Huawei Summer Intership: Enabling SVE/SME on triton-cpu

Daniel Antonio Martínez Sánchez

Compiler Engineer Intern (OSPP)
Huawei

September 24, 2025

Overview

1. Introduction

2. Challenges

3. Current status

 Enable the new SVE and SME ARM vector extensions into the open euler triton-cpu

Approach 💡

So, how do we do that?

- We can just hardcode the intrinsics for relevant ops
- But we have some really nice SVE/SME work already done
 - The team at Cambridge already has really good performance with SVE/SME
 - Why don't just use that in triton?
 - That's a challenge because triton is not really easy to handle in this aspect

The issue with triton

Triton Uses it's own IR almost entirely

```
TTIR
%8 = tt.addptr %7, %4 : tensor<64x!tt.ptr<f32>>, tensor<64xi32>
%9 = tt.load %8, %6: tensor<64x!tt.ptr<f32>>
TTCIR
%6 = tt.addptr %arg0, %1 : !tt.ptr<f32>, i32
%7 = triton cpu.ptr to memref %6 : <f32> -> memref<128xf32>
%8 = vector.maskedload %7[%c0], %5, %cst -> vector<128xf32>
LLVM IR
%19 = getelementptr float, ptr %0, i64 %18
%20 = call <128xfloat> @llvm.masked.load.v128f32(ptr %19, 4, <128xi1>
817)
X86: AVX512 instructions: vmovups, vaddps %zmm
```

The issue with triton 🚩

- But on Cambridge they use standard MLIR...
- is there any way to make it work?

- Triton shared is a middle layer between triton and MLIR
- It translates from the triton dialects to standard MLIR
- This enables us to still use triton but have all of the advantages of MLIR!


```
tt.func @kernel(%afloat : !tt.ptr<bf16>, %res : !tt.ptr<bf16>) {
 %0 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32>
 %1 = tt.splat %afloat : (!tt.ptr<bf16>) -> tensor<128x!tt.ptr<bf16>>
 %2 = tt.addptr %1, %0 : tensor<128x!tt.ptr<bf16>>, tensor<128xi32>
 %afm = tt.load %2 : tensor<128x!tt.ptr<bf16>>
 %3 = "tt.reduce"(%afm) ({
  ^bb0(%arg5: bf16, %arg6: bf16):
   %21 = arith.addf %arg5, %arg6 : bf16
   tt.reduce.return %21 : bf16
 }) {axis = 0 : i32} : (tensor<128xbf16>) -> bf16
 tt.store %res, %3 : !tt.ptr<bf16>
 tt.return
```

```
func.func @kernel(%arg0: memref<*xbf16>, %arg1: memref<*xbf16>, %arg2: i32, %arg3: i32, %arg4: i32) {
   %cst = arith.constant 0.000000e+00 : f32
   %reinterpret cast = memref.reinterpret cast %arg0 to offset: [0], sizes: [128], strides: [1] :
       memref<*xbf16> to memref<128xbf16, strided<[1]>>
   %alloc = memref.alloc() : memref<128xbf16>
   memref.copy %reinterpret cast, %alloc : memref<128xbf16, strided<[1]>> to memref<128xbf16>
   %0 = bufferization.to_tensor %alloc restrict writable : memref<128xbf16>
   %1 = bufferization.alloc tensor() : tensor<f32>
   %inserted = tensor.insert %cst into %1[] : tensor<f32>
   %reduced = linalg.reduce ins(%0 : tensor<128xbf16>) outs(%inserted : tensor<f32>) dimensions = [0]
     (%in: bf16, %init: f32) {
       %3 = arith.extf %in : bf16 to f32
       %4 = arith.addf %3, %init : f32
       linalg.vield %4 : f32
   %extracted = tensor.extract %reduced[] : tensor<f32>
   %2 = arith.truncf %extracted : f32 to bf16
   %reinterpret cast 0 = memref.reinterpret_cast %arg1 to offset: [0], sizes: [1], strides: [1]:
       memref<*xbf16> to memref<1xbf16, strided<[1]>>
   affine.store %2, %reinterpret cast 0[0]: memref<1xbf16, strided<[1]>>
   return
```

How good is triton-shared?

- Performance
 - Triton itself is a DSL designed for GPU's
 - Performance can get really compromised depending on the source triton kernel.
- Reliability
 - Triton-shared is an experimental project
 - It's under active development

Performance ____

Example of bad code: X

```
for m in range(0, M, BLOCK_SIZE_M):
    # Do in parallel
for n in range(0, N, BLOCK_SIZE_N):
    acc = zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=float32)
    for k in range(0, K, BLOCK_SIZE_K):
        a = A[m : m+BLOCK_SIZE_M, k : k+BLOCK_SIZE_K]
        b = B[k : k+BLOCK_SIZE_K, n : n+BLOCK_SIZE_N]
        acc += dot(a, b)
    C[m : m+BLOCK_SIZE_M, n : n+BLOCK_SIZE_N] = acc
```

Performance ____

Example of performant code:

```
def bare_matmul(X, Y, Z, M, N, K, BLOCK_SIZE: tl.constexpr):
    pid_x = tl.program_id(0)  # block row id
    pid_y = tl.program_id(1)  # block column id

    offs_x = pid_x * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
    offs_y = pid_y * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)

    x = tl.load(X + offs_x[:, None] * K + offs_y[None, :])
    y = tl.load(Y + offs_x[:, None] * N + offs_y[None, :])

    z = tl.dot(x, y)

tl.store(Z + offs_x[:, None] * N + offs_y[None, :], z)
```

Reliability 🧱

At the start of the project we had \sim 5000 failing test (out of 6658) \mathbb{Q} :

- Unsupported datatypes (fp8)
- Unsupported triton operations
- Lots of LLVM bugs

Reliability 🧱

A quick summary of the new operations supported:

- Reductions with complex bodies (tt.reduce)
- Scans (tt.scan)
- Bitcasts (tt.bitcast)
- Atomic read, modify, write (tt.atomic_rmw)
- Batched matmul (tt.dot with 3d inputs)

Reliability 🧱

And a quick summary of LLVM bugs and patches

- Crash when running SME on transforms dialect
- Add support for f8e5m2 & f8e4m3fn in arith expands-ops
- Linalg missing RecursiveMemoryEffects
- Crash causes by liveness analysis in remove-dead-values
- New SVE/SME pipelines

Failing test 🛑

With all of those fixes and additions we have just...

96 failing test left 🤩.

What about the SME/SVE optimized pipelines?

- Pipelines had to be open-sourced from the Cambridge team
- SME pipeline was open sourced early and his already ported to triton
- SVE pipeline was open sourced recently and there is still work todo

Future work 🔀

- Finish porting SVE pipeline
- Fix remaining failing test 🗶
- Benchmark performance \index

Documentation |

I wrote some documentation about this:

- Project log here
- Reproduction instructions here