Tema 2 Regresión Lineal

Gonzalo A. Aranda-Corral

Ciencias de la Computación e Inteligencia Artificial Universidad de Huelva

19 de octubre de 2020

Asistencia

Por favor, regístrar vuestra asistencia en la siguiente dirección:

http://opendatalab.uhu.es/aplicaciones/asistencia

Contenido

- Introducción
- 2 Teoría lineal
- Descenso por gradiente
- Descenso por gradiente Estocástico
- Ecuaciones normales

Índice

- Introducción
- 2 Teoría linea
- Descenso por gradiente
- Descenso por gradiente Estocástico
- Ecuaciones normales

- Aprendizaje numérico .vs. simbólico
- Predicción de valores continuos (reales)
- Aproximación lineal (multidimensional)

- Aprendizaje numérico .vs. simbólico
- Predicción de valores continuos (reales)
- Aproximación lineal (multidimensional)

- Aprendizaje numérico .vs. simbólico
- Predicción de valores continuos (reales)
- Aproximación lineal (multidimensional)

Un problema de aprendizaje numérico se podría enunciar como:

"dado un conjunto de datos de entrenamiento, encontrar la función h(x): y' = f(x), tal que h(x) se ajusta lo más posible a los valores de y."

A h(x) se le denomina **Hipótesis**

Gráficamente:

Planteamos un ejemplo sobre la estimación del precio de inmuebles en función de su tamaño, en una zona.

Tenemos la siguiente tabla:

Tamaño	Precio
2104	400
1416	232
1539	315
852	178
1940	240
÷	:

Por tanto, la pregunta es:

¿ Cómo averigüamos h(x) ?

Índice

- Introducción
- 2 Teoría lineal
- Descenso por gradiente
- Descenso por gradiente Estocástico
- Ecuaciones normales

- ullet m \equiv número de ejemplos de entrenamiento
- n ≡ número de atributos
- $(x, y) \equiv$ Ejemplo de entrenamiento
- $(x^j, y^j) \equiv \text{Ejemplo de la fila } j$
- x ≡ variable de entrada / característica / atributo / . . .
- $y \equiv variable de salida / objetivo / target / ...$

- $m \equiv n$ úmero de ejemplos de entrenamiento
- n ≡ número de atributos
- $(x, y) \equiv \text{Ejemplo de entrenamiento}$
- $(x^j, y^j) \equiv \text{Ejemplo de la fila } j$
- x ≡ variable de entrada / característica / atributo / . . .
- $y \equiv variable de salida / objetivo / target / ...$

- ullet m \equiv número de ejemplos de entrenamiento
- n ≡ número de atributos
- $(x, y) \equiv \text{Ejemplo de entrenamiento}$
- $(x^j, y^j) \equiv \text{Ejemplo de la fila } j$
- $x \equiv variable de entrada / característica / atributo / ...$
- $y \equiv variable de salida / objetivo / target / ...$

- ullet m \equiv número de ejemplos de entrenamiento
- n ≡ número de atributos
- $(x, y) \equiv \text{Ejemplo de entrenamiento}$
- $(x^j, y^j) \equiv \text{Ejemplo de la fila } j$
- x ≡ variable de entrada / característica / atributo / . . .
- $y \equiv variable de salida / objetivo / target / ...$

- ullet m \equiv número de ejemplos de entrenamiento
- n ≡ número de atributos
- $(x, y) \equiv \text{Ejemplo de entrenamiento}$
- $(x^j, y^j) \equiv \text{Ejemplo de la fila } j$
- $x \equiv variable de entrada / característica / atributo / ...$
- $y \equiv variable de salida / objetivo / target / ...$

- $m \equiv n$ úmero de ejemplos de entrenamiento
- n ≡ número de atributos
- $(x, y) \equiv \text{Ejemplo de entrenamiento}$
- $(x^j, y^j) \equiv \text{Ejemplo de la fila } j$
- $x \equiv variable de entrada / característica / atributo / ...$
- y ≡ variable de salida / objetivo / target / . . .

En el ejemplo:

Para determinar la hipótesis, suponemos que es lineal

$$h(x) = \theta_0 + \theta_1 x$$

Para un dataset con *n* atributos, podemos escribir:

$$h(\vec{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 \cdots + \theta_n x_n$$

Por comodidad, consideraremos $\mathbf{x_0} = \mathbf{1}$: $h(\vec{x}) = \theta_0 \mathbf{x_0} + \theta_1 x_1 + \theta_2 x_2 \cdots + \theta_n x_n$

$$h(\vec{x}) = \sum_{i=0}^{n} \theta_i x_i = \theta^{\mathsf{T}} \vec{x}$$

Para determinar la hipótesis, suponemos que es lineal

$$h(x) = \theta_0 + \theta_1 x$$

Para un dataset con *n* atributos, podemos escribir:

$$h(\vec{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 \cdots + \theta_n x_n$$

Por comodidad, consideraremos $\mathbf{x_0} = \mathbf{1}$: $h(\vec{x}) = \theta_0 \mathbf{x_0} + \theta_1 x_1 + \theta_2 x_2 \cdots + \theta_n x_n$

$$h(\vec{x}) = \sum_{i=0}^{n} \theta_i x_i = \theta^{\mathsf{T}} \vec{x}$$

Para determinar la hipótesis, suponemos que es lineal

$$h(x) = \theta_0 + \theta_1 x$$

Para un dataset con *n* atributos, podemos escribir:

$$h(\vec{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 \cdots + \theta_n x_n$$

Por comodidad, consideraremos $\mathbf{x_0} = \mathbf{1}$: $h(\vec{x}) = \theta_0 \mathbf{x_0} + \theta_1 x_1 + \theta_2 x_2 \cdots + \theta_n x_n$

$$h(\vec{x}) = \sum_{i=0}^{n} \theta_i x_i = \theta^{\mathsf{T}} \vec{x}$$

Para determinar la hipótesis, suponemos que es lineal

$$h(x) = \theta_0 + \theta_1 x$$

Para un dataset con *n* atributos, podemos escribir:

$$h(\vec{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 \cdots + \theta_n x_n$$

Por comodidad, consideraremos $\mathbf{x_0} = \mathbf{1}$: $h(\vec{x}) = \theta_0 \mathbf{x_0} + \theta_1 x_1 + \theta_2 x_2 \cdots + \theta_n x_n$

$$h(\vec{x}) = \sum_{i=0}^{n} \theta_i x_i = \theta^{\mathsf{T}} \vec{x}$$

Para determinar la hipótesis, suponemos que es lineal

$$h(x) = \theta_0 + \theta_1 x$$

Para un dataset con *n* atributos, podemos escribir: $h(\vec{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 \cdots + \theta_n x_n$

Por comodidad, consideraremos $\mathbf{x_0} = \mathbf{1}$: $h(\vec{x}) = \theta_0 \mathbf{x_0} + \theta_1 x_1 + \theta_2 x_2 \cdots + \theta_n x_n$

$$h(\vec{x}) = \sum_{i=0}^{n} \theta_i x_i = \theta^{\mathsf{T}} \vec{x}$$

Para determinar la hipótesis, suponemos que es lineal

$$h(x) = \theta_0 + \theta_1 x$$

Para un dataset con *n* atributos, podemos escribir: $h(\vec{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 \cdots + \theta_n x_n$

Por comodidad, consideraremos $\mathbf{x}_0 = 1$: $h(\vec{x}) = \theta_0 \mathbf{x}_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$

$$h(\vec{x}) = \sum_{i=0}^{n} \theta_i x_i = \theta^T \vec{x}$$

Por tanto, ya conocemos $h(\vec{x})$,

$$h(\vec{x}) = \sum_{i=0}^{n} \theta_i x_i = \theta^T \vec{x}$$

sólo nos queda determinar los coeficientes: θ_i .

¿ Cómo ?

Por tanto, ya conocemos $h(\vec{x})$,

$$h(\vec{x}) = \sum_{i=0}^{n} \theta_i x_i = \theta^T \vec{x}$$

sólo nos queda determinar los coeficientes: θ_i .

¿ Cómo ?

Por tanto, ya conocemos $h(\vec{x})$,

$$h(\vec{x}) = \sum_{i=0}^{n} \theta_i x_i = \theta^T \vec{x}$$

sólo nos queda determinar los coeficientes: θ_i .

¿ Cómo?

Por tanto, ya conocemos $h(\vec{x})$,

$$h(\vec{x}) = \sum_{i=0}^{n} \theta_i x_i = \theta^T \vec{x}$$

sólo nos queda determinar los coeficientes: θ_i .

¿ Cómo?

¿Qué es el error?

$$Error = Prediccion - ValorReal = h(x) - y(x)$$

¿Qué es el error?

$$Error = Prediccion - ValorReal = h(x) - y(x)$$

¿Qué es el error?

$$Error = Prediccion - ValorReal = h(x) - y(x)$$

¿Qué es el error?

$$Error = Prediccion - ValorReal = h(x) - y(x)$$

¿Qué es el error?

$$Error = Prediccion - ValorReal = |h(x) - y(x)|$$

¿Qué es el error?

$$Error = Prediccion - ValorReal = |h(x) - y(x)|$$

¿Qué es el error?

$$Error = Prediccion - ValorReal = |h(x) - y(x)|$$

¿Qué es el error?

$$Error = Prediccion - ValorReal = |h(x) - y(x)|$$

MALA DEFINICIÓN

¿Qué es el error?

ErrorCuadratico =
$$\frac{1}{2}(h(x) - y(x))^2$$

Existen más definiciones de errores, pero nosotros vamos a usar esta.

¿Qué es el error?

ErrorCuadratico =
$$\frac{1}{2}(h(x) - y(x))^2$$

Existen más definiciones de errores, pero nosotros vamos a usar esta.

Para obtener el error total, sumamos para todos los ejemplos(m):

ErrorCuadraticoTotal =
$$\frac{1}{2}\sum_{j=1}^{m}(h_{\theta}(x^{j})-y^{j})^{2}$$

ya que nuestro objetivo es minimizar el error total:

$$min_{\theta} \left(\frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^i) - y^i)^2 \right)$$

Para obtener el error total, sumamos para todos los ejemplos(m):

ErrorCuadraticoTotal =
$$\frac{1}{2}\sum_{j=1}^{m}(h_{\theta}(x^{j})-y^{j})^{2}$$

ya que nuestro objetivo es minimizar el error total:

$$min_{\theta} \left(\frac{1}{2}\sum_{i=1}^{m}(h_{\theta}(x^i)-y^i)^2\right)$$

Si llamamos
$$J(\theta) = \frac{1}{2} \sum_{j=1}^{m} (h_{\theta}(x^j) - y^j)^2$$

por lo que buscamos:

Los valores de θ que hagan que se cumpla $min_{\theta} J(\theta)$

Si llamamos
$$J(\theta) = \frac{1}{2} \sum_{j=1}^{m} (h_{\theta}(x^j) - y^j)^2$$

por lo que buscamos:

Los valores de θ que hagan que se cumpla $min_{\theta} J(\theta)$

Podemos dibujar el error como una superficie, en el espacio de $\,ec{ heta}\,$

¿Dónde está el mínimo?

Podemos dibujar el error como una superficie, en el espacio de $\vec{ heta}$

¿Dónde está el mínimo?

Índice

- Introducción
- Teoría lineal
- Descenso por gradiente
- Descenso por gradiente Estocástico
- Ecuaciones normales

Debemos de construir un algoritmo para esa minimización

- La 1^a aproximación la realizamos mediante Búsqueda
- Comenzamos inicializando θ con algún valor. Ej: $\vec{\theta} = \vec{0}$
- Vamos cambiando los valores de θ de forma que disminuya $J(\theta)$ • Hay que asegurar que los nuevos valores de $\bar{\theta}$ hacen disminuir J
- Repetimos el cambio de valores hasta alcanzar el mínimo.

Debemos de construir un algoritmo para esa minimización

- La 1^a aproximación la realizamos mediante **Búsqueda**
- Comenzamos inicializando θ con algún valor. Ej: $\vec{\theta} = \vec{0}$
- Vamos cambiando los valores de θ de forma que disminuya $J(\theta)$ • Hay que asegurar que los nuevos valores de $\vec{\theta}$ hacen disminuir J
 - Hay que asegurar que los nuevos valores de heta hacen disminuir heta
- Repetimos el cambio de valores hasta alcanzar el mínimo.

Debemos de construir un algoritmo para esa minimización

- La 1^a aproximación la realizamos mediante **Búsqueda**
- Comenzamos inicializando θ con algún valor. Ej: $\vec{\theta} = \vec{0}$
- Vamos cambiando los valores de θ de forma que disminuya $J(\theta)$ • Hay que asegurar que los nuevos valores de $\vec{\theta}$ hacen disminuir J
- Repetimos el cambio de valores hasta alcanzar el mínimo.

Debemos de construir un algoritmo para esa minimización

- La 1^a aproximación la realizamos mediante **Búsqueda**
- Comenzamos inicializando θ con algún valor. Ej: $\vec{\theta} = \vec{0}$
- Vamos cambiando los valores de θ de forma que disminuya $J(\theta)$
 - Hay que asegurar que los nuevos valores de $\vec{ heta}$ hacen disminuir J
- Repetimos el cambio de valores hasta alcanzar el mínimo.

Debemos de construir un algoritmo para esa minimización

- La 1^a aproximación la realizamos mediante Búsqueda
- Comenzamos inicializando θ con algún valor. Ej: $\vec{\theta} = \vec{0}$
- Vamos cambiando los valores de θ de forma que disminuya $J(\theta)$
 - Hay que asegurar que los nuevos valores de $\vec{\theta}$ hacen disminuir J
- Repetimos el cambio de valores hasta alcanzar el mínimo.

La variación de parámetros representa **un camino** dentro del espacio de los parámetros.

Si existen **mínimos locales** en la superficie se puede dar que, en función de los valores iniciales de θ , podemos llegar a distintas soluciones.

- Debemos de actualizar los coeficientes en la dirección de máximo decremento
- Usaremos la interpretación física del gradiente= $\vec{\nabla}_{\theta}J(\theta)$
- y los coeficientes los vamos aproximando poco a poco:

$$\theta_{\mathsf{nuevo}} := \theta_{\mathsf{antiguo}} + \alpha \ \vec{\nabla}_{\theta} \mathbf{J}(\theta)$$

 $^{^{1}\}alpha$ modula la velocidad de acercamiento

- Debemos de actualizar los coeficientes en la dirección de máximo decremento
- Usaremos la interpretación física del gradiente= $\vec{\nabla}_{\theta}J(\theta)$
- y los coeficientes los vamos aproximando poco a poco:

$$\theta_{\mathsf{nuevo}} := \theta_{\mathsf{antiguo}} + \alpha \ \vec{\nabla}_{\theta} \mathbf{J}(\theta)$$

 $^{^{1}\}alpha$ modula la velocidad de acercamiento

- Debemos de actualizar los coeficientes en la dirección de máximo decremento
- Usaremos la interpretación física del gradiente= $\vec{\nabla}_{\theta} J(\theta)$
- y los coeficientes los vamos aproximando poco a poco:

$$\theta_{\mathsf{nuevo}} := \theta_{\mathsf{antiguo}} + \alpha \ \vec{\nabla}_{\theta} \mathbf{J}(\theta)$$

 $^{^{1}\}alpha$ modula la velocidad de acercamiento

- Debemos de actualizar los coeficientes en la dirección de máximo decremento
- Usaremos la interpretación física del gradiente= $\vec{\nabla}_{\theta} J(\theta)$
- y los coeficientes los vamos aproximando poco a poco:¹

$$\theta_{\mathsf{nuevo}} := \theta_{\mathsf{antiguo}} + \alpha \ \vec{\nabla}_{\theta} \mathbf{J}(\theta)$$

 $^{^{1}\}alpha$ modula la velocidad de acercamiento

Vamos a desarrollar ahora la fórmula del gradiente:

$$J(\theta) = \frac{1}{2} \sum_{j=1}^{m} (h_{\theta}(x^{j}) - y^{j})^{2}$$

aplicado al gradiente:

$$\vec{\nabla}_{\theta} J(\theta) = \left(\frac{\partial J(\theta)}{\partial \theta_0}, \frac{\partial J(\theta)}{\partial \theta_1}, \dots, \frac{\partial J(\theta)}{\partial \theta_n} \right)$$

que es el vector de todas las derivadas parciales de J, en las direcciones de θ

$$\frac{\partial}{\partial \theta_i} J(\theta)$$

Vamos a desarrollar ahora la fórmula del gradiente:

$$J(\theta) = \frac{1}{2} \sum_{j=1}^{m} (h_{\theta}(x^{j}) - y^{j})^{2}$$

aplicado al gradiente:

$$\vec{\nabla}_{\theta} J(\theta) = \left(\frac{\partial J(\theta)}{\partial \theta_0}, \frac{\partial J(\theta)}{\partial \theta_1}, \dots, \frac{\partial J(\theta)}{\partial \theta_n} \right)$$

que es el vector de todas las derivadas parciales de J, en las direcciones de θ

$$\frac{\partial}{\partial \theta_i} J(\theta)$$

Vamos a desarrollar ahora la fórmula del gradiente:

$$J(\theta) = \frac{1}{2} \sum_{j=1}^{m} (h_{\theta}(x^{j}) - y^{j})^{2}$$

aplicado al gradiente:

$$\vec{\nabla}_{\theta} J(\theta) = \left(\frac{\partial J(\theta)}{\partial \theta_0}, \frac{\partial J(\theta)}{\partial \theta_1}, \dots, \frac{\partial J(\theta)}{\partial \theta_n} \right)$$

que es el vector de todas las derivadas parciales de J, en las direcciones de θ

$$\frac{\partial}{\partial \theta_i} J(\theta)$$

Para un dataset de 1 ejemplo : $(m = 1) J(\theta) = \frac{1}{2} (h_{\theta}(x) - y)^2$

y para la componente
$$i$$
: $\frac{\partial}{\partial \theta_i} J(\theta) = \frac{\partial}{\partial \theta_i} \left(\frac{1}{2} (h_{\theta}(x) - y)^2 \right) =$

$$= 2\frac{1}{2} (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_i} (h_{\theta}(x) - y) = \tag{1}$$

recordando que: $h_{\theta}(\vec{x}) = \sum_{i=0}^{n} \theta_i x_i$

$$= (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_i} (\underbrace{\theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 \cdots + \theta_n x_n}_{h_{\theta}(x)} - y) =$$

Para un dataset de 1 ejemplo : $(m = 1) J(\theta) = \frac{1}{2} (h_{\theta}(x) - y)^2$

y para la componente i: $\frac{\partial}{\partial \theta_i} J(\theta) = \frac{\partial}{\partial \theta_i} \left(\frac{1}{2} (h_{\theta}(x) - y)^2 \right) =$

$$= 2\frac{1}{2}(h_{\theta}(x) - y) \frac{\partial}{\partial \theta_{i}}(h_{\theta}(x) - y) =$$
 (1)

recordando que: $h_{\theta}(\vec{x}) = \sum_{i=0}^{n} \theta_i x_i$

$$= (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_i} (\underbrace{\theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 \cdots + \theta_n x_n}_{h_{\theta}(x)} - y) =$$

Para un dataset de 1 ejemplo : $(m = 1) J(\theta) = \frac{1}{2} (h_{\theta}(x) - y)^2$

y para la componente
$$i$$
: $\frac{\partial}{\partial \theta_i} J(\theta) = \frac{\partial}{\partial \theta_i} \left(\frac{1}{2} (h_{\theta}(x) - y)^2 \right) =$

$$= 2\frac{1}{2}(h_{\theta}(x) - y) \frac{\partial}{\partial \theta_{i}}(h_{\theta}(x) - y) =$$
 (1)

recordando que:
$$h_{\theta}(\vec{x}) = \sum_{i=0}^{n} \theta_{i} x$$

$$= (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_i} (\underbrace{\theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 \cdots + \theta_n x_n}_{h_{\theta}(x)} - y) =$$

Para un dataset de 1 ejemplo : $(m = 1) J(\theta) = \frac{1}{2} (h_{\theta}(x) - y)^2$

y para la componente
$$i$$
: $\frac{\partial}{\partial \theta_i} J(\theta) = \frac{\partial}{\partial \theta_i} \left(\frac{1}{2} (h_{\theta}(x) - y)^2 \right) =$

$$= 2\frac{1}{2}(h_{\theta}(x) - y) \frac{\partial}{\partial \theta_{i}}(h_{\theta}(x) - y) =$$
 (1)

recordando que: $h_{\theta}(\vec{x}) = \sum_{i=0}^{n} \theta_i x_i$

$$= (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_i} (\underbrace{\theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 \cdots + \theta_n x_n}_{h_{\theta}(x)} - y) =$$

Calculamos la derivada primero:

$$\frac{\partial}{\partial \theta_i} \left(\theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n - y \right)$$

Algunas cosillas:

- Es la derivada de sumas y restas...
- "y" NO dependen de θ_i ¿Seguro?
- todos los términos de "h", salvo $\theta_i x_i$, NO dependen de θ_i ¿Seguro?

$$\frac{\partial}{\partial \theta_i} \left(\theta_0 x_0 + \theta_1 x_1 + \dots + \theta_i x_i + \dots + \theta_n x_n - y^0 \right) = \frac{\partial (\theta_i x_i)}{\partial \theta_i} = \mathbf{x_i}$$

Calculamos la derivada primero:

$$\frac{\partial}{\partial \theta_i} \left(\theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n - y \right)$$

Algunas cosillas:

- Es la derivada de sumas y restas...
- "y" NO dependen de θ_i ¿Seguro?
- todos los términos de "h", salvo $\theta_i x_i$, NO dependen de θ_i ¿Seguro?

$$\frac{\partial}{\partial \theta_i} \left(\theta_0 x_0 + \theta_1 x_1 + \dots + \theta_i x_i + \dots + \theta_n x_n - y^0 \right) = \frac{\partial (\theta_i x_i)}{\partial \theta_i} = \mathbf{x_i}$$

Calculamos la derivada primero:

$$\frac{\partial}{\partial \theta_i} \left(\theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n - y \right)$$

Algunas cosillas:

- Es la derivada de sumas y restas...
- "y" NO dependen de θ_i ¿Seguro?
- todos los términos de "h", salvo θ_ix_i, NO dependen de θ_i ¿Seguro?

$$\frac{\partial}{\partial \theta_i} \left(\theta_0 x_0 + \theta_1 x_1 + \dots + \theta_i x_i + \dots + \theta_n x_n - y \right)^0 = \frac{\partial (\theta_i x_i)}{\partial \theta_i} = \mathbf{x_i}$$

Calculamos la derivada primero:

$$\frac{\partial}{\partial \theta_i} \left(\theta_0 x_0 + \theta_1 x_1 + \cdots + \theta_n x_n - y \right)$$

Algunas cosillas:

- Es la derivada de sumas y restas...
- "y" NO dependen de θ_i ¿Seguro?
- todos los términos de "h", salvo θ_ix_i, NO dependen de θ_i ¿Seguro?

$$\frac{\partial}{\partial \theta_i} \left(\theta_0 x_0 + \theta_1 x_1 + \dots + \theta_i x_i + \dots + \theta_n x_n - y^0 \right) = \frac{\partial (\theta_i x_i)}{\partial \theta_i} = \mathbf{x_i}$$

Calculamos la derivada primero:

$$\frac{\partial}{\partial \theta_i} \left(\theta_0 x_0 + \theta_1 x_1 + \cdots + \theta_n x_n - y \right)$$

Algunas cosillas:

- Es la derivada de sumas y restas...
- "y" NO dependen de θ_i ¿Seguro?
- todos los términos de "h", salvo θ_ix_i, NO dependen de θ_i ¿Seguro?

$$\frac{\partial}{\partial \theta_i} \left(\theta_0 x_0 + \theta_1 x_1 + \dots + \theta_i x_i + \dots + \theta_n x_n - y \right)^0 = \frac{\partial (\theta_i x_i)}{\partial \theta_i} = \mathbf{x_i}$$

Calculamos la derivada primero:

$$\frac{\partial}{\partial \theta_i} \left(\theta_0 x_0 + \theta_1 x_1 + \cdots + \theta_n x_n - y \right)$$

Algunas cosillas:

- Es la derivada de sumas y restas...
- "**y**" NO dependen de θ_i ¿Seguro?
- todos los términos de "h", salvo θ_ix_i, NO dependen de θ_i ¿Seguro?

$$\frac{\partial}{\partial \theta_i} \left(\theta_0 x_0 + \theta_1 x_1 + \dots + \theta_i x_i + \dots + \theta_n x_n - y^0 \right) = \frac{\partial (\theta_i x_i)}{\partial \theta_i} = \mathbf{x_i}$$

Calculamos la derivada primero:

$$\frac{\partial}{\partial \theta_i} \left(\theta_0 x_0 + \theta_1 x_1 + \cdots + \theta_n x_n - y \right)$$

Algunas cosillas:

- Es la derivada de sumas y restas...
- "**y**" NO dependen de θ_i ¿Seguro?
- todos los términos de "h", salvo θ_ix_i, NO dependen de θ_i ¿Seguro?

$$\frac{\partial}{\partial \theta_i} \left(\theta_0 x_0 + \theta_1 x_1 + \dots + \theta_i x_i + \dots + \theta_n x_n - y \right)^0 = \frac{\partial (\theta_i x_i)}{\partial \theta_i} = \mathbf{x_i}$$

La fórmula del gradiente (ec. 1) (en la componente i) queda:

$$\frac{\partial}{\partial \theta_i} J(\theta) = (h_{\theta}(x) - y) x_i$$

La actualización de los parámetros queda como:

$$\theta_i' := \theta_i + \alpha(h_\theta(x) - y)x_i$$

Extendiendo para m ejemplos:

$$\theta'_i := \theta_i + \alpha \sum_{j=1}^m (h_{\theta}(x^j) - y^j) x_i^j$$

y calculando los "n+1" coeficientes para los "ŋ" aṭrjbutos, $\frac{1}{2}$ $\frac{1}{2}$

La fórmula del gradiente (ec. 1) (en la componente i) queda:

$$\frac{\partial}{\partial \theta_i} J(\theta) = (h_{\theta}(x) - y) x_i$$

La actualización de los parámetros queda como:

$$\theta_i' := \theta_i + \alpha (h_\theta(x) - y) x_i$$

Extendiendo para m ejemplos:

$$\theta'_i := \theta_i + \alpha \sum_{j=1}^m (h_\theta(x^j) - y^j) x_i^j$$

y calculando los "n+1" coeficientes para los " η " atributos, η η η

Gradiente

La fórmula del gradiente (ec. 1) (en la componente i) queda:

$$\frac{\partial}{\partial \theta_i} J(\theta) = (h_{\theta}(x) - y) x_i$$

La actualización de los parámetros queda como:

$$\theta_i' := \theta_i + \alpha (h_\theta(x) - y) x_i$$

Extendiendo para m ejemplos:

$$\theta'_i := \theta_i + \alpha \sum_{j=1}^m (h_{\theta}(x^j) - y^j) x_i^j$$

y calculando los "n+1" coeficientes para los "ŋ" atributos, $\frac{1}{2}$ $\frac{1}{2}$

Gradiente

La fórmula del gradiente (ec. 1) (en la componente i) queda:

$$\frac{\partial}{\partial \theta_i} J(\theta) = (h_{\theta}(x) - y) x_i$$

La actualización de los parámetros queda como:

$$\theta_i' := \theta_i + \alpha (h_\theta(x) - y) x_i$$

Extendiendo para m ejemplos:

$$\theta_i' := \theta_i + \alpha \sum_{j=1}^m (h_{\theta}(x^j) - y^j) x_i^j$$

y calculando los "n + 1" coeficientes para los "n" atributos.

Algoritmo

Escribiendo esto en una primera aproximación...

```
theta[i] = init()
repeat until convergence {
    for i=0 to n {
        theta[i] := Actualizacion[i]
    }
}
```

Este es el algoritmo Descenso por gradiente

Ejemplo

Volviendo al ejemplo del precio de las casas:

Representamos los valores de $h_{\theta}(x)$ en función de las distintas iteraciones.

Ejemplo

Si representamos el error:

- Este algoritmo procesa **todos** los ejemplos por **cada** nueva **asignación** de parámetro (θ_i) .
- En cada iteración, se hacen **m** × **n** actualizaciones
- No es aconsejable en datasets grandes
- Con el objeto de evitar mínimos locales, el init puede ser a random
- Debemos buscar una ALTERNATIVA

- Este algoritmo procesa todos los ejemplos por cada nueva asignación de parámetro (θ_i).
- En cada iteración, se hacen **m** × **n** actualizaciones
- No es aconsejable en datasets grandes
- Con el objeto de evitar mínimos locales, el init puede ser a random
- Debemos buscar una ALTERNATIVA

- Este algoritmo procesa todos los ejemplos por cada nueva asignación de parámetro (θ_i).
- En cada iteración, se hacen **m** × **n** actualizaciones
- No es aconsejable en datasets grandes
- Con el objeto de evitar mínimos locales, el init puede ser a random
- Debemos buscar una ALTERNATIVA

- Este algoritmo procesa todos los ejemplos por cada nueva asignación de parámetro (θ_i).
- En cada iteración, se hacen **m** × **n** actualizaciones
- No es aconsejable en datasets grandes
- Con el objeto de evitar mínimos locales, el init puede ser a random
- Debemos buscar una ALTERNATIVA

- Este algoritmo procesa todos los ejemplos por cada nueva asignación de parámetro (θ_i).
- En cada iteración, se hacen **m** × **n** actualizaciones
- No es aconsejable en datasets grandes
- Con el objeto de evitar mínimos locales, el init puede ser a random
- Debemos buscar una ALTERNATIVA

Índice

- Introducción
- 2 Teoría linea
- 3 Descenso por gradiente
- Descenso por gradiente Estocástico
- Ecuaciones normales

(Batch) Descenso de Gradiente Estocástico

- Consiste en actualizar los parámetros θ_i para cada uno de los ejemplos, en lugar de actualizarlos al final.
- El ejemplo es elegido al azar
- Si el número de ejemplos es bastante mayor que el de atributos, la solución también converge, y , generalment, más rápido

(Batch) Descenso de Gradiente Estocástico

- Consiste en actualizar los parámetros θ_i para cada uno de los ejemplos, en lugar de actualizarlos al final.
- El ejemplo es elegido al azar
- Si el número de ejemplos es bastante mayor que el de atributos, la solución también converge, y , generalment, más rápido

(Batch) Descenso de Gradiente Estocástico

- Consiste en actualizar los parámetros θ_i para cada uno de los ejemplos, en lugar de actualizarlos al final.
- El ejemplo es elegido al azar
- Si el número de ejemplos es bastante mayor que el de atributos, la solución también converge, y , generalment, más rápido

Descenso de Gradiente Estocástico

Interpretación física del concepto

Comparativa

Num.	Descenso por Gradiente	Descenso Estocástico
1.	Calcula el gradiente usando toda la muestra de entre- namiento	Calcula el gradiente usando una sola muestra de entrenamiento
2.	Algoritmo lento y computacionalmente costoso	Más rápido y menos computacionalmente costoso que Batch GD
3.	No sugerido para muestras de entrenamiento grandes.	Puede utilizarse para grandes muestras de entrenamiento.
4.	De naturaleza determinista.	De naturaleza estocástica.
5.	Proporciona una solución óptima con el tiempo sufi- ciente para converger.	Da una buena solución pero no óptima.
6.	No se requiere una mezcla aleatoria de puntos.	La muestra de datos debe estar en un orden aleatorio, y es por eso que queremos mezclar el conjunto de entrenamiento para cada <i>epoch</i> .
7.	No se puede escapar fácilmente de los mínimos loca- les poco profundos.	puede escapar de los mínimos locales poco profundos más fácilmente.
8.	La convergencia es lenta.	Alcanza la convergencia mucho más rápido.

Índice

- Introducción
- Teoría lineal
- Descenso por gradiente
- 4 Descenso por gradiente Estocástico
- Ecuaciones normales

- Existe una alternativa al método iterativo, que es el método analítico.
- Buscar la forma general de resolución de la ecuación de minimización.
- Son los métodos usados, generalmente, en estadística

Resolución general de:

$$\theta := \theta + \alpha \nabla_{\theta} J(\theta)$$

Un poco de notación

• Fórmula de actualización (para 1 ejemplo):

$$\underbrace{\theta}_{\in \mathbb{R}^{n+1}} := \theta + \underbrace{\alpha}_{\in \mathbb{R}} \underbrace{\nabla_{\theta} J(\theta)}_{\in \mathbb{R}^{n+1}}$$

• Fórmula general del gradiente:

$$\theta = \begin{bmatrix} \theta_0 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1} \quad \nabla_{\theta} J(\theta) = \begin{bmatrix} \frac{\partial J}{\partial \theta_0} \\ \vdots \\ \frac{\partial J}{\partial \theta_n} \end{bmatrix} \in \mathbb{R}^{n+1}$$

Un poco de notación

Fórmula de actualización (para 1 ejemplo):

$$\underbrace{\theta}_{\in \mathbb{R}^{n+1}} := \theta + \underbrace{\alpha}_{\in \mathbb{R}} \underbrace{\nabla_{\theta} J(\theta)}_{\in \mathbb{R}^{n+1}}$$

Fórmula general del gradiente:

$$\theta = \begin{bmatrix} \theta_0 \\ \vdots \\ \theta_n \end{bmatrix} \quad \in \mathbb{R}^{n+1} \quad \nabla_{\theta} J(\theta) = \begin{bmatrix} \frac{\partial J}{\partial \theta_0} \\ \vdots \\ \frac{\partial J}{\partial \theta_n} \end{bmatrix} \quad \in \mathbb{R}^{n+1}$$

Desarrollo de Ecuaciones Normales

$$h(\theta) = X \cdot \theta = \overbrace{\begin{bmatrix} x_0^1 & \cdots & x_i^1 & \cdots & x_n^1 \\ \vdots & \cdots & \vdots & \cdots & \vdots \\ x_0^m & \cdots & x_i^m & \cdots & x_n^m \end{bmatrix}}^{dataset} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix} = \begin{bmatrix} x^1 \cdot \theta \\ \vdots \\ x^m \cdot \theta \end{bmatrix} =$$

$$\begin{vmatrix} \sum_{i=0}^{n} \theta_i^1 x_i^1 \\ \vdots \\ \sum_{i=0}^{n} \theta_i^m x_i^m \end{vmatrix} = \begin{bmatrix} h_{\theta}(x^1) \\ \vdots \\ h_{\theta}(x^m) \end{bmatrix} \in \mathbb{R}^m$$

Desarrollo de Ecuaciones Normales

$$X \cdot \theta - y = \begin{bmatrix} h(x^1) - y^1 \\ \vdots \\ h(x^m) - y^m \end{bmatrix}$$

y sabiendo que $z^t \cdot z = \sum_{j=0}^{n} (z_i^2)$

$$\frac{1}{2}(h_{\theta}(x)-y)^{t}(h_{\theta}(x)-y)=\frac{1}{2}\sum_{j=1}^{m}\left(h(x^{j})-y^{j}\right)^{2}=J(\theta)$$

$$J(\theta) = \frac{1}{2}(X\theta - y)^t(X\theta - y)$$

Minimizando $J(\theta)$

Ahora debemos de obtener el mínimo de $J(\theta)$, y para ello se debe de cumplir que:

$$\nabla_{\theta} J(\theta) = 0$$

Sustituyendo y calculando...

$$abla_{ heta}(rac{1}{2}(X heta-y)^t(X heta-y)) =
onumber \ rac{1}{2}
abla_{ heta}(tr(heta^tX^tX heta- heta^tX^ty\dots
onumber \ \dots = 0
onumber \
onumber$$

Minimizando $J(\theta)$

Obteniendo...

$$\nabla_{\theta} J(\theta) = X^t X \theta - X^t y = 0$$

o lo que es lo mismo, la ecuación normal:

$$X^t X \theta = X^t y$$

$$\theta = (X^t X)^{-1} X^t y$$

- Es una definición **analítica** de θ ,
- NO necesitamos un algoritmo iterativo
 - con cualquier libreria de matrices, es una simple orden
 - en Matlab: Inv(X'*X)*X'*y

$$\theta = (X^t X)^{-1} X^t y$$

- Es una definición **analítica** de θ ,
- NO necesitamos un algoritmo iterativo
 - con cualquier librería de matrices, es una simple orden
 - en Matlab: inv(X' * X) * X' * y

$$\theta = (X^t X)^{-1} X^t y$$

- Es una definición **analítica** de θ ,
- NO necesitamos un algoritmo iterativo
 - con cualquier librería de matrices, es una simple orden
 - en Matlab: inv(X' * X) * X' * y

$$\theta = (X^t X)^{-1} X^t y$$

- Es una definición **analítica** de θ ,
- NO necesitamos un algoritmo iterativo
 - con cualquier librería de matrices, es una simple orden
 - en Matlab: inv(X' * X) * X' * y

Algunas preguntas

$$\theta = (X^t X)^{-1} X^t y$$

- ¿Es invertible la matriz (X^tX) ?
- Realmente ¿se puede hacer $\nabla_{\theta} J(\theta) = 0$?

Algunas preguntas

$$\theta = (X^t X)^{-1} X^t y$$

- ¿Es invertible la matriz (X^tX) ?
- Realmente ¿se puede hacer $\nabla_{\theta} J(\theta) = 0$?

Algunas preguntas

$$\theta = (X^t X)^{-1} X^t y$$

- ¿Es invertible la matriz (X^tX) ?
- Realmente ¿se puede hacer $\nabla_{\theta} J(\theta) = 0$?