Sieťový systém v otvorenom kóde na efektívne rozpoznávanie markantov v daktyloskopických stopách - pre metódu "neurónové siete"

Diplomový projekt

Autor: Bc. Gergely Czakó

Vedúci: Ing. Alexander Hambalík, PhD.

Obsah

- Ciele práce a motivácia
- Navrhnuté riešenie
 - Sieťový systém
 - Predspracovania obrazu odtlačku
 - Neurónová sieť na rozpoznávanie markantov
- Dosiahnuté výsledky
 - Fáza predspracovanie obrazu odtlačku
 - Fáza rozpoznávanie markantok
- Ukážka reálneho výstupu

Ciele práce

- ✓ Naštudovať problematiku snímania, generovania, spracovania a rekonštrukcie odtlačkov prstov
- ✓ Navrhnúť a implementovať sieťový systém v otvorenom kóde na automatizované spracovanie odtlačkov prstov:
 - ✓ Fáza 1: Predspracovanie obrazu odtlačku
 - √ Fáza 2: Rozpoznávanie markantov pomocou neurónovej siete
 - ✓ Fáza 3: Sieťový systém
- ✓ Otestovať systém v praxi a vyhodnotiť získané výsledky

Motivácia

- Jednotné sieťové prostredie pre systémy na detailnú analýzu a spracovanie odtlačkov prstov
- Zahrnutie neurónových sietí do softvéru pre spracovanie odtlačkov:
 - Neurónové siete majú vlastnosť "naučiť sa" zložitý vzťah medzi vstupmi a výstupmi z dostatočného množstva príkladov
 - praxou overená schopnosť rozpoznávať komplexné vzory
 - schopnosť tolerovať tvarovú odchýlku (nachádza využitie pri tzv. vnútro-triednej variabilite odtlačkov prstov)

Navrhnutý sieťový systém

- Systém implementovaný v operačnom systéme linux:
 - Ubuntu 12.04
- Prístup do systému pomocou webového rozhrania implementovaná v jazyku Python a HTML:
 - webový framework Django
- Ukladanie výstupov do relačnej súborovej databázy:
 - SQLite3
- Predspracovanie obrazu odtlačku v jazyku C++:
 - Použitá knižnica OpenCV 2.4.9
- Rozpoznávanie markantov neurónové siete v jazyku C++:
 - Použitá knižnica FANN 2.2.0

Bloková schéma

Predloha úvodnej stránky webového rozhrania

Showing 11 to 11 of 11 entries

Fingerprint processing Open source network system for effective recognition of minutiae in fingerprints – with method neural network Upload image List of images: Parameters: Select a file: only image(.bmp, .jpg,...) documents/01.jpg Parametre default nasavene documents/fingerprint-thinning.bmp Choose File No file chosen documents/02.jpg Parametre pre komplet spracovanie odtlacku documents/fingerprint-thinning3.bmp Set new parameters ■ Train Neural Network - create and save new netfiles for FANN Select image for delete: documents/01.jpg Task list Show 10 ▼ entries Search: Task ID Action State Algorithm parameters Date documents/fingerprint-thinning.bmp COMPLETED Parametre pre komplet spracovanie odtlacku May 14, 2016 Detail Delete

Postup spracovania odtlačku podľa nami navrhnutého riešenia

Postup predspracovania odtlačku s výstupnými obrazmi

Rozpoznávanie markantov

- Rozpoznávať tvary markantov v menších lokalitách (blokoch) odtlačku pomocou neurónových sietí
- Základný problém pri rozpoznávaní vzorov odtlačku:
 - 1 vzor = N reprezentácií (vždy iné podmienky snímania)
 - Obmedzený počet použiteľných neurónov
- Trénovanie neurónovej siete ako aj rozpoznávanie markantov rozdelená na:
 - Základné markanty
 - Komplexné markanty

Princíp tvorby trénovacej vzorky

 Veľkosť obrazového bloku závisí od typu rozpoznávaného markantu

Trénovanie

- Celkový počet trénovacích vzoriek: 80
 - Rozdvojenie: 40 vzoriek
 - Ukončenie: 8 vzoriek
 - Prerušenie: 16 vzoriek
 - Premostenie: 8 vzoriek
 - Prekríženie: 8 vzoriek
- Trénovacie vzorky zahŕňajú rôzne rotácie a veľkosti markantov

Dosiahnuté výsledky – predspracovanie (1)

Výstupy po segmentácií obrazu odtlačku

a)Odstránenie pozadia b)Hrubý obrys pozadia c)Vyhladený obrys pozadia

Dosiahnuté výsledky – predspracovanie (2)

Smerová mapa a výstup z Gáborovho filtra
(Veľkosť bloku smerová mapa = 31, blok Gáborov filter = 39, Sigma = 7, lambda = 15, gamma = 1)

Dosiahnuté výsledky – predspracovanie (3)

Binarizácia a zúženie papilárnych línií

Testovanie

 Priemerný čas vykonávania operácií vo fáze predspracovania obrazu odtlačku závislosti od rozlíšenia obrázku

Rozlišenie obrazu	777x934	1056x959	1396x1294
Segmentácia obrazu	1 sek.	1 sek.	1 sek.
Smerová mapa	40 sek.	60 sek.	90 sek.
Gáborov filter	140 sek.	210 sek.	360 sek.
Binarizácia	1 sek.	1 sek.	1 sek.
Zužovanie papilárnych línií	1 sek.	1 sek.	2 sek.

Dosiahnuté výsledky – rozpoznávanie základných markantov

Markanty: Ukončenie a rozdvojenie

Dosiahnuté výsledky – rozpoznávanie komplexných markantov

Pôvodná kostra Ukážka extrakcie Ukážka extrakcie premostenie prekríženie Ukážka extrakcie prerušenie

Ukážka reálneho výstupu

Ďakujem za pozornosť

Nastavenie parametrov

Detail nastavených parametrov

Detail parameters Parametre pre komplet spracovanie odtlacku Kompletne zbehnutie aplikacie: preprocessing trenovanie neuronova siet Size of block orientation: 31 Size of block Gabor: 39 Sigma: 7 Lambda: 15.0 Gamma: 1.0 Number of inputs Basic NN: 9 Number of outputs Basic NN: 2 Number of layers Basic NN: 3 Number of hidden neurons for Basic NN: 15 Number of inputs Complex NN: 2601 Number of outputs Complex NN: 3 Number of layers Complex NN: 3 Number of hidden neurons for Complex NN: 3500 Desired error: 0.0001 Max number of epochs: 5000 Activation function hidden: FANN SIGMOID SYMMETRIC Activation function output: FANN_SIGMOID_SYMMETRIC back to homepage