Chapter 13 Problems: 3, 6, 7, 8, 9, 12, 17, 19, 21, 22, 23, 40, 46, 48, 54

7. Show that the three properties listed in Exercise 6 are valid for \mathbb{Z}_p , where p is prime.

To reiterate, those properties are:

a.
$$a^2 = a$$
 implies $a = 0$ or $a = 1$.

b.
$$ab = 0$$
 implies $a = 0$ or $b = 0$.

c.
$$ab = ac$$
 and $a \neq 0$ imply $b = c$.

Proof.

(a.) B.W.O.C. Assume
$$a^2 \mod_p = a$$
 and $a \neq 0$ and $a \neq 1$
 $\implies a^2 = (p+1)a$
 $\implies ap+a \mod_p = 0+a=a$
however $p+1 \not\in \mathbb{Z}_p$

$$\Rightarrow \leftarrow$$

$$\therefore a = 0 \text{ or } a = 1$$

(b.) B.W.O.C. Assume
$$a \neq 0$$
 and $b \neq 0$
 $\implies a \cdot b = k \cdot p$, for $k \in \mathbb{N}$
 $\implies a$ or $b = p \notin \mathbb{Z}_p$

 \rightarrow

$$\therefore a = 0 \text{ or } b = 0$$

(c.)
$$ab = ac, a \neq 0 \implies b = c$$

 $\implies ab = ac$
 $\implies ab - ac = 0$
 $\implies a(b - c) = 0$
and we know that $a \neq 0$
 $\implies b - c = 0$
 $\therefore b = c$

8. Show that a ring is commutative if it has the property that ab = ca implies b = c when $a \neq 0$. This is actually a chain of implications of the form:

$$ab = ca, a \neq 0 \implies b = c \implies R$$
 is commutative

What we need to show is that for any arbitrary element $x \in R$, ax = xa.

Proof.

We know that $ab = ca, a \neq 0 \implies b = c$.

Using b = c,

 $\implies ab = ac$ however, by our assumption, ab = ca, this implies that,

ab = ca = ac

 $\therefore ca = ac$, which shows R is commutative.

Q.E.D.

17. Show that a ring that is cyclic under addition is commutative.

Proof.

Let $R = \langle a \rangle, |R| = n, n_1, n_2 < n$, and $n_1 < n_2$ for $n_1, n_2 \in \mathbb{Z}$ which means $R = \{i \cdot a \in R \mid i \in [n]\},$ $(n_1 \cdot a) + (n_2 \cdot a)$ $(n_1 \cdot a) + (n_2 \cdot a) + (n_2 \cdot a)$

which by associativity implies,

$$\implies (n_1 - (n_1 - n_2)) \cdot a + (n_2 - (n_2 - n_1)) \cdot a$$

Q.E.D.

22. Let R be a commutative ring with unity and let U(R) denote the set of units of R. Prove that U(R) is a group under the multiplication of R. (This group is called the *group of units of* R.) Let $a, b \in U(R)$,

 $a^{-1}, b^{-1} \in U(R)$, by definition *unit*, Show $a \cdot b^{-1} \in U(R)$,

Proof.

We know that $a, a^{-1}, b, b^{-1} \in U(R)$.

This implies that $a \cdot b^{-1} \cdot b \cdot a^{-1} \in R$,

$$\implies a \cdot 1 \cdot a^{-1},$$

$$\implies a \cdot a^{-1} = 1$$
,

$$\implies a \cdot b^{-1} \in U(R),$$

$$U(R) \leq R$$

Q.E.D.