RS01使用说明书

注意事项

- 1. 请按照本文规定的工作参数使用, 否则可能会对本产品造成严重的损坏!
- 2. 在关节运行时不可切换控制方式,如需切换需要发送停止运行命令后再做切换。
- 3. 使用前请检查各部件是否完好,如发生部件缺失、损坏请及时联系技术支持。
- 4. 请勿随意拆卸电机,以免出现无法恢复的故障。
- 5. 确保电机连接时无短路,接口按要求正确连接。

法律声明

在使用本产品前,请用户务必仔细阅读本手册,按照本手册内容操作本产品。如用户违反本手册内容使用本产品,造成的任何财产损失、人身伤害事故,本公司不承担任何责任。 因本产品由众多零部件构成,切勿让儿童接触本产品,以免发生意外事故。为延长产品使用寿命,请勿在高温、高压环境中使用本产品。本手册在印刷时已尽可能的包含各项功能介绍和使用说明。但由于产品功能不断完善、设计变更等,仍可能与用户购买的产品有不符之处。

本手册与实际产品在颜色、外观等方面可能有所偏差,请以实际产品为准。本手册由北京灵足时代科技有限公司(下简称灵足)出版,灵足随时可能对本手册中不准确的最新信息进行必要的改进和更改,或对程序和/或设备进行改进。此类更改将上传电子版说明书到公司官网,详情可查看下载中心栏(www.robstride.com)。所有图片仅供功能说明参考,请以实物为准。

售后政策

本产品售后服务严格依据《中华人民共和国消费者权益保护法》、《中华人民共和国产品质量法》 实行售后服务,服务内容如下:

1. 保修期限及内容

- 1. 凡在线上渠道下单购买本产品的用户,可在自签收次日起七日内享受无理由退货服务。退货时用户须出示有效购买凭证,并退回发票。用户须保证退货商品保持原有品质和功能、外观完好、商品本身及配件的商标和各种标识完整齐全,如有赠品需一并退回。如果商品出现人为损坏、人为拆机、包装箱缺失、零配件缺失的情况,不予办理退货。 退货时产生的物流费用由用户承担(收费标准见"售后服务收费标准")。如果用户未结清物流费用,将按实际发生额从退款金额中扣除。 自收到退货商品之日起七日内向用户返还已支付的货款。退款方式与付款方式相同。具体到账日期可能会受银行、支付机构等因素影响。
- 2. 本产品保修期为1年。
- 3. 自用户签收次日起7天内,发生非人为损坏性能故障,经由灵足售后服务中心检测确认后,为用户办理退货业务,退货时用户须出示有效购买凭证,并退回发票。如有赠品需一并退回。
- 4. 自用户签收次日起7天后至15天内,发生非人为损坏性能故障,经由灵足售后服务中心检测确认后,为用户办理换货业务,更换整套商品。换货后,商品本身三包期重新计算。
- 5. 自用户签收次日起15天后至365天内,经由灵足售后服务中心检测确认后,属于产品本身质量故障,可免费提供维修服务。更换的故障产品归灵足公司所有。无故障产品,将原样返回。本产品经过各项严格检测后出厂,如有非产品本身质量故障,我们将有权拒绝用户的退换货需求。
- 2. 非保修条例以下情况不属于保修范围:

- 1. 超出保修条款所限定的保修期限。
- 2. 未按照说明书要求, 错误使用造成的产品损坏损毁。
- 3. 不当的操作、维修、安装、改装、测试等不正当使用造成的损坏损毁。
- 4. 非质量故障引起的常规机械损耗、磨损。
- 5. 非正常工况下造成的损坏,包括但不限于跌落、撞击、液体浸入、剧烈撞击等。
- 6. 天灾(如水灾、火灾、雷击、地震等)或不可抗击力造成的损坏。
- 7. 超过峰值扭矩使用造成的损坏。
- 8. 超过峰值扭矩使用造成的损坏。
- 9. 其他非产品的设计、技术、制造、质量等问题导致的故障或损坏。
- 10. 将本产品应用于商业用途。

如果出现上述情况,用户需自行支付费用。

电机规格参数

外形及安装尺寸

固定时螺丝深入长度请勿超过机壳螺纹深度

标准使用状态

1. 额定电压: 36 VDC

2. 使用电压范围: 24V—50 VDC

3. 额定负载 (CW) : 6 N.m

4. 运转方向: CW/CCW 从出轴方向看

5. 使用姿势: 出轴方向为水平或者垂直

6. 标准使用温度: 25±5℃

7. 使用温度范围: -20~50℃

8. 标准使用湿度: 65%

9. 使用湿度范围: 5~85%,无凝露

10. 保存温度范围: -30~70℃

11. 绝缘等级: Class B

电气特性

1. 空载转速: 315 rpm±10%

2. 空载电流: 0.5 Arms

3. 额定负载: 6 N.m

4. 额定负载转速: 275rpm±10%

5. 额定负载相电流(峰值): 7Apk±10%

6. 峰值负载: 17 N.m

7. 最大负载相电流(峰值): 23Apk±10%

8. 绝缘电阻/定子绕组: DC 500VAC, 100M Ohms

9. 耐高压/定子与机壳: 600 VAC, 1s, 2mA

10. 电机反电势: 0.096Vrms/rpm±10%

11. 转矩常数: 1.22N.m/Arms

12. T-N曲线 (36V)

13. T-N曲线 (48V)

14. 最大过载曲线

测试条件:环境温度:25℃

绕阻极限温度: 135℃ (此为约束温度,实际为180度)

转速: 24rpm

测试数据

Load	Operating time(s)
17.00	10
15.00	18
13.00	35
11.00	100
9.00	370
7. 00	1000
6. 50	3000
6.00	rated

机械特性

1. 重量: 380g±3g

2. 极数: 28极

3. 相数: 3相

4. 驱动方式: FOC 5. 减速比: 7.75: 1

驱动器产品信息

驱动器产品规格

项目	数据
额定工作电压	36VDC

项目	数据
允许最大电压	50VDC
额定工作相电流	7Apk
最大允许相电流	23Apk
待机功率	≤18mA
CAN总线比特率	1Mbps
尺寸	Ф58mm
工作环境温度	-20°C至50°C
控制板允许最大温度	105℃
编码器分辨率	14bit (单圈绝对值)

驱动器接口定义

驱动器接口推荐品牌及型号

板端型号	型号 品牌厂家		品牌厂家	
XT30PB(2+2)-M.G.B	AMASS (艾迈斯)	XT30(2+2)-F.G.B	AMASS (艾迈斯)	

驱动器功能引脚及器件说明

1. 电源及CAN通信

引脚	说明
1	电源正极 (+)
2	电源负极 (-)
3	CAN通信低侧CAN_L
4	CAN通信高侧CAN_H

2. 下载口

引脚	说明
1	SWDIO (数据)
2	SWCLK (时钟)
3	3V3 (正极3.3V)
4	GND (负极地)

3. 指示灯

引脚	说明
1	蓝色信号灯闪烁时,证明程序运行正常
2	电源指示灯,该灯亮红色,则证明整个网络供电正常

主要器件及规格

序号	项目	规格	数量
1	MCU芯片	GD32F303RGT6	1 PCS
2	驱动芯片	6EDL7141	1 PCS
3	磁编码器芯片	AS5047P	1 PCS
4	热敏电阻	NXFT15XH103FEAB021/NCP18XH103F03RB	2 PCS
5	功率MOS	JMGG031V06A	6 PCS

上位机使用说明

请前往www.robstride.com官网下载中心下载

硬件配置

关节电机采用CAN通信方式,通信线有两根,通过can转USB工具与调试器相连,调试器需要提前安装ch340驱动,默认工作在AT模式。

需要注意的是,我们是根据特定的can转USB工具开发的调试器,因此需要用我们推荐的串口工具来 进行调试器调试,如果想要移植到其他调试器平台可以参照说明书的第三章进行开发。

can转USB工具推荐使用灵足时代官方的USB-CAN模块,对应串口协议的帧头为41 54,帧尾为0D 0A。

上位机界面及说明

主要包括:

A. 模块选择

- 设备模块
- 配置模块
- 分析模块
- 帮助模块

B. 子模块选择

- 连接或断开电机设备
- 电机设备信息
- 电机编码器标定
- 修改电机CAN ID
- 设置电机的机械零位
- 电机程序升级

参数表,可以查看并修改电机参数

- 上传参数,可以将电机中参数上传到参数表中
- 下载参数,可以将参数表中数据下载到电机中
- 导出参数,可以将参数表中数据下载到本地
- 恢复出厂,可以将参数表中数据恢复出厂设置
- 清除警告,可以清除电机报错,如温度过高等

分析模块包括:

- 示波器,可以查看参数随时间变化曲线
- 频率,可以调整查看数据的频率
- 信道,可以配置查看的数据
- 开始、停止绘图

• 输出波形数据到本地

帮助模块包括:

- 使用说明,可以打开使用说明书
- 关于,可以查看软件信息

C. 电机信息查询

- 设备信息
- 参数表信息

D. 数据栏

- 日志信息
- 通信信息

E. 运行调试区

- 选择设备
- 便捷操作区,可以快速控制电机正反转
- 运动控制区,可以控制电机按各模式运行
- F. 子模块显示区

电机设置

电机连接设置

连接can转USB工具(安装ch340驱动,默认工作在AT模式),点击设备模块中的连接子模块,选择对应 串口连接和电机类型,点击连接。

基本设置

- 1. 修改电机id号。
- 2. 电机磁编标定,电机板与电机重新安装,或电机三相线重新换顺序连接等,需要重新进行磁编标定。
- 3. 设置零位(掉电丢失),设置当前位置为0。
- 4. 电机程序升级, 当电机程序有更新时, 点击升级按钮选中升级文件即可进行升级。

参数表

参数	数表 ×						
	力能码	名称	参数类型	属性	最大值	最小值	当前值
1	(0000	Name	String	读写			ÿÿÿÿÿÿÿÿÿÿ ···
2	KOOO1	BarCode	String	读写			ÿÿÿÿÿÿÿÿÿÿ ;···
3	<1000	BootCodeVersion	String	只读			٧
4	X1001	BootBuildDate	String	只读			Aug 30 2024
5	X1002	BootBuildTime	String	只读			16:26:47
6	<1003	AppCodeVersion	String	只读			0.2.2.8
7	<1004	AppGitVersion	String	只读			٧
8	<1005	AppBuildDate	String	只读			Nov 1 2024
9	<1006	AppBuildTime	String	只读			11:02:53
10	X1007	AppCodeName	String	只读			Lingzu_motor
11	(2000	echoPara1	uint16	配置	91		87
12	K2001	echoPara2	uint16	配置	91		5
13	(2002	echoPara3	uint16	配置	91		5

成功连接电机后,点击配置模块中的参数表模块,日志中会显示全部参数加载成功,说明成功读取到电机相关参数(注:参数表需要在电机处于待机状态下进行配置,如果电机处于运行状态则无法进行参数表刷新),界面会显示电机的相关参数,蓝色的参数为电机内部的存储参数,可以在相应参数后面的当前值栏进行修改,点击下载参数可以将调试器中参数下载到电机中,点击上传参数可以将电机中的参数上传到调试器中,电机恢复绿色参数为观测参数,为采集得到的参数,可进行实时观测。

注: 电机的转矩限制、保护温度、过温时间请勿随意更改。因违规操作本产品导致对人体造成伤害,或对关节造成不可逆的损伤,我司将不承担任何法律责任。

功能码	名称	参数类型	属性	最大值	最小值	当前值 (供参考)	备注
0X0000	Name	String	读/ 写			ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ	
0X0001	BarCode	String	读/ 写			ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ	
0X1000	BootCodeVersion	String	只读			0.1.5	

功能码	名称	参数类型	属性	最大值	最小值	当前值 (供参考)	备注
0X1001	BootBuildDate	String	只读			Mar 16 2022	
0X1002	BootBuildTime	String	只读			20:22:09	
0X1003	AppCodeVersion	String	只读			0.0.0.1	电机程序版 本号
0X1004	AppGitVersion	String	只读			7b844b0fM	
0X1005	AppBuildDate	String	只读			Apr 14 2022	
0X1006	AppBuildTime	String	只读			20:30:22	
0X1007	AppCodeName	String	只读			Lingzu_motor	
0X2000	echoPara1	uint16	配置	74	5	5	
0X2001	echoPara2	uint16	配置	74	5	5	
0X2002	echoPara3	uint16	配置	74	5	5	
0X2003	echoPara4	uint16	配置	74	5	5	
0X2004	echoFreHz	uint32	读/ 写	10000	1	500	
0X2005	MechOffset	float	设 定	7	-7	4.619583	电机磁编码 器角度偏置
0X2006	MechPos_init	float	读/ 写	50	-50	4.52	保留参数
0X2007	limit_torque	float	读/ 写	17	0	17	转矩限制
0X2008	I_FW_MAX	float	读/ 写	33	0	0	弱磁电流 值,默认0
0X2009	motor_baud	uint8	设定	20	0	1	电机 index,标 记电机关节 位置
0X200a	CAN_ID	uint8	设 定	127	0	1	本节点id
0X200b	CAN_MASTER	uint8	设定	127	0	0	can主机id
0X200c	CAN_TIMEOUT	uint32	读/ 写	100000	0	0	can超时阈 值,默认0

功能码	名称	参数类型	属性	最大值	最小值	当前值 (供参考)	备注
0X200d	status2	int16	读/ 写	1500	0	800	保留参数
0X200e	status3	uint32	读/ 写	1000000	1000	20000	保留参数
0X200f	status1	float	读/ 写	64	1	7.75	保留参数
0X2010	Status6	uint8	读/ 写	1	0	1	保留参数
0X2011	cur_filt_gain	float	读/ 写	1	0	0.9	电流滤波参 数
0X2012	cur_kp	float	读/ 写	200	0	0.025	电流kp
0X2013	cur_ki	float	读/ 写	200	0	0.0258	电流ki
0X2014	spd_kp	float	读/ 写	200	0	2	速度kp
0X2015	spd_ki	float	读/ 写	200	0	0.021	速度ki
0X2016	loc_kp	float	读/ 写	200	0	30	位置kp
0X2017	spd_filt_gain	float	读/ 写	1	0	0.1	速度滤波参数
0X2018	limit_spd	float	读/ 写	200	0	2	位置模式速 度限制
0X2019	limit_cur	float	读/ 写	23	0	23	位置、速度 模式 电流 限制
0X3000	timeUse0	uint16	只读			5	
0X3001	timeUse1	uint16	只读			0	
0X3002	timeUse2	uint16	只读			10	
0X3003	timeUse3	uint16	只读			0	
0X3004	encoderRaw	int16	只读			11396	磁编码器采 样值
0X3005	mcuTemp	int16	只读			337	mcu内部温 度,*10
0X3006	motorTemp	int16	只读			333	电机ntc温 度,*10

功能码	名称	参数类型	属性	最大值	最小值	当前值 (供参考)	备注
0X3007	vBus(mv)	uint16	只读			24195	母线电压
0X3008	adc1Offset	int32	只读			2084	adc采样通 道1 零电流 偏置
0X3009	adc2Offset	int32	只读			2084	adc采样通 道2 零电流 偏置
0X300a	adc1Raw	uint16	只读			1232	adc采样值 1
0X300b	adc2Raw	uint16	只读			1212	adc采样值 2
0X300c	VBUS	float	只读			36	母线电压V
0X300d	cmdld	float	只读			0	id环指令, A
0X300e	cmdlq	float	只读			0	iq环指令, A
0X300f	cmdlocref	float	只读			0	位置环指 令, rad
0X3010	cmdspdref	float	只读			0	速度环指 令, rad/s
0X3011	cmdTorque	float	只读			0	转矩指令, nm
0X3012	cmdPos	float	只读			0	mit协议角 度指令
0X3013	cmdVel	float	只读			0	mit协议速 度指令
0X3014	rotation	int16	只读			1	圈数
0X3015	modPos	float	只读			4.363409	电机未计圈 机械角度, rad
0X3016	mechPos	float	只读			0.777679	负载端计圈 机械角度, rad
0X3017	mechVel	float	只读			0.036618	负载端转 速,rad/s
0X3018	elecPos	float	只读			4.714761	电气角度
0X3019	ia	float	只读			0	U线电流, A

功能码	名称	参数类型	属性	最大值	最小值	当前值 (供参考)	备注
0X301a	ib	float	只 读			0	V线电流, A
0X301b	ic	float	只读			0	W线电流, A
0X301c	timeout	uint32	只读			31600	超时计数器 值
0X301d	phaseOrder	uint8	只读			0	标定方向标 记
0X301e	iqf	float	只读			0	iq滤波值, A
0X301f	boardTemp	int16	只读			359	板上温度, *10
0X3020	iq	float	只读			0	iq原值,A
0X3021	id	float	只读			0	id原值, A
0X3022	faultSta	uint32	只读			0	故障状态值
0X3023	warnSta	uint32	只读			0	警告状态值
0X3024	drv_fault	uint16	只 读			0	驱动芯片故 障值1
0X3025	drv_temp	int16	只读			0	驱动芯片温 度
0X3026	Uq	float	只读			0	q轴电压
0X3027	Ud	float	只读			0	d轴电压
0X3028	dtc_u	float	只读			0	U相输出占 空比
0X3029	dtc_v	float	只读			0	V相输出占 空比
0X302a	dtc_w	float	只读			0	W相输出占 空比
0X302b	v_bus	float	只读			24.195	闭环中 vbus
0X302c	ElecOffset	float	只读			0	电角度偏置
0X302d	torque_fdb	float	只读			0	转矩反馈 值,nm
0X302e	rated_i	float	只读			8	电机额定电流

功能码	名称	参数类型	属性	最大值	最小值	当前值 (供参考)	备注
0X302f	limit_i	float	只读			27	电机限制最 大电流
0X3030	mcOverTemp	int16	只读			0	过温阀值
0X3031	Kt_Nm/Amp	float	只读			0	力矩系数
0X3032	Tqcali_Type	uint8	只读			0	电机类型
0X3033	fault1	uint32	只读			0	日志故障
0X3034	fault2	uint32	只读			0	日志故障
0X3035	fault3	uint32	只读			0	日志故障
0X3036	fault4	uint32	只读			0	日志故障
0X3037	fault5	uint32	只读			0	日志故障
0X3038	fault6	uint32	只读			0	日志故障
0X3039	fault7	uint32	只读			0	日志故障
0X303a	fault8	uint32	只读			0	日志故障
0X303b	theta_mech_1	float	只读			0	类型2低速 角度

示波器

该界面支持观看观察实时数据所生成的图谱,可观测的数据包括电机Id/Iq电流、温度、输出端实时转速、转子(编码器)位置、输出端位置等。

点击分析模块中的示波器模块,信道内选定合适的参数(参数含义可参考参数表),设置输出频率 后点击开始绘图即可观测数据图谱,停止绘图即可停止观测图谱。

通信框指令说明

通信框指令示例:

41 54 90 07 e8 0c 08 05 70 00 00 01 00 00 00 0d 0a

含义如下

41 54	90 07 e8 0c	08	05 70 00 00 01 00 00 00	0d 0a
帧头	扩展帧	数据位个数	数据帧	帧尾

其中扩展帧canid转译为真实canid需要经过以下转换:

90 07 e8 0c转换成二进制为1001 0000 0000 0111 1110 1000 0000 1100,去掉右边的100,则为1 0010 0000 0000 1111 1101 0000 0001,将其转换为16进制,为 12 00 FD 01,对照通信协议说明,含义如下:

12 (16进制)	00	FD	01
通信类型18 (10进制)	无含义	主机id	电机canid

can通信故障保护

当CAN_TIMEOUT值为0时,该功能不启用

当CAN_TIMEOUT值为非0时,当电机在一定时间段内没收到can指令时,电机进入reset模式,20000为1s

电机故障说明

功能码0x3022为故障码,其中

bit14:i方t过载故障: 电机过载散热算法保护

bit7:编码器未标定: 电机未标定编码器

bit3:过压故障: 电机电压超过保护电压50V

bit2:欠压故障: 电机电压低于保护电压12V

bit1:驱动芯片故障: 电机驱动芯片报故障

bit0:电机过温故障: 电机热敏电阻温度超过103度

功能码0x3024为驱动芯片故障码,具体故障如下

Field	Bits	Туре	Description
CS_OCP_FL	2:0	r	Current sense amplifier OCP fault status
Т			OCP (shunt amplifier OCP) fault status
			bXX0: No fault on phase A
			bXX1: Fault on phase A
			bX0X: No Fault on phase B
			bX1X: Fault on phase B b0XX: No Fault on phase C
			b1XX: Fault on phase C
CD FLT	3	-	'
CP_FLT	3	r	Charge pumps fault status
			Charge pump low side and high side combined fault status
			b0: No fault has occurred
			b1: A fault has occurred
DVDD_OCP_	4	r	DVDD OCP (Over-Current Protection) fault status
FLT			DVDD linear voltage regulator Over-Current-Protection fault status
			b0: No fault has occurred
			b1: A fault has occurred
DVDD_UV_F	5	r	DVDD UVLO (Under-Voltage Lock-Out) fault status
LT			DVDD UVLO fault status
			b0: No fault has occurred
			b1: A fault has occurred
DVDD_OV_F	6	r	DVDD OVLO (Over-Voltage Lock-Out)fault status
LT			DVDD OVLO fault status
			b0: No fault has occurred
			b1: A fault has occurred
BK_OCP_FL	7	r	Buck OCP fault status
Т			Buck Over-Current-Protection fault status
			b0: No fault has occurred
			b1: A fault has occurred

Register Map

OTS_FLT	8	r	Over-temperature shutdown fault status Over temperature shutdown event status b0: No fault has occurred b1: A fault has occurred
OTW_FLT	Over temperature b0: No warning sig		Over-temperature warning status Over temperature warning signal status b0: No warning signal has occurred b1: A warning signal has occurred
RLOCK_FLT	10	r	Locked rotor fault status Locked Rotor fault status using hall sensors b0: No fault has occurred b1: A fault has occurred
WD_FLT	11	r	Watchdog fault status Watchdog status b0: No fault has occurred b1: A fault has occurred
OTP_FLT	12	r	OTP status OTP (One Time Programmable) memory fault status b0: No fault has occurred b1: A fault has occurred
0	15:13	res	Reserved A read always returns 0

控制演示

jog运行

设置最大速度,点击运行后,点击JOG运行即可让电机正反运行

控制模式切换

在运动模式界面可以进行电机控制模式的转换

零点模式

点击右侧开关按钮, 电机会缓慢回到机械零位位置

运控模式

点击右侧开关按钮,然后设置五个参数值,点击开始或连续发送,电机将返回反馈帧并按目标指令运行;再次点击右侧开关按钮,电机将停机。

电流模式

手动切换电流模式,点击右侧开关按钮,然后设置Iq电流指令值,开始或连续发送,电机将跟随电流指令运行,再次点击右侧开关按钮,电机将停机。

点击控制模式右侧开关按钮,输入正弦化自动测试的幅值和频率,然后点击正弦化自动测试右侧开 关按钮,电机的iq(A)会按设定的幅值和频率来运行。

速度模式

手动切速度模式,点击右侧开关按钮,然后设置速度指令值,开始或连续发送,电机将跟随速度指令运行,再次点击右侧开关按钮,电机将停机。

点击控制模式右侧开关按钮,输入正弦化自动测试的幅值和频率,然后点击正弦化自动测试右侧开关按钮,电机的速度(rad/s)会按设定的幅值和频率来运行。

位置模式 (CSP)

手动切换位置模式 (CSP) , 点击右侧开关按钮, 然后设置位置指令值 (rad) , 开始或连续发送, 电机将跟随目标位置指令运行, 再次点击右侧开关按钮, 电机将停机。可通过设置速度, 修改位置跟随的最大速度。

点击控制模式右侧开关按钮,输入正弦化自动测试的幅值和频率,然后点击正弦化自动测试右侧开 关按钮,电机的位置(rad)会按设定的幅值和频率来运行。

位置模式 (PP)

手动切换位置模式 (PP) ,点击右侧开关按钮,然后设置位置指令值 (rad) 、速度设置指令值 (rad/s) 、加速度设置 (rad/s^2))开始或连续发送,电机将跟随目标位置指令运行,再次点击右侧开关按钮,电机将停机。可通过设置速度,修改位置跟随的最大速度及加速度。

固件更新

第一步,点击设备模块的升级,选择待烧录bin文件;第二步,确认升级,电机开始更新固件,进度完成后,电机更新完成,自动重启。

驱动器协议及使用说明

电机通信为CAN 2.0通信接口,波特率1Mbps,采用扩展帧格式,如下所示:

数据域	29 <u>位</u> ID			8Byte数据区
大小	Bit28~bit24	bit23~8	bit7~0	Byte0~Byte7
描述	通信类型	数据区2	目标地址	数据区1

电机支持的控制模式包括:

运控模式:给定电机运控5个参数;电流模式:给定电机指定的lq电流;

• 速度模式: 给定电机指定的运行速度;

• 位置模式: 给定电机指定的位置, 电机将运行到该指定的位置;

通信协议类型说明

通信类型0: 获取设备ID

获取设备的ID和64位MCU唯一标识符

数据域	29位ID			8Byte数据区
大小	Bit28~bit24	bit23~8	bit7~0	Byte0~Byte7
描述	0x0	bit15~8:用来标识主机CAN_ID	目标电机CAN_ID	0

应答帧:

数据域	29位ID			8Byte数据区
大小	Bit28~bit24	bit23~8	bit7~0	Byte0~Byte7
描述	0x0	目标电机CAN_ID	OXFE	64位MCU唯一标识符

通信类型1: 运控模式电机控制指令

数 据 域	29位ID			8Byte数据区
大小	Bit28~bit24	bit23~8	bit7~0	Byte0~Byte7

数据域	29 <u>位</u> ID			8Byte数据区
描述	0x1	Byte2:力矩(0~65535) 对应 (-17Nm~17Nm)	目标电 机CAN _ID	Byte0~1: 目标角度[0~65535]对应(-4π~4π) Byte2~3: 目标角速度[0~65535] 对应(-44rad/s~44rad/s) Byte4~5: Kp [0~65535]对应(0.0~500.0) Byte6~7: Kd [0~65535]对应(0.0~5.0) 以上数据转换后高字节在前,低字节在后

应答帧: 应答电机反馈帧(见通信类型2)

通信类型2: 电机反馈数据

数 据 域	29位ID			8Byte数据区
大小	Bit28~bit24	bit23~8	bit7~0	Byte0~Byte7
描述	0x2	Bit8~Bit15:当前 电机CAN ID bit21~16:故障信 息 (0无 1有) bit21: 未标定 bit20: 过载故障 bit19: 磁编码故障 bit18: 过温 bit17: 过流 bit16: 欠压故障 bit22~23: 模式状态 0: Reset模式[复位] 1: Cali 模式[标 定] 2: Motor模式[运 行]	主机 CAN _ID	Byte0~1: 当前角度[0~65535]对应 (-4π~4π) Byte2~3: 当前角速度[0~65535]对应 (-44rad/s~44rad/s) Byte4~5:当前力矩[0~65535]对应 (-17Nm~17Nm) Byte6~7:当前温度: Temp(摄氏度) *10 以上数据高字节在前,低字节在 后

通信类型3: 电机使能运行

数据域	29位ID			8Byte数据区
大小	Bit28~bit24	bit23~8	bit7~0	Byte0~Byte7
描述	0x3	bit15~8:用来标识主CAN_ID	目标电机CAN_ID	

应答帧: 应答电机反馈帧(见通信类型2)

通信类型4: 电机停止运行

数据域	29位ID			8Byte数据区
大小	Bit28~bit24	bit23~8	bit7~0	Byte0~Byte7
描述	0x4	bit15~8:用来标识主 CAN_ID	目标电机 CAN_ID	正常运行时,data区需 清0; Byte[0]=1时:清故障;

应答帧: 应答电机反馈帧(见通信类型2)

通信类型6:设置电机机械零位

数据域	29位ID			8Byte数据区
大小	Bit28~bit24	bit23~8	bit7~0	Byte0~Byte7
描述	0x6	bit15~8:用来标识主CAN_ID	目标电机CAN_ID	Byte[0]=1

应答帧: 应答电机反馈帧(见通信类型2)

通信类型7:设置电机CAN_ID

数据域	29位ID			8Byte数据区
大小	Bit28~bit24	bit23~8	bit7~0	Byte0~Byte7
描述	0x7	bit15~8:用来标识主CAN_ID Bit16~23: 预设置CAN_ID	目标电机CAN_ID	

应答帧: 应答电机广播帧(见通信类型0)

通信类型17: 单个参数读取

数据域	29位ID			8Byte数据区
大小	Bit28~bit24	bit23~8	bit7~0	Byte0~Byte7
描述	0x11	bit15~8:用来标识 主CAN_ID	目标电机 CAN_ID	Byte0~1: index,详见下方可读 写参数表 Byte2~3: 00 Byte4~7: 00 以上数据低字节在 前,高字节在后

应答帧:

数据域	29位ID			8Byte数据区
大小	Bit28~bit24	bit23~8	bit7~0	Byte0~Byte7
描述	0x11	bit15~8:用来标识主 CAN_ID Bit23~16:00为读取 成功01为读取失败	主机 CAN_ID	Byte0~1: index,详见下方可读写 参数表 Byte2~3: 00 Byte4~7: 参数数据,1字节数据在 Byte4 以上数据低字节在前,高字 节在后

通信类型18: 单个参数写入 (掉电丢失)

搭配类型22,可保存上位机模块内参数表功能码0x20开头参数

数 据 域	29位ID			8Byte数据区
大小	Bit28~bit24	bit23~8	bit7~0	Byte0~Byte7
描述	0x12	bit15~8:用来标识 主CAN_ID	目标电机 CAN_ID	Byte0~1: index,详见下方可读 写参数表 Byte2~3: 00 Byte4~7: 参数数据 以上数据低字 节在前,高字节在后

应答帧: 应答电机反馈帧(见通信类型2)

通信类型21: 故障反馈帧 (通信类型21)

数据域	29位ID			8Byte数据区
大小	Bit28~bit24	bit23~8	bit7~0	Byte0~Byte7

数据域	29位ID			8Byte数据区
描述	0x15	bit15~8:电机 CAN_ID	用来标识主 CAN_ID	Byte0~3: fault值(非0:有故障, 0: 正常) bit14:i方t过载故障 bit7:编码器未标定 bit3:过压故障 bit2:欠压故障 bit1:驱动芯片故障 bit0:电机过温故障,默认103度 Byte4~7: warning值 bit0: 电机过温预警,默认93度

通信类型22: 电机数据保存帧

数据域	29 <u>位</u> ID			8Byte数据区
大小	Bit28~bit24	bit23~8	bit7~0	Byte0~Byte7
描述	0x16	bit15~8:用来标识主CAN_ID	目标电机CAN_ID	

应答帧: 应答电机反馈帧(见通信类型2)

通信类型23: 电机波特率修改帧 (重新上电生效)

数据域	29位ID			8Byte数据区
大小	Bit28~bit24	bit23~8	bit7~0	Byte0~Byte7
描述	0x17	bit15~8:用来标识主CAN_ID	目标电机CAN_ID	Byte0: 01为1M 02为500K 03为250K 04为100K

应答帧: 应答电机反馈帧(见通信类型0)

通信类型24: 电机主动上报帧

数据域	29位ID	8Byte数据区		
大小	Bit28~bit24	bit23~8	bit7~0	Byte0~Byte7
描述	0x18	bit15~8:用来标识主 CAN_ID	目标电机 CAN_ID	Byte0: 00 为关闭主动上报(默认) 01 为开启主动上报默认上报 间隔为10ms

应答帧: 应答电机反馈帧(见通信类型2)

可读写单个参数列表

参数 index	参数名称	描述	类型	字节数	单位/说明	R/W读 写权限
0X7005	run_mode	0: 运控模式 1: 位置模式 (PP) 2: 速度模式 3: 电流模式 5: 位置模式 (CSP)	uint8	1		W/R
0X7006	iq_ref	电流模式Iq指令	float	4	-23~23A	W/R
0X700A	spd_ref	转速模式转速指 令	float	4	-44~44rad/s	W/R
0X700B	limit_torque	转矩限制	float	4	0~17Nm	W/R
0X7010	cur_kp	电流的Kp	float	4	默认值0.17	W/R
0X7011	cur_ki	电流的Ki	float	4	默认值0.012	W/R
0X7014	cur_filt_gain	电流滤波系数 filt_gain	float	4	0~1.0,默认 值0.1	W/R
0X7016	loc_ref	位置模式角度指 令	float	4	rad	W/R
0X7017	limit_spd	位置模式 (CSP)速度限 制	float	4	0~44rad/s	W/R
0X7018	limit_cur	速度位置模式电 流限制	float	4	0~23A	W/R
0x7019	mechPos	负载端计圈机械 角度	float	4	rad	R
0x701A	iqf	iq滤波值	float	4	-23~23A	R
0x701B	mechVel	负载端转速	float	4	-44~44rad/s	R
0x701C	VBUS	母线电压	float	4	V	R
0x701E	loc_kp	位置的kp	float	4	默认值40	W/R
0x701F	spd_kp	速度的kp	float	4	默认值6	W/R
0x7020	spd_ki	速度的ki	float	4	默认值0.02	W/R
0x7021	spd_filt_gain	速度滤波值	float	4	默认值0.1	W

参数 index	参数名称	描述	类型	字节数	单位/说明	R/W读 写权限
0x7022	acc_rad	速度模式加速度	float	4	默认值 20rad/s^2	W
0x7024	vel_max	位置模式(PP) 速度	float	4	默认值 10rad/s	W
0x7025	acc_set	位置模式(PP) 加速度	float	4	默认值 10rad/s^2	W
0x7026	EPScan_time	上报时间设置,1 代表10ms,加1 递增5ms	uint16	2	默认值1	W
0x7028	canTimeout	can超时阀值, 20000代表1s	uint32	4	默认0	W

读取示例:

以读取loc_kp为例:

读取指令为

大小	Bit28~bit24	bit23~8	bit7~0	Byte0~Byte7
	0x11	0x00FD	0x7F	1E 70 00 00 00 00 00 00
描述	类型17	主机id 0xFD	目标电机CAN_ID 7F	Byte0~1: index,对应loc_kp

反馈指令为

大小	Bit28~bit24	bit23~8	bit7~0	Byte0~Byte7
	11	0x007F	0xFD	1E 70 00 00 00 00 F0 41
描述	类型17	bit15~8:目标电 机CAN_ID 7F	主机id 0xFD	Byte0~1: index,对应loc_kp Byte4~7:loc_kp值为30,右高字节, (32位单精度)16进制IEEE-754标准浮 点数

主动上报说明 (升级0.1.2.2可获得功能)

电机主动上报默认关闭,通过类型24开启上报

上报类型为类型2,上报间隔默认10ms,可通过类型18修改EPScan_time来更改上报周期

类型2变更说明 (升级0.1.2.2可获得功能)

类型2变更为周期性循环-4π-4π,可通过该方式记圈数

需要注意的是位置接口需变更

P_MIN为-12.57f

P_MAX为12.57f

控制模式使用说明

程序样例

以下提供各种模式控制电机实例 (以gd32f303为例)

下面为各种实例调用库, 函数与宏定义

```
#define P_MIN -12.5f //0.1.2.1及之前为12.5, 之后为12.57
#define P_MAX 12.5f //0.1.2.1及之前为12.5, 之后为12.57
#define V_MIN 44.0f
#define V_MAX 44.0f
#define KP_MIN 0.0f
#define KP_MAX 500.0f
#define KD_MIN 0.0f
#define KD_MAX 5.0f
#define T_MIN -17.0f
#define T_MAX 17.0f
struct exCanIdInfo{
   uint32_t id:8;
   uint32_t data:16;
   uint32_t mode:5;
   uint32_t res:3;
};
can_receive_message_struct rxMsg;
can_trasnmit_message_struct txMsg={
    .tx_sfid = 0,
```

```
.tx_efid = 0xff,
    .tx_ft = CAN_FT_DATA,
    .tx_ff = CAN_FF_EXTENDED,
    .tx_dlen = 8,
};
#define txCanIdEx (*((struct exCanIdInfo*)&(txMsg.tx_efid)))
#define rxCanIdEx (*((struct exCanIdInfo*)&(rxMsg.rx_efid))) //将扩展帧id解析为自定
义数据结构
int float_to_uint(float x, float x_min, float x_max, int bits){
    float span = x_max - x_min;
    float offset = x_min;
    if(x > x_max) x=x_max;
    else if(x < x_min) x = x_min;
    return (int) ((x-offset)*((float)((1<<bits)-1))/span);</pre>
}
#define can_txd() can_message_transmit(CANO, &txMsg)
#define can_rxd() can_message_receive(CANO, CAN_FIFO1, &rxMsg)
```

下面列举常见的通信类型发送:

电机使能运行帧 (通信类型3)

```
void motor_enable(uint8_t id, uint16_t master_id)
{
    txCanIdEx.mode = 3;
    txCanIdEx.id = id;
    txCanIdEx.res = 0;
    txCanIdEx.data = master_id;
    txMsg.tx_dlen = 8;
    txCanIdEx.data = 0;
    can_txd();
}
```

运控模式电机控制指令 (通信类型1)

```
void motor_controlmode(uint8_t id, float torque, float MechPosition, float speed,
float kp, float kd)
{
```

```
txCanIdEx.mode = 1;
    txCanIdEx.id = id;
    txCanIdEx.res = 0;
    txCanIdEx.data = float_to_uint(torque,T_MIN,T_MAX,16);
    txMsg.tx_dlen = 8;
    txMsg.tx_data[0]=float_to_uint(MechPosition,P_MIN,P_MAX,16)>>8;
    txMsg.tx_data[1]=float_to_uint(MechPosition,P_MIN,P_MAX,16);
    txMsg.tx_data[2]=float_to_uint(speed,V_MIN,V_MAX,16)>>8;
    txMsg.tx_data[3]=float_to_uint(speed, V_MIN, V_MAX, 16);
    txMsg.tx_data[4]=float_to_uint(kp,KP_MIN,KP_MAX,16)>>8;
    txMsg.tx_data[5]=float_to_uint(kp,KP_MIN,KP_MAX,16);
    txMsg.tx_data[6]=float_to_uint(kd,KD_MIN,KD_MAX,16)>>8;
    txMsg.tx_data[7]=float_to_uint(kd,KD_MIN,KD_MAX,16);
    can_txd();
}
```

电机停止运行帧 (通信类型4)

```
void motor_reset(uint8_t id, uint16_t master_id)
{
    txCanIdEx.mode = 4;
    txCanIdEx.id = id;
    txCanIdEx.res = 0;
    txCanIdEx.data = master_id;
    txMsg.tx_dlen = 8;
    for(uint8_t i=0;i<8;i++)
    {
        txMsg.tx_data[i]=0;
    }
}</pre>
```

```
can_txd();
}
```

电机模式参数写入命令(通信类型18,运行模式切换)

```
uint8_t runmode;
uint16_t index;
void motor_modechange(uint8_t id, uint16_t master_id)
{
    txCanIdEx.mode = 0x12;
    txCanIdEx.id = id;
    txCanIdEx.res = 0;
    txCanIdEx.data = master_id;
    txMsg.tx_dlen = 8;
    for(uint8_t i=0;i<8;i++)</pre>
    {
        txMsg.tx_data[i]=0;
    }
    memcpy(&txMsg.tx_data[0],&index,2);
    memcpy(&txMsg.tx_data[4],&runmode, 1);
    can_txd();
}
```

电机模式参数写入命令 (通信类型18, 控制参数写入)

```
uint16_t index;

float ref;

void motor_write(uint8_t id, uint16_t master_id)

{
    txCanIdEx.mode = 0x12;

    txCanIdEx.id = id;
```

```
txCanIdEx.res = 0;

txCanIdEx.data = master_id;

txMsg.tx_dlen = 8;

for(uint8_t i=0;i<8;i++)

{
    txMsg.tx_data[i]=0;
}

memcpy(&txMsg.tx_data[0],&index,2);

memcpy(&txMsg.tx_data[4],&ref,4);

can_txd();
}</pre>
```

运控模式

电机上电后默认处于运控模式;

发送电机使能运行帧(通信类型3)-->发送运控模式电机控制指令(通信类型1)-->收到电机反馈帧(通信类型2)

电流模式

发送电机模式参数写入命令(通信类型18)设置runmode参数为3 ---> 发送电机使能运行帧(通信类型3)--> 发送电机模式参数写入命令(通信类型18)设置 iq_ref参数为预设电流指令

速度模式

发送电机模式参数写入命令(通信类型18)设置runmode参数为2 ---> 发送电机使能运行帧(通信类型3)--> 发送电机模式参数写入命令(通信类型18)设置 limit_cur参数为预设最大电流指令-->发送电机模式参数写入命令(通信类型18)设置 acc_rad参数为预设加速度指令-->发送电机模式参数写入命令(通信类型18)设置 spd_ref参数为预设速度指令

位置模式 (CSP)

发送电机模式参数写入命令(通信类型18)设置runmode参数为1 --> 发送电机使能运行帧(通信类型3)--> 发送电机模式参数写入命令(通信类型18)设置 limit_spd参数为预设最大速度指令-->发送电机模式参数写入命令(通信类型18)设置 loc_ref参数为预设位置指令

位置模式 (PP)

发送电机模式参数写入命令(通信类型18)设置runmode参数为1 --> 发送电机使能运行帧(通信类型3)--> 发送电机模式参数写入命令(通信类型18)设置 vel_max参数为预设最大速度指令-->发送电机模式参数写入命令(通信类型18)设置 acc_set参数为预设加速度指令-->发送电机模式参数写入命令(通信类型18)设置 loc_ref参数为预设位置指令

注:该模式不支持运行过程中改速度和加速度,如想急停可以在过程中将vel_max修改为0,会以当前速度和加速度规划停止

停止运行

发送电机停止运行帧 (通信类型4)