Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea in Informatica

TITOLO DELLA TESI

Relatore: Chiar.mo Prof. UGO DAL LAGO Presentata da: FEDERICO PECONI

II Sessione a.a. 2016/2017 $Questa \ \grave{e} \ la \ \mathsf{DEDICA} :$ ognuno può scrivere quello che vuole, $anche \ nulla \ \dots$

Indice

1	Intr	roduzione					
2	Funzioni Booleane Bilanciate						
	2.1	Funzio	oni Booleane	4			
	2.2	Classi	di Funzioni Booleane Bilanciate	6			
		2.2.1	La Classe delle Funzioni Booleane Lineari	9			
		2.2.2	Funzioni Booleane non Lineari Bilanciate	10			
3	L'Ir	ıforma	zione Quantistica	12			
	3.1	Princi	pi della Meccanica Quantistica	13			
		3.1.1	Dai Numeri Reali ai Numeri Complessi	13			
		3.1.2	Da Stati Singoli alla Sovrapposizione degli Stati	14			
		3.1.3	Dalla Località alla non Località	15			
		3.1.4	Dalle leggi Deterministiche a quelle Non Deterministiche	16			
	3.2	I Siste	emi a Confronto	16			
		3.2.1	Il Reame Classico	16			
		3.2.2	Il Reame Probabilistico	18			
		3.2.3	Il Reame Quantico	21			
	3.3	Revers	sibilità	23			
	3.4	Un Es	sempio Quantistico	24			
	3.5	Un Sis	stema a più Qubit	26			
	3.6		glement	29			
	3.7		are il Parallelismo	30			
	3.8	Circui	ti Booleani	30			

32
33
34

Capitolo 1

Introduzione

Capitolo 2

Funzioni Booleane Bilanciate

Come già anticipato nell'Introduzione, le funzioni Booleane bilanciate sono una struttura matematica su cui poggia parte del contenuto di questa tesi. É risultato perciò utile, ai fini di una trattazione chiara ed esaustiva, impiegare un capitolo per definirne in maniera rigorosa i concetti di base.

"Per fare un tavolo ci vuole il legno" recita l'inizio di una famosa canzone per bambini, ad indicare la natura celata delle cose che, così nella quotidianità come nella matematica, spesso necessitano di altre conoscenze per essere comprese appieno; seguendo quindi questa impronta fondazionale, andiamo per prima cosa ad introdurre le funzioni Booleane.

2.1 Funzioni Booleane

Le funzioni Booleane apparvero per la prima volta a metà 19esimo secolo durante la formulazione matematica di problemi logici e prendono il loro nome da George Boole, matematico britannico considerato fondatore della logica matematica odierna 2.

Una semplice funzione Booleana può può essere rappresentata da $f:\{0,1\}^2\mapsto\{0,1\}$

$$f(00) = 0$$

$$f(01) = 0$$

$$f(10) = 1$$

$$f(11) = 0$$

oppure da $f': \{TRUE, FALSE\} \mapsto \{TRUE, FALSE\}$

$$f'(FALSE) = TRUE$$

 $f'(TRUE) = FALSE$

Notiamo come entrambe abbiano in comune la dimensione del codominio e la capacità di agire su un numero finito di valori appartenenti ad un insieme di 2 elementi. È tuttavia conveniente operare su di un insieme che possa essere visto sia dal punto di vista qualitativo (vero, falso) sia da un punto di vista quantitativo, e quindi numerico, che ci permetta così di compiere anche operazioni algebriche oltre che logiche. Prediligeremo allora da qui in avanti l'inisieme $\{0,1\}$ come campo vettoriale su cui lavorare.

Definizione 2.1. Una funzione Booleana a n variabili \grave{e} una funzione da \mathcal{B}^n a \mathcal{B} , dove $\mathcal{B} = \{0,1\}, \ n > 0 \ e \ \mathcal{B}^n \ \grave{e} \ l'n\text{-}esimo prodotto cartesiano di } \mathcal{B} \ con \ se \ stesso.$

Corollario. $\forall n > 0$, ci sono 2^{2^n} funzioni da \mathcal{B}^n a \mathcal{B} .

Dimostrazione. Sia $\mathcal{F} = \{f | f : \mathcal{B}^n \mapsto \mathcal{B}\}$, ogni f riceve in input n-uple $\vec{x} = (x_1, ..., x_n)$ che possono essere viste come sequenze di n bit. In n bit possiamo codificare, trattandosi di una distribuzione con ripetizione di classe n, 2^n oggetti differenti, quindi $\mathbb{D}_{2,n} = |\mathcal{B}^n| = 2^n$. Per definizione di f, per ogni \vec{x} , $f(\vec{x}) = 0$ oppure $f(\vec{x}) = 1$, quindi ogni possibile f individua un sottoinsieme di \mathcal{B}^n .

Allora $\mathcal F$ avrà caridinalità uguale all'insieme delle parti per $\mathcal B^n$, quindi $|\mathcal F|=2^{\mathcal B^n}=2^{2^n}$

Un altro modo più tradizionale per descrivere una funzione Booleana è quello di fornire la sua tabella di verità. Ad esempio, per la f precedentemente definita, la tabella di verità relativa sarà:

x_1	x_2	$f(x_1, x_2)$
0	0	0
0	1	0
1	0	1
1	1	0

Dove a destra viene posto il risultato della funzione calcolata sui valori delle colonne precedenti.

In entrambe le rappresentazioni, tuttavia, le funzioni vengono descritte in maniera implicita mostrando solamente input ed output, senza mai andare a specificare come questo output venga calcolato.

Nell'ultimo capitolo, per l'implementazione dell'algoritmo di Deutsch-Jozsa, verranno utilizzate funzioni Booleane bilanciate che necessitano di essere calcolate esplicitamente. La prossima sezione introduce questa categoria di funzioni Booleane e propone due metodi effettivi e generali per produrne istanze concrete.

2.2 Classi di Funzioni Booleane Bilanciate

Sia f una funzione Booleana, chiamiamo $\vec{x} = (x_1, ..., x_n)$ vettore positivo per f se e solo se $f(\vec{x}) = 1$, vettore negativo altrimenti. Sia $(|f|^1, |f|^0)$ la partizione dove $|f|^1$ è la quantità che indica il numero di vettori positivi per f e $|f|^0$ la quantità che indica il numero di vettori negativi.

Definizione 2.2. Una funzione Booleana f è detta bilanciata (FBB) se e solo se $|f|^1 = |f|^0$.

Corollario. $\forall n > 0$, ci sono $\frac{2^{n!}}{(2^{n-1}!)^2}$ FBB da \mathcal{B}^n a \mathcal{B} .

Dimostrazione. Per definizione, una FBB $fbb: \mathcal{B}^n \mapsto \mathcal{B}$ è individuata da una partizione $(\mathcal{M}, \mathcal{N})$ con $\mathcal{M} \subset \mathcal{B}^n$ e $\mathcal{N} \subset \mathcal{B}^n$ tale che $|\mathcal{M}| = |\mathcal{N}| = 2^{n-1}$ e $fbb(m) = 0 \land fbb(n) = 1$ $\forall m, n \text{ con } m \in \mathcal{M}, n \in \mathcal{N}$. Quindi, il numero delle possibili funzioni corrisponde a tutti i possibili modi di partizionare a metà un insieme di 2^n elementi e, a sua volta, ogni partizione così creata può essere rappresentata da un sottoinsieme $\mathcal{S} \subset \mathcal{B}^n$ dove $\mathcal{M} = \mathcal{S}$ e $\mathcal{N} = \mathcal{B}^n \setminus \mathcal{S}$. Non resta quindi che trovare tutti i possibili \mathcal{S} :

$$\mathbb{C}_{2^{n},2^{n-1}} = \binom{2^{n}}{2^{n-1}} = \frac{2^{n}!}{2^{n-1}!2^{n-1}!} = \frac{2^{n}!}{(2^{n-1}!)^{2}}$$

Una valida tabella di verità per una FBB in \mathcal{B}^3 portebbe essere la seguente:

(x_1, x_2, x_3)	$g(x_1, x_2, x_3)$
(0,0,0)	0
(0, 0, 1)	1
(0, 1, 0)	1
(0, 1, 1)	0
(1,0,0)	1
(1, 0, 1)	0
(1, 1, 0)	0
(1, 1, 1)	1

Dove, giustamente, si noti come il numero dei vettori positivi equivale al numero dei vettori negativi.

Ma come è costruita g nello specifico? Qual'è la computazione che mi porta a determinati outputs? Per rispondere a queste domande si può provare a cercare qualche correlazione tra i valori in entrata e i valori in uscita: dopo un pò di riflessione dovrebbe saltare all'occhio che ogni qual volta abbiamo un numero dispari di 1 nell'input la funzione restituisce 1, restituisce invece 0 quando tale numero è pari. La parità di una sequenza è esprimibile con la somma modulo 2 dei singoli componenti, allora possiamo definire esplicitamente g come:

$$g(x_1, x_2, x_3) = x_1 + x_2 + x_3 \mod 2$$
$$= (x_1 \oplus x_2) \oplus x_3$$
$$= x_1 \oplus x_2 \oplus x_3$$

dove \oplus è un connettivo binario logico (una funzione Booleana $\in \mathcal{B}^2$) chiamato XOR oppure OR esclusivo, che restituisce 1 se uno ed uno solo dei due elementi vale 1.

(x_1, x_2)	$\oplus(x_1,x_2)$
(0,0)	0
(0,1)	1
(1,0)	1
(1,1)	0

Lemma 1. Per ogni n > 0 la funzione Booleana $f^n(x_1, x_2, ..., x_n) = x_1 \oplus x_2 \oplus ... \oplus x_n$ è una FBB.

Dimostrazione. (per induzione su n)

Base induttiva: $f^1(x) = x$ è trivialmente bilanciata.

Ipotesi induttiva: Ipotizziamo f^n bilanciata, quindi esiste la partizione $(\mathcal{M}, \mathcal{N})$ con $\mathcal{M} \subset \mathcal{B}^n$ e $\mathcal{N} \subset \mathcal{B}^n$ tale che:

 $|\mathcal{M}|=|\mathcal{N}|,\;\mathcal{M}\cup\mathcal{N}=\mathcal{B}^n$ e $\forall m,n$ con $m\in\mathcal{M},n\in\mathcal{N}$ risulta $f^n(m)=0$ e $f^n(n)=1.$

Passo induttivo: Avremo $f^{n+1}: \mathcal{B}^{n+1} \mapsto \mathcal{B}$ dove $\mathcal{B}^{n+1} = \mathcal{B}^n \cdot 0 \cup \mathcal{B}^n \cdot 1$ e quindi $|\mathcal{B}^{n+1}| = 2|\mathcal{B}^n|$. Dobbiamo dimostrare che esiste una partizione $(\mathcal{M}', \mathcal{N}')$ t.c.:

- $|\mathcal{M}'| = |\mathcal{B}^n|$ e $\forall m' \in \mathcal{M}'$ $f^{n+1}(m') = 0$
- $|\mathcal{N}'| = |\mathcal{B}^n| \in \forall n' \in \mathcal{N}' \ f^{n+1}(n') = 1$

Notiamo come, $\forall m, n \text{ con } m \in \mathcal{M}, n \in \mathcal{N} \text{ se}$

$$x_{n+1} = 0 \Rightarrow f^{n+1}(m \cdot 0) = 0 \land f^{n+1}(n \cdot 0) = 1$$

$$x_{n+1} = 1 \Rightarrow f^{n+1}(m \cdot 1) = 1 \land f^{n+1}(n \cdot 1) = 0$$

Segue naturalmente che la partizione $\mathcal{M}' = \mathcal{M} \cdot 0 \cup \mathcal{N} \cdot 1$ e $\mathcal{N}' = \mathcal{M} \cdot 1 \cup \mathcal{N} \cdot 0$ rispetta i criteri cercati.

Si richiami dall'Algebra Lineare che, $f: \mathcal{V} \mapsto \mathcal{W}$ è un'applicazione lineare se e solo se esiste una matrice $M \in \mathbb{M}^{k \times l}$ tale che $f(\vec{x}) = M\vec{x}$, dove $k = |\mathcal{V}|$ e $l = |\mathcal{W}|$ sono le dimensioni degli spazi vettoriali su cui agisce.

Definizione 2.3. $b: \mathcal{B}^n \to \mathcal{B}$ è una funzione booleana lineare (FBL) se e solo se esiste $M \in \mathbb{B}^{n \times 1}$ tale che $b(\vec{x}) = M\vec{x} = c_1x_1 + c_2x_2 + \ldots + c_nx_n = (c_1 \wedge x_1) \oplus (c_2 \wedge x_2) \oplus \ldots \oplus (c_n \wedge x_n)$. Dove \oplus è l'operatore di somma per \mathcal{B}^n .

Corollario. Per ogni n > 0, f^n è una FBL.

Dimostrazione. Triviale, basta infatti porre
$$M = \overbrace{(1, 1, ..., 1)}^{n-volte}$$
.

2.2.1 La Classe delle Funzioni Booleane Lineari

Introdotte le FBB e le FLB, possiamo a questo punto procedere con la formulazione del seguente risultato generale:

Teorema 1. Sia $\mathbb{FL} = \{f | f \in FLB \land f \neq c : \mathcal{B}^n \mapsto \{0\}, \ \forall n > 0\}$ la classe di tutte le funzioni Booleane lineari diverse dalle funzioni costanti a 0. Allora, $\forall f \in \mathbb{FL} \ f \ \grave{e}$ bilanciata.

Dimostrazione. (per induzione su n)

Sia l^n una qualsiasi funzione da \mathcal{B}^n appartenente a \mathbb{FL} . Vogliamo dimostrare che l^n è sempre bilanciata.

Base induttiva: $l^1(x) = x$ è trivialmente bilanciata.

Ipotesi induttiva: Ipotizziamo l^n bilanciata.

Esisterà quindi la partizione $(\mathcal{M}, \mathcal{N})$ con $\mathcal{M} \subset \mathcal{B}^n$ e $\mathcal{N} \subset \mathcal{B}^n$ tale che: $|\mathcal{M}| = |\mathcal{N}|, \, \mathcal{M} \cup \mathcal{N} = \mathcal{B}^n$ e $\forall m, n \text{ con } m \in \mathcal{M}, n \in \mathcal{N} \text{ risulta } l^n(m) = 0$ e $l^n(n) = 1$.

Passo induttivo: Il passo chiave sta nel notare che l^{n+1} può assumere esclusivamente una delle seguenti forme:

• Singoletto $\Rightarrow l^{n+1}(\vec{x}) = l^{n+1}(x_1, x_2, ..., x_{n+1}) = x_{n+1}$ Che è bilanciata in quanto, sia $(\mathcal{M}, \mathcal{N})$ la partizione dove \mathcal{M} è composto da tutte le stringhe binarie $\in \mathcal{B}^{n+1}$ che codificano in base due i numeri da 0 a $2^n - 1$ e \mathcal{N} composto da tutte le stringhe binarie $\in \mathcal{B}^{n+1}$ che codificano in base due i numeri da 2^n a $2^{n+1}-1$ i.e. : $\mathcal{M} = \{\vec{x} \in \mathcal{B}^{n+1} | \vec{x} = 0 \cdot x_n \cdot x_{n-1} \cdot \dots \cdot x_1\}$ $\mathcal{N} = \{\vec{x} \in \mathcal{B}^{n+1} | \vec{x} = 1 \cdot x_n \cdot x_{n-1} \cdot \dots \cdot x_1\}$ Allora $\mathcal{M} \subset \mathcal{B}^{n+1}$ e $\mathcal{N} \subset \mathcal{B}^{n+1}$, $|\mathcal{M}| = |\mathcal{N}|$, $\mathcal{M} \cup \mathcal{N} = \mathcal{B}^{n+1}$ e e $\forall m, n$. $m \in \mathcal{M}, n \in \mathcal{N}$ risulta $l^{n+1}(m) = 0$ e $l^{n+1}(n) = 1$.

- Uguale a $l^n \Rightarrow$ Bilanciata per ipotesi.
- Xor di $l^n \Rightarrow l^{n+1}(\vec{x}) = l^{n+1}(x_1, x_2, ..., x_{n+1}) = x_{n+1} \oplus l^n$.

$$x_{n+1} = 0 \Rightarrow l^{n+1} = 0 \oplus l^n = l^n$$

$$x_{n+1} = 1 \Rightarrow l^{n+1} = 1 \oplus l^n = \neg l^n$$

Individuiamo, concludendo la dimostrazione, la partizione cercata $(\mathcal{M}', \mathcal{N}')$ con:

$$\mathcal{M}' = M \cdot 0 \cup N \cdot 1$$
 e $\mathcal{N}' = M \cdot 1 \cup N \cdot 0$.

Questo significa che, qualsiasi siano i coefficienti della nostra FBL, a patto che questi non siano tutti 0, produrrano una funzione bilanciata.

Giunti a questo punto è lecito domandarsi se esistano altre (semanticamente diverse) FBB non lineari e se sì, quante ne si possono ancora trovare? Il numero di FBL per n fissato, equivale al numero di disposizioni con ripetizione di classe n (coefficienti) da un insieme di due elementi $\{0,1\}$ meno la disposizione $M^* = (0,0,...,0)$ che identifica la costante 0, cioè $\mathbb{D}_{2,n} - 1 = 2^n - 1$. Tale numero è chiaramente inferiore al numero di FBB: $\mathbb{C}_{2^n,2^{n-1}}$ ricavato dal Corollario 2.2. E quindi sì, esisteranno sicuramente, per ogni

2.2.2 Funzioni Booleane non Lineari Bilanciate

 $n, \mathbb{C}_{2^n,2^{n-1}} - (\mathbb{D}_{2,n} - 1)$ FBB non lineari.

L'approfondimento delle proprietà e della teoria riguardante il vasto campo di studi delle funzioni Booleane, per quanto interessante, esula dai fini della tesi in oggetto. Rimanendo in tema, tuttavia, è bene accennare che la ricerca, specie per quanto riguarda l'indagine sulle funzioni booleane bilanciate è molto attiva e di fondamentale importanza

in applicazioni come la crittografia a chiave simmetrica. $\fbox{[4]}.$

Per rendere più realistica e articolata l'implementazione degli script presentati nel Capitolo 5, si è optato per la ricerca in letteratura di funzioni booleane bilanciate non lineari da utilizzare nell'algoritmo di Deutsch-Jozsa. In particolare, è stata scelta una funzione a 5 variabili, ricavata con il metodo generale esposto da Logachev[5]:

$$h(x_1, x_2, x_3, x_4, x_5) = (x_1 \land x_2) \oplus x_3 \oplus (x_2 \land x_3 \land x_4) \oplus (x_2 \land x_3 \land x_5) \oplus (x_3 \land x_4) \oplus (x_4 \land x_5)$$

а	ь	С	d	е	$c \lor (a \land b) \lor (c \land d) \lor (d \land e) \lor (b \land c \land d) \lor (b \land c \land e)$
Т	Т	Т	Т	Т	F
Т	Т	Т	Т	F	F
Т	Т	Т	F	Т	Т
Т	Т	Т	F	F	F
Т	Т	F	Т	Т	F
Т	Т	F	Т	F	Т
Т	Т	F	F	Т	Т
Т	Т	F	F	F	T
Т	F	Т	Т	Т	T
Т	F	Т	Т	F	F
Т	F	Т	F	Т	Т
Т	F	Т	F	F	Т
Т	F	F	Т	Т	Т
Т	F	F	Т	F	F
Т	F	F	F	Т	F
Т	F	F	F	F	F
F	Т	Т	Т	Т	Т
F	Т	Т	Т	F	T
F	Т	Т	F	Т	F
F	Т	Т	F	F	T
F	Т	F	Т	Т	T
F	Т	F	Т	F	F
F	Т	F	F	Т	F
F	Т	F	F	F	F
F	F	Т	Т	Т	T
F	F	Т	Т	F	F
F	F	Т	F	Т	T
F	F	Т	F	F	T
F	F	F	Т	Т	T
F	F	F	Т	F	F
F	F	F	F	Т	F
F	F	F	F	F	F
Comp	uted	by Wo	lfram	Alph	a

Tabella di verità per h

Capitolo 3

L'Informazione Quantistica

Questa tesi si sviluppa nel contesto dell'Informazione Quantistica.

L'Informazione Quantistica è una nuova branca di studi della teoria dell'informazione che trova la sua collazione nell'intersezione tra Fisica, Matematica e Informatica.

La nascita di questo nuovo campo di studi è dovuta in gran parte alle intuizioni del celeberrimo fisico Richard Feynmann, il quale fu il primo a suggerire, in una sua lezione nel 1981 [6], che il tipo di computer ideale che fosse stato capace di simulare i fenomeni naturali in maniera efficiente sarebbe stato un computer che avesse risposto alle stesse leggi della meccanica quantistica. L'argomento da lui proposto faceva perno sulla natura esponenziale che il mondo subatomico presenta se osservato dal punto di vista macroscopico e che quindi, avrebbe portato, per un processo transitivo, qualsiasi computer classico a sperimentare un tempo altrettanto esponenziale per simularlo.

Spinti da questa osservazione, numerosi ricercatori si cimentarono nello studio e nella formalizzazione di questo nuovo paradigma di calcolo, gettandone le basi teoriche: nel 1982, Paul Benioff, nell'articolo "Quantum mechanical models of Turing machines that dissipate no energy" [7], dimostrò come un sistema basato sulla meccanica quantistica avrebbe potuto modellare una macchina di Turing (MdT) senza dissipare energia (il concetto della conservazione dell'energia verrà ripreso e chiarito in seguito). In altre parole, questi dimostrò come la meccanica quantistica fosse sufficiente ad esprimere il più famoso dei modelli tradizionali di calcolo, ma poteva fare addirittura di meglio?

All'incirca nello stesso momento il fisico David Deutsch rispose a tale quesito introdu-

cendo prima la controparte quantica della MdT universale (QMdTU) e poi dimostrando che la QMdTU riusciva a compiere operazioni al di fuori della portata della MdTU, come generare in maniera genuina numeri random, performare calcoli paralleli su di un unico registro e simulare perfettamente in tempo polinomiale sistemi fisici a stati di dimensione finita, confermando così la visionaria congettura che Feynmann aveva sollevato solo pochi anni prima.

3.1 Principi della Meccanica Quantistica

Nel mondo microscopico, quando si scende sotto la soglia atomica, cominciano ad emergere fenomeni che sono difficilmente interpretabili utilizzando il solo senso comune. Le nozioni più elementari come la determinazione unica delle proprietà fisiche di un oggetto (velocità, posizione, ecc.) a cui siamo abituati fin da piccoli non sono più le stesse e, postulati come il principio di località o il determinismo, cessano di essere veri. Ciò portò inizialmente eminenti fisici del tempo a guardare con scetticismo o addirittura a rifiutare la meccanica quantistica per via delle stranezze a cui essa portava, numerosi esperimenti condotti successivamente hanno tuttavia confermato con successo le previsioni di questa e ad oggi, nella comunità scientifica vi è unanime consenso sulla veriditicità fenomenica della meccanica quantistica.

Al fine di capire il calcolo quantistico è necessario per prima cosa acquisire familiarità con le nuove leggi fondamentali che governano il mondo infinitamente piccolo. Vengono quì esposte sinteticamente le caratteristiche peculiari della meccanica quantistica e, di seguito in maniera più formale, il modo in cui influenzano l'Informatica.

3.1.1 Dai Numeri Reali ai Numeri Complessi

La meccanica quantistica differisce dalla maggior parte delle branche della scienza per via del largo uso che fa dei numeri complessi. I numeri complessi vennero per la prima volta introdotti come una curiosità matematica: $i = \sqrt{-1}$, chiamata unità immaginaria, era la soluzione "immaginaria" postulata all'equazione $x^2 = -1$. Per tanto tempo il campo dei numeri complessi è rimasto confinato unicamente nel reame della matematica fino a quando, con lo studio sistematico delle funzioni d'onda e l'introduzione delle analisi

di Fourier, ci si accorse che i numeri complessi erano la struttura ottimale per descrivere in maniera compatta un'onda. Inizialmente la meccanica quantistica fece largo uso delle funzioni d'onda.

Definizione 3.1. Un numero complesso c è un'espressione

$$c = a + b \times i = a + bi$$

dove a e b sono due numeri reali, a è chiamata la parte reale di c, mentre b è la parte immaginaria.

3.1.2 Da Stati Singoli alla Sovrapposizione degli Stati

Contrariamente all'intuizione, un oggetto microscopico può trovarsi contemporaneamente in più posizioni differenti.

Questo comportamento, detto di sovrapposizione, è tradizionalmente esemplificato riportando l'esperimento delle due fenditure (da mettere una ref) attraverso le quali viene fatta passare, una alla volta, una qualsiasi particella che andrà a sbattere contro un rilevatore posto dietro le fenditure. Contrariamente a quanto verrebbe da pensare, il rilevatore non rileva solo due aree colpite dalle particelle (e.g. come accadrebbe per dei palloni calciati in una porta coperta a meno di due sottoporte) bensì vengono sperimentalmente rilevate più aree di collisione, ognuna colpita con un'intensità precisa le quali si distribuiscono seguendo un pattern ad interferenza come se ogni particella avesse agito anche come un'onda che, passando contemporaneamente per le due fessure abbia poi interferito con se stessa. La dualità onda particella della materia (**mettere rif a DeBroglie**) fu un risultato (**anno**) d'importanza cardinale per l'avvento della meccanica quantistica. Non solo la spazialità, ma anche altre proprietà come l'energia, il momento, lo spin di una particella sono soggette a sovrapposizione. Sperimentalmente, in realtà, non è possibile osservare direttamente il processo di sovrapposizione degli stati poichè, ogni qual volta viene effettuata una misurazione su di un sistema quantistico, questo collasserà in uno ed uno solo degli stati sovrapposti, seguendo, come verrà chiarito più avanti, una ben definità distribuzione di probabiltà.

La sovrapposizione è il principale effetto che viene sfruttato per ottenere vantaggi computazionali.

visualizzazione dell'esperimento delle due fenditure

3.1.3 Dalla Località alla non Località

Centrale nella scienza moderna è la nozione secondo cui due oggetti, in un sistema, si influenzano tra di loro secondo un rapporto di causa-effetto solo se essi sono connessi da un'interazione fondamentale. La velocità di propagazione di una qualsiasi interazione è soggetta al limite imposto dalla velocità della luce nel vuoto, per cui non esisteranno due oggetti che posti all'interno dello stesso sistema entrino in relazione immediatamente. Questa assunzione, che prende il nome di principio di località, non è sempre valida nella fisica quantistica. È possibile infatti mettere due particelle in una relazione chiamata entanglement (le due particelle si diranno entangled) tale per cui non sia più possibile descriverne il comportamento in maniera separata facendo si che, qualsiasi operazione compiuta su di una avrà un effetto immediato su l'altra, anche se queste si trovano ad anni luce di distanza.

3.1.4 Dalle leggi Deterministiche a quelle Non Deterministiche

Verso quale specifico stato collasserà una sovrapposizione di stati quando misurata? Mentre in altre aree della fisica le leggi sono deterministiche i.e. vi è un unico ouput se ripetiamo lo stesso esperimento più volte sotto le stesse condizioni, le leggi della meccanica quantistica ci dicono, tuttavia, che possiamo solamente conoscere la probabilità con cui un output, e non un altro, si verificherà.

Queste azioni, parafrasando Einstein stesso "spettrali" (**inserire nota a fondo pagina spooky action**) che emergono nel reame della meccanica quantistica, per quanto radicali ed avulse dalla nostra esperienza quotidiana, sono poi le stesse, riflettendo la natura esponenziale del mondo sub atomico, che conferiscono all'informazione quantistica il suo vero potenziale.

3.2 I Sistemi a Confronto

Per vedere come la meccanica quantistica influenza l'Informatica cominciamo presentando un modello per il calcolo che metta in luce le differenze quando applicato a più paradigmi differenti. In particolare vengono qui in ordine introdotti i concetti fondamentali del calcolo classico, del calcolo probabilistico e infine del calcolo quantistico.

3.2.1 Il Reame Classico

Il Bit

L'unità fondamentale su cui si fonda il calcolo classico è il bit. Consideriamo bit un qualsiasi sistema che espone un'unica proprietà osservabile che può assumere solo due valori. Chiamiamo questi 2 valori $|0\rangle$, $|1\rangle$. (**inserire una nota a fondo pagina che spieghi che questa è la notazione di Dirac**) Per essere coerentemente osservabili, $|0\rangle$ e $|1\rangle$ devono avere una precisa implementazione, ad esempio, se il bit è indicato da un transistor: $|0\rangle$ può essere identificato dalla presenza di un flusso di elettricità di un certo valore attraverso il transistor mentre $|1\rangle$ è identificato dall'assenza di corrente. Altre implementazioni che sfruttino la stessa logica sono ovviamente valide. Come già anticipato nel primo capitolo, $|0\rangle$ e $|1\rangle$ sono sufficienti per modellare una qualsiasi funzione booleana

e come vedremo nel capitolo dedicato alle porte logiche, un bit è l'unità fondamentale che governa ogni possibile operazione di un circuito elettronico classico, quindi di ogni computer moderno.

Stati e Osservazioni

Una visione usuale dei sistemi di computazione, e dei sistemi in generale, è quella in cui viene specificato uno spazio dei possibili stati del sistema e lo stato attuale del sistema è un elemento di questo spazio. Per ogni proprietà del sistema (le proprietà sono in questo contesto chiamate osservabili) specifichiamo inoltre quale valore debba avere tale proprietà se osservata (misurata), per ogni possibile stato appartenente allo spazio degli stati.

Dal momento che ogni bit - il sistema in questione - ha valore $|0\rangle$ oppure $|1\rangle$ e questi due valori sono sufficienti a descrivere il comportamento del sistema, definiamo \mathcal{B}_c lo spazio degli stati:

$$\mathcal{B}_c = \{ |0\rangle, |1\rangle \}$$

per il bit classico.

Si noti come in questo specifico sistema lo spazio degli stati corrisponda esattamente con lo spazio dei possibili valori della proprietà osservabile infatti, se il bit si trova nello stato $|0\rangle$ allora la misura produrrà il valore $|0\rangle$, mentre se il bit si trova nello stato $|1\rangle$, la misura produrrà valore $|1\rangle$. Quest'affermazione può sembrare banale ma vedremo presto come invece esistano sistemi dove l'equivalenza non sussiste e avremo bisogno di regole più complicate per determinare i valori che risultano da una misura.

Trasformazioni

Lo stato di un sistema non è statico. Ci sono solitamente molte possibili azioni che cambieranno il risultato delle osservazioni future. Ad esempio, se un bit viene misurato e ha il valore $|0\rangle$ e viene poi passato attraverso un invertitore (nella metafora del transistor ciò avviene bloccando il flusso di corrente), il bit avrà il valore $|1\rangle$ se osservato ancora. In maniera astratta, specifichiamo una tale operazione o trasformazione fornen-

do una funzione che agisce dallo spazio degli stati sullo spazio degli stati. Nell'esempio dell'invertitore tale funzione sarà uguale alla seguente applicazione lineare N:

$$N |0\rangle = |1\rangle, N |1\rangle = |0\rangle$$

Oppure, un'altra possibile trasformazione può essere quella che pone lo stato iniziale del sisitema a $|0\rangle$:

$$G|0\rangle = |0\rangle, G|1\rangle = |0\rangle$$

Ricapitolando, un generico bit ha un'unica proprietà fisica, quindi un unico osservabile. Una misura nel sistema risulta in $|0\rangle$ oppure in $|1\rangle$, le misure non producono mai risultati intermedi. Una trasformazione può comportare un passaggio di stato nel sistema e, se il sistema viene misurato più volte, senza che una trasformazione sia occorsa tra una misura ed un'altra, allora le varie misurazioni produrranno sempre lo stesso risultato.

3.2.2 Il Reame Probabilistico

Bit probabilistico

Si consideri ora un bit probabilistico. Un sistema che implementa un bit probabilistico può essere metaforicamente immaginato come il risultato di un lancio di una moneta potenzialmente truccata. Ancora, questo sistema ha un unico osservabile, e cioè il risultato del lancio: $|0\rangle$, $|1\rangle$.

Il valore dell'osservazione dipende dallo sbilanciamento dello stato e cioè dal grado di manomissione della moneta. Più una moneta è truccata e più la probabilità di ottenere un risultato piuttosto che l'altro differisce dal 50%. Possiamo quindi esprimere uno stato del sistema come una funzione lineare sui valori dell'osservabile dove i coefficienti rappresentano la probabilità di osservare il valore.

Stati e Osservazioni

Lo spazio degli stati corrisponderà a:

$$\mathcal{B}_p = \{a_0 | 0\rangle + a_1 | 1\rangle : a_0, a_1 \in \mathbb{R} \land a_0^2 + a_1^2 = 1\}$$

dove, per ogni stato, misureremo $|0\rangle$ con probabilità a_0^2 e $|1\rangle$ con probabilità $1-a_0^2=a_1^2$. La ragione per cui la probabilità equivale al quadrato del coefficiente verrà chiarita in seguito.

Si supponga una misurazione che porta a $|0\rangle$, lo stato del sistema è quindi passato da uno opaco $a_0 |0\rangle + a_1 |1\rangle$ a un certo $1 |0\rangle + 0 |1\rangle$, quindi, una misurazione altro non è che una trasformazione. Supponiamo inoltre, come nel caso classico che misurazioni ulteriori non alterino lo stato già misurato del sistema, non è quindi possibile in alcun modo osservare direttamente la probabilità. Una misurazione comporta il collasso del sistema in uno stato certo e, a meno di particolari trasformazioni, ogni successiva misurazione produrrà lo stesso risultato. Il bit probabilistico si trova in uno stato di incertezza solo nel momento antecedente al lancio.

Trasformazioni

Sia T una trasformazione, se T agisce in un determinato modo su $|0\rangle$ e agisce in un determinato modo su $|1\rangle$, allora, essendo un'applicazione lineare sullo spazio degli stati, per un arbitrario bit probabilistico segue che:

$$T(a_0 |0\rangle + a_1 |1\rangle) = T(a_0 |0\rangle) + T(a_1 |1\rangle)$$

= $a_0(T |0\rangle) + a_1(T |1\rangle)$

In questo modo è possibile con le giuste accortezze intuire i risultati di una trasformazione. Andando più nel dettaglio, la descrizione del comportamento del sistema è riscrivibile formalmente utilizzando l'Algebra Lineare:

 \mathcal{B}_p è un sottoinsieme dello spazio vettoriale \mathbb{R}^2 e sia $\{|0\rangle, |1\rangle\}$ la base di tale insieme. Imponiamo che \mathcal{B}_p possieda il prodotto scalare:

$$(a_0 |0\rangle + a_1 |1\rangle)(b_0 |0\rangle + b_1 |1\rangle) = (a_0b_0) + (a_1b_1)$$

che implica la norma Euclidea:

$$||a_0|0\rangle + a_1|1\rangle|| = \sqrt{a_0^2 + a_1^2}$$

Allora, per definizione \mathcal{B}_p è l'insieme di tutti i vettori con norma 1 appartenenti a \mathbb{R}^2 . Si denoti con P_i la proiezione di \mathcal{B}_p sull'i-esimo sottospazio:

$$\mathcal{P}_0(a_0|0\rangle + a_1|1\rangle) = a_0|0\rangle$$

$$\mathcal{P}_1(a_0|0\rangle + a_1|1\rangle) = a_1|1\rangle$$

Infine usiamo la notazione $prob[|\phi\rangle \mapsto |i\rangle]$ per indicare la probabilità di ottenere $|i\rangle$ dalla misurazione di $|\phi\rangle$, che sarà:

$$prob[|\phi\rangle \mapsto |i\rangle] = \|\mathcal{P}_i(|\phi\rangle)\|^2$$

. Dopo aver misurato $|i\rangle$, per esprimere la consistenza nelle future misurazioni dobbiamo assicurarci che lo stato risultante sia certo su $|i\rangle$, ciò è ottenuto normalizzando $\mathcal{P}_i(|\phi\rangle)$:

$$\frac{\mathcal{P}_i(|\phi\rangle)}{\|\mathcal{P}_i(|\phi\rangle)\|} = \frac{a|i\rangle}{\sqrt{a^2}} = 1|i\rangle$$

. In generale, possiamo caratterizzare le trasformazioni per uno stato probabilistico come tutte quelle applicazioni lineari che preservano la norma.

Si noti come non è possibile disinguere tra gli stati $|\phi\rangle$ e $-|\phi\rangle$, in quanto la misurazione di questi produrrà la stessa distribuzione di probabilità e, l'applicazione di una qualsiasi trasformazione T, porta agli stati $T|\phi\rangle$ e $-T|\phi\rangle$ che sono a loro volta indistinguibili. La scelta di considerare tuttavia come distinti i due stati riflette alcune importanti proprietà, in particolare, nel caso quantistico queste saranno essenziali per esprimere gli effetti di interferenza dovuti alla natura ondulatoria del sistema.

3.2.3 Il Reame Quantico

Il Qubit

Ora che tutti i requisiti fondamentali sono stati presentati, è possibile introdurre il calcolo quantistico.

Il sistema fondamentale in questo caso prende il nome di qubit. Analogalmente ai 2 casi precedenti, è utile astrarre dall'implementazione fisica e supporre che il sistema presenti un solo osservabile i cui possibili valori saranno i soliti $|0\rangle$ e $|1\rangle$.(**inserire la nota che in realtà come già fatto notare, le proprietà di una particella sono tante!**)

Stati e Osservazioni

Lo spazio degli stati, in maniera simile a quanto visto nel caso probabilistico, è un sottoinsieme dello spazio vettoriale \mathbb{C}^2 tale che:

$$\mathcal{B}_q = \{c_0 | 0\rangle + c_1 | 1\rangle : c_0, c_1 \in \mathbb{C} \wedge |c_0|^2 + |c_1|^2 = 1\}$$

dove | | è il modulo del numero complesso calcolato come $|c| = |a+ib| = \sqrt{a^2 + b^2}$. Imponiamo anche in questo caso il prodotto interno su \mathcal{B}_q :

$$\langle \mathcal{C}, \mathcal{C}' \rangle = \langle c_0 | 0 \rangle + c_1 | 1 \rangle, c'_0 | 0 \rangle + c'_1 | 1 \rangle \rangle = (\overline{c_0} c'_0) + (\overline{c_1} c'_1)$$

Dove \bar{c} indica la coniugazione di c. Vale quindi la seguente norma Euclidea:

$$\|\mathcal{C}\| = \sqrt{|c_0|^2 + |c_1|^2}$$

. \mathcal{B}_q è il sotto
insieme di \mathbb{C}^2 composto da tutti i vettori di norma 1.

Senza riportare le equazioni, come nel caso probabilistico specifichiamo una misura in termini di proiezioni sui sottospazi formati da $|0\rangle$ e $|1\rangle$ e la probabilità dell'osservazione è determinata da $|c_0|^2$ per $|0\rangle$ e $|c_1|^2$ per $|1\rangle$.

Definizione 3.2. Ogni stato espresso come combinazione lienare della base computazionale $\{|0\rangle, |1\rangle\}$ che non presenti elementi nulli è detto essere uno stato di sovrapposizione.

Trasformazioni

Prima d'intendere una trasformazione di uno stato quantico è necessario introdurre una particolare classe di matrici, le matrici unitarie:

Definizione 3.3. Una matrice $U \in \mathbb{M}^{n \times n}$ è unitaria se e solo se:

$$UU^\dagger = U^\dagger U = I$$

dove
$$U^{\dagger}[i,j] = \overline{U[j,i]}$$
.

Qualsiasi trasformazione lineare può essere espressa tramite matrici quadrate rispetto ad una determinata base; troveremo spesso conveniente usare questa rappresentazione. Per esempio, consideriamo la matrice:

$$N = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

la quale altro non è che la matrice che realizza l'invertitore anticipato nel caso classico, infatti, sia $|\phi\rangle = [c_0, c_1]^T$ la rappresentazione vettoriale di uno stato generico $|\phi\rangle$, allora l'applicazione di N su questo risulterà in:

$$N |\phi\rangle = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_0 \end{bmatrix}$$

andando così ad invertire le probabilità $prob[|\phi\rangle \mapsto |i\rangle] = 1 - prob[N|\phi\rangle \mapsto |i\rangle]$ e viceversa, che si traduce, per gli stati certi, in un ribaltamento totale dello stato. La matrice N viene perquesto convenzionalmente chiamata trasformazione NOT.

Ritornando al discorso principale, è facile vedere come la matrice N sia anche unitaria:

$$NN^{\dagger} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = I$$

Per convincersi che le unitarie siano le matrici giuste per descrivere la dinamica di uno stato quantistico è sufficiente metterne in risalto alcune proprietà:

Lemma 2. Sia U una matrice unitaria tale che $U \in \mathbb{M}^{n \times n}$, allora vale l'equazione:

$$\langle UV, UV' \rangle = \langle V, V' \rangle$$

$$\forall V, V' \in \mathbb{C}^n$$
.

Le matrici unitarie rispettano il prodotto interno di uno spazio vettoriale complesso.

Dimostrazione.

$$\langle UV,UV^{'}\rangle=(UV)^{\dagger}(UV^{'})=V^{\dagger}U^{\dagger}UV^{'}=V^{\dagger}IV^{'}=\langle V,V^{'}\rangle$$

Corollario. Le matrici unitarie preservano la norma:

$$||UV|| = \sqrt{\langle UV, UV \rangle} = \sqrt{\langle V, V \rangle} = ||V||$$

In particolare se ||V|| = 1, allora ||UV|| = 1. Questo dimostra come le matrici unitarie siano adatte a descrivere i cambi di stato in \mathcal{B}_q .

3.3 Reversibilità

In realtà, le trasformazioni unitarie hanno un'altra importante caratteristica che permette di distinguere ulteriormente la dinamica di un sistema quantistico dalla dinamica di un sistema classico, supponiamo infatti di voler applicare l'applicazione lineare UNO ad un generico bit $|\phi\rangle(|\phi\rangle = |0\rangle$ oppure $|\phi\rangle = |1\rangle)$

$$UNO = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \Rightarrow UNO |\phi\rangle = |1\rangle$$

se, dopo l'applicazione si chiedesse ad un nuovo osservatore che osserva il sistema per la prima volta di ricostruire lo stato di partenza $|\phi\rangle$ è facile intuire che questi non possa fornire una risposta certa in quanto sia per $|\phi\rangle = |0\rangle$ sia per $|\phi\rangle = |1\rangle$ il risultato di $UNO|\phi\rangle$ è sempre $|1\rangle$. Sarebbe infatti come, riprendendo la metafora del transistor, una volta osservato un transistor in cui non passa la corrente chiedersi se questo abbia mai ricevuto corrente. Siamo in presenza di trasformazioni che causano una perdita

d'informazione, questo fenomeno nel mondo fisico si traduce in rilascio di calore ed è uno dei problemi di cui tener conto durante l'ingegnerizzazione di un computer moderno.(** volendo introdurre una nota per la costante di Neumann**)

Eppure esistono anche casi in cui l'informazione viene conservata, per esempio, con la trasformazione NOT prima introdotta, è possibile risalire facilmente al valore dello stato in input essendo: $NOT |0\rangle = |1\rangle$ e $NOT |1\rangle = |0\rangle$. Ciò è dovuto formalmente dall'esistenza dell'operazione inversa NOT^{-1} la quale, come visto prima, altro non è che NOT^{\dagger} ; infatti vale l'implicazione:

$$NOT |\phi\rangle = |\psi\rangle \Rightarrow NOT^{-1}NOT |\phi\rangle = NOT^{\dagger}NOT |\phi\rangle = NOT^{\dagger} |\psi\rangle$$

dove $|\phi\rangle$ è un generico stato in input e $|\psi\rangle$ l'output della trasformazione. NOT^{\dagger} permette in un certo senso di riavvolgere il calcolo, si dice in questo caso che la trasformazione è reversibile.

Alla luce di quanto è stato argomentato, ne consegue direttamente che: tutte le applicazioni unitarie sono reversibili (basta infatti sostituire NOT con una generica U) e quindi, in definitiva, una qualsiasi computazione quantistica è reversibile.

3.4 Un Esempio Quantistico

Un'altra trasformazione di fondamentale importanza è la matrice di Hadamard:

$$H = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

anche chiamata "fair coin split" per via del suo comportamento in grado di porre uno stato certo in uno stato di perfetta sovrapposizione $H |0\rangle = 1/\sqrt{2} |0\rangle + 1/\sqrt{2} |1\rangle$, $H |0\rangle = 1/\sqrt{2} |0\rangle - 1/\sqrt{2} |1\rangle$ che presenta una distribuzione di probabilità uniforme sui valori dell'osservabile. La matrice di Hadamard è l'inversa di se stessa:

$$H^{2} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= I$$

Consideriamo i due stati: $|X\rangle = H|0\rangle$ e $|Y\rangle = H|1\rangle$, nonostante, come visto, non si ha perdita d'informazione durante i cambi di stato in \mathcal{B}_q , una volta applicata H, X e Y diventano due stati indistinguibili in termini di misurazioni, infatti $prob[|X\rangle \mapsto |0\rangle] = prob[|Y\rangle \mapsto |0\rangle] = \frac{1}{2}$ e lo stesso per il collasso su $|1\rangle$. I due sistemi, che prima risultavano chiaramente diversi sono ora uguali davanti agli occhi di un osservatore. Eppure, sorprendentemente, riapplicare H porta a:

$$\begin{split} H \left| X \right> &= H(\frac{1}{\sqrt{2}} \left| 0 \right> + \frac{1}{\sqrt{2}} \left| 1 \right>) \\ &= \frac{1}{\sqrt{2}} (\frac{1}{\sqrt{2}} \left| 0 \right> + \frac{1}{\sqrt{2}} \left| 1 \right>) + \frac{1}{\sqrt{2}} (\frac{1}{\sqrt{2}} \left| 0 \right> - \frac{1}{\sqrt{2}} \left| 1 \right>) \\ &= 1 \left| 0 \right> + 0 \left| 1 \right> = \left| 0 \right> \end{split}$$

е

$$\begin{split} H\left|Y\right\rangle = &H(\frac{1}{\sqrt{2}}\left|0\right\rangle - \frac{1}{\sqrt{2}}\left|1\right\rangle) \\ = &\frac{1}{\sqrt{2}}(\frac{1}{\sqrt{2}}\left|0\right\rangle - \frac{1}{\sqrt{2}}\left|1\right\rangle) + \frac{1}{\sqrt{2}}(\frac{1}{\sqrt{2}}\left|0\right\rangle + \frac{1}{\sqrt{2}}\left|1\right\rangle) \\ = &0\left|0\right\rangle + 1\left|1\right\rangle = \left|1\right\rangle \end{split}$$

che è la configurazione iniziale!

Durante l'evoluzione del sistema l'informazione non è quindi sempre accessibile in ugual modo bensì spesso questa viene mantenuta "nascosta" nell'ampiezza relativa di un componente dello stato: l'unica differenza tra X e Y, che non era misurabile direttamente,

stava nel segno dell'ampiezza di $|1\rangle$. In altre parole, l'atto di misurazione comporta la perdita di un bit d'informazione (o $|0\rangle$ o $|1\rangle$) mentre, d'altra parte, riapplicare H e poi misurare consente di ricavare l'intero qubit. Si noti come non sia possibile ricreare lo stesso scenario con un sistema classico, i valori dell'osservabile sono infatti sempre ben definiti e accessibili.

Per quanto possa sembrare limitativo, l'effetto esposto è invece centrale nella progettazione di molti algoritmi quantistici, infatti, l'applicazione di H consente di operare un cambiamento di base $\frac{\text{ref 8}}{[8]}$ sul sistema passando dalla base computazionale* alla base $\{\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$, $\frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle$ (detta base di Fourier) di perfetta sovrapposizione in cui è possibile sfruttare l'informazione portata dalle ampiezze relative per operare calcoli utili utilizzando in questo modo il parallelismo offerto dalla sovrapposizione. I calcoli effettuati, si ricordi, non misurabili direttamente, vengono poi "estrapolati" riapplicando H e riportando il sistema nella base computazionale di partenza, seguendo un procedimento analogo a quello appena esposto. Questo potenziale computazionale emerge in maniera esponenziale al crescere della dimensione del sistema utilizzato.

3.5 Un Sistema a più Qubit

Si consideri ora un registro composto da n sistemi classici \mathcal{B}_c .

Ogni stato del registro così formato sarà rappresentabile dal vettore di qubit $|\mathbf{x}\rangle = |x_1\rangle |x_2\rangle \cdots |x_n\rangle$ che per brevità verrà spesso scritto come $|x_1x_2\cdots x_n\rangle$. Dal momento che ogni $|x_i\rangle$ può assumere i valori o $|0\rangle$ o $|1\rangle$, in totale, lo spazio degli stati del registro è composto da $\mathbb{D}_{2,n} = 2^n$ stati e viene indicato come:

$$\mathcal{B}_{c}^{(n)} = \left\{ \begin{array}{l} |0\rangle |0\rangle \cdots |0\rangle \\ |0\rangle |0\rangle \cdots |1\rangle \\ \dots \\ |1\rangle |1\rangle \cdots |0\rangle \\ |1\rangle |1\rangle \cdots |1\rangle \end{array} \right\} = \left\{ |\mathbf{x}\rangle = |x_{1}x_{2} \cdots x_{n}\rangle : |x_{i}\rangle \in \{0, 1\} \right\}$$

. Così come \mathcal{B}_q si sviluppa sopra la base computazionale $\{|0\rangle, |1\rangle\}$, così allo stesso modo è possibile generalizzare un sistema quantistico sopra $\mathcal{B}_c^{(n)}$:

$$\mathcal{B}_{q}^{(n)} = \left\{ \sum_{x \in \{0,1\}^n} a_x |x\rangle : a_x \in \mathbb{C} \land \sum_{x \in \{0,1\}^n} |a_x|^2 = 1 \right\}$$

il cui spazio degli stati è composto da tutti i possibili vettori complessi di dimensione 2^n che hanno norma 1. Per esempio, il seguente stato

$$|\psi\rangle = \begin{bmatrix} 00 & \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \frac{1}{2}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{2}|10\rangle + \frac{1}{2}|11\rangle$$

appartiene a $\mathcal{B}_q^{(2)}$. Il valori a fianco nella rappresentazione matriciale indicano la componente della base $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$ a cui è associato il coefficiente complesso, si noti che $|\psi\rangle$ è uno stato di perfetta sovrapposizione.

Il sistema è composto da n osservabili, uno per ogni qubit, le proiezioni $P_0^{(i)}$, $P_1^{(i)}$ sono formate da tutte le componenti dello stato nelle quali, rispettivamente, l'i-esimo qubit è $|0\rangle$ e l'i-esimo qubit è $|1\rangle$; la probabilità che l'i-esimo qubit venga misurato con valore $|x\rangle$ è calcolata di conseguenza: $prob[|\Psi\rangle \mapsto |x_1x_2 \cdot x \cdot x_n\rangle] = ||P_x^{(i)}||^2$, dove $|\Psi\rangle$ è uno stato generico. Il vettore risultante da una misurazione di un qubit è poi normalizzato analogamente a quanto già esposto per gli altri sistemi.

Supponiamo ad esempio che venga misurato il secondo qubit di $|\psi\rangle$ (per convenzione rispetto alla rappresentazione di Dirac numeriamo i qubits da sinistra a destra) e che il valore osservato sia $|1\rangle$, allora:

$$P_1^{(2)}(|\psi\rangle) = \frac{1}{2} |01\rangle + \frac{1}{2} |11\rangle$$

e lo stato $|\psi_1\rangle$ risultante dalla misurazione:

$$|\psi_1\rangle = \frac{P_1^{(2)}(|\psi\rangle)}{\|P_1^{(2)}(|\psi\rangle)\|} = \frac{\frac{1}{2}|01\rangle + \frac{1}{2}|11\rangle}{\sqrt{(\frac{1}{2})^2 + (\frac{1}{2})^2}}$$
$$= \frac{\frac{1}{2}|01\rangle + \frac{1}{2}|11\rangle}{\sqrt{\frac{1}{2}}} = \frac{1}{\sqrt{2}}|01\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

è lo stato in cui il secondo qubit ha valore $|1\rangle$ con certezza mentre il primo si trova in perfetta sovrapposizione, con il 50% di probailità di misurare o $|0\rangle$ o $|1\rangle$, in accordo con la definizione di $|\psi\rangle$. In generale, $prob[|\Psi\rangle \mapsto |\mathbf{x}\rangle] = |a_x|^2$.

Trasformazioni

Le trasformazioni che descrivono la dinamica di questo registro sono le unitarie $U \in \mathbb{M}^{2^n \times 2^n}$. In realtà, una qualsiasi trasformazione unitaria che agisca su di un singolo qubit del sistema risulta essere valida in quanto altera lo stato nel suo complesso, per convincersi di ciò, si supponga di applicare NOT sul primo qubit di $\mathcal{B}_c^{(2)}$:

$$NOT_1 |00\rangle \rightarrow |10\rangle$$

 $NOT_1 |01\rangle \rightarrow |11\rangle$
 $NOT_1 |10\rangle \rightarrow |00\rangle$
 $NOT_1 |11\rangle \rightarrow |01\rangle$

dove il pedice 1 è stato aggiunto per meglio esplicitare la semantica dell'operazione, come si può notare, questa trasformazione altro non fa che permutare gli elementi e, dal momento che $\mathcal{B}_c^{(2)}$ è la base su cui è costruito $\mathcal{B}_q^{(2)}$, l'azione di NOT_1 su di un generico stato:

$$NOT_1 |\Psi\rangle = NOT_1(\sum_{x \in \{0,1\}^n} a_x |x\rangle) = \sum_{x \in \{0,1\}^n} a_x NOT_1 |x\rangle$$

ne preserverà la norma. Più in generale, è possibile estendere una trasformazione $T: \mathcal{B}_q \mapsto \mathcal{B}_q$ che agisce su di un singolo qubit in una trasformazione $T^{(n)}: \mathcal{B}_q^{(n)} \mapsto \mathcal{B}_q^{(n)}$ che agisce su un intero registro quantistico.

Le trasformazioni su singoli qubits non sono le uniche trasformazioni ammissibili in un registro ma è possibile effettuare trasformazioni unitarie anche agendo su più qubits contemporaneamente, ad esempio, la porta (** aggiungere nota in cui si spiega perchè usiamo il termine porta per definire una trasformazione: parallelo con i circuiti elettrici, che verranno introdotti successivamente **) C_iNOT_j ("controlled-NOT") è la trasformazione che effettua un NOT su l'j-esimo qubit se e solo se l'i-esimo qubit è $|1\rangle$ altrimenti lascia inalterato lo stato. Applichiamo C_1NOT_2 su $\mathcal{B}_c^{(2)}$:

$$C_1NOT_2 |00\rangle \rightarrow |00\rangle$$

 $C_1NOT_2 |01\rangle \rightarrow |01\rangle$
 $C_1NOT_2 |10\rangle \rightarrow |11\rangle$
 $C_1NOT_2 |11\rangle \rightarrow |10\rangle$

ancora, C_iNOT_j è unitaria su $\mathcal{B}_q^{(n)}$ perchè effettua una permutazione degli elementi di base. Tale trasformazione verrà ripresa per l'implementazione dell'algoritmo di Deutsch-Jozsa nell'ultimo capitolo.

3.6 Entanglement

Utilizzando le trasformazioni a più qubits come CNOT è possibile rendere il sistema entangled, è cioè possibile creare uno stato che presenti una correlazione tra due o più qubits tale per cui la misura dell'osservabile di un singolo qubit non sia più descrivibile indipendentemente dalla misura degli altri con cui è correlato.

Si consideri l'evoluzione di un registro a due qubits partendo dallo stato iniziale:

$$|\psi_1\rangle = |00\rangle$$

applicando H_1 si ottiene:

$$|\psi_2\rangle = H_1 |\psi_1\rangle = \frac{|00\rangle + |10\rangle}{\sqrt{2}}$$

applicando ora C_1NOT_2 passiamo allo stato

$$|\psi_3\rangle = C_1 NOT_2 |\psi_2\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

che è entangled, infatti, se misuriamo il primo qubit ottenendo $|0\rangle$, allora sia avrà che $|\psi_3\rangle$ collasserà nello stato:

$$|\psi_4\rangle = \frac{P_0^{(1)}(|\psi_3\rangle)}{\|P_0^{(1)}(|\psi_3\rangle)\|} = \frac{\frac{1}{\sqrt{2}}|00\rangle + 0|01\rangle}{\sqrt{\frac{1}{2}}}$$
$$= 1|00\rangle + 0|01\rangle = |00\rangle$$

quindi, la misura del secondo qubit porterà a rilevare il valore $|0\rangle$ con certezza, inversamente, se la misura avesse riportato $|1\rangle$ come valore del primo qubit, avremo trovato $|1\rangle$ anche nel secondo sempre con certezza. Si noti che questo comportamento non dipende da come è stato scelto lo stato iniziale, le cui parti sono totalmente arbitrarie (avremmo potuto scegliere un qualsiasi $|\psi_1\rangle$), bensì dalla scelta delle trasformazioni che, ponendo il sistema in sovrapposizione, permettono di connettere intrinsecamente i due qubits utilizzando CNOT al punto che uno non può più essere misurato senza determinare in maniera certa anche l'altro.

In un certo senso e come se nel preciso istante in cui viene compiuta un'osservazione, il valore calcolato venisse trasmesso istantaneamente al secondo qubit entangled il quale si comporta coerentemente con il valore trasmesso/osservato. Questa relazione tuttavia non contempla ne mezzi di trasmissione di questa ipotetica informazione, ne distanze tra i due sistemi. Sarebbe quindi possibile, almeno in linea di principio, utilizzare l'entanglement per comunicare subitaneamente anche a distanze superiori all'anno luce e ciò, come già anticipato, è in contraddizione con le leggi della relatività generale e con il principio di località su cui è fondata praticamente tutta la fisica non quantistica [9]. La correttezza delle previsioni teoriche è stata dimostrata ripetutamente in laboratorio grazie ad una serie di esperimenti [nef10] e sono state inoltre proposte, già a partire dal secolo scorso, numerose interpretazioni della meccanica quantistica che giustificherebbero il perchè dell'entanglement [nef11].

3.7 Sfruttare il Parallelismo

3.8 Circuiti Booleani

Ad oggi, il modello a circuiti è l'astrazione per il processo di calcolo più utilizzata nel mondo dell'industria per la progettazione ed il design delle componenti hardware di un computer.

L'unità fondamentale in un circuito Booleano è la porta logica, la quale altro non è che un componente fisico che implementa un operatore della logica di Boole. Avremo quindi porte per gli operatori unari come $NOT(\neg)$, per i connettivi binari $AND(\land)$, $OR(\lor)$, $XOR(\oplus)$ ecc. . Ogni porta viene rappresentata graficamente utilizzando una notazione standard, per esempio:

AND Gate

$$x \longrightarrow \frac{1-x}{\text{AND Gate}}$$

sono i simboli che identificano, rispettivamente, la porta AND e la porta NOT. Si noti come la porta AND accetta due proposizioni in input mentre NOT solo una e come l'output rispecchi la funzione calcolata dalla porta, infatti:

(x_1, x_2)	$\land (x_1, x_2)$
(0,0)	0
(0,1)	0
(1,0)	0
(1,1)	1

x	$\neg(x)$
0	1
1	0

Tabella di verità per OR

Tabella di verità per AND

Mettendo in sequenza o in parallelo più porte logiche è possibile esprimere qualsiasi funzione Booleana e, più in generale, qualsiasi funzione calcolabile è rappresentabile mediante la composizione di una o più porte logiche. Il modello a circuiti è quindi un modello Turing completo. Capitolo 4

L'algoritmo di Deutsch-Jozsa

Capitolo 5

Implementazione tramite QScript dell'algoritmo di Deutsch-Jozsa

Bibliografia

- [1] Higham, N. (1998). Handbook of writing for the mathematical sciences. Philadelphia: SIAM, Soc. for Industrial and Applied Mathematics.
- [2] Encyclopediaofmath.org. (2017). Boolean function Encyclopedia of Mathematics. [online]
- [3] Crama, Y. and Hammer, P. (2011). Boolean Functions Theory, Algorithms and Applications. 1st ed. Cambridge University Press, p.4.
- [4] Dobbertin, Hans. (1994). Construction of bent functions and balanced Boolean functions with high nonlinearity. International Workshop on Fast Software Encryption. Springer, Berlin, Heidelberg, 1994.
- [5] Logachev, O. A. (2007). On Perfectly Balanced Boolean Functions. IACR Cryptology ePrint Archive 2007: 22.
- [6] Feynmann, R.P. (1982). Simulating physics with computers. International Journal of Theoretical Physics, 21(6/7):467-488 1982.
- [7] Benioff, P. (1982). Quantum mechanical models of Turing machines that dissipate no energy. Physical Reviews Letterers, 48(23):1581-1585, 1982.
- [8] Yanofsky, N. and Mannucci, M. (2013). Quantum computing for computer scientists. New York: Cambridge University Press, p.57.
- [9] Einstein A., Podolsky B., Rosen N. (1935). Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?. Phys. Rev. 47 (10): 777–780.

BIBLIOGRAFIA 35

[10] Hensen, B., Bernien, H., Dréau, A., Reiserer, A., Kalb, N., Blok, M., Ruitenberg, J., Vermeulen, R., Schouten, R., Abellán, C., Amaya, W., Pruneri, V., Mitchell, M., Markham, M., Twitchen, D., Elkouss, D., Wehner, S., Taminiau, T. and Hanson, R. (2015). Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 526(7575), pp.682-686.

[11] Schlosshauer, Maximilian; Kofler, Johannes; Zeilinger, Anton (2013). A Snapshot of Foundational Attitudes Toward Quantum Mechanics. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics. 44 (3): 222–230