基于Openstack的KVM调优实战

调优背景

2015年11月上旬,CRMAPP系统所使用的KVM虚拟机的CPU使用率过高异常,达到70%以上,相同业务压力下同性能配置的Vmware虚拟机的负载却非常低,只在10%以内波动,并且发现KVM宿主机的CPU使用率也异常高。

inux 3.0.76			rmapp05)	11/	09/15	_x86_64_	
0:48:34	CPU	Zuser	%nice	%system	Ziowait	%steal	Zidle
0:48:35	all	20.63	51.44	5.93	0.03	0.00	21.96
0:48:36	all	21.58	51.12	4.49	0.17	0.00	22.64
0:48:37	all	30.28	48.72	5.95	0.23	0.00	14.83
0:48:38	all	55.99	34.31	9.60	0.03	0.00	0.07
0:48:39	all	30.00	50.13	7.57	0.65	0.00	11.65
0:48:40	all	26.78	48.95	5.48	0.29	0.00	18.50
0:48:41	all	38.77	46.51	7.43	0.16	0.00	7.14
0:48:42	all	32.31	48.76	5.50	0.29	0.00	13.13
0:48:43	all	55.78	33.78	7.53	0.00	0.00	2.91
0:48:44	all	47.54	42.22	6.24	0.00	0.00	4.01
0:48:45	all	40.90	43.88	8.15	0.10	0.00	6.97
0:48:46	all	31.57	47.71	6.20	0.13	0.00	14.39
0:48:47	all	34.93	47.53	7.07	0.10	0.00	10.38
10:48:48	all	20.62	52.03	4.67	0.26	0.00	22.43
0:48:49	all	29.94	47.31	6.73	0.00	0.00	16.01
0:48:50	all	38,28	44.89	7.10	0.13	0.00	9.59
0:48:51	all	29.74	22.45	6.37	0.22	0.00	41.22
0:48:52	all	20.67	7.96	5.01	0.38	0.00	65.99
0:48:53	all	16.75	6.21	4.99	1.03	0.00	71.03
0:48:54	all	17,55	2.71	3.79	2.87	0.00	73.09
0:48:55	all	30.66	5.27	5,17	0.36	0.00	58.55

分析与解决

分别从以下几个方面逐一分析排查问题原因:

1、KVM的CPU虚拟模式

首先查看KVM虚拟机CPU信息如下:

```
od01crmapp05:" # Iscpu
                        x86_64
Architecture:
CPU op-mode(s):
                        32-bit, 64-bit
Byte Order:
                        Little Endian
CPU(s):
                        32
                        0 - 31
On-line CPU(s) list:
Thread(s) per core:
                        1
Core(s) per socket:
                        1
                        32
Socket(s):
NUMA node(s):
                        1
Vendor ID:
                        GenuineIntel
CPU family:
                        6
Model:
                        42
Stepping:
                        1
                        2199,998
CPU MHz:
                        4399.99
BogoMIPS:
Virtualization:
                        VI-x
Hypervisor vendor:
                        KVM
Virtualization type:
                        full
                        32K
.1d cache:
1i cache:
                        32K
                        4096K
2 cache:
NUMA node0 CPU(s):
                        0 - 31
od01crmapp05:" #
```

与Vmware虚拟机CPU相比较如下:

```
Architecture:
                         32-bit, 64-bit
    op-mode(s):
                         Little Endian
Byte Order:
                         32
   line CPU(s) list:
                         0 - 31
          per core:
                         8
         per socket:
Socket (s
NUMA node(s):
                         GenuineIntel
Vendor ID:
CPU family:
                         6
Model:
                         45
Stepping:
                         7
                         2200.000
                         4400.00
Hypervisor vendor:
                         VMware
   tualization type:
   cache:
    cache:
   cache:
                         256K
   cache:
                         12288K
NUMA node0 CPU(s
NUMA node1
NUMA node2
```

通过比较Vmware与KVM的虚拟机CPU信息发现KVM虚拟机CPU模式存在如下几个问题:

[]缺少L3 Cache: 初步分析是虚拟机CPU虚拟化模式选择不合理所导致。[/][]CPU不是NUMA 架构并且CPU Topology不合理: KVM宿主机物理CPU属于NUMA多node的结构, 虚拟机的CPU只有一个NUMA node, 所有CPU Core都在这一个node中, 且虚拟机CPU的Topology是多Socket单Core的形式。[/]

处理措施

>>>> 缺少L3 Cache

针对该问题,检查了Openstack的nova.conf配置文件libvirt部分的cpu_mode的参数配置是host-model,该参数含义是根据物理CPU的特性,选择一个最靠近的标准CPU型号进行虚拟化模拟。除了host-model外还可以有host-passthrough模式,该模式直接将物理CPU暴露给虚拟机使用,在虚拟机上完全可以看到的就是物理CPU的型号。

因Openstack 仍承载业务,选择小范围的修改cpu_mode的参数,通过将Openstack的 代码文件 driver.py中cpu_mode的取值修改为host-passthrough并重启宿主机上 Nova-computer服务与KVM虚拟机,将自动重新生成虚拟机的 libvirt.xml文件。

>>>> CPU不是NUMA架构并且CPU Topology不合理

经过梳理Openstack虚拟机的创建流程,并查阅Openstack官方文档与代码,发现在 JUNO版的Openstack中,KVM的CPU的拓扑可以通过image或者flavor进行元数据传递来 定义,如果没有特别的定义此类元数据,则模拟的CPU将是多Socket单Core单NUMA节点的CPU,这样的CPU与物理CPU完全不同。

通过nova命令对flavor增加了hw:numa_cpu、hw:numa_nodes、hw:cpu_sockets等属性。

处理结果

经过上面两个方面的修改后,新建KVM虚拟机的CPU的信息发生如下改变,CPU的使用率有了明显下降,在10%到20%之间波动。

[]从单个NUMA节点变成4个NUMA节点[/][]具备了L3 cache[/][]CPU的Topology从32个Socket 每个Socket 1个 core, 变成了4个Socket 每个Socket 8个Core[/]

```
Architecture:
                        32-bit, 64-bit
CPU op-mode(s):
                        Little Endian
Byte Order:
CPU(s):
                        0 - 31
On-line CPU(s) list:
Thread(s) per core:
Core(s) per socket:
Socket(s):
NUMA node(s):
                        GenuineIntel
vendor ID:
CPU family:
Model:
Model name:
                        Intel(R) Xeon(R) CPU E5-4607 0 @ 2.20GHz
stepping:
PU MHZ:
                        2199.998
BOGOMIPS:
                        4399.99
/irtualization:
lypervisor vendor:
                        K VM
irtualization type:
                        ful1
1d cache:
li cache:
2 cache:
                         256K
3 cache:
                        12288K
NUMA node0 CPU(s):
NUMA node1 CPU(s):
NUMA node2 CPU(s):
```

2、KVM宿主机与NUMA运行状况

在NUMA的CPU内存架构下,无论是物理主机还是虚拟机,如果NUMA的配置不合理对应用程序的性能都有较大的影响,并且不同类型的应用都有不同的配置需求。

Vmware ESX 5.0及之后的版本支持一种叫做vNUMA的特性,它将Host的NUMA特征暴露给了GuestOS,从而使得Guest OS可以根据NUMA特征进行更高性能的调度。SUSE与Redhat作为原生的操作系统在NUMA调度上需要人为的根据应用程序的类型的做特殊配置,对云平台来说,这部分的工作是难以做到的。

在优化之前,CRM APP的KVM虚拟机的NUMA调度状态非常不理想,表现为所有NUMA 节点的numa_miss统计数值大于numa_hit,这意味着CPU访问内存的路径不是优化的,存在大量CPU访问remote memory的情况。因为宿主机Ubuntu 12.02自身带有Automatic NUMA balancing,所以物理主机NUMA调度运行状态良好。

处理措施

升级KVM虚拟机的操作系统 到SUSE 12 , 因为新版本的SUSE支持Automatic NUMA balancing,并且操作系统检测到硬件属于NUMA架构时将自动开启。

处理结果

在新建的KVM虚拟机的 dmesg日志中可以看到如下信息:

Enablingautomatic NUMA balancing. Configure with numa_balancing= or sysctl

经过24小时的运行之后,CRMAPP的KVM虚拟机运行状态良好,CPU用率可以稳定在10%左右。

09:52:49	CPU	%user	%n1ce	%system	%10wa1t
09:52:50	a11	2.67	3.89	2.70	0.00
09:52:51	a11	1.42	2.20	1.95	0.00
09:52:52	a11	2.86	3.86	2.76	0.03
09:52:53	a11	2.40	3.06	2.96	0.00
09:52:54	a11	0.95	4.66	2.74	0.00
09:52:55	a11	3.46	3.59	2.96	0.00

同时NUMA调度也有了较大程度的改善

odUlcrmapptstU2:~ #			
	node0	node1	node2
numa_hit	40995736	22924791	23705375
numa_miss	53540664	10471137	3056956
numa_foreign	7034506	856278	781893
interleave_hit	8965	8956	9008
local_node	40649003	22783035	23246900
other_node	53887397	10612893	3515431

总结

[]通过各环节的优化,目前KVM虚拟机的CPU利用率过高问题不再发生,整体运行达到Vmware 虚拟机水平。[/][]不同类型的应用程序对于NUMA适应性不同,需要进行针对性优化。JAVA

在NUMA方面也可尝试进行优化。参考Oracle官方文档,JAVA7针对并行扫描垃圾回收站(Parallel Scavenger garbage collector)加入了对NUMA体系结构的支持,实现了NUMA感知的内存分配器,由它为Java应用提供自动的内存分配优化。[/][]目前RedHat7与SUSE 12都加入了NUMA自动负载均衡的特性,可以尽量采用较新版本的操作系统,无论是物理机还是虚拟机,对于NUMA调度的优化不仅与KVM虚拟机有关,其实物理主机也应该关注NUMA调度是否是最优的。[/]