AMENDMENTS TO THE CLAIMS:

The listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) A method of allocating queues in a network device, the method comprising:

receiving a packet at an ingress port of a[[the]] network device;

making a classification for the [[an]] incoming packet according to a virtual queue, the virtual queue configured to hold information associated with the packet, the classification comprising at least one of an egress port number or an ingress port number, wherein the ingress port has a plurality of virtual queues;

determining, by searching a memory of allocated physical queues, whether a previously-allocated <u>physical</u> queue exists for the classification;

allocating, at the ingress port, a <u>physical</u> queue for the classification <u>when</u> if it is determined that no previously-allocated <u>physical</u> queue exists for the classification;

associating the physical queue with the ingress port;

storing control information associated with relating to the packet in the allocated physical queue; and

saving packet payload information in a different location from that of the allocated queue; and

scheduling the packet for transmission between the ingress port and one of a plurality of egress ports of the network device.

- 2. (Canceled)
- 3. (Currently Amended) The method of claim 1, wherein the <u>virtual</u> queue is a virtual output queue.
 - 4. (Currently Amended) The method of claim 1, further comprising: detecting when a previously-allocated <u>physical</u> queue is empty; and de-allocating the empty previously-allocated <u>physical</u> queue.
- 5. (Currently Amended) The method of claim 1, wherein the <u>virtual</u> queue is associated with an ingress port.

- 6. (Currently Amended) The method of claim 1, wherein the classification is based on one or more of a packet source, a packet destination, an ingress port number, an egress port number, or a packet priority.
- 7. (Previously Presented) The method of claim 1, wherein the classification further comprises a priority number.
- 8. (Previously Presented) The method of claim 1, wherein the determining step comprises addressing the memory of allocated physical queues in a single cycle.
- 9. (Currently Amended) The method of claim 4, further comprising updating a memory when a <u>physical</u> queue is de-allocated, wherein the memory indicates whether the classification corresponds to the previously-allocated <u>physical</u> queue.
- 10. (Currently Amended) The method of claim 4, wherein the network device further comprises a free list that indicates <u>physical</u> queues available for allocation and wherein the method further comprises updating the free list when the previously-allocated <u>physical</u> queue is de-allocated.
 - 11. (Currently Amended) A network device, comprising:

means for receiving a packet at an ingress port of the network device;

means for making a classification for the[[an]] incoming packet according to a virtual queue, the virtual queue configured to hold information associated with the packet, the classification comprising at least one of an egress port number or an ingress port number, wherein the ingress port has a plurality of virtual queues;

means for determining, by searching a memory of allocated physical queues, whether a previously-allocated <u>physical</u> queue exists for the classification;

means for allocating, at the ingress port, a <u>physical</u> queue for the classification <u>when if it</u> is determined that no previously-allocated <u>physical</u> queue exists for the classification;

means for associating the physical queue with the ingress port;

means for storing control information relating to associated with the packet in the allocated physical queue and for saving packet payload information in a different location from that of the allocated queue; and

means for scheduling the packet for transmission between the ingress port and one of a plurality of egress ports of the network device.

- 12. (Currently Amended) The network device of claim 11, wherein the <u>virtual queue</u> is associated with an ingress port of the network device.
- 13. (Currently Amended) The network device of claim 11, wherein the <u>virtual queue</u> is a virtual output queue.
 - 14. (Currently Amended) The network device of claim 11, further comprising: means for detecting when the <u>physical queue</u> is empty; and means for de-allocating the empty <u>physical queue</u>.

15. (Canceled)

- 16. (Currently Amended) The network device of claim 11, wherein the classification is based on <u>one or more of</u> a packet source, a packet destination, an <u>ingress port number</u>, an egress <u>port number</u>, or a packet priority.
- 17. (Previously presented) The network device of claim 11, wherein the classification comprises a priority number.
- 18. (Previously presented) The network device of claim 11, wherein the determining means comprises means for addressing the memory.
- 19. (Currently Amended) The network device of claim 14, further comprising means for updating a memory when the <u>physical queue</u> is de-allocated, wherein the memory indicates whether the classification corresponds to the previously-allocated <u>physical queue</u>.
- 20. (Currently Amended) The network device of claim 14, wherein the network device further comprises a free list that indicates <u>physical queues</u> available for allocation.
- 21. (Currently Amended) The network device of claim 20, further comprising means for updating the free list when the previously-allocated <u>physical</u> queue is de-allocated.

22. (Currently Amended) A computer program embodied in a machine computer readable storage medium, the computer program configured to control a network device to perform steps comprising:

receiving a packet at an ingress port of the network device;

making a classification for the[[an]] incoming packet according to a virtual queue, the virtual queue configured to hold information associated with the packet, the classification comprising at least one of an egress port number or an ingress port number, wherein the ingress port has a plurality of virtual queues;

determining, by searching a memory of allocated physical queues, whether a previously-allocated <u>physical</u> queue exists for the classification;

allocating, at the ingress port, a <u>physical</u> queue for the classification <u>when</u> if it is determined that no previously-allocated <u>physical</u> queue exists for the classification;

associating the physical queue with the ingress port;

storing control information relating to associated with the packet in the allocated physical queue; and

saving packet payload information in a different location from that of the allocated queue; and

scheduling the packet <u>for transmission</u> between the ingress port and one of a plurality of egress ports of the network device.

- 23. (Currently Amended) A network device, comprising:
- a plurality of ingress ports configured to receive an incoming packet;
- a classification engine for making a classification for the incoming packet according to a virtual queue in which the packet, or information relating to the packet, will be stored, wherein the virtual queue is one of a plurality of virtual queues associated with an ingress port that receives the incoming packet, the classification comprising at least one of an egress port number or an ingress port number;
- a content addressable memory that indicates whether a previously-allocated <u>physical</u> queue exists for the classification; and
 - a processor configured to do the following:

allocate, at an ingress port of the plurality of ingress ports, a physical queue for the classification when if it is determined that no previously-allocated physical queue exists for the classification;

associate the physical queue with the ingress port;

store control information relating to <u>associated with the packet in the allocated physical queue; and <u>and the store associated with the packet in the allocated physical queue; and the store associated with the packet in the allocated physical queue; and the store associated with the packet in the allocated physical queue; and the store associated with the packet in the allocated physical queue; and the store associated with the packet in the allocated physical queue; and the store associated with the packet in the allocated physical queue; and the store associated with the packet in the allocated physical queue; and the store associated with the packet in the allocated physical queue; and the store as a store a</u></u>

save other packet information in a different location from that of the allocated queue;

schedule the packet for transmission between the ingress port and one of a plurality of egress ports of the network device.

- 24. (Previously Presented) The network device of claim 23, wherein the content addressable memory is searchable in one clock cycle.
- 25. (Original) The network device of claim 23, wherein the memory is a random access memory.

26. – 28. (Canceled)

29. (Currently Amended) The method of claim 1, further comprising:

determining a first number of packets that the [[an]] ingress port of the network device can receive; and

allocating a second number of physical queues for the ingress port, wherein the second number is less than or equal to the first number.

- 30. (Previously presented) The method of claim 29, wherein the network device operates according to a Fibre Channel protocol and wherein the determining step is based on a number of buffer-to-buffer credits granted by the ingress port.
 - 31. (Previously presented) The method of claim 29, further comprising: identifying a category for each packet arriving at the ingress port; correlating the category to an existing physical queue; and storing packet information in the existing physical queue.

- 32. (Original) The method of claim 29, further comprising: identifying a category for each packet arriving at the ingress port; and assigning the category to a physical queue, wherein the network device allocates a new physical queue only when there is no existing physical queue for the category.
- 33. (Previously presented) The network device of claim 31, wherein the packet information comprises control information selected from a list consisting of destination information, source information, priority information, payload type information and payload size information.

34-37. (Canceled)