עידן כמרה ממ"ן 11

כיוון אחד של ההכלה נובע ישירות מהגדרת האיחוד כי $B\subseteq A\cup B$. לכיוון השני נניח ש-A כיוון אחד של ההכלה נובע ישירות מהגדרת $x\in A\cap B$ (כי $x\in A\cap B$) ולכן מהנתון נקבל ש- $x\in A\cap B$ (כי $x\in A\cap B$) ולכן מהנתון נקבל ש- $x\in A\cap B$ וסיימנו.

2

$$L_5 - L_4 = \{a, ab, babbb\}$$
 .1

- $L_{5}^{R} = \{a, ba, aaabaaa, bbbab, bbab\}$.2
- - $L_1L_3 \cup L_2L_3 = L_3 \cup \emptyset = L_3$.4

3

$$0.0 \notin \{01\}^*$$
 אבל $0 \in \{0\}^*\{1\}^*$ אז $\Sigma = \{0,1\}, L_1 = \{0\}, L_2 = \{1\}$.1. גדיר

אז $x\in L_3$ אחרת אם , $x\in L_1\cap L_2$ אז אז $x\in L_2$ אם $x\in L_1\cap (L_2\cup L_3)$.3 . $x\in (L_1\cap L_2)\cup (L_1\cap L_3)$, $x\in L_1\cap L_3$

כלומר $x\in L_1\cap L_3$ או $x\in L_1\cap L_2$. אז $x\in (L_1\cap L_2)\cup (L_1\cap L_3)$ כניח ש- $x\in L_2\cup L_3$ ובסה"כ בשני המקרים $x\in L_2\cup L_3$ במקרה השני מוכח בצורה דומה לראשון. $x\in L_1\cap (L_2\cup L_3)$

$$.w\in\overline{L}^R\Longleftrightarrow w^R\in\overline{L}\Longleftrightarrow w^R\notin L\Longleftrightarrow w^{R^R}=w\notin L^R\Longleftrightarrow w\in\overline{L^R}$$
 .4

N 4

ראשית נשים לב שאם y סיפא של x אז שתיהן מסתיימות באותה אות. נוכיח זאת: יהיו $x=x_1\cdots x_n, y=y_1\cdots y_m$ מילים בשפה. אם y סיפא של x אז קיימת מילה x כך ש- $x_1\cdots x_n, y=y_1\cdots y_m$ או $x_1\cdots x_n=ry_1\cdots y_m$ ולכן ולכן $x_1\cdots x_n=ry_1\cdots y_m$

כלומר מספיק שנדרוש ביחס R ששתי המילים יסתיימו באותה אות. בנוסף ל-x,y שהוגדרו x,y ולכן $y_m=z_k$ ו- $x_n=y_m$ אז yRz ו- $x_n=z_k$ ולכן גדיר לעיל, נגדיר באותה אות ומתקיים xRz והיחס טרנזיטיבי.

לא מתקיים, RS אינו יחס שקילות. נראה שקיימים RS כך ש-RSy אבל אבל אונו יחס שקילות. נראה שקיימים כלומר RS אינו סימטרי.

יהיו $x\neq w,z\in\{a,b\}^*$ ולכל xSxע נגדיר את x כך ש-xSxע ווערנזיטיבי x סימטרי מעצם הגדרתו, רפלקסיבי אם ניקח וטרנזיטיבי כי אם $x\neq x$ וטרנזיטיבי כי אם $x\neq x$ ומתקיים $x\neq x$ ומתקיים $x\neq x$ אז $x\leq x$ את $x\leq x$ ומתקיים ומתקיים וערכים בין $x\neq x$

.יטענה: RS לא סימטרי

הוכחה: נניח ש-xRSy, אז מהגדרת RS קיים z_1 כך ש- xRz_1, z_1Sy . נניח בשלילה שקיימת z_1 אז מהגדרת z_2 בין וגם z_2Sx וגם בין מצד אחד, מהגדרת z_2 בין ואז שני מהגדרת z_2 כלומר z_2 כלומר z_2 אוז סתירה להנחה שהם מילים שונות.

עידן כמרה ממ"ן 11

. תהי $w \in L$ מילה באורך m. נוכיח באינדוקציה על $w \in L$ מאוזנת

5

בסיס האינדוקציה: אם p=1 אז מהגדרת p=1 מקבלים ש-p=1 וברור ש-p=1 מאוזנת. $w\in L$ בעד האינדוקציה: נניח שלכל מילה באורך קטן מ-p=1 הטענה נכונה. מאחר ו-p=1 מתקיים אחד מהשניים: קיימת מילה p=1 בער ש-p=1 או שקיימות p=1 בער p=1 מרשיש. p=1 מרשיש

במקרה הראשון |x|=n-2 ולכן מהנחת האינדוקציה x מאוזנת, מספר ה-) שווה למספר ה-) ה-(כי הוספנו אחד מכל אחד למילה מאוזנת ומספר ה-) בכל רישא של w גדול שווה למספר ה-(כי הוספנו לה אחד ולא שינינו את מספר ה-(.

במקרה השני האורכים של y ו-z גם כן קטנים מ-n ולכן הן מאוזנות. קל לראות שהדרישה הראשונה למילה מאוזנת מתקיימת (כי אם בשתי המילים מספר שווה של סוגריים אז גם בשרשור שלהם). תהי r רישא של w אם w רישא של w רישא של w אז הדרישה השנייה למילה מאוזנת מתקיימת כי w מאוזנת, אחרת קיים אינדקס w כך ש-w רישא של w מספר ה-w (שוב כי w מאוזנת) ומאחר ו-w רישא של w מספר ה-w מקיימת את הדרישה השנייה למילה מאוזנת. לסיכום קיבלנו שבשני המקרים w מאוזנת.

לא מספיקה הנחה על n-1 או n-2 או מספיקה הנחה ללמוד מההוכחה לא מספיקה הנחה מילים שאורכן מאורכן מאורכן האינדוקציה גם עבור מילים שאורכן קטן מ-n ולא רק n-1 או