Topics in statistics III/IV (MATH3361/4071)

Michaelmas term, 2020-2021

Handout 1: Basic probability tools in asymptotics

Lecturer & author: Georgios Karagiannis

georgios.karagiannis@durham.ac.uk

References: [2, 1]

1 Modes of convergence and their relations

Set-up and notation:

Consider a probability triplet (Ω, \mathcal{F}, P) .

Consider random variable $X: \Omega \to \mathbb{R}^d$, where for simplicity we will denote the d-dimensional random vector as $X := X(\omega), \forall \omega \in \Omega$.

Likewise, we define a sequence of random variables $X_n: \Omega \to \mathbb{R}^d$, and for simplicity denote $X_n:=X_n(\omega)$, for $n=1,2,\ldots$, and $\forall \omega \in \Omega$.

The distribution function of r.v. X is denoted as

$$F_X(x) = P(X \le x) = P(X_1 \le x_1, ..., X_d \le x_d).$$

Hereafter, the norm $|\cdot|$ refers to the Euclidean norm; i.e. $|X| = \sqrt{\sum_{j=1}^{d} X_j^2}$, however the results can be generalized.

Definitions of modes of convergence:

Some modes of convergence are defined below.

Definition 1. X_n converges in distribution to X, symb. as $X_n \xrightarrow{D} X$, iff

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$$

for all points $x \in \mathbb{R}^d$ at which $F_X(x)$ is continuous.

• Other names: converges in law, and weak convergence

Definition 2. X_n converges in probability to X iff for every $\epsilon > 0$

$$\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0 \tag{1.1}$$

It is symbolized as $X_n \xrightarrow{P} X$.

• It means: for any $\epsilon > 0$, and for any $\delta > 0$, there exists $N_{\epsilon,\delta} > 0$, where $P(|X_n - X| < \epsilon) < \delta$

Definition 3. X_n converges in almost surely to X iff for every $\epsilon > 0$

$$P(\lim_{n \to \infty} X_n = X) = 1 \tag{1.2}$$

It is symbolized as $X_n \xrightarrow{a.s.} X$.

• Other names: converges with probability 1, and strong convergence

Definition 4. X_n converges in the r-th mean to X iff for every $\epsilon > 0$

$$\lim_{n \to \infty} \mathbf{E}|X_n - X|^r = 0$$

where $r \in \{1, 2, ...\}$. It is symbolized as $X_n \xrightarrow{r} X$.

Definition 5. X_n converges in quadratic mean to X iff

$$\lim_{n \to \infty} \mathbf{E}|X_n - X|^2 = 0 \tag{1.3}$$

It is symbolized as $X_n \xrightarrow{\mathrm{qm}} X$

Convergence in probability versus almost surely:

To better understand the difference/connection between the \xrightarrow{P} and $\xrightarrow{a.s.}$, we restate the definitions in words.

convergence in probability \xrightarrow{P} : it requires that for every $\epsilon > 0$ the probability that X_n is within ϵ of X to tend to 1 as n tends to infinity

convergence almost surely $\xrightarrow{a.s.}$: it requires that for every $\epsilon > 0$ the probability that X_k STAYS within ϵ of X for all $k \geq n$ to tend to 1 as n tends to infinity

The following Lemma shows the distinction between \xrightarrow{P} and the $\xrightarrow{a.s.}$.

Lemma 6. $X_n \xrightarrow{a.s.} X$ iff for every $\epsilon > 0$

$$P(|X_k - X| < \epsilon, \forall k \ge n) \to 1, \quad as \ n \to \infty$$

Proof. Given as Exercise 8 in the Exercise sheet.

Relations between convergence modes:

Theorem 7. Relations between/among different modes of convergence

1.
$$X_n \xrightarrow{a.s.} X \Longrightarrow X_n \xrightarrow{P} X$$

2.
$$X_n \xrightarrow{r} X$$
, for some $r > 0 \implies X_n \xrightarrow{P} X$

3.
$$X_n \xrightarrow{P} X \implies X_n \xrightarrow{D} X$$

Proof. Given as Exercise 9 in the Exercise sheet.

Example. (*) Consider $Z \sim U(0,1)$, and $X_n = 2^n 1_{[0,1/n)}(Z)$. Check if $X_n \xrightarrow{r} 0$, $X_n \xrightarrow{a.s.} 0$, or $X_n \xrightarrow{P} 0$

Solution. It is $E|X_n|^r = \frac{1}{n}2^{nr} \to \infty$, so $X_n \to 0$. It is $P(\{\lim X_n = 0\}) = P(\{Z > 0\}) = 1$, so $X_n \xrightarrow{as} 0$. It is $P(\{|X_n| \ge \epsilon\}) = P(\{X_n = 2^n\}) = P(Z \in [0, 1/n)) = 1/n \to 0$, so $X_n \xrightarrow{P} 0$.

Definition 8. Consider a constant vector $c \in \mathbb{R}^d$. We say that X is a degenerate random variable/vector identically equal to $c \in \mathbb{R}^d$, iff $X(\omega) = c$, $\forall \omega \in \Omega$ (for every element of the sampling space).

Note 9. Mostly, we will use the symbol $c \in \mathbb{R}^d$ to denote the constant point c, as well as the degenerate random vector identically equal to c.

Proposition 10. The distribution function of a degenerate random variable X equal to c is

$$F_X(x) = \begin{cases} 1 & , x \ge c \\ 0 & , else \end{cases}$$

Note 11. The Theorem 12, together with Theorem 7, implies that $X_n \xrightarrow{D} c \iff X_n \xrightarrow{P} c$, if c is constant.

Theorem 12. If $c \in \mathbb{R}^d$ is a constant, then $X_n \xrightarrow{D} c \implies X_n \xrightarrow{P} c$

Proof. Given as Exercise ?? in the Exercise sheet.

Exercise sheet (for practice)

Exercises: 8; 9; ??; 3; 4; 5

2 Taylor expansion

We revise the Taylor expansion in many dimensions. For more details see [1].

Notation 13. Derivative notation:

• If $f: \mathbb{R}^d \to \mathbb{R}^k$, then

$$\dot{f}(x) = \frac{\mathrm{d}}{\mathrm{d}x} f(x) = \nabla_x f(x)$$

is a $d \times k$ matrix whose (i, j)th element is $\frac{d}{dx_j} f_i(x)$.

• If $f: \mathbb{R}^d \to \mathbb{R}$, then

$$\ddot{f}(x) = \frac{\mathrm{d}}{\mathrm{d}x} \dot{f}(x)^T$$

is a $d \times d$ matrix whose (i, j)th element is

$$[\ddot{f}(x)]_{i,j} = \frac{\mathrm{d}^2}{\mathrm{d}x_i \mathrm{d}x_j} f(x)$$

Fact 14. If $f: \mathbb{R}^d \to \mathbb{R}^s$, $g: \mathbb{R}^s \to \mathbb{R}^k$, and h(x) = g(f(x)) then

$$\dot{h}(x) = \dot{g}(f(x))\dot{f}(x) \tag{2.1}$$

Fact 15. If $f: \mathbb{R}^d \to \mathbb{R}^k$, $g: \mathbb{R}^s \to \mathbb{R}^k$, and $h(x) = f^T(x)g(x)$ then

$$\dot{h}(x) = g(x)^T \dot{f}(x) + f(x)^T \dot{g}(x)$$

Theorem 16. [The Mean Value Theorem] If $f : \mathbb{R}^d \to \mathbb{R}^k$ and if $\dot{f}(x)$ is continuous in the ball $B_r(x_0) = \{x \in \mathbb{R}^d : |x - x_0| < r\}$, then for |t| < r,

$$f(\underbrace{x_0 + t}_x) = f(x_0) + \left(\int_0^1 \dot{f}(x_0 + ut) du\right) t$$

Proof. Let $h(u) = f(x_0 + ut)$, so that $\dot{h}(u) = \dot{f}(x_0 + ut)t$ (from (2.1)). Then,

$$\int_0^1 \dot{f}(x_0 + ut)t du = \int_0^1 h(u) du = h(1) - h(0) = f(x_0 + t) - f(x_0)$$

Theorem 17. [The Taylor's formula (2nd order)] Let $f : \mathbb{R}^d \to \mathbb{R}$ and if $\ddot{f}(x)$ is continuous in the ball $B_r(x_0) = \{x \in \mathbb{R}^d : |x - x_0| < r\}$. Then for $x = x_0 + t$ where |t| < r:

$$f(x) = f(x_0) + \dot{f}(x_0)t + t^T \left(\int_0^1 \int_0^1 u \ddot{f}(x_0 + uvt) du dv \right) t$$

Proof. [FYI:] Same trick as above by using $g(v) = t^T \left(\int_0^1 \dot{f}(x_0 + uvt) du \right) ...$

Notation 18. If $f: \mathbb{R}^d \to \mathbb{R}$, then we denote the partial derivatives

$$\partial_{\underbrace{i_1 \cdots i_k}_{\#k}}^{(k)} f(x_0) = \left. \frac{\mathrm{d}^k}{\mathrm{d}x_{i_1} \cdots \mathrm{d}x_{i_k}} f(x) \right|_{x = x_0}$$

Notation 19. If $f: \mathbb{R}^d \to \mathbb{R}$ and $t = (t_1, ..., t_d) \in \mathbb{R}^d$, we denote as $f^{(k)}(x; h)$:

$$f^{(k)}(x;h) = \underbrace{\sum_{i_1=1}^d \cdots \sum_{i_k=1}^d \partial_{i_1\cdots i_k}^{(k)} f(x) \underbrace{h_{i_1}\cdots h_{i_k}}_{\#k}}_{\#k}$$

E.g.: $\partial_{i,j}^{(2)} f(x) = \frac{d^2}{dx_1 dx_2} f(x) \Big|_{x=x_0}$ and $f^{(k)}(x;h) = \sum_{i=1}^d \sum_{j=1}^d \partial_{i,j}^{(2)} f(x) h_i h_j$.

Page 4

Created on 2020/12/13 at 17:42:09

by Georgios Karagiannis

Theorem 20. [The Taylor's formula] Let function $f : \mathbb{R}^d \to \mathbb{R}$ with continuous partial derivatives Appendix A of order n in the ball $B_r(x_0) = \{x \in \mathbb{R}^d : |x - x_0| < r\}$. The n-1 order Taylor expansion of f(x) around x_0 where $x = x_0 + h$ when |h| < r is

$$f(x) = f(x_0) + \sum_{k=1}^{n-1} \frac{1}{k!} f^{(k)}(x_0; h) + R_n(x_0)$$

where the remainder is given in Lagrange's form by

$$R_n(x_0) = \frac{1}{n!} f^{(n)}(x_0 + th; h), \text{ for some } t \in (0, 1)$$

or equivalently in the integral form by

$$R_n(x_0) = \int_0^1 \frac{(1-t)^{n-1}}{(n-1)!} f^{(n)}(x_0 + th; h) dt$$

Remark 21. Regarding Theorem 20, if $\partial_{i_1\cdots i_n}^{(n)} f(x) \leq M$ for $x \in B_r(x_0)$ and some finite M > 0 it is

$$R_n(x_0) \le \frac{M}{n!} \left\| h \right\|^n$$

and hence the remainder is of order $R_n(x_0) = O(\|h\|^n)$ or $R_n(x_0) = o(\|h\|^{n-1})$. NB: \underline{M} should not depend on h.

Exercise sheet (for practice)

Exercises: # 6, 7

3 Characteristic functions & other transformations

Characteristic functions provide an alternative way to the probability function for describing a random variable. In fact, it completely determines (see Theorem 23(8)) the behavior and properties of the probability distribution of the random variable X.

Definition 22. The characteristic function of a d dimensional random variable X is

$$\varphi_X(t) = \mathcal{E}(e^{it^T X})$$

for $t \in \mathbb{R}^d$, where $e^{it^T X} = \cos(t^T X) + i\sin(t^T X)$.

Theorem 23. Some properties of characteristic functions

- 1. $\varphi_X(t)$ exists for all $t \in \mathbb{R}^d$ and is continuous
- 2. $\varphi_X(0) = 1$ and $|\varphi_X(t)| \le 1$ for all $t \in \mathbb{R}^d$

- 3. $\varphi_{a+BX}(t) = e^{it^T a} \varphi_X(B^T t)$ if $X \in \mathbb{R}^d$ is a random variable, and if $a \in \mathbb{R}^{k \times 1}$ and $B \in \mathbb{R}^{k \times d}$ are constants
- 4. $\varphi_{X+Y}(t) = \varphi_X(t)\varphi_Y(t)$ iff X and Y are independent random variables
- 5. if $E|X| < \infty$, then $\dot{\varphi}_X(t)$ exists, it is continuous, and $\dot{\varphi}_X(0) = iE(X)^T$
- 6. if $E|X|^2 < \infty$, then $\ddot{\varphi}_X(t)$ exists, it is continuous, and $\ddot{\varphi}_X(0) = -E(X^TX)$
- 7. if X is degenerate at $c \in \mathbb{R}^d$ then $\varphi_X(t) = e^{it^T c}$
- 8. $F_Y(t) = F_X(t) \iff \varphi_Y(t) = \varphi_X(t)$, for any $t \in \mathbb{R}^d$
- 9. if $X \sim N(\mu, \Sigma)$ then $\varphi_X(t) = \exp(it^T \mu \frac{1}{2}t^T \Sigma t)$

Proof. Straightforward from the Definition 22.

Theorem 24. [Continuity theorem] Let $X, X_1, X_2, ...$ random vectors

$$X_n \xrightarrow{D} X \iff \varphi_{X_n}(t) \to \varphi_X(t), \text{ for any } t \in \mathbb{R}^d$$

Example 25. (*) Show that if $X \sim \text{Ex}(\lambda)$ then $\varphi_X(t) = \frac{\lambda}{\lambda - it}$.

Solution. It is

$$\varphi_X(t) = \int_{-\infty}^{\infty} e^{itX} \underbrace{\lambda e^{-\lambda x} 1(X > 0)}_{=f_{\text{Ex}}(x|\lambda)} dx = \lambda \int_{-\infty}^{\infty} e^{-x(\lambda - itX)} dx = \frac{\lambda}{\lambda - it}$$

Example 26. (\star)

- 1. Find $\varphi_X(t)$ if $X \sim \text{Br}(p)$.
- 2. Find $\varphi_Y(t)$ if $Y \sim \text{Bin}(n, p)$

Solution.

1. It is $\varphi_X(t) = \sum_{i=0,1} e^{itX} P(X=x) = e^{it0} (1-p) + e^{it1} p = (1-p) + p e^{it}$

2. Because Binomial r.v. results as a summation of n IID Bernoulli r.v., it is $Y = \sum_{i=1}^{n} X_i$, where $X_i \sim \text{Br}(p)$ i = 1, ..., n and IID. Then

$$\varphi_Y(t) = \varphi_{\sum X_i}(t) = \prod_{i=1}^n \varphi_{X_i}(t) = ((1-p) + pe^{it})^n$$

Other Integral transforms

Definition 27. The moment generation function of a d dimensional random variable X is

$$M_X(t) = \mathrm{E}(e^{t^T X})$$

for $t \in \mathbb{R}^d$.

Remark 28. It is $M_X(t) = \phi_X(-it)$. Hence, its properties can be easily derived. E.g., $M_{X+Y}(t) = M_X(t)M_Y(t)$ iff X, Y are independent.

Definition 29. The Cumulant generating function of a d dimensional random variable X is the natural logarithm of the moment-generating function

$$K_X(t) = \log(M_X(t)) = \log(\mathbb{E}(e^{t^T X}))$$

for $t \in \mathbb{R}^d$.

Remark 30. Properties of the Cumulant generating functions can be easily derived, e.g. $K_{X+Y}(t) = K_X(t) + K_Y(t)$ iff X and Y are independent, etc...

Note 31. Some books refer to the Cumulant generating function as the log of the Characteristic function—we do not do this here.

Exercise sheet (for practice)

Exercises: #10.

For more practice see the examples from

- https://www.statlect.com/fundamentals-of-probability/ characteristic-function
- https://www.statlect.com/fundamentals-of-probability/ joint-characteristic-function

References

- [1] Tom M Apostol. *Mathematical analysis; 2nd ed.* Addison-Wesley Series in Mathematics. Addison-Wesley, Reading, MA, 1974. URL https://cds.cern.ch/record/105425.
- [2] Robert J Serfling. Approximation theorems of mathematical statistics, volume 162. John Wiley & Sons, 2009.

Appendix

A The messy but clear form of the Taylor formula

Theorem 32. [The Taylor's formula] Let function $f : \mathbb{R}^d \to \mathbb{R}$ with continuous partial derivatives Appendix A of order n in the ball $B_r(x_0) = \{x \in \mathbb{R}^d : |x - x_0| < r\}$. The n-1 order Taylor expansion of f(x) around x_0 where $h = x - x_0$ when |h| < r is

$$f(x) = f(x_0) + \sum_{k=1}^{n-1} \left[\frac{1}{k!} \sum_{i_1=1}^d \cdots \sum_{i_k=1}^d \frac{d^k}{dz_{i_1} \cdots dz_{i_k}} f(z_{i_1}, \cdots z_{i_d}) \right|_{z=x_0} \prod_{j=1}^k (x_{i_j} - x_{0,i_j}) \right] + R_n(x_0)$$

where the remainder is given in Lagrange's form by

$$R_n(x_0) = \frac{1}{n!} \sum_{i_1=1}^d \cdots \sum_{i_n=1}^d \frac{d^n}{dz_{i_1} \cdots dz_{i_n}} f(z_{i_1}, \cdots z_{i_d}) \bigg|_{z=\mathcal{E}} \prod_{j=1}^n (x_{i_j} - x_{0,i_j}),$$

for $\xi = x_0 + th$ for $t \in (0,1)$, or the integral form by

$$R_n(x_0) = \int_0^1 \frac{(1-t)^{n-1}}{(n-1)!} \sum_{i_1=1}^d \cdots \sum_{i_n=1}^d \frac{d^n}{dz_{i_1} \cdots dz_{i_n}} f(z_{i_1}, \cdots z_{i_n}) \bigg|_{z=\varepsilon} \prod_{j=1}^n (x_{i_j} - x_{0,i_j}) dt$$