CS 4733 Class Notes: Forward Kinematics

Reference: Chapter 3, Robot Modeling and Control by Spong, Hutchinson and Vidyasgar, Wiley, 2006.

1 Establishing Frames Between Links of a Robot

- A robot is a series of *links* and *joints*, which creates a *kinematic chain*. Each link connects 2 adjacent joints, and each joint connects 2 adjacent links (see figure 1.)
- We need to set up a coordinate frame for every joint of the robot. Once we do this, we can establish a set of transformations that will take us from one joint frame to the next.
- If we combine all these transformations from frame 0 to frame n, we can define the entire robot transformation matrix T_n^0 .
- All joints, without exception, are represented by a Z axis. If we have a revolute (rotary motion) joint, we rotate about Z. If we have a prismatic joint (a linear sliding joint), we translate along Z. Notation: joint k connects link k-1 and link k, and it rotates θ_k about the Z_{k-1} axis. When joint k is actuated, link k moves.
- A robot with n joints will have n+1 links, since each joint connects 2 links. We number the joints from 1 to n, and we number the links from 0 to n starting at the base. We can think of link 0 as the fixed base of the robot that never moves.
- With the i^{th} joint we describe a joint variable q_i , which is an angular rotation if a revolute joint or a linear displacement if a prismatic joint.
- Each link has a coordinate frame attached to it. Frame $o_i x_i y_i z_i$ is attached to link i. This means that whatever robot motions occur, the coordinates of every point on link i are constant when expressed in the ith coordinate frame.
- When joint *i* is actuated, the link *i* and its entire frame experience a resulting motion. Figure 1 shows a more general way to analyze the relationship between links and joints. Figure 2 shows some frames attached to a 3-link manupulator.

Figure 1: Relationship of joints and links on a robot mechanism

1.1 Creating Transform T_i^{i-1} from Frame i-1 to Frame i

We need to specify 4 parameters that will allow us to completely describe the transformation from one frame of the robot to the next. These parameters are called the Denavit-Hartenberg parameters. When we describe a robot using this notation, we refer to it as D-H notation.

- 1. Rotate about the Z_{i-1} axis by an angle of θ_i . θ_i is called the *joint angle*.
- 2. Translate along Z_{i-1} by d_i . d_i is called the *link offset* distance.
- 3. Translate along X_{i-1} by a_i . This will bring the origins of the two coordinate frames together. a_i is called the *link length*.
- 4. Rotate about the X_{i-1} axis by an angle α_i . This angle is called the *link twist* angle, and it will align the Z axes of the two frames.

This entire process can be summarized by chaining together the 4 transformations above into a single composite transformation:

$$T_i^{i-1} = Rot(Z, \theta_i) Trans(Z, d_i) Trans(X, a_i) Rot(X, \alpha_i)$$
(1)

$$= \begin{bmatrix} C\theta_i & -S\theta_i C\alpha_i & S\theta_i S\alpha_i & a_i C\theta_i \\ S\theta_i & C\theta_i C\alpha_i & -C\theta_i S\alpha_i & a_i S\theta_i \\ 0 & S\alpha_i & C\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (2)

We will see that this choice of parameters is not unique. However, this is a standard way of specifying the relation of each coordinate frame to the next one in a serial kinematic chain.

1.2 Setting up a Table of D-H parameters

From the discussion above, all we need to provide to solve the forward kinematics of a robot are 4 parameters: θ_i , d_i , a_i , α_i . If we fill in a table like the one below, we can *completely* specify the robot's forward kinematic structure:

Joint	θ	d	a	α
1				
2				
3				
N				

Using this table, we can just plug into the transform matrix for each link of the robot, and multiply them together. Note that the *joint variable* is either θ for revolute joints or d for prismatic joints.

Figure 3.1: Coordinate frames attached to elbow manipulator.

Figure 2: D-H frames for 3 link elbow manipulator. Note: manipulator is pictured after rotation $(\theta_1, \theta_2, \theta_3) = (90, 0, 0)$

Figure 2 shows a 3-link elbow manipulator. Assume link lengths of a_2 and a_3 for links 2 and 3, and that the link 1 offset is d_1 :

Joint	θ	d	a	α
1	θ_1	d_1	0	90
2	θ_2	0	a_2	0
3	θ_3	0	a_3	0

$$A_{1}^{0} = \begin{bmatrix} C_{1} & 0 & -S_{1} & 0 \\ S_{1} & 0 & -C_{1} & 0 \\ 0 & 1 & 0 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}; A_{2}^{1} = \begin{bmatrix} C_{2} & -S_{2} & 0 & a_{2}C_{2} \\ S_{2} & C_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; A_{3}^{2} = \begin{bmatrix} C_{3} & -S_{3} & 0 & a_{3}C_{3} \\ S_{3} & C_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3)

$$T_3^0 = A_1^0 A_2^1 A_3^2 = \begin{bmatrix} C_1 C_2 C_3 - C_1 S_2 S_3 & -C_1 C_2 S_3 - C_1 S_2 S_3 & S_1 & C_1 C_2 a_3 + C_1 a_2 \\ S_1 C_2 C_3 - S_1 S_2 S_3 & -S_1 C_2 S_3 - S_1 S_2 C_3 & -C_1 & S_1 C_2 a_3 + S_1 a_2 \\ S_2 C_3 + C_2 S_3 & -S_2 S_3 + C_2 C_3 & 0 & S_2 a_3 + d_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(4)

If $(\theta_1, \theta_2, \theta_3) = (90, 0, 0)$, then substituting in T_3^0 we get the matrix:

$$T_3^0 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & a_2 + a_3 \\ 0 & 1 & 0 & d_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (5)

This shows the end effector location as $(0, a_2 + a_3, d_1)$ as shown in the fi gure. Note also the directions of the axes in the fi nal end-effector frame are equal to the column vectors of T_3^0 .

2 Settting up a Frame Diagram

- In analyzing a robot mechanism, we often create a frame diagram that graphically shows the relationships between the DH-frames of the robot.
- Starting from a base coordinate frame, we align the Z axis with the first joint axis. Call this joint axis Z_{i-1} . Every joint axis in the mechanism will be a Z axis. The axis of the next joint in the chain Z_i is either parallel, intersecting or skew with Z_{i-1} .
 - if Z_i and Z_{i-1} are intersecting, then X_i is in the direction of the cross product of the 2 Z axes.
 - if Z_i and Z_{i-1} are parallel, then X_i is in the direction of common normal between the 2 parallel axes. Since there are many equal normals between the 2 parallel axes, we usually take as the X_i axis the normal through the origin O_{i-1} from the previous frame and establish origin O_i as the point of intersection of the normal with Z_i . Note that the link offset distance d_i will be zero in this case.
 - if Z_i and Z_{i-1} are skew, then X_i is in the direction of the common (unique) normal between the 2 axes.
 - Once we have a new X and Z axis, and an origin for the new frame we are done. The Y axis will simply be the cross product of Z and X.
- Using these rules we then move out the mechanism, a joint and a frame at a time, filling in the D-H parameters and setting up the manipulator transforms.
- We also usually designate a zero-position frame diagram of the robot which is a graphical depiction of the frames when all joint variables are zero. The examples that follow will make this clear.
- Another analysis of the manipulator is to defi neits geometric workspace: the volume of space reachable by the endpoint of the manipulator. For the previous example of the elbow manipulator (fi g. 2), the workspace is a sphere.

3 Example: Forward Kinematics, Cylindrical Manipulator

Figure 3.7: Three-link cylindrical manipulator.

Table 3.2: DH parameters for 3-link cylindrical manipulator.

Link	a_i	α_i	d_i	θ_i
1	0	0	d_1	θ_1^*
2	0	-90	d_2^*	0
3	0	0	d_3^*	0

Figure 3: Three link Cylindrical Manipulator

Figure 5 shows a picture of this mechanism and its $frame\ diagram$. A frame diagram shows the robots configuration for each link of the robot. The table of joint parameters is in figure 3. Substituting these values into the D-H frame transformation matrices we get:

$$A_{1}^{0} = \begin{bmatrix} C_{1} & -S_{1} & 0 & 0 \\ S_{1} & C_{1} & 0 & 0 \\ 0 & 0 & 1 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}; A_{2}^{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}; A_{3}^{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (6)

$$T_3^0 = A_1^0 A_2^1 A_3^2 = \begin{bmatrix} C_1 & 0 & -S_1 & -S_1 d_3 \\ S_1 & 0 & C_1 & C_1 d_3 \\ 0 & -1 & 0 & d_1 + d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (7)

Note: d_1 could be zero, in which case the origin of link 1 would be the same as link 2's origin.

Example: Let $\theta_1 = 90$, $d_1 = 0$, $d_2 = 3$ and $d_3 = 5$. Then substituting into the transform matrix, we can see the manipulator endpoint (last column of matrix) is at (-5,0,3).

4 Example: Forward Kinematics, Spherical Wrist

Figure 3.8: The spherical wrist frame assignment.

Table 3.3: DH parameters for spherical wrist.

Link	a_i	α_i	d_i	θ_i
4	0	-90	0	θ_4^*
5	0	90	0	θ_5^*
6	0	0	d_6	θ_6^*

* variable

Figure 4: Spherical wrist frame assignments

As spherical wrist can be added to the cylindirical manipulator to orient the end-effector (gripper) in space. The first 2 angles effectively point the gripper in a spherical coordinate system, and the last angle is a roll angle that orients the gripper about the approach axis. The table of joint parameters is in figure 4. Substituting these values into the D-H frame transformation matrices we get:

$$A_{4}^{3} = \begin{bmatrix} C_{4} & 0 & -S_{4} & 0 \\ S_{4} & 0 & C_{4} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; A_{5}^{4} = \begin{bmatrix} C_{5} & 0 & S_{5} & 0 \\ S_{5} & 0 & -C_{5} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; A_{6}^{5} = \begin{bmatrix} C_{6} & -S_{6} & 0 & 0 \\ S_{6} & C_{6} & 0 & 0 \\ 0 & 0 & 1 & d_{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(8)

$$T_6^3 = A_4^3 A_5^4 A_6^5 = \begin{bmatrix} C_4 C_5 C_6 - S_4 S_6 & -C_4 C_5 S_6 - S_4 C_6 & C_4 S_5 & C_4 S_5 d_6 \\ S_4 C_5 C_6 + C_4 S_6 & -S_4 C_5 S_6 + C_4 C_6 & S_4 S_5 & S_4 S_5 d_6 \\ -S_5 C_6 & S_5 S_6 & C_5 & C_5 d_6 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(9)

You can append the 2 matrices T_3^0 T_6^3 to get the final matrix 0T_6 of the cylindrical manipulator with the spherical wrist. This mechanism has 6 DOF and 6 joint variables: $\theta_1, d_2, d_3, \theta_4, \theta_5, \theta_6$.

Х3

Spherical wrist frames, $\theta 4 = \theta 5 = -90$

Link	a_i	α_i	d_i	θ_i
4	0	-90	0	θ_4^*
5	0	90	0	θ_5^*
6	0	0	d_6	θ_6^*

Spherical wrist frames, $\theta 4 = \theta 5 = 0$ zero position

Υ3

5 Example: Forward Kinematics: 3 Link Manipulator B

Figure 5: Manipulator B: Mechanism and frame diagram

Figure 5 shows a picture of this mechanism and its $frame \ diagram$. A frame diagram shows the robots configuration for each link of the robot.

The table of joint parameters is as follows:

Joint	θ	d	a	α
1	θ_1	0	a_1	-90
2	θ_2	0	a_2	0
3	θ_3	0	a_3	0

Substituting these values into the D-H frame transformation matrices we get (note: $C_{23} = Cos(\theta_2 + \theta_3)$, same for S_{23} .

$$A_{1}^{0} = \begin{bmatrix} C_{1} & 0 & -S_{1} & a_{1}C_{1} \\ S_{1} & 0 & C_{1} & a_{1}S_{1} \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; A_{2}^{1} = \begin{bmatrix} C_{2} & -S_{2} & 0 & a_{2}C_{2} \\ S_{2} & C_{2} & 0 & a_{2}S_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; A_{3}^{2} = \begin{bmatrix} C_{3} & -S_{3} & 0 & a_{3}C_{3} \\ S_{3} & C_{3} & 0 & a_{3}S_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(10)

$$A_{2}^{0} = \begin{bmatrix} C_{1}C_{2} & -C_{1}S_{2} & -S_{1} & C_{1}C_{2}a_{2} + C_{1}a_{1} \\ S_{1}C_{2} & -S_{1}S_{2} & -C_{1} & S_{1}C_{2}a_{2} + S_{1}a_{1} \\ -S_{2} & -C_{2} & 0 & -S_{2}a_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}; A_{3}^{0} = \begin{bmatrix} C_{1}C_{23} & -C_{1}S_{23} & -S_{1} & C_{1}C_{23}a_{3} + C_{1}C_{2}a_{2} + C_{1}a_{1} \\ S_{1}C_{23} & -S_{1}S_{23} & C_{1} & S_{1}C_{23}a_{3} + S_{1}C_{2}a_{2} + S_{1}a_{1} \\ -S_{23} & -C_{23} & 0 & -a_{3}S_{23} - S_{2}a_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(11)$$

If $\theta_1 = 90$, $\theta_2 = 90$, $\theta_3 = -90$, then

$$A_3^0 = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & a_1 + a_3 \\ 0 & -1 & 0 & -a_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (12)

6 Example: Forward Kinematics: 3 Link Manipulator D

Figure 3 shows a picture of this mechanism and its frame diagram.

Figure 6: Manipulator D: Mechanism and frame diagram

The table of joint parameters is as follows:

Joint	θ	d	a	α
1	θ_1	0	a_1	180
2	0	q_2	0	90
3	θ_3	0	a_3	0

Substituting these values into the D-H frame transformation matrices we get:

$$A_{1}^{0} = \begin{bmatrix} C_{1} & S_{1} & 0 & a_{1}C_{1} \\ S_{1} & -C_{1} & 0 & a_{1}S_{1} \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; A_{2}^{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & q_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}; A_{3}^{2} = \begin{bmatrix} C_{3} & -S_{3} & 0 & a_{3}C_{3} \\ S_{3} & C_{3} & 0 & a_{3}S_{3} \\ 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(13)

$$A_{2}^{0} = \begin{bmatrix} C_{1} & 0 & -S_{1} & a_{1}C_{1} \\ S_{1} & 0 & C_{1} & a_{1}S_{1} \\ 0 & -1 & 0 & -q_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}; A_{3}^{0} = \begin{bmatrix} C_{1}C_{3} & -C_{1}S_{3} & -S_{1} & C_{1}C_{3}a_{3} + C_{1}a_{1} \\ S_{1}C_{3} & -S_{1}S_{3} & C_{1} & S_{1}C_{3}a_{3} + S_{1}a_{1} \\ -S_{3} & -C_{3} & 0 & -a_{3}S_{3} - q_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(14)

if $\theta_1=90$ and $\theta_3=0$ and $q_2=5$:

$$A_3^0 = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & a_1 + a_3 \\ 0 & -1 & 0 & -5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (15)