Initialization of Constrained LASSO path

안승환 2019년 9월

¹Department of Statistics University of Seoul

Goal

Constrained lasso problem with only equality constraints:

minimize
$$L(\beta) + \rho ||\beta||_1$$
 subject to $\mathbf{A}\beta = 0$ (1)

(We could think of $L(\beta)$ as $\frac{1}{2}||\mathbf{y}-\mathbf{X}\beta||_2^2$.) Since we perform path following in the decreasing direction, an initializing value for the parameter ρ is needed.

$$(\mathbf{y} \in \mathbb{R}^n, \mathbf{X} \in \mathbb{R}^{n \times p}, \boldsymbol{\beta} \in \mathbb{R}^p, \mathbf{A} \in \mathbb{R}^{m \times p})$$

Goal

As $\rho \to \infty$, the solution ${\boldsymbol \beta}$ to the original problem is given by

minimize
$$||\boldsymbol{\beta}||_1$$
 subject to $\mathbf{A}\boldsymbol{\beta}=0$

And obviously, the solution $\hat{\beta}$ for the above problem is 0_p .

3

KKT condition

The stationarity condition of KKT conditions is as follows:

$$\nabla L(\beta) + \rho sign(\beta) + \mathbf{A}^T \lambda = \mathbf{0}_p$$

, where $\lambda \in \mathbb{R}^m$ is lagrangian multiplier and $sign(\beta)$ means the subgradient of $||\beta||_1$. And $|sign(\beta)| \leq 1_p$, we can transform above condition as follows:

$$|\nabla L(\boldsymbol{\beta}) + \mathbf{A}^T \lambda| \le \rho 1_p$$

4

Lemma

For fixed ρ , β , let $\mathcal{E}_{\rho}(\beta) = \{\lambda \in \mathbb{R}^m : |\nabla L(\beta) + \mathbf{A}^T \lambda| \leq \rho \mathbf{1}_p\}$, and let $\rho_{max} = \inf\{\rho \in \mathbb{R} : \mathcal{E}_{\rho}(\beta) \neq \varnothing\}$. Then for $\rho < \rho_{max}$, $\beta = \mathbf{0}_p$ is not solution of (1).

Corollary

The minimizer of (1) for a ρ is $\beta=0_p$ if and only if $\rho\geq\rho_{max}$, where ρ_{max} is the solution of (3). And also, we can get the solution λ_{max} corresponding to ρ_{max} by (3).

minimize
$$\rho$$

subject to $z = \mathbf{A}^T \lambda$
 $z \le -X^T y + \rho 1$ (3)
 $z \ge -X^T y - \rho 1$
 $\rho \ge 0$

Active Set

So, we can initialize active set A as follows:

$$\mathcal{A} = \{j : |\nabla L(\beta)_j + a_j^T \lambda_{max}| = \rho_{max}\}$$

where $\mathbf{A} = [a_1, \cdots a_p]$.

Because If ρ is decreased very little as $\rho < \rho_{max}$, $\hat{\beta}_j = 0$ cannot be the coefficient of solution (1) for predictor x_j . So, predictor x_j must be activated.

7

Uniqueness of λ

 λ_{\max} is the unique solution to (3) if the solution for $\mathbf{A}_{\mathcal{A}}^T \tilde{\lambda} = 0$ is only $\tilde{\lambda} = 0$. ($\Leftrightarrow \mathbf{A}_{\mathcal{A}}^T$ is full column).

Because we can formulate an equation for predictors which are set on boundaries of the stationarity condition(which are also included in active set A) as follows:

$$|\nabla L(\boldsymbol{\beta})_{\mathcal{A}} + \mathbf{A}_{\mathcal{A}}^T (\lambda_{max} + \tilde{\lambda})| = \rho_{max} 1_{\mathcal{A}}$$