

Robotics – Planning and Motion

COMP52815

Dr Fatemeh Rekabi Bana

Email: fatemeh.Rekabi-bana@durham.ac.uk

Room: MCS 1005a

机器人一 规划与运动

COMP52815

Fatemeh Rekabi Bana 医师

电子邮件: fatemeh.Rekabi-bana@durham.ac.uk

房间: MCS 1005a

Learning Objectives

学习目标

What is ROS?

Robotic Operating System

Open Source Set of Libraries Let us Develop and Manage A Modular Framework

什么是 ROS?

可以用不同语言联合开发

Philosophy:

The development of a new robotic system relies on:

- Modularity: using ready modules (sensors, actuators, etc.) instead of making everything from scratch.
- **Distributed computation:** each module (software or hardware) may need an independent computational resource.
- **Robustness and Reliability:** it is necessary to ensure all the modules work together consistently regardless of uncertainties or disturbances.
- **Scalability:** adding new features, expanding the capability domain, and even making new products based on the current design led us to consider scalability in the development process.

哲学:

新机器人系统的开发依赖于:

- 模块化: 使用现成的模块(传感器、执行器等), 而不是从头开始制作所有内容。

一 分布式计算:每个模块(软件或硬件)可能需要独立的计算资源。

- 一 稳健性和可靠性:有必要确保所有模块始终如一地协同工作,而不受不确定性或干扰的 影响。
- 可扩展性:添加新功能、扩展功能领域,甚至基于当前设计制作新产品,这让我们在 开发过程中考虑了可扩展性。

Features:

特征:

Features:

Tools

特征:

工具

ROS Documents

ROS Wiki:

https://wiki.ros.org/Documentation

ROS Robots:

https://robots.ros.org/

ROS2 Documents:

https://docs.ros.org/en/foxy/index.html

ROS 文档

ROS 维基:

https://wiki.ros.org/Documentation

ROS 机器人:

https://robots.ros.org/

ROS2 文件:

https://docs.ros.org/en/foxy/index.html

ROS Main Concepts:

Node

- Single-purposed executable programs
- Independently worked and managed
- They are written using a ROS library

Message

 Data structure for communication between nodes

Topics

- A customised message dedicated to transferer data on the network
- Nodes can subscribe/publish all the Topics on the network

ROS 主要概念:

Node

- 单一用途的可执行程序
- 独立工作和管理
- 它们是使用 ROS 库编写的

消息

• 用于节点之间通信的数据结构

主题

- 专用于网络上传输者数据的自定义消息
- 节点可以订阅/发布网络上的所有 Topic

ROS Main Concepts:

Service

- Synchronous inter node transactions
- (blocking RPC): ask for something and wait for it

Action

 standardized interface for interfacing with non-interrupting tasks

ROS 主要概念:

服务

- 同步节点间交易
- (阻止 RPC): 请求某项内容并等待

行动

● 用于连接不间断任务的标准化接 □

ROS Main Concepts:

Parameter Server

- A shared dictionary that is accessible via network
- Best used for static data such as configuration parameters

Master

 Provides connection information to nodes so that they can transmit messages to each other

Packages

- Software in ROS is organized into packages
- A package contains one or more nodes, documentation, messages, services, ...

ROS 主要概念:

参数 • 可通过网络访问的共享词典 • 最适合用于静态数据,例如配置参数 服务器 • 向节点提供连接信息,以便它们可以相互传输 主人 消息 • ROS 中的软件被组织成软件包 包 一个包包含一个或多个节点,

文档、消息、服务......

ROS2 Ecosystem:

Visualisation Tools (RVIZ)

Simulation Tools (GAZEBO)

Available Cross-Platform libraries and community support

ROS2 生态系统:

可视化工具 (RVIZ)

模拟工具 (凉亭)

ROS Applications in robotics:

Algorithms:

autonomous navigation, manipulation, and swarm robotics.

Real-world use cases:

delivery robots, drones, and healthcare robots

Industrial applications:

self-driving cars, precision agriculture, and collaborative robots Advanced use cases in real-time systems (ROS2)

ROS 在机器人中的应用:

算法: 自治 导航 操作,以及 Swarm 机器人。

实际用例: 送货机器人 / 无人机,以及 医疗机器人

工业应用:自动驾驶汽车、精准农业和协作机器人

实时系统中的高级使用案例 (ROS2)

ROS2 and its advantages:

ROS2 及其优势:

ROS/ROS2 and Al Integration:

> Tools and frameworks for AI integration into robotic systems for tasks like perception, decision-making, and learning

ROS/ROS2 和 AI 集成:

➤ 用于将 AI 集成到机器人系统中的工具和框架,以完成感知、决策和学习等任务

Summary

- Introduction to ROS
- Main ROS concept
- ROS2 features and advantages over ROS

总结

- ROS 简介
- 主要 ROS 概念
- ROS2 相对于 ROS 的特点和优势

