Yuhang Chen 3170111144

ECE 470: Introduction to Robotics Homework 2

Question 1. (12 marks)

A 4-DOF (excluding gripper) robotic serial manipulator arm is shown in Figure 1.

Using the D-H convention learned in class,

- a) Assign frames to the links on a schematic diagram that represents the robot arm
- b) Tabulate the D-H parameters
- c) Obtain the forward kinematics representing the pose of end-effector frame {E} referenced from base frame {0}.

Question 2. (8 marks)

The serial manipulator arm is tasked to write on the board plane Z_o , with a pen attached to the gripper $\{E\}$. For the ink to flow, ${}^0Z_{pen}$ has to be $(0\ 0\ -1)^T$ i.e. vertically downwards. As shown in the diagram, axis X_E and Z_E are parallel to Z_{pen} and Y_{pen} respectively. The distance between Z_E and Y_{pen} is k_0 .

State any assumption or condition while working on the following:

- a) Write down the transformation matrix $p_{en}^{E}T$
- b) If the pen tip is to be place on the board with coordinates ${}^{0}(u,v)$, find the expressions describing the joint variable q in terms of k_{0-4} , u and v.
- c) Describe the workspace of the writing task if the distance between Z_E and Y_{pen} is now change to $k_0/2$. Assume that q_2 can only move its link in a range of 0 to 180° from the plane.

b)		din	a _{i-1}	Oi	di
)	0	Ô	K14	ko
	2	ドイ	0	0	0
	3	0	- K2	TC - 2	0
	3 4	O	k,	0	Q
	5	0	Q	下12	Q
	6	0	-k3	0	0
	7	0	- k4	T. 2	0
•	E	トン	0	O	0

where $iT = R_{x}(di-1)$ $D_{x} R_{z}(\theta i)D_{z}(di)$

$$2.0$$
 per $7 = \begin{bmatrix} 100 \\ 061 \\ 0-)0 \end{bmatrix}$

The pen tip is to be place on (u, V, 0)

Due to the three DOF
$$q_2, q_3, q_4$$

 k_0 k_2 k_3 k_4 k_6 k_6 k_6 k_7 k_8 k_9 k_9

the pen tip can be moved onto any point inside its maximum reached outline (a circle)

: The work space: $S = TVr^2 = TV[(k_2 + k_3 + k_4)^2 + k_0^2]$