The purpose of this session is to introduce you to the heteroscedastic error term and different tests for heteroscedasticity.

Heteroscedasticity

Use the Wooldridge dataset hprice1 to obtain the usual OLS and heteroskedastic-robust standard errors for the following model of house prices,

$$price = \beta_0 + \beta_1 lot size + \beta_2 sqt ft + \beta_3 bdrms + u \tag{1}$$

- a) Discuss any important differences between the usual OLS and heteroskedastic-robust standard errors.
- b) Repeat part (a) for the following model,

$$\log(price) = \beta_0 + \beta_1 \log(lot size) + \beta_2 \log(sqt ft) + \beta_3 bdrms + u$$
 (2)

- c) What does this example suggest about the heteroskedasticity present in model (1) and the transfor Asion isol for the departed Project Exam Help
 d) Consider model (1). Conduct a Breusch-Pagan test, a White test, and the special case of the
- d) Consider model (I). Conduct a Breusch-Pagan test, a White test, and the special case of the White test using both the LM and F forms of the appropriate test statistics. Complete the following table, https://powcoder.com

Test	Observed test of Critical value for statistical value for statisti							
	F	LM	F	LM	F	LM	F	LM
BP								
White								
White								
(Special)								

Hint: Generate and save the residuals using the resid commands. Also generate new variables for the squared values and interaction terms, then run the required regressions to obtain the necessary test statistics. The following command, qchisq(x,df) will provide the p-value for the χ^2 distribution with df degrees of freedom and an observed test statistic of x.