Chapitre 2: Matrices

Térence Bayen

Université d'Avignon

Algèbre 2 L1S2 MI/MP Janvier 2021

Rappel sur les systèmes de Systèmes de Cramer

Définition

Un système linéaire avec n équations et n inconnues

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 & (L_1) \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 & (L_2) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n & (L_n) \end{cases}$$

est dit système de Cramer si sous forme échelonnée, il admet n pivots non nuls.

Proposition

Tout système de Cramer admet une seule et unique solution. Son rang vaut n.

Exercice à paramètre sur les systèmes linéaires

Avant de commencer les matrices

Exercice : donner le rang du système en fonction de m :

$$\begin{cases} 2x & +3y & +z & = 4 \\ -x & +my & +2z & = 5 \\ 7x & +3y & +(m-5)z & = 7 \end{cases}$$

voir solution sur le transparents systèmes linéaires

Définition

Dans tout le chapitre : $\mathbb{K}=\mathbb{R}$ ou $\mathbb{K}=\mathbb{C}$ (pensez à $\mathbb{K}=\mathbb{R}$ en première lecture).

Définition

Une matrice à coefficients dans \mathbb{K} de type (m, n) est un tableau à m lignes et n colonnes représenté sous la forme

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

Les $a_{ij} \in \mathbb{K}$ sont les coefficients de la matrice. On note souvent

$$A = (a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n}.$$

Les ensembles $\mathcal{M}_{mn}(\mathbb{K})$ et $\mathcal{M}_{n}(\mathbb{K})$

Soit $m, n \ge 1$ deux entiers.

Définition

On note $\mathcal{M}_{mn}(\mathbb{K})$ l'ensemble des matrices à coefficients dans \mathbb{K} de type (m, n).

Définition

On note $\mathcal{M}_n(\mathbb{K})$ l'ensemble des matrices à coefficients dans \mathbb{K} de type (n, n). On parle des matrices carrés de taille n à coefficients dans \mathbb{K} .

Définition

Deux matrices $A = (a_{ij}) \in \mathcal{M}_{mn}(\mathbb{K})$ et $B = (b_{ij}) \in \mathcal{M}_{mn}(\mathbb{K})$ sont égales si elles ont les mêmes coefficients, c'est à dire $a_{ij} = b_{ij} \ \forall (i,j) \in \{1,...,m\} \times \{1,...,n\}.$

Définition

Une matrice est dite nulle si tous ses coefficients sont nuls. Une telle matrice est notée 0. Ainsi, si $A = (a_{ij}) \in \mathcal{M}_{mn}(\mathbb{K})$,

$$A = 0 \iff a_{ij} = 0 \ \forall (i,j) \in \{1,...,m\} \times \{1,...,n\}.$$

Définition

On appelle sous-matrice d'une matrice A une matrice obtenue en supprimant certaines lignes et certaines colonnes de A.

Matrices particulières

a) Matrice ligne

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \end{pmatrix} \in \mathcal{M}_{1n}(\mathbb{K})$$

b) Matrice colonne

$$A = egin{pmatrix} a_{11} \ dots \ a_{m1} \end{pmatrix} \in \mathcal{M}_{m1}(\mathbb{K})$$

c) Matrice carrée

$$A = egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & dots \ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \in \mathcal{M}_{nn}(\mathbb{K}) =: \mathcal{M}_{n}(\mathbb{K})$$

Certaines matrices carrées sont elles-mêmes particulières.

i) Matrice triangulaire inférieure

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 0 \\ a_{n1} & \cdots & \cdots & a_{nn} \end{pmatrix}$$

ii) Matrice triangulaire supérieure

$$A = \begin{pmatrix} a_{11} & \cdots & \cdots & a_{1n} \\ 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix}$$

iii) Matrice diagonale

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix} = \operatorname{diag}(a_{11}, \dots, a_{nn})$$

iv) Matrice identité

$$I_n = egin{pmatrix} 1 & 0 & \cdots & 0 \ 0 & \ddots & \ddots & dots \ dots & \ddots & \ddots & dots \ 0 & \cdots & 0 & 1 \end{pmatrix} = \operatorname{diag}(1,...,1) \in \mathcal{M}_n(\mathbb{K})$$

Autres exemples (dans les matrices carrés)

- 1. Matrices scalaires : $A = \lambda I_n$ avec $\lambda \in \mathbb{K}$.
- 2. Matrices symétriques : soit $A \in M_n(K)$ une matrice carré. On dit que A est symétrique, resp. anti-symétrique si et seulement si pour tout $1 \le i, j \le n$ on a $a_{i,j} = a_{j,i}$, resp. $a_{i,j} = -a_{j,i}$.

$$\underbrace{\begin{pmatrix} 1 & 0 & 2 \\ 0 & 3 & 4 \\ 2 & 4 & 10 \end{pmatrix}}_{\textit{symetrique}}, \underbrace{\begin{pmatrix} 0 & 0 & -3 \\ 0 & 0 & 5 \\ 3 & -5 & 0 \end{pmatrix}}_{\textit{anti-symetrique}},$$

Exercice

- Combien faut-il de coefficients pour déterminer une matrice symétrique (resp. anti-symétrique)?
- Ecrire toute matrice carré A comme la somme d'une matrice symétrique et d'une matrice anti-symétrique.

Autres exemples (dans les matrices carrés)

- 1. Matrices scalaires : $A = \lambda I_n$ avec $\lambda \in \mathbb{K}$.
- 2. Matrices symétriques : soit $A \in M_n(K)$ une matrice carré. On dit que A est symétrique, resp. anti-symétrique si et seulement si pour tout $1 \le i, j \le n$ on a $a_{i,j} = a_{j,i}$, resp. $a_{i,j} = -a_{j,i}$.

$$\underbrace{\begin{pmatrix} 1 & 0 & 2 \\ 0 & 3 & 4 \\ 2 & 4 & 10 \end{pmatrix}}_{\textit{symetrique}}, \underbrace{\begin{pmatrix} 0 & 0 & -3 \\ 0 & 0 & 5 \\ 3 & -5 & 0 \end{pmatrix}}_{\textit{anti-symetrique}},$$

Exercice

- Combien faut-il de coefficients pour déterminer une matrice symétrique (resp. anti-symétrique)?
- Ecrire toute matrice carré A comme la somme d'une matrice symétrique et d'une matrice anti-symétrique.

(Indication : on verra plus loin que $A = \frac{A + A^{\top}}{2} + \frac{A - A^{\top}}{2}$ où A^{T} est la transposée de A.)

Opérations

Définition

Soient $A=(a_{ij})$ et $B=(b_{ij})$ deux matrices de $\mathcal{M}_{mn}(\mathbb{K})$. On définit la matrice A+B par

$$A + B = (a_{ij} + b_{ij}) \in \mathcal{M}_{mn}(\mathbb{K}).$$

(interdit d'ajouter des matrices de taille différente!!!!)

Définition

Soient $A = (a_{ij}) \in \mathcal{M}_{mn}(\mathbb{K})$ et $\alpha \in \mathbb{K}$. On définit la matrice αA par

$$\alpha A = (\alpha a_{ij}) \in \mathcal{M}_{mn}(\mathbb{K}).$$

Proposition

Soient $A, B, C \in \mathcal{M}_{mn}(\mathbb{K})$ et $\alpha \in \mathbb{K}$. On a

$$A+B = B+A$$
; $(A+B)+C = A+(B+C)$; $\alpha(A+B) = \alpha A + \alpha B$.

Exemple

$$I_{2} + \begin{pmatrix} -1 & 1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -1 & 1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$8 \begin{pmatrix} -1 & 1 & 0 \\ 2 & -1 & 0 \\ 3 & 3 & 3 \end{pmatrix} - 5 \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix} = \begin{pmatrix} -13 & 3 & -5 \\ 6 & -18 & -10 \\ 9 & 9 & 9 \end{pmatrix}$$

Matrices de base $E_{i,j}$

Definition

Les matrices dites matrices de base ¹ dans $M_n(\mathbb{K})$ sont les matrices $E_{i,j}$, $1 \le i,j \le n$ telles que

Dans $M_2(\mathbb{R})$, cela donne :

$$\textit{E}_{11} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \textit{E}_{12} = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right), \textit{E}_{21} = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right), \textit{E}_{22} = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right).$$

 $\Rightarrow A \in M_2(\mathbb{R})$ s'écrit

$$A = a_{11}E_{11} + a_{12}E_{12} + a_{21}E_{21} + a_{22}E_{22}$$

^{1.} On définit plus généralement les matrices de base dans $M_{mn}(\mathbb{K})$.

Produit de matrices

Définition

Soient $A = (a_{ij}) \in \mathcal{M}_{mn}(\mathbb{K})$ et $B = (b_{ij}) \in \mathcal{M}_{np}(\mathbb{K})$. On définit la matrice $C = AB \in \mathcal{M}_{mp}(\mathbb{K})$ par $C = (c_{ii})$ et

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \quad 1 \leq i \leq m, \ 1 \leq j \leq n.$$

Remarque

- 1. Attention à la compatibilité des dimensions : $\mathcal{M}_{mn}(\mathbb{K}) \times \mathcal{M}_{nn}(\mathbb{K})$
- 2. Le produit AB peut être défini sans que BA ne le soit. Et même si AB et BA sont tous deux définis (matrices carrées), en général $AB \neq BA$.
- 3. Si AB = BA, on dit que A et B commutent.
- 4. If se peut que AB = 0 alors que $A \neq 0$ et $B \neq 0$.

Concrètement

l'important est le n commun, peu importe m et p ...

Exemple

Taille (3,2)
$$\begin{array}{c|c}
\hline
 & 3 & 1 \\
 & 2 & 4 \\
 & 1 & 0
\end{array}$$

$$\begin{array}{c|c}
 & 1 & 2 & 3 \\
 & 2 & 0 & 2 \\
 & 1 & 3 & 0 \\
 & 7 & 5 & 2
\end{array}$$

$$\begin{array}{c|c}
 & 10 & 9 \\
 & 8 & 2 \\
 & 9 & 13 \\
 & 33 & 27
\end{array}$$
Taille (4,2)

Mémo :

- 1. Le coefficient (i,j) de la nouvelle matrice est à l'intersection de la ligne i et de la colonne j (produit ligne colonne).
- Produit AB possible : nombre de lignes de B = nombre de colonnes de A.

Produit matrice/vecteur

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix}$$

$$matrice \ unicolonne \ (\in \mathcal{M}_{m,1}(\mathbb{K}))$$

$$\begin{bmatrix} y_1 & y_2 & \dots & y_n \end{bmatrix} \begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} = \underbrace{\begin{bmatrix} \sum_{i=1}^m a_{i1}y_i & \sum_{i=1}^m a_{i2}y_i & \dots & \sum_{i=1}^m a_{in}y_i \\ matrice \ uniligne \ (\in \mathcal{M}_{1,n}(\mathbb{K})) \end{bmatrix}}_{matrice \ uniligne \ (\in \mathcal{M}_{1,n}(\mathbb{K})) }$$

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & c \\ c & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \underbrace{\begin{bmatrix} x \\ a^2 + by^2 + 2cxy \end{bmatrix}}_{matrice \ scalaire}$$

$$\begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \underbrace{\begin{bmatrix} \sum_{i=1}^n x_i y_i \\ \vdots \\ \vdots \end{bmatrix}}_{n}$$

Exemple : en général $AB \neq BA$

Avec dimension différente :

$$\left(\begin{array}{ccc} 1 & 0 & -2 \\ 0 & 3 & -1 \end{array}\right) \left(\begin{array}{ccc} 0 & 3 \\ -2 & -1 \\ 0 & 4 \end{array}\right) = \left(\begin{array}{ccc} 0 & -5 \\ -6 & -7 \end{array}\right)$$

$$\left(\begin{array}{cc} 0 & 3 \\ -2 & -1 \\ 0 & 4 \end{array}\right) \left(\begin{array}{ccc} 1 & 0 & -2 \\ 0 & 3 & -1 \end{array}\right) = \left(\begin{array}{ccc} 0 & 9 & -3 \\ -2 & -3 & 5 \\ 0 & 12 & -4 \end{array}\right)$$

Même dimension:

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 4 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 4 & 2 \end{pmatrix}$$
$$\begin{pmatrix} 0 & -1 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 4 & 6 \end{pmatrix}$$

Exemple : $AB = 0 \Rightarrow A = 0$ ou B = 0

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$A^{2} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$A^{3} = A^{2}A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Définition

Une matrice $A \in M_n(\mathbb{K})$ est dite nilpotente si et seulement si il existe $p \in \mathbb{N}^*$ tel que

$$A^{p} = 0.$$

 $\Rightarrow A^3 = 0.$

Puissance d'une matrice carrée

Définition

Soit $A \in \mathcal{M}_n(\mathbb{K})$ et p un entier. On définit

$$A^{p} = \underbrace{A \times A \times \cdots \times A}_{p \text{ facteurs}},$$

avec la convention $A^0 = I_n$.

Remarque

Attention à ne pas confondre avec la puissance des coefficients. Mais si A est diagonale, alors $diag(\lambda_1,...,\lambda_n)^p=diag(\lambda_1^p,...,\lambda_n^p)$.

$$\left(\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array}\right) \left(\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array}\right) = \left(\begin{array}{cc} \lambda_1^2 & 0 \\ 0 & \lambda_2^2 \end{array}\right)$$

Formule du binôme de Newton (quand çà commute seulement)

$$(A+B)^2 = (A+B)(A+B) = A^2 + BA + AB + B^2$$
$$(A+B)^3 = (A+B)^2(A+B) = (A^2 + BA + AB + B^2)(A+B)$$
$$= A^3 + BA^2 + ABA + B^2A + A^2B + BAB + AB^2 + B^3$$

Proposition

Si $A, B \in \mathcal{M}_n(\mathbb{K})$ commutent i.e. AB = BA, on a :

$$\forall p \in \mathbb{N}, \ (A+B)^p = \sum_{k=0}^p C_p^k A^k B^{p-k},$$

où les $C_p^k = {p \choose k} = \frac{p!}{(p-k)!k!}$ sont les coefficients binômiaux.

Exemple:

$$(A + \lambda I_n)^p =$$

Binôme (quand çà commute seulement)

$$(A+B)^2 = (A+B)(A+B) = A^2 + BA + AB + B^2$$
$$(A+B)^3 = (A+B)^2(A+B) = (A^2 + BA + AB + B^2)(A+B)$$
$$= A^3 + BA^2 + ABA + B^2A + A^2B + BAB + AB^2 + B^3$$

Proposition

Si $A, B \in \mathcal{M}_n(\mathbb{K})$ commutent i.e. AB = BA, on a :

$$\forall p \in \mathbb{N}, \ (A+B)^p = \sum_{k=0}^p C_p^k A^k B^{p-k},$$

où les
$$C_p^k = {p \choose k} = \frac{p!}{(p-k)!k!}$$
 sont les coefficients binômiaux.

Exemple : $\lambda \in K$

$$(A + \lambda I_n)^p = \sum_{k=0}^p \lambda^{p-k} C_p^k A^k$$

Exercice sur les puissances d'une matrice

Exercice

Que dire de la matrice carré $A \in M_n(\mathbb{R})$ (sur-diagonale) définie par

$$A := \left(\begin{array}{ccccc} 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 0 & 0 \end{array}\right)?$$

2) Obtient-on le même résultat avec A^T ?

<u>Indication</u>: regarder ses puissances

Eléments de réponse n = 4

 $A^4 = 0$

Propriétés du produit

Proposition

Soient A, B, C trois matrices. On a, sous réserve de compatibilité des dimensions,

$$(AB)C = A(BC).$$

Proposition

Soit $A \in \mathcal{M}_{mn}(\mathbb{K})$. On a $AI_n = I_m A = A$. (en particulier $A \in \mathcal{M}_n(\mathbb{K}) \Rightarrow AI_n = I_n A = A$)

Proposition

Soient A, B, C trois matrices et $\alpha \in \mathbb{K}$. On a, sous réserve de compatibilité des dimensions,

$$A(B + C) = AB + AC$$

$$(A + B)C = AC + BC$$

$$\alpha(AB) = (\alpha A)B = A(\alpha B).$$

Choses interdites / choses à ne pas faire avec les matrices

1. Le produit ne commute pas en général :

$$A, B \in M_n(\mathbb{K})$$
; $\Rightarrow AB \neq BA$

2. L'ensemble des matrices n'est pas intègre :

$$AB = 0 \Rightarrow A = 0 \text{ ou } B = 0.$$

3. En général :

$$AB = AC \Rightarrow B = C.$$

$$(AB = AC \Rightarrow A(B - C) = 0)$$

Exercice classique

Exercice

Déterminer $A \in M_n(\mathbb{R})$ telle que $\forall B \in M_n(\mathbb{R})$, AB = BA.

 $\underline{\mathsf{Solution}} : \mathsf{on} \ \mathsf{prend} \ B = \mathsf{E}_{i,j}, \ 1 \leq i,j \leq \mathsf{n} \Rightarrow \mathsf{AE}_{i,j} = \mathsf{E}_{i,j} \mathsf{A} \ \mathsf{d'où}$

$$\sum_{r,s} a_{r,s} E_{r,s} E_{i,j} = \sum_{r,s} a_{r,s} E_{i,j} E_{r,s}$$

On déduit que

$$\sum_{r} a_{r,i} E_{r,j} = \sum_{s} a_{j,s} E_{i,s}$$

et en regardant pour r=i et s=j on a $a_{i,i}E_{i,j}=a_{j,j}E_{i,j}, \ \forall i,j$. Et pour $r\neq i$ on a forcément $a_{r,i}=0$. D'où, A est une matrice scalaire.

Lemme (multiplications des matrices de base)

$$E_{r,s}E_{i,j} = \delta_{i,s}E_{r,j}$$
 avec $\delta_{i,s} = \begin{cases} 1 & \text{si} \quad i = s \\ 0 & \text{si} \quad i \neq s \end{cases}$

Exercice d'entrainement sur le produit de matrice

Soit A, B deux matrices 2 carrés de taille n t.q.

$$\forall 1 \leq i \leq n, \quad \sum_{j=1}^{n} a_{i,j} = \sum_{j=1}^{n} b_{i,j} = 1.$$

Montrer que la matrice $C=(c_{i,j})_{1\leq i,j\leq n}$ définie par C=AB vérifie également

$$\forall 1 \leq i \leq n, \quad \sum_{i=1}^{n} c_{i,j} = 1.$$

Exercice d'entrainement sur le produit de matrice

Soit A, B deux matrices 2 carrés de taille n t.q.

$$\forall 1 \leq i \leq n, \quad \sum_{j=1}^{n} a_{i,j} = \sum_{j=1}^{n} b_{i,j} = 1.$$

Montrer que la matrice $C=(c_{i,j})_{1\leq i,j\leq n}$ définie par C=AB vérifie également

$$\forall 1 \leq i \leq n, \quad \sum_{i=1}^{n} c_{i,j} = 1.$$

$$\sum_{j=1}^{n} c_{i,j} = \sum_{j=1}^{n} \sum_{k=1}^{n} a_{i,k} b_{k,j} = \sum_{k=1}^{n} a_{i,k} \sum_{j=1}^{n} b_{k,j} = \sum_{k=1}^{n} a_{i,k} = 1$$

^{2.} Il s'agit de matrices dites stochastiques.

Transposition

Définition

Soit $A = (a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n} \in \mathcal{M}_{mn}(\mathbb{K})$. On définit la transposée de A, notée A^T , par

$$A^T = (a_{ji})_{1 \leq j \leq n, 1 \leq i \leq m} \in \mathcal{M}_{nm}(\mathbb{K}).$$

Proposition

- 1. Soient $A, B \in \mathcal{M}_{mn}(\mathbb{K})$. On a $(A + B)^T = A^T + B^T$.
- 2. Soient $A \in \mathcal{M}_{mn}(\mathbb{K})$ et $\alpha \in \mathbb{K}$. On a $(\alpha A)^T = \alpha A^T$.
- 3. Soient $A \in \mathcal{M}_{mn}(\mathbb{K})$ et $B \in \mathcal{M}_{np}(\mathbb{K})$. On a $(AB)^T = B^T A^T$.
- 4. Soit $A \in \mathcal{M}_{mn}(\mathbb{K})$. On a $(A^T)^T = A$.

$$\left(\begin{array}{cc} 1 & -1 \\ 2 & 0 \\ 3 & 4 \end{array}\right) \ \rightarrow \ \left(\begin{array}{ccc} 1 & 2 & 3 \\ -1 & 0 & 4 \end{array}\right); \left(\begin{array}{ccc} 1 & -1 & 1 \\ 2 & 0 & 2 \\ 3 & 4 & 1 \\ 0 & 1 & 0 \end{array}\right) \ \rightarrow \ \left(\begin{array}{cccc} 1 & 2 & 3 & 0 \\ -1 & 0 & 4 & 1 \\ 1 & 2 & 1 & 0 \end{array}\right)$$

Petit calcul de vérification

On prend $A \in \mathcal{M}_{mn}(\mathbb{K})$ et $B \in \mathcal{M}_{np}(\mathbb{K})$. Soit donc $1 \leq i \leq m$ et $1 \leq j \leq p$:

$$1 \leq i \leq m, \ 1 \leq j \leq p \ \Rightarrow \ (AB)_{i,j} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

$$1 \le i \le p, \ 1 \le j \le m \ \Rightarrow \ ((AB)^T)_{i,j} = \sum_{k=1}^n a_{jk} b_{ki}$$

et $B^T \in M_{pn}(\mathbb{K})$, $A^T \in M_{nm}(\mathbb{K})$ d'où

$$1 \le i \le p, \ 1 \le j \le m \ \Rightarrow \ (B^T A^T)_{i,j} = \sum_{k=1}^n b_{ki} a_{jk}$$

Matrices symétriques / anti-symétriques

Définition

Une matrice carré $A \in M_n(K)$ est dite symétrique, resp. anti-symétrique si et seulement si $A = A^T$, resp. $A = -A^T$.

Si une matrice est symétrique et anti-symétrique alors A=0 (car $A^T=A=-A$).

Résolution de l'exercice (Décomposition des matrices)

Proposition

Toute matrice carré $A \in M_n(\mathbb{R})$ s'écrit comme la somme d'une matrice symétrique et d'une matrice anti-symétrique.

Idée (ANALOGIE de TRES loin) dans l'espace des fonctions $E:=\mathcal{F}(\mathbb{R},\mathbb{R}),\ f\in E\Rightarrow$

$$\forall x \in \mathbb{R}, \ f(x) = \underbrace{\frac{f(x) + f(-x)}{2}}_{paire} + \underbrace{\frac{f(x) - f(-x)}{2}}_{impaire}$$

lci : en appelant A^T la transposée de A, c.a.d. $A=(a_{j,i})_{1\leq i,j\leq n}$:

$$A = \underbrace{\frac{A + A^{T}}{2}}_{symetrique} + \underbrace{\frac{A - A^{T}}{2}}_{anti-symetrique}$$

Exercice

Montrer que cette décomposition est unique (voir transparent précédent).

Trace d'une matrice carrée

Définition

Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$. La trace de A, notée tr A, est le nombre

$$tr A = \sum_{i=1}^{n} a_{ii}.$$

Proposition

- 1. Soient $A, B \in \mathcal{M}_n(\mathbb{K})$. On a tr(A + B) = tr A + tr B.
- 2. Soient $A \in \mathcal{M}_{mn}(\mathbb{K})$ et $\alpha \in \mathbb{K}$. On a $tr(\alpha A) = \alpha tr A$.
- 3. Soient $A, B \in \mathcal{M}_n(\mathbb{K})$. On a tr(AB) = tr(BA).

Au sujet de la relation tr(AB) = tr(BA)

On fait le calcul:

$$\operatorname{tr}(AB) = \sum_{i=1}^{n} \underbrace{\sum_{k=1}^{n} a_{ik} b_{ki}}_{(AB)_{ii}}$$

et de même on a :

$$\operatorname{tr}(BA) = \sum_{i=1}^{n} \sum_{k=1}^{n} b_{ik} a_{ki} = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ki} b_{ik} = \dots = \operatorname{tr}(AB)$$

(changement d'indice)

Matrice d'un système linéaire, rang d'une matrice

On part de l'observation importante suivante. Soient $A=(a_{ij})\in\mathcal{M}_{mn}(\mathbb{K})$ et $b=(b_1,...,b_m)^T\in\mathcal{M}_{m1}(\mathbb{K})$. Résoudre l'équation Ax=b d'inconnue $x=(x_1,...,x_n)^T$, est équivalent à résoudre le système linéaire

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \end{cases}$$

On dit alors que A est la matrice du système.

Passage de l'écriture matricielle au système

Exemple: matrice de Vandermonde

$$\begin{cases} x + y + z + t = 1 \\ ax + by + cz + dt = 1 \\ a^{2}x + b^{2}y + c^{2}z + d^{2}t = 1 \\ a^{3}x + b^{3}y + c^{3}z + d^{3}t = 1 \end{cases}$$

donne

$$\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 \\
a & b & c & d \\
a^2 & b^2 & c^2 & d^2 \\
a^3 & b^3 & c^3 & d^3
\end{array}\right)$$

Exercice

Résoudre le système linéaire AX = 0 où

$$A = \left(\begin{array}{ccc} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{array}\right)$$

(préciser les cas où le système admet une seule et unique solution).

Rang d'une matrice

Définition [rang d'une matrice]

Soit $A \in \mathcal{M}_{mn}(\mathbb{K})$. On définit le rang de A, noté $\operatorname{rg} A$, comme le rang du système linéaire homogène Ax = 0 d'inconnue $x = (x_1, ..., x_n)^T$.

Remarque

La matrice identité I_n est de rang n; de plus la matrice A est nulle i.e. A=0 si et seulement si rg(A)=0.

Proposition

- (i) Soit $A \in \mathcal{M}_{mn}(\mathbb{K})$. On a rg $A^T = rg A$.
- (ii) Le rang d'une matrice échelonnée = nombre de lignes non nulles.
 - ▶ A noter que $rgA \leq min(m, n)$.
 - Méthode de calcul du rang : mettre sous forme échelonnée :

Exemples de rang

Que vaut le rang des matrices suivantes 3

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}; \begin{pmatrix} 5 & 5 & 1 \\ 6 & 6 & 1 \\ 5 & 5 & 1 \end{pmatrix}; \begin{pmatrix} 1 & 2 & 3 \\ 0 & 6 & 1 \\ 0 & 0 & 1 \end{pmatrix}; \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 6 & 1 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & \cdots & 0 & \cdots & 0 \end{pmatrix}; \begin{pmatrix} 1 & 2 & 3 \\ 0 & 6 & 1 \\ 0 & 0 & 1 \\ 2 & 4 & 2 \end{pmatrix}?$$

^{3.} Pour la sixième, $J_r \in M_{mn}(\mathbb{K})$ et il y a r fois la valeur 1 où $1 \leq r \leq m$

Matrices équivalentes

Définition

Deux matrices $A \in M_{m,n}(K)$ et $B \in M_{m,n}(K)$ sont équivalentes si et seulement si il existe deux matrices inversibles, $P \in M_m(K)$, $Q \in M_n(K)$ telles que

$$B = QAP$$
.

Proposition

Deux matrices A et B ont même rang si et seulement si elles sont équivalentes.

- ▶ Preuve admise (\Rightarrow on montre que A et B sont équivalentes à la même matrice J_r par manipulation sur les lignes ⁴ Pour \Leftarrow , A est équivalente à J_r , donc rg(A) = rg(B) car A et B sont équivalentes.)
- Pour montrer que $rg(A^T) = rg(A)$, on utilise que A et A^T sont semblables à la même matrice J_r par manipulations.
- 4. ce qui revient à multiplier par des matrices inversibles dites élémentaires (permutation, dilatation, transvection).

Matrices inversibles

Définition

Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est dite inversible s'il existe une matrice $B \in \mathcal{M}_n(\mathbb{K})$ telle que

$$AB = BA = I_n$$
.

Dans ce cas, B est unique et est appelée matrice inverse de A, notée A^{-1} .

Proposition

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$. Si $AB = I_n$ ou $BA = I_n$, alors A est inversible et $B = A^{-1}$.

Remarque

Si A est inversible, alors $Ax = b \iff x = A^{-1}b$. La connaissance de A^{-1} permet donc de résoudre facilement n'importe quel système linéaire de matrice A.

Matrice nilpotente

Exercice

Soit A une matrice telle qu'il existe $1 \le k \le n$ t.q. $A^n = 0$. Montrer que $I_n - A$ est inversible.

Matrice nilpotente

Exercice

Soit A une matrice telle qu'il existe $1 \le k \le n$ t.q. $A^n = 0$. Montrer que $I_n - A$ est inversible.

$$(I_n - A)(I_n + A + ... + A^{n-1}) = I_n - A^n = I_n$$

d'où le résultat.

Méthode (Calcul pratique de l'inverse)

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Pour savoir si A est inversible et, le cas échéant, calculer son inverse, on résout le système linéaire ⁵

$$Ax = y$$

d'inconnue $x = (x_1, ..., x_n)^T$ et de second membre $y = (y_1, ..., y_1)^T$ quelconque. Si ce sytème admet une solution x^* , c'est que A est inversible. Sachant que $x^* = A^{-1}y$, on obtient A^{-1} par identification.

Proposition

 $A \in \mathcal{M}_n(\mathbb{K})$ est inversible si et seulement si rg A = n.

^{5.} Lorsque le nombre d'équations = le nombre d'inconnues, on parle de système de Cramer.

Quelques règles de calcul

Proposition

- 1. I_n est inversible d'inverse I_n .
- 2. Si A est inversible alors A^{-1} est inversible et $(A^{-1})^{-1} = A$.
- 3. Si A, B sont inversibles alors AB est inversible et $(AB)^{-1} = B^{-1}A^{-1}$.
- 4. Si A est inversible alors A^T est inversible et $(A^T)^{-1} = (A^{-1})^T =: A^{-T}$.
- 5. Si $A = diag(\lambda_1, ..., \lambda_n)$, alors A est inversible si et seulement si tous les λ_i sont non nuls. On a alors $A^{-1} = diag(\lambda_1^{-1}, ..., \lambda_n^{-1})$.

Quelques justifications $ABB^{-1}A^{-1} = B^{-1}A^{-1}AB = I_n$;

$$AA^{-1} = I_n \Rightarrow (A^{-1})^{\top}A^{\top} = I_n \Rightarrow (A^{T})^{-1} = (A^{-1})^{\top}$$

Exercice d'inversion

On veut inverser

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ -1 & 0 & 1 & 1 \\ -1 & -1 & 0 & 1 \\ -1 & -1 & -1 & 0 \end{pmatrix} \text{ systeme lineaire associe} \rightarrow \begin{cases} x_2 + x_3 + x_4 &= y_1 \\ -x_1 + x_3 + x_4 &= y_2 \\ -x_1 - x_2 + x_4 &= y_3 \\ -x_1 - x_2 + x_4 &= y_3 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 &= -y_4 \\ -x_1 + x_3 + x_4 &= y_2 \\ -x_1 - x_2 + x_4 &= y_3 \\ x_2 + x_3 + x_4 &= y_1 \end{cases} \begin{cases} x_1 + x_2 + x_3 &= -y_4 \\ x_2 + 2x_3 + x_4 &= y_2 - y_4 \\ x_2 + x_3 + x_4 &= y_1 \\ x_3 + x_4 &= y_1 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 &= -y_4 \\ x_2 + x_3 + x_4 &= y_1 \\ x_3 + x_4 &= y_1 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 &= -y_4 \\ x_2 + x_3 + x_4 &= y_1 \\ x_3 + x_4 &= y_1 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 &= -y_4 \\ x_2 + x_3 + x_4 &= y_1 \\ x_3 + x_4 &= y_1 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 &= -y_4 \\ x_2 + x_3 + x_4 &= y_1 \\ x_3 + x_4 &= y_1 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 &= -y_4 \\ x_2 + x_3 + x_4 &= y_1 \\ x_3 + x_4 &= y_1 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 &= -y_4 \\ x_2 + x_3 + x_4 &= y_1 \\ x_3 + x_4 &= y_1 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 &= -y_4 \\ x_2 + x_3 + x_4 &= y_1 \\ x_3 + x_4 &= y_1 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 &= -y_4 \\ x_2 + x_3 + x_4 &= y_1 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 &= -y_4 \\ x_2 + x_3 + x_4 &= y_1 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 &= -y_4 \\ x_2 + x_3 + x_4 &= y_1 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 &= -y_4 \\ x_2 + x_3 + x_4 &= y_1 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 &= -y_4 \\ x_2 + x_3 + x_4 &= y_1 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 &= -y_4 \\ x_2 + x_3 + x_4 &= y_1 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 &= -y_4 \\ x_2 + x_3 + x_4 &= y_1 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 &= -y_4 \\ x_2 + x_3 + x_4 &= y_1 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 &= -y_4 \\ x_2 + x_3 + x_4 &= y_1 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 &= -y_4 \\ x_2 + x_3 + x_4 &= y_1 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 &= -y_4 \\ x_2 + x_3 + x_4 &= y_1 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 &= -y_4 \\ x_2 + x_3 + x_4 &= y_1 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 &= -y_4 \\ x_2 + x_3 + x_4 &= y_1 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 &= -y_4 \\ x_2 + x_3 + x_4 &= y_1 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 &= y_1 \\ x_3 + x_4 + y_1 + y_2 + y_3 \end{cases}$$

Exercice d'inversion de matrice (suite)

En utilisant que
$$x_2 = y_1 - (x_3 + x_4)$$
 et $x_1 = -y_4 - (x_2 + x_3)$

$$\begin{cases} x_1 + & x_2 + & x_3 & = -y_4 \\ & x_2 & = y_1 - y_3 + y_4 \\ & & x_3 & = y_2 - y_4 - y_1 \\ & & & x_4 & = y_1 - y_2 + y_3 \end{cases} \begin{cases} x_1 & = -y_2 + y_3 - y_4 \\ & & & = y_1 - y_3 + y_4 \\ & & & & = y_1 - y_3 + y_4 \end{cases}$$

Conclusion:

$$A^{-1} = \left(\begin{array}{cccc} 0 & -1 & 1 & -1 \\ 1 & 0 & -1 & 1 \\ -1 & 1 & 0 & -1 \\ 1 & -1 & 1 & 0 \end{array}\right)$$

Vérifier avec Maple...

Propriétés des matrices nilpotentes

Definition

Une matrice $A \in M_n(\mathbb{K})$ est nilpotente si et seulement si il existe $p \in \mathbb{N}^*$ tel que

$$A^{p} = 0.$$

1. Si $A \in M_n(\mathbb{K})$ est nilpotente alors $I_n - A$ est inversible. En effet :

$$(I_n - A)(I_n + A + \cdots + A^{p-1}) = I_n - A^p = I_n$$

2. Si $A \in M_n(\mathbb{K})$ est nilpotente, alors

$$A^n=0.$$

3. Une matrice A est nilpotente si et seulement si

$$\forall 1 \leq k \leq p, \quad \operatorname{Tr}(A^k) = 0.$$

(Propriétés 2 hors programme; propriété $3 \to \text{chapitre}$ déterminants).

Exercices sur les matrices qui commutent avec une autre

Exercice

Trouver toutes les matrices qui commutent avec

$$\left(\begin{array}{cc} 3 & -1 \\ 7 & 1 \end{array}\right).$$

Correction : on fait

$$\left(\begin{array}{cc} a & c \\ b & d \end{array}\right) \left(\begin{array}{cc} 3 & -1 \\ 7 & 1 \end{array}\right) = \left(\begin{array}{cc} 3 & -1 \\ 7 & 1 \end{array}\right) \left(\begin{array}{cc} a & c \\ b & d \end{array}\right)$$

A vérifier que l'on obtient le système (de rang 2) :

$$\begin{cases} a+2c-d = 0 \\ 7a-2b-7d = 0 \\ b+7c = 0 \end{cases}$$

1) Soit A, B deux matrices non nulles t.q. AB = 0. Pourquoi A n'est-elle pas inversible?

1) Soit A, B deux matrices non nulles t.q. AB = 0. Pourquoi A n'est-elle pas inversible?

Si A est inversible, alors

$$A^{-1}AB=B=0\quad \Rightarrow B=0,$$

1) Soit A, B deux matrices non nulles t.q. AB = 0. Pourquoi A n'est-elle pas inversible?

Si A est inversible, alors

$$A^{-1}AB = B = 0 \quad \Rightarrow B = 0,$$

2) Soit A une matrice carrée t.q. $A^{17}=A^{16}+3A^2+I_n$. Montrer que A est inversible.

1) Soit A, B deux matrices non nulles t.q. AB = 0. Pourquoi A n'est-elle pas inversible?

Si A est inversible, alors

$$A^{-1}AB = B = 0 \quad \Rightarrow B = 0,$$

2) Soit A une matrice carrée t.q. $A^{17}=A^{16}+3A^2+I_n$. Montrer que A est inversible.

Il suffit d'écrire

$$A(A^{16} - A^{15} - 3A) = I_n \Rightarrow A^{-1}$$
 existe

Lemme de Hadamard

Montrer que si $A \in M_n(\mathbb{R})$ vérifie

$$|a_{i,i}| > \sum_{j \neq i} |a_{i,j}| \tag{1}$$

alors A est inversible.

Lemme de Hadamard

Montrer que si $A \in M_n(\mathbb{R})$ vérifie

$$|a_{i,i}| > \sum_{j \neq i} |a_{i,j}| \tag{1}$$

alors A est inversible.

Sinon, il existe $X \in \mathbb{R}^n$ t.q. $X \neq 0$ et t.q. AX = 0. Comme $X \neq 0$, il existe i t.q. $x_i \neq 0$ et on peut prendre i t.q. $x_i \geq x_k$ pour tout 1 < k < n. Il vient

$$a_{i,i}x_i = -\sum_{j\neq i} a_{i,j}x_j \quad \Rightarrow$$

$$|a_{i,i}| \le \sum_{j \ne i} |a_{i,j}| \left| \frac{x_j}{x_i} \right| \le \sum_{j \ne i} |a_{i,j}|$$

ce qui contredit (1).

