STATS 200 Study Guide

Robert Schmidt

Abstract

The following is a summary of the major concepts from the Stanford course STATS 200: Introduction to Statistical Inference. These notes were derived from both course lectures and information from the John Rice Mathematical Statistics and Data Analysis (3rd ed.) text. Broadly, the course focuses on major statistical tests and results, as well as the highlights from large sample theory.

Contents

1	Pre-f	Midterm
1	1.1 Pr	er 1: Probability cobability Measure
		1.1 Axioms
		1.2 Properties
		aw of Total Probability
		ayes' Theorem
	1.4 In	dependence
3	Chapte	er 3: Joint Distributions
	3.1 Tl	heorem: Functional Independence
	3.2 Jo	int Frequency
		arginal Frequency
		onditional Frequency
		ultinomial
4	Chapt	er 4: EVs
		efinitions
		1.1 Covariance
		1.2 Correlation coefficient
		1.3 Conditional expectation
		1.4 Moment generating function
		heorems
		2.1 Markov inequality
		2.2 Chebyshev inequality
	4.2	2.3 Moment generating function theorems
5		er 5: Limit Theorems
	5.1 De	efinitions
	5.	1.1 Convergence in probability
	5.	1.2 Almost sure convergence
	5.2 Th	heorems
	5.5	2.1 WLLN: weak law of large numbers
	5.5	2.2 SLLN: strong law of large numbers
		2.3 Continuity theorem
		2.4 CLT: central limit theorem

6		apter 6: Derivations from Normal	8
	6.1	χ^2	8
		6.1.1 χ_1^2	8
		$6.1.2 \chi_n^2 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	8
	6.2	t	8
	6.3	$F\ldots\ldots\ldots\ldots$	8
	6.4	Sample Statistics	9
		6.4.1 Definitions	9
		6.4.2 Theorems	9
7	Cha	apter 7: Sampling	9
0	CI.		10
8		1	10
	8.1		10
			10
	0.0	8.1.2 MoME	10
	8.2	MLE: Maximum Likelihood	10
		8.2.1 Method of MLE	10
		8.2.2 Large sample theory	10
		8.2.3 MLE asymptotically unbiased	10
	0.0	8.2.4 CI for MLE	10
	8.3	Bayes	10
		8.3.1 Finding the posterior	10
		8.3.2 Bayesian paradigm	10
	8.4	Consistent Estimate	11
	8.5	Efficiency, CRLB	11
		8.5.1 Efficiency	11
		8.5.2 Cramer-Rao Inequality: CRLB	11
	8.6	Sufficiency	11
		8.6.1 Sufficient statistic	11
		8.6.2 Factorization theorem	11
		ı v	11
		8.6.4 Rao-Blackwell theorem	11
9	Cha	apter 9: Hypothesis Testing, Goodness of Fit	12
J			12
	9.2		12
	0.2	9.2.1 Neyman-Pearson lemma	12
		·	12
	9.3	Confidence Intervals	12
	9.4	GLRT	12
	J.1	9.4.1 Testing	12
		9.4.2 GLRT Distribution Theorem	12
	9.5	Multinomial Distribution	12
	9.6	Poisson Dispersion Test	12
	9.7	Hanging Rootograms	13
	9.8	Probability Plot	13
	9.9	Tests for Normality	13
	5.5	9.9.1 Coefficient of skewness	13
		9.9.2 Coefficient of kurtosis	13
		9.9.3 Variance-stabilizing transformation	13
		9.9.9 Variance-stabilizing transformation	10
10	Cha	apter 10: Summarizing Data	14
	10.1	ecdf	14
		10.1.1 Definition	14
		10.1.2 Distribution	14
	10.2	Survival Analysis	14
		10.2.1 Survival function	14
		10.2.2 Hazard function	14
	10.3	QQ Plot	14
			14

	10.3.2 Common transformations 10.4 Kernel Density Estimate 10.5 Location		14 14 14 14
II	Post-Midterm		16
11	Chapter 11: Comparing Two Samples		16
	11.1 Two Independent Samples		16
	11.1.1 Parametric: normal		16
	11.1.2 Nonparametric: Mann-Whitney		17
	11.1.3 Bayesian approach		18
	11.2 Paired Samples		19
	11.2.1 Overview		19
	11.2.2 Parametric: normal/t-test		19
	11.2.3 Nonparametric: Signed-Rank Test		19 19
	11.5 Experimental Design	• •	19
12	Chapter 12: ANOVA (F)		20
	12.1 One-Way ANOVA		20
	12.1.1 Normal theory: <i>F</i> -test		20
	12.1.2 Nonparametric one-way: Kruskal-Wallis		22
	12.2 Two-Way ANOVA		22
	12.2.1 Normal theory, 2-way		22
	12.2.2 Nonparametric: Friedman's test		23
19	Chapter 13: Analysis of Categorical Data (χ^2)		24
19	13.1 Fisher's Exact Test		24
	13.2 Chi-Square Test of Homogeneity		24
	13.3 Chi-Square Test of Independence		25
	13.4 Matched Pairs: McNemar's Test		25
	13.5 Odds Ratio		26

Part I

Pre-Midterm

1 Chapter 1: Probability

1.1 Probability Measure

1.1.1 Axioms

- 1. $P(\Omega) = 1$
- 2. $A \subset \Omega \implies P(A) \ge 0$
- 3. $A_1, A_2 \text{ disjoint } \implies P(A_1 \cup A_2) = P(A_1) + P(A_2)$

1.1.2 Properties

- 1. $P(A^C) = 1 P(A)$
- 2. $P(\emptyset) = 0$
- 3. $A \subset B \implies P(A) \leq P(B)$
- 4. $P(A \cup B) = P(A) + P(B) P(A \cap B)$

1.2 Law of Total Probability

Let $B_1, ..., B_n$ be disjoint with $\bigcup B_i = \Omega$ and $P(B_i) > 0$. Then, $\forall i$:

$$P(A) = \sum_{i=1}^{n} P(A \mid B_i) P(B_i)$$

1.3 Bayes' Theorem

Let $B_1, ..., B_n$ be disjoint with $\bigcup B_i = \Omega$ and $P(B_i) > 0$. Then, $\forall i$:

$$P(B_j \mid A) = \frac{P(A \mid B_j)P(B_j)}{\sum_i P(A \mid B_i)P(B_i)}$$

1.4 Independence

- Pairwise independent: any two are independent
- Mutually independent: all are independent $\overline{MI \implies PI}$

3 Chapter 3: Joint Distributions

3.1 Theorem: Functional Independence

$$X \perp Y \implies g(X) \perp h(Y) \text{ for any } g,h$$

3.2 Joint Frequency

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(x,y) \, dy \, dx$$

3.3 Marginal Frequency

$$F_X(x) = \int_{-\infty}^x \int_{-\infty}^\infty f(x, y) \, dy \, dx$$
$$f_X(x) = \frac{d}{dx} F_X(x)$$

3.4 Conditional Frequency

$$\begin{split} f_{Y|X}(y\mid x) &= \frac{f_{XY}(x,y)}{f_X(x)} \\ &\implies f_{XY}(x,y) = f_{Y|X}(y\mid x) \cdot f_X(x) \\ &\implies f_Y(y) = \int_{-\infty}^{\infty} f_{Y|X}(y\mid x) \, f_X(x) \, dx \end{split}$$

3.5 Multinomial

$$p(x_1, ..., x_r) = \binom{n}{x_1, ..., x_r} p_1^{x_1} p_2^{x_2} \cdots p_r^{x_r}$$

$$\begin{cases} \sum x_i = n \\ \sum p_i = 1 \end{cases}$$

4 Chapter 4: EVs

4.1 Definitions

4.1.1 Covariance

Def:

•
$$Cov(X, Y) = E(XY) - E(X)E(Y)$$

Variance property:

•
$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

4.1.2 Correlation coefficient

$$\rho = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

4.1.3 Conditional expectation

$$E(Y \mid X = x) = \begin{cases} \sum_{y} y \, p_{Y|X}(y \mid x) & \text{if discrete} \\ \int y \, f_{Y|X}(y \mid x) \, dy & \text{if cts} \end{cases}$$

4.1.4 Moment generating function

$$M(t) = \begin{cases} \sum_{x} e^{tx} p(x) & \text{if discrete} \\ \int_{-\infty}^{\infty} e^{tx} f(x) dx & \text{if cts} \end{cases}$$

4.1.5 r^{th} moment

$$\mu_r = \mathrm{E}(X^r)$$

4.2 Theorems

4.2.1 Markov inequality

$$P(X \ge t) \le \frac{\mathrm{E}(X)}{t}$$

4.2.2 Chebyshev inequality

$$P(|X - \mu| > t) \le \frac{\sigma^2}{t^2}$$

$$P(|\overline{X}_n - \mu| > k\sigma) \le 1/k^2$$

4.2.3 Moment generating function theorems

•
$$M^{(r)}(0) = E(X^r)$$

•
$$Y = a + bX \implies M_Y = e^{at}M_X(bt)$$

•
$$Z = X + Y$$
, $X \perp Y \implies M_Z = M_Y M_X$

5 Chapter 5: Limit Theorems

5.1 Definitions

5.1.1 Convergence in probability

$$\lim_{n \to \infty} P(|Z_n - \alpha| > \epsilon) = 0 \text{ for some } \alpha, \text{ any } \epsilon > 0$$

5.1.2 Almost sure convergence

 $\forall \epsilon > 0, |Z_n - \alpha| > \epsilon$ only a finite number of times with P = 1

Summary: beyond some point in the sequence, the difference is always less than ϵ , but the location of that point is random.

5.2 Theorems

5.2.1 WLLN: weak law of large numbers

Let $\{X_i\}$ be sequence of iid RVs with $E(X_i) = \mu$, $Var(X_i) = \sigma^2$. Let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then, $\forall \epsilon > 0$:

$$\lim_{n \to \infty} P(|\overline{X}_n - \mu| > \epsilon) = 0$$

Summary: $\overline{X}_n \xrightarrow{ip} \mu$

5.2.2 SLLN: strong law of large numbers

$$\overline{X}_n \xrightarrow{as} \mu$$

5.2.3 Continuity theorem

Let F_n be sequence of cdfs with mgfs M_n .

Let F be cdf with mgf M.

 $M_n(t) \to M(t) \ \forall t$ in an open interval containing 0

$$\implies F_n \to F$$
 where F cts

5.2.4 CLT: central limit theorem

Let $\{X_i\}$ be sequence of iid RVs with $\mu = 0$, $\text{Var} = \sigma^2$, common cdf F, mgf M defined about 0. Let $S_n = \sum_{i=1}^n X_i$.

$$\implies \lim_{n \to \infty} P\left(\frac{S_n}{\sigma \sqrt{n}} \le x\right) = \Phi(x)$$

$$\implies P\left(\frac{\overline{X}_n - \mathrm{E}(X)}{\sigma/\sqrt{n}} \le z\right) \to \Phi(z)$$

6 Chapter 6: Derivations from Normal

6.1
$$\chi^2$$

6.1.1
$$\chi_1^2$$

Let $Z \sim \mathcal{N}(0, 1)$.

$$\implies U = Z^2 \sim \chi_1^2$$

$$\left(\frac{X-\mu}{\sigma}\right) \sim \mathcal{N}(0,1) \implies \left(\frac{X-\mu}{\sigma}\right)^2 \sim \chi_1^2$$

Summary: square of normal RV is chi-squared, df = 1.

6.1.2 χ_n^2

Let $\{U_i\}_{i=1}^n$ iid χ_1^2 .

$$\implies V = \sum_{i=1}^{n} U_i \sim \chi_n^2$$

Summary: sum of n chi-squared RVs is χ_n^2 .

6.2

Definition:

Let $Z \sim \mathcal{N}(0,1)$, $U \sim \chi_n^2$, $Z \perp U$.

$$\implies \frac{Z}{\sqrt{U/n}} \sim t_n$$

Summary: t_n is normal RV divided by a scaled chi-squared with df = n

Density:

$$f(t) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi} \Gamma(n/2)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}$$

6.3 *F*

Definition:

Let U, V be iid χ^2 with df = m, n respectively

$$\implies W = \frac{U/m}{V/n} \sim F_{m,n}$$

Summary: F with df = m, n found by dividing two chi-squared RVs divided by their dfs.

Density:

$$f(w) = \frac{\Gamma(\frac{m+n}{2})}{\Gamma(m/2)\Gamma(n/2)} \left(\frac{m}{n}\right)^{m/2} w^{\frac{m}{2}-1} \left(1 + \frac{m}{n}w\right)^{-\frac{(m+n)}{2}}$$

6.4 Sample Statistics

6.4.1 Definitions

Let $\{X_i\}_{i=1}^n$ be iid sample from $\mathcal{N}(\mu, \sigma^2)$. Sample mean:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad E(\overline{X}) = \mu, \quad Var(\overline{X}) = \frac{\sigma^2}{n}$$

Sample variance:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

6.4.2 Theorems

- \bullet \overline{X}, S^2 independently distributed
- $\bullet \ \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$
- $\frac{\overline{X} \mu}{S/\sqrt{n}} \sim t_{n-1}$

7 Chapter 7: Sampling

- $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$
- $\bullet \ s\frac{2}{X} = \frac{s^2}{n} (1 \frac{n}{N})$

8 Chapter 8: Estimation and Fitting

8.1 MoME: Method of Moments

8.1.1 Definitions

• k^{th} moment:

$$\mu_k = \mathrm{E}(X^k)$$

• $\frac{k^{th} \text{ sample moment:}}{\text{If } X_1, ..., X_n \text{ iid RVs, then}}$

$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

8.1.2 MoME

- (1) Find low order moments; express moments in terms of parameters
- (2) Find parameters in terms of moments
- (3) Insert sample moments into expressions in (2)

8.2 MLE: Maximum Likelihood

8.2.1 Method of MLE

- $L(\theta) = f(\underline{x} \mid \theta)$
- $\ell(\theta) = \sum \ln[f(x_i \mid \theta)]$
- MLE maximizes ℓ

8.2.2 Large sample theory

- $\bullet\,$ If f smooth, MLE from iid sample is consistent
- $I(\theta) = -\operatorname{E}(\ell'')$

8.2.3 MLE asymptotically unbiased

• Theorem:

If f smooth, then $\sqrt{nI(\theta_0)}(\hat{\theta} - \theta_0) \sim \mathcal{N}(0, 1)$ Summary: mle $\sim \mathcal{N}$ with $\mu = \theta_0$, asymptotic variance

• Asymptotic variance:

$$\operatorname{Var}(\theta_0) = \frac{1}{nI(\theta_0)} \approx -\frac{1}{\operatorname{E}(\ell'')}$$

8.2.4 CI for MLE

$$CI = \hat{\theta} \pm z_{\alpha/2} \cdot \sqrt{\operatorname{Var}(\theta_0)}$$

8.3 Bayes

8.3.1 Finding the posterior

$$f_{\Theta|X}(\theta \mid x) = \frac{f_{X,\Theta}(x,\theta)}{f_{X}(x)} = \frac{f_{X|\Theta}(x \mid \theta)f_{\Theta}(\theta)}{\int f_{X|\Theta}(x \mid \theta)f_{\Theta}(\theta) d\theta}$$

8.3.2 Bayesian paradigm

posterior \propto likelihood \cdot prior

8.4 Consistent Estimate

Let $\hat{\theta}_n$ be an estimate of θ based on sample n.

Then, $\hat{\theta}_n \xrightarrow{\text{consistent}}$ in probability if $\hat{\theta}_n \xrightarrow{ip} \theta$ as $n \to \infty$:

$$\forall \epsilon > 0, \ P(|\hat{\theta}_n - \theta| > \epsilon) \to 0 \text{ as } n \to \infty$$

8.5 Efficiency, CRLB

8.5.1 Efficiency

$$\operatorname{eff}(\hat{\theta}, \tilde{\theta}) = \frac{\operatorname{Var}(\hat{\theta})}{\operatorname{Var}(\tilde{\theta})}$$

8.5.2 Cramer-Rao Inequality: CRLB

Let $\{X_i\}_{i=1}^n$ be iid with $f(x \mid \theta)$.

Let $T = t(X_1, ..., X_n)$ be unbiased estimator of θ . Then,

$$Var(T) \ge \frac{1}{nI(\theta)}$$

- If Var(T) = asymptotic variance, then efficient.
- MLE is asymptotically efficient.

8.6 Sufficiency

8.6.1 Sufficient statistic

 $T(\underline{X})$ <u>sufficient</u> for θ if conditional distribution of \underline{X} given T=t does not depend on $\theta \ \forall t$ $\Longrightarrow T$ is a <u>sufficient statistic</u>

8.6.2 Factorization theorem

T sufficient for $\theta \iff f(x \mid \theta) = g(T, \theta) \cdot h(x)$

8.6.3 Exponential family

$$f(x \mid \theta) = e^{c(\theta)T(x) + d(\theta) + S(x)}$$

• T sufficient for $\theta \implies \text{MLE} = f(T)$

8.6.4 Rao-Blackwell theorem

Let $\hat{\theta}$ be an estimator of θ with $E(\hat{\theta}^2)$ finite $\forall \theta$.

Suppose T is sufficient for θ , $\tilde{\theta} = E(\hat{\theta} \mid T)$.

Then, $\forall \theta$:

$$E(\tilde{\theta} - \theta)^2 \le E(\hat{\theta} - \theta)^2$$

9 Chapter 9: Hypothesis Testing, Goodness of Fit

9.1 Likelihood Ratio

$$LR = \frac{P(x \mid X_0)}{P(x \mid H_1)} \cdot \frac{P(H_0)}{P(H_1)}$$

$$\implies \text{reject } H_0 \text{ if } LR < c$$

9.2 Neyman-Pearson Paradigm

9.2.1 Neyman-Pearson lemma

Suppose H_0 , H_1 are *simple* hypotheses where test rejects H_0 when LR < c with significance level α . Then, any other test with significance level $\leq \alpha$ has power $\leq LR$ test.

9.2.2 UMP: Uniformly most powerful test

If H_1 composite, test that is most powerful \forall simple alternatives in H_1 is uniformly most powerful (UMP)

9.3 Confidence Intervals

• Confidence interval:

$$P(\theta_0 \in C(X) \mid \theta = \theta_0) = 1 - \alpha$$

• Acceptance region

$$A(\theta_0) = \{ X \mid \theta_0 \in C(X) \}$$

9.4 GLRT

9.4.1 Testing

$$\begin{split} \Lambda &= \frac{\max_{\theta \in \omega_0} L(\theta)}{\max_{\theta \in \Omega} L(\theta)} \\ \Longrightarrow \text{ reject } H_0 \text{ if } \Lambda < c \end{split}$$

9.4.2 GLRT Distribution Theorem

Under smoothness of pdfs, null distribution of $-2 \ln \Lambda \sim \chi_{df}^2$ with $df = \dim(\Omega) - \dim(\omega_0)$ as $n \to \infty$.

12

9.5 Multinomial Distribution

- Hypothesis: $\begin{cases} H_0: p = p(\theta), \ \theta \in \omega_0 \\ H_1: \ \text{cell probabilities free} \end{cases}$
- Distribution:

$$\chi^{2}_{m-k-1} = \sum_{i=1}^{m} \frac{[x_{i} - np_{i}(\hat{\theta})]^{2}}{np_{i}(\hat{\theta})}$$

df = cells - num of estimated params - 1

9.6 Poisson Dispersion Test

- Hypothesis: $\begin{cases} H_0: \text{Counts } x_1,...,x_n \text{ Poisson with common } \lambda \\ H_1: \text{Poisson with different rates} \end{cases}$
- Result:

$$-2\ln\Lambda = 2\sum_{i=1}^{n} x_i \ln\left(\frac{x_i}{\overline{x}}\right) \approx \frac{1}{\overline{x}} \sum_{i=1}^{n} (x_i - \overline{x})^2 \sim \chi_{n-1}^2$$

9.7 Hanging Rootograms

- Hanging histogram: n_j observed counts vs \hat{n}_j predicted counts
 - variability not same across cells
- Hanging rootogram: $\sqrt{n_j} \sqrt{\hat{n}_j}$
 - appx same variability
- Hanging chi-gram: $\frac{n_j \hat{n}_j}{\sqrt{\hat{n}_j}}$
 - variance ≈ 1

9.8 Probability Plot

Plot of $F(X_{(k)})$ vs. $\frac{k}{n+1}$ OR plot of $X_{(k)}$ vs. $F^{-1}(\frac{k}{n+1})$

9.9 Tests for Normality

9.9.1 Coefficient of skewness

$$b_1 = \frac{\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^3}{s^3}$$

9.9.2 Coefficient of kurtosis

$$b_2 = \frac{\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^4}{s^4}$$

9.9.3 Variance-stabilizing transformation

$$Var(Y) \approx \sigma^2(\mu)[f'(\mu)]^2$$

10 Chapter 10: Summarizing Data

10.1 ecdf

10.1.1 Definition

Suppose $X_1, ... X_n$ sample/<u>batch</u> of iid numbers.

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{(-\infty,x]}(X_i)$$

10.1.2 Distribution

 $nF_n(x) \sim \text{Binom}(n, F(x))$

- $E[F_n(x)] = F(x)$
- $Var[F_n(x)] = \frac{1}{n}F(x)[1 F(x)]$

10.2 Survival Analysis

10.2.1 Survival function

$$S(t) = P(T > t) = 1 - F(t)$$

10.2.2 Hazard function

$$h(t) = \frac{f(t)}{1-F(t)} = -\frac{d}{dt} \ln[1-F(t)] = -\frac{d}{dt} \ln S(t)$$

10.3 QQ Plot

10.3.1 Definition

Plot quantiles of one distribution against vs. another where the quantiles are $x_p = F^{-1}(p)$

10.3.2 Common transformations

For control F and treatment G:

- 1. Linear: $y_p = x_p + h \implies G(y) = F(y h)$
- 2. Multiplicative: $y_p = cx_p \implies G(y) = F(y/c)$

10.4 Kernel Density Estimate

Let w_h be a non-negative, symmetric weight function centered at 0 with $\int w = 1$. Then, the kernel density estimate is:

$$f_h(x) = \frac{1}{n} \sum_{i=1}^{n} w_h(X - X_i)$$

- Represents a superposition of hills centered on the observations
- $h = \underline{\text{bandwidth}}$: smoothness & bin width

10.5 Location

10.5.1 M estimates

• Sample mean minimizes negative log-likelihood, or the least squares estimate:

14

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2$$

• Sample median minimizes:

$$\sum_{i=1}^{n} \left| \frac{X_i - \mu}{\sigma} \right|$$

 $\bullet \ \underline{\text{M-estimate}} \ \text{minimizes:}$

$$\sum_{i=1}^{n} \Psi\left(\frac{X_i - \mu}{\sigma}\right)^2$$

Part II

Post-Midterm

11 Chapter 11: Comparing Two Samples

11.1 Two Independent Samples

11.1.1 Parametric: normal

1. Overview

- Treatment: $X_1, ..., X_n$ iid $\mathcal{N}(\mu_X, \sigma^2)$
- Control: $Y_1, ..., Y_n$ iid $\mathcal{N}(\mu_Y, \sigma^2)$
- Pooled sample variance:

$$s_p^2 = \frac{(n-1)s_X^2 + (m-1)s_Y^2}{m+n-2} = s_{\overline{X}-\overline{Y}}^2$$

 \bullet $\mathbf{Thm}:$ distribution of difference

$$t = \frac{(\overline{X} - \overline{Y}) - (\mu_X - \mu_Y)}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t_{m+n-2}$$

2. Hypothesis testing

- Hypothesis: $H_0: \mu_X = \mu_Y$
- Test statistic:

$$t = \frac{\overline{X} - \overline{Y}}{s_{\overline{X} - \overline{Y}}} \sim t_{m+n-2}$$

3. **Power**: power of rejecting H_0 when it is false

- Factors that affect power:
 - 1) Real difference, $\Delta = |\mu_X \mu_Y|$: large diff \rightarrow greater power
 - 2) $\alpha: \alpha \uparrow \Longrightarrow \text{power} \uparrow$
 - 3) $\sigma: \sigma \downarrow \Longrightarrow \text{ power } \uparrow$
 - 4) Sample sizes $n, m: nm \uparrow \Longrightarrow power \uparrow$
- Numerical power:

$$1 - \Phi \left[z(\alpha/2) - \frac{\Delta}{\sigma} \sqrt{\frac{n}{2}} \right] + \Phi \left[-z(\alpha/2) - \frac{\Delta}{\sigma} \sqrt{\frac{n}{2}} \right]$$

11.1.2 Nonparametric: Mann-Whitney

1. Overview

- H_0 : no treatment effect
- ullet U: sum of wins and ties in relevant set
- \bullet T: total sum of ranks in set
- Procedure:
 - (1) Group all m + n observations together, rank in order of increasing size
 - (2) Calculate some of ranks of observations from control group
 - (3) Reject H_0 if sum is too extreme

2. Distribution version

- $X_1, ..., X_n \sim F$ control group
- $Y_1, ..., Y_m \sim G$ experimental group
- $H_0: F = G$
- Thm: for T_Y as rank sum of Y:

$$E(T_Y) = \frac{m(m+n+1)}{2}$$

$$\operatorname{Var}(T_Y) = \frac{mn(m+n+1)}{12}$$

3. Rank-sum version

• Mann-Whitney test statistic:

$$U_Y = T_Y - \frac{m(m+1)}{2}$$

• Thm: under $H_0: F = G$:

$$E(U_Y) = \frac{mn}{2}$$

$$Var(U_Y) = \frac{mn(m+n+1)}{12}$$

• For m, n both > 10:

$$\frac{U_Y - \mathrm{E}(U_Y)}{\sqrt{\mathrm{Var}(U_Y)}} \sim \mathcal{N}(0, 1)$$

11.1.3 Bayesian approach

1. Assumptions

- X_i iid \mathcal{N} , mean μ_X , precision ξ
- Y_j iid \mathcal{N} , mean μ_Y , precision ξ

2. Procedure

- (1) Assign prior to (μ_X, μ_Y, ξ)
- (2) Posterior \propto prior \times likelihood; normalize
- (3) Find marginal joint distribution by integrating out ξ
- (4) Find marginal for $\mu_X \mu_Y$

3. Approximate result: use improper priors

• Final posterior:

$$f_{post}(\mu_X, \mu_Y, \xi) \propto \xi^{\frac{n+m}{2}-1} \exp\left(-\frac{\xi}{2} \left[(n-1)s_X^2 + (m-1)s_Y^2 \right] \right) \cdot \exp\left(-\frac{n\xi}{2} (\mu_X - \overline{x})^2\right)$$
$$\cdot \exp\left(-\frac{m\xi}{2} (\mu_Y - \overline{y})^2\right)$$

• Distributions:

$$\mu_X - \mu_Y \sim \mathcal{N}(\overline{X} - \overline{Y}, \sigma^2)$$

$$\sigma^2 = \xi^{-1}(n^{-1} + m^{-1})$$

• Distribution of marginal posterior of $\mu_X - \mu_Y$:

$$\frac{\Delta - (\overline{X} - \overline{Y})}{s_{\overline{X} - \overline{Y}}} \sim t_{m+n-2}$$

4. Bayes vs. frequentist

• Frequentist:

$$-\overline{X}-\overline{Y},s_p$$
 random

$$-\Delta = \mu_X - \mu_Y$$
 fixed

• Bayes:

$$-\overline{X}-\overline{Y},s_p$$
 fixed

$$-\Delta = \mu_X - \mu_Y$$
 random

- Statements about Δ from data

11.2 Paired Samples

11.2.1 Overview

1. Assumptions

- Pairs $(X_i, Y_i), i = 1, ..., n$
- Different pairs iid, but $Cov(X_i, Y_i) = \sigma_{XY}$
- $\bullet \ D_i = X_i Y_i$

2. Population

- $E(D) = \mu_X \mu_Y$
- $Var(D) = \sigma_X^2 + \sigma_Y^2 2\sigma_{XY} = \sigma_X^2 + \sigma_Y^2 2\rho\sigma_X\sigma_Y$

3. Estimates

- $E(\overline{D}) = \mu_X \mu_Y$
- $\operatorname{Var}(\overline{D}) = \frac{1}{n}(\sigma_X^2 + \sigma_Y^2 2\rho\sigma_X\sigma_Y)$

4. Simplification: if $\sigma_X = \sigma_Y = \sigma$

- $\operatorname{Var}(\overline{D}) = \frac{2\sigma^2(1-\rho)}{n}$
- $\operatorname{Var}(\overline{D}_{\perp}) = \frac{2\sigma^2}{n}$
- efficiency = $\frac{\operatorname{Var}(\overline{D})}{\operatorname{Var}(\overline{D}_{\perp})} = 1 \rho$

11.2.2 Parametric: normal/t-test

1. Assumptions

- $X_i Y_i$ sample from \mathcal{N} , D = X Y
- $E(D_i) = \mu_X \mu_Y = \mu_D$
- $Var(D_i) = \sigma_D^2$
- 2. **Inference**: σ_D unknown; $H_0: \mu_D = 0$; ok for large n by CLT

$$t = \frac{\overline{D} - \mu_D}{s_{\overline{D}}} \sim t_{n-1}$$

11.2.3 Nonparametric: Signed-Rank Test

1. Procedure

- (1) Calculate differences D_i , find $|D_i|$, rank $|D_i|$
- (2) Restore signs of D_i to ranks to create signed ranks
- (3) Calculate $W_{+} = \text{sum of positive ranks as test statistic}$

2. Test

- $H_0: D_i$ distribution symmetric about 0
- Thm: under H_0 ,

$$E(W_+) = \frac{n(n+1)}{4}$$

$$Var(W_{+}) = \frac{n(n+1)(2n+1)}{24}$$

11.3 Experimental Design

• Bonferroni method: for multiple hypothesis testing, test each at α/n to achieve overall error of α

12 Chapter 12: ANOVA (F)

12.1 One-Way ANOVA

- One-way layout: independent measurements made under each of several treatments
- Sources of variability:
 - 1. Within samples
 - 2. Between samples

12.1.1 Normal theory: F-test

1. Setup

- I = number of groups/treatments
- J = sample size
- $Y_{ij} = j^{th}$ observation of i^{th} treatment

2. Model: $Y_{ij} = \mu + \alpha_i + \epsilon_{ij}$

- Variables:
 - $-\mu = \text{overall/total mean}$
 - $-\alpha_i = \text{differential effect of } i^{th} \text{ treatment}$
 - $-\epsilon_{ij} = \text{random error in } j^{th} \text{ observation of } i^{th} \text{ treatment}$
- Assumptions:
 - $-\epsilon_{ij}$ iid $\mathcal{N}(0,\sigma^2)$
 - $-\alpha_i$ normalized

3. Sum of squares

• Notation:

$$- \overline{Y}_{i.} = \frac{1}{J} \sum_{j} Y_{ij}$$
$$- \overline{Y}_{..} = \frac{1}{LJ} \sum_{i} \sum_{j} Y_{ij}$$

- Equation: $SS_{TOT} = SS_W + SS_B$
 - Total sum of squares: $SS_{TOT} = \sum_{i} \sum_{j} (Y_{ij} \overline{Y}_{..})^2$
 - Sum of squares within: $SS_W = \sum_i \sum_j (Y_{ij} \overline{Y}_{i.})^2$
 - Sum of squares between: $SS_B = J \sum_i (Y_{i.} \overline{Y}_{..})^2$

4. Expected value theorems

• Thm: expected SS

Let X_i be independent random variable with $E(X_i) = \mu_i$, $Var(X_i) = \sigma^2$. Then,

$$E(X_i - \overline{X})^2 = (\mu_i - \overline{\mu})^2 + \frac{n-1}{n}\sigma^2$$

where
$$\overline{\mu} = \frac{1}{n} \sum_{i} \mu_{i}$$

• Thm: expected value of SS_W , SS_B

$$E(SS_W) = I(J-1)\sigma^2$$

$$E(SS_B) = J \sum_{i=1}^{I} \alpha_i^2 + (I-1)\sigma^2$$

5. Variance rules & theorems

- Key observations:
 - (1) SS_W can estimate σ^2 : $s_p^2 = \frac{SS_W}{I(J-1)}$
 - (2) If all $\alpha_i = 0$, $\frac{SS_W}{I(J-1)} \approx \frac{SS_B}{I-1}$; if some $\neq 0$, then SS_B inflated \implies motivation for test

• Thm: distribution of SS If ϵ_{ij} iid $\mathcal{N}(0, \sigma^2)$:

$$\frac{SS_W}{\sigma^2} \sim \chi^2_{I(J-1)}$$

If also all $\alpha_i = 0$:

$$\frac{SS_B}{\sigma^2} \sim \chi_{I-1}^2$$

with
$$\frac{SS_W}{\sigma^2} \perp \frac{SS_B}{\sigma^2}$$

- 6. Test
 - Test statistic: if H_0 true, $F \approx 1$

$$H_0: \alpha_1 = \alpha_2 = \cdots = \alpha_I = 0$$

$$F = \frac{SS_B/(I-1)}{SS_W/[I(J-1)]} \sim F_{I-1,\,I(J-1)}$$

- 7. Test with different number of observations: non-constant J_i
 - (1) The identity

$$\sum_{i} \sum_{j} (Y_{ij} - \overline{Y}_{..})^2 = \sum_{i} \sum_{j} (Y_{ij} - \overline{Y}_{i.})^2 + \sum_{i} J_i (\overline{Y}_{i.} - \overline{Y}_{..})^2$$

(2) Expected values

$$E(SS_W) = \sigma^2 \sum_{i} (J_i - 1)$$

$$E(SS_B) = \sum_{i=1}^{I} J_i \alpha_i^2 + (I-1)\sigma^2$$

- 8. Summary
 - The model: $Y_{ij} = \mu + \alpha_i + \epsilon_{ij}$
 - Assumptions:
 - (1) $\epsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$
 - F-test approximately valid for large enough samples even if non-normal
 - (2) σ^2 CONSTANT
 - F-test not strongly affected by diff σ^2 as long as equal number of obs per group
 - (3) ϵ_{ij} independent
 - Most important!!
- 9. Tukey's method of multiple comparisons
 - One-way anova: testing fact of difference, not measurement of difference or specific difference pairs
 - Tukey method: compare pairs/groups of treatment means via t-test
 - Tukey test: construct CIs for differences of all pairs of means such that intervals simultaneously have some set coverage probability; can use duality of CI/hypothesis testing to determine differences
 - Assumptions
 - Sample sizes are equal (NOT required for Bonferroni)
 - $-\epsilon \sim \mathcal{N}$ with constant σ^2

Nonparametric one-way: Kruskal-Wallis

1. Setup

- Assumptions: independent observations, no necessary functional form
- Variables:
 - R_{ij} = rank of Y_{ij} in pooled sample
 - $\overline{R}_{i.} = \frac{1}{J_i} \sum_{j=1}^{J_i} R_{ij}$: average rank in i^{th} group $\overline{R}_{..} = \frac{N+1}{2}$

 - $-SS_B = \sum_i J_i (\overline{R}_{i.} \overline{R}_{..})^2$

2. Test statistic

$$K = \frac{12}{N(N+1)}SS_B = \frac{12}{N(N+1)} \left(\sum_{i=1}^{I} J_i \overline{R}_{i.}^2 \right) - 3(N+1) \approx \chi_{I-1}^2$$

12.2 Two-Way ANOVA

- Two-way anova: experimental design involving two factors, each at 2+ levels
- Assumptions:
 - If I levels of f_1 and J levels of f_2 , IJ combos
 - K independent observations taken from each combination (I, J)

12.2.1 Normal theory, 2-way

1. Assumptions

- K > 1 observations per cell
- Balanced: equal observations per cell
- $Y_{ijk} = k^{th}$ observation in cell (i, j)
- ϵ_{ijk} iid $\mathcal{N}(0, \sigma^2)$

2. Model

- The model: $Y_{ijk} = \mu + \alpha_i + \beta_j + \delta_{ij} + \epsilon_{ijk}$
- Constraints:
 - Row differential: $\sum_i \alpha_i = 0$
 - Column differential: $\sum_{i} \beta_{i} = 0$
 - Residual: $\sum_{i} \delta_{ij} = \sum_{i} \delta_{ij} = 0$

3. MLEs

• Log-likelihood:

$$\ell = -\frac{IJK}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (Y_{ijk} - \mu - \alpha_i - \beta_j - \delta_{ij})^2$$

• *MLEs*:

$$\begin{split} \hat{\mu} &= \overline{Y}_{...} \\ \hat{\alpha_i} &= \overline{Y}_{i..} - \overline{Y}_{...} \end{split}$$

$$\hat{\beta} = \overline{V}$$
 \overline{V}

$$\hat{\beta}_j = \overline{Y}_{.j.} - \overline{Y}_{...}$$

$$\hat{\delta}_{ij} = \overline{Y}_{ij.} - \overline{Y}_{i..} - \overline{Y}_{.j.} + \overline{Y}_{..}$$

4. SS:
$$SS_{TOT} = SS_A + SS_B + SS_{AB} + SS_E$$

$$SS_{A} = JK \sum_{i=1}^{I} (\overline{Y}_{i..} \overline{Y}_{...})^{2}$$

$$SS_{B} = IK \sum_{j=1}^{J} (\overline{Y}_{.j.} \overline{Y}_{...})^{2}$$

$$SS_{AB} = K \sum_{i=1}^{I} \sum_{j=1}^{J} (\overline{Y}_{ij.} - \overline{Y}_{i..} - \overline{Y}_{.j.} + \overline{Y}_{...})^{2}$$

$$SS_{E} = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (Y_{ijk} - \overline{Y}_{ij.})^{2}$$

$$SS_{TOT} = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (Y_{ijk} - \overline{Y}_{...})^{2}$$

5. Expectations

$$E(SS_A) = (I - 1)\sigma^2 + JK \sum_{i=1}^{I} \alpha_i^2$$

$$E(SS_B) = (J - 1)\sigma^2 + IK \sum_{j=1}^{J} \beta_j^2$$

$$E(SS_{AB}) = (I - 1)(J - 1)\sigma^2 + K \sum_{i=1}^{I} \sum_{j=1}^{J} \delta_{ij}^2$$

$$E(SS_E) = IJ(K - 1)\sigma^2$$

6. Distributions of SS

$$(1) \frac{SS_E}{\sigma^2} \sim \chi^2_{IJ(K-1)}$$

(2) Under
$$H_A: \alpha_i = 0$$
 for all $i: \frac{SS_A}{\sigma^2} \sim \chi_{I-1}^2$

(3) Under
$$H_B: \beta_j = 0$$
 for all $j: \frac{SS_B}{\sigma^2} \sim \chi_{J-1}^2$

(4) Under
$$H_{AB}: \delta_{ij} = 0$$
 for all $i, j: \frac{SS_{AB}}{\sigma^2} \sim \chi^2_{(I-1)(J-1)}$

(5)
$$SS$$
 are independently distributed

7. The test

- Compare relevant SS to SS_E
- $F = \text{ratio of } MS \text{ where } MS = SS/df; \text{ reject when } F \gg 1$
- Example: Interaction test

$$F = \frac{SS_{AB}/[(I-1)(J-1)]}{SS_E/[IJ(K-1)]} = \frac{MS_{AB}}{MS_E}$$

12.2.2 Nonparametric: Friedman's test

- Assumptions: none on distribution: only according to ranks
- Procedure:
 - (1) Within each of the J blocks, rank the observations
 - (2) H_0 : no effect due to I treatments
 - (3) Relevant variable: $SS_A = J \sum_{i=1}^{I} (\overline{R}_{i..} \overline{R}_{...})^2$
 - (4) Test statistic approximation:

$$Q = \frac{12J}{I(I+1)}SS_A \sim \chi_{I-1}^2$$

13 Chapter 13: Analysis of Categorical Data (χ^2)

• Categorical data: in counts from categories of two-way tables (contingency table)

13.1 Fisher's Exact Test

• Test statistic: N_{11} ; hypergeometric under H_0

 \bullet Probability:

$$P(N_{11} = n_{11}) = \frac{\binom{n_1}{n_{11}}\binom{n_2}{n_{21}}}{\binom{n_{..}}{n_{.1}}}$$

13.2 Chi-Square Test of Homogeneity

1. Setup

 \bullet Independent observations from J multinomial distributions, each of which has I cells/categories

• Test idea: are all cell probabilities homoegeneous/equal (goodness of fit test)

• π_{ij} = probability of i^{th} category in j^{th} multinomial

2. Test

• $H_0: \pi_{i1} = \pi_{i2} = \cdots = \pi_{iJ}$ for all i

• $n_{ij} = \text{count in } i^{th} \text{ category in } j^{th} \text{ multinomial}$

3. **Thm**: $MLE \ of \ \pi$'s

• Under H_0 , mle's of parameters π_i are:

$$\hat{\pi}_i = \frac{n_{i.}}{n_{..}}$$

 $-n_{i.}$ = total responses in i^{th} category

 $-n_{..}$ = grand total responses

• For j^{th} multinomial, expected count in i^{th} category:

$$E_{ij} = \frac{n_{i.}n_{.j}}{n_{..}}$$

$$O_{ij} = n_{ij}$$

4. χ^2 -statistic

$$X^{2} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} \sim \chi^{2}_{(I-1)(J-1)}$$

13.3 Chi-Square Test of Independence

1. Setup

- ullet Sample size n cross-classified in table with I rows, J columns contingency table
- $\pi_{ij} = \text{joint distribution of } n_{ij}$
- $\bullet \ \textit{Marginal probabilities} :$

$$\pi_{i.} = \sum_{j=1}^{J} \pi_{ij}$$
 $\pi_{.j} = \sum_{i=1}^{I} \pi_{ij}$

2. Test

$$H_0: \pi_{ij} = \pi_{i.}\pi_{.j}$$

3. **Thm**: *MLEs*

$$H_0: \hat{\pi}_{ij} = \hat{\pi}_{i.} + \hat{\pi}_{.j} = \left(\frac{n_{i.}}{n}\right) \left(\frac{n_{.j}}{n}\right)$$

$$H_1: \hat{\pi}_{ij} = \frac{n_{ij}}{n}$$

13.4 Matched Pairs: McNemar's Test

1. Test: off-diagonal probabilities are equal

$$H_0: \pi_{12} = \pi_{21}$$

2. MLEs: under H_0 :

$$\hat{\pi_{11}} = \frac{n_{11}}{n}$$

$$\hat{\pi}_{22} = \frac{n_{22}}{n}$$

$$\hat{\pi_{12}} = \hat{\pi_{21}} = \frac{n_{12} + n_{21}}{n}$$

3. Test statistic

$$X^2 = \frac{(n_{12} - n_{21})^2}{n_{12} + n_{21}} \sim \chi_1^2$$

13.5 Odds Ratio

1. Definitions

• Odds:

$$odds(A) = \frac{P(A)}{1 - P(A)}$$

• Odds ratio: influence of X on D:

$$\Delta = \frac{odds(D \mid X)}{odds(D \mid X^C)} = \frac{\pi_{11}\pi_{00}}{\pi_{10}\pi_{01}} = \frac{\text{product of diag probs}}{\text{product of off-diag probs}}$$

2. Sampling methods

- (1) Random sample from entire population:
 - If D rare, need large n to guarantee enough D
- (2) Prospective study: fixed number of X, X^C sampled; compare incidence of D in the groups
 - Can compare & estimate $P(D \mid X)$, $P(D \mid X^C)$ and odds ratio
 - Individual probabilities π_{ij} cannot be estimated because marginal counts fixed
- (3) Retrospective study: fixed number of D, D^C sampled; compare incidence of X in the groups
 - Can directly estimate $P(X \mid D)$, $P(X \mid D^C)$
 - Can't estimate $P(D \mid X)$, $P(D \mid X^C)$ since marginal counts fixed
 - $\bullet\,$ Same odds ratio Δ
 - Estimate: $\hat{\Delta} = \frac{n_{00}n_{11}}{n_{10}n_{01}}$