Claims

[c1] An optimum UMTS Modem for multimedia Data, Voice, VoIP in wireless
Internet applications comprising of:

an UMTS modem transmitter;

an UMTS modem received;

an N-point complex FFT processor and an N-point complex iFFT processor for implementing the multiple sub-channels with Orthogonal Frequency Division Multiplexing method;

a Turbo Codes baseband processor for optimum performance in decoding of noisy receive data, and encoding transmit data;

an 8-PSK Mapper for mapping a 3-bit symbol into a point on the 8-PSK constellations with the I and Q component values;

an 8-PSK De-mapper for donverting the received set (I,Q) values from the complex FFT processor into soft-decision values for the Turbo Code baseband processor:

an M-bit serial-to-parallel (S/P) converter for segmenting the input bitstream into an M number of sub bit-streams;

an M-bit parallel-to-serial (P/S) converter for shifting the decoded data to the output;

a Channel Selector and a Channel De-selector for assigning bit-streams into sub-channels, and also controlling the channel hopping function;

a GI adder and a GI remover for adding and removing guard intervals from the I and Q sequences of samples;

a Symbol wave shaper;

an IQ Modulator for modulating the I and Q sequences of samples and adding them into a transmit signal;

an IQ Demodulator for demodulating the receive signal and producing the I and Q sequences of N samples; and an AFC Clock Recovery circuitry for clock synchronization.

The UMTS modem system of claim c1, wherein the Turbo Codes baseband processor uses SISO 8-state Log-MAP decoder for high-speed and optimum

[c2]

	decoding a plurality of sequences of the receive samples.
[c3]	The UMTS modem system of claim c1, wherein the 8-PSK De-mapper
	produces soft-decision values output.
[c4]	The UMTS modem system of claim c1, wherein the complex FFT/iFFT
	processors sub-divide the UMTS broadband channel into multiple sub-
	channels by using the Orthogonal Frequency Division Multiplexing method.
[c5]	The UMTS modem system of claim c1, wherein the M-bit serial-to-parallel
	(S/P) converter sub-divides the high-speed R-Mbps input to generate the
	multiple slow–speed S–Mbps M sub bit–streams; where S–Mbps is equal to
	R-Mbps divide by N.
[c6]	The UMTS modem system of claim c1, further provides a method to divide
	the UMTS broadband into multiple sub-channels and the uses of an
	Orthogonal Frequency Division Multiplexing method implemented by N-
	point complex FFT/iFFT processors where multiple adjacent channels
	transmit their carriers' frequency which are orthogonal to each other.
[c7]	The UMTS modem system of claim c), further provides a method to divide
	high-speed bit-stream into multiple slow-speed sub bit-streams for
	transmitting over the sub-channels.
[c8]	The UMTS modem system of claim c, further provides a method to control
	channels hopping by re-assign bitstream into another sub-channel.
[c9]	
	A method for UMTS modern transmitting a plurality of high-speed digital
	information generated from a MAC layer into wireless IP networks
	comprising the steps of:
	(1) sub-divide the high-speed R-Mbps input serial data by shifting it into the
	M-bit serial-to-parallel (S/P) converter to generate the multiple slow-speed
	S–Mbps M sub bit–streams;
	. 1

(2) encode each bit of each hit-streams independently with a Turbo Codes

encoder, with coding rate $1/\frac{3}{4}$ and constraint length K=4, to generate a 3-bit

symbol (one data bit and two parity bits);

(3) map the 3-bit symbol into an 8-PSK constellations points to select the values of its I and Q components;

at this point, all the sub bit-streams are done the same as the above step (2), (3);

- (4) select a point in the N-point complex iFFT and map the I component into its real part and the Q component into its imaginary par accordingly;
- (5) perform the invert complex N-point Fast Fourier Transform to produces the two I and Q sequences of N samples corresponding to the real and imaginary of the complex iFFT products;
- (6) add the guard interval to the I and Q sequences of N samples;
- (7) modify the I and Q sequences of N samples with and FIR filter Symbol wave shaper;
- (8) modulate the I sequence with a Sine carrier, and the Q sequence with a Cosine carrier:
- (9) sum the two modulated I and Q with an adder to produce the transmit signal.

A method for UMTS modem receiving a plurality of high-speed digital information received from the wireless IP networks comprising the steps of:

- (1) demodulate the receive signal with a local carrier to produce the I and Q sequences of N samples;
- (2) remove the guard interval from the I and Q sequences of N samples;
- (3) perform the complex N-point Fast Fourier Transform on the I and Q sequences of N samples to convert them into N complex points data;
- (4) de-selector each of N complex point data for each set of (I,Q) values correspond to each of the M bit-streams;
- (5) de-map each of the M complex point (I,Q) based on an 8-PSK constellations to produce soft-decision values;
- (6) decode the soft-decision value with the Turbo Codes Decoder baseband processor, where data is iteratively decoded until a final decided hard-decoded bit is produced for the output correspond to each bit-stream;

[c10]

at this point, all bit-sqreams are done with steps (5) and (6);

(7) latch all M decoded bits into the parallel-to-serial converter and shift out to the output.