Noțiunea de vecinătate a unui punct din $\overline{\mathbb{R}}$

Definiție. Mulțimea $V \subseteq \overline{\mathbb{R}}$ se numește vecinătate a lui $x_0 \in \overline{\mathbb{R}}$ dacă:

- i) cazul $x_0 \in \mathbb{R}$: există $\varepsilon > 0$ astfel încât $(x_0 \varepsilon, x_0 + \varepsilon) \subseteq V$;
- ii) cazul $x_0 = -\infty$: există $\varepsilon > 0$ astfel încât $[-\infty, -\varepsilon) \subseteq V$;
- iii) cazul $x_0 = \infty$: există $\varepsilon > 0$ astfel încât $(\varepsilon, \infty] \subseteq V$.

Notație. Vom nota mulțimea vecinătăților lui x_0 cu \mathcal{V}_{x_0} .

Exemple

- 1. Deoarece $(-1,1) \subseteq (-2,\infty)$, deducem că $(-2,\infty) \in \mathcal{V}_0$.
- **2**. Deoarece nu există $\varepsilon > 0$ astfel încât $(-2 \varepsilon, -2 + \varepsilon) \subseteq (-2, \infty)$, deducem că $(-2, \infty) \notin \mathcal{V}_{-2}$.
 - **3**. Deoarece $[-\infty, -1) \subseteq \overline{\mathbb{R}}$, deducem că $\overline{\mathbb{R}} \in \mathcal{V}_{-\infty}$.

Temă

- 1. Să se determine valoarea de adevăr a următoarelor propoziții:
- a) $(-1,1) \cup \{2\} \in \mathcal{V}_{\frac{1}{2}};$
- b) $(-1,1) \in \mathcal{V}_0$;
- c) $[0,1) \in \mathcal{V}_0$;
- d) $\mathbb{Z} \in \mathcal{V}_0$;
- d) $(-1, \infty) \in \mathcal{V}_1$.
- **2**. Fie $a, b \in \mathbb{R}$, $a \neq b$. Să se arate că există $U \in \mathcal{V}_a$ şi $V \in \mathcal{V}_b$ astfel încât $U \cap V = \emptyset$.

Şiruri de numere reale / monotonie şi mărginire

Definiție. O funcție $x : \mathbb{N} \to M$ se numește șir de elemente din mulțimea M.

Notații. Funcția $x : \mathbb{N} \to M$ se notează cu $(x_n)_{n \in \mathbb{N}}$ având în vedere faptul că $x(n) \stackrel{not}{=} x_n$. Dacă dorim să subliniem faptul că funcția x are codomeniul M, atunci vom scrie $(x_n)_{n \in \mathbb{N}} \subseteq M$. Domeniul \mathbb{N} al funcției x se poate înlocui cu o mulțime de forma $\{k, k+1, ...\}$, unde $k \in \mathbb{N}$, caz în care vom scrie $(x_n)_{n \geq k}$.

Definiție. Un şir $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ se numește:

- crescător dacă

$$x_n \leq x_{n+1}$$

pentru orice $n \in \mathbb{N}$;

- strict crescător dacă

$$x_n < x_{n+1},$$

pentru orice $n \in \mathbb{N}$;

- descrescător dacă

$$x_{n+1} \leq x_n$$

pentru orice $n \in \mathbb{N}$;

- strict descrescător dacă

$$x_{n+1} < x_n,$$

pentru orice $n \in \mathbb{N}$;

- monoton dacă este crescător sau descrescător;
- strict monoton dacă este strict crescător sau strict descrescător.

Exemple

- 1. Şirul $(x_n)_{n\in\mathbb{N}}$, unde $x_n=n^2-3n+1$, este crescător deoarece $x_{n+1}-x_n=1$ $2(n-1) \ge 0$ pentru orice $n \in \mathbb{N}$.
- **2**. Şirul $(x_n)_{n\in\mathbb{N}^*}$, unde $x_n=\frac{2^n}{n!}$, este descrescător deoarece $\frac{x_{n+1}}{x_n}=\frac{2}{n+1}\leq$ 1 pentru orice $n \in \mathbb{N}^*$.
- **3**. Şirul $(x_n)_{n \in \mathbb{N}}$, unde $x_n = \frac{(-1)^n}{n}$, nu este monoton deoarece $x_1 < x_2 > 1$ x_3 .

Să se studieze monotonia șirului $(x_n)_{n\in\mathbb{N}}$, unde:

- i) $x_n = \frac{2n+5}{n+3}$ pentru orice $n \in \mathbb{N}$; ii) $x_n = \frac{n+1}{2n+1}$ pentru orice $n \in \mathbb{N}$; iii) $x_n = (-1)^n$ pentru orice $n \in \mathbb{N}$; iv) $x_n = \frac{(-1)^n}{n}$ pentru orice $n \in \mathbb{N}$; v) $x_n = \sin \frac{n\pi}{2}$ pentru orice $n \in \mathbb{N}$.

Definiție. Un şir $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ se numește:

- mărginit superior dacă $\{x_n \mid n \in \mathbb{N}\}$ este majorată, i.e. dacă există $M \in \mathbb{R}$ astfel încât

$$x_n \leq M$$
,

pentru orice $n \in \mathbb{N}$;

- mărginit inferior dacă $\{x_n \mid n \in \mathbb{N}\}$ este minorată, i.e. dacă există $m \in \mathbb{R}$ astfel încât

$$m \leq x_n$$

pentru orice $n \in \mathbb{N}$;

- mărginit dacă $\{x_n \mid n \in \mathbb{N}\}$ este mărginită, i.e. există $m, M \in \mathbb{R}$ astfel $\hat{i}nc\hat{a}t$

$$m < x_n < M$$
,

pentru orice $n \in \mathbb{N}$.

Exemple

- **1.** Şirul $(x_n)_{n\in\mathbb{N}}$, unde $x_n = \frac{n^2+n+1}{3n^2}$, este mărginit deoarece $0 \le x_n \le 3$ pentru orice $n \in \mathbb{N}$.
- 2. Şirul $(x_n)_{n\in\mathbb{N}}$, unde $x_n=\frac{n^2}{n+1}$, nu este mărginit superior deoarece $n-1 \leq x_n$ pentru orice $n \in \mathbb{N}$, dar este mărginit inferior deoarece $0 \leq x_n$ pentru orice $n \in \mathbb{N}$.

Temă

- Să se studieze mărginirea şirului $(x_n)_{n\in\mathbb{N}}$, unde: i) $x_n = \frac{5n^2}{n^2+2}$ pentru orice $n \in \mathbb{N}$; ii) $x_n = \frac{n}{n+1} \sin n$ pentru orice $n \in \mathbb{N}$; iii) $x_n = \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n\cdot (n+1)}$ pentru orice $n \in \mathbb{N}$; iv) $x_n = \frac{\sin 1}{3} + \frac{\sin 2}{3^2} + \dots + \frac{\sin n}{3^n}$ pentru orice $n \in \mathbb{N}$; v) $x_n = \frac{n^3}{n^2+n+1}$ pentru orice $n \in \mathbb{N}$.

Limita unui şir de numere reale

Definiție. Un element $l \in \mathbb{R}$ se numește o limită a șirului $(x_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}$ dacă în afara oricărei vecinătăți V a lui l se află un număr finit de termeni ai şirului (deci, în interiorul lui V se găsesc toți termenii şirului de la un rang încolo), i.e pentru orice $V \in \mathcal{V}_l$ există $n_V \in \mathbb{N}$ astfel încât $x_n \in V$ pentru orice $n \in \mathbb{N}, n \geq n_V$.

Remarcă. Pentru un şir $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ există cel mult un element $l\in\overline{\mathbb{R}}$ care satisface cerințele definiției de mai sus. În cazul existenței acestuia, el se va nota cu $\lim_{n\to\infty} x_n$.

Definiție. Un şir $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ se numește:

- convergent dacă există $l \in \mathbb{R}$ astfel încât $\lim_{n \to \infty} x_n = l$; divergent dacă nu este convergent (i.e. fie nu există există $l \in \mathbb{R}$ astfel \widehat{n} $\lim_{n\to\infty} x_n = l$, fie $\lim_{n\to\infty} x_n = -\infty$, fie $\lim_{n\to\infty} x_n = \infty$).

Propoziție. Fie $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ și $l\in\mathbb{R}$. Următoarele afirmații sunt echivalente:

- i) $\lim x_n = l$
- $\stackrel{\circ}{ii}\stackrel{\circ}{pentru}$ orice $\varepsilon>0$ există $n_{\varepsilon}\in\mathbb{N}$ astfel $\hat{i}nc\hat{a}t$ $|x_n-l|<\varepsilon$ ($\Longleftrightarrow l\in$ $(l-\varepsilon, l+\varepsilon)$) pentru orice $n \in \mathbb{N}, n \geq n_{\varepsilon}$.

(pentru orice $\varepsilon > 0$ există n_{ε} astfel încât pentru orice $n \geq n_{\varepsilon}$ să avem $|x_n - l| < \varepsilon$

$$(\forall \varepsilon > 0 \exists n_\varepsilon \text{ astfel } \hat{n} \hat{c} \hat{a} t \ \forall n \ge n_\varepsilon \Longrightarrow |x_n - l| < \varepsilon)$$

Nota. Un sir este convergent daca termenii lui aproximeaza limita sirului oricat de bine de la un anumit rang.

Propoziție. Pentru $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$, următoarele afirmații sunt echivalente:

- i) $\lim_{n\to\infty}x_n=\infty$ ii) $\underset{pentru\ orice\ \varepsilon}{\lim} x_n>\varepsilon$ pentru\ orice $n \in \mathbb{N}, n \geq n_{\varepsilon}$.

Propoziție. Pentru $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$, următoarele afirmații sunt echivalente:

- $i) \lim_{n \to \infty} x_n = -\infty$
- ii) pentru orice $\varepsilon > 0$ există $n_{\varepsilon} \in \mathbb{N}$ astfel încât $x_n < -\varepsilon$ pentru orice $n \in \mathbb{N}, n \geq n_{\varepsilon}$.

Exemplu

Folosind definiția, vom arăta că $\lim_{n\to\infty} \frac{n}{n-1} = 1$.

Trebuie să arătăm că pentru orice $\varepsilon > 0$ există $n_{\varepsilon} \in \mathbb{N}$ cu proprietatea că pentru orice $n \in \mathbb{N}$, $n \ge n_{\varepsilon}$ avem $\left|\frac{n}{n-1} - 1\right| < \varepsilon$. Inegalitatea $\left|\frac{n}{n-1} - 1\right| < \varepsilon$ este echivalentă cu $\frac{1}{n-1} < \varepsilon$. i.e. cu $n > 1 + \frac{1}{\varepsilon}$. Prin urmare, putem alege $n_{\varepsilon} = \left[1 + \frac{1}{\varepsilon}\right] + 1.$

Definiție. Dacă $(x_n)_{n\in\mathbb{N}}$ este un șir de elemente din M, iar $n_1 < n_2 <$ $\dots < n_k < \dots$ este un şir strict crescător de numere naturale, atunci şirul, din M, $dat de (x_{n_k})_{k \in \mathbb{N}}$, se numeşte un subşir al său.

Propoziție. Fie $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ şi $l\in\overline{\mathbb{R}}$.

- α) Dacă $\lim x_n = l$ şi $(x_{n_k})_{k \in \mathbb{N}}$ este un subșir al lui $(x_n)_{n \in \mathbb{N}}$, atunci $\lim_{n_k} x_{n_k} = l.$
- β) Dacă există $l_1, l_2 \in \overline{\mathbb{R}}, l_1 \neq l_2$ şi subşirurile $(x_{n_k})_{k \in \mathbb{N}}$ şi $(x_{n_l})_{l \in \mathbb{N}}$ ale lui $(x_n)_{n\in\mathbb{N}}$ astfel încât $\lim_{k\to\infty}x_{n_k}=l_1$ și $\lim_{l\to\infty}x_{n_l}=l_2$, atunci $(x_n)_{n\in\mathbb{N}}$ nu are limită.

Propoziție. Orice șir convergent de numere reale este mărginit. Demonstrație.

Considerăm un şir $(x_n)_{n\in\mathbb{N}}$ convergent la l. Atunci pentru orice $\varepsilon>0$ există $n_{\varepsilon} \in \mathbb{N}$ astfel încât $|x_n - l| < \varepsilon$ pentru orice $n \in \mathbb{N}, n \geq n_{\varepsilon}$. Alegem $\varepsilon = 1$. Atunci pentru orice $n \ge n_1$ avem $|x_n| < |l| + 1$. Fie $d = 1 + \max\{|l| + 1\}$ $1, |x_0|, |x_1|, |x_{n_1}|$. Atunci $|x_n| < d$ pentru orice $n \in \mathbb{N}$.

Exemple fundamentale de şiruri care au limită

- **1.** Fie $a \in \mathbb{R}$ şi $x_n = a^n$ pentru orice $n \in \mathbb{N}$.
- α) Dacă $a \leq -1$, atunci $(x_n)_{n \in \mathbb{N}}$ nu are limită.
- β) $Dac\check{a} 1 < a < 1$, $atunci \lim_{n \to \infty} x_n = 0$.
- γ) Dacă a = 1, atunci $\lim_{n \to \infty} x_n = 1$. δ) Dacă a > 1, atunci $\lim_{n \to \infty} x_n = \infty$.
- **2.** Fie $a \in \mathbb{R}$ şi $x_n = n^a$ pentru orice $n \ge 1$.
- α) Dacă a < 0, atunci $\lim x_n = 0$.
- β) Dacă a = 0, atunci $\lim x_n = 1$.
- γ) Dacă a > 0, atunci $\lim_{n \to \infty} x_n = \infty$.

Temă

- 1. Folosind definiția, să se arate că:
- i) $\lim_{n\to\infty} \frac{n+2}{n+3} = 1;$

- ii) $\lim_{n\to\infty} \frac{n^2}{n+1} = \infty$.
- 2. Să se arate că următoarele şiruri nu au limită:
- i) $(1+(-1)^n)_{n\in\mathbb{N}}$;
- ii) $(\sin \frac{n\pi}{2})_{n \in \mathbb{N}};$ iii) $(\{\frac{n}{3}\})_{n \in \mathbb{N}}.$
- **3**. Să se arate că dacă șirul $(x_n)_{n\in\mathbb{N}}$ are proprietatea că există $l\in\overline{\mathbb{R}}$ astfel încât $\lim_{n\to\infty} x_{2n} = l$ şi $\lim_{n\to\infty} x_{2n+1} = l$, atunci $\lim_{n\to\infty} x_n = l$.

Operații cu șiruri care au limită

Propoziție. Fie $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ și $l_1, l_2\in\mathbb{R}$ astfel încât $\lim_{n\to\infty}x_n=0$ $l_1 \ \text{si} \lim_{n \to \infty} y_n = l_2. \ Atunci:$ α

$$\lim_{n\to\infty} (x_n + y_n) = l_1 + l_2 = \lim_{n\to\infty} x_n + \lim_{n\to\infty} y_n;$$

 β)

$$\lim_{n\to\infty} (x_n y_n) = l_1 l_2 = (\lim_{n\to\infty} x_n) (\lim_{n\to\infty} y_n).$$

În particular, avem

$$\lim_{n \to \infty} (\alpha x_n) = \alpha l_1 = \alpha (\lim_{n \to \infty} x_n),$$

pentru orice $\alpha \in \mathbb{R}$ și

$$\lim_{n \to \infty} (x_n - y_n) = l_1 - l_2 = \lim_{n \to \infty} x_n - \lim_{n \to \infty} y_n.$$

Demonstrație.

 α) Deoarece $\lim_{n\to\infty}x_n=l_1$, rezultă că pentru orice $\varepsilon>0$ există $n_\varepsilon'\in\mathbb{N}$

astfel încât $|x_n - l_1| < \frac{\varepsilon}{2}$ pentru orice $n \in \mathbb{N}, n \ge n'_{\varepsilon}$.

Deoarece $\lim_{n \to \infty} y_n = l_2$, rezultă că pentru orice $\varepsilon > 0$ există $n''_{\varepsilon} \in \mathbb{N}$ astfel încât $|y_n - l_2| < \frac{\varepsilon}{2}$ pentru orice $n \in \mathbb{N}, n \ge n''_{\varepsilon}$.

Notam $n_{\varepsilon} = \max(n'_{\varepsilon}, n''_{\varepsilon})$, pentru $n \geq n_{\varepsilon}$ avem

 $|(x_n + y_n) - (l_1 + l_2)| = |x_n - l_1 + y_n - l_2| \le |x_n - l_1| + |y_n - l_2| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} +$

 β) Deoarece $\lim_{n\to\infty} x_n=l_1$, rezultă că pentru orice $\varepsilon>0$ există $n'_{\varepsilon}\in\mathbb{N}$ astfel încât $|x_n - l_1| < \varepsilon$ pentru orice $n \in \mathbb{N}, n \ge n'_{\varepsilon}$.

Deoarece $\lim_{n\to\infty} y_n = l_2$, rezultă că pentru orice $\varepsilon > 0$ există $n''_{\varepsilon} \in \mathbb{N}$ astfel încât $|y_n - l_2| < \varepsilon$ pentru orice $n \in \mathbb{N}$, $n \ge n''_{\varepsilon}$.

Deoarece şirurile şi sunt convergente rezultă că există M > 0 astfel încât $|x_n| < M$ şi $|y_n| < M$ pentru orice $n \in \mathbb{N}$.

Notăm $n_{\varepsilon} = \max(n'_{\varepsilon}, n''_{\varepsilon})$, pentru $n \ge n_{\varepsilon}$ avem $|x_n y_n - l_1 l_2| = |x_n y_n - x_n l_2 + x_n l_2 - l_1 l_2| \le |x_n y_n - x_n l_2| + |x_n l_2 - l_1 l_2| \le |x_n l_2 - l_1 l_2| + |x_n l_2 - l_1 l_2| \le |x_n l_2 - l_1 l_2| + |x_n l_2 - l_1 l_2| \le |x_n l_2 - l_1 l_2| + |x_n l_2 - l_1 l_2| \le |x_n l_2 - l_1 l_2| + |x_n l_2 - l_1 l_2| \le |x_n l$

Propoziție. Fie $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ şi $l_1, l_2\in\mathbb{R}$ astfel încât $\lim_{n\to\infty}x_n=l_1, \lim_{n\to\infty}y_n=l_2, l_2\neq 0$ şi $y_n\neq 0$ pentru orice $n\in\mathbb{N}$. Atunci

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{l_1}{l_2} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n}.$$

Demonstrație.

Folosind propoziția anterioară este suficient să facem demonstrația în cazul $x_n=1$ pentru orice $n\in\mathbb{N}$. Fie $a=\inf\{|y_n|:n\in\mathbb{N}\}$. Evident $a\geq 0$. Dacă a=0 atunci rezulta ca există un subșir $(y_{n_k})_{k\in\mathbb{N}}$ astfel încât $\lim_{k\to\infty}y_{n_k}=0$, deci $l_2=0$ în contradicție cu ipoteza. În concluzie a>0.

Deoarece $\lim_{n\to\infty} y_n = l_2$, rezultă că pentru orice $\varepsilon > 0$ există $n_{\varepsilon} \in \mathbb{N}$ astfel încât $|y_n - l_2| < \varepsilon$ pentru orice $n \in \mathbb{N}$, $n \ge n_{\varepsilon}$. Pentru $n \ge n_{\varepsilon}$ avem

$$\left|\frac{1}{y_n} - \frac{1}{l_2}\right| = \left|\frac{l_2 - y_n}{y_n l_2}\right| \le \frac{\varepsilon}{a^2}.$$

Propoziție. Fie $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ şi $l_1, l_2\in\mathbb{R}$ astfel încât $\lim_{n\to\infty}x_n=l_1$, $\lim_{n\to\infty}y_n=l_2$, $l_1>0$ şi $x_n>0$ pentru orice $n\in\mathbb{N}$. Atunci

$$\lim_{n\to\infty} x_n^{y_n} = l_1^{l_2} = (\lim_{n\to\infty} x_n)^{\lim_{n\to\infty} y_n}.$$

Propoziție. Fie $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ şi $l_1, l_2\in\mathbb{R}$ astfel încât $\lim_{n\to\infty}x_n=l_1, \lim_{n\to\infty}y_n=l_2, l_1, l_2>0$ & $l_1\neq 1$ şi $x_n, y_n>0$ & $x_n\neq 1$ pentru orice $n\in\mathbb{N}$. Atunci

$$\lim_{n \to \infty} \log_{x_n}(y_n) = \log_{l_1}(l_2) = \log_{\lim_{n \to \infty} x_n} (\lim_{n \to \infty} y_n).$$

Remarcă. Propozițiile anterioare se extind în cazul în care $l_1, l_2 \in \overline{\mathbb{R}}$, ținând cont de următoarele relații:

-

$$\infty + a = a + \infty = \infty$$
,

pentru orice $a \in (-\infty, \infty]$

$$(-\infty) + a = a + (-\infty) = -\infty,$$

pentru orice $a \in [-\infty, \infty)$

 $\infty \cdot a = a \cdot \infty = \infty,$

pentru orice $a \in (0, \infty]$

 $\infty \cdot a = a \cdot \infty = -\infty,$

pentru orice $a \in [-\infty, 0)$

 $(-\infty) \cdot a = a \cdot (-\infty) = -\infty,$

pentru orice $a \in (0, \infty]$

 $(-\infty) \cdot a = a \cdot (-\infty) = \infty,$

pentru orice $a \in [-\infty, 0)$

 $\frac{a}{\infty} = \frac{a}{-\infty} = 0,$

pentru orice $a \in \mathbb{R}$

 $a^{\infty} = 0$,

pentru orice $a \in (-1, 1)$

 $a^{\infty} = \infty,$

pentru orice $a \in (1, \infty]$

_

$$a^{-\infty} = 0,$$

pentru orice $a \in (1, \infty]$

 $\infty^a = \infty$,

pentru orice $a \in (0, \infty]$

-

$$\infty^a = 0$$
,

pentru orice $a \in [-\infty, 0)$

NU SUNT DEFINITE următoarele operații:

$$\infty - \infty$$

$$\frac{0\cdot\infty}{\infty}$$

$$\frac{0}{0}$$

$$1^{\infty}$$

$$\infty^0$$

$$0^{0}$$
.

Exemplu. Să se calculeze $\lim_{n\to\infty} (\sqrt{n^2+2n}-n)$.

Avem

$$\sqrt{n^2 + 2n} - n = \frac{(\sqrt{n^2 + 2n} - n)(\sqrt{n^2 + 2n} + n)}{(\sqrt{n^2 + 2n} + n)} = \frac{2n}{\sqrt{n^2 + 2n} + n} = \frac{2}{\sqrt{1 + \frac{2}{n}} + 1},$$

de unde

$$\lim_{n \to \infty} (\sqrt{n^2 + 2n} - n) = \lim_{n \to \infty} \frac{2}{\sqrt{1 + \frac{2}{n} + 1}} = 1$$

Temă. Să se calculeze:

i)
$$\lim_{n \to \infty} (\frac{1}{n} + \frac{4}{3^n} + 10)$$

ii)
$$\lim_{n\to\infty} \frac{n^3 + 5n^2 + 1}{6n^3 + n + 4}$$

iii)
$$\lim_{n \to \infty} \frac{1+2+\ldots+n}{n^2}$$

i)
$$\lim_{n\to\infty} \left(\frac{1}{n} + \frac{4}{3^n} + 10\right)$$

ii) $\lim_{n\to\infty} \frac{n^3 + 5n^2 + 1}{6n^3 + n + 4}$
iii) $\lim_{n\to\infty} \frac{1 + 2 + \dots + n}{n^2}$
iv) $\lim_{n\to\infty} \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \dots \left(1 - \frac{1}{n}\right)$

v)
$$\lim_{n \to \infty} \left(\frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \dots + \frac{1}{(2n-1) \cdot (2n+1)} \right)$$

vi)
$$\lim_{n \to \infty} (\frac{1}{2!} + \frac{2}{3!} + \dots + \frac{n}{(n+1)!})$$

vii)
$$\lim_{n \to \infty} (\sqrt{n^2 + n + 1} - n)$$

viii)
$$\lim_{n \to \infty} \ln \frac{n^3 + 6n}{n^3 + n^2 + n + 1}$$
ix)
$$\lim_{n \to \infty} \frac{\ln(n^2 + n21)}{\ln(n^2 + n+1)}$$

ix)
$$\lim_{n \to \infty} \frac{\ln(n^2 + n21)}{\ln(n^2 + n + 1)}$$

$$x) \lim_{n \to \infty} \sqrt[n]{2^n + 3^n + 4^n}.$$

Limita şirurilor monotone

Propoziție.

- α) Orice șir de numere reale care este crescător și nemărginit are limita ∞ .
- β) Orice şir de numere reale care este descrescător şi nemărginit are $limita -\infty$.

Teorema convergenței monotone (Weierstrass)

 α) Fie $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ un şir crescător şi mărginit. Atunci

$$\lim_{n \to \infty} x_n = \sup\{x_n \mid n \in \mathbb{N}\} \in \mathbb{R}.$$

 β) Fie $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ un şir descrescător şi mărginit. Atunci

$$\lim_{n \to \infty} x_n = \inf\{x_n \mid n \in \mathbb{N}\} \in \mathbb{R}.$$

Temă

1. Să se arate că $\lim_{n\to\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) = \infty$.

Indicație. Cu notația $x_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$, se poate arăta că $x_{2^n} > \frac{n}{2}$ pentru orice $n \in \mathbb{N}$, ceea ce implică nemărginirea șirului $(x_n)_{n \in \mathbb{N}}$.

2. Să se arate că șirului $(1 + \frac{1}{2^2} + ... + \frac{1}{n^2})_{n \in \mathbb{N}}$ este convergent.

Trecerea la limită în inegalități

Propoziție

- (α) Fie $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ convergente astfel încât $x_n\leq y_n$ pentru orice
- $n \in \mathbb{N}$. Atunci $\lim_{n \to \infty} x_n \le \lim_{n \to \infty} y_n$. β) Fie $(x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}$ care au limită astfel încât $x_n \le y_n$ pentru orice $n \in \mathbb{N}$. Avem:

 - $\beta 1) \ dac \ \ \lim_{n \to \infty} x_n = \infty, \ at unci \ \lim_{n \to \infty} y_n = \infty;$ $\beta 2) \ dac \ \ \lim_{n \to \infty} y_n = -\infty, \ at unci \ \lim_{n \to \infty} x_n = -\infty.$

Lema cleştelui. Fie $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}, (z_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ astfel încât $x_n\leq y_n\leq z_n$ pentru orice $n\in\mathbb{N}$ şi $\lim_{n\to\infty}x_n=\lim_{n\to\infty}z_n\stackrel{not}{=}l\in\overline{\mathbb{R}}$. Atunci $\lim_{n\to\infty}y_n=l$.

Exemplu. Să se calculeze $\lim_{n\to\infty} \frac{[n\pi]}{n}$.

Conform inegalității părții întregi ave
m $n\pi-1<[n\pi]\leq n\pi,$ de unde

$$\pi - \frac{1}{n} < \frac{[n\pi]}{n} \le \pi,\tag{*}$$

pentru orice $n \in \mathbb{N}^*$.

Deoarece $\lim_{n\to\infty}(\pi-\frac{1}{n})=\pi$, conform lemei cleştelui, având în vedere (*), concluzionăm că $\lim_{n\to\infty}\frac{[n\pi]}{n}=\pi$.

Temă

- 1. Să se calculeze $\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}}\right)$. 2. Să se calculeze $\lim_{n\to\infty} \left(n arctg \ n\right)$.
- **3**. Să se calculeze $\lim_{n\to\infty} \{\sqrt{n^2+n}\}$.

Numărul e

Propoziție. Şirul $((1+\frac{1}{n})^n)_{n\in\mathbb{N}}$ este crescător și mărginit, iar limita sa se notează cu e.

Aşadar

$$\lim_{n \to \infty} (1 + \frac{1}{n})^n = e.$$

Observație. Pentru orice șir $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}\setminus\{0\}$ astfel încât $\lim_{n\to\infty}x_n=0$, avem:

i)

$$\lim_{n \to \infty} (1 + x_n)^{\frac{1}{x_n}} = e;$$

ii)

$$\lim_{n \to \infty} \frac{\ln(1+x_n)}{x_n} = 1;$$

iii)

$$\lim_{n \to \infty} \frac{a^{x_n} - 1}{x_n} = \ln a,$$

pentru orice a > 0;

iv)

$$\lim_{n \to \infty} \frac{(1+x_n)^{\alpha} - 1}{x_n} = \alpha,$$

pentru orice $\alpha \in \mathbb{R}$.

Exemple

1. Să se calculeze $\lim_{n\to\infty} (1+\sqrt{n+1}-\sqrt{n})^{-\sqrt{n}}$.

Avem

$$(1+\sqrt{n+1}-\sqrt{n})^{-\sqrt{n}} = [(1+\sqrt{n+1}-\sqrt{n})^{\frac{1}{\sqrt{n+1}-\sqrt{n}}}]^{-\sqrt{n}(\sqrt{n+1}-\sqrt{n})} =$$
$$= [(1+\sqrt{n+1}-\sqrt{n})^{\frac{1}{\sqrt{n+1}-\sqrt{n}}}]^{-\frac{1}{1+\sqrt{1+\frac{1}{n}}}},$$

pentru orice $n \in \mathbb{N}^*$.

Deoarece

$$\lim_{n \to \infty} \sqrt{n+1} - \sqrt{n} = \lim_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0,$$

găsim că

$$\lim_{n \to \infty} [(1 + \sqrt{n+1} - \sqrt{n})^{\frac{1}{\sqrt{n+1} - \sqrt{n}}}] = e.$$

Cum

$$\lim_{n \to \infty} -\frac{1}{1 + \sqrt{1 + \frac{1}{n}}} = -\frac{1}{2},$$

conchidem că

$$\lim_{n \to \infty} (1 + \sqrt{n+1} - \sqrt{n})^{-\sqrt{n}} = e^{-\frac{1}{2}} = \frac{1}{\sqrt{e}}.$$

2. Să se calculeze $\lim_{n\to\infty} n(\sqrt[n]{2} - 1)$.

Deoarece

$$n(\sqrt[n]{2} - 1) = \frac{2^{\frac{1}{n}} - 1}{\frac{1}{n}},$$

pentru orice $n \in \mathbb{N}^*$ și $\lim_{n \to \infty} \frac{1}{n} = 0$, concluzionăm că

$$\lim_{n \to \infty} n(\sqrt[n]{2} - 1) = \ln 2.$$

Temă

- 1. Să se calculeze: i) $\lim_{n\to\infty} \left(\frac{n^2+n+1}{n^2+1}\right)^n$; ii) $\lim_{n\to\infty} \left(\frac{\sqrt[n]{2}+\sqrt[n]{3}}{2}\right)^n$.
- 2. Să se arate că:
- a) $(1+\frac{1}{n})^n < e < (1+\frac{1}{n})^{n+1}$ pentru orice $n \in \mathbb{N}^*$; b) $\frac{1}{n+1} < \ln(n+1) \ln n < \frac{1}{n}$ pentru orice $n \in \mathbb{N}^*$;
- c) sirul $(1 + \frac{1}{2} + ... + \frac{1}{n} \ln n)_{n \in \mathbb{N}^*}$ este convergent (limita sa se numește constanta lui Euler); d) $\lim_{n \to \infty} (\frac{1}{n+1} + \frac{1}{n+2} + ... + \frac{1}{2n}) = \ln 2$.

Propoziție. *Şirurile* $((1+\frac{1}{n})^n)_{n\in\mathbb{N}}$ *şi* $(1+\frac{1}{1!}+\frac{1}{2!}+...+\frac{1}{n!})_{n\in\mathbb{N}}$ *sunt* convergente și au aceeași limită (notată cu e).

Demonstrație.

Afirmaţia 1. Şirul $((1+\frac{1}{n})^n)_{n\in\mathbb{N}}$ este strict crescător. Justificarea afirmaţiei 1. Conform inegalităţii mediilor, avem $((1+\frac{1}{n})^n)^{\frac{1}{n+1}} < \frac{n(1+\frac{1}{n})+1}{n+1} = 1+\frac{1}{n+1}$, i.e. $(1+\frac{1}{n})^n < (1+\frac{1}{n+1})^{n+1}$ pentru orice $n \in \mathbb{N}$.

Afirmaţia 2. Şirul $((1+\frac{1}{n})^n)_{n\in\mathbb{N}}$ este mărginit superior.

Justificarea afirmației 2. Să observăm că $C_{n n^k}^k = \frac{1}{k!}$ pentru orice $n \in \mathbb{N}$, n > 2 și orice $k \in \{1, ..., n\}$. Prin urmare, avem $(1 + \frac{1}{n})^n = \sum_{k=0}^n C_{n n^k}^k < \sum_{k=0}^n \frac{1}{k!} < 1 + \frac{1}{1!} + (\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + ... + \frac{1}{(n-1) \cdot n}) = 2 + (1 - \frac{1}{n}) = 3 - \frac{1}{n} < 3$ pentru orice $n \in \mathbb{N}$, n > 2.

Atunci, având în vedere cele două afirmații, conform Teoremei convergenței monotone, șirul $((1+\frac{1}{n})^n)_{n\in\mathbb{N}}$ este convergent.

Afirmația 3. Notând cu e limita șirului $((1+\frac{1}{n})^n)_{n\in\mathbb{N}}$, avem $(1+\frac{1}{n})^n < 1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!} < e$ pentru orice $n\in\mathbb{N},\ n>2$.

Justificarea afirmației 3. Pe de o parte, după cum am observat mai sus, avem

$$(1+\frac{1}{n})^n < 1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!},\tag{1}$$

pentru orice $n \in \mathbb{N}$, n > 2.

Pe de altă parte, pentru orice $m,n\in\mathbb{N},\ m>n>2$, avem $(1+\frac{1}{m})^m=1+C_{m\,\overline{m}}^{1}+\ldots+C_{m\,\overline{m}}^{n}+C_{m\,\overline{m}}^{n+1}+\ldots+C_{m\,\overline{m}}^{m+1}+\ldots+C_{m\,\overline{m}}^{m}$, deci $1+C_{m\,\overline{m}}^{1}+\ldots+C_{m\,\overline{m}}^{n}+\ldots+C_{m\,\overline{$

$$1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} < e. \tag{2}$$

Atunci, din (1) şi (2), obţinem inegalitatea din concluzia afirmaţiei.

Bazându-ne pe Afirmația 3, deducem că șirul $(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!})_{n \in \mathbb{N}}$ este convergent și $\lim_{n \to \infty} (1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}) = e$. \square

Propoziție. *e* este irațional.

Metode complementare de aflare a limitei unui şir

Propoziție. Fie $(x_n)_{n\in\mathbb{N}}\subseteq (0,\infty)$ astfel încât există $\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=l\in\overline{\mathbb{R}}$.

 α) Dacă l < 1, atunci $\lim_{n \to \infty} x_n = 0$. β) Dacă l > 1, atunci $\lim_{n \to \infty} x_n = \infty$.

Exemplu. Să se arate că $\lim_{n\to\infty}\frac{n^{\alpha}}{a^n}=0$, unde $\alpha>0$ și a>1.

Deoarece $\lim_{n\to\infty}\frac{\frac{(n+1)^{\alpha}}{a^{n+1}}}{\frac{n^{\alpha}}{a^{n}}}=\frac{1}{a}<1$, conform propoziției de mai sus, deducem că $\lim_{n\to\infty}\frac{n^{\alpha}}{a^{n}}=0$.

Lema lui Stolz-Cesàro. Fie $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ astfel încât:

i) $(y_n)_{n\in\mathbb{N}}$ este strict crescător;

 $ii) \lim_{n \to \infty} y_n = \infty;$

 $iii) \ exist\ \ \lim_{n\to\infty} \frac{x_{n+1}-x_n}{y_{n+1}-y_n} \in \overline{\mathbb{R}}.$

Atunci:

 α) există $\lim_{n\to\infty} \frac{x_n}{y_n}$;

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} \frac{x_{n+1} - x_n}{y_{n+1} - y_n}.$$

Corolar. Fie $(x_n)_{n\in\mathbb{N}}\subseteq (0,\infty)$ astfel încât există $\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=l\in\overline{\mathbb{R}}$. Atunci:

 α) există $\lim_{n\to\infty} \sqrt[n]{x_n}$;

$$\lim_{n \to \infty} \sqrt[n]{x_n} = \lim_{n \to \infty} \frac{x_{n+1}}{x_n}.$$

Exemple

1. Să calculeze $\lim_{n\to\infty} \frac{\sqrt{1}+\sqrt{2}+...+\sqrt{n}}{n\sqrt{n}}$.

Deoarece

$$\lim_{n \to \infty} \frac{(\sqrt{1} + \sqrt{2} + \dots + \sqrt{n} + \sqrt{n+1}) - (\sqrt{1} + \sqrt{2} + \dots + \sqrt{n})}{(n+1)\sqrt{n+1} - n\sqrt{n}} = 0$$

$$= \lim_{n \to \infty} \frac{\sqrt{n+1}((n+1)\sqrt{n+1} + n\sqrt{n})}{3n^2 + 3n + 1} = \frac{2}{3},$$

conform lemei lui Stolz-Cesàro, deducem că

$$\lim_{n\to\infty}\frac{\sqrt{1}+\sqrt{2}+\ldots+\sqrt{n}}{n\sqrt{n}}=\frac{2}{3}.$$

2. Să calculeze $\lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}}$.

Deoarece

$$\lim_{n \to \infty} \frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}} = \lim_{n \to \infty} (1 + \frac{1}{n})^n = e,$$

conform corolarului lemei lui Stolz-Cesàro, deducem că

$$\lim_{n \to \infty} \sqrt[n]{\frac{n^n}{n!}} = \lim_{n \to \infty} \frac{n}{\sqrt[n]{n!}} = e.$$

Temă

- 1. Să calculeze $\lim_{n\to\infty} \frac{1+\frac{1}{2}+...+\frac{1}{n}}{\ln n}$. 2. Să calculeze $\lim_{n\to\infty} \sqrt[n]{\sin\frac{\pi}{2}\sin\frac{\pi}{3}...\sin\frac{\pi}{n}}$. 3. Să calculeze $\lim_{n\to\infty} \frac{a^n n!}{n^n}$, unde a>0 și $a\neq e$.