LINEAR ALGEBRA (MA20105)

Class Test (2020)- II:

 \mathbb{R} will denote the field of real numbers

Answer all question!

- 1. Consider a subspace $H^* := \{(x, y, z) \in \mathbb{R}^3 : x + 3y + 5z = 0\}$ of \mathbb{R}^3 . Which of the following is/are basis of H?
 - $(i) \ \{(-9,3,0),(-5,0,1)\} \ (ii) \ \{(-3,1,0),(-5,0,1)\} \ (iii) \ \{(-3/2,1/2,0),(-5/4,0,1/4)\}$
 - $(iv) \{(2,3,0), (0,0,5)\}.$

Answer: (i), (ii) and (iii).

- 2. Which one(s) of the following is (are) True?
 - (i) If the columns of a matrix are dependent, so are the rows.
 - (ii) The columns space of a 2 by 2 matrix is the same as iys row space.
 - (iii) The column space of a 2 by 2 matrix has the same dimension as its row space.
 - (iv) The columns of a matrix are a basis for the column space.

Answer: (iii).

- 3. Which of the follwing is/are True?
 - (i) If the columns of a matrix A are linearly independent, then Ax = b has exactly one solution for every b.
 - (ii) A 5 by 7 matrix never has linearly independent columns.

Answer: (ii)

- 4. Suppose S is a five dimensional subspace of \mathbb{R}^6 . Which of the following is/are true?
 - (i) Every basis for S can be extended to a basis for \mathbb{R}^6 by adding one more vector.
 - (ii) Every basis for \mathbb{R}^6 can be reduced to a basis for S by removing one vector.
 - (iii) The orthogonal complement of S exists in \mathbb{R}^6 .
 - (iv) If the orthogonal complement of S exists in \mathbb{R}^6 , then it is equal to the set theoretic complement of S in \mathbb{R}^6 .

Answer: (i) and (iii)

5. Let $Skew_4(\mathbb{R})$ be the space of all 4×4 skew symmetric matrices i.e. $A^t = -A$. Write down the dimension of $Skew_4(\mathbb{R})$.

Answer: 6

- 6. Let A be an $n \times n$ real matrix. Then which of the following is/are False?
 - (i) A and A^t have the same number of pivots.
 - (ii) A and A^t have the same left null space.
 - (iii) If the row space equals the column space then $A^t = A$
 - (iv) If $A^t = -A$ then the row space of A equals the column space.

Answer: (ii) and (iii).

- 7. Let A be a non-zero square matrix such that $A^3 = A$. Then which of the following is/are true?
 - (i) A must be idenitity.
 - (ii) A^2 must be identity.
 - (iii) A is invertible.
 - (iv) None of the above.

Answer: (iv)

8. Let $A = (a_{ij})$ be a 3×3 real matrix. Suppose that $A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. Then which one(s)

of the following is (are) true?

(i) rank(A) = 3; (ii) det(A) = 0; (iii) rank(A) = 0; (iv) rank(A) < 3.

Answer: (ii) and (iv).

- 9. Let A be a 3×3 real matrix with the eigen values 1, -1, 0. Then write down the $det(I + A^{100})$.
 - (i) 1; (ii) -1; (iii) 4; (i) -4.

Answer: (iii)

10. Let A be a 2×2 orthogonal matrix of trace and determinat one. Then the angle between Au and u ($u = (1,0)^t$) is ----- degree. Fill in the blank.

$$(i)15^{o}$$
; $(ii)30^{o}$; $(iii)45^{o}$ $(iv)60^{o}$

Answer: (iv)

11. Let V be an n-dimensional real vector space. If $T:V\to\mathbb{R}$ is a non-zero liear map then the dimension of the Ker(T) is

$$(i)n$$
; $(ii)n - 1$; $(iii)1$ $(iv)0$

Answer (ii)

12 Let P be the plane of vectors in \mathbb{R}^4 satisfying $x_1 + x_2 + x_3 + x_4 = 0$. Which one(s) of the following is (are) basis of P^{\perp} ?

$$(i)\{(1,-1,1,-1)\}\;;\;(ii)\{(-1,1,-1,1)\};\;(iii)\{(1,1,1,1)\}\;(iv)\{(2,2,2,2)\}$$

Answer: (iii) and (iv)

13 Let M_3 be the vector space of 3×3 matrices and $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1. \end{bmatrix}$.. Let $T: M_3 \to M_3$ be a

linear map which is defined as T(X) = AX - XA. The dimension of the image of T is

$$(i)4$$
; $(ii)6$; $(iii)8$ $(iv)9$

Answer: 4

- 14 Let U, V, W be subpaces of \mathbb{R}^n . Then which one(s) of the following statements is (are) false?
 - (i) If V is orthogonal to W, then V^{\perp} is orthogonal to W^{\perp} .
 - (ii) U is orthogonal to V and V is orthogonal W makes U is orthogonal W.
 - $(iii) (V^{\perp})^{\perp} = V.$
 - (iv) None of the above.

Answer: (i) and (ii), (iv)

17 Let $\{\beta_1, \ldots, \beta_r\}$ be an orthonormal set of vectors in \mathbb{R}^n and $\alpha \in \mathbb{R}^n$. If c_i is the scalar component of α along β_i , $i = 1, 2, \ldots, r$. then which one(s) of the following is (are) False?

(i)
$$||\alpha||^2 = c_1^2 + c_2^2 + \dots + c_r^2$$
;

(ii)
$$||\alpha||^2 > c_1^2 + c_2^2 + \dots + c_r^2$$

$$(iii) ||\alpha||^2 \ge c_1^2 + c_2^2 + \dots + c_r^2$$

(iv) None of the above.

Answer: (i), (ii), (iv)

18 Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear map which defined as T(x, y, z) = (3x + 5y + 2z, 2x + 3z). Then the matrix representation of T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R}^2 is

$$(i) \begin{bmatrix} 3 & 5 & 2 \\ 2 & 3 & 0 \end{bmatrix} (ii) \begin{bmatrix} 3 & 5 & 2 \\ 2 & 0 & 3 \end{bmatrix}$$

$$(iii) \begin{bmatrix} 3 & 2 \\ 5 & 0 \\ 2 & 3 \end{bmatrix} (iv) \begin{bmatrix} 3 & 2 \\ 5 & 3 \\ 2 & 0 \end{bmatrix}$$

Answer: (ii)

- 20 Let A be a 2×2 matrix of rank 1. If A is not diagonalisable, then which one(s) of the following is (are) true?
 - (i) A is nilpotent
 - (ii) A is not nilpotent
 - (iii) the characteristic polynomial of A is linear
 - (iv) A has a non-zero eigen value.

Answer (i)