

Sistemas Operacionais

Sistemas de Numeração

UNIDADES DE MEDIDA

Unidades de medida				
8	Bit	1	Byte	В
1024	Bytes	1	kiloByte	КВ
1024	KiloBytes	1	MegaByte	МВ
1024	MegaBytes	1	GigaByte	GB
1024	GigaBytes	1	TeraByte	ТВ
1024	TeraBytes	1	PetaByte	РВ
1024	PetaBytes	1	ExaByte	EB
1024	ExaBytes	1	ZettaByte	ZB
1024	ZettaBytes	1	YottaByte	YB

Obs.: Prefixos Kilo, Mega, Giga, Tera, Peta, Exa, Zeta e Yotta são utilizados para representar números de **base 10**

"<u>Novidades</u>"

Comercial x Computacional

1KB comercial = 1000 Bytes

Comercial

```
1MB comercial = 1000 KB
1GB comercial = 1000 MB
1GB comercial = 1000 x 1000 x 1000 Bytes = 1.000.000.000 Bytes

Computacional

1KB computacional = 1024 Bytes
1MB computacional = 1024 KB
1GB computacional = 1024 MB
1GB computacional = 1024 x 1024 Bytes = 1.073.741.824 Bytes
```

```
(1GB computacional)/(1GB comercial) = 1,073741824
```

Kilo x Kibi

kilo, Mega, Giga, Tera, Peta, Exa, Zetta e Yotta

X

kibi, Mebi, Gibi, Tebi, Pebi, Exbi, Zebi e Yobi

kilo, Mega, Giga, Tera, Peta, Exa, Zetta e Yotta
kibi, Mebi, Gibi, Tebi, Pebi, Exbi, Zebi e Yobi

Os prefixos de unidade kilo, Mega, Giga, Tera, Peta, Exa, Zeta e Yotta são utilizados para representar números de base 10.

Em 1998 o **IEC** (International **E**lectrotechnical **C**ommission) introduziu os prefixos "kibi", "Mebi", "Gibi", "Tebi", "Pebi ", "Exbi", " Zebi " e "Yobi" para que os prefixos kilo, Mega, Giga, Tera, Peta, Exa e Yotta parassem de ser utilizados na unidade de medida Byte e assim não gerar confusões.

Kibi, Mebi, Gibi, Tebi, Pebi, Exbii, Zebi e Yobi

Unidades de medida				
8	Bit	1	Byte	В
1024	Bytes	1	kibiByte	KiB
1024	KiloBytes	1	MebiByte	MiB
1024	MegaBytes	1	GibiByte	GiB
1024	GigaBytes	1	TebiByte	TiB
1024	TeraBytes	1	PebiByte	PiB
1024	PetaBytes	1	ExbiByte	EiB
1024	ExaBytes	1	ZebiByte	ZiB
1024	ZettaBytes	1	YobiByte	YiB

A letra "i" na abreviação e a sílaba "bi" do prefixo indicam que o padrão binário está sendo utilizado.

Kilo x Kibi

			Ва	se 10
8	Bit	1	Byte	В
1024	Bytes	1	kiloByte	КВ
1024	KiloBytes	1	MegaByte	МВ
1024	MegaBytes	1	GigaByte	GB
1024	GigaBytes	1	TeraByte	ТВ
1024	TeraBytes	1	PetaByte	РВ
1024	PetaBytes	1	ExaByte	EB
1024	ExaBytes	1	ZettaByte	ZB
1024	ZettaBytes	1	YottaByte	YB

			В	ase 2
8	Bit	1	Byte	В
1024	Bytes	1	kibiByte	KiB
1024	KiloBytes	1	MebiByte	MiB
1024	MegaBytes	1	GibiByte	GiB
1024	GigaBytes	1	TebiByte	TiB
1024	TeraBytes	1	PebiByte	PiB
1024	PetaBytes	1	ExbiByte	EiB
1024	ExaBytes	1	ZebiByte	ZiB
1024	ZettaBytes	1	YobiByte	YiB

Diferenças relativas entre múltiplos decimais e binários

Nome	Símbolo	Potência = valor (SI)		Símbolo	Potência binária	Diferença
quilo	k	$10^3 = 1000$	kibi	Ki	2 ¹⁰ = 1024	2,4%
mega	M	$10^6 = 1000000$		Mi	2 ²⁰ = 1 048 576	4,9%
giga	G 10 ⁹ = 1 000 000 000		gibi	Gi	2 ³⁰ = 1 073 741 824	7,4%
tera	Т	T 10 ¹² = 1 000 000 000 000		Ti	2 ⁴⁰ = 1 099 511 627 776	10,0%
peta	Р	10 ¹⁵ = 1 000 000 000 000 000		Pi	2 ⁵⁰ = 1 125 899 906 842 624	12,6%
exa	E 10 ¹⁸ = 1 000 000 000 000 000		exbi	Ei	2 ⁶⁰ = 1 152 921 504 606 846 976	15,3%
zetta	Z	10 ²¹ = 1 000 000 000 000 000 000 000	zebi	Zi	2 ⁷⁰ = 1 180 591 620 717 411 303 424	18,1%
yotta	Υ	10 ²⁴ = 1 000 000 000 000 000 000 000 000	yobi	Yi	2 ⁸⁰ = 1 208 925 819 614 629 174 706 176	20,9%

IEC (International Electrotechnical Commission)

Comercial x Computacional

Exemplo

```
(1GB computacional)/(1GB comercial) = 1,073741824
```

Um HD de 500GB (comercial) possui 465,66GB

500GB comercial = 500/1,07374 = 465,66 GB computacional

Resumo da encrenca

Os prefixos kilo, Mega, Giga, Tera, Peta, Exa, Zeta e Yotta são de base 10

- 1 kiloMetro = 1000 metros
- 1 kiloOhm = 1000 ohms

O sistema de medição de quantidade de dados tem base 2

1 kiloByte = 1024 Bytes.

O IEC criou os novos prefixos kibi, Mebi, Gibi, Tebi, Pebi, Exbi, Zebi e Yobi

Curiosidade

1Byte = 1 octeto

Metade de 1 Byte (4 bits) = nibble

bit => **Bi**nary Digi**t**

16 bits = Word (palavra)

2 palavras = Dual Word

4 palavras = Quad Word

Nome	Nr de bits	Qtd de variações
Nible	4 bits	2^4 = 16
Byte (octeto)	8 bits	2^8 = 256
Word	16 bits	2^16 = 65.536
Double Word	32 bits	2^32 = 4.294.967.296
Quad Word	64 bits	2^64 = 18.446.744.073.709.551.616

Comunicação

COMUNICAÇÃO EM PARALELO

Vantagem:

Velocidade

Desvantagem:

Cabo longo / perder dados

COMUNICAÇÃO SERIAL

COMUNICAÇÃO SERIAL

Vantagem:

Menor possibilidade de perda de dados

Desvantagem:

Lentidão

COMUNICAÇÃO SERIAL

Aperfeiçoamentos (protocolo, *interface* e meio de transmissão) Aumento da velocidade de transmissão por um único par de fios Cabo coaxial ou de fibra ótica

USB - Universal Serial Bus
Permite ligar até 128 dispositivos

Comunicação SERIAL x PARALELA

Característica	PARALELO	SERIAL
Custo	maior	menor
Distância	curta	sem limite
Throughput	alto	baixo

Transmissão Síncrona e Assíncrona

Transmissão Síncrona

- Intervalo de tempo fixo.
- Transmissor e receptor sincronizados
- Relação direta entre tempo e os caracteres transferidos.
- Transmissor continua enviando caracteres especiais

Transmissão Assíncrona

Intervalo de tempo não é fixo.

Na ausência de caracteres a serem transmitidos o transmissor mantém a linha sempre no estado 1

bit de partida (start bit) antes de cada caractere.

Linha livre (*idle*).

Ao final de cada caractere o transmissor insere bits de parada (stop bits).

Transmissão Assíncrona

bits de informação são transmitidos em intervalos de tempo uniformes entre o *start bit* e o(s) *stop bit(s)*.

"start-stop".

TRANSMISSÃO SIMPLEX, HALF-DUPLEX E FULL-DUPLEX

TRANSMISSÃO SIMPLEX, HALF-DUPLEX E FULL-DUPLEX

Comunicação SIMPLEX

Transmissão HALF-DUPLEX

Transmissão FULL-DUPLEX

TRANSMISSÃO SIMPLEX, HALF-DUPLEX E FULL-DUPLEX

Portas Lógicas (Logic Gates)

Operações lógicas

As operações lógicas são estudadas pela álgebra de boole (George Boole)

A álgebra de Boole trabalha com apenas duas grandezas: falso ou verdadeiro.

As duas grandezas são representadas por **0** (falso) e **1** (verdadeiro).

Nos circuitos lógicos do computador, os sinais binários são representados por níveis de tensão.

Constantes e Variáveis Booleanas

A álgebra booleana permite apenas dois valores: 0 e 1.

Lógica 0 pode ser: falso, desligado, baixo, não, interruptor aberto.

Lógica 1 pode ser: *verdadeira, ligado, alto, sim, interruptor fechado*.

Três operações básicas:

• OR, AND e NOT.

Constantes e Variáveis Booleanas

0	1
Falso	Verdadeiro
Desligado	Ligado
Baixo	Alto
Não	Sim
Aberto	Fechado

Portas lógicas

As portas lógicas são os elementos básicos e elementares de um sistema de computação.

Elas são responsáveis por realizar as operações lógicas sobre os bits.

Os valores de entrada e saída são números binários.

Cada porta lógica realiza uma tarefa trivial.

Portas lógicas

AND

Portas ou circuitos

operam e trabalham

somente uma saída,

implementada no

circuito.

dependente da função

com um ou mais sinais

lógicos de entrada para

dispositivos que

produzir uma e

lógicos são

A	В	Output
0	0	0
0	1	0
1	0	0
1	1	1

OR

A	В	Output
0	0	0
0	1	1
1	0	1
1	1	1

XOR

A	В	Output
0	0	0
0	1	1
1	0	1
1	1	0

NAND

A	В	Output
0	0	1
0	1	1
1	0	1
1	1	0

NOR

A	В	Output
0	0	1
0	1	0
1	0	0
1	1	0

XNOR

A	В	Output
0	0	1
0	1	0
1	0	0
1	1	1

Porta AND (E) ^

A saída de uma porta AND é verdadeira se e somente se todas as entradas da porta forem verdadeiras.

$A \subseteq$		
B		
<i>X</i>		

https://tinyurl.com/289coyhb

A	В	Output
0	0	0
0	1	0
1	0	0
1	1	1

Porta AND (E)

Α	В	С	x = ABC
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Porta AND (E)

Portas OR (OU) v

A saída de uma porta OR é verdadeira se alguma ou todas as entradas da porta forem

verdadeiras.

A	В	Output
0	0	0
0	1	1
1	0	1
1	1	1

A_{-}				
B_{-}				_
X_{-}				

Portas OR (OU)

Α	В	O	X = A + B + C
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Portas OR (OU)

Porta NOT (NÃO) - Inversor

A saída de um inversor é o complemento (oposto) da entrada.

Quando a entrada para um inversor é alta (1), a saída é baixa (0); e quando a entrada é baixa, a saída é

alta.

A			
X			

Input	Output
A	X
LOW (0)	HIGH (1)
HIGH (1)	LOW(0)

Porta NOT (NÃO) - Inversor

A presença de um pequeno círculo sempre denota inversão

Porta NOT (NÃO) - Inversor

$$\begin{bmatrix} x \\ 0 \end{bmatrix}$$

Input	Output		
\overline{A}	X		
LOW (0)	HIGH (1)		
HIGH(1)	LOW(0)		

NOR

É uma porta OR e uma porta NOT combinadas.

O resultado é exatamente o inverso da porta OR.

Expressão: x = (a + b)'

NOR				
a	b	x		
0	0	1		
1	0	0		
0	1	0		
1	1	0		

NAND

É uma porta AND e uma porta NOT combinadas.

O resultado é exatamente o inverso da porta AND.

Expressão: $x = (a \times b)'$

NAND			
a	b	\boldsymbol{x}	
0	0	1	
1	0	1	
0	1	1	
1	1	0	

XOR – Exclusive OR

Retorna 1 somente se uma das entradas é 1.

Expressão: $x = a \oplus b$

XOR			
a	b	\boldsymbol{x}	
0	0	0	
1	0	1	
0	1	1	
1	1	0	

XNOR

É uma porta XOR e uma porta NOT combinadas.

O resultado é exatamente o inverso da porta XOR.

XNOR			
a	b	\boldsymbol{x}	
0	0	1	
1	0	0	
0	1	0	
1	1	1	

Expressão: $x = a \otimes b$

NAND – Porta universal

• Combinações de portas NAND podem ser usadas para simular todas as outras.

• Por este motivo, a porta NAND é considerada uma porta universal.

 Isso significa que qualquer circuito pode ser expresso pela combinação de portas NAND.

NAND – Porta universal

Circuitos

As portas lógicas são encontradas no mercado encapsuladas em chips de silício.

CI - 7408/74LS08/74HC08/74HCT08 (Porta AND)

O Circuito integrado **74HC08** fornece 4 portas **AND** independentes de 2 entradas com 1 saída cada. Faixa de operação: 2.0V ~ 6.0V.

As portas executam a função booleana: Y=A+B

CI - 7432/74LS32/74HC32/74HCT32 (Porta **OR**)

O Circuito integrado **74HC32** fornece 4 portas **OR** independentes de 2 entradas com 1 saída cada. Faixa de operação: 2.0V ~ 6.0V.

As portas executam a função booleana: Y=A+B

CI - 7404/74LS04/74HC04/74HCT04 (Porta NOT)

O Circuito integrado **74HC04** fornece 6 portas **NOT** independentes de 1 entrada com 1 saída cada. Faixa de operação: 2.0V ~ 6.0V.

As portas executam a função booleana: Y=A

Sites para praticar

Simulator IO - https://simulator.io

Build and simulate logic circuits.

Web-based logic circuit simulator for people who want to build a computer from scratch.

Simulator IO - https://simulator.io

Logic.ly - https://logic.ly/demo/

TinkerCAD - https://www.tinkercad.com/

Α	В	С	ĀB	ВС	X
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Α	В	С	ĀB	ВС	Х
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	1	0	1
0	1	1	1	1	1
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	1	1	0	1	1

Α	В	С	D	Х
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Α	В	С	D	Х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Α	В	С	D	S
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Crie as tabelas verdade

Α	В	С	D	C1	C2	СЗ	C4
0	0	0	0				
0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1	1				
1	1	0	0				
1	1	0	1				
1	1	1	0				
1	1	1	1				

Não contavam com minha astúcia!

Atividade