ЛЕКЦИЯ 16. ЭЛЕМЕНТЫ КРИПТОГРАФИИ

КРИПТОГРАФИЯ И КРИПТОАНАЛИЗ

Криптование – шифрование (не путать с кодированием).

Криптоанализ – расшифровка.

Наиболее известны:

- шифры замены (частный случай шифр Цезаря);
- шифры перестановки.

ОДНОСТОРОННЯЯ ФУНКЦИЯ

В математике можно вспомнить много примеров, когда функция y = F(x) вычисляется легко, а обратная функция $x = F^{-1}(y)$, хоть и существует, но вычисляется гораздо сложнее (пример – квадрат и корень квадратный, показательная функция и логарифм).

Определение. Пусть y=F(x) – функция на сообщениях и N – размер сообщения. Будем называть эту функцию *односторонней*, если существует полиномиальный алгоритм вычисления y=F(x) (шифрование) и не существует полиномиального алгоритма вычисления $x=F^{-1}(y)$ (расшифровка).

 Π р и м е р и с Π о л ь з о в а н и я . Пароли пользователй хранятся на диске в виде y = F(x). Обратная функция просто не нужна!

ФУНКЦИЯ С СЕКРЕТОМ

Определение. Назовем y=F(x) функцией c секретом (ключом) K, если существуют эффективные алгоритмы вычисления F(x) и $F^{-1}(x)$ при условии, что ключ K известен, и не существует таких алгоритмов, если ключ K неизвестен.

В шифрах замены и перестановки ключом является перестановка.

Удобнее всего разделить ключ на две «половинки» - ключ для шифрования Р (публичный) и ключ для расшифровки (секретный) S:

- F(x) эффективно вычисляется при известном P;
- $F^{-1}(x)$ эффективно вычисляется при известном S;
- F(x) и $F^{-1}(x)$ не могут быть вычислены без знания таковых.

Пример.

- Р телефонный справочник с сортировкой по фамилиям
- S телефонный справочник с сортировкой по номерам

Шифрование: берём букву и заменяем её на случайный номер из первого справочника для человека с фамилией на эту букву.

Расшифровка: берём номер, ищем фамилию, берём первую букву.

Проблема: как передать секретный ключ по открытому каналу связи?

КРИПТОСИСТЕМЫ С ОТКРЫТЫМ КЛЮЧОМ

ОТКРЫТЫЙ И СЕКРЕТНЫЙ КЛЮЧ

В 70-е годы появились *криптографические системы с открытым ключом*, где эта задача была решена (Диффи и Хеллман, 1976).

Участники переговоров – А и В. Каждый имеет открытый и секретный ключ:

$$P_A$$
, S_A и P_B , S_B .

АЛГОРИТМ ПЕРЕСЫЛКИ СООБЩЕНИЯ

- 1. А и В публикуют публичные ключи (обмениваются по открытому каналу связи);
- 2. А создает сообщение M, шифрует его с помощью P_B и посылает по открытому каналу связи $M' = P_B(M)$;
- 3. В получает его и дешифрует $S_R(M') = S_R(P_R(M)) = M$.

Расшифровать сообщение может только В!

Но где гарантия, что это сообщение действительно послал А???

ЦИФРОВАЯ ПОДПИСЬ

- 1. А и В публикуют публичные ключи (обмениваются по открытому каналу связи);
- 2. А создает сообщение М;
- 3. А генерирует цифровую подпись $Z = S_A(M)$;
- 4. А шифрует «подписанное» сообщение MZ и посылает $M' = P_B(MZ)$ по открытому каналу связи;
- 5. В получает сообщение и дешифрует его $S_R(M') = S_R(P_R(MZ)) = MZ$;
- 6. В проверяет цифровую подпись: $M \equiv P_{A}(Z)$.

Задача (давалась на собеседовании в Google). Мистер А решил перед свадьбой сделать своей невесте мисс В подарок: послать шкатулку с брильянтами. Но на почте все шкатулки, если для этого не нужно ломать замок, вскрываются:

- 1. Если шкатулка открыта, то из неё вытряхивается и присваивается всё содержимое в том числе и ключи.
- 2. Если шкатулка закрыта, то к ней пробуются все ключи, которые есть в наличии, и если один из них подходит, то шкатулка открывается и см. п.1

Как переслать брильянты???

ШИФРОВАНИЕ С ПОМОЩЬЮ «РЮКЗАКА»

Всегда можно считать, что сообщение представляет собой набор чисел (или одно очень длинное число). Одну из систем с открытым ключом можно построить на задаче о рюкзаке.

Дано число S и N целых чисел $x_1,...,x_N$. Нужно выбрать из них такое подмножество чисел, которые в сумме дают ровно S (или сообщить, что такого нет).

1609

ШИФРОВАНИЕ И ДЕШИФРОВАНИЕ

Публикуется набор из N чисел (N=10):

yourney cross made prise to meet (10 10)

104 416 624 1248

8 913

243

798

1596

676

Ш и ф р о в а н и е: переводим каждые N бит в соответствующую сумму:

 $0100011010 \rightarrow S=416+243+798+1609=3066$

Дешифровка: нужно для числа S=3066 решить задачу о рюкзаке.

Т.о. на дешифровку N бит требуется 2^N операций!!!

Но как сделать дешифровку доступной для адресата?

ПРОСТАЯ И СЛОЖНАЯ ЗАДАЧИ

Определение. Назовем задачу о рюкзаке *простой*, если каждое следующее число в ней больше суммы всех предыдущих. Например:

1 4 6 12 25 51 105 210 421 850

Тогда алгоритм решения очень простой (найдите его!). Но ведь им может воспользоваться и противник!

Создадим «для себя» простую задачу, а опубликуем сложную:

1	4	6	12	25	51	105	210	421	850
104	416	624	1248	913	243	798	1596	1609	676

Утверждается, что эти задачи *двойственные*: решение сложной можно заменить на решение простой. Набор чисел простой задачи это и есть секретный ключ. Как построить сложную задачу, двойственную к простой?

Построение сложной задачи по простой:

- 1. Найдем сумму С всех чисел в простой задаче (у нас С=1685)
- 2. Возьмем D>C (у нас D=1687)
- 3. Найдем любые два взаимно обратных числа X и Y по (mod D) (у нас X=104 и Y=146)
- 4. Домножим все числа простой задачи на X (mod D):

104 416 624 1248 913 243 798 1596 1609 676

Решение сложной задачи через решение простой:

- 1. Пусть нужно набрать сумму S (например, 3066)
- 2. Найдем S'=S*Y (mod D) (получится 581)
- 3. Решим для S' простую задачу: 581=421+105+51+4
- 4. Возьмем соответствующие числа из сложной задачи: 3066=416+243+798+1609

Итак, наша криптографическая система выглядит полностью так:

Cormonwers	1 4 6 12 25 51 105 210 421 850				
Секретный ключ	D=1687 x=104 y=146				
Публичный ключ	104 416 624 1248 913 243 798 1596 1609 676				

АЛГОРИТМ RSA

RSA (Ron Rivest, Adi Shamir, Leonard Adleman - 1978)

В основе шифрования – сложность задачи о разложении длинного числа на простые множители.

ФУНКЦИЯ ЭЙЛЕРА

О п р е д е л е н и е . Φ ункцией Эйлера называется целочисленная функция $\varphi(n)$, равная количеству чисел от 1 до n, взаимно простых с n.

Свойства:

- 1. Если р простое, то $\varphi(p) = p 1$.
- 2. Если р простое, то $\varphi(p^{\alpha}) = p^{\alpha} p^{\alpha-1}$.

Доказательство: НЕ взаимно простые с p^{α} - это $1 \cdot p, 2 \cdot p, ..., p^{\alpha-1} \cdot p$. Значит, НЕ взимно простых с p^{α} будет $p^{\alpha-1}$, а взаимно простых - $(p^{\alpha} - p^{\alpha-1})$.

3. Если а и b — взаимно простые, то $\varphi(ab) = \varphi(a)\varphi(b)$. Доказательство: через китайскую теорему об остатках.

Отсюда получаем формулу для вычисления $\varphi(n)$ через разложение n на простые множители:

ТЕОРЕМА ЭЙЛЕРА И ТЕОРЕМА ФЕРМА

Самое известное и важное свойство функции Эйлера выражается в следующей теореме Эйлера. Теорем а 1 (Эйлер). Если a и n взаимно просты, то

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

В частном случае, когда n=p простое, теорема Эйлера превращается в так называемую малую теорему Ферма.

Теорема 2 (Ферма). Если a не делится на p, то

$$a^{p-1} \equiv 1 \pmod{p}$$

ШИФРОВАНИЕ И ДЕШИФРОВАНИЕ

Множеством сообщений служит Z_n (n — ОЧЕНЬ длинное число, которое представляет собой произведение двух ОЧЕНЬ длинных простых чисел n=pq)

- 1. Возьмем р и q длинные простые числа (больше 1000 знаков)
- 2. Вычислим п=рф
- 3. Вычислим $\varphi(n) = (p-1) \cdot (q-1)$
- 4. Возьмем небольшое число е, взаимно простое с $\varphi(n)$ (обычно берут простые числа, содержащие небольшое количество 1 в двоичной записи, например, числа Ферма: 3, 17, 257,

 $65537, \dots 2^{2^k} - 1$). Время шифрования пропорционально количеству 1 в двоичной записи. Число е называют *открытой экспонентой*.

5. Найдем $d = e^{-1} \pmod{\varphi(n)}$. Для этого можно использовать расширенный алгоритм Евклида для нахождения линейного представления НОД:

$$d \cdot e - x \cdot \varphi(n) = 1.$$

Число d называют секретной экспонентой.

- 6. Публичный ключ: P=(n, e)
- 7. Секретный ключ: S=(n, d)

Шифрование: $M' = M^e \pmod{n}$

Дешифрование: $M = (M')^d \pmod{n}$

В о прос: почему «враг» не может вычислить d, зная е?

Ответ: для этого нужно знать $\varphi(n)$, а для этого – разложение n на простые множители.

Tеорема. $M^{ed} = M \pmod{n}$.

Доказательство. $ed = 1 + x \cdot \varphi(n)$. Отсюда

$$M^{ed} \equiv M^{1+x\cdot\varphi(n)} \equiv M(M^{\varphi(n)})^x \equiv M\cdot 1^x \equiv M \pmod{n}$$
.

(случай, когда M не взаимно просто с n вообще говоря возможен, но он тоже разбирается)

Пример.

- 1. p=557, q=571
- 2. N=pq= 318 047
- 3. $\varphi(N)=(p-1)(q-1)=316920$
- 4. e = 17 открытая экспонента (взаимно просто с $\varphi(N)$)
- 5. $d \equiv e^{-1} (\text{mod } \varphi(N)) = 260 \ 993$ **секретная экспонента** (находим по алгоритму Евклида из линейного представления НОД: $1 = e \cdot d + \varphi(N) \cdot x$)
- 6. Открытый ключ: (318 047, 17)
- 7. Закрытый ключ: (318 047, 260 993)

Шифрование: М=111

 $M' = 111^{17} \mod 318047 = 286048$

Дешифрование: $M = 286048^{260993} \mod 318047 = 111$

При возведении в большую степень используем алгоритм быстрого возведения в степень.

 $260993 = 1111111101110000001_2 = 2^{17} + 2^{16} + 2^{15} + 2^{14} + 2^{13} + 2^{12} + 2^{11} + 2^9 + 2^8 + 2^7 + 2^0$

ПРИМЕНЕНИЯ

Из истории. Авторы RSA опубликовали для расшифровки фразу из 6-ти английских слов. Расшифровка длилась 17 лет и завершилась в 1994 году. Работа возглавлялась четырьмя видными учеными и продолжалась (не считая предварительной подготовки) 220 дней. На добровольных началах в ней участвовало около 600 человек и 1600 компьютеров, объединенных в сеть Internet.

На базе RSA разработана система PGP (Pretty Good Privacy) для шифрования сообщений в Интернете.