Metody nieparametryczne w statystyce

Tomasz Wójtowicz

Wydział Zarządzania AGH Akademia Górniczo-Hutnicza im. S. Staszica w Krakowie

Ocena własności prognostycznych modeli

Ocena modelu:

- poprawność estymacji,
- jakość dopasowania,
- jakoś prognoz.

Poprawność estymacji:

• testy, np. homoskedastyczności, autokorelacji, normalności, stabilności

Jakość dopasowania:

• współczynnik determiniacji.

Ocena zdolności prognostycznych:

- poprawność i dobre dopasowanie modelu do danych nie gwarantują, że model będzie przydatny do prognozowania,
- model powinien być dobrze dopasowany do danych, ale też dobrze prognozować wartości dla nowych obserwacji,
- bias variance

Wartość oczekiwana błędu prognozy MSE można zapisać w postaci:

$$E\left(y_0 - \hat{f}(x_0)\right)^2 = var\left(\hat{f}(x_0)\right) + \left[bias\left(\hat{f}(x_0)\right)\right]^2 + var(\varepsilon)$$

gdzie:

 $var(\varepsilon)$ - nieredukowalna wariancja błędu,

 $var\left(\hat{f}(x_0)\right)$ - wariancja oszacowań $f(x_0)$ powstająca, gdy model estymujemy na podstawie różnych danych, np. gdy dodajemy nowe dane w celu polepszenia oszacowania,

 $bias\left(\hat{f}(x_0)\right)$ – obciążenie oszacowań $f(x_0)$ wynikające z konstrukcji modelu, który może niedostatecznie uwzględniać złożoność problemu; dodawanie nowych danych nie poprawia oszacowania

$$bias(\hat{f}(x_0))$$

Proste modele są często obciążone błędem systematycznym (bias) wynikającym np. z przyjęcia błędnych założeń, pominięcia istotnej cechy. Możliwość zbyt słabego dopasowania do danych (underfitting).

$$var\left(\hat{f}(x_0)\right)$$

Złożone modele często bardzo dobrze pasują do danych jednak są wrażliwe na drobne zmiany w zbiorze danych. Błędy uzyskanych prognoz mogą być duże (variance). Możliwość nadmiernego dopasowania (overfitting).

Nie można jednocześnie zminimalizować obciążenia i wariancji.

Przykład:

Na podstawie 60 spośród pierwszych 90 danych estymujemy model liniowy i wielomian stopnia 6. Interesuje nas prognoza wartości y_{100} , która w tym przypadku wynosi ok. 112.

prognozy są obciążone, ale o małym zróżnicowaniu

obciążenie prognoz jest niewielkie, ale ich zróżnicowanie jest duże

Ocena zdolności prognostycznych - sprawdzian krzyżowy (cross validation)

- podział zbioru danych na dwa rozłączne zbiory:
 - zbiór uczący (training set) zwykle jest liczniejszy,
 - zbiór testowy (test set)
- zwykle zbiór uczący jest liczniejszy,
- estymacja i ocena poprawności modelu tylko na podstawie danych ze zbioru uczącego,
- ocena jakości prognoz uzyskanego modelu tylko na podstawie danych ze zbioru testowego.

Uwagi:

- liczność zbioru uczącego i testowego (zwykle ok. 70% i 30%),
- sposób doboru danych do każdego ze zbiorów:
 - błędny dobór może spowodować duże obciążenie uzyskanej oceny jakości prognoz,
- wynik zależy od sposobu podziału danych (ew. błędy systematyczne),
- przed podziałem zbioru warto dokonać permutacji danych (żeby podział był losowy),
- pozwala ocenić błędy prognoz nie tylko na danych, na których model był estymowany, ale również na nowych danych,

Uwagi cd.

- poprawnie wykonany sprawdzian krzyżowy pozwala wybrać odpowiedni model (spośród kilku konkurencyjnych),
- ocena błędu prognozy jest zawyżona (bo model jest estymowany na mniejszej liczbie danych).

Częstą praktyką (zwłaszcza w uczeniu maszynowym) jest podział zbiory treningowego na dwa zbiory:

- zbiór uczący (na którym estymowane są modele),
- zbiór walidacyjny (na którym model jest wstępnie oceniany, dopasowywane są dodatkowe parametry itp).

Leave-One-Out Cross Validation

metoda oceny własności prognostycznych modelu,

W przypadku n-elementowego zbioru danych (x_i, y_i) dla kolejnych i = 1, ..., n należy wykonać następujące etapy:

- wybrać daną (x_i, y_i) ,
- na podstawie pozostałych danych wyestymować parametry modelu,
- na podstawie (x_i, y_i) obliczyć błąd prognozy, np. MSE_i

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} MSE_i$$

Zalety:

- wynik nie zależy od sposobu podziału danych na zbiór uczący i testowy,
- oszacowanie wariancji błędu prognozy jest mniej obciążone,
- nie zawyża oszacowania MSE tak jak sprawdzian krzyżowy (estymacja modelu prawie na całej próbie),
- ocena nie ma charakteru losowego.

Wady:

złożoność obliczeniowa.

Degree of Polynomial

MSE dla różnych powtórzeń sprawdzianu krzyżowego

MSE dla LOOCV

źródło: An Introduction to Statistical Learning

W przypadku regresji liniowej lub wielomianowej można pokazać, że:

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{1 - h_i} \right),$$

gdzie h_i - wsp. dzwigni dla x_i ,. Dla regresji liniowej mamy:

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{i'=1}^n (x_{i'} - \bar{x})^2}$$

Własności:

•
$$\frac{1}{n} \le h_i \le 1$$

k-krotny sprawdzian krzyżowy (k-fold Cross-Validation)

- jest alternatywą dla LOOCV,
- łączy zalety CV i LOOCV,
- ullet polega na k-krotnym zastosowaniu procedury sprawdzianu krzyżowego do k różnych rozłącznych zbiorów testowych

	k (w miarę równych) części							
i = 1		zb. testowy						
i = 2				zb. testowy				
	•••							
i = k - 1		zb. testowy						
i = k	zb. testowy							

k-krotny sprawdzian krzyżowy (k-fold Cross-Validation)

	k (w miarę równych) części							
i = 1		zb. testowy						
i = 2				zb. testowy				
•••	•••							
i = k - 1		zb. testowy						
i = k	zb. testowy							

dla każdego $i=1,\ldots,k$, na podstawie danych ze zbioru testowego obliczamy miarę błędu prognozy, np. MSE_i

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} MSE_i$$

Właściwości k-krotnego sprawdzianu krzyżowego

- LOOCV jest szczególnym przypadkiem k-fold CV (z k=n),
- ullet jest mniej wymagający obliczeniowo niż LOOCV (model jest estymowany tylko k razy zamiast n),
- ullet obciążenie oszacowania MSE za pomocą k-fold CV jest większe niż LOOCV, ale mniejsze niż CV,
- wariancja oszacowania MSE za pomocą k-fold CV jest mniejsza niż za pomocą LOOCV, (k-fold CV jest bardziej odporna na zmiany w zbiorze uczącym, LOOCV średnia z silnie skorelowanych oszacowań)

