HW7

- 1. The memory units that follow are specified by the number of words times the number of bits per word. (1) How many address lines and input-output lines are needed in each case? (2) Give the number of bits stored in the memories in each case. (a) 2M x 16 (b) 2G x 8.
 - (a)
- (1) 21 address lines,16 data input lines,16 data output lines.
- (2) $2^21 * 2^4 = 2^25$ bits
- (b)
 - (1) 31 address lines,8 data input lines,8 data output lines.
 - (2) $2^31 * 2^3 = 2^34bits$
- 2. Design a 8x5 RAM.

3. A 12-bit Hamming code word containing 8 bits of data and 4 parity bits is read from the memory. What is the original 8-bit data word that was written into memory if the 12-bit word read out is as: (a) 011001000110 (b) 101110110100

- 4. Tabulate the truth table for an 8x4 ROM that implements the Boolean functions.
 - (a) $A(X, Y, Z) = \Sigma m(1, 2, 4)$
 - (b) $B(X, Y, Z) = \Sigma m(3, 5, 7)$
 - (c) $C(X, Y, Z) = \Sigma m(1, 2, 6, 7)$
 - (d) $D(X, Y, Z) = \Sigma m(2, 3, 5, 6, 7)$

Truth Table:

Inputs			Outputs				
X	Y	Z	A	В	C	D	
0	0	0	0	0	0	0	
0	0	1	1	0	1	0	
0	1	0	1	0	1	1	
0	1	1	0	1	0	1	
1	0	0	1	0	0	0	
1	0	1	0	1	0	1	
1	1	0	0	0	1	1	
1	1	1	0	1	1	1	

ROM Configuration:

(3x8 decoder 可參考第 2 題的設計)

- 5. FPGA: The logic cell has four inputs (A, B, C, D) and one output (Z).
 - (a) Draw the logic diagram of a simple logic cell with 4-bit inputs and 1-bit outputs.
 - (b) Explain how the logic cell can finish the sum function in a full adder. (Z=A+B+C)

Global Data Bus

T*1RAM Mux RAM Write Enable

CLB Inputs (A,B,C,D)

ADDRESS 16*1 RAM DOUT

WE

CLB Write Enable

Global Clock

若FPGA需要做Sequential Circuit,1*1 RAM內的data=1;反之若為Combinational Circuit,1*1 RAM內的data=0。

(b)

addres	5 A	18	C	D	Dout
_ 0	0	0	0	0	0
1	0	0	0	1	0
_ 2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	1
5	0	i	0	(1
6	0	1	1	0	0
2	0	1	1	1	ō
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	0
13	1	ı	0	1	0
14	1	1	1	0	1
15	1	1	1	1	1

(sum function : Dout=A xor B xor C)

首先,CLB Write Enable=1,將以上的 LUT 資料存進 16*1 RAM 對應的;存完之後 CLB Write Enable=0,將資料藉由 CLB inputs 獲得 address,再將對應 address 的 data 讀出;而 1*1 RAM 的 data=0,因為 sum function 只需使用 Combination circuit 來實現。