

Fundamentals of optimization

What is optimization?

"An optimization problem consists of maximizing or minimizing a real function by systematically choosing input values from within an allowed set and computing the value of the function."*

*"http://en.wikipedia.org/wiki/Mathematical_optimization"

Optimization for Data Science

Data science for Engineers

What is optimization?

•... the use of specific methods to determine the "best" solution to a problem

Find the best functional representation for data

•Find the best hyperplane to classify data

Optimization for Data Science

Why optimization for machine learning

- (Almost) All machine learning (ML) algorithms can be viewed as solutions to optimization problems
 - Even in cases where, the original machine learning technique has a basis derived from other fields
- A basic understanding of optimization approaches help in
 - · More deeply understand the working of the ML algorithm
 - · Rationalize the workings of the algorithm
 - And (may be !!!), develop new algorithms ourselves

Optimization for Data Science

nce for Engineers

Components of an optimization problem

Objective function →

- We look at minimization problem
- Constraints

Optimization for Data Science

Univariate Optimization - Conditions for Local Optimum

Univariate optimization

$$\begin{array}{cc}
\min_{x} & f(x) \\
x \in R
\end{array}$$

Approximate f(x) as a quadratic function using Taylor series at a point x^k

Optimization for Data Science

Data science for Engineers

Positive

When $x^k = x^*$,

10

Univariate Optimization - Summary

Univariate optimization

$$\min_{x} f(x) \\
x \in R$$

Necessary and sufficient conditions for x^* to be the minimizer of the function f(x)

First order necessary conditon: $f'(x^*) = 0$

Second order sufficiency condition: $f''(x^*) > 0$

Optimization for Data Science

1

Data science for Engineers

Univariate Optimization - Numerical Example

$$\min_{x} f(x)$$

$$f(x) = 3x^{4} - 4x^{3} - 12x^{2} + 3$$

First order condition

$$f'(x) = 12 x^{3} - 12 x^{2} - 24 x = 0$$

$$= 12 x(x^{2} - x - 2x) = 0$$

$$= 12 x(x+1)(x-2) = 0$$

$$x = 0, x = -1, x = 2$$

$$f(-1) = -2$$

 $x^* = -1$, is a local minimizer of f(x)

Second order condition

$$f''(x) = 36 x^{2} - 24 x - 24$$

$$f''(x)|_{x=0} = -24$$

$$f''(x)|_{x=-1} = 36 > 0$$

$$f''(x)|_{x=2} = 72 > 0$$

 $x^* = 2$, is a global minimizer of f(x)

Optimization for Data Science