Azzolini Riccardo 2019-02-26

Funzioni

1 Funzione inversa

Sia $f: X \to f(X)$, cioè una funzione suriettiva. Se f è anche iniettiva, e di conseguenza biiettiva, allora è **invertibile**,

$$\forall y \in f(x) \quad \exists ! x \in X \text{ tale che } f(x) = y$$

quindi esiste una funzione

$$f^{-1}: f(X) \to X$$

 $y \to x$ tale che $f(x) = y$

chiamata funzione inversa di f.

Entrambe le composizioni di f e f^{-1} corrispondono alla funzione identità:

$$f^{-1}(f(x)) = f(f^{-1}(x)) = x$$

1.1 Esempi

• f(x) = 2x + 1 $f: \mathbb{R} \to \mathbb{R}$ è biiettiva, e quindi invertibile:

$$y = 2x + 1$$

 $x = \frac{y-1}{2} \implies f^{-1}(x) = \frac{x-1}{2}$

• $f(x) = 3x^3$ $f: \mathbb{R} \to \mathbb{R}$ è bi
iettiva, quindi invertibile:

$$y = 3x^{3}$$

$$x^{3} = \frac{y}{3}$$

$$x = \sqrt[3]{\frac{y}{3}} \implies f^{-1}(x) = \sqrt[3]{\frac{x}{3}}$$

• $f(x) = x^2$ $f: \mathbb{R} \to [0, +\infty)$ non è invertibile.

Si può ottenere una funzione invertibile restringendo il dominio a $[0, +\infty)$:

$$f: [0, +\infty) \to [0, +\infty)$$

 $x \to x^2$

$$y = x^{2}$$

$$\sqrt{x^{2}} = \sqrt{y}$$

$$|x| = \sqrt{y}$$

$$x = \sqrt{y} \quad \text{perché } x \geq 0$$

$$f^{-1}(x) = \sqrt{x}$$
 $f^{-1}: [0, +\infty) \to [0, +\infty)$

Si ottiene una funzione invertibile anche restringendo il dominio a $(-\infty, 0]$:

$$f: (-\infty, 0] \to [0, +\infty)$$

 $x \to x^2$

$$y=x^2$$

$$|x|=\sqrt{y}$$

$$-x=\sqrt{y} \quad \text{perch\'e} \ x \leq 0$$

$$x=-\sqrt{y}$$

$$f^{-1}(x) = -\sqrt{x}$$
 $f^{-1}: [0, +\infty) \to (-\infty, 0]$

Non è però possibile considerare insieme le due inverse: ciò che si otterrebbe non è una funzione.

2 Funzioni trigonometriche inverse

2.1 Seno

$$f(x) = \sin x \quad f: \mathbb{R} \to [-1, 1]$$

Se si restringe il dominio (per rendere iniettiva la funzione)

$$f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1]$$

$$x \to \sin x$$

si ha allora che

$$\exists f^{-1} : [-1, 1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

 $x \to \arcsin x$

2.2 Coseno

$$f(x) = \cos x$$
 $f: \mathbb{R} \to [-1, 1]$

Restringendo il dominio a $[0,\pi]$, si ricava la funzione inversa

$$f^{-1}: [-1,1] \to [0,\pi]$$
$$x \to \arccos x$$

2.3 Tangente

$$f(x) = \operatorname{tg} x \quad f: \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi : k \in \mathbb{Z} \right\} \to [-1, 1]$$

La funzione inversa si definisce restringendo il dominio a $(-\frac{\pi}{2},\frac{\pi}{2})$:

$$f^{-1}: \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

 $x \to \operatorname{arctg} x$

3 Funzioni crescenti, decrescenti e monotone

Sia $f: X \to \mathbb{R}$.

- f è crescente (decrescente) se $\forall x_1, x_2 \in X$ con $x_1 < x_2$ si ha che $f(x_1) \le f(x_2)$ $(f(x_1) \ge f(x_2))$.
- f è strettamente crescente (strettamente decrescente) se $\forall x_1, x_2 \in X$ con $x_1 < x_2$ si ha che $f(x_1) < f(x_2)$ ($f(x_1) > f(x_2)$).

Una funzione crescente o decrescente si dice **monotona**. Una funzione strettamente crescente o strettamente decrescente si dice **strettamente monotona**.

3.1 Esempi

$$f(x) = x^3$$

è strettamente crescente.

$$f(x) = \begin{cases} x & \text{se } x \ge 1\\ -2 & \text{se } x < 1 \end{cases}$$

è crescente, ma non strettamente.

$$f(x) = x^2$$

è strettamente decrescente per $x \in (-\infty, 0)$ ed è strettamente crescente per $x \in [0, +\infty)$; non importa in quale dei due intervalli si include lo 0.

$$f(x) = [x]$$

è la funzione parte intera, il cui valore per ogni x è il più grande numero intero $\leq x$. Essa è crescente, ma non strettamente, e il suo grafico si dice "a scala".

3.2 Monotonia e invertibilità

Teorema . Se una funzione $f: X \rightarrow f(X)$ è strettamente monotona, allora è invertibile.

Per esempio, se f è strettamente crescente, si ha che

$$\forall x_1, x_2 \quad x_1 < x_2 \implies f(x_1) < f(x_2)$$

e quindi

$$x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

cioè f è iniettiva, e di conseguenza invertibile.

Il viceversa non è vero, cioè esistono funzioni invertibili che non sono strettamente monotone, come ad esempio

$$f(x) = \begin{cases} 3x & \text{se } x \ge 0\\ \frac{1}{x} & \text{se } x < 0 \end{cases}$$

che non è monotona, ma ha funzione inversa

3.3 Composizione

Se f e g sono funzioni monotone, anche la loro composizione $f\circ g$ è monotona. In particolare:

f	g	$f \circ g$
crescente	crescente	crescente
crescente	decrescente	decrescente
decrescente	crescente	decrescente
decrescente	decrescente	crescente

Inoltre, se f e g sono entrambe strettamente monotone, anche $f\circ g$ è strettamente monotona.

3.3.1 Esempio di dimostrazione: f e g decrescenti

Siccome g è decrescente, si ha che

$$\forall x_1, x_2 \in X \quad x_1 < x_2 \implies \underbrace{g(x_1)}_{y_1} \ge \underbrace{g(x_2)}_{y_2}$$

Per la definizione di composizione,

$$(f \circ g)(x_1) = f(g(x_1)) = f(y_1)$$

 $(f \circ g)(x_2) = f(g(x_2)) = f(y_2)$

e, poiché anche f è decrescente, vale

$$y_1 \ge y_2 \implies f(y_1) \le f(y_2)$$

 $x_1 < x_2 \implies f(g(x_1)) \le f(g(x_2))$

quindi $f\circ g$ è crescente. \Box