

BIRZEIT UNIVERSITY

Faculty of Engineering and Technology Electrical and Computer Engineering Department ENEE2103

Circuits and Electronics Lab

Experiment No.8 - Pre Lab No.7 The Field-Effect Transistor

Student's Name: Lojain Abdalrazaq. ID Number: 1190707.

Instructor's Name: Ali Abdo.

Section: 5.

May 20, 2022

Table of Content

1. Characteristic of an N-Channel JFET	4
2. Common Drain Amplifier	6
3 Constant Current Source	5

List of Figures:

Figure 1 N-Channel JFET connection.	4
Figure 2 Ids and Vds graph	.4
Figure 3 When IDS became unaffected by Vds	
Figure 4 Common Drain Amplifier Circuit	.6
Figure 5 Voltage Gain	
Figure 6 The output Impedance.	
Figure 7 Constant current source circuit	
Figure 8 Vs across the resistor	
Figure 9 Ids across the resistor.	

1. Characteristic of an N-Channel JFET

• Connecting the circuit using PSpice and running it:

Figure 1 N-Channel JFET connection.

Ids and Vds graph:

Figure 2 Ids and Vds graph.

• Questions:

1. From your graph, above which values of VDS is ID almost unaffected by VDS when VGS=0?

By the following figure, the current stop increasing at Vds= 2.98 V, and from this value the Ids stop increasing and became unaffected by VDS.

Figure 3 When IDS became unaffected by Vds.

2. For a given value of VDS, (say 10 V), do equal changes of VGS cause equal changes of ID?

No, the changes when Gm=1.

3. Can you measure IG or is it too small? No, its too small.

4. From your graph, estimate the change in ID for 0.5 change in VGS when VDS = 10 V , and VGS -1.0 V ,then find the transconductance of the transistor(gm).

Id= $8.1-5.04 \rightarrow 3.06$ mA, the change in the VGS=0.5.

Transconductance(GM)= 3.06m / 0.5 = 6.12 mV.

2. Common Drain Amplifier

• Connecting the circuit and running it:

Figure 4 Common Drain Amplifier Circuit.

■ Measuring DC voltages of V_G and V_S:

$$Vg = 652.17 \ mV. \label{eq:vg}$$

$$Vs = 2.331 \ V. \label{eq:vg}$$

$$Vgs = Vg - Vs = 652.17 \ m\text{-}\ 2.331 \text{=-}1.66883 \ V. \label{eq:vg}$$

• Calculating the voltage gain and phase shift:

The voltage gain = Vout / Vin = 760.45 mV, with phase shift 0 degrees.

Figure 5 Voltage Gain.

Calculating the Zin and Zout:

$$Zin = \frac{Vin}{Iin} = 9.424$$
 kohm.

Figure 3 The input Impedance.

$$Zout = \frac{Vout}{Iout} = 9.42 \text{ kohm.}$$

Figure 6 The output Impedance.

3. Constant Current Source

• Connecting the circuit using PSpice and running it:

Figure 7 Constant current source circuit.

• Displaying Vs across the resistor:

Figure 8 Vs across the resistor.

• Displaying Ids across the resistor:

Figure 9 Ids across the resistor.

Table 1 The Vs and Ids across the resistor table.

RL(Kohm)	VL(V)	Ids(mA)
0.1	1.9323	19.33
0.22	4.1989	19.085
0.33	6.2498	18.873
0.47	8.7464	18.609
0.56	10.322	18.444
1	14.218	14.242
1.5	14.537	9.653
2	14.663	7.2805
3	14.785	4.9282