Escriba un stencil para calcular la derivada primera descentrada solo hacia atrás que sea de tercer orden sobre una malla uniforme. Demuestre que el stencil reproduce lo buscado a través de aplicarlo a un caso práctico. Por ejemplo

$$tanh(x^3/\sigma)$$

con σ = 0,1 alrededor del punto 0.1. Grafique el error en función del tamaño de la malla para verificar el orden de convergencia deseado

Para calcular la derivada primera descentrada de tercer orden, tengo que llegar hasta el orden 4 en Taylor: cant. puntos - orden derivada = orden aproximación -> 3+1 = 4

$$f(x-h) = f(x) - hf'(x) + \frac{h^{\frac{1}{2}}}{2}f''(x) - \frac{h^{\frac{3}{2}}}{3!}f'''(x) + \mathcal{E}(g(h^{\frac{1}{2}}))$$

$$f(x-2h) = f(x) - 2hf'(x) + \frac{4h^{\frac{3}{2}}}{2}f''(x) - \frac{8h^{\frac{3}{2}}}{3!}f'''(x) + \mathcal{E}(g(h^{\frac{3}{2}}))$$

$$f(x-3h) = f(x) - 3hf'(x) + \frac{9h^{\frac{3}{2}}}{2}f''(x) - \frac{(3h)^{\frac{3}{2}}}{3!}f'''(x) + \mathcal{E}(g(h^{\frac{3}{2}}))$$

 $f'(x) \approx c_0 f(x_1) + c_1 f(x_{i-1}) + c_2 f(x_{i-2}) + c_3 f(x_{i-3})$

Realizo una combinación lineal de todas estas funciones para aproximar ʃˈ(x)

$$\begin{aligned} f'(x) &\approx c_0 f(x_1) + C_1 f(x_{i-1}) + C_2 f(x_{i-2}) + C_3 f(x_{i-3}) \\ &\approx c_0 f(x_1) + C_1 \left[f(x) - h f'(x) + \frac{h^2}{4} f''(x) - \frac{h^2}{3!} f''(x) \right] \\ &+ C_2 \left[f(x) - 2h f'(x) + \frac{q h^2}{4} f''(x) - \frac{8h^2}{3!} f''(x) \right] + C_3 \left[f(x) - 3h f'(x) + \frac{q h^2}{4} f''(x) - \frac{(3h)^2}{3!} f''(x) \right] \end{aligned}$$

Agrupo derivadas:

 $f(x) \rightarrow c_0 + c_1 + c_2 + c_3 = 0$

$$f''(x) \rightarrow c_1 \frac{h^2}{2} + c_2 \frac{q_1 h^2}{2} + c_3 \frac{q_1 h^2}{2} = 0$$

$$\int_{0}^{\infty} (x) \rightarrow -c_{1} \frac{h^{2}}{2!} - c_{2} \frac{8h^{2}}{2!} - c_{3} \frac{(2h)^{2}}{2!} = 0$$

$$-C_{2}^{2}-C_{3}^{3}-\frac{1}{h}=C_{1} -2C_{2}-3C_{3}=-4C_{2}-9C_{3}$$

$$C_{1}=-4C_{2}-9C_{3}$$

$$2C_{2}=-6C_{3} \Rightarrow C_{2}=-3C_{3}$$

$$C_0 = \frac{11}{6h}$$
 $C_1 = \frac{-3}{h}$ $C_2 = \frac{3}{2h}$ $C_3 = \frac{-1}{3h}$

Stencil:
$$f'(x) = \frac{1}{2h}f(x) - \frac{2}{h}f(x_{i-1}) + \frac{2}{2h}f(x_{i-2}) - \frac{4}{3h}f(x_{i-3})$$

2. Repita lo anterior pero ahora para una malla que crece con una tasa uniforme del $10\,\%$, es decir,

$$\Delta x_{l+1} = 1, 1 \Delta x_l \Rightarrow \frac{1}{1,1} \Delta x_{1+1} = \Delta x_1$$

El procedimiento acá es igual, solo que reemplazo h por lo que debería ser, hay que recordar que es 12 = 1,1 DX: la distancia hasta i, así que se suma todo

$$\begin{aligned}
& \left\{ \left(x_{i-1} \right) = \int_{1}^{1} \left(x_{i} \right) - h \int_{1}^{1} \left(x_{i} \right) + \frac{h^{2}}{2} \int_{1}^{1} \left(x_{i} \right) - \frac{h^{2}}{2} \int_{1}^{1} \left(x_{i} \right) + \mathcal{E} \left(\theta(h^{4}) \right) \right) \\
& \left\{ \left(x_{i-2} \right) = \int_{1}^{1} \left(x_{i} \right) - \left(1 + 1, 1 \right) h \int_{1}^{1} \left(x_{i} \right) + \frac{\left(\left(1 + 1, 1 \right) h \right)^{2}}{2} \int_{1}^{1} \left(x_{i} \right) - \frac{\left(\left(1 + 1, 1 \right) h \right)^{2}}{2} \int_{1}^{1} \left(x_{i} \right) + \mathcal{E} \left(\theta(h^{4}) \right) \right) \\
& \left\{ \left(x_{i-2} \right) = \int_{1}^{1} \left(x_{i} \right) - \left(1 + 1, 1 + 1, 12 \right) h \int_{1}^{1} \left(x_{i} \right) + \frac{\left(\left(1 + 1, 1 + 1, 12 \right) h \right)^{2}}{2} \int_{1}^{1} \left(x_{i} \right) - \frac{\left(\left(1 + 1, 1 + 1, 12 \right) h \right)^{2}}{2} \int_{1}^{1} \left(x_{i} \right) + \mathcal{E} \left(\theta(h^{4}) \right) \right) \\
& \left\{ \left(x_{i-2} \right) = \int_{1}^{1} \left(x_{i} \right) - \left(1 + 1, 1 + 1, 12 \right) h \int_{1}^{1} \left(x_{i} \right) + \frac{\left(\left(1 + 1, 1 + 1, 12 \right) h \right)^{2}}{2} \int_{1}^{1} \left(x_{i} \right) - \frac{\left(\left(1 + 1, 1 + 1, 12 \right) h \right)^{2}}{2} \int_{1}^{1} \left(x_{i} \right) + \mathcal{E} \left(\theta(h^{4}) \right) \right) \\
& \left\{ \left(x_{i-2} \right) = \int_{1}^{1} \left(x_{i} \right) - \left(1 + 1, 1 + 1, 12 \right) h \int_{1}^{1} \left(x_{i} \right) + \frac{\left(\left(1 + 1, 1 + 1, 12 \right) h \right)^{2}}{2} \int_{1}^{1} \left(x_{i} \right) + \mathcal{E} \left(\theta(h^{4}) \right) \right) \\
& \left\{ \left(x_{i-2} \right) = \int_{1}^{1} \left(x_{i} \right) - \left(1 + 1, 1 + 1, 12 \right) h \int_{1}^{1} \left(x_{i} \right) + \frac{\left(\left(1 + 1, 1 + 1, 12 \right) h \int_{1}^{1} \left(x_{i} \right) + \frac{\left(\left(1 + 1, 1 + 1, 12 \right) h \int_{1}^{1} \left(x_{i} \right) + \frac{\left(\left(1 + 1, 1 + 1, 12 \right) h \int_{1}^{1} \left(x_{i} \right) + \frac{\left(\left(1 + 1, 1 + 1, 12 \right) h \int_{1}^{1} \left(x_{i} \right) + \frac{\left(\left(1 + 1, 1 + 1, 12 \right) h \int_{1}^{1} \left(x_{i} \right) + \frac{\left(\left(1 + 1, 1 + 1, 12 \right) h \int_{1}^{1} \left(x_{i} \right) + \frac{\left(\left(1 + 1, 1 + 1, 12 \right) h \int_{1}^{1} \left(x_{i} \right) + \frac{\left(\left(1 + 1, 1 + 1, 12 \right) h \int_{1}^{1} \left(x_{i} \right) + \frac{\left(\left(1 + 1, 1 + 1, 12 \right) h \int_{1}^{1} \left(x_{i} \right) + \frac{\left(\left(1 + 1, 1 + 1, 12 \right) h \int_{1}^{1} \left(x_{i} \right) + \frac{\left(\left(1 + 1, 1 + 1, 12 \right) h \int_{1}^{1} \left(x_{i} \right) + \frac{\left(\left(1 + 1, 1 + 1, 12 \right) h \int_{1}^{1} \left(x_{i} \right) + \frac{\left(\left(1 + 1, 1 + 1, 12 \right) h \int_{1}^{1} \left(x_{i} \right) + \frac{\left(\left(1 + 1, 1 + 1, 12 \right) h \int_{1}^{1} \left(x_{i} \right) + \frac{\left(\left(1 + 1, 1 + 1, 12 \right) h \int_{1}^{1} \left(x_{i} \right) + \frac{\left(\left(1 + 1, 1 + 1, 12 \right) h \int_{1}^{1} \left(x_{i} \right) + \frac{\left(\left($$

$$\begin{split} \int \left(x \right) &\approx C_0 \int \left(x \right) + C_4 \left[\int \left(x \right) - h \int \left(x \right) + \frac{h^2}{2} \int \left(x \right) - \frac{h^2}{2} \int \left(x \right) \right] \\ &+ C_2 \left[\int \left(x \right) - \left(1 + 4, 1 \right) h \int \left(x \right) + \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) \right] \\ &+ C_3 \left[\int \left(x \right) - \left(1 + 4, 1 + 4, 12 \right) h \int \left(x \right) + \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) \right] \\ &+ C_3 \left[\int \left(x \right) - \left(1 + 4, 1 + 4, 12 \right) h \int \left(x \right) + \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) \right] \right] \\ &+ C_3 \left[\int \left(x \right) - \left(1 + 4, 1 + 4, 12 \right) h \int \left(x \right) + \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) \right] \right] \\ &+ C_3 \left[\int \left(x \right) - \left(\left(1 + 4, 1 + 4, 12 \right) h \right) \int \left(x \right) + \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2} \int \left(x \right) - \frac{\left(\left(1 + 4, 1 \right) h \right)^2}{2}$$

Agrupo derivadas:

$$\begin{cases} (\chi) \to c_0 + c_1 + c_2 + c_3 = 0 \\ \begin{cases} (\chi) \to -c_1 - c_2(1+1,1) - c_3(1+1,1+1,12) = \frac{4}{h} \\ (\chi) \to c_1 \frac{1}{2} + c_2 \frac{(1+1,1)^2}{2} + c_3 \frac{(1+1,1+1,12)^2}{2} = 0 \end{cases}$$

$$\begin{cases} (\chi) \to -c_1 \frac{1}{2} - c_2 \frac{(1+1,1)^3}{2} - c_3 \frac{(1+1,1+1,12)^3}{2} = 0 \end{cases}$$

Solucionando el sistema de ecuaciones obtengo: