

要求:

- 1、完成本文档中所有的题目并写出分析、运行结果
- 2、无特殊说明,均使用VS2022编译即可
- 3、直接在本文件上作答,写出答案/截图(不允许手写、手写拍照截图)即可;填写答案时,为适应所填内容或贴图, 允许调整页面的字体大小、颜色、文本框的位置等
 - ★ 贴图要有效部分即可,不需要全部内容
 - ★ 在保证一页一题的前提下,具体页面布局可以自行发挥,简单易读即可
 - ★ 不允许手写在纸上,再拍照贴图
 - ★ 允许在各种软件工具上完成(不含手写),再截图贴图
- 4、转换为pdf后提交
- 5、3月14日前网上提交本次作业(在"文档作业"中提交)

贴图要求:只需要截取输出窗口中的有效部分即可,如果全部截取/截取过大,则视为无效贴图

例:无效贴图

例:有效贴图

Microsoft Visual Studio 调试控制台
 He11o, wor1d!

附:用WPS等其他第三方软件打开PPT,将代码复制到VS2022中后,如果出现类似下面的编译报错,则观察源程序编辑窗

基础知识:用于看懂float型数据的内部存储格式的程序如下:

注意:除了对黄底红字的具体值进行改动外,其余部分不要做改动,也暂时不需要弄懂为什么(需要第6章的知识才能弄懂)

```
#include <iostream>
using namespace std;
int main()
{
    float f = 123.456;
    unsigned char* p = (unsigned char*)&f;
    cout << hex << (int) (*p) << endl;
    cout << hex << (int) (*(p+1)) << endl;
    cout << hex << (int) (*(p+2)) << endl;
    cout << hex << (int) (*(p+3)) << endl;
    return 0;
}
//注: 忽略本题出现的warning
```

上例解读:单精度浮点数123.456,在内存中占四个字节,四个字节的值依次为0x42 0xf6 0xe9 0x79(按打印顺序逆向取)

转换为32bit则为: 0100 0010 1111 0110 1110 1001 0111 1001 符号位 8位指数 23位尾数

基础知识:用于看懂double型数据的内部存储格式的程序如下:

注意:除了对黄底红字的具体值进行改动外,其余部分不要做改动,也暂时不需要弄懂为什么(需要第6章的知识才能弄懂)

```
Microsoft
#include <iostream>
using namespace std;
int main()
     double d = 1.23e4:
     unsigned char* p = (unsigned char*)&d;
     cout << hex << (int) (*p) << endl;
     cout << hex << (int) (*(p+1)) << end1;
     cout \langle\langle hex \langle\langle (int) (*(p+2)) \langle\langle end1;
     cout << hex << (int) (*(p+3)) << end1;
     cout \langle\langle hex \langle\langle (int) (*(p+4)) \langle\langle endl;
     cout << hex << (int) (*(p+5)) << end1;
     cout \langle\langle hex \langle\langle (int) (*(p+6)) \langle\langle endl;
     cout \langle\langle hex \langle\langle (int) (*(p+7)) \langle\langle end1;
     return 0:
```

符号位

自学内容: 自行以"IEEE754" / "浮点数存储格式" / "浮点数存储原理" / "浮点数存储方式"等关键字,

在网上搜索相关文档,读懂并了解浮点数的内部存储机制

学长们推荐的网址:

https://baike.baidu.com/item/IEEE%20754/3869922?fr=aladdin

https://zhuanlan.zhihu.com/p/343033661

https://www.bilibili.com/video/BV1iW411d7hd?is_story_h5=false&p=4&share_from=ugc&share_medium=android&share_plat= android&share_session_id=e12b54be-6ffa-4381-9582-9d5b53c50fb3&share_source=QQ&share_tag=s_i×tamp=1662273598&unique_k=AuouME0

https://blog.csdn.net/gao_zhennan/article/details/120717424

https://www.h-schmidt.net/FloatConverter/IEEE754.html

例: float型数的机内表示

(1) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (2) (2) (1) (2) (2) (2) (1) (2) (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	格式要求: 多字节时,每8bit中间加一个空格或-(例: "11010100 00110001" 或 "11010100-00110001")	注意:
100.25 「面差目のat机内存储事工转十进制的的方法: (1) 得到的32bit的机内表示是:0100_0101_100_1000_1000_0000_0000_0	#il 100.0F	1、作业中绿底/黄底文字/截图可不填
(2) 其中,符号位是0		
(2) 其中: 符号位是		
指数转换为十进制形式是	(1) [42][1302B1t[13][13][2][2][2]:	人 仅少安元宝十昇
指数转换为十进制形式是	(2) 其中: 符号位是 0	
指数转换为十进制形式是		
指数表示的十进制形式是	指数是1000_0101(填32bit中的原始形式)	
1000 0101 - 0111 1111 - 0000 0110 (0x06 = 6)	_ _	
- 0111 1111 = 0000 0110 (0x06 = 6)		
= 0000 0110 (0x06 = 6)		
尾数是 100 1000 1000 0000 0000 (填82bit中的原始形式) 尾数转换为十进制小数形式是 0.56640625 (加整数部分的1后)		
尾数转换为十进制小数形式是 0.56640625 (加整数部分的1后)		
尾数表示的十进制小数形式是 1.56640625 (加整数部分的1后)		
100 1000 1000 0000 0000 0000 = 2 ⁰ + 2 ¹ + 2 ⁴ + 2 ⁸ = 0.5 + 0.0625 + 0.00390625 = 0.56640625 => 加1 => 1.56640625 1.56640625 x 2 ⁶ = 100.25 (此处未体现出误差) 下面是十进制手工转float机内存储的方法: 100 = 0110 0100 (整数部分转二进制为7位,最前面的0只是为了8位对齐,可不要) 0.25 = 01 (小数部分转二进制为2位) 100.25 = 0110 0100.01 = 1.1001 0001 x 2 ⁶ (确保整数部分为1,移6位) 符号位:0		
= 0.5 + 0.0625 + 0.00390625 = 0.56640625 => 加1 => 1.56640625 1.56640625 x 2 ⁶ = 100.25 (此处未体现出误差) 下面是十进制手工转float机内存储的方法: 100 = 0110 0100 (整数部分转二进制为7位,最前面的0只是为了8位对齐,可不要) 0.25 = 01 (小数部分转二进制为2位) 100.25 = 0110 0100.01 = 1.1001 0001 x 2 ⁶ (确保整数部分为1,移6位) 符号 位: 0 阶 码: 6 + 127 = 133 = 1000 0101 尾数(含1): 1001 0001 => 1001 0001 0000 0000 0000 (补齐23位,后面补14个蓝色的0) 100 1000 1000 1000 0000 0000 (从低位开始四位一组,共23位)		
下面是十进制手工转float机内存储的方法: 100 = 0110 0100 (整数部分转二进制为7位,最前面的0只是为了8位对齐,可不要) 0.25 = 01 (小数部分转二进制为2位) 100.25 = 0110 0100.01 = 1.1001 0001 x 26 (确保整数部分为1,移6位) 符号位:0		
100 = 0110 0100 (整数部分转二进制为7位,最前面的0只是为了8位对齐,可不要) 0.25 = 01 (小数部分转二进制为2位) 100.25 = 0110 0100.01 = 1.1001 0001 x 2 ⁶ (确保整数部分为1,移6位) 符号位:0	1. 56640625 x 2 ⁶ = 100. 25 (此处未体	现出误差)
0. 25 = 01 (小数部分转二进制为2位) 100. 25 = 0110 0100. 01 = 1. 1001 0001 x 2 ⁶ (确保整数部分为1,移6位) 符号位: 0 阶码: 6 + 127 = 133 = 1000 0101 尾数(舍1): 1001 0001 => 1001 0001 0000 0000 0000 (补齐23位,后面补14个蓝色的0) 100 1000 1000 1000 0000 0000 (从低位开始四位一组,共23位)		
100. 25 = 0110 0100. 01 = 1. 1001 0001 x 26 (确保整数部分为1,移6位) 符号位: 0 阶 码: 6 + 127 = 133 = 1000 0101 尾数(舍1): 1001 0001 => 1001 0001 0000 0000 0000 (补齐23位,后面补14个蓝色的0)		
符号位: 0 阶码: 6 + 127 = 133 = 1000 0101 尾数(舍1): 1001 0001 => 1001 0001 0000 0000 0000 (补齐23位,后面补14个蓝色的0)		
所 码: 6 + 127 = 133 = 1000 0101 尾数(舍1): 1001 0001 => 1001 0001 0000 0000 0000 (补齐23位,后面补14个蓝色的0)		
尾数(舍1): 1001 0001 => 1001 0001 0000 0000 0000 (补齐23位,后面补14个蓝色的0)		
100 1000 1000 0000 0000 0000 (从低位开始四位一组,共23位)	· · · · · · · · · · · · · · · · · · ·	
100 1000 1000 0000 0000 () () () () () () (
·	100 1000 1000 0000 0000 (水瓜瓜) 知四亚 组,来20亚)	本页不用作答

本页不用作答

例: float型数的机内表示

格式要求: 多字节时,每8bit中间加一个空格或-(例: "11010100 00110001" 或 "11010100-00110001")	注意:	
例2: 1.2		黄底文字/截图可不填
下面是float机内存储手工转十进制的的方法:	2、计算结果可信	昔助第三方工具完成,
(1) 得到的32bit的机内表示是: <u>0011 1111 1001 1001 1001 1001 1010</u> (3f 99 99 9a)	/ 没必要完全	
(2) 其中: 符号位是0		
指数是 <u>0111 1111</u> (填32bit中的原始形式) 指数转换为十进制形式是127(32bit中的原始形式按二进制原码形式转换) 指数表示的十进制形式是0(32bit中的原始形式按IEEE754的规则转换)		0. 125 + 0. 0625 + 0. 0078125 +
0111 1111 - 0111 1111		0. 00390625 + 0. 00048828125 +
= 0000 0000 (0x0 = 0) 尾数是 <u>001 1001 1001 1001 1010</u> (填32bit中的原始形式) 尾数转换为十进制小数形式是 <u>0.2000000476337158203125</u> (32bit中的原始形式按二进制原码形式转	换)	0.000244140625 + 0.000030517578125 + 0.0000152587890625 + 0.0000019073486328125 +
尾数表示的十进制小数形式是 $_1$. $_2000000476837158203125$ $_1$. $_2000000476837158203125$ $_2$. $_3000000476837158203125$ $_3000000476837158203125$ $_3000000476837158203125$ $_30000000476837158203125$ $_30000000476837158203125$ $_30000000476837158203125$ $_30000000476837158203125$ $_30000000476837158203125$ $_30000000476837158203125$ $_300000000476837158203125$ $_300000000476837158203125$ $_300000000476837158203125$ $_300000000476837158203125$ $_300000000476837158203125$ $_300000000476837158203125$ $_300000000476837158203125$ $_3000000000476837158203125$ $_300000000476837158203125$ $_300000000476837158203125$ $_300000000476837158203125$ $_300000000476837158203125$ $_300000000476837158203125$ $_300000000476837158203125$ $_300000000476837158203125$ $_300000000476837158203125$ $_300000000476837158203125$ $_3000000000000000000000000000000000000$	$2^{-19} + 2^{-20} + 2^{-22}$	0. 0000019073480328125 + 0. 00000002384185791015625
= 0.125 + + 0.0000002384185791015625(详见右侧蓝色) = 0.2000000476837158203125 => 加1 = 1.2000000476837158203125 (出	比处已体现出误差)	0.000000476007150000105
下面是十进制手工转float机内存储的方法:	也处口伊巩山伏左广	0. 2000000476837158203125
1 = 1 (整数部分转二进制为1位) 0.2 = 0011 0011 0011 0011 0011 (小数部分无限循环, 转为二进制的24位)		
=> 0011 0011 0011 0011 0011 011 011 011 0		
1.2 = 1.0011 0011 0011 0011 0011 010 = 1.0011 0011		
符号位: 0		
所 码: 0 + 127 = 127 = 0111 1111 尾数(舍1): 0011 0011 0011 0011 010 (共23位)		
作数(音1): 0011 0011 0011 0011 010 (共23位) 001 1001 1001 1001 1010 (从低位开始四位一组,共23位)		本页不用作答

1、float型数的机内表示

格式	读求:	多字节时,	每4bit中间	可加一个空格可	戊-(例: ″1	101 0100	0011 000	1″或″	1101-010	0-0011-	0001")
		4183532 正、指数为		号是1234567,	需换成本	(人学号,/	小数为学号	号逆序,	非本人学	号0分,	下同!!!
(1)	得到的	J32bit的机	内表示是:	0100 1010 0	000 1111	1010 1010	0 0101 10	<u>10</u> (不是	是手算,月	月P. 4方式	【打印)
(2)	其中.	符号位是	0								

指数是<u>1001_0100</u> (填32bit中的原始形式) 指数转换为十进制形式是<u>148</u> (32bit中的原始形式按二进制原码形式转换) 指数表示的十进制形式是<u>21</u> (32bit中的原始形式按IEEE754的规则转换)

尾数是 $_000\ 1111\ 1010\ 1010\ 0101\ 1010_$ (填32bit中的原始形式) 尾数转换为十进制小数形式是 $_0.1223862171173095703125_$ (32bit中的原始形式按二进制原码形

式转换)

尾数表示的十进制小数形式是__1.1223862171173095703125__(加整数部分的1) 注:转换为十进制小数用附加的工具去做,自己去网上找工具也行,但要满足精度要求(下同!!!)

格式要求: 多字节时,每4bit中间加一个空格或-(例: "1101 0100 0011 0001" 或 "1101-0100-0011-0001")

B. -4183532. 2353814 (设学号为1234567,按规则更换为学号和学号逆序) 注: 尾数为负、指数为正

- (1) 得到的32bit的机内表示是: _1100 1010 0111 1111 0101 0111 1011 0001_(不是手算,用P. 4方式打印)
- (2) 其中: 符号位是___1___

指数是 1001 0100 (填32bit中的原始形式)

指数转换为十进制形式是____148___(32bit中的原始形式按二进制原码形式转换)

指数表示的十进制形式是 21 (32bit中的原始形式按IEEE754的规则转换)

尾数是 111 1111 0101 0111 1011 0001 (填32bit中的原始形式)

尾数转换为十进制小数形式是_-0.99486362934112548828125 (32bit中的原始形式按二进制原码形

式转换)

尾数表示的十进制小数形式是_-1.99486362934112548828125_(加整数部分的1)

1、float型数的机内表示

格式要求: 多字节时,每4bit中间加一个空格或-(例: "1101 0100 0011 0001" 或 "1101-0100-0011-0001") C. 0. 002353814 (设学号为1234567, 按规则更换为学号和学号逆序) 注: 尾数为正、指数为负 (1) 得到的32bit的机内表示是: 0011 1011 0001 1010 0100 0010 0111 0010 (不是手算,用P. 4方式打印) (2) 其中: 符号位是 0 指数是 0111 0110 (填32bit中的原始形式) 指数转换为十进制形式是____118___(32bit中的原始形式按二进制原码形式转换) 指数表示的十进制形式是——9—(32bit中的原始形式按IEEE754的规则转换) 尾数是 001 1010 0100 0010 0111 0010 (填32bit中的原始形式) 尾数转换为十进制小数形式是_0.2051527500152587890625_(32bit中的原始形式按二进制原码形式

转换)

尾数表示的十进制小数形式是_1.2051527500152587890625_(加整数部分的1)

1、float型数的机内表示

格式要求: 多字节时,每4bit中间加一个空格或-(例: "1101 0100 0011 0001" 或 "1101-0100-0011-0001")

D. -0. 004183532 (设学号为1234567, 按规则更换为学号和学号逆序)

注: 尾数为负、指数为负

- (1) 得到的32bit的机内表示是: _1011 1011 1000 1001 0001 0110 0000 0011_(不是手算,用P. 4方式打印)
- (2) 其中: 符号位是 1

指数是 0111 0111 (填32bit中的原始形式)

指数转换为十进制形式是 119 (32bit中的原始形式按二进制原码形式转换)

指数表示的十进制形式是 -8 (32bit中的原始形式按IEEE754的规则转换)

尾数是 000 1001 0001 0110 0000 0011 (填32bit中的原始形式)

尾数转换为十进制小数形式是_-0.07098424434661865234375_(32bit中的原始形式按二进制原码形

式转换)

尾数表示的十进制小数形式是 $_{-1.07098424434661865234375}_{-1.070984244345661865234375}_{-1.07098424454566186523455}_{-1.07098456565555}_{-1.070985655}_{-1.070985655}_{-1.070985655}_{-1.0709856555}_{-1.07098565}_$

2、double型数的机内表示

格式要求: 多字节时,每4bit中间加一个空格或-(例: "1101 0100 0011 0001" 或 "1101-0100-0011-0001")

A. 2353814. 4183532 (设学号为1234567,按规则更换为学号和学号逆序) 注: 尾数为正、指数为正

(1) 得到的64bit的机内表示是: <u>0100 0001 0100 0001 1111 0101 0100 1011 0011 0101 1000 1100 1001 1001 0000 0000</u>(不是手算,用P. 5方式打印)

(2) 其中,	符号位是 0
(2))(1.	
	指数是 100 0001 0100 (填64bit中的原始形式)
	指数转换为十进制形式是 <u>1044</u> (64bit中的原始形式按二进制原码形式转换)
	指数表示的十进制形式是(64bit中的原始形式按IEEE754的规则转换)
<i>4</i> /√π/.— 1 2/	尾数是 <u>0001 1111 0101 0100 1011 0011 0101 1000 1100 1001 1001 0000 0000</u> (填64bit中的原
始形式)	見粉状换头上进脚小粉形 中目,0.1000001701050014000050010170475000100515005。 <i>(0.</i> 41:4 中的原
	尾数转换为十进制小数形式是_0.12238617818508146228850819170475006103515625(64bit中的原
始形式按二	_进制原码形式转换)
	尾数表示的十进制小数形式是_1.12238617818508146228850819170475006103515625_(加整数部分
的1)	

格式要求: 多字节时,每4bit中间加一个空格或-(例: "1101 0100 0011 0001" 或 "1101-0100-0011-0001")

B. -4183532. 2353814 (设学号为1234567,按规则更换为学号和学号逆序) 注: 尾数为负、指数为正

- (1) 得到的64bit的机内表示是: 1100 0001 0100 1111 1110 1010 1111 0110 0001 1110 0010 0000 1111 1010 0100 1100(不是手算,用P.5方式打印)
- (2) 其中: 符号位是___1____

指数是 100 0001 0100 (填64bit中的原始形式) 指数转换为十进制形式是 1044 (64bit中的原始形式按二进制原码形式转换) 指数表示的十进制形式是 21 (64bit中的原始形式按IEEE754的规则转换)

尾数是<u>1111 1110 1010 1111 0110 0001 1110 0010 0000 1111 1010 0100 1100</u>(填64bit中的原

始形式)

尾数转换为十进制小数形式是<u>-0.99486362237043390877033743890933692455291748046875</u>(64bit 中的原始形式按二进制原码形式转换)

尾数表示的十进制小数形式是_-1.99486362237043390877033743890933692455291748046875_ (加整数部分的1)

2、double型数的机内表示

格式要求: 多字节时,每4bit中间加一个空格或-(例: "1101 0100 0011 0001" 或 "1101-0100-0011-0001")

C. 0. 002353814 (设学号为1234567, 按规则更换为学号和学号逆序)

注: 尾数为正、指数为负

- (1) 得到的64bit的机内表示是: <u>0011 1111 0110 0011 0100 1000 0100 1110 0100 0100 1101 0011 1110 0110 1110 1010</u> (不是手算,用P. 5方式打印)
- (2) 其中:符号位是__0___

指数是 011 1111 0110 (填64bit中的原始形式)

指数转换为十进制形式是_____(64bit中的原始形式按二进制原码形式转换)

指数表示的十进制形式是_____(64bit中的原始形式按IEEE754的规则转换)

尾数是<u>0011 0100 1000 0100 1110 0100 0100 1101 0011 1110 0110 1110 1010</u>(填64bit中的原

始形式)

尾数转换为十进制小数形式是_0. 205152768000000040871100281947292387485504150390625_(64bit 中的原始形式按二进制原码形式转换)

尾数表示的十进制小数形式是_1.205152768000000040871100281947292387485504150390625 (加整数部分的1)

格式要求: 多字节时,每4bit中间加一个空格或-(例: "1101 0100 0011 0001" 或 "1101-0100-0011-0001")

D. -0. 004183532 (设学号为1234567, 按规则更换为学号和学号逆序)

注: 尾数为负、指数为负

- (1) 得到的64bit的机内表示是: 1011 1111 0111 0001 0010 0010 1100 0000 0101 0001 1111 0010 1100 0100 1100 (不是手算,用P. 5方式打印)
- (2) 其中: 符号位是___1____

指数是 011 1111 0111 (填64bit中的原始形式)

指数转换为十进制形式是____(64bit中的原始形式按二进制原码形式转换)

指数表示的十进制形式是______(64bit中的原始形式按IEEE754的规则转换)

尾数是<u>0001 0010 0010 1100 0000 0101 0001 1111 0010 1100 0100 1000 1100</u>(填64bit中的原

始形式)

尾数转换为十进制小数形式是-0.07098419200000005702122507500462234020233154296875 (64bit 中的原始形式按二进制原码形式转换)

尾数表示的十进制小数形式是-1.07098419200000005702122507500462234020233154296875 (加整数部分的1)

3、总结

(1) float型数据的32bit是如何分段来表示一个单精度的浮点数的?给出bit位的分段解释 尾数的正负如何表示?尾数如何表示?指数的正负如何表示?指数如何表示?

答: 32bit按照特定规则依次分成三个部分:符号位、指数位、尾数位,其中符号位占1bit、指数位占8bit、尾数位占23bit。尾数的正负由符号位决定,当符号位为0时,尾数为正;当符号位为1时,尾数为负。尾数是将浮点数转化为2进制小数后,再用科学计数法表示为1.****······×2^x的形式,然后取小数点后的23位,储存在尾数部分。指数部分的正负是通过使用偏置表示法来表示的,对于float型来讲偏置值为127,当指数部分转化为10进制之后得到的值大于127时为正,小于则为负。指数是取将科学计数法表示的数的2的指数x,然后加上偏置值127,转化为2进制后储存在指数位。

(2) 为什么float型数据只有7位十进制有效数字? 为什么最大只能是3.4x10³⁸ ? 有些资料上说有效位数是6[~]7位,能找出6位/7位不同的例子吗?

答:在单精度浮点数中,23bit用于表示尾数部分,再加上默认的小数点前的1位1,所以共可以表示24位有效位,而 $10^7 < 2^{24} = 16777216 < 10^8$ 所以只能精确表示7位。32位浮点数指数部分取值最大为127(11111111用来表示non-number),而尾数部分最大值为1.111···约为10进制中的2,所以float型数据最大为 2×2^{127} ,约为3.4× 10^{38} 。

例子: 如2353.814有效位数只有六位,4183.532有效位数有七位

(3) double型数据的64bit是如何分段来表示一个双精度的浮点数的?给出bit位的分段解释 尾数的正负如何表示?尾数如何表示?指数的正负如何表示?指数如何表示?

(全局范围)

Finclude Clostream

10

11

using namespace atd:

double f1 = 2353814.235381423

printf("% 17f\n", f1)://2353814.23538142393004861, 有效位数为十六位

3、总结

(4) 为什么double型数据只有15位十进制有效数字?为什么最大只能是 $1.7x10^{308}$?有些资料上说有效位数是 $15^{\sim}16$ 位,能找出15位/16位不同的例子吗?

例子: 如2353814.235381423有效位数为16位;

4183532.418353241有效位数为15位。

注:

- 文档用自己的语言组织
- 篇幅不够允许加页
- 如果用到某些小测试程序进行说明,可以贴上小测试程序的源码及运行结果
- 为了使文档更清晰,允许将网上的部分图示资料截图后贴入
- 不允许在答案处直接贴某网址,再附上"见**"(或类似行为),否则文档作业部分直接总分-50

4、思考

- (1) 8/11bit的指数的表示形式是2进制补码吗? 如果不是,一般称为什么方式表示?
- 答:不是,采用偏置表示法来表示,即将计算所得指数加上偏置值后转化为二进制在填充到指数位。
- (2) double赋值给float时,下面两个程序,double型常量不加F的情况下,左侧有warning,右侧无warning,为什么? 总结一下规律

答: 1.2不能精确的表示成一个float类型常量,在赋值过程中会舍去部分数值,所以有warning;而1.25能够精确的表示成一个float类型常量,赋值过程中只会舍去0,所以无warning.

总结:如果double类型的常量赋值给float类型的变量时,没有加上后缀F,并且它的值不能精确地表示为float类型的值,则会产生警告;如果double类型的常量赋值给float类型的变量时,加上后缀F,或者它的值可以精确地表示为float类型的值,则不会产生警告。

