

Entendendo a saída do statsmodels.OLS

Problema: Considere que o objetivo aqui seja explicar/prever a emissão de gás carbono (CO2) per capita de um país em função da renda (PIB) per capita.

y: variável dependente (resposta) – emissão de CO2.

x: variável independente (explicativa) – renda (PIB) per capita.

Modelo de regressão linear simples: modelo que associa y em função de uma variável explicativa x.

Problema - GAPMinder

Problema - GAPMinder

Modelo geral:

$$E(Y|x) = \beta_0 + \beta_1 x$$

Problema:

E(emissão CO2|
$$Renda$$
) = $\beta_0 + \beta_1 Renda$

Significado dos termos do modelo geral:

Teste de hipóteses

Usualmente, uma das hipóteses em análise de regressão é avaliar a significância da regressão.

$$H_0$$
: $β_1 = 0$
 H_1 : $β_1 \neq 0$
 H_0 : não há relação entre $x \in Y$
 H_1 : há relação entre $x \in Y$

Para realizar esse teste de hipóteses, será necessário atribuir distribuição aos erros ϵ_{i} , além de outras suposições ao modelo.

Suposições do modelo

Como verificar essas suposições?

- Os **erros têm distribuição normal** com média e variância constante, ou seja, $\varepsilon_{\rm i} \sim N(0,\sigma^2)$.
- Os **erros são independentes** entre si, ou seja, $Corr(\epsilon_i, \epsilon_j)=0$, para qualquer $i \neq j$.
- O modelo é linear nos parâmetros.

Montgomery e Runger (2018, Seção 11-7.1 e Seção 11.7-2)

• Homocedasticidade: $Var(\varepsilon_i) = \sigma^2$ para qualquer i = 1, ..., n.

Montgomery e Runger (2018, Seção 11-7.1)

Análise de resíduos

Considerando exemplo do GAPMinder

x: Renda (PIB) per capita

y: emissão de CO2

Biblioteca statsmodels

Statsmodels para modelagem estatística.

"É um módulo <u>Python</u> que permite aos usuários explorar os dados, estimar modelos estatísticos, e realizar testes estatísticos. Uma extensa lista de estatística descritiva, testes estatísticos, funções de plotagem e estatísticas de resultados estão disponíveis para diferentes tipos de dados."

Fonte: https://www.vooo.pro/insights/um-tutorial-completo-para-aprender-data-science-com-python-do-zero/

A seguir, vamos compreender os resultados (summary) obtidos do ajuste de regressão utilizando o Método dos Mínimos Quadrados (MMQ). Também chamado de Mínimos Quadrados Ordinários (MQO) ou OLS (do inglês Ordinary Least Squares).


```
import statsmodels.api as sm # Importe da biblioteca

x = df['2010_income'] # Definindo renda como explicativa
y = df['2010_co2'] # Definindo CO2 como resposta

xc = sm.add_constant(x) # Adiciona coluna de 1s para estimar intercepto
model = sm.OLS(y,xc) # Define o modelo
results = model.fit() # Faz o ajuste
results.summary() # Mostra os resultados
```

OLS Regression Results

Dep. Variable:		2010_	co2	R	squared:	0.	561
Model:		(DLS	Adj. R	squared:	0.	559
Method:	Le	ast Squa	Squares		-statistic:	23	35.2
Date:	Wed, 3	30 Oct 2	019 F	Prob (F-	statistic):	9.80€	-35
Time:		23:16	6:45	Log-Li	kelihood:	-534	1.72
No. Observations:			186		AIC:	10	73.
Df Residuals:			184		BIC:	10	80.
Df Model:			1				
Covariance Type:		nonrob	oust				
	coef st	d err	t	P> t	[0.025	0.975]	
const 0.6	5557 0	.423	1.551	0.123	-0.178	1.490	
2010_income 0.2	2433 0	0.016 1	5.337	0.000	0.212	0.275	
Omnibus:	100.299	Durl	bin-Wa	tson:	2.049		
Prob(Omnibus):	0.000	Jarqu	e-Bera	(JB):	2384.399		
Skew:	1.435		Prob	o(JB):	0.00		
Kurtosis:	20.304		Cond	d. No.	35.7		

Statsmodels.OLS

- Nesses resultados, deve-se entender se Renda (PIB) de um país é ou não relevante para explicar emissão de CO2.
- Ainda, é necessário validar o modelo avaliando se suas suposições são válidas.

Teste t : valor p

14

 $H_0: \beta_i = 0$

 $H_1: \beta_i \neq 0$

Coluna mostra as estimativas dos coeficientes da reta:

const \rightarrow estimativa do intercepto $\hat{\beta}_0$

2010_income \rightarrow estimativa da inclinação da reta $\hat{\beta}_1$

OLS Regression Res	sults					
Dep. Variable:	Dep. Variable:		F	R-squared:	0.561	
Model:		OLS	Adj. F	Adj. R-squared:		
Method:	Lea	ast Squares	i I	-statistic:	235.2	
Date:	Wed, 3	0 Oct 2019	Prob (F	-statistic):	9.80e-35	
Time:		23:16:45	Log-L	ikelihood:	-534.72	
No. Observations:		186		AIC:	1073.	
Df Residuals:		184		BIC:	1080.	
Df Model:		1				
Covariance Type:		nonrobust				
C	coef sto	l err	t P> t	[0.025	0.975]	
const 0.6	557 0	.423 1.5	51 0.123	-0.178	1.490	
2010_income 0.2	433 0	.016 15.3	37 0.000	0.212	0.275	
Omnibus:	100.299	Durbin-	Watson:	2.049		
Prob(Omnibus):	0.000	Jarque-B	era (JB):	2384.399		
Skew:	1.435	P	rob(JB):	0.00		
Kurtosis:	20.304	С	ond. No.	35.7		

Teste t : valor p

 $H_0: \beta_i = 0$

 $H_1: \beta_i \neq 0$

Coluna mostra o **valor-p** do Teste t que possui H_0 : $\beta_i = 0$

Regra geral→

se valor-p < α , então rejeitase a hipótese nula.

Se teste for para β_1 , mostra que a variável explicativa (Renda) é relevante para explicar mudanças na variável resposta (CO2).

OLS Regression Resi	ults					
, and the second						
Dep. Variable:	201	0_co2	R	-squared:	0.561	ı
Model:		OLS	Adj. R	-squared:	0.559)
Method:	Least So	quares	F	-statistic:	235.2)
Date:	Wed, 30 Oc	t 2019 P	rob (F-	statistic):	9.80e-3	5
Time:	23	:16:45	Log-Li	kelihood:	-534.72	2
No. Observations:		186		AIC:	1073	
Df Residuals:		184		BIC:	1080	
Df Model:		1				
Covariance Type:	non	robust				
C	oef std err	t	P> t	[0.025	0.975]	
const 0.65	557 0.423	1.551	0.123	-0.178	1.490	
2010_income 0.24	133 0.016	15.337	0.000	0.212	0.275	
Omnibus: 1	00.299 D	urbin-Wat	teon:	2.049		
Prob(Omnibus):		que-Bera		2384.399		
	1.435	-				
Skew:		Prob		0.00		
Kurtosis:	20.304	Cond	l. No.	35.7		

Teste Omnibus

Teste a normalidade dos resíduos:

 $oldsymbol{H}_0$: a distribuição dos resíduos é normal

 H_1 : a distribuição dos resíduos não é normal

Prob(Omnibus) →

é o valor-p desse teste de normalidade

Regra geral ->

- (IDEAL) Prob(Omnibus) > α
- Se **Prob(Omnibus)** for muito baixo (menor do que < α), então existe evidência de que os resíduos **não são** distribuídos normalmente, violando nesse caso essa suposição do modelo de regressão.

OLS Regression Res	ults				
Dep. Variable:	201	0_co2	R-	squared:	0.561
Model:		OLS	Adj. R-	squared:	0.559
Method:	Least So	quares	F-	statistic:	235.2
Date:	Wed, 30 Oc	t 2019 P	rob (F-	statistic):	9.80e-35
Time:	23	:16:45	Log-Lil	kelihood:	-534.72
No. Observations:		186		AIC:	1073.
Df Residuals:		184		BIC:	1080.
Df Model:		1			
Covariance Type:	non	robust			
	oef std err		Delal	10.035	0.0761
C	oer sta err	t	P> t	[0.025	0.975]
const 0.65	557 0.423	1.551	0.123	-0.178	1.490
2010_income 0.24	433 0.016	15.337	0.000	0.212	0.275
Omnibus: 1	100.299 D			2.049	
Omnibus:	100.299 D	urbin-Wa	tson:	2.049	1
Prob(Omnibus):	0.000 Ja r	que-Bera	(JB):	2384.399	
Skew:	1.435	Prob	(JB):	0.00	
Kurtosis:	20.304	Cond	l. No.	35.7	4

Teste Jarque-Bera

Outro teste de normalidade dos resíduos:

 H_0 : a distribuição dos resíduos é normal

 $H_1:$ a distribuição dos resíduos não é normal

Prob(JB) →

é o valor-p desse teste de normalidade

Regra geral→

- (IDEAL) Prob(JB) > α
- Se **Prob(JB)** for muito baixo (menor do que < α), então existe evidência de que os resíduos **não são** distribuídos normalmente, violando nesse caso essa suposição do modelo de regressão.

Resíduos

Plot da normalidade dos resíduos - recurso descritivo.

Esse plot pode ser feito usando o atributo resid dos resultados da regressão.

stats.probplot(results.resid, dist="norm", plot=plt);

Statsmodels.OLS RESÍDUOS

HOMOCEDASTICIDADE

Análise de homocedasticidade

Verifique visualmente se a hipótese de homocedasticidade é válida.

Resp:

Para validar, descritivamente, indicativos na suposição de homocedasticidade considerando os resíduos obtidos do modelo ajustado, pode ser feito gráficos dos resíduos $\varepsilon_i = y_i - \hat{y}_i = y_i$ contra os valores preditos \hat{y}_i e contra cada variável independente x_i , com $$i=1,\dots,n.$$ Vide Montgomery e Runger (2018), Seção 11-7.1, página 351, para mais detalhes.

Interprentando os gráficos abaixo, nota-se que a variância dos resíduos está crescendo com a magnitiude de y_i e com a magnitude de y_i dando indicativo que a suposição de homocedasticidade deva estar violada. Uma solução pode ser a transformação nas variáveis dependente e/ou independentes ou usar modelos de regressão mais robustos.

20

Análise de homocedasticidade

Interprentando os gráficos abaixo, nota-se que a variância dos resíduos está crescendo com a magnitiude de y_i e com a magnitude de x_i dando indicativo que a suposição de homocedasticidade deva estar violada. Uma solução pode ser a transformação nas variáveis dependente e/ou independentes ou usar modelos de regressão mais robustos.

Conclusão

A conclusão do ajuste anterior é que as suposições de normalidade (via teste de hipóteses) e de homocedasticidade (graficamente) não estão válidas.

Logo, o modelo ajustado que relacionada como emissão de CO2 de países pode ser explicado por Renda não deve ser considerado para tomada de decisões.

Uma solução pode ser a <u>transformação nas variáveis dependente</u> <u>e/ou independentes</u> ou usar modelos de regressão mais robustos.

Considerando exemplo do GAPMinder

 $\log x$: $\log(\text{Renda (PIB) per capita})$

 $\log y$: $\log(\text{emissão de CO2})$

Atenção: para interpretação dos coeficientes, neste caso, consulte Montgomery & Runger (2018)

```
23
```

```
df['log_2010_income'] = np.log(df['2010_income'])
df['log_2010_co2'] = np.log(df['2010_co2'])

logx = df['log_2010_income'] # Definindo Log(renda) como explicativa
logy = df['log_2010_co2'] # Definindo Log(CO2) como resposta
```

```
plt.scatter(logx,logy);
plt.xlabel("log x: log 2010 income");
plt.ylabel("log y: log 2010 co2 per capita");
```


Ajuste com escala logaritmo natural nas variáveis: Renda e emissão de CO2.

Problema - GAPMinder

Modelo geral:

$$E(\log Y | \log x) = \beta_0 + \beta_1 \log x$$

Problema:

 $E(\log(\text{emissão CO2})|\log \text{Renda}) = \beta_0 + \beta_1 \log \text{Renda}$

Significado dos termos do modelo geral:


```
# Ajuste considerando variáveis na escala log
logxc = sm.add_constant(logx) # Adiciona coluna de 1s para estimar intercepto
model = sm.OLS(logy,logxc) # Define o modelo
results = model.fit() # Faz o ajuste
results.summary() # Mostra os resultados
```

Com a saída (próximo slide), avalie as suposições do modelo agora que as variáveis estão na escala log.

Verifique a significância da regressão.

Consulte <u>aqui</u> para estudar algumas transformações em variáveis.

Ajuste com uso da escala log nas variáveis

- Nesses resultados, deve-se entender se log(Renda)de um país é ou não relevante para explicar o log(CO2).
- Ainda, é necessário validar o modelo avaliando se suas suposições são válidas.
- Analise!

OLS Regression Results

Dep. Variable:	log	_2010_co2	ı	R-square	d:	0.819
Model:		OLS	Adj. I	R-square	d:	0.818
Method:	Lea	st Squares		F-statisti	c:	833.8
Date:	Thu, 3	1 Oct 2019	Prob (F	-statistic	:): 2.9	4e-70
Time:		00:43:43	Log-l	ikelihoo	d: -2	00.52
No. Observations:		186		Al	C:	405.0
Df Residuals:		184		BI	C:	411.5
Df Model:		1				
Covariance Type:		nonrobust				
	coe	f std err	t	P> t	[0.025	0.975
const	-2.0546	0.107	-19.188	0.000	-2.266	-1.843
log_2010_income	1.2135	0.042	28.876	0.000	1.131	1.296
Omnibus:	52.051	Durbin-V	Vatson:	2.134	1	
Prob(Omnibus):	0.000	Jarque-Be	ra (JB):	209.893	3	
Skew:	-1.010	Pr	ob(JB):	2.64e-46	6	
Kurtosis:	7.796	Co	nd. No.	5.83	3	

Ajuste com uso da escala log nas variáveis

Analise!

```
logx_v = np.linspace(logx.min(), logx.max(), 500)
logx_vc = sm.add_constant(logx_v)
logy_vc = results.predict(logx_vc)
plt.scatter(logx,logy);
plt.plot(logx_v, logy_vc, color="r")
plt.xlabel("log x: log 2010 income");
plt.ylabel("log y: log 2010 co2 per capita");
log y: log 2010 co2 per capita
                      log x: log 2010 income
```

Ajuste com uso da escala log nas variáveis

Análise de homocedasticidade

Analise!

Ajuste com uso da escala log nas variáveis

Análise de homocedasticidade

```
fig = plt.figure(figsize=(10, 5))
plt.subplot(121)
plt.scatter(results.predict(logxc),results.resid); #logxc contem matriz de planejamento usada no ajuste OLS
plt.axhline(y=0, color='r', linestyle='-');
plt.ylabel('Residuos')
plt.xlabel('valores preditos')

plt.subplot(122)
plt.scatter(logx,results.resid); #logx contem apenas a variável independente utilizada no ajuste linear
plt.axhline(y=0, color='r', linestyle='-');
plt.ylabel('Residuos')
plt.xlabel('variável independente')

plt.tight_layout()
plt.show()
```


Um particular problema

arquivo ipynb

Atividade com contexto de regressão múltipla

- Download do notebook pelo Github
- Fazer individual e discutir em grupo:
- Usar arquivo:

Aula27_Atividade_...ipynb