RELATÓRIO EP4 (29/06)

Diâmetro do grafo

Alexandre Kenji Okamoto	11208371
Daniel Feitosa dos Santos	11270591
Fernanda Cavalcante Nascimento	11390827
Giovani Verginelli Haka	11295696
Larissa Yurie Maruyama	11295928
Luísa Dipierri Landert	8010698
Matheus Antonio Cardoso Reyes	11270910
Otávio Nunes Rosa	11319037

REPOSITÓRIO NO GITHUB

https://github.com/matheus-reves/AEDII-Grafos/tree/master/EP4

ESCOLHA E CRITÉRIOS DE RECORTE DO CENÁRIO

Em um primeiro momento, o grupo tentou processar o cenário 1, porém, quando um dos computadores alcançou o sétimo dia de processamento – sem previsão próxima de término – , optou-se por trocar para o cenário 3 para diminuir a espera.

Apesar da tentativa, a situação se repetiu mesmo diante de um processamento de dados relativamente menor.

Assim, por causa do grande tempo de processamento do programa e com a permissão do docente, foi realizado um recorte do cenário 3 com os seguintes critérios:

- 1. Ordenação das arestas, respeitando a ordem das duas colunas numéricas;
- 2. Seleção dos nós da primeira coluna até o número 100 (acima de 1700 arestas);
- 3. Verificação dos nós da segunda coluna que contêm vértices que foram excluídos (> 100) e excluí-los do arquivo.
- 4. Finalização do cenário com 1727 arestas e 101 vértices (0 ~ 100).

TEMPO DE PROCESSAMENTO ASSINTÓTICO DO PROGRAMA EM TERMOS DE NÚMEROS DE RELAÇÕES ENTRE NÓS N E DE ARESTAS E DA COMPONENTE GIGANTE

O código analisa as relações de todos os vértices entre si, verificando individualmente o número de passos necessários para que eles se encontrem. Essa verificação será feita **n** vezes e depende do número de vértices existentes no grafo.

Além disso, o tempo estimado para varrer o grafo inteiro apenas uma vez depende do quanto o ele está integrado (número de arestas), dado que um grafo sem arestas faria o tempo de execução tender a 0. Assim, vamos assumir uma variável **a** que aponta a quantidade de arestas.

Portanto o tempo assintótico do grafo ficaria algo entorno de θ (n * a).

HISTOGRAMA DAS DISTÂNCIAS ENTRE PARES DE NÓS

QUANTO TEMPO FOI NECESSÁRIO PARA PROCESSAR AS DISTÂNCIAS (EM SEGUNDOS)

Lenovo Legion Y7000 - i7 (8ª Geração) 8750H - 8GB RAM - SSD 550GB	1.1891915798187256
Dell Inspiron 5584 - i7 (8° Geração) 8565U - 8GB RAM - SSD 128GB / HDD 1TB	2.2910032272338867
Acer Aspire V3 - i7 (3ª Geração) 3632QM - 4GB RAM - HD 500GB	3.167327404022217
Lenovo Ideapad 330 - i7 (8ª Geração) 8550U - 8GB RAM - SSD 550GB	3.2124650478363037
MacBook Pro Retina - i5 Dual-Core - 8GB RAM	3.6973540782928467
Samsung Essentials E31 NP370E4K - i3 (5 ^a Geração) 5005U - 4GB RAM	5.553081512451172