1.2 Исследование эффекта Комптона

Александр Романов Б01-107

1 Введение

1.1 О работе

С помощью сцинтилляционного спектрометра исследуется энергетический спектр γ -квантов, рассеяных на графите. Определяется энергия рассеянных γ -квантов в зависимости от угла рассеяния, а также энергия покоя частиц, на которых происходит комптоновское рассеяние.

1.2 Теоретическая справка

Пусть электрон до сооударения покоился, а γ -квант имел начальную энергию $\hbar\omega_0$ и импульс $\hbar\omega_0/c$. После соударения электрон приобрёл энергию γmc^2 и импульс γmv , где $\gamma=(1-\beta^2)^{-1/2},\ \beta=v/c$, а γ -квант рассеивается на некоторый угол θ .

Запишем ЗСЭ и ЗСИ:

$$mc^{2} + \hbar\omega_{0} = \gamma mc^{2} + \hbar\omega_{1}$$
$$\frac{\hbar\omega_{0}}{c} = \gamma mv\cos\phi + \frac{\hbar\omega_{1}}{c}\cos\theta$$
$$\gamma mv\sin\phi = \frac{\hbar\omega_{1}}{c}\sin\theta$$

Решив эту систему:

$$\Delta \lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos \theta) = \Lambda_K (1 - \cos \theta)$$

где комптоновская длина волны электрона

$$\Lambda_K = \frac{h}{mc} = 2.42 \cdot 10^{-10} \ cm$$

Преобразуем это выражение от длин волн к энергии γ -квантов:

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta$$

1.3 Экспериментальная установка

Рис. 1: Блок-схема установки по изучению рассения γ -квантов

Заменим энергию на номер канала

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos \theta)$$

Тогда получим

$$mc^2\left(\frac{1}{E(90)} - \frac{1}{E(0)}\right) = 1$$

Отсюда

$$mc^2 = E_\gamma \frac{N(90)}{N(0) - N(90)} \tag{1}$$

2 Работа

Включим все измерительные приборы и компьютер. Запустим программу и войдём в режим измерения спектра. Проверим функциональность. Будем устанавливать сцинтилляционный счётчик под разными углами θ к первоначальному направлению полёта γ -квантов, снимать амплитудные спектры и определять положения фотопиков для каждого значения угла θ .

Построим график $\frac{1}{N(\theta)}$ от $1 - \cos \theta$

λ_l , channel#	λ_r , channel#	θ , \circ	$\lambda_{av}, channel\#$
631	663	0	647
550	566	10	558
477	515	20	496
538	561	30	549.5
415	451	40	433
361	402	50	381.5
306	339	60	322.5
278	305	70	291.5
256	279	80	267.5
224	248	90	236
211	227	100	219
193	208	110	200.5
184	196	120	190

Рис. 2: График $\frac{1}{N(\theta)}$ от $1-\cos\theta$

Получили зависимость вида y = kx + b:

$$k = 0.00243 \pm 6 \cdot 10^{-5}$$

$$b = 0.0017 \pm 3 \cdot 10^{-5}$$

3 Обработка результатов

Найдём энергию покоя электрона из формулы (1)

$$mc^2 = E_{\gamma} \frac{\frac{1}{b+k(1-\cos 90)}}{\frac{1}{b+k(1-\cos 9)} - \frac{1}{b+k(1-\cos 90)}} = 460 \text{K} \cdot \text{B}$$

Полученное значение достаточно точно совпадает с теоретическим ($mc^2=500~{
m KpB}$)

4 Выводы

В ходе выполнения работы:

- 1. С помощью сцитилляционного спектрометра был исследован спектр γ -квантов рассеяных на графите.
- 2. Было вычесленно значение энергии покоя электрона (460 KэB). Значение достаточно точно совпадает с теоретическим (500 KэB)