Definitions:

$$H(X) = E_{p} \log \frac{1}{p(X)}$$

$$H(X, Y) = E_{p} \log \frac{1}{p(X, Y)}$$

$$H(X|Y) = E_{p} \log \frac{1}{p(X|Y)}$$

$$I(X; Y) = E_{p} \log \frac{p(X, Y)}{p(X)p(Y)}$$

$$D(p||q) = E_{p} \log \frac{p(X)}{q(X)}$$

$$I(X; Y) = H(X) - H(X|Y)$$

$$= H(Y) - H(Y|X)$$

$$= H(X) + H(Y) - H(X, Y).$$

• Chain rules:

Entropy:

$$H(X_1, X_2, \dots, X_n) = \sum_{i=1}^n H(X_i | X_{i-1}, \dots, X_1).$$

Mutual information:

$$I(X_1, X_2, ..., X_n; Y) = \sum_{i=1}^n I(X_i; Y | X_1, X_2, ..., X_{i-1}).$$

Relative entropy:

$$D(p(x,y)||q(x,y)) = D(p(x)||q(x)) + D(p(y|x)||q(y|x)).$$

Inequalities related to D and I

- 1. $D(p||q) \ge 0$ with equality iff p(x) = q(x), for all $x \in \mathcal{X}$ (information inequality).
- 2. $I(X; Y) = D(p(x, y) || p(x)p(y)) \ge 0$, with equality iff p(x, y) = p(x)p(y) (i.e., X and Y are independent).
- 3. If $|\mathcal{X}| = m$, and u is the uniform distribution over \mathcal{X} , then $D(p||u) = \log m H(p)$.

Jensen's Inequality

If f is a convex function, then $E[f(X)] \ge f(E[X])$.

Data-processing inequality

If $X \to Y \to Z$ forms a Markov chain, then $I(X; Y) \ge I(X; Z)$.

Theorem (AEP)

"Almost all events are almost equally surprising." Specifically, if X_1, X_2, \ldots are i.i.d. $\sim p(x)$, then

$$-rac{1}{n}\log p(X_1,X_2,\ldots,X_n)
ightarrow H(X)$$
in probability.

Definition

The *typical set* $A_{\epsilon}^{(n)}$ is the set of sequences x_1, x_2, \ldots, x_n satisfying

$$2^{-n(H(X)+\epsilon)} \le p(x_1, x_2, \dots, x_n) \le 2^{-n(H(X)-\epsilon)}$$
.

Properties of the typical set

- 1. If $(x_1, x_2, \dots, x_n) \in A_{\epsilon}^{(n)}$, then $H(X) \epsilon \le -\frac{1}{n} \log p(x_1, x_2, \dots, x_n) \le H(X) + \epsilon$.
- 2. $\Pr[A_{\epsilon}^{(n)}] > 1 \epsilon$ for *n* sufficiently large.
- 3. $|A_{\epsilon}^{(n)}| \leq 2^{n(H(X)+\epsilon)}$, where |A| denotes the cardinality of the set A.
- 4. $|A_{\epsilon}^{(n)}| \ge (1 \epsilon)2^{n(H(X) \epsilon)}$ for n sufficiently large.

Theorem

Let X^n be i.i.d. $\sim p(x)$. There exists a code that one-to-one maps sequences x^n of length n into binary strings with

$$E[\frac{1}{n}\ell(X^n)] \le H(X) + \epsilon$$

for *n* sufficiently large.

Classes of codes

Prefix codes ⇒ Uniquely decodable codes ⇒ Nonsingular codes

Kraft inequality

Prefix codes $\Leftrightarrow \sum D^{-\ell_i} \leq 1$.

McMillan inequality

Uniquely decodable codes
$$\Leftrightarrow \sum D^{-\ell_i} \leq 1$$
.

Huffman code

$$L^* = \min_{\sum D^{-\ell_i} \le 1} \sum p_i \ell_i$$

$$H_D(X) \le L^* < H_D(X) + 1.$$

 Entropy rate. Two definitions of entropy rate for a stochastic process are

$$H(\mathcal{X}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \dots, X_n),$$

$$H'(\mathcal{X}) = \lim_{n \to \infty} H(X_n | X_{n-1}, X_{n-2}, \dots, X_1).$$

For a **stationary** stochastic process, $H(\mathcal{X}) = H'(\mathcal{X})$.

• Entropy rate of a stationary Markov chain.

$$H(\mathcal{X}) = -\sum_{i,j} \mu_i P_{ij} \log P_{ij}.$$

Review

 Channel capacity. The logarithm of the number of distinguishable inputs is given by

$$C = \max_{p(x)} I(X;Y).$$

Examples

- Binary symmetric channel: C = 1 H(p)
- Binary erasure channel: $C = 1 \alpha$
- ullet Symmetric channel: $C = \log |\mathcal{Y}| H$ (row of trans. matrix)

Joint Typical Set

• Joint typicality. Given two i.i.d. random variable sequences X^n and Y^n , the set of jointly typical sequences is

$$\begin{split} A_{\epsilon}^{(n)} = & \left\{ (x^n, y^n) \in \mathcal{X}^n \times \mathcal{Y}^n : \\ & \left| -\frac{1}{n} \log p(x^n) - H(X) \right| < \epsilon \\ & \left| -\frac{1}{n} \log p(y^n) - H(Y) \right| < \epsilon \\ & \left| -\frac{1}{n} \log p(x^n, y^n) - H(X, Y) \right| < \epsilon \right\} \end{split}$$

where $p(x^n, y^n) = \prod_{i=1}^n p(x_i, y_i)$.

Joint AEP

• **Joint AEP** Let (X^n, Y^n) be the sequences of length n drawn i.i.d. according to $p(x^n, y^n) = \prod_{i=1}^n p(x_i, y_i)$, then:

1.
$$\Pr\left[(X^n,Y^n)\in A_{\epsilon}^{(n)}\right]\to 1 \text{ as } n\to\infty.$$

$$2. \left| A_{\epsilon}^{(n)} \right| \le 2^{n(H(X,Y)+\epsilon)}.$$

Dr. Rui Wang (EEE)

3. If $(\tilde{X}^n, \tilde{Y}^n) \sim p(x^n)p(y^n)$, then

$$\Pr\left[\left(\tilde{X}^n, \tilde{Y}^n\right) \in A_{\epsilon}^{(n)}\right] \le 2^{-n(I(X;Y) - 3\epsilon)}.$$

Please refer to p196 for the proof (proof of Theorem 7.6.1)

Channel Coding Theorem

Theorem (Channel coding theorem)

For a discrete memoryless channel, all rates below capacity C are achievable. Specifically, for every rate R < C, there exists a sequence of $(2^{nR}, n)$ codes with maximum probability of error $\lambda^{(n)} \to 0$.

Conversely, any sequence of $(2^{nR},n)$ codes with $\lambda^{(n)} \to 0$ must have $R \le C$.

Achievability: when R < C, there exists zero-error code.

Converse: zero-error codes must have $R \leq C$.

Differential Entropy - 2

- Definitions
- AEP for Continuous Random Variables
- Relation of differential entropy to discrete entropy
- Joint and Conditional Differential Entropy
- Relative Entropy and Mutual Information
- Estimation Counterpart of Fano's Inequality

Gaussian channel capacity theorem

Theorem

The capacity of a Gaussian channel with power constraint P and noise variance N is

$$C = \frac{1}{2}\log\left(1 + \frac{P}{N}\right)$$
 bits per transmission

Proof.

Use the same ideas as in the proof of the channel coding theorem in the discrete case to prove:

1) achievability; 2) converse

Two main differences:

- 1) the power constraint P;
- 2) the variables are continuous

