P. Maurer

ENS Rennes

Référence : Carrega, Théorie des corps.

Inspiré du travail de Florent Lemonnier et de Laura Gay.

Recasages: (102), 125, 144, 151, 191.

Théorème de Gauss-Wantzel

On commence par des rappels sur les nombres constructibles.

Définition 1. Soit E un sous ensemble du plan \mathbb{R}^2 .

- On dit qu'un point (x, y) est constructible sur E en une étape si (x, y) est l'intersection de deux objets parmi :
 - 1. L'ensemble des droites affines qui passent par deux éléments distincts de E
 - 2. L'ensemble des cercles dont le centre est un élément de E et le rayon est la distance. entre deux points distincts de E.

On note C(E) l'ensemble des points constructibles sur E en une étape.

- On définit par récurrence l'ensemble $C_n(E)$ des points constructibles sur E en n étapes par $C_{n+1}(E) = C(C_n(E))$.
- On dit que le point (x, y) est constructible sur E si $(x, y) \in \bigcup_{n=0}^{+\infty} C_n(E)$.
- Finalement, on dit qu'un nombre réel x est constructible si (x,0) est constructible sur $\{(0,0),(0,1)\}.$

Proposition 2. Soit x, y des nombres constructibles.

Alors:

- La somme x + y est constructible.
- La différence x y est constructible.
- Le produit xy est constructible.
- $Si \ y \neq 0$, le quotient x/y est constructible.
- La racine carrée \sqrt{x} est constructible.

Théorème 3. (Wantzel, 1837)

Un nombre réel a est constructible si et seulement si il existe $n \in \mathbb{N}$ et une suite finie de corps $(L_i)_{1 \leq i \leq n}$ tels que :

- $L_0 = \mathbb{Q}$,
- $\forall i \in [1, n-1]$ $L_i \subset L_{i+1}$ et $[L_{i+1}: L_i] = 2$,
- \bullet $a \in L_n$.

En particulier, tout nombre constructible est algébrique sur \mathbb{Q} et son degré est une puissance de 2.

On trouve la preuve de ce théorème dans le Carrega, page 25.

Définition 4. Soit $\theta \in \mathbb{R}$. On note $\hat{\theta}$ l'angle orienté dont une mesure en radian est θ . L'angle $\hat{\theta}$ est dit constructible si le point M du cercle de centre O = (0,0) et de rayon 1 tel que $(\overrightarrow{OI}, \overrightarrow{OM}) = \hat{\theta}$, où I = (1,0), est un point constructible.

Proposition 5. L'angle $\hat{\theta}$ est constructible si et seulement si le réel $\cos(\theta)$ est constructible.

Lemme 6.

- 1. Les angles de la forme $\frac{\widehat{2\pi}}{2^{\alpha}}$ sont constructibles pour $\alpha \in \mathbb{N}$.
- 2. Soient $n, m \in \mathbb{N}^*$ premiers entre eux. Alors l'angle $\frac{\widehat{2\pi}}{mn}$ est constructible si et seulement si les angles $\frac{\widehat{2\pi}}{m}$ et $\frac{\widehat{2\pi}}{n}$ le sont.

Démonstration.

- 1. On construit l'angle $\frac{\widehat{2\pi}}{2}$ en traçant la bissectrice de l'angle $\widehat{2\pi}$, donc $\frac{\widehat{2\pi}}{2}$ est constructible. Par récurrence, on en déduit que $\frac{\widehat{2\pi}}{2^{\alpha}}$ est constructible pour $\alpha \in \mathbb{N}$.
- 2. Si $\frac{\widehat{2\pi}}{mn}$ est constructible, alors on a $\frac{\widehat{2\pi}}{m} = n \times \frac{\widehat{2\pi}}{mn}$ et $\frac{\widehat{2\pi}}{n} = m \times \frac{\widehat{2\pi}}{mn}$ donc $\frac{\widehat{2\pi}}{m}$ et $\frac{\widehat{2\pi}}{n}$ sont constructibles comme produits de nombres constructibles.

Réciproquement, si $\frac{2\widehat{\pi}}{m}$ et $\frac{2\widehat{\pi}}{n}$ sont constructibles, le théorème de Bézout affirme qu'il existe $\lambda, \mu \in \mathbb{Z}$ tel que $\lambda m + \mu n = 1$, d'où $\frac{2\widehat{\pi}}{mn} = \frac{2\widehat{\pi}}{mn}(\lambda m + \mu n) = \lambda \frac{2\widehat{\pi}}{n} + \mu \frac{2\widehat{\pi}}{m}$. On en déduit que $\frac{2\widehat{\pi}}{mn}$ est constructible comme combinaison linéaire de nombres constructibles.

Théorème 7. (Gauss-Wantzel)

Soit p un nombre premier impair, et $\alpha \in \mathbb{N}^*$. Alors l'angle $\frac{\widehat{2\pi}}{p^{\alpha}}$ est constructible si et seulement si $\alpha = 1$ et p est un nombre premier de Fermat, c'est-à-dire $p = 1 + 2^{2^{\beta}}$ pour un certain $\beta \in \mathbb{N}$.

2

Démonstration.

$$\Longrightarrow$$
 On note $\omega = \exp\left(\frac{2i\pi}{p^{\alpha}}\right)$.

L'angle $\frac{\widehat{2\pi}}{p^{\alpha}}$ étant constructible, le réel $\cos\left(\frac{2\pi}{p^{\alpha}}\right)$ est constructible, donc d'après le théorème de Wantzel, $\cos\left(\frac{2\pi}{p^{\alpha}}\right)$ est algébrique sur $\mathbb Q$ et il existe $n\in\mathbb N^*$ tel que $\left[\mathbb Q\left(\cos\left(\frac{2\pi}{p^{\alpha}}\right)\right):Q\right]=2^n$. Par ailleurs, on a $\omega+\omega^{-1}=2\cos\left(\frac{2\pi}{p^{\alpha}}\right)$ donc $\omega^2-2\cos\left(\frac{2\pi}{p^{\alpha}}\right)+1=0$.

On en déduit que $\left[\mathbb{Q}(\omega):\mathbb{Q}\left(\cos\left(\frac{2\pi}{p^{\alpha}}\right)\right)\right]=2$, donc par multiplicativité des degrés,

$$[\mathbb{Q}(\omega):\mathbb{Q}]=2^{n+1}.$$

Or on sait que ω a pour polynome minimal sur $\mathbb Q$ le polynôme cyclotomique $\Phi_{p^{\alpha}} = \prod_{\zeta \in \mu_{p^{\alpha}}^*} X - \zeta$, dont le degré est donné par $\varphi(p^{\alpha}) = p^{\alpha}(p-1)$. Aussi, il vient $2^{n+1} = p^{\alpha}(p-1)$.

Comme p est un nombre premier impair, il faut que $\alpha = 0$ et on en déduit $p = 2^{n+1} + 1$, donc p est un nombre premier de Fermat.¹

 \implies Soit $p=2^n+1$ un nombre premier de Fermat, avec $n=2^{\beta}$.

On va utiliser le théorème de Wantzel pour démontrer que $\cos\left(\frac{2\pi}{p}\right)$ est constructible. Montrons que ses hypothèses sont vérifiées.

Etape 1 : construction de la tour d'extensions quadratiques.

Notons $\omega = e^{\frac{2i\pi}{p}}$. Alors ω est une racine primitive $p^{\text{ème}}$ de l'unité, et en posant $K = \mathbb{Q}(\omega)$, le degré $[K:\mathbb{Q}]$ est égal au degré du $p^{\text{ème}}$ polynôme cyclotomique Φ_p , qui est le polynôme minimal de ω sur \mathbb{Q} . On en déduit que $[K:\mathbb{Q}] = p - 1 = 2^n$.

Ainsi, une base de K sur \mathbb{Q} est donnée par $\mathcal{B} = \{1, \omega, \dots, \omega^{p-2}\}$. Notons $G = \operatorname{Aut}(K)$ le groupe des automorphismes de corps de K sur lui-même. Un élément $g \in \operatorname{Aut}(K)$ fixe \mathbb{Q} puisqu'il vérifie g(1) = 1 et $g(\alpha) = \alpha g(1) = \alpha$ pour $\alpha \in \mathbb{Q}$, et au vu de la base \mathcal{B} de K sur \mathbb{Q} , g est donc entièrement déterminé par sa valeur en ω .

De plus, pour $g \in G$, on a $\Phi_p(g(\omega)) = g(\Phi_p(\omega)) = 0$, donc $g(\omega)$ est une racine primitive $p^{\text{ème}}$ de l'unité. On en déduit que G est un groupe d'ordre p-1, et on peut alors écrire

$$G = \{1_K = g_1, g_2, \dots, g_{p-1}\},\$$

où pour tout $k \in [1, p-1]$, g_k est déterminé par $g_k(\omega) = \omega^k$. Par ailleurs, l'application

$$\varphi : \left\{ \begin{array}{l} G \to (\mathbb{Z}/p\mathbb{Z})^* \\ g_k \mapsto \overline{k} \end{array} \right.$$

est un isomorphisme de groupe. Comme $(\mathbb{Z}/p\mathbb{Z})^*$ est cyclique, il en résulte qu'il existe $g \in G$ d'ordre p-1 et on a ainsi $G = \{g^k : 0 \le k \le p-1\} = \{g^i : 1 \le i \le 2^n\}$, où $g^{p-1} = g^{2^n} = 1_K$.

Pour $i \in [0, n]$, on pose alors $K_i := \{z \in K : g^{2^i}(z) = z\}$. Il est alors clair que $K_n = K$.

^{1.} Pour justifier ce fait, posons $n+1=\lambda 2^{\beta}$ avec λ impair et $\beta\in\mathbb{N}$. On a alors $p=1+(2^{2^{\beta}})^{\lambda}=1^{\lambda}-(-2^{2^{\beta}})^{\lambda}$ puisque λ est impair. La formule de Bernouilli donne $p=(1-(-2^{2^{\beta}}))\cdot\sum_{k=0}^{\lambda-1}(-2^{2^{\beta}})^k$, donc $1+2^{2^{\beta}}$ divise p. Comme p est premier, il vient $p=1+2^{2^{\beta}}$ donc $\lambda=1$.

Etape 2: on montre que les inclusions $K_i \subset K_{i+1}$ sont strictes pour $i \in [0, n-1]$.

Vérifions tout d'abord que $K_0 \subsetneq K_1$: il s'agit de trouver $z \in K$ tel que $g^2(z) = z$ mais $g(z) \neq z$. On pose $z = \omega + g^2(\omega) + \cdots + g^{2^n-2}(\omega)$. Alors $g^2(z) = g^2(\omega) + g^4(\omega) + \cdots + g^{2^n}(\omega) = z$, mais

 $g(z) = g(\omega) + g^3(\omega) + \dots + g^{2^n - 1}(\omega) \neq z$ par unicité de la décomposition de z dans \mathcal{B}' .

De même, en considérant $z_i = \omega + g^{2^{i+1}}(\omega) + \cdots + g^{2^{i+1}[2^{n-i-1}-1]}(\omega)$, on vérifie que $g^{2^{i+1}}(z) = z$ mais $g^{2^i}(z) \neq z$ pour les mêmes raisons. Ainsi, on a $K_0 \subsetneq K_1 \subsetneq \cdots \subsetneq K_n = K$.

Etape 3 : on vérifie que $K_0 = \mathbb{Q}$ et que $\mathbb{Q}\left(\cos\left(\frac{2\pi}{p}\right)\right) \subset K_{n-1}$.

$$K_0 = \mathbb{Q}$$

D'une part, on a $\mathbb{Q} \subset K_0$ puisque g fixe les rationnels en tant qu'automorphisme de corps sur K. D'autre part, pour $z \in K_0$, décomposons z dans la base² $\mathcal{B}' = \{\omega, ..., \omega^{p-1}\} = \{\omega, g(\omega), ..., g^{p-2}(\omega)\}$:

$$z = z_0 \omega + z_1 g(\omega) + \dots + z_{p-2} g^{p-2}(\omega).$$

On a alors

$$g(z) = z_0 g(\omega) + \dots + z_{p-3} g^{p-2}(\omega) + z_{p-2} \omega.$$

Comme g(z) = z, on en déduit que $z_0 = z_1 = \cdots = z_{p-2}$, et donc

$$z = z_0(\omega + g(\omega) + \dots + g^{p-2}(\omega)) = z_0(\omega + \omega^2 + \dots + \omega^{p-1}) = -z_0 \in \mathbb{Q}$$

Donc $\mathbb{Q} = K_0$.

$$\mathbb{Q}\left(\cos\left(\frac{2\pi}{p}\right)\right) \subset K_{n-1}$$

On note $f = g^{2^{n-1}}$, de sorte que $K_{n-1} = \{z \in K : f(z) = z\}$. Par hypothèse, f est déterminée par $f(\omega) = \omega^{\lambda}$ pour un certain $\lambda \in \mathbb{Z}$. De plus, on a $f^2 = g^{2^{n-1} \times 2} = 1_K$, donc

$$\omega = f^2(\omega) = f(f(\omega)) = f(\omega^\lambda) = (f(\omega))^\lambda = (\omega^\lambda)^\lambda = \omega^{\lambda^2}.$$

Ainsi, on a $\omega^{\lambda^2-1}=1$. Il s'en suit que p divise λ^2-1 , donc dans $\mathbb{Z}/p\mathbb{Z}$, on a l'égalité $\overline{\lambda}^2=\overline{1}$, donc $\overline{\lambda}=\overline{\pm 1}$. Il est clair que $\overline{\lambda}\neq\overline{1}$ puisque dans ce cas, on aurait $f=1_K$, donc $\overline{\lambda}=\overline{-1}$, et $f(\omega)=\omega^{-1}$.

Ainsi,

$$f\!\left(\cos\!\left(\frac{2\pi}{p}\right)\right) = f\!\left(\frac{1}{2}(\omega+\omega^{-1})\right) = \frac{1}{2}\left(f(\omega) + f(\omega)^{-1}\right) = \frac{1}{2}\left(\omega+\omega^{-1}\right) = \cos\!\left(\frac{2\pi}{p}\right).$$

Donc
$$\cos\left(\frac{2\pi}{p}\right) \in K_{n-1}$$
, et de fait, $\mathbb{Q}\left(\cos\left(\frac{2\pi}{p}\right)\right) \subset K_{n-1}$.

^{2.} On sait que $\mathcal{B} = \{1, \omega, \dots, \omega^{p-2}\}$ est une base de K, donc on peut en déduire que \mathcal{B} est aussi une base au vu de la relation $\omega^{p-1} = -\omega^{p-2} - \dots - \omega - 1$.

^{3.} En fait, on peut se passer de ce résultat en remarquant simplement que $\left[\mathbb{Q}(\omega):\mathbb{Q}\left(\cos\left(\frac{2\pi}{p}\right)\right)\right]=2$, comme on l'a démontré dans le sens direct. Il s'en suit en effet que $\cos\left(\frac{2\pi}{p}\right)\in\mathbb{Q}(\omega)=K=K_n$, ce qui suffit pour avoir le troisième point dans les hypothèses du théorème de Wantzel. Le théorème étant déjà long, il vaut sans doute mieux procéder ainsi à l'oral.

Etape 4: conclusion.

Par multiplicativité des degrés, on a $2^n = [\mathbb{Q}(\omega) \colon \mathbb{Q}] = \prod_{i=0}^{n-1} [K_{i+1} \colon K_i]$, où $[K_{i+1} \colon K_i] \ge 2$ d'après l'étape 2. On en déduit que $[K_{i+1} \colon K_i]$ vaut exactement 2.

En particulier, comme $\left[\mathbb{Q}(\omega) \colon \mathbb{Q}\left(\cos\left(\frac{2\pi}{p}\right)\right)\right] = 2$ et que $\mathbb{Q}\left(\cos\left(\frac{2\pi}{p}\right)\right) \subset K_{n-1}$, on en déduit l'égalité $\mathbb{Q}\left(\cos\left(\frac{2\pi}{p}\right)\right) \subset K_{n-1}$.

D'après le théorème de Wantzel, il suit que $\cos\left(\frac{2\pi}{p}\right)$ est constructible, et donc l'angle $\frac{\widehat{2\pi}}{p}$ est constructible.