Relations and Their Properties

DUE: Thursday, January 19th (11:59pm EST)

Directions: See Canvas. Scan this page to the front of your work.

(1) (3 points/3 points/2 points/2 points)

For the relation $R = \{(1,1), (1,3), (1,4), (2,3), (2,4), (3,1), (3,4), (4,1)\}$ on the set $A = \{1,2,3,4\}$, list **all** elements that are **missing** from the relation in order for R to satisfy the following properties: (a) reflexive, (b) symmetric, (c) transitive.

- (d) Explain whether or not *R* is *antisymmetric*.
- (2) (2 points each)

Let the sets be relations on the real numbers: $R_1 = \{(a, b) \in \mathbb{R}^2 | a \ge b\}$, the "greater than or equal to" relation & let $R_2 = \{(a, b) \in \mathbb{R}^2 | a \ne b\}$, the "unequal to" relation. Find:

- (a) $R_1 \cap R_2$ (write out the relation in the *set notation*, as R_1 and R_2 were written)
- (b) $R_1 \oplus R_2$ (write out the relation in the *set notation*, as R_1 and R_2 were written). Note: \oplus is XOR (exclusive or).
- (3) (3 points/3 points)

For the set $A = \{a, b, c\}$, answer the following:

- (a) How many *elements* are in the set $A \times A$?
- (b) How many binary relations are there on the set?
- (4) (5 points)

If $R = \{(1,1), (1,2), (2,4), (3,1), (3,0)\}$, $S = \{(1,2), (2,0), (3,1), (0,0), (4,3)\}$ find $S \circ R$, with elements listed as above.

(5) (5 points each)

R is the relation represented by the matrix $\mathbf{M}_R = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, find the *matrix*

representations for:

- (a) R^{-1} (R inverse),
- (b) \overline{R} (R complement),
- (c) $R \circ R$ (i.e., R^2 , R composed with R).
- (6) (4 points/2 points/4 points)
- (a) The relation R is on $\{1, 2, 3\}$. Represent the relation

$$R = \{(1, 1), (2, 1), (2, 2), (2, 3), (3, 2)\}$$
 with a *matrix*.

- (b) By looking at the matrix, is the relation R reflexive? Why or why not?
- (c) Draw the *directed graph* that represents the relation R.