Task: Rice Hub

Proposed by: Christain Kauth

The key insight to solving this problem is the observation that for any K rice fields located at $r_0 \leq r_1 \leq \cdots \leq r_{K-1}$, the transportation cost from all these K fields is minimized by placing the rice hub at a median. For example, when K=1, the hub should be at r_0 , and when K=2, placing it between r_0 and r_1 is optimal. In this problem, we will place the rice hub at $r_{\lfloor K/2 \rfloor}$ for simplicity. Following this observation, we denote a solution by a sequence $S \subseteq \langle r_0, \ldots, r_{R-1} \rangle$ and let |S| denote the length of S, which is the solution's value (the number of rice fields whose rice will be transported to the hub). The cost of S is $cost(S) = \sum_{r_j \in S} |r_j - h(S)|$, where h(S) is the $\lfloor |S|/2 \rfloor$ -th element of S.

1 An $O(R^3)$ solution

Armed with this, we can solve the task by a guess-and-verify algorithm. We try all possible lengths of S (ranging between 1 and R). Next observe that in any optimal solution S^* , the rice fields involved must be contiguous; that is, S^* is necessarily $\langle r_s, r_{s+1}, \ldots, r_t \rangle$ for some $0 \le s \le t \le R-1$. Therefore, there are R-K+1 solutions of length K. For each choice of S, we compute h(S) and the transportation cost in O(|S|) time and check if it is within the budget B. This leads to an $O(R^3)$ algorithm, which suffices to solve subtask 2.

2 An $O(R^2)$ solution

To improve it to $O(R^2)$, we will speed up the computation of $\cos(S)$. Notice that we are only dealing with consecutive rice fields. Thus, for each S, the $\cos(S)$ can be computed in O(1) after precomputing certain prefix sums. Specifically, let T[i] be the sum of all coordinates to the left of rice field i, i.e., T[0] = 0 and $T[i] = \sum_{j=0}^{i-1} X[j]$. Then, if $S = \langle r_s, \dots, r_t \rangle$, $\cos(S)$ is given by $(p-s)r_p - (T[p]-T[s]) + (T[t+1]-T[p+1]) - (t-p)r_p$, where $p = \lfloor (s+t)/2 \rfloor$. This $O(R^2)$ algorithm suffices to solve subtask 3.

3 An $O(R \log R)$ solution

Applying a binary search to find the right length in place of a linear search improves the running time to $O(R \log R)$ and suffices to solve all subtasks.

Day 1 Solution Task: Rice Hub

4 An O(R) solution

We replace binary search with a variant of linear search carefully designed to take advantage of the feedback obtained each time we examine a combination of rice fields. In particular, imagine adding in the rice fields one by one. In iteration i, we add r_i and find (1) S_i^* , the best solution that uses only (a subsequence of) the first i rice fields (i.e., $S_i^* \subseteq \langle r_0, \ldots, r_i - 1 \rangle$), and (2) S_i , the best solution that uses only (a subsequence of) the first i rice fields and contains $r_i - 1$. This can be computed inductively as follows. As a base case, when i = 0, both S_i and S_i^* are just $\langle r_0 \rangle$ and cost 0, which is within the budget $B \ge 0$. For the inductive case, assume that S_i^* and S_i are known. Now consider that S_{i+1} is S_i appended with r_i , denoted by $S_i \cdot r_i$, if the cost $\cos(S_i \cdot r_i)$ is at most B, or otherwise it is the longest prefix of $S_i \cdot r_i$ that costs at most B. Futhermore, S_{i+1}^* is the better of S_i^* and S_{i+1} . To implement this, we represent each S_i by its starting point s and ending point s; thus, each iteration involves incrementing s and possibly s, but s is always at most s. Since $\cos(\langle r_i, \ldots, r_t \rangle)$ takes s of s of this algorithm is s of s and suffices to solve all subtasks.