Inteligencia Artificial

Programa de Ingeniería de Sistemas

Tema: Agentes basados en la Incertidumbre - Redes Bayesianas (Regla de la Cadena)

Modelación

Modelos

Representación simplificada de la realidad.

<u>Características</u>

- Suficientemente simple para no complicar el análisis del sistema.
- Suficientemente completo para englobar la mayor parte del sistema.

Modelación

<u>Tipos de Modelos</u>

Existen diferentes formas de representar los sistemas a través de modelos:

- Matemáticos (analíticos)
 - A través de funciones matemáticas que describan la dinámica de los sistemas.
- Diagramas de Bloques
 Síntesis de las partes que componen al sistema.
- Grafos

Diagramas de representación simbólica sobre las relaciones existentes en un sistema.

Híbridos

Varios tipos de modelos que en conjunto representan un sistema.

Algoritmos de Modelado

Englobados dentro de aprendizaje máquina (*Machine Learning*) permiten llevar a cabo problemas de aproximación y clasificación.

Clasificación

- Paramétricos
- Probabilísticos
- Multivariados
- Bio-inspirados

Algoritmos de Modelado

Englobados dentro de aprendizaje máquina (*Machine Learning*) permiten llevar a cabo problemas de aproximación y clasificación.

Clasificación

- **%** Clasificador Bayesiano Naive
- **Redes Bayesianas**

Algoritmos de Modelado

Algunos algoritmos de modelado:

- Regresión
- **Redes Neuronales Artificiales**
- **Redes Bayesianas**
- Lógica Difusa
- Redes Orgánicas Artificiales

Introducción

Dado un conjunto de registros en una base de datos, donde cada registro pertenece a una clase, construir un modelo que permita predecir la clase de un nuevo registro.

Introducción

Redes Bayesianas se aplican en casos de incertidumbre a la hora de hacer cálculos de probabilidades condicionales y cálculo probabilidades desconocidas, dadas las condiciones específicas.

Aplicaciones: la bioinformática y la medicina, la ingeniería, clasificación de documentos, procesamiento de imágenes, la fusión de datos, y apoyar los sistemas de decisión, etc.

Ejemplos:

- Inferencia: P (Diagnóstico | Síntoma)
- Detección de anomalías: ¿Es esta observación anómala?
- Recolección de datos: ¿Cuál es la próxima prueba de diagnóstico dado en un conjunto de observaciones?

La intuición detrás de Probabilidades

Intuitivamente, la probabilidad del evento A es igual a la porción de los resultados en donde A es cierto.

 Ω es el conjunto de todos los resultados posibles. Su superficie es de $P(\Omega) = 1$

El conjunto de color naranja corresponde a los resultados en donde A es verdadera

P(A) = Area del ovalo naranja. Es evidente que $0 \le P(A) \le 1$

Axiomas de Probabilidad de Kolmogorov

"La teoría de la probabilidad como una disciplina matemática, puede y debería ser desarrollada a partir de axiomas exactamente del mismo modo como la geometría y el algebra".

Andrey Nikolaevich Kolmogorov. Los fundamentos de la Teoría de la Probabilidad de 1933.

- $P(\Omega) = 1$
- σ -aditividad. Cualquier secuencia numerable de sucesos disjuntos dos a dos A_1 , A_2 , ... $P\left(\bigcup_i A_i\right) = \sum_i P\left(A_i\right)$

Consecuencias de los Axiomas

$$P(\overline{A}) = 1 - P(A)$$
. Donde $\overline{A} = \Omega - A$

$$P(\varnothing) = 0$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A) = P(A \cap B) + P(A \cap \overline{B})$$

Probabilidad Conjunta

Es la probabilidad de ocurrencia de dos o más eventos.

De la expresión

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

Al despejar $P(A \cap B)$, se obtiente: P(B|A)P(A)

Esta expresión es llamada Ley de multiplicación de probabilidades.

 $P(A \cap B)$ recibe el nombre de Probabilidad Conjunta y corresponde a la probabilidad de que se presenten resultados comunes a los eventos A y B.

Probabilidad Condicional

P(B|A) = Proporción del espacio en el que B es verdad, dado que A también es cierto.

Definición formal de Probabilidad Condicional:

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

Independencia de Eventos

Definición

Dos eventos A y B son **independientes** si y solo si

$$P(A \cap B) = P(A)P(B)$$

Notación: I(A, B).

La independencia de A y B implica

$$P(A|B) = P(A)$$
, si $P(B) \neq 0$

$$P(B|A) = P(B)$$
, si $P(A) \neq 0$

Independencia de Eventos

Tenemos: Suponiendo A y B son **independientes**:

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$P(A \cap B) = P(A)P(B)$$

Prueba:

$$P(B|A) = \underline{P(A)P(B)} = P(B)$$

 $P(A)$

$$P(A|B) = \underline{P(A)P(B)} = P(A)$$

 $P(B)$

$$P(A|B) = P(A)$$
, si $P(B) \neq 0$

$$P(B|A) = P(B)$$
, si $P(A) \neq 0$

Independencia Condicional

Definición

Dos eventos A y B son condicionalmente independientes dado un evento C, si y solo si

$$P(A \cap B|C) = P(A|C)P(B|C)$$

Notación: I(A, B|C).

La independencia condicional de A y B, dado un evento C, implica:

$$P(A|C, B) = P(A|C)$$
, si $P(B|C) \neq 0$
 $P(B|C, A) = P(B|C)$, si $P(A|C) \neq 0$

Independencia Condicional

Tenemos:

$$P(A \cap B|C) = P(A|C)P(B|C)$$

La independencia condicional de A y B, dado un evento C, implica

Prueba:

$$P(A|C, B) = \underline{P(A \cap B|C)} = \underline{P(A|C)P(B|C)} = P(A|C)$$

$$P(B|C) \qquad P(B|C)$$

$$P(B|C, A) = \underline{P(A \cap B|C)} = \underline{P(A|C)P(B|C)} = P(B|C)$$

$$P(A|C) \qquad P(A|C)$$

La independencia condicional de A y B, dado un evento C, implica:

Regla de Bayes

La definición de Probabilidad Condicional

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
 $P(B|A) = \frac{P(A \cap B)}{P(A)}$

Implica la Regla de la Cadena

$$P(A \cap B) = P(A|B)P(B)$$

 $P(A \cap B) = P(B|A)P(A)$

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Regla de Bayes

Desde el punto de vista bayesiano, todas las probabilidades son condicionales porque casi siempre existe algún conocimiento previo o experiencia acerca de los sucesos.

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

Regla de Bayes

Ley de la Probabilidad Total

Para un suceso A y unas particiones $B_1,..., B_k$, mutuamente excluyentes y exhaustivos entre si: $B_i \cap B_j = \emptyset$, con i \neq j.

Excluyentes: Si no hay dos con resultados comunes.

Exhaustivos: Si debe ocurrir un B_i , entonces $B_1 \cup B_2 \cup B_3 \cup ... \cup B_k = S$

Si tomamos dos eventos B_i diferentes, su intersección da como resultado el conjunto vacío.

Adicionalmente, la unión de todos los eventos B_i, cubre el espacio de eventos, así:

$$\bigcup_{i=1}^{n} B_i = S$$

Regla de Bayes

Ley de la Probabilidad Total

Para conocer el evento A a través de los eventos Bi, se tiene:

$$A = (A \cap B_1) \cup (A \cap B_2) \cup (A \cap B_3) \cup ... \cup (A \cap B_{n-1}) \cup (A \cap B_n)$$

A se define como la unión de las intersecciones del evento A con los eventos B_i, así:

$$A = \bigcup_{i=1}^{n} (A \cap B_i)$$

Por Probabilidad Conjunta, se tiene que: $P(A \cap B) = P(A \mid B)P(B)$

Y la probabilidad de A, como:
$$P(A) = \sum_{i=1}^{n} P(A \cap B_i)$$

Con
$$k = n$$

$$P(A) = \sum_{i=1}^{k} P(A|B_i)P(B_i)$$

Regla de Bayes

Permite obtener inferencias con mayor probabilidad asumiendo que se conoce información inicial. En términos de Bayes e inteligencia artificial, se define como:

Donde:

X: es el conjunto de eventos que se desean conocer E: es el conjunto de evidencias

Regla de Bayes

Suponiendo que las particiones son sobre A:

Sea $A_1,...,A_n$ una colección de k eventos mutuamente excluyentes y exhaustivos, con $P(A_i) > 0$ para i = 1, 2, ..., k. Entonces para cualquier otro evento B para el cual P(B) > 0,

$$P(A_{j}|B) = \frac{P(A_{j} \cap B)}{P(B)} = \frac{P(B|A_{j})P(A_{j})}{\sum_{i=1}^{k} P(B|A_{i})P(A_{i})} \quad j = 1, 2, ..., k$$

- P(B) es una constante que puede ser calculada como: $P(B) = \sum_{i=1}^{k} P(B|A_i)P(A_i)$
- P(A_i) se puede estimar a partir del conjunto de entrenamiento (fracción de registros de entrenamiento que pertenecen a cada clase)
- $P(B|A_i)$ es una tarea más difícil. Métodos:
 - Clasificador Naive Bayes
 - Red Bayesiana

Regla de Bayes

 $P(B|A_i)$ Métodos para estimarlos:

- Clasificador Naive Bayes
- Red Bayesiana

Clasificador Naive Bayes, se asume que los atributos son condicionalmente independientes, dada una variable-clase y.

Redes Bayesianas, se tiene en cuenta la dependencia entre los atributos.

Regla de Bayes

Clasificador Naive Bayes, se asume que los atributos son condicionalmente independientes, dada una variable-clase y.

Esto puede ser representado usando una Red Bayesiana, como sigue:

Regla de Bayes

Reglas de la Probabilidad Total

Probabilidad Total Conjunta para una variable

$$P(C) = P(B \cap C) + P(B^{c} \cap C)$$

$$P(C) = P(B, C) + P(B^{c}, C)$$

Probabilidad Total Condicional para una variable

$$P(C) = P(C|B) P(B) + P(C|B^{c}) P(B^{c})$$

Probabilidad Total Conjunta para dos variables

$$P(B, C) = P(A, B, C) + P(A^{c}, B, C)$$

$$P(B, C) = P(A \cap B \cap C) + P(A^c \cap B \cap C)$$

→ Regla de la Cadena

Probabilidad Total Condicional para dos variables

$$P(C|B) = P(C, B)/P(B) = P(C, A, B)/P(B) + P(C, A^c, B)/P(B)$$

= $P(C, A|B) + P(C, A^c|B)$

→ Definición de Probabilidad Condicional

Grafo Dirigido

Definición

Un grafo dirigido o digrafo G es un par ordenado

G := (V, A), donde V es un conjunto cuyos elementos son llamados vértices. $A \subset V \times V$ es un conjunto de pares ordenados de vértices llamdos bordes dirigidos, arcos o flechas

Grafo Acíclico Dirigido

Definición

Un grafo dirigido acíclico digrafo (DAG) es un grafo dirigido sin ciclos dirigidos, es decir, para cualquier vértice V_j , no hay un camino dirigido que empieza en V_j y termina en V_i .

Algunas descripciones en la Teoría de Grafos

- ullet V_1 y V_4 son padres de V_2 , pues $(V_1,V_2)\in {\mathcal E}$, $(V_4,V_2)\in {\mathcal E}$
- ullet V_5 , V_3 y V_2 son descencientes de V_1
- ullet V_4 y V_2 son antepasados de V_3 existen caminos dirigidos de estos vertices a V_3
- ullet V_4 y V_6 no son descendientes de V_1 no existen caminos dirigidos a estos vertices desde V_1

Definición de una Red Bayesiana

Una Red Bayesiana es:

- Es un Grafo Acíclico Dirigido (DAG) G, que registra la relación de dependencia entre un conjunto de variables.
- Una tabla de probabilidades que asocia cada nodo a sus nodos padres inmediatos.
- © Cada nodo del grafo representa una variable (El grafo está formado por un conjunto de variables proposicionales, V).
- Un conjunto de relaciones binarias definidas sobre las variables de V,
 E.
- Cada arco confirma la relación de dependencia entre el par de variables.
- Una distribución de probabilidad conjunta sobre las variables de V.
- DAG satisface la Condición de Markov.

La Condición de Markov

Definición:

Suponga que se tiene una distribución de probabilidad P de variables aleatorias en un conjunto V, y un DAG G = (V, E). Se dice que (G, P) satisface la Condición de Markov si por cada variable $X \subseteq V$, $\{X\}$ (el conjunto de los padres directos de X), es condicionalmente independiente del conjunto de todos los otros nodos de la red -NDx- (o, lo que es lo mismo, separa condicionalmente a X de todo otro nodo Y de la red, que no sea X), (salvo sus descendientes), dados sus padres - PAx.

$$I({X}, NDx | PAx)$$

La definición implica que el nodo raíz X, el cual no tiene padres, es incondicionalmente independiente de los otros nodos de la red.

Ejemplo 1

Consideremos la red dada en la siguiente figura:

$$P(a_1) = 0.3$$
; $P(b_1/a_1) = 0.4$; $P(b_1/a_2) = 0.6$; $P(c_1/a_1) = 0.7$; $P(c_1/a_2) = 0.2$

$$a_1 = A$$

 $a_2 = A^c$

En el que las variables que aparecen son binarias, junto con la siguiente distribución de probabilidad conjunta:

Ejemplo 1

En el que las variables que aparecen son binarias, junto con la siguiente distribución de probabilidad conjunta:

$$P(a_1,b_1,c_1) = 0.084 \qquad P(a_1,b_1,c_2) = 0.036 \\ P(a_1,b_2,c_1) = 0.126 \qquad P(a_1,b_2,c_2) = 0.054 \\ P(a_2,b_1,c_1) = 0.084 \qquad P(a_2,b_2,c_1) = 0.056 \\ P(a_2,b_1,c_2) = 0.336 \qquad P(a_2,b_2,c_2) = 0.224$$

Es esto una Red Bayesiana?

Ejemplo 1

Es esto una Red Bayesiana?

Solución:

En este caso, la condición de independencia condicional se satisface si C y B son independientes dado su padre común A.

Se debe probar entonces, que: P(B|A, C) = P(B|A).

Para lo anterior, se debe probar que:

$$P(b_1/a_1, c_1) = P(b_1/a_1)$$
 $P(b_2/a_1, c_1) = P(b_2/a_1)$
 $P(b_1/a_1, c_2) = P(b_1/a_1)$ $P(b_2/a_1, c_2) = P(b_2/a_1)$
 $P(b_1/a_2, c_1) = P(b_1/a_2)$ $P(b_2/a_2, c_1) = P(b_2/a_2)$
 $P(b_1/a_2, c_2) = P(b_1/a_2)$ $P(b_2/a_2, c_2) = P(b_2/a_2)$

Ejemplo 1

Es esto una Red Bayesiana?

$$P(B) = \sum_{i=1}^{k} P(B|A_i)P(A_i)$$

Solución:

A modo de ejemplo, comprobaríamos:

$$P(b_1/a_1, c_2) = P(b_1/a_1)$$

- 1. $P(b_1/a_1, c_2)$
- 2. $P(b_1/a_1)$

1.
$$P(b_1|a_1,c_2) = \frac{P(b_1,a_1,c_2)}{P(a_1,c_2)} = \frac{P(a_1,b_1,c_2)}{P(a_1,c_2)} =$$

$$\frac{0,036}{P(a_1,b_1,c_2)+P(a_1,b_2,c_2)} = \frac{0,036}{0,036+0,054} = \mathbf{0,4}$$

Ejemplo 1

Solución:

$$P(B) = \sum_{i=1}^{k} P(B|A_i)P(A_i)$$

$$P(b_1/a_1, c_2) = P(b_1/a_1)$$

- 1. $P(b_1/a_1, c_2)$
- 2. $P(b_1/a_1)$

2.
$$P(b_1|a_1) = \frac{P(b_1, a_1)}{P(a_1)} = \frac{P(a_1, b_1, c_1) + P(a_1, b_1, c_2)}{P(a_1, b_1) + P(a_1, b_2)}$$

$$= \frac{P(a_1, b_1, c_1) + P(a_1, b_1, c_2)}{P(a_1, b_1, c_1) + P(a_1, b_1, c_2) + P(a_1, b_2, c_1) + P(a_1, b_2, c_2)}$$
$$= \frac{0,084 + 0,036}{0,084 + 0,036 + 0,126 + 0,054} = \frac{0,12}{0,3} = \mathbf{0,4}$$

Realizando las comprobaciones restantes, se vería que en este caso sí tenemos una Red Bayesiana!

Definición

Si se cumplen las condiciones de independencia condicional, a partir de las probabilidades condicionales, es posible calcular la distribución conjunta, así, por ejemplo:

Para un grafo G

$$P(B, C) = P(B).P(C|B)$$

$$P(B, C) = P(A, B, C) + P(A^{c}, B, C) =$$

$$P(A, B, C) = P(A).P(B|A).P(C|A, B)$$

$$P(A^{c}, B, C) = P(A^{c}).P(B|A^{c}).P(C|A^{c}, B)$$

Ejemplo 2

Representación de Grafos

$$P(X, Y, Z) = ?$$

 $P(X, Y, Z) = P(X).P(Z|X).P(Y|X, Z)$

$$P(X, Y, Z) = ?$$

Ejemplo 2

Representación de Grafos

$$P(X, Y, Z) = ?$$

$$P(X, Y, Z) = ?$$

Referencias

Material de apoyo de la semana registrados en SAVIO (Diapositivas):

Bayesian networks without tears: making Bayesian networks more accessible to the probabilistically unsophisticated. Eugene Charniak

Al Magazine Volume 12, Issue 4 (Winter 1991) Pages: 50 - 63 Year of Publication: 1991

Learning Bayesian Networks. Richard E. Neapolitan. Prentice Hall

Gracias!

