UEPB/CCT/DC/BC

Disciplina: Cálculo Numérico Período: 2022.1 Data: 26/06/2022 Prof. Antonio

Carlos

3ª. Avaliação – Erros em Métodos Numéricos (Tema 4)

ATENÇÃO! Os quesitos desta avaliação dependem de dados (A1, A2, etc.) da tabela a seguir que, por sua vez, dependem do último algarismo da matrícula de

cada aluno. POR FAVOR, não peguem os dados de outra matrícula!

on i Avon, não peguein os dados de odira matricula:					
latrículas terminadas m	0, 3 e 5	1, 2 e 6	4 e 7	8 e 9	
A1	2,45	2,41	1,64	3,77	
A2	5,6	2,5	3,4	3,1	
A3	2,1	5,7	1,6	2,9	
A4	а	b	C	d	
A5	W	X	y	z	
A6	0,835	0,743	0,974	0,687	

Quesito 1: Uma grandeza medida **x'**, de valor **2,41**, está contaminada com 2,5% de erro relativo percentual ao valor real (Er%) dessa grandeza.

- a) Qual o valor real x da grandeza?
- b) Qual o erro relativo (Er) ao valor real?
- c) Qual o erro absoluto (Ea)?

(Dica: slides 2 e 9. Use a fórmula abaixo para achar o valor de \mathbf{x} .)

Q En:	$\int \frac{x-x^{2}}{x} \int \frac{100^{2}}{x}$
Enx	$= \times \times \times^{1} = \times $
×	$\frac{1 - E_{0}}{1 - E_{0}}$
メニ	$\frac{2,91}{(1-2,5)} = \frac{2,91}{0,945} = \frac{2,91}{100} $
b) En =	$\begin{vmatrix} x - x' \end{vmatrix} = \frac{2.441494842 - 2.41}{2.441494842} = 0.035$
) Fa=	12,471494872-2,411=0,0674948

Quesito 2: Em uma seqüência f de operações envolvendo duas variáveis x_1 e x_2 , dada pela expressão de $f(x_1, x_2)$ a seguir, onde $x_1 = 2,5$ com $E_{a\%} = 3\%$ e $x_2 = 5,3$ com $E_{a\%} = 2\%$, calcule o erro absoluto propagado E_{adp} ao final da seqüência de operações. (Dica: fórmula XIV do slide 16; e por favor não troquem os dados de x_1 com os de x_2 ; vide matrícula!).

$$f(x_1, x_2) = ax_1 x_2 - 3x_2^2 + x_1^2$$

$$= \frac{1}{2} x_1 + 2x_2 \cdot |x_1| + |-6x_2 + 3x_1}{x_2} \cdot |x_2|$$

$$= \frac{1}{2} x_1 + 2x_2 \cdot |x_1| + |-6x_2 + 3x_1}{x_2} \cdot |x_2|$$

$$= \frac{1}{2} x_1 + 2x_2 \cdot |x_1| + |-6x_2 + 3x_1}{x_2} \cdot |x_2|$$

$$= \frac{1}{2} x_1 + 2x_2 \cdot |x_1| + |-6x_2 + 3x_1}{x_2} \cdot |x_2|$$

$$= \frac{1}{2} x_1 + 2x_2 \cdot |x_2| + |-6x_2 + 3x_1}{x_2} \cdot |x_2|$$

$$= \frac{1}{2} x_1 + 2x_2 \cdot |x_2| + |-6x_2 + 3x_1}{x_2} \cdot |x_2|$$

$$= \frac{1}{2} x_1 + 2x_2 \cdot |x_2| + |-6x_2 + 3x_1}{x_2} \cdot |x_2|$$

$$= \frac{1}{2} x_1 + 2x_2 \cdot |x_2| + |-6x_2 + 3x_1}{x_2} \cdot |x_2|$$

$$= \frac{1}{2} x_1 + \frac{1}{2} x_2 \cdot |x_2| + \frac{1}{2} x_2 \cdot |x_2|$$

$$= \frac{1}{2} x_1 + \frac{1}{2} x_2 \cdot |x_2| + \frac{1}{2} x_2 \cdot |x_2|$$

$$= \frac{1}{2} x_1 + \frac{1}{2} x_2 \cdot |x_2| + \frac{1}{2} x_2 \cdot |x_2|$$

$$= \frac{1}{2} x_1 + \frac{1}{2} x_2 \cdot |x_2| + \frac{1}{2} x_2 \cdot |x_2|$$

$$= \frac{1}{2} x_1 + \frac{1}{2} x_2 \cdot |x_2| + \frac{1}{2} x_2 \cdot |x_2|$$

$$= \frac{1}{2} x_1 + \frac{1}{2} x_2 \cdot |x_2| + \frac{1}{2} x_2 \cdot |x_2|$$

$$= \frac{1}{2} x_1 + \frac{1}{2} x_2 \cdot |x_2| + \frac{1}{2} x_2 \cdot |x_2|$$

$$= \frac{1}{2} x_1 + \frac{1}{2} x_2 \cdot |x_2| + \frac{1}{2} x_2 \cdot |x_2|$$

$$= \frac{1}{2} x_1 + \frac{1}{2} x_2 \cdot |x_2| + \frac{1}{2} x_2 \cdot |x_2|$$

$$= \frac{1}{2} x_1 + \frac{1}{2} x_2 \cdot |x_2| + \frac{1}{2} x_2 \cdot |x_2|$$

$$= \frac{1}{2} x_1 + \frac{1}{2} x_2 \cdot |x_2| + \frac{1}{2} x_2 \cdot |x_2|$$

$$= \frac{1}{2} x_1 + \frac{1}{2} x_2 \cdot |x_2| + \frac{1}{2} x_2 \cdot |x_2|$$

$$= \frac{1}{2} x_1 + \frac{1}{2} x_2 \cdot |x_2| + \frac{1}{2} x_2 \cdot |x_2|$$

$$= \frac{1}{2} x_1 + \frac{1}{2} x_2 \cdot |x_2| + \frac{1}{2} x_2 \cdot |x_2|$$

$$= \frac{1}{2} x_1 + \frac{1}{2} x_2 \cdot |x_2| + \frac{1}{2} x_2 \cdot |x_2|$$

$$= \frac{1}{2} x_1 + \frac{1}{2} x_2 \cdot |x_2| + \frac{1}{2} x_2 \cdot |x_2|$$

$$= \frac{1}{2} x_1 + \frac{1}{2} x_2 \cdot |x_2| + \frac{1}{2} x_2 \cdot |x_2|$$

$$= \frac{1}{2} x_1 + \frac{1}{2} x_2 \cdot |x_2| + \frac{1}{2} x_2 \cdot |x_2|$$

$$= \frac{1}{2} x_1 + \frac{1}{2} x_2 \cdot |x_2| + \frac{1}{2} x_2 \cdot |x_2|$$

$$= \frac{1}{2} x_1 + \frac{1}{2} x_2 \cdot |x_2| + \frac{1}{2} x_2 \cdot |x_2|$$

$$= \frac{1}{2} x_1 + \frac{1}{2} x_2 \cdot |x_2| + \frac{1}{2} x_2 \cdot |x_2|$$

$$= \frac{1}{2} x_1 + \frac{1}{2} x_2 \cdot |x_2| + \frac{1}{2} x_2 \cdot |x_2|$$

$$= \frac{1}{2} x_1 + \frac{1}{2} x_2 \cdot |x_2| + \frac{1}{2} x_2 \cdot |x_2|$$

$$= \frac{1}{2} x_1 + \frac{1}{2} x_2 \cdot |x_2| + \frac{1}{2} x_2 \cdot |x_2|$$

$$= \frac{1}{2} x_1 + \frac{1}{2} x_2 \cdot |x_2| + \frac{1}{2} x_2 \cdot |x_2|$$

$$= \frac{1}{2} x_1$$

Quesito 3: Quanto à **ORIGEM DO ERRO**, caro aluno classifique o erro cometido na situação **b**, sabendo que: (Dica: slide 5; cada matrícula é uma situação diferente!)

b – Ao fazer a leitura da medida, o responsável não estava na posição correta em relação ao instrumento de medida utilizado.

Resposta: Erro de paralaxe (ângulo de visão) – a posição do leiturista em relação ao instrumento pode acarretar uma leitura errada.

Quesito 4: Os dados foram obtidos e agora estavam sendo processados por algum método numérico. Quanto ao erro cometido durante esse **PROCEDIMENTO**, caro aluno, classifique o erro cometido na situação x, sabendo que: (Dica: slides 6, 7 e 8, matrícula).

x – Devido a pressa em se obter o resultado dos dados processados, o programa que continha o método utilizado no processamento deveria rodar por 10 minutos, mas pararam o programa quando havia transcorrido apenas metade do tempo.

Resposta: Erro de truncamento, pois foi causado devido à pressa.

Quesito 5: Uma grandeza de valor 0,743 está contaminada com um erro absoluto de 0,235. O valor real dessa grandeza pode estar em qual intervalo (isto é, pode variar de quanto até quanto)? (Dica: slide 9, item 4.1; veja seu número de matrícula!)