Today in Cryptography (5830)

Public-key encryption
The RSA permutation
PKCS#1 RSA encryption

TLS handshake for RSA transport


```
ClientHello, MaxVer, Nc, Ciphers/CompMethods
Pick random No.
                                                                                 Pick random Ns
                      ServerHello, Ver, Ns, SessionID, Cipher/CompMethod
Check CERT
                             CERT = (pk of bank, signature over it)
using CA public
verification key
                                             C
Pick random PMS
                                                                                 PMS \leftarrow D(sk,C)
C \leftarrow E(pk,PMS)
                       ChangeCipherSpec,
                       { Finished, PRF(MS, "Client finished" | H(transcript)) }
                       ChangeCipherSpec,
Bracket notation
                       { Finished, PRF(MS, "Server finished" | | H(transcript')) }
means contents
encrypted
```

MS <- PRF(PMS, "master secret" | Nc | Ns)

Trapdoor functions

The RSA trapdoor function

- Rivest, Shamir, Adleman 1978
- Garnered them a Turing award

Let N be a positive number
Looking ahead: N = pq for large primes p,q
N will be called the modulus

$$p = 7$$
, $q = 13$, gives $N = 91$

$$p = 17$$
, $q = 53$, gives $N = 901$

Let N be a positive number

Looking ahead: N = pq for large primes p,q

N will be called the modulus

$$Z_N = \{0,1,2,3,..., N-1\}$$
 $Z_N^* = \{i \mid gcd(i,N) = 1 \text{ and } i < N\}$

gcd(X,Y) = 1 if greatest common divisor of X,Y is 1

$$Z_{N}^{*} = \{ i \mid gcd(i,N) = 1 \}$$

$$N = 13$$
 $\mathbf{Z}_{13}^* = \{1,2,3,4,5,6,7,8,9,10,11,12\}$

$$N = 15$$
 $Z_{15}^* = \{1,2,4,7,8,11,13,14\}$

The size of a set S is denoted by |S|

Def.
$$\phi(N) = |\mathbf{Z}_N^*|$$
 (This is Euler's totient function)

$$\phi(13) = 12$$

$$\phi(15) = 8$$

$$\mathbf{Z}_{\phi(15)}^* = \mathbf{Z}_8^* = \{1,3,5,7\}$$

$$Z_{N}^{*} = \{ i \mid gcd(i,N) = 1 \}$$

Fact. For any a,N with N > 0, there exists unique q,r such that

$$a = Nq + r$$
 and $0 \le r < N$

Def. a mod $N = r \in \mathbf{Z}_N$

Def. $a \equiv b \pmod{N}$ iff $(a \mod N) = (b \mod N)$

Operations work in natural way:

a • b mod N a+b mod N

$$Z_{N}^{*} = \{ i \mid gcd(i,N) = 1 \}$$

 $(\mathbf{Z}_{N}^{*}, \bullet)$ is a **group** where \bullet denotes multiplication mod N

Group is a set and operator (G, \bullet) that satisfy:

- 1. Closure: for all $a,b \in G$ it holds that $a \cdot b \in G$
- 2. Associativity: for all a,b,c \in G it holds that a•(b•c) = (a•b)•c
- 3. Identity: Exists $I \in G$ s.t. for all $a \in G$ $a \cdot I = a$
- 4. Inverses: for $a \in G$ there exists $a^{-1} \in G$ s.t. $a \cdot a^{-1} = I$

Abelian group is additionally commutative: for all $a,b \in G$ it holds that $a \cdot b = b \cdot a$

$$Z_N^* = \{ i \mid gcd(i,N) = 1 \}$$

 $(Z_N^*, \bullet) \text{ is a group}$

Group is a set and operator (G, \bullet) that satisfy:

- 1. Closure: for all $a,b \in G$ it holds that $a \cdot b \in G$
- 2. Associativity: for all a,b,c $\in \mathbf{Z}_N^*$ it holds that $a \bullet (b \bullet c) = (a \bullet b) \bullet c$
- 3. Identity: Exists $I \in \mathbf{Z}_N^*$ s.t. for all $a \in \mathbf{Z}_N^*$ $a \cdot I = a$
- 4. Inverses: for $a \in \mathbf{Z}_N^*$ there exists $a^{-1} \in \mathbf{Z}_N^*$ s.t. $a \bullet a^{-1} = I$

$$\mathbf{Z}_{N}^{*} = \{ i \mid \gcd(i,N) = 1 \}$$
 $(\mathbf{Z}_{N}^{*}, \bullet) \text{ is a group}$
 $\mathbf{Z}_{15}^{*} = \{ 1,2,4,7,8,11,13,14 \}$
 $2 \bullet 7 \equiv 14 \pmod{15}$
 $4 \bullet 8 \equiv 2 \pmod{15}$
Closure: for any $a,b \in \mathbf{Z}_{N}^{*}$ $a \bullet b \pmod{N} \in \mathbf{Z}_{N}^{*}$
Def. $a^{i} \mod N = a \bullet a \bullet a \bullet ... \bullet a \mod N$

Some needed algorithms

Algorithm	Running time (n = log N)
Modular multiplication ab mod N	$O(n^2)$
Modular exponentation a ⁱ mod N	$O(n^3)$
Modular inverse a ⁻¹ mod N	$O(n^2)$

Textbook exponentiation

Let G be a group. How do we compute h^x for any $h \in G$?

$$\frac{\text{Exp}(h,x)}{X' = h}$$
For i = 2 to x do
$$X' = X' \cdot h$$
Return X'

Requires time O(|G|) in worst case.

```
\begin{aligned} &\frac{SqrAndMulExp(h,x)}{b_k,...,b_0} = x \\ &f = 1 \\ &For \ i = k \ down \ to \ 0 \ do \\ &f = f^2 \\ &If \ b_i = 1 \ then \\ &f = f \bullet h \end{aligned} Return f
```

Requires time O(k) multiplies and squares in worst case.

$$\frac{SqrAndMulExp(h,x)}{b_k,...,b_0} = x$$

$$f = 1$$
For i = k down to 0 do
$$f = f^2$$
If $b_i = 1$ then
$$f = f^*h$$
Return f

$$x = \sum_{b_i \neq 0} 2^i$$

$$h^x = h^{\sum_{b_i \neq 0} 2^i} = \prod_{b_i \neq 0} h^{2^i}$$

$$h^{11} = h^{8+2+1} = h^8 \cdot h^2 \cdot h$$

$$b_3 = 1$$
 $f_3 = 1 \cdot h$
 $b_2 = 0$ $f_2 = h^2$
 $b_1 = 1$ $f_1 = (h^2)^2 \cdot h$

 $b_1 = 1$

Don't implement this algorithm: side-channel attacks

$$b_0 = 1$$
 $f_0 = (h^4 \cdot h)^2 \cdot h = h^8 \cdot h^2 \cdot h$

```
\mathbf{Z}_{N}^{*}=\{\ i\ |\ \gcd(i,N)=1\ \} Claim: Suppose e,d\in\mathbf{Z}_{\varphi(N)}^{*} satisfying ed\ mod\ \varphi(N)=1 then for any x\in\mathbf{Z}_{N}^{*} we have that (x^{e})^{d}\ mod\ N=x
```

```
(x^e)^d \mod N = x^{(ed \mod \phi(N))} \mod N
= x^1 \mod N
= x \mod N
First equality is by Euler's Theorem
= x \mod N
```

$$Z_N^* = \{ i \mid gcd(i,N) = 1 \}$$

Claim: Suppose e,d $\in \mathbf{Z}_{\varphi(N)}^*$ satisfying ed mod $\varphi(N) = 1$ then for any $x \in \mathbf{Z}_N^*$ we have that $(x^e)^d \mod N = x$

$$\mathbf{Z}_{15}^* = \{ 1,2,4,7,8,11,13,14 \}$$
 $\mathbf{Z}_{\phi(15)}^* = \{ 1,3,5,7 \}$

e = 3, d = 3 gives $ed \mod 8 = 1$

х	1	2	4	7	8	11	13	14
x ³ mod 15	1	8	4	13	2	11	7	14
y ³ mod 15	1	2	4	7	8	11	13	14

The RSA trapdoor permutation

$$pk = (N,e)$$
 $sk = (N,d)$ with ed mod $\phi(N) = 1$
$$f_{N,e}(x) = x^e \mod N$$
 $g_{N,d}(y) = y^d \mod N$

The RSA trapdoor permutation

$$pk = (N,e)$$
 $sk = (N,d)$ with ed mod $\phi(N) = 1$
$$f_{N,e}(x) = x^e \mod N$$
 $g_{N,d}(y) = y^d \mod N$

But how do we find suitable N,e,d?

If p,q distinct primes and N = pq then $\phi(N) = (p-1)(q-1)$

Why?

$$\phi(N) = |\{1,...,N-1\}| - |\{ip : 1 \le i \le q-1\}| - |\{iq : 1 \le i \le p-1\}|$$

$$= N-1 - (q-1) - (p-1)$$

$$= pq - p - q + 1$$

$$= (p-1)(q-1)$$

The RSA trapdoor permutation

$$pk = (N,e)$$
 $sk = (N,d)$ with ed mod $\phi(N) = 1$

$$f_{N,e}(x) = x^e \mod N$$
 $g_{N,d}(y) = y^d \mod N$

But how do we find suitable N,e,d?

If p,q distinct primes and N = pq then $\phi(N) = (p-1)(q-1)$

Given $\phi(N)$, choose $e \in \mathbf{Z}_{\phi(N)}^*$ and calculate $d = e^{-1} \mod \phi(N)$

How to find suitable p,q prime?

Choose random numbers and test primality

Summary

- Find 2 large primes p, q . Let N = pq
 - random integers + primality testing
- Choose e (usually 65,537)
 - Compute d using $\phi(N) = (p-1)(q-1)$
- pk = (N,e) and sk = (N,d)
 - Often store p,q with sk to use Chinese Remainder
 Theorem

Public-key encryption

Correctness: D(sk, E(pk,M,R)) = M with probability 1 over randomness used

PKCS #1 RSA encryption

Kg outputs (N,e),(N,d) where $|N|_8 = n$ Let B = $\{0,1\}^8 / \{00\}$ be set of all bytes except 00 Want to encrypt messages of length $|M|_8 = m$


```
\frac{Dec((N,d),C)}{X = C^d \mod N} ; aa||bb||w = X
If (aa \neq 00) or (bb \neq 02) or (00 \notin w)
Return error
pad \mid \mid 00 \mid \mid M = w
Return M
```

Hybrid encryption

Kg outputs (pk,sk)


```
Dec(sk, (C1,C2))

K = Dec(sk,C1)

M = Dec(K,C2)

Return M
```


TLS handshake for RSA transport

Pick random Nc

ClientHello, MaxVer, Nc, Ciphers/CompMethods

ServerHello, Ver, Ns, SessionID, Cipher/CompMethod

CERT = (pk of bank, signature over it)

Check CERT using CA public verification key

Pick random PMS

C <- E(pk,PMS)

Bracket notation

Bracket notation means contents encrypted

C

ChangeCipherSpec,
{ Finished, PRF(MS, "Client finished" || H(transcript)) }

ChangeCipherSpec,
{ Finished, PRF(MS, "Server finished" || H(transcript')) }

MS <- PRF(PS, "master secret" | Nc | Ns)

PMS <- D(sk,C)

Pick random Ns

Security of RSA PKCS#1

- Passive adversary sees (N,e),C
- Attacker would like to invert C
- Possible attacks?

We don't know if inverse is true, whether inverting RSA implies ability to factor

Factoring composites

• What is p,q for N = 901?

Factor(N): for i = 2 , ... , sqrt(N) do if N mod i = 0 then p = i q = N / p Return (p,q)

Woops... we can always factor

But not always efficiently: Run time is sqrt(N)

 $O(\operatorname{sqrt}(N)) = O(e^{0.5 \ln(N)})$

Factoring composites

Algorithm	Time to factor N
Naïve	$O(e^{0.5 \ln(N)})$
Quadratic sieve (QS)	$O(e^{c})$ c = d (ln N) ^{1/2} (ln ln N) ^{1/2}
Number Field Sieve (NFS)	$O(e^{c})$ c = 1.92 (ln N) ^{1/3} (ln ln N) ^{2/3}

Factoring records

Challenge	Year	Algorithm	Time
RSA-400	1993	QS	830 MIPS
			years
RSA-478	1994	QS	5000 MIPS
			years
RSA-515	1999	NFS	8000 MIPS
			years
RSA-768	2009	NFS	~2.5 years
RSA-512	2015	NFS	\$75 on EC2 /
			4 hours

RSA-x is an RSA challenge modulus of size x bits

Security of RSA PKCS#1

- Passive adversary sees (N,e),C
- Attacker would like to invert C
- Possible attacks?
 - Pick |N| > 1024 and factoring will fail
 - Active attacks?

Bleichanbacher attack

I've just learned some information about C₁^d mod N

We can take a target C and decrypt it using a sequence of chosen ciphertexts C_1 , ..., C_q where $q \approx 1$ million

[Bardou et al. 2012] q = 9400 ciphertexts on average

Response to this attack

- Ad-hoc fix: Don't leak whether padding was wrong or not
 - This is harder than it looks (timing attacks, controlflow side channel attacks, etc.)
- Better:
 - use chosen-ciphertext secure encryption
 - OAEP is common choice

Summary

- RSA is example of trapdoor one-way function
 - Security conjectured. Relies on factoring being hard
- RSA security scales somewhat poorly with size of primes
- RSA PKCS#1 v1.5 is insecure due to padding oracle attacks. Don't use it in new systems.
 - Use OAEP instead

TLS handshake for Diffie-Hellman Key Exchange

Pick random Ns

Pick random x

```
Pick random Nc
```

Check CERT using CA public verification key Check σ

Pick random y $Y = g^y$

 $PMS = g^{xy}$

Bracket notation means contents encrypted

```
ClientHello, MaxVer, Nc, Ciphers/CompMethods
```

ServerHello, Ver, Ns, SessionID, Cipher/CompMethod

CERT = $(pk_s, signature over it)$

ChangeCipherSpec,

 $p, g, X, \sigma = Sign(sk_s, p || g || X)$

Υ

 $PMS = g^{xy}$

 $X = g^{x}$

```
ChangeCipherSpec,
```

{ Finished, PRF(MS, "Client finished" | H(transcript)) }

{ Finished, PRF(MS, "Server finished" || H(transcript')) }

MS <- PRF(PMS, "master secret" | Nc | Ns)

Diffie-Hellman math

Let p be a large prime number Fix the group $G = \mathbf{Z}_{p}^{*} = \{1,2,3,..., p-1\}$

Then G is *cyclic*. This means one can give a member $g \in G$, called the generator, such that

$$G = \{ g^0, g^1, g^2, ..., g^{p-1} \}$$

Example: p = 7. Is 2 or 3 a generator for \mathbb{Z}_7^* ?

Х	0	1	2	3	4	5	6
2 ^x mod 7	1	2	4	1	2	4	1
3 ^x mod 7	1	3	2	6	4	5	1

Textbook exponentiation

Let G be cyclic group. How do we compute h^x for any $h \in G$?

$\frac{\text{ModExp(h,x)}}{X' = h}$ For i = 2 to x do X' = X'*hReturn X'

Requires time O(|G|) in worst case.

```
\frac{SqrAndMulExp(h,x)}{b_k,...,b_0} = x
f = 1
For i = k down to 0 do
f = f^2 \mod N
If b_i = 1 \text{ then}
f = f^*h
Return f
```

Requires time O(k) multiplies and squares in worst case.

$$\frac{SqrAndMulExp(h,x)}{b_k,...,b_0} = x$$

$$f = 1$$
For i = k down to 0 do
$$f = f^2 \mod N$$

$$If b_i = 1 \text{ then}$$

$$f = f^*h$$
Return f

$$x = \sum_{b_i \neq 0} 2^i$$

$$h^x = h^{\sum_{b_i \neq 0} 2^i} = \prod_{b_i \neq 0} h^{2^i}$$

$$h^{11} = h^{8+2+1} = h^8 \cdot h^2 \cdot h$$

$$b_3 = 1$$
 $f_3 = 1 \cdot h$

$$b_2 = 0$$
 $f_2 = h^2$

$$b_1 = 1$$
 $f_1 = (h^2)^2 \cdot h$

$$b_1 = 1$$
 $f_0 = (h^4 \cdot h)^2 \cdot h = h^8 \cdot h^2 \cdot h$

The discrete log problem

Fix a cyclic group G with generator g

Pick x at random from **Z**_{IGI}

Give adversary g, $X = g^x$. Adversary's goal is to compute x

The discrete log problem

Fix a cyclic group G with generator g

Pick x at random from $\mathbf{Z}_{|G|}$

Give adversary g, $X = g^x$. Adversary's goal is to compute x

```
\underline{A(X)}:
for i = 2, ..., |G|-1 do
if X = g<sup>i</sup> then
```

Return i

Very slow for large groups! O(|G|)

Baby-step giant-step is better: $O(|G|^{0.5})$

Nothing faster is known for some groups.

Diffie-Hellman Key Exchange

Pick random x from $\mathbf{Z}_{|G|}$ X = \mathbf{g}^{x}

Pick random y from $\mathbf{Z}_{|G|}$ Y = \mathbf{g}^{y}

$$K = H(Y^x)$$

$$K = H(X^{y})$$

Get the same key. Why?

$$Y^x = g^{yx} = g^{xy} = X^y$$

What type of security does this protocol provide?

Computational Diffie-Hellman Problem

Fix a cyclic group G with generator g

Pick x,y both at random $\mathbf{Z}_{|G|}$

Give adversary $g, X = g^x, Y = g^y$. Adversary must compute g^{xy}

For most groups, best known algorithm finds discrete log of X or Y.

But we have no proof that this is best approach.

TLS handshake for Diffie-Hellman Key Exchange

Pick random Ns

Pick random x

 $X = g^{x}$

```
Pick random Nc
```

Check CERT using CA public verification key Check σ

Pick random y $Y = g^y$

 $PMS = g^{xy}$

Bracket notation means contents encrypted

ClientHello, MaxVer, Nc, Ciphers/CompMethods

ServerHello, Ver, Ns, SessionID, Cipher/CompMethod

CERT = $(pk_s, signature over it)$

 $p, g, X, \sigma = Sign(sk_s, p || g || X)$

Υ

 $PMS = g^{xy}$

ChangeCipherSpec,
{ Finished, PRF(MS, "Client finished" | | H(transcript)) }

ChangeCipherSpec, { Finished, PRF(MS, "Server finished" || H(transcript')) }

MS <- PRF(PMS, "master secret" | | Nc | | Ns)