Faculté Alger 1	Spécialité : MI	Mme YDROUDJ
Département Mathématiques et Informatique	Module : Codage et représentation de	
	l'information	

Résumé des premiers chapitres

1 Les bases de numérotation:

Système	Base	Symboles	Nombre de
			symbole
Décimal	10	0, 1, 2, 3, 4, 5, 6, 7, 8, 9	10
Binaire	2	0, 1	2
Octal	8	0, 1, 2, 3, 4, 5, 6, 7	8
Hexadécimal	16	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F	16

2 Conversion entre les systèmes de numérotation :

Base source	Base destination	Procédure	Observations
Décimale	Binaire	Divisions successives sur 2	On s'arrête les
Décimale	Octale	Divisions successives sur 8	divisions quand le
Décimale	Hexadécimale	Divisions successives sur 16	quotient de la
			division= 0
	Décimale → base I	3 : Divisions successives sur la base	В
Binaire	Décimale	Multiplications x2	On s'arrête les
Octale	Décimale	Multiplications x8	divisions quand le
Hexadécimale	Décimale	Multiplications x16	quotient de la
		_	division= 0
	Base B → décim	ale: Multiplications successive x B	
Octale	Binaire	 Passage par le décimal 	
		2. Table de vérité	
		(éclatement de chaque	
		chiffre octal sur 3 bits)	
		3. Division par chiffre et non	
		pas le nombre complet.	
Hexadécimale	Binaire	Mêmes méthodes que la	
		précédente, seulement ici,	
		on éclate chaque chiffre	
		sur 4 bits.	
Binaire	Octale	1. Table de vérité, on	
		regroupe par 3 bits	
		2. Passage par le décimal	
Binaire	Hexadécimal	Mêmes méthodes	
		seulement ici, on regroupe	
		par 4 bits.	
Octale	Hexadécimale	Passage par le décimal	

Faculté Alger 1	Spécialité : MI	Mme YDROUDJ
Département Mathématiques et Informatique	Module : Codage et représentation de	
	l'information	

		2. Passage par le binaire		
Hexadécimale	Octale	Mêmes méthodes		
	Codificat	ion et représentation α- Numérique		
Décimale	BCD	1. Table de vérité sur 4 bits	Les chiffres	
		2. Divisions successives par	s'arrêtent à 9 dans	
		CHIFFRE sur 4 bits	la table de vérité, on	
BCD	Décimale	1. Regroupement par 4 bits	n'a pas (A,B,C)	
		et on utilise la table de		
		vérité		
Dans l'addition BCD, ajouter +6 (0110) sous chaque digit supérieur à 9 (1001) pour corriger				
		le résultat de l'addition.		
Binaire	Gray	- le premier bit binaire est le		
		même que le premier bit Gray,		
		- addition horizontale des bits		
		binaires (deux à deux) pour		
		trouver les bits en Gray		
		équivalents.		
Gray	Binaire	- le premier bit gray est le même		
		que le premier bit binaire,		
		- addition du 2 ^{eme} bit Gray avec le		
		1 ^{er} bit binaire pour trouver le 2 ^{eme}		
		bit binaire,		
		- 3 ^{eme} bit Gray avec le 2 ^{eme} bit		
		binaire pour trouver le 3 ^{eme} bit		
		binaire,		
		-etc.		

3 Représentation des données :

3.1 Entiers non signés :

- Se sont des nombres positifs, l'intervalle est $[0, 2^n$ -1] tel que n est le nombre de bits.
- Le nombre de valeurs possibles est : 2^n .
- Le nombre minimum requis de bits pour représenter en binaire un nombre N est : ln(N) / ln(2).
- 3.2 **Entiers signés :** 3 méthodes pour les représenter

Faculté Alger 1	Spécialité : MI	Mme YDROUDJ
Département Mathématiques et Informatique	Module : Codage et représentation de	
	l'information	

	SVA : Signe et valeur	C1 : Complément à 1	C2 : Complément à 2	Observations
·	absolue	n-1 n-1	- (-n-1) (-n-1)	
Intervalle	$[-(2^{n-1}-1), + (2^{n-1}-1)]$	$[-(2^{n-1}-1), + (2^{n-1}-1)]$	$[-(2^{n-1}), + (2^{n-1}-1)]$	n: nombre de
Nombre	2^{n}	2 ⁿ	2 ⁿ	bits.
de valeurs				
Représentation	- premier bit du sine :	- si c'est positif:	-si c'est positif:	
	0 si positif, 1 sinon	reste le même,	reste le même,	
	1	- si négatif : garder		
		le bit du signe et		
		inverser les autres	_	
		(0 devient 1 et 1		
		devient0)		
Opérations	Non évidentes	La retenue est	La retenue est	
arithmétiques		additionnée au	négligée	
		résultat final		
Décodage	-le bit du signe si 0,	- si positif, sa forme	- si positif, sa forme	
(représenter en	devient (+), sinon	en C1=sa forme	en C1=sa forme	
décimal)	devient (–).	naturelle	naturelle	
	-les autres bits du	-si négatif :	-si négatif :	
	nombre sont convertis	remplacer le 1 (bit	remplacer le 1 (bit	
	en son équivalent en	de signe) par le	de signe) par le	
	décimal	signe (-) puis	signe (-) puis	
		inverser le reste des	soustraire un 1	
		bits	(devient en C1) puis	
			inverser les bits.	
			Ou bien:	
			C2[C2(N)]=SVA(N)	

4 Représentation des nombres réels :

4.1 Format virgule fixe:

La position de la virgule est fixe, une partie entière et une partie fractionnaire séparées par une virgule.

4.2 Format virgule flottante:

Normalisé par l'organisme international IEEE :

4.2.1 Norme IEEE 754:

Le nombre est écrit d'abord sous forme : $\pm~1,\!M$. 2^{Er}

Faculté Alger 1	Spécialité : MI	Mme YDROUDJ
Département Mathématiques et Informatique	Module : Codage et représentation de	
	l'information	

• Simple précision : (32 bits)

Signe	Exposant biaisé	Mantisse
1bit	8 bits	23 bits

- 1 bit de signe de la mantisse
- 8 bits pour l'exposant
- 23 bits pour la mantisse

• Double précision : (64 bits)

Signe	Exposant biaisé	Mantisse
1bit	11 bits	52 bits

- 1 bit de signe de la mantisse
- 11 bits pour l'exposant
- 52 bits pour la mantisse

Processus d'aller d'un nombre décimal vers un nombre sous format IEEE 754 :

- 1. Convertir le nombre décimal vers un nombre binaire
- 2. Ecrire le nouveau nombre en binaire sous forme : \pm 1,M . 2^{Er} tel que Er est l'exposant réel
- 3. Calculer l'exposant biaisé tel que : $Eb = Er + 2^{p-1}$ -1. Convertir le résultat en binaire
- 4. Composer le nouveau nombre : bit signe, exposant biaisé, mantisse

Processus d'aller d'un nombre sous format IEEE 754 vers un nombre décimal :

- Si le nombre est donné en hexadécimal, on le convertit d'abord en binaire,
- Si le nombre est en binaire, on procède comme suit :
- 1. On peut identifier le bit de signe, le bit du poids le plus fort :
 - si 1 : le nombre est négatif, sinon il est positif,
- 2. On peut identifier la mantisse,
- 3. On convertit l'exposant biaisé en décimal,
- 4. On calcule l'exposant réel : $Er = Eb (2^{p-1} 1)$,
- 5. On forme le nombre : : \pm 1,M . 2^{Er} puis on enlève 2^{Er} par le décalage de la virgule par Er positions.

4.3 Addition en virgule flottante :

Elle se fait en trois étapes :

- Dénormaliser les deux nombres afin d'avoir le même exposant (le plus élevé),
- Additionner les mantisses,
- Normaliser le résultat,

Faculté Alger 1	Spécialité : MI	Mme YDROUDJ
Département Mathématiques et Informatique	Module : Codage et représentation de	
	l'information	

4.4 Multiplication en virgule flottante :

Elle se fait en quatre étapes :

- Dénormaliser les deux nombres (exposants naturels),
- Additionner les exposants naturels,
- Multiplier les mantisses,
- Normaliser le résultat,