fruschtique

Culinary Interpretation

What ingredient graphs can tell

Descriptive statistics for ingredient graphs

Dedicated statistics for culinary interpretation

Viewer page

Basic definitions

A graph G is an ordered pair (V, E), where V is called the set of vertices, and E is called the set of edges of G.

graph

V is a finite set and $E \subseteq \binom{V}{2}$ or $E \subseteq \{X \subseteq V : |X| = 2\}$ is a set of pairs of elements in V.

vertices, edges

The edge $e = \{u, v\} \in \binom{V}{2}$ is also denoted by e = uv.

If $e = uv \in E$ is an edge of G, then u is called adjacent to v.

adjacent

If the vertex u is on edge e, the vertex u is said to be **incident** on e.

incident

Some graph types

A directed graph is a pair G = (V, A), where V is a finite set and $A \subseteq V \times V$. The edges of a directed graph are also called arcs. A directed graph is different from an undirected graph in that an arc is defined by an ordered pair (u, v) of two nodes. This definition allows us to distinguish arc (u, v) going from node u to node v from arc (v, u) going from v to u.

directed graph

A weighted or edge-labeled graph can be defined as a triple G=(V,E,w) where $w\colon E\to val$ is a function mapping edges to their values. For edge-labeled graphs val can be any type. We talk about edge-colored graphs, if val is restricted to $\mathbb{N}\setminus\{0\}$ The same applies to node-labeled graphs.

weighted graph

A simple graph (or just graph), is an unweighted, undirected graph containing no graph loops or multiple edges.

simple graph

A complete graph is a graph in which each pair of vertices is connected by an edge, i.e., a graph in which each pair of vertices are adjacent is a complete graph. The complete graph with n vertices is denoted K_n and has

complete graph

$$\binom{n}{2} = \frac{1}{2} n \cdot (n-1) \text{ edges.}$$

A multigraph is a pair G = (V, E) where V is a finite set and E is a multiset of elements from $\binom{V}{2} \cup \binom{V}{1}$, i.e., we also allow multiedges and loops.

multigraph

Ingredient graph

An ingredient graph IG = (V, E, w, c, o) is an undirected, loop-free, weighted, and node-labeled graph where

- V is a finite set of ingredient nodes identified by their ID and
- $E \subseteq \binom{V}{2}$ is a set of edges.
- w is a function that assigns a weight value from $\mathbb{N}\setminus\{0\}$ to each edge,
- c is a function that assigns a class value to each node, where this value comes from $class = \{alc, carb, condi, egg, etc, fat, fish, fruit, herb, meat, milk, nuts, onion, spice, sweet, veg\}$
- o is a function that assigns an occurrence value ω to each node with $\omega \in \mathbb{N} \setminus \{0\}$.
- The occurrence value can easily be transformed into a prevalence value by dividing it by the number of recipes in the collection under scrutiny.

Viewer page

descriptive statistics for the ingredient graph

Two views on descriptive statistics for ingredient graphs

Graph-oriented

- Exploit structural properties of the ingredient graph
- Examples: Degree, betweenness, ... of ingredient nodes

Recipe-oriented

- Relate back to contributing recipe(s) (kind of inverted index approach)
- Example: Ingredient prevalence

Ingredient prevalence

ingredient prevalence

$$prev_{igt} = \frac{\#rcps \ using \ igt}{\#rcps}$$

computed from occurs value contained in
ingredients section of combinedGraph.json

typically: few high, many low values; "long tail"

gives hint to diversity of collection

occurs values histogram

Ingredient node neighbors

ingredient node neighbours

#nodes adjacent to selected node

computed from ingredient graph

typically: more high than low values; right-skewed

gives hint to which ingredients are combined with a selected ingredient

Node neighbours histogram

Ingredient node degree

ingredient node degree

The degree of a vertex v of G, denoted by d(v) or deg(v), is the number of edges incident to v.

computed from ingredient graph

typically: more high than low values; highly right-skewed

gives hint to which ingredients are strongly/weakly related to others

Node degree histogram

Ingredient node betweenness

ingredient node betweenness

Betweenness Centrality for a vertex $v \in V$ in a connected graph G = (V, E) is given by $\sum_{s,t \in V \land s \neq v \land t \neq v} n_{s,t}^v / n_{s,t}$, where $n_{s,t}$ is the number of shortest paths from s to t and $n_{s,t}^v$ is the number of shortest paths from s to t passing through v.

computed from ingredient graph

typically: more high than low values; highly right-skewed

gives hint to which ingredients may serve as "intermediators" between others

Node betweenness histogram, sample

Mutual correlations

Mind the high correlation coefficient values!

for above sample:

prevalence	_	#node neighbours	0.93
node degree	_	#node neighbours	0.94
betweenness	-	#node neighbours	0.83
node degree	-	prevalence	0.99
betweenness	-	prevalence	0.95
betweenness	_	node degree	0.94

Ingredient relations

ingredient relations

Ingredient graph edges including their weight values

computed from ingredient graph

typically: more high than low values; "long tail"

gives hint how ingredients are related to one another

Ingredient relations bar chart (highest values)

Ingredient relations bubble chart (highest values)

Ingredient relation weight histogram

Viewer page

Caveat

Making it visible

Making it visible

"Degree of usage" groups

big five

- Highest five occurs values
- Ingredients needed for nearly all recipes

middleearth

- 1 < occurs < occurs _{big five}
- "Bread and butter" ingredients

zeronodes

- Occurs value = 1
- Ingredients needed to make recipes unique

Ingredient classes vs. degree of usage

Ingredient Class Population total

Ingredient Class Population "Middle-earth"

Ingredient Class Population "Big Five"

Ingredient Class Population "Zero-nodes"

Making it visible

Exclusive vs. shared ingredients

- If an ingredient is used in only one recipe, it is called an exclusive ingredient. Exclusive ingredients have an occurrence value = 1.
- If an ingredient is used in more than one recipe, it is called a shared ingredient.

 Shared ingredients have an occurrence value > 1.
- Favor recipes that use a high number of exclusive ingredients and a low number of shared ingredients.

Exclusive vs. shared ingredients

Exclusive vs. shared ingredients again

- For numerical comparison, compute a so-called El number per recipe.
- The El number comes in two variants:
 - *EI* number of exclusive ingredients in recipedivided by number of shared ingredients in recipe
 - EI_{w} weighted EI number: number of exclusive ingredients in recipe divided by sum of shared ingredient occurrence values in recipe

EI and EI_w

Two findings

EI _w	* <i>*</i>	10	>	ΕI
-----------------	------------	----	---	----

Bruschette	осс
brot	14
walnuss	4
kapern	6
petersilie	16
sardelle	3
büffelmozzarella	1

Smörgås	осс
brot	14
butter	15
dill	12
honig	8
kaviar	2
lachs	5
friséesalat	1

El_w profits from low occurence values of shared ingredients!

Making it visible

Combinatorics interlude

To describe a an ingredient relation by its source and target ingredient classes, we need

k = 2 picks from

n = 16 ingredient classes.

That yields $\binom{n+k-1}{k}$ possible combinations assuming we order the picks.

Thus, with the above given values for n and k, we have

 $\binom{17}{2} = 136$ possible combinations of source and target classes.

Aside:

For our sample collection, to describe an ingredient relation by its source and target ingredients, we need

k = 2 picks from n = 200 ingredients.

That yields $\binom{n+k-1}{k}$ possible combinations assuming we order the picks.

Thus, with the above given values for n and k, we have

 $\binom{201}{2}$ = 20100 possible combinations of source and target ingredients.

Ingredient relations by ingredient classes

Missing ingredient class relations

- Total of 126 relations; potentially 136 relations
- Unpopulated relations:

carb--etc
egg--egg
etc--etc
etc--fat
etc--fish
etc--nuts
etc--fruit
etc--spice
etc--sweet
nuts--nuts

Making it visible

Ingredients catch recipes!

Lorenz curve and Gini coefficients

What the Lorenz curve can tell

- perfect equality
- Gini coefficient = 0

- approaching perfect inequality
- Gini coefficient \lesssim 1, i.e. less than, but close to 1

Lorenz curve for ingredient graphs

When comparing culinary collections:

→ Larger Gini coefficient signals more diverse collection.

• zero nodes curve gradient = 1

may completely disappear in favor of middle-earth

• middle-earth curve gradient > 1

may completely disappear in favor of zero nodes

• big five curve gradient ≫ 1

always present (unless we assume a collection with less then 5 different ingredients)

