```
In [58]:
```

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [59]:
```

```
df = pd.read_csv('temperatures 2.csv')
```

In [60]:

```
df.head()
```

Out[60]:

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	AN
0	1901	22.40	24.14	29.07	31.91	33.41	33.18	31.21	30.39	30.47	29.97	27.31	24.49	
1	1902	24.93	26.58	29.77	31.78	33.73	32.91	30.92	30.73	29.80	29.12	26.31	24.04	
2	1903	23.44	25.03	27.83	31.39	32.91	33.00	31.34	29.98	29.85	29.04	26.08	23.65	
3	1904	22.50	24.73	28.21	32.02	32.64	32.07	30.36	30.09	30.04	29.20	26.36	23.63	
4	1905	22.00	22.83	26.68	30.01	33.32	33.25	31.44	30.68	30.12	30.67	27.52	23.82	

In [61]:

```
#input data
x = df['YEAR']

#output data
y = df['ANNUAL']
```

In [62]:

```
#plt.figure(figsize=(16,9))
plt.title('Temperature Plot of INDIA')
plt.xlabel('Year')
plt.ylabel('Annual Average Temperature')
plt.scatter(x,y)
```

Out[62]:

<matplotlib.collections.PathCollection at 0x7ff10d6443a0>


```
In [63]:
```

```
x.shape
```

Out[63]:

(117,)

In [64]:

```
x = x.values
```

In [65]:

```
x = x.reshape(117,1)
```

```
In [66]:
х
       [1999],
       [2000],
       [2001],
       [2002],
       [2003],
       [2004],
       [2005],
       [2006],
       [2007],
       [2008],
       [2009],
       [2010],
       [2011],
       [2012],
       [2013],
       [2014],
       [2015],
       [2016],
In [67]:
x.shape
Out[67]:
(117, 1)
In [68]:
from sklearn.linear_model import LinearRegression
In [69]:
regressor = LinearRegression()
In [70]:
regressor.fit(x , y)
Out[70]:
LinearRegression()
In [72]:
regressor.coef_
Out[72]:
array([0.01312158])
```

```
In [73]:
regressor.intercept_
Out[73]:
3.4761897126187016
In [75]:
regressor.predict([[2035]])
Out[75]:
array([30.1786077])
In [76]:
regressor.predict([[2055]])
Out[76]:
array([30.44103933])
In [77]:
regressor.predict([[2075]])
Out[77]:
array([30.70347095])
In [78]:
regressor.predict([[2099]])
Out[78]:
array([31.01838891])
In [79]:
predicted = regressor.predict(x)
```

In [80]:

predicted

Out[80]:

```
array([28.4203158 , 28.43343739, 28.44655897, 28.45968055, 28.4728021
       28.48592371, 28.49904529, 28.51216687, 28.52528846, 28.5384100
4,
       28.55153162, 28.5646532 , 28.57777478, 28.59089636, 28.6040179
4,
       28.61713952, 28.63026111, 28.64338269, 28.65650427, 28.6696258
5,
       28.68274743, 28.69586901, 28.70899059, 28.72211218, 28.7352337
6,
       28.74835534, 28.76147692, 28.7745985 , 28.78772008, 28.8008416
6,
       28.81396324, 28.82708483, 28.84020641, 28.85332799, 28.8664495
7,
       28.87957115, 28.89269273, 28.90581431, 28.91893589, 28.9320574
8,
       28.94517906, 28.95830064, 28.97142222, 28.9845438 , 28.9976653
8,
       29.01078696, 29.02390855, 29.03703013, 29.05015171, 29.0632732
9,
       29.07639487, 29.08951645, 29.10263803, 29.11575961, 29.1288812
       29.14200278, 29.15512436, 29.16824594, 29.18136752, 29.1944891
       29.20761068, 29.22073227, 29.23385385, 29.24697543, 29.2600970
1,
       29.27321859, 29.28634017, 29.29946175, 29.31258333, 29.3257049
2,
       29.3388265 , 29.35194808, 29.36506966, 29.37819124, 29.3913128
2,
       29.4044344 , 29.41755599, 29.43067757, 29.44379915, 29.4569207
3,
       29.47004231, 29.48316389, 29.49628547, 29.50940705, 29.5225286
4,
       29.53565022, 29.5487718 , 29.56189338, 29.57501496, 29.5881365
4,
       29.60125812, 29.6143797 , 29.62750129, 29.64062287, 29.6537444
5,
       29.66686603, 29.67998761, 29.69310919, 29.70623077, 29.7193523
6,
       29.73247394, 29.74559552, 29.7587171 , 29.77183868, 29.7849602
6,
       29.79808184, 29.81120342, 29.82432501, 29.83744659, 29.8505681
7,
       29.86368975, 29.87681133, 29.88993291, 29.90305449, 29.9161760
8,
       29.92929766, 29.94241924])
```

```
In [84]:
У
Out[84]:
0
       28.96
       29.22
1
2
       28.47
       28.49
3
       28.30
       . . .
112
       29.81
113
       29.72
       29.90
114
115
       31.63
116
       31.42
Name: ANNUAL, Length: 117, dtype: float64
In [86]:
import numpy as np
In [87]:
# MEAN ABSOLUTE ERROR
np.mean(abs(y - predicted))
Out[87]:
0.22535284978630413
In [88]:
# MEAN ABSOLUTE ERROR
from sklearn.metrics import mean_absolute_error
mean_absolute_error(y,predicted)
Out[88]:
0.22535284978630413
In [89]:
#mean squared Error
from sklearn.metrics import mean_squared_error
mean_squared_error(y,predicted)
Out[89]:
0.10960795229110352
In [90]:
#mean squared Error
np.mean(abs(y - predicted)**2)
Out[90]:
0.10960795229110352
```

localhost:8888/notebooks/ML_Prac2.ipynb

In [91]:

```
# R Square Error
from sklearn.metrics import r2_score
r2_score(y,predicted)
```

Out[91]:

0.6418078912783682

In [92]:

```
#R Square Error
regressor.score(x,y)
```

Out[92]:

0.6418078912783682

In [103]:

```
plt.title('Temperature Plot of INDIA')
plt.xlabel('Year')
plt.ylabel('Annual Average Temperature')
plt.scatter(x,y,label ='actual',color='red',marker='.')
plt.plot(x,predicted,label ='predicted',color='g')
```

Out[103]:

[<matplotlib.lines.Line2D at 0x7ff10fbc9f70>]

In [105]:

```
sns.regplot(x='YEAR',y='ANNUAL',data=df,marker ='.',color='red')
```

Out[105]:

<AxesSubplot:xlabel='YEAR', ylabel='ANNUAL'>

In []: