- **1.7.2)** Show that the additive group \mathbb{Z} acts on itself by $z \cdot a = z + a$ for all $z, a \in \mathbb{Z}$.
- \to Define the map $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ such that $z \cdot a \mapsto z + a$. We prove that this map is a group action on \mathbb{Z} .

Proof

- (1) Let $x, y, a \in \mathbb{Z}$. Then $x \cdot (y \cdot a) = x \cdot (y + a) = x + (y + a)$ and $(x + y) \cdot a = (x + y) + a$. Obviously these are equal since the integers are associative under addition.
- (2) Recall that $0 = \mathbb{1}_{\mathbb{Z}}$. Thus, $0 \cdot a = 0 + a = a$ for any integer a.
- 1.7.6) Prove that a group G acts faithfully on a set A iff the kernel of the action is the set consisting only of the identity.

Proof

- (\Rightarrow) Suppose that G acts faithfully on A. That is, if g_1, g_2 are distinct elements of G, then $\sigma_{g_1} \neq \sigma_{g_2}$. By the definition of a group action, $\mathbb{1}$ is in the kernel of the group action. However, it is the only element in the kernel since if $g \neq \mathbb{1}$, then $\sigma_g \neq \sigma_{\mathbb{1}}$. Hence, there exists at least one element $b \in A$ such that $\sigma_g b \neq b$.
- (\Leftarrow) Suppose that the kernel of a group action $\{g \in G | \forall a \in A, ga = a\} = \{1\}$ but that the group action is not faithful. Then there exist two distinct group elements g_1, g_2 such that $\sigma_{g_1} = \sigma_{g_2}$. Then $\sigma_{g_2^{-1}} \circ \sigma_{g_1} = 1$, which would imply that $g_2^{-1}g_1$ is in the kernel of the group action, but this is a contradiction since $g_2^{-1}g_1 \neq 1$. Hence, the group action must be faithful.
- **1.7.14)** Let G be a group and let A = G. Show that if G is non-abelian then the maps defined by $g \cdot a = ag$ for all $g, a \in G$ do not satisfy the axioms of a (left) group action of G on itself.

Proof

It is clear that the second requirement of the map is satisfied since $1 \cdot a = a1 = a$. However, the first is not since if $g_1 \cdot (g_2 \cdot a) = (g_1 g_2) \cdot a$ then $ag_2 g_1 = a(g_1 g_2)$ or $g_1 g_2 = g_2 g_1$ would contradict our assumption that the group G is non-abelian. Hence, this cannot be a (left) group action.

1.7.15) Let G be any group and let A = G. Show that the maps defined by $g \cdot a = ag^{-1}$ for all $g, a \in G$ do satisfy the axioms of a (left) group action of G on itself.

Proof

(1) Notice that $g_1 \cdot (g_2 \cdot a) = g_1 \cdot (ag_2^{-1}) = ag_2^{-1}g_1^{-1} = a(g_1g_2)^{-1} = (g_1g_2) \cdot a$.

(2) Also observe that $1 \cdot a = a1^{-1} = a1 = a$.

1.7.16) Let G be a ny group and let A = G. Show that the maps defined by $g \cdot a = gag^{-1}$ for all $g, a \in G$ do satisfy the axioms of a (left) group action (this action of G on itself is called *conjugation*)

Proof

 $\overline{(1)}$ We see that $g_1 \cdot (g_2 \cdot a) = g_1 \cdot g_2 a g_2^{-1} = g_1 g_2 a g_2^{-1} g_2^{-1}$ and $(g_1 g_2) \cdot a = g_1 g_2 a (g_1 g_2)^1$, implying that this map satisfies the first property of a group action.

(2) It is trivial to see that $1 \cdot a = a$.

2.2.4) For each of S_3 , D_8 , and Q_8 compute the centralizers of each element and find the center of each group.

 \rightarrow Recall $S_3 = \{1_{[3]}, (2\ 3), (1\ 2), (1\ 3), (1\ 2\ 3), (1\ 3\ 2)\}$. Thus, from previous homeworks where the multiplication tables were computed, we have the centralizers of the following elements:

$$\mathbf{1}_{[3]}: S_3
(2 3): {\mathbf{1}_{[3]}, (2 3)}
(1 2): {\mathbf{1}_{[3]}, (1 2)}
(1 3): {\mathbf{1}_{[3]}, (1 3)}
(1 2 3): {\mathbf{1}_{[3]}, (1 2 3), (1 3 2)}
(1 3 2): {\mathbf{1}_{[3]}, (1 2 3, (1 3 2))}$$

and the center of S_3

$$Z(S_3) = \{1_{[3]}\}$$

Next we have the dihedral group of order 8: $D_8 = \{R_0, R_{90}, R_{180}, R_{270}, H, V, D, D'\}$. Again, we have computed the multiplication tables for D_8 previously, giving the central-

izers for the following elements as:

$$R_0: D_8$$

$$R_{90}: \{R_0, R_{90}, R_{180}, R_{270}\}$$

$$R_{180}: D_8$$

$$R_{270}: \{R_0, R_{90}, R_{180}, R_{270}\}$$

$$H: \{R_0, H, R_{180}\}$$

$$V: \{R_0, V, R_{180}\}$$

$$D: \{R_0, D, R_{180}\}$$

$$D': \{R_0, D', R_{180}\}$$

and the center

$$Z(D_8) = \{1, R_{180}\}$$

which is proven below.

Finally, we have the quaternion group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$. The centralizers are straightforward to glean from the definition of the group:

$$\pm 1 : Q_8$$

 $\pm i : \{\pm 1, \pm i\}$
 $\pm j : \{\pm 1, \pm j\}$
 $\pm k : \{\pm 1, \pm k\}$

and the center of the group is

$$Z(Q_8) = \{\pm 1\}$$

2.2.5) In each of parts (a) to (c) show that for the specified group G and subgroup A of G, $C_G(A) = A$ and $N_G(A) = G$.

(a)
$$G = S_3$$
 and $A = \{1, (123), (132)\}.$

Recall $S_3 = \{1_{[3]}, (2\ 3), (1\ 2), (1\ 3), (1\ 2\ 3), (1\ 3\ 2)\}.$ Then,

$$C_G(A) = \{ \sigma \in S_3 | \forall \tau \in A, \sigma \tau = \tau \sigma \} = C_G(\mathbb{1}_{[3]}) \cap C_G((123)) \cap C_G((132)) = \{\mathbb{1}_{[3]}, (123), (132) \} = A$$
$$N_G(A) = \{ \sigma \in S_3 | \sigma A \sigma^{-1} = A \} = \{\mathbb{1}_{[3]}, (12), (13) \} \cup A = G$$

Note that $C_G(A) \leq N_G(A)$, so by definition $C_G(A) \subset N_G(A)$.

(c)
$$G = D_{10}$$
 and $A = \{1, r, r^2, r^3, r^4\}.$

Using the generators and relations description of the dihedral group we have $D_{10} = \langle r, s | r^5 = s^2 = 1, rs = sr^4 \rangle$, meaning

$$C_G(A) = \{x \in D_{10} | \forall a \in Aax = xa\} = \{1, r^2, r^3, r^4, r^5\} = A$$

 $N_G(A) = \{x \in D_{10} | xAx^{-1} = A\} = \{s, sr, sr^2, sr^3, sr^4\} \cup A = G$

Note that if $a \in A$ then $sr^k a(sr^k)^{-1} = sr^k ar^{-k}s = sr^k r^{-k}as = sas = a^{-1}$. Observe that $A = \langle r \rangle$, so if $a \in A$, then $a^{-1} \in A$, which gives us the first part of the union for $N_G(A)$.

- **2.2.6)** Let H be a subgroup of the group G.
- (a) Show that $H \leq N_G(H)$. Give an example to show that this is not necessarily true if H is not a subgroup.

Proof

Recall that $N_G(H) = \{g \in G | gHg^{-1} = H\}$ and $gHg^{-1} = \{ghg^{-1} | h \in H\}$. We know that $H, N_G(H)$ are both subgroups of G so we must simply show that $H \subset N_G(H)$. That is, we must prove that $hHh^{-1} = H$. This is simple to observe since H is closed under products and if $a \in H$, then $a \in hHh^{-1}$ since $h(h^{-1}ah)h^{-1} = a$.

- \rightarrow The above result hinges on the assumption that H is a subgroup of G. Consider the following example:
- (b) Show that $H \leq C_G(H)$ iff H is abelian.

Proof

- (\Rightarrow) Suppose that $H \leq C_G(H)$. Then it is clear that for any two elements $h, a \in H$ that ha = ah, implying that H is abelian.
- (\Leftarrow) Now, suppose that H is abelian. Then, for any two $h, a \in H$ we have ha = ah. Thus, fixing h, it is clear that $h \in C_G(H)$, and since we have shown previously that $C_G(H) \leq G$, it immediately follows that $H \leq C_G(H)$.
- **2.2.7)** Let $n \in \mathbb{Z}$ with $n \geq 3$. Prove the following:
- (a) $Z(D_{2n}) = \{1\}$ if *n* is odd.
- \rightarrow Recall the generators and relations representation of the dihedral group: $D_{2n} = \langle r, s | r^n = s^2 = 1, rs = sr^{-1} \rangle$. Obviously, 1 commutes with any element, implying that $1 \in Z(D_{2n})$. Next, we see s does not commute with any element of the dihedral group since $rs = sr^{-1}$. Finally, we see that $r^k sr^m = sr^{-k}r^m = sr^m r^{n-k}$. We must have k = n k for these elements to commute. That is, n = 2k. However, if n is odd, then n cannot be written as twice an integer. Thus, we arrive at the conclusion that if n is odd, then $Z(D_{2n}) = \{1\}$.
- (b) $Z(D_{2n}) = \{1, r^k\}$ if n = 2k.

From the reasoning above, we see that if n is even, then n=2k for some integer k, implying that $r^k \in Z(D_{2n})$ and $Z(D_{2n}) = \{1, r^k\}$