

Europäisches Pat ntamt

European Patent Office

Office européen des brev ts

(11) EP 0 616 001 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 14.05.1997 Bulletin 1997/20 (51) Int Cl.6: **C08G 77/12**, C09D 183/04, C08K 3/24, C08K 5/09

(21) Application number: 94301852.3

(22) Date of filing: 15.03.1994

(54) Process for stabilization of hydrogen silsesquioxane resin solutions

Verfahren zur Stabilisierung von Wasserstoff-Silsesquioxaneharz- Lösungen Procéde pour stabilization des solutions de résine de hydrogène silsesquioxane

(84) Designated Contracting States: **DE FR GB IT NL**

(30) Priority: 19.03.1993 US 34435

(43) Date of publication of application: 21.09.1994 Bulletin 1994/38

(73) Proprietors:

 DOW CORNING CORPORATION Midland Michigan 48686-0994 (US)

• DOW CORNING TORAY SILICONE CO., LTD. Chiba 299-01 (JP)

(72) Inventors:

 Broderick, Dennis William Rhodes, Michigan (US) Helwick, James Anthony Midland, Michigan (US)

 Nakamura, Takashi Ichihara-shi, Chiba 290 (JP)

(74) Representative: Kyle, Diana et al Elkington and Fife Prospect House 8 Pembroke Road Sevenoaks, Kent TN13 1XR (GB)

(56) References cited:

EP-A- 0 443 760

EP-A- 0 516 144

P 0 616 001 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

5

20

35

The present invention relates to solutions of hydrogen silsesquioxane resin which are stable on extended storage. These stable solutions are obtained by incorporating small amounts of acids in the solution.

Hydrogen silsesquioxane resin (H-resin) is known in the art to be a useful precursor to silica-containing ceramic coatings. For instance, U.S. Patent No. 4,756,977 describes a process for forming such a coating in which H-resin is diluted in a solvent, applied to a substrate and ceramified by heating.

Various methods for producing H-resin are also known in the art. For example, U.S. Patent No. 3,615,272 describes a process which comprises adding trichlorosilane to a reaction medium comprising sulfuric acid and an aromatic hydrocarbon, washing the reaction mixture until neutral and recovering the condensed H-resin. Despite the fact that the reference teaches hydrolysis and condensation in an acid, the resultant product is neutralized to prevent gelation.

U.S. Patent No. 5,010,159 teaches a similar process in which a hydridosilane is reacted in an arylsulfonic acid hydrolysis medium followed by separating the resultant H-resin and then contacting it with a neutralizing agent.

The shelf life of the above solvent-diluted H-resins can be unreliable if the resin undergoes crosslinking and increases in molecular weight. We have now found that the incorporation of an acid in the H-resin solution limits the possibility of changes in the molecular weight of the resin.

The present invention provides a method of stabilising a hydrogen silsesquioxane resin solution comprising 0.1 to 100 parts by weight hydrogen silsesquioxane resin in 100 parts by weight solvent characterised in that 0.002 to 4 parts by weight acid are added to said resin solution.

At the time of our invention, the predominant thought within the prior art was that solutions of H-resin must be completely neutralized to prevent any degree of gelation during storage. This belief was a substantial prejudice against the applicant's present claims which are based upon our unexpected finding that such solutions can, in fact, be stabilized for storage by the addition of small amounts of acids.

As used in this disclosure, the expressions "stable" or "stabilized" H-resin solutions are used to describe those solutions in which the molecular weight of the H-resin changes less over time than those which have not been stabilized. It is preferred that the "stable" solutions not gel. It is more preferred that the weight average molecular weight (Mw) of the "stable" solutions not change more than 100%. It is most preferred that the Mw of the "stable" solutions not change more than 25%.

The H-resins which may be used in this invention include hydridosiloxane resins of the formula $\mathrm{HSi}(\mathrm{OH})_x(\mathrm{OR})_y \mathrm{O}_{z/2}$, in which each R is independently an organic group or a substituted organic group which, when bonded to silicon through the oxygen atom, forms a hydrolyzable substituent, \underline{x} 0-2, \underline{y} = 0-2, \underline{z} = 1-3, \underline{x} + \underline{y} + \underline{z} = 3. Examples of R include alkyls such as methyl, ethyl, propyl and butyl; aryls such as phenyl and alkenyls such as allyl or vinyl. As such, these resins may be fully condensed (HSiO_{3/2})_n or they may be only partially hydrolyzed (i.e., containing some Si-OR) and/or partially condensed (i.e., containing some Si-OH). Although not represented by this structure, these resins may also contain a small number (eg., less than about 10%) of silicon atoms which have either 0 or 2 hydrogen atoms attached thereto due to various factors involved in their formation or handling.

The above H-resins and methods for their production are known from the aforementioned patents. For example, U.S. Patent No. 3,615,272 teaches the production of a nearly fully condensed H-resin (which may contain up to 100-300 ppm silanol) by a process comprising hydrolyzing trichlorosilane in a benzenesulfonic acid hydrate hydrolysis medium and then washing the resultant resin with water and/or aqueous sulfuric acid. Similarly, U.S. Patent No. 5,010,159, describes an alternative method comprising hydrolyzing hydridosilanes in an arylsulfonic acid hydrate hydrolysis medium to form a resin which is separated, washed and contacted with a neutralizing agent.

Other hydridosiloxane resins, such as those described in U.S. Patent No. 4,999,397 are produced by hydrolyzing an alkoxy or acyloxy silane in an acidic, alcoholic hydrolysis medium. Any other equivalent hydridosiloxane will also function herein, such as those covered by JP-A [Kokai] Nos. 59-178749, 60-86017 and 63-107122.

In a preferred embodiment of the invention, specific molecular weight fractions of the above H-resins may also be used in this process. Such fraction and methods for their preparation are taught in U.S. Patent No. 5,063,267. Alternative approaches, however, are also contemplated. For example, fractions can also be obtained by a non-solvent precipitation process wherein the H-resin is dissolved in a non-polar solvent such as toluene followed by adding a polar solvent such as acetonitrile thereto to precipitate a fraction of the resin. Since this precipitation process progressively precipitates lower molecular weight fractions with higher concentrations of the polar solvent, the process often involves first precipitating and removing the undesired higher molecular weight fractions from the solution followed by precipitating and collecting the desired fraction and leaving the undesired low molecular weight fractions in solution. A preferred fraction comprises material wherein at least 75% of the polymeric species have a weight average molecular weight above 1200 and a more preferred fraction comprises material wherein at least 75% of the polymeric species have a weight average molecular weight between 1200 and 50,000 (relative to polydimethylsiloxane standards).

According to the present invention, the H-resin is merely dissolved in a solvent to form a solution. Various facilitating measures such as stirring and/or heating may be used as necessary. Solvents which may be used include any agent

or mixture of agents which will dissolve the H-resin to form a homogenous liquid mixture. These solvents include alcohols such as ethyl or isopropyl, aromatic hydrocarbons such as benzene or toluene, alkanes such as n-heptane or dodecane, ketones such as methylisobutylketone, esters, glycol ethers or cyclic dimethylpolysiloxanes. Particularly preferred herein is methylisobutylketone.

The above solvents are used in an amount sufficient to dissolve the H-resin to the concentration desired for application. Generally, enough of the above solvent is used to form a 0.1-50 wt. percent solids solution (i.e., 100 parts by weight solvent and 0.1 to 100 parts by weight H-resin).

As noted above, H-resin solutions of the prior art may be unstable and undergo molecular weight shifts which may not be desirable (e.g., the material may deposit a thicker coating or the material may partially or completely gel). This instability is dependent on factors such as water, impurities, atmospheric humidity, fractionation and temperature. For example, fractionated material is stable for 3-4 months under refrigeration (e.g., 0°C.) whereas it is only stable for 1.5 months at room temperature.

According to the present invention, it has been discovered that the addition of a small amount of acid to these solutions can dramatically affect their stability and shelf-life. Although not wishing to be bound by theory, applicants postulate that both the acidity and the chemical reactions (e.g., oxidation, chemical complexing and the like) of the acids contribute to the stabilizing of H-resin solutions.

The acids which can be used herein are any which have the desired stabilizing effect without adversely affecting the resin. These include inorganic acids such as boric, carbonic, hydrochloric, iodic, nitric, nitrous, phosphoric, phosphorous, sulfuric and sulfurous as well as organic acids such as acetic, benzoic, butyric, citric, formic, lactic, maleic, naphthoic, oxalic, phthalic, picric, propionic, succinic, tartaric, toluic, toluene sulfonic and trifluoroacetic. Of these, nitric acid is particularly preferred.

The above acids are added to the solution in an amount effective to stabilize the H-resin. This amount can vary over a wide range depending on the acid and the above factors. Generally, however, the acids are added in an amount of between 0.002 and 4 parts per weight and, preferably, between 0.01 and 0.1 parts per weight, based on the total weight of solution.

It should be noted that the order of mixing the acid, solvent and H-resin is not critical. For example, in addition to the order described above, the H-resin may be simply dissolved in a solvent-acid mixture.

In addition, the solutions of the present invention may also contain other ingredients such as ceramic oxide precursors. Examples of such precursors include compounds of various metals such as aluminum, titanium, zirconium, tantalum, niobium and/or vanadium as well as various non-metallic compounds such as those of boron or phosphorous. These precurors may be dissolved in solution, hydrolyzed and subsequently pyrolyzed, at relatively low temperatures and relatively rapid reaction rates to form ceramic oxide coatings.

The above ceramic oxide precursor compounds generally have one or more hydrolyzable groups bonded to the above metal or non-metal, depending on the valence of the metal. The number of hydrolyzable groups to be included in these compounds is not critical as long as the compound is soluble in the solvent. Likewise, selection of the exact hydrolyzable substituent is not critical since the substituents are either hydrolyzed or pyrolyzed out of the system. Typical hydrolyzable groups include alkoxy such as methoxy, propoxy, butoxy and hexoxy; acyloxy such as acetoxy or other organic groups bonded to said metal or non-metal through an oxygen such as acetylacetonate. Specific compounds, therefore, include zirconium tetracetylacetonate, titanium dibutoxy diacetylacetonate, aluminum triacetylacetonate and tetraisobutoxy titanium.

When the H-resin solution is to be combined with one of the above ceramic oxide precursors, generally it is used in an amount such that the final ceramic coating contains 0.1 to 30 percent by weight of the modifying ceramic oxide.

The solution may also contain a platinum, rhodium or copper catalyst to increase the rate and extent of conversion to silica. Generally, any platinum, rhodium or copper compound or complex which can be solubilized will be functional. For instance, a composition such as platinum acetylacetonate, rhodium catalyst RhCl₃[S(CH₂CH₂CH₂CH₃)₂]₃, obtained from Dow Corning Corporation, Midland, Michigan, or cupric naphthenate are suitable within this invention. These catalysts are generally added in an amount of between 5 to 1000 ppm, preferably 5 to 500 ppm, platinum, rhodium or copper based on the weight of H-resin.

The resultant stabilized solutions are useful for forming coatings on various substrates, especially electronic de-

The following non-limiting example is provided so that those skilled in the art will more readily understand the invention.

Example

55

50

10

20

25

40

Hydrogen silsesquioxane resin was made by the process described in US Patent No. 3,615,272. Generally, the process comprised slowly adding trichlorosilane to an agitated toluene sulfonic acid hydrate hydrolysis medium. After hydrolysis was complete, the hydrolysis medium was settled and the organic layer (containing the H-resin) was sep-

arated and removed. The organic layer was washed twice with sulfuric acid and twice with water and then filtered and stripped to about 20 wt% solids in toluene.

The H-resin solution was then fractionated by adding acetonitrile to the solution to precipitate out the undesired high molecular weight fractions. The desired molecular weight fraction was then precipitated out of the solution by adding additional acetonitrile.

Two samples were prepared in the above manner and their properties are listed in Table 1 at time 0 (Samples A and B).

The resultant resins were then treated with the acids and their concentrations listed in Table 1 (with a control). Gel Permeation Chromatography (GPC) was run on the resins (relative to a polydimethylsiloxane standard) at the times listed in the Table (elapsed time) and the results recorded.

As is evident from the data, the addition of an acid to the resin solution clearly inhibits the former molecular weight shifts of the art which were indicative of instability.

TABLE 1: Acid Stabilization of Hydrogenessesquizzane Boustone in Methyl Isobutyl Kelone & 25 C

	RESIN	ACID	ACID	PERCENT	ELAPSED					
	LOTE	TYPE	CONC (ppm)	SOUDS (%)		NAC:	Aller	Maddi	Low May	High Mw
	ILREES	*******	********		*******		*******	# Richard	*******	*******
5		NONE	0	CC 10	•	****				
	^	NUME	U	SOUD	0	5418 8	12226.9	1 905	307	74845
				20.00 20.00	13 32	7376 7 6671.4	23189.0 44880.2	3.144 5.724	299 175	323443 705585
				20.00	46	5980.6	72313.6	8 070	222	1235785
				20.00	50	9033.1	97890.2	10 815	258	1504915
				20.00	73	9033.1	107622.6	11 914	256	1450911
				20.00	95	8751 3	155841,7	17 806	256	1994484
				20.00	110	-		OT FILTERA		-
10				20.00	123	9658.0	187589.9	19.418	125	2268674
				20.00	131	8969.7	181505.6	20,238	316	1885182
				20.00	144	5984.2	170787.0	28.638	188	1994484
	A .	HNO3	211	SOUD	0	6416.8	12226.9	1 905	307	74848
				20.00	13	6613.8	13086.1	1,979	307	86436
				20.00	32	5645.8	12784.3	2.284	179	94193
				20.00	46	8045.6	11433.0	1.891	201	92251
15				20.00	60	6020.7	12930.6	2.148	256	99051
				20.00	73	8339.6	131126	2.000	258	92251
				20.00	95	5911.0	14056.8	2.377	256	106793
				20,00	110	5523.0	14689.7	2.000	252	143114
				20.00	123	0522.0	15738.8	2.413	225	138192
				20.00	131	5473.7	15617.3	2.853	318	133275
				20.00	144	4672,6	16518.8	3.535	196	157917
	_				_					
20	•	HNO3	921	SOUD		6416.8	12220.9	1,905	307	74845
				20.00	13	6672.3	13095.3	1.963	312	94193
				20.00	32	5061.0	12574.1	2.221	179	94193
				20.00	46	6159.0	12028.0	1.953	205	94193
				20.00	80	5828.0	12318.2	2.114	250	86436
				20.00 20.00	73 95	5511 4 5885.2	12163.0 12482.7	2.207	256 256	94241 85488
				20.00	110	4872.8	12327.4	2.121		
				20.00		5540.9		2.530	252	94193
25				20.00	123 131	5021.9	12610.6 12245.2	2.276 2.434	225 316	103918 84501
				20.00	144	4000.7	12318.2	3.079	196	94193
				20.00	-		12310.2	7013	130	34 193
		BENZOIC	231	SOLID	0	6416.6	12226.9	1.905	307	74846
			•••	20.00	13	7323.5	23942 1	3.269	307	303165
				20.00	32	6344.0	44083.3	8.949	175	632454
				20.00	46	8705.2	63564.3	7 302	209	1126804
				20.00	60	9141.9	81204.2	6,883	250	1450911
30				20.00	73	7387.3	89158.1	12.089	258	1396962
				20.00	95	8638.2	129935.8	15,042	258	1007428
				20.00	110	6710.6	153372.2	17,806	248	1630634
				20.00	123	10122.2	175250.2	17.313	325	2434234
				20.00	131	8908.4	183357.7	18,548	320	1865182
				20.00	144	6410.5	185282.5	28.903	198	2104051
		BENZOIC	853	SOUD	0	5416.8	12226.9	1.905	307	74846
<i>35</i>				20.00	13	7484.9	30614.3	4.117	295	394788
				20.00	33	7494.0	109574.0	14.622	175	1067426
				20.00	46	10367.7	170529.0	16.448	186	2104061
				20.00	50	9713.4	211498.9	21.774	252	2434234
				20.00	73			IOT FILTERA	BLE	
				20.00	83		\$	COLUTION G		
	•	HIROA	187	SOLID						
	_		101	20.00	0 7	8416.8	12228.9	1.905 FOLUTION GI	307	74848
40				24.00	•			ICLU ICM G		
		H3P04	1110	SOLID	0	6415.6	12228.9	1.905	307	74848
	• • •			20.00			************	IOLUTION GI	E1 ED	
					-					
	A	F3CCOOH	192	SOUR	0	6416.8	12226.9	1.905	307	74848
			_	20.00	13	6981.0	14066.0	2.015	312	123462
				20.00	32	6270.4	10029.2	2.652	198	152977
				20.00	46	7191.9	20026.5	2.785	222	192045
45				20.00	60	6339.5	15367.5	2.427	260	143114
-				20.00	73	6795.5	32924,7	4.845	256	384563
				20.00	95	7606.8	56495.3	7.427	256	918157
				20.00	110	9062.8	81030,3	10.049	248	1235785
				20.00	123	9214.4	103236.6	11,204	329	1450911
				20.00	131	9713.4	121992.2	12,550	316	1559006
				20.00	144	7185.6	147451.0	20.520	196	1885182
		F2000-			_					
50	A	F3CCOOH	952	SOUD		6416.8	12228.9	1.905	307	74848
				20.00	13	6413.2	13342.4	2.080	312	123462
				20.00	32	5353.6	13369.8	2.497	184	123462
				20.00 20.00	46	6297.3	13809.4	2.193	195	118565
				20.00	50	7423.6	27213.2	7.006	260	313298
				20.00	. 73	6827.9	16564.6	2.426	256	143114
				20.00	95 110	7967.2 6259.6	21304.8 25208.1	2.779 4.027	256 252	190654
55				20.00	123	7524.6				272844
				20.00	123	7324.6 6833.4	30984.Z 34145.9	4.115	316	405023
				20.00	144	5848.6	43498.1	4.997 7.440	316	405023
					146	-JUNO. B	++4/ACT)	7.440	196	632454

	RESIN	ACID TYPE	ACID CONC (ppm)	PERCENT	ELAPSED TIME (GRAE)	Mn	Mer	Aberlian	LOW MA.	HIQD MW
			********				*******			********
5										
	A	H38Q3	259	SOUD	0	6416 B	12228.9	1 905	307	74848
				20.00	13	6599.4	13342 4	2 022	299	99051
				20.00	32	57 39 .0	13882.7	2.419	179	103916
				20.00	46	6442.9	14341 0	2.228	188	143114
				20.00	80	6817 1	15380.0	2.263	260	148043
				20.00	73	6218.2	15911 5	2.559	256	148043
				20 00	95	8124.8	18039.6	2.945	258	172770
10				20.00	110	6626.4	19573.2	2.954	252	192645
				20.00	123	6953.1	21341.9	3.089	325	222598
				20.00	131	6558.9	22288.1	3,398	316	212598
				20.00	144	5124.7	23728.2	4 630	179	217595
	A	H38O3	914	SOUD	0	6416.8	12226.9	1,905	307	74848
				20.00	13	6752.3	13150.2	1,947	307	94193
				20.00	32	8125.7	13177.6	2.151	201	94676
15				20.00	46	4752.9	11797.9	2,482	188	99051
				20.00	60	6362.9	13848.1	2,176	258	133275
				20.00	73	6217.3	14194.3	2.283	256	133275
				20.00	95	5523.9	15148,7	2.742	256	143114
				20.00	110	5567.5	16187.4	2.897	252	164843
				20.00	123	5255.7	17163.5	2.700	325	167814
				20.00	131	8163.5	18233.4	2.956	316	157917
00				20.00	144	4733.3	19471 4	4.114	198	172770
20	A	p-TSA	183	SOUD	0	5416.8	12226.9	1.905	307	74846
				20.00	13	6682.1	12865.6	1.926	307	92251
				20.00	32	5594.7	12336.5	2,205	184	85488
				20.00	48	5528.4	11387.5	2,080	188	93222
				20.00	60	5337.6	12035.2	2.255	256	94678
				20.00	73	4844.9	11907.4	2.458	256	94241
				20.00	95	4580.2	11843.5	2,597	256	93222
				20.00	110	4481.2	11807.0	2,647	252	94193
<i>2</i> 5				20.00	123	4751.9	11807.0	2,479	325	89342
				20.00	131	3880.6	12190.4	3.141	188	94193
				20.00	144	3826 4	12448.1	3.253	196	94678
	A	p-TSA	990	SOUD	0	6416.8	12226.9	1,905	307	74848
				20.00	13	6428.5	12758.9	1.984	307	94193
				20.00	32	4493.3	12035.2	2.678	201	94193
				20.00	46	4521.8	11423.9	2.526	201	84501
30				20.00	60	4992.4	12638.0	2.531	256	94678
				20.00	73	4636.0	13067.8	2.819	258	133275
				20.00	95	4489.7	14680.5	3.270	256	138192
				20.00	110	4275.8	15102.8	3,532	248	157917
				20.00	123	4581.9	16242.7	3,560	320	172770
				20.00	131	4384.9	19785.9	4.508	188	192645
				20.00	144	4009.6	21518.0	5.367	198	282937
35	A	ACETIC	192	SOUD	0	6416.8	12226.9	1.905	307	74846
35				20.00	13	7468.7	24779.7	3.318	312	293044
				20.00	32	6617.4	52261.6	7.698	192	863313
				20.00	46	9033.1	77890.2	8,601	222	1289426
				20.00	80	9314.1	103139.2	11.073	256	1559008
				20.00	73	9804.2	130034.0	13,263	258	1559006
				20.00	110	9087.5	180114.8	19.820	248	2104051
				20.00	123	10440.4	194836.5	18.662	329	2213872
				20.00	131	8869.1	174456.5	19.670	320	1930790
40				20.00	144	6448.3	183393.7	28.441	184	1770158
	A	ACETIC	1019	SOUD	o		12226.9		307	74846
				50.00	13		31685.1	4,084	299	394788
				50.00	32	7387.5	104015.9			1450911
				20.00	46	9786.1	172078.0		184	1939799
				20.00	60		211097.3			2379056
. ~				20.00	73		180710.8			1994484
45				20.00	94	-	*************	SOLUTION O	ELLED	

TABLE 1 (cont.): Acid Stabilization of Hydrogenomeoquicisine Solutions in Methyl Isobutyl Kelone @ 25 C

	IABLE	((come)	CON COLUMN	ens or wheref				As isoenski k	MON• @ 25	C
	RESIN	ACID	ACID	PERCENT	ELAPSED					
	LOTE	TYPE	CONC (ppm)	SOLIDS (%)	TIME (days)	Mn	Mer	Marken	LOW MAY	High Ne
	: REAS 8	ERRERRA	********		*******	******	*****	*****		*******
5	8	NONE			_					
3		THE STREET	0	SOLID	9	4120 B 4094.1	10804 4	2.622	282	67152
				20.00 20.00	28	4348.8	11269 0 11715 B	2.752 2 894	282 289	75810 80834
				20.00	42	4178.7	12007.8	2.874	265	84501
				20.00	50	3892.2	12236 0	3.144	256	99051
				20.00	69	3841.5	12857.5	3.312	258	94193
				20.00	91	4619.0	14331 9	3.103	256	108793
				20.00	105	4589.1	15332.4	3.356	258	143114
10				20.00	119	4955.7	16343.9	3.296	325	157917
				20.00	127	4501.3	16888.1	3,703	256	152977
				20.00	140	4076.3	10833.2	4 154	248	152977
	В	HNC3	170	SOUD	٥	4120.8	10804 4	2.622	282	67152
		, ,,,,,,,,		20.00	9	4218.8	11341 9	2.584	286	71956
				20.00	28	4127.1	11241.6	2.724	256	81117
				20.00	. 42	4062.1	112234	2.763	265	79889
15				20.00	56	4006.9	11414 B	2.849	265	81600
15				20.00	69	1589.3	119074	3.317	258	84501
				20.00	91	4479.C	12628.9	2.620	256	94193
				20.00	105	4477.2	13040.4	2.913	266	94678
				20.00 20.00	119 127	4571.8 4347.1	13992.7 13937.7	3.061	329	128366
				20.00	140	4120.8	13928.5	3.208 3.380	265 299	113676 126366
						7120.0	1 3024.3	3.200	4.54	140-000
	8	HNO3	458	SOUID	0	4120.8	10804.4	2.622	282	67152
20				20.00	9	4255.3	11323.7	2.861	2579	75810
				20.00	28	4208.3	11223.4	2.866	269	75810
				20.00	42	4188,7	11250.7	2.667	273	77736
				20.00	56	4033.6	10913.7	2.706	265	75610
				20.00 20.00	69 91	3745,6 4315.9	11305.4	1.018	256	76774
				20.00	105	4305.2	11341.9 11232.5	2.626 2.809	260 258	75810 79889
				20.00	119	4517.3	11524.2	2.551	329	94183
or				20.00	127	4039.6	11489.5	2.839	280	81600
25				20.00	140	3841.5	11086.7	2.686	273	74846
	В	BENZOIC	100	SOLID	٥	4120.8	10804.4	2.622	282	67152
				20.00		4096.6	11177.6	2.728	286	76703
				20.00 20.00	28 42	4493.3 4148.4	11962.1	2.862	265	80834
				20.00	56	4226.8	12117.3 12683.8	2.921 3.001	256 269	86436 99051
				20.00	se se	4054.1	13232.5	3.284	250	99061
30				20.00	91	4006.3	14781.4	3.166	256	123462
				20.00	105	4003.7	15433.5	3,308	256	143114
				20.00	119	4995.9	16822.6	3,367	325	157917
				20.00	127	4763.6	17615.2	3,690	273	182863
				20.00	140	4061.9	18214.9	1,907	200	162863
	8	BENZOIC	495	SOUT	0					
	•	DEFECTION		20.00		4120.8 4251.7	10804 4 11378 3	2.622 - 2.676	282 290	67152
				20.00	28	3964.2	11825.2	2.983	273	75810 89342
35				20.00	42	3971.3	11524.2	2.902	265	77738
				20.00	56	4191 2	12706.0	3.046	256	99051
				20.00	69	4432.6	13552.9	3.058	256	94241
				20.00	91	4621.7	14653.0	3.170	258	138192
				20.00	105	4683.3	15510.2	2.313	256	143114
				20.00 20.00	119	5122.0 4586.9	16702.9	3.261	325	140160
				20.00	127 140	4446.9	17200.4	3.750	269	148043
40				au. w	.=0	*	17627.4	4.008	273	157917
•	В	H3PO4	170	SOUD	0	4120.8	10804.4	2.622	282	67152
				20.00	9	5555.3	10058.7	3.037	290	2104051
				20.00	13	~~~~		D NOTUDO	ELLED	
	_	Lana-			_	4c== -				
	8	H3PQ4	580	SOUD	0	4120.8	10804.4	2.622	282	67162
				20.00 20.00	9 28	4283.8 4145.8	11360.1	2.652	290	74946
46				20.00	42 42	4150.2	11150.8 11341.9	2.062 2.733	273 200	79869
45				20.00	56	4001.6	11450.4	2.884	273	80634 92251
				20.00	~	3822.0	11925.6	3.120	258	89342
				20.00	91	4499.5	12409.6	2.756	280	93222
				20.00	105	4408.5	13012.9	2.952	256	94193
				20.00	119	4694.0	13800.2	2.940	329	113676
				20.00 20.00	127	4411.2	14148.5	3.207	265	118565
				24.00	140	4339.0	15178.2	3.496	269	143114
50	8	F3CCDOI	1 138	SOLID	0	4120.8	10804.4	2.622	262	67152
	-			20.00	ĕ	4342.6	11542.5	2.654	299	76774
				20.00	28	4195.6	11734.0	2.797	269	81600
				20.00	42	4158.2	12117.3	2.914	265	86342
				20.00	56	4128.2	12656.3	3.000	280	99061
				20.00	89	4221.2	13580.4	3.216	256	94678
				20.00 20.00	91 105	4951.2 4802.9	15213.0	1073	273	143114
55				20.00	119	5185.5	15123.0	1,367 1,386	256 129	152977 157814
33				20.00	127	471Q.1	17782.8	3.771	209	148043
				20.00	140	4050.2	18759.7	4.026	273	172770

TABLE 1 (cont.): Acid Stabilization of Hydrogenellesequipizane Solutions in Methyl Isoburyl Kelone @ 26 C

	RESIN LOT#	TYPE	ACID CONG (ppm)	PERCENT SOLIDS (%)	ELAPSED TIME (days)	Mn	'Atw	Madian	Low Mhy	High Mw
5	222835		*********				*******	******		=======
	В	F3CCOOH	486	SOLID	0	4120.8	10804 4	2 522	282	67152
				20.00	.9	4194.7	11378 3	2.713	290	76774
				20 00 20 00	28 42	4092.4 4089.7	11442.2	2.798	265	75810
				20.00	56	3938.4	11697 5 11962.1	2.880 3.037	265 260	80634 90312
				20.00	69	3918.0	12665.5	3.233	256	93222
10				20.00	91	4705.6	14524.5	3 087	258	118565
10				20.00	105	4823.5	15773 6	3.270	258	152977
				20.00	119	5131.8	10905.5	3.294	329	152977
				20.00 20.00	127 140	4846.7 4505.7	17421 6 16296.0	3.749 4.061	290	157917
				20.00	140	4303.7	10239.0	4.001	265	167614
	8	H38O3	110	SOUD	0	4120.6	10804.4	2.622	262	67152
				20.00	9	4173.4	11088.7	2.657	290	74848
15				20.00 20.00	28	4023.8	11405.7	2.835	265	77738
				20.00	42 58	4340.8 4280.2	11697.5 12053.4	2.695 2.818	265 269	84501 92251
				20.00	66	3823.8	12446.1	3.255	256	92251
				20.00	91	4861.9	13360.7	2.886	260	94193
				20.00	105	4510.2	13763.6	3.052	256	108793
				20. 00 20. 00	119	4988.4 4438.9	14827.3 14884.9	2.988	325	133275
				20.00	127 140	4414,8	14854.9	3.347 3.569	299 265	118565 143114
20							137 33,2	3.309	200	143114
	. 8	H38O3	445	50UD 20.00	0	4120.6	10804.4	Z.622 OLUTION G	282 FUED ****	67152
	_									
	8	p-TSA	180	SOUD	0	4120.6	10804.4	2.622	282	67152
				20.00 20.00	28	4252.6 4216.1	11295.3	2.656 2.590	295 273	74846 69553
				20.00	42	3987.4	10804.4	2.710	2/3 265	74848
25				20.00	56	3750.9	10522.3	2.805	260	70034
23				20.00	69	3740.2	110139	2.945	258	74848
				20.00	91	4283.6	10877.3	2.539	260	74846
				20.00 20.00	105 119	4309.6	10804.4	2.507	278	80834
				20.00	127	4368.4 3950.9	10895.5 11032.1	2.494 2.792	325 248	74846 80834
				20.00	140	3691.4	10576.9	2.865	265	72920
	8	p-TSA	550	SOLID	0					
30	٠	prise	330	20.00	9	4120.8 4192.1	10804.4	2.522 2.669	282 286	67152 74846
				20.00	28	3928.0	10904 6	2.778	269	84501
				20.00	42	3740.2	10631 5	2.842	265	74848
				20.00	56	3437.6	10304.0	2.997	260	72882
				20.00 20.00	69 91	3454.4 4208.1	11004.8 11241.6	3,186 2.671	256	84501
				20.00	105	3986.9	11004.8	2.774	260 260	76703 77738
				20.00	119	4139.5	11542.5	2.788	329	94193
<i>35</i>				20.00	127	3958.0	12391.3	3.131	258	94241
				20.00	140	3705.6	12281.7	3.314	269	92251
	В	ACETIC	148	SOUD	0	4120.8	10604.4	2.522	282	67152
				20.00	9	4286.5	11332.0	2.644	266	74846
				20.00	28	4247.3	11852.6	2.791	265	84501
				20.00 20.00	42 56	4422.8 4112.8	12327.4	2.787	265	89342
40				20.00	30 59	4407.7	125/4.1	3.057 3.075	260	99051 103918
40				20.00	91	4715.4	14726.4	3.123	258 260	128365
				20.00	105	4788.7	15746.0	3.288	258	133275
				20.00	119	4910.1	16664.5	7.306	325	143114
				20.00	140	4371.1	17567.6	4.024	252	152977
	8	ACETIC	577	SOUD	0	4120.8	10804.4	2.622	282	67152
				20.00 20.00	9 28	4213.4 4406.6	11323.7	2.686	295	74848
45				20.00	28 42	4075.4	12099.1	2.745 2. 98 0	252 265	91281 87889
				20.00	56	4160.0	12811.7	3.080	260	94578
				20.00	69	3880.6	13736.1	3,540	256	103918
				20.00	91	4725.3	15295.7	3.237	256	128365
				20.00	105	4626.2	16150.6	3.491	258	143114
				20.00 20.00	119 127	5044.2 4756.5	17467.7 16261.1	2.463 3.839	325 260	152977 143114
50				20.00	140	4337.3	18556.5	4.278	248	157814
50						,-				

Claims

55

 A method of stabilising a hydrogen silsesquioxane resin solution comprising 0.1 to 100 parts by weight hydrogen silsesquioxane resin in 100 parts by weight solvent characterised in that 0.002 to 4 parts by weight acid are added to said resin solution.

- A method according to claim 1 wherein at least 75% of the polymeric species of the resin have a weight average molecular weight above 1200.
- A method according to claim 2 wherein at least 75% of the polymeric species of the resin have a weight average molecular weight between 1200 and 50,000.
- A method according any of claims 1 to 3, wherein the solvent is selected from alcohols, aromatic hydrocarbons, alkanes, ketones, esters, glycol ethers and cyclic dimethylpolysiloxanes.
- 5. A method according to any of claims 1 to 4, wherein the acid is selected from boric, carbonic, hydrochloric, iodic, nitric, nitrous, phosphoric, phosphorous, sulfuric and sulfurous acids.
 - 6. A method according to any of claims 1 to 4, wherein the acid is selected from acetic, benzoic, butyric, citric, formic, lactic, maleic, naphthoic, oxalic, phthalic, picric, propionic, succinic, tartaric, toluic, toluene sulfonic and trifluoroacetic acids.
 - A method according to any of claims 1 to 6, wherein the acid is added in an amount between 0.01 to 0.1 parts by weight.
- 20 8. A method according to any of claims 1 to 7, wherein the resin solution further comprises modifying ceramic oxide precursors comprising a compound containing an element selected from titanium, zirconium, aluminum, tantalum, vanadium, niobium, boron and phosphorous wherein the compound contains at least one hydrolyzable substituent selected from alkoxy or acyloxy and the compound is present in an amount such that the coating contains 0.1 to 30 percent by weight modifying ceramic oxide.
 - A method according to any of claims 1 to 7, wherein the resin solution further comprises a platinum, rhodium or copper catalyst in an amount of between 5 to 1000 ppm platinum, rhodium or copper based on the weight of hydrogen silsesquioxane resin.

Patentansprüche

5

15

25

30

35

- Verlahren zur Stabilisierung einer Hydrogensilsesquioxanharz-Lösung, die 0,1 bis 100 Gewichtsteile Hydrogensilsesquioxanharz in 100 Gewichtsteilen Lösemittel enthält, dadurch gekennzeichnet, daß der Harzlösung 0,002 bis 4 Gewichtsteile Säure zugesetzt werden.
- Verfahren nach Anspruch 1, wobei mindestens 75 % der polymeren Moleküle des Harzes ein gewichtsdurchschnittliches Molekulargewicht von mehr als 1.200 haben.
- Verfahren nach Anspruch 2, wobei mindestens 75 % der polymeren Moleküle des Harzes ein gewichtsdurchschnittliches Molekulargewicht zwischen 1.200 und 50.000 haben.
 - Verfahren nach einem der Ansprüche 1 bis 3, wobei das Lösemittel ausgewählt ist aus Alkoholen, aromatischen Kohlenwasserstoffen, Alkanen, Ketonen, Estern, Glykolethern und cyclischen Dimethylpolysiloxanen.
 - Verfahren nach einem der Ansprüche 1 bis 4, wobei die Säure ausgewählt ist aus Borsäure, Kohlensäure, Chlorwasserstoffsäure, lodsäure, Salpetersäure, salpetriger Säure, Phosphorsäure, phosphoriger Säure, Schwefelsäure und schwefliger Säure.
- Verfahren nach einem der Ansprüche 1 bis 4, wobei die Säure ausgewählt ist aus Essig-, Benzoe-, Butter-, Zitronen-, Ameisen-, Milch-, Malein-, Naphthoe-, Oxal-, Phthal-, Pikrin-, Propion-, Bernstein-, Wein-, Toluyl-, Toluolsulfon- und Trifluoressigsäure.
- Verfahren nach einem der Ansprüche 1 bis 6, wobei die Säure in einer Menge zwischen 0,01 und 0,1 Gewichtsteilen
 zugesetzt wird.
 - 8. Verfahren nach einem der Ansprüche 1 bis 7, wobei die Harzlösung weiterhin Vorprodukte für modifizierende keramische Oxide enthält, die ihrerseits eine Verbindung mit einem Element enthalten, das aus Titan, Zirconium,

Aluminium, Tantal, Vanadium, Niobium, Bor und Phosphor ausgewählt ist, wobei die Verbindung mindestens einen hydrolysierbaren Substituenten enthält, der aus Alkoxy oder Acyloxy ausgewählt ist, und die Verbindung in einer solchen Menge vorhanden ist, daß die Beschichtung 0,1 bis 30 Gewichtsprozent modifizierendes keramisches Oxid enthält.

 Verfahren nach einem der Ansprüche 1 bis 7, wobei die Harzlösung weiterhin einen Platin-, Rhodium- oder Kupferkatalysator in einer Menge zwischen 5 und 1.000 ppm Platin, Rhodium oder Kupfer enthält, bezogen auf das Gewicht des Hydrogensilsesquioxanharzes.

Revendications

5

10

15

25

30

35

40

50

55

- Procédé de stabilisation d'une solution de résine d'hydrogénosilsesquioxane comprenant 0,1 à 100 parties en poids de résine d'hydrogénosilsesquioxane dans 100 parties en poids de solvant, caractérisé en ce que l'on ajoute 0,002 à 4 parties en poids d'acide à ladite solution de résine.
- Procédé selon la revendication 1, dans lequel au moins 75 % des espèces polymères de la résine ont un poids moléculaire moyen en poids supérieur à 1 200.
- Procédé selon la revendication 2, dans lequel au moins 75 % des espèces polymères de la résine ont un poids moléculaire moyen en poids compris entre 1 200 et 50 000.
 - 4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le solvant est choisi dans le groupe constitué des alcools, des hydrocarbures aromatiques, des alcanes, des cétones, des esters, des étherglycols et des diméthylpolysiloxanes cycliques.
 - Procédé selon l'une quelconque des revendications 1 à 4, dans lequel l'acide est choisi dans le groupe constitué des acides borique, carbonique, chlorhydrique, iodique, nitrique, nitreux, phosphorique, phosphoreux, sulfurique et sulfureux.
 - 6. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel l'acide est choisi dans le groupe constitué des acides acétique, benzoîque, butyrique, citrique, formique, lactique, maléique, naphtoîque, oxalique, phtalique, picrique, propionique, succinique, tartrique, toluique, toluènesulfonique et trifluoroacétique.
 - Procédé selon l'une quelconque des revendications 1 à 6, dans lequel on ajoute l'acide en une quantité comprise entre 0,01 et 0,1 partie en poids.
 - 8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel la solution de résine comprend, en outre, des précurseurs d'oxydes de céramique modificateurs comportant un composé contenant un élément choisi dans le groupe constitué du titane, du zirconium, de l'aluminium, du tantale, du vanadium, du niobium, du bore et du phosphore, dans lequel le composé contient au moins un substituant hydrolysable choisi dans le groupe constitué des groupes alcoxyles et acyloxyles, le composé étant présent en une quantité telle que le revêtement contienne 0,1 à 30 pour cent en poids d'oxydes de céramique modificateurs.
- 9. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel la solution de résine contient, en outre, un catalyseur au platine, au rhodium ou au cuivre en une quantité comprise entre 5 et 1 000 ppm de platine, de rhodium ou de cuivre sur la base du poids de résine d'hydrogénosilsesquioxane.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-340812

(43)Date of publication of application: 13.12.1994

(51)Int.CI.

COBL 83/05 COBK 3/24 CO9D183/05

(21)Application number: 06-048674

(71)Applicant: DOW CORNING CORP

DOW CORNING TORAY SILICONE CO LTD

(22)Date of filing:

18.03.1994

(72)Inventor: BRODERICK DENNIS W

HELWICK JAMES ANTHONY

NAKAMURA TAKASHI

(30)Priority

Priority number: 93 34435

Priority date: 19.03.1993

Priority country: US

(54) STABILIZED HYDROGEN SILSESQUIOXANE RESIN SOLUTION

(57)Abstract:

PURPOSE: To obtain the resin soln, useful for silica-containing ceramic coating and stable even during long-term storage by compounding a solvent, a hydrogen silsesquioxane resin and a specific substance in a predetermined wt. ratio.

CONSTITUTION: A hydrogen silsesquoxane resin soln. is constituted by compounding 100 pts.wt. of a solvent (e.g.; toluene) pref. selected from alcohol, aromatic hydrocarbon, alkane, ketone, ester, glycol ether and cyclic dimethylpolysiloxane, 0.1–100 pts.wt. of a hydrogen silsesquioxane resin wherein pref. 75% or more of one kind of a polymer has a wt. average mol.wt. of 1,200–50,000 and 0.002–4 pts.wt. of an acid pref. selected from boric acid, carbonic acid, hydrochloric acid, iodic acid, (nitrous) nitric acid, (phosphorous) phosphoric acid and (sulfurous) sulfuric acid.

LEGAL STATUS

[Date of request for examination]

19.05.2000

[Date of sending the examiner's decision of rejection]

01.10.2002

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office