rgpvonline.com

Roll No

MCTA-102

M.E/M.Tech., I Semester

Examination, December 2015

Programming System

Time: Three Hours

Maximum Marks: 70

Note: i) Attempt any five questions out of eight.

All questions carry equal marks.

1. a) What do you mean by hashing and hash functions? 7

 Explain the various collision techniques used for hashing with example.

2. a) Explain stack queue and Huffman codes with examples. 7

b) What is heap and how it is different from binary tree? 7

3. a) Explain recursion tree method with suitable example. 7

 b) What do you mean by backtracking techniques explain with example.

4. a) Explain in detail Algebraic algorithm and Set algorithm. 7

b) Write short notes on:

) Hard problems

ii) Combinatorial Algorithms

PT
0
<
0
=
Ħ
0
Ċ
0
Ξ

5.	a)	Explain branch and bound algorithm technique in detail. 7	
	b)	Write an algorithm for optimal solution of the knaps	sack
		problem using dynamic programming technique.	7
6.	Wr	ite short notes on (Any Four):	14
	a)	Radix Sort	
	b)	Internal sorting	
	c)	Priority Queues	
	d)	Divide and Conquer Algorithm	
	e)	Traversal Algorithms	
7.	a)	Explain the classes of NP Hard and NP Complete.	7
	b)	Explain P versus NP problem.	7
8.	a)	Explain Deterministic and non-deterministic polynomials	mial
		time algorithm with example.	7
1	b)	Explain the factors which are required to compute	the
		performance measure of any algorithm.	7

MCTA-102