STA257

Neil Montgomery | HTML is official | PDF versions good for in-class use only Last edited: 2016-10-26 13:28

DOFORV - distributions of functions of (continuous) random variables - continued

DOFORV method 2 - direct "theorem"

I am delighted that the book downplays this method as not as easy to use. Nor do I recommend it for practical use.

The cdf approach is usually the cleanest and least error prone.

Theorem: Given X with density $f_x(x)$ and g monotone and differentiable with inverse g^{-1} where $f_x(x) > 0$, let Y = g(X). Then:

$$f_{x}(y) = f_{x}(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|$$

This theorem can be extended to non-monotonic g.

DOFORV - three proofs

The theorem can be proved using the cdf approach and two other ways that are straight outta calculus.

The proofs indeed all look very similar.

Proof 2: uses the "change of variables" method from integration (emphasizes my advice to always think of a density as living in an integral.)

Proof 3: uses the fundamental theorem of calculus.

a seemingly strange example

The techniques apply to any continuous r.v. X and to any differentiable, invertible g(x).

So let's consider $X \sim \operatorname{Exp}(\lambda)$ and let $g(x) = 1 - e^{-\lambda x}$. It turns out $Y \sim \operatorname{Unif}[0, 1]$.

The function g was not chosen by accident—it it precisely the cdf $F_x(x)$ of X.

Theorem: If X is continuous and has cdf $F_x(x)$ then $Y = F_x(X)$ will have a uniform distribution on [0,1].

Proof: ...

another DOFORV example

Suppose $X \sim \text{Gamma}(\alpha, \lambda)$ and

$$g(x) = \begin{cases} \frac{1}{x} & : x > 0, \\ 0 & : \text{ otherwise.} \end{cases}$$

Determine the distribution of Y = g(X) by finding its density.

probabilities involving more than one random variable at a time

motivation

A random variable is a function of a sample space, and we care about its distribution.

So far we've focussed on $X: S \to \mathbb{R}$.

Now we will look at $X: S \to \mathbb{R}^n$, which arise quite naturally. We've actually been doing this already sometimes, without saying so explicitly (see Case 2).

Case 1: you *actually observe* multiple things about a particular random outcome (e.g. you measure the weight and blood pressure of a randomly selected study participant.)

Case 2: you are considering a sequence of random variables that "replicate" the same "experiment" (e.g. repeat a Bernoulli(p) trial n times...)

discrete motivating example

Toss two fair six-sided dice. The sample space has 36 elements.

Observe the total and the difference.

Denote the total by X_1 and the difference by X_2 , and $X = (X_1, X_2)$

 $X: S \to \mathbb{R}^2$ is a random variable and we can consider probabilities of the form $P(X \in A_1 \times A_2) = P(X_1 \in A_1, X_2 \in A_2)$ for $A_i \subset \mathbb{R}$. All such probabilities together form the "distribution" of X.

But this is an excess of formality. Normally we work directly with the components, in this case X_1 and X_2 , which are two discrete rvs and we can put probabilities of combinations of outcomes in a table.

table of probabilities

		X_1										
		2	3	4	5	6	7	8	9	10	11	12
	0	$\frac{1}{36}$	0	$\frac{1}{36}$	0	$\frac{1}{36}$	0	$\frac{1}{36}$	0	$\frac{1}{36}$	0	$\frac{1}{36}$
X_2	1	0	$\frac{2}{36}$	0								
	2	0	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	0
11.2	3	0	0	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	0	0
	4	0	0	0	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	0	0	0
	5	0	0	0	0	0	$\frac{2}{36}$	0	0	0	0	0

"joint" distribution

<Insert cannabis joke here>

Such a table summarizes the distribution of X, which we'll just call the *joint distribution* of X_1 and X_2 .

The table has all the values of the form $p(x_1, x_2) = P(X_1 = x_1, X_2 = x_2)$ and is called the *joint* probability mass function.

A joint pmf is non-negative, and its positive values sum to 1 (just like before).

The joint cdf is defined as: $P(X_1 \le x_1, X_2 \le x_2)$ for all $(x_1, x_2) \in \mathbb{R}^2$.

It is non-decreasing and right-continuous in both variables, and goes to 0 and 1 as both dimensions go to $\pm \infty$ respectively.

marginal distributions

The pmf of any of the component random variables can be recovered by summing over all the others, e.g.:

$$p_{x_1}(x_1) = \sum_{x_2} p(x_1, x_2),$$

(where \sum_{x_2} denotes summing over all values that X_2 takes on.)

This is called a *marginal* pmf, which characterizes the distribution of that random variable.

example: marginal for X_2

							X_1						
		2	3	4	5	6	7	8	9	10	11	12	$p_{X_2}(x_2)$
	0	$\frac{1}{36}$	0	$\frac{1}{36}$	0	$\frac{1}{36}$	0	$\frac{1}{36}$	0	$\frac{1}{36}$	0	$\frac{1}{36}$	$\frac{6}{36}$
X_2	1	0	$\frac{2}{36}$	0	$\frac{10}{36}$								
	2	0	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	0	$\frac{8}{36}$
	3	0	0	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	0	0	$\frac{6}{36}$
	4	0	0	0	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	0	0	0	$\frac{4}{36}$
	5	0	0	0	0	0	$\frac{2}{36}$	0	0	0	0	0	$\frac{2}{36}$