Equações de Euler	Relações Trignométricas	Números Complexos
$e^{i\theta} = \cos\theta + i\sin\theta$	$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$	$C = a + jb = re^{j\theta}$
$\cos\theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$	$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$	$r = \sqrt{a^2 + b^2}$; $\theta = \arctan \frac{b}{a}$
$\sin \theta = \frac{e^{j\theta} - e^{-j\theta}}{i2}$	$\cos(\alpha)\cos(\beta) = \frac{1}{2}\cos(\alpha + \beta) + \frac{1}{2}\cos(\alpha - \beta)$	$a = r \cos \theta$; $b = r \sin \theta$
j_2	$\sin(\alpha)\sin(\beta) = \frac{1}{2}\cos(\alpha + \beta) + \frac{1}{2}\cos(\alpha + \beta)$ $\sin(\alpha)\sin(\beta) = \frac{1}{2}\cos(\alpha - \beta) - \frac{1}{2}\cos(\alpha + \beta)$	$u = r \cos v$, $v = r \sin v$
	$\sin(\alpha)\sin(\beta) = \frac{1}{2}\cos(\alpha + \beta) = \frac{1}{2}\sin(\alpha + \beta) + \frac{1}{2}\sin(\alpha - \beta)$	$C^H = a - jb = re^{-j\theta}$
	$\cos^2 \alpha + \sin^2 \alpha = 1$	$CC^{H} = r^{2}$
	$\cos^2(\alpha) = \frac{1}{2} \left(1 + \cos(2\alpha) \right)$	
	$\sin^2(\alpha) = \frac{1}{2} \left(1 - \cos(2\alpha) \right)$	
	$\cos(2\alpha) = 2\cos^2\alpha - 1 = 1 - 2\sin^2\alpha$	
Espaço de Sinais	Decomposição de um sinal (par ímpar)	
$y(t) = \sum_{i=1}^{N} a_i x_i(t) + e(t)$	Sinal par: $x(t) = x(-t)$	
$se < x_i(t), x_j(t) >= 0, \forall i \neq j$	Sinal impar: $\dot{x}(t) = -\dot{x}(-t)$	
minimizar o erro quad. médio	$x(t) = x_{par}(t) + x_{impar}(t)$	
$a_i = \frac{\langle y(t), x_i(t) \rangle}{\ x_i(t)\ ^2}$	$x_{par}(t) = \frac{1}{2}(x(t) + x(-t))$	
11	$x_{impar}(t) = \frac{1}{2} (x(t) - x(-t))$	
	Sinais periódicos	Sinais de Energia
Produto interno:	$\langle y(t), x(t) \rangle = \frac{1}{T_0} \int_{T_0} y(t)x(t)dt$	$\langle y(t), x(t) \rangle = \int_{-\infty}^{+\infty} y(t)x(t)dt$
Norma:	$P_x = x(t) ^2 = \langle x(t), x(t) \rangle$	$ E_x = x(t) ^2 = \langle x(t), x(t) \rangle$
Série de Fourier		2 II V/II V// V/
	$C_k = \frac{1}{T_0} \int_{T_0} x_P(t) e^{-j2\pi k f_0 t} dt$	
	$C_{k} = \frac{1}{T_{0}} \int_{T_{0}} x_{P}(t) e^{-j2\pi k f_{0} t} dt$ $x_{P}(t) = \sum_{k=-\infty}^{+\infty} C_{k} e^{j2\pi k f_{0} t}$	
Transformada de Fourier	- () = - \omega ::	
	$X_P(f) = \sum_{k=-\infty}^{\infty} C_k \delta(f - kf_0)$	$X_E(f) = \int_{-\infty}^{+\infty} x_E(t) e^{-j2\pi f t} dt$
	$com C_k = \frac{1}{T_0} X_E(kf_0)$	$x_E(t) = \int_{-\infty}^{+\infty} X_E(f) e^{j2\pi f t} df$
	$se x_P(t) = \sum_{-\infty}^{\infty} x_E(t - kT_0)$	
Propriedades	x(t)	$X(f) = TF\{x(t)\}$
Simetrias	x(t) real	$X(f) = X(-f)^H$
	x(t) real e par	X(f) par e real
	x(t) real impar	X(f) imaginário ímpar
Linearidade	$\sum_{i=1}^{N} a_i x_i(t)$	$\sum_{i=1}^{N} a_i X_i(f)$
Escalamento	$\frac{1}{x(at)}$	$\frac{1}{ a }X\left(\frac{f}{a}\right)$
	x(-t)	X(-f)
Deslocamento no tempo	$\begin{pmatrix} x(-t) \\ x(t-t_0) \end{pmatrix}$	$X(f)e^{-j2\pi ft_0}$
B estecamente no compo	x(at-b)	$\frac{1}{ a }X\left(\frac{f}{a}\right)e^{-j2\pi f\frac{b}{a}}$
T	$x(tt-b)$ $x(t)e^{j2\pi f_c t}$	
Translacção na frequência	$\begin{vmatrix} x(t)e^{j\pi f_ct} \\ x(t)\cos(2\pi f_ct) \end{vmatrix}$	$X(f-f_c)$
Modulação Dualidade	$\begin{cases} x(t)\cos(2\pi f_c t) \\ y(t) = X(t) \end{cases}$	$ \begin{array}{c} \frac{1}{2} \left(X(f - f_c) + X(f + f_c) \right) \\ Y(f) = x(-f) \end{array} $
integração	$\int_{-\infty}^{t} x(\lambda) d\lambda$	
= -	$ \begin{vmatrix} J_{-\infty} & \lambda(A)uA \\ d^n x(t) \end{vmatrix} $	$\frac{1}{j2\pi f}X(f) + \frac{1}{2}X(0)\delta(f)$
Diferenciação	$\frac{d^n x(t)}{dt^n}$	$(j2\pi f)^n X(f)$
	$\begin{bmatrix} t^n x(t) \\ y(t) H \end{bmatrix}$	$(-j2\pi)^{-n}\frac{d^nX(f)}{df^n}$
Multipliancão	$x(t)^H$	$X(-f)^H$
Multiplicação	$ \begin{vmatrix} x(t)y(t) \\ x(t) * y(t) \end{vmatrix} $	X(f) * Y(f) Y(f)V(f)
Teorema de Parsevall	$\begin{vmatrix} x(t) * y(t) \\ P - \frac{1}{2} \int x(t) ^2 dt \end{vmatrix}$	$\begin{vmatrix} A(f)I(f) \\ P - \sum_{\infty}^{\infty} C_f ^2 \end{vmatrix}$
Teorema de Rayleigh	$P = \frac{1}{T_0} \int_{T_0}^{\infty} x(t) ^2 dt$ $E = \int_{-\infty}^{\infty} x(t) ^2 dt$	$ X(f)Y(f) $ $P = \sum_{k=-\infty}^{\infty} C_k ^2 $ $E = \int_{-\infty}^{\infty} X(f) ^2 df $
Transformadas de sinais	$= \int_{-\infty} x(t) \ dt$	$E = \int_{-\infty} X(j) dj$
Transformadas de smais	$A\Pi\left(\frac{t-t_0}{2}\right)$	$A\tau \mathrm{sinc}\left(f\tau\right)e^{-j2\pi ft_0}$
	$egin{array}{c} A\Pi\left(rac{t-t_0}{ au} ight) \ A\Lambda\left(rac{t-t_0}{ au} ight) \end{array}$	$A\tau \operatorname{sinc}^{2}(f\tau)e^{-j2\pi ft_{0}}$
	$A = \begin{pmatrix} T & T \\ A & T \end{pmatrix}$	$A\delta(f)$
	$A\delta(t)$	
	$A\delta(t-t_d)$	$Ae^{-j2\pi ft_d}$
	u(t)	$\left \frac{1}{j2\pi f} + \frac{1}{2}\delta(f) \right $
	$A \operatorname{sign}(t)$	$A \frac{2}{j2\pi f}$
	$Ae^{-at}u(t)$	$\frac{\frac{1}{j2\pi f} + \frac{1}{2}\delta(f)}{A\frac{2}{j2\pi f}}$ $\frac{A}{a+j2\pi f}$
	$e^{j2\pi f_c t}$	$\delta(f-f_c)$
	$Acos(2\pi f_c t + \theta)$	$\frac{A}{2}e^{j\theta}\delta(f-f_c) + \frac{A}{2}e^{-j\theta}\delta(f+f_c)$
	$Asin(2\pi f_c t + \theta)$	$ \frac{\frac{A}{2}e^{j\theta}\delta(f-f_c) + \frac{A}{2}e^{-j\theta}\delta(f+f_c)}{\frac{A}{2}e^{j(\theta-\frac{\pi}{2})}\delta(f-f_c) + \frac{A}{2}e^{-j(\theta-\frac{\pi}{2})}\delta(f+f_c)} $
	$\sum_{-\infty}^{\infty} A\delta(t - kT_0)$	$Af_0 \sum_{-\infty}^{\infty} \delta(f - kf_0)^2$

SLITS	
Resposta do sistema	y(t) = h(t) * x(t)
Resposta ao escalão	$g(t) = \int_{-\infty}^{t} h(\lambda) d\lambda$
	$h(t) = \frac{dg(t)}{dt}$
Resposta em frequência	$H(f) = \overset{dt}{Y}(f)/X(f)$
	$H(f) = TF\{h(t)\}$
Resposta em Reg. Estacion.	$x(t) = A\cos(2\pi f_x t + \theta)$
	$y(t) = A H(f_x) \cos(2\pi f_x t + \theta + arg(H(f_x)))$
SLIT causal	h(t) = 0 para t < 0
SLIT sem memória	$h(t) = 0$ para $t \neq 0$
SLIT estável	$\int_{-\infty}^{\infty} h(t) dt < \infty$
operação convolução	
	$z(t) = x(t) * y(t) = \int_{-\infty}^{\infty} x(\lambda)y(t-\lambda)d\lambda$
Propriedades da convolução	. 33
	x(t) * y(t) = y(t) * x(t)
	x(t) * (y(t) * z(t)) = (x(t) * y(t)) * z(t)
	x(t) * (ay(t) + bz(t)) = a(x(t) * y(t)) + b(x(t) * z(t))
	$\frac{d(x(t)*y(t))}{dt} = \frac{d(x(t))}{dt} * y(t) = x(t) * \frac{d(y(t))}{dt}$
	$x(t) * \delta(t - t_0) = x(t - t_0)$
Propriedades do Dirac	
	$\int_{-\infty}^{\infty} A\delta(t - t_0)dt = A$
	$\int_{-\infty}^{t} A\delta(\lambda - t_0) d\lambda = Au(t - t_0)$
	$\frac{dt}{dt} = A\delta(t-t_0)$
	$\begin{vmatrix} \frac{dAu(t-t_0)}{dt} = A\delta(t-t_0) \\ \int_{-\infty}^{\infty} x(t)\delta(t-kt_0)dt = x(t_0) \end{vmatrix}$