Package 'BayesRepDesign'

May 3, 2023

0.42
3-05-03
Samuel Pawel [aut, cre] (https://orcid.org/0000-0003-2779-320X)
er Samuel Pawel <samuel.pawel@uzh.ch></samuel.pawel@uzh.ch>
vesian Design of Replication Studies
on Provides functionality for determining the sample size of replication studies us- Bayesian design approaches in the normal-normal hierarchi- model (Pawel et al., 2022) <doi:10.48550 arxiv.2211.02552="">.</doi:10.48550>
GPL-3
UTF-8
methods, lamW
roxygen2, tinytest
Note 7.2.3
mpilation no
cps://github.com/SamCH93/BayesRepDesign
rts https://github.com/SamCH93/BayesRepDesign/issues
ry CRAN
lication 2023-05-03 18:55:43 UTC
cs documented:

2 density.designPrior

]	porsPs					 	 										 		П
1	porsSig .					 	 										 		12
1	porsTOST					 	 						 				 		13
]	print.design	nPrior				 	 						 				 		14
]	print.ssdRS	·				 	 						 				 		15
]	print.succe	ssRegio	on .			 	 						 				 		16
:	se2n					 	 										 		16
:	ssd					 	 										 		17
:	ssdBF01 .					 	 										 		19
:	ssdBFr					 	 										 		20
:	ssdBFs					 	 												21
:	ssdEqu					 	 												22
:	ssdMeta .					 	 												23
:	ssdPs					 	 												24
:	ssdSig					 	 						 •						25
	ssdTOST																		
:	successReg	ion				 	 		 •										27
:	successReg	ionSig		 •	 •	 	 		 •			•	 •	•		•			28
ndex																			30

density.designPrior

Density method for class "designPrior"

Description

Density method for class "designPrior"

Usage

```
## S3 method for class 'designPrior' density(x, ...)
```

Arguments

x Object of class "designPrior"

... Other arguments passed to stats::dnorm

Value

Returns the density function of the design prior

Author(s)

Samuel Pawel

designPrior 3

Examples

```
dp <- designPrior(to = 2.3123, so = 0.1, mu = 1.1, tau = 0.2) f <- density(dp) tseq <- seq(1, 3.5, 0.01) plot(tseq, f(theta = tseq), type = "l", xlab = "theta", ylab = "Design prior density")
```

designPrior

Design prior for effect size

Description

Creates a design prior for the effect size which can then be used for power and sample size calculations of a replication study. The design prior is obtained from updating an initial prior for the effect size by the data from the original study. A normal-normal hierarchical model is assumed, see Pawel et al. (2022) for details.

Usage

```
designPrior(
   to,
   so,
   mu = 0,
   sp = Inf,
   tau = 0,
   g = sp^2/(tau^2 + so^2),
   h = tau^2/so^2,
   type = c(NA, "conditional", "predictive", "EB")
)
```

Arguments

t	.0	Effect estimate from original study
S	60	Standard error of effect estimate from original study
n	nu	The initial prior mean. Defaults to 0
S	sp	The initial prior standard deviation. Defaults to Inf (an improper uniform prior)
t	au	The initial prior heterogeneity standard deviation. Defaults to \emptyset (no heterogeneity)
٤	5	The relative initial prior variance $g = sp^2/(tau^2 + so^2)$ (alternative parametrization of prior standard deviation sp)
ł	ı	The relative initial prior heterogeneity variance $h = tau^2/so^2$ (alternative parametrization of prior heterogeneity standard deviation tau)
t	ype	Shortcut for special parameter combinations. The available options are NA, "conditional", "predictive", and "EB" (see details). Defaults to NA

4 designPrior

Details

The "conditional" design prior corresponds to a point mass at the original effect estimate, i.e., assuming that the true effect size is equal to the original effect estimate. The "predictive" design prior is obtained from updating a uniform initial prior by the likelihood of the original data. The "EB" design prior is obtained by empirical Bayes estimation of the variance of the normal prior and induces adaptive shrinkage that depends on the p-value of the original effect estimate.

Value

Returns an object of class "designPrior" which is a list containing:

dpMean	The computed mean of the design prior
dpVar	The computed variance of the design prior
to	The specified original effect estimate
so	The specified original standard error
mu	The specified mean of the initial prior
sp	The specified standard deviation of the initial prior
tau	The specified heterogeneity variance

Author(s)

Samuel Pawel

References

Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552

See Also

```
pors, ssd
```

Examples

```
designPrior(to = 1.1, so = 1)
```

plot.designPrior 5

plot.designPrior

Plot method for class "designPrior"

Description

Plot method for class "designPrior"

Usage

```
## S3 method for class 'designPrior'
plot(x, ...)
```

Arguments

x Object of class "designPrior"
... Other arguments passed to plot

Value

Plots the density of the design prior

Author(s)

Samuel Pawel

Examples

```
dp <- designPrior(to = 2.3123, so = 0.1, mu = 1.1, tau = 0.2) plot(dp) plot(dp, x = c(0, 5), length.out = 500)
```

pors

Compute probability of replication success

Description

This function computes the probability of replication success based on a success region for the replication effect estimate, a design prior, and a replication standard error. If the specified number of sites is larger than 1, the supplied success region has to be formulated in terms of the meta-analytic replication effect estimate across sites.

Usage

```
pors(sregion, dprior, sr, nsites = 1)
```

6 porsBF01

Arguments

sregion Success region for replication effect estimate

dprior Design prior object

sr Standard error of replication effect estimate

nsites Number of sites, defaults to 1. The sites are assumed to have the same standard

error sr

Value

The probability of replication success

Author(s)

Samuel Pawel

References

Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552

Examples

```
dprior <- designPrior(to = 1.1, so = 1)
sregion <- successRegion(intervals = cbind(1.96, Inf))
pors(sregion = sregion, dprior = dprior, sr = 1)</pre>
```

porsBF01

Probability of replication success based on Bayes factor

Description

This function computes the probability to achieve replication success based on a Bayes factor. The Bayes factor is oriented so that values above one indicate evidence for the null hypothesis of the effect size being zero, whereas values below one indicate evidence for the hypothesis of the effect size being non-zero (with normal prior assigned to it).

Usage

```
porsBF01(level, dprior, sr, priormean = 0, priorvar = 1)
```

Arguments

level Bayes factor level below which replication success is achieved

dprior Design prior object sr Replication standard error

priormean Mean of the normal prior under the alternative. Defaults to 0 Priorvar Variance of the normal prior under the alternative. Defaults to 1

porsBFr 7

Value

The probability to achieve replication success

Author(s)

Samuel Pawel

References

Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552

Examples

```
## specify design prior
to1 <- 2
so1 <- 0.05
dprior <- designPrior(to = to1, so = so1, tau = 0.03)
porsBF01(level = 1/10, dprior = dprior, sr = c(0.05, 0.04))</pre>
```

porsBFr

Probability of replication success based on replication Bayes factor

Description

This function computes the probability to achieve replication success based on the replication Bayes factor. The replication Bayes factor is assumed to be oriented so that values below one indicate replication success, whereas values above one indicate evidence for the null hypothesis.

Usage

```
porsBFr(level, dprior, sr, paradox = TRUE)
```

Arguments

level	Bayes factor level below which replication success is achieved
dprior	Design prior object
sr	Replication standard error
paradox	Should the probability of replication success be computed allowing for the replication paradox (replication success when the effect estimates from original and replication study have a different sign)? Defaults to TRUE

Value

The probability to achieve replication success

8 porsBFs

Author(s)

Samuel Pawel

References

Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552

Verhagen, J. and Wagenmakers, E. J. (2014). Bayesian tests to quantify the result of a replication attempt. Journal of Experimental Psychology: General, 145:1457-1475. doi:10.1037/a0036731

Ly, A., Etz, A., Marsman, M., & Wagenmakers, E.-J. (2018). Replication Bayes factors from evidence updating. Behavior Research Methods, 51(6), 2498-2508. doi:10.3758/s134280181092x

Examples

```
## specify design prior
to1 <- 0.2
so1 <- 0.05
dprior <- designPrior(to = to1, so = so1, tau = 0.03)
porsBFr(level = 1/10, dprior = dprior, sr = c(0.05, 0.04))</pre>
```

porsBFs

Probability of replication success based on the sceptical Bayes factor

Description

This function computes the probability to achieve replication success based on the sceptical Bayes factor. The sceptical Bayes factor is assumed to be oriented so that values below one indicate replication success.

Usage

```
porsBFs(level, dprior, sr, paradox = TRUE)
```

Arguments

level Threshold for the sceptical Bayes factor below which replication success is

achieved

dprior Design prior object

sr Replication standard error

paradox Should the probability of replication success be computed allowing for the repli-

cation paradox (replication success when the effect estimates from original and

replication study have a different sign)? Defaults to TRUE

Value

The probability to achieve replication success

porsEqu 9

Author(s)

Samuel Pawel

References

Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552

Pawel, S. and Held, L. (2020). The sceptical Bayes factor for the assessement of replication success. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 84(3), 879-911. doi:10.1111/rssb.12491

Examples

```
## specify design prior
to1 <- 0.2
so1 <- 0.05
dprior <- designPrior(to = to1, so = so1)
porsBFs(level = 1/3, dprior = dprior, sr = 0.05)</pre>
```

porsEqu

Probability of replication success based on effect size equivalence

Description

This function computes the probability to achieve replication success on equivalence of original and replication effect size. Effect size equivalence is defined by the confidence interval for the difference between the original and replication effect sizes falling within an equivalence region around zero defined by the specified margin.

Usage

```
porsEqu(level, dprior, margin, sr)
```

Arguments

level	1 - confidence level of confidence interval for effect size difference
dprior	Design prior object
margin	The equivalence margin > 0 for the symmetric equivalence region around zero
sr	Replication standard error

Value

The probability to achieve replication success

10 porsMeta

Author(s)

Samuel Pawel

References

Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552

Anderson, S. F. and Maxwell, S. E. (2016). There's more than one way to conduct a replication study: Beyond statistical significance. Psychological Methods, 21(1), 1-12. doi:10.1037/met0000051

Examples

```
## specify design prior
to1 <- 2
so1 <- 0.05
dprior <- designPrior(to = to1, so = so1, tau = 0.1)
porsEqu(level = 0.1, dprior = dprior, margin = 0.3, sr = c(0.05, 0.03))</pre>
```

porsMeta

Probability of replication success based on meta-analytic significance

Description

This function computes the probability to achieve replication success on statistical significance of the fixed-effects meta-analytic effect estimate obtained from combining original and replication effect estimates.

Usage

```
porsMeta(level, dprior, sr)
```

Arguments

level Significance level for p-value of the meta-analytic effect estimate (one-sided and

in the same direction as the original effect estimate)

dprior Design prior object

sr Replication standard error

Value

The probability to achieve replication success

Author(s)

Samuel Pawel

porsPs 11

References

Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552

Examples

```
## specify design prior
to1 <- 2
so1 <- 1
dprior <- designPrior(to = to1, so = so1, tau = 0.1)
porsMeta(level = 0.025^2, dprior = dprior, sr = c(0.2, 0.1))</pre>
```

porsPs

Probability of replication success based on the sceptical p-value

Description

This function computes the probability to achieve replication success based on the sceptical p-value.

Usage

```
porsPs(level, dprior, sr)
```

Arguments

level Threshold for the (one-sided) sceptical p-value below which replication success

is achieved

dprior Design prior object

sr Replication standard error

Details

The sceptical p-value is assumed to be uncalibrated as in Held (2020). The package ReplicationSuccess allows for sample size and power calculations with the recalibrated sceptical p-value (https://CRAN.R-project.org/package=ReplicationSuccess).

Value

The probability to achieve replication success

Author(s)

Samuel Pawel

porsSig

References

Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552

Held, L. (2020). A new standard for the analysis and design of replication studies (with discussion). Journal of the Royal Statistical Society: Series A (Statistics in Society), 183(2), 431-448. doi:10.1111/rssa.12493

Examples

```
## specify design prior
to1 <- 0.2
so1 <- 0.05
dprior <- designPrior(to = to1, so = so1)
porsPs(level = 0.025, dprior = dprior, sr = c(0.05, 0.01))</pre>
```

porsSig

Probability of replication success based on significance

Description

This function computes the probability to achieve replication success on statistical significance of the replication effect estimate.

Usage

```
porsSig(level, dprior, sr)
```

Arguments

level Significance level for p-value of the replication effect estimate (one-sided and in

the same direction as the original effect estimate)

dprior Design prior object

sr Replication standard error

Value

The probability to achieve replication success

Author(s)

Samuel Pawel

References

Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552

porsTOST 13

Examples

```
## specify design prior
to1 <- 2
so1 <- 1
dprior <- designPrior(to = to1, so = so1, tau = 0.1)
porsSig(level = 0.025, dprior = dprior, sr = c(0.5, 0.3))</pre>
```

porsT0ST

Probability of replication success based on TOST equivalence

Description

This function computes the probability to achieve replication success based on establishing the absence of a practically relevant effect size with the Two One-Sided Tests (TOST) procedure in the replication study.

Usage

```
porsTOST(level, dprior, margin, sr)
```

Arguments

level Significance level for the TOST p-value

dprior Design prior object

margin The equivalence margin > 0 for the equivalence region around zero that defines

a region of practically irrelevant effect sizes

sr Replication standard error

Value

The probability to achieve replication success

Author(s)

Samuel Pawel

References

Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552

Anderson, S. F. and Maxwell, S. E. (2016). There's more than one way to conduct a replication study: Beyond statistical significance. Psychological Methods, 21(1), 1-12. doi:10.1037/met0000051

14 print.designPrior

Examples

```
## specify design prior
to1 <- 2
so1 <- 0.05
dprior <- designPrior(to = to1, so = so1, tau = 0.1)
porsTOST(level = 0.1, dprior = dprior, margin = 0.3, sr = c(0.05, 0.03))</pre>
```

print.designPrior

Print method for class "designPrior"

Description

Print method for class "designPrior"

Usage

```
## S3 method for class 'designPrior'
print(x, ...)
```

Arguments

- x Object of class "designPrior"
- ... Other arguments (for consistency with the generic)

Value

Prints text summary in the console and invisibly returns the "designPrior" object

Author(s)

Samuel Pawel

Examples

```
dp <- designPrior(to = 0.5, so = 0.05, sp = 0.2, tau = 0.1) print(dp)
```

print.ssdRS 15

print.ssdRS

Print method for class "ssdRS"

Description

Print method for class "ssdRS"

Usage

```
## S3 method for class 'ssdRS'
print(x, ...)
```

Arguments

x Object of class "ssdRS"

... Other arguments (for consistency with the generic)

Value

Prints text summary in the console and invisibly returns the "ssdRS" object

Author(s)

Samuel Pawel

Examples

```
## specify design prior
to1 <- 2
so1 <- 1
dprior <- designPrior(to = to1, so = so1)

## compute required standard error for significance at one-sided 2.5%
sregionfunSig <- function(sr, alpha = 0.025) {
    successRegion(intervals = cbind(stats::qnorm(p = 1- alpha)*sr, Inf))
}
ssd1 <- ssd(sregionfun = sregionfunSig, dprior = dprior, power = 0.8)
print(ssd1)</pre>
```

se2n

print.successRegion

Print method for class "successRegion"

Description

Print method for class "successRegion"

Usage

```
## S3 method for class 'successRegion'
print(x, ...)
```

Arguments

x Object of class "successRegion"

... Other arguments

Value

Prints text summary in the console and invisibly returns the "successRegion" object

Author(s)

Samuel Pawel

Examples

```
## success region for two-sided significance test
successRegion(intervals = rbind(c(1.96, Inf), c(-Inf, -1.96)))
## success region for one-sided significance test
successRegion(intervals = rbind(c(1.96, Inf)))
```

se2n

Sample size related to standard error and unit standard deviation

Description

This function computes the sample size related to a specified standard error σ and unit standard deviation unitSD, which is the standard deviation of one effective unit (one measurement, one pair of measurements, one event, etc.). The relationship $\sigma = \text{unitSD}/\sqrt{n}$ is assumed. The unit standard deviation depends on the parameter type and the assumptions underlying the standard error calculation. The default is unitSD = 2 which is, under some assumptions, a reasonable approximation to the unit standard deviation for standardized mean differences and log odds/hazard/rate ratios, see Section 2.4 in Spiegelhalter et al. (2004).

ssd 17

Usage

```
se2n(se, unitSD = 2)
```

Arguments

se Standard error
unitSD Unit standard deviation. Defaults to 2

Value

The sample size corresponding to the specified standard error and unit standard deviation

Author(s)

Samuel Pawel

References

Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552

Spiegelhalter, D.J., Abrams, K.R., Myles, J.P. (2004). Bayesian approaches to clinical trials and health care evaluation. Wiley. doi:10.1002/0470092602

Examples

```
smd1 <- 0.3
so1 <- 0.05
dprior <- designPrior(to = smd1, so = so1)
ssd1 <- ssdSig(level = 0.025, dprior = dprior, power = 0.8)
se2n(se = ssd1$sr, unitSD = 2) # required n</pre>
```

ssd

Sample size determination for replication success

Description

This function computes the standard error of the replication effect estimate required to achieve replication success with a certain probability and based on a certain type of success region.

18 ssd

Usage

```
ssd(
   sregionfun,
   dprior,
   power,
   nsites = 1,
   searchInt = c(.Machine$double.eps^0.5, 4),
   ...
)
```

Arguments

sregionfun Function that returns the success region for replication effect estimate as a func-

tion of the replication standard error

dprior Design prior object

power Desired probability of replication success

nsites Number of sites. Defaults to 1. The sites are assumed to have the same sample

size

searchInt Search interval for standard errors
... Other arguments passed to uniroot

Value

Returns an object of class "ssdRS" which is a list containing:

designPrior The specified "designPrior" object

power The specified power

powerRecomputed The recomputed power

sr The required replication standard error

c The required relative sample size c = nr/no (assuming so = unitSD/no and sr = unitSD/nr)

Author(s)

Samuel Pawel

References

Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552

Examples

```
## specify design prior
```

ssdBF01 19

```
to1 <- 2
so1 <- 1
dprior <- designPrior(to = to1, so = so1)

## compute required standard error for significance at one-sided 2.5%
sregionfunSig <- function(sr, alpha = 0.025) {
    successRegion(intervals = cbind(stats::qnorm(p = 1- alpha)*sr, Inf))
}
ssd(sregionfun = sregionfunSig, dprior = dprior, power = 0.8)</pre>
```

ssdBF01

Sample size determination for replication success based on Bayes fac-

Description

This function computes the standard error required to achieve replication success with a certain probability and based on the Bayes factor under normality. The Bayes factor is oriented so that values above one indicate evidence for the null hypothesis of the effect size being zero, whereas values below one indicate evidence for the hypothesis of the effect size being non-zero (with normal prior assigned to it).

Rayas factor lavel below which replication success is achieved

Usage

```
ssdBF01(
  level,
  dprior,
  power,
  priormean = 0,
  priorvar = 1,
  searchInt = c(.Machine$double.eps^0.5, 2)
)
```

Arguments

10001

Tevel	bayes factor level below which replication success is achieved
dprior	Design prior object
power	Desired probability of replication success
priormean	Mean of the normal prior under the alternative. Defaults to 0
priorvar	Variance of the normal prior under the alternative. Defaults to 1
searchInt	Interval for numerical search over replication standard errors

Value

Returns an object of class "ssdRS". See ssd for details.

20 ssdBFr

Author(s)

Samuel Pawel

References

Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552

Examples

```
## specify design prior
to1 <- 0.2
so1 <- 0.05
dprior <- designPrior(to = to1, so = so1, tau = 0.03)
ssdBF01(level = 1/10, dprior = dprior, power = 0.8)</pre>
```

ssdBFr

Sample size determination for replication success based on replication Bayes factor

Description

This function computes the standard error required to achieve replication success with a certain probability and based on the replication Bayes factor under normality. The replication Bayes factor is assumed to be oriented so that values below one indicate replication success, whereas values above one indicate evidence for the null hypothesis.

Usage

```
ssdBFr(
  level,
  dprior,
  power,
  searchInt = c(.Machine$double.eps^0.5, 2),
  paradox = TRUE
)
```

Arguments

level Bayes factor level below which replication success is achieved

dprior Design prior object

power Desired probability of replication success

searchInt Interval for numerical search over replication standard errors

paradox Should the probability of replication success be computed allowing for the repli-

cation paradox (replication success when the effect estimates from original and

replication study have a different sign)? Defaults to TRUE

ssdBFs 21

Value

Returns an object of class "ssdRS". See ssd for details.

Author(s)

Samuel Pawel

References

Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552

Verhagen, J. and Wagenmakers, E. J. (2014). Bayesian tests to quantify the result of a replication attempt. Journal of Experimental Psychology: General, 145:1457-1475. doi:10.1037/a0036731

Ly, A., Etz, A., Marsman, M., and Wagenmakers, E.-J. (2018). Replication Bayes factors from evidence updating. Behavior Research Methods, 51(6), 2498-2508. doi:10.3758/s134280181092x

Examples

```
## specify design prior
to1 <- 0.2
so1 <- 0.05
dprior <- designPrior(to = to1, so = so1, tau = 0.03)
ssdBFr(level = 1/10, dprior = dprior, power = 0.8)</pre>
```

ssdBFs

Sample size determination for replication success based on the sceptical Bayes factor

Description

This function computes the standard error required to achieve replication success with a certain probability and based on the sceptical Bayes factor. The sceptical Bayes factor is assumed to be oriented so that values below one indicate replication success.

Usage

```
ssdBFs(
  level,
  dprior,
  power,
  searchInt = c(.Machine$double.eps^0.5, 2),
  paradox = TRUE
)
```

22 ssdEqu

Arguments

level Threshold for the sceptical Bayes factor below which replication success is

achieved

dprior Design prior object

power Desired probability of replication success

searchInt Interval for numerical search over replication standard errors

paradox Should the probability of replication success be computed allowing for the repli-

cation paradox (replication success when the effect estimates from original and

replication study have a different sign)? Defaults to TRUE

Value

Returns an object of class "ssdRS". See ssd for details.

Author(s)

Samuel Pawel

References

Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552

Pawel, S. and Held, L. (2020). The sceptical Bayes factor for the assessement of replication success. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 84(3), 879-911. doi:10.1111/rssb.12491

Examples

```
## specify design prior
to1 <- 0.2
so1 <- 0.05
dprior <- designPrior(to = to1, so = so1, tau = 0.03)
ssdBFs(level = 1/10, dprior = dprior, power = 0.9)</pre>
```

ssdEqu Sample size determination for replication success based on effect size equivalence

Description

This function computes the standard error required to achieve replication success with a certain probability and based on effect size equivalence of original and replication effect size. Effect size equivalence is defined by the confidence interval for the difference between the original and replication effect sizes falling within an equivalence region around zero defined by the specified margin.

ssdMeta 23

Usage

```
ssdEqu(level, dprior, power, margin, searchInt = c(0, 2))
```

Arguments

level 1 - confidence level of confidence interval for effect size difference

dprior Design prior object

power Desired probability of replication success

margin The equivalence margin > 0 for the symmetric equivalence region around zero

searchInt Interval for numerical search over replication standard errors

Value

Returns an object of class "ssdRS". See ssd for details.

Author(s)

Samuel Pawel

References

Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552

Anderson, S. F. and Maxwell, S. E. (2016). There's more than one way to conduct a replication study: Beyond statistical significance. Psychological Methods, 21(1), 1-12. doi:10.1037/met0000051

Examples

```
## specify design prior
to1 <- 0.2
so1 <- 0.05
dprior <- designPrior(to = to1, so = so1, tau = 0.05)
ssdEqu(level = 0.1, dprior = dprior, power = 0.8, margin = 0.2)</pre>
```

ssdMeta Sample size determination for replication success based on metaanalytic significance

Description

This function computes the standard error required to achieve replication success with a certain probability and based on statistical significance of the fixed-effects meta-analytic effect estimate obtained from combining original and replication effect estimates.

24 ssdPs

Usage

```
ssdMeta(level, dprior, power, searchInt = c(0, 10))
```

Arguments

level Significance level for the replication effect estimate (one-sided and in the same

direction as the original effect estimate)

dprior Design prior object

power Desired probability of replication success

searchInt Interval for numerical search over replication standard errors

Value

Returns an object of class "ssdRS". See ssd for details.

Author(s)

Samuel Pawel

References

Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552

Examples

```
## specify design prior
to1 <- 2
so1 <- 1
dprior <- designPrior(to = to1, so = so1, tau = 0.25, sp = Inf)
ssdMeta(level = 0.025^2, dprior = dprior, power = 0.95)</pre>
```

ssdPs Sample size determination for replication success based on the sceptical p-value

Description

This function computes the standard error required to achieve replication success with a certain probability and based on the sceptical p-value.

Usage

```
ssdPs(level, dprior, power)
```

ssdSig 25

Arguments

level	Threshold for the (one-sided) sceptical p-value below which replication success is achieved
dprior	Design prior object
power	Desired probability of replication success

Details

The sceptical p-value is assumed to be uncalibrated as in Held (2020). The package ReplicationSuccess allows for sample size and power calculations with the recalibrated sceptical p-value (https://CRAN.R-project.org/package=ReplicationSuccess).

Value

Returns an object of class "ssdRS". See ssd for details.

Author(s)

Samuel Pawel

References

Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552

Held, L. (2020). A new standard for the analysis and design of replication studies (with discussion). Journal of the Royal Statistical Society: Series A (Statistics in Society), 183(2), 431-448. doi:10.1111/rssa.12493

Examples

```
## specify design prior
to1 <- 0.2
so1 <- 0.05
dprior <- designPrior(to = to1, so = so1, tau = 0.03)
ssdPs(level = 0.05, dprior = dprior, power = 0.9)</pre>
```

ssdSig	Sample size determination for replication success based on signifi-
	cance

Description

This function computes the standard error required to achieve replication success with a certain probability and based on statistical significance of the replication effect estimate.

26 ssdTOST

Usage

```
ssdSig(level, dprior, power)
```

Arguments

level Significance level for the replication effect estimate (one-sided and in the same

direction as the original effect estimate)

dprior Design prior object

power Desired probability of replication success

Value

Returns an object of class "ssdRS". See ssd for details.

Author(s)

Samuel Pawel

References

Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552

Examples

```
## specify design prior
to1 <- 2
so1 <- 0.5
dprior <- designPrior(to = to1, so = so1, tau = 0.1)
ssdSig(level = 0.025, dprior = dprior, power = 0.9)</pre>
```

ssdT0ST

Sample size determination for replication success based on TOST equivalence

Description

This function computes the standard error required to achieve replication success with a certain probability and based on establishing the absence of a practically relevant effect size with the Two One-Sided Tests (TOST) procedure in the replication study.

Usage

```
ssdTOST(level, dprior, power, margin, searchInt = c(0, 2))
```

successRegion 27

Arguments

level	Significance level for the TOST p-value
dprior	Design prior object

power Desired probability of replication success

margin The equivalence margin > 0 for the equivalence region around zero that defines

a region of practically irrelevant effect sizes

searchInt Interval for numerical search over replication standard errors

Value

Returns an object of class "ssdRS". See ssd for details.

Author(s)

Samuel Pawel

References

Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552

Anderson, S. F. and Maxwell, S. E. (2016). There's more than one way to conduct a replication study: Beyond statistical significance. Psychological Methods, 21(1), 1-12. doi:10.1037/met0000051

Examples

```
## specify design prior
to1 <- 0.05
so1 <- 0.05
dprior <- designPrior(to = to1, so = so1, tau = 0.05)
ssdTOST(level = 0.05, dprior = dprior, power = 0.9, margin = 0.3)</pre>
```

successRegion

Success region for replication effect estimate

Description

Creates a success region object which can then be used for computing the probability of replication success with pors.

Usage

```
successRegion(intervals)
```

28 successRegionSig

Arguments

intervals

A 2xN matrix containing N disjoint intervals, the first column containing the lower and the second column containing the upper limits

Value

Returns an object of class "successRegion" which is a matrix containing the success intervals sorted in ascending order

Author(s)

Samuel Pawel

References

Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552

See Also

```
pors, ssd
```

Examples

```
successRegion(intervals = rbind(c(1.96, Inf), c(-Inf, -1.96)))
successRegion(intervals = cbind(1.96, Inf))
```

successRegionSig

Success region based on significance

Description

This function returns the success region for the (meta-analytic) replication effect estimate to achieve significance

Usage

```
successRegionSig(sr, to, tau = 0, nsites = 1, level)
```

Arguments

sr	Replication standard error
to	Original effect estimate

tau Heterogeneity standard deviation used in the calculation of the meta-analytic

replication effect estimate and its standard error. Defaults to 0 (fixed effects

analysis)

successRegionSig 29

nsites	nsites Number of sites,	defaults to 1.	The effect estimates from all sites are
--------	-------------------------	----------------	---

assumed to have the same standard error sr

level Significance level for p-value of the (average) replication effect estimate (one-

sided and in the same direction as the original effect estimate)

Value

An object of class "successRegion". See successRegion for details.

Author(s)

Samuel Pawel

References

Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. doi:10.48550/arXiv.2211.02552

Examples

```
successRegionSig(sr = 0.05, to = 0.2, tau = 0.01, nsites = 3, level = 0.025)
```

Index

```
density.designPrior, 2
designPrior, 3
plot.designPrior, 5
pors, 4, 5, 27, 28
porsBF01, 6
porsBFr, 7
porsBFs, 8
porsEqu, 9
{\tt porsMeta}, {\color{red} 10}
porsPs, 11
porsSig, 12
porsTOST, 13
print.designPrior, 14
print.ssdRS, 15
print.successRegion, 16
se2n, 16
ssd, 4, 17, 19, 21–28
ssdBF01, 19
ssdBFr, 20
ssdBFs, 21
ssdEqu, 22
ssdMeta, 23
ssdPs, 24
ssdSig, 25
ssdTOST, 26
successRegion, 27, 29
\verb+successRegionSig+, 28+
```