Critical Review: Improving the Efficacy of Games for Change Using Personalization Models

The use of technology for encouraging behavioural change to benefit its users or the wider community is a long-term area of research. This review will present a summary and critical analysis of Orji et al. [2017] whose paper explores the use of personalisation models as a persuasive device for improving the efficacy of games which are designed to change user behaviour, as well as putting forward a set of suggestions for future work in this domain of Persuasive Technology.

Summary of Contributions

Orji et al. seek to answer two main research questions. Firstly, whether tailoring games for change to a specific player type increases their persuasiveness. Secondly, whether the beneficial effects of tailoring are mediated by an improved play experience.

To meet their objectives, the authors begin by assessing the current state of the domain of games for change.

Figure 1: "Junk Food Aliens" (JFA): A persuasive game designed to change gamer behaviour towards healthy eating.

Strategies	CMPT/	COOP	CUST	PERS	PRAS	SEMT/	SIML	REWD
	CMPR					SUGG		
Gamer type								
Achiever	-	.15	-	-	-	.10	-	.10
Conqueror	.25	-	-	.12	-	.12	.14	-
Daredevil	10	-	-	-	-	14	.11	-
Mastermind	.12	-	.10	.12	-	.14	.12	-
Seeker	.10	-	.19	.11	.10	-	-	-
Socializer	.11	.17	12	-	12	13	-	-
Survivor	.17	20	13	-	_	.27	-	14

Table 1: β values: Strength of motivation of different players that result from different strategies.

CMPT/CMPR = competition and comparison, COOP = cooperation, CUST = customization, PERS = personalization, PRAS = praise, SEMT/SUGG = self-monitoring and suggestion, SIML = simulation, REWD = reward.

Level: 4 Game Performance Leaderboard						
Rank	Player Name	Score				
1st	Jean	950				
2nd	Charles	886				
3rd	Jane	785				
4th	Rita	557				
5th	Heather	531				

Figure 2: Competition-based version of JFA.

Figure 3: Reward-based version of JFA.

Justifications for Conclusions

Figure 4: Mean values \pm SE for Attitude, Intention, and Self-Efficacy by Gamer type (Achiever, Conqueror) and Game version (Competition, Reward).

Figure 5: Parallel mediation model of tailoring on attitude change with play experience as mediator.

Limitations and Suggested Further Work

Conclusion

Word count: 0 words

References

Rita Orji, Regan L. Mandryk, and Julita Vassileva. Improving the efficacy of games for change using personalization models. *ACM Trans. Comput.-Hum. Interact.*, 24(5):32:1–32:22, October 2017. ISSN 1073-0516. doi: 10.1145/3119929. URL http://doi.acm.org/10.1145/3119929.