qui m'ont vu.

- Introduction et rappels
 - Graphes
 - Nombre d'Erdos
 - Kevin Bacon's game
 - Le jeu de la vue
- 2 vocabulaire
 - Orienté et non orienté
 - Chemins dans les graphes
 - Sous-graphes
 - Arbres et forêts

Chemins et connexité - cas non orienté

Soit G = (V, E) un graphe non orienté.

- Une *chaîne* est une séquence de sommets $< s_0, s_1, \ldots, s_k >$ notée $s_0 \sim s_k$ telle que $\forall i \in [0, k-1], (s_i, s_{i+1}) \in E$.
- La longueur d'une chaîne est le nombre de ses arêtes (k dans la chaîne de k+1 sommets).
- Une chaîne élémentaire est une chaîne dont les sommets sont distincts.
- Un cycle est une chaîne commençant et terminant par le même sommet.
- Une boucle est un cycle de longueur 1.
- Le graphe est connexe si $\forall s_i, s_j \in V^2, \ s_i \sim s_j$
- Une composante connexe du graphe G est un sous graphe connexe et maximal.

Chaîne et équivalence

Relation d'équivalence

Une relation d'équivalence est une relation binaire \sim sur un ensemble V telle que

- **1** elle est reflexive : $\forall v \in V, v \sim v$
- 2 elle est symétrique : $\forall v, w \in V, v \sim w \Rightarrow w \sim v$
- **3** elle est transitive : $\forall v, w, x \in V, v \sim w$ et $w \sim z \Rightarrow v \sim z$

Chaîne et équivalence

Relation d'équivalence

Une relation d'équivalence est une relation binaire \sim sur un ensemble V telle que

- **1** elle est reflexive : $\forall v \in V, v \sim v$
- 2 elle est symétrique : $\forall v, w \in V, v \sim w \Rightarrow w \sim v$
- **3** elle est transitive : $\forall v, w, x \in V, v \sim w$ et $w \sim z \Rightarrow v \sim z$

Propriété

La relation : il existe un chemin entre v et w est une relation d'équivalence.

Quotient

Définition

Soit V un ensemble et \sim une relation d'équivalence.

• Soit $v \in V$. La classe d'équivalence [v] de v est l'ensemble des élements équivalent à v :

$$[v] = \{w \in V \mid v \sim w\}$$

• Le quotient V/\sim de V par \sim est l'ensemble des classes d'équivalence.

$$V/\sim=\{[v]\,|\,v\in V\}$$

Propriétés

- L'ensemble des classes d'équivalence forme une partition de V c'est à dire qu'elles sont toutes disjointes et tout élément est dans l'une d'entre elle.
- $V/\sim\subseteq \mathcal{P}(V)$

Quotient - exemple 1

La relation \sim_3 ont le même reste lors de la division par 3 est une relation d'équivalence dans les entiers :

$$n, m \in \mathbb{Z}$$
. $n \sim_3 m \text{ ssi } n\%3 = m\%3$

La classe d'équivalence de 0 est l'ensemble des entiers divisibles par 3

$$[0] = \{0, 3, 6, 9, 12, \ldots\}$$

L'ensemble quotient \mathbb{Z}/\sim_3 est (dans le sens est isomorphe) le corps cyclique à trois éléments $\mathbb{Z}/3\mathbb{Z}$ qui contient les éléments $\{0,1,2\}$ avec comme régles de claculs :

$$0+1 = 1$$

 $1+1 = 2$
 $2+1 = 0$

Quotient - exemple 2

Soit G = (V, E) un graphe. La relation \sim sont reliés par un chemin est une relation d'équivalence dans V:

 $v, w \in \mathbb{V}$. $v \sim w$ ssi il existe un chemin entre v et w

La classe d'équivalence de ν est l'ensemble des sommets accecible à partir de ν : la composante connexe contenant ν

Le graphe induit par l'ensemble quotient V/\sim est (dans le sens est isomorphe) le graphe réduit.

Propriété

Propriété

Un graphe connexe à n sommet a au moins n-1 arêtes.

Propriété

Propriété

Un graphe connexe à n sommet a au moins n-1 arêtes.

Démonstration par récurrence : soit $\mathcal{P}(n)$ la propriété : Un graphe connexe à n sommets a au moins n-1 arêtes.

- Cas initial : Soit G un graphe à deux sommets. Une arête est nécessaire à ce qu'il soit connexe. P(2) est vérifiée.
- Récurrence : supposons $\mathcal{P}(n-1)$ vraie. Soit G=(S,A) un graphe connexe à n sommets, v un de ses sommets. Soit $S'=S/\{v\}$ et G' le sous graphe de G induit par S'. G' est un graphe connexe avec n-1 sommets. Il a donc au moins (n-2) arêtes. Pour que G soit connexe il faut au moins ajouter une arête entre l'un des sommets de G' et v. Donc G a au moins (n-1) arêtes. QED.

Propriété

Un graphe connexe à n sommet a au moins n-1 arêtes.

Démonstration par récurrence : soit $\mathcal{P}(n)$ la propriété : Un graphe connexe à n sommets a au moins n-1 arêtes.

- Cas initial : Soit G un graphe à deux sommets. Une arête est nécessaire à ce qu'il soit connexe. P(2) est vérifiée.
- Récurrence : supposons $\mathcal{P}(n-1)$ vraie. Soit G=(S,A) un graphe connexe à n sommets, v un de ses sommets. Soit $S'=S/\{v\}$ et G' le sous graphe de G induit par S'. G' est un graphe connexe avec n-1 sommets. Il a donc au moins (n-2) arêtes. Pour que G soit connexe il faut au moins ajouter une arête entre l'un des sommets de G' et v. Donc G a au moins (n-1) arêtes. QED.

Démonstration fausse.

Propriété

Un graphe connexe à n sommet a au moins n-1 arêtes.

Lemme des poignées de main

Formule des degrés : soit G = (V, E) un graphe. Alors :

$$\sum_{v \in V} deg(v) = 2|E|$$

Propriété

Un graphe connexe à n sommet a au moins n-1 arêtes.

Lemme des poignées de main

Formule des degrés : soit G = (V, E) un graphe. Alors :

$$\sum_{v \in V} deg(v) = 2|E|$$

Démonstration du lemme : deux façons de compter le nombre d'extémités des arêtes :

- Chaque arête a deux extrémités : 2|E|
- Chaque sommet v est l'extrémité de deg(v) arêtes : $\sum_{v \in V} deg(v)$

Propriété

Un graphe connexe à n sommet a au moins n-1 arêtes.

Démonstration de la propriété par récurrence : soit $\mathcal{P}(n)$ la propriété : Un graphe connexe à n sommets a au moins n-1 arêtes.

- Cas initial : soit G un graphe à deux sommets. Une arête est nécessaire à ce qu'il soit connexe. P(2) est vérifiée.
- Récurrence : supposons $\mathcal{P}(n-1)$ vraie. Soit G=(S,V) un graphe connexe à n sommets.
 - Si le graphe a un sommet v de degré 1, alors le graphe $G/\{v\}$ est aussi connexe et a n-1 sommets. Par récurrence, il a au moins n-2 arêtes et donc G en a n-1.
 - Si le graphe n'a aucuns sommets de degré 1, alors tous les sommets sont de degré au moins 2. Or $|E| = \frac{\sum deg(v)}{2} \ge \frac{2|V|}{2} = |V|$.

Chemins et connexité - cas orienté

Soit G = (V, E) un graphe orienté.

- Une *chemin* est une séquence de sommets $\langle s_0, s_1, \ldots, s_k \rangle$ notée $s_0 \to s_k$ telle que $\forall i \in [0, k-1], (s_i, s_{i+1}) \in E$.
- La longueur d'un chemin est le nombre de ses arcs (k dans la chaîne de k+1 sommets).
- Un chemin élémentaire est un chemin dont les sommets sont distincts.
- Un circuit est un chemin commençant et terminant par le même sommet.
- Une boucle est un circuit de longueur 1.
- Le graphe est fortement connexe si $\forall s_i, s_j \in V^2, \ s_i \sim s_j$
- Une composante fortement connexe du graphe G est un sous graphe connexe et maximal. [DONNER UNE DEF EQUIVALENTE DE CFC]

Chaîne et équivalence

Rappel: Relation d'équivalence

Une relation d'équivalence est une relation binaire \sim sur un ensemble V telle que

- elle est reflexive : $\forall v \in V, v \sim v$
- 2 elle est symétrique : $\forall v, w \in V, v \sim w \Rightarrow w \sim v$
- **3** elle est transitive : $\forall v, w, x \in V, v \sim w$ et $w \sim z \Rightarrow v \sim z$

Propriété

La relation : *il existe un chemin entre v et w* dans un graphe orienté n'est pas une relation d'équivalence.

- Introduction et rappels
 - Graphes
 - Nombre d'Erdos
 - Kevin Bacon's game
 - Le jeu de la vue
- 2 vocabulaire
 - Orienté et non orienté
 - Chemins dans les graphes
 - Sous-graphes
 - Arbres et forêts

Graphes partiels

Définition

Un graphe G' est dit un graphe partiel de G s'il a les mêmes sommets mais seulement une partie de ses arêtes/arcs :

$$G' = (V, E')$$
 est un graphe partiel de $G = (V, E)$ si $E' \subseteq E$

Exemple:

Graphe
$$G = (S, A)$$

Graphe partiel de G

Graphes partiels

Exemple de problèmes :

- Modèle : les villes v_i de france
- Un sommet : une ville v de france
- Un arc entre v_i et v_j s'il existe un blabla car qui va de v_i à v_j le 28/05.
- Trouver un chemin entre Nancy et Brest : une façon d'aller de Nancy à Brest le 28/05.

Graphe partiel: on se restreint aux blabla cars dont les voitures sont rouges. Trouver un chemin dans le graphe partiel: pouvoir

aller de Nancy à Brest dans des voitures rouges.

Sous-graphes

Définition

Un graphe G' = (V', E') est dit un sous-graphe de G = (V, E) si :

$$V' \subseteq V$$
 et $E' = E \cap V \times V$

Exemple:

Graphe G = (S, A)

Sous-graphe de G induit par {1,2,3,5}

Graphes partiels

Exemple de problèmes :

- Modèle : les villes v_i de france
- Un sommet : une ville v de france
- Un arc entre v_i et v_j s'il existe un blabla car qui va de v_i à v_j le 28/05.
- Trouver un chemin entre Nancy et Brest : une façon d'aller de Nancy à Brest le 28/05.

Graphe partiel : on se refuse de passer par des villes où le pain au chocolat est vendu sous le nom de chocolatine.

Trouver un chemin dans graphe partiel : pouvoir aller de Nancy à Brest en ne passant que par des villes raisonnables.

- Introduction et rappels
 - Graphes
 - Nombre d'Erdos
 - Kevin Bacon's game
 - Le jeu de la vue
- 2 vocabulaire
 - Orienté et non orienté
 - Chemins dans les graphes
 - Sous-graphes
 - Arbres et forêts

Arbres et forêt

Définition d'un arbre

Un arbre est un graphe non orienté G = (V, E) vérifiant l'une des propriétés suivantes :

- G est connexe et sans cycle
- G est sans cycle et possède |V|-1 arêtes.
- ullet G est connexe et possède |V|-1 arêtes.
- G est sans cycle et en ajoutant une arête on crée un cycle élementaire
- *G* est connexe et en suprimant une arête il n'est plus connexe.
- $\forall s_i, s_j \in V^2$, $\exists ! k \exists ! (s_0, \ldots, s_k) \in V \, \forall i \in [0, k-1], (s_i, s_{i+1}) \in E$

En d'autres termes, il existe une unique chaîne reliant chaque couple de sommets.

Arbres et forêts

Forêt

Une forêt est un ensemble disjoint d'arbres.

Ou une forêt est un graphe non orienté dont chaque composante connexe est un arbre.

Arborescence

Une arborescence est un graphe orienté sans circuits admettant une racine $s_0 \in S$ tel que pour tout $s_j \in S$, il existe un chemin unique allant de s_0 vers s_i .