Modul 1: forelæsning 7 Komplekse tal Matematik og modeller 2018

Thomas Vils Pedersen Institut for Matematiske Fag vils@math.ku.dk

3. og 8. maj 2018 — Dias 1/18

KØBENHAVNS UNIVERSITE

Repetition

- $\mathbf{B}=\begin{pmatrix} 3 & 9 & 7 \\ 0 & 4 & 1 \\ 0 & 0 & 5 \end{pmatrix}$ har egenværdierne $\lambda_1=3,\lambda_2=4,\lambda_3=5.$
- Egenvektorer er $\mathbf{q}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \mathbf{q}_2 = \begin{pmatrix} 9 \\ 1 \\ 0 \end{pmatrix}, \mathbf{q}_3 = \begin{pmatrix} 8 \\ 1 \\ 1 \end{pmatrix}.$
- En diagonaliserende matrix er $\mathbf{Q} = \begin{pmatrix} 1 & 9 & 8 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.
- Der gælder

$$\mathbf{Q}^{-1}\mathbf{B}\mathbf{Q} = \begin{pmatrix} 1 & 9 & 8 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 3 & 9 & 7 \\ 0 & 4 & 1 \\ 0 & 0 & 5 \end{pmatrix} \begin{pmatrix} 1 & 9 & 8 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix} = \mathbf{D}.$$

• Der gælder endvidere
$$\mathbf{B}^t = \mathbf{Q}\mathbf{D}^t\mathbf{Q}^{-1} = \mathbf{Q} \begin{pmatrix} 3^t & 0 & 0 \\ 0 & 4^t & 0 \\ 0 & 0 & 5^t \end{pmatrix} \mathbf{Q}^{-1}$$
.

KØBENHAVNS UNIVERSITE

Oversigt

Momplekse tal

2 Komplekse egenværdier

Dias 2/18

KØBENHAVNS UNIVERSITE

Motivation – komplekse tal

Eksempel

Det karakteristiske polynomium for

$$\mathbf{M} = \begin{pmatrix} 1 & -4 \\ 4 & 1 \end{pmatrix}$$

er givet ved

$$\det(\mathbf{M} - \lambda \mathbf{E}) = \lambda^2 - 2\lambda + 17.$$

Det har ingen rødder, så M har ingen egenværdier

... men det kan vi ikke acceptere!

Definition af de komplekse tal

Et komplekst tal er et "tal" af formen

$$z = x + iy$$
,

hvor x og y er reelle tal og hvor i er et symbol, som opfylder $i^2 = -1$.

- Tallet x kaldes realdel og betegnes også Re(z).
- Tallet y kaldes imaginærdel og betegnes også Im(z).
- Et reelt tal kan vi betragte som x + i0.

Dias 5/18

KØBENHAVNS UNIVERSITE'

Den komplekse talplan C

ldé: betragt et komplekst tal z = x + iy som en vektor med førstekoordinat x og andenkoordinat y.

Et komplekst tal kan tegnes i et koordinatsystem, med realdel og imaginærdel på de to akser:

Addition af to komplekse tal svarer til at lægge vektorerne sammen.

Multiplikation af to komplekse tal svarer *ikke* til at tage prikproduktet af vektorerne.

KØBENHAVNS UNIVERSITET

Regning med komplekse tal

Vi lader

$$z_1 = x_1 + iy_1, \qquad z_2 = x_2 + iy_2.$$

Da er

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$$

$$z_1 z_2 = x_1 x_2 + i x_1 y_2 + i x_2 y_1 + i^2 y_1 y_2$$

$$= (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1)$$
(Gang ud som sædvanligt og sæt $i^2 = -1$.)

Eksempel

$$(2+3i) + (1-i) = (2+1) + i(3-1) = 3+2i$$

 $(2+3i)(1-i) = 2+3i-2i-3i^2 = 5+i$

Konsekvens: Regn med komplekse tal som med reelle tal, f.eks.

$$z_1 + z_2 = z_2 + z_1$$
 og $z_1 z_2 = z_2 z_1$.

Dias 6/18

KØBENHAVNS UNIVERSITET

Modulus og argument

ldé: repræsentér $z = x + iy \neq 0$ vha.

- afstanden r mellem $\binom{x}{y}$ og $\binom{0}{0}$,
- vinklen (en af dem) θ regnet fra $\binom{1}{0}$ til $\binom{x}{y}$

- Retningen θ betegnes arg z og kaldes "argumentet til z".
- Længden r betegnes |z| og kaldes "modulus" eller numerisk værdi.
- De reelle tal har argument 0 eller π .

Skift mellem x, y og r, θ

Fra r, θ til x, y

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$x + iy = r \cos \theta + ir \sin \theta$$

Fra x, y til r, θ

$$r = \sqrt{x^2 + y^2}$$

$$\tan \theta = y/x \quad (\text{for } x \neq 0)$$

Pas på når θ skal bestemmes ud fra x og y: tegn.

Dias 9/18

Kompleks konjugering

Definition

Tallet $z^* = x - iy$ kaldes det *komplekst konjugerede* til z = x + iy.

Sætning

$$|z^*| = |z|$$

$$|z^*| = |z|$$
 arg $z^* = -\arg z$

$$(z_1+z_2)^*=z_1^*+z_2^*$$
 $(z_1z_2)^*=z_1^*z_2^*$

$$(z_1z_2)^*=z_1^*z_2^*$$

$$zz^* = |z|^2$$

$$\frac{z_1}{z_2} = \frac{z_1 z_2^*}{|z_2|^2}$$

$$\frac{1}{z} = \frac{z^*}{|z|^2}$$

Geometrisk fortolkning af produkt

Sætning

$$|z_1 z_2| = |z_1||z_2|$$
 og arg $z_1 z_2 = \arg z_1 + \arg z_2$

- Gang længderne sammen.
- Læg argumenterne sammmen.

Dias 10/18

Rødder i polynomier

Et n'te grads polynomium er

$$P(z) = a_n z^n + \ldots + a_1 z + a_0,$$

hvor koefficienterne a_n, \ldots, a_0 er komplekse tal og $a_n \neq 0$.

Sætning

Hvis z er rod i et n'te grads polynomium med reelle koefficienter, så er z* også rod i polynomiet.

Mere om rødder i n'te grads polynomier

• Et vilkårligt n'te grads polynomium (endda med komplekse koefficienter)

$$P(z) = a_n z^n + \cdots + a_1 z + a_0$$

har n komplekse tal som rødder \odot (når dobbeltrødder tælles dobbelt osv.).

• For $n \ge 5$ findes der ingen generel formel til bestemmelse af rødderne 😉

Andengradsligninger

Andengradsligning med reelle koefficienter

Ligningen

$$az^2 + bz + c = 0,$$

hvor $a \neq 0$, b og c er reelle tal har rødderne

$$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \quad \text{når } b^2 - 4ac \ge 0$$

$$z = \frac{-b \pm i\sqrt{4ac - b^2}}{2a} \quad \text{når } b^2 - 4ac < 0$$

(Der er altså reelle rødder når $b^2-4ac\geq 0$ og komplekse rødder når $b^2-4ac<0$.)

Huskeregel

Rødderne z_1 og z_2 i ligningen $z^2 + bz + c = 0$ opfylder

$$z_1 + z_2 = -b,$$
 $z_1 z_2 = c.$

Dias 13/18

KØBENHAVNS UNIVERSITET

Kvadratrod (kursorisk)

Eksempel

Hvad er kvadratroden af 3 + 4i? Bestem z så $z^2 = 3 + 4i$

- $|z|^2 = |3 + 4i| = 5$ dvs $|z| = \sqrt{5}$
- $2 \arg z = \arg z^2 =$ $\arg(3 + 4i) \simeq 53.13^{\circ} \text{ dvs}$ $\arg z \simeq 26.57^{\circ}$
- $z = r \cos \theta + ir \sin \theta = \sqrt{5} \cos 26.57^{\circ} + i\sqrt{5} \sin 26.57^{\circ} = 2 + i$
- Kontrol: $(2+i)^2 = 4+4i+i^2 = 3+4i$
- Ved at vælge $\theta = 26.57^{\circ} + 180^{\circ}$ kunne vi have opnået z = -2 i

Andengradsligninger – fortsat (kursorisk)

Andengradsligning med komplekse koefficienter

Ligningen $az^2 + bz + c = 0$, hvor $a \neq 0$ har rødderne

$$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Sådan udregnes z:

- Bestem et komplekst tal w sådan at $w^2 = b^2 4ac$ (brug evt. modulus og argument).
- Løsningerne er så $z = \frac{-b \pm w}{2a}$.

Dias 14/18

KØBENHAVNS UNIVERSITE

Komplekse egenværdier og egenvektorer

Starting all over...

• Lad **A** være en $n \times n$ matrix (med komplekse tal). Hvis der om en vektor $\mathbf{x} \neq \mathbf{0}$ i \mathbb{C}^n og et komplekst tal λ gælder

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x},$$

så siges ${\bf x}$ at være en *egenvektor* for ${\bf A}$ med tilhørende *egenværdi* λ .

- λ er en egenværdi for **A** netop når $\det(\mathbf{A} \lambda \mathbf{E}) = 0$.
- R kan bruges: eigen(A) eller eigen(A)\$values.

Sætning: Egenværdier findes altid

Enhver $n \times n$ matrix har n egenværdier, talt med multiplicitet (dvs. når dobbeltrødder tælles dobbelt osv.).

Bestemmelse af egenvektorer

Når λ er en egenværdi for **A**, så findes en egenvektor **x** hørende til λ som en løsning $\mathbf{x} \neq \mathbf{0}$ til ligningen $(\mathbf{A} - \lambda \mathbf{E})\mathbf{x} = \mathbf{0}$.

- **1** Løs ligningssystemet $(\mathbf{A} \lambda \mathbf{E})\mathbf{x} = \mathbf{0}$ ved at lave elementære rækkeoperationer.
- 2 Bestem de mulige værdier for vektoren **x** (der er altid uendelig mange løsninger).
- 3 R kan bruges: eigen(A) eller eigen(A) \$vectors.

Sætning: Egenværdier og egenvektorer for reelle matricer

Lad **A** være en $n \times n$ matrix med **reelle** tal.

- Hvis λ er en egenværdi for **A**, så er λ^* det også.
- Hvis x er en egenvektor for A hørende til egenværdien λ,
 så er x* en egenvektor for A hørende til egenværdien λ*.

KØBENHAVNS UNIVERSITE

Eksempel på komplekse egenværdier og egenvektorer

Matricen

Dias 17/18

$$\mathbf{M} = \begin{pmatrix} 1 & -4 \\ 4 & 1 \end{pmatrix}$$

har følgende egenværdier og -vektorer:

- $\lambda_1 = 1 + 4i$ med tilhørende $\mathbf{q}_1 = \binom{i}{1}$
- $\lambda_2 = 1 4i$ med tilhørende $\mathbf{q}_2 = \begin{pmatrix} -i \\ 1 \end{pmatrix}$

Der gælder endvidere

$$\mathbf{Q}^{-1}\mathbf{M}\mathbf{Q} = \begin{pmatrix} i & -i \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & -4 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} i & -i \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1+4i & 0 \\ 0 & 1-4i \end{pmatrix} = \mathbf{D}$$

og dermed $\mathbf{M} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{-1}$.

- Der kan godt være komplekse egenværdier for en matrix **A** med reelle tal.
- Hvis **A** kan diagonaliseres, så gælder $\mathbf{A} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{-1}$. Her er der komplekse tal gemt i matricerne **D** og **Q**.

Dias 18/18