Задание 3. Метод опорных векторов

Курс: Практикум на ЭВМ, осень 2015

Начало выполнения задания: 5 ноября.

Срок сдачи: 22 ноября, 23:59.

Среда для выполнения задания: Python 3.4.

1 Ликбез

Зафиксируем обозначения:

• N — число объектов в обучающей выборке.

• D — размерность признакового пространства.

• $\mathbf{x}_n \in \mathbb{R}^D$ — вектор признаков объекта n.

• $y_n \in \{-1,1\}$ — правильный ответ для объекта n.

Прямая задача SVM

$$\min_{\mathbf{w}, \boldsymbol{\xi} \geqslant 0} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} \xi_n,$$

s.t. $y_n(\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + w_0) \geqslant 1 - \xi_n, \ n = 1, \dots, N.$

Прямая задача SVM без ограничений В предыдущей задаче можно избавиться от переменных ξ_n , если учесть, что $\xi_n \geqslant 0$ и $\xi_n \geqslant 1 - y_n \mathbf{w}^\intercal \mathbf{x}_n$:

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} \max\{0, 1 - y_n(\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + w_0)\}.$$

Двойственная задача SVM

$$\max_{\mathbf{a}} \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m y_n y_m k(\mathbf{x}_n, \mathbf{x}_m)$$
s.t. $0 \leqslant a_n \leqslant C, \ n = 1, \dots, N,$

$$\sum_{n=1}^{N} a_n y_n = 0,$$

где $k(\mathbf{x}_n, \mathbf{x}_m)$ — ядровая функция, в линейном случае ее значение равно $\mathbf{x}_n^\intercal \mathbf{x}_m$.

Субградиент Вектор $\mathbf{g} \in \mathbb{R}^n$ является субградиентом выпуклой функции $f \colon \mathbb{R}^n \to \mathbb{R}$ в точке $\mathbf{x} \in \mathbb{R}^n$, если $\forall \mathbf{z} \in \mathbb{R}^n$ выполнено неравенство

$$f(\mathbf{z}) \geqslant f(\mathbf{x}) + \mathbf{g}^{\mathsf{T}}(\mathbf{z} - \mathbf{x}).$$

Если функция f дифференцируема в точке \mathbf{x} , ее субградиент в этой точке совпадает с градиентом. Субдифференциалом функции f в точке \mathbf{x} называют множество субградиентов в этой точке, обозначают $\partial f(\mathbf{x})$.

Рассмотрим пример вычисления субдифференциала для функции f(x) = |x|. При x < 0 субградиент единственен: $\partial f(x) = -1$; аналогично при x > 0: $\partial f(x) = 1$. При x = 0 субдифференциал определяется неравенством $|z| \geqslant gz$ для любого $z \in \mathbb{R}$, это неравенство выполнено только при $g \in [-1, 1]$, таким образом $\partial f(0) = [-1, 1]$.

 \mathbf{C} убградиентный спуск — метод аналогичный методу градиентного спуска, в котором вместо градиента используется субградиент.

2 Формулировка задания

Требуется реализовать следующие методы для решения задачи SVM:

- 1. Метод внутренней точки для решения прямой задачи. Рекомендуется использовать библиотеку cvxopt, метод cvxopt.solvers.qp.
- 2. Метод внутренней точки для решения двойственной задачи. Рекомендуется использовать библиотеку cvxopt, метод cvxopt.solvers.qp.
- 3. Метод субградиентного спуска для решения прямой задачи, а также его стохастический вариант. Рассмотреть критерий останова как по значению целевой функции, так и по норме аргумента. Реализовать полностью самостоятельно. Для этого потребуется вывести формулу для субградиента функционала в прямой задаче SVM без ограничений, вывод вставить в отчет.
- 4. Метод, используемый в библиотеке liblinear. Рекомендуется использовать биндинги из библиотеки scikit-learn, класс sklearn.svm.LinearSVC.
- 5. Метод, используемый в библиотеке libsvm. Рекомендуется использовать биндинги из библиотеки scikitlearn, класс sklearn.svm.SVC.

Исследовательская часть. Для проведения исследований необходимо генерировать модельные данные, которые не являются линейно разделимыми, для этого удобно использовать многомерные нормальные распределения. Минимальный размер выборки — по 100 объектов в каждом классе.

Требуется провести следующие исследования:

- 1. Исследовать зависимость времени работы реализованных методов для решения задачи линейного SVM от размерности признакового пространства и числа объектов в обучающей выборке. Исследовать скорость сходимости методов. Сравнить методы по полученным значениям целевой функции.
- 2. Провести эти исследования для случая SVM с RBF ядром для тех методов, где возможен ядровой переход.
- 3. Реализовать процедуру поиска оптимального значения параметра C и ширины RBF ядра с помощью кросс-валидации (можно воспользоваться библиотекой scikit-learn). Исследовать зависимость ошибки на валидационной выборке от значений этих параметров. Рассмотреть случаи хорошо и трудно разделимых выборок.
- 4. Сравнить (по скорости сходимости и точности решения) несколько стратегий выбора шага α_t в методе субградиентого спуска: α , $\frac{\alpha}{t}$, $\frac{\alpha}{t^{\beta}}$, где α , β некоторые константы, t номер итерации.
- 5. Исследовать, как размер подвыборки, по которой считается субградиент, в методе стохастического субградиентного спуска влияет на скорость сходимости метода и на точность решения. В этом и предыдущем пунктах за точное решение можно взять решение, полученное с помощью одного из методов внутренней точки.
- 6. Для двумерного случая:
 - Провести визуализацию выборки.
 - Для линейного SVM и для SVM с RBF ядром провести визуализацию разделяющей поверхности
 - Отобразить объекты, соответствующие опорным векторам.

3 Требования к оформлению

Для сдачи задания необходимо предоставить:

- 1. Отчет в формате pdf (оформленный в системе L^AT_EX) с описанием всех проведенных исследований со всеми графиками и выводами.
- 2. IPython notebook с кодом для воспроизведения всех результатов из отчета: таблиц, графиков и проч.
- 3. Python модуль со всеми требуемыми функциями, в соответствии со спецификациями, приведенными ниже.

4 Спецификация

В предоставленном модуле должны быть реализованы функции:

1. Функции подсчета целевой функции SVM, для прямой и двойственных задач:

```
compute_primal_objective(X, y, w, C)
compute_dual_objective(X, y, w, C, gamma=0)
```

Описание параметров:

- X переменная типа numpy.array, матрица размера $N \times D$, признаковые описания объектов из обучающей выборки,
- у переменная типа $\mathtt{numpy.array}$, матрица размера $N \times 1$, правильные ответы на обучающей выборке,
- ullet w переменная типа numpy.array, матрица размера D imes 1, вектор весов SVM,
- С параметр регуляризации,
- gamma ширина RBF ядра. Если gamma=0, рассматривается линейный случай.

Функции должны возвращать одно число — значение целевой функции.

2. Функции для решения задачи SVM:

```
svm_subgradient_solver(X, y, C, tol=1e-6, max_iter=100, verbose=False)
svm_qp_primal_solver(X, y, C, tol=1e-6, max_iter=100, verbose=False)
svm_qp_dual_solver(X, y, C, tol=1e-6, max_iter=100, verbose=False, gamma=0)
svm_liblinear_solver(X, y, C, tol=1e-6, max_iter=100, verbose=False)
svm_libsvm_solver(X, y, C, tol=1e-6, max_iter=100, verbose=False, gamma=0)
```

Описание параметров:

- X переменная типа numpy.array, матрица размера $N \times D$, признаковые описания объектов из обучающей выборки,
- у переменная типа $\mathtt{numpy.array}$, матрица размера $N \times 1$, правильные ответы на обучающей выборке,
- С параметр регуляризации,
- tol требуемая точность,
- max_iter максимальное число итераций,
- \bullet verbose в случае True, требуется выводить отладочную информацию на экран (номер итерации, значение целевой функции),
- gamma ширина RBF ядра. Если gamma=0, рассматривается линейный случай.

Функции должны возвращать словарь с полями:

- 'w' numpy.array, матрица размера $K \times 1$,
- 'A' только в случае решения двойственной задачи, numpy.array, матрица размера $N \times 1$, значения двойственных переменных,
- ullet 'status' 0 или $1,\,0$ если метод вышел по критерию останова, 1 если по числу итераций,
- 'objective_curve' список значений целевой функции по итерациям метода,
- 'time' время работы метода.
- 3. Функция определения опорных векторов:

```
compute_support_vectors(X, y, A)
```

Описание параметров:

- X переменная типа numpy.array, матрица размера $N \times D$, признаковые описания объектов из обучающей выборки,
- у переменная типа numpy.array, матрица размера $N \times 1$, правильные ответы на обучающей выборке,
- А переменная типа $\mathtt{numpy.array}$, матрица размера $N \times 1$, значения двойственных переменных.

Функция должна возвращать $\operatorname{numpy.array}$, матрицу размера $K \times D$, где K — число найденных опорных векторов.

4. Функция получения прямых переменных **w** по двойственным a_n :

compute_w(X, y, A)

Описание параметров:

- X переменная типа **numpy.array**, матрица размера $N \times D$, признаковые описания объектов из обучающей выборки,
- \bullet у переменная типа **numpy.array**, матрица размера $N \times 1$, правильные ответы на обучающей выборке,
- \bullet А переменная типа numpy.array, матрица размера $N \times 1$, значения двойственных переменных.

Функция должна возвращать numpy.array, матрицу размера $D \times 1$.

Все описанные выше функции должны работать для бинарного случая, в этом случае метки классов принимают значения 1 и -1. В случае $K \ge 2$ классов они нумеруются от 0 до K-1.

Требуется также реализовать функцию визуализации, соответствующую требованиям пункта 6 исследовательской части задания:

visualize(X, y, w, A=None)

Описание параметров:

- X переменная типа numpy.array, матрица размера $N \times D$, признаковые описания объектов из обучающей выборки,
- \bullet у переменная типа numpy.array, матрица размера $N \times 1$, правильные ответы на обучающей выборке,
- w переменная типа numpy.array, матрица размера $D \times K$ или $D \times 1$ в случае двух классов, вектор весов SVM,
- А переменная типа numpy.array, матрица размера $N \times K$ или $N \times 1$ в случае двух классов, значения двойственных переменных. Если этот параметр не задан, функция не должна отображать опорные вектора.