

Eksamen REA3056 matematikk R1 høst 2022

Del 1 – uten hjelpemidler – 1 time

Oppgave 1

Avgjør for hver av funksjonene nedenfor om den har en omvendt funksjon. Husk å begrunne svaret.

a)
$$f(x) = x^4$$
, $D_f = \mathbb{R}$

Løsning

For at en funksjon skal ha en omvendt funksjon, må den være én-entydig, det vil si at hver funksjonsverdi, f(x), bare framkommer av kun én x-verdi.

Denne funksjonen er ikke én-entydig siden for eksempel både f(-1) = 1 og f(1) = 1. Funksjonen f har ikke en omvendt funksjon.

b)
$$g(x) = e^{-(x-2)^2}$$
, $D_g = [2, \to)$

Løsning

Funksjonen g(x) er én-entydig dersom funksjonen enten er stigende eller synkende i hele definisjonsområdet. For å avgjøre dette deriverer vi funksjonsuttrykket og undersøker om fortegnet til den deriverte endrer seg i definisjonsmengden.

$$g'(x) = e^{-(x-2)^2} \cdot (-2x+4) = -2(x-2) \cdot e^{-(x-2)^2}$$

 $e^{-(x-2)^2}$ er alltid større enn 0. Siden $x \ge 2$, vil -2(x-2) < 0, så g'(x) vil alltid være negativ. Funksjonen g har derfor en omvendt funksjon i definisjonsområdet.

Oppgave 2

Bestem grenseverdien

$$\lim_{h \to 0} \frac{(4+h)^2 - 4^2}{h}$$

Løsning

Vi ser at når $h \to 0$, går både telleren og nevneren mot 0. Vi regner ut telleren og undersøker om vi kan faktorisere og forkorte:

$$\lim_{h \to 0} \frac{(4+h)^2 - 4^2}{h} = \lim_{h \to 0} \frac{4^2 + 8h + h^2 - 4^2}{h} = \lim_{h \to 0} \frac{8h + h^2}{h} = \lim_{h \to 0} \frac{h(8+h)}{h} = \lim_{h \to 0} (8+h) = 8$$

Grenseverdien til brøken når $h \rightarrow 0$, er 8.

Hvilket av tallene er mindre enn 10? Husk å begrunne svarene.

$$3\sqrt{11}$$
 10 lg 9 5 ln 9

Løsning

Er $3\sqrt{11}$ mindre enn 10?

$$3\sqrt{11} = \sqrt{9} \cdot \sqrt{11} = \sqrt{99}$$

Siden
$$\sqrt{99} < \sqrt{100}$$
, er $\sqrt{99} < 10$.

 $3\sqrt{11}$ er mindre enn 10.

Er 10 lg 9 mindre enn 10?

Logaritmen til et tall er det tallet vi må opphøye 10 i for å få tallet. $10^1 = 10$, så $\lg 10 = 1$. $\lg 9$ vil derfor være et tall som er mindre enn 1. $10 \lg 9$ vil derfor være 10 multiplisert med et tall som er mindre enn 1.

10 lg 9 er mindre enn 10.

Er 5 ln 9 mindre enn 1?

$$5 \ln 9 = 5 \ln 3^2 = 2 \cdot 5 \ln 3 = 10 \ln 3$$

$$e \approx 2,72 \text{ og } 10 \ln e = 10.$$

 $10 \ln 3 > 10 \ln e$

5 ln 9 er større enn 1.

Oppgave 4

Vi har gitt punktene A(1,1), B(9,7) og P(5,9).

a) Vis at $\angle APB = 90^{\circ}$.

Løsning

Hvis en vinkel er 90° , vil skalarproduktet mellom vektorene som danner vinkelen, være lik 0.

$$\overrightarrow{AP} = [5 - 1, 9 - 1] = [4, 8]$$

$$\overrightarrow{BP} = [5 - 9.9 - 7] = [-4.2]$$

$$\overrightarrow{AP} \cdot \overrightarrow{BP} = [4, 8] \cdot [-4, 2] = 4 \cdot (-4) + 8 \cdot 2 = -16 + 16 = 0$$

Vi har vist at $\angle APB = 90^{\circ}$.

En linje ℓ er parallell med \overrightarrow{AB} og går gjennom punktet P.

Det er også et annet punkt Q på ℓ som er slik at $\angle AQB = 90^{\circ}$.

b) Bestem koordinatene til Q.

Løsning

Hvis ei linje er parallell med en vektor, er vektoren retningsvektor for linja. Når vi i tillegg kjenner et punkt P på denne linja, kan vi sette opp en parameterframstilling for linja.

$$\overrightarrow{AB} = [9 - 1, 7 - 1] = [8, 6]$$

$$\overrightarrow{r_{\ell}} = [8, 6] = 2[4, 3]$$

$$\ell : \begin{cases} 5 + 4t \\ 9 + 3t \end{cases}$$

Siden $\angle AQB$ er 90°, må skalarproduktet $\overrightarrow{AQ} \cdot \overrightarrow{BQ} = 0$.

$$\overrightarrow{AQ} = [5 + 4t - 1, 9 + 3t - 1] = [4 + 4t, 8 + 3t]$$

 $\overrightarrow{BO} = [5 + 4t - 9, 9 + 3t - 7] = [4t - 4, 3t + 2]$

$$\overrightarrow{AQ} \cdot \overrightarrow{QB} = 0$$

$$[4 + 4t, 8 + 3t] \cdot [4t - 4, 3t + 2] = 0$$

$$(4 + 4t)(4t - 4) + (8 + 3t)(3t + 2) = 0$$

$$16t^2 - 16 + 24t + 16 + 9t^2 + 6t = 0$$

$$25t^2 + 30t = 0$$

$$5t(5t + 6) = 0$$

$$t = 0 \quad \text{eller} \quad 5t + 6 = 0$$

$$t = 0 \quad \text{eller} \quad t = -\frac{6}{5}$$

$$Q = (5 + 4 \cdot 0, 9 + 3 \cdot 0) = (5, 9)$$

eller

$$Q = \left(5 + 4 \cdot \left(-\frac{6}{5}\right), 9 + 3 \cdot \left(-\frac{6}{5}\right)\right) = \left(5 - \frac{24}{5}, 9 - \frac{18}{5}\right) = \left(\frac{1}{5}, \frac{27}{5}\right)$$

Det første punktet vi fant, er punktet P. Koordinatene til Q er $\left(\frac{1}{5}, \frac{27}{5}\right)$.

Marianne har skrevet følgende program:

1	def f(x):	
2	return(6*x-3)/(x-1)	#Definerer funksjonen $f(x)=(6x-3)/(x-1)$
3		
4	h=0.00001	
5	def Df(x):	
6	return(f(x+h)-f(x))	/h
7		
8	a=1.5	#En startverdi
9	while Df(a)<-3:	
10	a=a+0.001	
11		
12	b=f(a) - Df(a)*a	#Regner ut konstantleddet
13		
14	print("y = -3x + ",b)	

Bestem verdien av variabelen b som defineres på linje 12.

Løsning

I programmet over defineres funksjonen f(x) som $\frac{6x-3}{x-1}$. En variabel h settes lik 0,00001, og en ny funksjon, Df(x), defineres som $\frac{f(x+h)-f(x)}{h}$.

Vi gjenkjenner Df(x) fra definisjonen til den deriverte av f, og Df vil derfor representere stigningstallet til tangenten i et punkt på grafen til f for små verdier av h.

$$f'(x) = \frac{6(x-1) - (6x-3) \cdot 1}{(x-1)^2} = \frac{6x - 6 - 6x + 3}{(x-1)^2} = \frac{-3}{(x-1)^2}$$

Videre i programmet settes a lik 1,5, før ei løkke gjentas så lenge Df(a) < -3 når a øker med 0,001 for hver gang løkka gjentas. Når løkka avsluttes, vil med andre ord a ha en verdi som gjør at $f'(a) \approx -3$.

Marianne ønsker å finne tangenten i et punkt på grafen til f der den deriverte er -3.

Vi beregner derfor x når den deriverte er lik -3:

$$\frac{-3}{(x-1)^2} = -3$$

$$1 = (x-1)^2$$

$$x-1=1 \qquad \text{eller} \qquad x-1=-1$$

$$x=2 \qquad \text{eller} \qquad x=0$$

Siden startverdien til a=1.5 og a øker, vil riktig x-verdi i dette tilfellet være x=2, og b representerer konstantleddet til tangenten i punktet (2, f(2)).

I linje 12 vil b beregnes som $b = f(a) - Df(a) \cdot a \approx f(2) - (-3) \cdot (2) = \frac{6(2) - 3}{(2) - 1} + 6 = 9 + 6 = 15.$

Del 2 – med hjelpemidler – 2 timer

Oppgave 1

Tabellen nedenfor viser hvor mye elektrisk energi Norge produserte noen utvalgte år.

År	1950	1960	1970	1981	1990	2000	2012	2020
Produksjon (GWh)	16 924	31 121	57 606	93 397	121 848	142 816	147 716	154 197

a) Bruk tallene fra tabellen til å lage en logistisk modell g som viser oss Norges energiproduksjon x år etter 1950.

Løsning

Vi gjennomfører regresjon ved hjelp av GeoGebra. Vi legger inn tallene fra tabellen i regnearkdelen og bytter ut årstallene med antall år etter 1950:

0	10	20	31	40	50	62	70
16 924	31 121	57 606	93 397	121 848	142 816	147 716	154 197

Vi markerer tallene i regnearket, velger regresjonsanalyse og deretter logistisk modell. Dette gir følgende resultat:

 $g(x) = \frac{157303}{1+9,6396 \cdot e^{-0,0867x}}$ er en logistisk modell som viser oss Norges energiproduksjon x år etter 1950.

b) I hvilket år økte produksjonen raskest ifølge modellen g?

Løsning

Produksjonen økte raskest i vendepunktet. Vi finner x-verdien til et vendepunkt ved å finne når den dobbeltderiverte til funksjonen er lik 0. Dette gjør vi ved å løse likning i CAS:

$$g''(x) = 0$$

$$Løs: \left\{ x = \frac{-66993398}{5573951} \ln \left(\frac{317647}{2362908} \right) \right\}$$

$$\begin{cases} x = -\frac{14788505}{1282467} \ln \left(\frac{2354308}{22694503} \right) \right\}$$

$$\approx \left\{ x = 26.128 \right\}$$

Produksjonen økte raskest 26,1 år etter 1950, det vil si i år 1976.

Tabellen nedenfor viser forbruket av elektrisk energi i Norge noen utvalgte år.

År	1950	1960	1970	1981	1990	2000	2012	2020
Forbruk	16 924	31 253	56 770	88 161	105 941	123 761	129 900	133 725
(GWh)								

c) Bruk tallene fra tabellen til å lage en modell som du mener vi kan bruke til å vurdere om vi på sikt vil være selvforsynte med elektrisk energi.

Løsning

Vi gjennomfører en ny regresjon i GeoGebra ved å legge inn tallene fra tabellen i regnearket. Også nå erstatter vi årstallene med antall år etter 1950.

0	10	20	31	40	50	62	70
16 924	31 253	56 770	88 161	105 941	123 761	129 900	133 725

Vi markerer tallene i regnearket, velger regresjonsanalyse og deretter logistisk modell. Dette gir følgende resultat:

Vi skriver inn begge funksjonsuttrykkene i algebrafeltet i GeoGebra og sammenlikner grafen for produksjon av elektrisk energi med grafen for forbruk av elektrisk energi:

Ut fra grafene ser vi at Norge etter 1965 har produsert mer energi enn vi forbruker. Dette kan vi også se ved løsning av likning i CAS:

g = h

NLøs:
$$\{x = 15.424\}$$

Når du bruker blitsen på et fotokamera, vil batteriet lade den opp igjen. Ladningen Q i blitsen t sekunder etter at den går av, er gitt ved

$$Q(t) = Q_0(1 - e^{-2,3t})\,, \quad t \ge 0$$

Her er Q_0 den maksimale ladningen i blitsen.

a) Bestem den omvendte funksjonen til Q.

Løsning

Vi definerer funksjonen Q(t) i CAS og bestemmer den omvendte funksjonen ved å løse likningen y = Q(t) med hensyn på t (kommandoen «Invers» gir ikke riktig svar):

$$\begin{aligned} & \mathsf{Q}(\mathsf{t}) := \mathsf{Q}_0 \left(1 - e^{-2.3\mathsf{t}} \right) \\ & \to & \mathsf{Q}(\mathsf{t}) := \mathsf{Q}_0 \left(-e^{\frac{-23}{10}\mathsf{t}} + 1 \right) \\ & \mathsf{L} \mathsf{gs}(\mathsf{y} = \mathsf{Q}, \mathsf{t}) \\ & \to & \left\{ \mathsf{t} = \frac{-10}{23} \, \ln \! \left(\frac{\mathsf{Q}_0 - \mathsf{y}}{\mathsf{Q}_0} \right) \right\} \end{aligned}$$

Vi bytter navn på variablene og får at den omvendte funksjonen til Q er $g(t) = -\frac{10}{23} \ln \frac{Q_0 - t}{Q_0}$.

b) Hvor lang tid tar det før blitsen har fått 90 prosent av den maksimale ladningen?

Løsning

90 prosent av den maksimale ladningen kan uttrykkes som $0.9 \cdot Q_0$, og ut fra dette kan vi sette opp følgende likning:

$$0.9 \cdot Q_0 = Q_0(1 - e^{-2.3t})$$

Vi ser at vi har Q_0 på begge sider av likningen, og siden $Q_0 \neq 0$, kan vi forenkle likningen:

$$0.9 = 1 - e^{-2.3t}$$

Vi løser likningen i CAS:

0.9 =
$$(1 - e^{-2.3t})$$

Løs: $\left\{ \mathbf{t} = \frac{10}{23} \ln(10) \right\}$
 $\left\{ \mathbf{t} = \frac{10}{23} \ln(10) \right\}$
 $\mathbf{t} = \left\{ \mathbf{t} = \mathbf$

Det tar 1 sekund før blitsen har fått 90 prosent av den maksimale ladningen.

Oppgave 3

Vi har gitt punktene A(0,0), B(9,1) og C(24,10). En stråle ℓ er gitt ved parameterframstillingen

$$\ell \colon \begin{cases} x = 12t \\ y = 5t \end{cases}, \ t > 0$$

a) Vis at C ligger på ℓ .

Løsning

Hvis punktet C ligger på ℓ , må punktets koordinater passe med parameterframstillingen til ℓ :

12t = 24

Løs:
$$\{t = 2\}$$

5t = 10

Løs: $\{t = 2\}$

Vi ser at vi får samme t-verdi ved løsning av likningene, og vi har dermed vist at C ligger på ℓ .

b) Bruk vektorregning til å bestemme $\angle BAC$.

Løsning

Vi definerer punktene A, B og C i CAS, og deretter \overrightarrow{AB} og \overrightarrow{AC} .

A := (0,0)

A := (0,0)

B := (0,0)

B := (9,1)

C := (24,10)

AB := Vektor(A, B)

AB :=
$$\begin{pmatrix} 9\\1 \end{pmatrix}$$

AC := Vektor(A, C)

AC := $\begin{pmatrix} 24\\10 \end{pmatrix}$

Vi kan nå finne $\angle BAC$ ved hjelp av skalarproduktet:

AB AC = |AB| |AC|
$$\cos(x^{\circ})$$

NLøs: $\{x = -16.28, x = 16.28\}$

$$\angle BAC = 16,28^{\circ}.$$

Et annet punkt D ligger på ℓ slik at $\angle ADB = 120^{\circ}$.

c) Bruk vektorregning til å bestemme koordinatene til D.

Løsning

Når punktet D ligger på ℓ , kan punktet uttrykkes ved hjelp av parameteren t:

$$D = (12t, 5t)$$

Vi definerer dette punktet i CAS og bruker skalarproduktet for å bestemme t:

D := (12 t, 5 t)

D := (12 t, 5 t)

DA := Vektor(D, A)

DB :=
$$\begin{pmatrix} -12 t \\ -5 t \end{pmatrix}$$

DB := Vektor(D, B)

DB := $\begin{pmatrix} 9 - 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\ 1 - 5 t \end{pmatrix}$

DA DB := $\begin{pmatrix} 12 t \\$

Punktet D har koordinatene (6,671,2,78).

Et punkt E ligger på ℓ slik at arealet til ΔABE er 11.

d) Bestem de eksakte koordinatene til E.

Siden også dette punktet ligger på linja ℓ , angis det på samme måte som punktet D når vi bruker parameterframstillingen. Vi kan derfor bruke samme definisjon av punktet E i CAS. Vi finner først en eksakt verdi for vinkel A, og siden vi vet arealet av ΔABE , kan vi bruke arealsetningen til finne en ny verdi for t.

E:= (12 t, 5 t)

$$\approx E := (12 t, 5 t)$$

AE:= Vektor(A, E)

 $\approx AE := \begin{pmatrix} 12 t \\ 5 t \end{pmatrix}$

VinkelA:= Vinkel(AB, AC)

 $\Rightarrow VinkelA := cos^{-1} \left(113 \cdot \frac{\sqrt{82}}{1066} \right)$
 $11 = \frac{1}{2} |AB| |AE| sin(VinkelA)$

Løs: $\left\{ t = \frac{-2}{3}, t = \frac{2}{3} \right\}$

ByttUt $\left(E, t, \frac{2}{3} \right)$
 $\Rightarrow \left(8, \frac{10}{3} \right)$

Vi får to verdier for t, men siden t > 0 er det kun $t = \frac{2}{3}$ som er gyldig verdi.

De eksakte koordinatene til E er $\left(8, \frac{10}{3}\right)$.

Oppgave 4

Nedenfor ser du tre påstander. Avgjør i hvert tilfelle om påstanden er sann. Husk å argumentere!

a) Hvis f(a) = f(b) for en funksjon f, så er a = b.

Løsning

Hvis
$$f(x) = x^2$$
, $a = 1$ og $b = -1$, har vi at $f(a) = f(b)$ siden $f(1) = f(-1)$ og $a \neq b$.

Påstanden er ikke sann, for den kan motbevises.

b) Hvis 0 < a < b, så er $\ln a < \ln b$.

Løsning

 $\ln x$ er det tallet vi må opphøye tallet e i for å få x. Funksjonen $\ln (x)$ er derfor en funksjon som vokser med økende x. Hvis a og b er positive tall og a < b, har vi følgende:

$$\ln a < \ln b$$

Påstanden er sann.

c) Hvis a > 0 og x > 0, så er $(\ln x)' = (\ln ax)'$.

Løsning

 $a \circ x \circ x$ er positive tall.

$$(\ln x)' = \frac{1}{x}$$

$$(\ln ax)' = \frac{1}{ax} \cdot a = \frac{1}{x}$$

Påstanden er sann.

Oppgave 5

En funksjon f er gitt ved

$$f(x) = 1 - x^2$$
 , $D_f = [0, 1]$

La $a \in (0,1)$ og O være origo. Tangenten til grafen til f i punktet P(a,f(a)) skjærer x-aksen i punktet A og y-aksen i punktet B som vist på figuren.

a) Bestem arealet av $\triangle OAB$ når $P = (\frac{1}{2}, \frac{3}{4})$.

Løsning

Linja fra punkt A til punkt B er tangent til funksjonen f i punktet P.

Stigningstallet til tangenten i et punkt er verdien til den deriverte til funksjonen for punktets x-verdi.

$$f'(x) = -2x$$

$$f'\left(\frac{1}{2}\right) = -2 \cdot \frac{1}{2} = -1$$

Den rette linja fra A til B går gjennom punktet $\left(\frac{1}{2}, \frac{3}{4}\right)$ og har stigningstall -1. Vi bruker ettpunktsformelen:

$$y - y_1 = a(x - x_1)$$

$$y - \frac{3}{4} = -1\left(x - \frac{1}{2}\right)$$

$$y = -x + \frac{5}{4}$$

I punkt A er y = 0:

$$0 = -x + \frac{5}{4}$$

$$x = \frac{5}{4}$$

Punkt A er gitt ved $\left(\frac{5}{4}, 0\right)$.

I punkt B er x = 0:

$$y = \frac{5}{4}$$

Punkt B er gitt ved $\left(0, \frac{5}{4}\right)$.

Arealet av trekanten: $\frac{1}{2} \cdot \frac{5}{4} \cdot \frac{5}{4} = \frac{25}{32} \approx 0.781$

b) Bestem det minste arealet $\triangle OAB$ kan ha.

Løsning

Hvis vi finner et funksjonsuttrykk for arealet av trekanten, vil det minste arealet være når grafen har et bunnpunkt. I et bunnpunkt er den deriverte lik null og den andrederiverte positiv.

Vi definerer funksjonen f og punktet P i CAS og bestemmer et generelt uttrykk for tangenten:

$$f(x) := 1 - x^{2}$$

$$f(x) := -x^{2} + 1$$

$$P := (a, f(a))$$

$$P := (a, -a^{2} + 1)$$

$$T(x) := Tangent(P, f)$$

$$T(x) := a^{2} - 2 a x + 1$$

I punkt A er y = 0:

$$0 = a^2 - 2ax + 1$$

$$x = \frac{a^2 + 1}{2a}$$

I punkt B er x = 0:

$$T(0) = a^2 + 1$$

En funksjon for arealet av trekanten er

$$h(a) = \frac{1}{2} \cdot \frac{a^2 + 1}{2a} \cdot (a^2 + 1)$$

$$h(a) = \frac{1}{2} \cdot \frac{(a^2 + 1)^2}{2a}$$

Vi kan nå definere funksjonen h(a) i CAS og bestemme den deriverte, kontrollere fortegnet til den dobbeltderiverte og til slutt bestemme arealet:

$$h(a) := \frac{1}{2} \cdot \frac{(a^2 + 1)^2}{2 a}$$

$$\rightarrow h(a) := \frac{1}{2} \cdot \frac{(a^2 + 1)^2}{2 a}$$

$$h'(a) = 0$$

$$Løs: \left\{ a = \frac{-\sqrt{3}}{3}, a = \frac{\sqrt{3}}{3} \right\}$$

$$h''\left(\frac{\sqrt{3}}{3}\right)$$

$$\rightarrow 2\sqrt{3}$$

$$h\left(\frac{\sqrt{3}}{3}\right)$$

$$\rightarrow \frac{4}{9}\sqrt{3}$$

$$\approx 0.77$$

Det minste arealet trekant OAB kan ha, er $\frac{4}{9}\sqrt{3} \approx 0.77$.

Oppgave 6

Tyngdepunktet T i en trekant ABC er gitt ved

$$\overrightarrow{OT} = \frac{1}{3} \left(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} \right)$$

der O er origo.

Lag et program hvor du oppgir koordinatene til punktene A, B og C.

Programmet skal skrive ut koordinatene til tyngdepunktet.

Løsning

1	from numpy import array
2	
3	OA=array([1,3])
4	OB=array([2,4])
5	OC=array([5,2])
6	
7	OT=1/3* (OA+OB+OC)
8	
9	<pre>print(f"Koordinatene er {round(OT[0],2),round(OT[1],2)}.")</pre>

Utskrift ved kjøring av programmet: «Koordinatene er (2.67, 3.0).»

En funksjon f er gitt ved

$$f(x) = 2x + 5 + \frac{1}{x - 1}$$

a) For hvilke verdier av k har likningen f'(x) = k løsning?

Løsning

Vi bestemmer først den deriverte: $f'(x) = 2 - \frac{1}{(x-1)^2}$.

Siden brøken i uttrykket alltid vil være positiv, vil den deriverte alltid være mindre enn 2, men nærme seg 2 når x går mot $\pm \infty$.

Likningen f'(x) = k har løsning for k < 2.

b) Velg ulike verdier av k, og beskriv symmetrien i løsningene til likningen f'(x) = k for hver av disse verdiene.

Løsning

Vi velger ulike verdier av k og løser likningene:

Vi ser at likningene gir to løsninger, og at summen av løsningene alltid er lik 2. Symmetrien i løsningene er at de ligger på hver sin side av den loddrette asymptoten x=1.

La g være en funksjon som kan skrives på formen

$$g(x) = a \cdot x + b + \frac{1}{x+d}$$

c) For hvilke verdier av a har likningen g'(x) = 4 løsning?

Løsning

$$g'(x) = a - \frac{1}{(x+d)^2}$$

Ut fra det vi fant i oppgave a), kan vi si at siden brøken i uttrykket alltid vil være positiv, vil den deriverte alltid være mindre enn a. Likningen g'(x) = 4 har derfor en løsning dersom a > 4.

La nå a=3.

d) Utforsk og beskriv løsningene til likningen g'(x) = k for ulike verdier av k.

Løsning

a = 3 gir følgende likning:

$$g'(x) = 3 - \frac{1}{(x+d)^2}$$

Ut fra resultatene i oppgave b) vet vi at denne funksjonen har en vertikal asymptote for x = -d. Løsningene til likningen g'(x) = k vil for hver verdi av k være symmetrisk om linja x = -d.

e) Bestem *b* og *d* slik at g'(-1) = g'(5) og g(1) = 7.

Løsning

Vi setter inn i den første likningen:

$$g'(-1) = g'(5)$$
$$3 - \frac{1}{(-1+d)^2} = 3 - \frac{1}{(5+d)^2}$$

Vi løser likningen i CAS:

$$3 - \frac{1}{(-1+d)^2} = 3 - \frac{1}{(5+d)^2}$$
Løs: $\{d = -2\}$

Vi setter inn d = -3 i den andre likningen:

$$g(1) = 7$$
$$3 \cdot 1 + b + \frac{1}{1 + (-3)} = 7$$

Vi løser likningen i CAS:

$$3 \cdot 1 + b + \frac{1}{1 - 2} = 7$$
Løs: $\{b = 5\}$

Hvis b = 5 og d = -2, vil g'(-1) = g'(5) og g(1) = 7.

Kilder for bilder, tegninger osv.

Tegninger og grafiske framstillinger: Utdanningsdirektoratet eller NDLA