EEE336 Signal Processing and Digital Filtering

Revision

Zhao Wang
Zhao.wang@xjtlu.edu.cn
Room EE322

Outline

- 1. Sampling and reconstruction
- 2. Quantization
- 3. Discrete-time signals and systems in time and frequency domain => DTFT
- 4. DFT (Discrete Fourier Transform)
- 5. FFT (Fast Fourier Transform)
- 6. Z-transform
- 7. Filter structures
- 8. FIR filters
- 9. IIR filters

Lecture 3 Sampling and Reconstruction

- 1. Sampling
 - In TD and FD
 - Derivation & Frequencies relationship (f vs Ω vs ω)
 - Graphical illustration
- 2. Anti-aliasing
 - What causes aliasing? Nyquist theorem
 - Anti-aliasing filter
- 3. Reconstruction

3.1 Sampling

(a) Ideal data flow for the digital processing of continuous-time signals

In Time Domain

In Frequency Domain

3.2 Anti-aliasing

- Nyquist theorem: to avoid aliasing, the sampling frequency
- Three types of sampling: over sampling, critical sampling and under sampling
- Aliasing: If Nyquist theorem was not satisfied, aliasing happens
 - To reduce the aliasing error, passing the CT signal through an "Anti-aliasing filter" before sampling it.

5

3.3 Reconstruction

- The spectrum of the sampled signal contains all the information of the original CT signal
 - So the CT signal can be recovered without any loss;
 - But a condition needs to be satisfied:

$$\Omega_0 T_s \leq \pi \iff 2\Omega_0 \leq \Omega_s$$

- The Nyquist theorem!

Lecture 4 Quantization

- 1. Quantization and error evaluation
 - Relationship among the key parameters R, Q and B
 - Error e and dynamic range SNR
 - Truncation and rounding
- 2. D/A Conversion: 3 types of codes
 - Natural binary
 - Offset binary
 - 2's combined binary
- 3. A/D Conversion
 - How to perform the example

4.1 Quantisation Process

- R is the full-scale range which is divided equally (for a uniform quantizer) into 2^B quantization levels.
- The spacing between levels are called the *quantization width / quantization level* or *quantizer resolution* Q

4.1 Quantisation error

• Root-mean-square of error *e*:

– Truncation:
$$e_{rms} = \sqrt{\bar{e}^2} = \frac{Q}{\sqrt{12}}$$

– Rounding:
$$e_{rms} = \sqrt{\bar{e}^2} = \frac{Q}{\sqrt{3}}$$

- Signal-to-noise ratio (SNR)
 - R range of signal
 - Q range of noise

$$SNR = 20 \log_{10} \left(\frac{R}{Q}\right) = 6B \text{ (dB)}$$

SNR is also called the *dynamic range* of the quantiser

4.2 D/A Converters

- Three types of converter and the coding conventions
 - Natural Binary: the unipolar natural binary

$$x_Q = R(b_1 2^{-1} + b_2 2^{-2} + \dots + b_B 2^{-B}) \iff x_Q = Qm$$
 (1)

where m is the integer whose binary representation is $(b_1b_2 \cdots b_B)$

- LSB (Least Significant Bit): b_B
- MSB (Most Significant Bit): b₁
- Offset Binary: the bipolar natural binary

$$x_{Q} = R(b_{1}2^{-1} + b_{2}2^{-2} + \dots + b_{B}2^{-B} - 0.5)$$
 (2)

- 2's Combine: the two's complement

$$x_{Q} = R(\overline{b}_{1}2^{-1} + b_{2}2^{-2} + \dots + b_{B}2^{-B} - 0.5)$$
(3)

4.3 A/D Converters

• Example: Convert the analog values x = 3.5 and x = -1.5 volts to their offset binary representation, assuming B = 4 bits and R = 10 volts

test	$b_1b_2b_3b_4$	x_{Q}	$C = u(x - x_{Q})$
b_1	1000	0.000	1
b_1 b_2 b_3	1100	2.500	1
b_3	1110	3.750	0
b_4	1 1 0 1	3.125	1
	1101	3.125	

$$x = 3.5$$

test	$b_1b_2b_3b_4$	x_{Q}	$C = u(x - x_{Q})$
\boldsymbol{b}_1	1000	0.000	0
b_2	0100	-2.500	1
b_3	0110	-1.250	0
b_4	0101	-1.875	1
	0101	-1.875	

Lecture 5-8 Discrete Signals and Systems

- 1. Convolution
 - Linear convolution
 - Multiplication VS convolution
- 2. DTFT (<u>Discrete-Time Fourier Transform</u>)
 - Definition and relationship to time domain
 - Calculation
 - Properties & applications

6.1 Convolution

- Linear convolution:
 - Input x[n];
 - System impulse response h[n];
 - Output y[n]:

$$y[n_0] = \sum_{k=-\infty}^{\infty} x[k]h[n_0 - k]$$

- Calculation
 - Different methods ...

8.1 Time-Frequency Domain Relationship

• If x[n] is input to an LTI system with an impulse response of h[n], then the DTFT of the output is the product of $X(\omega)$ and $H(\omega)$

7.1 DTFT Definition

• The discrete-time Fourier transform (DTFT) $X(e^{j\omega})$ of a sequence x[n] is defined by:

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

- DTFT $X(e^{j\omega})$ of a sequence x[n] is a continuous function of ω
- Inverse Discrete-Time Fourier Transform the Fourier coefficients $\{x[n]\}$ can be computed from $X(e^{j\omega})$ using

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

7.2 DTFT Properties

- 1. Linearity: $ax_1[n] + bx_2[n] \stackrel{\text{DTFT}}{\longleftrightarrow} aX_1(\omega) + bX_2(\omega)$
- 2. Time-reversal: $x[-n] \stackrel{\text{DTFT}}{\longleftrightarrow} X(-\omega)$
- 3. Symmetric:

$$x^*[n] \xrightarrow{\mathsf{DTFT}} X^*(-\omega) \qquad x^*[-n] \xrightarrow{\mathsf{DTFT}} X^*(\omega)$$

• 4. Shifting

$$x[n-M] \xrightarrow{\text{DTFT}} X(\omega)e^{-j\omega M}$$

$$e^{j\omega_0 n}x[n] \xrightarrow{\text{DTFT}} X(\omega-\omega_0)$$

• 5. Parseval Theorem:

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(\omega)|^2 d\omega$$

Lecture 9 DFT

- 1. Definition and calculation
 - Analysis and synthesis equations
 - Twiddle factor
 - Calculation
- 2. Relationships among CTFT, DTFT and DFT
- 3. Properties
- 4. Circular convolution

9.1 DFT Definition

The analysis equation

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}, \quad k = 0, 1, ..., N-1$$

The synthesis equation

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}, \quad k = 0, 1, ..., N-1$$

• The DFT pair is denoted as $x[n] \leftarrow X[k]$

9.1 Computing DFT

- For any given k, the DFT is computed by multiplying each x[n] with each of the complex exponentials $W_N^{nk} = e^{-j2\pi nk/N}$ and then adding up all these components
- If, for example, we wish to compute an 8-point DFT, the complex exponentials are 8 unit vectors placed at equal distances from each other on the unit circle

9.2 CTFT → DTFT → DFT

9.3 DFT Properties

- 1. Linearity: $ax_1[n] + bx_2[n] \stackrel{\text{DFT}}{\longleftrightarrow} aX_1[k] + bX_2[k]$
- 2. Shifting: $x[\langle n-M\rangle_N] \stackrel{\mathsf{DFT}}{\longleftarrow} W_N^{kM} X[k]$ $W_N^{-kM} x[n] \stackrel{\mathsf{DTFT}}{\longleftarrow} X[\langle n-M\rangle_N]$
- 3. Symmetry:
 - Many different cases
 - Example: real sequence x[n], whose X[k] is conjugate symmetric
- 4. Parseval Theorem:

$$\sum_{n=0}^{N-1} |x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2$$

9.4 Linear VS circular convolution

• Is there any relationship between the linear and circular convolutions? Can one be obtained from the other?

• YES!

- FACT: If we zero pad both sequences x[n] and h[n], so that they are both of length N1+N2-1, then linear convolution and circular convolution result in identical sequences
- Furthermore: If the respective DFTs of the zero padded sequences are X[k] and H[k], then the inverse DFT of X[k]·H[k] is equal to the linear convolution of x[n] and h[n]
- Note that, normally, the inverse DFT of X[k].H[k] is the circular convolution of x[n] and h[n]. If they are zero padded, then the inverse DFT is also the linear convolution of the two.

Lecture 10 FFT

- 1. Computational complexity, i.e. number of additions and multiplications
 - DFT, convolution, and FFT
 - How to save?

- 2. FFT flow chart (DIT Radix-2)
 - How to draw?
 - How to calculate DFT based on the flow chart?
 - Bit reversal

Final flow-graph of DIT-2

• Number of stages:

$$p = log_2 N$$

• Number of butterflies per stage:

- Two computational complexity:
 - N(p-1) = N(log₂N-1)complex multiplications;
 - Np = Nlog₂Ncomplex additions.

Lecture 11 Z-Transform

- 1. Definition and ROC
- 2. Relationship between DTFT and Z-transform
- 3. Some concepts: stable, causal, right-handed, left-handed, etc.
- 4. Properties
- 5. Zeroes and poles
- Generally speaking, everything in this lecture is important!

Lecture 12 Filters Classifications

- 1. Phase
 - Calculate phase response of a system
 - Classification according to phase response
- 2. Magnitude
 - Calculate magnitude response of a system
 - Classification according to magnitude response
- 3. Linear-phase FIR filters
 - Type I, II, III and IV
 - Zeroes locations
 - Magnitude responses

12.1 Phase delay and group delay

• Note that both phase delay and group delay are slopes of the phase function, just defined slightly differently

12.2 LPF, HPF, BPF and BSF

12.3 Zero locations of the linear-phase FIR filters

• The presence of zeroes at $z=\pm 1$ leads to some limitations on the use of these linear-phase transfer functions for designing frequency-selective filters

 A Type 2 FIR filter cannot be used to design a highpass filter since it always has a zero at z=-1

- A Type 3 FIR filter has zeroes at both z = 1 and z=-1, and hence cannot be used to design either a lowpass or a highpass or a bandstop filter

- A Type 4 FIR filter is not appropriate to design a lowpass filter due to the presence of a zero at z = 1
- Type 1 FIR filter has no such restrictions and can be used to design almost any type of filter

Lecture 13 Filter Structures

- 1. Two ways
 - Block diagram
 - Signal flow chart
- 2. From math expressions to graphs
 - From CCLDE
 - From transfer function
- 3. From graphs to math expressions

13.1 Basic building blocks

 The computational algorithm of an LTI digital filter can be conveniently represented in block diagram form using the basic building blocks:

13.2 Drawing

13.3 From graphs to math expressions

- Given a block diagram, the filter implemented by that diagram can be obtained by
 - writing down the input / output equations on key points of the block diagram;
 - eliminating the internal variables;
 - finally obtaining the main input / output expression.
- Example: consider the single-loop feedback structure:

Lecture 14 FIR Filters

- 1. Linear-phase FIR filters
 - In lecture 12

- 2. FIR filter design
 - Window method

14.2 FIR Filter Design

- This is the basic, straightforward approach to FIR filter design:
 - Step 1: Start with an ideal filter that meets the design criteria, say a filter $H_d(\omega)$
 - Step 2: Take the inverse DTFT of this $H_d(\omega)$ to obtain $h_d[n]$.
 - This $h_d[n]$ will be double infinitely long, and non-causal -> unrealizable
 - Step 3: Truncate using a window, say a rectangle, so that 2M+1
 coefficients of h_d[n] are retained, and all the others are discarded.
 - We now have a finite length (order 2M) filter, $h_t[n]$, however, it is still non-causal
 - Step 4: Shift the truncated h_t[n] to the right (i.e., delay) by M samples, so that the first sample now occurs at n=0.
 - The resulting impulse response, $h_t[n-M]$ is a causal, stable, FIR filter, which has an almost identical magnitude response and a phase factor or $e^{-j\omega M}$ compared to the original filter, due to delay introduced.

Lecture 15 IIR Filters

- 1. Bilinear Transformation
 - Frequency warping
- 2. Analogue Filters
 - Butterworth filter
- 3. IIR Filter Design
 - Frequency prewar
 - Find H(s)
 - $-H(s) \Rightarrow H(z)$ by using bilinear transformation

15.1 Bilinear transformation

Since, the frequency response is defined on the unit circle,

This mapping is (highly) nonlinear

=> Frequency warping

15.2 Butterworth Filter Design

• Two parameters completely characterizing a Butterworth lowpass filter are Ω_c and N

$$H_a(s)=rac{\Omega_c^N}{\prod_{l=1}^N(s-p_l)}$$
 where $p_l=\Omega_c e^{jrac{\pi(2l+1+N)}{2N}}$

• To design a Butterworth filter, we thus need to find out Ω_c and N. They are determined from the specified band edges Ω_p and Ω_s , and minimum passband magnitude 1- δ_p , and maximum stopband ripple δ_s .

15.3 Designing Procedure

- 1. Prewarp ω_p , ω_s to find their analog equivalents Ω_p , Ω_s ;
- 2. Design the analog filter: Determine N and Ω_c :
 - a) From δ_p , δ_s , Ω_p and Ω_s obtain the order of the filter N
 - Note that the order N must be integer, so the value obtained from this expression must be rounded up to exceed the specifications
 - Use N, δ_p , and Ω_p to calculate the 3dB cutoff frequency Ωc
 - Determine the corresponding H(s) and its poles
- 3. Apply bilinear transformation to obtain H(z)

Next lecture

• Tomorrow we will give some information of the final exam

- Q/A
 - Prepare some questions if you had any

