System test case - #4

Test case details

Tester: Eetu Luoma

Date: 26.03.2024

Device: Desktop Computer, fast modern processor, Windows 11 Home v.23H2

Environment details:

- Most recent master branch of the project github
- most recent commit is 369416d27d187954a714f2dfe7d13cb406573927
- Anaconda virtual environment used with development
- Python and used imports:
 - o Python 3.12.1
 - o numpy 1.26.3
 - o pandas 2.1.4
 - o us 3.1.1

Test details

Test is a system test, running the whole model with specific parameters.

In this test we attempt to recreate the results that Neil Patel achieved with the model in his Master's thesis, "Evaluation of the predictive capabilities of the SuEIR model (https://urn.fi/URN:NBN:fi:tuni-202311139623). Even though the model is not deterministic, we should see similar results as in the thesis IF the model is still functioning as it did for Patel. In any case, with this test we can attempt to see if the model is still working as expected.

IMPORTANT TO NOTE:

Neither the base code nor our project have any *nation level* data from the source of NYtimes. In the code, even if arguments attempt to use NYtimes with the level of 'nation', the program is hardcoded to use JHU global data since no other global data is used by the program. **Therefore**, one can only assume that if Patel did indeed run the base code with the parameters as designated in his master's thesis, the source of data was not NYTimes as Patel writes, but it must have been JHU.

Parameters:

Dataset: NYtimes
END_DATE: 2022-03-06
VAL_END_DATE: 2022-03-08
level: nation

Test steps and results:

1. Run validation.py with the following arguments: validation.py **–END_DATE** 2022-03-06 **–VAL_END_DATE** 2022-03-08 **–dataset** NYTIMES **–level** nation

- a. Result: After 43 minutes of runtime the program attempted to write some files into a nonexistent directory. Validation went seemingly fine, it just failed due to my mistake in the testing environment.
- 2. Repeat previous step, but just for nation 'Argentina' in order to not waste more time validation.py —END_DATE 2022-03-06 —VAL_END_DATE 2022-03-08 —dataset NYTIMES —level nation —nation Argentina
 - a. Result: Success with a runtime of 1 minute 45 seconds. Relevant files in relevant folders.
- 3. Run generate_predictions.py with the previous arguments
 - a. Result: Success with a runtime of 25 seconds. Relevant files in relevant folders.
- 4. Repeat step 1 in order to get a successful run
 - a. Result: Successful validation, runtime of about 43 minutes. Files in relevant folder.
- 5. Run generate_predictions.py with the previous arguments
 - a. Result: Successful run with a time of a little over 9 minutes. Files in relevant folder.

Test results

As I'm not a statistician and it really is outside the scope of this software engineering project, I am not able to make the various plots and graphs that Patel has in his thesis.

Since the thesis has no raw data and I am no statistician, I'll just look at the raw values generated in the .csv file in Results_5. It has also been saved as a cleaner, .xlsx -file for easier reading.

Comparing generated values to graphs of Argentina, page 35 of Patel's thesis:

 Assuming that Patel used the same dates in the arguments, the results seem to vary by a small amount. The test file predicts no fatalities in the first week of predicted data, but in Patel's graph mortality is predicted to increase: pictures of Patel's graph and of relevant lines from pred_excel_cleaner.xlsx.

	B C D E F							
Date	lowe upp low upp pre_confirm	pre_fata	pre_fata_daily	low upp lov uppe pre_act	pre_confirm_daily	lower_pre_confirm_daily	upper_pre_confirm_daily	Region
A	B C D E F	G	Н	I J K L M	N	0	P	Q
2022-06-15	6089614147 163 6097132.243497509	157005.88752655894	76.54566297162091	36. 13564 5461211804.59820971097	100.21791846025735	31.449476400390267	514.7145629804581	Colombia
2022-03-08	8945 894 126: 126: 8949362.0	126901.0	0.0	0.0 0.0 61 7603 7358407.438027053	0.0	0.0	0.0	Argentina
2022-03-09	89558951261268955817.142857144	126993.0	92.0	92. 92. 56 7259 6893226.279986459	6455.142857143655	6455.142857143655	6455.142857143655	Argentina
2022-03-10	89618961261278962225.11850278	127005.92755297695	12.92755297695112	0.0 14152 6956 6453380.4585935995	6407.97564563714	6074.563137490302	7060.373711436987	Argentina
2022-03-11	8967897126 127 8968564.696995506	127005.92755297695	0.0	0.0 18(48 6667 6053257.102630839	6341.092055894434	5717.9267328400165	7518.652534557506	Argentina
2022-03-12	8972897126:1278974829.380312275	127005.92755297695	0.0	0.0 228 45 6391 5695930.386691973	6262.1483745239675	5389.357219289988	7855.070864923298	Argentina
2022-03-13	8978898126 127 8981009.117200822	127005.92755297695	0.0	0.0 26541 61275372096.45554629	6178.590197958052	5090.857249984518	8100.550410028547	Argentina
2022-03-14	8982899126:128 8987111.472598491	127005.92755297695	0.0	0.0 298 38 5874 5072864.418347394	6094.7064348924905	4820.741022802889	8294.103214297444	Argentina
2022-03-15	8987900126:128 8993115.76089908	127005.92755297695	0.0	0.0 328 35: 5633 4799194.693911411	6004.288300588727	4579.290049210191	8420.09063395299	Argentina
2022-03-16	8991901126:128 8999025.942908512	127005.92755297695	0.0	0.0 35! 33 54024550058.649221348	5913.8592490088195	4362.385151915252	8481.988503659144	Argentina
2022-03-17	8996901126:129 9004838.3077663	127005.92755297695	0.0	0.0 378 30 5182 4304050.705053915	5818.153729407117	4165.350783441216	8487.20527562499	Argentina
2022-03-18	9000 902 126:129 9010573.511161037	127005.92755297695	0.0	0.0 39, 28-49714076322.4088369077	5724.94755782187	3984.3877686187625	8502.971781924367	Argentina
2022-03-19	900:903126:129 9016173.369088093	127005.92755297695	0.0	0.0 415 26 4769 3841397.2933468544	5629.530437845737	3816.708486381918	8557.561551148072	Argentina
2022-03-20	9007904126:130 9021700.117810331	127005.92755297695	0.0	0.0 43(24-4575 3620344.020312384	5535.099979056045	3660.397193292156	8584.105950763449	Argentina
2022 02 24	0040000430430 0037000 003004030	127005 02755207505	0.0	0.044/33/43003443304 440403300	E424 0227022E0070	2544 4000205500077	0000 0000004004	Augustus

In fact, in the test file a mortality increase is only observed at the end of the prediction window. Image of rows here: note small amount of mortality growth

But in Patel's graphs, the model clearly predicts a sharp increase in mortality right off the bat

This difference is something I am unable to explain at this time.

If Patel used the same base code as our project does, that being the publicly available repository of UCLA people, then Patel's run of the program on these arguments must also have used JHU data instead of NYtimes data, which means the test case here and Patel's run used the same dataset for the prediction. Maybe it can be explained by the machine learning not being deterministic, but this test case predicts 0 increase in mortality between 2022-03-08 and 2022-03-15, but Patel's graph above would indicate that his run of the model predicted atleast a few thousand mortalities in that time period.

Looking at mortality for US, Patel's graphs on page 38, a difference can also be found.

_	•	•	• .					
2 2022-03-08	7945 794 961 961 794 991 65.0	961251.0	0.0	0.0 0.0 58-7102 69839506.94310157	0.0	0.0	0.0	US
3 2022-03-09	795579596296279537838.57142857	962560.2857142857	1309.285714285681	13(13(58:710369857355.20005526	38673.57142856717	38673.57142856717	38673.57142856717	US
4 2022-03-10	7958 796 963 963 79622808.66121751	963812.452932554	1252.1672182682669	12, 12(58, 7110, 69919597, 59866172	84970.08978894353	42217.74496603012	95944.11552512646	US
2022-03-11	7962797964:965 79727044.7832775	965010.9769870394	1198.5240544854896	11412758 7119 69999335.15608998	104608.72673843801	43466.117799177766	117408.91509707272	US
2022-03-12	796€798966 966 79840793.86881472	966164.4074003675	1153.2240540781058	10711558 7128 70073984.23310606	113535.90778669715	43660.317349776626	127345.56570188701	US
2022-03-13	7971800967(967 79957955.88145225	967284.0251923066	1119.280943607213	10111758:713770151193.93678345	117769.20434598625	43394.59621326625	132035.9671150893	US
2022-03-14	7975801967 968 80080026.17694756	968380.9484887675	1097.5637553664856	97111(58:714670222596.51474085	120156.6741875261	42957.49368163943	134275.00845995545	US
2022-03-15	7975802968:969 80200610.76348841	969466.7261480081	1086.1748197762063	93811658:715470314601.59314866	121460.07906535268	42427.57594434917	135797.03094390035	US
2022-03-16	798: 804 969: 970 80322373.60123235	970549.1308237696	1082.4046757614706	91:11(58:716370376682.45304784	122597.75906823575	41962.11424331367	136531.29377029836	US
2022-03-17	7987805970 972 80447265.06393439	971632.6264041481	1083.4955803784542	89411758 717170469132.11997244	123332.62174090743	41460.428413674235	137357.13475953043	US
2022-03-18	799280697197380569512.02899824	972719.8966572339	1087.077893251204	87:11:58:7180 70565827.99993782	123789.86646981537	40980.36788481474	138965.25812488794	US
2022-03-19	7996808972-97480692967.69172141	973812.1900526469	1091.643055984634	86(12(58:718870623930.12645178	124183.60160237551	40554.61296804249	140400.91239215434	US
2022-03-20	8000 809 973 975 80818716.40726271	974909.9309659399	1096.5901971640997	854 12:58 7196 70707577.81050014	124596.88122339547	40133.10720744729	141787.72056286037	US
2022-03-21	8004811974 976 80941943.99205227	976013.1450684278	1101.6192645416595	84: 12: 58: 7203 70766746.02230442	124889.98385067284	39684.96587604284	143031.21928100288	US
2022-03-22	8008812975(978 81064936.3666669	977121.6936613009	1106.8930860732216	83212458(721170847394.3923137	124543.41573929787	39271.38071003556	143956.5310740173	US
2022-03-23	8011813975 979 81187145.12829873	978233.6996321667	1111.9884713181527	82: 12: 57: 7218 70940153.87024586	123988.01375435293	38901.80135446787	144537.54627208412	US
2022-03-24	8015815976(980 81314237.53650187	979348.7143140469	1116.9082643374568	81:12(57:722671003468.86287679	123685.4844044894	38546.63363318145	145104.05166497827	US
2022-03-25	8015816977-981 81435835.540023	980467.7339426412	1121.6299715444911	804 128 57: 7233 71067741.54470338	123033.05768802762	38176.87981556356	145652.21695062518	US
2022-03-26	802:817978:983 81563257.22865544	981590.5188038546	1126.1652076501632	79(12:57:723971119947.48027405	121983.0526728332	37769.11559487879	146050.58821997046	US
2022-03-27	8027819979(984 81683579.98772682	982716.8385618863	1130.5011909109307	78(13(57)724671174507.71903314	121398.38338012993	37393.05906006694	146166.31163327396	US
2022-03-28	803(820979:985 81803246.43560573	983848.5777402329	1134.320652010967	78(13(57:725371219273.58936042	120801.23270986974	37091.61084267497	145921.31667603552	US
2022-03-29	8034822980 987 81921909.0059892	984986.8067612449	1138.2290210119681	77: 13:57: 7259 71267211.6033874	119616.44594404101	36814.39873512089	145767.20317308605	US
2022-03-30	8038823981 988 82041688.24373247	986128.7701200618	1141.9633588169236	76(13)57 7265 71313581.58820352	118659.54241725802	36507.89005802572	145805.29923194647	US
2022-03-31	8041825982 989 82165243.20633976	987274.5752723953	1145.5453617864987	75:13:57 727171358083.21823367	117966.07606428862	36122.07425934076	145775.74494856596	US
2022-04-01	8045826982 991 82284700.45949104	988424.1995200096	1148.9689860935323	75: 13457 7277 71401450.45869134	116801.47731648386	35756.934371337295	145417.88488015532	US
2022-04-02	8048827983(992 82400362.4892489	989577.1915693401	1152.235425437335	74713457(728371453998.83643846	115570.95351231098	35501.32921560109	144629.22784043849	US
2022-04-03	8052829984 993 82518267.70686331	990733.3992195252	1155.3664133623242	74113557 7288 71501081.64363702	114768.77258653939	35274.37108412385	144136.22893472016	US
2022-04-04	8055830985(995 82634771.38901722	991892.6871319859	1158.3647328326479	73513657(729471541590.77179047	113527.91117058694	34996.59622773528	143919.85902108252	US
2022-04-05	805583298599682754202.99957111	993054.9378828278	1161.0660737842554	73(13(57)729971580608.816416	112323.51006034017	34621.639354005456	143630.41798901558	US
2022-04-06	8062833986.998 82868431.66760984	994220.0219201805	1163.7998767968966	72! 13:57! 7304 71617876.37478358	111294.6820653528	34329.49266976118	142924.23434825242	US
2022-04-07	806€835987.999 82977949.5516897	995387.8104396136	1166.4044649525313	72(13(57)730971653974.9604936	110099.6904989779	34118.862128287554	141789.22641019523	US
2022-04-08	8065836987 100 83086421.8928138	996550.5314223222	1168.9009941265685	71(13(57)731471688913.41858123	109039.73532792926	33908.49179176986	141162.55721713603	US

In the test case, mortality is predicted to have about 1200 cases per day throughout the whole prediction period, starting at 962 560 total in 2022-03-09, and finishing at 1 077 837 in 2022-06-15. This means that the test case predicts mortality to get about a 110 000 new cases in three months, but Patel's run presumably predicted much sharper mortality rates, reaching 1 100 000 cases in just two weeks of prediction. This difference in daily predicted mortality is surely significant.

To sum up, I have no idea why the results of this test case vary so from the results seen in Patel's thesis. This is really not my field and I do not understand the mathematical model behind the code, or even the program in that much depth. More testing should be done in regards to Patel's results, and the other members of the team should also take a look at this in case I am missing something crucial.