AiLabs AiLabs

bS

iLabs

AiLabs

AiLabs ARTIFICIAL INTERIOR OF THE PARTIES OF

ARTIFICIAL INTELLIGENCE WITHOUT BORDERS

AiLabs

AiLabs

What is Statistics?

Statistics is a group of methods that are used to collect, organize, present, analyze, and interpret data to make decisions.

Collection refers to the gathering of information or data.

Organization or **presentation** involves summarizing data or information in textual, graphical, or tabular forms.

Analysis involves describing the data by using statistical methods and procedures.

Interpretation refers to the process of making conclusions based on the analyzed

Types of Statistics

- Descriptive is a statistical procedure concerned with describing the characteristics and properties of a group of persons, places, or things. Involves gathering, organizing, presenting, and describing data. Ex How many students are interested to take Statistics online? What are the highest and lowest scores obtained by STENEX applicants this year?
- Inferential is a statistical procedure that is used to draw inferences or information about the properties or characteristics by a large group of people, places, or things on the basis of the information obtained from a small portion of a large group also called inductive reasoning or inductive statistics.
 - Ex Exit polls in Election, regression

Random Variables

Variables are any entity which holds some value.

Types of Random variables:

- 1. **Discrete Variables** is one that can assume a finite number of values. In other words, it can assume specific values only. The values of a discrete variable are obtained through the process of counting.
 - Example: the number of chairs in a room
- 1. **Continuous Variables -** A variable that can assume **any numerical value** over a certain **range** or interval.
 - Example: The height of a person.
- Dependent Variable which is affected or influenced by another variable.
- 2. Independent Variables is one which affects or influences the dependent variable.

Examples of Data Examples

AiLabs

			$\sim 10^{-1}$	_0.												,				
			Fire					.:1 2	bS											
4	А	В	С	D	E	F	G	H	1	J	K	L	M	SN	0	Р	Q	R	S	
D	Loan ID	Customer	Loan Statu	Current Lo	Term	Credit Sco	Annual Inc	Years in c	Home Ow	Purpose	Monthly [Years of C	Months si	Number o	Number o	Current Cr	Maximum	Bankrupto	Tax Liens	
2	14dd8831	-981165ec-	Fully Paid	445412	Short Terr	709	1167493	8 years	Home Mo	Home Imp	5214.74	17.2	NA	6	1	228190	416746	2051	0	
3	4771cc26-	2de017a3	- Fully Paid	262328	Short Terr	n		10+ years	Home Mo	Debt Cons	33295.98	21.1	. 8	35	0	229976	850784	0	0	
4	4eed4e6a	5efb2b2b	- Fully Paid	9999999	Short Terr	741	2231892	8 years	Own Hom	Debt Cons	29200.53	14.9	29	18	1	297996	750090	0	0	
5	77598f7b	e777faab	- Fully Paid	347666	Long Term	721	806949	3 years	Own Hom	Debt Cons	8741.9	12	NA	9	0	256329	386958	0	0	
6	d4062e70	81536ad9	- Fully Paid	176220	Short Terr	n		5 years	Rent	Debt Cons	20639.7	6.1	NA	15	0	253460	427174	0	0	
7	89d8cb0c	- 4ffe99d3-	Charged C	206602	Short Terr	7290	896857	10+ years	Home Mo	Debt Cons	16367.74	17.3	NA 🐪	30 e	0	215308	272448	0	0	
8	273581de	90a75dde	Fully Paid	217646	Short Terr	730	1184194	<1 year	Home Mo	Debt Cons	10855.08	19.6	10	13	1	122170	272052	1	h5 0	
9	db0dc6e1	018973c9-	Charged C	648714	Long Term	S		<1 year	Home Mo	Buy House	14806.13	8.2	8	15	0	193306	864204	0		
10	8af915d9-	af534dea-	- Fully Paid	548746	Short Terr	678	2559110	2 years	Rent	Debt Cons	18660.28	22.6	33	4	0	437171	555038	0	0	
11	0b1c4e3d	- 235c4a43-	Fully Paid	215952	Short Terr	739	1454735	<1 year	Rent	Debt Cons	39277.75	13.9	NA	20	0	669560	1021460	0	0	
12	32c2e48f-	0de7bcdb	Fully Paid	99999999	Short Terr	728	714628	3 years	Rent	Debt Cons	11851.06	16	76	16	0	203965	289784	0	0	
13	fa096848-	aa0a6a22-	- Fully Paid	541970	Short Terr	n		10+ years	Home Mo	Home Imp	23568.55	23.2	NA	23	(D ₂ 0	60705	1634468	0	0	
14	403d7235	- 11581f68-	Fully Paid	99999999	Short Terr	740	776188	<1 year	Own Hom	Debt Cons	11578.22	8.5	25	6	0	134083	220220	0	_O	5
15	01d878ae	-900c9191-	Fully Paid	99999999	Short Terr	743	1560907	4 years	Rent	Debt Cons	17560.37	13.3	NA	10	1	225549	496474	1	0/8//	
16	2e841c8f-	2ac05980-	Fully Paid	234124	Short Terr	727	693234	10+ years	Rent	Debt Cons	14211.24	24.7	46	10	1	28291	107052	1	0	
17	7cbaa3fa-	3ec886e7	- Fully Paid	449020	Long Term	ı		9 years	Own Hom	Debt Cons	18904.81	19.4	NA	8	0	334533	428956	0	0	
18	c9a16a9d	- abb4c446	- Charged C	653004	Long Term	1		7 years	Home Mo	Debt Cons	14537.09	20.5	NA	9	0	302309	413754	0	0	
19	24e8c8bd	- 967e8733	- Fully Paid	666204	Long Term	723	1821967	10+ years	Home Mo	Debt Cons	17612.24	22	34	15	0	813694	2004618	0	0	
20	c6be21f0	- c67b2cb5-	- Fully Paid	66396	Short Terr	n		10+ years	Rent	Debt Cons	9898.81	27.1	NA	23	1	9728	402380	1	0	
21	41f7dd8d	-422f9b72-	Fully Paid	390390	Short Terr	747	1791738	8 years	Home Mo	Home Imp	2478.55	22.7	NA	6	0	121182	801812	0	. :\0	2
22	150ebbac	40f729c9-	Charged C	317108	Long Term	687	1133274	8 years	Rent	Debt Cons	9632.81	17.4	53	4	0	60287	126940	0	0	
23	31ae42f6	016c5139-	Fully Paid	128238	Short Terr	750	1354073	<1 year	Rent	Debt Cons	13202.15	S 11.9	NA	7	0	131936	458788	0	0	
24	c7e2b784	-5b53e176	- Charged C	153252	Short Terr	714	1890690	2 years	Rent	Debt Cons	21900.35	15.7	NA	12	0	891594	1081014	0	0	
		-													1	abs				
		AILE	105												AIL	an			Е	
		AIL	, ·												1 ,					

11 205

11 205

bS

11 205

AiLabs

Data Preprocessing Pipeline

AiLabs

AILABS Property, All rights reserved

How data to be analyzed should look like

		All	Lak	_\	25			
				AiLa			10	C
	Glucose Concentration	Blood Pressure (in mm Hg)	Skin thickness (in mm)	Insulin Concentration (in µU/ml)	ВМІ	Diabetes Pedigree Function	Age	Out- come
6	148	72	35	0	33.6	0.627	50	1
1	285	66	29		26.6	0.351	31	-SDS 0
8	183	64	Ail 26	S 0	23.3	0.672	32	1
1	89	66	23	94	28.1	0.167	21	0
0	137	abs 40	35		43.1	2.288	33	Ailab
5	116	74	0	_abs o	25.6	0.201	30	0
3			32	88	31	0.248	26	1
	F	AiLabs		-hS				Aile
	1 8 1 0	Concentration 6 148 1 85 8 183 1 89 0 137 5 116	Of Concentration Blood Pressure (in mm Hg) 6 148 72 1 85 66 8 183 64 1 89 66 0 137 40 5 116 74	Glucose Concentration Pressure (in mm Hg) thickness (in mm) 6 148 72 35 1 85 66 29 8 183 64 0 1 89 66 23 0 137 40 35 5 116 74 0 3 78 50 32	of Concentration Blood Pressure (in mm Hg) Skin thickness (in mm) Insulin Concentration (in μU/mI) 6 148 72 35 0 1 85 66 29 0 8 183 64 0 0 1 89 66 23 94 0 137 40 35 168 5 116 74 0 0 33 78 50 32 88	of Concentration Blood Pressure (in mm Hg) Skin thickness (in mm) Insulin Concentration (in μU/ml) BMI 6 148 72 35 0 33.6 1 85 66 29 0 26.6 8 183 64 0 0 23.3 1 89 66 23 94 28.1 0 137 40 35 168 43.1 5 116 74 0 0 25.6 3 78 50 32 88 31	of Concentration Blood Pressure (in mm Hg) Skin thickness (in mm) Insulin Concentration (in μU/mI) BMI Diabetes Pedigree Function 6 148 72 35 0 33.6 0.627 1 85 66 29 0 26.6 0.351 8 183 64 0 0 23.3 0.672 1 89 66 23 94 28.1 0.167 0 137 40 35 168 43.1 2.288 5 116 74 0 0 25.6 0.201 3 78 50 32 88 31 0.248	of Solution Blood Pressure (in mm Hg) Skin thickness (in mm) Insulin Concentration (in μU/ml) BMI Diabetes Pedigree Function Age Function 6 148 72 35 0 33.6 0.627 50 1 85 66 29 0 26.6 0.351 31 8 183 64 0 0 23.3 0.672 32 1 89 66 23 94 28.1 0.167 21 0 137 40 35 168 43.1 2.288 33 5 116 74 0 0 25.6 0.201 30 3 78 50 32 88 31 0.248 26

AiLabs

11 205

			Δİ	Lab					
) (5		, , , , , , , , , , , , , , , , , , ,		AiLa	05		10	C
	Number of times pregnant	Glucose Concentration	Blood Pressure (in mm Hg)	Skin thickness (in mm)	Insulin Concentration (in µU/ml)	ВМІ	Diabetes Pedigree Function	Age	Out- come
	abs	148	72/90	35	5	33.6	0.627	-50	1
	1	Nil 285	66	29	,	26.6	0.351	31	-305 O
			64	AI\ NA	0		0.672	32	1
	AiLabs 1	89	66	NA	94	28.1	0.167	-21	0
	0	137	abs 40	35			2.288	33	Ailab
	5		74	0	abs	25.6	0.201	350	0
	8ds 1:1	78	135/110	32	88	31	0.248	26	1

AiLabs

AiLabs

AiLabs

AiLabs

Ail

AiLabs

			AIL		11 al)S			,
	100	Α	В	С	DILA	Е	F	abs G	Н
	ap	age	job	marital	education	balance	housing_loan	personal_loan	term_deposit_subscription
	2	58	management a	married	tertiary	2143	yes	no	yes
	3	44	technician	single	secondary	_a()3 29	yes	no	no
	.4	abs 33	entrepreneur	married	secondary	2	yes	yes_205	no
ŀ	5	47	blue-collar	married	unknown	1506	yes	no	no Ailabs
	6	-33	unknown	single	unknown	il abs	no	no	no
	7	35	management	married		231	yes	no abs	no
	8	ZIL 33	services	married	secondary	0	yes	no	no al abs
	9	28	management	single	tertiary	447	yes	yes	yes

- Some values are missing
- Some values are inconsistent
- Some columns contain text entries

305

Data Wrangling/Preprocessing

- Refers to set of techniques for resolving several issues such as missing values, correcting values, or cleaning up a dataset
- An essential and integral part of Machine Learning
- Involves transforming raw data into an understandable, process able format
- Prepares raw data to best expose the structure of the problem to the machine learning task
- Process varies from data-to-data and model-to-model

AiLabs

1

Usual outcomes of a data preprocessing pipeline

- No missing values
- Data from multiple sources have been merged

AiLabs

- All the data is in numerical format
- Outliers have been removed
- Categorical data have been handled
- Data has been scaled

AiLabs

AiLabs

Dimensionality Reduction

AiLabs

AiLabs

AiLabs

AiLabs

AiLabs

AiLabs

AiLabs

AILABS Property, All rights reserved

AiLabs

AiLabs

Basics Preprocessing techniques

- 1. Handling missing data
- 2. Outlier Detection
- 3. Categorical Feature handling
 - 4. Feature Scaling
 - 5. Dimensionality Reduction Ailabs

AiLabs AiLabs

AiLabs

AiLabs

Ailans A*LABS N

AiLabs

AiLabs

AiLabs

AiLabs

AiLabs AiLabs

AiLabs

AiLabs

AiLabs

AiLabs

AiLabs

AILABS Property, All rights reserved

Missing values

AiLabs

_subscription	term_deposit_	personal_loan	ousing_loan	balance	education	marital	job	age	
yes		AILAI	yes	2143.0	tertiary	married	management	58	0
no		no	yes	29.0	secondary	single	technician	44	1
no		yes	yes	2.0	secondary	married	entrepreneur	33	2
no		Ailano	yes	1506.0	unknown	married	blue-collar	47	3
Ailno		no	no	NaN	unknown	single	unknown	-33	4
no		no	oS yes	231.0	NaN	married	management	35	5
no	3/05	Vio S	yes	0.0	secondary	married	services	33	6 5
yes		yes	yes	447.0	tertiary	single	management	28	7
no		no	NabS yes	2.0	tertiary	divorced	entrepreneur	42	8
no	u ahs	no	yes	121.0	primary	married	retired	58	9

AiLabs

Missing values are listed as 'NaN'

AiLabs

- 'NaN' stands for 'Not a number' Ail abs
- 0 and 'NaN' are different

Missing Data Handling

Missing values are representative of the messiness of real world data.

There can be a multitude of reasons why they occur — ranging from human errors during data entry, incorrect sensor readings, to software bugs in the data processing pipeline.

Methods to handle them:

- **1. Removal** it is appropriate only when the proportion of missing data <10%, else you are going to lose a ton of data.
- 2. Replacement it is one of the most easiest yet dangerous methods, as these values can be misleading. Should be only used when absolutely necessary.
- 3. Statistical measure replace the missing values with mean, median or mode. For numerical values you should go with mean, and if there are some outliers try median

Missing Data

AiLabs

AiLabs

4. Interpolate - there are various interpolation methods.

AiLabs

5. Temporal filling – Backward or forward filing, part of the replacement method

6. Categorical values - In case of categorical values being missing, its best to replace them with the most frequent one.

AiLabs

AiLabs

AILADS AILABS

Mean - is given by the total of the values of the samples divided by the number of samples.

$$\bar{x} = -\sum x_i^{\circ}$$

Median - Median is the data point that lies exactly in the centre when the data is sorted in increasing or decreasing order.

1, 3, 3, 6, 7, 8, 9

Median =
$$\underline{6}$$

1, 2, 3, 4, 5, 6, 8, 9

Median = $(4 + 5) \div 2$

= 4.5

Mode - Mode represents the most common value in a data set.

Dealing with numerical missing values

AiLabs

								ahS
ils	age	job	marital	education	balance	housing_loan	personal_loan	term_deposit_subscription
0	58	management	married	tertiary	2143.0	yes	no	yes
1	44	technician	single	secondary	29.0	yes	abs no	no
2	33	entrepreneur	married	secondary	2.0	yes	yes	Ailabsno
3	47	blue-collar	married	unknown	S1506.0	yes	no	no
4	-33	unknown	single	unknown	NaN	no	is abs no	no
5	35	management	married	NaN	231.0	yes	no	, nos
6	33	services	married	secondary	0.0	yes	no	Allano
7	28	management	single	tertiary	3447.0	yes	yes	yes
8	42	entrepreneur	divorced	tertiary	2.0	yes	Ailano	no
9	58	retired	married	primary	121.0	yes	no	no
10	43	technician	single	secondary	NaN	S yes	no	no
11	41	admin.	divorced	secondary	270.0	yes	no	no no

- Numerical missing values can be filled in many different ways
- We will discuss two ways:
- 1) filling with mean
- 2) filling with median

Filling numerical missing values with mean

		age	job	marital	education	balance	housing_loan	personal_loan	term_deposit_subscription
	0	58	management	married	tertiary	2143.000000	yes	Ailano	yes
	1	44	technician	single	secondary	29.000000	yes	no	no
	2	33	entrepreneur	married	secondary	2.000000	yes	yes	no
	3	47	blue-collar	married	unknown	1506.000000	yes	no	ahS no
	4	-33	unknown	single	unknown	1362.344253	no	no	no
	5	35	management	married	NaN	231.000000	yes	no	no
	6	33	services	married	secondary	0.000000	abS yes	no	no
hS	7	28	management	single	tertiary	447.000000	yes	yes	vil abS yes
05	8	42	entrepreneur	divorced	tertiary	2.000000	yes	no	no
	9	58	retired	married	primary	121.000000	yes	no	no
	10	43	technician	single	secondary	1362.344253	il alo syes	no	no
Labs	311	41	admin.	divorced	secondary	270.000000	yes	no	AiLabs no
Lan	12	-29	admin.	single	secondary	390.000000	yes	no	no
	13	53	technician	married	secondary	6.000000	yes	no	yes
	14	58	technician	married	NaN	71.000000	yes	no	no no
lin	15	S57	services	married	secondary	162.000000	yes	no	Ailabs no
AIL	16	51	retired	married	primary	1362.344253	yes	no	no

Filling numerical missing values with median

		age	job	marital	education	balance	housing_loan	personal_loan	term_deposit_subscription
	0	58	management	married	tertiary	2143.0	yes	\\\no	yes
	1	44	technician	single	secondary	29.0	yes	no	no
	2	33	entrepreneur	married	secondary	2.0	S yes	yes	no
	3	47	blue-collar	married	unknown	1506.0	yes	no	no no
	4	-33	unknown	single	unknown	448.0	no	no	iLabs no
	5	35	management	married	NaN	231.0	yes	no	no
	6	33	services	married	secondary	0.0	a\oS yes	no	no
	7	28	management	single	tertiary	447.0	yes	yes	AiLabS yes
	8	42	entrepreneur	divorced	tertiary	2.0	yes	no	no
	9	58	retired	married	primary	121.0	yes	no	no
	10	43	technician	single	secondary	448.0	Nil alyes	no	no
	11	41	admin.	divorced	secondary	270.0	yes	no	Ailabs no
	12	-29	admin.	single	secondary	390.0	yes	no	no
	13	53	technician	married	secondary	6.0	yes	no	yes
	14	58	technician	married	NaN	71.0	yes	no	no
O	15	57	services	married	secondary	162.0	yes	no	Ailabao
	16	51	retired	married	primary	448.0	yes	no	no ,

AiLabs

AiLabs

20

AiLabs

Median is Robust to Outliers

Name	Monthly Income (\$)	Name	Monthly Income (\$)
Rob	5000	Rob	5000
Rafiq	6000	Rafiq	6000
Nina	4000	Nina	4000
Sofia	7500	Sofia	7500
Mohan	8000	Mohan	8000
Tao	7000	Tao	7000
		Elon Musk	10 million
Average	6250	Average	1.43 million

A.		ahS
Presence of outlier missing data.	rs can misguide th	ie
missing data.	AiLabs	
		AiLabs

Name	Monthly Income (\$)	Credit Score	Approve Loan?
Rob	5000	650	No
Rafiq	6000	400	No
Nina	4000	780	Yes
Sofia	1.6 million	810	Yes
Mohan	8000	410	No
Tao	7000	850	Yes
Elon Musk	10 million	880	Yes

Name	Mon		Credit Sco	ore	Approve Loan?
Rob	50	00	650		No
Rafiq	6000		400		No
Nina	40	00	780		Yes
Sofia	65	00	810		Yes
Mohan	80	00	410		No
Tao	70	00	850		Yes
Elon Musk	10 m	illion	880		Yes
4000	5000	6000	7000	8000	10 million

Dealing with categorical missing values

								1 5
1 2	age	job	marital	education	balance	housing_loan	personal_loan	term_deposit_subscription
0	58	management	married	2 tertiary	2143.0	yes	no	yes
1	44	technician	single	secondary	29.0	yes	S no	no
2	33	entrepreneur	married	secondary	2.0	yes	yes	no Rilabs no
3	47	blue-collar	married	unknown	1506.0	yes	no	no
4	-33	unknown	single	unknown	448.0	no	no no	no
5	35	management	married	NaN	231.0	yes	no	no no
6	33	Services	married	secondary	0.0	yes	no	Ail all no
7	28	management	single	tertiary	\\\\S447.0	yes	yes	yes
8	42	entrepreneur	divorced	tertiary	2.0	yes	AILabs no	no
9	58	retired	married	primary	121.0	yes	no	Ailabno
10	43	technician	single	secondary	448.0	yes	no	no
11	41	admin.	divorced	secondary	270.0	yes	no	no

AiLabs

- Filling categorical missing values can be tricky
- We generally fill with highest frequency value

AILABS Property, All rights reserve

Outliers Detection

Outliers are extreme values that deviate from other observations on data, they may indicate a variability in a measurement, experimental errors or a novelty.

Outliers are generally defined as samples that are exceptionally far from the mainstream of data.

Therefore, Outlier Detection may be defined as the process of detecting and subsequently excluding outliers from a given set of data.

Variance and Standard Deviation

Variance: Measures how far a set of numbers is spread out. A variance of zero indicates that all the values are identical. Variance is always non-negative, a small variance indicates that the data points tend to be very close to the mean (Average value), while a high variance indicates that the data points are very spread out around the mean.

Standard Deviation: The standard deviation gives an idea of **how close the entire set of data is to the average value.** Data sets with a small standard deviation have tightly grouped. Data sets with large standard deviations have data spread out over a wide range of values.

Formulae

Variance = Var(n)
$$\approx \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

which has proposed absorbation is subtracted from

AiLabs

 μ is the mean, each observation is subtracted from the mean, there difference is squared and then summed together. Then we take the average of that sum.

Standard Deviation =
$$\sigma = \sqrt{Var(n)} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2}$$

AiLabs

AILABS Property, All rights

AiLabs

Normal Distribution

The most well-known continuous distribution is **Normal Distribution**, which is also known as the **Gaussian distribution** or the "Bell Curve."

Ex - heights of people, price of apartments in an area, Test score, Employee performance.. All these follows normal distribution.

AiLabs

How Normal Distribution is used in machine learning?

Outlier removal: It is estimated that, generally data beyond 3σ are outliers (for smaller dataset, its 2σ). AiLabs

Method for Outliers Detection

- 1. Using standard deviation
- 2. Using Visualization
- 3. Numeric Outlier The outliers are calculated by means of the IQR (InterQuartile Range). For example, the first and the third quartile (Q1, Q3) are calculated. An outlier is then a data point xi that lies outside the interquartile range.

Percentile -

For example - if a value is 25th percentile of data set that means 25% of data in the dataset is below that value.

minimum value has 0th percentile because all values are greater.

Method for Outliers Detection

AiLabs

AiLabs

AiLabs

IQR - Q3-Q1 (Q3 = 75th percentile, Q1 = 25th percentile)

Lower limit = Q1 - 1.5*IQR

Upper limit = Q3 + 1.5*IQR

So, any value less than lower limit, and more than upper limit is outlier.

AiLabs

AiLabs

vil abs

AiLabs

AiLabs

AILABS Property, All rights

Method for Outliers Detection

= 7.66

AiLabs

AiLabs

AiLabs

AiLabs

AILABS Property, All rights

Handling Categorical data

In machine learning, we often encounter some instance which generally include different categories or levels associated with the observation, which are non-numerical and thus need to be converted so the computer can process them.

These features are typically stored as text values which represent various traits of the observations. For example, gender is described as Male (M) or Female (F), product type could be described as electronics, apparels, food etc.

AiLabs

AiLabs

AiLabs

AiLabs

AiLabs

AiLabs

AILABS Property, All rights

		age	job	marital	education	balance	housing_	_loan	personal_loan	_term_deposit_subscri	ption	
	0	58	management	married	tertiary	2143.0		yes	no		yes	1-C
	1	44	technician	single	secondary	29.0		yes	no		no	Labs
	2	33	entrepreneur	married	secondary	2.0	5	yes	yes		no	
	3	47	blue-collar	married	unknown	1506.0		yes	no	ahs	no	
abs	4	33	unknown	single	unknown	448.0		no	no	Lab	no	, ahS
	5	35	management	married	secondary	231.0		yes	no		no	AiLabs
	6	33	services	married	secondary	0.0	abs	yes	no		no	
hS	7	28	management	single	tertiary	447.0		yes	yes	AiLabs	yes	
iLabs	8	42	entrepreneur	divorced	tertiary	2.0		yes	no	AILO	no	AiLab
	9	58	retired	married	primary	121.0	4	yes	no		no	AILA
	10	43	technician	single	secondary	448.0	AILa	yes	no		no	
AiLah	S ¹¹	41	admin.	divorced	secondary	270.0		yes	no	AiLabs	no	
Aila	12	29	admin.	single	secondary	390.0		yes	no	P. P.	no	Ail
	13	53	technician	married	secondary	6.0		yes	no		yes	All
	14	58	technician	married	secondary	71.0	Ai	yes	no	100	no	
	15	957	services	married	secondary	162.0	,	yes	no	AiLabs	no	
A	16	51	retired	married	primary	448.0		yes	no			roperty, All rights res

Types of categorical data

- Nominal These are variables which are not related to each other in any order such as colour (black, blue, green).
 - Ordinal These are variables where a certain order can be found between them such as student grades (A, B, C, D, Fail). AiLabs

AiLabs AiLabs

AILABS Property, All rights

AiLabs

Label encoding

One of the **simplest** and **most common solutions** advertised to transform categorical variables is **Label Encoding.** It consists of **substituting** each group with a **corresponding numb er** and keeping such numbering consistent throughout the feature.

AiLabs

AiLabs

AiLabs

	vil abs
Categorical Feature	Label Encoding
United States	1
United States	105
France	AIL-2
Germany	3
United Kingdom	4
France	12 abs

AiLabs

Label encoding

AiLabs

Disadvantage - Numbers hold relationships. For instance, four is twice two, and, when converting categories into numbers directly, these relationships are created despite not existing between the original categories.

Looking at the example, United Kingdom becomes twice France, and France plus United States equals Germany.

They are best used for ordinal data/categories.

AiLabs

AiLabs

AiLabs

AILABS Property, All rights

Dealing with categorical data(Non-Ordinal)

Do these data values have an 'order'?

NO!!

- We cannot say 'married' > 'single' or 'technician'<'services'
- How to deal with this?

One-hot Encoding!!!

	1- C						J	
	age	AIL abs	marital	education	balance	housing_loan	personal_loan	term_deposit_subscription
0	58	management	married	tertiary	2143.0	1	0	1
1	44	technician	single	secondary	29.0	1	0	AiLabs
2	33	entrepreneur	married	secondary	2.0	1	1	0
3	47	blue-collar	married	unknown	1506.0	ii ah9	0	0
4	33	unknown	single	unknown	448.0	Ail abg	0	1 ahs 0
5	35	management	married	secondary	231.0	1	0	Ailabs o
6	33	services	married	secondary	0.0	1	0	0
7	28	management	single	tertiary	447.0	Ail-al	05 1	1
8	42	entrepreneur	divorced	tertiary	2.0	1	0	Ailab9
9	58	retired	married	primary	121.0	1	0	AIL O
10	43	technician	single	secondary	448.0	1	0	0
11	41	admin.	divorced	secondary	270.0	1.	Labs o	0
12	29	admin.	single	secondary	390.0	1	0	Ail
13	53	technician	married	secondary	6.0	1	0	1
14	58	technician	married	secondary	71.0	1	0	0
15	57	services	married	secondary	162.0	1	AiLabs	0
16	51	s retired	married	primary	448.0	1	0	0

One-hot encoding categorical data

AiLabs

/*			divorced	married	single	education
	0		0	1	0	tertiary
	-1		0	0	1	secondary
iLabs	2		0	1	0	secondary
ILCIR	3		abso	1	0	unknown
	4		0	0	1	unknown
	5		0	1	0	secondan
Ailabs	6		0	1	0	secondary
	7		Ail a	S 0	1	tertiary
	8		1	0	0	tertiary
	9		0	1	0	primary
Aila	1005		0	0	1	secondary
	11		1	0 Sp8 0	0	secondary
	12		0	0	1	secondary
	13		0	1	0	secondary
A	14		0	1	0	secondary
J	15		0	Ail B	D20	secondary
	16		0	1	0	primary

One hot encoding

AiLabs

One-Hot Encoding is the most common, correct way to deal with non-ordinal categorical data. It consists of creating an additional feature for each group of the categorical feature and mark each observation belonging (Value=1) or not (Value=0) to that group.

AiLabs

Minor drawbacks - Increased dimensionality, sparse dataset.

	United States	France	Germany	United Kingdom
iLabs	1	0	0	QLabs
	1 AILE	abs o	0	0
	0	1	Ailobs	0
AiLab	0	0	1	o Ailabe
	0	iLab 6	0	1
	0	1	oilabs	0

It consists of substituting each group in a categorical feature with the average response in the target variable.

Target Encoding is a powerful solution also because it avoids generating a high number of features, as is the case for One-Hot Encoding, keeping the dimensionality of the dataset as the original one.

For example, if the categories of categorical feature are red, blue and green. Then replace red with **mean of all the target labels** where-ever the feature value is red in training data.

AiLabs AiLabs

AILABS Property, All rights reserved

AiLabs

AiLabs

Target Encoding

AiLabs

For example - United states have 5 target variable = 1,0,1,0,0 Mean of all target variable for group "United States' = $(1+0+1+0+0)/5 = 0.40^{\circ}$

hS	Country	Target Variable	Target Encoding
₁ bS	United States	1	0.40
	Germany	0	0.50
	United States	o iLabs	0.40
iLabs	United States	1	0.40 0.40
	France AiLabs	1	0.67
	Germany	1 AiLabs	0.50
ii ahs	United States	0	0.40 AiLabs
AiLabs	France	1	0.67
	United States	0	abs 0.40
	France	o AIL	0.67
VIL S	702		Allen

Feature scaling

AiLabs

AiLabs

Real-world data comprises of attributes with varying scales.

Varying scales may cause a model to 'prioritize' one attribute over another.

Necessary to rescale the attributes so that they all have similar scale

AiLabs

Airana

Feature scaling

AiLabs

In our data, 'age' and 'balance' have different scales

 We scale them by subtracting the mean and dividing by the standard deviation

AiLabs

balance age 2143.0 58 2.0 AiLabs 1506.0 33 231.0 0.0 447.0 121.0 448.0 270.0 390.0 71.0 162.0

AiLabs

AiLabs

AiLabs

AiLabs

AiLabs

42

Feature scaling Ail abs

- Data is comprised of attributes with varying scales.
- Rescale the attributes so that all have the same scale.
- Often referred to as normalization; attributes are rescaled into the range between 0 and 1
- Feature scaling is the statistical operation of using values of features to scale themselves to smaller and similar ranges.

AiLabs

- This is done to equalize the influence of all input features to the machine learning model by scaling them to similar ranges. As machine only understands number and not relationship between them.
- Feature scaling is useful in:

AiLabs

- optimization algorithms used in the core of machine learning algorithms like gradient descent
- algorithms that weight inputs like regression and neural networks
- algorithms that use distance measures like k-Nearest Neighbors

Ailabe

43

AiLabs

1. Standardization

AiLabs

AiLabs

 a useful technique to transform attributes with a Gaussian distribution and differing means and standard deviations to a standard Gaussian distribution with a mean of 0 and a standard deviation of 1.

AiLabs

AiLabs

- This technique is more suitable for methods:
 - that assume Gaussian distribution in the input variables
 - designed for discrete data.

AiLabs

AiLabs

AiLabs

AiLab

AiLabs

AiLabs

44

AILABS Property, All rights reserved

iLab	5			AiLan		AiLabs		lo C
	Number of times pregnant	Glucose Concentratio n	Blood Pressure (in mm Hg)	Skin thickness S (in mm)	Insulin Concentratio n (in µU/ml)	BMI	Diabetes Pedigree Function	Age
Ail	0.64	0.848	0.15	0.907	-0.693	0.204	0.468	1.426
	-0.845	-1.123 Ail-	-0.161	0.531	-0.693	-0.684	-0.365	-0.191
	1.234	1.944	-0.264	-1.288	-0.693	-1.103	0.604	-0.106
	-0.845	-0.998	-0.161	0.155	0.123	-0.494	-0.921	-1.042
	-1.142	0.504	-1.505	0.907	0.766	1.41	5.485	-0.02

AiLabs

11 205

AiLabs

AiLabs

AiLabs

AiLabs

AiLabs

AiLabs

AiLabs

AiLabs

AiLabs

AiLabs

AiLabs

2. Normalization

AiLabs

AiLabs

AiLabs

- Normalization refers to <u>rescaling</u> each observation (row) to have a length of 1.
- This technique can be useful for sparse <u>datasets</u> (lots of zeros) with attributes of varying scales:

AiLabs

AiLabs

AiLabs

AiLabs

- when using algorithms that weight input values such as neural networks or
- with algorithms that use distance measures such as k-Nearest Neighbors

AiLabs

AiLabs

AiLabs

AILABS Property, All rights reserved

AiLabs

AiLabs

iLab	S			Ailai		AiLabs		lo C
	Number of times pregnant	Glucose Concentratio n	Blood Pressure (in mm Hg)	Skin thickness (in mm)	Insulin Concentratio n (in µU/ml)	BMI	Diabetes Pedigree Function	Age
Ail	0.034	0.828	0.403	0.196	0.	0.188	0.004	0.28
	0.008	0.716	0.556	0.244	os 0.	0.224	0.003	0.261
	0.04	0.924	0.323	O. AILC	0.	0.118	5 0.003	0.162
	0.007	0.588	0.436	0.152	0.622	0.186	0.001	0.139
	0.	0.596	0.174	0.152	0.731	0.188	0.01	0.144

AiLabs

AiLabs

11 205

AiLabs

AiLabs

AiLabs

AiLabs

Extract Transform Load (ETL)

EXTRACT

Retrieve data from homogeneous or heterogeneous sources in its raw state.

TRANSFORM

Conversion of extracted data into proper storage format or structure by using rules or lookup tables or by combining the data with other data.

LOAD

The load phase loads the data into the end target, which can be any data store including a simple delimited flat file or a data warehouse, in this case, an ML algorithm.

Features — Label	AIL	-hS		,
		— Features -	<u>rilabs</u>	Label

Position	Experience	Skill	Country	City	Salary (\$)
Developer	0	ril ab9	USA	New York	103100
Developer	1	1	USA	New York	104900
Developer	2 2	1	USA	New York	106800
Developer	AIL as	1	USA	New York	108700
Developer	4	AILI	USA	New York	110400
Developer	5	1	USA	New York	112300
Developer	NiLabs 6	1	USA	New York	114200
Developer	7	1	USA	New York	116100
Developer	8	1	USA	New York	117800
Developer	9	1	USA	New York	119700
Developer	10	1	USANS	New York	121600

11 205

AiLabs

Features and Labels

AiLabs

AiLabs AiLabs Label **Features** 5 iLabs AiLabs AiLabs edge size color AiLabs small dotted5 green AiLabs AiLabs **Observations** big yellow striped AiLabs green Aillabs medium normal AiLabs

11 205

AiLabs Ailans Training testing & validation AiLabs

11 205

AiLabs

AiLabs

AiLabs

AiLabs

AiLabs

AiLabs

AILABS Property, All rights reserved

Training set and test set

ALABS

AiLabs

AiLabs

AiLabs

- Data in its entirety is not used for training purpose.
- It is split into two sets:
 - Training Set
 - Testing Set

AiLabs

AiLabs

• Generally, a 70:30 ratio is preferred, between train and test

AiLabs

Sometimes 80:20 or 90:10 is also used

AiLabs

AiLabs

AiLabs

AiLabs

AiLabs

AiLabs

AiLabs

AiLabs

AiLabs

AiLabs Train Test Split AiLabs

		-			11 013	^					
	Subject	t	Feature 1	Feature 2	Target	1	Subject	t.	Feature 1	Feature 2	Target
u obs	Paul	1	1000	male	0		Paul:\ 2) 1 ′	1000	male	0
iLan	Paul	2	1100	male	0		Paulina	1	10000	female S	0
	Paul	3	1200	male	1	١,	George	1	50000	male	1
	Paul	4	1300	male	1	5 .	Paul	2	1100	male	0
	Crista	4	20	female	0/1/00	COUN	Paulina	2	100000	female	1
	Crista	5	100	female	0	` [George	2903	50000	male	1
AIL	Paulina	1	10000	female	0		Paul	3	1200	male	ahS 1
1	Paulina	2	100000	female	1		Paulina	3	95000	female	1
	Paulina	3	95000	female	1	ans	George	3	50000	male	1
	Paulina	4	97000	female	1	Jak	Paul	4	1300	male	1
	Paulina	5	99000	female	1	1.	Crista	4:1 205	20	female	0
	Paulina	6	101000	female	1	\vee	Paulina	4	97000	female	11 0hS1
	George	1	50000	male	1	A	George	4	50000	male	1 ILON
	George	2	50000	male	1	- John	Crista	5	100	female	0
	George	3	50000	male	1	Met	Paulina	5	99000	female	1
	George	14 S	50000	male	1	esi	George	5 (1) 8	50000	male	1
	George	5	50000	male	1		Paulina	6	101000	female	
	George	6	50000	male abs	1	\checkmark	George	6	50000	male	AIL-9
		10 G	•	AILO		AiLabs	5		:1 205		,

11 205

AiLabs

