

Algebraic Identities Ex 4.3 Q15

Answer:

In the given problem, we have to find the value of $x^2 + \frac{1}{x^2}$, $x^3 + \frac{1}{x^3}$, $x^4 + \frac{1}{x^4}$

Given
$$x + \frac{1}{x} = 3$$

We shall use the identity $(x + y)^2 = x^2 + y^2 + 2xy$

Here putting
$$x + \frac{1}{x} = 3$$
,

$$\left(x + \frac{1}{x}\right)^2 = x^2 + \frac{1}{x^2} + 2 \times x \times \frac{1}{x}$$

$$(3)^2 = x^2 + \frac{1}{x^2} + 2 \times \cancel{x} \times \frac{1}{\cancel{x}}$$

$$9 = x^2 + \frac{1}{x^2} + 2$$

$$9 - 2 = x^2 + \frac{1}{x^2}$$

$$7 = x^2 + \frac{1}{x^2}$$

Again squaring on both sides we get,

$$\left(x^2 + \frac{1}{x^2}\right)^2 = (7)^2$$

We shall use the identity $(x+y)^2 = x^2 + y^2 + 2xy$

$$\left(x^{2} + \frac{1}{x^{2}}\right)^{2} = x^{4} + \frac{1}{x^{4}} + 2 \times x^{2} \times \frac{1}{x^{2}}$$

$$\left(7\right)^{2} = x^{4} + \frac{1}{x^{4}} + 2 \times x^{2} \times \frac{1}{x^{2}}$$

$$49 = x^{4} + \frac{1}{x^{4}} + 2$$

$$49 - 2 = x^{4} + \frac{1}{x^{4}}$$

$$47 = x^{4} + \frac{1}{x^{4}}$$

Again cubing on both sides we get,

$$\left(x + \frac{1}{x}\right)^3 = \left(3\right)^3$$

We shall use identity $(a+b)^3 = a^3 + b^3 + 3ab(a+b)$

$$\left(x + \frac{1}{x}\right)^{3} = x^{3} + \frac{1}{x^{3}} + 3 \times x \times \frac{1}{x} \left(x + \frac{1}{x}\right)$$

$$(3)^{3} = x^{3} + \frac{1}{x^{3}} + 3 \times x \times \frac{1}{x} \times 3$$

$$27 = x^{3} + \frac{1}{x^{3}} + 9$$
$$27 - 9 = x^{3} + \frac{1}{x^{3}}$$
$$18 = x^{3} + \frac{1}{x^{3}}$$

Hence the value of $x^2 + \frac{1}{x^2}$, $x^3 + \frac{1}{x^3}$, $x^4 + \frac{1}{x^4}$ is $\boxed{7,18,47}$ respectively.

******* END ******