@ AIGO (九点打卡, 六点打卡)

YOLO模型评估报 告

YOLOv8-m 性能评估

报告日期 模型版本 2025-07-16YOLOv8-m

目录

1	摘要	1
2	评估结果	2
3	分析	7
4	结论	9

摘要

本报告对YOLOv8-m模型在人体检测任务上的性能进行评估。评估基于公共数据集,采用精确率-召回率曲线(PR曲线)、接收者操作特征曲线(ROC曲线)等指标,从多个维度分析模型性能。

关键发现

平均精度

YOLOv8-m 模型在测试集上达到了 0.4955 的AP值,显示了良好的检测精 度。

区分能力

ROC曲线下面积(AUC)为 0.8548, 表明模型具有出色的真假样本区分能力。

适用场景

该模型在复杂场景和需要高精度的应用中表现最佳。

阈值建议

根据不同应用场景需求,建议选择不同的检测阈值: 高精度场景选择高精确率阈值点,低漏检场景选择高召回率阈值点,平衡场景选择F1最佳点。

模型性能摘要

YOLOv8-m

0.4955 0.8548

平均精度(AP) ROC曲线下面积(AUC)

模型性能指标

模型	AP	AUC	评估日期
YOLOv8-m	0.4955	0.8548	2025-07-16

2 评估结果

精确率-召回率曲线

展示不同置信度阈值下模型精确率和召回率之间的权衡。

分析要点

曲线越接近右上角,表示模型性能越好。AP值是曲线下面积,代表模型整体精确度。

PR曲线关键点数据

ROC曲线

展示不同检测阈值下真阳性率与假阳性率之间的关系。

分析要点

曲线越接近左上角,表示模型区分能力越强。AUC值越接近1,表示模型区分正负样本的能力越好。

ROC曲线关键点数据

回归偏差分布

展示预测边界框与真实边界框之间的定位误差分布。

分析要点

分布越集中在左侧,表示模型定位精度越高。较大的偏差可能由遮挡、小目标或极端姿态引 起。

置信度分布

展示模型对检测结果的置信度分数分布。

分析要点

理想情况下,分布应与实际准确率一致。高置信度峰值表示模型对其预测结果有较高的确定性。

阈值选择指南

根据不同应用场景的需求,可以选择不同的阈值:

应用场景	优先指标	建议选择	典型阈值特征	
安全关键应用	高精确率,低误报	P>0.9的点	较高阈值,精确率>0.9	
医疗筛查应用	高召回率,低漏检	高召回率区间点	较低阈值,召回率>0.8	
平衡型应用	精确率与召回率平 衡	Best F1或P=R 点	中等阈值,F1分数最 高	
低资源应用	高特异性,极低误 报	High Spec点	较高阈值,FPR<0.05	

3 分析

模型分析

YOLOv8-m

优势

- 高检测精度 (AP: 0.4955)
- 对于需要精确检测的应用场景表现出
- 适合大规模复杂场景的人体检测任务

局限性

- 计算资源需求较高
- 在资源受限设备上推理速度较慢
 - 模型体积较大,不适合轻量级部署

应用场景建议

高精度场景

检率低的应用(如安防系 统)。选择高精确率阈值 点。

平衡性能场景

适合要求非常准确检测、误 适合需要在检测率和误报之 间取得良好平衡的通用应 用。选择F1最佳点。

实时应用场景

适合需要快速处理的实时应 用。调整阈值以平衡速度和 准确性需求。

4 结论

本评估展示了 YOLOv8-m 模型在人体检测任务上的性能特点。模型在测试 集上达到了 0.4955 的AP值和 0.8548 的AUC值,表现良好。

为获得最佳效果,建议根据具体应用需求选择合适的阈值点,考虑因素包括所需精度、计算资源限制,以及最小化误检与最大化检出之间的相对重要性。

AIGO LAB

技术评估报告·2025-07-16

模型性能基准测试

系统信息

操作系统	Darwin 24.5.0 (LeiondeMacBook-Air.local)		
CPU	Apple M4 (10 物理核心, 10 逻辑核心)		
内存	总计: 16.00 GB, 可用: 6.67 GB (使用率: 58.3%)		
计算设备	MPS (Apple Silicon) - Apple Silicon (显存: 共享系统内存)		
软件环境	Python 3.13.2, PyTorch 2.7.1, CUDA None		

测试结果概览

本测试评估了不同YOLO模型在各批次大小下的性能表现,包括推理延迟、吞吐量和 内存使用情况。

吞吐量比较

单图延迟比较

批次延迟比较

内存使用比较

yolov8m-pose 模型性能

6.1

最大吞吐量 (图像/秒) 批次大小: 1

163.99

单批次延迟 (毫秒) 批次大小: 1 163.99

最低单图延迟 (毫秒) 批次大小: 1

-85.0

最大内存增加 (MB) 批次大小: 100

详细性能数据

批次大小	批次延迟 (毫秒)	单图延迟 (毫秒)	吞吐量 (图像/ 秒)	内存增加 (MB)	CPU使 用率 (%)	内存使 用率 (%)
1	163.99	163.99	6.10	19.78	29.0	60.5
10	1933.41	193.34	5.17	17.92	43.3	67.8
50	18048.49	360.97	2.77	7.36	67.4	65.9
100	38129.34	381.29	2.62	-85.03	76.1	58.4

结论与建议

根据基准测试结果,可以得出以下结论和建议:

- 延迟敏感场景:对于需要低延迟的实时应用,应使用较小的批次大小(通常为1)。YOLOv8n-pose模型通常提供最低的单图延迟。
- **吞吐量优先场景**:对于需要高吞吐量的离线处理,应使用较大的批次大小。随着批次大小增加,吞吐量通常会提高,但会达到硬件极限。
- •内存受限场景:对于内存受限的设备,应考虑使用较小的模型(如YOLOv8n-pose)并限制批次大小。
- 资源均衡: YOLOv8s-pose模型在性能和资源消耗之间提供良好的平衡,适合中等配置设备。
- **高精度需求**:对于需要高精度的应用,YOLOv8m-pose模型提供最佳性能,但需要更多计算资源。