LOSS FUNCTION

Loss function for different models: (on a data point)

Linear Regression: $\hat{y} = \text{Woc} + b$

. L2 loss (distance): $l(\theta|x,y) = \frac{1}{2} \|y - \hat{y}\|_{2}^{2}$

Binary classification: $\hat{q} = \sigma(wx + b)$

. Binory cross entropy: $l(\theta|x,y) = -y \log(\hat{y})$ $- (1-y) \log (1-\hat{y})$

Multi-class dossification: $\hat{y} = softmax(Wx + b)$

o Cross entrop LOSS = $l(\theta|x,y) = -\sum_{c=1}^{C} l_{y=c} \log(\hat{y}_c)$

=> basically - log (gig) grandtruth

Loss function of model is expected loss over dataset

$$L(\Theta \mid D) = E_{(x,y)} \sim D \left[\chi(\Theta \mid x,y) \right]$$

Minimizing Loss Lundion (Training model)

Problem statement: Find $\theta^* = \operatorname{arg\,min} L(\theta | D)$

Use gradient descent: $\theta' = \theta - \varepsilon \left[\nabla_{\theta} L(\theta) \right]'$ rearring rate gradient

I mitiolization:

Usually random, according to Gaussian: M(n, o)

or Unitorn: Oniform (a, b)