XLV Congreso Nacional Sociedad Matemática Mexicana

Quéretaro, Quéretaro 28 de octubre al 2 de noviembre de 2012 Sede: Universidad Autónoma de Querétaro

Índice general

Pı	resentación						
	omités y Coordinadores 1. Comité Organizador Central						
1.	Tabla de horarios	7					
	Resúmenes 8. Estadística	9					

Índice general III

IV Índice general

Presentación

Índice general 1

Comités y Coordinadores

1. Comité Organizador Central

Coordinadores Generales	Alejandro Díaz Barriga Casales Gabriela Araujo Pardo
Coordinador Ejecutivo	Víctor Ibarra Mercado
Presidente de la SMM	Luis Montejano Peimbert
Coordinador de Áreas de Matemáticas	Daniel Juan Pineda Colaboradores: Fernando Hernández Hernández José Ferrán Valdez Alonso Wilson Zúñiga Galindo
Coordinador de Áreas de Docencia	Rosa Ma. Farfán Marquez Colaboradores: Erika Canché Góngora Flor Monserrat Rodríguez Vásquez
Coordinadores Sesiones Especiales y Mesas Redondas	Amanda Montejano Cantoral Natalia García Colín
Coordinadores Conferencias Plenarias	Hector Juárez Valencia Mario Pineda Ruelas
Coordinador General del Comité Local	Carlos Arredondo Velázquez
Coordinadores Ejecutivos del Comité Local	Carmen Sosa Garza Déborah Oliveros Braniff Gerardo Souza Aubert
Comité de Reciprocidad con otras Sociedades Matemáticas	Emilio Lluis Puebla
Matemáticas en la calle	Adolfo Guillot Santiago, Aubin Arroyo Camacho, Concepción Ruiz Ruiz-Funes, Gabriela Campero Arena, Isabel Hubard Escalera, Mucuy Kak Guevara Aguirre, Paloma Zubieta López
Tesorero de la SMM	José Carlos Gómez Larrañaga

2. Coordinadores

Áreas

Álgebra Análisis

Análisis Numérico y Optimización Biomatemáticas

> Ciencias de la Computación Cursos en Docencia

Ecuaciones Diferenciales y Aplicaciones

Estadística Experiencias de Aprendizaje en Docencia

Física Matemática y Geometría Diferencial Geometría Algebraica Historia y Filosofía Lógica y Fundamentos

Matemática Discreta

Matemática Educativa Matemáticas e Ingeniería

Matemáticas Financieras y Economía Matemática

Probabilidad Sistemas Dinámicos Talleres en Docencia Teoría de Números y aplicaciones Topología Algebraica Gerardo Raggi Cárdenas Ricardo Alberto Sáenz Casas

Raúl Castillo Pérez

Marcos Aurelio Capistrán Ocampo

Johan Van Horebeek

Erika Marlene Canché Góngora

Vladislav Kravchenko José Eliud Silva Urrutia

Erika Marlene Canché Góngora Benjamín Alfonso Itzá Ortiz

Pedro Luis del Ángel Rodríguez

Antonio Rivera Figueroa David Meza Alcántara

Déborah Oliveros Braniff

Juan José Montellano Ballesteros

Flor Montserrat Rodríguez Vázquez

Salvador Botello Rionda Francisco Sánchez Sánchez

Daniel Hernández Hernández Gerónimo Uribe Bravo

Ernesto Rosales González Erika Marlene Canché Góngora

Wilson Zúñiga Galindo Enrique Torres Gieseo Patricia Pellicer Covarrubias

Roberto Pichardo Mendoza

Sesiones Especiales

Topología General

Difusión de Posgrados Dinámica Hamiltoniana: teoría y aplicaciones

XVII Encuentro de Escuelas Matemáticas Innovación en Tecnología Educativa La SMM en el Bachillerato

Las Matemáticas en las Licenciaturas

Matemáticas en la Industria Miscelánea Matemática Presentación de Libros Problemas Inversos Software Libre en Matemáticas

The 16th workshop on Elliptic Curve Cryptography, ECC 2012

Arturo Olvera Chávez Panayotis Panayotaros Esperanza Guzmán Ovando José Luis Abreu León Carlos Arredondo Natalia García Colín Ricardo Cruz Castillo Rubén Octavio Velez Salazar

José Eliud Silva Urrutia

Roberto Salas Zuñiga Ana Meda Guardiola Mario Pineda Ruelas Fernando Brambila Paz Rafael Villarroel Flores

Francisco Rodríguez Henríquez

2. Coordinadores 3

Mesas Redondas

Los Matemáticos en el Sector Público Mujeres en las Matemáticas Enrique Covarrubias Jaramillo Gabriela Araujo Lucero de Teresa y Oteiza Judith Zubieta

Nuestro Sistema Educativo: Naturaleza y Desafíos Las Matemáticas en el Estado de Querétaro

Roberto Torres Hernández

Eventos Especiales

Festival Matemático

Sabado 27 y Domingo 28 de Octubre Centro Histórico de Querétaro

De Joven a joven

Homenaje a Ernesto Lacomba Zamora

Homenaje a Francisco Raggi Cárdenas

Homenaje a Jorge Andrés Ize Lamache

Equipo matemáticas en la calle

Equipo matemáticas en la calle y Carlos Arredondo Velázquez Joaquin Delgado Fernandez Ernesto Pérez-Chavela María José Arroyo Paniagua Rogelio Fernández Alonso José Ríos Montes Carlos Signoret Poillon

Gilberto Flores Gallegos y Clara Garza Hume

2. Coordinadores

Modalidad

CAR	Cartel
CDV	Conferencia de Divulgación y de Vinculación
CPI	Conferencia Panorámica de Investigación
Cl	Conferencia de Investigación
CC	Curso Corto
RI	Reporte de Investigación
RT	Reporte de Tesis

Niveles de Audiencia

Prim	Profesores de Primaria
Sec	Profesores de Secundaria
Bach	Profesores de Bachillerato
1Lic	Primera mitad de la Licenciatura
2Lic	Segunda mitad de la Licenciatura
Pos	Posgrado
Inv	Investigación

Nota: Los números en ${\it negritas}$ son ${\it INVITADOS}$

2. Coordinadores 5

6 2. Coordinadores

Capítulo 1

Tabla de horarios

		LStadist	ica pág.		
Hora	Lunes	Martes	Miércoles	Jueves	Viernes
9:00-9:20	100 Inauguración :20	8.10			
9:20-9:40		8.11			
9:40-10:00		8.12			
10:00-10:20		8.13			
10:20-10:40		8.14	8.23	8.27	
10:40-11:00		8.15	8.24		
11:00-11:30	PLENARIA 1			Café	1
11:40-12:00	Traslado	8.16	8.25	8.28	
12:00-12:50	8.1	8.17	8,26	8.29	
12:50-13:00	Traslado				
13:00-13:20	8.2	PLENARIA	PLENARIA	PLENARIA	PLENARIA
13:20-13:40	8.3				
13:40-14:00	8.4	2	3	4	5
14:00-16:30	сом	IIDA		сомід	Α
16:40-17:00	8.5	8.18			
17:00-17:20	8.6	8.19			
17:20-17:40	8.7	8.20			
17:40-18:10	Café		Tarde Libre	Café	
18:10-18:30	8.8	8.21		PLENARIA	PLENARIA
18:30-18:50	8.9	8.22		8	9
18:50-19:00	Traslado			Traslado	
19:00-19:50	PLENARIA 6	PLENARIA 7		Asamblea General	Clausura
19:50-21:50	HOMENAJE ERNESTO LACOMBA	HOMENAJE FRANCISCO RAGGI			
	ı		ón E4	1	

- 8.1 Análisis y Ajuste de Mixturas Gaussianas Carlos Cuevas Covarrubias (Invitado) (FALTA, FALTA)
- 8.2 Evaluación de la Exactitud y Precisión de un Modelo con Regresión Lineal

Rosalinda Georgina Balam Lizama (RT, 2Lic)

- 8.3 Cálculo del p-valor en pruebas de bondad de ajuste Jesús Iván Beltrán (RT, Pos)
- 8.4 Análisis de Componentes Principales para reducción

de dimensión de datos de microarreglos con tiempos de supervivencia censurados

Addy Margarita Bolívar Cimé (CI, Pos)

- 8.5 Probabilidad y estadística para simulación del sistema de juicios orales en el Estado de Guanajuato Erick Alberto Cecilio Ayala (CDV, 2Lic)
- 8.6 Análisis de múltiples puntos de cambio Álvaro Eduardo Cordero Franco (CI, 2Lic)

8.7 Comparación del método de Suavidad Controlada para elegir el parámetro de suavizamiento al estimar tendencias con el filtro de Hodrick y Prescott

Víctor Manuel Guerrero Guzmán (RT, Pos)

8.8 Detección de Efectos Activos y Outliers en Factoriales No-Replicados

Roman De La Vara Salazar (CI, Pos)

8.9 La actitud de los estudiantes hacia la estadística. Un estudio empírico a partir de las variables de la escala EATS

Milka Elena Escalera Chávez (RI, Inv)

8.10 Detección de fallas en multiceldas de proceso mediante análisis multivariado

Adriana Monserrat Gómez Ramos (RT, Pos)

8.11 Pronóstico de la Humedad Usando un Modelo de Análisis de Regresión

Pedro Pérez Cortes (CDV, 2Lic)

8.12 Estimadores de punto de cambio en series de tiempo para procesos con cambios graduales sostenidos con parámetros desconocidos

Eduardo López Aguilar (CI, 2Lic)

8.13 Análisis de Regresión para la estimación del secuestro de carbono orgánico en suelos

Gabriela López Pineda (FALTA, FALTA)

- 8.14 Un avance en la comparación estocástica de unas matrices aplicadas a series de datos Meteorológicos Octavio Gutiérrez Vargas (RT, 1Lic)
- 8.15 Entropy and purity of partially coherent beam *Javier Silva Barranco* (CI, Inv)
- 8.16 Análisis del comportamiento de la radiación solar usando métodos de series de tiempo

Brenda Catalina Matías Castillo (RT, 2Lic)

8.17 Optimización, no-unicidad y robustez en la toma de decisiones bajo incertidumbre

Enrique Lemus-Rodríguez (Invitado) (CI, 1Lic)

8.18 Modelación espacio temporal de eventos extremos usando procesos Max-Stable

Lucila Muñiz Merino (RT, Pos)

8.19 Inferencia fiducial para las distribuciones gamma y exponencial truncada

Edilberto Nájera Rangel (CI, Inv)

8.20 Inferencia en series de tiempo ambientales de valores extremos bajo censura

Benigno Estrada-Drouaillet (CI, Pos)

8.21 Uso de rangos para estimación no paramétrica de punto de cambio en series de tiempo

Brenda Lizeth Morales (RI, Inv)

8.22 Confiabilidad y validez de los instrumentos de investigación para la recolección de datos

Neyfis Vanessa Solís Baas (RT, 2Lic)

8.23 Análisis de correspondencias múltiples para la identificación de perfiles sociodemográficos de los migrantes internos e internacionales en México, 2000 y 2010

Mauricio Rodríguez Abreu (RT, Inv)

8.24 Uso de Regresión Lineal para Estimar Datos Per-

Silvia Sánchez Díaz (CI, 1Lic)

8.25 Modelos Ajustados de Comportamiento para Riesgo Crediticio

Javier Sotelo Chávez (RT, Pos)

8.26 Acerca de la construcción de índices para la medición social: el caso del índice de marginación de CONAPO

Delfino Vargas Chanes (Invitado) (RI, Inv)

8.27 ¿Los muertos nos dicen sus patrones demográficos? Aplicaciones de la estadística-demográfica a los estudios de las poblaciones antiguas

Allan Ortega Muñoz (Invitado) (CDV, Inv)

8.28 Estimadores de punto de cambio en series de tiempo con distribuciones Bernoulli y Binomial con parámetros desconocidos

Viridiana Urizar Villanueva (CI, 2Lic)

8.29 Analyzing the geographic diffusion of homicides in Mexico through spatial statistics techniques

Miguel Alejandro Flores Segovia (Invitado) (CI, Inv)

Capítulo 2

Resúmenes

8. Estadística

8.1. Análisis y Ajuste de Mixturas Gaussianas (FALTA, FALTA)

Carlos Cuevas Covarrubias, ccuevas@anahuac.mx (Universidad Anáhuac)

Coautor: Jorge Rosales Contreras

Esta presentación estará dirigida a estudiantes y académicos interesados, tanto en la estadística matemática como en sus aplicaciones. Ofrecerá una introducción sencilla al estudio de las mezclas de funciones de distribución con especial énfasis en el caso continuo. Comenzaremos con un breve recuento del origen histórico que motivó el uso de los modelos de mixturas. Luego, analizaremos algunos conceptos fundamentales de la Estadística Matemática y paulatinamente centramos nuestra atención en un problema específico: el ajuste de funciones de distribución continuas por medio de mixturas gaussianas. A lo largo de la presentación describiremos el algoritmo EM para maximización de funciones de verosimilitud y mostraremos su implementación computacional con ejemplos sencillos. Discutiremos también sobre algunos criterios de análisis exploratorio y de bondad de ajuste que permiten evaluar el potencial de diversos modelos de mixturas en contextos específicos. Finalmente, las ideas presentadas serán ilustradas con el análisis de ejemplos prácticos sobre datos reales del mercado financiero mexicano.

8.2. Evaluación de la Exactitud y Precisión de un Modelo con Regresión Lineal (RT, 2Lic)

Rosalinda Georgina Balam Lizama, rosi_bl85@yahoo.com.mx (Universidad Autónoma de Yucatán, Facultad de Matemáticas)

Coautores: Salvador Medina Peralta, Luis Colorado Martínez

La validación de un modelo es la comparación por medio de algún método de las predicciones del modelo con observaciones del sistema real para determinar su capacidad predictiva (McKinion y Baker, 1982). En la validación de un modelo se evalúa su exactitud y precisión. Una de las técnicas más comunes en la validación de modelos es la de Regresión Lineal Simple de los observados sobre los predichos (Mayer et al., 1994; Analla, 1998; Tedeschi, 2006). Esta técnica se encuentra principalmente sujeta al cumplimiento de sus supuestos. Cuando los residuales son independientes, se ajustan a una distribución normal y tienen varianza común; se aplican pruebas de hipótesis estadísticas para evaluar la exactitud, intercepto cero y pendiente uno, ya sea mediante pruebas t de Student, o bien, mediante una prueba F para determinar si el intercepto y la pendiente son simultáneamente cero y uno respectivamente. Adicional a dichas pruebas estadísticas, suelen presentarse: (i) el gráfico de dispersión de los valores predichos contra los observados, junto con la recta de regresión estimada y la recta determinística y=z, y (ii) el coeficiente de determinación (\mathbb{R}^2) como indicador de precisión. Sin embargo, no siempre se cumplen los supuestos de normalidad y/o igualdad de varianzas, necesarios para realizar dichas pruebas estadísticas; además de que la precisión se evalúa de manera determinista, ya que no se proporciona un error para la estimación del coeficiente de determinación. Por lo tanto en este trabajo se planteará la metodología para evaluar la exactitud y precisión de un modelo basado en la técnica de regresión lineal con un enfoque de intervalos de confianza, para validar un modelo cuando se cumplan o no los supuestos tradicionales.

8.3. Cálculo del p-valor en pruebas de bondad de ajuste (RT, Pos)

Jesús Iván Beltrán Beltrán, eluncle@hotmail.com (Universidad Autónoma Metropolitana. Iztapalapa)

En esta plática se exponen algunos métodos para las pruebas de bondad de ajuste discretas donde se hace uso del llamado proceso empírico. Se comenta como se realizan simulaciones de muestras condicionales con el uso de la función distribución de Rao-Blackwell, como en el caso en la Gaussiana inversa en O'Reilly y Gracia-Medrano (2006) o como lo es en los casos discretos discutidos por González Barrios et al. (Métrica, 2006, Vol 64), donde se hace uso de las herramientas computacionales existentes hoy en día. Se desarrolla la distribución Rao-Blackwell para la distribución de series de potencia, así como para sus casos particulares, los cuales son, la distribución binomial, binomial negativa y Poisson. Se propone una extensión de estadística de prueba función de la generadora de probabilidades. También se desarrolla la función distribución Rao-Blackwell para la binomial negativa generalizada.

8.4. Análisis de Componentes Principales para reducción de dimensión de datos de microarreglos con tiempos de supervivencia censurados (CI, Pos)

Addy Margarita Bolívar Cimé, addy.bolivar@gmail.com (Universidad de Rice, Departamento de Estadística)

Coautor: Javier Rojo

Los estudios de microarreglos ADN permiten llevar a cabo de forma rápida y eficiente análisis simultáneos de miles de genes en un sólo experimento, con el fin de conocer el comportamiento de estos bajo determinadas situaciones. Los datos de microarreglos son datos matriciales pimesn donde p representa el número de genes analizados y $\mathfrak n$ es el número de individuos estudiados. Debido a que se analiza una gran cantidad de genes (miles de ellos), en esta clase de datos p es usualmente mucho más grande que n. Estos datos a menudo incluyen información de la supervivencia de los pacientes, por lo que es importante analizar los tiempos de supervivencia de los pacientes en términos de sus correspondientes niveles de expresión de genes. Una manera de hacer frente a la gran dimensión de los datos de migroarreglos es primero reducir la dimensión y posteriormente usar el "modelo proporcional de Cox" para estimar la función de supervivencia de los pacientes. En estudios recientes se han hecho comparaciones entre varios métodos de reducción de dimensión con el fin de saber cuáles de ellos tienen mejores propiedades en la estimación de la función de supervivencia, en presencia de tiempos de supervivencia censurados. Se ha visto que el Análisis de Componentes Principales (ACP), que es uno de los métodos más populares para reducir dimensión, tiene propiedades muy pobres en comparación con otros métodos de reducción de dimensión como Partial Least Squares (PLS) y Rank-based Modified Partial Least Squares (RMPLS). En esta plática se verá cuales son algunos de los factores que influyen en este mal comportamiento de ACP y también se darán algunas condiciones, en términos de los eigenvectores de la matriz de covarianza poblacional y el vector de coeficientes del modelo proporcional de Cox, bajo las cuales se espera que ACP se comporte mejor si se tiene una buena estimación de la matriz de covarianza de los datos.

8.5. Probabilidad y estadística para simulación del sistema de juicios orales en el Estado de Guanajuato (CDV, 2Lic)

Erick Alberto Cecilio Ayala, erick@cimat.mx (Centro de Investigación en Matemáticas (CIMAT))

El Poder Judicial del Estado de Guanajuato implementó el juicio de oralidad en materia penal a partir del 1 de septiembre de 2011, para cumplir con la reforma constitucional de 2008. Como instrumento auxiliar en la planeación de recursos físicos y humanos, fue desarrollado un modelo de simulación de Monte Carlo para valorar distintos escenarios de operación, como función del número de salas de oralidad y jueces de control. Como partes constitutivas, el modelo contiene modelos probabilísticos para describir comportamientos aleatorios en las consignaciones de delitos así como en los flujos procesales. Para especificarlos, se utilizaron estimadores de Máxima Verosimilitud para obtener índices de incidencia de delitos en la Región 1 del estado de Guanajuato. Estos índices se estimaron considerando tipos de delitos y fecha (hora, día, mes) de ocurrencia.

8.6. Análisis de múltiples puntos de cambio (CI, 2Lic)

Álvaro Eduardo Cordero Franco, lalo.cordero@gmail.com (Universidad Autónoma de Nuevo León (UANL) Facultad de Ciencias Físico Matemáticas (FCFM) Centro de Investigación en Ciencias Físico Matemáticas (CICFIM))

En esta investigación se analiza una serie de tiempo que sigue una distribución normal en la que se sospecha que ocurren múltiples cambios tanto en su media como en su varianza. El objetivo es estimar en que puntos ocurrieron dichos cambios; así como los parámetros de la distribución en cada momento. Para esto se aplica el método de máxima verosimilitud obteniendo una función entera a maximizar. Debido al gran número de iteraciones que se requieren para la búsqueda exhaustiva de la solución, se aplicó un algoritmo heurístico de construcción para aproximar la solución.

8.7. Comparación del método de Suavidad Controlada para elegir el parámetro de suavizamiento al estimar tendencias con el filtro de Hodrick y Prescott (RT, Pos)

Víctor Manuel Guerrero Guzmán, guerrero@itam.mx (Departamento de Estadística, Instituto Tecnológico Autónomo de México (ITAM))

Coautores: Daniela Cortés Toto, Hortensia Josefina Reyes Cervantes

El problema de suavizamiento de series de tiempo económicas ha sido abordado con la aplicación del filtro de Hodrick-Prescott. La elección de la constante de suavizamiento juega un papel indispensable en la solución de este problema. Originalmente Hodrick y Prescott propusieron un valor específico para dicha constante y a pesar de que este valor ha sido muy utilizado por los analistas de la economía, también es cierto que ha sido cuestionado por su carácter empírico. Por otra parte, Paige y Trindade demostraron en 2010 que el filtro de Hodrick y Prescott equivale a un caso especial de

10 8. Estadística

splines penalizados para suavizamiento, con lo cual se abre una variedad de posibilidades para la elección de la constante de suavizamiento para el problema de HP, ya que existen muchas propuestas en el ámbito de splines. En la plática se presenta el método propuesto en el 2007 por Guerrero, el cual determina la constante de suavizamiento mediante una función del porcentaje deseado de suavidad para la tendencia. Se compara en particular con los métodos de Máxima Verosimilitud y Máxima Verosimilitud Restringida, utilizados para escoger la constante de suavizamiento mediante splines penalizados dentro del contexto de modelos lineales mixtos.

8.8. Detección de Efectos Activos y Outliers en Factoriales No-Replicados (CI, Pos)

Roman De La Vara Salazar, delavara@cimat.mx (Centro de Investigación en Matemáticas (CIMAT))

Primero se muestra mediante ejemplos el impacto que puede tener un outlier en el desempeño de las técnicas para el análisis de factoriales no replicados que no consideran esa posibilidad. Enseguida se presentan los métodos que se han propuesto para el análisis de estos experimentos, y que consideran la detección explícita tanto de efectos activos como de outliers. Se propone un nuevo método y se estudia su desempeño con ejemplos y simulación de monte carlo.

8.9. La actitud de los estudiantes hacia la estadística. Un estudio empírico a partir de las variables de la escala EATS (RI, INV)

Milka Elena Escalera Chávez, milkaech@uaslp.mx (Universidad Autónoma de San Luis Potosí (UASLP)) En el estudio, se analiza la actitud de los alumnos hacia la estadística por medio de un modelo que considera las variables propuestas por Auzmendi (1992). Se comprobó si los constructos: utilidad, motivación, agrado, confianza y ansiedad influyen en la actitud del alumno hacia la estadística. Se encuestó a 298 estudiantes de la Universidad Cristóbal Colón mediante el cuestionario propuesto por Auzmendi. El análisis de los datos se llevó a cabo mediante un modelo de ecuaciones estructurales con el software AMOS. Los resultados apoyan el modelo propuesto por Auzmendi de 5 componentes, sin embargo un dato relevante que deja ver este resultado es que existe un modelo alternativo (CFI= 0.907) que se ajusta mejor al modelo propuesto (CFI=0.885). Además, de los 25 indicadores planteados sólo 22 tienen un rango aceptable y dos de los indicadores – ítem 9 e ítem 2– deben ser considerados en el constructo de ansiedad y de utilidad respectivamente.

8.10. Detección de fallas en multiceldas de proceso mediante análisis multivariado (RT, Pos)

Adriana Monserrat Gómez Ramos, amgomez@live.com.mx (Instituto Tecnológico de Saltillo)

Debido a la complejidad que presentan en la actualidad los procesos de manufactura por las múltiples variables relacionadas dentro de sus procesos, algunas técnicas conocidas de la estadística multivariada dificultan la interpretación e identificación rápida y sencilla para detectar fallas durante los mismos, debido a la naturaleza intrínseca de sus datos. Es por ello que se propone el uso de análisis de componentes independientes (ICA) y del análisis de componentes principales (PCA), como una propuesta de metodología combinada para la detección, mejora y control de fallas durante un proceso. La idea de usar PCA e ICA es que la información generada durante los procesos de manufactura en la mayoría de los casos tiene un comportamiento no Gaussiano, de ahí las limitaciones de las técnicas clásicas de análisis como PCA entre otras. Un caso de estudio de una empresa de la localidad es evaluado para identificar la causa raíz de las variables que producen los fallos durante el proceso.

8.11. Pronóstico de la Humedad Usando un Modelo de Análisis de Regresión (CDV, 2Lic)

Pedro Pérez Cortes, pecort4@hotmail.com (Benemérita Universidad Autónoma de Puebla (BUAP))

Coautor: Bulmaro Juárez Hernández

Los pronósticos del tiempo proporcionan información crítica sobre el clima futuro, existen varias técnicas que intervienen en el pronóstico del tiempo, desde la observación relativamente sencilla del cielo hasta la alta complejidad de los modelos matemáticos computarizados. Este trabajo pretende establecer un modelo estadístico paramétrico de regresión para realizar la predicción sobre un conjunto de datos los cuales corresponden a los registros meteorológicos de las variables: humedad (variable dependiente), temperatura del aire, temperatura máxima, temperatura mínima, humectación de hoja, velocidad del viento, velocidad máxima, sensación térmica, recorrido del viento, lluvia, intensidad máxima, punto rocío y evapotranspiración obtenidos en la zona de Texcoco proporcionados por la estación Meteorológica del Departamento de Irrigación de la U.A.CH.(Universidad Autónoma de Chapingo).

8. Estadística 11

8.12. Estimadores de punto de cambio en series de tiempo para procesos con cambios graduales sostenidos con parámetros desconocidos (CI, 2Lic)

Eduardo López Aguilar, borre_ftb@hotmail.com (Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León (UANL))

Coautores: Bertha Elidia Gutiérrez Nájera, Álvaro Eduardo Cordero Franco, Víctor Gustavo Tercero Gómez En el monitoreo de procesos es común encontrar el uso de cartas de control, las cuales asisten en la detección de causas asignables de variación. Sin embargo cuando causas asignables crean cambios sostenidos la estimación del momento inicial del cambio se debe realizar mediante estimadores de punto de cambio. En este trabajo se analizan series de tiempo normales con cambios graduales de tendencia lineal en media o varianza y con parámetros desconocidos. Se presentan el desarrollo de estimadores de máxima verosimilitud para el punto de cambio y los parámetros del modelo.

8.13. Análisis de Regresión para la estimación del secuestro de carbono orgánico en suelos (FALTA, FALTA)

Gabriela López Pineda, beyota_gab22@hotmail.com (Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla(FCFM-BUAP))

Coautores: Gladys Linares Fleites, Hortensia Josefina Reyes Cervantes

Como resultado del aumento de concentraciones de gases de efecto invernadero, existen evidencias científicas que sugieren que el clima global se está alterando en este siglo. El principal responsable del cambio climático global es el CO2, que tiene entre sus fuentes emisoras la deforestación y la destrucción delos suelos. El carbono orgánico del suelo (COS) es un gran y activo reservorio que se encuentran en los ecosistemas forestales ya que pueden absorber cantidades significativas de CO2, por lo que hay un gran interés por incrementar el contenido de carbono en estos ecosistemas. El objetivo de este trabajo es mostrar las posibilidades que ofrece el modelo de regresión lineal múltiple para estudiar el cambio de uso desuelo, en la Zona de la Caldera de Teziutlán en el estado de Puebla. Un problema serio que puede influir mucho sobre la utilidad del modelo de regresión es la multicolinealidad, o dependencia lineal entre las variables independientes de la regresión. Como solución al problema de multicolinealidad en regresión múltiple, se presentan y comparan las técnicas de regresión de componentes principales (RCP) y la regresión de componentes desde el enfoque de mínimos cuadrados parciales (PLS) y finalmente, se ilustran las metodologías con una base de datos.

8.14. Un avance en la comparación estocástica de unas matrices aplicadas a series de datos Meteorológicos (RT, 1Lic)

Octavio Gutiérrez Vargas, octavio.mat@gmail.com (Universidad de Guadalajara (U de G))

El interés de la sociedad en relación a los recientes acontecimientos con respecto a nuestro entorno, son cada día mas grandes. El estudiar fenómenos meteorológicos tales como huracanes, inundaciones, sequias, por citar algunos, son día a día estudiados con mayor énfasis desarrollando una mayor concientización por parte de los investigadores hacia la sociedad. Cabe destacar, tanto países como ciudades de otras partes del mundo han implementado la utilización de programas especializados al estudio y pronostico del cambio climatico. Existen diversos modelos físico-matemáticos para el estudio del clima, pueden ser tanto Modelos Climáticos Globales (MCG) como Modelos Climáticos Regionales (MCR), del análisis de estos conseguimos escenarios climáticos; es decir, representaciones probabilísticas las cuales nos indican cómo serían los comportamientos del clima en una cantidad determinada de años, en base a datos históricos. Ejemplo del primero encontramos ECHAM4 A2 y B2 (A2 y B2, son "familias" de escenarios experimentales [1960-2100], dónde la primera nos describe escenarios con un mundo heterogéneo, con una población en continuo crecimiento económico, el segundo, con menor crecimiento poblacional y desarrollo económico intermedio). El otro, PRECIS, (Provinding Regional Climates for Impacts Studies, éste desarrollado por el Hadley Center de la oficina de Meteorología de Reino Unido. Apoyándonos con el PRECIS, analizaremos la base de datos que el programa nos provee, mismos que serán comparados con datos registrados en la base de datos de reanálisis del NOAA (National Oceanic and Atmospheric Administration), para realizar una comparación entre ambas. Las herramientas para el estudio de nuestro entorno son muy amplias y existen programas, fórmulas o manuales que pueden decir con cierta precisión cómo y cuándo va a suceder un meteoro. Para nuestro objetivo vamos a recurrir a un área de las matemáticas con creciente interés, tal área es la estadística, que si bien no da un resultado exacto, provee de soluciónes aproximadas a problemas donde no existe un método definido para la solución de los mismos.

12 8. Estadística

8.15. Entropy and purity of partially coherent beam (CI, Inv)

Javier Silva Barranco, jvr_silva@inaoep.mx (Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE). Departamento de Óptica)

Coautores: Patricia Martínez Vara, Gabriel Martínez Niconoff

We describe the $n \times n$ coherence matrix for partially coherent beams, the elements of each file are interpreted as random variables that represent an interaction measurement for the interaction between completely coherent beams. We associate an entropy measurement for each file. Using these values an order relation is identified that allows assigning the purity degree for partially coherent beams. Experimental results are shown.

8.16. Análisis del comportamiento de la radiación solar usando métodos de series de tiempo (RT, 2Lic)

Brenda Catalina Matías Castillo, caty_b26@hotmail.com (Benemérita Universidad Autónoma de Puebla (BUAP))

Coautor: Bulmaro Juárez Hernández

La radiación solar es la energía transmitida por el sol a través de ondas electromagnéticas, por medio de ella se pueden inferir procesos de transferencia de energía en las diferentes capas atmosféricas que se manifiestan como fenómenos climáticos que pueden cuantificarse. Además, permite comprender otros fenómenos meteorológicos, como la humedad, la temperatura, etc. En el presente trabajo se realiza un estudio de la radiación solar mediante el uso del análisis en series de tiempo, trabajándose con modelos ARIMA usando el enfoque de Box-Jenkins para series estacionales. Se encuentra el modelo que mejor se ajusta a los datos de radiación y se realizan pronósticos. Lo anterior se lleva a cabo sobre una base de datos de radiación solar, registrados cada media hora desde el 17-05-2003 al 28-10-2010. Se genera una serie de tiempo de los promedios semanales de los valores de la radiación solar, encontrándose un modelo que mejor ajusta a dichos datos, para posteriormente realizar pronósticos que se comparan con los valores observados en algunos meses del año 2010.

8.17. Optimización, no-unicidad y robustez en la toma de decisiones bajo incertidumbre (CI, 1Lic)

Enrique Lemus-Rodríguez, enrique.lemus@gmail.com (Escuela de Actuaría Universidad Anáhuac México Norte)
En diversos contextos un problema de inferencia plantea como un problema de optimización. Al contrario de otros contextos, en la optimización no siempre se da la unicidad del óptimo, y existen muchos casos naturales, incluso algunos íntimamente relacionados con la estadística, como es el de la mediana. El objetivo de esta plática es plantear la relación de la no-unicidad y el problema de construir métodos robustos de toma decisiones bajo incertidumbre como una de las fronteras fértiles de interacción entre ramas hermanas, precisamente la optimización y la estadística.

8.18. Modelación espacio temporal de eventos extremos usando procesos Max-Stable (RT,

Lucila Muñiz Merino, muniz.lucila@colpos.mx (Colegio de Postgraduados (COLPOS))

Coautores: Humberto Vaquera Huerta, José Aurelio Villaseñor Alva, Elizabeth González Estrada, Barry Arnold Varios fenómenos naturales extremos tales como precipitación, temperaturas, vientos, niveles de contaminación y nevadas, entre otros, representan severos riesgos para la población, la economía y el medio ambiente. Este trabajo tiene como objetivo determinar la tendencia espacio-temporal de eventos extremos. Lo anterior se realiza mediante uso de modelos "max-stable" a los valores máximos determinados en bloques de observaciones. Se utiliza el criterio de Takeuchi para elegir el mejor modelo paramétrico que ajusta el F-Madograma para los datos de periodo de tiempo. La tendencia del evento extremo en el tiempo se determina por medio de regresión sobre uno de los parámetros del modelo ajustado. Lo anterior se ilustra con datos de contaminación por ozono en el valle de México durante 1998-2010.

8.19. Inferencia fiducial para las distribuciones gamma y exponencial truncada (CI, Inv)

Edilberto Nájera Rangel, edilberto.najera@ujat.mx (Universidad Juárez Autónoma de Tabasco (UJAT), División Académica de Ciencias Básicas)

En esta plática se presentarán procedimientos de inferencia tanto desde el punto de vista bayesiano como del clásico. Para ambas distribuciones, a través de varios ejemplos, numéricamente se mostrará que la distribución final y la fiducial del parámetro respectivo prácticamente coinciden.

8. Estadística 13

8.20. Inferencia en series de tiempo ambientales de valores extremos bajo censura (CI, Pos)

Benigno Estrada-Drouaillet, benigno@colpos.mx (Colegio de Postgraduados (COLPOS))

Coautores: Humberto Vaquera Huerta, Sergio Pérez Elizalde

Las partículas suspendidas en zonas urbanas, constituyen un factor de riesgo para la salud. El monitoreo de los niveles extremos de este contaminante es de suma importancia ya que estos son los que de manera directa afectan en mayor medida la salud. En las estaciones de monitoreo ambiental un problema que se presenta con frecuencia es la falla de los equipos lo cual trae como consecuencia problemas de series incompletas o censuradas. En el presente trabajo se utiliza la distribución de valores extremos generalizada (DGEV) para modelar los datos de contaminación ambiental censurados. Previo a la construcción de la verosimilitud, se formaron grupos de observaciones para calcular el valor máximo por grupo y de esta manera lograr independencia entre las observaciones (Método Máximo de Bloque). Para estimar parámetros se hace una modificación a la verosimilitud de tal manera que en esta se incluyan los datos censurados. Una vez construida la verosimilitud se procede a la estimación de los parámetros de la distribución mediante métodos numéricos (Nelder-Mead). Para ejemplificar la metodología, se emplean datos de partículas suspendidas menores a 10 micrómetros (PM10) que se obtuvieron de la estación Tlalnepantla que pertenece al Sistema de Monitoreo Atmosférico (SIMAT) de la Secretaria del Medio Ambiente del Gobierno del Distrito Federal. Los resultados nos permiten presentar las tendencias en los niveles muy altos del contaminarte en los últimos años.

8.21. Uso de rangos para estimación no paramétrica de punto de cambio en series de tiempo (RI, Inv)

Brenda Lizeth Morales, lizethm_283@hotmail.com (Universidad Autónoma de Nuevo León (UANL))

Coautores: Ana Elizabeth Ramos, Álvaro Eduardo Cordero, Víctor Gustavo Tercero

Una estrategia utilizada para hacer análisis de punto de cambio en series de tiempo es mediante el supuesto de que sus observaciones siguen una función de distribución conocida, donde el desconocimiento está limitado a los parámetros de dicha función. Sin embargo cuando la distribución teórica es desconocida, o las técnicas paramétricas correspondientes no han sido desarrolladas o se ignoran, se requiere cambiar a un enfoque no paramétrico. En este artículo se propone un estimador no paramétrico basado en la técnica de transformación de rangos para el momento en que series de tiempo sufren un cambio sostenido gradual o escalonado.

8.22. Confiabilidad y validez de los instrumentos de investigación para la recolección de datos (RT, 2Lic)

Neyfis Vanessa Solís Baas, neyfis_37@hotmail.com (Benemérita Universidad Autónoma de Puebla (BUAP))
Generalmente, en los estudios utilizados en las Ciencias Sociales, los datos se obtienen por medición de las variables de interés. Existen muchos requisitos que deben llenar los instrumentos de medición, ya que si no los llenan, los datos recolectados tendrán limitaciones importantes. Entre estos requisitos o cualidades están la confiabilidad y la validez del instrumento. La confiabilidad y la validez de un instrumento no son cualidades completamente independientes. Un dispositivo de medición que no sea confiable no puede ser válido, pues si es errático, incongruente e inexacto tampoco medirá con validez el atributo en cuestión. Siempre que se requiere recopilar información en la realización de los trabajos de investigación, el investigador se enfrenta a la problemática de qué tipos de instrumentos emplear o si realmente hay uno adecuado, de manera que permitan recabar información confiable y válida, de modo que proporcione un fundamento relevante para el logro de los objetivos planteados y sustente los hallazgos que se realicen con las investigaciones. El valor de un estudio depende de que la información recabada refleje lo más fidedignamente el evento investigado, dándole una base real para obtener un producto de investigación de calidad. En este avance de tesis se llevará a cabo una introducción del estudio exhaustivo de las técnicas y métodos estadísticos existentes en la literatura sobre validez y confiabilidad de instrumentos de medición. Estos métodos se aplicarán a varios instrumentos de medición de investigaciones que se llevan a cabo en la Facultad de Enfermería y en la Dirección General de Bibliotecas de la BUAP, con el propósito de hacer comparaciones desde el punto de vista estadístico sobre las bondades de las diferentes técnicas y métodos según el tipo de instrumento de medición de que se trate.

8.23. Análisis de correspondencias múltiples para la identificación de perfiles sociodemográficos de los migrantes internos e internacionales en México, 2000 y 2010 (RT,

Mauricio Rodríguez Abreu, mrabreu22@gmail.com (El Colegio de México (COLMEX))

En el estudio de las migraciones en México, por lo general, se ha privilegiado el análisis de uno u otro tipo de migración. Pocos son los trabajos que observan las características de los migrantes internos e internacionales en el país de manera simultánea. De manera histórica se ha reconocido que cada tipo de migración incorpora a poblaciones con características sociodemográficas muy particulares

14 8. Estadística

y que éstas son diferentes a las observadas en otras poblaciones migrantes. Sin embargo, también se reconoce que los cambios que ha experimentado el fenómeno migratorio mexicano y las tendencias, así como la creciente urbanización de la población migrante, podría estar generando cambios en los perfiles de los diferentes migrantes. Mediante el uso del análisis de correspondencias múltiples se busca identificar qué variables sociodemográficas están más relacionados con cada tipo de migración. Para tal fin, se analizan las poblaciones de migrantes internos, migrantes de retorno de Estados Unidos y emigrantes a dicho país en los años 2000 y 2010.Los resultados del análisis señalan que no sólo cada tipo de migración tiene características particulares para la población inmersa en los desplazamientos, sino que las diferencias observadas son mayores en el año 2010.

8.24. Uso de Regresión Lineal para Estimar Datos Perdidos (CI, 1Lic)

Silvia Sánchez Díaz, silviasandi@profesores.valles.udg.mx (Universidad de Guadalajara)

El análisis estadístico de datos observados en fenómenos naturales, con frecuencia se presenta la existencia de datos perdidos y que no es posible recuperarlos. En los últimos años se han desarrollado trabajos de investigación, en los cuales se aplican métodos para analizar las bases de datos con observaciones perdidas, con el fin de obtener una estimación que no afecte drásticamente las conclusiones finales del estudio, desafortunadamente muchas de las técnicas no logran el objetivo y carecen de fundamento o introducen errores que afectan resultados y conclusiones. Desafortunadamente, cualquier análisis de estos datos se ve limitado por esos "huecos" que generan los datos perdidos, por lo que las metodologías propuestas en la literatura para estimarlos han tomado fuerza en años recientes, proponiéndose técnicas desde imputación por medias y reemplazo anual, hasta modelos más sofisticados como lo son los modelos de regresión, modelos geo-estadísticos, análisis espectral, métodos de interpolación y modelos multivariados, entre otros. Se utiliza el método de regresión lineal para estimar datos perdidos a los datos históricos disponibles de la Red Automática de Monitoreo de la Zona Metropolitana de Guadalajara, Jalisco, México (ZMG), que cuenta con 8 estaciones (Las Águilas, Atemajac, Centro, Loma Dorada, Miravalle, Oblatos, Tlaquepaque y Vallarta), en las cuales se mide automáticamente concentraciones horarias de contaminantes atmosféricos. El análisis de regresión múltiple permite estimar los datos pedidos y determinar la mejor relación que permita explicar el comportamiento de la variable dependiente, sobre un conjunto de variables independientes. Para el acomodo de los datos se utilizará Excel, posteriormente Matlab para obtener los estimadores de los parámetros del modelo de regresión lineal múltiple.

8.25. Modelos Ajustados de Comportamiento para Riesgo Crediticio (RT, Pos)

Javier Sotelo Chávez, zottelo@hotmail.com (Universidad Autónoma Metropolitana Iztapalapa (UAM-I))

Una de las principales incertidumbres de las instituciones financieras es conocer cuál es el nivel de riesgo de sus clientes. Para esto se requiere de una herramienta que sea capaz de asignar una calificación precisa a los usuarios. El Credit Scoring es una de las técnicas más exitosas utilizadas para este fin la cual combina herramientas estadísticas, investigación de operaciones y minería de datos para modelar el riesgo crediticio del consumidor. Con este mecanismo se toman decisiones como: ¿Quién debería obtener un crédito? Y ¿ Cómo administrar los créditos ya existentes? Los modelos de Credit Scoring que resuelven el segundo tipo de decisión se conocen como Modelos de Comportamiento (Behavioral Scoring). Existen técnicas generales para construir Modelos de Comportamiento, sin embargo el resultado obtenido con diferentes instituciones no siempre es favorable. Esto se debe a que cada una de ellas cuenta con distintas políticas para administrar su cartera de clientes lo cual implica que se requiere crear Modelos particulares que se ajusten a las necesidades de cada empresa. El objetivo de este trabajo es desarrollar técnicas matemáticas para construir Modelos Ajustados de Comportamiento que maximicen la utilidad y minimicen el riesgo que asume la empresa justificando su funcionalidad con una base teórica sustentable y un ejercicio práctico que muestre resultados sobresalientes en comparación con la técnica tradicional.

8.26. Acerca de la construcción de índices para la medición social: el caso del índice de marginación de CONAPO (RI, Inv)

Delfino Vargas Chanes, dvchanes@gmail.com (Programa Universitario de Estudios del Desarrollo, Universidad Nacional Autónoma de México (UNAM))

Coautor: Fernando Cortés

Frecuentemente se construyen índices para medir el desarrollo del país y con base en estos índices se toman decisiones de política pública. Dichos índices son de gran utilidad pero en muchas ocasiones éstos no tienen las propiedades deseables para ser utilizados propiamente. En la plática se tratará el caso del índice de marginación elaborado por COANPO, el cual se basa en el Análisis de Componentes Principales y se ejemplificará la manera de remplazarlo por uno distinto basado en el Análisis Factorial Confirmatorio el cual tiene las propiedades deseables (e.g. invarianza factorial y ser comparable en el tiempo). Adicionalmente, se plantean propuestas metodológicas específicas para el uso de este índice alternativo en análisis longitudinal y transversal para fines de política pública.

8.27. ¿Los muertos nos dicen sus patrones demográficos? Aplicaciones de la estadísticademográfica a los estudios de las poblaciones antiguas (CDV, Inv)

Allan Ortega Muñoz, allanortega@yahoo.com (Instituto Nacional de Antropología e Historia (INAH) Centro INAH Quintana Roo) La presente ponencia tiene el objetivo de mostrar la simulación del patrón demográfico de la parroquia, del siglo XIX, Santa María la

8. Estadística 15

Redonda ubicada en la ciudad de México a partir de dos metodologías, la demografía histórica y la paleodemografía, cuya finalidad es evaluar las similaridades de los resultados estadístico-demográficos de ambas metodologías. Para el primer caso se empleó los registros bautismales (1,676 individuos) y de defunción (2,067 individuos) parroquiales abarcando los años 1840-1849. Para la segunda se empleó una serie de 342 individuos esqueletizados provenientes del extinto Panteón de Santa Paula del siglo XIX, ubicado en los linderos de la misma parroquia. Los resultados obtenidos muestran diferencias en todos los análisis demográficos, por lo que se tienen dos escenarios demográficos posibles: uno con mayor fecundidad (de la demografía histórica) y por ende, mayor mortalidad infantil. Mientras que, con la paleodemografía, los valores son más elevados pero no necesariamente erróneos, pues al ser comparados con otros estudios realizados para la época y de diferentes regiones de México se encuentran éstos muy cercanos. La conclusión es que si bien no son complementarias ambas metodologías, si pueden ser adecuadas para el estudio demográfico de poblaciones antiguas y pueden presentarse como formas de analizar, en un amplio panorama, la dinámica demográfica pasada.

8.28. Estimadores de punto de cambio en series de tiempo con distribuciones Bernoulli y Binomial con parámetros desconocidos (CI, 2Lic)

Viridiana Urizar Villanueva, virip.11@hotmail.com (Facultad de Ciencias Físico Matemáticas FCFM, Universidad Autónoma de Nuevo León (U.A.N.L.))

Coautores: Karen Lizet Gómez Vaca, Víctor Gustavo Tercero Gómez, Álvaro Eduardo Cordero Franco

Los cuadros de control son herramientas estadísticas que ayudan a monitorear procesos y a analizar si dichos procesos están o no en control estadístico. Estas gráficas son muy efectivas al detectar que un proceso se salió de control, pero no lo son tanto en detectar el momento inicial en que el proceso se salió de control. Para la estimación del momento inicial de cambio se utiliza el análisis de punto de cambio, cuyos estimadores pueden usarse en conjunto con cuadros de control. En la siguiente investigación se analizan series de tiempo que siguen una distribución Bernoulli o Binomial, en la que ocurre un cambio en un momento desconocido con parámetros iniciales también desconocidos. El objetivo de esta investigación es estimar dicho momento y los parámetros antes y después del cambio mediante el método de máxima verosimilitud.

8.29. Analyzing the geographic diffusion of homicides in Mexico through spatial statistics techniques (CI, Inv)

Miguel Alejandro Flores Segovia, miguel.flores@utsa.edu (University of Texas at San Antonio)

In recent years Mexico has experienced unprecedented uprising levels of violence that has been attributed to the war among drug cartels and especially after the deployment of federal army forces to combat drug cartels organizations. This study applies exploratory spatial data analysis (ESDA) as well as spatial econometrics in order to investigate spatial diffusion patterns and the contextual factors associated with the increase in homicides. By using official deaths records and a recently released database of deaths allegedly attributed with "criminal rivalry" we are able to provide an analysis at municipal level for the years 2005-2010. We address the following research questions: To what extent the resultant diffusion of homicide rates is associated with the increased law enforcement due to federal army interventions? How does contextual level of structural variables such as poverty, marginalization, socioeconomic development, and income inequality, influence the incidence of "criminal rivalry" homicides? We estimate spatial regressions that explicitly consider issues of spatial heteroscedasticity and endogeneity of regressors aiming to identify spatial regimes of high incidence in homicides. Preliminary results provide evidence of spatial regimes suggesting that the diffusion of homicides has occurred in a greater proportion within and among those states with federal army interventions and that neither poverty nor marginalization but income inequality and to a lesser extent socioeconomic development are positively associated with drug criminal rivalry homicides.

16 8. Estadística

Índice alfabético

Balam Lizama Rosalinda Georgina, 9 Beltrán Beltrán Jesús Iván, 9 Bolívar Cimé Addy Margarita, 10

Cecilio Ayala Erick Alberto, 10 Cordero Franco Álvaro Eduardo, 10 Cuevas Covarrubias Carlos, 9

De La Vara Salazar Roman, 11

Escalera Chávez Milka Elena, 11 Estrada-Drouaillet Benigno, 14

Flores Segovia Miguel Alejandro, 16

Guerrero Guzmán Víctor Manuel, 10 Gómez Ramos Adriana Monserrat, 11

Lemus-Rodríguez Enrique, 13 López Aguilar Eduardo, 12 López Pineda Gabriela, 12

Matías Castillo Brenda Catalina, 13 Morales Brenda Lizeth, 14 Muñiz Merino Lucila, 13

Nájera Rangel Edilberto, 13

Ortega Muñoz Allan, 15

Pérez Cortes Pedro, 11

Rodríguez Abreu Mauricio, 14

Silva Barranco Javier, 13 Solís Baas Neyfis Vanessa, 14 Sotelo Chávez Javier, 15 Sánchez Díaz Silvia, 15

Urizar Villanueva Viridiana, 16

Vargas Chanes Delfino, 15 Vargas Octavio Gutiérrez, 12

Estos programas se terminaron de imprimir

El tiro fue de ejemplares