WORKSHOP IN ADVANCED BAYESIAN PHYLOGENETICS

NOV 17-21, 2014, ADELAIDE

WHAT'S IN A MODEL?

CONTINUOUS-TIME MARKOV MODELS

DNA SUBSTITUTIONS

AMINO ACIDS

PHENOTYPIC CHARACTERS

AMONG-SITE RATE VARIATION

CONTINUOUS CHARACTERS

(OVER)PARAMETERIZATION

stochastic model

- stochastic representation of process in nature
- simplification
- models as tools / crutches in biology
- strength and weakness
 - necessary assumptions to make
 - result might be model dependent
 - very powerful!

stochastic model

- each model has parameters
 - e.g., DNA substitution model:
 - base frequencies
 - exchangeability rates
 - phylogenetic model: tree
- model-parts can be combined
 - e.g., substitution model with relaxed-clock model
- models are always wrong! (except in simulations)

PHYLOGENETIC MODEL

general Markov model

- states, probabilities of change
- memory-less process
- finite state space: e.g. nucleotides
- infinite state space: e.g. phylogenetic MCMC

common simplifications

- stationarity
- homogeneity
- time-reversibility

stationarity: process is at equilibrium

homogeneity: process is homogeneous over time

Time-reversibility: step forward as likely as backward

$$\pi_i * p_{ij} = \pi_i * p_{ji}$$

time irreversible

	0	1	2
0	-	r	0
1	0	-	r
2	r	0	-

time reversible

	0	1	2
0	-	r	r
1	r	-	r
2	r	r	-

DNA SUBSTITUTION MODELS

- 4-state Markov model
- memoryless stochastic process
- parameters:
 - stationary frequencies of the four nucleotides
 - exchangeability rates of the 6 (12) possible transitions
- usual assumptions: stationarity, homogeneity, timereversibility (GTR subspace)
- site independence
- (can be combined with among-site rate variation models)

DNA SUBSTITUTION MODELS

DNA SUBSTITUTION MODELS

- models from GTR subspace are nested
- number of free parameters of substitution models?
 - JC: 0! K2P: 2 K3P: 3 SYM: 5
 - F81: 3 HKY: 4 TrN: 6 GTR: 8
- likelihood approaches to test models: jModeltest,
 MrModeltest, PartitionFinder
- Bayesian: Bayes factor tests, reversible jump over whole model space (MrBayes)

calculating tree likelihood under Markov model

- continuous-time
- sites are independent
- state frequencies & exchangeability rates ->
 'Q matrix'

integrating over all possible ancestral states

$$\pi_A \times p_{AA}(v_1) \times p_{AA}(v_2) \times p_{AG}(v_3) \times p_{AG}(v_4)$$

 π_i — Stationary frequencies

 $p_{ij}(v)$ — Transition probabilities

$$Pr \begin{bmatrix} G & G & A \\ A & A \end{bmatrix} + Pr \begin{bmatrix} G & G & A \\ A & G \end{bmatrix} + Pr \begin{bmatrix} G & G & A \\ A & G \end{bmatrix} + Pr \begin{bmatrix} G & G & A \\ A & G \end{bmatrix} + Pr \begin{bmatrix} G & G & A \\ G & G & A \end{bmatrix} + Pr \begin{bmatrix} G & G &$$

AMINO-ACID SUBSTITUTION MODELS

parameter space of AA models

- 20 different amino acids
- → full GTR model has 19 free parameters for the state frequencies and 189 free parameters for exchangeability rates!

AMINO-ACID SUBSTITUTION MODELS

- fixed-rate models
 - Poisson model: JC for AA (all rates / state freqs equal)
 - empirical models: "trained" on large datasets (Dayhoff, mtRev, mtMam, WAG, Blosum62, etc.)
- variable-rate models
 - Equalin model: rates equal, state freqs estimated
 - GTR model: all 189 + 19 parameters estimated
- mixture models
 - CAT model (Lartillot & Philippe 2004)

AMINO-ACID SUBSTITUTION MODELS

CAT model

- mixture model
- accounting for site-specific amino-acid preferences
- implementation: PhyloBayes

Antennae

- 22. Male antennae: flagellomeres without lateral projections = 0; flagellomeres with distinct, slender lateral projections many times longer than the base of the flagellomeres, projections not flattened and appressed = 1; flagellomeres with flattened and appressed lateral projections = 2 (unordered).
- 23. First flagellomeres (Vilhelmsen, 1997a: 3; Ronquist et al., 1999: 14): not broader, and not much longer than the length of any of the following flagellomeres = 0; distinctly broader and much longer than any of the following flagellomeres = 1; distinctly enlargened, distal flagellomeres absent = 2 (ordered).
- 24. Apical flagellomeres: not conspicuously modified = 0; clubshaped = 1; reduced and with flattened apex = 2 (unordered). The last character state was newly added. Scored as inapplicable when only one flagellomere was present.
- 25. Multiporous plate sensilla (Basibuyuk & Quicke, 1999): absent = 0; present = 1.

Why?

- use characters for phylogenetic inference
 - morphological tree
 - morphology to place fossils
 - characters from genome "morphology"
- study character evolution
 - reconstruct ancestral states
 - study correlated evolution (comparative method)

Difficulties

- how to encode phenotypic characters?
 - define characters
 - define character states
- model of evolution?
- different character types: discrete and continuous

differences to nucleotides / AA:

- state names are arbitrary
- differing number of states per character
- no constant characters sampled!
 - -> account for it in likelihood function

Mk MODEL

- -> extend the JC model for an arbitrary number of states: Mk model (Lewis, 2001)
- k= number of states
- equal frequencies of 1/k
- equal rates between them -> transition probabilities = 1/k - 1/k*e-kt
- can in principle be applied to any type of discrete characters

Mk MODEL

extentions possible:

- relax equal-frequency assumption: allow for asymmetry in stationary state frequencies according to a symetric Dirichlet/Beta distribution
- among-site rate varition, same way as for nucleotides

DISCUSSION MARKOV MODELS

- For DNA sequences, which of the 3 standard assumptions is the violated most often?
 - stationarity
 - homogeneity
 - time-reversibility
 - site independence

DISCUSSION MARKOV MODELS

- Is Markov-Chain Monte Carlo (MCMC) algorithm
 - stationary?
 - homogeneous?
 - time-reversible?
- What is the main difference to substitution models?

GTR assumes stationarity & homogeneity

- what if progressive evolution?
- → different state frequencies at the root

Fredrik Ronquist, Stockholm

Lars Vilhelmsen, Copenhagen

HYMENOPTERAN MORPHOLOGY

- a) wing veins: present or absent [23]
- b) muscles: present or absent/fused [56]
- c) sclerites: separate or absent/fused [67]

- morphology only
- adding 7 genes
- adding fossil and time information

HYMENOPTERAN MORPHOLOGY

- frequency of state "absent" at root
- frequency of state "absent" at equilibrium

GTR assumes stationarity & homogeneity

- what if progressive evolution?
- → different state frequencies at the root

- what if nucleotide composition differs among terminals?
- → non-homogeneous models

GC content changes over the tree

(Galtier & Gouy 1998, MBE)

parameters	symbol	number
ancestral G+C %	ø	1
branch lengths	λ_i	2n - 3
root location	ф	1
Ts/Tv ratio	к	1
equilibrium G+C %	Θ_i	2n - 2
		4n - 2

Bacteria: GC content correlates with optimal growth temperature

inferring environment of the root of the tree of life

(Bousseau ea, 2008)

AMONG-SITE RATE VARIATION

sites evolving at different rates

sites evolving at different rates

discretized gamma-distribution

Yang 1994

sites evolving at different rates

- discretized gamma-distribution
- proportion of invariant sites
 - potential interaction with gamma!
- mixture models
- partitioning

usually more important than GTR submodel!

partitioning

- according to molecular evolution
 - datatype (morphology versus DNA)
 - gene origin (e.g., mtDNA versus nDNA)
 - gene
 - codon position
 - amino acid sequences: functional domains
 - PartitionFinder: trying submodels
- automatized: mixture model

what do we partition?

PHYLOGENETIC MODEL

PHYLOGENETIC MODEL

what do we partition?

- substitution model parameters
- among-site rate variation
- base rate

- branch lengths?
- topology?
- relaxed-clock model?

 body size, brain size, limb length, weight, morphometrics, etc.

- body size, brain size, limb length, weight, morphometrics, etc.
- study character evolution
- study correlations (comparative method)
- Markov model won't work, unless we discretize the continuous states
- Brownian motion

→ Brownian motion

- changes drawn from a normal distribution with mean = previous value and a specified variance
- again memoryless

→ Brownian motion

(OVER)PARAMETRIZATION

 relationship between amount of data and number of infered parameters

(OVER)PARAMETRIZATION

- relationship between amount of data and number of infered parameters
 - example: DNA models
 - how many sites vary per partition?
 - example: morphology models
 - often very few characters -> use simple model!
- model misspecification: failure to incorporate vital characteristic of the process

(OVER)PARAMETRIZATION

distinction between accuracy and precision

 how do those relate to model misspecification and over-parametrization?

SUBSTITUTION MODELS

- which of these model assumptions are "worst" for YOUR current dataset?
 - standard partitioning scheme
 - gamma among-site rate variation
 - homogeneity
- what dataset had the worst ratio in terms of data / model parameters?
- what non-standard data types have you worked with?