Mathematics

Robin Adams

September 15, 2023

Contents

1	Sets	and F	Fu	ın	ct	tic	n	\mathbf{s}																		5
	1.1	Primitive Terms												5												
	1.2	Axiom	ns												 											5
		1.2.1	1	As	SSC	oci	iat	ivi	ity	7					 											5
		1.2.2	I	Id	en	ti	ty	Fυ	ın	ct	ioı	ns														5
		1.2.3	_	T	nе	Τ	er	mi	na	al	Se	t														6
		1.2.4	-	T	nе	Е	\mathbf{m}	pty	y S	Se	\mathbf{t}															7
		1.2.5	I	Pı	o	du	ct	S																		7
		1.2.6	I	Fι	m	cti	or	ı S	et	\mathbf{s}																8
		1.2.7	I	In	ve	rs	e]	m	ag	ges	;															8
		1.2.8	-	T	nе	\mathbf{S}	ub	se	t (Cl	as	sif	ie	r												8
		1.2.9	-	T	nе	Ν	at	ur	al	N	uı	ml	эe	rs												9
		1.2.10	-	T	nе	A	xi	on	1 (of	\mathbf{C}	hc	ic	e												10
	1.3	Sections and Retractions											10													
	1.4	Injective Functions										10														
	1.5	Surjective Functions										10														
	1.6	Bijecti	io	ns	3																					11
	1.7	Function	ioı	n	Se	$_{ m ts}$	٠.																			11
	1.8	Subset	ts																							11
	1.9	Pullba	acl	ks	a	nc	1 I	Ξqι	ua	liz	zer	S														12
	1.10	Interse	ec	ti	on	ıs																				13
	1.11	The In	nt	er	na	ıl	Lo	gi	c																	13
	1.12	The E	$c_{ m m}$	пр	ty	S	$_{ m et}$																			15
	1.13	Univer	rsa	al	C)u	an	tifi	ica	ati	or	1														16
	1.14	Interse	ec	ti	on	1																				16
	1 15	Union																								17

4 CONTENTS

Chapter 1

Sets and Functions

1.1 Primitive Terms

Let there be sets.

Given sets A and B, let there be functions from A to B. We write $f: A \to B$ iff f is a function from A to B, and call A the domain of f and B the codomain.

Given functions $f:A\to B$ and $g:B\to C$, let there be a function $gf=g\circ f:A\to C$, the *composite* of f and g.

1.2 Axioms

1.2.1 Associativity

Axiom 1.1 (Associativity). For any functions $f:A\to B,\ g:B\to C$ and $h:C\to D$ we have

$$h(gf) = (hg)f$$
.

Thanks to this axiom, we shall often omit parentheses when writing the composite of a sequence of functions.

1.2.2 Identity Functions

Definition 1.2 (Identity Function). For any set A, an *identity function* on A is a function $i: A \to A$ such that:

- for every set B and function $f: A \to B$ we have fi = f;
- for every set B and function $f: B \to A$ we have if = f.

Axiom 1.3 (Identity Functions). Every set has an identity function.

Proposition 1.4. Every set has a unique identity function.

- $\langle 1 \rangle 1$. Let: A be a set.
- $\langle 1 \rangle 2$. A has an identity function.

PROOF: Axiom of Identity Functions

- $\langle 1 \rangle 3$. For any identity functions i and j on A we have i = j.
 - $\langle 2 \rangle 1$. Let: i and j be identity functions on A.
 - $\langle 2 \rangle 2$. i = j

Proof: i = ij = j

Definition 1.5 (Identity Function). For any set A, let id_A be the identity function on A.

Definition 1.6 (Retraction, Section). Let $r: A \to B$ and $s: B \to A$. Then r is a retraction of s, and s is a section of r, iff $rs = \mathrm{id}_B$.

Proposition 1.7. Let $f: A \to B$ and $g, h: B \to A$. If g is a retraction of f and h is a section of f then g = h.

Proof:

$$g = gid_B$$

$$= gfh$$

$$= id_A h$$

$$= h$$

Definition 1.8 (Bijection). Let $f: A \to B$ be a function. We say f is a bijection, and write $f: A \approx B$, iff there exists a function $f^{-1}: B \to A$, an inverse to f, such that $f^{-1}f = \mathrm{id}_A$ and $ff^{-1} = \mathrm{id}_B$.

Sets A and B are equinumerous, $A \approx B$, iff there exists a bijection between them.

Proposition 1.9. The inverse to a bijection is unique.

Proof: From Proposition 1.7. \sqcup

1.2.3 The Terminal Set

Definition 1.10 (Terminal Set). A set T is *terminal* iff, for every set X, there exists exactly one function $X \to T$.

Axiom 1.11 (Terminal Set). There exists a terminal set.

Proposition 1.12. If T and T' are terminal sets then there exists a unique bijection $T \approx T'$.

Proof:

- $\langle 1 \rangle 1$. Let: i be the unique function $T \to T'$
- $\langle 1 \rangle 2$. Let: i^{-1} be the unique function $T' \to T$
- $\langle 1 \rangle 3$. $ii^{-1} = id_{T'}$

PROOF: Since there is only one function $T' \to T'$.

1.2. AXIOMS 7

 $\langle 1 \rangle 4. \ i^{-1}i = id_T$

PROOF: Since there is only one function $T \to T$.

Definition 1.13. Let 1 be the terminal set. For any set A, let $!_A$ be the function $A \to 1$.

Definition 1.14 (Element). For any set A, an *element* of A is a function $1 \to a$. We write $a \in A$ for $a : 1 \to A$.

Given $f: A \to B$ and $a \in A$, we write f(a) for $fa: 1 \to B$.

Axiom 1.15 (Extensionality). Let A and B be sets and $f, g : A \to B$. If $\forall a \in A. f(a) = g(a)$ then f = g.

1.2.4 The Empty Set

Axiom 1.16 (Empty Set). There exists a set that has no elements.

1.2.5 Products

Definition 1.17 (Product). Let A and B be sets. A product of A and B consists of a set $A \times B$ and functions $\pi_1 : A \times B \to A$, $\pi_2 : A \times B \to B$, the projections, such that, for any set X and functions $f : X \to A$, $g : X \to B$, there exists a unique function $\langle f, g \rangle : X \to A \times B$ such that

$$\pi_1 \circ \langle f, g \rangle = f, \qquad \pi_2 \circ \langle f, g \rangle = g.$$

Axiom 1.18 (Products). Any two sets have a product.

Proposition 1.19. If P and Q are products of A and B with projections $p_1: P \to A$, $p_2: P \to B$, $q_1: Q \to A$ and $q_2: Q \to B$, then there exists a unique isomorphism $i: P \approx Q$ such that $q_1i = p_1$ and $q_2i = p_2$.

Proof.

 $\langle 1 \rangle 1$. Let: $i: P \to Q$ be the unique function such that $p_1 i = q_1$ and $p_2 i = q_2$.

 $\langle 1 \rangle 2$. Let: $i^{-1}: Q \to P$ be the unique function such that $q_1 i^{-1} = p_1$ and $q_2 i^{-1} = p_2$.

 $\langle 1 \rangle 3. \ i^{-1}i = \mathrm{id}_P$

PROOF: Each is the unique x such that $p_1x = p_1$ and $p_2x = p_2$.

 $\langle 1 \rangle 4$. $ii^{-1} = id_Q$

PROOF: Each is the unique x such that $q_1x = q_1$ and $q_2x = q_2$.

Definition 1.20. For any sets A and B, we write $A \times B$ for the product of A and B, and $\pi_1: A \times B \to A$, $\pi_2: A \times B \to B$ for the projections. Given $f: X \to A$ and $g: X \to B$, we write $\langle f, g \rangle$ for the unique function $X \to A \times B$ such that

$$\pi_1 \langle f, g \rangle = f, \qquad \pi_2 \langle f, g \rangle = g.$$

Definition 1.21. Given functions $f:A\to B$ and $g:C\to D$, let $f\times g=\langle f\circ\pi_1,g\circ\pi_2\rangle:A\times C\to B\times D$.

1.2.6 Function Sets

Definition 1.22 (Function Set). Let A and B be sets. A function set from A to B consists of a set B^A and function $\epsilon: B^A \times A \to B$, the evaluation map, such that, for any set I and function $q: I \times A \to B$, there exists a unique function $\lambda q: I \to B^A$ such that $\epsilon \circ (\lambda q \times \mathrm{id}_A) = q$.

Axiom 1.23 (Function Sets). Any two sets have a function set.

Proposition 1.24. If F and G are function sets of A and B with evaluation maps $e: F \times A \to B$ and $e': G \times A \to B$, then there exists a unique isomorphism $i: F \cong G$ such that $e'(i \times id_A) = e$.

Proof:

 $\langle 1 \rangle 1$. Let: $i: F \to G$ be the unique function such that $e'(i \times id_A) = e$.

 $\langle 1 \rangle 2$. Let: $i^{-1}: G \to F$ be the unique function such that $e(i^{-1} \times id_A) = e'$

 $\langle 1 \rangle 3$. $ii^{-1} = id_G$

PROOF: Each is the unique x such that $e'(x \times id_A) = e'$.

 $\langle 1 \rangle 4$. $i^{-1}i = \mathrm{id}_F$

PROOF: Each is the unique x such that $e(x \times id_B) = e$.

П

1.2.7 Inverse Images

Definition 1.25 (Pullback). Let $p:A\to B$, $q:A\to C$, $f:B\to D$ and $g:C\to D$. Then we say that A, p and q form the *pullback* of f and g if and only if:

- fp = gq
- For any set X and functions $x: X \to B$, $y: X \to C$ such that fx = gy, there exists a unique function $(x,y): X \to A$ such that p(x,y) = x and q(x,y) = y.

We also say p is the pullback of g along f, or g is the pullback of f along g.

$$\begin{array}{ccc}
A & \xrightarrow{p} & B \\
\downarrow q & & \downarrow f \\
C & \xrightarrow{g} & D
\end{array}$$

Axiom 1.26 (Inverse Images). Given any function $f: X \to Y$ and element $y \in Y$, then there exists a pullback of f and y.

1.2.8 The Subset Classifier

Definition 1.27 (Injective). A function $f: A \to B$ is *injective* iff, for every $x, y \in A$, if fx = fy then x = y.

1.2. AXIOMS 9

Definition 1.28 (Subset Classifier). A subset classifier consists of a set 2 and an element $T \in 2$ such that, for any sets A and X and injective function $j: A \rightarrowtail X$, there exists a unique function $\chi: X \to 2$, the classifying function of j, such that j and $!_A: A \to 1$ form the pullback of T and χ .

$$\begin{array}{ccc}
A & \xrightarrow{!_A} & 1 \\
\downarrow \downarrow & & \downarrow \uparrow \\
X & \xrightarrow{\chi} & 2
\end{array}$$

Axiom 1.29 (Subset Classifier). There exists a subset classifier.

Proposition 1.30. If $T \in 2$ and $T' \in 2'$ are subset classifiers, then there exists a unique isomorphism $i : 2 \approx 2'$ such that i(T) = T'.

Proof:

 $\langle 1 \rangle 1.$ Let: $i:2 \to 2'$ be the unique function such that \top and id_1 form the pullback of \top' and i

 $\langle 1 \rangle 2$. Let: $i^{-1}: 2' \to 2$ be the unique function such that \top' and id_1 form the pullback of \top and i^{-1}

 $\langle 1 \rangle 3$. $ii^{-1} = id_{2'}$

PROOF: Each is the unique x such that \top' and id_1 form the pullback of \top' and x.

 $\langle 1 \rangle 4$. $i^{-1}i = id_2$

PROOF: Each is the unique x such that \top and id_1 form the pullback of \top and x.

Definition 1.31. Let 2 and $T \in 2$ be the subset classifier.

1.2.9 The Natural Numbers

Definition 1.32 (Natural Numbers Set). A natural numbers set consists of a set \mathbb{N} , an element $0 \in \mathbb{N}$ and a function $s : \mathbb{N} \to \mathbb{N}$ such that, for any set A, element $a \in A$ and function $f : A \to A$, there exists a unique function $r : \mathbb{N} \to A$ such that r(0) = a and $f \circ r = r \circ s$.

Axiom 1.33 (Infinity). There exists a natural numbers set.

Proposition 1.34. If N, $0 \in N$, $s: N \to N$ and N', $0' \in N'$, $s': N' \to N'$ are two natural numbers sets, then there exists a unique isomorphism $i: N \approx N'$ such that i(0) = 0' and s'i = is.

Proof:

 $\langle 1 \rangle 1$. Let: $i: N \to N'$ be the unique function such that i(0) = 0' and s'i = is. $\langle 1 \rangle 2$. Let: $i^{-1}: N' \to N$ be the unique function such that $i^{-1}(0') = 0$ and $si^{-1} = i^{-1}s'$.

```
\langle 1 \rangle 3. ii^{-1} = \mathrm{id}_{N'}
PROOF: Each is the unique x such that x(0') = 0' and s'x = xs'. \langle 1 \rangle 4. i^{-1}i = \mathrm{id}_N
PROOF: Each is the unique x such that x(0) = 0 and sx = xs.
```

Definition 1.35. Let \mathbb{N} , $0 \in \mathbb{N}$, $s : \mathbb{N} \to \mathbb{N}$ be the natural numbers set.

1.2.10 The Axiom of Choice

Definition 1.36 (Surjective). A function $f: A \to B$ is *surjective* iff, for every element $b \in B$, there exists $a \in A$ such that f(a) = b.

Axiom 1.37 (Choice). Every surjective function has a section.

1.3 Sections and Retractions

Proposition 1.38. Let $r: A \to B$, $r': B \to C$, $s: B \to A$ and $s': C \to B$. If s is a section of r and s' is a section of r', then ss' is a section of r'r.

PROOF: Since $r'rss' = r'id_Bs' = r's' = id_C$.

1.4 Injective Functions

Proposition 1.39. Let $f: A \to B$ be injective. Let $x, y: X \to A$. If fx = fy then x = y.

```
Proof:
```

```
\langle 1 \rangle 1. \ \forall t \in X.x(t) = y(t)

\langle 2 \rangle 1. \ \text{Let:} \ t \in X

\langle 2 \rangle 2. \ f(x(t)) = f(y(t))

\langle 2 \rangle 3. \ x(t) = y(t)

PROOF: f is injective.

\langle 1 \rangle 2. \ x = y

PROOF: Axiom of Extensionality
```

The composite if two injective functions is injective.

If gf is injective then f is injective.

Every section is injective.

1.5 Surjective Functions

The composite of two surjective functions is surjective.

If gf is surjective then g is surjective.

A function is surjective iff it has a section.

1.6. BIJECTIONS

1.6 Bijections

Proposition 1.40. For any set A we have $id_A : A \approx A$ and $id_A^{-1} = id_A$.

PROOF: Immediate from the fact that $id_A id_A = id_A$. \square

Proposition 1.41. If $f : A \approx B$ then $f^{-1} : B \approx A$ and $(f^{-1})^{-1} = f$.

PROOF: Since $ff^{-1} = id_B$ and $f^{-1}f = id_A$. \square

Proposition 1.42. If $f: A \approx B$ and $g: B \approx C$ then $gf: A \approx C$ and $(gf)^{-1} = f^{-1}g^{-1}$.

Proof: From Proposition 1.38. \square

A function is bijective iff it is injective and surjective.

1.7 Function Sets

Proposition 1.43. Let $f: A \times B \to C$. Let $a \in A$ and $b \in B$. Then

$$\epsilon((\lambda f)(a), b) = f(a, b)$$

Proof:

$$\epsilon((\lambda f)(a), b) = \epsilon(\lambda f \times id_B)(a, b)$$
$$= f(a, b)$$

1.8 Subsets

Definition 1.44 (Subset). Let $i: U \to A$. Then we say that (U, i) is a *subset* of A iff i is injective.

Definition 1.45. Let (U,i) and (V,j) be subsets of A. Then we say (U,i) and (V,j) are equal, and write (U,i)=(V,j), iff there exists an bijection $\phi:U\approx V$ such that $j\phi=i$.

Proposition 1.46. For any subset (U,i) of A we have (U,i) = (U,i).

PROOF: Since $id_U : U \approx U$ and $iid_U = i$. \square

Proposition 1.47. For any subsets (U,i) and (V,j) of A, if (U,i) = (V,j) then (V,j) = (U,i).

PROOF: If $\phi: U \approx V$ and $j\phi = i$ then $\phi^{-1}: V \approx U$ and $i\phi^{-1} = j$. \square

Proposition 1.48. For any subsets (U,i), (V,j) and (W,k) of A, if (U,i) = (V,j) = (W,k) then (U,i) = (W,k).

PROOF: If $\phi: U \approx V$, $j\phi = i$, $\psi: V \approx W$ and $k\psi = j$ then $\psi\phi: U \approx W$ and $k\psi\phi = i$. \square

Definition 1.49 (Inclusion). Let (U,i) and (V,j) be subsets of A. We say that (U,i) is *included* in (V,j) and write $(U,i) \subseteq (V,j)$ iff there exists $f: U \to V$ such that if = j.

Proposition 1.50. *If* $(U,i) \subseteq (V,j)$, (U,i) = (U',i') *and* (V,j) = (V',j') *then* $(U',i') \subseteq (V',j')$.

PROOF: If $f: U \to V$ satisfies jf = i, $\phi: U \approx U'$ satisfies $i'\phi = i$, and $\psi: V \approx V'$ satisfies $j'\psi = j$, then we have $\psi f \phi^{-1}: U' \to V'$ and $j'\psi f \phi^{-1} = i'$.

Proposition 1.51. For any subset (U,i) of A we have $(U,i) \subseteq (U,i)$.

PROOF: Since $id_U: U \to U$ and $iid_U = i$. \square

Proposition 1.52. If $(U,i) \subseteq (V,j) \subseteq (W,k)$ then $(U,i) \subseteq (W,k)$.

PROOF: If $f:U\to V$ satisfies jf=i and $g:V\to W$ satisfies kg=j then $gf:U\to W$ and kgf=i. \square

Proposition 1.53. If $(U,i) \subseteq (V,j)$ and $(V,j) \subseteq (U,i)$ then (U,i) = (V,j).

PROOF: If $f:U\to V$ satisfies jf=i and $g:V\to U$ satisfies ig=j then we have

$$igf = i$$

$$\therefore gf = id_U \qquad (i \text{ is injective})$$

$$jfg = j$$

$$\therefore fg = id_V \qquad (j \text{ is injective})$$

Thus $f:U\approx V$ and jf=i. So there exists an isomorphism $\phi:U\approx V$ such that $j\phi=i$ as required. \square

1.9 Pullbacks and Equalizers

Proposition 1.54. Let $f: A \to C$ and $g: B \to D$. Let $p: P \to A$ and $q: P \to B$ form a pullback of f and g, and let $p': P' \to A$ and $q': P' \to B$ form another pullback. Then there exists a unique isomorphism $\phi: P \approx P'$ such that $p'\phi = p$ and $q'\phi = q$.

PROOF: By the now familiar pattern. \square

State and prove the Pullback Lemma.

Proposition 1.55. Let $f: X \to Y$ and $i: V \to Y$. Assume i is injective. Then there exists a pullback of f and i.

Proof:

- $\langle 1 \rangle 1$. Let: $\chi : Y \to 2$ be the characteristic function of i.
- $\langle 1 \rangle 2$. Let: $j: U \to X$ be the pullback of χf and \top

PROOF: Axiom of Inverse Images.

```
⟨1⟩3. Let: g: U \to V be the unique function such that ig = fj and !_V g = !_U ⟨2⟩1. \chi fj = \top !_U Proof: ⟨1⟩2 ⟨2⟩2. Q.E.D. Proof: ⟨1⟩1 ⟨1⟩4. g and j form the pullback of f and i. Proof: By the Pullback Lemma.
```

Theorem 1.56. Any two functions $f, g: A \to B$ have an equalizer.

PROOF: Take the inverse image of $\delta_B = \langle \mathrm{id}_B, \mathrm{id}_B \rangle : B \mapsto B^2$ and $\langle f, g \rangle : A \to B^2$. \square

Theorem 1.57. Any two functions $f: A \to C$ and $g: B \to C$ have a pullback.

PROOF: Take the pullback of $f\pi_1: A \times B \to C$ and $g\pi_2: A \times B \to C$. \square

1.10 Intersections

Definition 1.58 (Intersection). Let (U,i) and (V,j) be subsets of a set A. Let $p:W\to U$ and $q:W\to V$ form the pullback of i under j. Then the *intersection* of (U,i) and (V,j) is defined to be $(U,i)\cap (V,j)=(W,ip)=(W,jq)$.

```
S \cap T \subseteq S and S \cap T \subseteq T.
If R \subseteq S and R \subseteq T then R \subseteq S \cap T.
```

1.11 The Internal Logic

Proposition 1.59. Let $i: U \rightarrow A$ be injective. Let $\chi: A \rightarrow 2$ be its characteristic function. Then, for all $a \in A$, we have $\chi(a) = T$ if and only if there exists $u \in U$ such that i(u) = a.

Proof:

```
\langle 1 \rangle 1. If \chi(a) = \top then there exists u \in U such that i(u) = a.

PROOF: If \chi \circ a = \top = \top \circ !_1 then there exists a unique u: 1 \to U such that i \circ u = a and !_U \circ u = !_1.

\langle 1 \rangle 2. For all u \in U we have \chi(i(u)) = \top.

PROOF: Since \chi \circ i = \top \circ !_U.
```

Proposition 1.60. Subsets of a set A are equal if and only if they have the same characteristic function.

PROOF: Follows from the fact that pullbacks are unique up to isomorphism and the uniqueness of the characteristic function. \Box

Proposition 1.61. There are exactly two subsets of 1.

```
Proof:
\langle 1 \rangle 1. PICK a set E with no elements.
   PROOF: Axiom of the Empty Set.
\langle 1 \rangle 2. !_E : E \to 1 is injective.
   PROOF: Vacuously, \forall x, y \in E.!_E(x) = !_E(y) \Rightarrow x = y.
\langle 1 \rangle 3. \ (E,!_E) \neq (1,\mathrm{id}_1)
   PROOF: Since there cannot be an isomorphism 1 \cong E.
\langle 1 \rangle 4. For any subsets (U,i) and (V,j) of 1, if (U,i) \neq (U,i) \cap (V,j) then (U,i) =
   \langle 2 \rangle 1. Let: (U, i) and (V, j) be subsets of 1.
   \langle 2 \rangle 2. Let: p: W \to U and q: W \to V form the intersection of (U,i) and
                    (V,j)
   \langle 2 \rangle 3. Assume: (U, i) \neq (W, k)
   \langle 2 \rangle 4. Let: (U, \mathrm{id}_U) \neq (W, p) as subsets of U.
   \langle 2 \rangle 5. Let: \chi_U, \chi_W : U \to 2 be the characteristic functions of (U, \mathrm{id}_U) and
                    (W, p) respectively.
   \langle 2 \rangle 6. \ \chi_U \neq \chi_W
   \langle 2 \rangle 7. Pick x \in U
      Proof: By the Axiom of Extensionality, there exists x \in U such that
      \chi_U(x) \neq \chi_W(x).
   \langle 2 \rangle 8. \ ix = id_1
   \langle 2 \rangle 9. \ x:1 \cong U
   \langle 2 \rangle 10. \ (U,i) = (1, id_1)
\langle 1 \rangle 5. For any subset (U,i) of 1, either (U,i)=(E,!_E) or (U,i)=(1,\mathrm{id}_1).
   \langle 2 \rangle 1. Let: (U, i) be a subset of 1.
   \langle 2 \rangle 2. Assume: (U, i) \neq (E, !_E)
   \langle 2 \rangle 3. \ (U,i) \neq (U,i) \cap (E,!_E) \text{ or } (E,!_E) \neq (U,i) \cap (E,!_E)
   \langle 2 \rangle 4. (U, i) = (1, id_1) or (E, !_E) = (1, id_1)
      Proof: \langle 1 \rangle 4
   \langle 2 \rangle 5. \ (U,i) = (1, id_1)
      Proof: \langle 1 \rangle 3
```

Corollary 1.61.1. There are exactly two elements of 2.

Definition 1.62 (Falsehood). Let *falsehood* \bot be the element of 2 that is not \top .

Corollary 1.62.1. 2 is the coproduct of 1 and 1 with injections \top and \bot .

Proposition 1.63. A function $f: A \to B$ is surjective if and only if, for any set X and functions $x, y: B \to X$, if xf = yf then x = y.

- $\langle 1 \rangle 1$. If f is surjective then, for any set X and functions $x,y:B \to X$, if xf=yf then x=y.
 - $\langle 2 \rangle 1$. Let: $s: B \to A$ be a section of f. Proof: Axiom of Choice.

```
\langle 2 \rangle 2. Let: X be a set and x, y : B \to X satisfy xf = yf.
   \langle 2 \rangle 3. \ x = y
       PROOF: x = xfs = yfs = y
\langle 1 \rangle 2. If, for any set X and functions x, y : B \to X, if xf = yf then x = y, then
         f is surjective.
   \langle 2 \rangle 1. Assume: For any set X and functions x, y : B \to X, if xf = yf then
   \langle 2 \rangle 2. Let: b \in B
   \langle 2 \rangle 3. Assume: for a contradiction \forall a \in A. f(a) \neq b
   \langle 2 \rangle 4. Let: \psi_1 : B \to 2 be the characteristic function of b.
   \langle 2 \rangle 5. Let: \psi_2 = \bot \circ !_B : B \to 2
   \langle 2 \rangle 6. \ \forall x \in A. \psi_1(f(x)) = \psi_2(f(x))
       \langle 3 \rangle 1. Let: x \in A
       \langle 3 \rangle 2. \ \psi_1(f(x)) \neq \top
          PROOF: Proposition 1.59, \langle 2 \rangle 3, \langle 2 \rangle 4.
       \langle 3 \rangle 3. \ \psi_1(f(x)) = \bot
       \langle 3 \rangle 4. \ \psi_1(f(x)) = \psi_2(f(x))
    \langle 2 \rangle 7. \ \psi_1 \circ f = \psi_2 \circ f
       PROOF: Axiom of Extensionality
    \langle 2 \rangle 8. \ \psi_1 = \psi_2
       Proof: \langle 2 \rangle 1
    \langle 2 \rangle 9. \ \psi_1(b) \neq \psi_2(b)
       PROOF: Since \psi_1(b) = \top and \psi_2(b) = \bot.
   \langle 2 \rangle 10. Q.E.D.
       PROOF: This is a contradiction
```

1.12 The Empty Set

Theorem 1.64. If E is a set with no elements, then E has no proper subsets.

PROOF: A proper subset of E would give a proper subset of 1 that is different from $(E,!_E)$. \square

Theorem 1.65. If E is a set with no elements, then for any set X there exists exactly one function $E \to X$.

- $\langle 1 \rangle 1$. Let: E be a set with no elements.
- $\langle 1 \rangle 2$. Let: X be a set.
- $\langle 1 \rangle 3$. There exists a function $E \to X$.
 - $\langle 2 \rangle 1.$ Let: $t: 1 \to 2^X$ be the name of the characteristic function of $\mathrm{id}_X: X \to X.$
 - $\langle 2 \rangle 2$. Let: $\sigma: X \to 2^X$ be the lambda of the characteristic function of $\delta = \langle \operatorname{id}_X, \operatorname{id}_X \rangle : X \to X \times X$.
 - $\langle 2 \rangle 3$. Let: $p: P \to E$ and $q: P \to X$ be the pullback of $t \circ !_E$ and σ .

Proof: $t \circ !_E$ is vacuously injective.

 $\langle 2 \rangle 4$. p is injective.

PROOF: It is the pullback of the injective function σ .

- $\langle 2 \rangle 5$. p is bijective.
- $\langle 2 \rangle 6. \ q \circ p^{-1} : E \to X$
- $\langle 1 \rangle 4$. For any functions $f, g : E \to X$ we have f = g.
 - $\langle 2 \rangle 1$. Let: $f, g : E \to X$
 - $\langle 2 \rangle 2$. Let: $m: M \to E$ be the pullback of f and g.
 - $\langle 2 \rangle 3. \ (M,m) = (E, \mathrm{id}_E)$

PROOF: Since E has no proper subsets.

- $\langle 2 \rangle 4. \ m: M \cong E$
- $\langle 2 \rangle 5.$ f = g

Corollary 1.65.1. If E and E' are sets with no elements then there exists a unique isomorphism $E \cong E'$.

Definition 1.66 (Empty Set). Let the *empty set* \varnothing be the set with no elements.

Theorem 1.67. For any set A, if there exists a function $A \to \emptyset$ then $A \cong \emptyset$.

PROOF: If $f: A \to \emptyset$ then A has no elements, because for any $a \in A$ we have $f(a) \in \emptyset$. \square

Universal Quantification 1.13

Definition 1.68. For any set A, let $t_A: 1 \to 2^A$ be the name of the characteristic function of $T \circ !_A : A \to 2$. Define universal quantification $\forall_A : 2^A \to 2$ to be the characteristic function of t_A .

Intersection 1.14

Theorem 1.69. Let X be a set. There exists a function $\bigcap: 2^{2^X} \to 2^X$ such that, for all $S \in 2^{2^X}$ and $a \in X$, we have

$$\epsilon(\bigcap S, a) = \top \Leftrightarrow \forall A \in 2^X. (\epsilon(S, A) = \top \Rightarrow \epsilon(A, a) = \top)$$

- $\langle 1 \rangle 1$. Let: X be a set.
- $\langle 1 \rangle$ 2. Let: $\phi_2 : X \to 2^{2^X}$ be the lambda of $\epsilon : 2^X \times X \to 2$ $\langle 1 \rangle$ 3. For all $x \in X$ and $S \in 2^X$ we have $\epsilon(\phi_2(x), S) = \epsilon(S, x)$.
- $\langle 1 \rangle 4$. Let: $F_1 = \langle \operatorname{id}_{2^{2X}}, \phi_2 \rangle : 2^{2^X} \times X \to 2^{2^X} \times 2^{2^X}$
- $\langle 1 \rangle$ 5. For all $S \in 2^{2^X}$ and $x \in X$ we have $F_1(S, x) = \langle S, \phi_2(x) \rangle$ $\langle 1 \rangle$ 6. Let: $F_2 : 2^{2^X} \times X \to (2 \times 2)^{2^X}$ be the composition of F_1 with the bijection $2^{2^X} \times 2^{2^X} \approx (2 \times 2)^{2^X}$

1.15. UNION 17

```
\langle 1 \rangle 7. For all S \in 2^{2^X}, T \in 2^X and x \in X we have \epsilon(F_2(S,x),T) = \langle \epsilon(S,T), \epsilon(\phi_2(x),T) \rangle = \langle \epsilon(S,T), \epsilon(S,x) \rangle

\langle 1 \rangle 8. Let: F_3 = (\Rightarrow)^{2^X} \circ F_2

\langle 1 \rangle 9. For all S \in 2^{2^X}, T \in 2^X and x \in X we have \epsilon(F_3(S,x),T) = \epsilon(S,T) \Rightarrow \epsilon(S,x)

\langle 1 \rangle 10. Let: F_4 = \forall \circ F_3

\langle 1 \rangle 11. For all S \in 2^{2^X} and x \in X we have F_4(S,x) = \top iff, for all T \in 2^X, if \epsilon(S,T) = \top then \epsilon(S,x) = \top

\langle 1 \rangle 12. Let: \bigcap = \lambda F_4 : 2^{2^X} \to 2^X

\langle 1 \rangle 13. For all S \in 2^{2^X} and x \in X, we have \epsilon(\bigcap S,x) = \top iff, for all T \in 2^X, if \epsilon(S,T) = \top then \epsilon(T,x) = \top
```

1.15 Union

Theorem 1.70. Any two subsets of a set have a union.

```
PROOF:  \langle 1 \rangle 1. \text{ Let: } A \text{ and } B \text{ be subsets of } X \\ \langle 1 \rangle 2. \text{ Let: } \chi_A \in 2^X \text{ be the name of the characteristic function of } A. \\ \langle 1 \rangle 3. \text{ Let: } t_X \in 2^X \text{ be the name of } \top \circ !_X : X \to 2 \\ \langle 1 \rangle 4. \text{ Let: } C \text{ be the pullback of } t_X \text{ and } \chi_A \Rightarrow -: 2^X \to 2^X \\ \langle 1 \rangle 5. \text{ Let: } D \text{ be the pullback of } t_X \text{ and } \chi_B \Rightarrow - \\ \langle 1 \rangle 6. \ \bigcap (C \cap D) \text{ is the union of } A \text{ and } B.
```

Theorem 1.71. Any two sets have a coproduct.

```
Proof:
```

- $\langle 1 \rangle 1$. Let: X and Y be sets.
- $\langle 1 \rangle 2$. Let: $\sigma_X: X \to 2^X$ be the lambda of the characteristic function of $\langle \mathrm{id}_X, \mathrm{id}_X \rangle: X \to X \times X$
- $\langle 1 \rangle \! 3.$ Let: $\chi_0: 1 \to Y$ be the characteristic function of the unique function $\varnothing \to Y$
- $\langle 1 \rangle 4$. Let: $i_X = \langle \sigma_X, \chi_0 \circ !_X \rangle : X \to 2^X \times 2^Y$
- $\langle 1 \rangle$ 5. Let: $i_Y: Y \to 2^X \times 2^Y$ be defined similarly.
- $\langle 1 \rangle 6$. i_X and i_Y are monic.
- $\langle 1 \rangle$ 7. \varnothing is the pullback of i_X and i_Y (i.e. $(X, i_X) \cap (Y, i_Y) = \varnothing$).
- $\langle 1 \rangle 8$. Let: $j: Z \to 2^X \times 2^Y$ be the union of i_X and i_Y
- $\langle 1 \rangle 9$. Z is the coproduct of X and Y.