/

Congratulations! You passed!

Next Item

1/1 point

1

As we have seen in the lecture videos, the dot product of vectors has a lot of applications. Here, you will complete some exercises involving the dot product.

What is the size of the vector $\begin{bmatrix} 1\\3\\4\\2 \end{bmatrix}$?

- 30
- $\sqrt{10}$
- **10**
- $\sqrt{30}$

Correct

The size of the vector is the square root of the sum of the squares of the components.

1 / 1 point

2.

What is the dot product of the vectors $\begin{bmatrix} -5 \\ 3 \\ 2 \\ 8 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 2 \\ -1 \\ 0 \end{bmatrix}$?

1

-1

Correct

The dot product of two vectors is the total of the component-wise products.

3.

Let
$$\mathbf{r}=egin{bmatrix} 3 \\ -4 \\ 0 \end{bmatrix}$$
 and let $\mathbf{s}=egin{bmatrix} 10 \\ 5 \\ -6 \end{bmatrix}$.

What is the scalar projection of \mathbf{s} onto \mathbf{r} ?

 $\frac{1}{2}$

-2

 $-\frac{1}{2}$

 $\mathbf{2}$

Correct

The scalar projection of of ${f s}$ onto ${f r}$ can be calculated with the formula ${r\cdot s\over |r|}$

What is the vector projection of \mathbf{s} onto \mathbf{r} ?

$$\begin{bmatrix} 30 \\ -20 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 6 \\ 4 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 6/5 \\ -8/5 \\ 0 \end{bmatrix}$$

Correct

The vector projection of ${\bf s}$ onto ${\bf r}$ can be calculated with the formula $\frac{r \cdot s}{r \cdot r} r$.

$$\begin{bmatrix} 6 \\ -8 \\ 0 \end{bmatrix}$$

5

Given Let
$$\mathbf{a} = \begin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix}$$
 and let $\mathbf{b} = \begin{bmatrix} 0 \\ 5 \\ 12 \end{bmatrix}$.

Which is larger, $|\mathbf{a}+\mathbf{b}|$ or $|\mathbf{a}|+|\mathbf{b}|$?

$$|\mathbf{a} + \mathbf{b}| \ge |\mathbf{a}| + |\mathbf{b}|$$

Correct

This is in general true for any \boldsymbol{a} or \boldsymbol{b} . This is called the "triangle inequality".

$$|\mathbf{a} + \mathbf{b}| = |\mathbf{a}| + |\mathbf{b}|$$

Dot product of vectors Practice Quiz, 5 questions

Practice Quiz 5 questions 5/5 points (100%)

