ФОСФОР И ЕГО СОЕДИНЕНИЯ ТИПЫ РЕАКЦИЙ

более сильный ВЫТЕСНЯЕТ более слабого - вытеснение ПРИМЕРЫ:

основное + кислотное = соль - основно-кислотные взаимодействия ПРИМЕРЫ:

электролит + электролит (p-p) = газ/осадок/сл.электролит - РИО ПРИМЕРЫ:

- 1) NaOH + HCl = NaCl + H,O
- 2) KCl + AgNO, = KNO, + AgI

ФИЗИЧЕСКИЕ СВОЙСТВА

БЕЛЫЙ ФОСФОР Р.:

молекулярная КР, бесцветное ядовитое в-во, самовоспламеняется на воздухе, не раств. в Н,О, но раств. в СS,

КРАСНЫЙ ФОСФОР Р.:

атомная КР, неядовитое в-во, при сильном нагревании может переходить в чёрный фосфор

ЧЁРНЫЙ ФОСФОР Р.:

атомная КР, термически устойчив, имеет слоистое строение, полупроводник

ПОЛУЧЕНИЕ - В ЛАБОРАТОРИИ

1) Восстановление фосфатов углём в электропечах (t): Ca₃(PO₄)₂ + 5C + 3SiO₂ (t) = 2P + 5CO + 3CaSiO₃

ОБЩИЕ СВЕДЕНИЯ

апатит, 3Ca,(PO,),*CaCl, - хлорапатит.

Нахождение в ПС: VA-группа, 3 период Строение атома: $1s^22s^22p^63s^23p^3$ Степени окисления: от низшей (-3) до высшей (+5) Соединения: $Ca_3(PO_4)_2$ - фосфорит, $3Ca_3(PO_4)_2$ *CaF $_2$ - фтор-

ХИМИЧЕСКИЕ СВОЙСТВА

P + Me (акт/сред. акт.) (t) = фосфид Ме P + Ca (t) = , Ca,P, + H,O = P + Zn (t) = $, Zn_3P_2 + HCl =$ 2) P + неМе (t) = бинарное соединение , Р + О, (изб) = Р + О (нед) = $P + Cl_{2}(Heд) = , P + Cl_{2}(изб) =$ P + Br₂(нед) = , P + Br₂(изб) = Р + S (нед) = , P + S (изб) = P + I, = , P + F, = 3) Р + щёлочь + Н,О = гипофосфит + РН, P + KOH + H,O = , P + Ba(OH), + H,O = 4) Р + окислитель = ОВР P + HNO,(K) = , P + H,SO,(κ) = P + HNO₃(p) = ____ _, P + NaNO₃ = P + KClO, =

ОКСИДЫ ФОСФОРА

Р₂О₃: существует в виде димера Р₂О₆, легкоплавкое твёрдое в-во белого цвета; Р₂О₅: существует в виде димера Р₂О₁₀, порошок белого цвета, гигроскопичен.

ПОЛУЧЕНИЕ

Сжигание в нед/изб кислорода: $P + O_{2(\text{нед})} = P_2O_3$, $P + O_{2(\text{изб})} = P_2O_5$

ХИМИЧЕСКИЕ СВОЙСТВА

Типичные кислотные оксиды: реагируют с водой, с основными оксидами, основаниями, амф оксидами и гидроксидами.

Р₂О₃: типичный восстановитель, реагирует с окислителями Р₂О₅: отнимает воду у безводных кислот, вытесняет летучие оксиды из солей

$P_2O_3 + O_2 = +$	
P,O, + HNO,(κ) =	+
$P_2O_3 + H_2SO_4(\kappa) =$	
P ₂ O ₃ + HNO ₃ (p) =	
P ₂ O ₃ + H ₂ SO ₄ (p) =	
P ₂ O ₅ + H ₂ O =	
P ₂ O ₅ + CaO =	
P,O, + Ca(OH), =	
P ₂ O ₅ + KOH =	
P ₂ O ₅ + HClO ₄ =	
P ₂ O ₅ + HNO ₃ =	
$P_{2}O_{5} + C(t) =$	
$P_{2}O_{5} + K_{2}SO_{3}(t) =$	
$P_2O_5 + CaCO_3$ (t) =	

ОРТОФОСФОРНАЯ КИСЛОТА Н₃РО₄, ЕЁ СОЛИ - ОРТОФОСФАТЫ И ФОСФИН РН₃

Н₃РО₂: бесцветное кристаллическое вещество, растворимое в воде;

PH₃: ядовитый газ с запахом чеснока, самовоспламеняется на воздухе.

ПОЛУЧЕНИЕ

В промыленности: Ca₃(PO₂)₂ + 3H₂SO₂(к) = 3CaSO₂ + 2H₃PO₂; 4P + 5O₂ + 6H₂O = 4H₃PO₂ В лаборатории: 3P + 5HNO₃(р) + 2H₂O = 3H₃PO₂ + 5NO ХИМИЧЕСКИЕ СВОЙСТВА

Типичная <u>слабая кислота:</u> реагирует с основными оксидами, основаниями, амф оксидами и гидроксидами, разлагается при нагревании.

РН₃: типичный восстановитель, обладает слабыми основными свойствами


```
H<sub>3</sub>PO<sub>4</sub> + NaOH =
H<sub>3</sub>PO<sub>4</sub> + CaO =
H<sub>3</sub>PO<sub>4</sub> + Na<sub>2</sub>CO<sub>3</sub> =
H<sub>3</sub>PO<sub>4</sub> + AgNO<sub>3</sub> =
H<sub>3</sub>PO<sub>4</sub> + AgNO<sub>3</sub> =
H<sub>4</sub>P<sub>2</sub>O<sub>7</sub> (t) =
Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> + H<sub>2</sub>SO<sub>4</sub>(K) =
Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> + H<sub>3</sub>PO<sub>4</sub> =
NH<sub>3</sub> + H<sub>3</sub>PO<sub>4</sub> =
Ca(OH)<sub>2</sub> + H<sub>3</sub>PO<sub>4</sub> =
PH<sub>3</sub> + AgNO<sub>3</sub> + H<sub>2</sub>O =
PH<sub>3</sub> + KMnO<sub>4</sub> + H<sub>2</sub>SO<sub>4</sub> =
PH<sub>3</sub> + HCl =
```