Accelerating Training

Off- and on-device

- Use fewer training examples
 - Change the data: Data optimization

Data Optimization

How to reduce the number of training examples?

- Data Pruning: Select a subset of informative examples.
- Data Distillation: Generate a synthetic representative dataset.

Curriculum learning for machine translation

 Key idea: Training on examples ordered by increasing difficulty allows for faster convergence.

		TRANSFORMER						
		Plain Plain*		SL Cur	riculum	SR Curriculum		
		Flaiii	r iaiii '	Clinear	$c_{ m sqrt}$	$c_{ m linear}$	c_{sqrt}	
BLEU	En→Vi	28.06	29.77	29.14	29.57	29.03	29.81	
	Fr>En	34.05	34.88	34.98	35.47	35.30	35.83	
	En→De	_	27.95	28.71	29.28	29.93	30.16	
Time	En>Vi	1.00	1.00	0.44	0.33	0.35	0.31	
	Fr>En	1.00	1.00	0.49	0.44	0.42	0.39	
	En>De		1.00	0.58	0.55	0.55	0.55	

- Use fewer training examples
 - Change the data: Data optimization
 - Change the model: Sample efficiency

ELECTRA: More efficient sampling for MLM

• **Key idea:** Different modeling paradigm (discrimination vs generation) enables

the \longrightarrow [MASK] \longrightarrow

more sample-efficient learning.

Model	Train / Infer FLOPs	Speedup	Params	Train Time + Hardware	GLUE
ELMo GPT BERT-Small BERT-Base	3.3e18 / 2.6e10 4.0e19 / 3.0e10 1.4e18 / 3.7e9 6.4e19 / 2.9e10	19x / 1.2x 1.6x / 0.97x 45x / 8x 1x / 1x	96M 117M 14M 110M	14d on 3 GTX 1080 GPUs 25d on 8 P6000 GPUs 4d on 1 V100 GPU 4d on 16 TPUv3s	71.2 78.8 75.1 82.2
ELECTRA-Small	1.4e18 / 3.7e9	45x / 8x	14M	4d on 1 V100 GPU	79.9
50% trained	7.1e17 / 3.7e9	90x / 8x	14M	2d on 1 V100 GPU	79.0
25% trained	3.6e17 / 3.7e9	181x / 8x	14M	1d on 1 V100 GPU	77.7
12.5% trained	1.8e17 / 3.7e9	361x / 8x	14M	12h on 1 V100 GPU	76.0
6.25% trained	8.9e16 / 3.7e9	722x / 8x	14M	6h on 1 V100 GPU	74.1
ELECTRA-Base	6.4e19 / 2.9e10	1x / 1x	110M	4d on 16 TPUv3s	85.1

Discriminator

(ELECTRA)

igwedge original

→ original

ightarrow replaced

o original

 $oldsymbol{ o}$ original

sample

Generator

(typically a

--**>** the −

-**→** ate

meal –

- Use fewer training examples
 - Change the data: Data optimization
 - Change the model: Sample efficiency
 - Change the optimization strategy

24h BERT

 Key idea: Efficient implementation & careful hyperparameter selection enables LM training on an "academic budget" of 8 V100 GPUs.

Recipe:

- Input resolution
 - Short sequences
 - Single-sequence training
- Implementation / framework:
 - DeepSpeed
 - Sparse token prediction
 - Fused implementations
 - Avoiding disk I/O

- Optimization:
 - Training larger models
 - Large batch sizes
 - Large learning rates
 - Short warmup
 - Synchronizing schedule with time budget

Cramming

Key idea: Optimize even further to enable training on a single GPU.

Data modifiations:

Remove hard-to-compress examples;

Curriculum: likely sequences first (unigram).

Training modifications:

High learning rate; Big batches; Drop dropout.

	MNLI	SST-2	STSB	RTE	QNLI	QQP	MRPC	CoLA	GLUE
crammed BERT	83.9 / 84.1	92.2	84.6	53.8	89.5	87.3	87.5	44.5	78.6
+ original data	82.2 / 82.7	92.0	83.6	49.8	89.5	87.0	85.9	42.5	77.3
+ original train	50.0 / 50.4	80.7	13.7	52.0	59.8	65.1	73.2	7.2	50.2
+ original arch.	35.4 / 35.2	49.1	_	52.7	49.5	0.0	0.0	0.0	27.7
+ minimal train mod.	81.9 / 82.6	91.4	85.5	54.9	88.2	87.0	88.4	43.6	78.1
+ minimal arch. mod.	83.2 / 83.5	91.7	82.0	52.0	88.9	86.8	83.6	38.3	76.7

Architecture modifiations:

Layer norm inside residual (pre-norm; Xiong et al. 2020).

- Make forward faster
- Make backward faster

Figure from: <u>Jiang</u>, et al. Accelerating Deep Learning by Focusing on the Biggest Losers. 2019.

- Use fewer training examples
 - Change the data: Data optimization
 - Change the model: Sample efficiency
 - Change the optimization strategy