UCL Mechanical Engineering 2021/2022

MECH0023 Coursework

Anonymous

December 4, 2021

Contents

1	Sate	ellite model	3
	1.1	Description of model and assumptions	3
	1.2	Minimum thickness of beam	3
	1.3	Amplitude of displacement for steady-state oscillation of the sensor during rocket function	3
	1.4	Limitations of analysis	3
	1.5	Manoeuvre	3
		1.5.1 Description of obtaining sensor response to the thrust force	3
		1.5.2 Dispalcement response	3
2	Line	ear modelling	3
	2.1	Description of non-linearity $y(t)$ & $\theta(t)$	3
	2.2	Description of non-linear relationship in a real system	4
3	Line	ear model performance and stability	4
	3.1	Description of actuator switching on	4
	3.2	Root locus and effect of proportional control	4
	3.3	Negative velocity feedback controller	4
		3.3.1 Plot of root locus	4
		3.3.2 Areas where damping ratio is higher than 0.6	4

		3.3.3 Range of K where performance specifications are achieved	4
4	Cor	ntroller techniques	4
	4.1	Description of closed loop position control system	4
	4.2	Specify disturbances	4
5	Inve	erted pendulum	4
	5.1	Identification and description of assumptions and limitations for the model of a rotary inverted pendulum	4
	5.2	Moving rocket to final position	4
6	Mu	lti-Degree-of-Freedom systems	4
	6.1	Example of a system with multiple degrees-of-freedom	4

List of Figures

1 Satellite model

- 1.1 Description of model and assumptions
- 1.2 Minimum thickness of beam
- 1.3 Amplitude of displacement for steady-state oscillation of the sensor during rocket function
- 1.4 Limitations of analysis
- 1.5 Manoeuvre
- 1.5.1 Description of obtaining sensor response to the thrust force
- 1.5.2 Dispalcement response
- 2 Linear modelling
- **2.1** Description of non-linearity y(t) & $\theta(t)$

The following function:

$$\frac{\mathrm{d}y\left(t\right)}{\mathrm{d}t} = 150\cos\left(\theta\left(t\right)\right) - 47\tag{2.1}$$

has a non-linear relationship due to $\theta(t)$ being within a cosine function. When we

- 2.2 Description of non-linear relationship in a real system
- 3 Linear model performance and stability
- 3.1 Description of actuator switching on
- 3.2 Root locus and effect of proportional control
- 3.3 Negative velocity feedback controller
- 3.3.1 Plot of root locus
- 3.3.2 Areas where damping ratio is higher than 0.6
- 3.3.3 Range of K where performance specifications are achieved
- 4 Controller techniques
- 4.1 Description of closed loop position control system
- 4.2 Specify disturbances
- 5 Inverted pendulum
- 5.1 Identification and description of assumptions and limitations for the model of a rotary inverted pendulum
- 5.2 Moving rocket to final position
- 6 Multi-Degree-of-Freedom systems
- 6.1 Example of a system with multiple degrees-of-freedom