Układy sekwencyjne - wiadomości podstawowe - wykład 4

Adam Szmigielski aszmigie@pjwstk.edu.pl Laboratorium robotyki s09

Układy kombinacyjne

Układ kombinacyjny

• W układzie kombinacyjnym wyjście zależy tylko od wejść,

Przerzutnik a "efekt pamieci"

Jaka jest wartość wyjścia Q?

Sprzężenie zwrotne a "efekt pamięci"

- W układach ze sprzężeniem zwrotnym *wyjście* układu ma wpływ na *wejście* układu,
- Ten wpływ powoduje to, że wyjście układu zależy nie tylko od wejść, ale również od historii wyjść.

Układy kombinacyjne i sekwencyjne

Układ kombinacyjny

Układ sekwencyjny

Układy sekwencyjne jako system dynamiczny

 $x(k+1) = a \cdot x(k) + b \cdot u(k) \quad \text{równanie stanu - funkcja wzbudzeń}$ $y(k) = c \cdot x(k) + d \cdot u(k) \quad \text{równanie wyjścia - funkcja wyjścia}$

- W układach sekwencyjnych (dynamicznych) wprowadza się pojęcie stanu wewnętrznego,
- Stan wewnętrzny zależy od stanu poprzedniego oraz wartości wejścia,
- *Stan wewnętrzny* może nie być "widoczny" na wyjściu (dlatego jest "wewnętrzny").

Automaty Meay'ego i Moore'a

Układ realizujący funkcję wyjść (λ) jest układem kombinacyjnym a blok (δ) realizuje pamięć (układ sekwencyjny).

Przerzutniki RS

S	R	Q_{t+1}	
0	0	zabroniona	
0	1	1	
1	0	0	
1	1	Q_t (poprzednie)	

$$Q_{t+1} = Q_t \cdot R + \overline{S}$$

• Przerzutniki są podstawowymi elementami z których buduje się układy sekwencyjne.

Synchronizacja - wprowadzenie sygnału zegara

- W układach sekwencyjnych istotna jest sekwencja stanów,
- W celu synchronizacji tych zmian wprowadza się dodatkowe wejście zwane wejściem zegarowym lub zegarem,
- Wejście może aktywować stan albo zmiana stanu zbocze.

Przełączenie poziomem - zegar

S	R	Q_{t+1}	
0	0	Q_t	
0	1	0	
1	0	1	
1	1	$oxed{zabroniona}$	

- Jeśli sygnał zegara C=0 zmiany sygnałów R i S nie mają żadnego wpływu na wyjście,
- ullet Gdy zegar C=1 wówczas wyjście zmienia się zgodnie z powyższą tabelą,
- Zmiana sygnału C z 1 na 0 powoduje "zatrzaśnięcie" stanu wyjścia układ ten czasami określa się jako *zatrzask*.

Przerzutniki master-slave

Przerzutniki typu D

$$Q_{t+1} = D$$

- Wyjście Q przyjmuje stan z wejścia D,
- Przerzutnik posiada dwa stany, z każdym jest związana wartość wyjścia.
- ullet Zmiana stanu następuje ze zboczem zegara C,
- Przerzutnik posiada asynchroniczne (niezależne od zegara) wejście zerujące (CLR) i ustawiające (SET).

Przerzutnik typu J-K

\int	K	Q_{t+1}
0	0	Q_t
0	1	0
1	0	1
1	1	$\overline{Q_t}$

$$Q_{t+1} = J \cdot \overline{Q_t} + \overline{K} \cdot Q_t$$

- Przerzutnik posiada dwa stany, z każdym jest związana wartość wyjścia,
- Przerzutnik posiada asynchroniczne (niezależne od zegara) wejście zerujące (CLR) i ustawiające (SET).

Przerzutniki typu T

	Q_t	Q_{t+1}
0	0	0
0	1	1
1	0	1
1	1	0

$$Q_{t+1} = T \oplus Q_t$$

- Przerzutnik typu T (trigger) to taki przerzutnik, który po podaniu wartości logicznej 1 na wejście T i wyzwoleniu zboczem sygnału zegarowego, zmienia stan wyjść na przeciwny,
- Podanie 0 na wejście T powoduje zachowanie bieżącego stanu przerzutnika.

Równoważność przerzutników

Rejestry

Czterobitowy rejestr przesuwny.

Licznik pierścieniowy

Licznik Johnsona

zegar

Wartość dziesiętna	Wartość binarna	Kod Johnsona
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0111
4	0100	1111
5	0101	1110
6	0110	1100
7	0111	1000

Kod Johnsona - kod dwójkowy (bezwagowy i niepozycyjny).

Generator liczb pseudolosowych z wykorzystanie rejestru przesuwnego

Generowany ciąg impulsów wykazuje charakter losowy.

Realizacja generatora PRBS na rejestrze przesuwnym zegar

Realizacja generatora PRBS z wykorzystaniem rejestru przesuwnego (ang. *shift register*)

- Dla $T/T_o = 255$ bity: 2, 3, 4, 8,
- Dla $T/T_o = 1023$ bity: 7, 10.

Wynik działania generatora dla 255 i 1255 próbek

• Generatory liczb pseudo-losowych są okresowe,

Dzielnik częstotliwości przez 2

- Przerzutnik JK zmienia stan na przeciwny po każdym impulsie zegara, gdy jego oba wejścia utrzymywane są w stanie wysokim,
- samą funkcję spełnia również drugi układ, ponieważ do wejścia D przerzutnika jest doprowadzany sygnał z jego własnego wyjścia \overline{Q} .

Liczniki

Czterobitowy asynchroniczny licznik binarny.

Liczniki modulo

Asynchroniczny licznik mod10

Liczniki - wykorzystanie wejścia SET

Asynchroniczny licznik generujący sekwencję 3-4-5-6-7-8.

Zadania na ćwiczenia

- 1. Z przerzutników typu D zbudować cztrobitowy rejestr przesuwny,
- 2. Wykorzystują zbudowany w punkcie 1. rejestr przesuwny zbudować licznik pierścieniowy,
- 3. Wykorzystują zbudowany w punkcie 1. rejestr przesuwny zbudować licznik Johnsona,
- 4. Z przerzutników typu D zbodować licznik mod9,
- 5. Z przerzutników typu D zbudować licznik liczący od 3 do 9,
- 6. Zbudować zatrzask 1-bitowy wykorzystując przerzutniki RS zbudowane z bramek NAND.
- 7. Wygenerować sekwencję stanów pseudolosowych posługując się rejestrem przesuwnym z punktu 1. i bramką XOR. Określ okres sygnału. Sprawdź zachowanie układu dla różnych odczepów sygnałów podawanych na bramkę XOR.