

Applying the Estimand and Target Trial frameworks to external control analyses using observational data: a case study in the solid tumor setting

Letizia POLITO^{1,*}, Qixing LIANG^{2,*}, Navdeep PAL¹, Philani MPOFU², Ahmed SAWAS², Olivier HUMBLET², Kaspar RUFIBACH¹, Dominik HEINZMANN¹

Affiliations at the time the study was conducted:

¹ Roche/Genentech, ² Flatiron Health, *first co-authors

- Randomized Clinical Trials (RCTs) are the gold standard to answer causal questions about efficacy and safety of health-related interventions.
- When RCTs are not feasible, high quality Real-World Data (RWD) could be considered to answer causal questions¹
 - At the cost of introducing further assumptions.
 - Require transparency on the observational study design that emulates the target trial².

Use case: study objective

- **Study objective:** determine whether there is a difference in overall survival (OS) between patients with metastatic non-small cell lung (NSCLC)¹ receiving front-line chemotherapy in pivotal trials vs patients with metastatic NSCLC who received front-line chemotherapy as part of routine care.
- Broader context: assess the utility of RWD for use as external control in drug development

¹Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Metastatic NSCLC refers to later stages of the cancer where it has spread to distant parts of the body.

Scientific question

"Is there a difference in overall survival (OS) between patients with metastatic NSCLC receiving front-line platinum-based chemotherapy in pivotal trials vs patients with metastatic NSCLC who received front-line platinum-based chemotherapy as part of routine care?"

What do we actually measure?

Scientific question: traditional approach

"Is there a difference in overall survival (OS) between patients with metastatic NSCLC receiving front-line platinum-based chemotherapy in pivotal trials vs patients with metastatic NSCLC who received front-line platinum-based chemotherapy as part of routine care, regardless of whether a patient received another therapy?"

Assumption: subsequent treatments reflect routine clinical practice for both clinical trial and observational arms

Scientific question: hypothetical scenario

"Is there a difference in overall survival (OS) between patients with metastatic NSCLC receiving front-line platinum-based chemotherapy in pivotal trials vs patients with metastatic NSCLC who received front-line platinum-based chemotherapy as part of routine care, had patients not received a subsequent therapy?".

Attributes of the estimand of the target trial

Target population

Metastatic squamous and non-squamous NSCLC patients, 18 years of age or older, with ECOG PS 0,1 and with adequate hematological and end-organ function.

Treatment

Trial control arm and comparator observational arm (will) receive platinum-based chemotherapies. The "experimental group" receives care according to the trial protocol, whereas the "comparator" group receives care according to real-world practice.

Primary Endpoint

Overall Survival

Intercurrent events

Receipt of a subsequent treatment; Strategy: hypothetical strategy

Population-level summary

HR with confidence interval (CI); K-M estimator

EF/TTF	Target trial	Emulation of the	Assumptions		
Attributes		target trial			
Target	Metastatic squamous and	Same as the	Observational data does not perfectly emulate the		
population/E	non-squamous NSCLC	target trial for the	trial I/E criteria. We attempt to define the study		
ligibility	patients, 18 years of age or	RCT arm,	cohort that best approximates the target population		
criteria	older, with ECOG PS 0,1	with some	by including additional rules.		
	and with adequate	assumptions for	Time window for the eligibility assessment		
	hematological and end-	the OC arm.	(ECOG PS, lab values, biomarker)		
	organ function.				

Assignment strategy

- Analytical solution: IPTW-ATT
- Measured confounding variables: age group, gender, race, metastatic tumor type, time from initial diagnosis to index date, smoking history, histology, treatment type.

Follow-up period

Assumptions:

-time from assignment and start of therapy is short in the RWD, -disease with relatively no rapid course in 1L

E = eligibility, A = treatment assignment, T_0 = index date, D_*C_* dose 1 cycle 1

Intercurrent events

- Risk: Not accounting for informative censoring introduce bias.
- Analytical solution: IPCW(t) including confounders that predict both treatment switch and outcome OS
- Measured confounding variables: age group, histology/treatment, progression after treatment initiation

• Pts were on average younger, ...

Variable	Categories	pooled_RCT N=849	Flatiron_RWD N=3340	SMD Pre-IPTW	SMD Post-IPTW		
Age group (years), n(%)	< 65 ≥65 and <75 ≥75	435 (51.2) 322 (37.9) 92 (10.8)	1222 (36.6) 1268 (38.0) 850 (25.4)	0.42	0.03	Trial pts were on average younger,	
Gender, n(%)	Female	248 (29.2)	1457 (43.6)	0.3	0.04	more frequently were	
Race, n(%)	Asian Other White	105 (12.4) 45 (5.3) 699 (82.3)	46 (1.4) 921 (27.6) 2373 (71.0)	0.75	0.06	males, diagnosed as de novo stage IV and with squamous	
ECOG-PS, n(%)	0 1 NA	314 (37.0) 532 (62.7) 2 (0.2)	714 (21.4) 1179 (35.3) 1447 (43.3)	0.05*		histology	
Metastatic diagnosis, n(%)	De novo Stage IV Recurrent disease	706 (83.2) 143 (16.8)	2118 (63.4) 1221 (36.6)	0.46	0.03		
Smoking history, n(%)	No Yes NA	69 (8.1) 780 (91.9) 0 (0.0)	257 (7.7) 3070 (91.9) 13 (0.4)	0.02	0.06		
Histology, n(%)	Non-squamous Squamous	509 (60.0) 340 (40.0)	2278 (68.2) 1062 (31.8)	0.17	0.01		
Time from initial diagnosis to index date (months), (median [IQR])		1.41 [0.92, 2.89]	1.25 [0.79, 2.27]	0.15	0.01		
Treatment, n(%)	Carboplatin+Pacli/Nab -pacli	568 (66.9)	1877 (56.2)	0.22	0.04		
	Platinum+Pemetrexed	281 (33.1)	1463 (43.8)				

^{*}ECOG-PS variable was not included in the propensity score model because of the high proportion of missing ECOG-PS. Developing an Imputation model to differentiate score 0 vs 1 was considered out of scope for the goal of this presentation.

Estimation method aligned with the estimand

Scientific question: Is there a difference in overall survival (OS) between patients with metastatic NSCLC receiving front-line chemotherapy vs patients with metastatic NSCLC who received front-line chemotherapy as part of routine care, had patients not received a subsequent therapy?

Estimation method: Weighted Cox regression model (PH), weighted Kaplan-Meier curves Weights: **IPTW-ATT*IPCW(t)**

Confounding variables: age group, histology/treatment, progression after treatment initiation

Positivity assumption => there are both exposed and unexposed individuals at every level of the confounder (including time-varying confounders)

Accounting for censoring confounding variables

Supplementary analysis - different strategies for IE

Study limitations

- We have pooled together different IMpower trials
 - IMpower130: non-squamous NSCLC treated with carboplatin plus nab-paclitaxel; IMpower131: squamous NSCLC treated with carboplatin plus nabpaclitaxel; IMpower132: non-squamous NSCLC treated with carboplatin or cisplatin plus pemetrexed
 - Mitigation strategy to account for heterogeneity between trials: Added trial indicator in the PS model: treatment x histology
- Patients in IMpower trials were global while patients in the observational arm were from the United States only
- Limited capture of potential confounders in the observational arm (e.g. comorbidities, sites of metastasis, and completeness of ECOG) - Assumption of IPTW and IPCW: no unmeasured confounding (at baseline and at time of switch)

Conclusions

- The estimand framework is increasingly used by regulators but also within the clinical teams.
 - Analysing RWD using the same framework as RCT avoids unneeded silos
 - Common terminology
 - Develop common analytical approaches
- The combined EF/TTF brings even more clarity on the study design of the "target trial".
 - o It brings transparency on the assumptions needed to emulate the target trial
 - Transparent description of potential limitations of the RWD source chosen (e.g. data quality)
 - Highlight the importance of variables not previously collected in the real world (e.g. intercurrent events)
- This requires a new mindset:
 - Become familiar with the strategies to address intercurrent events
 - As per ICH E9 addendum, think carefully on what constitutes sensitivity analyses vs supplementary analyses for the key estimand also in observational research