Q1:

1. Is
$$2^{n+1} = O(2^n)$$
?

2. Is
$$2^{2n} = O(2^n)$$
 ?

3.
$$ls(0.25)^n = O(n)$$
?

1-yes---->
$$O(2^n \times 2) = O(2^n)$$
 neglect constant

2-no ---->
$$O(2^{2n})=O((2^n)^2) \neq O(2^n)$$

3- no ---->
$$O(0.25^n)=O((1/4)^n) \neq O(n)$$

Q2:

For every given f(n) and g(n) prove that $f(n) = \theta(g(n))$

1.
$$g(n) = n^3$$
, $f(n) = 3n^3 + n^2 + n$

2.
$$g(n) = 2^n$$
, $f(n) = 2^{n+1}$

3.
$$g(n) = ln(n), f(n) = log(n) + log(log(n))$$

1-
$$(\mathcal{F}(n)=3 \text{ n}^3 + \text{n}^2 + \text{n}) \leq \text{const} \times \text{n}^3$$
 So :g(n)=n³

2- (
$$\mathcal{F}(n)=2^{n+1}$$
) $\leq const \times 2^n$ So :g(n)= 2^n

3- (
$$\mathcal{F}(n) = \log(n) + \log(\log(n))$$
) $\leq \log(n) \times \ln(10) = \ln(n) - \cdots > \mathcal{F}(n) = \Theta(\log(n))$ or $\Theta(\ln(n))$
So :g(n)= ln(n)

```
Q3:
```

For every given f(n) and g(n) prove that f(n) = O(g(n)) or f(n) = O(g(n))

1.
$$f(n) = n^3$$
, $g(n) = n^2$

2.
$$f(n) = log(n), g(n) = log^{2}(n)$$

1-Let's check $\mathcal{F}(n)=O(g(n))$

```
(\mathcal{F}(n)=n^3) \le const \times n^2 ----> n \le const ----> n \to \infty so condition doesn't met
```

For large n, this inequality does not hold for any constant c. Therefore $\mathcal{F}(n) \neq O(g(n))$

Let's check $\mathcal{F}(n) = \Omega(g(n))$

```
(\mathcal{F}(n)=n^3) \ge const \times n^2
```

This inequality holds for $n \ge c$ with c > 0. So : $\mathcal{F}(n) = \Omega(g(n))$

2-Let's check $\mathcal{F}(n)=O(g(n))$

```
(\mathcal{F}(n) = \log(n)) \le (\operatorname{const} \times \log^2(n) = \operatorname{const} \times 2 \times \log(n))
1 \le c \times \log(n)
```

For $n \ge 2$ choosing c=1 satisfies the inequality. So : $\mathcal{F}(n) = O(g(n))$

Q4:

Prove that the running time of an algorithm is $\theta(g(n))$ if and only if its worst-case running time is O(g(n)) and its best-case running time is O(g(n))

By definition, the running time of an algorithm is $\Theta(g(n))$ if and only if there exist constants

 $c_1,c_2>0$ and $n_0\geq 0$ such that for all $n\geq n_0$

Average case: $C_1 \times g(n) \leq \mathcal{F}(n) \leq C_2 \times g(n)$

Upper bond is worst case $O(g(n)) [C_1 \times g(n) \le \mathcal{F}(n)]$

&

lower band is best case $\Omega(g(n))$ [$\mathcal{F}(n) \leq C_2 \times g(n)$

Q5:

Prove that $\mathbf{O}(g(n)) \cap \mathbf{\omega}(g(n))$ is the empty set.

- $f(n) = \omega$ (g(n)) mean [$C_2 > 0$ and $n_0 \ge 0$ such that for all $n \ge n_0$ $f(n) > C_2 \times g(n)$]
- f(n) = O(g(n)) mean [$C_1>0$ and $n_0\geq 0$ such that for all $n\geq n_1$ $f(n)\leq C_1\times g(n)$]

```
C=max(C_1, C_2) n_2=max(n_0, n_1).
```

 $O(g(n)) \cap \omega(g(n)) = \emptyset \rightarrow f(n)$ cannot be both less than and greater than $C \times g(n)$ for the same n.