Missing values

Missing data, numeric

Hidden NaNs

Fillna approaches

- 1. -999, -1, etc
- 2. mean, median
- 3. Reconstruct value

"Isnull" feature

feature	isnull
0.1	False
0.95	False
NaN	True
-3	False
NaN	True

Missing values reconstruction

categorical_ feature	numeric _feature
Α	1
Α	4
Α	2
Α	-1
В	9
В	NaN

categorical_ feature		numeric_ feature_filled
Α	1	1
Α	4	4
Α	2	2
Α	-1	-1
В	9	9
В	NaN	-999

You should be very careful with early none importation if you want to generate new features. There's one more interesting thing about missing values.

6:43

[INAUDIBLE] boost can handle a lot of numbers and sometimes using this approach

can change score drastically.

6:51 Besides com	categorical mon approaches we have calues. feature	numeric liscussed, sometimes _feature	numeric_ s we can treat outliers feature_filled	categorical _encoded
	Α	1	1	1.5
	Α	4	4	1.5
	Α	2	2	1.5
	Α	-1	-1	1.5
	В	9	9	-495
	В	NaN	-999	-495

Treating values which do not present in train data

Train:

categorical _feature	target	
Α	0	
Α	1	
Α	1	
Α	1	
В	0	
В	0	
D	1	

Test:

categorical _feature	target	
Α	?	
Α	?	
В	?	
C	?	

If you have categorical features, sometimes it can be beneficial to change the missing values or categories which present in the test data but do not present in the train data. The intention for doing so appeals to the fact that the model which didn't have that category in the train data will eventually treat it randomly.

Treating values which do not present in train data

Train:

165t.

	categorical _encoded	target
Α	6	0
Α	6	1
Α	6	1
Α	6	1
В	3	0
В	3	0
D	1	1

categorical _feature	categorical _encoded	target
Α	6	?
Α	6	?
В	3	?
C	1	?

Treating values which do not present in train data

- 1. The choice of method to fill NaN depends on the situation
- 2. Usual way to deal with missing values is to replace them with -999, mean or median
- 3. Missing values already can be replaced with something by organizers
- 4. Binary feature "isnull" can be beneficial
- 5. In general, avoid filling nans before feature generation
- 6. Xgboost can handle NaN