A STUDY INTO THE ACCURACY OF SMARTPHONE-BASED MOBILE NETWORK MEASUREMENT

Troy Pandhumsoporn Xiaosu Ye

Cheng Song

OUTLINE

- Background
- Problem Statement
- Solutions
- Results & Analysis
- Future Steps

BACKGROUND

- Mobile devices have become essential parts of our daily lives
- Recent reports shows that 84% of apps require permission of Internet access from a pool of 55K Android apps randomly picked from the official Android app market
- Monitoring mobile network quality is important
- Measuring and Understanding the performance of mobile network is important.
- Wide variety of many measurement apps exist, but lack of accuracy.

WHAT IS THE PROBLEM?

- The measurement accuracy of current apps has not received sufficient scrutiny/ still remain questionable.
- Same mobile devices may have different network quality performance using different apps.

OVERHEAD DELAY MEASUREMENT

- The measurement app uses du as the network RTT (measured network delay)
- The actual RTT is given by dn (actual network delay)
- The delay overhead is given by Δd. (the difference between the measured and actual delay)

$$\Delta d = d_u - d_n = (t_u^i - t_u^o) - (t_n^i - t_n^o).$$

Measurement flow for Android apps.

A probe packet starts at left end t_u^o to a web server, eliciting a response packet from the server to arrive at the measurement app at time t_u^i

SET UP A RELIABLE TESTBED ENVIRONMENT

- Measurement server
- Three Android phones
- Three external packet sniffer due to the reliability requirement
- Run three test apps (RTT measurement method) one by one on each phone
- Comparing three RTT measurement models:
 - Native Ping
 - Inet Ping
 - HTTP ping

INTRODUCE 3 RTT MEASUREMENT METHODS

Native ping

This method executes external shell commands through a Java Runtime class.

Internet ping

The measurement app can also employ the network related classes provided by

Android or Java, such as class java.net.InetAddress.

HTTP ping

HTTP-based classes, such as class java.net.HttpURLConnection, can also be

used for implementing a measurement app.

DETAILED HARDWARE CONFIGURATIONS AND OS VERSIONS

TABLE I: The mobile phones used in the experiment.

Models	OS Ver.	Hardware specifications		
Google Nexus 5	4.4.2	Qualia MSM8974 Snapdragon 800 CPU (quad-core 2.26GHz), 2GB MEM		
HTC One	4.2.2	Qualia APQ8064T Snapdragon 600 CPU (quad-core 1.7GHz), 2GB MEM		
Sony Xperia J	4.0.4	Qualia MSM7227A CPU (1GHz), 512M MEM		

EVALUATION

- Most of the delay overheads are observed as RTT-independent
- G phone's delay overheads corretlate with the RTTs:
 - Smaller overhead for short RTTs
 - Larger overhead for long RTTs
- By comparing the results from Inet ping and HTTP ping which use TCP SYN/RST packets and TCP data packets, establishing a new TCP connection may incur a higher delay overhead than processing content in an existing connection.

TABLE II: Delay overheads measured when System.currentTimeMillis() is used (mean with 95% confidence interval, in ms).

	Phone*	Emulated RTT (ms)				
	I Holle	20	50	. 85	135	
Native ping	G	7.700	6.028	14.078	13.963	
		± 2.331	± 0.811	± 0.684	± 0.691	
	Н	2.108	1.177	5.179	0.849	
		± 0.726	± 0.292	± 0.564	± 0.281	
	S	6.779	7.840	9.999	8.387	
		± 1.129	± 0.932	± 1.039	± 1.191	
Inet ping	G	11.931	12.514	16.211	15.874	
		± 1.063	± 0.779	± 0.833	± 0.787	
	Н	7.243	7.470	8.551	7.060	
		± 1.907	± 0.815	± 2.413	± 0.821	
	S	13.822	12.223	12.814	12.511	
		± 1.327	± 1.142	± 1.146	± 1.055	
HTTP ping	G	6.481	7.651	9.156	10.790	
		± 0.855	± 0.963	± 0.703	± 0.911	
	Н	6.566	7.151	7.222	6.675	
		± 0.588	± 0.957	± 1.041	± 0.739	
	S	11.206	11.153	11.805	12.987	
		± 0.947	± 0.855	± 0.987	± 1.312	

Note *: G for Google Nexus 5, H for HTC One, and S for Sony Xperia J.

PROBABILITY DENSITY FUNCTION PLOTS OF THE DELAY OVERHEADS (APPS AND PHONES) Legend represents RTT measurement

PDF PLOTS OF THE DELAY OVERHEAD ASYMMETRY (INET PING / HTTP PING)

Fig. 7: PDF plots of the delay overhead asymmetry (Inet ping).

Fig. 8: PDF plots of the delay overhead asymmetry (HTTP ping).

WHAT CAN WE ASSESS FROM THIS TABLE?

- The RTTs measured by the apps are inflated significantly for all three phones.
- The delay overheads can range from a few milliseconds to tens of milliseconds, and the 95% confidence interval can be as high as 2.4ms.
- The same Android phone has different performance for different measurement methods.
- HTTP ping and Native ping exhibit comparatively smaller delay overheads for most of the cases.
- By comparing the results from Inet ping and HTTP ping, we find that establishing a new TCP connection may incur a higher delay overhead than processing content in an existing connection.

A BETTER PRACTICE

TABLE III: A comparison of Δd_u (Ext) for external C socket program and in-DVM measurement (App) (mean with 95% confidence interval, in ms).

	Туре		Emulated RTT (ms)				
	Type	20	50	85	135		
<u> </u>	Ann	2.946	2.443	2.637	2.828		
ping	App	± 0.695	± 0.200	± 0.251	± 0.236		
Inet	Ext	0.736	0.794	0.798	0.830		
	EXt	± 0.121	± 0.139	± 0.154	± 0.134		
ping		3.312	3.824	3.157	4.542		
		± 0.663	± 0.721	± 0.540	± 0.834		
T	Ext	1.095	1.246	1.289	1.365		
HT		± 0.075	± 0.098	± 0.112	± 0.186		

- To validate whether bypassing the DVM can mitigate the delay overhead
 - Implement a simple C socket program for Inet ping
 - Limit the size of messages to no more than 300 bytes for HTTP ping
- The kernel delay overheads for handling HTTP messages are more stable than for TCP control message.

CONCLUSION

- The RTTs measured by the apps are significantly inflated.
- The delay overhead introduced by the DVM is not negligible and symmetric in the send and receive directions.
- The solution to the delay overhead introduced by the DVM (not negligible) was to implement a native measurement app using HTTP messages for measurement.
- The results yielded a delay overhead reduced to five milliseconds or less.

IN THE FUTURE (THE NEXT STEP)

- Similar study for iOS platform (Iphone series)
 - Android vs. iOS platform comparison
- Fixed Network (Desktop) Network
 Measurements
- Updated Experiment (Testbed Setup):
 - Better Computer Hardware
 - VM (Dalvik vs ART)
 - Selection of Smartphones

DESKTOP NETWORK MEASUREMENT FOR FUN

Works CITED

- o [1] Weichao Li; Mok, R.K.P.; Daoyuan Wu; Chang, R.K.C., "On the accuracy of smartphone-based mobile network measurement," in *Computer Communications (INFOCOM), 2015 IEEE Conference on*, vol., no., pp.370-378, April 26 2015-May 1 2015 doi: 10.1109/INFOCOM.2015.7218402 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7218402&isnumber=7218353
- [2] Anthony, Sebastian. "Android ART: Google Finally Moves to Replace Dalvik, to Boost Performance and Battery Life | ExtremeTech." ExtremeTech. Ziff Davis, 8 Nov. 2013. Web. 03 Nov. 2015.
- [3] "ART and Dalvik." *ART and Dalvik*. Android, n.d. Web. 03 Nov. 2015. https://source.android.com/devices/tech/dalvik/index.html.