Abstract JP6-242978

PURPOSE:To automatically turn on and off the power source repeatedly by a specified frequency when the system is started up even in case of a fault which is not a power circuit fault and to start the operation as it is if the fault is a temporary fault.

CONSTITUTION:A computer system is provided with a power source controller 103 which consists of a counter for retrial frequency counting, a memory for storing a specified retrial counted value and specified power-ON time, and a control part and is supplied with electric power from a subordinate power source 104. If a fault occurs when the system is started up, the control part updates the retrial frequency in the counter and turn off the power source 102 of the system unless the retrial frequency exceeds the specified retrial counted value, and performs a restarting process for turning ON the power source 102 after the specified power-ON time has elapsed, and the restarting processing is repeated unless the retrial frequency exceeds the retrial counted value each time a fault occurs successively to send an operation stop instruction to the processor 105 of the system when the retrieval counted value is exceeded and an operation start indication to the processor 105 of the system when no fault occurs.

(19)日本國特許庁(JP)

(12) 公開特許公報(A)

(11)特許出額公開番号

特開平6-242978

(43)公開日 平成6年(1994)9月2日

(51) Int.CL²

被別記号 庁内整理番号 FI

技術表示箇所

G06F 11/14

310 C 731S-5B

1/00

%46

370 D 7165-5B

審査請求 未請求 確求項の数2 FD (全 5 頁)

(21) 出版番号

(22)出顧日

特級平5-47469

平成5年(1993)2月12日

(71)出願人 000005108

株式会社日立製作所

東京都千代田区神田較河合四丁目6番地

(72) 発明者 小林 好博

爱知県尾張旭市晴丘町池上1番地 株式会

社日立製作所オフィスシステム事業部内

(72) 発明者 木下 登

爱知県尼强旭市時丘町池上1番地 株式会

社日立製作所オフィスシステム事業部内

(74)代理人 弁理士 笹岡 茂 (外1名)

(54) 【発明の名称】 障害回復処理方式

(57) 【要約】

【目的】 システム立ち上げ時に、電源回路障害以外で も自動的に電源のオン/オフを所定の回数だけ្返し、 一時的な障害ならそのまま運転開始可能にする。

【構成】 計算機システムに、リトライ回数計数用カウ ンタと所定リトライカウント値および所定電源投入時間 を記憶するメモリと制御部からなり、サブ電源104か ら電源供給を受ける電源制御装置103を設ける。上記 制御部は、システム立ち上げ時に障害が発生した場合、 カウンタのリトライ回数を更新して該リトライ回数が所 定リトライカウント値を超えないときシステムの電源1 02をオフし、所定電源投入時間経過後に電源102を オンする再起動処理を行ない、引続き障害が発生する度 にリトライ回数がリトライカウント値を超えないとき前 記再起勤処理を繰返し、超えたときシステムの処理衰慢 105に運転停止を指示し、障害が発生しない場合に は、システムの処理整置105に運転開始を指示する。

(2)

特開平6-242978

7

%86

【特許請求の範囲】

【請求項1】 電源装置と、「/Oデパイスと、メイン メモリと、処理装置を備える計算機システムにおける障 舎回復処理方式であって、

リトライ回数を計数するカウンタと所定のリトライカウ ント値および所定の電源投入時間を配憶するメモリと制 御部からなりサブ電源から電源供給を受ける電源制御装 盛を設け.

前記電波制御装置の制御部は、

システム立ち上げ時に障害が発生した場合には、前記力 ウンタのリトライ回数を更新して該リトライ回数が前記 所定のリトライカウント値を超えないとき前記電源装置 の電源をオフし、前記所定の電源投入時間の経過後に電 派をオンする再起動処理を行ない、引続き障害が発生す る度に前記りトライ回数が前記リトライカウント値を超 えないとき前記再起動処理を繰返し、前記リトライ回数 が前記所定のリトライカウント値を超えたとき前配処理 装置に運転停止を指示し、障害が発生しない場合には、 前記処理装置に運転開始を指示するように構成されたこ とを特徴とする障害回復処理方式。

【請求項2】 請求項1配載の障害回復処理方式におい て、前記電源制御装置のメモリに電源オンノオフ抑止フ ラグ領域を設け、前記面派制御整世の制御部は、前記処 理装置に運転開始を指示するとき、前記メモリの電源オ ン/オフ抑止フラグ領域に電源オン/オフ抑止フラグを セットするようにしたことを特徴とする障害回復処理方

【発明の詳細な説明】

[0001]

回復処理に関連し、オペレータ介入なしての電源再投入 による障害回復処理に関する。

[0002]

【従来の技術】自己復旧装置付きの電源に関する先行技 術としては、例えば、特開昭61-189125に開示 されているように、電源回路のアラーム信号端子にアラ ーム検出回路を接続しアラーム信号を検出すると電源回 路を停止させ、遅延リセット回路によって一定時間経過 した後、アラーム検出回路をリセットするとともに電源 随であれば、そのまま運転を開始させることができると いう技術が知られている。

[0003]

【発明が解決しようとする課題】上記従来技術は、電源 回路の一時的な障害であれば電波を一定時間停止させ、 再起動させることを所定の回数だけ自動的に行う。それ により、運転を統行させることができるが、電源回路以 外の障害が発生した場合では、電源のオン/オフを自動 的にはできないという問題点があった。本発明の目的 は、システム立ち上げ時において、電源回路の障害以外 50 は、電源制御装置103によりオン/オフ制御可能な電

2

でも自動的に電源のオン/オフを所定の回数だけ繰返 し、一時的な障害であればそのまま運転が開始できるこ とを可能とすることにある。

[0004]

【課題を解決するための手段】計算機システムに、リト ライ回数を計数するカウンタと所定のリトライカウント 値および所定の母源投入時間を記憶するメモリと制御部 からなりサブ업源から重複供給を受ける電源制御装置を 設ける。電源制御装置の制御部は、システム立ち上げ時 10 に陣害が発生した場合には、カウンタのリトライ回数を 更新して該リトライ回数が所定のリトライカウント値を 超えないときシステムの電源装置の電源をオフし、所定 の電源投入時間の経過後に電源をオンする再起動処理を 行ない、引級き障害が発生する度にリトライ回数がリト ライカウント値を超えないとき前記再起動処理を鑑返 し、前記リトライ回数が前記所定のリトライカウント個 を超えたときシステムの処理装置に運転停止を指示し、 障害が発生しない場合には、システムの処理装置に運転 開始を指示するように構成されるようにしている。ま 20 た、電源制御装置のメモリに電源オン/オフ抑止フラグ 領域を設け、電源制御装置の制御部は、システムの処理 装置に運転開始を指示するとき、メモリの電源オン/オ フ抑止フラグ領域に電源オン/オフ抑止フラグをセット するようにしている。

[0005]

【作用】オペレータによるシステムの重源投入後、シス テムが立ち上がるまでに障害が発生した場合、所定の電 源投入時刻を記憶するメモリを有した電源制御装置は、 システムの電源をオフして、オフした後、前記メモリに 【産業上の利用分野】本発明は、計算機システムの障害 30 記憶された電源投入時刻によって再度システムの電源を オンさせる。また、前記の重源制御装置は、パッテリま たは常時適電された電源部によってパックアップされて いるため一度低級がオフされてもメモリに記憶された電 **減投入時刻の値を保持することができる。さらに、この** メイン電源をオン/オフさせるリトライカウント値を前 紀電源制御装置のメモリにセットさせることにより、メ イン電源はセットされた回数だけは自動的にシステムの 電源のオン/オフ動作を繰り返すことができる。これに よって、システム立ち上げ時に障害が発生した場合に 回路を再起動させ、これにより、電源回路の一時的な故 40 は、所定のリトライカウント値をオーパーするまで自動 的に電源のオンノオフを繰り返し、オペレータ自身が再 度電源オン/オフする手間を名くことができ、一時的な 障害であればシステムの回復を行うことができる。

[0006]

【実施例】以下、本発明の実施例を図面により説明す る。図1に本発明で使用される計算機システムの概略を 示すブロック図である。

【0007】同図において、101は、オペレータの換 作によりメイン電源を投入する電源投入装置、102

(3)

特開平6-242978

3

%86

原装置、103は電源制御装置、104は、103の電 🕒 源制御装置に電力を供給する電源であり、パッテリまた は常時通電されたサブ電源である。105はCPU、1 06はメインメモリ、107は、CPU105、メイン メモリ106、電源制御装置103などとデータ、アド レス、匍御情報の送受信を可能にするためのシステムパ ス、108は1/0デパイスである。

【0008】上記電源制御装置103は、カウンタ、メ モリ、そしてマイクロコンピュータ等からなる例御部と で構成され、上記メモリには後述する所定のリトライカ ウント値、電弧がオフしてからオンするまでの所定の時 間である電源投入時間を記憶し、電源オン/オフ抑止フ ラグ領域が設けられている。この装置は、オペレータが メイン電源をオンした後、CPU105が障害を検出し た場合、CPU105から障容検出信号を受信し、制御 部がリトライの回数をカウントする上記カウンタをカウ ントアップし、メイン重版102にオフ信号を送信し、 オフ信号を送信してからの時間が上配のメモリに配憶さ れている所定の電源投入時間を経過するのを監視し、経 過すると、メイン電源102にリトライのためにオン信 20 動的にオンしないように設けたものである。ステップ2 母を送信してメイン電源102をオンして再度システム 立ち上げを始める再起動処理を行なう。再度障害を検出 した場合には、上述と同様な再起動処理を行なうが、力 ウンタのリトライ回数とメモリに記憶されている所定の リトライカウント値を比較し、リトライ回数が所定のリ トライカウント値をオーバーするまでの回数のみ再起動 処理を繰り返す。カウントオーパーした場合には、メイ ン電源102はオンのままとし、CPU105を停止さ せる。また、障害が検出されなかった場合には、CPU 105からその旨の信号を受信し、耐御部はメモリの電 30 派オン/オフ抑止フラグ匈域に電源オン/オフ抑止フラ グをセットし、CPU105に運転開始を指示する。

【0009】図2は、実施例におけるシステムの電源投 入後の処理のフローチャートを示す。ステップ201で オペレータは、電源投入装置101によってメイン電源 を投入する。ステップ202では、オペレータの電源投 人後、電源制御装置103がCPU105から電源投入 信号を受け、制御部がカウンタに記憶されているリトラ イ値をクリアしておく。ステップ203は、CPUによ るシステムの自己診断、ステップ204は、CPUによ 40 せる動作を自動で行うか手動で行うかは、オペレータ目 る IP レプログラムの動作である。そして、ステップ2 05はCPUによる障害検出判定であり、障害発生を検 出した場合は障害検出信号を電源制御装置103に送出 してステップ206に行き、検出しなかった場合は障害 不検出信号を電源制御装置103に送出してステップ2 11に行く。ステップ206では、電源制御装置103 の制御部がカウンタのリトライ回数をカウントアップす る。ステップ207では、制御部がカウンタのリトライ 回数とメモリに記憶された所定のリトライカウント値を 比較し、その回数がリトライカウント値をオーバーして 50

いなければステップ208へ、オーパーしていればステ ップ213へ行く。ステップ208では、電波制御装置 103の耐御部が電源オフ信号をメイン電源102に送 出し、メイン電源102をオフする。ステップ209で は、制御部が、電源オフ信丹を送出してからの時間がメ そりに配位されている所定の電板投入時間を経過するか 否かを制御部が監視し、経過するとステップ210に進 む。ステップ210では、制御部が電源オン信号をメイ ン電源102に送出し、メイン電源102をオンする。 そして、ステップ203に戻る。ステップ211では、 電源制御装置103の制御部が障害不検出信号を受け て、メモリの電源オン/オフ抑止フラグ領域に電源オン **/オフ抑止フラグをセットし、CPUに運転開始を指示** し、ステップ212の運転開始を行なわせる。電源オン /オフ抑止フラグは、システムが正常に立ち上がった 後、菜務を開始させるプログラムが行われている最中に 障害が発生した場合、電源をオフさせないようにするこ とと、オペレータがシステム装置のメイン電源を業務終 了などによって、故意にオフさせた後にメイン電源が自 13では、電源制御袋置103の制御部が、メイン電源

【0010】本実施例によれば、システム立ち上げ時に 発生する一時的な障害であれば、オペレータ自身が何度 も電源のオン/オフする手間を省くことが可能になり、 日動的に電源のオン/オフを繰返しシステムの運転が開 始され、様続的な障害であれば復帰動作を禁止させシス テム装置は停止することになる。

をオンさせたままで、CPUに運転停止を指示し、CP

【0011】なお、電源制御装置103のカウンタを、 リトライ回数が所定のリトライカウント値をオーパーし たときカウントオーバー信号を出力し、オーバーしない とき非カウントオーバー信号を出力するもとし、メモリ にはリトライカウント値を記憶しないようにしてもよ い。また、所定の電源投入時間を記憶したメモリと制御 **部によりタイマ機能を達成しているが、これに代えて、** 所定の電源投入時間が経過すると経過信号を出力するタ イマを制御部に設けるようにしてもよい。また、メイン 電源オン後に障害が発生した場合、電源をオンノオフさ 身が最初の電源操作時において選択するようにしてもよ **67**

[0012]

Uを停止させる。

【発明の効果】本発明によれば、システム装置の立ち上 げ時に発生する障害が一時的なものであれば、セットし た回数だけは自動的に極源のオン/オフを瞬返し、再度 オペレータ自身によって電源のオン/オフする手間を省 き、システムの回復処理が可能となる。

【図面の簡単な説明】

【図1】本発明における障害回復処理方式をもつ計算機

(4)

特額平6-242978

システムの構成を示すプロック図である。

【図2】実施例におけるシステムの電源投入後の処理の

フローチャートを示す図である。

【符号の説明】

101:電源投入装置

102:メイン電源

103:電源制御装置

104:サブ電源

105:CPU

106:メインメモリ

107:システムバス

108: I/Oデバイス

[図1]

[図1]

%86

(5)

特閱平6-242978

[図2]

[图2]

