For a linear Invariant System represented by 600)

Input:

smusoidal transfer function

Amplitude Ratio of output and input

Chase shift between the input and the output

Complex Numbers

 $Z_1 = 2 + 2i$ $Z_1 = 2 + 2i$

$$|Z_1|^2 = 2 + 2$$
 $|Z_1| = \sqrt{2 + 2}$
 $|Z_1| = \sqrt{2 + 2}$

$$|Z_2|^2 = (-2)^2 + 2^2$$

 $|Z_2| = \sqrt{87}$

· Z3 z-2-2i

$$|Z_3|^2 = (-2)^2 + (-2)^2$$

 $|Z_3| = \sqrt{8}$

$$arg(Z_3) = -17 + tg^{-1}(Z_1)$$

$$= -3 + 7$$

$$= -135^{\circ}$$

$$|Z_4|^2 = 2^2 + (-2)^2$$

 $|Z_4| = \sqrt{8}$

$$ang(Z_4) = -tg^{-1}(\frac{Z}{2})$$

$$= -\frac{L}{4}$$

$$= -45^{\circ}$$

Base Factors of G(iw)

type of term	G(iu)	Slope (DB/deg)	Magnitude	Phoese Avigle (Begrees)
Gain KB	KB	Ø	20 Log K	0° IF KB>Ø -180° IF KB<Ø
Pole at ongin	(jw)°	-20 x p	20dB 0,1 10 -20dB -20dB -20op. Logw	G(in) -P = 90°, P=1
Zero ot origin	(iw)°	20×p	20. p. Logw 20dB 20dB	40° 6° d0°) b=1
Eirst order Pole	1 (1+ 2m)P	Ø TF W < P -20. P IF W > P	P=1 W=1 0,1 1 -20dB-3	8000) PIF W < P W > P W
Evist order Zero	(1+ 3w) P	Ø IF W < Z + 20. P IF W > Z	W=1 $P=1$ Zod	(B) G(iw) P=1; w=1 10 10 10 10 10 10 10 10 10

Essercicio catra 1:

· Replace "s" by "iw":

· (iw): [a=1]

20. Log (G(iw) = 20 Log (101) -20 Log (1011)

@ (G(jw) 5

$$G(iw) = arg(\frac{1}{iw}) = arg(1) - arg(iw)$$

Erequency Response

therang

4

Exercicio extra 2:

· Replace "s" by "sw":

· (600)1:

20. Log (G(iw) = 20 Log (w)	≥0	(wi) 2	Slop dB/dec	Magnitude dB	Phase
	Zero at origin	jw	20	20 Log w	90°

Polar Ploto

Type
$$\beta$$
 system:
$$G(i\omega) = \frac{K_o}{(1+\frac{5\omega}{P_1}) \cdot (1+\frac{j\omega}{P_2})}$$

$$G(\omega) = \frac{K_0}{\left(1 + \frac{j\omega}{P_1}\right) \cdot \left(1 + \frac{j\omega}{P_2}\right) \cdot \left(1 + \frac{j\omega}{P_3}\right)}$$

$$G(i\omega) = \frac{k_0 \left(1 + \frac{J\omega}{Z_1}\right)}{\left(1 + \frac{J\omega}{P_1}\right) \cdot \left(1 + \frac{J\omega}{P_2}\right) \cdot \left(1 + \frac{J\omega}{P_3}\right)}$$

type 1 systems:

•
$$G(\omega) = \frac{K_1}{\omega(1 + \frac{\omega}{P_1}) \cdot (1 + \frac{\omega}{P_2}) \cdot (1 + \frac{\omega}{P_3})}$$

type 2 systems:

$$G(\omega) = \frac{\kappa_z}{(\omega)^2 (1 + \frac{\omega}{\rho_1}) (1 + \frac{\omega}{\rho_2})}$$

Polar plots Base on the system

Refire So De "Modern Control Engeneering" Poter plats in the high-frequency menge.

G (iw) = b (iw) + ...

theory

Bress Factors of Giw)

type of term	G(jw)	Shope (dB/dec)	Magnitude	Phase angle degrees
transport	Twi-	9		(Goin) z - WT (rad)
Lag		ϕ	Ø dB	6a) Gow = -57,3 WT
				(degrees)

Quedrochic jactors see in the theoretical slides

Erequency Response

theony

Polar Plots

Extra exercise 1:

$$G(S) = \frac{1}{(S+1)(S+2)}$$

- Rewrite the ToF as a product of Basic Jectors:
- a convert into standard time constant form:

$$G(S) = \frac{1}{(S+1)} \cdot \frac{1}{2(\frac{5}{2}+1)}$$

$$= \frac{1}{Z} \cdot \frac{1}{(S+1)} \cdot \frac{1}{(\frac{5}{2}+1)}$$

· Replace "5" by "sw":

$$G(j\omega) = \frac{1}{2} \cdot \frac{1}{(j\omega+1)} \cdot \frac{1}{(j\omega+1)}$$

a Evaluate 1 Givil and LGivi

$$=\frac{1}{2}\cdot\frac{1}{\sqrt{|y|^2+1^2}}\cdot\frac{1}{\sqrt{|y|^2+1^2}}$$
 $0-tg'(y)-tg'(y)$

W	16(ju)	(G (ju)
ϕ	1 2	o°
0,1	0,497	- 8,6°
1	0,316	-71,6°
2	0,158	-108,4°
,		
\sim	Ø	-180°

