julia.cluceru@gmail.com juliacluceru.me github.com/julclu

Summary

Adept at data science applications in medicine, particularly in radiology, using a combination of statistical and machine learning techniques. Currently seeking research-oriented data science internships for Summer, Fall, or Winter 2019, or Summer 2020.

EDUCATION

University of California - San Francisco

Ph.D. in Pharmaceutical Sciences and Pharmacogenomics

University of North Carolina - Chapel Hill

B.A. Mathematics, B.A. Chemistry, GPA 3.53

San Francisco, California Sept. 2015 – 2020 (exp) Chapel Hill, NC

Sept. 2009 - May 2013

Research Projects

Using MRI to predict patient-level tumor status

Image processing, Pytorch, Python data science stack

03/2019 - Pres.

- Machine Learning: Responsible for designing convolutional neural networks (CNNs) for the detection and classification of tumor status in recurrent brain tumor patients.
- Data processing: Responsible for designing fully automated MR image pre-processing pipeline for cropping to irregular regions of interest, normalization, and data augmentation.

Prediction of anatomy and contrast of MR images

UCSF

UCSF

Pytorch, Python data science stack, Big data, radiomics

01/2019 - Pres.

- Machine Learning: Responsible for designing both Radiomics (quantitative texture features)+ support vector classifiers and CNN experiments for the classification of both anatomy and contrast of MR images. Preliminary CNN experimentation results: 82% classification into 5 contrasts. Ongoing work for contrast and anatomic classification improvement.
- Data processing: Responsible for designing fully automated MR image pre-processing pipeline for extracting center slices from volumes, normalizing and transformation.

Using MRI to predict tissue sample outcome in brain tumor patients

UCSF

Clustered data analysis, R, Python ML stack

04/2017 - Pres., pub. pending

- Machine learning: Responsible for building 5-fold CV experiments to assess ability of MRI to classify tissue sample cancer status, while controlling for clustered data. Built thresholding and logistic regression experiments with average accuracy of 69% on 5th fold. Discovered a novel MR biomarker to classify tumor status.
 Other models used: KNN, Random Forest, Gradient boosting machines, Naive Bayes, Generalized linear mixed models, support vector classifier.
- **Statistics**: Used Generalized estimating equations to analyze clustered data and discovered novel associations of MR parameters with outcome.
- Data processing and cleaning: Automated batch processing and statistics retrieval for magnetic resonance imaging (MRI) data to increase efficiency and reproducibility for UCSF Radiology [some code available on github.]

SKILLS

- Programming Languages: Proficient: R, python; Some experience: Matlab, HTML, CSS; Learning: SQL
- Selected Python libraries: pandas, numpy, fast.ai, pytorch, scikit-learn
- Selected R libraries: randomForestSRC, randomForest, multgee, lmer, glmnet
- Technologies: Git, Gihub, Jupyter NOtebook, R Studio, R Markdown
- Image Processing concepts: Fourier transform, wavelet transform, normalization, SIVIC

Publications

- Nesmith JE, Chappell JC, Cluceru JG, Bautch VL.: "Blood vessel anastomosis is spatially regulated by flt-1 during angiogenesis", Development. 2017 Mar 1;144(5):889-896.
- Chappell JC, Cluceru JG, Nesmith JE, Mouillesseaux KP, Bradley VB, Hartland CM, Hashambhoy-Ramsay YL, Walpole J, Peirce SM, Mac Gabhann F, Bautch VL.: "Flt-1 (VEGFR-1) coordinates discrete stages of blood vessel formation", Cardiovasc Res. 2016 Jul 1;111(1):84-93
- Walpole J, Chappell JC, Cluceru JG, Mac Gabhann F, Bautch VL, Peirce SM.: "Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks", Integr Biol (Camb). 2015 Sep;7(9):987-97

DISTINCTIONS & HONORS

- Invited speaker: "The association of MR imaging parameters with pathology of recurrent high grade glioma and treatment-induced effects"; InSight Symposium, Stockton, CA., Feb. 2019
- University of San Francisco Deep Learning Diversity Fellowship: \$5000 Award
- Ruth L. Kirschstein Predoctoral Institutional Research Training Grant (T32): \$23,844.00 for research-related expenses.
- Test scores: MCAT: 36 97th percentile; PCAT: 442 99th percentile; GRE: 166 94th percentile; SAT: 2260 99th percentile