

Marco Listanti

Esercizi 2

Ritardi di trasferimento (approfondimenti)

Esercizio 1

- Si consideri il percorso di rete in figura. Si assuma che il router intermedio introduca un ritardo di elaborazione d_{el}=1 ms.
- Nell'ipotesi che il ritardo di accodamento sia trascurabile, si determini il ritardo di trasferimento D_{e2e} necessario per trasferire di N=7 pacchetti ciascuno di lunghezza L=150 byte

Esercizio 2

- Con riferimento alla figura dell'Esercizio 1
- Si disegnino i diagrammi tempo-spazio nei due casi in cui a) R₁>R₂ e b) R₁<R₂.
- In questi due casi scrivere le espressioni del ritardo di trasferimento in funzione dei parametri L, C₁, C₂, d_{prop1}, d_{prop2} e N

Esercizio 3

- Si consideri un link di capacità R=70 pacch/s sulla quale si desidera multiplare statisticamente un numero N di sorgenti
- Si assuma che
 - il ritmo binario medio di emissione di ciascuna sorgente sia $R_m = 10$ pacch/s
 - l'espressione del valor medio del ritardo di accodamento d_{queue} (average queueing delay) subito dai pacchetti nel router sia

$$d_{\text{queue}} = \frac{0.1}{1 - \rho}$$

- dove ρ è il coefficiente di utilizzazione medio della capacità del link
- Si calcoli il numero massimo N di sorgenti che è possibile multiplare sul link per cui il ritardo medio di trasferimento dei pacchetti nel router sia non superiore a d₀=0.2 s.

