A Note on the Generalized Sum-Capture Problem for Rings

Ashwin Jha

Ruhr-Universität Bochum Bochum, Germany

letterstoashwin@gmail.com

July 12, 2024

Abstract

The sum-capture problem for abelian groups is generalized over any arbitrary finite ring, for an arbitrary number of sets, and in presence of an arbitrary multiplicative mask.

1 The problem

Let R be a finite ring and fix positive integers p,q < |R| = N. Let $A = (A_i)_{1 \le i \le q}$ be a random sequence (or equivalently, an ordered multiset) over R. For any $k \ge 2$, any $\alpha \in R^k$ with at least 2 non-zero coordinates, and any $B_1, B_2, \ldots, B_k \subseteq R$, we define

$$\mu_{\alpha}(A, B_1, B_2, \dots, B_k) = \left| \left\{ (a, b_1, b_2, \dots, b_k) \in A \times B_1 \times B_2 \times \dots \times B_k : a = \sum_{i=1}^k \alpha_i \cdot b_i \right\} \right|.$$

For any p, one can define

$$\mu_{\alpha}(A;p) = \max_{\substack{B_1, \dots, B_k \subseteq R \\ |B_1| = |B_2| = \dots = |B_k| = p}} \mu(A, B_1, B_2, \dots, B_k).$$

Note that, $\mu_{\alpha}(A, B_1, B_2, \dots, B_k)$ is equal to $\frac{|A| \times |B_{i_1}| \times \dots \times |B_{i_j}|}{|R|}$ in expectation when the sets $A, B_{i_1}, \dots, B_{i_k}$ are chosen at random, where $\{i_1, \dots, i_j\}$ denotes the set of non-zero coordinate indices in α . Let

$$\#\alpha := |\{i \in \{1, 2, \dots, k\} : \alpha_i \neq 0\}|$$

Then, the main problem we consider is to upper bound the deviation of $\mu_{\alpha}(A;p)$ from $qp^{\#\alpha}/N$ that holds with high probability over the random choice of A. For k=2, Babai-Hayes [Bab02, Hay03] (and later Steinberger [Ste13]) proved the following result:

Theorem 1 ([Bab02, Ste13]). Let R be a finite ring, and let $0 \le q \le N/2$. Fix $\alpha = (1,1)$. For any without replacement sample $A = (A_i)_{1 \le i \le q}$ over R, we have

$$\Pr\left(\left|\mu_{\alpha}(A;p) - \frac{qp^2}{N}\right| \ge 4p\sqrt{\ln(N)q}\right) \le \frac{2}{N}.$$

In this short note, for $k \ge 2$, we prove the following two results:

Theorem 2. Let R be a finite ring, and let $0 \le q \le N/2$. Fix some $\alpha \in \mathbb{R}^k$ such that $\#\alpha \ge 2$. For any positive real ϵ and any with replacement sample $A = (A_i)_{1 \le i \le q}$ over R, we have

$$\Pr\left(\left|\mu_{\alpha}(A;p) - \frac{qp^{\#\alpha}}{N}\right| \ge p^{\#\alpha - 1}\sqrt{2(1+\epsilon)\ln(N)q}\right) \le \frac{4}{N^{\epsilon}}.$$

Theorem 3. Let R be a finite ring, and let $0 \le q \le N/2$. Fix some $\alpha \in R^k$ such that $\#\alpha \ge 2$. For any positive real ϵ and any without replacement sample $A = (A_i)_{1 \le i \le q}$ over R, we have

$$\Pr\left(\left|\mu_{\alpha}(A;p) - \frac{qp^{\#\alpha}}{N}\right| \ge 2p^{\#\alpha - 1}\sqrt{2(1+\epsilon)\ln(N)q}\right) \le \frac{2e^2}{N^{\epsilon}}.$$

Let $\{i_1,i_2,\ldots,i_{\#\alpha}\}\subseteq\{1,2,\ldots,k\}$ be the set of non-zero coordinate indices of α . Then, one can equivalently study $\mu_{\alpha'}(A,B'_{i_1},B'_{i_2},\ldots,B'_{i_{\#\alpha}})$ where $\alpha'=(1,1,\ldots,1)\in R^{\#\alpha}$ and $B'_{i_l}=\alpha_{i_l}\cdot B_{i_l}$. Without loss of generality, we assume this form and drop α' from the subscript.

Then, it is also clear that the (non-)commutativity of R does not play any role vis a vis the sum-capture problem. Indeed one can define $\mu_{\alpha}(A;p)$ equivalently using right multiplication.

As a side-effect of the aforementioned simplification we completely ignore the multiplicative aspect of R, and simply view it as an additive abelian group of order N. Henceforth, we assume $\#\alpha = k$. The case of $2 \le \#\alpha \le k-1$ can be proved analogously.

2 A proof

A proof of both the theorems largely extends the Babai-Steinberger approach, delving into basic Fourier analysis, with a brief foray into probabilistic tail inequalities towards the end. We reproduce Steinberger's excellent introductions [Bab02, Ste13] to Fourier analysis (almost verbatim) for the uninitiated, while simultaneously working towards a proof of Theorems 2-3 — the main technical results of this note.

A character of R is a homomorphism $\chi: R \to \mathbb{C}^{\times}$, where \mathbb{C}^{\times} denotes the multiplicative group of complex numbers. Thus,

$$\chi(x)^N = \chi(Nx) = \chi(0) = 1,$$

which means that the elements in the image of χ are the N^{th} roots of unity, and thus $\chi(-x) = \chi(x)^{-1} = \overline{\chi(x)}$. The principal character χ_0 of R is defined as the constant function that maps all $x \in R$ to 1. Thus, $\sum_{x \in R} \chi_0(x) = N$, and for any non-principal character χ and any non-zero $y \in R$,

$$\chi(y) \sum_{x \in R} \chi(x) = \sum_{x \in R} \chi(x+y) = \sum_{x \in R} \chi(x),$$

whence $\sum_{x \in R} \chi(x) = 0$. Then, for distinct characters χ and ξ

$$\sum_{x \in R} \xi(x) \overline{\chi(x)} = 0,$$

follows from the fact that $\xi \overline{\chi}$ is a non-principal character of R.

Let \hat{R} denote the set of characters of R. Then, it is easy to see that \hat{R} forms an abelian group under pointwise multiplication. \hat{R} is called the *dual* group of R, and $R \cong \hat{R}$.

Every function $f: R \to \mathbb{C}$ can be seen as an element of $\mathbb{C}^{|R|}$. This is an N-dimensional space over \mathbb{C} . For every $f: R \to \mathbb{C}$, define

$$E_x[f(x)] = \frac{1}{N} \sum_{x \in R} f(x),$$

which gives a natural definition of inner product over $\mathbb{C}^{|R|}$, namely $\langle f,g\rangle=E[f\overline{g}]$. Then, for any $\chi,\xi\in\hat{R}$, we have

$$E[\xi \overline{\chi}] = 0, \qquad \xi \neq \chi$$

More precisely,

$$E[\xi \overline{\chi}] = \begin{cases} 1 & \text{if } \xi = \chi, \\ 0 & \text{if } \xi \neq \chi. \end{cases}$$

or equivalently,

$$E[\chi] = \begin{cases} 1 & \text{if } \chi = \chi_0, \\ 0 & \text{if } \chi \neq \chi_0. \end{cases}$$

Since \hat{R} is a set of N orthogonal functions in $\mathbb{C}^{|R|}$, they form a basis of $\mathbb{C}^{|R|}$, i.e., for every function $f: R \to \mathbb{C}$ there exist complex numbers α_{χ} for every $\chi \in \hat{R}$ such that

$$f = \sum_{\chi \in \hat{R}} \alpha_{\chi} \chi.$$

The coefficients α_{χ} are called the *fourier coefficients* of f and are typically written $\hat{f}(\chi) := \alpha_{\chi}$. In particular, $\hat{f}(\chi_0)$ is called the *principal* fourier coefficient and all other coefficients are referred as non-principal. Thus,

$$f = \sum_{\chi \in \hat{R}} \hat{f}(\chi) \chi$$

for any $f: R \to \mathbb{C}$. One has

$$\hat{f}(\chi) = E[f\overline{\chi}].$$

More precisely, this can be verified from the fact that

$$E[f\overline{\chi}] = E\left[\left(\sum_{\xi \in \hat{R}} \alpha_{\xi} \xi\right) \overline{\chi}\right] = E[\alpha_{\chi} \chi \overline{\chi}] = \alpha_{\chi}$$

using orthogonality. For any $f, g: R \to \mathbb{C}$, we have

$$E[fg] = E\left[\left(\sum_{\chi \in \hat{R}} \hat{f}(\chi)\chi\right)\left(\sum_{\xi \in \hat{R}} \hat{g}(\xi)\xi\right)\right] = \sum_{\chi,\xi \in \hat{R}} \hat{f}(\chi)\hat{g}(\xi)E[\chi\xi] = \sum_{\chi \in \hat{R}} \hat{f}(\chi)\hat{g}(\overline{\chi}).$$

and similarly $E[f\overline{g}] = \sum_{\chi \in \hat{R}} \hat{f}(\chi)\overline{\hat{g}(\chi)}$. In particular $E[|f|^2] = \sum_{\chi \in \hat{R}} |\hat{f}(\chi)|^2$ and if $f: R \to \{-1, 1\}$ then

$$\sum_{\chi \in \hat{R}} \hat{f}(\chi)^2 = 1$$

since $E[f^2]=1$. Moreover if $f:R\to\{0,1\}$ then $(-1)^f:R\to\{-1,1\}$ and $(-1)^f=1-2f$ so

$$1 = \sum_{\chi \in \hat{R}} \widehat{(-1)^f}(\chi)^2$$

$$= \sum_{\chi \in \hat{R}} \widehat{1 - 2f}(\chi)^2$$

$$= \sum_{\chi \in \hat{R}} \widehat{1}(\chi) - 2\widehat{f}(\chi)^2$$

$$= \sum_{\chi \in \hat{R}} \widehat{1}(\chi) - 2\widehat{f}(\chi)^2$$

$$= \sum_{\chi \in \hat{R}} \widehat{1}(\chi)^2 - 4\widehat{1}(\chi)\widehat{f}(\chi) + 4\widehat{f}(\chi)^2$$

$$= 1 - 4\widehat{f}(\chi_0) + 4\sum_{\chi \in \hat{R}} \widehat{f}(\chi)^2$$

from which we deduce:

$$\hat{f}(\chi_0) = \sum_{\chi \in \hat{R}} \hat{f}(\chi)^2, \qquad \text{(whenever } f: R \to \{0, 1\}\text{)}. \tag{1}$$

Define convolution of $f_1, f_2: R \to \mathbb{C}$ as

$$(f_1*f_2)(x) = \sum_{y \in R} f_1(y)g(x-y) = NE_y[f(y)g(x-y)].$$

Using the fact that $\chi(x-y) = \chi(x)\overline{\chi(y)}$ for all $\chi \in \hat{R}$, x, y we find

$$\widehat{f_1 * f_2}(\chi) = E_x \left[(f_1 * f_2)(x) \overline{\chi(x)} \right]$$

$$= E_x \left[\sum_y f_1(y) f_2(x - y) \overline{\chi(x)} \right]$$

$$= \frac{1}{N} \sum_y f_1(y) \sum_x f_2(x - y) \overline{\chi(x)}$$

$$= \frac{1}{N} \sum_y f_1(y) \sum_x f_2(x) \overline{\chi(x + y)}$$

$$= N \left(\frac{1}{N} \sum_y f_1(y) \overline{\chi(y)} \right) \left(\frac{1}{N} \sum_x f_2(x) \overline{\chi(x)} \right)$$

$$= N \hat{f}_1(\chi) \hat{f}_2(\chi). \tag{2}$$

In fact, by virtue of associativity one may define a convolution $f_{(1*k)} := f_1 * f_2 * \cdots * f_k$ of any f_1, f_2, \dots, f_k and for any $k \ge 2$, in which case (2) has a natural generalization, namely

$$\hat{f}_{(1*k)}(\chi) = N^{k-1}\hat{f}_1(\chi)\hat{f}_2(\chi)...\hat{f}_k(\chi). \tag{3}$$

For any (multi)set Z with elements from R, define $1_Z: R \to \mathbb{C}$ by the mapping

$$x \longmapsto |\{y \in Z : y = x\}|,$$

i.e., $1_Z(x)$ denotes the multiplicity of x in Z. Then, using (3), for any sets $B_1, B_2, \dots, B_k \subseteq R$, we have

$$\begin{split} \mu(A,B_1,B_2,\dots,B_k) &= \sum_{x \in R} 1_A(x) 1_{B_{(1*k)}}(x) \\ &= N E \big[1_A 1_{B_{(1*k)}} \big] \\ &= N \sum_{\chi \in \hat{R}} \hat{1}_A(\chi) \hat{1}_{B_{(1*k)}}(\overline{\chi}) \\ &= N^k \sum_{\chi \in \hat{R}} \hat{1}_A(\chi) \hat{1}_{B_1}(\overline{\chi}) \hat{1}_{B_2}(\overline{\chi}) \dots \hat{1}_{B_k}(\overline{\chi}) \\ &= N^k \left(\frac{|A||B_1||B_2|\dots|B_k|}{N^{k+1}} + \sum_{\chi \neq \chi_0} \hat{1}_A(\chi) \hat{1}_{B_1}(\overline{\chi}) \hat{1}_{B_2}(\overline{\chi}) \dots \hat{1}_{B_k}(\overline{\chi}) \right), \end{split}$$

and, by rearranging terms

$$\mu(A, B_1, B_2, \dots, B_k) - \frac{|A||B_1||B_2| \dots |B_k|}{N} = N^k \sum_{\chi \neq \chi_0} \hat{1}_A(\chi) \hat{1}_{B_1}(\overline{\chi}) \hat{1}_{B_2}(\overline{\chi}) \dots \hat{1}_{B_k}(\overline{\chi}).$$

It follows that

$$\left| \mu(A, B_1, B_2, \dots, B_k) - \frac{|A||B_1||B_2| \dots |B_k|}{N} \right| \leq N^k \sum_{\chi \neq \chi_0} |\hat{1}_A(\chi)||\hat{1}_{B_1}(\overline{\chi})||\hat{1}_{B_2}(\overline{\chi})| \dots |\hat{1}_{B_k}(\overline{\chi})|.$$

Define $|\hat{1}_A| := \max_{\chi \neq \chi_0} |\hat{1}_A(\chi)|$. Then, letting $B_{>2} = B_3 \times \cdots \times B_k$, we have

$$\left| \mu(A, B_1, B_2, \dots, B_k) - \frac{|A||B_1||B_2| \dots |B_k|}{N} \right| \leq N^k \cdot |\hat{1}_A| \sum_{\chi \neq \chi_0} |\hat{1}_{B_1}(\chi)||\hat{1}_{B_2}(\chi)| \dots |\hat{1}_{B_k}(\chi)| \\ \leq N^2 \cdot |\hat{1}_A| \cdot |B_{>2}| \cdot \sum_{\chi \in \hat{R}} |\hat{1}_{B_1}(\chi)||\hat{1}_{B_2}(\chi)|,$$

where the second inequality follows from the fact that $|\hat{1}_X(\chi)| \le |\hat{1}_X(\chi_0)| = |X|/N$ for any $X \subseteq R$ and any $\chi \ne \chi_0$. By Cauchy-Schwarz inequality and (1), we have

$$\left| \mu(A, B_{1}, B_{2}, \dots, B_{k}) - \frac{|A||B_{1}||B_{2}| \dots |B_{k}|}{N} \right| \leq N^{2} \cdot |\hat{1}_{A}| \cdot |B_{>2}| \cdot \sqrt{\sum_{\chi \in \hat{R}} \hat{1}_{B_{1}}(\chi)^{2}} \sqrt{\sum_{\chi \in \hat{R}} \hat{1}_{B_{2}}(\chi)^{2}}$$

$$= N^{2} \cdot |\hat{1}_{A}| \cdot |B_{>2}| \cdot \sqrt{\hat{1}_{B_{1}}(\chi_{0})} \sqrt{\hat{1}_{B_{2}}(\chi_{0})}$$

$$\leq N \cdot |\hat{1}_{A}| \cdot |B_{>2}| \cdot \sqrt{|B_{1}||B_{2}|}$$

$$(4)$$

Then, for all sets $B_1, B_2, \dots, B_k \subseteq R$, $|B_1| = |B_2| = \dots = |B_k| = p$, we have

$$\left| \mu(A, B_1, B_2, \dots, B_k) - \frac{|A||B_1||B_2| \dots |B_k|}{N} \right| \le p^{k-1} \cdot N \cdot |\hat{1}_A|.$$
 (5)

All that remains is to show that $N \cdot |\hat{1}_A| \in O(\ln(N)q)$ with overwhelmingly high probability. At this point the proofs for Theorem 2 and 3 diverge depending upon the tail inequality in play.

2.1 Proof of Theorem 2

This case adheres to the well-known Chernoff bound, as also observed previously in [Bab02, Ste13, CS18]. In particular, for any $\chi \neq \chi_0$ and an arbitrary ordering (A_1, \dots, A_q) of A, we have

$$egin{aligned} N \cdot |\hat{1}_A(\chi)| &= \left| \sum_x 1_A(x) \chi(x)
ight| \ &= \left| \sum_x \sum_{i=1}^q 1_{\{A_i\}}(x) \chi(x)
ight| \ &= \left| \sum_{i=1}^q \chi(A_i)
ight|. \end{aligned}$$

Writing $\chi(A_i) = \phi(A_i) + \iota \psi(A_i)$ and splitting the corresponding sums, we have

$$egin{aligned} N \cdot |\hat{1}_A(\chi)| &= \left| \sum_{i=1}^q \chi(A_i)
ight| \ &= \left| \sum_{i=1}^q \phi(A_i) + \iota \sum_{i=1}^q \psi(A_i)
ight|, \end{aligned}$$

where $\phi(A_i), \psi(A_i)$ are real-valued random variables with $|\phi(A_i)|, |\psi(A_i)| \le 1$ and $E_{A_i}[\phi(A_i)] = E_{A_i}[\psi(A_i)] = 0$. Furthermore, $\phi(A_i)$ are all independent, and similarly $\psi(A_i)$ are all independent. Then, for any $a \ge 0$, we have

$$\Pr\left(N \cdot |\hat{1}_A(\chi)| \ge a\right) \le \Pr\left(\left|\sum_{i=1}^q \phi(A_i)\right| \ge a\right) + \Pr\left(\left|\sum_{i=1}^q \psi(A_i)\right| \ge a\right)$$

$$\le 4e^{-a^2/2q},$$

where the second inequality is a consequence of Chernoff bound. Finally, union bound gives

$$\Pr(N \cdot |\hat{1}_A| \ge a) \le \sum_{\chi \ne \chi_0} \Pr(N \cdot |\hat{1}_A(\chi)| \ge a) \le 4(N-1)e^{-a^2/2q}. \tag{6}$$

By setting $a = \sqrt{2(1+\epsilon)\ln(N)q}$ for $\epsilon > 0$

$$\left| \mu(A, B_1, B_2, \dots, B_k) - \frac{qp^k}{N} \right| \le p^{k-1} \sqrt{2(1+\epsilon)\ln(N)q},$$
 (7)

for all sets $B_1, B_2, ..., B_k \subseteq R$, $|B_1| = \cdots = |B_k| = p$ with at least $1 - 4/N^{\epsilon}$ probability.

2.2 Proof of Theorem 3

Hayes [Hay03] proved the following result.

Theorem 4 (Hayes, [Hay03] Lemma 6.3). Let $\varepsilon > 0$. Let R be a finite abelian group of order N, and let χ be a non-principal character of R. Let $q \le N$ and $q' = \min\{q, N-q\}$. For any $a \ge 0$, any without replacement sample $A = (A_i)_{1 \le i \le q}$ we have

$$\Pr\left(N \cdot |\hat{1}_A(\chi)| \ge a\sqrt{q'}\right) \le 2e^2e^{-a^2/8}.$$

Then, the result follows by using $q \le N/2$ and choosing $a = 2\sqrt{2(1+\epsilon)\ln(N)}$.

References

- [Bab02] László Babai. The fourier transform and equations over finite abelian groups: An introduction to the method of trigonometric sums. Online Lecture Notes (Version 1.3), 2002. http://peo-ple.cs.uchicago.edu/laci/reu02/fourier.pdf (last accessed: 7th March, 2024).
- [CS18] Benoît Cogliati and Yannick Seurin. Analysis of the single-permutation encrypted davies-meyer construction. Des. Codes Cryptogr., 86(12):2703–2723, 2018.
- [Hay03] Thomas P. Hayes. A large-deviation inequality for vector-valued martingales. Online, 2003. https://www.cs.unm.edu/ hayes/papers/VectorAzuma/VectorAzuma20030207.pdf (last accessed: 7th March, 2024).
- [Ste13] John P. Steinberger. Counting solutions to additive equations in random sets. CoRR, abs/1309.5582, 2013. http://arxiv.org/abs/1309.5582 (last accessed: 7th March, 2024).