In silico prediction for potential non-phospholipidosis-inducing inhibitors against in vitro replication of SARS-CoV-2

Junqi Lu, Anish Karpurapu

Background

Drug repurposing to mitigate COVID19 emergency

U.S. Deaths From Covid-19 **Match Toll Of Three Major Wars** U.S. Covid-19 deaths compared to the number of Americans who died in selected wars* 500.193 500,310 Vietnam War 58,220 36,574 Korean War Covid-19 World War II 405,399 * As of Feb 23, 2021. Sources: U.S. Department for Veteran Affairs, Johns Hopkins University statista 🔽

In vitro screening is standard for drug repurposing

- Ellinger at al screened 5632 compounds for their inhibition of SARS-CoV-2-induced cytotoxicity in Caco-2 cells
- Compounds tested at 10 μM (0.1% in DMSO)
- Inhibition of 75% as the potency cut-off
- 271 hits

Phospholipidosis: major confounding factor for in vivo translation

Breiden, Bernadette and Sandhoff, Konrad. "Emerging mechanisms of drug-induced phospholipidosis" Biological Chemistry, vol. 401, no. 1, 2020, pp. 31-46. https://doi.org/10.1515/hsz-2019-0270

Tummino, T., Rezelj, V., Fischer, B., Fischer, A. et al., Drug-induced phospholipidosis confounds drug repurposing for SARS-CoV-2. Science 2021, 373, 541-547.

Methodology

- 20% hold-out testing set
- 10× cross-validation
- Challenges
 - Small datasets
 - Class imbalance
- Baseline success:
 - Hold-out testing set
 - Adversarial controls
 - Compare to random model

COVID-19 Antiviral Model Training

The joys of small datasets...

- Typical for wet lab data
- Urgent COVID19 situation

AntiCOVID - exploratory data analysis

• 5632 compounds with 271 hits

Positives

AntiCOVID - descriptors used

- Baseline Random Forest
- Focus on F1 score and Precision

Random Forest Metrics for Various Molecular Descriptors

AntiCOVID - models performances with 95% CI

AntiCOVID - balanced subsampled dataset

- Problem: imbalance dataset
- Our Solution: subsample the dataset
 - \circ 271/5632 hits \to 271/542 hits
 - \circ 5% \rightarrow 50%
- Keep hits and "randomly" sample 271 non-hits
 - "Random" → k-medoid on negatives where k = 271
 - Create new dataset

AntiCOVID - balanced subsampled dataset

- RDKit descriptors
- Random Forest Grid Search
- Good results on cross validation and hold-out set

Random Forest Metrics on Curated Balanced Dataset

Statistic

AntiCOVID - adversarial control

y-shuffling

Accuracy: 0.5471698113207547

F1Score: 0.5471698113207548

Precision: 0.5576923076923077

Recall: 0.5370370370370371

Balanced Accuracy Score: 0.547364

Matthews: 0.09472934472934473

AUC: 0.5473646723646725

BEDROC: 0.5924550000647925

Random Forest Metrics on Curated Balanced Dataset

Statistic

AntiCOVID - final RF model's feature importances

AntiCOVID - test out compounds

Remdesivir

- → FDA-approved anti-COVID-19
- → predicted anti-COVID-19

Ibuprofen

- → exacerbate COVID-19 symptoms
- \rightarrow predicted NOT anti-COVID-19

AntiCOVID - sanity check

Run model on whole dataset as well

Results on new balanced hold-out set

Accuracy: 0.9433962264150944 F1Score: 0.9433962264150944 Precision: 0.9615384615384616

Recall: 0.9259259259259

Balanced Accuracy Score: 0.943732193

Matthews: 0.8874643874643875

AUC: 0.9437321937321939 BEDROC: 0.999903717534156

Results on whole dataset

Accuracy: 0.27438687073575513

F1Score: 0.1187010078387458

Precision: 0.06315538608198284

Recall: 0.9851301115241635

Balanced Accuracy Score: 0.61121076783

Matthews: 0.11542108722760078

AUC: 0.6112107678303783 BEDROC: 0.252245062588847

Phospholipidosis Model Training

AntiPhospho model training

- Challenges: extremely tiny dataset (185 data points)
 - Tree-based models & SVM
 - RF, GBM, SVM (PCs explain 0.95 variances) → RF
- Descriptors: RDKit + Structural Alert (toxicophores)
- Metrics used: recall, ROC-AUC, MCC
 - Toxicity prediction model prefers high recall
- Additional success
 - Cherry picking unknown molecule test
 - Prediction on AntiCovid's dataset

p-hydroxy aniline: Hepatotoxicity

Blood dyscrasias

185 DATA POINTS

niline: Hepatotoxicity

AntiPhospho model performances

On 20% hold-out testing set

On	sh	uffled	featu	ıres
----	----	--------	-------	------

	Recall	AUC	MCC
svm	0.90	0.832353	0.674702
rf	0.90	0.832353	0.674702
gbm	0.85	0.836765	0.673529
meta rf	0.85	0.866176	0.730208

	Recall	AUC	MCC
svm	0.25	0.360294	-0.287115
rf	0.60	0.447059	-0.110531
gbm	0.80	0.547059	0.109323
meta rf	0.45	0.430882	-0.137831

Meta RF is kept as AntiPhospho

In literature: Meta Learner –RF, Base Learners (Best models +Second best models of GBM, RF, DLNNWOD, DLNNWD) has Recall as 0.86, AUC as 0.89, and MCC as 0.77

AntiPhospho model performances

On 20% hold-out testing set

On shuffled features

Meta RF is kept as AntiPhospho

In literature: Meta Learner –RF, Base Learners (Best models +Second best models of GBM, RF, DLNNWOD, DLNNWD) has Recall as 0.86, AUC as 0.89, and MCC as 0.77

AntiPhospho base RF's feature importances

 Chi4n is the most important feature

Cherry picking test set of 3 new compounds

- Remdesivir: the only FDA-approved anti-SARS-CoV-2 drug; non-phospholipidosis-reducing
- Elacridar: an antiviral compound; non-phospholipidosis-reducing
- DLAD: my tested drug (next slide)

	0	1
Remdesivir	0.980198	0.019802
Elacridar	0.722772	0.277228
DLAD	0.831683	0.168317

DIY in vitro drug-test

Potential Utility of Synthetic D-Lactate Polymers in Skin Cancer

Anushka Dikshit ∗ Junqi Lu ∗ Amy E. Ford ⋄ ... Georgia Beasley • David Gooden • Jennifer Y. Zhang 🌣 🖾 • Show all authors

Open Access • Published: July 29, 2021 • DOI: https://doi.org/10.1016/j.xjidi.2021.100043 •

- Cherry-picking rationale:
 - 2-(2-hydroxy-1-oxopropoxy)propionic acid (DLAD) prohibits skin cancer progression by pushing cellular metabolism profile from anaerobic to aerobic respiration
 - Normal cells prefer aerobic [generate more energy per glucose], while cancer cells and virus-infected cells prefer anaerobic [generate energy faster]
- 83% sure non-phospholipidosis-inducing
- In vitro results: non-phospholipidosis-inducing

DAPI LAMP-2

34% SARS-CoV-2 positives are phospholipidosis-inducing

 AntiPhospho predicted 34% of the active anti-SARS-CoV-2 molecules from the in vitro screening to be phospholipidosis-inducing

	Classes	Counts
0	0	178
1	1	92

37% AntiCovid's predictions are phospholipidosis-inducing

 AntiPhospho predicted 37% of the AntiCovid's positive predictions to be phospholipidosis-inducing

	Classes	Counts
0	0	34
1	1	20

Summary

- AntiCOVID has great performance on the subsampled dataset, but not overall
- AntiPhospho has great performance overall with way simpler structure
- K-medoids strategy to undersample imbalanced dataset
- Meta learner with simple base learners to boost performance
- Performance validated by hold-out testing set, adversarial control, orthogonal data, and biological mechanism logics
- Limitation of machine learning: correlation ≠ causation

Thank you!

Instructor: Daniel Reker, PhD

TAs: Roujia Wang, Zilu Zhang

