复变函数的积分

定义 1. 设 $f:\Omega\to\mathbb{C}$, $\gamma:[\alpha,\beta]\to\Omega$, $\gamma(\alpha)=z_0$, $\gamma(\beta)=z_1$. 对任意 $\varepsilon>0$, 存在 $\delta>0$, 使得对任意 $[\alpha,\beta]$ 的分划

$$\pi: \alpha = t_0 < t_1 < \dots < t_n = \beta,$$

及其标记点组 $\xi_i \in [t_{i-1}, t_i], i = 1, 2, \dots, n$,只要细度 $\lambda(\pi) = \max_{1 \le i \le n} |t_i - t_{i-1}| < \delta$,就有

$$\sum_{i=1}^{n} \left[f\left(\gamma(\xi_i)\right) \left(\gamma(t_i) - \gamma(t_{i-1})\right) - A \right] < \varepsilon,$$

则称 f 在 γ 上可积,记作

$$\int_{\gamma} f(z) \, \mathrm{d}z = A.$$

这里的 γ 是可求长的,如下定义.

定义 2. 设 $\gamma: [\alpha, \beta] \to \Omega$,任意分划 $\pi: \alpha = t_0 < t_1 < \cdots < t_n = \beta$,则分划后折线段的长度为

$$L_{\pi} = \sum_{i=1}^{n} |\gamma(t_i) - \gamma(t_{i-1})|,$$

定义集合 $\mathcal{L} = \{L_{\pi} \mid \pi$ 是分划 $\}$,若 \mathcal{L} 有上界,则称 γ 是**可求长的**,并定义长度 $L(\gamma) = \sup \mathcal{L}$.

以下的讨论总是基于 f 在 $\Gamma = \gamma([\alpha, \beta]) \subset \Omega$ 上连续以及 γ 可求长展开的.

设 f(z) = u(z) + iv(z), z = x + iy, 则

$$\int_{\gamma} f(z) dz = \int_{\gamma} (u + iv)(dx + i dy) = \int_{\gamma} u dx - v dy + i \int_{\gamma} u dy + v dx.$$
 (1)

若 γ 是 C^1 的,则

$$\int_{\gamma} f(z) dz = \int_{\alpha}^{\beta} f(\gamma(t)) \gamma'(t) dt.$$
 (2)

t = t(s) $s \in [a,b]$ 则

$$\int_{a}^{b} f(\gamma(t(s))) \gamma'(t(s)) dt(s) = \int_{a}^{b} f(\tilde{\gamma}(s)) \tilde{\gamma}'(s) ds.$$
 (3)

其中 $\tilde{\gamma} = \gamma \circ t$. 由此,积分与曲线参数化的选取无关.

例 1.
$$\int_{\gamma} dz = \gamma(\beta) - \gamma(\alpha).$$

例 2.
$$\int_{\gamma} z \, dz = \frac{1}{2} \left(\gamma(\beta)^2 - \gamma(\alpha)^2 \right).$$

例 3. $\int_{\gamma} \overline{z} dz = \frac{1}{2} (|\gamma(\beta)|^2 - |\gamma(\alpha)|^2) + iS_{\gamma}$. 其中 S_{γ} 与 γ 和原点的连线扫过的面积有关.

例 4. 若
$$\gamma = re^{i\theta}$$
,则 $\int_{\gamma} \frac{\mathrm{d}z}{z} = 2\pi i$.

例 5. 若
$$\gamma = re^{i\theta}$$
,则 $n \ge 2$ 时, $\int_{\gamma} \frac{\mathrm{d}z}{z^n} = 0$.

例 6. 设 $\gamma: [\alpha, \beta] \to \mathbb{C} \setminus \{0\}$ 是可求长闭曲线,则

$$\int_{\gamma} \frac{\mathrm{d}z}{z} = \int_{\gamma} \mathrm{d}\left(\ln\sqrt{x^2 + y^2}\right) + \mathrm{i}\int_{\gamma} \mathrm{d}\omega = 2\pi \mathrm{i} \cdot \mathrm{Ind}_{\gamma}(z).$$

称 $\operatorname{Ind}_{\gamma}(z)$ 为环绕数.

定理 1. 设 $f \in C(\Omega)$, $F \in H(\Omega)$, 且 F' = f, $\gamma : [\alpha, \beta] \to \Omega$ 可求长,则

$$\int_{\gamma} f(z) dz = F(\gamma(\beta)) - F(\gamma(\alpha)). \tag{4}$$

证明. 设 $f=u+\mathrm{i}v$, $F=A+\mathrm{i}B$,则由 C-R 方程, $A_x=B_y=u$, $B_x=-A_y=v$,则

$$\int_{\gamma} f(z) dz = \int_{\gamma} u dx - v dy + \int_{\gamma} u dy + v dx$$

$$= \int_{\gamma} A_x dx + A_y dy + \int_{\gamma} B_y dy + B_x dx$$

$$= A(\gamma(\beta)) - A(\gamma(\alpha)) + i (B(\gamma(\beta)) - B(\gamma(\alpha)))$$

$$= F(\gamma(\beta)) - F(\gamma(\alpha)).$$
(5)