Viva Exam

Gaurav Kumar 190334 AE691A Course Viva Instructor: Prof. Mangal Kothari

Optimal flip maneuver of variable pitch quadcopter

$$J = \frac{1}{2} \int_{0}^{T} v^{2} dt$$

$$0 = 9$$

$$J \dot{w} + v \times J v = m$$

$$M = C^{2}, m, n$$

$$T = 3 k (CT_{1} + CT_{2} + CT_{3} + CT_{4})$$

$$L = 3 k k (CT_{1} - CT_{2} - CT_{3} + CT_{4})$$

$$m = 3 k k (CT_{1} + CT_{2} - CT_{3} - CT_{4})$$

$$n = 3 k k (CT_{1} - CT_{2} + CT_{3} - CT_{4})$$

$$N = 3 k k (CT_{1} - CT_{2} + CT_{3} - CT_{4})$$

$$V \in \{+1,-1\}$$

$$J = \lambda i \int_{0.012} (0.012, 0.02C, 0.038)$$

$$K = J \times R^{2} V_{HP}^{2}, m = 1.41 J$$

$$L = 0.18m, R = 0.14m, L = 418.J M/J$$
Solve it.

Assumptions

1. ψ and ϕ Euler angle is maintained at 0 throughout. Hence,

$$\phi = 0$$
$$\psi = 0$$

$$\psi = 0$$

$$\dot{\phi} = 0$$

$$\dot{\psi} = 0$$

Using Euler equation

$$m = J_y \dot{q}$$

$$- I \ddot{\theta}$$

Now $\theta(0) = 0$ and $\theta(T) = -\pi$, hence using kinematics

$$=J_y \ddot{\theta}$$

$$-\pi, \text{ hence using kinematics}$$

$$-\pi = \frac{1}{2} \ddot{\theta} T^2$$

$$\Rightarrow \ddot{\theta} = -\frac{2\pi}{2}$$

$$-\frac{2\pi}{T^2}$$

Final Constraints

$$N = Mg$$

$$\Rightarrow C_{T_1} + C_{T_2} + C_{T_3} + C_{T_4} = \frac{Mg}{k}$$

$$m = J_y \frac{-2\pi}{T^2}$$

$$\Rightarrow C_{T_1} + C_{T_2} - C_{T_3} - C_{T_4} = \frac{-2\pi J_y}{klT^2}$$

OCF

$$J = \frac{1}{2} \int_0^T C_{T_1}^2 + C_{T_2}^2 + C_{T_3}^2 + C_{T_4}^2 dt$$

S.T

$$C_{T_1} + C_{T_2} + C_{T_3} + C_{T_4} = \frac{Mg}{k}$$

$$C_{T_1} + C_{T_2} - C_{T_3} - C_{T_4} = \frac{-2\pi J_y}{kT^2}$$

Analytical Solution assuming variable pitch

$$J = \frac{1}{2} \int_0^T C_{T_1}^2 + C_{T_2}^2 + C_{T_3}^2 + C_{T_4}^2 dt$$

$$s.t$$

$$\int_{0}^{T} \left(C_{T_{1}} + C_{T_{2}} + C_{T_{3}} + C_{T_{4}} - \frac{Mg}{kT} \right) = 0$$

$$\int_{0}^{T} \left(\int_{0}^{T} \left(\frac{kl}{J_{y}} (C_{T_{1}} + C_{T_{2}} - C_{T_{3}} - C_{T_{4}}) \right) dt + \frac{\pi}{T} \right) dt = 0$$

$$using$$

 $\int_{0}^{T} q dt = -\pi$

Augmented Lagrangian

$$L = \left(C_{T_1}^2 + C_{T_2}^2 + C_{T_3}^2 + C_{T_4}^2\right)$$

$$-\lambda \left(C_{T_1} + C_{T_2} + C_{T_3} + C_{T_4} - \frac{Mg}{kT}\right)$$

$$-\mu \left(\int_0^T \left(\frac{kl}{J_u}(C_{T_1} + C_{T_2} - C_{T_3} - C_{T_4})\right) dt + \frac{\pi}{T}\right)$$

Optimality Conditions

$$\frac{\partial L}{\partial C_T} = 0$$

$$\Rightarrow \begin{pmatrix} 2C_{T_1} \\ 2C_{T_2} \\ 2C_{T_3} \\ 2C_{T_4} \end{pmatrix} - \lambda \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} - \mu \begin{pmatrix} \frac{Tkl}{J_y} \\ \frac{Tkl}{J_y} \\ -\frac{Tkl}{J_y} \\ -\frac{Tkl}{J_y} \end{pmatrix} = 0$$

$$\frac{\partial L}{\partial \lambda} = 0$$

$$\Rightarrow \left(C_{T_1} + C_{T_2} + C_{T_3} + C_{T_4} - \frac{Mg}{kT} \right) = 0$$

$$\Rightarrow \left(C_{T_1} + C_{T_2} + C_{T_3} + C_{T_4} - \frac{s}{kT}\right) = 0$$

$$\frac{\partial L}{\partial \mu} = 0$$

$$\Rightarrow \left(\int_0^T \left(\frac{kl}{J_y} (C_{T_1} + C_{T_2} - C_{T_3} - C_{T_4}) \right) dt + \frac{\pi}{T} \right) = 0$$

Solution

$$C_{T_1} = C_{T_2} = \frac{Mg}{4k} - \frac{\pi J_y}{4klT} = 0.0130$$

$$C_{T_3} = C_{T_4} = \frac{Mg}{4k} + \frac{\pi J_y}{4klT} = 0.0134$$

Optimal Orbit Transfer

OCP Formulation

$$J = \frac{1}{2} \int_0^T a_x^2(t) + a_y^2(t) dt$$

$$s.t$$

$$\dot{x} = v_x$$

$$\dot{y} = v_y$$

$$\dot{v}_x = -\frac{GM_{sun}x}{r^3} + a_x(t)$$

$$\dot{v}_y = -\frac{GM_{sun}y}{r^3} + a_y(t)$$

$$r > R_{sun}$$

$$where$$

$$r = \sqrt{x^2 + y^2}$$

Plots

Comparison with Hoffman Transfer

- 1. Δv for Optimal trajectory: -17.567
- ∆v for Hoffman Transfer: -29.2191

$$\sqrt{1.4761 \cdot \frac{10^{-34} \cdot 2 \cdot 10^{30}}{4.26352 \cdot 10^{-5}}} \left(\sqrt{2 \cdot 3.13995111 \cdot \frac{3.1399}{3.1399}} \right) = -1.65675772$$

$$\sqrt{1.4761 \cdot \frac{10^{-34} \cdot 2 \cdot 10^{30}}{3.13995111 \cdot 10^{-6}}} \left(1 - \sqrt{2 \cdot 4.26352 \cdot 10} \right) = -27.56238418$$

$$-1.65675772 + -27.56238418$$

$$= -29.2191419$$

Value Iteration

Horizontal Move: 80% Probability Vertical Move: 20% Probability

Pseudo Code

```
Initialize V arbitrarily, e.g., V(s) = 0, for all s \in \mathcal{S}^+
Repeat
     For each s \in \mathcal{S}:
          v \leftarrow V(s)
          V(s) \leftarrow \max_{a} \sum_{s'} \mathcal{P}_{ss'}^{a} \left[ \mathcal{R}_{ss'}^{a} + \gamma V(s') \right]
          \Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (a small positive number)
Output a deterministic policy, \pi, such that
    \pi(s) = \arg\max_{a} \sum_{s'} \mathcal{P}_{ss'}^{a} \left[ \mathcal{R}_{ss'}^{a} + \gamma V(s') \right]
```


Final Policy

0.0008 →	0.0022 →	0.0062 →	0.0171 ↓
0.0001 →	0.0020 ↑	-1.0000	0.1900 ↓
0.0000 →	0.0015 ↑	-1.0000	1.0000

THANK YOU