MA2104

AY22/23 Sem 1

github.com/jasonqiu212

01. Vectors, Lines, Planes

- **Dot Product** $a \cdot b = ||a|| ||b|| \cos \theta$
- $a \cdot b = b \cdot a$ $a \cdot (b+c) = a \cdot b + a \cdot c$
- $a \cdot b = 0 \leftrightarrow a \perp b$
- Projection $\operatorname{proj}_a b = \frac{a \cdot b}{a \cdot a} a$
- $\operatorname{comp}_a b = ||\operatorname{proj}_a b|| = \frac{a \cdot b}{||a||}$
- Cross Product $-a \times b = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \langle a_2b_3 a_3b_2, -(a_1b_3 b_1a_3), a_1b_2 a_2b_1 \rangle$
- $\bullet \ a \times b \perp a \ \text{and} \ \bot b \qquad a \times b = -b \times a$
- $||a \times b|| = ||a|| ||b|| \sin \theta$ Direction: Right hand rule
- $\bullet \ A = ||a \times b|| \qquad ||PQ|| \sin \theta = \frac{||PQ \times PR||}{||PR||}$

- Scalar Triple Product $-a \cdot (b \times c) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$
- Result is a scalar value
- $\bullet \ A_{\mathsf{Base}} = ||b \times c|| \qquad V = Ah = a \cdot (b \times c)$

- Line $\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle > + \langle a, b, c \rangle t$
- 2D: Either parallel or intersecting
- 3D: Either parallel, intersecting, or skew
- Plane $\langle a, b, c \rangle \cdot \langle x, y, z \rangle = \langle a, b, c \rangle \cdot \langle x_0, y_0, z_0 \rangle$ where $\langle a, b, c \rangle$ is perpendicular to plane
- Tangent Vector Given $r(t) = \langle f(t), g(t), h(t) \rangle$:

$$r'(a) = \lim_{\Delta t \to 0} \frac{r(a + \Delta t) - r(a)}{\Delta t} = \langle f'(a), g'(a), h'(a) \rangle$$

- $\frac{d}{dt}(r(t) + s(t)) = \frac{d}{dt}r(t) + \frac{d}{dt}s(t)$
- $\bullet \ \frac{d}{dt}(r(t)s(t)) = r'(t)s(t) + r(t)s'(t)$
- $\frac{d}{dt}(r(t) \cdot s(t)) = r'(t) \cdot s(t) + r(t) \cdot s'(t)$
- $\frac{d}{dt}(r(t) \times s(t)) = r'(t) \times s(t) + r(t) \times s'(t)$
- ullet Arc Length Given smooth $r(t) = \langle f(t), g(t), h(t) \rangle$:

$$S = \int_{a}^{b} ||r'(t)|| dt$$

- 02. Functions of 2 Variables
- 03. Derivative
- 04. Gradient Vector