Annotated slides from Friday

MA313 : Linear Algebra I

Week 2: Subspaces and Spans

Dr Niall Madden

13 and 16 September, 2022

https://commons.wikimedia.org/wiki/File:Projectivisation_F5P^1.svg. Incnis Mrsi, via Wikimedia Commons

These slides are based on ones by Tobias Rossmann.

V

One of the key concepts of vector spaces is that, given an example of a vector space, we can usually construct another, smaller one from it. These new smaller ones are called **subspaces**.

Definition (Subspace)

Let V be a vector space. A *subspace* of V is a subset of V which forms a vector space with respect to the same addition and scalar multiplication operations in V.

Example (The boring examples)

The "boring" subspaces of a vector space V are

- ▶ {0} and
- ▶ *V* itself.

Our definition said that, if H is a subspace of V then everything in H is also in V, and also that H is a subspace in its own right. However, we don't have to check if all eight axioms hold for H.

Fact

Let H be a subset of V. Then H is a subspace of V if and only if the following conditions are all satisfied:

- **▶ 0** ∈ *H*.
- ▶ H is closed under addition operation in V, i.e., for all $u, v \in H$, we have $u + v \in H$.
- ▶ H is closed under multiplication by scalars, i.e. for all $u \in H$ and $c \in \mathbb{R}$, we have $cu \in H$.

Example

Let

$$H = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} : x_1, x_2 \in \mathbb{R} \text{ with } x_1 + x_2 = \mathbf{0} \right\}.$$

Then H is a subspace of \mathbb{R}^2 .

Eg
$$\begin{bmatrix} 1 \\ -1 \end{bmatrix} \in H$$
 and $\begin{bmatrix} -\pi \\ \pi \end{bmatrix} \in H$, but not $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$ since $3-2=1 \neq 0$. Nor do ex $\begin{bmatrix} i \\ -i \end{bmatrix}$ since $i = \sqrt{-1} \notin \mathbb{R}$.

Example

Let

$$H = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} : x_1, x_2 \in \mathbb{R} \text{ with } x_1 + x_2 = \mathbf{0} \right\}.$$

Then H is a subspace of \mathbb{R}^2 .

① note that
$$0+0=0$$
, so $\begin{bmatrix} 0 \\ 0 \end{bmatrix} \in H$.

That that
$$0+0=0$$
, so $\begin{bmatrix} 0 \end{bmatrix} \in H$.

(2) If $u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$, $v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ then $u_1 + u_2 = 0$, $v_1 + v_2 = 0$.

And $u + v = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix}$. And $(u_1 + v_1) + (u_2 + v_2) = 0$.

 $(u_1+u_2)+(v_1+v_2)=0+0=0$

Example

Decide (with justification) whether

$$H = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2 : x_1 + x_2 = \mathbf{1} \right\}$$

is a subspace of \mathbb{R}^2 .

But not
$$\begin{bmatrix} 3 \\ -2 \end{bmatrix} \in H$$
, and $\begin{bmatrix} 0 \\ 1 \end{bmatrix} \in H$, $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \in H$.
But not $\begin{bmatrix} -2 \\ 2 \end{bmatrix}$.
H is not a subspace of IR^2 because ...
for example $\begin{bmatrix} 0 \\ 0 \end{bmatrix} \notin H$, since $0+0=0 \neq I$.

Example (MA313 Semester 1 Exam, Q1(a)(ii))

Decide, with justification, whether

$$H_{\underline{1}} = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 > 0 \right\}$$

is a subspace of \mathbb{R}^3 .

No, it is not; since
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \notin H$$
, because $0^2 + 0^2 + 0^2 = 0$

Example (MA313 Semester 1 Exam, Q1(a)(iii))

Decide, with justification, whether

$$H_3 = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 : x_1 + x_2 \ge 0, x_3 = 0 \right\}$$

is a subspace of \mathbb{R}^3 .

Eg
$$\begin{bmatrix} 1\\2\\0 \end{bmatrix} \in H_3$$
, $\begin{bmatrix} 0\\0\\0 \end{bmatrix} \in H_3$, But not $\begin{bmatrix} 1\\2\\0\\0 \end{bmatrix}$ or $\begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$
However, if is not true that, if $U \in H_3$ and $C \in IR$ them always $CV \in H_3$. Example, $V = \begin{bmatrix} 3\\3 \end{bmatrix}$, $C = -1$,

Part 4: More examples of subspaces

MA313
Week 2: Subspaces and Spans

Start of ...

PART 4: More examples of subspaces

Recall

 $\mathbb{P}_n = \{a_0 + a_1t + \dots + a_nt^n : (a_0, \dots, a_n \in \mathbb{R}\}$ is the vector space of polynomials of degree at most n in the variable t.

Definition (All the polynomials)

$$\mathbb{P}:=\bigcup_{n=0}^{\infty}\mathbb{P}_n=\{p(t)=a_0+a_1t+\cdots+a_nt^n:n\geqslant 0;\ a_0,\ldots,a_n\in\mathbb{R}\}$$
 is the vector space of *all* polynomials in t (without any bounds on the degree!).

Here, the addition and scalar multiplication in $\mathbb P$ are just the usual operations: we add and multiply as expected.

We now see that...

- ▶ \mathbb{P}_m is a subspace of \mathbb{P}_n if and only if $m \leq n$.
- ▶ \mathbb{P}_n is a subspace of \mathbb{P} for all $n \ge 0$.

Clearly IPm is a subset of IPn since IPn includes all polys of lower degree.

- HISO: \widehat{U} $O \in \mathbb{IP}_m$; take $a_0 = a_1 = \cdots = a_m = 0$. \widehat{U} If $P, q \in \mathbb{IP}_m$ then so too is P + q.
 - 3 If P∈Pm and C∈IR, then cp∈Pm because, for any ai∈IR, Cai∈IR.

Note that

$$\mathbb{P}_0 = \mathbb{R} = ext{constant polynomials}$$
 $= \{
ho(t) \in \mathbb{P} :
ho'(t) = 0 \}$

where the **derivative** of $p(t) = a_0 + a_1 t + \cdots + a_n t^n$ is

$$p'(t) = a_1 + 2a_2t + \cdots + na_nt^{n-1}.$$

More generally, we can define \mathbb{P}_n by

$$\mathbb{P}_n = \left\{ p(t) \in \mathbb{P} : p^{(n+1)}(t) = 0 \right\}.$$

That is, *another* approach to describing the subspaces \mathbb{P}_n of \mathbb{P} is to look at the space of solutions of certain equations.

Example (Continuous functions)

Let $\mathbb{D}\subseteq\mathbb{R}$ be a subset. Let V be the vector space of all functions $\mathbb{D}\to\mathbb{R}$ from Week 1, where, as we said

$$ightharpoonup (f+g)(x)=f(x)+g(x) ext{ for } f,g\in V ext{ and } x\in \mathbb{D}$$

▶
$$(cf)(x) = cf(x)$$
 for $f \in V$ and $c \in \mathbb{R}$

Let

$$C(\mathbb{D}) := \{f : \mathbb{D} \to \mathbb{R} : f \text{ is continuous}\} \subseteq V.$$

With a little calculus, one can show that $C(\mathbb{D})$ is a subspace of V.

Finished here Friday.