

lunch this Fri 9/25

/rsvp

lecture this Wed 9/23

online only

problem set 2

Examination Book

Name	
Subject	
Instructor	
Section	Class
Date	Book No.

PONTIAC PAPER CO.

"Home of the Blue Books"
777 Henderson Blvd., Folcroft, PA 19032-0193
(610) 583-5505 FAX (610) 583-4927

4 2 6 8 1 3 7 5

bubble sort

selection sort

insertion sort

bubble sort

(n-1)

$$(n-1)+(n-2)$$

$$(n-1)+(n-2)+...+1$$

$$(n-1) + (n-2) + ... + 1$$

 $n(n-1)/2$

$$(n-1) + (n-2) + ... + 1$$

 $n(n-1)/2$
 $(n^2 - n)/2$

$$(n-1) + (n-2) + ... + 1$$

 $n(n-1)/2$
 $(n^2 - n)/2$
 $n^2/2 - n/2$

1,000,000

 $n^2/2 - n/2$

 $n^2/2 - n/2$

 $1,000,000^2/2 - 1,000,000/2$

 $n^2/2 - n/2$

 $1,000,000^{2}/2-1,000,000/2$

500,000,000,000 - 500,000

 $n^2/2 - n/2$ $1,000,000^2/2-1,000,000/2$ 500,000,000,000 - 500,000 499,999,500,000

 $n^{2}/2 - n/2$ $O(n^{2})$


```
O(n^2)
O(n \log n)
O(n)
O(\log n)
O(1)
```

$O(n^2)$ $O(n \log n)$ O(n) $O(\log n)$

. . .

O(1)

```
O(n^2)
O(n \log n)
O(n)
O(\log n)
```

O(1)

```
O(n^2)
O(n \log n)
O(n)
O(\log n)
```

O(1)

```
O(n^2)
O(n \log n)
O(n)
O(\log n)
0(1)
```



```
\Omega(n^2)
\Omega(n \log n)
\Omega(n)
\Omega(\log n)
```

 $\Omega(1)$

$\Omega(n^2)$ $\Omega(n \log n)$ $\Omega(n)$

 $\Omega(\log n)$

 $\Omega(1)$

. . .

```
\Omega(n^2)
\Omega(n \log n)
\Omega(n)
\Omega(\log n)
\Omega(1)
```