

Prise en main de NumPy

NumPy est une bibliothèque scientifique incluant des tableaux et des fonctions mathématiques opérant sur ces tableaux.

La bibliothèque **Numpy** est intégrée à EduPython.

Import de la bibliothèque

import numpy

ou import numpy as np

Allège le code... Par exemple numpy.sqrt(2) devient np.sqrt(2)

Dans tout ce document la bibliothèque numpy est renommée np.

Instruction: import numpy as np.

Fonctions usuelles

Fonctions		Commande	Bibliothèques	syntaxe
Racine carrée	\sqrt{x}	sqrt	numpy	np. sqrt (x)
Puissance	x^n	**		x**n
Sinus	sin(x)	sin	numpy	np. sin (x)
Cosinus	cos(x)	cos	numpy	np. cos (x)
Tangente	tan(x)	tan	numpy	np. tan (x)
Exponentielle	e^x	ехр	numpy	np. exp (x)
Logarithme népérien	ln(x)	log	numpy	np. log (x)
Valeur absolue	x	abs		abs(x)

Constantes utiles

constantes		Bibliothèques	syntaxe
pi	π	numpy	np. pi
е	e	numpy	np. exp(1)
i (complexe)	i		1j

Fonctions sur les complexes

Fonctions		Commande	Bibliothèques	syntaxe
Partie réelle	Re(z)	real	numpy	np. real (z)
Partie imaginaire	Img(z)	imag	numpy	np. imag (z)
Module	z	abs	numpy	np. abs (z)
Argument (en radian)	Arg(z)	angle	numpy	np. angle (z)
Conjugué	$ar{z}$	conj	numpy	np. conj (z)

Générateur de nombres aléatoires

Fonctions	Comman de	Bibliothèques	Syntaxe / exemples
Générateur aléatoire sur [0; 1]	rand	numpy.random	 numpy.random.rand() numpy.random.rand(n) (tableau de nombres aléatoires) >>> numpy.random.rand(4) array([0.43343257, 0.67802613, 0.96654483, 0.93035919])
Générateur aléatoire d'entiers entre deux bornes	randint	numpy.random	 numpy.random.randint(a,b) (entier x tel que a ≤ x < b) numpy.random.randint(a,b,n) (tableau de n entiers) >>> numpy.random.randint(1,7,5) array([5, 1, 1, 6, 4])

Il existe d'autres fonctions de génération de nombres aléatoires suivant des distribution précises (binomiales, exponentielles ou normales...)

Tableaux NumPy

Création de tableaux NumPy	Commande	Bibliothèques	Syntaxe / exemples
A partir d'une liste de nombres	array	Numpy	np.array([1,2,3,4]) np.array([[1,0],[0,1]])
Générateur entre deux bornes	arange	Numpy	np.arange(a,b,pas) (a : borne inférieure ; b borne supérieure exclue, pas facultatif) >>> np.random.randint(1,10,2) array([1, 3, 5, 7, 9])
Générateur de nombres avec écart fixe	linspace	Numpy	np.linspace(a,b,n) (n nombres réels à écart constant entre a et b) >>> np.linspace (1,2,5) array([1. , 1.25, 1.5 , 1.75, 2.])
Générateur de tableaux de zéros	zeros	Numpy	 np.zeros(n) (n zeros « au formal reel ») np.zeros((n,p)) (tableau de zéros de dimension 3x2) np.zeros(n,dtype='int') (n zéros « au format entier ») >>> np.zeros(6) array([0., 0., 0., 0., 0.]) >>> np.zeros(6,dtype='int') array([0, 0, 0, 0, 0, 0]) >>> np.zeros((3,2), dtype='int') array([[0, 0], [0, 0], [0, 0]])