

Estructura de datos II

Facultad de ingeniería

Estructuras de datos

Una estructura de datos es una forma de organizar un conjunto de datos elementales con el objetivo de facilitar la manipulación de estos datos como un todo o individualmente.

Una estructura de datos define la organización y la relación de estos, así como un conjunto de operaciones que se pueden realizar sobre él.

Estructuras de datos

Las operaciones básicas son:

- Alta, adicionar un nuevo valor a la estructura.
- Baja, borrar un valor de la estructura.
- Búsqueda, encontrar un determinado valor en la estructura para se realizar una operación con este valor

Lineales (listas enlazadas, pilas y colas)
No lineales (arboles binarios y grafos o redes)

Árboles

¿Qué es un Árbol?

- Es una estructura de datos jerárquica.
- La relación entre los elementos es de uno a muchos.

Terminología

- Nodo: Cada elemento en un árbol.
- Nodo Raíz: Primer elemento agregado al árbol.

Más terminología

- Nodo Padre: Se le llama así al nodo predecesor de un elemento.
- Nodo Hijo: Es el nodo sucesor de un elemento.
- Hermanos: Nodos que tienen el mismo nodo padre.

Más terminología

Nodo Hoja: Aquel nodo que no tiene hijos.

Más terminología

 Subárbol: Todos los nodos descendientes por la izquierda o derecha de un nodo.

Altura y Niveles

La Altura es la cantidad de niveles.

Aclaraciones

- Si el conjunto finito T de nodos del árbol es vacío, entonces se trata de un árbol vacío.
- En esta estructura existe sólo un nodo sin padre, que es la raíz del árbol.
- Todo nodo, a excepción del nodo raíz, tiene uno y sólo un padre.
- Los subárboles de un nodo son llamados hijos.

Ejemplo

Padre de C: A

Padre de E:

Padre de G

Padre de A: NO

Hijos de A:BC

Hijos de C:FG

Hijos de F: NO

Aclaraciones

 Para todo nodo k, distinto de la raíz, existe una única secuencia de la forma:

```
-k_0, k_1, k_2, k_3, ..., k_n, donde k_0=raiz y k_n=k
```

-Con n >= 1, donde.
k_i es el sucesor de k_{i-1},
para 1 <= i <= n, o sea, cada nodo k_i de la secuencia es la raíz de otro subárbol.

Ejemplo

Secuencias

• de A a G

de A a E

de A a F

C es sucesor de A y

F es sucesor de C

Otras definiciones

Grado de un nodo: cantidad de hijos de un nodo.

Grado de un árbol: es el mayor de los grados de todos sus nodos.

Nodo hoja: nodo sin hijos o con grado = 0.

Nodo rama: nodo que tiene hijos, o sea, la raíz de un subárbol.

Ejemplo

Grado

• de A: 2

• de E: 3

• de G: 1

• de J: 0

Grado del árbol: 3

Nodos hojas: D, H, I, J, F, K

Nodos ramas: A, B, C, E, G

Otras definiciones

Árbol completo de nivel n: árbol en el que cada nodo de nivel n es una hoja y cada nodo de nivel menor que n tiene, al menos, un subárbol no vacío.

Árbol completo de nivel 2 Cada nodo del nivel n es una hoja

Arbol *no completo* de nivel 2 Un nodo del nivel n-1 es una hoja

Implementation de arbores en java

© 2013 Cisco and/or its affiliates. All rights reserved.