Student Information

Full Name: Aytaç Sekmen

Id Number: 2575983

Answer 1

Note: I use this symbol "IR+" to represent the nonnegative real numbers, because i couldnt find how to draw a small line on a Real number symbol in latex as u write in "The-2" pdf file.

- a) 1)Let's say a=1, b=-1 such that $a, b \in \mathbb{R}$. So f(a)=1 and f(b)=1 since f(a)=f(b) even if a and b are not equal, so f_1 is not injective.
- 2) Let's say $x \in \mathbb{R}$ then $x^2 \in \mathbb{R}$ but the range of this function is $(0,\infty)$ since not all the numbers like -1 are not in the range, the function f_1 is not surjective, too.
- b) 1)Let $a,b \in \mathbb{R}^+$ such that $f(a)=a^2$, $f(b)=b^2$. This implies $a^2=b^2$ which corresponds to a=b or a=-b. Since our domain is the nonnegative real numbers, both a and b should be nonnegative which implies that a=b. so finally this means: $\forall a, b(f(a)=f(b) \to a=b)$ means f_1 is injective.
- 2)For example number a=-1 is in codomain of f_2 , \mathbb{R}^+ . However -1 is not the square of any real number. Therefore, there is no element of the domain that maps to the corresponds to the number -1, so f_2 is not surjective.
- c) 1)Numbers a=1 and a=-1 are both in the domain of f_3 and a \neq b. But $f_3(a)=f_3(b)=1$. So f_3 is not injective.
- 2)Since the minimum value that x^2 can take is 0 (for the value of x=0), the range of function is \mathbb{R}^+ which equals to the codomain of this function. Since codomain and range are equal to each other f_3 is surjective.
- d) 1)Let $a,b \in \mathbb{R}^+$ such that $f(a)=a^2$, $f(b)=b^2$. This implies $a^2=b^2$ which corresponds to a=b or a=-b. Since our domain is the nonnegative real numbers, both a and b should be nonnegative which implies that a=b. so finally this means: $\forall a, b(f(a)=f(b) \to a=b)$ means f_1 is injective.
- 2)Since the minimum value that x^2 can take is 0 (for the value of x=0), the range of function is \mathbb{R}^+ which equals to the codomain of this function. Since codomain and range are equal to each other f_3 is surjective.

Answer 2

a) Let's pick some $x_0 \in A$ and let $\epsilon > 0$. And i choose the $\delta = 1/2$. Let $x \in \mathbb{Z}$ and suppose that $|x - x_0| < \delta = 1/2$. Since there is only x_0 itself with in distance 1/2, this should satisfy that $x = x_0$. Thus $f(x) = f(x_0)$ and $|f(x) - f(x_0)| = 0$ which is certainly less than ϵ . This actullay shows that f is continous at x_0 . Since I choose x_0 as arbitrary, f is continous on its domain.

b) Let's pick some $x_0, x \in A$ and let $\epsilon = 1/2$. So for this ϵ value there must be some $\delta > 0$ such that if $|x - x_0| < \delta$ then $|f(x) - f(x_0)| < \epsilon$. But for this definition to be true(which actually says f is continous function), $|f(x) - f(x_0)| < \epsilon = 1/2$ should be true. Only way for this to be true is $f(x) = f(x_0)$ because minimum distance between two distinct integer number is 1 and 1 > 1/2. So I concluded that for a function whose domain is \mathbb{R} and whose codomain is \mathbb{Z} , to be a continous the only way for that f is a constant function.

Answer 3

- a) I will use induction for this question. In case n=1 then $X_n=A_1$ which is countable. Now let's assume that $A_n(n \in k, 1 \ge n < k)$ is countable; Then $X_{n+1}=(A_1*A_2*...*A_n)*A_{n+1}=X_n*X_{n+1}$ where the X_n and the X_{n+1} can be called countable. Hence the cartesian product of the countable sets is always countable. So X_{n+1} is countable.
- **b)** Suppose S is countable, $S=X^*X^*...$. Let $(F_n:n\in\mathbb{N})$ be an enumeration of S. For each n, they correspond to $0,1\in X=\{0,1\}$. Let's define another function $G(m)\in S$ as: G(m)=

$$\begin{cases} 1 & F_m(m) = 0 \\ 0 & F_m(m) = 1 \end{cases}$$

This follows that $G \in S$ but it is different of all F_n 's which is a contradiction. In concluison, I showed that infinite countable product of the set $X = \{0, 1\}$ with itself is uncountable.

Answer 4

Answer: $(n!)^2 > 5^n > 2^n > n^{51} + n^{49} > n^{50} > \sqrt{n} \log n > (\log n)^2$

- a) $\lim_{x\to\infty}\frac{5^n}{(n!)^2}=0$. For the proof of this i can use series. $\sum_{n=1}^{\infty}\frac{5^n}{(n!)^2}$ Let's use ratio test for the convergence of this series. So we should look at this limit: $\lim_{x\to\infty}\frac{5^{n+1}*(n!)^2}{((n+1)!)^2*5^n}=\lim_{n\to\infty}\frac{5}{(n+1)^2}=0$ Since limit goes to 0, this means our series converges to some constant $k\in\mathbb{R}$, which means $\lim_{n\to\infty}(n^{th} \text{ term})=0$, in our case $n^{th} \text{ term}$ is $\frac{5^n}{(n!)^2}$ so $\lim_{n\to\infty}\frac{5^n}{(n!)^2=0}$ So I have showed that: $5^n=\mathcal{O}((n!)^2)$
- **b)** $\lim_{x\to\infty}\frac{5^n}{2^n}=\lim_{x\to\infty}(\frac{5}{2})^n=\infty$. So it is shown that: $2^n=\mathcal{O}(5^n)$

c) $\lim_{x\to\infty} \frac{n^{51}+n^{49}}{2^n}=0$. For the proof this limit: I can say that since both the denominator and numerator go to ∞ I should use L'Hopital's Rule: $\lim_{n\to\infty} \frac{n^{51}+n^{49}}{2^n}=\lim_{x\to\infty} \frac{51*n^{50}+49*n^{48}}{\ln 2*2^n}$. And if I keep using L Hopital's Rule 50 more times my equation will become like this: $\lim_{n\to\infty} \frac{51!}{(\ln 2)^{51}*2^n}=0$ (which is obvious). So in conclusion I have showed that: $n^{51}+n^{49}=\mathcal{O}(2^n)$

d) Let's take domain as n > 1 $n^{51} + n^{49} = n(n^{50} + n^{48}) > n \times n^{50}$ I can divide both sides by "n" because we take domain as n > 1 so: $n^{51} + n^{49} = n(n^{50} + n^{48}) > (n^{50} + n^{48}) > n^{50}$ so as we can clearly see. $n^{50} = \mathcal{O}(n^{51} + n^{49})$

e) $\lim_{x\to\infty} \frac{n^{50}}{\sqrt{n} * \ln n} = \infty$. To prove this, let's use L'Hopital's Rule since both the denominator and numerator goes to ∞ . $\lim_{x\to\infty} \frac{n^{50}}{\sqrt{n} * \ln n} = \lim_{x\to\infty} \frac{50 * n^{49}}{\frac{1}{2 * \sqrt{n} * n}} = \frac{\infty}{0} = \infty$ $\sqrt{x} * \ln n = \mathcal{O}(n^50)$

f) Comparison between: $\sqrt{n} \log n$ and $(\log n)^2$: Lets consider our domain as n > 4: Let's assume that: $\sqrt{n} \log n > (\log n)^2$ (Since $\log n > 0$ for n > 4 I can divide both side with $\log n$)

So our duty is to show that: $\sqrt{n} > \log n$

Let $f(n) = \sqrt{n} - \log n$ So $f(4) \approx 1.4 > 0$. Also $f' = \frac{1}{2\sqrt{n}} - \frac{1}{n} > 0$ for n > 4. This actually means that our function keeps increasing after n > 4 so our proof is done. Since we have showed that $\sqrt{n} > \log n$ is true, then $\sqrt{n} \log n > (\log n)^2$ is also true. $(\log n)^2 = \mathcal{O}(\sqrt{n} \log n)$

Answer 5

a) Since 134>94;

Step 1: 134=94*(1)+40

Step 2: 94=40*(2)+14

Step 3: 40=14*(2)+12

Step 4: 14=12*(1)+2

Step 5: 12=2*(6)+0

So by Definition of Euclidean Algorithm gcd(94,134) equals to "2".

b) Let a > 5 be an integer. There is 2 condition to check for whether a is odd or even. Condition 1: Let's say a is even.

Then a should be in the form of a=2n for $n\geq 3$. Also a-2=2n-2=2(n-1) so also a-2 is even.

By using definition for Golbach's Conjecture, we can write like this: $2n - 2 = p_1 + p_2$ as p_1 and p_2 are two prime numbers. Thus $2n = p_1 + p_2 + 2$ which corresponds to sum of three prime numbers, since 2 is a prime number.

Condiiton 2: Let's say a is odd, this time

Then a should be in the form of a = 2n + 1 for $n \ge 3$. Also a - 3 = 2n - 2 = 2(n - 1) so a - 3 is also even.

By using definition for Goldbach's Conjecture, we can write like this: $a-3=p_1+p_2$ as p_1 and p_2 are two prime numbers. Thus $a=p_1+p_2+3$ which corresponds to a sum of three primes.

In addition to these, suppose every integer a > 5 is the sum of three primes such that $a = p_1 + p_2 + p_3$ and let a > 2 be an even integer. Then a + 2 = 2n + 2 is even and a + 2 > 5, thus $a + 2 = p_1 + p_2 + p_3$ is the sum of three primes p_1, p_2, p_3 . Since a + 2 is even, this actually means that at least one of p_1, p_2, p_3 must be 2. Since my aim is to show that these two statements are equivalent. I should also show the opposite way:

Let's assume $p_3 = 2$ then $a + 2 = p_1 + p_2 + 2$ also $a = p_1 + p_2$ is a sum of two primes.

In conclusion, Goldbach's conjecture that every even integer greater than 2 is the sum of two primes is equivalent to the statement that every integer greater than 5 is the sum of three primes.