12ML:: CHEAT SHEET

The I2ML: Introduction to Machine Learning course offers an introductory and applied overview of "supervised" Machine Learning. It is organized as a digital lecture.

NN Overview

Deep learning is a subfield of machine learning that uses neural networks with many layers to learn complex patterns in data.

Representation learning: DL automates feature engineering.

Hidden Layers:

- Each layer adds degree of non-linearity that can learn more abstract representations.
- Output of hidden units serves as input for units in next layer.
- Too many hidden layers or too many units per layer cause overfitting.

Perceptron

The **perceptron** is a single artificial neuron and basic computational unit of neural networks. It is restricted to learn only linear decision boundaries. A neural network is built by combination of multiple perceptrons. The perceptron is a weighted sum of input values, transformed by τ :

$$f(\mathbf{x}) = \tau(\mathbf{w}_1 \mathbf{x}_1 + \ldots + \mathbf{w}_p \mathbf{x}_p + b) = \tau(\mathbf{w}^\top \mathbf{x} + b).$$

Structure:

A neuron performs a 2-step computation:

- Affine Transformation: weighted sum of inputs plus bias:
- $z_{in}=w_1x_1+\ldots+w_px_p+b.$
- Non-linear Activation: a non-linear transformation: $\tau(z_{in})$.

Weights w are connected to edges from the input layer.

For an explicit graphical representation, we do a simple trick:

- ullet Add a constant feature to the inputs: $ilde{\mathbf{x}} = (1, x_1, \dots, x_p)^{ op}$
- ullet Absorb the bias into the weight vector: $\tilde{\mathbf{w}} = (b, w_1, \dots, w_p)^{\top}$

A **forward pass**: input vector being "fed" to neurons on the left followed by a sequence of computations performed from left to right.

Activation function:

A single neuron represents different functions depending on the choice of activation function τ .

- Identity function gives us the simple linear regression:
- $f(\mathbf{x}) = au(\mathbf{w}^{ op}\mathbf{x}) = \mathbf{w}^{ op}\mathbf{x}$
- Logistic function gives us the logistic regression:

$$\textit{f}(\mathbf{x}) = au(\mathbf{w}^{ op}\mathbf{x}) = rac{1}{1 + \exp(-\mathbf{w}^{ op}\mathbf{x})}$$

Hypothesis space:

compstat-lmu.github.io/i2ml

$$\mathcal{H} = \{f \colon \mathbb{R}^p o \mathbb{R} | f(\mathbf{x}) = \tau(\sum_{j=1}^p w_j x_j + b), \mathbf{w} \in \mathbb{R}^p, b \in \mathbb{R}\}$$

If au is the logistic sigmoid or identity function, ${\cal H}$ corresponds to the hpothesis space of logistic or linear regression, respectively.

Optimization:

Minimize the empirical risk $\mathcal{R}_{emp} = \frac{1}{n} \sum_{i=1}^{n} L\left(y^{(i)}, f(\mathbf{x}^{(i)})\right)$.

Regression: L2 loss. Binary classification: cross-entropy loss.

- For a single neuron and both choices of τ , the loss function is convex.
- The global optimum can be found with an iterative algorithm like GD.
- A single neuron with logistic sigmoid function trained with the Bernoulli loss yields the same result as logistic regression when trained until convergence.

Single hidden layer networks

Single hidden layer networks have a set of neurons in hidden layers and one or more output neurons. Multiple inputs are simultaneously fed to the network. Each neuron in the hidden layer performs a 2-step computation as a single neuron. The final output of the network is then calculated by another 2-step computation performed by the neuron in the output layer.

Hidden Layer Activation Function:

ReLU:
$$\tau(v) = \max(0, v)$$
. **Signoid:** $\tau(v) = \frac{1}{1 + \exp(-v)}$.

Multi-class Classification:

Multiple neurons in the output layer. Each neuron will represent a specific class. For g-class classification, g output units: $\mathbf{f} = (f_1, \dots, f_g)$. m hidden neurons z_1,\ldots,z_m with $z_j=\sigma((W)_j^{\top}\mathbf{x}),j=1,\ldots,m$. $f_{in,k} = \boldsymbol{U}_k^{\top} \boldsymbol{z}, \boldsymbol{z} = (z_1, \ldots, z_m)^{\top}, k = 1, \ldots, g.$

Apply a **softmax** activation function to the output layer. This gives us a probability distribution over g different possible classes:

$$f_{out,k} = au_k(f_{in,k}) = \frac{\exp(f_{in,k})}{\sum_{k'=1}^g f_{in,k'}}.$$

Derivative $\frac{\partial au(f_{in})}{\partial f} = \operatorname{diag}(au(f_{in})) - au(f_{in}) au(f_{in})^{\top}$.

The loss function for a softmax classifier is

$$L(y, f(\mathbf{x})) = \sum_{k=1}^{g} [y = k] \log \frac{\exp(f_{in,k})}{\sum_{k'=1}^{g} f_{in,k'}}, [y = k] = \begin{cases} 1, & \text{if } y = k \\ o, & \text{otherwise} \end{cases}$$

This is equivalent to the cross-entropy loss when the label vector y is one-hot coded. There is no analytical solution.

ML FNNs

We allow an arbitrary amount I of hidden layers as multi-layer (ML). Feedforward neural networks (FNNs): inputs are passed through the network from left to right, no feedback-loops are allowed.

Chain Structure:

Each hidden layer has:

$$f(\mathbf{x}) = \tau \circ \phi \circ \sigma^{(l)} \circ \phi^{(l)} \circ \sigma^{(l-1)} \circ \phi^{(l-1)} \circ \dots \circ \sigma^{(1)} \circ \phi^{(1)}.$$

 $\sigma^{(i)}$: i-th hidden layer activation function; $\phi^{(i)}$: weighted sum of i-th layer; au and ϕ : corresponding components of the output layer.

• An associated weight matrix $W^{(i)}$, bias $b^{(i)}$ and activations $z^{(i)}$.

•
$$z^{(i)} = \sigma^{(i)}(\phi^{(i)}) = \sigma^{(i)}(W^{(i)\top}z^{(i-1)} + b^{(i)})$$
 where $z^{(0)} = x$.

Without non-linear activations in the hidden layers, the network can only learn linear decision boundaries.

Backpropagation

We would like to run ERM by GD on:

$$\mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta}) = rac{1}{n} \sum_{i=1}^n L\left(y^{(i)}, f\!\left(\mathbf{x}^{(i)} \mid oldsymbol{ heta}
ight)
ight).$$

Backprop training of NNs runs in 2 alternating steps, for one \mathbf{x} :

- Forward pass: Inputs flow through model to outputs, then compute the observation loss...
- Backward pass: Loss flows backwards to update weights so error is reduced, as in GD.

Example:

One hidden layer, logistic activations with L2 loss.

Forward pass:

$$z_{i,in} = \mathbf{W}_i^{\mathsf{T}} \mathbf{x} + b_i, \quad z_{i,out} = \sigma(z_{i,in}),$$
 $f_{in} = \mathbf{u}^{\mathsf{T}} \mathbf{z} + c, \quad f_{out} = \tau(f_{in}), \quad L(y, f(\mathbf{x})) = \frac{1}{2}(y - f_{out})^2.$

Backward pass:

$$\frac{\partial L(y,f(\mathbf{x}))}{\partial u_{i}} = \frac{\partial L(y,f(\mathbf{x}))}{\partial f_{out}} \frac{\partial f_{out}}{\partial f_{in}} \frac{\partial f_{in}}{\partial u_{i}}$$

$$\frac{\partial L(y,f(\mathbf{x}))}{\partial f_{out}} = -(y - f_{out}), \quad \frac{\partial f_{out}}{\partial f_{in}} = \sigma(f_{in})(1 - \sigma(f_{in})), \quad \frac{\partial f_{in}}{\partial u_{i}} = z_{i,out}.$$

$$u_{i}^{[new]} = u_{i}^{[old]} - \alpha \frac{\partial L(y,f(\mathbf{x}))}{\partial u_{i}}.$$

$$\frac{\partial L(y,f(\mathbf{x}))}{\partial W_{ij}} = \frac{\partial L(y,f(\mathbf{x}))}{\partial f_{out}} \frac{\partial f_{out}}{\partial f_{in}} \frac{\partial z_{j,out}}{\partial z_{j,out}} \frac{\partial z_{j,in}}{\partial W_{ij}}$$

$$\frac{\partial f_{in}}{\partial u_{i}} = u_{i} = \frac{\partial L(y,f(\mathbf{x}))}{\partial f_{out}} \frac{\partial f_{out}}{\partial f_{in}} \frac{\partial z_{j,out}}{\partial z_{j,out}} \frac{\partial z_{j,in}}{\partial W_{ij}} = x_{i}$$

$$\frac{\partial f_{in}}{\partial z_{j,out}} = u_j, \quad \frac{\partial z_{j,out}}{\partial z_{j,in}} = \sigma(z_{j,in})(1 - \sigma(z_{j,in})), \quad \frac{\partial z_{j,in}}{\partial W_{ij}} = x_i.$$

$$W_{ii}^{[new]} = W_{ii}^{[old]} - \alpha \frac{\partial L(y, f(\mathbf{x}))}{\partial W_{ii}}.$$