Metadata Extraction

Members: Abhishek Nadgeri, Salmaan Tariq, Omar Ejjeh, Lei Wang, Amit Mudgal, David Abdelmalek

Final Presentation, 20.07.2021

Table of Contents

- Problem Statement
- Inspiration
- Approach
 - Requirements
 - Technical Overview
 - Modules
 - Frontend (Abhishek)
 - Extractor (Abhishek, Lei, David, Salmaan)
 - Backend (Omar)
- Conclusion

Problem Statement

Problem Statement

- Age of big data
- Massive proliferation of accessible datasets
- Want to put this data to use

Problem: How to find relevant datasets?

Inspiration

Inspiration

Main inspiration is data.europa portal:

English (en)

Search site content

Search **Q**

Discover the datasets from the former EU Open Data Portal

Data 🕶

Impact & Studies 💙

Training ~

News & Events ✓

About ~

Contact

data.europa.eu

The official portal for European data

82

36

1 359 566

Catalogues

Countries

Datasets

Search datasets Agriculture, Fisheries, Economy & Finance Education, Culture & Government & Public Energy Environment Forestry & Foods Sector Health Justice, Legal System Population & Society Regions & Cities Science & Technology International Issues & Public Safety Search datasets Search Q Transport > DATA CATALOGUES > ALL DATASETS > EU INSTITUTIONS DATASETS

English (en)

Search site content

Search Q

Discover the datasets from the former EU Open Data Portal

Data Y

Impact & Studies >

Training Y

News & Events ✓

About ~

Contact

Datasets Feed -

Datasets

Inspiration

- Allows searching for metadata with keywords, timeframes and dataquality constraints
- Problem: most of the metadata is not very informative:


```
https://data.europa.eu/api/hub/repo/distributions/1d7f0ddd-a...
 <a href="https://europeandataportal.eu/set/distribution/1d7f0ddd-a689-4880-9979-310e68befdb3">https://europeandataportal.eu/set/distribution/1d7f0ddd-a689-4880-9979-310e68befdb3</a>
                                               <http://www.w3.org/ns/dcat#Distribution> ;
                       <a href="http://purl.org/dc/terms/description">http://purl.org/dc/terms/description</a>
                                               ""@en ;
                       <http://purl.org/dc/terms/format>
                                               <http://publications.europa.eu/resource/authority/file-type/CSV>;
                       <a href="http://purl.org/dc/terms/identifier">http://purl.org/dc/terms/identifier</a>>
                                               "88c02d2c-30ac-4fb2-9495-7465c75cb0a3" :
                       <http://purl.org/dc/terms/license>
                                               <http://reference.data.gov.uk/id/open-government-licence> ;
                       <a href="http://purl.org/dc/terms/title">http://purl.org/dc/terms/title</a>
                                               "tomt-homes-audit-data.csv\n"@sv-t-en-t0-mtec , "empty-homes-audit-data.csv"@en , "prÃ;zdny domov-audit-data.csv\n"@sk-t-en-t0-mtec , "prÃ;zdnÃ@-homes-audit-
data.csv\n"@cs-t-en-t0-mtec , "empty-homes-audit-data.csv\n"@nl-t-en-t0-mtec , "empty-homes-audit-data.csv\n"@de-t-en-t0-mtec , "empty-homes-audit-data.csv\n"@de-t-en-t0-mtec ,
 "empty-homes-audit-data.csv\n"@fr-t-en-t0-mtec , "empty-homes-audit-data.csv\n"@it-t-en-t0-mtec , "empty-homes-audit-data.csv\n"@hu-t-en-t0-mtec , "empty-homes-audit-
data.csv\n"@pt-t-en-t0-mtec , "empty-homes-audit-data.csv\n"@bg-t-en-t0-mtec , "empty-homes-audit-data.csv\n"@ro-t-en-t0-mtec , "folamh-baile-iniAºchadh-data.csv\n"@ga-t-en-t0-mtec , "empty-homes-audit-data.csv\n"@ga-t-en-t0-mtec , "
mtec , "ulà nnede audit-data.csv\n"@da-t-en-t0-mtec , "tukÅ;s mä@joklis-revÄ«zija-data.csv\n"@lv-t-en-t0-mtec , "empy-homes-audit-data.csv\n"@es-t-en-t0-mtec , "resultater i
forbindelse med å komme inn i là pet av Ã¥tte Ã¥r.\n"@no-t-en-t0-mtec , "prazni dom-revizija-podatki.csv\n"@sl-t-en-t0-mtec , "homes-audit-data.csv empty-homes-audit-
data.csv\n"@mt-t-en-t0-mtec , ""W empty-homes-audit-data.csv\n"@et-t-en-t0-mtec , "empty-homes-audit-data.csv\n"@et-t-en-t0-mtec , "tühi-kodu-audit-data.csv\n"@et-t-en-t0-mtec , "empty-homes-audit-data.csv\n"@et-t-en-t0-mtec , "tühi-kodu-audit-data.csv\n"@et-t-en-t0-mtec , "empty-homes-audit-data.csv\n"@et-t-en-t0-mtec , "tühi-kodu-audit-data.csv\n"@et-t-en-t0-mtec , "empty-homes-audit-data.csv\n"@et-t-en-t0-mtec , "emp
mtec . "puste mieisce zamieszkania-dane z audytu.csv\n"@pl-t-en-t0-mtec . "tyhiA\"-homes-audit-data.csv\n"@fi-t-en-t0-mtec :
                       <a href="http://www.w3.org/ns/dcat#accessURL">http://www.w3.org/ns/dcat#accessURL</a>
                                               <a href="https://data.london.gov.uk/download/london-empty-homes-audit/2baf1040-c5c2-473e-8079-48f8a316874d/empty-homes-audit-data.csv">https://data.london.gov.uk/download/london-empty-homes-audit/2baf1040-c5c2-473e-8079-48f8a316874d/empty-homes-audit-data.csv</a>.
<http://reference.data.gov.uk/id/open-government-licence>
                                               <http://purl.org/dc/terms/LicenseDocument>;
                       <a href="http://purl.org/dc/terms/identifier">http://purl.org/dc/terms/identifier></a>
                                               "uk-ogl" ;
                       <a href="http://purl.org/dc/terms/title">http://purl.org/dc/terms/title</a>
```

"UK Open Government Licence (OGL)" .

Approach

Requirements

- Must allow automatic extraction of semantically meaningful metadata
- I.e. metadata that describes the **contents** of the files
- Must store this metadata in a standardized and machine-readable format for automatic discovery
- Must provide way to link to new data
- Must provide way to query datasets based on metadata constraints

Technical Overview: Original architecture design

Architecture Diagram for MDE subgroup

Technical Overview: Current Architecture

Technical Overview

- Three major components: Frontend, Backend, Extractor
- Modularize design: components can run on different servers
- Frontend allows users to ingest and query for data
- Extractor analyzes new datasets for metadata concerns
- Backend manages database and processes user requests

Internally: Uses IDS IM as ontology to store metadata as knowledge graphs

Data: Focus on CSV files for easy analysis

Technical Overview

- Note: Only support automatic extraction of metadata
- Do not support direct upload of RDF files
- Simplifies design
- Ensures that metadata always conforms to our schema

Modules

Frontend

Module: Frontend

- The front end is the face of the application built using React framework.
- We have adopted the data centric approach while designing the front end.
- It consists of 2 basic pages -
 - For querying the dataset.
 - For adding a new dataset.
- The user can query using dataquality, keywords, timeframe.
- The user can download the dataset from the interface.
- The user can also download the meta-data from the interface.

Modules

Extractor

Extractor: General Architecture

Extractor: Keyword Extraction

- Goal: The goal is to automatically discover the datasets, which can be later then used search for the dataset in an unsupervised manner.
- Motivation: As the data is structured, each column in the dataset is self contained. We use this inductive bias to our advantage.
- Approach:
 - For each column in the dataset get unique values.
 - Filter the unique values by the Frequency.
 - Link the unique values with a knowledge base.
 - Get the metadata of the associated knowledge base.
 - Filter the meta data from the knowledgebase to extract the final keywords.

Extractor: Keyword Extraction

- Goal: The goal is to automatically discover the datasets, which can be later then used search for the dataset in an unsupervised manner.
- Motivation: As the data is structured, each column in the dataset is self contained. We use this inductive bias to our advantage.
- Approach:
 - For each column in the dataset get unique values.
 - Filter the unique values by the Frequency.
 - Link the unique values with a knowledge base.
 - Extract the metadata of the associated knowledge base.
 - Filter the meta data from the knowledgebase to extract the final keywords.

Keyword: Filter values by frequency

- The data contains other values example data time, numerical etc.
- The column of interest id area_name.
- We dont need all the values for the column, only the most frequent.
- After the processing we will have values of area.
 Eg. City of London, Redbridge, Southwark etc

date	area_name	area_code	$retail_and_recreation_percent_change_from_baseline$	grocery_and_pharmacy_percent_change_from_baseline
2020-02-15	City of London	E09000001	-5	-9
2020-02-16	City of London	E09000001	-1	-21
2020-02-17	City of London	E09000001	-3	-2
2020-02-18	City of London	E09000001	-2	-2
2020-02-19	City of London	E09000001	-7	-4
2020-02-20	City of London	E09000001	-7	-7
2020-02-21	City of London	E09000001	-3	-2
2020-02-22	City of London	E09000001	4	5
2020-02-23	City of London	E09000001	8	1
2020-02-24	City of London	E09000001	-7	-12
2020-02-25	City of London	E09000001	-1	1
2020-02-26	City of London	E09000001	0	-3
2020-02-27	City of London	E09000001	0	-4
2020-02-28	City of London	E09000001	-2	-6
2020-02-29	City of London	E09000001	11	3
2020-03-01	City of London	E09000001	22	14
2020-03-02	City of London	E09000001	-2	0
2020-03-03	City of London	E09000001	-5	-1
2020-03-04	City of London	E09000001	-6	-5
2020-03-05	City of London	E09000001	-14	-17
2020-03-06	City of London	E09000001	-4	2
2020-03-07	City of London	E09000001	2	4

Keyword: Link to KnowledgeBase

- To extract meta data, they need to be linked to a knowledgebase.
- To Achieve this we use the tool Falcon (Falcon 2.0: An Entity and Relation Linking Tool over Wikidata)

Keyword: Extract the metadata

- Wikidata is rich source of structured knowledge base.
- Every entity has property like instance of, part of etc.
- For now we only extract the instance of part.

Barack Obama (Q76)

44th president of the United States

Barack Hussein Obama II | Barack Obama II | Barack Hussein Obama I | Obama I | Barak Obama I | Barak Obama I | President Obama I | President Obama I | President Obama I | BHO I | Barack I

▼ In more languages

Configure

Barack (Barack H Obama Barak O Presider Presider BHO Barack	
Barack (Barack H Obama Barak O Barry Ot Presider Presider BHO Barack	wii as
	lussein Obama pama
Hindi बराक ओबामा संयुक्त राज्य अमेरिका के 44वें राष्ट्रपति बराक हुसै बराक अधे बराठ हुसै ओबामा	
Bangla বারাক ওবামা মার্কিন যুক্তরাষ্ট্রর ৪৪তম রাষ্ট্রপতি	
Telugu బరాక్ ఒబామా అమెరికా రాజకీయ వేత్త, 44వ అమెరికా అధ్యక్షుడు ఒబామా	

All entered languages

Statements

instance of	human
	▶ 1 reference

part of	000	109th United States Congress
		▶ 1 reference
	000	110th United States Congress
		▶ 1 reference

Keyword: But all is not good

- Here the value City of London gets mapped to a city in USA.
- But the city gets mapped to the correct city.
- Now, here if we have simple heuristics it may not help.
 - It depends on the accuracy of entity linker.
 - For example all the cities in the dataset may be linked to USA and only may be linked to UK.
- Question How to solve this?

Keyword: Enter Deeplearning

Keyword: Filter Metadata

- We use word2vec model as it is trained on Wikipedia, and our knowledge base is based on wikipedia.
- for each column:
 - Iterate through all the keys and all the metadata and convert it into the respective embedding.
 - For each of meta embedding:
 - Take the dot product of each key embedding with the metadata obtained.
 - Sum the scores obtained from the dot product and that forms the metadata
 - Select the metadata with the maximum score.
- Time Complexity: O(C*N^2)

Extractor: Language Detection

 Goal: Is to detect the main language used by selecting the language that has high probability happening inside the dataset.

How:

Parse content: use Apache Tika parser to parse the text.

 Use language detection library: use the CLD3 library on text to predict the probability of all languages found in the dataset.

Select lang: choose the language that has highest probability in

dataset.

Extractor: Time frame

 Goal: is to extract time frame from the input file to be able to choose between data sources depend on start and end dates.

How:

- Parse content: use Apache Tika parser which extracts text and metadata.
- Read as pandas dataframe: from date column select min date to be start date and maximum date to be end date.

Extractor: File Metadata

Goal: is to extracts more metadata to be added in the info model.

- How:
 - Get metadata file: use Apache Tika metadata extractor to get creatation date of the input file.
 - Use OS library:
 - File name
 - File size
 - File type

Extractor: Data Quality

 Goal: is to extracts more metadata to be added in the info model.

How:

- Get metadata file: use Apache Tika metadata extractor to get creatation_date of the input file.
- Use OS library:
 - File name
 - File size
 - File type

```
"data": {
    "file_quality": "good",
    "file_quality_score": 79.02,
    "percentNA": 1.24,
    "percentage_missing": 0.0
},
    "success": true
```

Data Quality = Fitness For Use

- Data quality is relative
- High-quality data is required for trusted decisions
- Bad data quality is a big loss
 - Gartner.com states that organizations lose \$13.3 Million yearly average on poor data
 - Kissmetrics states businesses lose up to 20 percent of their revenue because of bad data.
 - CrowdFlower states data scientists spend 60 percent of their time cleaning and organizing data.
- Data quality measurement can help quality to be improved

Data Quality Dimensions

Completeness

A data set with too many holes are not going to be able to answer questions. We are checking the presence of values in every column and calculate a weighted average with 80% weightage to this factor.

Uniqueness

A high uniqueness score assures minimized duplicates or overlaps, building trust in data and analysis. We are measuring data uniqueness in all columns and giving a weightage of 20%.

Finally, data quality is calculated having a positive impact on completeness and uniqueness while the weight percent of NaN and empty records is recorded negative.

Duckdq: Embedabble Data Quality Validation

DuckDQ is a python library that provides a fluent API for definition & execution of:

- Data quality checks for ML pipelines, built upon the estimator/transformer paradigm of scikit-learn.
- Used for "unit tests for data". It excels on small-to medium-sized datasets.
- Data quality checks on:
 - pandas dataframes
 - CSV files
 - parquet files
 - database tables from relational database systems

Output

Goal: To return data quality with different parameters

- How:
- Pre processing/cleaning data before passing to duckdq library
- Executing relative functions for the described dimensions
- → Excellent if weighted average is >= 85.
- → Good if weighted average is between 55 and 85.
- → Sufficient if weighted average is between 30 and 55.
- → Bad if weighted average is < 30.</p>

```
{
  "data": {
    "file_quality": "good",
    "file_quality_score": 79.02,
    "percentNA": 1.24,
    "percentage_missing": 0.0
},
  "success": true
}
```

Modules

Backend

Module: Backend

- Written in Java 11 and Spring Boot 2.5.1
- Communicates with frontend and extractors to provide functionality
- Internally manages Fuseki/TDB database to store metadata in the IDS IM
- Exposes 3 APIs:
 - o /query
 - o /submit
 - /download

Module: Backend (/query)

- /query API is called with 4 parameters:
 - Keywords
 - Dataquality
 - Timeframestart
 - Timeframeend

- Queries Fuseki and returns all datasets that match these constraints
- Keywords allow querying for data based on the contents of the dataset

Module: Backend (/submit)

- /submit API is called with 3 parameters:
 - title
 - description
 - o url

- Backend sends the URL of the dataset to the extractor for processing
- Returned metadata concerns are cast into a knowledge graph using the IDS IM


```
@prefix idsc: <https://w3id.org/idsa/code/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix mdeprops: <https://www.mde.com/customproperties/> .
@prefix dav:
                   <http://www.w3.org/ns/dgv#> .
@prefix conn2: <https://aastat.gov.de/connector/conn2/> .
@prefix data2: <https://aastat.gov.de/connector/conn2/data2/> .
@prefix part1: <https://im.internationaldataspaces.org/participant/part1> .
data2:
    a ids:TextResource ;
    ids:title "Data about the lebanese economy"@en ;
    ids:description "This dataset describes the lebanese economy between the years 1990 and 2005."@en;
    ids:keyword "London borough" ;
    ids:temporalCoverage [
        a ids:Interval :
         ids:begin [
             a ids:Instant :
             ids:dateTime "1990-02-15T00:00:00.000+02:00"^^xsd:dateTimeStamp ;
        ids:end
             a ids:Instant :
             ids:dateTime "2005-05-15T00:00:00.000+02:00"^^xsd:dateTimeStamp ;
    ids:language idsc:EN;
    ids:representation [
        a ids:TextRepresentation;
         ids:mediaTupe <a href="https://www.iana.org/assignments/media-types/text/csv">https://www.iana.org/assignments/media-types/text/csv</a>;
         ids:instance data2:activity_csv ;
```

@prefix ids: <https://w3id.org/idsa/core/> .

```
dqv:hasQualityMeasurement [ dqv:isMeasurementOf mdeprops:qualityScore ;
                                                          "1.0"
                                    dqv:value
        dgv:hasQualityMeasurement
                                  [ dgv:isMeasurementOf mdeprops:percentMissing
                                                          "0.0"
                                     dqv:value
        dgv:hasQualityMeasurement
                                  [ dgv:isMeasurementOf
                                                         mdeprops:dataquality;
                                     dqv:value
                                                          "aood"
        dqv:hasQualityMeasurement
                                  [ dqv:isMeasurementOf mdeprops:percentNA ;
                                                          "0.0"
                                     dgv:value
    ids:resourceEndpoint [
        a ids:ConnectorEndpoint;
        ids:endpointArtifact data2:activity_csv ;
        ids:accessURL <https://tmpfiles.org/d1/62995/lebanon_economy.csv> ;
data2:activity_csv
    a ids:Artifact :
    ids:byteSize "492817"^^xsd:integer ;
    ids:fileName "lebanon_economy.csv" ;
    ids:creationDate "2021-06-15T12:00:00.000+02:00"^^xsd:dateTimeStamp ;
```

Module: Backend (/download)

- /download API is called with 2 parameters:
 - Url
 - type

- We use the access URL of the materialization of the dataset to identify it
- The matching knowledge graph is returned as an RDF file in the specified format
- Supports TTL, JSON-LD and all common RDF formats

Conclusion

Where to go from here?

- Possible improvements:
 - Performance
 - Keyword extractor performance is O(#cols*#entries^2).
 - Keyword extractor uses Falcon API and Wikidata API -> source of latency.
 - Uses Apache Tika for extracting file metadata. Current implementation spins up a new server for every call.
 - More data quality measurements can be added
 - Keyword extractor works only for english datasets right now, can be expanded
 - Supports only CSV right now -> expand to other data

Where to go from here?

- Possible improvements:
 - Stretch goal we didn't get to do: Metadata validation.
 - Check our extracted metadata against preexisting metadata

Thank you

Questions?
Slide theme credit - Isaiah Mulang