Machine Learning: What is it?

Anastassia Kornilova

Machine Learning is Everywhere

What is Machine Learning?

"training a computer to get new *insights* from data *by itself*" - Anastassia 2018

Insight?

- Finding similar examples
- Predicting an outcome
- Making a decision
- Giving an answer

By itself?

You did not program an answer/output for this input

Simple Example

yData: Positive + Negative Not in **Amazon Reviews** here ML Algorithm Predict "stars" on a new Jeview

★★★★ Five Stars

By Dizzle on April 3, 2018

Color: Blue | Verified Purchase

A little smaller than 24 inches but so cute and made very well for the price

Some terms

- AI: computers solving problems that traditionally require human intelligence; superset of ML
- ML: algorithms that can be applied to NLP and other areas
- Natural Language Processing (NLP): problems that could be solved with ML

Let's build a model!!

SCENARIO: You are a movie director for "AI the Movie" and you want to find out if people liked your movie from Twitter. There are no or :...how can you tell if people liked it?

IDEA: Let's look at a subset of reviews and come up with some rules for deciding if a review is good or bad

If _____, then Good/Bad

"Amazing all around"	If amazing —> then good
"Worst movie of the year"	If worst —> then bad
"You will love the acting, I promise"	If love —> then good
"Way too slow"	If slow —> then bad
"The space battles were cool"	If cool —> then good
"Total waste of time"	If waste of time —> then bad

Let's classify some new tweets

If amazing —> then good

If worst -> then bad

If love —> then good

If cool —> then good

If waste of time -> then bad

If slow -> then bad

Let's classify some new tweets

If amazing —> then good

If worst -> then bad

If love —> then good

If cool —> then good

If waste of time -> then bad

If slow -> then bad

Let's classify some new tweets

If amazing —> then good

If worst -> then bad

If love —> then good

If cool —> then good

If waste of time -> then bad

If slow -> then bad

New Idea: If we give a computer a lot of examples, maybe it can learn the rules on its own.

Step 1: Collect the data

2 81%	Maniac
97 %	American Vandal
100%	BoJack Horseman
9 6%	The Sinner
* 58%	Manifest
* 53%	Marvel's Iron Fist
100%	The Deuce

Step 2: Count how many times each word appears in a good or bad review

Words	Count in GOOD reviews	Count in BAD reviews
good	300	50
boring	20	350
acting	800	790
:D	540	10
:((20	200
amazing	500	25
plot	650	670
slow	20	140

Step 3: Count how many times each word appears in a good or bad review

Words	Count in GOOD reviews	Count in BAD reviews	Count (GOOD - BAD)	
good	300	50	300 - 50 = 250	
boring	20	350	20 - 350 = -330	
acting	800	790	800 - 790 = 20	
:D	540	10	540 - 10 = 530	
:((20	200	20 - 200 = -140	
amazing	400	25	400 - 25 = 375	
plot	650	670	650 - 670 = -20	
slow	20	140	20 - 140 = -120	

Step 4: Assign score from table

Words	Count in GOOD reviews	Count in BAD reviews	Difference (GOOD - BAD)	Score
good	300	50	300 - 50 = 250	1
boring	20	350	20 - 350 = -330	-2
acting	800	790	800 - 790 = 20	0
:D	540	10	540 - 10 = 530	2
:((20	200	20 - 200 = -140	-1
amazing	400	25	400 - 25 = 375	2
plot	650	670	650 - 670 = -20	0
slow	20	140	20 - 140 = -120	-1

Words	Score
good	1
boring	-2
acting	0
:D	2
:((-1
amazing	2
plot	0
slow	-1

Word	Weight
plot	0
boring	-2
Sum:	-2

Words	Score
good	1
boring	-2
acting	0
:D	2
:((-1
amazing	2
plot	0
slow	-1

The plot was a little slow, but the amazing acting made the movie worth going to!

2:48 PM - 6 May 2015

Word	Weight
plot	0
slow	-1
amazing	2
acting	0
Sum:	1

The Flower DataSet

The Flower DataSet

Review Sentiment = f(words)

Flower Type = f(Stem Length, Petal Length)

Review Sentiment = f(words)

Review Sentiment = $\sum word \cdot w_{word}$

Petal Length = 0.8 * Stem Length - 1.3

Target???

0.8 * 6 - 1.3 - 2.1 = 1.4

$$0.8 * 6 - 1.3 - 2.1 = 1.4$$

0.8 * 5.5 - 1.3 - 4.3 = -1.2

Flower Type = Sign(0.8 * SL - 1.3 - PL)

hidden layer 1 hidden layer 2

$$y = f(x)$$

Method Names

- Perceptron
- Lasso
- Ridge Classifier
- Stochastic Gradient Descent (SGD)
- Support Vector Machine (SVM)

K-Nearest Neighbors / K-Means

https://www.kdnuggets.com/2017/09/rapidminer-k-nearest-neighbors-laziest-machine-learning-technique.html

Decision Tree

Random Forest

https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d

Evaluation: how good is my model?

- Compare the *true* label to the predicted one:
 - Accuracy: # Correct / # Total
- Model must be evaluated on a a different set of data than the one used to train the model.
 - Called train and test data

Supervised vs unsupervised learning

- Supervised (our example model)
 - Data contains both inputs and outputs
 - Learn to predict output from the input
- Unsupervised
 - Data contains input but no output
 - Learn patterns/clusters in the data

Unsupervised Example

E.g. What are the common themes in these movie reviews

Big Picture Process

ML in the Wild

FN Outlook

Compared to other bills in Pennsylvania, this bill is more likely to pass.

We calculated this based on the strength of the bill sponsor, the language in the bill, and the network of the cosponsors.

- Rosita C. Youngblood is the House Minority Caucus Secretary.
- Last session, approximately 32.8% of bills introduced in the House were enacted.
- At least one bill with similar language passed in a previous session in this legislature.
- Historically, bills with a similar number of sponsors passed 7.5% of the time in this chamber.

House House Floor Score Floor Score Score Score Score 97.5% Senate Floor Score Floor Score 71.4%

- Features:
 - # Sponsors
 - Sponsors' ideology and effectiveness
 - Leadership positions
 - Committee
 - Text

House Pre-Floor Score 37.1%

Questions?

Link to page with more terms defined

- Feature engineering
- Feature Selection
- Precision/Recall
- SVM/SVC

A few more useful terms

- Features:
- Classification
- Regression
- Accuracy
- Supervised vs unsupervised learning