Where that emission went?

Assessing the uncertainty of characterisation factors related to underspecified archetypes

Miguel Fernández Astudillo miguel.astudillo@lca-net.com

Archetypical scenarios of emissions

In LCIA uses archetypical scenarios to define the "context" on which emissions take place

e.g. X emitted to:

The idea

CFs vary hugely between archetypes and using underspecified archetypes may cause to important errors.

Example:

Usetox, human-toxicity cancer: Cadmium

Archetype	CF (CTU / mg)
Soil, agricultural	481
Soil, industrial	0.8
Soil,	0.8

Source: Brightway

Proposal: define CF to unspecified archetypes as probability distributions

Ingredients to account for archetype uncertainty:

Includes:

- Tools to transform an existing method into one with uncertainty
- Examples

How to:

calculate the CF

store the new Impact Assessment method via the normal procedure

```
my_new_method_name = ('marine eutrophication','with uncertainty')
metadata={'description':'awesome method','unit':'kg N-eq'}

my_new_method = bw.Method(my_new_method_name)
my_new_method.register(**metadata)
my_new_method.write(my_new_cf)
```

ready to use!

```
next(mc)
```

0.04266280375708961

Example of effects: simple case

Respiratory inorganics EF 2.0

Using uncertain CF:

- scores are at least 12% lower for 90% of the iterations
- Introduction of CF uncertainty=> larger dispersion

The discrete case

- The archetype uncertainty could be defined as a discrete probability distribution:
 - PM_{2.5}, air, urban: 10
 - PM_{2.5}, air, rural: 1
 - PM_{2.5}, air, $? \in \{1,10\}$
- Discrete probability distributions can be handled with presamples package
 - In the absence of better info, emission scenarios are considered equiprobable

The discrete case: advantages and disadvantages

Advantage

- Closer to impact assessment implementation
- ... more accurate?
- Easy to combine with other sources of uncertainty (e.g. geographical variability)

Disadvantage

More difficult to operate with

How this uncertainty affects databases?

$${^{\uparrow}_{CBA^{-1}}}$$
Only source of uncertainty

$$\mathsf{MAPD} = \frac{1}{n} \sum \left| \frac{S_{ref} - S_{alt}}{S_{ref}} \right|$$

Mean absolute percentage deviation, A measure of the systematic error introduced by not accounting for archetype uncertainty

- Some activities are greatly affected, others not much
- Higher deviations in uniform than triangular (as expected)
- Overall, discrete and continuous approaches are similaris
- Similar patterns observed for other impact categories.

Ecoinvent 3.6 consequential freshwater ecotox.

Ecoinvent 3.6 consequential

Conclusions

Undefined archetypes can bias the results in unforeseen ways.

Brightway users:

- We'd better to account for this uncertainty (easy to do)
- Ulcarchetype can be used for this purposes in the Brightway2 framework
- Continuous probability distributions are easier to handle.

Non-Brightway users:

Specify the archetype if you have the information

Method developers / software providers:

Explain better how CF to underspecified archetypes are calculated

Next steps

- Add tests to the code and make it more *pythonic*
- Publication under review but preprint available at: https://engrxiv.org/ej7u3/ (suggestions welcomed!)
- Working on a simple procedure to identify the flows with largest contribution to uncertainty
- ... open to collaboration :)

Thanks for your attention!

- Questions?
- Corrections?
- Suggestions?
- Opinions?