Part A: Cloud

1. (10 pts) Explain I/O rings in XEN

I/O rings, used for data transfer between Xen and Guest OS'es, use a circular buffer with 4 sections: Request Queue, Outstanding Descriptor queue, Response Queue, and a queue of unused descriptors.

- Requests from guest OS will be placed in the Request Queue,
- Once "accepted by Xen" they will be pushed to the Outstanding Descriptor queue to wait for responses from Xen
- Descriptors processed by Xen will then be placed in Response queue

There are 4 privilege levels: The highest ring is 0, where the kernel runs, or Supervisor Mode. The lowest is ring 3, where User applications run, or User Mode. Issuing "privileged instructions", from ring which is NOT ring 0, will trigger a protection fault. When running Xen, we run a Hypervisor in ring 0 and the guest OS in ring 1. The applications run unmodified at ring 3.

Source: https://wiki.xen.org/wiki/Introduction to Xen 3.x

2. (10 pts) What's the difference between Paravirtualization and full virtualization?

Paravirtualization	Full virtualization
Guest OS modified	Guest OS runs unmodified
The virtual machine does not necessarily simulate hardware, but instead (or in addition) offers a special	The virtual machine simulates enough hardware to allow an unmodified "guest" OS (one designed for
API that can only be used by modifying the guest OS	the same CPU) to run in isolation
• Requires porting (source code)	Guest OS sees exact hardware
Execution overhead	Requires virtualizable architecture
• Example: KVM Win4Lin 9x	Example: VMware

Full Virtualization

Paravirtualization

3. (15 pts) Compare Xen and KVM in terms of virtualization technology.

Xen	KVM (Kernel Virtual Machine)
Type 1 hypervisor (run on top of hardware) that allows multiple operating systems to execute	Works similar to a hypervisor, but is only a virtualization module in Linux kernel.
simultaneously.	

Source: https://www.researchgate.net/figure/Comparison-of-Xen-KVM-and-OEMU fig1 281177318

Part B: Data

- 1. (45 pts) Create a JSON Merge tool. Please see the attached description in the doc MergingJson.pdf ...
 - You can work in the programming language of your choice. However, the same project will be subject to MapReduce, which we will cover in Java.
 - o Test Data: 5by3.zip