ENGLISH TRANSLATION OF INFORMATION OF JAPANESE PATENT KOKOKU PUBLICATION NO. 48473/1992

Kokoku Publication No.:

48473/1992

Kokoku Publication Date:

August 6, 1992

International classification:

A63B 37/00

Title of the Invention:

SOLID GOLF BALL

Application Number:

135444/1985

Application Date:

June 20,1985

10 **Inventor(s)**:

Taketo MATSUKI and

Akihiro NAKAHARA

Applicant:

SUMITOMO RUBBER INDUSTRIES, LTD.

WHAT IS CLAIMED IS:

15

20

5

1. A solid golf ball comprising a core, and a cover covering the core, wherein the cover is composed of a cover inner layer and a cover outer layer, and the cover inner layer and cover outer layer have the physical properties described in the following table.

	Specific gravity	Thickness (mm)	Hardness (Shore D)	Flexural modulus (MPa)
Cover inner layer	not less than	0.5 to 2.0	not more than the cover outer layer	not more than the cover outer layer
Cover outer layer	0.92 to 1.2	0.5 to 2.0	58 to 72	280 to 500

- 2. The solid golf ball according to Claim 1, wherein the cover inner layer comprises high specific gravity filler.
- 3. The solid golf ball according to Claim 2, wherein the high specific gravity filler has a specific gravity of 10 to 20.

19日本国特許庁(JP)

① 特許出願公告

⑫特 許 公 報(B2) $\Psi 4 - 48473$

@Int. Cl. 5

識別記号

庁内整理番号

200公告 平成4年(1992)8月6日

A 63 B 37/00

C 7318-2C

発明の数 1 (全6頁)

の発明の名称

ソリツドゴルフボール

判 平2-19122

②特 願 昭60-135444

69公 開 昭61-290969

220出 願 昭60(1985)6月20日 ❸昭61(1986)12月20日

@発 松 木 丈 人 兵庫県神戸市中央区筒井町1丁目1番1号 住友ゴム工業

株式会社内

@発 明 者 中 原 耷 裕 兵庫県神戸市中央区筒井町1丁目1番1号 住友ゴム工業

株式会社内

の出 願 人

住友ゴム工業 株式会

兵庫県神戸市中央区筒井町1丁目1番1号

四代 理 人

弁理士 青山 葆 外2名

審判の合議体 審判長 大 塚

進 審判官 山川 サツキ 審判官 伏見 隆 夫

90多考文献 特閉 昭51-49840 (JP.A) 特別 昭60-80469(JP,A)

特開 昭58-92372 (JP, A)

1

2

の特許語求の筋肌

コアと該コアを被覆するカパーとからなるソ リッドゴルフボールにおいて、該カバーが外層お* *よび内層の2層を有し、かつ、該外層および内層 が以下の特性:

	比重	厚さ (m)	硬度 (ショアーD)	曲げ弾性率 (MPa)
カバー内層	1.2以上	0.5~2.0	外層以下	外層以下
カバー外層	0.92~1.2	0.5~2.0	58~72	280~500

を有することを特徴とするソリッドゴルフポー 10 層ソリッドゴルフボールとツーピースソリッドポ ル。

- 2 カバー内圏が高比重充塡剤を含有する第1項 記載のソリツドゴルフポール。
- 3 高比重充塡剤の比重が10~20である第2項記 載のソリツドゴルフポール。

発明の詳細な説明

(産業上の利用分野)

本発明はソリッドゴルフボール、特にゴルフボ ールのサパーの構造を変えて飛距離を向上させた ソリツトゴルフポールに関する。

(発明の背景)

ラウンド用高級ソリッドゴルフボールには、多

ールとがあり、両者共にコア保護のためカバーを 被せている。

このソリツトゴルフボールのコアは、通常反撥 性の高いポリプタジエンを主材とし、これに共架 15 橋剤として不飽和脂肪酸の金属塩を使用し、加硫 成型されて製造されている。カバーは通常、アイ オノマー樹脂に少量の白色充填剤を加えて比重を 0.92~1.2程度に調整し、コアに被収成形される。

他方、ゴルフボールには重量基準 (45.91 8以 20 下)があるが、飛距離を伸ばすために重量基準の 最大値付近に調節されるのが一般的である。従っ て、前記コアのゴム組成物に重量調節剤として多

量の充塡剤(例えば、酸化亜鉛、硫酸パリウム 等)を添加している。

しかしながら、このような多量の重量調節剤の 添加はブタジェンゴム本来の反撥性能を生かせ た、コアの比重が高くなる結果、慣性モーメント が小さくなり、スピンがかかり易く、飛行中のス ピンの減衰も早くなり、飛距離が小さくなる。

特開昭60-53164号公報には、カバーの比重を カバーに高比重材料(鉄粉、金属酸化物等)を添 10 加することにより高めることにより、コアの反撥 弾性を高め、飛行性能を良くすることが提案され ている。しかしながら、高比重材料のカパー全体 への添加、特に重金属あるいはその塩 (これらは*

*通常黒つぽい色を有してる)の添加はカパーを着 色する結果となり、カパーにペイントにより塗装 しても、カバー自体の色目が出て実用に耐えな い。また、カバーの比重を高めるために添加物を ず、ゴルフポールの飛距離を低下させている。ま 5 多く配合しなければならず、クラブの衝撃に対す るカバーの耐久性が低下する傾向があり、実用 上、問題がある。

> 本発明は、上記の如き欠点のないゴルフポール の開発を目的としてなされたものである。

(発明の構成)

即ち、本発明はコアと該コアを被覆するカバー とからなるソリッドゴルフボールにおいて、該カ バーが外層および内層の2層を有し、かつ、該外 層および内層が以下の特性:

	比重	厚さ (mm)	硬度 (ショアーD)	山げ弾性率 (MPa)
カバー内層	1.2以上	0.5~2.0	外層以下	外層以下
カバー外層	0.92~1.2	0.5~2.0	58~72	280~500

を有することを特徴とするソリッドゴルフボール を提供する。

図面を参照して本発明を説明する。

本発明ソリッドゴルフボールのカパー外層 1 される。使用し得るカパー材料としては、種々の アイオノマー樹脂が挙げられる。好ましいアイオ ノマー樹脂はモノオレフインと炭素原子数3~8 の不飽和モノまたはジカルボン酸およびそれらの 種の重合体(不飽和モノまたはジカルボン酸およ び/またはこれらのエステル4~30重量%含有) に交差金属結合を付与した熱可塑性樹脂である。

このような樹脂としては、三井ポリケミカル社 1554, 1555, 1601, 1605, 1650, 1652, 1702, 1557、1706、1707、1855、1856が挙げられる。こ のカバー外層に用いる材料は、特に打駆時にボー ルにスピンがかかりにくい硬質で高い弾性率を有 8~72、好ましくは60~66、 曲弾性率280~ 500MPaのものが好ましい。前記樹脂の中でこの . 様な特性を有するものの例としては、ハイミラン 1605、1706、1707、これらと前記他のハイミラン **悩脂との混合物等が挙げられる。**

カバー内層2はカバー外層1とほぼ同様の樹脂 を用いて製造されるが、比重は1.2以上、好まし くは1.4~2.5に調節される。比重調節のために高 は、従来用いられているカバーと全く同様に調製 25 比重充塡剤を添加する。高比重充塡剤(好ましく は、比重10~20) として金属粉、金属酸化物、金 属窒化物、金属炭化物等が挙げられる。例えば、 タングステン (黒、比重:19.3)、タングステン カーパイト(黒褐色、比重:15.8)、モリプデン エステルからなる群から選択される少なくとも一 30 (灰色、比重: 10.2)、鉛 (灰色、比重: 11.3)、 酸化鉛 (暗灰色、比重:9.3)、ニッケル (銀灰 色、比重:8.9) および銅(赤褐色、比重:8.9) またはこれらの混合物が例示される。上記高比重 充塡剤を用いるのが好ましいが、比較的比重の小 から市販されている各種「ハイミラン」、例えば、35 さい硫酸パリウム、二酸化チタン、または亜鉛華 を用いても良く、この場合、カバー内層の比重を 上げるために樹脂:充塡剤の重量比は1:0.8~ 1:1.5程度添加する。カバー内層2は打撃時に 直接クラブからの力を受けないので、特に硬質高 するものが好ましい。例えば、ショアーD硬度5 40 弾性率にする必要はなく、従来使用されていたバ ラタのようなものでもよい。

> 上記配合剤の他に両カバー層とも他の添加量を 加えてもよい。他の添加量としては、例えば二酸 化チタンなどの白色顔料や着色剤、老化防止剤、

6

榾剤、分散剤、安定剤、紫外線吸収剤などが適宜 選択して使用される。特にパラタカバー用組成物 の調製に際しては、カバー添加量として上記のも の以外にもイオウ、加硫促進剤などが用いられ

カバー用組成物の調製、カバーのコアへの被覆 方法は、従来から採用されている通常の手段によ つて行なうことができる。例えばカバー用組成物 の調製はロール、ミキサー、押出機などによりカ カパー配合剤を均一に混合することによつて行な われ、コアへの被覆はインジェクション成形、あ るいは圧縮成形によつて行なわれる。

両カバー層 1 および 2 の厚さは0.5~ 2 ㎜であ を2つのカバー層で確保し、かつカバー内層2は 必要量の重金属充填剤を混入するのに十分な量の 樹脂組成と厚みが必要である。

ソリッドゴルフポールにおけるコア3は、カバ 加により、これまで重量調整のために配合してい た充塡剤の配合量を少なくすることができる。

ソリツドコアの配合成分には基材ゴム、架橋 剂、共架橋剤、不活性充塡剤等が含まれる。

基材ゴムとしてはシス構造を少なくとも40%以 25 ものとなる。 上有する1,4ーポリブタジエンが特に好まし く、所望により、該ポリブタジェンに天然ゴム、 ポリイソプレンゴム、スチレンブタジェンゴム等 を適宜配合してもよい。

ブチルパーオキサイドのような有機過酸化物およ びアゾピスイソブチルニトリルのようなアゾ化合 物等が例示されるが、特に好ましいものはジクミ ルパーオキサイドである。

架橋別の配合量は基材ゴム100重量部に対して 35 カバー内層の作製 通常0.5~3.0重量部、好ましくは1.0~2.5重量部 である。

共架橋剤としては特に限定するものではない が、不飽和樹脂酸の金属塩、就中、炭素原子数3 リル酸等)の亜鉛塩やマグネシウム塩が例示され るが、アクリル酸亜鉛(正塩)が特に好適で、こ の配合鼠は基剂ゴム100重量部に対して30~38重 量部、好ましくは32~36重量部である。

不活性充塡剤は前述のようにコアへの添加を減 らすことができるものの、ゴム架橋を促進する働 きを有することもあり、酸化亚鉛等を少量添加す るのが好ましい。

ソリツトゴルフボールのコア3は通常の方法、 例えばロールやニーダーを用いて混練後、金型内 に圧縮成形し、架橋することにより得られる。

コア3の重量は重量調節のための充塡剤の添加 量が減つたので、通常スモールサイズのボールの バー主材、要すれば、高比重充塡剤および所望の 10 場合、25~35 8、ラージサイズのボールの場合、 通常30~35 8 が好ましい。

(発明の効果)

本発明によればコアの不活性充塡剤の添加が減 り、ブタジェン本来の反撥性が十分に発揮され、 る。ソリッドゴルフボールのカバーと十分な厚み 15 飛距離が伸びる。また、ソリッドゴルフボール中 心部の重量が減り、外側部分の重量が増大したこ とにより、ボールの慣性モーメントが高められ、 ポール打撃時の初期スピンが減少し、飛行中のス ピンの減衰を制御し、飛距離の増大が図られる。 ー内層 2 中の高比重充塡剂への配合による重量増 20 特に、カバー外層の硬質の樹脂を用いれば、初期 スピンがさらに減少し、飛距離が仲ぴる。また、 充塡剤量が多く耐久性の劣る層を内層にし、充塡 剤量が少なく耐久性の良い層を外層にして内層を 被覆するため、カバー全体の耐久性は実用にたる

(実施例)

実施例1~5および比較例1~4 コアの作製

表一1に示すゴム組成物を金型中160℃で25分 架橋剤としてはジクミルパーオキサイドやt- 30 間加硫して、外径36.8㎜のソリツドコアを作製し た。なお、組成物の調製にあたつては得られるゴ ルフポールの総重量が約45.48になるようにコア の重量を調整した。表-1の組成物の配合部数は カパー、コアとも重量部によるものである。

表-1に記載のアイオノマーをロールにて溶 解、混練し、これに高比重充塡剤とを所定量添加 して混ぜ合せた。混合後、シート状に押し出し、 150℃で保存後、コンプレツションモールデイン ~8の不飽和脂肪酸(例えばアクリル酸、メタク 40 グ法にてポール用のハーフシェルを作製し、前記 コアに被覆した。次いで、コンプレッションモー ルデイング法で155℃で2.5分加熱して、コア被覆 物を作製した。

カパー外層およびポールの作製

8

表-1に記載の配合で押出成形によりカバー外層のペレットを作製し、これをインジェクションモールデイング法により、前記コア被覆物に被覆し、直径41.2㎜のツーピースゴルフボールを得

t--

得られたゴルフボールの物性を測定し、結果を 表一**2**に示す。

1

. —

				実施例		· · · · · · · · · · · · · · · · · · ·		上	文例	
		1	2	3	4	5	1	2	3	4
カバー	ハイミラン #1605	100	100	100	100	100	·	100	100	
内層	タングステン (d=19.3)	50.4	82.7	16.1				81.8	50.5	
	モリブデン (10.2)			_	90.4			_	_	
	BaSO ₄ (4, 45)	~	_		-	120.9		_	_	
	カバーの比重	1.394	1.668	1.942	1.668	1.668		1.660	1.395	
	カパーの厚さ (ms)	1.2	1.2	1.2	1.2	1.2	·	1.2	1.8	
	カバー硬度	67	67	67	67	67		67	67	
	曲げ弾性率 (MPa)	380	370	350	360	350		370	380	
カバー	ハイミラン 非1605	100	100	100	100	100	100			100
外層	ハイミラン #1855							100	100	
	TiO ₂ (d=3.84)	2	2	2	2	2	2	2	2	
	タングステン (19.3)									41.9
	カバーの比重	0, 964	0.964	0,964	0.964	0, 964	0.964	0.974	0.974	1.32
	カバーの厚さ (xxx)	1.0	1.0	1.0	1.0	1.0	2.2	1.0	0.4	2.2
	カバー硬度	67	67	67	67	67	67	56	56	67
	山げ弾性率 (NPa)	380	380	380	380	380	380	90	90	380
カノ	ベー外観色	白	白	白	白	白	白	白	白	黒
7	BR01	100	100	100	100	100	100	100	100	100
アー	アクリル酸亜 鉛	33	33	33	33	33	33	33	33	33
	酸化亚塩	40	30	20	30	30	54.0	30	30	30
	老化防止剂	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3

. 10

			実施例		比較例				
	1	2	3	4	5	1	2	3	4
ジクミルパー オキサイド	1.2	1.2	1.2	1.2	1.2	1,2	1.2	1.2	1.2
コアー重 <u>量</u> (g)	33.0	31,5	30.0	31.5	31.5	35,00	31.5	31.5	31.5

表

2

		実施例					比較例			
	1	2	3	4	5	1	2	3	4	
ポール重量 (g)	45.4	45.3	45, 5	45.3	45, 4	45.4	45.3	45.3	45.4	
ボール硬度し	95	95	94	96	95	95	93	94	94	
反撥係数 ²	0.757	0.762	0.767	0.761	0,760	0.752	0.755	0.757	0.760	
飛距離 ³ (キャリー; n)	202.8	204,0	206.5	203.8	203, 1	201.0	201.2	201.5	203, 9	
初期スピン¹(rpm)	3320	3200	3100	3205	3201	3400	3600	3570	3250	
耐久性5	101	100	99	100	100	100	90	92	95	

飿

- 1 ポール硬度:USGA方式による硬度表示。
- 2 反撥係数:ボールに198.4gの円筒物を45m/secの速度で衝突させたときのボール速度から算出した。
- 3 飛距離: ツルーテンパー社製スイングロボットにて、ウッド1番クラブでヘッドスピード45m/sの時の飛距離(キャリー)データ。
- 4 初期スピン:飛距離測定時に写真法にて測定した。
- 5 耐久性:エアーガンにて、金属板に45cm/secの速度で衝突せしめ、カバー層が割れるまでの 回数を、比較例1を100としてときの指数表示で示したもので、数値が大きい程耐久性が良い。

図面の簡単な説明

であつて、図中、1:カバー外層、2:カバー内

第1図は本発明ソリッドゴルフボールの断面図

層、3:コアを示す。

