OPERAÇÕES UNITÁRIAS I

PROFª KASSIA G SANTOS

2020/1- CURSO REMOTO

DEPARTMENTO DE ENGENHARIA QUÍMICA

UFTM

AULA 12

5.2 Moagem

Moagem e seus objetivos

Principais objetivos:

- □ Liberar espécies minerais com vistas às operações de concentração ou peletização ou mistura;
 □ Adequação de produtos às especificações granulométricas: talcos, cargas, etc.
 □ Facilitar o transporte em minerodutos;
- □ Aumentar a área superficial para facilitar processos reacionais ou de extração (↓menor partícula, ↑ àrea superficial, ↑ rápida difusão)

Moagem: Via úmida e via seca

Via Úmida

- Consome menos energia (75% da moagem a seco
- Facilita transporte, por equipamentos simples como calhas e transporte hidráulico
- Abate as poeiras (elimina equipamentos como exaustores)
- Mistura é mais efetiva
- Maior capacidade por unidade de volume do moinho
- Permite usar peneiramento à úmido (ideal para finos)

Via Seca

- Ocorre quando não é possível fazer a úmido (escassez de água)
- Quando material reage com a água (Ex: cal virgem, sais solúveis, clínquer de cimento Portland, etc.)
- Quando o produto tem que ser secado para próxima etapa ou comercialização (EX. carvão pulverizado para maçaricos)
- Provoca vários problemas de aquecimento no moinho, ocasionando maior risco de explosão. Necessita de sistema de resfriamento

CIRCUITO DE MOAGEM

Equipamentos para o fechamento do circuito:

Tipos de Moinhos

Moinho de Bolas (Ball mill)

Overflow (RR:15 a 20:1)

Descarga periférica (RR:12 a 15:1)

Descarga periférica Central (RR:4 a 8:1)

Mais adequado à moagem fina.

Grinding & Grinding	
	iwfide

L/D = 1 a 2

densidade aparente das bolas:

fundidas = $4.165 \text{ Kg/m}^3 = 260 \text{ lb/ft}^3$ forjadas = $4.646 \text{ Kg/m}^3 = 290 \text{ lb/ft}^3$

40 a 45 % de enchimento. Até 50 %.

um alimentador de bico de papagaio duplo consome 20 a 40 HP adicionais

velocidades recomendadas:

diâmetro interno (ft) 3-6 6-9 9-12 12-15 15-18 % da velocidade crítica 80-78 78-75 75-72 72-69 69-66 relações L/D e diâmetros da bola maior para diferentes alimentações:

_	F (mm)	5 a 10	0,9 a 4	fina/remoagem
_	IJD	1 a 1,25	1,25 a 1,75	1,5 a 2,5
diâmetro da bo	la maior	2,5 a 3,5"	2,5 a 2"	3/4 a 1 1/4"

Moinho de Barras (Rod mill)

Giram a rotações mais baixas que os moinhos de bolas. Com aumento do diâmetro do moinho, sua rotação precisa diminuir.

Alimentação: entre 3/4" e 3/8" Produto: entre 4# e 28#

Relações Geométricas

L/D = 1,4 a 1,6, sempre > 1,25.
D < 12,5 ft (devido a problemas mecânicos com as barras)
L < 20 ft (idem)
as barras devem ser 4 a 6" mais curtas que L
35 a 40 % de enchimento. No máximo, 45 %.
A moagem a seco é rara e difícil.
densidade aparente das barras = 6.247 kg/m3 = 390 lb/ft3
velocidades recomendadas:

<u>diâmetro interno (ft)</u> 3-6 6-9 9-12 12-15 % da velocidade crítica 76-73 73-70 70-67 67-64

DINÂMICA DOS CORPOS MOEDORES

Características

Dimensões: comprimento L e Diâmetro D

Potência Instalada

Variáveis Operacionais Carga de corpos moedores no moinho (% volume)

Velocidade de rotação

Porcentagem de sólidos na polpa alimentada (50 a 60%)

Velocidade Crítica (Vc) →

Rotação que leva a carga do moinho a ser centrifugada

$$Vc = \frac{1}{2\pi} \sqrt{\frac{2g}{D}}$$

a) Baixa velocidade (rolamento);

b) aumento da rotação (cascateamento)

Regime ideal

Energia consumida

Lei de Bond

$$E = W_i \left(\frac{10}{\sqrt{P}} - \frac{10}{\sqrt{F}} \right)$$

P= é o D80 do produto [μm] F= é o D80 da alimentação [μm]

A energia na Lei de Bond foi determinada para as seguintes condições específicas:

Moinho de barras: a úmido, circuito aberto, num moinho de 2,44 m de diâmetro interno ao revestimento; tamanho da alimentação de 13.200 µm.

Moinho de bolas: a úmido, circuito fechado com classificador espiral, num moinho de 2,44 metros de diâmetro interno ao revestimento e carga circulante de 250%; tamanho da alimentação de 3.350 µm.

Energia calculada: é a energia requerida no eixo do pinhão do moinho, a qual inclui as perdas nos mancais e nas engrenagens do pinhão. Não inclui as perdas no motor ou em qualquer outro componente, tais como redutor e embreagens.

Qualquer moagem que fuja destas condições deve ter o valor da energia calculada pela equação de Bond corrigida por fatores de correção.

Fatores de correção

EF1 - moagem a seco: deve-se usar o valor de EF1 =1,3 que exprime o fato que a moagem a seco é 30% menos eficiente.

EF2 - Circuito aberto em moinho de bolas: requer uma energia extra quando comparada ao circuito fechado.

Tabela – Fator de ineficiência em circuito aberto.

% Passante na Malha de Controle	50	60	70	80	90	92	95	98
Fator	1,035	1,05	1,10	1,20	1,40	1,46	1,57	1,70

EF3 - Diâmetro do moinho: Assume maior eficiência energética em função do maior diâmetro do moinho. Esse fator só pode ser calculado após a escolha prévia do moinho. Se D≠8 ft, então:

$$EF_3 = (8/D)^{0.2}$$
, se D [ft]

$$EF_3 = (2,44/D)^{0,2}$$
, se D [m]

EF4 - Fator de alimentação com tamanho excessivo: Assume perda de eficiência energética por causa do sobre-tamanho da alimentação acima de 4000 µm.

$$EF_4 = \frac{1}{R_R} \left[R_R + (WI - 7) \left(\frac{F - F_o}{F_o} \right) \right]$$

 $R_R = \text{Razão de Redução (F/P)}$

 F_o = tamanho ótimo da alimentação:

Barras:
$$F_o = 16000 \sqrt{\frac{13}{WI}}$$
; Bolas: $F_o = 4000 \sqrt{\frac{13}{WI}}$

EF5 - Fator de finura: Assume perda de eficiência energética para o produto na faixa granulométrica abaixo de 75 µm.

P ₈₀ (μm)	62,4	53,6	45,7	40,7	37,6	36,3	28,2	18,0	12,0
EF ₅	1,018	1,040	1,070	1,094	1,113	1,121	1,192	1,373	1,623

$$EF_5 = \frac{P + 10,3}{1,145P}$$

EF6 - Relação de redução no moinho de barras:

Este fator deve ser aplicado a moinho de barra, em circuito aberto, sempre que RR estiver fora do intervalo $R_{Ro} - 2 < R_R < R_{Ro} + 2$, sendo R_{Ro} a relação ótima de redução: $R_{Ro} = 8 + 5 L/D$

$$EF_6 = 1 + \frac{\left(R_R - R_{Ro}\right)^2}{150}$$

EF7 - Relação de redução no moinho de bolas: Esta equação só deve ser usada quando a relação de redução no moinho de bolas for menor que 6.

$$EF_7 = \frac{(R_R - 1, 22)}{(R_R - 1, 35)}$$

EF8 - Fator de eficiência para moinho de barra

- a) Para moinhos de barras único
- a1 circuito aberto EF8 = 1,4
- a2 circuito fechado EF8 = 1,2

- b) Moinho de barras em circuito barra/bolas
- b1 circuito aberto EF8 = 1,2
- b2 circuito fechado EF8 = 1

MOAGEM AUTÓGENA

☐ É o processo de redução de tamanho cujo efeito é produzido pelo mesmo minério a moer. ☐ No processo autógeno de moagem é utilizado um moinho cilíndrico, normalmente de diâmetro maior que o comprimento, no qual o "meio de moagem" são partículas de maior tamanho do mesmo minério. ☐ O fenômeno de moagem é devido fundamentalmente ao mecanismo de atrição mais do que por impacto; ☐ Os moinhos completamente autógenos são normalmente utilizados na etapa de moagem primaria, e podem ser do tipo seco ou úmido. ☐ A alimentação para um moinho autógeno deve ser contínua, e consiste num material cuja granulometria flutue entre tamanhos muito grossos e outros muito finos, como acontece correntemente com a descarga do britador primário. O moinho autógeno, então, viria a substituir as etapas secundária e terciária de britagem. ☐ A Moagem Semi-Autógena consiste numa derivação da moagem autógena, que utiliza uma porcentagem (entre 4 a 10% de volume interno do moinho), de bolas de aço como meio

adicional de moagem.

EX22: (Chaves Pinto, Teoria e Prática do Tratamento de minérios, V03, Ex1, pg 627): Calcular o moinho de barras necessário para moer, a úmido, 250 t/h em circuito fechado, um minério de WI = 13,2 e cujo F = 18.000 μ m e P = 1.200 μ m. Sabe-se que a alimentação do moinho será preparado em britadores com circuito fechado. ρ s=3g/cm³

1º- Cálculo da Energia pela Lei de Bond:

$$E = W_i \left(\frac{10}{\sqrt{P}} - \frac{10}{\sqrt{F}} \right)$$

$$E = 13, 2 \left(\frac{10}{\sqrt{1200}} - \frac{10}{\sqrt{18000}} \right) = 2,83kWh / st$$

2º- Fatores:

EF3 e EF6 só serão determinados após a escolha preliminar do moinho.

EF1= 1: moagem à úmido

EF2= 1 : moinho de barras

EF4
$$EF_{4} = \frac{1}{R_{r}} \left[R_{r} + (WI - 7) \left(\frac{F - F_{o}}{F_{o}} \right) \right]$$

$$R_{r} = 18000 / 1200 = 15$$
Barras: $F_{o} = 16000 \sqrt{\frac{13}{WI}} = 16000 \sqrt{\frac{13}{13,2}} = 15878$

$$EF_{4} = \frac{1}{15} \left[15 + (13,2-7) \left(\frac{18000 - 15878}{15878} \right) \right] = 1,06$$

EF5=1 (só se aplica para moagem fina)

EF7=1: Só se aplica à baixas RR

EF8=1,2 (circuito fechado só com moinho de barras

EX22: (Chaves Pinto, Teoria e Prática do Tratamento de minérios, V03, Ex1, pg 627):

3º- Cálculo preliminar da Potência do moinho:

$$E = 2.83 \frac{kWh}{st} \frac{1st}{0.907t} \frac{1.341HP}{1kW} = 4.18 \frac{HP \cdot h}{t}$$
$$-W = Q * E = 250 \frac{t}{h} \cdot 4.18 \frac{HP \cdot h}{t} = 1045HP$$

4º- Multiplicando pelos fatores EF4 e EF8:

$$-W = 1045HP \cdot 1,06 \cdot 1,2 = 1330HP$$

5°- Escolha do moinho

Consultando a Tabela do fabricante (Tabela 6), Escolhendo o moinho de D'=12,5 ft e L=18ft, com enchimento de 40% 1173HP e D=11,55ft

Calculando EF3:

$$EF_3 = (8/D)^{0.2} \rightarrow EF_3 = (8/11,55)^{0.2} = 0,929$$

Recalculando a Potência necessária:

$$-W = 1330HP * 0.929 = 1236HP$$

Para que o moinho de 12,5 ft absorva essa potência, é necessário aumentar o L' nominal:

$$\frac{L'}{18ft} = \frac{1236HP}{1173HP} \rightarrow L' = 19ft$$
 Medidas Internas:
D=11,55 ft e L=18,5ft

Calculando EF6: $EF_6 = 1$

$$R_{Ro} = 8 + \frac{5L}{D} = 8 + \frac{5*18.5}{11.55} = 16$$
 $R_R = \frac{18000}{1200} = 15$

$$R_R = \frac{18000}{1200} = 15$$

Intervalo: R_{Ro} –2 < R_R < R_{Ro} +2 ou 14<RR<18

Moinho de barras com Descarga por overflow D'=12,5ft (interno ao revestimento D=11,55ft) L=19ft (interno=18,5ft)

40% de carga de enchimento Velocidade de rotação 66% VC

-W=1173HP potência individual (devido ao comprimento L funcionará com 1236 HP

Motor: 2000HP

Resposta:
D'=12,5ft
D=11,55ft (interior ao revestimento)
L=6,12 m
LB=5,34 m ou 17,5 ft v=66%VC
40% enchimento
-W=1173HP

Diâmetro interno nominal		terno	Comprimento Comprimento nominal das barras (L)			Velocidade do moinho			Potência do moinho (HP) % vol. da carga			Diâmetro (D) interior ao revest.		
	m	pés	m	pés	m	pés	RPM	%Vc	ft/min	35%	40%	45%	m	pés
ft	0,91	3,0	1,22	4	1,07	3,5	36,1	74,5	284	7	8	8	0,76	2,5
-	1,22	4,0	1,83	6	1,68	5,5	30,6	74,7	336	23	25	26	1,07	3,5
	1,52	5,0	2,44	8	2,29	7,5	25,7	71,2	363	57	61	64	1,37	4,5
ļ	1,83	6,0	3,05	10	2,90	9,5	23,1	70,7	399	114	122	128	1,68	5,5
	2,13	7,0	3,35	11	3,20	10,5	21,0	69,9	428	181	194	204	1,98	6,5
	2,44	8,0	3,66	12	3,51	11,5	19,4	69,3_	457	275	295	310	2,29	7,5
	2,59	8,5	3,66	12	3,51	11,5	18,7	69,0	470	318	341	359	2,44	8,0
Į	2,74	9,0	3,66	12	3,51	11,5	17,9	67,5	470	344	369	388	2,55	8,35
	2,89	9,5	3,96	13	3,81	12,5	17,4	67,6	483	416	446	470	2,70	8,85
	3,05	10,0	4,27	14	4,11	13,5	16,8	67,0	493	507	544	572	2,85	9,35
	3,20	10,05	4,57	15	4,42	14,5	16,7	66,4	501	609	653	687	3,00	9,85
	3,35	11,0	4,88	16	4,72	15,5	15,8	66,8	517	735	788	823	3,15	10,35
	3,51	11,5	4,88	16	4,72	15,5	15,5	66,6	528	819	878	924	3,31	10,85
	3.66	12,0	4.88	16	4.72	15.5	15.1	66,4	538	906	972	1023	3,46	11,35
	3,81	12,5	5,49	18	5,34	17,5	14,7	66,0	547	1093	1173	1234	3,61	11,55
	3,96	13,9	5,79	19	5,64	18,5	14,3	65,6	555	1264	1356	1426	3,76	12,35
	4,11	13,5	5,79	19	5,64	18,5	14,0	65,5	569	1385	1486	1562	3,92	12,85
	4,2714	,0 6,10	20	5,94	19,5	13,6	64,9	570	1580	1695	1783	4,07	13,35	
	4,4214	,5 6,10	20	5,94	19,5	13,3	64,6	579	1715	1840	1935	4,22	13,85	
	4,5715	,0 6,10	20	5,94	19,5	13,0	64,3	586	1853	1988	2091	4,37	14,35	

Atenção Valores errados: Substituir

(Chaves Pinto, Teoria e Prática do Tratamento de minérios, V03

EX22: (Chaves Pinto, Teoria e Prática do Tratamento de minérios, V03, Ex1, pg 627):

6°- Corpos moedores:

Cálculo do diâmetro máximo da barra:

$$d_{barra}^{\text{max}} = \frac{F^{0.75}}{160} \sqrt{\frac{\rho_s WI}{\% VC \sqrt{D}}} = \frac{18000^{0.75}}{160} \sqrt{\frac{3.13.2}{66\sqrt{11.55}}} = 4$$
"

Enchimento do tambor de 40% em volume

$$V_{\text{int}} = \frac{\pi D^2}{4} L = \frac{\pi (3,61)^2}{4} 5,7 = 58,1m^3$$

Densidade aparente da barra = 6247kg/m3 Carga das barras no moinho:

Carga =
$$58,1m^3 \cdot 0, 4 \cdot 6247 \frac{kg}{m^3} \frac{1t}{1000kg} = 145,2t$$

1926		=			- X		73096							
	Tabela 9 - distribuição sazonada de barras													
diâmetro	o da barra			Carg		ida (% em s máximo								
mm	pol.		125m	115mm	100mm	50mmn	75mm	65mm						
125	5,0		18											
115	4,5		22	20										
100	4,0		10	23	20									
90	3,5		14	20	27	20								
75	3,0		11	15	21	33	31							
65	2,5		7	10	15	21	39	34						
50	2,0		9	12	17	26	30	66						

Distribuição sazonada:

d _{barra}	4"	3,5"	3"	2,5"	2"
%	20	27	21	15	17
Massa [t]	29	39,2	30,5	21,8	24,7

EX23: (Chaves Pinto, Teoria e Prática do Tratamento de minérios, V03, Ex3, pg 630): Calcular um moinho de bolas que receba o produto do moinho do EX anterior, e o leve até 175 μm (80#). Nestas condições, o WI passa a ser 11,7 kWh/st. Admitir descarga por overflow.

Dados:

F=1200 μm P=175 μm WI=11,7 Q=250t/h

D=? L=? **Enchimento=?** Carga de bolas

1°- Cálculo da energia
$$E = W_i \left(\frac{10}{\sqrt{P}} - \frac{10}{\sqrt{F}} \right) = 11,7 \left(\frac{10}{\sqrt{175}} - \frac{10}{\sqrt{1200}} \right) = 5,47 \text{ kWh} / \text{st}$$

2º- Fatores:

EF1= 1: moagem à úmido

EF2= 1 (só se aplica à circuitos abertos)

EF3 só será determinado após a escolha preliminar do moinho.

EF4=1 Bolas:
$$F_o = 4000 \sqrt{\frac{13}{11,7}} = 4216, 4 : F < F_0$$

EF5=1 (só se aplica para moagem fina)

EF6=1 (só se aplica à moinhos de barras)

EF7=1 (Só se aplica à baixas RR (RR=6,9>6))

EF8=1 (só se aplica à moinhos de barras)

EX23: (Chaves Pinto, Teoria e Prática do Tratamento de minérios, V03, Ex3, pg 630):

- 3º- Cálculo da Potência Corrigida
- 4°- Escolha do moinho:

$$-W = 5,47 \frac{kWh}{st} \cdot \frac{1st}{0,907t} \cdot \frac{1,34HP}{1kW} \cdot \frac{250t}{h} = 2020HP$$

1a Tentativa: Escolhendo o moinho na tabela do fabricante:

15,5 x 15 ft (D=14,9ft e L=14,5ft)

Calculando EF3:

$$EF_3 = (8/D)^{0.2} \rightarrow EF_3 = (8/14.9)^{0.2} = 0.88$$

Corrigindo a potência:

$$-W = 2020HP*0.88 = 1764HP$$

2ª Tentativa: Podemos voltar na tabela e selecionar um moinho menor

14,5 x 14 ft (D=14 ft)

e 1588HP para 40% de enchimento

Calculando EF3: $EF_3 = (8/14)^{0.2} = 0.894$

Corrigindo a potência:

-W = 2020HP*0,894 = 1806HP

O moinho de 14,5 x 14 ft consome 1588 HP, Para consumir os 1734 HP precisamos aumentar o comprimento do moinho:

$$\frac{L'}{14ft} = \frac{1734HP}{1588HP} \to L' = 15,3ft$$

Moinho de bolas à úmido, circuito fechado D'=14,5ft (4,4 m) (interno ao revestimento D=14ft) L=15,3ft (4,7 m)

40% de carga de enchimento Velocidade de rotação 70,8% VC Potência no pinhão de 1734 HP

Motor: 2000HP

Tabela 7 - características de moinhos de bolas

	Diâmetro nominal				Velocidade do moinho				Pot		Diâmetro (D)				
			Compr					Descarga por overflow % vol. da carga			Descarga por diafragma % vol. da carga			interior ao revest.	
Ì	m	pés	m	pés	RPM	%VC	ft/min	35%	40%	45%	35%	40%	45%	m	pés
Ī	0,91	3,0	0,91	3,0	38,7	79,9	304	7	7	7	8	8	9	0,76	2,5
Ì	1,22	4,0	1,22	4,0	32,4	79,1	356	19	20	21	22	24	25	1,07	3,5
ı	1,52	5,0	1,52	5,0	28,2	78,1	399	42	45	47	49	52	54	1,37	4,5
Ì	1,83	6,0	1,83	6,0	25,5	78,0	441	80	85	89	93	99	103	1,68	5.5
1	2,13	7,0	2,13	7,0	23,2	77,2	474	137	145	151	158	168	175	1,98	6,5
	2,44	8,0	2,44	8,0	21,3	76,1	502	215	228	237	249	265	275	2,29	7,5
Ī	2,59	8,5	2,44	8,0	20,4	75,3	513	250	266	277	290	308	321	2,44	8,0
	2,74	9,0	2,74	9,0	19,7	75,0	526	322	342	356	373	397	413	2,55	8,5
	2,89	9,5	2,74	9,0	19,15	75,0	541	367	390	406	425	453	471	2,71	9,0
	3,05	10,0	3,05	10,0	18,65	75,0	557	462	491	512	535	570	593	2,89	9,5
	3,20	10,5	3,05	10,0	18,15	75,0	570	519	552	575	602	640	667	3,05	10,0
ĺ	3,35	11,0	3,35	10,5	17,3	72,8	565	610	649	676	708	753	784	3,17	10,4
	3,51	11,5	3,35	11,0	16,75	72,2	574	674	718	747	782	832	867	3,32	10,9
	3,66	12,0	3,66	12,0	16,3	71,8	584	812	864	900	942	1003	1044	3,47	11,4
	3,81	12,5	3,66	12,0	15,95	71,8	596	896	954	993	1040	1106	1152	3,63	11,9
	3,96	13,0	3,96	13,0	15,60	71,7	607	1063	1130	1177	1233	1311	1365	3,78	12,4
[4,11	13,5	3,96	13,0	15,30	71,7	620	1189	1266	1321	1379	1409	1532	3,93	12,9
	4 27	14.0	4.27	14.0	14.8	70.7	623	1375	1464	1527	1595	1699	1771	4.08	13.4
a	4.47	14.5	4,27	14.0	14,55	70,8	635	1492	1588	1656	1730	1842	1921	4,24	13,9
I	4 57	15.0	4.57	15.0	14.1	69.8	638	1707	1817	1893	1980	2107	2196	4.39	14.4
a	4.72	15.5	4,57	15,0	13,85	69,6	648	1838	1956	2037	2132	2234	2363	4,54	14,9
	4,88	16,0	4,88	16,0	13,45	68,9	651	2084	2217	2309	2417	2521	2678	4,69	15,4
	5,03	16,5	4,88	16,0	13,2	68,7	659	2229	2370	2468	2585	2750	2803	4,85	15,9
	5,18	17,0	5,18	17,0	13,0	68,7	670	2595	2764	2883	3010	3206	3344	5,00	16,4
	5,33	17,5	5,18	17,0	12,7	68,1	674	2750	2929	3053	3190	3397	3542	5,15	16,9
	5,49	18,0	5,49	18,0	12,4	67,5	678	3077	3276	3414	3560	3800	3961	5,30	17,4

2ª tentativa

1^a tentativa

EX23:(Chaves Pinto, Teoria e Prática do Tratamento de minérios, V03, Ex3, pg 630):

5°- Corpos moedores (pg 621):

Cálculo do diâmetro máximo da bola (Eq. Bond):

$$B = \sqrt{\frac{F}{k}} \cdot \sqrt[3]{\frac{\rho_s WI}{\% VC \sqrt{D}}} = \sqrt{\frac{1200}{350}} \cdot \sqrt[3]{\frac{3 \cdot 11.7}{70.8 \sqrt{14}}} = 0.944 \approx 1$$
"

Enchimento do tambor de 40% em volume Volume total:

$$V_{\text{int}} = \frac{\pi D^2}{4} L = \frac{\pi (4,3)^2}{4} 4,7 = 68,3m^3$$

Densidade aparente da bola = 4,64 t/m³ Carga das bolas no moinho:

Carga =
$$68,3m^3 \cdot 0,4 \cdot 4,64 \frac{t}{m^3} = 126,7t$$

Especificação:

- Moinho de bolas à úmido, circuito fechado
- D'=14,5ft (4,4 m) (interno D=14ft)
- L=15,3ft (4,7 m)
- 40% de carga de enchimento
- Velocidade de rotação 70,8% VC
- Potência no pinhão de 1734 HP
- Motor: 2000HP
- Com 123,7 t de Bolas de 1"

Atividades da Aula 12

Individual:

- ☐ Refaça os exercícios.
- ☐ Faça outros exercícios resolvidos do livro.

Empresa

- ☐ Baixar catálogos de moinhos e peneiradores industriais
- ☐ Começar a desenvolver o Projeto Orientado de Cominuição

