```
In [1]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]:

house=pd.read_csv("C:/Users/TERIAK-JB/Desktop/GOMYCODE/kc_house_data.csv",encoding="iso-8859-1")

In [3]:

house.head(10)

Out[3]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	grade	sqft_abov
0	7129300520	20141013T000000	221900.0	3	1.00	1180	5650	1.0	0	0	7	118
1	6414100192	20141209T000000	538000.0	3	2.25	2570	7242	2.0	0	0	7	217
2	5631500400	20150225T000000	180000.0	2	1.00	770	10000	1.0	0	0	6	77
3	2487200875	20141209T000000	604000.0	4	3.00	1960	5000	1.0	0	0	7	105
4	1954400510	20150218T000000	510000.0	3	2.00	1680	8080	1.0	0	0	8	168
5	7237550310	20140512T000000	1225000.0	4	4.50	5420	101930	1.0	0	0	11	389
6	1321400060	20140627T000000	257500.0	3	2.25	1715	6819	2.0	0	0	7	171
7	2008000270	20150115T000000	291850.0	3	1.50	1060	9711	1.0	0	0	7	106
8	2414600126	20150415T000000	229500.0	3	1.00	1780	7470	1.0	0	0	7	105
9	3793500160	20150312T000000	323000.0	3	2.50	1890	6560	2.0	0	0	7	189

10 rows × 21 columns

In [4]:

house.shape

Out[4]:

(21613, 21)

In [5]:

house.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21613 entries, 0 to 21612
Data columns (total 21 columns):

Data	COTAMINIS (COCAT	ZI COI dilliis).	
#	Column	Non-Null Count	Dtype
0	id	21613 non-null	int64
1	date	21613 non-null	object
2	price	21613 non-null	float64
3	bedrooms	21613 non-null	int64
4	bathrooms	21613 non-null	float64
5	sqft_living	21613 non-null	int64
_	·	0.4.64.0	

```
sqft lot
                       21613 non-null int64
 7
     floors
                       21613 non-null float64
                        21613 non-null int64
21613 non-null int64
     waterfront
 9
     view
                       21613 non-null int64
 10 condition
 11 grade
                       21613 non-null int64
 12 sqft_above 21613 non-null int64
13 sqft_basement 21613 non-null int64
 14 yr_built 21613 non-null int64
15 yr_renovated 21613 non-null int64
 16 zipcode
                        21613 non-null int64
 17 lat
                        21613 non-null float64
 18 long
                        21613 non-null float64
19 sqft_living15 21613 non-null int64 20 sqft_lot15 21613 non-null int64 dtypes: float64(5), int64(15), object(1)
memory usage: 3.5+ MB
```

In [6]:

```
house.drop("yr_renovated",1,inplace=True)
```

In [7]:

```
house["bathrooms"].apply(np.round)
house["bathrooms"]=house["bathrooms"].apply(np.int)
```

In [8]:

house=house.drop(house[(house.bedrooms>10)].index)

In [9]:

house

Out[9]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	grade
0	7129300520	20141013T000000	221900.0	3	1	1180	5650	1.0	0	0	3	7
1	6414100192	20141209T000000	538000.0	3	2	2570	7242	2.0	0	0	3	7
2	5631500400	20150225T000000	180000.0	2	1	770	10000	1.0	0	0	3	6
3	2487200875	20141209T000000	604000.0	4	3	1960	5000	1.0	0	0	5	7
4	1954400510	20150218T000000	510000.0	3	2	1680	8080	1.0	0	0	3	8
21608	263000018	20140521T000000	360000.0	3	2	1530	1131	3.0	0	0	3	8
21609	6600060120	20150223T000000	400000.0	4	2	2310	5813	2.0	0	0	3	8
21610	1523300141	20140623T000000	402101.0	2	0	1020	1350	2.0	0	0	3	7
21611	291310100	20150116T000000	400000.0	3	2	1600	2388	2.0	0	0	3	8
21612	1523300157	20141015T000000	325000.0	2	0	1020	1076	2.0	0	0	3	7

21611 rows × 20 columns

[4]

In [10]:

```
house["floors"].apply(np.round)
house["floors"]=house["floors"].apply(np.int)
```

```
In [64]:
house
Out[64]:
               id
                            date
                                    price bedrooms bathrooms sqft_living sqft_lot floors condition grade sqft_above sqft_
    0 7129300520 20141013T000000 221900.0
                                                                  1180
                                                                         5650
                                                                                           3
                                                                                                         1180
    1 6414100192 20141209T000000 538000.0
                                                 3
                                                           2
                                                                  2570
                                                                         7242
                                                                                  2
                                                                                           3
                                                                                                 7
                                                                                                         2170
    2 5631500400 20150225T000000 180000.0
                                                                   770
                                                                         10000
                                                                                                          770
    3 2487200875 20141209T000000 604000.0
                                                                                                 7
                                                                                                         1050
                                                 4
                                                           3
                                                                  1960
                                                                         5000
                                                                                           5
    4 1954400510 20150218T000000 510000.0
                                                                  1680
                                                                          8080
                                                                                                         1680
 21608 263000018 20140521T000000 360000.0
                                                                  1530
                                                                         1131
                                                                                                         1530
 21609 6600060120 20150223T000000 400000.0
                                                 4
                                                           2
                                                                  2310
                                                                         5813
                                                                                  2
                                                                                           3
                                                                                                 8
                                                                                                         2310
 21610 1523300141 20140623T000000 402101.0
                                                           0
                                                                  1020
                                                                         1350
                                                                                  2
                                                                                           3
                                                                                                 7
                                                                                                         1020
 21611 291310100 20150116T000000 400000.0
                                                 3
                                                           2
                                                                  1600
                                                                         2388
                                                                                  2
                                                                                           3
                                                                                                 8
                                                                                                         1600
 21612 1523300157 20141015T000000 325000.0
                                                                  1020
                                                                                           3
                                                                                                         1020
                                                           0
                                                                          1076
21268 rows × 18 columns
4
                                                                                                                ▶
In [12]:
house["waterfront"].value counts()
Out[12]:
   21448
0
      163
Name: waterfront, dtype: int64
In [13]:
house.drop("waterfront",1,inplace=True)
In [14]:
house["view"].value counts()
Out[14]:
    19487
0
2
        510
       332
1
       319
Name: view, dtype: int64
In [15]:
house.drop("view",1,inplace=True)
In [16]:
```

def plot correlation map(df):

```
corr = df.corr()
s , ax = plt.subplots( figsize = ( 30 , 30 ) )
cmap = sns.diverging_palette( 250 , 5 , as_cmap = True )
s = sns.heatmap(
    corr,
    cmap = cmap,
    square=True,
    cbar_kws={ 'shrink' : .50 },
    ax=ax,
    annot = True,
    annot_kws = { 'fontsize' : 15 }
)
```

In [17]:

plot_correlation_map(house)

p -	1	-0.017	0.0028	2.6e-06	-0.012	-0.13	0.019	-0.024	0.0081	-0.011	-0.0051	0.021	-0.0082	-0.0019	0.021	-0.003	-0.14
price	-0.017		0.32	0.51		0.09	0.24	0.036		0.61	0.32	0.054	-0.053	0.31	0.022	0.59	0.082
bedrooms	0.0028	0.32	1	0.48	0.59	0.033	0.16	0.026	0.37	0.49	0.31	0.16	-0.16	-0.011	0.13	0.4	0.031
bathrooms be	2.6e-06	0.51	0.48	1		0.085	0.48	-0.13	0.61		0.25	0.43	-0.16	0.031	0.18	0.51	0.081
sqft_living bal	-0.012		0.59			0.17	0.35	-0.059		0.88	0.44	0.32	-0.2	0.053	0.24	0.76	0.18
sqft_lot sq	-0.13	0.09	0.033	0.085	0.17	1	-0.0089	-0.0089	0.11	0.18	0.015	0.053	-0.13	-0.086	0.23	0.14	
floors	0.019	0.24	0.16	0.48	0.35	-0.0089		-0.29	0.47	0.52		0.58	-0.097	0.03	0.16	0.3	-0.013
condition	-0.024	0.036	0.026	-0.13	-0.059	-0.0089		1	-0.14	-0.16	0.17		0.003	-0.015	-0.11	-0.093	-0.0034
grade	0.0081		0.37	0.61		0.11	0.47	-0.14			0.17	0.45	-0.18	0.11	0.2		0.12
sqft_above	-0.011	0.61	0.49	0.64	0.88	0.18	0.52	-0.16	0.76	1	-0.052	0.42	-0.26	-0.00078	0.34	0.73	0.19
basement sq	-0.0051	0.32	0.31	0.25	0.44	0.015		0.17	0.17	-0.052	1	-0.13	0.075	0.11	-0.14	0.2	0.017
yr_built_sqft_b	0.021	0.054	0.16	0.43	0.32	0.053	0.58	-0.36	0.45	0.42	-0.13			-0.15	0.41	0.33	0.071
zipcode	-0.0082	-0.053	-0.16	-0.16	-0.2	-0.13	-0.097	0.003	-0.18	-0.26	0.075		1	0.27	-0.56	-0.28	-0.15
lat	-0.0019	0.31	-0.011	0.031	0.053	-0.086	0.03	-0.015	0.11	-0.00078	0.11	-0.15	0.27	1	-0.14	0.049	-0.086
long	0.021	0.022	0.13	0.18	0.24	0.23	0.16	-0.11	0.2	0.34	-0.14	0.41	-0.56	-0.14	1	0.33	0.25
sqft_living15	-0.003	0.59	0.4	0.51	0.76	0.14	0.3	-0.093	0.71	0.73	0.2	0.33		0.049	0.33	1	0.18
sqft_lot15 sqft_	-0.14	0.082	0.031	0.081	0.18	0.72	-0.013	-0.0034	0.12	0.19	0.017	0.071	-0.15	-0.086	0.25	0.18	1
v.	id	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	condition	grade	sqft_above	sqft_basement	yr_built	zipcode	lat	long	sqft_living15	sqft_lot15

```
In [18]:
plt.scatter(house["sqft_living"],house["price"])
plt.xlabel("sqft_living")
plt.ylabel("price")
Out[18]:
Text(0, 0.5, 'price')
  8000000
  7000000
  6000000
  5000000
 4000000
   3000000
  2000000
  1000000
          ò
               2000
                     4000
                                 8000
                                      10000
                                            12000
                                                  14000
                            sqft_living
In [19]:
house["sqft_living"].value_counts()
Out[19]:
1300
        138
1400
        135
1440
        133
1010
        129
1660
        129
3001
4970
           1
2905
          1
2793
          1
1975
          1
Name: sqft_living, Length: 1038, dtype: int64
In [20]:
house["grade"].value_counts()
Out[20]:
7
      8979
8
      6068
9
      2615
6
      2038
10
      1134
11
       399
5
       242
12
        90
4
         29
13
         13
          3
         1
1
Name: grade, dtype: int64
In [21]:
house=house.drop(house[(house.grade<6)].index)</pre>
In [22]:
```

house nivet table (!hathrooms! index=!hadrooms! columns=!grade! aggfunc="sum") nlot()

HOUSE.PITYOU_CADIE(DACHITOOMS , THUEE DEALOOMS ,COTAMHS - GLAGE ,AGGLAHC - SAM).PIOC()

Out[22]:

<matplotlib.axes._subplots.AxesSubplot at 0xce3f508>

In [81]:

house.pivot_table('price', index='sqft_living',columns='grade',aggfunc="sum").plot()

Out[81]:

<matplotlib.axes._subplots.AxesSubplot at 0xbb18108>

In [80]:

 $\label{loss_house_house_house_house} $$house.drop(house[(house.price>300000)&(house.sqft_living>6000)].index)$$ house.head()$

Out[80]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	condition	grade	sqft_above	sqft_base
0	7129300520	20141013T000000	221900.0	3	1	1180	5650	1	3	7	1180	
1	6414100192	20141209T000000	538000.0	3	2	2570	7242	2	3	7	2170	
2	5631500400	20150225T000000	180000.0	2	1	770	10000	1	3	6	770	
3	2487200875	20141209T000000	604000.0	4	3	1960	5000	1	5	7	1050	
4	1954400510	20150218T000000	510000.0	3	2	1680	8080	1	3	8	1680	
4	[4] <u>)</u>											

In [27]:

sns.countplot (x="bedrooms", data=house)

```
| plt.xticks(rotation=-45)
```

Out[27]:

```
(array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), <a list of 11 Text xticklabel objects>)
```


In [29]:

```
sns.countplot(x="grade",data=house)
plt.xticks(rotation=-45)
```

Out[29]:

(array([0, 1, 2, 3, 4, 5, 6, 7]), <a list of 8 Text xticklabel objects>)

Regression linéaire

In [30]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn import metrics
```

In [31]:

```
x=house["price"]
y=house["sqft_living"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.20,random_state=30)
```

In [48]:

Howtwood w and w from our data

```
x=house["sqft_living"].values[:,np.newaxis]
y=house["price"].values

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.35,random_state=40) #splitting data
with test size of 35%

model=LinearRegression() #build linear regression model
model.fit(x_train,y_train) #fitting the training data
predicted=model.predict(x_test) #testing our model's performance
print("MSE", mean_squared_error(y_test,predicted))
print("R squared", metrics.r2_score(y_test,predicted))
```

MSE 60164508415.7486
R squared 0.4680860370228618

In [33]:

```
plt.scatter(x,y,color="g")
plt.title("Linear Regression")
plt.ylabel("price")
plt.xlabel("sqft_living")
plt.plot(x,model.predict(x),color="b")
plt.show()
```


Regression Multilineaire

In [47]:

MSE 53467526289.49688
R squared 0.5272940052513393

In [45]:

```
plt.scatter(x, y, color="r")
plt.title("MuLtiLinear Regression")
plt.ylabel("price")
plt.xlabel("sqft_living")
plt.plot(x, model.predict(x), color="k")
```


Regression Polynomiale

In [46]:

```
#Importing libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.metrics import mean squared error
from sklearn import metrics
x= house[["sqft living", "grade"]]
y= house["price"].values
x train, x test, y train, y test = train test split(x, y, test size=0.35, random state=40) #splitt
ing data
lg=LinearRegression()
poly=PolynomialFeatures(degree=3)
x_train_fit = poly.fit_transform(x_train) #transforming our input data
lg.fit(x_train_fit, y_train)
x test = poly.fit transform(x test)
predicted = lg.predict(x_test_)
print("MSE: ", metrics.mean squared error(y test, predicted))
print("R squared: ", metrics.r2_score(y_test,predicted))
```

MSE: 49231222144.91536
R squared: 0.5647471380908822

In [79]:

```
x= house[["sqft_living"]]
y= house["price"].values.reshape(-1,1)
poly = PolynomialFeatures(degree = 2)
x_poly = poly.fit_transform(x)
poly.fit(x_poly, y)
lg=LinearRegression()
lg.fit(x_poly, y)

plt.scatter(x, y, color="y")
plt.title("Linear regression")
plt.ylabel("price")
plt.xlabel("sqft_living")
plt.plot(x, lg.predict(poly.fit_transform(x)), color="k")
```

Out[79]:

[<matplotlib.lines.Line2D at 0x12ca3208>]

In [59]:

print(x.shape)

(21268, 1)

In [60]:

print(y.shape)

(21268, 1)

In []: