$$= \frac{1}{2} \left(\int_{0}^{\infty} \int_{0}^{\infty} e^{-\mu (r+t)} \left((S(r)x) (S(t)x) * + (S(t)x) (S(r)x) * \right) dr dt \right)$$

$$\leq \frac{1}{2} \left(\int_{0}^{\infty} \int_{0}^{\infty} e^{-\mu (r+t)} (T(r)xx^{*} + T(t)xx^{*}) dr dt \right)$$

$$= \left(\int_{0}^{\infty} e^{-\mu S} ds \right) \left(\int_{0}^{\infty} e^{-\mu t} T(t)xx^{*} dt \right) = \mu^{-1} R(\mu, A)xx^{*}$$

where the handling of the integral is justified by [Bourbaki (1955), \$8, n^O 4, Proposition 9].

Corollary 2.2. Let \mathcal{T} be a semigroup of Schwarz maps (resp., weak*-semigroup of Schwarz maps). Then for all $\lambda \in \mathbb{C}$ with $\text{Re}(\lambda) > 0$:

$$(R(\lambda,A)x)(R(\lambda,A)x)^* \le (Re\lambda)^{-1} R(Re\lambda,A)xx^*, x \in M$$
.

In particular for all $\;(\mu,\alpha)\in \mathbb{R}_+{\scriptscriptstyle \mathsf{X}}\mathbb{R}$, $x\,\in\,M$:

$$(\mu R(\mu+i\alpha,A)x)(\mu R(\mu+i\alpha,A)x)* \leq \mu R(\mu,A)(xx*).$$

Proof. Let $\lambda \in \mathbb{C}$ with $Re(\lambda) > 0$. Then the semigroup

$$S := (e^{-iIm(\lambda)t}T(t))_{t\geq 0}$$

fulfils the assumption of Thm 2.1. and B := A - $i\lambda$ is the generator of S . Consequently R(λ ,A) = R(Re λ ,B) and the corollary follows from Theorem 2.1.

As in Section C-III the following notion will be an important tool for the spectral theory of semigroups.

<u>Definition</u> 2.3. Let E be a Banach space and $\emptyset \neq D$ an open subset of $\mathbb C$. A family R: D \rightarrow L(E) is called a <u>pseudo-resolvent on</u> D <u>with</u> values in E if

$$R(\lambda) - R(\mu) = -(\lambda - \mu)R(\lambda)R(\mu)$$

for all λ and μ in D.