Applied Mechanics 1 Formulae

Rules of Cosine and Sine

$$c^{2} = a^{2} + b^{2} - 2ab \cos \gamma$$
$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

Linear Motion

$$\vec{v} = \vec{u} + \vec{a}t$$

$$\vec{s} = \frac{\vec{u} + \vec{v}}{2}t$$

$$\vec{s} = \vec{u}t + \frac{1}{2}\vec{a}t^2$$

$$\vec{v}^2 = \vec{u}^2 + 2\vec{a} \cdot \vec{s}$$

where:

- \vec{u} : Initial velocity
- \vec{v} : Final velocity
- \vec{s} : Displacement
- \vec{a} : Acceleration
- t: Time

Angular Motion

$$\omega_2 = \omega_1 \mp \alpha t$$

$$\theta = \frac{\omega_1 + \omega_2}{2} t$$

$$\theta = \omega_1 t \mp \frac{1}{2} \alpha t^2$$

$$\omega_2^2 = \omega_1^2 \mp 2\alpha\theta$$

where:

- ω_1 : Initial angular velocity (rad/s)
- ω_2 : Final angular velocity (rad/s)
- θ Angular displacement (rad)
- α : Angular acceleration (rad/s²)
- t: Time (s)

Relation Between Linear and Angular Motion

The relationship between linear and angular motion is described by the following equations:

- $s = r\theta$ (linear displacement s and angular displacement θ).
- $v = r\omega$ (linear velocity v and angular velocity ω),
- $a = r\alpha$ (linear acceleration a and angular acceleration α).

Centre of Gravity

$$\bar{x} = \frac{\sum Moments\ of\ Weights}{\sum Weights} \qquad \bar{y} = \frac{\sum Moments\ of\ Weights}{\sum Weights}$$

Centroid

$$\bar{x} = \frac{\sum \bar{x}_i \ A_i}{\sum A_i} \qquad \bar{y} = \frac{\sum \bar{y}_i \ A_i}{\sum A_i}$$

Parallel Axis Theorem

To find the moment of inertia about an axis parallel to the centroidal axis:

$$I = I_c + Ad^2$$

Radius of Gyration

$$k = \sqrt{\frac{I}{A}}$$
 (for area) or $k = \sqrt{\frac{I}{m}}$ (for mass),

where:

- I: Moment of inertia about the axis
- A: Area of the cross-section (for area calculations)
- m: Mass of the body (for mass calculations)

Rectangle (about its centroidal axis)

- Dimensions: (b) (breadth), (h) (height)
- Radius of gyration about the centroidal x-axis:

$$k_x = \sqrt{\frac{I_x}{A}} = \sqrt{\frac{\frac{1}{12}bh^3}{bh}} = \frac{h}{\sqrt{12}}$$

Circle (about its centroidal axis)

- Radius: (r)
- Radius of gyration:

$$k = \sqrt{\frac{I}{A}} = \sqrt{\frac{\pi r^4}{\frac{4}{\pi r^2}}} = \frac{r}{\sqrt{2}}$$

Beam Calculations

Sum of Horizontal Forces	Sum of Vertical Force	Sum of Moments
$\sum F_x = 0$	$\sum F_y = 0$	$\sum M = 0$

Load Type	Shear Diagram Shape	Moment Diagram Shape
Point Load Uniformly Distributed Load	Rectangular (constant) Triangular	Triangular Parabolas (second degree)
(UDL)		

Dynamics

Linear momentum

 $Linear\ momentum = m\vec{v}$

Where:

- Linear momentum is in $kg \cdot m/s$.
- m is the mass of the object in kilograms.
- \vec{v} is the velocity of the object in meters per second.

Angular momentum

Angular momentum = $I\omega$

Where:

- I is the moment of inertia in m^4 .
- ω is the angular velocity in rad/s.

Moment of inertia

 $I = mk^2$

Where:

- I is the moment of inertia in m^4 .
- m is the mass in kg.
- k is the radius of gyration in m.

Turning moment

 $\tau = I\alpha$

- τ is the torque in Nm.
- I is the moment of inertia in m^4 .
- α : Angular acceleration in rad/s^2 .

Power by Torque

$$P=\tau\cdot\omega$$

Where:

P is the power in watts (W),

 τ is the torque in newton-meters (Nm), and

 ω is the angular velocity in radians per second (rad/s).

Kinetic Energy of Rotation

Rotational K.E. =
$$\frac{1}{2}I\omega^2$$

Where:

- I is the moment of inertia in m^4 .
- ω is the angular velocity in radians per second (rad/s).

Stress and Strain

Stress

$$\sigma = \frac{F}{A}$$

$$\tau = \frac{F}{A}$$

- σ is the stress (Pa),
- τ is the shearing stress (Pa),
- F is the shearing force (N),
- A is the cross-sectional area (m²).

Strain

$$\varepsilon = \frac{\Delta L}{L_0}$$

Where:

- ε is the strain (unitless),
- ΔL is the change in length,
- L_0 is the original length.

Hooke's Law

$$E = \frac{\sigma}{\varepsilon}$$

Where:

- σ is the stress (Pa).
- ε is the strain (unitless).
- E: Young's modulus (Pa), a material property (modulus of elasticity).

Factor of Safety (FOS)

$$FOS = \frac{Breaking Stress}{Working Stress}$$

Hydrodynamics

Volume Flow

$$\dot{v} = A \cdot C$$

- \dot{v} : Volume flow rate, m³/s
- A: Cross-sectional area of the flow, m^2
- C: Mean (average) velocity of the fluid, m/s

Mass Flow

$$\dot{m} = \rho \cdot \dot{v}$$

Where:

 \dot{m} : mass flow rate, kg/s

 ρ : density, kg/m³

 \dot{v} : volume flow, m³/s

Specific Weight

$$\gamma = g \cdot \rho$$

Where:

 γ : specific weight, N/m³

g: gravitational acceleration, m/s²

 ρ : density, kg/m³

Continuity Equation

$$A_1 \cdot C_1 = A_2 \cdot C_2$$

Energy Equation

$$Z_1 + \frac{C_1^2}{2g} + \frac{P_1}{g\rho_1} = Z_2 + \frac{C_2^2}{2g} + \frac{P_2}{g\rho_2}$$

$$Z_1 + \frac{C_1^2}{2g} + \frac{P_1}{\gamma_1} = Z_2 + \frac{C_2^2}{2g} + \frac{P_2}{\gamma_2}$$

Each term has units of m, therefore:

- Potential energy Z is known as the elevation head.
- Kinetic energy $\frac{c^2}{2g}$ is known as the velocity head.
- Pressure energy $\frac{P}{\gamma}$ is known as the pressure head.

 $Total\ Head = Elevation\ Head + Velocity\ Head + Pressure\ Head$

Bernoulli's Equation

$$P_1 + \frac{1}{2}\rho C_1^2 + \rho g h_1 = P_2 + \frac{1}{2}\rho C_2^2 + \rho g h_2$$

- P_1 and P_2 are the pressures at points 1 and 2, respectively.
- ρ is the density of the fluid.
- C_1 and C_2 are the velocities of the fluid at points 1 and 2, respectively.
- ullet g is the acceleration due to gravity.
- h_1 and h_2 are the heights of the fluid at points 1 and 2, respectively.

Table 3: Centroids of Common Shapes

		or common snapes	
Shape	Area	$ar{x}$	$ar{y}$
	A=bh	b/2	h/2
	$rac{bh}{2}$	b/3	h/3
$ \begin{array}{c c} h & \overline{x} \\ \hline c & \overline{y} \\ \hline x \\ \hline y & x \\ \hline x \\ \hline x \\ x \\ \hline x \\ x \\$	$\frac{(a+b)h}{2}$	$\frac{a^2 + ab + b^2}{3(a+b)}$	$\frac{h(2a+b)}{3(a+b)}$
\overline{y}	πr^2	r	r
x y y	$rac{\pi r^2}{2}$	r	$\frac{4r}{3\pi}$
\overline{y}	$rac{\pi r^2}{4}$	$\frac{4r}{3\pi}$	$\frac{4r}{3\pi}$

Second Moments of Common Shapes

Table 4: Second moments

Shape	Second moment (I_x)	Second moment (I_y)
	$I_x = \frac{1}{12}bh^3$	$I_y = \frac{1}{12}b^3h$
<i>y</i>	$I_x = \frac{1}{3}bh^3$	$I_y = \frac{1}{3}b^3h$
 " ↑	$I_x = \tfrac{\pi}{4} r^4$	$I_y=rac{\pi}{4}r^4$
r_1 r_2 x		
	$I_x = \tfrac{\pi}{4} (r_2^4 - r_1^4)$	$I_y=\tfrac{\pi}{4}(r_2^4-r_1^4)$

$$I_x = \tfrac{\pi}{8} r^4$$

$$I_y = \tfrac{\pi}{8} r^4$$

$$I_x = \frac{\pi}{16} r^4$$

$$I_y = \frac{\pi}{16} r^4$$

$$I_x = \frac{1}{12}bh^3$$

$$I_x = \frac{1}{36}bh^3$$