EMBEDDINGS INTO \mathbb{P}^3 . PRESENTED BY: FELIX JÄGER

SCRIBED BY: RUNYU JING

ABSTRACT. We first proved that any curve can be embedded in \mathbb{P}^3 . Then we proved that a curve can be embedded into \mathbb{P}^2 with at most nodes.

1. Introduction

Notation 0.1. A curve will always be smooth prober integral over an algebraically closed field $k = \overline{k}$.

1. Embedding into \mathbb{P}^3 .

Theorem 1.1. Any curve embeds into \mathbb{P}^3 .

Fact 1. For any hyperplane $\mathbb{P}^{n-1} \subseteq \mathbb{P}^n$ and any closed point $O \nsubseteq \mathbb{P}^{n-1}$, we have a unique morphsim $\mathbb{P}^n \setminus O \to \mathbb{P}^{n-1}$ that takes a point P to the intersection of \overline{PO} with \mathbb{P}^{n-1} . This is called "projection from O".

Definition 1.2. A linear system \mathfrak{D} of a divisor D_0 on X is a linear subspace of the complete linear system $|D_0| = \mathbb{P}(H^0(X, \mathcal{O}(D_0)))$. A linear system \mathfrak{D} is called base point free(B.P. free) if there is no point $x \in X$ such that all sections of \mathfrak{D} vanishes at x.

Fact 2. we have correspondences:

 $\{B.P. free linear systems on X\}$

 \longleftrightarrow

 $\{(\mathcal{L},V)|\mathcal{L} \text{ a line bundle on } X \text{ and } V \text{ a linear system that generates } \mathcal{L}\}$

 $\langle - \rangle$

{morphisms $X \to \mathbb{P}^n$ s.t. the image of X does not lie in any hyperplane} \ {automorphisms of \mathbb{P}^n }

Definition 1.3. Let $X \subseteq \mathbb{P}^n$ be a curve. For $P \neq Q \in X$,

- define the line \overline{PQ} as the secant line of P and Q. For $P \in X$,
- define the unique line $L_p \subseteq \mathbb{P}^n$ such that $T_P(X) = T_P(L_P)$ as the tangent line at P.

Proposition 1.4. Let $X \subseteq \mathbb{P}^n$ be a curve, $O \in \mathbb{P}^n \setminus X$, $\varphi \colon X \to \mathbb{P}^{n-1}$ the projection. Then φ is a closed immersion if and only if:

(1) O is not on any secant line of X;

(2) O is not on any tangent line of X.

Projection from O where O lies...

Proof. φ corresponds to the linear system

$$\mathfrak{D} = \{ H \cap X | H \subseteq \mathbb{P}^n \text{ a hyperplane, } O \in H, X \not\subseteq H \}$$

 φ is a closed immersion if and only if $\mathfrak D$ separates points and tangents. But we know that

• D separates points

$$\iff \forall P \neq Q \in X, \ \exists D \in \mathfrak{D} \text{ s.t. } P \in \operatorname{Supp} D, Q \notin \operatorname{Supp} D \\ \iff \forall P \neq Q \in X, \ \exists H \subseteq \mathbb{P}^n \text{ s.t. } O, \ P \in H, \ Q \notin H \iff (1).$$

• D separates tangents

$$\iff \forall P \in X, t \in T_P(X) - 0, \exists D \in \mathfrak{D}, P \in \operatorname{Supp} D, t \notin T_PD \subseteq T_P(X) \\ \iff \forall P \in X, \exists H \subseteq \mathbb{P}^n \text{ s.t. } P, O \in H, T_P(H \cap X) = 0 \\ \iff \forall P \in X, \exists H \subseteq \mathbb{P}^n \text{ s.t. } H \text{ intersects } X \text{ at } P \text{ with multiplicity} > 1$$

 $\Leftrightarrow \forall P \in X, \exists H \subseteq \mathbb{P}^n \text{ s.t. } H \text{ intersects } X \text{ at } P \text{ with multiplicity } > 1$ $\Leftrightarrow O \text{ is not on the tangent line of } X \text{ at } P.$

Definition 1.5. Let $X \subseteq \mathbb{P}^n$ be a curve.

- define $Sec(X) = \cup$ secant lines of X = "secant variety",
- define $Tan(X) = \cup$ tangent lines of X = "tangent variety".

Proof of 1.1. First, there is a very ample line bundle on X. So we assume $X \subseteq \mathbb{P}^n$ for some big n. If $n \leq 3$, we are done. If not: notice that dim $\operatorname{Sec} X \leq 3$ since $\operatorname{Sec} X$ is locally the image of a morphism:

$$(X\times X\backslash \Delta)\times \mathbb{P}^1\to \mathbb{P}^n$$

$$(P,Q,t)\mapsto t \text{ on } \overline{PQ}$$

so we may compute that the dimension is no bigger than 3. Likewise we have that dim Tan $X \le$ 2: locally Tan X looks like the image of

$$X \times \mathbb{P}^1 \to \mathbb{P}^n$$

 $(P, t) \to t \text{ on } L_P$

As n > 3, we can always project down by picking a point O away from $\operatorname{Sec} X$ and $\operatorname{Tan} X$ such that $X \hookrightarrow \mathbb{P}^{n-1}$ is a closed imbedding. After finite steps we arrive at that X embeds into \mathbb{P}^3 .

2. Maps to \mathbb{P}^2 .

Definition 2.1. A node is a singular point of a plane curve of multiplicity 2 with distinct tangent directions.

Theorem 2.2. Any curve is birationally equivalent to a plane curve with at most nodes.

Proposition 2.3. Let $X \subseteq \mathbb{P}^3$ be a curve, $O \in X$ a point and $\varphi \colon X \to \mathbb{P}^2$ a morphism determined by projection from O. Then φ is birational onto its image and $\varphi(X)$ has at most nodes if:

- (1) O lies on finitely many secants,
- (2) O is not aon any tangent of X,
- (3) O is not on any multi secants(secants that intersect X more than twice);
- (4) O is not on any secant with coplane tangent lines(secant \overline{PQ} such that L_P and L_Q lie on the same plane).

Proof. (1)+(2) guarantees that φ is birational onto its image. (2)+(3)+(4) will show that $\varphi(X)$ has at most nodes.

Proposition 2.4. Let $X \subseteq \mathbb{P}^3$ be a curve not contained in any plane. Then not every sevant is a multisecant and not every two tangents are coplanar.

Proof of 2.2. By 1.1 we may assume that $X \subseteq \mathbb{P}^3$ is not contained in a plane (or we are done!). We need to find O as above. Consider

$$\psi \colon (X \times X \backslash \Delta) \times \mathbb{P}^1 \to \mathbb{P}^3$$
$$(P, Q, t) \mapsto t \text{ on } \overline{PQ}$$

If dim im $\psi < 3$, then there is a nonempty open $U \subseteq \mathbb{P}^3 \setminus \text{im } \psi$. If dim im $\psi = 3$, we must have that ψ^{-1} (the generic point) is not empty and thus a finite set. We may extend this to

a nonempty open $U \subseteq \mathbb{P}^3$ such that $\psi^{-1}(x)$ is finite for every $x \in U$. Then any $O \in U$ fulfills (1) in 2.3. Now by 2.4, there exists $(P_0, Q_0) \in X \times X \setminus \Delta$ such that \overline{PQ} is not a multi-secant and $(P_1, Q_1) \in X \times X \setminus \Delta$ such that L_{P_1} and L_{Q_1} are not coplanar. Both conditions hold for nearby points in $X \times X$. Thus we find out that the set $V \subseteq X \times X \setminus \Delta$ such that $\forall (P, Q) \in V$, \overline{PQ} is no multi-secant and L_P is not coplanar with L_Q is open. Thus define

$$C := \{(P,Q) \in X \times X \setminus \Delta \colon \overline{PQ} \text{ is a multi-sec or has coplanar tangents}\}$$

has dim < 1 in $X \times X \setminus \Delta$. Thus we have that

$$\dim \cup_{(P,Q) \in C} \overline{PQ} = \dim(C \times \mathbb{P}^1) \le 2$$

On the other hand since we have that dim $\operatorname{Tan} X \leq 2$, there must be a nonempty open $W \subseteq \mathbb{P}^3$ that consists of points satisfying (2)+(3)+(4). Then any point $O \in U \cap W$ fulfills (1)(2)(3)(4).

It remains to prove 2.4, for which we need the following facts.

Fact 3. Let $X \subseteq \mathbb{P}^3$ be a curve, L, M lines in \mathbb{P}^3 , and $L \cap X \neq \phi$. Then there exists a projection $X \to M$ sending $P \in X$ to the intersection point of M with the plane containing L and P.

Fact 4. Let $X \subseteq \mathbb{P}^3$ be a curve, $\varphi \colon X \to \mathbb{P}^2(\varphi \colon X \to \mathbb{P}^1)$ a morphism determined by projection from $O \in \mathbb{P}^3 \backslash X$ (from a line $L \subseteq \mathbb{P}^3 \backslash X$). Then φ is ramified exactly at the points $P \in X$ with $O \in L_P(L_P \cap L \neq \phi)$.

Definition 2.5. A finite morphism of curves $X \to Y$ is (purely in-/in-)separable if the corresponding field extension $K(Y) \hookrightarrow K(X)$ is so.

Fact 5 (Hurwitz). Let $f: X \to Y$ be a finite separable morphism of curves. Then f is ramified at finitely many points P_1, \dots, P_n . If u_i are local parameters at p_i and t_i are the local parameters at $f(P_i)$, we have that

$$2 \cdot g(X) - 2 = (\deg f)(2 \cdot g(Y) - 2) + \sum_{i=1}^{n} \nu_{P_i}(\frac{dt_i}{du_i})$$

Fact 6. Let $f: X \to Y$ be a finite purely inseparable morphism of curves. Then $K(X) \cong K(Y)$ as abstract fields, and $K(Y) \hookrightarrow K(X)$ iis given by $x \mapsto x^{p^r}$ for some $r \in \mathbb{N}_+$ where char (k) = p > 0.

Corollary 2.6. Let $f: X \to Y$ be a finite inseparable morphism of curves. Then $K(Y) \subseteq K(X)^p(\operatorname{char}(k) = p > 0)$.

Corollary 2.7. A finite inseparable morphism of curves is ramified everywhere.

Fact 7 (Bézout). Let $X \subseteq \mathbb{P}^3$ be a curve, $H \subseteq \mathbb{P}^3$ a plane, $X \nsubseteq H$, P_1, \dots, P_n the points in $H \cap X$ with intersection multiplicity m_1, \dots, m_n . Then we have that

$$\sum_{i=1}^{n} m_i = \deg X$$

Lemma 2.8. [Har77, Prop IV.3.8] Let $X \subseteq \mathbb{P}^3$ be a curve which is not contained in any plane. If any of the following is true:

- (a) every secant is a multisecant, or
- (b) every P, Q has coplanar tangents.

Then there exists a point $A \in \mathbb{P}^3$ which lies on every tangent line of X.

Proof of 2.4. By Lemma 2.8, it suffices to show that for any curve $X \subseteq \mathbb{P}^3$ with such A as above, this *strange* curve is already in a plane(contradiction). Choose \mathbb{A}^3 on \mathbb{P}^3 with affine coordinate x, y, z such that

X=a X A

FIGURE 1. Picture from [Har77] p.312

- (1) A is the point at ∞ on the X-axis,
- (2) X does not meet the line at infinity of the XZ-plane, except at (possibly) A,
- (3) If $A \in X$, then L_A is not in the XZ-plane,
- (4) X does not meet Z-axis.

Let M be the line at ∞ of the XY-plane. Consider the projection $\psi\colon X\to M$ determined by projection from Z-axis. We assume that ψ is finite(otherwise is constant, so we are done). We have $\deg \psi = \deg X = d$ by Bézout's theorem 7. Let us find the ramification locus. As every tangent line also passes through A, ψ is ramified exactly at the points of X which lies in XZ-plane, but not at A by (3). By (2) these are exactly the points in the finite part of the XZ-plane. We may assume that the morphism ψ is separable(otherwise ψ ramifies everywhere so X is in XZ-plane). Let P be such a ramification point. We have $\psi(P) = A$. Take u = x - a (where a is the x-coordinate of $P, a \in k - \{0\}$ by (4)) as a local parameter at P and $t = \frac{y}{x}$ as a local parameter at A in M. We will calculate $\nu_P(\frac{\mathrm{d}t}{\mathrm{d}u})$. We have that

$$x = u + a \Rightarrow t = y(u + a)^{-1}$$

We may assume that $y \in K(X)^p$, where $p = \operatorname{char}(k)$. To see this, consider the morphism $\varphi \colon X \to \mathbb{P}^2$ corresponding to the projection from A to the YZ-plane. As A lies on every target line, φ is ramified everywhere, we have that im $\varphi = \{P\}$ (then $X = \overline{AP}$) or φ is inseparable. Then the function y restricted to X lies in $K(X)^p$, where $\operatorname{char}(k) = p > 0$.

Thus we have that

$$\frac{\mathrm{d}y}{\mathrm{d}u} = 0 \Rightarrow \frac{\mathrm{d}t}{\mathrm{d}u} = -y(u+a)^{-1},$$

where u + a = x is a unit in \mathscr{O}_P as $a \neq 0$. Hence we have that $\nu_P(\frac{\mathrm{d}t}{\mathrm{d}u}) = \nu_P(y)$, which is the multiplicity of the intersection of X and the XZ-plane at P. Let P_1, \dots, P_n be the finite points of $X \cap XZ$ -plane. Thus Hurwitz's theorem 5 gives us that

$$2 \cdot g(X) - 2 = (\deg f)(2 \cdot g(Y) - 2) + \sum_{i=1}^{n} \nu_{P_i}(\frac{\mathrm{d}t_i}{\mathrm{d}u_i})$$

$$\iff 2 \cdot g(X) - 2 = -2d + \sum_{i=1}^{n} \nu_{P_i}(y)$$

Now, if $A \notin X$, then X meets the XZ-plane only at the P_i . Thus we have that:

$$\sum_{i=1}^{n} \nu_{P_i}(y) = d \Rightarrow 2g - 2 = -d \to g = 0, d = 2$$

Take 3 points on X and look at the plane H containing them. By Bézout's theorem 7X is contained in H. If $A \in X$, X meets the XZ-plane at A with multiplicity 1, by (3) and Bézout's theorem 7, we have that

$$\sum_{i=1}^{n} \nu_{P_i}(y) + 1 = d \to 2g - 2 = -d - 1$$

$$\Rightarrow g = 1, d = 0$$

Thus X is again a line in \mathbb{P}^3 .

References

[Ara] D. Arapura. The jacobian of a riemann surface. preprint can be found at http://www.math.purdue.edu/~dvb/preprints/jacobian.pdf.

[ACGH85] E. Arbarello, M. Cornalba, P. Griffiths, J. D. Harris. Geometry of Algebraic Curves. vol. I, Springer, Grundlehren der mathematischen Wissenschaften, 1985.

[Har77] R. Hartshorne, *Algebraic Geometry*, Graduate Texts in Mathematics, vol. 52, Springer, New York, 1977.

[Lan] A. Landesman. The Torelli Theorem for Curves preprint can be found at https://web.stanford.edu/~aaronlan/assets/torelli-theorem-notes.pdf.

[Mil86] J. S. Milne. Jacobian varieties. Arithmetic geometry (Storrs, Conn., 1984), pp. 167 212. Springer, New York, 1986

[Mum08] D. Mumford. Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics. vol. 5 TIFR, Bombay; by Hindustan Book Agency, New Delhi, 2008.

[Pet14] C. Peters. Lectures on Torelli Theorems, Spring School Rennes, https://www-fourier.ujf-grenoble.fr/~peters/ConfsAndSchools/Rennes/Torelli_Rennes.pdf, 2014.