

CS & IT

Engineering

2.38

Deva sir

Topics to be covered:

R

2.3 mosts by Decision properties Table

Topics Covered in Previous Session:

Pw

Turing Machine
closure properties

	Regulars	OCFLS	CFLs	Recursive,	RELS
	FB	DPPA	PDH	HTM	TM
Halting problem	D	D	D	D	UD
Membership problem	\mathcal{D}	Э	D	D	UD
Emptiness problem	1	D	カ	UD	UD
Finiteness Problem	D	\supset	D	UD	UD
Totality problem	D	D	UD	UD	UD
Equivalence problem	\mathcal{D}	9	UD	UD	UD
Disjointness problem	D	CU	UP	UD	UD
Set containment problem	1	CO	UD	UD	UD
	Membership problem Emptiness problem Finiteness Problem Totality problem Equivalence problem Disjointness problem	Halting problem Membership problem Emptiness problem Finiteness Problem Totality problem Equivalence problem D Disjointness problem D	Halting problem D D Membership problem Emptiness problem D Totality problem D D Totality problem D D D D D D Totality problem D D D D D D D D D D D D D	Halting problem D D D Membership problem D D D Emptiness problem D D D Totality problem D D D U D Totality problem D D D U D D D D D D D D D D D D D D D	Halting problem D D D D Membership problem D D D D D D D D D D D D D D D D D D D

®

twel Alogic exist TM (XILL)

Larguage (L)

twel => 9

twel = 9

twel aboje exist

Decidable language

Hom exist

HWEL => logic not exist

HWEL => logic not exist

REL but not recursion

The exist but HTM

not exist

HWEL I) ly cont

Not RFL TM not exist

TWEL Explogice with twe I I logice with I is REL

4

Lis Récubsive language HWEL = logic exist HWEL = logic exist

I) L has Im and I has Im

if

L is Recursive

R

THWEL IF TWEE

I valide

Invalid

Invalid

(1) Halting problem Is given M halts on given w!

Di) Is FA halfson w? No

D ii) IS DPDA halls on w? Tes

Diii) Is PDA halls on w? Tes

P iv) Is Him hatts on w 1 ter

UD V) IS TM halts m W? Trey Alogic exist

RE but not RC

No H logic not exist

By John Lax.

Halt Ficept

Tes: Halt at final/hmfine, No: For FA to HTM
Halls at manfine)

For TM:
C: Ker Halls at nonfine!
Never halls


```
i) Is FA doesn't halt on w?

ii) "DPDA"

iii) "PDA"

iv) "LBA"

v) "HTM"

v) "
```

UD VI) IS To doesn't halt on w? (No

		•		
Unc	ıec	ıda	Ю	ntv

RE but not occurrine =>> Not RE Rocursive => Recursive Not REL => E: Ker not REL OY "RE but not recurrie" Decidable 1) Decidable Undecidable > undecidable

(not REL)

R

Pw

- (3) a Empliner [IS Maraph nolting? [IS L(M)= {}]
- (3) b Non emptineur [Is marcepts sometting?] [Is L(M) # 4?]
- (4) Finiteness [Is Marcopts finite language?]

 (Is L(M) = finite set?]
- (4) b Non finiteners (IS Macapts infinite language?)

Pw

- (5) b Not totality [IS M doesn't accepts everything?]

 (25 $L(M) = \Sigma^*$?
- (a) Equivalence [IS M, = M2?] [IS L(M,)=L(M2)?]
 (b) Non Equivalence [IS M, \(\frac{1}{2}\) M2?]
 (15 L(G,)=L(G2)?)

Disjointness problem [IS
$$L, \Lambda l_2 = \Phi$$
?]

[IS $L(M) \Lambda L(M_2) = \Phi$?]

(A) Non-disjointness [IS $l, \Lambda l_2 \neq \Phi$?]

(S) Set containment [IS $l, \subseteq l_2$?]

(S) Non Set containment [IS $l, \Lambda l_2 = \Phi$?]

Identify Decidable language, RE but not rec, and Not REL Undecidability OAN OTE TOURTHAND CONSUMENT

> 1) Finite language

> 2 das n≤10}

a* b

(4) Regular lamprage

DCFL

3(C) 0, P

CFL but not DCFL

It is docidable

225 It is Docidable

Summary

Decision proporties table

