Skip to Main Content

Search

Quang Minh Vũ

- 1. Neural Networks and Deep Learning
- 2. <u>Week 4</u>
- 3. Key Concepts on Deep Neural Networks

PreviousNext

- Deep Neural Network
- Lecture Notes (Optional)
- Quiz

0

Quiz: Key Concepts on Deep Neural Networks

10 questions

- Programming Assignments
- References & Acknowledgments

Key Concepts on Deep Neural Networks

Quiz20 minutes • 20 min

Submit your assignment

Due May 2, 1:59 PM +07May 2, 1:59 PM +07

Attempts 3 every 8 hours

Try again

Receive grade

To Pass 80% or higher

Your grade

80%

View Feedback

We keep your highest score

Like

Dislike

Report an issue

Back

Key Concepts on Deep Neural Networks

Graded Quiz • 20 min

DueMay 2, 1:59 PM +07

Congratulations! You passed!

Grade received 80%

To pass 80% or higher

Go to next item

Key Concepts on Deep Neural Networks

Latest Submission Grade 80%

1.

Question 1

What is stored in the 'cache' during forward propagation for latter use in backward propagation?

1/1 point

 $Z^{[l]}Z_{[l]}$

0

b^{[l]}*b*[/]

C

 $A^{[l]}A_{[l]}$

 $\overline{\Box}$

 $W^{[1]}W_{[I]}$

Correct

Yes. This value is useful in the calculation of $dW^{\{[l]\}}dW_{[l]}$ in the backward propagation.

2.

Question 2

Among the following, which ones are "hyperparameters"? (Check all that apply.)

1/1 point

activation values $a^{[l]}a[l]$

number of iterations

Correct

•

size of the hidden layers $n^{\{[l]\}n[l]}$

Correct

~

number of layers ${\it LL}$ in the neural network

Correct

weight matrices $W^{\{[l]\}}W_{[l]}$

~

learning rate α

Correct

П

bias vectors $b^{\{[l]\}}b_{[l]}$

3.

Question 3

Which of the following is more likely related to the early layers of a deep neural network?

1/1 point

Correct

Yes. The early layer of a neural network usually computes simple features such as edges and lines.

4.

Question 4

 $\label{lower} \mbox{Vectorization allows you to compute forward propagation in an LL-layer neural network without an explicit for-loop (or any other explicit iterative loop) over the layers l=1, 2, ...,L. True/False?}$

1/1 point

0

True

(

False

Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines $(a^{[2]} = g^{[2]}(z^{[2]})a_{[2]} = g_{[2]}(z_{[2]}), z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}z_{[2]} = W_{[2]}a_{[1]} + b_{[2]}, ...)$ in a deeper network, we cannot avoid a for loop

iterating over the layers: $(a^{[l]} = g^{[l]}(z^{[l]})a_{[l]} = g_{[l]}(z_{[l]}), z^{[l]} = W^{[l]}a^{[l-1]} + b^{[l]}z_{[l]} = W_{[l]}a_{[l-1]} + b_{[l]}, ...).$

5.

Question 5

Assume we store the values for $n^{[l]}n[l]$ in an array called layer_dims, as follows: layer_dims = $[n_xnn_x n_4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units, and so on. Which of the following forloops will allow you to initialize the parameters for the model?

1/1 point

```
for i in range(1, len(layer_dims)/2):

parameter['W' + str(i)] = np.random.randn(layer_dims[i], layer_dims[i-1]) * 0.01

parameter['b' + str(i)] = np.random.randn(layer_dims[i], 1) * 0.01

for i in range(len(layer_dims)-1):

parameter['W' + str(i+1)] = np.random.randn(layer_dims[i+1], layer_dims[i]) * 0.01

parameter['b' + str(i+1)] = np.random.randn(layer_dims[i+1], 1) * 0.01

for i in range(len(layer_dims)):

parameter['W' + str(i+1)] = np.random.randn(layer_dims[i+1], layer_dims[i]) * 0.01

parameter['b' + str(i+1)] = np.random.randn(layer_dims[i+1], 1) * 0.01

for i in range(len(layer_dims)-1):

parameter['W' + str(i+1)] = np.random.randn(layer_dims[i], layer_dims[i+1]) * 0.01

parameter['b' + str(i+1)] = np.random.randn(layer_dims[i+1], 1) * 0.01

Correct

Yes. This iterates over 0, 1, 2, 3 and assigns to W^{[1]} W[I] the shape (n^{[1]}n[I], n^{[1-1]}n[I-1]).
```

6.

Ouestion 6

Consider the following neural network.

How many layers does this network have?

0/1 point

0

The number of layers ${\bf L}L$ is 5. The number of hidden layers is 4.

The number of layers ${\bf L}L$ is 4. The number of hidden layers is 3.

•

The number of layers LL is 3. The number of hidden layers is 3.

0

The number of layers LL is 4. The number of hidden layers is 4.

Incorrect

No. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

7.

Question 7

During forward propagation, for the value of $A^{[l]}A_{[l]}$ the value is used of $Z^{[l]}Z_{[l]}$ with the activation function $g^{[l]}g_{[l]}$. During backward propagation we calculate $dA^{[l]}dA_{[l]}$ from $Z^{[l]}Z_{[l]}$.

0 / 1 point

(

True

0

False

Incorrect

Incorrect. Correct. During backward propagation we are interested in computing $dW^{[l]}dW_{[l]}$ and $db^{[l]}db_{[l]}$. For that we use $g'^{L}g'_{L}$, $dZ^{[l]}dZ_{[l]}$, $Z^{[l]}Z_{[l]}$, and $W^{[l]}W_{[l]}$.

8.

Ouestion 8

A shallow neural network with a single hidden layer and 6 hidden units can compute any function that a neural network with 2 hidden layers and 6 hidden units can compute. True/False?

1/1 point

False

0

True

Correct

Correct. As seen during the lectures there are functions you can compute with a "small" L-layer deep neural network that shallower networks require exponentially more hidden units to compute.

9.

Question 9

Consider the following 2 hidden layers neural network:

Which of the following statements are true? (Check all that apply).

In point $b^{\{[1]\}}b_{[1]} \text{ will have shape } (1,3)$ $b^{\{[1]\}}b_{[1]} \text{ will have shape } (4,1)$ v $b^{\{[1]\}}b_{[1]} \text{ will have shape } (3,1)$ Correct Yes. More generally, the shape of $b^{\{[1]\}}b_{[1]}$ is $(n^{\{[1]\}}n_{[1]},1)$. $W^{\{[2]\}}W_{[2]} \text{ will have shape } (3,1)$ $w^{\{[2]\}}W_{[2]} \text{ will have shape } (1,3)$ v $W^{\{[1]\}}W_{[1]} \text{ will have shape } (3,4)$

Yes. More generally, the shape of $W^{[l]}W_{[l]}$ is $(n^{[l]}n_{[l]}, n^{[l-1]})n_{[l-1]}$.

Yes. The number of rows in $A^{\{1\}}A_{[1]}$ corresponds to the number of units in the l-th layer.