Chapitre 3 : FACTORISATION QR ET SYSTÈMES SURDÉTERMINÉS

- 1 Factorisation QR
 - Factorisation QR : généralités
 - Méthode de Householder : principe
 - Transformation de Householder
 - Factorisation QR : exemple
 - Factorisation QR : algorithme
- Systèmes surdéterminés
 - Interlude : propriétés de la norme euclidienne
 - Systèmes surdéterminés : généralités
 - Systèmes surdéterminés : solution formelle
 - Interprétation géométrique
 - Equations normales
 - Conditionnement
 - Méthode des équations normales (version LU)
 - Méthode de la factorisation QR
 - Comparaison des méthodes : exemple
 - Annexe : conditionnement

FACTORISATION QR : GÉNÉRALITÉS

Une matrice Q est orthogonale si elle est carrée et $Q^TQ = I$.

Une matrice $R = (r_{ij})$ est trapézoïdale supérieure si $r_{ij} = 0$ pour tout i > j.

Une factorisation QR d'une matrice A (instruction $\operatorname{qr}(A)$) de dimensions $m \times n$ ($m \ge n$) est une combinaison des matrices Q orthogonale (de dimensions $m \times m$) et R trapézoïdale supérieure (de dimensions $m \times n$) telles que

$$A = QR.$$

Comme les m-n dernières lignes de R sont nulles, on a

$$R = \begin{pmatrix} \hat{R} \end{pmatrix}$$
, avec \hat{R} de dimensions $n \times n$,

et en subdivisant $Q=\begin{pmatrix}\hat{Q}&\hat{Q}_{\perp}\end{pmatrix}$ avec \hat{Q} de dimensions $m\times n$ on a aussi une factorisation QR réduite (instruction qr(A,0))

$$\begin{bmatrix} A &= \hat{Q}\hat{R} \end{bmatrix}.$$

$$(m = 10, n = 5)$$

$$\begin{bmatrix} ****** \\ **** \\ **** \\ **** \\ **** \\ *****$$

MÉTHODE DE HOUSEHOLDER : PRINCIPE

Principe de base :

Si Q_i , i = 1, ..., 5, sont des matrices orthogonales symétriques, alors

$$Q = Q_1 \cdots Q_5$$

 $_{
m et}$

$$Q^T = Q_5 \cdots Q_1$$

sont également orthogonales (pourquoi? et symétriques?).

D'autre part $R = Q_5 \cdots Q_1 A = Q^T A$ est bien trapézoïdale supérieure.

On a donc bien une factorisation

$$A = QR$$
.

Transformation de Householder

Une manière d'obtenir la factorisation QR est d'utiliser la transformation de Householder, définie pour un vecteur $\mathbf{v}=(v_i)$ comme

$$H = I - 2 \frac{\mathbf{v} \mathbf{v}^T}{\|\mathbf{v}\|_2^2}.$$

La transformation est:

• symétrique

$$(\mathbf{v}\mathbf{v}^T)^T = \mathbf{v}\mathbf{v}^T;$$

et donc H est combinaison linéaire de matrices symétriques;

orthogonale

$$\operatorname{car} H^{T} H = H H = I - 4 \frac{\mathbf{v} \mathbf{v}^{T}}{\|\mathbf{v}\|_{2}^{2}} + 4 \frac{\mathbf{v} (\mathbf{v}^{T} \mathbf{v}) \mathbf{v}^{T}}{\|\mathbf{v}\|_{2}^{4}} = I ;$$

Transformation de Householder

Une manière d'obtenir la factorisation QR est d'utiliser la transformation de Householder, définie pour un vecteur $\mathbf{v}=(v_i)$ comme

$$H = I - 2 \frac{\mathbf{v} \mathbf{v}^T}{\|\mathbf{v}\|_2^2}.$$

La transformation permet de :

• introduire des zéros

pour un vecteur $\mathbf{x} = (x_i)$ donné on choisit $\mathbf{v} = \mathbf{x} \pm ||\mathbf{x}||_2 \mathbf{e}_j$ où \mathbf{e}_j est le jème vecteur de la base canonique; alors

$$H\mathbf{x} = \mp \|\mathbf{x}\|_2 \mathbf{e}_j.$$

En effet, $2\mathbf{v}^T\mathbf{x} = 2||\mathbf{x}||_2^2 \pm 2||\mathbf{x}||_2 x_j = ||\mathbf{v}||_2^2$ et donc

$$H\mathbf{x} = \mathbf{x} - 2\frac{\mathbf{v}\mathbf{v}^T}{\|\mathbf{v}\|_2^2}\mathbf{x} = \mathbf{x} - \mathbf{v} = \mp \|\mathbf{x}\|_2\mathbf{e}_j.$$

NOTE: Pour éviter le phénomène d'annulation on choisit le signe qui mène à l'addition de deux nombres de même signe; en l'occurrence $\mathbf{v} = \mathbf{x} + \mathrm{signe}(x_i) \|\mathbf{x}\|_2 \mathbf{e}_i$.

Exemple : (matrice de l'Exercice 4 de la Séance 1)

$$\begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 \\
1 & 3 & 9 & 27 \\
1 & 5 & 25 & 125 \\
1 & 6 & 36 & 216 \\
1 & 7 & 49 & 343
\end{pmatrix}
\text{ avec } \mathbf{v}^{(1)} = \begin{pmatrix}
1 + \sqrt{6} \\
1 \\
1 \\
1 \\
1
\end{pmatrix}
\text{ et } Q_1 := I - 2 \frac{\mathbf{v}^{(1)} \mathbf{v}^{(1)}^T}{\|\mathbf{v}^{(1)}\|_2^2}$$

$$\rightarrow Q_1 A = \begin{pmatrix}
-\sqrt{6} & -9.7... & -50.6... & -293.9... \\
-1.1... & -10.9... & -77.5... \\
-0.1... & -5.9... & -58.5... \\
1.8... & 10.0... & -39.4... \\
2.8... & 21.0... & 130.5... \\
3.8... & 34.0... & 257.5...
\end{pmatrix}$$

Exemple : (matrice de l'Exercice 4 de la Séance 1)

$$\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 \\
1 & 3 & 9 & 27 \\
1 & 5 & 25 & 125 \\
1 & 6 & 36 & 216 \\
1 & 7 & 49 & 343
\end{pmatrix}$$
 avec $\mathbf{v}^{(1)} = \begin{pmatrix} 1 + \sqrt{6} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$ et $Q_1 := I - 2 \frac{\mathbf{v}^{(1)} \mathbf{v}^{(1)}^T}{\|\mathbf{v}^{(1)}\|_2^2}$

et
$$Q_2 := I - 2 \frac{\mathbf{v}^{(2)} \mathbf{v}^{(2)}}{\|\mathbf{v}^{(2)}\|_2^2}$$

Exemple : (matrice de l'Exercice 4 de la Séance 1)

$$\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 \\
1 & 3 & 9 & 27 \\
1 & 5 & 25 & 125 \\
1 & 6 & 36 & 216 \\
1 & 7 & 49 & 343
\end{pmatrix}$$
 avec $\mathbf{v}^{(1)} = \begin{pmatrix} 1 + \sqrt{6} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$ et $Q_1 := I - 2\frac{\mathbf{v}^{(1)} \mathbf{v}^{(1)}^T}{\|\mathbf{v}^{(1)}\|_2^2}$

$$\rightarrow Q_1 A = \begin{pmatrix}
-\sqrt{6} & -9.7... & -50.6... & -293.9... \\
-1.1... & -10.9... & -77.5... \\
-0.1... & -5.9... & -58.5... \\
1.8... & 10.0... & -39.4... \\
2.8... & 21.0... & 130.5... \\
3.8... & 34.0... & 257.5...
\end{pmatrix}$$
avec $\mathbf{v}^{(2)} = \begin{pmatrix}
-9.7... \\
-1.1... - 11.1... \\
-0.1... \\
1.8... \\
2.8... \\
3.8... \end{pmatrix}$

et
$$Q_2 := I - 2 \frac{\mathbf{v}^{(2)} \mathbf{v}^{(2)}}{\|\mathbf{v}^{(2)}\|_2^2} \rightarrow Q_2 Q_1 A = \begin{pmatrix} -0.7... & 9.7... & 85.0... \\ 2.1... & 11.1... & 64.6... & 396.9... \\ 0.02... & -5.1... & -53.4... \\ -0.3... & -1.4... & -32.8... \\ -0.5... & 3.3... & 19.5... \\ -0.6... & 10.1... & 107.8... \end{pmatrix}$$

 \rightarrow ce n'est pas ce qu'on voulait...

Exemple: (matrice de l'Exercice 4 de la Séance 1)

$$\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 \\
1 & 3 & 9 & 27 \\
1 & 5 & 25 & 125 \\
1 & 6 & 36 & 216 \\
1 & 7 & 49 & 343
\end{pmatrix}
\text{ avec } \mathbf{v}^{(1)} = \begin{pmatrix}
1 + \sqrt{6} \\
1 \\
1 \\
1 \\
1 \\
1
\end{pmatrix}
\text{ et } Q_1 := I - 2 \frac{\mathbf{v}^{(1)} \mathbf{v}^{(1)}^T}{\|\mathbf{v}^{(1)}\|_2^2}$$

 $\rightarrow Q_1 A = \begin{pmatrix} -\sqrt{6} & -9.7... & -50.6... & -293.9... \\ -1.1... & -10.9... & -77.5... \\ -0.1... & -5.9... & -58.5... \\ 1.8... & 10.0... & -39.4... \\ 2.8... & 21.0... & 130.5... \end{pmatrix} \text{ avec } \mathbf{v}^{(2)} = \begin{pmatrix} -1.1... - 5.2... \\ -0.1... \\ 1.8... \\ 2.8... \\ 3.8... \end{pmatrix}$ 3.8... 34.0... 257.5...

1.9... 35.4...

5/19

FACTORISATION QR: ALGORITHME

L'algorithme retourne R et une séquence des vecteurs $\mathbf{v}^{(1)}...,\mathbf{v}^{(n)}$ (laquelle définit Q implicitement)

ALGORITHME (QR DE HOUSEHOLDER):
$$R = A$$
 pour $k = 1, \ldots, n$
$$\mathbf{x} = R(k:m,k) \qquad \% \text{ vecteur de composantes } k \text{ à } n \text{ de la colonne } k \text{ de } R$$

$$\mathbf{v}^{(k)} = \mathbf{x} + \mathrm{sign}(x_1) \|\mathbf{x}\|_2 \mathbf{e}_1$$

$$\mathbf{v}^{(k)} = \mathbf{v}^{(k)} / \|\mathbf{v}^{(k)}\|_2 \qquad \% \text{ normaliser } \mathbf{v}^{(k)}$$

$$\% \text{ appliquer } I - 2\mathbf{v}^{(k)} \mathbf{v}^{(k)}^T$$

$$R(k:m,k:n) = R(k:m,k:n) - \mathbf{v}^{(k)} (2\underbrace{(\mathbf{v}^{(k)})^T R(k:m,k:n)}_{\text{vecteur ligne.}})$$

Coût :
$$\sum_{k=1}^{n} \underbrace{\text{(coût dernière ligne algorithme)}}_{4(m-k)(n-k)+\mathcal{O}(m)} + \mathcal{O}(mn) = 2n^2(m-n/3) + \mathcal{O}(mn)$$

(2m-2k+1)(n-k+1)flops

FACTORISATION QR : ALGORITHME (SUITE)

L'algorithme précédent ne forme pas la matrice

$$Q = Q_1 \cdots Q_n$$

explicitement; elle est connue implicitement via les vecteurs $\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}$. Dans certains cas, seul le produit de Q avec un vecteur de dimension m(disons w) est nécessaire.

Algorithme
$$\mathbf{w} := Q\mathbf{w} :$$
 pour $k = n, ..., 1$ $\mathbf{w}(k:m) := \mathbf{w}(k:m) - \mathbf{v}^{(k)}(2 \mathbf{v}^{(k)^T} \mathbf{w}(k:m))$ Coût: $\sum_{k=1}^{n} 4(m-k+1)$ $= 2n(2m-n+1)$

Coût:
$$\sum_{k=1}^{n} 4(m-k+1)$$

= $2n(2m-n+1)$

Le produit $Q^T \mathbf{w} = Q_n \cdots Q_1 \mathbf{w}$ est similaire.

ALGORITHME
$$\mathbf{w} := Q^T \mathbf{w} :$$
 Pour $k = 1, ..., n$ $\mathbf{w}(k:m) := \mathbf{w}(k:m) - \mathbf{v}^{(k)}(2 \mathbf{v}^{(k)^T} \mathbf{w}(k:m))$ $\mathbf{v}^{(k)}(2 \mathbf{v}^{(k)^T} \mathbf{w}(k:m))$ $\mathbf{v}^{(k)}(2 \mathbf{v}^{(k)^T} \mathbf{w}(k:m))$

Coût:
$$\sum_{k=1}^{n} 4(m-k+1)$$

= $2n(2m-n+1)$

FACTORISATION QR : ALGORITHME (SUITE)

Comme

$$Q = \begin{pmatrix} \hat{Q} & * \end{pmatrix}$$

avec \hat{Q} une matrice $m \times n$, on peut utiliser les algorithmes précédents pour évaluer le produit de \hat{Q} avec un vecteur $\hat{\mathbf{w}}$ de dimension n via

$$\hat{Q}\hat{\mathbf{w}} = Q \begin{pmatrix} \hat{\mathbf{w}} \\ \end{pmatrix};$$

de manière similaire, le produit \hat{Q}^T avec un vecteur de w dimension m s'obtient avec

$$\left(\begin{array}{c} \hat{Q}^T \mathbf{w} \\ * \end{array}\right) = Q^T \mathbf{w};$$

Finalement, les matrices Q et \bar{Q} peuvent aussi être formées explicitement, leur jème colonne étant $Q\mathbf{e}_j$.

Interlude : propriétés de la norme euclidienne

Propriété 1 : soient A une matrice symétrique et $\lambda_i,\,i=1,...,n$, ses valeurs propres. Alors

$$||A||_2 = \max_i |\lambda_i| = \max_{\mathbf{v}} \frac{|\mathbf{v}^T A \mathbf{v}|}{\mathbf{v}^T \mathbf{v}}.$$

Soit \mathbf{p}_i le vecteur propre normalisé associé à λ_i , i=1,...,n. L'ensemble de ces vecteurs forment une base orthonormale et tout vecteur \mathbf{v} a une représentation $\mathbf{v} = \sum_{i=1}^n \alpha_i \mathbf{p}_i$ dans cette base. On a alors

$$||A||_2^2 = \max_{\mathbf{v}} \frac{||A\mathbf{v}||_2^2}{||\mathbf{v}||_2^2} = \max_{\mathbf{v}} \frac{\mathbf{v}^T A^2 \mathbf{v}}{\mathbf{v}^T \mathbf{v}} = \max_{\alpha_1, \dots, \alpha_n} \frac{\sum_{i=1}^n \lambda_i^2 \alpha_i^2}{\sum_{i=1}^n \alpha_i^2} = \max_i |\lambda_i|^2.$$

Par analogie avec les deux dernières égalités on a aussi $\sum_{n=1}^{\infty} \frac{1}{n} = \sum_{n=1}^{\infty} \frac{2}{n}$

$$\max_{\mathbf{v}} \frac{|\mathbf{v}^T A \mathbf{v}|}{\mathbf{v}^T \mathbf{v}} = \max_{\alpha_1, \dots, \alpha_n} \frac{\left|\sum_{i=1}^n \lambda_i \alpha_i^2\right|}{\sum_{i=1}^n \alpha_i^2} = \max_{i} |\lambda_i|.$$

Propriété 2 : pour tout matrice A rectangulaire

$$||A^T A||_2 = ||A||_2^2$$
.

$$||A^T A||_2 = \max_{\mathbf{v}} \frac{\left|\mathbf{v}^T A^T A \mathbf{v}\right|}{\mathbf{v}^T \mathbf{v}} = \max_{\mathbf{v}} \frac{||A \mathbf{v}||_2^2}{||\mathbf{v}||_2^2}.$$

INTERLUDE : PROPRIÉTÉS DE LA NORME EUCLIDIENNE

Propriété 3: pour tout matrice A rectangulaire

$$||A^T||_2 = ||A||_2.$$

Considérons d'abord le cas particulier d'un vecteur ${\bf w}$:

$$\|\mathbf{w}^T\|_2 = \max_{\mathbf{v}} \frac{|\mathbf{w}^T \mathbf{v}|}{\|\mathbf{v}\|_2} = \max_{\theta} \frac{\|\mathbf{w}\|_2 \|\mathbf{v}\|_2 |\cos(\theta)|}{\|\mathbf{v}\|_2} = \|\mathbf{w}\|_2.$$

Maintenant, comme pour deux matrices $A,\,B$ la norme du produit satisfait

$$||AB||_2 \le ||A||_2 ||B||_2$$

on a

$$\|A^T\|_2 = \max_{\mathbf{v}} \frac{\|A^T \mathbf{v}\|_2}{\|\mathbf{v}\|_2} = \max_{\mathbf{v}} \frac{\|\mathbf{v}^T A\|_2}{\|\mathbf{v}^T\|_2} \le \max_{\mathbf{v}} \frac{\|\mathbf{v}^T\|_2 \|A\|_2}{\|\mathbf{v}^T\|_2} = \|A\|_2.$$

En même temps $A = A^{T^T}$ et donc $||A||_2 \le ||A^T||_2$, d'où l'égalité.

Systèmes surdéterminés : généralités

On considère les systèmes surdéterminés

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + \dots + a_{2n}x_n &= b_2 \\ & \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n &= b_m \end{cases}$$

avec

- au moins autant d'équations que d'inconnues $(m \ge n)$
- \bullet le rang maximal (la matrice du système est de rang n).

Sous forme matricielle:

$$A\mathbf{x} = \mathbf{b}$$
.

En règle générale, le système n'a pas de solution, et donc, le résidu

$$r = b - Ax$$

n'est pas nul. On parle alors de la solution x au sens des moindres carrés si elle minimise la norme euclidienne du résidu ; c'est-à-dire si

$$\|\mathbf{b} - A\mathbf{x}\|_2 = \min_{\mathbf{y}} \|\mathbf{b} - A\mathbf{y}\|_2.$$

SYSTÈMES SURDÉTERMINÉS : SOLUTION FORMELLE

On procède en deux étapes.

On détermine les points critiques de

$$f(\mathbf{x}) = \|\mathbf{b} - A\mathbf{x}\|_2^2,$$

c'est-à-dire tous les x tels que $\nabla f(\mathbf{x}) = 0$, ou encore

$$A^T A \mathbf{x} = A^T \mathbf{b}. \tag{1}$$

C'est le système d'équations normales. Si le rang de A est maximal (égal à n), alors le rang de A^TA est maximal (égal à n) et A^TA est inversible; en particulier, il y a un et un seul point critique.

 $oldsymbol{\circ}$ On montre que ce x minimise bien f (et minimise globalement!) :

$$\|\mathbf{b} - A\mathbf{y}\|_{2}^{2} = \|\mathbf{b} - A\mathbf{x} + A(\mathbf{x} - \mathbf{y})\|_{2}^{2}$$

$$= \|\mathbf{b} - A\mathbf{x}\|_{2}^{2} + 2(\mathbf{x} - \mathbf{y})^{T} \underbrace{A^{T}(\mathbf{b} - A\mathbf{x})}_{=0} + \underbrace{\|A(\mathbf{x} - \mathbf{y})\|_{2}^{2}}_{\geq 0}$$

$$\geq \|\mathbf{b} - A\mathbf{x}\|_{2}^{2}.$$

INTERPRÉTATION GÉOMÉTRIQUE

Une autre manière d'interpréter la solution :

 $\mathbf{r} = \mathbf{b} - A\mathbf{x}$ est minimisé si il est orthogonal à $A\mathbf{w}$ pour tout $\mathbf{w} \in \mathbb{R}^n$; et donc si

$$A^T \mathbf{r} = A^T (\mathbf{b} - A\mathbf{x}) = \mathbf{0}.$$

L'angle θ entre le vecteur ${\bf b}$ et l'hyperplan $A{\bf w},\,{\bf w}\in\mathbb{R}^n$ mesure la capacité de $A{\bf x}$ à approcher ${\bf b}.$

Si r est le résidu minimal, alors

$$\sin(\theta) = \frac{\|\mathbf{r}\|_2}{\|\mathbf{b}\|_2}.$$

EQUATIONS NORMALES

La résolution au sens des moindres carrés est donc équivalente à

$$A^T A \mathbf{x} = A^T \mathbf{b}. \tag{1}$$

La matrice $A^T A$ du système est :

• symétrique, car

$$(A^T A)^T = A^T A$$

• définie positive, car

$$\mathbf{v}^T A^T A \mathbf{v} = \|A \mathbf{v}\|_2^2 \ge 0$$

et

$$\mathbf{v}^T A^T A \mathbf{v} = 0 \Leftrightarrow A \mathbf{v} = \mathbf{0} \Leftrightarrow A \mathbf{v} = \mathbf{0}$$

Rappel : une matrice M est définie positive si pour tout ${\bf v} \neq {\bf 0}$ on a ${\bf v}^T M {\bf v} \ > \ 0 \ .$

CONDITIONNEMENT MATRICIEL: GÉNÉRALISATION

La résolution au sens des moindres carrés est donc équivalente à

$$A^T A \mathbf{x} = A^T \mathbf{b}. \tag{1}$$

Pour une matrice A régulière, le conditionnement (en norme 2) est défini par

$$\kappa(A) = \|A^{-1}\| \|A\|.$$

Si le nombre de lignes est supérieur au nombre de colonnes, la matrice A n'est pas inversible; néanmoins, si $\operatorname{rang}(A)=n$, elle possède un pseudo-inverse

$$A^{\dagger} = (A^T A)^{-1} A^T;$$

notez que la solution de (1) est ${\bf x}=A^\dagger {\bf b}$. Le conditionnement de A (en norme euclidienne) est alors défini par

$$\kappa(A) = \|A^{\dagger}\|_2 \|A\|_2.$$

Pour ce qui est du pseudo-inverse, l'identité suivante nous sera utile

$$\|(A^T A)^{-1}\|_2 = \|A^{\dagger} A^{\dagger}^T\|_2 = \|A^{\dagger}^T\|_2^2 = \|A^{\dagger}\|_2^2.$$
 (2)

Systèmes surdéterminés : conditionnement

La résolution au sens des moindres carrés est donc équivalente à

$$A^T A \mathbf{x} = A^T \mathbf{b} .$$

Le conditionnement d'un problème est

$$\kappa \ = \ \sup \frac{\text{erreurs relatives résultat}}{\text{erreurs relatives données}} \, ,$$

avec les erreurs données $\rightarrow 0$.

Pour un problème aux moindres carrés :

- données : A, b (avec perturbations $A + \delta A$, $b + \delta b$)
- résultat : x ($\mathbf{x} + \delta \mathbf{x}$ pour le système perturbé)

Systèmes surdéterminés : conditionnement

La résolution au sens des moindres carrés est donc équivalente à $A^T A \mathbf{x} = A^T \mathbf{b}$.

Le conditionnement d'un problème est

$$\kappa \ = \ \sup \frac{\text{erreurs relatives résultat}}{\text{erreurs relatives données}} \, ,$$

avec les erreurs données $\rightarrow 0$.

On peut montrer (cf. Annexe) que

pour erreurs
$$\delta A$$
 sur A : $\kappa_{MC,A} \leq \kappa(A) + \frac{\kappa(A)^2 \|\mathbf{r}\|_2}{\|A\|_2 \|\mathbf{x}\|_2} \leq \kappa(A) + \kappa(A)^2 \tan(\theta)$
pour erreurs $\delta \mathbf{b}$ sur \mathbf{b} : $\kappa_{MC,\mathbf{b}} \leq \kappa(A)/\cos(\theta)$

CONCLUSION:

- $\theta \approx 0$ \Rightarrow $\kappa_{MC,A} \approx \kappa_{MC,\mathbf{b}} \approx \kappa(A)$
- $0 \ll \theta \ll \frac{\pi}{2} \quad \Rightarrow \quad \kappa_{MC,A} \approx \kappa(A)^2$

$$\kappa_{MC,\mathbf{b}} \approx \kappa(A)$$

• $\theta \to \frac{\pi}{2}$ \Rightarrow $\kappa_{MC,A}$, $\kappa_{MC,b} \to \infty$ (car $\mathbf{x} \approx \mathbf{0}$)

MÉTHODE DES ÉQUATIONS NORMALES (VERSION LU)

La méthode consiste à former le système

$$A^T A \mathbf{x} = A^T \mathbf{b} \tag{1}$$

explicitement et en calculer sa factorisation LU avec pivotage.

Algorithme:

- former $A^T A$, $A^T \mathbf{b}$ ($\approx mn^2$ (symétrie) + 2mn flops)
- **2** calculer la factorisation LU avec piv. $LU = P(A^TA)$ ($\approx 2n^3/3$ flops)
- résoudre $L\mathbf{y} = P(A^T\mathbf{b})$ et $U\mathbf{x} = \mathbf{y}$ ($\approx 2n^2$ flops)
- dans la situation (habituelle) où $m\gg n$ le coût est dominé par mn^2
- le conditionnement du système (1) est (en utilisant (2) et Propriété 2)

$$\kappa(A^T A) = \|(A^T A)^{-1}\|_2 \|A^T A\|_2 = \|A^{\dagger}\|_2^2 \|A\|_2^2 = \kappa(A)^2;$$

pour rappel, si l'angle θ entre b et $A\mathbf{x}$ est proche de 0, $\kappa_{MC,A} \approx \kappa(A)$ et une perte de précision est possible si on utilise cette méthode lorsque la matrice est mal conditionnée (c'est-à-dire si $\kappa(A) \gg 1$); dans ce cas la méthode est instable.

MÉTHODE DE LA FACTORISATION QR

La méthode utilise la factorisation $\hat{Q}\hat{R}$ réduite de $A\,;$ elle est basée sur le fait que la solution x du système

$$A^T A \mathbf{x} = A^T \mathbf{b}$$

satisfait aussi

$$\mathbf{x} = (A^{T}A)^{-1}A^{T}\mathbf{b} = (\hat{R}^{T}\hat{Q}^{T}\hat{Q}\hat{R})^{-1}\hat{R}^{T}\hat{Q}^{T}\mathbf{b} = \hat{R}^{-1}\hat{R}^{-T}\hat{R}^{T}\hat{Q}^{T}\mathbf{b} = \hat{R}^{-1}\hat{Q}^{T}\mathbf{b};$$

Algorithme:

- calculer la factorisation $\hat{Q}\hat{R} = A \quad (\approx 2n^2(m-n/3) \text{ flops})$
- résoudre $\hat{R}\mathbf{x} = \hat{Q}^T\mathbf{b}$ ($\approx n^2$ flops)
 - $A^T A$ ne doit pas être formée;
 - dans la situation (habituelle) où $m \gg n$ le coût est dominé par $2mn^2$
 - si la factorisation $\hat{Q}\hat{R}$ réduite est bien calculée par la méthode de Householder, le présent algorithme a la stabilité inverse

COMPARAISON DES MÉTHODES : EXEMPLE

EXEMPLE ¹: interpolation de la fonction exp(sin(4*t)) aux points repartis uniformément sur l'intervalle [0, 1] par un polynôme de degré 14

```
m = 100; n = 15;
t = 0:1/(m-1):1; t = t';
A = [];
for i=1:n
    A = [A t.^(i-1)];
end
b = exp(sin(4*t));
    % valeur exacte de x(15)
    % obtenue via des outils
    % de précision étendue
x15ex = 2006.787453080206
```


^{1.} repris de L. N. Trefethen, D. Bau, *Numerical Linear Algebra*, SIAM, Philadelphia, PA, 1997

COMPARAISON DES MÉTHODES : EXEMPLE

EXEMPLE ¹: interpolation de la fonction exp(sin(4*t)) aux points repartis uniformément sur l'intervalle [0, 1] par un polynôme de degré 14

Instruction Octave

```
x = A\b;
x(15)/x15ex
```

ans = 1.0000007318865

Méthode QR (Householder)

```
[Q,R] = qr(A,0);
x = R\(Q'*b);
x(15)/x15ex
```

ans = 1.00000007318102

Méthode équations normales (version LU)

```
[L U P] = lu(A'*A);
x = U\(L\(P*(A'*b)));
x(15)/x15ex
```

ans = 1.56194368637586

^{1.} repris de L. N. Trefethen, D. Bau, *Numerical Linear Algebra*, SIAM, Philadelphia, PA, 1997

COMPARAISON DES MÉTHODES : EXEMPLE

EXEMPLE 1: interpolation de la fonction exp(sin(4*t)) aux points repartis uniformément sur l'intervalle [0, 1] par un polynôme de degré 14

EXPLICATION: pour ce problème

- $\kappa_{MC,A} \leq 3.2 \, 10^{10}$
- $\kappa_{MC,b} \leq 2.310^{10}$

et donc en double précision une méthode qui a la stabilité directe doit fournir un résultat avec une précision relative d'environ $u\kappa_{MC}\approx 10^{-6}$. Par contre

$$\kappa(A)^2 = 2.3 \, 10^{20}$$
.

et donc la réponse obtenue par la méthode des équations normales risque de ne pas être (et n'est en effet pas!) précise.

```
kA = cond(A)
x=A \setminus b; r = A*x-b;
theta = asin(norm(r)/norm(b));
c = norm(r)/norm(A)/norm(x);
K_MCA_max = kA + kA^2 * c
K_MCB_max = kA/cos(theta)
```

 $K_MCA_max = 3.1909e+10$ K MCB max = 2.2718e+10

1. repris de L. N. Trefethen, D. Bau, Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997

Annexe: Conditionnement (dérivation)

Le problème aux moindres carrés est équivalent à

$$A^T A \mathbf{x} = A^T \mathbf{b} .$$

Le conditionnement d'un problème est

$$\kappa = \sup \frac{\text{erreurs relatives résultat}}{\text{erreurs relatives données}},$$

avec les erreurs données $\rightarrow 0$.

Cas 1 : perturbations $\delta \mathbf{b}$ de \mathbf{b} ($\mathbf{x} + \delta \mathbf{x}$ est la solution du système perturbé)

$$A^{T}A(x + \delta \mathbf{x}) = A^{T}(\mathbf{b} + \delta \mathbf{b})$$

$$\Rightarrow A^{T}A\delta \mathbf{x} = A^{T}\delta \mathbf{b} \qquad \text{(soustraction de (1))}$$

$$\Rightarrow \|\delta \mathbf{x}\|_{2} = \|A^{\dagger}\delta \mathbf{b}\|_{2} \leq \|A^{\dagger}\|_{2} \|\delta \mathbf{b}\|_{2} \qquad \text{(norme matricielle)}$$

et donc

$$\kappa_{MC,\mathbf{b}} = \sup_{\|\delta\mathbf{b}\|} \frac{\|\delta\mathbf{x}\|_2/\|\mathbf{x}\|_2}{\|\delta\mathbf{b}\|_2/\|\mathbf{b}\|_2} \le \kappa(A) \frac{\|\mathbf{b}\|_2}{\|A\|_2\|\mathbf{x}\|_2} \le \kappa(A) \frac{\|\mathbf{b}\|_2}{\|A\mathbf{x}\|_2} = \frac{\kappa(A)}{\cos(\theta)}$$

Annexe: Conditionnement (Dérivation)

Le problème aux moindres carrés est équivalent à

$$A^T A \mathbf{x} = A^T \mathbf{b}$$
.

Le conditionnement d'un problème est

$$\kappa = \sup \frac{\text{erreurs relatives résultat}}{\text{erreurs relatives données}},$$

avec les erreurs données $\rightarrow 0$.

Cas 2 : perturbations
$$\delta A$$
 de A (x + δx est la solution du système perturbé)

$$(A + \delta A)^{T} (A + \delta A)(x + \delta \mathbf{x}) = (A + \delta A)^{T} \mathbf{b}$$

$$\Rightarrow A^T A \delta \mathbf{x} + A^T \delta A \mathbf{x} + \delta A^T A \mathbf{x} + \underbrace{\text{lereste}}_{\text{second ordre}} = \delta A^T \mathbf{b} \quad \text{(soustraction de (1))}$$

$$\Rightarrow \|\delta \mathbf{x}\|_{2} \leq \|A^{\dagger}\|_{2} \|\delta A\|_{2} \|\mathbf{x}\|_{2} + \underbrace{\|(A^{T}A)^{-1}\|_{2}}_{\|A^{\dagger}\|_{2}^{2}} \underbrace{\|\delta A^{T}\|_{2}}_{\|\delta A\|_{2}} \underbrace{\|\mathbf{b} - A\mathbf{x}\|_{2}}_{\|\mathbf{r}\|}$$

et donc
$$\kappa_{MC,A} = \sup_{\|\delta \mathbf{b}\|} \frac{\|\delta \mathbf{x}\|_{2}/\|\mathbf{x}\|_{2}}{\|\delta A\|_{2}/\|A\|_{2}} \le \kappa(A) + \kappa(A)^{2} \frac{\|\mathbf{r}\|_{2}}{\|A\|_{2}\|\mathbf{x}\|_{2}} \le \kappa(A) + \kappa(A)^{2} \frac{\|\mathbf{r}\|_{2}}{\|A\mathbf{x}\|_{2}}$$

19 / 19