NOMBRE: Vicente Espinosa

SECCIÓN: 2

Nº LISTA:

34

PUNTAJE:

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC1253 — Matemáticas Discretas — 1' 2020

Tarea 1 – Respuesta Pregunta 1

1. Por demostrar:

$$\longleftrightarrow \prod_{i=1}^{n} p_i \equiv \longrightarrow_{i=1}^{n} p_i \wedge \longrightarrow_{i=n}^{1} p_i$$

Es equivalente a lo siguiente por enunciado:

$$\begin{array}{l} (p_1\leftrightarrow p_2)\wedge(p_2\leftrightarrow p_3)\wedge\ldots\wedge(p_{n-1}\leftrightarrow p_n)\equiv\{(p_1\to p_2)\wedge(p_2\to p_3)\wedge\ldots\wedge(p_{n-1}\to p_n)\}\wedge\{(p_n\to p_{n-1})\wedge(p_{n-1}\to p_{n-2})\wedge\ldots\wedge(p_2\to p_1)\} \end{array}$$

El lado derecho, por asociatividad se puede reordenar de la siguiente forma:

$$\{(p_1 \to p_2) \land (p_2 \to p_1)\} \land \{(p_2 \to p_3) \land (p_3 \to p_2)\} \land \dots \land \{(p_{n-1} \to p_n) \land (p_n \to p_{n-1})\}$$

Ahora comparamos las tablas de verdad de $\{(p_{n-1} \to p_n) \land (p_n \to p_{n-1})\}$ y de $(p_{n-1} \leftrightarrow p_n)$

Tabla
$$(p_{n-1} \to p_n) \land (p_n \to p_{n-1})$$

p_{n-1}	p_n	evaluación
0	0	1
0	1	0
1	0	0
1	1	1

Tabla $(p_{n-1} \leftrightarrow p_n)$

p_{n-1}	p_n	evaluación
0	0	1
0	1	0
1	0	0
1	1	1

Con esto, queda demostrado que $(p_{n-1} \to p_n) \land (p_n \to p_{n-1}) \equiv (p_{n-1} \leftrightarrow p_n)$

Por lo tanto:

$$\{(p_1 \rightarrow p_2) \land (p_2 \rightarrow p_1)\} \land \{(p_2 \rightarrow p_3) \land (p_3 \rightarrow p_2)\} \land \dots \land \{(p_{n-1} \rightarrow p_n) \land (p_n \rightarrow p_{n-1})\} \equiv (p_1 \leftrightarrow p_2) \land (p_2 \leftrightarrow p_3) \land \dots \land (p_{n-1} \leftrightarrow p_n)$$

Quedando entonces demostrada la equivalencia.

2. Demostrar que $\longleftrightarrow \sum_{i=1}^{n} p_i$ verdadero si, solo si $p_1, ..., p_n$ son todos verdaderos o todos falsos Hay 3 posibles casos para esto, que todos los p_n sean 1, que todos sean 0, o que haya algún otro caso, en el que hay algunos que son 1 y otros 0.

Caso todos $p_n=1$: $\{1 \leftrightarrow 1\} \land \{1 \leftrightarrow 1\} \land \dots \land \{1 \leftrightarrow 1\}$ $1 \land 1 \land \dots \land 1$ $1 \qquad \qquad / \text{ Por lo tanto es Verdadero}$ Caso todos $p_n=0$: $\{0 \leftrightarrow 0\} \land \{0 \leftrightarrow 0\} \land \dots \land \{0 \leftrightarrow 0\}$ $1 \land 1 \land \dots \land 1$ $1 \qquad \qquad / \text{ Por lo tanto es Verdadero}$

Caso p_n 1 y 0:

Existe entonces algún $p_j=1$ y un $p_{j+1}=0$, ó $p_j=0$ y un $p_{j+1}=1$

y entonces sucedería lo siguiente:

Sea v_n una valuación de $p_n \leftrightarrow p_{n+1}$

$$v_1 \wedge v_2 \wedge ... \wedge p_j \leftrightarrow p_{j+1} \wedge ... \wedge v_{n-1}$$

La valuación de $p_j \leftrightarrow p_{j+1}$ si es el primer caso, seria $1 \leftrightarrow 0 = 0$, y con el segundo caso seria $0 \leftrightarrow 1 = 0$ Dando entonces:

$$v_1 \wedge v_2 \wedge \ldots \wedge 0 \wedge \ldots \wedge v_{n-1}$$

Luego, por dominación:

$$v_1 \wedge v_2 \wedge ... \wedge 0 \wedge ... \wedge v_{n-1} = 0$$
 / Por lo tanto es Falso

Habiendo revisado todos los casos posibles, queda demostrado que $\longleftrightarrow \sum_{i=1}^{n} p_i$ verdadero si, solo si $p_1, ..., p_n$ son todos verdaderos o todos falsos

NOMBRE: Vicente Espinosa

SECCIÓN: 2

Nº LISTA: 34

PUNTAJE:

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE INGENIERÍA DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN

IIC1253 — Matemáticas Discretas — 1' 2020

Tarea 1 – Respuesta Pregunta 2

1. La afirmación es Falsa, y se dará un contra ejemplo de esta:

$$\Sigma = (p \vee q, p \vee \neg q)$$

$$\alpha = p \land \neg q$$

En este caso, $\Sigma \not\models \alpha$ y $\Sigma \not\models \neg \alpha$

Basta con ver las tablas de verdad:

p	q	Σ	α
0	0	0, 1	0
0	1	1,0	0
1	0	1, 1	1
1	1	1,1	0

p	q	Σ	$\neg \alpha$
0	0	0, 1	1
0	1	1,0	1
1	0	1,1	0
1	1	1,1	1

En ambos casos no se cumple que α sea consecuencia lógica de Σ

2. Este problema se puede resumir en 3 casos, que Σ no tenga ninguna valuación que haga a todas sus formulas 1, que solo haya una, o que haya 2 o más.

La afirmación dice que solo se cumple cuando hay 1 o 0 valuaciones que sirven.

Para el primer caso se sabe que es siempre $\Sigma \models \alpha$, por lo visto en clases. Que si no hay ninguna valuación que satisfaga a Σ , entonces $\Sigma \models \alpha$ para cualquier α

Cuando hay una sola valuación que lo hace 1:

Significa que o $\Sigma \models \alpha$ o $\Sigma \not\models \alpha$

Para el primer caso ya estaría listo, por lo que hay que solo se revisara el segundo.

Si $\Sigma \not\models \alpha$, significa que:

p	q	 Σ	α
0	0	 0,,0	1
0	1	 0,, 1	1
1	0	 1,, 1	0
1	1	 0,, 1	1

El único caso en que Σ es completamente 1, α es 0.

Por lo tanto, $\neg \alpha$ sería 1, lo que significaría que $\Sigma \models \neg \alpha$.

Para el ultimo caso, en que hay más de una valuación que hace 1 a Σ , basta con dar un contra ejemplo para demostrar que no siempre se cumple que $\Sigma \models \alpha$ o $\Sigma \models \neg \alpha$

Se utilizará el mismo usado en la pregunta 1:

$$\Sigma = (p \lor q, p \lor \neg q)$$

$$\alpha = p \land \neg q$$

p	q	Σ	α
0	0	0, 1	0
0	1	1,0	0
1	0	1, 1	1
1	1	1,1	0

p	q	Σ	$\neg \alpha$
0	0	0, 1	1
0	1	1,0	1
1	0	1,1	0
1	1	1,1	1

Con este ejemplo queda demostrado que la condición dada se cumple solo si Σ es inconsistente o es satisfacible por solo una valuación.