

FALMOUTH UNIVERSITY

Lecture 2: Data Science pt. I

COMP704: Machine Learning MSc Artificial Intelligence for Games

- Today's session:
 - Dig into Data Science & Machine Learning
 - Look at data acquisition
 - Prepare for this week's workshop

Dig into Data Science & Machine Learning

- Dig into Data Science & Machine Learning
 - Last week, we looked at DS & ML

Data Science is the overall activity

Machine Learning is the fun part;)

- Dig into Data Science & Machine Learning
 - Data Science as a process
 - Science is the key part of data science

- Dig into Data Science & Machine Learning
 - Machine Learning as a process
 - Learning is the key part of Machine Learning
 - What does Searle tell us about learning in the Chinese Room?
 - Learning is 'getting better'
 - Learning is not meaning
 - Learning is not knowledge
 - Often, a strong relationship between knowledge and introspection & reflective practice
 - » As much as I said domain experts will often use tactic or heuristic knowledge in their fields, they can normally go back to first principles to explain their processes (it may be painful)
 - Be mindful of domain specificity when talking about learning
 & knowledge;)

- Dig into Data Science & Machine Learning
 - Machine Learning in practice

- Dig into Data Science & Machine Learning
 - Types of Machine Learning
 - Given that ML is the intersection of compsci and stats,
 we need to think of learning as error reduction
 - Already said that ML is not knowledge-based so 'self-awareness' is unlikely to happen

Why Elon Musk fears artificial intelligence

Here's the thing: The risk from Al isn't just a weird worry of Elon Musk.

By Kelsey Piper | Nov 2, 2018, 12:10pm EDT

- Dig into Data Science & Machine Learning
 - Types of Machine Learning
 - Regression
 - work out a continuous relationship between inputs and outputs

- Like standard regression, but for multiple dimensions
- E.g.:
 - Based on other examples, what is the value of something (house, car, watches, staff etc)
 - How much is a player likely to spend on my game through IAPs
 - When should I replace server equipment
- Typically, complex data is not 'linear', regression is generally split into buckets (short segments of linearity)

- Dig into Data Science & Machine Learning
 - Types of Machine Learning
 - Classification
 - Group inputs in to a single classification

- Data sorting
- E.g.
 - Mario example (classifications are which buttons should be pressed)
 - Is player behaviour normal?
 - Is a credit card transaction fraudulent?
- This is typically 'classical machine learning'
 - Uses neural networks (back prop)
 - Or Marflow-style networks

- Dig into Data Science & Machine Learning
 - Types of Machine Learning
 - Clustering
 - Group related inputs in to distinct clusters / groups

- (More) Data sorting
 - But the algorithms look to determine clusters without being told what they should be
 - Ideal for emergent clusters
 - Cooccurrence
 - Causality
- E.g.
 - What play styles do our players have (Bartle's Player Types)

- Dig into Data Science & Machine Learning
 - Process of Machine Learning

- Dig into Data Science & Machine Learning
 - Process of Machine Learning

- Dig into Data Science & Machine Learning
 - Process of Machine Learning

Note all the scope for iterating

- Dig into Data Science & Machine Learning
 - Process of Machine Learning
 - Data collection & processing
 - Collect enough suitable data for training & testing
 - Typically, this will be 'live' data that can come from a multitude of sources
 - » Scope to use historic data too
 - Need to process the data into forms that make sense for training
 - This will all depend on type of ML used and algorithms used within that type

- Dig into Data Science & Machine Learning
 - Process of Machine Learning
 - Training & learning
 - ML describes two broad learning paradigms
 - » Supervised
 - Training is done with data + expected outcome (like classroom training)
 - Learning algorithm will look to minimise error between expected outcome and current outcome
 - Typically
 - Regression & classification
 - » Unsupervised
 - Training is done with data but no expected outcomes as algorithm will self-organise representations
 - Typically
 - Clustering

- Dig into Data Science & Machine Learning
 - Process of Machine Learning
 - Training & learning
 - Typically, data is split into two sets:
 - » Training data
 - In supervised learning
 - Algorithm is trained with training data to achieve desired / best (minimum) errors
 - In unsupervised learning
 - Algorithm is just presented with training data
 - » Test data
 - Novel test data is presented to the algorithm to assess performance with new cases
 - Performance can be assess quantitatively with a confusion matrix

- Dig into Data Science & Machine Learning
 - Process of Machine Learning
 - Iterating data collection & processing and Training & learning phases
 - Typically, testing an ML solution will result in issues
 - » Over-fitting
 - training has been so heavily geared to training data,
 solution doesn't perform well with novel data
 - Learning the data and not the trends
 - » Under-fitting
 - both training data and novel data produce poor results
 - Algorithm may not be a good fit for data
 - May not have enough data to train with

- Dig into Data Science & Machine Learning
 - Process of Machine Learning
 - Iterating data collection & processing and Training & learning phases
 - May require iteration in training and learning
 - » Change algorithm parameters
 - » Change algorithm
 - May require iteration in data collection & processing
 - » Process existing data differently
 - » Collect different data

- Dig into Data Science & Machine Learning
 - Process of Machine Learning
 - Deploying and using
 - Once an algorithm has trained the data to acceptable performance (accuracy) it can be packaged and put into use
 - Take algorithm data and package into application
 - » In games and most applications, as a black box AI component

- Dig into Data Science & Machine Learning
 - Machine Learning in Python
 - Python has a lot of support for industrial and academic
 ML
 - Lots of package support
 - The pipeline we will use

- Other pipelines & parts are available
 - TensorFlow
 - ML.net
 - etc

- Dig into Data Science & Machine Learning
 - Machine Learning in Python
 - Numpy
 - A library for 'array & linear algebra' for 'large datasets'
 - Pandas
 - PANel DAta
 - Process data 'like excel in code'
 - Scikit-learn
 - Library of ML algorithms

Look at data acquisition

- Look at data acquisition
 - Two broad approaches to data acquisition
 - Live data (take from running services)
 - Historical data (take from offline sources)
 - Both require data processing (dependent on the data & solution requirements)

- Look at data acquisition
 - Live Data (analytics / metrics)
 - This is a common activity for GaaS and is a core part of their business
 - Regression
 - » Customer spend
 - Classification & clustering
 - » Customer behaviours
 - Relatively easy for GaaS, not so for traditional games

- Look at data acquisition
 - Live Data (analytics / metrics)
 - Game As a Service (thin client)

- Typically, a thin client GaaS will have all the 'important processing done on the server and just take user input and drawing on the client
 - » Easy to collect server-side data & instrument & reinstrument server code to collect different data

- Look at data acquisition
 - Live Data (analytics / metrics)
 - Standalone Game with analytics support

- Typically, standalone game will be a black box
 - » Only updated through patching
- (Potentially) costly to send data to analytics server
 - » Need to think about data packaging

- Look at data acquisition
 - Approaches:
 - Save data to a local text file and process
 - Save data as csv, xls, xml, json etc
 - Send data to a server using HTTP (or other protocols)
 - Manage data as flat files
 - Manage data through xls, sql
 - Remember, ML has a tendency to create large amounts of data, so it needs to be stored carefully.

- Look at data acquisition
 - What to save?
 - All the keystrokes / game events
 - Can generate lots of data that may not process well
 - Do sessional processing locally & send results
 - Treat each play-through of game as a 'session' and send key results
 - Can work but relies on you having the correct data
 - Label game events and send
 - Again, relies on you having the correct data

- Look at data acquisition
 - We can see that ML & DS move the burden away from writing algorithms to working with data
 - What to capture
 - How to capture it
 - How to process it
 - Then worry about training

• Prepare for this week's workshop

- Prepare for this week's workshop
 - For this weeks' workshop, we will look at different ways of collecting data from a game
 - Flat files
 - Json
 - Openpyxl
 - HTTP
 - And how we can store data from multiple players
 & sessions
 - Excel
 - Sql

• Do you have any questions for me