MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-2017 EXAMINATION

Subject

17301

Model Answer

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answer	Marking Scheme
1.		Attempt any <u>TEN</u> of the following:	20
	a)	Find the radius of curvature of the curve $y = x^3$ at $(2,8)$	02
	Ans	$y = x^3$	
		$\therefore \frac{dy}{dt} = 3x^2$	
		$\therefore \frac{dy}{dx} = 3x^2$ $\therefore \frac{d^2y}{dx^2} = 6x$	1/2
		at $(2,8)$	
		$\frac{dy}{dx} = 12$	
		$\begin{vmatrix} dx \\ \frac{d^2y}{dx^2} = 12 \end{vmatrix}$	1/2
		$\therefore \text{ Radius of curvature is } \rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$	
		$\therefore \rho = \frac{\left[1 + \left(12\right)^2\right]^{\frac{3}{2}}}{12}$	1/2
		$\therefore \rho = 145.50$	1/2
	b)	Find the point on the curve $y = 7x - 3x^2$, where the inclination of the tangent is 45^0	02

WINTER – 2017 EXAMINATION

Model Answer

Q.	Sub		Marking
No.	Q. N.	Answer	Scheme
1.			
1.	b)	$y = 7x - 3x^2$	
	Ans	$\therefore \frac{dy}{dx} = 7 - 6x$	1/2
		$\therefore m = 7 - 6x$	
		Given inclination of the tangent is 45°	
		$\therefore m = \tan 45^{\circ}$	1/
		$\therefore m=1$	1/2
		7-6x=1	
		-6x = -6	1/
		x = 1	1/2
		$\therefore y = 4$	1/2
		\therefore point is $(1, 4)$	
	c)	Evaluate: $\int x \cdot \sin x dx$	02
	Ans	$\int x \cdot \sin x dx$	
	76		
		$= x \int \sin x dx - \int \left(\int \sin x dx \cdot \frac{d}{dx} x \right) dx$	1/2
		$= x(-\cos x) - \int (-\cos x) \cdot 1 dx$	1/2+1/2
		$=-x\cos x + \sin x + c$	1/2
	d)	Evaluate: $\int e^{2\log x} dx$	02
	Ans	$\int e^{2\log x} dx$	
		$= \int e^{\log x^2} dx$	1/2
		$\int_{-\int x^2 dx}^{3}$	1/2
		$= \int x^2 dx$ $= \frac{x^3}{3} + c$	
		$=\frac{x}{3}+c$	1
	6)	Evaluate Sain ² v. dv.	02
	e)	Evaluate $\int \sin^2 x dx$	02
	Ans	$\int \sin^2 x dx$	
		$=\int \frac{1-\cos 2x}{2} dx$	1
		$=\frac{1}{2}\left(x-\frac{\sin 2x}{2}\right)+c$	1
		Page No. C	

WINTER – 2017 EXAMINATION

Model Answer

Subject Code:

17301

Q.	Sub	Answer	Marking
No.	Q. N.		Scheme
1.	f)	Evaluate: $\int \frac{dx}{\sqrt{4-9x^2}}$	02
	Ans	$\int \frac{dx}{\sqrt{4-9x^2}}$	
		$=\int \frac{dx}{\sqrt{\left(2\right)^2-\left(3x\right)^2}}$	1
		$=\sin^{-1}\left(\frac{3x}{2}\right)\cdot\frac{1}{3}+c$	1
		OR	
		$\int \frac{dx}{\sqrt{4-9x^2}}$	
		$=\frac{1}{3}\int \frac{dx}{\sqrt{\left(\frac{2}{3}\right)^2 - x^2}}$	1/2
		$= \frac{1}{3}\sin^{-1}\left(\frac{x}{\frac{2}{3}}\right) + c$	1
		$= \frac{1}{3}\sin^{-1}\left(\frac{3x}{2}\right) + c$	1/2
	g)	Evaluate: $\int_{0}^{\frac{\pi}{2}} \sin x \cos x dx$	02
		$egin{pmatrix} \mathbf{J} \\ 0 \\ \pi \end{bmatrix}$	
	Ans	$\int_{0}^{\frac{\pi}{2}} \sin x \cos x dx$	
		$= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} 2\sin x \cos x dx$	
		$= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sin 2x dx$ $= \frac{1}{2} \left(-\cos 2x \cdot \frac{1}{2} \right)_{0}^{\frac{\pi}{2}}$ $= -\frac{1}{4} (\cos \pi - \cos 0)$	1/2
		$=\frac{1}{2}\left(-\cos 2x \cdot \frac{1}{2}\right)_0^{\frac{\pi}{2}}$	1/2
		$=-\frac{1}{4}(\cos\pi-\cos0)$	1/2
	1	Page No O	2/20

WINTER – 2017 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
1.	Q. N.	Answer $= -\frac{1}{4}(-1-1)$ $= \frac{1}{2}$ OR $\int_{0}^{\frac{\pi}{2}} \sin x \cos x dx$ Put $\sin x = t$ $\therefore \cos x dx = dt$ $\therefore \int_{0}^{1} t dt$ $= \left[\frac{t^{2}}{2}\right]_{0}^{1}$ $= \frac{1}{2}[t^{2}]_{0}^{1}$ $= \frac{1}{2}(1^{2}-0)$	Marking Scheme ½ ½ ½
	h) Ans	$= \frac{1}{2}(1^2 - 0)$ $= \frac{1}{2}$ Find the area under the curve $y = x^2$ from $x = 0$ to $x = 3$ with x -axis $Area A = \int_a^b y dx$ $= \int_a^3 x^2 dx$ $= \left[\frac{x^3}{3}\right]_0^3$ $= \left[\frac{3^3}{3} - 0\right]$ $= \frac{27}{3}$ $= 9$	1/2 1/2 1/2 1/2

WINTER – 2017 EXAMINATION

Model Answer

		<u>Model Allswel</u> Subject Code.	17501
Q. No.	Sub Q. N.	Answer	Marking Scheme
1.	i)	Find the order and degree of the equation $\left[1+\left(\frac{dy}{dx}\right)^3\right]^{\frac{5}{3}}=2\frac{d^2y}{dx^2}$	02
		$\left[1 + \left(\frac{dy}{dx}\right)^{3}\right]^{\frac{5}{3}} = 2\frac{d^{2}y}{dx^{2}}$ $\therefore Order = 2$ $\left[1 + \left(\frac{dy}{dx}\right)^{3}\right]^{5} = 8\left(\frac{d^{2}y}{dx^{2}}\right)^{3}$	1
		$\therefore Degree = 3$	1
	j) Ans	Verify that $y = \log x$ is a solution of $x \frac{d^2 y}{dx^2} + \frac{dy}{dx} = 0$ $y = \log x$	02
		$\therefore \frac{dy}{dx} = \frac{1}{x}$ $\therefore \frac{d^2y}{dx^2} = -\frac{1}{x^2}$	1/2
		$\therefore \frac{d^2 y}{dx^2} = -\frac{1}{x^2}$ $L.H.S. = x\frac{d^2 y}{dx^2} + \frac{dy}{dx}$ $= x\left(-\frac{1}{x^2}\right) + \frac{1}{x}$ $= -\frac{1}{x} + \frac{1}{x}$	<i>Y</i> ₂
		$= 0 = R.H.S.$ OR $y = \log x$	1
		$\therefore \frac{dy}{dx} = \frac{1}{x}$	1/2
		$\therefore x \frac{dy}{dx} = 1$	1/2
		$\therefore x \frac{d^2 y}{dx^2} + \frac{dy}{dx}(1) = 0$ $\therefore x \frac{d^2 y}{dx^2} + \frac{dy}{dx} = 0$	1

WINTER – 2017 EXAMINATION

Model Answer

		Model Answer Subject Code:	1/301
Q.	Sub	Anguar	Marking
No.	Q. N.	Answer	Scheme
1.	k)	Find the probability of getting sum of numbers is 9 with two dice.	02
	Ans	$S = \{(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)$	
	AllS	(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)	
		(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)	
		(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)	
		(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)	
		(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)	
		n(S) = 36	1/2
		sum of numbers is 9	/2
		$\therefore A = \{(4,5) \ (5,4) \ (3,6) \ (6,3)\}$	
		$\therefore n(A) = 4$	1/2
		n(A)	/2
		$p(A) = \frac{n(A)}{n(S)}$	
		$p(A) = \frac{4}{36}$ or 0.111	
		$p(A) = \frac{1}{36}$ or 0.111	1
	I)	Three fair coins are tossed. Find the probability that atleast two heads appear.	02
		$S = \{HHH, HTT, THT, TTH, HTH, HHT, THH, TTT\}$	
	Ans	$\therefore n(S) = 8$	1/2
		atleast two heads	
		$A = \{HHH, HTH, HHT, THH\}$	1/2
		n(A)=4	
		$\therefore p(A) = \frac{n(A)}{(A)}$	
		n(S)	1
		$n(A) = 4$ $\therefore p(A) = \frac{n(A)}{n(S)}$ $\therefore p(A) = \frac{4}{8} = \frac{1}{2} \text{ or } 0.5$	
		0 2	
2.		Attempt any <u>FOUR</u> of the following:	16
	a)	Evaluate: $\int \frac{\sec^2 x}{(1+\tan x)(2+\tan x)} dx$	04
	Ans	$\int \frac{\sec^2 x}{(1+\tan x)(2+\tan x)} dx$	
		Put $tan x = t$	
		Page No.	

WINTER – 2017 EXAMINATION

Model Answer

Q.	Sub	Answer	Marking
No.	Q. N.	, triswer	Scheme
2.	a)	$\sec^2 x dx = dt$	1
		$\therefore \int \frac{dt}{(1+t)(2+t)}$	
		Let $\frac{1}{(1+t)(2+t)} = \frac{A}{1+t} + \frac{B}{2+t}$	
		1 = A(2+t) + B(1+t)	
		Put $t = -1$	
		1 = A(1)	
		$\therefore A = 1$	1
		Put $t = -2$	
		1 = B(-1)	1
		$\therefore B = -1$	1
		$\therefore \frac{1}{(1+t)(2+t)} = \frac{1}{1+t} + \frac{-1}{2+t}$	
		$\therefore \int \frac{dt}{(1+t)(2+t)} = \int \left(\frac{1}{1+t} + \frac{-1}{2+t}\right) dt$	
		$\therefore = \log(1+t) - \log(2+t) + c$	1/2
		$\therefore = \log(1 + \tan x) - \log(2 + \tan x) + c \text{or} = \log\left(\frac{1 + \tan x}{2 + \tan x}\right) + c$	1/2
		OR	
		$\int \frac{\sec^2 x}{(1+\tan x)(2+\tan x)} dx$	
		Put $tan x = t$	
		$\sec^2 x dx = dt$	1
		$\therefore \int \frac{dt}{(1+t)(2+t)}$	
		$\therefore \int \frac{dt}{(1+t)(2+t)}$ $= \int \frac{dt}{t^2 + 3t + 2}$	
		Third term = $\frac{\left(3\right)^2}{4} = \frac{9}{4}$	
		· · ·	1/2
		$\frac{\iota + 3\iota + \frac{1}{4} - \frac{1}{4} + 2}{4}$	
		$= \int \frac{dt}{t^2 + 3t + \frac{9}{4} - \frac{9}{4} + 2}$ $= \int \frac{dt}{\left(t + \frac{3}{2}\right)^2 - \left(\frac{1}{2}\right)^2}$	1/2
	<u> </u>	Page No.0	7/20

WINTER – 2017 EXAMINATION

Model Answer

		Model Allswer	
Q. No.	Sub Q. N.	Answer	Marking Scheme
2.	a)	$= \frac{1}{2\left(\frac{1}{2}\right)} \log \left(\frac{t + \frac{3}{2} - \frac{1}{2}}{t + \frac{3}{2} + \frac{1}{2}}\right) + c$	1
		$= \log\left(\frac{t+1}{t+2}\right) + c$	1/2
		$= \log\left(\frac{1+\tan x}{2+\tan x}\right) + c$	1/2
	b)	Evaluate: $\int \cos(\log x) dx$	04
	Ans	$\int \cos(\log x) \ dx$	
		Put $\log x = t \Rightarrow x = e^t$	
		$\therefore \frac{1}{x} dx = dt$	
		$\therefore dx = xdt$	
		$\therefore dx = e^t dt$	1
		$\therefore \int e^t \cos t dt$	
		$=\frac{e^t}{1+1}(1\cos t + 1\sin t) + c$	2
		$= \frac{x}{2} (\cos(\log x) + \sin(\log x)) + c$	1
		OR	
		$\int \cos(\log x) \ dx$	
		Put $\log x = t \Rightarrow x = e^t$	
		$\therefore \frac{1}{x} dx = dt$	
		$\therefore dx = xdt$	
		$\therefore dx = e^t dt$	1
		$\therefore I = \int e^t \cos t dt$	
		$= \cos t \int e^t dt - \int \left(\int e^t dt \frac{d}{dt} \cos t \right) dt$	
		$= \cos t \ e^t - \int e^t \left(-\sin t \right) dt$	
		$= \cos t \ e^t + \int e^t \sin t dt + c$	1
	1		1

WINTER – 2017 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
2	b)	$= \cos t \ e^t + e^t \sin t - \int e^t \cos t dt + c$	
		$\therefore I = \cos t \ e^t + e^t \sin t - I + c$	1
		$\therefore 2I = \cos t \ e^t + e^t \sin t + c$	
		$\therefore I = \frac{e^t}{2} (\cos t + \sin t) + c$	
		$\therefore I = \frac{x}{2} \left(\cos \left(\log x \right) + \sin \left(\log x \right) \right) + c$	1
		OR	
		$I = \int \cos(\log x) \ dx$	
		$\therefore I = \int \cos(\log x) \cdot 1 dx$	1/2
		$\therefore I = \cos(\log x) \int 1 dx - \int \left(\int 1 dx \frac{d}{dx} \cos(\log x) \right) dx$	1/2
		$\therefore I = \cos(\log x)x - \int x \left(\frac{-\sin(\log x)}{x}\right) dx$	1/2
		$\therefore I = x \cos(\log x) + \int \sin(\log x) dx$	1/2
		$\therefore I = x \cos(\log x) + \int \sin(\log x) . 1 dx$	1/2
		$\therefore I = x \cos(\log x) + \sin(\log x)x - \int x \left(\frac{\cos(\log x)}{x}\right) dx$	1/2
		$\therefore I = x \cos(\log x) + x \sin(\log x) - \int \cos(\log x) \ dx$	
		$\therefore I = x \cos(\log x) + x \sin(\log x) - I + c$	1/2
		$\therefore 2I = x \left(\cos(\log x) + \sin(\log x)\right) + c$	
		$\therefore I = \frac{x}{2} \left(\cos(\log x) + \sin(\log x) \right) + c$	1/2
	c)	Evaluate $\int x \tan^{-1} x dx$	04
	Ans	$\int x \tan^{-1} x dx$	04
		$= \tan^{-1} x \int x dx - \int \left(\int x dx \frac{d}{dx} \tan^{-1} x \right) dx$	1
		$= \tan^{-1} x \frac{x^2}{2} - \int \frac{x^2}{2} \frac{1}{1+x^2} dx$	1
		$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \frac{1 + x^2 - 1}{1 + x^2} dx$	1/2
		$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \left(1 - \frac{1}{1 + x^2} \right) dx$	1/2
	<u> </u>	Page No 0	

WINTER – 2017 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
2.	c)	$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \left(x - \tan^{-1} x \right) + c$	1
	d)	Find the maximum and minimum value of $y = 2x^3 - 3x^2 - 36x + 10$	04
	Ans	Let $y = 2x^3 - 3x^2 - 36x + 10$	
		$\therefore \frac{dy}{dx} = 6x^2 - 6x - 36$	1/2
		$\therefore \frac{d^2y}{dx^2} = 12x - 6$	1/2
		Consider $\frac{dy}{dx} = 0$	
		$6x^2 - 6x - 36 = 0$	1/2
		$x^2 - x - 6 = 0$	
		$\therefore x = -2 \text{ or } x = 3$	1/2
		at $x = -2$	
		$\frac{d^2y}{dx^2} = 12(-2) - 6 = -30 < 0$	1/2
		\therefore y is maximum at $x = -2$	
		$y_{\text{max}} = 2(-2)^3 - 3(-2)^2 - 36(-2) + 10$	
		= 54	1/2
		at $x = 3$	
		$\frac{d^2y}{dx^2} = 12(3) - 6 = 30 > 0$	1/2
		\therefore y is minimum at $x = 3$	
		$y_{\min} = 2(3)^3 - 3(3)^2 - 36(3) + 10$	
		= -71	1/2
	e)	Find the radius of curvature of the curve $\sqrt{x} + \sqrt{y} = 1$ at $\left(\frac{1}{4}, \frac{1}{4}\right)$	04
	Ans	$\sqrt{x} + \sqrt{y} = 1$	
		$\sqrt{x} + \sqrt{y} = 1$ $\therefore \frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \frac{dy}{dx} = 0$ $\therefore \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}$	1/2
		$\therefore \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}$	1/2
		$\int dx \sqrt{x}$	
			0/20

WINTER – 2017 EXAMINATION

Model Answer

		<u>iviouer Aliswer</u> Subject Code.	1/301
Q. No.	Sub Q. N.	Answer	Marking Scheme
2	e)	$\frac{d^2y}{dx^2} = \frac{-\left[\sqrt{x}\frac{1}{2\sqrt{y}}\frac{dy}{dx} - \sqrt{y}\frac{1}{2\sqrt{x}}\right]}{\left(\sqrt{x}\right)^2}$	1/2
		$\frac{d^2 y}{dx^2} = \frac{-\left[\sqrt{x} \frac{1}{2\sqrt{y}} \left(-\frac{\sqrt{y}}{\sqrt{x}}\right) - \sqrt{y} \frac{1}{2\sqrt{x}}\right]}{x}$ $-\left[-\frac{1}{2\sqrt{y}} - \frac{\sqrt{y}}{2\sqrt{x}}\right]$	1/2
		$\frac{d^2 y}{dx^2} = \frac{-\left[-\frac{1}{2} - \frac{\sqrt{y}}{2\sqrt{x}}\right]}{x}$ $\therefore \text{ at } \left(\frac{1}{4}, \frac{1}{4}\right)$,-
		$\frac{dy}{dx} = -\frac{\sqrt{\frac{1}{4}}}{\sqrt{\frac{1}{4}}} = -1$	1/2
		$\frac{d^2y}{dx^2} = \frac{-\left[-\frac{1}{2} - \frac{1}{2}\right]}{\frac{1}{4}} = 4$	1/2
		∴ Radius of curvature is $\rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$	
		$\therefore \rho = \frac{\left[1 + \left(-1\right)^2\right]^{\frac{3}{2}}}{4}$	1/2
		$\therefore \rho = 0.707$	1/2
	f) Ans	Find the equation of tangent and normal to the curve $x^2 + 3xy + y^2 = 5$ at (1,1) $x^2 + 3xy + y^2 = 5$	04
		$2x + 3\left(x\frac{dy}{dx} + y\right) + 2y\frac{dy}{dx} = 0$	1/2
		$2x + 3x\frac{dy}{dx} + 3y + 2y\frac{dy}{dx} = 0$	
		$\left(3x+2y\right)\frac{dy}{dx} = -2x-3y$	

WINTER – 2017 EXAMINATION

Model Answer

		<u>Moder Allower</u>	-
Q. No.	Sub Q. N.	Answer	Marking Scheme
2.	f)	dy = -2x - 3y	
	, , , , , , , , , , , , , , , , , , ,	$\frac{dy}{dx} = \frac{-2x - 3y}{3x + 2y}$	1/2
		at (1,1)	
		$\therefore \frac{dy}{dx} = \frac{-2(1) - 3(1)}{3(1) + 2(1)} = -1$	1/2
		$\therefore \text{ slope of tangent } m = -1$	
		Equation of tangent is $m = -1$	
		$y - y_1 = m(x - x_1)$	
		y-1 = -1(x-1)	
		x + y - 2 = 0	1
		slope of normal is $=\frac{-1}{m} = \frac{-1}{-1} = 1$	1/2
		Equation of normal at (1,1) is	
		y-1=1(x-1)	
		x - y = 0	1
3.		Attempt any FOUR of the following:	16
	a)	Solve: $\frac{dy}{dx} = (4x + y + 1)^2$	04
	Ans	Solve: $\frac{dy}{dx} = (4x + y + 1)^2$ $\frac{dy}{dx} = (4x + y + 1)^2$	
		Put 4x + y + 1 = v	1/2
		$4 + \frac{dy}{dx} = \frac{dv}{dx}$	1/2
		$\frac{dy}{dx} = \frac{dv}{dx} - 4$	
		$\therefore \frac{dv}{dx} - 4 = v^2$	
		$\frac{dv}{dx} = v^2 + 4$	1/2
		$\therefore \frac{dv}{v^2 + 4} = dx$	1/2
		$\therefore \int \frac{dv}{v^2 + 4} = \int dx$	1/2
		$\therefore \int \frac{dv}{v^2 + 2^2} = \int dx$	
		Page No 12	

WINTER -2017 EXAMINATION

Model Answer

Q.	Sub		Marking
No.	Q. N.	Answer	Scheme
3.	a)	$\therefore \frac{1}{2} \tan^{-1} \left(\frac{v}{2} \right) = x + c$	1
		$\therefore \frac{1}{2} \tan^{-1} \left(\frac{4x + y + 1}{2} \right) = x + c$	1/2
	b)	Solve: $\left(x^2 + y^2\right)dx - 2xydy = 0$	04
	Ans	$\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$	
		Put $y = vx$	1/2
		$\frac{dy}{dx} = v + x \frac{dv}{dx}$	1/2
		$\therefore v + x \frac{dv}{dx} = \frac{x^2 + v^2 x^2}{2x(vx)}$	1/2
		$\therefore v + x \frac{dv}{dx} = \frac{x^2 \left(1 + v^2\right)}{2vx^2}$	
		$\therefore v + x \frac{dv}{dx} = \frac{1 + v^2}{2v}$	
		$\therefore x \frac{dv}{dx} = \frac{1+v^2}{2v} - v$	
		$\therefore x \frac{dv}{dx} = \frac{1 + v^2 - 2v^2}{2v}$	
		$\therefore x \frac{dv}{dx} = \frac{1 - v^2}{2v}$	
		$\therefore \frac{2v}{1-v^2} dv = \frac{1}{x} dx$	1/2
		$\therefore \int \frac{2v}{1-v^2} dv = \int \frac{1}{v} dx$	1/2
		$\therefore -\log(1-v^2) = \log x + c$	1
		$\therefore -\log\left(1 - \frac{y^2}{x^2}\right) = \log x + c$	1/2
	c)	Solve: $(2xy + y^2)dx + (x^2 + 2xy + \sin y)dy = 0$	04
	Ans	$(2xy + y2)dx + (x2 + 2xy + \sin y)dy = 0$	
		$M = 2xy + y^2$, $N = x^2 + 2xy + \sin y$	
		Page No 12	

WINTER – 2017 EXAMINATION

Model Answer

Q.	Sub		Marking
No.	Q. N.	Answer	Scheme
3.	c)	3M 3N	
J.		$\frac{\partial M}{\partial y} = 2x + 2y$, $\frac{\partial N}{\partial x} = 2x + 2y$	1/2 +1/2
		$\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$	
		∴ D.E. exact	1
		Solution is	
		$\int_{y-cons \tan t} M \ dx + \int_{terms \ not \ containing'x'} N dy = c$	
		$\therefore \int_{y-cons \tan t} (2xy + y^2) dx + \int \sin y dy = c$	1
		$\therefore 2y \frac{x^2}{2} + y^2 x + (-\cos y) = c$	1
		$\therefore x^2 y + xy^2 - \cos y = c$	
	d)	Find the area of the circle $x^2 + y^2 = 16$ using integration.	04
	Ans	$x^2 + y^2 = 16$	
		$\therefore y^2 = 16 - x^2$	
		$\therefore y = \sqrt{4^2 - x^2}$	
		$\therefore At \ y = 0, \ 4^2 - x^2 = 0$	
		$\therefore x = -4$, 4	1
		$\therefore A = 4 \int_{a}^{b} y dx$	
		$A = 4 \left[\int_0^4 \sqrt{4^2 - x^2} dx \right]$	1/2
		$A = 4 \left[\frac{x}{2} \sqrt{(4)^2 - x^2} + \frac{(4)^2}{2} \sin^{-1} \left(\frac{x}{4} \right) \right]_0^4$	
			1
		$A = 4 \left[\frac{16}{2} \sin^{-1}(1) - 0 \right]$	1/2
		$A=32\frac{\pi}{2}$	1/2
		$A = 16\pi$	1/2
	e)	Evaluate: $\int_{0}^{\frac{\pi}{2}} \frac{dx}{5 + 4\cos x}$	
		$\int_{0}^{\infty} 5 + 4\cos x$	04

WINTER – 2017 EXAMINATION

Model Answer

Q.	Sub	Answer	Marking
No.	Q. N.	Allswei	Scheme
3	e)	Put $\tan \frac{x}{2} = t$	
		$\cos x = \frac{1-t^2}{1+t^2}$, $dx = \frac{2dt}{1+t^2}$	
		when $x \to 0$ to $\frac{\pi}{2}$ $t \to 0$ to 1	1
		$\therefore I = \int_{0}^{1} \frac{1}{5 + 4\left(\frac{1 - t^{2}}{1 + t^{2}}\right)} \frac{2dt}{1 + t^{2}}$	1/2
		$\therefore I = 2\int_{0}^{1} \frac{1}{5(1+t^{2})+4(1-t^{2})} dt$	
		$\therefore I = 2\int_{0}^{1} \frac{1}{5 + 5t^2 + 4 - 4t^2} dt$	
		$\therefore I = 2\int_0^1 \frac{1}{t^2 + 9} dt$	1/2
		$\therefore I = 2\int_0^1 \frac{1}{t^2 + \left(3^2\right)} dt$	
		$\therefore I = \frac{2}{3} \left[\tan^{-1} \left(\frac{t}{3} \right) \right]_0^1$	1
		$\therefore I = \frac{2}{3} \left[\tan^{-1} \left(\frac{1}{3} \right) - \tan^{-1} \left(\frac{0}{3} \right) \right]$	
		$\therefore I = \frac{2}{3} \tan^{-1} \left(\frac{1}{3} \right)$	1
		<u>π</u>	
		Evaluate: $\int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \sqrt{\tan x}} dx$	04
	Ans	Let $I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \sqrt{\tan x}} dx$	
		$\therefore I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \sqrt{\frac{\sin x}{\cos x}}} dx$	1/2
		V cos x	

WINTER -2017 EXAMINATION

Model Answer

		<u>Model Allower</u>	
Q. No.	Sub Q. N.	Answer	Marking Scheme
3.	f)	$\therefore I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx - \dots - (1)$	
		$\therefore I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos\left(\frac{\pi}{2} - x\right)}}{\sqrt{\cos\left(\frac{\pi}{2} - x\right)} + \sqrt{\sin\left(\frac{\pi}{2} - x\right)}} dx$	1/2
		$\therefore I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx (2)$ add (1) and (2)	1/2
		$\therefore I + I = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx + \int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx dx$	
		$\therefore 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x} + \sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx$	1/2
		$\therefore 2I = \int_{0}^{\frac{\pi}{2}} 1 dx$ $\therefore 2I = \left[x\right]_{0}^{\frac{\pi}{2}}$ $\therefore 2I = \frac{\pi}{2} - 0$	1/2
		$\therefore 2I = \left[x\right]_0^{7/2}$	1/2
			1/2
		$\therefore I = \frac{\pi}{4}$	1/2
4.		Attempt any <u>FOUR</u> of the following:	16
	a)	Evaluate $\int_{1}^{4} \frac{\sqrt{5-x}}{\sqrt{x} + \sqrt{5-x}} dx$	04
	Ans	$I = \int_{1}^{4} \frac{\sqrt{5-x}}{\sqrt{x} + \sqrt{5-x}} dx $	
		$I = \int_{1}^{4} \frac{\sqrt{5 - (1 + 4 - x)}}{\sqrt{1 + 4 - x} + \sqrt{5 - (1 + 4 - x)}} dx$	1/2
		$\therefore I = \int_{1}^{4} \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx$	1/2
<u> </u>	1	Page No.1	1.6./20

WINTER – 2017 EXAMINATION

Model Answer

		Model Allower	
Q. No.	Sub Q. N.	Answer	Marking Scheme
4.	a)	add (1) and (2)	
		$I + I = \int_{1}^{4} \frac{\sqrt{5 - x}}{\sqrt{x} + \sqrt{5 - x}} dx + \int_{1}^{4} \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx$ $\therefore 2I = \int_{1}^{4} \frac{\sqrt{5 - x} + \sqrt{x}}{\sqrt{x} + \sqrt{5 - x}} dx$	1
		$\therefore 2I = \int_{1}^{4} 1 dx$ $\therefore 2I = \left[x\right]_{1}^{4}$	1/2
		$\therefore 2I = [x]_1^4$	1/2
		$\therefore 2I = 4-1$	1/2
		$\therefore 2I = 4 - 1$ $\therefore 2I = 3$ $I = \frac{3}{2}$	
		$I = \frac{3}{2}$	1/2
		$1-\frac{1}{2}$	/2
	b)	Evaluate: $\int \frac{x}{(x^2 - 1)(x^2 + 2)} dx$	04
	Ans	$\int \frac{x}{\left(x^2-1\right)\left(x^2+2\right)} dx$	
		Put $x^2 = t$	
		$\therefore 2xdx = dt$	
		$\therefore xdx = \frac{dt}{2}$	1/2
		$\therefore \frac{1}{2} \int \frac{dt}{(t-1)(t+2)}$	
		Let $\frac{1}{(t-1)(t+2)} = \frac{A}{t-1} + \frac{B}{t+2}$	
		1 = A(t+2) + B(t-1)	
		Put $t = -2$	
		$1 = B\left(-3\right) \qquad \therefore B = -\frac{1}{3}$	1
		Put $t = 1$	
		$1 = A(3) \qquad \therefore A = \frac{1}{3}$	1
		$\frac{1}{(t-1)(t+2)} = \frac{\frac{1}{3}}{t-1} + \frac{-\frac{1}{3}}{t+2}$	
		(t-1)(t+2) $t-1$ $t+2$	
	I	<u>I</u>	

WINTER – 2017 EXAMINATION

Model Answer

	l <u>-</u> .		1
Q. No.	Sub Q. N.	Answer	Marking Scheme
4.	b)	$ \frac{1}{2} \int \frac{dt}{(t-1)(t+2)} = \frac{1}{2} \int \left(\frac{\frac{1}{3}}{t-1} + \frac{-\frac{1}{3}}{t+2} \right) dt $ $ = \frac{1}{2} \left(\frac{1}{3} \log(t-1) - \frac{1}{3} \log(t+2) \right) + c $ $ = \frac{1}{6} \left(\log(x^2 - 1) - \log(x^2 + 2) \right) + c $	1 1/2
	c)	Find area enclosed between the parabolas $y^2 = 4x$ and $x^2 = 4y$	04
	Ans	$y^2 = 4x \qquad(1)$	
		$x^2 = 4y$ $\therefore y = \frac{x^2}{4}$	
		$\therefore \operatorname{eq}^{\operatorname{n}}.(1) \Longrightarrow \left(\frac{x^2}{4}\right)^2 = 4x$	
		$\frac{x^4}{16} = 4x$	
		$\therefore x^4 = 64x$	
		$\therefore x^4 - 64x = 0$	
		$\therefore x \left(x^3 - 64 \right) = 0$ $\therefore x = 0, 4$	1
		Area $A = \int_a^b (y_1 - y_2) dx$	
		$\therefore A = \int_{0}^{4} \left(2\sqrt{x} - \frac{x^2}{4} \right) dx$	1/2
		$\therefore A = \int_0^4 \left(2x^{\frac{1}{2}} - \frac{x^2}{4}\right) dx$	
		$\therefore A = \left(\frac{2x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{x^3}{12}\right)_0^4$	1
		$\therefore A = \left(\frac{2(4)^{\frac{3}{2}}}{\frac{3}{2}} - \frac{(4)^{3}}{12}\right) - 0$	1/2
		Dogo No 1	

WINTER – 2017 EXAMINATION

Model Answer

Subject Code:

17301

Q. No.	Sub Q. N.	Answer	Marking Scheme
4.	c)	$\therefore A = \frac{16}{3} \text{or} 5.333$	1
		OR	
		$y^{2} = 4x \qquad(1)$ $x^{2} = 4y \qquad(2)$ $\therefore x = \frac{y^{2}}{4}$	
		$\begin{array}{c} x & y \\ y^2 \end{array}$	
		$\begin{array}{c} x - {4} \\ eq^{n}.(2) \Rightarrow \end{array}$	
		$\left(\frac{y^2}{4}\right)^2 = 4y$	
		$\frac{y^4}{16} = 4y$	
		$\therefore y^4 = 64y$	
		$\therefore y^4 - 64y = 0$	
		$\therefore y \left(y^3 - 64 \right) = 0$ $\therefore y = 0, 4$	1
		Area $A = \int_{a}^{b} (x_1 - x_2) dy$	
		$\therefore A = \int_{0}^{4} \left(2\sqrt{y} - \frac{y^2}{4} \right) dy$	1/2
		$\therefore A = \int_0^4 \left(2y^{\frac{1}{2}} - \frac{y^2}{4}\right) dy$	
		$\therefore A = \left(\frac{2y^{\frac{3}{2}}}{\frac{3}{2}} - \frac{y^{3}}{12}\right)_{0}^{4}$	1
		$\therefore A = \left(\frac{2(4)^{\frac{3}{2}}}{\frac{3}{2}} - \frac{(4)^{3}}{12}\right) - 0$ $\therefore A = \frac{16}{3} \text{or } 5.333$	1/2
		$\therefore A = \frac{16}{3} \text{or } 5.333$	1
	d)	Verify that $y^2 = ax^2$ is a solution of $x \left(\frac{dy}{dx}\right)^2 - 2y\frac{dy}{dx} + ax = 0$	04

WINTER – 2017 EXAMINATION

Model Answer

Q.	Sub		Marking
No.	Q. N.	Answer	Scheme
4.	d)	$y^2 = ax^2$	
7.	u,		
		$\therefore 2y \frac{dy}{dx} = 2ax$	
		$\therefore \frac{dy}{dx} = \frac{ax}{y}$	
			1
		consider	
		$L.H.S. = x \left(\frac{dy}{dx}\right)^2 - 2y\frac{dy}{dx} + ax$	
		$= x \left(\frac{ax}{y}\right)^2 - 2y\frac{ax}{y} + ax$	1
		$= x \frac{a^2 x^2}{y^2} - 2ax + ax$	
		$= x \frac{a^2 x^2}{ax^2} - ax$	1
		=ax-ax	
		=0=R.H.S.	1
	e)	Solve the D.E. $x \log x \frac{dy}{dx} + y = 2 \log x$	04
	Ans	$\frac{dy}{dx} + \frac{y}{x \log x} = \frac{2}{x}$	1/2
		$\therefore P = \frac{1}{x \log x} \text{ and } Q = \frac{2}{x}$	
		$IF = e^{\int \frac{1}{x \log x} dx} = e^{\log(\log x)} = \log x$	1
		$\therefore y \cdot IF = \int Q \cdot IF dx + c$	
		$y \cdot \log x = \int \frac{2}{x} \log x dx + c$	1
		put $\log x = t$ $\therefore \frac{1}{x} dx = dt$	1/2
		$y \cdot \log x = 2\int t dt + c$	
		$y \cdot \log x = 2 \cdot \frac{t^2}{2} + c$	1/2
		$y \cdot \log x = (\log x)^2 + c$	1/2

WINTER – 2017 EXAMINATION

Model Answer

		<u>Model Aliswei</u> Subject Code.	17301
Q. No.	Sub Q. N.	Answer	Marking Scheme
4.	f)	Solve: $\int 4 - \frac{y^2}{x^2} dx + \frac{2y}{x} dy = 0$	04
	Ans	$\int 4 - \frac{y^2}{x^2} dx + \frac{2y}{x} dy = 0$	
		Comparing with $Mdx + Ndy = 0$	
		$M = 4 - \frac{y^2}{x^2} , N = \frac{2y}{x}$	
		$\frac{\partial M}{\partial y} = -\frac{2y}{x^2} , \frac{\partial N}{\partial x} = -\frac{2y}{x^2}$	1/2+1/2
		$\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$	
		∴ D.E. is exact	1
		Solution is	
		$\int_{y-cons tan t} M dx + \int_{terms not containing' x'} N dy = c$	
		$\therefore \int_{y-cons \tan t} \left(4 - \frac{y^2}{x^2} \right) dx + 0 = c$	1
		$\therefore 4x + \frac{y^2}{x} = c$	1
		OR -	
		$\left[4 - \frac{y^2}{x^2}\right] dx + \frac{2y}{x} dy = 0$	
		$\left[4 - \frac{y^2}{x^2}\right] + \frac{2y}{x} \frac{dy}{dx} = 0$	
		Put $\frac{y}{x} = v$	1/2
		$\therefore y = vx$	
		$\therefore \frac{dy}{dx} = v + x \frac{dv}{dx}$	1/2
		$\therefore \left(4 - v^2\right) + 2v\left(v + x\frac{dv}{dx}\right) = 0$	1/2
		$\therefore 4 - v^2 + 2v^2 + 2vx \frac{dv}{dx} = 0$ $\therefore 4 + v^2 + 2vx \frac{dv}{dx} = 0$	
		$\therefore 4 + v^2 + 2vx \frac{dv}{dx} = 0$	
		 Page No.2	14 /20

WINTER – 2017 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
4.	f)	$\therefore 2vx \frac{dv}{dx} = -\left(4 + v^2\right)$	
		$\therefore \frac{2v}{4+v^2}dv = -\frac{1}{x}dx$	1/2
		$\therefore \int \frac{2v}{4+v^2} dv = -\int \frac{1}{x} dx$	1/2
		$\log\left(4+v^2\right) = -\log x + c$	1
		$\log\left(4 + \frac{y^2}{x^2}\right) = -\log x + c$	1/2
5.		Attempt any <u>FOUR</u> of the following:	16
	a)	Two cards are drawn in succession from a pack of 52 cards. Find the chance that the	04
		first card is a king and the second is a queen, if the first card is (i) replaced	
		(ii) not replaced	
	Ans	(i) With replacement of first card	
		There are 4 King cards in 52 cards	
		$P(\text{first card is king}) = \frac{4}{52} = \frac{1}{13}$	
		This card is replaced and the Queen card is drawn	
		$\therefore P(\text{second card is Queen}) = \frac{4}{52} = \frac{1}{13}$	
		$\therefore P(\text{first card is king}) \times P(\text{second card is Queen}) = \frac{1}{13} \times \frac{1}{13} = \frac{1}{169}$	2
		(ii) Without replacement of first card	
		$P(\text{first card is king}) = \frac{4}{52} = \frac{1}{13}$	
		The card is not replaced	
		$\therefore P(\text{second card is Queen}) = \frac{4}{51}$	
		$\therefore P(\text{first card is king}) \times P(\text{second card is Queen}) = \frac{1}{13} \times \frac{4}{51} = \frac{4}{663}$	2
	b)	If 5% of the electric bulbs manufacturing by a company are defective, use Poisson distribution to find the probability that in a sample of 100 bulbs.	04
		i) None is defective	
I	1	Page No 2	

WINTER – 2017 EXAMINATION

Model Answer

Q.	Sub		Marking
No.	Q. N.	Answer	Scheme
5.	b)	" F 1 II 1 C (C' -5 0.007)	
3.		ii) Five bulbs are defective (Given $e^{-5} = 0.007$)	
	Ans	Given $p = 5\% = 0.05$	
		n = 100	
		$mean m = np = 100 \times 0.05 \qquad \therefore m = 5$	1
		$P(r) = \frac{e^{-m}m^r}{r!}$	
		<i>i</i>) None is defective	
		r = 0	
		$P(0) = \frac{e^{-5}(5)^0}{0!}$	
		P(0) = 0.007	1½
		ii) Five bulbs are defective	
		r = 5	
		$P(5) = \frac{e^{-5}(5)^5}{5!}$	
		P(5) = 0.1823	1½
	c)	In a certain examination 500 students appeared . Mean score is	
		68 and S.D. is 8. Find the number of students scoring	04
		<i>i</i>) Less than 50	
		ii) More than 60	
		(Given that area between : $z = 0$ to $z = 2.25$ is 0.4878 and	
		area between: $z = 0$ to $z = 1$ is 0.3413)	
	Ans	Given	
		$\overline{x} = 68$, $\sigma = 8$ $N = 500$	
		$z = \frac{x - \overline{x}}{\sigma}$	
		i) For x = 50	
		$z = \frac{x - \overline{x}}{\sigma} = \frac{50 - 68}{8} = -2.25$	1/2
		$ \begin{array}{cccc} & \sigma & 8 \\ & p(x < 50) = A(z < -2.25) \end{array} $	/-
		= 0.5 - A(2.25)	1/
		= 0.5 - A(2.23) $= 0.5 - 0.4878$	1/2
		=0.0122	1/2
		∴ No. of students = $500 \times 0.0122 = 6.1 \approx 6$	1/2
			12/20

WINTER – 2017 EXAMINATION

Model Answer

Q.	Sub	Answer	Marking
No.	Q. N.	Allswei	Scheme
5.	c)	i) For x = 60	
		$z = \frac{x - \overline{x}}{\sigma} = \frac{60 - 68}{8} = -1$	1/2
		$ \begin{array}{ccc} \sigma & 8 \\ p(x > 60) = A(z > -1) \end{array} $	
		p(x > 00) = A(z > -1) $= 0.5 + A(1)$	
		=0.5+0.3413	1/2
		= 0.8413	1/2
		$\therefore \text{ No. of students} = 500 \times 0.8413 = 421$	1/2
	d)	Evaluate: $\int e^x \cdot \sin 3x dx$	04
	Ans	$I = \int e^x \sin 3x \ dx$	
		$\therefore I = \sin 3x \int e^x dx - \int \left(\int e^x dx \cdot \frac{d}{dx} \sin 3x \right) dx$	1/2
		$\therefore I = \sin 3x \cdot e^x - \int e^x \cos 3x \cdot 3 dx$	1
		$\therefore I = \sin 3x \cdot e^x - 3 \int e^x \cos 3x \ dx$	
		$\therefore I = \sin 3x \cdot e^x - 3 \left[\cos 3x e^x - \int \left(\int e^x dx \cdot \frac{d}{dx} \cos 3x \right) dx \right]$	1/2
		$\therefore I = \sin 3x \cdot e^x - 3 \left[\cos 3x e^x - \int e^x \left(-\sin 3x \cdot 3 \right) dx \right]$	1
		$\therefore I = \sin 3x \cdot e^x - 3 \left[\cos 3x e^x + 3 \int e^x \sin 3x dx \right]$	
		$\therefore I = \sin 3x \cdot e^x - 3e^x \cos 3x - 9 \int e^x \sin 3x dx$	
		$\therefore I = \sin 3x \cdot e^x - 3e^x \cos 3x - 9I$	1/2
		$\therefore 10I = \sin 3x \cdot e^x - 3e^x \cos 3x$	
		$\therefore I = \frac{e^x}{10} \left(\sin 3x - 3\cos 3x \right) + c$	1/2
		$\frac{\pi}{2}$	
	e)	Evaluate: $\int_{0} \sin 3x \cos 3x dx$	04
		$\therefore I = \int_{0}^{\frac{\pi}{2}} \sin 3x \cos 3x dx$	
	Ans	$\therefore I = \int_{0} \sin 3x \cos 3x dx$	
		$\frac{\pi}{2}$	
		$\therefore I = \frac{1}{2} \int_0^2 2\sin 3x \cos 3x \ dx$	1/2
		Page No 2	- 100

WINTER – 2017 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
5.	e)	$\therefore I = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \left(\sin\left(3x + 3x\right) + \sin\left(3x - 3x\right) \right) dx$	1
		$\therefore I = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (\sin 6x + \sin 0x) dx \qquad \text{OR} \therefore I = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sin 2(3x) dx$	
		$\therefore I = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sin 6x dx \qquad (\sin 2\theta = 2\sin \theta \cdot \cos \theta)$	
		$=\frac{1}{2}\left[\frac{-\cos 6x}{6}\right]_0^{\frac{\pi}{2}}$	1
		$= -\frac{1}{2} \left[\frac{\cos 6x}{6} \right]_0^{\frac{\pi}{2}}$	
		$= -\frac{1}{2} \left[\frac{\cos 6 \left(\frac{\pi}{2} \right)}{6} - \frac{\cos 0}{6} \right]$	1/2
		$= -\frac{1}{2} \left[\frac{\cos 3\pi}{6} - \frac{\cos 0}{6} \right]$	
		$= -\frac{1}{2} \left[-\frac{1}{6} - \frac{1}{6} \right]$ $= -\frac{1}{2} \left[-\frac{1}{3} \right]$	1/2
		$\begin{bmatrix} 2 \ 3 \end{bmatrix} = \frac{1}{6}$	1/2
	f)	Solve the DE: $\frac{dy}{dx} = e^{3x-2y} + x^2 e^{-2y}$	04
	Ans	$\frac{dy}{dx} = e^{3x-2y} + x^2 e^{-2y}$	
		$\therefore \frac{dy}{dx} = e^{3x} \cdot e^{-2y} + x^2 e^{-2y}$ $dy \qquad 2x (3x - 2)$	1
		$\therefore \frac{dy}{dx} = e^{-2y} \left(e^{3x} + x^2 \right)$ $\therefore e^{2y} dy = \left(e^{3x} + x^2 \right) dx$	1
		$\therefore \int e^{2y} dy = \int \left(e^{3x} + x^2\right) dx$	1
		Dogo No 2	

WINTER – 2017 EXAMINATION

Model Answer

Q.	Sub		Marking
No.	Q. N.	Answer	Scheme
5.	f)	$\therefore \frac{e^{2y}}{2} = \frac{e^{3x}}{3} + \frac{x^3}{3} + c$	1
6.		Attempt any FOUR of the following:	16
	a)	Find the equation of tangent and normal to the curve $y = t - \frac{1}{t}$ and $x = \frac{1}{t}$,	04
		when $t = 2$	
	Ans	$x = \frac{1}{t}, \ y = t - \frac{1}{t}$	
		when $t = 2$, $x = \frac{1}{2}$, $y = \frac{3}{2}$	1/2
		point is $\left(\frac{1}{2}, \frac{3}{2}\right)$	
		$\frac{dx}{dt} = -\frac{1}{t^2} , \frac{dy}{dt} = 1 + \frac{1}{t^2} = \frac{t^2 + 1}{t^2}$	1/2+1/2
		$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dt}{dt}} = \frac{\frac{t^2+1}{t^2}}{-\frac{1}{t^2}}$	
		$\frac{dy}{dx} = -(t^2 + 1)$	1/2
		∴ slope of tangent at $t = 2$, $\frac{dy}{dx} = m = -5$	1/2
		:. the equation of tangent is	
		$\therefore y - \frac{3}{2} = -5\left(x - \frac{1}{2}\right)$	1/2
		$\therefore 2y - 3 = -10x + 5$	
		$\therefore 10x + 2y - 8 = 0$ $\therefore 5x + y - 4 = 0$	
		$\therefore \text{slope of normal is} = \frac{-1}{m} = \frac{-1}{-5} = \frac{1}{5}$	1/2
		m −5 5 \therefore the equation of normal is	
		$\therefore y - \frac{3}{2} = \frac{1}{5} \left(x - \frac{1}{2} \right)$	1/2
		$\therefore 5y - \frac{15}{2} = 1\left(x - \frac{1}{2}\right)$	
		$\therefore x - 5y + 7 = 0$	
		Pago No.	<u> </u>

WINTER – 2017 EXAMINATION

Model Answer

Q. Sub No. Sub Q. N. Answer 6. b) A metal wire 36 cm long is bent to form a rectangle. Find its dimensions when its area is maximum. Ans Let length = y , breadth = x Perimeter is $2x + 2y = 36$ $\therefore x + y = 18$ $y = 18 - x$	Marking Scheme 04 ½
6. b) A metal wire 36 cm long is bent to form a rectangle. Find its dimensions when its area is maximum. Ans Let length = y , breadth = x Perimeter is $2x + 2y = 36$ $\therefore x + y = 18$	04
its area is maximum. Let length = y ,breadth = x Perimeter is $2x + 2y = 36$ $\therefore x + y = 18$	
its area is maximum. Let length = y ,breadth = x Perimeter is $2x + 2y = 36$ $\therefore x + y = 18$	½
Perimeter is $2x + 2y = 36$ $\therefore x + y = 18$	1/2
$\therefore x + y = 18$	1/2
	1/2
y = 18 - x	
Area is $A = xy$	
$\therefore A = x(18 - x)$	
$\therefore A = 18x - x^2$	1
$\therefore \frac{dA}{dx} = 18 - 2x$	1/2
$\therefore \frac{d^2A}{dx^2} = -2$	1/2
Consider $\frac{dA}{dx} = 0$	1/
$\therefore 18 - 2x = 0$ $\therefore x = 9$	1/2
$\therefore at \ x = 9$	
$\frac{d^2A}{dx^2} = -2 < 0$	
$\therefore A \text{ is maximum when } x = 9$	1/2
$\therefore \text{ breadth } x = 9$	
length $y = 9$	1/2
c) Two six face unbaised dice are thrown .Find the probability that the sum of the numbers shown is 7 or product is 12.	04
Ans $S = \{(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)$	
(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)	
(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)	
(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)	
(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)	
(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)	
Page No 27/3	

WINTER – 2017 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
6.	c)	n(s) = 36	1
		sum is 7 or product is 12	
		$\therefore A = \{(1,6)(2,5)(3,4)(4,3)(2,6)(5,2)(6,1)(6,2)\}$	
		$\therefore n(A) = 8$	1
		$p(A) = \frac{n(A)}{n(S)}$	
		$p(A) = \frac{8}{36}$ or 0.222	2
	d)	If $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$, $P(A \cap B) = \frac{7}{12}$, find $P(A' \cap B')$	04
	Ans	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	
		$P(A \cup B) = \frac{1}{2} + \frac{1}{3} - \frac{7}{12}$	2
		$\therefore P(A \cup B) = \frac{3}{12} = \frac{1}{4}$	1/2
		$\therefore P(A' \cap B') = P(A \cup B)' = 1 - P(A \cup B)$	
		$\therefore P(A' \cap B') = 1 - \frac{1}{4}$	1
		$\therefore P(A' \cap B') = \frac{3}{4}$	1/2
	e)	In 200 sets of tosses of 5 fair coins in how many ways you can expect	04
		i) at least two heads.	
	Ans	<i>ii</i>) At the most two heads.	
		$p = \frac{1}{2}, q = \frac{1}{2}$	
		n=5	
		$p(r) = {^{n}C_{r}}p^{r}q^{n-r}$	
		i) at least two heads $P(r) = 1 - \left[p(0) + p(1) \right]$	
		$=1-\left[{}^{5}C_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{5-0}+{}^{5}C_{1}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{5-1}\right]=1-0.1875$	1
		$=\frac{13}{16}$ or 0.8125	1/2
		Page No.	

WINTER – 2017 EXAMINATION

Model Answer

Q.	Sub	Answer	Marking
No.	Q. N.	Allswei	Scheme
6.	e)	No. of ways = $200 \times 0.8125 = 162.5 \approx 163$	1/2
		ii) At the most two heads	
		P(r) = p(0) + p(1) + p(2)	
		P(r) = p(0) + p(1) + p(2)	
		$=0.1875+{}^{5}C_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{5-2}$	1
		= 0.5	1/2
		No. of ways = $200 \times 0.5 = 100$	1/2
	f)	A problem is given to a three students Ram , Shyam and Amit, whose	04
		chances of solving it are $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{4}$ respectively. If they attempt to solve	
		a problem independently, find the probability is solved	
		by at least one of them.	
	Ans	Given Probability of Ram is $p(A) = \frac{1}{2}$ $\therefore p(A') = 1 - \frac{1}{2} = \frac{1}{2}$	1/2
		Probability of Shyam is $p(B) = \frac{1}{3}$ $\therefore p(B') = 1 - \frac{1}{3} = \frac{2}{3}$	1/2
		Probability of Amit is $p(C) = \frac{1}{4}$ $\therefore p(C') = 1 - \frac{1}{4} = \frac{3}{4}$	1/2
		Problem is not solved by each of them	
		$p(A' \cap B' \cap C') = p(A') \times p(B') \times p(C')$	
		$=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}$	1/2
		$=\frac{1}{4}$ or $=0.25$	1/2
		Problem is solved by at least one of them	
		$=1-p(A'\cap B'\cap C')$	
		$=1-\frac{1}{4}$	1
		$=\frac{3}{4}$ or $=0.75$	1/2
		OR	
		Given Probability of Ram is $p(A) = \frac{1}{2}$:: $p(A') = 1 - \frac{1}{2} = \frac{1}{2}$	1/2
	1	Daga No 20/2	I

WINTER – 2017 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
6.	f)	Probability of Shyam is $p(B) = \frac{1}{3}$ $\therefore p(B') = 1 - \frac{1}{3} = \frac{2}{3}$ Probability of Amit is $p(C) = \frac{1}{4}$ $\therefore p(C') = 1 - \frac{1}{4} = \frac{3}{4}$ $\therefore p(\text{Problem is solved by at least one of them})$ $= p(A \cup B \cup C)$ $= 1 - p(A \cup B \cup C)'$	½ ½ ½ ½ ½
		$=1-p(A'\cap B'\cap C')$ $=1-\left(\frac{1}{2}\times\frac{2}{3}\times\frac{1}{4}\right)$	1/2
		$=1 - \frac{1}{4}$ $= \frac{3}{4} \text{or} 0.75$	½ ½
		Important Note In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.	