

Universidad Tecnológica Nacional- Facultad Regional General Pacheco

Técnico Universitario en Programación Matemática 1-Unidad 5

1) Para cada uno de los siguientes casos dar la definición del grafo $G = (V,\,A,\,\phi)$

2) Dibujar el grafo G = (V, A, ϕ) dado por: V = { v_1 , v_2 , v_3 } , A = { a_1 , a_2 , a_3 , a_4 }

a _i	a ₁	a_2	a ₃	a ₄
φ	$\{v_1, v_1\}$	$\{v_2, v_3\}$	$\{v_3, v_2\}$	$\{v_2, v_1\}$

- 3) Para cada uno de los grafos de los ejercicios 2) se pide: un par de:
 - a) vértices y aristas incidentes, aristas paralelas, vértices adyacentes
 - b) ¿ Es un grafo simple?
- 4) Dibujar los grafos a) y b) a partir de los conjuntos de información siguientes:
 - a) Conjunto de los vértices $V = \{v_1, v_2, v_3, v_4\}$

Conjunto de las aristas $A = \{a_1, a_2, a_3, a_4, a_5\}$

 a_1 , a_3 son bucles con puntos extremos v_2 , v_4 respectivamente.

a2 es incidente con v1 y v4

a₄ es incidente con v_{1 y} v₂.

v₂ y v₄son los puntos extremos de a₅.

¿Hay algún vértice aislado? ¿Hay aristas paralelas? ¿Puede llegarse a todos los puntos desde v₁?

b) Conjuntos de los vértices $V = \{v_1, v_2, v_3, v_4, v_5\}$

Conjuntos de aristas A = $\{a_1, a_2, a_3, a_4, a_5, a_6, a_7\}$

2

 a_1 tiene como puntos extremos v_1 y v_4 ; a_2 , a_3 y a_4 son aristas paralelas; a_5 es incidente con v_3 y v_4 ; un punto extremo de a_4 es v_4 ; a_7 es un bucle incidente con v_5 ; a_6 es incidente en v_3 y v_5 ; no hay vértices aislados.

5) Para el siguiente grafo hallar la matriz de adyacencia y la matriz de incidencia

- 6) Escribe un camino de longitud 2 y un ciclo de longitud 3 del grafo del ejercicio 5. Halla el grado de cada vértice.
- 7) Hallar, si es posible un ciclo y/o un camino de Euler para cada uno de los siguientes grafos.

a)

b)

c)

8) Teniendo en cuenta los siguientes árboles binarios, mostrar el recorrido en preorden, postorden y orden simétrico

a)

b)

c)

