

Università di Perugia Dipartimento di Matematica e Informatica

ESAME DI DIDATTICA DELL'ARCHITETTURA DEGLI ELABORATORI

Esercitazione su circuiti combinatori

Professore
Prof. Arturo Carpi

Studenti Chiara Luchini Nicolò Posta Tommaso Romani Nicolò Vescera

Anno Accademico 2021-2022

1 Prerequisiti

Per questa esercitazione sono necessari i seguenti prerequisiti:

- Nozioni base dell'algebra Booleana;
- Conoscenza e applicazione delle mappe di Karnaugh;
- Saper formalizzare problemi riguardanti circuiti combinatori;
- Saper rappresentare circuiti combinatori tramite diagrammi;

2 Obiettivi

Alla fine dell'esercitazione lo studente saprà interpretare il problema proposto e risolverlo con gli strumenti appresi durante il corso di Architettura degli Elaboratori. Inoltre avrà acquisito la capacità di progettare e minimizzare un circuito logico combinatorio a partire da dei dati iniziali suddividendolo in diversi passaggi fra cui:

- 1. Definizione delle specifiche;
- 2. Sintesi;
- 3. Ottimizzazione;
- 4. Implementazione;
- 5. Verifica.

3 Esercizio

1. Si chiede di progettare un sistema automatico per l'attracco di 4 navi di tipologia diversa in due differenti punti di sbarco di un porto, le quali sono individuate tramite le seguenti lettere J, C, P e S.

Tutte quante possono arrivare contemporaneamente al porto, ma ognuna ha una diversa priorità rispetto alle altre:

- J ha una priorità maggiore di tutte le altri navi;
- C ha una priorità maggiore solo di P e S;
- P ha priorità maggiore di S.

Quest'ultima può essere riassunta tramite la seguente formula J > C > P > S. Il sistema di attracco è gestito tramite 4 differenti variabili X, Y, Z e W secondo la codifica riportata in Tabella 1.

Codifica attracco navi									
X	Y	Z	W	Navi					
0	0	0	0	Nessun attracco					
0	0	0	1	J					
0	0	1	0	C					
0	1	0	0	P					
1	0	0	0	S					
0	0	1	1	JC					
0	1	0	1	JP					
1	0	0	1	JS					
0	1	1	0	CP					
1	0	1	0	CS					
1	1	0	0	PS					

Soluzione

Formulazione

Creazione della tabella di verità.

J	С	Р	S	X	Y	\mathbf{Z}	W	Attracco
0	0	0	0	0	0	0	0	Nessuna
0	0	0	1	1	0	0	0	S
0	0	1	0	0	1	0	0	Р
0	0	1	1	1	1	0	0	PS
0	1	0	0	0	0	1	0	С
0	1	0	1	1	0	1	0	CS
0	1	1	0	0	1	1	0	CP
0	1	1	1	0	1	1	0	CP
1	0	0	0	0	0	0	1	J
1	0	0	1	1	0	0	1	JS
1	0	1	0	0	1	0	1	JP
1	0	1	1	0	1	0	1	JP
1	1	0	0	0	0	1	1	JC
1	1	0	1	0	0	1	1	JC
1	1	1	0	0	0	1	1	JC
1	1	1	1	0	0	1	1	JC

Ottimizzazione

Creazione delle Mappe di Karnaugh.

1. Mappa di Karnaugh per X.

$$X = S\overline{CP} + S\overline{JP} + S\overline{JC}$$

2. Mappa di Karnaugh per Y.

$$Y = P\overline{J} + P\overline{C}$$

3. Mappa di Karnaugh per Z.

$$Z = C$$

4. Mappa di Karnaugh per W.

$$W = J$$

Disegno del circuito

Disegno del circuito combinatorio non minimizzato.

Disegno del circuito combinatorio minimizzato tramite le seguenti formule: $X = S(\overline{CP} + \overline{JP} + \overline{JC})$ $Y = P(\overline{J} + \overline{C})$ Z = C W = J