CS & IT ENGINEERING

IPv4 Addressing

Lecture No-04

By-Ankit Doyla Sir

TOPICS TO BE COVERED

Classful Addressing

IP Address Representation


```
11001000 00111111 1111100 11110111
        200.63.252.247
· Decimal:
```

· Hexadocimal: C8.3F. FC. F7

(Hexadecimal)16

No - oto15

Range of IP Addisesses

```
Class-A→0→231 (1-126)
               HID=24-bit
  NID=&bit
        8 bit
0 7bits
0000000-0
0000001-1
00000010 -2
0000011-3
01111110-126
```


0.0.0.0 → Default Route
or

DHCP client

127. X. X. X → Loop Back testing
or
Self Connectivity
or
Interprocess common

Note:

Whenever we have all 0's or all 1's either in the NID or in the HID of any IP Addresses. These IP Addresses are reserved for some special purpose we can't assign these IP Addresses to any computer (Host)

X · 0 · 0 · 0 · X X · 255 · 255 · 255 X

HID=24bit

Note:

- O 197. X. X. X Can't be used as source IP Addresses
- @ 127.X.X.X will Always be used as a Destination IP Address
- 3) 127.X.X is reserved For some special purpose so we can't descript these IP Addresses to any Host (computer)

127.0.0.0

127.0.0.1

154.0.0.5

127.0.0.3

127.255.255.255

24 IP Add Kesses U 24 x 2 20 16 M 184.0.0.0 X

124.255.255.255 X

```
C1985-B - 10- 2 (128-191)
NID=16 bit
          Sbit
10 6bit
10000000-128
10000001-129
10 000010 - 130
10 11111 -> 191
```

HID=16 bit

X·X·0·0 → X X·X·255·255 → X

can't Assign to any computer

HID = 16 Pif

1111111. 1111111 - 822.622X

198.07	129.0	130.0	191.0	
128. 1	129.1	130.1	191.1	
158.5	129.2	130.2	191.2	
128.3 256	189.3	130.3	191.3	
198.555	139.255	130.955	191.255	
(198-191) \$ 64				
256 * 64 = 28 * 26 = 214 Networks				

198.0.0.5 N 198.0.0.7 N

198.955.955.954V 198.955.955.955X

X·X·X·X·255

can't
Assign to
any computer

C|ass-D → 1110 → 2²⁸ (224-239)

Shif

. 8 bit

8 pif .

8 bit

1110 4bit

<u>1110</u> 1111 → 239

Note:

- O No Network-id and No Host-id in class-D
- @ class-D is besonved for multicasting

C|QSS-E → 1111-228 (240-255)

Note

Shit

- 17 Class-E
- e) class-E is reserved for research and Future purpose

CLASSFUL ADDRESSING

short-Notes

 \square Class A \rightarrow 0

-

(1 - 126),

No. of IP Addresses = 2^{31}

 \square Class B \rightarrow 10

-

(128 - 191),

No. of IP Addresses = 2^{30}

 \square Class C \rightarrow 110

 \rightarrow

(192 - 223),

No. of IP Addresses = 2^{29}

 \square Class D \rightarrow 1110

-

(224 - 239),

No. of IP Addresses = 2^{28}

 \square Class E \rightarrow 1111

 \rightarrow

(240 - 255),

No. of IP Addresses = 228

CLASSFUL ADDRESSING

Class	Number of Networks	Number of hosts Number
Class A	27 - 2 = 126	2 ²⁴ – 2 = 1,67,77,214 hosts
Class B	2 ¹⁴ = 16,384	2 ¹⁶ – 2 = 65,534 hosts
Class C	$2^{21} = 20,97,152$	2 ⁸ – 2 = 254 hosts
Class D	No NID and HID, all 28 remaining bits are used to define multicast address	
Class E	No NID and HID, it is meant for purpose	research and future

- A. 01111111.01010101.11111110.00001111
- B. 11101111.01001110.11001100.01010011
- 10001111.00000011.11111100.00111100 Class-8
- D. 11011111.11001111.11100010.111111010

- A. 150.168.10.1
- B. 190.100.1.100
- G 10.256,100.100
- D. 80.10.254.100

A. 192.168.100.100

B. 127.100.100.100

c. 10.100.100.100

D. 172.16.100.100

127.X.X.X → Self connectivity
of
Loop Back testing
of
They rocks commo

A. 194.50.21.145

В. 194.47.21.130

- c. 194.45.21.120
- D. 194.47.20.130

11000010.00101111.00010101.10000010

$$(C2)_{16}$$
 $(2F)_{16}$ $(15)_{16}$ $(82)_{16}$ $16^{1}6^{0}$ $18^{1}6^{1}+2*16^{0}$ $2*16+15$ $1*16+5$ $148+2$ $192+2$ 194 47 21 130

194.47.21.130

- A. 24.40.132.200
- B. 23.42.132.200
- c. 23.42.130.200
- D. 23.42.132.198

Suppose, instead of using 16 bits for network part of a Class B, 20 bits had been used. Then the number of Class B networks and hosts per network are

- A. 2¹⁰, 2¹²
- B. 2¹⁸, 2¹²
- C. 2¹⁸, 2¹² 2
- D. 2¹⁰, 2¹² 2

Number of Networks and Number of Host in class B are 2^m , $(2^n - 2)$ respectively. Then the relation between m and n is

- A. 3m = 2m
- B. 7m = 8n
- 8m = 7n
- D. 2m = 3n

How many networks are possible in a class B addressing system? (Assuming Classful addressing scheme is followed.)

- A. 2¹⁶
- B. 2¹⁴
- C. 28 2
- D. $2^{16} 2$

- A. 2²¹
- B. $2^{21} 1$
- C. 2¹⁶
- D. $2^8 2$

- A. 16, 16
- B. 8, 16
- C. 8, 24
- D. 24, 8

In classful addressing, a large part of the available addresses are

- A. Dispersed
- B. Blocked
- C. Wasted
- D. Reserved

What is the possible number of networks and addresses in each network under class B addresses in IPv4 addressing format.

- A. 2¹⁶, 2¹⁶
- B. 2^{16} , $2^{16} 2$
- C. 2¹⁴, 2¹⁶ 2
- D. 2¹⁴, 2¹⁶

IP Address 200.198.32.65 belong to which class?

- A. Class A
- B. Class B
- C. Class C
- D. Class D

Percent of Addresses occupied by Class D?

- A. 50 %
- B. 25 %
- c. 6.25 %
- D. 12.5 %

- A. 2²⁴
- B. 2⁷
- C. 2¹⁴
- D. 2²¹

A host with IP address 10.100.100.100 wants to use loopback testing. What are the source and destination addresses ? (Assuming Classful addressing scheme is followed.)

- A.
- 10.100.100.100 and 10.100.100.100

B. 10.100.100.100 and 255.255.255.255

c. 10.100.100.100 and 127.1.100.1

D. 127.100.100.100 and 10.100.100.100

