Министерство образования Российской Федерации

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. БАУМАНА

Факультет: Информатика и системы управления Кафедра: Информационная безопасность (ИУ8)

Методы оптимизации

Домашнее задание №3 на тему: «Построение сетевого графа работ и его анализ методом критического пути»

Вариант 5

Преподаватель:

Коннова Н.С.

Студент:

Девяткин Е.Д.

Группа:

ИУ8-34

Репозиторий работы: https://github.com/ledibonibell/MO-hw03

Москва 2023

Цель работы

Изучить задачи сетевого планирования в управлении проектами и приобрести навыки их решения при помощи метода критического пути.

Постановка задачи

Задан набор работ с множествами непосредственно предшествующих работ (по варианту).

- 1. Построить сетевой граф, произвести его топологическое упорядочение и нумерацию.
- 2. Рассчитать и занести в таблицу поздние сроки начала и ранние сроки окончания работ.
- 3. Рассчитать и занести в таблицу ранние и поздние сроки наступления событий.
- 4. Рассчитать полный и свободный резервы времени работ.
- 5. Рассчитать резерв времени событий, определить и выделить на графе критический путь.

Ход работы Рассмотрим начальную таблицу данных (таблица 1.)

Работа (путь)	Длительность работы	Предшествующие работы		
a	3	-		
b	5	-		
c	2	ь		
d	4	ь		
e	3	-		
f	1	a		
g	4	e, d		
h	3	f,c, g		
i	3	f ,c, g		
j	2	h		
k	5	i		

Таблица 1.

Теперь построим сетевой граф, основываясь на начальные условие (рис 2-3)

Рис. 1.

Рис. 2.

Для удобства работы, также приведем его частично упорядоченный вид на рисунке 3.

Рис. 3.

Соответственно рассчитав ранний срок окончания и поздний срок начала, получим следующее значение (таблица 2). Два последних столбца рассчитаем из таблицы ранних и поздних сроков (таблица 3).

Рассчитаем ранний срок начала: $t_{i-j}^{po} = T_i^p$

Рассчитаем поздний срок окончания: $t_{i-j}^{^{\mathit{\Pi}H}} = T_{j}^{^{\mathit{\Pi}}}$

Рассчитаем поздний срок начала: $t_{i-j}^{nH} = T_i^n + t_{i-j}$

Рассчитаем ранний срок окончания: $t_{i-j}^{^{\Pi H}} = T_{j}^{^{P}} - t_{i-j}$

Аналогично рассчитываем ранние и поздние сроки и резерв:

$$\begin{cases} R_{i} = T_{i}^{\pi} - T_{i}^{p} \\ r_{i-j}^{\pi} = T_{j}^{\pi} - T_{i}^{p} - t_{i-j} \\ r_{i-j}^{c} = T_{j}^{p} - T_{i}^{p} - t_{i-j} \end{cases}$$

Работа	Вершины	Длина	t_{i-j}^{PH}	$t_{i-j}^{\varPi H}$	t_{i-j}^{PO}	$t_{i-j}^{ec{\Pi}O}$	$r_{i-j}^{\it \Pi}$	$r_{i-j}^{\it C}$
a	1-2	3	0	9	3	12	9	0
b	1-3	5	0	0	5	5	0	0
С	3-5	3	5	10	8	13	5	5
d	3-4	4	5	5	9	9	0	0
e	1-4	3	0	6	3	9	6	6
f	2-5	1	3	12	4	13	9	9
g	4-5	4	9	9	13	13	0	0
h	5-6	3	13	16	16	19	3	0
i	5-7	3	13	13	16	16	0	0
j	6-8	2	16	19	18	21	3	3
k	7-8	5	16	16	21	21	0	0

Таблица 2.

Вершина	T_i^p	T_i^{π}	Резерв
1	0	0	0
2	3	3	0
3	5	5	0
4	3	9	6
5	4	13	9
6	6	16	10
7	6	16	10
8	8	21	13

Таблица 3.

Рассмотрим переработанную схему с временной шкалой, с учетом найденного нами времени (рис. 4)

Рис. 4.

Для поиска критического пути, возьмем нулевые значение полного резерва из таблицы 2:

Критический путь: $b \to d \to g \to i \to k$ (рис.5)

Также, для проверки, перебором попытаемся найти критический путь, то есть путь, занимающий наибольшее время:

Он также равен: $b \to d \to g \to i \to k$

Рис. 5.

Вывод

В ходе выполнения работы был изучен сетевой граф и построена схема, показывающая ранние и поздние сроки окончания работ

Также по средствам анализа полного резерва был найден критический путь и проверен методом перебора. Тем самым мы доказали, что критический путь есть путь с нулевым запасом полного резерва, то есть максимальный по времени путь

Приложение А

```
Файл 'Main.py':
def critical path(amount, start params, end params, duration):
  earliest start times = [0] * amount
  latest start times = [float('inf')] * amount
  for k in range(amount):
     max start = earliest start times[start params[k]] + duration[k]
     if earliest start times[end params[k]] < max start:
       earliest start times[end params[k]] = max start
  latest start times[end params[amount - 1]] =
earliest start times[end params[amount - 1]]
  for k in range(amount -1, -1, -1):
     min finish = latest start times[end params[k]] - duration[k]
     if latest start times[start params[k]] > min finish:
       latest start times[start params[k]] = min finish
  earliest start = [earliest start times[start params[k]] for k in range(amount)]
  earliest finish = [earliest start[k] + duration[k] for k in range(amount)]
  latest finish = [latest start times[end params[k]] for k in range(amount)]
  latest start = [latest finish[k] - duration[k] for k in range(amount)]
  total float = [latest finish[k] - earliest finish[k] for k in range(amount)]
  free float = [earliest start times[end params[k]] - earliest finish[k] for k in
range(amount)]
  critical path tasks = [1] + [end params[k]] for k in range(amount) if total float[k]
== 01
  return earliest start, latest start, earliest finish, latest finish, total float, free float,
critical path tasks
# def input tasks data(amount):
    works = []
#
    start work = []
#
    end work = []
#
    durations = []
#
#
#
    for i in range(amount):
       work name = input(f"Enter name for task \{i + 1\}: ")
#
       start time = int(input(f"Enter start time for task {work name}: "))
#
       end_time = int(input(f"Enter end time for task {work name}: "))
#
       duration time = int(input(f"Enter duration for task {work name}: "))
#
#
       works.append(work name)
#
```

```
#
                   start work.append(start time)
#
                    end work.append(end time)
                   durations.append(duration time)
#
#
#
            return works, start work, end work, durations
#
\# n = int(input("Enter the number of tasks: "))
# result = critical path(*input tasks data(n))
n = 11
works = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k"]
start work = [1, 1, 3, 3, 1, 2, 4, 5, 5, 6, 7]
end work = [2, 3, 5, 4, 4, 5, 5, 6, 7, 8, 8]
durations = [3, 5, 3, 4, 3, 1, 4, 3, 3, 2, 5]
\# start work = [1, 2, 7, 1, 3, 4, 5, 8, 1, 6, 9]
# end work = [2, 7, 8, 3, 4, 5, 8, 9, 6, 9, 10]
\# durations = [1, 14, 1, 2, 3, 1, 8, 2, 10, 1, 2]
result = critical path(n, start work, end work, durations)
print("\n JOB\t\tDUR\t\tPH\t\t\H\t\tPO\t\tHO\t\tHP\t\tCP")
for i in range(n):
       print(f"{works[i]}\t{start work[i]}-
\label{lem:conditions} $$ \operatorname{work}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{0}[i]_{t}^{
sult[3][i]}\t\t{result[4][i]}\t\t{result[5][i]}")
print("\nКритический путь:")
for j in range(len(result[6])-1): # Iterate up to the second-to-last element
       for i in range(n):
              if result[6][j] == start work[i] and result[6][j+1] == end work[i]:
                     print(f"{works[i]}\t", end=")
```

Приложение Б