L _	Date / /
	·
	Allen Ben Philipose
	18BIS00 43
	ECE-1018: Lab
	Assessment - 4
1	Guaphing convolution of 2 continuous time signals
	y(t) = tei(t) * tei(t)
a	a] y[n] = u[n] * u[n]
	b] $y[n] = u[n+a] * lect_3[n]$
	of $y[n] = lect_1[n] * lect_2[n]$
	d] $y(n) = lect_2[n] * lect_4[n]$
	e] $y[n] = \partial xect_4[n] * (7/8)nu[n]$
	f] $y[n] = lect_3[n] * \delta_{14}[n]$
	g] $y[n] = lect, [n] \times sin(2n\pi/q)$
	h] $y[n] = lect_2[n] * sin(2n\pi/9)$
	i) $y[n] = lect_{4}[n] * sin(antr/q)$
	$j] y[n] = 2\cos(2n\pi/7) * (7/8) nu[n]$
	and comment on observations

<u> Assessment - 4</u>

1.

```
Editor - C:\Users\batch1\Desktop\Allen\T1.m
            T2.m ×
                     T3.m
                               impND.m
                                           rectD.m
                                                      Untitled7
                                                                  +
   T1.m ×
 1 -
        clc
 2 -
        clear all
        Ts = 0.01;
        nx = [-100:99]';
 5 -
        nh = nx;
 6 -
        x = tri(nx*Ts);
        h = tri(nh*Ts);
 8 -
        ny = [nx(1) + nx(1):nx(end) + nh(end)]';
        y = Ts*conv(x,h);
 9 -
10 -
        p = plot((ny*Ts), y, 'k');
11 -
        set(p,'linewidth',2);
12 -
        grid on;
13 -
        xlabel('Time t(s)');
14 -
        ylabel('Y');
15 -
        title('Convolution');
16 -
        set (gca);
17
18
        %xlabel('Time, {\it t}(s)','FontName','Times','FontSize',18);
19
        %ylabel('Y ({\it t})','FontName','Times','FontSize',18);
20
        %title('Convolution', 'FontName', 'Times', 'FontSize', 12);
        %set(gca, 'FontName', 'Times', 'FontSize', 14);
21
22
```



```
Editor - C:\Users\batch1\Desktop\Allen\T3.m

impND.m × rectD.m × T3.m × T4.m × T5.m × +

1 - clc

2 - clear all

3 - n = -20:1:20;

4 - r1 = usD(n);

5 - r2 = usD(n);

6 - y = conv(r2,r1);

7 - ny = (n(1)+n(1))+(0:(length(n)+length(n)-2));

8 - stem(ny,y,'r');

9 - grid on;
```



```
Editor - C:\Users\batch1\Desktop\Allen\T4.m

impND.m × rectD.m × T3.m × T4.m × T5.m × +

1 - clc
2 - clear all
3 - n = -20:1:20;
4 - u1 = usD(n);
5 - u2 = usD(n+2);
6 - y = conv(u1,u2);
7 - ny = (n(1)+n(1))+(0:(length(n)+length(n)-2));
8 - stem(ny,y,'c');
9 - grid on;
```



```
Z Editor - C:\Users\batch1\Desktop\Allen\T5.m
   impND.m × rectD.m × T3.m ×
                                   T4.m × T5.m × +
1 -
       clc
2 -
       clear all
       n = -20:1:20;
3 -
       r1 = rectD(2,n);
       r2 = rectD(2,n);
       y = conv(r1,r2);
       ny = (n(1)+n(1))+(0:(length(n)+length(n)-2));
8 -
      stem(ny,y,'m');
9 -
       grid on;
```



```
Z Editor - C:\Users\batch1\Desktop\Allen\T6.m
   impND.m × rectD.m × T3.m ×
                                   T4.m ×
                                            T5.m ×
                                                    T6.m × +
1 -
       clc
2 -
       clear all
       n = -20:1:20;
       r1 = rectD(2,n);
5 -
       r2 = rectD(4,n);
       y = conv(r1, r2);
       ny = (n(1)+n(1))+(0:(length(n)+length(n)-2));
       stem(ny,y,'r','--');
       grid on;
```



```
Editor - C:\Users\batch1\Desktop\Allen\T7.m
   impND.m × rectD.m × T3.m × T4.m × T5.m × T6.m × T7.m × +
       clc
1 -
2 -
       clear all
       n = -20:1:20;
3 -
       r1 = (7/8).*n.*usD(n);
5 -
       r2 = rectD(4,n);
       y = conv(r1, r2);
       ny = (n(1)+n(1))+(0:(length(n)+length(n)-2));
      stem(ny, y, '-.');
9 -
      grid on;
```



```
Editor - C:\Users\batch1\Desktop\Allen\T8.m
                           T7.m ×
   impND.m × rectD.m ×
                                    T8.m ×
1 -
       clc
2 -
       clear all
3 -
       n = -20:1:20;
4 -
       r1 = impND(14,n);
       r2 = rectD(3,n);
       y = conv(r2, r1);
7 -
       ny = (n(1)+n(1))+(0:(length(n)+length(n)-2));
8 -
       stem(ny,y,'k','--');
9 -
       grid on;
```


2h.


```
Z Editor - C:\Users\batch1\Desktop\Allen\T10.m
   impND.m × rectD.m × T7.m × T8.m × T9.m × T10.m × +
      clc
1 -
2 -
       clear all
3 -
      n = -20:1:20;
      r1 = sin(2*pi*n/9);
5 -
      r2 = rectD(4,n);
      y = conv(r2,r1);
      ny = (n(1)+n(1))+(0:(length(n)+length(n)-2));
8 -
     stem(ny,y,'k');
9 -
      grid on;
```


		Date / /
OŁ	osevations:	
a]	Triangle obtained after convolution. O at	all negative values
	Incleasing: 0 -> 20	
	Decreasing: 20→40	
 67	Guaph exists for some negative values	
	Incleasing: -2→19	
	Deceasing: 19-40	
	peaceon ig.	
c]	On convoluting a sectangular signals of	f same width,
	we get a triangular graph from -5 to	5 lange
	and 'O' otherwise.	
	•	
d]	Evaluating 2 different width lange 10	ectangulai
	signals, teapezoid shaped geaph is obta	ined and
	will have multiple peak points	
e]	Incleasing: 0-15	
	Peaeasing: 15 → 20	
	Zero: Otherwise	
		•
f]	Cuaph exists for 3 lectangle signals for	3
	different time intervals, otherwise zero.	

2	ンOF7シ Page No.	
	Date / /	
	gl signal oscillates as a sinusoidal signal for -2.5 to 2.5,	
	and the graph exists for -20 to 20, zero otherwise.	
	auaph limits are given by the 'n' values given at	
	the beginning of the program.	
	h) Oscillation: $-3 \rightarrow 3$	
	Range: - 25 → 25	
	zero for all the other given values	
	i) As the width of the rectangle increases, the	
	oscillation reduces and the graph expands	
	Range: -30 → 30	
] Unit step = 0, from - 20 to 0, so the graph goes	
	in negative y-axis and from 'o' it oscillates	
	as a sinuspidal signal since cos is present	
	along with samp signal.	
	x —— x — x — x	
	1.11.74 3.	