Bodyfat Analysis

Yilun Chen Jiyun Chen Huiyu Jiang

University of Wisconsin-Madison

February 7, 2018

Outline

- Background and Data Description
- Model Selection and Data Processing
- Variable Selection
- Model Diagnostic and Prediction
- Summary and Reference

Background

Thesis Statement:

An analysis of the male bodyfat database:

Using a linear model to infer and predict the male bodyfat based on three factors.

Target:

A simple, convenient, and robust model.

Data Description:

BODYFAT	DENSITY	AGE	WEIGHT	HEIGHT	ADIPO	SITY	NECK	CHEST
12.6	1.0708	23	154.25	67.75	5	23.7	36.2	93.1
6.9	1.0853	22	173.25	72.25	5	23.4	38.5	93.6
24.6	1.0414	22	154.00	66.25	5	24.7	34.0	95.8
ABDOME	N HIP	THIGH	KNEE	ANKLE	BICEPS	FORE	ARM	WRIST
85	.2 94.5	59.0	37.3	21.9	32.0		27.4	17.1
83	.0 98.7	58.7	37.3	23.4	30.5		28.9	18.2

Model Selection

Is the linear model good enough to catch the trend on bodyfat?

Data Processing

false record:

	BODYFAT	AGE	WEIGHT	HEIGHT	ADIPOSITY
182	0	40	118.5	68	18.1

check outliers:

Variable Selection

Select the variables based on stepwise method and elastic net.

Stepwise:

$$lnL(\mu, \sigma^2) = -\frac{n}{2}ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$

- AIC: $2k-2ln(\hat{L})$ ABDOMEN WEIGHT WRIST BICEPS AGE
- BIC: $ln(n)k 2ln(\hat{L})$ ABDOMEN WEIGHT WRIST

Variable Selection

• elastic net: $\hat{\beta} = argmin_{\beta}(||y-X\beta||^2 + \lambda(1-\alpha)||\beta||^2 + \lambda\alpha||\beta||_1)$

Final Model

Variables:

WEIGHT ABDOMEN WRIST

trained model:

```
Bodyfat = -23.994 - 0.087*Weight(lb) + 0.885*Abdomen(cm) - 1.282*Wrist(cm)
```

- Residual standard error: 3.981
- R²: 0.7292
- p-value: < 2.2e-16
- Rule of Thumb:

```
Bodyfat = -24 - 0.1*Weight(lb) + 0.9*Abdomen(cm) 
- 1.3*Wrist(cm)
```

Diagnostic

VIF:

Variables	VIF		
Weight	5.6178		
Abdomen	4.1857		
Wrist	2.0988		

• Residuals:

Prediction

Summary

- Strength:
 - 1.easy to implement2.not need a lot of information
- Weakness:

lack of accuracy (relatively large residuals)

• Illustrative example:

Weight: 136.75lb, Abdomen: 77.0cm, Wrist: 16.5cm

Estimated Bodyfat: 10.15

Confidence Interval: (9.05,11.25)

Appendix

References:

- Burnham, K. P., Anderson, D.R. (2004), Multimodel inference: understanding AIC and BIC in Model Selection, Sociological Methods & Research.
- Cook, R. Dennis (1977), Detection of influential Observations in Linear Regression, American Statistical Association.
- Friedman J, Hastie T, Tibshirani R., (2009), Regularization Paths for Generalized Linear Models via Coordinate Descent, Journal of Statistical Software.
- Roger W. Johnson (1996), Fitting Percentage of Body Fat to Simple Body Measurements, Journal of Statistics Education.