

Augmented-SVM: Automatic space partitioning for combining multiple non-linear dynamics

Ashwini SHUKLA & Aude BILLARD

Learning Algorithms and Systems Laboratory (LASA) Ecole Polytechnique Federale de Lausanne (EPFL)

Lausanne, Switzerland

Dynamical Systems

Learning autonomous dynamical systems (DS) from data

$$\{\mathbf{x}_i, \dot{\mathbf{x}}_i\}_{i=1\cdots M}; \mathbf{x}_i \in \mathbb{R}^N \quad \Rightarrow \quad \dot{\mathbf{x}} = f(\mathbf{x}); f: \mathbb{R}^N \mapsto \mathbb{R}^N$$

- Regression (GPR, SVR, GMR, LWR, LWPR), Latent space models (GPDM)
- Stability!
 - Important for motion synthesis
 - Progress toward a goal state

Single attractor dynamics

- For a DS $\dot{\mathbf{x}} = f(\mathbf{x})$, $\mathbf{x} \in \mathbb{R}^N$, \mathbf{x}^* is an attractor iff \exists some open neighborhood \mathcal{B} of \mathbf{x}^* such that $\mathbf{x}(t) \to \mathbf{x}^*$ as $t \to \infty$ $\forall \mathbf{x}(0) \in \mathcal{B}$
- \square $\mathcal{B} \rightarrow$ basin of attraction

Multiple attractor dynamics

□ All attractors must have finite basins of attraction → space partitions

Combination of dynamics

The naïve approach : SVM classifier based switched dynamical system

Incompatibility between the classifier function and dynamics

Boundary avoiding

Dynamic gradient method [1]: trajectories in the positive (negative) region move along <u>increasing (decreasing)</u> values of the classifier function.

[1] **Lee**, **J**. Dynamic gradient approaches to compute the closest unstable equilibrium point for stability region estimate and their computational limitations. IEEE TRO Automatic Control, 2003.

Designing the classifier function: Augmented-SVM

- lacksquare Data $\{\mathbf{x}_i,\dot{\mathbf{x}}_i,y_i\}_{i=1\cdots M}$; $\mathbf{x}\in\mathbb{R}^N,y_i=\pm 1$
- Feature space transformation and its Jacobian
- Constraints
 - Classification
 - DS compatibility
 - Stability

$$\min_{\mathbf{w}, \xi_i} rac{1}{2} \|\mathbf{w}\|^2 + c \sum_{i=1}^{M} \xi_i \quad \mathbf{subject} \quad \mathbf{to}$$

$$h(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}) + b \; ; \; \boldsymbol{\phi} \in \mathbb{R}^{F}$$
 $\nabla h(\mathbf{x}) = J(\mathbf{x})\mathbf{w} \; ; \; J \in \mathbb{R}^{F \times N}$

$$y_i h(\mathbf{x}_i) \ge 1$$

$$y_i \nabla h(\mathbf{x}_i)^{\mathrm{T}} \hat{\dot{\mathbf{x}}}_i + \xi_i \ge 0$$

$$\nabla h(\mathbf{x}^*) = 0$$

Primal:
$$\begin{aligned} & \underbrace{\frac{1}{\mathbf{w}_i}\frac{1}{2}\|\mathbf{w}\|^2 + c\sum_{i=1}^{M}\xi_i \quad \mathbf{subject} \quad \mathbf{to}}_{i=1} & \underbrace{\frac{y_i\left(\mathbf{w}^T\boldsymbol{\phi}(\mathbf{x}_i) + b\right)}{y_i\mathbf{w}^T\mathbf{J}(\mathbf{x}_i)\hat{\mathbf{x}}_i + \xi_i} > 0}_{\mathbf{w}^T\mathbf{J}(\mathbf{x}^*)\hat{\mathbf{e}}_i > 0} & \forall i = 1\cdots M \\ & \mathbf{w}^T\mathbf{J}(\mathbf{x}^*)\hat{\mathbf{e}}_i = 0 & \forall i = 1\cdots N \end{aligned}$$

 $\{\mathbf{e}_i\} \to \text{Cannonical basis of } \mathbb{R}^N$

A-SVM Dual

The Lagrangian with multipliers
$$\alpha_i, \beta_i, \gamma_i$$

$$\mathcal{L}(\mathbf{w}, b, \alpha_i, \beta_i, \gamma_i) = \frac{1}{2} \|\mathbf{w}\|^2 + c \sum_{i=1}^{M} \xi_i - \sum_{i=1}^{M} \mu_i \xi_i - \sum_{i=1}^{M} \alpha_i \left(y_i (\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i) + b) - 1 \right)$$

$$-\sum_{i=1}^{M} \beta_i \left(y_i \mathbf{w}^T \mathbf{J}(\mathbf{x}_i) \hat{\dot{\mathbf{x}}}_i + \xi_i \right) + \sum_{i=1}^{N} \gamma_i \mathbf{w}^T \mathbf{J}(\mathbf{x}^*) \mathbf{e}_i$$

Dual: Constrained quadratic program

$$\min_{\frac{1}{2}} \begin{bmatrix} \mathbf{x}^{T} \boldsymbol{\beta}^{T} \boldsymbol{\gamma}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{K} & \mathbf{G} & -\mathbf{G}_{*} \\ \mathbf{G}^{T} & \mathbf{H} & -\mathbf{H}_{*} \\ -\mathbf{G}_{*}^{T} & -\mathbf{H}_{*}^{T} & \mathbf{H}_{**} \end{bmatrix} \begin{bmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \\ \boldsymbol{\gamma} \end{bmatrix} - \boldsymbol{\alpha}^{T} \mathbf{1} \quad \text{subject to} \quad \underbrace{\begin{array}{c} 0 \leq \alpha_{i} \\ 0 \leq \beta_{i} \leq C \\ \sum_{i=1}^{P} \alpha_{i} y_{i} = 0 \end{array}}$$

$$(\mathbf{K})_{ij} = y_{i} y_{j} \mathbf{b}(\mathbf{x}_{i}) \mathbf{x}_{j} \mathbf{b}(\mathbf{x}_{j}) \qquad (\mathbf{H})_{ij} = \hat{\mathbf{x}}_{i}^{T} \underbrace{\begin{array}{c} \partial_{i}^{2} k(\mathbf{x}_{i}^{T} \mathbf{x}_{j}^{T}) \hat{\mathbf{x}}_{j}^{2} \hat{\mathbf{x}}_{j}} \hat{\mathbf{x}}_{j} \\ \partial \mathbf{x}_{i} \partial \mathbf{x}_{j}^{T} \mathbf$$

SMO & ν -variant for A-SVM

Closed form & Globally convergent updates on Lagrange multipliers

 α updates \rightarrow same as SVM-SMO

$$\beta_i^{new} = \beta_i^{old} - \frac{\hat{\mathbf{x}}_i^T \nabla_i h(\mathbf{x}_i)}{(\mathbf{H})_{ii}}$$
$$\gamma_i^{new} = \gamma_i^{old} + \frac{\mathbf{e}_i^T \nabla_* h(\mathbf{x}^*)}{(\mathbf{H}_{**})_{ii}}$$

ho -ASVM variant can be derived where $u_1,
u_2$ are the lower-bounds on the fraction of alpha,
beta -SV resp.

Classifier function

$$h(\mathbf{x}) = \underbrace{\sum_{i=1}^{M} \alpha_i y_i k(\mathbf{x}, \mathbf{x}_i)}_{l=1} + \underbrace{\sum_{i=1}^{M} \beta_i \hat{\mathbf{x}}_i^{\mathrm{T}} \frac{\partial k(\mathbf{x}, \mathbf{x}_i)}{\partial \mathbf{x}_i}}_{l=1} - \underbrace{\sum_{i=1}^{N} \gamma_i \mathbf{e}_i^{\mathrm{T}} \frac{\partial k(\mathbf{x}, \mathbf{x}^*)}{\partial \mathbf{x}^*}}_{l=1} + \underbrace{b}_{l=1}$$
Standard SVM
$$\alpha - \text{SVs}$$
Non-linear bias bias

 $\{\mathbf{e}_i\} \to \text{Cannonical basis of } \mathbb{R}^N$

 β - SV for the rbf kernel

 $\mathbf{x}(2)$ v_{0} $v_$

1-vs-rest multi-class implementation

Trajectories starting inside a region remain inside and terminate at the *corresponding* attractor

The robot switches between the two attractors *on-the-fly*

Fast decision-making + trajectory generation

W53

This work was supported by EU Project First-MM

Thanks to **Dr. Basilio Noris** for helping with implementation of ASVM-SMO