

- Definitions
- Standard search
- Improvements
 - Backtracking
 - Forward checking
 - Constraint propagation
- Heuristics:
 - Variable ordering
 - Value ordering
- Examples
- Tree-structured CSP
- Local search for CSP problems

Canonical Example: Graph Coloring

- Consider N nodes in a graph
- Assign values V₁,.., V_N to each of the N nodes
- The values are taken in {*R*,*G*,*B*}
- Constraints: If there is an edge between i and j, then V_i must be different of V_j

CSP Definition

- CSP = {*V*, *D*, *C*}
- Variables: $V = \{V_1, ..., V_N\}$
 - Example: The values of the nodes in the graph
- Domain: The set of d values that each variable can take
 - Example: $D = \{R, G, B\}$
- Constraints: $C = \{C_1,...,C_K\}$
- Each constraint consists of a tuple of variables and a list of values that the tuple is allowed to take for this problem
 - Example: $[(V_2, V_3), \{(R,B), (R,G), (B,R), (B,G), (G,R), (G,B)\}]$
- Constraints are usually defined implicitly → A function is defined to test if a tuple of variables satisfies the constraint
 - Example: $V_i \neq V_i$ for every edge (i,j)

Binary CSP

- Variable V and V' are connected if they appear in a constraint
- Neighbors of V = variables that are connected to V
- The domain of V, D(V), is the set of candidate values for variable V
- $D_i = D(V_i)$
- Constraint graph for binary CSP problem:
 - Nodes are variables
 - Links represent the constraints
 - Same as our canonical graph-coloring problem

N-Queens $Q_1 = 1$ $Q_2 = 3$

Example: N-Queens

- Variables: Qi
- Domains: $D_i = \{1, 2, 3, 4\}$
- Constraints
 - $-Q_i \neq Q_i$ (cannot be in same row)
 - $-|Q_i Q_j| \neq |i j|$ (or same $Q_1 = 1$ $Q_2 = 3$ diagonal)

$$Q_1 = 1 \quad Q_2 = 3$$

 Valid values for (Q₁, Q₂) are (1,3) (1,4) (2,4) (3,1) (4,1)(4,2)

Cryptarithmetic

SEND <u>+ M O R E</u> MONEY

Example: Cryptarithmetic

Variables

D, E, M, N, O, R, S, Y

Domains

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Constraints

SEND +MORE MONEY

 $M \neq 0, S \neq 0$ (unary constraints)

Y = D + E OR Y = D + E - 10.

 $D \neq E$, $D \neq M$, $D \neq N$, etc.

More Useful Examples

- Scheduling
- Product design
- Asset allocation
- · Circuit design
- · Constrained robot planning
-

- Definitions
- Standard search
- Improvements
 - Backtracking
 - Forward checking
 - Constraint propagation
- · Heuristics:
 - Variable ordering
 - Value ordering
- Examples
- Tree-structured CSP
- · Local search for CSP problems

- State: assignment to k variables with k+1,..,N unassigned
- Successor: The successor of a state is obtained by assigning a value to variable k+1, keeping the others unchanged
- Start state: $(V_1=?, V_2=?, V_3=?, V_4=?, V_5=?, V_6=?)$
- Goal state: All variables assigned with constraints satisfied
- No concept of cost on transition → We just want to find a solution, we don't worry how we get there

DFS

- Improvements:
 - Evaluate only value assignments that do not violate any constraints with the current assignments
 - Don't search branches that obviously cannot lead to a solution
 - -Predict valid assignments ahead
 - -Control order of variables and values

- Definitions
- Standard search

- Improvements
 - Backtracking
 - Forward checking
 - Constraint propagation
- · Heuristics:
 - Variable ordering
 - Value ordering
- Examples
- Tree-structured CSP
- · Local search for CSP problems

Backtracking DFS

- For every possible value x in D:
 - If assigning x to the next unassigned variable V_{k+1} does not violate any constraint with the k already assigned variables:
 - Set the variable V_{k+1} to x
 - Evaluate the successors of the current state with this variable assignment
- If no valid assignment is found: Backtrack to previous state
- Stop as soon as a solution is found

9b, 27b

Backtracking DFS Comments

- Additional computation: At each step, we need to evaluate the constraints associated with the current candidate assignment (variable, value).
- Uninformed search, we can improve by predicting:
 - What is the effect of assigning a variable on all of the other variables?
 - Which variable should be assigned next and in which order should the values be evaluated?
 - When a branch fails, how can we avoid repeating the same mistake?

Forward Checking

- Keep track of remaining legal values for unassigned variables
- · Backtrack when any variable has no legal values

	<i>V</i> ₁	V ₂	V ₃	V ₄	V ₅	V ₆
R	?	?	?	?	?	?
В	?	?	?	?	?	?
G	?	?	?	?	?	?

Warning: Different example with order (R,B,G)

Forward Checking

- Keep track of remaining legal values for unassigned variables
- Backtrack when any variable has no legal values

	<i>V</i> ₁	V ₂	V ₃	V ₄	V ₅	V ₆
R	0	X		X	X	?
В		?	?	?	?	?
G		?	?	?	?	?

Forward Checking

- Keep track of remaining legal values for unassigned variables
- Backtrack when any variable has no legal values

	<i>V</i> ₁	V ₂	V ₃	V ₄	V ₅	<i>V</i> ₆
R	0		?	X	X	?
В		0	X	?	X	?
G			?	?	?	?

Forward Checking

- Keep track of remaining legal values for unassigned variables
- · Backtrack when no variable has a legal value

	<i>V</i> ₁	V ₂	V ₃	V ₄	V ₅	V ₆
R	0		0	X	X	X
В		0		?	X	?
G				?	?	?

Forward Checking

- Keep track of remaining legal values for unassigned variables
- Backtrack when any variable has no legal values

	<i>V</i> ₁	V ₂	V ₃	V ₄	V ₅	<i>V</i> ₆
R	0		0		X	X
В		0		0	X	X
G					?	?

- Forward Checking
 Keep track of remaining legal values for unassigned variables
- Backtrack when any variable has no legal values

There are no valid assignments left for V_6 we need to backtrack

27f

Constraint Propagation

- · Forward checking does not detect all the inconsistencies, only those that can be detected by looking at the constraints which contain the current variable.
- · Can we look ahead further?

	<i>V</i> ₁	V ₂	<i>V</i> ₃	V ₄	V ₅	V ₆
R	0		0		X	X
В		0		0	X	X
G					?	?

At this point, it is already obvious that this branch will not lead to a solution because there are no consistent values in the remaining domain for V_5 and V_6 .

Constraint Propagation

- V = variable being assigned at the current level of the search
- Set variable **V** to a value in D(V)
- For every variable **V**' connected to **V**:
 - Remove the values in $D(\mathbf{V}')$ that are inconsistent with the assigned variables
 - For every variable **V**" connected to **V**":
 - Remove the values in D(V") that are no longer possible candidates
 - And do this again with the variables connected to V"
 - —.....until no more values can be discarded

Constraint Propagation variable being assig Forward Checking New: Constraint as before Propagation anabic v to a value in very variable V' connexted to V: move the values in $D(\mathbf{V})$ that are inconsistent h the assigned variables r every variable V" connected to V": Remove the values in D(V') that are no longer possible candidates And do this again with the variables connected to **V**" -.....until no more values can be discarded

CP for the graph coloring problem

Propagate (node, color)

- 1. Remove color from the domain of all of the neighbors
- 2. For every neighbor N:

If D(N) was reduced to only one color after step 1 $(D(N) = \{c\})$:

Propagate (*N*,*c*)

	<i>V</i> ₁	V_2	V_3	V_4	V ₅	V ₆	
R	0	X	X	X	X	?	
B		0	X	?	X	X	
G		?	?	X	?	X	

After Propagate (V_2, B) :

	<i>V</i> ₁	V ₂	<i>V</i> ₃	V ₄	V ₅	V ₆
R	0		X	X	X	?
В		0	X	?	X	X
G			?	X	?	X

Note: We get directly to a solution in *one step of* CP after setting V_2 without any additional search

Some problems can even be solved by applying CP directly without search (if we're lucky)

More General CP: Arc Consistency

- A =queue of active arcs (V_i, V_i)
- Repeat while A not empty:
 - $-(V_i, V_i) \leftarrow$ next element of A
 - For each x in $D(V_i)$:
 - Remove x from $D(\mathbf{V}_i)$ if there is no y in $D(\mathbf{V}_j)$ for which (x,y) satisfies the constraint between \mathbf{V}_i and \mathbf{V}_i .
 - If $D(\mathbf{V}_i)$ has changed:
 - Add all the pairs (V_k, V_i) , where V_k is a neighbor of V_i (k not equal to i) to A

More General: *k*-Consistency

- Check consistency of sets of k variables instead of pairs of variables (arc consistency)
- Trade-off:
 - CP time increases rapidly with k
 - Search time may decrease with k (but maybe not as fast)
- Complete constraint propagation exponential in size of the problem

- Definitions
- Standard search
- Improvements
 - Backtracking
 - Forward checking
 - Constraint propagation

- Heuristics:
 - Variable ordering
 - Value ordering
- Examples
- Tree-structured CSP
- Local search for CSP problems

Variable and Value Heuristics

- So far we have selected the next variable and the next value by using a fixed order
- 1. Is there a better way to pick the next variable?
- 2. Is there a better way to select the next value to assign to the current variable?

196v

CSP Heuristics: Variable Ordering I

- · Most Constraining Variable
- Selecting a variable which contributes to the *largest* number of constraints will have the largest effect on the other variables → Hopefully will prune a larger part of the search
- This amounts to finding the variable that is connected to the largest number of variables in the constraint graph.

CSP Heuristics: Variable Ordering II

- Minimum Remaining Values (MRV)
- Selecting the variable that has the least number of candidate values is most likely to cause a failure early ("fail-first" heuristic)

 V_5 is the most constrained variable and is the most likely to prune the search tree

CSP Heuristics: Value Ordering

Four colors: $D = \{ \mathbf{R}, \mathbf{G}, \mathbf{B}, \mathbf{Y} \}$

V_1	V ₂	V ₃	V ₄	V_5	<i>V</i> ₆	V ₇
G	R	?	?	?	?	?

Warning: Different example!!!

CSP Heuristics: Value Ordering

- · Least Constraining Value
- Choose the value which causes the smallest reduction in the number of available values for the neighboring variables

Warning: Different example!!!

- Definitions
- Standard search
- Improvements
 - Backtracking
 - Forward checking
 - Constraint propagation
- Heuristics:
 - Variable ordering
 - Value ordering
- Examples
 - Tree-structured CSP
 - Local search for CSP problems

CSP Formulation

- Domain D = dictionary of 18 junction configurations
- Constraints: The line joining two junctions must have single label in {-,+, →}
- Problem: Assign values to all the junctions such that all of the edges are labeled
- Solved by constraint propagation: Waltz labeling algorithm

Labeling Notes

- Extended to include shadows and tangent contact (10 junction types and a much larger number of valid configurations)
- Key observation: Computation grows (roughly) linearly with the number of edges!

CP for line labeling described in detail in P. Winston, "Artificial Intelligence", MIT Press

Example: Scheduling

- A set of N Jobs $\{J_1,...,J_N\}$ needs to be completed
- Each job j is composed of a set of L_j operations $\{O_{1}^{j},...,O_{L_i}^{j}\}$ to be executed sequentially
- Each task \mathbf{O}_{i} has a known duration \mathcal{T}_{i}
- Tasks may need to use resources out of a pool of M resources {R₁,...,R_M}
- A resource cannot be used by two operations at the same time
- All jobs must be completed by time t = Due
- Problem: Schedule the start time of each operation Sⁱ_i using discrete times {0,..., T}

See recent survey in www.cs.cmu.edu/afs/cs/user/sfs/www/mista03/mista03.html Illustrations from N. Sadeh and M.S. Fox. "Variable and Value Ordering Heuristics for the Job Shop Constraint Satisfaction Problem"

Generic CSP Solution

- Repeat until all variables have been assigned:
- Apply a consistency enforcement procedure
 - Forward checking
 - Constraint propagation
- · If no solutions left:
 - Backtrack to a previous variable
- Else
 - select the next variable to be assigned
 - Using variable ordering heuristic
 - Select a value to try for this variable
 - Using value ordering heuristic

Outline

- Definitions
- Standard search
- Improvements
 - Backtracking
 - Forward checking
 - Constraint propagation
- · Heuristics:
 - Variable ordering
 - Value ordering
- Examples
- Tree-structured CSP
- · Local search for CSP problems

Important Special Case: Constraint Trees

- Constraint graph is a tree: Two variables are connected by one path
- Can always be solved in *linear* time in the number of variables

Order the variables such that the parent of a node appears always before that node in the list

Constraint Tree Algorithm

- 1. Up from leaves to root:
 - For every variable V_i, starting at the leaves:
 - $V_i = parent(V_i)$
 - Remove all the values x in $D(\mathbf{V}_i)$ for which there is no consistent value in $D(\mathbf{V}_i)$
- Down from root to leaves:
 - Assign a value to the root of the tree
 - For every variable V_i:
 - Choose a value x in $D(V_i)$ consistent with the value assigned to $parent(V_i)$

Constraint Tree Algorithm

Visit each variable once: N

- 1. Up from leaves ιο
 - For every variable V_i , starting at the leaves:
 - $\mathbf{V}_{i} = parent(\mathbf{V}_{i})$
 - Remove all the values x in $\mathcal{D}(\mathbf{V}_i)$ for which there is no consistent value in Dur
- 2. Down from root Worst case: Need to check all
 - pais of values: d^2 Assign a value to the root of the tree
 - For every variable V_i:

Total time:

• Choose a value x in $D(V_i)$ consistent with value assigned to $parent(V_i)$

- The constraint graph becomes a tree once a value is chosen for $\emph{\textbf{V}}_{6}$
- We don't know which value to choose → Try all possible values

- Removing a connected group *G* of *p* variables transforms the graph into a tree problem that can be solved efficiently.
- We don't know how to set the variables in G:
 - For every possible consistent assignment of values to variables in G:
 - Apply the tree algorithm to the rest of the variables

Worst case: Need to check all possible assignments in $G \rightarrow d^p$ s the graph into a tree problem in $G \rightarrow d^p$ solved efficiently.

- We don't k G:

 What Tree algorithm $\rightarrow (N-p) d^2$
 - For every possible in sistent assignment of values to various in G:
 - Apply the free algorithm to the rest of the variables

- Definitions
- Standard search
- Improvements
 - Backtracking
 - Forward checking
 - Constraint propagation
- · Heuristics:
 - Variable ordering
 - Value ordering
- Examples
- Tree-structured CSP
- Local search for CSP problems

Local Search Techniques for CSP

 $A \lor \neg B \lor C$

N-Queens

SAT $A \lor C \lor D$ $B \lor D \lor \neg E$

 $\neg C \lor \neg D \lor \neg E$ $\neg A \lor \neg C \lor E$

- These problems can be formulated as CSPs
- We have used local search methods to solve them in an earlier lecture (hill climbing, annealing, tabu search, genetic algorithms)
- When are local search methods applicable?
 - Direct solution through local search effective for some problems
 - Optimization of a cost function in addition to CSP
 - Online update of CSP solution

Local Search for CSP

State = assignment of values to all the variables

V ₁	V_2	V_3	V_4	V ₅	V_6
а	b	C	d	е	f

Move = Change one variable

V ₁	V ₂	V ₃	V_4	V ₅	V ₆
а	b	c'	d	е	f

Evaluation = number of conflicts (non-satisfied constraints) between variables

Generic Local Search: Min-Conflicts Algorithm

- Start with a complete assignment of variables
- Repeat until a solution is found or maximum number of iterations is reached:
 - -Select a variable V_i randomly among the variables in conflict
 - -Set V_i to the value that *minimizes* the number of constraints violated

- Far more effective than CSP search for many problems
- Start varia
 All previous variants of hillclimbing are applicable
- Repe
 Generic form similar to
 maxi WALKSAT seen earlier
 hed:
 - -Select a variable *Vi randomly* among the variables *in conflict*
 - -Set Vi to the value that minimizes the number of constraints violated

	USA	N-Queens (1 <n<=50)< th=""><th>Zebra</th></n<=50)<>	Zebra
DFS Backtracking	> 10 ⁶	> 40 10 ⁶	3.9 10 ⁶
+ MRV	> 10 ⁶	13.5 10 ⁶	1,000
Forward Checking	2,000	> 40 10 ⁶	35,000
+ MRV	60	817,000	500
Min-Conflicts	64	4,000	2,000

(Data from Russell & Norvig)

MRV heuristic is always very effective	ctive A	N-Queens	Zebra	
Local search is surprisingly effective. Can solve N-queens efficiently for $N = 10^7$!! Ktr Why are such problems "easy" to solve??				
+ RV		13.5 10 ⁶	1,000	
F ward Clecking	Ó	> 40 10 ⁶	35,000	
+ MRV	60	817,000	500	
Min-Conflicts	64	4,000	2,000	
	•	1	1	

- Definitions
- Standard search
- Improvements
 - Backtracking
 - Forward checking
 - Constraint propagation
- Heuristics:
 - Variable ordering
 - Value ordering
- Examples
- Tree-structured CSP
- Local search for CSP problems