

Review Final Exam 2016, questions and answers

Mathematics for Computer Science (Concordia University)

Scan to open on Studocu

Concordia University Comp 232 Sample Review Questions

1.	State truth value True	of: If $1+1=2$ or 1 False	1 + 1 = 3 then $2 + 2 = 3$ and $2 + 2 = 4$. Don't know	
2.			ally equivalent ? $p \to (\neg q \land r), \neg p \lor \neg (r \to q)$ Don't know	
3.	Determine whether the following proposition is a tautology: $((p \to \neg q) \land q) \to \neg q$ Tautology			
4. <i>F</i>	P(x) represents $x + 3$ a) $\exists y \forall x P(x, y)$ True b) $\neg \forall x \exists y \neg P(x, y)$ True	2y = xy. What is th False	e truth value of each of the following? Don't know Don't know	
	$P(m,n)$ means $m \leq n$ non negative integer a) $\exists n \forall m P(m,n)$ \Box True b) $\forall m \exists n P(m,n)$	n, where the domains. What is the tru False	n of discourse for m and n is the set of the value of the following statements? Don't know	
6. A	Valid	False satements valid? $[y)] \equiv \forall x P(x) \land \neg \exists y Q$	Don't know	
c x	course, $F(x)$ rep. x i	s a freshman, $B(x)$	esents courses. $M(y)$ rep. y is a math rep. x is a full-time student, $T(x,y)$ rep. ood English without using variables in	
	b) $\exists x \forall y T(x,y)$			
	c) $\forall x \exists y [(B(x) \land F(x))]$	$(x) \rightarrow (M(y) \land T(x,y))$)]	

Downloaded by (

(8. Suppose the variables x and y represent real num $Q(x,y): x=y, \ E(x): x$ is even, $I(x): x$ is an integer. Very these predicates and any needed quantifiers. a) Every integer is even.				
	b) If $x < y$, then x is not equal to y .				
	c) There is no largest real number.				
9.	She is a Math Major or a Computer Science Ma If she does not know discrete math, she is not a If she knows discrete math, she is smart. She is not a Computer Science Major. Therefore, she is smart.	jor. Math Major.			
	☐ Valid ☐ Not Valid ☐ Do	on't know			
10. Place the correct symbol from the list \subseteq , =, \supseteq between each pair of sets below a) $A \cup B$, $A \cup (B - A)$ b) $A \cup (B \cap C)$, $(A \cup B) \cap C$ c) $(A - B) \cup (A - C)$, $A - (B \cap C)$ d) $(A - C) - (B - C)$, $A - B$					
11.	11. Suppose $f: R \to Z$ where $f(x) = \lceil 2x - 1 \rceil$.				
	a) Is f one to one? Yes No Don't know	7			
	b) Is f onto Z ?	,			
	Yes □ No □ Don't know	<i>I</i>			
12. Suppose $g: R \to R$ where $g(x) = \lfloor \frac{x-1}{2} \rfloor$. List the answer for each. a) If $S = \{x 1 \le x \le 6\}$, find $g(S)$					
	b) If $T = \{2\}$, find $g^{-1}(T)$				
13.	13. For each of the following statements below state w	hehter it is True or False:			
	a) For all integers a, b, c , if $a c$ and $b c$, then $(a + b) c$	<u>.</u>			
	True False Don't k				
	c) If a and b are rational numbers (not equal to ze				
	True False Don't k				
	d) If $f(n) = n^2 - n + 17$, then $f(n)$ is prime for all p				
	L True False Don't k e) If $a \equiv b \pmod{m^2}$ then $a \equiv b \pmod{m}$.	now			
	True False Don't k	now			
	Downloaded by ()			

14. List the answer(s) for each. a) Find the smallest integer $a>1$ such that $a+1\equiv 2a (mod\ 11)$.							
	b) Find integers a and b such that $a + b \equiv a - b \pmod{5}$.						
	c) Solve for a if $a = (5^4 mod 7)^3 mod 13$.						
15. List a complete proof for each proposition showing all steps with references. a) Use the Principle of Mathematical Induction to prove that $5 (7^n-2^n)$ for all $n \ge 0$.							
	b) Let $a_1 = 2$, $a_2 = 9$ and $a_n = 2a_{n-1} + 3a_{n-2}$ for $n \ge 3$. Prove that $a_n \le 3^n$ for all positive integers n .						
16.	If Relation R is o	on set $\{a,b,c,d\}$ repr	esented by $M_R = egin{array}{cccccccccccccccccccccccccccccccccccc$				
	a) Reflexive						
	True	False	☐ Don't know				
	b) Symmetric						
	☐ Truec) Antisymmetric	False	☐ Don't know				
		Folgo	Dan't Iman				
	☐ True d) Transitive	False	☐ Don't know				
	True	False	Don't know				
17.		on the set of all int	tegers and xRy iff $x \equiv y \mod 7$ determine if				
	True	☐ False	Don't know				
	b) Symmetric	raisc	Bon t know				
	True	False	Don't know				
	c) Antisymmetric	_					
	True	False	Don't know				
	d) Transitive						
	True	False	☐ Don't know				

Downloaded by (

18.	R is:	on the set of all in	tegers and $(x,y) \in R$ iff $x \ge y^2$ determine if	
	a) ReflexiveTrueb) Symmetric	False	Don't know	
	True c) Antisymmetric	☐ False	Don't know	
	True d) Transitive	False	Don't know	
	True	False	Don't know	
19. Consider R and S are relations on $\{a,b,c,d\}$, where R $\{(a,b),(a,d),(b,c),(c,c),(d,a)\}$ and $S=\{(a,c),(b,d),(d,a)\}$ Find value of each a) R^2				
	b) R^3			
	c) $S \circ R$			
	d) The transitive closure of R			
20.		ined on A where $(a$	ordered pairs of positive integers. Let R $(a,b)R(c,d)$ means that $a+d=b+c$. Is R	
	True	☐ False	Don't know	
21.	Find the value of ea) The smallest ea		on $\{1, 2, 3\}$ that contains $(1, 2)$ and $(2, 3)$.	
	b) The smallest pa	artial order relation	on $\{1, 2, 3\}$ that contains $(1, 1), (3, 2), (1, 3)$	
22.	Let R be the relation only if $a \ge b$. Is R a		et of integers defined by $(a,b) \in R$ if and	
	True	False	Don't know	

)

```
1. False 2.Yes 3. Tautology 4 a) False 4 b) False 5 a) False 5 b) True 6 a) Valid 6 b) Not Valid 7
a) Every student is taking a course 7b) Some student is taking every course 7 c) Every full-time
freshman is taking a math course 8 a) \forall x(I(x) \to E(x)) 8 b) \forall x \forall y(L(x,y) \to \neg Q(x,y)) 8 c)
\forall x \exists y L(x,y) \ 9. \ \text{Valid } 10 \ \text{a}) = 10 \ \text{b}) \supseteq 10 \ \text{c}) = 10 \ \text{d}) \subseteq 11 \ \text{a}) \ \text{No} \ 11 \ \text{b}) \ \text{Yes} \ 12 \ \text{a}) \ \{0,1,2\} \ 12 \ \text{b})
5 \le x < 7 13 a) False: a = b = c = 1 13 b) False: a = b = 2, c = d = 1 13 c) False (\frac{1}{2})^{\frac{1}{2}} = \frac{\sqrt{2}}{2} which is
not a Rational 13 d) False, f(17) is divisible by 17 13 e) True 14 a) 12 14 b)
b = 0, \pm 5, \pm 10, \pm 15, \dots; a any integer 14 c) 8 15 a) 15 b) proofs see below 16 a) True 16 b) False
16 c) False 16 d) False 17 a) True 17 b) True 17 c) False 17 d) True 18 a) False 18 b) False 18 c)
True 18 d) True 19 a) \{(a,a),(a,c),(b,c),(c,c),(d,b),(d,d)\} 19 b)
\{(a,b),(a,c),(a,d),(b,c),(c,c),(d,a),(d,c)\} 19 c) \{(a,a),(a,d),(d,c)\} 19 d)
\{(a,a),(a,b),(a,c),(a,d),(b,c),(c,c),(d,a),(d,b),(d,c),(d,d)\} 20 Yes: Reflexive: a+b=b+a;
Symmetric: if a + d = b + c, then c + b = d + a; Transitive: if a + d = b + c and c + f = d + e, then
a + d - (d + e) = (b + c) - (c + f), therefore a - e = b - f, or a + f = b + e. 21 a)
\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\} 21 b) \{(1,1),(2,2),(3,3),(3,2),(1,3),(1,2)\} 22
True
15 a) Prove P(n): 5 | (7^n - 2^n) \forall n > 0
       Step1 (Base case) Prove P(1): 5 | (7^1 - 2^1)
          Proof 5 \mid 5 \to 5 \mid (7-2) \to 5 \mid (7^1-2^1) \to P(1)
       Step2 (Inductive hypothesis) Assume P(k): 5 \mid (7^k - 2^k)
       Step3 (What must be proved in the inductive Step4)
                Prove P(k) \to P(k+1): 5 \mid (7^k - 2^k) \to 5 \mid (7^{k+1} - 2^{k+1})
       Step4 (Proof of the inductive step) Prove P(k+1): 5 \mid (7^{k+1}-2^{k+1})
          Proof
          P(k) \to 5 \mid (7^k - 2^k) \to 5 \mid 7(7^k - 2^k)
                                                            Assumption, then Def. of Division
          P(1) \to 5 \mid (7-2) \to 5 \mid 2^k(7-2)
                                                            P(1), then Def. of Division
          \rightarrow 5 \mid [7(7^k - 2^k) + 2^k(7 - 2)]
                                                            Addition, Def. of Division
          \rightarrow 5 \mid [7^{k+1} - 7 \times 2^k + 7 \times 2^k - 2^{k+1}]
                                                            Multiplication
          \rightarrow 5 \mid [7^{k+1} - 2^{k+1}]
                                                            Cancel
          \rightarrow P(k+1)
          \rightarrow P(n): 5 \mid (7^n - 2^n) \ \forall n > 0
                                                            By Mathematical Induction
15 b) Prove P(n): a_n \leq 3^n \ \forall n \ \epsilon \ Z^+ Use Strong Induction
       Step1 (Base cases) Prove P(1) : a_1 \le 3^1 and P(2) : a_2 \le 3^2
          Proof LHS = a_1 = 2, RHS = 3^1 \to a_1 \le 3^1 \to P(1)
                  LHS = a_2 = 9, RHS = 3^2 \rightarrow a_2 \le 3^2 \rightarrow P(2)
       Step2 (Inductive hypothesis) Assume P(k): a_k \leq 3^k for 1 \leq k < n where n \geq 3, n \in \mathbb{Z}^+
       Step3 (What must be proved in the inductive Step4)
                Prove P(k) \to P(k+1): a_k \le 3^k \text{ for } 1 \le k < n \to a_{k+1} \le 3^{k+1}
       Step4 (Proof of the inductive step) Prove P(k+1): a_{k+1} \leq 3^{k+1}
          Proof
                                                  Since k+1 \ge 3 use recursive definition of a_n
                  =2a_k+3a_{k-1}
          a_{k+1}
                  \leq 2 \times 3^k + 3 \times 3^{k-1}
                                                  By Assumption replace a_k and a_{k-1}
                  = 2 \times 3^k + 3^k
                                                  Multiplication
                  = 3 \times 3^k
                                                  Addition
                  = 3^{k+1}
                                                  Multiplication
          \to a_{k+1} \le 3^{k+1}
          \rightarrow P(k+1)
          \rightarrow P(n): a_n \leq 3^n \ \forall n \ \epsilon \ Z^+
                                                  Using Strong Induction
```

)