User's guide to StackSizer

1 Installation

- 1. Supported compilers: gcc and MSVS
- 2. Prerequisite: EIGEN3, which is available at

http://eigen.tuxfamily.org/index.php?title=Main_Page

- Unzip the source code of StackSizer and EIGEN3 and add the directory of EIGEN3 to the compiler's include path.
- 4. Turn on the compiler's OpenMP support (optional)

2 Key functions

1. Ply properties are defined by the fields:

```
ply.Ex = 154.e3;
ply.Ey = 8.5e3;
ply.Gxy = 4.2e3;
ply.MIUxy = 0.35;
ply.thick = 0.184;
```

2. Allowable Tensional strain is given by the function

```
double epsi_al_t(struct Laminate plate)
```

3. Allowable compressive strain is given by the function

```
double epsi_al_c(struct Laminate plate)
```

4. Compressive postbuckling coefficient, which is defined as the allowable compressive buckling load over the ultimate load, is given by:

```
double PB_coef_c(struct Laminate plate)
```

5. Shear postbuckling coefficient, which is defined as the allowable shear buckling load over the ultimate load, is given by:

```
double PB_coef_s(struct Laminate plate)
```

6. Prototypes of buckling functions are declared in the header file Composite.h, the following functions are available:

```
struct PlateBuckleState PlateBuckling_UC_F_SCSC_Ortho(struct Laminate plate);
struct PlateBuckleState PlateBuckling_UC_F_SSSS_Ortho(struct Laminate plate);
struct PlateBuckleState PlateBuckling_UC_F_CCCC_Ortho(struct Laminate plate);
struct PlateBuckleState PlateBuckling_UC_C_SSSS_Ortho(struct Laminate plate);
struct PlateBuckleState PlateBuckling_BC_F_SSSS_Ortho(struct Laminate plate, double k);
struct PlateBuckleState PlateBuckling_UC_F_SBSB_Ortho(struct Laminate plate, double EA, double EI, double GJ);
struct PlateBuckleState PlateBuckling_UC_F_SSSF_Ortho(struct Laminate plate);
```

```
struct PlateBuckleState PlateBuckling_UC_F_SESF_Ortho(struct Laminate plate, double C0);
struct PlateBuckleState PlateBuckling_UC_F_SESE_Ortho(struct Laminate plate, double C0);
struct PlateBuckleState PlateBuckling_S_F_CCCC_Ortho(struct Laminate plate);
struct PlateBuckleState PlateBuckling_S_F_CCCC_Ortho(struct Laminate plate);
struct PlateBuckleState PlateBuckling_S_F_SSSS_Ortho(struct Laminate plate);
struct PlateBuckleState PlateBuckling_S_F_SCSC_Ortho(struct Laminate plate);
struct PlateBuckleState PlateBuckling_NS_F_SSSS_Aniso(struct Laminate plate, struct PlateLoad pl);
A function name follows:
struct PlateBuckleState PlateBuckling_SEG1_SEG2_SEG3_SEG4(struct Laminate plate, foo...);
```

Tab naming ruler

SEG1	UC	Unidirectional compression					
Load type	ВС	Bi-directional compression					
	S	Shear					
SEG2	F	Flat plate					
Plate type	С	Curved plate					
SEG3	S	Simply Support					
Boundary condions	С	Clamp support					
	F	Free					
	В	Restrained by a beam					
	E	Rotational spring					
SEG4	Ortho	Orthotropic, neglecting					
		D_{16} , D_{26}					
	Aniso	Anisotropic, taking in to					
		account D_{16} , D_{26}					

3 Input file

The input file is composed by the following 5 parts:

1) Line1:

 $N_{\text{bay}}, N_{\text{subcase}}, N_{\text{size}}, N_{\text{lock}}, MS$

	Type	Meaning
$N_{\rm bay}$	int	Number of laminate bays
$N_{ m subcase}$	int	Number of subcases
N _{size}	int	Number of input lines for defining bay sizes
N _{lock}	int	Number of input lines for defining bay thickness
MS	float	Target margin of safety

2) Line2:

N_{round}, N_{inner loop}, N_{outer loop}, Switch_{trim}

	Tourida	mmer_loop, outer_loop, unin
	Type	
$N_{ m round}$	int	Number of rounds

$N_{\rm inner_loop}$	int	Outer loop size of each round
$N_{\text{outer_loop}}$	int	Inner loop size within each outer loop
Switch _{trim}	int	Switch to open 90/0 flip

3) Load define part

 $N_{
m subcase}$ input blockes, each block contains $1+N_{
m bay}$ lines. The block for each subcase is:

SUBCASE: S	(1 line)			
ElemID 1	$N_{\rm xx}$	$N_{ m yy}$	$N_{\rm xy}$	
ElemID 2	$N_{\rm xx}$	$N_{ m yy}$	$N_{\rm xy}$	
ElemID 3	$N_{\rm xx}$	$N_{\rm yy}$	N_{xy}	(M. limas)
ElemID 3	$N_{\rm xx}$	$N_{\rm yy}$	N_{xy}	$(N_{\rm bay} {\rm lines})$
•••				
ElemID $N_{\rm bay}$	$N_{\rm xx}$	$N_{\rm yy}$	N_{xy}	

The symbols are defined as:

	Type	Meaning
SUBCASEID	int	Subcase id
ElemID	int	Element id
N_{xx}	double	In-plane normal force along the X-direction with the unit of N/mm
$N_{ m yy}$	double	In-plane normal force along the Y-direction with the unit of N/mm
N_{xy}	double	In-plane shear force with the unit of N/mm

4) Size define part

Consist of N_{size} lines, in each line,

ElemID₁: ElemID₂:PACE a b

ElemID ₁	int	Start element id
ElemID ₂	int	End element id
PACE	int	stride
а	double	Plate length in mm
b	double	Plate width in mm

Fig: sizes of a plate

This line attributes a-by-b to elements $ElemID_1$, $ElemID_1+PACE$, $ElemID_1+2PACE$, $ElemID_1+3PACE$,..., $ElemID_2$.

If the stride is 1, then use:

ElemID₁: ElemID₂:PACE a b

If only one bay is to be defined, then use:

ElemID₁ a b

5) Thickness define part

If certain bays are to be excluded from the optimization, then its thickness should be fixed a priori. There are N_{lock} lines defining fixed bay thickness, the formation is:

ElemID₁: ElemID₂:PACE num

or

ElemID₁: ElemID₂ num

or

ElemID₁ num

Num is the number of layers.

6) Connection define part

Connection relations are defined in pairs till the end of the input file. For example, the connection of the following bays are given as:

12

13

24

3 4

2
4

Fig A sample with 4 zones

4 Result

Plate No			ELEMENT			RANK:	1,	Subcase:		Layers:		M.S:		FailMode:				,	90,	,
Plate No			ELEMENT		02,	FANK:	2,	Subcase:	10,	Layers:	12,	M.S:		FailMode:				,	90,	,
Plate No	o.: 3	, FEM	ELEMENT	ID:	03,	RANK:	3,	Subcase:	10,	Layers:	12,	M.S:		FailMode:			-45,	,	90,	,
Plate No			ELEMENT			FANK:		Subcase:		Layers:		M.S:		FailMode:				,	90,	,
Plate No			ELEMENT			RANK:	5,	Subcase:		Layers:		M.S:		FailMode:			-45,	,	90,	,
Plate No			ELEMENT			FANK:		Subcase:		Layers:		M.S:		FailMode:				,	90,	,
Plate No			ELEMENT			FANK:		Subcase:		Layers:		M.S:		FailMode:				,	90,	,
Plate No			ELEMENT			RANK:		Subcase:		Layers:		M.S:		FailMode:				,	90,	,
Plate No			ELEMENT			FANK:		Subcase:		Layers:		M.S:		FailMode:				,	90,	,
Plate No			ELEMENT			RANK:		Subcase:		Layers:		M.S:		FailMode:			-45,	,	90,	,
Plate No			ELEMENT			RANK:		Subcase:		Layers:		M.S:		FailMode:				,	90,	,
Plate No			ELEMENT		12,	FANK:	12,	Subcase:	11,	Layers:		M.S:		FailMode:				,	90,	,
Plate No			ELEMENT			RANK:		Subcase:		Layers:		M.S:		FailMode:				,	90,	,
Plate No			ELEMENT			FANK:		Subcase:		Layers:		M.3:		FailMode:				,	90,	,
Plate No			ELEMENT			FANK:		Subcase:		Layers:		M.S:		FailMode:					90,	,
Plate No			ELEMENT			RANK:		Subcase:		Layers:		M.S:		FailMode:				,	90,	,
Plate No			ELEMENT			FANK:		Subcase:		Layers:		M.S:		FailMode:				,	90,	,
Plate No			ELEMENT			FANK:	18,	Subcase:	10,	Layers:		M.S:		FailMode:				,	90,	,
Plate No			ELEMENT			RANK:		Subcase:		Layers:		M.S:		FailMode:			-45,	,	90,	,
Plate No			ELEMENT			FANK:		Subcase:		Layers:		M.S:		FailMode:		45,		,	90,	,
Plate No			ELEMENT			RANK:		Subcase:		Layers:		M.S:		FailMode:			-45,	,	90,	,
Plate No			ELEMENT			RANK:		Subcase:		Layers:		M.S:		FailMode:		45,		,	90,	,
Plate No	5.: 23	, FEM	ELEMENT	ID:	23,	RANK:	23,	Subcase:	10,	Layers:	12,	M.S:	0.50,	FailMode:	3,	45,	-45,		90,	,

Fig Screen shot of the example result