Back Savers Company

Jeetender Bhati

2024-09-08

```
BSC<-matrix(c(3,45,"$32",2,40,"$24"),ncol=3,byrow=TRUE)
colnames(BSC)<-c("Material","Labor","Profit")
rownames(BSC)<-c('COLLEGIATE','MINI')
BSC_table=as.table(BSC)
print(BSC_table)</pre>
```

COLLEGIATE 3 45 \$32 ## MINI 2 40 \$24

for_instance_1.1,

 $Num_of_Collegiate$

 $=x_c l$

Num_ofmini

 $=x_m l$

1.1) Decision_variable:

 $=x_cl,x_ml$

1.2) objective_function:

maximized profits

$$Max \ Z = 32x_cl + 24x_ml$$

1.3) Constraints:

 $labour_constraint:$

$$45x_cl + 40x_ml \le 60(40)$$

 $material_constraint:$

$$3x_cl + 2x_ml \le 5000$$

sales Constraint:

$$x_c l \le 1000$$

$$x_m l \le 1200$$

1.4) Mathematical_equation:

 $maximized_profits$

$$Max Z = 32x_cl + 24x_ml$$

Subject to the constraints:

Labour_constraint:

$$45x_cl + 40x_ml \le 60(40)$$

 $material_constraint:$

$$3x_cl + 2x_ml \le 5000$$

Sale_constraint:

$$x_C \le 1000$$

$$x_M \le 1200$$

Non-negativity of the decision_variables:

$$x_c l \ge 0, x_m l \ge 0$$

Weigelt Corporation

 $for_instance_1.2,$

Function

 $=X_{ij}$

where,

size (L,M,S)

 $=_i$

plant (1,2,3)

 $=_{j}$

 $No_of_large_units_at_plant_1$

 $=X_{L1}$

 $No_of_medium_units_at_plant_1$

 $=X_{M1}$

 $No_of_small_units_at_plant_1$

 $=X_{S1}$

No_of_large_units_at_plant_2

 $=X_{L2}$

 $No_of_medium_units_at_plant_2$

 $=X_{M2}$

 $No_of_small_units_at_plant_2$

 $=X_{S2}$

 $No_of_large_units_at_plant_3$

 $=X_{L3}$

 $No_of_medium_units_at_plant_3$

 $=X_{M3}$

 $No_of_small_units_at_plant_3$

 $=X_{S3}$

1.1) Decision_variables:

$$X_{L1}, X_{M1}, X_{S1}$$

$$X_{L2}, X_{M2}, X_{S2}$$

$$X_{L3}, X_{M3}, X_{S3}$$

1.2) Linear Programming model:

 $maximized_profits$

$$Max \ Z = 420(X_{L1} + X_{L2} + X_{L3}) + 360(X_{M1} + X_{M2} + X_{M3}) + 300(X_{S1} + X_{S2} + X_{S3})$$

Subject to the constraints: capacity_constraint:

$$X_{L1} + X_{M1} + X_{S1} \le 750$$

$$X_{L2} + X_{M2} + X_{S2} \le 900$$

$$X_{L3} + X_{M3} + X_{S3} \le 450$$

storage_constraint:

$$20X_{L1} + 15X_{M1} + 12X_{S1} \le 13000$$

$$20X_{L2} + 15X_{M2} + 12X_{S2} \le 1200$$

$$20X_{L3} + 15X_{M3} + 12X_{S3} \le 5000$$

 $sales_constraint:$

$$X_{L1} + X_{M1} + X_{S1} \le 750$$

$$X_{L2} + X_{M2} + X_{S2} \le 900$$

$$X_{L3} + X_{M3} + X_{S3} \le 450$$

Non-negativity of the decision_variables:

$$X_{L1} \ge 0, X_{M1} \ge 0, X_{S1} \ge 0, X_{L2} \ge 0, X_{M2} \ge 0, X_{S2} \ge 0, X_{L3} \ge 0, X_{M3} \ge 0, X_{S3} \ge 0$$