Learning the right layers: a data-driven layer-aggregation strategy for semi-supervised learning on multilayer graphs

Sara Venturini

PhD Student, Computational Mathematics, University of Padova, Italy sara.venturini@math.unipd.it

Andrea Cristofari (University of Rome "Tor Vergata") Francesco Rinaldi (University of Padova) Francesco Tudisco (Gran Sasso Science Institute)

Graph Semi-supervised Learning Problem

- G = (V, E) graph (featureless)
- $C = \{C_1, \ldots, C_m\}$ set of classes of G
- ullet set of input known labels for class : $Y_{ij}=1$ if $i\in\mathcal{C}_j$, and $Y_{ij}=0$ otherwise

Graph Semi-supervised Learning Problem

Aim: label the remaining vertices.

Optimization problem

$$\min_{X} \varphi(X) := \|X - Y\|_F^2 + \frac{\lambda}{2} \sum_{i,j} A_{ij}^G \|X_{:i} - X_{:j}\|^2$$

where:

- Y columns one-hot encoder vectors each class
- A^G adjacency matrix of the graph
- $\lambda \ge 0$ regularization parameter

$$A = \{A^{G^1}, \dots, A^{G^K}\}$$
 with A^{G^k} adjacency matrix layer G^k

Informative case

Informative case

Standard approaches:

• AGGR:
$$\frac{1}{K} \sum_{k=1}^{K} A_{ij}^{(k)}$$

• UNION: $\max_{k=1,...,K} A_{ij}^{(k)}$

Generalized mean adjacency model

The generalized mean adjacency matrix

$$A(lpha,oldsymbol{eta})_{ij} = \left(\sum_{k=1}^K oldsymbol{eta}_k ig(A_{ij}^{(k)}ig)^lpha
ight)^{1/lpha} \quad ext{with } lpha \in \mathbb{R}, oldsymbol{eta} \geq 0, e^Toldsymbol{eta} = 1,$$

Bilevel optimization model

In order to learn the parameters $\theta = (\alpha, \beta, \lambda)$, we split the available input labels into training and test sets: Y^{tr} and Y^{te} , and consider the bilevel optimization model

$$\begin{split} & \underset{\boldsymbol{\theta}}{\text{min}} \quad H(Y^{te}, X_{Y^{tr}, \boldsymbol{\theta}}) \\ & \text{s.t.} \quad X_{Y^{tr}, \boldsymbol{\theta}} = \arg\min_{\boldsymbol{X}} \varphi(\boldsymbol{X}, Y^{tr}, \boldsymbol{\theta}) \\ & \quad \boldsymbol{\theta} = (\alpha, \beta, \lambda), \ \alpha \in \mathbb{R}, \ \beta \geq 0, \ \sum_{k} \boldsymbol{\beta}_{k} = 1, \ \lambda \in \mathbb{R} \end{split}$$

with

- H cross-entropy loss function
- $\varphi(X, Y, \theta) = \|X Y\|_F^2 + \frac{\lambda}{2} \sum_{i,j} A(\alpha, \beta)_{ij} \|X_{:i} X_{:j}\|^2$

Lower level problem

The lower level problem

$$min_X \varphi(X, Y^{tr}, \theta)$$

is solved explicitly using Label Propagation, over the graph induced by the generalized mean adjacency matrix

$$oldsymbol{A}(lpha,oldsymbol{eta})_{ij} = \left(\sum_{k=1}^K oldsymbol{eta}_k ig(oldsymbol{A}_{ij}^{(k)}ig)^lpha
ight)^{1/lpha}$$

Upper level problem

Feasible region:

$$S = egin{cases} lpha \in [-a,a] \ eta \geq 0, e^T eta = 1 \ \lambda \in [l_0,l_1] \end{cases}$$

We solve it using the Frank Wolfe algorithm with inexact gradient. In each iteration we solve the linearized problem:

$$\hat{\theta} = \min_{\theta \in S} \widetilde{\nabla} H(\theta_n)^T (\theta - \theta_n)$$

which can be solved separately in the the variables $\theta = (\alpha, \beta, \lambda)$.

Convergence Analysis

Theorem (Informal)

 ∇H Lipschitz continuous, S compact with finite diameter.

Let $\{\theta_n\}$ a sequence generated by the Algorithm, where $\widetilde{\nabla} H$ and the step size satisfy some assumptions.

Then, we have a sublinear convergence rate of the duality gap:

$$g_n^* \leq \max(c_1 n^{-\frac{1}{2}}, c_2 n^{-1})$$

with appropriate constants c_1 and c_2 ,

 $g_n^* = \min_{0 \le i \le n-1} -\nabla H(\theta_i)^\top d_i^{FW}$, d_i^{FW} direction obtained by the Frank-Wolfe algorithm with exact gradient.

Synthetic Datasets

 $\begin{aligned} & \text{Performance Ratio} \\ & r_{a,d} = \frac{\mathcal{A}_{a,d}}{\max\{\mathcal{A}_{a,d} \text{ over all } a\}} \end{aligned}$

	AGGR	UNION	BINOM	MULTI	SGMI	AGML	SMACD	GMM
APR	0.87	0.89	0.98	0.97	0.78	0.61	0.50	0.86

Real World Datasets

		3sources	ввс	BBCSport	Wikipedia	UCI	cora	citeseer	dkpol	aucs	APR
		0.79	0.91	0.92	0.51	0.95	0.69	0.65	0.73	0.85	
AGGR	(+1)	0.74	0.89	0.86	0.42	0.96	0.57	0.53	0.62	0.81	0.90
	(+2)	0.07	0.88	0.80	0.39	0.96	0.49	0.47	0.58	0.77	
		0.75	0.90	0.92	0.51	0.92	0.69	0.65	0.69	0.85	
UNION	(+1)	0.66	0.87	0.85	0.42	0.92	0.57	0.53	0.60	0.65	0.86
	(+2)	0.60	0.84	0.77	0.38	0.92	0.48	0.46	0.55	0.52	
		0.75	0.88	0.92	0.62	0.97	0.74	0.66	0.62	0.85	
BINOM	(+1)	0.76	0.87	0.91	0.57	0.97	0.63	0.59	0.54	0.81	0.94
	(+2)	0.72	0.87	0.90	0.56	0.97	0.64	0.61	0.45	0.77	
MULTI		0.74	0.86	0.88	0.64	0.96	0.76	0.65	0.76	0.85	0.98
	(+1)	0.73	0.87	0.87	0.62	0.96	0.76	0.63	0.72	0.81	
	(+2)	0.75	0.83	0.87	0.59	0.96	0.74	0.63	0.69	0.77	
SGMI		0.75	0.76	0.84	0.61	0.94	0.72	0.51	0.31	0.75	
	(+1)	0.58	0.76	0.83	0.59	0.94	0.72	0.52	0.31	0.76	0.84
	(+2)	0.57	0.76	0.64	0.59	0.94	0.72	0.52	0.31	0.76	
SMACD		0.62	0.69	0.73	0.24	0.33	0.34	0.36	0.26	0.58	
	(+1)	0.60	0.66	0.60	0.25	0.30	0.28	0.32	0.24	0.56	0.56
	(+2)	0.61	0.65	0.78	0.23	0.33	0.37	0.26	0.20	0.60	
GMM		0.80	0.87	0.88	0.57	0.93	0.69	0.58	0.63	0.81	
	(+1)	0.76	0.84	0.77	0.47	0.93	0.58	0.49	0.34	0.77	0.85
	(+2)	0.71	0.81	0.73	0.43	0.93	0.55	0.45	0.27	0.76	

Learning the Right Layers: a Data-Driven Layer-Aggregation Strategy for Semi-Supervised Learning on Multilayer Graphs, Venturini, S., Cristofari, A., Rinaldi, F., and Tudisco, F.

Sara Venturini sara.venturini@math.unipd.it https://saraventurini.github.io