Két várható érték különbségének becslése

- Független minták esete: $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2), \ X \sim \mathcal{N}(\mu_X, \sigma_X^2)$
 - $-\sigma_Y^2$ és σ_X^2 sokasági varianciák ismertek.

Az $1-\alpha$ megbízhatósági szinthez tartozó konfidencia intervallum:

$$P\left(\overline{y} - \overline{x} - z_{1-\frac{\alpha}{2}}\sqrt{\frac{\sigma_Y^2}{n_Y} + \frac{\sigma_X^2}{n_X}} < \mu_Y - \mu_X < \overline{y} - \overline{x} + z_{1-\frac{\alpha}{2}}\sqrt{\frac{\sigma_Y^2}{n_Y} + \frac{\sigma_X^2}{n_X}}\right) = 1 - \alpha$$

azaz

$$\operatorname{Int}_{1-\alpha}(\mu_Y - \mu_X) = \overline{y} - \overline{x} \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_Y^2}{n_Y} + \frac{\sigma_X^2}{n_X}}$$

 $-\sigma_Y^2$ és σ_X^2 sokasági varianciákat a mintákból kell becsülni, és feltételezhető, hogy $\sigma_Y^2 = \sigma_X^2$. Legyen $\overline{d} = \overline{y} - \overline{x}$. Ekkor

$$s_{\overline{d}} = s_c \cdot \sqrt{\frac{1}{n_Y} + \frac{1}{n_X}} = \sqrt{\frac{(n_Y - 1)s_Y^2 + (n_X - 1)s_X^2}{n_Y + n_X - 2}} \cdot \sqrt{\frac{1}{n_Y} + \frac{1}{n_X}}$$

Az $1-\alpha$ megbízhatósági szinthez tartozó konfidencia intervallum:

$$P\left(\overline{d} - t_{1-\frac{\alpha}{2}}(\nu) \cdot s_{\overline{d}} < \mu_Y - \mu_X < \overline{d} + t_{1-\frac{\alpha}{2}}(\nu) \cdot s_{\overline{d}}\right) = 1 - \alpha$$

azaz

$$\operatorname{Int}_{1-\alpha}(\mu_Y - \mu_X) = \overline{d} \pm t_{1-\frac{\alpha}{2}}(\nu) \cdot s_{\overline{d}}$$

• Páros minták esete

 $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ és $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ között sztochasztikus kapcsolat van $n := n_X = n_Y$, továbbá σ_Y^2 és σ_X^2 ismeretlenek.

Elemenként kivonjuk egymásból a két mintát: $d_i = y_i - x_i$, i = 1, ..., n. Ekkor

$$\overline{d} = \overline{y} - \overline{x} = \frac{\sum_{i=1}^{n} d_i}{n}$$
 $s_d^2 = \frac{\sum_{i=1}^{n} (d_i - \overline{d})^2}{n-1}$

Az $1-\alpha$ megbízhatósági szinthez tartozó konfidencia intervallum:

$$P\left(\overline{d} - t_{1-\frac{\alpha}{2}}(n-1)\frac{s_d}{\sqrt{n}} < \mu_Y - \mu_X < \overline{d} + t_{1-\frac{\alpha}{2}}(n-1)\frac{s_d}{\sqrt{n}}\right) = 1 - \alpha$$

azaz

$$\operatorname{Int}_{1-\alpha}(\mu_Y - \mu_X) = \overline{d} \pm t_{1-\frac{\alpha}{2}}(n-1) \frac{s_d}{\sqrt{n}}$$

1. Egy autóklub megvizsgálta a Lada Borscs és a Skoda Sztrapacska gépkocsik fogyasztását. A vizsgálat néhány eredményét az alábbi táblázat tartalmazza. A fogyasztás szórásának gyári értékei mindkét típusú gépkocsi esetén 0,95 liter/100km. Az autók fogyasztásáról feltételezzük, hogy az normális eloszlást követ.

Group Statistics

	Autótípus	N	Mean	Std. Deviation	Std. Error Mean
fogyasztás(l/100km)	Lada Borscs	12	8,4806	1,0703	0,3090
	Skoda Sztrapacska	15	7,3799	0,8967	0,2315

- (a) Adjon 98%-os konfidencia intervallumot a Lada Borscs átlagfogyasztására! Adjon becslést abban az esetben is, ha a szórás gyári értékét ismeretlennek tekintjük!
- (b) Adjon 95%-os megbízhatóságú intervallumbecslést a Lada Borscs fogyasztásának szórására!
- (c) Adjon 98%-os megbízhatóságú intervallumbecslést arra, hogy a Lada Borscs átlagosan mennyivel fogyaszt többet, mint a Skoda Sztrapacska! Adjon becslést abban az esetben is, ha a szórások gyári értékeit ismeretlennek tekintjük, de feltesszük, hogy azonosak!
- (d) Egy másik autóklub adatai szerint 400-ból 12 Skoda Sztrapacska hűtővize elfolyik. Adjon 95%-os konfidencia intervallumot a hibás hűtőrendszerű Skoda Sztrapacskák arányára!
- (e) Mekkora minta kellene ahhoz, hogy a hibás hűtőrendszerű Skoda Sztrapacskák arányára 90%-os biztonsággal adjunk az előzőnél kétszer pontosabb becslést (fele akkora hiba)?
- 2. A pincérek láthatatlan jövedelmének becslése céljából 10 kiválasztott pincér bevallott havi borravalójának ismeretében a vendégkör véleménye alapján megbecsülték a tényleges borravaló nagyságát is. A minta adatai a következők:

	Bevallott	Tényleges
Sorszám	borraval	ó, Ft/hó
1.	4 000	9 000
2.	$2\ 000$	5 300
3.	3 500	6 000
4.	$5\ 000$	9 800
5.	1 800	4 300
6.	6 000	10 100
7.	2 800	5 900
8.	1 500	4 200
9.	3 900	9 400
10.	4 400	10 500

A tényleges és bevallott borravaló különbsége normális eloszlású változónak tekinthető. Becsülje meg 90% biztonsággal, hogy átlagosan mekkora összegű borravalót nem vallanak be a pincérek!

3. A Hörömpő Cirkusz (világszám!) bolha szekciójának vezető (és egyben egyedüli) artistája, Lajoska messze földön híres távolugró tudományáról. Minden egyes előadásnak van egy olyan pontja, amikor Lajoska helyből távolugrik. A mellékelt táblázat 8 délutáni és 5 délelőtti előadás ugrásának centiméterben mért adatait adja meg (az ugrások hosszát normális eloszlásúnak tekinthetjük).

Group Statistics

	előadás	N	Mean	Std. Deviation	Std. Error Mean
ugráshossz	délután	8	100,0000	15,58387	5,50973
	délelőtt	5	85,0000	11,18034	5,00000

- (a) Adjon 95%-os megbízhatóságú intervallumbecslést a délelőtti ugrások szórására!
- (b) Adjon 90%-os megbízhatóságú intervallumbecslést arra, hogy Lajoska átlagosan hány centiméterrel ugrik nagyobbat délután, mint délelőtt! Lajoska délelőtti és délutáni teljesítményét függetlennek tekintjük.
- (c) Több éves közös munkájuk során Lajoska segédje minden előadáson feljegyezte a mért ugráshosszt és ebből meghatározta, hogy a délelőtti ugrások szórása 10 cm. Az adatok alapján adjon 95 %-os megbízhatóságú intervallumbecslést a délelőtti ugrások átlagos hosszára. Hány délelőtti ugrás adataira lenne szükség egy fele ilyen hosszú, de 98%-os megbízhatóságú konfidenciaintervallum előállításához?
- (d) Lajoska fő attrakciója a háromszoros Salto mortale, azaz a védőháló nélküli halálugrás három átfordulással. Ez azonban nem mindig sikerül, ilyenkor Lajoska csak 2 bukfencet csinál a levegőben. A legutóbbi Kökörcsin utcai turnén Lajoska 50 ugrásból 30-at rontott. Adjon 90%-os megbízhatóságú intervallumbecslést a sikeres ugrások arányára!