第2章 非线性方程求根

求根问题:输入是函数,输出是数。输入的扰动是什么? 函数扰动自然,但很复杂。

第2章 非线性方程求根

求根问题:输入是函数,输出是数。

输入的扰动是什么?

函数扰动自然,但很复杂。

一个简单做法: 值的扰动。给出函数在

根处的值的容许范围。

数值问题:输入,输出及其它们的扰动。

注:函数不同表达,结果或许不同。

y=ax+6x+c, a, b. chothinp.48米各个

中国 公元一世纪, 一元二次方程 公元六世纪,王孝通,一元三次方程 公元十三世纪,秦九韶,一元高次方程 秦九韶:三斜求积术,大衍求一术,正负 开方法等 (Cantor、Sarton 的评价)

国外 古埃及、古巴比伦, 一元二次方程 十六世纪初, Vieta, 根与系数关系 十六世纪中, Tartaglia, Cardano, Ferrari, 一元三次四次方程 十九世纪, Hermite, Abel, Galois, 一元五 次方程

§1 引言

例: 光的衍射 $x - \tan x = 0$; 行星轨道, Kepler 方程 $x - a \sin x = b$ 。 根 x^* 也称为零点。

定义 (根 x* 的重数)

对光滑函数 f , 若 $f(x^*) = f'(x^*) = \cdots = f^{(m-1)}(x^*) = 0$, 但 $f^{(m)}(x^*) \neq 0$, 则称 x^* 是方程 f(x) = 0 的 m 重根。当 m = 1 时,即 $f(x^*) = 0$, $f'(x^*) \neq 0$ 时,称 x^* 为单根。

定义 (根 x^* 的重数)

对光滑函数 f , 若 $f(x^*) = f'(x^*) = \cdots = f^{(m-1)}(x^*) = 0$, 但 $f^{(m)}(x^*) \neq 0$, 则称 x^* 是方程 f(x) = 0 的 m 重根。当 m = 1 时,即 $f(x^*) = 0$, $f'(x^*) \neq 0$ 时,称 x^* 为单根。

例: 多项式函数 f(x), **强基**求 $f(x) = (x - x^*)^m g(x)$, $g(x^*) \neq 0$ 。 m 重根的概念与上述定义一致。

连续函数的根未必有重数。

例: 不光滑函数
$$f(x) = |x - x^*|^{3/2}$$
; $f(x) = (x - x^*)^m \ln |x - x^*|$; 光滑函数 $f(x) = e^{-1/(x-x^*)^2}$ 。

一元 n 次方程 ($n \ge 5$) 不存在求根公式。 求根 (不计误差) 是一个无限过程。 非线性方程一般寻求近似解。

并希望烈能快

二、问题的敏感性

数值问题的敏感性:输入数据的扰动对

输出数据的影响。

数值问题要假设输入数据如何扰动。

问题的敏感性

数值问题的敏感性:输入数据的扰动对

(球和的,下面倒分) 输出数据的影响。

数值问题要假设输入数据如何扰动。

易于分析的情况: $f(x^*) = 0$, f(x) = y。 绝对条件数: x^*

$$\frac{|x-x^*|}{|y-0|} = \frac{|x-x^*|}{|f(x)-f(x^*)|} \approx \frac{1}{|f'(x^*)|}$$

(12311129~14726

私介生, 450%

若函数值 f(x) 对输入参数 x 很不敏感,则求根问题就很敏感;反之,若函数值 f(x) 对输入参数 x 很敏感,则求根问题就很不敏感。

条件数的大小反映非线性方程求根问题 f(x) = 0 的敏感程度。 《心格代料》 若 $|f'(x^*)|$ 很小,则求根问题是一个病态问题;反之,若 $|f'(x^*)|$ 很大,则问题不敏感。

(fix) 安哥洛の公孙太

特殊情况是 $f'(x^*) = 0$,即 x^* 为重根,此时求根问题很敏感。微小扰动可能改变解的存在性和唯一性。

§2 二分法

数值求解非线性方程通常是设计一个迭代过程,逐步逼近准确解。

§2 二分法

数值求解非线性方程通常是设计一个迭 代过程,逐步逼近准确解。 一、方法原理 有根区间就是包含至少一个根的区间。 如果能计算出一个足够小的有根区间, 那么区间中点就是一个近似解。 品时候推到断,随后变水区间

 $f(x) \in C[a,b]$, 若 f(a) 和 f(b) 异号,则 (a,b) 是有根区间,但根的个数不能确定;若 f(a) 和 f(b) 同号,不能确定(a,b) 是否为有根区间。

 $f(x) \in C[a,b]$, 若 f(a) 和 f(b) 异号, √则(a,b)是有根区间,但根的个数不能确 定; 若 f(a) 和 f(b) 同号,不能确定 (a,b) 是否为有根区间。

二分法的思想:将有根区间逐次减半, 得到区间序列 $\{(a_k,b_k)\}$, 中点 $x_k = \frac{a_k + b_k}{2}$ 就是第 k 步迭代的近似解。 当某个 x_k 为 f(x) 的根,即 $f(x_k) = 0$, 则二分法成功结束。误差为

$$|x_k - x^*| < \frac{b_k - a_k}{2} = \frac{b_0 - a_0}{2^{k+1}}$$

例:求方程 $f(x) = x^4 - x - 2 = 0$ 在区 间 [1.0,1.5] 内的一个实根, 要求误差小 于 $< 0.5 \times 10^{-2}$ 。你赶过最后一位的一判 解: f(1.0) < 0, f(1.5) > 0 异号, (1.0, 1.5) 是有根区间。 若 $\frac{b-a}{2^{k+1}} \leq 0.5 \times 10^{-2}$,则 $|x_k - x^*| < 0.5 \times 10^{-2}$ 。 代入 a = 1, b = 1.5, 解得 $k \ge \log_2 \frac{0.5}{0.5 \times 10^{-2}} - 1 = 5.6$. 取最小的整数值 k = 6。只需二分 6 次, 可得到满足精度要求的解。

下表近似解为 x = 1.356(准确解为 1.353210)。 (不依在 206) 206) 206 (本体的 206) 206)

1.000210/6 01/1/2								
\overline{k}	a_k	b_k	x_k	$f(x_k)$	ax			
0	1.0	1.5	1.25	-0.808	br			
1	1.25	1.5	1.375	0.199	ļ			
2	1.25	1.375	1.313	-0.341	构造			
3	1.313	1.375	1.344	-0.081				
4	1.344	1.375	1.36	0.061				
5	1.344	1.36	1.352	-0.011	July 19			
6	1.352	1.36	1.356	0.025	3 /2/4 3 - 1/4 3 - 1/4			

同岩 越门符号 不变

同号

发挥为民值 再等行证打

- 二、算法稳定性和结果准确度
- 二分法计算过程中解的误差限逐次减半, 因而稳定。

在浮点算术体系中,二分法最终有根区间的端点是相邻的浮点数,即误差限存在最小值。二分法的缺点是不易确定合适的初始有根区间、收敛较慢,且无法求解偶数重的根。

§3 不动点迭代法

一、基本原理迭代:按同一过程重复计 算的算法。 f(x) = 0 改写为 $x \neq \varphi(x)$ 。给定 x_0 后, 由 $x_{k+1} = \varphi(x_k)$ 得到序列 $\{x_k\}$ 。若序列 $\{x_k\}$ 收敛, 其极限必为解 x^* 。 x^* 也称为 函数 $\varphi(x)$ 的不动点,此方法为求解非线 性方程的不动点迭代法。

及写话不同、给未不同、女们的这些是

例:求方程 $f(x) = x^4 - x - 2 = 0$ 在

 $x_0 = 1.5$ 附近的根。

解: (1) 改写为 $x = x^4 - 2$, 迭代公式为

$$x_0 = 1.5$$
, $x_{k+1} = x_k^4 - 2$

k	0	1	2	
$\overline{x_k}$	1.5	3.0625	85.9639	

迭代法不收敛,无法求出近似解。

(2) 改写为
$$x = \sqrt[4]{x+2}$$
, 迭代公式为

$$x_0 = 1.5$$
, $x_{k+1} = \sqrt[4]{x_k + 2}$, $x_k = 1.5$, $x_{k+1} = \sqrt[4]{x_k + 2}$, $x_k = 1.5$, $x_{k+1} = \sqrt[4]{x_k + 2}$, $x_k = 1.5$, $x_{k+1} = \sqrt[4]{x_k + 2}$, $x_k = 1.5$, $x_k = 1.3547$, $x_k = 1.3532$,

x₄ 和 x₅ 前 5 位有效数字均为 1.3532, 可 认为迭代过程是收敛的, 要求的根为 1.3532。

〈不同不动点迭代法,收敛性可能有所不 一同。 以似性性 也不同

二、全局收敛的充分条件

万和小一兵

定理

设函数 $\varphi(x)$ 在区间 [a,b] 上满足:

(1) 对任意 $x \in [a,b]$,都有

 $a \leq \varphi(x) \leq b$; $\varphi(x) \in \mathcal{A}(x)$. The initial terms of $x \in \mathcal{A}(x)$

(2) 存在常数 0 < L < 1,使得对任意

 $x_1, x_2 \in [a, b]$,都有 说离成识例地延来

 $|\varphi(x_1)-\varphi(x_2)|\leq L|x_1-x_2|, \quad \text{if } A$

则 $\varphi(x)$ 在 [a,b] 上存在不动点,且不动

点是唯一的。

条件(1): 迭代不断进行。

 φ 连续时,由 $\varphi(a) - a \ge 0$,而

 $\varphi(b) - b \le 0$, φ 在 [a,b] 必有不动点。

条件 (2): 条件 (2) 也称为 L 的李普希兹 (Lipschitz) 条件,L 为李普希兹系数。

李普希兹条件强于一致连续。

当 L < 1 时, φ 是压缩映射。

[a,b] 经 k 次迭代后为 $[a_k,b_k]$,

 $|b_k-a_k|\leq L^k|b-a|\rightarrow 0$. White

收缩到一点 x*, 即有全局收敛性。

问题: 1. 闭区间 [a,b] 改为 $[a,+\infty)$ 如何? 或改为 (a,b) 如何?

2. 条件 (2) 改为对任意不同的

$$x_1, x_2 \in [a, b]$$
,都有

$$|\varphi(x_1) - \varphi(x_2)| < |x_1 - x_2|$$
 如何?

唯一不动点 x^* 。

全局收敛性:考虑迭代序列的聚点z,

 $\varphi(z)$ 也是一个聚点。

$$|z - x^*| = |\varphi(z) - x^*| = \lim |x_k - x^*|$$

故 $z=x^*$ 。

定理(个人))

设 $\varphi \in C[a,b]$ 满足定理中的两个条件,则对于任意初值 $x_0 \in [a,b]$,由不动点迭代法得到的序列 $\{x_k\}$ 收敛到 $\varphi(x)$ 的不动点 x^* ,并有误差估计 $|x_k - x^*| \leq \frac{L^k}{1-T}|x_1 - x_0|$ 。

定理

设 $\varphi \in C[a,b]$ 满足定理中的两个条件,则对于任意初值 $x_0 \in [a,b]$,由不动点迭代法得到的序列 $\{x_k\}$ 收敛到 $\varphi(x)$ 的不动点 x^* ,并有误差估计 $|x_k - x^*| \leq \frac{L^k}{1-L}|x_1 - x_0|$ 。

上述收敛不依赖于初值 x_0 的选择,因此称为全局收敛。为了方便应用,条件 (2) 替换为:对任意的 $x \in [a,b]$,有 $|\varphi'(x)| \leq L < 1$,其中 L 为常数。

定理(江南水器等,一般也不论上下)

设函数 $\varphi \in C^1[a,b]$, 且对任意 $x \in [a,b]$, 满足如下两个条件:

(1)
$$a \le \varphi(x) \le b$$
;

 $(2) |\varphi'(x)| \le L < 1$, L 正常数,则对于任意初值 $x_0 \in [a,b]$,由不动点迭代法得到的序列 $\{x_k\}$ 收敛到 $\varphi(x)$ 的不动点 x^* ,并有误差估计 $|x_k - x^*| \le \frac{L^k}{1-L} |x_1 - x_0|$ 。

例: 对于求方程 $f(x) = x^4 - x - 2 = 0$ 在 $x_0 = 1.5$ 附近的根的问题,在区间 [1,2] 上考察迭代 方法 $(1)x_{k+1} = x_k^4 - 2$ 和 方法 $(2)x_{k+1} = \sqrt[4]{x_k+2}$ 的全局收敛性。

解: 方法 (2) 符合定理的条件 (1), 而 $\varphi'(x) = \frac{1}{4}(x+2)^{-3/4}$,也符合条件 (2), 具有全局收敛性。

方法(1),不符合定理条件(1),无法根

据定理说明其全局收敛性。

关于全局收敛性再说明两点:

- (1) 上述定理是不动点迭代法全局收敛的 "充分条件", 但根据它不能说明某个方法 不具有全局收敛性。
- (2) 全局收敛性要求初始值 x_0 为定义域内任意值时不动点迭代法都收敛,这常常是很难达到的要求。

三、局部收敛性与收敛阶

定义

设函数 $\varphi(x)$ 存在不动点 x^* ,若存在 x^* 的某个邻域 $D:[x^*-\delta,x^*+\delta]$,对于任意初值 $x_0 \in D$,迭代法 $x_{k+1} = \varphi(x_k)$ 产生的解序列 $\{x_k\}$ 收敛到 x^* ,则称迭代法局部收敛。

(取的是不为其的论的变), 5公月还别是8不知意)

定理

设 x^* 为 $\varphi(x)$ 的不动点,若 $\varphi'(x)$ 在 x^* 的某个邻域连续,且 $|\varphi'(x^*)| < 1$,则不动点迭代法 $x_{k+1} = \varphi(x_k)$ 局部收敛。 $|\varphi'(x^*)|$ 越小,迭代收敛的速度越快。

 $|\varphi'(x^*)|$ 越小,迭代收敛的速度越快。 从迭代的角度,当 $|\varphi'(x^*)| < 1$ 时, x^* 是稳定的不动点,医代法是稳定的算法。

14'(x*) >1 1867 164A

4 D > 4 B > 4 B > 4 B > B 990

四、稳定性与收敛阶

例:如下三个迭代过程,其误差

$$|e(x_k)| = |x_k - x^*|$$
 随迭代步变化分别为

$$(1) 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}, \dots$$

(2)
$$10^{-2}$$
, 10^{-4} , 10^{-6} , 10^{-8} , ...

慢。对于方法
$$(1)$$
, $\frac{|e(x_{k+1})|}{|e(x_k)|}=10^{-1}$,而对

于方法 (2),
$$\frac{|e(x_{k+1})|}{|e(x_k)|} = 10^{-2}$$
.

定义

设一个迭代解序列 $\{x_k\}$ 收敛于准确解 x^* , 若迭代解的误差 $e(x_k) = x_k - x^*$, $k = 1, 2, \ldots$ 满足下列渐进关系: $\lim_{k \to \infty} \frac{|e(x_{k+1})|}{|e(x_k)|^p} = c(c \neq 0)$ 为常数),则称该 迭代过程是 p 阶收敛的,或收敛阶为 p。

对一个迭代法其收敛阶p的值是唯一的,若取其他值会使极限值c为0或无穷大。 p_b 基格分产资化设施,资化设施,产品总数

上述例子: (1) 1 阶收敛, $c = 10^{-1}$ 。(2) 1 阶收敛, $c = 10^{-2}$ 。(3) 2 阶收敛, c = 1。

上述例子: (1) 1 阶收敛, $c = 10^{-1}$ 。(2) 1 阶收敛, $c = 10^{-2}$ 。(3) 2 阶收敛, c = 1。对于二分法来说,相当于 1 阶收敛, c = 0.5。

上述例子: (1) 1 阶收敛, $c = 10^{-1}$ 。(2) 1 阶收敛, $c=10^{-2}$ 。(3) 2 阶收敛, c=1。 对于二分法来说,相当于 1 阶收敛, c=0.5. Mysis, but it suit the continuous 收敛阶 p=1 的迭代法称为线性收敛, k收敛阶 p > 1 的迭代法称为超线性收敛, 收敛阶 p=2 的迭代法称为平方收敛。 收敛阶越高, 迭代法收敛得越快, 计算 量也越少。所以我们往往寻求超线性收 敛、如: 2 阶收敛等迭代法。

定理

对于不动点迭代法 $x_{k+1} = \varphi(x_k)$,若在 所求根 x^* 的邻域上函数 $\varphi(x)$ 的 p 阶导 数连续, $p \geq 2$,则该迭代法在点 x^* 的 邻域上 p 阶收敛的充分必要条件是: $\varphi'(x^*) = \varphi''(x^*) = \cdots = \varphi^{(p-1)}(x^*) = 0$, 且 $\varphi^{(p)}(x^*) \neq 0$ 。

设迭代
$$x_{k+1} = \varphi(x_k)$$
 是 p 阶收敛的。将 $\varphi(x_k)$ 在根 x^* 处做泰勒展开,则 $\varphi(x_k) = \varphi(x^*) + \frac{\varphi^{(p)}(\xi)}{p!}(x_k - x^*)^p$, $e(x_{k+1}) = \frac{\varphi^{(p)}(\xi)}{p!}e(x_k)^p$, 中心极异极为, $\lim_{k \to \infty} \frac{e(x_{k+1})}{e(x_k)^p} = \frac{\varphi^{(p)}(x^*)}{p!}$ 。 是从外班 对缺为的也称为局部收敛阶。

为近S具体方程有关

§4 牛顿迭代法

牛顿 (Newton) 迭代法是一种被广泛使用的方法,它具有比较固定的公式,并且它具有局部收敛性和较高的收敛阶。

§4 牛顿迭代法

牛顿 (Newton) 迭代法是一种被广泛使用 的方法,它具有比较固定的公式,并且 它具有局部收敛性和较高的收敛阶。 一、方法原理 二門方似.具件5千0分類 在 $x = x_k$ 处, f(x) 的一次近似 $P(x) = f(x_k) + f'(x_k)(x - x_k),$ 以 P(x) = 0 的根作为 x_{k+1} 。 $x_{k+1} = x_k - f(x_k) / f'(x_k)_{\bullet}$ 牛顿法的迭代公式 $\varphi(x) = x - \frac{f(x)}{f'(x)}$ 。

牛顿法的局部收敛性和收敛阶:
假设
$$f'(x^*) \neq 0$$
,即 x^* 为单根。
$$\varphi'(x) = \frac{f(x)f''(x)}{[f'(x)]^2}, 因此, \varphi'(x^*) = 0。$$

$$\varphi''(x^*) = \frac{f''(x^*)}{f'(x^*)}. \longrightarrow \Phi'(\omega) = f(x). \frac{f''(x)}{[f'(x)]^2}$$
此时,
$$\lim_{k \to \infty} \frac{e(x_{k+1})}{e(x_k)^2} = \frac{f''(x^*)}{2f'(x^*)}. \longrightarrow f(x_k) = f(x_k)$$

$$\varphi(x) = x - \frac{f(x)}{f'(x)} \qquad \varphi(x_k) = \varphi(x^*) + \frac{\varphi''(x)}{2} (x_k - x^*)$$

$$e(x_{k+1}) = \varphi(x_k) - \varphi(x^*) \qquad e(x_k)^2 = \frac{f''(x^*)}{2f'(x^*)}$$

$$e(x_k) = \frac{\varphi''(x^*)}{2} e(x_k)^2$$

牛顿法的局部收敛性和收敛阶: 假设 $f'(x^*) \neq 0$, 即 x^* 为单根。 $\varphi'(x) = \frac{f(x)f''(x)}{[f'(x)]^2}$, 因此, $\varphi'(x^*) = 0$ 。 $\varphi''(x^*) = \frac{f''(x^*)}{f'(x^*)}$ 此时, $\lim_{k\to\infty} \frac{e(x_{k+1})}{e(x_k)^2} = \frac{f''(x^*)}{2f'(x^*)}$ 。 不能性力(x)=0. 国心是至少

定理

设 x^* 为方程 f(x) = 0 的单根,且 f(x) 在 x^* 附近有连续的 2 阶导数,则牛顿法产生的解序列至少是局部 2 阶收敛的。

例: 用牛顿法求 $f(x) = x^4 - x - 2 = 0$

在 $x_0 = 1.5$ 附近的实根。

解: 牛顿法的计算公式为

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = \frac{3x_k^4 + 2}{4x_k^3 - 1}, \quad k = 0, 1, \dots$$

设初始值为 $x_0 = 1.5$ 。计算结果如下表。

		1		3	4
$\overline{x_k}$	1.5	1.375	1.3538	1.3532	1.3532

牛顿法收敛很快,体现了2阶收敛性的优势。

例: 方程 $f(x) = x^2 - c = 0$, c > 0 的正根 x^* , 试分析采用牛顿法求解过程的收敛性质。

解:列出牛顿法计算公式

$$x_{k+1} = x_k - \frac{x_k^2 - c}{2x_k} = \frac{1}{2} \left(x_k + \frac{c}{x_k} \right),$$
 $k = 0, 1, \dots$

由于 $f'(x^*) \neq 0$, 且 $f''(x^*) \neq 0$ 。 迭代是 局部 2 阶收敛。

迭代公式在区间 $(0,+\infty)$ 上全局收敛:

첫
$$x_{k+1} - \sqrt{c} = \frac{1}{2x_k} (x_k - \sqrt{c})^2$$
, $x_{k+1} + \sqrt{c} = \frac{1}{2x_k} (x_k + \sqrt{c})^2$.

$$\frac{x_{k+1}-\sqrt{c}}{x_{k+1}+\sqrt{c}}=\left(\frac{x_k-\sqrt{c}}{x_k+\sqrt{c}}\right)^2$$
, 因此,

$$\frac{x_k - \sqrt{c}}{x_k + \sqrt{c}} = \left(\frac{x_0 - \sqrt{c}}{x_0 + \sqrt{c}}\right)^{2^k}$$

若
$$x_0 > 0$$
,有 $\left| \frac{x_0 - \sqrt{c}}{x_0 + \sqrt{c}} \right| < 1$, $\frac{x_k - \sqrt{c}}{x_k + \sqrt{c}} \to 0$,

即 $x_k \to \sqrt{c}$ 。全局收敛。

计算机上实际使用的求平方根算法。

法二:
$$x_0 > 0$$
 时,归纳证明 $x_k \ge \sqrt{c}(k \ge 1)$ 。 $x \in [\sqrt{c}, +\infty)$ 时, $\varphi(x) = \frac{1}{2}(x + \frac{c}{x}) \le x$ 。 $\varphi'(x) = \frac{1}{2} - \frac{c}{2x^2}$ 。 $-\frac{1}{2} \le \varphi'(x) \le 0$ 。 $\varphi: [\sqrt{c}, x_1] \to [\sqrt{c}, x_1]$, $L = \frac{1}{2}$ 。 $\{x_k\}(k \ge 1)$ 递减收敛到 \sqrt{c} 。

例:证明不管选择什么实初始点,牛顿 迭代对 $f(x) = x^2 + 1$ 发散。

证: 牛顿迭代公式 $x_{k+1} = x_k - \frac{x_k^2 + 1}{2x_k}$ 。由 于初始点是实的,所有 x_k 是实的,不可 能收敛到虚根 $\pm \sqrt{-1}$ 。 按双精度浮点运算,如果 $\{x_k\}$ 是收敛 的,则当 k 足够大时, $x_{k+1} = x_k$ 。此时, 若 $|x_k| > 2$, $|x_{k+1} - x_k| \ge |x_k|/2$; 若 $0 < |x_k| \le 2$ 时, $|x_{k+1} - x_k| \ge 1$ 。

例: $e^x = 0$ 牛顿迭代公式 $x_{k+1} = x_k - 1$ 。 实数体系下发散 双精度浮点体系下收敛。

二、重根的情况

$$f(x^*) = f'(x^*) = \cdots = f^{(m-1)}(x^*) = 0$$
,

 $f(x^*) = f'(x^*) = \cdots = f^{(m-1)}(x^*) = 0$,

 $e(x_{k+1}) = x_{k+1} - x^* = e(x_k) - \frac{f(x_k)}{f'(x_k)}$,

 $\frac{e(x_{k+1})}{e(x_k)} = 1 - \frac{f(x_k)}{f'(x_k)(x_k - x^*)} = 1 - \frac{f^{(m)}(x^*)(x_k - x^*)^m/m! + O((x_k - x^*)^{m+1})}{f^{(m)}(x^*)(x_k - x^*)^m/(m-1)! + O((x_k - x^*)^{m+1})}$,

 $\lim_{k \to \infty} \frac{e(x_{k+1})}{e(x_k)} = 1 - \frac{1}{m}$ 。 因此 $0.5 \le c < 1$ 。 不如二分法好。 让她长, 美工地

若取 $\varphi(x) = x - m \frac{f(x)}{f'(x)}$,则 $\varphi'(x^*) = 0$,至少二阶收敛。缺点是需要知道根 x^* 的重数。

若取 $\varphi(x) = x - m \frac{f(x)}{f'(x)}$, 则 $\varphi'(x^*) = 0$, 至少二阶收敛。缺点是需要知道根 x^* 的 重数。

若取 $\mu(x) = f(x)/f'(x)$, 若 x^* 是 f(x)的 m 重根,则 x^* 是 $\mu(x)$ 的单根,对 $\mu(x) = 0$ 用牛顿法,则迭代函数 $\varphi(x) = x - \frac{\mu(x)}{\mu'(x)} = x - \frac{f(x)f'(x)}{f'(x)^2 - f(x)f''(x)}$, Ξ 少二阶收敛。

- 三、判停准则 不动点迭代法,较难估计误差限。判停 准则主要有两个:
- (1) <mark>残差判据</mark> 即要求 $|f(x_k)| < \varepsilon_1$,其中 ε_1 为某个阈值;
- (2) 误差判据,即要求 $|x_{k+1} x_k| < \varepsilon_2$,其中 ε_2 为某个阈值。 两个判据都有道理,但也有缺陷。

或改选化及数有安花.

四、牛顿法的问题 f(x) 不满足 2 阶导数连续,且 f(x) 为单根时,牛顿法可能变得非常不可靠。

四、牛顿法的问题

当 f(x) 不满足 2 阶导数连续,且 x^* 为单根时,牛顿法可能变得非常不可靠。

例: $f(x) = sign(x - a)\sqrt{|x - a|}$ 时, 牛 顿迭代围绕 x = a 来回跳动。

解: $\frac{f(x)}{f'(x)} = 2(x-a)$ 。

 $x_{k+1} - a = -(x_k - a)$ 。准确解为 $x^* = a$ 。 $\lim_{x \to a} f'(x) = \infty$,牛顿法的收敛理论 "不成分"。

小结一下,牛顿法仍有如下三方面<u>不足</u> 之处:

- (1) 无法保证全局收敛性;
- (2) 连续性要求较高, 需要 *x** 附近有连续的 2 阶导数;
- (3) 每步迭代都要计算 f'(x), 其计算量大, 还可能无法计算。

§5 割线法与抛物线法

一、割线法 平行弦法, $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_0)}$ 。缺点是收敛性较差, 需 x_0 非常接近 x^* 。 过 $(x_k, f(x_k))$ 和 $(x_{k-1}, f(x_{k-1}))$ 割线 $P_1(x) = f(x_k) + \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} (x - x_k),$ 城城等机筑

§5 割线法与抛物线法

一、割线法 平行弦法, $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_0)}$ 。缺点是收 敛性较差,需 x_0 非常接近 x^* 。 过 $(x_k, f(x_k))$ 和 $(x_{k-1}, f(x_{k-1}))$ 割线 $P_1(x) = f(x_k) + \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} (x - x_k)$ 科学在二光代接近时即 割线法: $x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1})$, by 广义的不动点迭代法。

不是并私品从不好

定理

假设 f(x) 在单根 x^* 的邻域 $D:[x^*-\delta,x^*+\delta]$ 内具有 2 阶连续导数, 且对任意 $x\in D$ 有 $f'(x)\neq 0$,如果初值 $x_0,x_1\in D$ 充分接近 x^* ,则割线法将按 阶 $p=\frac{1+\sqrt{5}}{2}\approx 1.618$ 收敛到根 x^* 。

19/20

英安岛初叹、 p=p+1

*二、抛物线法

二次插值法:根据三个已知点构造关于 x 的二次多项式 (抛物线),求它与 x 轴的交点作为下一步迭代解。

al hoc 水为 xxxx x*常任

*二、抛物线法

二次插值法: 根据三个已知点构造关于 x 的二次多项式 (抛物线), 求它与 x 轴的 交点作为下一步迭代解。其间,有处数,可以 逆二次插值法:根据这三个已知点构造造成 关于 y 的二次函数 $P_2(y)$, 得到 "侧向抛 物线",它与 x 轴有交点 $P_2(0)$ 是下一步 迭代解。るみのたん 理论上,单根附近两种抛物线法的收敛

理论上,<u>单限附近网种抛物线法的收</u>或 阶都是 $p \approx 1.839$ 。

低いままな。 第6 * 通用求根算法 zeroin 其人的改派、但其代表の プラムメンタ 於前面讨论的方法各有优缺点。北海林區门超来 zeroin 算法,Richard Brent,1973 年。 超小 二分法、割线法和抛物线法结合,稳定、 高效、通用。 一局都收临阶级快低级 zeroin 算法中定义 a,b,c 三个变量, 变量 b 表示当前迭代步的近似解,变量 c 为上 一步的 b, 而变量 a 的作用则是与 b 构 成有根区间。算法主要包括如下步骤:

在机区门两端书

- (1) 选取初始值 a 和 b, 使得 f(a) 和 f(b) 的正负号正好相反;
- (2) 将 a 的值赋给 c;
- (3) 重复下面的步骤 (4)-(7), 直到满足误 差要求:
- (4) 若 f(b) 的正负号与 f(a) 的相同,将 c 赋值给 a;
- (5) 若 |f(a)| < |f(b)|, 则将 b 的值赋给 c, 然后对调 a、b 的值;

- (6) 如果 $c \neq a$,利用 a、b、c 以及它们的函数值作逆二次插值法的一步迭代,否则执行割线法中的一步;
- (7) 如果执行一步逆二次插值法或割线法得到的近似解"比较满意",将它赋值给b,否则执行一步二分法得到b,然后将上一步的b 赋值给c。

上述算法中,(4) 和 (5) 步是对 a、b、c 三个量的值进行调整,使得 f(a) 和 f(b) 的正负号相反, $|f(b)| \le |f(a)|$,c 为上一步的 b。因此,变量 b 总是存储最好的近似解。判断逆二次插值法或割线法得到的近似解是否满意。

目标:使有机区门变水,并尽力促其变水行更快

MATLAB 中 fzero 命令基于 zeroin 算法。 zeroin 算法的主要优点如下:

- (1) 本身不要求函数 f(x) 具有光滑性;
- (2) 不需要计算导数 $f'(x_k)$;
- (3) 初始解只需要在包含准确解的区间, 不需要和准确解很接近;
- (4) 算法简单、稳定,每步迭代都使有根 区间缩小。

例: MATLAB 演示方程求解。 Wallis 函数 $p = x^3 - 2x - 5$,唯一实根 2.094551481542328。有根区间 [0,3],二分法——红,割线法——绿, 逆二次插值——蓝。

Wilkinson

$$p(x) = (x-1)(x-2)\cdots(x-20)$$
,根 20 的条件数 $\frac{1}{p'(20)} = \frac{1}{19!}$ 。
展开: $P(x) = x^{20} - 210x^{19} + \cdots$
初值 $x_0 = 21$,牛顿法。
 $x^* = 19.99987405572419$ 后面が原仏人。
所以に払いに
おかいふ因

应用实例:城市水管应埋于地下多深?

问题背景与建模
 在冬季寒冷的大城市,要保证埋于地下的水管干线不冻结。

假设土壤温度 T(x,t), 其中 x 深度, t 寒流持续时间。 T_i 是寒流来前的土壤温度 (例如 $20^{\circ}C$), T_s 是寒冷季节的地面温度。比例 $\frac{T(x,t)-T_s}{T_i-T_s}$ 介于 0 和 1。

土壤温度 T(x,t) 满足:

$$\frac{T(x,t)-T_s}{T_i-T_s}=erf\left(\frac{x}{2\sqrt{\alpha t}}\right)$$
,其中 α 热传导系数,误差函数 $erf(x)=\frac{2}{\sqrt{\pi}}\int_0^x e^{-u^2}du$ 。假设寒冷最长持续时间为 t_m ,由于 $0^\circ C$ 是水的结冰温度,那么当 $T(x,t)=0^\circ C$ 对应的 x 值就是所求的填埋深度了。因此需求解非线性方程

$$T(x, t_m) = T_s + (T_i - T_s)erf\left(\frac{x}{2\sqrt{\alpha t_m}}\right) = 0_{\bullet}$$

2. 方程求解与结果 如果 x 单位是米 (m), t 的单位是秒 (s), 则热传导系数 $\alpha = 0.138 \times 10^{-6} m^2/s$ 。假 设正常的土壤温度 $t=20^{\circ}C$,寒冷季节 地面温度 $T_s = -15^{\circ}C$,寒流持续时间 t_m 为 60 天,则可求解上述非线性方程。用 zeroin 算法求解,得

x = 0.676961854481937

习题:

1. 为求方程 $x^3 - x^2 - 1$ 在 $x_0 = 1.5$ 附近 的一个根,设将方程改写为下列等价形、式,并建立相应的迭代公式。 (1) (1) (1) (1) (1) $(1) x = 1 + 1/x^2$, 迭代公式 $\psi(x) = -2 \cdot \frac{1}{x^2}$ $x_{k+1} = 1 + 1/x_k^2;$ $(x-1)^{-\frac{1}{2}}$ (2) $x^2 = 1/(x-1)$, 迭代公式 火火 \sqrt{x} $x_{k+1} = 1/\sqrt{x_k - 1}$; $\Psi'(x)=$ (3) $x^3 = 1 + x^2$, 迭代公式 $x_{k+1} = \sqrt[3]{1 + x_{k \bullet}^2}$

试分析每种迭代公式的收敛性,选取一种公式求出具有4位有效数字的近似根。

- 4. 用下列方法求 $f(x) = x^3 3x 1 = 0$ 在 $x_0 = 2$ 附近的根,根的准确值 $x^* = 1.87938524 \cdots$,要求计算结果准确 到 4 位有效数字。
- (1) 用牛顿法;
- (2) 用割线法, \mathbf{W} $x_0 = 2$, $x_1 = 1.9$.

上机题

- 2. 考虑 $p(x) = (x 1) \cdots (x 10) = a_0 + a_1 x + \cdots + x^{10}$, 考虑扰动方程 $p(x) + \varepsilon = 0$ 。
- (1) 求系数 a_0, a_1, \ldots, a_9 ;
- (2) 取 $\varepsilon = 10^{-6}$, $\varepsilon = 10^{-8}$, $\varepsilon = 10^{-10}$, 分析 ε 对根的影响。

附:关于简单迭代

$$|\varphi(x^*)|=1$$
 时,多种可能。

例: $\varphi(x) = x - x^3$, 0 处局部收敛; 而 $\varphi(x) = x + x^3$, 0 处局部不收敛。 $\varphi(x^*) > 1$, 但 φ 有间断点时, 有可能局 部收敛。

$$\oint_{\mathcal{X}} \varphi(x) = \begin{cases} 2x & \text{if } 0 \le x < 1 \\ 0 & \text{if } 1 \le x \le 2 \end{cases}$$

 φ 连续时,有可能局部总有初值,收敛到 另一个不动点。

即使实数上不具备局部收敛性,浮点数下还是有可能具备。

例:帐篷函数

$$T(x) = \begin{cases} 2x, & \text{if } 0 \le x \le \frac{1}{2} \\ 2 - 2x, & \text{if } \frac{1}{2} \le x \le 1 \end{cases}$$

T 一顶, T^2 两顶, T^n 是 2^{n-1} 顶帐篷。

若干次原像: 横线 $y = x^*$ 与 T^n 交点。 迭代若干次到 x^* 的点是稠密的。

 T^n 的不动点: 直线 y = x 与 T^n 交点。

包含 n 周期点。均不稳定。

T 不动点: $0, \frac{2}{3}$ 。

二进制有限小数, 迭代若干次到 0。

浮点计算, 迭代若干次到 0。

很多点,迭代若干次到 🖟 3。

 T^2 不动点: $0, \frac{2}{5}, \frac{2}{3}, \frac{4}{5}$ 。

2 周期点: $\frac{2}{5}$, $\frac{4}{5}$.

. . .

T 具有混沌性质:

- (1) 周期点稠密;
- (2) 任给两个区域,存在第一个区域的点, 经过若干次迭代到达第二个区域。

注: 混沌是迭代的一个拓扑性质。如: 迭

代 $f:[0,1] \to [0,1]$, f(x) = 4x(1-x)

也具有混沌性质。