Практическо упражнение No 3

МЕТОДИ И ОПЕРАЦИОННИ БЛОКОВЕ ЗА ПРЕОБРАЗУВАНЕ НА ЧИСЛАТА ОТ ДЕСЕТИЧНА В ДВОИЧНА БРОЙНА СИСТЕМА

1. Цел на упражнението:

Целта на упражнението е, работейки с програмните модели на операционните блокове за преобразуване на цели и дробни числа от десетична в двоична бройна система, студентите да добият по-ясна представа за начините за реализиране на съответните методи, а също така да се установи степента на усвояване на микроалгоритмите за преобразуване.

2. Теоретична част:

2.1. Общ метод за преобразуване на числата от една позиционна бройна система в друга.

Постановка на задачата: Да се преобразува число, записано в система с основа q в система с основа p, т.е. да се представи например в следния вид:

$$A_{P} = a_{n} p^{n-1} + a_{n-1} p^{n-2} + a_{n-2} p^{n-3} + ... + a_{3} p^{2} + a_{2} p + a_{1} + a_{-1} p^{-1} + a_{-2} p^{-2} + a_{-3} p^{-3} + ... + a_{-k} p^{-k} = A_{LI4} + A_{II4}$$

Преобразуването на цялата (A_{цч}) и на дробната (A_{дч}) част на числото се извършва по различни начини т.е. отделно.

2.1.1. Преобразуване на цели числа - извършва се като $A_{\text{ЦЧ}}$ се раздели на р и се отдели целочисленото частно A' и остатъкът, а след това A' се раздели на р и се отдели целочисленото частно A'' и остатъкът и т.н. докато се получи частно равно на 0. Получените остатъци са търсените цифри a_i като последният остатък е старшата цифра на числото A_{P} .

Доказателство: Допускаме, че числото вече е преобразувано.

$$A_{\text{ЦЧ}}/p = a_n p^{n-2} + a_{n-1} p^{n-3} + a_{n-2} p^{n-4} + \dots + a_3 p + a_2 + a_1/p;$$
 a_1 - остатък $A'/p = a_n p^{n-3} + a_{n-1} p^{n-4} + a_{n-2} p^{n-5} + \dots + a_3 + a_2/p;$ a_2 - остатък

Делението се извършва в система с основа q, т.е. основата р трябва предварително да се представи в тази система (ако е необходимо). Цифрите a_1 , a_2 , ... също се поучават в система с основа

q и трябва впоследствие да се преобразуват (ако е необходимо).

По-долу в качеството на пример ще бъде показано преобразуването на цели числа от десетичната в осмичната система и обратно. Както вече беше споменато, при това всички действия се извършват в системата, от която се преминава към друга система. За облекчаване на преобразуването от осмичната в десетичната

система е показано и съответствието между числата в тези две системи.

"10"	0	 7	8	9	10	11	12	13	14	15	16	
"8"	0	 7	10	11	12	13	14	15	16	17	20	

2.1.2. Преобразуване на дробни числа - извършва се като $A_{\text{дч}}$ се умножи на р и се отдели дробната част A' и цялата част, след това A' се умножи на р и се отдели дробната част A'' и цялата част и т.н. докато се получи дробна част равна на 0 или докато не се получат толкова на брой разряди, че точността на представяне на числото след преобразуването да бъде същата като тази преди преобразуването. Получените цели части са търсените цифри $a_{\cdot i}$ като първата цяла част е старшата цифра на числото A_{P} .

Доказателство: Допускаме, че числото вече е преобразувано.

$$A_{Д4}$$
. $p = a_{-1} + a_{-2} p^{-1} + a_{-3} p^{-2} + ... + a_{-k} p^{-(k-1)}$; a_{-1} - цяла част A' . $p = a_{-2} + a_{-3} p^{-1} + ... + a_{-k} p^{-(k-2)}$; a_{-2} - цяла част

Умножението се извършва в система с основа q, т.е. основата р трябва предварително да се представи в тази система (ако е необходимо). Цифрите a_{-1} , a_{-2} , ... също се получават в система с основа q и трябва впоследствие да се преобразуват (ако е необходимо).

В случай, че при умножението на р не се получава дробна част равна на нула, се изчисляват толкова на брой разряди след запетаята, колкото е необходимо за запазване на точността на представяне. Този брой може да се определи по следната формула:

$$n_P = n_q$$
. Ig q / Ig p, където n_q е броят разряди след запетаята на числото в система с основа q, а n_P е минималният брой разряди, които трябва да се получат в процеса на преобразуването.

По-долу в качеството на пример ще бъде показано преобразуването на дробни числа от десетичната в осмичната система и обратно.

- 2.2. Методи за преобразуване от десетична в двоична система.
- **2.2.1. Метод за ръчно преобразуване** използва се общият метод, т.е. чрез деление на цялата част и умножение на дробната част на 2.

2.2.2. Методи за машинно преобразуване:

а. програмно - използват се специални подпрограми, алгоритмите на които са съставени на базата на показаните по-долу изрази.

За цели десетични числа:

$$A_{LIY} = a_n 10^{n-1} + a_{n-1}10^{n-2} + ... + a_2 10 + a_1 =$$

= $((...)((0 + a_n)10 + a_{n-1})10 + ... + a_2)10 + a_1$

За дробни десетични числа:

$$A_{\text{ДЧ}} = a_{-1} 10^{-1} + a_{-2} 10^{-2} + ... + a_{-(k-1)} 10^{-(k-1)} + a_{-k} 10^{-k} =$$

= $((...((0 + a_{-k})/10 + a_{-(k-1)})/10 + ... + a_{-2})/10 + a_{-1})/10$

Цифрите а_і на десетичното число, а също и основата на десетичната система се представят в двоичната (използва се код 8421) и всички действия се извършват в тази система. В резултат се получава А в двоичната система.

- **б. апаратно** десетичното число се представя в десетична двоично кодирана система с използване на код 8421.
- **преобразуване на цели числа** използва се общият метод, т.е. чрез деление на 2 и отделяне на остатъците.

Апаратното деление на 2 става чрез изместване на двоичнодесетичния код на десетичното число на един разряд надясно. При това, ако в старшия разряд на дадената тетрада не се прехвърли "1" от съседната й в ляво, то, в резултат на изместването, в тази тетрада действително се получава кодът на разделената на 2 десетична цифра. Например:

	80	40	20	10	8	4	2	1	_
	1	0	0	0	0	1	1	0	86
									-
ИД	0	1	0	0	0	0	1	1	43

Но, ако след изместването в старшия разряд на дадена тетрада се появи "1", тя ще получи тегло 8, а не 10/2=5, както би трябвало да бъде. Следователно съдържанието на всяка тетрада, в старшия разряд на която се е появила "1", трябва да се намалява с 8-5=3. Но това изисква използването на субтрактор, което може да се избегне, ако вместо да се изважда 3 се прибавя 13, т.е. 1101. При това, тъй като в старшия разряд на тетрадата има "1", а събирането е двоично, то винаги ще възниква пренос с тегло 16. Ако този пренос не бъде отчетен, в крайна сметка се получава корекция 13-16=-3, както и трябва да бъде. Например:

Схемата на операционната част на блока за преобразуване на цели десетични числа в двоичната система е показана на фиг.1. В Рх се записва двоично-десетичният код на десетичното число, в Рк се записват кодовете на корекциите, а в Рz след съответния брой цикли се получава двоичният код на числото. Във всеки от циклите се извършват последователно следните микрооперации:

- ИД Рх и ИД Рz;
- 3Pk;
- ПрК Рх и ПрК Рк в Σ ;
- ПК Рх.

Забележка: При корекция = 0 може да се извършва направо ИД.

Фиг.1. Схема на операционната част на блока за преобразуване на цели десетични числа в двоичната система

Действието на блока за преобразуване е пояснено и чрез цифровата диаграма на фиг.2.

(75	10→	(?)2
1	10	/10 /	\ i	12

		Р	'X	Pz
		0111	0101	0000000
ИД₁		0011	1 010	1000000
Кор.	+	0000	1101	
		0011	0111	
ИД2		0001	1 011	1100000
Кор.	+	0000	1101	_
		0001	1000	
ИД3		0000	1 100	0110000
Кор.	+	0000	1101	
		0000	1001	
ИД4		0000	0100	1011000
Кор.	+	0000	0000	<u>-</u>
		0000	0100	
ИД5		0000	0010	0101100
Кор.	+	0000	0000	
		0000	0010	
ИД6		0000	0001	0010110
Кор.	+	0000	0000	_
		0000	0001	
ИД7		0000	0000	1001011

Фиг.2. Цифрова диаграма на блока за преобразуване на цели числа от десетичната в двоичната система

- **преобразуване на дробни числа** - използва се общият метод, т.е. чрез умножение на 2 и отделяне на целите части.

Апаратното умножение на 2 става чрез изместване на двоичнодесетичния код на десетичното число на един разряд наляво, което е равносилно на събиране на две еднакви числа. При това, за да се получи кодът на удвоеното число се налага прибавянето на корекция (+6) към тези тетради, в които след изместването се е получил код на цифра > 9, а също и към тетрадите, в старшия разряд на които преди изместването е имало "1", т.е. от които при изместването се е получил пренос. С цел да се опрости апаратната реализация на това правило преди изместването се прибавя корекция (+3) към всички тетради, в които има кодове на цифри > 4. Валидността на последното може да бъде показана със следната таблица:

	142	•	еди тва	ш0	14*		След Ства	•	- 0	Кор.	Забележка
0	<u>из</u>	nec	()	ne		0	n n	О	0	0	
1	0	0	0	1	_	0	0	1	0	0	Корекция
2	0	0	1	0	0	0	1	0	0	0	не е
3	0	0	1	1	0	0	1	1	0	0	необходима
4	0	1	0	0	0	1	0	0	0	0	
5	0	1	0	1	0	1	0	1	0	+6	Тетрада
6	0	1	1	0	0	1	1	0	0	+6	по-голяма
7	0	1	1	1	0	1	1	1	0	+6	от 9
8	1	0	0	0	1	0	0	0	0	+6	Пренос
9	1	0	0	1	1	0	0	1	0	+6	Пренос

Схемата на операционната част на блока за преобразуване на дробни десетични числа в двоичната система е показана на фиг.3. В Рх се записва двоично-десетичният код на десетичното число, в Рк се записват кодовете на корекциите, а в Рz след съответния брой цикли се получава двоичният код на числото. Във всеки от циклите се извършват последователно следните микрооперации:

- 3Рк:
- ПрК Рх и ПрК Рк в Σ ;
- ΠK Px;
- ИЛ Рх и ИЛ Рz.

Забележка: При корекция = 0 може да се извършва направо ИЛ.

Фиг.3. Схема на операционната част на блока за преобразуване на дробни десетични числа в двоичната система

Действието на блока за преобразуване е пояснено и чрез цифровата диаграма на фиг.4.

$$(0,78)_{10} \rightarrow (?)_2$$

 $n_2 = n_{10}/lg2 = 2/0,3 \approx 7$

Pz		Px	<u> </u>	
,0000000		,0111	1000	
	+	,0011	0011	Кор.
	_	,1010	1011	
,0000001		,0101	0110	ИЛ₁
	+_	,0011	0011	Кор.
		,1000	1001	
,0000011		,0001	0010	$ИЛ_2$
	+_	,0000	0000	Кор.
		,0001	0010	
,0000110		,0010	0100	$ИЛ_3$
	+_	,0000	0000	Кор.
		,0010	0100	
,0001100		,0100	1000	$ИЛ_4$
	۲_	,0000	0011	Кор.
		,0100	1011	
,0011000		,1001	0110	$ИЛ_5$
	+_	,0011	0011	Кор.
		,1100	1001	
,0110001		,1001	0010	$ИЛ_6$
	+_	,0011	0000	Кор.
		,1100	0010	
,1100011		,1000	0100	$ИЛ_7$

Фиг.4. Цифрова диаграма на блока за преобразуване на дробни числа от десетичната в двоичната система

3. Задачи за изпълнение:

- 3.1. Да се попълни цифровата диаграма на блока за преобразуване на цели числа от десетичната в двоичната система X =
- 3.2. Да се попълни цифровата диаграма на блока за преобразуване на дробни числа от десетичната в двоичната система Y = 0, Предварително да се изчисли броят на цифрите след запетаята.
- 3.3. Да се извърши преобразуването на числото X със съответния програмен модел (фиг.5), като междинните резултати се сравняват с цифровата диаграма.
- 3.4. Да се извърши преобразуването на числото Y със съответния програмен модел (фиг.6), като междинните резултати се сравняват с цифровата диаграма.

4. Контролни въпроси:

- 4.1. Какво гласи общото правило за преобразуване на цели числа?
- 4.2. Какво гласи общото правило за преобразуване на дробни числа?
- 4.3. Как се определя колко на брой разряди трябва да бъдат получени при преобразуване на дробни числа?
- 4.4. Какъв метод се използва при ръчното преобразуване от десетична в двоична система?
- 4.5. Какви основни методи се използват при машинното преобразуване от десетична в двоична система?
- 4.6. Как се извършва апаратното преобразуване на цели числа от десетична в двоична система?
- 4.7. Как се извършва апаратното преобразуване на дробни числа от десетична в двоична система?

Организация на компютъра

Фиг.5. Програмен модел на блока за преобразуване на цели десетични числа в двоичната система

Фиг.6. Програмен модел на блока за преобразуване на дробни десетични числа в двоичната система