

FROM DARWIN TO DATA: POPULARIZATION OF GENETIC ALGORITHMS

Anna Krzywiecka¹, Olga Wieromiejczyk¹, Guillem Ylla¹ ¹Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University

INTRODUCTION

(GAs) algorithms Genetic optimal or finding solutions by mimicking biological to functionality, particularly optimizing complex biological processes such as primer design for polymerase chain reaction (PCR). Here we reimplement and refine the GA designed by Wu et al. (2004).

PRIMERS

PCR has various purposes, leading different variants. many specifically focus optimizing on primers for:

mutation detection

comparitive genotyping

These experiments are useful in:

studies

PCR makes copies of the amplified sequence. To make the reaction successful some conditions must be met, for which we consider following parameters:

Feature	Description
gc	GC content between 40% and 60%
tmd	Melting temperature difference
	between primers less than 5°C
uni	Specificity of primers should occur
	(we check it using BLAST+)
lengd	Length difference between primers
	not more than 5bp, the less the
	better
leng	Length of primer's sequence should
	be between 18 and 30bp
рс	Pair-complementarity shouldn't
	occur
term	Termination: the 3' end should be a
	G or a C or two of them, not more
sc	Self-complementarity shouldn't
	occur
fitness	(3gc + 3tmd + 50uni + 3lengd + Leng
	+ 10pc + 3term + 10sc + 10sc) ⁻¹

GAs

are Our algorithm repeatedly modifies heuristic search algorithms used for a population of individual primer pairs, near-optimal using mutation and crossover, Over create primers. new evolution. We offer an explanation successive iterations, the population in-depth exploration of GA of primers evolves towards primer in pairs with highest fitness scores.

utilize BLAT to find the target sequence in the human genome and when calculating properties we use BLAST+ to check the specificity of a primer.

In our algorithm there are several parameters, which the user specifies in our code:

Name	Description
pm	The probability of performing the
	mutation process
pe	The probability of performing the
	crossover process
min_ temp	The minimal acceptable melting
	temperature, Recommended:
	more than 50°C
max_ temp	The maximal acceptable melting
	temperature, Recommended:
	less than 72°C
max_	The maximum number of
gen	generations
mating_	The number of new individuals
pool	created in each generation
pop_	The number of individuals in a
size	population

RESULTS

- 1. Higher crossing-over probability results in faster rise of the best fitness scores.
- 2. Higher mutation probability might result in more specific results.
- 3. Using a greater number of generations should result in a better fitness score.
- 4. The maximum CPU usage depends on the number of threads specified by the user. In this instance the specified amount was 4 and the code was run on a 16 CPU device.
- 5. Memory usage over time indicates that BLAT is the most memory consuming operation and afterward cyclically the memory usage increases and drops which correlates with BLAST specificity checking.

SOURCES

Figures were created with BioRender.com. Dieffenbach, C. W., Lowe, T. M. J., & Dveksler, G. S. General Concepts for PCR Primer Design, 1993 Dec;3(3):S30-7. doi: 10.1101/gr.3.3.s30.

Katoch, S., Chauhan, S. S.,& Kumar, V. (2021). A review on genetic algorithm: past, present, and future. Multimedia Tools and Applications, 80(5), 8091–8126. https://doi.org/10.1007/s11042-020-10139-6 Wu, J. S., Lee, C., Wu, C. C., & Shiue, Y. L. (2004). Primer design using genetic algorithm. Bioinformatics, 20(11), 1710–1717. https://doi.org/10.1093/bioinformatics/bth147