

ETF3231/5231: Business forecasting

Week 3: Time series decomposition

https://bf.numbat.space/

- 1 Transformations and adjustments
- 2 Time series components
- 3 Moving averages
- 4 Classical decomposition
- 5 History of time series decomposition
- 6 STL decomposition

- 1 Transformations and adjustments
- 2 Time series components
- 3 Moving averages
- 4 Classical decomposition
- 5 History of time series decomposition
- 6 STL decomposition

Inflation adjustments

Mathematical transformations

If the data show different variation at different levels of the series, then a transformation can be useful.

Mathematical transformations

If the data show different variation at different levels of the series, then a transformation can be useful.

Denote original observations as y_1, \ldots, y_T and transformed observations as w_1, \ldots, w_T .

Mathematical transformations for stabilizing variation

Square root
$$w_t = \sqrt{y_t}$$
 \downarrow
Cube root $w_t = \sqrt[3]{y_t}$ Increasing
Logarithm $w_t = \log(y_t)$ strength

Logarithms, in particular, are useful because they are more interpretable: changes in a log value are relative (percent) changes on the original scale.

Box-Cox transformations

Each of these transformations is close to a member of the family of Box-Cox transformations:

$$w_t = \begin{cases} \log(y_t), & \lambda = 0; \\ (\operatorname{sign}(y_t)|y_t|^{\lambda} - 1)/\lambda, & \lambda \neq 0. \end{cases}$$

- \blacksquare Actually the Bickel-Doksum transformation (allowing for $y_t < 0$)
- λ = 1: (No substantive transformation)
- $\lambda = \frac{1}{2}$: (Square root plus linear transformation)
- λ = 0: (Natural logarithm)
- $\lambda = -1$: (Inverse plus 1)

Transformations

- Often no transformation needed.
- Simple transformations are easier to explain and work well enough.
- Transformations can have very large effect on PI.
- log1p() can also be useful for data with zeros.
- Choosing logs is a simple way to force forecasts to be positive
- Transformations must be reversed to obtain forecasts on the original scale. (Handled automatically by fable.)

Transformations

We often use logs.

- Often no transformation needed.
- Simple transformations are easier to explain and work well enough.
- Transformations can have very large effect on PI.
- log1p() can also be useful for data with zeros.
- Choosing logs is a simple way to force forecasts to be positive
- Transformations must be reversed to obtain forecasts on the original scale. (Handled automatically by fable.)

- 1 Transformations and adjustments
- 2 Time series components
- 3 Moving averages
- 4 Classical decomposition
- 5 History of time series decomposition
- 6 STL decomposition

Time series patterns

Recall

- **Trend** pattern exists when there is a long-term increase or decrease in the data.
- Cyclic pattern exists when data exhibit rises and falls that are not of fixed period (duration usually of at least 2 years).
- Seasonal pattern exists when a series is influenced by seasonal factors (e.g., the quarter of the year, the month, or day of the week).

Time series decomposition

$$y_t = f(S_t, T_t, R_t)$$

where y_t = data at period t

 T_t = trend-cycle component at period t

 S_t = seasonal component at period t

 R_t = remainder component at period t

Additive decomposition: $y_t = S_t + T_t + R_t$.

Multiplicative decomposition: $y_t = S_t \times T_t \times R_t$.

Time series decomposition

- Additive model appropriate if magnitude of seasonal fluctuations does not vary with level.
- If seasonal are proportional to level of series, then multiplicative model appropriate.
- Multiplicative decomposition more prevalent with economic series
- Alternative: use a Box-Cox transformation, and then use additive decomposition.
- Logs turn multiplicative relationship into an additive relationship:

$$y_t = S_t \times T_t \times R_t \implies \log y_t = \log S_t + \log T_t + \log R_t.$$

US Retail Employment

```
us_retail_employment <- us_employment |>
  filter(year(Month) >= 1990, Title == "Retail Trade") |>
  select(-Series_ID)
us_retail_employment
  # A tsibble: 357 x 3 [1M]
##
        Month Title
                           Employed
        <mth> <chr>
                          <dbl>
##
   1 1990 Jan Retail Trade 13256.
##
   2 1990 Feb Retail Trade 12966.
##
   3 1990 Mar Retail Trade 12938.
##
   4 1990 Apr Retail Trade 13012.
##
   5 1990 May Retail Trade
##
                             13108.
   6 1990 Jun Retail Trade
                             13183.
##
   7 1990 Jul Retail Trade
                             13170.
##
   8 1990 Aug Retail Trade
##
                             13160.
   9 1990 Sep Retail Trade
##
                             13113.
## 10 1990 Oct Retail Trade
                             13185
```

12

Seasonal adjustment

- We use estimates of S_t based on past values to seasonally adjust a current value.
- Seasonally adjusted series reflect remainders as well as trend. Therefore they are not "smooth" " and "downturns" " or "upturns" can be misleading.
- It is better to use the trend-cycle component to look for turning points.

- 1 Transformations and adjustments
- 2 Time series components
- 3 Moving averages
- 4 Classical decomposition
- 5 History of time series decomposition
- 6 STL decomposition

Moving average trend-cycle

- 1 Transformations and adjustments
- 2 Time series components
- 3 Moving averages
- 4 Classical decomposition
- 5 History of time series decomposition
- 6 STL decomposition

Additive classical decomposition

Multiplicative classical decomposition

Comments on classical decomposition

- Estimate of trend is unavailable for first few and last few observations.
- Seasonal component repeats from year to year. May not be realistic.
- Not robust to outliers.
- Newer methods designed to overcome these problems.

- 1 Transformations and adjustments
- 2 Time series components
- 3 Moving averages
- 4 Classical decomposition
- 5 History of time series decomposition
- 6 STL decomposition

History of time series decomposition

- Classical method originated in 1920s.
- Census II method introduced in 1957. Basis for X-11 method and variants (including X-12-ARIMA, X-13-ARIMA)
- STL method introduced in 1983
- TRAMO/SEATS introduced in 1990s.

National Statistics Offices

- ABS uses X-12-ARIMA
- US Census Bureau uses X-13ARIMA-SEATS
- Statistics Canada uses X-12-ARIMA
- ONS (UK) uses X-12-ARIMA
- EuroStat use X-13ARIMA-SEATS

- 1 Transformations and adjustments
- 2 Time series components
- 3 Moving averages
- 4 Classical decomposition
- 5 History of time series decomposition
- 6 STL decomposition

STL decomposition

- STL: "Seasonal and Trend decomposition using Loess"
- Very versatile and robust.
- Unlike X-12-ARIMA, STL will handle any type of seasonality.
- Seasonal component allowed to change over time, and rate of change controlled by user.
- Smoothness of trend-cycle also controlled by user.
- Robust to outliers
- No trading day or calendar adjustments.
- Only additive.
- Take logs to get multiplicative decomposition.
- Use Box-Cox transformations to get other decompositions.

STL decomposition

```
us_retail_employment |>
model(STL(Employed)) |>
components()
```

- trend(window = ?) controls wiggliness of trend component.
- season(window = ?) controls variation on seasonal component.
- season(window = 'periodic') is equivalent to an infinite window.

Default setting

- Season window = 13
- Trend window = nextodd(

```
ceiling((1.5*period)/(1-(1.5/s.window)))
```

■ Robust robust=FALSE