A.A. 2006 - 2007 Basi di dati 1 Algebra relazionale

Trasparenze tratte da

Basi di dati I, AA 06-07, prof. Batini Atzeni et al. Basi di dati McGraw-Hill

Linguaggi per basi di dati

- · operazioni sullo schema
 - · DDL: data definition language
- · operazioni sui dati
 - · DML: data manipulation language
 - interrogazione ("query")
 - · aggiornamento

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Linguaggi di interrogazione per basi di dati relazionali

- · Procedurali
 - specificano le modalità di generazione del risultato ("come")
- Dichiarativi
 - specificano le proprietà del risultato ("che cosa")

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

3

Linguaggi di interrogazione

- · Algebra relazionale: procedurale
- Calcolo relazionale: dichiarativo (teorico)
- SQL (Structured Query Language): parzialmente dichiarativo (adottato nei DBMS)
- QBE (Query by Example): dichiarativo (adottato nei DBMS)

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Noi approfondiremo

- Algebra relazionale a lezione ed esercitazione
- · SQL a lezione ed esercitazione
- QBE accennato a esercitazione, quando parleremo del sistema Access

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

5

Algebra relazionale

- · Insieme di operatori
 - · su relazioni
 - · che producono relazioni
 - · e possono essere composti

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Operatori dell'algebra relazionale

- 1. Unione, Intersezione, Differenza
- · 2. Ridenominazione
- · 3. Selezione
- · 4. Proiezione
- 5. Join (Join naturale, Prodotto cartesiano, Theta-join)

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 7

Unione, intersezione, differenza

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Operatori insiemistici

- · le relazioni sono insiemi
- · i risultati debbono essere relazioni
- è possibile applicare unione, intersezione, differenza solo a relazioni definite sugli stessi attributi

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

9

Unione: tutte le n-ple dell'una e dell'altra

Laureati

Quadri

Matricola	Nome	Età	Matr	ricola	Nome	Età
7274	Rossi	42	92	297	Neri	33
7432	Neri	54	74	132	Neri	54
9824	Verdi	45	98	324	Verdi	45

Laureati ∪ **Quadri**

Matricola	Nome	Età
7274	Rossi	42
7432	Neri	54
9824	Verdi	45
9297	Neri	33

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Intersezione: le n-ple comuni

Laureati

Matricola Nome Età 7274 Rossi 42 7432 Neri 54 9824 Verdi 45

Quadri

Matricola	Nome	Età
9297	Neri	33
7432	Neri	54
9824	Verdi	45

Laureati ∩ **Quadri**

Matricola	Nome	Età
7432	Neri	54
9824	Verdi	45

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 11

Differenza: le n-ple della prima da cui sono tolte le n-ple della seconda

Laureati

Quadri

Matricola	Nome	Età	Matricola	Nome	Età
7274	Rossi	42	9297	Neri	33
7432	Neri	54	7432	Neri	54
9824	Verdi	45	9824	Verdi	45

Laureati - Quadri

Matricola	Nome	Età
7274	Rossi	42

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Una unione sensata ma impossibile, perche' le relazioni sono su attributi diversi

Paternità

Maternità

Padre	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

Madre	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

Paternità ∪ Maternità ??

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Operatore di ridenominazione

- Per poter applicare operazioni insiemistiche come unione, intersezione, differenza a relazioni su attributi (in parte) diversi, e' necessario ridenominare attributi, in modo da uniformare i nomi
- Questo viene fatto dall' operatore di ridenominazione

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Ridenominazione

- operatore monadico (cioe' con un argomento)
- "modifica lo schema" lasciando inalterata l'istanza dell'operando

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

19

Paternità

Padre	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

$REN_{Genitore \leftarrow Padre}$ (Paternità)

Genitore	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Paternità			REN _{Genitor}	e ← Padre	(Paternità)
Padre Adamo Adamo Abramo	Figlio Abele Caino Isacco		Genitore Adamo Adamo Abramo	Figlio Abele Caino Isacco	
Maternità		R	EN _{Genitore}	← Madre (Maternità)
Madre	Figlio		Genitore	Figlio	
Eva	Abele		Eva	Abele	
Eva	Set		Eva	Set	
Sara	Isacco		Sara	Isacco	
9/10/2001	At		Paraboschi-Torlon dati, Capitolo 3	e,	21

Genitore Adamo Adamo Abramo	Figlio Abele Caino Isacco		ore ← Padre ore ← Madre		
REN _{Genitor}	e ← Madre	, (Maternità)	Genitore Adamo Adamo	Figlio Abele Caino	
Genitore Eva Eva Sara	Figlio Abele Set Isacco		Abramo Eva Eva Sara	Isacco Abele Set Isacco	

Impiegati	Cognome	Ufficio	Stipendio		
	Rossi	Roma	55		
	Neri	Milano	64		
Onoroi	Cognome	Fahhrica	Salario		
Operai					
	Bruni	Monza	45		
	Verdi	Latina	55		
	REN _{Sede, Retribuzione} ← Ufficio, Stipendio (Impiegati) REN _{Sede, Retribuzione} ← Fabbrica, Salario (Operai)				
	Cognome	Sede Re	etribuzione		
	Rossi	Roma	55		
	Neri	Milano	64		
	Bruni	Monza	45		
	Verdi	Latina	55		
9/10/2001		Paraboschi-Torlo dati, Capitolo 3	one,	23	

2. Selezione Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

9/10/2001

Selezione

- operatore monadico
- permette di selezionare un sottoinsieme delle ennuple
- · produce un risultato che
 - · ha lo stesso schema dell'operando
 - contiene un sottoinsieme delle ennuple dell'operando,
 - quelle che soddisfano una condizione espressa dall' operatore

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 25

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Neri	Napoli	64

- impiegati che
 - · guadagnano più di 50
 - · guadagnano più di 50 e lavorano a Milano
 - hanno un cognome uguale al nome della filiale presso cui lavorano

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Selezione: sintassi

sintassi

SEL Condizione (Operando)

 Condizione: espressione booleana (come quelle dei vincoli di ennupla)

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 27

Sintassi della condizione (anche detta formula proposizionale)

- Data una relazione r(X), e' una formula ottenuta combinando con i connettivi OR, AND, e NOT condizioni atomiche del tipo
- · A CONFR B oppure A CONFR c, dove
- 1. CONFR e' un operatore di confronto (=, >, ecc.)
- 2. A e B sono attributi in X sui cui valori CONFR abbia senso
- 3. c e' una costante per cui il confronto CONFR sia definito

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Esempi

Impiegati

me Filiale	Stipendio
si Roma	55
Milano	64
o Milano	44
Napoli	64
	si Roma Milano o Milano

- · impiegati che
 - · guadagnano più di 50
 - · STIPENDIO > 50
 - · guadagnano più di 50 e lavorano a Milano
 - · STIPENDIO > 50 AND FILIALE = 'Milano'
 - hanno un cognome uguale al nome della filiale presso cui lavorano
 - · COGNOME = FILIALE

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 29

Altri esempi

- ETA' > 20
- · ETA' > 20 AND STIPENDIO < 40
- SESSO = "M" OR ETA' < 50

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Selezione: semantica

 il risultato contiene le ennuple dell'operando che soddisfano la condizione (cioe' su cui la condizione e' vera)

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 31

· impiegati che guadagnano più di 50

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
5698	Neri	Napoli	64

SEL_{Stipendio > 50} (Impiegati)

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

 impiegati che guadagnano più di 50 e lavorano a Milano

Impiegati

Matricola	Cognome	Filiale	Stipendio
5998	Neri	Milano	64

SEL_{Stipendio > 50 AND Filiale = 'Milano'} (Impiegati)

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 33

 impiegati che hanno il cognome uguale al nome della filiale presso cui lavorano

Impiegati

Matricola	Cognome	Filiale	Stipendio
9553	Milano	Milano	44

SEL Cognome = Filiale (Impiegati)

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Selezione con valori nulli

Impiegati

Matricola	Cognome	Filiale	Età
7309	Rossi	Roma	32
5998	Neri	Milano	45
9553	Bruni	Milano	NULL

SEL Età > 40 (Impiegati)

 la condizione atomica è vera solo per valori non nulli

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

35

Un risultato non desiderabile

Impiegati

	_			
Matr	icola	Cognome	Filiale	Età
73	809	Rossi	Roma	32
59	98	Neri	Milano	45
95	53	Bruni	Milano	NULL

SEL _{Età>30} (Impiegati) ∪ SEL _{Età≤30} (Impiegati) produce come risultato una tabella uguale o diversa da Persone?

Diversa!

 Perché? Perché le selezioni vengono valutate separatamente!

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Altro risultato non desiderabile

Impiegati

l	Matricola	Cognome	Filiale	Età	
	7309	Rossi	Roma	32	
	5998	Neri	Milano	45	
	9553	Bruni	Milano	NULL	

· Ma anche

$$\begin{array}{c} \text{SEL}_{\text{Età>30} \vee \text{Età\leq30}} \text{(Impiegati)} \\ \neq \text{Impiegati} \end{array}$$

 Perché? Perché anche le condizioni atomiche vengono valutate separatamente!

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 37

SEL Età > 40 (Impiegati)

- la condizione atomica è vera solo per valori non nulli
- per riferirsi ai valori nulli esistono forme apposite di condizioni:

IS NULL IS NOT NULL

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Valutazione della selezione

· A questo punto:

$$\begin{array}{c} \text{SEL}_{\,\text{Et\grave{a}}>30} \, (\text{Persone}) \cup \, \text{SEL}_{\,\text{Et\grave{a}}\leq30} \, (\text{Persone}) \, \cup \\ \\ \text{SEL}_{\,\text{Et\grave{a}}\,\,\text{IS}\,\,\text{NULL}} \, (\text{Persone}) \end{array}$$

=

SEL $_{Et\grave{a}>30\ \lor\ Et\grave{a}\leq30\ \lor\ Et\grave{a}}$ Is NULL (Persone)

=

Persone

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Proiezione

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 41

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Neri	Napoli	55
5998	Neri	Milano	64
9553	Rossi	Roma	44
5698	Rossi	Roma	64

- Risolve un'altra esigenza del tipo
 - per tutti gli impiegati voglio:
 - · matricola e cognome
 - · cognome e filiale

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Selezione e proiezione

- operatori "ortogonali"
- · selezione:
 - decomposizione orizzontale
- · proiezione:
 - decomposizione verticale

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Proiezione

- · operatore monadico
- · produce un risultato che
 - ha <u>una parte</u> degli attributi dell'operando
 - contiene ennuple a cui contribuiscono tutte le ennuple dell'operando

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 45

Proiezione, sintassi e semantica

· sintassi

PROJ ListaAttributi (Operando)

- semantica
 - il risultato contiene le ennuple dell'operando ristrette ai soli attributi nella ListaAttributi

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

 Trovare matricola e cognome di tutti gli impiegati

Matricola	Cognome
7309	Neri
5998	Neri
9553	Rossi
5698	Rossi

PROJ Matricola, Cognome (Impiegati)

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 47

Trovare cognome e filiale di tutti gli impiegati
 Attenzione!
 Dobbiamo

Cognome Filiale
Neri Napoli
Neri Milano
Rossi Roma

Dobbiamo
eliminare le
ennuple ripetute
Una relazione e'
un insieme, e un
insieme non ha
elementi uguali

PROJ Cognome, Filiale (Impiegati)

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Cardinalità delle proiezioni

- La cardinalita' di una relazione e' il numero delle sue ennuple; si indica con |R|
- · una proiezione
 - · contiene al più tante ennuple quante l'operando
 - · può contenerne di meno (vedi esempio precedente)

Impiegati PROJ Cognome (Impiegati) MatricolaCognome Filiale Stipendio Cognome 7309 Neri Napoli 5998 Neri Milano 64 Neri 44 9553 Rossi Roma Rossi 5698 Rossi Roma 64 9/10/2001 Atzeni-Ceri-Paraboschi-Torlone, 49 Basi di dati, Capitolo 3

Cardinalità delle proiezioni

- · Vale la proprieta'
- se X è una superchiave di R, allora $PROJ_X(R)$ contiene esattamente tante ennuple quante R
- Per la definizione di superchiave (ogni superchiave compare una volta sola nella relazione)

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Selezione e proiezione

 Combinando selezione e proiezione, possiamo estrarre interessanti informazioni da una relazione

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Neri	Napoli	55
5998	Neri	Milano	64
9553	Rossi	Roma	44
5698	Rossi	Roma	64

9/10/2001 Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

53

Selezione e proiezione

 Combinando selezione e proiezione, possiamo estrarre interessanti informazioni da una relazione

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

 matricola e cognome degli impiegati che guadagnano più di 50

Ν	<i>l</i> latricola	Cognome
	7309	Rossi
	5998	Neri
	5698	Neri

PROJ_{Matricola,Cognome} (SEL_{Stipendio > 50} (Impiegati))

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 55

- Combinando selezione e proiezione, possiamo estrarre informazioni da <u>una</u> relazione
- non possiamo però correlare, mettere insieme, informazioni presenti in relazioni diverse

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Join

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 57

Join

- il join è l'operatore più interessante dell'algebra relazionale
- permette di correlare, mettere insieme, integrare dati che si trovano in relazioni diverse

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Prove scritte in un concorso pubblico

- I compiti sono anonimi e ad ognuno è associata una busta chiusa con il nome del candidato
- Ciascun compito e la relativa busta vengono contrassegnati con uno stesso numero

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 59

Dati disponibili **Mario Rossi** 25 1 2 2 13 Nicola Russo Mario Bianchi 3 27 3 28 Remo Neri Compiti Buste chiuse 9/10/2001 Atzeni-Ceri-Paraboschi-Torlone, 60 Basi di dati, Capitolo 3

Schema corrispondente e Join delle due rel.

Numero	Voto	Numero	Candidato
1	25	1	Mario Rossi
2	13	2	Nicola Russo
3	27	3	Mario Bianchi
4	28	4	Remo Neri

Numero	Candidato	Voto
1	Mario Rossi	25
2	Nicola Russo	13
3	Mario Bianchi	27
4	Remo Neri	28

9/10/2001 Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 61

Join naturale

- · operatore binario (generalizzabile)
- produce un risultato
 - sull'unione degli attributi degli operandi
 - con ennuple costruite ciascuna a partire da una ennupla di ognuno degli operandi

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Join naturale, sintassi e semantica

- $\cdot R_1(X_1), R_2(X_2)$
- $\cdot R_1$ join R_2 è una relazione su X_1X_2

{t su X_1X_2 | esistono $t_1 \in R_1$ e $t_2 \in R_2$ con $t[X_1] = t_1$ e $t[X_2] = t_2$ }

Quindi contribuiscono le ennuple che hanno gli stessi valori negli attributi comuni

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Nello schema precedente					
Nume	ro Voto	Numero C	andidate	0	
1	25	(1) M	ario Ros	si	
2	13	2 Nic	coia Rus	so	
3	27	3 Ma	rio Bian	chi	
4	28	4 R	Remo Ne	ri	
	Numero	Candidato	Voto		
	1	Mario Rossi	25		
	2	Nicola Russo	13		
	3	Mario Bianchi	27		
	4	Remo Neri	28		
9/10/2001 Atzeni-Ceri-Paraboschi-Torlone, 64 Basi di dati, Capitolo 3				64	

Impiegato	Reparto	F	Reparto	Саро
Rossi	Α		Α	Mori
Neri	В		В	Bruni
Bianchi	В			

Impiegato	Reparto	Capo
Rossi	Α	Mori
Neri	В	Bruni
Bianchi	В	Bruni

- ogni ennupla contribuisce al risultato:
 - · join completo

9/10/2001 Atzeni-Ceri-Paraboschi-Torlone,

Basi di dati, Capitolo 3

65

Un join non completo

Impiegato	Reparto	Reparto	Capo
Rossi	Α	В	Mori
Neri	В	C	Bruni
Bianchi	В		

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Un join vuoto

Impiegato	Reparto	Reparto	Capo
Rossi	Α	D	Mori
Neri	В	С	Bruni
Bianchi	B		

Impiegato Reparto Capo

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 67

Un join completo, con $n \times m$ ennuple

Impiegato	Reparto	Reparto	Capo
Rossi	В	В	Mori
Neri	В	В	Bruni

Impiegato	Reparto	Capo
Rossi	В	Mori
Rossi	В	Bruni
Neri	В	Mori
Neri	В	Bruni

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Cardinalità del join - proprieta' - 1

- · Il join di R_1 e R_2 contiene un numero di ennuple compreso fra zero e il prodotto di $|R_1|$ e $|R_2|$
- $\cdot R_1(A,B)$, $R_2(B,C)$
- · in generale

$$0 \le |R_1 \text{ join } R_2| \le |R_1| \times |R_2|$$

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

69

Cardinalità del join - proprieta' - 2

- $\cdot R_1(A,B)$, $R_2(\underline{B},C)$
- se il join coinvolge una chiave di R_2 , allora il numero di ennuple è compreso fra zero e $|R_1|$

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Cardinalità del join - proprieta' - 3

- $\cdot R_1(A,B)$, $R_2(\underline{B},C)$
- se B è chiave in R_2 ed esiste vincolo di integrità referenziale fra B (in R_1) e R_2 : $|R_1 \text{ JOIN } R_2| = |R_1|$

9/10/2001

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 71

Proprietà del Join

· Il join è commutativo e associativo

$$r_1 \bowtie r_2 = r_2 \bowtie r_1$$

 $r_1 \bowtie (r_2 \bowtie r_3) = (r_1 \bowtie r_2) \bowtie r_3$

Join, un problema

Impiegato	Reparto	Reparto	Capo
Rossi	Α	В	Mori
Neri	В	C	Bruni
Bianchi	В		

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori

 alcune ennuple non contribuiscono al risultato: vengono "tagliate fuori"

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 73

Join esterno

- Il join esterno estende, con valori nulli, le ennuple che verrebbero escluse da un join del tipo precedente (interno)
- · esiste in tre versioni:
 - · sinistro, destro, completo

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Join esterno

- Sinistro → LEFT: mantiene tutte le ennuple del primo operando, estendendole con valori nulli, se necessario
- Destro → RIGHT: ... del secondo operando ...
- Completo → FULL: ... di entrambi gli operandi ...

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Impie	egati		F	Reparti		
Impi	iegato R	eparto	F	Reparto	Ca	аро
Ro	ossi	Α		В	M	lori
N	leri	В		С	Br	runi
Bia	ınchi	В				
	Impiegat	i Join	. Re	parti		
	Impiegat Impiega		•		00	
		ito Rep	•	•		
	Impiega	ito Rep	art	o Ca _l	ri	
	Impiega Neri	ito Rep I	oart B	o Ca _l Mo	ri ri	
	Impiega Neri Bianch	ito Rep I	part	o Ca _l Mo Mo	ri ri	

	Impie	egati			Rep	arti			
	Impi	egato	Repa	rto	Rep	arto	Ca	ро	
	Ro	ossi	Α		E	3	M	ori	
	N	leri	В		(;	Br	uni	
	Bia	nchi	В						
	Impiegati JOIN _{RIGHT} Reparti								
		Impiegato Reparto Capo)			
		Ne	ri	В		Mori			
		Bian	chi	В		Mori			
		NUL	.L	C		Brun			
9/10	/2001		Atzeni-Cer Basi o	i-Parabos di dati, Ca		ne,			78

Impie	egati			Rep	arti			
Impi	egato	Repart	0	Rep	arto	Ca	ро	
Ro	ossi	Α		E	3	M	ori	
N	leri	В		C	;	Br	uni	
Bia	nchi	В						
		jati join, gato R			ti Capo			
	Ne		В		Mori			
	Bian	chi	В		Mori			
	Ros	ssi	Α		NULL			
	NUL	.L	C		Brun	i		
9/10/2001		Atzeni-Ceri-P Basi di d			ne,			79

Prodotto cartesiano

- un join naturale su relazioni che non hanno attributi in comune
- contiene sempre un numero di ennuple pari al prodotto delle cardinalità degli operandi (le ennuple sono tutte combinabili)

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Impie	gati		Reparti		
Impie	gato Re	parto	Codice	Capo	
Ros	ssi	Α	Α	Mori	
Ne	ri	В	В	Bruni	
Bian	chi	В			
Impie	egati JOIN	l Reparti			
Impi	egato Re	eparto C	Codice	Capo	
Ro	ssi	Α	Α	Mori	
Ro	ssi	Α	В	Bruni	
N	eri	В	Α	Mori	
N	eri	В	В	Bruni	
Bia	nchi	В	Α	Mori	
Bia	nchi	В	В	Bruni	
9/10/2001		ni-Ceri-Parabosc Basi di dati, Cap			81

· Il prodotto cartesiano, in pratica, ha senso solo se seguito da selezione:

SEL_{Condizione} (R₁ JOIN R₂)

• L'operazione viene chiamata theta-join e indicata con

 R_1 JOIN_{Condizione} R_2

9/10/2001 Atzeni-Ceri-Paraboschi-Torlone,

Basi di dati, Capitolo 3

Perché "theta-join"?

- se l'operatore è sempre l'uguaglianza (=) allora si parla di equi-join

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Impiegato Reparto Rossi A A Mori Neri B B Bruni Bianchi B Impiegati JOIN _{Reparto=Codice} Reparti Impiegato Reparto Codice Capo Rossi A A Mori Neri B B Bruni	Impiegati		Reparti	
Neri B B Bruni Bianchi B Impiegati JOIN _{Reparto=Codice} Reparti Impiegato Reparto Codice Capo Rossi A A Mori	Impiegato	Reparto	Codice	Capo
Bianchi B Impiegati JOIN _{Reparto=Codice} Reparti Impiegato Reparto Codice Capo Rossi A A Mori	Rossi	Α	Α	Mori
Impiegati JOIN _{Reparto=Codice} Reparti Impiegato Reparto Codice Capo Rossi A A Mori	Neri	В	В	Bruni
Impiegato Reparto Codice Capo Rossi A A Mori	Bianchi	В		
Rossi A A Mori	Impiegati J	OIN _{Reparto=C}	_{odice} Repart	ti
	Impiegato	Reparto	Codice	Capo
Neri B B Bruni	Rossi	Α	Α	Mori
	Neri	В	В	Bruni
Bianchi B B Bruni	Bianchi	В	В	Bruni
	0/2001	Atzeni-Ceri-Parabo Basi di dati, C	,	<u>'</u>

Impiegati	Donarto	Reparti	Cono		
Impiegato Rossi	Reparto A	Reparto	Capo Mori		
Neri	В	В	Bruni		
Bianchi	В				
Impiegati JOIN Reparti					

Join naturale e equijoin

- Il join naturale utilizza implicitamente i nomi degli attributi per stabilire la condizione, l'equijoin li indica esplicitamente
- I DBMS tipicamente non permettono il join naturale (solo ultime versioni di SQL)
- Il join naturale puo' essere simulato per mezzo degli altri operatori ...

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 87

Join naturale ed equi-join

Impiegati Reparti

Impiegato Reparto Capo

Impiegati JOIN Reparti

PROJ_{Impiegato,Reparto,Capo} (SEL_{Reparto=Codice}
(Impiegati JOIN REN_{Codice ← Reparto} (Reparti)))

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Quanti join abbiamo studiato?

- · Join naturale
- · Join completi e incompleti
- · Prodotto cartesiano
- · THETA Join
- · Equi join

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 89

Join e ridenominazione

r(X) JOIN r(X)=r(X)

Per eseguire il join di una relazione con se stessa in modo significativo bisogna usare la ridenominazione

ricordiamo che la ridenominazione

Modifica il nome di un sottoinsieme degli attributi di una relazione lasciando inalterato il contenuto delle relazione

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Data la relazione Genitori (genitore, figlio) creare la relazione Nonni (nonno, nipote)

genitori

Genito	re figlio
Luca	Anna
Maria	Anna
Giorgio	Luca
Silvia	Maria
Enzo	Maria

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 91

Data la relazione Genitori (genitore, figlio) creare la relazione Nonni (nonno, nipote)

genitori

Cenitore figlio
Luca Anna
Maria Anna
Giorgio Luca
Silvia Maria
Enzo Maria

REN_{nonno, genitore <-- genitore, figlio} (genitori)

Nonno (genitore
Luca	Anna
Maria	Anna
Giorgio	Luca
Silvia	Maria
Enzo	Maria

REN_{nonno, genitore <-- genitore, figlio} (genitori) join genitori

Nonno	Nonno Genitore figlio							
Giorgio	Luca	Anna						
Silvia	Maria	Anna						
Enzo	Maria	Anna						

Nonni= ($PROJ_{nonno, nipote} REN_{nipote \leftarrow figlio}$

(Ren_{nonno, genitore <-- genitore, figlio} (genitori) join genitori))

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Interrogazioni in algebra relazionale

 Una interrogazione e' una funzione che, applicata a istanze di basi di dati produce relazioni. Meglio:

Dato uno schema R di base di dati, una interrogazione e' una funzione che per ogni istanza r di R produce una relazione su un dato insieme di attributi X.

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

93

Esempi di interrogazioni

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Partiamo	dallo sc	hema e	ist	anza qui	sotto
Impiegati	Matricola	Nome	Età	Stipendio	
	7309	Rossi	34	45	
	5998	Bianchi	37	38	
	9553	Neri	42	35	
	5698	Bruni	43	42	
	4076	Mori	45	50	
	8123	Lupi	46	60	
Supervisione		Impiega	to	Capo	
•		7309		5698	
		5998		5698	
				4076	
		5698		4076	
		4076		8123	
9/10/2001		-Ceri-Parabosch asi di dati, Capi		ne,	95

In realta	ı' la strı	uttura	e' p	oiu' comp	oless
Impiegati	Matricola	Nome	Età	Stipendio	
	7309	Rossi	34	45	
	5998	Bianchi	37	38	
	9553	Neri	42	35	
	5698	Bruni	43	42	
	4076	Mori	45	50	
	8123	Lupi	46	60	
Supe	rvisione	Impiega	ta_	Capo	
		7309		5698	
Anche i	capi	5998		5698	
Sono imp	ienatil	9553		4076	
	egu i i:	5698		4076	
		4076		8123	
9/10/2001		i-Ceri-Paraboscl lasi di dati, Capi		e,	97

Programma

- Esprimere 6 interrogazioni, via via piu' complesse:
- 1. Trovare matricola, nome, età e stipendio degli impiegati che guadagnano più di 40 mila €
- 2. Trovare matricola, nome ed età degli impiegati che guadagnano più di 40mila €
- 3. Trovare le matricole dei capi degli impiegati che (gli impiegati!) guadagnano più di 40 mila €
- 4. Trovare nome e stipendio dei capi degli impiegati che (gli impiegati!) guadagnano più di 40 mila euro
- 5. Trovare gli impiegati che guadagnano più del proprio capo, mostrando matricola, nome e stipendio dell'impiegato <u>e</u> del capo
- 6. Trovare le matricole dei capi i cui impiegati guadagnano tutti più di 40 mila €

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 99

 1. Trovare matricola, nome, età e stipendio degli impiegati che guadagnano più di 40 mila €

SEL_{Stipendio>40}(Impiegati)

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

 $SEL_{Stipendio>40}$ (Implegati)

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 101

- Seconda interrogazione
- 2. Trovare matricola, nome ed età degli impiegati che guadagnano più di 40mila €
- Qui abbiamo bisogno di una proiezione per eliminare gli attributi non richiesti

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

- 3. Trovare le matricole dei capi degli impiegati che (gli impiegati!) guadagnano più di 40 mila €
- · Quali sono gli attributi coinvolti?

Impiegati (Matricola, Nome, Eta', Stipendio) Supervisione (Impiegato, Capo)

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

- Trovare le matricole dei capi degli impiegati che (gli impiegati!) guadagnano più di 40 mila €
- Qui abbiamo bisogno di un join perche' l'interrogazione riguarda attributi di entrambe le relazioni

Impiegati (Matricola, Nome, Eta', Stipendio) Supervisione (Impiegato, Capo)

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

- Proviamo a individuare un problema intermedio, che poi porta alla soluzione completa →
- Trovo prima gli impiegati che guadagnano più di 40mila €

 $SEL_{Stipendio>40}$ (Impiegati)

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 107

Quale tabella viene selezionata?

Impiegati

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45
5998	Bianchi	37	38
9553	Neri	42	35
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

SEL_{Stipendio>40}(Impiegati)

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Soluzione

Impiegati	Matricola	Nome	Età	Stipendio
	7309	Rossi	34	45
	8123	Lupi	46	60
	5698	Bruni	43	42
	4076	Mori	45	50

Supervisione

Impiegato	Capo
7309	5698
5998	5698
9553	4076
5698	4076
4076	8123

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 109

2. Poi trovo i capi cercando tali impiegati nella relazione Supervisione Impiegati (Matricola, Nome, Eta', Stipendio) Supervisione (Impiegato, Capo)

Supervisione JOIN Impiegato=Matricola

 $(SEL_{Stipendio>40}(Impiegati))$

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Nuova relazione

Impiegati-Capi (Impiegato, Nome, Eta', Stipendio, Capo)

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 111

· E infine trovo le matricole dei capi

 $\mathsf{PROJ}_{\mathit{Capo}}$

(Supervisione JOIN Impiegato=Matricola

(SEL_{Stipendio>40}(Impiegati)))

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

 Trovare le matricole dei capi degli impiegati che guadagnano più di 40mila €

PROJ_{Capo} (

Supervisione JOIN Impiegato=Matricola

(SEL_{Stipendio>40}(Impiegati)))

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 113

Relazione risultato

CAPO

5698

4076

8123

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Metodologia

- 1. Individua le relazioni coinvolte nella specifica della interrogazione, attraverso gli attributi citati e le condizioni
- 2. Individua i tipi di operazioni necessarie
- 3. Individua un possibile ordinamento delle operazioni che porta ad ottenere il risultato richiesto

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Per le prime tre interrogazioni

<u> </u>		
Specifica della interrogazione	Relazioni	Operazioni
1. Trovare matricola, nome, età e stipendio degli impiegati che guadagnano più di 40 mila	Impiegato	Selezione
2. Trovare matricola, nome ed età degli impiegati che guadagnano più di 40mila €	Impiegato	Selezione Proiezione
3. Trovare le matricole dei capi degli impiegati che guadagnano più di 40mila €	Impiegato Supervisione	Selezione Join Proiezione

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 117

Nuova interrogazione

 4. Trovare nome e stipendio dei capi degli impiegati che (gli impiegati!) guadagnano più di 40 mila euro

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Soluzione

1. Qui ci possiamo semplificare la vita utilizzando la interrogazione precedente, che produce una relazione con un attributo CAPO.

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

 Trovare nome e stipendio dei capi degli impiegati che (gli impiegati) guadagnano più di 40 mila € - Prima parte

Impiegati JOIN Matricola-Capo

PROJ_{Capo}(Supervisione JOIN _{Impiegato=Matricola} (SEL_{Stipendio>40}(Impiegati))))

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 121

Soluzione: passo 2

2. La relazione con attributo CAPO va messa in JOIN con la relazione Impiegato, e poi vanno estratti gli attributi NOME e STIPENDIO

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

 Trovare nome e stipendio dei capi degli impiegati che (gli impiegati) guadagnano più di 40 mila €

Per le prime quattro interrogazioni

Specifica della interrogazione	Relazioni	Operazioni
1. Trovare matricola, nome, età e stipendio degli impiegati che guadagnano più di 40 mila	Impiegato	Selezione
2. Trovare matricola, nome ed età degli impiegati che guadagnano più di 40mila €	Impiegato	Selezione Proiezione
3. Trovare le matricole dei capi degli impiegati che guadagnano più di 40mila €	Impiegato Supervisione	Selezione Join Proiezione
Trovare nome e stipendio dei capi degli impiegati che <u>(gli impiegati)</u> guadagnano più di 40 mila €	Impiegato Supervisione Impiegato	Selezione Join Proiezione Join Proiezione
9/10/2001 Atzeni-Ceri-Paraboschi-Torlo Basi di dati, Capitolo 3	ne,	124

Struttura concettuale dello schema:

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 125

5. Trovare gli impiegati che guadagnano più del proprio capo, mostrando matricola, nome e stipendio dell'impiegato <u>e</u> del capo

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

5. Trovare gli impiegati che <u>guadagnano più</u> del proprio capo, mostrando matricola, <u>nome e stipendio dell'impiegato e del capo</u>

Qui il problema e' diverso, perche' nella selezione finale abbiamo bisogno di una relazione, risultato di JOIN, <u>in cui compaiono sia Impiegati che Capi, con il nome e stipendio</u>

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Per le prime quattro interrogazioni

Specifica della interrogazione	Relazioni	Operazioni
Trovare nome e stipendio dei capi degli impiegati che <u>(gli impiegati)</u> guadagnano più di 40 mila €	Impiegato Supervisione Impiegato	Selezione Join Proiezione Join Proiezione
Trovare gli impiegati che <u>guadagnano</u> <u>più</u> del proprio capo, mostrando matricola, <u>nome e stipendio</u> <u>dell'impiegato e del capo</u>	Impiegato Supervisione Impiegato	Selezione Join Proiezione Ridenominazione Join Proiezione

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 129

Soluzione: primo passo

Abbiamo bisogno di due relazioni, una per fare la selezione e un'altra per gli impiegati, con nome e stipendio. Costruiamo:

- 1. una relazione che mette insieme impiegati e capi, e
- 2. un' altra che rinomina gli attributi degli impiegati

 $REN_{MatrC,NomeC,StipC,EtàC} \leftarrow Matr,Nome,Stip,Età(Impiegati)$

(Supervisione JOIN Impiegato=Matricola Impiegati)))

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Soluzione: secondo passo
ora dobbiamo 1. unirle con un join, 2. selezionare e 3.
proiettare

PROJ_{Matr,Nome,Stip,MatrC,NomeC,StipC}

(SEL_{Stipendio>StipC}(

REN_{MatrC,NomeC,StipC,EtàC}

Matr,Nome,Stip,Età(Impiegati)

JOIN MatrC=Capo

(Supervisione JOIN Impiegato=Matricola Impiegati)))

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 131

Soluzione

 $\mathsf{PROJ}_{\mathsf{Matr},\mathsf{Nome},\mathsf{Stip},\mathsf{Matr}\mathcal{C},\mathsf{Nome}\mathcal{C},\mathsf{Stip}\mathcal{C}}$

(SEL_{Stipendio}>StipC(

 $\begin{array}{l} \text{REN}_{\text{MatrC},\text{NomeC},\text{StipC},\text{EtàC}} \leftarrow \\ \text{Matr},\text{Nome},\text{Stip},\text{Età} \\ \end{array} \\ \begin{array}{l} \text{Implegati} \\ \end{array}$

 $\text{JOIN}_{\text{MatrC=Capo}}$

(Supervisione JOIN Impiegato=Matricola Impiegati)))

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

- 6. Trovare le matricole dei capi i cui impiegati guadagnano tutti più di 40 mila €
- Non si puo' esprimere direttamente nell'algebra (mancano i "quantificatori universali", manca l'equivalente del <u>tutti</u>)
- · Pero' si puo' rifrasare

Togliere dai capi (DIFF) quelli per i quali almeno un impiegato guadagna meno di, oppure 40 mila euro

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 133

Proviamo a tradurre la frase che esprime la interrogazione in un insieme di frasi piu' semplici, che corrispondono a operatori dell'algebra relazionale

- 1. Trova tutti i capi, poi
- 2. Trova gli impiegati che guadagnano meno o 40 mila euro,
- · 3. Poi trova i loro capi
- · 4. Togli dal primo insieme il secondo

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Conservazione e perdita di informazioni: il caso di proiezioni e join nell'algebra relazionale

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Join e proiezioni

- Join e proiezioni sono operazioni complementari:
- Le proiezioni "spezzano" relazioni in frammenti, percio' separano informazioni "che stavano insieme"
- I join ricompongono frammenti in relazioni piu' grandi, quindi ricompongono informazioni che erano separate

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 139

Join e proiezioni: caso 1 composizione seguita da decomposizione

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

	-	Toin	e proie	zic	oni: ca	so 1	
	Impiegato Reparto C			Саро	Rep		
	Ros	ssi	Α		В	Мо	ri
	Ne	ri	В		С	Bru	ni
	Bian	chi	В				
		N	egato Re leri Inchi	epa B B	Ň	ooRep Mori Mori	
	Impie	gato	Reparto	ı	Reparto	Саро	Rep
	Neri		В		В	Мо	ri
	Bian	chi	В				
9/10	/2001		Atzeni-Ceri-Paral Basi di dati,		,		141

Joii	n e proiezior ogni reparto			•
	Impiegato R Neri Bianchi	Reparto B A	CapoRep Mori Rossi	
N	iegato Repart Ieri B Inchi A			oRep ori ssi
	Impiegato Neri Bianchi	Reparto B A	CapoRep Mori Rossi	
9/10/2001		i-Paraboschi-To li dati, Capitolo	,	143

Join e Proiezioni: caso 2 - esempio 2							
i	i reparti possono avere piu' capi						
	Impiegato	Reparto	Capodilmp				
	Neri	В	Mori				
	Bianchi	В	Bruni				
	Verdi	Α	Bini				
Impieg	ato Reparto	Rep	arto Capodi	Imp			
Neri	_	E	3 Mor	i			
Bianc	:hi B	E					
Verd	li A	A	A Bin				
	Impiegato	Reparto	Capodilmp				
	Neri	В	Mori				
	Bianchi	В	Bruni				
	Neri	В	B Bruni				
	Bianchi	В	Mori				
9/10/2001	Verdi	A lati, Capitolo 3	Bini	144			
	Dasi di C	iau, Capitolo 3					

Join e proiezioni: proprieta'

$$\cdot R_{1}(X_{1}), R_{2}(X_{2})$$

Caso 1:
$$PROJ_{X_1}$$
 (R $_1$ JOIN R $_2$) \subseteq R $_1$

• R(X),
$$X = X_1 \cup X_2$$

Caso 2:
$$(PROJ_{X_1}(R)) JOIN (PROJ_{X_2}(R)) \supseteq R$$

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 145

Quando accade nel caso 2 che $(PROJ_{x_1}(R)) JOIN (PROJ_{x_2}(R)) = R?$

- Cioe', quando accade che separando (decomponendo) uno schema e poi ricomponendolo otteniamo lo stesso risultato?
- Proprieta' di DECOMPOSIZIONE SENZA PERDITA:
- Se X0 = X1 ∩ X2 e' chiave di R1 o di R2 allora decomponendo e ricomponendo otteniamo il risultato di partenza

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Tornando ai due esempi del caso 2 Esempio 1

- · R (Impiegato, Reparto, Caporeparto)
- · Decomposta in
 - R1 (Impiegato, Reparto)
 - R2(Reparto, Caporeparto)
- · REPARTO e' chiave della seconda relazione
- · Vale la decomposizione senza perdita

9/10/2001

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 147

148

Join e proiezioni: caso 2 - esempio 1 Impiegato Reparto CapoRep Neri Mori В Bianchi Rossi Impiegato Reparto Reparto CapoRep Neri В Mori В Bianchi Α Α Rossi Impiegato Reparto CapoRep Neri Mori

Atzeni-Ceri-Paraboschi-Torlone,

Basi di dati, Capitolo 3

Rossi

Bianchi

Caso 2 - esempio 2

- R1 (Impiegato, Reparto, Capodiimpiegato)
- · Decomposto in
 - R1 (Impiegato, Reparto)
 - R2(<u>Reparto</u>, <u>Capodiimpiegato</u>)
- REPARTO non e' chiave di nessuna delle due relazioni
- Si perdono informazioni, nel senso che si perde il legame tra impiegato e capo

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Join e	Proiezioni	caso	2 - esemp	io 2
	Impiegato	Reparto	Capodilmp	
	Neri	В	Mori	
	Bianchi	В	Bruni	
	Verdi	Α	Bini	
Impiega	to Reparto	Rep	arto Capod	ilmp
Neri	В	l l	B Mo	ri
Bianch	ni B		B Bru	ni
Verdi	Α		A Bin	i
	Impiegato	Reparto	Capodilmp	
	Neri	В	Mori	
	Bianchi	В	Bruni	
	Neri	В	Bruni	
	Bianchi	В	Mori	
9/10/2001	Verdi	Α	Bini	150
Basi di dati, Capitolo 3				

Viste (relazioni derivate)

- Rappresentazioni diverse per gli stessi dati (schema esterno)
- · Relazioni derivate:
 - relazioni il cui contenuto è funzione del contenuto di altre relazioni (definito per mezzo di interrogazioni)
- · Relazioni di base: contenuto autonomo
- Le relazioni derivate possono essere definite su altre derivate, ma ...

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Viste virtuali e materializzate

- Gli schemi esterni possono essere realizzati tramite viste
- Due tipi di relazioni derivate:
 - viste materializzate
 - relazioni virtuali (o viste)

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 153

Viste materializzate

- relazioni derivate memorizzate nella base di dati
 - vantaggi:
 - immediatamente disponibili per le interrogazioni
 - · svantaggi:
 - ridondanti
 - · appesantiscono gli aggiornamenti
 - non sono supportate dai DBMS

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Viste virtuali

- relazioni virtuali (o viste):
 - · sono supportate dai DBMS
 - una interrogazione su una vista viene eseguita "ricalcolando" la vista (o quasi)

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 155

Viste, esempio

Afferenza	Impiegato	Reparto	Direzione		
	Rossi	Α	Reparto	Capo	
	Neri	В	Α	Mori	
	Bianchi	В	В	Bruni	
	Bianchi	В	В	Bruni	

· una vista:

Supervisione =

PROJ Impiegato, Capo (Afferenza JOIN Direzione)

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Interrogazioni sulle viste

 Sono eseguite sostituendo alla vista la sua definizione:

SEL_{Capo='Leoni'} (Supervisione)

viene eseguita come

SEL_{Capo='Leoni'}(

PROJ _{Impiegato, Capo} (Afferenza JOIN

Direzione))

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 157

Viste, motivazioni

- · Schema esterno: ogni utente vede solo
 - ciò che gli interessa e nel modo in cui gli interessa, senza essere distratto dal resto
 - · ciò che e' autorizzato a vedere (autorizzazioni)
- Strumento di programmazione:
 - si può semplificare la scrittura di interrogazioni: espressioni complesse e sottoespressioni ripetute
- Utilizzo di programmi esistenti su schemi ristrutturati
 Invece:
- L'utilizzo di viste non influisce sull'efficienza delle interrogazioni

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Viste come strumento di programmazione

- Trovare gli impiegati che hanno lo stesso capo di Rossi
- · Senza vista:

```
PROJ _{\text{Impiegato}} (Afferenza JOIN Direzione) JOIN REN _{\text{ImpR,RepR}} \leftarrow _{\text{Imp,Reparto}} (SEL _{\text{Impiegato='Rossi'}} (Afferenza JOIN Direzione))
```

· Con la vista:

PROJ _{Impiegato} (Supervisione) JOIN REN _{ImpR,RepR} ← Imp,Reparto</sub> (SEL _{Impiegato='Rossi'} (Supervisione))

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 159

Viste e aggiornamenti, attenzione

Afferenza		Direzione	
Impiegato	Reparto	Reparto	Capo
Rossi	Α	Α	Mori
Neri	В	В	Bruni
Verdi	Α	С	Bruni

Supervisione	Impiegato	Capo
•	Rossi	Mori
	Neri	Bruni
	Verdi	Mori

 Vogliamo inserire, nella vista, il fatto che Lupi ha come capo Bruni; oppure che Belli ha come capo Falchi; come facciamo?

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Viste e aggiornamenti

- "Aggiornare una vista":
 - modificare le relazioni di base in modo che la vista, "ricalcolata" rispecchi l'aggiornamento
- L'aggiornamento sulle relazioni di base corrispondente a quello specificato sulla vista deve essere univoco
- · In generale però non è univoco!
- Ben pochi aggionamenti sono ammissibili sulle viste

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 161

Rappresentazione delle espressioni tramite alberi

Ogni espressione dell'algebra relazionale puo' essere rappresentata in modo grafico da un albero

Rappresenta l'ordine di valutazione degli operatori

Ogni operatore corrisponde ad un nodo

- operatori unari con un solo ramo in ingresso e uno in uscita
- operatori binari con due rami in ingresso e uno in uscita
- •la radice e' il alto

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

Rappresentazione delle espressioni tramite alberi

PROJ Impiegato, Capo (Afferenza JOIN Direzione))

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 163

Equivalenza di espressioni

- Due espressioni sono equivalenti se producono lo stesso risultato
 - $E_1 =_R E_2$ se $E_1(r) = E_2(r)$ per ogni istanza r della basi di dati con schema R
 - $E_1 \equiv E_2$ se $E_1 \equiv_R E_2$ per ogni schema R

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

- ► Esempio di equivalenza assoluta $\pi_{AB}(\sigma_{A>0}(R)) \equiv \sigma_{A>0}(\pi_{AB}(R))$
- Esempio di equivalenza dipendente dallo schema $\pi_{AB}(R_1) \text{ JOIN } \pi_{AC}(R_2) \equiv \pi_{ABC}(R_1 \text{ JOIN } R_2)$ solo se nello schema $\mathbf R$ l'intersezione fra gli insiemi di attributi di R_1 e R_2 è pari ad A

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 165

Equivalenza di espressioni

- •Espressioni equivalenti garantiscono lo stesso risultato, ma la scelta non e' pero' indifferente in termini di "risorse" necessarie.
- •Le regole più interessanti sono quelle che permettono di ridurre la dimensione dei risultati intermedi e quelle che portano a una semplificazione dell'espressione.

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

STUDENTI(Nome, Cognome, Indirizzo, Matr) ESAMI(Matr, Materia, Voto, Data)

Esami di Paolo Rossi

- 1. $\sigma_{Nome={}^{\circ}Paolo{}^{\circ} \text{ and } Cognome={}^{\circ}Rossi{}^{\circ}}$ (STUDENTIMESAMI)
- 2. $\sigma_{Nome='Paolo' \text{ and } Cognome='Rossi'}$ (STUDENTI) \bowtie ESAMI

Qual è la più vantaggiosa?

La seconda opera con tabelle più succinte

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 167

Equivalenza di espressioni

Esempio:

$$\pi_{AB}(\sigma_{A>0}(R)) \equiv \sigma_{A>0}(\pi_{AB}(R))$$

vale per ogni schema R

$$\pi_{AB}(R_1) \text{ JOIN } \pi_{AC}(R_2) \equiv_R \pi_{ABC}(R_1 \text{ JOIN } R_2),$$

sussiste solo se l'intersezione fra gli attributi di R₁ e R₂ e' pari ad A

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

· Atomizzazione delle selezioni

$$\sigma_{F1 \land F2} \equiv \sigma_{F1}(\sigma_{F2}(E))$$

· Idempotenza delle proiezioni

$$\pi_X(E) \equiv \pi_X(\pi_{XY}(E))$$

 Anticipazione della selezione rispetto al join (Pushing selections down)

$$\sigma_F(E_1 \bowtie E_2) \equiv E_1 \bowtie \sigma_F(E_2)$$

se la condizione F fa riferimento solo ad attributi di E2

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3 169

Equivalenza di espressioni

· Anticipazione della proiezione rispetto al join

$$\pi_{X1Y2}(\mathsf{E}_1 \bowtie \mathsf{E}_2) \equiv \mathsf{E}_1 \bowtie \pi_{Y2}(\mathsf{E}_2)$$

- \cdot E_1 è definita sugli attributi X_1 e E_2 su X_2
- Y₂⊆X₂
- $(X_1 \cap X_2) \subseteq Y_2$ gli attributi coinvolti nel join sono

tutti in Y₂

Non partecipano al join

Si possono eliminare subito gli attributi che non compaiono nella relazione finale e non sono coinvolti nel join

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3

 Inglobamento della selezione in un prodotto cartesiano (definizione di theta-join)

$$\sigma_{\mathsf{F}}(\mathsf{E}_1 \bowtie \mathsf{E}_2) \equiv \mathsf{E}_1 \bowtie_{\mathsf{F}} \mathsf{E}_2$$

· Distributività della selezione

$$\sigma_{F}(E_{1} \cup E_{2}) \equiv \sigma_{F}(E_{1}) \cup \sigma_{F}(E_{2})$$
$$\sigma_{F}(E_{1} - E_{2}) \equiv \sigma_{F}(E_{1}) - \sigma_{F}(E_{2})$$

· Distributività della proiezione

$$\pi_X(\mathsf{E}_1 \cup \mathsf{E}_2) \equiv \pi_X(\mathsf{E}_1) \cup \pi_X(\mathsf{E}_2)$$

$$\pi_{X}(E_{1}-E_{2}) \neq \pi_{X}(E_{1}) - \pi_{X}(E_{2})$$
 (! attenzione \neq

Atzeni-Ceri-Paraboschi-Torlone,

Basi di dati, Capitolo 3

Equivalenza di espressioni

· Distributività del join

$$\mathsf{E} \bowtie (\mathsf{E}_1 \cup \mathsf{E}_2) \equiv (\mathsf{E} \bowtie \mathsf{E}_1) \cup (\mathsf{E} \bowtie \mathsf{E}_2)$$

Selezioni con espressioni composte

$$\begin{split} \sigma_{F1 \vee F2}(R) &\equiv \sigma_{F1}(R) \cup \sigma_{F2}(R) \\ \sigma_{F1 \wedge F2}(R) &\equiv \sigma_{F1}(R) \cap \sigma_{F2}(R) \equiv \sigma_{F1}(R) \bowtie \sigma_{F2}(R) \\ \sigma_{F1 \wedge \neg F2}(R) &\equiv \sigma_{F1}(R) - \sigma_{F2}(R) \end{split}$$

9/10/2001

Atzeni-Ceri-Paraboschi-Torlone, Basi di dati, Capitolo 3