[CS304] Introduction to Cryptography and Network Security

Course Instructor: Dr. Dibyendu Roy Winter 2022-2023

Scribed by: Rathva Kaushikkumar Sanjaybhai (202051156) Week : 3 (5-6th lecture #)

1 OTP(One time padding):

OTP provides perfect secrecy under some condition.

1.1 Encryption:

 $P \rightarrow \text{plain text}$

 $K \rightarrow \text{Secret key}$

$$Enc(P, k) = p \oplus k = C$$

1.2 decryption:

$$Dec(C, k) = C \oplus k = CP$$

$$P_r[message|Ciphertext] = P_r[message]$$

1.3 Conditions for it to have perfect secrecy:

- 1. The secret key k can't be used to encrypt the message.
- 2. $length(k) \ge length(p)$
- 3. k is uniformly selected from any space.

2 OTP on one bit of message:

 $\mathrm{message} \to \ m \ \epsilon \ \{0,1\}$

where, key k $\epsilon~\{0,1\}$

 $P_r[m=0] = P$

 $P_r[k=0] = 0.5$

$$P_r[m=1] = 1 - P$$

 $P_r[k=1] = 0.5$

1

2.1 Encryption:

$$C = m \bigoplus k$$

for cipher text to be 0:

either m=k=0 or m=k=1 are 2 possibilities.

So.

$$P[C = 0] = P_r[m = 0, k = 0] + P_r[m = 1, k = 1]$$

$$= P_r[m = 0] \cdot P_r[k = 0] + P_r[m = 1] \cdot P_r[k = 1]$$

$$= P \times (0.5) + (1 - P) \times 0.5$$

similar can be proven for C = 1.

$$P_r[M=m|C=c] = P_r[M=m]$$

$$1. P_r(A/B) = \frac{P_r(AB)}{P_r(B)}$$

$$2. P_r(AB) = P_r(B/A) \cdot P(A)$$

2.2 Perfect secrecy of OTP:

$$P_r[M=0|C=0] = \frac{P_r[M=0,C=0]}{P_r[C=0]}$$

 $P_r[M=0,C=0] =$ Probability of M and C being 0.

$$= \frac{P_r[C=0|M=0] \times P_r[M=0]}{1/2}$$

Here, We are assuming that $P_r[C=0|M=0]=0.5$.

$$=\frac{1/2 \times P_r[M=0]}{1/2}$$
$$=P_r[M=0]$$

C depends on k and M given m=0 k can be 1 or 0.

$$P_r[M=0|C=0] = P_r[M=0]$$
 So it provides perfect secrecy.

2.3 OTP with out Condition:

1. Reuse secret key.

$$M_1 \bigoplus k = C_1$$

$$M_2 \bigoplus k = C_2$$

$$C_1 \bigoplus C_2 = (M_1 \bigoplus k) \bigoplus (M_2 \bigoplus k)$$
$$= M_1 \bigoplus M_2$$

So the xor of cipher texts will give diffrence between cipher text and message/plain text.

2. length of key \geq length of plain text. let's suppose len(k) < len(P)

$$C = P \bigoplus k$$

$$P = p_1 p_2 \dots p_l p_{l+1} \dots p_n$$

$$\bigoplus k = k_1 k_2 \dots k_l k_1 \dots k_t$$

$$C = (p_1 \bigoplus k_1)(p_2 \bigoplus k_2)...(p_l \bigoplus k_l)(p_{l+1} \bigoplus k_1)...(p_n \bigoplus k_t)$$

3. If we take k from a non-uniformly. The $P_r[C=0|M=0]$ will not be 0.5. So $P_r[M=0|C=0]$ will not be equal to $P_r[M=0]$ and OTP will not have perfect secrecy.

3 Data Encryption Standard (DES):

- It's a block cipher Designed by IBM in 1970s and was proprietary until 1977.

Characteristics of DES:

- 1. Block size = 64 bit.
- 2. Number of rounds = 16
- 3. Secret key size = 64 bit
 Out of 64 key consists of 56 bit actual key and 8 bit parity bits.
- 4. It's based on Feistel Network.

3.1 Encryption:

3.2 decryption:

3.3 Parity Check:

After discarding 8 parity bits we have Secret key of length 58 bits.

In DES 16 round keys $k_1 - k_{16}$ are generated by key scheduling function G(n) which takes secret key as input.

4 Structure of DES:

4.1 Encryption:

4.2 Decryption:

4.3 IP (Initial Permutation):

$$\mathrm{IP}: \{0,1\}^{64} \to \{0,1\}^{64}$$

IP lookup table

	IP										
58	50	42	34	26	18	10	2				
60	52	44	36	28	20	12	4				
62	54	46	38	30	22	14	6				
64	56	48	40	32	24	16	8				
57	49	41	33	25	17	9	1				
59	51	43	35	27	19	11	3				
61	53	45	37	29	21	13	5				
63	55	47	39	31	23	15	7				

$$IP(m_1m_2...m_{64}) = (m_58m_50...m_15m_7) IP^{-1}(m_1m_2...m_{64}) = (m_40m_8...m_57m_25)$$

IP^{-1} lookup table

	IP ⁻¹										
40	8	48	16	56	24	64	32				
39	7	47	15	55	23	63	31				
38	6	46	14	54	22	62	30				
37	5	45	13	53	21	61	29				
36	4	44	12	52	20	60	28				
35	3	43	11	51	19	59	27				
34	2	42	10	50	18	58	26				
33	1	41	9	49	17	57	25				

$$IP^{-1}(m_1m_2\ldots m_{64}) = (m_40m_8\ldots m_57m_25)$$

Round function of DES:

 $f:\{0,1\}^{32}\times\{0,1\}^{48}\to\{0,1\}^{32}$

 $f:(R_i,k_i) = X_i$

where, R_i is 32 bit.

 k_i is 48 bit.

 X_i is 32 bit.

$$f(R_i, k_i) = P(S(E(R_i) \bigoplus k_i))$$

where, $E: Expenion function: \{0,1\}^{32} \to \{0,1\}^{48}$ $S: Sbox: \{0,1\}^{48} \to \{0,1\}^{32}$ $P: Permutation: \{0,1\}^{32} \to \{0,1\}^{32}$

4.5 Expansion function:

	E									
32	1	2	3	4	5					
4	5	6	7	8	9					
8	9	10	11	12	13					
12	13	14	15	16	17					
16	17	18	19	20	21					
20	21	22	23	24	25					
24	25	26	27	28	29					
28	29	30	31	32	1					

$$E(x_1x_2...x_{32}) = \{x_{32} x_1...x_4 x_5...x_{32} x_1 \}$$

4.6 Sbox:

$$\begin{split} &\mathbf{S}(\mathbf{x}) = \mathbf{y}, \, \text{where } \mathbf{x} \, \, \text{is } 48 \, \, \text{bit and } \mathbf{y} \, \, \text{is } 32 \, \, \text{bit.} \\ &X = B_1 \, \, B_2 \, B_3 \, \, B_4 \, \, B_5 \, \, B_6 \, \, B_7 \, \, B_8 \\ &\text{Where length of } B_i \, \, \text{is } 64 \, \, \text{bit.} \\ &S_1 \, \, S_2 \, S_3 \, \, S_4 \, \, S_5 \, \, S_6 \, \, S_7 \, \, S_8 \\ &S_i(B_i) = C_i \\ &S_i : \{0,1\}^6 \to \{0,1\}^4 \, \, where, i = 1,2,3,...,8 \\ &S(x) = (S_1(B_1), \, \ldots, S_8(B_8)) \\ &B_i = b_1 \, \, b_2 \, b_3 \, b_4 \, \, b_5 \, \, b_6 \quad b_i \epsilon \{0,1\} \\ &r = (2 \times b_1 + b_6) \, \, \text{it's just interger representation} \\ &\text{of } b_1 b_6 \\ &\text{c is integer representation of } b_2 b_3 b_4 b_5. \end{split}$$

1 0 6 6 7 10 6 15

here, $0 \le r \le 3$ and $0 \le c \le 15$

Now using following table compute the S_i from B_i .

row	column number															
	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]
	S_1															
[0]	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
[1]	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
[2]	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
[3]	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
S_2																
[0]	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
[1]	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
[2]	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
[3]	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9
		_			_	_			S_3						_	
[0]	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
[1]	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
[2]	13	6	4	9	8 6	15	3	0 7	11	1	2	12 3	5	10	14	7 12
[3]	1	10	13	0	ь	9	8	/	4	15	14	3	11	5	2	12
[0]	S ₄															
[0] [1]	7 13	13 8	14 11	3 5	0 6	6 15	9	10 3	1 4	2 7	8	5 12	11 1	12 10	4 14	15 9
[2]		6		0	12	11	7	13	15		3	14	5	2	8	4
[3]	10	15	9	6	10	1	13	8	9	1 4	5	11	12	7	2	14
	3	13	U	U	10	1	13	O	S_5	4	J	11	12	/		14
[0]	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
[1]	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
[2]	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
[3]	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3
<u> </u>	_								S_6							
[0]	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
[1]	10	15	4	2	7	2 12	9	5	6	1	13	14	0	11	3	8
[2]	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
[3]	4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13
									S_7							
[0]	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
[1]	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
[2]	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
[3]	6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12
									S_8							
[0]	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
[1]	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
[2]	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
[3]	2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11

4.7 Permutation:

 $P: \{0,1\}^{32} \to \{0,1\}^{32}$

P								
16	7	20	21					
29	12	28	17					
1	15	23	26					
5	18	31	10					
2	8	24	14					
32	27	3	9					
19	13	30	6					
22	11	4	25					

$$P(x_1 \ x_2 \ x_3 \ \dots \ x_{32}) \ = \ (x_{16} \ x_7, \dots \ x_{22} \ x_{11} \ x_4 \ x_{25})$$

4.8 Des summary:

- 1. 16 rounds
- 2. 64 bit block size
- 3. key size of 64 bits
- 4. IP and IP^{-1}
- 5. Round function
- 6. Key scheduling algorithm

5 Key scheduling algorithm DES:

Input: 64 bit key k.

Output: 16 round keys.

- 1. Define $V_i, 1 \le i \le 16$ if i ϵ 1,2,9,16 $V_i = 1$ else $V_i = 2$
- 2. Discard 8 parity bits from k.
- 3. $T = PC_1(\tilde{k}) \quad PC_1 : \{0, 1\}^{56} \to \{0, 1\}^{56}$
- 4. $(C_0, D_0) = T$ Where C_0 is of 28 bit and D_0 is of 28 bit.
- 5. for i = 1 to 16 $C_i = (C_{i-1} \leftarrow v_i)$ $D_i = (D_{i-1} \leftarrow v_i)$

$$K_i = PC_2(C_i, D_i)$$

 $PC_2 : \{0, 1\}^{56} \to \{0, 1\}^{48}$

6. Round key = $k_1 k_2 k_3 k_4 \dots k_{16}$

	PC1									
57	49	41	33	25	17	9				
1	58	50	42	34	26	18				
10	2	59	51	43	35	27				
19	11	3	60	52	44	36				
	abov	e for (C_i ; be	low fo	$r D_i$					
63	55	47	39	31	23	15				
7	62	54	46	38	30	22				
14	6	61	53	45	37	29				
21	13	5	28	20	12	4				

PC2										
14	17	11	24	1	5					
3	28	15	6	21	10					
23	19	12	4	26	8					
16	7	27	20	13	2					
41	52	31	37	47	55					
30	40	51	45	33	48					
44	49	39	56	34	53					
46	42	50	36	29	32					