

Data Science in Medicine

Lecture 3: Visualising Data

Dr Areti Manataki

Usher Institute
The University of Edinburgh

In the previous lecture

- Why is statistical analysis useful?
 - It allows us to describe existing data and to discover patterns in the data
 - It allows us to make inferences about a population based on a sample from that population.
- Data may be qualitative (categorical or ordinal scale) or quantitative (interval or ratio scale).
- Summary statistics involve measures of central tendency (e.g. mean, median, mode) and measures of dispersion (e.g. range, variance, standard deviation).

In the previous lecture

For example, for this set of course grades {69, 70, 86, 42, 54, 79, 69} we have:

$$\mu = \frac{\sum_{i=1}^{N} x_i}{N} = \frac{69 + 70 + 86 + 42 + 54 + 79 + 69}{7} = \frac{469}{7} = 67$$

$$\sigma^{2} = \frac{\sum_{i=1}^{N} (x_{i} - \mu)^{2}}{N}$$

$$(69 - 67)^{2} + (70 - 67)^{2} + (86 - 67)^{2} + (42 - 67)^{2} +$$

$$= \frac{(54 - 67)^{2} + (79 - 67)^{2} + (69 - 67)^{2}}{7}$$

$$= 188$$

In this lecture

- Visualising data
 - Qualitative data: bar charts, pie charts
 - Quantitative data: histograms, box plots
 - Bivariate: scatter plots, line graphs
- Introduction to R
 - R essentials
 - Calculating summary statistics
 - Drawing simple graphs

Bar charts

- Bar charts are appropriate for data on a categorical or ordinal scale.
- They display the number of times each category occurs in the data.
- Several variations: grouped bar charts, stacked bar charts, etc.

Bar chart example

Grouped bar chart example

Pie charts

- Pie charts are also appropriate for data on a categorical or ordinal scale.
- They illustrate the relative proportion of data in each category.
- They capture part-whole relationships: the different slices should add up to a meaningful whole.
- They are most useful when there are only a few categories and the differences among these categories are fairly large.

Pie chart example

Histograms

- Histograms are appropriate for data on an interval or ratio scale.
- The data are collected into bands, and the histogram shows the frequency with which values occur in the data.
- The choice of the number and width of bars can drastically affect the appearance of a histogram.

Histogram example

Another histogram example

Boxplots

- Boxplots are also appropriate for data on an interval or ratio scale.
- They depict the median, the interquartile range, and the range of the data.

Scatterplots

- Scatterplots are widely used for visualising the relationship between two variables.
- They define each point in a dataset by two values (from the two variables of interest) and plot each point on a pair of axes.

Scatterplot example

Line graphs

- Line graphs are also used to display the relationship between two variables, usually between time on the x-axis and some other variable on the y-axis.
- They show a trend over time.

Line graph example

Introduction to R

- R is a programming language and software environment for statistical computing and graphics.
- It is increasingly used in both academia and industry.
- It is user-developed and freely available.
- It can perform most of the tasks available in statistical software.

Why use R

- Advanced statistical analysis
- Flexible
- Free
- Runs on almost any standard operating system
- Open source project
- Frequent releases and active development
- Extensive documentation, tutorials, webpages

Basic commands in R

Simple calculations

```
> 5 + 3
```

- Variable assignment
- > age <- 28
- Using existing functions for calculations
- > sqrt(225)
- Creating a vector
- > weekly_sales <- c(200, 120, 130, 125, 220)</pre>
- Getting information out of a vector
- > weekly_sales[3]
- > weekly_sales[weekly_sales > 180]

Basic commands in R

- Installing packages
- > install.packages("somepackage")
- Loading packages
- > library("somepackage")
- Setting working directory
- > setwd("~/myDirectory")
- Reading a csv file
- > data <- read.csv("somedata.csv")</pre>

Getting a feel for the data

- Get the structure of the object
- > str(data)
- Get the head of the object
- > head(data)
- Get the names of the object
- > names(data)
- Get the entire object
- > data

Calculating summary statistics

- Calculate the mean of a variable
- > mean(data\$someVariable)
- Calculate the median of a variable
- > median(data\$someVariable)
- Estimate the population variance of a variable
- > var(data\$someVariable)
- Estimate the population standard deviation of a variable
- > sd(data\$someVariable)

Calculating summary statistics

- Get an overall summary of an object or a variable
- > summary(data)
- > summary(data\$someVariable)
- Calculate descriptive statistics separately for each group
- > by(data, data\$someVariable, summary)

Visualising data

- Plot a variable (the type of graph generated depends on the type of the variable)
- > plot(data\$someVariable)
- Draw a histogram for some variable
- > hist(data\$someVariable)
- Draw a boxplot for some variable
- > boxplot(data\$someVariable)
- Draw a bar chart for some variable
- > freq <- table(data\$someVariable)</pre>
- > barplot(freq)

Visualising data

- Draw a pie chart for some variable
- > freq <- table(data\$someVariable)</pre>
- > pie(freq)
- Draw a scatterplot for two variables
- > plot(data\$variable1, data\$variable2)

Conclusions

- What kind of visualisations are possible depends on the kind of data.
 - Qualitative data: bar charts and pie charts
 - Quantitative data: histograms and box plots
 - Bivariate data: scatter plots and line graphs
- R is a programming language for statistical analysis of data.
 - We covered some basics in R
 - More in the labs!