Выразительная сила логики первого порядка

Теорией называется произвольное множество замкнутых формул. Если интерпретация теории такова, что все формулы теории истинны, интерпретация называется моделью этой теории.

Теорема о полноте и корректности в сильной форме (аналог критерия условной выводимости в ИВ) говорит о следующем:

- теория непротиворечива (синтаксическое свойство) тогда и только тогда, когда имеет модель (семантическое свойство),
- формула φ выводится в теории Γ (синтаксическое свойство) тогда и только тогда, когда она истинна во всех моделях этой теории (семантическое свойство).

У теории существует модель тогда и только тогда, когда теория (синтаксически) непротиворечива.

Если существует формула, которая истинна в одной модели теории, но ложна в другой модели теории, то такая формула (а также её отрицание) невыводима в этой теории. Более того, если исходная теория непротиворечива (имеет модель), то эту формулу можно добавить к теории, получив снова непротиворечивую теорию (потому что она тоже будет иметь модель).

Пусть φ — формула первого порядка в сигнатуре σ со свободными переменными x_1, \ldots, x_n . Пусть дана интерпретация сигнатуры σ с носителем M. Тогда φ определяет на M n-арный предикат. Будем говорить, что этот предикат выразим в интерпретации.

Автоморфизмом интерпретации назовем отображение $\alpha: M \to M$, удовлетворяющее свойствам:

- 1) это биекция,
- 2) каждый предикат интерпретации сохраняется, т.е. для любого предиката P верно, что

$$P(x_1,\ldots,x_k) \leftrightarrow P(\alpha(x_1),\ldots,\alpha(x_k)),$$

3) каждая функция интерпретации сохраняется, т.е. для любой функции f верно, что

$$\alpha(f(x_1,\ldots,x_k))=f(\alpha(x_1),\ldots,\alpha(x_k)).$$

Любой предикат, выразимый в интерпретации, сохраняется всеми её автоморфизмами.

В случае невозможности найти подходящий предикат (по разным причинам) для доказательства невыразимости используются иные техники.

Элиминация кванторов — это процедура, которая (в фиксированной интерпретации) приводит любую формулу φ к эквивалентной её бескванторной. Эта процедура возможна далеко не в любой интерпретации, но если она возможна, множество выразимых предикатов описывается обычно достаточно просто.

Пусть дано две разных интерпретации над одной сигнатурой $(M_1; P_1, ...)$ и $(M_2; P_2, ...)$. Эти две интерпретации называются элементарно эквивалентными, если в них истинны одни и те же замкнутые формулы. Предъявив подходящую формулу (истинную в одной интерпретации и ложную в другой) можно доказать неэквивалентность интерпретаций. Критерием элементарной эквивалентности (в конечной сигнатуре) служит игра Эренфойхта-Фраиссе.

Игра Эренфойхта-Фраиссе для двух интерпретаций $(M_1; P_1, ...), (M_2; P_2, ...)$, состоящая из k раундов ведётся между двумя игроками: \exists и \forall .

Игра ведётся в k раундов, каждый раунд состоит сперва из хода \exists , затем из хода \forall .

В раунде i на своём ходу \exists выбирает интерпретацию, в её носителе выбирает элемент и помечает его меткой i. Затем \forall в другой интерпретации выбирает элемент и также помечает его меткой i.

После k шагов в каждой из интерпретаций помечены k элементов. Если существует предикат, который на наборе в одной из интерпретаций истинен, а в другой ложен (то есть он различает наборы), то выигрывает \exists , в противном случае выигрывает \forall .

Две интерпретации $(M_1; P_1, \ldots), (M_2; P_2, \ldots)$ элементарно эквивалентны тогда и только тогда, когда для любого k в игру выигрывает \forall .

Более того, в случае выигрыша \exists стратегия его выигрыша определяет (и определяется) той формулой, которая различает интерпретации.

Арифметика Робинсона представляет собой теорию с равенством, двумя бинарными операциями (сложение и умножение), унарной операцией (+1) и константой нуль. Аксиомы следующие (подразумевается замыкание следующих формул)

$$R1$$
) $0 \neq S(x)$

$$R2$$
) $S(x) = S(y) \rightarrow x = y$

$$R3$$
) $x + 0 = x$

$$R4) \quad x + S(y) = S(x+y)$$

$$R5$$
) $x \cdot 0 = 0$

$$R6$$
) $x \cdot S(y) = x \cdot y + x$

$$R7$$
) $x \neq 0 \rightarrow \exists y (x = S(y))$

Арифметика Пеано представляет собой теорию над той же сигнатурой, аксиомы это R1-6 плюс схема аксиом следующего вида:

Для каждого предиката P есть аксиома

$$(A(0) \land \forall x (A(x) \rightarrow A(S(x)))) \rightarrow \forall x A(x)$$

- **3.1:** Выразить одноместный предикат x = 1 или доказать его невыразимость
- a) B(N; =, +)
- b) $B \langle \mathbb{R}; =, + \rangle$
- **3.2:** Выразить или доказать невыразимость предиката в $\langle \mathbb{N}; | \rangle$, здесь a|b означает, что $\exists c \ ac = b$
- a) x = 0
- b) x = 1
- c) x = 2
- d) x простое число
- e) x есть точный квадрат
- **3.3:** Аксиоматизация Тарского евклидовой планиметрии, интерпретация $(\mathbb{R}^2; C(a, b, c))$, где предикат C(a, b, c) означает, что $\rho(a, b) = \rho(b, c)$ (ρ есть расстояние между точками). Выразить предикаты
 - а) бинарный предикат «точки *x* и *y* совпадают»
 - b) тернарный предикат «три точки x, y, z лежат на одной прямой»
 - ${\bf c}$) кватернарный предикат «четыре точки x,y,z,t образуют параллелограмм»
 - d) кватернарный предикат «два отрезка xy и zt равны по длине»
 - е) тернарный предикат «точка x лежит на отрезке yz»
 - f) кватернарный предикат «две точки x и y лежат по одну сторону от прямой zt»
 - g) тернарный предикат «угол xyz прямой»
 - h) сенарный предикат «углы xyz и tuv равны»

Как можно заметить, выражается достаточно много – подходящая аксиоматизация позволяет переформулировать евклидову планиметрию в логике первого порядка (без использования теории множеств)

- **3.4:** Метрическая геометрия, интерпретация $\langle \mathbb{R}^2; E(x,y) \rangle$, где предикат E(x,y) означает, что расстояние между точками x и y равно единице. Выразить предикаты
 - а) бинарный предикат «точки *x* и *y* совпадают»
 - b) бинарный предикат «расстояние между точками x и y меньше либо равно 2»
 - с) бинарный предикат «расстояние между точками x и y равно 2»
 - d) бинарный предикат «расстояние между точками x и y равно $\sqrt{3}$ »
 - e) бинарный предикат «расстояние между точками x и y равно $\sqrt{2}$ »
 - f) бинарный предикат «расстояние между точками x и y равно 1/2»
 - 3.5: Найти все возможные автоморфизмы

а) в $\langle \mathbb{Z}; =, < \rangle$
b) $_{\mathrm{B}}\left\langle \mathbb{Z};=,+\right\rangle$
Исследовать обе интерпретации на выразимость в них констант.
3.6: Выразить или доказать невыразимость предикатов в $(\mathbb{Z};<)$
a) $x = y$
b) $x = y + 1$
c) $x = y + 2$
d) x = y + z
3.7: Доказать арифметичность предикатов (т.е. выразимость в $\langle \mathbb{N}; =, +, \cdot \rangle$
a) $x \leq y$
b) $x = c$ для любой константы c
c) x — простое число
d) r – есть остаток от деления x на y
е) x – есть степень двойки
f) x – есть степень шестёрки
g) $x = y!$
h) x – есть факториал некоторого числа
i) x – есть простое число номер y
3.8: Для каждого натурального $n \ge 1$ определить, выразим ли унарный предикат a = 0 в модели
$\langle \mathbb{Z}_n ; =, P(a,b) \rangle$, где $P(a,b)$ есть предикат ' $a+b \equiv 0 \mod n$ '.
3.9: Провести элиминацию кванторов (здесь $S(x) = x + 1$)
a) b $\langle \mathbb{Z}; =, S(x), 0 \rangle$
b) b $\langle \mathbb{Z}; =, S(x), < \rangle$
3.10: Определить выразимы ли предикаты в данных интерпретациях
1) бинарный предикат " $a = b + 1$ " в (\mathbb{Z} ; =, $a + b = 1$),
2) бинарный предикат " a и b одной чётности" в ($\mathbb{N}_0;+,=$),
3) унарный предикат " $x = 1/2$ " в ($\mathbb{R}; 0, 1, <, =$),
4) бинарный предикат " $a = b + 1$ " в ($\mathbb{Z}; a = b + 2$),
5) бинарный предикат " $ a-b =2$ " в ($\mathbb{R}; a-b =1$),
6) тернарный предикат " $xy = z$ " в (\mathbb{R} ; =, +, $a^2 = b$).

3.11: Теорема Тарского–Зайденберга – провести до конца вычисления алгоритма для разрешения следующей формулы

$$\forall p \; \exists x \left(x^2 + p > 0 \right)$$

3.12: Под A+B будем понимать линейный порядок, в котором "сперва стоит A, а затем B" — формально это значит, что рассматривается множество $S = \{(a,1) \mid a \in A\} \cup \{(b,2) \mid b \in B\}$ с порядком (a,x) < (b,y) тогда и только тогда, когда x < y или x = y и a < b. Аналогично определяются A+B+C и так далее. Под A^* мы понимаем A с обратным порядком. Под 1 — множество, содержащее один элемент.

Проверьте линейные порядки (S,<) на элементарную эквивалентность (все со всеми, пока не надоест). S равно:

- 1) N
- $2) \mathbb{Z}$
- 3) Q
- 4) $\mathbb{N} + \mathbb{N}$
- 5) $\mathbb{Z} + \mathbb{Z}$
- 6) $\mathbb{N} + \mathbb{Z}$
- 7) $\mathbb{Z} + \mathbb{Q}$
- 8) $1 + \mathbb{Z} + 1$
- 9) $\mathbb{N} + \mathbb{N}^*$
- 10) $\mathbb{N} + \mathbb{Z} + \mathbb{N}^*$
- 11) $1 + \mathbb{N}$
- 12) $\mathbb{N} + 1$
- 13) $\mathbb{Z} + \mathbb{Q} + \mathbb{Z}$
- 14) $\mathbb{Q} + \mathbb{Z} + \mathbb{Q}$
- **3.13:** Докажите с помощью игры Эренфойхта-Фраиссе и с помощью предъявления явной формулы, что $(\mathbb{Z},0,+)$ и $(\mathbb{Z}^2,0,+)$ не элементарно эквивалентны. На \mathbb{Z}^2 сложение покоординатное.
 - 3.14: Доказать, что в арифметике Робинсона недоказуемы формулы
 - a) $\forall x (0 + x = x)$
 - b) $\forall x (0 \cdot x = x)$
 - c) $\forall x \exists y (y + y = x \lor y + y + 1 = x)$
- d) Пусть P(x) есть предикат "x простое число" (то есть если число есть произведение двух делителей, то одно из них 1, а второе это число). Доказать недоказуемость и неопровержимость

$$\exists x \ (x \neq 2 \land P(x) \land P(x+1))$$

- 3.15: Доказать, что в арифметике Пеано доказуемы формулы:
- 1) R7
- 2) x + y = y + x
- 3) $0 \cdot x = 0$
- 4) $x \cdot y = y \cdot x$