Politechnika Warszawska

Zakład Podstaw Konstrukcji

Zapis Konstrukcji

mgr inż. Grzegorz Kamiński grzegorz.kaminski@pw.edu.pl

17 października 2022 Wersja 2.10 Klasyfikacja kół zębatych - uzębienie Warszawska

Klasyfikacja kół zębatych - kształt koła

Klasyfikacja kół zębatych - kształt linii

Politechnika Warszawska

łukowe

daszkowe

P<mark>olite</mark>chnika Warszawska

5

Geometria koła (PN-ISO 1122-1:2004)

symbol literowy letter symbol	nazwa polska Polish term	nazwa angielska English term	jednostka unit mm	
da	średnica wierzchołków	tip diameter		
d_f	średnica podstaw	root diameter	mm	
ď	średnica podziałowa	reference diameter	mm	
p	podziałka	pitch	mm	
h	wysokość zęba	tooth depth	mm	
h_a	wysokość głowy	addendum	mm	
h_f	wysokość stopy	pedendum	mm	
α	kąt zarysu	pressure angle	deg	
z	liczba zębów	number of teeth	All -	
m	moduł	module	mm	
ь	szerokość wieńca	facewidth	mm	

Podziałka obwodowa p — długoś<mark>ć ł</mark>uku koł<mark>a p</mark>odziało<mark>we</mark>go zawarta między

jednoimie<mark>nn</mark>ymi sąs<mark>ie</mark>dnimi bo<mark>ka</mark>mi zębów.

$$\pi \cdot d = z \cdot p$$

Podziałka obwodowa p — długoś<mark>ć ł</mark>uku koła podziało<mark>we</mark>go zawarta między

jednoimie<mark>nn</mark>ymi sąs<mark>ie</mark>dnimi bo<mark>ka</mark>mi zębów.

$$\pi \cdot d = z \cdot p$$

stąd:

$$d = z \cdot \frac{P}{\tau}$$

2)

Podziałka obwodowa p — długość łuku koła podziałowego zawarta między

jednoimiennymi sąsiednimi bokami zębów.

$$\pi \cdot d = z \cdot p$$

stąd:

$$d = \mathbf{z} \cdot \frac{\mathbf{p}}{\pi}$$

$$d = z \cdot m$$

Varszawsko

Moduły koła zębatego (PN-ISO 54:2001)

	71111	C .		17		eliiiiii	_
			egi mod	ułow			
1	2	1	2	1	2	1	2
0,05		0,3	J. J.	2		12	
	0,055		0,35		2,25	1	14
0,06	12	0,4		2,5		16	
	0,07		0,45	JIII	2,75	JIII	18
0,08	0	0,5		3		20	
	0,09		0,55		3,5		22
0,1		0,6	ol ol	4	0	25	
	0,11		0,7)	4,5	1	28
0,12		0,8		5		32	
JIII	0,14	0 11	0,9	oliii)	5,5	SIIII.	36
0,15	0	1		6		40	
riîn	0,18	riin.	1,125	Do	7	Dec 1	45
0,2		1,25	6	8	Chi.	50	
	0,22		1,375		9		55
0,25	mb.	1,5	Till to	10	1000	60	- 11
	0,28	6111	1,75	61111	11	61111	70

Podstawowe zależności

średnica podziałowa

$$d = z \cdot m \tag{4}$$

średnica głów

$$d_a = (z+2) \cdot m \qquad (5)$$

średnica stóp

$$\mathbf{d}_f = (\mathbf{z} - 2.4) \cdot \mathbf{m} \qquad \textbf{(6)}$$

* policze<mark>ni</mark>e liczb<mark>y z</mark>ębów <mark>z,</mark>

- * policzenie liczby zębów z,
- * zmierzen<mark>ie</mark> średnicy głów d_a ,

- * policzenie liczby zębów z,
- * zmierzenie średnicy głów d_a ,
- * obliczenie modułu \widetilde{m} ,

- * policzenie liczby zębów z,
- * zmierzenie średnicy głów $\tilde{d_a}$,
- * oblicze<mark>ni</mark>e mod<mark>uł</mark>u \widetilde{m} ,
- * dobór modułu znormalizowanego m,

- * policzenie liczby zębów z,
- * zmierzenie średnicy głów d_a ,
- * obliczenie modułu \widetilde{m} ,
- * dobór modułu znormalizowanego m,
 - wyznaczenie średnic d(m), $d_a(m)$, $d_f(m)$.

Rysunek koła zębatego

Rysunek koła zębatego Liczba zebów Modul Średnica podziałowa 236 Kat przyporu 20° 3x45° Politechnika

Warszawska

Schemat połączenia wpustowego

Wymiary wpustów pryzmatycznych

- * d średnica wału,
- * b szerokość wpustu,
- * h wysok<mark>ość</mark> wpustu,
- l długość wpustu,
- * t₁ głębokość rowka w wale,
- * t₂ głębokość rowka w piaście,
- r promień
 zaokrąglenia wpustu,
- * s wymiar fazowania wpustu.

d	ь	h	ı	t 1	+-	r lub s		
ponad do	0	n	ı	1	t_2	min max		
$6 \div 8$	2	2	$6 \div 20$	1,2	1	$0.16 \div 0.25$		
$8 \div 10$	3	_3	6 ÷ 36	1,8	1,4	$0,16 \div 0,25$		
$10 \div 12$	4	4	$8 \div 45$	2,5	1,8	$0,16 \div 0,25$		
$12 \div 17$	5	5	$10 \div 56$	3	2,3	$0,25 \div 0,40$		
$17 \div 22$	6	6	$14 \div 70$	3,5	2,8	$0,25 \div 0,40$		
$22 \div 30$	8	7	$18 \div 90$	_4	3,3	$0,25 \div 0,40$		
30 ÷ 38	10	8	22 ÷ 110	5	3,3	$0,40 \div 0,60$		
$38 \div 44$	12	8	$28 \div 140$	5	3,3	$0,40 \div 0,60$		
$44 \div 50$	14	9	$36 \div 160$	5,5	3,8	$0,40 \div 0,60$		
$50 \div 58$	16	10	$45 \div 180$	6	4,3	$0,40 \div 0,60$		
$58 \div 65$	18	11	$50 \div 200$	7	4,4	$0,40 \div 0,60$		
$65 \div 75$	20	12	$56 \div 220$	7,5	4,9	$0,60 \div 0,80$		
$75 \div 85$	22	14	$63 \div 250$	9	5,4	$0,60 \div 0,80$		
85 ÷ 95	25	14	$70 \div 280$	9	5,4	$0,60 \div 0,80$		
$95 \div 110$	28	16	80 ÷ 320	10	6,4	$0,60 \div 0,80$		
$110 \div 130$	32	18	$90 \div 360$	1/1	7,4	$0,60 \div 0,80$		
$130 \div 150$	36	20	$100 \div 400$	12	8,4	$1,0 \div 1,2$		
$150 \div 170$	40	22	$100 \div 420$	13	9,4	$1,0 \div 1,2$		
$170 \div 200$	45	25	$110 \div 450$	15	10,4	$1,0 \div 1,2$		
200 ÷ 230	50	28	$125 \div 500$	17	11,4	$1,0 \div 1,2$		
$230 \div 260$	56	32	$140 \div 500$	20	12,4	$1,6 \div 2,0$		
$260 \div 290$	63	32	$160 \div 500$	20	12,4	$1,6 \div 2,0$		
290 ÷ 330	70	36	$180 \div 500$	22	14,4	$1,6 \div 2,0$		
330 ÷ 380	80	40	$200 \div 500$	25	15,4	$2,5 \div 3,0$		
$380 \div 440$	90	45	$220 \div 500$	28	17,4	$2,5 \div 3,0$		
$440 \div 500$	100	50	$250 \div 500$	31	19,5	$2.5 \div 3.0$		

Połączenie wpustowe

P<mark>olit</mark>echnika Warszawska Opracowanie: dr inż. Łukasz Lindstedt

Pierścienie osadcze sprężynujące

symbol		wyn	niary pier	wymiary czopa wału					
	D_0	g	amax	ь	d_{omin}	D	D_1	f	h
Z3	2,7	0,4	1,9	0,8	0 1111	3	2,8	0,5	0,3
Z4	3,7	0,4	2,2	0,9	1	4	3,8	0,5	0,3
Z_5	4,7	0,6	2,5	1,1	1	5	4,8	0,7	0,3
Z6	5,6	0,7	2,7	1,3	1,2	6	5,7	0,8	0,4
Z8	7,4	0,8	3,2	1,5	1,2	8	7,6	0,9	0,6
Z9	8,4	1	3,3	1,7	1,2	9	8,6	0,9	0,6
Z10	9,3	1	3,3	1,8	1,5	10	9,6	1,1	0,6
Z12	11	1	3,3	1,8	1,7	12	11,5	1,1	0,7
Z13	11,9	1	3,4	2	1,7	13	12,4	1,1	0,9
Z14	12,9	1 €	3,5	2,1	1,7	14	13,4	1,1	0,9
Z15	13,8	1	3,6	2,2	1,7	15	14,3	1,1	1,1
Z16	14,7	1	3,7	2,2	1,7	16	15,2	1,1	1,2
Z17	15,7	1	3,8_	2,3	1,7	17	16,2	1,1	1,2
Z18	16,5	1,2	3,9	2,4	2	18	17	1,3	1,2
Z19	17,5	1,2	3,9	2,5	2	19	18	1,3	1,5
Z20	18,5	1,2	4	2,6	2	20	19	1,3	1,5
Z21	19,5	1,2	4,1	2,7	2	21	20	1,3	1,5
Z22	19,5	1,2	4,2	2,8	2	22	21	1,3	1,5
Z24	22,2	1,2	4,4	3	2	24	22,9	1,3	1,7
Z25	23,2	1,2	4,4	3	2	25	23,9	1,3	1,7
Z26	24,2	1,2	4,5	3,1	2	26	24,9	1,3	1,7
Z28	25,9	1,5	4,7	3,2	2	28	26,6	1,6	2,1
Z30	27,9	1,5	5	3.5	2	30	28.6	1,6	2,1

Politechnika Warszawska

Pierścienie osadcze sprężynujące

	n .	wymiary pierścienia						wymiary czopa wału			
	D_0	9	amax	ь	d_{omin}	D	D_1	f	h		
Z32	29,6	1,5	5,2	3,6	2,5	32	30,3	1,6	2,6		
Z34	31,5	1,5	5,4	3,8	2,5	34	32,3	1,6	2,6		
Z35	32,2	1,5	5,6	3,9	2,5	35	33	1,6	3		
Z36	33,2	1,75	5,6	4	2,5	36	34	1,85	3		
Z38	35,2	1,75	5,8	4,2	2,5	38	36	1,85	3		
Z40	36,5	1,75	6	4,4	2,5	40	37,5	1,85	3,8		
Z42	38,5	1,75	6,5	4,5	2,5	42	39,5	1,85	3,8		
Z45	41,5	1,75	6,7	4,7	2,5	45	42,5	1,85	3,8		
Z48	44,5	1,75	6,9	5	2,5	48	45,5	1,85	3,8		
Z50	45,8	2	6,9	5,1	2,5	50	47	2,15	4,5		
Z52	47,8	2	7	5,2	2,5	52	49	2,15	4,5		
Z55	50,8	2	7,2	5,4	2,5	55	52	2,15	4,5		
Z56	51,8	2	7,3	5,5	2,5	56	53	2,15	4,5		
Z58	53,8	2	7,3	5,6	2,5	58	55 0	2,15	4,5		
Z60	55,8	2	7,4	5,8	2,5	60	57	2,15	4,5		
Z62	57,8	2	7,5	6	2,5	62	59	2,15	4,5		
Z63	58,8	2	7,6	6,2	2,5	63	60	2,15	4,5		
Z65	60,8	2,5	7,8	6,3	3	65	62	2,65	4,5		
Z70	65.5	2,5	8,1	6,6	3	70	67	2.65	4.5		

Politechnika Warszawska

Bibliografia

A. Dziurski, E. Mazanek, and L. Kania. Przykła<mark>dy o</mark>bliczeń z pod<mark>staw</mark> konstrukcji <mark>masz</mark>yn: Łożyska, <mark>sprz</mark>ęgła i hamu<mark>lce,</mark> przekładnie mechaniczne, tom 2. WNT. 2015. isbn: 9788393491360.

L. W. Kurmaz and O. L. Kurmaz. Podstawy konstruowania węzłów i części maszyn: podręcznik konstruowania. Samodzielna Sekcja "Wydawnictwo Politechniki Świętokrzyskiej", 2011. isbn: 9788388906343.

E. Mazanek, A. Dziurski, and L. Kania. Przykłady obliczeń z podstaw konstrukcji maszyn: Połączenia, sprężyny, zawory, wały maszynowe. tom 1. WNT. 2005. isbn: 9788320435528.

PN-ISO 1122-1:2004. Słownik terminów związanych z kołami zębatymi — Część 1: definicje związane z geometrią.

PN-ISO 2<mark>203:2</mark>002. Rysune<mark>k tec</mark>hniczny — Pr<mark>zeds</mark>tawianie up<mark>roszc</mark>zone przekł<mark>adni</mark> zębatych.

PN-IS<mark>O 54</mark>:2001. Przekł<mark>adn</mark>ie zębate wal<mark>cow</mark>e ogólnego <mark>przez</mark>naczenia or<mark>az dla</mark> przemysłu <mark>ciężk</mark>iego.

PN-ISO 701:2001. Międzynarodowe oznaczenia kół zębatych – Symbole parametrów geometrycznych.

Paweł Romanowicz. Rysunek techniczny w mechanice i budowie maszyn. Wydaw. Naukowe PWN, Warszawa, 2018.

