

Paul MacNeilage, Psychology Eelke Folmer, Computer Science

Physics of Motion

1) Used for tracking head/body motion

 Used by the virtual world generator for rendering virtual scenes

3) Important for understanding vestibular function and perception

Linear motion

Position -> velocity -> acceleration

Position to Velocity

Velocity is change in position over time

What's the name for this in calculus?

и

Velocity to Acceleration

Acceleration is change in velocity over time

Rate of change of acceleration?

Position to Velocity to Acceleration

Derivatives and integrals of each other

3D Linear Motion

3DOF

- Position defined by 3 coordinates (x, y, z)
- Same with velocity (v_x, v_y, v_z)
- Can be represented by a vector:

Length is 3D speed

$$\sqrt{v_x^2 + v_y^2 + v_z^2}$$

Angular motion

Position -> velocity -> acceleration

Position to Velocity to Acceleration

Derivatives and integrals of each other

Position to Velocity to Acceleration

Angular velocity

$$\omega = \frac{d\theta(t)}{dt}.$$

Angular acceleration

$$\alpha = \frac{d\omega(t)}{dt}.$$

3D Angular Motion

3DOF

Can also be represented as a vector:

- Direction is axis of rotation
- Magnitude is speed of rotation

$$\sqrt{\omega_x^2 + \omega_y^2 + \omega_z^2}$$

Vestibular System

Inertial measurement units (IMUs) in the head

Used for:

- 1) Control of reflexive eye movements
- 2) Balance and posture (reflexive and non-reflexive)
- 3) Perception of self-motion and position
 - spatial orientation, navigation, spatial constancy, etc.

Location of Vestibular System

Vestibular Organs

- Separate organs for rotation and translation
- Transduce head <u>acceleration</u>

Vestibular Transduction

Semicircular Canals

Semicircular duct (B) At rest Acceleration Ampulla Wall Rotation of head

- Response decays for constant velocity stimulus
- Sensitivity: 1 deg/s

Bending of hairs

Otoliths

Acceleration

- Responds to linear acceleration
 - + gravity
- Sensitivity: 5 cm/s²

и

Vestibular Transduction

Each hair sensitive to 1D motion

Three Canals, 3 DOF

Horizontal, Anterior, Posterior

Three Canals, 3 DOF

- Left/right canals paired
- Respond oppositely
- "Push/pull" system
 - Unilateral loss lead to sensation of spinning

Otoliths

- 2 Planes
 - Sagittal (vertical)
 - Transverse (horizontal)
- 3DOF

Vestibular Ambiguities

No response to constant velocity stimulation

Einstein's equivalence principle

- Gravity and inertial forces due to acceleration are equivalent
- A linear accelerometer can only measure their sum
- Gravito-inertial (GI) force is the sum of forces acting on the body

Vestibular Ambiguities

Somatogravic illusion

Central connections of the vestibular system

Vestibulo-ocular Reflex

- 3 neurons
- 2 synapses
- $-10 \, \text{ms}$

Vestibulocollic reflex

Vestibulospinal (Postural) Reflexes

- Postural reflexes:
 - Projection to "anti-gravity" muscles in the legs

Vestibular Perception

Task

Did you move forward or backward?

Vestibular Psychophysics

7

Vestibular Perception - Thresholds

- Rotation (angular) thresholds:
 - Did you rotate left or right?
 - Threshold: ~1 deg/s

- Translation (linear) thresholds:
 - Did you move left or right?
 - Threshold: ~5cm/s², 0.005 G

Relevance for VR

Self-motion in the real world stimulates both visual and vestibular systems

 In VR, there is often visual self-motion (optic flow) in the absence of vestibular stimulation

Vection

Sense of self-motion induced by vision only

This can lead to <u>simulator sickness</u>

Visual-vestibular Conflict

Visual

Vestibular

- Causes
 - Vehicular travel
 - Visual displays

- Consequences
 - Dizziness / vertigo
 - Nausea
- Vestibular dysfunction
 Other physiological responses

и

Factors that influence vection

- Percentage of field of view covered
- Distance from center of view
- Exposure time
- Spatial frequency in visual scene
- Contrast of visual scene
- Prior knowledge
- Attention
- Training and adaptation

Why does conflict lead to sickness?

"Poison" hypothesis

"Anatomical coincidence" hypothesis

Why does conflict lead to sickness?

How to avoid simulator sickness?

- Reduce visual optic flow
 - Reduce field-of-view, "tunneling"
 - Used by Google earth

- Artificial vestibular stimulation?
 - Galvanic vestibular stimulation (GVS)
 - Link
 - Probably not practical for VR

How to avoid simulator sickness?

- Simulate motions that are below vestibular threshold
 - i.e. constant or slowly changing velocities (low accelerations)

Factors that influence vection

- Percentage of field of view covered
- Distance from center of view
- Exposure time
- Spatial frequency in visual scene
- Contrast of visual scene
- Prior knowledge
- Attention
- Training and adaptation

How does the brain detect conflict?

 Cue comparison and cue integration covered in upcoming lecture...

Active area of research in my lab!