Uitgeverij WG 2.1

Kuifje

Quantitative Information Flow with Monads in Haskell

Joint work with

Carroll Morgan

Annabelle McIver

Jeremy Gibbons

McIver et al. 2014

McIver et al. 2014

McIver et al. 2014

Kuifje

QIF-aware Haskell DSL

monad-based semantics

enables experiments

Syntax

Semantics

CL s

sem

 $s \rightarrow s$

1

Syntax

Semantics

1 CLs sem s

2 PCL s

psem

 $s \rightarrow D s$

Syntax

Semantics

1 CL s sem s \rightarrow s

PCL s psem s \rightarrow D s

3 Kuifje s

posem

 $s \rightarrow D (Bits,s)$

Syntax

Semantics

2 PCL s

psem

 $s \rightarrow D s$

3 Kuifje s

posem

 $s \rightarrow D (Bits,s)$

hysem

 $D s \rightarrow D (D s)$

Command Language

Version 101

```
type CL s = [Instruction s]

data Instruction s
= Update (s → s)
| If (s → Bool) (CL s) (CL s)
| While (s → Bool) (CL s)
```

Command Language

without mutual recursion

```
data CL s
-- []
= Skip
-- Instruction s : CL s
| Update (s \rightarrow s) (CL s)
| If (s \rightarrow Bool) (CL s)(CL s) (CL s)
| While (s \rightarrow Bool) (CL s)
```

Constructor Functions

```
skip :: CL s
skip = Skip
update :: (s \rightarrow s) \rightarrow CL s
update f = Update f skip
cond :: (s \rightarrow Bool) \rightarrow CL s \rightarrow CL s \rightarrow CL s
cond c p q = If c p q skip
while :: (s \rightarrow Bool) \rightarrow CL s \rightarrow CL s
while c p = While c p skip
```

Sequential Composition

```
(\S) :: CL s \rightarrow CL s \rightarrow CL s

Skip \S k = k

Update f p \S k = Update f (p \S k)

If c p q r \S k = If c p q (r \S k)

While c p q \S k = While c p (q \S k)
```

```
instance Monoid (CL s) where
mempty = skip
mappend = (;)
```

Example Program

```
data S = S \{ x :: Int, y :: Int \}
example :: CL S
example =
  update (\s \rightarrow s.^y $= 0) \gamma
  while (\s \rightarrow s<sup>\(\)</sup>.x \rightarrow 0) (
     update (\s \rightarrow s.^y $= (s^.y + s^.x)) 
     update (\s \rightarrow s.^x $= (s^.x - 1))
```

Compositional Semantics

```
fold :: (CL<sub>F</sub> s a \rightarrow a) \rightarrow (CL s \rightarrow a) where
```

```
Semantics
sem :: CL s \rightarrow (s \rightarrow s)
sem = fold alg where
 alg :: CL_F s (s \rightarrow s) \rightarrow (s \rightarrow s)
                      = id
 alg Skip<sub>F</sub>
 alg (Update_F f p) = f >>> p
 alg (If_F c p q r) = conditional c p q >>> r
 alg (While f c f q) =
   let while = conditional c (p >>> while) q
    in while
 conditional :: (s \rightarrow Bool) \rightarrow (s \rightarrow s)
                 \rightarrow (s \rightarrow s) \rightarrow (s \rightarrow s)
 conditional c t e =
    (c &&& id) >>>
    (\b) \rightarrow if b then t s else e s)
```

Monoid Morphism

```
sem \ skip = id
sem (p ; q) = sem p >>> sem q
```


Discrete Distribution Monad

```
type Prob = Rational
newtype D a = D {runD :: [(a,Prob)]}
instance Monad D where
  return x = D[(x,1)]
  m \gg f = D [(y, p * q)]
                 |(x, p) \leftarrow runD m
                 (y, q) \leftarrow runD (f x)
```

Discrete Distribution Monad

```
type Prob = Rational
newtype D a = D {runD :: [(a, Prob)]}
uniform :: [a] \rightarrow D a
uniform l = D[(x, 1 / length l)]
                  | x \leftarrow 1
-_\oplus- :: a \rightarrow Prob \rightarrow a \rightarrow D a
x_p \oplus y = D[(x, p), (y, 1 - p)]
```

PCL Syntax

Example Program

```
data S = S \{ x :: Int, y :: Int \}
example :: PCL S
example =
  update (\s \rightarrow return (s.^y $= 0)) \circ
  while (\s \rightarrow return (s^.x > 0)) (
     update (\s \rightarrow return (s.^y $= (s^.y + s^.x))) \circ
     update (\s \rightarrow (s.^x $= (s^.x - 1)) _{2 \div 3} \oplus
                       (s.^x = (s^x - 2))
```

```
Semantics
psem :: PCL s \rightarrow (s \rightarrow s)
psem = fold alg where
 alg :: PCL_F s (s \rightarrow s) \rightarrow (s \rightarrow s)
 alg Skip<sub>F</sub>
                          = return
 alg (Update<sub>F</sub> f p) = f \Longrightarrow p
 alg (If<sub>F</sub> c p q r) = conditional c p q \Longrightarrow r
 alg (While f c f q) =
    let while = conditional c (p \Longrightarrow while) q
    in while
 conditional :: (s \rightarrow Bool) \rightarrow (s \rightarrow s)
                   \rightarrow (s \rightarrow s) \rightarrow (s \rightarrow s)
 conditional c t e =
    (c &&& return) \Longrightarrow
    (\b) \rightarrow if b then t s else e s)
```

Monoid Morphism

```
psem skip = return

psem (p ; q) = psem p ⇒ psem q
```

CL vs PCL

Syntax

```
type Bits = [Bool]
```

Constructor Function

Yoneda lemma in action

```
observe :: ToBits a \Rightarrow a \rightarrow Kuifje s
observe x = Observe (toBits x) skip
```

```
class ToBits a where
  toBits :: a → Bits
```

Example

```
p :: Kuifje (Bool, Bool)
p = observe (\(b1,b2\) \rightarrow b1 _{1/2}\oplus b2)
```

Semantics

```
posem :: Kuifje s → (s →<sub>B</sub> s)

type a →<sub>B</sub> b
= a → D (Bits, b)
= a → WriterT Bits D b
```

```
p :: Kuifje (Bool, Bool)
p = observe ((b1,b2) \rightarrow b1_{1/2} \oplus b2)
boolPairs =
  uniform [(b1,b2) \mid b1 \leftarrow [True,False]
                         , b2 \leftarrow [True, False]]
> boolPairs >= posem p
        1 % 4 ([False],(False,False))
1 % 8 ([False],(False,True))
        1 % 8 ([False],(True,False))
        1 % 8 ([True],(False,True))
        1 % 8 ([True],(True,False))
```

([True],(True,True))

Monoid Morphism

```
posem skip = return

posem (p ; q) = posem p ⇒ posem q
```

PCL vs Kuifje

PCL s
$$\xrightarrow{psem}$$
 s \rightarrow D s embed \downarrow s \rightarrow lift

Kuifje s \xrightarrow{psem} s \rightarrow D (Bits, s)

PCL vs Kuifje

p1 :: PCL Bool p2 :: PCL Bool

```
p1 :: PCL Bool
                   p2 :: PCL Bool
p1 = skip
                   p2 = cond id skip skip
      uniform [True, False] >= posem p1
   = 1 \div 2 ([], True)
      1÷2 ([], False)
   ≠ uniform [True, False] >= posem p2
   = 1÷2 ([True], True)
      1÷2 ([False], False)
```

```
p2 :: PCL Bool
p1 :: PCL Bool
                   p2 = cond id skip skip
p1 = skip
      uniform [True, False]
                          Conditionals
   = 1 \div 2 ([], True)
      1÷2 ([], False)
                           leak their
   ≠ uniform [True,Fa]
   = 1÷2 ([True], True)
      1÷2 ([False], False)
```

Semantics

type a \rightarrow _B b = a \rightarrow WriterT Bits D b

```
posem :: Kuifje s \rightarrow (s \rightsquigarrow_B s)
posem = fold alg where
 alg :: Kuifje<sub>F</sub> s (s \rightarrow<sub>B</sub> s) \rightarrow (s \rightarrow<sub>B</sub> s)
 alg Skip<sub>F</sub>
                        = return
 alg (Update<sub>F</sub> f p) = (lift \cdot f) \Longrightarrow p
 alg (If c p q r) = conditional c p q \Longrightarrow r
 alg (While f c f q) =
    let while = conditional c (p \Longrightarrow while) q
    in while
 alg (Observe<sub>F</sub> f q) = obsem f \Longrightarrow p
```

Semantics

```
obsem :: (s \rightarrow Bits) \rightarrow (s \rightarrow_B s)
obsem f = f &&& return
 conditional :: (s \rightarrow Bool) \rightarrow (s \rightarrow_B s)
                     \rightarrow (s \rightsquigarrow_B s) \rightarrow (s \rightsquigarrow_R s)
 conditional c t e =
     ((lift . c) &&& return) \Longrightarrow
     (obsem (\(b,s) \rightarrow return b)) \Longrightarrow
     (\b) \rightarrow if b then t s else e s)
```


Hyper Semantics

Syntax

Semantics

Hyper Semantics

```
hyper :: Ord s \Rightarrow Kuifje s \rightarrow (D s \rightarrow D (D s))
hyper = post . posem
post :: Ord s \Rightarrow (s \rightarrow D (Bits, s))
                     \rightarrow (D s \rightarrow D (D s))
post t =
 \d \rightarrow fmap' (disintegrate (d \gg t))
 where
  disintegrate
      :: D (a, b) \rightarrow (D a, a \rightarrow D b)
   fmap'
      :: Functor f \Rightarrow (f a, a \rightarrow b) \rightarrow f b
```

Lossy Post-Processing

Hyper Semantics

```
p :: Kuifje (Bool, Bool)
p = observe ((b1,b2) \rightarrow b1_{1/2} \oplus b2)
boolPairs =
  uniform [(b1,b2) | b1 \leftarrow [True,False]
                       , b2 \leftarrow [True, False]]
hyper p boolPairs
:: D (D (Bool, Bool))
                1÷2 1÷4 (False, True)
                     1÷4 (True, False)
                     1÷2 (True, True)
                1÷2 1÷2 (False, False)
                     1÷4 (False, True)
                     1:4 (True, False)
```

```
Syntax Semantics

Kuifje s \xrightarrow{posem} s \rightarrow D (Bits, s)

\downarrow post

D s \rightarrow D (D s)
```

Syntax Semantics Kuifje s $\xrightarrow{\text{fold alg}}$ s \rightarrow D (Bits, s) \downarrow post D s \rightarrow D (D s)

Syntax Semantics

Kuifje s $fold alg s \rightarrow D (Bits, s)$ $fold alg s \rightarrow D (Bits, s)$ post post post post

Monty Hall

Monty Hall

Monty Hall

```
hall :: Door → Kuifje Door
hall chosenDoor =
  observe (\prizeDoor →
    uniform ([DoorA, DoorB, DoorC]
                 \\ [chosenDoor,prizeDoor]))
doors = uniform [DoorA,DoorB,DoorC]
monty = hysem (hall DoorA) doors
                1÷2 1÷3 DoorA
                2÷3 DoorB
1÷2 1÷3 DoorA
2÷3 DoorC
```

Bayes Vulnerability

Probability of a rational adversary guessing right when the distribution is known.

```
bv :: D a \rightarrow Prob
bv d = maximum . fmap snd . runD
```

Conditional Entropy

```
condEntropy :: (D a \rightarrow Prob)

\rightarrow (D (D a) \rightarrow Prob)

condEntropy r h = weightedSum (fmap r h)
```

Conditional Entropy

```
condEntropy :: (D a \rightarrow Prob)

\rightarrow (D (D a) \rightarrow Prob)

condEntropy r h = weightedSum (fmap r h)
```

```
> condEntropy bv monty
2÷3
```


Fast Exponentiation

```
VAR B \leftarrow Base.
                                                          Global variables.
     E \leftarrow Exponent.
     p \leftarrow To be set to B^{E}.
                                                           Local variables.
BEGIN VAR b,e:= B,E
  p := 1
  WHILE e \neq 0 DO
     VAR r := e MOD 2
     IF r\neq 0 THEN p:= p*b FI
                                                          \leftarrow Side channel.
     b,e:=b^2,e\div 2
  END
END
\{ p = B^E \}
```

Generalisation

```
Global variables.
VAR B \leftarrow Base.
                                                      Global variables.
     D \leftarrow Set \ of \ possible \ divisors.
     p \leftarrow To be set to B^{E}.
     E:= uniform(0..N-1) Choose exponent uniformly at random
                                                       Local variables.
BEGIN VAR b,e:= B,E
  p := 1
  WHILE e\neq 0 DO
     VAR d:= uniform(D) \leftarrow Choose divisor uniformly from set D.
     VAR r:= e MOD d
     IF r\neq 0 THEN p:= p*b^r FI
                                                      \leftarrow Side channel.
     b,e:=b^d,e\div d
  END
END
\{p = B^{E}\} What does the adversary know about E at this point?
```

Evaluation

> condEntropy bv hyper2

> condEntropy bv hyper235

Evaluation

> condEntropy bv hyper2
1÷1

> condEntropy bv hyper235

Evaluation

> condEntropy bv hyper2
1:1

> condEntropy bv hyper235
161:1296

Kuifje

QIF-aware Haskell DSL with

hyper-distribution semantics

featuring lots of FP patterns

Einde

