

NET Conf TAIWAN STUDY4

為

學

習

而

生

特別感謝

以及各位參與活動的各位

咱一路建置Observability の風風雨雨

Chuck TSMC Senior Engineer

The ability to measure the internal state of a system only by its external outputs

A Survey on Observability of Distributed Edge & Container-Based Microservices | IEEE Journals & Magazine | IEEE Xplore

Observability是什麼?

Observability是什麼?

Observability(可觀察性)是一個源自控制理論的概念,指的是一個系統的內部 狀態能夠透過觀察外部輸出來進行推斷的能力。在軟體工程和IT運維領域,

Observability 通常用來描述系統如何提供足夠的數據,讓工程師可以了解系統的運行狀況、性能問題以及故障原因。

為什麼要建置Observability?

- 1 Avability ©
- Performance !!!
- **3** Cost management (§)
- 4 Security

Observability能幫助我們什麼?

Troubleshooting

Optimization

Finding Problems

Predicting Problems

Transparency

Observability能幫助我們什麼?

Observability 3 本柱

Metrics

Logs

Tracing

Logs

- 最早衍生出的指標
- 透過「文字」將在某個時間下發生的的事件、 資料、和有意義的資訊記錄起來。
- 結構化與非結構化格式
- 事件追蹤

Metrics

- 透過觀察一定時間之內而量化後的數據。
- 性能監控:

實時追蹤系統資源使用情況(如 CPU & Mem)。 分析應用程序響應時間和吞吐量。

• Alarm設置:

設定閾值以便在指標異常時發送告警。

Traces

- 定義為「a tree of spans」。
- · Trace記錄著每個功能其應用程式完整的執行過 程。
- 執行過程會充滿著「上下游的呼叫關係」
- 跟蹤應用程式請求在系統中的流轉
- Root Cause分析

該選擇什麼工具?

												C-) Alibaba Cloud Application Real-Time Monitoring Service	Alibaba Cloud Log Service	Amazon CloudWatch	₿ ANTEON	APPDYNAMICS	AppNeta	∜ app optics	AppSignal	Application High Availability Service	Managetrains Applications Manager	Aspecto
fluentd		JAEGER CNCF GRADUATED		Prometheus cncf graduated		cortex		OpenTelemetry CNCF INCUBATING		Thanos		∆ ternity	Azure Monitor	beats	bluematador	botkube	catchpoint	© centreon	check mk	chronosphere	❷│监控宝	coroot):~#
>> DataSet	DATADOG	Lightrun	DeepFl®w*	DEVELOCITY	dynatrace	EaseAgent	EDGE DELTA	elastic	elastic apm	6-9 embrace	epsagon	S falcon	FLOWMILL	FONIO	foresight	Google Stackdriver	Grafana	Grafana loki	Mimir	6 Pyroscope	Grafana Tempo	graphite
graylog	G 观测云	O HEADLAHP	> Helios	M HertzBeät	& Honeybadger	• honeycomb.io	HUBBLE	Mario Acrondstrike Company	FICINGA	influxdata*	INSPEKTOR BROBET	[] INSTANA	IRONdb	K8SGPT	Keep	Kepler	kiali	Kube §koop	⊗ kuberhealthy	Last 9)	() LeanIX	Lightstep
LinDB A 00x10e strd 1100	Loggie	LOGGING	Leggly	Logic/∧onitor	LOGIQ	logstash	logz.io	® M3	∧ mackerel	mezmo	MICROMETER	\\\\\ middleware	Monocle	<u>N</u> agios'	NETDATA	Nêtis≢≘	new relic.	NexClipper	⊕ Nightingale	NIS NODESOURCE	Okahu	OpenLIT
6	OPENMETRICS	openobserve	OpenSearch	OPENTSOB	OPENTRACING	opstrace	Over0ps	Pandora	% parseable	= PERSES	PINPOINT	יה פואויה	Promscale			ROOKOUT	SOFATracer	sematext	Sensu	₪ SENTRY	SIDEKICK	SigLens
SignalFx	Skooner	Skywalking	sosivio	splunk>	Spring Cloud Sleuth	StackState	sumo logic	TRaaS BOS	Telemetry Hüb	Teletrace	Tencent Cloud Cloud Log Service	TINGSYUN	ॐ tracetest	trickster	 ♦ TRINK	Aria Operations for Applications	CloudHealth	VECTOR By Timber.io	VICTORIA METRICS	virtasant	WhaTap	ZABBIX
ZIPKIN	sysdig	UNRYÖ	皆元科技																			

分布式架構

• 標準化與統一性

強大的搜索和查詢語言

• 分布式追蹤

集中式日誌管理

• 語言支持廣泛

日誌結構化與非結構化支持 • 多種協議支持

Open Metrics

• 可以用簡單的方式將應用程式的指 標暴露出來

• 提供多種程式語言的Libraries

Alarm管理

Profiling

- 用於監控應用程序的性能行為,幫助開發和運維團隊 深入了解系統資源使用情況,解決性能瓶頸問題。
- · 深入了解資源的使用情況,確保應用程序有效利用系 統資源。
- · 快速定位異常問題的根本原因,減少 MTTR
- 歷史分析與趨勢追蹤

小明家的架構?

風風雨雨的部分

小明他 公司開到全世界

Azure/GCP/AWS

From Hero

To

Zero

挑戰

- 公司規模龐大,團隊產品需支援全世界的公司員工,需要大量的維運成本
- 且基於某些原因,公司規定,地端Only
- 老舊系統過多且架構複雜還無法汰換還要跟新產品整合監控
- 團隊技術落差龐大,不是所有人都知道Observability的必要性及價值

開方式編碼	頻率
文化和心態轉變	138
持續學習	111
領導承諾缺乏	90
團隊適應能力	84
不確定性恐懼	77
抵抗心理	72
領導行為不一	69

• 組織文化和領導支持

• 持續發展和學習

• 技術和流程整合

Solution?

<u>● 離職</u>

- 先瞄重點:針對最需要改進的關鍵系統(如果出事,會有數萬人憤怒且可能影響到你職業生涯的系統)優先導入Observability,再逐漸拓展到各個據點。
- Config統一管理:盡量透過helm chart分開打包佈署並將各據點環境參數化
- 自動化: As a Engineer 某方面已經成為default該知道該會該利用的一點
- 老王賣瓜: 妥善教育團隊,告訴他們這個應用實例有多棒,破除萬難也要導入
- 真的還有問題,找老闆協調
- 還是有問題 → 離職

• 歡迎來小明的公司一起解決面對問題

Observability 2.0

Three Pillars Metrics, Logs, Traces

Observability

Single source of truth: wide structured logs

Bad "Best Practice": Monitor only what you need and understand. Why this is a myth:

Holistic View

To understand the dynamics of modern infrastructure we need comprehensive and holistic views of the technologies involved. Cherry picking data usually means blind spots.

Easier and Faster Root Cause Analysis

When issues arise, having access to a broad set of data helps in pinpointing the source of the problem.

Proactive Issue Detection

With a full spectrum of monitoring, patterns and anomalies can be identified early. Such issues may not be evident when only a subset of the data is considered.

Adaptability to Changing Environments

Modern IT environments are dynamic and constantly evolving. What is considered important today may change tomorrow due to shifts in application architecture, user behavior, or infrastructure changes.

Real-Time (per-second) & Low-Latency!

Bad "Best Practice": Monitoring every 10, 15 or 60 seconds. Why this is a myth:

True Performance Monitoring

Virtualized environments are highly dynamic, non-linear, and unpredictable. Monitoring per second reveals the true performance characteristics of the infrastructure and applications by capturing the fine-grained details of their behavior

Improved Correlation and Context

Having data points every second enhances the ability to correlate events and metrics across different parts of the system. This improved correlation helps in understanding the context of issues, such as determining the sequence of events leading up to a failure or performance degradation.

Faster Response to Issues

The effects of your corrective actions, or even configuration changes, are immediately reflected on the monitoring data, enabling quicker identification and mitigation of problems.

Structured Data

```
.NET Conf
TAIWAN
2024
```

```
"timestamp": "2024-11-17T12:34:56Z",
"level": "ERROR",
"service": "auth-service".
"user_id": "12345",
"request id": "abcde-67890",
"error_code": "401",
"ip address": "192.168.1.1",
"session_duration": 3600,
"custom field 1": "extra value 1",
"custom_field_2": "extra_value_2"
```

```
"trace_id": "xyz-123",
"span_id": "span-456",
"operation": "database query",
"start_time": "2024-11-17T12:35:00Z",
"end_time": "2024-11-17T12:35:01Z",
"duration ms": 1000,
"tags": {
    "db.statement": "SELECT * FROM users WHERE id = ?",
    "db.type": "PostgreSQL",
    "host": "db-server-1",
    "region": "us-east-1"
"annotations": [
    {"timestamp": "2024-11-17T12:35:00.500Z", "event": "query_sent"},
    {"timestamp": "2024-11-17T12:35:00.800Z", "event": "response received"}
```

Logs

Tracing


```
"host": "server-1",
"timestamp": "2024-11-17T12:37:00Z",
"cpu usage": 85.5,
"memory_usage_mb": 2048,
"disk_io": {
    "read_bytes": 1048576,
    "write bytes": 524288
},
"network_io": {
    "inbound_kbps": 500,
    "outbound_kbps": 450
},
"custom metrics": {
    "gpu_temperature": 75,
    "process_count": 120
```

Metrics

```
"event_type": "button_click",
"user id": "user-789",
"timestamp": "2024-11-17T12:36:00Z",
"session_id": "sess-9876",
"device": {
    "type": "mobile",
    "os": "iOS",
    "version": "16.2"
"location": {
    "latitude": 37.7749,
    "longitude": -122.4194
"custom properties": {
    "button_id": "btn-signup",
    "page": "landing_page",
    "referrer": "google ads"
```

User Behavior

What you can do NOW to start moving towards observability 2.0

- Instrument your Code!
- 添加(Trace IDs)和(Span IDs),這樣你可以通過相同的事件直接追蹤Code, 而無需在不同的工具之間切換。
- 將你的data store到Columnar Store中
- 使用支持高基數 (High Cardinality) 的Storage (例如:ClickHouse)
- 使用可探索界面的Tool,或至少使用動態的Dashboard

Thank you

Do you have any questions?

www.linkedin.com/in/chuck-chen-36156a174

Ref:

- 1. What_Developers_Should_Know_About_Observability Peter Zaitsev
- 2. O11y 1.0 vs O11y2.0 Charity Majors
- 3.A Survey on Observability of Distributed Edge & Container-Based Microservices
- 4. Grafana Alloy Best Practice Eric Huang
- 5.應該是 Profilling 吧?-雷N
- 6. Netdata: Open Source, Distributed Observability Pipeline Journey and Challenges