

PCT

WELTOORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁴ : C12N 15/00, A61K 39/29 C12Q 1/68, G01N 33/576		A1	(11) Internationale Veröffentlichungsnummer: WO 88/ 06184 (43) Internationales Veröffentlichungsdatum: 25. August 1988 (25.08.88)
 (21) Internationales Aktenzeichen: PCT/EP88/00123 (22) Internationales Anmeldedatum: 19. Februar 1988 (19.02.88)		 (81) Bestimmungsstaaten: AU, DK, FI, JP, KR, NO, SU, US. Veröffentlicht <i>Mit internationalem Recherchenbericht.</i>	
 (31) Prioritätsaktenzeichen: P 37 05 512.7 P 37 44 242.2			
 (32) Prioritätsdaten: 20. Februar 1987 (20.02.87) 24. Dezember 1987 (24.12.87)			
 (33) Prioritätsland: DE			
 (71)(72) Anmelder und Erfinder: SEELIG, Renate [DE/DE]; SEELIG, Hans, Peter [DE/DE]; BURCKHARDT, Je- an [CH/DE]; Kriegsstr. 99, D-7500 Karlsruhe (DE).			
 (74) Anwalt: DEUFEL, SCHÖN, HERTEL, LEWALD, OT- TO; Postfach 26 02 47, D-8000 München 26 (DE).			

(54) Title: **VIRAL ANTIGEN, PROCESS FOR ITS PRODUCTION, AND APPLICATION IN DIAGNOSIS AND
THERAPY (VACCINE)**

(54) Bezeichnung: **VIRUSANTIGEN, VERFAHREN ZU SEINER GEWINNUNG UND ANWENDUNG IN DIAG-
NOSE UND THERAPIE (IMPFSTOFF)**

(57) Abstract

A DNA of approximately 5 KB, associated with non-A,non-B hepatitis, process for the production of same according to known methods, and application of said DNA or of fragments of same in the diagnosis of non-A,non-B hepatitis, as well as in the synthesis of proteins for the generation of immunological reagents to detect non-A,non-B hepatitis or to produce vaccines. The DNA and fragments of same can be cloned and also be introduced into appropriate vectors, in order to obtain viral expression products.

(57) Zusammenfassung

Eine Non-A,Non-B-Hepatitis assoziierte DNA von etwa 5 KB, ein Verfahren zur Herstellung derselben nach an sich bekannten Methoden und die Verwendung dieser DNA oder von Fragmenten davon zur Diagnose von Non-A,Non-B-Hepatitis sowie zur Synthese von Proteinen zur Erzeugung von immunologischen Reagentien für den Nachweis von Non-A,Non-B-Hepatitis oder zur Erzeugung von Vaccinen. Die DNA und Fragmente derselben können geklont und auch in geeignete Vektoren eingesetzt werden, um Virusexpressionsprodukte zu liefern.

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	FR	Frankreich	MR	Mauritanien
AU	Australien	GA	Gabun	MW	Malawi
BB	Barbados	GB	Vereinigtes Königreich	NL	Niederlande
BE	Belgien	HU	Ungarn	NO	Norwegen
BG	Bulgarien	IT	Italien	RO	Rumänien
BJ	Benin	JP	Japan	SD	Sudan
BR	Brasilien	KP	Demokratische Volksrepublik Korea	SE	Schweden
CF	Zentrale Afrikanische Republik	KR	Republik Korea	SN	Senegal
CG	Kongo	LI	Liechtenstein	SU	Soviet Union
CH	Schweiz	LK	Sri Lanka	TD	Tschad
CM	Kamerun	LU	Luxemburg	TG	Togo
DE	Deutschland, Bundesrepublik	MC	Monaco	US	Vereinigte Staaten von Amerika
DK	Dänemark	MG	Madagaskar		
FI	Finnland	ML	Mali		

Virusantigen, Verfahren zu seiner Gewinnung und Anwendung
in Diagnose und Therapie (Impfstoff)

1. Non-A, Non-B-Hepatitis-erkrankungen sind in der Literatur ausführlich und zahlreich beschrieben. Ebenso bekannt sind aber die Schwierigkeiten der Erfassung des NANBH-Virus und Nachweis der Krankheit.

5

Es wurden nun aus dem Stuhl von Non-A, Non-B-Hepatitis-patienten Partikel isoliert und bezüglich ihres Molekulargewichts und ihrer Beschaffenheit charakterisiert sowie ein Nachweisverfahren auf das Vorhanden sein solcher

10 Partikel gefunden und der Nachweis dieser Partikel zur Diagnose des Vorliegens einer Non-A, Non-B-Hepatitis bei leberkranken Patienten angewandt.

Aus den aus dem Stuhl isolierten Partikeln wurde DNA isoliert
15 und nach herkömmlichen Methoden kloniert. Die so erhaltenen klonierten DNA-Stränge wurden zum Nachweis des Vorliegens homologer oder sehr ähnlicher DNA wiederum im Stuhl, Serum, Lebergewebe und Körperflüssigkeiten von leberkranken Patienten verwendet, bei denen auf diesem Wege eine Non-A, Non-B-Hepatitis mit hinreichender Wahrscheinlichkeit diagnostiziert werden kann.

20 Die Erfindung betrifft also zusammengefaßt die Isolierung Non-A, Non-B-Hepatitis-assoziierte Partikel, deren DNA sowie das Klonieren von DNA und die Verwendung sowohl dieser Partikel als auch der erhaltenen DNA-Klone zur Eingrenzung von Leber-
25 erkrankungen auf das Vorliegen einer Non-A, Non-B-Hepatitis. Weitere Aspekte der Erfindung liegen

30 in der Entwicklung von erweiterten Nachweisverfahren und schließlich auch Impfstoffen auf Basis der zu erhaltenen Antikörper und durch Synthese synthetischer Peptide mit der Sequenz der Partikel, die diesen Virusproteinen entspricht und die sich aus der Sequenz der klonierten DNA vorhersagen läßt.

35 Aus den Stuhlproben Non-A, Non-B-Hepatitis erkrankter Patienten wurde eine Substanz isoliert, die sich signifikant ge-

-2-

- 1 häuft im Stuhl solcher Non-A- Non-B-Hepatitis-Patienten findet, dagegen bei gesunden, sowie bei Patienten mit Leber-
5 erkrankungen anderer Genese in signifikant geringerem Aus-
maß findet. Ein Verfahren zum Nachweis dieser Substanz wur-
de entwickelt, worin Polystyrolbeads mit verdünntem Serum
10 von Non-A, Non-B-Hepatitis-Rekonvaleszenten beschichtet wer-
den. Die gewaschenen beads werden dann mit einer 10 %-igen
Stuhlsuspension eines zu untersuchenden Probanden inkubiert,
wobei evtl. vorhandene Non-A -Non-B-Hepatitis assoziierte
15 Substanz an die in dem Rekonvaleszentenserum enthaltenen,
an die Polystyrolkugeln gebundenen Antikörper gegen diese
Substanz bindet und so immobilisiert wird. Die Bindung der
Non-A, Non-B-Hepatitis assoziierten Teilchen kann nachgewie-
sen werden durch Bindung von menschlichem IgG wiederum aus
20 Rekonvaleszentenserum von Non-A- Non-B-Hepatitis-Patienten,
das mit Jod 125 radioaktiv markiert ist. Bei Vorliegen der
Non-A, Non-B-Hepatitis-assoziierten Substanz im Stuhl des
Probanden wird radioaktives Immunglobulin an diese gebunden
und das entsprechende Signal zum Nachweis verwendet.
- 20 Bei Verwendung dieses Nachweisverfahrens für die Hepatitis-
Non-A- Non-B-assoziierte Substanz in großen Kollektiven von
Patienten mit Lebererkrankungen unterschiedlicher Genese
25 zeigte es sich, daß diese Substanz hochsignifikant gehäuft
bei Patienten mit gesicherter Hepatitis Non-A, Non-B im
Stuhl nachweisbar ist (s. Tabelle 1). Bei Patienten mit an-
anderen Lebererkrankungen, bei denen eine Non-A, Non-B-Hepati-
tis eher unwahrscheinlich ist, die teilweise in ihrem kli-
nischen Bild jedoch einer akuten oder abgelaufenen Non-A,
30 Non-B-Hepatitis ähneln können, insbesondere auch bei Patien-
ten mit einer akuten unabgelaufenen Hepatitis A oder B fand
sich dagegen nur in äußerst wenigen Fällen die Non-A, Non-B-
Hepatitis-assoziierte Substanz (s. Tabellen 2 und 3). Hier-
raus ergibt sich, daß das Vorliegen dieser Substanz einen
35 deutlichen Hinweis auf die Ätiologie einer zunächst unbe-

- 3 -

- 1 kannten, entzündlichen Lebererkrankung liefern kann, und daß
der Nachweis dieser Substanz daher eine Untersuchung von ho-
hen diagnostischem Wert zum Nachweis oder Ausschluß des Vor-
liegens einer Non-A, Non-B-Hepatitis liefern kann.
- 5 Die mit der Non-A, Non-B assoziierte Substanz weist somit
eine hohe Affinität gegenüber menschlichen Immunglobulinen
und Fibronectin sowie dessen nicht kollagenbindenden Spalt-
produkten auf. Die Bindung an Fab-2-
- 10 Bruchstücke aus dem IgG gesunder und Hepatitis Non-A, Non-B-
rekonvaleszenter Personen spricht gegen eine unspezifische
Bindung der assoziierten Substanz an dem Fc-Teil der Immun-
globuline. Die hohe Affinität gegenüber Fibronectin und dessen
nicht kollagenbindenden Spaltprodukten ist eine Eigenschaft,
15 die diese Substanz mit antigenen Proteinen anderer Viren ge-
meinsam hat (Seelig und Mitarbeiter 1983).
- Behandlung mit organischen Lösungsmitteln (Chloroform, Äther)
und mit Hitze (70°C, 10 min.) zerstört die Bindungsaffinität
der Non-A, Non-B assoziierten Substanz nicht. Während die
20 Verdauung mit Chymotrypsin, Trypsin, Elastase und Neuraminida-
se keinen Einfluß auf die Bindungseigenschaften der Substanz
zeigt, führt die Verdauung mit Papain zu einem vollständigen
und schnellen Verlust der Bindungsaffinität.
- 25 Nach Zentrifugation bei 150.000 g, 2 Std.,
läßt sie sich im Sediment nachweisen und stellt sich nach
72-stündiger Laufzeit bei einer Dichte von 1,3 (1,29 - 1,32)
g/ml Cäsiumchlorid ein. Nach Auftrennung der bei 1,30 g/ml
Cäsiumchloridbandenden Fraktion über eine Gradienten-Poly-
30 acrylamidgel-Elektrophorese werden in der Silberfärbung
mehrere Bande unterschiedlichen Molekulargewichts dargestellt.
Nach Transfer auf Nitrocellulose lassen sich im Western-Blot
mit radioaktiv markierten IgG und Fab-2-Fragmenten von Non-A,
Non-B Hepatitis-Patienten und gesunden Probanden Bande dar-
stellen, die bei Extraktion gesunder Kontrollstühle nicht
35 auftreten. Insgesamt werden 4 Banden dargestellt, zwei gut

- 4 -

- 1 sichtbare Hauptbande mit einem geschätzten Molekulargewicht von ca. 64.000 und 56.000 sowie zwei schwächere Bande mit einem geschätzten Molekulargewicht von 51.000 und 43.000. Die Banden mit Fab-2-Bruchstücken sind schwächer und zeigen einen höheren Back-ground. Die Auftrennung von Rohstuhlkonzentraten ohne Cäsiumchlorid-Reinigung nach SDS-Page und Blotting zeigten in positiven Stühlen die beiden Hauptbande mit einem unge-fährnen Molekulargewicht um 60.000.
- 5 Bei weiterer Analyse der Non-A, Non-B-Hepatitis-assoziierten Partikel ließ sich DNA isolieren und mit herkömmlichen Metho-10 den in Fragmenten klonieren. Diese klonierten DNA-Fragmente aus dem Stuhl von Non-A, Non-B-Hepatitis-Patienten konnten als DNA-Sonden für die Untersuchung des Stuhls, Serums, Leber-15 gewebe und Körperflüssigkeiten sowie Blutkonserven und Plas-maderivaten anderer Patienten mit Verdacht auf das Vorliegen einer Non-A, Non-B-Hepatitis verwendet werden. Mit den klassischen Hybridisie-20 rungsverfahren läßt sich so zeigen, ob in den unbekannten Stühlen DNA vorliegt, deren Sequenz der Non-A, Non-B-Hepa-titis-assoziierten DNA der erhaltenen Klone so ähnlich ist, daß sich ein Hybridisierungssignal zeigt. Mit diesem weite-25 ren Nachweisverfahren für Hepatitis Non-A, Non-B-assoziierten DNA-Sequenzen konnten dann Proben von Probanden unter-sucht werden auf das Vorliegen von Non-A, Non-B-Hepatitis-assoziierter DNA. Die bisherigen Ergebnisse legen nahe, daß es sich bei der Non-A, Non-B-Hepatitis-assoziierten Substanz um ein Viruspartikel handelt und daß es sich bei der isolier-30 ten DNA-Sequenz um eine Sequenz einer Virus-DNA handelt, wie das Aufschlußverfahren einerseits und andererseits die Se-quenz selbst zeigen.

Die folgenden Beispiele erläutern die Erfindung.

35

Beispiel 1

Isolierung der Non-A-Non-B-Hepatitis assoziierten Substanz aus Patientenstuhl.

-5-

1

Verwendeter Puffer: Tris-HCl, pH 7,4; 0,05 N in allen Arbeitsschritten

- a) Aufarbeitung: 0,5 g Stuhl werden in 10 ml Puffer suspendiert, bei 8.000 g zentrifugiert und der Überstand gesammelt. Der Rückstand wird noch einmal mit 10 ml und anschließend mit 5 ml Puffer gewaschen. Die gesammelten Überstände werden zentrifugiert (30 min., 10.000 rpm) und durch ein bakteriendichtes Filter filtriert (Millipore 0,22 µm). Der Überstand wird mit PEG 6000 (Endkonzentration 10% bzw. 0,4 mol/l) präzipitiert. Nach mindestens 2 und höchstens 12 Stunden wird das Präzipitat abzentrifugiert und in 10 ml Puffer gelöst. Diese Lösung wird mit 10 ml Freon ausgeschüttelt, die Phasen durch Zentrifugation getrennt, die Freonphase noch einmal mit 5 ml Puffer gewaschen. Die Fällung mit PEG und NaCl (Endkonzentration 10% bzw. 0,4 mol/l) wird wiederholt, das Präzipitat in ca. 800 µl Puffer aufgenommen.

15

Die so erhaltene Lösung wird mit RNase und DNase 1 Std. bei 37°C verdaut (800 µl PEG-Präzipitat in Tris-HCl-Puffer, pH 7,4; 0,05 M; 2.800 U RNase und 1.500 U DNase, proteasenfreie Präparationen, Boehringer). Isolierungen, die nicht zur Extraktion von DNA dienen, können ohne diesen Schritt durchgeführt werden.

20

Nach Verdauung mit DNase und RNase wird das Inkubat auf einen Cäsiumchlorid-Gradienten gebracht.

25

- b) Isolierung der Non-A, Non-B assoziierten Substanz über einen Cäsiumchlorid-Gradienten.

30

Die Zentrifugenröhren werden mit 1 ml Cäsiumchlorid-Lösung mit einer Dichte von 1,4 g/ml gegeben und mit je 3 ml Cäsiumchlorid von einer Dichte von 1,3 g, 1,25 g und 1,2 g/ml überschichtet. Alle Cäsiumchlorid-Lösungen werden mit dem oben genannten Puffer hergestellt, der Gradient wird mit 800 µl Stuhlextrakt überschichtet, die Zentrifugationsdauer beträgt 65 - 72 Stunden. Temperatur + 10°C, rpm 31.000. Nach Beendigung der Laufzeit wird der Gradient im unteren Bereich (Dichte 1,2 - 1,4) in Fraktionen von ca. 200 µl gesammelt, im oberen Bereich Dichte 1,1 - 1,2 können größere Fraktionen entnommen werden. Die Dichte jeder Fraktion wird durch Messung des Brechnunasindex bestimmt. Alle Fraktionen werden ausgiebig gegen Puffer dialysiert und 50 µl jeder Fraktion in

35

-6-

1

NANB-Assay auf Non-A, Non-B assoziierende Substanz untersucht. Von den positiven Fraktionen wird die Eiweißkonzentration nach Lowry bestimmt.

5

Verifizierung und Charakterisierung der Substanz

c) Herstellung einer Gradienten-Page

10

Zwei Lösungen mit verschiedenen Acrylamidkonzentrationen werden durch einen Gradientenmischer zu einem linearen Gradienten aufgeschichtet. Die Lösung mit der höheren AA-Konzentration enthält außerdem 15 % Saccharose, um Turbulenzen zu verhindern. Ansonsten sind die Lösungen zusammengesetzt wie bei LAEMMLI (1970) beschrieben. Dies gilt auch für das Kammgel.

15

Die dialysierten und evtl. eingeengten Fraktionen des Cäsiumchlorid-Gradienten werden mit 10 µl SDS, 10 µl Glycerin und 5 µl beta-Mercaptoäthanol, 5 µl Bromophenolblau pro 100 µl Probe versetzt und 3 Min. im Wasserbad gekocht. Danach werden sie mit 5 µl 0,1%igem Pyronin versetzt und auf das Gel aufgetragen. Laufzeit 3 1/2 Stunden, Spannung 160 - 300 V, Stromstärke 40 - 25 A, Leistung 20 W.

25

Ca. 5 Min. vor Ende des Laufes wird noch einmal 5 µl Pyronin aufgetragen und der Lauf beendet, sobald Pyronin das Kammgel durchlaufen hat. Das Gel wird entweder mit Silber gefärbt (WRAY und Mitarbeiter 1981) oder ein Western-Blotting durchgeführt (TOWBIN und Mitarbeiter 1979). Das Blotting wird über Nacht bei 0,5 A, anschließend 1 Std. bei 1 A durchgeführt.

30

d) Behandlung von Western-Blots

35

Nach Beendigung des Blotting werden die verschiedenen Streifen (an den Pyroninmarkierungen kenntlich) ausgeschnitten und mitgeführte Molekulargewichtstandards mit Amido schwarz gefärbt. Probenstreifen werden 24 - 72 Stunden in 1%iger Gelatine PBS-Lösung geschüttelt. Die IgG-Fraktion eines Patienten bzw. die Fab-2-Fragmente dieser IgG-Fraktion werden mit Jod 125 (Chloramin T) markiert: 0,5 mCi auf 100 µg Protein.

-7-

1 Dabei werden etwa 70 % der Aktivität inkorporiert. Der Tracer, dessen
Volumen ca. 2 ug Protein entsprechen sollte, wird in 20 ml Gelatine/PBS
verdünnt und damit die Streifen 12 Stunden unter Schütteln inkubiert.
Danach werden die Streifen je 1 Stunde 3 x mit Gelatine-PBS, 2 x mit
5 PBS-Tween 0,5 % und 1 x mit Wasser gewaschen. Nach Trocknen der
Streifen werden diese auf einen empfindlichen Röntgenfilm aufgelegt und
bei -70°C 2 - 7 Tage exponiert.

Beispiel 2

10 **Nachweismethode für HNANB-assoziierte Substanz im Stuhl**
Polystyrol Beads (Plasticball company, Chicago) wurden mit Serum von rekonvaleszenten Patienten mit Non-A, Non-B-Hepatitis in einer Verdünnung von 1:200 in Carbonatpuffer, pH 9,2, 0,01 Mol/l, 12 Stunden bei Raumtemperatur inkubiert. Die so beschichteten beads wurden mit phosphatgepufferter physiologischer Kochsalzlösung (PBS) ausgiebig gewaschen. Die Stuhlproben wurden in Form einer 10 %-igen Stuhlsuspension (g/V) 2 Stunden bei 37°C mit den wie oben geschichteten Polystyrol Beads inkubiert, danach ausgiebig mit PBS, die 0,5 % Tween 20 enthielt, gewaschen und danach 1 Stunde mit humanem IgG aus dem Serum von Rekonvaleszenten von einer Non-A, Non-B-Hepatitis, das mit Jod 125 markiert war, bei 37°C inkubiert. Nach neuerlichem, ausführlichem Waschen mit destilliertem Wasser wurden die an die Beads gebundene Radioaktivität in einem Gamma-Counter ausgezählt. Stuhlproben, bei denen die gebundene Radioaktivität den dreifachen Wert der Negativkontrolle erreichte, wurden als positiv für das Vorliegen der Non-A, Non-B-Hepatitis-assoziierten Substanz befunden.

15 20 25 30 35

Jede der beigefügten Tabellen 1 bis 4 wurde wie oben beschrieben erstellt und nach den angegebenen Kriterien ausgewertet. Es wurde festgestellt, daß gemäß Tabelle 1 bei Patienten einer gesicherten Non-A, Non-B-Hepatitis diese Substanz in einem großen Prozentsatz der Fälle gefunden wurde, daß gemäß Tabelle 2 bei Verwendung dieses Essays für diese Non-A, Non-B-Hepatitis-assoziierte Substanz bei einem Patientenkollektiv mit einer Vielzahl von ganz unter-

-8 -

1 schiedlichen Lebererkrankungen, die aber nichts mit einer Non-A, Non-B-Hepatitis zu tun haben, die Substanz, wenn überhaupt, nur in sehr niedrigen Prozentsätzen gefunden wird.

5 Tabelle 3 zeigt, daß man während der Untersuchung von Patientenkollektiven mit Hepatitis anderer Genese, also entweder Hepatitis A oder Hepatitis B zu einem sehr niedrigen Prozentsatz die Non-A, Non-B-assoziierte Substanz findet.

10

Es ist festzustellen, daß man bei den Non-A, Non-B-Hepatitis-Fällen praktisch immer, also fast 30% positive Befunde hat, wohingegen bei den Hepatitis A, Hepatitis A-Verdacht,

15 Hepatitis B und Posthepatitis B Patienten die Zahlen erheblich niedriger liegen.

Die relative hohe positive Anzahl für die Substanz bei chronischen Hepatitis B-Patienten läßt vermuten, daß es sich um eine Doppelinfektion mit Non-A, Non-B und Hepatitis B handelt.

25

Tabelle 4 zeigt folgendes: Eine Untersuchung an Empfängern mit einer Bluttransfusion, die prinzipiell als Risikopatienten zu gelten haben, weil bei Bluttransfusionen häufig eine Non-A, Non-B-Hepatitis Infektion eintritt. Es handelt sich um eine prospektive Studie.

35 Hieraus ergibt sich sehr deutlich, daß abhängig vom Schweregrad der Folgen der Transfusion einerseits Patienten gar nichts geschehen ist, wo also diese Substanzen nur in sehr geringem Maße ausgeschieden worden ist, andererseits bei Patienten, bei denen die Krankheit erkennbar ist und bei

- 9 -

1 denen, die eine ganz manifeste Hepatitis haben, in über
70 % der Fälle diese Substanz nachweisbar ist.

5 Beispiel 3: Isolierung von DNA aus dem Stuhl und Klonierung
von DNA-Sequenzen und deren Einbau in entsprechende Vektoren.
Einbau dieser DNA in Klonierungsvektoren.

10 Aus dem Stuhl von Patienten mit Non-A, Non-B-Hepatitis wurden, wie in Beispiel 1 beschrieben, Non-A, Non-B-Hepatitis-assoziierte Partikel isoliert und, wie dort beschrieben, mit RNAs und DNAs behandelt und über einen Cäsiumchlorid-Gradienten gereinigt und ausgiebig dialysiert. Die dialysierten Fraktionen wurden auf die oben beschriebene Art auf die Anwesenheit von NANB-assozierter Substanz untersucht. Die Fraktion
15 der Dichte von 1,3 g/ml im Cäsiumchloridgradienten wurde mit 50 Mikrogramm Proteinase K, 1 % SDS und EDTA in einer Endkonzentration von 10 mM/l 6 Stunden bei 37°C verdaut. Proteine wurden durch Extraktion mit 80 %-igem Phenol (Gewicht/Volumen) und Chloroform entfernt, und daraufhin die in der wässrigen Phase gelöste DNA in Gegenwart von
20 0,3 Mol/l Natriumacetat mit einem zweieinhalf-fachen Volumen an Äthanol für 60 Stunden bei -70°C gefällt. Danach wurde zentrifugiert und das Sediment einmal mit 70 %-igem Äthanol gewaschen, getrocknet und daraufhin in TE-Puffer bestehend aus 10 mmol/l Tris, pH 8,0, und 1 mmol/l EDTA, in einem Volumenverhältnis von einem Mikroliter/5 mg aufgearbeitetem Stuhl, aufgenommen.

25 15 Mikroliter dieser DNA-Stammlösung wurden in einem Gesamtreaktionsvolumen von 50 Mikroliter mit 6 Einheiten Klenow-Polymerase (DNA-Polymerase I, großes Fragment), 1 Mikroliter einer Lösung von dATP, dTTP und dGTP, jeweils in einer Konzentration von 1 mM/l, sowie 5 Mikroliter alpha-³²P-dCTP (3.000 Ci/mmol, 10 mCi/ml) im Inkubationspuffer für Klenow-Polymerase nach den Angaben des Herstellers (Boehringer, Mannheim) 1 Stunde bei Raumtemperatur inkubiert.

-10-

1 Danach wurden 2,5 Mikroliter einer 1 mMol/l dCTP-Lösung zugegeben und die Probe eine weitere Stunde bei Zimmertemperatur inkubiert. Nach Inaktivierung des Enzyms durch Erhitzen auf 68°C für 10 Minuten wurde die Reaktionslösung auf 0°C abgekühlt. Danach wurde das Reaktionsgemisch zusammen mit 2 Einheiten T4-DNA-Ligase, 1 Mikrogramm phosphorylierter EcoR-I-Linker und 6 Mikroliter 10 mM ATP-Lösung für 16 Stunden bei 16°C inkubiert. Das Reaktionsgemisch wurde danach auf eine Endkonzentration von 150 mMol/l NaCl eingestellt und mit 240 Einheiten EcoR-I Restriktionsendonuclease (30 Einheiten/Mikroliter) 3 Stunden bei 37°C verdaut. Die Reaktion wurde durch Zugabe von 5 Mikroliter 80 %-igem Phenol und 1 Mikroliter 20 %-igem SDS gestoppt. Die radioaktiv markierte und mit Linkern versehene DNA wurde von Salz und nicht legierten Linkern über eine Sepharose 4B-CL-Säule (3 ml Säulenvolumen, 25 cm Länge) abgetrennt und mit 2,5 Volumina Äthanol 16 Stunden bei -70°C gefällt. Die präzipitierte DNA wurde 10 Min. bei 14.000 g zentrifugiert und das Sediment bei 150 Mikroliter 70 %-igem Alkohol gewaschen, getrocknet und in 10 Mikroliter TE-Puffer aufgenommen.

Beispiel 4: Einbau der isolierten DNA in lambda-Phagen und Transfektion auf Bakterien.

25 Zur Ligation mit der Vektor-DNA wurden 2 Mikrogramm DNA des Phagen-lambda 1149 mit 2 Einheiten EcoR-I (4 E/Mikroliter) in einem Gesamtreaktionsvolumen von 6 Mikroliter (Inkubationspuffer nach Angabe des Enzymherstellers (Boehringer, Mannheim) 1 Stunde bei 37°C inkubiert. Dann wurde das Enzym durch 10-minütiges Erhitzen auf 68°C inaktiviert. Diese Lösung wurde mit 3 Mikroliter markierter DNA, die wie im vorigen Beispiel beschrieben, isoliert wurde, 1 Mikroliter 5 mM ATP und 1 unit T4-DNA-Ligase bei Raumtemperatur ligiert. 4 Mikroliter dieses Reaktionsansatzes wurden in lambda-Phagenhüllen verpackt (unter Verwendung eines fertigen Verpackungsextrakts der Firma Giga-Pack, Vector-cloning systems). Mit diesen verpackten Phagen wurde der Escherichia coli Stamm

-11-

- 1 NM 514 infiziert. Zum screening auf das Vorhandensein einge-
bauter DNA wurden ca. 10^5 "plaque forming units" auf 22 x 22
cm screening plates der Firma Nunc ausplattiert und über
Nacht bei 37°C inkubiert. Phagen-DNA wurde auf Nitrozellu-
losefilter durch Abkatsch übertragen und die so erhaltenen
Abkatschfilter wurden mit 1 Mikroliter der oben be-
schriebenen radioaktiven DNA Stammlösung gemäß Maniatis et al.
(1982) hybridisiert, gewaschen und 6 Std. bei 70°C autoradiographiert.
- 10 Von 70 positiven Hybridisierungssignalen wurden 17 zugeord-
nete Phagenkolonien in einer Dichte von ca. 5 Plaques pro
 cm^2 ausplaziert. Nach plaques purification nach BENTON und
DAVIS (1978) wurden von den schließlich erhaltenen 16
15 positiven Plaques Lysate hergestellt. Mehrere dieser Phagen
enthielten DNA-Inserte in einer Länge zwischen 0,3 und
etwa 1,5 KB, die mit einer Probe der ursprünglichen DNA-
Stammlösung hybridisierten.
- 20 Beispiel 5: Charakterisierung eines DNA-Fragmentes von 0,45 KB
und Subklonierung dieses Fragmentes in einem Plasmid PUC 19
in Escherichia coli.
- 25 Das DNA-Fragment wurde durch Verdauung mit entsprechenden
Restriktionsendonucleasen (EcoR-I) unter den oben bereits
beschriebenen Bedingungen aus dem der Phagen DNA entfernt,
das Fragment dann auf Agarose Gel von der lambda-Phagen DNA
getrennt und die dem Insert entsprechende DNA-Bande aus dem
Gel ausgeschnitten und eluiert. Die solchermaßen isolierte Insert-DNA wird
30 dann genau wie oben beschrieben, in Vektor-DNA PUC 19 hineinligiert
und dann auf Escherichia coli Stamm DH 1 transfiziert. Nach
Selektion von Bakterienstämmen, die dieses Plasmid mit dem
eingebauten Hepatitis Non-A, Non-B-DNA-Insert aufgenommen
haben und vermehren wurde die Züchtung dann durchgeführt und
35 wie bei T. Maniatis et al. 1982, in "Molecular Cloning, a

-12-

1 "laboratory manual", beschrieben, aufgearbeitet.

Das gleiche Insert wurde radioaktiv markiert
und mit Southern-Analyse auf Hybridisierung
5 mit dem DNS-Ausgangsmaterial, DNS-Extraktionen aus Stühlen
von Kontrollpersonen, Hepatitis B-Virus-DNS und Escherichia
coli Plasmid PBR 322 geprüft.

Beispiel 6: Nachweis von Non-A, Non-B-assozierter DNA im Serum
10

2 - 5 ml Serum werden bei 150.000 g 2 Stunden zentrifugiert.
Das Sediment wird in 200 ul Proteinase K-Lösung (0,5 mg/ml +
10 mmol EDTA) bei 37°C 1 Stunde verdaut. Danach werden zu
dieser Lösung 165 µl einer heiß gesättigten Natriumjod Lösung
15 (2,5 g Natriumjodid/ml H₂O, 75°C) gegeben (Endkonzentration
12,5 M). Diese Lösung wird 10 Minuten auf 90°C erhitzt und
unmittelbar durch Nitrozellulosefilter mittels Vakuum
20 filtriert (Dot-Blot-Apparatur, Schleicher +
Schüll). Nach der Filtration wird die Nitrozellulosefolie
3 x mit 70%igem Äthanol gewaschen und darauf 10 Min. bei
Raumtemperatur in 100 ml Essigsäureanhydrid (100 ml 0,1 M
Triäthanolamin + 250 ul Essigsäureanhydrid) inkubiert. Nach
der Inkubation wird die Folie im Vakuum bei 80°C 1 - 2 Stunden
gebacken. Die trockene Folie wird in Vorhybridisierungslösung
25 gebracht und 3 Stunden bei 65°C inkubiert (6 x SSC, 1 x
Denhardt, 0,5 % SDS, 20 µg/ml Hitze denaturierte Herings-
sperma-DNS entsprechend den Angaben in: Maniatis, Molecular
Cloning, 1982). Mittels Nick-Translation (siehe Maniatis,
Molecular Cloning, 1982) mit ³²P-markierte Probe
30 über Nacht unter Prähybri-
disierungsbedingungen inkubiert. Danach wird die Nitrozellu-
losefolie 3 x gewaschen (1) 6 x SSC, 1 x Denhardt, 0,5 %
SDS, 20 µg/ml Heringssperma-DNA, 2). 1 x SSC, 0,5 % SDS,
1 x Denhardt, 3). 0,1 x SSC + 0,05 % SDS). Nach Trocknen
35 der Folie wird diese auf einen Röntgenfilm (Kodak X-Omat)
aufgelegt (Autoradiographiezeit 6 Stunden bis 2 Tage bei
-70°C).

-13-

1 Bei Seren mit hohem Gehalt an HNANB-Viren kann die Ankonzen-
5 trierung von 2-5 ml Serum durch Zentrifugation entfallen und die Seren nach
 Proteinase-K-Verdauung entsprechend der Methode (Seelig et al.,
 Klinikarzt 2/1985, Seite 86 ff) direkt auf Nitrozellulose
 aufgetragen werden. (s. Bsp. 7)

Beispiel 7: HNANB-DNA-Nachweis im Serum

10 200 ul Serum werden mit 75 ul Proteinase K-Lösung (Boehringer) (4 mg/ml) und
 25 ul 0,5 M EDTA bei 37°C 1 Stunde inkubiert. Das Inkubat wird mit 100 ul 1 N
 NaOH 10 Minuten bei Raumtemperatur inkubiert und mit 250 ul 2 M NH₄OAc
 neutralisiert. 500 ul des Ansatzes (entsprechend 181 ul Serum) werden auf
 Nitrozellulose aufgetragen (Dott-Blott-Apparatur Schleicher + Schüll). Nach
15 nochmaliger Neutralisierung mit 250 ul 2 M NaH₄OAc werden die Filter in
 Vakuum bei 80°C 45 Minuten getrocknet. Die Filter werden in 6 x SSC*, 0,5 %
 SDS**, 1 x Denhardt-Lösung*** und 20 ul/ml Hitze denaturierter (5 Minuten,
 100°C) Heringsperma-DNA bei 65°C 3 Stunden prähybridisiert. Zur Hybridisierung
20 die über Nacht unter Prähybridisierungsbedingungen erfolgt, wird das
 durch Nick-Translation mit ³²P-markierten Inserts der Phagenclone
 verwendet (spezifische Aktivität ca. 1 - 2 x 10⁹ cpm/ug DNA). Die Filter
 werden danach jeweils einmal 20 Minuten bei 65°C mit 6 x SSC, 1 x Denhardt-
 Lösung, 0,5 % SDS, 20 ug/ml denaturierter Heringssperma-DNA, danach mit 1
 x SSC, 0,5 % SDS 1 x Denhardt-Lösung und 0,1 x SSC, 0,05 % SDS gewaschen
25 und bei 80°C getrocknet. Die Autoradiographie erfolgt mittels Röntgenfilm
 und Verstärkerfolie (intensiv fying screens Kodak) mit einer Autoradiographie-
 zeit von 6 - 48 Stunden bei -70°C.

* 20 x SSC (Standard Saline Citrat) entspricht 3 M NaCl, 1,5 M Natrium-
citrat.

30 ** SDS Natrium dodecylsulfat

*** 100 x Denhardt-Lösung entspricht 2 % Ficoll; 2 % Polyvinylpyrrolidon, 2 %
Bovin Serumalbumin.

-14-

1 Beispiel 8

5 Dieses Beispiel zeigt eine einfachere Variante bezüglich der Probenvorbereitung zum Dot Blot:

10 1 ml Serum wird mit 350, μ l Proteinase K-Lösung (3 mg/ml Proteinase K, 10 mM TRIS pH 7,5, 0,5 mM EDTA, 0,5 % SDS) und 125, μ l 0,5 M EDTA 30 Min. bei 37°C inkubiert. Darauf wird die Lösung mit 8 ml 2 M TCA (pH 7,0), 3,2 ml 2 MNH₄A_C, 20, μ l t RNA (10 mg/ml) und 5,3 ml H₂O auf 16 ml verdünnt und die DNA mit 10 ml Isopropanol bei Raumtemperatur für 30 Min. gefällt. Die DNA wird abzentrifugiert (15 Min. bei 8000rpm), das Pellet mit 2 ml 70 % Ethanol gewaschen und in 600, μ l 10 mM TRIS pH 8,4 und 1 mM EDTA aufgenommen, einmal mit Phenol, einmal mit Chloroform extrahiert und nochmals gefällt. Aliquots der gefüllten DNA können für die Dot Blots oder für Restriktionsanalysen eingesetzt werden.

20 Die Darstellung von partikelassozierter DNA aus Stuhlproben erfolgt in gleicher Weise. Stuhlsuspensionen werden allerdings vorher steril filtriert und mit PEG gefällt.

Beispiel 9

25 Wenn nur relativ wenig der N-A, N-B-assoziierten Substanz vorliegt, hat es sich als zweckmäßig erwiesen, die DNA durch Amplifizieren nachzuweisen:

30 Der Nachweis von Non-A, Non-B-DNA im Serum kann zweckmäßig durch Hybridisierung mit radioaktiv markierter klonierter Non-A, Non-B-DNA-Probe nach vorangehender spezifischer enzymatischer DNA-Amplifizierung nach bekannter Methode (SAIKI et al., Science 230, 1350, 1985) erfolgen.

-15-

1 25, μ l Serum + 50, μ l NaJ (gesättigte Lösung) mischen und
2 Min. bei 37°C inkubieren, danach 10 Minuten bei 0°C
inkubieren. Das Inkubat wird auf eine Polycarbonatmembran
(z.B. Uni Pore von Firma BioRadLab) gegen TE-Puffer (10 mmol
5 Tris; 1mmol EDTA) 20 Min. dialysiert. 5, μ l des Dialysats
werden für die spezifische enzymatische DNA-Amplifikation
entnommen. Die Amplifikation erfolgt nach bekannter Methode
(SAIKI et al. 1985) mit Hilfe von je 0,5, μ g Oligoprimer
(Paar A und B bzw. C und D). Die Oligoprimer-Paare werden
10 nach bekannten Sequenzierungsdaten mittels eines
DNA-Synthesizers (Applied BioSystem 381) hergestellt. Nach
Amplifizierung wird das Reaktionsgemisch auf einem 2%igen
Agarosgel elektrophoretisch aufgetrennt, danach auf eine
Nylonmembran (Genofit) transferiert und mit einer nach
15 FEINBERG et al. 1983 (Annal. Biochem. 132, 6-13) mit 32 P
markierten klonierten HNANB-DNA-Probe hybridisiert. Nach
Autoradiographie werden positive Resultate anhand
mitgeführter Standards und Längenmarker identifiziert.

20 Beispiel 10

Nachweis von DNA in geprüft infektiösem Plasmaderivat:
Renger F. et al. veröffentlichten in "Deutsches
Gesundheitswesen" Vol. 36, S. 560-563 (1981) eine Studie
25 über eine kontrollierte Hepatitis Non-A, Non-B-Epidemie,
ausgelöst durch die Applikation infektiöser Antirhesusfaktor
D Immunglobulinpräparate. Die Herkunft dieser kontaminierten
Präparate konnte vollkommen aufgeklärt werden. Nach
Applikation dieses anti-D-Präparates erkrankten 79 % von 116
30 immunisierten schwangeren Frauen. Dieses anti-D-Präparat

-16-

1 (Charge I Ampulle A und C) sowie eine Charge mit niedriger Infektiosität (Charge II Ampulle B und D), die durch das selbe Säulensystem gereinigt wurde, standen zusammen mit Kontrollpräparationen (Gammavenin, Endobolin, Rhesonativ)
5 zur Verfügung. Diese Präparationen wurden zusammen mit Pufferkontrollen, Hepatitis B-Virus-haltigem Serum, Positivkontrollen mit clonierten Virus-DNA-Fragmenten eingesetzt. Der Nachweis erfolgte mittels DNA-Amplifikation durch die Primer 237-238 (entstammen dem 0,4 Kb
10 ECO RI-Fragment).

Ergebnisse:
In mehrfachen, unter verschiedenen Bedingungen durchgeföhrten Experimenten, fand sich nach Amplifikation ein starkes Signal in der Charge I (Ampulle A und C), ein schwaches Signal bei guter Amplifikationsausbeute in der Charge II (Ampulle B und D). Die drei Kontroll-Lyophilisate Gammavenin, Endobolin und Rhesonativ ergaben kein Signal.
Der Zusatz von Hepatitis B-Virus-Genomspezifischen Primern zu den verschiedenen Gammaglobulin-Präparationen ergab ebenfalls keinen Hinweis auf die evtl. Kontaminierung mit Hepatitis B-Genom. Die mitgeführten Kontrollen dienten der Beurteilung der Effizienz der Amplifikation sowohl mit HBV-spezifischen Primern als auch mit Non-A, Non-B-spezifischen Primern. Der Nachweis der Identität der in der infektiösen Charge befindlichen DNA mit der DNA aus den Feces eines Patienten mit Hepatitis Non-A, Non-B sprechen für die Identifizierung einer in Hepatitis Non-A, Non-B-implizierten DNA.

30 Die Untersuchung von weiteren 57 Stuhlproben von Patienten mit sporadischer und posttransfusioneller HNANB mittels Radioimmunoassay wie in den vorhergehenden Beispielen beschrieben und im Dot-Blot-Verfahren, ergab eine signifikante Korrelation der beiden Untersuchungsverfahren hinsichtlich nachweisbarer HNANB-assoziierten Substanz (RIA) und nachweisbarer DNA (Dot-Blot, siehe Beispiel 7).

-17-

- 1 Die beigefügten Abbildungen erläutern die Erfindung:
Fig. 1 ist die Sequenz des Genoms
Fig. 2 ist eine Übersicht über die Schnittstellen mit EcoRI sowie die offenen Leserahmen und Leseraster
- 5 Fig. 3 und
Fig. 4 zeigen den Plus- und Minusstrang einer ca. 0,3 Kb Sequenz, also einer Teilsequenz des Genoms
Fig. 5 zeigt den offenen Leserahmen, und zwar die Leseraster 1A, 2A und 3A, und
- 10 Fig. 6 zeigt den offenen Leserahmen für die Leseraster 1B, 2B und 3B.

Die Sequenzierung der in den Figuren beigefügten Sequenzen erfolgte nach der Sanger-Methode nach Umklonieren von PUC 8
15 in M 13 bzw. Bluescript Vektor.

Die Charakterisierung dieser in Fig. 1 gezeigten ursprünglich vorliegenden aus Stuhlisolaten isolierten DNA zeigt, daß es sich um eine partiell doppelsträngige
20 zirkuläre DNA handelt.

Die DNA zeigt Verwandtschaft mit HBV-DNA. Wenn ein kloniertes 0,45 Kb Fragment oder gereinigtes Stuhlmaterial mit ³²P markiert und in einer Southern-Analyse an HBV-DNA
25 hybridisiert wurde, ergaben beide Proben ein Signal, allerdings etwa 1000-fach geringer als mit sich selbst. Plasmid pBR 322 und Lambda Phage ergaben kein Signal. In Vorversuchen konnte die gereingite Stuhlprobe, ohne
denaturiert zu werden, sehr gut mit dem kleinen Fragment der
30 E.coli Polymerase markiert werden.

Mit Klenow Polymerase behandelte Stuhlprobe migrierte in einem Agarosegel deutlich langsamer als die unbehandelte Probe. Dies spricht dafür, daß die untersuchte DNA, ebenso
35 wie HBV-DNA, partiell doppelsträngig ist. Die Ergebnisse und Behandlung mit Restriktionsenzymen und Primerextension beweisen eine circuläre Struktur der DNA.

-18-

- 1 Die mehrfach durchgeföhrten Sequenzanalysen beider DNA
Strände ergaben 4998 Basenpaare. Die Sequenz ist vom 5'- zum
3'-Ende dargestellt, die Nummerierung mit 1 beginnt im
ersten Nucleotid des 2,5 Kb EcoRI-Fragments in dem
5 DNA-Strang, der die großen offenen Leserahmen enthält (siehe
Abb. 2). Ein in der Darstellung nicht gezeigtes DNA-Fragment
von ca. 10 bis 20 Basenpaaren wurde experimentell
nachgewiesen und grenzt an die 2,5 und 1,5 Kb
EcoRI-Fragmente und bedingt also den Ringschluß der linear
10 abgebildeten DNA (vgl. Abb. 2). Der Nachweis dieses Fragments
wurde durch ein Amplifikationsexperiment erbracht, wobei
gereinigte Virus-DNA mit Klenow Polymerase und den beiden
synthetischen Primern 13 und 17 inkubiert und die
DNA-Sequenz zwischen den Primern mehrfach amplifiziert und
15 nach Elektrophorese durch Southern-Analyse nachgewiesen
wurde. Da die beiden Primer an den beiden Enden der
sequenzierten DNA liegen, kann eine Amplifizierung eines
Fragmentes nur erfolgen, falls die DNA zirculär vorliegt.
Das Virus-Genom besitzt damit eine Gesamtlänge von 5.010 bis
20 maximal 5.050 Basenpaare. Dieses Resultat wird zusätzlich
durch unabhängige Southern-Analyse des Genoms bestätigt. Die
Restriktionskarte des Genoms liegt vor. Die Reihenfolge z.B.
der einzelnen EcoRI-Fragmente ist: 1,5 / 0,45 / 0,3 / 0,15
und 2,5 Kb.
25
Bezüglich besonderer Merkmale der Sequenz ist auszuföhren,
daß eine lange palindromische Sequenz (Hairpin) zwischen den
Basenpaaren 2.097 und 2.149 am Ende eines offenen
Leserahmens liegt (Pos. 4, Abb. 2).
30
An der Position 424 und 3.303 befindet sich je eine
"CTG"-Box. Bei der CTG-Box von 3.303 befinden sich auch 2
Repeats, die Sequenzhomologie mit den direkten Repeats der
Hepadnaviridae aufweisen.
35

-19-

- 1 Die offenen Leserahmen finden sich hauptsächlich nur auf
einem Strang. Der andere Strang ist wie bei Hepatitis
B-Virus-DNA bis auf kleinere Peptide geschlossen. Während
der offene DNA-Strang ohne weitere Modifizierung für
5 Proteine bis zu Molekulargewichten über 40.000 codieren
kann, sind im Komplementärstrang weite Bereiche aller drei
Leseraster geschlossen bis auf 5 Peptide von einem kleineren
Molekulargewicht von ca. 6.000 (siehe Abb. 2 und Abb. 5 und
6).

10

Alle überlappenden Clone ergaben für die gleiche Sequenz
identische Resultate mit einer Ausnahme, wo an der Pos.
2.381 in einem Fall G, in einem anderen Fall A gefunden
wurde. Ein Sequenzierfehler ist auszuschließen.

15

Das gibt einen Hinweis darauf, was durch weitere Befunde
bestätigt wird, daß Abweichungen von einigen Prozent,
insbesondere 1 bis 2 %, in der Regel keinen Einfluß auf die
Funktion der Sequenz haben, so daß funktionelle Äquivalente
20 Abweichungen bis 5 %, insbesondere bis 2 % von der
Grundstruktur haben können. Das gleiche gilt auch für die
von solchen DNAs kodierten Proteinen.

Zusammenfassend lässt sich somit folgendes sagen:
25 Die Non-A, Non-B-assoziierte Substanz ist gekennzeichnet
durch die signifikante Bindung an Immunglobuline und die
Bindung an Fab2-Bruchstücke gereinigten IgGs, durch Bindung
an nicht kollagenbindende Fibronectinspaltprodukte sowie
durch die Infektiosität gegenüber menschlichen
30 Zellkulturlinien, die morphologisch darstellbar sind durch
virustypische Veränderungen derselben und molekulargenetisch
durch den Nachweis einer spezifisch hybridisierenden,
gelektrophoretisch bei einer scheinbaren Größe von 3,2 KB
wandernden DNA (ungeschnitten und unter nativen
35 Bedingungen), innerhalb dieser Zellkulturen.

-20-

- 1 Die in den infizierten Zellen sowie im Serum von Non-A,
Non-B-Hepatitis-Patienten nachweisbare DNA hybridisiert mit
der aus Non-A, Non-B-Substanz isolierten, ca. 5 KB großen
DNA bzw. der aus diesem Material hergestellten klonierten
5 DNA.

Die gesamte Sequenz von ca. 5.000 Basenpaaren gemäß Fig. 1
und eine Teilsequenz von ca. 300 Basenpaaren gemäß Fig. 3
und 4 der klonierten DNA wurden bestimmt und mit bekannten
10 menschlichen DNA-Sequenzen, Phagen-DNA-Sequenzen,
Plasmid-DNA-Sequenzen und bekannten publizierten
Virus-DNA-Sequenzen verglichen. Sie entsprechen nach diesen
Daten keiner bisher beschriebenen Sequenz. Nach dem offenen
15 Leserahmen der Sequenz kann man Rückschlüsse auf die
kodierten und exprimierten virusspezifischen Proteine
ziehen. Damit kann man die hydrophilen und hydrophoben
Regionen innerhalb der Peptide identifizieren und somit ist
die Herstellung synthetischer Peptide aus den möglichen
20 antigenen Epitopen in den hydrophilen Regionen möglich.

Die gefundene DNA, insbesondere die auf dieser DNA sich
befindlichen Gene können zur Insertion in entsprechende
Expressionsvektoren, wie Zellen und Bakterien (z.B. E.coli
und Hefen, wie Syccharomyces cereviciae sowie Zellkulturen),
25 und damit zur Herstellung von Virusantigenen benutzt werden.
Damit ist die Diagnostik und die Herstellung von
Immunreagentien und Vaccinen möglich. Bei der Diagnostik
sind insbesondere die Untersuchung auf Infektiosität
(Blutkonservenuntersuchung) und die Diagnose einer akuten,
30 chronischen oder zeitlich zurückliegenden Infektion zu
nennen. In Zellkulturen hergestellte Antigene sowie die
entsprechenden, durch diese Virus-DNA in vivo und in vitro
synthetisierten Proteine können zur Erstellung
immunologischer Diagnostika benutzt werden. Die DNA-Sequenz
35

-21-

- 1 lässt sich zur Identifizierung potentieller Virusproteine und
deren synthetischer Herstellung, also die Herstellung
synthetischer antigener Peptide, verwenden, ebenso wie sich
die DNA bzw. DNA-Teilsequenzen zur Herstellung synthetischer
5 DNA oder RNA bzw. DNA- oder RNA-Fragmente und für den
Einsatz derselben als Sonden oder Primer für die Diagnostik
einsetzen lassen. Schließlich kann man die DNA bzw. die
erstellte DNA-Sequenz zur Herstellung synthetischer Viren
(vollkommene DNA-Synthese) und zur Insertion von
10 synthetischer DNA oder DNA-Fragmente in entsprechende
Vektoren verwenden, um Virusexpressionsprodukte zu erhalten.

15

20

25

30

35

22

Patentansprüche

1. NANB-Hepatitis assoziierte DNA, enthaltend vor allem die DNA nach Figur 1 sowie funktionelle Äquivalente und Teilsequenzen davon.
2. NANB-Hepatitis assoziierte DNA nach Anspruch 1, dadurch gekennzeichnet, daß sie höchstens 5 %, insbesondere höchstens 2 % Abweichung von der Struktur und/oder der Kettenlänge der DNA nach Fig. 1 zeigt.

23

- 1 3. NANB-Hepatitis assoziierte DNA nach Anspruch 1 oder
 2, dadurch gekennzeichnet, daß sie partiell doppel-
 strängig zirkulär und aus einem NANB-Hepatitis
 assoziierten Partikel bzw. aus Virus isoliert ist.
- 5 4. DNA-Teilsequenz nach Anspruch 1 -3, dadurch
 gekennzeichnet, daß sie Fig. 3 bzw. 4 mit maximal
 5 %, vorzugsweise maximal 2 %, Abweichung entspricht.
- 10 5. Proteine, dadurch gekennzeichnet, daß sie durch eine
 DNA nach Anspruch 1 bis 4 kodiert sind oder derart
 kodierten Proteinen entsprechen.
- 15 6. Proteine nach Anspruch 5, dadurch gekennzeichnet, daß
 sie den Sequenzen der offenen Leserahmen gemäß
 Fig. 5 und 6 entsprechen.
- 20 7. Verfahren zur Herstellung der NANB-assoziierten DNAs
 nach Anspruch 1 -4 (sowie der Proteine nach Anspruch
 5 und 6) aus Stuhl, Gewebe, Körperflüssigkeiten
 oder Viruskulturen, dadurch gekennzeichnet, daß
 das Ausgangsmaterial, ggfs. nach vorheriger
 Sterilfiltration und Fällung mit PEG bei Stuhl-
 suspensionen, mit DNase und ggfs. RNase zur Verdauung
 inkubiert wird, dann ein Dichtegradient, insbesondere
 CsCl, $d = 1,3$, angelegt wird, worauf Dialyse,
 Verdauung mit Proteinase K, Phenolextraktion, Äthanolfällung
 und ggfs. Extraktion und erneute Fällung
 und Isolierung sowie ggfs. Klonen und ggfs.
 exprimieren in entsprechenden Vektoren erfolgen.
- 25 8. Verwendung der DNAs nach Anspruch 1 bis 4 als
 DNA-Sonden zur Diagnose, insbesondere nach klassischen
 Hybridisierungsverfahren, oder zur Expression in
 geeigneten Vektoren.
- 30
- 35

24.

1

9. Verwendung der DNAs nach Anspruch 1 bis 4 zur Synthese von Proteinen zur Erzeugung immunologischer Reagentien für den Nachweis von NANB-Hepatitis und zur Erzeugung von Impfstoffen.

5

10. Verwendung der DNAs nach Anspruch 1 bis 4 oder der auf diesen DNAs befindlichen Gene bzw. der entsprechenden DNA-Sequenzen zur Herstellung synthetischer Viren und zur Insertion der natürlichen oder synthetischen DNAs oder DNA-Fragmente in entsprechende Vektoren zur Bildung von Virusexpressionsprodukten und zur Herstellung von Virusantigenen.

15

20

25

30

35

113

1 FILE: TONGA.DNA SEQUENCE: 4998BP; 996 A; 1130C; 1087 G; 1

*** SEQUENCE LIST *** (DOUBLE)

5	10	20	30	40	50	60
	5' GAATTCTGCC	TCTTCCTGTTG	ATTCTGATGT	TGCCTCCGGT	GCTTCTGGTC	TTCCTGGCGG
	3' CTTAAGACGG	AGAAGACAAC	TAAGACTACA	ACGGAGGCCA	CGAAGACCAG	AAGAACCGCC
	70	80	90	100	110	120
	TCTTTCCAG	AATTTAGGCA	CGTTTCTTT	CTCTGTTCT	CTCCCTTGT	TGGGCGCTGT
	AGAAAAGGT	TTAAATCCGT	GCAAAGAAAA	GAGACAAAGA	GAGGAAACGA	AACCGCGACA
	130	140	150	160	170	180
	TGTTCTTCGA	ATGCTTATTA	GAAAGGGGT	TGACGGATGA	CTTTCTTGA	TTTCITCAA
	ACAAGAAGCT	TACGAATAAT	CTTTCCGCCA	ACTGCCTACT	GAAAAGAACT	AAAGAAGTTT
	190	200	210	220	230	240
	TCAGTTTTA	ACCTTTCTGG	TTCCTGGTGGC	GCTCTCGTCA	TTGCGGTGT	TGTTTTCTT
	AGTCAAAAAT	TGGAAAAGCC	AAGACCACCG	CGAGAGCAGT	AAOGGCAACA	ACAAAAAGAA
	250	260	270	280	290	300
	GTCGGCCCTCG	GTATTTATAA	GTTCGTAAG	GATTGGTTGC	CATGGTAGAC	TTTGTTCGG
	CAGCCGGAGC	CATAAATATT	CAAGCATTTC	CTAACCAACG	GTACCATCTG	AAACAAAGGC
	310	320	330	340	350	360
	CCTCTGGCGT	TTTACCTCG	TTTATGCCA	ATGIGCTTC	TATTCCTTT	TTTGGCTTG
	GAGAACCGCA	AAAATGGAGC	AAATAGCGGT	TACACGAAAG	ATAAAGGAAA	AAACCGAAC
	370	380	390	400	410	420
	GTACCTTTGG	CAACITTATT	TTGGTTTGTG	TTTGCTTTC	GCTTGTGGC	TTTGTCTCT
	CATGAAAACC	GTGAAATAA	AACCAAACAG	AAAACGAAAG	CGAACAAACG	AAACAAGAGA
	430	440	450	460	470	480
	GTGGCCCTTG	GGATGGAGGT	GATAAATAGT	GGAAATCCCT	ATTATTATCA	ATACITGGGT
	CACCGGAAAC	CCTACCTCCA	CTATTTATCA	CTTTAGGGA	TAATAATAGT	TATGAACCCA
	490	500	510	520	530	540
	TGATGCTGAC	GGCGTTACCG	TCTATACAGT	GCAGTATAAA	GATGGTAGCA	CTTGCATAT
	ACTACGACTG	CCGCAATGGC	AGATATGTCA	CGTCATATT	CTACCATCGT	GAACGCTATA
	550	560	570	580	590	600
	GACCGTCCAG	CAGTATGATT	ATCTCAAGGC	ATCCGCGCAG	GCTGTCGCG	ATATGGACTC
	CTGGCAGGTC	GTCATACTAA	TAGAGTTCCG	TAGGCGCGTC	CGACAGCGGC	TATACCTGAG
	610	620	630	640	650	660
	TAAAGCCGCT	GCTGATTCTC	CTTCGGAAAGC	TGCTCCTGCT	CCCGAGGAAC	CTGCACAGAA
	ATITCGCGA	CGACTAAGAG	GAAGCCTCG	ACGAGGACGA	GGGCTCCTTG	GACGTGCTT
	670	680	690	700	710	720
	TATTATTGAA	TCTCCTGACC	TCCCGAAGG	TTATGTGCGG	CAGGAAGAAG	AATTACCTTT
	ATAATAACTT	AGAGGACTGG	AGGCCTTCC	AATACACGGC	GTCCCTCTC	TTAATGGAAA
	730	740	750	760	770	780
	TGAGGGGAGT	TTAACCGCTT	ATGATGACCG	CGCAGCAGAT	ACTCCGGCTT	TGTATGCTAA
	ACTCCCCCTCA	AATTGGCGAA	TACTACTGGC	GCGTCGTCTA	TGAGGCCGAA	ACATACGATT
	790	800	810	820	830	840
	TCTCCCTAAC	GTCTCTAAC	GTTCACTAC	TATTATGGAT	TGGTTCGGAG	ATACGTTTT
	AGAGGGATTG	CAGAGATTAT	CAAAGTGTATG	ATAATACCTA	ACCAAGCCTC	TATGAAAAAA
	850	860	870	880	890	900
	TATCGAACGT	ACTGAGACGG	TGCCAAGTC	CGGCTATACG	TCTGAAAGGT	ATTCCCTATAA
	ATAGCTTGCA	TGACTCTGCC	ACGTGTTCA	GCCGATATGC	AGACTTTCCA	TAAGGATATT
	910	920	930	940	950	960
	CAGCTCGACT	CAACTTATTTC	AGCTTCTTA	TGGGGAGGAT	TCCACTACTA	CGTCTCAGGT
	GTGGAGCTGA	GTGAAATAAG	TCGAAGGAAT	ACCCCTCCTA	AGGTGATGAT	GCAGAGTCCA

213

1	970	980	990	1000	1010	1020
	TCTCAATCCG	CAAGCTTGCG	TTTCTGCITT	GCTTGTGTC	CTTGCCTTCG	TTACTACTGT
	AGAGTTAGGC	GTTCGAACGC	AAAGACGAAA	CGAACAAACAG	GAACAGAAGC	AATGATGACA
	1030	1040	1050	1060	1070	1080
	TACTTGGATT	AAAAACGCGA	TTTGGGGGOG	CATGAGTTAA	TGGAAATTCT	ACCTTTACAG
5	ATGAACCTAA	TTTTTGCCT	AAACCCCCGC	GTACTCAATT	ACCTTTAAGA	TGGAAATGTC
	1090	1100	1110	1120	1130	1140
	TATTGTTTCG	GTATCTTCCT	TGTCCCCGAA	ATTGGCTATT	TCATTGCTT	CGCTGCTGTT
	ATAACAAAGC	CATAGAAGAG	ACAGGGGCTT	TAACCGATAA	AGTAACAGAA	GCGACGACAA
	1150	1160	1170	1180	1190	1200
	TTCCTTTGT	TGGTCTCCT	GCTCOGTCCG	TGACAGGTGC	CATAAATATT	ATTATGAAAG
	AAGAGAAACA	ACCAGGAGGA	CGAGGCAGGC	ACTGTOCACG	GTATTITATAA	TAATACCTTC
	1210	1220	1230	1240	1250	1260
10	GATGATGACT	TCAGGGCGCT	ACTTCTCTA	TTCTCGCTAC	GCTGCITTCC	TTGGTCTGGT
	CTACTACTGA	AGTCOOGCCGA	TGAAGAAGAT	AAGAGCGATG	CGACGAAAGG	AACCAGCCAC
	1270	1280	1290	1300	1310	1320
	AGTTCTTAC	CTCGATGATT	ACTTGGATGG	GTCAGCTCAT	TGATTCTAT	GAGTCTCAGC
	TCAAGAAATG	GAGCTACTAA	TGAACCTACC	CAGTCGAGTA	ACTAAAGATA	CTCAGAGTCG
	1330	1340	1350	1360	1370	1380
	CCATTCTCCT	TGTCTTCGIG	ATTCTCACTA	TCGCGGGCAT	TGTTCTCCGT	ATCCCTCGCC
	GGTAAGAGGA	ACAGAAGCAC	TAAGAGTGAT	AGCGCCCGTA	ACAAGAGGCA	TAGGAAGCGG
15	1390	1400	1410	1420	1430	1440
	GCTGGATTCC	TGGTCTCCTC	TAACGACTGA	GAGAAAACGC	CGCCGACCAT	TTAATGGTC
	CGACCTAAGG	ACCAGCGAGG	ATTGCTGACT	CTCTTTGCG	GCGGCTGGTA	AAATTACCAAG
	1450	1460	1470	1480	1490	1500
	GGCGACGTT	TCCTTATTAG	AAAGGATTAT	TTGTTATGCT	TTATGGTATT	CTTATCTTT
	CCGCTGCAA	AGAATAAAATC	TTTCCTAATA	AACAATACGA	AATACCTAA	GAATAGAAAA
	1510	1520	1530	1540	1550	1560
20	GCGTTTGTG	GCCTTTGTT	TATATCGATA	ACTATTGCAA	AAATCCCTAC	AAGCTCGAAG
	CGCAAACGAC	CGAAAAACAA	ATATAGCTAT	TGATAACGTT	TTAGGGATG	TTCGAGCTTC
	1570	1580	1590	1600	1610	1620
	CTGTTGTG	TTCTAAAGGT	TCTGGCAAGT	CCTCTATAT	GCTCGCGTT	GCTGATAAGT
	GACAACAACC	AAGATTCCA	AGACCGTTCA	GAGACATATA	CAGAGCCAA	CGACTATTC
	1630	1640	1650	1660	1670	1680
	GGCTTCGTC	TAGTAAGGGG	TTTATTATA	GCAATATGGG	TATTGGTTAT	GATTTAGAGC
	CCGAGCAAG	ATCATTCCC	AAATAAATAT	CGTTATACCC	ATAACCAATA	CTAAATCTCG
25	1690	1700	1710	1720	1730	1740
	CGGAATATTG	GAAACAGACC	TTTGCCTCTG	ATTCCCTAT	TCTTATTGAT	GAGATAGGCG
	GCCTTATAAC	CITTCGCTGG	AAACGGGGAC	TAAGGGATA	AGAATAACTA	CCTCTATCCGC
	1750	1760	1770	1780	1790	1800
	TGCTCCACTC	TAACCGTGAT	TTAAGGCTA	TGCCCGTGA	AGCTGTCGAG	TTTTTCAAGA
	ACGAGGTGAG	ATTGGCACTA	AAATTCCGAT	ACGGGGCACT	TCGACAGCTC	AAAAAGTCT
	1810	1820	1830	1840	1850	1860
30	TGCAGGCCAA	ATATCACTTG	ACAATAGTTG	TATCGTCTCA	GACCATGGAC	TTTGATAAAA
	ACGTCCGCGT	TATAGTGAAC	TGTTATCAAC	ATAGCAGAGT	CTGGTACCTG	AAACTATTTT
	1870	1880	1890	1900	1910	1920
	AGATTCTGTA	CCTCTGTGAT	CCGATTTATC	TCTCCAATCG	TATTGGCTGG	TTTGTCGCC
	TCTTACGCT	GGAGACACTA	CGTAAATAG	AGACGTTAGC	ATAACCGACC	AAAACAGCGG
	1930	1940	1950	1960	1970	1980
35	TCACCCCTTA	TCGCTCCCTG	ATCGCTATGG	AACACCGTCC	CGAGGGCGGC	CAAGAGCTTG
	AGTGGGAT	AGCGAGGACA	TAGCGATACC	TTCTGGCAGG	GCTCCCGCCG	GTTCTCGAAC
	1990	2000	2010	2020	2030	2040
	TTACACCGT	GCCCAAGGGCG	GGCAAGGGCTA	AGTCGTATAC	TATCCCCAG	TCTGTGAGC
	ATTGTGCCA	CGCGTTCCCC	CCGTCCCCAT	TCACCATATG	ATAGGGGTTG	AGACRCTTCG

3|13

1	2050	2060	2070	2080	2090	2100
	AGGTGAGTGC	CTTAGAATAT	GATAACAGAGC	AGGTATCAG	CAAGACCCCC	TCGAAGTAAA
	TCCACTCACG	GAATCITATA	CTATGTCCTCG	TCCAATAGTC	GTTCTGGGGG	AGCTTCATTT
	2110	2120	2130	2140	2150	2160
	AAAAAAAC	TCCCCGTGCC	CCCGTAGGGG	GTTAGGGGAG	TTTTTTTTT	TTTTTTTTT
5		TTTTTTTTG	AGGGCAOOG	GGGCATCCCC	CAATCCCCTC	AAAAAAAAA
	2170	2180	2190	2200	2210	2220
	TACTGGAGCA	CTCCCGCGT	CTTGTACGC	GATAGCGTCT	CCACCGCGTC	CCCCGTCCCC
	ATGACCTCGT	GAGGGCGGCA	GAACAGTGCG	CTATCGCAGA	GGTGGCCAG	GGGGCAGGGG
	2230	2240	2250	2260	2270	2280
	GCGAGGGCAA	AGCCCTCGCC	CITCCCAAAC	AGACCGGTAG	GGGCTTCCGA	TACGTACTGA
	CGCTCCCGTT	TCGGGAGCGG	GAAGGGTTTG	TCTGGCCATC	CCCGAAGGCT	ATGCATGACT
10	2290	2300	2310	2320	2330	2340
	CTGCCGTGAC	GATGGGAACG	TGGGCGTGC	TGTAATACGC	CCACGAAATT	TAAATTCT
	GACGGCACTG	CTACCCCTGC	ACCCGCAOOG	ACATTATGCG	GGTGCCTTAA	ATTTAAAGGA
	2350	2360	2370	2380	2390	2400
	CITGACAAC	CATTCAACT	GTGGTAATAT	TTAGCCATGG	AAATGAAAGG	TGGTTTCTC
	GAACGTGTGA	GTAAAGTATGA	CACCATTATA	AATCGGTACC	TTTACTTTCC	ACCAAAAGAG
	2410	2420	2430	2440	2450	2460
	GTATGAAAAC	GGTTGTTAAA	CITGATTATG	CTACGTGCG	CITTGAGCAA	GGTCAATT
	CATACTTTG	CCAACAATIT	GAACTAATAC	GATGCAAGCG	GAAACTCGT	CCAAGTAAA
15	2470	2480	2490	2500	2510	2520
	CTATTCCCAA	AATCGAAGAT	GCGCTTGC	AGTGTGATT	ACATTTGCA	CAGATATCTA
	GATAAGGGTT	TTAGCTTCTA	CGCGAACGAG	TCACACTAAA	TGTAAAACGT	GTCATATAGAT
	2530	2540	2550	2560	2570	2580
	ACCGCAAGTGA	GAATCCCCC	TACAATTCCC	CTGCGGACT	CITCTTTAAG	CCTAACAAACG
	TGCGTTCACT	CTTAAGGGGG	ATGTTAAGGG	GACGCCCTGA	GAAGAAATT	GGATTGTG
20	2590	2600	2610	2620	2630	2640
	GCGCGAAACA	GTCTCCGCAC	TCTTACAAG	TGTCTGGTCA	TGGTTGTGAG	CTTTCCGCT
	CGCGCTTTGT	CAGAGGCCTG	AGAAATGTC	ACAGACCACT	ACCAACACTC	GAAAAGCCGA
	2650	2660	2670	2680	2690	2700
	CTACCTTGCC	TCGGCTCGCG	TCCITGATGC	AGGAAGGTCA	CGAATTCCGT	CACTTTCTC
	GATGGACCG	AGCCGAGCGC	AGGAACCTACG	TCCITCCAGT	GCTTAAGCCA	GIGAAAAGAG
	2710	2720	2730	2740	2750	2760
	GTCTTGACTT	TTGCTTTGAT	GTGTTATGA	CAAAACTACG	GTGGCGTGAG	TTTTATTG
	CAGAACTGAA	AACGAAACTA	CAACAATACT	TTTGTGATGC	CACCGCACTC	AAAATAAAACC
25	2770	2780	2790	2800	2810	2820
	GTGTTATCTC	TGCTTCCGTC	GATGAGATGA	ATAATCCGA	AAAAGCCGT	AAGGTTCGCA
	CACAATAGTG	ACGAAGGCAG	CTACTCTACT	TATTAGGGCT	TTTCGGGCA	TTCCAAGCGT
	2830	2840	2850	2860	2870	2880
	AATTCAATGTA	TCAGGGCTAT	GGTGATTCCA	CTACCGTTA	TATCGGTGCG	AGAAAGTCCT
	TTAAGTACAT	AGTCCCCATA	CCACTAAGGT	GATGGCAAAT	ATAGCCAGCG	TCTTCAGAA
30	2890	2900	2910	2920	2930	2940
	CTGCTGCTT	CTGGCGTATT	TATAATAAGT	CTCTGCAAGA	CCCTGAAAAA	AAGCTCTG
	GACGACAGAA	GACGGCATAA	ATATTATTCA	GAGACGTCT	GGGACTTTT	TTCGAGACAC
	2950	2960	2970	2980	2990	3000
	CGGCTTCTGG	TGAGCTTCTG	GTCTGCCCTG	ATGATTCTA	TATTATTCTG	TATGAGATGG
	CCCGAAGGCC	ACTCGAAGAC	CTGACGGAC	TACTAAGAAT	ATAATAAGCA	ATACTCTACC
	3010	3020	3030	3040	3050	3060
	AGTTAAATT	TACTTCTCGT	GTGAATTCTT	TTGGCCGTAC	CGTTTATGAC	CCCTCTCCCC
	TCATTTAA	ATGAGAGCA	CACTTAAAGAA	ACCCGGCTG	GCAAATACTG	GGGAGAGGGG
35	3070	3080	3090	3100	3110	3120
	TCTTTCCGA	GTATTACGAA	GACCGCTGTA	AGCTCTCCC	CTATCTCCGT	AAAGTCTGGA
	AGAAAGCCGT	CTAAATCCTT	CTCGGACTAT	TCCAGAACGG	GATAGAGGCA	TTTCAGACCT

4|13

1	3130	3140	3150	3160	3170	3180
	ATCGTTACGG	AAATGATACT	CITCTCCCTG	ACGGCTGGGA	AGATAATGCAG	TTCGTACTG
	TAGCAATGCC	TTTACTATGA	GAAGAGGGAC	TGCCGACCCCT	TCTATACGTC	AAGCAATGAC
	3190	3200	3210	3220	3230	3240
5	ATATCGAAC	TCGAAACATT	CAGTTTACTA	AGGGTTTATT	TCGTCCCCIT	AGTAATGACC
	TATAGCTTCG	AGCGTTGTAA	GTCAAATGAT	TCCCAAATAA	AGCAGGGGAA	TCATTACTGG
	3250	3260	3270	3280	3290	3300
	TTGCTCAAAA	GTTTCTGTT	TCTATCCATA	CTGAAGAACAA	AAAAATGTCT	TATGTTGCTA
	AACGAGTTTT	CAAAAGACAA	AGATAGGTAT	GACITTCITGT	TTTTTACAGA	ATACAACGAT
	3310	3320	3330	3340	3350	3360
10	ATACCTTTGG	TCATCGTATC	ATTGATATTT	TGCTTATCG	TCCTGAGCTG	CITTTCCCTG
	TATGGAAACC	AGTAGCATAG	TAACATATAA	ACGAAATAGC	AGGACTCGAC	GAAAAGGAGC
	3370	3380	3390	3400	3410	3420
	CTTGTGCAA	GTGGGAGGAG	TTTATAATG	AGTGTCTTCC	GTTCTCTCCT	CIGGCGCTGA
	GAACAACGTT	CACCCCTCGTC	AAAATATTAC	TCACAGAAGG	CAAGAGAGGA	GACCGCGACT
	3430	3440	3450	3460	3470	3480
	CTCAAGTAGT	CGCTCAGTC	TCTGAGTCIT	CCCCCATTGC	CGTTGAGGAA	TTCGGTGAAG
	GAGTCATCA	GCGAGTCAG	AGACTCAGAA	GGGCGTAACG	GCAACTCCCT	AAGGCACCTC
	3490	3500	3510	3520	3530	3540
	TTGCTGATGA	CCCCCTCTCCC	TTTAGTGAAG	ATGGGTTTGA	TGATATATCT	TTATTCTGAT
	AACGACTACT	GGGGAGAGGG	AAATCACITC	TACCCAAACT	ACTATATAGA	AATAAGACTA
15	3550	3560	3570	3580	3590	3600
	GAAAGGATTG	TTGCTTGTG	AAAGTTACTG	TAGTTGGTAA	GTCCCACCGC	GCTGGTACAT
	CTTTCCTAAC	AACGAAACAC	TTTCAATGAC	ATCAACCATT	CAGGGTGGCG	CGACCATGTA
	3610	3620	3630	3640	3650	3660
	CTAAGCAGGG	CAAAGACTAT	GATTTTCTA	CCTCATGGC	CGAATATTG	ATCGGTGCAA
	GATTOGTCCC	GTTCIGATA	CTAAAAAGAT	GAGAGTACCG	GCITATAAGC	TACGCACGTT
	3670	3680	3690	3700	3710	3720
20	ATGATGACAA	TGATGGCGTG	CAGGTGATA	GAATCAATGT	TGACGCTCGC	ATGATGCCGT
	TACTACTGT	ACTACCGCAC	GTCCAACIAT	CTTAGTTACA	ACTGCGAGCG	TACTACGGCA
	3730	3740	3750	3760	3770	3780
	ATGCGCTCAT	TGTCGTGGC	GCTACGTATG	ACCTTGACTT	TGACCGTAAC	GGATATCTTC
	TACGCGAGTA	ACAGCAACCG	CGATGCATAC	TGGAACIGAA	ACTGGCATTG	CCTATAGAAG
	3790	3800	3810	3820	3830	3840
	TCGGAATTGA	GGAAAGTCTAA	CTCCCTTTGT	TCAAACCTAA	ATTCATTTC	CTATGGGAGA
	AGCCTTAACT	CCITCAGATT	GAGGGAAACA	AGTTTGGATT	TAAAGTAAAG	GATACCCCT
25	3850	3860	3870	3880	3890	3900
	GCGGTTGCC	GCTCTCACAT	GGCGGGTAG	TGCAATGGTC	GCATGTCACT	CCTGAAGGT
	CGCCPAGCGG	CGAGAGTGT	CCGCCCATC	ACGTTACCG	CGTACAGTGA	GAGACTTCCA
	3910	3920	3930	3940	3950	3960
	GAAGCTGCTG	GTTCGAATCC	AGACCCCGCA	ACRAAAACGG	ATTGACCTC	CGTTATTGCA
	CTTCGACCGAC	CAAGCTTAGG	TCTGGGGCGT	TGGTTTGCC	TAAACTGGAG	GCAATAAGCT
	3970	3980	3990	4000	4010	4020
30	TGTCGGGAAA	GGTGGTGGCG	AAGTGTGAA	AAAGCATCGG	TGTTTTTATA	AGCGTTCCG
	ACAGCCCTTT	CAACCACCGC	TTCACIACCT	TTTCGTAGCC	ACAAAAATAT	TCGCAAAGCG
	4030	4040	4050	4060	4070	4080
	CGCCCTCTC	GCGTCCTTGA	TCGTTTCTT	TCCTCTGT	ACTCCCTGTT	TTCGTGGATT
	CGGGGAGAG	CGCAGAAACT	ACCAAGGAA	AAGGAACACA	TGAGGAACAA	AACGACCTAA
	4090	4100	4110	4120	4130	4140
	TGACTCTGAA	GCTGATATGC	CTCTTTGGA	TGTTTCTAT	ACTCATCTG	GTTCATGGGT
	ACTGAGCTT	CGACTATACG	GTAGAACCT	ACTAAGATA	TGAGTAGTAC	CAAGTACCA
35	4150	4160	4170	4180	4190	4200
	TGTTTCCCGT	AGTCCTACTA	TTTCTGGCTT	TCCTTTTAT	GAGTTGCTTT	GCTCTCCTAT
	ACWACCCGA	TCACGATCAT	AAAGACCGAA	AGGAAATA	CTCAACGAA	CGAGGGATA

5|13

1	4210	4220	4230	4240	4250	4260
	TACTGTTCT	GGCACTACTT	ATTCTCTGCC	TTATTOGGTT	TCTTATTCTA	CTAATGCGTT
	ATGACAAAGA	CCGTGATGAA	TAAGAGACGG	AATAAGCAA	AGAATAAGAT	GATTACGCAA
	4270	4280	4290	4300	4310	4320
	TGATGTTCT	TATTTAGCTA	ACGATTCTGG	CAAATCTTAT	GATTATGCTT	GCGCTTTTCC
5	ACTACAAAGA	ATAAAATCGAT	TGCTAAGACC	GTTAGAATA	CTAATACGAA	CGCGAAAAGG
	4330	4340	4350	4360	4370	4380
	TCTTCCTCTT	CGTGGTGCTT	CTGGTTATTG	GTATGAACTA	CCITCCTTCC	CTATTGGITC
	AGAAGGAGAA	GCACCAACGAA	GACCAATAAC	CATACITGAT	GGAAGAAAGG	GATAACCAAG
	4390	4400	4410	4420	4430	4440
	GGGAATGAAG	TTTGATACGT	GCTCTGTCG	CGTTTATTCT	ACCGCTGCTC	AACCTCTGG
	CCCTTACCTC	AAACTATGCA	CGAGACAAGC	GCAAATAAGA	TGGCGACGAG	TTGGAAGACC
10	4450	4460	4470	4480	4490	4500
	GACTTATGGT	TTTTAACCT	CTTCCCTTAG	TCGCTCAGAC	CGCATTCTT	CITTCGGTAA
	CTGAATACCA	AAAAATTGAA	GAAGGAAATC	AGCGAGTCG	GCGTAAGAAA	GAAAGCCATT
	4510	4520	4530	4540	4550	4560
	CACIGCCCT	TCITCTCTG	GTTCTCTAC	TGATACCTTA	GATTCTTTA	GTTTCTCTC
	GTGACGGAGA	AGAAGAAGAC	CAAGAAGATG	ACTATGAAAT	CTAAGAAAAT	CAAAAAGAAG
	4570	4580	4590	4600	4610	4620
	TCCCTTTAT	TCGTATCCCT	TTGCAATTG	TTCTACTTCT	TCITCTCCG	CAAGTGGTTA
	AGGAAAAATA	AGCATAGGAA	AACGTTAACG	AAGATGAAGA	AGAAGAAGGC	GTTCACCAAT
15	4630	4640	4650	4660	4670	4680
	TGTTTACAG	GGTGGTGACA	ATAATTCTAT	TATTCCCTCG	CCTGGCTATT	CGAGTACCCG
	ACAAAATGTC	CCACCACTGT	TATTAATAA	ATAAGGAAGC	GGACCGATAA	GCTCATGGGC
	4690	4700	4710	4720	4730	4740
	TGCTTGAAT	CTTGGTGITA	CTCGTTATCT	TCGCGGAAC	AATGCTTTG	TCCCCTATCC
	ACGAAACTTA	GAACCACAAT	GAGCAATAGA	AGCGCCCTGA	TTACGAAAAC	AGGGAATAGG
20	4750	4760	4770	4780	4790	4800
	GTCTGGATAC	ACTATCCCC	CTCTGATAT	CGGTTTGT	TTTGTTCAGC	AGCCATCTC
	CAGACCTATG	TGATAGGGGA	GAAGACTATA	GCCAAAACAA	AAACAAGTCG	TCGGTAGAAG
	4810	4820	4830	4840	4850	4860
	TTCTCCTGTT	TATTCCTGCTT	CTGCCTTGA	TACTACAGGT	TCTTCGCTT	TTTCTCTCT
	AAGAGGACAA	ATAAGACGA	GACGGAAACT	ATGATGTCCA	AGAAAGCGAA	AAAGAGAAGA
	4870	4880	4890	4900	4910	4920
	TGTTCCCTGCT	TCTCGCTCTC	CTGACGTTAA	GCTTGGTGAC	TGGCTGTCG	ATTCTCCGGA
	ACAGGGACGA	AGAGCAGAGG	GACTGCAATT	CGAACCACTG	ACCGACAGGC	TAAGAGGCCT
25	4930	4940	4950	4960	4970	4980
	GGATTTGCA	GATGCTATTA	CCAATGAATT	TGGAGTTGAT	TCCGGTACTC	TTAAAGACTC
	CCTAAACGTT	CTACGATAAT	GGTACTTAA	ACCTCAACTA	AGGCCATGAG	AATTCTGAG
	4990					
	TAAGGTTAAC	TTGAATTTC	3'			
	ATTCCCTATTG	AACTTAAG	5'			

7/13

SEQUENCE ID: N8 - pUC19

OPTIONS:
 PLUS STRAND
 ALL
 START ATG ♦ NOT OPENFRAME
 ONE LETTER CODE

10
 15
 20
 25
 30
 35

5'1 TCGAGTTACTGATATGAAAGCTGGCAACATTCAAGTTTACTAAGGTTATTTCGCTCCCTTACTAAT
 C S S L L I S K L A T F S L L R F I C S P * * * 1
 A V R Y * Y R S S Q H S V Y * G L F A P L S N 2
 Q F V T D I E A R N I Q F T K V Y L L P L V (M) 3

71 GCCCTGGCTAACAGTTTCGTGTTCTATCATCTGAAAGAACAAAAATGCTTATATGTTGCTTAATACCT
 P C S K V F C F Y P Y * R T K N V L C C * Y L 1
 D L A Q K F S V S I H T E E Q K (M) S Y V A N T F 2
 T L L K S F L F L S I L K N K K C L (M) L L I P 3

141 TTGGTCATCGTATCATTTGATATTTCGTTTATOGCTTGCTGGCTTCCTGGCTTCTGGCTTCTGGGA
 W S S Y H * Y F A L S S * A A F P R L L Q V G 1
 G H R I I D I L L Y R P E L L F L A C C K W E 2
 L V I V S L I F C F I V L S C F S S L V A S G S 3

211 GCNCTTTATAATGAGTGTCTTCGGTTCTCTGGCTCAAGTCAAGTCCAGTCTCAGTCTCTGAG
 A V L * * V S S V L S S G A D S S S R S V L * V 1
 Q F Y N E C L P F S P L A L T Q V V A Q F S E 2
 S F I (M) S V F R S L L W R * S L K * S L S S L S 3

281 TCTTCCCCATTGCCGTTGAG
 F P H C R * 1
 S S P I A V E 2
 L P P L P L 3

13

1
5
10
15
20
25
30

SEQUENCE ID: N8 - PUC19

OPTIONS:
 MINUS STRAND
 ALL,
 START ATG \emptyset NOT OPEN FRAME
 ONE LETTER CODE

301 CTCAGGCCAATGGGGAAAGACTCAGAGAACTGAGCCACTACTTGAGTCAGGCCAGAGAACCGGA
 L N G N G G R L R E L S D Y L S Q R Q R R E R K
 S T A (M) G E D S E N * A T T * V S A R G E N G 1
 Q R Q W G K T Q R T E R L L E S A P E E R T E 2
 231 AGACACTCATTATAAACCTGCTCCACACTGCAACAGCGAGGAAGGCAGCTCAGGACGATAAACGAAAA
 T L I I K L L P L A T S E E K Q L R T I K Q N 1
 R H S L * N C S H L Q Q A R K S S S G R * S K I 2
 D T H Y K T A P T C N K R G K A A Q D D K A K 3
 161 TATCAAATGATAACCATGACCAAACGTATTAGCAACATAAGACATTITGGTCAGTATGGATAAAC
 I N D T N T K G I S N I R H F L F F S (M) D R N 1
 S (M) I R * P K V L A T * D I F C S S V W I E T 2
 Y Q * Y D D Q R Y * Q H K T F F V L Q Y G * K Q 3
 91 AGAAAACCTTTGACCAAGGTCAATTACTAAGGGAGCCAATAAACCTTAGTAAACTGAATGTCGGAGCTT
 R K L L S K V I T K G S K * T L V N * (M) L R A S 1
 E N F * A R S L L R G A N K P * * T E C C E L 2
 K T F E Q G H Y * G E Q I N L S K L N V A S F 3
 21 CGATATCAGTAACGAACCTGCA
 I S V T N C 1
 R Y Q * R T A 2
 D I S N E L 3

9/13

1 *** INITIATION/TERMINATION REFERENCE ***

6/5.1

INITIATION POSITION												TERMINATION POSITION											
												***** FRAME 1 *****											
5												19 25 139 151 286 481 487 517 526 556 601 613 667 676 721 742 745 778 787 796 799 853 883 898 1030 1171 1183 1195 1276 1339 1408 1675 1735 1819 1825 2035 2044 2053 2125 2278 2287 2365 2404 2665 2728 2788 3004 3022 3418 3427 3559 3571 3712 3868 4009 4081 4087 4093 4111 4150 4180 4252 4261 4279 4300 4354 4393 4468 4498 4531 4549 4636 4642 4720 4765 4828 4882 4888 4897 4945 4957 4972 4981 4987											
10																							
15												TOTAL : 39											
												TOTAL : 84											
20																							
25												TOTAL : 14											
												TOTAL : 99											
30																							
35												TOTAL : 47											
												TOTAL : 32											

10 | 13

*** MOLECULAR WEIGHT ***

6/5.2

1

	START	END	MOLECULAR WEIGHT		NO.	START	END	MOLECULAR WEIGHT
				***** FRAME 1 *****				
5	157	286	4842.59		1	3046	3418	13607.00
	331	481	5857.77		2	3133	3418	10646.71
	433	481	1911.04		3	2428	2665	9020.45
	1060	1171	4219.95		4	1435	1675	8907.70
	1309	1339	1055.14		5	2479	2665	7032.09
	1435	1675	8907.70		6	1483	1675	6959.42
	1483	1675	6959.42		7	3235	3418	6919.29
10	1669	1675	262.36		8	2839	3004	6213.38
	1729	1735	305.39		9	331	481	5857.77
	2059	2125	2514.97		10	3721	3868	5519.15
	2377	2404	1011.23		11	157	286	4842.59
	2383	2404	750.93		12	3883	4009	4697.94
	2428	2665	9020.45		13	3292	3418	4696.55
	2479	2665	7032.09		14	3748	3868	4490.94
15	2620	2665	1563.81		15	1060	1171	4219.95
	2719	2728	375.51		16	3619	3712	3648.43
	2782	2788	305.39		17	3487	3559	2767.29
	2839	3004	6213.38		18	2059	2125	2514.97
	2971	3004	1408.75		19	3661	3712	1946.41
	2992	3004	578.66		20	433	481	1911.04
	3046	3418	13607.00		21	3511	3559	1887.18
20	3133	3418	10646.71		22	3664	3712	1815.22
	3235	3418	6919.29		23	3520	3559	1585.79
	3292	3418	4696.55		24	3670	3712	1582.93
	3388	3418	1294.51		25	2620	2665	1563.81
	3487	3559	2767.29		26	3673	3712	1451.74
	3511	3559	1887.18		27	2971	3004	1408.75
	3520	3559	1585.79		28	3388	3418	1294.51
25	3619	3712	3648.43		29	1309	1339	1055.14
	3661	3712	1946.41		30	2377	2404	1011.23
	3664	3712	1815.22		31	2383	2404	750.93
	3670	3712	1582.93		32	2992	3004	578.66
	3673	3712	1451.74		33	3697	3712	547.68
	3697	3712	547.68		34	4135	4150	535.70
	3721	3868	5519.15		35	2719	2728	375.51
30	3748	3868	4490.94		36	1729	1735	305.39
	3859	3868	277.33		37	2782	2788	305.39
	3883	4009	4697.94		38	3859	3868	277.33
	4135	4150	535.70		39	1669	1675	262.36
				***** FRAME 2 *****				
					1	539	1058	19095.03
					2	593	1058	17110.92
35	131	158	1002.19		3	815	1058	9231.94
	539	1058	19095.03		4	3833	3944	4193.88
	593	1058	17110.92		5	3875	3944	2659.22
	815	1053	9231.94		6	1202	1259	2324.59
	1052	1058	236.33		7	1205	1259	2193.40
	1202	1259	2324.59		8	3530	3578	1531.73
	1205	1259	2193.40		9	131	158	1002.19
	3530	3578	1531.73		10	1052	1058	236.28
	3833	3944	4193.88					
	3875	3944	2659.22					

ERSATZBLATT

11/13

6/5.3

1

		*****	FRAME	3	*****		
5	27	75	1815.23	1	2403	3537	43550.02
	282	447	5855.63	2	2667	3537	34028.78
	483	540	2003.43	3	2727	3537	31646.22
	522	540	616.78	4	2787	3537	29263.59
	555	732	7063.49	5	2826	3537	27663.74
	693	732	1636.98	6	1476	2097	24121.86
	741	1053	11799.97	7	2997	3537	21162.74
	744	1053	11668.78	8	1599	2097	19440.48
	774	1053	10510.39	9	1656	2097	17213.04
	930	1053	4670.61	10	3165	3537	14339.49
10	1194	1203	334.43	11	1770	2097	12848.35
	1275	1401	4929.75	12	741	1053	11799.97
	1287	1401	4398.11	13	744	1053	11668.78
	1476	2097	24121.86	14	1800	2097	11612.94
	1599	2097	19440.48	15	774	1053	10510.39
	1656	2097	17213.04	16	4722	4992	10224.42
	1770	2097	12848.35	17	1845	2097	9839.93
	1800	2097	11612.94	18	3285	3537	9689.43
	1845	2097	9839.93	19	555	732	7063.49
	1947	2097	5672.19	20	4110	4275	6361.00
15	2292	2313	766.90	21	3636	3798	6115.51
	2403	3537	43550.02	22	282	447	5855.63
	2667	3537	34028.78	23	4128	4275	5690.14
	2727	3537	31646.22	24	1947	2097	5672.19
	2787	3537	29263.59	25	3651	3798	5533.90
	2826	3537	27663.74	26	1275	1401	4929.75
	2997	3537	21162.74	27	930	1053	4670.61
	3165	3537	14339.49	28	1287	1401	4398.11
	3285	3537	9689.43	29	4179	4275	3784.82
	3636	3798	6115.51	30	4299	4386	3385.17
20	3651	3798	5533.90	31	3711	3798	3278.61
	3711	3798	3278.61	32	3714	3798	3147.42
	3714	3798	3147.42	33	4305	4386	3140.83
	3960	3984	918.13	34	4620	4686	2646.26
	4110	4275	6361.00	35	4932	4992	2321.86
	4128	4275	5690.14	36	483	540	2003.43
	4179	4275	3784.82	37	4944	4992	1867.26
	4254	4275	923.20	38	27	75	1815.23
	4263	4275	522.66	39	693	732	1636.98
	4299	4386	3385.17	40	4353	4386	1350.57
25	4305	4386	3140.83	41	4254	4275	923.20
	4353	4386	1350.57	42	3960	3984	918.13
	4446	4455	395.51	43	2292	2313	766.90
	4620	4686	2646.26	44	522	540	616.78
	4722	4992	10224.42	45	4263	4275	522.66
	4932	4992	2221.86	46	4446	4455	395.51
	4944	4992	1667.26	47	1194	1203	334.43

12 | 13

6/6.1

1 *** INITIATION/TERMINATION REFERENCE ***

INITIATION POSITION							TERMINATION POSITION							
							***** FRAME 1 *****							
5	514	1399	3946				187	211	262	292	331	379		
							430	553	568	583	652	694		
							700	727	754	766	778	820		
							871	874	880	991	1111	1180		
							1186	1255	1270	1303	1363	1369		
							1396	1432	1495	1678	1699	1735		
							1768	1789	1792	1822	1987	2014		
10							2146	2173	2233	2272	2356	2425		
							2431	2479	2536	2566	2581	2626		
							2647	2812	2920	2923	2977	2989		
							3016	3052	3076	3202	3229	3235		
							3247	3274	3280	3355	3367	3424		
							3505	3523	3544	3565	3649	3652		
							3700	3718	3730	3760	3769	3778		
							3805	3808	3922	3928	3940	4042		
15							4069	4078	4087	4102	4123	4258		
							4306	4438	4495	4621	4657	4675		
							4684	4816						
	TOTAL : 3							TOTAL : 104						
								***** FRAME 2 *****						
20	203	863	896	1115	1139	1172		17	26	59	62	110	164	
	1685	1730	2378	2495	2621	2642		245	278	299	347	350	404	
	3569	3875	4427	4778				449	470	530	578	626	719	
								746	749	782	797	800	839	
								842	1142	1166	1466	1781	1994	
								2261	2393	2498	2543	2837	2945	
								3323	3530	3881	3968	3977	3983	
								3986	4034	4049	4052	4082	4157	
25								4184	4187	4190	4193	4202	4211	
								4220	4334	4397	4433	4502	4529	
								4532	4535	4538	4742	4859	4862	
	TOTAL : 16							TOTAL : 66						
								***** FRAME 3 *****						
30	870	873	1002	1269	1287	1362		372	459	522	543	639	723	
	1542	1677	1800	2172	2646	3114		864	1044	1173	1200	1380	1563	
	3153	3639	3675	3699	3816	4716		1575	1614	1662	1686	1707	1752	
								1797	1872	1896	1923	1953	2007	
								2019	2097	2139	2160	2166	2244	
								2307	2319	2379	2457	2508	2571	
								2643	2667	2865	3069	3111	3159	
								3183	3330	3351	3450	3465	3477	
								3516	3540	3597	3681	3690	3705	
35								3786	3876	4266	4284	4779	4803	
								4821	4923					
	TOTAL : 18							TOTAL : 62						

13|13

1 *** MOLECULAR WEIGHT ***

6/6.2

	START	END	MOLECULAR WEIGHT	NO.	START	END	MOLECULAR WEIGHT
***** FRAME 1 *****							
5	514	553	1629.87	1	3946	4042	3550.03
	1399	1432	1344.47	2	514	553	1629.87
	3946	4042	3550.03	3	1399	1432	1344.47
***** FRAME 2 *****							
10	203	245	1707.87	1	3569	3881	11635.17
	863	1142	10853.68	2	1172	1466	11262.47
	896	1142	9431.19	3	863	1142	10853.68
	1115	1142	1115.33	4	896	1142	9431.19
	1139	1142	149.21	5	2621	2837	7747.28
	1172	1466	11262.47	6	2642	2837	6866.30
	1685	1781	3768.36	7	1685	1781	3768.36
	1730	1781	1988.33	8	4778	4859	3218.74
	2378	2393	656.78	9	1730	1781	1988.33
	2495	2498	149.21	10	203	245	1707.87
	2621	2837	7747.28	11	1115	1142	1115.33
15	2642	2837	6866.30	12	2378	2393	656.78
	3569	3881	11635.17	13	3875	3881	277.38
	3875	3881	277.38	14	4427	4433	246.32
	4427	4433	246.32	15	1139	1142	149.21
	4778	4859	3218.74	16	2495	2498	149.21
***** FRAME 3 *****							
20	870	1044	6984.76	1	870	1044	6984.76
	873	1044	6853.57	2	873	1044	6853.57
	1002	1044	1764.94	3	1269	1380	4059.50
	1269	1380	4059.50	4	1287	1380	3436.80
	1287	1380	3436.80	5	2172	2244	2682.96
	1362	1380	748.87	6	4716	4779	2652.92
	1542	1563	879.86	7	1800	1872	2593.86
	1677	1686	418.54	8	3816	3876	2182.40
	1800	1872	2593.86	9	3114	3159	1826.12
	2172	2244	2682.96	10	1002	1044	1764.94
	2646	2667	838.92	11	3639	3681	1629.97
	3114	3159	1826.12	12	1542	1563	879.86
	3153	3159	248.34	13	2646	2667	838.92
	3639	3681	1629.97	14	1362	1380	748.87
	3675	3681	206.26	15	1677	1686	418.54
30	3699	3705	236.28	16	3153	3159	248.34
	3816	3876	2182.40	17	3699	3705	236.28
	4716	4779	2652.92	18	3675	3681	206.26

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP88/00123

I. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all) *

According to International Patent Classification (IPC) or to both National Classification and IPC

Int.Cl⁴: C 12 N 15/00;A 61 K 39/29;C 12 Q 1/68;G 01 N 33/576

II. FIELDS SEARCHED

Minimum Documentation Searched ?

Classification System	Classification Symbols
Int.Cl ⁴	C 12 N;A 61 K

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched *

III. DOCUMENTS CONSIDERED TO BE RELEVANT*

Category *	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³
X	WO,A,84/01107 (THE GENERAL HOSPITAL CORP.) 29 March 1984, see the whole document --	1-10
X	EP,A,0124896 (SEELIG) 14 November 1984, see example 7 --	7
A	EP,A,0066296 (EISAI CO.LTD) 08 December 1982 --	
A	WO,A,82/03330 (TREPO) 14 October 1982 --	
A	La Recherche, Vol.14, No.145, June 1983 (Paris FR) A.Zotov: "Les hépatites", pages 874-865 --	
P,A	EP,A,0242300 (INSTITUT PASTEUR) 21 October 1987 -----	

* Special categories of cited documents: ¹⁰

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

"T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

29 April 1988 (29.04.88)

Date of Mailing of this International Search Report

01 June 1988 (01.06.88)

International Searching Authority

European Patent Office

Signature of Authorized Officer

**ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO.**

**EP 8800123
SA 20814**

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 24/05/88. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A- 8401107	29-03-84	EP-A-	0119259	26-09-84
		CA-A-	1189878	02-07-85
EP-A- 0124896	14-11-84	WO-A-	8404326	08-11-84
		DE-A-	3316464	08-11-84
		AU-A-	2865084	19-11-84
		JP-T-	60501241	08-08-85
EP-A- 0066296	08-12-82	JP-A-	57198867	06-12-82
		CA-A-	1184846	02-04-85
WO-A- 8203330	14-10-82	FR-A,B	2502154	24-09-82
		EP-A,B	0074986	30-03-83
EP-A- 0242300	21-10-87	FR-A-	2597606	23-10-87
		JP-A-	62249999	30-10-87

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen PCT/EP 88/00123

I. KLASSEKIFICATION DES ANMELDUNGSGEGENSTANDS (bei mehreren Klassifikationsymbolen sind alle anzugeben) ⁶		
Nach der Internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC		
Int. Cl. 4 C 12 N 15/00; A 61 K 39/29; C 12 Q 1/68; G 01 N 33/576		
II. RECHERCHIERTE SACHGEBIETE		
Recherchierter Mindestprüfstoff ⁷		
Klassifikationssystem Klassifikationssymbole		
Int. Cl. 4	C 12 N; A 61 K	
Recherchierte nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Sachgebiete fallen ⁸		
III. EINSCHLÄGIGE VERÖFFENTLICHUNGEN⁹		
Art*	Kennzeichnung der Veröffentlichung ¹¹ , soweit erforderlich unter Angabe der maßgeblichen Teile ¹²	Betr. Anspruch Nr. ¹³
X	WO, A, 84/01107 (THE GENERAL HOSPITAL CORP.) 29. März 1984, siehe das ganze Dokument --	1-10
X	EP, A, 0124896 (SEELIG) 14. November 1984, siehe Beispiel 7 --	7.
A	EP, A, 0066296 (EISAI CO. LTD) 8. Dezember 1982 --	
A	WO, A, 82/03330 (TREPO) 14. Oktober 1982 --	
A	La Recherche, Band 14, Nr. 145, Juni 1983 (Paris, FR), A. Zotov: "Les hépatites", Seiten 874-865 --	
P,A	EP, A, 0242300 (INSTITUT PASTEUR) 21. Oktober 1987 -----	
* Besondere Kategorien von angegebenen Veröffentlichungen ¹⁰ : "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist		
"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist		
IV. BESCHEINIGUNG		
Datum des Abschlusses der internationalen Recherche		Absendedatum des internationalen Recherchenberichts
29. April 1988		01.06.88
Internationale Recherchenbehörde		Unterschrift des beauftragten Bediensteten
Europäisches Patentamt		P.C.G. VAN DER PUTTEN

**ANHANG ZUM INTERNATIONALEN RECHERCHENBERICHT
ÜBER DIE INTERNATIONALE PATENTANMELDUNG NR.**

**EP 8800123
SA 20814**

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten internationalen Recherchenbericht angeführten Patentdokumente angegeben.

Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am 24/05/88.
Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO-A- 8401107	29-03-84	EP-A- 0119259 CA-A- 1189878	26-09-84 02-07-85
EP-A- 0124896	14-11-84	WO-A- 8404326 DE-A- 3316464 AU-A- 2865084 JP-T- 60501241	08-11-84 08-11-84 19-11-84 08-08-85
EP-A- 0066296	08-12-82	JP-A- 57198867 CA-A- 1184846	06-12-82 02-04-85
WO-A- 8203330	14-10-82	FR-A,B 2502154 EP-A,B 0074986	24-09-82 30-03-83
EP-A- 0242300	21-10-87	FR-A- 2597606 JP-A- 62249999	23-10-87 30-10-87

PRO FORMA PIRE