

 u_0 或 i_0

7.1 D/A转换器

- 7.1.1 D / A转换的基本要求
- 一、输入、输出关系框图
- 1. D/A转换思路

如
$$(1101)_2 = 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^0 = 8 + 4 + 1 = 13$$

$$N_{10} = \sum_{i=0}^{n-1} d_i \times 2^i$$

可利用运算放大器实现运算

DAC

2. 转换特性

二、D/A 转换的电路组成

$\underline{\underline{\underline{\underline{}}}} \underline{d_{\underline{1}}} \underline{d_{\underline{0}}} \underline{\underline{\underline{}}} \underline{\underline{\underline{I}}} \underline{\underline{I}} \underline{\underline{I}}} \underline{\underline{\underline{I}}} \underline{\underline{\underline{I}}} \underline{\underline{\underline{I}}} \underline{\underline{\underline{I}}} \underline{\underline{\underline{I}}} \underline{\underline{\underline{I}}} \underline{\underline{\underline{I}}} \underline{\underline{I}} \underline{\underline{I}} \underline{\underline{I}} \underline{\underline{I}}} \underline{\underline{\underline{I}}} \underline{\underline{\underline{I}}} \underline{\underline{I}} \underline{\underline{I}} \underline{\underline{I}} \underline{\underline{I}} \underline{\underline{I}} \underline{\underline{I}} \underline{\underline{I}}} \underline{\underline{I}} \underline{\underline{I}} \underline{\underline{I}} \underline{\underline{I}} \underline{\underline{I}} \underline{\underline{I}}} \underline{\underline{I}} \underline{\underline{I}}} \underline{\underline{I}} \underline{\underline{I}}$

$$u_{O} = -\left(\frac{I}{2} + \frac{I}{4}\right)R = -\left(\frac{U_{REF}}{2R} + \frac{U_{REF}}{4R}\right)R$$
$$= -\frac{U_{REF}}{2^{3}}(1 \times 2^{2} + 1 \times 2^{1})$$

$$u_{O} = -\frac{U_{REF}}{2^{3}}(d_{2} \times 2^{2} + d_{1} \times 2^{1} + d_{0} \times 2^{0})$$

四、输入为n位二进制数时的表达式

$$\stackrel{\triangle}{=} D = d_{n-1} d_{n-2} \dots d_1 d_0$$

$$u_{O} = -\frac{U_{REF}}{2^{n}}(d_{n-1} \times 2^{n-1} + ... + d_{1} \times 2^{1} + d_{0} \times 2^{0})$$

$$u_{\mathcal{O}} = -\frac{U_{\text{REF}}}{2^n}D = K_{\mathcal{U}} \cdot D$$

 K_{II} 一转换比例系数

$$K_{\mathbf{u}} = -\frac{U_{\text{REF}}}{2^n}$$

7.1.2 DAC 的转换精度、速度和主要参数

- 一、转换精度
- 1. 分辨率 (Resolution)

分辨率=
$$\frac{U_{LSB}}{U_{ESR}} = \frac{1}{2^{n}-1}$$

指 D/A 转换器模拟输出产生的最小电压变化量与满刻度输出电压之比,也可用输入的位数表示。

LSB —Least Significant Bit

FSR — Full Scale Range

2.转换误差

为实际输出与理想输出模拟电压间的最大误差。

可用占输出电压满刻度值的百分数表示或可用最低有效位(LSB)的倍数表示。

如: $\frac{1}{2}$ (LSB) = 输入为 0...01 时输出模拟电压的一半。

二、转换速度

- 1. 建立时间 $t_{\rm s}$
- $t_{\rm s}$ 为在大信号工作下(输入由全 0 变为全 1,或由全 1 变为全 0),输出 电压达到某一规定值所需时间。不包含 $U_{\rm REF}$ 和运放的单片 DAC 最短 $t_{\rm s}$ < 0.1 μs ; 包含 $U_{\rm REF}$ 和运放的单片 DAC 最短 $t_{\rm s}$ < 1.5 μs 。
 - 2. 转换速率 S_R

用大信号工作状态下模拟电压的变化率表示

完成一次转
换所需时间
$$T_{TR} = t_s + t_r$$
 (t_f) 上升时间
下降时间

$$T_{\text{TR (max)}} = t_{\text{s}} + U_{\text{O (max)}} / S_{\text{R}}$$

三、主要参数

D/A 转换器 5G7520 的主要参数

参数名称		单 位	参数值
分辨率		位	10
非线性度		全量程的%	≤ 0.05 %
<u> </u>		ns	≤ 500
$U_{ m REF}$		V	−25 ~ +25
电源电压		\mathbf{V}	5 ~ 15
 功 耗		mW	20
温度系数	电源	$FSR \times 10-6$ /°C	50
	増益	$FSR \times 10$ –6/°C	10
	非线性	$FSR \times 10-6$ /°C	2

四、集成DAC芯片举例

1. 5G7520 的电路结构

单极性输出

$$U_{\text{REF}} > 0, \quad u_{\text{O}} < 0$$

111111111111111 变化时, u₀从0~(1023/1024)U₁

输出与输入的关系

R _{W3}		OD
$d_0 \sim d_9$	14 15 4 <u>10</u>	$R_{\mathbf{f}}$
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{ccc} & & & \\ & & & \\ 13 & & & \end{array}$	I_{01}
REF	5G7520 2 ₂	$\frac{I_{\Omega 2}}{u_{\Omega}}$
系	L 3 2	$-V_{\rm EE}$

側田づ棚へ町入が	EE W2
数码输入	模拟输出
$d_9d_8d_7d_6d_5d_4d_3d_2d_1d_0$	$u_{\rm o}$
1 1 <th>- (1023 / 1024) U_{REF} - (1022 / 1024) U_{REF}</th>	- (1023 / 1024) U_{REF} - (1022 / 1024) U_{REF}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- (1/1024) U _{REF}

3. 分辨率

单极性输出: 分辨率 =
$$\frac{1}{2^n-1}$$

5G7520 为 10 位 D/A 转换器,

分辨率 =
$$\frac{1}{2^{10}-1}$$
 = $\frac{1}{1023}$ ≈ 0.000978

当 $U_{\text{REF}} = 10 \text{ V时,最小输出电压 } u_{\text{O}} = 9.76 \text{ mV}$

双极性输出: 分辨率 =
$$\frac{1}{2^{n-1}-1}$$

对于 5G7520 分辨率=
$$\frac{1}{2^9-1}$$
= $\frac{1}{511}$ ≈ 0.00196

当 U_{REF} =10 V 时,最小输出电压 u_{O} =19.6 mV