Lecture 23: Spectral clustering, EM algorithm

Nisha Chandramoorthy

November 14, 2023

Lloyd's algorithm

▶ Randomly choose k centers $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$.

Lloyd's algorithm

- ▶ Randomly choose k centers $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$.
- ▶ Given centers $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$, assign each point x_i to the closest center. That is,

$$C_j = \{x_i : j \in \operatorname{argmin}_I \|x_i - \mu_I\|\}.$$

Lloyd's algorithm

- ▶ Randomly choose k centers $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$.
- ▶ Given centers $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$, assign each point x_i to the closest center. That is,

$$C_j = \{x_i : j \in \operatorname{argmin}_I ||x_i - \mu_I||\}.$$

▶ Given clusters C_1, \ldots, C_k , update centers $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$ as

$$\mu_j = \frac{1}{|C_j|} \sum_{x_i \in C_j} x_i.$$

k-means algorithm (Lloyd's algorithm)

Lloyd's algorithm is an approximate method to solve the ERM problem:

$$\min_{C_1,...,C_k} \sum_{j=1}^k \sum_{x_i \in C_j} \|x_i - \mu(C_j)\|^2.$$

k-means algorithm (Lloyd's algorithm)

Lloyd's algorithm is an approximate method to solve the ERM problem:

$$\min_{C_1,...,C_k} \sum_{j=1}^k \sum_{x_i \in C_j} \|x_i - \mu(C_j)\|^2.$$

here, $\mu(C_j) = \frac{1}{|C_j|} \sum_{x_i \in C_j} x_i = \operatorname{argmin}_{\mu \in \mathbb{R}^d} \sum_{x_i \in C_j} \|x_i - \mu\|^2$ is the mean of the points in cluster C_j .

k-means algorithm (Lloyd's algorithm)

Lloyd's algorithm is an approximate method to solve the ERM problem:

$$\min_{C_1,...,C_k} \sum_{j=1}^k \sum_{x_i \in C_j} ||x_i - \mu(C_j)||^2.$$

- here, $\mu(C_j) = \frac{1}{|C_j|} \sum_{x_i \in C_j} x_i = \operatorname{argmin}_{\mu \in \mathbb{R}^d} \sum_{x_i \in C_j} \|x_i \mu\|^2$ is the mean of the points in cluster C_j .
- Lloyd's algorithm is a heuristic. It is not guaranteed to converge to the global optimum or even a local minimum.

Lloyd's algorithm properties

k-means algorithm is sensitive to initialization of the centers.

Lloyd's algorithm properties

- k-means algorithm is sensitive to initialization of the centers.
- Complexity: O(mdk) per iteration, where m is the number of points, d is the dimension, and k is the number of clusters.

k-means failure modes

Source: sklearn's toy examples

k-means failure modes contd

Source: sklearn's toy examples

▶ Given distance d or similarity matrix, $W \in \mathbb{R}^{m \times m}$, partition the points into k clusters.

- ▶ Given distance d or similarity matrix, $W \in \mathbb{R}^{m \times m}$, partition the points into k clusters.
- W is symmetric and non-negative.

- ▶ Given distance d or similarity matrix, $W \in \mathbb{R}^{m \times m}$, partition the points into k clusters.
- W is symmetric and non-negative.
- W is a weighted adjacency matrix of a graph.

- ▶ Given distance d or similarity matrix, $W \in \mathbb{R}^{m \times m}$, partition the points into k clusters.
- W is symmetric and non-negative.
- W is a weighted adjacency matrix of a graph.
- ► ERM problem: $\min_{C_1,...,C_k} \sum_{j=1}^k \sum_{x_i \in C_j} \sum_{x_l \notin C_j} w_{il}$. Graph min-cut problem.

RatioCut problem: spectral clustering solution

▶ RatioCut problem: $\min_{C_1,...,C_k} \sum_{j=1}^k \frac{\sum_{x_i \in C_j} \sum_{x_j \notin C_j} w_{ij}}{|C_i|}$.

RatioCut problem: spectral clustering solution

- ► RatioCut problem: $\min_{C_1,...,C_k} \sum_{j=1}^k \frac{\sum_{x_j \in C_j} \sum_{x_l \notin C_j} w_{il}}{|C_i|}$.
- Normalization by $|C_i|$ penalizes small clusters.

RatioCut problem: spectral clustering solution

- ► RatioCut problem: $\min_{C_1,...,C_k} \sum_{j=1}^k \frac{\sum_{x_j \in C_j} \sum_{x_l \notin C_j} w_{il}}{|C_i|}$.
- Normalization by $|C_i|$ penalizes small clusters.

▶ Lemma 22.3 (Ben-David and Shalev Shwartz) RatioCut objective = Tr(H^TLH)

- ▶ Lemma 22.3 (Ben-David and Shalev Shwartz) RatioCut objective = Tr(H^TLH)
- ► L = D W is the graph Laplacian, where D is the diagonal matrix with $D_{ii} = \sum_{j=1}^{m} w_{ij}$.

- ▶ Lemma 22.3 (Ben-David and Shalev Shwartz) RatioCut objective = Tr(H^TLH)
- ▶ L = D W is the graph Laplacian, where D is the diagonal matrix with $D_{ii} = \sum_{j=1}^{m} w_{ij}$.
- ► $H \in \mathbb{R}^{m \times k}$ is the indicator matrix of the clusters. $H_{ij} = 1/\sqrt{|C_j|}$ if $x_i \in C_j$ and 0 otherwise.

- ▶ Lemma 22.3 (Ben-David and Shalev Shwartz) RatioCut objective = Tr(H^TLH)
- ► L = D W is the graph Laplacian, where D is the diagonal matrix with $D_{ii} = \sum_{j=1}^{m} w_{ij}$.
- ► $H \in \mathbb{R}^{m \times k}$ is the indicator matrix of the clusters. $H_{ij} = 1/\sqrt{|C_i|}$ if $x_i \in C_i$ and 0 otherwise.
- \blacktriangleright h_i (ith column of H) is nonzero at row j if x_j is in cluster i.

- ▶ Lemma 22.3 (Ben-David and Shalev Shwartz) RatioCut objective = Tr(H^TLH)
- ► L = D W is the graph Laplacian, where D is the diagonal matrix with $D_{ii} = \sum_{j=1}^{m} w_{ij}$.
- ► $H \in \mathbb{R}^{m \times k}$ is the indicator matrix of the clusters. $H_{ij} = 1/\sqrt{|C_j|}$ if $x_i \in C_j$ and 0 otherwise.
- \blacktriangleright h_i (*i*th column of H) is nonzero at row j if x_j is in cluster i.
- H has orthonormal columns.

► Choose weighting, such as, $w_{ij} = \exp(-\|x_i - x_j\|^2/2\sigma^2)$. As $\sigma \to 0$, $w_{ij} \to \mathbb{1}_{i=j}$. The $m \times m$ matrix W is the adjacency matrix of a graph.

- ► Choose weighting, such as, $w_{ij} = \exp(-\|x_i x_j\|^2/2\sigma^2)$. As $\sigma \to 0$, $w_{ij} \to \mathbb{1}_{i=j}$. The $m \times m$ matrix W is the adjacency matrix of a graph.
- ▶ Let *D* be the diagonal matrix with $D_{ii} = \sum_{j=1}^{m} w_{ij}$.

- ► Choose weighting, such as, $w_{ij} = \exp(-\|x_i x_j\|^2/2\sigma^2)$. As $\sigma \to 0$, $w_{ij} \to \mathbb{1}_{i=j}$. The $m \times m$ matrix W is the adjacency matrix of a graph.
- ▶ Let *D* be the diagonal matrix with $D_{ii} = \sum_{j=1}^{m} w_{ij}$.
- ► Graph laplacian: L = D W.

- ► Choose weighting, such as, $w_{ij} = \exp(-\|x_i x_j\|^2/2\sigma^2)$. As $\sigma \to 0$, $w_{ij} \to \mathbb{1}_{i=j}$. The $m \times m$ matrix W is the adjacency matrix of a graph.
- ▶ Let *D* be the diagonal matrix with $D_{ii} = \sum_{j=1}^{m} w_{ij}$.
- ▶ Graph laplacian: L = D W.
- Detects local structure / clusters in data.

Lemma proof: RatioCut objective and graph laplacian connection

▶ RatioCut objective(C_1, \dots, C_k)

$$:= \sum_{i=1}^k \frac{\sum_{x_i \in C_j} \sum_{x_l \notin C_j} \mathbf{w}_{il}}{|C_j|}.$$

Lemma proof: RatioCut objective and graph laplacian connection

▶ RatioCut objective(C_1, \dots, C_k)

$$:= \sum_{j=1}^k \frac{\sum_{x_i \in C_j} \sum_{x_l \notin C_j} w_{il}}{|C_j|}.$$

▶ Need to show equal to $Tr(H^TLH)$.

▶ Want to solve: $\min_{y_1, \dots, y_m} \sum_{i=1}^m \sum_{j=1}^m w_{ij} ||y_i - y_j||^2$.

- ▶ Want to solve: $\min_{y_1, \dots, y_m} \sum_{i=1}^m \sum_{j=1}^m w_{ij} ||y_i y_j||^2$.
- ▶ optimal embeddings: $y_i = E(x_i) = U[i, -n]$ where U is the matrix of eigenvectors of L.

- ▶ Want to solve: $\min_{y_1, \dots, y_m} \sum_{i=1}^m \sum_{j=1}^m w_{ij} ||y_i y_j||^2$.
- ▶ optimal embeddings: $y_i = E(x_i) = U[i, -n]$ where U is the matrix of eigenvectors of L.
- ► For any vector v, $v^{\top}Lv = (1/2) \sum_{i,j=1}^{m} w_{ij}(v_i v_j)^2$.

- ► Want to solve: $\min_{y_1, \dots, y_m} \sum_{i=1}^m \sum_{j=1}^m w_{ij} ||y_i y_j||^2$.
- ▶ optimal embeddings: $y_i = E(x_i) = U[i, -n]$: where U is the matrix of eigenvectors of L.
- ► For any vector v, $v^{\top}Lv = (1/2) \sum_{i,j=1}^{m} w_{ij}(v_i v_j)^2$.
- L is positive semi-definite.

Bottom *n* eigenvectors

Rayleigh quotient optimality

Bottom *n* eigenvectors

- Rayleigh quotient optimality
- Another interpretation: top n eigenvectors of L^{\dagger} . L_{ij}^{\dagger} represents expected time for random walk $i \rightarrow j \rightarrow i$.

Bottom *n* eigenvectors

- Rayleigh quotient optimality
- Another interpretation: top n eigenvectors of L^{\dagger} . L_{ij}^{\dagger} represents expected time for random walk $i \rightarrow j \rightarrow i$.
- ► Kernel PCA with $K = L^{\dagger}$ is equivalent to Laplacian eigenmaps.

Combining dimension reduction and k-means

Spectral clustering algorithm uses Laplacian eigenmaps on m-dimensional data.

Combining dimension reduction and k-means

- Spectral clustering algorithm uses Laplacian eigenmaps on m-dimensional data.
- Uses v_i , $i = 1, 2, \dots, k$ eigenvectors of L corresponding to the k smallest eigenvalues.

Combining dimension reduction and k-means

- Spectral clustering algorithm uses Laplacian eigenmaps on m-dimensional data.
- Uses v_i , $i = 1, 2, \dots, k$ eigenvectors of L corresponding to the k smallest eigenvalues.
- Perform k-means on rows of v_i to obtain clusters

Gaussian mixtures

Suppose we want to cluster data that is generated from a mixture of Gaussians.

Gaussian mixtures

- Suppose we want to cluster data that is generated from a mixture of Gaussians.

Gaussian mixtures

- Suppose we want to cluster data that is generated from a mixture of Gaussians.
- $\blacktriangleright x_i \sim \sum_{j=1}^k \pi_j \mathcal{N}(\mu_j, \Sigma_j).$
- Frequentist view: there is a true (unknown) parameter $\theta = (\pi_1, \dots, \pi_k, \mu_1, \dots, \mu_k, \Sigma_1, \dots, \Sigma_k)$ that generated the data.

► Clustering objective: maximize log likelihood of the data.

- ► Clustering objective: maximize log likelihood of the data.
- $\blacktriangleright \ \ell(x,\theta) = \log p_{\theta}(x) = \log \sum_{j=1}^k \pi_j \mathcal{N}(\mu_j, \Sigma_j).$

- Clustering objective: maximize log likelihood of the data.
- $\hat{R}_{\mathcal{S}}(\theta) = \sum_{i=1}^{m} \log \sum_{j=1}^{k} \pi_{j} \mathcal{N}(\mu_{j}, \Sigma_{j}).$

- Clustering objective: maximize log likelihood of the data.
- $\ell(x, \theta) = \log p_{\theta}(x) = \log \sum_{i=1}^{k} \pi_{i} \mathcal{N}(\mu_{i}, \Sigma_{i}).$
- $\blacktriangleright \hat{R}_{\mathcal{S}}(\theta) = \sum_{i=1}^{m} \log \sum_{j=1}^{k} \pi_{j} \mathcal{N}(\mu_{j}, \Sigma_{j}).$
- ▶ More generally, $\hat{R}_{\mathcal{S}}(\theta) = \sum_{i=1}^{m} \log \sum_{j=1}^{k} q_{\theta}(z_j) p_{\theta}(x_i|z_j)$.

- Clustering objective: maximize log likelihood of the data.
- $\ell(x,\theta) = \log p_{\theta}(x) = \log \sum_{j=1}^k \pi_j \mathcal{N}(\mu_j, \Sigma_j).$
- $\hat{R}_{\mathcal{S}}(\theta) = \sum_{i=1}^{m} \log \sum_{j=1}^{k} \pi_{j} \mathcal{N}(\mu_{j}, \Sigma_{j}).$
- ▶ More generally, $\hat{R}_{\mathcal{S}}(\theta) = \sum_{i=1}^{m} \log \sum_{j=1}^{k} q_{\theta}(z_j) p_{\theta}(x_i|z_j)$.
- The joint distribution $p_{\theta}(x, z) = q_{\theta}(z)p_{\theta}(x|z)$ is parametrized by θ .

- Clustering objective: maximize log likelihood of the data.
- $\ell(x,\theta) = \log p_{\theta}(x) = \log \sum_{j=1}^k \pi_j \mathcal{N}(\mu_j, \Sigma_j).$
- $\hat{R}_{\mathcal{S}}(\theta) = \sum_{i=1}^{m} \log \sum_{j=1}^{k} \pi_{j} \mathcal{N}(\mu_{j}, \Sigma_{j}).$
- ► More generally, $\hat{R}_{\mathcal{S}}(\theta) = \sum_{i=1}^{m} \log \sum_{j=1}^{k} q_{\theta}(z_j) p_{\theta}(x_i|z_j)$.
- The joint distribution $p_{\theta}(x, z) = q_{\theta}(z)p_{\theta}(x|z)$ is parametrized by θ .
- Z is a latent variable, e.g., Z is the cluster assignment of X.

Maximizing log likelihood

Distribution *q* of the latent variable is unknown.

Maximizing log likelihood

- Distribution q of the latent variable is unknown.
- Thus, we want to solve:

$$\max_{\theta} \max_{q} \sum_{i=1}^{m} \log \sum_{j=1}^{k} q_{\theta}(z_{j}) p_{\theta}(x_{i}|z_{j}). \tag{1}$$

▶ Lemma: For fixed θ , optimal $q_{\theta} \equiv p_{\theta}(\cdot|X)$ is the conditional distribution of Z given X.

Fix some x and θ .

- Fix some x and θ .
- $\ell(x, \theta) = \log p_{\theta}(x) = \log \sum_{j=1}^{k} p_{\theta}(x, z_{j}) = \log \sum_{j=1}^{k} q_{\theta}(z_{j}) \frac{p_{\theta}(x, z_{j})}{q_{\theta}(z_{j})}.$

- Fix some x and θ .
- $\ell(x, \theta) = \log p_{\theta}(x) = \log \sum_{j=1}^{k} p_{\theta}(x, z_{j}) = \log \sum_{j=1}^{k} q_{\theta}(z_{j}) \frac{p_{\theta}(x, z_{j})}{q_{\theta}(z_{j})}.$
- Use Jensen's inequality: $E \log Z \le \log EZ$ for any random variable Z.

- Fix some x and θ .
- $\ell(x, \theta) = \log p_{\theta}(x) = \log \sum_{j=1}^{k} p_{\theta}(x, z_{j}) = \log \sum_{j=1}^{k} q_{\theta}(z_{j}) \frac{p_{\theta}(x, z_{j})}{q_{\theta}(z_{j})}.$
- ▶ Use Jensen's inequality: $E \log Z \leq \log EZ$ for any random variable Z.
- ► Thus, $\ell(x, \theta) \geqslant \sum_{j=1}^{k} q_{\theta}(z_j) \log \frac{p_{\theta}(x, z_j)}{q_{\theta}(z_j)}$.

- Fix some x and θ .
- $\ell(x, \theta) = \log p_{\theta}(x) = \log \sum_{j=1}^{k} p_{\theta}(x, z_{j}) = \log \sum_{j=1}^{k} q_{\theta}(z_{j}) \frac{p_{\theta}(x, z_{j})}{q_{\theta}(z_{j})}.$
- ▶ Use Jensen's inequality: $E \log Z \leq \log EZ$ for any random variable Z.
- ► Thus, $\ell(x, \theta) \geqslant \sum_{j=1}^{k} q_{\theta}(z_j) \log \frac{p_{\theta}(x, z_j)}{q_{\theta}(z_j)}$.
- ▶ This holds for any probability distribution q_{θ} .

- Fix some x and θ .
- $\ell(x,\theta) = \log p_{\theta}(x) = \log \sum_{j=1}^{k} p_{\theta}(x,z_j) = \log \sum_{j=1}^{k} q_{\theta}(z_j) \frac{p_{\theta}(x,z_j)}{q_{\theta}(z_j)}.$
- Use Jensen's inequality: $E \log Z \le \log EZ$ for any random variable Z.
- ► Thus, $\ell(x, \theta) \geqslant \sum_{j=1}^{k} q_{\theta}(z_j) \log \frac{p_{\theta}(x, z_j)}{q_{\theta}(z_j)}$.
- ▶ This holds for any probability distribution q_{θ} .
- ► ELBO $(q, \theta) = \sum_{j=1}^{k} q(z_j) \log \frac{p_{\theta}(x, z_j)}{q(z_j)}$.

- Fix some x and θ .
- $\ell(x,\theta) = \log p_{\theta}(x) = \log \sum_{j=1}^{k} p_{\theta}(x,z_j) = \log \sum_{j=1}^{k} q_{\theta}(z_j) \frac{p_{\theta}(x,z_j)}{q_{\theta}(z_j)}.$
- Use Jensen's inequality: $E \log Z \le \log EZ$ for any random variable Z.
- ► Thus, $\ell(x, \theta) \geqslant \sum_{j=1}^{k} q_{\theta}(z_j) \log \frac{p_{\theta}(x, z_j)}{q_{\theta}(z_j)}$.
- ▶ This holds for any probability distribution q_{θ} .
- ► ELBO $(q, \theta) = \sum_{j=1}^{k} q(z_j) \log \frac{p_{\theta}(x, z_j)}{q(z_j)}$.
- ▶ Thus, we have shown, $\ell(x, \theta) \ge \mathsf{ELBO}(q, \theta)$ for any q.

 $\Rightarrow 2xi \beta_{i=1} \in \mathbb{R}^7$ $\Rightarrow E(x_i) \in \mathbb{R}^k$ k: reduced dimension Dim red. objective <math>E(X) = 0

Dim red. objective E(X) =ang min $\mathfrak{R}_{L}(hi) \times$ HEIR The laplacian of data

Colo hi $\mathfrak{R}_{L}(hi) \times \mathfrak{R}_{L}(hi) \times \mathfrak{R}$

 $= \left[\begin{array}{c} (x_i) = \left[\begin{array}{c} v_i(i), v_2(i), ..., v_k(i) \end{array} \right] \\ \in \mathbb{R}^k \end{aligned}$ where $v_i \in \mathbb{R}^m$ is the ith smallest eigenested

Probability distribution of X $l(x, 0) = -\log P(x)$ g likelihood log likelihood $x_i, x_2 \dots, x_m$ (iidassupption) $log Po(x_1, \dots, x_m) = log TPo(x_i)$ Joint Prob dist of X,,..., Xm $= \sum_{i=1}^{m} \log p(x_i)$ Latent variable Z is discrete and takes k cliff value $\log P_{\Theta}(x) = \log \frac{k}{2} P_{\Theta}(z_j) P_{\Theta}(x_j|z_j)$ j=1 $= \log \sum_{j=1}^{R} p_{\theta}(x, z_j)$ 40: probabilit of Z $P_{\theta}(X/Z)$: pro dis g X/ZPo(X, Z): joint dist of X, Z.

ML estimation

$$\theta_{i}^{*} e^{*} = arg max \quad arg max \quad \sum_{i=1}^{m} \frac{k}{j=1} e^{i(z_{i}^{*})} e^{i(x_{i}^{*}|z_{i}^{*})}$$

Show that:
$$e^{(i/x)} = arg max \quad \sum_{j=1}^{k} \log \left(\frac{2(z_{i}^{*})}{2} \frac{e^{(x_{i}^{*}|z_{i}^{*})}}{2} \right)$$

$$e^{(i/x)} = \frac{1}{2} e^{i(x_{i}^{*}|z_{i}^{*})}$$

$$e^{(i/x)} = \frac{1}{2} e^{i(x$$

 $\sum_{j=1}^{k} 2(z_j) \log p(x, z_j)$ j=1

+ $\left(\sum_{j=1}^{k} 2(z_j) \log p(z_j)\right)$

log p(z) - DKL (2/p(12))

 $= \sum_{j=1}^{k} 2(z_j) \log \frac{p_{\theta}(x_j, z_j)}{2(z_j)}$

 $- \underset{j=1}{\overset{k}{\leq}} 2(z_j) \log \frac{2(z_j)}{p(z_j, z_j)}$

- \(\frac{2}{2}\) \(\log\) \(\frac{2(2)}{2}\)

 $- \underbrace{\underbrace{\underbrace{2(z_j)}}_{j=1} \log \underbrace{2(z_j)}_{2(z_j)}$

 $\rightarrow l(x,\theta) \geqslant ELBO(2,\theta)$

 $\rightarrow 2 (z/x) = 6(z/x)$

 $\rightarrow ELBO(P_{\Theta}(z|x), \theta)$

 $= \sum_{j=1}^{k} f_{\Theta}(z_{j}/x) \log \frac{f_{\Theta}(x, z_{j})}{f_{\Theta}(z_{j}/x)}$

 $= \frac{\sum_{j=1}^{k} P_{\theta}(z_{j}/x) \log P_{\theta}(z_{j}/x) P(x)}{P_{\theta}(z_{j}/x)}$

 $log p(x) = l(x, \theta)$

ELBO(2, 0, x)