Problem Set #5

Back to Week 5

5/5 points earned (100%)

Quiz passed!

Be Recognized for Your Achievements.

"Course Certificates give you the recognition you need to get the job, the material gives you the skills to do the job. It makes you look

more valuable because you are more valuable." - Peter B., USA, Software Developer

Showcase Your Accomplishment! Earn Your Course

Certificate! \$79 USD >

1/1 points

1.

Consider a directed graph with distinct and nonnegative edge lengths and a source vertex s. Fix a destination vertex t, and assume that the graph contains at least one s-t path. Which of the following statements are true? [Check all that apply.]

The shortest (i.e., minimum-length) s-t path might have as many as n-1 edges, where n is the number of vertices.

Correct Response

There is a shortest s-t path with no repeated vertices (i.e., a "simple" or "loopless" such path).

Correct Response

Corre	The shortest $s ext{-}t$ path must include the minimum-length edge of G . $ ext{\bf ect Response} $
Corre	The shortest $s ext{-}t$ path must exclude the maximum-length edge of G . $\operatorname{\mathbf{ect}}$ Response
compusion of the compus	points
0	Never
0	Maybe, maybe not (depends on the graph)
0	Only if we add the assumption that ${\cal G}$ contains no directed cycles with negative total weight.

1 / 1 points Suppose you implement the functionality of a priority queue using a *sorted* array (e.g., from biggest to smallest). What is the worst-case running time of Insert and Extract-Min, respectively? (Assume that you have a large enough array to accommodate the Insertions that you face.)

0	$\Theta(n)$ and $\Theta(n)$		
0	$\Theta(1)$ and $\Theta(n)$		
0	$\Theta(n)$ and $\Theta(1)$		
Correct Response			

 $\Theta(\log n)$ and $\Theta(1)$

1/1 points

4.

Suppose you implement the functionality of a priority queue using an *unsorted* array. What is the worst-case running time of Insert and Extract-Min, respectively? (Assume that you have a large enough array to accommodate the Insertions that you face.)

- $egin{array}{ll} oldsymbol{\Theta}(n) & \operatorname{and} oldsymbol{\Theta}(1) \\ oldsymbol{\Theta}(n) & \operatorname{and} oldsymbol{\Theta}(n) \\ oldsymbol{\Theta}(1) & \operatorname{and} oldsymbol{\Theta}(\log n) \end{array}$

 $\Theta(1)$ and $\Theta(n)$

Correct Response

1/1 points

5.

You are given a heap with n elements that supports Insert and Extract-Min.

