Rank-65873 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_2^3 + X_3^3 + X_0^2 X_3 + X_1^2 X_2 + X_0 X_1 X_2 = 0$$

(0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1431725485

General information

Number of lines	1
Number of points	21
Number of singular points	1
Number of Eckardt points	0
Number of double points	0
Number of single points	5
Number of points off lines	16
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5
Type of lines on points	$1^5, 0^{16}$

Singular Points

The surface has 1 singular points:

$$0: P_{23} = \mathbf{P}(1,0,0,1) = \mathbf{P}(1,0,0,1)$$

The 1 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{89} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{89} = \mathbf{Pl}(1, 1, 1, 1, 1, 0)_{74}$$

Rank of lines: (89)

Rank of points on Klein quadric: (74)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 5 single points:

The single points on the surface are:

 $0: P_{12} = (1, 1, 1, 0)$ lies on line ℓ_0

1: $P_{23} = (1, 0, 0, 1)$ lies on line ℓ_0

2: $P_{42} = (0, 1, 1, 1)$ lies on line ℓ_0

The single points on the surface are:

 $3: P_{64} = (3, 2, 2, 1)$ lies on line ℓ_0

4: $P_{83} = (2, 3, 3, 1)$ lies on line ℓ_0

Points on surface but on no line

The surface has 16 points not on any line:

The points on the surface but not on lines are:

 $0: P_0 = (1, 0, 0, 0)$

 $1: P_4 = (1, 1, 1, 1)$

 $2: P_{17} = (2, 2, 1, 0)$

 $3: P_{22} = (3, 3, 1, 0)$

 $4: P_{26} = (0, 1, 0, 1)$

 $5: P_{30} = (0, 2, 0, 1)$

 $6: P_{34} = (0, 3, 0, 1)$

 $7: P_{38} = (0, 0, 1, 1)$ $8: P_{53} = (0, 0, 2, 1)$

9: $P_{58} = (1, 1, 2, 1)$

10: $P_{60} = (3, 1, 2, 1)$

11: $P_{61} = (0, 2, 2, 1)$

 $12: P_{69} = (0, 0, 3, 1)$

13: $P_{74} = (1, 1, 3, 1)$

 $14: P_{75} = (2, 1, 3, 1)$

15: $P_{81} = (0, 3, 3, 1)$

Line Intersection Graph

 $\begin{array}{c|c} 0 \\ \hline 0 & 0 \end{array}$

Neighbor sets in the line intersection graph: Line 0 intersects

Line in point

The surface has 21 points:

The points on the surface are:

$0: P_0 = (1,0,0,0)$	$8: P_{34} = (0, 3, 0, 1)$	$16: P_{69} = (0,0,3,1)$
$1: P_4 = (1, 1, 1, 1)$	$9: P_{38} = (0,0,1,1)$	17: $P_{74} = (1, 1, 3, 1)$
$2: P_{12} = (1, 1, 1, 0)$	$10: P_{42} = (0, 1, 1, 1)$	$18: P_{75} = (2, 1, 3, 1)$
$3: P_{17} = (2, 2, 1, 0)$	$11: P_{53} = (0,0,2,1)$	19: $P_{81} = (0, 3, 3, 1)$
$4: P_{22} = (3, 3, 1, 0)$	$12: P_{58} = (1, 1, 2, 1)$	$20: P_{83} = (2,3,3,1)$
$5: P_{23} = (1,0,0,1)$	$13: P_{60} = (3, 1, 2, 1)$	
$6: P_{26} = (0, 1, 0, 1)$	$14: P_{61} = (0, 2, 2, 1)$	
$7: P_{30} = (0, 2, 0, 1)$	$15: P_{64} = (3, 2, 2, 1)$	