Flug- und Betriebshandbuch für den Motorsegler

B13

Ausgabe 05.2013

Dieses Handbuch ist stets an Bord mitzuführen

Werknummer 001

Kennzeichen D-KILU

Hersteller Akademische Fliegergruppe Berlin e.V.

Straße des 17. Juni 135

10623 Berlin

Die mit "LBA-anerkannt" gekennzeichneten Blätter sind anerkannt vom Luftfahrtbundesamt, Bundesrepublik Deutschland. Diese Blätter sind auf weißem bzw. rotem Papier gedruckt. Rot kennzeichnet die Notverfahren. Wichtige Stellen sind farblich hervorgehoben.

Unterschrift:

Stempel:

Datum der Anerkennung:

Inhaltsverzeichnis

1	Allge	emeines	1
	1.1	Einführung	1
	1.2	Zulassungsbasis	1
	1.3	Warnungen, wichtige Hinweise und Anmerkungen .	2
	1.4	Beschreibung und technische Daten	2
	1.5	Dreiseitenansicht	6
	1.6	Abkürzungen	7
	1.7	Einheitenumrechnung	8
2	Betr	iebsgrenzen	9
	2.1	Einführung	9
	2.2	Fluggeschwindigkeiten	9
	2.3		12
	2.4		12
	2.5		14
	2.6		15
		2.6.1 Motor	15
		2.6.2 Propeller	15
		2.6.3 Akkupacks	15
	2.7	Markierungen des Triebwerksinstruments	16
	2.8	9	16
	2.9		17
		2.9.1 Wägebericht	18
	2.10	Zugelassene Manöver	18

	2.11	Manöverlastvielfache
		Flugbesatzung
		Betriebsarten
	2.14	Mindestausrüstung
	2.15	Flugzeugschlepp und Windenschlepp 20
	2.16	Hinweisschilder für Betriebsgrenzen
3	Not	verfahren 26
	3.1	Einführung
	3.2	Abwerfen der Kabinenhaube 26
	3.3	Notausstieg
	3.4	Beenden des überzogenen Flugzustands 27
	3.5	Beenden des Trudelns
	3.6	Beenden des Spiralsturzes
	3.7	Notlandungen
		3.7.1 Notlandung mit eingezogenem Fahrwerk 30
		3.7.2 Notlandung auf dem Wasser
		3.7.3 Drehlandung ("Ringelpietz") 31
	3.8	Flug im Bereich von Gewittern
	3.9	Flug bei Regen
	3.10	Flug bei Vereisungsbedingungen
	3.11	Triebwerksausfall
		3.11.1 Motor startet nicht
		3.11.2 Leistungsverlust während des Fluges 34
	3.12	Brand
		3.12.1 Brand am Boden
		3.12.2 Brand während des Fluges
	3.13	Sonstige Notfälle
		3.13.1 Verlust der 12V Spannungsversorgung wäh-
		rend des Fluges
4	Norr	male Betriebsverfahren 38
	4.1	Einführung

	4.2	Montageverfahren, Laden, Ein- und Ausbau der	
		Akkupacks	38
			38
		4.2.2 Laden der Akkupads	41
		4.2.3 Einbau der Akkupacks in das Segelflugzeug	41
	4.3	Tägliche Kontrolle	43
	4.4	Vorflugkontrolle	45
		4.4.1 Starten des Motors am Boden	46
	4.5	Normalverfahren und empfohlene Geschwindigkeiten	48
		4.5.1 Windenstart	48
		4.5.2 Flugzeugschlepp	49
		4.5.3 Rollverfahren	51
		4.5.4 Eigenstart und Steigflug	51
		4.5.5 Freier Flug	51
		4.5.6 Reise- und Steigflug mit laufendem Motor .	54
		4.5.7 Propeller anhalten mit elektrischer Bremse	55
		4.5.8 Landeanflug	56
5	Flug	gleistungen	5 8
	5.1	Einführung	58
		5.1.1 Nachgewiesene Seitenwindkomponenten	59
	5.2	Geschwindigkeitspolare	59
	5.3	Gleitzahlpolare	60
	5.4	Leistungsoptimale Wölbklappenbedienung	62
	5.5	Nicht LBA-anerkannte weitere Informationen	62
		5.5.1 Flugleistung im motorgetriebenen Flug	62
6	Bes	chreibung d. Motorseglers, seiner Systeme und	
			65
	6.1	Einführung	65
	6.2		65
	6.3		66
	6.4		66
	6.5	Bremsklappen	67

	6.6	Gepäckraum	67
	6.7	Triebwerksanlage	67
	6.8	Akkupacks	67
	6.9	Elektrische Anlage	67
	6.10	Sonstige Ausrüstung	68
7	Han	dhabung, Instandhaltung und Wartung	70
	7.1	Einführung	70
	7.2	Prüfintervalle	70
	7.3	FES Wartungsintervalle	71
	7.4	Änderungen oder Reparaturen am Segelflugzeug .	71
	7.5	Handhabung am Boden/Straßentransport	72
		7.5.1 Ziehen/Schieben	72
		7.5.2 Abstellen und Lagern	73
		7.5.3 Vorbereitung auf den Straßentransport	73
	7.6	Reinigung und Pflege	74

1 Allgemeines

1.1 Einführung

Das vorliegende Flughandbuch wurde erstellt, um Piloten und Ausbildern alle notwendigen Informationen für einen sicheren, zweckmäßigen und leistungsoptimierten Betrieb des Motorseglers B13 zu geben.

Das Handbuch enthält zunächst alle Daten die dem Piloten aufgrund der Bauvorschrift JAR-22 zur Verfügung stehen müssen. Es enthält darüber hinaus jedoch eine Reihe weiterer Daten und Betriebshinweise, die aus Herstellersicht für den Piloten von Nutzen sein können.

1.2 Zulassungsbasis

Der Motorsegler B13 wird im Rahmen einer "Vorläufigen Verkehrszulassung" betrieben. Die Zulassungsbasis stellt die JAR-22 vom 15. März 1982.

Lufttüchtigkeitsgruppe: Utility

1.3 Warnungen, wichtige Hinweise und Anmerkungen

Die nachfolgenden Definitionen gelten für Warnungen, wichtige Hinweise und Anmerkungen im Flughandbuch.

Warnung

bedeutet, dass die Nichteinhaltung einer entsprechend gekennzeichneten Verfahrensvorschrift zu einer unmittelbaren oder erheblichen Beeinträchtigung der Flugsicherheit führt.

Wichtiger Hinweis

bedeutet, dass die Nichteinhaltung einer entsprechend gekennzeichneten Verfahrensvorschrift zu einer geringfügigen oder einer mehr oder weniger langfristig eintretenden Beeinträchtigung der Flugsicherheit führt.

Anmerkung

soll die Aufmerksamkeit auf Sachverhalte lenken, die nicht unmittelbar mit der Sicherheit zusammenhängen, die aber wichtig oder ungewöhnlich sind.

1.4 Beschreibung und technische Daten

Die B13 ist ein doppelsitziger Motorsegler mit einem gedämpften T-Leitwerk, 4-teiligen Tragflächen, nebeneinander angeordneten Sitzen, Schempp-Hirth Oberseiten-Bremsklappen und einem gefederten Hauptfahrwerk.

Die B13 wurde für wissenschaftliche Zwecke und für den Leistungsflug entworfen.

Technische Daten

Besatzung		1+1
Tragflügel		
	Spannweite	23,20m
	Fläche	$18,95m^2$
	Streckung	28, 4
	Ersatzflügeltiefe	873mm
	Einstellwinkel	0°
	Pfeilung zur 25%-Linie	$-0,3^{\circ}$
	V-Stellung	1°
	Verwindung	0°
	Profil	$HQ\ 41/14,35$
	Klappentiefe	17,5%
Rumpf		
	Länge	8,55m
	Breite	1,28m
	Höhe	0,90m
Höhenleitwerk		
	Spannweite	3,10m
	Fläche	$1,457m^2$
	Profil	FX 71-L-150/25
Seitenleitwerk		
	Höhe	1,70m
	Fläche	$1,71m^{2}$

	Profil	FX 71-L-150/30
Bremsklappen		
**	Spannweite	1,50m
	Höhe	158mm
	Fläche	$0,442m^2$
Fahrwerk		
	Hauptrad, einziehbar	380x150
	,	3-3,5 bar
	Heckrad, fest	210x65
		2,5-2,8 bar
	Radstand	5,60m
Massen		
	Leermasse	s. Wägebericht
	Höchstmasse	820kg
	Flächenbelastung min/max	$34,7\frac{kg}{m^2}/43,3\frac{kg}{m^2}$
Flugleistungen		
0	bei Flugmasse $765kg$	
	beste Gleitzahl (WK +1)	$45,4(95\frac{km}{h})$
	geringstes Sinken (WK +1)	$0.56\frac{m}{8}(90\frac{km}{h})$

Die B13 ist mit einem hochwertigen und leistungsstarken elektrischem Antriebssystem, ausgestattet. Das Antriebssystem basiert in weiten Teilen auf dem FES System, mit Änderungen am Antriebsmotor, Inverter, Propeller und Propellerschlitten sowie der Batteriekapazität.

Hauptbestandteile des Antriebssystems sind:

- Brushless Elektromotor EMRAX 208 LV AC
- Motorsteuerungseinheit Emsiso emDrive500
- Nach vorn faltbarer Propeller mit Ausfahreinheit und Steuerung
- FES GEN 2 75Ah Akkupacks, mit integriertem BMS (Batteriemanagementsystem)
- Ladegerat 1200W
- FCU (FES Steuerungseinheit) Instrument
- LXUI Box mit Shunt (als Messgerät für Strom und Spannung)
- FCC Box (FES Schaltkreis)
- Leistungsschalter
- DC/DC Wandler (wandelt Hochspannung in 12V)

1.5 Dreiseitenansicht

1.6 Abkürzungen

CAS kalibrierte Eigengeschwindigkeit (calibrated

airspeed): IAS eines Segelflugzeugs, die um Messfehler korrigiert ist; die kalibrierte Eigengeschwindigkeit entspricht der wahren Eigengeschwindigkeit (TAS) auf Meereshöhe unter den Bedingungen der Standardatmosphare

C.G. Schwerpunkt (center of gravity)

daN Decanewton

h Stunde

IAS angezeigte Eigengeschwindigkeit (indicated

airspeed): relative Geschwindigkeit eines Segelflugzeugs zur umgebenden Luftmasse, die

auf dem Fahrtmesser angezeigt wird

m Meter kg Kilogram

km Kilometer s Sekunde

Ltr Liter

1.7 Einheitenumrechnung

```
1 bar
                               = 14.5 pounds per square inch (psi);
1 decanewton (daN)
                               = 2,25 pounds force;
1 Kilogram (kg)
                               = 2.2 pounds (lbs);
                               = 39.4 \text{ inches (in.)} = 3.28 \text{ feet (ft.)};
1 meter (m)
1 Millimeter (mm)
                               = 0.0394 inches (in.);
1 Liter
                               = 0.2642 U.S. gal;
1 Quadratmeter (m<sup>2</sup>)
                               = 10,764 \text{ sq.ft};
1 \text{ kg/m}^2
                               = 0.204 \text{ lbs/sq.ft};
1 \text{ m/s}
                               = 1,944 \text{ Knoten (kts)};
                               = 0.5396 \text{ kts};
1 \text{ km/h}
                               = 1,34 \text{ HP}.
1 \text{ kW}
```

2 Betriebsgrenzen

2.1 Einführung

Der vorliegende Abschnitt beinhaltet Betriebsgrenzen, Instrumentenmarkierungen und Hinweisschilder, die für den sicheren Betrieb der B13 notwendig sind.

2.2 Fluggeschwindigkeiten

Die Fluggeschwindigkeitsgrenzen und ihre Bedeutung für den Betrieb sind nachfolgend aufgeführt:

	Geschwindigkeit	IAS $\left[\frac{km}{h}\right]$	Anmerkungen
V_{NE}	Zulässige Höchstge- schwindigkeit bei ruhigem Wetter	220	Diese Geschwindigkeit darf nicht überschritten werden und der Ruderausschlag darf nicht mehr als $\frac{1}{3}$ betragen
V_{RA}	Zulässige Höchstge- schwindigkeit in starker Turbulenz	180	Diese Geschwindigkeit darf bei starker Turbu- lenz nicht überschrit- ten werden. (Starke Turbulenz herrscht vor in Leewellen-Rotoren, Gewitterwolken, usw.)

V_A	Manöver- geschwindigkeit	180	Oberhalb dieser Geschwindigkeit dürfen keine vollen oder abrupten Ruderausschläge ausgeführt werden, da die Flugzeugstruktur dabei überlastet werden könnte.
V_{FE}	Zulässige Höchstge- schwindigkeit für das Be- tätigen der Flügelklappen +2, +1 Landestellung L	180 130	Diese Geschwindigkeit darf bei der angegebe- nen Flügelklappenstel- lung nicht überschrit- ten werden.
V_W	Zulässige Höchstge- schwindigkeit für den Windenschlepp	120	Diese Geschwindigkeit darf während des Winden- oder Kraft- fahrzeugschlepps nicht überschritten werden.
V_T	Zulässige Höchstge- schwindigkeit für den Flug- zeugschlepp	160	Diese Geschwindig- keit darf während des Flugzeugschlepps nicht überschritten werden.

V_{LO}	Zulässige Höchstge- schwindigkeit zum Betätigen des Fahrwerks	160	Über dieser Geschwindigkeit darf das Fahrwerk nicht ein- oder ausgefahren werden.
V_{PO}	Zulässige Geschwindigkeit mit drehendem Propeller	160 (Vorläufig)	Diese Geschwindigkeit darf bei drehen- dem Propeller nicht überschritten wer- den. (Unabhängig von der eingestellten Motorleistung)
$V_{PO,min}$	Zulässige Mindestgeschwindigkeit für den Start des Triebwerks	80 (Vorläufig)	Unterhalb dieser Geschwindigkeit darf der Motor nicht gestartet werden
$V_{PO,max}$	Zulässige Mindestgeschwindigkeit für den Start des Triebwerks	135 (Vorläufig)	Oberhalb dieser Geschwindigkeit darf der Motor nicht gestartet oder abgestellt werden

Warnung

Wählen Sie die richtige Geschwindigkeit zum Starten/Stoppen des Motors:

Stellen Sie sicher, dass Ihre gewählte Start- und Stopp- Geschwindigkeit des Motor mindestens $8\dots 10$ km/h über der Überziehgeschwindigkeit der gewählten Flugkonfiguration liegt.

2.3 Anzeigefehler in der Fahrtmesseranlage

Die folgenden Angaben sind als die berichtigten Fluggeschwindigkeiten (VCAS) über der angezeigten Fluggeschwindigkeit (VIAS) dargestellt. Es wurde dabei ein Instrumentenfehler gleich Null angenommen. Die Darstellung erfasst weiterhin alle Flügelklappenstellungen und deckt den entsprechenden Geschwindigkeitsbereich ab.

Die Druckentnahme erfolgt durch eine Kombidüse an der Nase vom Seitenleitwerk.

Der Fehler der Fahrtmesseranlage beträgt nicht mehr als $8\frac{km}{h}$ bzw. 5% und erfüllt damit die Anforderungen der JAR 22 (siehe JAR 22.1323).

2.4 Überziehgeschwindigkeiten

Die folgenden Überziehgeschwindigkeiten wurden bei einem Abfluggewicht von 820kg und vorderster Schwerpunktlage ermittelt:

WK-2		
	Geradeaus:	$78\frac{km}{h}$
	5° schiebend:	$78\frac{km}{h}$
	45°-Kurve:	$95\frac{km}{h}$
WK-1		
	Geradeaus:	$79\frac{km}{h}$
	5° schiebend:	$79\frac{km}{h}$
	45°-Kurve:	$79\frac{km}{h}$ $79\frac{km}{h}$ $88\frac{km}{h}$
WK 0		
	Geradeaus:	$79\frac{km}{h}$ $79\frac{km}{h}$ $90\frac{km}{h}$
	5° schiebend:	$79\frac{km}{h}$
	45°-Kurve:	$90\frac{km}{h}$
WK +1		
	Geradeaus:	$77\frac{km}{h}$ $77\frac{km}{h}$ $89\frac{km}{h}$
	5° schiebend:	$77\frac{km}{h}$
	45°-Kurve:	$89\frac{km}{h}$
WK +2		
	Geradeaus:	$76\frac{km}{h}$
	5° schiebend:	$76\frac{km}{h}$ $85\frac{km}{h}$
	45°-Kurve:	$85\frac{km}{h}$
WK L		7
	Geradeaus:	$75\frac{km}{h}$
	5° schiebend:	$75\frac{km}{h} \\ 88\frac{km}{h}$
	45°-Kurve:	$88\frac{km}{h}$
	geradeaus, Bremsklappe + Fahrwerk aus:	$78\frac{km}{h}$

2.5 Fahrtmessermarkierungen

Die folgende Tabelle nennt die Fahrtmessermarkierungen und die Bedeutung der Farben:

Markierung	IAS $\left[\frac{km}{h}\right]$	Bedeutung
Weißer Bogen	80 – 180	Betriebsbereich für positive Klappenausschläge (Untere Grenze ist die Geschwindigkeit $1,1V_{S0}$ bei Höchstmasse in Landekonfiguration. Obere Grenze ist die zulässige Höchstgeschwindigkeit mit positivem Klappenausschlag.)
Grüner Bogen	80 – 180	Normaler Betriebsbereich (Untere Grenze ist die Geschwindigkeit $1,1V_{S1}$ bei Höchstmasse und vorderster Schwerpunktlage und Flügelklappen in der Neutralstellung; obere Grenze ist die zulässige Höchstgeschwindigkeit in starker Turbulenz)
Gelber Bogen	180-220	In diesem Bereich darf bei star- ker Turbulenz nicht gefolgen werden und Manöver dürfen nur mit Vor- sicht durchgeführt werden.
Roter Strich	220	Zulässige Höchstgeschwindigkeit für alle Betriebsarten
Gelbes Dreieck	95	Anfluggeschwindigkeit bei Höchstmasse

Die B13 hat keine speziellen Fahrmessermarkierungen im für den Motorbetrieb.

2.6 Triebwerk

Warnung

Die B13 ist nicht für den Eigenstart zugelassen.

2.6.1 Motor

Motor Hersteller: Emrax d.o.o.

Motor Modell: Emrax 208 LowVoltage AirCooled

Maximale Dauerleistung: 22 kW Maximale Leistung für 2 Minuten: 30 kW

Maximale Drehzahl: 5000 1/min

2.6.2 Propeller

Hersteller: Akaflieg Berlin e.V.
Modell: B13e Faltpropeller V01

Maximale Dauerdrehzahl: 3000 u/min Kurzzeitige Überdrehzahl: 3200 u/min

2.6.3 Akkupacks

Hersteller: LZ-Design d.o.o Bezeichnung: FES GEN2 75Ah

Das Antriebsystem benötigt zwei in Reihe geschaltete Akkupacks. Jedes Akkupack besitzt 14 LiPo Zellen, also insgesamt 28 Zellen.

Max. zulässige Gesamtspannung beider Akkupacks:

Min. zulässige Gesamtspannung beider Akkupacks:

Nennkapazitat pro Zelle:

Nenrgiespeicherkapazitat:

Nennspannung pro Zelle:

Nennspannung:

3,7 V

Minimale Spannung pro Zelle:

3,2 V

Weitere Informationen über die verwendeten Akkupacks finden Sie im FES AKKUPACKHANDBUCH der Firma LZ-Design.

2.7 Markierungen des Triebwerksinstruments

Das FES Triebwerk besitzt ein FCU Instrument mit einem hochauflösenden sonnenlichtgeeignetem Farbdisplay. Weitere Informationen über die FCU und Ihre Bedienung finden Sie im **FES FCU INSTRUMENTENHANDBUCH!**

2.8 Masse (Gewicht)

Leermasse	s. Wägebericht
Höchstzulässige Abflugmasse	820kg
Höchstzulässige Masse nichttragender Teile	506kg
Höchstmasse im Gepäckraum	10kq

Die Masse der Batterie Packs beträgt insgesamt ca. 50kg, der Antriebsstrang mit Motor und Propeller wiegt 19kg, der Regler wiegt ca. 5kg.

Warnung

Die Mindestzuladung ohne Motor und ohne Batterien be-

trägt ca. 150 kg!

2.9 Schwerpunkt

Flugzeuglage Keil 1000 : 28 auf der Rumpfoberseite Bezugsebene (BE) Flügelvorderkante an der Wurzelrippe

Größte Vorlage 245,3mm hinter BE Größte Rücklage 428,6mm hinter BE

Hebelarme

Piloten $x_P = -445mm$ Gepäckfach $x_G = 200mm$

Die Bezugsebene ist die Vorderkante der Wurzelrippe.

Die Antriebskomponenten der B13 wurden so positioniert, dass ein großer Zuladungsbereich möglich ist.

Warnung

Ein Flug mit ausgebautem Motor ist nur in Verbindung einer neuen Wägung zulässig. Ein Ausbau des Antriebsstrangs erhöht in deutlichem Maße die Mindestzuladung.

Warnung

Ein Flug mit ausgebautem Akkupack ist nur in Verbindung einer neuen Wägung zulässig. Ein Ausbau der Akkupacks erhöht in deutlichem Maße die Mindestzuladung.

2.9.1 Wägebericht

Datum	Leermasse $[kg]$	Leermassen- schwerpunkt $[mm]$	$\begin{array}{c} \text{Maximale} \\ \text{Zuladung} \\ [kg] \end{array}$	Unterschrift
14.03.12	579	552,9	221	Hofmann
23.02.19	655	514	165	Döring

2.10 Zugelassene Manöver

Der Motorsegler B13 ist für den normalen Segelflug (Lufttüchtigkeitsgruppe "Utility") zugelassen.

Kunstflug ist nicht zulässig

2.11 Manöverlastvielfache

Folgende Lastvielfache dürfen beim Abfangen nicht überschritten werden.

	positiv	negativ
Bei Manövergeschwindigkeit $V_A = 160 \frac{km}{h}$	+5, 3	-2,65
Bei Höchstgeschwindigkeit $V_{NE}=220^{\frac{km}{h}}$	+4,0	-1, 5
Bei ausgefahrenen Bremsklappen und V_{NE}	+3, 5	0

2.12 Flugbesatzung

Die B13 kann einsitzig oder doppelsitzig geflogen werden. Der verantwortliche Luftfahrzeugführer kann auf der linken oder rechten Seite sitzen. Es wird empfohlen, die Platzrunde und insbesondere bodennahe Kurven (z.B. bei Seilriss) in Richtung des fliegenden Luftfahrzeugführes auszuführen, da ansonsten mit Sichtbeeinträchtigungen gerechnet werden muss.

2.13 Betriebsarten

Mit der B13 dürfen Flüge nach Sichtflugregeln (VFR) bei Tag durchgeführt werden.

Warnung

Kunstflug und Wolkenflug sind nicht zulässig

Warnung

Flüge bei starkem Regen mit laufendem Motor sind verboten! Es muss sichergestellt werden, dass die Bestandteile des Elektroantriebes nicht nass werden.

Warnung

Eigenstarts mit der B13 sind nicht zulässig.

2.14 Mindestausrüstung

Zur Mindestausrüstung für den Normalbetrieb gehören:

- Fahrtmesser (bis $300\frac{km}{h}$ mit Farbmarkierungen nach Abschnitt 2.3)
- Höhenmesser
- Variometer
- Magnetkompass
- 2 Anschnallgurte (vierteilig, symmetrisch)
- Flug- und Betriebshandbuch
- Daten- und Hinweisschilder
- 2 automatische oder manuelle Fallschirme

2.15 Flugzeugschlepp und Windenschlepp

Flugzeugschlepp

Die maximal zulässige Schleppgeschwindigkeit beträgt $V_T = 160 \frac{km}{h}$. Es wurden Seillängen zwischen 30m und 60m erprobt.

Die Sollbruchstellen des Schleppseils sollten eine Bruchlast von 1000daN (schwarz) erreichen.

Für den Flugzeugschlepp wird die Schwerpunktkupplung an der Rumpfunterseite verwendet.

Windenschlepp

Die maximal zulässige Schleppgeschwindigkeit beträgt $V_W = 120 \frac{km}{h}$, $100\frac{km}{h}$ sollte nicht unterschritten werden. Die Sollbruchstellen des Windenseils sollten eine Bruchlast von

1000 daN (schwarz) haben.

Für den Windenstart wird die Schwerpunktkupplung an der Rumpfunterseite verwendet.

2.16 Hinweisschilder für Betriebsgrenzen

Startcheck

- Startcheck
 Spornkuller entfernt
 Ballast prüfen
 Fallschirm richtig angelegt
 Richtig und fest angeschnallt
 alle Bedienelemente erreichbar
 Bremsklappen eingefahren und
 verriegelt; Wölbklappen
 Höhenmesser eingestellt
 Funkgerät eingeschaltet; Frequenz,
 Lautstärke geprüft
 Trimmung eingestellt
- Trimmung eingestellt Ruderkontrolle Alle Ruder
- freigängig Startstrecke und Ausklinkraum frei

Startcheck

Dieses Flugzeug wird mit einer VVZ (vorläufigen Verkehrszulassung) betrieben. Es sind nur Flüge im Rahmen der Einzelstückzulassung erlaubt. Zugehörende Fluganweisung beachten.

Permit To Fly

Höchstzulässige Abflugmasse: 820 kg Mindestzuladung: 100 kg Höchstzulässige Geschwindigkeit (IAS) bei ruhigem Wetter: $V_{\rm NE}$ 220 km/h bei starker Turbulenz: $V_{\rm RA}$ 160km/h bei Flugzeugschlepp: $V_{\rm T}$ 160 km/h bei Auto- u. Windenstart: $V_{\rm W}$ 120 km/h Manövergeschwindigkeit: $V_{\rm A}$ 160 km/h

Datenschild

Haubennotabwurf am Instrumentenbrett

Bremsklappen, blauer Griff jeweils links

Fahrwerk, silberner Hebel in der Mitte

Trimmung, grüner Hebel in der Mitte

Lüftungsbetätigung, Knopf links und rechts an Cockpitwand

Schleppkupplung, gelber Griff jeweils links neben Steuerknüppel

Pedalverstellung, weißer Griff rechts neben Steuerknüppel

Wölbklappenhebel, schwarzer Griff, jeweils links

Zusätzliche Hinweisschilder müssen für mit einem FES System ausgestattete Segelflugzeuge hinzugefügt werden:

Geschwindigkeit IAS:		Km/h
Triebwerksbetrieb	$V_{ m PO}$	80-160
Max. Motor Start/Stopp	$V_{ m POmax}$	135

3Notverfahren

3.1 Einführung

Der vorliegende Abschnitt beinhaltet die Beschreibung der empfohlenen Verfahren bei eventuell eintretenden Notfällen.

3.2 Abwerfen der Kabinenhaube

Erfordert eine Situation das Abwerfen der Kabinenhaube, müssen folgende Schritte in der richtigen Reihenfolge ausgeführt werden:

- Den roten Griff unten links auf dem Instrumentenbrett kräftig nach hinten bis zum Anschlag durchziehen
- Haube nach oben wegstoßen

Durch das Ziehen des roten Griffes am Instrumentenpilz wird die Haube an ihren seitlichen Befestigungen gelöst. Im vorderen Teil der Haubenmimik befinden sich zwei vorgespannte Federn, die nach dem Entriegeln die Haube vorne in die Strömung drücken. Die jetzt angreifenden Luftkräfte reißen die Haube nach hinten weg, wobei sie dabei eine definierte Drehung um die hintere Aufhängung (an der Gasdruckfeder) vollzieht. Diese Aufhängung ist mit einer Sollbruchstelle ausgestattet, die sich während oder unmittelbar nach der Drehung der Haube löst.

Falls nötig, muss die Haube zusätzlich mit beiden Händen nach oben weggedrückt werden.

Wichtiger Hinweis

Bei ausgefahrenem Fahrwerk muss der Griff für den Haubennotabwurf leicht gedreht werden.

Warnung

Vor dem Abwerfen der Kabinenhaube, wenn möglich den Motor stoppen und das Antriebsystem ausschalten.

3.3 Notausstieg

Bei einem Notabsprung im Flug sollte man sich an die folgende Reihenfolge halten:

- 1. **Haube** abwerfen
- 2. Gurtzeug öffnen
- 3. Ausstieg mit beiden Armen über den Haubenrand hebeln (Körper möglichst anhocken) und dann vom Flugzeug abdrücken

Warnung

Vor dem Notausstieg, wenn möglich Motor stoppen und das Antriebsystem ausschalten.

3.4 Beenden des überzogenen Flugzustands

Der überzogene Flugzustand äußert sich bei einer Annäherung an die Mindestgeschwindigkeit (unabhängig von Wölbklappenstellung oder Querneigung) durch Weichwerden der Ruder, einer Taumelbewegung auf die eine Nickbewegung folgt, sowie Schütteln, Sackflug und Abreißerscheinungen am Rumpf.

Dieser überzogene Flugzustand wird durch ein deutliches Nachlassen der Höhensteuerung und einer evt. Verminderung der Querneigung beendet.

Wird im Sackflug der Anstellwinkel durch weiteres "Ziehen" deutlich erhöht, kann je nach Schwerpunktlage "Trudeln" die Folge

eines einseitigen Abkippens über den Flügel sein.

Im Motorbetrieb muss zuerst der Motor gestoppt werden. Danach wird der überzogene Flugzustand gem. Flughandbuch beendet

3.5 Beenden des Trudelns

Im Rahmen der Flugerprobung wurde das Trudeln mit unterschiedlichen Schwerpunktlagen, Drehrichtungen und Wölbklappenstellungen eingeleitet.

Bei den Wölbklappenstellungen -2, -1 und 0 beträgt die maximale Fahrt beim Ausleiten $190\frac{km}{h}$ und bei den Wölbklappenstellungen +1 und +2 beträgt sie $170\frac{km}{h}$.

Warnung

Bei der Wölbklappenstellung 'L' beträgt die zulässige Höchstgeschwindigkeit $130 \frac{km}{h}$. Da diese Geschwindigkeit beim Ausleiten schnell erreicht werden kann, sollte man vor dem Ausleitvorgang eine andere Wölbklappenstellung rasten, um die Flugzeugstruktur nicht zu überlasten.

Um das Trudeln auszuleiten, kann bei der B13 die Standardmethode angewandt werden. Im Falle des Motorbetriebes, muss dieser zunächst gestoppt werden.

- 1. Motor ggf. stoppen
- 2. Seitenruder gegen die Trudelrichtung
- 3. Höhenruder neutral stellen
- 4. Warten bis die Drehung aufhört
- 5. Seitenruder neutral stellen
- 6. Vorsichtig abfangen

Wichtiger Hinweis

Der Höhenverlust kann beim Ausleiten bis zu 200m betragen!

3.6 Beenden des Spiralsturzes

Beim Trudeln wurde in keinen der durchgeführten Erprobungssenarien eine Neigung zum Spiralsturz erkennbar.

Sollte sich trotzdem ein Spiralsturz einstellen, kann man ihn mit folgenden Steuereingaben ausleiten:

- 1. Motor stoppen
- 2. Quer- und Seitenruder in Gegendrehrichtung
- 3. Vorsichtig Fahrt abbauen

Warnung

Beim Abfangen sind die zulässigen Ruder- und Klappenausschläge zu den erreichten Geschwindigkeiten zu beachten.

3.7 Notlandungen

3.7.1 Notlandung mit eingezogenem Fahrwerk

Notlandung immer mit ausgefahrenem Fahrwerk, da der Pilot und die Flugzeugstruktur durch die Arbeitsaufnahme des gefederten Fahrwerks erheblich besser geschützt sind, als nur durch die Rumpfschale.

Lässt sich das Fahrwerk nicht ordnungsgemäß ausfahren, dann ist das Flugzeug in Landestellung L der Wölbklappen und mit eingefahrenen Bremsklappen in einem flachen Winkel mit Mindestfahrt aufzusetzen, um ein Durchsacken zu vermeiden.

Nach der Landung sollte eine gründliche Kontrolle der Flugzeugstruktur erfolgen.

31 3 Notverfahren

3.7.2 Notlandung auf dem Wasser

Aus den bei Notlandungen auf Wasser gemachten Erfahrungen muss mit der Möglichkeit gerechnet werden, dass das gesamte Cockpit unter Wasser gedrückt wird. Bei Wassertiefen > 2m sind die Insassen in höchster Gefahr! Deshalb sollte die Notwasserung nur als letzter Ausweg gewählt werden.

Folgendes Vorgehen wird bei einer Notwasserung empfohlen:

- Fahrwerk ausfahren
- Fallschirmgurte öffnen
- Aufsetzen mit ausgefahrenem Fahrwerk und möglichst geringer Geschwindigkeit
- Das Cockpit sollte durch die Notfenster geflutet werden, um gegen den Wasserdruck die große Haube öffnen zu können
- Nach dem Eintauchen Gurtzeug und Fallschirm ablegen

3.7.3 Drehlandung ("Ringelpietz")

Wenn abzusehen ist, dass ein Landefeld von der Länge her nicht ausreicht, dann ist spätestens 50m vor Ende des Landefeldes eine gesteuerte Drehlandung einzuleiten:

- 1. Flügel zur Ausweichrichtung hin auf den Boden steuern
- 2. Wenn möglich in den Gegenwind drehen
- 3. Gleichzeitig durch Nachdrücken den Sporn entlasten und durch gegensinniges Seitenruder der Torsion der Rumpfröhre entgegenwirken.

32 3 Notverfahren

3.8 Flug im Bereich von Gewittern

Durch Blitzschlag sind wiederholt Kohlenstofffaserstrukturen zerstört worden. Flüge und besonders Windenschlepps im Bereich von Gewittern sind daher unbedingt zu vermeiden, da in wichtigen Strukturen der B13 Kohlenstofffasern verwendet werden. Wenn der Verdacht auf Blitzschlag besteht oder ein solcher erfolgt ist, sollte die Fahrt auf unter $V_A = 160 \frac{km}{h}$ reduziert werden. Die Ruderwirksamkeit ist zu überprüfen (Gefahr des Verschweißens der Rudergelenke) und elektrische Systeme sind auszuschalten um Kabelbrand zu vermeiden. Zusätzlich sind der Propeller einzufahren und die Nasenklappen zu schließen, um das Eindringen von Wasser in den Motorraum zu verhindern.

3.9 Flug bei Regen

Flüge in starkem Regen und Gewittern sind zu vermeiden. Es wird empfohlen den Propeller einzufahren und die Nasenklappen zu schließen, um das Eindringen von Wasser in den Motorraum zu verhindern. Wenn nötig ist ein Flug in leichtem Regen mit laufendem Motor möglich. Es sollte allerdings mit niedriger Leitungseinstellung geflogen werden, die ausreichend für den Horizontalflug ist, um Beschädigungen der Propellerblätter zu vermeiden. Bei starkem Regen muss der Motorbetrieb eingestellt werden.

Bei Regen verschlechtern sich die Flugleistungen. Es muss mit verstärktem Eigensinken und einer erhöhten Mindestfahrt gerechnet werden. Die Geschwindigkeit im Landeanflug sollte daher mindestens um $10\frac{km}{h}$ erhöht werden.

3 Notverfahren

3.10 Flug bei Vereisungsbedingungen

Bei Vereisungsgefahr Gängigkeit der Ruder und Klappen durch ständiges Bewegen aufrechterhalten.

34 3 Notverfahren

3.11 Triebwerksausfall

3.11.1 Motor startet nicht

Falls der Motor nicht startet, muss der Flug im reinen Segelflug fortgesetzt werden.

Anmerkung

Überprüfen, ob der Leistungsschalter eingeschaltet ist. Die Erinnerung (auf der FCU) "Check Power Switch" sollte ab einer bestimmten Leistungseinstellung erscheinen.

3.11.2 Leistungsverlust während des Fluges

Bei einem Leistungsverlust während des Fluges Steuerknüppel vorsichtig nach vorne drücken, um die gewünschte Fluggeschwindigkeit beizubehalten! Anschließend wie folgt verfahren:

1. Überprüfen, ob der Leistungsschalter unbeabsichtigt ausgeschaltet wurde!

In diesem Fall den Leistungsschalter wieder einschalten und die Leistung mit dem Leistungsdrehregler anpassen.

- 2. Trifft Punkt 1 nicht zu, folgendermaßen fortfahren:
 - a) Zuerst den Leistungsschalter, dann die FCU ausschalten
 - b) Schalten Sie die FCU wieder ein und überprüfen Sie, ob sich etwas ungewöhnlich verhält.

35 Notverfahren

Wenn alles in Ordnung ist, Leistungsschalter wieder einschalten und Motor starten. Wenn der Motor startet und sich unter Last ungewöhnlich verhält:

- i. Drehenden Propeller mit der elektrischen Bremse anhalten.
- ii. Nachdem der Propeller gestoppt ist, zuerst den Leistungsschalter und dann die FCU ausschalten.

Sollte der Propeller nicht gestoppt werden können, kann der Propeller mit dem Noteinfahrmechanismus abgebremst und eingefahren werden.

Noteinfahrmechanismus:

- 1. Engine Swich ausschalten
- 2. Sicherheitspin aus Schlittenhauptschalter herausziehen
- 3. Fluggeschwindigkeit verringern auf 80 km/h soweit möglich
- 4. Schlittenhauptschalter wiederholt kurzzeitig nach hinten drücken. Dies aktiviert den Schlittenmotor und zieht den Propeller gegen den Bremsgummiring
- 5. Sobald der Propeller abgebremst und eingeklappt ist, kann das Schlittensystem wieder normal in Betrieb genommen werden und der Propeller normal eingefahren werden.

Warnung

Der Propeller kann beim Noteinfahren beschädigt werden! Verwendung des Antriebssystems erst nach gründlicher Inspektion aller Bauteile.

Sollte dieser Noteinfahrmechanismus nicht funktionieren, muss mit drehendem Propeller gelandet werden. In diesem Fall muss bei der Landung vorsichtig und gleichzeitig auf beiden Rädern 36 3 Notverfahren

aufgesetzt werden (Zweipunktlandung), um eine Beschädigung des Propellers zu verhindern.

Anmerkung

Eine Graspiste in gutem Zustand (ohne Schlaglocher oder Ähnlichem) ist einer Asphaltpiste vorzuziehen.

Warnung

Landungen in hohem Bewuchs sind zu vermeiden.

Anmerkung

Der Verlust der Gleitleistung durch den drehenden Propeller ist gering. Daher besteht bei ausreichend Höhe genug Zeit ein geeignetes Landefeld zu wählen.

Bitte lesen Sie das **FES FCU INSTRUMENTENHAND- BUCH** für das Verhalten und die notwendigen Verfahren beim Erscheinen von bestimmten Nachrichten und Aufblinken von LED-Leuchten.

3.12 Brand

3.12.1 Brand am Boden

- Leistungsschalter ausschalten und alle Instrumente, sowie den Hauptschalter ausschalten
- Cockpit verlassen
- Brand löschen

37 3 Notverfahren

3.12.2 Brand während des Fluges

- Motor sofort abstellen
- Leistungsschalter ausschalten und vordere Lüftung, falls noch nicht geöffnet, öffnen
- Seitliches Haubenfenster offnen
- So schnell wie möglich landen (oder gegebenenfalls einen Notausstieg in Betracht ziehen)
- Nach der Landung Feuer löschen

3.13 Sonstige Notfälle

3.13.1 Verlust der 12V Spannungsversorgung während des Fluges

Segelflug:

Beim Ausfall der elektrischen Instrumente (Funkgerät, Bordrechner, FCU etc.) wahrend des Segelfluges, muss der Flug im reinen Segelflug fortgesetzt werden. In diesem Fall kann der Propeller nicht ausgefahren werden und der Motor nicht gestartet werden.

Ist die FCU nicht vom Ausfall betroffen, kann der Motorstart bei Bedarf versucht werden.

Motorflug:

Beim Ausfall der FCU während des Motorfluges, fällt auch der Motor aus. Ein Stoppen des drehenden Propellers durch die Noteinfahrfunktion möglich.

Fallen die Instrumente nur teilweise aus und ist die Funktion von FCU und Motor nicht beeinträchtigt, kann der Motor weiter betrieben werden.

4 Normale Betriebsverfahren

4.1 Einführung

Dieser Abschnitt enthält Checklisten und Beschreibungen für die tägliche Kontrolle und Vorflugkontrolle, sowie für die normalen Betriebsverfahren. Normale Verfahren im Zusammenhang mit Zusatzausrüstung sind im Abschnitt 9 beschrieben.

4.2 Montageverfahren, Laden, Ein- und Ausbau der Akkupacks

Die B13 lässt sich mit Hilfe einer Flächenstütze durch vier Personen auf- und abrüsten. Die Batterien können nur im abgerüsteten Zustand ein- und ausgebaut werden.

4.2.1 Auf- und abrüsten

Das Aufrüsten der B13 geschieht in folgender Reihenfolge.

Vorbereitungen

- Transportanhänger sichern
- alle Bolzen und Buchsen säubern und fetten
- Trimmung kopflastig stellen, Wölbklappen auf Stellung 0 bringen und Bremsklappen entriegeln
- Batterie in Halterung einbauen und anschließend
- Gepäckfach einbauen

Innenflächen

 Linken Hauptbolzen in das Auge des linken Innenflügels stecken

- Linken Holmstummel bis zur Hälfte einführen
- Rechten Hauptbolzen in das vorgesehene Auge stecken
- Linke Innenfläche in den Rumpf stecken und beide Hauptbolzen bis zum Querkraftrohr herausziehen
- Rechten Innenflügel in den Rumpf stecken
- Hauptbolzenachsen zum Fluchten bringen (dies ist nur möglich, wenn beide Flügel bis an den Rumpf eingeführt sind),
 Hauptbolzen eindrücken und sichern. Graue Markierung auf rechten Holmstummel kann bei der Ausrichtung der Flügel helfen. (untere Kante parallel zu Holmstummeloberkante)
- Steuerung im Rumpf anschließen und sichern 2x3 Anschlüsse. (L'Hotellier) Es kann hilfreich sein, die Querruderanschlüsse im Rumpf erst nach Montage der Außenflächen anzuschließen.
- Sicherungsschraube am Rechten Hauptbolzen lässt sich am besten einführen, wenn Hauptbolzengriff nach unten steht, danach Hauptbolzen in vorgesehene Sicherung einrasten und Sicherungsschraube mit Fokkernadel sichern.

Außenflächen

- Außenflächenbolzen-Tool in das vorgesehene Loch des Außenflächenbolzens einführen
- Außenfläche bis auf 10cm in die Innenfläche einführen
- Querruder anschließen und sichern (L'Hotellier)
- Außenfläche vollständig einführen
- Außenflächenbolzen von vorne in die Bohrung einführen

• Außenflächenbolzen-Tool entfernen und mit dem federbelasteten Sicherungsstift die Außenflächen-Bolzen sichern

Höhenleitwerk

- M3-Montageschraube mit roter Kugel in den vorderen Anschlussbolzen an der oberen Seitenflossen-Vorderkante einschrauben
- Höhenleitwerk auf beide Antriebsbolzen aufstecken und ganz nach hinten schieben
- Montageschraube ziehen, das Leitwerk senkt sich ab und wird vom vorderen Anschlussbolzen gesichert, in dem die Montageschraube wieder losgelassen wird
- Montageschraube herausschrauben (nach Herausschrauben, darf der Bolzen nicht mehr aus der Vorderkanten-Kontur der Seitenflosse herausstehen), Gewindeöffnung abkleben

Nachbereitungen

- Düse in die Düsenaufname der Seitenflosse schieben
- Antennenkabel an der Haube anschließen
- Querruder, Wölbklappen, Bremsklappen, Höhenruder, Seitenruder auf Sicherung, Funktion und Freigängigkeit überprüfen
- Alle Trennstellen (Innenfläche-Außenfläche, Rumpf-Innenfläche, Seitenleitwerk-Höhenleitwerk) mit Isolierband abkleben

Warnung

Bei den Ruderanschlüssen handelt es sich um manuelle Anschlüsse (L'Hotellier). Sie sind zu sichern (Federstecker) und vor jedem Flugbetrieb auf richtigen Anschluss und Sicherung

zu kontrollieren!

Das Abrüsten geht in umgekehrter Reihenfolge wie das Aufrüsten vonstatten.

4.2.2 Laden der Akkupads

Die Betriebsanweisung zum Laden der Akkupacks ist im separaten **FES AKKUPACKHANDBUCH** beschrieben.

Das Aufladen der Akkupacks kann auch optional ohne ausbauen der Akkus erfolgen. Hierfür wurden seperate Ladestecker mittig hinter den Pilotensitzen montiert. Die Ladegeräte werden hierfür mit speziellen Adapterkabeln mit den Ladebuchsen der B13 verbunden, die Datenkabel der Ladegeräte werden mit der vorgesehenen "CHARGE" Buchse auf der Batteriefirewallabdeckung verbunden.

Anmerkung

Es wird empfohlen die Akkupacks erst ein bis zwei Tage vor dem geplanten Flug vollständig zu laden. Es soll jedoch immer genug Zeit eingeplant werden, um einen vollständigen Ladeprozess zu garantieren!

4.2.3 Einbau der Akkupacks in das Segelflugzeug

Warnung

Vor dem Einbau muss sichergestellt werden, dass beide Akkupacks vollstandig geladen sind. Beide Akkupacks mussen annahernd die gleiche Spannung pro Zelle haben (ca. 4.16 V pro Zelle). Die Abweichung der Gesamtspannung beider Akkupacks darf maximal 0,4V betragen.

FES FLUGHANDBUCH Version 1.15 November 2016 Seite 17 von 34

Zum Einbau der Akkus wird wie folgt vorgegangen:

- 1. Akkufachabdeckung öffnen.
- 2. Kontrollieren, dass der Leistungsschalter ausgeschaltet ist.
- 3. Prüfen, dass die FCU und alle anderen Instrumente (Flugrechner, Flarm, Funk, Transponder, PDA etc.) ausgeschaltet sind.
- 4. Das erste Akkupack mit dem Bedienterminal nach vorne in den Rumpf einfuhren und nach hinten schieben.
- 5. Das zweite Akkupack mit Bedienterminal nach hinten in den Rumpf einfuhren.
- 6. Ein Halteplattenpaar auf dem hinteren Akkupack mittig über dem Haltegurt positionieren und die Schraube von Hand anziehen.
- 7. Ein Halteplattenpaar auf dem vorderen Akkupack mittig über dem Haltegurt positionieren und die Schraube von Hand anziehen.
- 8. Stromkabel aus der Seitenhalterung nehmen.
- Das kürzere Kabel mit dem 8mm Stecker und dem SCHWAR-ZEN Gehäuse in die mit minus markierte Buchse des vorderen Akkupacks einstecken.
- 10. Das längere Kabel mit dem 10mm Stecker und dem RO-TEN Gehause in die mit plus markierte Buchse des hinteren Akkupacks einstecken.
- 11. Die Stecker des Datenkabels in jeden Akkupack in den passenden DATA Anschluss einstecken. Vor dem Einstecken vergewissern, dass die Orientierung richtig herum ist. Die

Stecker müssen gerade eingesteckt werden, ansonsten können die Pins verbogen werden.

- 12. "BMS Schalterän jedem Akkupack einschalten und warten bis der Testlauf abgeschlossen ist.
- 13. Akkufachabdeckung schließen.

4.3 Tägliche Kontrolle

Vor Beginn des Flugbetriebes muss die B13 anhand der folgenden Checkliste sorgfältig überprüft werden. Insbesondere für die Ruderproben empfiehlt sich die Unterstützung durch eine zweite Person.

- 1. Haube öffnen und Haubennotabwurf überprüfen
- 2. Sicherung der Hauptbolzen überprüfen
- 3. Fremdkörperkontrolle im gesamten Cockpitbereich
- 4. Freigängigkeit und Spielfreiheit aller Bedienelemente prüfen

- 5. Ruderprobe bei allen Rudern (Quer-, Seiten- und Höhenruder) und Klappen (Wölb- und Bremsklappe) unter Belastung durchführen und Sicherungen der Steuerung soweit einsehbar und erreichbar, überprüfen
- 6. Ausklinkprobe der Schleppkupplung, auch unter Last
- 7. Fahrwerk und Reifen auf Beschädigungen überprüfen, Luftdruck im Reifen prüfen (auch Spornrad), Rutschmarke
- 8. Radbremse auf Funktion und Dichtigkeit überprüfen, Abnutzungsgrad der Bremsbeläge prüfen
- 9. Flügelober- und Unterseite auf Beschädigungen (Lackrisse, o.ä.) überprüfen, besonders im Bereich der Flügelwurzel
- 10. Flügelanschlüsse auf besonderes Spiel in den Querkraftlagern prüfen
- 11. Bremsklappen auf Funktion, vollständiges Schließen der Abdeckungen, Fremdkörper oder Feuchtigkeit in den Kästen überprüfen
- 12. Flügelklappen und Anlenkungen überprüfen (Freigängigkeit, Spielfreiheit)
- 13. Außenflügelanschluss Verriegelung und Sicherung überprüfen
- 14. Rumpfunterseite und Leitwerksträger auf Schäden (Lackrisse, etc.) überprüfen, besonders im Bereich der Leitwerksanschäftung (Kuller entfernen)
- 15. Seiten- und Höhenleitwerk auf richtige Montage, Spiel und Beschädigungen überprüfen, Seilzüge des Seitenruders prüfen

- 16. Druckabnahmen in der Seitenflosse (Dreifachdüse) überprüfen (mit Fahrtmesser und Variometer)
- 17. Elektrisches System (Funk, Rechner) überprüfen, Funkprobe

Zusätzlich ist zu Beginn jedes Flugtages und nach jedem Einbau der Akkupacks die tägliche Kontrolle durchzufuhren. Dazu gehören mindestens die nachfolgend aufgeführten Punkte. Werden Probleme festgestellt, so darf auf keinen Fall gestartet werden, bevor diese Probleme nicht fachgerecht beurteilt bzw. repariert wurden.

- Das Antriebssystem muss einer optischen Kontrolle unterzogen werden, insbesondere der Zustand der Propellerblätter, Schlittenmechanik sowie aller Hochstromverschlüsse muss überprüft werden
- Füllstand des Kühlsystems muss zwischen Min und Max sein

4.4 Vorflugkontrolle

Die folgende Checkliste ist im Cockpit für beide Piloten gut sichtbar angebracht. Anhand ihrer ist vor jedem Start eine Vorflugkontrolle durchzuführen:

Startcheck Spornkuller entfernt Ballast prüfen Fallschirm richtig angelegt Richtig und fest angeschnallt alle Bedienelemente erreichbar Bremsklappen eingefahren und verriegelt; Wölbklappen Höhenmesser eingestellt Funkgerät eingeschaltet; Frequenz, Lautstärke geprüft Trimmung eingestellt Ruderkontrolle – Alle Ruder freigängig Startstrecke und Ausklinkraum frei Prüfung der Windverhältnisse Auf Startunterbrechung vorbereitet Haube geschlossen und verriegelt, Startcheck

4.4.1 Starten des Motors am Boden

- 1. Sicherstellen, dass der "ENGINE" Schalter ausgeschaltet ist.
- 2. Heckkuller entfernen
- 3. Hochstrom Batterieanschlüsse an den Firewallboxen überprüfen. (Fester Sitz, Kabel bis zur Markierung eingesteckt)
- 4. CAN Bus Kabel an der Batteriefirewall auf festen Sitz überprüfen.
- 5. Propellerschlittensystem einschalten und warten bis alle Statuslampen Blau leuchten
- 6. Propeller durch Drücken des ExtractSchalters ausfahren. Warten bis alle Statuslampen grün anzeigen.

Tägliche Kontrolle vor dem Start:

• Batterien geladen, korrekt eingebaut und angeschlossen?

- Avionik Hauptschalter einschalten
- Propellerschlittensystem einschalten

Das FES-System muss wie nachfolgend beschrieben mit einem kurzen Testlauf überprüft werden.

- 1. Propeller Ausfahren
- 2. Motorcowling entfernen
- 3. Sichtkontrolle der Komponenten des Antriebes, insbesondere Propeller + Nabe, Schlittensystem + Nasenklappenmechanik, sowie aller Hochstromverschlüsse
- 4. Füllstand des Kühlsystems muss zwischen Min und Max sein
- 5. Motorcowling wieder anbauen und Abkleben.
- 6. Einsteigen und Haube schließen und verriegeln
- 7. Sicherstellen, dass der Propellerbereich frei ist (auch vor dem Propeller und in der Propellerebene)
- 8. FCU einschalten
- 9. Leistungsschalter einschalten.
- 10. Die Kühlwasserpumpe muss leise hörbar anlaufen. Ein ungleichmäßiges ratterndes Geräusch deutet auf Luft im Kühlwassersystem hin. In diesem Falle Kühlsystem entlüften
- 11. Ca. 8 Sekunden warten bis alle Akkusymbole im Display angezeigt werden
- 12. Radbremse Betätigen oder Flugzeug anderweitig vom Wegrollen hindern

13. Motor starten und danach kurzen Testlauf durchführen. Im Standlauf sind Drehzalen bis 3000 u/min erprobt. Der Motorlauf muss frei von starken Vibrationen sein

Warnung

Beim Abschalten des Motors wird auch die Kühlung abgeschaltet. Der dadurch verursachte Temperaturanstieg kann den Motor beschädigen!

- 14. Sicherstellen, dass die Motorbremse funktioniert.
- 15. Leistungsschalter ausschalten.
- 16. Propeller einfahren
- 17. FCU, Propellerschlittensystem und Avionik ausschalten, wenn nicht gleich gestartet werden soll.

4.5 Normalverfahren und empfohlene Geschwindigkeiten

4.5.1 Windenstart

Während des Windenstarts müssen der Propeller und alle Klappen eingefahren sein. Die Kühlluftklappe wird im ausgefahrenen Zustand durch das Schleppseil zerstört.

Die höchstzulässige Geschwindigkeit im Windenschlepp beträgt $V_W = 120 \frac{km}{h}$. Die normale Schleppgeschwindigkeit beträgt $110 \frac{km}{h}$ (bei maximaler Abflugmasse $120 \frac{km}{h}$) und sollte nicht um mehr als $10 \frac{km}{h}$ unterschritten werden.

Vor dem Start ist die Trimmung neutral bis leicht kopflastig zu stellen. Beim Anrollen wird bis zum Erreichen von ausreichend Querruderwirkung die Wölbklappenstellung -2 empfohlen, danach sollte auf die Wölbklappenstellung +1 umgewölbt werden.

Das Windenseil sollte mit einer Sollbruchstelle ausgestattet sein, die eine maximalen Bruchlast von 1000 da N(schwarz) erreicht.

Warnung

Von Rückenwindschlepps an schwachen Schleppwinden, besonders in Zusammenhang mit hohen Außentemperaturen wird ausdrücklich abgeraten.

Warnung

Während des Windenstarts darf das Antriebssystem nicht ausgefahren und gestartet werden! Bevor das Antriebssystem ausgefahren und der Motor gestartet werden darf, muss das Schleppseil ausgeklinkt werden!

Wichtiger Hinweis

Vor dem Start müssen beide Piloten ihre Sitzposition und die Erreichbarkeit der Bedienelemente überprüfen. Die Sitzposition, besonders mit einem Sitzkissen, muss so sein, dass ein Zurückrutschen beim Anschleppen oder im steilen Steigflug ausgeschlossen ist. Ebenso ist das sichere Einrasten der Pedalverstellungen zu überprüfen.

Wichtiger Hinweis Querneigung beachten!

4.5.2 Flugzeugschlepp

Vor dem Start muss die FCU immer eingeschaltet werden. Es muss sichergestellt sein, dass der Leistungsschalter ausgeschaltet ist, wenn sich Personen im Propellerbereich befinden, um das Schleppseil einzuklinken. Während dem Schlepp muss der Leistungsschalter ausgeschaltet sein!

Warnung

Während dem Flugzeugschlepp darf das FES System nicht gestartet werden!

Die höchstzulässige Schleppgeschwindigkeit beträgt $V_T = 160 \frac{km}{h}$. Die normale Schleppgeschwindigkeit liegt bei $110 - 130 \frac{km}{h}$.

Auch für den Flugzeugschlepp wird die Schwerpunktkupplung auf der Rumpfunterseite verwendet. Es sollte daher ein ausreichender Übungsstand bei F-Schlepps an Schwerpunktkupplungen vorliegen. Das Schleppseil sollte eine Bruchlast von 1000 daN(schwarz) erreichen und eine Länge zwischen 30m und 60m haben.

Vor dem Start ist die Trimmung in Neutralstellung zu bringen. Die Wölbklappen befinden sich in der Stellung -2. Sobald ausrechend Querruderwirkung vorhanden ist, wird vorsichtig auf +1 umgewölbt. Das Abheben erfolgt in dieser Wölbklappenstellung. Bei Überlandschlepps und höheren Schleppgeschwindigkeiten kann auch auf die 0 oder -1 Stellung umgewölbt werden.

Das Fahrwerk kann während des Flugzeugschlepps in sicherer Höhe vorzugsweise vom Copiloten eingefahren werden.

Warnung

Nicht das Schleppflugzeug übersteigen!

Wichtiger Hinweis

Es wird empfohlen ein längeres Schleppseil aufgrund der außermittigen Sitzposition zu verwenden, um Schiebeflugzustände im F-Schlepp zu vermeiden. Jeder Sitz sollte zusätzlich mit einem eigenen Haubenfaden ausgestattet sein. Bei negativen Wölbklappenstellungen kann das Schleppflugzeug schnell unter dem Haubenrahmen verschwinden.

Wichtiger Hinweis Querneigung beachten!

Anmerkung

Es empfiehlt sich, vor dem Anrollen die Radbremse leicht anzuziehen, damit ein Überrollen des Schleppseils vermieden wird.

Anmerkung

Die Schleppmaschine sollte aufgrund des hohen Abfluggewichtes der B13 ausreichend motorisiert sein.

4.5.3 Rollverfahren

Warnung

Rollen ist mit dem Antriebsystem als Hilfsantrieb verboten!

4.5.4 Eigenstart und Steigflug

Warnung

Ein Eigenstart mit der B13 ist nicht zugelassen!

4.5.5 Freier Flug

Die B13 zeigt bei allen Schwerpunktlagen, Beladungszuständen, Wölbklappenstellungen und Fluggeschwindigkeiten ein angenehmes Flugverhalten. Unangenehme Eigenschaften wurden bisher nicht ermittelt. Im freien Geradeausflug kann man alle Ruder freigeben, ohne daß das Flugzeug dazu neigt eine neue Fluglage einzunehmen. Um einen schiebefreien Flug zu erreichen, sollte jeder Sitz über einen eigenen Faden verfügen.

Der Trimmbereich geht von ca. $80\frac{km}{h}$ bis zu über $220\frac{km}{h}$. Die

Kurvenwechselzeiten aus 45° - Kurven liegen bei ungefähr 4s.

• Gebrauch der Wölbklappen

Die optimale Stellung der Wölbklappen hängt stark von der Flächenbelastung ab. Für eine Flächenbelastung von $\frac{G}{S}=396\frac{N}{m^2}$ sind die Geschwindigkeits- und Gleitzahlpolare in Kapitel 5.3.2 und 5.3.3 abgebildet. Es sollte darauf geachtet werden, daß ein ruckartiges Betätigen der Wölbklappen eventuell ein Durchsacken oder Wegsteigen bewirken könnte. Dieses Verhalten kann besonders in Bodennähe zu kritisch Situationen führen. Die Wölbklappen sollten daher immer langsam und kontinuierlich betätigt werden.

• Überzieheigenschaften

Der überzogene Flugzustand äußert sich bei der B13 durch weiche Ruder, Taumeln, Nicken, Schütteln und schließlich dem Sackflug. Bei diesen hohen Anstellwinkeln muss davon ausgegangen werden, dass die Fahrtmesseranzeige stark durch die Strömungsablösungen am Rumpf beeinflusst wird und daher keine richtigen Fluggeschwindigkeiten anzeigt. Der überzogene Flugzustand oder gar ein Abkippen über eine Fläche kann durch Nachlassen des Höhensteuers und – wenn erforderlich – durch Gegenseitenruder beendet werden.

• Schnellflug

Für den Schnellflug sind die Klappenstellungen 0, -1 und -2 vorgesehen. Es sollte darauf geachtet werden, dass die $V_{NE}=220\frac{km}{h}$ und die maximalen Abfanglastvielfachen nicht überschritten werden. Weiterhin dürfen ab der Manövergeschwindigkeit von $V_A=160\frac{km}{h}$ nur noch $\frac{1}{3}$ der Ruderausschläge gegeben werden.

Da das Propellersystem in Segelflugkonfiguration vollständig ein-

geklappt ist, gibt es keine Änderungen zur bisherigen Konfiguration der B13.

Während des Fluges muss die FCU immer eingeschaltet sein.

4.5.6 Reise- und Steigflug mit laufendem Motor

Das Antriebssystem ist geeignet Für langen kontinuierlichen Reiseflug bei geringer Leistung oder schnelles Steigen bei hoher Leistung.

Motor anlassen während des Fluges:

- Sicherstellen, dass alle angezeigten Daten der FCU im Normalbereich sind (FCU muss während des gesamten Fluges eingeschaltet sein).
- 2. Propellerschlittensteuerung einschalten
- 3. Propeller ausfahren. Alle Statuslampen müssen Grün anzeigen. Canopy Open Warnung darf nicht mehr auf der FCU angezeigt werden.
- 4. Leistungsschalter einschalten.
- 5. Sicherstellen, dass grüne LED leuchtet (LED links unten), Spannung überprüfen
- 6. Leuchtet die grüne LED nicht oder blinkt die rote LED, startet der Motor nicht).
- 7. Zum Motorstart den Leistungsdrehregler vorsichtig im Uhrzeigersinn drehen

Für den Horizontalflug ist eine Leistungseinstellung von ca. 8kW zu nutzen, für den Steigflug mehr. Die Steigrate ist abhängig von Masse, Geschwindigkeit, Wölbklappenstellung, etc. Die verfügbare maximale Leistung reduziert sich in Folge des Spannungsabfalls, bzw. durch die Entladung der Akkupacks. Die maximale Leistung kann nur solange genutzt werden bis einer der Temperaturwerte den gelben Bereich erreicht. (Motor 100°C, Controller

60°C, Akkupacks 45°C)!

Genaue Informationen zur FCU sind im FES FCU INSTRU-MENTENHANDBUCH zu finden.

Anmerkung

Leistung in der Thermik reduzieren, in sinkender Luft erhöhen.

Bei niedrigen Spannungen darf keine hohe Stromstarke verwendet werden (unter 95V).

Wenn möglich sollte mit niedriger Leistungseinstellung geflogen werden, da dort das Antriebsystem am effizientesten ist.

Während dem motorgetriebenen Flug muss die FCU eingeschaltet sein. Ist der Motor abgeschaltet, soll auch der Leistungsschalter ausgeschaltet werden.

4.5.7 Propeller anhalten mit elektrischer Bremse

Um den Propeller mit der elektrischen Bremse anzuhalten, muss der Leistungsdrehregler entgegen dem Uhrzeigersinn in einer Bewegung auf null-Leistung gedreht werden, sodass die Leistungsanzeige auf dem Display rot blinkt.

4.5.8 Landeanflug

An dem Punkt "Position" wird folgende Lande-Checkliste durchgeführt:

Landecheck 1. Anschnallgurte nachgezogen 2. Kontrolle der Flughöhe, Windrichtung und –stärke 3. Anflug und Landebahn frei 4. Fahrwerk, Wölbklappen 5. Landegeschwindigkeit einhalten

Vergewissern Sie sich, dass der "Engine" Schalter ausgeschaltet ist und der Propeller Eingezogen ist.

Die normale Anfluggeschwindigkeit für die maximale Masse mit voll ausgefahrenen Bremsklappen und ausgefahrenen Fahrwerk liegt bei $100\frac{km}{h}$ (gelbes Dreieck auf dem Fahrtmesser).

Die Wirkung eines Seitengleitfluges und der doppelstöckigen Schempp-Hirth-Bremsklappen ist gering. (Gleitzahl bei ausgefahrenen Bremsklappen ca. 9,2)

Für kurze Landungen über ein Hindernis wird es erfahrenen Piloten empfohlen, schon in größerer Höhe die Fahrt zu reduzieren, da die Wirkung des Bodeneffektes beachtlich ist.

Die B13 sollte mit voll gezogenem Höhenruder in 2-Punkt-Lage aufgesetzt werden, Spornradlandungen sind auch problemlos möglich. Nach dem Aufsetzen sollte auf die Wölbklappenstellung -2 umgewölbt werden, um die Querruderwirkung bis zum Stillstand aufrecht zu erhalten. Es empfiehlt sich, den Copiloten dabei die Bremsklappen in der gewünschten Stellung festhalten zu lassen, um ein hereinfallen dieser zu verhindern.

Die Radbremse wird bei vollem ausfahren der Bremsklappen mitbetätigt und ist gut wirksam. Das Fahrwerk muss immer ausgefahren werden, da es den Piloten und die Flugzeugstruktur vor starken Landestößen schützt.

Anmerkung

Aufgrund der Sitzposition sollte die Platzrunde in Richtung des fliegenden Luftfahrzeugführers bevorzugt werden, da die Sichtverhältnisse zur anderen Seite eingeschränkt sind.

Wichtiger Hinweis

Der Seitengleitflug ist nur wenig wirksam und deshalb als Landehilfe nur bedingt geeignet.

5Flugleistungen

5.1 Einführung

Der vorliegende Abschnitt enthält anerkannte Werte bezüglich Anzeigefehler der Fahrtmesseranlage, Überziehgeschwindigkeit und Startleistung sowie zusätzliche andere Werte und Angaben, die keine Anerkennung durch das LBA benötigen. Die Daten in den Tabellen wurden durch Erprobungsfluge mit einem Motorsegler in gutem Zustand unter Zugrundelegung eines durchschnittlichen Pilotenkönnens ermittelt.

5.1.1 Nachgewiesene Seitenwindkomponenten

Noch nicht nachgewiesen.

5.2 Geschwindigkeitspolare

Die Leistungsvermessung der B13 fand im August 1992 in Aalen-Elchingen statt. Die Flugmasse (Rüstmasse+180kg) lag bei 765kg, was einer Flächenbelastung von $\frac{G}{S}=396\frac{N}{m^2}$ entspricht.

Wölbklappenstellung	WK-Innen	WK-Außen
L	$15,8^{\circ}$	11,5°
+2	$10,4^{\circ}$	$7,5^{\circ}$
+1	$4,5^{\circ}$	$3,2^{\circ}$
0	0°	0°
-1	$-4,3^{\circ}$	$-3,2^{\circ}$
-2	$-9,7^{\circ}$	$-7,3^{\circ}$

5.3 Gleitzahlpolare

Wölbklappenstellung	WK-Innen	WK-Außen
L	$15,8^{\circ}$	$11,5^{\circ}$
+2	$10,4^{\circ}$	$7,5^{\circ}$
+1	$4,5^{\circ}$	$3,2^{\circ}$
0	0°	0°
-1	$-4,3^{\circ}$	$-3,2^{\circ}$
-2	$-9,7^{\circ}$	$-7,3^{\circ}$

5.4 Leistungsoptimale Wölbklappenbedienung

Auf Grundlage der Polaren ergeben sich für die verschiedenen Manöver die optimalen Wölbklappenstellungen:

Verwendung	WK- Stellung	Geschwindigkeit $\left[\frac{km}{h}\right]$
langsames Kreisen in Ruhiger Thermik	+2	85 bis 100
schnelleres Kreisen in der Thermik, bestes Gleiten, geringstes Sinken	+1	90 bis 105
Gleitflug zwischen Aufwinden	0	100 bis 135
Gleitflug mit erhöhter Geschwindigkeit	-1	130 bis 195
schneller Gleitflug	-2	190 bis 220

Bei Erhöhung der Flächenbelastung und der Schräglage im Kreisflug erhöhen sich auch die Geschwindigkeiten.

5.5 Nicht LBA-anerkannte weitere Informationen

5.5.1 Flugleistung im motorgetriebenen Flug

Steigrate

Warnung

Diese Werte sind bisher rechnerisch ermittelt:

Die maximale Steigrate kann nur für ca. 14 Minuten bei vollgeladenen Akkupacks erreicht werden, da durch die reduzierte

Spannung auch die Steigrate sinkt.

Die durchschnittliche Steigrate hängt von vielen Faktoren ab, vor allem aber von der Abflugmasse.

Der maximale Höhengewinn unter Bedingungen der Standardatmosphare hängt hauptsachlich von der Abflugmasse ab. Für den maximalen Höhengewinn sollte mit einer Leistung von ca. 20kW geflogen werden (nicht maximale Leistung, da das Optimum bei einer geringeren Einstellung liegt).

Die Steiggeschwindigkeit liegt normalerweise bei 80-85km/h bei positiver Klappenstellung (wie in der Thermik).

Der rechnerische ermittelte Wert ist: 1100 m

Reiseflug

Die maximale Reichweite im Reiseflug ist noch nicht ermittelt.

Dienstgipfelhöhe

Ein Flug in großer Höhe mit einem mit FES ausgestatteten Segelflugzeug ist kein Problem aufgrund von niedrigem Druck. Nach den UN-Transportvorschriften müssen die Zellen, die in den FES Akkupacks verwendet werden acht verschiedene Tests bestehen. Zuerst wird eine Höhensimulation durchgeführt, bei der die Zellen bei einem reduzierten Druck von 11.6kPa (ca. 15.000m) getestet werden.

Die tiefen Außentemperaturen von bis zu -20°C stellen weder ein Sicherheitsrisiko für die Akkupacks (die normalerweise wärmer bleiben), noch für andere Komponenten des Antriebssystems dar. Dennoch ist die Leistung der Akkupacks bei tiefen Temperaturen geringer.

Lärmdaten

Die Lärmmesswerte des Motors sind deutlich geringer als die eines vergleichbaren Segelflugzeugs mit Verbrennungsmotor. Für Hilfstriebwerke gibt es in diesem Rahmen keine Lärmbeschränkungen.

Bezüglich des ENL (Engine Noise Level) Signals für Logger: Es wird darauf hingewiesen, dass zur Erkennung des ENL-Signals bei laufendem Motor der Flugdatenlogger im Instrumentenbrett oder vergleichbar nahe an der FES-Einheit angebracht werden muss. Bei einer anderweitigen Positionierung des Loggers im Cockpit ist ein separater MOP-Sensor wie für andere leise elektrische Motoren anzubringen. Es sei auf Annex B des IGC Sporting Code verwiesen.

Elektromagnetische Störungen

Es konnte kein ungewöhnliches Verhalten der Instrumente durch die Verkabelung die unter dem Instrumentenbrett verlauft (inklusive Magnetkompass) wahrend des Motorbetriebes oder des Anhaltens festgestellt werden.

6 Beschreibung d. Motorseglers, seiner Systeme und Anlagen

6.1 Einführung

Der vorliegende Abschnitt enthält eine Beschreibung des Motorsegelflugzeuges und seiner Systeme, sowie der Standardausrüstung und Anlagen mit Benutzungshinweisen.

6.2 Steuerungsanlage im Cockpit

Jeder Sitz ist ausgestattet mit Steuerknüppel, Seitenruderpedalen, Brems- und Wölbklappenhebel (jeweils links) und Ausklinkknopf (zwischen den Beinen).

Haubenverriegelung: Bedienhebel im Instrumentenpilz.

Haubennotabwurf: Zusätzlich zum Bedienhebel im Instrumentenpilz den roten Griff dahinter ziehen.

Die Bremse ist mit der Bremsklappe gekoppelt und wird im hinteren Bereich der Bremsklappen mit betätigt.

Die Trimmung ist in der Mittelkonsole angeordnet. Die Betätigung erfolgt durch Ziehen nach links und verschieben des Hebels (Rastung durch Federkraft).

Die Lüftung befindet sich links und rechts neben den Sitzen. Die Betätigung erfolgt durch Entriegeln, ziehen nach hinten und verriegeln

Zusätzlich verfügt die B13 über:

- Avionik Hauptschalter (Beschriftet mit EIN / AUS)
- Propellerschlitten Hauptschalter / Noteinfahrschalter (Beschriftet mit Slide System)

- Vordere Position: Schlittensystem eingeschaltet (Das Schlittensystem muss während des Motorbetriebes eingeschaltet bleiben.)
- Mittlere Position: Ausgeschaltet (nur für Segelflug zulässig.)
- Hintere Position: Noteinfahren (Durch Sicherheitspin wird ein Unbeabsichtigtes Noteinfahren verhindert)
- Hauptschalter Motor mit Roter Schutzkappe (Beschriftet mit ENGINE)
- Wahlschalter Propeller Einfahren/Ausfahren

6.3 Fahrwerk

Der Bedienhebel für das Fahrwerk befindet sich in der Mittelkonsole und wird durch umlegen des Hebels betätigt.

Beim Einfahren des Fahrwerkes empfiehlt es sich, den Hebel in einem Zug nach hinten durch zu ziehen.

Zum Ausfahren des Fahrwerkes den Hebel aus der Verknieung drücken, Hebel dann langsam nach vorn führen um ein durchschlagen zu verhindern und in vordere Verknieung drücken.

Die hydraulische Doppelscheibenbremse wird mit vollständigem Ausfahren der Bremsklappen mitbetätigt und ist gut wirksam.

6.4 Instrumentierung

Im Instrumentenpilz (Abb. 6.1) sind die Instrumente zur Flug-überwachung (Fahrtmesser mit Meßbereich mindestens $50\frac{km}{h}$ bis $300\frac{km}{h}$, Höhenmesser, Variometer), Funksprechgeräte und Navigationsgeräte angeordnet. Zusätzlich ist die FCU eingebaut. Dieses Instrument beinhaltet alle Triebwerksüberwachungsanzeigen, insbesondere der Batterieüberwachung und darf deshalb während

des Fluges nicht ausgeschaltet werden.

Weitere Informationen zur FCU sind im separaten FCU IN-STRUMENTENHANDUCH zu finden.

6.5 Bremsklappen

Doppelstöckige Schempp-Hirth Bremsklappen auf der Oberseite des Innentragflügels. Der Antrieb mit Verknieung ist im Mittelrumpf angeordnet.

6.6 Gepäckraum

Das Gepäckfach befindet sich hinter dem rechten Piloten und hat eine maximale Zuladung von 10kg.

6.7 Triebwerksanlage

Eine detaillierte Beschreibung des FES Triebwerks ist im **FES WARTUNGSHANDBUCH** zu finden, wo auch die weiteren FES spezifischen Handbücher aufgelistet sind.

6.8 Akkupacks

Eine detaillierte Beschreibung ist im **FES AKKUPACKSHAND-BUCH** zu finden.

6.9 Elektrische Anlage

Eine detaillierte Beschreibung ist im ${\bf FES}$ WARTUNGSHAND-BUCH zu finden.

6.10 Sonstige Ausrüstung

Eine detaillierte Beschreibung des FES BMS (Battery management system), FES Ladegerats und der BMS Steuerungssoftware ist im **FES AKKUPACKHANDBUCH** zu finden.

Abbildung 6.1: Instrumentenpilz

7 Handhabung, Instandhaltung und Wartung

7.1 Einführung

Dieser Abschnitt enthält die vom Hersteller empfohlenen Verfahren für einen angemessenen Umgang und die Instandhaltung des mit FES ausgestatteten Segelflugzeuges. Es enthält auch Inspektionsund Wartungsanweisungen, um die Leistung und die Zuverlässigkeit des Systems zu garantieren.

7.2 Prüfintervalle

Es liegt noch kein Wartungshandbuch für die B13 vor.

Die B13 regelmäßig einmal pro Jahr und nach größeren Reparaturen gewartet und nachgeprüft werden.

Dabei sollten mindestens folgende Wartungen durchgeführt werden:

- Gesamtes Flugzeug auf Risse, Löcher und Beulen untersuchen
- Anschlussbeschläge auf einwandfreien Zustand (Spiel, Riefen, Korrosion) kontrollieren
- Metallteile (besonders der Steuerungsanlagen) auf Korrosion überprüfen, ggf. neu konservieren
- Anschlüsse von Flügel und Leitwerke auf Spiel kontrollieren
- Steuerung (besonders Bremsklappen) sind einer Funktionskontrolle zu unterziehen
- Ruderausschläge und Anschlagpunkte der Steuerung nachprüfen

- Fahrwerk und Schwerpunktkupplung kontrollieren
- Druckentnahmestellen der Druckanlagen auf Sauberkeit und die Leitungen auf Dichtigkeit überprüfen
- Zustand und ordnungsgemäße Funktion aller Instrumente, Geräte und Ausrüstungsteile ist zu überprüfen

Zusätzlich sollten vor jedem Aufrüsten alle Anschlussbolzen und –buchsen sowie Leitwerks- und Flügelanschlüsse gereinigt und gefettet werden.

Da noch kein Schmierplan für die B13 vorliegt, sind die entsprechenden Lager des Öfteren zu kontrollieren und bei Bedarf nachzuschmieren.

7.3 FES Wartungsintervalle

Die Anweisungen zur Erhaltung der Lufttüchtigkeit im FES WAR-TUNGSHANDBUCH müssen eingehalten werden.

7.4 Änderungen oder Reparaturen am Segelflugzeug

Die verantwortliche Luftfahrtbehörde ist unbedingt vor jeder Änderung an dem Motorsegler zu unterrichten, um sicherzustellen, dass die Lufttüchtigkeit des Motorseglers nicht gefährdet wird. Erst nach Genehmigung der Änderungen von der Luftfahrtbehörde dürfen diese durchgeführt werden.

Größere Reparaturen sollten nur von fachkundigem Personal mit entsprechender Berechtigung durchgeführt werden.

7.5 Handhabung am Boden/Straßentransport

7.5.1 Ziehen/Schieben

Das Schleppen am Boden sollte über ein Seil mit einem Doppelring, welcher in der Schwerpunktkupplung eingehängt wird, erfolgen. Es sollte neben einer Person an der Fläche noch eine zweite Person in Nähe des Ausklinkknopfes den Schlepp begleiten.

Weiterhin ist für den Transport am Boden unbedingt der dafür vorgesehene Spornkuller zu verwenden. Die B13 hat zwei Spornkuller. Der größere Kuller enthält noch zusätzliche Auflageflächen zur Befestigung der Außenflächen während des Straßentransportes im Anhänger. Dieser Kuller eignet sich nicht für das Ziehen und Schieben am Boden.

Auf ausreicheden Luftdruck und festen Sitz ist bei dem normalen Kuller aufgrund der hohen Spornlast unbedingt zu achten.

Warnung

Drücken, Ziehen oder Heben am Propeller oder am Spinner ist verboten!

Wichtiger Hinweis

Zur Befestigung des Spornkullers sollte nicht auf die Nase gedrückt werden, da die Nase nur eine Abdeckung ist und keine tragende Wirkung hat.

Das Bewegen der B13 am Boden ohne Kuller sollte nur in Ausnahmefällen geschehen und ohne große Krafteinleitungen, die eine Bewegung um die Hochachse erzeugen, durchgeführt werden, damit der Sporn (insbesondere das Spornrad) und die Leitwerke nicht zu stark belastet werden.

Die Haube muss dabei in jedem Fall verriegelt werden. Es wird empfohlen, den vorderen Haubenspalt mit einem Mylarband, welches am Haubenrahmen befestigt wird, abzudichten, da es sonst während des Fluges zu unangenehmen Geräuschen kommen kann.

7.5.2 Abstellen und Lagern

Die B13 sollte nur in gut belüfteten Räumen und Transportanhängern abgestellt und transportiert werden. Ein längeres Abstellen unter starker Sonneneinstrahlung oder Feuchtigkeit sollte möglichst vermieden werden, da es die Oberfläche deutlich schneller altern lässt.

Die Oberfläche (mindestens die Haube) sollte noch zusätzlich durch weiche, saubere Bezüge abgedeckt werden.

Ohne hochwertige Allwetterbezüge darf ein Segelflugzeug, das mit einem FES System ausgestattet ist, nicht bei Regen im Freien stehen. Der Motor und der Akkukasten müssen vor eindringendem Wasser geschützt werden.

7.5.3 Vorbereitung auf den Straßentransport

Der Transport der B13 erfolgt in dem dafür vorgesehenen Transportanhänger. Vor dem Transport sollten unbedingt alle lockeren Gegenstände aus dem Cockpit entfernt und die nun losen Steuerstangen im Rumpf mit den dafür vorgesehenen Schonern bezogen werden.

Durch ihren breiten Rumpf wurde ein Befestigungssystem für die Außenflächen auf dem Rumpf vorgesehen. Um ein Loslösen der Außenflächen von der Halterung zu verhindern, ist auf eine vollständige Sicherung der Verschlüsse für die Halterungen hinter dem Cockpit und am Spornkuller zu achten. Auch der Rumpf und die Innenflächen sollten richtig in ihre Halterungen geschoben und anschließend gesichert werden.

Generell ist auf eine spannungsfreie Lagerung aller Einzelteile zu achten, da sich gerade bei hohen Temperaturen (wie sie in Transportanhängern auftreten können) die einzelnen Flugzeugteile verziehen könnten.

7.6 Reinigung und Pflege

Der Reinigung der Plexiglashaube sollte besondere Aufmerksamkeit geschenkt werden, da sie die freie Sicht der Piloten gewährleistet. Es ist unbedingt darauf zu achten, dass zum Säubern der Haube nur reichlich klares, sauberes Wasser und ein reines Ledertuch verwendet wird. Es sollte niemals trocken auf der Plexiglashaube gerieben werden.

Falls vorhanden, wird der Einsatz spezieller Reinigungsmittel für Plexiglashauben (z.B. Plexiklar) empfohlen.

Die Oberfläche der B13 sollte nach jedem Flugbetrieb mit einem weichen sauberen Schwamm und viel klarem Wasser gereinigt werden. Zum Trocknen wird ein sauberes Ledertuch verwendet.

Das Putzen mit Wasser in der Nähe des Motorraumes und des Akkufachs sollte vermieden werden. Spinner und Propellerblätter sollten mit einem feuchten Schwamm oder einem weichen Baumwolltuch gereinigt werden. In den Motorraum Eingedrungene Feuchtigkeit ist sofort zu entfernen.

Klebebandreste können mit ein wenig Silikonentferner entfernt werden. Es sollte kein Aceton oder silikonhaltige Pflegemittel angewandt werden, da es die Lackschicht des Flugzeuges stark angreift oder den Aufwand bei Lackreparaturen deutlich erhöhen könnte. Weiterhin sollten Poliermittel und flüssiges Wachs zur Pflege der Oberfläche angewandt werden.

Wichtiger Hinweis

Es ist unbedingt darauf zu achten, dass das Flugzeug vor Nässe geschützt wird. Eingedrungenes Wasser sollte schnellst möglichst entfernt werden. Dazu muss die B13 trocken gelagert und die abgerüsteten Flugzeugteile öfters gewendet werden.

Die Schwerpunktkupplung und das Hauptrad sind durch ihren Einbauort starken Verschmutzungen ausgesetzt (besonders nach Außenlandungen). Sie sollten daher laufend auf Verschmutzungen untersucht, gereinigt und geschmiert werden.