Section 15: Keyword & Phrase Extraction

Keyword Tables

- Overall Top Keywords (top 20)
- Segment Top Keywords (top 10 per demographic slice)

Insights from the Top 20 Keyword Frequencies Chart:

1. Dominance of 'Hair'-Related Concerns:

 The term "hair" stands out as the most frequently mentioned keyword, indicating that consumers strongly associate the product with hair care benefits and outcomes.

2. Packaging Formats are Key Considerations:

 Keywords like "sachet" and "bottle" are highly ranked, highlighting that packaging format significantly influences user preferences and perceptions.

3. Scalp and Ingredient-Focused Benefits:

 Words like "scalp," "control," "natural," "ingredient," and "reduce" suggest that many consumers are focused on functional benefits such as dandruff control, scalp health, and natural ingredients.

4. Ease of Use and Design Matter:

 Terms such as "easy," "use," "design," and "packaging" imply that usability and aesthetic aspects of the product and packaging are important to consumers.

5. Positive Sentiment and Efficacy:

 Keywords like "love," "help," "work," and "improve" reflect overall satisfaction and the perceived effectiveness of the product.

Key Phrase Tables

• Overall Key Phrases (top 10)

Insights from Key Phrase Diagram:

1. High Commonality Between Genders

 "Hair", "sachet", "bottle", "scalp", "packaging", "use", "easy", and "like" are common top keywords for both genders, highlighting shared perceptions and priorities.

2. Top Priority: Hair

• Both male (36.30%) and female (34.48%) consumers most frequently mentioned "hair", clearly signaling that product communication and formulation must strongly resonate with hair care benefits.

3. Format Preference: Sachet vs Bottle

• Sachet and bottle keywords score nearly equally for both genders, though sachets have a slightly higher association with female consumers, which could imply convenience preference or trial behavior.

4. Functional Benefits Matter

•	Keywords like "use", "easy", "reduce", and "help" indicate a focus on functional
	value (ease of use, helpfulness, problem-solving).

5. Emotional and Natural Aspects for Women

 Women associate terms like "natural" and "last" more frequently, suggesting durability and natural ingredients play a greater role in female preference.

6. Male Consumers Show Functional Orientation

• Males highlight "reduce" and "help", implying a stronger utility-based outlook (e.g., reduce dandruff, help scalp health).

2. Analysis Notebook

- o Documented code for TF-IDF and KeyBERT extraction
- Parameter settings (ngram ranges, stop-word list)

https://colab.research.google.com/drive/18H6BxSEtdJiG19SZo6dnLsH2uL0OXTDE#scrollTo =PUlourInittl

Description

Section 15: Keyword & Phrase Extraction

Scope: Extract meaningful words and short phrases from open-ended responses to support summarization, topic modeling, and segment-specific insights.

Objectives

- Extract the most informative keywords and phrases from Q19–Q21, Q25–Q26, Q28–Q29, Q33, and Q40–Q41.
- Enable targeted summarization and segmentation-based language insights.
- Surface unique terms used by demographic cohorts (Age, Gender, NCCS).

Analysis Tasks

Task	Details	Method
1. Text Collectio n	- Combine open-end ed responses from questions Q19–Q21, Q25–Q26, Q28–Q29, Q33, Q40–Q41 Include responde nt metadata: Gender, Age, NCCS.	<pre>python import pandas as pd df = pd.read_csv("open_ended_data.csv") # Filter and combine relevant questions columns_to_use = ['Q19', 'Q20', 'Q21', 'Q25', 'Q26', 'Q28', 'Q29', 'Q33', 'Q40', 'Q41'] df['Combined_Text'] = df[columns_to_use].fillna('').agg(' '.join, axis=1) df_text = df[['Respondent_ID', 'Combined_Text', 'Gender', 'Age', 'NCCS']]</pre>
2. Preproce ssing	Lowercas e, remove punctuatio n, stop words. Optionally lemmatize .	<pre>python import spacy nlp = spacy.load("en_core_web_sm", disable=["parser", "ner"]) def preprocess(text): doc = nlp(text.lower()) tokens = [token.lemma_ for token in doc if not token.is_stop and token.is_alpha] return " ".join(tokens) df_text["Clean_Text"] = df_text["Combined_Text"].apply(preprocess)</pre>

```
3. TF-IDF
                    python from sklearn.feature_extraction.text
Extractio
          Calculate
                    import TfidfVectorizer tfidf =
          TF-IDF
n
                    TfidfVectorizer(ngram_range=(1, 2),
          scores for
                    max_features=5000) tfidf_matrix =
          unigrams
                    tfidf.fit_transform(df_text["Clean_Text"])
          and
                    tfidf_df = pd.DataFrame(tfidf_matrix.toarray(),
          bigrams.
                    columns=tfidf.get_feature_names_out())
         - Identify
         top
                    top_keywords =
          keywords
                    tfidf_df.mean().sort_values(ascending=False).hea
          globally
                    d(20)
          and by
          segment.
         - Use a
4.
                    python from keybert import KeyBERT kw_model =
KeyBERT
         Sentence-
                    KeyBERT(model="all-MiniLM-L6-v2") def
Phrase
          BERT
                    extract_phrases(text): return
Extractio
          model via
                    kw_model.extract_keywords(text,
          KeyBERT.
n
                    keyphrase_ngram_range=(2, 3),
         - Extract
                    stop_words="english", top_n=5)
         top key
                    df_text["Key_Phrases"] =
          phrases
          (2-3)
                    df_text["Clean_Text"].apply(lambda x:
          words) by
                    extract_phrases(x))
          segment.
5.
         - Slice by
                    python def get_top_keywords_by_segment(df,
Segment
         demograp
                    segment): segment_text =
Comparis
         hics: Age
                    df.groupby(segment)["Clean_Text"].apply("
on
          buckets,
                    ".join) tfidf_seg =
          Gender,
                    tfidf.fit_transform(segment_text) tfidf_seg_df =
          NCCS.
                    pd.DataFrame(tfidf_seg.toarray(),
                    index=segment_text.index,
          Compare
          TF-IDF
                    columns=tfidf.get_feature_names_out()) return
          ranks and
                    tfidf_seq_df.T.apply(lambda x:
          KeyBERT
                    x.sort_values(ascending=False).head(10)).stack()
          scores for
                    .reset_index(name="TFIDF_Score")
          uniquenes
                    keywords_by_gender =
          S.
                    get_top_keywords_by_segment(df_text, "Gender")
```

```
6. Output - Export
                    python
Tables
          keyword
                    keywords_by_gender.to_csv("segment_keywords_gend
          and
                    er.csv", index=False) df_text[['Respondent_ID',
          phrase
                    'Key_Phrases']].explode("Key_Phrases").to_csv("k
         tables for
                    ey_phrases_all.csv", index=False)
          overall
          and
          segment-
          specific
          analyses.
```

Deliverables

Keyword Tables

- Overall Top Keywords (Top 20): Sorted by average TF-IDF score
- Segment Keywords (Top 10):

File: segment_keywords_<segment>.csv
Columns: Segment, Keyword, TFIDF_Score, Rank

Key Phrase Tables

Overall Phrases:

Top 10 from the full dataset using KeyBERT

• Segment-Specific Phrases:

File: key_phrases_all.csv
Columns: Respondent_ID, Phrase, Relevance

Analysis Notebook

- Documented Python code:
 - Preprocessing
 - o TF-IDF extraction
 - KeyBERT phrase extraction
 - Segment comparisons
- Parameters: ngram_range=(1,2), top_n=5, custom stopword list via spaCy

Summary Report

- Highlight most unique or distinctive words and phrases by:
 - o Gender
 - o Age Bucket (<30 vs. ≥30)
 - o NCCS (A vs. B/C)
- Identify potential tags for visual dashboards and thematic filters