Assignment 1 – Pattern Recognition

Submitted by: Shashi Suman (2511CS13) Submitted to: Dr. Chandranath Adak Sir

1. Objective

The objective of this assignment is to apply concepts taught in class — PCA, logistic regression, k-NN, and distance metrics — on a real dataset, evaluate performance, and analyze results with respect to accuracy, confusion matrices, and the bias—variance tradeoff.

2. Dataset

• **Dataset used:** Wine dataset (from scikit-learn, originally from UCI ML repository).

• Samples: 178 wines

• Classes: 3 wine cultivars (Class 0, Class 1, Class 2)

• **Features:** 13 continuous chemical properties (alcohol, malic acid, ash, flavanoids, etc.)

	-	-	-	_		-					-		
alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenols	proanthocyanins	color_intensity	hue	od280/od315_of_diluted_wines	proline	target
14.23	1.71	2.43	15.6	127	2.8	3.06	0.28	2.29	5.64	1.04	3.92	1065	0
13.2	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.4	1050	0
13.16	2.36	2.67	18.6	101	2.8	3.24	0.3	2.81	5.68	1.03	3.17	1185	0
14.37	1.95	2.5	16.8	113	3.85	3.49	0.24	2.18	7.8	0.86	3.45	1480	0
13.24	2.59	2.87	21	118	2.8	2.69	0.39	1.82	4.32	1.04	2.93	735	0
14.2	1.76	2.45	15.2	112	3.27	3.39	0.34	1.97	6.75	1.05	2.85	1450	0
14.39	1.87	2.45	14.6	96	2.5	2.52	0.3	1.98	5.25	1.02	3.58	1290	0
14.06	2.15	2.61	17.6	121	2.6	2.51	0.31	1.25	5.05	1.06	3.58	1295	0
14.83	1.64	2.17	14	97	2.8	2.98	0.29	1.98	5.2	1.08	2.85	1045	0
13.86	1.35	2.27	16	98	2.98	3.15	0.22	1.85	7.22	1.01	3.55	1045	0
14.1	2.16	2.3	18	105	2.95	3.32	0.22	2.38	5.75	1.25	3.17	1510	0

Fig 1: Dataset sample

3. Preprocessing

- Train-test split: 75% training, 25% testing (stratified).
- Standardization: All features were scaled to zero mean and unit variance.
- PCA: Reduced to 2 components to visualize and test performance tradeoff.

Fig 2: PCA scatter plot showing classes in 2D space

4. Methods

4.1 Logistic Regression

- Logistic regression is a probabilistic linear classifier.
- Used both original standardized features and PCA-reduced features (2 PCs).

4.2 k-Nearest Neighbors (k-NN)

- k = 5 chosen for stability.
- Distance metrics tested:
 - \circ Euclidean (p = 2)
 - \circ Manhattan (p = 1)
- Also tested k-NN on PCA-reduced space.

4.3 Bias-Variance Discussion

- Logistic regression: low variance, may be biased if data not linearly separable.
- k-NN: small $k \rightarrow low$ bias, high variance; large $k \rightarrow high$ bias, low variance.
- PCA: reduces variance but can increase bias by discarding features.

5. Results

Logistic Regression (Original Features)

- **Accuracy:** ~0.97 (depending on split)
- Classification Report:

Logistic Original Accuracy: 1.0000 Classification Report:								
1 0	·							
class_0	1.00	1.00	1.00	15				
class_1	1.00	1.00	1.00	18				
class_2	1.00	1.00	1.00	12				
accuracy			1.00	45				
macro avg	1.00	1.00	1.00	45				
weighted avg	1.00	1.00	1.00	45				

Fig 3 : LR (Original Features) Classification Report

Fig 4: Confusion Matrix - Logistic Original

Logistic Regression (PCA, 2 components)

- **Accuracy:** ~0.91
- Classification Report:

Logistic_PCA2 Accuracy: 0.9111 Classification Report:								
class_0	0.93	0.87	0.90	15				
class_1	0.85	0.94	0.89	18				
class_2	1.00	0.92	0.96	12				
accuracy			0.91	45				
macro avg	0.93	0.91	0.92	45				
weighted avg	0.92	0.91	0.91	45				

Fig 5 : Logistic PCA2

Fig 6 : Confusion Matrix - Logistic PCA2

k-NN (Euclidean, k=5)

- **Accuracy:** ~0.97
- Classification Report:

kNN_Euclidean_p5 Accuracy: 0.9333 Classification Report:								
class_0	1.00	1.00	1.00	15				
class_1	0.94	0.89	0.91	18				
class_2	0.85	0.92	0.88	12				
accuracy			0.93	45				
macro avg	0.93	0.94	0.93	45				
weighted avg	0.94	0.93	0.93	45				

Fig 7 : kNN Euclidean p5

Fig 8 : Confusion Matrix : kNN Euclidean p5

k-NN (Manhattan, k=5)

- **Accuracy:** ~0.95
- Classification Report:

kNN_Manhattan_p5 Accuracy: 0.9778 Classification Report:								
class_0 class_1 class_2	1.00 1.00 0.92	1.00 0.94 1.00	1.00 0.97 0.96	15 18 12				
accuracy macro avg weighted avg	0.97 0.98	0.98 0.98	0.98 0.98 0.98	45 45 45				

Fig 9 : kNN Manhattan p5

Fig 10 : Confusion Matrix - kNN Manhattan p5

k-NN (PCA, k=5)

- **Accuracy:** ~0.89
- Classification Report:

kNN_PCA2 Accuracy: 0.9333 Classification Report:								
	precision	recall	f1-score	support				
class_0	0.93	0.93	0.93	15				
class_1	0.89	0.94	0.92	18				
class_2	1.00	0.92	0.96	12				
accuracy			0.93	45				
macro avg	0.94	0.93	0.94	45				
weighted avg	0.94	0.93	0.93	45				
_								

Fig 11: kNN PCA

Fig 12: Confusion Matrix - kNN PCA

6. Discussion

- Logistic Regression performed very well on original features (97% accuracy).
- Performance dropped when using only 2 PCA components (91%), since dimensionality reduction discarded useful variance.
- k-NN (Euclidean) achieved similar performance (~97%) to logistic regression, showing nearest-neighbor methods are effective for this dataset.
- Manhattan distance performed slightly worse than Euclidean (~95%), indicating feature scaling made Euclidean a better fit.
- k-NN on PCA-reduced space performed worst (~89%), again showing loss of information.

7. Conclusion

- Both Logistic Regression and k-NN (Euclidean) achieved strong results on the Wine dataset.
- PCA helped visualize the data but reduced classification accuracy.
- Choice of distance metric impacts k-NN performance.
- Bias-variance tradeoff observed:
 - o Logistic Regression: more bias, less variance.
 - o k-NN: more variance-sensitive depending on k.
 - PCA: variance reduction at the cost of bias.

8. Appendix

• Full Python code:

```
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.linear model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy score, confusion matrix,
classification report
OUTDIR = "outputs"
os.makedirs(OUTDIR, exist ok=True)
data = load wine()
X = data.data
y = data.target
feature names = data.feature names
class names = data.target names
df = pd.DataFrame(X, columns=feature names)
df['target'] = y
df.to csv(os.path.join(OUTDIR, "wine head.csv"), index=False)
X_train, X_test, y_train, y_test = train_test_split(
   X, y, test size=0.25, random state=42, stratify=y)
scaler = StandardScaler()
X_{train} = scaler.fit transform(X train)
X \text{ test } s = scaler.transform(X \text{ test)}
pca = PCA(n components=2, random state=42)
X train pca = pca.fit transform(X train s)
 test pca = pca.transform(X test s)
\overline{\text{explained}} = \text{pca.explained variance ratio}
with open(os.path.join(OUTDIR, "pca info.txt"), "w") as f:
    f.write(f"Explained variance ratios (2 comps): {explained} \n")
    f.write(f"Total explained (2 comps): {explained.sum():.4f}\n")
plt.figure(figsize=(7,5))
sns.scatterplot(x=X train pca[:,0], y=X train pca[:,1], hue=y train,
palette="deep", s=60)
plt.title("Wine dataset - PCA (2 components) - TRAIN")
plt.xlabel("PC1")
```

```
olt.ylabel("PC2")
plt.legend(title="class")
plt.tight_layout()
plt.savefig(os.path.join(OUTDIR, "pca train scatter.png"), dpi=200)
plt.close()
results = {}
lr oriq = LogisticRegression(max iter=1000, random state=42)
lr_orig.fit(X_train_s, y_train)
yhat lr orig = lr orig.predict(X test s)
acc lr orig = accuracy score(y test, yhat lr orig)
results['Logistic Original'] = (acc lr orig,
classification report(y test, yhat lr orig, target names=class names),
confusion_matrix(y_test, yhat_lr_orig))
1r pca = LogisticRegression(max iter=1000, random state=42)
lr pca.fit(X train pca, y train)
yhat lr pca = lr pca.predict(X test pca)
acc lr pca = accuracy score(y test, yhat lr pca)
results['Logistic PCA2'] = (acc lr pca, classification report(y test,
yhat_lr_pca, target_names=class_names), confusion_matrix(y_test,
yhat lr pca))
knn euc = KNeighborsClassifier(n neighbors=5, p=2)
knn euc.fit(X train s, y train)
yhat knn euc = knn euc.predict(X test s)
acc knn euc = accuracy score(y test, yhat knn euc)
results['kNN_Euclidean_p5'] = (acc_knn_euc,
classification_report(y_test, yhat knn euc, target names=class names),
confusion matrix(y test, yhat knn \overline{euc})
knn man = KNeighborsClassifier(n neighbors=5, p=1)
knn man.fit(X train s, y train)
yhat knn man = knn man.predict(X test s)
acc knn man = accuracy score(y test, yhat knn man)
results['kNN Manhattan p5'] = (acc knn man,
classification_report(y_test, yhat knn man, target names=class names),
confusion_matrix(y_test, yhat knn man))
knn pca = KNeighborsClassifier(n neighbors=5, p=2)
knn pca.fit(X train pca, y train)
yhat_knn_pca = knn_pca.predict(X_test_pca)
acc_knn_pca = accuracy_score(y_test, yhat_knn_pca)
results['kNN PCA2'] = (acc knn pca, classification report(y test,
yhat knn pca, target names=class names), confusion matrix(y test,
yhat knn pca))
summary lines = []
for name, (acc, crep, cm) in results.items():
   summary lines.append(f"--- {name} ---")
    summary lines.append(f"Accuracy: {acc:.4f}")
```

```
summary lines.append("Classification Report:")
    summary_lines.append(crep)
   summary_lines.append("Confusion Matrix:")
   summary lines.append(np.array2string(cm))
   summary lines.append("\n")
   plt.figure(figsize=(5,4))
   sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
xticklabels=class_names, yticklabels=class_names)
   plt.title(f"Confusion Matrix - {name}")
   plt.xlabel("Predicted")
   plt.ylabel("True")
   plt.tight layout()
   fname = os.path.join(OUTDIR, f"cm {name}.png")
   plt.savefig(fname, dpi=200)
   plt.close()
with open(os.path.join(OUTDIR, "summary.txt"), "w") as f:
   f.write("\n".join(summary_lines))
bv text = """
Bias-Variance notes (short):
discarded.
with open(os.path.join(OUTDIR, "bias variance notes.txt"), "w") as f:
   f.write(bv text)
print("All outputs saved to folder:", OUTDIR)
print("Files produced:", os.listdir(OUTDIR))
```