

Mikroračunarski sistemi I deo računskih vežbi

Aleksandar Dimitrijević: <u>aleksandar.dimitrijevic@elfak.ni.ac.rs</u>

Nenad Petrović: <u>nenad.petrovic@elfak.ni.ac.rs</u>

Jovan Milojković: jovan.milojkovic@elfak.ni.ac.rs

Razlike u odnosu na nastavni program prošlih godina

- 2 laboratorijske vežbe za 8086-zasnovane sisteme
- Proteus Design Suite 8 okruženje
 - https://www.labcenter.com/
 - dizajn mikroračunarskih sistema (Schematic Capture pogled)
 - editor za pisanje 8086 koda (Source Code pogled)
 - simulacija izvršenja koda
 - MASM32 kompajler za asemblerske programe pisane za 8086
- Preporučena verzija: Proteus 8.4 SPO
- Online tutorial
 - https://www.youtube.com/watch?v=LnkhxSQIHI8
 - https://www.youtube.com/watch?v=MEC7iiK6nV4

Proteus 8 primer – 8086, 8255 i 7s displej

Memorijska organizacija 8086

1. termin računskih vežbi

Značajni pinovi 8086

- ALE
 - A0-A15 multipleksirane sa linijama podataka
 - Upis adrese u latch
 - U sledećem ciklusu: podaci
- Selekcija memorijske banke:
 - BHE⁻: neparna
 - A0⁻: parna
- Čitanje/upis: RD /WR –
- M/IO -
 - M: memorija (MOV), A0-A19
 - IO: U/I (IN, OUT), A0-A7/A0-A15
 - IN dst, source
 - OUT dst, source

Memorijska organizacija 8086 - pregled

- Dve vrste pristupa: byte i word
- Logički bajtovksi adresni prostor u opsegu: 0-0xFFFFF
- 2 memorijske banke: parna (niža) i neparna (viša)
- Parna banka
 - D7-D0
 - Selekcija bitom A0 (BLE ⁻)
- Neparna banka
 - D15-D8
 - Selekcija bitom BHE –
- A19-A1 adresne linije se koriste za selekciju bajtova iz banaka

8-bitne memorijske banke kod 8086

Neparna banka (viša)

FFFFF

FFFFD

FFFFB

•••

•••

00001

BHE-

Parna banka (niža)

FFFFE

FFFFC

FFFFA

•••

•••

00000

BLE-

Ilustracija

Selekcija memorijskih banaka

BHE ⁻	BLE ⁻ (A ₀)	Funkcija
0	0	Obe banke, 16-bit transfer
0	1	Viša (neparna) banka, 8-bit transfer
1	0	Niža (parna) banka, 8-bit transfer
1	1	Banke nisu omogućene

Primeri memorijskog pristupa

Primer	BHE ⁻	A_0	Pristup	Broj ciklusa
MOV AL, [4C00h]	1	0	8bit	1
MOV AL, [4C01h]	0	1	8bit	1
MOV AX, [4C00h]	0	0	16bit	1
MOV AX, [4C01h]	*	*	16bit	2: prvo neparna (01), pa parna (10)

8205 dekoder

- 1 od 8 binarni dekoder
- Ulazni pinovi A0, A1, A2
- Trostruki enable (E1⁻, E2⁻, E3)
- Izlazni pinovi O1-O7
 - Selektovani izlaz: nizak naponski nivo
 - Svi ostali: visok

Komponenta 8255

1. termin računskih vežbi

Uvod

- Komponenta za paralelni ulaz/izlaz
- Koristi se da bi processor komunicirao sa periferijama (da ne troši svoje pinove za ulazne/izlazne uređuje)
- Ulazni/izlazni portovi se koriste za pribavljanje/upis podataka u toku komunikacije sa eksternim uređajima
- Primeri uređaja:
 - LED
 - tastature
 - senzori
 - displeji

Struktura 8255

Značajni pinovi

- D0-D7: 8 bit magistrala između komponente i CPU
- CS-: Selekcija čipa
- Signali čitanja i pisanja
 - RD-
 - WR-
- Tri 8-bit porta:
 - PA0-PA7
 - PB0-PB7
 - PC0-PC7
- A0 i A1: adresiranje portova i internog registra kontrolne reči

Adresiranje portova i kontrolnog registra

A_1	A ₀	Adresira
0	0	Port A
0	1	Port B
1	0	Port C
1	1	Registar kontrolne reči

Struktura kontrolne reči

D7	D6	D5	D4	D3	D2	D1	D0			
0- SET/RESET	00 – MODE0 01- MODE1		0 -PORTA OUT	0 – PORTC HIGHER OUT	0 - MODE0	0 – PORTB OUT	0 – PORTC LOWER OUT			
1 - I/O MODE	1X -	MODE2	1 – PORTA IN	1 – PORTC HIGHER IN	1 - MODE1	1- PORTB IN	1 - PORTC LOWER IN			
	MOD GRUPE A		GR	UPA A	MOD GRUPE B	GRUPA B				

Modovi rada 8255

- Bit set/reset mode (D7=0)
 - Koristi se samo za set/reset bitova porta C.
 - D3, D2, D1 se koriste za izbor bita porta C
 - D0 određuje operaciju: 0-RESET, 1-SET
- I/O mode (D7=1)
 - Mode 0 jednostavan ulaz/izlaz: portovi A, B, C viši, C niži ulazni ili izlazni
 - Mode 1 handshake: A i B ulazni ili izlazni, C se koristi kao kontrolni
 - Mode 2- bidirectional: port A se koristi kao ulazni i izlazni (uzastopno), menja smer u toku rada, a port C kao kontrolni

8255 interfacing

- Dva načina povezivanja sa 8086:
 - IO-mapirani ulaz-/izlaz (koriste se IN, OUT)
 - Memorijski-mapirani ulaz/izlaz (koristi se MOV)
- IO-mapriani ulaz/izlaz:
 - Kontrolni signali IOR /IOW generisani mehanizmom 8086
 - Adrese portova u ovom slučaju 8/16-bit
 - Chip select logika dekodira A3-A7
- Memorijski-mapriani ulaz/izlaz:
 - Kontrolni signali MEMR /MEM W generisani logikom za generisanje kontrolnih signala
 - Adrese portova u ovom slučaju 20-bit
 - Chip select logika dekodira A3-A19

Ilustracija

Razlike IO-mapiranog i memorijski- mapiranog U/I

Memorijski-mapirani	IO-mapirani
Koristi se MOV instrukcija: MOV AL, [2000] MOV [2010], AL	Koriste se IN i OUT: IN AL, 30h OUT DX, AL
20 bit adrese - A19-A0, zahteva da se učita DS Primer: port 35000H MOV AX, 3000H MOV DS,AX MOV AL, [5000H]	16/8 bit adrese – A15-A0/A7-A0
MEMR, MEMW kontrolni signali	IOR, IOW
Maksimalan broj portova (prednost): 2 ²⁰	2 ¹⁶
Mane:zalazi u memorijski prostordovodi do fragmentacije memorijskog prostorakomplikovanije dekodiranje	Mane: - manji broj portova

Primena dekodera

Zadatak 1

- Za mikroprocesor iAPX 8086 projektovati mikroračunarski sistem sa osam tastera i 8 LED dioda uz pomoć dve komponente 8255A. Na port A prve komponente treba vezati diode, a na port B druge kompnente tastere. Inicijalno nijedna dioda ne svetli. Nakon toga posle pritiska nekog od tastera treba da zasvetli odgovarajuća dioda i treba da svetli sve dok je taster pritisnut. Napisati adekvatne procedure.
 - A) Koristi se IO-mapirani ulaz/izlaz (8bit adrese). Komponenta 1 je na adresi A8h, a Kompnenta 2 je na A9h.
 - B) Koristi se memorijski-mapirani ulaz/izlaz: Komponenta 1 je na adresi 83FE8h, a Kompnenta 2 je na 83FE9h.

Struktura rešenja zadatka

- Adresni prostor
- Šema povezivanja komponenti sa 8086
- Asemblerski kod za 8086
 - Konfiguracija komponenti
 - Logika i obrada

Adrese za IO-mapirani UI

A7	A6	A5	A4	A3	A2	A1	A0		
1	0	1	0	1	0	0	0	PORT A (A8)	
1	0	1	0	1	0	1	0	PORT B (AA)	PARNI 8255
1	0	1	0	1	1	0	0	PORT C (AC)	
1	0	1	0	1	1	1	0	CWR (AE)	
A7	A6	A5	A4	А3	A2	A1	A0		
A7 1	A6 0	A5 1	A4 0	A3 1	A2 0	A1 0	A0 1	PORT A (A9)	
								(A9) PORT B	NEPARNI 8255
1	0	1	0	1	0	0	1	(A9) PORT B	NEPARNI 8255

Šema

7

• IO-mapirani UI

Rešenje a)

- IO-mapirani ulaz/izlaz
- 8 bit IO adrese
- IN i OUT

```
NAME PROGRAM
DATA SEGMENT
DATA ENDS
CODE SEGMENT
ASSUME CS:CODE, DS:DATA
START:
MOV AX, DATA
MOV DS, AX
; ZABRANA PREKIDA
CLI
; KONFIGURACIJA
; KOMPONENTA1
MOV AL,80h
OUT AEh, AL
: KOMPONENTA2
MOV AL,82h
OUT AFh, AL
PETLJA:
; ČITANJE SA PORTB KOMPONENTE2
IN AL, ABh
; UPIS NA PORTA KOMPONENTE1
OUT A8h, AL
JMP PETLJA
MOV AX, 4C02h
INT 21h
CODE ENDS
```

END START

END

Memorijski mapirani ulaz/izlaz - Adrese

Adrese 8255 parni

19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	0	0	0	83FE8
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	0	1	0	83FEA
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	0	0	83FEC
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	0	83FEE

8255 neparni

19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	0	0	1	83FE9
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	0	1	1	83FEB
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	0	1	83FED
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	83FEF

Rešenje b)

- Memorijski-mapirani ulaz/izlaz
- MOV umesto IN i OUT
- U loaderu se konfiguriše početak DS
 - Početak segmenta: 83FEh
 - Adresa(20bit)=Segment(83FE0)+Offset(000E)

```
NAME PROGRAM
DATA SEGMENT
DB 100 DUP (?)
DATA ENDS
CODE SEGMENT
ASSUME CS:CODE, DS:DATA
START:
MOV AX, DATA
MOV DS, AX
; ZABRANA PREKIDA
CLI
; KONFIGURACIJA
: KOMPONENTA1
MOV AL,80h
MOV DS: [000E], AL
; KOMPONENTA2
MOV AL,82h
MOV DS: [000F], AL
PETLJA:
;ČITANJE SA PORTB KOMPONENTE2
MOV AL, DS: [000B]
;UPIS NA PORTA KOMPONENTE1
MOV DS: [0008], AL
JMP PETLJA
MOV AX, 4C02h
INT 21h
CODE ENDS
END START
END
```

Primer za 16bit IO

- Example 12.8, str. 411 u knjizi Sunil Mathur, "MICROPROCESSOR 8086: Architecture, Programming and Interfacing".
- Pretpostavljamo da imamo osam prekidača i jedan 7s displej povezan na 8086 preko 8255

A_{15}	A ₁₄	A_{13}	A_{12}	A_{11}	A_{10}	A_9	A_8	A_7	A_6	A_5	A_4	A_3	A_2	\mathbf{A}_1	A ₀ Even ports
1	X	X	1	1	1	1	1	1	1	1	0	1	0	0	0 = 9FF8H = Port A
1	X	X	1	1	1	1	1	1	1	1	0	1	0	1	0 = 9FEAH = Port B
1	X	X	1	1	1	1	1	1	1	1	0	1	1	0	0 = 9FECH = Port C
1	X	X	1	1	1	1	1	1	1	1	0	1	1	1	0 = 9FEFH = CWR

Program:

MOV BX, 2000H
UP: MOV DX, 9FEAH
IN AL, DXH
CMP AL, OOH
JZ UP
XLAT
MOV DX, 9FECH
OUT DX, AL
CALL DELAY

JMP UP.

Reference

• Sunil Mathur, "MICROPROCESSOR 8086: Architecture, Programming and Interfacing", str. 402-412, 2011.