SCRIPTING AND PROGRAMMING LABORATORY FOR DATA ANALYSIS

Lecture 6 - Introduction to scipy

SCIPY

The <u>Scientific Python</u> (SciPy) package contains several tools dedicated to most part of the problems encountered in scientific research, like:

- Interpolation
- Integration
- Optimisation
- Special functions
- Linear algebra
- Fourier transform
- ...

As *Numpy*, also *Scipy* is largely written in Fortran or C, making it very computationally efficient and optimised.

SCIPY

The <u>Scientific Python</u> (SciPy) package contains several tools dedicated to most part of the problems encountered in scientific research, like:

- Interpolation
- Integration
- Optimisation
- Special functions
- Linear algebra
- Fourier transform

• ...

Before implementing an algorithm by yourself, check the scipy doc DO NOT REINVENT THE WHEEL!

As *Numpy*, also *Scipy* is largely written in Fortran or C, making it very computationally efficient and optimised.

SCIPY-STRUCTURE

SciPy User Guide

- Introduction
- Special functions (scipy.special)
- Integration (scipy.integrate)
- Optimization (scipy.optimize) -
- Interpolation (scipy.interpolate)
- Fourier Transforms (scipy.fft)
- Signal Processing (scipy.signal)
- Linear Algebra (scipy.linalg)
- Sparse eigenvalue problems with ARPACK
- Compressed Sparse Graph Routines (scipy.sparse.csgraph)
- Spatial data structures and algorithms (scipy.spatial)
- Statistics (scipy.stats) ~
- Multidimensional image processing (scipy.ndimage)
- File IO (scipy.io)

(Probably) most useful modules for scientific computing

Use the help function or the online documentation to navigate into the countless number of modules!

SCIPY-STATS

The module **scipy.stats** contains a large number of probability distributions, summary and frequency statistics, correlation functions and statistical tests, masked statistics, kernel density estimation, quasi-Monte Carlo functionality, and more check the <u>doc</u>!

In this package you generally invoke an object, then you need various methods to access different available functionalities.

SCIPY-STATS

The Probability distributions pro Each univariate distribution is an instance of a subclass of rv_continuous (rv_discrete for discrete cor distributions): stat fund rv_continuous([momtype, a, b, xtol, ...]) A generic continuous random variable class meant for subclassing. In rv_discrete([a, b, name, badvalue, ...]) A generic discrete random variable class meant for need subclassing. fund rv_histogram(histogram, *args, **kwargs) Generates a distribution given by a histogram.

SCIPY-STATS

scipy.stats.norm

```
scipy.stats.norm = <scipy.stats._continuous_distns.norm_gen object> [source]
```

A normal continuous random variable.

The location (loc) keyword specifies the mean. The scale (scale) keyword specifies the standard deviation.

As an instance of the **rv_continuous** class, **norm** object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

functionalities.

istics,

rlo

vou

SCIPY-STATS scipy.stats.norm

scipy.stats.norm = <scipy.stats.continu

A normal continuous random variable.

The location (loc) keyword specifies the mean. deviation.

As an instance of the **rv_continuous** class, **no**: methods (see below for the full list), and comple distribution.

functionalities.

Methods You can access the functional rvs(loc=0, scale=1, Random variates. form size=1, random state=None) Probability density function. pdf(x, loc=0, scale=1) logpdf(x, loc=0, Log of the probability density function. scale=1) cdf(x, loc=0, scale=1) Cumulative distribution function. logcdf(x, loc=0, Log of the cumulative distribution function. scale=1) sf(x, loc=0, scale=1) Survival function (also defined as 1 - cdf, but sf is sometimes more accurate). logsf(x, loc=0, scale=1) Log of the survival function. ppf(q, loc=0, scale=1) Percent point function (inverse of cdf — percentiles). Inverse survival function (inverse of sf). isf(q, loc=0, scale=1) moment(n, loc=0, Non-central moment of order n scale=1)

Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').

stats(loc=0, scale=1, moments='mv')

In the interpolation module (**scipy.interpolate**) you can find (check also here):

- A class representing an 1D interpolant (interp1d), offering several interpolation methods.
- Functions for 1D and 2D (smoothed) **cubic-spline** interpolation, based on the FORTRAN library FITPACK.
- The function **griddata** offering a simple interface to interpolation in N dimensions (N = 1, 2, 3, 4, ...).
- Many others, check <u>documentation</u>!

• **interp1d** (doc):create a <u>function</u> based on fixed data points, which can be evaluated anywhere within the domain defined by the given data. An instance of this class is created by passing the 1-D vectors comprising the data.

```
>>> from scipy.interpolate import interp1d

>>> x = np.linspace(0, 10, num=11, endpoint=True)
>>> y = np.cos(-x**2/9.0)
>>> f = interp1d(x, y)
>>> f2 = interp1d(x, y, kind='cubic')
Fun
```

Functions!

Check the documentation for other option of interpolation degree

• interp1d (doc):create a <u>function</u> based on fixed data points, which can be evaluated anywhere within the domain defined by the given d created by passing the ">>> xnew = np.linspace(0, 10, num=41, endpoint=True) >>> import matplotlib.pyplot as plt

```
>>> from scipy.interpolate import
```

```
>>> x = np.linspace(0, 10, num=11)
>>> y = np.cos(-x**2/9.0)
>>> f = interp1d(x, y)
>>> f2 = interp1d(x, y, kind='cub:
```

```
>>> xnew = np.linspace(0, 10, num=41, endpoint=True)
>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'o', xnew, f(xnew), '-', xnew, f2(xnew), '--')
>>> plt.legend(['data', 'linear', 'cubic'], loc='best')
>>> plt.show()
```


- Splines (<u>doc</u>):
 - o Procedural usage: two essential steps, first a spline representation of the curve is computed, then the spline is evaluated at the desired points

splrep computes the spline coefficients based on data.

Note the **s** parameter, this represents the smoothing, by setting it to **zero**, you force the spline representation to pass through all data point! Beware: this is not the default.

splev evaluates the spline at new points within the domain of x. The function needs the spline object tck!

Other functions can evaluate the spline derivative, integral, roots, e.g.:

spalde,splint,sproot

```
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import interpolate
Cubic-spline
>>> x = np.arange(0, 2*np.pi+np.pi/4, 2*np.pi/8)
>>> y = np.sin(x)
>>> tck = interpolate.splrep(x, y, s=0)
>>> xnew = np.arange(0, 2*np.pi, np.pi/50)
>>> ynew = interpolate.splev(xnew, tck, der=0)
```

- Splines (doc):
 - Object-Oriented usage: the **UnivariateSpline** class does the job.

 At object creation you pass the data and you directly get a

 function to be evaluated at different data points

```
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import interpolate

InterpolatedUnivariateSpline

>>> x = np.arange(0, 2*np.pi+np.pi/4, 2*np.pi/8)
>>> y = np.sin(x)
>>> s = interpolate.InterpolatedUnivariateSpline(x, y)
>>> xnew = np.arange(0, 2*np.pi, np.pi/50)
>>> ynew = s(xnew)
```

InterpolateUnivariateSpline
 computes the spline!
 s is now callable

InterpolateUnivariateSpline vs UnivariateSpline: difference is the smoothing parameter that for the former is set to zero, i.e. the spline passes through all points.

• **griddata** (<u>doc</u>): Interpolate unstructured D-D data

D: number of dimensions

• **griddata** (<u>doc</u>): Interpola

scipy.interpolate.griddata(polate)
method='linear', fill_value=

Data points:

2-D ndarray of floats with shape (n, D). ndarray o
n: number of data points
D: number of dimensions

The **scipy.integrate** sub-package provides several integration techniques to compute integrals (1D or higher). It also includes an ordinary differential equation integrator (doc).

Methods for integrating functions given the function object:

- quad: General purpose integration.
- dblquad: General purpose double integration.
- tplquad: General purpose triple integration.
- fixed_quad: Integrate func(x) using Gaussian quadrature of order n.
- quadrature: Integrate with given tolerance using Gaussian quadrature.
- romberg: Integrate function using Romberg integration.

The **scipy.integrate** sub-package provides several integration techniques to compute integrals (1D or higher). It also includes an ordinary differential equation integrator (doc).

Methods for integrating functions given the function object:

```
from scipy import integrate
result = integrate.quad(lambda x: 3*x**2, 0, 5)
print(result)

(125.00000000000001, 1.3877787807814459e-12)

ce using Gaussian
```

romberg: Integrate function using Romberg integration.

We need to provide a function and integration limits

The **scipy.integrate** sub-package provides several integration techniques to compute integrals (1D or higher). It also includes an ordinary differential equation integrator (doc).

Methods for Integrating Functions given fixed samples:

- trapezoid: Use trapezoidal rule to compute integral.
- cumulative_trapezoid: Use trapezoidal rule to cumulatively compute integral.
- simpson: Use Simpson's rule to compute integral from samples.
- romb: Use Romberg Integration to compute integral from (2^k + 1) evenly-spaced samples.

```
def f(x):
    return 3*x**2
# compute the integral with different number
for i in [100,1000,10000,100000]:
    x \text{ samp} = \text{np.linspace}(0,5,i)
    y \mid samp = f(x samp)
    I = integrate.trapezoid(y samp,x samp)
    print("Result(n = ",i,") = ", I)
Result(n = 100) = 125.0063769003163
Result(n = 1000) = 125.00006262518775
Result(n = 10000) = 125.00000062512501
Result(n = 100000) = 125.000000000625013
X data
             Function
                                    Result from
              values
points
                                    trapezoidal
```

rule

The **scipy.integrate** sub-package provides several integration techniques to compute integrals (1D or higher). It also includes an ordinary differential equation integrator (doc).

Methods for integrating differential equations:

- odeint: Solve a system of ordinary differential equations using <u>lsoda</u> algorithm only.
- ode: A generic interface class to several numeric integrators.
- solve_ivp: newest scipy integrator pack, allows to employ several integrator techniques and event tracing.

odeint: Solve a system of ordinary differential equations
using lsoda algorithm only.

```
scipy.integrate.odeint(func, y0, t, args=(), Dfun=None,
col_deriv=0, full_output=0, ml=None, mu=None, rtol=None,
atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0,
mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0,
tfirst=False)
```

Initial conditions(ICs)
Array with length equal
to the number of
dependent variables

A sequence of time points for which to solve for y

Extra arguments for the function **func**

```
Let y be the vector [theta, omega]. We implement this system in Python as:
```

```
>>> def pend(y, t, b, c):
... theta, omega = y
... dydt = [omega, -b*omega - c*np.sin(theta)]
... return dydt
...
```

We assume the constants are b = 0.25 and c = 5.0:

```
>>> b = 0.25
>>> c = 5.0
```

For initial conditions, we assume the pendulum is nearly vertical with theta(0) = pi - 0.1, and is initially at rest, so omega(0) = 0. Then the vector of initial conditions is

Array with leng

dependent var

```
>>> y0 = [np.pi - 0.1, 0.0]
```

nary differential equations

), t, args=(), Dfun=None,

We will generate a solution at 101 evenly spaced samples in the interval $0 \le t \le 10$. So our array of times is:

```
>>> t = np.linspace(0, 10, 101)
```

Call **odeint** to generate the solution. To pass the parameters *b* and *c* to *pend*, we give them to **odeint** using the *args* argument.

```
>>> from scipy.integrate import odeint
>>> sol = odeint(pend, y0, t, args=(b, c))
```

The solution is an array with shape (101, 2). The first column is *theta(t)*, and the second is *omega(t)*. The following code plots both components.

ode: A generic interface class to several numeric
integrators.

```
class scipy.integrate.ode(f, jac=None)
```

```
f: callable(t, y, ...)
```

Attributes:

- t: (float) Current time.
- y: (ndarray) Current variable values.

ode: A generic interface class
integrators.

class scipy.integrate.ode(f, jac

f: callable(t, y, ...)

Attributes:

t: (float) Current time.

y: (ndarray) Current variable

Methods	
get_return_code()	Extracts the return code for the integration to enable better control if the integration fails.
<pre>integrate(t[, step, relax])</pre>	Find y=y(t), set y as an initial condition, and return y.
<pre>set_f_params(*args)</pre>	Set extra parameters for user- supplied function f.
set_initial_value(y[, t])	Set initial conditions y(t) = y.
<pre>set_integrator(name, **integrator_params)</pre>	Set integrator by name.
set_jac_params(*args)	Set extra parameters for user- supplied function jac.
set_solout(solout)	Set callable to be called at every successful integration step.
successful()	Check if integration was successful.

dydt = [omega, -b*omega - c*np.sin(theta)]

from scipy.integrate import ode

sol.append([t, y[0], y[1]])

def pend(t, y, b, c):

return dydt

def solout(t, y):

theta, omega = y

```
Methods
```

```
get_return_code()
                                                   Extracts the return code for
                                                   the integration to enable
                                                   better control if the
                                                   integration fails.
             :[, step, relax])
                                                   Find y=y(t), set y as an initial
                                                   condition, and return v.
                                                   Set extra parameters for user-
             ms(*args)
                                                   supplied function f.
             1_{value(y[, t])}
                                                   Set initial conditions y(t) = y.
             ator(name, **integrator params)
                                                   Set integrator by name.
                                                   Set extra parameters for user-
             rams(*args)
                                                   supplied function jac.
             (solout)
                                                   Set callable to be called at
                                                   every successful integration
                                                   step.
                                                   Check if integration was
                                                   successful.
```

```
solver = ode(pend).set integrator("dop853",atol=1e-15,rtol=1e-15,first step=0.01,nsteps=100000000)
solver.set solout(solout)
solver.set initial value([np.pi - 0.1, 0.0]).set f params(0.25,5.)
sol = []
solver.integrate(10)
sol = np.array(sol)
print(sol)
print(solver.t,solver.y)
[[ 0.00000000e+00 3.04159265e+00 0.00000000e+00]
 [ 1.00000000e-02 3.04156771e+00 -4.98584983e-03]
 [ 5.51377662e-02 3.04083640e+00 -2.74030870e-02]
 [ 9.95234225e+00 -5.51258405e-02 1.58243397e+00]
 [ 9.98132031e+00 -9.35225827e-03 1.57565811e+00]
 [ 1.00000000e+01 2.00115309e-02 1.56781826e+00]]
10.0 [0.02001153 1.56781826]
```

solve_ivp: newest scipy integrator pack, allows to employ
several integrator techniques and event tracing.

```
scipy.integrate.solve_ivp(fun, t_span, y0, method='RK45',
t_eval=None, dense_output=False, events=None,
vectorized=False, args=None, **options)
```

fun: callable(t, y, ...)
The differential equations

t_span: 2-tuple of floats
Interval of integration (t0, tf). The
solver starts with t=t0 and
integrates until it reaches t=tf.

solve_ivp: newest scipy integrator pack, allows to employ several integrator techniques and event tracing.

scipy.integrate.solve_ivp(fun, t_span, y0, method='RK45', t_eval=None, dense_output=False, events=None, vectorized=False, args=None, **options) y0: array_like, shape (n,) t_span: 2-tuple of floats fun: callable(t, y, ...) Initial conditions The differential equations Interval of integration (t0, tf). The solver starts with t=t0 and integrates until it reaches t=tf. t eval: Times at which to must be sorted and lie

store the computed solution, within t_span.

dense_output: compute a continuous solution that can be evaluated at any time between t_span

events: Events to track during integration. The solver will find an accurate value of t at which event(t, v(t)) = 0using a root-finding algorithm

solve_ivp: newest s
several integrator

t_eval=None, dense_ vectorized=False, a

fun: callable(t, y, ...)
The differential equations

t_eval: Times at which to
store the computed solution,
 must be sorted and lie
 within t span.

Returns:

cont

be

Bunch object with the following fields defined:

t : ndarray, shape (n_points,)

Time points.

y: ndarray, shape (n, n_points)

Values of the solution at t.

sol: OdeSolution or None

Found solution as **OdeSolution** instance; None if *dense_output* was set to False.

t_events : list of ndarray or None

Contains for each event type a list of arrays at which an event of that type event was detected. None if *events* was None.

y_events: list of ndarray or None

For each value of *t_events*, the corresponding value of the solution. None if *events* was None.

```
import matplotlib.pyplot as plt
from scipy.integrate import solve ivp
# system of differential equations
def lotkavolterra(t, z, a, b, c, d):
    X, V = Z
    return [a*x - b*x*y, -c*y + d*x*y]
# perform the integration
sol = solve ivp(lotkavolterra, [0, 15], [10, 5], args=(1.5, 1, 3, 1), dense output=True)
                                 t_span
                                            v0
                                                          Extra
# densely sample the solution
                                                           args
t = np.linspace(0, 15, 600)
z = sol.sol(t)
```

t_eval: Times at which to
store the computed solution,
 must be sorted and lie
 within t span.

dense_output: compute a
continuous solution that can
be evaluated at any time
between t span

scipy.optimize provides functions solvers for several tasks
like:

- local and global optimization (e.g. minimization)
 algorithms;
- constrained and nonlinear least-squares:
- curve fitting;
- root finding.

Check the list of available functions here and here for examples.

• Minimization: The <u>minimize</u> function provides a common interface to unconstrained and constrained minimization algorithms for <u>multivariate scalar functions</u>.

```
scipy.optimize.minimize(fun, x0, args=(), method=None,
  jac=None, hess=None, hessp=None, bounds=None,
  constraints=(), tol=None, callback=None, options=None)
                                                                           Check for the best method
                                                                               for your problem
 If your functions is
subjected to constraints,
                                                     x0: ndarray, shape (n,)
 only few algorithm can
deal with this, check the
                                              Initial guess. Array of real elements of
                                                size (n,), where n is the number of
         doc
                        fun: callable
                                                     independent variables.
             the objective function to be minimized.
              fun(x, *args) \rightarrow float, where x is an
```

1-D array with shape (n,)

Minimization: The printerface to unconstant
 algorithms for multiple

scipy.optimize.minimiz
jac=None, hess=None, h
constraints=(), tol=No

If your functions is subjected to constraints, only few algorithm can deal with this, check the doc

fun: callable
the objective function to
fun(x, *args) -> float, w
1-D array with shap

Global optimization	
basinhopping(func, x0[, niter, T, stepsize,])	Find the global minimum of a function using the basinhopping algorithm.
brute (func, ranges[, args, Ns, full_output,])	Minimize a function over a given range by brute force.
<pre>differential_evolution(func, bounds[, args,])</pre>	Finds the global minimum of a multivariate function.
shgo (func, bounds[, args, constraints, n,])	Finds the global minimum of a function using SHG optimization.
dual_annealing(func, bounds[, args,])	Find the global minimum of a function using Dual Annealing.

nethod

• Curve fitting: Scipy provides a somewhat generic function (based on the Levenburg-Marquardt algorithm)through scipy.optimize.curve_fit to fit a chosen function f(xi,p) to a given data set (xi,yi), under the assumption yi = f(xi,p) with p the parameters of the "model".
The algorithm tries to minimize the expression by changing the parameters p

$$r = \sum_{i=1}^{N} (y_i - f(x_i, \vec{p}))^2$$

• Root finding: the procedure of finding all x values that solve the equation f(x) = 0

Note that problems like g(x)=h(x) fall in this category as you can rewrite them as f(x)=g(x)-h(x)=0.

A number of root finding tools are available in scipy's optimize module, e.g.:

- Scalar functions (list not exhaustive see here):
 - o bisect: simple and robust but slow
 - o brenth/brentp: robust bracketing method faster than bisect
 - o newton: Newton-Raphson (or secant method), needs derivative of **f**
- Vector functions:

root: most general root finder, the specific algorithm employed has to be chosen problem-wise

REMIND THAT YOU GENERALLY NEED TO PROVIDE AN INITIAL GUESS!

SCIPY-SPECIAL FUNCTIONS

A **special function** is a function (usually named after an early investigator of its properties) having a particular use in mathematical physics or some other branch of mathematics. Prominent examples include the **gamma function**, **hypergeometric function**, **elliptic functions**, **error function**...

The **scipy.special** module includes the implementation of nearly all special functions that are encountered in scientific research (see here for the list).

SCIPY-SPECIAL FUNCTIONS

A **special function** is a function (usually named after an early investigator of its properties) having a particular use in mathematical physics or some other branch of mathematics. Prominent examples include the **gamma function**, **hypergeometric function**, **elliptic functions**, **error function**...

```
Consider the gamma function which is a generalization of the factorial to which is related by \Gamma(n)=(n-1)! from scipy.special import gamma print("The factorial of 3 is ", gamma(4)) print("Gamma can be evaluated for non integers:",gamma(8.7)) print("Gamma gives a complex infinity for negative integer numbers:",gamma(-2)) The factorial of 3 is 6.0 Gamma can be evaluated for non integers: 21327.693789920282 Gamma gives a complex infinity for negative integer numbers: inf
```