

Part 4

Waveform Design beyond Classical Sensing

Outline

• ISAC Motivation and Topologies

Radar Waveforms for Communications

Communication Waveforms for Sensing

Co-existence Design Examples

• HW Prototype

Integrated Sensing and Communications

- Bandwidth is a scarce resource
- Share the mmWave Spectrum
- Operate in a mutually beneficial manner

Reuse of resources

- Viable mass market solutions
- Technological evolution
- Motivational Application : Automotive
 - V2V,V2X
 - Low latency, short messaging

Spectral Coexistence

- Radar and communications operate as separate entities
- Devise strategies to mitigate the interference adaptively
- Some information exchange
- Minimal changes in standard, HW

Spectral Co-design

- New joint sensing and communications techniques
- Single unit is employed
- Opportunistic access of spectrum

ISAC Topologies

Unshared

Shared

COEXISTENCE

BS

Radar

Independent Channel Access

© IEEE: K. V. Mishra, M. R. Bhavani Shankar, V. Koivunen, B. Ottersten and S. A. Vorobyov, "Toward Millimeter-Wave Joint Radar Communications: A Signal Processing Perspective," in IEEE Signal Processing Magazine, vol. 36, no. 5, pp. 100-114, Sept. 2019, doi: 10.1109/MSP.2019.2913173

Unshared

Shared

Radar and Comm Design Considerations

- Two Systems: Which performance metric to use?
 - Communications : Quality of Service, Data Rate, etc
 - Radar: Dependent on Radar Tasks
 - RMSE, RoC ..
 - Unified Criteria?
 - Mutual Information
- Transmitter Degrees of Freedom
 - Co-existence
 - Different antennas, frequency, coding, transmission slots, power, or polarization, possibly Channel State Information
 - Co-design
 - Waveform
- Receiver Degrees of Freedom
 - Multiple antennas, Channel State Information

Signal Processing Approaches

- Adapting waveform parameters
 - Enabling ISAC
 - Precoder/ Beamformer design using SINR maximization for co-existence
- Design of new waveforms
 - Multiple performance metrics/ constraints
 - System oriented constraints
 - Fewer antennas excited, constant modulus
 - Resource allocation
- Receiver
 - Multitude of Beamform designs
 - Successive Interference Cancellation
 - Multiple antenna-based processing

ROPEAN Subspace estimation, Eigenspace processing

Outline

• ISAC Motivation and Topologies

Radar Waveforms for Communications

Communication Waveforms for Sensing

Co-existence Design Examples

• HW Prototype

Communication Embedding in FMCW

Waves Connecting Europe

Communication Embedding in PMCW

Waves Connecting Europe

Summary

- □ Radar Signals → High Time Bandwidth Product
- ☐ Communication Figure of Merit
 - ☐ Spectral Efficiency = Bits/ second/ Hertz
 - ☐ Inversely proportional to TBP
- ☐ Communication embedding directly into radar signals is not spectrally efficient
- ☐ Other mechanisms can be used
 - □ E,g,: Communications in the sidelobe of radar
 → needs array and works in static situations

FMCW

Time × Bandwidth = $T \times \Delta F$

PMCW

 T_{chip}

Source: CTIA, from https://www.telecompetitor.com/ctia-5g-will-provide-big-spectral-efficiency-gains/

Outline

• ISAC Motivation and Topologies

Radar Waveforms for Communications

Communication Waveforms for Sensing

Co-existence Design Examples

• HW Prototype

OFDM and OFDMA

Orthogonal Frequency Division Multiplexing (OFDM)

- Transmission using M subcarriers and N time slots
- Favorable ambiguity function to provide high tolerance against Doppler shift
- No range-Doppler coupling → Independent, unambiguous range and Doppler processing
- Transmit signal is a continuous sequence of OFDM symbols
 - → OFDM radar interpreted as CW

Orthogonal Frequency-Division Multiple Access (OFDMA)

- Differentiates users in both time and frequency
- Stable performance in multipath fading and relative simple synchronization
- High dynamic range and efficient receiver processing based on FFT

Picture from Internet; copyright belongs to owners. Used for academic purposes only

OFDM

- \square N subcarriers in a bandwidth B with spacing $\Delta f = \frac{B}{N}$
- ☐ M OFDM symbols in a CPI
- \square Duration of each symbol T (without guard)
- \Box Orthogonality of sub-carriers $\Delta f = \frac{k}{T} = \frac{B}{N}$, $k \in \mathbb{Z}^+$
- ☐ Classical operations regarding CP, IFFT, FFT,
- \square Waveform : 2D, $N \times M$

$$F_{tx} = \begin{pmatrix} a_{0,0} & a_{1,0} & \cdots & a_{M-1,0} \\ a_{1,0} & & \ddots & & \vdots \\ a_{N-1,0} & a_{N-1,1} & \cdots & a_{N-1,M-1} \end{pmatrix}$$

☐ Columns correspond to fast time (Range), Rows correspond to slot time (Doppler)

lue Received Signal on n^{th} subcarrier and m^{th} OFDM subcarrier

$$(\mathbf{F}_{rx})_{m,n} = b(\mathbf{F}_{tx})_{m,n} e^{j2\pi f_D T_0 m} e^{-j2\pi (n\Delta f)\tau} e^{-j2\pi f_c \tau} e^{j\widetilde{\varphi}}$$

- \square $b, \widetilde{\varphi}$: Equivalent gain and phase, f_D : Doppler, τ : Delay,
- $\Box T_0 = T + T_G$: total OFDM symbol duration, T_G : Guard time
- ☐ Received signal after Tx constellation compensation

$$(F)_{m,n} = \frac{(F_{rx})_{m,n}}{(F_{tx})_{m,n}} = be^{j2\pi f_D T_0 m} e^{-j2\pi (n\Delta f)\tau} e^{-j2\pi f_c \tau} e^{j\widetilde{\varphi}}$$

- ☐ Doppler and Range on different dimensions
- ☐ 2D Processing (FFT/ Periodogram) to obtain

© Johannes Fink, Freidrich Jondral, "Comparison of OFDM Radar and Chirp Sequence Radar", https://www.cel.kit.edu/download/irs 2015 final b.pdf

OFDM

	Requirement
Range Resolution	ΔR
Doppler Resolution	Δv

	Requirement	
Unambiguous Range	R_{max}	
Unambiguous Doppler	v_{max}	

Quantity	Constraint	Remark
Bandwidth	$B = N\Delta f > \frac{c}{2\Delta R}$	Range resolution is inversely proportional to total bandwidth
Subcarriers	$N \ge \frac{R_{max}}{\Delta R}, \qquad N \ll \frac{cB}{2v_{max}f_c}$	Due to periodicity of the exponentials Avoid intercarrier interference/ loss of orthogonality
Guard Interval	$T_G \ge \frac{2R_{max}}{c}$	Avoids inter-symbol interference
OFDM Symbol Duration	$T_0 \le \frac{c}{2v_{max} f_c}$	Using $ f_D T_0 < \frac{1}{2}$
Number of OFDM Symbols	$M \ge \frac{c}{2M\Delta v f_c}$ $M < \frac{\Delta R}{2T_0 v_{max}}$	Velocity resolution is inversely proportional to the total CPI Range Migration

Johannes Fink, Freidrich Jondral, "Comparison of OFDM Radar and Chirp Sequence Radar", https://www.cel.kit.edu/download/irs 2015 final b.pdf
Martin Braun, PhD thesis, KIT 2014, OFDM Radar Algorithms in Mobile Communication Networks

OFDM and **OTFS**

- Orthogonal time-frequency space (OFTS) modulation is patented by Cohere
- Employs the inverse symplectic fast Fourier transform (SFFT) and its inverse (ISFFT) to switch between Zak and time-frequency domain
- delay-Doppler to time-frequency domain:

$$X[n,m] = \frac{1}{\sqrt{NM}} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x_{k,l} e^{j2\pi \left(\frac{nk}{N} - \frac{ml}{M}\right)}$$

Cyclic prefix OFDM uses Inverse DFT/DFT in TF domain

^{R. Hadani et al., "Orthogonal time frequency space modulation,"} *IEEE Wireless Communications and Networking Conference* (WCNC), 2017
H. Bolcskei and F. Hlawatsch, "Discrete zak transforms, polyphase transforms, and applications," *IEEE Transactions on Signal Processing*, vol. 45, no. 4, 1997

⁻ Yi Hong, E Viterbo, P Raviteja, OTFS and its Applications, Tutorial in SPCOM2020, IISc, Bangalore. July 2020 → Source of the picture 16

OTFS Processing

Pre-processing:

$$s(t) = \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} X[n, m] g_{tx}(t - nT) e^{j2\pi m\Delta f(t - nT)}$$

Post-processing: matched filter and sampling at t = nT, $f = m\Delta f$.

$$Y(t,f) = C_{r,g_{\text{rx}}}(t,f) = \int y(t') g_{\text{rx}}^*(t'-t) e^{-j2\pi f t'} dt'$$

After SFFT, the output of dimension NM in delay-Doppler domain (for every Tx-Rx pair)

$$\mathbf{y} = \sum_{p=0}^{P-1} h_p' \boldsymbol{\varPsi}^p(\tau_p, \nu_p) \mathbf{x} + \boldsymbol{w}$$

■ ML Estimation → Complicated Receiver

- R. Hadani et al., "Orthogonal time frequency space modulation," IEEE Wireless Communications and Networking Conference (WCNC), 2017
- H. Bolcskei and F. Hlawatsch, "Discrete zak transforms, polyphase transforms, and applications," IEEE Transactions on Signal Processing, vol. 45, no. 4, 1997
- Yi Hong, E Viterbo, P Raviteja, OTFS and its Applications, Tutorial in SPCOM2020, IISc, Bangalore. July 2020 → Source of the picture 17

Ambiguity Functions

Ambiguity function contains information on:

- range resolution
- range sidelobe level
- range ambiguity spacing
- Doppler resolution
- Doppler sidelobe level
- Doppler ambiguity spacing

Ideal ambiguity function: thumbtack -

- i.e. an infinitely-narrow spike at the origin
- infinitely-high resolution in range and Doppler
- no sidelobes, and no ambiguities.

- r(t): Received Waveform
 - $r(t) = s(t)e^{j2\pi f_D t}$
- Receiver filter : $h(t) = s^*(-t)$
- Output of the receiver filter at time $\chi(\tau, f_D) = \int r(t) h^*(\tau t) \ dt$
- $\chi(au, f_D) = \int s(t) s^*(t- au) e^{j2\pi f_D t} dt$ Ambiguity Function

Which Waveform?

From: OTFS for Automotive

Nazila Karimian-Sichani, Mohammad Alaee-Kerahroodi,

Bhavani Shankar M. R.

Maria S. Greco, Fulvio Gini,

Radars: Waveform Optimization

and Ambiguity Function Analysis

Which Waveform?

Zero Doppler Cut of Ambiguity Functions

From: OTFS for Automotive Radars: Waveform Optimization and Ambiguity Function Analysis

Nazila Karimian-Sichani, Mohammad Alaee-Kerahroodi, Maria S. Greco, Fulvio Gini, Bhavani Shankar M. R.

Zero-Delay Cut of Ambiguity Functions

802-I lad-Based Joint Radar-Comms

- IEEE 802. I lad Wi-Fi standard enables highthroughput (7 Gbps) at 60 GHz
 - Very high rate (~GHz) ADCs → More power, space and cost
 - Can be exploited for a concurrent radar application
- Applications: parking assistance, lane change assistance, object detection

Pictures from Internet; copyright belongs to owners. Used for academic purposes only

	_	
Parameters	Current literature	Proposed radar
Range	Long range (200m)	Short range (40m)
Target model	Simple point targets	Extended targets
Type of target	Static targets	Dynamic targets
Golay sequence	Standard	Modified / Doppler resilient

IEEE 802.1 lad Frame Structure

Single Carrier PHY sical layer (SCPHY) encapsulates Golay sequences

2020 Lad Golay sequences: Two 256-length or four 128-length pairs

Golay Complementary Sequences (Golay Pairs)

Time-domain Property: Zero sidelobes

• Frequency-domain Property: Constant spectrum

Good Autocorrelation, but Doppler Resilience?

Good Autocorrelation

Low Range Sidelobes

Enhanced Static
Target
Discrimination

Golay sequences attractive

802.11ad good for ISAC?

Dynamic Scenarios

Doppler, Delay

Good ACF in both domains

Doppler-Resilient FMCW Waveform

Is 802. I I ad Preamble Doppler-Resilient?

$$G_{a,N}[n] * G_{a,N}[-n] + G_{b,N}[n] * G_{b,N}[-n] = 2N\delta[n].$$

$$(G_{a,N}[n] * G_{a,N}[-n]) + (G_{b,N}[n] * G_{b,N}[-n]) e^{-j\theta} \neq 2N\delta[n]$$

Modification to 802. I lad

RQ1

Doppler Resilient Preamble

RQ2

Identical field width

RQ3

Receiver operation unchanged

AN FEEK LLES NCE

A. Pezeshki, A. R. Calderbank, W. Moran, and S. D. Howard, "Doppler resilient Golay complementary waveforms," IEEE Transactions on Information Theory, 54(9), 4254-4266, 2008.

Prouhet-Thue-Morse (PTM) Sequence

$$q_p = \begin{cases} 0, & \text{if } p = 0 \\ q_{\frac{p}{2}}, & \text{if } (p \text{ modulo } 2) = 0 \\ \hline q_{\frac{p-1}{2}}, & \text{if } (p \text{ modulo } 2) = 1, \end{cases}$$

Modified Golay sequence

if
$$q_p = 0$$
, $\{G_{a,N}[n], G_{b,N}[n]\}$
if $q_p = 1$, $\{-G_{b,N}[-n], G_{a,N}[-n]\}$

Example

PTM Sequence: $[01]: G_{a,N}[n], G_{b,N}[n], -G_{b,N}[-n], G_{a,N}[-n]$:

$$\sum_{p=0}^{3} e^{-jp\theta} (G_{p,N}[n] * G_{p,N}[-n]) \approx 1((G_{1,N}[n] * G_{1,N}[-n]) + (G_{3,N}[n] * G_{3,N}[-n]))$$

$$+2((G_{2,N}[n] * G_{2,N}[-n]) + (G_{3,N}[n] * G_{3,N}[-n]))$$

$$= (2N + 2(2N))\delta[n] = 6N\delta[n].$$

Extended Target Modeling Results – Multiple Targets

Summary

- Communication Waveforms suffer from certain disadvantages
- ☐ Can be useful when the scene is sparse and used in opportunistic way
- Minor modifications to standards can be considered to help sensing

Signal Processing for Joint Radar Communications Bjorn Ottersten (Editor), M. R. Bhavani Shankar (Editor), A. Lee Swindlehurst (Editor), Kumar Vijay Mishra (Editor) ISBN: 978-1-119-79555-1, April 2024, Wiley-IEEE Press

Outline

• ISAC Motivation and Topologies

Radar Waveforms for Communications

Communication Waveforms for Sensing

• Co-existence Design Example

• HW Prototype

Colocated Systems: Radar waveform

■ Beampattern nulling and target discrimination simultaneously.

■ Scenario

- Two targets with the same velocities and different angles.
- Three strong clutters with different angles.
- The targets and clutters have the same range.
- Can not be separated by range-Doppler processing.

Radar Waveform Design

Spatial and Range Integrated Side Lobe Ratio (ISLR)

$$\bar{f}(\boldsymbol{S}) \triangleq \frac{\frac{1}{M_u} \sum_{r=1}^{M_u} P(\boldsymbol{S}, \boldsymbol{\theta}_{u,r})}{\frac{1}{M_d} \sum_{r=1}^{M_d} P(\boldsymbol{S}, \boldsymbol{\theta}_{d,r})} = \frac{\sum_{n=1}^{N} \bar{\boldsymbol{s}}_n^H \boldsymbol{A}_u \bar{\boldsymbol{s}}_n}{\sum_{n=1}^{N} \bar{\boldsymbol{s}}_n^H \boldsymbol{A}_d \bar{\boldsymbol{s}}_n}$$

$$\bar{f}(\boldsymbol{S}) \triangleq \frac{\frac{1}{M_u} \sum_{r=1}^{M_u} P(\boldsymbol{S}, \theta_{u,r})}{\frac{1}{M_d} \sum_{r=1}^{M_d} P(\boldsymbol{S}, \theta_{d,r})} = \frac{\sum_{n=1}^{N} \bar{s}_n^H \boldsymbol{A}_u \bar{s}_n}{\sum_{n=1}^{N} \bar{s}_n^H \boldsymbol{A}_d \bar{s}_n}$$

$$\tilde{f}(\boldsymbol{S}) = \frac{\sum_{m=1}^{M_t} \sum_{k=-N+1}^{N-1} \|\tilde{s}_m^H \boldsymbol{J}_k \tilde{s}_l\|_2^2 - \sum_{m=1}^{M_t} \|\tilde{s}_m^H \tilde{s}_m\|_2^2}{\sum_{m=1}^{M_t} \|\tilde{s}_m^H \tilde{s}_m\|_2^2}$$

Optimization problem

$$\begin{cases} \min_{\boldsymbol{S}} & \bar{f}(\boldsymbol{S}), \tilde{f}(\boldsymbol{S}) \\ s.t & C \end{cases}$$

$$\begin{cases}
\min_{\mathbf{S}} \quad \bar{f}(\mathbf{S}), \tilde{f}(\mathbf{S}) \\
s.t \quad C
\end{cases}$$

$$C_1 : 0 < \|\mathbf{S}\|_F^2 \leqslant M_t N, \quad \frac{\max_{\mathbf{S}, n} |s_{m,n}|^2}{\frac{1}{M_t N} \|\mathbf{S}\|_F^2} \leqslant \gamma_p$$

$$C_2 : 0 < \|\mathbf{S}\|_F^2 \leqslant M_t N, \quad \frac{\max_{\mathbf{S}, n} |s_{m,n}|^2}{\frac{1}{M_t N} \|\mathbf{S}\|_F^2} \leqslant \gamma_p$$

$$C_3 : s_{m,n} = e^{j\phi}; \quad \phi \in \Phi_{\infty}$$

$$C_4 : s_{m,n} = e^{j\phi}; \quad \phi \in \Phi_L$$

Power constraint

PAR constraint

Continuous phase

Discrete phase

Usually a feasible solution that minimizes both the objectives simultaneously does not exist

Weighted Sum Method:

$$egin{cases} \min & ar{f}(oldsymbol{S}), ilde{f}(oldsymbol{S}) \ s.t & C \end{cases}$$

Solved using CD method

E. Raei, M. Alaee-Kerahroodi and M. R. B. Shankar, "Spatial- and Range- ISLR Trade-Off in MIMO Radar Via Waveform Correlation Optimization," in IEEE Transactions on Signal Processing, vol. 69, pp. 3283-3298, 2021

Design Result

- Phased array processing, The virtual array is not performed.
- Targets discrimination
- Clutters mitigation

- \Box Orthogonal waveform ($\eta = 0$):
 - MIMO processing, The virtual array is performed.
 - Targets discrimination
 - Clutters mitigation

- Partially correlated waveform $(\eta = 0.5)$:
 - MIMO processing, The virtual array is performed.
 - Targets discrimination

Clutters mitigation

Outline

• ISAC Motivation and Topologies

Radar Waveforms for Communications

Communication Waveforms for Sensing

• Co-existence Design Example

• HW Prototype

Hardware Prototype

Conclusions

- Мани
 - ISAC offers new avenues for proliferation of sensing without using dedicated radar
 - Interesting use cases exist, considered in 6G
 - Use case defines ISAC topology and system design (including Waveforms)
 - Waveform for ISAC
 - Radar waveforms well suited for radar
 - Comm waveforms well suited for comm
 - Way forward
 - Opportunistic sensing with minor modifications
 - Co-existence

Thanks!

