CS 4495 Computer Vision

Linear Filtering 1: Filters, Convolution, Smoothing

Aaron Bobick
School of Interactive Computing

Linear outline

- Images are really <u>functions</u> I(x, y) where the vector can be any dimension but typical are 1, 3, and 4. (When 4?) Or thought of as a multi-dimensional *signal* as a function of spatial location.
- Image processing is (mostly) computing new functions of image functions. Many involve linear operators.
- Very useful linear operator is convolution /correlation what most people call filtering – because the new value is determined by local values.
- With convolution can do things like noise reduction, smoothing, and edge finding (last one is next time).

Images as functions

Source: S. Seitz

Images as functions

 We can think of an image as a function, f or I, from R² to R:

f(x, y) gives the *intensity* or value at position (x, y) Realistically, we expect the image only to be defined

over a rectangle, with a finite range:

 $f: [a,b] \times [c,d] \rightarrow [0, 1.0]$ (why sometimes 255???)

A color image is just three functions "pasted" together. We can write this as a "vector-valued" function:

$$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

Digital images

- In computer vision we typically operate on digital (discrete) images:
 - Sample the 2D space on a regular grid
 - Quantize each sample (round to "nearest integer")

Image thus represented as a matrix of integer values.

79	23	119	120	105	4	0
10	9	62	12	78	34	0
58	197	46	46	0	0	48
135	5	188	191	68	0	49
1	1	29	26	37	0	77
89	144	147	187	102	62	208
252	0	166	123	62	0	31
63	127	17	1	0	99	30
	10 58 135 1 89 252	10 9 58 197 135 5 1 1 89 144 252 0	10 9 62 58 197 46 135 5 188 1 1 29 89 144 147 252 0 166	10 9 62 12 58 197 46 46 135 5 188 191 1 1 29 26 89 144 147 187 252 0 166 123	10 9 62 12 78 58 197 46 46 0 135 5 188 191 68 1 1 29 26 37 89 144 147 187 102 252 0 166 123 62	10 9 62 12 78 34 58 197 46 46 0 0 135 5 188 191 68 0 1 1 29 26 37 0 89 144 147 187 102 62 252 0 166 123 62 0

2D

1D

Matlab – images are matrices

```
>> im = imread('peppers.png'); % semicolon or many numbers
>> imgreen = im(:,:,2);
>> imshow(imgreen)
>> line([1 512], [256 256],'color','r')
>> plot(imgreen(256,:));
```


Noise in images

- Noise as an example of images really being functions
- Noise is just another function that is combined with the original function to get a new – guess what – function

$$\vec{I}'(x,y) = \vec{I}(x,y) + \vec{\eta}(x,y)$$

In images noise looks, well, noisy.

Common types of noise

- Salt and pepper noise: random occurrences of black and white pixels
- Impulse noise: random occurrences of white pixels
- Gaussian noise:
 variations in intensity
 drawn from a Gaussian
 normal distribution

Original

Impulse noise

Salt and pepper noise

Gaussian noise

Gaussian noise

>> output = im + noise;

Fig: M. Hebert

Effect of σ on Gaussian noise

Image shows the noise values themselves.

BE VERY CAREFUL!!!

- In previous slides, I did not say (at least wasn't supposed to say) what the range of the image was. A σ of 1.0 would be tiny if the range is [0 255] but huge if [0.0 1.0].
- Matlab can do either and you need to be very careful. If in doubt convert to double.
- Even more difficult can be displaying the image. Things like:
 - imshow(I, [LOW HIGH])

display the image from [low high]

Don't worry – you'll get used to these hassles... see problem set PS0.

Back to our program...

Suppose want to remove the noise...

First attempt at a solution

- Let's replace each pixel with an average of all the values in its neighborhood
- Assumptions:
 - Expect pixels to be like their neighbors
 - Expect noise processes to be independent from pixel to pixel

First attempt at a solution

- Let's replace each pixel with an average of all the values in its neighborhood
- Moving average in 1D:

Weighted Moving Average

- Can add weights to our moving average
- Weights [1, 1, 1, 1, 1] / 5

Weighted Moving Average

Non-uniform weights [1, 4, 6, 4, 1] / 16

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0		

Source: S. Seitz

Correlation filtering

Say the averaging window size is 2k+1 x 2k+1:

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$

pixel

Attribute uniform Loop over all pixels in weight to each neighborhood around image pixel F[i,i]

Now generalize to allow different weights depending on neighboring pixel's relative position:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$
Non-uniform weights

Correlation filtering

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called **cross-correlation**, denoted $G = H \otimes F$

Filtering an image: replace each pixel with a linear combination of its neighbors.

The filter "**kernel**" or "**mask**" H[u,v] is the prescription for the weights in the linear combination.

Averaging filter

 What values belong in the kernel H for the moving average example?

$$G = H \otimes F$$

Smoothing by averaging

original

filtered

Squares aren't smooth...

- Smoothing with an average actually doesn't compare at all well with a defocussed lens
- Most obvious difference is that a single point of light viewed in a defocussed lens looks like a fuzzy blob; but the averaging process would give a little square.

Gaussian filter

What if we want nearest neighboring pixels to have the

most influence on the output?

		<u> </u>	• 11			<u> </u>			<u> </u>
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

This kernel is an approximation of a Gaussian function:

$$h(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{\sigma^2}}$$

An Isotropic Gaussian

The picture shows a smoothing kernel proportional to

$$\exp\left(-\frac{(x^2+x^2)}{2\sigma^2}\right)$$

(which is a reasonable model of a circularly symmetric fuzzy blob)

Smoothing with a Gaussian

Smoothing with not a Gaussian

- Gaussian filters
 What parameters matter here?
- Size of kernel or mask
 - Note, Gaussian function has infinite support, but discrete filters use finite kernels

Gaussian filters

- What parameters matter here?
- Variance of Gaussian: determines extent of smoothing

Matlab

```
>> hsize = 10;
>> sigma = 5;
>> h = fspecial('gaussian', hsize, sigma);
>> mesh(h);
>> imagesc(h);
>> outim = imfilter(im, h);
>> imshow(outim);
```

Smoothing with a Gaussian

Parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing.


```
for sigma=1:3:10
  h = fspecial('gaussian', fsize, sigma),
  out = imfilter(im, h);
  imshow(out);
  pause;
end
```

Wider Gaussian smoothing kernel σ→

Keeping the two Gaussians straight...

More Gaussian noise (like earlier) $\sigma \rightarrow$

And now some linear intuition...

An operator H (or system) is *linear* if two properties hold (f1 and f2 are some functions, a is a constant):

Superposition (things sum):

$$H(f1 + f2) = H(f1) + H(f2)$$
 (looks like distributive law)

Scaling (constant scales):

$$H(a \cdot f1) = a \cdot H(f1)$$

Because it is sums and multiplies, the "filtering" operation we were doing are linear.

An impulse function...

• In the discrete world, and *impulse* is a very easy signal to understand: it's just a value of 1 at a single location.

In the continuous world, an <u>impulse</u> is an idealized function that is very narrow and very tall so that it has a unit area. In the limit:

An impulse response

 If I have an unknown system and I "put in" an impulse, the response is called the impulse response. (Duh?)

• So if the black box is linear you can describe H by h(x). Why?

What is the result of filtering the impulse signal (image) *F* with the arbitrary kernel *H*?

If you just "filter" meaning slide the kernel over the image you get a *reversed* response.

Centered at zero!

Convolution

Convolution:

Flip where the filter is applied in both dimensions (bottom to top, right to left)

Then apply cross-correlation

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]$$

G = H * F

One more thing...

Shift invariant:

 Operator behaves the same everywhere, i.e. the value of the output depends on the pattern in the image neighborhood, not the position of the neighborhood.

Properties of convolution

- Linear & shift invariant
- Commutative:

$$f * g = g * f$$

Associative

$$(f * g) * h = f * (g * h)$$

Identity:

unit impulse
$$e = [..., 0, 0, 1, 0, 0, ...]$$
. $f * e = f$

• Differentiation: $\frac{\partial}{\partial x}(f*g) = \frac{\partial f}{\partial x}*g$ We'll use this later!

Convolution vs. correlation

Convolution

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

$$G = H \star F$$

Cross-correlation

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

$$G = H \otimes F$$

For a Gaussian or box filter, how will the outputs differ? If the input is an impulse signal, how will the outputs differ?

Computational Complexity

 If an image is NxN and a kernel (filter) is WxW, how many multiplies do you need to compute a convolution?

0	0	0	0	0	0	0							
0	0	0	0	0	0	0							
0	0	0	0	0	0	0		a b c		i	h	g	
0	0	0	1	0	0	0	\otimes	d e f		f	е	d	
0	0	0	0	0	0	0		g h i		С	b	а	
0	0	0	0	0	0	0		W 7 W 7					
0	0	0	0	0	0	0		WxW					

 $N \times N$

- You need $N*N*W*W = N^2W^2$
 - which can get big (ish)

Separability

 In some cases, filter is separable, meaning you can get the square kernel by convolving a single column vector by some row vector:

- To apply to an image you:
 - Convolve all rows
 - Convolve all resulting columns
- This used to be *very* important instead of N*N*W*W it's N*N*W*2
 - So if your Kernel is a 31x31 filter you save a factor of 15

- What is the size of the output?
- Old MATLAB: filter2(g, f, shape)
 - shape = 'full': output size is sum of sizes of f and g
 - shape = 'same': output size is same as f

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods (new MATLAB):

clip filter (black): imfilter(f, g, 0)

wrap around: imfilter(f, g, 'circular')

copy edge: imfilter(f, g, 'replicate')

reflect across edge: imfilter(f, g, 'symmetric')

Predict the filtered outputs

0	0	0
0	1	0
0	0	0

?

Original

Original

0	0	0
0	1	0
0	0	0

Filtered (no change)

Source: D. Lowe

0	0	0
0	0	1
0	0	0

?

Original

Center coordinate is 0,0!

Shifted left by 1 pixel with correlation

Source: D. Lowe

1	1	1	1
<u> </u>	1	1	1
9	1	1	1

?

Original

Original

Blur (with a box filter)

Source: D. Lowe

0	0	0	1	1	1	1
0	2	0	$-\frac{1}{9}$	1	1	1
0	0	0	9	1	1	1

?

Original

0	0	0
0	2	0
0	0	0

Original

Sharpening filter
- Accentuates differences
with local average

Filtering examples: sharpening

before

after

Effect of smoothing filters

5x5

Additive Gaussian noise

Salt and pepper noise

Median filter

- No new pixel values introduced
- Removes spikes: good for impulse, salt & pepper noise
- Linear?

Median

filtered

Median filter

Salt and pepper noise

Plots of a row of the image

Source: M. Hebert

Median filter

Median filter is edge preserving

Exercise

- Design a kernel for:
 - Horizontal derivative
 - Vertical derivative
 - Second derivative
- What If:
 - H is the max/min operator?
 - We use an affine operator?

Homework For Next Class

- Read slide set
- Prepare 3 questions
 - Option 1: on things that you don't understand
 - Option 2: on things that you think would make good exam questions
- Do it individually
- Write them down and cut them into 3 strips: 1 per questions and distribute them.
- BRING ENOUGH LAPTOPS to access the class.