

Analog Integrated Systems Design

Lecture 06 Data Converters Testing

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

DAC Static Testing

- Many points to test!
- Use automated computer-based test setup (LabVIEW, MATLAB, etc.)
- ☐ Most equipment can be computer-controlled (GPIB, USB, etc.)

DAC Offset and Gain Errors

Measure offset error first then measure gain error

- Drive DAC by digital sine wave
- Plot analog output using spectrum analyzer

☐ Spectrum analyzer resolution bandwidth (RBW) is equivalent to FFT bin size

- **♦ RBW** = ANALYZER RESOLUTION BANDWIDTH
- SNR = S/NOISE FLOOR 10 $log_{10} \left[\frac{f_s/2}{RBW} \right]$

• SNR = S/NOISE FLOOR – 10
$$log_{10}$$
 $rac{f_s/2}{RBW}$

• SINAD =
$$20 \log_{10} \sqrt{\left[10^{-\text{SNR}/20}\right]^2 + \left[10^{-\text{THD}/20}\right]^2}$$

NOTE: NOISE FLOOR, SNR, THD, SINAD, V2, V3, ..., V6 in units of dBc

- ☐ The ratio of update rate to test tone frequency must be non-integer
 - Otherwise quantization noise will appear as distortion

DAC Settling Time Testing

- ☐ Drive DAC by digital step
- ☐ Plot clock and output on oscilloscope

DAC Full-Scale Settling Time Testing

☐ Digital step from all 0s to all 1s

DAC Mid-Scale Settling Time Testing

In midscale transition all bits are switched, but may not switch simultaneously

06: Data Converters Testing [W. Kester, ADI, 2005]

10

ADC Static Testing

- \Box Code centers are difficult to measure \rightarrow use code transitions
 - First point in the ccs (first code transition) at $V_{LSB}/2$
 - Last point in the ccs (last code transition) at $V_{FS} 1.5V_{LSB}$

06: Data Converters Testing [W. Kester, ADI, 2005]

11

ADC Offset and Gain Errors

Servo-Loop Code Transition Test

- Detect when ADC output code flips
 - Record DVM output → code transition
 - Use averaging to cancel ADC input-referred noise
- \square DAC resolution must be \ge ADC resolution + 2-bit

Histogram (Code Density) Test

Histogram (Code Density) Test

- Count number of occurrences (hits) of each code, h(n)_{ACTUAL},
 where n is the number of the code
- For FS triangle input, theoretical number of hits is:
 h(n)_{THEORETICAL} = M_T / (2^N-2)
- ◆ Calculate DNL of each code for n = 1 to n = 2^N 2:

$$DNL(n) = \frac{h(n)_{ACTUAL}}{h(n)_{THEORETICAL}} - 1$$

Integrate DNL to obtain INL

Histogram (Code Density) Test

Overflow hits in all 0s and all 1s bins are discarded

06: Data Converters Testing [W. Kester, ADI, 2005]

16

Sine Wave Histogram Test

- ☐ Sinewaves can be generated with extremely high linearity and low noise with appropriate filtering
- Currently, the standard and most popular method to measure ADC static characteristics

06: Data Converters Testing [M. Pelgrom, 2017] 17

Sine Wave Histogram Test Example

06: Data Converters Testing [M. Pelgrom, 2017] 18

Generating Low Distortion Single Tone

- ☐ BPF or LPF is necessary to remove harmonics (Ex: tte.com)
- The input tone distortion should be 10 dB lower than the desired accuracy of the measurement
- $oxedsymbol{\square}$ R_T is selected so that the parallel combination of RT and the input impedance of the DUT is $50~\Omega$

DTFS (DTFT) and FFT

- ☐ The DFT Operates on a Finite Number (M) of Digitized Time Samples
- When These Samples are Repeated and Placed "End-to-End", they Appear Periodic to the Transform
- ☐ Practically, Fast Fourier Transform (FFT) is used to compute DFT
- ☐ The FFT is simply an algorithm that reduces the required number of mathematical computations

06: Data Converters Testing [W. Kester, ADI, 2005]

21

Spectral Leakage

- ☐ The discontinuities at endpoints result in "spectral leakage"
- ☐ Equivalent to multiplying the input sinewave by a rectangular window pulse which has the familiar sin(x)/x frequency response

22

Coherent Testing Condition

$$T_{measure} = M \times T_S = M_C \times T_{in} \rightarrow \frac{f_S}{f_{in}} = \frac{M}{M_C}$$

- \square M should be a power of 2 (to speed up FFT computation)
- \square M_C must be integer to avoid spectral leakage
- \square M and M_C must be mutually prime: $gcd(M, M_C) = 1 \rightarrow Make <math>M_C$ odd

Windowing for Non-Coherent Testing

- ☐ Windowing mitigates spectral leakage for arbitrary input tone
 - Coherent testing condition does not have to be strictly satisfied

06: Data Converters Testing [W. Kester, ADI, 2005]

24

Window Functions Example (M=256)

- ☐ Multiplication in time domain = Convolution in frequency domain
 - The window is modulated by the tone (frequency shifting)

Window Functions Comparison

☐ Tradeoff between main-lobe spreading and side-lobe rejection

WINDOW FUNCTION	3dB BW (Bins)	6dB BW (Bins)	HIGHEST SIDELOBE (dB)	SIDELOBE ROLLOFF (dB/Octave)
Rectangle	0.89	1.21	-12	6
Hamming	1.3	1.81	- 43	6
Blackman	1.68	2.35	-58	18
Hanning	1.44	2.00	-32	18
Minimum 4-Term Blackman- Harris	1.90	2.72	-92	6

Popular Window Functions

☐ Tradeoff between main-lobe spreading and side-lobe rejection

FFT Processing Gain

- Increasing no. of bins (FFT points) reduces noise floor
 - Area = noise power = $M/2 \times Noise Floor$ = constant

FFT Output for Coherent Testing

- The fundamental and the harmonics fall in single bins
- \Box f_s and f_{in} should be generated from locked frequency synthesizers in order to maintain the exact relationship

FFT Output for Non-Coherent Testing

- Fundamentals and harmonics leak according to the window used
- Do NOT count leakage bins as noise!

DAC Test Setup

06: Data Converters Testing [M. Pelgrom, 2017] 31

ADC Test Setup Example

06: Data Converters Testing [M. Pelgrom, 2017] 32

Evaluation Boards

Evaluation boards and software from manufacturers are very valuable resources.

Test PCB Design Hints

- ☐ Use (and learn from) manufacturers evaluation boards.
- Analog and digital supplies should be separated except at a single node
- \square Add decoupling caps at different ranges (Ex: $10 \mu F$ and 100 nF)
- \square Add $100 \, nF$ cap as close as possible to every supply pin
- Proper grounding
- Proper termination of signal with fast rise/fall time
- ☐ For signals with fast rise/fall time every wire is a transmission line

References

- ☐ M. Pelgrom, Analog-to-Digital Conversion, Springer, 3rd ed., 2017.
- ☐ W. Kester, The Data Conversion Handbook, ADI, Newnes, 2005.
- ☐ B. Boser and H. Khorramabadi, EECS 247 (previously EECS 240), Berkeley.
- B. Murmann, EE 315, Stanford.
- Y. Chiu, EECT 7327, UTD.

Course Resources

Thank you!

DAC Glitch Impulse Area

NET GLITCH IMPULSE AREA ≈ AREA 1 + AREA 2 - AREA 3 - AREA 4

Test Setup Example

- ☐ The tool below allows to exchange the samples easily
- ☐ The chip is pushed onto the connection electrodes of the printed-circuit card without socket parasitics

06: Data Converters Testing [M. Pelgrom, 2017]