El Nino

A Network Tour of Data Science

A. Bonelli M. Cotting M. Allani

January 2017

1 / 31

Goals

- Predicting future temperatures in specific zones of the Pacific ocean.
- Trying to find to best model to make predictions.

Outline

- Data Exploration
 - Exploration
 - Correlation

- 2 Data Exploitation
 - ARMA
 - Regression

Outline

- Data Exploration
 - Exploration
 - Correlation

- 2 Data Exploitation
 - ARMA
 - Regression

Figure: Exploration of the Air and Sea Surface Temperature

Base Map

Figure: Positions of Buyos

Base Map

Figure: Positions of Buyos rearranged

Data evolution

 $\label{thm:continuous} \textbf{Figure: Evolution of the Air and Sea Surface Temperature}$

Data evolution

Figure: Evolution of Humidity

Data evolution

Figure: Evolution of Winds

Outline

- Data Exploration
 - Exploration
 - Correlation

- Data Exploitation
 - ARMA
 - Regression

January 2017

Correlation between Air and Sea Surface Temperature

January 2017

Correlation between Winds

Correlation between Air Temperature, Winds and Humidity

Correlation between Winds and Humidity

- Observations are not ordered with time.
- We focus our analysis in one zone in order to be able to make time series predictions.

Yearly evolution of meteorological variables for the month of July in a specific zone

Outline

- Data Exploration
 - Exploration
 - Correlation

- 2 Data Exploitation
 - ARMA
 - Regression

January 2017

Zonal Air Temperature

- Monthly air temperature variation from 1980 to 1998
- Selected zone: (0,-110)
- Some missing measurements

Figure: Air temperature evolution from 1980 to 1998

Stationary Check

- Need stationary signal to fit ARMA model
 - Time independent mean
 - Time independent variance
- Perform Dickey-Fuller Test to check stationarity

January 2017

Stationary Check

Results	
Test Statistic	-4.857
p-value	0.000042
Nbre Observations	164
Critical Value (5%)	-2.879
Critical Value (1%)	-3.470
Critical Value (10%)	-2.576

Figure: Rolling mean and standard deviation

- ullet Crital value (1%) < Test statistic
 - \rightarrow signal is at 99% stationary

Stationary Check

- Compute Autocorrelation (ACF) and Partial Autocorrelation (PACF) function
 - \rightarrow determine degree of Auto-Regressive (AR) and Moving Average (MA) model

Figure: ACF and PACF

ullet Min. degrees: AR ightarrow 3 and MA ightarrow 4

Predictions

- Best model ARMA = (5,5)
- MSE = 1.567
- Missing values influence a lot the prediction

Figure: Predictions

Outline

- Data Exploration
 - Exploration
 - Correlation

- 2 Data Exploitation
 - ARMA
 - Regression

Methods

- Several regression methods have been investigated:
 - Linear
 - 2 Ridge
 - LASSO
 - ElasticNet
 - Opening to degree 5
- Used metrics:

$$\begin{array}{l} \bullet \quad R^2 \equiv 1 - \frac{SS_{\rm res}}{\overline{S}S_{\rm tot}} \\ \text{with } SS_{\rm tot} = \sum_i (y_i - \bar{y})^2 \\ SS_{\rm res} = \sum_i (y_i - f_i)^2 = \sum_i e_i^2 \end{array}$$

2 MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2$$

Methods

- Best results with polynomial regression of degree 2
- Fitting time comparison:

Figure: Fitting time

Polynomial Regression

Lasso Regression

• Train on fold $1 \to \mathsf{Test}$ on fold 2Train on fold $1{+}2 \to \mathsf{Test}$ on fold 3

Train on fold
$$1+2+3+4+5+6+7+8+9 \rightarrow \text{Test}$$
 on fold 10

Minimization problem for Lasso regression:

$$\min_{w} \left(\frac{1}{2n_{samples}}||y - Xw||_2^2 + \alpha||w||_1\right)$$

Lasso Regression

Figure: Optimal α

• Lasso's MSE > polynomial of degree 2's MSE

ARMA vs Polynomial

- ARMA's MSE < polynomial's MSE \rightarrow 1.567 < 6.285
- Best results: ARMA model

Thank you for your attention !!

"Great things are done by a series of small things brought together."

