Trabajo Práctico Nº 3 Análisis Matemático

Tomás Pitinari

1 Enunciados

1) Dados $a \in \mathbb{R}$ y $b \in \mathbb{R}$ se considera la función $h : \mathbb{R} \to \mathbb{R}$, definida entre:

$$h(x) = \begin{cases} x^2 + 4x + 2 & \text{si } x < -1\\ ax + b & \text{si } |x| \le 1\\ -x^2 + 4x - 6 & \text{si } x > 1 \end{cases}$$
 (1)

- a) Representar gráficamente la función h para x < 1 y x > 1.
- b) A partir de la gráfica obtenida, determinar a y b de manera que existan $\lim_{x\to -1}h(x)$ y $\lim_{x\to 1}h(x)$.
- c) Con los valores de a y b obtenidos en el apartado anterior, realizar la gráfica de la función h.
- 2) Utilizando la definición de límite finito en un punto, demostrar el límite $\lim_{x\to 4}(18-2x)=10.$

2 Resolución

1) a) Si analizo x^2+4x+2 , puedo llegar a que: $x^2+4x+2=x^2+4x+2+0$ (elemento neutro de la suma) $x^2+4x+2=x^2+4x+2+(2-2)$ (suma del opuesto) $x^2+4x+2=x^2+4x+(2+2)-2$ (asociativa) $x^2+4x+2=(x^2+4x+4)-2$ (trinomio cuadrado perfecto) $x^2+4x+2=(x+2)^2-2$ Inicio graficando x^2 :

Luego grafico $(x+2)^2$, lo que produce un corrimiento hacia la izquierda en 2 unidades:

Finalmente grafico $(x+2)^2-2$, que genera un corrimiento hacia abajo en 2 unidades:

Ahora busco una función equivalente a $-(x^2) + 4 * x - 6$:

$$-(x^2) + 4x - 6 = (-1)(x^2 - 4x + 6)$$

$$-(x^2) + 4x - 6 = -(x^2 - 4x + 6 + 0)$$
 (elemento neutro de la suma)

$$-(x^2) + 4x - 6 = -(x^2 - 4x + 6 + (2 - 2))$$
 (opuesto de la suma)

$$-(x^2) + 4x - 6 = -(x^2 - 4x + (6 - 2) + 2)$$
 (asociativa)

Ahora busco una función equivalente a
$$-(x^2) + 4 * x - 6$$
: $-(x^2) + 4x - 6 = (-1).(x^2 - 4x + 6)$ $-(x^2) + 4x - 6 = -(x^2 - 4x + 6 + 0)$ (elemento neutro de la suma) $-(x^2) + 4x - 6 = -(x^2 - 4x + 6 + (2 - 2))$ (opuesto de la suma) $-(x^2) + 4x - 6 = -(x^2 - 4x + (6 - 2) + 2)$ (asociativa) $-(x^2) + 4x - 6 = -((x^2 - 4x + 4) + 2)$ (trinomio cuadrado perfecto) $-(x^2) + 4x - 6 = -((x - 2)^2 + 2)$) Inicio graficando x^2 :

$$-(x^2) + 4x - 6 = -((x-2)^2 + 2)$$

Después grafico $(x-2)^2$, lo que provoca un desplazamiento hacia la derecha de la gráfica anterior:

Luego, grafico $(x-2)^2+2$, que produce un desplazamiento hacia arriba de dos unidades:

Finalmente grafico $-((x-2)^2+2)$, que es el opuesto de la función anterior:

Una vez que explicado como conseguí cada función, sólo queda limitar los dominios de ambas funciones y graficarlas juntas, lo que da por resultado lo siguiente:

b) Hay que determinar los valores a y b de la función $h(x) = ax + b/x\epsilon[-1,1]$ de manera que existan los límites $\lim_{x\to -1} h(x)$ y $\lim_{x\to 1} h(x)$. Entonces debo encontrar el a y b de la función lineal que de -1 para una x

igual a -1 y -3 para una x igual a 1.

$$\begin{cases} a.(-1) + b = -1 \\ a.1 + b = -3 \end{cases} \rightarrow a = -1 \land b = -2$$

c) Teniendo a=-1y b=-2puedo saber que h(x)=-x-2/
 x ϵ [-1,1]. Primero grafico x:

Luego grafico -x :

Finalmente grafico -x-2,lo que desplaza la gráfica 2 unidades hacia abajo:

Una vez que ya tengo a h([-1,1]), la grafico en todo su dominio:

2) Asumo un f(x)=18-2x y dado el ejercicio tengo que $\lim_{x\to 4}f(x)=10.$ Entonces tengo que:

$$|f(x)-10| = |(18-2x)-10| = |-2x+(18-10)| = |-2x+8| = |(-2)\cdot(x-4)| = 2\cdot|x-4|$$

Entonces $\forall \varepsilon > 0$, puedo un elegir un $\delta < \frac{\varepsilon}{2}$ y un x tal que $0 < |x-4| < \delta < \frac{\varepsilon}{2}$, será

$$|(18-2x)-10| = 2.|x-4| < 2.\frac{\varepsilon}{2} = \varepsilon$$

Con eso llegamos a la definición de límite finito, que es $|f(x) - l| < \varepsilon/l = \lim_{x \to 4} f(x)$. Por lo que queda demostrado que el límite de $\lim_{x \to 4} 18 - 2x = 10$.