REDES DE COMPUTADORES

EXAMEN DE CONTENIDOS TEÓRICOS

Convocatoria de Enero de 2019

Apellidos: Nombre:	D.N.I.:	Nota:
Grupo de Teoría:		

GRADO EN INGENIERÍA INFORMÁTICA

NORMAS PARA REALIZAR EL EXAMEN DE TEORÍA:

- Duración del examen: 1 hora 25 minutos.
- La nota de este examen se corresponde con el **80%** de la nota de la parte de contenidos teóricos.
- La realización de este examen implica la condición de PRESENTADO a la convocatoria de Enero de 2019.
- La solución escogida para cada pregunta del test se debe especificar con BOLÍGRAFO en la tabla de soluciones. Se evaluará sólo lo contestado en esta tabla.
- En la tabla se debe especificar una sola respuesta por pregunta con letra mayúscula (A, B, C o
 D) de forma clara; de lo contrario será considerada como respuesta en blanco.
- Cada respuesta incorrecta penaliza 1/4 de respuesta correcta.
- La nota del test se obtiene de la fórmula: **Nota** = (RC RI/4)*10/35, donde RC son el número de respuestas correctas y RI el número de respuestas incorrectas.
- Las preguntas no contestadas no penalizan.

TABLA DE SOLUCIONES

Pregunta	Solución	Pregunta	Solución	Pregunta	Solución	Pregunta	Solución
1	A	11	\mathbf{A}	21	В	31	В
2	D	12	C	22	В	32	C
3	A	13	С	23	В	33	С
4	D	14	С	24	D	34	D
5	В	15	В	25	С	35	D
6	D	16	A	26	A		
7	D	17	A	27	A		
8	C	18	A	28	В		
9	С	19	С	29	В		
10	C	20	В	30	C		

1. El empleo de la DIFUSIÓN en una red LAN permite:

- a) El envío de información a todas las estaciones de la red transmitiendo un paquete.
- b) El envío de información a un grupo de estaciones de la red transmitiendo un paquete.
- c) El envío de información a una sola estación de la red transmitiendo más de un paquete.
- d) El envío de información a un grupo de estaciones de la red transmitiendo más de un paquete.

2. El empleo de datagramas en una red de conmutación de paquetes se caracteriza por:

- a) En las redes de conmutación de paquetes no se emplean datagramas, se establecen circuitos físicos.
- b) Especificar en cada paquete los nodos intermedios que debe atravesar para alcanzar su destino.
- c) Determinar un camino a través de los nodos de la red para que los paquetes alcancen su destino.
- d) Especificar en cada paquete el origen y el destino para que los nodos intermedios determinen un camino en la red para cada paquete transmitido.

3. Si en una red de conmutación de paquetes basada en datagramas un nodo deja de funcionar es cierto que:

- a) Sólo los paquetes en tránsito en el nodo no alcanzarán su destino.
- b) Todos los paquetes que hayan pasado por ese nodo han de ser reenviados.
- c) Todas las estaciones de la red quedan incomunicadas.
- d) Las estaciones que emplean ese nodo para intercambiar paquetes han de determinar una nueva ruta para sus destinos.

4. La tecnología de difusión no es apropiada para redes WAN ya que:

- a) Los errores en los medios de difusión son muy frecuentes.
- b) El encaminamiento en una red de difusión es más lento que en una WAN punto a punto.
- c) Las redes de difusión emplean velocidades de transmisión muy reducidas.
- d) El elevado número de equipos que interconecta provocaría un estado de colisión permanente.

5. La comunicación entre las capas pares de nivel n de una arquitectura se inicia:

- a) Cuando en un extremo la capa n solicita al nivel inferior n-1 un envío de datos.
- b) Cuando en un extremo la capa n+1 solicita a la capa inferior n un envío de datos.
- c) Cuando en un extremo la capa n+1 solicita a la capa inferior n-1 un envío de datos.
- d) Cuando en un extremo la capa n solicita a la capa par n-1 un envío de datos.

6. Cuando en el nivel n de una arquitectura de red es necesaria la fragmentación para enviar información a la capa par, es cierto que:

- a) En cada fragmento se incorpora la cabecera del protocolo de nivel n-1.
- b) Sólo en el último fragmento se incorpora la cabecera del protocolo de nivel n.
- c) Sólo en el primer fragmento se incorpora la cabecera del protocolo de nivel n.
- d) Sólo en el primer fragmento se incorpora la cabecera del protocolo de nivel n+1.

7. La comunicación vertical en una arquitectura de red se caracteriza porque:

- a) Se establece entre las capas pares de nivel físico.
- b) Se establece entre la capa n y la capa par n en el otro extremo.
- c) Se establece entre la capa n+1 y la capa n-1 adyacentes de la arquitectura.
- d) Se establece entre la capa n y la capa n-1 adyacentes de la arquitectura.

8. ¿ Qué protocolo de la arquitectura de red TCP/IP permite reenviar la información transportada en un paquete Ethernet que sufre una alteración en el medio físico ?

- a) IP.
- b) ICMP.
- c) TCP.
- d) UDP.

9. ¿ Qué protocolo de la arquitectura TCP/IP permitirá identificar que no existe una aplicación determinada funcionando en un computador ?

- a) IP.
- b) DNS.
- c) TCP.
- d) IGMP.

10. La interconexión de dos redes Ethernet empleando un router se caracteriza por:

- a) Los paquetes Ethernet de difusión se reenvían en los segmentos Ethernet interconectados.
- b) Los paquetes Ethernet dirigidos a una dirección MAC de otro segmento son reenviados por el router.
- c) El router puede procesar los paquetes dirigidos a las direcciones MAC de sus interfaces.
- d) El router puede procesar todos los paquetes Ethernet transmitidos en un segmento Ethernet.

11. La distorsión de una señal de pulsos que se propaga por un medio físico se produce:

- a) Siempre, debido a la existencia del ancho de banda del medio.
- b) Siempre que se supere la velocidad de transmisión del teorema de Nyquist.
- c) Siempre que se supere la velocidad de transmisión del teorema de Shannon.
- d) Sólo cuando el medio físico presenta una relación señal-ruido mayor de 30 dB.

12. Sea un medio físico con ancho de banda B y sin presencia de ruido, si se transmite una señal de pulsos con dos niveles de codificación, es cierto que:

- a) Se pueden producir errores si se emplea una velocidad de transmisión de B bps.
- b) Se pueden producir errores si se emplea una velocidad de transmisión de 2*B bps.
- c) Se pueden producir errores si se emplea una velocidad de transmisión de 4*B bps.
- d) La velocidad de transmisión no afecta a la existencia de errores.

13. La transmisión de señales digitales empleando la codificación Manchester, se caracteriza por:

- a) Los bits de datos se identifican empleando valores de tensión opuestos en signo.
- b) Los bits de datos se identifican empleando valores de fase diferente en la señal.
- c) Los bits de datos incorporan información de sincronización.
- d) Emplear una codificación de múltiples niveles para conseguir velocidades de transmisión elevadas.

14. La presencia de ruido cruzado en un cable eléctrico, provoca:

- a) La reducción en el ancho de banda del medio físico.
- b) La reducción de la velocidad de transmisión en el medio físico.
- c) La limitación en el número de niveles de codificación de la señal de datos.
- d) El aumento en el ancho de banda del medio físico.

15. La técnica de modulación QAM se caracteriza por:

- a) Establecer 4 cambios de fase y 2 cambios de amplitud en la señal portadora.
- b) Establecer 8 cambios de fase y 2 cambios de amplitud en la señal portadora.
- c) Aumentar el ancho de banda del medio físico.
- d) Reducir la relación señal-ruido del medio físico.

16. La transmisión de dos señales de pulsos por un medio físico de ancho de banda B, se consigue:

- a) Empleando la multiplexión en el tiempo (TDM).
- b) Empleando la modulación PSK con frecuencia de portadora de 2*B Hz.
- c) Empleando la modulación ASK con frecuencia de portadora de 2*B Hz.
- d) No es posible transmitir dos señales de pulsos por un mismo medio físico.

17. ¿ En qué situación un cable coaxial es más adecuado que un cable UTP?

- a) Cuando se realiza transmisión en banda modulada.
- b) Cuando se realiza transmisión en banda base.
- c) Cuando el ruido de impulso es muy bajo.
- d) Cuando la distancia de comunicación es superior a 1 Km.

18. ¿ Qué factor limita la distancia máxima de comunicación que puede conseguirse en una fibra óptica ?

- a) La potencia del haz de luz emitido en la fibra.
- b) El número de haces incidentes en la fibra.
- c) El tipo de dispositivo emisor de luz empleado.
- d) No existe limitación en la distancia de comunicación empleada en una fibra óptica.

19. ¿ Qué tipo de fibra es la más adecuada para el empleo de la técnica de multiplexado por longitud de onda ?

- a) Fibra multimodo.
- b) Fibra índice gradual.
- c) Fibra monomodo.
- d) Cualquier tipo de fibra es adecuada para esta técnica.

20. Sobre la comunicación inalámbrica empleando ondas electromagnéticas es cierto que,

- a) Es inmune al ruido electromagnético.
- b) Se emplea la multiplexión en frecuencia para definir los diferentes servicios de radiocomunicación (telefonía, Wi-Fi, etc).
- c) Las comunicaciones satelitales emplean frecuencias de 100 GHz.
- d) Las ondas electromagnéticas tienen todas el mismo alcance en distancia.

21. Sobre las características de un protocolo de nivel de enlace es cierto que:

- a) La cola de los paquetes elimina los errores en los bits del paquete.
- b) La SVT (Secuencia de Verificación de Trama) se incorpora en la cola del paquete.
- c) La SVT permite corregir errores en el paquete de datos.
- d) Incorpora en la cabecera del paquete información para la detección de errores.

22. Sobre el funcionamiento del protocolo de ventana deslizante con repetición SELECTIVA es cierto que:

- a) Si el emisor REENVÍA un paquete de datos que ESTÁ en la ventana del receptor, el receptor lo descarta.
- b) Si el emisor tiene un tiempo de espera de ACK MAYOR que el tiempo de llenado de su ventana, reenviará paquetes que pueden ser rechazados en el receptor.
- c) El receptor RECHAZA cualquier paquete de datos que no llegue en orden.
- d) El emisor y el receptor SIEMPRE tienen el mismo tamaño de ventana.

23. ¿ Qué protocolo NO está definido en el modelo de referencia IEEE 802 ?

- a) LLC.
- b) IP.
- c) VLAN.
- d) Ethernet.

24. Sobre la transmisión de paquetes Ethernet dirigidos a la dirección MAC de difusión es cierto que:

- a) Un conmutador Ethernet NO reenvía los paquetes Ethernet de difusión entre sus puertos.
- b) Un concentrador Ethernet NO reenvía los paquetes Ethernet de difusión entre sus puertos.
- c) Un router reenvía los paquetes Ethernet de difusión entre sus interfaces Ethernet.
- d) Un puente reenvía los paquetes Ethernet de difusión entre los segmentos que interconecta.

25. Indica el sistema de señalización empleado en Ethernet 100BaseTX:

- a) Manchester.
- b) 4D-PAM5.
- c) MLT-3.
- d) 8B/10B.

26. ¿ Qué tecnología Ethernet NO emplea codificación NRZI ?

- a) Ethernet 1000BaseT.
- b) Ethernet 1000BaseCX.
- c) Ethernet 100BaseLX.
- d) Ethernet 1000BaseSX.

27. ¿ Qué tipo de tecnología Ethernet es compatible con Ethernet 10BaseT al emplear el CSMA/CD?

- a) Ethernet 1000BaseT.
- b) Ethernet 10GBaseT.
- c) Ethernet 5GBaseT.
- d) Ethernet 2.5GBaseT.

28. El empleo de un conmutador Ethernet con la tecnología IEEE 802.1Q, permite que:

- a) Un paquete de difusión procedente de un enlace de acceso se reenvía a todos los puertos troncales del conmutador.
- b) Un paquete de difusión procedente de un enlace troncal se reenvía sólo a los puertos del conmutador asociados a la misma VLAN etiquetada en el paquete de difusión.
- c) Un paquete de difusión procedente de un enlace troncal se reenvía sólo a los puertos troncales asociados a la misma VLAN.
- d) Un paquete de difusión procedente de un enlace troncal se reenvía a todos los puertos troncales del conmutador.

29. El mecanismo CSMA/CA de las redes IEEE 802.11x se caracteriza por:

- a) Evitar las colisiones entre equipos asociados a un punto de acceso (AP).
- b) Reducir la probabilidad de colisiones entre equipos asociados a un punto de acceso (AP).
- c) Permitir el uso de diferentes frecuencias para las estaciones asociadas a un punto de acceso.
- d) Reenviar los paquetes ACK que sufren errores al ser transmitidos en el aire.

30. Indica la normativa de redes LAN inalámbricas que proporciona más número de canales (frecuencias) diferentes para establecer la comunicación:

- a) IEEE 802.11b.
- b) IEEE 802.11g.
- c) IEEE 802.11n.
- d) Todas las normativas de redes LAN inalámbricas emplean el mismo número de canales.

- 31. Indica qué mecanismo de autenticación es más inseguro para obtener el acceso no autorizado a una red Wi-Fi:
 - a) WPA-TKIP.
 - b) WPA2-PSK.
 - c) EAP/TLS.
 - d) EAP/PEAP.
- 32. ¿ Cómo es posible reducir la congestión en una red TCP/IP?
 - a) Aumentando la velocidad de transmisión en las redes conectadas.
 - b) Aumentando el número de saltos entre cualquier origen y destino.
 - c) Aumentando la capacidad de proceso de las CPUs de los routers.
 - d) Aumentando el número de protocolos de encaminamiento empleados.
- 33. ¿ Qué protocolo de encaminamiento no emplea métricas de optimización en la tabla de encaminamiento ?
 - a) OSPF.
 - b) RIPv2.
 - c) BGP.
 - d) Todos los protocolos de encaminamiento optimizan rutas a los destinos.
- 34. ¿ Qué protocolo de encaminamiento emplea la capa de transporte para informar de las tablas de encaminamiento a otros routers ?
 - a) OSPF.
 - b) RIPv1.
 - c) RIPv2.
 - d) BGP.
- 35. ¿ En qué parte de un paquete IPv6 se incorpora la información sobre prioridad del paquete ?
 - a) En la cabecera de extensión de prioridad.
 - b) En la cabecera de extensión de opciones para el destino.
 - c) En la cabecera de extensión de encaminamiento.
 - d) En la cabecera IPv6.