第三章 矩阵分析

§1 矩阵序列的极限

一、定义及运算律

定义 设有矩阵序列 $\{A^{(k)}\}$, 其中 $A^{(k)} = (a^{(k)}_{ij}) \in \mathbb{C}^{m \times n}$ 。 若 $\lim_{k \to +\infty} a^{(k)}_{ij} = a_{ij}$ $(i = 1, \dots, m; j = 1, \dots, n)$,则称 $\{A^{(k)}\}$ 收敛于 $A = (a_{ij})_{m \times n}$,记为 $\lim_{k \to +\infty} A^{(k)} = A$ 或 $A^{(k)} \to A$ $(k \to +\infty)$;如果 $\{a^{(k)}_{ij}\}$ 中至少一个极限不存在,则称 $\{A^{(k)}\}$ 发散。可见一个矩阵序列的收敛相当于 mn 个数列极限的收敛。

定理 $\lim_{k\to +\infty} A^{(k)} = A$ 的充要条件是 $\lim_{k\to +\infty} \left\|A^{(k)} - A\right\| = 0$,其中 $\|\bullet\|$ 是 $\mathbb{C}^{m\times n}$ 的任意矩阵范数。

证 因为
$$\left|a_{ij}^{(k)} - a_{ij}\right| \leq \sqrt{mn} \max_{i,j} \left|a_{ij}^{(k)} - a_{ij}\right| = \left\|A^{(k)} - A\right\|_{G} \leq \sqrt{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left|a_{ij}^{(k)} - a_{ij}\right|$$

所以
$$\lim_{k \to +\infty} A^{(k)} = A \Leftrightarrow \lim_{k \to +\infty} \left\| A^{(k)} - A \right\|_{G} = 0 \Leftrightarrow \lim_{k \to +\infty} \left\| A^{(k)} - A \right\| = 0.$$
 证毕

推论 若
$$\lim_{k \to +\infty} A^{(k)} = A$$
,则 $\lim_{k \to +\infty} ||A^{(k)}|| = ||A||$ 。

证 由
$$\|A^{(k)}\| - \|A\| \le \|A^{(k)} - A\|$$
 即得。证毕

注 上述推论的相反结果不成立。如 $\mathbf{A}^{(k)} = \begin{pmatrix} (-1)^k & \frac{1}{k} \\ 1 & 2 \end{pmatrix}$ 不收敛,但

$$\lim_{k \to +\infty} \| \mathbf{A}^{(k)} \|_{\mathrm{F}} = \lim_{k \to +\infty} \sqrt{1 + \frac{1}{k^2} + 1 + 4} = \sqrt{6} \ .$$

性质 1 设 $\lim_{k \to +\infty} A^{(k)} = A$, $\lim_{k \to +\infty} B^{(k)} = B$, 其中 A, B 同阶,则

$$\lim_{k \to +\infty} (\lambda \mathbf{A}^{(k)} + \mu \mathbf{B}^{(k)}) = \lambda \mathbf{A} + \mu \mathbf{B}, \qquad \lambda, \mu \in \mathbf{C}$$

证 因为
$$\|(\lambda A^{(k)} + \mu B^{(k)}) - (\lambda A + \mu B)\| \le |\lambda| \|A^{(k)} - A\| + |\mu| \|B^{(k)} - B\|$$

所以
$$\lim_{k\to+\infty} \left\| (\lambda \mathbf{A}^{(k)} + \mu \mathbf{B}^{(k)}) - (\lambda \mathbf{A} + \mu \mathbf{B}) \right\| = 0,$$

故
$$\lim_{k \to +\infty} (\lambda \mathbf{A}^{(k)} + \mu \mathbf{B}^{(k)}) = \lambda \mathbf{A} + \mu \mathbf{B}$$
 。 证毕

性质 2 设
$$\lim_{k \to +\infty} A^{(k)} = A$$
, $\lim_{k \to +\infty} B^{(k)} = B$, 且 AB 有意义,则

$$\lim_{k\to+\infty} \boldsymbol{A}^{(k)}\boldsymbol{B}^{(k)} = \boldsymbol{A}\boldsymbol{B} \circ$$

证 因为
$$\|A^{(k)}B^{(k)} - AB\| = \|A^{(k)}B^{(k)} - AB^{(k)} + AB^{(k)} - AB\|$$

$$\leq \|A^{(k)} - A\|\|B^{(k)}\| + \|A\|\|B^{(k)} - B\|$$

由推论知 $\|\boldsymbol{B}^{(k)}\|$ 有界,从而 $\lim_{k\to+\infty}\|\boldsymbol{A}^{(k)}\boldsymbol{B}^{(k)}-\boldsymbol{A}\boldsymbol{B}\|=0$,故 $\lim_{k\to+\infty}\boldsymbol{A}^{(k)}\boldsymbol{B}^{(k)}=\boldsymbol{A}\boldsymbol{B}$ 。 证毕

性质 3 设
$$\lim_{k\to+\infty} A^{(k)} = A$$
,则 $\lim_{k\to+\infty} PA^{(k)}Q = PAQ$ 。

性质 4 设
$$\lim_{k \to +\infty} A^{(k)} = A$$
,且 $A^{(k)} = A$ 均可逆,则 $\lim_{k \to +\infty} (A^{(k)})^{-1} = A^{-1}$ 。

证 因为 $A^{(k)}(A^{(k)})^{-1}=I$,两边取极限并利用性质 2,得 $A\lim_{k\to +\infty}(A^{(k)})^{-1}=I$,即 $\lim_{k\to +\infty}(A^{(k)})^{-1}=A^{-1}$ 。证毕

注 性质 4 中要求 $A^{(k)}$ 与A 的逆矩阵均存在,否则 $\lim_{k\to +\infty} (A^{(k)})^{-1}$ 可能发散,如

$$A^{(k)} = \begin{pmatrix} 1 + \frac{1}{k} & \frac{1}{k} \\ -1 & e^{-k} \end{pmatrix}$$
 ,可知 $A^{(k)} \to A = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}$ 不可逆,

而 $\det A^{(k)} = (1 + \frac{1}{k})e^{-k} + \frac{1}{k} \neq 0$,即 $A^{(k)}$ 均可逆,可求得

$$(\mathbf{A}^{(k)})^{-1} = \frac{1}{(1+\frac{1}{k})e^{-k}+\frac{1}{k}} \begin{pmatrix} e^{-k} & -\frac{1}{k} \\ 1 & 1+\frac{1}{k} \end{pmatrix}, \quad \text{它是发散的}.$$

二、收敛矩阵

定义 设 $\mathbf{A} \in \mathbf{C}^{n \times n}$, 若 $\lim_{k \to +\infty} \mathbf{A}^k = \mathbf{O}$, 则称 \mathbf{A} 为**收敛矩阵**。

定理 A 为收敛矩阵的充要条件是 $\rho(A) < 1$ 。

证 必要性 已知 $\lim_{k\to +\infty} A^k = \mathbf{O}$,则 $[\rho(A)]^k = \rho(A^k) \le |A^k|$,即有 $\lim_{k\to +\infty} [\rho(A)]^k = 0$,故 $\rho(A) < 1$ 。

充分性 已知 $\rho(A) < 1$,则取 $\varepsilon > 0$ 使 $\rho(A) + \varepsilon < 1$,存在矩阵范数 $\| \bullet \|_M$ 使得 $\|A\|_M \le \rho(A) + \varepsilon < 1$,于是 $\|A^k\|_M \le \|A\|_M^k$,即 $\lim_{k \to +\infty} \|A^k\|_M = 0$,故 $\lim_{k \to +\infty} A^k = 0$ 。

证毕

推论 设 $A \in \mathbb{C}^{n \times n}$,若对 $\mathbb{C}^{n \times n}$ 上的某一矩阵范数 $\| \bullet \|$ 有 $\| A \| < 1$,则A 为收敛矩阵。

证 法 1. $\rho(A) \leq ||A|| < 1$, 故 $A^k \rightarrow 0$ 。

法 2. $\|\boldsymbol{A}^k - \boldsymbol{O}\| = \|\boldsymbol{A}^k\| \le \|\boldsymbol{A}\|^k$, 当 $\|\boldsymbol{A}\| < 1$ 时, $\|\boldsymbol{A}^k\| \to 0$, 故 $\boldsymbol{A}^k \to \boldsymbol{O}$ 。证毕

例 矩阵
$$A = \begin{pmatrix} 0.2 & 0.1 & 0.2 \\ 0.5 & 0.5 & 0.4 \\ 0.1 & 0.3 & 0.2 \end{pmatrix}$$
是否为收敛矩阵?为什么?

 $\|A\|_{\Gamma} = 0.9 < 1$ (或 $\|A\|_{F} = \sqrt{0.89} \approx 0.943 < 1$),所以 A 是收敛矩阵。

(可求得
$$\|A\|_{m_1} = 2.5$$
, $\|A\|_{m_2} = 3 \times 0.5 = 1.5$, $\|A\|_{\infty} = 1.4$ 。)

作为收敛矩阵的应用,考虑求解线性方程组Ax = b的迭代解法:

设 x^* 是精确解,即 $Ax^* = b$,将方程组Ax = b等价地变为x = Bx + d,这

里等价的含义是 $x^* = Bx^* + d$ 。构造迭代格式

$$\mathbf{x}^{(k+1)} = \mathbf{B}\mathbf{x}^{(k)} + \mathbf{d}$$
 $(k = 0,1,\cdots)$

取定初值 $\mathbf{x}^{(0)}$,由迭代格式得到向量序列 $\left\{\mathbf{x}^{(k)}\right\}$,希望 $\mathbf{x}^{(k)} \to \mathbf{x}^* \ (k \to +\infty)$,问应满足什么条件?

因为
$$x^{(k+1)} - x^* = B(x^{(k)} - x^*) = B^2(x^{(k-1)} - x^*) = \cdots = B^{k+1}(x^{(0)} - x^*)$$

可见
$$x^{(k)} \to x^* \Leftrightarrow B^k \to O \Leftrightarrow \rho(B) < 1 \Leftarrow ||B|| < 1$$
。

常用的迭代格式是 Jacobi 迭代:

将线性方程组 $\sum_{j=1}^{n} a_{ij} x_{j} = b_{i}$ $(i = 1, 2, \dots, n)$ 变形为

$$x_i = -\sum_{\substack{j=1\\j\neq i}}^n \frac{a_{ij}}{a_{ii}} x_j + \frac{b_i}{a_{ii}}$$
 $(i = 1, 2, \dots, n)$

则 Jacobi 迭代格式为

$$x_i^{(k+1)} = -\sum_{\substack{j=1\\i\neq i}}^n \frac{a_{ij}}{a_{ii}} x_j^{(k)} + \frac{b_i}{a_{ii}}$$
 $(i = 1, 2, \dots, n)$ \circ

§ 2 矩阵级数

一、矩阵级数

果 $\{S^{(N)}\}$ 发散,则称矩阵级数**发散**。

定义 由 $\mathbf{C}^{m\times n}$ 中的矩阵序列 $\left\{ A^{(k)} \right\}$ 构成的无穷和 $\sum_{k=0}^{+\infty} A^{(k)}$ 称为**矩阵级数**。 如果矩阵级数 $\sum_{k=0}^{+\infty} A^{(k)}$ 的**部分**和 $S^{(N)} = \sum_{k=0}^{N} A^{(k)}$ 所构成的矩阵序列 $\left\{ S^{(N)} \right\}$ 收敛,且有极限S,即 $\lim_{N \to +\infty} S^{(N)} = S$,则称该矩阵级数**收敛**,S称为和,记为 $S = \sum_{k=0}^{+\infty} A^{(k)}$;如

若记
$$oldsymbol{A}^{(k)} = (a_{ij}^{(k)})_{m \times n}$$
, $oldsymbol{S} = (s_{ij})_{m \times n}$,则 $oldsymbol{S} = \sum_{k=0}^{+\infty} oldsymbol{A}^{(k)}$ 相当于 $\sum_{k=0}^{+\infty} a_{ij}^{(k)} = s_{ij}$

 $(i=1,\cdots,m;j=1,\cdots,n)$,即矩阵级数 $\sum_{k=0}^{+\infty} {\bf A}^{(k)}$ 收敛相当于 mn 个数项级数 $\sum_{k=0}^{+\infty} a^{(k)}_{ij}$ 收敛。如果其中至少一个数项级数发散,则矩阵级数发散。

定义 设
$$A^{(k)} = (a_{ij}^{(k)}) \in \mathbb{C}^{m \times n} (k = 0,1,\cdots)$$
,如果 mn 个数项级数 $\sum_{k=0}^{+\infty} a_{ij}^{(k)}$

 $(i = 1, \dots, m; j = 1, \dots, n)$ 均绝对收敛,即 $\sum_{k=0}^{+\infty} |a_{ij}^{(k)}|$ 收敛,则称矩阵级数**绝对收敛**。

性质 1 若
$$\sum_{k=0}^{+\infty} A^{(k)} = A$$
, $\sum_{k=0}^{+\infty} B^{(k)} = B$,则 $\sum_{k=0}^{+\infty} (A^{(k)} + B^{(k)}) = A + B$ 。

证 由
$$\sum_{k=0}^{N} (\boldsymbol{A}^{(k)} + \boldsymbol{B}^{(k)}) = \sum_{k=0}^{N} \boldsymbol{A}^{(k)} + \sum_{k=0}^{N} \boldsymbol{B}^{(k)}$$
 即得。证毕

性质 2 若
$$\sum_{k=0}^{+\infty} A^{(k)} = A$$
,则 $\sum_{k=0}^{+\infty} \lambda A^{(k)} = \lambda A$ 。

性质 3 若矩阵级数 $\sum_{k=0}^{+\infty} A^{(k)}$ 绝对收敛,则它也一定收敛。

性质 4 绝对收敛矩阵级数不因改变项的位置而改变其和。

性质 5 矩阵级数 $\sum_{k=0}^{+\infty} A^{(k)}$ 绝对收敛的充要条件是级数 $\sum_{k=0}^{+\infty} \left\| A^{(k)} \right\|$ 收敛,其中

$\| \bullet \|$ 是 $\mathbf{C}^{m \times n}$ 的任意矩阵范数。

证 先取 m_1 -范数。若 $\sum_{k=0}^{+\infty} \| \mathbf{A}^{(k)} \|_{m_1}$ 收敛,由于

$$\left|a_{ij}^{(k)}\right| \le \sum_{i=1}^{m} \sum_{j=1}^{n} \left|a_{ij}^{(k)}\right| = \left\|A^{(k)}\right\|_{m_1} \qquad (i = 1, \dots, m; j = 1, \dots, n)$$

由正项级数的比较判别法知 $\sum_{k=0}^{+\infty} \left| a_{ij}^{(k)} \right|$ 均收敛,即 $\sum_{k=0}^{+\infty} A^{(k)}$ 绝对收敛。反之,若

$$\sum_{k=0}^{+\infty} A^{(k)}$$
 绝对收敛,则 $\sum_{k=0}^{+\infty} \left| a_{ij}^{(k)} \right|$ 均收敛,从而其部分和有界,即 $\sum_{k=0}^{N} \left| a_{ij}^{(k)} \right| = M_{ij}$ 。取

$$\sum_{k=0}^{+\infty} \left\| \boldsymbol{A}^{(k)} \right\|_{m_1}$$
 收敛。这表明

$$\sum_{k=0}^{+\infty} A^{(k)}$$
 绝对收敛⇔ $\sum_{k=0}^{+\infty} \left\| A^{(k)} \right\|_{m_1}$ 收敛

由矩阵范数的等价性有:

$$\alpha \left\| \boldsymbol{A}^{(k)} \right\|_{m_1} \leq \left\| \boldsymbol{A}^{(k)} \right\| \leq \beta \left\| \boldsymbol{A}^{(k)} \right\|_{m_2}$$

根据正项级数的比较判别法知:

性质 6 若 $\sum_{k=0}^{+\infty} \boldsymbol{A}^{(k)}$ 收敛 (或绝对收敛),则矩阵级数 $\sum_{k=0}^{+\infty} \boldsymbol{P}\boldsymbol{A}^{(k)}\boldsymbol{Q}$ 也收敛 (或绝

对收敛),且
$$\sum_{k=0}^{+\infty} PA^{(k)}Q = P\sum_{k=0}^{+\infty} A^{(k)}Q$$
 。

证 若
$$\sum_{k=0}^{+\infty} A^{(k)}$$
收敛,令 $S = \sum_{k=0}^{+\infty} A^{(k)}$, $S^{(N)} = \sum_{k=0}^{N} A^{(k)}$,则 $\lim_{N \to +\infty} S^{(N)} = S$ 。从

而

$$\sum_{k=0}^{+\infty} PA^{(k)}Q = \lim_{N \to +\infty} \sum_{k=0}^{N} PA^{(k)}Q = \lim_{N \to +\infty} P \sum_{k=0}^{N} A^{(k)}Q = PSQ = P(\sum_{k=0}^{+\infty} A^{(k)})Q$$

若 $\sum_{k=0}^{+\infty} \boldsymbol{A}^{(k)}$ 绝对收敛,则有 $\|\boldsymbol{P}\boldsymbol{A}^{(k)}\boldsymbol{Q}\| \le \|\boldsymbol{P}\| \|\boldsymbol{A}^{(k)}\| \|\boldsymbol{Q}\| = c \|\boldsymbol{A}^{(k)}\|$,其中 $c = \|\boldsymbol{P}\| \|\boldsymbol{Q}\|$ 。因

为 $\sum_{k=0}^{+\infty} \|\boldsymbol{A}^{(k)}\|$ 收敛,由比较判别法知: $\sum_{k=0}^{+\infty} \|\boldsymbol{P}\boldsymbol{A}^{(k)}\boldsymbol{Q}\|$ 收敛,即 $\sum_{k=0}^{+\infty} \boldsymbol{P}\boldsymbol{A}^{(k)}\boldsymbol{Q}$ 绝对收敛。

证毕

性质 7 若 $\mathbf{C}^{m\times n}$ 和 $\mathbf{C}^{n\times l}$ 中的两个矩阵级数 $\sum_{k=0}^{+\infty} \mathbf{A}^{(k)}$ 和 $\sum_{k=0}^{+\infty} \mathbf{B}^{(k)}$ 均绝对收敛,且其和分别为 \mathbf{A} 与 \mathbf{B} ,则它们的柯西乘积

 $A^{(0)}B^{(0)} + (A^{(0)}B^{(1)} + A^{(1)}B^{(0)}) + (A^{(0)}B^{(2)} + A^{(1)}B^{(1)} + A^{(2)}B^{(0)}) + \cdots$ 也绝对收敛,且其和为AB。

二、矩阵幂级数

1. 矩阵幂级数

定义 设 $A \in \mathbb{C}^{n \times n}$, $a_k \in \mathbb{C}$ ($k = 0,1,\cdots$), 称矩阵级数 $\sum_{k=0}^{+\infty} a_k A^k$ 为**矩阵** A 的**幂级数**。

幂级数的理论: 幂级数 $\sum_{k=0}^{+\infty} a_k x^k \quad (a_k \in \mathbf{R})$ 的收敛范围是包含原点的一个区间 (-r,r),且幂级数在此区间内绝对收敛,其中 r 是收敛半径,它由 $\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$ 确定:

若 $ho \neq 0$,则 $r = \frac{1}{\rho}$; 若 $\rho = 0$,则 $r = +\infty$; 若 $\rho = +\infty$,则r = 0。区间端点应 另外判别其收敛性。

对于复的幂级数,其收敛区域是复平面上包含原点的一个圆域|x| < r,且在圆域内,幂级数绝对收敛,其中收敛半径r 仍由 $\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$ 确定。

定理 设幂级数 $\sum_{k=0}^{+\infty} a_k x^k$ 的收敛半径为 r ,又 $A \in \mathbb{C}^{n \times n}$,则

1) 当
$$\rho(A) < r$$
时,矩阵幂级数 $\sum_{k=0}^{+\infty} a_k A^k$ 绝对收敛;

2) 当 $\rho(A) > r$ 时,矩阵幂级数 $\sum_{k=0}^{+\infty} a_k A^k$ 发散。

证 1)因为 $\rho(A) < r$,故存在 $\varepsilon > 0$,使 $\rho(A) + \varepsilon < r$ 。根据第二章的定理,存在 $\mathbb{C}^{n \times n}$ 上的矩阵范数 $\| \bullet \|$ 使得 $\| A \| \le \rho(A) + \varepsilon$,从而

$$\|a_k A^k\| \le |a_k| \|A\|^k \le |a_k| (\rho(A) + \varepsilon)^k \le |a_k| (r)^k$$

由 $\rho(A) + \varepsilon < r$ 知,级数 $\sum_{k=0}^{+\infty} a_k (\rho(A) + \varepsilon)^k$ 绝对收敛,从而 $\sum_{k=0}^{+\infty} a_k A^k$ 绝对收敛(因为 $\sum_{k=0}^{+\infty} \|a_k A^k\|$ 收敛)。

2) 由 Schur 定理,存在n阶酉矩阵U,使得 $U^{-1}AU=T=\begin{pmatrix} \lambda_1 & * \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$ 。于是

$$\sum_{k=0}^{+\infty} a_k \mathbf{A}^k$$
 收敛 $\Leftrightarrow \sum_{k=0}^{+\infty} a_k \mathbf{T}^k$ 收敛,

而 $\sum_{k=0}^{+\infty} a_k \mathbf{T}^k$ 的对角元素是 $\sum_{k=0}^{+\infty} a_k \lambda_i^k$ ($i=1,2,\cdots,n$), 若 $\rho(\mathbf{A})>r$, 则有某个特征值 λ_j

满足 $\left|\lambda_{j}\right|=\rho(A)>r$,从而 $\sum_{k=0}^{+\infty}a_{k}\lambda_{j}^{k}$ 发散,故 $\sum_{k=0}^{+\infty}a_{k}\boldsymbol{T}^{k}$ 发散,也即 $\sum_{k=0}^{+\infty}a_{k}\boldsymbol{A}^{k}$ 发散。

证毕

推论 1 设幂级数 $\sum_{k=0}^{+\infty} a_k x^k$ 的收敛半径为r,又 $A \in \mathbb{C}^{n \times n}$ 。若对 $\mathbb{C}^{n \times n}$ 上的某个

矩阵范数 $\|\bullet\|$ 有 $\|A\|$ <r,则 $\sum_{k=0}^{+\infty} a_k A^k$ 绝对收敛。

证 由 $\rho(A) \le |A| < r$ 即得。证毕

推论 2 若 $\sum_{k=0}^{+\infty} a_k x^k$ 的收敛半径是 $r = +\infty$,则对任意 $\mathbf{A} \in \mathbb{C}^{n \times n}$,矩阵幂级数

 $\sum_{k=0}^{+\infty} a_k A^k$ 绝对收敛。

例 判断矩阵幂级数
$$\sum_{k=0}^{+\infty} \frac{k}{6^k} \begin{pmatrix} 1 & -8 \\ -2 & 1 \end{pmatrix}^k$$
 的敛散性。

解 法 1. 令
$$\mathbf{A} = \begin{pmatrix} 1 & -8 \\ -2 & 1 \end{pmatrix}$$
,取幂级数 $\sum_{k=0}^{+\infty} \frac{k}{6^k} x^k$,因为

$$\rho = \lim_{k \to +\infty} \left| \frac{a_{k+1}}{a_k} \right| = \lim_{k \to +\infty} \frac{\frac{k+1}{6^{k+1}}}{\frac{k}{6^k}} = \lim_{k \to +\infty} \frac{1}{6} \cdot \frac{k+1}{k} = \frac{1}{6}$$

所以收敛半径为 $r=\frac{1}{\rho}$ =6。可求得A 的特征值为 $\lambda_1=5, \lambda_2=-3$,即 $\rho(A)=5<6$,故矩阵幂级数绝对收敛。

法 2. 取幂级数
$$\sum_{k=0}^{+\infty} kx^k$$
 , $A = \frac{1}{6} \begin{pmatrix} 1 & -8 \\ -2 & 1 \end{pmatrix}$ 。 可求得 $r = 1$, A 的特征值为

$$\lambda_1 = \frac{5}{6}$$
, $\lambda_2 = -\frac{1}{2}$ 。于是 $\rho(A) = \frac{5}{6} < 1$,故矩阵幂级数绝对收敛。

2. Neumann 级数

定理 设 $\mathbf{A} \in \mathbf{C}^{n \times n}$,则矩阵幂级数 $\sum_{k=0}^{+\infty} \mathbf{A}^k$ 称为 Neumann 级数)收敛的充要

条件是 $\rho(A) < 1$ (即A为收敛矩阵),并且在收敛时,其和为 $(I - A)^{-1}$ 。

证 (⇒) 已知
$$\sum_{k=0}^{+\infty} A^k$$
 收敛。记 $S = \sum_{k=0}^{+\infty} A^k$, $S^{(N)} = \sum_{k=0}^{N} A^k$,则 $\lim_{N \to +\infty} S^{(N)} = S$ 。

由于

$$A^{N} = \sum_{k=0}^{N} A^{k} - \sum_{k=0}^{N-1} A^{k} = S^{(N)} - S^{(N-1)}$$

所以

$$\lim_{N \to +\infty} A^{N} = \lim_{N \to +\infty} (S^{(N)} - S^{(N-1)}) = S - S = 0$$

即 A 是收敛矩阵, 故 $\rho(A) < 1$ 。

(\leftarrow) 已知 $\rho(A)$ <1。由于幂级数 $\sum_{k=0}^{+\infty} x^k$ 的收敛半径为r=1,所以 $\rho(A)$ <r,

即 $\sum_{k=0}^{+\infty} A^k$ 收敛。由于 $\rho(A) < 1$,可找到 $\varepsilon > 0$ 使 $\rho(A) + \varepsilon < 1$,从而存在矩阵范数,

 $|\phi|\mathbf{A}|\leq \rho(\mathbf{A})+\varepsilon<1$,这表明 $\mathbf{I}-\mathbf{A}$ 可逆。于是由

$$(I + A + A^{2} + \cdots + A^{N})(I - A) = I - A^{N+1}$$

得
$$I + A + A^2 + \cdots + A^N = (I - A)^{-1} - A^{N+1}(I - A)^{-1}$$

取极限,并注意 ${m A}^{N+1} o {m O}$ ($N o +\infty$),即得 $\sum_{k=0}^{+\infty} {m A}^k = ({m I} - {m A})^{-1}$ 。**证毕**

推论 设 $\mathbf{A} \in \mathbf{C}^{n \times n}$,如果对 $\mathbf{C}^{n \times n}$ 上的某个矩阵范数 $\| \bullet \|$ 有 $\| \mathbf{A} \| < 1$,则

 $\sum_{k=0}^{+\infty} \boldsymbol{A}^k = (\boldsymbol{I} - \boldsymbol{A})^{-1}, 且有误差估计式(以(\boldsymbol{I} - \boldsymbol{A})^{-1}作为 \sum_{k=0}^{+\infty} \boldsymbol{A}^k$ 的近似):

$$\|(\boldsymbol{I} - \boldsymbol{A})^{-1} - (\boldsymbol{I} + \boldsymbol{A} + \boldsymbol{A}^{2} + \dots + \boldsymbol{A}^{N})\| \le \frac{\|\boldsymbol{A}\|^{N+1}}{1 - \|\boldsymbol{A}\|}$$

证 因为 $\rho(A) \le ||A|| < 1$,所以 $\sum_{k=0}^{+\infty} A^k = (I - A)^{-1}$,从而

$$\left\| (\boldsymbol{I} - \boldsymbol{A})^{-1} - (\boldsymbol{I} + \boldsymbol{A} + \boldsymbol{A}^2 + \dots + \boldsymbol{A}^N) \right\| = \left\| \sum_{k=N+1}^{+\infty} \boldsymbol{A}^k \right\|$$

又因为

$$\left\| \sum_{k=N+1}^{N+l} \mathbf{A}^{k} \right\| \leq \sum_{k=N+1}^{N+l} \left\| \mathbf{A} \right\|^{k} = \left\| \mathbf{A} \right\|^{N+1} \frac{1 - \left\| \mathbf{A} \right\|^{l}}{1 - \left\| \mathbf{A} \right\|}$$

所以

$$\left\| \sum_{k=N+1}^{+\infty} \mathbf{A}^{k} \right\| = \lim_{l \to +\infty} \left\| \sum_{k=N+1}^{N+l} \mathbf{A}^{k} \right\| \le \frac{\left\| \mathbf{A} \right\|^{N+1}}{1 - \left\| \mathbf{A} \right\|}$$

代人前式即得。 证毕

例 已知
$$\mathbf{A} = \begin{pmatrix} 0.2 & 0.1 & 0.2 \\ 0.5 & 0.5 & 0.4 \\ 0.1 & 0.3 & 0.2 \end{pmatrix}$$
,判断 $\sum_{k=0}^{+\infty} \mathbf{A}^k$ 的敛散性。若收敛,求其和。

解 因为 $\|A\|_1 = 0.9 < 1$,所以 $\sum_{k=0}^{+\infty} A^k$ 收敛,且

$$\sum_{k=0}^{+\infty} \mathbf{A}^{k} = (\mathbf{I} - \mathbf{A})^{-1} = \begin{pmatrix} 0.8 & -0.1 & -0.2 \\ -0.5 & 0.5 & -0.4 \\ -0.1 & -0.3 & 0.8 \end{pmatrix}^{-1} = \frac{1}{14} \begin{pmatrix} 28 & 14 & 14 \\ 44 & 62 & 42 \\ 20 & 25 & 35 \end{pmatrix}$$

例 已知 $A = \begin{pmatrix} \frac{1}{6} & -\frac{4}{3} \\ -\frac{1}{3} & \frac{1}{6} \end{pmatrix}$,则 $\sum_{k=0}^{+\infty} A^k$ 收敛的原因是 $\rho(A) = \frac{5}{6} < 1$,且其和为

$$(\boldsymbol{I} - \boldsymbol{A})^{-1} = \begin{pmatrix} \frac{10}{3} & -\frac{16}{3} \\ -\frac{4}{3} & \frac{10}{3} \end{pmatrix}.$$