УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа_Р3110	К работе допущен_ Вее
	Работа выполнена
Преподаватель Колобие И.П.	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 1.04

Unegregot	samue p	виоценерениси	gournerous	grayateronoc	
	Ohumerul	(паетти	Oderdena)	,	
	9		, ,		
1. Цель работы			Ann		
1. Mydepka oci	vobuore zai	coura gunamme	or or normend was	e ancureline our enau	y

- 2. Проверия завишноги помента инерушь от погожение мам общень от вра 2. Задачи, решаемые при выполнении работы.
 Построить угодим завишисти момета ина можетие миби от умового усмерени крестьемия и проверить его минейпость, усмерения крестьемия и проверить его минейпость усмерения завишности момента инеруши уректыми ст расстоемия метору устроим учугов и осьго вращении и проверить его минейпость.
- 3. Объект исследования. Мактик Обербека
- 4. Метод экспериментального исследования. Миогоматиче принис измерения
- 5. Рабочие формулы и исходные данные.

$$a = \frac{2h}{42}$$

$$tM = \frac{md}{2}(q-a)$$

$$\varepsilon = \frac{20}{4}$$

$$R = l_1 + (n-1)l_0 + \frac{1}{2}b$$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	cenyngonen	gugyobot	0-110.	±0,01 c.
2				
3				
4				

7. Схема установки (перечень схем, которые составляют Приложение 1).

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

9. Результаты косвенных измерений (таблицы, примеры расчетов).

После нахождения tcp рассчитаем угловое ускорение груза, угловое ускорение крестовины и момент силы натяжения нити (для примера рассчитаем значения для первого положения утяжелителей):

$$a = \frac{2h}{t^2} = \frac{2 * 0.7}{(5.06)^2} = 0.0547 \text{ м/c}^2;$$
 $\varepsilon = \frac{2a}{d} = \frac{2 * 0.0547}{0.046} = 2.378 \text{ рад/c}^2;$
 $M = \frac{md}{2}(g - a) = \frac{0.22 * 0.046}{2}(9.8 - 0.547) = 0.0468 \text{ H * м.}$

Рассчитаем при помощи метода наименьших квадратов (МНК) момент инерции крестовины с утяжелителем и момент силы трения и получим следующие результаты (приведены значения для первого положения утяжелителей):

$$I = 0.2198 \,\mathrm{Kr} \,*\,\mathrm{M}^2$$

 $M_{\mathrm{Tp}} = -0.0019 \,\mathrm{H} \,*\,\mathrm{M}$

Найдем расстояние между осью вращения и центром утяжелителя (для примера возьмем значения первого положения утяжелителей):

$$\mathbf{R} = l_1 + (n-1)l_0 + 0.5b = 0.057 + 0.5 * 0.04 = 0.077 м$$
 $R^2 = 0.005929$

С помощью МНК определим значения I_0 и $m_{
m yr}$:

$$I_0 = 0,007503 \,\mathrm{kr} \,*\,\mathrm{m}^2$$

 $m_{\mathrm{vr}} = 0,455 \,\mathrm{kr}$

Масса груза	Риски	a	e	M
m1	1	0,054679811	2,377383072	0,04931132
	2	0,033651824	1,463122774	0,049417722
	3	0,029491006	1,282217665	0,049438776
	4	0,022991522	0,999631382	0,049471663
	5	0,017807677	0,77424683	0,049497893
	6	0,013897895	0,604256315	0,049517677
m2	1	0,102819456	4,470411147	0,098135467
	2	0,055114638	2,396288628	0,09861824
	3	0,058071768	2,524859496	0,098588314
	4	0,045780209	1,990443879	0,098712704
	5	0,03587826	1,559924345	0,098812912
	6	0,026881577	1,16876422	0,098903958
m3	1	0,15555556	6,763285024	0,146402667
	2	0,116270378	5,055233846	0,146999016

	3	0,090185266	3,921098535	0,147394988
	4	0,064933425	2,8231924	0,147778311
	5	0,033034372	1,436277055	0,148262538
	6	0,039723061	1,727089605	0,148161004
m4	1	0,205516654	8,935506704	0,194192343
	2	0,157650556	6,854372012	0,195161153
	3	0,129341008	5,623522068	0,195734138
	4	0,092996068	4,043307287	0,19646976
	5	0,066354764	2,884989746	0,19700898
	6	0,055114638	2,396288628	0,19723648

Кол-во рисок	<i>l</i> , кг * м ²	<i>М</i> _{тр} , Н ∗ м	<i>R</i> , м	R^2 , m^2
1	0,021976189	-0,00186156	0,077	0,005929
2	0,025032007	0,023866495	0,102	0,010404
3	0,033636426	0,010513204	0,127	0,016129
4	0,048900683	0,002609799	0,152	0,023104
5	0,065039141	0,015179588	0,177	0,031329
6	0,082809931	0,001384687	0,202	0,040804

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

$$\Delta t = 0,422; \varepsilon = 8,35 \%;$$

Для значений а, є и М погрешности были получены при помощи их нахождения через частные производные:

$$\Delta z = \sqrt{(\frac{\delta f}{\delta a} \Delta a)^2 + (\frac{\delta f}{\delta b} \Delta b)^2 (\frac{\delta f}{\delta c} \Delta c)^2 + \dots}$$

$$\Delta a = 0.009; \ \varepsilon = 16.70 \%;$$

$$\Delta \varepsilon = 0.307$$
; $\varepsilon = 12.9$ %;

$$\Delta M = 0.005$$
; $\varepsilon = 10.08$ %.

Погрешность I_0 рассчитана по МНК.

$$\Delta I_0 = 0.000017; \ \varepsilon = 0.23 \%;$$

 $\Delta m_{\rm yr} = 0.039$; $\varepsilon = 2.15$ %.

11. Графики (перечень графиков, которые составляют Приложение 2).

12. Окончательные результаты.

Следующие четыре погрешности представлены для первого положения утяжелителей.

$$t = (5,06 \pm 0,422) c$$
, $\varepsilon = 8,35 \%$
 $a = (0,055 \pm 0,009) \,\mathrm{M/c^2}$, $\varepsilon = 16,70 \%$
 $\epsilon = (2,378 \pm 0,307) \,\mathrm{pag/c^2}$, $\varepsilon = 12,9 \%$
 $M = (0,047 \pm 0,005) \,\mathrm{H} *\mathrm{M}$, $\varepsilon = 8,35 \%$
 $I_0 = (0,0075 \pm 0,000017) \,\mathrm{Kr} *\mathrm{M}^2$, $\varepsilon = 0,23 \%$
 $m_{\mathrm{YT}} = (0,455 \pm 0,039) \,\mathrm{Kr}$, $\varepsilon = 2,15 \%$

13. Выводы и анализ результатов работы.

В ходе выполнения работы мы убедились в линейности зависимости между моментом силы натяжения нити и угловым ускорением крестовины и зависимости момента инерции крестовины от расстояния между центрами грузов и осью вращения — эти доводы подтверждают построенные графики данных зависимостей. Погрешности момента инерции в пределах нормы — это доказывают точки, отложенные на графике 1. А вот погрешность времени велика — я могу это объяснить тем,

что когда мы поменялись с коллегой при проведении измерений (с 4 момента утяжелителей фиксировать время стал я), я достаточно часто слишком рано останавливал отсчет времени падения груза.
14. Дополнительные задания.
15. Выполнение дополнительных заданий.
16. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).