More on SDPs
Recall a Seni-definite program (SDP) in standard
form is: min < C, x > = + (C, x) = + (C, x)
$S^{n} = Symm. \text{ or Wernstran}$ $S^{n} = Symm. \text{ or Wernstran}$
$S^n = \text{Symm. or Wernstran}$ $X > 0 + aka $
Another way to write this?
How to characterize a linear function on Rnxn?
Schiple: "vectorize" input X -> vec(X) =: x
R ^{n×n} P ^{n²} * lowerase
then let the
A(vec(x)) = b
A(vec(x)) = b $A(vec(x)) = b$
each row of A = < month (month)
() vec(A:) = <mat(a:), x=""></mat(a:),>
$=\langle A_i, X_7 \rangle$
Linear Matrix Inequality (LMI)
Closely related to SDPs (we'll see later
that they are the duals of SDPs)
·
with $\langle c, x \rangle$ s.t. $\sum_{i=1}^{P} x_i \cdot A_i + G \leq 0$ $x \in \mathbb{R}^p$ rector $i=1$ and $A_0 \cdot x = b$ $\in S^n$
$A \cdot x = b$
1,9 V - O E O

if A: (ieCpI) and G are diagonal, this is a LP!
In a SDP, it we force X to be diagned
(con be enforced via linear constraints), it's a LP!
Since diag(x) >0 iff x >0
Can also cast SUCPs (here QPs, QCQPs)
as SOPs using the Schur Complement
(cf. problem 4.40 and & A.S. 5 in Boyd + Vandulseyhe)
Č.
Aest, Cess, Berras
then_
then $\begin{cases} A & B \\ B^T & C \end{cases} \geqslant 0 \text{iff} C - B^T A^{-1} B \geqslant 0$
Product comes
Often we want X > 0 and Y > 0
So can combine as $Z = \begin{bmatrix} X & W \\ W^T & Y \end{bmatrix}$
and enforce Z >0, W=0
(nothersteally OK, but computationally a badidea.
Good software can handle nottiple conie constraints
(explicitly)
ex: SeDuMi, SDPT3, Mosek, Gurobi
3 0 P _S

Aside (optimal) Matrix Inversion Lemme ake Sherman - Morrison - Woodbury Formula $(A + UCV^{T})^{-1} = A^{-1} - A^{-1}U(C^{-1} + V^{T}A^{-1}U)^{-1}V^{T}A^{-1}$ var Schur complement on AU $p[V^{T} - C^{-1}]P$ often p=1 Aside (optimal) Saddle pt. systems Block linear systems of the form $\begin{bmatrix} A & B \\ B^T & O \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} c \\ d \end{bmatrix} \quad \text{i.e.} \quad B^T \times = d$ One way to solve: x = A (c-By) often A is diagnal BA-B = BA-1c - d usually A & S? often positive defaite