

Post-Quantum Cryptographic Hardware Primitives on FPGAs

ASCS ADAPTIVE & SECURE COMPUTING SYSTEMS LABORATORY

Rashmi Agrawal, Lake Bu, and Michel A. Kinsy

Applications

- HTTPS
- Digitally signed PDFs
- Homomorphic Encryption
- Secure IMs: Signal, FB Messenger, Telegram, Cyphr, Silence, etc.

- Tor Browser
- Next-Gen Blockchain
- Secure DNA Query
- Privacy Preserving Machine Learning

Why Quantum-Proof?

IBM 50Q System: An IBM cryostat wired for a 50 qubit system.			
Algorithm		Secure in Post-quantum Era?	
RSA-1024, -2048, -4096		No	
Elliptic Curve Crypto (ECC) -256, -521		No	
Diffie-Hellman		No	
ECC Diffie-Hellman		No	
AES-128, -192		No	
Projected arrival(by years) probability of general purpose quantum computers — Late 2015 Projection — Early 2015 Projection 100 80 40 20 2020 2022 2024 2026 2028 2030 2032 2034 2036 2038 Year	1.E+08 1.E+05 1.E+04 1.E+03 1.E+02 Quantum Che 1.E+01 1.E+01 1.E+02	Adiabatic Adiabatic Physical (Non-Adiabatic) Logical (100:1) Logical (1000:1) Logical (1000:1)	

NIST's Standardization Steps

Public-Key Encryption		Key Establishment		
NTRU Prime	(R-lattice)	<u>NewHope</u>	(R-LWE)	
NTRU European Encryption Standard	(R-lattice)	NTRU European Encryption Standard	(R-lattice)	
LAC	(R-LWE)	FrodoKEM	(R-LWE)	
SABER	(ModLW R)	CRYSTALS-KYBER	(R-LWE)	
Round5	(R-LWR)	SABER	(Mod-LWR)	
		Three Bears	(Mod-LWE)	

Why Ring-Learning with Errors?

- A branch of lattice-based cryptosystems
- Able to perform
- Public-key encryption
- Key-exchange
- Digital Signature
- Able to build Somewhat Homomorphic Encryption (SHE)
- Used for quantum computation verification
- Smaller key size (7k~15k bits vs. 1MB for codebased & 1TB for "post-quantum RSA")
- Simpler computation and circuits

Public-Key Cryptosystem

Key Modules of PKC

Basic Operations (Every operation is modular)

- Random Number Generator
 - Gaussian Noise Sampler
 - Polynomial Addition/Subtraction
 - Scalar Multiplication with a Binary Polynomial
- Scalar Division to the Nearest Binary Integer
- **Polynomial Multiplication**

Size of the Polynomials/Vectors

- Length: 256, 512, or 1024
- Symbol: within the prime number 1,049,089

Implementation

Design Workflow

Algorithmic optimizations for hardware implementation

Basic operator implementation i.e. polynomial addition, subtraction, multiplication, division

FSM design of three sub-modules i.e. Key Generation, Encryption and Decryption

> Integration, testing, and final deliverable

Polynomial Multiplication

Approach-1

- Naïve Convolution with Polynomial Reduction
- Complexity: O(N²)

Approach-2

- Number-Theoretic Transform over finite field

Complexity:

O(N log N)

- **Negative Wrapped Convolution**
- Optimized for Algorithm Polynomial multiplication using FFT

FPGA platforms Let ω be a primitive n-th root of unity in \mathbb{Z}_p and $\phi^2 \equiv \omega$ mod p. Let $\mathbf{a} = (a_0, \dots, a_{n-1}), \mathbf{b} = (b_0, \dots, b_{n-1})$ and $\mathbf{c} = (c_0, \dots, c_{n-1})$ be the coefficient vectors of degree n polynomials a(x), b(x), and c(x), respectively, where $a_i, b_i, c_i \in$

 $\mathbb{Z}_p, i = 0, 1, \dots, n - 1.$ **Input:** $\mathbf{a}, \mathbf{b}, \omega, \omega^{-1}, \phi, \phi^{-1}, n, n^{-1}, p$.

Output: c where $c(x) = a(x) \cdot b(x) \mod \langle x^n + 1 \rangle$. 1: Precompute: $\omega^i, \omega^{-i}, \phi^i, \phi^{-i}$ where $i = 0, 1, \dots, n-1$ 2: **for** i = 0 **to** n - 1 **do** $\bar{a}_i \leftarrow a_i \phi^i \mod p$

Negative Wrapped Convolution 4: $\bar{b}_i \leftarrow b_i \phi^i \mod p$ 5: end for Number-Theoretic Transform 6: $\mathbf{A} \leftarrow \mathrm{FFT}^n_{\omega}(\bar{\mathbf{a}})$ Component-wise multiplication | $\bar{C}_i \leftarrow \bar{A}_i \bar{B}_i \mod p$

> Inverse NTT \longrightarrow 11: $\bar{\mathbf{c}} \leftarrow \mathrm{IFFT}_{ci}^n(\bar{\mathbf{C}})$ 12: **for** i = 0 **to** n - 1 **do** Inverse NWC ___ \rightarrow 13: $c_i \leftarrow \bar{c}_i \phi^{-i} \mod p$ 14: end for 15: return c

Results

Latency Equations based on {q, n}

Operation	Latency		
KeyGen	$3n + \frac{3n}{2}\log n$		
Enc	$7n + 2n \log n$		
Dec	$4n + n \log n$		

Area Equations based on {q, n}

Resource	Cost		
LUTs	$O(n \log n \log q)$		
Registers	$O(n \log n \log q)$		

Hardware Cost with different n and q values

n	q	LUTs	Registers	DSP	BRAM
32	193	4352	169	4	0
64	257	5828	215	4	0
128	769	5420	211	26	3.5
256	10753	8311	394	26	3.5
512	12289	11504	674	26	3.5
1024	65537	21423	1304	30	3.5