NE 204 Lab 0 - Energy Calibration with Reproducible Workflows

Darrell Stepter

September 17, 2018

What kind of signal is the MCA digitizing?

Introduction

The purpose of Lab0 is to practice generating lab reports using the reproducible work flow required for NE204: Advanced Concepts in Radiation Detection. Energy calibration of a High Purity Germanium (HPGe) detector, a ubiquitous task in radiation detection laboratories, was used for practicing the work flow. Energy calibration is a necessary step for every radiation detector. This is especially true for HPGe Detectors that are able to achieve high-energy resolution beyond what other detectors, such as scintillators, are capable of. Precise calibration ensures the accuracy and the quality of the results. Without a proper calibrations, there is no way to tell how the channels/bins from a Multi-Channel Analyzer (MCA) correlate to energy. In Lab0 this energy calibration was done using a two-point linear calibration between two gamma-ray photopeaks of ¹³⁷Cs and ²⁴¹Am. Subsequently, the calibration model was "verified" by applying it to the gamma-ray spectrum from ¹³³Ba, which has five distinct photopeaks. This report details the process and results of a two-point linear calibration.

Methods

evaluated

The data for this lab was collected by collected by Dr. Ross Barnowski. Dr. Barnowski used a HPGe detector and a 13-bit resolution MCA, yielding 8192-bin spectra. It is assumed that each of these measurements were taken with each source at the same location and distance from the detector. The sources used to generate the spectrum are shown in Table 1.

1

This assumption is correct... can you think of why this consideration would impact the energy calibration process?

Delta implies a reference level... what are you using for your reference?

Good practice making a table in LaTeX, but doesn't contain much relevant info... for example, consider adding info about the energies of the most prominent gamma-rays emitted by each source.

ources for Lab0

The energy calibration was performed using a two-point linear fit be to any data... describe tween ¹³⁷Cs and ²⁴¹Am. To perform the calibration, a simple python peak the model you are using detection script searched the raw spectrum data of ¹³⁷Cs and ²⁴¹Am looking for this analysis. for the channel containing largest number of counts (photogeak) within the spectrum. The program iterated over the spectrum by channel trying to identify a large delta (40000) in the counts. Because ¹³⁷Cs and ²⁴¹Am have single gamma ray photopeaks, a large delta ensures no other noise in the signal could be misconstrued as photopeaks.

Not specific enough... polyfit can fit any model

A more concrete discussion of the advantages and drawbacks of this approach would be good.

Once the ¹³⁷Cs and ²⁴¹Am peaks were discovered, the python function polyfit was used to plot a linear line. The inputs to polyfit were the channel of the peak and the actual gamma-ray photopeak energy as listed in the LBNL Nuclear Data Search [4]. The polyfit output was a slope and intercept that can be used to translate channel to energy. Next, the peak detection script was used to find the multiple photopeaks in the ¹³³Ba sprectrum. Lastly, the polyfit "calibration" was applied to the ¹³³Ba photopeaks and spectrum to calculate approximation error and display the full ¹³³Ba spectrum.

Results

You keep referencing the "polyfit", but this doesn't convey the relevant information. Items of interest include what model you are using to fit peaks to determine their centroid, and the model you are using for the energy calibration itself. Your text implies that the model is linear, but this should be made explicit rather than focusing so much on the particular fitting tool.

The peak detection script found the ²⁴¹Am photopeak in channel 208 and the ¹³⁷Cs photopeak in channel 2354. The documented energies for these photopeaks are 59.541 keV and 661.657 keV, respectively. The identified photopeaks of ²⁴¹Am and ¹³⁷Cs are depicted in Figure 1.

> References to nuclear data wouldn't hurt.

The polyfit function found the linear relationship between channel and

 $E_{calib} = 0.2805759552656106 \cdot C + 1.1812013047530752 \tag{1}$

where E_{calib} is energy in keV and C is channel number. Figure 2 depicts this linear calibration.

energy to be

Should point out the linear model you are using in the methods section

Why only integer values here? How does the quantization error effect the energy determination?

Figure 2: Linear Fit of Channel to Energy

The peak detection script found the ¹³³Ba photopeaks in channels 13, 105, 284, 981, 1075, 1265, and 1364. However, the first two channels could be excluded from the data set because they are indicative of low energy noise and the 31 keV X-ray emitted by ¹³³Ba. Figure 3 depicts the photopeaks found in ¹³³Ba.

Are they? This is the type of claim that could use a figure (e.g. a zoomed-in shot of the Ba-133 spectrum in the low-energy region) to support it. Is your energy calibration not valid for X-ray peaks? why or why not?

The photopeaks for 133 Ba were calculated using Equation 1. Figure 4 depict the calibrated 133 Ba spectrum and Table 2 shows a comparison of the calibrated and known peak energies for 133 Ba.

photopeak energies

Careful with this line... what about the 79 keV line?

Figure 4: ¹³³Ba Photopeaks

Table 2: Comparison of Photopeaks for ¹³³Ba

80.9979 80.86477260 276.3989 276.42621342 302.8508 302.80035322 356.0129 356.10978472 383.8485 383.88680429	Expected (keV)	Calibrated (keV)
302.8508 302.80035322 356.0129 356.10978472	80.9979	80.86477260
356.0129 356.10978472	276.3989	276.42621342
	302.8508	302.80035322
383.8485 383.88680429	356.0129	
	383.8485	383.88680429

The approximation error between calibrated and known energy values were quantified by Equations 2, 3, and 4.

Good, consider plotting these residuals

$$\eta = \frac{|E_{calib} - E_{known}|}{E_{known}} \tag{3}$$

Too many sig figs implies far more precision for your calibration and measured values than you actually have!

These columns show the same thing... redundant! Again, be careful with sig figs!
$$\delta = \frac{|E_{calib} - E_{known}|}{E_{known}} \cdot 100 \tag{4}$$

Table 3: Approximation Error in Calibrated ¹³³Ba Photopeaks

γ Energy	Absolute Error ϵ	Relative Error η	Percent Error δ (%)
80.9979	0.1331273998135174	0.0016435907574581241	0.1643590757458124
276.3989	0.027313420317000237	$9.881884593969163\mathrm{e}\text{-}05$	0.009881884593969163
302.8508	0.05044678471557518	0.00016657306077968155	0.016657306077968153
356.0129	0.09688471575043422	0.00027213821676246627	0.027213821676246627
383.8485	0.038304287045889396	$9.979011783526416\mathrm{e}\text{-}05$	0.009979011783526417

Discussion

linear model

A linear energy calibration model for a coaxial HPGe detector was successfully produced using reproducible workflows. The accuracy of the calibration was determined by applying the model to the 133 Ba dataset. While Knoll [2] suggests using a polynomial fit, the approximation error between the calibrated and expected energies was insignificant; indicative of a very reliable model. The highest error, a δ of 0.164359(%), occurred at the 80.9979 keV photopeak. This is likely due a large channel width creating an inability to discriminate between the 80.9979 keV and 79.6142 keV photopeaks in 133 Ba.

On the right track here... if you recognize this issue, why choose this peak for analysis?

References

- [1] S Chu, L Ekstrom, and R Firestone. Decay data search, Feb 1999.
- [2] Glenn F Knoll. Radiation Detection and Measurement. John Wiley & Sons, 2010.