Final Presentation ありがとうみんな!!!

Team-8: CuProSA

Tomoki Isoda	SIT, Japan
Zhong Ming Xiu	MCUT, Taiwan
Ng Tsu Yao	UCSI, Malaysia
Han-Aiman Rasyid	UTM-MJIIT, Malaysia

gPBL 2021 on Network Software Mar. 9, 2021

Topic: IoT Agricultural Monitoring Application

Concept:

- Monitor different readings of a plant crop (Humidity, lighting and temperature) from different location.
- Save readings in a database (Firebase) and can be accessed via website.
- Control devices from app or website.
- Send notification when something go wrong.

Motivation

- People can't stay besides the plants all the time.
- It's also easier to know the situation of the plants when there is a sensor of detecting humidity and temperature.
- People can control the device such as lights, waterer, and air conditioner by their phone far away or near the plants.
- As COVID-19 increase the opportunities of doing remote work, so they also have more opportunities to control various things remotely.

Structure

Flowchart of our system

ESP32

Using an ESP32 connected to Firebase Database for data storage.

- Able to send data at a set time (default 1 minute) to firebase
- Data is stored historically on firebase from inception until now
- Occasional bug with storing to LatestData
- Able to receive data from firebase to do task (turning LED on/off) from android app (video demo later)

gbpl-agriculture-default-rtdb

Location2test

Humidity

LatestData

Humidity: 52

LEDCommand: "0"

Temperature: 26.399999619

Latest Data for App

Firebase Data Usage

Website

- Receive and plot data.
- Fill same data while data no changing in 30 seconds.
- Data saved 100 points.
- Text color will change when data is abnormal.
- Customize gate value.

Data from sensor being heated by lighter

Firebase

- These features can be implemented if there is HTTPS. (succeed in local)
- People need to gives the username that server can notify and distinguish everyone.(use cookies)
- It can send notification to PC via website when the website is closed. (need notification permission)
- It can send notification via App, though.


```
localhost:8080 顯示
please give me a username:
```

```
messaging.getToken({vapidKey: vapidKey}).then((currentToken) => -
 if (currentToken) {
    var u = getCookieByName('user');
    var name = u:
    if(!u){ //check if user have registered a name.
     name = prompt("please give me a username:");
     document.cookie = 'user='+name;
    //Send to Firebase
   messageRef.child(name).set({
      name: name,
     token: currentToken});
 } else {
   console.log('No registration token available. Request permiss
  .catch((err) => {
 console.log('An error occurred while retrieving token. ', err);
```

App(1)

data from Firebase.

Light is : 1 Humidity is 35 Temperature is 25

ON OFF

Go to the website

MOVE

The light turned on!

- Easy to see real-time data of sensors(Light status/Humidity/temperature) and change automatically.
 - Change the light status by using the button(ON/OFF).
 - When the light turned on/off, client receive the notification(Toast).
- Notified by the server about abnormal situation of the plants when the app is in the background.
- Notified by toast about abnormal situation of the plants when the app is in the foreground.

usual screen

web page screen

- See the web page from the app by pressing the button at the bottom of the screen.
- Return to the usual screen from the web page screen by pressing a button.
- See the detailed graph on the web page while opening and do the same things as the website from the app.

Demonstration(App & esp32 with Firebase)

 Communication between esp32 in Malaysia and android device in Japan is successful.

Demonstration(website)

*Website may stuck if user changing the gate value while data updating

*Text color changing only occurs after data updated.

Conclusion

Feature

- ESP32:
 - Send data to firebase, received control from App.
- Website:
 - Show the real-time data, make a signal about abnormal situation.
- o App:
 - Show the real-time data and web page, control the device(light), received notification.
- Firebase:
 - Store data, notify users manually, transfer the control signal.

Future

- Notify users automatically (can easily resolved by upgrading firebase plan).
- Not only the light, but also waterer and air-conditioner can be controlled.
- History search and analysis, which can be used by AI controlling.
- SQL database can handle history data more easily than JSON database.