

Amendments to the Specification:

Page 36, lines 3-8, please amend, as follows:

The second observation is that, if the grantor A is the one who encrypts the message m , then A can keep the random number k private and use B 's public key $\beta = g^b \pmod{p}$, instead of B 's private key b , to generate the proxy key:

$$\pi = (\beta \alpha \underline{a}^{-1})^k \pmod{p},$$

where $\alpha \underline{a}$ is A 's ~~public~~ private key. This eliminates the requirement for B 's private key b (or key exchange between A and B), and implies that B does not have to trust A , either.