Two pitfalls in Gaussian process interpolation

Toni Karvonen

Department of Mathematics and Statistics University of Helsinki, Finland

ProbNum & Friends University of Tübingen

29 March 2023

Setting and overview

I consider Gaussian process interpolation:

- Let $f: \Omega \to \mathbb{R}$ be a data-generating function on a set $\Omega \subset \mathbb{R}^d$.
- Obtain *noiseless data* $\mathcal{D}_n = \{(\mathbf{x}_1, f(\mathbf{x}_1)), \dots, (\mathbf{x}_n, f(\mathbf{x}_n))\}$ at some pairwise distinct points $\mathbf{x}_1, \dots, \mathbf{x}_n \in \Omega$.
- Model f as a Gaussian process $f_{GP} \sim GP(m, K)$.
- Compute the posterior $f_{GP} \mid \mathcal{D}_n$.

Gaussian process interpolation underlies underlies *Bayesian quadrature* and *Bayesian optimisation*.

This talk discusses for two pitfalls that are present in this setting:

- 1. Lengthscale estimation when a constant shift of m is observed.
- 2. The commonly used Gaussian kernel (i.e., squared exponential) is too smooth.

Table of contents

Introduction: Gaussian process interpolation

Pitfall 1: Lengthscale estimation

Pitfall 2: Gaussian kernel

Gaussian processes

- Model f as a Gaussian process $f_{GP} \sim GP(m, K)$ with
 - a positive-definite covariance kernel $K: \Omega \times \Omega \to \mathbb{R}$ and
 - a mean function $m: \Omega \to \mathbb{R}$.

Under this model $[f_{GP}(\mathbf{x}_1), \dots, f_{GP}(\mathbf{x}_n)] \in \mathbb{R}^n$ is a multivariate normal random variable with mean \mathbf{m}_n and covariance matrix \mathbf{K}_n :

$$\begin{bmatrix} f_{GP}(\mathbf{x}_1) \\ \vdots \\ f_{GP}(\mathbf{x}_n) \end{bmatrix} \sim \mathcal{N}(\mathbf{m}_n, \mathbf{K}_n) = \mathcal{N} \left(\begin{bmatrix} m(\mathbf{x}_1) \\ \vdots \\ m(\mathbf{x}_n) \end{bmatrix}, \begin{bmatrix} K(\mathbf{x}_1, \mathbf{x}_1) & \cdots & K(\mathbf{x}_1, \mathbf{x}_n) \\ \vdots & \ddots & \vdots \\ K(\mathbf{x}_n, \mathbf{x}_1) & \cdots & K(\mathbf{x}_n, \mathbf{x}_n) \end{bmatrix} \right).$$

Gaussian process priors

Gaussian: $K(x, y) = e^{-(x-y)^2/2}$

BM:
$$K(x, y) = \frac{\min\{x, y\}^3}{3} + \frac{|x-y|\min\{x, y\}^2}{2}$$

Matérn:
$$K(x, y) = e^{-|x-y|}$$

Hardy:
$$K(x, y) = \frac{1}{1 - xy}$$

Gaussian process posterior

Recall that we have access to the *noiseless* data

$$\mathcal{D}_n = \left\{ (\mathbf{x}_1, f(\mathbf{x}_1)), \dots, (\mathbf{x}_n, f(\mathbf{x}_n)) \right\} \tag{1}$$

at some pairwise distinct points $\mathbf{x}_1, \dots, \mathbf{x}_n \in \Omega$.

Conditional Gaussian process

The conditional process $f_{\text{GP}} \mid \mathcal{D}_n$ is also a Gaussian process. Standard Gaussian conditioning formulae give

$$\mu_n(\mathbf{x}) = \mathbb{E}[f_{GP}(\mathbf{x}) \mid \mathcal{D}_n] = m(\mathbf{x}) - \mathbf{k}_n(\mathbf{x})^\mathsf{T} \mathbf{K}_n^{-1} (\mathbf{f}_n - \mathbf{m}_n), \quad (2)$$

$$\mathbb{V}_n(\mathbf{x}) = \mathbb{V}[f_{GP}(\mathbf{x}) \mid \mathcal{D}_n] = K(\mathbf{x}, \mathbf{x}) - \mathbf{k}_n(\mathbf{x})^\mathsf{T} \mathbf{K}_n^{-1} \mathbf{k}_n(\mathbf{x}).$$
(3)

Here

$$\mathbf{f}_n = \begin{bmatrix} f(\mathbf{x}_1) \\ \vdots \\ f(\mathbf{x}_n) \end{bmatrix}, \quad \mathbf{k}_n(\mathbf{x}) = \begin{bmatrix} K(\mathbf{x}, \mathbf{x}_1) \\ \vdots \\ K(\mathbf{x}, \mathbf{x}_n) \end{bmatrix}, \quad \mathbf{K}_n = \begin{bmatrix} K(\mathbf{x}_1, \mathbf{x}_1) & \cdots & K(\mathbf{x}_1, \mathbf{x}_n) \\ \vdots & \ddots & \vdots \\ K(\mathbf{x}_n, \mathbf{x}_1) & \cdots & K(\mathbf{x}_n, \mathbf{x}_n) \end{bmatrix}.$$

Example from PN: Bayesian quadrature

We want to compute the integral $I_P(f) = \int_{\Omega} f(\mathbf{x}) dP(\mathbf{x})$.

Bayesian quadrature

Set $m \equiv 0$. Integration of the posterior GP yields Bayesian quadrature:

$$I_P(f_{GP}) \mid \mathcal{D}_n \sim \mathcal{N}(Q_n^{BQ}, \mathbb{V}_n^{BQ}),$$
 (4)

where

$$Q_n^{\text{BQ}} = I_P(\mu_n) = \mathbf{k}_{P,n}^{\mathsf{T}} \mathbf{K}_n^{-1} \mathbf{f}_n$$
 and $\mathbb{V}_n^{\text{BQ}} = K_{PP} - \mathbf{k}_{P,n}^{\mathsf{T}} \mathbf{K}_n^{-1} \mathbf{k}_{P,n}$. (5)

Here

$$\mathbf{k}_{P,n} = \begin{bmatrix} \int_{\Omega} K(\mathbf{x}, \mathbf{x}_1) \, dP(\mathbf{x}) \\ \vdots \\ \int_{\Omega} K(\mathbf{x}, \mathbf{x}_n) \, dP(\mathbf{x}) \end{bmatrix} \quad \text{and} \quad K_{PP} = \int_{\Omega} \int_{\Omega} K(\mathbf{x}, \mathbf{y}) \, dP(\mathbf{x}) \, dP(\mathbf{y}).$$

Table of contents

Introduction: Gaussian process interpolation

Pitfall 1: Lengthscale estimation

Pitfall 2: Gaussian kernel

$$K_{\lambda}(x, y) = \left(1 + \frac{\sqrt{3}|x - y|}{\lambda}\right) \exp\left(-\frac{\sqrt{3}|x - y|}{\lambda}\right)$$

$$K_{\lambda}(x, y) = \left(1 + \frac{\sqrt{3}|x - y|}{\lambda}\right) \exp\left(-\frac{\sqrt{3}|x - y|}{\lambda}\right)$$

$$K_{\lambda}(x, y) = \left(1 + \frac{\sqrt{3}|x - y|}{\lambda}\right) \exp\left(-\frac{\sqrt{3}|x - y|}{\lambda}\right)$$

$$K_{\lambda}(x, y) = \left(1 + \frac{\sqrt{3}|x - y|}{\lambda}\right) \exp\left(-\frac{\sqrt{3}|x - y|}{\lambda}\right)$$

$$K_{\lambda}(x, y) = \left(1 + \frac{\sqrt{3}|x - y|}{\lambda}\right) \exp\left(-\frac{\sqrt{3}|x - y|}{\lambda}\right)$$

$$K_{\lambda}(x, y) = \left(1 + \frac{\sqrt{3}|x - y|}{\lambda}\right) \exp\left(-\frac{\sqrt{3}|x - y|}{\lambda}\right)$$

$$K_{\lambda}(x, y) = \left(1 + \frac{\sqrt{3}|x - y|}{\lambda}\right) \exp\left(-\frac{\sqrt{3}|x - y|}{\lambda}\right)$$

Matérn class

We consider kernels of the Matérn class.

Matérn class

Matérn kernel of smoothness v > 0 is

$$K(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{x} - \mathbf{y}) \tag{6}$$

where

$$\Phi(\mathbf{z}) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\sqrt{2\nu} \|\mathbf{z}\| \right)^{\nu} \mathcal{K}_{\nu} \left(\sqrt{2\nu} \|\mathbf{z}\| \right). \tag{7}$$

For example, v = 1/2 and v = 3/2 give

$$\Phi_{\nu=1/2}(\mathbf{z}) = e^{-\|\mathbf{z}\|}$$
 and $\Phi_{\nu=3/2}(\mathbf{z}) = (1 + \sqrt{3} \|\mathbf{z}\|) e^{-\sqrt{3} \|\mathbf{z}\|}$. (8)

[In fact, what follows applies to any stationary kernel $K(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{x} - \mathbf{y})$ with Fourier transform $\widehat{\Phi}$ such that

$$C_1(1+\|\boldsymbol{\omega}\|^2)^{\alpha} \leq \widehat{\Phi}(\boldsymbol{\omega}) \leq C_2(1+\|\boldsymbol{\omega}\|^2)^{\alpha}$$
 for all $\boldsymbol{\omega} \in \mathbb{R}^d$.

Maximum likelihood estimation

Let $\theta \in \Theta$ be a kernel parameter vector. The log-likelihood function is

$$L(\boldsymbol{\theta}; \mathcal{D}_n) = -\frac{1}{2} \left[(\mathbf{f}_n - \mathbf{m}_n)^\mathsf{T} \mathbf{K}_{\boldsymbol{\theta}, n}^{-1} (\mathbf{f}_n - \mathbf{m}_n) + \log \det \mathbf{K}_{\boldsymbol{\theta}, n} + C \right], \quad (9)$$

where
$$\mathbf{f}_n = [f(\mathbf{x}_i)]_{i=1}^n$$
, $\mathbf{m}_n = [m(\mathbf{x}_i)]_{i=1}^n$ and $\mathbf{K}_{\boldsymbol{\theta},n} = [K_{\boldsymbol{\theta}}(\mathbf{x}_i,\mathbf{x}_j)]_{i,j=1}^n$.

Maximum likelihood estimation

The maximum likelihood estimate (MLE) of θ is

$$\boldsymbol{\theta}_{\text{ML}}(\mathcal{D}_n) = \underset{\boldsymbol{\theta} \in \Theta}{\arg \max} L(\boldsymbol{\theta}; \mathcal{D}_n). \tag{10}$$

We are interested in

$$\lambda_{\mathrm{ML}}(\mathcal{D}_n) = \operatorname*{arg\,max}_{\lambda > 0} L(\lambda; \mathcal{D}_n) \ \ \mathrm{and} \ \ K_{\lambda}(\mathbf{x}, \mathbf{y}) = K\left(\frac{\mathbf{x} - \mathbf{y}}{\lambda}\right) = \Phi\left(\frac{\mathbf{x} - \mathbf{y}}{\lambda}\right).$$

Failure (or not?) of maximum likelihood

We say that the data are *m*-constant if there is $c \in \mathbb{R}$ such that

$$\mathbf{f}_n - \mathbf{m}_n = [f(\mathbf{x}_1) - m(\mathbf{x}_1), \dots, f(\mathbf{x}_n) - m(\mathbf{x}_n)] = [c, \dots, c].$$
 (11)

Theorem (Karvonen & Oates, 2023)

Let $n \ge 2$ be **fixed** and K a Matérn kernel (isotropic or product). Then

$$\lambda_{\mathrm{ML}}(\mathcal{D}_n) = \infty$$
 and $\lim_{\lambda \to \infty} L(\lambda; \mathcal{D}_n) = \infty$ (12)

if and only if the data are m-constant. Moreover, for every $\mathbf{x} \in \mathbb{R}^d$,

$$\lim_{\lambda \to \infty} \mu_{\lambda,n}(\mathbf{x}) = m(\mathbf{x}) + c \quad \text{and} \quad \lim_{\lambda \to \infty} \mathbb{V}_{\lambda,n}(\mathbf{x}) = 0.$$
 (13)

 \implies If the data are *m*-constant, the posterior becomes degenerate.

Karvonen & Oates (2023). Maximum likelihood estimation in Gaussian process regression is ill-posed. *Journal of Machine Learning Research*. To appear.

Constant data and $\lambda \approx \infty$

$$K_{\lambda}(x, y) = \left(1 + \frac{\sqrt{3}|x - y|}{\lambda}\right) \exp\left(-\frac{\sqrt{3}|x - y|}{\lambda}\right)$$

Sketch of proof

 $\mathcal{H}(K)$ = reproducing kernel Hilbert space (RKHS) of K.

- 1. If $g \in \mathcal{H}(K)$, then $\mathbf{g}_n^\mathsf{T} \mathbf{K}_n^{-1} \mathbf{g}_n \le \|g\|_{\mathcal{H}(K)}^2$ for all $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$.
- 2. Use K_{λ} and $\mathbf{x}_1, \dots, \mathbf{x}_n$. \iff Use K and $\frac{1}{\lambda}\mathbf{x}_1, \dots, \frac{1}{\lambda}\mathbf{x}_n$.
- 3. If *K* is Matérn, $c \in \mathcal{H}(K)$. But \mathbf{c}_n does not depend on $\mathbf{x}_1, \dots, \mathbf{x}_n$!
- 4. We are to maximise

$$L(\lambda; \mathcal{D}_n) = -(\mathbf{f}_n - \mathbf{m}_n)^\mathsf{T} \mathbf{K}_{\lambda,n}^{-1} (\mathbf{f}_n - \mathbf{m}_n) - \log \det \mathbf{K}_{\lambda,n}$$
 (14)

$$= -\mathbf{c}_n^\mathsf{T} \mathbf{K}_{\lambda,n}^{-1} \mathbf{c}_n - \log \det \mathbf{K}_{\lambda,n}$$
 (15)

$$\geq -\|c\|_{\mathcal{H}(K)}^2 - \log \det \mathbf{K}_{\lambda,n}. \tag{16}$$

5. $\lim_{\lambda \to \infty} \mathbf{K}_{\lambda,n} = \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}} \implies \log \det \mathbf{K}_{\lambda,n} \to -\infty \text{ as } \lambda \to \infty.$

Table of contents

Introduction: Gaussian process interpolation

Pitfall 1: Lengthscale estimation

Pitfall 2: Gaussian kernel

Gaussian kernel

$$K(x, y) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{y}\|^2}{2\lambda^2}\right)$$
 (17)

Variance decay — d = 1

Consider the Gaussian kernel

$$K(x, y) = \exp\left(-\frac{(x - y)^2}{2\lambda^2}\right)$$
 on $\Omega = [-1, 1] \subset \mathbb{R}$.

Theorem (Karvonen, 2022)

Let $x_1, \ldots, x_n \subset [-1, 1]$ be any pairwise distinct points. Then

$$C_1 \left(\frac{1}{4\lambda^2}\right)^n \frac{1}{n!} \le \sup_{x \in [-1,1]} \mathbb{V}_n(x) \le C_2 n^{-1/4} e^{2\sqrt{n}/\lambda} \left(\frac{4}{\lambda^2}\right)^n \frac{1}{n!}.$$
 (18)

- \implies The variance decays everywhere with rate $(n!)^{-1} \approx n^{-n}$ regardless of how well x_1, \ldots, x_n cover [-1, 1].
- \implies The magnitude of $\mathbb{V}_n(x)$ does not necessarily tell us much.

Karvonen (2022). Approximation in Hilbert spaces of the Gaussian and other weighted power series kernels. *arXiv:2209.12473v2*.

The uncertainty principle

In GP interpolation we need to work with the matrix \mathbf{K}_n .

Theorem (Schaback. 1995)

Let *K* be any positive-definite kernel. Then

$$\operatorname{cond}(\mathbf{K}_{n+1}) \ge \frac{1}{\mathbb{V}_n(\mathbf{x}_{n+1})}.$$
 (19)

 \implies Fast decay of \mathbb{V}_n implies ill-conditioned \mathbf{K}_n .

Corollary

Let *K* be the Gaussian kernel on [-1, 1] and $x_1, \ldots, x_{n+1} \in [-1, 1]$ any pairwise distinct points. Then

$$\operatorname{cond}(\mathbf{K}_{n+1}) \geq C_2^{-1} n^{1/4} e^{-2\sqrt{n}/\lambda} \left(\frac{\lambda^2}{4}\right)^n n!$$
 (20)

 \implies Must use nugget a nugget term: $\mathbf{K}_n \mapsto \mathbf{K}_n + \sigma^2 \mathbf{I}_n$.

Schaback (1995). Error estimates and condition numbers for radial basis function interpolation. *Advances in Computational Mathematics*, 3(3):251–264.

Variance decay — d > 1

Let $\widehat{\Phi}$ be the Fourier transform of $\Phi \colon \mathbb{R}^d \to \mathbb{R}$. Consider a kernel

$$K(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{x} - \mathbf{y})$$
 such that $\widehat{\Phi}(\boldsymbol{\omega}) \le Ce^{-c\|\boldsymbol{\omega}\|}$.

E.g., the Gaussian $\Phi(\mathbf{z}) = \exp\left(-\frac{\|z\|^2}{2\lambda^2}\right)$ has $\widehat{\Phi}(\boldsymbol{\omega}) \propto \exp\left(-\frac{\lambda^2 \|\boldsymbol{\omega}\|}{2}\right)$.

Theorem

If the closure of $\{\mathbf{x}_i\}_{i=1}^{\infty} \subset [-1, 1]^d$ has non-empty interior, then

$$\sup_{\mathbf{x}\in[-1,1]^d} \mathbb{V}_n(\mathbf{x}) \to 0 \quad \text{as} \quad n \to \infty.$$
 (21)

- \implies Covering a part of $[-1,1]^d$ well is enough for the variance to tend to zero uniformly on $[-1,1]^d$.
- \implies $\mathbb{V}_n \to 0$ even when the points are "badly" placed (e.g., cluster).

Nothing new here

Kolmogorov-Wiener prediction problem (1940s)

Kolmogorov (1941). Interpolation and extrapolation of stationary random sequences. *Izv. Akad. Nauk SSSR*.

Krein (1945). On a problem of extrapolation of A. N. Kolmogorov. *Dokl. Akad. Nauk SSSR*. Wiener (1949). *Extrapolation, Interpolation, and Smoothing of Stationary Time Series*.

— We shall see later that [...] when (1.795) holds, the future of the function f from which Φ is obtained is determinable completely in terms of its own past. [**p. 54**]

Stein (1999). Interpolation of Spatial Data: Some Theory for Kriging.

- That is, it is possible to predict Z(t) perfectly for all t > 0 based on observing Z(s) for all $s \in (-\varepsilon, 0]$ for any $\varepsilon > 0$. [p. 30]
- However, as I previously argued in the one-dimensional setting, random fields possessing these autocovariance functions are unrealistically smooth for physical phenomena. [p. 55]
- I strongly recommend not using autocovariance functions of the form Ce^{-at^2} to model physical processes. [**pp. 69–70**, in *More criticism of Gaussian autocovariance functions*]

Rasmussen & Williams (2006). Gaussian Processes for Machine Learning.

 Stein [1999] argues that such strong smoothness assumptions are unrealistic for modelling many physical processes [...]. However, the squared exponential is probably the most widely-used kernel within the kernel machines field. [p. 83]

Also: No empty ball property of Vazquez & Bect (2010). [J. Stat. Plan. Infer., 140(11):3088–3095.]

Conclusion

- Maximum likelihood estimation of the lengthscale parameter may yield a degenerate posterior.
- The Gaussian kernel is too smooth to be robust. Do not use as a default kernel in PN?

Thank you for your attention!