

Team 64: Enhancing User Detection Bi-Weekly Update 3

Sponsor: Dr. Krishna Narayanan Jamison Ebert TA: Max Lesser

Project Summary

- With the rise in mMTC, a cell-free paradigm has been proposed to handle all the users
- In this paradigm, being able to accurately identify which users are active is critical
- Applying LISTA to the user activity detection problem in a cell-based system
- Evaluating the performance of LISTA in a cell-free system

mMTC: massive machine type communication; only a subset of users are active at any given point in time

Project Overview

Project Timeline

Implement unlearned algorithms	Implement LISTA	Add noise to all algorithms	Implement TISTA	Add Complex Rayleigh fading	Unlearned algorithm two base station baseline	Learned algorithms two base station approach
--------------------------------------	--------------------	-----------------------------	--------------------	-----------------------------------	--	--

The ISTA's

ISTA	LISTA	TISTA			
$\mathbf{x^{l+1}} = \eta((\mathbf{I} - \frac{1}{L}\mathbf{A^TA})\mathbf{x^l} + \frac{1}{L}\mathbf{A^Ty})$	$\mathbf{x^{l+1}} = \eta((\mathbf{\underline{I} - \frac{1}{L}\mathbf{A^TA}})\mathbf{x^l} + \mathbf{\underline{L}\mathbf{A^T}}\mathbf{y})$	$egin{aligned} oldsymbol{r}_t &= oldsymbol{s}_t + \gamma_t oldsymbol{W} (oldsymbol{y} - oldsymbol{A} oldsymbol{s}_t), \ oldsymbol{s}_{t+1} &= \eta_{MMSE}(oldsymbol{r}_t; au_t^2), \end{aligned}$			
Unlearned, iterative	Three trainable parameters: term multiplying x, term multiplying y, and alpha	One trainable parameter: gamma (step size)			
Not computationally expensive	Greatly decreases MSE Has 20mil+ trainable variables	Requires less RAM			

AMP and **CAMP**

 Calculate residual error

$$\mathbf{z}^t = \mathbf{y} - \mathbf{A}\mathbf{x}^t + \boldsymbol{\mu}^t$$

Update estimate of x

$$\mathbf{x}^{t+1} = \eta(\mathbf{x}^t + \mathbf{A}^T \mathbf{z}^t; \tau)$$

 Onsager correction term

$$\mu^t = rac{1}{n} \mathbf{z}^{t-1} \sum \eta^{'}(r_j^{t-1}; au_{t-1})$$

$$z^{t} = y - Ax^{t} + \frac{1}{2\delta}z^{t-1}(\langle \frac{\partial \eta^{R}}{\partial x_{R}}(x^{t-1} + A^{H}z^{t-1}; \lambda^{t-1})\rangle + \langle \frac{\partial \eta^{I}}{\partial x_{I}}(x^{t-1} + A^{H}z^{t-1}; \lambda^{t-1})\rangle)$$

$$x^{t+1} = \eta(x^t + A^H z^t; \lambda^t)$$

$$\eta(u+iv;\lambda) = (u+iv - \frac{\lambda(u+iv)}{\sqrt{u^2+v^2}}) \mathbb{I}_{\{u^2+v^2>\lambda^2\}}$$

Unlearned Algorithms

Accomplishments since last update 4 hrs of effort	Ongoing progress/problems and plans until the next presentation
-Dual BS ISTA -Completed derivations and code structure for CAMP	-Dual BS AMP -Debug CAMP

```
eta real: nan
eta imag: nan
eta real: nan
eta imag: nan
eta real: nan
eta imag: nan
[nan nan nan nan nan nan nan nan nan]
```


ISTA 2 BS

$$\begin{bmatrix} \frac{y_1}{y_2} \\ \frac{y_2}{y_2} \end{bmatrix} = \begin{bmatrix} A_1 \\ A_2 \\ \frac{1}{2} \end{bmatrix} \times \begin{bmatrix} X \\ \frac{1}{2} \end{bmatrix} + \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$
570 x 1
570 x 1

$$Y_1 = A_1 \times + \omega_1$$

Bale station 2:

 $Y_2 = A_2 \times + \omega_2$

The following graphs have an SNR of 5 dB

Learned Algorithms

Accomplishments since last update 9 hrs of effort	Ongoing progress/problems and plans until the next presentation
-CLISTA converging after 5 layers -Set TISTA aside	-Get CLISTA to continue to trend down beyond 5 layers; hopefully to 15

CLISTA

Experimented with learning rate, number of epochs, batch size, and the patience on the early stopping call.

No noise or fading, but complex valued matrices Early stopping never kicked in

CLISTA is barely affected by fading

Learning rate: 0.0001 | Batch size: 128 Num epochs per layer: [19, 20, 17, 18, 20, 24] | Patience: 1 CRF used

This is about the limit of noise that it could handle

Execution Plan

	1-Sep	15-Sep	1-Oct	1-Nov	15-Nov	1-Dec	15-Jan	1-Feb	15-Feb	1-Mar	15-Mar	1-Apr	15-Apr	30-Apr
Program unlearned algorithms														
Generate baseline data														
Learn about LISTA and develop simple network with preset layers														
Develop custom layers for network														
Train without noise														
Train with noise														
Add real rayleigh fading														
Add complex rayleigh fading														
Implement TISTA														
Train with fading														
Preparation for symposium														
Unlearned baseline for 2 base station														
Expand to two base station approach														
Finalizing work and documentation														
Compile into a single colab notebook														

Validation

We are evaluating MSE vs. iterations/layers. The project is considered a success if the ML outperforms ISTA:

- With no noise
- With noise
- With fading
- With noise and fading

So far ML has outperformed ISTA with and without noise and with fading.

