Cálculo II (Grupo 1ºA) Relación de Ejercicios nº 4

Ejercicio 4.1: Sean f, g: $A \to \mathbb{R}$ funciones uniformemente continuas en A. Probar que f + g también es uniformemente continua en A. Si adicionalmente las funciones f y g están acotadas en A, demostrar que entonces la función producto f g también es uniformemente continua en A.

Ejercicio 4.2: Sea $f: \mathbb{R}^+ \to \mathbb{R}$ la función $f(x) = \frac{1}{x}$, para cada cada $x \in \mathbb{R}^+$. Dado r > 0, probar que la restricción de f a $[r, +\infty[$ es lipschitziana, mientras que la restricción de f a]0, r] no es uniformemente continua. ¿Sucede lo mismo con $g(x) = \ln x$?

Ejercicio 4.3: Sea *I* un intervalo no trivial. Probar que si todas las funciones continuas en *I* son uniformemente continuas en *I* entonces *I* es un intervalo cerrado y acotado.

Ejercicio 4.4: Sea $f: \mathbb{R} \to \mathbb{R}$ una función continua y sea r > 0. Probar que si la restricción de f al conjunto $\{x \in \mathbb{R} : |x| \ge r\}$ es uniformemente continua, entonces f es uniformemente continua.

Ejercicio 4.5: Sea $f:]a, b[\to \mathbb{R}$ una función (a < b). Demostrar que las siguientes afirmaciones son equivalentes:

- (i) Existe $f:[a, b] \to \mathbb{R}$ continua tal que f(x) = f(x), $\forall x \in]a, b[$.
- (ii) f es uniformemente continua en]a, b[.

Ejercicio 4.6: Sea $f: \mathbb{R} \to \mathbb{R}$ una función continua y periódica. Probar que:

- (i) f está acotada y alcanza (en \mathbb{R}) su máximo y su mínimo absoluto.
- (ii) f es uniformemente continua en \mathbb{R} .

Ejercicio 4.7: Se dice que dos sucesiones x_n e y_n son *paralelas* si, para cada $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que $|x_n - y_n| < \varepsilon$, para cada $n > n_0$. Demostrar que $f: A \to \mathbb{R}$ es uniformemente continua en A si, y solo si, transforma sucesiones paralelas de A en sucesiones paralelas de \mathbb{R} .

Ejercicio 4.8: Sea $A \subseteq \mathbb{R}$ un conjunto acotado. Demostrar que $f: A \to \mathbb{R}$ es uniformemente continua en A si, y solo si, preserva las sucesiones de Cauchy. ¿Sería cierto el resultado si A no es un conjunto acotado?

Ejercicio 4.9: Estudiar la continuidad uniforme de $f(x) = e^x$ en \mathbb{R}_0^+ y de g(x) = sen(1/x) en]0,1[.