```
In [2]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
/usr/local/lib/python3.6/dist-packages/statsmodels/tools/ testing.py:19: FutureWarning: p
andas.util.testing is deprecated. Use the functions in the public API at pandas.testing i
  import pandas.util.testing as tm
In [3]:
df = pd.read csv('FIFA data.csv', index col = 0)
The Fifa Dataset includes detailed attributes of every player registered in FIFA 2019 database.
In [4]:
df.head()
Out[4]:
       ID
             Name Age
                                                          Photo Nationality
                                                                                                    Flag Overall
  158023
           L. Messi
                     31 https://cdn.sofifa.org/players/4/19/158023.png
                                                                 Argentina https://cdn.sofifa.org/flags/52.png
          Cristiano
    20801
                     33
                                                                  Portugal https://cdn.sofifa.org/flags/38.png
                         https://cdn.sofifa.org/players/4/19/20801.png
                                                                                                             94
           Ronaldo
           Neymar
2 190871
                     26 https://cdn.sofifa.org/players/4/19/190871.png
                                                                     Brazil https://cdn.sofifa.org/flags/54.png
                                                                                                             92
                Jr
  193080
            De Gea
                     27 https://cdn.sofifa.org/players/4/19/193080.png
                                                                     Spain https://cdn.sofifa.org/flags/45.png
                                                                                                             91
             K. De
  192985
                     27 https://cdn.sofifa.org/players/4/19/192985.png
                                                                            https://cdn.sofifa.org/flags/7.png
                                                                                                             91
                                                                   Belgium
            Bruyne
5 rows × 88 columns
```

```
In [5]:
df.shape
Out[5]:
(18207, 88)
```

The FiFa dataset contains 88 varables. Lets remove some of the unwanted columns in the dataset.

Dropping unnecessary columns in the dataset.

Some dataset contains photos which are not necessary. So, these columns are dropped.

```
In [6]:
col = ['Photo', 'Flag', 'Club Logo']
```

```
df.drop(col, axis = 1, inplace=True)
```

Check and Filling up missing values

```
In [7]:
for col in df.columns:
  print(col, ":" ,df[col].isnull().sum())
ID : 0
Name : 0
Age: 0
Nationality: 0
Overall: 0
Potential: 0
Club : 241
Value : 0
Wage: 0
Special: 0
Preferred Foot: 48
International Reputation: 48
Weak Foot: 48
Skill Moves: 48
Work Rate: 48
Body Type : 48
Real Face : 48
Position: 60
Jersey Number : 60
Joined : 1553
Loaned From : 16943
Contract Valid Until: 289
Height: 48
Weight: 48
LS : 2085
ST : 2085
RS : 2085
LW : 2085
LF : 2085
CF : 2085
RF: 2085
RW: 2085
LAM : 2085
CAM : 2085
RAM : 2085
LM : 2085
LCM : 2085
CM : 2085
RCM : 2085
RM: 2085
LWB : 2085
LDM : 2085
CDM : 2085
RDM: 2085
RWB : 2085
LB : 2085
LCB : 2085
CB : 2085
RCB : 2085
RB : 2085
Crossing: 48
Finishing: 48
HeadingAccuracy: 48
ShortPassing : 48
Volleys : 48
Dribbling: 48
Curve : 48
FKAccuracy: 48
LongPassing: 48
```

BallControl: 48

```
Acceleration: 48
SprintSpeed: 48
Agility : 48
Reactions: 48
Balance: 48
ShotPower: 48
Jumping: 48
Stamina: 48
Strength: 48
LongShots : 48
Aggression: 48
Interceptions: 48
Positioning: 48
Vision: 48
Penalties: 48
Composure: 48
Marking: 48
StandingTackle: 48
SlidingTackle: 48
GKDiving: 48
GKHandling: 48
GKKicking: 48
GKPositioning: 48
GKReflexes: 48
Release Clause: 1564
```

In [8]:

CM . 2025

The dataset contains lots of null values. The mean function is used for filling up the null values.

```
df.fillna(df.mean(), inplace = True)
for col in df.columns:
  print(col, ":" ,df[col].isnull().sum())
ID : 0
Name: 0
Age: 0
Nationality: 0
Overall : 0
Potential : 0
Club : 241
Value : 0
Wage: 0
Special: 0
Preferred Foot: 48
International Reputation: 0
Weak Foot: 0
Skill Moves: 0
Work Rate: 48
Body Type : 48
Real Face : 48
Position: 60
Jersey Number: 0
Joined: 1553
Loaned From: 16943
Contract Valid Until: 289
Height: 48
Weight: 48
LS : 2085
ST : 2085
RS: 2085
LW : 2085
LF : 2085
CF : 2085
RF: 2085
RW : 2085
LAM : 2085
CAM : 2085
RAM : 2085
LM : 2085
LCM : 2085
```

```
OL1 • 7000
RCM : 2085
RM : 2085
LWB : 2085
LDM : 2085
CDM : 2085
RDM : 2085
RWB : 2085
LB : 2085
LCB : 2085
CB : 2085
RCB : 2085
RB : 2085
Crossing : 0
Finishing: 0
HeadingAccuracy : 0
ShortPassing : 0
Volleys : 0
Dribbling: 0
Curve : 0
FKAccuracy : 0
LongPassing : 0
BallControl : 0
Acceleration: 0
SprintSpeed: 0
Agility: 0
Reactions : 0
Balance : 0
ShotPower: 0
Jumping : 0
Stamina : 0
Strength: 0
LongShots : 0
Aggression : 0
Interceptions : 0
Positioning: 0
Vision : 0
Penalties: 0
Composure : 0
Marking : 0
StandingTackle: 0
SlidingTackle: 0
GKDiving : 0
GKHandling : 0
GKKicking: 0
GKPositioning: 0
GKReflexes : 0
Release Clause: 1564
```

Droformod Foot . A

There are stil some varaibles which contains null values and it could not be addressed by mean since it may be a string. So, we shall assign it as "Unassigned".

```
In [9]:

df.fillna("Unassigned", inplace = True)

In [10]:

for col in df.columns:
    print(col, ":" , df[col].isnull().sum())

ID : 0
Name : 0
Age : 0
Nationality : 0
Overall : 0
Potential : 0
Club : 0
Value : 0
Wage : 0
Special : 0
```

```
LIGITATION LOOF . A
International Reputation: 0
Weak Foot : 0
Skill Moves : 0
Work Rate : 0
Body Type : 0
Real Face : 0
Position: 0
Jersey Number: 0
Joined: 0
Loaned From : 0
Contract Valid Until : 0
Height : 0
Weight: 0
LS : 0
ST : 0
RS : 0
LW : 0
LF : 0
CF : 0
RF : 0
RW : 0
LAM : 0
CAM : 0
RAM : 0
LM : 0
LCM : 0
CM : 0
RCM : 0
RM : 0
LWB : 0
LDM : 0
CDM : 0
RDM : 0
RWB : 0
LB : 0
LCB : 0
CB : 0
RCB : 0
RB : 0
Crossing: 0
Finishing: 0
HeadingAccuracy: 0
ShortPassing : 0
Volleys : 0
Dribbling: 0
Curve : 0
FKAccuracy: 0
LongPassing : 0
BallControl: 0
Acceleration : 0
SprintSpeed: 0
Agility: 0
Reactions : 0
Balance : 0
ShotPower : 0
Jumping: 0
Stamina : 0
Strength : 0
LongShots : 0
Aggression: 0
Interceptions: 0
Positioning: 0
Vision : 0
Penalties: 0
Composure : 0
Marking : 0
StandingTackle : 0
SlidingTackle : 0
GKDiving: 0
GKHandling: 0
GKKicking: 0
CVDogitioning . O
```

GKReflexes: 0
Release Clause: 0

Data Analysis and Visualization

In [11]:

df.describe()

Out[11]:

	ID	Age	Overall	Potential	Special	International Reputation	Weak Foot	Skill Moves	
count	18207.000000	18207.000000	18207.000000	18207.000000	18207.000000	18207.000000	18207.000000	18207.000000	18
mean	214298.338606	25.122206	66.238699	71.307299	1597.809908	1.113222	2.947299	2.361308	
std	29965.244204	4.669943	6.908930	6.136496	272.586016	0.393511	0.659585	0.755167	
min	16.000000	16.000000	46.000000	48.000000	731.000000	1.000000	1.000000	1.000000	
25%	200315.500000	21.000000	62.000000	67.000000	1457.000000	1.000000	3.000000	2.000000	
50%	221759.000000	25.000000	66.000000	71.000000	1635.000000	1.000000	3.000000	2.000000	
75%	236529.500000	28.000000	71.000000	75.000000	1787.000000	1.000000	3.000000	3.000000	
max	246620.000000	45.000000	94.000000	95.000000	2346.000000	5.000000	5.000000	5.000000	
4		1							F

In [12]:

df.head(2)

Out[12]:

	ID	Name	Age	Nationality	Overall	Potential	Club	Value	Wage	Special	Preferred Foot	International Reputation	Weak Foot
0	158023	L. Messi	31	Argentina	94	94	FC Barcelona	€110.5M	€565K	2202	Left	5.0	4.0
1	20801	Cristiano Ronaldo	33	Portugal	94	94	Juventus	€77M	€405K	2228	Right	5.0	4.0
2	rows × 8	5 column	s										
4													Þ

Histogram of Age

```
In [13]:
```

```
sns.distplot(df.Age, bins = 60, kde = False)
plt.xlabel('Player\'s age')
plt.ylabel('Number of Players')
plt.show()
```



```
200 15 20 25 30 35 40 45 Player's age
```

From this analysis, we can see that players with age 26 are more. There are more than 600 players from age 24 to 30.

```
In [14]:
```

```
# Top ten eldest players with name, club and Wage.

df_elder = df.sort_values('Age', ascending=False)[['Name', 'Age', 'Club', 'Wage']].head(
10)

df_elder.set_index('Name', inplace=True)
print(df_elder)
```

		Age	Club	Wage
Nai	me			
Ο.	Pérez	45	Pachuca	€8K
К.	Pilkington	44	Cambridge United	€1K
Τ.	Warner	44	Accrington Stanley	€1K
S.	Narazaki	42	Nagoya Grampus	€1K
С.	Muñoz	41	CD Universidad de Concepción	€1K
J.	Villar	41	Unassigned	€0
Η.	Sulaimani	41	Ohod Club	€ЗК
Μ.	Tyler	41	Peterborough United	€1K
В.	Nivet	41	ESTAC Troyes	€5K
F.	Kippe	40	Lillestrøm SK	€1K

In [15]:

```
# Similarly 10 youngest players with Name, Age, Nationality and Value
# Top ten eldest players with name, club and Wage.

df_youngest = df.sort_values('Age', ascending=True)[['Name', 'Age', 'Nationality', 'Value']].head(10)
df_youngest.set_index('Name', inplace=True)
print(df_youngest)
```

	Age	Nationality Value
Name		
G. Nugent	16	England €60K
J. Olstad	16	Norway €100K
H. Massengo	16	France €450K
J. Italiano	16	Australia €280K
N. Ayéva	16	Sweden €70K
K. Broda	16	Poland €110K
L. D'Arrigo	16	Australia €130K
Y. Verschaeren	16	Belgium €650K
B. Nygren	16	Sweden €180K
B. O'Gorman	16	Republic of Ireland €60K

- 1. We can observe that age with 45 is the eldest player followed by 41 and 40.
- 2. Age with 17 is the youngest player.

In [16]:

```
df.head(2)
```

Out[16]:

	ID	Name	Age	Nationality	Overall	Potential	Club	Value	Wage	Special		International Reputation	
0	158023	L. Messi	31	Argentina	94	94	FC Barcelona	€110.5M	€ 565K	2202	Left	5.0	4.0
_	00004	Cristiano	20	Dankinal	04	04	1	67714	CADEI	0000	Diaba	E 0	4.0

∠υδυ ι Portugai Juventus ₹4UDN Rignt 4.U Ronaldo Preferred International Weak ID Name Age Nationality Overall Potential Club Value Wage Special Reputation Foot Foot 2 rows × 85 columns

F

Players from different Nationality

In [17]:

```
data = df['Nationality'].value_counts()[:15] # Top 15 nationality
labels = data.index
plt.figure(figsize = (6,6))
data.plot(kind = 'pie', labels = labels, shadow = False, autopct = '%1.1f%%')
plt.title('Ratio of Players for top fifteen Nationality')
plt.show()
```

Ratio of Players for top fifteen Nationality

From the analysis, we can see that there are about 12.5% players from Brazil Nationality followed by Argentina with 10.9%. Among top 15 Nationality, USA has least players with 2.4%.

Top 10 Right and Left Foot Footballers

In [18]:

```
# Top 10 players with Right Leg Footballers

df_right_players = df[df['Preferred Foot'] == 'Right'][['Name', 'Age', 'Nationality', 'V alue']].head(10)

df_right_players.set_index('Name', inplace=True)
print(df_right_players)
```

	Age	Nationality	Value
Name			
Cristiano Ronaldo	33	Portugal	€77M
Neymar Jr	26	Brazil	€118.5M
De Gea	27	Spain	€72M
K. De Bruyne	27	Belgium	€102M
E. Hazard	27	Belgium	€93M
L. Modrić	32	Croatia	€67M
L. Suárez	31	Uruguay	€80M
Sergio Ramos	32	Spain	€51M
J. Oblak	25	Slovenia	€68M
R. Lewandowski	29	Poland	€.77M

In [19]:

```
# Top 10 players with Left Leg Footballers

df_right_players = df[df['Preferred Foot'] == 'Left'][['Name', 'Age', 'Nationality', 'Va
lue']].head(10)
df_right_players.set_index('Name', inplace=True)
print(df_right_players)
```

	Age	Nationality	Value
Name			
L. Messi	31	Argentina	€110.5M
David Silva	32	Spain	€60M
P. Dybala	24	Argentina	€89M
A. Griezmann	27	France	€78M
T. Courtois	26	Belgium	€53.5M
G. Chiellini	33	Italy	€27M
M. Salah	26	Egypt	€69.5M
J. Rodríguez	26	Colombia	€69.5M
Marcelo	30	Brazil	€43M
G. Bale	28	Wales	€60M

Percentage of Preferred foot

In [20]:

```
pref_foot = df['Preferred Foot'].value_counts()
print(pref_foot)
labels1 = pref_foot.index
```

Right 13948 Left 4211 Unassigned 48

Name: Preferred Foot, dtype: int64

In [21]:

```
pref_foot.plot(kind = 'pie', labels = labels1, shadow = False, autopct = '%1.1f%%')
plt.show()
```


We can see that there are about 75.6% Right foot players and 24.4% Left foot players.

In [22]:

df.head(2)

Out[22]:

	ID	Name	Age	Nationality	Overall	Potential	Club	Value	Wage	Special		International Reputation	Weak Foot
0	158023	L. Messi	31	Argentina	94	94	FC Barcelona	€110.5M	€565K	2202	Left	5.0	4.0
1	20801	Cristiano Ronaldo	33	Portugal	94	94	Juventus	€77M	€405K	2228	Right	5.0	4.0

0 -----

Ratio of Players from different clubs

In [23]:

```
data_club = df['Club'].value_counts()[1:11]
labels2 = data_club.index
data_club.plot(kind = 'pie', labels = labels2, shadow = False, autopct = '%1.1f%%')
plt.show()
```


From this, we can see that Players from Frankfurt and Guimaraes has highest percentage which is around 10.5%.

Position of Players

In [24]:

```
# New Dataframe with position = ST and Preferred foot = Right
data = df[(df['Position'] == 'ST') & (df['Preferred Foot'] == 'Right')]
data
```

Out[24]:

	ID	Name	Age	Nationality	Overall	Potential	Club	Value	Wage	Special	Preferred Foot	Internat Reputa
1	20801	Cristiano Ronaldo	33	Portugal	94	94	Juventus	€77M	€405K	2228	Right	
10	188545	R. Lewandowski	29	Poland	90	90	FC Bayern München	€77M	€205K	2152	Right	
16	202126	H. Kane	24	England	89	91	Tottenham Hotspur	€83.5M	€205K	2165	Right	
23	153079	S. Agüero	30	Argentina	89	89	Manchester City	€64.5M	€300K	2107	Right	
43	201399	M. Icardi	25	Argentina	87	90	Inter	€64.5M	€130K	1940	Right	
18166	243621	N. Ayéva	16	Sweden	48	72	Örebro SK	€70K	€1K	1286	Right	
18177	238550	R. Roache	18	Republic of Ireland	48	69	Blackpool	€70K	€1 K	1178	Right	
18189	240160	A. Kaltner	18	Germany	47	61	SpVgg Unterhaching	€60K	€1K	1290	Right	
40000	040405	N.	40	<u> </u>	4-	^^	Trelleborgs	C0014	C414	4000	-	

18203	243165	Christoffersson	19	Sweden	4/	63	FF	€6UK	€ĭK	1098	Kignt	
	ID		Λαο	Nationality	Overall	Potential	Club	Value	Wago	Special	Preferred	Internat
	ID.	Name	Age	Nauonanty	Overall	roteiluai		Value	waye	Special	Foot	Reputa
18204	241638	B. Worman	16	England	47	67	Cambridge	€60K	€1K	1189	Right	
							IIIIII					

1859 rows × 85 columns

1

In [25]:

```
plt.figure(figsize = (18, 10))
sns.countplot(x = 'Position', data = df)
plt.show()
```


From the above analysis, we can see that players with ST position are highest.

Finding Best players with Postion considering Overall score.

In [26]:

```
data = df.iloc[df.groupby(['Position'])['Overall'].idxmax()][['Name', 'Position']]
data
```

Out[26]:

	Name	Position
17	A. Griezmann	CAM
12	D. Godín	СВ
20	Sergio Busquets	CDM
271	Luis Alberto	CF
67	Thiago	СМ
3	De Gea	GK
28	J. Rodríguez	LAM
35	Marcelo	LB
24	G. Chiellini	LCB
11	T. Kroos	LCM
14	N. Kanté	LDM

	_ Name	Position
5_	E. Hazard	LF_
33	P. Aubameyang	LM
21	E. Cavani	LS
2	Neymar Jr	LW
474	N. Schulz	LWB
129	J. Cuadrado	RAM
69	Azpilicueta	RB
8	Sergio Ramos	RCB
4	K. De Bruyne	RCM
45	P. Pogba	RDM
0	L. Messi	RF
25	K. Mbappé	RM
7	L. Suárez	RS
56	Bernardo Silva	RW
450	M. Ginter	RWB
1	Cristiano Ronaldo	ST
5018	R. Raldes	Unassigned

```
In [27]:
```

```
df.head(2)
```

Out[27]:

	ID	Name	Age	Nationality	Overall	Potential	Club	Value	Wage	Special	Preferred Foot	International Reputation	Weak Foot
0	158023	L. Messi	31	Argentina	94	94	FC Barcelona	€110.5M	€565K	2202	Left	5.0	4.0
1	20801	Cristiano Ronaldo	33	Portugal	94	94	Juventus	€77M	€405K	2228	Right	5.0	4.0
2 rows × 85 columns													

Top players in Different Abilities

```
In [45]:
```

```
# Top Dribblers

df_dribblers = df[df['Dribbling']> 90][['Name' , 'Dribbling']]
df_dribblers
```

Out[45]:

	Name	Dribbling
0	L. Messi	97.0
2	Neymar Jr	96.0
5	E. Hazard	95.0
15	P. Dybala	92.0
30	Isco	94.0
32	Coutinho	91.0

```
50
        D. Meltanne Dribbfing
 56
     Bernardo Silva
                          92.0
     Douglas Costa
                          92.0
 65
 84
         R. Mahrez
                          91.0
         Y. Brahimi
                          93.0
 94
371
          J. Corona
                          91.0
```

In [44]:

```
# Top Stamina players
df_stamina = df[df['Stamina']> 93][['Name' , 'Stamina']]
df_stamina
```

Out[44]:

	Name	Stamina
14	N. Kanté	96.0
103	B. Matuidi	94.0
190	Allan	95.0
406	H. Herrera	94.0
562	F. Kessié	96.0
587	R. Battaglia	94.0
751	M. Eggestein	96.0
836	V. Darida	94.0
1192	A. Schöpf	95.0
2290	G. Shinnie	94.0
5676	R. Murawski	94.0
5796	M. Prietl	94.0

Conclusion

The dataset has been analysed for different players based on different attributes.

- 1. First the dataset is cleaned by addressing the missing values and also by dropping unnecessary columns.
- 2. Histogram analysis of Age has been done.
- 3. Players from different Nationality have been obtained.
- 4. Top left and right foot players have been obtained.
- 5. Ratio of players from different clubs have been done.
- 6. Position of players and top players in Different abilities have been obtained.