Arterial blood gases

Continuing development of BASIC is supported by an unrestricted educational grant from

64-jährige Patientin mit Abgeschlagenheit/Müdigkeit seit mehreren Wochen.

рН		7.31
pCO ₂	kPa	2.5
	mmHg	18.7
pO ₂	kPa	12.0
	mmHg	90
HCO ₃ -	mmol/L	7.8
Lactat	mmol/L	13.3
Natrium	mmol/L	138
Kalium	mmol/L	3.8
Chlorid	mmol/L	112
Albumin	g/L	21

Fall 1

- 1. pH ? 7.31 HCO₃-? 7.8mmol/L
- → Metabolische Azidose
- 2. Kompensation?

Erwartetes pCO₂:

$$5.2kPa - 2.5kPa = 2.7kPa$$
 2.5kPa

- → adäquate Kompensation
- → keine zusätzliche Störung

64-jährige Patientin mit Abgeschlagenheit/Müdigkeit seit mehreren Wochen.

рН		7.31
pCO ₂	kPa	2.5
	mmHg	18.7
pO ₂	kPa	12.0
	mmHg	90
HCO ₃ -	mmol/L	7.8
Lactat	mmol/L	13.3
Natrium	mmol/L	138
Kalium	mmol/L	3.8
Chlorid	mmol/L	112
Albumin	g/L	21

Fall 1

1. Metabolische Azidose?

Berechnung der Anionenlücke

$$Na^{+} - (Cl^{-} + HCO_{3}^{-})$$

$$138 - (112 + 7.8) = 18.2 \text{mmol/L}$$

Normale Anionenlücke (8-16mmol/L)?

Korrektur: 2.5mmol/L pro 10G/L Albumin

Norm Anionenlücke_{Alb korr} = 3-11mmol/L

Metabolische Azidose mit erhöhter Anionenlücke

64-jährige Patientin mit Abgeschlagenheit/Müdigkeit seit mehreren Wochen.

рН		7.31
pCO ₂	kPa	2.5
	mmHg	18.7
pO ₂	kPa	12.0
	mmHg	90
HCO ₃ -	mmol/L	7.8
Lactat	mmol/L	13.3
Natrium	mmol/L	138
Kalium	mmol/L	3.8
Chlorid	mmol/L	112
Albumin	g/L	21

Fall 1

Metabolische Azidose mit positiver

Anionenlücke: Differentialdiagnose?

Methanol-Ethylenglykol

Urämie

Diabetische oder alkoholische Ketoazidose

Paraldehyd

Isoniazid

Lactatazidose

Salizylat

Laktatazidose: Differentialdiagnose?

Typ A Laktatazidose Gewebshypoperfusion Supply Demand Mismatch	Typ B Laktatazidose Keine Gewebshypoperfusion Impaired tissue oxygen utilization	D Laktatazidose
 ■ Vermindertes O₂ - Angebot Schock CI > 3, ScvO2 76% Hypoxämie NB, paO2 > 10kPa Schwere Anämie Hb +/- 7 CO Vergiftung nein ■ Erhöhter O₂ - Bedarf Grand Mal Epilepsie nein Extreme Exercise nein 	 Sepsis CRP 91, PCT 0.8, Lc 3.8 Diabetes mellitus nein Malignom ?! Thiamin Mangel ? Inborn errors of Metabolism nein HIV Infektion nein Medikamente/Toxine nein Leberversagen LDH 3828, GOT 170, GPT 34, Bili 38, INR 1.3, Q 63, FV 39 	 Short bowel syndrome nein GI Malabsorption nein Diffus intravaskuläres B-Zell-Lymphom

18-jähriger Patient, bekannte CF, gelistet für LTPL, aktuell Infektexazerbation

рН		7.27
pCO ₂	kPa	19
	mmHg	142
pO ₂	kPa	11.6
	mmHg	87
HCO ₃ -	mmol/L	66
Lactat	mmol/L	0.9
Chlorid	mmol/L	66

- 1. pH ? 7.27 HCO₃-? 66.3mmol/L
 - -> Respiratorische Azidose
 - 2. Kompensation?

```
\uparrow HCO<sub>3</sub>-3mmol/L pro \uparrow kPa pCO<sub>2</sub>

14 x 3mmol/L 19kPa - 5kPa

= 42mmol/L = 14kPa
```

Erwartetes HCO₃⁻:

24mmol/L + 42mmol/L = 66mmol/L 66mmol/L

- → adäquate Kompensation
- → keine zusätzliche Störung

Intubation ja/nein?

рН		7.269
pCO ₂	kPa	19
	mmHg	142
pO ₂	kPa	11.6
	mmHg	87
HCO ₃ -	mmol/L	66
Lactat	mmol/L	0.9
Chlorid	mmol/L	66

рН		7.135
pCO ₂	kPa	28
	mmHg	210
pO ₂	kPa	17
	mmHg	127
HCO ₃ -	mmol/L	68
Lactat	mmol/L	0.8
Chlorid	mmol/L	65

Geschwindigkeit der CO₂- Senkung?

рН		7.135
pCO ₂	kPa	28
	mmHg	210
pO ₂	kPa	17
	mmHg	127
HCO ₃ -	mmol/L	68
Lactat	mmol/L	0.8
Chlorid	mmol/L	65

рН		7.61
pCO ₂	kPa	7.2
	mmHg	54
pO ₂	kPa	7.2
	mmHg	54
HCO ₃ -	mmol/L	56
Lactat	mmol/L	2.0
Chlorid	mmol/L	74

+ 2 Tage

Posthyperkapnische Alkalose

51-jähriger Patient mit respiratorischer Insuffizienz. Weitere Anamnese unklar.

рН		7.32
pCO ₂	kPa	9.3
	mmHg	70
pO ₂	kPa	10
	mmHg	75
HCO ₃ -	mmol/L	35

1. pH ? 7.32 HCO₃-? 35mmol/L

→ Respiratorische Azidose Akut ?
Chronisch ?

2. Akute Kompensation?

$$= 3.4 \text{mmol/L}$$
 $= 4.3 \text{kPa}$

Erwartetes HCO₃⁻:

24mmol/L + 3.4mmol/L = 27.4mmol/L 35mmol/L

- → inadäquate Kompensation
- → zusätzliche Störung: metabolische Alkalose

51-jähriger Patient mit respiratorischer Insuffizienz. Weitere Anamnese unklar.

рН		7.32
pCO ₂	kPa	9.3
	mmHg	70
pO ₂	kPa	10
	mmHg	75
HCO ₃ -	mmol/L	35

1. pH ? 7.3	HCO_3^- ?	35mmol/L
-------------	-------------	----------

2. Chronische Kompensation?

$$\uparrow$$
 HCO₃⁻ 3mmol/L pro \uparrow kPa paCO₂

$$= 12.9 \text{mmol/L} \qquad = 4.3 \text{kPa}$$

Erwartetes HCO₃⁻:

$$24$$
mmol/L + 12.9 mmol/L = 36.9 mmol/L 35 mmol/L

- → adäquate Kompensation
- → keine zusätzliche Störung

51-jähriger Patient mit respiratorischer Insuffizienz. Weitere Anamnese unklar.

рН		7.32
pCO ₂	kPa	9.3
	mmHg	70
pO ₂	kPa	10
	mmHg	75
HCO ₃ -	mmol/L	35

Fall 3

Respiratorische Azidose

Akute Störung

Chronische Störung

Akute respiratorische Azidose

+

metabolische Alkalose (bspweise Erbrechen) Chronisch respiratorische Azidose (bspweise COPD)

Anamnese ergänzen!

18-jährige Patientin, sucht wegen Schwäche die Notfallstation auf.

рН		7.51
pCO ₂	kPa	8.9
	mmHg	66.7
pO ₂	kPa	7.2
	mmHg	54
HCO ₃ -	mmol/L	38
Na	mmol/L	147
K	mmol/L	2.1
CI	mmol/L	83
Albumin	g/L	34

- 1. pH ? 7.51 HCO₃-? 38mmol/L
- → Metabolische Alkalose
- 2. Kompensation?

$$\uparrow$$
 pCO₂ 0.08kPa pro \uparrow mmol/L HCO₃⁻

14 x 0.08kPa 38mmol/L - 24mmol/L

= 1.12kPa = 14mmol/L

Erwartetes pCO₂:

$$5kPa + 1.12kPa = 6.12kPa 8.9$$

- → inadäquate Kompensation
- → zusätzliche Störung: respiratorische Azidose

18-jährige Patientin, sucht wegen Schwäche die Notfallstation auf.

рН		7.51
pCO ₂	kPa	8.9
	mmHg	66.7
pO ₂	kPa	7.2
	mmHg	54
HCO ₃ -	mmol/L	38
Na	mmol/L	147
K	mmol/L	2.1
CI	mmol/L	83
Albumin	g/L	34
U _{Cl}	mmol/L	8
U _{Na}	mmol/L	14

- 1. Ursache der metabolischen Alkalose ? Induziertes Erbrechen bei Bulimie
- Metabolische Alkalose mit tiefem U_{CI}
- •Zeichen der Volumendepletion Hypernatriämie, tiefes U_{Na}
- •Zeichen der Mangelernährung

 Hypoalbuminämie, schwere Hypokaliämie
- 2. Ursache der respiratorischen Azidose?
- Alveoläre Hypoventilation bei muskulärer Schwäche bei schwerer Hypokaliämie

33-jährige Patientin, bekanntes Sjögren-Syndr, Muskelschwäche

рН		7.15
pCO ₂	kPa	4.5
	mmHg	34
HCO ₃ -	mmol/L	12
Na	mmol/L	134
K	mmol/L	1.5
CI	mmol/L	112
pH _{Urin}		6.5
U _{Na}	mmol/L	44
U _K	mmol/L	10
U _{Cl}	mmol/L	35

- 1. pH ? 7.15 HCO₃-? 12mmol/L
- → Metabolische Azidose
- 2. Kompensation?

$$= 1.92 kPa = 12 mmol/L$$

Erwartetes paCO₂:

$$5kPa - 1.92kPa = 3.08kPa 4.5$$

- → inadäquate Kompensation
- -> zusätzlich Störung: respiratorische Azidose

33-jährige Patientin, bekanntes Sjögren-Syndr, Muskelschwäche

рН		7.15
pCO ₂	kPa	4.5
	mmHg	34
HCO ₃ -	mmol/L	12
Na	mmol/L	134
K	mmol/L	1.5
CI	mmol/L	112
pH _{Urin}		6.5
U _{Na}	mmol/L	44
U _K	mmol/L	10
U _{Cl}	mmol/L	35

1. Ursache der metabolischen Azidose?

→ Berechnung der Anionenlücke

$$Na^{+} - (Cl^{-} + HCO_{3}^{-})$$

$$134 - (112 + 12) = 10 \text{mmol/L}$$

Metabolische Azidose mit normaler Anionenlücke

Urin-Anionenlücke (UAG)

$$(U_{Na} + U_{K})$$
 - U_{cl} : Norm 40 \pm 20mmol/L

Extrarenale Ursache Renale Ursache UAG wird negativ

UAG bleibt positiv

$$(44 + 10) - 35 = 19$$
mmol/L

33-jährige Patientin, bekanntes Sjögren-Syndr, Muskelschwäche

рН		7.15
pCO ₂	kPa	4.5
	mmHg	34
HCO ₃ -	mmol/L	12
Na	mmol/L	134
K	mmol/L	1.5
CI	mmol/L	112
pH _{Urin}		6.5
U _{Na}	mmol/L	44
U _K	mmol/L	10
U _{Cl}	mmol/L	35

Fall 5

1. Ursache der metabolischen Azidose mit normaler Anionenlücke und positiver Urin-Anionenlücke?

Metabolische Azidose - normale Anionenlücke		
Urin AG negativ	Urin AG positiv	
Extrarenale Ursache	Renale Ursache (RTA)	
 GI (Diarrhoe, externe Drainage von Pankreassaft, Galle) 	P _K erniedrigt/normal •RTA Typ I (U-pH > 5.5) •RTA Typ II (U-pH < 5.5)	
Urinary diversion	P _K erhöht •RTA Typ IV	
Hyperalimentation		

→ RTA Typ I im Rahmen des Sjögren - Syndroms

33-jährige Patientin, bekanntes Sjögren-Syndr, Muskelschwäche

рН		7.15
pCO ₂	kPa	4.5
	mmHg	34
HCO ₃ -	mmol/L	12
Na	mmol/L	134
K	mmol/L	1.5
CI	mmol/L	112
pH_{Urin}		6.5
U _{Na}	mmol/L	44
U _K	mmol/L	10
U _{Cl}	mmol/L	35

Fall 5

- 2. Ursache der respiratorischen Azidose?
- Atemmuskellähmung bei schwerer Hypokaliämie