[S174 Liter 23 Wid, April 22, 2020

- Liast Common Anicstor and Min Range Greny -

Last Common Aniastor

blasptu of treal

Crean data structure to answer
queries? O(1) time

(014): prepromising time, query time, spain no prewore O(1) O(dappn) O(n)prevompin all O(n². drpm) O(1) O(n²) o(n) o(1) o(n)

lCA -> Range Minimum avery

KMA: array A of n numbers naive solution: O(j-i) quen input index 23 i, j

Vetvvn index of min A(i], A(i+1],..., A(j)

DP solution: RMQ(i,j) = A-1 [min [KMQ(i,j-1), A(j]]]

O(n²) preprocessing O(1) gray O(n²) space

Mud linear- sime veducion:

Recursion: PP, space -> O(n)
Split A:
X[1, 2n/10gn], where X[i] = min element in it block of A
Y[1, 2n/logn], position where X[i] occurs
Preprotessing: RMQ structures on each block and on X
RMQ (i, j)
· if same block, easy!
· i'f not same blow
min (KMQx(block)) }
KMA (i, and of block) KMA (start of block, j)
Minimum = minimum of these 3 possibilities
X is of sin 2n/logn
Timu(span: 2n = oin)
Togn Togn
Splitting A: 2n blocks of sitt 109n/2
RMC on one block $\Rightarrow 109n \cdot 109 \left(\frac{109n}{2}\right) =$
$O(\log n \times \log \log n)$
Total: O(n x log log n)

Keep recursing to O(nx log log log logu)
Pown to $O(n)$: Level array: Elements always directly by 1 LCA \rightarrow +1 KMQ
$109n/2$ = \sqrt{N} number of total sequences
Since max VN signances -> time is O(VN x log n x loglogn, 4 limited # of signances -> store in lookup table
KMQ -> 2CA -> +/- RMQ - /invar time reduction to each orner