Topology Qualifying Exam Fall 1987

Do 9 of the following 15 problems.

In the following problems, let \mathbb{R} denote the real line with the usual topology, and let \mathbb{N} denote the natural numbers.

- **1.** Prove that any continuous bijection $f: \mathbb{R} \to \mathbb{R}$ is a homeomorphism.
- **2.** Prove that in a metrizable space X without isolated points, the closure of a discrete set in X must be nowhere dense in X.
- **3.** (a) Prove that every closed subset of a metrizable space X is a G_{δ} in X.
 - (b) Give an example to show that a closed subset of a Hausdorff space X is not necessarily a G_{δ} in X
- 4. (a) Characterize the compact subsets of \mathbb{R} and prove that your characterization is correct.
 - (b) State and prove a maximum value theorem from calculus.
 - (c) Using maximum, minimum, and intermediate value theorems from calculus, prove that every continuous open function $f:[0,1] \to [0,1]$ is surjective.
- **5.** Let X be the topological space whose underlying set is the set of real numbers and whose topology has as a basis the set of half open intervals of the form [a, b) where a < b. Show that X is
 - (a) first countable.
 - (b) separable.
 - (c) not second countable.
 - (d) not metrizable.
- 6. (a) True-False
 - (i) The composition of quotient maps is a quotient map.
 - (ii) The product of metrizable spaces is metrizable.
 - (iii) $f: X \to Y$ is a topological embedding iff f is one-to-one and X has the coarsest (=weakest) topology making f continuous.
 - (iv) A space is T_1 iff it is locally T_1 ; i.e., each point has a base of T_1 neighborhoods.
 - (v) A space is T_2 iff it is locally T_2 ; i.e., each point has a base of T_2 neighborhoods.
 - (vi) Every metrizable space is normal.
 - (vii) Every locally compact Hausdorff space is completely regular.
 - (viii) Every subspace of a separable Hausdorff space is separable and Hausdorff.
 - (b) For each false entry, give a counter example (no proofs).
- 7. Let S^1 denote the unit circle in the plane (with the usual topology). Give 4 examples, 1 compact, 1 non-compact, 1 non-locally connected, 1 non-locally compact, of spaces homotopically equivalent to S^1 , but not homeomorphic to S^1 .

8. Let $f: A \to B$ where $A, B \subseteq \mathbb{R}$. For $x \in \mathbb{R}$, define

$$\operatorname{osc}(f, x) = \inf \{ \operatorname{diam} f(A \cap U) | x \in U \text{ open in } \mathbb{R} \}$$

and

$$A^* = \{ x \in \overline{A} | \operatorname{osc}(f, x) = 0 \}.$$

Prove that if $f: A \to B$ is an order preserving homeomorphism and A, B are dense in \mathbb{R} , then $A^* = \mathbb{R}$.

- **9.** Prove that if $f:[0,1] \to X$ is a continuous open surjection onto a nondegenerate Hausdorff space X, then X is homeomorphic to [0,1].
- 10. Prove that if a filter \mathcal{F} is contained in a unique ultrafilter \mathcal{G} , then $\mathcal{F} = \mathcal{G}$.
- 11. Prove that the following two statements about a T_1 -space X are equivalent.
 - (a) Every infinite subset of X has an accumulation point in X.
 - (b) At least one member of every infinite open cover of X can be discarded with the remaining sets still covering X.
- 12. Find the specific error in the following: "Proof" that the uncountably infinite power of a two point discrete space is metrizable. Let $D = \{0, 1\}$ have the discrete topology. For each $r \in \mathbb{R}$ define

$$f_r: D^N \to D \text{ by } f_r(g) = \begin{cases} g(r) & \text{if } r \in \mathbb{N} \\ 0 & \text{if } r \in \mathbb{R} - \mathbb{N}. \end{cases}$$

Then these functions are continuous and thus induce a continuous embedding $F: D^N \to D^R$. Let U be open in D^R . Then U restricts only finitely may coordinates. Thus $U \cap F[D^N] \neq \emptyset$, so $F[D^N]$ is dense in D^R . But D^N is homeomorphic with the Cantor space, so $F[D^N]$ is compact. Since D^R is Hausdorff, $F[D^N]$ must be closed in D^R . Hence $F[D^N] = D^R$, and since D^N is metrizable, D^R must be metrizable.

- 13. Prove that if X is compact Hausdorff, then each quasicomponent of X is connected.
- **14.** Prove that if $\mathcal{C} = \{C_{\alpha} | \alpha \in \Lambda\}$ is a family of compact subsets of a Hausdorff space such that the finite intersections of members of \mathcal{C} are connected, then $\bigcap \mathcal{C}$ is connected.
- 15. Show that every connected, locally compact, paracompact Hausdorff space is Lindelöf.