

AutoML

- Pratik BhavsarSenior Data ScientistMorningstar

*Hyperparameter Parameter Optimization (HPO)

*Combined Algorithm Selection and Hyperparameter optimization (CASH)

AutoML -> Pipeline Optimisation

- Data preprocessing
 - · rescaling of the inputs
 - imputation of missing values
 - one-hot encoding*
 - balancing of the target classes
- Feature preprocessing methods
 - feature selection
 - kernel approximation
 - matrix decomposition
- Algorithms
 - Logistic
 - SVM
 - RandomForest
- Hyper-parameters

```
x^* = \underset{x \in X}{\operatorname{argmax}} P(x)
```

```
Hyper-parameters for RandomForest
```

```
{'bootstrap': [True, False],
  'max_depth': [10, 20, 30, 40, 50, 100, None],
  'max_features': ['auto', 'sqrt'],
  'min_samples_leaf': [1, 2, 4],
  'min_samples_split': [2, 5, 10],
  'n_estimators': [200, 400, 600, 800, 1000, 2000]}
```

Search space - Scikit-learn parameters

name	$\#\lambda$	cat (cond)	cont (cond)
AdaBoost (AB)	4	1 (-)	3 (-)
Bernoulli naïve Bayes	2	1 (-)	1 (-)
decision tree (DT)	4	1 (-)	3 (-)
extreml. rand. trees	5	2 (-)	3 (-)
Gaussian naïve Bayes	-	-	-
gradient boosting (GB)	6	-	6 (-)
kNN	3	2 (-)	1 (-)
LDA	4	1 (-)	3 (1)
linear SVM	4	2 (-)	2 (-)
kernel SVM	7	2 (-)	5(2)
multinomial naïve Bayes	2	1 (-)	1 (-)
passive aggressive	3	1 (-)	2 (-)
QDA	2	- 1	2 (-)
random forest (RF)	5	2 (-)	3 (-)
Linear Class. (SGD)	10	4 (-)	6 (3)

name	$\#\lambda$	cat (cond)	cont (cond)
extreml. rand. trees prepr	. 5	2 (-)	3 (-)
fast ICA	4	3 (-)	1 (1)
feature agglomeration	4	3 ()	1 (-)
kernel PCA	5	1 (-)	4(3)
rand. kitchen sinks	2	-	2 (-)
linear SVM prepr.	3	1 (-)	2 (-)
no preprocessing	-	-	-
nystroem sampler	5	1 (-)	4(3)
PCA	2	1 (-)	1 (-)
polynomial	3	2 (-)	1 (-)
random trees embed.	4	-	4 (-)
select percentile	2	1 (-)	1 (-)
select rates	3	2(-)	1 (-)
one-hot encoding	2	1 (-)	1 (1)
imputation	1	1 (-)	-
balancing	1	1 (-)	-
rescaling	1	1 (-)	-

Human error = bad model

- Missed predicting potential fraud
- Wrong diagnosis/prognosis
- Incorrect Recommendations
- Missed Churn Signal
- Promotional email to a wrong customer

Need For AutoML?

- Technical advantage
 - Eliminating human errors
 - Auto train models in production
 - Better models
 - Quick baseline solution
 - Hackathons
 - New project
 - Understand which pipeline works in which case
- Business advantage
 - Lack of data scientist
 - Faster development
 - Get business edge buy deploying models faster

Types of AutoML(1/3)

Features

- Feature engineering ex. DFS
- HPO(Hyper parameter optimisation) ex.hyperopt
- End-to-end ex. tpot
- Optimisation Algorithm
 - Genetic algorithm ex. tpot
 - Bayesian optimisation ex. auto-sklearn
- Algorithm search
 - Classical algorithms ex. tpot
 - Neural architecture ex. auto-keras

Types of AutoML(2/3)

- Problem solvers
 - Regression
 - Classification
 - Time-series ex. h2o
 - NLP
 - Classical
 - Embedding
- Interface
 - Non-UI
 - UI (user-interface) ex. h20 driverless

Types of AutoML(3/3)

- Pricing
 - Free ex. tpot
 - Paid ex. All cloud and H2O driverless Al
- Language
 - Python ex. tpot, hyperopt, h2o
 - R ex. h2o
 - Java ex. weka
- Infrastructure integration
 - Library based ex. tpot, h2o, auto-sklearn
 - Cloud integrated ex. AWS Sagemaker, Microsoft Azure ML, Google AutoML

Meta-learning

Learning to Learn

Task Meta-features

Name	Formula	Rationale	Variants
Nr instances	\overline{n}	Speed, Scalability [99]	p/n, $log(n)$, $log(n/p)$
Nr features	p	Curse of dimensionality [99]	log(p), % categorical
Nr classes	c	Complexity, imbalance [99]	ratio min/maj class
Nr missing values	m	Imputation effects [70]	% missing
Nr outliers	0	Data noisiness [140]	o/n
Skewness	$\frac{\frac{E(X-\mu_X)^3}{\sigma_X^3}}{\frac{E(X-\mu_X)^4}{\sigma_X^4}}$	Feature normality [99]	$\min, \max, \mu, \sigma, q_1, q_3$
Kurtosis	$\frac{E(X-\mu_X)^4}{\sigma_Y^4}$	Feature normality [99]	$_{\min,\max,\mu,\sigma,q_1,q_3}$
Correlation	$\rho_{X_1X_2}$	Feature interdependence [99]	$\min, \max, \mu, \sigma, \rho_{XY}[157]$
Covariance	$cov_{X_1X_2}$	Feature interdependence [99]	$\min, \max, \mu, \sigma, cov_{XY}$
Concentration	$ au_{X_1X_2}$	Feature interdependence [72]	$\min, \max, \mu, \sigma, \tau_{XY}$
Sparsity	sparsity(X)	Degree of discreteness [142]	$_{ ext{min,max},\mu,\sigma}$
Gravity	gravity(X)	Inter-class dispersion [5]	
ANOVA p-value	$p_{val_{X_1X_2}}$	Feature redundancy [70]	$p_{val_{XY}}[157]$
Coeff. of variation	$\frac{\sigma_Y}{\mu_Y}$	Variation in target [157]	
PCA ρ_{λ_1}	$\frac{\frac{\sigma_Y}{\sigma_Y}}{\sqrt[]{\frac{\lambda_1}{1+\lambda_1}}}$	Variance in first PC [99]	$\frac{\lambda_1}{\sum_i \lambda_i}$ [99]
PCA skewness		Skewness of first PC [48]	PCA kurtosis [48]
PCA~95%	$rac{dim_{95\%var}}{n}$	Intrinsic dimensionality [9]	
Class probability	$P(\mathtt{C})^{^{P}}$	Class distribution [99]	\min, \max, μ, σ

tpot

Genetic algorithms

- P Pre-processing
- A Algorithm
- H Hyper-paramters

https://natureofcode.com/book/chapter-9-the-evolution-of-code/

tpot – pipeline

Figure 8.1: An example tree-based pipeline from TPOT. Each circle corresponds to a machine learning operator, and the arrows indicate the direction of the data flow.

tpot - parameters

- generations The default is 100.
- **population_size**: The default is 100.
- offspring_size: The default is 100.
- mutation_rate: Default is 0.9
- crossover_rate: Default is 0.1
- cv: Cross-validation strategy used when evaluating pipelines. The default is 5.

- scoring:
 accuracy, average_precision, roc_
 auc, recall, etc. The default
 is accuracy.
- max_time_mins
- max_eval_time_min

The default is 5.

- early_stop
- n_jobs
- **Subsample:** : Must be in the range (0.0, 1.0]. The default is 1.

HPO

- Manual
- Grid search
- Random search
- Bayesian optimization

Hyper-parameters for RandomForest

```
{'bootstrap': [True, False],
   'max_depth': [10, 20, 30, 40, 50, 100, None],
   'max_features': ['auto', 'sqrt'],
   'min_samples_leaf': [1, 2, 4],
   'min_samples_split': [2, 5, 10],
   'n_estimators': [200, 400, 600, 800, 1000, 2000]}
```

Bayesian Optimisation

Auto-sklearn

Hyperband - SuccesiveHalving

BOHB(Bayesian Optimisation – Hyperband)

AutoML challenge (2017-2018)

*ML Freiburg lab is the world champion in automatic machine learning (AutoML)

Auto-sklearn

- 110 conditional hyperparameters
 - 15 classification algorithms
 - 14 preprocessing methods
 - 4 data preprocessing methods
- Data preprocessing
 - rescaling of the inputs
 - imputation of missing values
 - one-hot encoding*
 - balancing of the target classes

14 feature preprocessing methods

- feature selection
- matrix decomposition
- embeddings
- polynomial feature expansion
- classifier for feature selection**

^{*}Since scikit-learn methods are restricted to numerical input values, we always transformed data by applying a one-hot encoding to categorical features. In order to keep the number of dummy features low, we configured a percentage threshold and a value occurring more rarely than this percentage was transformed to a special other value.

^{**} L1-regularized linear SVMs fitted to the data can be used for feature selection by eliminating features corresponding to zero-valued model coefficients.

Auto-sklearn

name	$\#\lambda$	cat (cond)	cont (cond)
AdaBoost (AB)	4	1 (-)	3 (-)
Bernoulli naïve Bayes	2	1 (-)	1 (-)
decision tree (DT)	4	1 (-)	3 (-)
extreml. rand. trees	5	2 (-)	3 (-)
Gaussian naïve Bayes	-	-	
gradient boosting (GB)	6	-	6 (-)
kNN	3	2 (-)	1 (-)
LDA	4	1 (-)	3 (1)
linear SVM	4	2 (-)	2 (-)
kernel SVM	7	2 (-)	5(2)
multinomial naïve Bayes	2	1 (-)	1 (-)
passive aggressive	3	1 (-)	2 (-)
QDA	2	- 1	2 (-)
random forest (RF)	5	2 (-)	3 (-)
Linear Class. (SGD)	10	4 (-)	6 (3)

name	$\#\lambda$	cat (cond)	cont (cond)
extreml. rand. trees prepr	r. 5	2 (-)	3 (-)
fast ICA	4	3 (-)	1 (1)
feature agglomeration	4	3 ()	1 (-)
kernel PCA	5	1 (-)	4(3)
rand. kitchen sinks	2	-	2 (-)
linear SVM prepr.	3	1 (-)	2 (-)
no preprocessing	-	-	-
nystroem sampler	5	1 (-)	4(3)
PCA	2	1 (-)	1 (-)
polynomial	3	2 (-)	1 (-)
random trees embed.	4	-	4 (-)
select percentile	2	1 (-)	1 (-)
select rates	3	2 (-)	1 (-)
one-hot encoding	2	1 (-)	1 (1)
imputation	1	1 (-)	-
balancing	1	1 (-)	-
rescaling	1	1 (-)	-

Comparison – 57 Classification Tasks

https://arxiv.org/pdf/1808.06492.pdf

Comparison – 30 Regression Tasks

https://arxiv.org/pdf/1808.06492.pdf

AutoML for Neural Networks

- Neural Architecture Search(NAS)
- Efficient Neural Architecture Search
- Differentiable architecture search (
- RL
 - AmoebaNet
 - Adanet

Papers so far...

Figure 8. ENAS cells discovered in the micro search space.

AutoML Comparison

AUTO ML SOLUTIONS

As of May 2018

SOLUTIONS	OPEN SOURCE?	# CONTRIBUTORS	# STARS	BACKEND FRAMEWORKS	OPTIMIZATION ALGORITHM	OTHER FEATURES
Amazon AWS Machine learning	No	-	-	TensorFlow, PyTorch	-	cloud, access to GPUs, can be combined with other tools (data storage, querying)
<u>Autosklearn</u>	Yes	25	2,218	Sklearn	bayesian	-
<u>AutoWeka</u>	Yes	4	124	Java WEKA ML library	bayesian grid search	-
<u>DataRobot</u>	No	-	-	-	-	handles deployment, cloud
<u>Google Cloud</u> <u>HyperTune</u>	No	-	-	Tensorflow	bayesian	cloud, data exploration and preparation through Google Cloud Datalab
<u>H2O</u>	Yes	103	3,075	H2O	grid search	can be distributed
H2O Driverless	No	-	-	H2O	-	performs features engineering
<u>Hyperopt</u>	Yes	25	2,078	-	random tree parzen estimator	-
IBM Watson	No	-	-	-	-	-
<u>MLBox</u>	Yes	3	482	Sklearn, Keras, XGBoost	tree parzen estimator	basic data pre- processing, feature selection
<u>PyBrain</u>	Yes	32	2,544	homemade + libraries (LIBSVM)	metaheuristics grid search	-
TPOT	Yes	32	4,002	sklearn	genetic	-

https://hackernoon.com/a-brief-overview-of-automatic-machine-learning-solutions-automl-2826c7807a2a

tpot - example

Progress of AutoML

AutoML Vs Data Scientists

- Narrow Al engineers
- Domain expertise
- Exploit transfer learning

AutoML Vs Researchers

Future of AutoML

Freiburg AutoML group www.ml4aad.org

Thanks for coming!

Feedback!

https://tinyurl.com/pydata-feedback

Slides

https://github.com/pydatamumbai

https://github.com/bhavsarpratik/automl

Telegram group

https://tinyurl.com/pydata-telegram

My blog ml-dl.com

Connect

twitter.com/pratikbhavsar11
linkedin.com/in/bhavsarpratik

Genetic algorithms

- Genetic Algorithms properties:
 - **Selection**: You have a population of possible solutions to a given problem and a fitness function. At every iteration, you evaluate how to fit each solution with your fitness function.
 - **Crossover**: Then you select the fittest ones and perform crossover to create a new population.
 - **Mutation**: You take those children and mutate them with some random modification and repeat the process until you get the fittest or best solution.

START:

Step 1: *Initialize*. Create a population of N elements, each with randomly generated DNA.

LOOP:

- Step 2: **Selection**. Evaluate the fitness of each element of the population and build a mating pool.
- Step 3: *Reproduction*. Repeat N times:

 - a) Pick parents with probability according to relative fitness.
 b) Crossover—create a "child" by combining the DNA of these parents.
 c) Mutation—mutate the child's DNA based on a given probability.

 - d) Add the new child to a new population.

Step 4. Replace the old population with the new population and return to Step 2.

HPO(Hyper-parameter Optimisation)

- Hyperopt, including the TPE algorithm
- Sequential Model-based Algorithm Configuration (SMAC)
- Spearmint
- BOHB: Bayesian Optimization combined with HyperBand
- RoBO Robust Bayesian Optimization framework
- SMAC3 a python re-implementation of the SMAC algorithm

Comparison – House Prices Challenge

https://hackernoon.com/a-brief-overview-of-automatic-machine-learning-solutions-automl-2826c7807a2a