

find the E at dist z above the midpoint of a straight line segment of length IL that carries a uniform line charge 2 ? n Now, we know A signifies linear charge

 $\frac{dx}{11} \propto \frac{density}{dt}$ 21 on 2 = dq & dq = Adx

Source point n'= x x Field point n= xx Separation vector  $\mathcal{H} = \mathcal{H} - \mathcal{H}' = \mathbf{Z} \hat{\mathbf{Z}} - \mathbf{X} \hat{\mathbf{X}}$  $\therefore \hat{\mathcal{H}} = \frac{\widehat{\mathcal{H}}}{|\mathcal{H}|} = z\hat{z} - \chi\hat{z}$  $/H/=\sqrt{Z^2+\chi^2}$ E for linearcharge distribution = \( \frac{1}{4\tau \in 0} \) \( \frac{1}{4\tau \in 0} \)  $= 1 \left( \frac{3 dx}{2z^2 + \chi^2} \right) \left( \frac{z^2 - \chi^2}{\sqrt{z^2 + \chi^2}} \right)$  $= \frac{1}{4\pi \epsilon_0} \left[ \frac{1}{(z^2 + \chi^2)^3/2} - \frac{1}{(z^2 + \chi^2)^3/2} \right] \frac{1}{(z^2 + \chi^2)^3/2}$ 

 $=\frac{\lambda}{4\pi \varepsilon o} \left[ \frac{1}{z^2} \int_{-L}^{L} dx - \hat{x} \int_{-L}^{L} (z^2 + \chi^2)^{3/2} - \int_{-L}^{L} (z^2 + \chi^2)^{3/2} \right]$ 

Teacher's Signature\_



In case of, 
$$-\hat{\chi}$$
  $\times dx$   $-1$   $\sqrt{x^2 + x^2}$  3

Taking 
$$z^2+x^2=u$$

2ndx=du

 $\frac{\Rightarrow}{+ \hat{\chi} \left( u^{-1/2} \right)_{-1}^{-1}}$   $\frac{\Rightarrow}{+ \hat{\chi} \left( u^{-1/2} \right)_{-1}^{-1}}$   $\frac{\Rightarrow}{+ \hat{\chi} \left( u^{-1/2} \right)_{-1}^{-1}}$ 

$$\hat{\chi} \left[ \frac{1}{\sqrt{Z^2 + \lfloor 2}} - \frac{1}{\sqrt{Z^2 - \lfloor 2 \rfloor}} \right] = 0$$

For part 1 i.e., 
$$\frac{1}{z}$$
  $z\hat{z}$   $\int_{-1}^{L} \frac{1}{(z^2 + x^2)^{3/2}} dx$ 

$$\frac{\lambda}{4\pi \varepsilon^{\circ}} \left[ \frac{\chi^{2}}{z^{2}} \frac{2l}{z^{2}} + 0 \right] = \frac{2\lambda l}{4\pi \varepsilon^{\circ}} \frac{\chi^{2}}{z^{2} + l^{2}} \left( \frac{\lambda}{2} \right)$$