

Table of Contents

Recap of the last exercise

The ALU

Tasks

Goal of this Exercise

- Build an Arithmetical Logical Unit (ALU)
- The brain of the processor
- Arithmetical operations: add, sub
- Logical operations: and, or, xor
- Selection between the operations: Multiplexer

Recap: Last Exercise - Program Counter

Three componentes

- Adder
- Flip Flop / Register
- Program Counter

Which parts can be reused?

Is the ALU combinational or sequential logic?

Schematic

Schematic

Packages

Definition of

- Constants
- Data types
- Functions
 - Header
 - Body
- and much more...

Package Structure

Resource Sharing

- Consider ALU for addition and subtraction
- What needs to be implemented?
- → Addition and Subtraction
- → Resources can be shared
- \rightarrow Or not ...
- → This is determined during synthesis

Resource Sharing

- Consider ALU for addition and subtraction
- What needs to be implemented?
- → Addition and Subtraction
- → Resources can be shared
- \rightarrow Or not ..
- → This is determined during synthesis

What are Instruction Sets?

- Encoding of instruction
- Which bits are operands?
 - Direct (immediate)
 - Indirect (register)
- Which function is to be executed?
 - ALU-instruction
 - Control signals
 - · Where is the result stored?

What are Instruction Sets?

- Encoding of instruction
- Which bits are operands?
 - Direct (immediate)
 - Indirect (register)
- Which function is to be executed?
 - ALU-instruction
 - Control signals
 - · Where is the result stored?

This is non-trivial!

 Instruction Set defines control logic overhead

How do we get the best Instruction Set?

- Infer it on our own \rightarrow Digitale Systeme
- Let Vivado infer it?
- This lecture: RISC-V Instruction set

Task 1: Arithmetical Unit

- Implement units for
 - Addition
 - Subtraction
- Implement Arithmetical Unit
- Three inputs
 - Two operands
 - Instruction Select
- One output (result)

Analysis

- How to use packages
- Resource Sharing
- Mapping to FPGA resources

Task 2: Logic Extension

- Extend design from Task 1
- Implement units for
 - AND
 - OR
 - XOR
- Three inputs
 - Two operands
 - Instruction Select
- One output (result)

Analysis

- Simulation: Test your design
- Synthesis result: Mapping
- Demonstration: Execution on the FPGA

Optional Task: Full RISC-V

- Does the ALU now cover the RISC-V base integer instruction set?
- No, there are more instructions
- Complete your ALU
- Verify the design functionally