Classification Trees

David Rosenberg

New York University

April 7, 2016

Binary Decision Tree on \mathbb{R}^2

• Consider a binary tree on $\{(X_1, X_2) \mid X_1, X_2 \in R\}$

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.

General Tree Building Procedure

- Choose a splitting variable and a split point
 - Splits input space X into R_1 and R_2
- We need to modify
 - criteria for splitting nodes
 - method for pruning tree

Classification Trees

- Consider classification case: $\mathcal{Y} = \{1, 2, ..., K\}$.
- We need to modify
 - criteria for splitting nodes
 - method for pruning tree

Root Node, Continuous Variables

- Let $x = (x_1, ..., x_d) \in \mathbb{R}^d$.
- Splitting variable $j \in \{1, ..., d\}$.
- Split point $s \in R$.
- Partition based on *j* and *s*:

$$R_1(j,s) = \{x \mid x_j \le s\}$$

 $R_2(j,s) = \{x \mid x_j > s\}$

Classification Trees

- Let node m represent region R_m , with N_m observations
- Denote proportion of observations in R_m with class k by

$$\hat{p}_{mk} = \frac{1}{N_m} \sum_{\{i: x_i \in R_m\}} 1(y_i = k).$$

• Predicted classification for node m is

$$k(m) = \arg\max_{k} \hat{p}_{mk}.$$

• Predicted class probability distribution is $(\hat{p}_{m1}, \dots, \hat{p}_{mK})$.

Misclassification Error

- Consider node m representing region R_m , with N_m observations
- Suppose we predict

$$k(m) = \underset{k}{\operatorname{arg\,max}} \hat{p}_{mk}$$

as the class for all inputs in region R_m .

- What is the misclassification rate on the training data?
- It's just

$$1-\hat{p}_{mk(m)}$$
.

Classification Trees: Node Impurity Measures

- Consider node m representing region R_m , with N_m observations
- How can we generalize from squared error to classification?
- We will introduce some different measures of **node impurity**.
 - We want pure leaf nodes (i.e. as close to a single class as possible)
- We'll find splitting variables and split point minimizing node impurity.

Two-Class Node Impurity Measures

- Consider binary classification
- Let *p* be the relative frequency of class 1.
- Here are three node impurity measures as a function of p

Classification Trees: Node Impurity Measures

- Consider leaf node m representing region R_m , with N_m observations
- Three measures $Q_m(T)$ of **node impurity** for leaf node m:
 - Misclassification error:

$$1-\hat{p}_{mk(m)}$$
.

• Gini index:

$$\sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

Entropy or deviance:

$$-\sum_{k=1}^K \hat{p}_{mk} \log \hat{p}_{mk}.$$

Class Distributions: Pre-split

Class Distributions: Split Search

• (Maximizing information gain is equivalent to minimizing entropy)

Classification Trees: How exactly do we do this?

- Let R_L and R_R be regions corresponding to a potential node split.
- Suppose we have N_L points in R_L and N_R points in R_R .
- Let $Q(R_L)$ and $Q(R_R)$ be the node impurity measures.
- The we search for a split that minimizes

$$N_L Q(R_L) + N_R Q(R_R)$$

Classification Trees: Node Impurity Measures

- For building the tree, Gini and Entropy are more effective.
 - They push for more pure nodes, not just misclassification rate
- For pruning the tree, use misclassification error closer to risk estimate.

Comments about Trees

- Trees make no use of geometry
 - No inner products or distances
 - called a "nonmetric" method
 - Feature scale irrelevant
- Predictions are not continuous
 - not so bad for classification
 - may not be desirable for regression