

# Evolutionary and Structural Analysis of Pathogen Proteins.

Final year UG project 2024-25 2024-10-21 (Week 5)





#### Any changes needed?

| Organism          | Host         | Gene/Protein | PHI accession | Student |
|-------------------|--------------|--------------|---------------|---------|
| Escherichia coli  | Homo sapiens | espY         | PHI:8647      | LB      |
| Shigella flexneri | Homo sapiens | іраЈ         | PHI:9253      | LT      |
|                   |              |              |               |         |
| Candida albicans  | Mus musculus | sap6         | PHI:10193     | IM      |
| Pseudomonas       |              |              |               |         |
| aeruginosa        | Homo sapiens | tplE         | PHI:6646      | AE      |
|                   |              |              |               |         |
| Vibrio vulnificus | Mus musculus | vvhA         | PHI:6877      | JT      |

http://www.phi-base.org/

#### Workflow

Research protein / disease / organism in literature

Interactions, function, important residues/motifs, etc.

(Weeks ≈1-5)

Visualise with **PyMOL** 

Download

AlphaFold/PDB

structures (try

simplefold?)

homologues

2. All bacteria

Identify

1. Source

species

(compare AlphaFold with PDB?)

Align sequences Conserved and variable sites?

Phylogenetic trees

**HGT?** Positive selection?

Interpret in context of known function/species distribution

Other database searches

Known interactors?

(what experiments could you propose to test your interpretation?)

(Weeks ≈6-11)







## Your questions/comments

(What would you like to talk about?)



### Thesis Introductions



# A very quick introduction to building a phylogenetic tree





 Family trees are not a good model of how bacteria (or species in general) evolve







- Online introductory course:
  - https://www.ebi.ac.uk/training/online/courses/introduction-to-phylogenetics/
- Conor Meehan's introductory course: https://conmeehan.github.io/PathogenDataCourse/IntroToPhylogenetics.html
- Phylogenetics is the reconstruction of evolutionary history from genetic/genomic data
  - Input: Aligned protein sequence data
  - Output: A tree estimating evolutionary relationships
- Phylogenetic reconstruction is a mathematical activity
- The biology in phylogenetics comes from three places:
  - Aligning the input sequence set correctly (evolutionary equivalence)
  - The model of substitution used (e.g. how likely is residue/base A to be replaced/substituted by residue/base B?)
  - The assumption of a bifurcating tree (this doesn't apply to some methods, e.g. splitstree, but other assumptions do apply there)

#### Phylogenetic Trees (Topology)

- We assume that species evolve by a series of branching events
  - e.g. assume that species cannot interbreed so, when one species splits into two, it is an irrevocable branching event
- https://sipbs-compbiol.github.io/BM211-Workshop-5/



(A, B) are more closely related to each other than to C

Strathclvde

Three different relationships:

(A, B) more closely related to each other than to C(A, C) more closely related to each other than to B(B, C) more closely related to each other than to A

#### Input sequence alignment

- The goal is that each column in the alignment represents a single
   evolutionarily equivalent position subject to similar selection pressures
  - We can then make inferences based on what changes are permitted at that position
  - Structural equivalence can (but does not always) imply functional equivalence
- Many gaps in a column mean information is missing and inference is less robust (they bias the tree)
  - Remove "gappy columns", e.g. <a href="https://vicfero.github.io/trimal/">https://vicfero.github.io/trimal/</a>
- The larger amino acid alphabet means that alignments are more robust than nucleotide sequence alignments
- Codon degeneracy means that amino acid alignments can mask relevant evolutionary change, or mask "saturation"
  - Best practice for low/moderate divergence: align amino acid sequences and backtrace the coding sequence to nucleotide to make the tree
  - For highly divergent sequences, amino acid-based trees may be more robust





Start with a FASTA (protein) sequence alignment



#### How To Make a (Simple) Tree in Galaxy



Use IQ-Tree to generate a phylogenetic tree: SPECIFY AA sequence type!



#### How To Make a (Simple) Tree in Galaxy

University of Strathclyde Science

- Produces more than one tree
  - BioNJ: Neighbour-Joining (tree-building algorithm)
  - Maximum Likelihood (fitting a tree to the data)
- Trees produced by different approaches (or with different parameters/inputs) are often different
  - This is not bad! It's something to note in the discussion is the tree robust?
  - Justify choices (as much as possible) in the thesis
  - There are many parameters/options to choose – it's fine to use defaults, but state clearly that you did so in your Methods.

15: IQ-TREE on data 8: MaxLikeli 
hood Tree

14: IQ-TREE on data 8: BIONJ Tr 
ee





 Raw tree data (Newick format) looks cryptic – you don't have to read this data yourself: it's for computers



#### How To Make a (Simple) Tree in Galaxy



You can visualize your tree(s) directly in Galaxy (e.g. with Newick Display)





- University of Strathclyde Science
- You can visualize your tree(s) directly in Galaxy (e.g. with Newick Display)
  - TBH it doesn't do a great job







- Download your (Newick) tree file
  - This will let you use better visualization tools
- FigTree
  - http://tree.bio.ed.ac.uk/software/Figtree/
- DendroScope
  - https://unituebingen.de/en/fakultaeten/mathematis ch-naturwissenschaftlichefakultaet/fachbereiche/informatik/lehrstu ehle/algorithms-inbioinformatics/software/dendroscope/
- iTOL (Interactive Tree of Life)
  - https://itol.embl.de/







Open the downloaded Newick (.nhx) file









Use the sliders and tree rooting options to make the tree more legible







Use tree layout options to make the whole tree easier to see/interpret



#### FigTree

University of Strathclyde Science

Use selection and colour options to highlight groups of sequences for the

reader







Export .png, .jpg, .pdf, .svg files for inserting into your thesis (or presentation)







- Using nucleotide alignments can be more informative and accurate, but backtracing can be tricky – not all proteins have a known coding sequence
  - https://ncfp.readthedocs.io/en/stable/
- Identify the most appropriate substitution model before building the tree
  - (built-in for IQ-tree and RAxML)
- Maximum likelihood methods are the baseline standard
  - <u>IQ-tree</u>, <u>RAxML</u>, etc.
- Bayesian methods are statistically more robust, but are computationally very intensive
  - RevBayes, BEAST
- Bootstrapping gives an estimate of the robustness of your tree to changes in the input data



#### Next Week's Group Meetings

Tuesday 20<sup>th</sup> October 13:30 HW324

Thursday 23<sup>rd</sup> October 10:30 HW324

#### Topics to Discuss at Next Meeting

What would you like to cover?





## Useful Links





GalaxyEU: <a href="https://usegalaxy.eu/">https://usegalaxy.eu/</a>

Sequence alignment (e.g. MAFFT), phylogenetics (e.g. RaxML), positive selection (e.g. codeML)

iTOL: <a href="https://itol.embl.de/">https://itol.embl.de/</a>

Visualisation/annotation of phylogenetic trees

PyMOL: <a href="https://pymol.org/2/">https://pymol.org/2/</a> and/or ChimeraX: <a href="https://www.cgl.ucsf.edu/chimerax/">https://www.cgl.ucsf.edu/chimerax/</a>

Protein structure visualisation/annotation

Jalview: <a href="http://www.jalview.org/">http://www.jalview.org/</a>

- Visualisation of multiple sequence alignments





PHI-base: <a href="http://www.phi-base.org/">http://www.phi-base.org/</a>

- Proteins involved in host-pathogen interactions, with linked evidence

EMBL AlphaFold: <a href="https://www.alphafold.ebi.ac.uk/">https://www.alphafold.ebi.ac.uk/</a>

- AlphaFold predictions for proteins from model organisms

UniProt: <a href="https://www.uniprot.org/">https://www.uniprot.org/</a>

Protein sequence (including homologous sequences) and functional information with evidence

RCSB/PDB: <a href="https://www.rcsb.org/">https://www.rcsb.org/</a>

- Repository of record for protein structures

#### SIPBS CompBiol Sites



- BM432 Project Pages
  - https://sipbs-compbiol.github.io/bm432-project/
- An incomplete little book of bioinformatics
  - https://sipbs-compbiol.github.io/little-bioinformatics-book/



### Project Management Tools

#### You may want tools to...



- Manage your time
  - E.g. Pomodoro technique (e.g. BeFocused, <u>Pomofocus</u>, <u>Forest</u>)
- Schedule work
  - Reminders (macOS, MS Office)
  - Calendar (macOS, MS Office), with email alerts
  - Trello, Asana, etc.
- Manage your project data and information effectively
  - How to name files
  - Project management guidelines (BM432, 2022-23 session; me and Dr Feeney)
  - How to keep a lab notebook
  - Keeping a computational biology lab notebook: <a href="https://doi.org/10.1371/journal.pcbi.1004385">https://doi.org/10.1371/journal.pcbi.1004385</a>
  - Organising a lab book