$\zeta(s)$ Is Almost Symmetric $\sigma > 0$ From Primes To Riemann

Tariq Rashid

September 11, 2021

1/6

$\zeta(s)$ Looks Symmetric About The Real Axis

Caution

• Plotting the magnitude $|\zeta(s)|$ hides information about **phase**.

$$\zeta(s) = \sum 1/n^s$$
 for $\sigma > 1$

• The complex conjugate \bar{s} is a reflection of s in the real axis, for example 3 + 2i = 3 - 2i

$$n^{-\overline{s}} = e^{-\overline{s}\ln(n)} = \overline{e^{-s\ln(n)}} = \overline{n^{-s}}$$

• $\implies \sum n^{-\overline{s}}$ is the complex conjugate of $\sum \overline{n^{-s}}$

$$\zeta(\overline{s}) = \overline{\zeta(s)}$$

• $|\zeta(s)|$ is mirrored in the real axis, the phase is inverted, for $\sigma > 1$

$$\zeta(s) = (1 - s^{2-1})^{-1} \eta(s) \text{ for } \sigma > 0$$

- Similar logic tells us $\eta(\overline{s}) = \eta(s)$.
- Using $1/\overline{z} = \overline{1/z}$

$$(1-2^{1-\overline{s}})^{-1} = \overline{(1-2^{1-s})^{-1}}$$

Putting the two together

$$\zeta(\overline{s}) = (1 - 2^{1 - \overline{s}})^{-1} \cdot \eta(\overline{s})$$
$$= \overline{(1 - 2^{1 - s})^{-1}} \cdot \overline{\eta(s)}$$
$$= \overline{\zeta(s)}$$

• $|\zeta(s)|$ is mirrored in the real axis, the phase is inverted, for $\sigma > 0$

$\zeta(s)$ Has One Pole In $\sigma>0$

