>> Fourier Besich G-efficients (Redr)

For a given periodic function of period T, we define Fourier co-efficients $a_n = \frac{2}{T_{-1/2}} f(t) \cdot cos(n\omega_0 t) dt$, n = 0, 1, 2, 3, 4, ... $b_n = \frac{1}{7} \int_{-7}^{2} f(t) \cdot \sin(n\omega \cdot t) dt$, $n = \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots$

>> Yourier Seriex (Reals)

Fourier series for a given Fourier co-efficients an and by in $\frac{a_0}{2} + \sum_{n=0}^{\infty} a_n \cdot \cos(n\omega_n t) + b_n \cdot \sin(n\omega_n t)$

> Example: Find Fourier Co-efficients for f(+)=+, +(- (- T, T) with period T-dT.

Clearly wo= $\frac{2\pi}{2\pi}$ = 1 π n=0, $a. = \frac{2\pi}{2\pi} \int_{-\pi}^{\pi} t \cdot \cos(\theta) dt = \frac{1}{\pi} \int_{-\pi}^{\pi} t \cdot dt = 0$

for $n \neq 0$, $a_n = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{12\pi} \frac{1}{1$

= = 1 / Lut. Vew (M) 97

Note: 2 nt. sin (nt) at = - $nt \cdot \frac{1}{\cos(nt)} - \left(-\frac{1}{\cos(nt)}, N\right)$ = -t cos(n+)+ rsm (n+)+c.

 $=\frac{2}{n\pi}\left\{-t\cos\left(nt\right)+\sin\left(nt\right)\right\}_{0}^{T}$ = 3 (-1)nH

Remark: *. From the above example Fourier Revien Correspondent the function given is \(\(\) \(

*Still we get explain about convergence for fourier scrien we get by a given periodic function.

9) What is the relation blw a periodic function and the corresponding Fourier series?

9) What is the relation blw a periodic function and the corresponding Fourier series? In 14 true that every periodic function genivators convergent Fourier series?