Devoir à la maison n°17 : corrigé

Problème 1 – Petites Mines 2002 – Exemples de matrices semblables à leur inverse

Partie I -

- 1. On sait que le déterminant d'un produit de matrices est le produit des déterminants (c'est un morphisme multiplicatif). Si A et B sont équivalentes, il existe $P \in GL_3(\mathbb{R})$ telle que $A = P^{-1}AP$. Alors $\det A = \det \left(P^{-1}BP\right) = \det \left(P^{-1}\right)\det(B)\det(P)$ et, comme $\det P^{-1} = \frac{1}{\det P}$, il vient $\det A = \det B$.
- **2. a.** Soit $y \in \text{Im } w$. Il existe $x \in \text{Ker } u^{i+j}$ tel que $y = w(x) = u^j(x)$. On en déduit que $u^i(y) = u^{i+j}(x) = 0$ car $x \in \text{Ker } u^{i+j}$. Donc $y \in \text{Ker } u^i$. Ainsi $\text{Im } w \subset \text{Ker } u^i$.
 - **b.** D'après le théorème du rang, dim Ker $w + rg w = \dim \operatorname{Ker} u^{i+j}$. Or

$$\operatorname{Ker} w = \operatorname{Ker} (u^{j})_{|_{\operatorname{Ker} u^{i+j}}} = \operatorname{Ker} u^{j} \cap \operatorname{Ker} u^{i+j} = \operatorname{Ker} u^{j}$$

car Ker $\mathfrak{u}^j\subset \operatorname{Ker}\mathfrak{u}^{i+j}$. En remplaçant dans l'égalité précédente, on a donc

$$\dim \operatorname{Ker} \mathfrak{u}^{\mathfrak{j}} + \dim \operatorname{Im} \mathfrak{w} = \dim \operatorname{Ker} \mathfrak{u}^{\mathfrak{i}+\mathfrak{j}}$$

D'après la question précédente, $\operatorname{Im} w \subset \operatorname{Ker} \mathfrak{u}^{\mathfrak{i}}$ donc $\operatorname{rg} w \leqslant \dim \operatorname{Ker} \mathfrak{u}^{\mathfrak{i}}$. On peut donc conclure :

$$\dim \operatorname{Ker} \mathfrak{u}^{i+j} \leqslant \dim \operatorname{Ker} \mathfrak{u}^j + \dim \operatorname{Ker} \mathfrak{u}^i$$

- 3. a. D'une part, $u^3=u^{2+1}$, donc la question **I.2.b** donne $3=\dim \operatorname{Ker} u^3\leqslant \dim \operatorname{Ker} u^2+\dim \operatorname{Ker} u$. Comme $\operatorname{rg} u=2$, on a dim $\operatorname{Ker} u=1$ d'après le théorème du rang. Ainsi dim $\operatorname{Ker} u^2\geqslant 2$. D'autre part $u^2=u^{1+1}$, donc dim $\operatorname{Ker} u^2\leqslant 2\dim \operatorname{Ker} u=2$ toujours d'après la question **I.2.b**. Finalement, on obtient dim $\operatorname{Ker} u^2=2$.
 - **b.** De dim Ker $u^2 = 2$, on peut déduire rg $u^2 = 1$. Il existe donc un vecteur a non nul tel que $u^2(a) \neq 0$. Soient α , β , γ des réeles tels que

$$\alpha a + \beta u(a) + \gamma u^2(a) = 0$$

Alors, par application de u^2 , on trouve $\alpha u^2(a) = 0$ puisque $u^3 = 0$. D'où $\alpha = 0$. Puis, en appliquant u, on trouve $\beta = 0$. Enfin, il reste $\gamma u^2(a) = 0$ ce qui donne $\gamma = 0$. La famille $(u^2(a), u(a), a)$ est donc libre. Elle est formée de 3 vecteurs, dans E de dimension

La famille $(u^2(a), u(a), a)$ est donc libre. Elle est formée de 3 vecteurs, dans E de dimension 3, c'est donc une base de E.

c. On a
$$U = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 et $V = \begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$.

- **4. a.** Puisque $\operatorname{rg} \mathfrak{u} = 1$, il existe un vecteur \mathfrak{b} tel que $\mathfrak{u}(\mathfrak{b}) \neq 0$.
 - **b.** D'une part $u^2 = 0$ donc $u^2(b) = 0$, ce qui entraîne $u(b) \in \text{Ker } u$. D'autre part, dim Ker u = 2 donc le vecteur non nul u(b) de Ker u peut être complété par un vecteur c de Ker u pour que la famille (u(b), c) forme une base de Ker u. Il nous reste à vérifier que la famille (b, u(b), c) est libre. Soient α, β, γ des réels tels que $\alpha b + \beta u(b) + \gamma c = 0$. Alors, par application de u, on trouve $\alpha = 0$. Puis, la famille (u(b), c) étant libre, on trouve $\beta = \gamma = 0$. La famille (b, u(b), c) est libre et possède autant d'éléments que la dimension de E: c'est donc une base de E.

c. On a U' =
$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 et $V' = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Partie II -

- **1.** On a det T = 1 et A est semblable à T donc det A = 1, ce qui prouve que A est inversible.
- $\textbf{2.} \ \ N^2 = \left(\begin{array}{ccc} 0 & 0 & \alpha \gamma \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) \text{ puis } N^3 = \textbf{0.} \text{ On a alors} : \left(I_3 N + N^2 \right) (I + N) = I_3 N^3 = I \text{ car la matrice } N \text{ commute}$

avec I et les puissances de N. On en déduit $T^{-1} = I_3 - N + N^2$. Autrement dit, $\left(P^{-1}AP\right)^{-1} = I_3 - N + N^2$. On peut conclure en remarquant que $(P^{-1}AP)^{-1} = P^{-1}A^{-1}P$.

- 3. Si N = 0, alors $T = I_3$ donc $A = I_3 = A^{-1}$. A et A^{-1} sont évidemment semblables.
- a. Appelons u l'endomorphisme de matrice N dans une base de E. On a donc rg(u) = rg(N) = 2 et $u^3 = 0$ puisque $N^3 = 0$. D'après la question **I.3.c**, il existe une base de E dans laquelle u a pour matrice U donc N est semblable à U et la matrice M est semblable à V.
 - **b.** D'après la question **II.2**, on a $V^3=0$, donc aussi $M^3=0$ puisque M et V sont semblables. D'autre part, le rang de V est 2 car le sous-espace engendré par ses vecteurs colonnes est de dimension 2. Comme M et V sont semblables, elles ont même rang (elles représentent le même endomorphisme dans des bases différentes). Ainsi $\operatorname{rg} M = 2$.

De manière moins sophistiquée, on peut calculer directement $M^3 = \left(N(N-I_3)\right)^3 = N^3(N-I_3)^3 = 0$ car N et $N-I_3$ commutent et $N^3=0$. Enfin, on peut voir que N étant de rang 2, α et γ sont non nuls. Un

calcul rapide donne
$$M = \begin{pmatrix} 0 & -\alpha & \alpha \gamma - \beta \\ 0 & 0 & -\gamma \\ 0 & 0 & 0 \end{pmatrix}$$
 et donc rg $M = 2$ puisque $-\alpha$ et $-\gamma$ sont non nuls.

- également semblable à U. Par transitivité, on en déduit que M et N sont semblables.
- **d.** On sait que A est semblable à $T=I_3+N$ et A^{-1} est semblable à $I_3-N+N^2=I_3+M$. Or M et N sont semblables donc il existe $Q \in GL_3(\mathbb{R})$ telle que $M = Q^{-1}NQ$. On a alors également $I_3 + M =$ $Q^{-1}(I_3+N)Q$ i.e. I_3+M et I_3+N sont semblables. Par transitivité de la relation de similitude, on en déduit que A et A^{-1} sont semblables.
- 5. Ici rg N = 1 donc l'un au moins des deux coefficients α et γ est nul (sinon le rang serait 2). Le calcul de II.2 montre alors que $N^2 = 0$.

On a vu dans I.4.c que N est semblable à U' et M à V'. Or U' et V' sont semblables. En effet, posons P =

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. On vérifie que $P^{-1}=P$ puis que $V'=P^{-1}U'P$. En raisonnant comme précédemment, N et M

sont semblables puis $I_3 + N$ et $I_3 + M$ le sont aussi et enfin A et A^{-1} sont semblables.

- **a.** Déterminons Ker $(u Id_E)$. C'est l'ensemble des vecteurs de coordonnées (x, y, z) dans la base (a, b, c) tels que $\begin{cases} -y-z=0 \\ y+z=0 \end{cases}$. On reconnaît une équation de plan. Une base est, par exemple $(e_1,e_2)=(a,b-c)$.
 - **b.** La matrice des coordonnées de la famille (a,b-c,c) dans la base (a,b,c) est $P=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$. Cette

matrice a pour déterminant 1, donc la famille (a, b-c, c) est une base de E. Dans cette base,

matrice a pour déterminant 1, donc la famille
$$(a,b-c,c)$$
 est une base de E. Dans cette base, la matrice de u est $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$ car $\mathfrak{u}(a)=a,\mathfrak{u}(b-c)=b-c$ et $\mathfrak{u}(c)=-b+2c=-(b-c)+c$. On aurait également pu calculer $P^{-1}AP$.

c. On a $P^{-1}AP = I_3 + N$ avec $N = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$. On a donc rg N = 1 et on peut appliquer la question II.5 :

A est bien semblable à A^{-1}

7. Soit $A = -I_3$. On a $A^{-1} = -I_3 = A$ donc A et A^{-1} sont bien semblables par réflexivité de la relation de similitude.

De plus, pour toute matrice $P \in GL_3(\mathbb{R})$, $P^{-1}AP = A$. La seule matrice semblable à A est donc A elle-même.

Aucune matrice
$$T = \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix}$$
 n'est semblable à A puisque $det(A) = -1$ et $det(T) = 1$.