Espaços afins

Aula 8 - 20/03/2019

Sumário

- Soma de vectores e produto por um escalar
- Equação vectorial de uma recta e de um plano
- Espaços afins
- Axiomas de incidência e de medida para um espaço afim
- Teorema da razão

Composição de vectores

Neste contexto de geometria axiomática, a soma de vectores vai ser definida como composição de aplicações. Seja $\mathcal E$ um conjunto de pontos. Denotamos por $\vec{\mathcal E}$ o conjunto dos vectores de $\mathcal E$.

Proposição. Sejam $u, v \in \vec{\mathcal{E}}$ e seja $w = u \circ v$, ou seja, $w(A) = u(v(A)), A \in \mathcal{E}$. Então

- 1) w é um vector de \mathcal{E} ;
- 2) [Au(A)w(A)v(A)] é um paralelogramo, para qualquer $A \in \mathcal{E}$.

Dem. 1) Sejam $A, A' \in \mathcal{E}$. Como v e u são vectores, temos que $[A \ A' \ v(A') \ v(A)]$ e $[v(A) \ w(A) \ w(A') \ v(A')]$ são paralelogramos. Logo, pelo teorema de Désargues, $[A \ A' \ w(A') \ w(A)]$ é um paralelogramo, ou seja, w é um vector.

2) Seja A' = v(A). Então u(A') = w(A). Como u é vector, tem-se que [A u(A) u(A') A'] é um paralelogramo, ou seja, [A u(A) w(A) v(A)] é um paralelogramo.

Soma de vectores

Definição. Dados vectores v e u, o vector $w = v \circ u$ é designado soma de u e v e é denotado w = u + v.

O facto de [A u(A) w(A) v(A)] ser um paralelogramo corresponde à regra do paralelogramo para somar vectores.

Proposição. São válidas as seguintes propriedades:

- (i) Para quaisquer vectores u, v, w, tem-se (u + v) + w = u + (v + w).
- (ii) Para quaisquer u, v vectores, tem-se u + v = v + u.
- (iii) Para qualquer vector u, tem-se $u + \vec{0} = u$.
- (iv) Para qualquer vector v, existe um único vector -v tal que $v + (-v) = \vec{0}$.

Produto de um vector por um escalar

Proposição. Dado um número real λ e um vector $v = \overrightarrow{XY}$, a aplicação $\lambda v : \mathcal{E} \to \mathcal{E}$ tal que $(\lambda v)(X) = Z$ com $Z \in XY$ satisfazendo

$$XY:XZ=1:\lambda$$

é um vector.

Dem. Sejam $A, A' \in \mathcal{E}$. Então, como v é um vector, temos que [A A' v(A') v(A)] é um paralelogramo.

Sejam $(\lambda v)(A) = B e (\lambda v)(A') = B'$.

Como $B \in A v(A)$ e $B' \in A' v(A')$ são tais que

$$A v(A) : A B = 1 : \lambda = A' v(A') : A' B',$$

concluímos que [AA'B'B] é um paralelogramo, pelo teorema do alongamento.

Propriedades do produto de um vector por um escalar

Proposição. Seja u,v vectores e λ,μ números reais. São válidas as seguintes propriedades:

- (i) $(\lambda \mu) v = \lambda (\mu v)$.
- (ii) $(\lambda + \mu) v = \lambda v + \mu v$.
- (iii) $\lambda(u+v) = \lambda u + \lambda v$.
- (iv) 1 v = v.

Dem. (i), (ii), (iv) Exercício.

(iii) Seja w=u+v e seja $A\in\mathcal{E}$. Sejam $B=\lambda u(A),\ C=\lambda w(A), D=\lambda v(A)$. Temos de provar que [ABCD] é um paralelogramo. Suponhamos que os quatro pontos A,B,C,D são não colineares. Temos que as rectas CD e v(A)w(A) são paralelas, porque Av(A):AD=Aw(A):AC. Por outro lado, temos que AB e e v(A)w(A) são paralelas visto que [Av(A)w(A)u(A)] é um paralelogramo. Portanto AB é paralela a CD. Analogamente se provava que AD é paralela a BC. No caso em que os pontos A,B,C,D são colineares, utiliza-se uma régua na recta que os contém para provar que o ponto médio de [AC] é igual ao ponto médio de [BD]

Teorema. O conjunto $\vec{\mathcal{E}}$ é um espaço vectorial real real $\vec{\mathcal{E}}$ $\vec{\mathcal{E}}$

Equação vectorial da recta e do plano

Proposição. Sejam O e A dois pontos e seja r a recta que os contém. Então, para qualquer ponto $P \in r$, existe um único número real p tal que

 $\overrightarrow{OP} = p \overrightarrow{OA}$.

Tem-se ainda que a aplicação $P \mapsto p$ é uma régua em r, com base nos pontos $O \in A$.

Dem. Exercício.

Proposição. Sejam O,A,B pontos não colineares. Seja α o único plano que os contém. Então, um ponto $P \in \alpha$ se e só se existem e são únicos números reais a,b tais que

$$\overrightarrow{OP} = a \overrightarrow{OA} + b \overrightarrow{OB}$$
.

Dem. Exercício.

Definição de espaço afim

A partir de um conjunto de pontos $\mathcal E$ que satisfaz os nove axiomas de incidência e medida, é possível definir o espaço vectorial $\vec{\mathcal E}$. Estes dois conjuntos estão relacionados da seguinte forma: o conjunto $\vec{\mathcal E}$ é composto por bijecções de $\mathcal E$ com as propriedades seguintes:

- (i) Dados $u, v \in \vec{\mathcal{E}}$, tem-se $(u + v)(X) = u(v(X)), \forall X \in \mathcal{E}$.
- (ii) Dados $X, Y \in \mathcal{E}$, existe um único $v \in \vec{\mathcal{E}}$ tal que v(X) = Y.

Definição. Um espaço afim é um conjunto $\mathcal S$ ao qual está associado um espaço vectorial $\mathcal V$ de bijecções de $\mathcal S$ que satisfazem as propriedades (i) e (ii). Normalmente denotamos $\mathcal V$ por $\vec{\mathcal S}$ e designamo-lo por espaço dos vectores de $\mathcal S$ ou espaço vectorial associado a $\mathcal S$.

Já vimos que um conjunto onde sejam válidos os nove axiomas de incidência e medida tem uma estrutura de espaço afim. Iremos mostrar em seguida que, num qualquer espaço afim, é possível definir os conceitos primitivos ponto, recta e plano de modo que sejam válidos os nove axiomas de incidência e medida.

Pontos, rectas, planos num espaço afim

Definição. Seja S um espaço afim, com espaço vectorial real associado $\vec{\mathcal{S}}$. Seja U um subespaço vectorial de $\vec{\mathcal{S}}$ e seja $X \in \mathcal{S}$. O subconjunto de S dado por

$$U(X) = \{u(X) : u \in U\}$$

é chamado subespaço afim de S que passa por X e paralelo a U. A dimensão de U(X) é a dimensão do subespaço vectorial U. Definimos uma geometria em S considerando os seguintes conceitos primitivos:

- ightharpoonup Pontos os elementos de ${\cal S}$
- ightharpoonup Rectas os subespaços afins de ${\cal S}$ de dimensão 1
- ightharpoonup Planos os subespaços afins de ${\cal S}$ de dimensão 2
- ▶ incidir em pertencer a

Axiomas de incidência e medida num espaço afim

Uma régua numa recta U(X) é uma bijecção

$$\begin{array}{ccc} U(X) & \to & \mathbb{R} \\ P & \mapsto & p \end{array}$$

tal que se $P \in U(X)$, então $\overrightarrow{XP} = p \mathbf{u}$, onde \mathbf{u} é um vector não nulo de U.

Duas rectas $U_1(X_1)$ e $U_2(X_2)$ de S são paralelas se $U_1 = U_2$.

Um vector $\mathbf{v} \in \vec{S}$ é paralelo a uma recta r = U(X) se $\mathbf{v} \in U$.

Proposição. Duas rectas num espaço afim são paralelas se e só se são complanares e disjuntas.

Dem. Exercício.

Teorema. Num espaço afim de dimensão 3 são válidos os axiomas de incidência e de medida R.1,..., R.9.

Vector posição e teorema da razão

Para utilizar todas as ferramentas de álgebra linear em geometria, necessitamos de relacionar a nocão de razão com a noção de coordenadas num espaço vectorial. Como à partida todos os pontos de um espaço afim são equivalentes, podemos escolher qualquer um deles para "origem". Normalmente denotamos o ponto origem de um espaço afim por ${\it O}$.

Definição. Seja $\mathcal S$ um espaço afim e seja $O \in \mathcal S$ um ponto pré-fixado. Dado um ponto $P \in \mathcal S$, designamos o vector \overrightarrow{OP} por vector posição do ponto P em relação à origem O.

Se A e B forem dois pontos e $X \in AB$, então os vectores \overrightarrow{AX} e \overrightarrow{BX} são linearmente dependentes. Logo, existem números reais α, β tais que

$$\alpha \overrightarrow{AX} = \beta \overrightarrow{XB}.$$

Definimos no espaço afim a razão AX : XB como $AX : XB = \beta : \alpha$.

Teorema. (*Teorema da razão*) Suponhamos que O é a origem de S e sejam A, B pontos tais que $\overrightarrow{OA} = u$ e $\overrightarrow{OB} = v$. Então o ponto X da recta AB tal que $AX : XB = \beta : \alpha$ tem vector posição

$$\overrightarrow{OX} = \frac{\alpha u + \beta v}{\alpha + \beta}.$$