Лабораторная работа № 1.

Методы кодирования и модуляция сигналов

Диана Алексеевна Садова

Содержание

1	Целі	ь работ	ы	6				
2	Последовательность выполнения работы							
	2.1	Постр	ооение графиков в Octave	7				
		2.1.1	Постановка задачи	7				
		2.1.2	Порядок выполнения работы	7				
	2.2	Разло	жение импульсного сигнала в частичный ряд Фурье	14				
		2.2.1	Постановка задачи	14				
		2.2.2	Порядок выполнения работы	15				
	2.3	Опред	деление спектра и параметров сигнала	19				
		2.3.1	Постановка задачи	19				
		2.3.2	Порядок выполнения работы	20				
	2.4	Ампл	итудная модуляция	29				
		2.4.1	Постановка задачи	29				
		2.4.2	Порядок выполнения работы	29				
	2.5	2.5 Кодирование сигнала. Исследование свойства самосинхрониза-						
		ции с	игнала	32				
		2.5.1	Постановка задачи	32				
		2.5.2	Порядок выполнения работы	32				
3	Выв	оды		59				
Сп	Список литературы							

Список иллюстраций

2.1	Загружаем Octave	•	8
2.2	Процес установки	•	9
2.3	Octave		0
2.4	OC Octave с оконным интерфейсом	. 1	1
2.5	Код функции $y = \sin x + 1/3 \sin 3x + 1/5 \sin 5x$. 1	2
2.6	График функции $y = \sin x + 1/3 \sin 3x + 1/5 \sin 5x$. 1	3
2.7	График функций у1 и у2	. 1	4
2.8	Код meandr.m	. 1	5
2.9	Код meandr.m	. 1	6
2.10	Код meandr.m	. 1	
2.11	График cos	. 1	8
2.12	График sin	. 1	9
2.13	Код spectre.m	. 2	0
2.14	Два синусоидальных сигнала разной частоты	. 2	1
	Дополнение в коду spectre.m		
2.16	Дополнение в коду spectre.m	. 2	3
	График спектров синусоидальных сигналов		
2.18	Исправленный график спектров синусоидальных сигналов	. 2	5
	Код spectre_sum.m		6
2.20	Суммарный сигнал		
2.21	Спектр суммарного сигнала	. 2	8
2.22	Код ат.т	. 3	0
	Сигнал и огибающая при амплитудной модуляции		
2.24	Спектр сигнала при амплитудной модуляции	. 3	2
	Окно терминала. Проверяем наличие signal		
2.26	Код main.m	. 3	3
2.27	Код main.m		
2.28	Код main.m	. 3	5
	Код main.m		6
	Код maptowave.m		7
2.31	Koд unipolar.m	. 3	7
	Код ami.m		8
2.33	Код bipolarnrz.m	. 3	8
2.34	Код bipolarrz.m	. 3	8
	Код manchester.m		9
2.36	Код diffmanc.m	. 3	9
2 37	Кол calcanectre m	1	Λ

2.38	Униполярное кодирование	41
2.39	Кодирование AMI	42
	Кодирование NRZ	43
	Кодирование RZ	44
2.42	Манчестерское кодирование	45
2.43	Дифференциальное манчестерское кодирование	46
2.44	Униполярное кодирование: нет самосинхронизации	47
2.45	Кодирование AMI: самосинхронизация при наличии сигнала	48
2.46	Кодирование NRZ: нет самосинхронизации	49
2.47	Кодирование RZ: есть самосинхронизация	50
2.48	Манчестерское кодирование: есть самосинхронизация	51
2.49	Дифференциальное манчестерское кодирование: есть самосин-	
	хронизация	52
2.50	Униполярное кодирование: спектр сигнала	53
2.51	Кодирование AMI: спектр сигнала	54
2.52	Кодирование NRZ: спектр сигнала	55
2.53	Кодирование RZ: спектр сигнала	56
2.54	Манчестерское кодирование: спектр сигнала	57
2.55	Дифференциальное манчестерское кодирование: спектр сигнала	58

Список таблиц

1 Цель работы

Изучение методов кодирования и модуляции сигналов с помощью высокоуровнего языка программирования Octave. Определение спектра и параметров сигнала. Демонстрация принципов модуляции сигнала на примере аналоговой амплитудной модуляции. Исследование свойства самосинхронизации сигнала.

2 Последовательность выполнения работы

2.1 Построение графиков в Octave

2.1.1 Постановка задачи

- 1. Построить график функции $y = \sin x + 1/3 \sin 3x + 1/5 \sin 5x$ на интервале [-10; 10], используя Octave и функцию plot. График экспортировать в файлы формата .eps, .png.
- 2. Добавить график функции $y = \cos x + 1/3\cos 3x + 1/5\cos 5x$ на интервале [-10; 10]. График экспортировать в файлы формата .eps, .png.

2.1.2 Порядок выполнения работы

1. Запустите в вашей ОС Octave с оконным интерфейсом.(рис. 2.1),(рис. 2.2),(рис. 2.3),(рис. 2.4).

Рис. 2.1: Загружаем Octave

Рис. 2.2: Процес установки

Рис. 2.3: Octave

Рис. 2.4: ОС Octave с оконным интерфейсом

- 2. Перейдите в окно редактора. Воспользовавшись меню или комбинацией клавиш ctrl + n создайте новый сценарий. Сохраните его в ваш рабочий каталог с именем, например, plot_sin.m.
- 3. В окне редактора повторите следующий листинг по построению графика функции $y = \sin x + 1/3 \sin 3x + 1/5 \sin 5x$ на интервале [-10; 10]: (рис. 2.5).

Рис. 2.5: Код функции $y = \sin x + 1/3 \sin 3x + 1/5 \sin 5x$

В нашем случае имя test.m

4. Запустите сценарий на выполнение (воспользуйтесь соответствующим меню окна редактора или клавишей F5). В качестве результата выполнения кода должно открыться окно с построенным графиком (рис. 1.1) и в вашем рабочем каталоге должны появиться файлы с графиками в форматах .eps, .png. (рис. 2.6).

Рис. 2.6: График функции $y = \sin x + 1/3 \sin 3x + 1/5 \sin 5x$

5. Сохраните сценарий под другим названием и измените его так, чтобы на одном графике располагались отличающиеся по типу линий графики функций y1 = $\sin x + 1/3 \sin 3x + 1/5 \sin 5x$, y2 = $\cos x + 1/3 \cos 3x + 1/5 \cos 5x$, например как изображено (рис. 2.7).

Рис. 2.7: График функций у1 и у2

2.2 Разложение импульсного сигнала в частичный ряд Фурье

2.2.1 Постановка задачи

1. Разработать код m-файла, результатом выполнения которого являются графики меандра, реализованные с различным количеством гармоник.

2.2.2 Порядок выполнения работы

- 1. Создайте новый сценарий и сохраните его в ваш рабочий каталог с именем, например, meandr.m.
- 2. В коде созданного сценария задайте начальные значения:(рис. 2.8).

Рис. 2.8: Код meandr.m

3. Разложение импульсного сигнала в форме меандра в частичный ряд Фурье. Гармоники, образующие меандр, имеют амплитуду, обратно пропорциональную номеру соответствующей гармоники в спектре:(рис. 2.9).

```
1 % meandr.m
2 % количество отсчетов (гармоник):
3 N=8;
4 % частота дискретивации:
5 t=-1:0.01:1;
6 % значение амплитуды:
7 A=1;
8 % период:
9 T=1;
10 % амплитуда гармоник
11 nh=(1:N)*2-1;
12 % массив коэффициентов для ряда, заданного через соз:
13 Am=2/pi / nh;
14 Am(2:2:end) = -Am(2:2:end);
15
16 % массив гармоник:
17 harmonics=cos(2 * pi * nh' * t/T);
18 % массив влементов ряда:
19 s1=harmonics.*repmat(Am',1,length(t));
```

Рис. 2.9: Код meandr.m

4. Далее для построения в одном окне отдельных графиков меандра с различным количеством гармоник реализуем суммирование ряда с накоплением и воспользуемся функциями subplot и plot для построения графиков:(рис. 2.10).

Рис. 2.10: Код meandr.m

5. Экспортируйте полученный график в файл в формате .png.(рис. 2.11).

Рис. 2.11: График соѕ

6. Скорректируйте код для реализации меандра через синусы. Получите соответствующие графики.(рис. 2.12).

Рис. 2.12: График sin

2.3 Определение спектра и параметров сигнала

2.3.1 Постановка задачи

- 1. Определить спектр двух отдельных сигналов и их суммы.
- 2. Выполнить задание с другой частотой дискретизации. Пояснить, что будет, если взять частоту дискретизации меньше 80 Гц?

2.3.2 Порядок выполнения работы

- 1. В вашем рабочем каталоге создайте каталог spectre1 и в нём новый сценарий с именем, spectre.m.
- 2. В коде созданного сценария задайте начальные значения:
- 3. Далее в коде задайте два синусоидальных сигнала разной частоты:
- 4. Постройте графики сигналов:(рис. 2.13),(рис. 2.14).

```
** Spectral/spectral matrix and a signal of spectral and parameters reasoned signal of spectral and parameters reasoned; makdir 'spectral'; makdir 'spectral'; makdir 'spectral'; makdir 'spectral'; makdir 'spectral'; makdir 'spectral and spectral and (Fu) (Konsusectro orchanos); fd = 512; matrix approve chrhana (Fu); f1 = 10; matrix approve chrhana; f2 = 40; matrix approve chrhana; matrix al = 1; matrix approve chrhana; matrix al = 1; matrix approve chrhana; matrix al = 0.1./fd:tmax; matrix archanos speaned; matrix archanos speaned; t = 0:1./fd:tmax; matrix archanos speaned; signal1 = al sin(2*pi*t*f1); signal2 = al sin(2*pi*t*f1); signal2 = al sin(2*pi*t*f2); matrix archanos approve and speaned; matrix archanos approve al signal1, (b'); matrix archanos approve and speaned; hold on plot(signal2,'r'); hold off title 'Signal'); matrix approve a speane a speane approve approve a speane approve approve
```

Рис. 2.13: Код spectre.m

Рис. 2.14: Два синусоидальных сигнала разной частоты

5. С помощью быстрого преобразования Фурье найдите спектры сигналов, добавив в файл spectre.m следующий код:(рис. 2.15).

```
* Посчитаем спектр

* Амплитуды преобразования фурье сигнала 1:

spectrel = abs(fft(signal1,fd));

* Амплитуды преобразования фурье сигнала 2:

spectre2 = abs(fft(signal2,fd));

* Построение графиков спектров сигналов:

plot(spectre1,'b');

hold on

plot(spectre2,'r');

hold off

title('Spectre');

print 'spectre/spectre.png';
```

Рис. 2.15: Дополнение в коду spectre.m

6. Учитывая реализацию преобразования Фурье, скорректируйте график спектра: отбросьте дублирующие отрицательные частоты, а также примите в расчёт то, что на каждом шаге вычисления быстрого преобразования Фурье происходит суммирование амплитуд сигналов. Для этого добавьте в файл spectre.m следующий код:(рис. 2.16),(рис. 2.17),(рис. 2.18).

```
spectre1 = abs(fft(signal1,fd));
spectre2 = abs(fft(signal2,fd));
plot(spectre1, 'b');
hold on
plot(spectre2, 'r');
hold off
title('Spectre
print
f = 1000*(0:fd2)./(2*fd);
spectre1 = 2*spectre1/fd2;
spectre2 = 2*spectre2/fd2;
plot(f,spectre1(1:fd2+1),'b');
hold on
plot(f, spectre2(1:fd2+1), 'r');
hold off
xlim([0 100]);
title
xlabel
                       1);
print
```

Рис. 2.16: Дополнение в коду spectre.m

Рис. 2.17: График спектров синусоидальных сигналов

Рис. 2.18: Исправленный график спектров синусоидальных сигналов

7. Найдите спектр суммы рассмотренных сигналов, создав каталог spectr_sum и файл в нём spectre_sum.m со следующим кодом:(рис. 2.19).

```
mkdir
mkdir
tmax = 0.5
% Спектр си
fd2 = fd/2;
t = 0:1./fd:tmax;
signal1 = a1*sin(2*pi*t*f1);
signal2 = a2*sin(2*pi*t*f2);
signal = signal1 + signal2;
plot(signal);
title('Signal');
print 'signal/spectre_sum.png'
spectre = fft(signal,fd);
f = 1000*(0:fd2)./(2*fd);
spectre = 2*sqrt(spectre.*conj(spectre))./fd2
plot(f,spectre(1:fd2+1))
xlim([0 100]);
title('Spectre');
xlabel('Frequency (Hz)');
```

Рис. 2.19: Код spectre sum.m

В результате должен получится аналогичный предыдущему результат, т.е. спектр суммы сигналов должен быть равен сумме спектров сигналов, что вытекает из свойств преобразования Фурье.(рис. 2.20),(рис. 2.21).

Рис. 2.20: Суммарный сигнал

Рис. 2.21: Спектр суммарного сигнала

8. Выполнить задание с другой частотой дискретизации. Пояснить, что будет, если взять частоту дискретизации меньше 80 Гц?

Это приведет к нарушению теоремы Котельникова.

Наша максимальная частота – 40 Гц, это частота второго сигнала, - значит, частота дискретизации должна быть не менее 80 Гц (частота дискретизации должна быть минимум в два раза выше, чем максимальная частота в сигнале)

Если мы возьмем частоту дискретизации меньше 80 Гц, то произойдет наложение спектров. Более высокие частоты в сигнале будут "складываться" в более низкие частоты, искажая спектр и сам сигнал.

2.4 Амплитудная модуляция

2.4.1 Постановка задачи

Продемонстрировать принципы модуляции сигнала на примере аналоговой амплитудной модуляции

2.4.2 Порядок выполнения работы

- 1. В вашем рабочем каталоге создайте каталог modulation и в нём новый сценарий с именем am.m.
- 2. Добавьте в файле am.m следующий код:(рис. 2.22).

```
mkdir 'signal';
mkdir 'signal';
mkdir 'signal';
mkdir 'signal';

therefore an experiment (u) (nonvector occurred)

fd = 512;

therefore accusant (u)

f1 = 5;

therefore accusant (u)

f2 = fd 2;

therefore accusant (u)

f3 = 2 = 50;

therefore accusant (u)

f4 = 512;

therefore accusant (u)

f5 = 50;

therefore accusant (u)

f2 = fd 2;

therefore accusant (u)

f3 = 2 = fd 2;

therefore accusant (u)

f4 = 0.1./fd tmax:

signal - sin (2 pi t f1;

signal 2 = sin (2 pi t f2;

signal = signal1 .* signal2;

plot signal .* bij);

hold off

plot (signal, 'r');

hold off

title (signal);

print 'signal/accusant (processed)

spectre = fft (signal, fd);

therefore accusant (processed)

spectre = fft (signal, fd);

spectre = 2 sqrt (spectre) (conj (spectre))./fd2;

spectre
```

Рис. 2.22: Код ат.т

В результате получаем, что спектр произведения представляет собой свёртку спектров(рис. 2.23),(рис. 2.24).

Рис. 2.23: Сигнал и огибающая при амплитудной модуляции

Рис. 2.24: Спектр сигнала при амплитудной модуляции

2.5 Кодирование сигнала. Исследование свойства самосинхронизации сигнала

2.5.1 Постановка задачи

По заданных битовых последовательностей требуется получить кодированные сигналы для нескольких кодов, проверить свойства самосинхронизуемости кодов, получить спектры.

2.5.2 Порядок выполнения работы

1. В вашем рабочем каталоге создайте каталог coding и в нём файлы main.m, maptowave.m, unipolar.m, ami.m, bipolarnz.m, bipolarrz.m, manchester.m,

diffmanc.m, calcspectre.m.

2. В окне интерпретатора команд проверьте, установлен ли у вас пакет расширений signal: (рис. 2.25).

```
...\packages\optiminterp-0.3.7
  parallel
                4.0.2
                        ...\packages\parallel-4.0.2
quaternion
                2.4.0
                        ...\packages\quaternion-2.4.0
  queueing
                1.2.8
                       ...\packages\queueing-1.2.8
                1.4.6 | ...\packages\signal-1.4.6
    signal
                        ...\packages\sockets-1.4.1
   sockets
                        ...\packages\sparsersb-1.0.9
 sparsersb
                        ...\packages\splines-1.3.5
   splines
```

Рис. 2.25: Окно терминала. Проверяем наличие signal

3. В файле main.m подключите пакет signal и задайте входные кодовые последовательности:(рис. 2.26).

```
💾 main.m 🔼
          maptowave.m
                       unipolar.m
                                   ami.m 🔣
                                           bipolarnrz.m
     pkg load signal
    data=[0 1 0 0 1 1 0 0 0 1 1 0];
     → свойства самосинхронизации:
    data sync=[0 0 0 0 0 0 0 1 1 1 1 1 1 1];
     → спектра сигнала:
    data spectre=[0 1 0 1 0 1 0 1 0 1 0 1 0 1];
    ⇒ размещения графиков:
    mkdir
    mkdir
    mkdir
     axis("
```

Рис. 2.26: Код main.m

Затем в этом же файле пропишите вызовы функций для построения графиков

модуляций кодированных сигналов для кодовой последовательности data:(рис. 2.27).

```
💾 main.m 🔼
        maptowave.m
                    unipolar.m 🗵
                              ami.m 🔀
                                        bipolarnrz.m 🗵
    data sync=[0 0 0 0 0 0 0 1 1 1 1 1 1 1];
    → спектра сигнала:
    data spectre=[0 1 0 1 0 1 0 1 0 1 0 1 0 1];
    mkdir
    mkdir
    mkdir
    axis "a
 20 wave=unipolar(data);
   plot wave
    ylim([-1 6]);
 23 title('T
 24 print
 26 wave=ami(data);
 27 plot(wave)
 28 title('AMI');
    print
 81 wave=bipolarnrz(data);
 32 plot(wave);
    title 🗀
    print 'si
 36 wave=bipolarrz(data);
 37 plot wave
 38 title('E
 39 print '
    plot wave
```

Рис. 2.27: Код main.m

Затем в этом же файле пропишите вызовы функций для построения графиков модуляций кодированных сигналов для кодовой последовательности

data sync:(рис. 2.28).

```
💾 main.m 🗵
          maptowave.m
                     unipolar.m 🗵
                                  ami.m 🗵
                                           bipolarnrz.m
 50 print
 54 wave=unipolar(data sync);
 55 plot(wave);
 56 \text{ ylim}([-1 \ 6]);
 57 title ('Uni
 58 print '
 60 wave=ami(data sync);
 61 plot (wave)
 62 title('AMI');
 63 print
 65 wave=bipolarnrz(data sync);
 66 plot(wave);
 67 title('B
 68 print
 70 wave=bipolarrz(data sync);
 71 plot(wave)
 72 title('Bip
 73 print 'sy
74 % Manueco
 75 wave=manchester(data sync);
 76 plot(wave)
 77 title('M
 78 print
 80 wave=diffmanc(data_sync);
 81 plot (wave)
 82 title('
 83 print
```

Рис. 2.28: Код main.m

Далее в этом же файле пропишите вызовы функций для построения графиков спектров:(рис. 2.29).

```
💾 main.m 🔣
          maptowave.m
                       unipolar.m 🗵
                                  ami.m 🗵
                                          bipolarnrz.m
     title
     print
  86 wave=unipolar(data spectre);
     spectre=calcspectre(wave);
     title ('
 89 print
     wave=ami (data spectre);
  92 spectre=calcspectre(wave);
     title
     print
  96 wave=bipolarnrz(data spectre);
     spectre=calcspectre(wave);
  98 title('
     print
     wave=bipolarrz(data spectre);
 102 spectre=calcspectre(wave);
     title '
     print
 106 wave=manchester(data spectre);
 107 spectre=calcspectre(wave);
 108 title
     print
 111 wave=diffmanc(data spectre);
     spectre=calcspectre(wave);
     title
     print
```

Рис. 2.29: Код main.m

4. В файле maptowave.m пропишите функцию, которая по входному битовому потоку строит график сигнала:(рис. 2.30).

```
main.m maptowave.m unipolar.m main.m maptowave.m

coding/maptowave.m

function wave=maptowave(data)
data=upsample(data,100);
wave=filter(5*ones(1,100),1,data);
```

Рис. 2.30: Код maptowave.m

5. В файлах unipolar.m, ami.m, bipolarnz.m, bipolarrz.m, manchester.m, diffmanc.m пропишите соответствующие функции преобразования кодовой последовательности data с вызовом функции maptowave для построения соответствующего графика.

Униполярное кодирование:(рис. 2.31).

```
main.m × maptowave.m × unipolar.m 1 % coding/unipolar.m
2 % Униполярное колирование:
3 — function wave=unipolar(data)
4 — wave=maptowave(data);
```

Рис. 2.31: Код unipolar.m

Кодирование АМІ:(рис. 2.32).

```
main.m Maptowave.m unipolar.m ami.m bipolarnrz.m cipolarnrz.m cipolar
```

Рис. 2.32: Код ami.m

Кодирование NRZ:(рис. 2.33).

```
main.m 

maptowave.m 

unipolar.m 

ami.m 

bipolarnrz.m

kcoding/bipolarnrz.m

Kодирование NRZ:

тunction wave=bipolarnrz(data)

data(data==0)=-1;

wave=maptowave(data);
```

Рис. 2.33: Код bipolarnrz.m

Кодирование RZ:(рис. 2.34).

```
mrz.m in bipolarrz.m in manchester.m in diffmanc.m in calcspectred and ca
```

Рис. 2.34: Код bipolarrz.m

Манчестерское кодирование:(рис. 2.35).

```
rz.m ▶ bipolarrz.m ▶ manchester.m ▶ calcs

1 % coding/manchester.m

2 % Манчестерское кодирование:

3 ■ function wave=manchester(data)

4 data(data==0)=-1;

5 data=upsample(data,2);

6 data=filter([-1 1],1,data);

7 wave=maptowave(data);
```

Рис. 2.35: Код manchester.m

Дифференциальное манчестерское кодирование:(рис. 2.36).

```
bipolarrz.m × manchester.m × diffmanc.m № calcspectre.m × coding/diffmanc.m
% Дифференциальное манчестерское

function wave=diffmanc(data)
data=filter(1,[1 1],data);
data=mod(data,2);
wave=manchester(data);
```

Рис. 2.36: Код diffmanc.m

6. В файле calcspectre.m пропишите функцию построения спектра сигнала:(рис. 2.37).

```
ы віроlarrz.m м manchester.m м diffmanc.m м calcspectre.m calcspectre.m calcspectre.m calcspectre.m calcspectre.m calcspectre.m calcspectre.m calcspectre.m м calcspectre.m calcspectre.m
```

Рис. 2.37: Код calcspectre.m

7. Запустите главный скрипт main.m. В каталоге signal должны быть получены файлы с графиками кодированного сигнала, в каталоге sync — файлы с графиками, иллюстрирующими свойства самосинхронизации, в каталоге spectre — файлы с графиками спектров сигналов.(рис. 2.38),(рис. 2.39),(рис. 2.40),(рис. 2.41),(рис. 2.42),(рис. 2.43),(рис. 2.44),(рис. 2.45),(рис. 2.46),(рис. 2.47),(рис. 2.48),(рис. 2.49),(рис. 2.50),(рис. 2.51),(рис. 2.52),(рис. 2.53),(рис. 2.54),(рис. 2.55).

Рис. 2.38: Униполярное кодирование

Рис. 2.39: Кодирование АМІ

Bipolar Non-Return to Zero

Рис. 2.40: Кодирование NRZ

Bipolar Return to Zero

Рис. 2.41: Кодирование RZ

Manchester 6 4 2 0 -2 -4 0 500 1000 1500 2000 2500

Рис. 2.42: Манчестерское кодирование

Differential Manchester

-2

-4

-6

Рис. 2.43: Дифференциальное манчестерское кодирование

Рис. 2.44: Униполярное кодирование: нет самосинхронизации

Рис. 2.45: Кодирование АМІ: самосинхронизация при наличии сигнала

Bipolar Non-Return to Zero

Рис. 2.46: Кодирование NRZ: нет самосинхронизации

Bipolar Return to Zero

Рис. 2.47: Кодирование RZ: есть самосинхронизация

Рис. 2.48: Манчестерское кодирование: есть самосинхронизация

Differential Manchester 6 4 2 0 -2 -4 0 500 1000 1500 2000 2500 3000

Рис. 2.49: Дифференциальное манчестерское кодирование: есть самосинхронизация

Рис. 2.50: Униполярное кодирование: спектр сигнала

Рис. 2.51: Кодирование АМІ: спектр сигнала

Bipolar Non-Return to Zero

Рис. 2.52: Кодирование NRZ: спектр сигнала

Bipolar Return to Zero 3000 2500 1500 1000 500 0 100 200 300 400 500

Рис. 2.53: Кодирование RZ: спектр сигнала

Frequency (Hz)

Рис. 2.54: Манчестерское кодирование: спектр сигнала

Рис. 2.55: Дифференциальное манчестерское кодирование: спектр сигнала

3 Выводы

Изучили методы кодирования и модуляции сигналов с помощью высокоуровнего языка программирования Octave. Поняли определения спектра и параметров сигнала. Продемонстрировали понимание принципов модуляции сигнала на примере аналоговой амплитудной модуляции. Исследовали свойства самосинхронизации сигнала.

Список литературы