Teoría de números algebraicos Tarea 4

Alexey Beshenov (alexey.beshenov@cimat.mx)

15 de septiembre de 2020

Fecha límite: viernes, 25 de septiembre.

Ejercicio 4.1. Encuentre la fórmula para el discriminante del polinomio

$$x^n + ax + b$$
.

Solución. Este cálculo es bien conocido, pero espero que no hayan *googleado* la respuesta inmediatamente :-) Daré una prueba que tiene sentido en el contexto de nuestra clase. Hemos visto la fórmula

$$\Delta(f) = (-1)^{\binom{n}{2}} \operatorname{Res}(f, f') = (-1)^{\binom{n}{2}} \prod_{1 \le i \le n} f'(\alpha_i),$$

donde α_1,\dots,α_n son las raíces de f. En nuestro caso $f=x^n+ax+b$ y su derivada es $f'=nx^{n-1}+a$. Para una raíz α de f calculamos

$$\alpha f'(\alpha) = n \alpha^n + a \alpha = n (-a\alpha - b) + a \alpha = -nb - (n-1) a \alpha.$$

Entonces,

$$\frac{\alpha}{(n-1)a}f'(\alpha) = -\frac{nb}{(n-1)a} - \alpha.$$

Ahora

$$\prod_{i} f'(\alpha_{i}) = \frac{(n-1)^{n} a^{n}}{\prod_{i} \alpha} \prod_{i} \left(-\frac{nb}{(n-1) a} - \alpha_{i} \right) = \frac{(n-1)^{n} a^{n}}{(-1)^{n} b} f\left(-\frac{nb}{(n-1) a} \right).$$

Calculamos que

$$f\left(-\frac{nb}{(n-1)\,a}\right) = (-1)^n \, \frac{n^n \, b^n}{(n-1)^n \, a^n} - \frac{nb}{(n-1)} + b.$$

De aquí

$$\prod_{i} f'(\alpha_i) = n^n b^{n-1} - (-1)^n (n-1)^{n-1} a^n.$$

Entonces, podemos escribir la fórmula del discriminante como

$$\Delta(f) = (-1)^{\binom{n}{2}} \left((-1)^{n+1} (n-1)^{n-1} a^n + n^n b^{n-1} \right).$$

Técnicamente hablando, en algún momento hemos ocupado la división por α_i y por a, asumiendo de manera implícita que $a,b\neq 0$. Sin embargo, de todos modos, el resultante puede ser escrito como el determinante de alguna matriz formada por los coeficientes de f y f', y entonces este es un polinomio en los coeficientes de f. Como consecuencia, si nuestra fórmula es válida para $a,b\neq 0$, esta debe ser válida para a=0 o b=0. (Les doy esta justificación tramposa para no considerar diferentes casos por separado :–)

Ejercicio 4.2. Sea K/\mathbb{Q} un campo de números y $\alpha \in \mathcal{O}_K$ un elemento entero tal que $\alpha \notin m\mathcal{O}_K$ para m>1. Demuestre que en este caso existe una base de \mathcal{O}_K sobre \mathbb{Z} que contiene α . En particular, demuestre que \mathcal{O}_K siempre admite una base que contiene 1.

Solución. Esta pregunta es sobre álgebra lineal. Dado que $\mathcal{O}_K\cong\mathbb{Z}^n$, estamos simplemente afirmando que si $\vec{a}=(a_1,\dots,a_n)$ es un vector que cumple la condición $\operatorname{mcd}(a_1,\dots,a_n)=1$, entonces \vec{a} está contenido en alguna base de \mathbb{Z}^n . Esto equivale a decir que existe una matriz entera invertible de $n\times n$ que contiene el vector \vec{a} como una de sus columnas (o filas). Está claro que esto es imposible si a_1,\dots,a_n no son coprimos: el determinante de la matriz será divisible por $d=\operatorname{mcd}(a_1,\dots,a_n)$. Para n=2 la afirmación está clara:

$$\operatorname{mcd}(a_1,a_2)=1 \iff \det \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} = \pm 1 \text{ para algunos } b_1,b_2 \in \mathbb{Z}.$$

Se puede dar una prueba por inducción que a partir de \vec{a} construye una matriz en $\mathrm{GL}_n(\mathbb{Z})$ que contiene \vec{a} . A saber, si $\mathrm{mcd}(a_1,\ldots,a_n)=1$, consideremos los números $\frac{a_1}{d},\ldots,\frac{a_{n-1}}{d}$, donde $d=\mathrm{mcd}(a_1,\ldots,a_{n-1})$. En este caso por la hipótesis de inducción habrá una matriz de determinante ± 1

$$\begin{pmatrix} a_1/d & b_{11} & \cdots & b_{1,n-2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1}/d & b_{n-1,1} & \cdots & b_{n-1,n-2} \end{pmatrix}.$$

Ahora $mcd(a_1, ..., a_n) = mcd(d, a_n) = 1$, así que se tiene $xd + ya_n = 1$ para algunos $x, y \in \mathbb{Z}$. Se puede verificar que

$$\det \begin{pmatrix} a_1 & b_{11} & \cdots & b_{1,n-2} & y \, a_1/d \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n-1} & b_{n-1,1} & \cdots & b_{n-1,n-2} & y \, a_{n-1}/d \\ a_n & 0 & \cdots & 0 & x \end{pmatrix} = \pm 1.$$

(Despeje el determinante respecto a la última fila.)

Propongo ver un argumento un poco distinto y más natural.

Consideremos el cociente de \mathbb{Z} -módulos $M=\mathbb{Z}^n/\mathbb{Z}\vec{a}$. Afirmamos que este es un \mathbb{Z} -módulo libre (de rango n-1). Dado que M es un grupo abeliano finitamente generado (siendo un cociente de \mathbb{Z}^n), es suficiente probar que M es libre de torsión. La torsión significa en este caso que existe un vector $\vec{b}\notin\mathbb{Z}\vec{a}$, tal que para algún $c\neq 0$ se cumple $c\vec{b}\in\mathbb{Z}\vec{a}$. Pero no es difícil ver que esto es imposible bajo nuestra hipótesis sobre \vec{a} .

Ahora tenemos $\mathbb{Z}^n/\mathbb{Z}\vec{a}\cong\mathbb{Z}^{n-1}$. Esto significa que existen algunos vectores $\vec{e}_1,\ldots,\vec{e}_{n-1}\in\mathbb{Z}^n$ tales que sus imágenes en el cociente $\mathbb{Z}^n/\mathbb{Z}\vec{a}$ forman una base. Pero luego $\vec{e}_1,\ldots,\vec{e}_{n-1},\vec{a}$ es una base de \mathbb{Z}^n .

Ejercicio 4.3. Sea d un entero libre de cuadrados. Consideremos el campo cúbico $K = \mathbb{Q}(\sqrt[3]{d})$. Denotemos $\alpha = \sqrt[3]{d}$ y consideremos un elemento

$$\beta = a + b\alpha + c\alpha^2, \quad a, b, c \in \mathbb{Q}.$$

- a) Calcule las trazas $T_{K/\mathbb{Q}}(\beta)$, $T_{K/\mathbb{Q}}(\alpha\beta)$, $T_{K/\mathbb{Q}}(\alpha^2\beta)$ y la norma $N_{K/\mathbb{Q}}(\beta)$.
- b) Si $\beta \in \mathcal{O}_K$, entonces las trazas y normas de arriba son números enteros. Use esto para concluir que $\mathcal{O}_K \subseteq \frac{1}{3}\mathbb{Z}[\alpha]$.
- c) Use estas consideraciones para calcular el anillo de enteros \mathcal{O}_K y discriminante Δ_K (¡la respuesta depende de d!).

Solución. Las trazas son

$$T_{K/\mathbb{Q}}(\beta) = 3a, \quad T_{K/\mathbb{Q}}(\alpha\beta) = 3cd, \quad T_{K/\mathbb{Q}}(\alpha^2\beta) = 3bd,$$

y la norma es

$$N_{K/\mathbb{Q}}(\beta) = a^3 - 3abcd + b^3d + c^3d^2.$$

Ahora si $\beta \in \mathcal{O}_K$, entonces las trazas y normas de arriba son números enteros. Las condiciones para las trazas quieren decir que existen $a',b',c'\in\mathbb{Z}$ tales que

$$a = \frac{a'}{3}, \quad b = \frac{b'}{3d}, \quad c = \frac{c'}{3d}.$$

Lo que queremos ver es que $d \mid b'$ y $d \mid c'$, y para esto vamos a revisar la norma de 3β que resulta ser igual a

$$a'^3 - \frac{3a'b'c'}{d} + \frac{b'^3}{d^2} + \frac{c'^3}{d} \in \mathbb{Z}.$$

Entonces,

$$-\frac{3a'b'c'+c'^3}{d}+\frac{b'^3}{d^2}\in\mathbb{Z}.$$

Supongamos que para algún $p \mid d$ se tiene $p \nmid b'$. En este caso tomando las valuaciones p-ádicas de la expresión de arriba llegamos a una contradicción.

Entonces, $d \mid b'$. Ahora sustituyendo $b = \frac{b'}{3}$, de la misma manera se ve que $d \mid c'$. Esto demuestra que $\beta \in \frac{1}{3}\mathbb{Z}[\alpha]$. Entonces,

$$\mathbb{Z}[\alpha] \subseteq \mathcal{O}_K \subseteq \frac{1}{3}\mathbb{Z}[\alpha].$$

Podemos analizar el cociente $\frac{1}{3}\mathbb{Z}[\alpha]/\mathbb{Z}[\alpha]$ para ver cuáles elementos enteros faltan a $\mathbb{Z}[\alpha]$; es decir, cuáles elementos entre

$$\beta = \frac{1}{3} \left(a + b\alpha + c\alpha^2 \right)$$

son enteros, donde $0 \le a,b,c < 3$. Escribamos el polinomio característico de β (lo calculé en PARI/GP):

$$x^{3} - ax^{2} + \frac{a^{2} - bcd}{3}x - \frac{a^{3} + b^{3}d + d^{2}c^{3} - 3abcd}{27}$$
.

Si b=0 o c=0, entonces el coeficiente de x no será entero, y si a=0, el término constante no es entero. Esto nos dice que $abc\neq 0$, y tenemos que analizar ocho diferentes casos. Además, notamos que β es entero si y solamente si $-\beta$ lo es. Módulo 3, esto corresponde a pasar de (a,b,c) a (2a,2b,2c). Entonces, en realidad no son ocho casos diferentes, sino solamente cuatro.

En cada caso la condición sobre el coeficiente de x nos dice cuál es el resto de d módulo 3, mientras que la condición sobre el término constante quiere decir algo sobre d módulo 3^3 .

a	b	c	d(3)	$27 \times$ term. const.	$d(3^3)$
1	1	1	1	$d^2 - 2d + 1$	1, 10, 19
1	1	2	2	$8d^2 - 5d + 1$	_
1	2	1	2	$d^2 + 2d + 1$	8, 17, 26
1	2	2	1	$8d^2 - 4d + 1$	_

Al final, la respuesta depende de $d \pmod{9}$. Nos salió lo siguiente:

• Si $d \equiv 1 \pmod{9}$, entonces el elemento

$$\beta = \frac{1}{3} + \frac{1}{3}\alpha + \frac{1}{3}\alpha^2$$

es entero (el otro que nos saldrá es 2β). Tenemos

$$\mathcal{O}_K = \mathbb{Z}[\alpha, \beta] = \mathbb{Z} \oplus \alpha \mathbb{Z} \oplus \beta \mathbb{Z}.$$

Para verificar el resultado, calculamos que el discriminante correspondiente será

$$\Delta_K = \det \begin{pmatrix} T(1) & T(\alpha) & T(\beta) \\ T(\alpha) & T(\alpha^2) & T(\alpha\beta) \\ T(\beta) & T(\alpha\beta) & T(\beta^2) \end{pmatrix} = \det \begin{pmatrix} 3 & 0 & 1 \\ 0 & 0 & d \\ 1 & d & (2d+1)/3 \end{pmatrix} = -3d^2.$$

Por otra parte, $\Delta(\mathbb{Z}[\alpha]) = -27d^2$, y luego $[\mathcal{O}_K : \mathbb{Z}[\alpha]] = 3$. Podemos también escribir la expresión para $\Delta(\mathbb{Z}[\beta])$ y concluir que $[\mathcal{O}_K : \mathbb{Z}[\beta]] = \frac{d-1}{9}$.

• Si $d \equiv 8 \pmod{9}$, entonces el elemento

$$\beta = \frac{1}{3} + \frac{2}{3}\alpha + \frac{1}{3}\alpha^2$$

es entero. En este caso también se tiene $\Delta_K = -3d^2$ y $[\mathcal{O}_K : \mathbb{Z}[\alpha]] = 3$. Además, es posible ver que $[\mathcal{O}_K : \mathbb{Z}[\beta]] = \frac{d-8}{9}$.

■ En el resto de los casos cuando $d \not\equiv \pm 1 \pmod 9$, no habrá elementos enteros adicionales.

Cuando $d \equiv \pm 1 \pmod{9}$, entonces $\mathcal{O}_K = \mathbb{Z}[\alpha, \beta]$, y en el caso contrario, $\mathcal{O}_K = \mathbb{Z}[\alpha]$.

Ejercicio 4.4. Encuentre el anillo de enteros \mathcal{O}_K y discriminante Δ_K para los campos cúbicos $\mathbb{Q}(\sqrt[3]{6})$ y $\mathbb{Q}(\sqrt[3]{12})$.

Solución. En el caso de $\mathbb{Q}(\sqrt[3]{6})$, el ejercicio anterior nos dice que $\mathcal{O}_K=\mathbb{Z}[\sqrt[3]{6}]$, y el discriminante correspondiente será $\Delta_K=\Delta(x^3-6)=-27\cdot 6^2=-2^2\cdot 3^5$. Ahora para $\mathbb{Q}(\sqrt[3]{12})$, el número 12 no es libre de cuadrados, así que no po-

Ahora para $\mathbb{Q}(\sqrt[3]{12})$, el número 12 no es libre de cuadrados, así que no podemos aplicar el mismo argumento. Denotemos $\alpha = \sqrt[3]{12}$. No es difícil notar otro elemento entero: $\beta = \alpha^2/2 = \sqrt[3]{18}$. Calculamos que

$$\Delta(\mathbb{Z}[\alpha]) = -2^4 \cdot 3^5, \quad \Delta(\mathbb{Z}[\beta]) = -2^2 \cdot 3^7.$$

Ahora consideremos

$$\mathbb{Z}[\alpha,\beta] = \mathbb{Z} \oplus \alpha \mathbb{Z} \oplus \beta \mathbb{Z}$$

(note que $\alpha\beta=6$, $\alpha^2=2\beta$, $\beta^2=6\alpha$). Calculamos

$$\Delta(\mathbb{Z}[\alpha,\beta]) = \det \begin{pmatrix} T(1) & T(\alpha) & T(\beta) \\ T(\alpha) & T(\alpha^2) & T(\alpha\beta) \\ T(\beta) & T(\alpha\beta) & T(\beta^2) \end{pmatrix} = \det \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 18 \\ 0 & 18 & 0 \end{pmatrix} = -2^2 \cdot 3^5.$$

Esto implica que

$$[\mathcal{O}_K : \mathbb{Z}[\alpha, \beta]] = m = 1, 2, 3, 6, 9, 18.$$

Podemos analizar la integridad de los elementos en el cociente $\frac{1}{m}\mathbb{Z}[\alpha]/\mathbb{Z}[\alpha]$. Para esto consideremos los elementos

$$\gamma = \frac{a}{m} + \frac{b}{m}\alpha + \frac{c}{m}\beta,$$

donde $0 \le a, b, c < m$. Basta considerar m = 18. En teoría, todo esto se puede hacer a mano, hasta cierto punto. Por ejemplo, calculamos

$$T_{K/\mathbb{Q}}(\gamma) = \frac{3a}{m} = \frac{a}{6},$$

de donde a=0,6,12, lo que quita una parte del trabajo. Podemos sustituir estos valores de a y, por ejemplo, analizar $N_{K/\mathbb{Q}}(\gamma)$, pero mejor hacerlo con la computadora.

Esto implica que $\mathcal{O}_K=\mathbb{Z}[\alpha,\beta]$. Ya calculamos Δ_K . Notamos que para $\mathbb{Q}(\sqrt[3]{6})$ y $\mathbb{Q}(\sqrt[3]{12})$ nos salió el mismo discriminante.

Ejercicio 4.5. Consideremos el campo cúbico $K = \mathbb{Q}(\sqrt[3]{17})$.

- a) Calcule el anillo de enteros \mathcal{O}_K y discriminante Δ_K .
- b) Describa las factorizaciones de primos racionales $p \in \mathbb{Z}$ en \mathcal{O}_K .
- c) Describa los ideales primos $\mathfrak{p} \subset \mathcal{O}_K$ tales que $N_{K/\mathbb{Q}}(\mathfrak{p}) \leq 10$.
- d) Describa todos los ideales $I \subseteq \mathcal{O}_K$ tales que $N_{K/\mathbb{O}}(I) \leq 10$.

Solución. Denotando $\sqrt[3]{17}$ por α , el ejercicio 3 nos dice que

$$\mathcal{O}_K = \mathbb{Z}[\alpha, \beta], \quad \beta = \frac{1}{3} + \frac{2}{3}\alpha + \frac{1}{3}\alpha^2.$$

Además, allí escribimos la fórmula curiosa $[\mathcal{O}_K:\mathbb{Z}[\beta]]=\frac{d-8}{9}$, y para d=17 tenemos suerte y $\mathcal{O}_K=\mathbb{Z}[\beta]$. Por otra parte, $[\mathcal{O}_K:\mathbb{Z}[\alpha]]=3$. Esto significa que podemos aplicar el Kummer–Dedekind al polinomio mínimo de β :

$$x^3 - x^2 - 11x - 12$$
.

Sin embargo, será más fácil considerar el polinomio x^3-17 para todos los primos excepto p=3. En ese caso excepcional tenemos

$$x^3 - x^2 - 11x - 12 \equiv x(x+1)^2 \pmod{3}$$
,

lo que nos da la factorización

$$3\mathcal{O}_K = \mathfrak{p}_3 \, \mathfrak{p}_3^{\prime 2} = (3, \beta) \, (3, 1 + \beta)^2,$$

donde $N_{K/\mathbb{Q}}(\mathfrak{p}_3)=N_{K/\mathbb{Q}}(\mathfrak{p}_3')=3.$ Para los primos distintos de 3, las factorizaciones son las siguientes.

- $17\mathcal{O}_K = \mathfrak{p}^3$, donde $\mathfrak{p} = \sqrt[3]{17}\mathcal{O}_K$. Tenemos $N_{K/\mathbb{Q}}(\mathfrak{p}) = 17$.
- Si $p \equiv 2 \pmod 3$ y $p \ne 17$, entonces $p\mathcal{O}_K = \mathfrak{p}\,\mathfrak{p}'$, lo que viene de la factorización

$$x^3 - 17 \equiv (x - a) \times \text{polinomio cuadrático} \pmod{p}$$
.

Aquí
$$N_{K/\mathbb{Q}}(\mathfrak{p}) = p$$
 y $N_{K/\mathbb{Q}}(\mathfrak{p}') = p^2$.

■ Para $p \equiv 1 \pmod{3}$ hay dos opciones. Si 17 no es un cubo módulo p, entonces $\mathfrak{p} = p\mathcal{O}_K$ es un ideal primo y $N_{K/\mathbb{Q}}(\mathfrak{p}) = p^3$. Si 17 es un cubo módulo p, entonces $p\mathcal{O}_K = \mathfrak{p} \mathfrak{p}' \mathfrak{p}''$, lo que viene de la factorización

$$x^3 - 17 \equiv (x - a_1)(x - a_2)(x - a_3) \pmod{p}$$
.

Ahora si nos interesan los ideales primos de norma $N_{K/\mathbb{Q}}(\mathfrak{p}) \leq 10$, esto en particular implica que $\mathfrak{p} \mid p$, donde p < 10. Para obtener todos los ideales de norma $N_{K/\mathbb{Q}}(I) \leq 10$, hay que multiplicar los ideales primos correspondientes (usando la unicidad de descomposición de ideales en ideales primos).

Los primos $p\equiv 2\pmod 3$ que nos interesan son p=2,5, y las factorizaciones de x^3-17 son

$$p = 2: (x+1)(x^2 + x + 1),$$

$$p = 5: (x+2)(x^2 + 3x + 4).$$

El primo p=7 es inerte, y el ideal primo correspondiente $\mathfrak{p}=7\mathcal{O}_K$ tiene norma 7^3 y no nos interesa. Ahora los ideales primos de norma <10 que salen de la lista de arriba son nada más los siguientes:

$$\begin{split} N &= 2 \colon \mathfrak{p}_2 = (2, 1 + \alpha), \\ N &= 3 \colon \mathfrak{p}_3 = (3, \beta), \ \mathfrak{p}_3' = (3, 1 + \beta), \\ N &= 4 \colon \mathfrak{p}_2' = (2, 1 + \alpha + \alpha^2), \\ N &= 5 \colon \mathfrak{p}_5 = (5, 2 + \alpha). \end{split}$$

Si nos interesan todos los ideales de norma ≤ 10 , hay que considerar los pro-

ductos:

```
\begin{split} N &= 1 \colon \mathcal{O}_K, \\ N &= 2 \colon \mathfrak{p}_2, \\ N &= 3 \colon \mathfrak{p}_3, \ \mathfrak{p}_3', \\ N &= 4 \colon \mathfrak{p}_2^2, \ \mathfrak{p}_2', \\ N &= 5 \colon \mathfrak{p}_5, \\ N &= 6 \colon \mathfrak{p}_2 \, \mathfrak{p}_3, \ \mathfrak{p}_2 \, \mathfrak{p}_3', \\ N &= 8 \colon \mathfrak{p}_3^2, \ \mathfrak{p}_3 \, \mathfrak{p}_3', \ \mathfrak{p}_3'', \\ N &= 9 \colon \mathfrak{p}_3^2, \ \mathfrak{p}_3 \, \mathfrak{p}_3', \ \mathfrak{p}_3'', \\ N &= 10 \colon \mathfrak{p}_2 \, \mathfrak{p}_5, \end{split}
```

En total, nos salieron 15 ideales. Podemos comprobarlo con PARI/GP. Allí la función ideallist(K, N) devuelve los ideales en \mathcal{O}_K de norma $\leq N$ como una lista separada por normas

```
? L = ideallist (nfinit(x^3-17),10);
? vector (#L, i, #L[i])
% = [1, 1, 2, 2, 1, 2, 0, 2, 3, 1]
? vecsum(%)
% = 15
```

Las consideraciones similares demuestran que para cualquier campo de números K/\mathbb{Q} y N fijo hay un número finito de ideales $I\subseteq\mathcal{O}_K$ con la norma $N_{K/\mathbb{Q}}(I)\leq N$.