

Packet Tracer - 识别 MAC 和 IP 地址

拓扑

目标

第1部分: 收集 PDU 信息

第2部分:思考题

背景

本练习已优化以方便查看 PDU。设备已经配置。您将在模拟模式中收集 PDU 信息,并回答一系列有关数据的问题。

第1部分: 收集 PDU 信息

注意: 在继续第1部分之前,请先查看第2部分的思考题。它能让您了解需要收集的信息类型。

第 1 步: 当数据包从 172.16.31.2 传输到 10.10.10.3 时, 收集 PDU 信息。

- a. 单击 172.16.31.2, 打开命令提示符。
- b. 输入 ping 10.10.10.3 命令。
- c. 切换到模拟模式并重复 ping 10.10.10.3 命令。PDU 显示在 172.16.31.2 旁边。
- d. 单击 PDU 并注意 Outbound PDU (传出 PDU 层)选项卡中的以下信息:
 - 目的 MAC 地址: 00D0:BA8E:741A
 - 源 MAC 地址: 000C:85CC:1DA7
 - 源 IP 地址: 172.16.31.2
 - 目的 IP 地址: 10.10.10.3
 - 设备处: 计算机

e. 单击 **Capture/Forward**(捕获/转发),将 PDU 移动到下一台设备。收集第 1d 步中收集的相同信息。重复此过程,直到 PDU 到达其目的地。使用下表所示的格式记录您收集到电子表格的 PDU 信息:

电子表格格式示例

测试	设备处	目的 MAC	Src MAC	Src IPv4	Dest IPv4
从 172.16.31.2	172.16.31.2	00D0:BA8E:741A	000C:85CC:1DA7	172.16.31.2	10.10.10.3
对 10.10.10.3 执行 ping 操作	Hub				
	交换机 1	00D0:BA8E:741A	000C:85CC:1DA7		
	路由器	0060:4706:572B	00D0:588C:2401	172.16.31.2	10.10.10.3
	交换机 0	0060:4706:572B	00D0:588C:2401		
	接入点				
	10.10.10.3	0060:4706:572B	00D0:588C:2401	172.16.31.2	10.10.10.3

第2步: 从其他 ping 操作收集其他 PDU 信息。

重复第 1 步中的过程并收集以下测试的信息:

- 从 10.10.10.3 对 10.10.10.2 执行 ping 操作。
- 从 172.16.31.3 对 172.16.31.2 执行 ping 操作。
- 从 172.16.31.5 对 172.16.31.4 执行 ping 操作。
- 从 10.10.10.2 对 172.16.31.4 执行 ping 操作。
- 从 10.10.10.2 对 172.16.31.3 执行 ping 操作。

第2部分: 思考题

回答	答以下有关捕获数据的问题:
1.	是否存在用于连接设备的不同类型的线缆?
2.	这些线缆是否更改了 PDU 的处理方式?
3.	集线器 是否丢失了任何分配给它的信息?
4.	集线器会如何处理 MAC 地址和 IP 地址?
5.	无线 接入点 是否对分配给它的信息进行了处理?
6.	在无线传输过程中,是否丢失了任何 MAC 或 IP 地址?
7.	什么是 集线器 和 接入点 使用的最高 OSI 层?
8.	集线器 或 接入点 是否曾复制用红色"X"拒绝的 PDU?
9.	在检查 PDU Details(PDU 详细信息)选项卡时,哪个 MAC 地址最先出现,源地址还是目的地址?

10.	MAC 地址为什么按此顺序显示?
11.	在模拟情况下,是否存在一种 MAC 编址模式?
12.	交换机是否曾复制用红色"X"拒绝的 PDU?
13.	每次在 10 网络和 172 网络之间发送 PDU 时,存在 MAC 地址突然更改的点。这发生在何处?
14.	哪台设备使用以 00D0 开头的 MAC 地址?
15.	其他 MAC 地址属于哪些设备?
16.	发送和接收的 IPv4 地址是否会在任何 PDU 中进行交换?
17.	如果您按照 ping 的回复进行操作(有时称为 <i>pong</i>),则发送和接收的 IPv4 地址是否会进行交换?
18.	在此模拟情况下, IPv4 编址模式是什么?
19.	不同的 IP 网络为什么需要分配路由器的不同端口?
20.	如果此模拟配置为 IPv6 而不是 IPv4,不同之处是什么?

推荐评分规则

有20个问题,每个5分,总共可能得100分。