Precalculus Lecture 20

Todor Miley

https://github.com/tmilev/freecalc

2020

Outline

- A Catalog of Essential Functions
 - Linear Functions
 - Polynomials
 - Power Functions
 - Rational Functions
 - Algebraic Functions
 - Transcendental Functions
 - Miscellaneous

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/
 and the links therein.

Linear Functions

Definition (Linear Function)

A linear function is a function the graph of which is a line. We can write any linear function in slope-intercept form:

$$f(x) = mx + b$$
.

m is called the slope, and *b* is called the *y*-intercept.

 Any non-vertical line arises as the graph of a linear function.

 Vertical lines fail the vertical line test and therefore are not graphs of a function of x.

f(x)	Direction	y-intercept
x+1	7	1
-0.5x + 0	>	0
-1	\rightarrow	-1

- m > 0 means the graph of f points up (\nearrow).
- m < 0 means the graph of f points down (\searrow).
- m = 0 means the graph of f is horizontal (\rightarrow) .
- b tells us the height of the point where the graph hits the y-axis.

Polynomials

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a_2
$x^4 - x + 1$	Yes	4	1	-1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$	Yes	2	$\sqrt{2}$	$-\frac{1}{2}$	3
$3x^2 - \frac{1}{2x} + \sqrt{2}$	No			_	

- Linear functions are polynomial (functions).
- So are quadratic functions. Their graphs are parabolas.
- And there are many more.

Linear

- Linear functions are polynomial (functions).
- So are quadratic functions. Their graphs are parabolas.
- And there are many more.

Quadratic

- Linear functions are polynomial (functions).
- So are quadratic functions. Their graphs are parabolas.
- And there are many more.

Cubic

- Linear functions are polynomial (functions).
- So are quadratic functions. Their graphs are parabolas.
- And there are many more.

Quartic

- Linear functions are polynomial (functions).
- So are quadratic functions. Their graphs are parabolas.
- And there are many more.

Quintic

Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a .$$

x =base. a =exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

If a - positive integer (1, 2, 3, ...)then x^a = polynomial function. $x^n = \underbrace{x ... x}$ when n-integer.

$$(x^{a})^{b} = x^{ab}$$

$$(xy)^{b} = x^{b}y^{b}$$

$$x^{a+b} = x^{a}x^{b}$$

$$x^{-a} = \frac{1}{x^{a}}$$

Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a \quad .$$

x =base. a =exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

If a - positive integer (1, 2, 3, ...)then x^a = polynomial function. $x^n = \underbrace{x ... x}$ when n-integer.

$$(x^{a})^{b} = x^{ab}$$

$$(xy)^{b} = x^{b}y^{b}$$

$$x^{a+b} = x^{a}x^{b}$$

$$x^{-a} = \frac{1}{x^{a}}$$

Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a .$$

x =base. a =exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

If a - positive integer (1, 2, 3, ...)then x^a = polynomial function. $x^n = \underbrace{x ... x}$ when n-integer.

$$(x^{a})^{b} = x^{ab}$$

$$(xy)^{b} = x^{b}y^{b}$$

$$x^{a+b} = x^{a}x^{b}$$

$$x^{-a} = \frac{1}{x^{a}}$$

Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a .$$

x =base. a =exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

If a - positive integer (1, 2, 3, ...)then x^a = polynomial function. $x^n = \underbrace{x ... x}$ when n-integer.

$$(x^{a})^{b} = x^{ab}$$

$$(xy)^{b} = x^{b}y^{b}$$

$$x^{a+b} = x^{a}x^{b}$$

$$x^{-a} = \frac{1}{x^{a}}$$

Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a .$$

x =base. a =exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

If a - positive integer (1, 2, 3, ...)then x^a = polynomial function. $x^n = \underbrace{x ... x}$ when n-integer.

$$(x^{a})^{b} = x^{ab}$$

$$(xy)^{b} = x^{b}y^{b}$$

$$x^{a+b} = x^{a}x^{b}$$

$$x^{-a} = \frac{1}{x^{a}}$$

- n positive integer, $f(x) = x^{\frac{1}{n}} = \sqrt[n]{x}$ = the n^{th} root function. $\sqrt[n]{x} \ge 0$ for $x \ge 0$.
- For n = 2, we get the square root \sqrt{x} ; for n = 3 we get the cube root $\sqrt[3]{x}$, and so on.
- Let x > 0. For n = 2m + 1-odd, we can extend the definition of n^{th} root to negative numbers by $2^{m+1}\sqrt{-x} := -2^{m+1}\sqrt{x}$.
- In this course, even roots of negative numbers are not defined.
- The graph of \sqrt{x} is the top half of the parabola $x = y^2$. Similarly for $y = \sqrt[2m]{x}$, we graph top of $x = y^{2m}$.
- The graph of the cube root $f(x) = \sqrt[3]{x}$ is the graph of the polynomial $x = y^3$. Similarly for $y = \sqrt[2m+1]{x}$, we graph $x = y^{2m+1}$.

- n positive integer, $f(x) = x^{\frac{1}{n}} = \sqrt[n]{x}$ = the n^{th} root function. $\sqrt[n]{x} \ge 0$ for $x \ge 0$.
- For n = 2, we get the square root \sqrt{x} ; for n = 3 we get the cube root $\sqrt[3]{x}$, and so on.
- Let x > 0. For n = 2m + 1-odd, we can extend the definition of n^{th} root to negative numbers by $2^{m+1}\sqrt{-x} := -2^{m+1}\sqrt{x}$.
- In this course, even roots of negative numbers are not defined.
- The graph of \sqrt{x} is the top half of the parabola $x = y^2$. Similarly for $y = \sqrt[2m]{x}$, we graph top of $x = y^{2m}$.
- The graph of the cube root $f(x) = \sqrt[3]{x}$ is the graph of the polynomial $x = y^3$. Similarly for $y = \sqrt[2m+1]{x}$, we graph $x = y^{2m+1}$.

 $f(x) = x^{-1} = \frac{1}{x}$ is called the reciprocal function. Its graph has equation $y = \frac{1}{x}$, or xy = 1, and is an hyperbola with the coordinate axes as its

asymptotes.

Rational Functions

Definition (Rational Function)

A rational function is a quotient of two polynomials; that is, a function of the form

$$f(x)=\frac{g(x)}{h(x)},$$

where g and h are polynomials.

Example $(x/(x^2-1))$

The function

$$f(x) = \frac{x}{x^2 - 1}$$

is a rational function.

Algebraic Functions

(Algebraic Function)

A function in x that can be constructed using x, constants, and finitely many of the operations +, -, *, /, and $\sqrt[n]{}$ is an algebraic function. Outside of present course: function f(x) = algebraic if it satisfies a polynomial equation with polynomial coefficients, i.e., $a_0(x) + a_1(x)f(x) + \cdots + a_n(x)(f(x))^n = 0$ for some polynomials $a_i(x)$.

Examples.

$$y = (x-1)\sqrt{4-x^2}$$

Transcendental Functions

Transcendental functions include many classes of functions.

- Trigonometric functions such as cos x, sin x, tan x, etc.
- Exponential functions such as 2^x , $\left(\frac{1}{2}\right)^x$, 5^x , e^x , etc.
- The logarithm function ln x.
- And many more.
- Outside of the present course: by definition, a function is transcendental if it is not algebraic, i.e., if it satisfies no polynomial equation with polynomial coefficients.

Definition (Greatest Integer Function)

The *greatest integer function* $\lfloor x \rfloor$ is defined as the largest integer that is less than or equal to x.

In computer science this function is called the *floor* function.

$$\begin{bmatrix} 4 \end{bmatrix} = 4
 \begin{bmatrix} 4.8 \end{bmatrix} = 4
 \begin{bmatrix} \pi \end{bmatrix} = 3
 \begin{bmatrix} \sqrt{2} \end{bmatrix} = 1
 \begin{bmatrix} -\frac{1}{2} \end{bmatrix} = -1
 \begin{bmatrix} -\pi \end{bmatrix} = -4$$