Assignment Project Exam Help Add WeChat powcoder

COMP251: NetWork flows (1)

https://powcoder.com

Add WeChat powcoder Jérôme Waldispühl

School of Computer Science McGill University

Based on slides from M. Langer (McGill) & (Cormen et al., 2009)

Assignment Project Exam Help

Add Weekhat between k

G = (V, E) directed.

Each edge (u, v) has a *capacity* $c(u, v) \ge 0$.

If $(u,v) \notin E$, then c(u,v) = 0.

Assignment Project Exam Help
Source vertex s, sink vertex t, assume $s \sim v \sim t$ for all $v \in V$.

Assignment Project Exam Help

Add Weefinitionsr

Positive flow: A function $p: V \times V \rightarrow \mathbf{R}$ satisfying.

Capacity constraint: For all $u, v \in V$, $0 \le p(u, v) \le c(u, v)$

Assignment Project Esapachtelp

Add WeChat powcoder

Flow conservation: For all $u \in V - \{s, t\}$,

Flow in: 0 + 2 + 1 = 3

Flow out: 2 + 1 = 3

Assignment Project Exam Help Add weenat polecter

Assignment Project Exam Help Cancellation with positive flows

- Without loss of generality, can say positive flow goes either from u to vassigmueau Project Eathm Help
- In the above example, we can "cancel" 1 unit of flow in each direction between x and z.

- Capacity constraint is still satisfied.
- Flow conservation is still satisfied.

Assignment Project Exam Help Add Welfat poweder

A function $f: V \times V \rightarrow \mathbf{R}$ satisfying:

- Capacity constraint: For all $u, v \in V$, $f(u, v) \le c(u, v)$ Assignment Project Exam Help
- **Skew symmetry:** For all $u, v \in V, f(u, v) = -f(v, u)$
- https://powcoder.com
 Flow conservation: For all $u \in V \{s, t\}$, $\sum f(u, v) = 0$ Add WeChat powcoder $v \in V$

$$\sum_{v \in V; f(v,u) > 0} f(v,u) = \sum_{v \in V; f(u,v) > 0} f(u,v)$$
Total positive flow entering u leaving u

Assignment Project Exam Help Pasitive National Power of the Project Exam Help Pasitive National Power of the Project Exam Help

Define net Alowigm teams Brojective flow: Help

https://poweodep.com

The differences between positive flow p and net flow f: Add WeChat powcoder

- $p(u,v) \geq 0$,
- *f* satisfies skew symmetry.

Assignment Project Exam Help

Advalues of flows

Definition:
$$f = |f| = \sum_{v \in V} f(s, v) = \text{total flow out of source.}$$

Value of flow f = |f| = 3.

Assignment Project Exam Help A El over properties

- Flow in == Flow out
- Source s has outgoing flow
- Sink t has ingoing flow Assignment Project Exam Help Flow out of source s == Flow in the sink t

https://powcoder.com

Assignment Project Exam Help Maximum-flow problem

Given *G*, *s*, *t*, and *c*, find a flow whose value is maximum.

Assignment Project Exam Help

Assignment Project Exam Help Add Applications

(http://driverlayer.com)

Assignment Project Exam Help Allaweenal gorithm

```
Initialize f = 0
While true Assignment Project Exam Help
if (3 path https://powcoder.com that all edges have a flow less than capacity)
                Add WeChat powcoder
   then
      increase flow on P up to max capacity
   else
      break
```

Assignment Project Exam Help Aldawehalgorithm

```
Initialize f = 0
While true Assignment Project Exam Help
if (\exists a path P. from steeder.com s.t. all edges e \in P f(e) < c(e) )
                Add WeChat powcoder
   then {
       \beta = \min\{ c(e) - f(e) \mid e \in P \}
       for all e \in P \{ f(e) += \beta \}
   } else { break }
```


$$|f|=2$$

$$|f|=4$$

$$|f|=5$$

Assignment Project Exam Help Add Wechallenges

How to choose paths such that: Assignment Project Exam Help

- We do not get stuck
- https://powcoder.com
 We guarantee to find the maximum flow
- The algorithm Werfichat powcoder

Assignment Project Exam Help Adbetter algorithm

Motivation: If we could subtract flow, then we could find it.

Assignment Project Exam Help AResidual graphs

Given a flow network G=(V,E) with edge capacities c and a given flow f, define the restauring factor of a street of the restauring flow of the street of the restauring flow of the res

- G_f has the sametyesti/espas Goder.com
- The edges E_f have capacities c_f (called residual capacities) that allow us to change the flow f, either by:
 - 1. Adding flow to an edge $e \in E$
 - 2. Subtracting flow from an edge ∈ E

Assignment Project Exam Help AResidual graphs

```
for each edge e = (u, v) \in E
                        if f(e) < c(e)
                                                                                          Assignment Project Exam Help
                                               put a forward edge (u,v) in E<sub>f</sub>
                                              with restantification 
                                                                                                                           Add WeChat powcoder
                        if f(e) > 0
                        then {
                                                put a backward edge (v,u) in E<sub>f</sub>
                                               with residual capacity c_f(e) = f(e)
```

Assignment Project Exam Help Add Example 1/3

Assignment Project Exam Help Add Example 2/3

Assignment Project Exam Help Add Example 3/3

Assignment Project Exam Help Add Example 3/3

Assignment Project Exam Help Augmenting path

An augmenting path is a path from the source s to the sink t in the residual graph G_f that allows us to increase the flow.

Assignment Project Exam Help

Q: By how much can we increase the flow using this path?

Assignment Project Exam Help Add weenat polecter

Assignment Project Exam Help Add weenat polecteder

Assignment Project Exam Help

Assignment Project Exam Help Add Wethapdology

- Compute the residual graph G_f
- Find a path Assignment Project Exam Help
- Augment the flow f along the path P https://powcoder.com
 - 1. Let β be the bottleneck (smallest residual capacity $c_f(e)$ of edges on Apid WeChat powcoder
 - 2. Add β to the flow f(e) on each edge of P.

Q: How do we add β into G?

Assignment Project Exam Help Augmenting apath

```
f.augment(P) {
  \beta = min \{ c(e)-f(e) \mid e \in P \}
Assignment Project Exam Help for each edge e = (u,v) \in P \{
           hit for is/poovvoordeedgen
          Add WeChat powcoder } else { // e is a backward edge
                  f(e) = \beta
```

Assignment Project Exam Help Ford-Eulkerson algorithm

```
Assignment Project Exam Help G_f \leftarrow G

white the wasses are G_f) {

Add Wether powcoder update G_f based on new f
}
```

Assignment Project Exam Help Correctness (termination)

Claim: The Ford-Fulkerson algorithm terminates.

Assignment Project Exam Help **Proof:**

The capacities and thows / preventically positive integers.

The sum of capacities leaving s is finite. Add WeChat powcoder Bottleneck values β are strictly positive integers.

- The flow increase by β after each iteration of the loop.
- The flow is an increasing sequence of integers that is bounded.

Assignment Project Exam Help Complexity (Running time)

- Assignment Project Exam Help

 eeE

 https://www.oder.com
- Finding an augmenting path from s to t takes O(|E|) (e.g. BFS or DFS).
- The flow increases by at least 1 at each iteration of the main while loop.
- The algorithm runs in $O(C \cdot |E|)$