Timing and Efficiency

ALGORITHM EFFICIENCY

Comparing Algorithms

- You can compare algorithms based on storage or execution time.
- Storage
 - Less memory is better
 - But memory is cheap these days!
 - Unless you are working in a low-memory environment, you can often safely ignore storage when comparing algorithms.
- Timing is key!

Measuring Empirically

- Empirical measurement is based on observation and data
 - This means actually using a timer to time your program!
- To compare two methods, you would implement them, select random inputs, then time both. You could do this multiple times and find the average for comparison.
- This isn't common and often isn't practical, but keep in mind that it's always a possibility!

Running Time

- Let's start with discussing running time.
- This is a fine-grained approach to figuring out the exact number of operations required by an algorithm.
- This is **not** how we will compare algorithms, but it is a helpful first step in learning about efficiency.

Algorithm A:

```
int sum = 0;
int i=0;
while(i < n) {
    sum += i;
    i++;
}</pre>
```

Algorithm A Rewritten:

```
int sum = 0;
int i=0;
while(i < n) {
    sum = sum + i;
    i = i + 1;
}</pre>
```

```
int sum = 0; 1 assignment
int i=0; 1 assignment
while(i < n) { loop runs n times
    sum = sum + i; 1 addition, 1 assignment
    i = i + 1; 1 addition, 1 assignment
}</pre>
```

```
int sum = 0; 1 assignment
int i=0; 1 assignment
n+1 comparisons
while(i < n) { loop runs n times
    sum = sum + i; 1 addition, 1 assignment
    i = i + 1; 1 addition, 1 assignment
}</pre>
```

```
int sum = 0; 1 assignment
int i=0; 1 assignment
while(i < n) { loop runs n times
    n+1 comparisons
    sum = sum + i; 1 addition, 1 assignment
    i = i + 1; 1 addition, 1 assignment
}</pre>
```

- 2 assignments +
- (n+1) comparisons +
- n (2 addition + 2 assignments)

2 assignments + (n+1) comparisons + n (2 addition + 2 assignments)

2 assignments + (n+1) comparisons + 2n additions + 2n assignments

(2n + 2) assignments + (n+1) comparisons + 2n additions

T(n) = (2n + 2) assignments + (n+1) comparisons + 2n additions

 Let's assume that all simple statements like assignment, addition, and comparison require the same amount of time.

$$T(n) = (2n + 2) * TIME + (n+1) * TIME + 2n * TIME$$

$$T(n) = (2n + 2) * TIME + (n+1) * TIME + 2n * TIME$$

 Let's assume that TIME is one unit of time (using whatever arbitrary unit we want!)

$$T(n) = (2n + 2) + (n+1) + 2n$$

 $T(n) = 5n + 3$

```
statement1
int i = 1;
while (i \le n)
    if(condition1) {
         statement2
    statement3;
    <u>i++;</u>
```

```
statement1 1
int i = 1; 1
n+1 conditional
while ( i <= n) { n times
    if (condition1) { 1
         statement2 1 (worst case)
    statement3; 1
    i++; 2
T(n) = 2 + (n+1) + n(5) = 6n + 3
```

Formulas used in Running Time

- for i = 1 to n, ∑1
 -1+1+1+...+1 (n times)
 equal to n
- for i = 1 to n, $\sum i$ -1 + 2 + 3 + ... + n - equal to $\frac{n(n+1)}{2}$
 - Gauss Formula

Comparing Running Times

- We could calculate and compare running times for algorithms.
- But it's clear that figuring out the running time for a complex algorithm will get very complex and tedious!
- Do we really need this?

Order of Magnitude

- When thinking about time and efficiency, we often only care about order of magnitude.
- Based on powers of 10: 1, 10, 100, 1000, etc.

Example: Comparing Running Times

 Let's pretend we were comparing Algorithm A to some Algorithm B that had a running time of T(n) = 4n + 12. We want to know which is more efficient.

Example

n	A: 5n + 3	B: 4n + 12
1	8	16
10	53	52
100	503	412
1000	5003	4012
10,000	50,003	40,012
100,000	500,003	400,012
1,000,000	5,000,003	4,000,012

- These are within the same order of magnitude.
- They are equally efficient.

Example: Comparing Running Times

• Let's now compare Algorithm C with a running time of T(n) = n + 10,000 to Algorithm D with a running time of $T(n) = n^2$

Example

n	C: n + 10,000	D: n ²
1	10,001	1
10	10,010	10,100
100	10,100	20,000
1000	11,000	1,010,000
10,000	20,000	100,010,000
100,000	110,000	10,000,010,000
1,000,000	1,010,000	1,000,000,010,000

- These quickly stop being the same order of magnitude.
- Algorithm C is more efficient.

What's going on?

 What is driving which algorithm is more efficient?

n

 n is the size of the problem data: the number of inputs, the size of the data set, the size of the array, the number of elements in a list, etc.

What's going on?

- It's all about n!
- It does matter what n's coefficient is.
- It doesn't matter what other values are added to n.
- n drives everything.

BIG-O

Measuring Efficiency

- We can calculate the actual running time... but we don't really need it.
- All we really care about is the order of magnitude.
- We don't need the complete running time to get that!
- We can use order of growth instead.

Big O (Order of Growth)

- The efficiency of an algorithm can be described by Big O, which stands for the order of growth.
- Big O is described as a function of n, which is the size of the data set.

Big O

- Big O doesn't measure how long an algorithm takes.
- Big O is a measure of how the time required changes as the size of the data set changes.
 - The rate of increase
 - How the running time changes as the problem size changes
- It's not: "How long does the problem take to execute on size n?" It's: If I increase the size of n, how much longer will the problem take now?"

Big O

- The order of growth (Big O) is based on the dominant factor in the running time.
 - The highest power of n.
 - We ignore coefficients.
 - We ignore other parts of the running time.

Big O

- Drop the constants!
 - There is no O(2n). This is O(n).
- Drop the lower-order terms!
 - There is no $O(n^2 + n)$. This is $O(n^2)$.
 - When combining growth functions, higher order wins.
- Examples
 - $-T(n) = 999n + n^2 \rightarrow O(n^2)$
 - $-T(n) = 6n^3 + 45n \rightarrow O(n^3)$

- O(1) constant
- O(log n) log
- O(n) linear
- O(n²) quadratic
- O(2ⁿ) exponential

Order of Growth	1	log n	n	n²	2 ⁿ
Data Size					
10	1	4	10	100	1024
100	1	7	100	10,000	10 ³⁰
1000	1	10	1000	1,000,000	10 ³⁰¹

Order of Growth Data Size	1	log n	n	n²	2 ⁿ
10	1	4	10	100	1024
) 100	1	7	100	1000	10 ³⁰
1000	1	10	1000	1000000	10 ³⁰¹

Problem size multiplied by 10... Running time multiplied by 10.

Order of Growth	1	log n	n	n²	2 ⁿ
Data Size					
10	1	3	10	100	1024
100	1	7	100	10,000	10 ³⁰
1000	1	10	1000	1,000,000	10 ³⁰¹

Problem size multiplied by 10... Running time multiplied by 100.

Order of Growth	1	log n	n	n²	2 ⁿ	
Data Size						
1 0	1	4	10	100	1024	
100	1	7	100	10,000	10 ³⁰	
1000	1	10	1000	1,000,000	10 ³⁰¹	

Problem size multiplied by 10... Running time multiplied by... A LOT.

Order of Growth	1	log n	n	n²	2 ⁿ
Data Size					
10	1	4	10	100	1024
100	1	7	100	10,000	10 ³⁰
1000	1	10	1000	1,000,000	10 ³⁰¹

Still growth! Just less growth! The growth is slower.

Example: O(1) Constant

- Problem: print the capacity of an array.
- Solution:

```
System.out.println(arr.length);
```

- For an array of size 10 (n=10), this problem requires a single statement.
 - For n=100, same thing.
 - For n = 1,000, same thing.
- As the problem size changes, the solution time remains the same.
- O(1) solutions are constant.
 - As the data set grows, the time required to solve the problem does not change.
- Excellent execution time! But you can't do anything too exciting...

Example: O(n) Linear

- Problem: print all elements in an array.
- Solution:

```
for(int i=0; i<arr.length; i++)
    System.out.println(arr[i]);</pre>
```

- For an array of size 10 (n=10), this problem requires looping through the array and printing each element. This is *essentially* 10 statements.
 - For n=100, this requires 100 statements.
 - For n = 1,000, this requires 1,000 statements.
- As the problem size is *10, the solution time is *10.
- O(n) solutions are linear.
 - As the data set grows, the time required to solve the problem grows at the same rate.
- Linear is considered very good efficiency!

Example: O(n²) Quadratic

- Problem: print all elements in a square two-dimensional array (a matrix). There are n rows and n columns.
- Solution:

- For a matrix of size 2x2, this problem requires a nested loop that will invoke 4 print statements.
 - For a 4x4 matrix, this requires 16 statements.
 - For am 8x8 matrix, this requires 64 statements.
- As the problem doubles, the solution time is multiplied by 4.
- O(n²) solutions are quadratic
 - As the data set grows, the time required to solve the problem grows faster.
- Quadratic is not a good efficiency for large data sets.

- The order of growth (Big O) is based on the dominant factor in the running time.
- But wait... we just said we're not going to calculate running time. So how can we know what the dominant factor is in the running time?
- We can examine code to look for certain constructs that affect running time.
- The biggest culprit: LOOPS!

- Consecutive blocks of code (blocks that follow each other) are considered separately.
 - Evaluate each block on its own and added.
 - Then the highest order will "win out"
 - Do one thing, finish, then do something else. → in these cases, add together the run times.

Loops

- Loops are often the driving factor in growth rate
- Loops are often dependent on the size of the dataset (meaning based on n, or dataArray.length, or dataList.size())

Nested Loops

- 1. Figure out how many times the inside loop runs.
- 2. Figure out how many times the outside loop runs.
- 3. Total is inside * outside
- Do something one full time for every single time you do something else → In these cases, multiple together the run times.

- Methods Inside of Loops
 - Same rules apply as nested loops: inside * outside
 - If a method is O(n) and it is called inside of an O(n) loop, the whole loop is O(n²)!
- Carefully consider the efficiency of methods you didn't write!
 - Good documentation will describe the efficiency of non-constant methods.
 - Example: The <u>ArrayList API</u> page.

Big O- The Worst Case

- We can evaluate the best, worst, or average/expected case for efficiency.
 - The efficiency can be different depending on the input.
- We usually use the worst case.
 - This is often the same as the average/expected case.
 - If they are different, that will usually be specified.

```
for(int i=0; i<array.length; i++) {
   for(int j=0; j<array.length; j++) {
      // code independent of n (such as:)
      System.out.println(array[i]);
      System.out.println("something else");
      constantMethodCall();
}</pre>
```

```
for(int i=0; i<array.length; i++) {
   for(int j=0; j<array.length; j++) {
      // code independent of n (such as:)
      System.out.println(array[i]);
      System.out.println("something else");
      constantMethodCall();
}</pre>
```

 $O(n^2)$

```
for(int i=0; i<n; i++) {
    // code independent of n
}
for(int i=0; i<n; i++) {
    // code independent of n
}</pre>
```

```
for(int i=0; i<n; i++) {
    // code independent of n
}
for(int i=0; i<n; i++) {
    // code independent of n
}</pre>
```

O(n)

```
for(int i=0; i<array.length; i++) {
   for(int j=0; j<array.length; j++) {
     for(int k=0; k<100; k++) {
        // code independent of n
}</pre>
```

```
for(int i=0; i<array.length; i++) {
   for(int j=0; j<array.length; j++) {
     for(int k=0; k<100; k++) {
        // code independent of n
}</pre>
```

 $O(n^2)$

```
for(int i=0; i<array.length; i++) {
    for(int j=0; j<array.length; j++) {
        for(int k=0; k<100; k++) {
            // code that is O(n)
}</pre>
```

```
for(int i=0; i<array.length; i++) {
   for(int j=0; j<array.length; j++) {
     for(int k=0; k<100; k++) {
        // code independent of n
}</pre>
```

 $O(n^3)$

```
// myList is type ArrayList

for(int i=0; i<myList.size(); i++) {
    System.out.println(myList.get(i));
}</pre>
```

```
// myList is type ArrayList

for(int i=0; i<myList.size(); i++) {
    System.out.println(myList.get(i));
}</pre>
```

O(n)

```
// myList is type ArrayList

for(int i=0; i<myList.size(); i++) {
   boolean contains =
      myList.contains(Integer.valueOf(i));
}</pre>
```

```
// myList is type ArrayList

for(int i=0; i<myList.size(); i++) {
   boolean contains =
      myList.contains(Integer.valueOf(i));
}</pre>
```

 $O(n^2)$

Big O in the Real World

- Small data sets
 - Inefficient algorithms are not a problem with small data sets (but are a problem with large data sets)
 - For some data sets, an O(n) algorithm can be faster than an O(1) algorithm!
- Constants matter
 - Although the same order of growth, if you can make your code run in 5n this is realistically better than 100n!

Search

Searching

- Searching is the process of finding a target element within a group of items (called a search pool).
- The target may or may not be in the search pool.
- We want to perform searching efficiently, minimizing the number of comparisons we make.

Searching

- Search requires a way to compare items.
- Typically, this will be the overridden equals method.

LINEAR SEARCH

Linear Search

- A linear search begins at one end of a list and examines each element in order.
- Either the item is found or we reach the end of the list.
- Linear search is O(n).

Linear Search

- Linear search can be performed on sorted or unsorted data.
 - If performed on sorted data, we can be more efficient!
- Linear search can be implemented iteratively or recursively.
- Linear search can work for arrays or linked node implementations.

Linear Search-Iterative

```
boolean found=false;
for (int i=0; i<data.length; i++) {
   if (target.equals(data[i])) {
     found = true;
   }
}
return found;</pre>
```

Linear Search-Improved Iterative

```
boolean found=false;
for (int i=0; i<data.length && !found; i++) {
   if (target.equals(data[i])) {
     found = true;
   }
}
return found;</pre>
```

- Still O(n), but more efficient in the real world.
- We could also use a break or return inside the conditional.

Linear Search-Improved Iterative for Sorted Lists Only

```
boolean found=false;
boolean pastIt = false;
for (int i=0; i<data.length && !found && !pastIt; i++) {
   if (target.equals(data[i]) ) {
      found = true;
   } else if(target.compareTo(data[i]) < 0)) {</pre>
      // target is smaller than the data- so we should
      // have seen it by now- it's not in the data
      pastIt = true;
return found;
```

- Still O(n), but more efficient in the real world.
- What must be true of the type of objects in the array?

Linear Search- Recursive

```
boolean linearSearch (int first, int last,
                      Object[] data, Object target) {
   if(first > last) {
      return false; // indices cross over
   } else if(target.equals(data[first])) {
      return true; // we found it!
   } else {
      return linearSearch(first+1, last, target, data);
      // keep looking
```

Linear Search- Recursive

```
boolean linearSearch (int first, int last,
                      Object[] data, Object target) {
   if(first > last) {
      return false; // indices cross over
   } else if(target.equals(data[first])) {
      return true; // we found it!
   } else {
      return linearSearch(first+1, last, target, data);
      // keep looking
```

Can you modify this to be more efficient for a sorted list?

Review the search code and examples.

Linear Search ERROR!

This is a common mistake!

```
boolean found;
for (int i=0; i < length; i++)
   if (searchValue.equals(entry[i]) ) {
      found = true;
   } else {
      found = false;
return found;
```

BINARY SEARCH

Binary Search

- A binary search assumes the list of items in the search pool is already sorted.
- Binary search eliminates a large part of the search pool with a single comparison.
 - Each comparison eliminates about half of the remaining data.
- Binary search is O(log n).

Binary Search

- Binary search can be implemented iteratively or recursively.
- Binary search does not make sense for linked node implementations!

Binary Search

- A binary search first examines the middle element of the list.
 - If it matches the target, the search is over.
 - If it doesn't match the target, we only need to search half of the remaining elements (since they are sorted).
- This process continues by comparing the middle element of the remaining viable candidates.
- Eventually, we find the target or exhaust the data.

Hi-Lo Guessing Game

- You think of a number between 1 and 100 and I try to guess it. You tell me if I am too high or low.
- If we play this *smartly*, what would the first guess be? If you make smart guesses, how many guesses will it take (in the worst case)?

Hi-Lo Guessing Game

• The smart first guess is the halfway point, so 50. Then, if 50 is too low, you should guess the new halfway point (75), and so on.

Hi-Lo Guessing Game

Range	Half-Way Value (The Guess)	Value is	Guess Number
1-100	50	too low	1
51-100	75	too high	2
51-74	62	too low	3
63-74	68	too high	4
63-67	65	too low	5
66-67	66	too low	6
67-67	67	equal!	7

- If the number was 67, it took 7 (smart) guesses to find it.
- This is because the number of times that we guessed the halfway value was log(n) and log(100) = 7.
- We should always be able to guess the number in 7 or less guesses!

Binary Search-Iterative

```
boolean binarysearch(int[] numbers, int target) {
   boolean found = false;
   int first = 0;
   int last = numbers.length - 1;
   while (first <= last && !found) {
      int mid = (first + last) / 2;
      if (numbers[mid] == target) {
         found = true;
      } else if (numbers[mid] < target) {</pre>
         first = mid + 1;
      } else { // numbers[mid] > target
         last = mid - 1;
   return found;
```

Binary Search-Iterative

```
boolean binarysearch(int[] numbers, int target) {
   boolean found = false;
   int first = 0;
   int last = numbers.length - 1;
   while (first <= last && !found) {
      int mid = (first + last) / 2;
      if (numbers[mid] == target) {
         found = true;
      } else if (numbers[mid] < target) {</pre>
         first = mid + 1;
      } else { // numbers[mid] > target
         last = mid - 1;
   return found;
```

Binary Search- Recursive

```
boolean binarySearch(int first, int last, int[] data, int target
{
   int mid = ((last - first) / 2) + first;
   if(first > last) {
      return false; // indices cross over
   } else if(target==data[mid]) {
      return true; // we found it!
   } else if (target < data[mid]) {</pre>
      return binarySearch(first, mid-1, target, data);
      // keep looking in left half
   } else { // target > data[mid]
      return binarySearch (mid+1, last, target, data);
      // keep looking in right half
```

Binary Search- Recursive

```
boolean binarySearch(int first, int last, int[] data, int target
{
   int mid = ((last - first) / 2) + first;
   if(first > last) {
      return false; // indices cross over
   } else if(target==data[mid]) {
      return true; // we found it!
   } else if (target < data[mid]) {</pre>
      return binarySearch(first, mid-1, target, data);
      // keep looking in left half
   } else { // target > data[mid]
      return binarySearch(mid+1, last, target, data);
      // keep looking in right half
```

Binary Search

- Two ways to choose mid:
 - mid = ((last first) / 2) + first;
 - mid = (first + last) / 2
- The second is simpler. It will work unless large numbers- overflow

 With the algorithms shown, what would be passed in as first and last?

Example

Review the search code and examples.

Efficiencies of Searches

- Linear search is O(n)
- Binary search is O(log n)

- Binary is much more efficient than linear!
- But binary requires sorted data!
 - Even "fast" sorting algorithms are O(n log n).

 You have to know your data and the task required!

Choosing a Search

- Do you have linked nodes? yes!
 - Use linear (sequential) search!

Choosing a Search

- Do you have an array? yes!
- Is it sorted? no
 - Use linear (sequential) search!
 - Or consider sorting! This depends... How often do you plan to search? (If only a few times, probably not worth the sort.) How often will you have to sort? What is the size of your data?

Choosing a Search

- Do you have an array? yes!
- Is it sorted? yes
 - (This assumes items implement Comparable!)
 - Use binary search (but linear is okay too)

Search in the Java Standard Library

 <u>List</u> interface (implemented by ArrayList and LinkedList) has the indexOf method and the lastIndexOf method. These use linear search.

- Arrays class has a collection of static binary search methods.
 - Throws a runtime exception if the objects are not Comparable!
 - Invoke as: Arrays.binarySearch(data, target);