## **Lecture 6 – Simple Linear Regression**



**DSC 40A, Fall 2021 @ UC San Diego** Suraj Rampure, with help from many others



btw these large scary math symbols are just for-loops



7:51 PM · 11 Sep 21 · Twitter Web App

#### **Announcements**

- ► Homework 3 will be released after lecture, will be due on Monday 10/18 at 11:59pm. Will be shorter than usual.
- Groupwork 3 will be released after lecture, will be due on Thursday 10/14 at 11:59pm.
- DISCUSSION SECTION ON WEDNESDAY WILL BE IN-PERSON!
  - Wednesday, 6-6:50PM, Center Hall 113.
- Homework 1, Groupwork 1, and Groupwork 2 grades are released on Gradescope.
- ► Midterm is **Thursday, 10/21 during class time**.
  - ▶ **Review Session:** Tuesday 10/19, 5-8PM, PCYNH 109.
  - See https://dsc40a.com/resources.

## **Agenda**

- Recap of gradient descent.
- ▶ Prediction rules.
- Minimizing mean squared error, again.

# **Recap: gradient descent**

#### **Gradient descent**

- The goal of gradient descent is to minimize a function R(h).
- Gradient descent starts off with an initial guess h<sub>0</sub> of where the minimizing input to R(h) is, and on each step tries to get closer to the minimizing input h\* by moving opposite the direction of the slope:

$$h_i = h_{i-1} - \alpha \cdot \frac{dR}{dh}(h_{i-1})$$

- ightharpoonup lpha is known as the learning rate, or step size. It controls how much we update our guesses by on each iteration.
- ► Gradient descent terminates once the guesses  $h_i$  and  $h_{i-1}$  stop changing much.



See Lecture 5's supplemental notebook for animations.

#### When does gradient descent work?

A function f is convex if, for any two inputs a and b, the line segment connecting the two points (a, f(a)) and (b, f(b)) does not go below the function f.

$$Arr R_{abs}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$
: convex.

$$Arr R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$
: convex.

$$Arr R_{ucsd}(h) = \frac{1}{n} \sum_{i=1}^{n} \left[ 1 - e^{-(y_i - h)^2 / \sigma^2} \right]$$
: not convex.

► **Theorem:** If *R*(*h*) is convex and differentiable then gradient descent converges to a **global minimum** of *R* given an appropriate step size.

## **Prediction rules**

## How do we predict someone's salary?

After collecting salary data, we...

- 1. Choose a loss function.
- 2. Find the best prediction by minimizing empirical risk.
- So far, we've been predicting future salaries without using any information about the individual (e.g. GPA, years of experience, number of LinkedIn connections).
- New focus: How do we incorporate this information into our prediction-making process?

#### **Features**

A **feature** is an attribute – a piece of information.

- Numerical: age, height, years of experience
- Categorical: college, city, education level
- Boolean: knows Python?, had internship?

Think of features as columns in a DataFrame (i.e. table).

|   | YearsExperience | Age   | FormalEducation                               | Salary   |
|---|-----------------|-------|-----------------------------------------------|----------|
| 0 | 6.37            | 28.39 | Master's degree (MA, MS, M.Eng., MBA, etc.)   | 120000.0 |
| 1 | 0.35            | 25.78 | Some college/university study without earning | 120000.0 |
| 2 | 4.05            | 31.04 | Bachelor's degree (BA, BS, B.Eng., etc.)      | 70000.0  |
| 3 | 18.48           | 38.78 | Bachelor's degree (BA, BS, B.Eng., etc.)      | 185000.0 |
| 4 | 4.95            | 33.45 | Master's degree (MA, MS, M.Eng., MBA, etc.)   | 125000.0 |
| 4 | 4.95            | 33.45 | Master's degree (MA, MS, M.Eng., MBA, etc.)   | 125000.0 |

#### **Variables**

- The features, x, that we base our predictions on are called predictor variables.
- The quantity, y, that we're trying to predict based on these features is called the response variable.
- We'll start by predicting salary based on years of experience.

#### **Prediction rules**

- We believe that salary is a function of experience.
- In other words, we think that there is a function *H* such that:

salary ≈ H(years of experience)

- H is called a hypothesis function or prediction rule.
- Our goal: find a good prediction rule, H.

#### **Possible prediction rules**

$$H_1$$
(years of experience) = \$50,000 + \$2,000 × (years of experience)  
 $H_2$ (years of experience) = \$60,000 × 1.05<sup>(years of experience)</sup>  
 $H_3$ (years of experience) = \$100,000 - \$5,000 × (years of experience)

- These are all valid prediction rules.
- Some are better than others.

### **Comparing predictions**

- ► How do we know which prediction rule is best:  $H_1$ ,  $H_2$ ,  $H_3$ ?
- We gather data from n people. Let  $x_i$  be experience,  $y_i$  be salary:

See which rule works better on data.

# **Example**



### Quantifying the quality of a prediction rule H

- ▶ Our prediction for person *i*'s salary is  $H(x_i)$ .
- As before, we'll use a **loss function** to quantify the quality of our predictions.
  - Absolute loss:  $|y_i H(x_i)|$ .
  - Squared loss:  $(y_i H(x_i))^2$ .
- We'll use squared loss, since it's differentiable.
- Using squared loss, the empirical risk (mean squared error) of the prediction rule H is:

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$$

## Mean squared error



### Finding the best prediction rule

- ▶ **Goal:** out of all functions  $\mathbb{R} \to \mathbb{R}$ , find the function  $H^*$  with the smallest mean squared error.
- ► That is, H\* should be the function that minimizes

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$$

There's a problem.

#### **Discussion Question**

Given the data below, is there a prediction rule *H* which has **zero** mean squared error?

a) Yes b) No

To answer, go to menti.com and enter the code 8851 5429.



#### **Problem**

- ► We can make mean squared error very small, even zero!
- But the function will be weird.
- This is called overfitting.
- Remember our real goal: make good predictions on data we haven't seen.

#### **Solution**

- Don't allow H to be just any function.
- Require that it has a certain form.
- Examples:
  - Linear:  $H(x) = w_0 + w_1 x$ .
  - Quadratic:  $H(x) = w_0 + w_1 x_1 + w_2 x^2$ .
  - Exponential:  $H(x) = w_0 e^{w_1 x}$ .
  - Constant:  $H(x) = w_0$ .

### Finding the best linear prediction rule

- ▶ **Goal:** out of all **linear** functions  $\mathbb{R} \to \mathbb{R}$ , find the function  $H^*$  with the smallest mean squared error.
  - Linear functions are of the form  $H(x) = w_0 + w_1 x$ .
  - ▶ They are defined by a slope  $(w_1)$  and intercept  $(w_0)$ .
- ► That is, H\* should be the linear function that minimizes

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$$

- ► This problem is called **least squares regression**.
  - "Simple linear regression" refers to linear regression with a single predictor variable.

Minimizing mean squared error for the linear

prediction rule

## Minimizing the mean squared error

► The MSE is a function  $R_{sq}$  of a function H.

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$$

But since H is linear, we know  $H(x_i) = w_0 + w_1 x_i$ .

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

- Now  $R_{sa}$  is a function of  $w_0$  and  $w_1$ .
- ▶ We call  $w_0$  and  $w_1$  parameters.
  - Parameters define our prediction rule.

### **Updated** goal

Find the slope  $w_1^*$  and intercept  $w_0^*$  that minimize the MSE,  $R_{sq}(w_0, w_1)$ :

$$R_{\text{sq}}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

Strategy: multivariable calculus.

#### **Recall: the gradient**

If f(x, y) is a function of two variables, the gradient of f at the point  $(x_0, y_0)$  is a vector of partial derivatives:

$$\nabla f(x_0, y_0) = \begin{pmatrix} \frac{\partial f}{\partial x}(x_0, y_0) \\ \frac{\partial f}{\partial y}(x_0, y_0) \end{pmatrix}$$

- **Key Fact #1**: The derivative is to the tangent line as the gradient is to the tangent plane.
- Key Fact #2: The gradient points in the direction of the biggest increase.
- Key Fact #3: The gradient is zero at critical points.

#### **Strategy**

To minimize  $R(w_0, w_1)$ : compute the gradient, set it equal to zero, and solve.

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

#### **Discussion Question**

Choose the expression that equals 
$$\frac{\partial R_{so}}{\partial w_0}$$

a) 
$$\frac{1}{n} \sum_{i=1} (y_i - (w_0 + w_1 x_i))$$

a) 
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))$$
  
b)  $-\frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))$ 

c) 
$$-\frac{2}{n}\sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) x_i$$

d) 
$$-\frac{2}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))$$

Go to menti.com and enter the code 8851 5429.

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

$$\frac{\partial R_{sq}}{\partial w_0} =$$

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

$$\frac{\partial R_{sq}}{\partial w_1} =$$

#### **Strategy**

$$-\frac{2}{n}\sum_{i=1}^{n}\left(y_{i}-(w_{0}+w_{1}x_{i})\right)=0 \qquad -\frac{2}{n}\sum_{i=1}^{n}\left(y_{i}-(w_{0}+w_{1}x_{i})\right)x_{i}=0$$

- 1. Solve for  $w_0$  in first equation.
  - ► The result becomes  $w_0^*$ , since it is the "best intercept".
- 2. Plug  $w_0^*$  into second equation, solve for  $w_1$ .
  - ▶ The result becomes  $w_1^*$ , since it is the "best slope".

# Solve for $\mathbf{w}_0^*$

$$-\frac{2}{n}\sum_{i=1}^{n}\left(y_{i}-(w_{0}+w_{1}x_{i})\right)=0$$

## Solve for w<sub>1</sub>\*

$$-\frac{2}{n}\sum_{i=1}^{n}\left(y_{i}-(w_{0}+w_{1}x_{i})\right)x_{i}=0$$

### **Least squares solutions**

We've found that the values  $w_0^*$  and  $w_1^*$  that minimize the function  $R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2$  are

$$w_{1}^{*} = \frac{\sum_{i=1}^{n} (y_{i} - \bar{y})x_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x})x_{i}}$$

$$w_{0}^{*} = \bar{y} - w_{1}^{*}\bar{x}$$

where

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
  $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ 

Let's re-write the slope  $w_1^*$  to be a bit more symmetric.

#### **Key fact**

The **sum of deviations from the mean** for any dataset is 0.

$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0 \qquad \sum_{i=1}^{n} (y_i - \bar{y}) = 0$$

Proof:

## Equivalent formula for $w_1^*$

Claim

$$w_1^* = \frac{\sum_{i=1}^n (y_i - \bar{y})x_i}{\sum_{i=1}^n (x_i - \bar{x})x_i} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

Proof:

#### **Least squares solutions**

► The least squares solutions for the slope  $w_1^*$  and intercept  $w_0^*$  are:

$$w_1^* = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$w_0^* = \bar{y} - w_1 \bar{x}$$

- ▶ We also say that  $w_0^*$  and  $w_1^*$  are optimal parameters.
- To make predictions about the future, we use the prediction rule

$$H^*(x) = W_0^* + W_1^* x$$

## **Example**



$$\bar{x} =$$

$$W_1^* = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} =$$

$$w_0^\star = \bar{y} - w_1 \bar{x} =$$

| Xi | Уi | $(x_i - \bar{x})$ | $(y_i - \bar{y})$ | $(x_i - \bar{x})(y_i - \bar{y})$ | $(x_i - \bar{x})^2$ |
|----|----|-------------------|-------------------|----------------------------------|---------------------|
| 3  | 7  |                   |                   |                                  |                     |
| 4  | 3  |                   |                   |                                  |                     |
| 8  | 2  |                   |                   |                                  |                     |

# **Summary**

#### Summary, next time

- ► We introduced the linear prediction rule,  $H(x) = w_0 + w_1 x$ .
- To determine the best choice of slope  $(w_1)$  and intercept  $(w_0)$ , we chose the squared loss function  $(y_i H(x_i))^2$  and minimized empirical risk  $R_{so}(w_0, w_1)$ :

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

- After solving for  $w_0^*$  and  $w_1^*$  through partial differentiation, we have a prediction rule  $H^*(x) = w_0^* + w_1^*x$  that we can use to make predictions about the future.
- ▶ **Next time**: Revisiting correlation from DSC 10. Revisiting gradient descent. Introducing a linear algebraic formulation of linear regression.