Clase nº 7

Ajuste de curvas

Aplicaciones:

- Análisis de la tendencia: Predecir valores de la variable dependiente –interpolar o extrapolar-.
- Prueba de hipótesis: Validar un modelo matemático existente con los resultados experimentales o adecuar el modelo a los datos.
- Integración, solución aproximada de ecuaciones diferenciales, etc.

Métodos:

 Cuando hay errores en los valores datos, no es posible acompañarlos y es relevante predecir:

Tendencia
 Regresión por mínimos cuadrados y otros

- Si los datos son muy precisos, es importante acompañarlos:
 - Interpolación lineal
 - Interpolación de Newton
 - Interpolación de Lagrange

FIGURA PT5.6

Regresión por mínimos cuadrados

- Regresión lineal: Cada x tiene un valor fijo, no es aleatorio y se conoce sin error, lo valores de y son variables aleatorias independientes y todas tienen la misma varianza, lo valores de y para una x dada deben estar distribuidos normalmente
- Regresión polinomial: Limitar a polinomios de grados inferiores para evitar el error de redondeo de las ecuaciones normales mal condicionadas en sus coeficientes de grado superior
- Regresión no lineal: Método de Gauss Newton

Encontrando el ajuste más adecuado

Ajustar minimizando la discrepancia entre los puntos y la curva

Regresión lineal:

e: error o residuo -discrepancia-

$$e = y - a_0 - a_1 x$$

Minimizar el error:

$$\sum_{i=1}^{n} |e_i| = \sum_{i=1}^{n} |y_i - a_0 - a_1 x_i|$$

$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_{i,\text{medida}} - y_{i,\text{modelo}})^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

Ajuste de una línea recta por mínimos cuadrados

$$\frac{\partial S_r}{\partial a_0} = -2\sum (y_i - a_0 - a_1 x_i) \qquad 0 = \sum y_i - \sum a_0 - \sum a_1 x_i$$

$$\frac{\partial S_r}{\partial a_1} = -2\sum [(y_i - a_0 - a_1 x_i) x_i] \qquad 0 = \sum y_i x_i - \sum a_0 x_i - \sum a_1 x_i^2$$

$$na_0 + \left(\sum x_i\right) a_1 = \sum y_i$$

$$\left(\sum x_i\right) a_0 + \left(\sum x_i^2\right) a_i = \sum x_i y_i$$

Éstas se llaman ecuaciones normales, y se resuelven en forma simultánea

$$a_1 = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2}$$

EJEMPLO 17.1 Regresión lineal

Planteamiento del problema. Ajuste a una línea recta los valores x y y en las dos primeras columnas de la tabla 17.1.

Solución. Se calculan las siguientes cantidades:

$$n = 7 \qquad \sum x_i y_i = 119.5 \qquad \sum x_i^2 = 140$$

$$\sum x_i = 28 \qquad \overline{x} = \frac{28}{7} = 4$$

$$\sum y_i = 24 \qquad \overline{y} = \frac{24}{7} = 3.428571$$

Mediante las ecuaciones (17.6) y (17.7)

$$a_1 = \frac{7(119.5) - 28(24)}{7(140) - (28)^2} = 0.8392857$$

$$a_0 = 3.428571 - 0.8392857(4) = 0.07142857$$

Error en la regresión lineal

Error estándar del estimado

$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

El residuo en la regresión lineal representa la distancia vertical entre un dato y la línea recta.

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}}$$

FIGURA 17.4

Datos de regresión que muestran a) la dispersión de los datos alrededor de la media de la variable dependiente y b) la dispersión de los datos alrededor de la línea de mejor ajuste. La reducción en la dispersión al ir de a) a b), como lo indican las curvas en forma de campana a la derecha, representa la mejora debida a la regresión lineal.

FIGURA 17.5 Eiemplos de rearesión lineal con errores residuales a) pequeños y b) grandes.

Error en la regresión lineal: coeficiente de correlación

$$r^2 = \frac{S_t - S_r}{S_t}$$

$$r = \frac{n\sum x_i y_i - (\sum x_i)(\sum y_i)}{\sqrt{n\sum x_i^2 - (\sum x_i)^2} \sqrt{n\sum y_i^2 - (\sum y_i)^2}}$$

Ejemplo 17.3 pag. 475

 Analizar el desempeño de dos modelos para la velocidad del paracaidista:

$$v(t) = \frac{gm}{c} \left| 1 - e^{-\frac{c}{m}t} \right|$$
Modelo 1 - analítico

$$v(t) = \frac{gm}{c} \left| \frac{t}{3,75+t} \right| \qquad \text{Modelo 2 - empirico}$$

Solucion en Octave: p17_3.m

Linealización de relaciones no lineales

Un ejemplo es el modelo exponencial

$$y = \alpha_1 e^{\beta_1 x}$$

FIGURA 17.8

a) Datos inadecuados para la regresión lineal por mínimos cuadrados. b) Indicación de que es preferible una parábola.

Otro ejemplo de modelo no lineal es la ecuación de potencias

Ejemplo 17.4 juan

- Ajustar un modelo exponencial a los datos de la tabla
- 17_4.ods

Regresión polinomial

$$\frac{\partial S_r}{\partial a_0} = -2\sum (y_i - a_0 - a_1 x_i - a_2 x_i^2)$$

$$\frac{\partial S_r}{\partial a_1} = -2\sum x_i (y_i - a_0 - a_1 x_i - a_2 x_i^2)$$

$$\frac{\partial S_r}{\partial a_2} = -2\sum x_i^2 (y_i - a_0 - a_1 x_i - a_2 x_i^2)$$

$$(n)a_0 + \left(\sum x_i\right)a_1 + \left(\sum x_i^2\right)a_2 = \sum y_i$$

$$\left(\sum x_i\right)a_0 + \left(\sum x_i^2\right)a_1 + \left(\sum x_i^3\right)a_2 = \sum x_iy_i$$

$$\left(\sum x_i^2\right)a_0 + \left(\sum x_i^3\right)a_1 + \left(\sum x_i^4\right)a_2 = \sum x_i^2y_i$$

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m + e$$

$$S_{y/x} = \sqrt{\frac{S_r}{n - (m+1)}}$$

Ejemplo 17.5: Regresión polinomial

Planteamiento del problema. Ajustar a un polinomio de segundo grado los datos dados en las dos primeras columnas de la tabla 17.4.

Solución. A partir de los datos dados,

$$m = 2$$
 $\sum x_i = 15$ $\sum x_i^4 = 979$
 $n = 6$ $\sum y_i = 152.6$ $\sum x_i y_i = 585.6$
 $\overline{x} = 2.5$ $\sum x_i^2 = 55$ $\sum x_i^2 y_i = 2488.8$
 $\overline{y} = 25.433$ $\sum x_i^3 = 225$

TABLA 17.4 Cálculos para un análisis de error del ajuste cuadrático por mínimos cuadrados.

\mathbf{x}_{i}	y i	$(\mathbf{y}_i - \mathbf{\bar{y}})^2$	$(y_i - a_0 - a_1 x_i - a_2 x_i^2)$	
0	2.1	544.44	0.14332	
]	7.7	314.47	1.00286	
2	13.6	140.03	1.08158	
3	27.2	3.12	0.80491	
4	40.9	239.22	0.61951	
5	61.1	1272.11	0.09439	
$\overline{\Sigma}$	152.6	2513.39	3.74657	

Ajuste de un polinomio de segundo grado.

$$y = 2.47857 + 2.35929x + 1.86071x^2$$

$$s_{y/x} = \sqrt{\frac{3.74657}{6-3}} = 1.12$$

$$\begin{bmatrix} 6 & 15 & 55 \\ 15 & 55 & 225 \\ 55 & 225 & 979 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 152.6 \\ 585.6 \\ 2488.8 \end{bmatrix}$$

$$r^2 = \frac{2513.39 - 3.74657}{2513.39} = 0.99851$$

Algoritmo para la regresión polinomial

- Paso 1: Introduzca el grado del polinomio sujeto a ajuste, m.
- Paso 2: Introduzca el número de datos, n.
- **Paso 3:** Si n < m + 1, imprima un mensaje de error que indique que la regresión no es posible y termine el proceso. Si $n \ge m + 1$, continúe.
- Paso 4: Calcule los elementos de la ecuación normal en la forma de una matriz aumentada.
- **Paso 5:** Usando la matriz aumentada determine los coeficientes a_0 , a_1 , a_2 ,..., a_m , por medio de un método de eliminación.
- Paso 6: Imprima los coeficientes.

Regresión lineal múltiple

$$S_r = \sum_{i=1}^{n} (y_i - a_0 - a_1 x_{1i} - a_2 x_{2i})^2$$

$$\frac{\partial S_r}{\partial a_0} = -2\sum (y_i - a_0 - a_1 x_{1i} - a_2 x_{2i})$$

$$\frac{\partial S_r}{\partial a_1} = -2\sum x_{1i}(y_i - a_0 - a_1 x_{1i} - a_2 x_{2i})$$

$$\frac{\partial S_r}{\partial a_2} = -2\sum x_{2i}(y_i - a_0 - a_1 x_{1i} - a_2 x_{2i})$$

$$\begin{bmatrix} n & \sum x_{1i} & \sum x_{2i} \\ \sum x_{1i} & \sum x_{1i}^{2} & \sum x_{1i}x_{2i} \\ \sum x_{2i} & \sum x_{1i}x_{2i} & \sum x_{2i}^{2} \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \end{bmatrix} = \begin{bmatrix} \sum y_{i} \\ \sum x_{1i}y_{i} \\ \sum x_{2i}y_{i} \end{bmatrix}$$

Problemas 17.1 a 17.29 pag. 499

Interpolación

- Interpolación polinomial de Newton en diferencias divididas: lineal, cuadrática, polinomial
- Polinomios de interpolación de Lagrange
- Interpolación mediante trazadores: lineales, cuadráticos (splines), cúbicos

Interpolación lineal

$$\frac{f_1(x) - f(x_0)}{x - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

reordenándose se tiene

$$f_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0)$$

Ejemplo 18.1

- Estime In(2) por interpolación lineal sabiendo que:
 - $-\ln(1) = 0$
 - $-\ln(6) = 1.791759$
- Y despues entre ln(1) = 0 y ln(4) =
 1.386294

Dos interpolaciones lineales para estimar ln 2. Observe cómo el intervalo menor proporciona una mejor estimación.

Interpolación cuadrática

Se necesitan 3 puntos

$$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

- Si x = x0, b0 = f(x0)
- Se reemplaza en la anterior y se evalua en x = x1
- Se reemplaza en la anterior y se evalua en x = x2

Interpolación cuadrática

$$f_{2}(x) = b_{0} + b_{1}(x - x_{0}) + b_{2}(x - x_{0})(x - x_{1})$$

$$b_{0} = f(x_{0})$$

$$b_{1} = \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$b_{2} = \frac{\frac{f(x_{2}) - f(x_{1})}{x_{2} - x_{1}} - \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}}{x_{2} - x_{0}}$$

Ejemplo 18.2

 Ajuste un polinomio de 2do grado a los datos del ej. 18.1

```
-X0 = 1 , f(x0) = 0
```

$$-X1 = 4$$
, $f(x1) = 1.386294$

$$-X2 = 6$$
, $f(x2) = 1.791759$

Forma general de los polinomios de interpolación de Newton

$$f_n(x) = b_0 + b_1(x - x_0) + \dots + b_n(x - x_0)(x - x_1) \cdot \dots \cdot (x - x_{n-1})$$

$$b_0 = f(x_0)$$

$$b_1 = f[x_1, x_0]$$

$$b_2 = f[x_2, x_1, x_0]$$
.

$$b_n = f[x_n, x_{n-1}, \dots, x_1, x_0]$$

$$f[x_i, x_j] = \frac{f(x_i) - f(x_j)}{x_i - x_j}$$

$$f[x_i, x_j, x_k] = \frac{f[x_i, x_j] - f[x_j, x_k]}{x_i - x_k}$$

i	$\boldsymbol{x_i}$	$f(x_i)$	Primero	Segundo	Tercero
0	X 0	f(x ₀) -	$f[x_1, x_0]$	$f[x_2, x_1, x_0]$	$f[x_3, x_2, x_1, x_0]$
1	x_1	$f(x_1)$	$f[x_2, x_1]$	$f[x_3, x_2, x_1]$	
2	X 2	$f(x_2)$	$\Rightarrow f[x_3, x_2]$		
3	<i>x</i> ₃	$f(x_3)$			

FIGURA 18.5

Representación gráfica de la naturaleza recursiva de las diferencias divididas finitas.

$$f[x_n, x_{n-1}, \dots, x_1, x_0] = \frac{f[x_n, x_{n-1}, \dots, x_1] - f[x_{n-1}, x_{n-2}, \dots, x_0]}{x - x}$$

$$f_n(x) = f(x_0) + (x - x_0) f[x_1, x_0] + (x - x_0)(x - x_1) f[x_2, x_1, x_0]$$

+ \cdots + (x - x_0)(x - x_1) \cdots \cdot (x - x_{n-1}) f[x_n, x_{n-1}, \cdots, x_0]

Ejemplo 18.3 Polinomios de interpolación de Newton en diferencias divididas

Planteamiento del problema. En el ejemplo 18.2, los datos $x_0 = 1$, $x_1 = 4$ y $x_2 = 6$ se utilizaron para estimar ln 2 mediante una parábola. Ahora, agregando un cuarto punto $(x_3 = 5; f(x_3) = 1.609438]$, estime ln 2 con un polinomio de interpolación de Newton de tercer grado.

Solución. Utilizando la ecuación (18.7), con n = 3, el polinomio de tercer grado es

$$f_3(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1) + b_3(x - x_0)(x - x_1)(x - x_2)$$

Las primeras diferencias divididas del problema son [ecuación (18.12)]

$$f[x_1, x_0] = \frac{1.386294 - 0}{4 - 0} = 0.4620981$$
$$f[x_2, x_1] = \frac{1.791759 - 1.386294}{6 - 4} = 0.2027326$$

$$f[x_3, x_2] = \frac{1.609438 - 1.791759}{5 - 6} = 0.1823216$$

Las segundas diferencias divididas son [ecuación (18.13)]

$$f[x_2, x_1, x_0] = \frac{0.2027326 - 0.4620981}{6 - 1} = -0.05187311$$

$$f[x_3, x_2, x_1] = \frac{0.1823216 - 0.2027326}{5 - 4} = -0.02041100$$

La tercera diferencia dividida es [ecuación (18.14) con n = 3]

$$f[x_3, x_2, x_1, x_0] = \frac{-0.02041100 - (-0.05187311)}{5 - 1} = 0.007865529$$

$$f_3(x) = 0 + 0.4620981(x - 1) - 0.05187311(x - 1)(x - 4) + 0.007865529(x - 1)(x - 4)(x - 6)$$

• 18_3.ods

Errores en la interpolación polinomial de Newton

$$R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x_{i+1} - x_i)^{n+1}$$

$$R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)(x - x_1) \cdots (x - x_n)$$

$$R_n = f[x, x_n, x_{n-1}, \dots, x_0](x - x_0)(x - x_1) \cdot \dots \cdot (x - x_n)$$

$$R_2 = f[x_3, x_2, x_1, x_0](x - x_0)(x - x_1)(x - x_2)$$

Polinomios de interpolación de Lagrange

$$f_n(x) = \sum_{i=0}^n L_i(x) f(x_i)$$

donde

$$L_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}$$

$$f_1(x) = \frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1)$$

$$f_2(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1)$$

$$+ \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2)$$

$$R_n = f[x, x_n, x_{n-1}, ..., x_0] \prod_{i=0}^n (x - x_i)$$

Algoritmo del método de Lagrange

lagrange.m

Ejemplo 18.7: Interpolación de Lagrange empleando la computadora

Tiempo, s	Velocidad medida <i>v,</i> cm/s				
.1	800				
3	2310				
5	3 0 9 0				
7	3940				
13	4755				

Interpolación mediante trazadores (splines)

$$m_{i} = \frac{f(x_{i+1}) - f(x_{i})}{x_{i+1} - x_{i}}$$

Trazadores de primer grado

Planteamiento del problema. Ajuste los datos de la tabla 18.1 con trazadores de primer grado. Evalúe la función en x = 5.

Solución. Se utilizan los datos para determinar las pendientes entre los puntos. Por ejemplo, en el intervalo de x = 4.5 a x = 7 la pendiente se calcula con la ecuación (18.27):

$$m = \frac{2.5 - 1}{7 - 4.5} = 0.60$$

Se calculan las pendientes en los otros intervalos y los trazadores de primer grado obtenidos se grafican en la figura 18.16a. El valor en x = 5 es 1.3.

$$f_i(x) = a_i x^3 + b_i x^2 + c_i x + d_i$$

- 1. Los valores de la función deben ser iguales en los nodos interiores (2n-2 cond ciones).
- 2. La primera y última función deben pasar a través de los puntos extremos (2 condiciones).
- 3. Las primeras derivadas en los nodos interiores deben ser iguales (n-1) condicientes).
- **4.** Las segundas derivadas en los nodos interiores deben ser iguales (n-1) condicientes).
- 5. Las segundas derivadas en los nodos extremos son cero (2 condiciones).

$$f_i''(x) = f_i''(x_{i-1}) \frac{x - x_i}{x_{i-1} - x_i} + f_i''(x_i) \frac{x - x_{i-1}}{x_i - x_{i-1}}$$

$$f_{i}(x) = \frac{f_{i}''(x_{i-1})}{6(x_{i} - x_{i-1})} (x_{i} - x)^{3} + \frac{f_{i}''(x)}{6(x_{i} - x_{i-1})} (x - x_{i-1})^{3} + \left[\frac{f(x_{i-1})}{x_{i} - x_{i-1}} - \frac{f''(x_{i-1})(x_{i} - x_{i-1})}{6} \right] (x_{i} - x) + \left[\frac{f(x_{i})}{x_{i} - x_{i-1}} - \frac{f''(x_{i})(x_{i} - x_{i-1})}{6} \right] (x - x_{i-1})$$

$$f'_{i-1}(x_i) = f'_i(x_i)$$

$$(x_{i} - x_{i-1})f''(x_{i-1}) + 2(x_{i+1} - x_{i-1})f''(x_{i})$$

$$+(x_{i+1} - x_{i})f''(x_{i+1})$$

$$= \frac{6}{x_{i+1} - x_{i}} [f(x_{i+1}) - f(x_{i})]$$

$$+ \frac{6}{x_{i} - x_{i-1}} [f(x_{i-1}) - f(x_{i})]$$

$$f_{i}(x) = \frac{f_{i}''(x_{i-1})}{6(x_{i} - x_{i-1})} (x_{i} - x)^{3} + \frac{f_{i}''(x_{i})}{6(x_{i} - x_{i-1})} (x - x_{i-1})^{3}$$

$$+ \left[\frac{f(x_{i-1})}{x_{i} - x_{i-1}} - \frac{f''(x_{i-1})(x_{i} - x_{i-1})}{6} \right] (x_{i} - x)$$

$$+ \left[\frac{f(x_{i})}{x_{i} - x_{i-1}} - \frac{f''(x_{i})(x_{i} - x_{i-1})}{6} \right] (x - x_{i-1})$$

$$(x_{i} - x_{i-1})f''(x_{i-1}) + 2(x_{i+1} - x_{i-1})f''(x_{i}) + (x_{i+1} - x_{i})f''(x_{i+1})$$

$$= \frac{6}{x_{i+1} - x_{i}} [f(x_{i+1}) - f(x_{i})] + \frac{6}{x_{i} - x_{i-1}} [f(x_{i-1}) - f(x_{i})]$$

Planteamiento del problema. Ajuste trazadores cúbicos a los mismos datos que se usaron en los ejemplos 18.8 y 18.9 (tabla 18.1). Utilice los resultados para estimar \mathbf{d} valor en x = 5.

$$x_0 = 3$$
 $f(x_0) = 2.5$
 $x_1 = 4.5$ $f(x_1) = 1$
 $x_2 = 7$ $f(x_2) = 2.5$

Estos valores se sustituyen en la ecuación (18.37):

$$(4.5-3)f''(3) + 2(7-3)f''(4.5) + (7-4.5)f''(7)$$

$$= \frac{6}{7-4.5}(2.5-1) + \frac{6}{4.5-3}(2.5-1)$$

Debido a la condición de trazador natural, f''(3) = 0, y la ecuación se reduce a

$$8f''(4.5) + 2.5f''(7) = 9.6$$

En una forma similar, la ecuación (18.37) se aplica al segundo punto interior con eguiente resultado:

$$2.5f''(4.5) + 9f''(7) = -9.6$$

Estas dos ecuaciones se resuelven simultáneamente:

$$f''(4.5) = 1.67909$$
$$f''(7) = -1.53308$$

$$f_1(x) = \frac{1.67909}{6(4.5-3)}(x-3)^3 + \frac{2.5}{4.5-3}(4.5-x) + \left[\frac{1}{4.5-3} - \frac{1.67909(4.5-3)}{6}\right](x-3)$$

$$f_1(x) = 0.186566(x-3)^3 + 1.666667(4.5-x) + 0.246894(x-3)$$

$$f_2(x) = 0.111939(7 - x)^3 - 0.102205(x - 4.5)^3 - 0.299621(7 - x) + 1.638783(x - 4.5)$$

y

)

$$f_3(x) = -0.127757(9-x)^3 + 1.761027(9-x) + 0.25(x-7)$$

$$f_2(5) = 0.111939(7-5)^3 - 0.102205(5-4.5)^3 - 0.299621(7-5)$$

+ 1.638783(5-4.5) = 1.102886

Estudio de casos

20.45 La Ley de Hooke, que se cumple cuando un resorte no se estira más allá de cierto límite, significa que la extensión de este resorte y la fuerza que se le aplica están relacionadas linealmente. La proporcionalidad está parametrizada por la constante k del resorte. Un valor para dicho parámetro se establece en forma experimental con la colocación de pesos conocidos en el resorte y la medición de la compresión que resulta. Tales datos aparecen en la tabla P20.45 y están graficados en la figura P20.45. Observe que por arriba de un peso de 40×10^4 N, la relación lineal entre la fuerza y el desplazamiento desaparece. Esta clase de comportamiento es común de lo que se denomina "resorte en deformación". Emplee regresión lineal para determinar un valor de k para la parte lineal de este sistema. Además, ajuste una relación no lineal a la parte no lineal.

Tabla P20.45 Tabla P20.45 Valores experimentales para la elongación x y la fuerza F para el resorte de un sistema de suspensión de automóvil

Desplazamiento, m	0.10	0.17	0.27	0.35	0.39	0.42	0.43	0.44
Fuerza, 10 ⁴ N	10	20	30	40	50	60	70	80

Error asociado con datos		Coincidencia con los datos individuales	Núm. de puntos que coinciden exactamente	Dificultad de programación	Comentarios	
gresión						
Fegresión lineal	Grande	Aproximada	0	Fácil		
₹egresión polinomial	Grande	Aproximada	0	Moderada	El error de redondeo se vuelve pronunciado en versiones de orden superior	
Regresión lineal múltiple	Grande	Aproximada	0	Moderada		
Fegresión no lineal erpolación Felinomios de Newton	Grande	Aproximada	0	Difícil		
en diferencias divididas	Pequeña	Exacta	n+1	Fácil	Se prefiere para análisis exploratorios	
² alinomios de Lagrange	Pequeña	Exacta	n + 1	Fácil	Se prefiere cuando se conoce el grado	
razadores cúbicos	Pequeña	Exacta	Ajuste por segmentos a los datos	Moderada	Primera y segunda deri- vada iguales en nodos	