M-INf3 THP2 WiSe 11

Übung 1 (Prüfungsvorleistung)

Prof. Dr. B. Buth 3.10.2010

Punkteverteilung:	Aufgabe	Teilaufgaben	Gesamt
	1	0 + 40	40
	2	0+60	60
	Gesamt:		100
Benötigte Punkte	60		

1 CSP-Werkzeuge: Probe

1.1 Probe - erste Schritte

0 Punkte

Machen Sie sich mit dem Werkzeug probe vertraut indem Sie die Anweisungen der Dateien prac01-probe.pdf und prac02-processes.pdf auf der Basis der dazu benötigten Dateien abarbeiten.

Dauer: max 30 min

1.2 Probe - Prozesse erkunden

40 Punkte

Legen Sie eine CSP_M Datei namens simple-csp.csp an für die Teilprozese $P,\ Q,\ R$ und den CSP-Prozess SYS

$$\begin{array}{rcl} P & = & a \rightarrow b \rightarrow Skip \\ Q & = & a \rightarrow c \rightarrow Stop \\ R & = & c \rightarrow d \rightarrow R \\ SYS & = & (P \sqcap Q) \sqcap R \end{array}$$

Erarbeiten Sie mit probe die Traces dieser Prozesse und demonstrieren Sie das Ergebnis.

2 CSP-Werkzeuge: FDR2

2.1 FDR2 - erste Schritten

0 Punkte

Machen Sie sich mit dem Werkzeug FDR2 vertraut indem Sie die Anweisungen der Datei prac03-fdr.pdf auf der Basis der dazu benötigten Dateien abarbeiten.

Informationen dazu: CSP-Guide und FDR2 Manual

Dauer: max 30 min

2.2 FDR2 Prozesse erkunden

60 Punkte

Gegeben seien die folgenden Basisprozesse:

$$\begin{array}{lcl} P & = & a \rightarrow b \rightarrow c \rightarrow P \\ Q & = & a \rightarrow ((c \rightarrow d \rightarrow Q) \ \Box \ (b \rightarrow f \rightarrow STOP)) \end{array}$$

- Legen Sie eine Datei simple-fdr.csp an, in der Sie die CSP-Spezifikation entwickeln
- Schreiben Sie CSP_M Prozesse für die Basisprozesse sowie die darauf aufbauenden Prozesse S_1 bis S_4 , die von FDR syntaktisch akzeptiert werden

a)
$$S_1 = P; Q$$

b)
$$S_2 = P \|_{\{a,b,c\}} Q$$

c)
$$S_3 = P ||| Q$$

e)
$$S_4 = P \square Q$$

- Prüfen Sie mit Hilfe der FDR2-Trace-Refinement-Beziehungen, welche der Prozesse wechselseitige Verfeinerungen sind.
 - Dazu sollen die erforderlichen checks direkt in der CSP-Datei spezifiziert werden in der Form assertX[T=Y;
- Dokumentieren Sie die Ergebnisse der Prüfungen notieren Sie in der CSP-Datei ob eine Prüfung erfolgreich ist und falls nicht, welcher Trace eine Verletzung der Refinemen-Eigenschaft darstellt

Abgabe: bis So, 16.10., 24:00 über EMIL