Теория графов. Глава 5. Раскраски.

Д.В.Карпов

2023

Определение

- 1) Раскраской вершин графа G в k цветов называется функция $\rho:V(G)\to M$, где |M|=k. Раскраска ρ называется правильной, если $\rho(v)\neq \rho(u)$ для любой пары смежных вершин u и v.
- 2) Через $\chi(G)$ обозначим *хроматическое число* графа G наименьшее натуральное число, для которого существует правильная раскраска вершин графа G в такое количество цветов.
- ullet Как правило, при разговоре о раскрасках в k цветов мы будем использовать для обозначения цветов числа от 1 до k. В случаях, когда мы используем другие обозначения для цветов, об этом будет сказано.

Лемма 1

Для любого графа G выполняется $\chi(G)\cdot \alpha(G) \geq \nu(G).$

Доказательство.

Все вершины одного цвета в правильной раскраске попарно несмежны, то есть образуют независимое множество.

Лемма 2

Пусть G — связный граф, $\Delta(G) \leq d$, причем хотя бы одна из вершин графа G имеет степень менее d. Тогда $\chi(G) \leq d$.

Доказательство.

- Индукция по количеству вершин. База для графа, у которого не более d вершин, очевидна.
- ullet Будем считать, что утверждение верно для любого меньшего связного графа с меньшим чем v(G) количеством вершин.
- ullet Пусть $u\in V(G)$ вершина степени менее d. Рассмотрим граф G-u. Пусть G_1,\ldots,G_k компоненты графа G-u.
- В каждом из графов G_1, \ldots, G_k ввиду связности графа G обязательно есть вершина u_i , смежная в графе G с u.
- Тогда $d_{G_i}(u_i) < d$ и $\Delta(G_i) \leq d$. По индукционному предположению существует правильная раскраска вершин графа G_i в d цветов.
- Таким образом, существует правильная раскраска вершин в d цветов и у графа G-u. Так как $d_G(u) < d$, мы можем докрасить в один из цветов вершину u, не нарушая правильности раскраски графа.

Лемма 3

Если G — двусвязный неполный граф с $\delta(G) \geq 3$. Тогда существуют такие вершины $a,b,c \in V(G)$, что $ab,bc \in E(G)$, ас $\notin E(G)$ и граф G-a-c связен.

Доказательство. • Пусть G трёхсвязен. Так как G неполный, существуют такие вершины $a,b,c\in V(G)$, что $ab,bc\in E(G)$ и $ac\notin E(G)$. Граф G-a-c, очевидно, связен.

- ullet Пусть G не трёхсвязен. Тогда существует такая вершина $b \in V(G)$, что граф G' = G b не двусвязен.
- Граф G' имеет хотя бы два крайних блока. Так как граф G двусвязен, вершина b должна быть смежна хотя бы с одной внутренней вершиной каждого крайнего блока графа G'. Пусть a и c смежные c b внутренние вершины двух разных крайних блоков B_a и B_c графа G' соответственно.
- Тогда графы $B_a a$ и $B_c c$ связны, откуда легко следует связность графа G' a c. Так как $d_G(b) \ge 3$, вершина b смежна с G' a c, а значит, и граф G a c связен.

(R. L. Brooks, 1941.) Пусть $d \geq 3$, а G- связный граф, отличный от K_{d+1} , $\Delta(G) \leq d$. Тогда $\chi(G) \leq d$.

• При $\Delta(G)=2$ вопрос о существовании правильной раскраски вершин связного графа G в два цвета очевиден. Такой граф G — либо P_n (путь из n вершин), либо C_n (цикл из n вершин). В первом случае легко видеть, что $\chi(P_n)=2$, а во втором случае $\chi(C_{2k})=2$ и $\chi(C_{2k+1})=3$.

Доказательство теоремы 1. • Достаточно рассмотреть случай регулярного графа степени d (иначе воспользуемся леммой 2). Рассмотрим два случая.

Случай 1: в графе G есть точка сочленения a.

- ullet Тогда $G=G_1\cup G_2$, где $V(G_1)\cap V(G_2)=\{a\}$, а графы G_1 и G_2 связные.
- Так как a смежна хотя бы с одной вершиной и в G_1 , и в G_2 , то $d_{G_1}(a) < d$ и $d_{G_2}(a) < d$. Следовательно, по Лемме 2 для каждого $i \in \{1,2\}$ граф G_i имеет правильную раскраску вершин ρ_i в d цветов.
- ullet Так как цвета в этих раскрасках нумеруются независимо, можно считать, что $ho_1(a)=
 ho_2(a)=1.$
- Теперь мы можем склеить раскраски ρ_1 и ρ_2 по точке сочленения a и получить правильную раскраску графа G.

Случай 2: G двусвязен.

- ullet По лемме 3 существуют такие $a,b,c\in V(G)$, что $ab,bc\in E(G)$, $ac\notin E(G)$ и граф G-a-c связен.
- Рассмотрим связный граф $G' = G \{a,c\}$ и остовное дерево T этого графа.

- Положим $\rho(a) = \rho(c) = 1$ и будем красить остальные вершины графа G (они же вершины дерева T) в порядке убывания номеров их уровней, начиная с листьев T.
- Пусть $x \neq b$ очередная вершина, причем на момент ее рассмотрения мы покрасили все вершины больших уровней и не красили вершин меньших уровней.
- Тогда предок вершины x в дереве T еще не покрашен, а значит, покрашено не более, чем d-1 соседей вершины x. Мы можем выбрать цвет $\rho(x)$ отличным от всех уже покрашенных соседей вершины x.
- В итоге все отличные от корня b вершины мы покрасим. Рассмотрим b все ее соседи уже покрашены, причём $\rho(a)=\rho(c)$. Следовательно, существует цвет, в который не покрашен ни один из соседей вершины b. Именно в этот цвет мы покрасим вершину b и получим правильную раскраску вершин графа $G_{\mathbb{S}}$ d цветов.

Определение

Кликовое число графа G (обозначение: $\omega(G)$) — это количество вершин в наибольшей *клике* (то есть полном подграфе) этого графа.

• Очевидно, $\chi(G) \geq \omega(G)$. Самый простой способ построить граф с большим хроматическим числом — поместить в граф клику большого размера. Однако, граф с большим хроматическим числом может не иметь большой клики.

Теорема 2

(J. Mycielski, 1955.) Для любого $k \in \mathbb{N}$ существует такой граф G без треугольников, что $\chi(G) = k$.

Доказательство. • Для k=1 и k=2 подойдут полные графы K_1 и K_2 . Стартуя от графа $G_2=K_2$, мы построим серию примеров графов G_3,G_4,\ldots без треугольников с $\chi(G_k)=k$.

• Переход: пусть построен граф G_k , причём $V(G_k) = \{u_1, \dots, u_n\}$.

ullet Этот граф будет частью графа G_{k+1} , в котором будут добавлены множество новых вершин $V=\{v_1,\dots,v_n\}$ и новая вершина w.

• Рёбра между новыми вершинами проведёми так: v_i будет смежна со всеми вершинами из $N_{G_k}(u_i)$ и только с ними, а w — со всеми вершинами v_1,\ldots,v_n и только с ними (см. рис.).

Утверждение 1

B графе G_{k+1} нет треугольников.

Доказательство. • Предположим противное.

- ullet Так как V независимое множество в G_{k+1} , треугольник содержит не более одной вершины из V.
- Так как $N_{G_{k+1}}(w) = V$, треугольник не содержит w.
- ullet Так как в G_k по индукционному предположению нет треугольников, наш треугольник имеет вид $v_i u_s u_t$.
- ullet Тогда $i
 otin \{s,t\}$ и по построению $\mathrm{N}_{G_{k+1}}(v_i) = \mathrm{N}_{G_{k+1}}(u_i).$
- Следовательно, в графе G_k есть треугольник $u_i u_s u_t$, противоречие.

Утверждение 2 $\chi(G_{k+1}) = k + 1.$

Доказательство. • Очевидно, $\chi(G_{k+1}) \leq k+1$: если ρ — правильная раскраска вершин G_k в k цветов, то можно продолжить её на G_{k+1} , использовав только один дополнительный цвет: положим $\rho(v_i) = \rho(u_i), \; \rho(w) = k+1$.

- Предположим, что $\chi(G_{k+1}) \leq k$, и рассмотрим правильную раскраску ρ вершин графа G_{k+1} в k цветов. НУО $\rho(w) = k$.
- ullet Построим правильную раскраску ho' вершин графа G_k в k-1 цвет и, тем самым, придём к противоречию.
- Для каждой вершины u_i положим $\rho'(u_i) = \rho(u_i)$, если $\rho(u_i) \neq k$, и $\rho'(u_i) = \rho(v_i)$, если $\rho(u_i) = k$.
- Так как вершины v_1, \ldots, v_n смежны с вершиной w цвета k, то их цвета отличны от k, следовательно,

 $\rho':V(G_k)\to [1..k-1].$

- Докажем правильность раскраски ρ' . Предположим противное, пусть $\rho'(u_i)=\rho'(u_j)$, вершины u_i и u_j смежны. Очевидно, хотя бы одна из них перекрашена, пусть это u_i , тогда $\rho'(u_i)=\rho(v_i)$.
- Мы перекрашивали только вершины, имеющие цвет k в раскраске ρ , среди них не было смежных, следовательно, $\rho'(u_j) = \rho(u_j)$.
- По построению, из $u_j \in \mathrm{N}_{G_k}(u_i)$ следует $u_j \in \mathrm{N}_{G_k}(v_i)$ и мы можем сделать вывод $\rho'(u_i) = \rho(v_i) \neq \rho(u_j) = \rho'(u_j)$, противоречие с предположением.
- Таким образом, ρ' правильная раскраска вершин графа G_k , противоречие. Следовательно, $\chi(G_{k+1}) = k+1$.
- Утверждения 1 и 2 полностью одказывают индукционный переход в Теореме 2.

Определение

Для любого натурального числа k обозначим через $\chi_G(k)$ количество правильных раскрасок вершин графа Gв k цветов. Функция $\chi_G(k)$ называется хроматическим многочленом графа G.

ullet Таким образом, $\chi_G(\chi(G)) \neq 0$, и $\chi_G(k) = 0$ для любого натурального числа $k < \chi(G)$.

Лемма 4

Пусть G — непустой граф, a e = uv — его ребро. Тогда $\chi_{G-uv}(k) = \chi_G(k) + \chi_{G\cdot uv}(k).$

Доказательство. • Разобьем правильные раскраски графа G-e в k цветов на два типа: те, в которых вершины u и v одного цвета (тип 1) и те, в которых вершины u и vразных цветов (тип 2).

• Количество раскрасок первого типа равно $\chi_{G\cdot e}(k)$, а количество раскрасок второго типа равно $\chi_{G}(k)$.

Для графа G с v(G) = n $\chi_G(k)$ — многочлен с целыми коэффициентами степени n, старший коэффициент равен 1.

Доказательство. • Мы будем доказывать оба утверждения индукцией по количеству вершин и ребер графа G. А именно, доказывая утверждение для графа G, мы будем считать его справедливым для всех меньших графов.

База для пустого графа \overline{K}_n : понятно, что $\chi_{\overline{K}_n}(k)=k^n$, а значит, все утверждения теоремы выполнены.

Переход. Пусть G — непустой граф, а e — его ребро. По лемме 4 $\chi_G(k) = \chi_{G-e}(k) - \chi_{G \cdot e}(k)$.

- Для меньших графов $G \cdot e$ и G e уже доказаны все утверждения теоремы: $\chi_{G-e}(k)$ многочлен степени v(G), а $\chi_{G \cdot e}(k)$ многочлен степени $v(G \cdot e) = v(G) 1$.
- Старший коэффициент $\chi_G(k)$ равен старшему коэффициенту $\chi_{G-e}(k)$, то есть, 1.

Пусть G_1,\dots,G_n — все компоненты графа G . Тогда

$$\chi_G(k) = \prod_{i=1}^n \chi_{G_i}(k).$$

Доказательство.

- При правильной раскраске вершин графа вершины разных компонент можно красить независимо друг от друга.
- Следовательно, произведение количеств правильных раскраскок графов G_1, \ldots, G_n в k цветов есть количество правильных раскрасок вершин графа G в k цветов.

Пусть G — связный граф c n блоками B_1,\ldots,B_n . Тогда

$$\chi_G(k) = \left(\frac{1}{k}\right)^{n-1} \cdot \prod_{i=1}^n \chi_{B_i}(k).$$

Доказательство. • Докажем утверждение индукцией по количеству блоков в графе *G*. База для двусвязного графа, который является своим единственным блоком, очевидна.

Переход. Пусть $n \ge 2$. НУО, B_n — крайний блок, содержащий ровно одну точку сочленения (скажем, a).

• В графе $G' = G - \operatorname{Int}(B_n)$ ровно на один блок меньше: исчез блок B_n , остальные блоки не изменились.

• По индукционному предположению для графа G':

$$\chi_{G'}(k) = \left(\frac{1}{k}\right)^{n-2} \cdot \prod_{i=1}^{n-1} \chi_{B_i}(k).$$

- ullet Остается доказать, что $\chi_G(k) = rac{1}{k} \cdot \chi_{G'}(k) \cdot \chi_{B_n}(k)$.
- Рассмотрим любую правильную раскраску ρ графа G' в k цветов и попробуем докрасить вершины блока B_n с соблюдением правильности.
- Единственное ограничение, которое накладывается на раскраску блока B_n зафиксирован цвет вершины a, что уменьшает количество раскрасок блока B_n ровно в k раз.

Для любого графа G число 0 является корнем $\chi_G(k)$ кратности, равной количеству компонент связности графа G.

Доказательство. • 0 является корнем хроматического многочлена любого графа. Это очевидно из определения: правильных раскрасок в 0 цветов не бывает.

- Ввиду Теоремы 5 достаточно доказать, что для связного графа G кратность корня 0 у $\chi_G(k)$ равна 1.
- Пусть v(G)=n. Индукцией по количеству вершин докажем для связного графа G, что коэффициент при k многочлена $\chi_G(k)$ не равен 0 и имеет такой же знак как $(-1)^{n-1}$. База для n=1 очевидна.

Переход. • Пусть G — связный граф с $v(G)=n\geq 2$, для меньшего количества вершин утверждение доказано, а T — остовное дерево графа G. Нетрудно понять, что $\chi_T(k)=k(k-1)^{n-1}$.

- ullet Существует последовательность графов $G_0 = T, \ldots, G_n = G$, в которой $G_{i+1} = G_i + e_i$, где $e_i \notin E(G_i)$.
- Пусть a_i коэффициент при k многочлена $\chi_{G_i}(k)$. Докажем по индукции, что $a_i \neq 0$ и имеет такой же знак, как $(-1)^{n-1}$. База для i=0 очевидна из приведенной выше формулы.
- ullet Докажем переход. Пусть коэффициент $a_i \neq 0$ и имеет знак $(-1)^{n-1}$.
- По Лемме 4 $\chi_{G_{i+1}}(k) = \chi_{G_i}(k) \chi_{G_{i+1} \cdot e_i}(k)$.
- Граф $G_{i+1} \cdot e_i$ связен.
- По индукционному предположению у многочлена $\chi_{G_{i+1} \cdot e_i}(k)$ знак коэффициента b при k такой же, как $(-1)^{n-2}$, то есть, отличается от знака a_i .
- ullet Поэтому $a_{i+1}=a_i-b$ имеет такой же знак, как a_i , и отличен от 0.

(E. G. Whitehead, L.-C. Zhao, 1984.) Пусть G — связный граф с более чем одной вершиной. Тогда число 1 является корнем многочлена $\chi_G(k)$ кратности, равной количеству блоков графа G.

Доказательство. • В каждом блоке графа G хотя бы две вершины.

- Ввиду Теоремы 6 достаточно доказать, что у хроматического многочлена графа H, не имеющего точек сочленения, число 1 является корнем кратности ровно 1. Тогда из доказанной в Лемме 4 формулы будет следовать утверждение теоремы.
- ullet Для $H\simeq K_2$, утверждение очевидно. Далее рассмотрим случай, когда H двусвязен.
- ullet Двусвязный граф H невозможно правильно покрасить в 1 цвет, следовательно, 1 является корнем хроматического многочлена такого графа.
- Остается показать, что кратность этого корня равна 1. Для этого достаточно доказать, что $\chi'_H(1) \neq 0$.
- Мы покажем, что для двусвязного графа H на m вершинах $\chi'_H(1) \neq 0$ и имеет такой же знак, как $(-1)^m$. Доказательство будет индукцией по размеру графа.

• База: v(H)=3. Тогда H — это полный граф на трёх вершинах и утверждение несложно проверить: $\chi_{K_3}(k)=k(k-1)(k-2)$ и $\chi'_{K_2}(1)=1(1-2)=-1$.

- Переход: пусть $v(H) \ge 4$ и утверждение доказано для всех меньши графов.
- Тогда по Теореме 4.7 существует такое ребро $e \in E(H)$, что граф $H \cdot e$ двусвязен.
- ullet По Лемме 4 $\chi_H'(1) = \chi_{H-e}'(1) \chi_{H\cdot e}'(1)$.
- ullet Так как $v(H\cdot e)=m-1$ и граф $H\cdot e$ двусвязен, $\chi'_{H\cdot e}(1)
 eq 0$ и имеет тот же знак, что и $(-1)^{m-1}$.
- ullet Так как e(H-e) < e(H), если граф H-e двусвязен, то уже доказано, что $\chi'_{H-e}(1)$ имеет тот же знак, что и $(-1)^m$.
- ullet Если же граф H-e недвусвязен, то он связен и имеет хотя бы два блока. Тогда для него верна формула из Теоремы 6.
- Так как хроматический многочлен каждого блока имеет своим корнем 1, для недвусвязного графа H-e его хроматический многочлен имеет 1 корнем кратности хотя бы 2, то есть, в этом случае $\chi'_{H-e}(1)=0$.
- ullet В любом из случаев получается, что $\chi_H'(1) \neq 0$ и имеет тот знак, что нам нужен.

Определение

- 1) Раскраской рёбер графа G в k цветов называется функция $\rho: E(G) \to M$, где |M| = k. Обычно мы будем использовать для обозначения k цветов в раскраске числа от 1 до k: в случаях, когда $M \neq [1..k]$, об этом будет сказано.
- 2) Любая раскраска ρ ребер графа G в цвета [1..k] это разбиение множества E(G) в объединение непересекающихся множеств E_1, \ldots, E_k , где ρ принимает значение i на рёбрах множества E_i .
- Графы, рассматриваемые в этом разделе могут иметь кратные рёбра, но не имеют петель.
- В отличие от раскрасок вершин, при рассмотрении раскрасок рёбер кратные рёбра играют существенную роль.

Раскраски. Д. В. Карпов

2) Через $\chi'(G)$ обозначим *хроматический индекс* графа G — наименьшее натуральное число, для которого существует правильная раскраска рёбер графа G в такое количество цветов.

Определение

Пусть ho — раскраска рёбер графа G в k цветов.

- 1) Пусть $v \in V(G)$. Будем говорить, что в раскраске ρ цвет i представлен в вершине v, если существует инцидентное v ребро e такое, что $\rho(e)=i$. Обозначим через $\rho(v)$ количество цветов, представленных в вершине v.
- 2) Введем обозначение $\rho(G) = \sum_{v \in V(G)} \rho(v)$. Назовем раскраску ρ k-оптимальной, если для любой другой раскраски ρ' рёбер графа G в k цветов $\rho(G) \geq \rho'(G)$.
- Пусть ρ правильная раскраска рёбер графа G в не более чем k цветов. Тогда для каждой вершины $v \in V(G)$ мы имеем $\rho(v) = d_G(v) \ge \rho'(v)$ для любой другой раскраски ρ' . Таким образом, правильная раскраска рёбер всегда является k-оптимальной.

Лемма 5

Пусть G — связный граф, отличный от простого цикла нечетной длины. Тогда существует такая раскраска рёбер G в два цвета, что в каждой вершине степени не менее двух представлены оба цвета.

Доказательство. • Если все вершины G имеют степень 2, то G — четный цикл, для которого утверждение очевидно. Далее рассмотрим другие случаи.

- Если в графе есть вершины нечетной степени, то добавим новую вершину w и соединим её со всеми вершинами нечетной степени графа G. Получится граф \tilde{G} , степени всех вершин которого четны. Если все степени вершин графа G четны, положим $\tilde{G}=G$.
- Если в графе G есть вершины нечетной степени, то положим a=w. Если в графе G все вершины имеют четную степень, то есть вершина степени хотя бы 4, то мы выберем в качестве a именно такую вершину.

- ullet В графе $ilde{G}$ есть эйлеров цикл. Начиная с вершины a, будем красить ребра графа, чередуясь, в цвета 1 и 2 по ходу \Im Ц.
- Пусть $x \neq a$. При $d_G(x) \geq 2$ мы как минимум один раз прошли по ЭЦ через x. Следовательно, существуют два разноцветных ребра графа G, инцидентных x.
- Остается проверить условие для вершины a, что нужно делать только в случае, когда $a \neq w$. Тогда $d_G(a) \geq 4$ и ЭЦ хотя бы один раз прошел через a, а значит, есть два инцидентных a ребра разного цвета.
- Отметим, что в Лемме 5 допускается наличие в графе кратных рёбер. Также оно ничем не мешает в следующей лемме.

Лемма 6

Пусть $\rho-k$ -оптимальная раскраска ребер графа G. Предположим, что вершина w и цвета i и j таковы, что в вершине w хотя бы два раза представлен цвет i и не представлен цвет j. Пусть $H=G(E_i\cup E_j)$, а H_w-k компонента графа H, содержащая вершину w. Тогда H_w-k простой цикл нечетной длины.

Доказательство.

- Предположим, что H_w не является простым циклом нечетной длины.
- Построим новую раскраску ρ' , отличающуюся от ρ лишь раскраской рёбер из H_w : мы раскрасим их в цвета i и j так, чтобы в каждой вершине x степени $d_{H_w}(x) \geq 2$ были представлены оба цвета i и j (это возможно по Лемме 5).
- Тогда $\rho'(w) = \rho(w) + 1$, а для любой другой вершины x, очевидно, $\rho'(x) \ge \rho(x)$. Таким образом, $\rho'(G) > \rho(G)$, противоречие с k-оптимальностью ρ .

ullet Несложно понять, что $\chi'(G) \geq \Delta(G)$: все рёбра, инцидентные вершине наибольшей степени, должны быть разноцветными.

Теорема 9

(D. König, 1916.) Пусть G- двудольный граф (возможно, с кратными рёбрами). Тогда $\chi'(G)=\Delta(G)$.

Доказательство.

- ullet Пусть $\Delta = \Delta(G)$. Рассмотрим Δ -оптимальную раскраску ho рёбер графа G.
- ullet Предположим, что раскраска ho неправильная. Тогда существует вершина v и цвет i такие, что i дважды представлен в вершине v.
- Так как $d_G(v) \leq \Delta$, существует цвет j, не представленный в вершине v. Тогда по Лемме 6 в графе G есть нечетный цикл, противоречие. Следовательно, раскраска ρ правильная.

Определение

- Назовем раскраску ρ рёбер графа G покрывающей, если ребра каждого цвета образуют покрытие (то есть покрывают все вершины).
- Через $\kappa'(G)$ обозначим покрывающий индекс графа G наибольшее натуральное число, для которого существует покрывающая раскраска рёбер графа G в такое количество цветов.

Теорема 10

(R. P. Gupta, 1966.) Если граф G — двудольный, то $\kappa'(G) = \delta(G)$.

Доказательство. • Рассмотрим $\delta(G)$ -оптимальную раскраску ρ рёбер графа G.

- Предположим, что раскраска ρ не является покрывающей. Тогда существует вершина v и цвет i такие, что i не представлен в вершине v.
- Так как $d_G(v) \geq \delta(G)$, то существует цвет j, представленный в вершине v не менее, чем дважды. Тогда по Лемме 6 в графе G есть нечетный цикл, противоречие. Следовательно, раскраска ρ покрывающая.

(В. Г. Визинг, 1964.) Пусть G- граф без кратных рёбер. Тогда $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$.

Доказательство. (J.-C. Fournier, 1973.)

- Пусть $k = \Delta(G) + 1$. Достаточно доказать существование правильной раскраски рёбер G в k цветов. Рассмотрим k-оптимальную раскраску ρ рёбер G.
- Предположим, что раскраска ρ неправильная. Тогда существует вершина u и цвет i_1 , который дважды представлен в вершине u. Так как $d_G(u) < k$, то существует цвет i, не представленный в вершине u.
- Пусть $uv_1 \in E(G)$, $\rho(uv_1) = i_1$. Так как $d_G(v_1) < k$, существует цвет i_2 , не представленный в v_1 .

ullet Пусть $\ell \geq 1$, а цвета i_1,\ldots,i_ℓ различны.

 V_t .

- ullet Пусть рёбра $uv_1,\dots,uv_\ell\in E(G)$ таковы, что $ho(uv_t)=i_t$ при $t\in[1..\ell]$, причем при $t<\ell$ цвет i_{t+1} не представлен в вершине
- ullet Так как $d_G(v_\ell) < k$, существует цвет $i_{\ell+1}$, не представленный в вершине v_ℓ .
- Определим раскраску ρ_ℓ : $\rho_\ell(uv_s)=i_{s+1}$ при $s\in[1..\ell]$, $\rho_\ell(e)=\rho(e)$ на остальных рёбрах e.

Докажем, что $\rho_{\ell}(G) \geq \rho(G)$. • Для вершины $x \notin \{u, v_1, \dots, v_{\ell}\}$ цвета инцидентных x рёбер

- для вершины $x \notin \{u, v_1, \dots, v_\ell\}$ цвета инц не менялись, поэтому $\rho_\ell(x) = \rho(x)$.
- Рассмотрим вершину v_t , $t \in [1..\ell]$. Цвет i_{t+1} не представлен в вершине v_t в раскраске ρ , но представлен в раскраске ρ_ℓ . Цвет i_t представлен в раскраске ρ и, возможно, не представлен в раскраске ρ_ℓ . Все ребра, кроме uv_t не изменили цвета, поэтому $\rho_\ell(v_t) \geq \rho(v_t)$.
- Рассмотрим вершину u. В результате перекрашивания рёбер uv_1, \ldots, uv_ℓ из их цветов исчез i_1 и появился $i_{\ell+1}$. Однако, цвет i_1 представлен в вершине u в раскраске ϱ_ℓ : $\varrho_\ell(uv_0) = i_1$.
- цвет i_1 представлен в вершине u в раскраске ρ_ℓ : $\rho_\ell(uv_0) = i_1$.

 Поэтому $\rho_\ell(u) \geq \rho(u)$ и $\rho_\ell(G) \geq \rho(G)$.

• Из k-оптимальности ρ следует, что ρ_ℓ также k-оптимальна. Более того, $\rho_\ell(G)=\rho(G)$, следовательно, $\rho_\ell(u)=\rho(u)$. Это означает, что цвет $i_{\ell+1}$ представлен в вершине u в раскраске ρ , пусть $\rho(uv_{\ell+1})=i_{\ell+1}$. Шаг

- Поскольку у вершины u конечное число соседей, на некотором шаге построения мы впервые получим $i_{m+1}=i_k$. Рассмотрим k-оптимальные раскраски ρ_{k-1} и ρ_m (мы положим $\rho_0=\rho$). На рисунке изображены цвета рёбер, соединяющих u с v_0, v_1, \ldots, v_m в раскрасках ρ (рис. а), ρ_{k-1} (рис. b) и ρ_m (рис. с).
- В обеих раскрасках в вершине u дважды представлен цвет i_k : $\rho_{k-1}(uv_{k-1}) = \rho_{k-1}(uv_k) = i_k$, $\rho_m(uv_m) = \rho_m(uv_{k-1}) = i_k$.

- По Лемме 6 из оптимальности раскрасок ρ_{k-1} и ρ_m следует, что содержащие вершину u компоненты связности графов H и H' простые циклы нечетной длины.
- Тогда $d_H(v_k)=2$: из v_k выходит ребро uv_k цвета $\rho_{k-1}(uv_k)=i_k$ и ребро цвета j. Для всех рёбер e цикла H, кроме uv_k мы имеем $\rho_{k-1}(e)=\rho_m(e)$, поэтому $d_{H'}(v_k)=d_H(v_k)-1=1$.
- Очевидно, v_k и u лежат в одной компоненте связности графа H', которая должна быть НЦ. Противоречие.
- ullet Полученное противоречие показывает, что ho- искомая правильная раскраска рёбер графа G в $\Delta(G)+1$ цвет.

Теория графов. Глава 5. Раскраски.

Д.В.Карпов

- Списочные раскраски (list colorings) впервые были определены Визингом в 1976 году (он их назвал предписанными раскрасками).
- ullet Каждой вершине графа $v \in V(G)$ ставится в соответствие список L(v), после чего рассматривается правильная раскраска вершин с дополнительным ограничением: каждая вершина и должна быть покрашена в цвет из списка L(v).
- ullet Минимальное такое $k\in\mathbb{N}$, что для любых списков из kцветов существует правильная раскраска вершин графа G, обозначается через $\mathrm{ch}(G)$ (и носит название списочное хроматическое число, по-английски — choice number).
- Во всех случаях, когда речь идет о списках цветов, мы будем обозначать список большой буквой (как правило, L), а его *размер* — соответствующей строчной: так, $\ell(v) = |L(v)|$.
- \bullet Очевидно, $\mathrm{ch}(G) \geq \chi(G)$. Существуют графы, для которых $\operatorname{ch}(G) > \chi(G)$. **4ロト 4回ト 4 三ト 4 三ト 9 9 0**0

- Аналогично списочным раскраскам вершин можно определить списочные раскраски рёбер и списочный хроматический индекс $\mathrm{ch}'(G)$.
- Очевидно, ${\rm ch}'(G) \geq \chi'(G)$. В отличие от ситуации со списочными раскрасками вершин, не известно ни одного графа, для которого ${\rm ch}'(G) > \chi'(G)$.
- Более того, выдвинута гипотеза (List Color Conjecture) о том, что $\mathrm{ch}'(G) = \chi'(G)$ для любого графа G. В 1995 году Гэльвин доказал эту гипотезу для двудольных графов.

Определение

Пусть $k \in \mathbb{N}$. Граф G называется k-редуцируемым, если его вершины можно занумеровать v_1, \ldots, v_n так, что каждая вершина смежна менее чем с k вершинами с бОльшим номером.

Лемма 7

Пусть G-k-редуцируемый граф. Тогда $\chi(G) \leq \mathrm{ch}(G) \leq k$.

Доказательство.

- Пусть v_1, \dots, v_n нумерация вершин графа из определения, причем каждой вершине v_i соответствует список $L(v_i)$ длины $\ell(v_i) \geq k$.
- Покрасим вершины в порядке, обратном нумерации.
- При покраске вершины v_i количество запретов на цвет не превосходит количество ее соседей среди вершин с бОльшим номером, а таких не более k-1.
- ullet Значит, мы можем покрасить вершину v_i в цвет из ее списка.

ullet Докажем критерий k-редуцируемости графа.

Лемма 8

Граф G является k-редуцируемым, если и только если для любого его подграфа H выполняется $\delta(H) \leq k-1$.

Доказательство.

- \Rightarrow . Пронумеруем вершины графа G как в определении.
- Предположим противное, пусть подграф H таков, что $\delta(H) \geq k$.
- ullet Пусть $v_i \in V(H)$ вершина с наименьшим номером.
- Тогда v_i смежна не менее чем с $d_H(v_i) \ge \delta(H) \ge k$ вершинами с бОльшим номером, противоречие.
- \leftarrow . Пусть v_1 вершина графа G наименьшей степени. Тогда она смежна не более чем с $d_G(v_1)=\delta(G)\leq k-1$ вершинами.
- Предположим, что вершины v_1, \dots, v_{i-1} уже построены.
- Положим $G_i = G \{v_1, \dots, v_{i-1}\}$. Тогда граф G_i имеет вершину степени не более $\delta(G_i) \leq k-1$ именно она и будет вершиной v_i .

Списочная теорема Брукса и d-раскраски

• В 1976 году Визинг доказал списочную версию теоремы Брукса. Мы приведем более общий результат, доказанный Бородиным в 1977 году.

Определение

- Граф G называется d-раскрашиваемым (английский вариант этого термина d-choosable), если для любого набора списков L, удовлетворяющего условию $\ell(v) \geq d_G(v)$ для каждой вершины $v \in V(G)$, существует правильная раскраска вершин графа G в цвета из списков.
- Список цветов, удовлетворяющие указанному условию, будем называть *d*-списком.

Определение

Назовем вершину $v \in V(G)$ избыточной, если $\ell(v) > d_G(v)$.

Лемма 9

Пусть G — связный граф, а L — d-список, в котором вершина $a \in V(G)$ избыточная. Тогда существует правильная раскраска вершин графа G в соответствии со списком L.

Доказательство. • Индукция по количеству вершин. База для графа с одной вершиной (естественно, избыточной) очевидна.

- ullet Будем считать, что утверждение доказано для любого связного графа с меньшим чем v(G) количеством вершин.
- ullet Рассмотрим граф G-a. Пусть G_1,\ldots,G_k все компоненты графа G-a.
- В каждом графе G_i (где $i \in [1..k]$) ввиду связности графа G обязательно есть вершина a_i , смежная с a.
- ullet Рассмотрим граф G_i , оставив списки вершин неизменными. Тогда a_i станет избыточной вершиной (так как $d_{G_i}(a_i) \leq d_G(a_i) 1 \leq \ell(a_i) 1).$
- ullet По индукционному предположению вершины всех графов $G_1, \, \dots, \, G_k$ можно покрасить в соответствии со списками.
- Так как $d_G(a) < \ell(a)$, мы можем докрасить вершину a в один из цветов ее списка L(a), не нарушая правильности раскраски графа.

Пусть G — связный граф, а L — d-список. Предположим, что существуют две смежные вершины $a,b\in V(G)$ такие, что граф G-a связен и $L(a) \not\subset L(b)$. Тогда существует правильная раскраска вершин графа G в соответствии со списком L.

Доказательство. • Пусть $1 \in L(a) \setminus L(b)$.

- В связном графе G a из всех списков вершин множества $N_G(a)$, содержащих цвет 1, удалим этот цвет, остальные списки оставим без изменений.
- Получим новые списки L'(v) графа G-a.
- Все вершины графа G a нормальны: для вершин не из $N_G(a)$ это очевидно, а для $v \in N_G(a)$ мы имеем $\ell'(v) \ge \ell(v) - 1 \ge d_G(v) - 1 = d_{G-a}(v).$
- Из $1 \notin L(b)$ следует, что $\ell'(b) = \ell(b)$.
- \bullet Так как $d_{G-a}(b) = d_G(b) 1$, вершина b является избыточной.
- По Лемме 9 существует правильная раскраска вершин графа G-a в цвета из списка L'.
- Докрасив а в цвет 1, мы получим правильную раскраску вершин графа G в цвета списка L. 4 D > 4 A > 4 B > 4 B > B + Q Q

Связный граф, в котором каждый блок — нечетный цикл или полный граф, называется деревом Галлаи.

Теорема 12

(О.В.Бородин, 1977.) Если связный граф G не является деревом Галлаи, то G d-раскрашиваем.

Доказательство. \bullet Пусть каждой вершине v соответствует список L(v). НУО $\ell(v) = d_G(v)$ для каждой вершины $v \in V(G)$.

• Докажем утверждение индукцией по размеру графа.

База: G двусвязен.

- Если не все списки одинаковы, то существуют две смежные вершины a и b с $L(a) \neq L(b)$ и G раскрашиваем по Лемме 10.
- Значит, все списки одинаковы, пусть в них, скажем, dцветов. Тогда и все степени вершин одинаковы и равны d.
- Таким образом, мы имеем дело с правильной раскраской графа степени d в d цветов.
- \bullet По условию граф G отличен от полного графа и нечетного цикла. Значит, по теореме Брукса искомая раскраска существует.

Переход: G недвусвязен.

- ullet Пусть для меньшего чем G графа теорема доказана.
- Рассмотрим крайний блок B графа G, отделяемый от остального графа точкой сочленения a.
- Можно считать, что в графе G есть блок, отличный от B, от нечетного цикла и полного графа (иначе рассмотрим в качестве B другой крайний блок).
- Граф B-a, очевидно, связен, все его вершины по условию нормальны, а все смежные с a вершины (такие есть!) избыточны.
- Поэтому по Лемме 9 его вершины можно покрасить в соответствие со списками.
- Пусть $G' = G \operatorname{Int}(B)$. Граф G' имеет те же самые блоки, что G, кроме B, а значит, среди них есть блок, отличный от нечетного цикла и полного графа.
- Списки всех отличных от a вершин не изменились, a их степени такие же, как в графе G.

- ullet Новый список L'(a) будет содержать все цвета списка L(a), кроме тех, что использованы для раскраски вершин из $\mathrm{N}_B(a)$.
- ullet Таких цветов не более чем $d_B(a)$, а $d_G(a) = d_B(a) + d_{G'}(a)$. Поэтому $\ell'(a) \geq d_{G'}(a)$.
- По индукционному предположению существует правильная раскраска вершин G' в цвета из списка.
- \bullet Вместе с раскраской графа B-a мы получаем искомую правильную раскраску вершин графа G.
- Условие d-раскрашиваемости из Теоремы 12 является не только достаточным, но также и необходимым.
- Для любого дерева Галлаи можно придумать d-список, в который его вершины нельзя правильно покрасить.

Теорема 13

(В. Г. Визинг, 1976.) Пусть $d \geq 3$, а G- связный граф, отличный от K_{d+1} , $\Delta(G) \leq d$. Тогда $\mathrm{ch}(G) \leq d$.

Доказательство. • Пусть каждой вершине $v \in V(G)$ соответствует список L(v), причём $\ell(v) \geq d$.

- ullet Если G не дерево Галлаи, он раскрасшиваем по Теореме 12.
- Пусть G дерево Галлаи, то есть, все блоки графа G нечетные циклы и полные графы.
- ullet Из условия следует, что G недвусвязен. Тогда его блоки отличны от K_{d+1} .
- Рассмотрим крайний блок B графа G и его вершину b, не являющуюся точкой сочленения.
- Очевидно, $\ell(b) \geq d > d_B(b) = d_G(b)$, а значит, вершина b избыточна и искомая раскраска существует по Лемме 9.

Совершенные графы

Определение

Кликовое число графа G (обозначение: $\omega(G)$) — это количество вершин в наибольшей клике (то есть полном подграфе) этого графа.

- Очевидно, $\chi(G) \ge \omega(G)$.
- Как нам известно, большое хроматическое число в графе может быть даже в графе без треугольников, тем более без больших клик.
- Однако важное место в теории графов занимают графы, для которых хроматическое и кликовое число равны.

Определение

Граф G называется cosepwenthum, если для любого его индуцированного подграфа H выполняется условие $\chi(H)=\omega(H).$

- Простейшим примером совершенных графов являются полные графы и двудольные графы.
- Отметим, что любой индуцированный подграф совершенного графа также совершенен.

• В 1963 году Берж высказал две гипотезы о том, как устроены совершенные графы.

Слабая гипотеза Бержа. Граф G совершенен тогда и только тогда, когда граф \overline{G} совершенен.

Сильная гипотеза Бержа. Граф G совершенен тогда и только тогда, когда ни G, ни \overline{G} не содержат нечётного цикла длины более 3 в качестве индуцированного подграфа.

- Первая гипотеза была доказана в 1972 г., это сделал Л. Ловас. Доказательство с использованием линейной алгебры, которое мы приведём ниже, значительно проще первоначального доказательства.
- Вторая гипотеза была доказана только в 2002 году, доказательство весьма сложное и техническое.

Теорема 14

(L. Lovász, 1972.) Граф G совершенен тогда и только тогда, когда для любого его индуцированного подграфа G' выполняется $\omega(G')\omega(\overline{G'})=\alpha(G')\omega(G')\geq v(G').$ (*)

Следствие 1

Граф G совершенен тогда и только тогда, когда граф \overline{G} совершенен.

Доказательство. (G. Gasparian, 1996.)

Доказательство. • Следствие 1 очевидно, так как Теорема 14 даёт критерий совершенности графа, одинаковый для графа и его дополнения.

- Приступим к доказательству теоремы.
- \Rightarrow . Если граф совершенен, то для любого его индуцированного подграфа G' в силу его совершенности и Леммы 1 мы имеем

$$\omega(G') = \chi(G') \ge \frac{v(G')}{\alpha(G')}$$

откуда умножением на $lpha(\mathcal{G}')$ получаем то, что нужно.

Д.В.Карпов

- Рассмотрим граф G, удовлетворяющий условию (*).
- По индукционному предположению любой индуцированный подграф G совершенен.
- ullet В частности, для любой вершины $u \in V(G)$ граф G-u совершенен.
- Пусть $\alpha = \alpha(G)$, $\omega = \omega(G)$.
- ullet Тогда для любой вершины $u \in V(G)$ выполняется условие $\chi(G-u) = \omega(G-u) \leq \omega.$ (1)
- Предположим, что граф G не совершенен, то есть $\chi(G)>\omega(G).$
- ullet Пусть $A_0=\{u_0,\ldots,u_{lpha-1}\}$ независимое множество в графе G.
- Ввиду условия (1), существует правильная раскраска вершин $G-u_i$ в ω цветов, тогда $V(G-u_i)$ можно разбить на ω независимых множеств: $A_{i\omega+1},\ldots,A_{(i+1)\omega}$.
- ullet Итого мы имеем $lpha\omega+1$ независимых множеств:

• Пусть $i \in [0..\alpha\omega]$. Если $\chi(G - A_i) \le \omega - 1$, то из независимости множества A_i мы получаем $\chi(G) \le \chi(G - A_i) + 1 \le \omega$, что противоречит предположению.

- Тогда $\omega(G A_i) = \chi(G A_i) \ge \omega$, следовательно, существует клика размера ω в графе $G A_i$, обозначим множество ее вершин через C_i .
- ullet Таким образом, у нас есть клики $C_0,\ldots,C_{lpha\omega}$

Утверждение

Пусть С — множество вершин клики размера ω в графе G. Тогда C пересекает все множества $A_0,\ldots,A_{\alpha\omega}$, кроме одного.

Доказательство. • Рассмотрим разбиение вершин графа G на $\omega+1$ независимых множеств $\{\{u_i\},A_{i\omega+1},\ldots,A_{(i+1)\omega}\}.$

- ullet Так как C может пересекать независимое множество лишь по одной вершине, C пересекает все эти множества, кроме одного.
- Значит, C либо пересекает все множества $A_{i\omega+1},\ldots,A_{(i+1)\omega}$, либо все эти множества, кроме одного и при этом $C\ni u_i$.
- ullet Поскольку $|C \cap A_0| \le 1$, то C содержит не более, чем одну из вершин $u_0, \dots, u_{\alpha-1}$.

ullet Пусть $M\in M_{lpha\omega+1}(\mathbb{R})$ — матрица, заданная равенством $m_{i,j} = |A_i \cap C_j|$ (индексы пробегают значения из $[0..\alpha\omega]$).

Теория графов. Глава 5. Раскраски. Д. В. Карпов

- Понятно, что $m_{i,j} \in \{0,1\}$, причем по построению $m_{i,j} = 0$. \bullet Тогда по Утверждению $m_{i,j} = 1$ при $i \neq j$.
- Таким образом, матрица М имеет нули на главной диагонали и единицы на всех остальных позициях.

Утверждение

$$rk(M) = \alpha\omega + 1$$

Доказательство. ● Нужно доказать, что строки M ЛНЗ.

- ullet Пусть $k=lpha\omega$, а $s_0,\dots s_k\in\mathbb{R}$ таковы, что $w=\sum\limits_{i=0}^K s_iM_i=0.$
- ullet Пусть $s = \sum_{i=0}^k s_i$. Тогда $w = (s s_0, s s_1, \dots, s s_k)$.
- \bullet Следовательно, $\forall i \in \{0, ..., k\}$ $s s_i = 0$, откуда

$$ks = \sum_{i=0}^{\infty} (s - s_i) = 0$$
, а значит, и все $s_i = 0$.

- Таким образоам, строки матрицы М— ЛНЗ.

- ullet Пусть $V(G)=\{v_1,\ldots,v_n\}$. Рассмотрим матрицу $A\in M_{\alpha\omega+1,n}(\mathbb{R})$, в которой $a_{i,j}=1$ при $A_i
 i v_j$ и $a_{i,j}=0$ при $A_i
 ot\ni v_j$.
- Рассмотрим матрицу $B\in M_{n,\alpha\omega+1}(\mathbb{R})$, в которой $b_{j,\ell}=1$ при $v_j\in \mathcal{C}_\ell$ и $b_{j,\ell}=0$ при $v_j\not\in \mathcal{C}_\ell$.
- ullet Легко видеть, что $a_{s,j} = |A_s \cap \{v_j\}|$ и $b_{j,t} = |\{v_j\} \cap C_t|$.
- Проверим, что $A \cdot B = M$:

$$(ab)_{s,t} = \sum_{j=1}^n a_{s,j} b_{j,t} = \sum_{j=1}^n |A_s \cap \{v_j\}| \cdot |\{v_j\} \cap C_t| = |A_s \cap C_t| = m_{s,t}.$$

• Так как $\operatorname{rk}(M) \leq \min(\operatorname{rk}(A),\operatorname{rk}(B))$, мы имеем $v(G) = n \geq \operatorname{rk}(A) \geq \operatorname{rk}(M) = \alpha\omega + 1$,

что противоречит неравенству (*), а значит, и условию теоремы.

П

Определение

- ullet Обхват графа G это длина наименьшего цикла. Обозначение: g(G).
- ullet Если G лес, то $g(G):=\infty$.
- Мы уже знаем, что в графе без треугольников может быть сколь угодно большое хроматическое число.

Теорема 15

(P. Erdös, 1959). Пусть $k, g \in \mathbb{N}$, $k, g \ge 3$. Тогда существует граф G с $g(G) \ge g$ и $\chi(G) \ge k$.

Доказательство. • Пусть $n \geq (2\delta)^g$. Мы рассмотрим множество $\mathcal G$ всех графов G на множестве вершин $V=\{1,2,\ldots,n\}$ с $e(G)=\delta n$.

- ullet Мы не будем "экономить": параметр δ позже будет выбран настолько большим, чтобы все оценки проходили без лишних трудностей.
- ullet Пусть $m=rac{n\cdot (n-1)}{2}.$ Тогда $|\mathcal{G}|=\mathrm{C}_m^{\delta n}.$

Теория графов. Глава 5. Раскраски.

Д.В.Карпов

Утверждение 1

 $A < \frac{n}{6\delta - 3}$.

Доказательство. • На вершинах множества V существует $C_n^\ell \cdot \frac{(\ell-1)!}{2} < \frac{n^\ell}{2\ell}$ циклов фиксированной длины ℓ .

количество "коротких циклов" в графах из \mathcal{G} .

- ullet Данный цикл длины ℓ есть в $\mathbf{C}_{m-\ell}^{\delta n-\ell}$ графах множества $\mathcal{G}.$
- ullet Оценим сверху суммарное количество циклов длины не более g-1 в графах множества \mathcal{G} : $A'<\sum_{\ell=2}^{g-1}rac{n^\ell}{2\ell}\cdot\mathrm{C}_{m-\ell}^{\delta n-\ell}$.
- ullet Оценим отдельно каждое слагаемое, поделенное на $|\mathcal{G}|$:

$$A_{\ell} := \frac{n^{\ell}}{2\ell} \cdot \frac{C_{m-\ell}^{on-\ell}}{C_m^{\delta n}} = \frac{n^{\ell}}{2\ell} \cdot \frac{(m-\ell)!(\delta n)!}{(m)!(\delta n-\ell)!} = \frac{n^{\ell}}{2\ell} \cdot \frac{\delta n}{m} \cdot \frac{\delta n-1}{m-1} \cdot \dots \cdot \frac{\delta n-\ell+1}{m-\ell+1} < \frac{1}{2\ell} \left(\frac{\delta n^2}{m}\right)^{\ell},$$

так как при 0 < i < n выполняется неравенство $\frac{\delta n}{m} > \frac{\delta n - i}{m - i}$.

- ullet В силу $\ell < g$ мы имеем $n-1 \geq (2\delta)^g 1 > 2^\ell 1$.
- Продолжим оценку:

$$\begin{split} A_{\ell} &< \frac{1}{2\ell} \left(\frac{\delta n^2}{m} \right)^{\ell} = \frac{(2\delta)^{\ell}}{2\ell} \cdot \left(1 + \frac{1}{n-1} \right)^{\ell} < \\ &\qquad \qquad \frac{(2\delta)^{\ell}}{2\ell} \cdot \left(1 + \frac{2^{\ell}-1}{n-1} \right) < \frac{(2\delta)^{\ell}}{2\ell} \cdot 2 = \frac{(2\delta)^{\ell}}{\ell} \le \frac{(2\delta)^{\ell}}{3}. \end{split}$$

Вернемся к оценке на A:

$$A = \sum_{\ell=3}^{g-1} A_{\ell} < \frac{1}{3} \sum_{\ell=3}^{g-1} (2\delta)^{\ell} < \frac{1}{3 \cdot (2\delta - 1)} (2\delta)^{g} < \frac{n}{6\delta - 3}.$$

- \bullet Пусть c достаточно большое число. Для удобства будем считать, что $\frac{n}{c} = \mathbf{p} \in \mathbb{N}$.
- Пусть q доля графов в G, содержащих "большое" независимое множество (размера хотя бы $p = \frac{n}{c}$).

Д. В. Карпов

Доказательство. • Количество способов выбрать независимое множество размера p равно $C_n^p < 2^n$.

• Пусть $t = C_p^2$, тогда в каждом графе, содержащем большое независимое множество, t пар вершин этого множества не могут быть соединены рёбрами. Следовательно,

$$q \le C_n^p \cdot \frac{C_{m-t}^{\delta n}}{C_m^{\delta n}} < 2^n \cdot \prod_{i=0}^{\delta n-1} \frac{m-t-i}{m-i} < 2^n \cdot \left(\frac{m-t}{m}\right)^{\delta n} = 2^n \cdot \left(1 - \frac{t}{m}\right)^{\delta n}. \quad (1)$$

• Отметим, что

$$\frac{t}{m} = \frac{\frac{n^2}{c^2} - \frac{n}{c}}{n^2 - n} > \frac{1}{2c^2}.$$

• Подставив это неравенство в (1), мы получим

$$q < \left(2 \cdot \left(1 - \frac{1}{2c^2}\right)^{\delta}\right)^n < \frac{1}{2}$$

для любого c>0 при достаточно больших n и δ .

- Вернемся к доказательству теоремы.
- ullet Рассмотрим достаточно большие c, δ и n.
- ullet В силу Утверждения 1, среднее количество коротких циклов в графе из ${\cal G}$ удовлетворяет неравенству $A<rac{n}{6\delta-3}<rac{n}{6}.$
- ullet Следовательно, менее чем в половине графов из ${\mathcal G}$ количество коротких циклов превосходит $rac{n}{3}.$
- По Утверждению 2 менее чем в половине графов из ${\cal G}$ есть большое (не менее $\frac{n}{c}$) независимое множество.
- Следовательно, существует граф $G \in \mathcal{G}$ с $\alpha(G) < \frac{n}{c}$ и количеством коротких циклов не более $\frac{n}{3}$.
- Удалив из каждого короткого цикла по вершине, мы получим граф G' с $g(G') \geq g$, $v(G') \geq \frac{2n}{3}$ и $\alpha(G') < \frac{n}{c}$.
- По Лемме 1 мы имеем $\chi(G') \ge \frac{v(G')}{\alpha(G')} > \frac{2c}{3} > k$ при достаточно большом c.