Comput

Computer Engineering Department, NIT Surat, INDIA

(index.php)

Home Academics People Research Activities Facilities Alliances (index.php) (admissions.php) (faculty.php) (publications.php)(activities.php) (equipments.php)(alliance.php)

Contact Us (contact.php)

Quick Links	1st year (btech_1.php) 2nd year (btech_2.php) 3rd year (btech_3.php (btech_4.php)) 4t	h year			
SVNIT	B.Tech. II (CO) Semester - 3	L	т	Р	С	
Home		3	1			
(http://www.svnit.ac.in)	CO201 : Computer Organization (CS-I)			2	5	
Faculty	COURSE OUTCOMES					
(faculty.php)	After successful completion of this course, student will be able to					
Moodle	Understand and describe the basics of various architectural units of the Computer System Apply the knowledge of combinational and sequential logical circuits to mimic simple computer					
(http://172.16.1.10/mod	odle)architecture.		•	•		

- Demonstrate the simulations for basic computer operations
- Recognize the importance of parallelism in computer architecture.

COURSE CONTENT

• Introduction	(2 Hours)
Number System and Representation of information, Arithmetic and Logical operation and hardware implementation, Software implementation of some complex operation.	(3 Hours)
Arithmetic and Logic Unit, Introduction to memory Unit, control unit and Instruction Set, Working with an ALU	(3 Hours)
Concepts of Machine level programming, Assembly level programming and High level programming	(3 Hours)
Various addressing modes and designing of an Instruction set	(3 Hours)
Concepts of subroutine and subroutine call, Use of stack for handling subroutine call and return	(3 Hours)
Introduction to CPU design, Instruction interpretation and execution	(3 Hours)
Memory	(06 Hours)

Concepts of semiconductor memory, CPU-memory interaction, organization of memory modules, Cache memory and related mapping and replacement policies, Virtual memory.

• Input - Output (08 Hours)

Introduction to input/output processing, working with video display unit and keyboard and routine to control them, Programmed controlled I/O transfer, Interrupt controlled I/O transfer, DMA controller, Secondary storage and type of storage devices, Introduction to buses and connecting I/O, devices to CPU and memory.

Introduction to ASIC, FPGA, VHDL, HDL concepts

 Tutorials will be based on the coverage of the above topics separately

(14 Hours)

(Total Contact Time: 42 Hours + 14 Hours = 56 Hours)

PRACTICALS

- 1. Design and simulation of CPU.
- 2. Simulation of Memory management techniques.
- 3. Simulation of I/O device management
- 4. Mini project based on CPU design using advanced tools.

BOOKS RECOMMENDED

- 1. John L. Hannessy, David A. Patterson "Computer organization and Design", 3/E, Morgan Kaufmaan, reprint -2003
- 2. Tanenbaum "Structured Computer Organization", 6/E, PHI EEE, reprint 1995
- 3. Stallings,"Computer Organization & Architecture : Designing For Performance", 6/E, PHI, 2002
- 4. Hamacher "Computer Organization", 5/E, McGraw-Hill, 2001
- 5. Morris Mano "Computer Systems Architecture", 3/E, PHI, reprint 1997