연속형 자료 분석

정보통계학과 이태림교수

조건에 따른 검정방법

▮ 단일 모평균 비교

알츠아이머 환자의 14CO2 측정치

1009 1280 1180 1255 1547 2352 1956 1080 1776 1767 1680 2050 1452 2857 3100 1621

정상인의 기준 ¹⁴CO₂ 1500과 차이가 있는가?

$$n = 16$$
 $\bar{X} = 1747.6$

$$s = 604.7$$
 $\mu_0 = 1500$

● 한모평균 비교

알츠하이머 환자의 ¹⁴CO₂ 측정치

가설

$$H_o: \mu = 1500 \quad H_1: \mu > 1500$$

유의수준

$$\alpha$$
 = 0.05

검정통계량

$$t_0 = \frac{\overline{X} - \mu_0}{s/\sqrt{n}} = \frac{1747.6 - 1400}{604.7/\sqrt{16}} = \frac{347.6}{151.2} = 2.3$$

검정

t₀ = 2.3 > t(0.05, 15)= 1.753 이므로 H₀를 기각한다

흡연에 따른 폐 파괴 현상

가설

$$H_0: \mu_1 - \mu_2 = 0$$
 $H_1: \mu_1 - \mu_2 \neq 0$

유의수준

$$\alpha$$
 = 0.05

검정통계량

$$Z_{0} = \frac{\overline{X} - \overline{Y}}{\sqrt{\sigma_{1}^{2}/n + \sigma_{2}^{2}/n}} = \frac{12.9 - 9.9}{\sqrt{0.69/5 + 0.175/12}}$$
$$= 7.68$$

검정

한 모평균 비교

표 6.1 게의 체온 데이터

25 마리 게의 체온을 측정한 것이다. 과거 자료에서 게의 평균 체온은 24.3℃로 알려져 있다. 이 데이터에서도 게의 평균 체온이 24.3℃라고 해도 좋은지 알고 싶다. 이 경우 가설은 다음과 같이 설정한다.

25.8 24.6 26.1 22.9 25.1 27.3 24.0 24.5 23.9

24.3 24.6 23.3 25.5 28.1 24.8 23.5 26.3 25.4 2

23.9 27.0 24.8 22.9 25.4

H0: $\mu = 24.3$ H0: $\mu - 24.3 = 0$

⇔ H1: μ ≠24.3

H1: µ - 24.3≠0

한모평균비교

SAS 프로그램

출력 결과

DATA crab;

INPUT bodytemp @@;

hypotemp=bodytemp-24.3;

DATALINES;

25.8 24.6 26.1 22.9 25.1

27.3 24.0 24.5 23.9 26.2

The TTEST Procedure

Statistics

Lower CL Upper CL

Variable N Mean Mean Std Err

bodytemp 25 24.47 25.03 25.58 0.268

T-Tests

Variable DF t Value Pr > |t|bodytemp 24 2.71 0.0121 24.3

● 한모평균 비교

SAS 프로그램

한 모평균 비교

출력 결과

단일표본 t-검정 결과

R 프로그램 수행

표 2.4 담즙의 과포화비율 자료

	40	86	111	86	106	66	123	90	112	52	88	137
남자	88	80	65	79	87	56	110	106	110	78	80	47
	74	58	88	73	118	67	57					
	65	86	76	89	142	58	98	146	80	66	52	35
여자	55	127	77	91	128	75	82	69	84	116	73	87
	76	107	84	120	123							

예 2.7

담즙과포화비율자료를 대상으로 다음과 같은 단측검정을 행하고 싶다고 하자.

 H_0 : 담즙과포화비율의 모평균은 80보다 작거나 같다($\mu \le = 80$).

 H_1 : 담즙과포화비율의 모평균은 80보다 크다($\mu > 80$).

한 모평균 비교

```
2.5 추정과 가설검정
> # [예 2.3]
〉# 단측 t-검정
> t.test(담즙과포화비율, mu = 80, alternative = "greater")
       One Sample t-test
data: 담즙과포화비율
t = 1.9389, df = 59, p-value = 0.02865
alternative hypothesis: true mean is greater than 80
95 percent confidence interval:
 80.88621
          Inf
sample estimates:
mean of x
 86.41667
```


정규성검정: Shapiro-Wilk test

P75

- > # 정규확률플롯
- > qqnorm(남자_담즙과포화비율, ylab="남자_담즙과포화비율", main="")
- > qqline(남자_담즙과포화비율, lty=2)
- > # Shapiro-Wilk test
- > shapiro.test(남자_담즙과포화비율)

R Console

shapiro.test(남자_담즙과포화비율)

Shapiro-Wilk normality test data: 남자_담즙과포화비율

W = 0.97685, p-value = 0.7207

점규섬검점: Shapiro-Wilk test

- > # 정규확률플롯
- > qqnorm(여자_담즙과포화비율, ylab="여자_담즙과포화비율", main=" ")
- > qqline(여자_담즙과포화비율, lty=2)
- > # Shapiro-Wilk test
- > shapiro.test(여자_담즙과포화비율)

R Console

shapiro.test(여자_담즙과포화비율)

Shapiro-Wilk normality test data: 여자_담즙과포화비율 W = 0.95679, p-value = 0.2733

▋ 두 모평균 비교

양측검정

σ²을

↓ No

 $n \ge 30$

No

t 검정

폐기종 발병 이전의 흡연여부에 따른 폐 파괴지수 측정치가 같은가?

자료		흡	연자	비흡연자		
16.6	13.9	11.3	26.5	17.4	15.3	18.1 6.0 10.8 11.0 7.7
15.8	12.3	18.6	12.0	24.1	16.5	17.9 8.5 13.0 18.9
	21.8	16.3	23.4	18.8		

$$n_1 = 16$$
 $\overline{X}_1 = 1747.6$ $\overline{X}_2 = 1747.6$ $n_2 = 16$ $s_1 = 604.7$ $s_2 = 4.85$

P85

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + n_1 + n_2^2 - 1}{n_1 + n_2^2 - 1}} = 4.61$$

▋ 두 모평균 비교

양측검정

σ²을 아는가**?**

↓ No

No

t 검정

가설

$$H_0: \mu_1 - \mu_2 = 0$$
 $H_1: \mu_1 - \mu_2 \neq 0$

유의수준

$$\alpha$$
 = 0.05

검정통계량

$$t_0 = \frac{\overline{X}_1 - \overline{X}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{17.54 - 12.43}{4.61 \sqrt{\frac{1}{16} + \frac{1}{9}}} = 2.66$$

검정

 $t_0 = 2.bb > t_{0.025} = 2.0b9$

이므로 H_o를 기각하여 흡연여부에 따라 폐기종

환자의 폐파괴지수는 다르다고 결론짓는다.

▋ 두 모평균 비교

단측검정

폐기종 발병 이전의 흡연자의 폐 파괴지수 측정치가 더 큰가?

가설

$$H_0: \mu_1 - \mu_1 = 0$$
 $H_1: \mu_1 - \mu_1 > 0$

유의수준

$$\alpha$$
 = 0.05

검정통계량

$$t_0 = \frac{\overline{X}_1 - \overline{X}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{17.54 - 12.43}{4.61 \sqrt{\frac{1}{16} + \frac{1}{9}}} = 2.66$$

검정

$$t_0 = 2.bb > t_{(0.05, 23)} = 1.714$$
 이므로

단측검정의 가설 흡연자의 폐파괴지수가 더 높다고

할 수 있다고 결론 짓는다.

<표3.I> 폐 파괴지수 자료의 t-검정

제 3장 연속형 자료의 분석 P85

▋ 병렬 상자그림, 병렬 바이올린

- 〉#============= 3.1.1 독립표본의 평균비교
- 〉 # 자료 입력
- 〉 흡연자
- =c(16.6,13.9,11.3,26.5,17.4,15.3,15.8,12.3,18.6,12.0,24.1,16.5,21.8,16.3,23.4,18.8)
- > 흡연자
- [1] 16.6 13.9 11.3 26.5 17.4 15.3 15.8 12.3 18.6 12.0 24.1 16.5 21.8 16.3
- [15] 23.4 18.8
- Chapter 3. 연속형 자료의 분석 _ 89
- > 비흡연자=c(18.1,6.0,10.8,11.0,7.7,17.9,8.5,13.0,18.9)
- 〉 비흡연자
- [1] 18.1 6.0 10.8 11.0 7.7 17.9 8.5 13.0 18.9
- 흡연자가2

▋ 병렬 상자그림, 병렬 바이올린

- 〉# 병렬상자그림
- > boxplot(흡연자,비흡연자,col="yellow",names=c("흡연자","비흡연자"))
- > points(c(mean(흡연자),mean(비흡연자)),pch=10,cex=2)
- > # 병렬바이올린그림
- > install.packages("vioplot")
- > library(vioplot)

연자","비흡연자"))

▌두 모분산 비교(양측검정)

- > # 대립가설의 형태: alternative = c("two.sided", "less", "greater")
- > sd(흡연자);sd(비흡연자)
- > var.test(흡연자,비흡연자)

```
R Console
> # 두 모분산 비교(양측검정)
> # 대립가설의 형태: alternative = c("two.sided", "less", "greater")
> sd(흡연자);sd(비흡연자)
[11 4.475247
[11 4.849227
> var.test(흡연자,비흡연자)
       F test to compare two variances
data: 흡연자 and 비흡연자
F = 0.8517, num df = 15, denom df = 8, p-value = 0.7498
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
 0.2076714 2.7243799
sample estimates:
ratio of variances
        0.8517046
```

▋ 두 모평균 비교(양측검정)-등분산 가정

>t.test(흡연자,비흡연자,var.equal=T)

```
R Console
> # 두 모평균 비교(양측검정)-등분산 가정
> t.test(흡연자,비흡연자,var.equal=T)
       Two Sample t-test
data: 흡연자 and 비흡연자
t = 2.658, df = 23, p-value = 0.01405
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 1.131680 9.076653
sample estimates:
mean of x mean of y
 17.53750 12.43333
```

▌두 모평균 비교(양측검정)-등분산 가정

> t.test(흡연자,비흡연자)

```
R Console
> # 두 모평균 비교(양측검정)-이분산 가정
> t.test(흡연자,비흡연자)
       Welch Two Sample t-test
data: 흡연자 and 비흡연자
t = 2.5964, df = 15.593, p-value = 0.01978
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.9279143 9.2804190
sample estimates:
mean of x mean of y
 17.53750 12.43333
```


<표3.6> 혈압 비교 자료의 짝지은 t-검정

제 3장 연속형 자료의 분석 P94

▋ 짝지은 표본의 평균비교

표 3.3 투약 전후의 혈압비교에 관한 자료

p94

환자번호	복용 전 혈압	복용 후 혈압	차이
1	90	72	18
2	56	55	1
3	49	56	- 7
4	64	57	7
5	65	62	3
6	88	79	9
7	62	55	7
8	91	72	19
9	74	73	1
10	93	74	19
11	55	58	-3
12	71	59	12
13	54	58	-4
14	64	71	- 7
15	54	61	- 7

지금 입력

- > 복용전혈압=c(90,56,49,64,65,88,62,91,74,93,55,71,54,64,54)
- > 복용후혈압=c(72,55,56,57,62,79,55,72,73,74,58,59,58,71,61)
- > 차이=복용전혈압-복용후혈압;차이

```
R Console

> # 자료 입력
> 복용전혈압=c(90,56,49,64,65,88,62,91,74,93,55,71,54,64,54)
> 복용후혈압=c(72,55,56,57,62,79,55,72,73,74,58,59,58,71,61)
> 차이=복용전혈압-복용후혈압;차이
[1] 18 1 -7 7 3 9 7 19 1 19 -3 12 -4 -7 -7
>
```

▼ 정규성검정: Shapiro-Wilk test

- > qqnorm(차이)
- > qqline(차이,col="red")
- > shapiro.test(大り)


```
R Console
> # 정규성검정: Shapiro-Wilk test
> qqnorm(차이)
> qqline(차이,col="red")
> shapiro.test(차이)
        Shapiro-Wilk normality test
data: 차이
W = 0.9098, p-value = 0.1345
```

₩ 짝지은 표본의 평균비교

- > mean(차이);sd(차이)
- > t.test(복용전혈압,복용후혈압

,paired=T,alternative="greater")

```
R Console
> # 짝지은 표본의 평균비교
> mean(차이);sd(차이)
[1] 4.533333
[1] 9.425396
> t.test(복용전혈압,복용후혈압,paired=T,alternative="greater")
       Paired t-test
data: 복용전혈압 and 복용후혈압
t = 1.8628, df = 14, p-value = 0.0418
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
               Inf
0.2469617
sample estimates:
mean of the differences
              4.5333333
```

여러 모평균 비교

3. 여러 집단의 평균비교

▌ 분산분석(Analysis of variance)

세군 이상의 모평균 차이를 비교 검정하는 방법

일원분산분석(one-way ANOVA)

예

비만연구를 위해 30명의 비만 남성을 선정한 후 임의로 세가지 체중감량 프로그램 중 하나에 참여시킨 다음 1년 후 체중 변화량을 측정하여 프로그램의 종류에 따라 유의한 차이가 있는지 알아본다.

7ト 显

D1	D2	D3
10	2	8
7	3	10
3	4	9
5	2	10

자료구조시

 $y_i = \mu + a_i + \epsilon_{i (i = 1, 2, 3, k)}$

▮ 일원분산분석(one-way ANOVA)

가설

$$H_o$$
: $\mu_1 = \mu_2 = \mu_3 = \cdots \quad \mu_k$ H_1 : μ_{i} 는 모두 같지 않다.

유의수준

$$\alpha = 0.05$$

검정통계량

$$F_{o} = \frac{SS_{trt}/(k-1)}{SSE/(n-k)} = \frac{MS_{trt}}{MSE}$$

$$F_0 = 2.bb > F_{\alpha (0.05, 23)}$$
 이면 귀무가설 H₀ 를 기각

▮ 이원분산분석(two-way ANOVA)

예

세 종류의 호르몬 처리와 성별에 따라 혈액 내 칼슘량에 유의한 차이가 있는지 알아보기 위해 남녀 각 15명씩 선정하여 세 그룹으로 나누고 세 가지 호르몬 처리를 한 후 칼슘량을 측정한다.

자료

	M1	M2	M3
M	25	18	17
F	28	16	18

자료구조식

$$y_{ij} = \mu + a_i + b_j \epsilon_{ij (i,j = 1,2, 3,....k)}$$

▌분산분석표(ANOVA Table)

$$\sum_{i}\sum_{j}(y-\bar{y})^{2}=\sum n_{i}(\bar{y}_{i}-\bar{y})^{2}+\sum\sum (\bar{y}_{ij}-\bar{y}_{k})^{2}$$

$$SST = SS \text{ trt } + SSE$$
총제곱합 = 처리제곱합 + 오차제곱합

$$F = \frac{SS_{trt}/(k-1)}{\frac{SSE}{n-k}} = \frac{MS_{trt}}{MSE}$$

분산분석표

	제곱합	자유도	평균제곱합	F
처리	SS _{trt}	k-1	$MS_{trt} = \frac{SS_{trt}}{(k-1)}$	$F = \frac{MSA}{}$
오차	SSE	n-k	$MSE = \frac{SSE}{(n-k)}$	$F = \overline{MSE}$
계	SST	n-1		1

▮ 일원분산분석 예제

p99

면역이상 연구를 위한 자폐아, 정상아, 지진아에 대한 열청, 항원농도를 측정한 자료.

자료

자폐아		정성	상아	지진아	
755	365	165	390	250	670
820 170	900 300	290 235	435 345	460	230

자료구조식

$$y_i = \mu + a_i + \epsilon_{i (i = 1,2, 3,....k)}$$

▮ 일원분산분석(one-way ANOVA)

분산분석표

	제곱합	자유도	평균제곱합	F	P-value
처리 오차	1375932.6 141234.6	2 68	70617.3 20234.3	F_0 =3.49	0.00871
계	1517167.2	70	THE RESERVE		

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3$ H_1 : μ_1 는 모두 같지 않다.

$$\alpha = 0.05$$

검정통계량

$$F_0 = \frac{SS_{trt}/(k-1)}{SSE/(n-k)} = \frac{MS_{trt}}{MSE} = \frac{70619.3}{2234.3} = 3.49$$

검정결과

$$F_0 = 3.49 > F_{\alpha (0.05,2,68)} = 2.39$$
 이면 가무가설 $H_0 = 7$ 각

▮ 일원분산분석(one-way ANOVA)

분산분석표

	제곱합	자유도	평균제곱합	F	P-value
처리 오차	1375932.6 141234.6	2 68	70617.3 20234.3	F_0 =3.49	0.00871
계	1517167.2	70	THE PARTY OF	1	

검정결과

동일하지 않다.

컴퓨터 수행결과 p-value가 0.008 이므로 유의수준 0.05 보다 작아 귀무가설을 기각.

일원분산분석(one-way ANOVA)

<표3.12> 혈청 항원의 농도면역이상에 대한 일 원분산분석

제 3장 연속형 자료의 분석 P99

▼ 자료입력(일원분산분석)

```
> 자폐아
=c(755,365,820,900,170,300,325,385,380,215,400,343,415,
345, 410,460,225,440,400,360,435,450,360)
> 정상아

  ■ R Console

         -c(755,365,820,900,170,300,325,385,380,215,400,343,415,345,
   410, 460, 225, 440, 400, 360, 435, 450, 360)
   정상아=c(165,390,290,435,235,345,320,330,205,375,345,305,220,270,
   355,360,335,305,325,245,285,370,345,345,230,370,285,315,195,270,305,375,220)
   지진아=c(380,510,315,565,715,380,390,245,155,335,295,200,105,105,245)
```


병렬상자그림 병렬바이올린그림

- > boxplot(자폐아,정상아,지진아 ,col="yellow",names=c("자폐아","정상아","지진아"))
- > library(vioplot)
- > vioplot(자폐아,정상아,지진아 ,col="yellow",names=c("자폐아","정상아","지진아"))

▌ 각그룹의 평균

> sapply(list(자폐아,정상아,지진아),mean)

```
R Console
> # 각 그룹의 평균
> sapply(list(자폐아,정상아,지진아),mean)
[1] 419.9130 305.0000 329.3333
```

▋ 등분산성검정: Fligner-Killeen test

> fligner.test(혈청항원농도~그룹)

```
R Console
> # 등분산성검정: Fligner-Killeen test
> fligner.test(혈청항워농도~그룹)
       Fligner-Killeen test of homogeneity of variances
data: 혈청항워농도 by 그룹
Fligner-Killeen:med chi-squared = 6.8506, df = 2, p-value = 0.03254
```


One-way ANOVA

- > 일원분산분석= aov(혈청항원농도~그룹)
- > 일원분산분석
- > summary(일원분산분석)

```
R Console
> # One-way ANOVA
> 일원분산분석=aov(혈청항워농도~그룹)
> 일위분잔분석
Call:
  aov(formula = 혈청항원농도 ~ 그룹)
Terms:
                   그룹 Residuals
Sum of Squares 185159.3 1236697.2
Deg. of Freedom
Residual standard error: 134.8582
Estimated effects may be unbalanced
> summary(일원분산분석)
          Df Sum Sq Mean Sq F value Pr(>F)
그룹 2 185159 92580 5.091 0.00871 **
Residuals 68 1236697 18187
Signif. codes:
              0 \***' 0.001 \**' 0.01 \*' 0.05 \.' 0.1 \ ' 1
```


모형적합성 검토=오차 검토

- > par(mfrow=c(2,2))
- > plot(일원분산분석)

<표3.I4> 다중비교를 하기 위한 R 프로그램

제 3장 연속형 자료의 분석 P104

다중비교(multiple comparison): Tukey 's HSD(honest significant differences)

□ 다중비교: LSD test(최소유의차검점)

> pairwise.t.test(혈청항원농도,그룹)

```
R Console
> # 다중비교: LSD test(최소유의차검정)
> pairwise.t.test(혈청항원농도,그룹)
       Pairwise comparisons using t tests with pooled SD
data: 혈청항워농도 and 그룹
2 0.0076 -
3 0.0938 0.5642
P value adjustment method: holm
```


반복이 없는 경우 반복이 있는 경우

자료

	M1	M2	МЗ
M	25	18	17
F	28	16	18

자료구조시

$$y_i = \mu + a_i + b_j + ab_{ij} \epsilon_{ij (i = 1,2, 3,...,k)}$$

	제곱합	자유도	평균제곱합	FHI
요인A	SS_A	I-1	MS_A	F_A =MS $_A$ /MSE
요인B	SS_B	J-1	MS_{B}	$F_B = MS_B / MSE$
교호작용	$SS_{A \times B}$	(I-1)(J-1)	$MS_{A \times B}$	$F_{A \times B} = MS_{A \times B} / MSE$
오차	SSE	IJ(n−1)	MSE	11
계	SST	IJn-1	18	1

가설

- 200	귀무가설(H ₀)	검정
Á	$a_1=a_2\cdots a_i=0$	$F_{A0}>F_{\alpha}(I-1, IJ(n-1))$
В	$b_1=b_2\cdotsb_j=0$	$F_{B0}>F_{\alpha}(J-1, IJ(n-1))$
AXB	$(ab)_{ij}=0$	$F_{A\times B} > F_{\alpha}((I-1)(J-1), IJ(n-1))$

대립가설(H₁): H₀가 아니다.

자료

세 종류의 호르몬 처리와 성별에 따른 혈액 칼슘값이 차이가 있는가의 검정

100	처리 1	처리 2	처리 3
남	16.87	19.07	32.45
-	16.18	18.77	28.71
CI.	15.86	17.20	30.54
О	14.92	17.64	32.41

이원	부산	부석	П
----	----	----	---

분산분씩#	SS	df	MS	F	P-value
성별	4.063	1	4063	1.28	0.2094
처리	1146.6	2	573.32	180.35	0.0001
교호작용	3.845	2	1.923	0.60	0.5543
오차	76.292	24	3.180		1
계	1230.843	29	1	- F	MA

이원분산분석표

10	SS	df	MS	F	P-value
성별	4.063	1	4063	1.28	0.2094
처리	1146.6	2	573.32	180.35	0.0001
교호작용	3.845	2	1.923	0.60	0.5543
오차	76.292	24	3.180		1
계	1230.843	29		- 5	MA

기각치

$$F_{A0.05}(1,24) = 4.26 > F_{0A} = 1.28$$
 H_{0A} 수용

$$F_{B0.05}(2,24) = 3.40 < F_{0B} = 180.35 \;\; H_{0B}$$
 기각

$$F_{A \times B0.05}(2,24) = 3.40 < F_{0A \times B} = 0.60$$

 $H_0A \times B$ 수용

이원분산분석표

12	SS	df	MS	F	P-value
성별	4.063	1	4063	1.28	0.2094
처리	1146.6	2	573.32	180.35	0.0001
교호작용	3.845	2	1.923	0.60	0.5543
오차	76.292	24	3.180		1
계	1230.843	29		C 8	MM

검정결과

처리에 의해서는 칼슘값이 유의한 차이가 있으나 성별과 교호작용에 의해서는 유의한 차이가 없다.

P-value에 의해서도 $P_A = 0.2094$, $P_B = 0.0001$, $P_{A \times B} = 0.5543$ 을 $\alpha = 0.05$ 와 비교하여 같은 결과를 얻을 수 있다.

-	SS	df	MS	F	P-value
성별	4.063	1	4063	1.28	0.2094
처리	1146.6	2	573.32	180.35	0.0001
교호작용	3.845	2	1.923	0.60	0.5543
오차	76.292	24	3.180		
계	1230.843	29		5	H K

검정결과

- 처리에 의해서는 칼슘값이 유의한 차이가 있으나 성별과 교호작용에 의해서는 유의한 차이가 없다.
- P-value에 의해서도 $P_A = 0.2094$, $P_B = 0.0001$, $P_{A \times B} = 0.5543$ 을 $\alpha = 0.05$ 와 비교하여 같은 결과를 얻을 수 있다.

<표3.**I 9>** 의보장구 사용 숙지시간의 이원분산분석

제 3장 연속형 자료의 분석 P95

테이터파일 읽기

- > 의보장구사용숙지시간자자료<read.table("C:\\Users\\knou\\Desktop\\R 실습자료\\의 > 보장구사용숙지시간자료.txt",header=T)
- > 의보장구사용숙지시간자자료
- > attach(의보장구사용숙지시간자자료)

```
R Console
> # 데이터파일 읽기
> 의보장구산용숙진시간자자료<- read.table("C:\\U
> 의보장구사용숙지시간자자료
나이 방법 숙지시간
  20세미만
     20-29
     30-39
                     10
    50이상
                     11
  20세미만
    50이상
                     12
11 20세미만
                     10
12
                     10
13
     30-39
                     12
14
    40-49
                     12
    50이상
                     14
> attach(의보장구사용숙지시간자자료)
```


Two-way ANOVA

- > 이원분산분석=aov(숙지시간~나이+방법)
- > 이원분산분석
- > summary(이원분산분석)

```
R Console
> # Two-wav ANOVA
> 이원분산분석=aov(숙지시간~나이+방법)
> 이원분산분석
Call:
   aov(formula = 숙지시간 ~ 나이 + 방법)
Terms:
                   나이
                            방법 Residuals
Sum of Squares 24.933333 18.533333 3.466667
Deg. of Freedom
Residual standard error: 0.6582806
Estimated effects may be unbalanced
> summary(이워분산분석)
           Df Sum Sq Mean Sq F value
                                    Pr(>F)
나이
           4 24.933 6.233 14.38 0.001002 **
           2 18.533 9.267 21.39 0.000617 ***
Residuals
         8 3.467
                     0.433
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


모형적합성 검토=오차 검토

- > par(mfrow=c(2,2))
- > plot(이원분산분석)

LI唇出교:LSD test

- 〉# average response profile plot(평균반응프로파일그림)-효과 크기를 알 수 있는그림
- > install.packages("ggplot2")
- > library(ggplot2)
- > ggplot(의보장구사용숙지시간자료,aes(x=나이,y=숙지시간, group=방법,linetype=방법))+geom_line()+theme(legend.position="top",legend.direction="horizontal")
- > ggplot(의보장구사용숙지시간자료,aes(x=방법,y=숙지시간, group=나이,linetype=나이))+geom_line()+ theme(legend.position="top",legend.direction="horizontal")

【日香出교:LSD test

『 CI唇出교:LSD test

```
〉 lsdI=LSD.test(이원분산분석, "나이")
> lsd | $groups
숙지시간 groups
50이상 12.333333 a
40-49 10.333333 b
30-39 10.000000 bc
20-29 9.000000 cd
20미만 8.666667 d
> lsd2=LSD.test(이원분산분석, "방법")
> lsd2$groups
숙지시간 groups
C
      11.6
      9.6
               b
       9.0
Α
               b
```


<표3.I3> 호르몬 처리 후 혈액 칼슘 측정치의 이원분산분석

제 3장 연속형 자료의 분석 P115

▼ (표3.13> 호르몬 처리 후 혈액 칼슘 측정치의 이원분산분석

丑 3.13 세 가지 호르몬 처리와 남녀의 혈액 칼슘 측정결과

처리 성별	처리 1	처리 2	처리 3
	16.87	19.07	32.45
	16.18	18.77	28.71
남	17.12	17.63	34.65
	16.83	16.99	28.79
	17.19	18.04	24.46
	15.86	17.20	30.54
여	14.92	17.64	32.41
	15.63	17.89	28.97
	15.24	16.78	28.46
	1/00	-/	20 /-

표 3.14 처리조합별 평균

처리 성별	처리 1	처리 2	처리 3	전체
남	$\overline{y}_{11.} = 16.84$	$\bar{y}_{12.} = 18.1$	$\bar{y}_{13.} = 29.81$	$\bar{y}_{1} = 21.58$
여	$\overline{y}_{21.} = 15.29$	$\overline{y}_{22.} = 17.25$	$\overline{y}_{23.} = 30.01$	$\overline{y}_{2} = 20.85$
전체	$\overline{y}_{.1.} = 16.06$	$\overline{y}_{.2.} = 17.67$	$\overline{y}_{.3.} = 29.91$	$\bar{y}_{} = 21.22$

테이터 워기

> 혈액칼슘자료<-

read.table("C:\\Users\\knou\\Desktop\\R 실습자료\\혈

액칼슘자료.txt",header=T)

- > 혈액칼슘자료
- > attach(혈액칼슘자료)

```
R Console
  혈액칼슘자료<- read.table("C:\\User
   성별 처리 혈액칼슘
남 A 16.87
                16.18
                17.12
                16.83
                17.19
                19.07
                18.77
                17.63
9
                16.99
10
                18.04
                32.45
                28.71
                34.65
                28.79
                24.46
16
                15.86
17
                14.92
18
                15.63
19
                15.24
                14.80
21
                17.20
22
                17.64
23
                17.89
                16.78
25
                16.72
26
                30.54
27
                32.41
28
                28.97
29
                28.46
                 29.65
> attach(혈액칼슘자료)
```

Two-way ANOVA

- > 이원분산분석2=aov(혈액칼슘~성별*처리)
- > 이원분산분석2
- > summary(이원분산분석2)

```
R Console
> # Two-way ANOVA
> 이원분산분석2=aov(혈액칼슘~성별*처리)
> 이원분산분석2
Call:
  aov(formula = 혈액칼슘 ~ 성별 * 처리)
Terms:
                  성별 처리 성별:처리 Residuals
Sum of Squares 4.0627 1146.6420
                                         76.2924
Deg. of Freedom
                                              24
Residual standard error: 1.782933
Estimated effects may be unbalanced
> summary(이원분산분석2)
          Df Sum Sq Mean Sq F value Pr(>F)
               4.1 4.1 1.278
                                   0.269
처리
           2 1146.6 573.3 180.355 3.47e-15 ***
         2 3.8 1.9
성별:처리
                                   0.554
                            0.605
Residuals
         24 76.3
                     3.2
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

【日香出교:LSD test

- > pairwise.t.test(혈액칼슘,성별)
- > pairwise.t.test(혈액칼슘,처리)

```
R Console
> # 다중비교: LSD test
> pairwise.t.test(혈액칼슘,성별)
       Pairwise comparisons using t tests with pooled SD
data: 혈액칼슘 and 성별
역 0.76
P value adjustment method: holm
> pairwise.t.test(혈액칼슘,처리)
       Pairwise comparisons using t tests with pooled SD
data: 혈액칼슘 and 처리
B 0.052 -
C 8.4e-16 1.2e-14
P value adjustment method: holm
```

『 CI唇出교:LSD test

- 〉# 병렬상자그림과 교호작용도 (interaction plot)
- 〉plot(혈액칼슘 ~ 처리, 혈액칼슘자료)
- 〉with(혈액칼슘자료,interaction.plot(처리,성별,혈액칼슘))

Q & A

다음시간에는

> 3강 연속형자료의 분석

4강 범주형자료 분석

5강 공분산 분석