

MECH366: Modeling of Mechatronic Systems

L2: Modeling procedure Analogies among different domains

Dr. Ryozo Nagamune
Department of Mechanical Engineering
University of British Columbia

Review and today's topics

- Last lecture's key messages
 - Models play an important role in mechatronic systems.
 - Modeling is not an easy task.
- Today's topics
 - Dynamic models
 - Modeling procedure for dynamic models
 - Analogies among different domains (Mechanical, electrical, thermal, fluid)
 - * Details of analogies will not be covered in today's class, but will be followed up in later classes.

Dynamic models

- Static model
 - Present output depends on only present input.
 - Input-output relation is represented by an algebraic equation (or look-up table). f: force input
 - Example: x = (1/k)f x : displacement output
- Dynamic model (This course's interest)
 - Present output depends on past and present input.
 - Input-output relation is represented by a differential equation (ODE, PDE).
 - Example: $\dot{v} = (1/m)f$ f: force input v: velocity output

Modeling procedure (How to obtain dynamic models)

- 1. Identify a physical system to be modeled, and associated input and output variables.
- 2. Simplify the physical system with basic elements (see slide 14), based on your assumptions.
- 3. By applying physical laws (Newton's second law, Kirchhoff's law etc.) to the basic elements, obtain differential equations.
- 4. Identify (estimate) parameter values in the differential equations.
- 5. Validate the obtained model (differential equations with estimated parameter values) experimentally. If the model turns out to be invalid (the model is invalidated), go back to Step 2 with modifications.

1. Identify a physical system to be modeled, and I/O variables

- Modeling depends on the purpose of models. (How do you want to use a model?)
- Automobile example

- Cruise control
 (Input: throttle valve opening angle, output: car speed)
- Direction control (Input: Steering wheel angle, output: direction)
- Comfort analysis
 (Input: ground displacement, output: roll/pitch motion)

2. Simplify the physical system with basic (lumped) elements

Automobile comfort analysis example

3. Obtain a differential equation by using physical laws

Heave motion analysis

Newton's second law

Equation of motion

$$M\ddot{y} = -K(y-u) - B(\dot{y} - \dot{u})$$

4. Identify (estimate) parameter values in the differential equations

Excite the physical system

Parameter estimation method (Step response technique, frequency response technique)

$$M\ddot{y} = -K(y-u) - B(\dot{y} - \dot{u})$$

5. Model validation (to increase the confidence of the model)

 Excite both the physical system and the model with various inputs, and compare the outputs

• If the model is invalidated, go back to Step 2 with modified assumptions. (next slide)

2. Simplify the physical system with basic (lumped) elements

Automobile comfort analysis example

Modeling procedure Summary

Data-driven (machine learning) modeling procedure

Analogies (Table in the next slide)

- Analogies exist among mechanical, electrical, thermal and fluid systems.
- Understanding the analogies will facilitate the modeling, especially when using the linear graph.
- In each domain, basic elements are categorized as
 - Energy storage elements
 - A-type (Element's energy is a function of an across variable.)
 - T-type (Element's energy is a function of a through variable.)
 - Energy dissipating elements
- Power = (through variable)*(across variable)

Constitutive Relation for

	Energy Storage Elements		Energy Dissipating Elements
System Type	A-type (Across) Element	T-type (Through) Element	D-type (Dissipative) Element
Translatory-Mechanical	Mass	Spring	Viscous Damper
$v = ext{velocity}$ across variable $f = ext{force}$ through variable $\mathcal{P} = fv$ power	$m\frac{dv}{dt} = f$ The every second law is a mass of the every second la	$\frac{df}{dt} = kv$ (Hooke's law) $k = \text{stiffness}$	f = bv $b = damping$ $constant$
Electrical	Capacitor	Inductor	Resistor
$v = ext{voltage}$ across variable $i = ext{current}$ through variable $\mathcal{P} = iv$ power		$L\frac{di}{dt} = v$ $L = inductance$	Ri = v R = resistance
Thermal across variable $T = \text{temperature difference } [K]$ $Q = \text{heat transfer rate } [J/s], [W]$ through variable $\mathcal{P} = Q$ power	$C_t \frac{dT}{dt} = Q$	None	Thermal Resistor $R_tQ = T$ $R_t = \text{thermal}$ resistance
Fluid across variable $P = \text{pressure difference } [N/m^2]$ $Q = \text{volume flow rate } [m^3/s]$ through variable	Fluid Capacitor $C_f \frac{dP}{dt} = Q$	Fluid Inertor $I_f \frac{dQ}{dt} = P$	Fluid Resistor $R_f Q = P$ $R_f = \text{fluid}$
$\mathcal{P} = QP$ power	= fluid capacitance	I _f = inertance	resistance

Energy expressions based on across and through variables

	A-type element	T-type element
$\begin{aligned} & w &: \text{Across variable} \\ & f &: \text{Through variable} \end{aligned}$	Kinetic energy $\frac{1}{2}mv^2$	Potential energy $\left(\frac{1}{2}kx^2 = \right)\frac{1}{2}\frac{f^2}{k}$
Electrical $v: Across \ variable$ $i: Through \ variable$	Electrostatic energy $\frac{1}{2}Cv^2$	Electromagnetic energy $\frac{1}{2}Li^2$
Thermal $T: \mbox{Across variable} \\ Q: \mbox{Through variable}$	Thermal energy $\int Q = C_t T$	N/A
Fluid $P : {\it Across variable} \\ Q : {\it Through variable}$	Potential energy $\frac{1}{2}C_fP^2$	Kinetic energy $rac{1}{2}I_fQ^2$

MECH 366

Summary

- Today's topics
 - Modeling procedure
 - Analogies between different domains (mechanical, electrical, thermal, fluid)
- "Homework"
 - Think about physical systems for the project available for you. Discuss people around you.
 - Sep 13 (Fri): Meeting for project topic discussion at Kaiser 1160. (There is no laboratory session.)

G1: 10am, G2: 11am, G3: 1pm, G4: 2pm