Solution to Homework 7

1. $p_2 \equiv sp(p_1, x := x * 2) \equiv (p \land k < n)[x_0/x] \land x = x_0 * 2$ $\equiv ((x = 2 \land k \land k \le n) \land k < n)[x_0/x] \land x = x_0 * 2$ $\equiv (x_0 = 2 \land k \land k \le n \land k < n \land x = x_0 * 2)$ $p_3 \equiv sp(p_2, k := k + 1) \equiv p_2[k_0/k] \land k = k_0 + 1$ $\equiv (x_0 = 2 \land k \land k \le n \land k < n \land x = x_0 * 2)[k_0/k] \land k = k_0 + 1$ $\equiv (x_0 = 2 \land k \land k \le n \land k < n \land x = x_0 * 2)[k_0/k] \land k = k_0 + 1$ $\equiv (x_0 = 2 \land k \land k \le n \land k \le n \land x = x_0 * 2 \land k = k_0 + 1)$ $R_1 \equiv \text{postcondition weakening 3, 4}$ $R_2 \equiv \text{while loop, 5}$

Quick sanity check: $p_3 \rightarrow p$? $p_3 = (x_0 = 2 \land k_0 \land k_0 \le n \land k_0 < n \land x = x_0 * 2 \land k = k_0 + 1)$ $\Rightarrow x_0 * 2 = 2 \land (k_0 + 1) \land k_0 + 1 < n + 1 \land (x = x_0 * 2 \land k = k_0 + 1)$ $\Rightarrow x = 2 \land k \land k < n + 1$ $\Rightarrow x = 2 \land k \land k \le n$

2. (Proof of if-else statement)

 $\equiv p$

- $q_1 \equiv q \land odd(x)$ $\equiv r = X * Y - x * y \land odd(x)$
- $R_1 \equiv assignment (forward)$
- $q_2 \equiv (q \land odd(x))[r_0/r] \land r = (r+y)[r_0/r]$ $\equiv r_0 = X * Y - x * y \land odd(x) \land r = r_0 + y$
- R_2 = postcondition weakening 2, 3
- $q_3 \equiv q_2[x_0/x] \land x = (x-1)[x_0/x]$ = $r_0 = X * Y - x_0 * y \land odd(x_0) \land r = r_0 + y \land x = x_0 - 1$
- $R_3 \equiv assignment (backward)$
- $q_4 \equiv q[(x/2)/x]$ $\equiv r = X * Y (x/2) * y$
- $R_4 \equiv assignment (backward)$
- $q_5 \equiv q_4[2*y/y]$ $\equiv r = X*Y - (x/2)*(2*y)$
- R_5 = precondition strengthening 8, 7
- $q_6 \equiv q \land even(x)$ $\equiv r = X * Y - x * y \land even(x)$
- $R_6 = \text{if } 10, 5$