Logical Equivalences

Given any statement variables p, q, and r, a tautology \mathbf{t} , and a contradiction \mathbf{c} , the following logical equivalences hold:

1. Commutative laws: $p \wedge q \equiv q \wedge p$ $p \vee q \equiv q \vee p$

2. Associative laws: $(p \land q) \land r \equiv p \land (q \land r)$ $(p \lor q) \lor r \equiv p \lor (q \lor r)$

3. Distributive laws: $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$ $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$

4. Identity laws: $p \wedge \mathbf{t} \equiv p$ $p \vee \mathbf{c} \equiv p$

5. Negation laws: $p \vee \neg p \equiv \mathbf{t}$ $p \wedge \neg p \equiv \mathbf{c}$

6. Double negative law: $\neg(\neg p) \equiv p$

7. Idempotent laws: $p \wedge p \equiv p$ $p \vee p \equiv p$

8. Universal bound law: $p \lor \mathbf{t} \equiv \mathbf{t}$ $p \land \mathbf{c} \equiv \mathbf{c}$

9. De Morgan's laws: $\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$

10. Absorption law: $p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$

11. Negations of \mathbf{t} and \mathbf{c} : $\mathbf{t} \equiv \mathbf{c}$

12. Division into cases: $p \lor q \to r \equiv (p \to r) \land (q \to r)$

13. Implication as or: $p \to q \equiv \neg p \lor q$

14. Negating a conditional: $\neg(p \to q) \equiv p \land \neg q$

15. Contrapositive: $p \to q \equiv \neg q \to \neg p$

16. iff as implications: $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$