

Práctica

USO E INTERPRETACIÓN DE VARIABLES ARTIFICIALES

Resumen Simplex Revisado:

- Conocemos c_i, b_i, a_{ii} (datos originales del problema)
- Sabemos en la SOLUCIÓN BÁSICA ACTUAL cuales son las
 - \rightarrow Conocemos B y calculamos B-1 \rightarrow $X_B = B-1 b$
 - $\rightarrow Z = C_B^t X_B$
 - 1 Calcular $c_j z_j$ donde $z_j = (c_B^t B^{-1}) a_j \rightarrow JE$
 - 2 Calcular Y_{JE} asociado a la variable que entra en la base: $Y_{JE} = B^{-1} a_{j}$
 - 3 Calcular $\frac{X_B}{Y_{JE}} \rightarrow S$
- Sabemos en la NUEVA SOLUCIÓN BÁSICA cuales son las
 - $^{\square}$ $\stackrel{\mathsf{VB}}{\longrightarrow}$ Conocemos B y calculamos B^{-1} $\stackrel{\mathsf{X}}{\longrightarrow}$ X_B = B^{-1} b
 - VNB

$$\rightarrow Z = c_B^t X_B$$

Problema 0

Un problema de Producción:

Una empresa de maquinaria produce en una de sus plantas 3 tipos de máquinas de precisión.

La planta de fabricación está dividida en dos secciones que son:

Sección 1: Mecanizado

Sección 2: Montaje

Para producir cada una de las máquinas de precisión, el número de horas necesario en cada

sección y la capacidad de cada sección (en horas) es el siguiente:

	Sección Mecanizado (horas/unidad)	Sección Montaje (horas/unidad)
Máquina de precisión 1	4	6
Máquina de precisión 2	1	1
Máquina de precisión 3	2	2
Capacidad (horas)	160	180

Los beneficios unitarios por máquina son de 50, 25 y 20 unidades monetarias respectivamente.

Sabiendo que la empresa puede vender toda su producción semanal, determinar cuántas unidades de cada máquina debe fabricar semanalmente la empresa para maximizar su beneficio.

1. Formular el modelo matemático del problema. Una vez expresado en forma estándar, ¿Cuál es el valor de **n** y **m** en el problema?

X1 = N° de máquinas tipo 1 a fabricar X2 = N° de máquinas tipo 2 a fabricar X3 = N° de máquinas tipo 3 a fabricar

En forma general:

MAX =
$$50*X1 + 25*X2 + 20*X3$$
;
s.a:
[MEC] $4*X1 + X2 + 2*X3 \le 160$;
[MONT] $6*X1 + X2 + 2*X3 \le 180$;

En forma estándar:

SOLUCIÓN BASICA 0:

VB (X4, X5) VNB (X1, X2, X3)

v.básicas	B-1	X _B	
X4	1 0		160
X5	0 1		180
C _B ^t B ⁻¹	0	0	Z = 0

 SB_0 : (0,0,0,160,180); Z = 0

JE: X1 IS: X5

Prueba Optimalidad:

$$c_{X1}-z_{X1} = 50$$

$$c_{x2}$$
- z_{x2} = 25 \rightarrow JE: X1

$$c_{X3}-z_{X3}=20$$

Determinar IS:

$$\mathbf{Y_{x1}} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$$

MAX =
$$50*$$
X1 + $25*$ X2 + $20*$ X3 $0*$ X4 $0*$ X5; s.a:

[MEC] $4*$ X1 + $1*$ X2 + $2*$ X3 + $1*$ X4 + $0*$ X5 = $160*$, [MONT] $6*$ X1 + $1*$ X2 + $2*$ X3 + $0*$ X4 + $1*$ X5 = $180*$

oritmo Simplex Revisado.

las variables y

SOLUCIÓN BASICA 0:

VB (X4, X5)

X4

VNB (X1 Y2 Y2)

Prueba Optimalidad:

 $c_{X2}-z_{X2} = 50/3$

v.básic c_{X3} - z_{X3} = 10/3 \rightarrow JE: X2

 $c_{X5}-z_{X5} = -50/6$

X5 C₋^t B Determinar IS:

 $\mathbf{SB_0}$: (0,0 $\mathbf{Y_{x2}} = \begin{bmatrix} 1/3 \\ 1/6 \end{bmatrix}$

IS:X5

SOLUCIÓN BASICA 1:

VB (X4, X1) VNB (X2, X3, X5)

v.básicas	B-1		X _B
X4	1 -2/3		40
X1	0 1/6		30
C _B ^t B ⁻¹	0	50/6	Z = 1500

 SB_1 : (30,0,0,40,0); Z = 1500

JE: X2 IS: X4

oritmo Simplex Revisado.

las variables y

SOLUCIÓN BASICA 2:

VB (X2, X1) VNB (X4, X3, X5)

v.básicas	B-1		X _B
X2	3 -2		120
X1	-1/2 1/2		10
C _B ^t B ⁻¹	50	-25	Z = 3500

SB₂: (10,120,0,0,0); Z= 3500

JE: X5 IS: X1

Prueba Optimalidad:

 $c_{X3}-z_{X3} = -30$

 $c_{X4}-z_{X4} = -50 \rightarrow JE: X5$

 $c_{X5}-z_{X5}=25$

Determinar IS:

$$\mathbf{Y_{x5}} = \begin{bmatrix} -2 \\ 1/2 \end{bmatrix}$$

MAX =
$$50*$$
X1 + $25*$ X2 + $20*$ X3 $0*$ X4 $0*$ X5; s.a:

[MEC] $4*$ X1 + $1*$ X2 + $2*$ X3 + $1*$ X4 + $0*$ X5 = $160*$, [MONT] $6*$ X1 + $1*$ X2 + $2*$ X3 + $0*$ X4 + $1*$ X5 = $180*$

SOLUCIÓN BASICA 2:

VB (X2, X1) VNB (X4, X3, X5)

v.básicas	В	-1	X _B
X2	3 -2		120
X1	-1/2 1/2		10
C _B ^t B ⁻¹	50	-25	Z = 3500

SB₂: (10,120,0,0,0); Z= 3500

JE: X5 IS: X1

oritmo Simplex Revisado.

las variables y

SOLUCIÓN BASICA 3:

/B (X2, X5) VNB (X4, X3, X1)

v.básicas	B-1		X B
X2	1 0		160
X5	-1 1		20
C _B ^t B ⁻¹	25	0	Z = 4000

Cx1-Zx1 = -50

Cx3-Zx3 = -30

CX4-Zx4 = -25

SB₃: (0,160,0,0,20); Z=4000

SOLUCIÓN ÓPTIMA

INFORME LINGO:

```
MAX = 50*X1 + 25*X2 + 20*X3;

[MEC] 4*X1 + X2 + 2*X3 < 160;

[MONT] 6*X1 + X2 + 2*X3 < 180;
```

Objective value: 4000.000

Variable	Value	Reduced Cost
X1	0 .000000	50 .00000
X2	160 .0000	0.000000
X3	0 .000000	30 .00000

Row	Slack or Surplus	Dual Price
1	4000 .000	1 .000000
MEC	0 .000000	25 .00000
MONT	20 .00000	0 .000000

Problema@

Dado el siguiente programa lineal:

Min 3 X1 + 2 X2
s.a:

$$[R_1] 2 X1 + X2 \le 10$$

 $[R_2] -3 X1 + 2 X2 = 6$
 $[R_3] X1 + X2 \ge 6$
X1, X2 \geq 0

1. Obtener la solución óptima mediante el método gráfico. Identificar las restricciones, la región factible y la solución óptima.

Región factible

Solución

Tipo de solucion : Solución óptima

Funcion objetivo: 13,2

Valor X1 : 1,2

Valor X2 : 4,8

2. Plantear el modelo matemático ampliado

 $X1, X2, X3, X4, Xa, Xb \ge 0$

3. Obtener la solución óptima aplicando el método de las 2 fases. Identifica sobre la solución gráfica la secuencia de soluciones básicas obtenida.

SB₀:

V. Básicas		B ⁻¹		X _B	Y _{X2}	X _B /Y _{X2}
X3	1	0	0	10	1	10
Xa	0	1	0	6	2	3
Xb	0	0	1	6	1	6
C ^t _B B ⁻¹	0	1	1	Z =	= 12	

$$C_B^tB^{-1} = (0, 1, 1)$$

$$C_{X1}$$
- Z_{X1} = 0 + 2 = 2
 C_{X2} - Z_{X2} = 0 - 3 = -3
 C_{X4} - Z_{X4} = 0 + 1 = 1

3. Obtener la solución óptima aplicando el método de las 2 fases. Identifica sobre la solución gráfica la secuencia de soluciones básicas obtenida.

SB₁: •

V. Básicas		B ⁻¹		X _B	Y _{X1}	X _B /Y _{X1}
X3	1	-1/2	0	7	7/2	2
X2	0	1/2	0	3	-3/2	
Xb	0	-1/2	1	3	5/2	6/5=1,2
C ^t _B B ⁻¹	0	-1/2	1	Z	= 3	-

$$C_B^tB^{-1} = (0, -1/2, 1)$$

$$C_{X1}$$
- Z_{X1} = 0 - 5/2 = -5/2
 C_{X4} - Z_{X4} = 0 + 1 = 1

$$C_{X4} - Z_{X4} = 0 + 1 = 1$$

3. Obtener la solución óptima aplicando el método de las 2 fases. Identifica sobre la solución gráfica la secuencia de soluciones básicas obtenida.

SB₂:

V. Básicas		B -1		X _B
X3	1	1/5	-7/5	14/5 = 2.8
X2	0	1/5	3/5	24/5 = 4.8
X1	0	-1/5	2/5	6/5 = 1.2
C ^t _B B ⁻¹				Z = 0

SOLUCIÓN ÓPTIMA FASE 1

3. Obtener la solución óptima aplicando el método de las 2 fases. Identifica sobre la solución gráfica la secuencia de soluciones básicas obtenida.

SB₂:

V. Básicas		B ⁻¹	,	X _B
X3	1	1/5	-7/5	14/5 = 2.8
X2	0	1/5	3/5	24/5 = 4.8
X1	0	-1/5	2/5	6/5 = 1.2
C ^t _B B ⁻¹	0	-1/5	12/5	Z = 66/5 = 13,2

$$C_B^{t}B^{-1} = (0, -1/5, 12/5)$$

$$C_{X4}$$
- Z_{X4} = 0 + 12/5 = +12/5 = +2,4

SOLUCIÓN ÓPTIMA

4. A la vista de la secuencia de soluciones, ¿cuál es el efecto -sobre la región factible y sobre la factibilidad de cada solución- de haber añadido las variables artificiales al modelo matemático?

4.

4.

Efecto de añadir variables artificiales:

AUMENTAR LA REGIÓN FACTIBLE PARA QUE LA SB₀ (la solución trivial) SEA FACTIBLE

Restricción =:
Como si fuera ≤

4.

Efecto de añadir variables artificiales:

AUMENTAR LA REGIÓN FACTIBLE PARA QUE LA SB₀ (la solución trivial) SEA FACTIBLE

Restricción =: Como si fuera ≤

Restricción ≥: Como si no existiera

La solución SB₀ es FACTIBLE para el modelo ampliado y NO FACTIBLE para el modelo original 4

La variable artificial de la restricción = sale de la base:

SE REDUCE LA REGIÓN FACTIBLE AMPLIADA

A partir de esta iteración la restricción = tiene efecto

La solución SB₁ es FACTIBLE para el modelo ampliado y NO FACTIBLE para el modelo original 4

La variable artificial de la restricción ≥ sale de la base:

SE REDUCE LA REGIÓN FACTIBLE AMPLIADA Y SE OBTIENE LA ORIGINAL

A partir de esta iteración la restricción ≥ tiene efecto

La solución SB₂ es FACTIBLE para el modelo original