עקומים אלגבריים – הרצאה שנייה

משפט 0.1 (בזו). אם $f,g\in\mathbb{C}\left[x,y
ight]$ זרים, אזי

 $|Z(f) \cap Z(g)| \le (\deg f) (\deg g)$

 $\mathbb{C}\left(x
ight)$ בפולינום ב y עם מקדמים ב f(x,y) את נכתוב אוכחה:

$$f(x,y) = a_0(x) + a_1(x) \cdot y + \dots + a_n(x) y^n$$

$$g(x, y) = b_0(x) + b_1(x)y + \dots + b_m(x)y^m$$

כאשר

$$\deg a_i(x) \le n - i, \ \deg b_i(x) \le m - i$$

לאחר שינוי קוארדינטות ליניארי, ניתן להניח ש $a_n,b_m\neq 0$ ש ליניארי, ניתן ליניארי. ניתן לאחר שקולים: $x_0\in\mathbb{C}$

- .1 ל $g(x_0,y)$ ו $f(x_0,y)$ יש שורש משותף.
 - $\deg(\gcd(f(x_0,y),g(x_0,y))) > 0$.2
- $\deg(\operatorname{lcm}(f(x_0, y), g(x_0, y))) < n + m$.3
- 4. קיימים פולינומים $lpha\left(y
 ight)$ ו $eta\left(y
 ight)$ מדרגות קטנות/שוות ל m,n בהתאמה כך ש

$$\alpha(y) f(x_0, y) + \beta(y) \cdot g(x_0, y)$$

5. הפולינומים

$$f(x_0, y), y \cdot f(x_0, y), \dots, y^{m-1} f(x_0, y), g(x_0, y), \dots, y^{n-1} g(x_0, y)$$

בלתי תלויים ליניארית.

הראולטנטה הראולטנטה ליניארית באלגברה להשתמש באלגברה ליניארית 6

Res
$$(f(x_0, y), g(x_0, y)) :=$$

$$\det \begin{pmatrix} a_0(x_0) & a_1(x_0) & a_2(x_0) & \cdots & a_n(x_0) & 0 & \cdots & 0 \\ 0 & a_0(x_0) & a_1(x_0) & \cdots & \cdots & a_n(x_0) & 0 \cdots & 0 \\ \vdots & & & & & & & \\ b_0(x_0) & b_1(x_0) & \cdots & \cdots & b_m(x_0) & & & & \\ \vdots & & & & & & & \\ b_0(x_0) & \cdots & b_{m-1}(x_0) \end{pmatrix}$$

ונטען כי הרזולטנטה היא פולינום ב x_0 ממעלה היא פולינום לינטען כי מההנחה מעלה פולינום לא פולינום ל $a_n,b_m\neq 0$ כי

ובות. וו $n\cdot m$ מהטענה, להטלה לציר x של $Z\left(f
ight)\cap Z\left(g
ight)$ יש לכל היותר $n\cdot m$ נקודות.

כעת נעבור לנסיון ללמוד עקומים אלגבריים מבחינה טופולוגית.

נניח כי $f\left(0,0
ight)=0$ ונניח ש $f\left(x,y
ight)\in\mathbb{C}\left[x,y
ight]$ יהי

$$\nabla f\left(0,0\right) = \left(\frac{\partial f}{\partial x}\left(0,0\right), \frac{\partial f}{\partial y}\left(0,0\right)\right) \neq \left(0,0\right)$$

(כלומר, ל f אין מקדם חופשי אך יש גורם ליניארי). ממשפט הפונקצייה הסתומה, $\frac{\partial f}{\partial x}(0,0) \neq 0$ הוא משטח הולומורפי. בצורה יותר מדוייקת, אם $Z(f) \cap (B(0,0),\varepsilon)$ אזי ההטלה לציר ה f (שנסמן f שנסמן g היא הומואמורפיזם מקומית עם הומאומורפיזם הופכי, כלומר יש העתקה הולומורפית

$$\varphi:U\to\mathbb{C}$$

עבור U פתוחה ב $\mathbb C$ כך ש

$$Z(f) \cap B((0,0),\varepsilon) = \{(\varphi(f),f) \mid f \in B(0,\varepsilon)\}$$

הגדרה סינגולרית אי פריק. נקודה $p \in Z\left(f\right)$ נקראת הינגולרית אם הגדרה יהי f יהי

$$\nabla f(p) = (0,0)$$

ואחרת נקראת לא-סינגולרית.

טענה 0.3 יש מספר סופי של נקודות סינגולריות.

הוכחה: אם p סינגולרית, אזי

$$p \in Z(f) \cap Z\left(\frac{\partial f}{\partial x}\right)$$

ומכיוון שפולינומים אלו זרים (כי f אי פריק ו $\deg\left(\frac{\partial f}{\partial g}\right)$ ניתן לחסום את ומכיוון שפולינומים אלו זרים (כי f אי פריק ו זה אינו עובד כאשר $\frac{\partial f}{\partial x}\equiv 0$. במקרה הזה, נסתכל על $Z\left(f\right)\cap Z\left(\frac{\partial f}{\partial y}\right)$. אם שניהם זהותית אפס, f קבועה.

הבחנה:

$$y:Z\left(f\right)-Z\left(\frac{\partial f}{\partial x}\right)\to\mathbb{C}$$

היא העתקת כיסוי. מה קורה עבור נקודות לא סינגולריות עבורן $\frac{\partial f}{\partial x}(p)=0$? נזכר כיצד מתנהגות העתקות הולומורפיות בסביבת נקודה:

$$\varphi: B(0,\varepsilon) \to \mathbb{C}$$

- . יכולה להיות קבועה φ
- ארית ליניארית ניתן לתאר ליניארית ניתן ליניארית $\varphi'\left(0\right)\neq0$ אם •

$$t \mapsto \varphi'(0) \cdot t$$

אזי ניתן לקרב $\varphi''(0) \neq 0$ ו $\varphi'(0) = 0$ אזי ניתן לקרב •

$$t\mapsto \frac{\varphi''(0)}{2}t^2$$

וכך הלאה.

.1 נשם לב שההעתקה כיסוי מאינדקס $\mathbb{C}-\{0\}\to\mathbb{C}-\{0\}$ מ $t\mapsto t^2$ מאינדקס פעם לב שההעתקה (ניח כי p=(0,0) ניח כי $p\in Z(f)$ היא נקודה הינגולרית. אזי יש p=(0,0) נוכל להניח הא נקודת הסינגולריות היחידה ב $Z(f)\cap B$ (p,ε) אין קוארדינטת p שווה לאפס.

$$x:Z\left(f\right)\cap B\left(p,\varepsilon\right)\to\mathbb{C}$$

היא העתקת כיסוי. נתבונן בהעתקה

$$t_0 \mapsto Z(f(t_0, y))$$

ע"י

$$t_0 \mapsto \{(t_0, y_1), \dots, (t_0, y_m)\}$$

נתבונן בלמה הבאה:

מדרגה $g\left(y\right)$ מלנום כך שלכל ε יש אולכל δ ולכל ממעלה ממעלה לכל פולינום לכל למה לכל פולינום הטנים למה ל ε שטנים קטנים אווים לnעם מקדמים קטנים אווים לn

- f שורש של δ משורש אל הוא ממרחק ל שורש של .1
- f+g של משורש ל ממרחק הוא הוא הוא ל כל שורש כ.2

שווה ל $B\left(z_{0},arepsilon
ight)$ ב ל שווה שורשים הטוכבת, ממשפט רושה באנליזה מרוכבת, מחושה באנליזה מרוכבת

$$\frac{1}{2\pi i} \oint_{\partial B(z,\varepsilon)} \frac{df(\zeta)}{f(\zeta)}$$