Tutorial: Linear Independence, Dependence, and Bases

A supplement for Math 416 by Jacob Beckey

Goal: By the end of this activity, you will be able to define linear independence and dependence, explain how spanning and independence interact, and describe what a basis is.

1. Warming Up with Span

Consider the three vectors in \mathbb{R}^2 :

$$v_1 = (1,0,0), \quad v_2 = (0,1,0), \quad v_3 = (1,1,0).$$

- 1. What subspace of \mathbb{R}^3 is spanned by $\{v_1, v_2, v_3\}$?
- 2. Do we need all three vectors to span this subspace? Why or why not?

2. Linear Dependence

A set of vectors is called *linearly independent* if ______. Otherwise, it is called *linearly dependent*.

- 1. Show that $v_3 = (1,1,0)$ can be written as a linear combination of v_1 and v_2 . Can any vector in this list be written as a combination of the other two?
- 2. Give another example (your own!) of a linearly dependent set of vectors in \mathbb{R}^3 . Explain why it is dependent.

3. Linear Independence

A list of vectors v_1, \ldots, v_m is called *linearly independent* if the only way to write

$$a_1v_1+\cdots+a_mv_m=0$$

is with $a_1 = \cdots = a_m = 0$.

1. Check whether the following set is independent in \mathbb{R}^3 :

$$\{(1,0,0),(0,1,0),(0,0,1)\}.$$

2. Check whether the following set is independent in \mathbb{R}^3 :

$$\{(1,0,0),(0,1,0),(1,1,0)\}.$$

4. Comparing Spanning and Independence

Suppose *U* is a subspace of \mathbb{R}^n .

1. If you have a spanning set for U, can you always remove some vectors until you get a linearly independent spanning set?

_		_				_					
2	If v	zou have an	inden	endent set i:	n II can	won alway	vs add more	vectors	from 11	until it cr	nane II?
۷٠	11	y Ou Have an	niacp	CHACHE SCE II	i a, cai	you aiwa	y o add illold	VCCtO13	nom a	unitin it of	uns a.

3.	What does this suggest about the relationship between the length of a linearly independent list and
	the length of a spanning list in the same subspace?

5. Basis

Definition: A *basis* for a subspace *U* is a list of vectors that _____ and also _____.

- 1. Which of the following sets form a basis for \mathbb{R}^2 ? Justify.
 - (a) $\{(1,0),(0,1)\}$
 - (b) $\{(1,0),(1,1)\}$
 - (c) $\{(1,0),(0,0)\}$
 - (d) $\{(1,0),(0,1),(1,1)\}$
- 2. In your own words: why is having a basis more useful than just having any spanning set?

Challenge Problems

1. Prove that any set of vectors that contains the zero vector is linearly dependent. 2. Suppose a set $S = \{v_1, \dots, v_m\}$ is linearly dependent. Prove that at least one v_j is a linear combination of the others. 3. Prove that if a spanning set for a subspace *U* is minimal (no proper subset spans *U*), then it must be linearly independent. 4. Prove that if a set of vectors in a subspace *U* is linearly independent and maximal (you cannot add more vectors from U and keep independence), then it must span U. 5. Let *U* be a subspace of \mathbb{R}^n . Suppose *S* is a spanning set for *U* with *m* vectors, and *I* is an independent set in *U* with *k* vectors. Prove that $k \le m$. (Hint: combine Problems 3 and 4.) 6. Prove that if $\{v_1, \ldots, v_m\}$ is linearly independent, then every $u \in \text{span}(v_1, \ldots, v_m)$ has a unique representation as a linear combination of v_1, \ldots, v_m .