COMP2012 (Fall 2022) Discrete Mathematics

Individual Assignment 1 Due Date: 23:59, 28th October, 2022

Name	ZHOU Siyu
Student number	

Notes:

- > This is an **individual** assignment.
- Please submit the **soft copy** of your answer to Blackboard (as a doc/docx/pdf file).
- You just need to write your answer. There is no need to copy questions.

Question 1.

1(a)

m is the average of integers $a_1, a_2, ..., a_n$.

If there are only numbers that is larger than m in $a_1, a_2, ..., a_n$, then the average of all these number will larger than m, so it contradicts that the average should be m. Hence, there exists some number in $a_1, a_2, ..., a_n$ such that it is smaller than or equal to m.

1(b)

Truth table for $\neg (p \lor q \lor r)$

p	q	r	$p \lor q$	$p \lor q \lor r$	$\neg (p \lor q \lor r)$
T	T	T	T	T	F
T	T	F	T	T	F
T	F	T	T	T	F
T	F	F	T	T	F
F	T	T	T	T	F
F	T	F	T	T	F
F	F	T	F	T	F
F	F	F	F	F	T

Truth table for $\neg p \land \neg q \land \neg r$

p	q	r	$\neg p$	$\neg q$	$\neg r$	$\neg p \wedge \neg q$	$\neg p \land \neg q \land \neg r$
T	T	T	F	F	F	F	F
T	T	F	F	F	T	F	F
T	F	T	F	T	F	F	F
T	F	F	F	T	T	F	F
F	T	T	T	F	F	F	F
F	T	F	T	F	T	F	F
F	F	T	T	T	F	F	F
F	F	F	T	T	T	T	T

The last column of each truth table are identical to each other, so $\neg (p \lor q \lor r)$ and $\neg p \land \neg q \land \neg r$ are logically equivalent.

1(c)

$$P=x/4\ (P\in\mathbb{Z})$$

$$Q = x/3(Q \in \mathbb{Z})$$

For statement 1, if P is an integer, x should be the multiple of 4, some of x in domain, such as 4, 8, 12, 16 meets the requirement, so that this statement is true.

For statement 2, if Q is an integer, y should be the multiple of 3, some of x in domain, such as 6, 12, 18 meets the requirement, so that this statement is true.

For statement 3, if P Q are two integers, z should be multiple of 3 and be the multiple of 4, then only 12 meets the requirement of $\exists z \in Dom P(z) \land Q(z)$, then there's a \neg sign, then all numbers other than 12 meets the requirement of this statement, so that statement 3 is true.

Question 2. 2(a)

2(b)

(I)
$$C(5,2) \times 2 = 20$$

(II)

Reflexive means if $a \sim a$ should be in relation

Since we need to satisfy $d \sim e$ and $d \sim a$ is the relation, then the $a \sim a$, $b \sim b$, $c \sim c$, $d \sim d$, $e \sim e$ is in relation

Symmetric means if $a \sim b$ is in relation, then $b \sim a$ should be in relation Since $d \sim e$ and $d \sim a$ is the condition, then $e \sim d$ and $a \sim d$ should be in relation

Transitive means if $a \sim b$ is in relation and $b \sim c$ is in relation, then $a \sim c$ is in relation Since $d \sim e$ and $d \sim a$ is the condition, then $e \sim a$ should be in relation Then there will be one equivalence relation.

Question 3. 3(a)

$$f(n) = O(g(n))$$

$$f(n) \leq cg(n)$$

$$log_2 n^{log_2 23} \leq c \log_2 23^{log_2 n}$$

$$\frac{log_2 n^{log_2 23}}{log_2 23^{log_2 n}} \leq C$$

$$\frac{log_2 23 \cdot log_2 n}{log_2 n \cdot log_2 23} \leq C$$

$$c \geq l$$

$$f(n) = S lg(n)$$

$$f(n) \geq cg(n)$$

$$log_2 n^{log_2 23} \geq c log_2 23^{log_2 n}$$

$$\frac{log_2 n^{log_2 23}}{log_2 n \cdot log_2 23} \leq C$$

$$c \leq l$$

$$c \leq l$$

$$c \leq l$$

$$c \leq l$$

3(b)

$$f(n) = O(g(n))$$
 then $f(n) \le C_1g(n)$ $(C_1, n > 0)$
 $g(n) = O(h(n))$ then $g(n) \le C_2h(n)$ $(C_2, n > 0)$
 $f(n) \le C_1 g(n) \le C_1 \cdot C_2h(n)$
 $f(n) \le C_1 \cdot C_2 h(n)$
then $f(n) = O(h(n))$

3(c)

FindMedian(Array A[1...n])

- 1. For integer $i \leftarrow 1$ to n-1
- 2. *k*←*i*
- 3. for integer $j \leftarrow i+1$ to n
- 4. if A[k] > A[j] then
- 5. *k*←,
- 6. $\operatorname{swap} A[i] \operatorname{and} A[k]$
- 7. if n%2 == 0 then
- 8. $median \leftarrow A\left[\left\lceil \frac{n-1}{2}\right\rceil\right] \text{ and } A\left[\left\lfloor \frac{n-1}{2}\right\rfloor\right]$
- 9. else
- 10. $median \leftarrow A[\frac{n-1}{2}]$
- 11. return median

Question 4.

4(a)

Assume n = 1, P(1):

LHS =
$$S_1 \cup T$$
 = RHS

So P(1) is true;

Assume n = k, and P(k) is true, then

LHS =
$$(S_1 \cup T) \cap (S_2 \cup T) \cap ... \cap (S_k \cup T)$$

RHS =
$$(S_1 \cap S_2 \dots \cap S_k) \cup T$$

In case n = k + 1, P(k+1):

LHS =
$$(S_1 \cup T) \cap (S_2 \cup T) \cap ... \cap (S_k \cup T) \cap (S_{k+1} \cup T)$$

$$=((S_I\cap S_2\ldots\cap S_k)\cup T)\cap (S_{k+I}\cup T)$$

$$= (S_1 \cap S_2 \dots \cap S_k \cap S_{k+1}) \cup T = RHS$$

So P(k+1) is true for all integer k

Hence P(n) is true for $\forall x \in \mathbb{N}$.

4(b)

End of Assignment 1