Random Variables and Probability Distributions Discrete Probability Distributions

Discrete Probability Distributions

Example: Consider the probability distribution that describes the number of girls in a two-child family. Use a table, graph and function to represent this probability distribution. Let X be the random variable, number of girls in the family.

х		
P(X=x)		

Definitions

A **random variable** X represents a number, from the possible outcomes, that could occur for some random variable.

A **discrete random variable**, **X**, has the possible values x = 0, 1, 2, 3, 4... For example: the number of girls in a two-child family.

A **continuous random variable, X,** has all possible values in some interval. For example: the volume of water in a rainwater tank during a given month.

Any random variable has a **probability distribution** associated with it. $P(X = x_i)$ represents the probability of the event associated with x_i occurring.

Properties of a Probability Distribution

- 1. Each of the probabilities must lie between 0 and 1, $0 < P(X = x_i) < 1$ for all values of x_i .
- 2. The sum of probabilities must add to 1, that is

$$\sum_{i=1}^{n} P(X = x_i) = P(X = x_1) + P(X = x_2) + \dots + P(X = x_n) = 1$$

Example: Find k for the probability distribution P(X = x) = k(x + 3) for x = 0, 1, 2.

X = x	0	1	2
P(X=x)			

[Maximum	mark:	8]
----------	-------	----

A discrete random variable X has the following probability distribution.

X	0	1	2	3	
P(X=x)	0.475	$2k^2$	$\frac{k}{10}$	$6k^2$	

(a) Find the value of
$$k$$
.

(b)

(c)

Write down P(X = 2).

Find P(X = 2 | X > 0).

[3]

Expected Value

For a probability distribution the expectation of random variable X or expected value of X is:

$$E(X) = \sum x_i P(X = x_i)$$
 or $E(X) = \sum x_i p_i$

where x_i is a particular outcome and p_i is the probability of that outcome.

E(X) is also called the mean value of X. It is a measure of central tendency and can be thought of as a probability-weighted average or long-run average.

Note: A fair game will have expected return of zero.

1) Choose an American suburban household at random and let the random variable X be the number of cars that people in the house own. Find the number of cars owned by the average suburban American household.

X	0	1	2	3	4	5	6 or more
Probability	.08	.29	.32	.17	.08	.04	.02

2) A huge cookie jar has 60% chocolate cookies and 40% vanilla cookies. Sam chooses 3 cookies blindfolded. Let *X* be the number of chocolate cookies he chooses. Construct the probability distribution of *X* and the average number of chocolate cookies he chooses.

6)	A coin is tossed three times. If heads appears on all 3 tosses, Mary will win \$16. If heads appears on 2 of the tosses, she will win \$2. The game costs \$5 to play. What is her mean expectation?

Example: Given E(X) = 7 and $E(X^2) = 18$ find:

- a) E(5)
- b) E(3X)
- c) $E(X^2+2X+3)$

Variance of a Probability Distribution

If X is a discrete random variable, then its variance, σ^2 , is defined as:

$$Var(X) = E((X - \mu)^{2})$$

$$Var(X) = \sum_{i=1}^{n} (x_{i} - \mu)^{2} P(X = x_{i})$$

To calculate Var(X) use:

$$Var(X) = E(X^2) - [E(X)]^2$$
 or $Var(X) = E(X^2) - \mu^2$

Note:
$$Sd(X) = \sigma = \sqrt{Var(X)}$$

A ba	g contains four gold balls and six silver balls.	
(a)	Two balls are drawn at random from the bag, with replacement. Let X be the number of gold balls drawn from the bag.	
	(i) Find $P(X = 0)$.	
	(ii) Find $P(X = 1)$.	
	(iii) Hence, find $E(X)$.	[8 marks]
Four	teen balls are drawn from the bag, with replacement.	
(b)	Find the probability that exactly five of the balls are gold.	[2 marks]
(c)	Find the probability that at most five of the balls are gold.	[2 marks]
(d)	Given that at most five of the balls are gold, find the probability that exactly five of the balls are gold. Give the answer correct to two decimal places.	[3 marks]

Example: Find E(X) and Var(X) and standard deviation for the probability distribution X as defined in the table.

X	1	2	3	4
P(X=X)	0.1	0.3	0.4	0.2

Properties of Variance

- 1. Var(k) = 0
- $2. Var(aX) = a^2 Var(X)$
- $3. Var(aX+b) = a^2Var(X)$

Example: X is distributed with mean 8.1 and standard deviation 2.37. If Y = 4X-7, find the mean and standard deviation of the Y-distribution.

Solution

$$E(X) = 8.1$$
, $E(4X - 7) = 4(8.1) - 7 = 25.4$

Std dev X = 2.37 so Var(X) = 5.6169

$$Var(4X - 7) = 4^2 \times 5.6169 = 89.8704$$

Std dev of Y = $\sqrt{89.8704} = 9.48$

Example

The discrete random variable X has the following probability distribution, where $0 < \theta < \frac{1}{3}$.

x	1	2	3	
P(X = x)	θ	20	$1-3\theta$	

1. Determine E(X) and show that $Var(X) = 6\theta - 16\theta^2$.

[4 marks]

Solution

Markscheme

$$E(X) = 1 \times \theta + 2 \times 2\theta + 3(1 - 3\theta) = 3 - 4\theta$$
 MIAI
 $Var(X) = 1 \times \theta + 4 \times 2\theta + 9(1 - 3\theta) - (3 - 4\theta)^2$ MIAI
 $= 6\theta - 16\theta^2$ AG

[4 marks]

TI-Nspire

Thanks

Do you have any question?

addyouremail@freepik.com +91 620 421 838 yourcompany.com

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**

Please keep this slide for attribution