Orders of Convergence

- From the previous lecture, we learnt that not all forms of g(x) are convergent.
- By using the `Contraction Mapping Theorem', we can find/choose the convergent function.
- This theorem tells us that if $x_0 \in L$, then the mapping g(x) starting with $x = x_0$ will converge to a point after enough iterations.
- If x_0 is closer to the fixed point, then iteration number is also the smaller.
- The next question is: how fast the iteration is?
- The condition, $\lambda < 1$, just tells that there is convergence, but it does not tell how fast the convergence is.

- In this lecture, we will classify the types of convergences.
- In the previous lecture, we already learned that for convergence, we must have the following conditions satisfied:

$$\lambda = \left| \frac{dg}{dx} \right|_{x = x_{\star}} < 1.$$

- Let us now explore a bit more to find out the rate of convergence.
- Note from previous lecture that for a pair of points $(x, y) \in L$, we have,

$$\lambda = \frac{|g(y) - g(x)|}{|y - x|} = 1$$

if and only if both x and y are fixed of g.

• If $x = x_{\star}$ and $y = x_{k}$, then as $k \to \infty$, we wrote:

$$\lambda = \left| \lim_{k \to \infty} \frac{g(x_{\star}) - g(x_k)}{x_{\star} - x_k} \right| = \left| \lim_{x_k \to x_{\star}} \frac{g(x_{\star}) - g(x_k)}{x_{\star} - x_k} \right| = \text{Constant} < 1.$$

- Note that this is constant only in the limiting sense. But for any finite value of k, λ must be less than 1, but may not constant.
- Before, exploring when and how λ might constant or not, let's recall facts or notions from the computations:

 $|x_{\star} - x_{k}| = \text{Error after k-th iteration} = \text{Distance or Length}$ between these two points

$$|g(x_{\star}) - g(x_k)| \equiv |x_{\star} - x_{k+1}| = \text{Error after } (k+1) - \text{th iteration}$$

$$\left| \frac{g(x_{\star}) - g(x_k)}{x_{\star} - x_k} \right| < 1 \text{ for each } k \text{, and decreases as } k \text{ increases.}$$

x_k	$ 3 - x_k $	$\frac{ 3-x_{k-1} }{ 3-x_{k-1} }$
0.00000000	3.000000000	
1.7320508076	1.2679491924	0.4226497308
2.5424597568	0.4575402432	0.3608506129
2.8433992885	0.1566007115	0.3422665304
2.9473375404	0.0526624596	0.3362849319
2.9823941860	0.0176058140	0.3343143126
2.9941256440	0.0058743560	0.3336600063
\downarrow	\downarrow	\downarrow
2 00000000	0.00000000	1
3.000000000	0.000000000	_

 $|3 - x_{\nu}|$

x_k	$ (-1) - x_k $	$ (-1)-x_{k-1} $
0.000000000	1.000000000	
-1.5000000000	0.5000000000	0.5000000000
-1.0500000000	0.0500000000	0.100000000
-1.0006297561	0.0006097561	0.0121951220
-1.000000929	0.0000000929	0.0001523926
\downarrow	\downarrow	\downarrow
\downarrow	\downarrow	\downarrow
-1.000000000	0.0000000000	0.0000000000

 $|(-1) - x_k|$

• Clearly, the first column approaches the fixed point, the second column approached the zero error and the last column approaches λ = 0 within the same error bound as in the previous slide.

- From the above analysis, we have three possible scenario for the rate or ratio, λ :
 - 1. If $\lambda = 0$, the convergence is very fast, and this is called the Superlinear Convergence. This is the fastest convergence.
 - 2. If $0 < \lambda < 1$, the convergence is certain, but not as fast as in previous case. This is known as Linear Convergence.
 - 3. If $\lambda = 1$, the points are the fixed points. For this case, the numerical approximation method is redundant, and hence is completely ignored here.
 - 4. Finally, if $\lambda > 1$, the mapping g(x) is diverging, and hence no fixed point is can be obtained or fixed point does not exist.
- The first two are nicely summarized by the Theorem 4.5.

- Theorem 4.5: Let g' be continuous in the neighborhood of a fixed point x_{\star} $g(x_{\star})$, and suppose that $x_{k+1} = g(x_k)$ converges to x_{\star} as $k \to \infty$. Then, the following must hold:
 - 1. If $|g'(x_{\star})| \neq 0$ then the convergence will be linear with rate $\lambda = |g'(x_{\star})|$.
 - 2. If $|g'(x_*)| = 0$ then the convergence will be superlinear.
- Examples: We recall the g(x) that we used before:

1. For
$$g(x) = \sqrt{2x + 3}$$
, we find: $g'(3) = \frac{d}{dx} (\sqrt{2x + 3}) \Big|_{x=3} = \frac{1}{\sqrt{2x + 3}} \Big|_{x=3} = \frac{1}{3} < 1 \implies \text{Linear}$

2. For
$$g(x) = \frac{x^2 + 3}{2x - 2}$$
, we similarly find:

$$g'(-1) = \frac{d}{dx} \left(\frac{x^2 + 3}{2x - 2} \right) \Big|_{x = -1} = \frac{x^2 - 2x - 3}{2(x - 1)^2} \Big|_{x = -1} = 0 \implies \text{Superlinear}$$

3. Clearly, $\lambda = \frac{1}{2}$, for the Interval Bisection Method.