Example 6

In $\triangle ABC, AD$ is the median. BE and AC meet at E.BE and AD meet at F. If AE=EF, show that AC=BF.

Proof: Extend AD to H such that DH = AD.

Since BD = CD and $\angle BDH = \angle ADC$, then $\triangle ACD \cong \triangle HBD$, AC = BH, and $\angle DAC = \angle H = \alpha$.

We are given that AE = EF, so $\angle AFE = \angle EAF = \angle BFH = \alpha$. Therefore in $\triangle BFH, BF = BH = AC$.

