Hahn-Banach 定理

注: 本章讨论一般的度量空间, 从而使用序列刻画连续性及紧致性等足矣, 暂不大动干戈.

Banach 空间与范数

Def. 称 X 为域 $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ 上的线性空间, 若且仅若满足 "八条规则".

 $\mathbf{Def.}$ 称 p 为线性空间 X 上的一个半范数, 若且仅若

- $p: X \to \mathbb{R}_{>0}$.
- $\bullet \ \ \forall a>0, x\in X: p(ax)=ap(x).$
- $\forall x,y \in X : p(x+y) \leq p(x) + p(y)$.

特别地, 若 $p(x) = 0 \Leftrightarrow x = 0$, 则称 p 为范数.

Example. 范数为半范数. 线性算子的绝对值也为半范数, 其为范数当且仅当算子的余维度为 0 (即在任意一维空间上不是零算子).

Example. 范数直接导出度量. 半范数不一定导出度量, 因为缺失自反性.

Def. 称 $(X, \|\cdot\|)$ 为 Banach 空间, 若且仅若其为完备的范数空间.

Example. 有限维线性空间一定为 Banach 空间. 无穷维线性空间不一定为 Banach 空间: 例如内积空间 $(\operatorname{span}(e_1,e_2,\ldots),\|\cdot\|)$ 不为 Banach 空间, 因为 Cauchy 列 $\{\sum_{k=1}^n k^{-1}e_k\}_{n\geq 1}$ 的极限不在原空间中.

Def. 称 ℓ 为 X 上的线性泛函, 若且仅若

- $\ell: X \to \mathbb{F}$, $\mathbb{F} = \mathbb{R}$ 或 \mathbb{C} 取决于 X 所在的域.
- ℓ 为线性映射, 即 $\ell(x+cy)=\ell(x)+c\ell(y)$, $\forall x,y\in X$, $\forall c\in\mathbb{F}$.

Def. 称 T 为线性空间 X 到线性空间 U 上的 \mathbb{F} -线性算子, 若且仅若 $T:X\to U$ 为线性映射, 即 $T(x+cy)=T(x)+cT(y), \forall x,y\in X, \forall c\in\mathbb{F}.$

特别地, $T:\mathbb{C}\to\mathbb{C},z\mapsto\overline{z}$ 为 \mathbb{R} -线性算子, 但在 \mathbb{C} 上不再线性. \mathbb{C} -线性算子一定为 \mathbb{R} -线性算子.

Example. 线性泛函即某一 X 到 \mathbb{F} 上的线性算子.

Def. 记 X 到 Y 的线性算子空间为 $\mathcal{L}(X,Y)$.

Def. 算子
$$T\in\mathcal{L}(X,Y)$$
 的范数为 $\|T\|:=\suprac{\|Tx\|}{\|x\|}=\sup_{\|x\|=1}\|Tx\|.$

Example. $\mathcal{L}(X,Y)$ 不一定为范数空间, 因为算子范数可能达到无穷.

Def. 取 $\mathcal{B}(X,Y):=\{T\mid \|T\|<\infty\}$ 为 $\mathcal{L}(X,Y)$ 的线性子空间, 即有界算子空间.

Prop. 对 $T \in \mathcal{L}(X,Y)$, 以下概念等价:

- 1. T 在某一点 $x_0 \in X$ 连续.
- 2. T 在 X 上连续.
- 3. *T* 在 *X* 上一致连续.
- $4. T \in \mathcal{B}(X, Y).$

Proof. 前三条等价是因为算子的线性性.

3. 与 4. 等价是因为

$$\forall \varepsilon > 0, \exists \delta > 0, \forall \|x - x'\| < \delta : \|T(x) - T(x')\| < \varepsilon$$

等价于 $\|T\| = \sup_{\|x\|=1} \|Tx\| \le \frac{\varepsilon}{\delta}$.

Example. $\mathcal{B}(X,Y)$ 为 Banach 空间, 因为任意 Cauchy 列 $\{T_n\}_{n\in\mathbb{N}}$ 的逐点极限恰导出某一有界线性算子, 记作 $\{T_n\}_{n\in\mathbb{N}}$ 之极限.

原始定理

Thm. (Hahn-Banach) 设 X 为 $\mathbb F$ 上的线性空间, Y 为 X 的线性子空间, p 为 X 上的半范数, ℓ 为 Y 上的范数. 若 $p(y) \geq \ell(y)$ 对一切 $y \in Y$ 成立, 则存在 X 上的线性泛函 $\tilde{\ell}(:X \to \mathbb F)$ 使得

- $\tilde{\ell}(y) = \ell(y), \forall y \in Y$.
- $p(x) \ge \ell(x), \forall x \in X$.

Proof.

Step 1. 当 $\mathbb{F} = \mathbb{R}$ 时, 假设 $Y \subseteq X$, 取 $z_0 \in X \setminus Y$. 对任意 $y, y' \in Y$, 总有

$$\ell(y+y') \le p(y+y') \le p(y+z_0) + p(y'-z_0).$$

从而 $\ell(y') - p(y'-z_0) \leq p(y+z_0) - \ell(y)$, $\forall y, y' \in Y$. 记

- $m = \sup_{y' \in Y} (\ell(y') p(y' z_0))$,
- $M = \inf_{y \in Y} (p(y + z_0) \ell(y)).$

显然 $m \leq M$. 取 $\tilde{\ell}(z_0) = a \in [m, M]$ 即可得 ℓ 在 $\mathrm{span}(Y, z_0)$ 上的延拓.

Step 2. 当 $\mathbb{F}=\mathbb{C}$ 时, ℓ 为 \mathbb{C} 上的线性泛函, $\mathrm{Re}(\ell)$ 为 \mathbb{R} 上的线性泛函. 取 $\ell(x)=\mathrm{Re}(\ell(x))-i\mathrm{Re}(\ell(ix))$ 即可.

Step 3. 记作 $(Z^\#,\ell^\#)$ 为 (Y,ℓ) 在 $Z^\#$ 上的一种延拓. 考虑 P 为 (Y,ℓ) 在某一线性子空间上的延拓 所构成的偏序集, 记 $(Z^\#,\ell^\#) \le (Z^\$,\ell^\$)$ 当且仅当 $Z^\# \subset Z^\$$ 且 $\ell^\$|_{Z^\#} = \ell^\#$. 对任意 P 中的链 $\{(Z_i,\ell_i)\}_{i\in I}$, 存在极大元

$$(Z_0,\ell_0),\quad Z_0=\cup_{i\in I}Z_i,\ell_0|_{Z_i}=\ell_i.$$

若极大元 (Z_0,ℓ_0) 满足 $Z_0\subsetneq X$, 则存在 $z_0\in X\setminus Z_0$ 使得 (Z_0,ℓ_0) 可扩张为更大的元, 矛盾! 因此只能有 $Z_0=X$.

注: Hanh-Banach 定理未涉及 Banach 空间, 连续线性泛函等限定.

Col. 对任意 $x_0 \in X$, 存在 X 上连续线性泛函 ℓ , 使得 $|\ell(x_0)| = ||x_0||$.

Proof. 只需考虑 $x_0 \neq 0$ 时情形. 对 X 上的半范数 $\|\cdot\|$ 与一维空间 $\operatorname{span}(x_0)$ 上的连续线性泛函 $\ell(\lambda x_0) = \lambda \|x_0\|$ 采用 Hahn-Banach 定理即可.

Col. ℓ 为 X 上的连续线性泛函, 则 $\|x_0\| = \sup_{\|\ell\|=1} |\ell(x_0)|$.

Proof. 只需考虑 $x_0 \neq 0$ 时情形. 一方面, $\sup_{\|\ell\|=1} |\ell(x_0)| \leq \sup_{\|\ell\|=1} \|x_0\| = \|x_0\|$. 另一方面, 存在使得 $|\ell(x_0)| = \|x_0\|$ 且 $\|\ell\| = 1$ 的连续线性泛函, 因此不等式可取等.

Col. 对 X 的线性子空间 Y 与任意 $x_0 \in X \setminus Y$, 记 $d_0 := \inf_{y \in Y} \|x_0 - y\|$ 为 x_0 到 Y 的距离, 则存在 X 上的连续线性泛函 ℓ 使得 ℓ 在 Y 上恒为 0 且 $\ell(x_0) = d_0$.

Proof. 定义半范数 $p(x) := \inf_{y \in Y} \|x - y\|$ 即可.

Example. 连续线性泛函延拓并非显然事实. 例如取 X 为 [0,1] 上的 $\mathrm{span}(1,x,x^2,\ldots)$, 范数 $\|f\|:=(\int_{[1,2]}|f|^2)^{1/2}$, 则存在线性泛函 ℓ 使得 $\ell(x)=\ell(x^2)=\cdots=0$. 若定义 $\ell(1)$ 使得 ℓ 仍连续, 则只能有 $\ell(1)=0$. 因为 $\{(x-1)^k\}_{k\geq 1}$ 收敛至 0, 从而 $\ell((x-1)^k)=(-1)^k\ell(1)$ 只能收敛至 0, 故 $\ell(1)=0$.

应用: 凸集分离定理

Def. 称 S 为 X 中的凸集, 若且仅若 $\forall x,y \in S$, $\forall \theta \in [0,1]$, 总有 $\theta x + (1-\theta)y \in S$.

Thm. 设 A 为凸开集, B 为凸集, $A\cap B=\emptyset$, 则存在 \mathbb{R} -连续线性泛函 ℓ 使得

$$\sup_{x\in A}\ell(x)\geq \inf_{y\in B}\ell(y),$$

即超平面 $\ell(z) = \sup_{x \in A} \ell(x)$ 分离 $A \ni B$.

Proof.

Step 1. 取 $A-B:=\{x-y\mid x\in A,y\in B\}$, 任取 $x_0\in A-B$, 记 $C:=\{x-y-x_0\mid x\in A,y\in B\}$. 显然 C 为开集且包含原点.

Step 2. 作 X 上的半范数 $p(z) := \min\{\lambda \in \mathbb{R}_{\geq 0} \mid z \in \lambda \cdot C\}$, 则 p 在 C 边界上取值为 1. 取 $\mathrm{span}(x_0)$ 上的线性泛函 f 满足 $f(x_0) = p(x_0)$, 则存在延拓 \tilde{f} 使得 \tilde{f} 在 X 上取值不超过 p.

Step 3. 注意到 $x_0 \notin C$, 从而 $\forall x \in A$, $y \in B$,

$$\tilde{f}(x - y - x_0) = \tilde{f}(x) - \tilde{f}(y) - p(x_0) \le \tilde{f}(x) - \tilde{f}(y).$$

从而 $\tilde{f}(y) \leq \tilde{f}(x)$ 恒成立.

Col. A 为凸开集, B 为与 A 不相交的凸集, 则存在 \mathbb{R} -连续线性泛函 ℓ 与 $c\in\mathbb{R}$ 使得 $\sup_{x\in A}\ell(x)>c\geq\inf_{y\in B}\ell(y).$

Col. A 为紧凸集, B 为与 A 不相交的闭凸集, 则存在 \mathbb{R} -连续线性泛函 ℓ 使得 $(\sup_{x\in A}\ell(x),\inf_{y\in B}\ell(y))$ 为区间.

Proof. 注意到 A 上连续函数 $d_B(x)=\inf_{y\in B}d(x,y)$ 在紧集 A 上取达正的最小值, 从而存在 $\varepsilon>0$ 使得 $A+t\varepsilon$ 为与 B 不交的凸开集 $(t\in(0,1))$.

应用: 二次对偶的典范嵌入

Def. 记 X 为 \mathbb{F} 上线性空间, 定义对偶空间为 $X^* := \mathcal{B}(X,\mathbb{F})$.

Thm. 存在等距嵌入 $J: X \to X^{**}, x \mapsto J_x$, 等距即 $||x|| \equiv ||J_x||$.

Proof. 一方面, $J_x:X^* o \mathbb{F},\ell\mapsto J_x(\ell)=\ell(x)$ 为良定义的线性映射, 从而 J 为线性空间的嵌入. 另一方面, 由 Hahn-Banach 定理之推论得

$$\|J_x\| = \sup_{\|\ell\|=1} |J_x(\ell)| = \sup_{\|\ell\|=1} |\ell(x)| = \|x\|.$$

从而为等距嵌入.

Def. 称 X 为自反的, 若且仅若 $J: X \to X^{**}$ 为同构.

Example. 空间

$$\ell^p := \{x = \{x_n\}_{n \geq 1} \mid \|x\|_{\ell^p} = \sqrt[p]{\sum_{n \geq 1} |x_n|^p} < \infty \}$$

为反射的, 若 $p \in (1, +\infty)$. 特别地, $(\ell^p)^* = \ell^q$, 其中 $p^{-1} + q^{-1} = 1$.

Proof. 不难验证 $(\ell^p)^*$ 包含 ℓ^q 中一切元素, 因为任意 $f \in \ell^q$, 总有

$$\|f\| = \sup_{\|x\|_{\ell^p}=1} |f(x)| \leq \|f\|_{\ell^q} \cdot \|x\|_{\ell^p} < \infty.$$

另一方面, 由于 $\mathrm{span}(\{e_n\}_{n\geq 1})$ 在 ℓ^p 中稠密, 从而 $\forall f\in (\ell^p)^*$ 可记作

$$\sum_{n\geq 1} a_n e_n \mapsto \sum_{n\geq 1} a_n c_n.$$

由于对任意 $\{a_n\}_{n\geq 1}\in \ell^p$, 总存在 $\{c_n\}_{n\geq 1}$ 使得

$$|\sum_{n\geq 1} a_n c_n| = \|a\|_{\ell^p} \cdot \|c\|_{\ell^q}$$

因此 $||f||_{\ell^q} < \infty$ 是必要的. 证毕.

Prop. 对某些 $\ell \in X^*$, 或不存在 $x \in X$ 使得 $\dfrac{|\ell(x)|}{||x||} = ||\ell||$, 此时空间不自反.

Proof. 根据 Hahn-Banach 定理, 存在 $arphi \in X^{**}$ 使得 $\dfrac{\|arphi(\ell)\|}{\|arphi(arphi)\|}$. 若 $J:X o X^{**}$ 为同构, 则存在唯一 的 $x\in X$ 使得 $J_x=arphi$. 这与 $\dfrac{|\ell(x)|}{||x||}=\|\ell\|$ 矛盾!

职是之故, ℓ^1 , $(C([0,1]),\|\cdot\|_\infty)$, ℓ^∞ , c_0 , 以及非自反空间的对偶空间等均非自反.

Example. c_0 表示一切收敛至 0 的数列, 则 $(c_0)^* = \ell^1$.

Proof. 注意到 $\operatorname{span}\{e_k\}_{k\geq 1}$ 在 c_0 中稠密, 则 $f\in(c_0)^*$ 可写作

$$f: x = \sum_{k \geq 1} c_k e_k \mapsto \sum_{k \geq 1} f(e_k) c_k.$$

根据 Abel-Dirichlet 判别法, 显然 ℓ^1 中一切元素均在 $(c_0)^*$ 中. 反之若存在 f 使得 $\sum_{k\geq 1}|f(e_k)|=\infty$, 下证明 f 无解, 即存在 $x \in c_0$ 使得 $f(x) = \infty$.

换言之,需找到比 $\sum_{k\geq 1}|f(e_k)|=\infty$ 发散速度更慢的级数 $\sum_{k\geq 1}|x_n|\cdot|f(e_k)|=\infty$,其中 $x_n o 0$. 实际上, 取正项序列 $\{D_k\}_{k\geq 1}$ 使得 $\sum_{k\geq 1}D_k=\infty$. 记 $d_k=rac{D_k}{D_1+\cdots D_{l-1}}$, 则

$$ullet egin{aligned} & \lim_{k o\infty}rac{d_k}{D_k}=\lim_{k o\infty}rac{1}{D_1+\cdots D_{k-1}}=0, \ & \sum_{k>1}d_k>\sum_{k>1}\int_{D_1+\cdots D_{k-1}}^{D_1+\cdots D_{k-1}}rac{\mathrm{d}x}{x}=\infty. \end{aligned}$$

$$ullet \sum_{k\geq 1} d_k > \sum_{k\geq 1} \int_{D_1+\cdots D_{k-1}}^{D_1+\cdots +D_k} rac{\mathrm{d}x}{x} = \infty.$$

Example. 证明 $(\ell^1)^* = \ell^{\infty}$.

Proof. 显然 $\ell^{\infty} \subset (\ell^1)^*$. 注意到 $\operatorname{span}\{e_k\}_{k\geq 1}$ 在 ℓ^1 中稠密, 则 f 可写作

$$f: x = \sum_{k \geq 1} c_k e_k \mapsto \sum_{k \geq 1} f(e_k) c_k.$$

若存在 $\{e_{n_k}\}_{k\geq 1}$ 使得 $|f(e_{n_k})|\to\infty$, 则 ℓ^1 中收敛至 0 的序列 $\{e_{n_k}\cdot\sqrt{|f(e_{n_k})|}^{-1}\}$ 在 f 下发散, 与 f 之连续性矛盾.

П

Example. ℓ^1 不自反, 即存在无法在 ℓ^1 中表示的 ℓ^∞ 中的泛函.

Proof. 记 c 为收敛数列之全体, 显然 $c_0 \subsetneq c \subsetneq \ell^\infty$. 显然, c 上泛函 $\lim_{n\to\infty}$ 无法用 ℓ^1 表示. 下证明 $\lim_{n\to\infty}$ 的某种延拓可在 ℓ^∞ 中定义.

记 $p(x)=\limsup_{n\to\infty}|x_n|$ 为 ℓ^∞ 上的半范数, $f(x)=\lim_{n\to\infty}x_n$ 为真子空间 $c\subsetneq\ell^\infty$ 上的连续线性泛函. 根据 Hahn-Banach 定理, 存在延拓 \tilde{f} 使得

- $ilde{f}(x) = f(x)$, $\forall x \in c$.
- $|\tilde{f}(x)| \leq p(x)$.

Thm. $(\ell^{\infty})^*$ 等距同构于 $\beta \mathbb{N}$ 上有限 Borel 测度.

Proof. 留作 Stone-Čech compactification 的补充内容.

应用: Banach 极限

Thm. (Generalised Hahn-Banach theorem, Agnew & Morse) 记 $\mathcal{A} \subset \mathcal{L}(X,X)$ 为一族两两可交换的 线性映射 (即 \mathcal{A} 为交换算子半群), X 上的半范数 p 满足 $p(Ax) \leq p(x)$, $\forall A \in \mathcal{A}$. 若存在线性子空间 $Y \subset X$ 上的线性泛函 ℓ 使得

- $\ell(y) \leq p(y)$, $\forall y \in Y$.
- $\mathcal{A}|_Y \subset \mathcal{L}(Y,Y)$.
- $\ell(Ay) = \ell(y)$, $\forall y \in Y$, $\forall A \in \mathcal{A}$.

从而存在延拓 $\tilde{\ell}$ 使得

- $ilde{\ell}(x) \leq p(x)$, $\forall x \in X$.
- ullet $ilde{\ell}(Ax)= ilde{\ell}(x)$, $orall A\in \mathcal{A}$, $orall x\in X$.

Proof. 略, 自行查看 Lax 的泛函分析.

此时可定义 ℓ^{∞} 上的某种极限 $\mathrm{LIM}_{n o \infty}$ 使得

- $LIM_{n\to\infty} \in (\ell^{\infty})^*$.
- $\lim_{n\to\infty} x_n = \lim_{n\to\infty} x_n, \forall x \in c \subseteq \ell^{\infty}$.
- $\liminf_{n\to\infty} x_n \leq \mathrm{LIM}_{n\to\infty} x_n \leq \limsup_{n\to\infty} x_n$, $\forall x \in \ell^{\infty}$.
- $LIM_{n\to\infty}$ 在左平移算子与右平移算子下不变.

Def. 称满足以上性质的 $LIM_{n\to\infty}$ 为 Banach 极限.

Prop. 可定义有界函数空间上的 Banach 极限.

应用: Tauberian 理论

Tauberian 理论研究一类单参数变换的函数族对所在空间的刻画, 例如证明了平移算子在 $f\in L^2(\mathbb{R}^n)$ 上作用的轨道在 $L^2(\mathbb{R}^n)$ 中稠密的充要条件.

Lemma. $\forall f \in L^1(\mathbb{R}^n)$, $\forall t \in \mathbb{R}^n$, $\exists \varepsilon > 0$, $\exists h \left(\|h\|_{L^1(\mathbb{R}^n)} < \varepsilon \right)$ 使得 $\hat{h}(s) = \hat{f}(t) - \hat{f}(s)$ 对一切 $s \in U$ 成立, U 为某一 t 的邻域.

Proof. 取 $q \in L^1(\mathbb{R}^n)$ 使得 $\hat{q} \equiv 1$ 在原点附近成立. 任取 $\forall \lambda > 0$, 置

$$egin{aligned} g_{\lambda}(x) &:= e^{it\cdot x} \lambda^{-n} g(x/\lambda), \ h_{\lambda}(x) &:= \hat{f}(t) g_{\lambda}(x) - (f * g_{\lambda})(x). \end{aligned}$$

此处 g_λ 为缩放后的 Fourier 变换之积分项, h_λ 用于导出 g 与之平移的积分差. 注意到 $\hat{g}_\lambda(s)=1$ 在 t 的某邻域 U_λ 中成立, 则对 $s\in V_\lambda$ 总有 $\hat{h}(s)=\hat{f}(t)-\hat{f}(s)$. 注意到

$$h_\lambda(x) = \int_{\mathbb{R}^n} f(y) [e^{-it\cdot y} g_\lambda(x) - g_\lambda(x-y)] \mathrm{d}y.$$

从而据控制收敛定理有

$$egin{align} \|h_{\lambda}\|_{L^1(\mathbb{R}^n)} &= \int_{\mathbb{R}^n} |h_{\lambda}| \ &\leq \int_{\mathbb{R}^n} |f| \cdot \int_{\mathbb{R}^n} |g(\xi) - g(\xi - \lambda^{-1}y)| \ &\stackrel{\lambda o 0}{=} 0. \end{aligned}$$

Thm. 取 $\phi \in L^{\infty}(\mathbb{R}^n)$, 取子空间

$$Y \subset [L^1(\mathbb{R}^n) \cap \{f \mid f * \phi = 0\}].$$

则 $Z(Y):=\cap_{f\in Y}\{s\in\mathbb{R}^n\mid \hat{f}(s)=0\}$ 包含 $\hat{\phi}$ 的紧支撑.

Proof. 选定 $t\in Z(Y)^c$, 则存在 $f\in Y$ 使得 $\hat{f}(t)=1$. 根据引理, 存在 $h\in L^1(\mathbb{R}^n)$ 使得 $\|h\|_{L^1(\mathbb{R}^n)}<1$, 使得 $\hat{h}(s)=1-\hat{f}(s)$ 在 t 的某一邻域 U 中成立. 下仅需证明 $\hat{\phi}=0$ 对 U 中元素成立. 等价地, $\hat{\phi}\cdot\hat{\psi}$ 对一切速降空间中在 U 中有紧支撑的 $\psi\in\mathscr{S}(\mathbb{R}^n)$ 成立, 再等价地, $\psi*\phi=0$.

置 $g_0=\psi$, $g_m=h*g_{m-1}$, 由 Young 不等式知 $\|g_m\|_{L^1(\mathbb{R})}\leq \|h\|_{L^1(\mathbb{R}^n)}^m\cdot \|\psi\|_{L^1(\mathbb{R}^n)}$. 注意到 $(1-\hat{h}(s))\hat{\psi}(s)=\hat{\psi}(s)\hat{f}(s)$, 故 $\hat{\psi}=\sum_{m=1}^\infty\hat{h}^m\hat{\psi}\hat{f}$. 由于 $\|h\|_{L^1(\mathbb{R}^n)}<1$, 故 $\sum_{n\geq 1}\hat{h}^m\in L^1(\mathbb{R}^n)$. 从而得

$$\psi*\phi=(\sum_{n\geq 1}g_m)*f*\phi=0.$$

Thm. (Wiener) 记 \mathcal{L}_0 为平移算子群, $Y\subset L^1(\mathbb{R}^n)$ 为 \mathcal{L}_0 的不变子空间, 则 $Y=L^1(\mathbb{R}^n)$.

Proof. $\forall f \in Y$, $\forall x_0 \in \mathbb{R}^n$, 平移算子 $L_{x_0}: Y \to Y$, $f(x) \mapsto f(x+x_0)$. 若存在 $\phi \in L^\infty(\mathbb{R}^n)$ 使得 $\int f\check{\phi} = 0$ 对一切 $f \in Y$ 恒成立, 则 $f * \phi = 0$. 根据上一定理, $\hat{\phi}$ 的支撑为空集, 从而 $\hat{\phi} = 0$. 注意到 Fourier 变换在 $\mathscr{S}(\mathbb{R}^n)$ 上——对应, 从而 $\phi = 0$ a.e. in $L^\infty(\mathbb{R}^n)$.

由于 $T^{\perp}=0$, 根据 Hahn-Banach 定理知 $Y=L^{1}(\mathbb{R}^{n})$.

Col. 取 $K\in L^1(\mathbb{R}^n)$, Y 为 $L^1(\mathbb{R}^n)$ 上包含 K 的最小闭子空间, 则 $Y=L^1(\mathbb{R}^n)$ 若且仅若 $\hat{K}(t)\neq 0$ 对任意 $t\in\mathbb{R}$ 成立.

Proof. 注意到 $Z(Y)=\{t\in\mathbb{R}^n\mid \hat{K}(t)=0\}$. 根据 Wiener 定理, Z(Y) 空当且仅当 $Y=L^1(\mathbb{R}^n)$.