HOMEWORK 6: VAN KAMPEN AND COVERING SPACES DUE: MONDAY, OCTOBER 30

- 1) Show that if S is a finite collection of points in \mathbb{R}^n , and $n \geq 3$, that $\mathbb{R}^n \setminus S$ is a simply connected set.
- 2) Find $\pi_1(\mathbb{R}^2 \setminus S)$ for a finite collection of points S.
- 3) Show that $\pi_1(\mathbb{R}^2 \setminus \mathbb{Q}^2)$ is an uncountable set.
- 4) Let X be the quotient of S^2 obtained by identifying 2 antipodal points. Compute $\pi_1(X)$. (**Hint:** It may be beneficial to view it as a cell complex).
- 5) For a covering space $p: \tilde{X} \to X$, and $A \subseteq X$, show that the induced map $p: p^{-1}(A) = \tilde{A} \to A$ is a covering space.
- 6) Show that if a path connected, locally path-connected space X has $\pi_1(X)$ finite, then every map $X \to S^1$ is null-homotopic. (**Hint:** Lifting properties)
- 7) Demonstrate that \mathbb{T}^2 is a 2-sheeted cover of the Klein Bottle, but is not a cover of \mathbb{RP}^2 .