

Sprint 2

Objetivo

- Definir os requisitos técnicos detalhados do produto.
- Levantar e comparar conceitos tecnológicos aplicáveis.
- Realizar análise funcional dos sistemas principais.
- Tomar decisões iniciais sobre estrutura e materiais.

Requisitos Técnicos do Produto

Requisitos Funcionais

- Movimento omnidirecional com controle preciso (joystick, app ou comando de voz).
- Capacidade de manobra em corredores com largura mínima de 70 cm.
- Velocidade máxima: 6 km/h com controle de aceleração suave.
- Autonomia mínima: 20 km por carga de bateria.

Requisitos Não Funcionais

- Nível de ruído inferior a 45 dB.
- Tempo de recarga completa: até 4 horas.
- Peso máximo total do equipamento: 35 kg.
- Durabilidade mínima: 5 anos com manutenção preventiva.

Análise Funcional

FUNÇOES	OPÇOES TECNICAS	JUSTIFICATIVA DE ESCOLHA	
Movimento omnidirecional	Rodas Mecanum ou Omni	Mecanum oferece maior controle lateral	
Conforto	Assento ergonômico fixo ou ajustável	Ajustável melhora adaptação ao usuário	
Controle	Joystick, app ou voz	Joystick tem melhor precisão e resposta	
Superar obstáculos	Suspensão passiva ou ativa	Passiva é mais leve e econômica	
Segurança na frenagem	Freio eletromagnético automático	Alta confiabilidade e resposta imediata	

Função: Estrutura

- Opção 1: Liga de alumínio (6061)
 Opção 2: Liga de titânio (grau 2)
- Tipo: Fixa ou dobrável

Função: Rodas/Mobilidade

- Opção 1: Rodas Mecanum
- Opção 2: Rodas Omni

Função: Controle

- Opção 1: Joystick tradicional
- Opção 2: App para smartphone
- Opção 3: Comando de voz

Função: Energia

- Opção 1: Bateria de lítio 24V
- Opção 2: Dínamo com sistema híbrido auxiliar (recarga passiva)

Função: Suspensão

- Opção 1: Passiva com molas ajustáveis
- Opção 2: Ativa com amortecimento eletrônico

Matriz de Decisão

Critérios (com pesos):

- Peso (3)
- Custo (2)Resistência (2)
- Facilidade de fabricação (1)

ESTRUTURA

OPÇÃO	PESO	CUSTO	RESISTENCIA	FABRICAÇÃO	TOTAL
Alumínio 6061	27	18	16	9	70
Titânio (grau 2)	24	10	20	6	60

Escolha: Alumínio 6061 — melhor custo-benefício e facilidade de fabricação.

MOBILIDADE

Critérios (com pesos):

- Mobilidade (3)

- Estabilidade (2)
 Custo (2)
 Manutenção (1)

OPÇÃO	MOBILIDADE	ESTABILIDADE	CUSTO	MANUTENÇÃO	TOTAL
Mecanum	30	18	12	7	67
Omini	27	14	16	8	65

Escolha: Rodas Mecanum — oferecem maior controle e mobilidade lateral.

CONTROLE

Critérios (com pesos):

- Precisão(3)Facilidade de uso (2)
- Custo (2)
- Integração (1)

OPÇÃO	PRECISÃO	FACILIDADE DE USO	CUSTO	INTEGRAÇÃO	TOTAL
Joystick	30	18	16	7	7:
Арр	24	18	18	9	69
Comando de voz	21	12	12	8	53

Escolha: Joystick — melhor precisão e tempo de resposta.

FONTE DE ENERGIA

Critérios (com pesos):

- Autonomia (3)Peso (2)
- Custo (2)
- sustentabilidade (1)

OPÇÃO	AUTOMONIA	PESO	CUSTO	SUSTENTABILIDADE	TOTAL
Bateria de Lítio	30	16	14	8	68
Dínamo + Auxílio	18	18	18	10	64

Escolha: Bateria de Lítio — maior autonomia e controle de energia.

TIPO DE SUSPENSÃO

Critérios (com pesos):

- Conforto (3)

- Custo (2)Peso (2)Manutenção (1)

OPÇÃO	CONFORTO	CUSTO	PESO	MANUTENÇÃO	TOTAL
Passiva	24	18	18	9	69
Ativa	30	12	12	7	61

Escolha: Suspensão Passiva — mais leve, econômica e de fácil manutenção.

Décisões Iniciais de Projeto

- Material do chassi: Liga de alumínio 6061
- Estrutura: Modular, com possibilidade de dobrar para transporte
- Controle: Joystick com opção de app como acessório
 Fonte de energia: Bateria de lítio 24V com BMS

Dimensões preliminares:

- Largura: 58 cm
- Altura total: 90 cm
- Comprimento: 90–100 cm
- Altura do assento: 40–55 cm (ajustável)

Conclusão

Nesta etapa do projeto, aprofundamos a análise técnica da cadeira de rodas omnidirecional, expandindo as possibilidades para cada função essencial do produto. Com base nos requisitos levantados na Sprint 1 e no feedback recebido, realizamos uma comparação estruturada de alternativas, aplicando critérios objetivos por meio de matrizes de decisão.

As escolhas realizadas — como o uso da liga de alumínio 6061 para a estrutura e o controle via joystick — refletem um equilíbrio entre desempenho, custo e viabilidade técnica, respeitando os limites de peso, autonomia e conforto esperados pelo público-alvo.