Integrales dobles en rectanques

Sea $Q = [a,b] \times [c,d]$ un rectorgulo en \mathbb{R}^2 y $f:Q \to \mathbb{R}$ ub negativa $(f(x,y)) \times (a,b) = (a,b) \times (a,b) (a,b$

- · Para calerlar el volumen harenos un procedimiento análogo al que realizarnos para cálerlar el oírea bojo una curva.
- Dodas postitiones de los intervolos [a,b] y [c,d], es decir

 a = xo < x 1 < x 2 < ... < x n = b y C = yo < y 1 < y 2 < ... < y m = d

 formamos una partición del rectangolo Q de lo significa monera:

 definimos Qij = [xin, xi] x [yi-1, yi] j=1,..., m

 En botal hoy m.n subrectangubs Qij y su unión cubre a Q.
- es illomannos $\Delta x_i = x_i x_{i-1}$ y $\Delta y_j = y_j y_{j-1}$, tenemos que el áreo de Q_{ij} es $\Delta x_i \cdot \Delta x_j$

Luego, en codo Qij deginos un plo (xij , Yij) y considero mos la (desse) Su man de Rie mann
Suman de Riemann
Σ Σ f (xij, yij) Δx; Δy; -> de pose dij λ alford f(xij,λij).
El volumen debajo del gráfico de fy arriba de Q es el rimire de este focuso.
Delication dada una partición P=[Qiz:15i6m = 15j6m de un rectorion/sQcIII
defininas la norma de la portición P caus la mayor longitud de las defininas la norma de la portición P caus la mayor longitud de las defininas la norma de la portición por la denotama spor IPII.
Delinición: Sea Qua rectorgolo m 12 7 f. Q > 12, la integral doble de
g sobre et rectorgalo Q es [] f(x,y) dA = lim \(\frac{\infty}{\infty} \frac{\infty}{\i
$\iint_{Q} f(x,y) dA = \lim_{\ P\ \to 0} \lim_{x \to \infty} \int_{Q} $
Er fol moso, I so alco
Observaciones: DEN la def. de int. doble no pedinos fro. La def. vole tombién si f (0 or f combio de signo.
2) Se prode demostror que l' + la continua en C => + la mireglaste soste C.
Más avu, si f es ocatado y cartinua en Q, sol vo una cartidad finita de curvas suaves entonces f es integroble sobre Q (resultado análogo a de f: R > R)
Si fro e integrable sobre Q => Ilalixy) dA = volumen bojo la gráfica de f
A veces denotomos $\iint_Q f(x,y) dx dy en lugar de \iint_Q f(x,y) dA.$

Escaneado con CamScanner

· Al ignel que paro- el cost de funciones de una variable, no resulta muy fácil aplantar integrales dobles a partir de la dofinición (Para f:12 >12 utilitamos el TFC) Neveros que , en muchos eases, el cálento de integroles dobles se reduce al cálento de integroles de funciones de una variable. En efecto, sean $Q = [a,b] \times [c,d]$ y f: Q -> D. Notemas que si fija nos vua de los dos variobles, por ejemplo y, détenenns una función de la otra variable y entonces podemos integrarla como ya sabemos. Oua, para cada y e [c,d] ha coua) la f(x,y) dx > esto de fine una función de y que podemos valver a integrar obteniendo [([f(x,y) dx) dy > esta integral se lloma integral iterado de f.

Podríamos haber becho el proceso en el dro orden doteniendo la (letiky) dy) dx, lo que nos daría la "otra" integral iterada de f.

1 Usualmente se omiten les paréntesis y se escribe la fixit) dy dx o la fixit) dx dy.

<u>Ejumplo</u>: colorle la signiente integral iterada [] xy3 dxdy.

Privero de benos integrar $\int (x_iy_1 = x^2y^3)$ con respecto $a \times cn$ el intervalo [1.1]. Entonces, $\int_{-1}^{1} x^2y^3 dx = y^3 \int_{-1}^{1} x^2 dx = y^3 \frac{x^3}{3} \Big|_{-1}^{1} = y^3 \Big(\frac{1^3}{3} - \frac{(-1)^3}{3}\Big) = y^3 \cdot \frac{2}{3}$.

Por lo tarto, $\int_{0}^{2} \int_{-1}^{2} x^{2}y^{3} dx dy = \int_{0}^{2} \frac{1}{3}y^{3} dy = \frac{2}{3} \frac{y^{4}}{4} \Big|_{0}^{2} = \frac{2}{3} \left(\frac{16}{4} - \frac{0}{4} \right) = \frac{8}{3}$

. En este vaso privero debenos integros f(xy)=xy con respecto a y en [0,2].

Lucyo,
$$\int_{0}^{2} x^{2}y^{3} dy = x^{2} \int_{0}^{2} y^{3} dy = x^{2} \frac{y}{4} \Big|_{0}^{2} = x^{2} \left(\frac{16}{4} - \frac{0}{4} \right) = x^{2} 4$$
.

Finolwente,
$$\int_{-1}^{1} \int_{0}^{2} x^{2}y^{3} dy dx = \int_{-1}^{1} 4x^{2} dx = 4 \frac{3}{3} \int_{-1}^{1} = 4 \left(\frac{1}{3} - \frac{(-1)}{3} \right) = \frac{8}{3}$$

Moteurs que la integrales iteradas dieron el unisus resultado. Esta situación es bostante general según el siguiente terrema.

Teorema de Fubini: si f as continua en el rectangolo $Q = [a,b] \times [c,d]$, entonces $\iint_{Q} f(x,y) dA = \int_{Q} \int_{C} f(x,y) dy dx = \iint_{C} f(x,y) dx dy.$

Observation: el terrema anterior también vole si f es acatoda en Q, discontinua solo en un nro. finito de curvas suaves y las integades iferadas existen.

Ejauplo: calule el volumen dels sólido debojo del plono 7 = 4 - x - y y entibo del rectángub definido por $0 \le x \le 1$, $1 \le y \le 2$.

Sea f(x,y) = 4-x-y. Notenos que f(x,y) 7,0 + (x,y) ∈ Q y entances lo que se nos pide es calcular II f(x,y) dA > para who usaremos Fubini.

$$\iint_{Q} (4-x-y) dA = \int_{1}^{2} \int_{0}^{1} (4-x-y) \frac{dx}{dy} = \int_{1}^{2} (4x-\frac{2}{2}-yx) \Big|_{0}^{1} dy = \int_{1}^{2} (4-\frac{1}{2}-y) dy = \left(4y-\frac{2}{2}-\frac{2}{2}\right)^{2} = 2.$$

· Por la tonto, el volumen del sólido bajo el gráfico de f y arribor de Q es 2.

Integrales dobles en regiones generales

Sea D una región a cotada en RZ, & sea D está contenida en algún rectangulo Q con landos paralelos a los ejes contesianos.

Dade f définida en D queremos définir la intégral de f sabre la région D.
Para ests vamos a extender f al rectongulo Q de la signiente manera:

$$\overline{T}(x,y) = \begin{cases} f(x,y) & \text{si } (x,y) \in D \cap \mathbb{Q} \\ 0 & \text{si } (x,y) \in D \cap \mathbb{Q} \end{cases}$$

<u>Defention</u>: decimal que f es integrable sobre D si F es integrable sobre Q y en ese cost definimal $\iint_D f(x,y) \, dA = \iint_Q F(x,y) \, dA .$

$$\iint_{\mathcal{D}} f(x,y) dA = \iint_{\mathcal{Q}} F(x,y) dA.$$

- Como F rule con fuera de D, esta región no contribuye a la integral y por la tanto la definición es independiente del rectornaulo Q elegido.
- Si fro en D, entonces la integral se prede interpretar como el volvimen del solido debojo del gráfico de f y arriba de la región D.

Lips de regiones D'Ibustante generales.

<u>Definicióni</u> (1) una región D se deno mina

(i) region de tipo I (x-simple) si es de la forma

$$D = \left\{ (x,y) \in \mathbb{R}^2 : \alpha \leqslant x \leqslant b , g_1(x) \leqslant y \leqslant g_2(x) \right\}$$

car grygz funciones continuas en [a,b]. (O sea, está entre la gráfica de des funciones)

(ii) region de tipo II (y-simple) si es de la forma

con hyphz funciones continúos en [c.d].

Observación: existen regiones de tipo I y I simultaneavente, por ejemplo un círculo, un rectangolo, etc.

Tomanos Q = [a,b] x [c,d] tal que D c Q y definimos F como antes. Luego, por el Teo. de Fubini tenemos que

 $\iint_{\Omega} F(x,y) dA = \int_{\alpha}^{b} \int_{c}^{d} F(x,y) dy dx.$

Alora, como Fixig) = o fuera de D, entonces para babo x fijo y talque X = [aib] tenemos que F(x,y) =0 si y<g1(x) o si y>g2(x). Por lo todo para 8005 valores de x tenemos que $\int_{c}^{d} F(x,y) dy = \int_{g_1(x)}^{g_2(x)} F(x,y) dy$.

Luego, $\iint_{D} f(x,y) dA = \iint_{Q} F(x,y) dA = \iint_{Q} F(x,y) dydx = \iint_{Q} \frac{g_{z}(x)}{f(x,y)} dydx = \iint_{Q} \frac{g_{z}(x)}{f(x,y)} dydx$ Fixing = $\int_{Q} f(x,y) dydx$ Fixing = $\int_{Q} f(x,y) dydx$

<u>londosión</u>: la integral de una función f en una región de tipo I, o sea D={(x,y) \in \mathbb{R}^2: a \lambda \times b, \gamma_1(x) \lambda \gamma \gamma_2(x)\}, es

Integral de f Sobre D de tipo I $\iint_{\mathcal{D}} f(x,y) dA = \int_{\alpha}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x,y) dy dx.$

Ejemplos Calwar II (x-27) dA, donde D es la región del primer avodrante (22) comprendida entre la parábola y = x² y la recta y = 2x.

· Notemas que la región D es de tipo I con $g_1(x) = x^2$ y $g_2(x) = 2x$.

Estas arvas se intersecon wands x2=2x,

Estas wivas se intersewn wonds
$$x=2x$$
,

 σ see wands $x=0$ σ $x=2$.

As; tenenus que $\alpha=0$ γ $b=2$.

Luego,

$$\iint_{D} (x-2y) dA = \int_{0}^{z} \int_{x^{2}}^{zx} (x-2y) dy dx = \int_{0}^{z} (xy-y^{2}) \Big|_{x}^{2x} dx = \int_{0}^{z} (2x^{3}-4x^{2}-x^{3}+x^{4}) dx$$

$$= \int_{0}^{2} (x^{4} + x^{3} - 4x^{2}) dx = \frac{x}{5} + \frac{x}{4} - 4\frac{x}{3}\Big|_{0}^{2} = \frac{2^{5}}{5} + \frac{2^{4}}{4} - \frac{2^{5}}{3} = -\frac{2^{4}}{60}$$

¿ lóna válular II f(xy) dA si D es una región de tipo II?

Procediendo de manera similar, se puede ver que si f está definida en una región D de tipo $\overline{\mathbb{I}}$, es decir $D = \{(x,y) \in \mathbb{I}\mathbb{Z}^2 : C \leq y \leq d \mid h_1(y) \leq x \leq h_2(y)\}$

entonces

$$\iint_{D} f(x_{i}y) dA = \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} dx dy \qquad \left(\begin{array}{c} \text{Integral de } f \\ \text{Sabre } D \text{ de} \\ \text{tipo } \overline{L} \end{array}\right)$$

$$y = 2x-1$$
 $y = y^2-1$.

$$y = 2 \times +1$$
 $(\Rightarrow x = \frac{y+1}{2})$ $y = y^2 - 1$

Solveion: observeux) que la region a cotado
$$y = y + 1 = h_2(y)$$

$$y = 2x + 1 \quad (=) \quad x = \frac{y+1}{2} \quad y \quad x = y^2 - 1$$

$$x = \frac{y+1}{2} = h_2(y)$$

$$x = y^2 - 1$$

$$x = y^2 - 1$$

$$x = y^2 - 1$$

Para averiguor los vobres cy d'debenas ver donde se corton ambas arvas o sa wando $\frac{y+1}{2} = y^2 - 1$. Esto socéde si y = -1 o $y = \frac{3}{2}$,

. Finalmente, para calculor el aírea debemos integrar sobre D la función identicamente L, σ sea $f(x,y) \equiv L$. Así,

$$A = \iint_{D} 1 dA = \int_{-1}^{3/2} \int_{y^{2-1}}^{y+1} dx dy = \int_{-1}^{3/2} \left(\frac{y+1}{2} - (y^{2}-1) \right) dy = \int_{-1}^{3/2} \left(-y^{2} + \frac{y}{2} + \frac{3}{2} \right) dy$$

$$= \left(-\frac{5^3}{3} + \frac{5^2}{4} + \frac{3}{2} + \frac{3}{$$

- Sea Duna región y f y g funciones toles que Il f(x,y) dA y Il g(xy) dA existen. Enton ces, los siguientes son volidos:
- () $\iint_{D} \Delta dA = A(D)$ (área de la region D).
- (2) $\iint_{D} \left[f(x,y) + g(x,y) \right] dA = \iint_{D} f(x,y) dA + \iint_{D} g(x,y) dA.$

- Si $D = D_1 \cup D_2$, bude $D_1 y D_2$ no be superpowen execpto quizas en sus fronteros, entonces $\iint_D f(x,y) dA = \iint_D f(x,y) dA + \iint_D f(x,y) dA.$