MA 1101: Mathematics I

Problem 1.

Let $\emptyset \neq D \subseteq \mathbb{R}$, let $c \in D$ and let $f: D \to \mathbb{R}$ be continuous at c with f(c) > 0. Show that, there exists $\delta > 0$ such that

$$f(x) > 0$$
, for all $x \in (c - \delta, c + \delta) \cap D$.

Problem 2.

Let $\emptyset \neq D \subseteq \mathbb{R}$, let $c \in D$ and let $f, g : D \to \mathbb{R}$ be continuous at c. Show that

- (i) f + g is continuous at c.
- (ii) For all $\alpha \in \mathbb{R}$, αf is continuous at c.
- (iii) fg is continuous at c.
- (iv) If $g(c) \neq 0$, $\frac{f}{g}$ is continuous at c.

Problem 3.

Let $I \subseteq \mathbb{R}$ be an open interval, let $c \in I$ and let let $f, g : I \to \mathbb{R}$ be differentiable at c. Show that

- (i) f + g is differentiable at c and (f + g)'(c) = f'(c) + g'(c).
- (ii) For all $\alpha \in \mathbb{R}$, αf is differentiable at c and $(\alpha f)'(c) = \alpha f'(c)$.
- (iii) fg is differentiable at c and (fg)'(c) = f'(c)g(c) + g'(c)f(c).
- (iv) If $g(c) \neq 0$, $\frac{f}{g}$ is differentiable at c and $\left(\frac{f}{g}\right)'(c) = \frac{f'(c)g(c) f(c)g'(c)}{g(c)^2}$.

Problem 4.

Let $a, b \in \mathbb{R}$ be such that a < b, let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b) with f(a) = f(b) = 0. Show that, for all $\alpha \in \mathbb{R}$, there exists a $c \in (a, b)$ (c depends on a) such that

$$f'(c) = \alpha f(c)$$
.

Problem 5.

Let $a, b \in \mathbb{R}$ be such that a < b and $a + b \neq 0$, let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b) and let af(b) = bf(a). Prove that, for some $c \in (a, b)$,

$$f'(c) = \frac{f(b) + f(a)}{b + a}.$$

Problem 6.

Let $a,b\in\mathbb{R}$ be such that a< b and ab>0, let $f:[a,b]\to\mathbb{R}$ be continuous on [a,b] and differentiable on (a,b) and let $\frac{1}{f(b)}-\frac{1}{f(a)}=\frac{1}{b}-\frac{1}{a}$. Prove that, for some $c\in(a,b)$,

$$f'(c) = \frac{f(b)f(a)}{ba}.$$

Problem 7.

Establish the following inequalities.

- (i) $\frac{x}{1+x} < \ln(1+x) < x$, for all x > 0.
- (ii) $e^x > 1 + x + \frac{x^2}{2}$, for all x > 0.
- (iii) $|\sin x \sin y| \leq |x y|$, for all $x, y \in \mathbb{R}$.