Caio Dantas Farias 24026710

Eduardo Araujo de Oliveira 24026678

Saulo Ribeiro Santos 24026911

## Sistema de monitoramento de enchentes em áreas de risco

Um projeto sustentável de monitoramento de enchentes com um ESP32/ESP8266 pode ser implementado da seguinte forma:



- Sensores: Utilize sensores de nível de água (ultrassônicos ou flutuadores) para medir a altura da água e monitorar o risco de enchentes.
- Microcontrolador ESP32/ESP8266: O ESP32 coleta os dados dos sensores e processa as informações. Ele tem conectividade Wi-Fi ou pode usar LoRa para áreas sem cobertura Wi-Fi.

• Energia Sustentável: O sistema pode ser alimentado por painéis solares, com baterias recarregáveis para garantir funcionamento contínuo, até em períodos nublados.

Plataforma de Monitoramento: Envie os dados para uma plataforma como ThingSpeak ou Blynk para visualização em tempo real. Em caso de alerta de enchente, o sistema pode enviar notificações por SMS ou e-mail.

Alertas Locais: O sistema pode ativar alarmes ou luzes em áreas críticas para avisar os moradores.

Benefícios: O projeto é de baixo custo, sustentável e ajuda na prevenção de danos causados por enchentes em áreas de risco.



O sensor ultrassônico funciona emitindo ondas sonoras que são refletidas pela superfície da água. Com base no tempo que as ondas levam para retornar, ele calcula a distância até a água, permitindo medir o nível do rio ou alagamento.

## Em um projeto sustentável para monitorar enchentes:

- O sensor é instalado em locais estratégicos para medir o nível da água em tempo real.
- Os dados são processados por um ESP32 ou similar e, se o nível da água atingir um limite crítico, um alerta é enviado via Wi-Fi ou LoRa.
- O sistema pode ser alimentado por painéis solares, tornando-o autossustentável.
- O sensor é sem partes móveis, reduzindo a necessidade de manutenção e aumentando a durabilidade.

Essa solução é econômica, eficaz e sustentável, ideal para áreas de risco.



Em um projeto sustentável de monitoramento de enchentes, a protoboard (breadboard) e os jumpers desempenham papéis essenciais na fase de prototipagem:

- Protoboard: Permite montar circuitos temporários sem soldagem, facilitando o teste de sensores (como ultrassônicos) e microcontroladores (como o ESP32). Ela oferece flexibilidade para ajustes rápidos durante o desenvolvimento.
- Jumpers: São fios usados para fazer as conexões entre os componentes na protoboard. Eles simplificam a montagem e reorganização do circuito, permitindo mudanças rápidas sem a necessidade de ferramentas adicionais.

Esses componentes permitem criar protótipos rápidos e eficientes, com baixo custo, facilitando ajustes no sistema de monitoramento de enchentes e garantindo que o projeto seja sustentável e adaptável antes da implementação final.



A caixa organizadora é usada como recipiente



A Arduino IDE é usada para programar microcontroladores como ESP32 ou ESP8266, controlando sensores e gerenciando alertas em projetos de monitoramento de enchentes. Ela permite:

- Programar sensores (ex.: ultrassônicos) para medir o nível da água.
- - Enviar dados e alertas via Wi-Fi ou LoRa para plataformas de monitoramento ou SMS.
- - Gerenciar energia para sistemas sustentáveis, com modos de baixo consumo para alimentação por energia solar e baterias.



O **Blynk IoT** permite monitorar em tempo real o nível da água em projetos de enchentes. Usando um microcontrolador (ESP32/ESP8266), ele coleta dados de sensores e envia para o aplicativo Blynk, onde você visualiza as informações e recebe alertas automáticos quando o nível da água atinge valores críticos. O sistema é alimentado por **energia solar**, tornando-o sustentável e eficiente em áreas de risco.