CMPS 130

Spring 2016

Homework Assignment 6

Problems are from Martin 4th edition.

Chapter 3 (p.117): 20abc, 24, 28abc, 31, 37cd, 38ace

1. Problem 3.20abc

For each of the NFAs shown in Figure 3.35, find a regular expression corresponding to the language it accepts.

Solution:

- a. $a(ab + baa)^*(aba)^*(aa + bab)a$
- b. $(ab^*a + baaba)^*$
- c. $((a^*b + ab^*)ab)((a^*b + ab^*)ab)^*$ This is sometimes written as $((a^*b + ab^*)ab)^*$

2. Problem 3.24

Let $M = (Q, \Sigma, q_0, A, \delta)$ be an NFA with no λ -transitions. Show that for every $q \in Q$ and $\sigma \in \Sigma$, $\delta^*(q, \sigma) = \delta(q, \sigma)$.

Proof:

Since M has no λ -transitions, the λ -closure operation is trivial, i.e. $\lambda(S) = S$ for any $S \subseteq Q$. Let $q \in Q$ and $\sigma \in \Sigma$. Then

$$\delta^*(q,\sigma) = \delta^*(q,\lambda\sigma) \qquad \text{(meaning of } \lambda\text{)}$$

$$= \lambda \left(\bigcup_{p \in \delta^*(q,\lambda)} \delta(p,\sigma)\right) \qquad \text{(recursive definition of } \delta^*\text{)}$$

$$= \bigcup_{p \in \delta^*(q,\lambda)} \delta(p,\sigma) \qquad \text{(no λ-transitions in M)}$$

$$= \bigcup_{p \in \lambda(\{q\})} \delta(p,\sigma) \qquad \text{(recursive definition of δ^*)}$$

$$= \bigcup_{p \in \{q\}} \delta(p,\sigma) \qquad \text{(no λ-transitions in M)}$$

$$= \delta(q,\sigma) \qquad \text{(meaning of above notation)}$$

3. Problem 3.28abc

Let $M = (Q, \Sigma, q_0, A, \delta)$ be an NFA. This exercise involves properties of the λ -closure of a set S. Since $\lambda(S)$ is defined recursively, structural induction can be used to show that $\lambda(S)$ is a subset of some other set.

- a. Show that if S and T are subsets of Q for which $S \subseteq T$, then $\lambda(S) \subseteq \lambda(T)$.
- b. Show that for any $S \subseteq Q$, $\lambda(\lambda(S)) = \lambda(S)$.
- c. Show that if $S, T \subseteq Q$, then $\lambda(S \cup T) = \lambda(S) \cup \lambda(T)$.

Solution:

Recall the recursive definition of $\lambda(S)$ for $S \subseteq Q$: (1) $S \subseteq \lambda(S)$ and (2) $q \in \lambda(S) \Rightarrow \delta(q, \lambda) \subseteq \lambda(S)$.

- a. **Proof:** Let $q \in \lambda(S)$. We show that $q \in \lambda(T)$ by structural induction on q.
 - I. If $q \in S$, then $q \in T \subseteq \lambda(T)$ by the recursive definition of $\lambda(T)$, part (1).
 - II. Let $q \in \lambda(S)$ and assume $q \in \lambda(T)$. We must show that $\delta(q, \lambda) \subseteq \lambda(T)$. But this follows from the recursive definition of $\lambda(T)$, part (2).
- b. **Proof:** Since $S \subseteq \lambda(S)$, we have $\lambda(S) \subseteq \lambda(\lambda(S))$ by part (a). It remains to show $\lambda(\lambda(S)) \subseteq \lambda(S)$. Let $q \in \lambda(\lambda(S))$. We show that $q \in \lambda(S)$ by structural induction on q.
 - I. If $q \in \lambda(S)$, then certainly $q \in \lambda(S)$.
 - II. Let $q \in \lambda(\lambda(S))$ and assume $q \in \lambda(S)$. We must show that $\delta(q, \lambda) \subseteq \lambda(S)$. But this follows from the recursive definition of $\lambda(S)$, part (2).
- c. **Proof:** Since $S \subseteq S \cup T$ and $T \subseteq S \cup T$, part (a) gives $\lambda(S) \subseteq \lambda(S \cup T)$ and $\lambda(T) \subseteq \lambda(S \cup T)$, and hence $\lambda(S) \cup \lambda(T) \subseteq \lambda(S \cup T)$. It remains to show that $\lambda(S \cup T) \subseteq \lambda(S) \cup \lambda(T)$. Let $q \in \lambda(S \cup T)$. We show that $q \in \lambda(S) \cup \lambda(T)$ by structural induction on q.
 - I. If $q \in S \cup T$ then either $q \in S$ or $q \in T$. But $S \subseteq \lambda(S)$ and $T \subseteq \lambda(T)$ by the recursive definitions of $\lambda(S)$ and $\lambda(T)$, so that either $q \in \lambda(S)$ or $q \in \lambda(T)$. Thus $q \in \lambda(S) \cup \lambda(T)$.
 - II. Let $q \in \lambda(S \cup T)$ and assume $q \in \lambda(S) \cup \lambda(T)$. We must show that $\delta(q, \lambda) \subseteq \lambda(S) \cup \lambda(T)$. We have either $q \in \lambda(S)$ or $q \in \lambda(T)$. If $q \in \lambda(S)$, then $\delta(q, \lambda) \subseteq \lambda(S)$ by the recursive definition of $\lambda(S)$, part (2). If $q \in \lambda(T)$, then $\delta(q, \lambda) \subseteq \lambda(T)$ by the recursive definition of $\lambda(T)$, part (2). Thus either $\delta(q, \lambda) \subseteq \lambda(S)$ or $\delta(q, \lambda) \subseteq \lambda(T)$. It follows that $\delta(q, \lambda) \subseteq \lambda(S) \cup \lambda(T)$, as required.
- 4. Problem 3.31

Let $M = (Q, \Sigma, q_0, A, \delta)$ be a DFA, and let $M_1 = (Q, \Sigma, q_0, A, \delta_1)$ be the NFA with no λ -transitions for which $\delta_1(q, \sigma) = \{\delta(q, \sigma)\}$ for every $q \in Q$ and $\sigma \in \Sigma$. Show that for every $q \in Q$ and $x \in \Sigma^*$, $\delta_1^*(q, x) = \{\delta^*(q, x)\}$. Recall that the two functions δ^* and δ_1^* are defined differently.

Proof:

We proceed by structural induction on x.

I. Let $x = \lambda$. Then

$$\begin{array}{ll} \delta_1^*(q,\lambda) = \lambda(\{q\}) & \text{(base definition of } \delta_1^*) \\ = \{q\} & \text{(no λ-transitions in M_1)} \\ = \{\delta^*(q,\lambda)\} & \text{(base definition of } \delta^*) \end{array}$$

II. Let $x \in \Sigma^*$ and assume $\delta_1^*(q, x) = {\delta^*(q, x)}$. We must show $\delta_1^*(q, x\sigma) = {\delta^*(q, x\sigma)}$ for any $\sigma \in \Sigma$.

$$\delta_1^*(q, x\sigma) = \lambda \left(\bigcup_{p \in \delta_1^*(q, x)} \delta_1(p, \sigma) \right) \qquad \text{(recursive definition of } \delta_1^*)$$

$$= \bigcup_{p \in \delta_1^*(q, x)} \delta_1(p, \sigma) \qquad \text{(no } \lambda\text{-transitions in } M_1)$$

$$= \bigcup_{p \in \{\delta^*(q, x)\}} \delta_1(p, \sigma) \qquad \text{(induction hypothesis)}$$

$$= \delta_1(\delta^*(q, x), \sigma) \qquad \text{(meaning of the notation)}$$

$$= \{\delta(\delta^*(q, x), \sigma)\} \qquad \text{(definition of } \delta_1)$$

$$= \{\delta^*(q, x\sigma)\} \qquad \text{(recursive definition of } \delta^*)$$

The result now follows for all x.

5. Problem 3.37cd

In each part of Figure 3.36 is pictured an NFA. Use the algorithm described in the proof of Theorem 3.17 to draw an NFA with no λ -transitions accepting the same language.

Solution:

a. Since λ is not accepted by the original NFA, there is no need to add to the set of accepting states, i.e. $A_1 = A = \{2\}$.

b. Since λ is accepted by the original NFA, we have $A_1 = A \cup \{1\} = \{1, 2, 6\}$.

6. Problem 3.38ace

Each part of Figure 3.37 pictures an NFA. Using the subset construction, draw a DFA accepting the same language. Label the final picture so as to make it clear how it was obtained from the subset construction.

Solution:

a.

	а	b
1	12	1
12	12	13
13	12	1

c.

	а	b
1	12	2
12	123	2
<u>2</u>	3	2
3	3	34
123	123	234
<u>34</u>	3	34
234	3	234

e.

	а	b
1	2	5
2	Ø	3
3	4	3
4	35	Ø
<u>5</u>	Ø	1
Ø	Ø	Ø
<u>35</u>	4	13
13	24	35
24	35	3

