Bouquet of Instruction Pointers: Instruction Pointer Classifier-based Hardware Prefetching

Samuel Pakalapati (Intel Technology Pvt. Ltd. and BITS Pilani) and Biswabandan Panda (Indian Institute of Technology Kanpur)

Why a Bouquet?

No single IP based prefetcher performs well across all applications &

Our Goal: Idealistic Though ©

L1 Prefetcher

L1 hit rate of 100% (a dream ©)

RIP Memory wall ©

Reality with SPEC CPU 2017 benchmarks provided by DPC3:

L1 hit rate of **88.12%** 😊 —

What about L2? **23.55%** 🙁 🖰 __

Zooming into the Prefetcher

Instruction Pointer (a.k.a. PC)

Prefetcher

Future Memory Accesses

Demand Memory Accesses (cache-line aligned addresses)

We use the IP information: can eliminate compulsory misses ©

IP-Stride Prefetcher [Fu et al. MICRO '92]

Our Bouquet

First IP prefetcher: Constant stride

Constant-stride prefetcher (CS class)

IP_index	IP_tag	Valid?	Last_page	Page_offset	Stride	Confidence	
[0,63], Cache line offset within a 4KB OS page							

If (current_page=last_page) then stride within a page

```
Page boundary learning:

If (current_page=last_page±1)

Stride = 64±(page_offset_new-page_offset_old)
```

Valid Bit?

IP_A IP_B

Two different IP_tags can map to same IP_index

IPA: V=1, IPB mapped to same entry: V=0,

IPA: V=0: IPA mapped to same entry: V=1

If V=0 but IP_tag is different then clear the entry and make

confidence zero

~ 2-way associative cache, minimize collisions

Constant Stride Class

IP

X, X+2, X+4, Constant stride of 2

IP

X, X+3, X+4, X+2 Variable stride of?

Signature Path Prefetching, DPC-2, MICRO '16

Our Bouquet

First IP prefetcher: Constant stride

Second IP prefetcher: Complex stride

Complex Stride (CPLX Class) [Kim et al., DPC-2/MICRO '16]

IP	Signature	Stride	Confidence
IP _A	Sig _A (+1, +2, +3)	-3	2/3

We call it Delta Prediction Table (DPT)

From Stride to Stream: Global Stream

IP_x drives the global stream: Y=X+2 and Z=X+7

IP independence can provide better coverage and timeliness

Our Bouquet

First IP prefetcher: Constant stride

Second IP prefetcher: Complex stride

Third IP prefetcher: Global stream

Global Stream (GS Class)

Our Bouquet

First IP prefetcher: Constant stride

Second IP prefetcher: Complex stride

Third IP prefetcher: Global stream

Fourth prefetcher: Next-line

No-IP: Next-line (NL Class)

Prefetch Address = Current Address + 1

Detrimental to performance in case of irregular accesses

SPECULATIVE NL:

NL is ON

L1 Misses Per Kilo Cycles (MPKC) is low (< 15 for single-core)

NL is OFF

Otherwise

The Bouquet

Constant Stride (CS class)

Complex Stride (CPLX class)

Global Stream (GS class)

Next Line (NL class)

Design Choice: A hardware table for each class?

Our Proposal: IPCP, a single hardware table for all the classes

Our Proposal (IPCP at L1)

Our Proposal (IPCP at L2)

Prefetch Degree: 4 for GS and

4 for CS if MSHR is less than half full else 3

Metadata

Hardware Overhead

Table	Entry size * #Entries	Total
IP Table	77 * 1024 (L1) + 17 * 1024 (L2) bits	12.03 KB
DPT Table	9 * 4096 bits	4.6 KB
GHB Table	16 * 58 bits	928 bits
Others	100 bits	86 bits
		16.7 KB

Single-core Performance [SPEC CPU 2017]

Distribution of IP Classes

Comparison with the State-of-the-art: Performance [Higher the better]

Key Takeaways

Access patterns can be classified based on IPs (IPCP)

Classification at the L1, reuse at the L2 through metadata

Simple and modular collection of prefetchers

Prefetchers like ISB [MICRO '13] and IMP [MICRO '15] can be added to the bouquet seamlessly

High performance and low hardware overhead

Dream ©?

With IPCP, L1 hit rate jumps from 88.11% to 92.43% ©

With IPCP, L2 hit rate jumps from 23.55% to 51.82% ©

"Great things are done by a series of small things brought together"

Vincent Van Gogh, Dutch painter

