

1

3

4

5

6

Cipher definition

- (DEF) A cipher, or encryption scheme, defined over (K, P, C) is a triple of "efficient" algs (Gen, Enc, Dec) s.t.
 - Gen: **Z**⁺ → **K**
 - Enc: $P \times K \rightarrow C$; Dec: $C \times K \rightarrow P$
 - Enc may be randomized; Dec is always deterministic
 - Equivalent notations
 - Enc(k, x), Enc_k(x), E(k, x), E_k(x)
 - The same for Dec

March 22

FoC - Symmetric Encryption

7

7

Properties of a cipher

- Correctness
 - For all p in **P** and k in **K**, D(k, E(k, p)) = p
- Security (informal)
 - A symmetric cipher is secure iff for each pair (p, c), with p \in **P** and c \in **C**, then
 - given the ciphertext c, it is "difficult" to determine the corresponding plaintext p without knowing the key k, and vice versa
 - given a pair of ciphertext c and plaintext p, it is "difficult" to determine the key k, unless it is used just once

March 22

FoC - Symmetric Encryption

8

Q

An historical example

Mono-alphabetic substitution

Cleartext alphabet	A	В	С	D	Ε	F	G	н	ı	J	ĸ	L	М	N	o	Р	Q	R	s	Т	U	V	w	X	Y	z
Key	J	U	L	ı	s	С	A	Ε	R	т	٧	w	X	Υ	z	В	D	F	G	н	ĸ	М	N	o	Р	Q

P= "TWO HOUSEHOLDS, BOTH ALIKE IN DIGNITY, IN FAIR VERONA, WHERE WE LAY OUR SCENE"

("Romeo and Juliet", Shakespeare)

P' = "TWOHO USEHO LDSBO THALI KEIND IGNIT
YINFA IRVER ONAWH EREWE LAYOU RSCEN E"

C = "HNZEZ KGSEZ WIGUZ HEJWR VSRYI RAYRH
 PRYCJ RFMSF ZYJNE SFSNS WJPZK FGLSY S"

March 22

FoC - Symmetric Encryption

9

9

First Attack

- Brute force attack (exhaustive key search)
 - Oscar has ciphertext (y) and some plaintext (x)
 - Oscar tries all possible keys
 - for each k in K

if (y == E(k, x)) return k

- The attack is always possible
- The attack may be more complicated because of false positives (later)

March 22

FoC - Symmetric Encryption

10

10

An historical example

- Mono-alphabetic substitution
 - The key is a permutation of the alphabet
 - Encryption algorithm
 - Every cleartext character having position *p* in the alphabet is substituted by the character having the same position *p* in the key
 - Decryption algorithm
 - Every ciphertext character having position p in the key is substituted by the character having the same position p in the cleartext
- Number of keys $\approx 26! \approx 4 \times 10^{26}$
 - number of seconds since the Universe birth!

March 22

FoC - Symmetric Encryption

11

11

An historical example

- Brute force attack is practically infeasible given the enormous key space
- Brute force attack considers the cipher as a black box
- The monoalphabetic substitution algorithm is subject to an analytical attack which analyzes the internals of the algorithm

March 22

FoC - Symmetric Encryption

12

12

An historical example

- The monoalphabetic-substitution cipher maintains the redundancy that is present in the cleartext
- It can be "easily" crypto-analized with a ciphertextonly attack based on language statistics

March 22

FoC - Symmetric Encryption

13

13

An historical example

- The following properties of a language can be exploited
 - The frequency of letters
 - Generalize to pairs or triples of letters
 - Frequency of short words
 - If word separators (blanks) have been identified

March 22

FoC - Symmetric Encryption

14

14

Lesson learned

- Good ciphers should hide statistical properties of the encrypted plaintext
- The cyphertext symbols should appear to be random
- A large key space alone is not sufficient for strong encryption function (necessary condition)

March 22

FoC - Symmetric Encryption

15

15

16

Attack Complexity

- Attack complexity is the dominant of:
 - Data complexity
 - · Expected number of input data units required
 - Storage complexity
 - Expected number of storage units required
 - Processing complexity
 - Expected number of operations required to processing input data and/or fill storage with data

March 22

FoC - Symmetric Encryption

17

17

Types of attacks

- Attacks are classified according to what information an adversary has access to
 - ciphertext-only attack (the least strong)
 - known-plaintext attack
 - chosen-plaintext attack (the strongest)
- Fact.
 - A cipher secure against CPAs is also secure against the others
- Best practice.
 - It is customary to use ciphers resistant to a CPA even when mounting that attack is not practically feasible

March 22

FoC - Symmetric Encryption

18

18

Kerchoff's principle (19th century)

- Kerchoff's maxim
 - A cryptosystem should be secure even if everything about the system, except the key, is public knowledge
- Shannon's maxim
 - The enemy knows the system
- Pros
 - Maintaining security is easier
 - · Keys are small secrets
 - Keeping small secrets, it's easier than keeping large secrets
 - Replacing small secrets, once possibly compromised, is easier than replacing large secrets

March 22

FoC - Symmetric Encryption

19

19

Security through Obscurity

- Security through Obscurity
 - Attempt to use secrecy of design or implementation to provide security
- History shows that it doesn't work
 - GSM/A1 disclosed by mistake
 - RC4 disclosed deliberately
 - Enigma disclosed by intelligence
 - ... many others...
- Defense in Depth
 - Solely relaying on StO is a poor design decision
 - StO is a valid secondary measure

March 22

FoC - Symmetric Encryption

20

20

Security through Obscurity

 "Hiding security vulnerabilities in algorithms, software, and/or hardware decreases the likelihood they will be repaired and increases the likelihood that they can and will be exploited by evil-doers. Discouraging or outlawing discussion of weaknesses and vulnerabilities is extremely dangerous and deleterious to the security of computer systems, the network, and its citizens." – S.M. Bellovin and R. Bush, <u>Security Through</u> <u>Obscurity Considered Dangerous</u>, Internet Engineering Task Force (IETF), February 2002.

March 22

FoC - Symmetric Encryption

21

21

Symmetric Encryption

EXERCISES

March 22

FoC - Symmetric Encryption

22

22

Shift Cipher (Caesar Cipher)

- Shift every plaintext letter by a fixed number of positions (the key) in the alphabet with wrap around
- Ex.
 - PT = «ATTACK»
 - K = 17
 - CT = "RKKRTB"

March 22

FoC - Symmetric Encryption

23

23

Shift Cipher (Caesar Cipher)

- · Letters are encoded as numbers
 - $-A \rightarrow 0$, $B \rightarrow 1$, $C \rightarrow 2$, ..., $Z \rightarrow 25$
- PT, CT and K are elements of the ring \mathbb{Z}_{26}
 - Encryption: $y = x + k \mod 26$
 - Decryption: $x = y k \mod 26$
 - EX.
 - PT (x) = «ATTACK» => 0 19 19 0 2 10
 - K = 17
 - CT (y) = 17 10 10 17 19 1 => "RKKRTB"

March 22

FoC - Symmetric Encryption

24

24

Shift Cipher (Caesar Cipher)

- Possible attacks
 - Brute force attack
 - Small key space: 26 possible keys
 - Anlytical attack
 - Letter frequency analysis

March 22

FoC - Symmetric Encryption

25

25

Affine cipher

- Definition
 - Let a, b, x, $y \in \mathbb{Z}_{26}$
 - Encryption: $y = a \cdot x + b \mod 26$
 - Decryption: $x = a^{-1} (y b) \mod 26$
 - With k = (a, b) and gcd(a, 26) = 1
- Example
 - Plaintext: «ATTACK» => 0, 19, 19, 0, 2, 10
 - k = (9, 13)
 - Ciphertext: 13, 2, 2, 13, 5, 25 => «NCCNFZ»

March 22

FoC - Symmetric Encryption

26

26

Affine cipher

- Attacks
 - Brute force attack
 - Key space = (#values for a) \times (#values for b) = 12 \times 26 = 312
 - Analytical attack
 - Letter frequency analysis

March 22

FoC - Symmetric Encryption

27

27

Reader

 Understanding Cryptography, Section 1.4 "Modular Arithmetic and More Historical Ciphers"

March 22

FoC - Symmetric Encryption

28

28