Complex structures on indecomposable 6-dimensional nilpotent real Lie Algebras *

L. Magnin
Mathematical Institute of Bourgogne †
Email: magnin@u-bourgogne.fr

Abstract

We compute all complex structures on indecomposable 6-dimensional real Lie algebras and their equivalence classes. We also give for each of them a global holomorphic chart on the connected simply connected Lie group associated to the real Lie algebra and write down the multiplication in that chart.

1 Introduction.

In the classification of nilmanifolds, a important question is to determine the set of all integrable left invariant complex structures on a given connected simply connected real nilpotent finite dimensional Lie group, or at the Lie algebra level the set $\mathfrak{X}_{\mathfrak{g}}$ of integrable complex structures on the nilpotent Lie algebra \mathfrak{g} , and its moduli space ([3],[2], [10]). In the case of 6-dimensional real nilpotent Lie groups, an upper bound has been given in [9] for the dimension of $\mathfrak{X}_{\mathfrak{g}}$, based on a subcomplex of the Dolbeault complex. These bounds are listed there, and Lie algebras which do not admit complex structures are specified. However, no detailed descriptions of the spaces $\mathfrak{X}_{\mathfrak{g}}$ are given. The aim of the present paper is to contribute in this area by supplying explicit computations of the various $\mathfrak{X}_{\mathfrak{g}}$ and their equivalence classes for any indecomposable 6-dimensional real Lie algebra \mathfrak{g} . We here are interested only in indecomposable Lie algebras, though direct products could be processed in the same way.

2 Preliminaries.

2.1 Labeling the algebras.

There are 22 indecomposable nonisomorphic nilpotent real 6-dimensional Lie algebras in the Morozov classification, labeled M1-M22 ([5]). Types M14 and M18 are splitted in $M14_{\pm 1}$ and $M18_{\pm 1}$. Over $\mathbb C$, types M14 and M18 are not splitted and types M5 and M10 do not appear. In [6], one is concerned with rank and weight systems over $\mathbb C$, and a different classification is used. The correspondance with Morozov types appears there on page 130. In the present paper, we label the algebras according to [6], except for M5, M10, M14 and M18. Note that M5 is the realification $\mathfrak{n}_{\mathbb R}$ of the 3-dimensional complex Heisenberg algebra \mathfrak{n} . Though M10 is not a realification, it appears as a subalgebra of the realification $(\mathfrak{g}_4)_{\mathbb R}$ of the complex 4-dimensional generic filiform Lie algebra \mathfrak{g}_4 in the isomorphic realisation $[a_1,a_2]=a_3, [a_1,a_3]=a_4, [a_2,a_3]=a_4$: just take $x_1=a_1,x_2=ia_2,x_3=ia_3,x_4=a_3,x_5=ia_4,x_6=a_4$. Let \mathfrak{g} be any of the labeled 6-dimensional real Lie algebras, and let G_0 be the connected simply connected Lie group with Lie algebra \mathfrak{g} . From the commutation relations of the basis $(x_j)_{1\leqslant j\leqslant 6}$ of \mathfrak{g} we use, the second kind canonical coordinates $(x\in G_0)$

$$x = \exp(x^{1}x_{1}) \exp(y^{1}x_{2}) \exp(x^{2}x_{3}) \exp(y^{2}x_{4}) \exp(x^{3}x_{5}) \exp(y^{3}x_{6})$$
(1)

^{*}Math. Subj. Class. [2000]: 17B30 (Primary), 53C15 (Secondary)

[†]UMR CNRS 5584, Université de Bourgogne, BP 47870, 21078 Dijon Cedex, France.

yield a global chart for G_0 (see [11], Th. 3.18.11, p.243). We use this chart for G_0 in all cases but the case of M5 where the natural chart is used instead. For $1 \le j \le 6$, denote by X_j the left invariant vector field on G_0 associated to x_j , *i.e.*

$$(X_j f)(x) = \left[\frac{d}{dt} f(x \exp(tx_j))\right]_{t=0} \ \forall \ f \in C^{\infty}(G_0).$$

Then due to the commutation relations, we have in each case except M5:

$$X_3 = \frac{\partial}{\partial x^2} \; ; \; X_4 = \frac{\partial}{\partial y^2} \; ; \; X_5 = \frac{\partial}{\partial x^3} \; ; \; X_6 = \frac{\partial}{\partial y^3}.$$
 (2)

2.2 Complex structures.

Let \mathfrak{g} any finite dimensional real Lie algebra, and let G_0 be the connected simply connected real Lie group with Lie algebra \mathfrak{g} . An almost complex structure on \mathfrak{g} is a linear map $J:\mathfrak{g}\to\mathfrak{g}$ such that $J^2=-1$. An almost complex structure on G_0 is a tensor field $x\mapsto J_x$ which at every point $x\in G_0$ is an endomorphism of $T_x(G_0)$ such that $J_x^2=-1$. By definition, the almost complex structure on G_0 is left (resp. right) invariant if $J_{ax}=(\hat{L_a})_xJ_x$ (resp. $J_{xa}=(\hat{R_a})_xJ_x$) for all $a,x\in G_0$, where $(\hat{L_a})_xJ_x$ (resp. $(\hat{R_a})_xJ_x$) is the endomorphism $(L_a)_{*x}\circ J_x\circ (L_{a^{-1}})_{*ax}$ (resp. $(R_a)_{*x}\circ J_x\circ (R_{a^{-1}})_{*xa}$) of $T_{ax}(G_0)$ (resp. $T_{xa}(G_0)$), with L_a (resp. R_a) the left (resp. right) translation $x\mapsto ax$ (resp. $x\mapsto xa$) and $x\mapsto xa$ liest that $x\mapsto xa$ and $x\mapsto xa$ for all $x\mapsto xa$ such that $x\mapsto xa$ and $x\mapsto xa$ for all $x\mapsto xa$ for all

$$J \circ ad X = ad X \circ J \quad \forall X \in \mathfrak{g},$$

that is (\mathfrak{g}, J) is a complex Lie algebra. From the Newlander-Nirenberg theorem ([8]), \hat{J} is integrable, that is G_0 can be given the structure of a complex manifold with the same underlying real structure and such that \hat{J} is the canonical complex structure, if and only if the torsion tensor of \hat{J} vanishes, i.e.:

$$[\hat{J}X, \hat{J}Y] - [X, Y] - \hat{J}[\hat{J}X, Y] - \hat{J}[X, \hat{J}Y] = 0$$

for all vector fields X, Y on G_0 . By left invariance, this is equivalent to

$$[JX, JY] - [X, Y] - J[JX, Y] - J[X, JY] = 0 \quad \forall X, Y \in \mathfrak{g}.$$
 (3)

By a complex structure on \mathfrak{g} , we'll mean an *integrable* almost complex structure on \mathfrak{g} , that is one satisfying (3).

Let J a complex structure on $\mathfrak g$ and denote by G the group G_0 endowed with the structure of complex manifold defined by $\hat J$. Then a smooth function $f:G_0\to G_0$ is holomorphic if and only if its differential commutes with $\hat J$ ([4], Prop. 2.3 p. 123): $\hat J\circ f_*=f_*\circ\hat J$. Hence left translations are holomorphic. Right translations are holomorphic, this is G is a complex Lie group, if and only if $\hat J$ is right invariant, i.e. $(\mathfrak g,J)$ is a complex Lie algebra. The complexification $\mathfrak g_{\mathbb C}$ of $\mathfrak g$ splits as $\mathfrak g_{\mathbb C}=\mathfrak g^{(1,0)}\oplus\mathfrak g^{(0,1)}$ where $\mathfrak g^{(1,0)}=\{X-iJX;X\in\mathfrak g\},\,\mathfrak g^{(0,1)}=\{X+iJX;X\in\mathfrak g\}.$ We will denote $\mathfrak g^{(1,0)}$ by $\mathfrak m$. The integrability of J amounts to $\mathfrak m$ being a complex subalgebra of $\mathfrak g_{\mathbb C}$. In that way the set of complex structures on $\mathfrak g$ can be identified with the set of all complex subalgebras $\mathfrak m$ of $\mathfrak g_{\mathbb C}$ such that $\mathfrak g_{\mathbb C}=\mathfrak m\oplus\bar{\mathfrak m}$, bar denoting conjugation in $\mathfrak g_{\mathbb C}$. This is the algebraic approach. Our approach is more trivial since we simply fix a basis of $\mathfrak g$ and compute all possible matrices in that basis for a complex structure. From now on, we'll use the same notation J for J and $\hat J$ as well. For any $x\in G_0$, the complexification $T_x(G_0)_{\mathbb C}$ of the tangent space also splits as the direct sum of the holomorphic vectors $T_x(G_0)^{(1,0)}=\{X-iJX;X\in T_x(G_0)\}$ and the antiholomorphic vectors $T_x(G_0)^{(0,1)}=\{X+iJX;X\in T_x(G_0)\}$. Let $H_{\mathbb C}(G)$ be the space of complex valued holomorphic functions on G. Then $H_{\mathbb C}(G)$ is comprised of all complex smooth functions f on G_0 which are annihilated by any antiholomorphic vector field. This is equivalent to f being annihilated by all

$$\tilde{X}_{j}^{-} = X_{j} + iJX_{j} \quad 1 \leqslant j \leqslant n \tag{4}$$

with $(X_j)_{1 \le j \le n}$ the left invariant vector fields associated to a basis $(x_j)_{1 \le j \le n}$ of \mathfrak{g} . Hence:

$$H_{\mathbb{C}}(G) = \{ f \in C^{\infty}(G_0) ; \ \tilde{X}_i^- f = 0 \ \forall j \ 1 \leqslant j \leqslant n \}.$$
 (5)

Finally, the automorphism group Aut $\mathfrak g$ of $\mathfrak g$ acts on the set $\mathfrak X_{\mathfrak g}$ of all complex structures on $\mathfrak g$ by $J \mapsto \Phi^{-1} \circ J \circ \Phi$ $\forall \Phi \in \text{Aut } \mathfrak{g}$. Two complex structures J_1, J_2 on \mathfrak{g} are said to be equivalent if they are on the same Aut \mathfrak{g} orbit.

2.3 Presentation of results.

We consider here only indecomposable 6-dimensional nilpotent real Lie algebras which admit complex structures. For each such \mathfrak{g} , we first give the commutation relations of the basis $(x_i)_{1 \leq i \leq 6}$ of \mathfrak{g} we use, and the matrices $J=(J_j^k)=(\xi_j^k)$ in that basis of the elements of $\mathfrak{X}_{\mathfrak{g}}$. The parameters are 'boxed'. These matrices have been obtained by developping specific programs with the computer algebra system Reduce by A. Hearn. The programs solve simultaneously the equation $J^2 = -1$ and the torsion equations ij|k $(1 \le i, j, k \le 6)$ obtained by projecting on x_k the equation $[Jx_i, Jx_j] - [x_i, x_j] - J[Jx_i, x_j] - J[x_i, Jx_j] = 0$. We do not enter computational technicalities here, referring instead to the technical report [7]. Let's simply say that the equations are semilinear in the sense that they can be solved in a succession of steps, each of which consists in solving some equation of degree 1 in some variable. For all the Lie algebras we consider, we prove that $\mathfrak{X}_{\mathfrak{g}}$ is a (smooth) submanifold of \mathbb{R}^{36} . The dimension of $\mathfrak{X}_{\mathfrak{g}}$ is equal to the upper bound given in [9] except in the case of M10. Then we give the automorphism group of \mathfrak{g} , representatives of the various equivalence classes, and the commutation relations of the corresponding algebra $\mathfrak{m} = \mathfrak{g}^{(1,0)}$ in terms of the basis $(\tilde{x}_j)_{1 \leq j \leq 6}$ with $\tilde{x}_j = x_j - iJx_j$. As \mathfrak{m} is a 3-dimensional complex Lie algebra, it is either abelian or isomorphic to the complex Heisenberg Lie algebra n. Hence, as a real Lie algebra, \mathfrak{m} is either abelian or isomorphic to M5. Finally, we compute the left invariant vector fields X_1, X_2 on G_0 in terms of the second kind canonical coordinates (1) (except in the case of M_5 , the 4 others appear in (2)), a global holomorphic chart on G and the explicit look of the multiplication in Gin terms of that chart. The fact that left translations are holomorphic, though the multiplication isn't except for the canonical structure on M5, appears clearly on these formulae. There we make use of the following formula which is easily checked from the Campbell-Hausdorff-Baker Formula

$$e^{X}e^{Y} = e^{[X,Y] + \frac{1}{2}([X,[X,Y]] + [Y,[X,Y]]) + \frac{1}{6}([X,[X,[X,Y]]] + [Y,[Y,[X,Y]]]) + \frac{1}{4}[X,[Y,[X,Y]]] \bmod \mathcal{C}^{5}\mathfrak{g}} e^{Y}e^{X}$$
(6)

where $C^5\mathfrak{g}$ denotes the 5th central derivative. As usual, for complex z = x + iy $(x, y \in \mathbb{R})$, $\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$; $\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$. We'll abbreviate 'complex structure' to CS.

Lie Algebra $\mathcal{G}_{6,3}$ (isomorphic to M3). 3

Commutation relations for $\mathcal{G}_{6,3}$: $[x_1, x_2] = x_4$; $[x_1, x_3] = x_5$; $[x_2, x_3] = x_6$.

3.1 Case $\xi_6^1 \neq 0$.

3.1 Case
$$\xi_{6}^{1} \neq 0$$
.

$$J = \begin{pmatrix} \xi_{1}^{1} & \xi_{2}^{1} & \xi_{3}^{1} & \xi_{6}^{3} & -\xi_{6}^{2} & \xi_{6}^{1} \\ * & (-\xi_{6}^{5}\xi_{6}^{2} - \xi_{5}^{5}\xi_{6}^{1} + \xi_{6}^{2}\xi_{2}^{1})/\xi_{6}^{1} & (\xi_{6}^{4}\xi_{6}^{2} + \xi_{5}^{4}\xi_{6}^{1} + \xi_{6}^{2}\xi_{3}^{1})/\xi_{6}^{1} & \xi_{6}^{3}\xi_{6}^{2}/\xi_{6}^{1} & -\xi_{6}^{2}\xi_{6}^{2} & \xi_{6}^{2} \\ * & * & (\xi_{6}^{5}\xi_{6}^{2} + \xi_{5}^{5}\xi_{6}^{1} + \xi_{6}^{3}\xi_{3}^{1})/\xi_{6}^{1} & \xi_{6}^{3}/\xi_{6}^{1} & -\xi_{6}^{3}\xi_{6}^{2}/\xi_{6}^{1} & \xi_{6}^{3} \\ * & (\xi_{6}^{5}\xi_{3}^{1} - \xi_{3}^{5}\xi_{6}^{1} + \xi_{6}^{4}\xi_{2}^{1})/\xi_{6}^{1} & * & (-\xi_{6}^{5}\xi_{6}^{2} - \xi_{5}^{5}\xi_{6}^{1} + \xi_{6}^{4}\xi_{6}^{3})/\xi_{6}^{1} & \xi_{6}^{4} \\ * & \xi_{2}^{5} & * & * & * \end{pmatrix}$$

$$(7)$$

 $\text{where} \quad \mathbf{J_{1}^{2}} \ = \ (\xi_{6}^{5}\xi_{6}^{2}{}^{2} \ + \ \xi_{5}^{5}\xi_{6}^{2}\xi_{6}^{1} \ - \ \xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{2} \ - \ \xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{1} \ + \ \xi_{6}^{2}\xi_{6}^{1}\xi_{1}^{1})/\xi_{6}^{12}; \quad \mathbf{J_{1}^{3}} \ = \ (\xi_{6}^{52}\xi_{6}^{23} \ + \ 2\xi_{6}^{5}\xi_{5}^{5}\xi_{6}^{22}\xi_{6}^{1} \ - \ \xi_{6}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{2} \ - \ \xi_{6}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{2} \ - \ \xi_{6}^{5}\xi_{6}^{2}\xi_{6}^{2} \ + \ \xi_{6}^{5}\xi_{6}^{5}\xi_{6}^{2}\xi_{6}^{2} \ + \ \xi_{6}^{5}\xi_{6}^{2}\xi_{6}^{2} \ + \ \xi_{6}^{5}\xi_{6}^{2}$ $\xi_{6}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{2}\xi_{6}^{1}+\xi_{5}^{5}z_{6}^{2}\xi_{6}^{2}-\xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{2}\xi_{6}^{1}-\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{1}+\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{2}\xi_{6}^{1}+\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{1}z_{1}^{1}+\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{1}z_{1}^{1}+\xi_{6}^{2}\xi_{6}^{1})/(\xi_{6}^{1}z_{6}^{2}\xi_{6}^{2}+\xi_{5}^{4}\xi_{6}^{2})); \quad \mathbf{J}_{2}^{3}=(-\xi_{5}^{5}z_{6}^{2}\xi_{6}^{2}-2\xi_{5}^{2}\xi_{5}^{2}\xi_{6}^{2}-\xi_{5}^{2}\xi_{6}^{2}\xi_{6}^{2}-\xi_{5}^{2}\xi_{6}^{2}\xi_{6}^{2}+\xi_{5}^{4}\xi_{6}^{2}\xi_{5}^{2}+\xi_{5}^{4}\xi_{6}^{2}\xi_{5}^{2}-\xi_{5}^{2}\xi_{6}^{2}\xi_{6}^{2}-\xi_{5}^{2}\xi_{6}^{2}\xi_{6}^{2}-\xi_{5}^{2}\xi_{6}^{2}\xi_{6}^{2}-\xi_{5}^{2}\xi_{6}^{2}\xi_{6}^{2}+\xi_{5}^{4}\xi_{6}^{2}\xi_{5}^{2}+\xi_{5}^{4}\xi_{6}^{2}\xi_{5}^{2}-\xi_{5}^{2}\xi_{6}^{2}\xi_{6}^{2}+\xi_{5}^{2}\xi_{6}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}\xi_{6}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{6}^{2}+\xi_{5}^{2}\xi_{5}^$ $2\xi_{0}^{2}^{2}\xi_{0}^{2}\xi_{0}\xi_{0}^{2}$ $\xi_{6}^{5}\xi_{5}^{2}\xi_{6}^{2}\xi_{6}^{12}\xi_{3}^{1} + 2\xi_{6}^{5}\xi_{5}^{5}\xi_{3}^{2}\xi_{6}^{2}\xi_{6}^{12} + 2\xi_{6}^{5}\xi_{5}^{5}\xi_{6}^{4}\xi_{3}^{2}\xi_{6}^{2}\xi_{6}^{1} + 2\xi_{6}^{5}\xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{2}\xi_{6}^{12} + 2\xi_{6}^{5}\xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{12}\xi_{3}^{12} - 2\xi_{6}^{5}\xi_{3}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{2}\xi_{6}^{12} + 2\xi_{6}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{12}\xi_{6}^{12} + 2\xi_{6}^{5}\xi_{3}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{12}\xi_{6}^{12} + 2\xi_{6}^{5}\xi_{3}^{5}\xi_{6}^{12}\xi_{6}^{1$ $\xi_{6}^{5}\xi_{6}^{42}\xi_{6}^{3}\xi_{6}^{22}\xi_{2}^{1}+2\xi_{6}^{5}\xi_{6}^{4}\xi_{5}^{3}\xi_{6}^{3}\xi_{6}^{2}\xi_{1}^{1}+\xi_{6}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{1}^{12}-\xi_{6}^{5}\xi_{5}^{4}\xi_{6}^{13}-\xi_{6}^{5}\xi_{6}^{2}\xi_{1}^{12}+\xi_{5}^{53}\xi_{6}^{4}\xi_{6}^{13}+\xi_{5}^{52}\xi_{3}^{5}\xi_{6}^{2}\xi_{1}^{13}+\xi_{5}^{52}\xi_{6}^{4}\xi_{6}^{13}\xi_{1}^{1}-2\xi_{5}^{5}\xi_{3}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{2}^{12}-\xi_{6}^{5}\xi_{6}^{12}\xi_{1}^{12}+\xi_{6}^{5}\xi_{6}^{12}\xi_{1}^{12}+\xi_{6}^{5}\xi_{1}^{12}\xi_{1}^{12}+\xi_{6}^{5$ $2\xi_{5}^{5}\xi_{3}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{1} + \xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{1} +
\xi_{5}^{5}\xi_{6}^{2}\xi_{6}^{1} - \xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{2}\xi_{6}^{1} - \xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{4}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{1} - \xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{2}\xi_{6}^{1} - \xi_{5}^{5}\xi_{6}^{1}\xi_{6}^{1} + \xi_{6}^{4}\xi_{6}^{1}\xi_{6}^{1}\xi_{1}^{1})/(\xi_{6}^{12}((\xi_{5}^{5}\xi_{6}^{2} + \xi_{5}^{5}\xi_{6}^{1})^{2} + \xi_{6}^{12}));$ $\mathbf{J_{3}^{4}} = (-\xi_{6}^{6} + \xi_{6}^{6} + \xi_{6}^{2} + \xi_{1}^{2} - 2\xi_{6}^{6} + \xi_{3}^{6} + \xi_{1}^{6} + \xi_{1}^{6} - 2\xi_{6}^{6} \xi_{5}^{6} + \xi_{1}^{6} \xi_{1}^{2} + 2\xi_{6}^{6} \xi_{3}^{5} \xi_{6}^{6} \xi_{6}^{2} + 2\xi_{6}^{5} \xi_{3}^{5} \xi_{6}^{6} \xi_{6}^{6} + 2\xi_{6}^{5} \xi_{5}^{6} \xi_{6}^{6} \xi_{1}^{6} - \xi_{6}^{6} \xi_{1}^{6} \xi_{2}^{6} + 2\xi_{6}^{6} \xi_{1}^{6} \xi_{1}^{6} + 2\xi_{6}^{6} \xi_{3}^{6} \xi_{1}^{6} \xi_{1}^{6} + 2\xi_{6}^{6} \xi_{3}^{6} \xi_{1}^{6} \xi_{1}^{6} \xi_{1}^{6} + 2\xi_{6}^{6} \xi_{3}^{6} \xi_{1}^{6} \xi_{1}^{6} \xi_{1}^{6} + 2\xi_{6}^{6} \xi_{3}^{6} \xi_{1}^{6} \xi_{1}^{6} + 2\xi_{6}^{6} \xi_{1}^{6} \xi_{1}^{6} \xi_{1}^{6} \xi_{1}^{6} \xi_{1}^{6} \xi_{1}^{6} \xi_{1}^{6} \xi_{1}^{6} \xi_{1}^{6} + 2\xi_{6}^{6} \xi_{1}^{6} \xi$ $\xi_{6}^{5}\xi_{5}^{2}\xi_{6}^{1}\xi_{2}^{1}+\xi_{5}^{5}\xi_{6}^{4}\xi_{1}^{6}\xi_{3}^{1}+2\xi_{5}^{5}\xi_{3}^{5}\xi_{6}^{4}\xi_{6}^{2}\xi_{2}^{1}+2\xi_{5}^{5}\xi_{3}^{5}\xi_{5}^{4}\xi_{6}^{1}+\xi_{5}^{2}\xi_{6}^{4}\xi_{6}^{2}\xi_{6}^{2}+2\xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{2}\xi_{6}^{2}+\xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{2}\xi_{6}^{1}+\xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{1}+\xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{1}+\xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{1}+\xi_{5}^{6}\xi_{5}^{1}+\xi_{5}^{6}\xi_{6}^{1}+\xi_{5}^{6}\xi_{5}^{1}+\xi_{5}^{6}\xi_{6}^{1}+\xi_{5}^{6}\xi_{6}^{1}+\xi_{5}^{6}\xi_{6}^{1}+\xi_{5}^{6}\xi_{5}^{1}+\xi_{5}^{6}\xi_{5}^{1}+\xi_{5}^{6}\xi_{5}^{1}+\xi_{5}^{6}\xi_{5}^{1}+\xi_{5}^{6}\xi_{5}^{1}+\xi_{5}^{6}\xi_{5}^{1}+\xi_{5}^{6}\xi_{5}^{1}+\xi_{5}^{6}\xi_{5}^{1}+\xi_{5}^{6}\xi_{5}^{1}+\xi_{5}^{6}\xi_{5}^{1}+\xi_{5}^{6}\xi_{5}^{1}+\xi_{5}^{6}\xi_{5}^{1$ $\xi_{5}^{5}\xi_{6}^{1})^{2} + \xi_{6}^{12})); \quad \mathbf{J}_{5}^{\mathbf{5}} = (-\xi_{6}^{5}^{2}\xi_{6}^{4}\xi_{6}^{2}\xi_{6}^{2} + \xi_{6}^{5}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2} + \xi_{5}^{5}\xi_{5}^{6}\xi_{6}^{2}\xi_{6}^{2} - \xi_{6}^{5}\xi_{5}^{4}\xi_{6}^{2}\xi_{6}^{1} + \xi_{6}^{5}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2} + \xi_{6}^{5}\xi_{5}^{4}\xi_{6}^{2}\xi_{6}^{2} + \xi_{6}^{5}\xi_{5}\xi_{6}^{4}\xi_{6}^{2}\xi_{6}^{2} + \xi_{6}^{5}\xi_{6}^{4}\xi_{6}^{2}\xi_{6}^{2} + \xi_{6}^{5}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2} + \xi_{6}^{5}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2} + \xi_{6}^{5}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2} + \xi_{6}^{5}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2} + \xi_{6}^{5}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2} + \xi_{6}^{5}\xi_{6}^{2}\xi_{6}^{2} + \xi_{6}^{5}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2} + \xi_{6}^{5}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2} + \xi_{6}^{5}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2} + \xi_{6}^{5}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2} + \xi_{6}^{5}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2} + \xi_{6}^{5}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2} + \xi_{6}^$ $\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2}\xi_{1}^{2} + 2\xi_{6}^{3}\xi_{6}^{4}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{2}\xi_{6}^{2}\xi_{1}^{2} + 2\xi_{6}^{3}\xi_{6}^{4}\xi_{5}^{4}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2}\xi_{1}^{2}\xi_{1}^{2} + \xi_{6}^{4}\xi_{6}^{4}\xi_{6}^{2$ $\xi_{5}^{2} \xi_{6}^{4} \xi_{5}^{4} \xi_{6}^{3} - \xi_{5}^{3} \xi_{6}^{4} \xi_{6}^{3} \xi_{6}^{2} \xi_{6}^{1} - 2 \xi_{5}^{3} \xi_{6}^{4} \xi_{5}^{2} \xi_{6}^{2} \xi_{6}^{1}^{2} - \xi_{5}^{3} \xi_{5}^{4} \xi_{6}^{3} \xi_{6}^{1} - \xi_{5}^{5} \xi_{6}^{4} \xi_{6}^{3} \xi_{6}^{1} - 2 \xi_{5}^{5} \xi_{6}^{4} \xi_{6}^{2} \xi_{6}^{1}^{2} - \xi_{5}^{5} \xi_{6}^{4} \xi_{6}^{3} \xi_{6}^{1} + \xi_{6}^{4} \xi_{6}^{2} \xi_{6}^{2} \xi_{6}^{2} \xi_{6}^{1} + \xi_{6}^{4} \xi_{6}^{2} \xi_{6}^{2} \xi_{6}^{2} \xi_{6}^{2} \xi_{6}^{2} \xi_{6}^{2} + \xi_{6}^{4} \xi_{6}^{2} \xi_$ $\xi_{6}^{4}\xi_{5}^{4}\xi_{6}^{13})/(\xi_{6}^{12}(\xi_{6}^{4}\xi_{6}^{2}+\xi_{5}^{4}\xi_{6}^{1})^{2}); \quad \mathbf{J}_{5}^{4} =
(-\xi_{5}^{6}^{2}\xi_{6}^{2}^{2}-2\xi_{5}^{6}\xi_{5}^{2}\xi_{6}^{2}+\xi_{5}^{6}\xi_{6}^{2}\xi_{6}^{2}+\xi_{5}^{6}\xi_{5}^{6}\xi_{6}^{3}\xi_{6}^{1}+\xi_{5}^{6}\xi_{5}^{6}\xi_{6}^{3}\xi_{6}^{1}+\xi_{5}^{6}\xi_{5}^{6}\xi_{6}^{3}\xi_{6}^{1}+\xi_{5}^{6}\xi_{5}^{6}\xi_{6}^{3}\xi_{6}^{1}+\xi_{5}^{6}\xi_{5}^{6}\xi_{6}^{3}\xi_{6}^{1}+\xi_{5}^{6}\xi_{5}^{6}\xi_{6}^{3}\xi_{6}^{1}+\xi_{5}^{6}\xi_{5}^{6}\xi_{6}^{3}\xi_{6}^{1}+\xi_{5}^{6}\xi_{5}^{6}\xi_{6}^{3}\xi_{6}^{1}+\xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{1}\xi_{6}^{1}+\xi_{5}^{6}\xi_{5}^{6}\xi_{6}^{1}+\xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{1}+\xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{1}+\xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{1}+\xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{1}+\xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{1}+\xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{1}+\xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{1}+\xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{1}+\xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{1}+\xi_{5}^$ $\mathbf{J_{1}^{6}} \ = \ (-\xi_{6}^{54}\xi_{5}^{4}\xi_{6}^{24}\xi_{6}^{1} - \xi_{6}^{54}\xi_{6}^{25}\xi_{3}^{1} + \xi_{6}^{53}\xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{24}\xi_{6}^{1} - 3\xi_{6}^{53}\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{23}\xi_{6}^{12} - 4\xi_{6}^{53}\xi_{5}^{5}\xi_{6}^{24}\xi_{6}^{13} + \xi_{6}^{53}\xi_{6}^{4}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{23}\xi_{6}^{1} + 3\xi_{6}^{53}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{24}\xi_{1}^{1} + \xi_{6}^{53}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{24}\xi_{6}^{13} + \xi_{6}^{53}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{23}\xi_{6}^{1} + 3\xi_{6}^{53}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{13} + \xi_{6}^{53}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{13}\xi_{6$ $\xi_{6}^{5} + \xi_{6}^{4} \xi_{6}^{2} + \xi_{1}^{4} + \xi_{5}^{6} + \xi_{6}^{5} + \xi_{6}^{3} \xi_{6}^{2} \xi_{1}^{6} + 3\xi_{5}^{6} \xi_{5}^{6} \xi_{6}^{2} \xi_{3}^{6} + \xi_{5}^{6} + \xi_{5}^{6} \xi_{5}^{6} \xi_{5}^{6} \xi_{5}^{6} + \xi_{5}^{6} \xi_{5}^{6} \xi_{6}^{6} \xi_{5}^{6} + \xi_{5}^{6} \xi_{$ $\xi_{6}^{5}\xi_{5}^{5}\xi_{4}^{2}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2}+\xi_{6}^{5}\xi_{5}^{6}\xi_{6}^{4}\xi_{6}^{5}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2}+7\xi_{5}^{6}\xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{2}\xi_{5}^{2}-\xi_{5}^{6}\xi_{5}^{6}\xi_{6}^{2}\xi_{6}^{2}+\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2}+\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2}+\xi_{6}^{2}\xi_{$ $7\xi_{6}^{5}\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2}\xi_{3}^{4} - \xi_{6}^{5}\xi_{5}^{5}\xi_{5}^{3}\xi_{6}^{3}\xi_{1}^{2} + 2\xi_{6}^{5}\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{1}^{2} - 2\xi_{6}^{5}\xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{1}^{2}\xi_{5}^{4}\xi_{6}^{3}\xi_{1}^{2}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{3}\xi_{6}^{3}\xi_{6}^{4}\xi_{6}^{6} -
\xi_{6}^{5}\xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{5}\xi_{6}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{6$ $\xi_{6}^{5}^{2}\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{2}^{4}=2 - 2\xi_{6}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{3}\xi_{3}^{3}\xi_{3}^{1} + \xi_{6}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{3}\xi_{1}^{2} - \xi_{6}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{3}\xi_{1}^{6}\xi_{1}^{1} - 4\xi_{6}^{5}\xi_{6}^{4}\xi_{5}^{4}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2}\xi_{1}^{4}\xi_{1}^{4}+2\xi_{6}^{5}\xi_{6}^{3}\xi_{6}^{3}\xi_{1}^{6}\xi_{2}^{1} - \xi_{6}^{5}\xi_{6}^{4}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{3}\xi_{1}^{2} + \xi_{6}^{5}\xi_{6}^{4}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{3}\xi_{1}^{4}+2\xi_{6}^{5}\xi_{6}^{4}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{3}\xi_{1}^{4}+2\xi_{6}^{5}\xi_{6}^{4}\xi_{6}^{4}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{3}\xi_{1}^{4}+2\xi_{6}^{5}\xi_{6}^{4}\xi_{6}^{4}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{3}\xi_{1}^{4}+2\xi_{6}^{5}\xi_{6}^{4}\xi_{6}^$ $\xi_{0}^{5^{2}} \xi_{6}^{4} \xi_{3}^{4} \xi_{6}^{3^{2}} \xi_{6}^{1} \xi_{1}^{2} - \xi_{0}^{5^{2}} \xi_{6}^{4} \xi_{3}^{2} \xi_{1}^{1} - \xi_{0}^{5^{2}} \xi_{6}^{4} \xi_{6}^{2} \xi_{1}^{2} \xi_{1}^{2} - \xi_{0}^{5^{2}} \xi_{6}^{4} \xi_{3}^{2} \xi_{1}^{2} + \xi_{0}^{5^{2}} \xi_{1}^{4} \xi_{1}^{2} - \xi_{0}^{5^{2}} \xi_{1}^{4} \xi_{1}^{2} \xi_{1}^{2} - \xi_{0}^{5^{2}} \xi_{1}^{4} \xi_{1}^{2} \xi_{1}^{2} \xi_{1}^{2} + \xi_{0}^{5^{2}} \xi_{1}^{4} \xi_{1}^{2} \xi_{1}^{2} + \xi_{0}^{5^{2}} \xi_{1}^{4} \xi_{1}^{2} \xi_{1}^{2} + \xi_{0}^{5^{2}} \xi_{1}^{4} \xi_{1}^{2} \xi_{1}^{2} \xi_{1}^{2} \xi_{1}^{2} \xi_{1}^{2} + \xi_{0}^{5^{2}} \xi_{1}^{4} \xi_{1}^{2} \xi_{1}^{2} \xi_{1}^{2} + \xi_{0}^{5^{2}} \xi_{1}^{4} \xi_{1}^{2} \xi_$ $\xi_{6}^{52} \xi_{5}^{6} \xi_{6}^{52} \xi_{6}^{12} \xi_{3}^{1} \xi_{1}^{1} - \xi_{6}^{52} \xi_{5}^{4} \xi_{6}^{23} \xi_{1}^{12} \xi_{1}^{12} - \xi_{6}^{52} \xi_{5}^{4} \xi_{6}^{22} \xi_{1}^{13} \xi_{1}^{12} - 2\xi_{6}^{52} \xi_{5}^{4} \xi_{6}^{22} \xi_{1}^{13} - 2\xi_{6}^{52} \xi_{5}^{23} \xi_{6}^{12} \xi_{1}^{23} - 2\xi_{6}^{52} \xi_{5}^{12} \xi_{1}^{13} - 2\xi_{6}^{52} \xi_{5}^{12} \xi_{6}^{12} \xi_{1}^{13} - 2\xi_{6}^{52} \xi_{5}^{12} \xi_{6}^{13} \xi_{6}^{12} \xi_{1}^{12} + 3\xi_{6}^{52} \xi_{5}^{12} \xi_{6}^{12} \xi_{1}^{13} - \xi_{6}^{52} \xi_{5}^{13} \xi_{6}^{12} \xi_{1}^{13} + 3\xi_{6}^{52} \xi_{1}^{12} \xi_{1}^{13} - \xi_{6}^{52} \xi_{5}^{13} \xi_{6}^{12} \xi_{1}^{13} + 3\xi_{6}^{12} \xi_{1}^{13} + 3\xi_{6}^{$ $4\xi_{6}^{5}\xi_{5}^{53}\xi_{6}^{22}\xi_{1}^{13}\xi_{3}^{1} - 2\xi_{6}^{5}\xi_{5}^{52}\xi_{6}^{42}\xi_{6}^{3}\xi_{2}^{22}\xi_{1}^{12} - \xi_{6}^{5}\xi_{5}^{52}\xi_{6}^{4}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{22}\xi_{1}^{13} + 5\xi_{6}^{5}\xi_{5}^{52}\xi_{6}^{4}\xi_{6}^{23}\xi_{1}^{12}\xi_{1}^{1} - 2\xi_{6}^{5}\xi_{5}^{52}\xi_{6}^{4}\xi_{6}^{23}\xi_{1}^{12}\xi_{1}^{1} + \xi_{6}^{5}\xi_{5}^{52}\xi_{6}^{4}\xi_{6}^{22}\xi_{1}^{13}\xi_{1}^{1} + \xi_{6}^{5}\xi_{5}^{52}\xi_{6}^{4}\xi_{6}^{23}\xi_{1}^{13}\xi_{1}^{1} + \xi_{6}^{5}\xi_{5}^{52}\xi_{6}^{4}\xi_{6}^{23}\xi_{1}^{13}\xi_{1}^{1} + \xi_{6}^{5}\xi_{5}^{52}\xi_{6}^{4}\xi_{6}^{13}\xi_{1}^{13} + \xi_{6}^{5}\xi_{5}^{52}\xi_{6}^{5}\xi_{6}^{52}$ $\xi_{6}^{5}\xi_{5}^{5}\xi_{4}^{2}\xi_{6}^{3}\xi_{6}^{14} + 5\xi_{6}^{5}\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{2}\xi_{6}^{13}\xi_{3}^{1} - 2\xi_{6}^{5}\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{2}\xi_{6}^{13}\xi_{2}^{1} + \xi_{6}^{5}\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{14}\xi_{1}^{1} - 4\xi_{6}^{5}\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{23}\xi_{1}^{12} - 4\xi_{6}^{5}\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{23}\xi_{1}^{12} - 4\xi_{6}^{5}\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{23}\xi_{1}^{12} + \xi_{6}^{5}\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{14}\xi_{1}^{1} - 4\xi_{6}^{5}\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{23}\xi_{1}^{12} - 4\xi_{6}^{5}\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{23}\xi_{1}^{12} - 4\xi_{6}^{5}\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{23}\xi_{1}^{12} + \xi_{6}^{5}\xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{1}^{14} + \xi_{6}^{5}\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{14}\xi_{1}^{12} + \xi_{6}^{5}\xi_{5}^{5}\xi_{6}^{5}\xi_{6}^{14}\xi_{1}^{14} + \xi_{6}^{5}\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{23}\xi_{1}^{12} + \xi_{6}^{5}\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{14}\xi_{1}^{12} + \xi_{6}^{5}\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{14}\xi_{1}^{12} + \xi_{6}^{5}\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{14}\xi_{1}^{12} + \xi_{6}^{5}\xi_{5}^{5}\xi_{6}^{5}\xi_{6}^{14}\xi_{1}^{12} + \xi_{6}^{5}\xi_{5}^{5}\xi_{5}^{5}\xi_{6}^{5}\xi_{6}^{14}\xi_{1}^{12} + \xi_{6}^{5}\xi_{5}^{5}\xi_{5}^{5}\xi_{6}^{5}\xi_{6}^{14}\xi_{1}^{12} + \xi_{6}^{5}\xi_{5}^{5}\xi_{5}^{5}\xi_{6}^{5}\xi_{6}^{14}\xi_{1}^{12} + \xi_{6}^{5}\xi_{5}^{5}\xi_{5}^{5}\xi_{6}^{5}\xi_{6}^{14}\xi_{1}^{12} + \xi_{6}^{5}\xi_{5}^{5}\xi_{5}^{5}\xi_{6}^{5}\xi_{6}^{14}\xi_{1}^{12} + \xi_{6}^{5}\xi_{5}^{5}\xi_{5}^{5}\xi_{6}$
$2\xi_{0}^{5}\xi_{5}^{5}\xi_{4}^{4}2\xi_{0}^{3}\xi_{1}^{3}+2\xi_{0}^{5}\xi_{5}^{5}\xi_{4}^{2}\xi_{0}^{3}\xi_{6}^{4}\xi_{1}^{3}\xi_{2}^{1}-2\xi_{0}^{5}\xi_{5}^{5}\xi_{4}^{5}\xi_{0}^{3}\xi_{1}^{3}\xi_{1}^{1}-2\xi_{0}^{5}\xi_{5}^{5}\xi_{5}^{4}\xi_{0}^{2}\xi_{1}^{3}+2\xi_{0}^{5}\xi_{5}\xi_{1}^{4}\xi_{1}^{2}-3\xi_{0}^{5}\xi_{5}^{5}\xi_{5}^{4}\xi_{0}^{3}\xi_{1}^{4}-2\xi_{0}^{5}\xi_{5}\xi_{5}^{4}\xi_{0}^{2}\xi_{1}^{3}+2\xi_{0}^{5}\xi_{1}\xi_{0}^{4}\xi_{1}^{2}+2\xi_{0}^{5}\xi_{1}\xi_{0}^{4}\xi_{1}^{2}+2\xi_{0}^{5}\xi_{1}\xi_{0}^{4}\xi_{1}^{2}+2\xi_{0}^{5}\xi_{1}\xi_{0}^{4}\xi_{0}^{4}+2\xi_{0}^{5}\xi_{0}^{4}\xi_{0}^{4}\xi_{0}^{4}+2\xi_{0}^{5}\xi_{0}^{4}\xi_{$ $4\xi_0^5\xi_5^5\xi_6^2\xi_{1}^3\xi_{1}^3+2\xi_0^5\xi_3^5\xi_{6}^4\xi_0^3\xi_{6}^3\xi_{1}^6+4\xi_0^5\xi_5^5\xi_{6}^4\xi_{6}^3\xi_{6}^2\xi_{1}^6\xi_{2}^4+2\xi_0^5\xi_3^5\xi_{6}^2\xi_{2}^3\xi_{2}^2\xi_{6}^2\xi_{1}^3-\xi_0^5\xi_{6}^4\xi_{1}^3\xi_{2}^3\xi_{2}^2\xi_{1}^2\xi_{2}^3+\xi_0^3\xi_{1}^3+\xi_0^5\xi_{1}^5\xi_{2}^3\xi_{1}^3\xi_{1}^3+\xi_0^5\xi_{1}^5\xi_{2}^3\xi_{1}^3\xi_{1}^3+\xi_0^5\xi_{1}^5\xi_{2}^3\xi_{1}^3\xi_{1}^3+\xi_0^5\xi_{1}^5\xi_{2}^3\xi_{1}^3\xi_{1}^3+\xi_0^5\xi_{1}^5\xi_{1}^3\xi_{1}^3+\xi_0^5\xi_{1}^5\xi_{1}^3\xi_{1}^3+\xi_0^5\xi_{1}^5\xi_{1}^3\xi_{1}^3+\xi_0^5\xi_{1}^5\xi_{1}^3\xi_{1}^3+\xi_0^5\xi_{1}^5\xi_{1}^3\xi_{1}^3+\xi_0^5\xi_{1}^5\xi_{1}^3\xi_{1}^3+\xi_0^5\xi_{1}^5\xi_{1}^3\xi_{1}^3+\xi_0^5\xi_{1}^5\xi_{1}^3\xi_{1}^3+\xi_0^5\xi_{1}^5\xi_{1}^3\xi_{1}^3+\xi_0^5\xi_{1}^3\xi_{1}^3\xi_{1}^3+\xi_0^5\xi_{1}^3\xi_{1}^3\xi_{1}^3+\xi_0^5\xi_{1}^3\xi_{1}^3\xi_{1}^3\xi_{1}^3\xi_{1}^3+\xi_0^5\xi_{1}^3\xi_{1$ $3\xi_{6}^{5}\xi_{6}^{4}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{2}\xi_{7}^{2}+\xi_{6}^{5}\xi_{6}^{4}\xi_{6}^{4}\xi_{6}^{2}\xi_{6}^{13}+3\xi_{6}^{5}\xi_{6}^{4}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{13}\xi_{1}^{1}+\xi_{6}^{5}\xi_{6}^{4}\xi_{6}^{2}\xi_{6}^{13}\xi_{1}^{1}+\xi_{6}^{5}\xi_{6}^{4}\xi_{6}^{2}\xi_{6}^{13}\xi_{1}^{1}+\xi_{6}^{5}\xi_{6}^{4}\xi_{6}^{2}\xi_{6}^{13}\xi_{1}^{1}+\xi_{6}^{5}\xi_{6}^{4}\xi_{6}^{2}\xi_{6}^{13}\xi_{1}^{1}+\xi_{6}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{13}\xi_{1}^{1}+\xi_{6}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{13}\xi_{1}^{1}+\xi_{6}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{13}\xi_{1}^{1}+\xi_{6}^{5}\xi_{6}^{13}\xi_{6}^{1$
$\xi_{6}^{5}\xi_{5}^{4}\xi_{6}^{2}\xi_{1}^{14}\xi_{1}^{1}+\xi_{5}^{54}\xi_{6}^{4}\xi_{6}^{2}\xi_{1}^{14}-\xi_{5}^{54}\xi_{6}^{2}\xi_{1}^{14}\xi_{1}^{1}-\xi_{5}^{53}\xi_{6}^{4}\xi_{6}^{2}\xi_{6}^{13}-\xi_{5}^{53}\xi_{6}^{4}\xi_{6}^{4}\xi_{6}^{3}+\xi_{6}^{14}\xi_{6}^{1}+\xi_{5}^{53}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{2}+\xi_{5}^{13}\xi_{1}^{1}+\xi_{5}^{53}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{14}+\xi_{5}^{13}\xi_{6}^{14}\xi_{6}^{14}\xi_{6}^{14}+\xi_{5}^{13}\xi_{6}^{14}\xi_{6}^{14}\xi_{6}^{14}\xi_{6}^{14}+\xi_{5}^{13}\xi_{6}^{14}\xi_{6}^{14}\xi_{6}^{14}\xi_{6}^{14}\xi_{6}^{14}\xi_{6}^{14}+\xi_{5}^{13}\xi_{6}^{14}\xi_$ $\xi_{5}^{53}\xi_{5}^{4}\xi_{6}^{2}\xi_{6}^{14}\xi_{1}^{1} - 2\xi_{5}^{52}\xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{22}\xi_{1}^{13} - 2\xi_{5}^{52}\xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{21} - \xi_{5}^{52}\xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{33}\xi_{1}^{13} - \xi_{5}^{52}\xi_{5}^{52}\xi_{6}^{4}\xi_{6}^{32}\xi_{1}^{14} + \xi_{5}^{52}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{22}\xi_{1}^{12} - \xi_{5}^{52}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{22}\xi_{1}^{13} - \xi_{5}^{52}\xi_{5}^{4}\xi_{6}^{32}\xi_{6}^{14} + \xi_{5}^{52}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{22}\xi_{1}^{12} - \xi_{5}^{52}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{22}\xi_{1}^{13} - \xi_{5}^{52}\xi_{6}^{4}\xi_{6}^{32}\xi_{1}^{12} + \xi_{5}^{52}\xi_{5}^{4}\xi_{6}^{32}\xi_{1}^{12} + \xi_{5}^{52}\xi_{6}^{52}\xi_{6}^{12}\xi_{1}^{12} + \xi_{5}^{52}$ $2\xi_5^5 + \xi_6^4 \xi_6^4 \xi_6^3 \xi_6^2 \xi_6^{13} \xi_2^1 - \xi_5^5 + \xi_6^4 \xi_5^4 \xi_6^4 \xi_6^4 \xi_1^4 - \xi_5^5 + \xi_6^4 \xi_6^2 \xi_6^{13} \xi_3^1 \xi_1^1 - \xi_5^5 + \xi_6^4 \xi_6^2 \xi_6^{13} \xi_2^1 \xi_1^1 - \xi_5^5 + \xi_6^4 \xi_6^2 \xi_6^{14} \xi_1^1 + \xi_5^5 + \xi_6^4 \xi_6^2 \xi_6^{14} \xi_2^1 - \xi_5^5 + \xi_6^4 \xi_6^2 \xi_6^{14} \xi_1^1 + \xi_5^5 \xi_6^4 \xi_6^2 \xi_6^{14} \xi_2^1 - \xi_5^5 \xi_6^4 \xi_6^2 \xi_6^{14} \xi_2^1 + \xi_5^5 \xi_6^4 \xi_6^2 \xi_6^{14} \xi_2^2 + \xi_5^4 \xi_6^2 \xi_6^2 \xi_6^4 \xi_2^2 + \xi_5^4 \xi_6^2 \xi_6^2 \xi_6^4 \xi_2^2 + \xi_5^4 \xi_6^2 \xi_6$ $\xi_{5}^{52} \xi_{5}^{4} \xi_{6}^{3} \xi_{6}^{14} \xi_{3}^{11} - \xi_{5}^{52} \xi_{5}^{4} \xi_{6}^{2} \xi_{6}^{14} - \xi_{5}^{52} \xi_{5}^{4} \xi_{6}^{15} \xi_{1}^{12} - \xi_{5}^{52} \xi_{5}^{4} \xi_{6}^{15} - 2 \xi_{5}^{52} \xi_{6}^{2} \xi_{6}^{14} \xi_{3}^{1} + 2 \xi_{5}^{52} \xi_{5}^{4} \xi_{6}^{2} \xi_{6}^{2} \xi_{6}^{12} + 4 \xi_{5}^{52} \xi_{5}^{4} \xi_{6}^{4} \xi_{6}^{2} \xi_{6}^{2} \xi_{6}^{13} + 4 \xi_{5}^{52} \xi_{5}^{4} \xi_{6}^{4} \xi_{6}^{2} \xi_{6}^{13} + 4 \xi_{5}^{52} \xi_{5}^{4} \xi_{6}^{4} \xi_{6}^{3} \xi_{6}^{12} + 4 \xi_{5}^{52} \xi_{5}^{4} \xi_{6}^{4} \xi_{6}^{3} \xi_{6}^{12} + 4 \xi_{5}^{52} \xi_{5}^{4} \xi_{6}^{4} \xi_{6}^{3} \xi_{6}^{12} \xi_{6}^{13} \xi_$ $2\xi_{5}^{5}\xi_{3}^{5}\xi_{6}^{2}\xi_{6}^{3}^{2}\xi_{6}^{14} - \xi_{5}^{5}\xi_{6}^{2}\xi_{6}^{2}\xi_{6}^{13} - \xi_{5}^{5}\xi_{6}^{4}\xi_{5}^{4}\xi_{6}^{5}\xi_{6}^{14} + \xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{2}\xi_{6}^{13}\xi_{3}^{1} - \xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{2}\xi_{6}^{13}\xi_{2}^{1} + \xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{14}\xi_{3}^{1} - \xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{2}\xi_{6}^{13}\xi_{2}^{1} - \xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{12}\xi_{3}^{1} - \xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{13}\xi_{6}^{13} - \xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{13}\xi_{6}^{13}\xi_{6}^{13}\xi_{6}^{13}\xi_{6}^{13}\xi_{6}^{13} + \xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{13$ $\xi_{6}^{42}\xi_{6}^{3}\xi_{6}^{22}\xi_{1}^{12}\xi_{1}^{1} - \xi_{6}^{42}\xi_{6}^{3}\xi_{6}^{2}\xi_{1}^{13}\xi_{1}^{1} + 2\xi_{6}^{4}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{2}\xi_{1}^{13}\xi_{1}^{1} - \xi_{6}^{4}\xi_{6}^{4}\xi_{6}^{13}\xi_{1}^{1} - \xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{2}\xi_{1}^{13}\xi_{1}^{1} - \xi_{6}^{4}\xi_{6}^{2}\xi_{1}^{13}\xi_{1}^{1} - \xi_{6}^{4}\xi_{6}^{2}\xi_{6}^{13}\xi_{1}^{1} - \xi_{6}^{4}\xi_{6}^{2}\xi_{6}^{1}\xi_{6}^{1}\xi_{1}^{1} - \xi_{6}^{4}\xi_{6}^{2}\xi_{6}^{1}$ $\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{14}\xi_{3}^{1}\xi_{1}^{1} - \xi_{5}^{4}\xi_{6}^{2}\xi_{6}^{14}\xi_{2}^{1}\xi_{1}^{1} - \xi_{5}^{4}\xi_{6}^{15}\xi_{1}^{12} - \xi_{5}^{4}\xi_{6}^{15} - \xi_{6}^{2}\xi_{6}^{14}\xi_{3}^{1})/(\xi_{6}^{13}(\xi_{6}^{4}\xi_{6}^{2} + \xi_{5}^{4}\xi_{6}^{1})((\xi_{6}^{5}\xi_{6}^{2} + \xi_{5}^{5}\xi_{6}^{1})^{2} + \xi_{6}^{12})); \quad \mathbf{J}_{2}^{\mathbf{G}} = (\xi_{6}^{5}^{2}\xi_{6}^{2}\xi_{3}^{2} + \xi_{6}^{13})/(\xi_{6}^{13}(\xi_{6}^{2}\xi_{6}^{2} + \xi_{5}^{2}\xi_{6}^{2})); \quad \mathbf{J}_{2}^{\mathbf{G}} = (\xi_{6}^{5}\xi_{6}^{2}\xi_{6}^{2})^{2}$ $2\xi_{0}^{2}\xi_{0}^{2}\xi_{0}^{2}\xi_{0}^{4}\xi_{0}^{4}\xi_{0}^{4}\xi_{0}^{4}\xi_{0}^{4}\xi_{0}^{2}\xi_{0}^{4}+\xi_{0}^{2}\xi_{0}^{4}\xi_{0}^{2}\xi_{0}^{4$
$\xi_{2}^{5}\xi_{6}^{6}\xi_{6}^{6}+\xi_{2}^{5}\xi_{5}^{4}\xi_{6}^{2}\xi_{1}^{6}-\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{2}\xi_{1}^{2}-\xi_{6}^{4}\xi_{3}^{3}\xi_{6}^{1}\xi_{1}^{2}-\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{2}\xi_{1}^{2}-\xi_{6}^{4}\xi_{6}^{2}\xi_{1}^{2}+\xi_{6}^{4}\xi_{6}^{2}\xi_{1}^{2}+\xi_{6}^{4}\xi_{6}^{3}\xi_{1}^{2}+\xi_{6}^{4}\xi_{6}^{2}\xi_{1}^{2}+\xi_{6}^{4}\xi_{1}^{2}+\xi_{6}^{4}\xi_{1}^{2}+\xi_{6}^{4}\xi_{1}^{2}+\xi_{6}^{4}\xi_{1}^{2}+\xi_{6}^{4}\xi_{1}^{2}+\xi_{6}^{4}\xi_{1}^{2}+\xi_{6}^{4}\xi_{1}^{2}+\xi_{6}^{4}\xi_{1}^{2}+\xi_{6}^{4}\xi_{1}^{2}+\xi_{6}^{4}\xi_{1}^{2}+\xi_{6}^{4}\xi_{1}^{2}+\xi_{6}^{4}\xi_{1}^{2}+\xi_{6}^{4}\xi_{1}^{2}+\xi_{6}^{4}\xi_{1}^{2}+\xi_{6}^{4}\xi_{1}^{2}+\xi_{6}^{4}\xi_{1}^{2}+\xi_{6}^{4}\xi_{1}^{2}+\xi_{6}^{4}\xi_{1}^{2}+\xi_{6}^{4}\xi_{1}$ $\xi_{1}^{62}\xi_{3}^{1})/(\xi_{6}^{61}\xi_{6}^{6}\xi_{6}^{6}\xi_{6}^{2}+\xi_{5}^{6}\xi_{6}^{6})); \quad \mathbf{J_{3}^{6}} = (-\xi_{5}^{63}\xi_{6}^{63}\xi_{3}^{3} - 3\xi_{5}^{62}\xi_{5}^{5}\xi_{6}^{22}\xi_{1}^{6}\xi_{3}^{1} + \xi_{5}^{62}\xi_{3}^{5}\xi_{6}^{6} + \xi_{5}^{62}\xi_{6}^{6}\xi_{6}^{6}\xi_{3}^{6} + \xi_{5}^{62}\xi_{5}^{6}\xi_{6}^{6}\xi_{3}^{6} + \xi_{5}^{62}\xi_{5}^{6}\xi_$ $\xi_{6}^{6} \xi_{5}^{4} \xi_{6}^{2} \xi_{6}^{1} \xi_{2}^{1} - \xi_{6}^{5} \xi_{6}^{2} \xi_{6}^{2} \xi_{6}^{2} \xi_{6}^{2} \xi_{6}^{1} \xi_{2}^{1} - \xi_{6}^{5} \xi_{6}^{2} \xi_{6}^{2} \xi_{6}^{1} \xi_{3}^{1} - \xi_{6}^{5} \xi_{6}^{2} \xi_{6}^{1} \xi_{3}^{1} + 2\xi_{6}^{5} \xi_{5}^{5} \xi_{6}^{2} \xi_{6}^{2} \xi_{6}^{1} - 2\xi_{6}^{5} \xi_{6}^{5} \xi_{6}^{4} \xi_{6}^{2} \xi_{6}^{1} + 2\xi_{6}^{5} \xi_{5}^{5} \xi_{6}^{4} \xi_{6}^{2} \xi_{6}^{1} \xi_{3}^{1} - \xi_{6}^{5} \xi_{6}^{4} \xi_{6}^{2} \xi_{6}^{1} \xi_{6}^{1} + \xi_{6}^{5} \xi_{6}^{4} \xi_{6}^{1} \xi_{6}^{1} \xi_{6}^{1} + \xi_{6}^{5} \xi_{6}^{4} \xi_{6}^{1} \xi_{$ $2\xi_{6}^{5}\xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{12}\xi_{2}^{1} - 2\xi_{6}^{5}\xi_{5}^{5}\xi_{6}^{2}\xi_{6}^{1}\xi_{3}^{12} - 2\xi_{6}^{5}\xi_{5}^{5}\xi_{6}^{22}\xi_{6}^{1}\xi_{3}^{1}\xi_{2}^{1} - 2\xi_{6}^{5}\xi_{5}^{5}\xi_{6}^{2}\xi_{6}^{12}\xi_{3}^{1}\xi_{1}^{1} - 2\xi_{6}^{5}\xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{22}\xi_{6}^{1} - 2\xi_{6}^{5}\xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{2}\xi_{6}^{12} + \xi_{6}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{22}\xi_{1}^{1} + \xi_{6}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{2}\xi_{6}^{12}\xi_{$
$2\xi_{0}^{5}\xi_{6}^{4}\xi_{5}^{4}\xi_{6}^{3}\xi_{6}^{2}\xi_{1}^{4}\xi_{2}^{4}+\xi_{5}^{5}\xi_{6}^{2}\xi_{6}^{2}\xi_{1}^{2}-\xi_{5}^{5}\xi_{6}^{2}\xi_{1}^{2}-\xi_{5}^{5}\xi_{6}^{3}\xi_{1}^{2}+\xi_{5}^{5}\xi_{5}^{3}\xi_{6}^{2}\xi_{1}^{3}-\xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{1}^{2}-\xi_{5}^{5}\xi_{6}^{4}\xi_{6}^{3}\xi_{1}^{2}-\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{1}^{2}-\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{1}^{2}-\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{1}^{2}-\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{1}^{2}-\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{1}^{2}-\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{1}^{2}-\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{1}^{2}-\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{1}^{2}-\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{1}^{2}-\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{1}^{2}-\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{1}^{2}-\xi_{5}^{5}\xi_{5}^{4}\xi_{6}^{3}\xi_{1}^{2}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{3}\xi_{1}^{2}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{3}\xi_{1}^{2}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{3}\xi_{1}^{2}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{3}\xi_{1}^{2}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{3}\xi_{1}^{2}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{3}\xi_{1}^{2}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{3}\xi_{1}^{2}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{3}\xi_{5}^{4}\xi_{5}^{3}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{3}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{3}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}\xi_{5}^{4}+\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4}\xi_{5}^{4$ $\xi_{5}^{5} \xi_{6}^{2} \xi_{1}^{4} \xi_{1}^{4} \xi_{2}^{1} - \xi_{5}^{5} \xi_{1}^{6} \xi_{1}^{3} \xi_{1}^{1} - 2\xi_{5}^{5} \xi_{5}^{6} \xi_{6}^{4} \xi_{6}^{2} \xi_{1}^{2} - 2\xi_{5}^{5} \xi_{5}^{5} \xi_{5}^{5} \xi_{6}^{3} \xi_{5}^{1} \xi_{1}^{3} - \xi_{5}^{5} \xi_{1}^{6} \xi_{2}^{1} + \xi_{5}^{5} \xi_{6}^{1} \xi_{1}^{3} - \xi_{5}^{5} \xi_{6}^{4} \xi_{6}^{2} \xi_{6}^{2} - \xi_{5}^{5} \xi_{6}^{4} \xi_{6}^{3} \xi_{6}^{3} \xi_{1}^{2} - \xi_{5}^{5} \xi_{6}^{4} \xi_{6}^{3} \xi_{6}^{3} \xi_{1}^{3} - \xi_{5}^{5} \xi_{6}^{4} \xi_{6}^{3} \xi_{6}^{3} \xi_{1}^{2} - \xi_{5}^{5} \xi_{6}^{4} \xi_{6}^{3} \xi_{6}^{3} \xi_{1}^{3} - \xi_{5}^{5} \xi_{6}^{4} \xi_{6}^{3} \xi_{1}^{3} - \xi_{5}^{5} \xi_{6}^{4} \xi_{6}^{3} \xi_{6}^{3} \xi_{5}^{3} - \xi_{5}^{5} \xi_{6}^{4} \xi_{6}^{3} \xi_{6}^{3} \xi_{1}^{3} - \xi_{5}^{5} \xi_{6}^{4} \xi_{6}^{3} \xi_{6}^{3} \xi_{1}^{3} + \xi_{5}^{5} \xi_{6}^{4} \xi_{6}^{3} \xi_{6}^{3} \xi_{1}^{3} + \xi_{5}^{5} \xi_{6}^{3} \xi_{1}^{3} + \xi_{5}^$ $\xi_{6}^{4}\xi_{6}^{3}\xi_{6}^{12}\xi_{3}^{1} - \xi_{6}^{4}\xi_{6}^{2}\xi_{6}^{12}\xi_{2}^{1} - \xi_{5}^{4}\xi_{6}^{13}\xi_{2}^{1} - \xi_{6}^{3}\xi_{6}^{12}\xi_{3}^{12} - \xi_{6}^{2}\xi_{6}^{12}\xi_{3}^{12}\xi_{2}^{1} - \xi_{6}^{13}\xi_{3}^{1}\xi_{1}^{1})/(\xi_{6}^{12}(\xi_{6}^{5}\xi_{6}^{2} + \xi_{5}^{5}\xi_{6}^{1})^{2} + \xi_{6}^{12})); \quad \mathbf{J}_{\mathbf{4}}^{\mathbf{4}} = (-\xi_{6}^{5}\xi_{6}^{2}\xi_{6}^{3} - 2\xi_{6}^{5}\xi_{5}^{5}\xi_{6}^{2}\xi_{6}^{2} + \xi_{6}^{12}\xi_{6}^{12})\xi_{6}^{12}\xi$ $2\xi_0^5\xi_6^4\xi_0^3\xi_6^2 + 2\xi_0^5\xi_0^4\xi_0^3\xi_0^2\xi_0^1 - \xi_0^5\xi_0^2\xi_0^1 + \xi_0^5\xi_0^4\xi_0^3\xi_0^2\xi_0^1 + \xi_0^5\xi_0^4\xi_0^3\xi_0^2 + \xi_0^5\xi_0^4\xi_0^3\xi_0^2 + \xi_0^4\xi_0^3\xi_0^2\xi_0^2 - \xi_0^4\xi_0^3\xi_0^2\xi_0^2 - \xi_0^4\xi_0^3\xi_0^2\xi_0^2 + \xi_0^4\xi_0^3\xi_0^2\xi_0^2 + \xi_0^4\xi_0^3\xi_0^2\xi_0^2 - \xi_0^4\xi_0^2\xi_0^2\xi_0^2 - \xi_0^4\xi_0^2\xi_0^2\xi_0^2 - \xi_0^4\xi_0^2\xi_0^2\xi_0^2 - \xi_0^2\xi_0^2\xi_0^2 - \xi_0^4\xi_0^2\xi_0^2\xi_0^2 - \xi_0^4\xi_0^2\xi_0^2\xi_0^2 - \xi_0^2\xi_0^2\xi_0^2 - \xi_0^2\xi_0^2\xi_0^2\xi_0^2 - \xi_0^2\xi_0^2\xi_0^2\xi_0^2 - \xi_0^2\xi_0^2\xi_0^2\xi_0^2 - \xi_0^2\xi_0^$ $\boldsymbol{\xi}_{5}^{4}\boldsymbol{\xi}_{6}^{32}\boldsymbol{\xi}_{6}^{11}\boldsymbol{\xi}_{3}^{1} - \boldsymbol{\xi}_{5}^{4}\boldsymbol{\xi}_{6}^{3}\boldsymbol{\xi}_{6}^{2}\boldsymbol{\xi}_{1}^{1} - \boldsymbol{\xi}_{5}^{4}\boldsymbol{\xi}_{6}^{3}\boldsymbol{\xi}_{6}^{12}\boldsymbol{\xi}_{1}^{1} - \boldsymbol{\xi}_{6}^{2}\boldsymbol{\xi}_{6}^{12})/(\boldsymbol{\xi}_{6}^{12}(\boldsymbol{\xi}_{6}^{4}\boldsymbol{\xi}_{6}^{2} + \boldsymbol{\xi}_{5}^{4}\boldsymbol{\xi}_{6}^{1})); \quad \boldsymbol{J}_{5}^{6} = (\boldsymbol{\xi}_{5}^{5}\boldsymbol{\xi}_{6}^{2}\boldsymbol{\xi}_{6}^{1} - \boldsymbol{\xi}_{5}^{4}\boldsymbol{\xi}_{6}^{3}\boldsymbol{\xi}_{1}^{1} + \boldsymbol{\xi}_{6}^{2}\boldsymbol{\xi}_{2}^{1} + \boldsymbol{\xi}_{6}^{2}\boldsymbol{\xi}_{6}^{1})/\boldsymbol{\xi}_{6}^{12}; \quad \boldsymbol{\xi}_{6}^{12}(\boldsymbol{\xi}_{6}^{1}\boldsymbol{\xi}_{6}^{1} - \boldsymbol{\xi}_{6}^{12}\boldsymbol{\xi}_{6}^{1})); \quad \boldsymbol{\xi}_{5}^{12}(\boldsymbol{\xi}_{6}^{1}\boldsymbol{\xi}_{6}^{1} - \boldsymbol{\xi}_{5}^{12}\boldsymbol{\xi}_{6}^{1} + \boldsymbol{\xi}_{6}^{12}\boldsymbol{\xi}_{6}^{1} +$ $\mathbf{J}_{6}^{6} = (\xi_{6}^{5}\xi_{6}^{2} - \xi_{6}^{4}\xi_{6}^{3} - \xi_{6}^{3}\xi_{3}^{1} - \xi_{6}^{2}\xi_{2}^{1} - \xi_{6}^{1}\xi_{1}^{1})/\xi_{6}^{1};$ and the parameters are subject to the condition

$$\xi_6^1(\xi_6^4\xi_6^2 + \xi_5^4\xi_6^1) \neq 0. \tag{8}$$

Now, equivalence by a suitable automorphism of the form

$$\Phi = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
b_1^4 & b_2^4 & b_3^4 & 1 & 0 & 0 \\
b_1^5 & b_2^5 & b_3^5 & 0 & 1 & 0 \\
b_1^6 & b_2^6 & b_3^6 & 0 & 0 & 1
\end{pmatrix}$$
(9)

reduces to the case $\xi_1^1 = \xi_2^1 = \xi_3^1 = \xi_6^4 = \xi_2^5 = \xi_3^5 = \xi_6^5 = 0$. Then from (8), $\xi_5^4 \xi_6^1 \neq 0$ and applying equivalence by $\Psi = \operatorname{diag} \left(\begin{pmatrix} 1 & 0 & 0 \\ \xi_6^2/\xi_6^1 & 0 & -\xi_5^4 c \\ \xi_6^3/\xi_6^1 & c & -\xi_5^5 c \end{pmatrix}, \begin{pmatrix} 0 & -\xi_5^4 c & 0 \\ c & -\xi_5^5 c & 0 \\ \xi_6^2/\xi_6^1 & c(-\xi_5^5\xi_6^2 + \xi_5^4\xi_6^3)/\xi_6^1 & \xi_5^4 c^2 \end{pmatrix} \right)$ where

 $c = |\xi_5^4 \xi_6^1|^{-\frac{1}{2}}$, we get reduced according to the sign of $\xi_5^4 \xi_6^1$ to either

$$J_{1} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \text{ or } J_{1}^{-} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$
 (10)

Now J_1^- is equivalent to J_1 , hence any CS with $\xi_6^1 \neq 0$ is equivalent to J_1 .

3.2 Case $\xi_6^1 = 0, \xi_5^2 \neq 0$.

$$J = \begin{pmatrix} -\xi_{6}^{6} & * & * & * & 0 & 0 & 0 \\ \xi_{1}^{2} & * & \left[\xi_{3}^{2}\right] & \left[\xi_{4}^{2}\right] & \left[\xi_{5}^{2}\right] & 0 \\ \xi_{1}^{2} & * & \left[\xi_{6}^{6}\xi_{5}^{2} - \xi_{4}^{2}\xi_{3}^{2}\right]/\xi_{5}^{2} & -\xi_{4}^{2}/\xi_{5}^{2} & -\xi_{4}^{2} & 0 \\ (-\xi_{5}^{6}\xi_{3}^{2} + \xi_{5}^{6}\xi_{1}^{2})/\xi_{5}^{2} & * & \left[\xi_{4}^{4}\right] & (-\xi_{6}^{6}\xi_{5}^{2} + \xi_{5}^{4}\xi_{4}^{2})/\xi_{5}^{2} & \xi_{5}^{4} & \xi_{5}^{2}(\xi_{6}^{6}^{2} + 1)/(\xi_{1}^{3}\xi_{5}^{2} + \xi_{4}^{2}\xi_{1}^{2}) \\ * & * & * & \xi_{4}^{2}(\xi_{6}^{6} + \xi_{5}^{5})/\xi_{5}^{2} & \xi_{5}^{5} & -\xi_{4}^{2}(\xi_{6}^{6}^{2} + 1)/(\xi_{1}^{3}\xi_{5}^{2} + \xi_{4}^{2}\xi_{1}^{2}) \\ * & * & \xi_{5}^{6} & (\xi_{5}^{6}\xi_{4}^{2} - \xi_{1}^{3}\xi_{5}^{2} - \xi_{4}^{2}\xi_{1}^{2})/\xi_{5}^{2} & \xi_{5}^{6} & (11) \end{pmatrix}$$

$$\xi_5^2(\xi_5^2\xi_1^3 + \xi_4^2\xi_1^2) \neq 0. \tag{12}$$

Now, equivalence by a suitable automorphism of the form (9) reduces to the case $\xi_1^2 = \xi_3^2 = \xi_5^4 = \xi_5^5 = \xi_5^6 = \xi_3^4 = \xi_3^6 = 0$. Applying then equivalence by $\Psi = \operatorname{diag} \left(\begin{pmatrix} -\xi_6^6/\xi_5^2 & -\xi_6^6\xi_4^2/(\xi_1^3\xi_5^2) & -1/\xi_1^3 \\ 0 & 1 & 0 \\ \xi_1^3/\xi_5^2 & 0 & 0 \end{pmatrix}, \begin{pmatrix} -\xi_6^6/\xi_5^2 & 0 & 1/\xi_1^3 \\ \xi_6^6\xi_4^2/\xi_5^2 & 1/\xi_5^2 & 0 \\ -\xi_1^3/\xi_5^2 & 0 & 0 \end{pmatrix} \right), J2 = \Psi^{-1}J\Psi$ is

$$J2 = \begin{pmatrix} 0 & 0 & -\xi_2^2/\xi_1^3 & 0 & -\xi_4^2/\xi_1^3 & -\xi_4^2/\xi_1^2^2 \\ 0 & 0 & 0 & 0 & 1 & \xi_4^2/\xi_1^3 \\ \xi_1^3/\xi_2^5 & \xi_4^2/\xi_2^5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \xi_2^2/\xi_1^3 \\ 0 & -1 & 0 & \xi_4^2/\xi_2^2 & 0 & 0 \\ 0 & 0 & 0 & -\xi_1^3/\xi_2^2 & 0 & 0 \end{pmatrix}.$$

Suppose first that $\xi_4^2 \neq 0$. Then this J2 is a CS belonging in the case 3.1. Suppose now that $\xi_4^2 = 0$. Applying equivalence by the automorphism $\Lambda = \text{diag}(1, \xi_1^3/\xi_5^2, \xi_1^$

Hence, from the result of the case 3.1, any CS with $\xi_6^1 = 0, \xi_5^2 \neq 0$ is equivalent to either J_1 in (10) or J_2 in (13). Since J_2 is equivalent to J_1 by the automorphism $M = \operatorname{diag}\left(\left(\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix}\right), -1, 0, 0, 1, \left(\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix}\right)\right)$ i.e. $M^{-1}J_2M = J_1$, we get that any CS with $\xi_6^1 = 0, \xi_5^2 \neq 0$ is equivalent to J_1 .

3.3 Case $\xi_6^1 = 0, \xi_5^2 = 0$.

$$J = \begin{pmatrix} \xi_1^1 \\ -\frac{\xi_1^{12}+1}{\xi_2^2} & \xi_1^1 & 0 & 0 & 0 & 0 \\ \frac{\xi_1^3}{\xi_2^3} & \frac{\xi_2^1(\xi_1^4\xi_3^3+\xi_3^3\xi_3^3+\xi_1^3\xi_1^1)}{\xi_1^3} & \xi_3^3 & \xi_3^4 \\ \frac{\xi_1^4}{\xi_1^4} & \frac{\xi_2^1(-\xi_1^4\xi_3^3+\xi_3^3\xi_1^3+\xi_1^3\xi_1^1)}{\xi_1^3(\xi_1^2+1)} & \frac{\xi_3^3}{\xi_3^3} & 0 & 0 \\ \frac{\xi_1^6\xi_1^4\xi_2^1+\xi_3^6\xi_1^3\xi_2^1-\xi_2^6\xi_1^{12}-\xi_2^6}{\xi_1^3(\xi_1^2+1)} & \frac{\xi_1^3\xi_1^3+\xi_1^3}{\xi_1^3(\xi_1^2+1)} & -\frac{\xi_3^3^2+1}{\xi_1^3} & -\xi_3^3 & 0 & 0 \\ \frac{\xi_1^6\xi_1^4\xi_2^1+\xi_3^6\xi_1^3\xi_2^1-\xi_2^6\xi_1^{12}-\xi_2^6}{\xi_1^3(\xi_1^2+1)} & \frac{\xi_1^3\xi_1^3+\xi_1^3\xi_1^3}{\xi_1^3(\xi_1^2+1)} & \frac{\xi_1^3\xi_1^3+\xi_1^3\xi_1^3}{\xi_1^3(\xi_1^2+1)} & \frac{\xi_1^3\xi_1^3+\xi_1^3\xi_1^3}{\xi_1^3(\xi_1^2+1)} & \frac{\xi_1^3\xi_1^3+\xi_1^3\xi_1^3}{\xi_1^3(\xi_1^3+1)} & \frac{\xi_1^3\xi_1^3+\xi_1^3\xi_1^3+\xi_1^3\xi_1^3}{\xi_1^3(\xi_1^3+1)} & \frac{\xi_1^3\xi_1^3+\xi_1^3\xi_1^3}{\xi_1^3(\xi_1^3+1)} & \frac{\xi_1^3\xi_1^3+\xi_1^3\xi_1^3+\xi_1^3\xi_1^3}{\xi_1^3(\xi_1^3+1)$$

 $\begin{array}{l} \text{where } \mathbf{J_2^5} = (\xi_2^1(-\xi_4^6\xi_1^4\xi_3^3\xi_2^3 + \xi_4^6\xi_1^4\xi_3^3\xi_2^1 + \xi_4^6\xi_1^4\xi_3^3\xi_2^1 + \xi_4^6\xi_3^3\xi_1^3\xi_2^1 + \xi_3^6\xi_3^3\xi_1^2 + \xi_3^6\xi_4^4\xi_3^3\xi_2^1 + \xi_3^6\xi_3^4\xi_3^3\xi_1^2 + \xi_3^6\xi_4^3\xi_1^3\xi_2^3\xi_1^2 + \xi_3^6\xi_4^3\xi_1^3 + \xi_2^6\xi_1^3\xi_1^3 - 2\xi_2^6\xi_4^3\xi_1^1 - 2\xi_2^6\xi_4^3\xi_1^1 + \xi_1^6\xi_4^3\xi_2^3 + \xi_1^6$

$$\xi_2^1 \xi_4^3 \neq 0. \tag{15}$$

Now, equivalence by a suitable automorphism of the form (9) reduces to the case $\xi_1^3 = \xi_3^4 = \xi_1^6 = \xi_2^6 = \xi_3^6 = \xi_4^6 = 0$. Applying then equivalence by the automorphism $\Psi = \operatorname{diag} \left(\begin{pmatrix} \xi_2^1 & 0 & 0 \\ -\xi_1^1 & 1 & 0 \\ 0 & 0 & \xi_4^3 \xi_2^1 \end{pmatrix}, \begin{pmatrix} \xi_2^1 & 0 & 0 \\ 0 & \xi_4^3 \xi_2^1 & 0 \\ 0 & -\xi_4^3 \xi_2^1 \xi_1^1 & \xi_4^3 \xi_2^1 \end{pmatrix} \right)$, we get into the case of a CS J where all parameters J where J where J where J and J where J is the contraction of J where J is the contraction J and J is the contraction J and J is the contraction J where J is the contraction J and J is the contraction J in J and J is the contraction J in J in J in J in J in J in J is the contraction J in J is the contraction J in J in J is J in J in

rameters but $\xi_2^1 = \xi_4^3 = 1$ vanish and $\xi_2^1 = \xi_4^3 = 1$, that is $J = \operatorname{diag}\left(\left(\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix}\right), \left(\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix}\right), \left(\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix}\right)\right)$, which is equivalent to the matrix J_1 in (10). Now, with the automorphism $\operatorname{diag}(1, -1, 1, -1, 1, -1)$, J is equivalent to its opposite

$$J_0 = \operatorname{diag}\left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\right). \tag{16}$$

Hence, any CS with $\xi_6^1=0, \xi_5^2=0$ is equivalent to J_0 in (16). Commutation relations of \mathfrak{m} for $J_0: [\tilde{x}_1, \tilde{x}_3]=\tilde{x}_5; [\tilde{x}_1, \tilde{x}_4]=\tilde{x}_6; [\tilde{x}_2, \tilde{x}_3]=\tilde{x}_6; [\tilde{x}_2, \tilde{x}_4]=-\tilde{x}_5.$

3.4 Conclusions.

Any $J \in \mathfrak{X}_{6,3}$ is equivalent to J_0 defined by (16). Hence $\mathfrak{X}_{6,3}$ is comprised of the single Aut $\mathcal{G}_{6,3}$ orbit of J_0 . Now Aut $\mathcal{G}_{6,3}$ consists of the matrices

$$\Phi = \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 & 0 & 0 & 0 \\ b_1^2 & b_2^2 & b_3^2 & 0 & 0 & 0 \\ b_1^3 & b_2^3 & b_3^3 & 0 & 0 & 0 \\ b_1^4 & b_2^4 & b_3^4 & b_2^2b_1^1 - b_1^2b_2^1 & b_3^2b_1^1 - b_1^2b_3^1 & b_3^2b_2^1 - b_2^2b_3^1 \\ b_1^5 & b_2^5 & b_3^5 & b_2^3b_1^1 - b_1^3b_2^1 & b_3^3b_1^1 - b_1^3b_3^1 & b_3^3b_2^1 - b_2^3b_3^1 \\ b_1^6 & b_2^6 & b_3^6 & b_2^3b_1^2 - b_1^3b_2^2 & b_3^3b_1^2 - b_1^3b_3^2 & b_3^3b_2^2 - b_2^3b_3^2 \end{pmatrix}$$

where the b_j^i 's are arbitrary reals with the condition $\det \Phi \neq 0$, and the stabilizer of J_0 is 6-dimensional. Hence $\mathfrak{X}_{6,3}$ is a submanifold of dimension 12 of \mathbb{R}^{36} ([1], Chap. 3, par. 1, Prop. 14). We also remark that $\mathfrak{X}_{6,3}$ is the zero set of a polynomial map $F: \mathbb{R}^{36} \to \mathbb{R}^{81} \times \mathbb{R}^{36}$; however this map is not a subimmersion, that is its rank is not locally constant.

3.5

$$X_1 = \frac{\partial}{\partial x^1} - x^2 \frac{\partial}{\partial x^3} - y^1 \frac{\partial}{\partial y^2}$$
 , $X_2 = \frac{\partial}{\partial y^1} - x^2 \frac{\partial}{\partial y^3}$.

Let G denote the group G_0 endowed with the left invariant structure of complex manifold defined by J_0 (16). Then $H_{\mathbb{C}}(G) = \{ f \in C^{\infty}(G_0) : \tilde{X}_i^- f = 0 \ \forall j = 1, 3, 5 \}$. One has

$$\tilde{X}_1^- = 2 \frac{\partial}{\partial \overline{z^1}} - 2 x^2 \frac{\partial}{\partial \overline{z^3}} - y^1 \frac{\partial}{\partial y^2} \; ; \; \tilde{X}_3^- = 2 \frac{\partial}{\partial \overline{z^2}} \; ; \; \tilde{X}_5^- = 2 \frac{\partial}{\partial \overline{z^3}}$$

where $z^j = x^j + iy^j$ $(1 \le j \le 3)$. Then $f \in C^{\infty}(G_0)$ is in $H_{\mathbb{C}}(G)$ if and only if it is holomorphic with respect to z^2 and z^3 and satisfies

$$2\frac{\partial f}{\partial \overline{z^1}} = \frac{z^1 - \overline{z^1}}{2} \frac{\partial f}{\partial z^2}.$$

Hence the 3 functions $w^1=z^1, w^2=z^2+\frac{|z^1|^2}{4}-\frac{(\overline{z^1})^2}{8}, w^3=z^3$ are holomorphic. Let $F:G\to\mathbb{C}^3$ defined by $F=(w^1,w^2,w^3)$. F is a biholomorphic bijection, hence a global chart on G. We determine now how the multiplication of G looks like in that chart. Let $a,x\in G$ with respective second kind canonical coordinates $(x^1,y^1,x^2,y^2,x^3,y^3),(\alpha^1,\beta^1,\alpha^2,\beta^2,\alpha^3,\beta^3)$ as in (1). With obvious notations, $a=[w_a^1,w_a^2,w_a^3], x=[w_x^1,w_x^2,w_x^3], ax=[w_{ax}^1,w_{ax}^2,w_{ax}^3]$. Computations yield:

$$\begin{array}{rcl} w_{ax}^1 & = & w_a^1 + w_x^1 \\ w_{ax}^2 & = & w_a^2 + w_x^2 - \frac{w_a^1 - \overline{w_a^1}}{4} w_x^1 \\ \\ w_{ax}^3 & = & w_a^3 + w_x^3 + \frac{1}{2} (w_a^2 - \overline{w_a^2} + \frac{(\overline{w_a^1})^2 - (w_a^1)^2}{4} - |w_a^1|^2) w_x^1. \end{array}$$

4 Lie Algebra $\mathcal{G}_{6,7}$ (isomorphic to M6).

Commutation relations for $\mathcal{G}_{6,7}$: $[x_1, x_2] = x_4$; $[x_1, x_3] = x_5$; $[x_1, x_4] = x_6$; $[x_2, x_3] = -x_6$.

$$J = \begin{pmatrix} \begin{bmatrix} \xi_1^1 \\ \xi_1^1 \end{bmatrix} & \begin{bmatrix} \xi_2^1 \end{bmatrix} & 0 & 0 & 0 & 0 \\ -\frac{\xi_1^{12}+1}{\xi_2^1} & -\xi_1^1 & 0 & 0 & 0 & 0 \\ * & \begin{bmatrix} \xi_2^3 \end{bmatrix} & c & \begin{bmatrix} \xi_3^3 \end{bmatrix} & 0 & 0 \\ * & \begin{bmatrix} \xi_2^4 \end{bmatrix} & -\frac{c^2+1}{\xi_3^4} & -c & 0 & 0 \\ * & * & * & * & \begin{bmatrix} \xi_2^5 \end{bmatrix} & \begin{bmatrix} \xi_5^5 \\ \xi_5^5 \end{bmatrix} & -\frac{\xi_3^3 \xi_2^1}{\xi_3^4 - \xi_2^1} \\ \xi_1^6 \end{bmatrix} & \begin{bmatrix} \xi_2^6 \end{bmatrix} & * & \begin{bmatrix} \xi_3^6 \end{bmatrix} & \frac{(\xi_5^{52}+1)(\xi_3^3-\xi_2^1)}{\xi_3^3 \xi_2^1} & -\xi_5^5 \end{pmatrix}$$

$$(17)$$

 $\begin{aligned} &\text{where } \ \mathbf{J_{1}^{3}} = (\xi_{5}^{5}\xi_{4}^{3}\xi_{2}^{2} - \xi_{5}^{5}\xi_{2}^{3}\xi_{1}^{2} - \xi_{4}^{2}\xi_{4}^{3}\xi_{1}^{2} - \xi_{4}^{3}\xi_{2}^{3}\xi_{1}^{1} + \xi_{2}^{3}\xi_{1}^{2}\xi_{1}^{1})/\xi_{2}^{12}; \quad \mathbf{c} = \mathbf{J_{3}^{3}} = (-\xi_{5}^{5}\xi_{4}^{3} + \xi_{5}^{5}\xi_{1}^{2} + \xi_{4}^{3}\xi_{1}^{1})/\xi_{2}^{1}; \quad \mathbf{J_{1}^{4}} = (\xi_{5}^{5}\xi_{4}^{3}^{2}\xi_{2}^{3} - \xi_{2}^{3}\xi_{2}^{2}\xi_{3}^{2} - \xi_{5}^{5}\xi_{4}^{3}\xi_{2}^{3}\xi_{1}^{2} - \xi_{5}^{4}\xi_{4}^{3}\xi_{2}^{1} + \xi_{5}^{2}\xi_{4}^{3}\xi_{2}^{3}\xi_{1}^{2} + \xi_{5}^{5}\xi_{4}^{3}\xi_{2}^{3}\xi_{1}^{2} + \xi_{5}^{2}\xi_{4}^{3}\xi_{2}^{3}\xi_{1}^{2} + \xi_{5}^{2}\xi_{4}^{3}\xi_{2}^{3}\xi_{1}^{1} + \xi_{5}^{2}\xi_{4}^{3}\xi_{2}^{3}\xi_{1}^{1} + \xi_{5}^{2}\xi_{4}^{3}\xi_{2}^{3}\xi_{1}^{2} + \xi_{5}^{2}\xi_{4}^{3}\xi_{2}^{3}\xi_{1}^{1} + \xi_{5}^{2}\xi_{4}^{3}\xi_{2}^{3}\xi_{2}^{1} + \xi_{5}^{2}\xi_{4}^{3}\xi_{2}^{3}\xi_{1}^{2} + \xi_{5}^{2}\xi_{5}^{3}\xi_{4}^{3}\xi_{2}^{3}\xi_{1}^{2} + \xi_{5}^{2}\xi_{5}^{3}\xi_{4}^{3}\xi_{2}^{3}\xi_{1}^{2} + \xi_{5}^{2}\xi_{5}^{3}\xi_{4}^{3}\xi_{2}^{3}\xi_{1}^{2} + \xi_{5}^{2}\xi_{5}^{3}\xi_{4}^{3}\xi_{2}^{3}\xi_{1}^{2} + \xi_{5}^{2}\xi_{5}^{3}\xi_{4}^{3}\xi_{2}^{3}\xi_{1}^{2} + \xi_{5}^{2}\xi_{5}^{3}\xi_{4}^{3}\xi_{2}^{3}\xi_{1}^{2} + \xi_{5}^{2}\xi_{5}^{3}\xi_{4}^{3}\xi_{2}^{3}\xi_{2}^{2}\xi_{1}^{2} + \xi_{5}^{2}\xi_{5}^{3}\xi_{4}^{3}\xi_{2}^{3}\xi_{1}^{2} + \xi_{5}^{2}\xi_{5}^{3}\xi_{4}^{3}\xi_{2}^{3}\xi_{2}^{2}\xi_{1}^{2} + \xi_{5}^{2}\xi_{5}^{3}\xi_{4}^{3}\xi_{2}^{3}\xi_{2}^{2}\xi_{1}^{2} + \xi_{5}^{2}\xi_{5}^{3}\xi_{4}^{3}\xi_{2}^{3}\xi_{2}^{2}\xi_{1}^{2} + \xi_{5}^{2}\xi_{5}^{3}\xi_{4}^{3}\xi_{2}^{3}\xi_{2}^{3}\xi_{1}^{3}\xi_{2}^{3}\xi_{2}^{3}\xi_{2}^{3}\xi_{2}^{3}\xi_{2}^{3}\xi_$

$$\xi_2^1 \xi_4^3 (\xi_2^1 - \xi_4^3) \neq 0. \tag{18}$$

Now the automorphism group of $\mathcal{G}_{6,7}$ is comprised of the matrices

$$\Phi = \begin{pmatrix} b_1^1 & 0 & 0 & 0 & 0 & 0 & 0 \\ b_1^2 & b_2^2 & 0 & 0 & 0 & 0 & 0 \\ b_1^3 & b_2^3 & b_1^{12} & 0 & 0 & 0 & 0 \\ b_1^4 & b_2^4 & b_3^4 & b_2^2 b_1^1 & 0 & 0 & 0 \\ b_1^5 & b_2^5 & b_3^5 & b_2^3 b_1^1 & b_1^{13} & 0 \\ b_1^6 & b_2^6 & b_3^6 & b_3^4 b_1^1 - b_3^3 b_1^2 + b_1^3 b_2^2 & b_1^1 (b_3^4 - b_1^2 b_1^1) & b_2^3 b_1^{12} \end{pmatrix}$$

where $b_2^2b_1^1\neq 0$. Taking suitable values for the b_j^i 's, equivalence by Φ leads to the case where $\xi_1^1=\xi_2^3=\xi_2^4=\xi_4^5=\xi_5^5=\xi_1^6=\xi_2^6=\xi_4^6=0$ and $\xi_2^1=1,\xi_4^3=\alpha$, where $\alpha\neq 0,1$:

$$J_{\alpha} = \operatorname{diag}\left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & \alpha \\ -1/\alpha & 0 \end{pmatrix}, \begin{pmatrix} 0 & -\alpha/(\alpha - 1) \\ (\alpha - 1)/\alpha & 0 \end{pmatrix}\right) \quad (\alpha \neq 0, 1)$$
(19)

Hence, any CS is equivalent to J_{α} in (19). It is easily seen that the J_{α} 's corresponding to different values of α are not equivalent. Commutation relations of \mathfrak{m} for J_{α} : $[\tilde{x}_1, \tilde{x}_3] = \tilde{x}_5$; $[\tilde{x}_1, \tilde{x}_4] = (1-\alpha)\tilde{x}_6$; $[\tilde{x}_2, \tilde{x}_3] = \frac{1-\alpha}{\alpha}\tilde{x}_6$; $[\tilde{x}_2, \tilde{x}_4] = -\alpha\tilde{x}_5$.

From (17), $\mathfrak{X}_{6,7}$ is a submanifold of dimension 10 in \mathbb{R}^{36} . It is the disjoint union of the continuously many orbits of the J_{α} 's in (19).

4.1

$$X_1 = \frac{\partial}{\partial x^1} - y^1 \frac{\partial}{\partial y^2} - x^2 \frac{\partial}{\partial x^3} - y^2 \frac{\partial}{\partial y^3} \quad , \quad X_2 = \frac{\partial}{\partial y^1} + x^2 \frac{\partial}{\partial y^3}$$

Let G denote the group G_0 endowed with the left invariant structure of complex manifold defined by J_{α} in (19). Then $H_{\mathbb{C}}(G) = \{ f \in C^{\infty}(G_0) : \tilde{X}_j^- f = 0 \ \forall j = 1, 3, 5 \}$. One has

$$\tilde{X}_1^- = 2 \frac{\partial}{\partial \overline{w^1}} - y^1 \frac{\partial}{\partial y^2} - x^2 \frac{\partial}{\partial x^3} - (y^2 + ix^2) \frac{\partial}{\partial y^3} \quad , \quad \tilde{X}_3^- = 2 \frac{\partial}{\partial \overline{w^2}} \quad , \quad \tilde{X}_5^- = 2 \frac{\partial}{\partial \overline{w^3}} \quad ,$$

where $w^1=x^1-iy^1$, $w^2=x^2-i\alpha y^2$, $w^3=x^2+i\frac{\alpha}{\alpha-1}y^3$. Then $f\in C^\infty(G_0)$ is in $H_{\mathbb{C}}(G)$ if and only if it is holomorphic with respect to w^2 and w^3 and satisfies

$$2\frac{\partial f}{\partial \overline{w^1}} - \alpha \frac{w^1 - \overline{w^1}}{2} \frac{\partial f}{\partial w^2} + \frac{w^2}{\alpha - 1} \frac{\partial f}{\partial w^3} = 0.$$

The 3 functions

$$\varphi^{1} = w^{1} , \quad \varphi^{2} = w^{2} + \alpha \left(-\frac{(\overline{w^{1}})^{2}}{8} + \frac{|w^{1}|^{2}}{4} \right) ,$$

$$\varphi^{3} = w^{3} + \frac{\alpha}{8(1-\alpha)} (\overline{w^{1}})^{2} \left(\frac{w^{1}}{2} - \frac{\overline{w^{1}}}{3} \right) + \frac{\overline{w^{1}}w^{2}}{2(1-\alpha)}$$

are holomorphic. Let $F:G\to\mathbb{C}^3$ defined by $F=(\varphi^1,\varphi^2,\varphi^3)$. F is a biholomorphic bijection, hence a global chart on G. We determine now how the multiplication of G looks like in that chart. Let $a,x\in G$ with respective second kind canonical coordinates $(x^1,y^1,x^2,y^2,x^3,y^3),(\alpha^1,\beta^1,\alpha^2,\beta^2,\alpha^3,\beta^3)$ as in (1). With obvious notations, $a=[w_a^1,w_a^2,w_a^3],$ $x=[w_a^1,w_a^2,w_a^3],$ $x=[w_a^1,w_a^2,w_a^3],$ $x=[w_a^1,w_a^2,w_a^3],$ $x=[\varphi_a^1,\varphi_a^2,\varphi_a^3],$ $x=[\varphi_a^1,\varphi_a^2,\varphi_a^3],$ $x=[\varphi_a^1,\varphi_a^2,\varphi_a^3],$ Computations yield:

$$\begin{array}{lcl} w_{ax}^1 & = & w_a^1 + w_x^1 & , \quad w_{ax}^2 = w_a^2 + w_x^2 + i\alpha\beta^1 x^1 & , \\ w_{ax}^3 & = & w_a^3 + w_x^3 - \alpha^2 x^1 + i\frac{\alpha}{\alpha-1} \left(-\beta^1 x^1 + \alpha^2 y^1 + \frac{1}{2} \, \beta^1 (x^1)^2 \right). \end{array}$$

We then get

$$\varphi_{ax}^1=\varphi_a^1+\varphi_x^1 \quad , \quad \varphi_{ax}^2=\varphi_a^2+\varphi_x^2+\frac{\alpha}{4}\,\left(2\overline{\varphi_a^1}-\varphi_a^1\right)\,\varphi_x^1 \quad , \quad \varphi_{ax}^3=\varphi_a^3+\varphi_x^3+\chi(a,x)$$

where

$$\chi(a,x) = \varphi_x^1 \left(-\frac{1}{2} \varphi_a^2 + \frac{\alpha}{2(1-\alpha)} \overline{\varphi_a^2} + \frac{\alpha(2+\alpha)}{16(1-\alpha)} (\overline{\varphi_a^1})^2 + \frac{\alpha^2}{16(1-\alpha)} (\varphi_a^1)^2 - \frac{\alpha^2}{4(1-\alpha)} |\varphi_a^1|^2 \right) + \frac{\alpha}{16(1-\alpha)} \left(\varphi_a^1 - \overline{\varphi_a^1} \right) (\varphi_x^1)^2 + \frac{1}{2(1-\alpha)} \overline{\varphi_a^1} \varphi_x^2.$$

5 Lie Algebra $\mathcal{G}_{6,4}$ (isomorphic to M7).

Commutation relations for $\mathcal{G}_{6,4}$: $[x_1, x_2] = x_4$; $[x_1, x_3] = x_6$; $[x_2, x_4] = x_5$.

$$J = \begin{pmatrix} \xi_1^1 & \xi_2^1 & 0 & 0 & 0 & 0 \\ -\frac{(\xi_1^{12}+1)}{\xi_2^1} & -\xi_1^1 & 0 & 0 & 0 & 0 \\ * & \xi_2^3 & b & \xi_3^4 & 0 & 0 \\ * & \xi_2^4 & -\frac{b^2+1}{\xi_3^4} & -b & 0 & 0 \\ * & * & * & * & * & \xi_5^5 & -\frac{\xi_5^{52}+1}{c} \\ \xi_1^6 & \xi_2^6 & \xi_3^6 & \xi_4^6 & c & -\xi_5^5 \end{pmatrix}$$
 (20)

where $\mathbf{J_{3}^{1}} = (-\xi_{5}^{5}\xi_{2}^{4}\xi_{3}^{1} + 2\xi_{5}^{5}\xi_{3}^{2}\xi_{1}^{1} - \xi_{2}^{4}\xi_{3}^{4}\xi_{1}^{1} + \xi_{2}^{3}\xi_{1}^{12} - \xi_{2}^{3})/(\xi_{2}^{1}(\xi_{5}^{5} + \xi_{1}^{1}));$ $\mathbf{b} = \mathbf{J_{3}^{3}} = (-\xi_{5}^{5}\xi_{1}^{4} + 1)/(\xi_{5}^{5} + \xi_{1}^{1});$ $\mathbf{J_{1}^{4}} = (\xi_{5}^{5}^{2}\xi_{2}^{3}\xi_{1}^{12} + \xi_{5}^{3}\xi_{2}^{4}\xi_{3}^{4}\xi_{1}^{12} + \xi_{5}^{3}\xi_{4}^{4}\xi_{3}^{4}\xi_{1}^{13} + \xi_{2}^{4}\xi_{3}^{4}\xi_{1}^{13} + \xi_{2}^{3}\xi_{1}^{12} + \xi_{2}^{3})/(\xi_{4}^{3}\xi_{2}^{1}(\xi_{5}^{5} + \xi_{1}^{1})^{2});$ $\mathbf{J_{1}^{5}} = (\xi_{4}^{6}\xi_{5}^{5}\xi_{2}^{3}\xi_{1}^{14} + 2\xi_{4}^{6}\xi_{5}^{5}\xi_{2}^{2}\xi_{1}^{2}^{12} + \xi_{4}^{6}\xi_{5}^{5}\xi_{2}^{2}\xi_{3}^{2} + \xi_{4}^{14}\xi_{5}^{13}\xi_{1}^{12} + \xi_{4}^{6}\xi_{5}^{5}\xi_{2}^{2}\xi_{3}^{13} + \xi_{4}^{6}\xi_{5}^{4}\xi_{3}^{3}\xi_{1}^{13} + \xi_{4}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{3}\xi_{1}^{13} + \xi_{4}^{6}\xi_{5}^{5}\xi_{4}^{3}\xi_{3}^{3}\xi_{1}^{13} + \xi_{4}^{6}\xi_{5}^{5}\xi_{4}^{3}\xi_{3}^{3}\xi_{1}^{13} + \xi_{4}^{6}\xi_{5}^{5}\xi_{4}^{3}\xi_{3}^{13} + \xi_{4}^{6}\xi_{5}^{5}\xi_{4}^{3}\xi_{3}^{13} + \xi_{4}^{6}\xi_{5}^{5}\xi_{4}^{3}\xi_{1}^{13} + \xi_{4}^{6}\xi_{5}^{5}\xi_{4}^{3}\xi_{3}^{13}^{13} + \xi_{4}^{6}\xi_{5}^{5}\xi_{4}^{3}\xi_{3}^{13}^{13} + \xi_{4}^{6}\xi_{5}^{5}\xi_{4}^{3}\xi_$

$$\xi_2^1 \xi_4^3 (\xi_1^1 + \xi_5^5) \neq 0. \tag{21}$$

Now the automorphism group of $\mathcal{G}_{6,4}$ is comprised of the matrices

$$\Phi = \begin{pmatrix} b_1^1 & 0 & 0 & 0 & 0 & 0 \\ 0 & b_2^2 & 0 & 0 & 0 & 0 \\ b_1^3 & b_2^3 & b_3^3 & 0 & 0 & 0 \\ b_1^4 & b_2^4 & 0 & b_2^2 b_1^1 & 0 & 0 \\ b_1^5 & b_2^5 & b_3^5 & -b_1^4 b_2^2 & b_2^{2^2} b_1^1 & 0 \\ b_1^6 & b_2^6 & b_3^6 & b_2^3 b_1^1 & 0 & b_3^3 b_1^1 \end{pmatrix}$$

where $b_3^3b_2^2b_1^1\neq 0$. Taking suitable values for the b_j^i 's, equivalence by Φ leads to the case where $\xi_2^3=\xi_2^4=\xi_2^6=\xi_1^6=\xi_3^6=\xi_4^6=0,\,\xi_2^1=\xi_4^3=1$ and $\xi_1^1=\alpha,\xi_5^5=\beta,\alpha\neq -\beta$:

$$J_{\alpha,\beta} = \operatorname{diag}\left(\begin{pmatrix} \alpha & 1\\ -(\alpha^2 + 1) & -\alpha \end{pmatrix}, \begin{pmatrix} \frac{-\alpha\beta + 1}{\alpha + \beta} & 1\\ -\frac{(\alpha^2 + 1)(\beta^2 + 1)}{(\alpha + \beta)^2} & \frac{\alpha\beta - 1}{\alpha + \beta} \end{pmatrix}, \begin{pmatrix} \beta & \frac{(\alpha^2 + 1)(\beta^2 + 1)}{\alpha + \beta}\\ -\frac{\alpha + \beta}{\alpha^2 + 1} & -\beta \end{pmatrix}\right) \quad (\alpha \neq -\beta)$$

Hence, any CS is equivalent to $J_{\alpha,\beta}$ in (22). The $J_{\alpha,\beta}$'s corresponding to different couples (α,β) are not equivalent. Commutation relations of \mathfrak{m} for $J_{\alpha,\beta}: [\tilde{x}_1,\tilde{x}_3] = -\frac{(\beta^2+1)(\alpha^2+1)^2}{(\alpha+\beta)^2} \tilde{x}_5 - \frac{\beta(1+\alpha^2)}{\alpha+\beta} \tilde{x}_6;$ $[\tilde{x}_1,\tilde{x}_4] = \frac{\alpha\beta-1}{\alpha+\beta} (1+\alpha^2)\tilde{x}_5 - \alpha\tilde{x}_6;$ $[\tilde{x}_2,\tilde{x}_3] = -\frac{\alpha}{(\alpha+\beta)^2} (1+\alpha^2)(1+\beta^2)\tilde{x}_5 + \frac{\alpha\beta-1}{\alpha+\beta} \tilde{x}_6;$ $[\tilde{x}_2,\tilde{x}_4] = \beta \frac{\alpha^2+1}{\alpha+\beta} \tilde{x}_5 - \tilde{x}_6.$

From (20), $\mathfrak{X}_{6,4}$ is a submanifold of dimension 10 in \mathbb{R}^{36} . It is the disjoint union of the continuously many orbits of the $J_{\alpha,\beta}$'s in (22).

5.1

$$X_1 = \frac{\partial}{\partial x^1} + \frac{1}{2}(y^1)^2 \frac{\partial}{\partial x^3} - x^2 \frac{\partial}{\partial y^3} - y^1 \frac{\partial}{\partial y^2} \quad , \quad X_2 = \frac{\partial}{\partial y^1} + y^2 \frac{\partial}{\partial x^3}.$$

Let G denote the group G_0 endowed with the left invariant structure of complex manifold defined

by $J_{\alpha,\beta}$ (22). Then $H_{\mathbb{C}}(G) = \{ f \in C^{\infty}(G_0) ; \tilde{X}_i^- f = 0 \ \forall j = 1,3,5 \}$. One has

$$\tilde{X}_{1}^{-} = (1+i\alpha) \left[2 \frac{\partial}{\partial \overline{w^{1}}} + \left(\frac{1}{2} (y^{1})^{2} + iy^{2} (1-i\alpha) \right) \frac{\partial}{\partial x^{3}} - x^{2} \frac{\partial}{\partial x^{3}} - y^{1} \frac{\partial}{\partial y^{2}} \right]$$

$$\tilde{X}_{3}^{-} = 2 \frac{\partial}{\partial \overline{w^{2}}} , \quad \tilde{X}_{5}^{-} = 2 \frac{\partial}{\partial \overline{w^{3}}} ,$$

where

$$w^{1} = x^{1} - i(\alpha x^{1} + y^{1})$$

$$w^{2} = x^{2} + \frac{(1 - \alpha \beta)(\alpha + \beta)}{(1 + \alpha^{2})(1 + \beta^{2})}y^{2} - i\frac{(\alpha + \beta)^{2}}{(1 + \alpha^{2})(1 + \beta^{2})}y^{2}$$

$$w^{3} = x^{3} + \frac{\beta(\alpha^{2} + 1)}{\alpha + \beta}y^{3} - i\frac{\alpha^{2} + 1}{\alpha + \beta}y^{3}.$$

Then $f \in C^{\infty}(G_0)$ is in $H_{\mathbb{C}}(G)$ if and only if it is holomorphic with respect to w^2 and w^3 and satisfies the equation

$$2\frac{\partial f}{\partial \overline{w^1}} + \left(\frac{1}{4}((\alpha - i)w^1 + (\alpha + i)\overline{w^1})^2 - \frac{(\alpha^2 + 1)(\beta - i)}{\alpha + \beta}w^2\right)\frac{\partial f}{\partial w^3} + \frac{A}{2}((\alpha - i)w^1 + (\alpha + i)\overline{w^1})\frac{\partial f}{\partial w^2} = 0$$

where

$$A = \frac{(\alpha + \beta)(1 - \alpha\beta - i(\alpha + \beta))}{(1 + \alpha^2)(1 + \beta^2)}.$$

The 3 functions

$$\varphi^{1} = w^{1}$$
 , $\varphi^{2} = w^{2} - \frac{A}{4} \left(\frac{\alpha + i}{2} (\overline{w^{1}})^{2} + (\alpha - i) |w^{1}|^{2} \right)$

$$\varphi^{3} = w^{3} - \frac{1}{16}(\alpha - i)^{2}(w^{1})^{2}\overline{w^{1}} - \frac{\alpha^{2} + 1}{16}\left(1 + A\frac{(\beta - i)(\alpha - i)}{\alpha + \beta}\right)w^{1}(\overline{w^{1}})^{2} - \frac{\alpha + i}{48}\left(\alpha + i + 2A\frac{(\beta - i)(\alpha^{2} + 1)}{\alpha + \beta}\right)(\overline{w^{1}})^{3} + \frac{(\alpha^{2} + 1)(\beta - i)}{2(\alpha + \beta)}\overline{w^{1}}w^{2}$$

are holomorphic. Let $F: G \to \mathbb{C}^3$ defined by $F = (\varphi^1, \varphi^2, \varphi^3)$. F is a biholomorphic bijection, hence a global chart on G. We determine now how the multiplication of G looks like in that chart. Let $a, x \in G$ with respective second kind canonical coordinates $(x^1, y^1, x^2, y^2, x^3, y^3), (\alpha^1, \beta^1, \alpha^2, \beta^2, \alpha^3, \beta^3)$ as in (1). With obvious notations, computations yield:

$$\begin{array}{rcl} w_{ax}^1 & = & w_a^1 + w_x^1 \\ w_{ax}^2 & = & w_a^2 + w_x^2 - \frac{\alpha + \beta}{(1 + \alpha^2)(1 + \beta^2)} (1 - \alpha\beta - i(\alpha + \beta)\beta^1 x^1 \\ w_{ax}^3 & = & w_a^3 + w_x^3 + \frac{1}{2}(\beta^1)^2 x^1 - \beta^2 y^1 + \beta^1 x^1 y^1 - \frac{(\alpha^2 + 1)(\beta - i)}{\alpha + \beta}\alpha^2 x^1 \end{array}$$

We then get

$$\begin{array}{lcl} \varphi_{ax}^1 & = & \varphi_a^1 + \varphi_x^1 \\ \\ \varphi_{ax}^2 & = & \varphi_a^2 + \varphi_x^2 + \frac{\alpha + \beta}{4(\alpha^2 + 1)(\beta - i)} \left(2(1 - i\alpha)\overline{\varphi_a^1} - (\alpha^2 + 1)\varphi_a^1\right)\varphi_x^1 \\ \\ \varphi_{ax}^3 & = & \varphi_a^3 + \varphi_x^3 + \chi(a, x) \end{array}$$

where

$$\chi(a,x) = \frac{1}{16(\alpha+\beta)^2} \left(-(\alpha+\beta)(\alpha+i)^2(\beta+i) (\overline{\varphi_a^1})^2 + (\alpha+\beta)(\alpha+2\beta+i)(\alpha-i)^2 (\varphi_a^1)^2 + 4(\alpha+\beta)(\alpha+\beta+i(\alpha\beta-1)) |\varphi_a^1|^2 - 8(1+\alpha^2)(1+\beta^2) \overline{\varphi_a^2} - 8(1+\alpha^2)(\alpha-i)(\beta-i) \varphi_a^2 \right) \varphi_x^1 + \frac{1}{16} \left(2(\alpha^2-1-2i\alpha) \varphi_a^1 + (\alpha^2+3+2i) \overline{\varphi_a^1} \right) (\varphi_x^1)^2 + \frac{(\alpha^2+1)(\beta-i)}{2(\alpha+\beta)} \overline{\varphi_a^1} \varphi_x^2.$$

6 Lie Algebra $\mathcal{G}_{6,1}$ (isomorphic to M4).

Commutation relations for $\mathcal{G}_{6,1}$: $[x_1, x_2] = x_5$; $[x_1, x_4] = x_6$; $[x_2, x_3] = x_6$.

6.1 Case $\xi_1^2 \neq 0, \xi_3^2 \neq 0, \xi_3^1 \neq \xi_4^2$.

$$J = \begin{pmatrix} \xi_1^1 & * & \xi_3^1 & * & 0 & 0 \\ \xi_1^2 & \xi_2^2 & \xi_3^2 & \xi_4^2 & 0 & 0 \\ * & * & * & * & 0 & 0 \\ * & * & * & * & 0 & 0 \\ * & * & * & * & 0 & 0 \\ * & * & * & * & \xi_5^5 & -(\xi_5^{5^2} + 1)/\xi_5^6 \\ \xi_1^6 & \xi_2^6 & \xi_3^6 & \xi_4^6 & \xi_5^6 & -\xi_5^5 \end{pmatrix}$$
(23)

 $\text{Where } \mathbf{J_2^1} = (-((\xi_4^2\xi_3^2\xi_1^1 - \xi_4^2\xi_1^2\xi_3^1 - \xi_3^2\xi_2^2\xi_3^1 - (\xi_4^2 - \xi_3^1)\xi_5^5\xi_3^2)\xi_5^6 + (\xi_5^{5\,2} + 1)(\xi_4^2 - \xi_3^1)\xi_1^2))/(\xi_5^6\xi_3^{2\,2}); \quad \mathbf{J_4^1} = (-((\xi_5^{5\,2} + 1)(\xi_4^2 - \xi_3^1) - (\xi_4^2 - \xi_3^2)\xi_3^2 - (\xi_4^2 -$ $\boldsymbol{\xi}_{5}^{6}(\boldsymbol{\xi}_{4}^{2}\boldsymbol{\xi}_{3}^{1}))/(\boldsymbol{\xi}_{6}^{6}\boldsymbol{\xi}_{3}^{2}); \quad \boldsymbol{J}_{1}^{3} = (-(\boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{5}^{4}\boldsymbol{\xi}_{4}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{1}^{2} - \boldsymbol{\xi}_{6}^{6}\boldsymbol{\xi}_{5}^{5}\boldsymbol{\xi}_{4}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{1}^{2}\boldsymbol{\xi}_{3}^{1} - \boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{4}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{1}^{2}\boldsymbol{\xi}_{1}^{1} + \boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{4}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{1}^{1}^{2} + \boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{4}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{1}^{2}\boldsymbol{\xi}_{3}^{1} + \boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{4}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{1}^{2}\boldsymbol{\xi}_{1}^{1} + \boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{4}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{1}^{2}\boldsymbol{\xi}_{1}^{2} + \boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{4}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{1}^{2}\boldsymbol{\xi}_{1}^{2} + \boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{4}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{1}^{2}\boldsymbol{\xi}_{5}^{2}\boldsymbol{\xi}_{5}^{2}\boldsymbol{\xi}_{1}^{2}\boldsymbol{\xi}_{1}^{2} + \boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{4}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{1}^{2}\boldsymbol{\xi}_{1}^{2} + \boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{4}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{1}^{2}\boldsymbol{\xi}_{1}^{2}\boldsymbol{\xi}_{1}^{2} + \boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{4}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{1}^{2}\boldsymbol{\xi}_{1}^{2} + \boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{4}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{1}^{2}\boldsymbol{\xi}_{3}^{2} + \boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{4}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{1}^{2}\boldsymbol{\xi}_{3}^{2} + \boldsymbol{\xi}_{5}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{1}^{2} + \boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{5}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{1}^{2} + \boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{5}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{1}^{2} + \boldsymbol{\xi}_{5}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{1}^{2}\boldsymbol{\xi}_{1}^{2} + \boldsymbol{\xi}_{5}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{1}^{2} + \boldsymbol{\xi}_{5}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{1}^{2$ $\xi_{5}^{5}^{2}\xi_{4}^{2}\xi_{1}^{2}^{2} + \xi_{5}^{5}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{2}^{2}\xi_{1}^{2} + \xi_{5}^{5}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}\xi_{1}^{1} + \xi_{5}^{5}^{2}\xi_{4}^{2}\xi_{1}^{2}\xi_{3}^{2} - \xi_{5}^{5}^{2}\xi_{3}^{2}\xi_{2}^{2}\xi_{3}^{2} - \xi_{5}^{5}\xi_{3}^{2}\xi_{1}^{2}\xi_{3}^{2} + \xi_{1}^{2}^{2}\xi_{1}^{2}\xi_{2}^{2}\xi_{1}^{2} + \xi_{4}^{2}\xi_{3}^{2}\xi_{2}^{2}\xi_{1}^{2} + \xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2} + \xi_{4}^{2}\xi_{3}^$ $\xi_{3}^{2}\xi_{5}^{2}\xi_{1}^{2} - \xi_{3}^{2}\xi_{1}^{2}\xi_{1}^{3}\xi_{1}^{4}))/((\xi_{5}^{2}+1)(\xi_{4}^{2}-\xi_{3}^{1})\xi_{3}^{2}^{2}); \quad \mathbf{J_{3}^{2}} = (-(\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{2}^{2}\xi_{5}^{2}\xi_{1}^{2}\xi_{5}^{2}\xi_{1}^{2}\xi_{3}^{2}\xi_{1}^{2} - \xi_{5}^{2}\xi_{5}^{2}\xi_{1}^{2}\xi_{5}^{2}\xi_{1}^{2}-\xi_{5}^{2}\xi_{5}^{2}\xi_{1}^{2}\xi_{5}^{2}\xi_{1}^{2}-\xi_{5}^{2}\xi_{5}^{2}\xi_{1}^{2}\xi_{5}^{2}\xi_{1}^{2}\xi_{5}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{5}^{2}\xi_{1}^{2}\xi_{5}^{2}\xi_{1}^{2}\xi_{5}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{5}^{2}\xi_{1}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{1}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^$ $\xi_{5}^{62}\xi_{5}^{62}\xi_{3}^{22}\xi_{3}^{21}\xi_{1}^{1} + \xi_{5}^{62}\xi_{5}^{62}\xi_{3}^{2}\xi_{3}^{21}\xi_{3}^{12} - \xi_{5}^{62}\xi_{4}^{22}\xi_{3}^{22}\xi_{5}^{21} - \xi_{5}^{62}\xi_{4}^{22}\xi_{3}^{22}\xi_{1}^{12} + \xi_{5}^{62}\xi_{4}^{22}\xi_{5}^{22}\xi_{1}^{2}\xi_{3}^{1} + 2\xi_{5}^{62}\xi_{4}^{22}\xi_{3}^{22}\xi_{3}^{1}\xi_{1}^{1} - \xi_{5}^{62}\xi_{4}^{22}\xi_{3}^{22}\xi_{3}^{1} + \xi_{5}^{62}\xi_{4}^{22}\xi_{3}^{22}\xi_{3}^{1} + 2\xi_{5}^{62}\xi_{4}^{22}\xi_{3}^{22}\xi_{3}^{1}\xi_{1}^{1} - \xi_{5}^{62}\xi_{4}^{22}\xi_{3}^{22}\xi_{3}^{1} + \xi_{5}^{62}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi_{5}^{22}\xi$ $\xi_5^{62}\xi_4^2\xi_3^{22}\xi_2^2\xi_3^1\xi_1^1 \ - \ \xi_5^{62}\xi_4^2\xi_3^{22}\xi_3^1 \ - \ \xi_5^{62}\xi_4^2\xi_3^2\xi_2^2\xi_1^2\xi_3^1 \ + \ \xi_5^6\xi_5^53\xi_4^2\xi_3^2\xi_1^2 \ - \ 2\xi_5^6\xi_5^53\xi_4^2\xi_3^2\xi_1^2\xi_3^1 \ + \ \xi_5^6\xi_5^53\xi_3^2\xi_1^2\xi_3^1 \ - \ \xi_5^6\xi_5^5\xi_4^2\xi_3^2\xi_1^2 \ - \ \xi_5^6\xi_5^5\xi_4^2\xi_3^2\xi_1^2\xi_3^2 \ + \ \xi_5^6\xi_5^5\xi_3^2\xi_1^2\xi_3^2 \ + \ \xi_5^6\xi_5^2\xi_1^2\xi_3^2 \ + \ \xi_5^6\xi_1^2\xi_3^2 \ + \ \xi_5^6\xi_1^2\xi_1^2\xi_3^2 \ + \ \xi_5^6\xi_1^2\xi_1^2\xi_3^2 \ + \ \xi_$ $\xi_{5}^{6}\xi_{5}^{6}\xi_{3}^{2}\xi_{2}^{2}\xi_{3}^{1} - \xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{2}\xi_{3}^{1} - \xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{2}\xi_{2}^{2}\xi_{1}^{2}\xi_{3}^{1}^{2} + \xi_{5}^{6}\xi_{5}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2} - 2\xi_{5}^{6}\xi_{5}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}\xi_{3}^{1} + \xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{1} - 2\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{1} + \xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi$ $2\xi_{5}^{6}\xi_{4}^{2}\xi_{1}^{2}\xi_{3}^{1}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{2}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+2\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{2}^{2}\xi_{1}^{2}\xi_{3}^{1}+2\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}\xi_{3}^{1}\xi_{1}^{1}-2\xi_{5}^{6}\xi_{4}^{2}\xi_{1}^{2}\xi_{3}^{1}-\xi_{5}^{6}\xi_{3}^{2}\xi_{2}^{2}\xi_{1}^{1}-\xi_{5}^{6}\xi_{3}^{2}\xi_{2}^{2}\xi_{1}^{1}-\xi_{5}^{6}\xi_{3}^{2}\xi_{2}^{2}\xi_{1}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+$ $\xi_5^{54} \xi_4^{22} \xi_1^{22} + 2 \xi_5^{54} \xi_4^2 \xi_1^{22} \xi_3^1 - \xi_5^{54} \xi_1^{22} \xi_3^{12} - 2 \xi_5^{52} \xi_4^{22} \xi_1^{22} + 4 \xi_5^{52} \xi_4^2 \xi_1^{22} \xi_3^1 - 2 \xi_5^{52} \xi_1^{22} \xi_3^{12} - \xi_4^{22} \xi_1^{22} + 2 \xi_4^2 \xi_1^{22} + 2 \xi_4^2 \xi_1^{22} \xi_3^{12} - \xi_4^{22} \xi_3^{12} + 2 \xi_5^{12} \xi_3^{12} - \xi_4^{12} \xi_3^{12} + 2 \xi_5^{12} \xi_3^{12} + 2 \xi_5^{12}$ $\mathbf{\xi}_{3}^{4})\xi_{5}^{5}\xi_{3}^{3}; \quad \mathbf{J}_{3}^{3} = (-(\xi_{5}^{5}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2} - \xi_{5}^{6}\xi_{2}^{2}\xi_{3}^{2}\xi_{1}^{1} + \xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2} - \xi_{5}^{5}\xi_{2}^{2}\xi_{1}^{2} + \xi_{5}^{5}^{2}\xi_{3}^{2}\xi_{2}^{2} + \xi_{5}^{5}^{2}\xi_{3}^{2}\xi_{3}^{2} - \xi_{4}^{2}\xi_{1}^{2} + \xi_{3}^{2}\xi_{2}^{2} + \xi_{1}^{2}\xi_{3}^{2})/((\xi_{5}^{5}^{2} + 1)\xi_{3}^{2});$ $\mathbf{J_{4}^{3}} = (-(\xi_{5}^{62}\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2} - \xi_{5}^{62}\xi_{4}^{22}\xi_{3}^{2}\xi_{1}^{1} + \xi_{5}^{62}\xi_{4}^{22}\xi_{1}^{2}\xi_{3}^{1} - \xi_{5}^{6}\xi_{5}^{52}\xi_{4}^{22}\xi_{1}^{2} + \xi_{5}^{6}\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}\xi_{2}^{2} - \xi_{5}^{6}\xi_{5}^{52}\xi_{2}^{2}\xi_{3}^{2}\xi_{1}^{1} + 2\xi_{5}^{6}\xi_{5}^{52}\xi_{4}^{2}\xi_{1}^{2}\xi_{3}^{1} - \xi_{5}^{6}\xi_{4}^{2}\xi_{2}^{2} + \xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{2}^{2} - \xi_{5}^{6}\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{1} + \xi_{5}^{6}\xi_{5}^{52}\xi_{4}^{2}\xi_{1}^{2}\xi_{3}^{1} - \xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{2}^{2} - \xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2} - \xi_{5}^{6}\xi_{5}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2} - \xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2} - \xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2} - \xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2} - \xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2} - \xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2} - \xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2} - \xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2} + \xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{2}\xi_{3}^{2} + \xi_{5}^{6}\xi_{5}^{2}\xi_{5}^{2}\xi_{3}^{2}\xi_{3}^{2} + \xi_{5}^{6}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}$ $\xi_5^6\xi_4^2\xi_3^2\xi_1^1 + 2\xi_5^6\xi_4^2\xi_1^2\xi_3^1 - \xi_5^5\xi_4^2\xi_1^2 + \xi_5^5^4\xi_1^2\xi_3^1 - 2\xi_5^5^2\xi_4^2\xi_1^2 + 2\xi_5^5^2\xi_1^2\xi_3^1 - \xi_4^2\xi_1^2 + \xi_1^2\xi_3^1))/((\xi_5^{52} + 1)\xi_5^6\xi_3^{22}); \quad \mathbf{J_1^4} = (-(((\xi_5^{52} + 1)\xi_1^2 - \xi_1^2)\xi_1^2 + \xi_1^2\xi_1^2 - \xi_1^2\xi_1^2 -$ $\xi_5^6 \xi_5^5 \xi_3^2)(\xi_4^2 - \xi_3^1)\xi_1^2 - ((\xi_3^2 \xi_1^{1\,2} + \xi_3^2 - \xi_1^2 \xi_3^1 \xi_1^1)\xi_3^2 - (\xi_3^2 \xi_1^1 - \xi_1^2 \xi_3^1)\xi_4^2 \xi_1^2)\xi_5^6)) / ((\xi_5^{5\,2} + 1)(\xi_4^2 - \xi_3^1)\xi_3^2); \quad \mathbf{J_2^4} = (-(((\xi_5^{5\,2} + 1)\xi_1^2 - \xi_5^6 \xi_5^5 \xi_3^2)(\xi_4^2 - \xi_3^2 \xi_1^2 - \xi_3^2 \xi_3^2)) / ((\xi_5^{5\,2} + 1)(\xi_4^2 - \xi_3^3)\xi_3^2); \quad \mathbf{J_2^4} = (-(((\xi_5^{5\,2} + 1)\xi_1^2 - \xi_5^2 \xi_5^5 \xi_3^2)(\xi_4^2 - \xi_3^2 \xi_3^2 - \xi_3^2 \xi_3^2)) / ((\xi_5^{5\,2} + 1)(\xi_4^2 - \xi_3^3)\xi_3^2); \quad \mathbf{J_2^4} = (-(((\xi_5^{5\,2} + 1)\xi_3^2 - \xi_3^2 \xi_3^2 + \xi_3^2 \xi_3^2)(\xi_4^2 - \xi_3^2 \xi_3^2 + \xi_$ $\xi_{3}^{1})(\xi_{3}^{2}\xi_{2}^{2}+\xi_{3}^{2}\xi_{1}^{1}-\xi_{1}^{2}\xi_{3}^{1})-((\xi_{3}^{2}\xi_{2}^{2}\xi_{1}^{1}-\xi_{3}^{2}-\xi_{2}^{2}\xi_{1}^{2}\xi_{3}^{1})\xi_{3}^{2}\xi_{3}^{1}-(\xi_{3}^{2}\xi_{2}^{2}+\xi_{3}^{2}\xi_{1}^{1}-\xi_{1}^{2}\xi_{3}^{1})(\xi_{3}^{2}\xi_{1}^{1}-\xi_{1}^{2}\xi_{3}^{1})\xi_{3}^{2}(\xi_{3}^{1}+\xi_{1}^{2}\xi_{3}^{1})\xi_{3}^{2}\xi_{3}^{1})$ $\mathbf{J_{4}^{4}} = -((\xi_{3}^{2}\xi_{1}^{1} - \xi_{1}^{2}\xi_{3}^{1} - \xi_{5}^{5}\xi_{3}^{2})\xi_{5}^{6} + (\xi_{5}^{5}^{2} + 1)\xi_{1}^{2})/(\xi_{5}^{5}^{2} + 1); \quad \mathbf{J_{4}^{4}} = (-((\xi_{3}^{2}\xi_{1}^{1} - \xi_{1}^{2}\xi_{3}^{1} - \xi_{5}^{5}\xi_{3}^{2})\xi_{5}^{6}\xi_{4}^{2} + (\xi_{3}^{2}\xi_{1}^{1} - \xi_{1}^{2}\xi_{3}^{1} + \xi_{4}^{2}\xi_{1}^{2})(\xi_{5}^{5}^{2} + \xi_{5}^{2})\xi_{5}^{2} + (\xi_{3}^{2}\xi_{1}^{1} - \xi_{1}^{2}\xi_{3}^{1} + \xi_{2}^{2}\xi_{3}^{2})(\xi_{5}^{2} + \xi_{5}^{2})\xi_{5}^{2} + (\xi_{3}^{2}\xi_{1}^{1} - \xi_{1}^{2}\xi_{3}^{2} + \xi_{2}^{2}\xi_{3}^{2})(\xi_{5}^{2} + \xi_{5}^{2})\xi_{5}^{2} + (\xi_{3}^{2}\xi_{1}^{1} - \xi_{1}^{2}\xi_{3}^{2} + \xi_{2}^{2}\xi_{3}^{2})(\xi_{5}^{2} + \xi_{5}^{2})\xi_{5}^{2} + (\xi_{3}^{2}\xi_{1}^{2} + \xi_{2}^{2}\xi_{3}^{2} + \xi_{3}^{2}\xi_{3}^{2})(\xi_{5}^{2} + \xi_{5}^{2})(\xi_{5}^{2} + \xi_{5}^{2} + \xi_{5}^{2} + \xi_{5}^{2})(\xi_{5}^{2} + \xi_{5}^{2} + \xi_{5}^{2} + \xi_{5}^{2})(\xi_{5}^{2} + \xi_{5}^{2} + \xi_{5}^{2} + \xi_{5}^{2})(\xi_{5}^{2} + \xi_{5}^{2} + \xi$ $1)))/((\xi_{5}^{5\,2}\,+\,1)\xi_{3}^{2}); \quad \mathbf{J_{1}^{5}} \,=\, (((\xi_{5}^{5}\,-\,\xi_{1}^{1})\xi_{1}^{6}\,-\,\xi_{2}^{6}\xi_{1}^{2})(\xi_{5}^{5\,2}\,+\,1)(\xi_{4}^{2}\,-\,\xi_{3}^{1})\xi_{3}^{2\,2}\,+\,(\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}\,-\,2\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}+\,\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}\,-\,2\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}+\,\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}\,-\,2\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}+\,\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}\,-\,2\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}+\,\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}+\,\xi_{5}^{6}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2$ $\xi_{5}^{6}\xi_{4}^{22}\xi_{3}^{2}\xi_{1}^{2}\xi_{1}^{1}+\xi_{5}^{6}\xi_{4}^{22}\xi_{1}^{22}\xi_{3}^{1}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{22}\xi_{1}^{12}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{22}-\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}\xi_{1}^{1}-\xi_{5}^{52}\xi_{4}^{22}\xi_{1}^{22}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{52}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{52}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{52}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{52}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{52}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{52}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{52}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{52}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{52}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{52}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{52}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{52}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{52}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{52}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{52}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{52}\xi_{5}^{2}\xi_{5}^{2}+\xi_{$ $\xi_{5}^{5^{2}}\xi_{3}^{2}\xi_{2}^{2}\xi_{1}^{2}\xi_{3}^{1} - \xi_{5}^{5^{2}}\xi_{3}^{2}\xi_{1}^{2}\xi_{3}^{1}\xi_{1}^{1} - \xi_{5}^{5^{2}}\xi_{1}^{2}^{2}\xi_{3}^{1}^{2} - \xi_{4}^{2}^{2}\xi_{1}^{2}^{2} + \xi_{4}^{2}\xi_{3}^{2}\xi_{2}^{2}\xi_{1}^{2} + \xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}\xi_{1}^{1} + 2\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2} + \xi_{3}^{2}\xi_{2}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{1}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{1}^{2}\xi_{3}^{1} - \xi_{1}^{2}\xi_{3}^{2}\xi_{3}^{2} + \xi_{4}^{2}\xi_{3}^{2}\xi_{2}^{2}\xi_{3}^{1} + 2\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2} - \xi_{3}^{2}\xi_{2}^{2}\xi_{3}^{2}\xi_{3}^{2} + \xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2} + \xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2} + \xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2} + \xi_{4}^{2}\xi_{3}^{2}\xi_{3$ $((\xi_3^2\xi_1^{1\,2}+\xi_3^2-\xi_1^2\xi_3^1\xi_1^1)\xi_3^2-(\xi_3^2\xi_1^1-\xi_1^2\xi_3^1)\xi_4^2\xi_1^2)\xi_5^6\xi_4^6\xi_3^2+((\xi_5^{5\,2}+1)\xi_1^2-\xi_5^6\xi_5^5\xi_3^2)(\xi_4^6\xi_3^2-\xi_3^6\xi_3^1)(\xi_4^2-\xi_3^1)\xi_1^2)/((\xi_5^{5\,2}+1)(\xi_4^2-\xi_3^1)\xi_5^2\xi_3^2);$ $\mathbf{J_{2}^{5}} \ = \ ((((\xi_{5}^{52} + 1)(\xi_{4}^{2} - \xi_{3}^{1})\xi_{1}^{6}\xi_{1}^{2} + \xi_{5}^{6}\xi_{2}^{6}\xi_{5}^{5}\xi_{3}^{2} - \xi_{5}^{6}\xi_{2}^{6}\xi_{3}^{2}\xi_{2}^{2})(\xi_{5}^{52} + 1)(\xi_{4}^{2} - \xi_{3}^{1}) \\ - \ (\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{2}^{2} + \xi_{5}^{6}\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{1} - \xi_{5}^{6}\xi_{5}^{5}\xi_{3}^{2}\xi_{2}^{2}\xi_{3}^{1} - \xi_{5}^{6}\xi_{5}^{6}\xi_{3}^{2}\xi_{2}^{2})(\xi_{5}^{52} + 1)(\xi_{4}^{2} - \xi_{3}^{1}) \\ - \ (\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{2}^{2} + \xi_{5}^{6}\xi_{5}^{6}\xi_{3}^{2}\xi_{3}^{2})(\xi_{5}^{52} + 1)(\xi_{4}^{2} - \xi_{3}^{1}) \\ - \ (\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{2}^{2} + \xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{2}\xi_{3}^{2} + \xi_{5}^{6}\xi_{5}^{6}\xi_{3}^{2}\xi_{3}^{2})(\xi_{5}^{52} + 1)(\xi_{4}^{2} - \xi_{3}^{1}) \\ - \ (\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{5}^{2} + \xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{2})(\xi_{5}^{6}\xi_{5}^{2} + \xi_{5}^{6}\xi_{5}^{2}\xi_{5}^{2}\xi_{3}^{2})(\xi_{5}^{6}\xi_{5}^{2})(\xi_{5}^{6}\xi_{5}^{2})(\xi_{5}^{6}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2})(\xi_{5}^{6}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2})(\xi_{5}^{6}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2})(\xi_{5}^{6}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi$ $\xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{1}\xi_{1}^{1} - \xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{2}^{2}\xi_{1}^{1} - \xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{1} + \xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}\xi_{3}^{1} + 2\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}\xi_{3}^{1} - \xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{2}^{2}\xi_{3}^{1} + \xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{1} - \xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2} + \xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2} + \xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2} + \xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2} + \xi_{5}^{6}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2} + \xi_{5}^{6}\xi_{3}^{2}\xi_{2}^{2}\xi_{3}^{2}\xi_{3}^{2} + \xi_{5}^{6}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^$ $\xi_{5}^{5} + \xi_{4}^{2} \xi_{3}^{2} \xi_{2}^{2} \xi_{1}^{2} - \xi_{5}^{5} + \xi_{3}^{2} \xi_{1}^{2} \xi_{3}^{2} \xi_{1}^{2} \xi_{1}^{4} + \xi_{5}^{5} \xi_{3}^{2} \xi_{1}^{2} \xi_{3}^{4} + \xi_{5}^{5} \xi_{3}^{2} \xi_{1}^{2} \xi_{3}^{4} \xi_{1}^{4} - \xi_{4}^{2} \xi_{3}^{2} \xi_{1}^{2} \xi_{1}^{2} - \xi_{4}^{2} \xi_{3}^{2} \xi_{1}^{2} \xi_{1}^{2} + \xi_{3}^{2} \xi_{2}^{2} \xi_{1}^{2} \xi_{3}^{4} + \xi_{5}^{2} \xi_{5}^{2} \xi_{5}^{2} \xi_{1}^{2} \xi_{3}^{2} + \xi_{5}^{2} \xi_{5$ $2\xi_{0}^{5}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2}+\xi_{0}^{5}\xi_{5}^{5}\xi_{3}^{2}\xi_{3}^{2}+\xi_{0}^{5}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{3}^{2}\xi_{2}^{2}-\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{2}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{5}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{5}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{5}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{5}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{5}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{5}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{5}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{5}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{5}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{5}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{5}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{5}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{5}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{5}^{2}+\xi_{0}^{5}\xi_{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{5}^{2}+\xi_{0}^{5}\xi_{5}\xi_{5}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}+\xi_{0}^{5}\xi_{5}\xi_{5}\xi_{5}\xi_{5}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}+\xi_{0}^{5}\xi_{5}\xi_{5}\xi_{5}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}+\xi_{0}^{5}\xi_{5}\xi_{5}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{$ $\xi_{5}^{6}\xi_{4}^{22}\xi_{3}^{2}\xi_{2}^{2}\xi_{1}^{3} + 2\xi_{5}^{6}\xi_{4}^{22}\xi_{3}^{2}\xi_{1}^{2}\xi_{1}^{3}\xi_{1}^{1} - \xi_{5}^{6}\xi_{4}^{22}\xi_{1}^{22}\xi_{1}^{32} + \xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{22}\xi_{2}^{2}\xi_{3}^{1}\xi_{1}^{1} - \xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{22}\xi_{1}^{3} - \xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{22}\xi_{1}^{32} - \xi_{5}^{53}\xi_{4}^{22}\xi_{3}^{2}\xi_{1}^{2} + 2\xi_{5}^{53}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}\xi_{3}^{1} - \xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{22}\xi_{1}^{2}\xi_{1}^{1} - \xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}\xi_{1}^{1} - \xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}\xi_{1}^{2} - \xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2} - \xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{$ $\xi_5^{53} \xi_3^{23} \xi_1^{2} \xi_3^{12} - \xi_5^{52} \xi_4^{22} \xi_3^{2} \xi_2^{2} \xi_1^{2} - \xi_5^{52} \xi_4^{22} \xi_3^{2} \xi_1^{2} \xi_1^{1} + \xi_5^{52} \xi_4^{22} \xi_1^{22} \xi_1^{1} + \xi_5^{52} \xi_4^{22} \xi_1^{22} \xi_1^{2} + \xi_5^{52} \xi_4^{2} \xi_3^{22} + \xi_5^{52} \xi_4^{2} \xi_3^{22} + \xi_5^{52} \xi_4^{2} \xi_3^{22} \xi_1^{22} + \xi_5^{52} \xi_4^{22} \xi_3^{22} + \xi_5^{52} \xi_4^{22} \xi_3^{22} \xi_1^{22} + \xi_5^{52} \xi_4^{22} \xi_3^{22} + \xi_5^{52} \xi_4^{22} \xi_3^{22} \xi_1^{22} + \xi_5^{52} \xi_4^{22} \xi_1^{22} \xi_1^{22} + \xi_5^{52} \xi_4^{22} \xi_1^{22} \xi_1^{22} + \xi_5^{52} \xi_1^{22} \xi_1^{22} \xi_1^{22} + \xi_5^{52} \xi_1^{22} \xi_1^{22} \xi_1^{22} + \xi_5^{52} \xi_1^{22} \xi_1^$ $\xi_{5}^{5}^{2}\xi_{3}^{2}\xi_{2}^{2}\xi_{3}^{1} - \xi_{5}^{5}^{2}\xi_{3}^{2}\xi_{3}^{1} - \xi_{5}^{5}\xi_{3}^{2}\xi_{5}^{2}\xi_{1}^{2}\xi_{3}^{1} + \xi_{5}^{5}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{1} + \xi_{5}^{5}\xi_{3}^{2}\xi_{3}^{2}\xi_{1}^{1} - \xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{1} + 2\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}\xi_{1}^{2} - \xi_{5}^{5}\xi_{3}^{2}\xi_{5}^{2}\xi_{1}^{2} - \xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}\xi_{1}^{2} - \xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}\xi_{1}^{2} + \xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2} + \xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}\xi_{1}^{2} + \xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}\xi_{1}^{2} + \xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}\xi_{1}^{2} + \xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}\xi_{1}^{2} + \xi_{5}^{2}\xi_{5}^{2}\xi_{1}^{2}\xi_{1}^{2} + \xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{1}^{2}\xi_{1}^{2} + \xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5$ $\xi_{4}^{2}\xi_{1}^{2}\xi_{3}^{1}+\xi_{4}^{2}\xi_{3}^{2}\xi_{2}^{2}+\xi_{4}^{2}\xi_{3}^{2}^{2}+\xi_{4}^{2}\xi_{3}^{2}\xi_{2}^{2}\xi_{1}^{2}\xi_{3}^{1}-\xi_{4}^{2}\xi_{1}^{2}\xi_{3}^{1}^{2}-\xi_{3}^{2}\xi_{2}^{2}\xi_{3}^{1}-\xi_{3}^{2}\xi_{2}^{2}\xi_{1}^{2}\xi_{3}^{1}+\xi_{3}^{2}\xi_{1}^{2}\xi_{3}^{1}\xi_{1}^{1})\xi_{5}^{6}\xi_{3}^{6}+(\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{1}-\xi_{3}^{2}\xi_{1}^{2}\xi_{3}^{1})\xi_{5}^{6}\xi_{3}^{6}+(\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{3}^{2}\xi_{1}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{1}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{1}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{1}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+$ $\xi_{4}^{2}\xi_{1}^{2}\xi_{3}^{1}-\xi_{3}^{2}\xi_{2}^{2}\xi_{3}^{1}-(\xi_{4}^{2}-\xi_{3}^{1})\xi_{5}^{5}\xi_{3}^{2})(\xi_{5}^{52}+1)(\xi_{4}^{2}-\xi_{3}^{1})\xi_{5}^{6}\xi_{1}^{6}\xi_{3}^{2}-((\xi_{5}^{52}+1)\xi_{1}^{2}-\xi_{5}^{6}\xi_{5}^{5}\xi_{3}^{2})(\xi_{5}^{6}\xi_{4}^{6}\xi_{3}^{2}\xi_{1}^{2}+\xi_{3}^{1}-\xi_{5}^{6}\xi_{3}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{3}^{6}\xi_{5}^{5}\xi_{3}^{2}\xi_{3}^{1}+\xi_{5}^{6}\xi_{3}^{6}\xi_{5}^{6}\xi_{3}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^{2}+\xi_{5}^{1}\xi_{5}^$ $\xi_{5}^{6}\xi_{3}^{6}\xi_{2}^{2}\xi_{3}^{2}\xi_{1}^{1} - \xi_{5}^{6}\xi_{3}^{6}\xi_{4}^{2}\xi_{1}^{2}\xi_{3}^{1} - \xi_{5}^{6}\xi_{3}^{6}\xi_{3}^{2}\xi_{1}^{1} + \xi_{3}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{1}^{2} - \xi_{3}^{6}\xi_{5}^{5}\xi_{1}^{2}\xi_{1}^{1} + \xi_{3}^{6}\xi_{5}^{6}\xi_{1}^{2}\xi_{1}^{1} + \xi_{3}^{6}\xi_{5}^{6}\xi_{1}^{6}\xi_{1}^{1} + \xi_{3}^{6}\xi_{5}^{6}\xi_{1}^{6}\xi_{1}^{1} + \xi_{3}^{6}\xi_{5}^{6}\xi_{1}^{6}\xi_{1}^{1}$ $\mathbf{J_{3}^{5}} = (-(((\xi_{2}^{6}\xi_{3}^{2} + \xi_{1}^{6}\xi_{3}^{1} - \xi_{3}^{6}\xi_{5}^{5} - \xi_{4}^{6}\xi_{1}^{2})(\xi_{5}^{5}^{2} + 1) - (\xi_{3}^{2}\xi_{1}^{1} - \xi_{1}^{2}\xi_{3}^{1} - \xi_{5}^{2}\xi_{3}^{2})\xi_{5}^{6}\xi_{4}^{6})\xi_{3}^{2} + (\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{1} - \xi_{4}^{2}\xi_{1}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{2}^{2}\xi_{3}^{1} - (\xi_{4}^{2}\xi_{3}^{1}\xi_{5}^{2}\xi_{5}^{2})\xi_{5}^{6}\xi_{3}^{6} - (\xi_{4}^{2}\xi_{3}^{1}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_$ $(((\xi_5^{5^2}+1)\xi_2^2+(\xi_5^5-\xi_2^2)\xi_5^6\xi_3^1)\xi_3^2-(\xi_5^{5^2}+1)(\xi_4^2-\xi_3^1)\xi_1^2)\xi_3^6))/((\xi_5^{5^2}+1)\xi_5^6\xi_3^2); \quad \mathbf{J_4^5} = (-(\xi_5^{6^2}\xi_4^6\xi_5^5\xi_4^2\xi_3^2^2-\xi_5^6\xi_4^2\xi_2^2\xi_1^2+\xi_5^2\xi_4^2\xi_3^2)\xi_3^2)$ $\xi_5^{62} \xi_4^{62} \xi_4^{22} \xi_3^{21} \xi_3^{1} - \xi_5^{62} \xi_3^{65} \xi_4^{22} \xi_3^{2} + \xi_5^{62} \xi_3^{62} \xi_4^{22} \xi_3^{21} - \xi_5^{62} \xi_3^{62} \xi_4^{22} \xi_3^{1} - \xi_5^{62} \xi_3^{62} \xi_4^{22} \xi_3^{1} - \xi_5^{62} \xi_3^{62} \xi_3^{12} \xi_3^{1} - \xi_5^{62} \xi_3^{12} \xi_3^{12} + \xi_5^{6$ $\xi_{5}^{6}\xi_{4}^{6}\xi_{5}^{5}\xi_{3}^{2} - \xi_{5}^{6}\xi_{4}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2} - \xi_{5}^{6}\xi_{4}^{6}\xi_{3}^{2}\xi_{1}^{2} + \xi_{5}^{6}\xi_{3}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2} - \xi_{5}^{6}\xi_{5}^{6}\xi_{2}^{5}\xi_{4}^{2}\xi_{3}^{2} + \xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2} + \xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{2} + \xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{2} + \xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{2} + \xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{2} + \xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{2} + \xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{2} + \xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{2} + \xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{2} + \xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{2} + \xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{2}\xi_{5}^{2} + \xi_{5}^{6}\xi_{5}^{2}\xi_{5}^{2} + \xi_{5}^{6}\xi_{5}^{2}\xi_{5}^{2} + \xi_{5}^{$ $\xi_{5}^{6}\xi_{3}^{2}\xi_{3}^{2}\xi_{2}^{2} + \xi_{5}^{6}\xi_{3}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{1} - 2\xi_{5}^{6}\xi_{5}^{6}\xi_{4}^{2}\xi_{1}^{2} + \xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2} + \xi_{5}^{6}\xi_{5}^{6}\xi_{2}^{2}\xi_{3}^{2} + \xi_{5}^{6}\xi_{1}^{6}\xi_{2}^{2}\xi_{3}^{2}\xi_{1}^{1} + \xi_{5}^{6}\xi_{1}^{6}\xi_{2}^{2}\xi_{3}^{2}\xi_{1}^{2} + \xi_{5}^{6}\xi_{1}^{6}\xi_{1}^{2}\xi_{1}^{2}\xi_{1}^{2} + \xi_{5}^{6}\xi_{1}^{6}\xi_{1}^{2}\xi_{1}^{2} + \xi_{5}^{6}\xi_{1}^$ $2\xi_3^6\xi_5^5\xi_4^2\xi_1^2 - 2\xi_3^6\xi_5^5\xi_1^2\xi_3^1 + \xi_3^6\xi_4^2\xi_1^2 - \xi_3^6\xi_1^2\xi_3^1 - \xi_1^6\xi_5^6\xi_4^2\xi_3^2 + \xi_1^6\xi_5^6\xi_3^2\xi_3^3 + \xi_1^6\xi_2^5\xi_3^2\xi_3^2 - \xi_1^6\xi_4^2\xi_3^2 + \xi_1^6\xi_3^2\xi_3^2))/((\xi_5^5 + 1)\xi_5^6\xi_3^2);$ and the parameters are subject to the condition

$$\xi_1^2 \xi_3^2 \xi_5^6 (\xi_3^1 - \xi_4^2) \neq 0. \tag{24}$$

Now the automorphism group of $\mathcal{G}_{6,1}$ is comprised of the matrices

$$\Phi = \begin{pmatrix}
b_1^1 & b_2^1 & 0 & 0 & 0 & 0 & 0 \\
b_1^2 & b_2^2 & 0 & 0 & 0 & 0 & 0 \\
b_1^3 & b_2^3 & b_1^1 u & -b_2^1 u & 0 & 0 & 0 \\
b_1^4 & b_2^4 & -b_1^2 u & b_2^2 u & 0 & 0 & 0 \\
b_1^5 & b_2^5 & b_3^5 & b_4^5 & b_2^2 b_1^1 - b_1^2 b_2^1 & 0 & 0 \\
b_1^6 & b_2^6 & b_3^6 & b_4^6 & b_2^3 b_1^2 - b_1^3 b_2^2 - b_1^4 b_2^1 + b_2^4 b_1^1 & (b_2^2 b_1^1 - b_1^2 b_2^1) u
\end{pmatrix}$$
(25)

where $u \in \mathbb{R}$, $u \neq 0$ and $b_2^2 b_1^1 - b_1^2 b_2^1 \neq 0$. Taking suitable values for u and the b_j^i 's, equivalence by Φ leads to the case $\xi_1^1 = \xi_3^1 = \xi_2^2 = \xi_5^5 = \xi_1^6 = \xi_2^6 = \xi_3^6 = \xi_4^6 = 0$ and $\xi_1^2 = \xi_3^2 = \xi_5^6 = 1, \xi_4^2 = \alpha \neq 0$:

$$J_{\alpha} = \begin{pmatrix} 0 & -\alpha & 0 & -\alpha & 0 & 0\\ 1 & 0 & 1 & \alpha & 0 & 0\\ \alpha - 1 & \alpha - 1 & \alpha & (\alpha + 1)\alpha & 0 & 0\\ -(\alpha - 1)/\alpha & 0 & -1 & -\alpha & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & -1\\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \qquad (\alpha \neq 0).$$
 (26)

The J_{α} 's corresponding to distinct α 's are not equivalent.

Commutation relations of $\mathfrak{m}: [\tilde{x}_1, \tilde{x}_2] = (1 - \alpha)\tilde{x}_5; [\tilde{x}_1, \tilde{x}_3] = -\tilde{x}_6; [\tilde{x}_1, \tilde{x}_4] = -\alpha(\tilde{x}_5 + \tilde{x}_6); [\tilde{x}_2, \tilde{x}_3] = \alpha\tilde{x}_5; [\tilde{x}_2, \tilde{x}_4] = \alpha(\alpha\tilde{x}_5 - \tilde{x}_6); [\tilde{x}_3, \tilde{x}_4] = -\alpha\tilde{x}_5.$

6.2 Case $\xi_1^2 \neq 0, \xi_3^2 = 0, \xi_3^1 \neq \xi_4^2$.

$$J = \begin{pmatrix} -\frac{\xi_{1}^{4}\xi_{4}^{2} + \xi_{2}^{2}\xi_{1}^{2}}{\xi_{1}^{2}} & -\frac{\xi_{2}^{2}^{2} + 1 + \xi_{2}^{4}\xi_{4}^{2}}{\xi_{1}^{2}} & \boxed{\xi_{3}^{1}} & * & 0 & 0\\ \hline \xi_{1}^{2} & \boxed{\xi_{2}^{2}} & 0 & \boxed{\xi_{4}^{2}} & 0 & 0\\ * & * & -\frac{\xi_{5}^{5}\xi_{4}^{2} - \xi_{5}^{5}\xi_{3}^{1} + \xi_{2}^{2}\xi_{3}^{1}}{\xi_{4}^{2}} & * & 0 & 0\\ \hline \xi_{1}^{4} & \boxed{\xi_{2}^{4}} & -\frac{\xi_{1}^{2}\xi_{3}^{1}}{\xi_{4}^{2}} & * & 0 & 0\\ * & * & * & * & \boxed{\xi_{5}^{5}} & \frac{\xi_{4}^{2}\xi_{3}^{1}}{\xi_{4}^{2} - \xi_{3}^{1}}\\ \hline \xi_{1}^{6} & \boxed{\xi_{6}^{6}} & \boxed{\xi_{3}^{6}} & \boxed{\xi_{4}^{6}} & \frac{(\xi_{5}^{5} + 1)(\xi_{4}^{2} - \xi_{3}^{1})}{\xi_{4}^{2}\xi_{3}^{1}} & -\xi_{5}^{5} \end{pmatrix}$$

$$(27)$$

 $\begin{aligned} &\text{where } \ \mathbf{J_4^1} = (-((\xi_4^2 + \xi_3^1)\xi_2^2\xi_1^2 + \xi_1^4\xi_4^2^2 + (\xi_4^2 - \xi_3^1)\xi_5^2\xi_1^2))/\xi_1^2?; \quad \mathbf{J_3^3} = (-((\xi_4^2 - \xi_3^1)\xi_1^4\xi_2^2 - \xi_2^4\xi_4^2\xi_1^2 - (\xi_4^2 - \xi_3^1)\xi_5^5\xi_1^4))/(\xi_1^2\xi_3^1); \\ &\mathbf{J_3^3} = (((\xi_4^2 + \xi_3^1)\xi_2^4\xi_2^2\xi_1^2 - (\xi_2^2^2 + 1)\xi_1^4\xi_4^2 + (\xi_4^2 - \xi_3^1)\xi_5^5\xi_2^4\xi_1^2)/(\xi_1^2\xi_3^1); \quad \mathbf{J_3^4} = ((((\xi_4^2 - \xi_3^1)\xi_5^5\xi_2^2 + (\xi_2^2^2 + 1)\xi_4^2\xi_4^2\xi_4^2)(\xi_4^2 - \xi_3^2)\xi_1^2\xi_1^2 + (\xi_4^2\xi_3^2)(\xi_1^2 - \xi_3^2))/(\xi_1^2\xi_3^2); \quad \mathbf{J_3^4} = ((((\xi_4^2 - \xi_3^1)\xi_5^5\xi_2^2 + (\xi_2^2^2 + 1)\xi_4^2 + \xi_4^2\xi_4^2)(\xi_4^2 - \xi_3^2))/(\xi_4^2\xi_1^2\xi_3^2); \quad \mathbf{J_4^4} = (\xi_1^4\xi_4^2^2 + \xi_2^2\xi_1^2\xi_3^2 + (\xi_4^2 - \xi_3^1)\xi_5^2\xi_1^2)/(\xi_4^2\xi_1^2); \\ &\mathbf{J_5^4} = (-(\xi_4^4\xi_1^4\xi_1^2\xi_3^2 + \xi_3^4\xi_2^2 + \xi_3^4\xi_4^2 + \xi_3^2\xi_3^2 + \xi_4^4\xi_4^2)(\xi_5^2 - \xi_3^2)/(\xi_4^2\xi_1^2); \\ &\mathbf{J_5^4} = (-(\xi_4^4\xi_1^4\xi_1^2\xi_3^2 + \xi_3^4\xi_2^2 + \xi_3^4\xi_4^2 + \xi_3^2\xi_1^2 + \xi_4^4\xi_4^2)(\xi_5^2 - \xi_3^2\xi_1^2 + \xi_4^2\xi_2^2 + \xi_3^2\xi_1^2 + \xi_3^2\xi_1^2 + \xi_4^2\xi_2^2\xi_1^2 + \xi_4^2\xi_2^2\xi_1^2$

$$\xi_1^2 \xi_4^2 \xi_3^1 (\xi_3^1 - \xi_4^2) \neq 0. \tag{28}$$

Taking u=1 and suitable values for the b_j^i 's in (25), equivalence by Φ switches to the case 6.5 $\xi_1^2=\xi_3^2=0$ below.

6.3 Case $\xi_1^2 \neq 0, \xi_3^1 = \xi_4^2$.

$$J = \begin{pmatrix} \begin{bmatrix} \xi_1^1 \\ \xi_1^1 \end{bmatrix} & \begin{bmatrix} \xi_2^1 \end{bmatrix} & 0 & 0 & 0 & 0 \\ -\frac{\xi_1^{1^2}+1}{\xi_2^1} & -\xi_1^1 & 0 & 0 & 0 & 0 \\ \xi_2^4 & \frac{(2\xi_2^4\xi_1^1-\xi_1^4\xi_2^1)\xi_2^1}{\xi_1^{1^2}+1} & \xi_1^1 & -\xi_2^1 & 0 & 0 \\ \xi_1^4 & \begin{bmatrix} \xi_2^4 \end{bmatrix} & \frac{\xi_1^{1^2}+1}{\xi_2^1} & -\xi_1^1 & 0 & 0 \\ * & * & \frac{(\xi_5^5-\xi_1^1)\xi_3^6\xi_2^1-(\xi_1^{1^2}+1)\xi_4^6}{\xi_5^6\xi_2^1} & \frac{\xi_4^6\xi_5^5+\xi_4^6\xi_1^1+\xi_3^6\xi_2^1}{\xi_5^6} & \frac{\xi_5^5}{\xi_5^6} & -\frac{\xi_5^{5^2}+1}{\xi_5^6} \\ \xi_1^6 & \xi_2^6 & \frac{\xi_3^6}{\xi_3^6} & \frac{\xi_3^6}{\xi_3^6} & \frac{\xi_3^6}{\xi_3^6} & \frac{\xi_3^6}{\xi_3^6} & -\xi_5^5 \end{pmatrix}$$

$$(29)$$

 $\begin{array}{ll} \text{where } \mathbf{J_1^5} = ((\xi_5^5 - \xi_1^1)\xi_1^6\xi_2^1 + (\xi_1^{1^2} + 1)\xi_2^6 - \xi_3^6\xi_2^4\xi_2^1 - \xi_4^6\xi_1^4\xi_2^1)/(\xi_5^6\xi_2^1); \quad \mathbf{J_2^5} = (-((2\xi_2^4\xi_1^1 - \xi_1^4\xi_2^1)\xi_3^6\xi_2^1 + (\xi_1^{1^2} + 1)\xi_4^6\xi_2^4 - (\xi_2^6\xi_5^5 + \xi_2^6\xi_1^1 - \xi_1^6\xi_2^1)(\xi_1^{1^2} + 1))/((\xi_1^{1^2} + 1)\xi_5^6); \quad \text{and the parameters are subject to the condition} \\ \end{array}$

$$\xi_2^1 \xi_5^6 \neq 0. \tag{30}$$

Taking $u = \frac{\xi_5^6}{1+\xi_5^{52}}$ and suitable values for the b_j^i 's in (25), equivalence by Φ leads to the case where $\xi_1^1 = \xi_1^4 = \xi_2^4 = \xi_5^5 = \xi_1^6 = \xi_2^6 = \xi_3^6 = \xi_4^6 = 0$ and $\xi_2^1 = \xi_5^6 = 1$:

$$J = \operatorname{diag}\left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right). \tag{31}$$

J is not equivalent to any J_{α} . \mathfrak{m} is here an abelian algebra.

6.4 Case $\xi_1^2 = 0, \xi_3^2 \neq 0$.

$$J = \begin{pmatrix} \begin{bmatrix} \xi_1^1 \\ 0 \\ \xi_2^2 \end{bmatrix} & * & * & * & 0 & 0 \\ \xi_2^2 \\ -\frac{\xi_1^4 \xi_4^2}{\xi_3^2} & * & -\frac{\xi_5^6 \xi_5^5 \xi_4^2 - \xi_5^5 \xi_4^2 \xi_1^5 + \xi_5^2 \xi_2^2 + \xi_2^2}{\xi_5^5 + 1} & * & 0 & 0 \\ \begin{bmatrix} \xi_1^4 \\ \xi_1^4 \end{bmatrix} & * & \frac{(\xi_5^5 - \xi_1^1) \xi_5^6 \xi_3^2}{\xi_5^5 + 1} & -\frac{(\xi_5^5 + 1) \xi_1^1 - (\xi_5^5 - \xi_1^1) \xi_5^6 \xi_4^2}{\xi_5^5 + 1} & 0 & 0 \\ * & * & * & * & * & \xi_5^5 - \frac{\xi_5^5 + 1}{\xi_5^6} \\ \xi_1^6 \end{bmatrix} & \xi_2^6 \end{bmatrix} \qquad (32)$$

 $\begin{aligned} &\text{where } \mathbf{J}_{2}^{1} = ((\xi_{5}^{5}^{2} + 1)(\xi_{2}^{2} - \xi_{1}^{1})\xi_{1}^{4}\xi_{4}^{2} + (\xi_{5}^{5} - \xi_{2}^{2})(\xi_{1}^{1}^{2} + 1)\xi_{5}^{6}\xi_{3}^{2})/((\xi_{5}^{5}^{2} + 1)\xi_{1}^{4}\xi_{3}^{2}); \quad \mathbf{J}_{3}^{1} = ((\xi_{5}^{5}^{2} + 1)\xi_{1}^{4}\xi_{4}^{2} - (\xi_{1}^{1}^{2} + 1)\xi_{5}^{6}\xi_{3}^{2})/((\xi_{5}^{5}^{2} + 1)\xi_{1}^{4}\xi_{3}^{2}); \\ &\mathbf{J}_{4}^{1} = (-((\xi_{5}^{5}^{2} + 1)(\xi_{1}^{1}^{2} + 1)\xi_{3}^{2} - (\xi_{5}^{5}^{2} + 1)\xi_{1}^{4}\xi_{4}^{2}^{2} + (\xi_{1}^{1}^{2} + 1)\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}))/((\xi_{5}^{5}^{2} + 1)\xi_{1}^{4}\xi_{3}^{2}); \quad \mathbf{J}_{3}^{2} = (-((\xi_{2}^{2}\xi_{1}^{1} - 1 - (\xi_{2}^{2} + \xi_{1}^{1})\xi_{5}^{5})\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}))/((\xi_{5}^{5}^{2} + 1)\xi_{3}^{2}); \quad \mathbf{J}_{3}^{2} = (-(\xi_{5}^{6}\xi_{5}^{2}\xi_{4}^{2} - \xi_{5}^{6}\xi_{4}^{2}\xi_{1}^{1} + \xi_{5}^{2} - \xi_{5}^{2}\xi_{1}^{2} + \xi_{2}^{2} - \xi_{1}^{1})\xi_{3}^{2})/((\xi_{5}^{5}^{2} + 1)\xi_{3}^{2}); \\ &\mathbf{J}_{2}^{2} = (-((\xi_{2}^{2}\xi_{1}^{1} - 1 - (\xi_{2}^{2} + \xi_{1}^{1})\xi_{5}^{5})\xi_{5}^{6}\xi_{3}^{2} + (\xi_{5}^{5}^{2} + 1)\xi_{1}^{4}\xi_{4}^{2}))/((\xi_{5}^{5}^{2} + 1)\xi_{3}^{2}); \quad \mathbf{J}_{3}^{5} = (-(\xi_{6}^{4}\xi_{1}^{4}\xi_{3}^{2} - \xi_{5}^{6}\xi_{1}^{4}\xi_{4}^{2} - \xi_{1}^{6}\xi_{5}^{2}\xi_{3}^{2} + (\xi_{5}^{5}^{2} + 1)\xi_{3}^{2}); \\ &\mathbf{J}_{2}^{2} = (-((\xi_{2}^{2}\xi_{1}^{1} - 1 - (\xi_{2}^{2} + \xi_{1}^{1})\xi_{5}^{5})\xi_{5}^{6}\xi_{3}^{2} + (\xi_{5}^{5}^{2} + 1)\xi_{1}^{4}\xi_{4}^{2}))/((\xi_{5}^{5}^{2} + 1)\xi_{3}^{2}); \quad \mathbf{J}_{3}^{5} = (-(\xi_{6}^{4}\xi_{1}^{4}\xi_{3}^{2} - \xi_{6}^{6}\xi_{5}^{2}\xi_{1}^{2} + \xi_{1}^{2}\xi_{3}^{2})/((\xi_{5}^{5}^{2} + 1)\xi_{3}^{2}\xi_{3}^{2}))/((\xi_{5}^{5}^{2} + 1)\xi_{3}^{2}\xi_{3}^{2}); \quad \mathbf{J}_{3}^{5} = (-(\xi_{6}^{4}\xi_{1}^{4}\xi_{3}^{2} - \xi_{6}^{4}\xi_{3}^{4}\xi_{4}^{2} - \xi_{1}^{4}\xi_{3}^{2})/((\xi_{5}^{5}\xi_{3}^{2} + 1)\xi_{3}^{2}\xi_{3}^{2}); \quad \mathbf{J}_{3}^{5} = (-(\xi_{6}^{5}\xi_{1}^{2}\xi_{3}^{2} + \xi_{1}^{2}\xi_{3}^{2})\xi_{3}^{2}\xi_{3}^{2}) + (\xi_{6}^{2}\xi_{3}^{2}\xi_{3}^{2})(\xi_{6}^{5}\xi_{3}^{2} + \xi_{1}^{2}\xi_{3}^{2}); \quad \mathbf{J}_{3}^{5} = (-(\xi_{6}^{5}\xi_{1}^{2}\xi_{3}^{2} + \xi_{1}^{2}\xi_{3}^{2})\xi_{3}^{2}\xi_{3}^{2}) + (\xi_{6}^{5}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2})\xi_{3}^{2}\xi_{3}^{2}) + (\xi_{6}^{5}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}) + (\xi_{6}^{5}\xi_{3}^$

$$\xi_3^2 \xi_1^4 \xi_5^6 \neq 0. \tag{33}$$

Taking suitable values for u and the b_j^i 's in (25), equivalence by Φ switches to the case 6.1, more precisely $\xi_1^2 = \xi_3^2 = \xi_4^2 = 1$, $\xi_3^1 = 0$. Hence J is equivalent to J_α in (26) with $\alpha = 1$.

6.5 Case $\xi_1^2 = 0, \xi_3^2 = 0$.

$$J = \begin{pmatrix} \frac{\xi_5^5 \xi_4^2 - \xi_5^5 \xi_3^1 + \xi_2^2 \xi_3^1}{\xi_4^2} & \boxed{\xi_2^1} & \boxed{\xi_3^1} & \frac{(\xi_4^2 + \xi_3^1) \xi_2^2 \xi_2^1 + \xi_3^2 \xi_3^2 \xi_3^1 + (\xi_4^2 - \xi_3^1) \xi_5^5 \xi_2^1}{\xi_2^2 + 1} & 0 & 0 \\ 0 & \boxed{\xi_2^2} & 0 & \boxed{\xi_2^2} & 0 & 0 \\ * & \boxed{\xi_2^2} & -\frac{\xi_5^5 \xi_4^2 - \xi_5^5 \xi_3^1 + \xi_2^2 \xi_3^1}{\xi_4^2} & * & 0 & 0 \\ 0 & -\frac{\xi_2^2 + 1}{\xi_4^2} & 0 & -\xi_2^2 & 0 & 0 \\ * & * & * & * & * & \boxed{\xi_5^5} & -\frac{\xi_4^2 \xi_3^1}{\xi_4^2 - \xi_3^5} \\ \boxed{\xi_1^6} & \boxed{\xi_2^6} & \boxed{\xi_3^6} & \boxed{\xi_3^6} & \boxed{\xi_4^6} & \frac{(\xi_5^5 + 1)(\xi_4^2 - \xi_3^1)}{\xi_4^2 + \xi_3^3} & -\xi_5^5 \end{pmatrix}$$

 $\begin{aligned} \text{where } \mathbf{J_{1}^{3}} &= (-((\xi_{4}^{2} - \xi_{3}^{1})\xi_{5}^{52}\xi_{4}^{2} - (\xi_{4}^{2} - \xi_{3}^{1})\xi_{5}^{52}\xi_{3}^{1} + 2(\xi_{4}^{2} - \xi_{3}^{1})\xi_{5}^{52}\xi_{3}^{1} + (\xi_{2}^{2}^{2} + 1)\xi_{4}^{2}\xi_{3}^{1} + (\xi_{4}^{2} - \xi_{2}^{2}\xi_{3}^{1})(\xi_{4}^{2} - \xi_{3}^{1})))/(\xi_{4}^{2}^{2}\xi_{3}^{1}); \quad \mathbf{J_{3}^{4}} \\ &- (-(((\xi_{4}^{2} + \xi_{3}^{1})\xi_{2}^{2}\xi_{1}^{1} + \xi_{3}^{2}\xi_{4}^{2}\xi_{3}^{1})(\xi_{4}^{2} - \xi_{3}^{1})\xi_{5}^{52} - ((\xi_{4}^{2} + \xi_{3}^{1})\xi_{5}^{2} - ((\xi_{4}^{2} + \xi_{3}^{1})\xi_{2}^{2}\xi_{1}^{1} + \xi_{3}^{2}\xi_{4}^{2}\xi_{3}^{1})(\xi_{4}^{2} - \xi_{3}^{1})\xi_{5}^{2} + ((\xi_{4}^{2} - \xi_{3}^{1})^{2}\xi_{5}^{5}\xi_{2}^{2} + (\xi_{4}^{2} - \xi_{3}^{1}))/((\xi_{2}^{2}^{2} + 1)\xi_{4}^{2}\xi_{3}^{1}); \quad \mathbf{J_{5}^{5}} &= ((\xi_{5}^{5} - \xi_{2}^{2})\xi_{1}^{6}\xi_{4}^{2}\xi_{3}^{1}^{2} + (\xi_{4}^{2} - \xi_{2}^{2})\xi_{3}^{1})(\xi_{4}^{2} - \xi_{3}^{1})\xi_{5}^{5} + (\xi_{4}^{2} - \xi_{3}^{1})\xi_{5}^{5}\xi_{4}^{2} + (\xi_{4}^{2} - \xi_{3}^{1})\xi_{5}^{5}\xi_{5}^{2}\xi_{5}^{2} + (\xi_{4}^{2} - \xi_{3}^{1})\xi_{5}^{5}\xi_{5}^{2}\xi_{5}^{2} + (\xi_{4}^{2} - \xi_{3}^{1})\xi_{5}^{5}\xi_{5}^{2}\xi_{5}^{2} + (\xi_{4}^{2} - \xi_{3}^{1})\xi_{5}^{2}\xi_{5}^{2} + (\xi$

 $1)\xi_4^2 + (\xi_2^{2^2} + 1)\xi_4^2\xi_3^1)\xi_3^8\xi_2^1 + (\xi_4^6\xi_5^2\xi_2^{2^2} + \xi_4^6\xi_5^5 + \xi_4^6\xi_2^{2^3} + \xi_4^6\xi_2^2 - \xi_2^6\xi_4^2\xi_2^{2^2} - \xi_2^6\xi_4^2 - \xi_1^6\xi_5^2\xi_4^2 + \xi_1^6\xi_5^2\xi_3^1\xi_2^1)\xi_4^2\xi_3^1 + ((\xi_4^2 + \xi_3^1)\xi_2^2\xi_2^1 + \xi_4^6\xi_3^2 + \xi_4^6\xi$ $\xi_2^3\xi_4^2\xi_3^1)((\xi_4^2-\xi_3^1)\xi_3^6\xi_5^5-(\xi_4^2-\xi_3^1)\xi_3^6\xi_2^2-\xi_1^6\xi_4^2\xi_3^1))/((\xi_5^{5\,2}+1)(\xi_4^2-\xi_3^1)(\xi_2^{2\,2}+1)); \ \ and \ the \ parameters \ are \ subject \ to \ \ (\xi_3^2+\xi_3^2)(\xi_3^2+\xi_3^2+\xi_3^2)(\xi_3^2+\xi_3^2+\xi_3^2)(\xi_3^2+\xi_3^2)(\xi_3^2+\xi_3^2+\xi_3^2)(\xi_3^2+\xi_3^2)(\xi_3^2+\xi_3^2+\xi_3^2)(\xi_3^2+\xi_3^2+\xi_3^2)(\xi_3^2+\xi_3^2+\xi_3^2)(\xi_3^2+\xi_3^2+\xi_3^2)(\xi_3^2+\xi_3^2+\xi_3^2)(\xi_3^2+\xi_3^2+\xi_3^2)(\xi_3^2+\xi_3^2+\xi_3^2)(\xi_3^2+\xi_3^2+\xi_3^2+\xi_3^2)(\xi_3^2+\xi_$ the condition

$$\xi_3^1 \xi_4^2 (\xi_4^2 - \xi_3^1) \neq 0. \tag{35}$$

• Suppose first $\xi_4^2 \neq -\xi_3^1$, taking suitable values for u and the b_j^i 's in (25), equivalence by Φ leads to the case where $\xi_2^1 = \xi_2^2 = \xi_2^3 = \xi_5^5 = \xi_1^6 = \xi_2^6 = \xi_3^6 = \xi_4^6 = 0$ and $\xi_3^1 = 1, \xi_4^2 = \beta \neq 0, \pm 1$:

The J's corresponding to different β, β' are not equivalent unless $\beta' = 1/\beta$. J'_{β} is equivalent to J_{α} in (26) if and only if $\alpha = \frac{(\beta-1)^2}{\beta}$.

• Suppose now $\xi_4^2=-\xi_3^1$ in (34). Taking suitable values for u and the b_j^i 's in (25), equivalence by Φ leads to the case where $\xi_2^1=\xi_2^2=\xi_5^5=\xi_1^6=\xi_2^6=\xi_3^6=\xi_4^6=0$ and $\xi_3^1=1,\xi_4^2=-1,\xi_2^3=\gamma$:

$$J_{\gamma}^{"} = \begin{pmatrix} 0 & 0 & 1 & -\gamma & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ -1 & \gamma & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1/2 \\ 0 & 0 & 0 & 0 & 2 & 0 \end{pmatrix} \qquad (\gamma \in \mathbb{R}).$$

$$(37)$$

Commutation relations of $\mathfrak{m}: [\tilde{x}_1, \tilde{x}_2] = \tilde{x}_5; [\tilde{x}_1, \tilde{x}_4] = 2\tilde{x}_6; [\tilde{x}_2, \tilde{x}_3] = 2\tilde{x}_6; [\tilde{x}_2, \tilde{x}_4] = -2\gamma \tilde{x}_6;$ $[\tilde{x}_3, \tilde{x}_4] = \tilde{x}_5.$

 $J_{\gamma}^{"}$ is not equivalent to any J_{α} in (26) nor to (31), and each $J_{\gamma}^{"}$ ($\gamma \neq 0$) is equivalent to $J_{1}^{"}$. $J_{1}^{"}$ is not equivalent to J_0'' .

6.6Conclusions.

One has with obvious notations

$$\mathfrak{X}_{6,1} = \mathfrak{X}_{\xi_1^2 \neq 0} \cup \mathfrak{X}_{\xi_3^2 \neq 0} \cup \mathfrak{X}_{\xi_4^2 \neq 0} \tag{38}$$

and

$$\mathfrak{X}_{\xi_2^2 \neq 0} \subset \mathfrak{X}_{\xi_2^1 \neq \xi_4^2}$$
.

It can be seen that the formula (23), which still makes sense for $\xi_5^6 \neq 0$ under the only assumption that $\xi_3^2 \neq 0$, yields all of $\mathfrak{X}_{\xi_3^2 \neq 0}$. Hence $\mathfrak{X}_{\xi_3^2 \neq 0}$ is a 12-dimensional submanifold of \mathbb{R}^{36} with a global chart. The automorphism $\Phi = \operatorname{diag}(1,1,\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},1,1)$ switches ξ_3^2 and ξ_4^2 , hence $\mathfrak{X}_{\xi_4^2 \neq 0} =$ $\Phi \mathfrak{X}_{\xi_3^2 \neq 0} \Phi^{-1}$ is also a 12-dimensional submanifold of \mathbb{R}^{36} . Consider now $\mathfrak{X}_{\xi_1^2 \neq 0}$. There are 3 subcases:

$$\xi_3^2 \neq 0$$
 (which implies $\xi_3^1 \neq \xi_4^2$ from section 6.3) (39)
 $\xi_3^2 = 0$ and $\xi_3^1 \neq \xi_4^2$ (40)
 $\xi_3^2 = 0$ and $\xi_3^1 = \xi_4^2$. (41)

$$\xi_3^2 = 0 \quad \text{and} \quad \xi_3^1 \neq \xi_4^2$$
 (40)

$$\xi_3^2 = 0 \quad \text{and} \quad \xi_3^1 = \xi_4^2.$$
 (41)

To prove that $\mathfrak{X}_{\xi_1^2 \neq 0}$ is a 12-dimensional submanifold of \mathbb{R}^{36} , it is sufficient to prove that it is a local submanifold in the neighborhood of any of its points. Take any $K \in \mathfrak{X}_{\xi_1^2 \neq 0} : K = (\xi_i^i(K))$. In case (39), $K \in \mathfrak{X}_{\xi_2^2 \neq 0}$ and then, from the section 6.1, $\mathfrak{X}_{\xi_1^2 \neq 0}$ is a local 12-dimensional submanifold of \mathbb{R}^{36} . Suppose now K belongs in case (40) or (41). To solve the initial system comprised of all the torsion equations and the equation $J^2 = -1$ in \mathbb{R}^{36} in the neighborhood of K, one has to complete first a set of common steps, and then we are left with solving the system S of the

remaining equations in the 15 variables $\xi_1^1, \xi_2^1, \xi_3^1, \xi_1^2, \xi_2^2, \xi_3^2, \xi_4^2, \xi_1^4, \xi_2^4, \xi_5^5, \xi_1^6, \xi_2^6, \xi_3^6, \xi_4^6, \xi_5^6$ in the open subset $\xi_5^6 \neq 0$ of \mathbb{R}^{15} . Among these equations, we single out the 3 following equations:

$$\begin{cases}
f = 0 \\
g = 0 \\
h = 0
\end{cases}$$
(42)

where : $f = J_1^{2^2} = (-\xi_5^6 \xi_5^5 \xi_3^2 \xi_2^2 - \xi_5^6 \xi_5^5 \xi_3^2 \xi_1^1 + \xi_5^6 \xi_3^2 \xi_2^2 \xi_1^1 - \xi_5^6 \xi_3^2 \xi_1^2 \xi_2^1 - \xi_5^6 \xi_3^2 + \xi_5^5^2 \xi_2^4 \xi_3^2 + \xi_5^5^2 \xi_1^4 \xi_4^2 + \xi_5^5 \xi_2^2 \xi_1^2 + \xi_5^5^2 \xi_1^2 \xi_1^1 + \xi_2^4 \xi_3^2 + \xi_1^4 \xi_4^2 + \xi_2^2 \xi_1^2 + \xi_1^2 \xi_1^1)/(\xi_5^{5^2} + 1); \quad g = J_2^2 = (-\xi_5^6 \xi_5^5 \xi_3^2 \xi_2^2 - \xi_5^6 \xi_5^5 \xi_3^2 \xi_1^2 \xi_2^1 - \xi_5^6 \xi_5^3 \xi_3^2 \xi_2^2 - \xi_5^6 \xi_5^5 \xi_3^2 \xi_1^2 \xi_2^1 + \xi_5^6 \xi_3^2 \xi_1^2 \xi_2^2 + \xi_5^6 \xi_3^2 \xi_1^2 \xi_2^1 + \xi_5^5 \xi_2^4 \xi_3^2 \xi_2^2 + \xi_5^5 \xi_3^4 \xi_3^2 \xi_2^2 + \xi_5^5 \xi_3^2 \xi_2^2 \xi_1^2 + \xi_5^5 \xi_3^2 \xi_2^2 \xi_1^2 + \xi_5^6 \xi_3^2 \xi_2^2 \xi_1^2$ (40), (41). If J belongs in case (40) or (41), the system S is equivalent to the 3 equations (42). If J belongs in the case (39), the system S is equivalent to the 3 equations (42) if and only if $c(J) \neq 0$ where $c(J) = (\xi_5^{5^2} + 1)\xi_1^2 + \xi_1^2\xi_4^2\xi_5^6 - (\xi_5^5 - \xi_2^2)\xi_3^2\xi_5^6$. Now, if K belongs in case (40), $c(K) = \xi_1^2(K)(\xi_5^5(K)^2 + 1) + \xi_4^2(K)\xi_5^6(K)) = \frac{1}{\xi_3^1(K)}\xi_1^2(K)\xi_4^2(K)(\xi_5^5(K)^2 + 1) \neq 0$ since in that case $\xi_5^6(K) = \frac{\xi_5^5(K)^2 + 1}{\xi_4^2(K)\xi_3^1(K)} (\xi_4^2(K) - \xi_3^1(K))$ (see (27)). If K belongs in case (41), $c(K) = \xi_1^2(K)(\xi_5^5(K)^2 + 1) \neq 0$ (see (29)). Hence in both cases, one has $c(J) \neq 0$ in some neighborhood of K and the remaining system is equivalent in that neighborhood to the 3 equations (42). We will now show that the system (42) is of maximal rank 3 at K, that is some 3-jacobian doesn't vanish.

- Suppose K belongs in case (40). Then $\frac{D(f,g,h)}{D(\xi_1^1,\xi_2^1,\xi_5^0)}(K) = -\frac{\xi_4^2(K)\xi_1^2(K)^3\xi_3^1(K)}{\xi_5^5(K)^2+1} \neq 0.$ Suppose K belongs in case (41). Then $\frac{D(f,g,h)}{D(\xi_1^1,\xi_2^1,\xi_3^2)}(K) = -\xi_1^2(K)^3 \neq 0.$

Hence the system (42) is of maximal rank 3 at K, and it follows that $\mathfrak{X}_{\xi_1^2 \neq 0}$ is is a local submanifold in the neighborhood of K.

Hence $\mathfrak{X}_{\xi_1^2\neq 0}$ is is a 12-dimensional submanifold of \mathbb{R}^{36} , and so is $\mathfrak{X}_{6,1}$ from (38). Any element of $\mathfrak{X}_{6,1}$ is is equivalent to either J in (31), or $J_{\alpha}(\alpha \neq 0)$ in (26), or J_1'' , or J_0'' in (37).

6.7

$$X_1 = \frac{\partial}{\partial x^1} - y^1 \frac{\partial}{\partial x^3} - y^2 \frac{\partial}{\partial y^3}$$
, $X_2 = \frac{\partial}{\partial y^1} - x^2 \frac{\partial}{\partial y^3}$

Holomorphic functions for J_{α} .

Let G denote the group G_0 endowed with the left invariant structure of complex manifold defined by $J_{\alpha} (26). \text{ Then } H_{\mathbb{C}}(G) = \{ f \in C^{\infty}(G_0) ; \tilde{X}_j^- f = 0 \ \forall j \ 1 \leqslant j \leqslant 6 \}. \text{ As } \tilde{X}_2^- = -i(\alpha \tilde{X}_1^- + (1-\alpha)\tilde{X}_3^-), \\ \tilde{X}_4^- = -i\alpha \tilde{X}_1^- + (1-i)\tilde{X}_3^-, \tilde{X}_6^- = -i\tilde{X}_5^-, \text{ one has } H_{\mathbb{C}}(G) = \{ f \in C^{\infty}(G_0) ; \tilde{X}_j^- f = 0 \ \forall j = 1, 3, 5 \}.$

$$\begin{split} \tilde{X}_1^- &= 2 \, \frac{\partial}{\partial \overline{z^1}} + i(\alpha - 1) \left(\frac{\partial}{\partial x^2} - \frac{1}{\alpha} \frac{\partial}{\partial y^2} \right) - y^1 \frac{\partial}{\partial x^3} - (y^2 + ix^2) \frac{\partial}{\partial y^3} \quad , \\ \tilde{X}_3^- &= i \frac{\partial}{\partial y^1} + (1 + i\alpha) \frac{\partial}{\partial x^2} - i \frac{\partial}{\partial y^2} - ix^2 \frac{\partial}{\partial y^3} \quad , \quad \tilde{X}_5^- = 2 \frac{\partial}{\partial \overline{z^3}} \quad , \end{split}$$

where $z^1 = x^1 + iy^1$, $z^3 = x^3 + iy^3$. Then $f \in C^{\infty}(G_0)$ is in $H_{\mathbb{C}}(G)$ if and only if it is holomorphic with respect to z^3 and satisfies the 2 equations

$$2\frac{\partial f}{\partial \overline{w^2}} + \frac{\partial f}{\partial \overline{z^1}} - \frac{\partial f}{\partial z^1} + \frac{1}{2}\left((1 - i\alpha)w^2 + (1 + i\alpha)\overline{w^2}\right)\frac{\partial f}{\partial z^3} = 0$$
 (43)

$$2\frac{\partial f}{\partial \overline{z^{1}}} + \frac{\alpha - 1}{\alpha} \left(\frac{\partial f}{\partial \overline{w^{2}}} - \frac{\partial f}{\partial w^{2}} \right) + \left(\frac{\overline{z^{1}} - z^{1}}{2i} + \left(1 - \frac{i\alpha}{2} \right) w^{2} + \frac{i\alpha}{2} \overline{w^{2}} \right) \frac{\partial f}{\partial z^{3}} = 0 \quad (44)$$

where $w^2 = x^2 + \alpha y^2 - iy^2$. We set $w^1 = z^1, w^3 = z^3$. The 3 functions

$$\varphi^{1} = 2w^{1} + \overline{w^{2}} + w^{2}$$
 , $\varphi^{2} = 2w^{2} + \frac{\alpha - 1}{\alpha}(\overline{w^{1}} + w^{1})$,

$$\varphi^{3} = w^{3} + \frac{1}{32} \left(4i(\overline{w^{1}})^{2} - 8i\overline{w^{1}}\overline{w^{2}} - 8i\overline{w^{1}}\overline{w^{1}} - 8(2-i)\overline{w^{1}}\overline{w^{2}} - (4+i)(\overline{w^{2}})^{2} + 4i\overline{w^{2}}\overline{w^{1}} + 4i\overline{w^{2}}\overline{w^{2}} \right)$$

if $\alpha = 1$ and if not

$$\varphi^{3} = w^{3} - \frac{\alpha i}{2(\alpha - 1)} \overline{w^{1}} w^{2} - \frac{1 + i\alpha}{8} (\overline{w^{2}})^{2} - \frac{1 - \alpha + i\alpha(1 + \alpha)}{4(\alpha - 1)} \overline{w^{2}} w^{2} + \frac{i\alpha}{2(\alpha - 1)} w^{1} w^{2} - \frac{3\alpha^{2} - 2\alpha - 1 - i\alpha(\alpha + 1)^{2}}{8(\alpha - 1)^{2}} (w^{2})^{2}$$

are holomorphic. Let $F: G \to \mathbb{C}^3$ defined by $F = (\varphi^1, \varphi^2, \varphi^3)$. F is a a global chart on G. We determine now how the multiplication of G looks like in that chart. Let $a, x \in G$ with respective second kind canonical coordinates $(x^1, y^1, x^2, y^2, x^3, y^3), (\alpha^1, \beta^1, \alpha^2, \beta^2, \alpha^3, \beta^3)$ as in (1). With obvious notations, computations yield:

$$w_{ax}^{1} = w_{a}^{1} + w_{x}^{1} (45)$$

$$w_{ax}^2 = w_a^2 + w_x^2 (46)$$

$$w_{ax}^{3} = w_{a}^{3} + w_{x}^{3} - b^{1}x^{1} - i(b^{2}x^{1} + a^{2}y^{1}).$$

$$(47)$$

We then get

$$\varphi^1_{ax}=\varphi^1_a+\varphi^1_x \quad , \quad \varphi^2_{ax}=\varphi^2_a+\varphi^2_x \quad , \quad \varphi^3_{ax}=\varphi^3_a+\varphi^3_x+\chi(a,x) \quad ,$$

where for $\alpha \neq 1$

$$\chi(a,x) = \frac{1}{8} \varphi_x^1 \left((\overline{\varphi_a^1} + \varphi_a^1)((1-i)\alpha - 1) - \alpha \overline{\varphi_a^2} + \frac{\alpha(1-\alpha+2i\alpha)}{\alpha-1} \varphi_a^2 \right)$$

$$+ \frac{1}{8} \varphi_x^2 \left(2 \frac{i\alpha}{1-i} \overline{\varphi_a^1} + \alpha \overline{\varphi_a^2} + 2 \frac{\alpha(1+i\alpha)}{(\alpha-1)(1-i)} \varphi_a^1 + \alpha \frac{(1-2i)\alpha^2 - 1}{(\alpha-1)^2} \varphi_a^2 \right)$$

and for $\alpha = 1$

$$\chi(a,x) = \frac{1}{32}\,\varphi_x^1\left(-4i\overline{\varphi_a^1} + 2i\varphi_a^1 - 4\overline{\varphi_a^2} + 3i\varphi_a^2\right) + \frac{1}{64}\,\varphi_x^2\left(8(i-1)\,\overline{\varphi_a^1} + 8\overline{\varphi_a^2} - 2i\,\varphi_a^1 + (4-5i)\,\varphi_a^2\right).$$

6.7.2 Holomorphic functions for J.

Now J is defined in (31). Then $f \in C^{\infty}(G_0)$ is in $H_{\mathbb{C}}(G)$ if and only if it is holomorphic with respect to z^2 and z^3 and satisfies the equation

$$2\frac{\partial f}{\partial \overline{w^1}} = (z^2 + y^1)\frac{\partial f}{\partial \overline{z^3}}$$

where $w^1 = x^1 - iy^1$, $z^2 = x^2 + iy^2$, $z^3 = x^3 + iy^3$. We set $w^2 = z^2$, $w^3 = z^3$. The 3 functions

$$\varphi^1 = w^1 \quad , \quad \varphi^2 = w^2 \quad , \quad \varphi^3 = w^3 + \frac{1}{2} w^2 \overline{w^1} + \frac{i}{4} w^1 \overline{w^1} - \frac{i}{8} \overline{w^1}^2$$

are holomorphic. Let $F: G \to \mathbb{C}^3$ defined by $F = (\varphi^1, \varphi^2, \varphi^3)$. F is a global chart on G, and

$$\varphi_{ax}^{1} = \varphi_{a}^{1} + \varphi_{x}^{1}$$
, $\varphi_{ax}^{2} = \varphi_{a}^{2} + \varphi_{x}^{2}$, $\varphi_{ax}^{3} = \varphi_{a}^{3} + \varphi_{x}^{3} + \chi(a, x)$,

where from (47)

$$\chi(a,x) = \frac{1}{4} \, \varphi_x^1 \left(2i\overline{\varphi_a^1} - i\varphi_a^1 + 2\overline{\varphi_a^2} \right) + \frac{1}{2} \, \varphi_x^2 \overline{\varphi_a^1}.$$

6.7.3 Holomorphic functions for $J_{\gamma}^{"}$.

 $J_{\gamma}^{\prime\prime}$ is defined in (37) for any real γ . Here $\tilde{X}_{2}^{-}=i\tilde{X}_{1}^{-}$, $\tilde{X}_{4}^{-}=-i\tilde{X}_{2}^{-}-i\gamma\tilde{X}_{1}^{-}$, $\tilde{X}_{6}^{-}=-\frac{i}{2}\tilde{X}_{5}^{-}$, hence $H_{\mathbb{C}}(G)=\{f\in C^{\infty}(G_{0})\;;\; \tilde{X}_{j}^{-}\;f=0\;\forall j=1,2,5\}$. One has

$$\begin{array}{lcl} \tilde{X}_{1}^{-} & = & 2\,\frac{\partial}{\partial\overline{w}^{1}} - i\frac{\partial}{\partial x^{2}} - y^{1}\frac{\partial}{\partial x^{3}} - y^{2}\frac{\partial}{\partial y^{3}} & , \\ \tilde{X}_{2}^{-} & = & 2\,\frac{\partial}{\partial\overline{w}^{2}} + i\gamma\frac{\partial}{\partial x^{2}} - x^{2}\frac{\partial}{\partial y^{3}} & , \quad \tilde{X}_{5}^{-} = 2\,\frac{\partial}{\partial\overline{w}^{3}} & , \end{array}$$

where $w^1=x^1-ix^2$, $w^1=y^1+iy^2$, $w^3=x^3+\frac{i}{2}y^3$. Then $f\in C^\infty(G_0)$ is in $H_{\mathbb C}(G)$ if and only if it is holomorphic with respect to w^3 and satisfies the 2 equations

$$2\frac{\partial f}{\partial \overline{w^2}} - \frac{\gamma}{2} \left(\frac{\partial f}{\partial \overline{w^1}} - \frac{\partial f}{\partial w^1} \right) + \frac{1}{4} \left(w^1 - \overline{w^1} \right) \frac{\partial f}{\partial w^3} = 0 \tag{48}$$

$$2\frac{\partial f}{\partial \overline{w^1}} - \frac{1}{4} \left(3w^2 + \overline{w^2} \right) \frac{\partial f}{\partial w^3} = 0. \tag{49}$$

The 3 functions

$$\begin{array}{rcl} \varphi^1 & = & \gamma \overline{w^2} - 4 w^1 & , & \varphi^2 = w^2 & , \\ \varphi^3 & = & w^3 + \frac{1}{32} \left(4 \overline{w^1 w^2} + 12 \overline{w^1} w^2 + \gamma (\overline{w^2})^2 - 4 \overline{w^2} w^1 + 12 w^1 w^2 \right) \end{array}$$

are holomorphic. Let $F: G \to \mathbb{C}^3$ defined by $F = (\varphi^1, \varphi^2, \varphi^3)$. F is a global chart on G. Instead of (47), we here have

$$w_{ax}^3 = w_a^3 + w_x^3 - b^1 x^1 - \frac{i}{2} (b^2 x^1 + a^2 y^1),$$

whence

$$\varphi^1_{ax}=\varphi^1_a+\varphi^1_x \quad , \quad \varphi^2_{ax}=\varphi^2_a+\varphi^2_x \quad , \quad \varphi^3_{ax}=\varphi^3_a+\varphi^3_x+\chi(a,x)$$

with

$$\chi(a,x) = \frac{1}{16}\,\varphi_x^1\overline{\varphi_a^2} + \frac{1}{16}\,\varphi_x^2\left(-\overline{\varphi_a^1} - 2\varphi_a^1 + 2\gamma\overline{\varphi_a^2} + \gamma\varphi_a^2\right).$$

7 Lie Algebra $\mathcal{G}_{6,6}$ (isomorphic to M1).

Commutation relations for $\mathcal{G}_{6,6}$: $[x_1, x_2] = x_4$; $[x_2, x_3] = x_6$; $[x_2, x_4] = x_5$.

$$J = \begin{pmatrix} \xi_1^1 & -\frac{\xi_1^{12}+1}{\xi_1^{2}} & 0 & 0 & 0 & 0\\ \xi_1^2 & -\xi_1^1 & 0 & 0 & 0 & 0\\ * & * & \xi_3^3 & -\frac{\xi_3^{32}+1}{\xi_3^{4}} & 0 & 0\\ \xi_1^4 & \xi_2^4 & \xi_3^4 & -\xi_3^3 & 0 & 0\\ \xi_1^5 & * & \xi_3^5 & \xi_4^5 & -\xi_3^3 & \xi_3^4\\ \xi_1^6 & * & -\xi_4^5 & * & -\frac{\xi_3^{32}+1}{\xi_3^{4}} & \xi_3^3 \end{pmatrix}$$
 (50)

 $\begin{array}{lll} \text{where } \mathbf{J_{1}^{3}} = ((\xi_{3}^{3} - \xi_{1}^{1})\xi_{1}^{4} - \xi_{2}^{4}\xi_{1}^{2})/\xi_{3}^{4}; & \mathbf{J_{2}^{3}} = ((\xi_{3}^{3} + \xi_{1}^{1})\xi_{2}^{4}\xi_{1}^{2} + (\xi_{1}^{12} + 1)\xi_{1}^{4})/(\xi_{3}^{4}\xi_{1}^{2}); & \mathbf{J_{2}^{5}} = (-((\xi_{3}^{3} - \xi_{1}^{1})\xi_{3}^{5}\xi_{1}^{4} - (\xi_{3}^{3} - \xi_{1}^{1})\xi_{3}^{5}\xi_{1}^{4} - (\xi_{3}^{3} - \xi_{1}^{1})\xi_{3}^{5}\xi_{3}^{4} - \xi_{3}^{5}\xi_{2}^{4}\xi_{1}^{2} + \xi_{3}^{4}\xi_{3}^{4} + \xi_{1}^{6}\xi_{3}^{42}))/(\xi_{3}^{4}\xi_{1}^{2}); & \mathbf{J_{2}^{6}} = (-(((\xi_{3}^{3} + \xi_{1}^{1})\xi_{1}^{4} + \xi_{2}^{4}\xi_{1}^{2})\xi_{3}^{5}\xi_{3}^{4} + (\xi_{3}^{5}\xi_{1}^{4} - \xi_{1}^{5}\xi_{3}^{4})(\xi_{3}^{3}^{2} + 1) + (\xi_{3}^{3} + \xi_{1}^{1})\xi_{1}^{6}\xi_{3}^{4}))/(\xi_{3}^{4}\xi_{1}^{2}); \\ \mathbf{J_{4}^{6}} = ((\xi_{3}^{3}^{2} + 1)\xi_{3}^{5} + 2\xi_{4}^{5}\xi_{3}^{4}\xi_{3}^{3})/\xi_{3}^{4}^{2}; & \text{and the parameters are subject to the condition} \end{array}$

$$\xi_1^2 \xi_3^4 \neq 0. \tag{51}$$

Now the automorphism group of $\mathcal{G}_{6,6}$ is comprised of the matrices

$$\Phi = \begin{pmatrix} b_1^1 & b_2^1 & 0 & 0 & 0 & 0 \\ 0 & b_2^2 & b_3^2 & 0 & 0 & 0 \\ b_1^3 & b_2^3 & b_3^3 & 0 & 0 & 0 \\ b_1^4 & b_2^4 & b_3^4 & b_2^2 b_1^1 & 0 & 0 \\ b_1^5 & b_2^5 & b_3^5 & -b_1^4 b_2^2 & b_2^2 b_1^1 & b_3^4 b_2^2 \\ b_1^6 & b_2^6 & b_3^6 & -b_1^3 b_2^2 & 0 & b_3^3 b_2^5 \end{pmatrix}$$

where $b_1^1 b_2^2 b_3^3 \neq 0$. Taking

$$\Phi = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -(\xi_4^5 \xi_3^4)/(\xi_3^{3^2} + 1) & 0 & 1 & 0 \\ b_1^6 & b_2^6 & -((\xi_3^{3^2} + 1)\xi_3^5 + 2\xi_4^5 \xi_3^4 \xi_3^4)/((\xi_3^{3^2} + 1)\xi_4^4) & 0 & 0 & 1 \end{pmatrix}$$

with suitable values for b_1^6, b_2^6 , equivalence by Φ leads to the case where $\xi_1^5 = \xi_3^5 = \xi_4^5 = \xi_1^6 = 0$. Then equivalence by

$$\Phi = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & (-\xi_2^4 \xi_1^2 + \xi_1^4 \xi_3^3 - \xi_1^4 \xi_1^1)/(\xi_3^4 \xi_1^2) & 1 & 0 & 0 & 0 \\ 0 & \xi_1^4/\xi_1^2 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

leads to the case where moreover $\xi_1^4 = \xi_2^4 = 0$. Finally equivalence by $\Phi = \operatorname{diag}\left(\begin{pmatrix} \xi_1^2 & -\xi_1^1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} (\xi_3^4 \xi_1^2)/(\xi_3^{3^2} + 1) & 0 \\ -(\xi_3^4 \xi_3^3 \xi_1^2)/(\xi_3^{3^2} + 1) & \xi_1^2 \end{pmatrix}, \begin{pmatrix} \xi_1^2 & -(\xi_3^4 \xi_3^3 \xi_1^2)/(\xi_3^{3^2} + 1) \\ 0 & (\xi_3^4 \xi_1^2)/(\xi_3^{3^2} + 1) \end{pmatrix}\right)$ leads to

$$J = \operatorname{diag}\left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}\right). \tag{52}$$

Commutation relations of \mathfrak{m} : $[\tilde{x}_1, \tilde{x}_3] = -\tilde{x}_5$; $[\tilde{x}_1, \tilde{x}_4] = \tilde{x}_6$; $[\tilde{x}_2, \tilde{x}_3] = \tilde{x}_6$; $[\tilde{x}_2, \tilde{x}_4] = \tilde{x}_5$. From (50), $\mathfrak{X}_{6,6}$ is a 10-dimensional submanifold of \mathbb{R}^{36} . There is only one Aut $\mathcal{G}_{6,6}$ orbit, and any element of $\mathfrak{X}_{6,6}$ is equivalent to J in (52).

7.1

$$X_1 = \frac{\partial}{\partial x^1} - y^1 \frac{\partial}{\partial y^2} + \frac{(y^1)^2}{2} \frac{\partial}{\partial x^3} \quad , \quad X_2 = \frac{\partial}{\partial y^1} - y^2 \frac{\partial}{\partial x^3} - x^2 \frac{\partial}{\partial y^3}.$$

Let G denote the group G_0 endowed with the left invariant structure of complex manifold defined by *J* in (52). Then $H_{\mathbb{C}}(G) = \{ f \in C^{\infty}(G_0) ; \tilde{X}_j^- f = 0 \ \forall j = 1, 3, 5 \}$. One has

$$\begin{split} \tilde{X}_1^- &=& 2 \frac{\partial}{\partial \overline{w^1}} - y^1 \frac{\partial}{\partial y^2} + \left(\frac{(y^1)^2}{2} - i y^2 \right) \frac{\partial}{\partial x^3} - i x^2 \frac{\partial}{\partial y^3} \,, \\ \tilde{X}_3^- &=& 2 \frac{\partial}{\partial \overline{w^2}} \quad, \quad \tilde{X}_5^- = 2 \frac{\partial}{\partial \overline{w^3}} \quad, \end{split}$$

where $w^1=x^1+iy^1$, $w^2=x^2+iy^2$, $w^3=x^3-iy^3$. Then $f\in C^\infty(G_0)$ is in $H_{\mathbb C}(G)$ if and only if it is holomorphic with respect to w^2 and w^3 and satisfies the equation

$$2\frac{\partial f}{\partial \overline{w^1}} - \frac{w^1 - \overline{w^1}}{2} \frac{\partial f}{\partial w^2} - \left(\frac{(w^1 - \overline{w^1})^2}{8} + w^2\right) \frac{\partial f}{\partial w^3} = 0.$$
 (53)

The 3 functions

$$\begin{split} \varphi^1 &= w^1 \quad , \quad \varphi^2 = w^2 + \frac{1}{4} \left(w^1 \overline{w^1} - \frac{(\overline{w^1})^2}{2} \right) \quad , \\ \varphi^3 &= w^3 + \frac{1}{48} \left(-(\overline{w^1})^3 + 3 \overline{w^1} (w^1)^2 + 24 \overline{w^1} w^2 \right) \end{split}$$

are holomorphic. Let $F: G \to \mathbb{C}^3$ defined by $F = (\varphi^1, \varphi^2, \varphi^3)$. F is a global chart on G. We determine now how the multiplication of G looks like in that chart. Let $a, x \in G$ with respective

second kind canonical coordinates $(x^1, y^1, x^2, y^2, x^3, y^3), (\alpha^1, \beta^1, \alpha^2, \beta^2, \alpha^3, \beta^3)$ as in (1). With obvious notations, computations yield:

$$w^1_{ax} = w^1_a + w^1_x \quad , \quad w^2_{ax} = w^2_a + w^2_x - ib^1x^1 \quad , \quad w^3_{ax} = w^3_a + w^3_x + \frac{(b^1)^2}{2}x^1 - (b^2 - b^1x^1)y^1 + ia^2y^1.$$

We then get

$$\varphi_{ax}^{1} = \varphi_{a}^{1} + \varphi_{x}^{1} \quad , \quad \varphi_{ax}^{2} = \varphi_{a}^{2} + \varphi_{x}^{2} + \frac{1}{4}\varphi_{x}^{1}(2\overline{\varphi_{a}^{1}} - \varphi_{a}^{1}) \quad , \quad \varphi_{ax}^{3} = \varphi_{a}^{3} + \varphi_{x}^{3} + \chi(a, x) \quad ,$$

where

$$\chi(a,x) = \frac{1}{16} \, (\varphi_x^1)^2 \left(3 \overline{\varphi_a^1} - 2 \varphi_a^1 \right) + \frac{1}{16} \, \varphi_x^1 \left(2 (\overline{\varphi_a^1})^2 - (\varphi_a^1)^2 + 8 \overline{\varphi_a^2} \right) + \frac{1}{2} \, \varphi_x^2 \overline{\varphi_a^1}.$$

8 Lie Algebra $\mathcal{G}_{6,5}$ (isomorphic to M8).

Commutation relations for $\mathcal{G}_{6,5}$: $[x_1, x_2] = x_4$; $[x_1, x_4] = x_5$; $[x_2, x_3] = x_6$; $[x_2, x_4] = x_6$.

$$J = \begin{pmatrix} a & -\frac{a^2+1}{\xi_1^2} & 0 & 0 & 0 & 0\\ \hline \xi_1^2 & -a & 0 & 0 & 0 & 0\\ \hline \xi_1^3 & * & b & -\frac{b^2+1}{\xi_3^4} & 0 & 0\\ \hline \xi_1^4 & * & & & & & \\ \hline \xi_1^5 & * & & & & & & \\ \hline \xi_1^5 & * & & & & & & \\ \hline \xi_1^6 & * & & & & & & \\ \hline \xi_2^6 & * & & & & & \\ \hline \xi_3^6 & * & & & & & \\ \hline \xi_3^6 & * & & & & & \\ \hline \xi_5^6 & * & & & & \\ \hline \xi_5^6 & -\xi_5^5 & -\xi_5^5 \end{pmatrix}$$
 (54)

 $\begin{array}{lll} \text{where } \mathbf{a} = \mathbf{J_1^1} = (-((\xi_5^{5}^2 + 1)\xi_1^2 - \xi_5^6\xi_5^5\xi_3^4))/(\xi_5^6\xi_3^4); & \mathbf{J_2^3} = ((((\xi_5^5 + 2\xi_3^4)\xi_5^5\xi_1^4 + \xi_3^4^2\xi_1^4 + \xi_3^4^2\xi_1^3 + \xi_1^4)\xi_5^6 + (\xi_5^{5}^2 + 1)\xi_1^3\xi_1^2)\xi_1^{22} + ((\xi_5^6\xi_3^4 - 2\xi_5^5\xi_1^2)\xi_1^4 - (2\xi_1^4 + \xi_1^3)\xi_3^4\xi_1^2)\xi_5^6\xi_3^4)/(\xi_5^6\xi_3^4\xi_1^{23}); & \mathbf{b} = \mathbf{J_3^3} = (-((\xi_5^5 + \xi_3^4)\xi_1^2 - \xi_5^6\xi_3^4))/\xi_1^2; & \mathbf{J_2^4} = (((\xi_5^5 + 1)\xi_1^2 + \xi_5^6\xi_3^4)\xi_1^4 - ((\xi_5^4 + \xi_1^3)\xi_3^4 + 2\xi_5^5\xi_1^4)\xi_5^6\xi_3^4\xi_1^2)/(\xi_5^6\xi_3^4\xi_1^{22}); & \mathbf{J_2^5} = (-((((\xi_5^5 + \xi_1^4 + 2\xi_3^4\xi_1^4 + 2\xi_3^4\xi_1^4)\xi_5^5 + \xi_3^4^2\xi_1^4 + \xi_3^4^2\xi_1^3 + \xi_1^4)\xi_3^6 - (\xi_1^6\xi_3^4 + \xi_1^5\xi_1^2)(\xi_5^{52} + 1) - (\xi_1^4 + \xi_1^3)\xi_3^6\xi_3^4)\xi_1^2 - ((\xi_5^6\xi_3^4 + \xi_1^6\xi_1^2)\xi_3^4\xi_1^4)\xi_5^6\xi_3^4)/(\xi_5^6\xi_3^4\xi_1^2); & \mathbf{J_2^5} = (-(((\xi_5^6\xi_1^4 + \xi_1^3)\xi_3^6\xi_3^4)\xi_1^2 - (\xi_5^6\xi_3^4 + \xi_1^6\xi_1^2)\xi_3^4\xi_1^4)\xi_5^6\xi_3^4)/(\xi_5^6\xi_3^4\xi_1^2); & \mathbf{J_2^5} = (-((\xi_5^6\xi_1^4 + \xi_1^3)\xi_5^6\xi_3^4 + \xi_1^6\xi_1^2)\xi_5^6\xi_3^4 - (\xi_5^5^2 + 1)\xi_1^6\xi_1^2))/(\xi_5^6\xi_3^4\xi_1^2); & \mathbf{J_2^6} = (-((\xi_5^6\xi_1^4 + \xi_3^6\xi_1^4)\xi_5^6\xi_3^4)\xi_5^6\xi_3^4 - (\xi_5^5^2 + 1)\xi_1^6\xi_1^2))/(\xi_5^6\xi_3^4\xi_1^2); & \mathbf{J_2^6} = (-((\xi_5^6\xi_1^4 + \xi_3^6\xi_1^4)\xi_5^6\xi_3^4 - (\xi_5^5^2 + 1)\xi_1^6\xi_1^2))/(\xi_5^6\xi_3^4\xi_1^2); & \mathbf{J_2^6} = (-((\xi_5^6\xi_1^4 + \xi_3^6\xi_1^4)\xi_5^6\xi_3^4)\xi_1^2 - (\xi_5^6\xi_3^4 + \xi_3^6\xi_1^4)\xi_5^6\xi_3^4)\xi_1^2 - (\xi_5^6\xi_3^4 + \xi_3^6\xi_1^4)\xi_5^6\xi_3^4 + \xi_3^6\xi_1^4)\xi_5^6\xi_3^4 - (\xi_5^6\xi_1^4 + \xi_3^6\xi_1^4)\xi_5^6\xi_3^4 + \xi_3^6\xi_1^4)\xi_5^6\xi_3^4 + \xi_3^6\xi_1^4 + \xi_3^6\xi_1^4)\xi_5^6\xi_3^4 + \xi_3^6\xi_1^4 + \xi_3^6\xi_1^4)\xi_5^6\xi_3^4 + \xi_3^6\xi_1^4 + \xi_3^6\xi_1^4)\xi_5^6\xi_3^4 + \xi_3^6\xi_1^4 + \xi_3^6\xi_$

$$\xi_1^2 \xi_3^4 \xi_5^6 \neq 0. \tag{55}$$

The automorphisms of $\mathcal{G}_{6,5}$ fall into 2 kinds The first kind is comprised of the matrices

$$\Phi = \begin{pmatrix}
b_1^1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & b_2^2 & 0 & 0 & 0 & 0 & 0 \\
b_1^3 & b_2^3 & b_2^2 b_1^1 & 0 & 0 & 0 & 0 \\
b_1^4 & b_2^4 & 0 & b_2^2 b_1^1 & 0 & 0 & 0 \\
b_1^5 & b_2^5 & b_3^5 & b_2^4 b_1^1 & b_2^2 b_1^{12} & 0 & 0 \\
b_1^6 & b_2^6 & b_3^6 & -(b_1^4 + b_1^3)b_2^2 & 0 & b_2^{22} b_1^1
\end{pmatrix}$$
(56)

where $b_1^1 b_2^2 \neq 0$. The second kind is comprised of the matrices

$$\Phi = \begin{pmatrix}
0 & b_2^1 & 0 & 0 & 0 & 0 \\
b_1^2 & 0 & 0 & 0 & 0 & 0 \\
b_1^3 & b_2^3 & b_1^2 b_2^1 & 0 & 0 & 0 \\
b_1^4 & b_2^4 & -b_1^2 b_2^1 & -b_1^2 b_2^1 & 0 & 0 \\
b_1^5 & b_2^5 & b_3^5 & -b_1^4 b_2^1 & 0 & -b_1^2 b_2^1 \\
b_1^6 & b_2^6 & b_3^6 & b_1^2 (b_2^4 + b_3^3) & -b_1^2 b_2^1 b_2^1 & 0
\end{pmatrix}$$
(57)

where $b_2^1 b_1^2 \neq 0$. Taking suitable values for the b_i^i 's, equivalence by Φ in (56) leads to the case where

$$\xi_1^5=\xi_5^5=\xi_1^6=\xi_3^6=\xi_4^6=\xi_5^6=\xi_1^3=\xi_1^4=0$$
 and moreover $\xi_1^2=1$:

$$J(\xi_3^4,\xi_5^5,\xi_5^6) = \begin{pmatrix} -\frac{\xi_5^5^2 + 1 - \xi_5^6 \xi_5^5 \xi_3^4}{\xi_5^6 \xi_3^4} & -\frac{(\xi_5^5^2 + 1 - \xi_5^6 \xi_5^5 \xi_3^4)^2}{(\xi_5^6 \xi_3^4)^2} - 1 & 0 & 0 & 0 & 0 \\ 1 & \frac{\xi_5^5^2 + 1 - \xi_5^6 \xi_5^4 \xi_3^4}{\xi_5^6 \xi_3^4} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -(\xi_5^5 + \xi_3^4 - \xi_5^6 \xi_3^4) & -\frac{(\xi_5^5 + \xi_3^4 - \xi_5^6 \xi_3^4)^2 + 1}{\xi_3^4} & 0 & 0 \\ 0 & 0 & \xi_3^4 & \xi_5^5 + \xi_3^4 - \xi_5^6 \xi_3^4 & 0 & 0 \\ 0 & 0 & 0 & 0 & \xi_5^5 + \xi_3^4 - \xi_5^6 \xi_3^4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \xi_5^5 - \frac{\xi_5^5^2 + 1}{\xi_5^6} \\ 0 & 0 & 0 & 0 & 0 & \xi_5^6 - \xi_5^5 \end{pmatrix}$$

where $\xi_3^4 \xi_5^6 \neq 0$.

Commutation relations of $\mathfrak{m}: [\tilde{x}_1, \tilde{x}_3] = \frac{1}{\xi_5^6} \left((-\xi_5^5 \xi_3^4 + \xi_5^{5^2} + 1) \tilde{x}_5 + (-\xi_5^6 \xi_3^4 + \xi_5^5) \tilde{x}_6 \right);$ $[\tilde{x}_1, \tilde{x}_4] = \frac{1}{\xi_5^6 \xi_3^4} \left((\xi_5^{5\,2} + 1)(\xi_5^5 + \xi_3^4) + \xi_5^6 \xi_5^5 \xi_3^4 (\xi_5^6 \xi_3^4 - 2\xi_5^5 - \xi_3^4) \right) \tilde{x}_5 + \frac{1}{\xi_3^4} \left((\xi_5^6 \xi_3^4 - \xi_5^5)^2 + \xi_3^4 (\xi_5^5 - \xi_5^6 \xi_3^4) + 1 \right) \tilde{x}_6;$

 $J(\xi_3^4, \xi_5^5, \xi_5^6), J(\eta_3^4, \eta_5^5, \eta_5^6)$ as in (58) are equivalent under some first kind automorphism if and only if $\eta_3^4 = \xi_3^4, \eta_5^5 = \xi_5^5, \eta_5^6 = \xi_5^6$. They are equivalent under some second kind automorphism if and only if $\eta_3^4 = -((\xi_5^6 \xi_3^4 - \xi_5^5)^2 + 1)/\xi_3^4$, $\eta_5^5 = -\xi_5^5$, $\eta_5^6 = \xi_5^6 \xi_3^{4^2}/((\xi_5^6 \xi_3^4 - \xi_5^5)^2 + 1)$. From (54), $\mathfrak{X}_{6,5}$ is a submanifold of dimension 10 in \mathbb{R}^{36} . Each CS is equivalent to some

 $J(\xi_3^4, \xi_5^5, \xi_5^6)$ in (58).

8.1

$$X_1 = \frac{\partial}{\partial x^1} - y^1 \frac{\partial}{\partial y^2} - y^2 \frac{\partial}{\partial x^3} + \frac{(y^1)^2}{2} \frac{\partial}{\partial y^3} \quad , \quad X_2 = \frac{\partial}{\partial y^1} - (x^2 + y^2) \frac{\partial}{\partial y^3}.$$

Let G denote the group G_0 endowed with the left invariant structure of complex manifold defined by $J(\xi_3^4, \xi_5^5, \xi_5^6)$ in (58) where $\xi_3^4 \xi_5^6 \neq 0$. Then $H_{\mathbb{C}}(G) = \{ f \in C^{\infty}(G_0) : \tilde{X}_j^- f = 0 \ \forall j = 1, 3, 5 \}$.

$$\begin{split} \tilde{X}_1^- &= 2 \frac{\partial}{\partial \overline{w^1}} - y^1 (1+iA) \frac{\partial}{\partial y^2} - y^2 (1+iA) \frac{\partial}{\partial x^3} + \left(\frac{(y^1)^2}{2} (1+iA) - i(x^2+y^2) \right) \frac{\partial}{\partial y^3} \quad , \\ \tilde{X}_3^- &= 2 \frac{\partial}{\partial \overline{w^2}} \quad , \quad \tilde{X}_5^- = 2 \frac{\partial}{\partial \overline{w^3}} \quad , \end{split}$$

where

$$w^{1} = x^{1} - Ay^{1} + iy^{1}$$

$$w^{2} = x^{2} + \frac{\xi_{5}^{5} + \xi_{3}^{4} - \xi_{5}^{6}\xi_{3}^{4}}{\xi_{3}^{4}}y^{2} + \frac{i}{\xi_{3}^{4}}y^{2}$$

$$w^{3} = x^{3} - \frac{\xi_{5}^{5}}{\xi_{5}^{6}}y^{3} + \frac{i}{\xi_{5}^{6}}y^{3}$$

$$A = -\frac{\xi_{5}^{52} + 1 - \xi_{5}^{6}\xi_{5}^{5}\xi_{3}^{4}}{\xi_{5}^{6}\xi_{3}^{4}}.$$

Then $f \in C^{\infty}(G_0)$ is in $H_{\mathbb{C}}(G)$ if and only if it is holomorphic with respect to w^2 and w^3 and satisfies the equation

$$2\frac{\partial f}{\partial \overline{w^{1}}} - \frac{w^{1} - \overline{w^{1}}}{2i} \frac{(1 + iA)(\xi_{5}^{5} + \xi_{3}^{4} - \xi_{5}^{6}\xi_{3}^{4} + i)}{\xi_{3}^{4}} \frac{\partial f}{\partial w^{2}} - \left[(1 + iA)\xi_{3}^{4} \frac{w^{2} - \overline{w^{2}}}{2i} + \left(\frac{(w^{1} - \overline{w^{1}})^{2}}{8} (1 + iA) + i \left(\frac{w^{2} + \overline{w^{2}}}{2} - (\xi_{5}^{5} - \xi_{5}^{6}\xi_{3}^{4}) \frac{w^{2} - \overline{w^{2}}}{2i} \right) \right) \frac{i - \xi_{5}^{5}}{\xi_{5}^{6}} \right] \frac{\partial f}{\partial w^{3}} = 0.$$

The 3 functions

$$\varphi^{1} = w^{1} \quad , \quad \varphi^{2} = w^{2} + \frac{1 + iA}{4i\xi_{3}^{4}} (\xi_{5}^{5} + \xi_{3}^{4} - \xi_{5}^{6}\xi_{3}^{4} + i) \left(w^{1}\overline{w^{1}} - \frac{(\overline{w^{1}})^{2}}{2} \right) \quad ,$$

$$\varphi^{3} = w^{3} + \frac{1}{48\xi_{5}^{6^{2}}\xi_{3}^{4^{2}}} \overline{w^{1}}^{3} (-2i\xi_{5}^{6^{2}}\xi_{5}^{5^{2}}\xi_{3}^{4^{2}} - 4\xi_{5}^{6^{2}}\xi_{5}^{5}\xi_{3}^{4^{2}} + 2i\xi_{5}^{6^{2}}\xi_{3}^{4^{2}} + 4i\xi_{5}^{6}\xi_{5}^{5^{3}}\xi_{3}^{4} + i\xi_{5}^{6}\xi_{5}^{5^{2}}\xi_{3}^{4^{2}} + 4\xi_{5}^{6}\xi_{5}^{5^{2}}\xi_{3}^{4} + 2\xi_{5}^{6}\xi_{5}^{5}\xi_{3}^{4^{2}} + 4\xi_{5}^{6}\xi_{5}^{5}\xi_{3}^{4} - 4i\xi_{5}^{6^{2}}\xi_{5}^{4^{2}} + 4\xi_{5}^{6}\xi_{5}^{5^{2}}\xi_{3}^{4} + 2\xi_{5}^{6}\xi_{5}^{5}\xi_{3}^{4} - 4i\xi_{5}^{5^{2}}\xi_{3}^{4} - 4i\xi_{5}^{5^{2}}\xi_{3}^{4} - 4i\xi_{5}^{5^{2}}\xi_{3}^{4} - 2i\xi_{5}^{5}\xi_{3}^{4} - 2i\xi_{5}^{5}\xi_{3}^{4} - 2i\xi_{5}^{5}\xi_{3}^{4} - 2i\xi_{5}^{5}\xi_{3}^{4} - 2i\xi_{5}^{5}\xi_{5}^{4}\xi_{3}^{4} - 2i\xi_{5}^{5}\xi_{5}^{4}\xi_{3}^{4} - 2i\xi_{5}^{6}\xi_{5}^{5}\xi_{3}^{4} - 2i\xi_{5}^{6}\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4} - 2i\xi_{5}^{6}\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{$$

are holomorphic. Let $F: G \to \mathbb{C}^3$ defined by $F = (\varphi^1, \varphi^2, \varphi^3)$. F is a global chart on G. We determine now how the multiplication of G looks like in that chart. Let $a, x \in G$ with respective second kind canonical coordinates $(x^1, y^1, x^2, y^2, x^3, y^3), (\alpha^1, \beta^1, \alpha^2, \beta^2, \alpha^3, \beta^3)$ as in (1). With obvious notations, computations yield:

$$\begin{array}{rcl} w_{ax}^1 & = & w_a^1 + w_x^1 \\ w_{ax}^2 & = & w_a^2 + w_x^2 - \frac{b^1 x^1}{\xi_3^4} \left(\xi_5^5 + \xi_3^4 - \xi_5^6 \xi_3^4 + i \right) \\ w_{ax}^3 & = & w_a^3 + w_x^3 - b^2 x^1 + \frac{1}{2} b^1 (x^1)^2 + \frac{i - \xi_5^5}{\xi_5^6} \left(\frac{1}{2} \left(b^1 \right)^2 x^1 - b^2 y^1 + b^1 x^1 y^1 - a^2 y^1 \right). \end{array}$$

We then get

$$\begin{split} \varphi_{ax}^1 &= \varphi_a^1 + \varphi_x^1 \quad, \quad \varphi_{ax}^2 = \varphi_a^2 + \varphi_x^2 + C\varphi_x^1 \quad, \quad \varphi_{ax}^3 = \varphi_a^3 + \varphi_x^3 + D_1(\varphi_x^1)^2 + D_2\varphi_x^1 + D_3\varphi_x^2 \\ \text{where } C &= (\overline{\varphi_a^1}(i\xi_5^6\xi_3^4 - i\xi_5^5 - i\xi_3^4 + 1))/(2\xi_3^4) + (\varphi_a^1(-\xi_5^6\xi_5^5\xi_3^4^2 - i\xi_5^6\xi_5^2\xi_3^4 + 2\xi_5^6\xi_5^5\xi_3^4 + \xi_5^6\xi_5^5\xi_3^4 + 2i\xi_5^6\xi_5^5\xi_3^4 - i\xi_5^5 - \xi_5^5 - \xi_3^5 - \xi_5^5 - \xi_3^5 - \xi_5^5 - \xi_3^4 - i))/(4\xi_5^6\xi_3^4); \\ D_1 &= (\overline{\varphi_a^1}(-i\xi_5^6\xi_5^5\xi_3^4 + 2\xi_5^6\xi_5^5\xi_3^4 + i\xi_5^6\xi_5^5\xi_3^4 + 2i\xi_5^6\xi_5^5\xi_3^4 - 2i\xi_5^6\xi_5^5\xi_3^4 - 2i\xi_5^6\xi_5^5\xi_3^4 + 2i\xi_5^6\xi_5^5\xi_3^4 + 2i\xi_5^6\xi_5^5\xi_3^4 - 2i\xi_5^6\xi_5^5\xi_3^4 - 2i\xi_5^6\xi_5^5\xi_3^4 + 2i\xi_5^6\xi_5^5\xi_3^4 +$$

9 Lie Algebra $\mathcal{G}_{6,8}$ (isomorphic to M9).

Commutation relations for $\mathcal{G}_{6,8}$: $[x_1, x_2] = x_4$; $[x_1, x_4] = x_5$; $[x_2, x_3] = x_5$; $[x_2, x_4] = x_6$.

$$J = \begin{pmatrix} \frac{\xi_{5}^{5}\xi_{3}^{4} + \xi_{5}^{5}\xi_{1}^{2} - \xi_{3}^{3}\xi_{1}^{2}}{\xi_{3}^{4}} & -\frac{(\xi_{5}^{5}\xi_{3}^{4} + \xi_{5}^{5}\xi_{1}^{2} - \xi_{3}^{3}\xi_{1}^{2})^{2} + \xi_{3}^{4}}{\xi_{3}^{4}\xi_{1}^{2}} & 0 & 0 & 0 & 0 \\ \xi_{1}^{2} & -\frac{\xi_{5}^{5}\xi_{3}^{4} + \xi_{5}^{5}\xi_{1}^{2} - \xi_{3}^{3}\xi_{1}^{2}}{\xi_{3}^{3}} & 0 & 0 & 0 & 0 \\ \xi_{1}^{3} & \xi_{2}^{3} & \xi_{3}^{3} & -\frac{\xi_{3}^{3}^{2} + 1}{\xi_{3}^{4}} & 0 & 0 \\ * & * & * & \xi_{3}^{4} & -\xi_{3}^{3} & 0 & 0 \\ * & * & * & -\frac{(\xi_{4}^{6}\xi_{3}^{4} - \xi_{3}^{6}\xi_{5}^{3} + \xi_{3}^{6}\xi_{3}^{3})(\xi_{3}^{4} + \xi_{1}^{2})}{\xi_{3}^{4}\xi_{1}^{2}} & * & \xi_{5}^{5} & -\frac{(\xi_{5}^{5}^{2} + 1)(\xi_{3}^{4} + \xi_{1}^{2})}{\xi_{3}^{4}\xi_{1}^{2}} \\ \xi_{1}^{6} & \xi_{2}^{6} & \xi_{2}^{6} & \xi_{3}^{6} & \xi_{3}^{6}$$

where $\mathbf{J_1^4} = (\xi_3^4 \xi_3^3 \xi_1^3 + \xi_3^4 \xi_2^3 \xi_1^2 - \xi_3^3 \xi_1^3 \xi_1^2 + (\xi_3^4 + \xi_1^2) \xi_5^5 \xi_1^3)/(\xi_3^{3^2} + 1); \quad \mathbf{J_2^4} = (-(((\xi_5^5 - \xi_3^3)(\xi_3^4 \xi_3^3 \xi_1^3 + \xi_3^4 \xi_2^3 \xi_1^2 - \xi_3^3 \xi_1^3 \xi_1^2) - (\xi_3^4 + \xi_1^2) \xi_5^5 \xi_3^3 \xi_1^3)(\xi_3^4 + \xi_1^2) + ((\xi_3^4 + \xi_1^2)^2 \xi_5^5 + (\xi_3^{3^2} + 1) \xi_3^4 \xi_1^2))/((\xi_3^{3^2} + 1) \xi_3^4 \xi_1^2); \quad \mathbf{J_1^5} = (-(\xi_1^6 \xi_5^5 \xi_3^4 \xi_1^3 + \xi_3^4 \xi_1^2 + \xi_3^4 \xi_1^2) + (\xi_3^4 + \xi_1^4)^2 \xi_3^4 \xi_1^4 + \xi$ $\begin{aligned} &\xi_3^*\xi_1^*\xi_1^*) - (\xi_3^* + \xi_1^*)\xi_2^*\xi_3^*\xi_1^*)(\xi_3^* + \xi_1^*) + ((\xi_3^* + \xi_1^*)^2\xi_2^* + (\xi_3^* + 1)\xi_3^*)\xi_1^*))/((\xi_3^* + 1)\xi_3^*\xi_1^*); \quad \mathbf{J}_1^* = (-(\xi_4^0\xi_5^*\xi_3^*^*\xi_1^* + \xi_4^6\xi_5^*\xi_4^*\xi_1^3\xi_1^2 + \xi_4^6\xi_3^*\xi_3^*\xi_1^2 + \xi_4^6\xi_3^*\xi_3^3\xi_1^2 + \xi_4^6\xi_3^*\xi_3^3\xi_1^2 + \xi_4^6\xi_3^*\xi_3^3\xi_1^2 + \xi_4^6\xi_3^*\xi_3^3\xi_1^2 + \xi_4^6\xi_3^*\xi_3^3\xi_1^2 + \xi_4^6\xi_3^*\xi_3^3\xi_1^2 + \xi_4^6\xi_5^*\xi_3^*\xi_3^3\xi_1^2 + \xi_4^6\xi_5^*\xi_3^3\xi_1^2 + \xi_4^6\xi_5^*\xi_3^3\xi_1^2 + \xi_4^6\xi_5^*\xi_3^3\xi_3^2\xi_1^2 + \xi_4^6\xi_5^*\xi_3^3\xi_3^2\xi_1^2$

$$\xi_1^2 \xi_3^4 (\xi_3^4 + \xi_1^2) \neq 0. \tag{60}$$

Now the automorphism group of $\mathcal{G}_{6,8}$ is comprised of the matrices

$$\Phi = \begin{pmatrix} b_1^1 & b_2^1 & 0 & 0 & 0 & 0 \\ 0 & b_2^2 & 0 & 0 & 0 & 0 \\ b_1^3 & b_2^3 & b_1^{12} & 0 & 0 & 0 \\ b_1^4 & b_2^4 & 0 & b_2^2 b_1^1 & 0 & 0 \\ b_1^5 & b_2^5 & b_3^5 & -(b_1^4 b_2^1 + b_1^3 b_2^2 - b_2^4 b_1^1) & b_2^2 b_1^{12} & b_2^2 b_2^1 b_1^1 \\ b_1^6 & b_2^6 & b_3^6 & -b_1^4 b_2^2 & 0 & b_2^2^2 b_1^1 \end{pmatrix}$$

where $b_2^2 b_1^1 \neq 0$. Taking suitable values for the b_i^i 's, we are led to the case where $\xi_1^2 = 1, \xi_1^3 = \xi_2^3 =$ $\xi_5^5 = \xi_1^6 = \xi_3^6 = 0$ and moreover $\xi_2^6 = \xi_4^6 = 0$. Hence any J in (59) is equivalent to:

$$J(\xi_3^3, \xi_3^4) = \begin{pmatrix} -\xi_3^3/\xi_3^4 & -(\xi_3^{4^2} + \xi_3^{3^2})/\xi_3^{4^2} & 0 & 0 & 0 & 0\\ 1 & \xi_3^3/\xi_3^4 & 0 & 0 & 0 & 0\\ 0 & 0 & \xi_3^3 & -(\xi_3^{3^2} + 1)/\xi_3^4 & 0 & 0\\ 0 & 0 & \xi_3^4 & -\xi_3^3 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & -(\xi_3^4 + 1)/\xi_3^4\\ 0 & 0 & 0 & 0 & \xi_3^4/(\xi_3^4 + 1) & 0 \end{pmatrix}$$
(61)

where $\xi_3^4 \neq 0, -1$. $J(\xi_3^3, \xi_3^4) \cong J(\eta_3^3, \eta_3^4)$ if and only if $\xi_3^3 = \eta_3^3$ and $\xi_3^4 = \eta_3^4$. Commutation relations of $\mathfrak{m}: [\tilde{x}_1, \tilde{x}_3] = -\xi_3^4 \tilde{x}_6; [\tilde{x}_2, \tilde{x}_3] = (\xi_3^4 + 1)\tilde{x}_5 - \xi_3^3 \tilde{x}_6; [\tilde{x}_2, \tilde{x}_4] = \frac{\xi_3^3 (-\xi_3^{4^2} + 1)}{\xi_3^{4^2}} \tilde{x}_5 + \frac{\xi_3^4 + \xi_3^{3^2}}{\xi_3^4} \tilde{x}_6.$ From (59), $\mathfrak{X}_{6,8}$ is a submanifold of dimension 10 in \mathbb{R}^{36} . It is the disjoint union of the contin-

uously many orbits of the $J(\xi_3^3, \xi_3^4)$ defined in (61) where $\xi_3^4 \neq 0, -1$.

9.1

$$X_1 = \frac{\partial}{\partial x^1} - y^1 \frac{\partial}{\partial y^2} + y^2 \frac{\partial}{\partial x^3} + \frac{(y^1)^2}{2} \frac{\partial}{\partial y^3} \quad , \quad X_2 = \frac{\partial}{\partial y^1} - x^2 \frac{\partial}{\partial x^3} - y^2 \frac{\partial}{\partial y^3}.$$

Let G denote the group G_0 endowed with the left invariant structure of complex manifold defined by $J(\xi_3^3, \xi_3^4)$ defined in (61) where $\xi_3^4 \neq 0, -1$. Let $H_{\mathbb{C}}(G)$ the space of complex valued holomorphic functions on G. Then $H_{\mathbb{C}}(G) = \{ f \in C^{\infty}(G_0) \; ; \; \tilde{X}_j^- \; f = 0 \; \forall j = 1, 3, 5 \}$. One has

$$\begin{array}{lcl} \tilde{X}_1^- & = & 2\frac{\partial}{\partial\overline{w^1}} - y^1\left(1 - \frac{i\xi_3^3}{\xi_3^4}\right)\frac{\partial}{\partial y^2} - \left(y^2\left(1 - \frac{i\xi_3^3}{\xi_3^4}\right) + ix^2\right)\frac{\partial}{\partial x^3} + \left(\frac{(y^1)^2}{2}\left(1 - \frac{i\xi_3^3}{\xi_3^4}\right) - iy^2\right)\frac{\partial}{\partial y^3} \quad , \\ \tilde{X}_3^- & = & 2\frac{\partial}{\partial\overline{w^2}} \quad , \quad \tilde{X}_5^- = 2\frac{\partial}{\partial\overline{w^3}} \quad , \end{array}$$

where $w^1=x^1+\frac{\xi_3^3}{\xi_3^4}\,y^1+iy^1$, $w^2=x^2-\frac{\xi_3^3}{\xi_3^4}\,y^2+\frac{i}{\xi_3^4}\,y^2$, $w^3=x^3+i\,\frac{\xi_3^4+1}{\xi_3^4}\,y^3$. Then $f\in C^\infty(G_0)$ is in $H_{\mathbb{C}}(G)$ if and only if it is holomorphic with respect to w^2 and w^3 and satisfies the equation

$$2\frac{\partial f}{\partial \overline{w^1}} - iA\frac{w^1 - \overline{w^1}}{2}\frac{\partial f}{\partial w^2} - \left(iw^2 + B\frac{(w^1 - \overline{w^1})^2}{8}\right)\frac{\partial f}{\partial w^3} = 0$$

where

$$A = \frac{1}{\xi_3^4} \left(\xi_3^3 \left(1 - \frac{1}{\xi_3^4} \right) - i \left(1 + \frac{\xi_3^{3^2}}{\xi_3^4} \right) \right) \quad , \quad B = \frac{\xi_3^4 + 1}{\xi_3^{4^2}} \left(\xi_3^3 + i \xi_3^4 \right) .$$

The 3 functions

$$\begin{split} \varphi^1 &= w^1 \quad , \quad \varphi^2 = w^2 + \frac{iA}{4} \left(w^1 \overline{w^1} - \frac{(\overline{w^1})^2}{2} \right) \quad , \\ \varphi^3 &= w^3 + \frac{i}{2} \overline{w^1} w^2 - \frac{B}{48} \left(w^1 - \overline{w^1} \right)^3 - \frac{A}{16} w^1 (\overline{w^1})^2 + \frac{A}{24} (\overline{w^1})^3 \end{split}$$

are holomorphic. Let $F:G\to\mathbb{C}^3$ defined by $F=(\varphi^1,\varphi^2,\varphi^3)$. F is a global chart on G. We determine now how the multiplication of G looks like in that chart. Let $a,x\in G$ with respective second kind canonical coordinates $(x^1,y^1,x^2,y^2,x^3,y^3),(\alpha^1,\beta^1,\alpha^2,\beta^2,\alpha^3,\beta^3)$ as in (1). With obvious notations, computations yield:

$$\begin{array}{lll} w_{ax}^1 & = & w_a^1 + w_x^1 & , & w_{ax}^2 = w_a^2 + w_x^2 + b^1 x^1 \frac{\xi_3^3 - i}{\xi_3^4} & , \\ \\ w_{ax}^3 & = & w_a^3 + w_x^3 - b^2 x^1 + b^1 \frac{(x^1)^2}{2} - a^2 y^1 + i \frac{\xi_3^4 + 1}{\xi_3^4} \left(\frac{(b^1)^2}{2} x^1 - (b^2 - b^1 x^1) y^1 \right). \end{array}$$

We then get

$$\varphi_{ax}^{1} = \varphi_{a}^{1} + \varphi_{x}^{1} \quad , \quad \varphi_{ax}^{2} = \varphi_{a}^{2} + \varphi_{x}^{2} + \chi^{2}(a,x) \quad , \quad \varphi_{ax}^{3} = \varphi_{a}^{3} + \varphi_{x}^{3} + \chi^{3}(a,x) \quad ,$$

where

$$\chi^2(a,x) = \frac{\xi_3^3 - i}{4\xi_3^{4^2}} \, \varphi_x^1 \left(2i \xi_3^4 \overline{\varphi_a^1} + (\xi_3^3 - i \xi_3^4) \varphi_a^1 \right) \quad ,$$

$$\begin{split} \chi^3(a,x) &= \frac{i}{2} \, \varphi_x^2 \overline{\varphi_a^1} + \frac{1}{16 \xi_3^{4^2}} \, (\varphi_x^1)^2 (4i \xi_3^{4^2} - (\xi_3^3 - i)(3 \xi_3^4 + i \xi_3^3)) \left(\overline{\varphi_a^1} - \varphi_a^1 \right) \\ &+ \varphi_x^1 \left(\frac{1}{16 \xi_3^4} \, (\overline{\varphi_a^1})^2 (-\xi_3^3 (\xi_3^4 - i \xi_3^3) - i \xi_3^4 - 3 \xi_3^3 + 2i) \right. \\ &+ \frac{1}{16 \xi_3^4} \, (\varphi_a^1)^2 (-\xi_3^3 (\xi_3^4 - i \xi_3^3) - i \xi_3^4 + \xi_3^3 - 2i) \\ &+ \frac{\xi_3^3 (\xi_3^4 - i \xi_3^3)}{4 \xi_3^4} \, \overline{\varphi_a^1} \varphi_a^1 - \frac{i \xi_3^4}{2} \, \overline{\varphi_a^2} + \frac{i (\xi_3^4 + 1)}{2} \, \varphi_a^2 \right). \end{split}$$

10 Lie Algebra M10.

Commutation relations for $M10: [x_1, x_2] = x_3; [x_1, x_3] = x_5; [x_1, x_4] = x_6; [x_2, x_3] = -x_6; [x_2, x_4] = x_5.$

10.1 Case $\xi_3^4 \neq \xi_1^2$.

$$J = \begin{pmatrix} \xi_1^1 & -\frac{\xi_1^{12}+1}{\xi_1^2} & 0 & 0 & 0 & 0 \\ \xi_1^2 & -\xi_1^1 & 0 & 0 & 0 & 0 \\ \xi_1^3 & \frac{(\xi_3^{32}+1)\xi_1^4 - (\xi_3^3+\xi_1^1)\xi_3^4\xi_1^3}{\xi_3^4\xi_1^2} & \frac{\xi_3^3}{\xi_3^4} & -\frac{\xi_3^{32}+1}{\xi_3^4} & 0 & 0 \\ \xi_1^4 & \frac{(\xi_3^3-\xi_1^1)\xi_1^4 - \xi_3^4\xi_1^3}{\xi_1^2} & \frac{\xi_3^4}{\xi_3^4} & -\xi_3^3 & 0 & 0 \\ * & * & * & \xi_3^5 & * & r & -\frac{r^2+1}{b} \\ \xi_1^6 & \xi_2^6 & \xi_3^6 & * & b & -r \end{pmatrix}$$
(62)

 $\begin{aligned} \text{where } \mathbf{J_5^5} &= (((2\xi_3^4\xi_1^1 - \xi_3^3\xi_1^2)\xi_1^2 + (\xi_1^{12} + 1)\xi_3^3 - (\xi_1^{12} + 1 + \xi_1^{22})\xi_1^1)\xi_1^6\xi_3^4 + ((\xi_3^4\xi_1^{12} + \xi_3^4 - 2\xi_3^3\xi_1^2\xi_1^1 - 2\xi_1^2)\xi_3^4 + (\xi_3^{32} + 1)\xi_1^{22})\xi_5^5\xi_1^4 + (\xi_3^{42}\xi_1^2 - \xi_3^4\xi_1^{12} - \xi_3^4\xi_1^2)\xi_3^4\xi_1^4 - ((((\xi_3^3 - \xi_1^1)\xi_1^4 - \xi_3^4\xi_1^3)(\xi_3^{32} + 1) - (\xi_3^{42}\xi_1^3 - \xi_3^4\xi_1^4\xi_3^3 - \xi_3^4\xi_1^4\xi_1^1 + 2\xi_1^4\xi_3^3\xi_1^2)\xi_3^4\xi_1^2 + (\xi_1^{12} + 1 + \xi_1^2)\xi_2^3\xi_3^4 + (\xi_1^3 - \xi_3^4\xi_1^4)\xi_1^2 + (\xi_1^3 - \xi_3^4\xi_1^4)(\xi_3^3 - \xi_3^4\xi_1^4)((\xi_3^4 + \xi_1^3 - \xi_3^4\xi_1^4)\xi_1^2 + (\xi_3^4 - \xi_3^4)\xi_1^4 + (\xi_3^4 - \xi_3^4)\xi_1^4 + (\xi_3^4 - \xi_3^4)(\xi_3^4 - \xi_3^4 - \xi_3^4)(\xi_3^4 - \xi_3^4)(\xi_3^4 - \xi_3^4 - \xi_3^4)(\xi_3^4 - \xi_3^4 - \xi_3^4 - \xi_3^4)(\xi_3^4 - \xi_3^4 - \xi_3^4$

 $\xi_{3}^{6} \xi_{3}^{4} \xi_{1}^{4} - 2\xi_{3}^{6} \xi_{3}^{4} \xi_{1}^{3} \xi_{1}^{2} \xi_{1}^{1} - 2\xi_{3}^{6} \xi_{3}^{4} \xi_{1}^{2} \xi_{1}^{1} + 2\xi_{3}^{6} \xi_{1}^{4} \xi_{3}^{3} \xi_{1}^{2} \xi_{1}^{1} - \xi_{3}^{6} \xi_{1}^{4} \xi_{3}^{2} \xi_{1}^{2} \xi_{1}^{1} + \xi_{3}^{6} \xi_{1}^{4} \xi_{3}^{2} \xi_{1}^{2} \xi_{1}^{1} + \xi_{2}^{6} \xi_{3}^{4} \xi_{3}^{2} \xi_{1}^{2} \xi_{1}^{1} + \xi_{2}^{6} \xi_{3}^{4} \xi_{3$

$$\xi_1^2 \xi_3^4 (\xi_1^2 - \xi_3^4) \neq 0 \tag{63}$$

$$((\xi_3^4 - \xi_1^2)\xi_1^2 - ({\xi_1^1}^2 + 1))\xi_3^4 + ({\xi_3^3}^2 + 1)\xi_1^2 \neq 0.$$
 (64)

Note that $b \neq 0$ since Num $(b) = -\|Y - Z\|^2$ where $Y = \xi_3^4 \begin{pmatrix} \xi_1^1 \\ 1 \end{pmatrix}$, $Z = \xi_1^2 \begin{pmatrix} \xi_3^3 \\ 1 \end{pmatrix}$. Now the automorphism group of M10 is comprised of the matrices

$$\Phi = \begin{pmatrix}
b_1^1 & b_1^2 u & 0 & 0 & 0 & 0 & 0 \\
b_1^2 & -b_1^1 u & 0 & 0 & 0 & 0 & 0 \\
b_1^3 & b_2^3 & -(b_1^{2^2} + b_1^{1^2}) u & 0 & 0 & 0 \\
b_1^4 & b_2^4 & 0 & b_1^{2^2} + b_1^{1^2} & 0 & 0 \\
b_1^5 & b_2^5 & b_2^3 b_1^1 - b_1^3 b_1^2 u + b_1^4 b_1^1 u + b_2^4 b_1^2 & b_2^5 & -(b_1^{2^2} + b_1^{1^2}) b_1^1 u & (b_1^{2^2} + b_1^{1^2}) b_1^2 \\
b_1^6 & b_2^6 & -(b_2^3 b_1^2 + b_1^3 b_1^1 u + b_1^4 b_1^2 u - b_2^4 b_1^1) & b_4^6 & (b_1^{2^2} + b_1^{1^2}) b_1^2 u & (b_1^{2^2} + b_1^{1^2}) b_1^1
\end{pmatrix}$$
(65)

where $u^2=1$ and $b_1^{2^2}+b_1^{1^2}\neq 0$. Equivalence by a suitable block-diagonal automorphism (65) leads to the case $\xi_1^1=0$ and we then can suppose $0<\xi_1^2\leqslant 1$. Equivalence by

$$\Phi = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & \xi_1^3/\xi_1^2 & 1 & 0 & 0 & 0 \\
0 & \xi_1^4/\xi_1^2 & 0 & 1 & 0 & 0 \\
0 & 0 & \xi_1^3/\xi_1^2 & 0 & 1 & 0 \\
0 & 0 & \xi_1^4/\xi_1^2 & 0 & 0 & 1
\end{pmatrix}$$
(66)

leads to the case where moreover $\xi_1^3 = 0, \xi_1^4 = 0$. Then, equivalence by

$$\Phi = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ b_1^5 & b_2^5 & 0 & \xi_3^5/\xi_3^4 & 1 & 0 \\ 0 & 0 & 0 & \xi_3^6/\xi_3^4 & 0 & 1 \end{pmatrix}$$

with suitable b_1^5, b_2^5 leads to the case where moreover $\xi_1^3 = 0, \xi_1^4 = 0, \xi_3^5 = 0, \xi_1^6 = 0, \xi_2^6 = 0, \xi_3^6 = 0$:

$$J(\xi_1^2, \xi_3^3, \xi_3^4) = \operatorname{diag}\left(\begin{pmatrix} 0 & -\frac{1}{\xi_1^2} \\ \xi_1^2 & 0 \end{pmatrix}, \begin{pmatrix} \xi_3^3 & -\frac{\xi_3^{3^2}+1}{\xi_3^4} \\ \xi_3^4 & -\xi_3^3 \end{pmatrix}, \begin{pmatrix} r & -\frac{1+r^2}{b} \\ b & -r \end{pmatrix}\right)$$
(67)

where

$$0 < \xi_1^2 \leqslant 1; \quad \xi_1^2 \xi_3^4 (\xi_1^2 - \xi_3^4) \neq 0; \quad (\xi_3^4 \xi_1^2 - {\xi_1^2}^2 - 1)\xi_3^4 + ({\xi_3^3}^2 + 1)\xi_1^2 \neq 0$$
 (68)

and $r = ((\xi_1^2+1)(\xi_1^2-1)\xi_3^4\xi_3^3)/((\xi_3^4\xi_1^2-{\xi_1^2}^2-1)\xi_3^4+(\xi_3^{3^2}+1)\xi_1^2),$ $b = -((\xi_3^4-2\xi_1^2)\xi_3^4+(\xi_3^{3^2}+1)\xi_1^{2^2})/((\xi_3^4\xi_1^2-{\xi_1^2}^2-1)\xi_3^4+(\xi_3^{3^2}+1)\xi_1^2).$ Now suppose $J(\eta_1^2,\eta_3^3,\eta_3^4) = \Phi^{-1}J(\xi_1^2,\xi_3^3,\xi_3^4)\Phi$ where Φ is given in (65) and the η 's and ξ 's satisfy

Now suppose $J(\eta_1^2, \eta_3^3, \eta_3^4) = \Phi^{-1}J(\xi_1^2, \xi_3^3, \xi_3^4)\Phi$ where Φ is given in (65) and the η 's and ξ 's satisfy (68). Computing the matrix $J2 = \Phi^{-1}J(\xi_1^2, \xi_3^3, \xi_3^4)\Phi$, one gets $J2_1^1 = (b_1^2b_1^1(\xi_1^{2^2} - 1))/(\xi_1^2(b_1^{2^2} + b_1^{1^2}))$, $J2_1^2 = -(b_1^{2^2} + b_1^{1^2}\xi_1^{2^2})/(\xi_1^2u(b_1^{2^2} + b_1^{1^2}))$, $J2_3^3 = \xi_3^3$, $J2_3^4 = -\xi_3^4u$. From these formulae, we see that a necessary condition for equivalence is that $\eta_3^4 = -u\xi_3^4$ ($u = \pm 1$) and $\eta_3^3 = \xi_3^3$. As u = 1 would change the sign of ξ_1^2 , we conclude that u = -1. Now to keep $J2_1^1 = 0$, one must have either $\xi_1^2 = 1$

or $b_1^1b_1^2=0$. If $\xi_1^2=1$, or if $\xi_1^2<1$ and $b_1^2=0$, then $\eta_1^2=\xi_1^2$ and $\eta_3^3=\xi_3^3, \eta_3^4=\xi_3^4$. If $\xi_1^2<1$ and $b_1^1=0$, then $\eta_1^2=1/\xi_1^2>1$ which is contradictory. Hence $J(\eta_1^2,\eta_3^3,\eta_3^4)$ and $J(\xi_1^2,\xi_3^3,\xi_3^4)$ are not equivalent unless $\eta_1^2=\xi_1^2,\eta_3^3=\xi_3^3,\eta_3^4=\xi_3^4$. Commutation relations of $\mathfrak{m}: [\tilde{x}_1,\tilde{x}_3]=(-\xi_3^4\xi_1^2+1)\tilde{x}_5+\xi_3^3\xi_1^2\tilde{x}_6; [\tilde{x}_1,\tilde{x}_4]=\xi_3^3\xi_1^2\tilde{x}_5+\xi_3^4-\xi_1^2\tilde{x}_6; [\tilde{x}_2,\tilde{x}_3]=\frac{\xi_3^3}{\xi_1^2}\tilde{x}_5+\frac{\xi_3^4-\xi_1^2}{\xi_1^2}\tilde{x}_6; [\tilde{x}_2,\tilde{x}_4]=\frac{\xi_3^4\xi_1^2-\xi_3^3-1}{\xi_3^4\xi_1^2}\tilde{x}_5-\frac{\xi_3^3}{\xi_1^2}\tilde{x}_6.$

Case $\xi_3^4 = \xi_1^2, \xi_3^3 = \xi_1^1$.

In that case one has necessarily $\xi_1^1 = 0$.

$$J = \begin{pmatrix} 0 & -1/\xi_1^2 & 0 & 0 & 0 & 0 & 0 \\ \hline \xi_1^2 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \xi_1^3 & \xi_1^4 & 0 & -1/\xi_1^2 & 0 & 0 & 0 \\ \hline \xi_1^4 & -\xi_1^3 & \xi_1^2 & 0 & 0 & 0 \\ * & * & \xi_3^5 & ((\xi_5^{52} + 1)\xi_3^6 - \xi_5^6 \xi_5^5 \xi_3^5)/(\xi_5^6 \xi_1^2) & \hline \xi_5^5 & -(\xi_5^{52} + 1)/\xi_5^6 \\ \hline \xi_1^6 & \overline{\xi}_2^6 & \overline{\xi}_3^6 & -(\xi_5^6 \xi_3^5 - \xi_3^6 \xi_5^5)/\xi_1^2 & \overline{\xi}_5^6 & -\xi_5^5 \end{pmatrix}$$
(69)

 $\text{where } \mathbf{J_1^5} = (-(\xi_2^6 - \xi_1^6 \xi_5^5 \xi_1^2 + (\xi_5^5 \xi_1^4 + \xi_1^3 \xi_1^2) \xi_3^6 - \xi_5^6 \xi_3^5 \xi_1^4))/(\xi_5^6 \xi_1^2); \quad \mathbf{J_2^5} = (\xi_2^6 \xi_5^5 + \xi_1^6 \xi_1^2 + (\xi_5^5 \xi_1^3 \xi_1^2 - \xi_1^4) \xi_3^6 - \xi_5^6 \xi_3^5 \xi_1^3 \xi_1^2)/\xi_5^6; \text{ and } \mathbf{J_2^5} = (\xi_2^6 \xi_5^5 + \xi_1^6 \xi_1^2 + (\xi_5^6 \xi_1^2 \xi_1^2 + \xi_1^4) \xi_3^6 - \xi_5^6 \xi_3^5 \xi_1^3 \xi_1^2)/\xi_5^6;$ the parameters are subject to the condition

$$\xi_1^2 = \pm 1, \quad \xi_5^6 \neq 0.$$
 (70)

As in the preceding case, by equivalence by a suitable block-diagonal automorphism, we can suppose $\xi_5^5 = 0$, $0 < \xi_5^6 \leqslant 1$ and then equivalence by (66) leads to the case where moreover $\xi_1^3 = 0$, $\xi_1^4 = 0$. Then equivalence by

$$\Phi = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ (\xi_1^2 - \xi_1^6)/\xi_5^6 & \xi_2^6 \xi_1^2/(\xi_5^6 \xi_1^2) & 0 & \xi_3^5/\xi_1^2 & 1 & 0 \\ 0 & 0 & 0 & \xi_3^6/\xi_1^2 & 0 & 1 \end{pmatrix}$$

leads to the case where moreover $\xi_3^5 = 0, \xi_1^6 = 0, \xi_2^6 = 0, \xi_3^6 = 0$

$$J(\xi_1^2, \xi_5^6) = \operatorname{diag}\left(\begin{pmatrix} 0 & -\frac{1}{\xi_1^2} \\ \xi_1^2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -\frac{1}{\xi_1^2} \\ \xi_1^2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -\frac{1}{\xi_5^6} \\ \xi_5^6 & 0 \end{pmatrix}\right)$$
(71)

and the parameters are subject to the condition

$$\xi_1^2 = \pm 1, \ 0 < \xi_5^6 \leqslant 1. \tag{72}$$

As in the preceding case, we can see that $J(\eta_1^2,\eta_5^6)$ and $J(\xi_1^2,\xi_5^4)$ are not equivalent unless $\eta_1^2=\xi_1^2,\eta_5^6=\xi_5^6$. Commutation relations of $\mathfrak{m}:\mathfrak{m}$ is abelian. Since \mathfrak{m} is abelian, no $J(\xi_1^2,\xi_5^6)$ is equivalent to any $J(\xi_1^2, \xi_3^3, \xi_3^4)$ in (67).

10.3 Case $\xi_3^4 = \xi_1^2, \xi_3^3 \neq \xi_1^1$.

In that case one has necessarily $\xi_3^3 \neq -\xi_1^1$ as well.

where $\mathbf{k} = \mathbf{J_1^2} = -((\xi_3^3 + \xi_1^1)\xi_5^6)/(\xi_3^3 - \xi_1^1); \quad \mathbf{J_1^5} = ((\xi_5^6 \xi_1^6 \xi_3^3 + 2\xi_5^6 \xi_1^6 \xi_3^3 \xi_1^1 + \xi_5^6 \xi_3^6 \xi_1^6 \xi_1^3 - \xi_5^6 \xi_5^6 \xi_1^3 - \xi_5^6 \xi_2^6 \xi_3^3 \xi_1^1 + \xi_5^6 \xi_3^6 \xi_3^3 \xi_1^1 + \xi_5^6 \xi_3^6 \xi_3^3 \xi_1^1 - \xi_5^6 \xi_3^6 \xi_3^6 \xi_1^3 - \xi_5^6 \xi_3^6 \xi_3^6 \xi_1^3 - \xi_5^6 \xi_3^6 \xi_3^3 \xi_1^3 + \xi_5^6 \xi_3^6 \xi_3^3 \xi_1^3 + \xi_5^6 \xi_3^6 \xi_3^3 \xi_1^3 - \xi_5^6 \xi_1^6 \xi_3^3 \xi_1^3 - \xi_5^6 \xi_1^6 \xi_3^3 \xi_1^3 + \xi_5^6 \xi_3^6 \xi_3^3 \xi_1^3 + \xi_5^6 \xi_3^6 \xi_3^3 \xi_1^3 - \xi_5^6 \xi_1^6 \xi_3^3 \xi_1^3 - \xi_5^6 \xi_1^6 \xi_1^3 - \xi_5^6 \xi_1^6 \xi_1^3 - \xi_5^6 \xi_1^6 \xi_3^3 \xi_1^3 + \xi_5^6 \xi_3^6 \xi_3^3 \xi_1^3 + \xi_5^6 \xi_3^6 \xi_3^3 \xi_1^3 - \xi_5^6 \xi_1^6 \xi_1^3 + \xi_5^6 \xi_1^6 \xi_1^3 \xi_1^4 + \xi_5^6 \xi_1^6 \xi_1^3 \xi_1^4 + \xi_5^6 \xi_1^6 \xi_1^3 \xi_1^4 + \xi_5^6 \xi_1^6 \xi_1^3$

$$\xi_3^3 \neq \pm \xi_1^1, \ \xi_1^2 \xi_4^3 \xi_5^6 \neq 0. \tag{74}$$

As in the preceding cases, equivalence by a suitable block-diagonal automorphism leads to the case $\xi_1^1 = 0$. Equivalences by successively

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & -\xi_1^3/\xi_5^6 & 1 & 0 & 0 & 0 \\ 0 & -\xi_1^4/\xi_5^6 & 0 & 1 & 0 & 0 \\ 0 & 0 & -\xi_1^3/\xi_5^6 & 0 & 1 & 0 \\ 0 & 0 & -\xi_1^4/\xi_5^6 & 0 & 0 & 1 \end{pmatrix} \text{ and } \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ -\xi_1^6\xi_3^3/(\xi_5^6\xi_3^3) & -\xi_5^6\xi_2^6\xi_3^3/(\xi_5^6\xi_3^3) & 0 & -\xi_3^5/\xi_5^6 & 1 & 0 \\ 0 & 0 & 0 & 0 & -\xi_3^6/\xi_5^6 & 0 & 1 \end{pmatrix}$$

lead to the case where moreover $\xi_1^3=0, \xi_1^4=0$ and $\xi_3^5=0, \xi_1^6=0, \xi_2^6=0, \xi_3^6=0$:

$$J = \begin{pmatrix} 0 & 1/\xi_5^6 & 0 & 0 & 0 & 0 & 0 \\ -\xi_5^6 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \xi_3^3 & (\xi_3^{3^2} + 1)/\xi_5^6 & 0 & 0 & 0 \\ 0 & 0 & -\xi_5^6 & -\xi_3^3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & (\xi_5^6 + 1)(\xi_5^6 - 1)/\xi_3^3 & -((\xi_5^6^2 - 2)\xi_5^6^2 + \xi_3^{3^2} + 1)/(\xi_5^6 \xi_3^3^2) \\ 0 & 0 & 0 & 0 & \xi_5^6 & -(\xi_5^6 + 1)(\xi_5^6 - 1)/\xi_3^3 \end{pmatrix}$$
 (75)

Computing the matrix $J2=\Phi^{-1}J\Phi$ where Φ is given in (65) and $b_1^2=b_1^1=1$, one gets $J2_1^2=\frac{1+\xi_5^{6^2}}{2\xi_5^6}u$, $J2_3^4=\xi_5^6u$. Hence if $\xi_5^{6^2}\neq 1$ we are back to case 1 (10.1). Finally, if $\xi_5^{6^2}=1$, equivalence by $\Phi=\mathrm{diag}(1,-1,-1,1,-1,1)$ leads to the case where moreover $\xi_5^6=1$:

$$J(\xi_3^3) = \operatorname{diag}\left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} \xi_3^3 & \xi_3^{3^2} + 1 \\ -1 & -\xi_3^3 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\right) \qquad (\xi_3^3 \neq 0).$$
 (76)

 $J(\xi_3^3)$ and $J(\eta_3^3)$ are non equivalent unless $\eta_3^3 = \xi_3^3$, and $J(\xi_3^3)$ in (76) is equivalent neither to any $J(\xi_1^2, \xi_3^3, \xi_3^4)$ in (67) nor to any $J(\xi_1^2, \xi_5^6)$ in (71).

Commutation relations of \mathfrak{m} : $[\tilde{x}_1, \tilde{x}_3] = -\xi_3^3 \tilde{x}_6$; $[\tilde{x}_1, \tilde{x}_4] = -\xi_3^3 \tilde{x}_5 - \xi_3^{32} \tilde{x}_6$; $[\tilde{x}_2, \tilde{x}_3] = -\xi_3^3 \tilde{x}_5$; $[\tilde{x}_2, \tilde{x}_4] = -\xi_3^{32} \tilde{x}_5 + \xi_3^3 \tilde{x}_6$.

10.4 Conclusions.

To solve the initial system comprised of all the torsion equations and the equation $J^2 = -1$ in \mathbb{R}^{36} in the 3 cases 1 (10.1), 2.1 (10.2), 2.2 (10.3), one has to complete first a set of common steps, and then we are left with solving the system S of the remaining equations in the 12 variables

 $\xi_1^1, \xi_1^2, \xi_3^3, \xi_1^4, \xi_3^4, \xi_5^5, \xi_5^5, \xi_1^6, \xi_2^6, \xi_3^6, \xi_5^6$ in the open subset $\xi_5^6 \xi_3^4 \xi_1^2 \neq 0$ of \mathbb{R}^{12} . Among these equations, we single out the 2 equations 13|6 and 14|6 which read:

$$\begin{cases}
f = f_{13|6} = 0 \\
g = f_{14|6} = 0
\end{cases}$$
(77)

where : $f_{13|6} = \xi_5^6(\xi_3^3 + \xi_1^1) + \xi_5^5(\xi_1^2 - \xi_3^4) - \xi_3^4\xi_1^1 + \xi_3^3\xi_1^2$ and $f_{14|6} = (\xi_5^6(\xi_3^4\xi_1^2 - \xi_3^{3^2} - 1) + \xi_5^5\xi_3^4(\xi_3^3 - \xi_1^1) + \xi_3^4\xi_3^3\xi_1^1 + \xi_3^4 - (\xi_3^{3^2} + 1)\xi_1^2)/\xi_3^4$. In each of the 3 cases, the remaining system is equivalent to the system (77). To conclude that \mathfrak{X}_{M10} is a 10-dimensional submanifold of \mathbb{R}^{36} , it will be sufficient to prove that the preceding system is of maximal rank 2 at any point of \mathfrak{X}_{M10} , that is in each of the 3 cases some 2-jacobian doesn't vanish. In case 1, one has $\frac{D(f,g)}{D(\xi_5^5,\xi_5^6)} = -\frac{1}{\xi_3^4}(((\xi_3^4 - \xi_1^2)\xi_1^2 - (\xi_1^{1^2} + 1))\xi_3^4 + (\xi_3^{3^2} + 1)\xi_1^2) \neq 0$. In case 2.1, one has $\frac{D(f,g)}{D(\xi_1^1,\xi_1^2)} = (\xi_5^6 - \xi_1^2)^2 + \xi_5^{5^2} \neq 0$ if $\xi_5^5 \neq 0$. If $\xi_5^5 = 0$, $\frac{D(f,g)}{D(\xi_1^1,\xi_1^2)} = (\xi_5^6 - \xi_1^2)^2 + \xi_5^{5^2} = 0$ if $\xi_5^5 = 0$. If $\xi_5^5 = 0$, $\frac{D(f,g)}{D(\xi_1^1,\xi_2^2)} = (\xi_5^6 - \xi_1^2)^2 + \xi_5^{5^2} = 0$ if $\xi_5^5 = 0$. If $\xi_5^5 = 0$, $\xi_$

Any CS is equivalent to one and only one of the following: $J(\xi_1^2, \xi_3^3, \xi_3^4)$ in (67) or $J(\xi_1^2, \xi_5^6)$ in (71) or $J(\xi_3^3)$ in (76).

10.5

$$X_1 = \frac{\partial}{\partial x^1} - y^1 \frac{\partial}{\partial x^2} - x^2 \frac{\partial}{\partial x^3} - \left(y^2 + \frac{(y^1)^2}{2}\right) \frac{\partial}{\partial y^3} \quad , \quad X_2 = \frac{\partial}{\partial y^1} - y^2 \frac{\partial}{\partial x^3} + x^2 \frac{\partial}{\partial y^3}.$$

Let G denote the group G_0 endowed with the left invariant structure of complex manifold defined by $J(\xi_1^2, \xi_3^3, \xi_3^4)$ in (67) with conditions (68). Then $H_{\mathbb{C}}(G) = \{ f \in C^{\infty}(G_0) ; \tilde{X}_j^- f = 0 \ \forall j = 1, 3, 5 \}$. One has

$$\begin{split} \tilde{X}_1^- &= 2\frac{\partial}{\partial\overline{w^1}} - y^1\frac{\partial}{\partial x^2} - \left(x^2 + i\xi_1^2y^2\right)\frac{\partial}{\partial x^3} - \left(\frac{(y^1)^2}{2} + y^2 - i\xi_1^2x^2\right)\frac{\partial}{\partial y^3} ,\\ \tilde{X}_3^- &= 2\frac{\partial}{\partial\overline{w^2}} , \quad \tilde{X}_5^- = 2\frac{\partial}{\partial\overline{w^3}} , \end{split}$$

where

$$w^1 = x^1 + \frac{i}{\xi_1^2} y^1 \quad , \quad w^2 = x^2 - \frac{\xi_3^3}{\xi_2^4} y^2 + \frac{i}{\xi_2^4} y^2 \quad , \quad w^3 = x^3 - \frac{r}{b} y^3 + \frac{i}{b} y^3.$$

Then $f \in C^{\infty}(G_0)$ is in $H_{\mathbb{C}}(G)$ if and only if it is holomorphic with respect to w^2 and w^3 and satisfies the equation

$$2\frac{\partial f}{\partial \overline{w^{1}}} + i\xi_{1}^{2} \frac{w^{1} - \overline{w^{1}}}{2i} \frac{\partial f}{\partial w^{2}} + \frac{1}{8b} \left[\xi_{1}^{2^{2}}(r - i) \left(2\overline{w^{1}}w^{1} - (\overline{w^{1}})^{2} - w^{1^{2}} \right) - 4\overline{w^{2}} \left(i(c + \xi_{1}^{2}r) + \xi_{1}^{2} + b \right) - 4w^{2} \left(i(-c + \xi_{1}^{2}r) + \xi_{1}^{2} + b \right) \right] \frac{\partial f}{\partial w^{3}} = 0.$$

where $c = i\xi_3^4\xi_1^2b - \xi_3^4r + i\xi_3^4 + i\xi_3^3\xi_1^2r + \xi_3^3\xi_1^2 + b\xi_3^3$. The 3 functions

$$\varphi^1 = w^1$$
 , $\varphi^2 = w^2 - \frac{i\xi_1^2}{4} \left(w^1 \overline{w^1} - \frac{(\overline{w^1})^2}{2} \right)$

$$\varphi^{3} = w^{3} + \frac{1}{48b} \left((\overline{w^{1}})^{3} \xi_{1}^{2} (c+ib) + 3(\overline{w^{1}})^{2} w^{1} \xi_{1}^{2^{2}} (i-r) + 12 \overline{w^{1} w^{2}} (ic+i\xi_{1}^{2}r + \xi_{1}^{2} + b) + 3 \overline{w^{1}} w^{1^{2}} \xi_{1}^{2} (-c + 2\xi_{1}^{2}r - 2i\xi_{1}^{2} - ib) + 12(\overline{w^{1}} + w^{1}) w^{2} (-ic + i\xi_{1}^{2}r + \xi_{1}^{2} + b) \right)$$

are holomorphic. Let $F: G \to \mathbb{C}^3$ defined by $F = (\varphi^1, \varphi^2, \varphi^3)$. F is a global chart on G. We determine now how the multiplication of G looks like in that chart. Let $a, x \in G$ with respective second kind canonical coordinates $(x^1, y^1, x^2, y^2, x^3, y^3), (\alpha^1, \beta^1, \alpha^2, \beta^2, \alpha^3, \beta^3)$ as in (1). With obvious notations, computations yield:

$$\begin{array}{rcl} w_{ax}^1 & = & w_a^1 + w_x^1 \\ w_{ax}^2 & = & w_a^2 + w_x^2 - b^1 x^1 \\ w_{ax}^3 & = & w_a^3 + w_x^3 - a^2 x^1 + \frac{1}{2} b^1 (x^1)^2 - b^2 y^1 + \frac{i-r}{b} \left(-b^2 x^1 - \frac{1}{2} (b^1)^2 x^1 + y^1 (a^2 - b^1 x^1) \right). \end{array}$$

We then get

$$\varphi_{ax}^{1} = \varphi_{a}^{1} + \varphi_{x}^{1} \quad , \quad \varphi_{ax}^{2} = \varphi_{a}^{2} + \varphi_{x}^{2} - \frac{i\xi_{1}^{2}}{4}(2\overline{\varphi_{a}^{1}} - \varphi_{a}^{1})\varphi_{x}^{1} \quad , \quad \varphi_{ax}^{3} = \varphi_{a}^{3} + \varphi_{x}^{3} + \chi^{3}(a, x)$$

where

$$\chi^{3}(a,x) = \frac{\xi_{1}^{2}}{16((\xi_{3}^{4} - \xi_{1}^{2})^{2} + \xi_{3}^{3} \xi_{1}^{2^{2}})} D_{1} (\varphi_{x}^{1})^{2} + \frac{1}{16(\xi_{3}^{4} - i\xi_{3}^{3}\xi_{1}^{2} - \xi_{1}^{2})} \left(D_{2}\xi_{1}^{2} \varphi_{x}^{1} + 8\xi_{3}^{4}(1 - \xi_{1}^{2^{2}}) \left(\overline{\varphi_{a}^{1}} + \varphi_{a}^{1}\right) \varphi_{x}^{2}\right)$$

with $D_1 = i\overline{\varphi_a^1} \left(7\xi_3^{4^2}\xi_1^{2^2} - 3\xi_3^{4^2} + 7i\xi_3^4\xi_3^3\xi_1^{2^3} - 7i\xi_3^4\xi_3^3\xi_1^2 - 7\xi_3^4\xi_1^{2^3} - \xi_3^4\xi_1^2 + 4\xi_3^{3^2}\xi_1^{2^2} + 4\xi_1^{2^2}\right) + i\varphi_a^1 \left(-4\xi_3^{4^2}\xi_1^{2^2} + \xi_3^{4^2} - 4i\xi_3^4\xi_3^3\xi_1^{2^3} + 4i\xi_3^4\xi_3^3\xi_1^2 + 4\xi_3^4\xi_1^{2^3} + 2\xi_3^4\xi_1^2 - 3\xi_3^3^2\xi_1^2 - 3\xi_1^2\right);$ $D_2 = -i(\overline{\varphi_a^1})^2 \left(\xi_3^{4^2}\xi_1^2 - 2\xi_3^4\xi_1^{2^2} + 2\xi_3^4 + \xi_3^{3^2}\xi_1^2 - 2i\xi_3^3\xi_1^2 - \xi_1^2\right) + 4i\overline{\varphi_a^1}\varphi_a^1 \left(\xi_3^{4^2}\xi_1^2 + \xi_3^4\xi_1^2 - \xi_3^4 + \xi_3^{3^2}\xi_1^2 - 2i\xi_3^3\xi_1^2 - \xi_1^2\right) - 8\overline{\varphi_a^2} \left(\xi_3^{4^2} + \xi_3^{3^2} - 2i\xi_3^3 - 1\right) + 8\varphi_a^2 \left(\xi_3^{4^2} + \xi_3^{3^2} - 2\xi_3^3\xi_1^2 + 1\right) - i\varphi_a^{1^2} \left(\xi_3^{4^2}\xi_1^2 + 3\xi_3^4\xi_1^2 - 2\xi_3^4 + \xi_3^{3^2}\xi_1^2 - 3i\xi_3^3\xi_1^2 - 2\xi_1^2\right).$ In the case of $J(\xi_1^2, \xi_5^6)$ in (71) where $\xi_1^2 = \pm 1$, and $0 < \xi_5^6 \leqslant 1$, the preceding computations apply with x = 0, t = 0,

apply with $r=0, b=\xi_5^6, \xi_3^3=0, \xi_3^4=\xi_1^2$. The only difference is that we get now

$$\chi^{3}(a,x) = \frac{1}{16\xi_{5}^{6}} \left(D_{1} \left(\varphi_{x}^{1} \right)^{2} + D_{2} \varphi_{x}^{1} \right) + \frac{\xi_{5}^{6} + \xi_{1}^{2}}{2\xi_{5}^{6}} \left(\overline{\varphi_{a}^{1}} + \varphi_{a}^{1} \right) \varphi_{x}^{2}$$

with $D_1 = -i\overline{\varphi_a^1} \left(3\xi_5^6\xi_1^2 + 7\right) + i\varphi_a^1 \left(\xi_5^6\xi_1^2 + 4\right); \ D_2 = -i(\overline{\varphi_a^1})^2 \left(3\xi_5^6\xi_1^2 + 1\right) - 8i\overline{\varphi_a^1} \varphi_a^1 - 8\overline{\varphi_a^2} \left(\xi_5^6 - \xi_1^2\right) + 8\varphi_a^2 \left(\xi_5^6 + \xi_1^2\right) + i\varphi_a^{12} \left(\xi_5^6\xi_1^2 + 4\right) \ .$ In the case of $J(\xi_3^3)$ in (76) where $\xi_3^3 \neq 0$, the general computations apply with $r = 0, b = 1, \xi_3^4 = \xi_1^2 = -1$. The only difference is that we get now $\chi^3(a,x) = \frac{1}{16} \left(D_1 \left(\varphi_x^1\right)^2 + D_2 \varphi_x^1\right)$ with $D_1 = -4i\overline{\varphi_a^1} + 3i\varphi_a^1; \ D_2 = \left(2i - \xi_3^3\right) \left(\overline{\varphi_a^1}\right)^2 + 4(\xi_3^3 - 2i) \,\overline{\varphi_a^1} \varphi_a^1 - 8(i\xi_3^3 + 2) \,\overline{\varphi_a^2} + 8i\xi_3^3 \,\varphi_a^2 + \left(3i - \xi_3^3\right) \varphi_a^{12}.$

Lie Algebra $M14_{\gamma}(\gamma = \pm 1)$. 11

Commutation relations for $M14_{\gamma}$: $[x_1, x_3] = x_4$; $[x_1, x_4] = x_6$; $[x_2, x_3] = x_5$; $[x_2, x_5] = \gamma x_6$. $M14_{-1}$ has no CS. We consider the case $M14_1$.

$$J = \begin{pmatrix} 0 & -\frac{1}{\xi_1^2} & 0 & 0 & 0 & 0 \\ \hline \xi_1^2 & 0 & 0 & 0 & 0 & 0 \\ \hline \xi_1^3 & \hline{\xi_2^3} & * & -(\xi_6^6 \xi_5^3 - \xi_5^6 \xi_6^3) \xi_1^2 & \hline{\xi_5^3} & \hline{\xi_5^3} & \hline{\xi_6^3} \\ \hline \xi_1^4 & * & * & -\frac{(\xi_6^6 \xi_5^3 - \xi_5^6 \xi_6^3)^2}{\xi_3^3} & -\frac{((\xi_5^6 \xi_5^3 + 1)\xi_6^3 - \xi_6^6 \xi_5^3) \xi_1^2}{\xi_5^3} & (\xi_6^6 \xi_5^3 - \xi_5^6 \xi_6^3) \xi_1^2 \\ \hline \xi_1^5 & * & * & -\frac{((\xi_6^6 \xi_5^3 - 1)\xi_6^3 - \xi_6^6 \xi_5^3) \xi_1^2}{\xi_6^3} & -\frac{\xi_5^3^2}{\xi_6^3} & -\xi_5^3 \\ * & * & * & -\frac{(\xi_6^6 \xi_5^3 - \xi_6^6 \xi_5^6 \xi_5^3) \xi_1^2}{\xi_6^3} & \hline{\xi_6^6} & \hline{\xi_5^6} & \hline{\xi_6^6} \end{pmatrix}$$

$$(78)$$

 $\text{where } \mathbf{J_3^3} = (\xi_5^{62} \xi_5^{32} + \xi_5^{32} + \xi_6^{62} \xi_5^{32} - (2\xi_5^6 \xi_5^3 + 1)\xi_6^6 \xi_6^3)/\xi_6^3; \quad \mathbf{J_2^4} = ((\xi_6^6 \xi_5^3 - \xi_5^6 \xi_6^3)\xi_2^3 \xi_1^2 + \xi_1^5 \xi_6^3 + \xi_5^3 \xi_1^3)/\xi_6^3; \quad J_3^4 = (((\xi_6^{62} \xi_5^3 - 3\xi_6^6 \xi_5^6 \xi_6^3 \xi_5^3 - \xi_6^6 \xi_6^3 \xi_5^3 + 3\xi_5^6 \xi_5^2 \xi_5^3 + \xi_5^6 \xi_6^3 + \xi_5^3 \xi_6^3)/\xi_6^6 + (\xi_5^{63} \xi_6^3 \xi_5^3 + \xi_5^3 \xi_5^3 + \xi_5^3 \xi_6^3 \xi_5^3 + \xi_5^3 \xi_5^3$

 $\xi_5^3 \xi_3^3 + \xi_5^6 \xi_6^3 \xi_1^3 \xi_1^2 - \xi_6^6 \xi_5^3 \xi_1^3 \xi_1^2))/\xi_6^3; \quad \mathbf{J_3^5} = (-((\xi_6^6 \xi_5^3 - 2\xi_5^6 \xi_6^3) \xi_6^6 \xi_5^3 + \xi_5^6 \xi_6^3 \xi_5^3 - \xi_5^6 \xi_6^3 \xi_5^3 + \xi_5^3))/\xi_6^3^2; \quad \mathbf{J_1^6} = (-(\xi_6^3 \xi_2^3 \xi_1^2 + \xi_5^3 \xi_1^3 + \xi_1^5 \xi_6^3 \xi_5^3 + (\xi_5^6 \xi_1^3 + \xi_1^4 \xi_1^2) \xi_5^6 \xi_6^3^2 + ((\xi_6^6 \xi_5^3 - 2\xi_5^6 \xi_6^3) \xi_5^3 \xi_1^3 - (\xi_1^4 \xi_5^3 \xi_1^2 + \xi_1^3) \xi_6^3) \xi_6^6))/\xi_6^{3^2}; \quad \mathbf{J_2^6} = (\xi_6^6 \xi_1^5 \xi_5^3 + \xi_6^6 \xi_2^3 \xi_1^2 - \xi_5^6 \xi_5^3 \xi_5^3 - \xi_6^6 \xi_$

$$\xi_1^2 = \pm 1 \; ; \; \xi_6^3 \neq 0. \tag{79}$$

Now the automorphism group of $M14_1$ is comprised of the matrices

$$\Phi = \begin{pmatrix} b_1^1 & b_1^2u & 0 & 0 & 0 & 0 \\ b_1^2 & -b_1^1u & 0 & 0 & 0 & 0 \\ 0 & 0 & b_3^3 & 0 & 0 & 0 \\ b_1^4 & b_2^4 & b_3^4 & b_3^3b_1^1 & b_3^3b_1^2u & 0 \\ -(b_2^4 - b_1^2k)u & b_1^4u - b_1^1k & b_3^5 & b_3^3b_1^2 & -b_3^3b_1^1u & 0 \\ b_1^6 & b_2^6 & b_3^6 & b_3^5b_1^2 + b_3^4b_1^1 & -(b_3^5b_1^1 - b_3^4b_1^2)u & (b_1^{2^2} + b_1^{1^2})b_3^3 \end{pmatrix}$$

where $(b_1^{2^2} + b_1^{1^2})b_3^3 \neq 0$ and $u = \pm 1$, $k \in \mathbb{R}$. Taking suitable values for the b_j^i 's, equivalence by Φ leads to the case where $\xi_1^3 = \xi_2^3 = \xi_5^3 = \xi_1^4 = \xi_1^5 = \xi_6^6 = 0$. Then equivalence by

$$\Phi = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \xi_1^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ -\xi_1^2/2 & 0 & -\xi_5^6 \xi_1^2 & 1 & 0 & 0 \\ 0 & -1/2 & 0 & 0 & \xi_1^2 & 0 \\ \xi_5^6/2 & 0 & 0 & -\xi_5^6 \xi_1^2 & 0 & 1/|\xi_6^3| \end{pmatrix}$$

leads to the case where moreover $\xi_5^6 = 0, \xi_1^2 = 1, \xi_6^{3^2} = 1$:

The 2 matrices corresponding to $\xi_6^3 = \pm 1$ are not equivalent. Commutation relations of \mathfrak{m} : $[\tilde{x}_1, \tilde{x}_3] = \tilde{x}_4; [\tilde{x}_1, \tilde{x}_6] = -\xi_6^3 \tilde{x}_5; [\tilde{x}_2, \tilde{x}_3] = \tilde{x}_5; [\tilde{x}_2, \tilde{x}_6] = \xi_6^3 \tilde{x}_4.$ From (78), \mathfrak{X}_{M14_1} is a submanifold of dimension 8 in \mathbb{R}^{36} . There are only 2 orbits, and any CS

From (78), \mathfrak{X}_{M14_1} is a submanifold of dimension 8 in \mathbb{R}^{36} . There are only 2 orbits, and any CS on $M14_1$ is equivalent to one of the two non equivalent structures in (80).

11.1

$$X_1 = \frac{\partial}{\partial x^1} - x^2 \frac{\partial}{\partial y^2} - y^2 \frac{\partial}{\partial y^3} \quad , \quad X_2 = \frac{\partial}{\partial y^1} - x^2 \frac{\partial}{\partial x^3} - x^3 \frac{\partial}{\partial y^3}.$$

Let G denote the group G_0 endowed with the left invariant structure of complex manifold defined by $J(\xi_6^3)$ in (80), where $\xi_6^3 = \pm 1$. Then $H_{\mathbb{C}}(G) = \{ f \in C^{\infty}(G_0) : \tilde{X}_j^- f = 0 \ \forall j = 1, 3, 5 \}$. One has

$$\tilde{X}_1^- = 2 \frac{\partial}{\partial \overline{w^1}} - x^2 \frac{\partial}{\partial y^2} - ix^2 \frac{\partial}{\partial x^3} - iw^3 \frac{\partial}{\partial y^3} \quad , \quad \tilde{X}_3^- = 2 \frac{\partial}{\partial \overline{w^2}} \quad , \quad \tilde{X}_5^- = 2 \frac{\partial}{\partial \overline{w^3}}$$

where $w^1=x^1+iy^1$, $w^2=x^2-i\xi_6^3\,y^3$, $w^3=x^3-iy^2$. Then $f\in C^\infty(G_0)$ is in $H_{\mathbb C}(G)$ if and only if it is holomorphic with respect to w^2 and w^3 and satisfies the equation

$$2\frac{\partial f}{\partial \overline{w^1}} - \xi_6^3 w^3 \frac{\partial f}{\partial w^2} = 0.$$

The 3 functions $\varphi^1=w^1$, $\varphi^2=w^2+\frac{\xi_6^2}{2}\,w^3\overline{w^1}$, $\varphi^3=w^3$ are holomorphic. Let $F:G\to\mathbb{C}^3$ defined by $F=(\varphi^1,\varphi^2,\varphi^3)$. F is a global chart on G. We determine now how the multiplication

of G looks like in that chart. Let $a, x \in G$ with respective second kind canonical coordinates $(x^1, y^1, x^2, y^2, x^3, y^3), (\alpha^1, \beta^1, \alpha^2, \beta^2, \alpha^3, \beta^3)$ as in (1). With obvious notations, computations yield:

$$\begin{array}{rcl} w_{ax}^1 & = & w_a^1 + w_x^1 \\ w_{ax}^2 & = & w_a^2 + w_x^2 - i\xi_6^3(-b^2x^1 + \frac{1}{2}a^2x^{1^2} - a^3y^1 + \frac{1}{2}a^2y^{1^2}) \\ w_{ax}^3 & = & w_a^3 + w_x^3 - a^2y^1 + ia^2x^1. \end{array}$$

We then get

$$\varphi_{ax}^1 = \varphi_a^1 + \varphi_x^1$$
 , $\varphi_{ax}^2 = \varphi_a^2 + \varphi_x^2 + \chi^2(a, x)$, $\varphi_{ax}^3 = \varphi_a^3 + \varphi_x^3 + \chi^3(a, x)$

where

$$\chi^{2}(a,x) = \frac{1}{8}\varphi_{x}^{1}\left(2i\xi_{6}^{3}\overline{\varphi_{a}^{1}}(\overline{\varphi_{a}^{2}}+\varphi_{a}^{2})+4\xi_{6}^{3}\overline{\varphi_{a}^{3}}-i(\overline{\varphi_{a}^{1}})^{2}\varphi_{a}^{3}-i\overline{\varphi_{a}^{1}\varphi_{a}^{3}}\varphi_{a}^{1}\right)+\frac{\xi_{6}^{3}}{2}\overline{\varphi_{a}^{1}}\varphi_{x}^{3};$$

$$\chi^{3}(a,x) = \frac{i}{4}\varphi_{x}^{1}\left(-3\xi_{6}^{3}(\overline{\varphi_{a}^{1}}\varphi_{a}^{3}+\varphi_{a}^{1}\overline{\varphi_{a}^{3}})+2(\varphi_{a}^{2}+\overline{\varphi_{a}^{2}})\right).$$

12 Lie Algebra $M18_{\gamma}(\gamma = \pm 1)$.

Commutation relations for $M18_{\gamma}$: $[x_1, x_2] = x_3$; $[x_1, x_3] = x_4$; $[x_1, x_4] = x_6$; $[x_2, x_3] = x_5$; $[x_2, x_5] = \gamma x_6$. $M18_{-1}$ has no CS. We consider the case $M18_1$. Then J is the same matrix as (78) and the parameters are subject to the same condition (79). This comes as no surprise, since the commutations relations of $M18_{\gamma}$ are simply those of $M14_{\gamma}$ plus $[x_1, x_2] = x_3$, and any $J \in \mathfrak{X}_{M18_1}$ has $\xi_k^1 = \xi_k^2 = 0$ for $3 \leq k \leq 6$ and $\xi_1^1 = \xi_2^2 = 0$.

Now the automorphism group of $M18_1$ is comprised of the matrices

$$\Phi = \begin{pmatrix} b_1^1 & b_1^2 u & 0 & 0 & 0 & 0 \\ b_1^2 & -b_1^1 u & 0 & 0 & 0 & 0 \\ b_1^3 & b_2^3 & -(b_1^{2^2} + b_1^{1^2}) u & 0 & 0 & 0 \\ b_1^4 & b_2^4 & b_2^3 b_1^1 - b_1^3 b_1^2 u & -(b_1^{2^2} + b_1^{1^2}) b_1^1 u & -(b_1^{2^2} + b_1^{1^2}) b_1^2 & 0 \\ b_1^5 & b_2^5 & b_2^3 b_1^2 + b_1^3 b_1^1 u & -(b_1^{2^2} + b_1^{1^2}) b_1^2 u & (b_1^{2^2} + b_1^{1^2}) b_1^1 & 0 \\ b_1^6 & b_2^6 & b_2^4 b_1^1 - b_1^4 b_1^2 u + b_1^5 b_1^1 u + b_2^5 b_1^2 & (b_1^{2^2} + b_1^{1^2}) b_2^3 & -(b_1^{2^2} + b_1^{1^2}) b_1^3 & -(b_1^{2^2} + b_1^{1^2})^2 u \end{pmatrix}$$

where $b_1^{2^2} + b_1^{1^2} \neq 0$ and $u = \pm 1$. Taking suitable values for the b_j^i 's, equivalence by Φ leads to the case where $\xi_1^3 = 0, \xi_2^3 = 0, \xi_5^3 = 0, \xi_1^4 = 0, \xi_1^5 = 0, \xi_6^6 = 0$. Then equivalence by $\Phi = \text{diag}(1, \xi_1^2, \xi_1^2/|\xi_6^3|, \xi_1^2/|\xi_6^3|, 1/|\xi_6^3|, \xi_1^2/|\xi_6^3|^2)$ leads to the case where moreover $\xi_1^2 = 1, \xi_3^{3^2} = 1$, that is the same matrix $J(\xi_6^3)$ as in (80) with the same condition. Again, the two matrices corresponding to $\xi_6^3 = \pm 1$ are not equivalent. Commutation relations of $\mathfrak{m}: [\tilde{x}_1, \tilde{x}_3] = \tilde{x}_4; [\tilde{x}_1, \tilde{x}_6] = -\xi_6^3 \tilde{x}_5; [\tilde{x}_2, \tilde{x}_3] = \tilde{x}_5; [\tilde{x}_2, \tilde{x}_6] = \xi_6^3 \tilde{x}_4$. From (78), \mathfrak{X}_{M18_1} is a submanifold of dimension 8 in \mathbb{R}^{36} . There are only 2 orbits, and any $J \in \mathfrak{X}_{M18_1}$ is equivalent to one of the two non equivalent structures in (80).

12.1

$$X_{1} = \frac{\partial}{\partial x^{1}} - y^{1} \frac{\partial}{\partial x^{2}} - x^{2} \frac{\partial}{\partial y^{2}} + \frac{1}{2} y^{12} \frac{\partial}{\partial x^{3}} - \left(y^{2} + \frac{1}{6} y^{13}\right) \frac{\partial}{\partial y^{3}}$$

$$X_{2} = \frac{\partial}{\partial y^{1}} - x^{2} \frac{\partial}{\partial x^{3}} - x^{3} \frac{\partial}{\partial y^{3}}.$$

Let G denote the group G_0 endowed with the left invariant structure of complex manifold defined by $J(\xi_6^3)$ in (80), where $\xi_6^3 = \pm 1$. Then $H_{\mathbb{C}}(G) = \{ f \in C^{\infty}(G_0) : \tilde{X}_j^- f = 0 \ \forall j = 1, 3, 5 \}$. One has

$$\begin{split} \tilde{X}_1^- &= 2 \frac{\partial}{\partial \overline{w^1}} - y^1 \frac{\partial}{\partial x^2} - x^2 \frac{\partial}{\partial y^2} + \left(\frac{1}{2} y^{1^2} - i x^2\right) \frac{\partial}{\partial x^3} - \left(y^2 + \frac{1}{6} y^{1^3} + i x^3\right) \frac{\partial}{\partial y^3} \quad , \\ \tilde{X}_3^- &= 2 \frac{\partial}{\partial \overline{w^2}} \quad , \tilde{X}_5^- = 2 \frac{\partial}{\partial \overline{w^3}} \quad , \end{split}$$

where $w^1=x^1+iy^1$, $w^2=x^2-i\xi_6^3\,y^3$, $w^3=x^3-iy^2$. Then $f\in C^\infty(G_0)$ is in $H_{\mathbb C}(G)$ if and only if it is holomorphic with respect to w^2 and w^3 and satisfies the equation

$$2\frac{\partial f}{\partial \overline{w^{1}}} + \left(-y^{1} + \frac{i\xi_{6}^{3}}{6}y^{13} - \xi_{6}^{3}w^{3}\right)\frac{\partial f}{\partial w^{2}} + \frac{1}{2}y^{12}\frac{\partial f}{\partial w^{3}} = 0.$$

The 3 functions

$$\begin{array}{lll} \varphi^1 & = & w^1 \\ \varphi^2 & = & w^2 + \frac{\xi_6^3}{2} \, w^3 \overline{w^1} + \frac{1}{8} \, (w^1 - \overline{w^1})^2 \left(i - \frac{\xi_6^3}{48} \, (w^1 - \overline{w^1})^2 \right) + \frac{\xi_6^3}{384} \, (\overline{w^1})^2 \left(6 w^{1^2} - 8 w^1 \overline{w^1} + 3 (\overline{w^1})^2 \right) \\ \varphi^3 & = & w^3 + \frac{1}{48} \, \overline{w^1} \left(3 w^{1^2} - 3 w^1 \overline{w^1} + (\overline{w^1})^2 \right) \end{array}$$

are holomorphic. Let $F: G \to \mathbb{C}^3$ defined by $F = (\varphi^1, \varphi^2, \varphi^3)$. F is a a global chart on G. We determine now how the multiplication of G looks like in that chart. Let $a, x \in G$ with respective second kind canonical coordinates $(x^1, y^1, x^2, y^2, x^3, y^3), (\alpha^1, \beta^1, \alpha^2, \beta^2, \alpha^3, \beta^3)$ as in (1). With obvious notations, computations yield:

$$\begin{array}{rcl} w_{ax}^1 & = & w_a^1 + w_x^1 \\ w_{ax}^2 & = & w_a^2 + w_x^2 \\ & & -b^1 x^1 + i \xi_6^3 \left(a^3 y^1 + b^2 x^1 - \frac{1}{2} \, a^2 x^{1^2} + \frac{1}{6} \, b^{1^3} x^1 + \frac{1}{6} \, b^1 x^{1^3} + \frac{1}{2} \, b^{1^2} x^1 y^1 - \frac{1}{2} \, y^{1^2} (a^2 - b^1 x^1) \right) \\ w_{ax}^3 & = & w_a^3 + w_x^3 + \frac{1}{2} \, b^{1^2} x^1 - y^1 (a^2 - b^1 x^1) - i \left(\frac{1}{2} \, b^1 x^{1^2} - a^2 x^1 \right) \,. \end{array}$$

We then get

$$\varphi^1_{ax}=\varphi^1_a+\varphi^1_x \quad , \quad \varphi^2_{ax}=\varphi^2_a+\varphi^2_x+\chi^2(a,x) \quad , \quad \varphi^3_{ax}=\varphi^3_a+\varphi^3_x+\chi^3(a,x)$$

where

$$\chi^{2}(a,x) = \frac{\xi_{6}^{3}}{32} (\varphi_{x}^{1})^{3} (\overline{\varphi_{a}^{1}} - \varphi_{a}^{1}) + \frac{\xi_{6}^{3}}{64} (\varphi_{x}^{1})^{2} (4(\overline{\varphi_{a}^{1}})^{2} - 3(\varphi_{a}^{1})^{2}) + \frac{1}{512} D_{2} \varphi_{x}^{1} + \frac{\xi_{6}^{3}}{2} \varphi_{x}^{3} \overline{\varphi_{a}^{1}};$$

$$\chi^{3}(a,x) = \frac{1}{16} (\varphi_{x}^{1})^{2} (4\overline{\varphi_{a}^{1}} - 3\varphi_{a}^{1}) + \frac{1}{256} D_{3} \varphi_{x}^{1};$$

where

$$D_{2} = 16\xi_{6}^{3} \left(-(\overline{\varphi_{a}^{1}})^{3} + 8i\overline{\varphi_{a}^{1}\varphi_{a}^{2}} + 2\overline{\varphi_{a}^{1}}(\varphi_{a}^{1})^{2} + 8i\overline{\varphi_{a}^{1}}\varphi_{a}^{2} + 16\overline{\varphi_{a}^{3}} - (\varphi_{a}^{1})^{3} \right)$$

$$+ i\left((\overline{\varphi_{a}^{1}})^{5} - 4(\overline{\varphi_{a}^{1}})^{4}\varphi_{a}^{1} + 8(\overline{\varphi_{a}^{1}})^{3}(\varphi_{a}^{1})^{2} - 4(\overline{\varphi_{a}^{1}})^{2}(\varphi_{a}^{1})^{3} \right)$$

$$- 64(\overline{\varphi_{a}^{1}})^{2}\varphi_{a}^{3} - 64\overline{\varphi_{a}^{1}\varphi_{a}^{3}}\varphi_{a}^{1} + \overline{\varphi_{a}^{1}}(\varphi_{a}^{1})^{4} - 256(\overline{\varphi_{a}^{1}} - \varphi_{a}^{1}) \right)$$

$$D_{3} = i\xi_{6}^{3} \left((\overline{\varphi_{a}^{1}})^{4} - 4(\overline{\varphi_{a}^{1}})^{3} \varphi_{a}^{1} + 8(\overline{\varphi_{a}^{1}})^{2} (\varphi_{a}^{1})^{2} - 4\overline{\varphi_{a}^{1}} (\varphi_{a}^{1})^{3} - 64\overline{\varphi_{a}^{1}} \varphi_{a}^{3} - 64\overline{\varphi_{a}^{3}} \varphi_{a}^{1} + (\varphi_{a}^{1})^{4} \right) \\ - 32(\overline{\varphi_{a}^{1}})^{2} - 16(\varphi_{a}^{1})^{2} + 64\overline{\varphi_{a}^{1}} \varphi_{a}^{1} + 128i(\overline{\varphi_{a}^{2}} + \varphi_{a}^{2}).$$

13 Lie Algebra M5.

Commutation relations for $M5: [x_1,x_3]=x_5; [x_1,x_4]=x_6; [x_2,x_3]=-x_6; [x_2,x_4]=x_5$. This is the realification of the 3-dimensional complex Heisenberg Lie algebra \mathfrak{n} $[Z_1,Z_2]=Z_3$ we get by letting $x_1=Z_1,x_2=-iZ_1,x_3=Z_2,x_4=iZ_2,x_5=Z_3,x_6=iZ_3$.

13.1 Case $\xi_4^{2^2} + \xi_3^{2^2} \neq 0$.

$$J = \begin{pmatrix} \boxed{\xi_1^1} & * & \boxed{\xi_3^1} & \boxed{\xi_4^1} & 0 & 0 \\ \boxed{\xi_1^2} & * & \boxed{\xi_3^2} & \boxed{\xi_4^2} & 0 & 0 \\ * & * & * & * & 0 & 0 \\ * & * & * & * & 0 & 0 \\ * & * & * & * & \boxed{\xi_5^5} & -\frac{\xi_5^5^2 + 1}{\xi_5^6} \\ \boxed{\xi_1^6} & \boxed{\xi_2^6} & \boxed{\xi_3^6} & \boxed{\xi_4^6} & \boxed{\xi_5^6} & -\xi_5^5 \end{pmatrix}$$
(81)

 $\text{ where } \mathbf{J_2^1} = (-(((\xi_5^6\xi_3^2 - \xi_5^6\xi_4^1 - \xi_5^5\xi_4^2)\xi_4^1 + (\xi_3^2 - 2\xi_4^1)\xi_5^5\xi_3^1)\xi_5^6 - (\xi_5^5 + 1)(\xi_4^2 + \xi_3^1)\xi_3^1 - ((\xi_4^{12} + \xi_3^{12})\xi_1^2 - \xi_3^2\xi_3^1\xi_1^1 - \xi_4^2\xi_4^1\xi_1^1)\xi_5^6))/((\xi_4^2\xi_3^1 - \xi_3^2\xi_3^1)\xi_3^1 - (\xi_4^2 + \xi_3^2)\xi_3^1 - (\xi_4^2 + \xi_3^2)\xi_3^2 - (\xi_4^2 + \xi_3^2 + \xi_3^2)\xi_3^2 - (\xi_4^2 + \xi_3^2 + \xi_3^2 + \xi_3^2)\xi_3^2 - (\xi_4^2 + \xi_3^2 + \xi_3$ $\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{4}^{1}\boldsymbol{\xi}_{5}^{6}); \quad \mathbf{J}_{2}^{2} = (-(((\xi_{5}^{6}\xi_{3}^{2} - \xi_{5}^{6}\xi_{4}^{1} - \xi_{5}^{5}\xi_{4}^{2} - \xi_{5}^{5}\xi_{3}^{1})\xi_{4}^{2} + (\xi_{3}^{2} - \xi_{4}^{1})\xi_{5}^{5}\xi_{3}^{2})\xi_{5}^{6} - (\xi_{5}^{5}^{2} + 1)(\xi_{4}^{2} + \xi_{3}^{1})\xi_{3}^{2} + ((\xi_{4}^{2}\xi_{1}^{1} - \xi_{1}^{2}\xi_{4}^{1})\xi_{4}^{2} + (\xi_{3}^{2}\xi_{1}^{1} - \xi_{1}^{2}\xi_{4}^{1})\xi_{4}^{2} + (\xi_{3}^{2}\xi_{1}^{1} - \xi_{1}^{2}\xi_{4}^{1})\xi_{5}^{2} + (\xi_{3}^{2}\xi_{1}^{1} - \xi_{3}^{2}\xi_{5}^{1} + \xi_{3}^{2}\xi_{5}^{2})\xi_{5}^{2} + (\xi_{3}^{2}\xi_{1}^{1} - \xi_{3}^{2}\xi_{5}^{2})\xi_{5}^{2} + (\xi_{3}^{2}\xi_{1}^{1} - \xi_{3}^{2}\xi_{5}^{2})\xi_{5}^{2} + (\xi_{3}^{2}\xi_{1}^{1} - \xi_{3}^{2}\xi_{5}^{2})\xi_{5}^{2} + (\xi_{3}^{2}\xi_{1}^{1} - \xi_{3}^{2}\xi_{5}^{2})\xi_{5}^{2} + (\xi_{3}^{2}\xi_{1}^{2} - \xi_{3}^{2}\xi_{5}^{2})\xi_{5}^{2})\xi_{5}^{2} +$ $\xi_1^2 \xi_2^4 (\xi_3^4) \xi_3^2 (\xi_5^6) / ((\xi_2^2 \xi_3^1 - \xi_3^2 \xi_4^4) \xi_5^6); \quad \mathbf{J}_3^3 = (-(((\xi_1^2 \xi_3^1 - \xi_4^1 \xi_1^1 - \xi_3^2 \xi_1^1) \xi_1^2 + (\xi_1^{12} + 1) \xi_4^2) \xi_5^6 + ((\xi_5^{52} + 1) (\xi_4^2 + \xi_3^4) - (\xi_3^2 - \xi_4^4) \xi_5^6 \xi_5^5) \xi_1^2)) / ((\xi_4^2 \xi_3^1 - \xi_4^1 \xi_1^1 - \xi_3^2 \xi_1^1) \xi_1^2 + (\xi_3^1 \xi_3^2 - \xi_4^1 \xi_3^2 - \xi_4^2) \xi_5^6)) / (\xi_3^2 \xi_3^2 - \xi_4^2 \xi_3^4) \xi_5^6) / (\xi_3^2 \xi_3^2 - \xi_3^2 \xi_3^2) \xi_5^6) / (\xi_3^2 \xi_3^2 - \xi_3^2 \xi_3^2 - \xi_3^2 \xi_3^2) \xi_5^6) / (\xi_3^2 \xi_3^2 - \xi_3^2 \xi_3^2) \xi_5^6) / (\xi_3^2 \xi_3^2 - \xi_3^2 \xi_3^2) \xi_5^6) / (\xi_3^2 \xi_3^2 - \xi_3^2 \xi_3^2 - \xi_3^2 \xi_3^2) \xi_5^6) / (\xi_3^2 \xi_3^2 - \xi_3^2 \xi_3^2 - \xi_3^2 \xi_3^2 - \xi_3^2 \xi_3^2) \xi_5^6) / (\xi_3^2 \xi_3^2 - \xi_3^2 \xi_3^2 + \xi_3^2 \xi_3^2 + \xi_3^2 \xi_3^2 + \xi_3^2 \xi_3^2 +$ $\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{4}^{1}\boldsymbol{\xi}_{5}^{6}); \quad \mathbf{J}_{2}^{3} = (-((((\xi_{5}^{6}{}^{2}\boldsymbol{\xi}_{3}^{2}{}^{2} - 2\boldsymbol{\xi}_{5}^{6}{}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{4}^{1} + \boldsymbol{\xi}_{5}^{6}{}^{2}\boldsymbol{\xi}_{4}^{1} - 2\boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{5}^{5}\boldsymbol{\xi}_{4}^{2}\boldsymbol{\xi}_{3}^{2} + 2\boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{5}^{5}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{3}^{1} + 2\boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{5}^{5}\boldsymbol{\xi}_{4}^{1}\boldsymbol{\xi}_{3}^{1} + \boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{1}^{2}\boldsymbol{\xi}_{3}^{1} - \boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{3}^{1} + \boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{3}^{2} + \boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{5}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{3}^{2} + \boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{5}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{3}^{2} + \boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{5}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{3}^{2} + \boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{5}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{3}^{2} + \boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{5}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{3}^{2} + \boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{5}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{3}^{2} + \boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{5}^{2}\boldsymbol{\xi}_{3}^{2} + \boldsymbol{\xi}_{5}^{6}\boldsymbol{\xi}_{5}^{2}\boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}$ $2\xi_{6}^{2}\xi_{3}^{2}\xi_{1}^{4}+\xi_{5}^{5}\xi_{4}^{2}^{2}+2\xi_{5}^{5}\xi_{4}^{2}\xi_{1}^{4}-2\xi_{5}^{5}\xi_{4}^{2}\xi_{1}^{4}+2\xi_{5}^{5}\xi_{3}^{2}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{2}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{2}\xi_{1}^{4}+\xi_{5}^{5}\xi_{4}^{2}\xi_{1}^{4}+2\xi_{5}^{5}\xi_{3}^{2}\xi_{1}^{4}+2\xi_{5}^{5}\xi_{3}^{2}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+2\xi_{5}^{5}\xi_{3}^{2}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{5}\xi_{3}^{4}\xi_{1}^{4}+\xi_{5}^{$ $2\epsilon_3^2 + 2\epsilon_3^2\epsilon_4^1 + \epsilon_3^{12} + (\epsilon_1^2\epsilon_3^1 + 2\epsilon_4^1\epsilon_1^4)\epsilon_5^6\epsilon_3^1)\epsilon_4^2 + ((\epsilon_3^2 - \epsilon_4^1)\epsilon_5^6\epsilon_5^5 - 2\epsilon_5^{12}\epsilon_3^1 - 2\epsilon_3^1)(\epsilon_3^2 - \epsilon_4^1)\epsilon_3^2 - (2\epsilon_3^2\epsilon_1^1 - 2\epsilon_2^2\epsilon_1^2\epsilon_3^1 + \epsilon_1^2\epsilon_4^1\epsilon_3^1)\epsilon_5^5\epsilon_3^1 + (2\epsilon_3^2\epsilon_1^1 - 2\epsilon_3^2\epsilon_1^2\epsilon_3^1 + \epsilon_1^2\epsilon_4^1\epsilon_3^2)\epsilon_5^2\epsilon_3^2 + (2\epsilon_3^2\epsilon_1^2 + \epsilon_3^2\epsilon_1^2\epsilon_3^2 + \epsilon_3^2\epsilon_2^2\epsilon_3^2 + \epsilon_3^2\epsilon_3^2\epsilon_3^2 + \epsilon_3^2\epsilon_3^2 + \epsilon_3^2\epsilon_3^2\epsilon_3^2 + \epsilon_3^2\epsilon_3^2 + \epsilon_3^2\epsilon_3^2\epsilon_3^2 + \epsilon_3^2\epsilon_3^2\epsilon_3^2 + \epsilon_3^2\epsilon_3^2\epsilon_3^2 + \epsilon_3^2\epsilon_3^2\epsilon_3^2 + \epsilon_3^2\epsilon_3^2 + \epsilon_3^2\epsilon_3^2\epsilon_3^2 + \epsilon_3^2\epsilon_3^2\epsilon_3^2 + \epsilon_3^2\epsilon_3^2 + \epsilon_3^2\epsilon_3^2\epsilon_3^2 + \epsilon_3^$ $2\xi_{3}^{2}^{2}\xi_{1}^{2}\xi_{3}^{1} - 2\xi_{3}^{2}^{2}\xi_{4}^{1}\xi_{1}^{1} + 3\xi_{3}^{2}\xi_{1}^{2}\xi_{4}^{1}\xi_{3}^{1} - 2\xi_{1}^{2}\xi_{4}^{1}\xi_{3}^{1})\xi_{5}^{6})\xi_{5}^{5} - (\xi_{4}^{2}^{2}\xi_{1}^{1} - \xi_{4}^{2}\xi_{1}^{2}\xi_{4}^{1} - \xi_{4}^{2}\xi_{3}^{1}\xi_{1}^{1} + 2\xi_{3}^{2}\xi_{1}^{1} - 2\xi_{3}^{2}\xi_{1}^{2}\xi_{3}^{1} + \xi_{1}^{2}\xi_{4}^{1}\xi_{3}^{1})(\xi_{4}^{2} + \xi_{3}^{1}))\xi_{5}^{6} + (\xi_{5}^{5}^{2} + \xi_{5}^{2})\xi_{5}^{6})\xi_{5}^{6} + (\xi_{5}^{2}\xi_{4}^{2})\xi_{5}^{6} + (\xi_{5}^{2}\xi_{4}^{2})\xi_{5}^{6})\xi_{5}^{6} + (\xi_{5}^{2}\xi_{4}^{2})\xi_{5}^{6})\xi_{5}^{6} + (\xi_{5}^{2}\xi_{4}^{2})\xi_{5}^{6} + (\xi_{5}^{2}\xi_{4}^{2})\xi_{5}^{6})\xi_{5}^{6} + (\xi_{5}^{2}\xi_{4}^{2})\xi_{5}^{6} + (\xi_{5}^{2}\xi_{4}^{2})\xi_{5}^{6})\xi_{5}^{6} + (\xi_{5}^{2}\xi_{4}^{2})\xi_{5}^{6} + (\xi_{5}^{2}\xi_{4}$ $1)^{2}(\xi_{4}^{2}+\xi_{3}^{1})^{2}\xi_{3}^{2}+((\xi_{3}^{2}\xi_{1}^{1}-\xi_{1}^{2}\xi_{3}^{1}-\xi_{1}^{2}\xi_{1}^{1})\xi_{4}^{2}+\xi_{1}^{2}\xi_{4}^{1})(\xi_{3}^{2}-\xi_{4}^{1})\xi_{5}^{6}^{3}+(((\xi_{4}^{2}\xi_{1}^{12}-\xi_{4}^{2}-\xi_{1}^{2}\xi_{4}^{1}\xi_{1}^{1}-(\xi_{1}^{12}+1)\xi_{3}^{1})\xi_{3}^{2}-(\xi_{1}^{2}\xi_{3}^{1}\xi_{1}^{1}+\xi_{4}^{1}\xi_{1}^{12}-\xi_{4}^{1})\xi_{4}^{2}+(\xi_{3}^{1}\xi_{1}^{1}+\xi_{4}^{1}\xi_{1}^{1})\xi_{4}^{2}+\xi_{1}^{2}\xi_{3}^{1}+\xi_{4}^{1}\xi_{1}^{1}+\xi_{4}^{1}\xi_{1}^{12}-\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{1}^{12}-\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{1}^{1}+\xi_{4}^{1}\xi_{1}^{12}-\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{1}^{12}-\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{1}^{12}-\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{1}^{12}-\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{1}^{12}-\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{1}^{12}-\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{1}^{12}-\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{1}^{12}-\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4}^{1}\xi_{3}^{1}+\xi_{4$ $(\xi_1^2\xi_4^1\xi_3^1+2\xi_1^1+\xi_1^3^2\xi_1^1)\xi_1^2)\xi_4^2+(\xi_3^2\xi_1^1^2-2\xi_3^2\xi_1^2\xi_3^1\xi_1^1+\xi_1^2^2\xi_3^1^2+\xi_1^2\xi_4^1\xi_3^1\xi_1+\xi_1^4^2)\xi_3^2-(\xi_1^4^2+\xi_3^1^2)\xi_1^2^2\xi_4^1)\xi_5^6))/((\xi_4^2\xi_3^1-\xi_3^2\xi_4^1)^2\xi_5^6);$ $\mathbf{J_{3}^{3}} = (-(((\xi_{5}^{5}^{2}+1)(\xi_{4}^{2}+\xi_{3}^{1})-(\xi_{3}^{2}-\xi_{4}^{1})\xi_{5}^{6}\xi_{5}^{5})\xi_{3}^{2} - (\xi_{3}^{2}^{2}\xi_{1}^{1}-\xi_{3}^{2}\xi_{1}^{2}\xi_{3}^{1}+\xi_{1}^{2}\xi_{4}^{1}\xi_{3}^{1}-\xi_{4}^{2}\xi_{3}^{1}\xi_{1}^{1})\xi_{5}^{6}))/((\xi_{4}^{2}\xi_{3}^{1}-\xi_{3}^{2}\xi_{4}^{1})\xi_{5}^{6})\xi_{5}^{2})\xi_{5}^{2}$ $J_4^3 = (-(((\xi_5^{5\,2}+1)(\xi_4^2+\xi_3^1)-(\xi_3^2-\xi_4^1)\xi_5^6\xi_5^5)\xi_4^2-(\xi_4^2\xi_3^2\xi_1^1-\xi_4^2\xi_1^2\xi_3^1-\xi_4^2\xi_1^4\xi_1^1+\xi_1^2\xi_4^1)\xi_5^6))/((\xi_4^2\xi_3^1-\xi_3^2\xi_4^1)\xi_5^6); \ \mathbf{J_1^4} = -((\xi_1^2\xi_4^1+\xi_4^2)\xi_5^4)(\xi_4^2\xi_3^2+\xi_3^2\xi_4^2)\xi_5^4)$ $\boldsymbol{\xi}_{3}^{1}\boldsymbol{\xi}_{1}^{1})\boldsymbol{\xi}_{1}^{2} - (\boldsymbol{\xi}_{1}^{12} + 1)\boldsymbol{\xi}_{3}^{2} - \boldsymbol{\xi}_{4}^{2}\boldsymbol{\xi}_{1}^{2}\boldsymbol{\xi}_{1}^{1} + (\boldsymbol{\xi}_{4}^{2} + \boldsymbol{\xi}_{3}^{1})\boldsymbol{\xi}_{5}^{5}\boldsymbol{\xi}_{1}^{2} - (\boldsymbol{\xi}_{3}^{2} - \boldsymbol{\xi}_{4}^{1})\boldsymbol{\xi}_{6}^{6}\boldsymbol{\xi}_{1}^{2})/(\boldsymbol{\xi}_{4}^{2}\boldsymbol{\xi}_{3}^{1} - \boldsymbol{\xi}_{3}^{2}\boldsymbol{\xi}_{4}^{1}); \quad \mathbf{J}_{\mathbf{2}}^{4} = (-((((\boldsymbol{\xi}_{3}^{2} - \boldsymbol{\xi}_{4}^{1})\boldsymbol{\xi}_{5}^{6} - 2\boldsymbol{\xi}_{5}^{5}\boldsymbol{\xi}_{3}^{1})(\boldsymbol{\xi}_{3}^{2} - \boldsymbol{\xi}_{4}^{1})\boldsymbol{\xi}_{5}^{5}\boldsymbol{\xi}_{3}^{2} + (\boldsymbol{\xi}_{3}^{2} - \boldsymbol{\xi}_{4}^{1})\boldsymbol{\xi}_{5}^{2}\boldsymbol{\xi}_{3}^{2} + (((\boldsymbol{\xi}_{3}^{2} - \boldsymbol{\xi}_{4}^{1})\boldsymbol{\xi}_{5}^{2} - \boldsymbol{\xi}_{5}^{2}\boldsymbol{\xi}_{3}^{1})(\boldsymbol{\xi}_{3}^{2} - \boldsymbol{\xi}_{4}^{1})\boldsymbol{\xi}_{5}^{2}\boldsymbol{\xi}_{3}^{2} + ((\boldsymbol{\xi}_{3}^{2} - \boldsymbol{\xi}_{4}^{1})\boldsymbol{\xi}_{5}^{2} - \boldsymbol{\xi}_{5}^{2}\boldsymbol{\xi}_{3}^{1})(\boldsymbol{\xi}_{3}^{2} - \boldsymbol{\xi}_{5}^{1})\boldsymbol{\xi}_{3}^{2} - \boldsymbol{\xi}_{5}^{2}\boldsymbol{\xi}_{3}^{2})(\boldsymbol{\xi}_{3}^{2} - \boldsymbol{\xi}_$ $(\xi_{5}^{6}\xi_{3}^{2}^{2} - 2\xi_{5}^{6}\xi_{3}^{2}\xi_{4}^{1} + \xi_{5}^{6}\xi_{4}^{1}^{2} - 2\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2} + 2\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{4}^{1} - 2\xi_{5}^{6}\xi_{5}^{5}\xi_{3}^{2}\xi_{4}^{1} + 2\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{1}\xi_{3}^{1} + \xi_{5}^{6}\xi_{5}^{2}\xi_{4}^{2} + 2\xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{1} + 2\xi_{5}^{6}\xi_{5}^{2}\xi_{4}^{1}\xi_{3}^{1} + \xi_{5}^{6}\xi_{5}^{2}\xi_{4}^{2} + 2\xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{1} + 2\xi_{5}^{6}\xi_{5}^{2}\xi_{3}^{2} + 2\xi_{5}^{6}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2} + 2\xi_{5}^{6}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2} + 2\xi_{5}^{6}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2} + 2\xi_{5}^{6}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2} + 2\xi_{5}^{6}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5$ $\xi_{5}^{52}\xi_{3}^{12} - 2\xi_{5}^{5}\xi_{4}^{22}\xi_{1}^{1} + 2\xi_{5}^{5}\xi_{4}^{2}\xi_{1}^{2}\xi_{4}^{1} - 2\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{1}\xi_{1}^{1} + \xi_{5}^{5}\xi_{3}^{2}\xi_{1}^{2}\xi_{3}^{1} - 2\xi_{5}^{5}\xi_{3}^{2}\xi_{4}^{1}\xi_{1}^{1} + 3\xi_{5}^{5}\xi_{1}^{2}\xi_{4}^{1}\xi_{3}^{1} + (\xi_{3}^{2}\xi_{1}^{2}\xi_{1}^{2} - \xi_{3}^{2}\xi_{1}^{2}\xi_{1}^{2} - \xi_{3}^{2}\xi_{1}^{2}\xi_{4}^{1} + 2\xi_{5}^{2}\xi_{3}^{1}\xi_{1}^{1} - 2\xi_{1}^{2}\xi_{3}^{1}\xi_{1}^{2} + (\xi_{3}^{2}\xi_{1}^{2}\xi_{1}^{2} - \xi_{3}^{2}\xi_{1}^{2}\xi_{1}^{2} + \xi_{3}^{2}\xi_{1}^{$ $(\xi_{5}^{5}^{2}+1)(\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{5}\xi_{3}^{2}\xi_{3}^{1}-\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{1}+\xi_{3}^{2}\xi_{1}^{2}\xi_{4}^{1}-\xi_{3}^{2}\xi_{3}^{1}\xi_{1}^{1}+\xi_{1}^{2}\xi_{3}^{1})(\xi_{4}^{2}+\xi_{3}^{1})+(2(\xi_{4}^{2}\xi_{1}^{1}-\xi_{1}^{2}\xi_{4}^{1})\xi_{4}^{2}+(\xi_{3}^{2}\xi_{1}^{1}-\xi_{1}^{2}\xi_{3}^{1})(\xi_{3}^{2}+\xi_{4}^{1}))(\xi_{3}^{2}-\xi_{4}^{1})\xi_{5}^{6}-\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{2}\xi_$ $(((\xi_3^2\xi_4^1\xi_1^1 - \xi_1^2\xi_4^1\xi_3^1 + \xi_4^1^2\xi_1^1 + 2\xi_3^1^2\xi_1^1)\xi_1^2 - (\xi_1^1 + 1)(\xi_1^1 - 1)\xi_3^2\xi_3^1)\xi_3^2 - (\xi_4^1^2 + \xi_3^1^2)\xi_1^2^2\xi_3^1 - (\xi_4^2^2\xi_1^1^2 - 2\xi_4^2\xi_1^2\xi_4^1\xi_1^1 + \xi_3^2^2\xi_1^{12} - \xi_3^2^2 - (\xi_4^1\xi_1^1 + \xi_3^2\xi_1^1 + \xi_3^2\xi_1^2 + \xi_$ $\xi_{3}^{2}\xi_{1}^{2}\xi_{3}^{1}\xi_{1}^{1} + \xi_{3}^{2}\xi_{4}^{1}\xi_{1}^{1}^{2} + \xi_{3}^{2}\xi_{4}^{1} + \xi_{1}^{2}^{2}\xi_{4}^{1} - \xi_{1}^{2}\xi_{4}^{1}\xi_{3}^{1}\xi_{1}^{1} + \xi_{3}^{1}^{2}(\xi_{4}^{2})\xi_{5}^{2}))/((\xi_{4}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{4}^{1})^{2}\xi_{5}^{6}); \quad \mathbf{J}_{3}^{4} = -(\xi_{3}^{2}\xi_{1}^{2}\xi_{4}^{1} - \xi_{3}^{2}\xi_{3}^{1}\xi_{1}^{1} + \xi_{1}^{2}\xi_{3}^{1}^{2} - \xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{1} + (\xi_{4}^{2}+\xi_{4}^{2})^{2}\xi_{5}^{2}))/((\xi_{4}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{4}^{1})^{2}\xi_{5}^{6})$ $\xi_{3}^{1})\xi_{5}^{5}\xi_{3}^{2} - (\xi_{3}^{2} - \xi_{4}^{1})\xi_{5}^{6}\xi_{3}^{2})/(\xi_{4}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{4}^{1}); \quad \mathbf{J_{4}^{4}} = ((\xi_{4}^{2}\xi_{1}^{1} - \xi_{1}^{2}\xi_{4}^{1})\xi_{4}^{2} + (\xi_{3}^{2}\xi_{1}^{1} - \xi_{1}^{2}\xi_{3}^{1})\xi_{4}^{1} - (\xi_{4}^{2} + \xi_{3}^{1})\xi_{5}^{5}\xi_{4}^{2} + (\xi_{3}^{2} - \xi_{4}^{1})\xi_{5}^{6}\xi_{4}^{2})/(\xi_{4}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{4}^{1}); \quad \mathbf{J_{4}^{2}} = ((\xi_{3}^{2}\xi_{1}^{1} - \xi_{1}^{2}\xi_{4}^{1})\xi_{4}^{2} + (\xi_{3}^{2}\xi_{3}^{1})\xi_{4}^{1} - (\xi_{4}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{4}^{1})\xi_{5}^{2}\xi_{4}^{2} + (\xi_{3}^{2}\xi_{3}^{1})(\xi_{4}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{4}^{1}); \quad \mathbf{J_{4}^{2}} = ((\xi_{3}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{4}^{1})\xi_{4}^{2} + (\xi_{3}^{2}\xi_{3}^{1})\xi_{4}^{2} + (\xi_{3}^{2}\xi_{3}^{1})(\xi_{4}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{4}^{1}); \quad \mathbf{J_{4}^{2}} = ((\xi_{3}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{4}^{1})\xi_{4}^{2} + (\xi_{3}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{4}^{1})\xi_{5}^{2}\xi_{4}^{2} + (\xi_{3}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{4}^{1}); \quad \mathbf{J_{4}^{2}} = ((\xi_{3}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{4}^{1})\xi_{5}^{2}\xi_{3}^{2} + (\xi_{3}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{4}^{1})\xi_{5}^{2}\xi_{5}^{2} + (\xi_{3}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{4}^{1})\xi_{5}^{2} + (\xi_{3}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{4}^{1})\xi_{5}^{2} + (\xi_{3}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{4}^{1})\xi_{5}^{2}\xi_{5}^{2} + (\xi_{3}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{4}^{1})\xi_{5}^{2} + (\xi_{3}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{4}^{1})\xi_{5}^{2} + (\xi_{3$ $\mathbf{J_{1}^{5}} = ((((\xi_{5}^{5} - \xi_{1}^{1})\xi_{1}^{6} - \xi_{2}^{6}\xi_{1}^{2})(\xi_{4}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{4}^{1}) - (\xi_{3}^{2} - \xi_{4}^{1})\xi_{3}^{6}\xi_{5}^{5}\xi_{1}^{2} + ((\xi_{1}^{2}\xi_{3}^{1} - \xi_{4}^{1}\xi_{1}^{1} - \xi_{3}^{2}\xi_{1}^{1})\xi_{1}^{2} + (\xi_{1}^{12} + 1)\xi_{4}^{2})\xi_{3}^{6}(\xi_{5}^{5} + ((\xi_{1}^{2}\xi_{4}^{1} + \xi_{3}^{1}\xi_{1}^{1})\xi_{1}^{2} - (\xi_{1}^{2}\xi_{4}^{1} - \xi_{3}^{2}\xi_{1}^{1})\xi_{1}^{2} + (\xi_{1}^{2}\xi_{4}^{2} - \xi_{3}^{2}\xi_{1}^{2})\xi_{1}^{2} + (\xi_{1}^{2}\xi_{4}^{2} - \xi_{3}^{2}\xi_{1}^{2})\xi_{1}^{2} + (\xi_{1}^{2}\xi_{4}^{2} - \xi_{3}^{2}\xi_{1}^{2})\xi_{1}^{2} + (\xi_{1}^{2}\xi_{4}^{2} - \xi_{3}^{2}\xi_{1}^{2})\xi_{1}^{2})\xi_{1}^{2} + (\xi_{1}^{2}\xi_{4}^{2} - \xi_{3}^{2}\xi_{1}^{2})\xi_{1$ $(\xi_1^{12} + 1)\xi_3^2 - \xi_4^2\xi_1^2\xi_1^1)\xi_5^2\xi_4^6 - ((\xi_5^8\xi_3^2 - \xi_5^6\xi_4^4 - \xi_5^5\xi_4^2 - \xi_5^5\xi_3^4)\xi_5^6\xi_4^6 - (\xi_5^{12} + 1)(\xi_4^2 + \xi_3^4)\xi_3^6)\xi_1^2)/((\xi_4^2\xi_3^1 - \xi_3^2\xi_3^4)\xi_5^6); \quad \mathbf{J}_2^{\mathbf{5}} = ((((\xi_3^2 - \xi_5^2 + \xi_3^4)\xi_5^4)\xi_3^4 - \xi_3^2\xi_3^4)\xi_3^6)\xi_1^2)$ $\xi_4^4 \\ \\ \xi_5^6 - 2\xi_5^6 \xi_3^4 \\ \\ (\xi_3^2 - \xi_4^4) \xi_5^6 \xi_5^2 \xi_3^2 + \xi_5^6 \xi_4^2 \xi_3^2 - 2\xi_5^6 \xi_4^2 \xi_3^2 \xi_4^2 + \xi_5^6 \xi_4^2 \xi_4^2 \xi_4^2 - 2\xi_5^6 \xi_5^2 \xi_5^2 \xi_4^2 \xi_3^2 + 2\xi_5^6 \xi_5^2 \xi_5^2 \xi_4^2 \xi_4^2 + 2\xi_5^6 \xi_5^2 \xi_4^2 \xi_3^2 + 2\xi_5^6 \xi_5^2 \xi_4^2 \xi_3^2 + 2\xi_5^6 \xi_5^2 \xi_5^2 \xi_4^2 \xi_3^2 + 2\xi_5^6 \xi_5^2 \xi_5^2 \xi_4^2 \xi_3^2 + 2\xi_5^6 \xi_5^2 \xi_5$ $\xi_{5}^{6}\xi_{5}^{6}\xi_{5}^{2}\xi_{4}^{3} + 2\xi_{6}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{4} - 2\xi_{6}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2} + 2\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2} + \xi_{6}^{4}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2} + \xi_{6}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{4} + \xi_{6}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{5}^{4}\xi_{3}^{4} + \xi_{6}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{5}^{4}\xi_{5}^{4} + \xi_{6}^{6}\xi_{5}^{5}\xi_{4}^{2}\xi_{5}^{4} + \xi_{6}^{6}\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4} + \xi_{6}^{6}\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4} + \xi_{6}^{6}\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4} + \xi_{6}^{6}\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4} + \xi_{6}^{6}\xi_{5}^{5}\xi_{5}^{4}\xi_{5}^{4} + \xi_{6}^{6}\xi_{5}^{6}\xi_{5}^{4}\xi_{5}^{4} + \xi_{6}^{6}\xi_{5}^{6}\xi_{5}^{4}\xi_{5}^{$ $2\xi_{0}^{5}\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{2}\xi_{4}^{1}\xi_{1}^{1}+3\xi_{0}^{5}\xi_{5}^{5}\xi_{4}^{2}\xi_{1}^{2}\xi_{4}^{1}\xi_{3}^{1}+\xi_{5}^{5}{}^{3}\xi_{4}^{2}\xi_{3}^{2}+2\xi_{5}^{5}{}^{3}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{5}{}^{3}\xi_{3}^{2}\xi_{3}^{1}^{2}-\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{1}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{1}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{1}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{1}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{1}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{1}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{1}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{1}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{1}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{1}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{1}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{5}^{5}{}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{5}^{5}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^$ $\xi_{5}^{2}\xi_{4}^{2}\xi_{3}^{2} + 2\xi_{5}^{2}\xi_{4}^{2}\xi_{3}^{2}\xi_{3}^{4} + \xi_{5}^{5}\xi_{3}^{2}\xi_{3}^{1}^{2} + (\xi_{3}^{2}\xi_{1}^{2}\xi_{4}^{1} - \xi_{3}^{2}\xi_{3}^{1}\xi_{1}^{1} + \xi_{1}^{2}\xi_{3}^{1}^{2})\xi_{5}^{5}\xi_{3}^{2} - (\xi_{3}^{2}\xi_{1}^{2} - \xi_{3}^{2}\xi_{1}^{2}\xi_{4}^{1} + 2\xi_{3}^{2}\xi_{3}^{1}\xi_{1}^{1} - 2\xi_{1}^{2}\xi_{3}^{2})\xi_{5}^{5}\xi_{5}^{4} - (\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{1} - \xi_{3}^{2}\xi_{1}^{2}\xi_{4}^{1} + \xi_{3}^{2}\xi_{3}^{1})\xi_{5}^{2}\xi_{5}^{2} + (\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{1} - \xi_{3}^{2}\xi_{1}^{2}\xi_{1}^{1} - \xi_{3}^{2}\xi_{1}^{2}\xi_{3}^{1} + \xi_{3}^{2}\xi_{3}^{2}\xi_{1}^{1} + \xi_{3}^{2}\xi_{3}^{2}\xi_{1}^{2} + \xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2} + \xi_{3}^{2}\xi_{3}^{2}\xi$ $\xi_{3}^{2}\xi_{3}^{1}\xi_{1}^{1}-\xi_{1}^{2}\xi_{3}^{12})(\xi_{4}^{2}+\xi_{3}^{1})(\xi_{5}^{6}\xi_{4}^{6}+(\xi_{5}^{5}^{2}+1)^{2}(\xi_{4}^{2}+\xi_{3}^{1})^{2}\xi_{3}^{6}\xi_{3}^{2}+(2(\xi_{4}^{2}\xi_{1}^{1}-\xi_{1}^{2}\xi_{4}^{1})\xi_{4}^{2}+(\xi_{3}^{2}\xi_{1}^{1}-\xi_{1}^{2}\xi_{3}^{1})(\xi_{3}^{2}+\xi_{4}^{1}))(\xi_{3}^{2}-\xi_{4}^{1})\xi_{5}^{6}\xi_{4}^{6}-((\xi_{2}^{6}\xi_{3}^{2}+\xi_{3}^{1})^{2}\xi_{3}^{6}\xi_{3}^{2}+(\xi_{4}^{2}\xi_{3}^{1}+\xi_{4}^{2}\xi_{3}^{1}+\xi_{4}^{2}\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1})(\xi_{3}^{2}+\xi_{4}^{1}$ $\xi_{1}^{6}\xi_{3}^{1})(\xi_{4}^{2}\xi_{3}^{1}-\xi_{3}^{2}\xi_{4}^{1})-(\xi_{5}^{5}\xi_{4}^{2}^{2}+\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{1}-2\xi_{5}^{5}\xi_{3}^{2}^{2}+2\xi_{5}^{5}\xi_{3}^{2}\xi_{4}^{1}-\xi_{4}^{2}\xi_{1}^{1}+\xi_{4}^{2}\xi_{1}^{2}\xi_{4}^{1}+\xi_{4}^{2}\xi_{3}^{1}\xi_{1}^{1}-2\xi_{3}^{2}\xi_{1}^{1}+2\xi_{3}^{2}\xi_{1}^{2}\xi_{3}^{1}-\xi_{4}^{2}\xi_{4}^{1})\xi_{3}^{6})(\xi_{5}^{5}^{2}+1)(\xi_{4}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+\xi_{5}^{2}\xi_{3}^{2}\xi_{1}^{2}+$ $\xi_{3}^{1})\xi_{5}^{6} + ((\xi_{2}^{6}\xi_{4}^{2} + \xi_{1}^{6}\xi_{4}^{1})(\xi_{4}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{4}^{1}) + (\xi_{3}^{2} - \xi_{4}^{1})\xi_{3}^{6}\xi_{5}^{5}\xi_{4}^{2} + ((\xi_{3}^{2}\xi_{1}^{1} - \xi_{1}^{2}\xi_{3}^{1} - \xi_{4}^{1}\xi_{1}^{1})\xi_{4}^{2} + \xi_{1}^{2}\xi_{4}^{1})\xi_{5}^{6})((\xi_{3}^{2}\xi_{4}^{1}\xi_{1}^{1} - \xi_{1}^{2}\xi_{4}^{1}\xi_{3}^{1} + \xi_{3}^{2}\xi_{4}^{1})\xi_{5}^{1})\xi_{5}^{6})((\xi_{3}^{2}\xi_{4}^{1}\xi_{1}^{1} - \xi_{1}^{2}\xi_{4}^{1}\xi_{3}^{1} + \xi_{3}^{1}\xi_{3}^{1})\xi_{5}^{1})\xi_{5}^{1})\xi_{5}^{1}\xi_{5}^{1})\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1})\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1})\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1})\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{1}\xi_{5}^{$ $\xi_{1}^{42}\xi_{1}^{1}+2\xi_{3}^{12}\xi_{1}^{1})\xi_{1}^{2}-(\xi_{1}^{1}+1)(\xi_{1}^{1}-1)\xi_{3}^{2}\xi_{3}^{1})\xi_{3}^{2}-(\xi_{1}^{42}+\xi_{3}^{12})\xi_{1}^{22}\xi_{3}^{1}-(\xi_{4}^{22}\xi_{1}^{12}-2\xi_{4}^{22}\xi_{1}^{2}\xi_{1}^{2}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^{12}+\xi_{3}^{22}\xi_{1}^$ $\xi_1^{22} \xi_4^{12} - \xi_1^2 \xi_4^1 \xi_3^1 \xi_1^1 + \xi_3^{12} \xi_4^2 \xi_5^6 \xi_4^6 - (((2\xi_5^5 \xi_4^2 \xi_3^2 - 2\xi_5^5 \xi_4^2 \xi_4^1 + 2\xi_5^5 \xi_3^2 \xi_3^1 - 2\xi_5^5 \xi_4^1 \xi_3^1 - \xi_4^2 \xi_1^2 \xi_3^1 + \xi_5^2 \xi_1^2 \xi_4^1 + 2\xi_3^2 \xi_3^1 \xi_1^1 - (\xi_1^2 \xi_3^1 + 2\xi_4^1 \xi_1^1) \xi_3^1) \xi_4^2 - (((2\xi_5^5 \xi_4^2 \xi_3^2 - 2\xi_5^5 \xi_4^2 \xi_3^2 - 2\xi_5^5 \xi_4^2 \xi_3^1 - 2\xi_5^5 \xi_4^2 \xi_3^1 - \xi_4^2 \xi_3^2 \xi_3^1 - \xi_4^2 \xi_3^2 \xi_3^2 + \xi_4^2 \xi_3^2 \xi_3^2 \xi_3^2 + \xi_4^2 \xi_3^2 + \xi_4^2 \xi_3^2 + \xi_4^2 \xi_3^2 \xi_3^2 + \xi_4^2 \xi_3^2 + \xi_3^2 \xi_3^2 + \xi_4^2 \xi_3^2 + \xi_3^2 \xi_3^2 + \xi_3^2$ $(\xi_3^2 - \xi_4^1)^2 \xi_5^5 \xi_3^2 - (2\xi_3^{23} \xi_1^1 - 2\xi_3^{22} \xi_1^2 \xi_3^1 - 2\xi_3^{22} \xi_1^2 \xi_3^1 - 2\xi_3^{22} \xi_1^2 \xi_1^1 + 3\xi_3^2 \xi_1^2 \xi_4^1 \xi_3^1 - 2\xi_1^2 \xi_4^1 \xi_3^1) \\ \xi_3^6 \xi_5^5 - ((\xi_4^2 \xi_1^1 - \xi_4^2 \xi_1^2 \xi_4^1 + \xi_3^2 \xi_1^2 \xi_3^1 - \xi_3^2 \xi_3^2 \xi_3^2 + \xi_3^2 \xi_3^2 \xi_3^2 \xi_3^2 + \xi_3^2 \xi_3^2 \xi_3^2 \xi_3^2 \xi_3^2 + \xi_3^2 \xi_3^2 \xi_3^2 \xi_3^2 \xi_3^2 \xi_3^2 + \xi_3^2 \xi_3^2$ $2\xi_{3}^{2}\xi_{4}^{1})\xi_{5}^{5})\xi_{2}^{6} + (\xi_{4}^{2}\xi_{4}^{1}\xi_{1}^{1} + \xi_{3}^{2}\xi_{3}^{1}\xi_{1}^{1} - \xi_{1}^{2}\xi_{4}^{12} - \xi_{1}^{2}\xi_{3}^{12} - (\xi_{4}^{2}\xi_{4}^{1} - \xi_{3}^{2}\xi_{3}^{1} + 2\xi_{4}^{1}\xi_{3}^{1})\xi_{5}^{5})\xi_{1}^{6})(\xi_{4}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{4}^{1}) - (((\xi_{4}^{2}\xi_{1}^{12} - \xi_{4}^{2} - \xi_{1}^{2}\xi_{4}^{1}\xi_{1}^{1} - (\xi_{1}^{12} + \xi_{3}^{2}\xi_{3}^{1} + \xi_{3}^{2}$ $1)\xi_{3}^{1})\xi_{3}^{2} - (\xi_{1}^{2}\xi_{3}^{1}\xi_{1}^{1} + \xi_{4}^{1}\xi_{1}^{1}^{2} - \xi_{4}^{1})\xi_{4}^{2} + (\xi_{1}^{2}\xi_{3}^{1}\xi_{3}^{1} + 2\xi_{4}^{1}^{2}\xi_{1}^{1} + \xi_{3}^{1}^{2}\xi_{1}^{1})\xi_{1}^{2})\xi_{4}^{2} + (\xi_{3}^{2}\xi_{1}^{1}^{2} - 2\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{1}\xi_{1}^{1} + \xi_{1}^{2}\xi_{3}^{1}^{2} + \xi_{1}^{2}\xi_{4}^{1}\xi_{3}^{1} + \xi_{1}^{2}\xi_{3}^{2} - (\xi_{4}^{12} + \xi_{3}^{1}\xi_{3}^{1} + \xi_{1}^{2}\xi_{3}^{1} + \xi_{1$ $\xi_{3}^{2}^{2}\xi_{4}^{2}\xi_{5}^{2}(\xi_{4}^{2})\xi_{5}^{6}(\xi_{5}^{2})/((\xi_{4}^{2}\xi_{3}^{2}-\xi_{5}^{2}\xi_{4}^{2})^{2}\xi_{5}^{6}); \quad \mathbf{J}_{3}^{\mathbf{5}} = (-(((\xi_{5}^{6}\xi_{3}^{2}-\xi_{5}^{6}\xi_{4}^{1}-\xi_{5}^{2}\xi_{4}^{2}-\xi_{5}^{2}\xi_{3}^{1})\xi_{5}^{6}\xi_{4}^{6}-(\xi_{5}^{5}^{2}+1)(\xi_{4}^{2}+\xi_{3}^{1})\xi_{5}^{6}\xi_{3}^{2}-(\xi_{3}^{2}\xi_{4}^{2}\xi_{4}^{1}+\xi_{3}^{2}\xi_{3}^{1}\xi_{4}^{1}+\xi_{3}^{2}\xi_{5}^{1})\xi_{5}^{6}\xi_{5}^{6}-(\xi_{5}^{5}\xi_{4}^{2}+\xi_{3}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2})\xi_{5}^{6}\xi_{5}^{6}-(\xi_{5}^{5}\xi_{4}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{2}+\xi_{5}^{2}\xi_{5}^{2}+\xi_{5}^{$ $\xi_{1}^{2}\xi_{3}^{12} - \xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{1})\xi_{5}^{6}\xi_{4}^{6} + ((\xi_{2}^{6}\xi_{3}^{2} + \xi_{1}^{6}\xi_{3}^{1})(\xi_{4}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{4}^{1}) - (\xi_{4}^{2}\xi_{3}^{1} - \xi_{3}^{2})\xi_{3}^{6}\xi_{5}^{5} + (\xi_{3}^{2}\xi_{1}^{1} - \xi_{3}^{2}\xi_{1}^{2}\xi_{3}^{1} + \xi_{1}^{2}\xi_{4}^{1}\xi_{3}^{1} - \xi_{4}^{2}\xi_{3}^{1}\xi_{1}^{1})\xi_{3}^{6})\xi_{5}^{6}))/((\xi_{4}^{2}\xi_{3}^{1} - \xi_{3}^{2}\xi_{4}^{1})\xi_{5}^{6})\xi_{5}^{6})$ $\mathbf{J_{4}^{5}} = (-((\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2} - \xi_{5}^{6}\xi_{4}^{2}\xi_{4}^{1} - \xi_{5}^{5}\xi_{4}^{2}^{2} - 2\xi_{5}^{5}\xi_{4}^{2}\xi_{3}^{1} + \xi_{5}^{5}\xi_{3}^{2}\xi_{4}^{1})\xi_{5}^{6}\xi_{4}^{6} - (\xi_{5}^{5}^{2} + 1)(\xi_{4}^{2} + \xi_{3}^{1})\xi_{3}^{6}\xi_{4}^{2} + ((\xi_{4}^{2}\xi_{1}^{1} - \xi_{1}^{2}\xi_{4}^{1})\xi_{4}^{2} + (\xi_{3}^{2}\xi_{1}^{1} - \xi_{1}^{2}\xi_{3}^{1})\xi_{4}^{1})\xi_{5}^{6}\xi_{4}^{6} + (\xi_{4}^{5}\xi_{1}^{2} - \xi_{5}^{2}\xi_{4}^{2})\xi_{5}^{2}\xi_{4}^{2} + (\xi_{4}^{5}\xi_{1}^{2} - \xi_{5}^{2}\xi_{4}^{2})\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_$ are subject to the condition $\xi_5^6(\xi_4^{22} + \xi_3^{22})(\xi_4^2\xi_3^1 - \xi_3^2\xi_4^1) \neq 0$.

13.2 Case $\xi_1^2 \neq 0$.

13.2.1 Case $\xi_1^2 \xi_4^2 \neq 0$.

$$J = \begin{pmatrix} * & * & * & * & * & 0 & 0 \\ \xi_1^2 & \xi_2^2 & \xi_3^2 & \xi_4^2 & 0 & 0 \\ * & * & \xi_3^3 & \xi_4^3 & 0 & 0 \\ * & * & * & * & 0 & 0 \\ * & * & * & * & \xi_5^5 & -\frac{\xi_5^{52} + 1}{\xi_5^6} \\ \xi_1^6 & \xi_2^6 & \xi_3^6 & \xi_4^6 & \xi_5^6 & -\xi_5^5 \end{pmatrix}$$

where the parameters are subject to the condition

$$\xi_1^2 \xi_5^6 \xi_4^2 C_2 \neq 0 \tag{82}$$

with $C_2 = ((\xi_5^6 \xi_4^3 \xi_4^2 + \xi_5^6 \xi_4^2 \xi_1^2 + \xi_5^5 \xi_4^3 \xi_3^2) \xi_5^6 + (\xi_5^{5^2} + 1) (\xi_3^3 + \xi_2^2) \xi_3^2 + (\xi_4^2 \xi_2^2 + \xi_3^2 \xi_1^2 + \xi_3^3 \xi_4^2) \xi_5^6 \xi_5^5) \xi_4^2 - ((\xi_3^3 \xi_4^2 \xi_2^2 - \xi_3^3 \xi_3^2 \xi_1^2 - \xi_4^2) \xi_4^2 - (\xi_4^2 \xi_2^2 - \xi_3^2 \xi_1^2) \xi_4^3 \xi_3^2) \xi_5^6$. The starred J_j^i 's are smooth rational functions under condition (82). However we do not give them here, as some are huge and we do not have explicit use of them in the rest of the paper. We refer instead to ([7], pp. 133-136).

13.2.2 Case $\xi_1^2 \xi_3^2 \neq 0, \xi_4^2 = 0$.

$$J = \begin{pmatrix} * & * & -\frac{(\xi_3^3 + \xi_2^2)\xi_3^2}{\xi_1^2} & -\frac{\xi_4^3 \xi_3^2}{\xi_1^2} & 0 & 0\\ \hline \xi_1^2 & \xi_2^2 & \xi_3^2 & 0 & 0 & 0\\ * & * & \xi_3^3 & \xi_4^3 & 0 & 0\\ * & * & * & * & * & 0 & 0\\ * & * & * & * & * & \xi_5^5 & -\frac{\xi_5^{5^2} + 1}{\xi_5^6}\\ \hline \xi_1^6 & \xi_2^6 & \xi_3^6 & \xi_4^6 & \xi_5^6 & -\xi_5^5 \end{pmatrix}$$

 $\text{ where } \mathbf{J_{1}^{1}} = (-(\xi_{5}^{52} + 1)(\xi_{3}^{3} + \xi_{2}^{2}) + \xi_{5}^{6}\xi_{2}^{2}\xi_{1}^{2} + (\xi_{4}^{3}\xi_{2}^{2} + \xi_{3}^{3}\xi_{1}^{2} + (\xi_{4}^{3} + \xi_{1}^{2})\xi_{5}^{5})\xi_{5}^{6}))/(\xi_{5}^{6}\xi_{1}^{2}); \quad \mathbf{J_{2}^{1}} = (-((\xi_{3}^{3} + \xi_{2}^{2})\xi_{2}^{2} - \xi_{4}^{3}\xi_{1}^{2} - (\xi_{3}^{3} + \xi_{2}^{2})\xi_{2}^{2} -$ $\xi_2^2)\xi_5^5 - (\xi_4^3 + \xi_1^2)\xi_5^6))/\xi_1^2; \quad \mathbf{J}_3^3 = ((\xi_3^3\xi_2^2 + \xi_3^3\xi_1^2 + (\xi_4^3 + \xi_1^2)\xi_5^5)\xi_5^6 + (\xi_5^5^2 + 1)(\xi_3^3 + \xi_2^2))/(\xi_5^6\xi_3^2); \quad \mathbf{J}_2^3 = (-(\xi_5^6\xi_4^3 + \xi_5^6\xi_1^2 + \xi_5^5\xi_3^3 + \xi_5^3)(\xi_5^3 + \xi_5^3 + \xi_5^3)(\xi_5^3 + \xi_5^3 + \xi_5^3)(\xi_5^3 + \xi_5^3 + \xi_5^3 + \xi_5^3 + \xi_5^3)(\xi_5^3 + \xi_5^3 + \xi_5^3$ $\xi_5^5 \xi_2^2 + \xi_4^3 \xi_1^2 - \xi_3^3 \xi_2^2 + 1))/\xi_3^2; \quad \mathbf{J}_4^4 = ((((\xi_3^3 + \xi_2^2)\xi_5^5 + 2\xi_5^6 \xi_1^2 + 2\xi_5^5^2 + 2)(\xi_3^3 + \xi_2^2)\xi_5^5 \xi_1^2 + \xi_5^6 \xi_4^2 \xi_4^2^2 + \xi_5^6 \xi_1^2 \xi_4^2 + \xi_5^6 \xi_5^5 \xi_4^2 \xi_5^2 + \xi_5^6 \xi_5^2 \xi_4^2 \xi_5^2 + \xi_5^6 \xi_5^2 \xi_4^2 \xi_5^2 + \xi_5^6 \xi_5^2 \xi_5^2 \xi_4^2 + \xi_5^6 \xi_5^2 \xi_5^2 \xi_5^2 \xi_5^2 \xi_5^2 \xi_5^2 \xi_5^2 + \xi_5^6 \xi_5^2 \xi_5^2 \xi_5^2 \xi_5^2 + \xi_5^6 \xi_5^2 \xi_5^2 \xi_5^2 + \xi_5^6 \xi_5^2 \xi_5^2 \xi_5^2 \xi_5^2 \xi_5^2 + \xi_5^6 \xi_5^2 \xi_5^2$ $\xi_{5}^{6}\xi_{5}^{52}\xi_{1}^{22} + 2\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{3}\xi_{2}^{2} + \xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{3}\xi_{3}^{2} + 3\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{3}\xi_{2}^{2} + 2\xi_{5}^{5}^{3}\xi_{4}^{3}\xi_{3}^{3} + 2\xi_{5}^{5}^{5}\xi_{4}^{3}\xi_{2}^{2} + 2\xi_{5}^{5}^{2}\xi_{4}^{3}\xi_{2}^{2} + 2\xi_{5}^{5}\xi_{4}^{3}\xi_{2}^{2} + 2\xi_{5}^{5}\xi_{4}^{3}\xi_{3}^{2} + 2\xi_{5}^{5}\xi_{4}^{3}\xi_{3}^{3} + 2\xi_{5}^{5}\xi_{4}^{3}\xi_{3}^{2} + 2\xi_{5}^{5}\xi_{4}^{3}\xi_{3}^{2} + 2\xi_{5}^{5}\xi_{4}^{3}\xi_{3}^{3} + 2\xi_{5}^{5}\xi_{4}^{3}\xi_{3}^{3} + 2\xi_{5}^{5}\xi_{4}^{3}\xi_{3}^{2} + 2\xi_{5}^{5}\xi_{4}^{3}\xi_{3}^{2} + 2\xi_{5}^{5}\xi_{4}^{3}\xi_{3}^{2} + 2\xi_{5}^{5}\xi_{4}^{3}\xi_{3}^{3} + 2\xi_{5}^{5}\xi_{4}^{3}\xi_{3}^{2} + 2\xi_{5}^{5}\xi_{4}^{3}\xi_$ $(\xi_5^{5\,2}+1)^2(\xi_3^3+\xi_2^2)^2+((\xi_3^3+\xi_2^2)\xi_1^2+2\xi_4^3\xi_2^2)(\xi_3^3+\xi_2^2)\xi_5^6+(\xi_4^{3\,2}\xi_2^{2\,2}+\xi_4^3\xi_3^2\xi_2^2+\xi_1^{2\,2}+\xi_1^{2\,2}+\xi_1^{2\,2}+\xi_1^{2\,2})\xi_4^3\xi_1^2)\xi_5^6)/(\xi_5^{6\,2}\xi_4^3\xi_3^2\xi_1^2);$ $J_{2}^{4} = (-(\xi_{5}^{6}^{2}\xi_{5}^{5}\xi_{4}^{2}^{2} + 2\xi_{5}^{6}^{2}\xi_{5}^{5}\xi_{4}^{3}\xi_{1}^{2} + \xi_{5}^{6}^{2}\xi_{5}^{5}\xi_{1}^{2}^{2} + \xi_{5}^{6}^{2}\xi_{4}^{2}\xi_{2}^{2} - \xi_{5}^{6}^{2}\xi_{2}^{2}\xi_{1}^{2} + 2\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{3}\xi_{3}^{3} + 2\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{3}\xi_{2}^{2} + 2\xi_{5}^{6}\xi_{5}^{5}\xi_{3}^{3}\xi_{1}^{2} + 2\xi_{5}^{6}\xi_{5}^{5}\xi_{2}^{3}\xi_{1}^{2} + 2\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{3}\xi_{2}^{3} + 2\xi_{5}^{6}\xi_{5}^{5}\xi_{3}^{3}\xi_{1}^{2} + 2\xi_{5}^{6}\xi_{5}^{5}\xi_{2}^{3}\xi_{1}^{2} + 2\xi_{5}^{6}\xi_{5}^{5}\xi_{2}^{3}\xi_{1}^{2} + 2\xi_{5}^{6}\xi_{5}^{5}\xi_{3}^{3}\xi_{1}^{2} + 2\xi_{5}^{6}\xi_{5}^{5}\xi_{2}^{3}\xi_{1}^{2} + 2\xi_{5}^{6}\xi_{5}^{5}\xi_{3}^{2}\xi_{1}^{2} + 2\xi_{5}^{6}\xi_{5}^{5}\xi_{5}^{2}\xi_{5}^{2}\xi_{1}^{2} + 2\xi_{5}^{6}\xi_{5}^{5}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2} + 2\xi_{5}^{6}\xi_{5}^{5}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2} + 2\xi_{5}^{6}\xi_{5}^{5}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2}\xi_{5}^{2} + 2\xi_{5}^{6}\xi_{5}^{5}\xi_{5}^{2}$ $\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{32}\xi_{1}^{2} + \xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{3}\xi_{1}^{22} - 2\xi_{5}^{6}\xi_{5}^{5}\xi_{3}^{3}\xi_{2}^{2}\xi_{1}^{2} - 2\xi_{5}^{6}\xi_{5}^{5}\xi_{2}^{32}\xi_{1}^{2} + \xi_{5}^{6}\xi_{4}^{32}\xi_{2}^{2}\xi_{1}^{2} - \xi_{5}^{6}\xi_{4}^{3}\xi_{3}^{2} + \xi_{5}^{6}\xi_{4}^{3}\xi_{3}^{2} - \xi_{5}^{6}\xi_{4}^{3}\xi_{2}^{2} - \xi_{5}^{6}\xi_{4}^{3}\xi_{2}^{2} + \xi_{5}^{6}\xi_{4}^{3}\xi_{2}^{2} + \xi_{5}^{6}\xi_{4}^{3}\xi_{2}^{2} + \xi_{5}^{6}\xi_{4}^{3}\xi_{2}^{2} - \xi_{5}^{6}\xi_{4}^{3}\xi_{2}^{2} + \xi_{5$ $2\xi_5^{53}\xi_3^{3}\xi_2^2 + \xi_5^{53}\xi_2^{22} + \xi_5^{52}\xi_4^{3}\xi_3^{2}\xi_1^2 + \xi_5^{52}\xi_4^{3}\xi_2^2 - \xi_5^{52}\xi_3^{32}\xi_2^2 - 2\xi_5^{52}\xi_3^{3}\xi_2^{22} - \xi_5^{52}\xi_3^{22} + \xi_5^{5}\xi_3^{22} + \xi_5^{5}\xi_3^{22} + \xi_5^{5}\xi_3^{22} + \xi_4^{5}\xi_3^{3}\xi_1^2 + \xi_4^{3}\xi_2^{2}\xi_1^2 - \xi_5^{52}\xi_3^{32}\xi_2^2 + \xi_5^{52}\xi_3^2\xi_2^2 + \xi_5^{52}\xi_$ $\xi_3^{32} \xi_2^2 - 2\xi_3^3 \xi_2^{22} - \xi_2^{23}))/(\xi_5^6 \xi_4^3 \xi_3^2 \xi_1^2); \quad \mathbf{J_3^4} = ((\xi_5^6 \xi_4^3 \xi_1^2 + \xi_5^6 \xi_1^{22} + \xi_5^6 \xi_4^2 \xi_3 + \xi_5^2 \xi_4^2 \xi_3 + \xi_2^2) \xi_5^6 \xi_1^2) \xi_5^6 + (\xi_5^{52} + 1)(\xi_3^3 + \xi_2^2)^2 + (\xi_2^{52} + 1)(\xi_3^5 + \xi_2^2)^2 + (\xi_2^{52} + \xi_3^5 \xi_4^2) \xi_3^2 \xi_2^2 + (\xi_3^5 + \xi_2^2) \xi_3^2 \xi_2^2 + (\xi_3^5 +$ $\xi_1^{2\,2} + \xi_3^{3} \xi_2^{2}) \xi_5^{6} \xi_4^{3}) / (\xi_5^{6} \xi_4^{3} \xi_1^{2}); \quad \mathbf{J_4^4} = ((\xi_5^{5\,2} + 1)(\xi_3^{3} + \xi_2^{2}) + (\xi_5^{5} \xi_4^{3} + \xi_5^{5} \xi_1^{2} + \xi_4^{3} \xi_2^{2}) \xi_5^{6}) / (\xi_5^{6} \xi_1^{2}); \quad \mathbf{J_5^5} = (-((((\xi_2^{6} \xi_1^{2} - \xi_1^{6} \xi_5^{5}) \xi_5^{6} \xi_3^{2} + (\xi_5^{5}^{2} + \xi_4^{5} \xi_4^{2}) \xi_5^{6}) / (\xi_5^{6} \xi_1^{2}); \quad \mathbf{J_5^5} = (-(((\xi_2^{6} \xi_1^{2} - \xi_1^{6} \xi_5^{5}) \xi_5^{6} \xi_3^{2} + (\xi_5^{5} + \xi_4^{6} \xi_4^{2}) \xi_5^{6}) / (\xi_5^{6} \xi_1^{2}); \quad \mathbf{J_5^5} = (-(\xi_5^{6} \xi_1^{2} + \xi_5^{6} \xi_1^{2} + \xi_5^{6}$ $1)(\xi_3^3 + \xi_2^2)\xi_3^6)\xi_1^2 + (\xi_4^3\xi_2^2 + \xi_3^3\xi_1^2 + (\xi_4^3 + \xi_1^2)\xi_5^5)(\xi_3^6\xi_1^2 - \xi_1^6\xi_3^2)\xi_5^6)\xi_4^3 + (\xi_4^{32}\xi_2^{22} + \xi_4^3\xi_3^3\xi_2^2\xi_1^2 + \xi_1^{22} + (\xi_2^{22} + \xi_1^{22})\xi_4^3\xi_1^2)\xi_5^6\xi_4^6 - ((\xi_5^{52} + \xi_1^{22})\xi_1^2)\xi_1^2)\xi_2^6(\xi_1^2 + \xi_1^2)\xi_2^6(\xi_1^2 + \xi_1^2 + \xi_1^2 + \xi_1^2)\xi_2^6(\xi_1^2 + \xi_1^2 +$ $1)(\xi_3^3 + \xi_2^2) + \xi_5^6 \xi_2^2 \xi_1^2)\xi_1^6 \xi_4^3 \xi_3^3)\xi_5^6 + ((((\xi_3^3 + \xi_2^2)\xi_5^5 + 2\xi_5^6 \xi_1^2 + 2\xi_5^5 \xi_1^2 + 2\xi_5^5 \xi_1^2 + \xi_5^6 \xi_4^2 \xi_1^2 + \xi_5^6 \xi_4^3 \xi_1^2 + \xi_5^6 \xi_5^2 \xi_4^3 \xi_1^2 + \xi_5^6 \xi_5^5 \xi_4^3 \xi_5^3 \xi_5^3 + \xi_5^6 \xi_5^5 \xi_5^3 \xi_5^3 \xi_5^3 \xi_5^3 + \xi_5^6 \xi_5^5 \xi_5^3 \xi$ $\xi_{5}^{6}\xi_{5}^{52}\xi_{1}^{22} + 2\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{32}\xi_{2}^{2} + \xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{3}\xi_{3}^{3}\xi_{1}^{2} + 3\xi_{5}^{6}\xi_{5}^{5}\xi_{4}^{3}\xi_{2}^{2}\xi_{1}^{2} + 2\xi_{5}^{53}\xi_{4}^{3}\xi_{3}^{3} + 2\xi_{5}^{53}\xi_{4}^{3}\xi_{2}^{2} + 2\xi_{5}^{52}\xi_{4}^{3}\xi_{3}^{2} + 2\xi_{5}^{52}\xi_{4}^{3}\xi_{2}^{2} + 2\xi_{5}^{52}\xi_{4}^{3}\xi_{2}^{2} + 2\xi_{5}^{52}\xi_{4}^{3}\xi_{2}^{3} + 2\xi_{5}^{52}\xi_{4}^{3}\xi_{3}^{2} + 2\xi_{5}^{52}\xi_{4}^{3}\xi_{2}^{3} + 2\xi_{5}^{52}\xi_{4}^{3}\xi_{3}^{2} + 2\xi_{5}^{52}\xi_{4}^{$ $(\xi_5^{5\,2}+1)^2(\xi_3^3+\xi_2^2)^2+((\xi_3^3+\xi_2^2)\xi_1^2+2\xi_4^3\xi_2^2)(\xi_3^3+\xi_2^2)\xi_5^6)\xi_4^6))/(\xi_5^{6\,3}\xi_4^3\xi_3^2\xi_1^2);$ $J_{2}^{5} = ((((\xi_{5}^{6}\xi_{4}^{3}^{2} + 2\xi_{5}^{6}\xi_{4}^{3}\xi_{1}^{2} + \xi_{5}^{6}\xi_{1}^{2}^{2} + 2\xi_{5}^{5}\xi_{4}^{3}\xi_{3}^{3} + 2\xi_{5}^{5}\xi_{4}^{3}\xi_{2}^{2} + \xi_{4}^{3}^{2}\xi_{1}^{2} + \xi_{4}^{3}\xi_{1}^{2} + 2(\xi_{5}^{5} - \xi_{2}^{2})(\xi_{3}^{3} + \xi_{2}^{2})\xi_{5}^{1})\xi_{5}^{5} + (\xi_{4}^{3} + \xi_{1}^{2})(\xi_{4}^{3} - \xi_{1}^{2})\xi_{5}^{6}\xi_{2}^{2})\xi_{5}^{6} + (\xi_{4}^{3} + \xi_{1}^{2})(\xi_{4}^{3} - \xi_{1}^{2})\xi_{5}^{2}(\xi_{4}^{3} + \xi_{1}^{2})(\xi_{4}^{3} - \xi_{1}^{2})\xi_{5}^{2})\xi_{5}^{6} + (\xi_{4}^{3} + \xi_{1}^{2})(\xi_{4}^{3} - \xi_{1}^{2})\xi_{5}^{6}(\xi_{4}^{3} + \xi_{1}^{2})\xi_{5}^{6}(\xi_{4}^{3}$ $(\xi_5^{5\,2}+1)(\xi_5^{5}\xi_3^{3}+\xi_5^{5}\xi_2^{2}+\xi_4^{3}\xi_1^{2}-\xi_3^{3}\xi_2^{2}-\xi_2^{2\,2})(\xi_3^{3}+\xi_2^{2}))\xi_4^{6}+(\xi_3^{6}\xi_1^{2}-\xi_1^{6}\xi_3^{2})(\xi_4^{3}+\xi_1^{2})\xi_5^{6\,2}\xi_4^{3}+(\xi_4^{3}\xi_2^{2}\xi_1^{2}-\xi_3^{3}\xi_2^{2\,2}+\xi_3^{3}-(\xi_2^{2\,2}+\xi_1^{2\,2}-\xi_1^{2\,2}))\xi_4^{6}+(\xi_3^{6}\xi_1^{2}-\xi_1^{6}\xi_3^{2})(\xi_3^{2}+\xi_1^{2})\xi_5^{6\,2}\xi_4^{3}+(\xi_4^{2}\xi_1^{2}-\xi_3^{2}\xi_2^{2}+\xi_3^{3}-(\xi_2^{2\,2}+\xi_1^{2\,2}-\xi_1^{2\,2}))\xi_4^{6}+(\xi_3^{6}\xi_1^{2}-\xi_1^{6}\xi_1^{2})(\xi_3^{2}+\xi_1^{2})\xi_5^{6}+(\xi_3^{6}\xi_1^{2}-\xi_1^{6}\xi_1^{2})(\xi_3^{2}+\xi_1^{2})\xi_5^{6}+(\xi_3^{6}\xi_1^{2}-\xi_1^{6}\xi_1^{2})(\xi_3^{2}+\xi_1^{2})\xi_5^{6}+(\xi_3^{6}\xi_1^{2}-\xi_1^{6}\xi_1^{2})(\xi_3^{2}+\xi_1^{2})\xi_5^{6}+(\xi_3^{6}\xi_1^{2}-\xi_1^{6}\xi_1^{2})(\xi_3^{2}+\xi_1^{2})\xi_5^{6}+(\xi_3^{6}\xi_1^{2}-\xi_1^{6}\xi_1^{2})(\xi_3^{2}+\xi_1^{2})\xi_5^{6}+(\xi_3^{6}\xi_1^{2}-\xi_1^{6}\xi_1^{2})(\xi_3^{2}+\xi_1^{6}\xi_1^{2$ $1)\xi_{2}^{2})\xi_{5}^{6}\xi_{4}^{6}\xi_{4}^{3} - (((\xi_{3}^{4}\xi_{1}^{2} - \xi_{3}^{3}\xi_{2}^{2} - \xi_{2}^{2}^{2} + (\xi_{3}^{3} + \xi_{2}^{2})\xi_{5}^{5})\xi_{1}^{6} - (\xi_{5}^{5} - \xi_{2}^{2})\xi_{2}^{6}\xi_{1}^{2})\xi_{3}^{2} - (\xi_{4}^{3}\xi_{1}^{2} - \xi_{3}^{3}\xi_{2}^{2} + 1 + (\xi_{3}^{3} + \xi_{2}^{2})\xi_{5}^{5})\xi_{3}^{6}\xi_{1}^{2})\xi_{5}^{6}\xi_{4}^{3})/(\xi_{5}^{6}\xi_{4}^{3}\xi_{2}^{2}\xi_{1}^{2});$ $\mathbf{J_{3}^{5}} = (-(\xi_{5}^{62} \xi_{4}^{6} \xi_{4}^{3} \xi_{1}^{2} + \xi_{5}^{62} \xi_{4}^{6} \xi_{1}^{22} + \xi_{5}^{6} \xi_{4}^{6} \xi_{5}^{5} \xi_{4}^{3} \xi_{3}^{3} + \xi_{5}^{6} \xi_{4}^{6} \xi_{5}^{5} \xi_{4}^{3} \xi_{2}^{2} + 2\xi_{5}^{6} \xi_{4}^{6} \xi_{5}^{5} \xi_{3}^{3} \xi_{1}^{2} + 2\xi_{5}^{6} \xi_{4}^{6} \xi_{5}^{5} \xi_{2}^{2} \xi_{1}^{2} + \xi_{5}^{6} \xi_{4}^{6} \xi_{3}^{4} \xi_{3}^{2} + \xi_{5}^{6} \xi_{4}^{6} \xi_{3}^{3} \xi_{2}^{2} + \xi_{5}^{6} \xi_{4}^{6} \xi_{3}^{3} \xi_{3}^{2} + \xi_{5}^{6} \xi_{4}^{6} \xi_{3}^{6} \xi_{3}^{2} \xi_{3}^{2} + \xi_{5}^{6} \xi_{4}^{6} \xi_{3}^{2} \xi_{3}^{2} + \xi_{5}^{6} \xi_{4}^{6} \xi_{3}^{2} \xi_{3}^{2} + \xi_{5}^{6} \xi_{4}^{6} \xi_{3}^{2} \xi_{3}^{2} + \xi_{5}^{$ $\xi_{5}^{6}\xi_{3}^{6}\xi_{5}^{6}\xi_{4}^{2}\xi_{1}^{2} + \xi_{5}^{6}\xi_{3}^{6}\xi_{3}^{4}\xi_{3}^{2}\xi_{1}^{2} + \xi_{5}^{6}\xi_{2}^{6}\xi_{3}^{4}\xi_{3}^{2}\xi_{1}^{2} - \xi_{5}^{6}\xi_{1}^{6}\xi_{3}^{4}\xi_{3}^{2}\xi_{2}^{2} - \xi_{5}^{6}\xi_{1}^{6}\xi_{3}^{4}\xi_{3}^{2}\xi_{2}^{2} + \xi_{4}^{6}\xi_{5}^{5}\xi_{3}^{2}\xi_{2}^{2} + \xi_{4}^{6}\xi_{5}^{5}\xi_{3}^{2}\xi_{2}^{2} + \xi_{4}^{6}\xi_{3}^{5}\xi_{3}^{2} + 2\xi_{4}^{6}\xi_{3}^{2}\xi_{2}^{2} + \xi_{4}^{6}\xi_{3}^{5}\xi_{3}^{2}\xi_{2}^{2} + \xi_{4}^{6}\xi_{3}^{5}\xi_{3}^{2}\xi_{3}^{2} + \xi_{4}^{6}\xi_{3}^{5}\xi_{3}^{2}\xi_{3}^{2} + \xi_{4}^{6}\xi_{3}^{5}\xi_{3}^{2}\xi_{3}^{2} + \xi_{4}^{6}\xi_{3}^{5}\xi_{3}^{2}\xi_{3}^{2} + \xi_{4}^{6}\xi_{3}^{5}\xi_{3}^{2}\xi_{3}^{2} + \xi_{4}^{6}\xi_{3}^{5}\xi_{3}^{2} + \xi_{4}^{6}\xi_{3}^{5}\xi_{3}^{2}\xi_{3}^{2} + \xi_{4}^{6}\xi_{3}^{2}\xi_{3}^{2} + \xi_{4}^{6}\xi_{3}^{2}\xi_{3}^{2} + \xi_{4}^{6}\xi_{3}^{6}\xi_{3}^{2}\xi_{3}^{2} + \xi_{4}^{6}\xi_{3}^{6}\xi_{3}^{2}\xi_{3}^{2} + \xi_{4}^{6}\xi_{3}^{6}\xi_{3}^{2} + \xi_{4}^{6}\xi_{3}^{6}\xi_{3}^{2}\xi_{3}^{2} + \xi_{4}^{6}\xi_{3}^{6}\xi_{3}^{2} + \xi_{4}^$ $\xi_4^6 \xi_2^{22}))/(\xi_5^6 \xi_4^3 \xi_1^2); \quad \mathbf{J_4^5} = (-(\xi_5^6 \xi_4^6 \xi_5^5 \xi_4^3 + \xi_5^6 \xi_4^6 \xi_3^4 \xi_2^2 + \xi_5^6 \xi_3^6 \xi_4^3 \xi_1^2 - \xi_5^6 \xi_1^6 \xi_3^3 \xi_2^2 + \xi_4^6 \xi_5^5 \xi_3^3 + \xi_4^6 \xi_5^5 \xi_2^2 + \xi_4^6 \xi_3^3 + \xi_4^6 \xi_2^5))/(\xi_5^6 \xi_1^2); \quad \text{and} \quad \mathbf{J_4^5} = (-(\xi_5^6 \xi_4^6 \xi_5^5 \xi_4^3 + \xi_5^6 \xi_4^6 \xi_3^4 \xi_2^2 + \xi_5^6 \xi_3^6 \xi_4^3 \xi_2^2 + \xi_5^6 \xi_3^6 \xi_3^4 \xi_3^2 + \xi_5^6 \xi_3^6 \xi_3^4 \xi_3^4 + \xi_5^6 \xi_3^6 \xi_3^4 \xi_3^4 + \xi_5^6 \xi_3^6 \xi_3^4 \xi_3^4 + \xi_5^6 \xi_3^4 \xi_3^4 \xi_3^4 + \xi_5^6 \xi_3^4$ the parameters are subject to the conditions $\xi_1^2 \xi_5^6 \xi_3^2 \xi_4^3 \neq 0$.

13.2.3 Case $\xi_1^2 \neq 0, \xi_3^2 = \xi_4^2 = 0, \xi_2^2 + \xi_3^3 \neq 0$.

$$J = \begin{pmatrix} -\xi_2^2 & -\frac{\xi_2^{2^2}+1}{\xi_1^2} & 0 & 0 & 0 & 0 \\ \hline \xi_1^2 & & \xi_2^2 & 0 & 0 & 0 & 0 \\ \hline \xi_1^3 & -\frac{\xi_1^4 \xi_4^3 - \xi_3^3 \xi_3^3 + \xi_1^3 \xi_2^2}{\xi_1^2} & & \xi_3^3 & \xi_4^3 & 0 & 0 \\ \hline \xi_1^4 & & \frac{\xi_1^4 \xi_4^3 \xi_3^3 + \xi_1^4 \xi_4^3 \xi_2^2 + \xi_3^{3^2} \xi_1^3 + \xi_1^3}{\xi_4^3 \xi_1^2} & -\frac{\xi_3^{3^2}+1}{\xi_4^3} & -\xi_3^3 & 0 & 0 \\ * & & * & * & * & * & * \\ \hline \xi_1^6 & & & & & & & & & & \\ \hline \xi_1^6 & & & & & & & & & & \\ \hline \xi_1^6 & & & & & & & & & & & \\ \hline \end{bmatrix}$$

 $\text{where } \mathbf{J_{1}^{5}} = (\xi_{4}^{6}\xi_{1}^{4}\xi_{4}^{3}^{2}\xi_{1}^{2} + \xi_{4}^{6}\xi_{1}^{4}\xi_{4}^{3}\xi_{2}^{2}^{2} + \xi_{4}^{6}\xi_{1}^{4}\xi_{3}^{3}\xi_{1}^{2} + \xi_{4}^{6}\xi_{1}^{4}\xi_{3}^{3} + \xi_{1}^{6}\xi_{4}^{4}\xi_{3}^{3}\xi_{1}^{2} + \xi_{4}^{6}\xi_{1}^{4}\xi_{3}^{3} + \xi_{1}^{6}\xi_{4}^{6}\xi_{1}^{4}\xi_{3}^{3} + \xi_{1}^{6}\xi_{1}^{4}\xi_{1}^{3} + \xi_{1}^{6}\xi_{1}^{4}\xi_{1}^{3}\xi_{1}^{2} + \xi_{3}^{6}\xi_{4}^{3}\xi_{1}^{3}\xi_{2}^{2} + \xi_{3}^{6}\xi_{4}^{3}\xi_{1}^{3}\xi_{1}^{2} + \xi_{3}^{6}\xi_{1}^{3}\xi_{1}^{3}\xi_{1}^{2} + \xi_{3}^{6}\xi_{1}^{3$ $\xi_{3}^{6}\xi_{4}^{3}\xi_{1}^{3}+\xi_{5}^{6}\xi_{3}^{3}^{2}\xi_{1}^{3}\xi_{1}^{2}+\xi_{5}^{6}\xi_{1}^{3}\xi_{1}^{2}+\xi_{5}^{6}\xi_{4}^{3}\xi_{2}^{2}^{2}+\xi_{5}^{6}\xi_{4}^{3}\xi_{2}^{2}+\xi_{5}^{6}\xi_{4}^{3}\xi_{1}^{2}+\xi_{5}^{6}\xi_{3}^{3}\xi_{1}^{2}+\xi_{5}^{6}\xi_{1}^{3}\xi_{2}^{2}+\xi_{5}^{6}\xi_{4}^{3}\xi_{2}^{2}+\xi_{5}^{6}\xi_{4}^{3}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_{4}^{2}\xi_{3}^{2}+\xi_{5}^{6}\xi_$ $\boldsymbol{\xi}_{1}^{6} \boldsymbol{\xi}_{4}^{2} \boldsymbol{\xi}_{2}^{3} - \boldsymbol{\xi}_{1}^{6} \boldsymbol{\xi}_{4}^{3} \boldsymbol{\xi}_{2}^{2} \boldsymbol{\xi}_{1}^{2} - \boldsymbol{\xi}_{1}^{6} \boldsymbol{\xi}_{3}^{3} \boldsymbol{\xi}_{2}^{2} \boldsymbol{\xi}_{1}^{2} - 2 \boldsymbol{\xi}_{1}^{6} \boldsymbol{\xi}_{2}^{3} \boldsymbol{\xi}_{2}^{2} \boldsymbol{\xi}_{1}^{2} - 2 \boldsymbol{\xi}_{1}^{6} \boldsymbol{\xi}_{2}^{2} \boldsymbol{\xi}_{1}^{2})/(\boldsymbol{\xi}_{4}^{3} \boldsymbol{\xi}_{1}^{2} + 2 \boldsymbol{\xi}_{1}^{2} \boldsymbol{\xi}_{1}^{2}) \boldsymbol{\xi}_{3}^{3} \boldsymbol{\xi}_{1}^{2} + 1) \boldsymbol{\xi}_{1}^{3} \boldsymbol{\xi}_{1}^{2} \boldsymbol{\xi}_$ $\xi_{4}^{6}\xi_{1}^{4}\xi_{3}^{3}\xi_{2}^{2}\xi_{1}^{2} + \xi_{4}^{6}\xi_{1}^{4}\xi_{4}^{3}\xi_{3}^{3}\xi_{2}^{2} + \xi_{4}^{6}\xi_{1}^{4}\xi_{3}^{2}\xi_{3}^{2}\xi_{1}^{2} + \xi_{4}^{6}\xi_{1}^{4}\xi_{3}^{3}\xi_{3}^{2} + \xi_{4}^{6}\xi_{1}^{4}\xi_{3}^{3}\xi_{2}^{2} + \xi_{4}^{6}\xi_{1}^{4}\xi_{3}^{4}\xi_{3}^{2} + \xi_{4}^{6}\xi_{1}^{4}\xi_{3}^{4}\xi$ $\xi_{4}^{6} \xi_{1}^{4} \xi_{3}^{4} \xi_{3}^{3} \xi_{1}^{2} + \xi_{4}^{6} \xi_{1}^{4} \xi_{2}^{2} \xi_{1}^{2} + \xi_{6}^{6} \xi_{4}^{2} \xi_{3}^{2} \xi_{3}^{2} \xi_{1}^{2} \xi_{1}^{2} + \xi_{6}^{4} \xi_{3}^{2} \xi_{1}^{2} \xi_{1}^{2} + \xi_{6}^{4} \xi_{3}^{2} \xi_{3}^{2} \xi_{1}^{2}^{2}^{2} + \xi_{6}^{4} \xi_{3}^{2} \xi_{3}^{2} \xi_{1}^{2}^{2} + \xi_{6}^{4} \xi_{3}^{2} \xi_{3}^{2} \xi_{1}^{2} + \xi_{6}^{4} \xi_{3}^{2} \xi_{1}^{2} \xi_{1}^{2} + \xi_{6}^{4} \xi_{3}^{2} \xi_{1}^{2} \xi_{1}^{2} + \xi_{6}^{4} \xi_{3}^{2} \xi_$ $\xi_{1}^{6}\xi_{3}^{3}+\xi_{1}^{6}\xi_{3}^{3}+\xi_{1}^{3}+2\xi_{1}^{6}\xi_{3}^{3}+\xi_{1}^{2}+2\xi_{1}^{6}\xi_{3}^{3}\xi_{1}^{2}+\xi_{1}^{6}\xi_{1}^{6}\xi_{1}^{3}+\xi_{1}^{2}-\xi_{3}^{6}\xi_{1}^{4}\xi_{1}^{3}+\xi_{2}^{2}-\xi_{3}^{6}\xi_{1}^{4}\xi_{3}^{3}+\xi_{1}^{2}-\xi_{3}^{6}\xi_{1}^{4}\xi_{3}^{3}+\xi_{1}^{2}-\xi_{3}^{6}\xi_{1}^{4}\xi_{3}^{3}+\xi_{1}^{2}-\xi_{3}^{6}\xi_{1}^{4}\xi_{3}^{3}+\xi_{1}^{2}-\xi_{3}^{6}\xi_{1}^{4}\xi_{3}^{3}+\xi_{1}^{2}+\xi_{1}^{6}\xi_{1}^{4}\xi_{3}^{3}+\xi_{1}^{2}+\xi_{1}^{6}\xi_{1}^{4}\xi_{3}^{3}+\xi_{1}^{2}+\xi_{1}^{6}\xi_{1}^{4}\xi_{3}^{3}+\xi_{1}^{2}+\xi_{1}^{6}\xi_{1}^{4}\xi_{3}^{3}+\xi_{1}^{2}+\xi_{1}^{6}\xi_{1}^{4}\xi_{3}^{3}+\xi_{1}^{2}+\xi_{1}^{6}\xi_{1}^{4}\xi_{3}^{3}+\xi_{1}^{2}+\xi_{1}^{6}\xi_{1}^{4}\xi_{3}^{3}+\xi_{1}^{2}+\xi_{1}^{6}\xi_{1}^{4}\xi_{3}^{3}+\xi_{1}^{2}+\xi_{1}^{6}\xi_{1}^{4}\xi_{3}^{3}+\xi_{1}^{2}+\xi_{1}^{6}\xi_{1}^{4}\xi_{3}^{3}+\xi_{1}^{2}+\xi_{1}^{6}\xi_{1}^{4}\xi_{3}^{3}+\xi_{1}^{2}+\xi_{1}^{6}\xi_{1}^{4}\xi_{3}^{3}+\xi_{1}^{2}+\xi_{1}^{6}\xi_{1}^{4}\xi_{3}^{3}+\xi_{1}^{2}+\xi_{1}^{6}\xi_{1}^{4}\xi_{3}^{3}+\xi_{1}^{2}+\xi_{1}^{6}\xi_{1}^{4}\xi_{3}^{3}+\xi_{1}^{2}+\xi_{1}^{6}\xi_{1}^{4}\xi_{1}^{3}+\xi_{1}^{6}\xi_{1}^{4}\xi_{1}^{3}+\xi_{1}^{6}\xi_{1}^{4}\xi_{1}^{4}+\xi_{1}^{6}$ $\xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{1}^{2}+\xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{2}^{3}\xi_{2}^{2}\xi_{1}^{2}-\xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{1}^{2}\xi_{2}^{2}-\xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{1}^{2}\xi_{1}^{2}-\xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{1}^{3}+\xi_{3}^{6}\xi_{4}^{2}\xi_{3}^{3}+\xi_{3}^{6}\xi_{4}^{2}\xi_{1}^{3}\xi_{2}^{2}\xi_{1}^{2}+\xi_{3}^{6}\xi_{4}^{3}\xi_{1}^{3}\xi_{2}^{2}-\xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{1}^{2}+\xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{1}^{2}\xi_{2}^{2}+\xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{1}^{2}\xi_{2}^{2}-\xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{1}^{2}\xi_{2}^{2}-\xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{1}^{2}\xi_{2}^{2}+\xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{3}^{2}\xi_{1}^{2}+\xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}\xi_{3}^{2}+\xi_{3}^{6}\xi_{3}^{2}\xi_{3}$ $\xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{1}^{3}\xi_{2}^{2}\xi_{1}^{2} - \xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{1}^{3}\xi_{1}^{2} + \xi_{3}^{6}\xi_{4}^{3}\xi_{1}^{3}\xi_{2}^{2}\xi_{1}^{2} + 2\xi_{2}^{6}\xi_{4}^{3}\xi_{2}^{2}\xi_{1}^{2} - \xi_{2}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{2}^{2}\xi_{1}^{2} + \xi_{2}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{1}^{2} - \xi_{2}^{6}\xi_{4}^{3}\xi_{3}^{2}\xi_{1}^{2} - \xi_{2}^{6}\xi_{4}^{3}\xi_{3}^{2}\xi_{1}^{2} + \xi_{2}^{6}\xi_{4}^{3}\xi_{3}^{2}\xi_{1}^{2} + \xi_{2}^{6}\xi_{4}^{3}\xi_{2}^{2}\xi_{1}^{2} + \xi_{2}^{6}\xi_{4}^{3}\xi_{2}^{2}\xi_{1}^{2} + \xi_{2}^{6}\xi_{4}^{3}\xi_{2}^{2}\xi_{1}^{2} + \xi_{2}^{6}\xi_{4}^{3}\xi_{2}^{2}\xi_{1}^{2} + \xi_{2}^{6}\xi_{4}^{3}\xi_{2}^{3}\xi_{1}^{2} + \xi_{2}^{6}$ $\xi_{2}^{6}\xi_{4}^{32}\xi_{2}^{2}\xi_{1}^{2} - \xi_{1}^{6}\xi_{4}^{33}\xi_{2}^{22}\xi_{1}^{2} - \xi_{1}^{6}\xi_{4}^{33}\xi_{1}^{2} - \xi_{1}^{6}\xi_{4}^{32}\xi_{2}^{24} - \xi_{1}^{6}\xi_{4}^{32}\xi_{2}^{22}\xi_{1}^{2} - 2\xi_{1}^{6}\xi_{4}^{32}\xi_{2}^{22} - \xi_{1}^{6}\xi_{4}^{32}\xi_{1}^{22} - \xi_{1}^{6}\xi_{4}^{32}\xi_{1}^{22} - \xi_{1}^{6}\xi_{4}^{32}\xi_{1}^{2} - \xi_{1}^{6}\xi_{4}^{33}\xi_{2}^{22}\xi_{1}^{2} - \xi_{1}^{6}\xi_{4}^{33}\xi_{2}^{2}\xi_{1}^{2} - \xi_{1}^{6}\xi_{4}^{3}\xi_{2}^{2}\xi_{1}^{2} - \xi_{1}^{6}\xi_{4}^{3}\xi_{2}^{2}\xi_{1}^{2} - \xi_{1}^{6}\xi_{4}^{3}\xi_{2}^{2}\xi_{1}^{2} \xi_1^6 \xi_4^3 \xi_2^{2^2} \xi_1^2 - \xi_1^6 \xi_4^3 \xi_1^2) / (\xi_4^3 \xi_1^2 (\xi_4^{3^2} \xi_1^{2^2} - 2\xi_4^3 \xi_1^2 (\xi_3^3 \xi_2^2 - 1) + (\xi_2^{2^2} + 1) (\xi_3^{3^2} + 1))); \quad \mathbf{J_3^5} = (-\xi_4^6 \xi_4^{3^2} \xi_3^{3^2} \xi_1^2 - \xi_4^6 \xi_4^3 \xi_1^2 - \xi_4^6 \xi_4^3 \xi_3^2 \xi_2^2 - \xi_4^6 \xi_4^3 \xi_1^2 - \xi_4^6 \xi_4^3 \xi_1^2 - \xi_4^6 \xi_4^3 \xi_1^3 - \xi_4^6 \xi_4^3 \xi_1^2 - \xi_4^6 \xi_4^3 \xi_1^2 - \xi_4^6 \xi_4^3 \xi_1^3 - \xi_4^6 \xi_1^3 \xi_$ $\xi_1^6 \xi_3^4 \xi_3^3 \xi_1^{22} - \xi_4^6 \xi_3^3 \xi_3^3 - \xi_4^6 \xi_3^3 \xi_2^2 - \xi_4^6 \xi_3^4 \xi_1^2 - \xi_4^6 \xi_3^4 - \xi_4^6 \xi_3^4 \xi_1^2 - 2\xi_4^6 \xi_3^3 \xi_1^2 - \xi_4^6 \xi_1^2 + \xi_3^6 \xi_3^4 \xi_3^2 \xi_1^2 + \xi_3^6 \xi_4^3 \xi_2^2 \xi_1^2 + 2\xi_3^6 \xi_3^4 \xi_3^2 \xi_1^2 + \xi_3^6 \xi_3^4 \xi_3^2 \xi_1^2 + \xi_3^6 \xi_3^4 \xi_3^2 \xi_1^2 + \xi_3^6 \xi_3^4 \xi_3^4 \xi_2^2 \xi_1^2 + \xi_3^6 \xi_3^4 \xi_3^4 \xi_3^2 \xi_3^2 + \xi_3^6 \xi_3^4 \xi_3^4 \xi_3^2 \xi_3^2 + \xi_3^6 \xi_3^4 \xi_3^4 \xi_3^4 \xi_3^2 \xi_3^2 + \xi_3^6 \xi_3^4 \xi_3$ $\xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{1}^{2} - \xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{3}\xi_{2}^{2}\xi_{1}^{2} + \xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{2}\xi_{1}^{2} - \xi_{3}^{6}\xi_{4}^{3}\xi_{2}^{2}\xi_{1}^{2})/(\xi_{4}^{3}(\xi_{4}^{3}\xi_{1}^{2}^{2} - 2\xi_{4}^{3}\xi_{1}^{2}(\xi_{3}^{3}\xi_{2}^{2} - 1) + (\xi_{2}^{2}^{2} + 1)(\xi_{3}^{2}^{2} + 1))); \quad \mathbf{J}_{4}^{\mathbf{5}} = (-\xi_{4}^{6}\xi_{4}^{3}\xi_{3}^{2}\xi_{1}^{2} + \xi_{3}^{6}\xi_{4}^{3}\xi_{3}^{2}\xi_{1}^{2} + \xi_{3}^{6}\xi_{4}^{2}\xi_{3}^{2}\xi_{1}^{2} + \xi_{3}^{6}\xi_{4}^{2}$ $\xi_{4}^{6}\xi_{4}^{32}\xi_{2}^{2}\xi_{1}^{2} - 2\xi_{4}^{6}\xi_{3}^{3}\xi_{3}^{22}\xi_{2}^{2} - 2\xi_{6}^{6}\xi_{4}^{3}\xi_{3}^{3} - \xi_{4}^{6}\xi_{3}^{33}\xi_{1}^{2} - \xi_{6}^{6}\xi_{3}^{3}\xi_{2}^{2} - \xi_{6}^{6}\xi_{3}^{3}\xi_{1}^{2} - \xi_{6}^{6}\xi_{2}^{3}\xi_{1}^{2} + \xi_{3}^{6}\xi_{4}^{33}\xi_{1}^{2} + \xi_{3}^{6}\xi_{4}^{32}\xi_{2}^{22} + \xi_{6}^{6}\xi_{4}^{32}\xi_{1}^{22} + \xi_{3}^{6}\xi_{4}^{32}\xi_{1}^{22} + \xi_{3}^{6}\xi_{4}^{33}\xi_{1}^{2} + \xi_{3}^{6}\xi$ $\xi_3^6\xi_4^3\xi_1^2)/(\xi_4^{32}\xi_1^{22}-2\xi_4^3\xi_1^2(\xi_3^3\xi_2^2-1)+(\xi_2^{22}+1)(\xi_3^{32}+1)); \quad \mathbf{J_5^5} = (-\xi_4^{32}\xi_2^2\xi_1^2+\xi_4^3\xi_3^3\xi_2^{22}-\xi_4^3\xi_3^3\xi_1^{22}+\xi_4^3\xi_3^3+\xi_2^{32}\xi_2^2\xi_1^2+\xi_2^2\xi_1^2)/(\xi_4^{32}\xi_1^2+\xi_4^3\xi_3^3\xi_2^2)$ $\boldsymbol{\xi}_{4}^{3}(\boldsymbol{\xi}_{2}^{22}+\boldsymbol{\xi}_{1}^{22}+1)+(\boldsymbol{\xi}_{3}^{32}+1)\boldsymbol{\xi}_{1}^{2}); \quad \mathbf{J}_{6}^{5}=(\boldsymbol{\xi}_{4}^{32}\boldsymbol{\xi}_{2}^{22}+\boldsymbol{\xi}_{4}^{32}+2\boldsymbol{\xi}_{4}^{3}\boldsymbol{\xi}_{3}^{3}\boldsymbol{\xi}_{2}^{2}\boldsymbol{\xi}_{1}^{2}+2\boldsymbol{\xi}_{3}^{3}\boldsymbol{\xi}_{1}^{2}+\boldsymbol{\xi}_{3}^{32}\boldsymbol{\xi}_{1}^{22}+\boldsymbol{\xi}_{1}^{22})/(\boldsymbol{\xi}_{4}^{32}\boldsymbol{\xi}_{1}^{2}+\boldsymbol{\xi}_{4}^{3}(\boldsymbol{\xi}_{2}^{22}+\boldsymbol{\xi}_{1}^{22}+1)+(\boldsymbol{\xi}_{3}^{32}+1)\boldsymbol{\xi}_{1}^{2});$ $\mathbf{J_{5}^{6}} = (-\xi_{4}^{32}\xi_{1}^{22} + 2\xi_{4}^{3}\xi_{3}^{3}\xi_{2}^{2}\xi_{1}^{2} - 2\xi_{4}^{3}\xi_{1}^{2} - \xi_{3}^{32}\xi_{2}^{22} - \xi_{3}^{32} - \xi_{2}^{22} - 1)/(\xi_{4}^{32}\xi_{1}^{2} + \xi_{4}^{3}(\xi_{2}^{22} + \xi_{1}^{22} + 1) + (\xi_{3}^{32} + 1)\xi_{1}^{2}); \quad \mathbf{J_{6}^{6}} = (\xi_{4}^{32}\xi_{2}^{2}\xi_{1}^{2} - \xi_{4}^{32}\xi_{1}^{2} + \xi_{4}^{32}\xi$ $\xi_4^3 \xi_3^2 \xi_2^2 + \xi_4^3 \xi_3^3 \xi_1^2 - \xi_4^3 \xi_3^3 - \xi_3^3 \xi_5^2 \xi_1^2 - \xi_2^3 \xi_1^2)/(\xi_4^{32} \xi_1^2 + \xi_4^3 (\xi_2^2 + \xi_1^2 + 1) + (\xi_3^{32} + 1)\xi_1^2);$ and the parameters are subject to the condition

$$\xi_1^2 \xi_4^3 (\xi_3^3 + \xi_2^2) (\xi_4^{32} \xi_1^2 + \xi_4^3 (\xi_2^{22} + \xi_1^{22} + 1) + (\xi_3^{32} + 1) \xi_1^2) \neq 0.$$
 (83)

(Note that $\xi_4^{32}\xi_1^{22} - 2\xi_4^3\xi_1^2(\xi_3^3\xi_2^2 - 1) + (\xi_2^{22} + 1)(\xi_3^{32} + 1) \neq 0$ is automatic from $\xi_3^3 + \xi_2^2 \neq 0$.)

13.2.4 Case $\xi_1^2 \neq 0, \xi_3^2 = \xi_4^2 = 0, \xi_3^3 = -\xi_2^2, \xi_4^3 = -\xi_1^2$.

$$J = \begin{pmatrix} 0 & -\frac{1}{\xi_1^2} & 0 & 0 & 0 & 0 & 0 \\ \xi_1^2 & 0 & 0 & 0 & 0 & 0 & 0 \\ \xi_1^3 & \xi_1^4 & 0 & -\xi_1^2 & 0 & 0 \\ \xi_1^4 & -\xi_1^3 & \frac{1}{\xi_1^2} & 0 & 0 & 0 & 0 \\ -\frac{\xi_1^6 \xi_1^4 - \xi_1^6 \xi_1^3 + \xi_1^6 \xi_5^5}{\xi_0^6} & \frac{\xi_1^6 \xi_1^3 \xi_1^2 - \xi_1^6 \xi_1^4 \xi_1^2 + \xi_1^6 \xi_5^5 \xi_1^2 + \xi_1^6}{\xi_5^6 \xi_1^2} & \frac{-\xi_1^6 \xi_1^6 \xi_5^5 \xi_1^2}{\xi_5^6 \xi_1^2} & \frac{\xi_1^6 \xi_5^5 + \xi_3^6 \xi_1^2}{\xi_5^6} & \xi_5^5 & -\frac{\xi_5^5 + 1}{\xi_5^6} \\ \xi_1^6 & \xi_2^6 & \xi_3^6 & \xi_3^6 & \xi_4^6 & \xi_5^6 & -\xi_5^5 \end{pmatrix}$$

where $\xi_1^2 = \pm 1$.

13.2.5 Case $\xi_1^2 \neq 0, \xi_3^2 = \xi_4^2 = 0, \xi_3^3 = -\xi_2^2, \xi_4^3 \neq -\xi_1^2$.

$$J = \begin{pmatrix} -\xi_2^2 & -\frac{\xi_2^2^2 + 1}{\xi_1^2} & 0 & 0 & 0 & 0 \\ \hline \xi_1^2 & & \xi_2^2 & 0 & 0 & 0 & 0 \\ \hline \xi_1^3 & & -\frac{\xi_1^4 \xi_4^3 - 2\xi_1^3 \xi_2^2}{\xi_1^2} & -\xi_2^2 & \hline \xi_4^3 & 0 & 0 \\ \hline \xi_1^4 & & \frac{\xi_1^3 (\xi_2^2 + 1)}{\xi_4^3 (\xi_1^2)} & -\frac{\xi_2^2 + 1}{\xi_4^3} & \xi_2^2 & 0 & 0 \\ \hline * & * & * & * & \frac{\xi_2^2 (-\xi_4^3 + \xi_1^2)}{\xi_4^3 + \xi_1^2} & \frac{\xi_4^3 \xi_2^2 + \xi_4^3 - 2\xi_4^3 \xi_2^2 + \xi_4^3 \xi_1^2 + \xi_4^2 \xi_1^2 + \xi_1^2}{\xi_4^3 \xi_1^2 + \xi_4^3 \xi_2^2 + \xi_4^3 \xi_2^2$$

 $\text{where} \ \ \mathbf{J_{1}^{5}} \ = \ (\xi_{4}^{6}\xi_{1}^{4}\xi_{4}^{3} + \xi_{4}^{6}\xi_{1}^{4}\xi_{1}^{2} + \xi_{3}^{6}\xi_{4}^{3}\xi_{1}^{3} + \xi_{3}^{6}\xi_{1}^{3}\xi_{1}^{2} + \xi_{2}^{6}\xi_{4}^{3}\xi_{1}^{2} + \xi_{2}^{6}\xi_{2}^{12} - 2\xi_{1}^{6}\xi_{2}^{2}\xi_{1}^{2})/(\xi_{4}^{3}\xi_{1}^{2} + \xi_{2}^{2}^{2} + 1); \quad \mathbf{J_{2}^{5}} \ = \ (\xi_{4}^{6}\xi_{4}^{3}\xi_{1}^{3}\xi_{2}^{2} + \xi_{2}^{6}\xi_{1}^{3}\xi_{1}^{2} + \xi_{2}^{6}\xi_{1}^{3}\xi_{1}^{$ $\xi_{4}^{6}\xi_{4}^{3}\xi_{1}^{3} + \xi_{4}^{6}\xi_{1}^{3}\xi_{2}^{2}\xi_{1}^{2} + \xi_{4}^{6}\xi_{1}^{3}\xi_{1}^{2} - \xi_{3}^{6}\xi_{1}^{4}\xi_{4}^{3} - \xi_{3}^{6}\xi_{1}^{4}\xi_{4}^{3} + 2\xi_{1}^{2} + 2\xi_{3}^{6}\xi_{4}^{3}\xi_{1}^{2}\xi_{2}^{2} + 2\xi_{3}^{6}\xi_{4}^{3}\xi_{1}^{2}\xi_{2}^{2}\xi_{1}^{2} + 2\xi_{5}^{6}\xi_{4}^{3}\xi_{2}^{2}\xi_{1}^{2} + 2\xi_{5}^{6}\xi_{4}^{3}\xi_{2}^{2}\xi_{1}^{2} - \xi_{1}^{6}\xi_{4}^{3}\xi_{2}^{2} - \xi_{1}^{6}\xi_{4}^{3}\xi_{2}^{2}\xi_{1}^{2} + \xi_{1}^{6}\xi_{4}^{3}\xi_{1}^{2}\xi_{2}^{2}\xi_{1}^{2} + \xi_{1}^{6}\xi_{4}^{3}\xi_{1}^{2}\xi_{1}^{2} + \xi_{1}^{6}\xi_{4}^{3}\xi_{1}^{2}\xi_{1}^{2} + \xi_{1}^{6}\xi_{4}^{3}\xi_{1}^{2}\xi_{1}^{2} + \xi_{1}^{6}\xi_{1}^{3}\xi_{1}^{2}\xi_{1}^{2} + \xi_{1}^{6}\xi_{1}^{3}\xi_{1}^{2} + \xi_{1}^{6}\xi_{1}^{3}\xi_{1}^{2}\xi_{1}^{2$ $\xi_1^6 \xi_4^3 \xi_1^2 / (\xi_4^3 \xi_1^2 (\xi_4^3 \xi_1^2 + \xi_2^2^2 + 1)); \quad \mathbf{J_3^5} = (-\xi_4^6 \xi_4^3 \xi_2^2^2 - \xi_4^6 \xi_4^3 - \xi_4^6 \xi_2^2^2 \xi_1^2 - \xi_4^6 \xi_1^2 - 2\xi_3^6 \xi_4^3 \xi_2^2 \xi_1^2) / (\xi_4^3 (\xi_4^3 \xi_1^2 + \xi_2^2^2 + 1)); \quad \mathbf{J_4^5} = (\xi_4^3 (2\xi_4^6 \xi_2^2 + \xi_3^6 \xi_4^3 + \xi_3^6 \xi_1^3)) / (\xi_4^3 \xi_1^2 + \xi_2^2^2 + 1); \quad \text{and the parameters are subject to the condition } \xi_1^2 \xi_4^3 (\xi_4^3 + \xi_1^2) / (\xi_2^2 + \xi_4^3 \xi_1^2 + 1) \neq 0.$

Conclusions for the case $\xi_1^2 \neq 0$.

In each of the 5 subcases in the case $\xi_1^2 \neq 0$, after completing a set of common steps, one is left with solving the two equations 14|5 and 14|6 in the 14 variables $\xi_1^2, \xi_2^2, \xi_3^2, \xi_4^2, \xi_1^3, \xi_3^3, \xi_4^3, \xi_1^4, \xi_5^5, \xi_1^6, \xi_2^6, \xi_3^6, \xi_4^6, \xi_5^6$ in the open subset $\xi_5^6(\xi_4^3 \xi_1^2 - \xi_1^3 \xi_4^2) \neq 0$ of \mathbb{R}^{14} . That is, the initial system comprised of all the torsion equations and the equation $J^2 = -1$ in \mathbb{R}^{36} is reduced after the common steps to a system equivalent to the 2 mentioned equations, which reads

$$\begin{cases}
f = 0 \\
g = 0
\end{cases}$$
(84)

where : $f = \xi_5^6 \xi_5^5 \xi_4^3 \xi_1^{2^2} + \xi_5^6 \xi_5^5 \xi_1^{3^2} + \xi_5^6 \xi_1^4 \xi_4^3 \xi_4^2 \xi_1^2 - \xi_5^6 \xi_1^4 \xi_1^3 \xi_4^{2^2} + \xi_5^6 \xi_3^3 \xi_1^2 \xi_2^{2^2} + \xi_5^6 \xi_3^3 \xi_1^3 \xi_4^2 \xi_1^2 + \xi_5^6 \xi_3^3 \xi_1^{2^3} - \xi_5^6 \xi_1^3 \xi_4^2 \xi_2^2 - \xi_5^6 \xi_1^3 \xi_3^2 \xi_1^{2^2} + \xi_5^5^2 \xi_3^2 \xi_1^{2^2} + \xi_5^5^2 \xi_2^2 \xi_1^{2^2} + \xi_3^3 \xi_1^{2^2} + \xi_5^2 \xi_2^2 \xi_1^2 + \xi_3^3 \xi_1^{2^2} + \xi_5^2 \xi_2^2 \xi_1^2 + \xi_3^3 \xi_1^2 + \xi_5^2 \xi_2^2 \xi_1^2 + \xi_3^3 \xi_1^2 \xi_2^2 + \xi_3^3 \xi_1^2 + \xi_5^2 \xi_2^2 \xi_1^2 + \xi_3^3 \xi_1^2 \xi_2^2 + \xi_3^3 \xi_1^2 \xi_2^2 + \xi_3^3 \xi_2^2 \xi_1^2 + \xi_3^3 \xi_3^2 \xi_1^2$ dimensional submanifold of \mathbb{R}^{36} , it will be sufficient to prove that the preceding system is of maximal rank 2, that is in each of the subcases some 2-jacobian doesn't vanish.

- First, one has $\frac{D(f,g)}{D(\xi_1^4,\xi_1^3)} = -\frac{1}{\xi_1^{22}} (\xi_4^3 \xi_1^2 \xi_1^3 \xi_4^2) (\xi_4^2 + \xi_3^{22})$ hence this 2-jacobian doesn't vanish if
- $\xi_4^2 \neq 0 \text{ or } \xi_3^2 \neq 0.$ Suppose $\xi_4^2 = \xi_3^2 = 0$. Then $\frac{D(f,g)}{D(\xi_5^5, \xi_5^6)} = -\frac{1}{\xi_5^{62}} \left((\xi_5^6 (\xi_4^3 + \xi_1^2) + \xi_5^5 (\xi_3^3 + \xi_2^2))^2 + (\xi_3^3 + \xi_2^2)^2 \right)$ hence this 2-jacobian doesn't vanish if $\xi_3^3 + \xi_2^2 \neq 0$.
- Suppose $\xi_4^2 = \xi_3^2 = 0$ and $\xi_3^3 = -\xi_2^2$. Then $\frac{D(f,g)}{D(\xi_5^5,\xi_5^6)} = (\xi_4^3 + \xi_1^2)^2$ hence this 2-jacobian doesn't
- vanish if $\xi_4^3 + \xi_1^2 \neq 0$. Suppose $\xi_4^2 = \xi_3^2 = 0$ and $\xi_3^3 = -\xi_2^2$ and $\xi_4^3 = -\xi_1^2$. Then the equation f = 0 reads $-2\xi_2^2\xi_1^2 = 0$, hence $\xi_2^2 = 0$. Then the equation g = 0 reads $\xi_2^2 \xi_1^2 + 1 = 0$, hence $\xi_1^2 = \pm 1$. Then $\frac{D(f,g)}{D(\xi_2^2,\xi_3^3)} = 0$ $-2\xi_5^5\xi_1^2$ and $\frac{D(f,g)}{D(\xi_3^2,\xi_4^2)} = \xi_1^{4^2} + \xi_1^{3^2}$ hence if ξ_5^5 or ξ_1^4 or ξ_1^3 is $\neq 0$, one of these 2-jacobians doesn't vanish. On the other hand, if $\xi_5^5 = \xi_1^4 = \xi_1^3 = 0$, $\frac{D(f,g)}{D(\xi_1^2,\xi_3^3)} = \xi_1^2(1-\xi_5^{6^2})$ hence if $\xi_5^6 \neq \pm 1$, this 2-jacobian doesn't vanish. Suppose now that $\xi_5^6 = \pm 1$. Then $\frac{D(f,g)}{D(\xi_1^2,\xi_2^2)} = 2\xi_5^6(\xi_1^2 - \xi_5^6)$ hence if $\xi_5^6 \neq \xi_1^2$, this 2-jacobian doesn't vanish. Suppose finally that $\xi_5^6 = \xi_1^2$. Then $\frac{D(f,g)}{D(\xi_3^3,\xi_3^3)} = 4$. This ends the proof that the system (84) is of maximal rank.

13.3

From 13.1, one has that the subset $\mathfrak{X}_{\xi_4^{2^2}+\xi_3^{2^2}\neq 0}$ of \mathfrak{X}_{M5} such that $\xi_4^{2^2}+\xi_3^{2^2}\neq 0$, is a 12-dimensional submanifold of \mathbb{R}^{36} with the global chart (81). Now if $\xi_4^2=\xi_3^2=0$, then necessarily $\xi_1^2\neq 0$. Hence

$$\mathfrak{X}_{M5} = \mathfrak{X}_{\xi_4^{2^2} + \xi_3^{2^2} \neq 0} \cup \mathfrak{X}_{\xi_1^{2} \neq 0}$$

and we conclude from 13.2.6 that \mathfrak{X}_{M5} is a 12-dimensional submanifold of \mathbb{R}^{36} . A local chart in a neighborhood of the canonical CS J_0 appears in ([7], 6.5, p.155).

Equivalence. 13.4

Due to the number of cases that had to be considered in the preceding computations, we'll tackle the equivalence problem in a slightly different way, mixing equations solving and reduction by equivalence. First we give explicit computation of all $\Phi \in \operatorname{Aut}(M5)$.

13.4.1

Lemma 1. Aut(M5) is comprised of all those (real) matrices of the following form :

$$\Phi = \begin{pmatrix}
 & 0 & 0 \\
 & \Phi_{\dagger} & 0 & 0 \\
 & \Phi_{\dagger} & 0 & 0 \\
 & 0 & 0 & 0 \\
 & b_{1}^{5} & b_{2}^{5} & b_{3}^{5} & b_{4}^{5} & H & Ku \\
 & b_{1}^{6} & b_{2}^{6} & b_{3}^{6} & b_{4}^{6} & K & -Hu
\end{pmatrix}$$
(85)

with

$$\Phi_{\dagger} = \begin{pmatrix}
b_1^1 & b_1^2 u & b_3^1 & -b_3^2 u \\
b_1^2 & -b_1^1 u & b_3^2 & b_3^1 u \\
b_1^3 & -b_1^4 u & b_3^3 & b_3^4 u \\
b_1^4 & b_1^3 u & b_3^4 & -b_3^3 u
\end{pmatrix}$$
(86)

where $u = \pm 1$ and $H + iK = \det(\mathbf{w}_1, \mathbf{w}_3) \neq 0$ with $\mathbf{w}_1 = \begin{pmatrix} b_1^1 - ib_1^2 \\ b_1^3 + ib_1^4 \end{pmatrix}$ and $\mathbf{w}_3 = \begin{pmatrix} b_3^1 - ib_3^2 \\ b_3^3 + ib_3^4 \end{pmatrix}$.

Proof. Let $\Phi=(b^i_j)\in \operatorname{Aut}(M5)$. Since Φ leaves the 2^d central derivative $\mathcal{C}^2(M5)$ invariant, $b^i_5=b^i_6=0$ for $1\leqslant i\leqslant 4$. Denote by ij|k the equation obtained by projecting on x_k the equation $[\Phi(x_i),\Phi(x_j)]-\Phi([x_i,x_j])=0$. Equations 13|5,13|6,14|5,14|6 yield $b^5_5=b^4_3b^2_1-b^4_1b^2_3+b^3_3b^1_1-b^3_1b^3_3;\ b^5_6=b^4_3b^1_1-b^4_1b^3_3-b^3_3b^2_1+b^3_1b^3_2;\ b^5_6=b^4_4b^2_1-b^4_1b^2_4+b^3_4b^1_1-b^3_1b^4_1;\ b^6_6=b^4_4b^1_1-b^4_1b^4_1-b^3_4b^2_1+b^3_1b^2_4.$ Now equations 12|5 and 12|6 read respectively $\Delta^{1,3}+\Delta^{2,4}=0$ and $\Delta^{1,4}-\Delta^{2,3}=0$, with $\Delta^{i,j}$ the minors formed with the $1^{\rm st}$ and $2^{\rm d}$ columns and the rows indicated by the indices in the matrix $\Phi_\dagger=(b^i_j)_{1\leqslant i,j\leqslant 4}$. If we introduce for $1\leqslant j\leqslant 4$ $\mathbf{w}_j=\begin{pmatrix} b^1_j-ib^2_j\\ b^3_j+ib^4_j \end{pmatrix}$, then $\det(\mathbf{w}_1,\mathbf{w}_2)=\Delta^{1,3}+\Delta^{2,4}+i(\Delta^{1,4}-\Delta^{2,3})$, hence equations 12|5 and 12|6 are equivalent to the single complex equation $\det(\mathbf{w}_1,\mathbf{w}_2)=0$, i.e. to the existence of $z=\alpha+i\beta\in\mathbb{C}$ such that $\mathbf{w}_2=z\,\mathbf{w}_1$. In the same way, equations 34|5 and 34|6 are equivalent to the existence of $w=\gamma+i\delta\in\mathbb{C}$ such that $\mathbf{w}_4=w\,\mathbf{w}_3$. No, if we introduce $h=\alpha+\gamma, k=\beta+\delta$, the system 23|5,23|6 reads

$$\begin{cases} h H - k K = 0 \\ k H + h K = 0 \end{cases}$$

$$\tag{87}$$

where $H = {\Delta'}^{2,4} + {\Delta'}^{1,3}$, $K = {\Delta'}^{1,4} - {\Delta'}^{2,3}$, ${\Delta'}^{i,j}$ the minors formed with the 1st and 3^d columns and the rows indicated by the indices in the matrix Φ_{\dagger} . Since $H + iK = \det(\mathbf{w}_1, \mathbf{w}_3)$, the case H = K = 0 would imply $\det(\mathbf{w}_1, \mathbf{w}_3) = 0$ which in turn leads to $\det \Phi = 0$. Hence (H, K) is a non trivial solution to the system (87). As its determinant is $h^2 + k^2$ we conclude that h = k = 0, i.e. $\gamma = -\alpha$, $\delta = -\beta$. Now we are left only with the system of equations 24|5, 24|6. It reads

$$\begin{cases} (\alpha^2 - \beta^2 + 1)H - 2\alpha\beta K = 0\\ 2\alpha\beta H + (\alpha^2 - \beta^2 + 1)K = 0. \end{cases}$$
(88)

Again, as (H, K) is a non trivial solution one has $\alpha\beta = 0$, $\alpha^2 - \beta^2 + 1 = 0$ i.e. $\alpha = 0$, $\beta = \pm 1$. Then we get (85) with $u = \beta$.

The subgroup $\operatorname{Aut}(\mathfrak{n}) \subset \operatorname{Aut}(M5)$ of complex automorphisms of the complex Heisenberg Lie algebra \mathfrak{n} is the subgroup comprised of all those matrices in (85) for which u = -1 and $b_2^6 = -b_1^5, b_2^5 = b_1^6, b_4^6 = b_3^5, b_4^5 = -b_3^6$.

13.4.2

Now, looking for CSs J, after completing a set of general steps, one is left to find solutions of the torsion equations and $J^2 = -1$ of the following form:

$$J = \begin{pmatrix} \xi_1^1 & \xi_2^1 & \xi_3^1 & \xi_4^1 & 0 & 0\\ \xi_1^2 & \xi_2^2 & \xi_3^2 & \xi_4^2 & 0 & 0\\ \xi_1^3 & \xi_2^3 & \xi_3^3 & \xi_4^3 & 0 & 0\\ \xi_1^4 & \xi_2^4 & \xi_3^4 & \xi_4^4 & 0 & 0\\ \xi_1^5 & \xi_2^5 & \xi_3^5 & \xi_4^5 & \xi_5^5 & -\frac{\xi_5^{52}+1}{\xi_5^6}\\ \xi_1^6 & \xi_2^6 & \xi_3^6 & \xi_4^6 & \xi_5^6 & -\xi_5^5 \end{pmatrix}$$

where the ξ_j^5 's are certain linear expressions in the ξ_k^6 's ($1 \le j, k \le 4$) and $\xi_4^4 = -\sum_1^3 \xi_j^j$. Take the following $\Phi \in \operatorname{Aut}(M5)$:

$$\Phi = egin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ b_1^5 & b_2^5 & b_3^5 & b_4^5 & 1 & 0 \ b_1^6 & b_2^6 & b_3^6 & b_4^6 & 0 & 1 \end{pmatrix}$$

with $b_j^5 = \frac{1}{\xi_5^6} \left(-\xi_j^6 + \sum_{k=1}^4 b_k^6 \xi_j^k + \xi_5^5 b_j^6 \right)$. Then equivalence by Φ leads to the case where $\xi_j^5 = \xi_j^6 = 0 \ \forall j \ 1 \leqslant j \leqslant 4$. Now consider the submatrix

$$J_{\dagger} = \begin{pmatrix} \xi_1^1 & \xi_2^1 & \xi_3^1 & \xi_4^1 \\ \xi_1^2 & \xi_2^2 & \xi_3^2 & \xi_4^2 \\ \xi_1^3 & \xi_2^3 & \xi_3^3 & \xi_4^3 \\ \xi_1^4 & \xi_2^4 & \xi_3^4 & \xi_4^4 \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}. \tag{89}$$

We get 2 cases 1 and 2 below. Before we proceed further, we record a lemma.

Lemma 2. Let J be a CS on M5 of the following form:

$$J = diag \left(J_{\dagger}, \begin{pmatrix} \xi_5^5 & -\frac{\xi_5^{52}+1}{\xi_5^6} \\ \xi_5^6 & -\xi_5^5 \end{pmatrix} \right)$$

where J_{\dagger} is given in (89).

(i) Suppose that B and C are not simultaneously zero. Then J is equivalent to a CS of the same form for which $B \neq 0$.

(ii) Suppose $B = \begin{pmatrix} \xi_3^1 & \xi_4^1 \\ \xi_3^2 & \xi_4^2 \end{pmatrix} \neq 0$. Then J is equivalent to a CS of the same form for which $\xi_3^2 = 1, \xi_4^2 = 0$.

(iii) Suppose $B = \begin{pmatrix} \xi_3^1 & \xi_4^1 \\ 1 & 0 \end{pmatrix}$. Then J is equivalent to a CS of the same form having the same B and for which $\xi_1^2 = \xi_2^2 = 0$.

(iv) Suppose B=C=0 and $\xi_2^2=-\xi_1^1, \xi_4^4=-\xi_3^3$. Then J is equivalent to a CS of the same form for which B=C=0 and $\xi_1^1=\xi_3^3=0$.

Proof. (i) The matrix J has the form $\begin{pmatrix} A & B & 0 \\ C & D & 0 \\ 0 & 0 & E \end{pmatrix}$. Take $\Phi_{\dagger} = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$ and $\Phi = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$

diag $\left(\Phi_{\dagger}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}\right)$. From Lemma 1, $\Phi \in \operatorname{Aut}(M5)$. Now

$$(\Phi_{\dagger})^{-1}\begin{pmatrix}A&B\\C&D\end{pmatrix}\Phi_{\dagger}=\begin{pmatrix}0&I\\I&0\end{pmatrix}\begin{pmatrix}A&B\\C&D\end{pmatrix}\begin{pmatrix}0&I\\I&0\end{pmatrix}=\begin{pmatrix}D&C\\B&A\end{pmatrix}.$$

Hence if B and C are not simultaneously zero, one may suppose $B \neq 0$.

(ii) Suppose first $\xi_3^2 = \xi_4^2 = 0$. Then, since $B \neq 0$, the first row of B is not zero. Consider

$$\begin{split} \Phi_\dagger &= \begin{pmatrix} U & 0 \\ 0 & U \end{pmatrix} \text{ and } \Phi = \operatorname{diag} \left(\Phi_\dagger, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right) \text{ with } U = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \text{ Then } \Phi \in \operatorname{Aut}(M5). \text{ Now} \\ (\Phi_\dagger)^{-1} \begin{pmatrix} A & B \\ C & D \end{pmatrix} \Phi_\dagger &= \begin{pmatrix} U & 0 \\ 0 & U \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} U & 0 \\ 0 & U \end{pmatrix} = \begin{pmatrix} UAU & UBU \\ UCU & UDU \end{pmatrix}. \end{split}$$

where $UBU = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \xi_3^1 & \xi_4^1 \\ \xi_3^2 & \xi_4^2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} \xi_4^2 & \xi_3^2 \\ \xi_4^1 & \xi_3^1 \end{pmatrix}$. Hence we are led to the case where the second row of B doesn't vanish. Consider that case now. Introduce $\Phi_{\dagger} = \begin{pmatrix} I & 0 \\ 0 & V \end{pmatrix}$ and $\Phi = \operatorname{diag} \left(\Phi_{\dagger}, \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix} \right)$ with $V = \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix} \neq 0$. Then $\Phi \in \operatorname{Aut}(M5)$. Now

$$(\Phi_\dagger)^{-1}\begin{pmatrix}A&B\\C&D\end{pmatrix}\Phi_\dagger=\begin{pmatrix}I&0\\0&V^{-1}\end{pmatrix}\begin{pmatrix}A&B\\C&D\end{pmatrix}\begin{pmatrix}I&0\\0&V\end{pmatrix}=\begin{pmatrix}A&BV\\V^{-1}C&V^{-1}DV\end{pmatrix}.$$

where

$$BV = \begin{pmatrix} \xi_3^1 & \xi_4^1 \\ \xi_3^2 & \xi_4^2 \end{pmatrix} \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix} = \begin{pmatrix} * & * \\ {\xi'}_3^2 & {\xi'}_4^2 \end{pmatrix}$$

with ${\xi'}_3^2 = \alpha \xi_3^2 + \beta \xi_4^2$, ${\xi'}_4^2 = \alpha \xi_4^2 - \beta \xi_3^2$. We want ${\xi'}_3^2 = 1$ and ${\xi'}_4^2 = 0$. This is a Cramer system in α, β since $(\xi_3^2)^2 + (\xi_4^2)^2 \neq 0$, hence it has a nontrivial solution. Hence we are reduced to the case where $\xi_3^2 = 1$ and $\xi_4^2 = 0$.

(iii) Suppose $B = \begin{pmatrix} \xi_3^1 & \xi_4^1 \\ 1 & 0 \end{pmatrix}$. Consider $\Phi_{\dagger} = \begin{pmatrix} I & 0 \\ T & I \end{pmatrix}$ and $\Phi = \operatorname{diag} \left(\Phi_{\dagger}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right)$ with $T = \begin{pmatrix} \alpha & \beta \\ \beta & -\alpha \end{pmatrix} \neq 0$. Then $\Phi \in \operatorname{Aut}(M5)$. Now

$$(\Phi_{\dagger})^{-1} \begin{pmatrix} A & B \\ C & D \end{pmatrix} \Phi_{\dagger} = \begin{pmatrix} I & 0 \\ -T & I \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} I & 0 \\ T & I \end{pmatrix}$$
$$= \begin{pmatrix} A & B \\ -TA + C & -TB + D \end{pmatrix} \begin{pmatrix} I & 0 \\ T & I \end{pmatrix}$$
$$= \begin{pmatrix} A + BT & B \\ * & * \end{pmatrix}.$$

We want $A + BT = \begin{pmatrix} * & * \\ 0 & 0 \end{pmatrix}$, that is $BT = \begin{pmatrix} * & * \\ -\xi_1^2 & -\xi_2^2 \end{pmatrix}$. As $BT = \begin{pmatrix} \xi_1^1 & \xi_4^1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \beta & -\alpha \end{pmatrix} = \begin{pmatrix} * & * \\ \alpha & \beta \end{pmatrix}$, one has to let $\alpha = -\xi_1^2$ and $\beta = -\xi_2^2$, which is possible if one doesn't already has $\xi_1^2 = 0$, $\xi_2^2 = 0$. Hence we are reduced to the case where $\xi_1^2 = 0$ and $\xi_2^2 = 0$.

(iv) The matrix J has the form $\begin{pmatrix} A & 0 & 0 \\ 0 & D & 0 \\ 0 & 0 & E \end{pmatrix}$ with moreover $\xi_2^2 = -\xi_1^1$ and $\xi_4^4 = -\xi_3^3$. Consider $\Phi_{\dagger} = \begin{pmatrix} U & 0 \\ 0 & V \end{pmatrix}$ and $(\alpha^2 + \beta^2 \neq 0, \ \gamma^2 + \delta^2 \neq 0)$ $\Phi = \operatorname{diag} \left(\Phi_{\dagger}, \begin{pmatrix} H & -K \\ K & H \end{pmatrix}\right)$ where $U = \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$, $V = \begin{pmatrix} \gamma & -\delta \\ \delta & \gamma \end{pmatrix}$, and $H + iK = (\alpha - i\beta)(\gamma + i\delta)$. Then $\Phi \in \operatorname{Aut}(M5)$. Now

$$(\Phi_\dagger)^{-1}\begin{pmatrix}A&0\\0&D\end{pmatrix}\Phi_\dagger=\begin{pmatrix}U^{-1}&0\\0&V^{-1}\end{pmatrix}\begin{pmatrix}A&0\\0&D\end{pmatrix}\begin{pmatrix}U&0\\0&V\end{pmatrix}=\begin{pmatrix}U^{-1}AU&0\\0&V^{-1}D\end{pmatrix}.$$

One has

$$U^{-1}AU = \frac{1}{\alpha^2 + \beta^2} \begin{pmatrix} {\xi'}_1^1 & {\xi'}_2^1 \\ {\xi'}_1^2 & {\xi'}_2^2 \end{pmatrix},$$

with

$$\xi_1'^1 = \alpha^2 \xi_1^1 + \alpha \beta (\xi_2^1 + \xi_1^2) + \beta^2 \xi_2^2$$

$$\xi_2'^2 = \alpha^2 \xi_2^2 - \alpha \beta (\xi_2^1 + \xi_1^2) + \beta^2 \xi_1^1$$

Since $\xi_1^1 = -\xi_2^2$, one has ${\xi'}_1^1 = -{\xi'}_2^2$. Then the discriminant of the equation ${\xi'}_2^2 = 0$ is the sum of two squares, hence there exist $\alpha, \beta \in \mathbb{R}$ with $\beta = 1$ such that ${\xi'}_1^1 = 0$ and ${\xi'}_2^2 = 0$. Then

$$U^{-1}AU = \frac{1}{\alpha^2 + \beta^2} \begin{pmatrix} 0 & {\xi'}_2^1 \\ {\xi'}_1^2 & 0 \end{pmatrix}.$$

Similarly, there exist $\gamma, \delta \in \mathbb{R}$ with $\delta = 1$ such that

$$V^{-1}DV = \frac{1}{\gamma^2 + \delta^2} \begin{pmatrix} 0 & {\xi'}_4^3 \\ {\xi'}_3^4 & 0 \end{pmatrix}.$$

Hence we are reduced to the case where $\xi_1^1 = \xi_3^3 = 0$.

13.4.3 Case 1.

In the present case 1, we suppose that B and C in (89) are not both 0. Then by equivalence (Lemma 2 (i)), we may suppose $B \neq 0$. Since $B \neq 0$, by equivalence (Lemma 2 (ii)), we may assume $\xi_3^2 = 1$, $\xi_4^2 = 0$. Again by equivalence (Lemma 2 (iii)), we may assume without altering B that $\xi_1^2 = 0$, $\xi_2^2 = 0$. Then solving all equations, we finally get the matrix

$$J(\xi_3^1, \xi_4^1, \xi_5^5, \xi_5^6) = \begin{pmatrix} a & -\xi_5^6 \xi_4^1 + \xi_5^6 - \xi_5^5 \xi_3^1 & \xi_3^1 & \xi_4^1 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0\\ 0 & -1 & 0 & 0 & 0 & 0\\ b & c & d & -a & 0 & 0\\ 0 & 0 & 0 & 0 & \xi_5^5 & -(\xi_5^{52} + 1)/\xi_5^6\\ 0 & 0 & 0 & 0 & \xi_5^6 & -\xi_5^5 \end{pmatrix}$$
(90)

where : $a=J_1^1=((\xi_5^{5^2}+1)\xi_3^1+(\xi_4^1-1)\xi_5^6\xi_5^5)/\xi_5^6; \quad b=J_1^4=-\frac{1+a^2}{\xi_4^1}; \quad c=J_2^4=((\xi_5^6\xi_5^5(\xi_4^1-1)^2+2\xi_5^{5^2}\xi_3^1(\xi_4^1-1)+\xi_4^1\xi_3^1)\xi_5^6+(\xi_5^{5^2}+1)\xi_5^5\xi_3^{1^2})/(\xi_5^6\xi_4^1); \quad d=J_3^4=((\xi_5^6(\xi_4^1-1)+\xi_5^5\xi_3^1(2-\xi_4^1))\xi_5^6-(\xi_5^{5^2}+1)\xi_3^{1^2})/(\xi_5^6\xi_4^1); \quad \text{and the parameters are subject to the condition}$

$$\xi_4^1 \xi_5^6 \neq 0. \tag{91}$$

Note also the following formulae from $J^2 = -1$:

$$d = \frac{1}{\xi_4^1} \left(\xi_5^6 (\xi_4^1 - 1) + \xi_3^1 (\xi_5^5 - a) \right) \quad , \quad c = ad + (1 + a^2) \frac{\xi_3^1}{\xi_4^1}. \tag{92}$$

Commutation relations of $\mathfrak{m}: [\tilde{x}_1, \tilde{x}_2] = a\tilde{x}_5 + d\tilde{x}_6; \quad [\tilde{x}_1, \tilde{x}_3] = (b+1)\tilde{x}_5 - c\tilde{x}_6; \quad [\tilde{x}_2, \tilde{x}_3] = \frac{1}{\xi_5^6 \xi_4^1} \left((\xi_5^6 (\xi_4^1 - 1) + \xi_5^5 \xi_3^1)^2 + \xi_3^{12} \right) (\xi_5^5 \tilde{x}_5 + \xi_5^6 \tilde{x}_6); \quad [\tilde{x}_2, \tilde{x}_4] = (1 - \xi_4^1)\tilde{x}_5 + \xi_3^1 \tilde{x}_6; \quad [\tilde{x}_3, \tilde{x}_4] = a\tilde{x}_5 + \xi_5^4 \tilde{x}_6$ $(\xi_5^6(\xi_4^1-1)+\xi_5^5\xi_3^1)\tilde{x}_6.$

m is abelian if and only if

$$\xi_3^1 = 0 \quad , \quad \xi_4^1 = 1.$$
 (93)

Suppose now that (93) holds, and denote $\alpha = \xi_5^5, \beta = \xi_5^6 \neq 0, J(\alpha, \beta) = J(0, 1, \xi_5^5, \xi_5^6)$. Then:

$$J(\alpha, \beta) = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \alpha & -\frac{\alpha^2 + 1}{\beta} \\ 0 & 0 & 0 & 0 & \beta & -\alpha \end{pmatrix}$$
(94)

where $\beta \neq 0$. A direct study shows that any $J(\alpha, \beta)$ is equivalent to a unique $J(0, \gamma)$, $0 < \gamma \leq 1$, and any two such $J(0,\gamma)$, $0 < \gamma \le 1$ are not equivalent unless $\gamma = \gamma'$.

13.4.4

Let $J_1 = J(\xi_3^1, \xi_4^1, \xi_5^5, \xi_5^6)$ and $J_2 = J(\eta_3^1, \eta_4^1, \eta_5^5, \eta_5^6)$ as in (90). It is clear that $J_1 \cong J_2$ if and only if there exists a matrix Φ such that

$$\Phi = \begin{pmatrix} \Phi_{\dagger} & 0 \\ 0 & \begin{pmatrix} H & Ku \\ K & -Hu \end{pmatrix} \end{pmatrix}$$
(95)

where $u = \pm 1$, Φ_{\dagger} , H, K are defined in Lemma 1, $H^2 + K^2 \neq 0$ and $J_2 = \Phi^{-1}J_1\Phi$. This equation implies that

$$\begin{pmatrix} \xi_5^5 & -\frac{\xi_5^{5^2}+1}{\xi_5^6} \\ \xi_5^6 & -\xi_5^5 \end{pmatrix} \begin{pmatrix} H & Ku \\ K & -Hu \end{pmatrix} = \begin{pmatrix} H & Ku \\ K & -Hu \end{pmatrix} \begin{pmatrix} \eta_5^5 & -\frac{\eta_5^{5^2}+1}{\eta_5^6} \\ \eta_5^6 & -\eta_5^5 \end{pmatrix}. \tag{96}$$

Equation (96) has non trivial solutions in H, K if and only if the following condition holds:

$$\frac{\eta_5^{52} + \eta_5^{62} + 1}{\eta_5^6} = -u \frac{\xi_5^{52} + \xi_5^{62} + 1}{\xi_5^6}.$$
 (97)

However, though that condition is also sufficient for the existence of Φ in (95) in the abelian case where $\xi_3^1=\eta_3^1=0, \xi_4^1=\eta_4^1=1$, it is no longer sufficient in the nonabelian case. For example, take J(1,1,1,1) and $J(1,1,1,\eta_5^6)$, with $\eta_5^6\neq 1$: then (97) holds if only if $u=-1,\eta_5^6=2$ or $u=1,\eta_5^6=-2,-1$, and in neither case does equivalence occur; hence $J(1,1,1,1)\not\cong J(1,1,1,\eta_5^6)$ if $\eta_5^6\neq 1$. However $J(1,1,0,1)\cong J(1,1,0,-1)$. One also has $J(\xi_3^1,1,0,1))\cong J(\eta_3^1,\eta_4^1,0,1)\Leftrightarrow \eta_3^1=\pm\xi_3^1$; $\eta_4^1=\xi_4^1$. In general, if $\eta_4^1\neq\xi_4^1$, for $J(\xi_3^1,\xi_4^1,\xi_5^5,\xi_5^6)$ and $J(\eta_3^1,\eta_4^1,\eta_5^5,\eta_5^6)$ to be equivalent, it would be necessary that $P\xi_5^5+Q=0$ where P,Q are certain huge polynomials in the other variables. We simply conjecture here that equivalence implies $\xi_4^1=\eta_4^1$ and $\eta_3^1=\pm\xi_3^1$, and leave open the equivalence problem in the nonabelian case.

13.4.5 Case 2.

We now suppose B=C=0. Then necessarily $\xi_2^2=-\xi_1^1, \xi_4^4=-\xi_3^3$. By equivalence (Lemma 2 (iv)), we may suppose $\xi_1^1=0, \xi_3^3=0$.

Case 2.1. Suppose $\xi_5^5 = 0$. If $\xi_3^4 \xi_1^2 \neq 1$ one gets then the matrix

$$J(\xi_1^2, \xi_3^4) = \operatorname{diag}\left(\begin{pmatrix} 0 & -1/\xi_1^2 \\ \xi_1^2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -\xi_3^4 \\ 1/\xi_3^4 & 0 \end{pmatrix}, \begin{pmatrix} 0 & (\xi_3^4 \xi_1^2 - 1)/(\xi_3^4 - \xi_1^2) \\ (-\xi_3^4 + \xi_1^2)/(\xi_3^4 \xi_1^2 - 1) & 0 \end{pmatrix}\right)$$
(98)

with the conditions

$$\xi_1^2, \xi_3^4 \neq 0 \; ; \; \xi_3^4 \neq \xi_1^2, \frac{1}{\xi_1^2}.$$
 (99)

If $\xi_3^4 \xi_1^2 = 1$, we get

$$J = \operatorname{diag}\left(\begin{pmatrix} 0 & -1/\xi_1^2 \\ \xi_1^2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -\xi_1^2 \\ 1/\xi_1^2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1/\xi_5^6 \\ \xi_5^6 & 0 \end{pmatrix}\right)$$
(100)

with the conditions

$$\xi_1^2 = \pm 1 \; ; \; \xi_5^6 \neq 0. \tag{101}$$

Case 2.2. Suppose $\xi_5^5 \neq 0$. Then we get:

$$J = \operatorname{diag}\left(\begin{pmatrix} 0 & -1/\xi_1^2 \\ \xi_1^2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1/\xi_1^2 \\ \xi_1^2 & 0 \end{pmatrix}, \begin{pmatrix} \xi_5^5 & -(\xi_5^{52} + 1)/\xi_5^6 \\ \xi_5^6 & -\xi_5^5 \end{pmatrix}\right)$$
(102)

with the conditions

$$\xi_1^2 = \pm 1 \; ; \; \xi_5^5 \xi_5^6 \neq 0. \tag{103}$$

13.4.6

Computing intertwining automorphisms, one can prove that for all $\xi_1^2, \xi_3^4, \eta_1^2, \eta_3^4 \in \mathbb{R}$ satisfying conditions (99), $J(\eta_1^2, \eta_3^4) \cong J(\xi_1^2, \xi_3^4)$ if and only if there exists $u = \pm 1$ such that one of the following is satisfied:

$$\left(\eta_1^2 = u\xi_1^2 \text{ or } \frac{u}{\xi_1^2}\right)$$
 and $\left(\eta_3^4 = u\xi_3^4 \text{ or } \frac{u}{\xi_3^4}\right)$

or

$$\left(\eta_1^2 = u\xi_3^4 \text{ or } \frac{u}{\xi_3^4}\right) \text{ and } \left(\eta_3^4 = u\xi_1^2 \text{ or } \frac{u}{\xi_1^2}\right).$$

Conditions (99) are preserved by the transformations. For example, the canonical CS $J_0 = J(-1, 1)$ and its opposite $-J_0$ are equivalent. In fact, on has:

Lemma 3. Let Ω denote the Aut(M5)-orbit of the canonical CS J_0 . Then Ω is the 4-dimensional space comprised of the matrices

$$J = \begin{pmatrix} 0 & -1/\xi_1^2 & 0 & 0 & 0 & 0\\ \xi_1^2 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1/\xi_1^2 & 0 & 0\\ 0 & 0 & -\xi_1^2 & 0 & 0 & 0\\ \xi_2^6 & -\xi_1^6 & -\xi_4^6 & \xi_3^6 & 0 & 1/\xi_1^2\\ \xi_1^6 & \xi_2^6 & \xi_3^6 & \xi_4^6 & -\xi_1^2 & 0 \end{pmatrix}$$

where $\xi_1^2 = \pm 1, \xi_1^6, \xi_2^6, \xi_3^6, \xi_4^6 \in \mathbb{R}$.

On the other hand, the J in (100) appears simply as a limiting case when $\xi_5^5 \to 0$ of the structure $J(\xi_1^2, \xi_5^5, \xi_5^6)$ defined in (102) with $\xi_1^2 = \pm 1$, $\xi_5^5 \xi_5^6 \neq 0$.

13.4.7

M5 is a complex algebra for the CS $J(\xi_1^2, \xi_3^4)$ in (98) if and only if $\xi_1^2 = -1, \xi_3^4 = 1$ or $\xi_1^2 = 1, \xi_3^4 = -1$, *i.e.* $J(\xi_1^2, \xi_3^4)$ is the canonical CS J_0 or its opposite respectively. Since M5 is not a complex algebra for the CS $J(\xi_3^1, \xi_4^1, \xi_5^1, \xi_5^6)$ in (90), the latter is not equivalent to J_0 .

Lemma 4. Suppose $J(\xi_1^2, \xi_3^4) \notin \{J_0, -J_0\}$. Then $J(\xi_1^2, \xi_3^4)$ is equivalent to some CS in case 1, i.e. there exist $\xi_3^1, \xi_1^4, \xi_5^5, \xi_5^6$ such that $J(\xi_1^2, \xi_3^4) \cong J(\xi_3^1, \xi_1^4, \xi_5^5, \xi_5^6)$.

Proof. Take $\Phi_{\dagger} = \begin{pmatrix} I & S \\ 0 & I \end{pmatrix}$ and

$$\Phi = \begin{pmatrix} \Phi_{\dagger} & 0 \\ 0 & \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} \quad \text{where} \quad S = \begin{pmatrix} \alpha & \beta \\ \beta & -\alpha \end{pmatrix} \quad (\alpha, \beta \in \mathbb{R}). \tag{104}$$

Then $\Phi \in \text{Aut}(M5)$. Denote $J(\xi_1^2, \xi_3^4)_{\dagger} = \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}$ where $A = \begin{pmatrix} 0 & -\frac{1}{\xi_1^2} \\ \xi_1^2 & 0 \end{pmatrix}, \ D = \begin{pmatrix} 0 & -\frac{1}{\xi_3^4} \\ \xi_3^4 & 0 \end{pmatrix}$.

Then

$$(\Phi_\dagger)^{-1}J(\xi_1^2,\xi_3^4)_\dagger\,\Phi_\dagger=\begin{pmatrix} I & -S \\ 0 & I \end{pmatrix}\begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}\begin{pmatrix} I & S \\ 0 & I \end{pmatrix}=\begin{pmatrix} A & AS-SD \\ 0 & D \end{pmatrix}.$$

Now

$$AS - SD = \begin{pmatrix} -\beta(\frac{1}{\xi_1^2} + \xi_3^4) & \alpha(\frac{1}{\xi_1^2} + \frac{1}{\xi_3^4}) \\ \alpha(\xi_1^2 + \xi_3^4) & \beta(\xi_1^2 + \frac{1}{\xi_3^4}) \end{pmatrix}.$$

The CS $\Phi^{-1}J(\xi_1^2,\xi_3^4)$ Φ is of type 1 if $AS - SD \neq 0$. For this to hold, just choose $\alpha = 1, \beta = 0$ if $\xi_1^2 + \xi_3^4 \neq 0$ and $\alpha = 0, \beta = 1$ if $\xi_1^2 + \xi_3^4 = 0$, noting in this latter case that $\xi_1^2 + \frac{1}{\xi_3^4} = \frac{(\xi_1^2)^2 - 1}{\xi_1^2} \neq 0$ since $\xi_1^2 \neq \pm 1$ as $J(\xi_1^2, \xi_3^4) \notin \{J_0, -J_0\}$.

Lemma 5. Let J be either the CS defined in (102) with $\xi_1^2 = \pm 1$, $\xi_5^5, \xi_5^6 \neq 0$ or the one in (100). Then $J \cong J(0,\beta)$ for some β (0 < $\beta \leq 1$), where $J(0,\beta)$ is defined in (94).

Proof. In both cases, $\mathfrak m$ is abelian, and $J=\begin{pmatrix}A&0&0\\0&A&0\\0&0&E\end{pmatrix}$ where $A=\begin{pmatrix}0&-\frac{1}{\xi_1^2}\\\xi_1^2&0\end{pmatrix}$, E=

 $\begin{pmatrix} \xi_5^5 & -\frac{\xi_5^5^2 + 1}{\xi_5^6} \\ \xi_5^6 & \xi_5^5 \end{pmatrix} \text{ with } \xi_5^6 \neq 0, \ \xi_1^2 = \pm 1, \ \xi_5^5 = 0 \text{ in case (100) and } \xi_5^5 \neq 0 \text{ in case (102)}.$ Take

 Φ, S as in (104). Denote $J_{\dagger} = \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}$. Then

$$(\Phi_\dagger)^{-1}J(\xi_1^2,\xi_3^4)_\dagger\,\Phi_\dagger=\begin{pmatrix} I & -S \\ 0 & I \end{pmatrix}\begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}\begin{pmatrix} I & S \\ 0 & I \end{pmatrix}=\begin{pmatrix} A & AS-SA \\ 0 & A \end{pmatrix}.$$

Now $AS-SA=\begin{pmatrix} -2\beta\xi_1^2 & 2\alpha\xi_1^2 \\ 2\alpha\xi_1^2 & 2\beta\xi_1^2 \end{pmatrix}=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ if we take $\alpha=\frac{\xi_1^2}{2},\beta=0$. Hence $\Phi^{-1}J\Phi$ is a CS of type 1, and we readily see that $J\cong J(0,1,\xi_5^5,\xi_5^6)$, hence $J\cong J(0,\beta)$ for some β , $0<\beta\leqslant 1$. \square

To summarize, we have shown the following:

Theorem 1. Any CS on the Lie algebra M5 is equivalent to either the canonical CS J_0 or some CS $J(\xi_3^1, \xi_4^1, \xi_5^5, \xi_5^6)$ defined in (90).

13.4.8

 G_0 is here the complex 3-dimensional Heisenberg group, considered as a real Lie group, *i.e.* the real Lie group comprised of the matrices

$$x = \begin{pmatrix} 1 & x^1 + iy^1 & x^3 + iy^3 \\ 0 & 1 & x^2 + iy^2 \\ 0 & 0 & 1 \end{pmatrix} \quad (x^k, y^k \in \mathbb{R} \quad \forall k = 1, 2, 3).$$
 (105)

We here depart from the second kind coordinates to use the natural coordinates defined by (105). Then the matrix x in (105) is $x = \exp(x^2x_3 + y^2x_4 + x^3x_5 + y^3x_6) \exp(x^1x_1 - y^1x_2)$, and

$$X_{1} = \frac{\partial}{\partial x^{1}} \quad , \quad X_{2} = -\frac{\partial}{\partial y^{1}}$$

$$X_{3} = \frac{\partial}{\partial x^{2}} + x^{1} \frac{\partial}{\partial x^{3}} + y^{1} \frac{\partial}{\partial y^{3}} \quad , \quad X_{4} = \frac{\partial}{\partial y^{2}} - y^{1} \frac{\partial}{\partial x^{3}} + x^{1} \frac{\partial}{\partial y^{3}}$$

$$X_{5} = \frac{\partial}{\partial x^{3}} \quad , \quad X_{6} = \frac{\partial}{\partial y^{3}}.$$

13.4.9 Holomorphic functions for $J(\xi_3^1, \xi_4^1, \xi_5^5, \xi_5^6)$.

Let G denote the group G_0 endowed with the left invariant structure of complex manifold defined by $J = J(\xi_3^1, \xi_4^1, \xi_5^5, \xi_5^6)$ in (90). One easily checks (with formulae (92)) that

$$\tilde{X}_{6}^{-} = -i\,\frac{1-i\xi_{5}^{5}}{\xi_{5}^{6}}\,\tilde{X}_{5}^{-}\;;\;\tilde{X}_{1}^{-} = -i\,\frac{1+ia}{\xi_{4}^{1}}\,\tilde{X}_{4}^{-}\;;\;i\,\tilde{X}_{2}^{-} - \tilde{X}_{3}^{-} = -i\,\left(id + \frac{(1+ia)\xi_{3}^{1}}{\xi_{4}^{1}}\right)\,\tilde{X}_{4}^{-}.$$

Hence $H_{\mathbb{C}}(G) = \{ f \in C^{\infty}(G_0) ; \tilde{X}_j^- f = 0 \ \forall j = 1, 3, 5 \}$. Consider first the equation

$$\tilde{X}_5^- f = 0. {(106)}$$

One has

$$\tilde{X}_{5}^{-} = X_{5} + i(\xi_{5}^{5}X_{5} + \xi_{5}^{6}X_{6}) = \frac{\partial}{\partial x^{3}} + i\left(\xi_{5}^{5}\frac{\partial}{\partial x^{3}} + \xi_{5}^{6}\frac{\partial}{\partial y^{3}}\right) = \frac{\partial}{\partial u^{3}} + i\frac{\partial}{\partial v^{3}} = 2\frac{\partial}{\partial \overline{w^{3}}}$$
(107)

where $u^3 = x^3 - \frac{\xi_5^5}{\xi_5^6} y^3$; $v^3 = \frac{y^3}{\xi_5^6}$; $w^3 = u^3 + iv^3$. Equation (106) simply means that f is holomorphic with respect to w^3 . Consider now the equation

$$\tilde{X}_1^- f = 0. {(108)}$$

One has

$$\tilde{X}_{1}^{-} = X_{1} + i(aX_{1} + bX_{4}) = \frac{\partial}{\partial x^{1}} + i\left(a\frac{\partial}{\partial x^{1}} + b\frac{\partial}{\partial y^{2}}\right) + ib\left(-y^{1}\frac{\partial}{\partial x^{3}} + x^{1}\frac{\partial}{\partial y^{3}}\right).$$

We suppose that f satisfies equation (106), i.e. f is holomorphic with respect to w^3 . Hence

$$\frac{\partial f}{\partial x^3} = \frac{\partial f}{\partial u^3} = \frac{\partial f}{\partial w^3}$$

$$1 \ \partial f \quad \xi_5^5 \ \partial f \quad 1 \quad (i \in \xi_5^5) \ \partial f$$

$$\frac{\partial f}{\partial y^3} = \frac{1}{\xi_5^6} \frac{\partial f}{\partial v^3} - \frac{\xi_5^5}{\xi_5^6} \frac{\partial f}{\partial u^3} = \frac{1}{\xi_5^6} (i - \xi_5^5) \frac{\partial f}{\partial w^3}$$

Then equation (108) reads

$$\frac{\partial f}{\partial x^1} + i \left(a \frac{\partial f}{\partial x^1} + b \frac{\partial f}{\partial y^2} \right) - b \left(i y^1 + \frac{x^1}{\xi_5^6} (1 + i \xi_5^5) \right) \frac{\partial f}{\partial w^3} = 0$$

that is

$$2\frac{\partial f}{\partial \overline{w^{1}}} - \frac{b}{2} \left(2iy^{1} + \frac{1 + i\xi_{5}^{5}}{\xi_{5}^{6}} ((1 - ia)w^{1} + (1 + ia)\overline{w^{1}}) \right) \frac{\partial f}{\partial w^{3}} = 0$$
 (109)

where $u^1 = x^1 - \frac{a}{b}y^2$; $v^1 = \frac{y^2}{b}$; $w^1 = u^1 + iv^1$. Finally, we turn to the last equation

$$\tilde{X}_3^- f = 0. {(110)}$$

One has

$$\begin{split} \tilde{X}_3^- &= i\xi_3^1 X_1 + iX_2 + X_3 + idX_4 \\ &= i\xi_3^1 \frac{\partial}{\partial x^1} - i\frac{\partial}{\partial y^1} + \left(\frac{\partial}{\partial x^2} + x^1\frac{\partial}{\partial x^3} + y^1\frac{\partial}{\partial y^3}\right) + id\left(\frac{\partial}{\partial y^2} - y^1\frac{\partial}{\partial x^3} + x^1\frac{\partial}{\partial y^3}\right). \end{split}$$

Since we suppose f holomorphic with respect to w^3 , equation (110) then reads

$$\frac{\partial f}{\partial x^2} - i\,\frac{\partial f}{\partial y^1} + i\,\xi_3^1\frac{\partial f}{\partial x^1} + id\,\frac{\partial f}{\partial y^2} + \left(x^1 - idy^1 + (y^1 + idx^1)\,\frac{i - \xi_5^5}{\xi_5^6}\right)\frac{\partial f}{\partial w^3} = 0$$

that is

$$2\frac{\partial f}{\partial \overline{w^2}} + \left(i\left(\xi_3^1 - \frac{ad}{b}\right) - \frac{d}{b}\right)\frac{\partial f}{\partial w^1} + \left(i\left(\xi_3^1 - \frac{ad}{b}\right) + \frac{d}{b}\right)\frac{\partial f}{\partial \overline{w^1}} + \frac{1}{2}\left[\left((1 - ia)w^1 + (1 + ia)\overline{w^1}\right)\right)\left(1 - \frac{d(1 + i\xi_5^5)}{\xi_5^6}\right) - (w^2 - \overline{w^2})\left(-d + \frac{1 + i\xi_5^5}{\xi_5^6}\right)\right]\frac{\partial f}{\partial w^3} = 0 \quad (111)$$

where $w^2 = x^2 - iy^1$. Now equation (109) reads

$$2\frac{\partial f}{\partial \overline{w^{1}}} - \frac{b}{2} \left(-w^{2} + \overline{w^{2}} + \frac{1 + i\xi_{5}^{5}}{\xi_{5}^{6}} ((1 - ia)w^{1} + (1 + ia)\overline{w^{1}}) \right) \frac{\partial f}{\partial w^{3}} = 0.$$
 (112)

From equations (107), (112), (111), one readily sees that the functions φ^1 and φ^2 defined by

$$\varphi^1 = 2w^1 - \left(i\left(\xi_3^1 - \frac{ad}{b}\right) - \frac{d}{b}\right)\overline{w^2} \tag{113}$$

$$\varphi^2 = w^2 \tag{114}$$

are holomorphic on G. We look for a holomorphic function which depends on w^3 . For any C^{∞} -function $\psi(w^1, w^2, \overline{w^2})$, *i.e.* ψ doesn't depend on $w^3, \overline{w^3}, \overline{w^1}$, the following function f_1 is a solution of equations (106) and (112):

$$f_{1} = w^{3} + \frac{b}{4} \left[-w^{2} \overline{w^{1}} + \overline{w^{2}} \overline{w^{1}} + \frac{1 + i\xi_{5}^{5}}{\xi_{5}^{6}} \left((1 - ia)w^{1} \overline{w^{1}} + (1 + ia) \frac{(\overline{w^{1}})^{2}}{2} \right) \right] + \psi(w^{1}, w^{2}, \overline{w^{2}}). \quad (115)$$

We want to choose ψ such that f_1 is a solution of (111) as well. First, we have :

$$\begin{array}{lcl} \frac{\partial f_1}{\partial w^1} & = & \frac{b}{4\xi_5^6} \left(1-ia\right) (1+i\xi_5^5) \, \overline{w^1} + \frac{\partial \psi}{\partial w^1} \\ \\ \frac{\partial f_1}{\partial \overline{w^1}} & = & \frac{b}{4} \left(-w^2 + \overline{w^2} + \frac{1+i\xi_5^5}{\xi_5^6} ((1-ia)w^1 + (1+ia)\overline{w^1})\right) \\ \\ \frac{\partial f_1}{\partial \overline{w^2}} & = & \frac{b}{4} \, \overline{w^1} + \frac{\partial \psi}{\partial \overline{w^2}} \\ \\ \frac{\partial f_1}{\partial w^3} & = & 1 \, . \end{array}$$

Introducing these values in (111) we find that f_1 is a solution to (111) if and only if

$$N\overline{w^1} - M(w^2 - \overline{w^2}) + \Lambda w^1 + \left(i\left(\xi_3^1 - \frac{ad}{b}\right) - \frac{d}{b}\right)\frac{\partial \psi}{\partial w^1} + 2\frac{\partial \psi}{\partial \overline{w^2}} = 0$$

where

$$N = \frac{1}{\xi_5^6} \left(ib\xi_3^1 - b\xi_3^1 \xi_5^5 + b\xi_5^6 + (1+ia)\xi_5^6 - d(1+ia)(1+i\xi_5^5) \right)$$

$$M = \frac{1}{4} (ib\xi_3^1 + (1-ia)d) + \frac{1}{2} \left(\frac{1}{\xi_5^6} - d + i\frac{\xi_5^5}{\xi_5^6} \right)$$

$$\Lambda = \frac{(1+i\xi_5^5)(1-ia)}{4\xi_5^6} \left(ib\xi_3^1 + (1-ia)d \right) + \frac{1-ia}{2} \left(1 - \frac{d(1+i\xi_5^5)}{\xi_5^6} \right).$$

A computation shows that N is actually equal to 0. Hence f_1 is a solution to (111) if and only if

$$-M(w^2 - \overline{w^2}) + \Lambda w^1 + \left(i\left(\xi_3^1 - \frac{ad}{b}\right) - \frac{d}{b}\right) \frac{\partial \psi}{\partial w^1} + 2\frac{\partial \psi}{\partial \overline{w^2}} = 0.$$
 (116)

Note that

$$i\left(\xi_3^1 - \frac{ad}{b}\right) - \frac{d}{b} = 0 \Leftrightarrow \xi_3^1 = d = 0 \Leftrightarrow \xi_3^1 = 0, \xi_4^1 = 1.$$

Hence, in the nonabelian case where one doesn't have simulteanously $\xi_3^1 = 0, \xi_4^1 = 1$, for (116) to hold, it is sufficient to have

$$\begin{array}{lcl} \frac{\partial \psi}{\partial w^1} & = & -\frac{\Lambda}{i\left(\xi_3^1 - \frac{ad}{b}\right) - \frac{d}{b}} \, w^1 \\ \frac{\partial \psi}{\partial \overline{w^2}} & = & \frac{M}{2} (w^2 - \overline{w^2}) \end{array}$$

which gives a solution

$$\psi = -\frac{\Lambda}{i\left(\xi_3^1 - \frac{ad}{b}\right) - \frac{d}{b}} \frac{(w^1)^2}{2} + \frac{M}{2} \left(w^2 \overline{w^2} - \frac{(\overline{w^2})^2}{2}\right).$$

In the abelian case, one can take

$$\psi = -\frac{\Lambda}{2} w^1 \overline{w^2} + \frac{M}{2} \left(w^2 \overline{w^2} - \frac{(\overline{w^2})^2}{2} \right).$$

We finally get the holomorphic function f_1 : in the nonabelian case,

$$f_{1} = w^{3} + \frac{b}{4} \left[-w^{2} \overline{w^{1}} + \overline{w^{2}} \overline{w^{1}} + \frac{1 + i\xi_{5}^{5}}{\xi_{5}^{6}} \left((1 - ia)w^{1} \overline{w^{1}} + (1 + ia) \frac{(\overline{w^{1}})^{2}}{2} \right) \right] - \frac{\Lambda}{i \left(\xi_{3}^{1} - \frac{ad}{b} \right) - \frac{d}{b}} \frac{(w^{1})^{2}}{2} + \frac{M}{2} \left(w^{2} \overline{w^{2}} - \frac{(\overline{w^{2}})^{2}}{2} \right). \quad (117)$$

In the abelian case,

$$f_{1} = w^{3} + \frac{b}{4} \left[-w^{2} \overline{w^{1}} + \overline{w^{2}} \overline{w^{1}} + \frac{1 + i\xi_{5}^{5}}{\xi_{5}^{6}} \left((1 - ia)w^{1} \overline{w^{1}} + (1 + ia) \frac{(\overline{w^{1}})^{2}}{2} \right) \right] - \frac{\Lambda}{2} w^{1} \overline{w^{2}} + \frac{M}{2} \left(w^{2} \overline{w^{2}} - \frac{(\overline{w^{2}})^{2}}{2} \right). \quad (118)$$

Note that in the abelian case, one can take $\xi_5^5=0, \xi_5^6=\beta$, $0<\beta\leqslant 1$, and then a=c=d=0, $b=-1, M=\frac{1}{2\beta}, \Lambda=\frac{1}{2}$, hence

$$f_{1} = w^{3} - \frac{1}{4} \left[-w^{2} \overline{w^{1}} + \overline{w^{2}} \overline{w^{1}} + \frac{1}{\beta} \left(w^{1} \overline{w^{1}} + \frac{(\overline{w^{1}})^{2}}{2} \right) \right] - \frac{1}{4} w^{1} \overline{w^{2}} + \frac{1}{4\beta} \left(w^{2} \overline{w^{2}} - \frac{(\overline{w^{2}})^{2}}{2} \right). \quad (119)$$

In both abelian and nonabelian cases, let $F: G \to \mathbb{C}^3$ defined by $F = (\varphi^1, \varphi^2, \varphi^3)$ where φ^1, φ^2 are defined in (113), (114) and $\varphi^3 = f_1$. F is a global chart on G. We determine now how the multiplication of G looks like in the chart F. Recall first the formulae:

$$w^{1} = \left(x^{1} - \frac{a}{b}y^{2}\right) + i\frac{y^{2}}{b} \quad , \quad w^{2} = x^{2} - iy^{1} \quad , \quad w^{3} = \left(x^{3} - \frac{\xi_{5}^{5}}{\xi_{5}^{6}}\right) + i\frac{y^{3}}{\xi_{5}^{6}}. \tag{120}$$

Let $a, x \in G$ with respective canonical coordinates $(x^1, y^1, x^2, y^2, x^3, y^3), (\alpha^1, \beta^1, \alpha^2, \beta^2, \alpha^3, \beta^3)$ as in (105). With obvious notations, by matrix multiplication and (120) one gets

$$w^1_{\alpha x} = w^1_{\alpha} + w^1_x \quad , \quad w^2_{\alpha x} = w^2_{\alpha} + w^2_x \quad , \quad w^3_{\alpha x} = w^3_{\alpha} + w^3_x + \chi(\alpha,x)$$

where $\chi(\alpha, x) = \alpha^1 x^2 - \beta^1 y^2 + \frac{i - \xi_5^5}{\xi_5^6} (\alpha^1 y^2 + \beta^1 x^2)$. Then from (113), (114):

$$\varphi_{\alpha x}^1 = \varphi_{\alpha}^1 + \varphi_{x}^1 \quad , \quad \varphi_{\alpha x}^2 = \varphi_{\alpha}^2 + \varphi_{x}^2.$$

To get $\varphi_{\alpha x}^3$, we just make the substitutions $w^1 \to w_\alpha^1 + w_x^1$, $w^2 \to w_\alpha^2 + w_x^2$, $w^3 \to w_\alpha^3 + w_x^3 + \chi(\alpha, x)$ in (117) (we consider here the nonabelian case). Now, let $\Delta = \varphi_{\alpha x}^3 - \varphi_\alpha^3 - \varphi_x^3$. Computations give:

$$\Delta = \frac{1}{8\xi_5^6} \left(C_1 \varphi_x^1 + C_2 \xi_5^6 \varphi_x^2 \right)$$

where

$$C_1 = b(1 + i\xi_5^5)\overline{\varphi_{\alpha}^1} + (b - 1 + ia)\xi_5^6\overline{\varphi_{\alpha}^2} + \frac{b(a + i)\xi_5^6}{b\xi_3^1 - d(a - i)}\varphi_{\alpha}^1 + ((\xi_5^5 - i)(b\xi_3^1 - da - id) - b\xi_5^6)\varphi_{\alpha}^2 ,$$

$$\begin{split} C_2 &= (1-b+ia)\overline{\varphi_{\alpha}^1} \\ &+ \left(\frac{4(1+i\xi_5^5)}{\xi_5^6} + (a+i(b+1))\xi_3^1 - \frac{d}{b}(1+a^2) - d(1+ia)\right)\overline{\varphi_{\alpha}^2} \\ &+ (1-ai)\varphi_{\alpha}^1 \\ &+ \left(-\frac{2(1+i\xi_5^5)}{\xi_5^6} + (a+i(b-1))\xi_3^1 - \frac{d}{b}(1+a^2) + d(1-ia)\right)\varphi_{\alpha}^2. \end{split}$$

For example, in the case of J(1, 1, 1, 1),

$$\begin{split} \Delta = \left(-\frac{3-i}{4}\,\overline{\varphi_{\alpha}^2} - \frac{5+5i}{8}\,\overline{\varphi_{\alpha}^1} + \frac{3+4i}{8}\,\varphi_{\alpha}^2 + \frac{7+i}{16}\,\varphi_{\alpha}^1\right)\varphi_{x}^1 \\ + \left(\frac{3+i}{4}\,\overline{\varphi_{\alpha}^2} + \frac{3+i}{4}\,\overline{\varphi_{\alpha}^1} - \frac{1+3i}{4}\,\varphi_{\alpha}^2 + \frac{1-2i}{8}\,\varphi_{\alpha}^1\right)\varphi_{x}^2 \;. \end{split}$$

Finally, in the abelian case $J(0,1,0,\beta)$, one has to use (119) and one gets:

$$\Delta = -\left(\frac{1}{4}\,\overline{\varphi_\alpha^2} + \frac{1}{8\beta}\,\overline{\varphi_\alpha^1} - \frac{1}{8}\,\varphi_\alpha^2 + \frac{1}{16\beta}\,\varphi_\alpha^1\right)\varphi_x^1 + \left(\frac{1}{2\beta}\,\overline{\varphi_\alpha^2} + \frac{1}{4}\,\overline{\varphi_\alpha^1} - \frac{1}{4\beta}\,\varphi_\alpha^2 + \frac{1}{8}\,\varphi_\alpha^1\right)\varphi_x^2\;.$$

References

- [1] BOURBAKI N., "Groupes et algèbres de Lie, Chap. 2 et 3", Hermann, Paris, 1972.
- [2] CORDERO L.A., FERNANDEZ M., GRAY A., UGARTE L., "Nilpotent complex structures on compact nilmanifolds", Rend. Circolo Mat. Palermo, Ser. 2, Suppl. 49, 1997, 83-100
- [3] HASEGAWA K., "Minimal models of nilmanifolds", Proc. Amer. Math. Soc., 106, 1989, 65-71.
- [4] KOBAYASHI S., NOMIZU K., "Foundations differential geometry", Vol. 2, Tracts in Math. #15, Interscience, New York, 1969.
- [5] MAGNIN L., "Sur les algèbres de Lie nilpotentes de dimension $\leqslant 7$ ", J. Geom.Phys., 3 , 1986, 119-144.
- [6] MAGNIN L., "Adjoint and trivial cohomology tables for indecomposable nilpotent Lie algebras of dimension ≤ 7 over ℂ", online book (Postcript, .ps.Z compressed file) (906 pages + vi), 1995, freely accessible on the web page http://www.u-bourgogne.fr/monge/l.magnin
- [7] MAGNIN L., "Technical report for complex structures on indecomposable 6-dimensional nilpotent real Lie algebras", online report (Postcript, .ps file) (382 pages), 2004, freely accessible on the web page http://www.u-bourgogne.fr/monge/l.magnin
- [8] NEWLANDER A., NIRENBERG L., "Complex analytic coordinates in almost complex manifolds", Ann. Math., 65, 1957, 391-404.
- [9] SALAMON S.M., "Complex structures on nilpotent Lie algebras", J. Pure Appl. Algebra, 157, 2001, 311-333.
- [10] SNOW J.E., "Invariant complex structures on 4-dimensional solvable real Lie groups", Manuscripta Math., 66, 1990, 397-412.
- [11] VARADARAJAN V.S., "Lie Groups, Lie Algebras and their Representations", Springer, GTM #102, 1984.