

RR051-15-103539-1-A Ed. 0

Certification Radio test report

According to the standard: CFR 47 FCC PART 15

Equipment under test: LoRa IoT Station 915MHz

FCC ID: 2AFYS-KLK915LOI

Company: KERLINK

DISTRIBUTION: Mr GILBERT (Company: KERLINK)

Number of pages: 87 with 7 appendixes

Ed.	Date	Modified	,	Written by		Technical Verif Quality Ap	
		pages	Name	Vi	isa	Name	Visa
0	22-SEPT-2015	Creation	S. LOUIS			T.LEDRESSEUR	
				S:[_		

Duplication of this test report is only permitted for an integral photographic facsimile. It includes the number of pages referenced here above.

This document is the result of testing a specimen or a sample of the product submitted. It does not imply an assessment of the conformity of the whole manufactured products of the tested sample.

DESIGNATION OF PRODUCT: LoRa IoT Station 915MHz

Serial number (S/N): 0x8080011

Reference / model (P/N): LoRa IoT STATION 915

Software version: PROD_FW=wirmaV2_wirgrid_v2.1

MANUFACTURER: KERLINK

COMPANY SUBMITTING THE PRODUCT:

Company: KERLINK

Address: 1, RUE JACQUELINE AURIOL

35235 THORIGNE-FOUILLARD

FRANCE

Responsible: Mr GILBERT

DATES OF TEST: From 14 September 2015 to 23 September 2015

TESTING LOCATION: EMITECH ANGERS laboratory at JUIGNE SUR LOIRE (49) FRANCE

21 rue de la Fuye

49610 Juigne sur Loire

France

FCC Accredited under US-EU MRA Designation Number: FR0009

Test Firm Registration Number: 873677

TESTED BY: S. LOUIS / M.DUMESNIL

APPENDIX 6: Band edge

APPENDIX 7: Spectral density

CONTENTS

TITLE	PAGE
1. INTRODUCTION	4
2. PRODUCT DESCRIPTION	4
3. NORMATIVE REFERENCE	5
4. TEST METHODOLOGY	5
5. TEST EQUIPMENT CALIBRATION DATES	6
6. TESTS AND CONCLUSIONS	8
7. MEASUREMENT OF THE CONDUCTED DISTURBANCES	
8. RADIATED EMISSION LIMITS	16
9. MEASUREMENT OF THE CONDUCTED DISTURBANCES	18
10. ADDITIONAL PROVISIONS TO THE GENERAL RADIATED EMISSION LIMITATIONS $_$	33
11. MAXIMUM PEAK OUTPUT POWER	36
12. INTENTIONAL RADIATOR	39
13. PEAK POWER DENSITY	48
APPENDIX 1: Photos of the equipment under test	
APPENDIX 2: Test set up	
APPENDIX 3: Test equipment list	
APPENDIX 4: 6 dB bandwidth	
APPENDIX 5: 20 dB bandwidth	

1. INTRODUCTION

This document presents the result of RADIO test carried out on the following equipment: **LoRa IoT Station 915MHz** in accordance with normative reference.

The device under test integrates:

- a multifrequencies wireless transceiver LoRa.
- A GPS module already certified FCC and IC.
- A 2G / 3G module (HUAWEII MU509c) already certified FCC and IC (FCCID: QISMU509C and IC Number: 6369A-MU509C).

The applicant declares that the distance between the whip antenna for LoRa mode and integral antenna for GSM mode will be superior to 20cm.

So collocation tests are limited: only measurement of the conducted disturbances are necessary and performed.

The host device of certified modules shall be properly labeled to identify the module within.

2. PRODUCT DESCRIPTION

Class: A

Utilization: Tele transmission

Antenna type and gain: External antenna 6dBi

Operating frequency range: from 923.3MHz to 927.5MHz

Number of channels: 8

Channel spacing: 600 kHz

Modulation: LoRa

Power source: 48Vdc via POE or solar panel (range 11Vdc to 30Vdc)

The modulation plan in transmission (Downlink) is the following:

SF	BW (KHz)	Débit (kbps)
7	500	21875
8	500	12500
9	500	7031
10	500	3906
11	500	2148
12	500	1172

The rates evaluated at the request of the applicant are: SF7 and SF12.

Power level, frequency range and channels characteristics are not user adjustable. The details pictures of the product and the circuit boards are joined with this file.

3. NORMATIVE REFERENCE

The standards and testing methods related throughout this report are those listed below.

They are applied on the whole test report even though the extensions (version, date and amendment) are not repeated.

CFR 47 FCC Part 15 (2015) Radio Frequency Devices

ANSI C63.4 2009

Methods of measurement of Radio-Noise

Emissions from low-voltage Electrical and Electronic Equipment in the Range

of 9 kHz to 40 GHz.

ANSI C63.10 2009

Testing Unlicensed Wireless Devices.

558074 D01 DTS v03r02 Guidance for Performing Compliance on Digital Transmission

Systems Operating under §15.247

4. TEST METHODOLOGY

Radio performance tests procedures given in CFR 47 part 15:

Subpart A -General

Paragraph 19: labelling requirements Paragraph 21: information to user

Subpart B – Unintentional Radiators

Paragraph 105: information to the user Paragraph 107: Conducted limits

Paragraph 109: Radiated emission limits

Paragraph 111: Antenna power conduction limits for receivers

Subpart C – Intentional Radiators

Paragraph 203: Antenna requirement

Paragraph 205: Restricted bands of operation

Paragraph 207: Conducted limits

Paragraph 209: Radiated emission limits; general requirements

Paragraph 215: Additional provisions to the general radiated emission limitations

Paragraph 247: Operation within the bands 902-928 MHZ, 2400-2483.5 MHz and 5725-5850

MHz

5. TEST EQUIPMENT CALIBRATION DATES

Equipment	Model	Туре	Last verification	Next verification	Validity
0000	BAT-EMC	Software	1	/	1
1406	EMCO 6502	Loop antenna	27/01/2015	27/01/2017	27/03/2017
1922	Microwave DB C020180F- 4B1	Low-noise amplifier	20/08/2014	20/08/2015	20/10/2015
4088	R&S FSP40	Spectrum Analyzer	22/08/2013	22/08/2015	22/10/2015
7310	Filtek HP12/1200-5AA	High-pass filter	16/01/2014	16/01/2016	16/03/2016
8508	California instruments 1251RP	Power source	22/08/2014	22/08/2015	22/10/2015
8511	HP 8447D	Low noise preamplifier	20/08/2014	20/08/2015	20/10/2015
8526	Schwarzbeck VHBB 9124	Biconical antenna	12/06/2012	12/06/2016	12/08/2016
8528	Schwarzbeck VHA 9103	Biconical antenna	24/09/2013	24/09/2017	24/11/2017
8534	EMCO 3115	Antenna	30/10/2012	30/10/2016	30/12/2016
8535	EMCO 3115	Antenna	29/10/2012	29/10/2016	29/12/2016
8543	Schwarzbeck UHALP 9108A	Log periodic antenna	12/06/2012	12/06/2016	12/08/2016
8548	Midwest Microwave 10dB	Attenuator	23/06/2014	23/06/2016	23/08/2016
8593	SIDT Cage 2	Anechoic chamber	1	1	1
8635	R&S EZ-25	High-pass filter	05/08/2014	05/08/2016	05/10/2016
8671	Huger	Meteo station	03/09/2014	03/09/2016	03/11/2016
8676	ISOTECH IDM106N	Multimeter	21/05/2015	21/05/2017	21/07/2017
8702	R&S NRVS	Power meter	05/09/2013	05/09/2015	05/11/2015
8707	R&S ESI7	Test receiver	11/12/2014	11/12/2016	11/02/2017
8719	Thurbly Thandar Instruments 1600	LISN	23/06/2014	23/06/2016	23/08/2016
8732	Emitech	OATS	23/08/2013	23/08/2016	23/10/2016
8742	R&S NRV-Z52	Sensor	05/09/2013	05/09/2015	05/11/2015
8749	La Crosse Technology WS- 9232	Meteo station	03/09/2014	03/09/2016	03/11/2016
8750	La Crosse Technology WS- 9232	Meteo station	03/09/2014	03/09/2016	03/11/2016
8775	Fontaine FTN 2515B	Power source	*	*	*
8783	EMCO 3147	Log periodic antenna	24/09/2013	24/09/2017	24/11/2017
8864	Champ libre Juigné. V3.4	Software	1	1	1
8893	Emitech	Outside room Hors cage	1	1	1
8896	ACQUISYS GPS8	Satellite synchronized frequency standard	1	1	1

RR051-15-103539-1-A Ed. 0

Equipment	Model	Туре	Last verification	Next verification	Validity
8972	K&L Microwave 500- 1000MHz	Notch filter	1	1	1
10390	BL Microwave L250-6CN	Low pass filter	24/07/2013	24/07/2015	24/09/2015
10651	Absorber sheath current	Emitech	17/10/2013	17/10/2015	17/12/2015
11684	R&S CMU 200	Radiocommunication tester	19/01/2015	19/01/2017	19/03/2017
1	GPIB SHOT	Software	1	1	1

^{*} The equipment is not verified; instead, the output voltage is checked before each measurement with the calibrated multimeter.

6. TESTS AND CONCLUSIONS

6.1 general (subpart A)

Test	Description of test	Res	specte	Comment		
procedure		Yes	No	NAp	NAs	
FCC Part 15.19	LABELLING REQUIREMENTS				X	See certification documents
FCC Part 15.21	INFORMATION TO USER				X	See certification documents

NAp: Not Applicable

LABEL SHALL CONTAIN

The label shall be located in a conspicuous location on the device

NAs: Not Asked

The label shall not be a stick-on, paper label. The label on these products shall be permanently affixed to the product and shall be readily visible to the purchaser at the time of purchase

§15.19: (can be placed in the user manual if the product is too small)

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

USER NOTICE SHALL CONTAIN

The user notice shall include the following informations:

§15.21:

Any changes or modifications to this equipment not expressly approved by KERLINK may cause, harmful interference and void the FCC authorization to operate this equipment

6.2 unintentional radiator (subpart B)

Test	Description of test	Re	specte	Comment		
procedure		Yes	No	NAp	NAs	
FCC Part 15.105	INFORMATION TO THE USER				X	See certification documents Note 1 Note2
FCC Part 15.107	CONDUCTED LIMITS	Χ				Class A
FCC Part 15.109	RADIATED EMISSION LIMITS	X				Class A
FCC Part 15.111	ANTENNA POWER CONDUCTED LIMITS FOR RECEIVER			X		

NAp: Not Applicable

NAs: Not Asked

USER NOTICE SHALL CONTAIN

The user notice shall include the following informations:

§ 15.105:

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

6.3 intentional radiator (subpart C)

Description of test	Re	espect	Comment		
	Yes	No	NAp	NAs	
ANTENNA REQUIREMENT	X				Note 1
RESTRICTED BANDS OF OPERATION	Χ				
CONDUCTED LIMITS	Х				
RADIATED EMISSION LIMITS; general requirements	Х				Note 2
ADDITIONAL PROVISIONS TO THE GENERAL RADIATED EMISSION LIMITATIONS					
(b) Unwanted emissions outside of §15.247	X				Note 3
(c) 20 dB bandwidth and band-edge compliance	Χ				
OPERATION WITHIN THE BANDS 902-928 MHZ, 2400-2483.5 MHz and 5725-5850 MHz					
(a) (1) Hopping systems			Χ		
					Note 4
	X				Note 5
	V		X		
	X				
			L		
	Y		^		
пл вхрозите сотпрпансе					
	RESTRICTED BANDS OF OPERATION CONDUCTED LIMITS RADIATED EMISSION LIMITS; general requirements ADDITIONAL PROVISIONS TO THE GENERAL RADIATED EMISSION LIMITATIONS (a) Alternative to general radiated emission limits (b) Unwanted emissions outside of §15.247 frequency bands (c) 20 dB bandwidth and band-edge compliance OPERATION WITHIN THE BANDS 902-928 MHZ, 2400-2483.5 MHz and 5725-5850 MHz	ANTENNA REQUIREMENT RESTRICTED BANDS OF OPERATION X CONDUCTED LIMITS X RADIATED EMISSION LIMITS; general requirements ADDITIONAL PROVISIONS TO THE GENERAL RADIATED EMISSION LIMITATIONS (a) Alternative to general radiated emission limits X (b) Unwanted emissions outside of §15.247	ANTENNA REQUIREMENT RESTRICTED BANDS OF OPERATION CONDUCTED LIMITS RADIATED EMISSION LIMITS; general requirements ADDITIONAL PROVISIONS TO THE GENERAL RADIATED EMISSION LIMITATIONS (a) Alternative to general radiated emission limits (b) Unwanted emissions outside of §15.247 frequency bands (c) 20 dB bandwidth and band-edge compliance X OPERATION WITHIN THE BANDS 902-928 MHZ, 2400-2483.5 MHz and 5725-5850 MHz (a) (1) Hopping systems (a) (2) Digital modulation techniques (b) Maximum peak output power (c) Operation with directional antenna gains > 6 dBi (d) Intentional radiator (e) Peak power spectral density (f) Hybrid system (g) Frequency hopping requirements (h) Frequency hopping intelligence	ANTENNA REQUIREMENT RESTRICTED BANDS OF OPERATION CONDUCTED LIMITS RADIATED EMISSION LIMITS; general requirements ADDITIONAL PROVISIONS TO THE GENERAL RADIATED EMISSION LIMITATIONS (a) Alternative to general radiated emission limits (b) Unwanted emissions outside of §15.247	ANTENNA REQUIREMENT RESTRICTED BANDS OF OPERATION CONDUCTED LIMITS RADIATED EMISSION LIMITS; general requirements ADDITIONAL PROVISIONS TO THE GENERAL RADIATED EMISSION LIMITATIONS (a) Alternative to general radiated emission limits (b) Unwanted emissions outside of §15.247 frequency bands (c) 20 dB bandwidth and band-edge compliance X OPERATION WITHIN THE BANDS 902-928 MHZ, 2400-2483.5 MHz and 5725-5850 MHz (a) (1) Hopping systems (a) (2) Digital modulation techniques (b) Maximum peak output power (c) Operation with directional antenna gains > 6 dBi (d) Intentional radiator (e) Peak power spectral density X (g) Frequency hopping requirements (h) Frequency hopping intelligence X

NAp: Not Applicable NAs: Not Asked

Note 1: Professionally installed equipment.

Note 2: See FCC part 15.247 (d).

<u>Note 3</u>: See FCC part 15.209. Unwanted emissions levels are all below the fundamental emission field strength level.

Note 4: The minimum 6 dB bandwidth of the equipment is 605.6 kHz (see appendix 4).

Note 5: Conducted measurement is performed (whip antenna).

RF EXPOSURE:

Maximum measured power = 3097.4 mWwith $P = (E \times d)^2 / (30 \times Gp)$ with d = 3 m and Gp = 4

In accordance with KDB 447498 D01 General RF Exposure Guidance v05r02 PSD= EIRP/ $(4*\pi*R^2)$ =3097.4/ $(4*\pi*(20 \text{ cm})^2)$ = 0.616 mW/cm² (limit= 1 mW/cm²).

The equipment fulfils the requirements on power density for general population/uncontrolled exposure and therefore fulfils the requirements of 47 CFR §1.1310.

To declare, or not, the compliance with the specifications, it was not explicitly taken into account of uncertainty associated with the results

7. MEASUREMENT OF THE CONDUCTED DISTURBANCES

Standard: FCC Part 15

Test procedure: Paragraph 15.107

Limits: Class A

Software used: BAT-EMC V3.6.0.32

Test set up:

The EUT is isolated and placed on a wooden table, 0.8 m over an horizontal reference plane and 0.4 m from a vertical reference plane. It is powered by an artificial main network placed on the ground reference plane. The equipment is powered via a POE with the AC power operating voltage of 120 V / 60 Hz.

See photos in appendix 2

Frequency range: 150 kHz - 30 MHz

Detection mode: Peak / Quasi-peak / Average

Bandwidth: 10 kHz / 9 kHz

Equipment under test operating condition:

The equipment is blocked in reception mode.

Ambient temperature (°C): 25 Relative humidity (%): 46

Sample N° 1: LoRa in reception mode (Central channel) with SF7 + 2G 1900MHz in idle mode

Measurement on the mains power supply: The measurement is realized with Peak detector.

Curve N° 1: measurement on the Neutral with peak detector

Curve N° 2: measurement on the Line with peak detector

Ambient temperature (°C): 25 Relative humidity (%): 46

Sample N° 1:LoRa in reception mode (Central channel) with SF10 + 2G 850MHz in idle mode

Measurement on the mains power supply: The measurement is realized with Peak detector.

Curve N° 3: measurement on the Neutral with peak detector

Curve N° 4: measurement on the Line with peak detector

Ambient temperature (°C): 25 Relative humidity (%): 46

Sample N° 1:LoRa in reception mode (Central channel) with SF12 + 2G 850MHz in idle mode

Measurement on the mains power supply: The measurement is realized with Peak detector.

Curve N° 5: measurement on the Neutral with peak detector

Curve N° 6: measurement on the Line with peak detector

Test conclusion:

RESPECTED STANDARD

8. RADIATED EMISSION LIMITS

Standard: FCC Part 15

Test procedure: paragraph 109

Limit class: Class A

Test set up:

The measurement is realized with the product on the most critical orientation.

The measure is realized on open area test site under 1 GHz and in anechoic chamber above 1 GHz.

When the system is tested in an open area test site (OATS), the EUT is placed on a rotating table, 0.8m from a ground plane.

When the system is tested in anechoic chamber, the EUT is placed on a rotating table, 1.5m from a ground plane.

Zero degree azimuths correspond to the front of the device under test.

See photos in appendix 2.

Frequency range: From 30 MHz to 9.8GHz (5th harmonic of the highest frequency used).

Detection mode: Quasi-peak (F < 1 GHz) Average (F > 1 GHz)

Bandwidth: 120 kHz (F < 1 GHz) 1 MHz (F > 1 GHz)

Distance of antenna: 10 meters (in open area test site) / 3 meters (in anechoic room)

Antenna height: 1 to 4 meters (in open area test site) / 1.5 meter (in anechoic room)

Antenna polarization: vertical and horizontal (only the highest level is recorded)

Equipment under test operating condition:

The equipment is blocked in reception mode.

Ambient temperature (°C): 26 Relative humidity (%): 43

Power source: 48Vdc via POE

Sample N° 1:

FREQUENCIES	Detector	Antenna	Azimuth	Polarization	Field	Limits	Margin
(MHz)	P: Peak	height	(degree)	H: Horizontal	strength	(dBµV/m)	(dB)
	QP: Quasi-	(cm)		V: Vertical	(dBµV/m)		
	Peak						
30	QP	287	263	V	9.5	39.1	29.6
40	QP	100	351	V	9.9	39.1	29.2
61.4	QP	100	52	V	14.2	39.1	24.9
400	QP	360	0	V	20.9	46.4	25.5
480	QP	400	37	Н	27.8	46.4	18.6
532	QP	300	150	Н	35.6	46.4	10.8
666	QP	110	146	Н	21	46.4	25.4

Applicable limits: for 30 MHz \leq F \leq 88 MHz : 39.1 dB μ V/m at 10 meters

for 88 MHz < F \leq 216 MHz : 43.5 dB μ V/m at 10 meters for 216 MHz < F \leq 960 MHz : 46.4 dB μ V/m at 10 meters Above 960 MHz : 49.5 dB μ V/m at 10 meters

<u>Note</u>: any spurious which has more than 20 dB of margin compared to the applicable limit is not necessarily reported.

Test conclusion:

RESPECTED STANDARD

9. MEASUREMENT OF THE CONDUCTED DISTURBANCES

Standard: FCC Part 15

Test procedure: Paragraph 15.207

Software used: BAT-EMC V3.6.0.32

Test set up:

The EUT is isolated and placed on a wooden table, 0.8 m over an horizontal reference plane and 0.4 m from a vertical reference plane. It is powered by an artificial main network placed on the ground reference plane. The equipment is powered via a POE with the AC power operating voltage of 120 V / 60 Hz.

See photos in appendix 2

Frequency range: 150 kHz - 30 MHz

Detection mode: Peak / Average

Bandwidth: 10 kHz / 9 kHz

Equipment under test operating condition:

The equipment under test is blocked in continuous modulated transmission mode, at the highest output power level at which the transmitter is intended to operate.

Ambient temperature (°C): 24
Relative humidity (%): 47

Sample N° 1: LoRa in transmission mode (Low channel) with SF7

Measurement on the mains power supply: The measurement is first realized with Peak detector.

Curve N° 7: measurement on the Neutral with peak detector

Curve N° 8: measurement on the Line with peak detector

Page 19 out of 87

The frequencies which are not 6 dB under the Average limit are then analyzed with Average detector.

Ambient temperature (°C): 24 Relative humidity (%): 47

Sample N° 1: LoRa in transmission mode (Low channel) with SF12

Measurement on the mains power supply: The measurement is first realized with Peak detector.

Curve N° 11: measurement on the Neutral with peak detector

Curve N° 12: measurement on the Line with peak detector

Page 21 out of 87

The frequencies which are not 6 dB under the Average limit are then analyzed with Average detector.

Curve N° 13: average measurement on the Neutral, for the frequency range: 150 KHz – 200 KHz

Ambient temperature (°C): 24 Relative humidity (%): 47

Sample N° 1: LoRa in transmission mode (High channel) with SF7

Measurement on the mains power supply: The measurement is first realized with Peak detector.

Curve N° 15: measurement on the Neutral with peak detector

Curve N° 16: measurement on the Line with peak detector

Page 23 out of 87

The frequencies which are not 6 dB under the Average limit are then analyzed with Average detector.

Ambient temperature (°C): 25 Relative humidity (%): 47

Sample N° 1: LoRa (Low channel) with SF7 + 2G 850MHz in transmission mode

Measurement on the mains power supply: The measurement is first realized with Peak detector.

Curve N° 19: measurement on the Neutral with peak detector

Curve N° 20: measurement on the Line with peak detector

Page 25 out of 87

The frequencies which are not 6 dB under the Average limit are then analyzed with Average detector.

Curve N° 21: average measurement on the Neutral, for the frequency range: 150 – 600 KHz and 22 – 26MHz.

Ambient temperature (°C): 25 Relative humidity (%): 47

Sample N° 1: LoRa (Low channel) with SF7 + 2G 1900MHz in transmission mode

Measurement on the mains power supply: The measurement is first realized with Peak detector.

Curve N° 23: measurement on the Neutral with peak detector

Curve N° 24: measurement on the Line with peak detector

Page 27 out of 87

The frequencies which are not 6 dB under the Average limit are then analyzed with Average detector.

Curve N° 25: average measurement on the Neutral, for the frequency range: 150 – 600 KHz and 22 – 26MHz.

Ambient temperature (°C): 25 Relative humidity (%): 47

Sample N° 1: LoRa (Low channel) with SF12 + 2G 850MHz in transmission mode

Measurement on the mains power supply: The measurement is first realized with Peak detector.

Curve N° 27: measurement on the Neutral with peak detector

Curve N° 28: measurement on the Line with peak detector

The frequencies which are not 6 dB under the Average limit are then analyzed with Average detector.

Curve N° 29: average measurement on the Neutral, for the frequency range: 150 – 600 KHz and 22 – 26MHz.

Ambient temperature (°C): 25 Relative humidity (%): 47

Sample N° 1: LoRa (Low channel) with SF12 + 2G 1900MHz in transmission mode

Measurement on the mains power supply: The measurement is first realized with Peak detector.

Curve N° 31: measurement on the Neutral with peak detector

Curve N° 32: measurement on the Line with peak detector

Page 31 out of 87

The frequencies which are not 6 dB under the Average limit are then analyzed with Average detector.

Curve N° 33: average measurement on the Neutral, for the frequency range: 150 – 600 KHz and 22 – 26MHz.

Curve N° 34: average measurement on the Neutral, for the frequency range: 150 – 600 KHz and 22 – 26MHz.

Test conclusion:

RESPECTED STANDARD

10. ADDITIONAL PROVISIONS TO THE GENERAL RADIATED EMISSION LIMITATIONS

Standard: FCC Part 15

Test procedure: Paragraph 15.215

Test set up:

Test realized in near field. All field strength measurements are correlated with the radiated maximum peak output power

Test operating condition of the equipment:

The equipment under test is blocked in continuous transmission mode, modulated by internal data signal, at the highest output power level which the transmitter is intended to operate.

Ambient temperature (°C): 23.7 Relative humidity (%): 48

We used for power source an external power supply regulated to +24Vdc

Lower Band Edge: from 900MHz to 902MHz Upper Band Edge: from 928MHz to 930MHz

Sample N° 1: With SF7

Fundamental	Field Strength	Detector	Frequency	Delta	Calculated	Limit	Margin
frequency	Level of	(Peak or	of maximum	Marker	Max Out-of-	(dBµV/m)	(dB)
(MHz)	fundamental	Average)	Band-edges	(dB)*	Band		
	(dBµV/m)		Emission		Emission		
			(MHz)		Level		
					(dBµV/m)		
923.3	130.14	Р	901.99	>50	<80.14	110.14	>30
927.5	129.79	Р	928.02	20.60	109.19	109.79	0.6

Sample N° 1: With SF12

Fundamental	Field Strength	Detector	Frequency	Delta	Calculated	Limit	Margin
frequency	Level of	(Peak or	of maximum	Marker	Max Out-of-	(dBµV/m)	(dB)
(MHz)	fundamental	Average)	Band-edges	(dB)*	Band		
	(dBµV/m)		Emission		Emission		
			(MHz)		Level		
					(dBµV/m)		
923.3	130.13	Р	901.99	>50	<80.13	110.13	>30
927.5	129.82	Р	928.01	32.17	90.65	109.82	19.17

^{*} Marker-Delta method

20 dB bandwidth curves are given in appendix 5; band-edge curves are given in appendix 6.

Ambient temperature (°C): 23.7 Relative humidity (%): 48

Power source:

We used for power source a POE provided by the applicant.

Lower Band Edge: from 900MHz to 902MHz Upper Band Edge: from 928MHz to 930MHz

Sample N° 1: With SF7

Fundamental frequency (MHz)	Field Strength Level of fundamental (dBµV/m)	Detector (Peak or Average)	Frequency of maximum Band-edges Emission (MHz)	Delta Marker (dB)*	Calculated Max Out-of- Band Emission Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)
923.3	130.02	Р	901.84	58.63	71.39	110.02	38.63
927.5	129.88	Р	928.02	33.32	96.56	109.88	13.32

Sample N° 1: With SF12

Fundamental frequency (MHz)	Field Strength Level of fundamental (dBµV/m)	Detector (Peak or Average)	Frequency of maximum Band-edges Emission (MHz)	Delta Marker (dB)*	Calculated Max Out-of- Band Emission Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)
923.3	130.00	Р	901.87	57.72	72.28	110.00	37.72
927.5	129.87	Р	928.01	34.28	95.59	109.87	14.28

Marker-Delta method

20 dB bandwidth curves are given in appendix 5; band-edge curves are given in appendix 6.

Test conclusion:

RESPECTED STANDARD

11. MAXIMUM PEAK OUTPUT POWER

Standard: FCC Part 15

Test procedure: paragraph 15.247 (b)

Test set up:

The measure is realized in conducted mode with a calibrated average power responding power meter.

Equipment under test operating condition:

The equipment under test is blocked in continuous modulated transmission mode, at the highest output power level at which the transmitter is intended to operate.

Results:

Ambient temperature (°C): 22.8 Relative humidity (%): 49

Power source: External power supply regulated to +24Vdc (Solar panel)

Sample N° 1 Low Channel (SF7)

	Conducted power (W)	Limit (W)
Nominal supply voltage:	0.778	1

Sample N° 1 Central Channel (SF7)

	Conducted power (W)	Limit (W)
Nominal supply voltage:	0.750	1

Sample N° 1 High Channel (SF7)

	Conducted power (W)	Limit (W)
Nominal supply voltage:	0.718	1

Sample N° 1 Low Channel (SF12)

	Conducted power (W)	Limit (W)
Nominal supply voltage:	0.776	1

Sample N° 1 Central Channel (SF12)

	Conducted power (W)	Limit (W)
Nominal supply voltage:	0.741	1

Sample N° 1 High Channel (SF12)

	Conducted power (W)	Limit (W)
Nominal supply voltage:	0.723	1

Power source: 48Vdc via POE

Ambient temperature (°C): 23.9 Relative humidity (%): 49

Sample N° 1 Low Channel (SF7)

	Conducted power (W)	Limit (W)
Nominal supply voltage:	0.757	1

Sample N° 1 Central Channel (SF7)

	Conducted power (W)	Limit (W)
Nominal supply voltage:	0.750	1

Sample N° 1 High Channel (SF7)

	Conducted power (W)	Limit (W)
Nominal supply voltage:	0.733	1

Sample N° 1 Low Channel (SF12)

	Conducted power (W)	Limit (W)
Nominal supply voltage:	0.753	1

Sample N° 1 Central Channel (SF12)

	Conducted power (W)	Limit (W)
Nominal supply voltage:	0.745	1

Sample N° 1 High Channel (SF12)

	Conducted power (W)	Limit (W)
Nominal supply voltage:	0.731	1

Test conclusion:

RESPECTED STANDARD

12. INTENTIONAL RADIATOR

Standard: FCC Part 15

Test procedure: paragraph 15.205, paragraph 15.209, paragraph 15.247 (d)

Test set up:

The final measurement is realized with the product on the most critical orientation.

The measure is realized on open area test site under 1 GHz and in anechoic chamber above 1 GHz.

When the system is tested in an open area test site (OATS), the EUT is placed on a rotating table, 0.8m from a ground plane.

When the system is tested in anechoic chamber, the EUT is placed on a rotating table, 1.5m from a ground plane.

Zero degree azimuths correspond to the front of the device under test.

See photos in appendix 2.

Frequency range: From 9 kHz to 10GHz (10th harmonic of the highest fundamental frequency)

Detection mode: Quasi-peak (F < 1 GHz) Peak / Average (F > 1 GHz)

Bandwidth: 200Hz (9 kHz < F < 150kHz)

9 kHz (150 kHz < F < 30MHz) 120 kHz (30 MHz < F < 1 GHz) 100 kHz / 1 MHz (F > 1 GHz)

Distance of antenna: 10 meters (in open area test site) / 3 meters (in anechoic room)

Antenna height: 1 to 4 meters (in open area test site) / 1.5 meter (in anechoic room)

Antenna polarization: vertical and horizontal (only the highest level is recorded)

Equipment under test operating condition:

The equipment under test is blocked in continuous modulated transmission mode, at the highest output power level at which the transmitter is intended to operate.

RR051-15-103539-1-A Ed. 0

Results:

Ambient temperature (°C): 22 Relative humidity (%): 48

Power source:

We used for power source a POE provided by the applicant.

Sample N° 1 Low Channel – SF7

FREQUENCIES	Detector	Antenna	Azimuth	Resolution	Polarization	Field	Limits	Margin
(MHz)	P: Peak	height	(degree)	bandwidth	H: Horizontal	strength	(dBµV/m)	(dB)
	QP: Quasi-	(cm)	,	(kHz)	V: Vertical	(dBµV/m)	(*)* /	,
	Peak	, ,				, ,		
	Av: Average							
30	QP	108	255	120	V	24.7	40	15.3
40	QP	100	346	120	V	23.8	40	16.2
61.4	QP	100	146	120	V	32.9	40	7.1
400	QP	178	137	120	V	27.4	46	18.6
480	QP	400	37	120	Н	38.2	46	7.8
532	QP	300	150	120	Н	46	46	0
666	QP	126	0	120	Н	31.4	46	14.6
1846.5	Р	150	320	100	Н	38.4	109	70.6
2770.5*	Р	150	_	1000	Н	43.1**	74	30.9
3692.5*	Р	150	_	1000	V	45**	74	29
4616*	Р	150	_	1000	Н	48.5**	74	25.5
5540	Р	150	80	100	Н	48.9	109	60.1
6463.6	Р	150	180	100	V	58.3	109	50.7
7388.8*	Р	150	335	1000	Н	55	74	19
7388.8*	Av	150	335	1000	Н	47.4	54	6.6
8308.4*	Р	150	_	1000	V	51**	74	23

Sample N° 1 Central Channel – SF7

FREQUENCIES (MHz)	Detector P: Peak QP: Quasi-	Antenna height (cm)	Azimuth (degree)	Resolution bandwidth (kHz)	Polarization H: Horizontal V: Vertical	Field strength (dBµV/m)	Limits (dBµV/m)	Margin (dB)
	Peak							
	Av: Average							
30	QP	108	255	120	V	24.7	40	15.3
40	QP	100	346	120	V	23.8	40	16.2
61.4	QP	100	146	120	V	32.9	40	7.1
400	QP	178	137	120	V	27.4	46	18.6
480	QP	400	37	120	Н	38.2	46	7.8
532	QP	300	150	120	Н	46	46	0
666	QP	126	0	120	Н	31.4	46	14.6
1850.5	Р	150	175	100	V	36.8	109	72.2
2775*	Р	150	1	1000	V	44.8**	74	29.2
3700.5*	Р	150	-	1000	V	44.4**	74	29.6
4625.5*	Р	150	_	1000	Н	48.7**	74	25.3
5550.5	Р	150	210	100	V	46.9	109	62.1
6475.2	Р	150	180	100	V	57	109	52
7403.2*	Р	150	0	1000	Н	57.5	74	16.5
7403.2*	Av	150	0	1000	Н	48.7	54	5.3
8326.8*	Р	150	1	1000	Н	51.7**	74	22.3

Sample N° 1 High Channel – SF7

EDECLIENCIES	D ()	Α .	A : (1	D 1.0	D 1 : 1:	F: 11	1	
FREQUENCIES	Detector	Antenna	Azimuth	Resolution	Polarization	Field	Limits	Margin
(MHz)	P: Peak	height	(degree)	bandwidth	H: Horizontal	strength	(dBµV/m)	(dB)
	QP: Quasi-	(cm)		(kHz)	V: Vertical	(dBµV/m)		
	Peak					, , ,		
	Av: Average							
30	QP	108	255	120	V	24.7	40	15.3
40	QP	100	346	120	V	23.8	40	16.2
61.4	QP	100	146	120	V	32.9	40	7.1
400	QP	178	137	120	V	27.4	46	18.6
480	QP	400	37	120	Н	38.2	46	7.8
532	QP	300	150	120	Н	46	46	0
666	QP	126	0	120	Н	31.4	46	14.6
1855	Р	150	260	100	V	37.2	109	71.8
2782.5*	Р	150	_	1000	Н	42.6**	74	31.4
3711*	Р	150	_	1000	V	44.2**	74	29.8
4637.5*	Р	150	_	1000	Н	50.3**	74	23.7
5565	Р	150	0	100	Н	48.1	109	60.9
6492.8	Р	150	185	100	V	57.8	109	51.2
7418.8*	Р	150	10	1000	V	55	74	19
7418.8*	Av	150	10	1000	V	47.8	54	6.2
8348.4*	Р	150		1000	V	49.9**	74	24.1

Sample N° 1 Low Channel – SF12

FREQUENCIES (MHz)	Detector P: Peak	Antenna height	Azimuth (degree)	Resolution bandwidth	Polarization H: Horizontal	Field strength	Limits (dB _µ V/m)	Margin (dB)
	QP: Quasi-	(cm)		(kHz)	V: Vertical	(dBµV/m)	, ,	, ,
	Peak					, , ,		
	Av: Average							
30	QP	108	255	120	V	24.7	40	15.3
40	QP	100	346	120	V	23.8	40	16.2
61.4	QP	100	146	120	V	32.9	40	7.1
400	QP	178	137	120	V	27.4	46	18.6
480	QP	400	37	120	Н	38.2	46	7.8
532	QP	300	150	120	Н	46	46	0
666	QP	126	0	120	Н	31.4	46	14.6
1847	Р	150	210	100	Н	36.9	109	72.1
2771*	Р	150	_	1000	Н	42.8**	74	31.2
3693.5*	Р	150	_	1000	V	44.9**	74	29.1
4616*	Р	150	_	1000	Н	49.1**	74	24.9
5539	Р	150	25	100	V	47	109	62
6462.4	Р	150	180	100	V	56.5	109	52.5
7388.8*	Р	150	_	1000	Н	53.4**	74	20.6
8311.2*	Р	150	_	1000	V	51.8**	74	22.2

Sample N° 1 Central Channel – SF12

FREQUENCIES	Detector	Antenna	Azimuth	Resolution	Polarization	Field	Limits	Margin
(MHz)	P: Peak	height	(degree)	bandwidth	H: Horizontal	strength	(dBµV/m)	(dB)
, ,	QP: Quasi-	(cm)	, , ,	(kHz)	V: Vertical	(dBµV/m)		, ,
	Peak					, , ,		
	Av: Average							
30	QP	108	255	120	V	24.7	40	15.3
40	QP	100	346	120	V	23.8	40	16.2
61.4	QP	100	146	120	V	32.9	40	7.1
400	QP	178	137	120	V	27.4	46	18.6
480	QP	400	37	120	Н	38.2	46	7.8
532	QP	300	150	120	Н	46	46	0
666	QP	126	0	120	Н	31.4	46	14.6
1850.5	Р	150	240	100	V	35.8	109	73.2
2775*	Р	150	_	1000	V	42.7**	74	31.3
3700.5*	Р	150	_	1000	V	44.2**	74	29.8
4625.5*	Р	150	_	1000	Н	49.1**	74	24.9
5550.5	Р	150	20	100	Н	46.6	109	62.4
6475.2	Р	150	170	100	V	57.1	109	51.9
7402.8*	Р	150	0	1000	Н	54.2	74	19.8
7402.8*	Av	150	0	1000	Н	52.3	54	1.7
8325.6*	Р	150	_	1000	V	51.2**	74	22.8

Sample N° 1 High Channel – SF12

FREQUENCIES	Detector	Antenna	Azimuth	Resolution	Polarization	Field	Limits	Margin
(MHz)	P: Peak	height	(degree)	bandwidth	H: Horizontal	strength	(dBµV/m)	(dB)
	QP: Quasi-	(cm)		(kHz)	V: Vertical	(dBµV/m)		
	Peak					, , ,		
	Av: Average							
30	QP	108	255	120	V	24.7	40	15.3
40	QP	100	346	120	V	23.8	40	16.2
61.4	QP	100	146	120	V	32.9	40	7.1
400	QP	178	137	120	V	27.4	46	18.6
480	QP	400	37	120	Н	38.2	46	7.8
532	QP	300	150	120	Н	46	46	0
666	QP	126	0	120	Н	31.4	46	14.6
1855	Р	150	200	100	V	36.8	109	72.2
2782*	Р	150	1	1000	Н	41.8**	74	32.2
3711*	Р	150	-	1000	Н	45**	74	29
4638.5*	Р	150	_	1000	Н	49.7**	74	24.3
5565	Р	150	335	100	V	45.9	109	63.1
6492.8	Р	150	180	100	V	57	109	52
7421.6*	Р	150		1000	Н	52.1**	74	21.9
8348*	Р	150		1000	Н	50.5**	74	23.5

^{*} restricted bands of operation in 15.205

<u>Note</u>: any spurious which has more than 20 dB of margin compared to the applicable limit is not necessarily reported.

Applicable limits:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

The highest level recorded in a 100 kHz bandwidth is 129 dB μ V/m on low channel. So the applicable limit is 109 dB μ V/m.

In addition, radiated emissions which fall in the restricted band, as defined in section 15.205 (a), must also comply with the radiated emission limits specified in section 15.209 (a) (see section 15.205 (c)).

^{**} the peak level is lower than the average limit (54 dB μ V/m).

Results:

Ambient temperature (°C): 22 Relative humidity (%): 48

Power source:

We used for power source an external power source regulated to +24Vdc to simulate a solar panel.

Sample N° 1 Low Channel – SF7

FREQUENCIES (MHz)	Detector P: Peak QP: Quasi-	Antenna height (cm)	Azimuth (degree)	Resolution bandwidth (kHz)	Polarization H: Horizontal V: Vertical	Field strength (dBµV/m)	Limits (dBμV/m)	Margin (dB)
	Peak Av: Average							
30	QP	108	255	120	V	24.7	40	15.3
40	QP	100	346	120	V	23.8	40	16.2
61.4	QP	100	146	120	V	32.9	40	7.1
400	QP	178	137	120	V	27.4	46	18.6
480	QP	400	37	120	Н	38.2	46	7.8
532	QP	300	150	120	Н	46	46	0
666	QP	126	0	120	Н	31.4	46	14.6
1846.5	Р	150	325	100	Н	38.9	109	70.1
2769.5*	Р	150	I	1000	Н	43.5**	74	30.5
3693*	Р	150	I	1000	V	44.2**	74	29.8
4616*	Р	150	I	1000	Н	48**	74	26
5540	Р	150	75	100	Н	49	109	60
6464	Р	150	175	100	V	58.3	109	50.7
7388.4*	Р	150	5	1000	V	55.2	74	18.8
7388.4*	Av	150	5	1000	V	47	54	7
8308.8*	Р	150	-	1000	Н	52.6**	74	21.4

Sample N° 1 Central Channel – SF7

FREQUENCIES (MHz)	Detector P: Peak	Antenna height	Azimuth (degree)	Resolution bandwidth	Polarization H: Horizontal	Field strength	Limits (dB _µ V/m)	Margin (dB)
	QP: Quasi-	(cm)		(kHz)	V: Vertical	(dBμV/m)		
	Peak							
	Av: Average							
30	QP	108	255	120	V	24.7	40	15.3
40	QP	100	346	120	V	23.8	40	16.2
61.4	QP	100	146	120	V	32.9	40	7.1
400	QP	178	137	120	V	27.4	46	18.6
480	QP	400	37	120	Н	38.2	46	7.8
532	QP	300	150	120	Н	46	46	0
666	QP	126	0	120	Н	31.4	46	14.6
1850	Р	150	330	100	Н	38.7	109	70.3
2775*	Р	150	_	1000	V	42.5**	74	31.5
3701*	Р	150	_	1000	Н	44.1**	74	29.9
4624.5*	Р	150	_	1000	Н	49.1**	74	24.9
5551	Р	150	80	100	Н	48.1	109	60.9
6476	Р	150	165	100	V	58.2	109	50.8
7402.4*	Р	150	_	1000	V	53.9**	74	20.1
8325.6*	Р	150	_	1000	V	52**	74	22

Sample N° 1 High Channel – SF7

FREQUENCIES	Detector	Antenna	Azimuth	Resolution	Polarization	Field	Limits	Margin
(MHz)	P: Peak	height	(degree)	bandwidth	H: Horizontal	strength	(dBµV/m)	(dB)
, ,	QP: Quasi-	(cm)	, ,	(kHz)	V: Vertical	(dBµV/m)		, ,
	Peak					, , ,		
	Av: Average							
30	QP	108	255	120	V	24.7	40	15.3
40	QP	100	346	120	V	23.8	40	16.2
61.4	QP	100	146	120	V	32.9	40	7.1
400	QP	178	137	120	V	27.4	46	18.6
480	QP	400	37	120	Н	38.2	46	7.8
532	QP	300	150	120	Н	46	46	0
666	QP	126	0	120	Н	31.4	46	14.6
1855	Р	150	340	100	Н	38.2	109	70.8
2783.5*	Р	150	_	1000	Н	42.8**	74	31.2
3710.5*	Р	150	_	1000	Н	44.5**	74	29.5
4639*	Р	150	_	1000	Н	50.7**	74	23.3
5565	Р	150	65	100	Н	48.3	109	60.7
6492.8	Р	150	160	100	V	58.1	109	50.9
7418.8*	Р	150	10	1000	V	54.2	74	19.8
7418.8*	Av	150	10	1000	V	48.1	54	5.9
8346.8*	Р	150	_	1000	Н	51.8**	74	22.2

Sample N° 1 Low Channel – SF12

FREQUENCIES (MHz)	Detector P: Peak	Antenna height	Azimuth (degree)	Resolution bandwidth	Polarization H: Horizontal	Field strength	Limits (dBµV/m)	Margin (dB)
	QP: Quasi-	(cm)		(kHz)	V: Vertical	$(dB\mu V/m)$		
	Peak							
	Av: Average							
30	QP	108	255	120	V	24.7	40	15.3
40	QP	100	346	120	V	23.8	40	16.2
61.4	QP	100	146	120	V	32.9	40	7.1
400	QP	178	137	120	V	27.4	46	18.6
480	QP	400	37	120	Н	38.2	46	7.8
532	QP	300	150	120	Н	46	46	0
666	QP	126	0	120	Н	31.4	46	14.6
1846.5	Р	150	330	100	Н	38.8	109	70.2
2769.5*	Р	150	_	1000	Н	43.5**	74	30.5
3693.5*	Р	150	_	1000	Н	45.8**	74	28.2
4616*	Р	150	_	1000	Н	48.3**	74	25.7
5539	Р	150	70	100	Н	48.7	109	60.3
6464	Р	150	180	100	V	58.5	109	50.5
7388.4*	Р	150	_	1000	V	53.3**	74	20.7
8311.2*	Р	150	_	1000	Н	51.7**	74	22.3

Sample N° 1 Central Channel – SF12

FREQUENCIES	Detector	Antenna	Azimuth	Resolution	Polarization	Field	Limits	Margin
(MHz)	P: Peak	height	(degree)	bandwidth	H: Horizontal	strength	(dBµV/m)	(dB)
, ,	QP: Quasi-	(cm)	, , ,	(kHz)	V: Vertical	(dBµV/m)		, ,
	Peak					, , ,		
	Av: Average							
30	QP	108	255	120	V	24.7	40	15.3
40	QP	100	346	120	V	23.8	40	16.2
61.4	QP	100	146	120	V	32.9	40	7.1
400	QP	178	137	120	V	27.4	46	18.6
480	QP	400	37	120	Н	38.2	46	7.8
532	QP	300	150	120	Н	46	46	0
666	QP	126	0	120	Н	31.4	46	14.6
1850.5	Р	150	330	100	Н	38.7	109	70.3
2776*	Р	150	_	1000	Н	43**	74	31
3701*	Р	150	_	1000	Н	44.7**	74	29.3
4627*	Р	150	_	1000	Н	49.7**	74	24.3
5550.5	Р	150	80	100	Н	49.3	109	59.7
6475.6	Р	150	160	100	V	58.6	109	50.4
7399.2*	Р	150	20	1000	V	54.9	74	19.1
7399.2*	Av	150	20	1000	V	52.5	54	1.5
8327.2*	Р	150	_	1000	V	51.9**	109	57.1

Sample N° 1 High Channel – SF12

FREQUENCIES (MHz)	Detector P: Peak QP: Quasi-	Antenna height (cm)	Azimuth (degree)	Resolution bandwidth (kHz)	Polarization H: Horizontal V: Vertical	Field strength (dBµV/m)	Limits (dBµV/m)	Margin (dB)
	Peak							
	Av: Average	400		400		0.4 =	40	4-0
30	QP	108	255	120	V	24.7	40	15.3
40	QP	100	346	120	V	23.8	40	16.2
61.4	QP	100	146	120	V	32.9	40	7.1
400	QP	178	137	120	V	27.4	46	18.6
480	QP	400	37	120	Н	38.2	46	7.8
532	QP	300	150	120	Н	46	46	0
666	QP	126	0	120	Н	31.4	46	14.6
1855	Р	150	320	100	Н	38.5	109	70.5
2782.5*	Р	150	1	1000	Н	42.9**	74	31.1
3711*	Р	150	I	1000	Н	45.2**	74	28.8
4639*	Р	150	-	1000	Н	49**	74	25
5565	Р	150	80	100	Н	49.9	109	59.1
6492.8	Р	150	350	100	Н	59.2	109	49.8
7421.6*	Р	150	320	1000	Н	54.1	74	19.9
7421.6*	Av	150	320	1000	Н	49.8	54	4.2
8348*	Р	150	-	1000	V	50.7**	74	23.3

^{*} restricted bands of operation in 15.205

<u>Note</u>: any spurious which has more than 20 dB of margin compared to the applicable limit is not necessarily reported.

Applicable limits:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

The highest level recorded in a 100 kHz bandwidth is 129 dB μ V/m on low channel. So the applicable limit is 109 dB μ V/m.

In addition, radiated emissions which fall in the restricted band, as defined in section 15.205 (a), must also comply with the radiated emission limits specified in section 15.209 (a) (see section 15.205 (c)).

Test conclusion:

RESPECTED STANDARD

^{**}the peak level is lower than the average limit (54 dBµV/m).

13. PEAK POWER DENSITY

Standard: FCC Part 15

Test procedure: paragraph 15.247 (e)

Test set up:

We used the same method of the peak output power measurement, but the equipment under test power level is recorded with the spectrum analyzer.

Resolution bandwidth: 3 kHz Video bandwidth: 10 kHz

Equipment under test operating condition:

The equipment under test is blocked in continuous modulated transmission mode, at the highest output power level at which the transmitter is intended to operate.

Results:

Ambient temperature (°C): 23.6 Relative humidity (%): 48

Power source:

We used for power source an external power source regulated to +24Vdc to simulate a solar panel.

Sample N° 1 Low Channel – SF7

	Peak power density at frequency: 923.3 MHz
Normal test conditions	+7.98 dBm
Limits	+8 dBm

Sample N° 1 Central Channel – SF7

	Peak power density at frequency: 925.1 MHz
Normal test conditions	+7.80 dBm
Limits	+8 dBm

Sample N° 1 High Channel – SF7

<u> </u>	Peak power density at frequency: 927.5 MHz
Normal test conditions	+7.69 dBm
Limits	+8 dBm

Sample N° 1 Low Channel – SF12

	Peak power density at frequency: 923.3 MHz	
Normal test conditions	-16.87 dBm	
Limits	+8 dBm	

Sample N° 1 Central Channel – SF12

	Peak power density at frequency: 925.1 MHz	
Normal test conditions	-15.98 dBm	
Limits	+8 dBm	

Sample N° 1 High Channel – SF12

,	Peak power density at frequency: 927.5 MHz	
Normal test conditions	-16.97 dBm	
Limits	+8 dBm	

Results:

Ambient temperature (°C): 23.9 Relative humidity (%): 49

Power source:

We used for power source a POE provided by the applicant.

Sample N° 1 Low Channel – SF7

	Peak power density at frequency: 923.3 MHz	
Normal test conditions	+7.99 dBm	
Limits	+8 dBm	

Sample N° 1 Central Channel – SF7

	Peak power density at frequency: 925.1 MHz	
Normal test conditions	+7.61 dBm	
Limits	+8 dBm	

Sample N° 1 High Channel – SF7

v	Peak power density at frequency: 927.5 MHz
Normal test conditions	+7.54 dBm
Limits	+8 dBm

Sample N° 1 Low Channel – SF12

	Peak power density at frequency: 923.3 MHz	
Normal test conditions	-16.71 dBm	
Limits	+8 dBm	

Sample N° 1 Central Channel – SF12

	Peak power density at frequency: 925.1 MHz	
Normal test conditions	-16.04 dBm	
Limits	+8 dBm	

Sample N° 1 High Channel – SF12

	Peak power density at frequency: 927.5 MHz
Normal test conditions	-15.87 dBm
Limits	+8 dBm

Test conclusion:

RESPECTED STANDARD

APPENDIX 1: Photos of the equipment under test

CONFIDENTIAL

APPENDIX 2: Test set up

CONFIDENTIAL

APPENDIX 3: Test equipment list

Measurement of the conducted disturbances

TYPE	MANUFACTURER	EMITECH NUMBER
Outside room Hors cage	Emitech	8893
Satellite synchronized frequency standard	ACQUISYS	8896
GPS8		
Test receiver ESI7	Rohde & Schwarz	8707
Radiocommunication analyser CMU200	Rohde & Schwarz	11684
LISN 1600	Thurbly Thandar Instruments	8719
High-pass filter EZ-25	Rohde & Schwarz	8635
Absorber sheath current	Emitech	10651
Power source 1251RP	California instruments	8508
Multimeter IDM106N	ISOTECH	8676
Meteo station	HUGER	8671
Software	BAT-EMC V3.6.0.32	0000

Radiated emission limits; general requirements

TYPE	MANUFACTURER	EMITECH NUMBER
Open test site	EMITECH	8732
Anechoic Chamber	EMITECH	8593
Satellite synchronized frequency standard GPS8	ACQUISYS	8896
Test receiver ESI7	Rohde & Schwarz	8707
Spectrum Analyzer FSP40	Rohde & Schwarz	4088
Radiocommunication analyser CMU200	Rohde & Schwarz	11684
Biconical antenna VHBB 9124	Schwarzbeck	8526
Biconical antenna VHA 9103	Schwarzbeck	8528
Log periodic antenna UHALP 9108A	Schwarzbeck	8543
Log periodic antenna 3147	EMCO	8783
Antenna 3115	EMCO	8535
Low-noise amplifier 8447D	Hewlett Packard	8511
Low-noise amplifier C020180F-4B1	Microwave DB	1922
Power source 1251RP	California instruments	8508
Power source FTN 2515B	Fontaine	8775
Multimeter IDM106N	ISOTECH	8676
Meteo station WS-9232	La Crosse Technology	8749
Meteo station WS-9232	La Crosse Technology	8750
Software	BAT-EMC V3.6.0.32	0000
Software	Champ libre Juigné. V3.4	8864

Additional provisions to the general radiated emission limitations

TYPE	MANUFACTURER	EMITECH NUMBER
Outside room Hors cage	Emitech	8893
Satellite synchronized frequency standard	ACQUISYS	8896
GPS8		
Spectrum Analyzer FSP40	Rohde & Schwarz	4088
Power Meter NRVS	Rohde & Schwarz	8702
Sensor VRV-Z52	Rohde & Schwarz	8742
Attenuator 10dB	Midwest Microwave	8548
Power source 1251RP	California instruments	8508
Power source FTN 2515B	Fontaine	8775
Multimeter IDM106N	ISOTECH	8676
Meteo station WS-9232	La Crosse Technology	8750
Software	GPIBShot V2.4	-

Maximum Peak Output Power and Peak Power Density

TYPE	MANUFACTURER	EMITECH NUMBER
Outside room Hors cage	Emitech	8893
Satellite synchronized frequency standard GPS8	ACQUISYS	8896
Spectrum Analyzer FSP40	Rohde & Schwarz	4088
Power Meter NRVS	Rohde & Schwarz	8702
Sensor VRV-Z52	Rohde & Schwarz	8742
Attenuator 10dB	Midwest Microwave	8548
Power source 1251RP	California instruments	8508
Power source FTN 2515B	Fontaine	8775
Multimeter IDM106N	ISOTECH	8676
Meteo station WS-9232	La Crosse Technology	8750
Software	GPIBShot V2.4	-

Intentional radiator

TYPE	MANUFACTURER	EMITECH NUMBER
Open test site	EMITECH	8732
Anechoic Chamber	EMITECH	8593
Satellite synchronized frequency standard	ACQUISYS	8896
GPS8		
Test receiver ESI7	Rohde & Schwarz	8707
Spectrum Analyzer FSP40	Rohde & Schwarz	4088
Loop antenna 6502	EMCO	1406
Biconical antenna VHBB 9124	Schwarzbeck	8526
Biconical antenna VHA 9103	Schwarzbeck	8528
Log periodic antenna UHALP 9108A	Schwarzbeck	8543
Log periodic antenna 3147	EMCO	8783
Antenna 3115	EMCO	8535
Low-noise amplifier 8447D	Hewlett Packard	8511
Low-noise amplifier C020180F-4B1	Microwave DB	1922
Notch filter 500-1000MHz	K&L Microwave	8972
Low pass filter L250-6CN	BL Microwave	10390
High Pass Filter HP12/1200-5AA	Filtek	7310
Power source 1251RP	California instruments	8508
Power source FTN 2515B	Fontaine	8775
Multimeter IDM106N	ISOTECH	8676
Meteo station WS-9232	La Crosse Technology	8749
Meteo station WS-9232	La Crosse Technology	8750
Software	BAT-EMC V3.6.0.32	0000
Software	Champ libre Juigné. V3.4	8864

APPENDIX 4: 6 dB bandwidth

Low Channel - DC supply - SF7

Date: 18.SEP.2015 10:09:17

Central Channel – DC supply – SF7

Date: 18.SEP.2015 10:07:59

High Channel – DC supply – SF7

Date: 18.SEP.2015 10:12:46

Low Channel – DC supply – SF12

Date: 18.SEP.2015 10:11:25

Central Channel – DC supply – SF12

Date: 18.SEP.2015 10:05:48

High Channel – DC supply – SF12

Date: 18.SEP.2015 10:03:28

APPENDIX 5: 20 dB bandwidth

Low Channel - DC supply - SF7

Date: 18.SEP.2015 10:09:42

Central Channel – DC supply – SF7

Date: 18.SEP.2015 10:07:35

High Channel – DC supply – SF7

Date: 18.SEP.2015 10:13:21

Low Channel – DC supply – SF12

Date: 18.SEP.2015 10:11:02

Central Channel – DC supply – SF12

Date: 18.SEP.2015 10:06:20

High Channel – DC supply – SF12

Date: 18.SEP.2015 10:03:00

APPENDIX 6: Band edge

Low Channel - DC supply SF7

Date: 18.SEP.2015 10:24:11

High Channel – DC supply – SF7

Date: 18.SEP.2015 10:31:11

Low Channel – DC supply – SF12

Date: 18.SEP.2015 10:25:18

High Channel – DC supply – SF12

Date: 18.SEP.2015 10:28:34

Low Channel - POE supply - SF7

Date: 18.SEP.2015 12:33:16

High Channel – POE supply – SF7

Date: 18.SEP.2015 12:28:17

Low Channel – POE supply – SF12

Date: 18.SEP.2015 12:34:39

High Channel – POE supply – SF12

Date: 18.SEP.2015 12:30:58

APPENDIX 7: Spectral density

Low Channel - SF7 - Supply +24Vdc

Date: 18.SEP.2015 09:47:42

Central Channel - SF7 - Supply +24Vdc

Date: 18.SEP.2015 09:52:48

High Channel - SF7 - Supply +24Vdc

Date: 18.SEP.2015 09:54:08

Low Channel - SF12 - Supply +24Vdc

Date: 18.SEP.2015 09:49:58

Central Channel – SF12 – Supply +24Vdc

Date: 18.SEP.2015 09:51:16

High Channel – SF12 – Supply +24Vdc

Date: 18.SEP.2015 09:55:12

Low Channel - SF7 - Supply POE

Date: 18.SEP.2015 11:45:59

Central Channel – SF7 – Supply POE

Date: 18.SEP.2015 11:50:51

High Channel - SF7 - Supply POE

Date: 18.SEP.2015 11:53:55

Low Channel - SF12 - Supply POE

Date: 18.SEP.2015 11:48:05

Central Channel - SF12 - Supply POE

Date: 18.SEP.2015 11:52:16

High Channel - SF12 - Supply POE

Date: 18.SEP.2015 11:59:26