Лекція 7. Регресійний аналіз - 1

Данило Тавров

22.03.2023

Вступні зауваги

- Сьогодні ми почнемо розглядати регресійний аналіз, якому присвятимо декілька найближчих лекцій
- Корисними матеріалами є:
 - Фундаментальна книжка Econometrics (Bruce Hansen), розділи 2–4, 7 (викладено на диску в загальному каталозі з літературою)
 - Це справді дуже детальна книжка, тому з цих розділів потрібно не все
 - Зверніть увагу тільки на ті моменти, які ми охоплюємо в лекції
 - Книжка Introduction to Econometrics (James H. Stock, Mark W. Watson), розділи 4, 6 (викладено на диску в загальному каталозі з літературою)
- Матеріал цієї лекції частково базується на конспекті лекцій із дисципліни ECON 141 *Econometrics: Math Intensive* (University of California, Berkeley) авторства Віри Семенової та Данила Таврова

План лекції

- Функція умовного сподівання
- 2 Лінійні моделі
- ③ Оцінювання коефіцієнтів лінійної регресії
- Властивості OLS оцінки

Мотивація

- Проводячи аналіз даних, ідеальний результат, який ми воліємо дістати це встановити причиново-наслідковий зв'язок між різними змінними
- Нас цікавить питання: якщо змінити одну змінну на декілька одиниць, то як сильно зміниться інша змінна?
 - Чи впливає кількість учнів у класі на показники в навчанні
 - Чи впливає рівень видатків на поліцію на рівень злочинности
 - Чи впливає рівень освіти на зарплату
 - Чи впливає метод лікування на здоров'я
 - Тощо
- Ці та схожі питання є питаннями ceteris paribus (із латини за інших рівних умов)
- Іншими словами, ми хочемо проаналізувати вплив однієї змінної, вважаючи, що інші змінні залишаються фіксованими
 - Звісно, проаналізувати конкретний вплив просто неможливо, бо в нас немає даних про одні й ті самі одиниці спостереження з і без деякого фактора
 - Наприклад, у працівника є конкретний рівень освіти ми не спостерігаємо, що могло б бути, якби в нього був інший рівень
 - Тому ми можемо давати відповідь тільки в певному «середньому» сенсі
- Регресійний аналіз надзвичайно поширений спосіб (спроби) дати відповідь на такі питання

Сподівання та умовне сподівання (1)

- Розгляньмо дані про зарплати працівників США (березень 2009 р.)¹
- Можемо оцінити щільність погодинних доходів

• Як бачимо, розподіл є суттєво скошеним, тому доцільно перейти до логаритмів

¹Дані Current Population Survey (CPS) про 57 000 домогосподарств з сайту Брюса Хансена Данило Тавров Лекція 7. Регресійний аналіз - 1 22.03.2023

Сподівання та умовне сподівання (2)

- Можемо розглянути сподівання логаритмів зарплат як показник певної «типової» зарплати
- ullet Так, ми маємо, що $\mathbb{E}\left[\ln \mathrm{wage}
 ight] pprox 2.956^2$
- Проте цієї інформації недостатньо, щоб зрозуміти справжню картину
 - Хотілося б знати, як залежить сподівання від різних характеристик працівників
- Наприклад, можна проаналізувати розподіл зарплат для жінок і для чоловіків

- Розподілі доволі подібні, тільки для чоловіків він зсунутий управо
- Можна обчислити відповідні умовні сподівання:

```
wages_summary <- wages %>% group_by(female) %>% summarise(mean_wage = mean(log_hourly_wage))
```

- $\mathbb{E}[\ln \text{wage} \mid \text{female} = 0] \approx 3.058$ • $\mathbb{E}[\ln \text{wage} \mid \text{female} = 1] \approx 2.818$
- 2 До речи, зверніть увагу, що $e^{\mathbb{E}[\ln wage]}$ фактично ϵ середнім геометричним зарплат

 Понад те, ми вже володіємо інструментарієм, який може визначити, чи є ця різниця статистично значущою

```
t.test(log_hourly_wage ~ female, data = wages)

##
## Welch Two Sample t-test
##
## data: log_hourly_wage by female
## t = 43.024, df = 49107, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.225041 0.2503176
## sample estimates:
## mean in group 0 mean in group 1
## 3.057743 2.818332
```

- Як можна бачити, різниця надзвичайно статистично значуща
 - ullet Зверніть увагу на 95% довірчий інтервал: він доволі вузький, бо n=50628
- Оскільки це різниця в логаритмах, потрібно коректно її інтерпретувати
 - Грубо кажучи, середні зарплати чоловіків у $e^{3.06-2.82} pprox 1.27$ разів вищі
 - Ми до цього повернемося в наступній лекції
- Потрібно усвідомлювати, що на цьому етапі ми не можемо нічого сказати про причиново-наслідковий зв'язок між статтю та зарплатою
 - Поки що це просто статистичне спостереження про різницю між двома розподілами

7/71

Сподівання та умовне сподівання (4)

- На цьому наші знання з попередніх лекцій завершуються
- Але цілком очевидно, що також цікавим є питання про умовні сподівання за умов декількох змінних
- Наприклад, можна додати, чи є працівник латиноамериканцем

```
wages_summary_hisp <- wages %>% group_by(female, hisp) %>%
   summarise(mean_wage = mean(log_hourly_wage))
wages_summary_hisp

## # A tibble: 4 x 3
## # Groups: female [2]
```

```
## # Groups: female [2]
## female hisp mean wage
## <dbl> <dbl> <dbl> <dbl> |
## 1 0 0 3.12
## 2 0 1 2.72
## 3 1 0 2.86
## 4 1 1 2.58
```

- Наприклад, $\mathbb{E}\left[\ln \text{wage} \mid \text{female} = 0, \text{hisp} = 0\right] \approx 3.12$
 - Як можна бачити, латиноамериканці заробляють іще менше
 - ullet Можна порівняти ці середні попарно між групами і виконати t-тести
 - Хотілося б мати можливість робити висновки, враховуючи всю інформацію
- Таких сподівань можна побудувати дуже багато
 - Вони проливають світло на особливості зарплат для різних категорій працівників
 - Різниці між (середніми) зарплатами можуть свідчити про дискримінацію
 - Аналіз впливу різних характеристик на зарплату може пояснювати, що важливе для ринку праці тощо

8/71

 При цьому варто розуміти, що просто умовні сподівання самі по собі є всього лише дескриптивними статистиками, і вони нічого не пояснюють

Сподівання та умовне сподівання (5)

- Повернімося до нашого початкового питання
- Ми хотіли з'ясувати, чи є вплив освіти на зарплату
- У цьому датасеті під *освітою* розуміють кількість років, проведених у закладах освіти після дитсадка
 - Так, зокрема, для середньої школи маємо 12
 - Для бакалавра 16 тощо
- Можна збудувати відповідні графіки умовних сподівань

- Спостерігаємо зростання зарплати залежно від рівня освіти
 - До того ж швидкість зростання суттєво вища після школи

Сподівання та умовне сподівання (6)

 Також можна додати інформацію про стать і побудувати графік умовних сподівань окремо для чоловіків і жінок

- Можна бачити, що в жінок (середні) зарплати нижчі для всіх рівнів освіти
- Звісно, можна додати інші характеристики— расу, сімейний стан, місце роботи тощо— і дістати ще детальнішу картину

Функція умовного сподівання

• Це, власне, приводить нас до поняття функції умовного сподівання (conditional expectation function, CEF):

$$\mathbb{E}\left[Y\mid \mathbf{X}=\mathbf{x}\right] = \mathbb{E}\left[Y\mid X_1=x_1,\ldots,X_k=x_k\right] \equiv m(x_1,\ldots,x_k) \tag{1.1}$$

ullet У цьому контексті Y називають **залежною змінною** (dependent variable), X_i — **незалежними змінними** (independent variables)

Функція умовного сподівання як найліпший предиктор (1)

- ullet Ми можемо довести, що СЕF ϵ найліпшим предиктором (best predictor) Y
 - У тому сенсі, що воно мінімізує значення середньоквадратичної похибки:

$$m(\mathbf{X}) = \mathbb{E}\left[Y \mid \mathbf{X}\right] = \operatorname*{arg\,min}_{g} \mathbb{E}\left[(Y - g(\mathbf{X}))^{2}\right] \tag{1.2}$$

- ullet Для цього потрібно, щоб Y мала скінченний момент другого порядку
- Справді,

$$\begin{split} \mathbb{E}\left[(Y-g(\mathbf{X}))^2\right] &= \mathbb{E}\left[(Y-m(\mathbf{X})+m(\mathbf{X})-g(\mathbf{X}))^2\right] \\ &= \mathbb{E}\left[(Y-m(\mathbf{X}))^2\right] + 2\mathbb{E}\left[(Y-m(\mathbf{X}))(m(\mathbf{X})-g(\mathbf{X}))\right] \\ &+ \mathbb{E}\left[(m(\mathbf{X})-g(\mathbf{X}))^2\right] \end{split}$$

Функція умовного сподівання як найліпший предиктор (2)

• За законом ітерованих сподівань,

$$\mathbb{E}\left[(Y - m(\mathbf{X}))(m(\mathbf{X}) - g(\mathbf{X}))\right] = \mathbb{E}\left[\mathbb{E}\left[(Y - m(\mathbf{X}))(m(\mathbf{X}) - g(\mathbf{X}))\right] \mid \mathbf{X}\right]$$

• Можна помітити, що цей вираз дорівнює

$$(m(\mathbf{X}) - g(\mathbf{X})) \cdot \mathbb{E}\left[Y - m(\mathbf{X}) \mid \mathbf{X}\right] \\ = (m(\mathbf{X}) - g(\mathbf{X})) \cdot (\mathbb{E}\left[Y \mid \mathbf{X}\right] - m(\mathbf{X})) \\ = 0$$

- ullet Вираз $\mathbb{E}\left[(Y-m(\mathbf{X}))^2
 ight]$ взагалі не залежить від $g(\mathbf{X})$
- \bullet Відтак $\mathbb{E}\left[(Y-g(\mathbf{X}))^2\right]$ досягатиме мінімуму, якщо $\mathbb{E}\left[(m(\mathbf{X})-g(\mathbf{X}))^2\right]$ буде найменшим
- ullet Тобто якщо $g(\mathbf{X}) = m(\mathbf{X})$

Похибка СЕF (1)

- Цілком очевидно, що СЕГ мінімізує середньоквадратичну похибку
- Для кожного конкретного спостереження в загальному випадку матиме місце **похибка** (error):

$$e = Y - m(\mathbf{X})$$

• Корисна властивість похибки СЕГ випливає з властивостей умовних сподівань:

$$\mathbb{E}\left[e\mid\mathbf{X}\right] = \mathbb{E}\left[Y - m(\mathbf{X})\mid\mathbf{X}\right] = 0$$

Іншими словами, можемо записати таку регресійну модель:

$$Y = m(\mathbf{X}) + e$$

$$\mathbb{E}\left[e \mid \mathbf{X}\right] = 0 \tag{1.3}$$

- ullet Варто зазначити, що ніде не вимагається, щоб $e \perp \!\!\! \perp {f X}$
 - Потрібно тільки, щоб умовне сподівання дорівнювало 0
 - Тобто для кожного значення Х в середньому відхилення від СЕГ нульові

Данило Тавров

Похибка СЕF (2)

• Використавши закон ітерованих сподівань, маємо

$$\mathbb{E}\left[e\right] = \mathbb{E}\left[\mathbb{E}\left[e \mid \mathbf{X}\right]\right] = 0$$

- ullet Отже не тільки умовне, але й безумовне сподівання e дорівнює 0
- Аналогічно можна довести³ таку корисну властивість:

$$\mathbb{E}\left[h(\mathbf{X})e\right] = 0$$

- ullet Відтак Cov $(h(\mathbf{X}),e)=\mathbb{E}\left[h(\mathbf{X})e
 ight]-\mathbb{E}\left[h(\mathbf{X})
 ight]\mathbb{E}\left[e
 ight]=0-0=0$
 - Тобто похибка некорельована з будь-якою функцією від Х
 - При цьому це зовсім не означає, що похибка незалежна від Х
- ullet За принципом контрапозиції відразу випливає, що якщо $\mathbb{E}\left[h(\mathbf{X})e
 ight]
 eq 0$, то обов'язково $\mathbb{E}\left[e\mid\mathbf{X}
 ight]
 eq 0$
- Тобто, зокрема, **якщо похибка корелює з** X_i , то умова про нульове сподівання **не виконується**
- ullet Також можна показати, що якщо $\mathbb{E}\left[|Y|^r
 ight]<\infty$, то й $\mathbb{E}\left[|e|^r
 ight]<\infty$
 - ullet Тобто якщо існує деякий момент для Y, то він існує і для e

³Доведіть!

Безумовне сподівання як найліпший предиктор

ullet Суто формально регресійна модель може взагалі не містити ${f X}$:

$$Y = \mu + e$$
$$\mathbb{E}\left[e\right] = 0$$

- ullet У цьому випадку СЕF ϵ просто $\mathbb{E}\left[Y
 ight]=\mathbb{E}\left[\mu+e
 ight]=\mu$
- ullet Відтак можемо стверджувати, що **безумовне** сподівання є найліпшим предиктором Y у розумінні мінімізації $\mathbb{E}\left[(Y-b)^2\right]$ для всіх $b\in\mathbb{R}$

Причиново-наслідкова інтепретація (1)

- ullet Нехай ми маємо модель $Y=m(\mathbf{X})+e$, $\mathbb{E}\left[e\mid\mathbf{X}
 ight]=0$
 - ullet Це друге рівняння стверджує, що m є саме СЕГ для Y, а не просто якась функція
- Якщо ми віримо, що ця модель є істинною, то тоді ніщо нам не заважає провести аналіз ceteris paribus
 - 3 вісно, може бути таке, що ми думаємо, що X впливає на Y, хоча насправді Y впливає на X
 - У багатьох випадках очевидно, про що мова (зарплата не може впливати на стать тощо)
 - Але ми до цього також повернемося далі в нашому курсі
- Наприклад, можемо мати модель $Y=m(X_1,X_2)+e$, $\mathbb{E}\left[e\mid X_1,X_2\right]=0$ Тут, скажімо, Y зарплата, X_1 освіта, X_2 стать
- Якщо ми вважаємо, що ця модель істинна, то з урахуванням вищенаведених міркувань ми вважаємо, що **жодна інша змінна не корелює** ні з X_1 , ні з X_2
 - Наскільки це реалістично?!
- Менше з тим, якщо ми вважаємо, що це так, то ми можемо говорити про вплив винятково освіти
 - Наприклад, можемо казати, що зміна освіти з 12 до 13 років має наслідком (у середньому) певне збільшення зарплати
 - Кажемо, що стать у цьому випадку є контрольованою (controlled for)
- ullet Тоді $rac{\partial \mathbb{E}[Y|X_1,X_2]}{\partial X_1} = rac{\partial m}{\partial X_1}$
 - ullet Або, якщо X_1 дискретна, то

$$\frac{\partial \mathbb{E}[Y|X_1,X_2]}{\partial X_1} = m(X_1 = a+1,X_2 = b) - m(X_1 = a,X_2 = b)$$
тощо

Причиново-наслідкова інтепретація (2)

- У чому тоді проблема?
- Ми **не знаємо**, чому дорівнює m!
- Щонайменше ми не знаємо функціональної форми
 - Тобто незрозуміло, як рахувати відповідну похідну
- ullet На практиці ми вимушені **припускати**, що m належить певному класу
- Найчастіше таким класом є клас лінійних функцій
 - Якщо лінійна апроксимація доволі непогана, то в цьому проблеми великої немає
 - Зрештою, гладку функцію можна розвинути в ряд Тейлора з довільною точністю
 - Проблеми виникатимуть із оцінювання таких моделей
 - Але спочатку потрібно зрозуміти, що це за моделі

План лекції

- Функція умовного сподівання
- Лінійні моделі
- ③ Оцінювання коефіцієнтів лінійної регресії
- Властивості OLS оцінки

Лінійна СЕГ

- Позначмо $\mathbf{X} = (1, X_1, \dots, X_k)^{\top}$
- Тоді лінійна СЕГ дорівнює

$$\mathbb{E}\left[Y\mid\mathbf{X}\right]\equiv m(\mathbf{X})=\beta_0+\sum_{i=1}^k\beta_kX_k=\mathbf{X}^\top\boldsymbol{\beta}\;,\quad\boldsymbol{\beta}=(\beta_0,\beta_1,\ldots,\beta_k)^\top \tag{2.1}$$

• Відповідно, лінійна регресійна модель дорівнює

$$Y = \mathbf{X}^{\top} \beta + e$$

$$\mathbb{E} [e \mid \mathbf{X}] = 0$$
 (2.2)

Інтерпретація коефіцієнтів лінійної модели

- Нехай наша регресійна модель справді має причиново-наслідкову інтерпретацію
 - ullet Тобто справді $\mathbb{E}\left[e\mid\mathbf{X}
 ight]=0$
- ullet Тоді вплив кожної незалежної змінної X_i , ceteris paribus, просто дорівнює значенню відповідного коефіцієнта eta_i
- «Лінійність» модели означає, що вона лінійна в коефіцієнтах, а не в регресорах
- ullet Наприклад, може бути модель $Y=eta_0+eta_1X_1+eta_2X_2+eta_3X_2^2+e$
 - ullet Суто формально вектор регресорів ullet $\mathbf{X}=(1,X_1,X_2,X_2^2)^{ op}$
 - ullet I сама модель залишається лінійною: $Y = \mathbf{X}^{ op} eta$
- Якщо в моделі присутні нелінійні функції від X_i , то тоді відповідні похідні $\frac{\partial m(\mathbf{X})}{\partial X_i}$ потрібно рахувати окремо
 - ullet Коефіцієнти eta_i вже не будуть мати такої прямої інтерпретації
 - ullet Наприклад, $rac{\partial \mathbb{E}[Y|\mathbf{X}]}{\partial X_2} = eta_2 + 2X_2eta_3$
 - Ми до цього повернемося в наступній лекції

Лінійна модель як апроксимація СЕГ (1)

- ullet Уявімо собі, що в нас тільки одна бінарна змінна X, яка набуває всього двох значень 1 і 0
 - Наприклад, стать
 - Такі змінні називають індикаторними (indicator) або фіктивними (dummy)
- ullet Тоді, вочевидь, ми маємо тільки два значення, $\mathbb{E}\left[Y\mid X=0
 ight]$ і $\mathbb{E}\left[Y\mid X=1
 ight]$
- Відповідно, СЕГ не може не бути лінійною:

$$\mathbb{E}\left[Y \mid X\right] = \beta_0 + \beta_1 X$$

- Тут $\beta_0 = \mathbb{E}\left[Y \mid X=0\right]$, $\beta_1 = \mathbb{E}\left[Y \mid X=1\right] \mathbb{E}\left[Y \mid X=0\right]$
- ullet Між іншим, принципово, що саме закодовано як X=1
 - Якщо X=1 відповідає чоловікам, то тоді eta_0 це умовне сподівання для жінок
 - Якщо ж X=1 відповідає жінкам, то все навпаки

Лінійна модель як апроксимація СЕГ (2)

- Нехай тепер маємо дві бінарні змінні, X_1 та X_2
 - Наприклад, стать і одружений/неодружений
- ullet Тоді може бути всього 4 можливі значення для $\mathbb{E}\left[Y\mid X_{1},X_{2}
 ight]$
- І знову СЕГ **не може не бути лінійною**:

$$\mathbb{E}\left[Y\mid X_1,X_2\right] = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$$

- $\begin{array}{l} \bullet \ \beta_0 = \mathbb{E}\left[Y \mid X_1 = 0, X_2 = 0\right] \\ \bullet \ \beta_1 = \mathbb{E}\left[Y \mid X_1 = 1, X_2 = 0\right] \mathbb{E}\left[Y \mid X_1 = 0, X_2 = 0\right] \\ \bullet \ \beta_2 = \mathbb{E}\left[Y \mid X_1 = 0, X_2 = 1\right] \mathbb{E}\left[Y \mid X_1 = 0, X_2 = 0\right] \\ \bullet \ \beta_3 = \mathbb{E}\left[Y \mid X_1 = 1, X_2 = 1\right] \mathbb{E}\left[Y \mid X_1 = 0, X_2 = 1\right] \mathbb{E}\left[Y \mid X_1 = 1, X_2 = 0\right] + \end{array}$
 - $\mathbb{E}[Y \mid X_1 = 0, X_2 = 0]$
- ullet Змінну X_1X_2 називають фактором взаємодії (interaction term) між X_1 та X_2
- ullet Вочевидь, продовжуючи ці міркування, маємо, що для k бінарних змінних СЕГ повинна бути лінійною
 - Вона міститиме 2^k регресорів
 - Серед них X_1, \dots, X_k та всі можливі взаємодії

Лінійна модель як апроксимація СЕГ (3)

- ullet Нехай деяка змінна є категорійною, тобто $X \in \left\{ x_1, \dots, x_p
 ight\}$
 - Наприклад, регіон проживання
- ullet Тоді її можна перетворити в p-1 бінарні змінні

 - ullet Зверніть увагу, що змінної V_p нам непотрібно
 - ullet Адже якщо $X=x_p$, то це означає, що $V_1=...=V_{p-1}=0$
- Тоді СЕГ також обов'язково буде лінійна:

$$\mathbb{E}\left[Y\mid X\right] = \beta_0 + \sum_{i=1}^{p-1} \beta_i V_i$$

- Зрозуміло, що якщо є декілька змінних, як бінарних, так і категорійних, то можна утворити відповідну лінійну СЕГ
 - Такі моделі називають насиченими (saturated)
 - Число коефіцієнтів дорівнює числу можливих значень, які набувають наші змінні

Лінійна модель як апроксимація СЕГ (4)

- Але в загальному випадку цей підхід особливо далеко не заведе
 - Мало яка модель містить у собі тільки дискретні змінні
 - Якщо змінних (і значень, яких вони набувають) доволі багато, то насичена модель може бути дуже великою
- Відтак лінійні моделі найчастіше є апроксимаціями справжньої (невідомої нам) СЕГ
- Зрозуміло, що нас цікавить не будь-яка довільна лінійна модель з незрозумілими коефіцієнтами
- \bullet Нас цікавить лінійна модель $Y=\mathbf{X}^{\top}\beta$, яка ϵ найліпшим (лінійним) предиктором Y
 - ullet У тому сенсі, що вона мінімізує MSE $\mathbb{E}\left[\left(Y-X^{ op}\mathbf{b}\right)^{2}
 ight]$ за всіма $\mathbf{b}\in\mathbb{R}^{k}$
- \bullet Якщо так задуматися, то фактично $\mathbf{X}^\top\beta$ є проєкцією Y на лінійний простір, утворений із \mathbf{X}

Лінійна модель як апроксимація СЕГ (5)

- Для виведення цих коефіцієнтів потрібно здійснити такі припущення:
 - $\mathbb{E}[Y^2] < \infty$
 - $\mathbb{E}[\|\mathbf{X}\|^2] < \infty^4$
 - Ці дві умови потрібні, щоб гарантувати існування всіх сподівань та коваріацій
 - ullet Зокрема, $\|\mathbb{E}\left[\mathbf{X}Y\right]\| \leq \mathbb{E}\left[\|\mathbf{X}Y\|\right]$ за нерівністю Єнсена
 - ullet I тоді $\mathbb{E}\left[\|\mathbf{X}Y\|
 ight] \leq \sqrt{\mathbb{E}\left[\|\mathbf{X}\|^2
 ight] \cdot \mathbb{E}\left[|Y|^2
 ight]} < \infty$ за нерівністю Коші-Буняковського
 - ullet Відтак $\|\mathbb{E}\left[\mathbf{X}Y
 ight]\|<\infty$, що гарантує скінченність **кожного** сподівання $\mathbb{E}\left[X_{i}Y
 ight],i=1,\ldots,k$
 - ullet Аналогічно можна показати для $\mathbb{E}\left[\mathbf{X}\mathbf{X}^{ op}
 ight]$, використавши норму матриці як корінь із суми квадратів усіх її елементів
 - ullet Матриця $\mathbf{Q}_{\mathbf{X}\mathbf{X}} \equiv \mathbb{E}\left[\mathbf{X}\mathbf{X}^{\top}\right]$ є додатно визначеною
- Тоді

$$\mathsf{MSE} = \mathbb{E}\left[Y^2\right] - 2\beta^\top \mathbb{E}\left[\mathbf{X}Y\right] + \beta^\top \mathbb{E}\left[\mathbf{X}\mathbf{X}^\top\right]\beta \equiv \mathbb{E}\left[Y^2\right] - 2\beta^\top \mathbf{Q}_{\mathbf{X}Y} + \beta^\top \mathbf{Q}_{\mathbf{X}\mathbf{X}}\beta$$

• Умова першого порядку дорівнює

$$0 = \frac{\partial \mathsf{MSE}}{\partial \beta} = -2\mathbf{Q}_{\mathbf{X}Y} + 2\mathbf{Q}_{\mathbf{X}X}\beta$$

• Звідси

$$\beta = \mathbf{Q}_{\mathbf{X}\mathbf{X}}^{-1}\mathbf{Q}_{\mathbf{X}Y} = (\mathbb{E}\left[\mathbf{X}\mathbf{X}^{\top}\right])^{-1}\mathbb{E}\left[\mathbf{X}Y\right]$$
(2.3)

Умову другого порядку перевірте самостійно

26 / 71

 $^{^4}$ Тут $\|\cdot\|$ є евклідовою нормою вектора: $\|\mathbf{X}\| = \sqrt{\mathbf{X}^{ op}\mathbf{X}}$

Лінійна модель як апроксимація СЕГ (6)

- ullet Тепер зрозуміло, навіщо додатна визначеність матриці ${f Q}_{{f X}{f X}}$
 - ullet Ця матриця завжди невід'ємно визначена: $\mathbf{a}^{ op}\mathbf{Q}_{\mathbf{X}\mathbf{X}}\mathbf{a} = \mathbb{E}\left[\left(\mathbf{a}^{ op}\mathbf{X}\right)^2\right] \geq 0$
 - Вимога строгої визначености виключає можливість нульового розв'язку рівняння
- ullet Отже якщо виконуються вказані вище припущення, eta буде єдиним
 - ullet Кажуть, що параметр eta **ідентифікований** (identified)
 - Тобто його можна в єдиний спосіб обчислити
- ullet Можливою **оцінкою** eta може бути plug-in оцінка, де ми замінюємо всі сподівання на вибіркові аналоги
 - \bullet Нехай маємо вибірку $(Y_i,X_{1,i},\ldots,X_{k,i})$, $i=1,\ldots,n$, $\mathbf{X}_i=(1,X_{1,i},\ldots,X_{k,i})^{\top}$
 - Тоді plug-in оцінкою цих коефіцієнтів буде

$$\hat{\beta} = \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\top}\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} Y_{i}\right)$$

• Ми про це говоритимемо далі

Лінійна проєкція

• Відтак маємо найліпший лінійний предиктор

$$\mathcal{P}(Y \ | \ \mathbf{X}) = \mathbf{X}^{\top}\boldsymbol{\beta} = \mathbf{X}^{\top} \left(\mathbb{E} \left[\mathbf{X} \mathbf{X}^{\top} \right] \right)^{-1} \mathbb{E} \left[\mathbf{X} Y \right]$$

- Його називають лінійною проєкцією (linear projection)
- Тоді **похибкою проєкції** (projection error) є

$$e = Y - \mathbf{X}^{\top} \boldsymbol{\beta}$$

- ullet Рівняння $Y = \mathbf{X}^{ op} eta + e$ часто називають **регресією** (regression) Y на \mathbf{X}
- Нескладно показати

$$\mathbb{E}\left[\mathbf{X}e\right] = \mathbb{E}\left[\mathbf{X}\left(Y - \mathbf{X}^{\top}\boldsymbol{\beta}\right)\right] \\ = \mathbf{Q}_{\mathbf{X}Y} - \mathbf{Q}_{\mathbf{X}\mathbf{X}}\mathbf{Q}_{\mathbf{X}X}^{-1}\mathbf{Q}_{\mathbf{X}Y} = 0$$

- ullet Оскільки $\mathbf{X}=(1,X_1,\dots,X_k)^{ op}$, то фактично це означає, що $\mathbb{E}\left[e
 ight]=0$, $\mathbb{E}\left[X_1e
 ight]=0$, ..., $\mathbb{E}\left[X_ke
 ight]=0$ \bullet Зокрема похибка проєкції в середньому дорівнює 0
- ullet Також можна бачити, що Cov $(X_j,e)=\mathbb{E}\left[X_je
 ight]-\mathbb{E}\left[X_j\right]\mathbb{E}\left[e
 ight]=0$, $j=1,\ldots,k$ ullet Отже похибка проєкції некорельована з усіма регресорами
- Тобто якщо похибка e в рівнянні $Y = \mathbf{X}^{\top} \beta + e$ корельована з \mathbf{X} , то це не є лінійна проєкція!

Альтернативний запис коефіцієнтів проєкції (1)

• Візьмімо в нашій моделі сподівання:

$$\mathbb{E}\left[Y\right] = \beta_0 + \sum_{i=1}^k \beta_i \mathbb{E}\left[X_i\right] + \mathbb{E}\left[e\right] = \beta_0 + \sum_{i=1}^k \beta_i \mathbb{E}\left[X_i\right]$$

- \bullet Відтак $\beta_0 = \mathbb{E}\left[Y\right] \sum_{i=1}^n \beta_i \mathbb{E}\left[X_i\right]$
- Тоді $Y \mathbb{E}\left[Y\right] = \sum_{i=1}^k \beta_i \left(X_i \mathbb{E}\left[X_i\right]\right) + e$
- ullet Похибка e некорельована з будь-яким X_i , а тому $\mathbb{E}\left[\left(X_i-\mathbb{E}\left[X_i
 ight]
 ight)e
 ight]=0$
- Отже можна застосувати формулу лінійної проєкції

Альтернативний запис коефіцієнтів проєкції (2)

• Матимемо

$$\begin{split} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_k \end{pmatrix} &= \left(\mathbb{E} \left[\begin{pmatrix} X_1 - \mathbb{E} \left[X_1 \right] \\ \vdots \\ X_k - \mathbb{E} \left[X_k \right] \end{pmatrix} (X_1 - \mathbb{E} \left[X_1 \right], \dots, X_k - \mathbb{E} \left[X_k \right]) \right] \right)^{-1} \\ &\times \mathbb{E} \left[\begin{pmatrix} X_1 - \mathbb{E} \left[X_1 \right] \\ \vdots \\ X_k - \mathbb{E} \left[X_k \right] \end{pmatrix} (Y - \mathbb{E} \left[Y \right]) \right] \\ &= \mathbf{Cov} \left(\begin{pmatrix} X_1 \\ \vdots \\ X_k \end{pmatrix} \right)^{-1} \mathbf{Cov} \left(\begin{pmatrix} X_1 \\ \vdots \\ X_k \end{pmatrix}, Y \right) \end{split}$$

- Тобто коефіцієнти лінійної проєкції залежать тільки від відповідних коваріацій
- Зокрема, наприклад, якщо маємо всього один регресор, $Y_i = \beta_0 + \beta_1 X_i + u_i$, то

$$\beta_1 = \frac{\operatorname{Cov}\left(X_i, Y_i\right)}{\operatorname{Var}\left(X_i\right)}$$

Різниця між СЕГ та проєкціями (1)

- Перед тим, як перейти до оцінювання коефіцієнтів проєкції, потрібно дуже чітко усвідомити різницю між функцією умовного сподівання та лінійною проєкцією
- ullet Отже ми хочемо встановити, яка ϵ залежність між Y та ${f X}$
 - В ідеалі ми хочемо довести причиново-наслідковий зв'язок між ними
 - Нас цікавить, як змінюватиметься Y, якщо змінити один із X_i ceteris paribus, тобто тримаючи всі інші регресори фіксованими
- Функція умовного сподівання СЕГ $m(\mathbf{X}) = \mathbb{E}\left[Y \mid \mathbf{X}\right]$ мінімізує середньоквадратичну похибку між Y та цією функцією
- ullet Відповідна модель має вигляд $Y=m(\mathbf{X})+e$, $\mathbb{E}\left[e\mid\mathbf{X}\right]=0$
 - Рівність нулю принципова: якщо її немає, то рівняння може й не бути рівнянням СЕГ
- На практиці ми не можемо встановити, чому дорівнює m
- Тому як апроксимацію ми використовуємо лінійну СЕГ $Y = \mathbf{X}^{\top} \boldsymbol{\beta} + \tilde{e}$, $\mathbb{E}\left[\tilde{e} \mid \mathbf{X}\right] \approx 0$
 - Звісно, СЕГ може бути лінійною з самого початку, наприклад, коли всі регресори дискретні, і модель насичена
 - ullet Коефіцієнти eta мають інтерпретацію сили зв'язку між регресорами та Y
 - У загальному випадку СЕГ не є лінійною, і тоді формально ми маємо $Y = \mathbf{X}^{\top} \beta + (m(\mathbf{X}) - \mathbf{X}^{\top} \beta + e)$
 - ullet Тоді $\mathbb{E}\left[Y\mid \mathbf{X}\right] = \mathbf{X}^{ op}eta + \left(m(\mathbf{X}) \mathbf{X}^{ op}eta
 ight) pprox \mathbf{X}^{ op}eta$, якщо $m(\mathbf{X}) pprox \mathbf{X}^{ op}eta$
 - ullet У цьому випадку коефіцієнти eta варто сприймати як певну **апроксимацію** такого зв'язку

Різниця між СЕГ та проєкціями (2)

- ullet Але для лінійної проєкції справедливо $\mathbb{E}\left[\mathbf{X}u
 ight]=0$ суто за побудовою
- Відтак якщо ця умова на практиці не виконується, то коефіцієнти будуть неправильні!
- $\bullet\,$ Скажімо, нас може цікавити вплив стати X_1 , раси X_2 та освіти X_3 на зарплату Y
- Справжня модель може бути

$$Y = h(X_1, X_2, X_3) + e \;, \qquad \mathbb{E}\left[e \mid X_1, X_2, X_3\right] = 0$$

• Ми можемо записати її лінійну апроксимацію:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \tilde{e} \;, \qquad \mathbb{E}\left[\tilde{e} \mid X_1, X_2, X_3\right] \approx 0 \label{eq:Y}$$

- ullet Ми можемо оцінити її коефіцієнти eta як коефіцієнти лінійної проєкції
 - Якщо \tilde{e} некорельована з X_1, X_2, X_3 , то відповідні коефіцієнти $\beta_1, \beta_2, \beta_3$ будуть спроможними (далі розглянемо це детально)
- Ми можемо також записати альтернативну апроксимацію:

$$Y = \gamma_0 + \gamma_1 X_1 + \gamma_2 X_2 + \gamma_3 X_1 X_2 + \gamma_4 X_3 + \check{e} \; , \qquad \mathbb{E} \left[\check{e} \mid X_1, X_2, X_3 \right] \approx 0$$

- Ми можемо також оцінити γ як коефіцієнти, але вже іншої лінійної проєкції
- **Якщо** \tilde{e} некорельована з $X_1, X_2, X_1 X_2, X_3$, то відповідні коефіцієнти $\gamma_1, \gamma_2, \gamma_3, \gamma_4$ будуть спроможними
- Допоки виконується умова, що похибка має умовне нульове сподівання, мова тільки про якість апроксимації

Ілюстративні приклади (1)

• Повернімося до нашого прикладу з зарплатами

wages summary hisp

- ullet Розгляньмо питання оцінювання СЕГ для стати X_1 та раси X_2
- Як ми вже знаємо, така СЕГ буде справді лінійною:

$$\mathbb{E}\left[Y\mid X_{1},X_{2}\right]=3.12-0.263X_{1}-0.398X_{2}+0.123X_{1}X_{2}$$

- Зокрема, скажімо, -0.26 це різниця середніх (логаритмів) зарплат між чоловіками-латиноамериканцями ($X_1=0,X_2=1$) та білими чоловіками ($X_1=X_2=0$)
- Уявімо на хвилинку, що більше в нашому світі немає жодних інших змінних, тільки стать і вік
- - ullet Звідси випливає $\mathbb{E}\left[e\cdot(X_1,X_2)^{ op}
 ight]=0$, тобто похибка некорельована з регресорами
 - Відтак можна оцінити цю модель за допомогою формули лінійної проєкції

Ілюстративні приклади (2)

• Можемо розглянути тепер модель, у якій не враховано терм взаємодії $X_1 X_2$:

$$\mathcal{P}(Y\mid X_1,X_2) = 3.112 - 0.245X_1 - 0.349X_2$$

- Це вже не буде СЕГ (СЕГ було пораховано на попередньому слайді)
 - Це всього лише лінійна апроксимація
 - ullet Фактично маємо $Y=eta_0+eta_1X_1+eta_2X_2+(eta_3X_1X_2+e)$
 - Її можна порахувати як лінійну проєкцію Y на X_1, X_2
 - ullet Але оскільки X_1 і X_2 корельовані з X_1X_2 , ці коефіцієнти будуть **некоректні**
- Справді, як можна бачити, коефіцієнти стали менші за абсолютним значенням
 - Хоча картина все одно схожа
 - Тобто ми все одно можемо побачити факт можливої дискримінації
- Проте некоректно казати, що, скажімо, різниця в середніх зарплатах дорівнює
 - -0.245 винятково за рахунок стати
 - Ми знаємо, що справжній вплив стати випливає з модели на попередньому слайді
 - Умова про нульове умовне сподівання похибки вже не виконується

Ілюстративні приклади (3)

- ullet Розгляньмо тепер вплив освіти на зарплату: Y=m(X)+e , $\mathbb{E}\left[e\mid X
 ight]=0$
- ullet Зрозуміло, що «насправді» навряд чи в цій моделі $\mathbb{E}\left[e\mid X
 ight]=0$
 - ullet Наприклад, можна очікувати, що e містить у собі стать, расу тощо
 - ullet I тому **якщо** вони **корелюють** із X, то $\mathbb{E}\left[e\mid X
 ight]
 eq 0$
 - Але для ілюстративних цілей **уявімо**, що окрім X на зарплату нічого більше в принципі не впливає
- Можливою лінійною апроксимацією $m(\mathbf{X})$ може бути лінійна функція з одним регресором X:

$$Y = \beta_0 + \beta_1 X + e$$

 За такого припущення можемо оцінити коефіцієнти цієї модели як коефіцієнти лінійної проєкції:

$$\mathcal{P}(Y \mid X) = 1.458 + 0.108X$$

Ілюстративні приклади (4)

• Можемо намалювати, що вийшло:

- \bullet Як можна бачити, навряд чи можна вважати цю лінійну проєкцію доброю апроксимацією для СЕF для Y
- Точніше, вона непогана тільки для освіти більше 9 років

Ілюстративні приклади (5)

• Можна поліпшити відповідний результат, розглянувши таку модель:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + e \;, \qquad X_1 = X \;,\; X_2 = (X_1 - 9) \mathbb{1} \; \{X_1 > 9\}$$

• Тоді матимемо такі коефіцієнти лінійної регресії:

$$\mathcal{P}(Y\mid X_1,X_2) = 2.292 + 0.008X_1 + 0.111X_2$$

• Можемо намалювати, що вийшло:

• Результат поліпшився

Ілюстративні приклади (6)

- Розгляньмо залежність зарплат від досвіду роботи X, який визначмо як вік за вирахуванням освіти та 6 (роки до походу в дитячий садок)
 - Знову вважатимемо, що ця змінна єдина, яка може впливати на зарплату
- Матимемо такий результат:

$$\mathcal{P}(Y \mid X) = 2.854 + 0.005X$$

• Можемо намалювати, що вийшло:

• Знову ж таки результат далекий від ідеального

Ілюстративні приклади (7)

- Але можна помітити, що залежність схожа на квадратичну
- Тому можна розглянути таку лінійну регресію:

$$Y=\beta_0+\beta_1X+\beta_2X^2+e$$

• Матимемо такий результат:

$$\mathcal{P}(Y\mid X,X^2) = 2.5602 + 0.0383X - 7\times 10^{-4}X^2$$

Ілюстративні приклади (8)

• Можемо намалювати, що вийшло:

- Результат значно ліпший
 - Можна, звісно, додавати ступені вищих порядків
 - Тоді апроксимація буде ще ліпшою
 - Але всьому ϵ межа ми не хочемо, щоб мало місце **перенавчання** (overfitting)

Різниця між структурними моделями та проєкціями (1)

- Вищенаведена дискусія проливає світло на питання якости лінійної апроксимації справжньої СЕГ
- Справжні проблеми з моделями на попередніх слайдах виникають, коли ми повертаємось у реальний світ
 - На практиці існує маса змінних, які корелюють зі статтю, расою, освітою і впливають на зарплату
 - Наприклад, вроджені здібності
- Тоді, наприклад, «справжня» модель повинна бути $Y=m(X_1,X_2,X_3,X_4)+e$, $\mathbb{E}\left[e\mid X_1,X_2,X_3,X_4\right]=0$ (тобто m є СЕF) Тут X_1 стать, X_2 раса, X_3 освіта, X_4 вроджені здібності
- Тут A₁ стать, A₂ раса, A₃ осыта, A₄ вроджені здіоності
 Але ми не можемо обчислити вроджені здібності, тому таких даних у нас просто
- немає
- Відповідно, ми **вимушені** оцінювати модель $Y=\beta_0+\beta_1X_1+\beta_2X_2+\beta_3X_3+ ilde{e}$ • Тобто це не лінійна апроксимація справжньої СЕF— це просто неправильна модель
 - Можна очікувати, що ${\rm Cov}\,(X_3,X_4)>0$ (хто має більше здібностей, у того вища освіта)
 - Отже Cov $(X_3, \tilde{e}) \neq 0$, бо Cov $(X_3, X_4) \neq 0$, а \tilde{e} «містить у собі» X_4
 - Тому вплив освіти на зарплату вже не буде ізольованим
 - І можна поставити ці результати під сумнів, стверджуючи, що це вроджені здібності мають вплив, а освіта мало на що впливає
 - Максимум, про що можна говорити про певний статистичний зв'язок між змінними

Різниця між структурними моделями та проєкціями (2)

• Оцінити цю некоректну модель ми можемо як лінійну проєкцію

$$Y = \gamma_0 + \gamma_1 X_1 + \gamma_2 X_2 + \gamma_3 X_3 + u$$

- R порахує нам усе, що завгодно!
- - ullet Але $u
 eq ilde{e}$, а $eta_i
 eq \gamma_i!$
 - Тому ми порахували щось зовсім інше
- - ullet У ній ми **нічого не знаємо** про $ilde{e}$ і її корельованість із регресорами
 - Ми просто **хочемо** оцінити $\mathbb{E}\left[Y\mid X_1,X_2,X_3\right]$, і інші змінні нас особливо не цікавлять
 - Але вони нас можуть не цікавити, але псувати нам оцінку
- \bullet Модель $Y=\gamma_0+\gamma_1X_1+\gamma_2X_2+\gamma_3X_3+u$, де $\mathbb{E}\left[u\mathbf{X}\right]=0$, є лінійною проєкцією
- Тобто записати можна все, що завгодно, і оцінити як лінійну проєкцію також, але чи буде це відповідати нашим потребам — велике питання
 - У цьому полягає складність застосування регресійного аналізу та методів причиново-наслідкового виведення
 - Ми до цього повертатимемося постійно, і особливу увагу звернемо наприкінці нашого курсу
 - А поки що розглянемо статистичні властивості оцінки коефіцієнтів лінійної проєкції

42 / 71

План лекції

- Функція умовного сподівання
- 2 Лінійні моделі
- ③ Оцінювання коефіцієнтів лінійної регресії
- Властивості OLS оцінки

Plug-in оцінка (1)

- Як ми зазначали в попередніх лекціях, простим способом дістати оцінку деякого параметра є замінити всі теоретичні моменти на емпіричні
- ullet Нехай маємо вибірку $(Y_i, X_{1,i}, \dots, X_{k,i})$, $i=1,\dots,n$
 - Вважаємо, що всі n векторів незалежні **між собою**
 - ullet …та мають однаковий розподіл $\mathbb{P}_{Y,X_1,...,X_k}$, який нам невідомий
- Нехай відповідні випадкові величини пов'язані лінійною залежністю

$$Y_i = \beta_0 + \sum_{i=1}^k \beta_i X_i + u_i$$

- ullet Тут $\mathbb{E}\left[X_iu_i\right]=0$, $\mathbb{E}\left[u_i\right]=0$ суто за побудовою, бо це лінійна проєкція
- Ми нічого не кажемо про якийсь причиново-наслідковий чи інший зміст цієї модели
- ullet Позначмо ${f X}_i = (1, X_{1,i}, \dots, X_{k,i})^{ op}$
- Тоді відповідні коефіцієнти проєкції за (2.3) дорівнюють

$$\beta = \mathbf{Q}_{\mathbf{X}\mathbf{X}}^{-1}\mathbf{Q}_{\mathbf{X}Y} = \left(\mathbb{E}\left[\mathbf{X}_{i}\mathbf{X}_{i}^{\top}\right]\right)^{-1}\mathbb{E}\left[\mathbf{X}_{i}Y_{i}\right]$$

• Відтак plug-in оцінкою цих коефіцієнтів буде

$$\hat{\beta} = \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\top}\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} Y_{i}\right)$$
(3.1)

Plug-in оцінка (2)

• Альтернативний запис можна дістати, записавши всі рівняння як матричні:

$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix}_{n \times 1} \ , \quad \mathbf{X} = \begin{pmatrix} 1 & X_{1,1} & \dots & X_{k,1} \\ 1 & X_{1,2} & \dots & X_{k,2} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & X_{1,n} & \dots & X_{k,n} \end{pmatrix}_{n \times (k+1)} \equiv \begin{pmatrix} \mathbf{X}_1^\top \\ \mathbf{X}_2^\top \\ \vdots \\ \mathbf{X}_n^\top \end{pmatrix}$$

• Тоді нашу лінійну модель можна записати в матричній формі як

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{u} \;, \tag{3.2}$$

де
$$\mathbf{u} = (u_1, u_2, \dots, u_n)^{\top}$$

• І тоді оцінка β дорівнюватиме

$$\hat{\beta} = \left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i}\mathbf{X}_{i}^{\top}\right)^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i}Y_{i}\right) = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{Y}$$

Метод найменших квадратів (1)

- Виявляється, цей же результат можна дістати зовсім з інших міркувань
- Можемо розглянути задачу мінімізації **суми квадратів похибок** (sum of squared errors, SSE) $u_i=Y_i-\mathbf{X}_i^{\top}\beta$ для всіх $i=1,\dots,n$
- ullet У матричній формі SSE $= \mathbf{u}^{ op}\mathbf{u}$, відтак маємо таку задачу мінімізації:

$$\begin{split} \hat{\beta} &= \operatorname*{arg\,min}_{\mathbf{b}} \mathrm{SSE}(\mathbf{b}) = \operatorname*{arg\,min}_{\mathbf{b}} \mathbf{u}^{\top} \mathbf{u} \\ &= \operatorname*{arg\,min}_{\mathbf{b}} \left(\mathbf{Y} - \mathbf{X} \mathbf{b} \right)^{\top} \left(\mathbf{Y} - \mathbf{X} \mathbf{b} \right) \\ &= \operatorname*{arg\,min}_{\mathbf{b}} \left(\mathbf{Y}^{\top} \mathbf{Y} - \mathbf{Y}^{\top} \mathbf{X} \mathbf{b} - \mathbf{b}^{\top} \mathbf{X}^{\top} \mathbf{Y} + \mathbf{b}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{b} \right) \end{split}$$

 $oldsymbol{\bullet}$ Зверніть увагу, що $\mathbf{Y}^{ op}\mathbf{X}\mathbf{b} = \mathbf{b}^{ op}\mathbf{X}^{ op}\mathbf{Y}$, оскільки обидва є скаляри

Метод найменших квадратів (2)

• Умови першого порядку дорівнюють

$$\frac{\partial \mathsf{SSR}}{\partial \mathbf{b}} = -2\left(\mathbf{X}^{\top}\mathbf{Y}\right) + 2\left(\mathbf{X}^{\top}\mathbf{X}\right)\mathbf{b} = 0$$

• Звідси

$$\left(\mathbf{X}^{\top}\mathbf{X}\right)\mathbf{b} = \mathbf{X}^{\top}\mathbf{Y}$$

ullet Якщо $\mathbf{X}^{ op}\mathbf{X}$ має обернену 5 , то остаточно маємо

$$\hat{\beta} = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1} \left(\mathbf{X}^{\top}\mathbf{Y}\right)$$

- Це те саме, що й (3.1)
- Умову другого порядку можете перевірити самостійно
- Із цих міркувань оцінку $\hat{\beta}$ називають **оцінкою найменших квадратів** (ordinary least squares estimator, OLS)

⁵Конкретніше, якщо ця матриця додатно визначена

Алгебричні властивості залишків

- Після того, як ми оцінили коефіцієнти регресії $\hat{\beta}$, можна обчислити **прогнозні значення** (fitted values) залежної змінної $\hat{Y}_i = \mathbf{X}_i^{\top} \hat{\beta}$
- Залишки (residuals) є різниці між справжніми та прогнозними значеннями:

$$\hat{u}_i = Y_i - \hat{Y}_i = Y_i - \mathbf{X}_i^{\top} \hat{\beta}$$

• 3 умов першого порядку маємо

$$\begin{split} \left(\mathbf{X}^{\top}\mathbf{X}\right)\widehat{\beta} &= \mathbf{X}^{\top}\mathbf{Y} \\ \mathbf{X}^{\top}\left(\mathbf{Y} - \mathbf{X}\widehat{\beta}\right) &= \mathbf{0} \\ \mathbf{X}^{\top}\left(\widehat{u}_{1}, \dots, \widehat{u}_{n}\right)^{\top} &= \mathbf{0} \end{split}$$

ullet Оскільки перший рядок $\mathbf{X}^ op$ містить самі одиниці,

$$\sum_{i=1}^{n} \hat{u}_i = 0 \tag{3.3}$$

- Тобто вибіркове середнє залишків дорівнює 0
- ullet Також, оскільки j-ий рядок $\mathbf{X}^ op$ дорівнює $(X_{j,1},\dots,X_{j,n})$,

$$\sum_{i=1}^{n} X_{j,i} \hat{u}_i = 0 {3.4}$$

48 / 71

i=1• Тобто вибіркова коваріація між залишками і будь-яким регресором дорівнює 0

Коефіцієнт детермінації \mathbb{R}^2 (1)

- Ми можемо оцінити, наскільки доброю є наша оцінка регресійної модели, використовуючи такі величини
- ullet Сума квадратів похибок $ext{SSE} = \sum_{i=1}^n \hat{u}_i^2 = \sum_{i=1}^n \left(Y_i \hat{Y}_i
 ight)^2$
 - ullet Ми її мінімізували, щоб дістати \hat{eta}
- ullet Пояснена сума квадратів (explained sum of squares) ESS $=\sum_{i=1}^n \left(\hat{Y}_i \overline{Y}\right)^2$
 - ullet Фактично, це дисперсія \hat{Y}_i , адже середнє \hat{Y}_i дорівнює \overline{Y}
 - ullet Оскільки \hat{Y}_i є функцією від \mathbf{X}_i , це дисперсія, пов'язана з \mathbf{X}_i
- ullet Повна сума квадратів (total sum of squares) TSS $=\sum_{i=1}^n \left(Y_i \overline{Y}\right)^2$
 - Фактично, це дисперсія Y_i
- ullet Можна показати 6 , що TSS = ESS + SSE
 - Зокрема, якщо TSS = ESS, регресійна гіперплощина проходить через усі точки набору даних

Коефіцієнт детермінації \mathbb{R}^2 (2)

• Можна розглянути поняття коефіцієнта детермінації:

$$R^2 = \frac{\text{ESS}}{\text{TSS}} = 1 - \frac{\text{SSE}}{\text{TSS}} \tag{3.5}$$

- ullet R^2 показує, яку частку дисперсії Y_i пояснює дисперсія в ${f X}_i$
 - ullet Іншими словами, наскільки якісно прогнозні значення \hat{Y}_i збігаються з даними
 - $0 \le R^2 \le 1$ за побудовою
 - ullet $R^2=1$ відповідає ситуації, коли залишки повністю нульові
- За визначенням, R^2 вищий тоді, коли
 - Залишки мають меншу дисперсію (розкид залишків навколо регресійної площини малий)
 - ullet Дисперсія Y_i вища

Коефіцієнт детермінації \mathbb{R}^2 (3)

• Графічна ілюстрація:

- Як можна бачити, що менше відношення SSE до TSS, то ліпше наближення
- ullet Відтак часто R^2 використовують як міру якости лінійної модели
- Проте варто пам'ятати, що з точки зору причиново-наслідкового аналізу R^2 не має жодного значення!

Коефіцієнт детермінації \mathbb{R}^2 (4)

- Потрібно помітити, що R^2 зі збільшенням кількости незалежних змінних може тільки рости
- Оцінка OLS за побудовою мінімізує SSE, а відтак додавання нових змінних змушує нас шукати мінімум у просторі більшої розмірности
 - Відтак значення SSE ніяк не може зрости
- • Трішки формальніше, модель із k регресорами можна розглядати як модель із k+1 регресорами, де $\beta_{k+1}=0$
- \bullet Тоді оптимізаційна задача arg $\min_{b_0,b_1,\dots,b_k} \mathrm{SSE}(b_0,b_1,\dots,b_k)$ еквівалентна задачі arg $\min_{b_0,b_1,\dots,b_k,b_{k+1}} \mathrm{SSE}(b_0,b_1,\dots,b_k,0)$
- Ця задача є задачею умовної оптимізації, а відтак її відповідь не може бути ліпшою, ніж у задачі безумовної:

$$\min_{b_0,b_1,\dots,b_k,b_{k+1}} \mathrm{SSE}(b_0,b_1,\dots,b_k,0) \geq \min_{b_0,b_1,\dots,b_k,b_{k+1}} \mathrm{SSE}(b_0,b_1,\dots,b_k,b_{k+1})$$

Коефіцієнт детермінації \mathbb{R}^2 (5)

- ullet Це не дуже добре, адже це означає, що R^2 можна збільшувати, просто додаючи будь-який мотлох у модель
- Натомість на практиці ліпше використовувати **скоригований** (adjusted) \mathbb{R}^2 :

$$R_{\rm adj}^2 = 1 - \frac{\text{SSE}/(n-k-1)}{\text{TSS}/(n-1)}$$
 (3.6)

- Ми фактично всюди додали корекції зміщення з урахуванням ступенів свободи
- ullet Потрібно помітити, що $R^2_{
 m adj} < R^2$, оскільки $rac{n-1}{n-k-1} > 1$
 - $R_{\rm adi}^2$ навіть може набувати від'ємних значень
- Знову варто наголосити, що для причиново-наслідкового аналізу $R^2_{
 m adj}$ **зовсім** не є корисним:
 - ullet Збільшення $R^2_{
 m adi}$ не означає, що новододана змінна статистично значуща
 - ullet Високі значення $R^2_{
 m adj}$ **не означають**, що існує будь-який причиново-наслідковий зв'язок між змінними
 - $\bullet\;$ Високі значення $R^2_{
 m adj}$ **не означають**, що лінійна модель є коректна

Стандартна похибка регресії

- Також можна розглянути стандартну похибку регресії (standard error of the regression, SER)
- Це просто оцінка середньоквадратичного відхилення похибок $\sigma_u = \sqrt{\operatorname{Var}(u_i)} = \sqrt{\mathbb{E}\left[u_i^2\right] (\mathbb{E}\left[u_i\right])^2} = \sqrt{\mathbb{E}\left[u_i^2\right]}$
- Ми не спостерігаємо справжніх u_i , а тільки маємо доступ до залишків \hat{u}_i
- Відтак стандартною похибкою регресії є величина

$$SER = \hat{\sigma}_u , \quad \hat{\sigma}_u^2 = \frac{1}{n - k - 1} \sum_{i=1}^n \hat{u}_i^2 = \frac{SSR}{n - k - 1}$$
 (3.7)

- Ми ділимо на n-k-1 замість n зі схожих міркувань, чому ми ділимо на n-1 замість n, обчислюючи вибіркову дисперсію (корекція на ступені вільності)
- Така оцінка буде спроможною
- ullet Також вона буде незміщеною, але тільки якщо дисперсія u_i не залежить від \mathbf{X}_i
- Ми на цьому зупинятися сильно не будемо
- У будь-якому випадку SER показує розкид даних навколо регресійної площини

Гетероскедастичність та гомоскедастичність

- Якщо Var $(u_i \mid \mathbf{X}_i) = \sigma_u^2$, тобто якщо дисперсія u_i не залежить від \mathbf{X}_i , то кажуть, що похибки **гомоскедастичні** (homoskedastic)
- В іншому випадку кажуть, що вони **гетероскедастичні** (heteroskedastic)
- 3 історичних причин завжди згадують про гомоскедастичні похибки
 - Якщо це виконується, то можна довести деякі теоретичні властивості OLS оцінок
 - Коли не було доступу до потужних комп'ютерів, такі припущення спрощували обчислення та аналіз
- На практиці майже завжди зустрічаються тільки гетероскедастичні похибки
 - На жаль, майже в усіх стандартних програмних пакетах за замовчуванням рахують гомоскедастичні похибки
 - Ми до цього ще повернемося
- - Можна очікувати, що $\beta_1 > 0$
 - Також можна очікувати, що дисперсія Y_i буде вищою для осіб з вищим X_i
 - Незаможні люди майже всі кошти витрачають на їжу
 - Що більше стає дохід людини, то більше свободи вона має щодо розподілу свого бюджету
 - Тому дисперсія u_i буде змінюватися (зростати) з X_i

OLS оцінка в R (1)

- Для того, щоб зробити оцінювання за методом OLS та провести аналіз результатів, в R існує функція 1m (від linear model)
- Розгляньмо для прикладу дані про результати тестування з читання та математики учнів 5-х класів шкіл Каліфорнії (1999 р.)⁷

```
caschool <- read csv("data/caschool.csv")
##
## -- Column specification
## cols(
     observation number = col double().
    dist cod = col double(),
    county = col character(),
    district = col character().
    gr span = col character().
    enrl tot = col double().
    teachers = col double().
    calw pct = col double().
    meal pct = col double().
    computer = col double().
    testscr = col double(),
    comp stu = col double(),
    expn stu = col double(),
    str = col double(),
    avginc = col double(),
    el pct = col double(),
    read scr = col double(),
     math scr = col double()
## )
```

⁷Приклад узято з книжки Stock & Watson

OLS оцінка в R (2)

- Можемо обчислити коефіцієнти модели $Y_i = \beta_0 + \beta_1 X_i + u_i$
 - ullet Кожний i відповідає окремому шкільному округу
 - ullet X_i відповідає середньому числу учнів на одного вчителя str
 - ullet Y_i відповідає середньому балу за тест в окрузі testscr
- У функції 1m потрібно зліва від ~ вказати залежну змінну, а справа всі незалежні (константа включається за замовчуванням)

- Бачимо, що збільшення числа учнів, що припадає на одного вчителя, на 1, nos'язано зі зменшенням середнього балу за тести на -2.28
 - Ми поки що не знаємо, чи є це статистично значущим (можливо, це 0)!
 - Це предмет наступної лекції
 - Ми не можемо інтерпретувати це як причиново-наслідковий зв'язок
 - ullet Тому що в нас існують об'єктивні сумнів, що u_i некорельована з X_i
 - Існують інші фактори, які впливають на бали за тести і корелюють із розміром класу

OLS оцінка в R (3)

OLS оцінка в R (4)

 Більше додаткової інформації про модель можна дістати, застосувавши функцію summary

```
summary (model)
##
## Call:
## lm(formula = testscr ~ str, data = caschool)
## Residuals:
      Min 10 Median 30
                                    Max
## -47.727 -14.251 0.483 12.822 48.540
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 698.9330 9.4675 73.825 < 2e-16
## str -2.2798 0.4798 -4.751 2.78e-06 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 18.58 on 418 degrees of freedom
## Multiple R-squared: 0.05124, Adjusted R-squared: 0.04897
## F-statistic: 22.58 on 1 and 418 DF, p-value: 2.783e-06
```

- Тут дуже багато корисної інформації, яка нам знадобиться наступної лекції
- ullet Поки що можемо помітити, що $R^2=0.051$, $R_{
 m adj}^2=0.049$
- Їх можна порахувати самостійно, адже model містить як прогнозні значення,
 так і залишки:

```
n <- nrow(caschool)
1 - mean(model$residuals^2) / mean((caschool$testscr - mean(caschool$testscr))^2)
## [1] 0.0512401
1 - (sum(model$residuals^2) / (n - 2)) / (sum((caschool$testscr - mean(caschool$testscr))^2) / (n - 1)
## [1] 0.04897034</pre>
```

План лекції

- Функція умовного сподівання
- Лінійні моделі
- ③ Оцінювання коефіцієнтів лінійної регресії
- Властивості OLS оцінки

Припущення

- Розгляньмо основні властивості, які має OLS оцінка коефіцієнтів лінійної регресії
- Для того, щоб їх вивести, потрібно зробити декілька припущень
- ullet Припущення 1: умовне сподівання похибок дорівнює 0: $\mathbb{E}\left[u_i\mid \mathbf{X}_i\right]=0$
 - Без цього припущення ми не зможемо вважати, що наша лінійна модель є (хоча б апроксимацією) СЕГ
- Припущення 3: $0<\mathbb{E}\left[X_{j,i}^4\right]<\infty$, $j=1,\ldots,k$, $0<\mathbb{E}\left[Y_i^4\right]<\infty$
 - Фактично, мається на увазі, що в даних немає великих викидів
 - Формально математична роль цього припущення полягає в тому, що можна буде застосувати ЗВЧ для вибіркових дисперсій
- ullet Припущення 4: матриця ${f X}^{ op}{f X}$ має обернену
 - ullet Іншими словами, $\mathbf{X}_{n imes (k+1)}$ має ранг k+1
 - Якщо це не виконуватиметься, то неможливо буде порахувати (єдину) OLS оцінку
 - На практиці це припущення порушується, якщо деякі змінні є лінійними комбінаціями інших
 - Наприклад, наявність одночасно і рівня освіти, і досвіду роботи

Незміщеність

- Можемо показати, що OLS оцінка є незміщеною
- Можна розписати Ү і дістати

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\left(\mathbf{X}\boldsymbol{\beta} + \mathbf{u}\right) \\ = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\beta} + \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{u}$$

• Добуток матриці на обернену дає одиничну матрицю, тому

$$\hat{\beta} = \beta + \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{u}$$

• Звідси

$$\mathbb{E}\left[\hat{\beta}\mid\mathbf{X}\right] = \beta + \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbb{E}\left[\mathbf{u}\mid\mathbf{X}\right]$$

• Останній доданок дорівнює 0 за Припущеннями 1 і 2:

$$\mathbb{E}\left[\mathbf{u}\mid\mathbf{X}\right] = \begin{pmatrix} \mathbb{E}\left[u_1\mid\mathbf{X}\right] \\ \vdots \\ \mathbb{E}\left[u_n\mid\mathbf{X}\right] \end{pmatrix} = \begin{pmatrix} \mathbb{E}\left[u_1\mid\mathbf{X}_1\right] \\ \vdots \\ \mathbb{E}\left[u_n\mid\mathbf{X}_n\right] \end{pmatrix} = \mathbf{0}$$

ullet За законом ітерованих сподівань також випливає, що $\mathbb{E}\left[\hat{eta}
ight]=\mathbb{E}\left[\mathbb{E}\left[\hat{eta}\mid\mathbf{X}
ight]
ight]=eta$

Спроможність

 Розпишімо Y, як і на попередньому слайді, але використаймо версію формули з сумами:

$$\hat{\beta} = \beta + \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\top}\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} u_{i}\right)$$

Згідно з ЗВЧ,

$$\begin{split} &\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i}\mathbf{X}_{i}^{\top}\overset{p}{\rightarrow}\mathbf{Q}_{\mathbf{X}\mathbf{X}}\\ &\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i}u_{i}\overset{p}{\rightarrow}\mathbb{E}\left[\mathbf{X}_{i}u_{i}\right] \end{split}$$

 Згідно з ТНВ (усі функції неперервні, а за Припущенням 4 матриця має обернену),

$$\left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i}\mathbf{X}_{i}^{\intercal}\right)^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i}u_{i}\right)\overset{p}{\rightarrow}\mathbf{Q}_{\mathbf{XX}}^{-1}\mathbb{E}\left[\mathbf{X}_{i}u_{i}\right]$$

- ullet За Припущенням 1 та законом ітерованих сподівань маємо $\mathbb{E}\left[\mathbf{X}_{i}u_{i}
 ight]=\mathbf{0}$
- ullet Відтак $\hat{eta} \stackrel{p}{ o} eta$

Асимптотичний розподіл

• Якщо перенести β вліво та помножити на \sqrt{n} , дістанемо:

$$\sqrt{n}\left(\hat{\beta} - \beta\right) = \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\top}\right)^{-1} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbf{X}_{i} u_{i}\right)$$

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\mathbf{X}_{i}u_{i} = \sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i}u_{i} - \mathbf{0}\right) \overset{d}{\rightarrow} N\left(\mathbf{0},\operatorname{Var}\left(\mathbf{X}_{i}u_{i}\right)\right) \\ = N\left(\mathbf{0},\mathbb{E}\left[\mathbf{X}_{i}\mathbf{X}_{i}^{\top}u_{i}^{2}\right]\right)$$

- Припущення 3 гарантує скінченність відповідної дисперсії
- Тоді за теоремою Слуцького

$$\sqrt{n}\left(\hat{\beta} - \beta\right) \stackrel{d}{\to} N\left(0, \mathbf{Q}_{\mathbf{x}\mathbf{x}}^{-1} \mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\top} u_{i}^{2}\right] \mathbf{Q}_{\mathbf{x}\mathbf{x}}^{-1}\right) \equiv N\left(0, \mathbf{V}_{\beta}\right) \tag{4.1}$$

- Зверніть увагу, що асимптотична дисперсія залежить від **невідомих** u_i
 - Наступного разу дізнаємося, що з цим робити

Симуляція Монте-Карло (1)

- Проілюструймо статистичні властивості OLS за допомогою симуляції Монте-Карло
- Розгляньмо вигадану модель, подібну на розглянутий вище приклад із тестовими балами Y_i та числом учнів на одного вчителя X_i :

$$Y_i = 660 - 2X_i + u_i$$
, $\mathbb{E}[u_i \mid X_i] = 0$

- Оскільки ми написали умову про нульове умовне сподівання, ми вважаємо, що це наша справжня СЕГ
- Tyt $\beta_0 = 660$ and $\beta_1 = -2$
- ullet Також вважатимемо, що $X_i \sim N(20,4)$
- ullet А похибки $u_i \mid X_i \sim N\left(0, 0.25 \cdot (X_i 15)^2\right)$
 - Ми моделюємо їх як гетероскедастичні похибки
 - ullet Варто помітити, що за такого моделювання справді $\mathbb{E}\left[u_i\mid X_i\right]=0$

Симуляція Монте-Карло (2)

• Функція для генерування однієї вибірки:

```
generate_X <- function(n) {
    X <- rnorm(n, 20, sd = 2)
}

generate_data <- function(n, beta_0, beta_1, X = NULL) {
    if (is.null(X)) {
        X <- generate_X(n)
    }

    u <- rnorm(n, 0, sd = sqrt(0.25*(X - 15)^2))
    Y <- beta_0 + beta_1*X + u
    return(data.frame(Y, X, u))
}</pre>
```

• Результат для однієї вибірки:

Симуляція Монте-Карло (3)

- Ми зробимо три різні симуляції
- Для того, щоб показати, що OLS оцінка є *умовно* незміщена, $\mathbb{E}\left[\hat{\beta}\mid\mathbf{X}\right]=\beta$, ми згенеруємо \mathbf{X} один раз
 - Потім ми $T=5\,000$ разів утворюватимемо нові вибірки $(Y_i,X_i)^{ op}$, генеруючи щоразу нові u_i

```
get_beta <- function(n, beta_0, beta_1, X) {
    data <- generate_data(n, beta_0, beta_1, X)
    model <- lm(Y ~ X, data = data)
    return(model$coefficients)
}

T <- 5000
X <- generate_X(n)

df <- as_tibble(t(replicate(T, get_beta(n, beta_0, beta_1, X))))</pre>
```

Симуляція Монте-Карло (4)

• Як можна бачити, оцінки справді незміщені

Симуляція Монте-Карло (5)

• Для того, щоб показати, що OLS оцінка є *безумовно* незміщена, $\mathbb{E}\left[\widehat{\beta}\right]=\beta$, ми генеруватимемо **X** наново для кожної вибірки

 $df \leftarrow as tibble(t(replicate(T, get beta(n, beta 0, beta 1, X = NULL))))$

• Відповідні гістограми:

• Як можна бачити, оцінки справді незміщені

Симуляція Монте-Карло (6)

• Для того, щоб показати, що OLS оцінка є спроможна, збільшмо розмір вибірки з n=50 до n=200

```
df <- NULL
for (n in c(50, 200)) {
    df <- rbind(df, as_tibble(t(replicate(T, get_beta(n, beta_0, beta_1, X = NULL)))))
}
df <- df %>% mutate(n = c(rep(50, T), rep(200, T)))
```

Симуляція Монте-Карло (7)

• Відповідні гістограми:

- Як можна бачити, оцінки справді спроможні
- Також цілком очевидно, що вони мають асимптотичний нормальний розподіл