Introduction of PANDA fibers

Contact information for technical matters

Fujikura Ltd.

Optical Device Sales Engineering Department

Tel: +81-43-484-0982 Fax: +81-43-484-2186 http://www.fujikura.co.jp

E-mail: optodevice@jp.fujikura.com

Contents

Basics of PANDA (Polarization-maintaining AND Absorption-reducing) fibers	
Lineup of PANDA fibers	
General information	p.17
Telecommunication wavelength band	P
Standard type	p.21
■ SR15 type	p.26
■ New! Bend insensitive type (Min. bending radius=7.5 mm)	p.31
Low birefringence type	p.35
■ Dispersion shifted type	p.37
Visible wavelength band	•
■ Standard type	p.39
■ Pure silica core type	p.43
■ RGB type	p.46
80 μm cladding diameter type	p.49
Polyimide coating type	p.55
Summary	

Contents

Basics of PANDA (Polarization-maintaining AND Absorption-reducing) fibers	
Lineup of PANDA fibers	
General information	p.17
Telecommunication wavelength band	
Standard type	p.21
■ SR15 type	p.26
■ New! Bend insensitive type (Min. bending radius=7.5 mm)	p.31
Low birefringence type	p.35
Dispersion shifted type	p.37
Visible wavelength band	
Standard type	p.39
Pure silica core type	p.43
■ RGB type	p.46
80 μm cladding diameter type	p.49
Polyimide coating type	p.55
Summary	

Polarization modes in ideal SM fiber

- Single-mode (SM) fiber have two degenerated orthogonal polarization modes, which have the identical propagation constant: $n_x=n_y$, $b_x=b_y$
- Rotational asymmetries such as core ellipse or lateral stress induce birefringence and resolve the degeneracy.

Polarization in ideal SM fiber

- An ideal SM fiber with perfect rotational symmetry is able to maintain any state of polarization.
- If any stress is induced on the fiber or a fiber has an non-circular core...

Polarization in actual SM fiber

- Stress-induced phase difference causes polarization change.
- State of polarization at output is unstable.

How to maintain polarization

A fiber with high internal birefringence is able to maintain linear polarization against external perturbations since its birefringent axis rotation is small.

Birefringence induced by external stress

Intrinsic birefringence

Structure of PANDA fiber

- Boron-doped SAP (Stress applying parts) has higher thermal coefficient of expansion than the cladding (SiO₂).
- The SAP shrinks more than the cladding during cooling process of fiber drawing process.
- Tensile stress between SAPs applied to the core induces large birefringence.

Production process of Fujikura PANDA

Inspection items and methods on PANDA fiber

	Application	Method or technique	Reference
Fiber diameter	0/I/F	Gray scale	ITU-T G.650
Core offset	I/F	Gray scale	ITU-T G.650
Coating diameter	0/1	Microscope	
Mode field diameter	I	Far-field pattern / Variable aperture	ITU-T G.650
Cutoff wavelength	I	Bend reference	ITU-T G.650
Attenuation	I	OTDR / Spectral loss (cutback)	ITU-T G.650
Group beat length		JME / Wavelength scan	ITU-T G.650
Crosstalk	F	Direct	FOTP-193

O: Process measurement

I : Intermediate inspection

F: Final inspection

Beat length

- Beat length Lb is the length which phase difference between X and Y polarization modes equals 2π along a PM fiber.
- Relation between beat length(Lb), birefringence(B), and wavelength(λ) is expressed by the following equation:

$$Lb = \frac{\lambda}{B}$$

Measurement of polarization crosstalk

Fujikura measures the extinction ratio of output light while linearly polarized input light is launched into fiber.

Power coupling coefficient

- Polarization crosstalk in linear expression is proportional to fiber length through random mode-coupling.
- Power coupling coefficient, h-parameter, is defined as a power coupled to the orthogonal mode in unit length.

$$h = \frac{\tan^{-1}(\eta)}{L} \approx \frac{\eta}{L}$$

$$\eta = \frac{P_y}{P_x} = 10^{CT/10}$$

Reliability performance

	Test item	Reference	Condition	Results
1	Observation of Coating		Origin, Temperature-humidity aging, Water soak, Hot water soak	Passed
2	Strippability	IEC,GR-20	Origin(45,23,0degC), Temperature- humidity aging, Water soak, Hot water soak	Passed
3	Attenuation		Aging(-40,85degC), Temperature cycling Temperature-humidity aging, Hot water soak	Passed
4	Polarization Crosstalk		Aging(-40,85degC), Temperature cycling Temperature-humidity aging, Hot water soak	Passed
5	Tensile strength	IEC,GR-20	Origin, Aging(-40,85degC),Temperature cycling, Temperature-humidity aging	Passed
6	Fatigue value	IEC,GR-20	Origin, Temperature-humidity aging	Passed
7	Other	UL1581 VW-1	For reference, Flame retardant type only	Passed

Fiber strength certification by Mitsunaga theory

Below failure probability equation is commonly used for telecom networking.

$$F = 1 - exp \left[-N_p L \frac{m}{n-2} \frac{\varepsilon_s^n t_s}{\varepsilon_p^n t_p} \right]$$

Griffith flaw model shows micro defects on the fiber. Flaws are grown to break by external stress to the fiber. If no external stress, then no break.

Fiber break is caused by below conditions

Frequency of low strength portion: Initial distribution of low strength

Growing speed of flaws : Ambient condition such as temperature / moisture

Stress : Tensile stress, Twisting stress

Macro bending stress, Micro bending

The equation covers only for tensile stress and macro bending, but not for twisting stress and micro bending to the fiber.

Mitsunaga, et al.: "Failure prediction for long length optical fiber based on proof testing", J.Appl. Phys. 53(7), July 1982

PANDA fiber failure probabilities after 2% proof test

Contents

Basics of PANDA (Polarization-maintaining AND Absorption-reducing) fibers Lineup of PANDA fibers	
General information	p.17
Telecommunication wavelength band	•
Standard type	p.21
■ SR15 type	p.26
■ New! Bend insensitive type (Min. bending radius=7.5 mm)	p.31
Low birefringence type	p.35
Dispersion shifted type	p.37
Visible wavelength band	
Standard type	p.39
Pure silica core type	p.43
■ RGB type	p.46
80 μm cladding diameter type	p.49
Polyimide coating type	p.55
Summary	-

PANDA fiber lineup

Lineup of coating type

- UV coating (Coating diameter 250 μm, 400 μm)
- UV/Polyester-elastomer coating
 (Coating diameter 500 μm, 900 μm)
 Coated by UL94-V-0 compliant flame-resistant polyester-elastomer
 UL1581-VW1 Equivalent
- UV/Polyester-elastomer/Polyolefin coating (Coating diameter 2 mm)

Equivalent of IEC60332-3 Category C

Cross section drawing for each coating

UV/Polyester-elastomer/Polyolefin coating

Contents

Basics of PANDA (Polarization-maintaining AND Absorption-reducing) fibers	
Lineup of PANDA fibers	
General information	p.17
Telecommunication wavelength band	P
Standard type	p.21
■ SR15 type	p.26
■ New! Bend insensitive type (Min. bending radius=7.5 mm)	p.31
Low birefringence type	p.35
Dispersion shifted type	p.37
Visible wavelength band	
Standard type	p.39
Pure silica core type	p.43
■ RGB type	p.46
80 μm cladding diameter type	p.49
Polyimide coating type	p.55
Summary	

Bend performance of 125 µm cladding PANDA

- No significant performance degradation in a bend diameter ≥40 mm of 2% proof test PANDA fibers.
- 1% proof should be bent ≥ D60mm due to life time.

Specifications for UV/UV PANDA fibers

	λο	MFD	Att.	Beat length	Cross- talk	$\lambda_{ m c}$	Coating material	Coating diameter
	μ m	+/-0.5 μm	Max. dB/km	mm	Max. dB/100m	μ m	1	μm
SM85-PS-U40D	0.05		2.0	1.0		0.65		400±15
SM85-PS-U25D	0.85	5.5	3.0	- 2.0		- 0.80		245±15
SM98-PS-U40D	0.00	0.0	0.5	1.5		0.87		400±15
SM98-PS-U25D	0.98	6.6	2.5	- 2.7		- 0.95		245±15
SM13-PS-U40D	4.0	0.0	4.0	2.5		1.13	107407	400±15
SM13-PS-U25D	1.3	9.0	1.0	- 4.0	-30	-1.27	UV/UV	245±15
SM14-PS-U40D	1.40	0.0	4.0	2.8		1.26		400±15
SM14-PS-U25D	- 1.49	9.8	1.0	- 4.7		- 1.38		245±15
SM15-PS-U40D	1 55	10.5	0.5	3.0		1.30		400±15
SM15-PS-U25D	1.55	10.5	0.5	- 5.0		- 1.44		245±15

Specifications for 900 μm PANDA fibers

	λ_{o}	MFD	Att.	Beat length	Cross- talk	$\lambda_{ m c}$	Coating material	Coating diameter
	μ m	+/-0.5 μm	Max. dB/km	mm	Max. dB/100m	μ m		μ m
SM85-PS-H90D	0.85	5.5	3.0	1.0 - 2.0		0.65 - 0.80	UV/Polyester- elastomer(Black)	
SM98-PS-H90D	0.98	6.6	2.5	1.5 - 2.7		0.87 - 0.95	UV/Polyester- elastomer(Green)	900
SM13-PS-H90D	1.3	9.0	1.0	2.5 - 4.0	-30	1.13 - 1.27	UV/Polyester- elastomer(Black)	± 100
SM14-PS-H90D	1.40 -1.49	9.8	1.0	2.8 - 4.7		1.26 - 1.38	UV/Polyester- elastomer(Black)	
SM15-PS-H90D	1.55	10.5	0.5	3.0 - 5.0	-	1.30 - 1.44	UV/Polyester- elastomer(Black)	

Specifications of 2mm PANDA fibers

	λο	MFD	Att.	Beat length	Cross- talk	$\lambda_{ m c}$	Coating material	Coating diameter
	μ m	+/-0.5 μm	Max. dB/km	Max. mm	Max. dB/100m	μ m		mm
SM85-PS-J20D	0.85	6.5	3.0	1.0 - 2.0		0.65 - 0.77	UV/ Polyester- elastomer(Black)/ Polyolefin(Gray)	
SM98-PS-J20D	0.98	6.0	2.5	1.5 - 2.7	-30	0.87 - 0.95	UV/ Polyester- elastomer(Green)/ Polyolefin(Gray)	2.0 ±
SM13-PS-J20D	1.3	9.0	1.0	2.5 - 4.0		1.13 - 1.27	UV/	0.2
SM14-PS-J20D	1.40 -1.49	9.8	1.0	2.8 - 4.7		1.26 - 1.38	Polyester- elastomer(Black)/ Polyolefin(Gray)	
SM15-PS-J20D	1.55	10.5	0.5	3.0 - 5.0		1.30 - 1.44		

Contents

	Basics of PANDA (Polarization-maintaining AND Absorption-reducing) fibers Lineup of PANDA fibers	
Ξ.	■ General information	p.17
	Telecommunication wavelength band	'
	Standard type	p.21
	■ SR15 type	p.26
	■ New! Bend insensitive type (Min. bending radius=7.5 mm)	p.31
	Low birefringence type	p.35
	Dispersion shifted type	p.37
	Visible wavelength band	
	Standard type	p.39
	Pure silica core type	p.43
	■ RGB type	p.46
	80 μm cladding diameter type	p.49
	Polyimide coating type	p.55
	Summary	

PANDA fiber lineup for small bending diameter

SR15 type PANDA fibers

- SR15 series SM fibers have been widely released and spread as standard telecommunication cable.
- Fujikura has SR15 type PANDA fibers.
- Widely spread 125 μm parts and accessories are usable.
- Splice properties to SR15 series are very good.

SRSM15-PX-H bending properties

Specifications of SRSM15 type

Items		Unit	Specification
MFD	at 1550 nm	μm	9.5 +/- 0.4
Attenuation	at 1550 nm	dB/km	Less than 0.50
Bending loss			
(Bending diameter = 30) mm,	dB	Less than 0.50
10 turns at 1550 nm)			
Fiber cutoff wavelength	1	nm	Less than 1440
Beat length	at 1550 nm	mm	2.0 - 5.0
Polarization crosstalk	at 1550 nm	dB/100m	Less than -30
Danding Dalawinstian o			Less than -30
Bending Polarization cr	osstaik at 1550 nm	dB	Bending diameter = 30 mm,
	at 1550 mm		10 turns
Coating diameter			
SRSM15	-PX-U40D-H	-	400 μm UV/UV
SRSM15	-PX-H90D-H		900 μm UV/Polyester-elastomer
Proof level		%	More than 2

New! Specifications of 500 μm coating SR15 type PANDA fibers

Items		Unit	Specification
MFD	at 1550 nm	μm	9.5 +/- 0.4
Attenuation	at 1550 nm	dB/km	Less than 0.50
Bending loss			
(Bending diameter = 3	0 mm,	dB	Less than 0.50
10 turns at 1550 nm)			
Fiber cutoff wavelength	า	nm	Less than 1440
Beat length	at 1550 nm	mm	2.0 - 5.0
Polarization crosstalk	at 1550 nm	dB/100m	Less than -25
Dandina Dalarination o			Less than -25
Bending Polarization c	rosstaik at 1550 nm	dB	(Bending diameter = 30 mm,
	at 1550 mm		10 turns at 1550 nm)
Coating diameter			500 μm
SRSM15-PX-F	150D-H	-	UV/Polyester-elastomer
Proof level		%	More than 2

Contents

Basics of PANDA (Polarization-maintaining AND Absorption-reducing) fibers Lineup of PANDA fibers	
General information	p.17
Telecommunication wavelength band	'
Standard type	p.21
SR15 type	p.26
New! Bend insensitive type (Min. bending radius=7.5 mm)	p.31
Low birefringence type	p.35
Dispersion shifted type	p.37
Visible wavelength band	
Standard type	p.39
Pure silica core type	p.43
■ RGB type	p.46
80 μm cladding diameter type	p.49
Polyimide coating type	p.55
Summary	

New! Ultra bend insensitive type (BISM)

In response to the request of our customers who use PANDA fibers in condition of the further small bend radius, Fujikura has released BISM15-PX-U25D-H and H50D-H with allowable smallest bend radius.

New! Bend performance of BISM type

New! Specification of BISM type

Wavelength: 1550 nm

Itom	Unit	Specification		
Item		BISM15	SRSM15	
MFD	μ m	9.0 +/- 0.4	9.5 +/- 0.4	
Attenuation	dB/km	≦ 3.0	≦ 0.50	
Bending loss	dB	≦1.0 Bending diameter =15 mm, 10 turns	≦0.50 Bending diameter =30 mm, 10 turns	
Cutoff wavelength	nm	≦1440	≦1440	
Beat length	mm	≦ 3.0	2.0 - 5.0	
Polarization cross-talk	dB/100m	≦-30	≤-25 (500 μm type), ≤-30 (Other types)	
Bending Polarization cross-talk	dB	≦-30, Bending diameter =15 mm, 10 turns	≦-30 Bending diameter = <mark>30 mm</mark> , 10 turns	
Coating	-	250 μm UV 500 μm polyester-elastomer	250 μm, 400 μm UV, 500 μm, 900 μm polyester- elastomer	
Proof level	%	≧ 2	≧ 2	

Contents

 Basics of PANDA (Polarization-maintaining AND Absorption-reducing) fibers Lineup of PANDA fibers 	
■ General information	p.17
Telecommunication wavelength band	'
Standard type	p.21
SR15 type	p.26
■ New! Bend insensitive type (Min. bending radius=7.5 mm)	p.31
Low birefringence type	p.35
Dispersion shifted type	p.37
Visible wavelength band	
Standard type	p.39
Pure silica core type	p.43
■ RGB type	p.46
80 μm cladding diameter type	p.49
Polyimide coating type	p.55
Summary	

Low birefringence PANDA fiber

Suitable for manufacturing of optical fiber couplers

- High controllability of cladding mode suppression and lowering excess loss at the manufacturing of fusion type couplers
- SAPs (Stress applying parts) interval is widely located
- Lower birefringence than standard PANDA fibers

Specifications for low birefringence PANDA fibers

	λο	MFD	Att.	Beat length	Cross- talk	$\lambda_{\mathbf{c}}$	Coating material	Coating diameter
	μ m	+/-0.5 μm	Max. dB/km	mm	Max. dB/100m	μM	-	μ m
SM63-PR-U25D-H	0.63	4.5	12	1.5 - 3.5		0.50 -0.62		
SM98-PR-U25D-H	0.98	6.6	3.0	2.8 - 4.9		0.80 -0.95		
SM13-PR-U25D-H	1.3	9.0	1.0	3.8 - 5.6	-25	1.11 -1.27	UV/UV	245 +/-15
SM14-PR-U25D-H	1.40 -1.49	9.8	1.0	4.1 - 7.3		1.26 -1.38		
SM15-PR-U25D-H	1.55	10.5	0.5	4.4 - 7.8		1.30 -1.44		

Specifications for Dispersion Shifted PANDA fibers

Spec. of chromatic dispersion :less than +/- 3 ps/nm/km @ 1550 nm

	λο	MFD	Att.	Beat length	Cross- talk	$\lambda_{ m c}$	Coating material	Coating diameter
	μ m	+/-1.0 μm	Max. dB/km	mm	Max. dB/100m	Max. μm		μ m
								400
DS15-PS-U40A					-30 UV/UV	±		
								15
				3.0			UV/	900
DS15-PS-N90A	1.55	8.0	0.5	- 5.0		1.53	Polyamide(Blue)	±
				0.0	-25			100
					-25		UV/	2000
DS15-PS-G20A							Polyamide(Blue)/	±
							Polyolefin(Gray)	200

Contents

Basics of PANDA (Polarization-maintaining AND Absorption-reducing) fibers	
Lineup of PANDA fibers	
General information	p.17
Telecommunication wavelength band	
Standard type	p.21
SR15 type	p.26
■ New! Bend insensitive type (Min. bending radius=7.5 mm)	p.31
Low birefringence type	p.35
Dispersion shifted type	p.37
Visible wavelength band	
■ Standard type	p.39
Pure silica core type	p.43
■ RGB type	p.46
80 μm cladding diameter type	p.49
Polyimide coating type	p.55
Summary	

PANDA fibers for visible wavelength

- Suitable for the polarized mode transmission from various polarization sources
- Wide choice of PANDA fibers correspond to the wavelength of the source of light for various spectra

Typical wavelength characteristics of 0.48, 0.63 µm PANDA

Specifications for PANDA fibers for visible wavelength

	λο	MFD	Att.	Beat length	Cross- talk	$\lambda_{ m c}$	Coating material	Coating diameter
	μ m	+/-0.5 μm	Max. dB/km	Max. mm	Max. dB/100m	μ m		μm
SM63-PS-J20D						0.52 - 0.62	UV/UV Polyester- elastomer(Black) /Polyolefin(Gray)	2.0 ±0.2 (mm)
SM63-PS-H90D	0.63	4.5	12				UV/UV Polyester- elastomer(Black)	900 ±100
SM63-PS-U40D				0.0	20		UV/UV	400 ±15
SM53-PS-J20D				2.0	-30		UV/UV Polyester- elastomer(Black) /Polyolefin(Gray)	2.0 ±0.2 (mm)
SM53-PS-H90D	0.53	0.53 4.2	15			0.45 - 0.53 UV/UV Polyester- elastomer(Black)	Polyester-	900 ±100
SM53-PS-U40D							UV/UV	400 ±15

Contents

Basics of PANDA (Polarization-maintaining AND Absorption-reducing) fibers	
Lineup of PANDA fibers	
General information	p.17
Telecommunication wavelength band	
Standard type	p.21
■ SR15 type	p.26
■ New! Bend insensitive type (Min. bending radius=7.5 mm)	p.31
Low birefringence type	p.35
Dispersion shifted type	p.37
Visible wavelength band	
Standard type	p.39
Pure silica core type	p.43
■ RGB type	p.46
80 μm cladding diameter type	p.49
Polyimide coating type	p.55
Summary	

Pure silica core PANDA fibers

Standard Ge-doped silica core fibers may occur damage and color center in the core by high energy density of the visible light.

Pure silica core PANDA fibers are suitable for visible light transmission with the high energy because the fibers have few impurities and defects.

Specifications for pure silica core type (UV)

Release of SC53-PS-U40D for operating wavelength of 530 nm

	$\lambda_{ m o}$	MFD	Att.	Beat length	Cross- talk	$\lambda_{ m c}$	Coating material	Coating diameter
	μ m	+/-0.5 μm	Max. dB/km	Max. mm	Max. dB/100m	μ m	-	μ m
SC53-PS- U40D	0.53	5.2 ±0.5	20		0	0.52以下	UV/UV	400
SC48-PS-U40D	0.40	4.0	20	2.0		0.40 ~ 0.47		±15
SC48-PS-U25D	0.48	±0.5	30		-30			245 ±15
SC40-PS-U40D	0.41	3.5	F0	4.7		0.33 ~ 0.40		400 ±15
SC40-PS-U25D	0.41	±0.5	50	1.7				245 ±15

B-13D0091B

Specifications for pure silica core type (900 µm, 2mm)

	λο	MFD	Att.	Beat length	Cross- talk	λ_{c}	Coating material	Coating diameter	
	μ m	+/-0.5 μm	Max. dB/km	Max. mm	Max. dB/100m	μ m	-	mm	
SC40-PS-H90D						0.33	ი ვვ	UV/UV Polyester- elastomer(Black)	900 ±100
SC40-PS-J20D	0.41	3.5	50	1.7	-30	- 0.40	UV/UV Polyester- elastomer(Black) /Polyolefin(Gray)	2.0 ±0.2 (mm)	
SC48-PS-H90D					-30	0.40	UV/UV Polyester- elastomer(Black)	900 +/-100	
SC48-PS-J20D	0.48	4.0	30	2.0		0.40 - 0.47	UV/UV Polyester- elastomer(Black) /Polyolefin(Gray)	2.0 ±0.2 (mm)	

RGB PANDA fiber SC40-PX-U25A-H(RGB)

Bending performance with small bending diameter of RGB (visible light region) are improved completely.

SC40 and RGB PANDA bending loss vs. wavelength

Specifications for RGB PANDA

	λο	MFD	Att.	Beat length	Cross-talk	$\lambda_{ m c}$	Coating material	Coating diameter
	μm	μm	Max. dB/km	mm	Max.	Max. μm		μM
SC40-PX- U25D-H (RGB)	0.405 - 0.64	3.8 ± 1.0 at 630 nm 2.3 ± 0.6 at 405 nm	50	Max. 2.0 at 630 nm	-30 dB /10 turns Bending diameter 60 mm	0.40	UV/UV	245 ± 15

Contents

Basics of PANDA (Polarization-maintaining AND Absorption-reducing) fibers	
Lineup of PANDA fibers General information Talagarana value at the board	p.17
 Telecommunication wavelength band Standard type 	p.21
SR15 type New! Bend insensitive type (Min. bending radius=7.5 mm)	p.26 p.31
 Low birefringence type Dispersion shifted type 	p.35 p.37
Visible wavelength band	,
Standard typePure silica core type	p.39 p.43
■ RGB type ■ 80 µm cladding diameter type	p.46 p.49
Polyimide coating type Summary	p.55

80 μm cladding diameter type

- Superiority in sensitivity to the external environment
- Higher durability in use of the small bend radius than a standard type
- Space-saving

Features of RC-PANDA fibers (1)

1. Higher birefringence for lateral pressure endurance

$$B = 4C \frac{f}{\pi \cdot E} \frac{1}{r}$$

C:Photo Elastic constant E:Young's modulus

$$B = 2C(1 - \cos\theta \cdot \sin\theta) \frac{f}{\pi \cdot E} \frac{1}{r}$$

Re-design Stress applying parts

2. Attenuation and MFD non-circularity optimization

- B₂O₃, OH absorption increase
- MFD non-circularity increase

To improve above, reduce slightly MFD.

Features of RC-PANDA fibers (2)

3. Smaller bending radius tolerance

•For good bending property,
Bending loss
Bending crosstalk
should be small both.

Higher aperture is redesigned to achieve the bending property

4. Splice loss optimizing

Telecom component

⇒ Need low splice loss with different major fiber splices

Requirement: Splice loss < 0.1dB

MFD differences with other fibers are designed to be small.

Attenuation and Crosstalk in 4m length bending

Specifications for 80µm cladding

	λο	MFD	Att.	Beat length	Crosstalk	$\lambda_{ m c}$	Coating material	Coating diameter
	μ m	+/-0.5 μm	Max. dB/km	mm	Max. dB/100m	μ m	1	μM
RCHA85-PS-U17C	0.85	3.5	3.5	Max. 2.0	-30	0.65 - 0.80		
RCSM98-PS-U17C	0.98	6.0	2.5	1.4 - 2.6		0.87 - 0.95		
RCSM13-PS-U17C	1.3	8.2	2.0	2.0 - 3.5	-25	1.10 - 1.29	UV/UV	165±10
RCSM14-PS-U17C	1.40 -1.49	9.0	2.0	2.3 - 4.2		1.20 - 1.38		
RCSM15-PS-U17C	1.55	9.5	2.0	2.5 - 4.5		1.29 - 1.45		

Contents

Basics of PANDA (Polarization-maintaining AND Absorption-reducing) fibers Lineup of PANDA fibers	
General information	p.17
Telecommunication wavelength band	Pill
■ Standard type	p.21
■ SR15 type	p.26
■ New! Bend insensitive type (Min. bending radius=7.5 mm)	p.31
Low birefringence type	p.35
■ Dispersion shifted type	p.37
Visible wavelength band	
■ Standard type	p.39
Pure silica core type	p.43
■ RGB type	p.46
80 μm cladding diameter type	p.49
Polyimide coating type	p.55
Summary	

Polyimide coating type

- High heat resistance
- Suitable for fiber sensing
- Maintaining excellent crosstalk performance in wide range of temperature between -60 and +300 degC.

Temperature range -60 to +40 degC

Specifications for Polyimide coating type

	λ_{o}	MFD	Att.	Beat length	Crosstalk	$\lambda_{ extsf{c}}$	Coating material	Coating diameter
	μ m	μm	Max. dB/km	mm	Max.	Max. μm	-	μ m
SM98-PS-Y15	0.98	6.6 ± 0.5	2.5	1.5 - 2.7	-25 dB/5m	0.87 - 0.95	- Polyimide	145 +
SRSM15-PS-Y15	1.55	9.4 ± 1.0	2.0	Max. 4.0		1.44		± 10

Fujikura PANDA fiber solutions

Fujikura PANDA fiber has the following strong points.

- Low transmission loss and excellent crosstalk by superior optical design and production technology
- High uniformity of dimensions by process control and the measurement in manufacturing process (Suitable for fusion splice, assembling of connector and manufacturing of optical devices)
- High reliability has been confirmed by actual system including the submarine cable transmission system.

Fujikura has already released following PANDA.

- For sensor (RGB, SC40-P, SC48-P, SM53-P, SM63-P, RCHA85-P, Polyimide type and HA-13)
- 80 µm cladding type
- SRSM and BISM type
- Low birefringence type
- Pure silica core type

Fujikura is challenging for customer solutions to meet various needs.

