Mathématiques

Alexandre

Table des matières

1	Séries numériques et vectorielles		1
	1.1	Définitions	1
	1.2	Séries réelles à termes positifs	1
	1.3	Séries absolument convergentes	1
	1.4	Séries alternées	1
	1.5	Techniques randoms	1

Séries numériques et vectorielles 1

Définitions 1.1

Proposition 1

Une suite converge si et seulement si sa série téléscopique associée converge.

$$\forall (u_n) \in \mathbb{R}^{\mathbb{N}}, (u_n) \text{ converge } \iff \sum (u_{n+1} - u_n) \text{ converge}$$

- 1. Convergence d'une série (somme partielle et reste partiel)
- 2. opération sur les séries convergentes (c'est un K espace vectoriel)
- 3. Lien convergence suites/séries (téléscopique, terme général tends vers 0)

1.2 Séries réelles à termes positifs

Proposition 2 (règle d'Alembert)

Soit (u_n) une suite réelle strictement positive, telle que $\frac{u_{n+1}}{u_n} \longrightarrow l$

- si l < 1, la série $\sum u_n$ converge si l > 1, la série $\sum u_n$ diverge si $l = 1^+$, la série $\sum u_n$ diverge
- 1. Règles d'Alembert
- 2. Théorème de césaro
- 3. Comparaison avec des ingéalités
- 4. Comparaison avec des petit o ou grand O ou équivalent
- 5. Implication sur des séries (jsp comment écrire)
- 6. Comparaison série/intégrale

1.3 Séries absolument convergentes

- 1. En dimension finie, toute série absolument convergente est convergente
- 2. Résultats sur les sommations dans les relations de dominations???
- 3. Produit de Cauchy

Séries alternées 1.4

1. CSSA

1.5 Techniques randoms

- 1. quand on a un quotient $\frac{u_{n+1}}{u_n}$, passez au log pour faire des séries téléscopiques
- 2. pour trouver un équivalent à une suite, voire sa série, étudier la série de la forme $\frac{1}{u_{n+1}^{\alpha}} - \frac{1}{u_n^{\alpha}}$

- 3. quand on cherche l'équivalent A_n d'une série à termes de signe non constant, on peut étudier la différence u_n-A_n
- 4. equivalent suites récurantes gourdon p229