

Preapproval of MUO-24-001: Identification of soft muons using multivariate techniques at the CMS experiment in proton-proton collisions at \(\sigma = 13.6 \) TeV

2024/06/03

Federica Maria Simone¹
Dmytro Kovalskyi, Zhangqier Wang²
Priyanka Sadangi, Sanjay Kumar Swain³
Mia Liu, Jan Schulte, <u>Yibo Zhonq</u>⁴

INFN Bari¹, MIT², NISER³, Purdue University⁴

Overview

Aim: Machine Learning based MVA techniques are developed to improve soft muon identification in Run3

Documentation status:

CADI: <u>MUO-24-001</u>

Analysis Note: <u>AN2023/172</u>

Paper Draft: <u>MUO-24-001(v2)</u>

• Twiki: <u>SoftMuonMVA</u>

CMS PAPER MUO-24-001

DRAFT CMS Paper

The content of this note is intended for CMS internal use and distribution only

2024/05/24 Archive Hash: a13c0ff-D Archive Date: 2024/05/24

Identification of soft muons using multivariate techniques at the CMS experiment in proton-proton collisions at $\sqrt{s} = 13.6\,\text{TeV}$

Motivation

- Identifying soft muons can be challenging due to the significant contribution of "fake" muons.
 - Predominantly produced by the decay in flight of kaons and pions.
 - > The contribution decreases exponentially with pT, becomes small by approximately 10 GeV.
 - > Since those are real muons, separating them from signal is challenging
- The current soft muon MVA ID was initially developed using data from Run 2 collected in 2016. Because of the detector upgrade and running condition changes, it is not optimal for Run3, and we need to retrain a soft MVA ID for Run 3 analyses.
- The new ID benefits analyses involving soft muons (<10 GeV).
 - Focus on improving performance especially at very low pT (<4 GeV)</p>

Sample and Models:

- Samples:
 - Inclusive Dilepton MinBias MC sample: enriched in both signal and background muons
 - /InclusiveDileptonMinBias_TuneCP5Plus_13p6TeV_pythia8/Run3Summer22MiniAODv3-Pilot_124X_mcRun3_2022_realistic_v12-v5/MINIAODSIM
- Training Sample: preselection applied: "isGlobal || isTracker"
 - > Background (decay in flight): muons from decays in flight of pions and kaons
 - Signal (genuine muons): muons originating from heavy flavor decays (or J/Psi)
- Models:
 - ➤ A Deep Neural Networ (DNN) and two flavors of Boosted Decision Trees (BDTs), HGB, and XGBoost (XGB), are studied, XGB is selected in the end.
 - ➤ Input Variables:
 - DNN, HGB : 42 variables
 - XGB: 26 variables

- Use variables related to quality of the inner and standalone muon tracks, as well as the matching between the two and the the global track
- 26 variables are used in the Xgb model.
- Feature Importance:

Distributions for the most important features are shown on the next slide, but the others are in the <u>backup</u>.

"pt", "eta". "trkKink", "glbTrackProbability", "chi2LocalPosition". "glbNormChi2", "trkValidFrac". "match1_dX", "match1_pullX", "match1_pullDxDz", "match1 dY". "match1_pullY", "match1_pullDyDz", "match2 dX". "match2_pullX", "match2_pullDxDz", "match2 dY". "match2_pullY", "match2_pullDyDz", "nPixels", "nValidHits", "nLostHitsInner". "nLostHitsOn". "nLostHitsOuter". "trkLayers", "highPurity"

chi2LocalPosition

sig chi2LocalPosition

bkg_chi2LocalPosition

10.0 12.5

sig_nLostHitsInner

bkg nLostHitsInner

nLostHitsInner

12

0.5

p_T distribution reweighting

- \bullet The bkg and signal have different dependence on p_{τ} .
 - As we want this ID to be general purpose, we don't want the model to associate higher p_{τ} with signal
- \diamond We reweight the samples to have matching p_T distributions to erase the impact.
- Assign a weight value to each muon based on (p_{τ}, η)
- SF(p_T, η) = signal(p_T, η)/background(p_T, η)
- No direct weight functionality in training tools. Workaround is to randomly drop muons from the training samples
- ❖ Generate random value x between [0,1]
 - ➤ If SF>1: drop from signal sample when x>1/SF
 - ➤ If SF<1: drop from background sample when x>SF
- ♦ N.B.: Still found it to be useful to keep p_T as an input feature due to its correlations with other variables

Model and Training

- Described here is the final model, information for the other two models we tested are in the <u>backup</u>
- Final model is a gradient boosted decision tree implement in XGBoost
- For the training, <u>Scikit-learn</u> is used.
- ❖ 10M muons are used for the training and another 5M are used for the validation to avoid overtraining.
- The parameters is tuned manually to achieve the best performance (AUCROC).
- Most of the parameters take the default values except for the following:

parameter	setting
eta	0.01
max_depth	10
silent	1
eval_metric	auc
subsample	0.6
alpha	8.0
gamma	2.0
lambda	1.0
min_child_weight	0.00001
colsample_bytree	1.0

- To check for signs of overtraining, compare the distribution of the classifier score in the training and validation samples
- The model has nearly identical performance in both samples
 - -> No hint of overtraing

Performance

- Test on muons selected from Inclusive Dilepton MC sample.
- ightharpoonup size for the three p_T windows: ~2M, ~1M, and ~ 0.2 M All Run3 MVAs are better than the Run 2 MVA, especially in the low pT range.
- The Run3 models have similar performance.
 - We chose the XGB model as it uses fewer inputs and was easier to integrate in CMSSW

- In Run3, 4 working points are recommended.
- Medium working point is chosen to have ~same background rejection as the Run 2 MVA working point available in MiniAOD
- Other working points chosen so that the background rate scales by roughly a factor of 2 between them

name	classifier threshold
soft	> 0.47
loose	> 0.63
medium	> 0.74
tight	> 0.83

Validation in data

- Run 3 soft muon MVA shows good performance in MC
- Validated in Run 3 collision data in three ways:
 - > Data/MC comparisons of input variables and classifier scores
 - > Efficiency to select signal muons is measured on J/Psi events
 - \triangleright Background rate measured separately for π -> μ and K -> μ decays
- Full 2022 + 2023 datasets used

> 8 GeV < 2.4 $|\eta|$ ID isTightMuon trigger HLT_Mu8 OR HLT_Mu15 OR HLT_Mu17 OR HLT_Mu19 OR HLT_Mu20 OR HLT_IsoMu24 Probe selection > 2 GeV < 2.4 $|\eta|$ dZisTrackerMuon OR isGlobalMuon ID Pair selection charge opposite sign $\Delta R(\text{tag, probe})$ > 0.3 $m_{uu}(\text{tag, probe})$ 2.50 - 3.70 GeV

Tag selection

selection

variable

- Use J/Psi^[1] events selected for efficiency measurement
 - Selection conditions are listed:
 - > We are comparing to J/Psi MC, and backgrounds are not subtracted from DATA.
 - We know that <u>pT spectrum</u> in data is somewhat harder than in the J/Psi sample we use
- Generally, we observe quite good agreement in the modeling of all input variables
 - > Shown here is 2022, very similar performance in other data taking periods
- Data/MC comparisons not intended for publication

Data/MC comparisons

- Classifier score is overall quite well modeled by MC
- Data performance expected to be very similar to simulation
- Classifier score distribution is the same for different data taking eras -> Stable performance throughout Run 3, no need for individual trainings for different detector conditons

- **Solution** Efficiency is measured on 2022 + 2023 data using Tag & Probe on $J/_{\perp} \rightarrow u^+u^-$ events
- Tag & Probe on $J/_{\psi} \to \mu^+\mu^-$ events POG spark tool is used with settings close to what is used for POG SFs for low-p_T muons
- Different probe selection to match selection used for training of the model

variable	selection		
Tag selection			
p_{T}	> 8 GeV		
$ \eta $	< 2.4		
ID	isTightMuon		
trigger	HLT_Mu8 OR HLT_Mu15 OR HLT_Mu17 OR HLT_Mu19 OR HLT_Mu20 OR HLT_IsoMu24		
Probe selection			
p_{T}	> 2 GeV		
$ \eta $	< 2.4		
dΖ	< 0.5		
ID	isTrackerMuon OR isGlobalMuon		
	Pair selection		
charge	opposite sign		
$\Delta R(\text{tag, probe})$	> 0.3		
$\Delta R(\text{tag, probe})$ $m_{\mu\mu}(\text{tag, probe})$	2.50 – 3.70 GeV		

- Fits done to the passing probe and passing + failing probe distributions to extract efficiency
- Signal shape based on MC template
- Background modeled with CMS shape

Efficiency Measurement

- Compare Run 2 and Run 3 MVA using medium WP for Run 3 MVA (~same background rejection)
- Run3 is better than Run2 at low p_{τ} range in all η bins.
- ♣ Run 3 MVA shows some efficiency drop towards higher p₊
 - > Still better than Run 2
 - ightharpoonup p_T range not very relevant for analyses using this ID
- \diamond Much better Data/MC agreement for Run 3 MVA, except at high η due to CSC out of synch issues

Efficiency Measurement

- **Efficiency** integrated over p_T as a function of η
- Confirms observations from previous slide

Efficiency Measurement

- Efficiency for all four WPs of the Run 3 soft muon MVA
- Efficiency reduces by ~factors of 2 going from one WP to the next
- Good Data/MC agreement for all WPs for central muons
- Effect of CSC issues on data efficiency visible in the endcaps, more pronounced for tighter WPs

18

Background Rate

- \clubsuit Background rate is measured in data and simulation for muons from π and K decays, separately.
- MC samples used :
- ***** Background rate for $\pi \to \mu \nu$ decays:
 - We perform a fit to $\pi\pi$ and $\mu\pi$ invariant mass distribution to $\frac{\hat{g}}{2}$ 350 extract the event yield of $K_S^0 \to \mu\pi$ and $K_S^0 \to \pi^+\pi^-$
 - A Crystall Ball added to a Gaussian centered at the same mean and a 2nd order Bernstein polynomial function are used to fit signal and combinatorial background component.
 - We distinguish the cases of all and those where one is reconstructed as $\varepsilon K^0_S \to \pi^+\pi^-$ ng a working point of the soft muon MVA. The background rate is defined as the ratio of number of μ to the total number of π .

DY samples

- DYto2L-2Jets_MLL-10to50_TuneCP5_13p6TeV_amcatnloFXFX-pythia8
- DYto2L-2Jets_MLL-50_TuneCP5_13p6TeV_amcatnloFXFX-pythia8
- DYJetsToLL_M-50_TuneCP5_13p6TeV-madgraphMLM-pythia8
- DYto2E_M-50_NNPDF31_TuneCP5_13p6TeV-powheg-pythia8
- WtoLNu-2Jets_TuneCP5_13p6TeV_amcatnloFXFX-pythia8
- TTTo2J1L1Nu_CP5_13p6TeV_powheg-pythia8

e.g. 2022 DATA Fitting before (left) and after (right) passing the Medium ID.

Background Rate

 \bullet $\pi \rightarrow \mu v$ Background rate is plotted in a function of pion flight length L_{xv} and muon p_T .

Background Rate

A Background rate for $K \rightarrow \mu v$ decays:

- We perform a fit to K+K- and μ K invariant mass distribution to extract the event yield of $\Phi \to K+K-$ and $\Phi \to \mu$ K events.
- A Voigtian function and a 2nd order Bernstein polynomial function are used to parameterize the signal and background components, respectively.
- Calculate the ratio of number of muons and total number of kaons.
- Background rates for muons from Kaons of different working points of the Run 3 softmuon MVA for 2022-2023 data and MC are plotted as a function of muon pT.

Data taking period	Soft XGB ID	Loose XGB ID	Medium XGB ID	Tight XGB ID
2022	1.08 ± 0.24	0.88 ± 0.20	0.93 ± 0.24	0.94 ± 0.30
2023	1.61 ± 0.45	1.15 ± 0.40	0.96 ± 0.41	0.66 ± 0.66

e.g. 2022 data before (left) and after(right) medium ID cut.

Summary

- Multivariate techniques based on Machine Learning were developed for the Run3 softMuon identification: A XGBoost model was selected in the end.
- ***** The new Run3 ID has a general better performance than the Run2 ID especially for the low $p_{\scriptscriptstyle T}$ region.
- Four working points, soft, loose, medium, and tight are recommended.
- Background rate was studied for the Run3 ID.
- Run3 ID has higher efficiency than the Run2 ID when back rejections are similar.
- The documentation is in place.
- We would like to kindly ask for pre-approval.

Model Details of DNN and HGB

DNN: 8 hidden layers, 256 nodes, dropout=0.2,

Forward: Linear, Activation: LeakyReLU

Loss: FocalLoss = $-\sum_{i=1}^{i=n} \alpha_i (i - p_i)^{\gamma} \log_b(p_i)$

HGB: sklearn

max_iter=1200, max_depth=10, other parameters take default values if any.

Xgboost: the same set up used in the Bmm study:

parameter	setting
eta	0.01
max_depth	10
silent	1
eval_metric	auc
subsample	0.6
alpha	8.0
gamma	2.0
lambda	1.0
min_child_weight	0.00001
colsample_bytree	1.0

Training for DNN and HGB

- After reweighting, balanced Dataset (35M signal + 35M background), is used for DNN and HGB, and 5/7 is used for training and 2/7 for validation
- For the training, we use pytorch and Scikit-learn
- In the training of all the models, we tune the parameters manually to achieve the best performance.
- Reweight:
 - ➤ HGB: used the same reweight methods as XGB
 - > DNN: Define weight=1/SF for signal, weight=1 for background. and Multiply the weight in the loss function.

Classifier score for HGB

Input Variables for DNN and HGB

"eta",	"trkValidFrac",	"match1_pullY",	"nLostHitsInner",
"charge",	"chi2LocalMomentum",	"match1_pullDyDz",	"nLostHitsOn",
"chargeProduct",	"trkRelChi2",	"match2_dX",	"nLostHitsOuter",
"isGlobal",	"staRelChi2",	"match2_pullX",	"trkLayers",
"isTracker",	"trkNormChi2",	"match2_pullDxDz",	"trkLostLayersInner",
"isStandalone",	"staNormChi2",	"match2_dY",	"trkLostLayersOn",
"isPF",	"nStations",	"match2_pullY",	"trkLostLayersOuter",
"trkKink",	"match1_dX",	"match2_pullDyDz",	"muonStationsWithValidHits",
"glbTrackProbability",	"match1_pullX",	"nPixels",	"highPurity"
"chi2LocalPosition",	"match1_pullDxDz",	"segmentComp",	
"glbNormChi2",	"match1_dY",	"nValidHits",	

Run 2 soft MVA

- Run 2 version of the soft MVA was trained on 2016 data
- Training dataset used global muons with pT > 4 GeV, |eta| < 1.4 where the inner track passes highPurity
- BDT trained with TMVA

Table 4: Settings for BDT training in TMVA for the Run 2 soft muon MVA.

parameter	setting
nCuts	-1
MinNodeSize	1.5%
boostType	RealAdaBoost
adaBeta	0.3
muonFactor	2
maxDepth	12
-	1

Variables distribution in the training sample

Samples for J/Psi validation

	2022
MC	/JpsiTo2Mu_JpsiPt8_TuneCP5_13p6TeV_pythia8/Run3Summer22MiniAODv3-MUQ_POG_124X_mcRun3_2022_realistic_v12-v2/MINIAODSIM
	/SingleMuon/Run2022B-22Sep2023-v1/MINIAOD /SingleMuon/Run2022C-22Sep2023-v1/MINIAOD
Data	/SingleMuon/Run2022C-22Sep2023-v1/MINIAOD
Data	/Muon/Run2022C-22Sep2023-v1/MINIAOD
	/Muon/Run2022D-22Sep2023-v1/MINIAOD
	2022EE
MC	/Jpsito2Mu_JpsiPT8_TuneCP5_13p6TeV_pythia8/Run3Summer22EEMiniAODv3-MUO_POG_124X_mcRun3_2022_realistic_postEE_v1-v2/MINIAODSIM
	/Muon/Run2022E-22Sep2023-v1/MINIAOD
Data	/Muon/Run2022F-PromptReco-v1/MINIAOD
	/Muon/Run2022G-PromptReco-v1/MINIAOD
	2023
MC	/Jpsito2Mu_JpsiPT8_TuneCP5_13p6TeV_pythia8/Run3Summer23MiniAODv4-MUO_POG_130X_mcRun3_2023_realistic_v14-v2/MINIAODSIM
	/Muon0/Run2023B-22Sep2023-v1/MINIAOD
	/Muon1/Run2023B-22Sep2023-v1/MINIAOD
	/Muon0/Run2023C-22Sep2023_v1-v1/MINIAOD
	/Muon0/Run2023C-22Sep2023_v2-v1/MINIAOD
Data	/Muon0/Run2023C-22Sep2023_v3-v1/MINIAOD
Data	/Muon0/Run2023C-22Sep2023_v4-v1/MINIAOD
	/Muon1/Run2023C-22Sep2023_v1-v1/MINIAOD
	/Muon1/Run2023C-22Sep2023_v2-v1/MINIAOD
	/Muon1/Run2023C-22Sep2023_v3-v1/MINIAOD
	/Muon1/Run2023C-22Sep2023_v4-v1/MINIAOD
	2023BPix
MC	/Jpsito2Mu_JpsiPT8_TuneCP5_13p6TeV_pythia8/Run3Summer23BPixMiniAODv4-MUO_POG_130X_mcRun3_2023_realistic_postBPix_v2-v2/MINIAODSIM
	/Muon0/Run2023D-22Sep2023_v1-v1/MINIAOD
Data	/Muon0/Run2023D-22Sep2023_v2-v1/MINIAOD
Data	/Muon1/Run2023D-22Sep2023_v1-v1/MINIAOD
	/Muon1/Run2023D-22Sep2023_v2-v1/MINIAOD

Datasets for background rate measurement

- EGamma (2022) EGamma 0 (2023) EGamma 1 (2023)
- ParkingDoubleElectronLowMass
- DY samples
 - DYto2L-2Jets_MLL-10to50_TuneCP5_13p6TeV_amcatnloFXFX-pythia8
 - DYto2L-2Jets_MLL-50_TuneCP5_13p6TeV_amcatnloFXFX-pythia8
 - DYJetsToLL_M-50_TuneCP5_13p6TeV-madgraphMLM-pythia8
 - DYto2E_M-50_NNPDF31_TuneCP5_13p6TeV-powheg-pythia8
- WtoLNu-2Jets_TuneCP5_13p6TeV_amcatnloFXFX-pythia8
- TTTo2J1L1Nu_CP5_13p6TeV_powheg-pythia8

Event selection for $\pi \rightarrow \mu$ background rate

- $p_{\rm T}^{\pi_1} > 1 \,{\rm GeV}$
- $p_{\rm T}^{\pi_2} > 4 \,{\rm GeV}$
- pion track is highPurity
- $m_{K_S^0} \in [0.45, 0.55]$
- flight length significance $\ell_{xy}/\sigma(\ell_{xy}) > 3$
- Vertex probability greater than 0.001
- vertex displacement in XY plane wrt Beam Spot less than 8
- cosine of pointing angle in XY wrt BS greater than 0.999
- impact parameter significance of the candidate trajectory in 3D wrt PV less than 3
- 2D impact parameter significance for Track 1 and 2 wrt Beam Spot greater than 5
- kinematic vertex fit χ^2/dof of the two track less than 3
- Fire the HLT_Electron30 trigger

Event selection for $K \rightarrow \mu$ background rate

- $p_{\rm T}^K > 3 \,{\rm GeV}$
- kaon track is highPurity
- $m_{\phi} \in [1.00, 1.04]$
- vertex displacement in XY plane wrt Beam Spot less than 4
- vertex probability greater than 0.3
- impact parameter significance of the candidate trajectory in 3D wrt PV less than 1
- distance of closest approach of tracks less than 0.004

DATA/MC comparison

