جامعة الملك سعود كلية العلوم قسم الرياضيات الإختبار النهائي الفصل الأول 1438 - 1439هـ 244 ريض الزمن ثلاث ساعات الفصل الأول (3+3 درجات)

$$|AB^{T}| = -2$$

$$|AB^{T}| = -2$$

$$|AB^{T}| = \begin{pmatrix} 1 & -3 \\ 1 & 2 \end{pmatrix}$$

$$|AB^{T}| = \begin{pmatrix} 1 & -3 \\ 1 & 2 \end{pmatrix}$$

$$|AB^{T}| = -2$$

$$|AB^{T}| = -$$

$$|a| = \frac{1}{15^2} \left[2 + 3 \right]$$

$$|a| = \frac{5}{15 \times 15} = \frac{1}{45}$$

$$v_{1} = (1, 2, -1, 3) \text{ lipscape in the problem of } b \text{ of } a \text{ is } b \text{ of } a \text{ of } b \text{ of } a \text{ of }$$

(5 در جات)

السؤال الثاني

$$\begin{cases} x - y - 2z &= 2\\ x + my - z &= 1\\ mx + y + z &= -1 \end{cases}$$

ليكن النظام الخطي

(۱). او جد قيم ش كتى يكون للنظام الخطي حل وحيد. ١٠٠٠ المالك

- (٢). او جد قيم m حتى لا يكون للنظام الخطي حل. ملك دى وال
 - (٣). او جد قيم شحتى يكون للنظام عدد لا نهائي من الحلول.

many

 $\begin{bmatrix} 1 & -1 & -2 & 2 \\ 1 & m & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$

maigne solution

m + 1)

m to

Jo11-1-12 m

W

(5 در جات)

السؤال الثالث

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & -1 \\ 3 & 5 & 2 \\ 1 & 4 & 1 \end{pmatrix}$$
 لتكن المصفوفة

(۱). أو جد الصيغة الدرجية الصفية المختركة للمصفوفة A. $\gamma \sim 890$ ~ 0 ~ 10 ~ 10

(۳). او جد رتبة (Rank) و صفرية (nullity) المصفوفة (r)

row 5 (1,0,0), (0,1,0))

rankles 3) = rank (oT)

nullity (o'lt rank (a) = m Could is

ABO MOHANNAD/0509891763

Stat/100/101/102/106/107/109/324 Page 4

Mullipped + 3 = hallity 61 + 1

السؤال الرابع P_{2} و ليكن $B = \{v_{1} = (1,1), v_{2} = (1,2)\}$ ليكن $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ إلا ساس المعتاد للفضاء \mathbb{R}^{2} و ليكن التحويل الخطي T(x,y) = (x-y,2x+3y) و ليكن المعرف كما يلي: T(x,y) = (x-y,2x+3y) و P_{2} و P_{3} و P_{4} و P_{5} و P_{6} و P_{6}

(٢). اوجد $[T]_C$ مصفوفة التحويل الخطي T بالنسبة للأساس B و اوجد $[T]_B$ مصفوفة التحويل الخطي T بالنسبة للأساس $[T]_B$

$$[T(v)]_B$$
 او جد $[T(v)]_B$ او جد او جد

50

$$8 \text{ Pc} = \left(\frac{2}{1} \right)^{-1} \left[\frac{2}{1} \right]$$

$$5 \frac{1}{2-1} \left[\frac{2}{1} \right]$$

$$5 \left[\frac{2}{1} \right]$$

V (211)

[I(n)] B 5 T(2/1)} 5 [(1/7)] 8 (B 12) [0] [-5]

(7 در جات)

السؤال الخامس

 $T(1,1,0) = \underbrace{(2,1,3)}_{T:\mathbb{R}^3} \to \mathbb{R}^3 \to \mathbb{R}^3$ حيث $T(1,0,0) = T:\mathbb{R}^3 \to \mathbb{R}^3$ حيث T(1,0,0) = T(1,0,1) = (-1,3,2) او جد قاعدة التحويل الخطي T

Rule

5.1

Let V(2,1,8) 6 R)

T(x,1,2) 5 4, T(1,1) 2/2 42 T(1,0,1/+ 4, T(1,2,0))
= y (2,1,3) + & (-1,3,2) + (x-2-2)(0,1,2)

5 (27-28/X+38+x-y-8/39+28+2x-21-12)

J(x,17,0) = (27-28 / 28+x/7 +2x)

ABO MOHANNAD/0509891763

Stat/100/101/102/106/107/109/324 Page 6

bill

T(1110) = (2/1/3)

المعرف بالقاعدة
$$T\colon\mathbb{R}^3\longrightarrow\mathbb{R}^4$$
 المعرف بالقاعدة (٢).

$$T(x, y, z) = (x + 2y + z, -y - z, 3x + 5y + 2z, x + 4y + 3z)$$

Basker
$$T$$
 (1) ie su limin lie su limin T (1) T (

$$T$$
 (ب) اوجد أساسا لصورة التحويل الخطي (ب

ABO MOHANNAD/0509891763

Stat/100/101/102/106/107/109/324 Page 7

السؤال السادس
$$S$$
 درجات السؤال السادس S عيث ان المجموعة S تمثل اساسا عياريا للفضاء الإقليدي S حيث ان $S = \{v_1 = (0,1,0), v_2 = (-\frac{4}{5},0,\frac{3}{5}), v_3 = (\frac{3}{5},0,\frac{4}{5})\}$ $[u]_S$ باحسبا $S = \{u\}$ احسبا $\{u\}$ احسبا $\{u\}$

$$||v_1||_{S} \sqrt{\langle v_1/v_1 \rangle} = \sqrt{\langle v_1/v_1 \rangle} = \sqrt{\langle v_1/v_1 \rangle} = \sqrt{\langle v_1/v_1 \rangle} = \sqrt{\langle v_2/v_1 \rangle} = \sqrt{\langle v_2/v$$

$$(\mu)_{s}$$

$$(s)_{u} = \begin{bmatrix} 0 & -\frac{4}{s} & \frac{3}{s} \\ 1 & 0 & \frac{3}{s} \\ 3 & \frac{1}{s} \end{bmatrix}$$

$$(s)_{u} = \begin{bmatrix} 0 & -\frac{4}{s} & \frac{3}{s} \\ 1 & 0 & \frac{3}{s} \\ \frac{3}{s} & \frac{1}{s} \end{bmatrix}$$

$$(s)_{u} = \begin{bmatrix} 0 & 0 & \frac{1}{s} \\ \frac{3}{s} & \frac{1}{s} \\ \frac{3}{s} & \frac{1}{s} \end{bmatrix}$$

(6 در جات)

لسؤال السابع

$$A = \begin{pmatrix} 3 & -2 & -2 \\ 2 & -1 & -2 \\ 2 & -2 & -1 \end{pmatrix}$$

 $\lambda_2=-1$ هي قيم مميزة للمصفوفة A و اثبت الم $\lambda_1=1$ و اثبت الم $\lambda_1=1$ هي قيم مميزة للمصفوفة A

- λ_2 و λ_1 او جد المتجهات المميزة المقابلة للقيم المميزة λ_1 و (۲).
- $A=PDP^{-1}$ اوجد مصفوفة P و مصفوفة قطرية D بحيث (٣)
 - Diagonal A^{14} A^{13} le extria

$$||\lambda - 3|| = 2$$

$$\frac{1}{2} = 1 \quad \left[(-2)(1)(1) - 16 \right] - \left[-4(1) + 4(-1) - 4(1) \right] s$$

$$= -24 - \left[-8 - 8 - 8 \right] s$$

$$= -24 + 24 = 3$$

$$\begin{bmatrix} \lambda & T - \alpha \end{bmatrix} \times = 0$$

$$\begin{bmatrix} \lambda - 3 & 2 & 2 \\ -2 & \lambda + 3 & 2 \\ -7 & 2 & \lambda + 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\begin{bmatrix} \lambda - 3 & 2 & 2 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_5 \end{bmatrix}$$

$$A = POP$$

$$A''^{3} = PD'' P$$

$$A''^{3} = PD'' P$$

$$A''^{3} = PD'' P$$