Mathematik III

Marius Hobbhahn, Florian Friedrich

11. April 2017

Inhaltsverzeichnis

1	Vek	torräume 7
	1.1	Definition (Reelle Vektorräume)
	1.2	Beispiel
	1.3	Lemma
	1.4	Definition (Untervektorraum)
	1.5	Beispiel
	1.6	Satz (Unterraumkriterium)
	1.7	Beispiel
	1.8	Satz (Verknüpfungen von UVR)
	1.9	Bemerkung
	1.10	Beispiel
		Beispiel
		Definition (Linearkombination, Erzeugendensystem) 16
		Bemerkung
		Definition (Lineare Unabhängigkeit)
		Beispiel
		Satz (Lineare Unabhängigkeit)
		Satz (Lineare Unabhängigkeit)
		Definition (Basis)
		Beispiel
		Satz (Existenz von Basen)
		Satz (Austauschlemma)
		Satz (Steinitz'scher Austauschsatz)
		Korollar
		Satz (Basis)
		Definition (Dimension)
		Korollar
		Beispiel
		Satz (Dimensionssatz)
		Bemerkung (Koordinaten)
		(
2	Mat	rizen und lineare Gleichungssysteme 27
	2.1	Beispiel
	2.2	Definition (Matrix)
	2.3	Bemerkung
	2.4	Beispiel:
	2.5	Bemerkung
	2.6	Satz (Rechenregeln)
	2.7	Beispiel

	2.8 2.9	Definition (Matrixprodukt)	
		Beispiel	31
		Beispiel	32
		Definition (Matrizentransponierung)	$\frac{32}{32}$
		Beispiel	$\frac{32}{32}$
	2.10	Deispiei	92
3	Gru	ppen	33
	3.1	Beispiel (Wiederholung zu Permutationen)	33
	3.2	Definition (Permutation)	33
	3.3	Beispiel	33
	3.4	Bemerkung	33
	3.5	Beispiel	34
	3.6	Bemerkung	34
	3.7	Beispiel	35
	3.8	Definition (Grundbegriffe)	35
	3.9	Definition (Gruppe)	36
	3.10	Beispiel	36
	3.11	Satz (Symmetrische Gruppe)	36
	3.12	Beispiel	38
	3.13	Satz (Eigenschaften von Gruppen)	39
		Satz (Gleichungen lösen in Gruppen)	40
		Definition (Untergruppe)	40
	3.16	Beispiel	41
		Beispiel	41
	3.18	Satz + Definition (Rechtsnebenklasse, Repräsentant)	41
		Beispiel	42
	3.20	Kriterium	43
		Definition (Wohldefiniertheit)	43
	3.22	Beispiel	43
		Satz (Faktorengruppe/Quotientengruppe)	43
		Lemma	43
		Theorem (Lagrange)	44
		Definition (Potenzen)	44
		Satz (Rechenregeln)	44
		Satz + Definition (Ordnung, zyklische Gruppe)	45
		Bemerkung	45
		Korollar	46

4	Ring	ge und Körper	47
	4.1	Definition (Ring)	47
	4.2	Beispiel	
	4.3	Satz (Rechenregeln für Ringe)	48
	4.4	Bemerkung	48
	4.5	Definition (Körper)	48
	4.6	Beispiel	49
	4.7	Satz (Rechenregeln für Körper: Nullteilerfreiheit)	49
	4.8	Definition (Ringhomomorphismus, Ringisomorphismus)	49
	4.9	Beispiel	49
	4.10	Bemerkung	50
	4.11	Chinesischer Restsatz	50
	4.12	Beispiel	51
	4.13	Satz (Eindeutigkeit Chines. Restsatz)	52
	4.14	Beispiel	52
	4.15	Korollar	53
		Definition (Polynom)	
		Beispiel	
		Satz + Definition (Polynomring)	54
		Bemerkung	54
		Beispiel	
		Definition (Grad)	
		Satz (Grad verknüpfter Funktionen)	55
		Korollar (Inversen in $\mathcal{K}[x]$)	55
		Bemerkung	56
		Definition (Teilbarkeit)	56
		Satz (Division mit Rest in $\mathcal{K}[x]$)	
		Beispiel	
		Korollar	
		Definition (Normiertheit)	
		Bemerkung	
		Lemma von Bézout	58
		Satz (Euklidischer Algorithmus EA in $\mathcal{K}[x]$)	58
		Satz (Erweiterter Euklidischer Algorithmus EEA in $\mathcal{K}[x]$)	59
		Beispiel	60
		Definition (Primelemente = irreduzible Polynome)	61
		Beispiel	61
		Satz (Irreduzibles Polynom)	62
		Korollar	62
		Satz (Existenz eindeutiger irreduzibler Polynome)	63
		Bemerkung	63

5.2 Gaußsche Zahlenebene (1831) 64 5.3 Definition (Betrag) 64 5.4 Bemerkung 65 5.5 Formel von Euler 65 5.6 Bemerkung 65 5.7 Bemerkung 65 5.8 Definition (Konjugierte) 66 5.9 Bemerkung 66 5.10 Satz (C Körper) 66 5.11 Rechenregeln (Konjunktion, Betrag) 67 5.12 Bemerkung 68 5.13 Wiederholung/Zusammenfassung zu C 69 6 Lineare Abbildungen 71 6.1 Definition (Lineare Abbildung, Isomorphismus) 71 6.2 Bemerkung 71 6.3 Beispiel 72 6.4 Bemerkung 72 6.5 Definition (Homogenes LGS, Lösungsraum) 72 6.6 Satz (Lösung eines LGS) 73 6.7 Satz (Lineare Abbildung UVR) 73 6.8 Definition (Rang, Kern) 74 6.10 Beispiel 75 6.11	5	Kon	nplexe Zahlen	64
5.3 Definition (Betrag) 64 5.4 Bemerkung 65 5.5 Formel von Euler 65 5.6 Bemerkung 65 5.7 Bemerkung 65 5.8 Definition (Konjugierte) 66 5.9 Bemerkung 66 5.10 Satz (C Körper) 66 5.11 Rechenregeln (Konjunktion, Betrag) 67 5.12 Bemerkung 68 5.13 Wiederholung/Zusammenfassung zu C 69 6 Lineare Abbildungen 71 6.1 Definition (Lineare Abbildung, Isomorphismus) 71 6.2 Bemerkung 72 6.4 Bemerkung 72 6.5 Definition (Homogenes LGS, Lösungsraum) 72 6.6 Satz (Lösung eines LGS) 73 6.7 Satz (Lineare Abbildung UVR) 73 6.8 Definition (Rang, Kern) 74 6.10 Beispiel 75 6.11 Satz (Lineare Abbildung) 75 6.12 Beispiel 76 6.13<		5.1	Definition (Grundbegriffe)	64
5.4 Bemerkung 65 5.5 Formel von Euler 65 5.6 Bemerkung 65 5.7 Bemerkung 65 5.8 Definition (Konjugierte) 66 5.9 Bemerkung 66 5.10 Satz (C Körper) 66 5.11 Rechenregeln (Konjunktion, Betrag) 67 5.12 Bemerkung 68 5.13 Wiederholung/Zusammenfassung zu C 69 6 Lineare Abbildungen 71 6.1 Definition (Lineare Abbildung, Isomorphismus) 71 6.2 Bemerkung 72 6.3 Beispiel 72 6.4 Bemerkung 72 6.5 Definition (Homogenes LGS, Lösungsraum) 72 6.6 Satz (Lösung eines LGS) 73 6.7 Satz (Lineare Abbildung UVR) 73 6.8 Definition (Rang, Kern) 74 6.10 Beispiel 75 6.11 Satz (Lineare Abbildung) 75 6.12 Beispiel 76 6.13		5.2	Gaußsche Zahlenebene (1831)	64
5.4 Bemerkung 65 5.5 Formel von Euler 65 5.6 Bemerkung 65 5.7 Bemerkung 65 5.8 Definition (Konjugierte) 66 5.9 Bemerkung 66 5.10 Satz (C Körper) 66 5.11 Rechenregeln (Konjunktion, Betrag) 67 5.12 Bemerkung 68 5.13 Wiederholung/Zusammenfassung zu C 69 6 Lineare Abbildungen 71 6.1 Definition (Lineare Abbildung, Isomorphismus) 71 6.2 Bemerkung 72 6.3 Beispiel 72 6.4 Bemerkung 72 6.5 Definition (Homogenes LGS, Lösungsraum) 72 6.6 Satz (Lösung eines LGS) 73 6.7 Satz (Lineare Abbildung UVR) 73 6.8 Definition (Rang, Kern) 74 6.10 Beispiel 75 6.11 Satz (Lineare Abbildung) 75 6.12 Beispiel 76 6.13		5.3	Definition (Betrag)	64
5.6 Bemerkung 65 5.7 Bemerkung 65 5.8 Definition (Konjugierte) 66 5.9 Bemerkung 66 5.10 Satz (C Körper) 66 5.11 Rechenregeln (Konjunktion, Betrag) 67 5.12 Bemerkung 68 5.13 Wiederholung/Zusammenfassung zu C 69 6 Lineare Abbildungen 71 6.1 Definition (Lineare Abbildung, Isomorphismus) 71 6.2 Bemerkung 72 6.3 Beispiel 72 6.4 Bemerkung 72 6.5 Definition (Homogenes LGS, Lösungsraum) 72 6.6 Satz (Lösung eines LGS) 73 6.7 Satz (Lineare Abbildung UVR) 73 6.8 Definition (Rang, Kern) 74 6.9 Satz (Lineare Abbildung) 75 6.11 Satz (Lineare Abbildung) 75 6.12 Beispiel 76 6.13 Beispiel 76 6.14 Satz (Dimensionsformel) 78		5.4		65
5.7 Bemerkung 65 5.8 Definition (Konjugierte) 66 5.9 Bemerkung 66 5.10 Satz (C Körper) 66 5.11 Rechenregeln (Konjunktion, Betrag) 67 5.12 Bemerkung 68 5.13 Wiederholung/Zusammenfassung zu C 69 6 Lineare Abbildungen 71 6.1 Definition (Lineare Abbildung, Isomorphismus) 71 6.2 Bemerkung 72 6.3 Beispiel 72 6.4 Bemerkung 72 6.5 Definition (Homogenes LGS, Lösungsraum) 72 6.6 Satz (Lösung eines LGS) 73 6.7 Satz (Lineare Abbildung UVR) 73 6.8 Definition (Rang, Kern) 74 6.9 Satz (Kern) 74 6.10 Beispiel 75 6.11 Satz (Lineare Abbildung) 75 6.12 Beispiel 76 6.13 Beispiel 76 6.14 Satz (Dimensionsformel) 78 6.15 </td <td></td> <td>5.5</td> <td>Formel von Euler</td> <td>65</td>		5.5	Formel von Euler	65
5.7 Bemerkung 65 5.8 Definition (Konjugierte) 66 5.9 Bemerkung 66 5.10 Satz (C Körper) 66 5.11 Rechenregeln (Konjunktion, Betrag) 67 5.12 Bemerkung 68 5.13 Wiederholung/Zusammenfassung zu C 69 6 Lineare Abbildungen 71 6.1 Definition (Lineare Abbildung, Isomorphismus) 71 6.2 Bemerkung 72 6.3 Beispiel 72 6.4 Bemerkung 72 6.5 Definition (Homogenes LGS, Lösungsraum) 72 6.6 Satz (Lösung eines LGS) 73 6.7 Satz (Lineare Abbildung UVR) 73 6.8 Definition (Rang, Kern) 74 6.9 Satz (Kern) 74 6.10 Beispiel 75 6.11 Satz (Lineare Abbildung) 75 6.12 Beispiel 76 6.13 Beispiel 76 6.14 Satz (Dimensionsformel) 78 6.15 </td <td></td> <td>5.6</td> <td>Bemerkung</td> <td>65</td>		5.6	Bemerkung	65
5.9 Bemerkung 66 5.10 Satz (C Körper) 66 5.11 Rechenregeln (Konjunktion, Betrag) 67 5.12 Bemerkung 68 5.13 Wiederholung/Zusammenfassung zu C 69 6 Lineare Abbildungen 71 6.1 Definition (Lineare Abbildung, Isomorphismus) 71 6.2 Bemerkung 72 6.3 Beispiel 72 6.4 Bemerkung 72 6.5 Definition (Homogenes LGS, Lösungsraum) 72 6.6 Satz (Lösung eines LGS) 73 6.7 Satz (Lineare Abbildung UVR) 73 6.8 Definition (Rang, Kern) 74 6.10 Beispiel 75 6.11 Satz (Lineare Abbildung) 75 6.12 Beispiel 76 6.13 Beispiel 76 6.14 Satz (Dimensionsformel) 78 6.15 Korollar 79 6.16 Bemerkung 79		5.7	<u> </u>	65
5.9 Bemerkung 66 5.10 Satz (C Körper) 66 5.11 Rechenregeln (Konjunktion, Betrag) 67 5.12 Bemerkung 68 5.13 Wiederholung/Zusammenfassung zu C 69 6 Lineare Abbildungen 71 6.1 Definition (Lineare Abbildung, Isomorphismus) 71 6.2 Bemerkung 72 6.3 Beispiel 72 6.4 Bemerkung 72 6.5 Definition (Homogenes LGS, Lösungsraum) 72 6.6 Satz (Lösung eines LGS) 73 6.7 Satz (Lineare Abbildung UVR) 73 6.8 Definition (Rang, Kern) 74 6.10 Beispiel 75 6.11 Satz (Lineare Abbildung) 75 6.12 Beispiel 76 6.13 Beispiel 76 6.14 Satz (Dimensionsformel) 78 6.15 Korollar 79 6.16 Bemerkung 79		5.8	Definition (Konjugierte)	66
5.11 Rechenregeln (Konjunktion, Betrag) 67 5.12 Bemerkung 68 5.13 Wiederholung/Zusammenfassung zu C 69 6 Lineare Abbildungen 71 6.1 Definition (Lineare Abbildung, Isomorphismus) 71 6.2 Bemerkung 71 6.3 Beispiel 72 6.4 Bemerkung 72 6.5 Definition (Homogenes LGS, Lösungsraum) 72 6.6 Satz (Lösung eines LGS) 73 6.7 Satz (Lineare Abbildung UVR) 73 6.8 Definition (Rang, Kern) 74 6.9 Satz (Kern) 74 6.10 Beispiel 75 6.11 Satz (Lineare Abbildung) 75 6.12 Beispiel 76 6.13 Beispiel 77 6.14 Satz (Dimensionsformel) 78 6.15 Korollar 79 6.16 Bemerkung 79		5.9	(, ,	66
5.11 Rechenregeln (Konjunktion, Betrag) 67 5.12 Bemerkung 68 5.13 Wiederholung/Zusammenfassung zu C 69 6 Lineare Abbildungen 71 6.1 Definition (Lineare Abbildung, Isomorphismus) 71 6.2 Bemerkung 71 6.3 Beispiel 72 6.4 Bemerkung 72 6.5 Definition (Homogenes LGS, Lösungsraum) 72 6.6 Satz (Lösung eines LGS) 73 6.7 Satz (Lineare Abbildung UVR) 73 6.8 Definition (Rang, Kern) 74 6.9 Satz (Kern) 74 6.10 Beispiel 75 6.11 Satz (Lineare Abbildung) 75 6.12 Beispiel 76 6.13 Beispiel 77 6.14 Satz (Dimensionsformel) 78 6.15 Korollar 79 6.16 Bemerkung 79		5.10	<u> </u>	66
5.12 Bemerkung 68 5.13 Wiederholung/Zusammenfassung zu C 69 6 Lineare Abbildungen 71 6.1 Definition (Lineare Abbildung, Isomorphismus) 71 6.2 Bemerkung 72 6.3 Beispiel 72 6.4 Bemerkung 72 6.5 Definition (Homogenes LGS, Lösungsraum) 72 6.6 Satz (Lösung eines LGS) 73 6.7 Satz (Lineare Abbildung UVR) 73 6.8 Definition (Rang, Kern) 74 6.9 Satz (Kern) 74 6.10 Beispiel 75 6.11 Satz (Lineare Abbildung) 75 6.12 Beispiel 76 6.13 Beispiel 77 6.14 Satz (Dimensionsformel) 78 6.15 Korollar 79 6.16 Bemerkung 79				67
5.13 Wiederholung/Zusammenfassung zu C 69 6 Lineare Abbildungen 71 6.1 Definition (Lineare Abbildung, Isomorphismus) 71 6.2 Bemerkung 71 6.3 Beispiel 72 6.4 Bemerkung 72 6.5 Definition (Homogenes LGS, Lösungsraum) 72 6.6 Satz (Lösung eines LGS) 73 6.7 Satz (Lineare Abbildung UVR) 73 6.8 Definition (Rang, Kern) 74 6.9 Satz (Kern) 74 6.10 Beispiel 75 6.11 Satz (Lineare Abbildung) 75 6.12 Beispiel 76 6.13 Beispiel 76 6.14 Satz (Dimensionsformel) 78 6.15 Korollar 79 6.16 Bemerkung 79				68
6.1 Definition (Lineare Abbildung, Isomorphismus) 71 6.2 Bemerkung 72 6.3 Beispiel 72 6.4 Bemerkung 72 6.5 Definition (Homogenes LGS, Lösungsraum) 72 6.6 Satz (Lösung eines LGS) 73 6.7 Satz (Lineare Abbildung UVR) 73 6.8 Definition (Rang, Kern) 74 6.9 Satz (Kern) 74 6.10 Beispiel 75 6.11 Satz (Lineare Abbildung) 75 6.12 Beispiel 76 6.13 Beispiel 77 6.14 Satz (Dimensionsformel) 78 6.15 Korollar 79 6.16 Bemerkung 79				69
6.1 Definition (Lineare Abbildung, Isomorphismus) 71 6.2 Bemerkung 72 6.3 Beispiel 72 6.4 Bemerkung 72 6.5 Definition (Homogenes LGS, Lösungsraum) 72 6.6 Satz (Lösung eines LGS) 73 6.7 Satz (Lineare Abbildung UVR) 73 6.8 Definition (Rang, Kern) 74 6.9 Satz (Kern) 74 6.10 Beispiel 75 6.11 Satz (Lineare Abbildung) 75 6.12 Beispiel 76 6.13 Beispiel 77 6.14 Satz (Dimensionsformel) 78 6.15 Korollar 79 6.16 Bemerkung 79	6	Line	eare Abbildungen	71
6.2 Bemerkung 71 6.3 Beispiel 72 6.4 Bemerkung 72 6.5 Definition (Homogenes LGS, Lösungsraum) 72 6.6 Satz (Lösung eines LGS) 73 6.7 Satz (Lineare Abbildung UVR) 73 6.8 Definition (Rang, Kern) 74 6.9 Satz (Kern) 74 6.10 Beispiel 75 6.11 Satz (Lineare Abbildung) 75 6.12 Beispiel 76 6.13 Beispiel 77 6.14 Satz (Dimensionsformel) 78 6.15 Korollar 79 6.16 Bemerkung 79	Ū		S	
6.3 Beispiel 72 6.4 Bemerkung 72 6.5 Definition (Homogenes LGS, Lösungsraum) 72 6.6 Satz (Lösung eines LGS) 73 6.7 Satz (Lineare Abbildung UVR) 73 6.8 Definition (Rang, Kern) 74 6.9 Satz (Kern) 74 6.10 Beispiel 75 6.11 Satz (Lineare Abbildung) 75 6.12 Beispiel 76 6.13 Beispiel 77 6.14 Satz (Dimensionsformel) 78 6.15 Korollar 79 6.16 Bemerkung 79				
6.4 Bemerkung 72 6.5 Definition (Homogenes LGS, Lösungsraum) 72 6.6 Satz (Lösung eines LGS) 73 6.7 Satz (Lineare Abbildung UVR) 73 6.8 Definition (Rang, Kern) 74 6.9 Satz (Kern) 74 6.10 Beispiel 75 6.11 Satz (Lineare Abbildung) 75 6.12 Beispiel 76 6.13 Beispiel 77 6.14 Satz (Dimensionsformel) 78 6.15 Korollar 79 6.16 Bemerkung 79				
6.5 Definition (Homogenes LGS, Lösungsraum) 72 6.6 Satz (Lösung eines LGS) 73 6.7 Satz (Lineare Abbildung UVR) 73 6.8 Definition (Rang, Kern) 74 6.9 Satz (Kern) 74 6.10 Beispiel 75 6.11 Satz (Lineare Abbildung) 75 6.12 Beispiel 76 6.13 Beispiel 77 6.14 Satz (Dimensionsformel) 78 6.15 Korollar 79 6.16 Bemerkung 79			-	
6.6 Satz (Lösung eines LGS) 73 6.7 Satz (Lineare Abbildung UVR) 73 6.8 Definition (Rang, Kern) 74 6.9 Satz (Kern) 74 6.10 Beispiel 75 6.11 Satz (Lineare Abbildung) 75 6.12 Beispiel 76 6.13 Beispiel 77 6.14 Satz (Dimensionsformel) 78 6.15 Korollar 79 6.16 Bemerkung 79		6.5	<u> </u>	
6.7 Satz (Lineare Abbildung UVR) 73 6.8 Definition (Rang, Kern) 74 6.9 Satz (Kern) 74 6.10 Beispiel 75 6.11 Satz (Lineare Abbildung) 75 6.12 Beispiel 76 6.13 Beispiel 77 6.14 Satz (Dimensionsformel) 78 6.15 Korollar 79 6.16 Bemerkung 79				
6.8 Definition (Rang, Kern) 74 6.9 Satz (Kern) 74 6.10 Beispiel 75 6.11 Satz (Lineare Abbildung) 75 6.12 Beispiel 76 6.13 Beispiel 77 6.14 Satz (Dimensionsformel) 78 6.15 Korollar 79 6.16 Bemerkung 79			· · · · · · · · · · · · · · · · · · ·	
6.9 Satz (Kern) 74 6.10 Beispiel 75 6.11 Satz (Lineare Abbildung) 75 6.12 Beispiel 76 6.13 Beispiel 77 6.14 Satz (Dimensionsformel) 78 6.15 Korollar 79 6.16 Bemerkung 79			· ,	
6.10 Beispiel 75 6.11 Satz (Lineare Abbildung) 75 6.12 Beispiel 76 6.13 Beispiel 77 6.14 Satz (Dimensionsformel) 78 6.15 Korollar 79 6.16 Bemerkung 79			,	
6.11 Satz (Lineare Abbildung) 75 6.12 Beispiel 76 6.13 Beispiel 77 6.14 Satz (Dimensionsformel) 78 6.15 Korollar 79 6.16 Bemerkung 79				
6.12 Beispiel 76 6.13 Beispiel 77 6.14 Satz (Dimensionsformel) 78 6.15 Korollar 79 6.16 Bemerkung 79			•	
6.13 Beispiel 77 6.14 Satz (Dimensionsformel) 78 6.15 Korollar 79 6.16 Bemerkung 79				
6.14 Satz (Dimensionsformel) 78 6.15 Korollar 79 6.16 Bemerkung 79			-	
6.15 Korollar 79 6.16 Bemerkung 79			1	
6.16 Bemerkung				
7 Lineare Abbildungen und Matrizen 80				79
1 Ellicare ribbilitatigen and Matrizen	7	Line	eare Abbildungen und Matrizen	80
	•			80
7.2 Beispiel				
				82
				82
/				82
				83
,				84

	7.8	Beispiel	84
	7.9	Beispiel	85
	7.10	Satz (Umrechnen von Darstellungsmatrizen)	86
	7.11	Bemerkung zu Darstellungsmatrizen	86
	7.12	Satz (Eigenschaften von Darstellungsmatrizen)	87
	7.13	Beispiel	88
	7.14	Bemerkung	88
	7.15	Satz (Invertierbarkeit)	88
	7.16	Satz (Invertierbarkeit, Rang)	88
		1	89
	7.18	Berechnung der Matrixinverse (A^{-1})	89
	7.19	Lemma	91
	7.20	Beispiel	91
	7.21	Korollar	91
	7.22	Beispiel	91
8	Dete	erminanten	93
	8.1	Definition (A_{ij})	93
	8.2	(• J /	93
	8.3		93
	8.4	Satz (Entwicklungssatz von Laplace)	94
	8.5		95
	8.6	Satz (Eigenschaften von Determinanten)	96
	8.7	· - · · · · · · · · · · · · · · · · · ·	97
	8.8	Satz (Invertierbarkeit von Matrizen)	97
	8.9	Bemerkung	97
9	Eige	enwerte und Eigenvektoren	99
•	9.1		99
	9.2	Definition (Eigenvektor, Eigenwert, Eigenraum)	
	9.3		99
		Satz $(A - \lambda E_n)$	
	9.5	Beispiel	
	9.6	Definition (charakteristisches Polynom)	
	9.7	Bemerkung	
	9.8	Definition (Diagonalmatrix)	
	9.9	Bemerkung	
	9.10	Beispiel	
		Definition (Diagonalisierbarkeit)	
		Satz (Spektralsatz)	
		Beispiel	

10	Nor	m und Skalarprodukt 1	05
	10.1	Beispiel	105
	10.2	Definition (Skalarprodukt, Norm, Abstand, Vektorraum) 1	105
		Beispiel	
		Satz (Eigenschaften Norm)	
		Satz (Cauchy-Schwarz-Ungleichung)	
		Bemerkung	
		Beispiel	
11	Ortl	honormalsysteme 1	09
	11.1	Definition (Grundbegriffe)	109
		Bemerkung	
	11.3	Satz (Gram-Schmidt)	110
		Beispiel	
	11.5	Definition (Orthogonale Matrix)	111
		Beispiel	
		Satz (Orthogonale Matrix)	
		Bemerkung	
12	Tay	lorreihen 1	13
	12.1	Definition (Taylorpolynom, Restglied)	13
		Bemerkung	
		Satz von Taylor	
		Beispiel	
		Definition (Tylorreihe)	
		Bemerkung	
		Beispiel	
		Satz (Konvergenz Taylorreihe)	
		Beispiel	

1 Vektorräume

Bemerkung: 1.1-1.10 identisch mit 8.1-8.10 aus Mathematik 2, SS16

1.1 Definition (Reelle Vektorräume)

Ein <u>R-Vektorraum V</u> ist eine nichtleere Menge, deren Elemente <u>Vektoren</u> genannt werden (Bezeichnung mittels kleiner lateinischer Buchstaben, v, w, x, y, ...), auf der eine Addition + definiert ist, +: $V \times V \to V$; und eine Multiplikation mit reellen Zahlen ('Skalare') (Bezeichnung mittels kleiner griechischer Buchstaben $\alpha, \beta, \gamma, \lambda, \mu, ...$), ·: $\mathbb{R} \times V \to V$, so dass gilt:

(1.1)
$$u + v + w = u + (v + w)$$
 $\forall u, v, w \in V$

- (1.2) Es existiert ein Vektor $\mathcal{O} \in V$ ('Nullvektor') mit $v + \mathcal{O} = \mathcal{O} + v = v \quad \forall v \in V$
- (1.3) Zu jedem $v \in V$ existiert ein Vektor $-v \in V$ mit $v + (-v) = \mathcal{O}$

$$(1.4) \ u + v = v + u \qquad \forall u, v \in V$$

(Diese Eigenschaften (1.1) bis (1.4) kann man zusammenfassen als '(V, +) ist eine kommutative Gruppe').

$$(2.1) \quad \stackrel{\text{Addition in } \mathbb{R}}{(\lambda + \mu)} \cdot v = \lambda \cdot v \stackrel{\text{Addition in } V}{+} \mu \cdot v \qquad \forall \lambda, \mu \in \mathbb{R}, v \in V$$

$$(2.2) \ \lambda(v+w) = \lambda v + \lambda w \qquad \forall \lambda \in \mathbb{R}, v, w \in V$$

(2.3) Multiplikation in
$$\mathbb{R}$$
 Multiplikation mit Skalar $(\lambda \cdot \mu)$ $\cdot v = \lambda \cdot (\mu \cdot v)$ $\forall \lambda, \mu \in \mathbb{R}, v \in V$

$$(2.4) \ 1 \cdot v = v \qquad \forall v \in V$$

1.2 Beispiel

- a) trivialer Vektorraum Nullraum: $V = \{\mathcal{O}\}$ Es gilt $\mathcal{O} + \mathcal{O} \coloneqq \mathcal{O}, \quad \lambda \cdot \mathcal{O} \coloneqq \mathcal{O} \quad \forall \lambda \in \mathbb{R}$
- b) $V = \mathbb{R}^n$, Raum aller 'Spaltenvektoren' der Länge n über \mathbb{R} , Elemente haben die Form $\begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$ mit $x_1, \dots, x_n \in \mathbb{R}$.

$$\mathcal{O} = \begin{pmatrix} 0 \\ \dots \\ 0 \end{pmatrix}, \quad \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \dots \\ x_n + y_n \end{pmatrix}, \quad \lambda \cdot \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = \begin{pmatrix} \lambda \cdot x_1 \\ \dots \\ \lambda \cdot x_n \end{pmatrix}$$

c) \mathbb{R} ist ein \mathbb{R} -Vektorraum.

Vektoren: reelle Zahlen.

Skalare: reelle Zahlen.

$$\mathcal{O} = 0$$

d) Funktionenraum:

 $M \neq \emptyset$ Menge. $V = \mathcal{F}(M, \mathbb{R}) := \{f : M \to \mathbb{R}\}$

Menge der auf M definierten reellen Funktionen.

Für $f, g \in V$, $\lambda \in \mathbb{R}$ sei

$$-f+g:M\to\mathbb{R},\quad (f+g)(x)=f(x)+g(x)\quad \forall x\in M$$

$$-\lambda \cdot f \colon M \to \mathbb{R}, \quad (\lambda \cdot f)(x) = \lambda \cdot f(x) \quad \forall x \in M$$

Dann ist V mit $\mathbb{R}, +, \cdot$ ein Vektorraum. Nullvektor ist $f = 0 \colon M \to \mathbb{R},$

$$f(x) = 0 \quad \forall x \in M.$$

(kurz: $f \equiv 0$, identisch Null)

1.3 Lemma

Sei V ein \mathbb{R} -Vektorraum, $v \in V$, $\lambda \in \mathbb{R}$

a)
$$0 \cdot v = \mathcal{O}$$

b)
$$\lambda \cdot \mathcal{O} = \mathcal{O}$$

c) Zu jedem $v \in V$ ist der Vektor -v aus (1.3) in 1.1 eindeutig bestimmt.

d)
$$(-1) \cdot v = -v$$

Beweis

a)

$$\mathcal{O} \stackrel{(1.3)}{=} \underbrace{0 \cdot v}^{x} + \underbrace{(-0 \cdot v)}^{-x} = \underbrace{(0+0)v} + (-0 \cdot v)$$

$$\stackrel{(2.1)}{=} (0 \cdot v + 0 \cdot v) + (-0 \cdot v)$$

$$\stackrel{(1.1)}{=} 0 \cdot v + (0 \cdot v + (-0 \cdot v))$$

$$\stackrel{(1.3)}{=} 0 \cdot v + \mathcal{O}$$

$$\stackrel{(1.2)}{=} 0 \cdot v$$

b) Wie a), starte mit $\mathcal{O} = \lambda \cdot \mathcal{O} + (-\lambda \cdot \mathcal{O})$, erhalte $\mathcal{O} = \lambda \cdot \mathcal{O}$

d)

$$\underbrace{v + (-1 \cdot v)}_{} = 1 \cdot v + (-1 \cdot v)$$

$$\stackrel{(2.1)}{=} (1 + (-1))v$$

$$= 0 \cdot v$$

$$\stackrel{\text{a)}}{=} \mathcal{O}$$

$$\stackrel{(1.3)}{=} v + (-v)$$

Addiere auf beiden Seiten -v:

$$\underbrace{v + (-1)v}_{} + (-v) = v + (-v) + (-v)$$
$$\Rightarrow -1 \cdot v = -v$$

c) Angenommen, zu $v \in V$ gibt es -v und -v' mit $v+(-v) = \mathcal{O}$ und $v+(-v') = \mathcal{O}$. Dann ist $v+(-v) = v+(-v') \stackrel{+(-v)\text{auf beiden Seiten}}{\Rightarrow} -v = -v'$

1.4 Definition (Untervektorraum)

Sei V ein \mathbb{R} -Vektorraum.

Eine Teilmenge $U \subseteq V$, $U \neq \emptyset$ heißt Unter(vektor)raum von V, falls U bezüglich der Addition auf V und der Multiplikation mit Skalaren selbst ein Vektorraum ist.

1.5 Beispiel

- a) $V = \mathbb{R}^2$, $U = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$ ist Unterraum von V
- b) $V = \mathbb{R}^2$, $U = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$ ist kein Unterraum von V, z.B. (1.2) ist verletzt, Addition funktioniert auch nicht: $\begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \notin U$
- c) $V=\mathbb{R}^2$, $U=\left\{\begin{pmatrix}\lambda\\0\end{pmatrix}\middle|\lambda\in\mathbb{R}\right\}$ ist ein Unterraum von V (prüfe alle Eigenschaften von Definition 1.1) \to umständlich, einfacher geht es mit Definition 1.6

1.6 Satz (Unterraumkriterium)

Sei V ein \mathbb{R} -Vektorraum, sei $\emptyset \neq U \subseteq V$.

Dann ist U Unterraum von V genau dann, wenn gilt (\Leftrightarrow) :

- (1) $v \in U$, $\lambda \in \mathbb{R} \Rightarrow \lambda \cdot v \in U$
- (2) $v, w \in U \Rightarrow v + w \in U$

(oder äquivalent: $\forall v, w \in U, \forall \lambda, \mu \in \mathbb{R} \text{ ist } \lambda \cdot v + \mu \cdot w \in U$)

Man sagt: U ist abgeschlossen bezüglich der Vektoraddition und der Multiplikation mit Skalaren.

Beweis

- \Rightarrow ist klar, da U laut Definition 1.4 selbst Vektorraum
- \Leftarrow rechne die Vektorraumaxiome nach (Definition 1.1, also z.B. $\mathcal{O} \in U,...$)

1.7 Beispiel

raum.

a) $V \text{ ist ein } \mathbb{R}\text{-Vektorraum, } \mathcal{O} \neq v \in V.$ Dann ist $G = \{\lambda \cdot v | \lambda \in \mathbb{R}\}$ ein Unter-

 $V=\mathbb{R}^2,\mathbb{R}^3$: G ist Gerade durch Nullpunkt (geometrisch), z.B.

$$v = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, w = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Aber: $G' = \{w + \lambda \cdot v | \lambda \in \mathbb{R}, w \in V\}$ ist kein Unterraum für $w \neq \mu \cdot v, \mu \in \mathbb{R}$.

Warum? Z.B. $\mathcal{O} \notin G'$

b)
$$V = \mathbb{R}^3$$
, $U_1 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 | x_1 + x_2 - x_3 = 0 \right\}$ ist Unterraum. Wir zeigen (1), (2) aus 1.6:

$$-U_1 \neq \emptyset$$
, z.B. $\mathcal{O} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \in U_1$, denn $0 + 0 + 0 - 0 = 0$

(1) Sei
$$\lambda \in \mathbb{R}$$
, $v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \in U_1$, d.h. $v_1 + v_2 - v_3 = 0$
Prüfe: Ist $\lambda \cdot v \in U_1$? $\lambda \cdot v = \begin{pmatrix} \lambda \cdot v_1 \\ \lambda \cdot v_2 \\ \lambda \cdot v_3 \end{pmatrix}$

$$\lambda \cdot v_1 + \lambda \cdot v_2 - \lambda \cdot v_3 = \lambda(v_1 + v_2 - v_3)$$

$$= \lambda \cdot 0$$

$$= 0$$

Also ist $\lambda \cdot v \in U_1$

(2) Seien
$$v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
, $w = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} \in U_1$, d.h. $v_1 + v_2 - v_3 = 0$, $w_1 + w_2 - w_3 = 0$. Gilt $v + w \in U_1$? $v + w = \begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \\ v_3 + w_3 \end{pmatrix}$

$$(v_1 + w_1) + (v_2 + w_2) - (v_3 + w_3) = \underbrace{(v_1 + v_2 - v_3)}_{=0} + \underbrace{(w_1 + w_2 - w_3)}_{=0}$$

Also $v + w \in U_1$

- Geometrische Interpretation:

$$U_1 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_1 + x_2 \end{pmatrix} \middle| x_1, \quad x_2 \in \mathbb{R} \right\}$$
$$= \left\{ x_1 \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + x_2 \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \middle| x_1, \quad x_2 \in \mathbb{R} \right\}$$

D.h. U_1 ist die Ebene durch $\mathcal{O} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ mit den Richtungsvektoren

$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \text{ und } \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

c)
$$U_2 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \mid x_1 + x_2 - x_3 = 1 \right\}$$
 ist kein Unterraum. Z.B. $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \mathcal{O} \notin U_2$: $0 + 0 - 0 = 0 \neq 1$.

Anderes Argument: Sei
$$\lambda \in \mathbb{R}$$
, $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in U_2$, d.h. $x_1 + x_2 - x_3 = 1$.

Gilt $\lambda \cdot x \in U_2$? $\lambda \cdot x = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \\ \lambda x_3 \end{pmatrix}$

$$\lambda x_1 + \lambda x_2 - \lambda x_3 = \lambda \underbrace{(x_1 + x_2 - x_3)}_{=1}$$

$$= \underbrace{\lambda = 1}_{2}$$

 \Rightarrow nicht erfüllt für $\lambda \neq 1$. Geometrische Interpretation:

$$U_{2} = \left\{ \begin{pmatrix} x_{1} \\ x_{2} \\ x_{1} + x_{2} - 1 \end{pmatrix} \middle| x_{1}, \quad x_{2} \in \mathbb{R} \right\}$$

$$= \left\{ \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} + x_{1} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + x_{2} \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \middle| x_{1}, \quad x_{2} \in \mathbb{R} \right\}$$

Ebene durch $\begin{pmatrix} 0\\0\\-1 \end{pmatrix}$ mit Richtungsvektoren $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$ und $\begin{pmatrix} 0\\1\\1 \end{pmatrix}$

d)
$$U_3 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^2 \le 1 \right\}$$
 ist kein Unterraum, z.B.
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \in U_3, \qquad 1^2 + 0^2 + 2 \le 1 \quad \checkmark, \text{ aber}$$
$$2 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} \notin U_3, \text{ denn } 2^2 + 0^2 + 0^2 \nleq 1$$

Geometrische Interpretation:

 U_3 ist eine Kugel um $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ mit Radius 1

e) $I \subseteq \mathbb{R}$ Intervall

Menge C(I) (C: continuous, stetig) der stetigen Funktionen auf I ist Unterraum von $\mathcal{F}(I,\mathbb{R})$ (vgl. Beispiel 1.2d)).

Menge der diffbaren Funktionen auf I ist Unterraum von C(I).

1.8 Satz (Verknüpfungen von UVR)

V ist ein \mathbb{R} . Vektorraum, U_1, U_2 sind Unterräume von V.

- a) $U_1 \cap U_2 = \{u \in V | u \in U_1 \land u \in U_2\}$ ist Unterraum von V.
- b) $U_1 + U_2 := \{u_1 + u_2 | u_1 \in U_1 \land u_2 \in U_2\}$ Summe von U_1, U_2 ist Unterraum von V (das ist nicht die Vereinigung $U_1 \cup U_2$!)

Beweis

Prüfe Unterraumkriterium 1.6

- a) Übung: Prüfe $\mathcal{O} \in U_1 \cap U_2$? \checkmark , (1), (2)
- b) $-U_1 + U_2 \neq \emptyset$, denn $U_1 + U_2 \ni \mathcal{O} = \underbrace{\mathcal{O}}_{\in U_1} + \underbrace{\mathcal{O}}_{\in U_2}$
 - Seien $v = u_1 + u_2$, $u_1 \in U_1$, $u_2 \in U_2$ und $w = u'_1 + u'_2$, $u'_1 \in U_1$, $u'_2 \in U_2$, also $v, w \in U_1 + U_2$ und $\lambda, \mu \in \mathbb{R}$.

$$\Rightarrow \lambda v + \mu v = \lambda (u_1 + u_2) + \mu (u'_1 + u'_2)$$

$$= \underbrace{\lambda u_1 + \mu u'_1}_{\in U_1} + \underbrace{\lambda u_2 + \mu u'_2}_{\in U_2} \qquad \in U_1 + U_2$$

1.9 Bemerkung

- a) lässt sich für unendlich viele Unterräume ausweiten
- b) lässt sich für endlich viele Unterräume ausweiten
- $U_1 \cup U_2$ ist im Allgemeinen <u>kein</u> Unterraum

1.10 Beispiel

•
$$v = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbb{R}^2$$
 $G_1 = \{\lambda v | \lambda \in \mathbb{R}\}$

•
$$w = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \in \mathbb{R}^2$$
 $G_2 = \{\mu w | \mu \in \mathbb{R}\}$

(vgl. 1.7a), Geraden durch $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, Unterräume

- $G_1 + G_2$ ist Ebene
- $G_1 \cap G_2$ ist $\mathcal{O} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

1.11 Beispiel

18.10.16

•
$$u = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

•
$$v = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$$

•
$$E = \left\{ \lambda_1 \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \lambda_2 \cdot \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} \middle| \lambda_1, \lambda_2 \in \mathbb{R} \right\}$$

- E $\subseteq \mathbb{R}^3$ ist Untervektorraum (UVR) und wird <u>aufgespannt/erzeugt</u> von u und v. Man nennt $\left\{\begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\0\\0 \end{pmatrix}\right\}$ <u>Erzeugendensystem</u> von E.
- D.h. $w \in E \Leftrightarrow \exists \lambda_1, \lambda_2 \in \mathbb{R} : w = \underbrace{\lambda_1 \cdot u + \lambda_2 \cdot v}_{\text{Linearkombination von } u \text{ und } v}$

•
$$w \notin E$$
, z.B. $w = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ ergibt:

$$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \lambda_1 \cdot u + \lambda_2 \cdot v = \lambda_1 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \text{Letzte Zeile: } 1 = \lambda_1$$

$$\text{Zweite Zeile: } 0 = \lambda_1$$

$$\Rightarrow \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \notin E$$

$$\Rightarrow \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \notin E$$

Beispiel

a)
$$E = \left\langle \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} \right\rangle_{\mathbb{R}}$$

(Nachtrag vom 19.10.16) b) \mathbb{R}^n wird erzeugt von $e_j = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$, wobei j die Stelle ist, an der der Vektor 1

ist. $R^{n} = \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \right\rangle_{\mathbb{R}}$ "kanonische Einheitsvektoren" $v = \begin{pmatrix} v_{1} \\ \vdots \\ v_{n} \end{pmatrix} = v_{1} \cdot e_{1} + v_{2} \cdot e_{2} + \dots + e_{n} \cdot v_{n}$

c) Spannen $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ und $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ den \mathbb{R}^2 auf? Wenn ja, dann muss für $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$ $\alpha, \beta \in \mathbb{R}$ existieren mit

$$\alpha \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \beta \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\Leftrightarrow \qquad \qquad \alpha + \beta = x$$

$$\alpha + 2\beta = y$$

$$\Rightarrow \qquad \qquad \alpha = x - \beta$$

$$= y - 2\beta$$

$$\Leftrightarrow \qquad \qquad \beta = y - x$$

$$\alpha = 2x - y$$

$$\Rightarrow \quad \text{Allg. } \begin{pmatrix} x \\ y \end{pmatrix} = (2x - y) \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} + (y - x) \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} \Rightarrow \mathbb{R}^2 = \left\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle_{\mathbb{R}}$$

- d) Spannen $\binom{1}{2}$ und $\binom{3}{6}$ den \mathbb{R}^2 auf?

 Nein, denn $\binom{3}{6}$ ist $3 \cdot \binom{1}{2} \Rightarrow \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 6 \end{pmatrix} \right\rangle_{\mathbb{R}} = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle_{\mathbb{R}} = \left\{ \lambda \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} \middle| \lambda \in \mathbb{R}^2 \right\}$
- e) $\left\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle_{\mathbb{R}} = \left\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle_{\mathbb{R}} = \mathbb{R}^2$, d.h. Erzeugendensysteme sind nicht eindeutig!

$$\begin{array}{l} \mathrm{f}) \ \left\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix} \right\rangle_{\mathbb{R}} = \left\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle_{\mathbb{R}}, \, \mathrm{da} \, \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix}. \\ \mathrm{D.h.} \ M = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix} \right\} \, \mathrm{ist} \, \, \mathrm{kein} \, \, \underline{\mathrm{minimales}} \, \, \mathrm{Erzeugendensystem} \, \, \mathrm{des} \\ \mathbb{R}^2, \, \mathrm{denn} \, \, v \in M \, \, \mathrm{kann} \, \mathrm{immer} \, \, \mathrm{dargestellt} \, \, \mathrm{werden} \, \, \mathrm{als} \, \, \mathrm{Linearkombination} \, \, \mathrm{von} \, \, \mathrm{Vektoren} \, \, \mathrm{aus} \, \, M \setminus \{v\}. \\ \mathrm{Man \, sagt:} \, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix} \, \mathrm{sind} \, \, \underline{\mathrm{linear \, abh\"{angig}}}. \end{array}$$

1.12 Definition (Linearkombination, Erzeugendensystem)

 $V: \mathbb{R}\text{-VR}$ (V ist Vektorraum in den reellen Zahlen)

- (i) $v_1, ..., v_m \in V$ und $\lambda_1, ..., \lambda_m \in \mathbb{R}$ Der Vektor $\lambda_1 \cdot v_1 + ... + \lambda_m \cdot v_m$ heißt <u>Linearkombination</u> von $v_1, ..., v_m$.
- (ii) Sei $M \subseteq V$. Dann ist

$$\langle M \rangle_{\mathbb{R}} = \left\{ \sum_{k=1}^{n} \lambda_k \cdot v_k \mid \lambda_k \in \mathbb{R}, v_k \in M, n \in \mathbb{N} \right\}$$

der von M aufgespannte/erzeugte UVR von V

Vereinbarung:
$$\langle \emptyset \rangle = \{ \mathcal{O} \}$$

Schreibweise: $M = \{ v_1, ..., v_m \}$
 $\langle M \rangle_{\mathbb{R}} = \langle v_1, ..., v_m \rangle_{\mathbb{R}}$

(iii) Ist $V = \langle M \rangle_{\mathbb{R}}$, so heißt M ein <u>Erzeugendensystem</u> von V. V heißt <u>endlich erzeugt</u>, falls es ein endliches Erzeugendensystem gibt.

1.13 Bemerkung

 $M \subseteq V \Rightarrow \langle M \rangle_{\mathbb{R}}$ ist der kleinste UVR von V, der M enthält.

Beweis

• $\langle M \rangle_{\mathbb{R}}$ ist UVR. erfüllt Kriterien von 1.6, daher klar: 1.6 2) erfüllt. $u \in \langle M \rangle_{\mathbb{R}} \Rightarrow u = \lambda_1 \cdot v_1 + ... + \lambda_n \cdot v_n \quad (M = \{v_1, ..., v_n\})$ $\Rightarrow \lambda \cdot u = \underbrace{\lambda \lambda_1}_{\in \mathbb{R}} \cdot v_1 + ... + \underbrace{\lambda \lambda_n}_{\in \mathbb{R}} \cdot v_n$ 1.6 3) ähnlich.

• Angenommen U ist der kleinste UVR, so dass $M \subseteq U$. Z. z.: $\langle M \rangle_{\mathbb{R}} = U$. Wegen 1.6 enthält U alle Linearkombinationen von Vektoren aus M. ⇒ $\langle M \rangle_{\mathbb{R}} \subseteq U \Rightarrow U$ kann nicht kleiner sein als $\langle M \rangle_{\mathbb{R}} \Rightarrow \langle M \rangle_{\mathbb{R}} = U$

Beispiel

19.10.16

$$M = \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\} \Rightarrow \langle M \rangle_{\mathbb{R}} = \left\{ \lambda \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \middle| \lambda \in \mathbb{R} \right\} \text{ Gerade}$$

• $\langle M \rangle_{\mathbb{R}} \supseteq M$

•
$$E = \left\{ \lambda_1 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} \middle| \lambda_1, \lambda_2 \in \mathbb{R} \right\} \supseteq M$$

 $\langle M \rangle_{\mathbb{R}}$ Gerade, E Ebene, d.h. E ist größer als $\langle M \rangle_{\mathbb{R}}$ $\langle M \rangle_{\mathbb{R}}$ ist der kleinste UVR von \mathbb{R}^3 , der M enthält.

1.14 Definition (Lineare Unabhängigkeit)

• V: $\mathbb{R} - VR$, $v_1, ..., v_n$ heißen linear unabhängig, wenn gilt:

$$\begin{cases} \lambda_1 \cdot v_1 + \dots + \lambda_m \cdot v_m = 0 \\ \lambda_1, \dots, \lambda_m \in \mathbb{R} \end{cases} \Rightarrow \underbrace{\lambda = \lambda_2 = \dots = \lambda_m = 0}_{\text{einzige Lösung!}}$$

- $M\subseteq V$ heißt linear unabhängig, wenn gilt: Für beliebiges $m\in\mathbb{N}$ und $v_1,...,v_m\in M$ paarweise verschieden sind $v_1,...,v_m$ linear unabhängig
- Ist in obigen beiden Fällen (mindestens) $\lambda_i \neq 0$, dann sind die Vektoren linear abhängig

1.15 Beispiel

a) \mathcal{O} ist linear abhängig, da $\lambda \cdot \mathcal{O} = \mathcal{O}$ $\forall \lambda \neq 0$

b) Sind
$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
, $\begin{pmatrix} -3 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -5 \end{pmatrix}$ linear abhängig in \mathbb{R}^2 ?
$$\lambda_1 \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \lambda_2 \cdot \begin{pmatrix} -3 \\ 1 \end{pmatrix} + \lambda_3 \cdot \begin{pmatrix} 1 \\ -5 \end{pmatrix} = \mathcal{O}$$

$$\begin{cases} I & \lambda_1 - 3\lambda_2 + \lambda_3 &= 0 \\ II & 2\lambda_1 + \lambda_2 - 5\lambda_3 &= 0 \end{cases}$$
 Erfüllt für $\lambda_1 = \lambda_2 = \lambda_3 = 0$. Aber hier gibt es noch die Lösung: $\lambda_1 = 2$, $\lambda_2 = \lambda_3 = 1$!
$$\Rightarrow \text{ Vektoren sind linear abhängig}$$

c)
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ linear unabhängig (l.u.) in \mathbb{R}^3

- d) $v \neq \mathcal{O}, \quad v \in V, \quad v$, ist linear unabhängig Angenommen es existiert $\lambda \neq 0$ mit $\lambda \cdot v = \mathcal{O}$. $\Rightarrow v = (\frac{1}{\lambda} \cdot \lambda) \cdot v = \frac{1}{\lambda} \cdot (\lambda \cdot v) = \mathcal{O}$?
- e)

$$v,w$$
linear abhängig $\Leftrightarrow v=\lambda w$, für ein $\lambda\in\mathbb{R}$
$$\Leftrightarrow v\in\langle w\rangle_{\mathbb{R}}$$

f) In
$$V = \mathcal{F}(\mathbb{R}, \mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} | \text{ f Abbildung} \}$$
 sind die Vektoren
$$-f(x) = x, \quad g(x) = x^2 \text{ linear unabhängig}$$

$$-f(x) = \sin^2(x), \quad g(x) = \cos^2(x), \quad h(x) = 2 \text{ linear abhängig:}$$

$$2 = 2 \cdot (\sin^2 x + \cos^2 x)$$

$$= 2 \sin^2 x + 2 \cos^2 x$$

$$0 = \underbrace{2 \sin^2 x + 2 \cos^2 x}_{\lambda_1} \underbrace{-1}_{\lambda_2} \cdot 2$$

1.16 Satz (Lineare Unabhängigkeit)

$$M = \{v_1, ..., v_n\} \subseteq V$$

- (i) M linear unabhängig \Leftrightarrow Zu jedem $v \in \langle M \rangle_{\mathbb{R}}$ gibt es eindeutig bestimmte $\lambda_1,...\lambda_n \in \mathbb{R}: v = \sum_{i=1}^n \lambda_i \cdot v_i$
- (ii) M linear unabhängig, $v \notin \langle M \rangle_{\mathbb{R}} \Rightarrow M \cup \{v\}$ linear unabhängig

Beweis

- (i) (\Leftarrow) $\mathcal{O} \in \langle M \rangle_{\mathbb{R}} \Rightarrow \exists$ eindeutig bestimmte $\lambda_1, ..., \lambda_m \in \mathbb{R}$: $\mathcal{O} = \lambda_1 \cdot v_1 + ... + \lambda_n \cdot v_n$ Gleichung erfüllt für $\lambda_1 = ... = \lambda_n = 0$ (eindeutige Lösung)
 - $\begin{array}{c} (\Rightarrow) \ \ \text{Sei} \ M \ \text{linear unabhängig}, \ v \in \langle M \rangle_{\mathbb{R}} \\ \text{Angenommen} \ v = \sum_{i=1}^n \lambda_i \cdot v_i = \sum_{i=1}^n \mu_i \cdot v_i \\ \Leftrightarrow \sum_{i=1}^n \underbrace{(\lambda_i \mu_i)}_{=0, \ \text{da} \ M \ \text{linear unabhängig}}_{=0, \ \text{da} \ M \ \text{inear unabhängig}} \cdot v_i = \mathcal{O} \\ \Rightarrow \lambda_i = \mu_i \quad \forall i = 1, ..., n \end{array}$

(ii) Z.z.:
$$\sum_{i=1}^{n} \lambda_i \cdot v_i + \lambda \cdot v = \mathcal{O} \Rightarrow \lambda_i = 0 \quad \forall i, \lambda = 0$$

Annahme: $\lambda \neq 0 \Rightarrow v = \underbrace{-\frac{\lambda_1}{\lambda}}_{\in \mathbb{R}} \cdot v_1 - \dots - \frac{\lambda_n}{\lambda} \cdot v_n$
 $\Rightarrow v \in \langle M \rangle_{\mathbb{R}}$ Also $\lambda = 0$
 $\lambda_i = 0$, weil M linear unabhängig.

1.17 Satz (Lineare Unabhängigkeit)

 $M \subseteq V$ linear unabhängig genau dann, wenn gilt:

$$N \subseteq M$$
, $\langle N \rangle_{\mathbb{R}} = \langle M \rangle_{\mathbb{R}} \Rightarrow N = M$

In Worten: Man kann von M keinen Vektor weglassen, ohne dass der von M aufgespannte Raum sich verkleinert.

Beweis

(⇒) Sei $M \subseteq V$ linear unabhängig. Angenommen: Man kann doch aus M Vektoren weglassen, d.h.

$$N \subseteq M$$
, $\langle N \rangle_{\mathbb{R}} = \langle M \rangle_{\mathbb{R}}$ und $N \neq M$

$$\begin{split} N \neq M \Rightarrow \exists x \in M \setminus N & \text{(da } N \subseteq M) \\ \Rightarrow \exists v_1, ..., v_n \in N & \text{paarweise verschieden und} \\ \exists \lambda_1, ..., \lambda_n \in \mathbb{R} & \text{so dass} \\ x = \lambda_1 v_1 + ... + \lambda_n v_n & \text{(da } \langle N \rangle_{\mathbb{R}} = \langle M \rangle_{\mathbb{R}}) \\ \Rightarrow \lambda_1 v_1 + ... + \lambda_n v_n - x = \mathcal{O} \\ \underbrace{v_1, ..., v_n}_{\in N}, \underbrace{x}_{\in M \setminus N} & \text{paarweise verschieden} \end{split}$$

Da $N \subseteq M$, ist $\underbrace{v_1,...,v_n,x}_{\text{linear abhängig}} \in M \Rightarrow M$ linear abhängig Also muss N = M gelten.

 (\Leftarrow) Sei M linear abhängig.

Z.z. Man kann Vektoren aus M weglassen, d.h.:

$$\exists N \subseteq M, \quad \langle N \rangle_{\mathbb{R}} = \langle M \rangle_{\mathbb{R}} \text{ und } N \neq M$$

$$M$$
 linear abhängig $\Rightarrow \exists n \in \mathbb{N} \quad \exists v_1, ..., v_n \in M$
 $\exists \lambda_1, ..., \lambda_n \in \mathbb{R} \text{ (mit } \lambda_i \neq 0 \text{ für ein i)}$
 $\lambda_1 \cdot v_1 + ... + \lambda_n \cdot v_n = 0$

O.B.d.A:
$$\lambda_1 \neq 0 \Rightarrow v_1 = -\frac{\lambda_2}{\lambda_1} \cdot v_2 - \frac{\lambda_3}{\lambda_1} \cdot v_3 - \dots - \frac{\lambda_n}{\lambda_1} \cdot v_n$$

Setze $N = M \setminus \{v_1\} \Rightarrow N \neq M$

Da v_1 Linearkombination von $v_2, ..., v_n$ folgt:

Jede Linearkombination von $v_1,...,v_n$ lässt sich ausdrücken als Linearkombination von $v_2,...,v_n \Rightarrow \langle N \rangle_{\mathbb{R}} = \langle M \rangle_{\mathbb{R}}$

Basis und Dimension

25.10.16

Ein minimales Erzeugendensystem heißt Basis.

1.18 Definition (Basis)

V endlich erzeugter \mathbb{R} -VR. Eine endliche Menge $B \subseteq V$ heißt Basis, falls

- $\langle B \rangle_{\mathbb{R}} = V$ und
- B linear unabhängig.

Für $V = \{\mathcal{O}\}$ ist $B = \emptyset$ die Basis.

1.19 Beispiel

- a) $\{e_1, ..., e_n\}$ ist Basis von \mathbb{R}^n ('Standard-/kanonische Basis')
- b) Basis ist nicht eindeutig.

$$B_{1} = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}, \qquad B_{2} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$$

$$\Rightarrow \langle B_{1} \rangle_{\mathbb{R}} = \langle B_{2} \rangle_{\mathbb{R}}, \text{ da: } \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \end{pmatrix} \text{ und } \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \in \langle B_{2} \rangle_{\mathbb{R}} \Rightarrow \mathbb{R}^{2} = \langle B_{1} \rangle_{\mathbb{R}} \subseteq \langle B_{2} \rangle_{\mathbb{R}}$$

1.20 Satz (Existenz von Basen)

V endlich erzeugter \mathbb{R} -VR \Rightarrow Jedes endliche Erzeugendensystem enthält Basis.

Beweis

Sei $M \subseteq V$ endlich, $\langle M \rangle_{\mathbb{R}} = V$

- M linear unabhängig \rightarrow fertig
- M linear abhängig $\stackrel{1.17}{\Rightarrow}$ Man kann aus M einen Vektor $v \in M$ weglassen, so dass $\langle M \setminus \{v\} \rangle_{\mathbb{R}} = V = \langle M \rangle_{\mathbb{R}}$. Nach endlich vielen Schritten liefert das Verfahren eine Basis.

Fragen

- Basis nicht eindeutig. Sind alle Basen gleich groß?
- geg. $w = \begin{pmatrix} \frac{1}{3} \\ 0 \\ 1 \end{pmatrix} \in \mathbb{R}^3$, $S = \{e_1, e_2, e_3\}$. Wie kann man w zu einer Basis ergänzen? Welche Vektoren aus S sind geeignet?

$$w=rac{1}{3}e_1+e_3=\{\underbrace{w,e_1,e_3}_{ ext{linear abhängig}}\}$$
 keine Basis, aber
$$\{\underbrace{w,e_1,e_2}_{ ext{linear unabhängig}}\}$$
 Basis und $\{w,e_2,e_3\}$ Basis linear unabhängig

1.21 Satz (Austauschlemma)

V endlich erzeugter \mathbb{R} -VR. Gegeben: $w \in V$, $w \neq \mathcal{O}$, $w = \sum_{i=1}^{n} \lambda_i v_i$, wobei $B = \{v_1, ..., v_n\} \subseteq V$ Basis von V. $\Rightarrow \underbrace{\left(B \setminus \{v_j\}\right) \cup \{w\}}_{(\star)}$ Basis, falls $\lambda_j \neq 0$

Beweis

Z.z: (\star) ist Basis.

(⋆) ist linear unabhängig.
 Z.z:

$$\sum_{i \neq j} \mu_i v_i + \mu w = 0 \Rightarrow \mu_i = 0 \text{ und } \mu = 0$$

$$\sum_{i \neq j} \mu_i v_i + \mu w = \sum_{i \neq j} \mu_i v_i + \mu \left(\sum_{i=1}^n \lambda_i v_i \right)$$
$$= \sum_{i \neq j} (\mu_i + \mu \lambda_i) v_i + \mu \lambda_j v_j$$
$$= 0$$

$$B = \{v_1, ..., v_n\} \text{ Basis } \Rightarrow \mu \lambda_j = 0 \text{ und } \mu_i + \mu \lambda_i = 0 \quad \forall i \neq j$$
$$\lambda_j \neq 0 \Rightarrow \mu = 0 \Rightarrow \mu_i + \underbrace{\mu \lambda_i}_{=0} = \mu_i = 0 \quad \forall i \neq j$$

2) (\star) erzeugt V.

$$\begin{split} w &= \lambda_j v_j + \sum_{i \neq j}^{\lambda_i v_i} \\ &\Leftrightarrow \qquad \qquad |: \lambda_j, \, \mathrm{da} \, \, \lambda_j \neq 0 \\ \Leftrightarrow &\qquad \qquad v_j = \frac{1}{\lambda_j} w - \sum_{i \neq j} \frac{\lambda_i}{\lambda_j} v_i \\ \Rightarrow &\qquad \qquad v_j \in \langle (B \setminus \{v_j\}) \cup \{w\} \rangle_{\mathbb{R}} \\ \Rightarrow &\qquad \langle (B \setminus \{v_j\}) \cup \{w\} \rangle_{\mathbb{R}} = \langle B \cup \{w\} \rangle_{\mathbb{R}} = V \end{split}$$

1.22 Satz (Steinitz'scher Austauschsatz)

Geg. $w_1,...,w_m \in V$ linear unabhängig, $\{v_1,...,v_n\}$ Basis von V. Es folgt:

- a) Aus den n Vektoren $v_1, ..., v_n$ kann man n-m Vektoren auswählen, die mit $w_1, ..., w_m$ eine Basis bilden.
- b) $m \leq n$

Beweis

- a) 1) $w_1 \in V \Rightarrow w_1 = \sum_{i=1}^n \lambda_i v_i$ Wären alle $\lambda_i = 0$, dann wäre auch $w_1 = \mathcal{O}$. Da $\mathcal{O} \in V$ linear abhängig ist, wäre also auch $w_1, ..., w_m$ linear abhängig. EAlso: Mindestens ein $\lambda_i \neq 0$ O.B.d.A. $\lambda_1 \neq 0$ (sonst umnummerieren) $\stackrel{1.20}{\Rightarrow} \{w_1, v_2, ..., v_n\}$ ist Basis von V
 - 2) $w_2 \in V \Rightarrow \mu_1 w_1 + \sum_{i=2}^n \mu_i v_i$ Wären alle $\mu_2, ..., \mu_n = 0$, so wäre $w_2 = \mu_1 w_1$, also auch w_1, w_2 linear abhängig. E, da $\{w_1, ..., w_m\}$ linear unabhängig. \Rightarrow Mindestens ein $\mu_i \neq 0$, $i \in \{2, ..., n\}$ O.B.d.A. $\mu_2 \neq 0 \stackrel{1.20}{\Rightarrow} \{w_1, w_2, v_3, ..., v_n\}$ Basis von V

b) \rightarrow Übung

1.23 Korollar

V endlich erzeugter \mathbb{R} -VR

i) Je zwei Basen von V enthalten gleich viele Elemente.

ii) Basisergänzungssatz Jede linear unabhängige Teilmenge von V lässt sich zu einer Basis von V ergänzen.

Beweis

i) B, \tilde{B} Basen

$$B$$
 linear unabhängig $\overset{1.22\text{b})}{\Rightarrow} |B| \leq |\tilde{B}|$ \tilde{B} linear unabhängig $\overset{1.22\text{b})}{\Rightarrow} |\tilde{B}| \leq |B|$ $\Rightarrow |B| = |\tilde{B}|$

ii) Wähle beliebige Basis von V und tausche aus(1.22a)).

1.24 Satz (Basis)

V endlich erzeugter \mathbb{R} -VR, $B\subseteq V$. Dann sind äquivalent:

- i) B ist Basis
- ii) B ist maximale linear unabhängige Menge in V
- iii) B ist minimales Erzeugendensystem

Beweis

- i)⇒ii) Wegen 1.23 (linear unabhängige Menge zu Basis ergänzen, alle Basen gleich groß)
- ii) \Rightarrow i) (Bzw. \neg i) \Rightarrow \neg ii).) B keine Basis, B linear unabhängig $\Rightarrow \langle B \rangle_{\mathbb{R}} \subsetneq V \Rightarrow \exists v \in V \setminus \langle B \rangle_{\mathbb{R}} \colon B \cup \{v\}$ linear unabhängig
- i)⇒iii) Satz 1.17

1.25 Definition (Dimension)

26.10.16

 $V: \mathbb{R}\text{-VR}$

- i) Ist V endlich erzeugbar, B Basis von V, |B|=n so hat V die Dimension $n, \dim(V)=n$
- ii) Ist V nicht endlich erzeugbar, so heißt V unendlichdimensional.

Korollar 1.26

 $\dim V = n, B \subseteq V, |B| = n.$

Dann ist B Basis von V, wenn B linear unabhängig oder $\langle B \rangle_{\mathbb{R}} = V$

Beweis

Folgt aus 1.24

1.27 Beispiel

- a) $\{e_1, ..., e_n\}$ Basis von $\mathbb{R}^n \Rightarrow \dim(\mathbb{R}^n) = n$
- b) $\langle \emptyset \rangle_{\mathbb{R}} = \{ \mathcal{O} \} \Rightarrow dim(\{ \mathcal{O} \}) = 0$
- c) Bilden $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ Basis von V?

Ja, weil linear unabhängig (siehe Korollar 1.26).

d)
$$V = \mathbb{R}^4, U = \left\langle u_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix}, u_2 = \begin{pmatrix} 0 \\ 2 \\ 1 \\ 0 \end{pmatrix} \right\rangle_{\mathbb{R}}$$

 u_1, u_2 linear unabhängig $\Rightarrow \dim(U) = 2$ Ergänze u_1, u_2 zu Basis von $V = \mathbb{R}^4$

- 1. Möglichkeit (Austauschlemma + Steinitz) $\{e_1, e_2, e_3, e_4\}$ Basis von \mathbb{R}^4

$$u_{1} = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix} = e_{1} + 2e_{2} + e_{4} \Rightarrow \{u_{1}, e_{2}, e_{3}, e_{4}\} \text{ Basis von } \mathbb{R}^{4}$$

$$u_{2} = \begin{pmatrix} 0 \\ 2 \\ 1 \\ 0 \end{pmatrix} = 2e_{2} + e_{3} \Rightarrow \{u_{1}, u_{2}, e_{3}, e_{4}\} \text{ Basis von } \mathbb{R}^{4}$$

$$u_2 = \begin{pmatrix} 0 \\ 2 \\ 1 \\ 0 \end{pmatrix} = 2e_2 + e_3 \Rightarrow \{u_1, u_2, e_3, e_4\} \text{ Basis von } \mathbb{R}^4$$

(Basis könnte auch anders aussehen, nur beispielhaft dargestellt)

- 2. Möglichkeit (1.16)
 - * $e_1 \notin U$ (*)(nachrechnen) $\stackrel{1.16}{\Rightarrow} \{u_1, u_2, e_1\}$ linear unabhängig

*
$$e_4 \notin \langle \{u_1, u_2, e_1\} \rangle_{\mathbb{R}}$$
 (nachrechnen)
 $\stackrel{1.16}{\Rightarrow} \{u_1, u_2, e_1, e_4\}$ linear unabhängig und damit Basis (Korollar 1.26)

(★) Angenommen:

$$\begin{split} e_1 &= \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \lambda_1 \cdot u_1 + \lambda_2 \cdot u_2 \\ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} &= \lambda_1 \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 \\ 2 \\ 1 \\ 0 \end{pmatrix} \\ &\Leftrightarrow \begin{cases} I & 1 = \lambda_1 \\ II & 0 = 2\lambda_1 + 2\lambda_2 \\ III & 0 = \lambda_2 \\ IV & 0 = \lambda_1 & \text{\textit{f}} \quad \text{zu I} \\ &\Rightarrow e_1 \notin \langle \{u_1, u_2\} \rangle_{\mathbb{R}} \Rightarrow \{u_1, u_2, e_1\} \text{ linear unabhängig} \end{split}$$

1.28 Satz (Dimensionssatz)

 $V \quad \mathbb{R}\text{-VR}, \dim(V) = n$

- i) $U \subseteq V$ ist UVR $\Rightarrow \dim(U) \leq n$
- ii) $U \subseteq W \subseteq V$, $U, W \text{ sind } UVR \text{ mit } \dim(U) = \dim(W) \Rightarrow U = W$
- iii) $\dim(U+W) = \dim(U) + \dim(W) \dim(U \cap W)$

Beweis

- i) Basis von Ukann man zu Basis von Vergänzen $\Rightarrow \dim(U) \leq \dim(V)$
- ii) $\dim(U) = \dim(W) \overset{U \subseteq W}{\Rightarrow}$ Basis von U auch Basis von $W \Rightarrow U = W$
- iii) Sei $\{v_1, ..., v_k\}$ Basis von $U \cap W$ Ergänze $\{v_1, ..., v_k\}$ zu
 - a) Basis $\{v_1, ..., v_k, u_{k+1}, ..., u_m\}$ von U
 - b) Basis $\{v_1, ..., v_k, w_{k+1}, ..., w_l\}$ Basis von W

Behauptung: $B = \{v_1, ..., v_k, w_{k+1}, ..., w_l, u_{k+1}, ..., u_m\}$ Basis von U + W

1) B linear unabhängig

Sei
$$\underbrace{\frac{=v}{\lambda_1 v_1 + \ldots + \lambda_k v_k}}_{=v} + \underbrace{\frac{=u}{\mu_{k+1} u_{k+1} + \ldots + \mu_m u_m}}_{=v} + \underbrace{\frac{=w}{\gamma_{k+1} w_{k+1} + \ldots + \gamma_l w_l}}_{=v} = 0$$

$$\lambda_i, \mu_j, \gamma_r \in \mathbb{R}$$

Es ist
$$w \in U \cap W$$
, da

$$\begin{array}{l} * \ w = \underbrace{\gamma_{k+1}w_{k+1}}_{\in W} + \ldots + \underbrace{\gamma_{l}w_{l}}_{\in W} \in W \\ \\ * \ w = -\underbrace{u}_{\in U} - \underbrace{v}_{\in U} \in U \\ \text{Also: } w \in U \cap W. \end{array}$$

$$\begin{split} & \exists \alpha_{1},...,\alpha_{k} \in \mathbb{R} : w = \alpha_{1}v_{1} + ... + \alpha_{k}v_{k} \\ & \Rightarrow w = \gamma_{k+1}w_{k+1} + ... + \gamma_{l}w_{l} = \alpha_{1}v_{1} + ... + \alpha_{k}v_{k} \\ & \Rightarrow \gamma_{k+1}w_{k+1} + ... + \gamma_{l}w_{l} - \alpha_{1}v_{1} - ... - \alpha_{k}v_{k} = 0 \\ & \{v_{1},...,v_{k},w_{k+1},...,w_{l}\} \text{ linear unabhängig} \\ & \Rightarrow \gamma_{k+1} = ... = \gamma_{l} = \alpha_{1} = ... = \alpha_{k} = 0 \\ & \Rightarrow w = \mathcal{O} \text{ und } v + u + w = v + u = \lambda_{1}v_{1} + ... + \lambda_{k}v_{k} + \mu_{k+1}u_{k+1} + ... + \mu_{m}u_{m} = 0 \\ & \{v_{1},...,v_{k},u_{k+1},...,u_{m}\} \text{ linear unabhängig (Basis von } U) \\ & \Rightarrow \lambda_{1} = ... = \lambda_{k} = \mu_{k+1} = ... = \mu_{m} = 0 \end{split}$$

2)
$$\langle B \rangle_{\mathbb{R}} = U + W$$
, da:

*
$$\langle B \rangle_{\mathbb{R}} \subseteq U + W \text{ (da } \underbrace{u + v}_{\in U} + \underbrace{w}_{\in W} \in U + W)$$

* $U \subseteq \langle P \rangle$ (de Pasis van U in P)

*
$$U \subseteq \langle B \rangle_{\mathbb{R}}$$
 (da Basis von U in B)

$$* W \subseteq \langle B \rangle_{\mathbb{R}}$$
$$\Rightarrow U + W \subseteq \langle B \rangle_{\mathbb{R}}$$

1.29 Bemerkung (Koordinaten)

Geg.: Basis $\{v_1, ..., v_n\}$ von V, Vektor $u \in V$

$$\Rightarrow u = \lambda_1 v_1 + \dots + \lambda_n v_n$$

 λ_i eindeutig und heißen Koordinaten von u bezüglich der Basis B.

z.B.:
$$\begin{pmatrix} 2\\1\\3 \end{pmatrix} = \begin{pmatrix} 1\\0\\0 \end{pmatrix} + \begin{pmatrix} 0\\1\\0 \end{pmatrix} + 3\begin{pmatrix} \frac{1}{3}\\0\\1 \end{pmatrix} \Rightarrow \begin{pmatrix} 2\\1\\3 \end{pmatrix}$$
 hat Koordinaten 1,1,3 bezüglich
$$B = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} \frac{1}{3}\\0\\1 \end{pmatrix} \right\}$$

2 Matrizen und lineare Gleichungssysteme

02.11.16

2.1 Beispiel

- Ein Bauer besitzt Kühe und Gänse
- Insgesamt 18 Tiere mit 40 Beinen
- Frage: Wieviele der Tiere sind Kühe?

Lineares Gleichungssystem (LGS): *
$$\begin{cases} I: & k+g = 18 \\ II: & 4k+2g = 40 \iff 2k+g = 20 \\ \Rightarrow g = 20 - 2k = 18 - k \Leftrightarrow k = 2 \Rightarrow g = 16 \end{cases}$$

Vektorenschreibweise von *:

$$\overline{\binom{k+g}{4k+2g} = \binom{18}{40} \text{ oder } k} \binom{1}{4} + g \binom{1}{2} = \binom{18}{40}$$

Matrixschreibweise:

$$\underbrace{\begin{pmatrix} 1 & 1 \\ 4 & 2 \end{pmatrix} \cdot \begin{pmatrix} k \\ g \end{pmatrix} = \begin{pmatrix} 18 \\ 40 \end{pmatrix}}_{\text{Motsier}}$$

2.2 Definition (Matrix)

Allgemeines lineares Gleichungssystem: Gegeben:

- Unbekannte $x_1, ..., x_n \in \mathbb{R}, n \in \mathbb{N}$
- $m \in \mathbb{N}$ Gleichungen
- Koeffizienten $a_{ij} \in \mathbb{R}, i = 1, ..., m; j = 1, ..., n$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Matrixschreibweise:

$$Ax = b \text{ mit}$$

$$\bullet \ A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \leftarrow \text{Zeile}$$

$$\uparrow \text{Spalte}$$

•
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$

$$\bullet \ b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \in \mathbb{R}^m$$

Man schreibt $A = (a_{ij})_{\substack{i=1,\dots,m\\j=1,\dots,n}}$ oder nur $A = (a_{ij})$, wenn m,n schon bekannt.

- $a_{ij} \in \mathbb{R}$ Eingänge der Matrix A
- A reelle $m \times n$ Matrix
- $\mathcal{M}_{m,n}(\mathbb{R})$ Menge aller reellen $m \times n$ Matrizen
- $\mathcal{M}_{n,n}(\mathbb{R}) = M_n(\mathbb{R})$ quadratische Matrizen

$$Ax := x_1 \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ \vdots \\ a_{m2} \end{pmatrix} + \dots + x_n \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ \vdots + \vdots + \vdots + \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{pmatrix} \in \mathbb{R}^m$$

2.3 Bemerkung

Aus (**) ergibt sich: $A: \mathbb{R}^n \to \mathbb{R}^m, x \longmapsto A \cdot x$ für $A \in \mathcal{M}_{m,n}(\mathbb{R})$ A bildet Vektoren auf Vektoren ab.

Matrizen können nicht nur zur Lösung von LGS verwendet werden, sondern auch in der Geometrie:

2.4 Beispiel:

a) Spiegelung S_y in \mathbb{R}^2 an y-Achse

$$S_{y}: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} -x \\ y \end{pmatrix} \quad x, y \in \mathbb{R}$$

$$S_{y}: \begin{pmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{pmatrix}$$

$$S_{y} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} s_{11} + s_{12} \\ s_{21} + s_{22} \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix}$$

$$\Rightarrow s_{11} = -1 \quad s_{12} = 0 \quad s_{21} = 0 \quad s_{22} = 1$$

$$S_{y} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$S_{y} \text{ bildet } D \text{ auf } D' \text{ ab.}$$

b) Drehung D_{φ} um $\varphi \in [0, 2\pi)$ Vorüberlegung am Einheitskreis:

$$D_{\varphi}: \begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} x' \\ y' \end{pmatrix}$$

$$D_{\varphi} = \begin{pmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \end{pmatrix}$$

$$\Rightarrow D_{\varphi} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} d_{11} \\ d_{21} \end{pmatrix} = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix} \text{ und}$$

$$D_{\varphi} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} d_{12} \\ d_{22} \end{pmatrix} = \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix}$$

$$\Rightarrow D_{\varphi} = (D_{\varphi} \cdot e_{1}, D_{\varphi} \cdot e_{2}) = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$

2.5 Bemerkung

Aus Beispiel 2.4 b) und Definition 2.2 ergibt sich:

$$A \cdot e_{j} = 1 \cdot \begin{pmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{pmatrix} \quad (j\text{-te Spalte von } A \in \mathcal{M}_{m,n}(\mathbb{R}))$$

$$\Rightarrow A = (\underbrace{A_{e_{1}}, A_{e_{2}}, ..., A_{e_{n}}}_{\text{Spalten}})$$

2.6 Satz (Rechenregeln)

$$A \in \mathcal{M}_{m,n}(\mathbb{R}) \qquad x, y \in \mathbb{R}^n$$

i)
$$A(\lambda x) = \lambda (A \cdot x)$$
 $\lambda \in \mathbb{R}$

ii)
$$A(x+y) = Ax + Ay$$

Beweis

i)
$$A(\lambda x) = (\lambda x_1) \underbrace{A \cdot e_1}_{1. \text{ Spalte}} + (\lambda x_2) A e_2 + \dots + (\lambda x_n) \underbrace{A e_n}_{n\text{-te Spalte}}$$
$$= \lambda [x_1(Ae_1) + \dots + x_n(Ae_n)]$$
$$= \lambda (Ax)$$

ii) Übung

2.7 Beispiel

a)
$$A \cdot x = (D_{\pi} \circ S_{y}) \cdot \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

$$= D_{\pi} \begin{pmatrix} -x_{1} \\ x_{2} \end{pmatrix}$$

$$= \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -x_{1} \\ x_{2} \end{pmatrix}$$

$$= \begin{pmatrix} x_{1} \\ -x_{2} \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \stackrel{A}{\mapsto} \begin{pmatrix} x_{1} \\ -x_{2} \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$D_{\pi} \begin{pmatrix} x_{1} \\ -x_{2} \end{pmatrix}$$

 $A = D_{\pi} \circ S_y$ bildet D auf D'' ab.

b) Berechnung Matrixprodukt (Verknüpfung) $A \cdot B$

$$\underbrace{\begin{pmatrix} a & b \\ c & d \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} e & f \\ g & h \end{pmatrix}}_{B} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \underbrace{\begin{bmatrix} x_{1} \begin{pmatrix} e \\ g \end{pmatrix} + x_{2} \begin{pmatrix} f \\ h \end{pmatrix} \end{bmatrix}}_{\in \mathbb{R}^{2}}$$

$$\stackrel{2.6}{=} x_{1} \underbrace{\begin{bmatrix} e \begin{pmatrix} a \\ c \end{pmatrix} + g \begin{pmatrix} b \\ d \end{pmatrix} \end{bmatrix} + x_{2} \underbrace{\begin{bmatrix} f \begin{pmatrix} a \\ c \end{pmatrix} + h \begin{pmatrix} b \\ d \end{pmatrix} \end{bmatrix}}_{\in \mathbb{R}^{2}}$$

$$= \underbrace{\begin{pmatrix} ea + gb & fa + hb \\ ec + gd & fc + hd \end{pmatrix}}_{\text{Matrixprodukt } A \cdot B} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

2.8 Definition (Matrixprodukt)

$$A = (a_{ij}) \in \mathcal{M}_{m,n}(\mathbb{R}) \qquad B = (b_{jk}) \in \mathcal{M}_{n,l}(\mathbb{R})$$

$$A \cdot B = (c_{ik}) \quad \in \mathcal{M}_{m,l}(\mathbb{R})$$

$$c_{ik} = (i\text{-te Zeile von } A) \cdot (k\text{-te Spalte von } B)$$

$$= a_{i1}b_{1k} + a_{i2}b_{2k} + \dots + a_{in}b_{nk}$$

$$= \sum_{j=1}^{n} a_{ij}b_{jk}$$

(Skalarprodukt)

2.9 Beispiel

 $A = \begin{pmatrix} \frac{1}{2} & \frac{0}{-3} & \frac{-1}{1} \end{pmatrix}, \quad B = \begin{pmatrix} 1 & \frac{2}{2} & -1 \\ 0 & \frac{0}{0} & 0 \\ 0 & 1 & 0 \end{pmatrix}, \qquad A \cdot B = \begin{pmatrix} 1 & \frac{1}{2} & -1 \\ 2 & 5 & -2 \end{pmatrix}$

 $B \cdot A$ nicht definiert!

2.10 Satz + Definition (Vektorraum $\mathcal{M}_{m,n}(\mathbb{R})$)

 $\mathcal{M}_{m,n}(\mathbb{R})$ ist Vektorraum mit

•
$$A + B = (a_{ij} + b_{ij})$$
 $A, B \in \mathcal{M}_{m,n}(\mathbb{R})$

•
$$\lambda \cdot A = (\lambda a_{ij})$$
 $A \in \mathcal{M}_{m,n}(\mathbb{R}), \lambda \in \mathbb{R}$

Beweis: Siehe Hausaufgabe 03 Aufgabe 4a)

08.11.16

2.11 Beispiel

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 0 & -3 \\ 1 & 0 & 1 \end{pmatrix}$$
$$A + B = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \qquad (-2) \cdot A = \begin{pmatrix} -2 & -4 & -6 \\ 2 & 0 & -4 \end{pmatrix}$$

2.12 Definition (Matrizentransponierung)

i) $A \in \mathcal{M}_{m,n}(\mathbb{R})$, $A = (a_{ij})$. Die zu A transponierte Matrix (Tauschen von Zeilen und Spalten):

$$A^{T} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix} \in \mathcal{M}_{m,n}(\mathbb{R})$$

z.B.:
$$A = \begin{pmatrix} 1 & 2 & 0 \\ -1 & 1 & 2 \end{pmatrix} \Rightarrow A^T = \begin{pmatrix} 1 & -1 \\ 2 & 1 \\ 0 & 2 \end{pmatrix}$$

Eine Matix heißt symmetrisch, wenn $A = A^T$, z.B.:

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 3 & 4 \\ 0 & 4 & -1 \end{pmatrix}$$

ii) – Nullmatrix:
$$\mathcal{O}_{m,n} = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix} \in \mathcal{M}_{m,n}(\mathbb{R})$$

- Einheitsmatrix (nur Hauptdiagonale):
$$E_n = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

2.13 Beispiel

a)
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 $B = \begin{pmatrix} 2 & 0 \\ 3 & 0 \end{pmatrix}$
$$A \cdot B = \begin{pmatrix} 5 & 0 \\ 5 & 0 \end{pmatrix} \neq B \cdot A = \begin{pmatrix} 2 & 2 \\ 3 & 3 \end{pmatrix}$$
 Matrix
multiplikation nicht kommutativ!

b)
$$A \in \mathcal{M}_{m,n}(\mathbb{R})$$

 $A \cdot E_n = A \text{ und } E_m \cdot A = A$

GRUPPEN 33

3 Gruppen

3.1Beispiel (Wiederholung zu Permutationen)

Geg.: Menge $\{A, B, C\}$

Anordnungen: ABC, CAB, ACB, ... $\rightarrow 3 \cdot 2 \cdot 1 = 3!$ Möglichkeiten

Jede Anordnung kann man auffassen als eineindeutige (bijektive) Abbildung

$$\pi: \{A, B, C\} \to \{A, B, C\}$$

$$\pi: \begin{array}{c|ccc} x & A & B & C \\ \hline \pi(x) & A & C & B \end{array}$$

3.2Definition (Permutation)

- Eine <u>Permutation</u> ist eine eineindeutige Abbildung einer endlichen Menge auf sich selbst. Im Allgemeinen verwendet man die Menge $\{1,...,n\}$ und schreibt eine Permutation π als Wertetabelle $\pi = \begin{pmatrix} 1 & \dots & n \\ \pi(1) & \dots & \pi(n) \end{pmatrix}$ oder als geordnete Liste der Werte $\pi = \pi(1)...\pi(n)$
- \mathscr{S}_n Menge aller Permutationen von $\{1,...,n\}, \qquad |\mathscr{S}_n| = n!$

Beispiel

$$\mathscr{S}_2 = \{ \mathrm{id}, (AB) \} = \{ \mathrm{id}, (12) \}, \quad |\mathscr{S}_2| = 2! = 2$$

mit $\mathrm{id} = \begin{pmatrix} AB \\ AB \end{pmatrix}, \qquad \pi = \begin{pmatrix} AB \\ BA \end{pmatrix}$

3.3 Beispiel

• $M = \{1, 2, ..., 5\}$ $\pi = \pi(1)...\pi(5) = 23154$ $oder \pi = \begin{pmatrix} 12345 \\ 23154 \end{pmatrix}$

• id(i) = i $\forall i \in \{1, ..., n\}$

Graph der Permutation

3.4 Bemerkung

In Literatur oft Zyklenschreibweise:

Zyklus $(a_1a_2...a_k)$ bedeutet $\pi(a_i) = a_{i+1}$ und $\pi(a_k) = a_1$

z.B.:
$$\pi = (123)(45)$$

3 GRUPPEN 34

Verknüpfung von Permutationen

3.5 Beispiel

3.6 Bemerkung

- a) Die Verknüpfung von 2 Permutationen π, σ ist wieder Permutation η mit $\eta(i)=\pi\circ\sigma(i)=\pi(\sigma(i))$
- b) Fixpunkte mit $\pi(i) = i$ lässt man weg, z.B. $\underbrace{(123)(4)}_{\in \mathscr{S}_4} = (123)$
- c) Jede Permutation kann als Produkt disjunkter Zyklen geschrieben werden, z.B.: $(34) \cdot (345) = (3)(45) = (45)$.

 Verkettung \circ Zwei Zyklen heißen disjunkt, wenn $\{a_1...a_k\} \cap \{b_1...b_i\} = \emptyset$.
- d) Permutationen sind nur in sehr seltenen Fällen kommutativ: $(123)(23) = (12) \neq (23)(123) = (13)$
- e) Zyklendarstellung nicht eindeutig, z.B.: (123) = (231) oder (34)(12) = (12)(34)

3 GRUPPEN 35

3.7 Beispiel

09.11.16

Symmetrie- operationen des Rechtecks	Identität	Spiegelung y-Achse	Spiegelung x-Achse	Drehung 180°	
	D C	$\begin{bmatrix} \mathbf{C} & \mathbf{D} \end{bmatrix}$	AB	ВА	
	АВ	$\mathbf{B} \stackrel{!}{\downarrow} \mathbf{A}$	D C	C D	
als Matrix	$E_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$S_y = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	$S_x = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$D_{\pi} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	
als Permutation der Ecken	id	$\pi = (AB)(CD)$	$\sigma = (AD)(BC)$	$\eta = (AC)(BD)$	

Verknüpfungstafel

Matrix multiplikation	E_2	S_y	S_x	D_{π}
$\overline{E_2}$	E_2	S_y E_2	S_x	D_{π}
S_y	S_y	E_2	D_{π}	S_x
S_x	S_x	D_{π}	L_2	\wp_n
D_{π}	D_{π}	S_x	S_y	$\vec{E_2}$

3.8 Definition (Grundbegriffe)

 \bullet Seien X,Ynichtleere Mengen, Eine Verknüpfung ' \cdot ' ist eine Abbildung

$$X \times X \to Y$$
 $(a, b) \to a \cdot b$ $(\leftarrow 'Produkt' \text{ von a und b})$

• Eine Menge $X \neq \emptyset$ heißt <u>abgeschlossen</u> bzgl. einer Verknüpfung '·', falls $a \cdot b \in X$ $\forall a,b \in X$.

Beispiel:
$$X = \{-1, 1\}$$
 mit '·' Addition $\Rightarrow (-1) \cdot (1) = -1 + 1 = 0$

Die Menge $\{id,\pi,\sigma,\eta\}$ aus Beispiel 3.7 ist abgeschlossen bzgl. der Verkettung von Permutationen

Bemerkung

Die Verknüpfung von Elementen einer endlichen Menge stellt man anhand der Verknüpfungstafel dar, siehe Beispiel 3.7.

3.9 Definition (Gruppe)

a) Eine Gruppe ist ein Paar (G,\cdot) mit Menge $G\neq\emptyset$ und einer Verknüpfung $\cdot: G\times G\to G$, die folgende Eigenschaften erfüllt:

abgeschlossen!

- 1) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ $\forall a, b, c \in G$ Assoziativität
- 2) $\exists e \in G : a \cdot e = e \cdot a = a \quad \forall a \in G$ Neutralelement 1
- 3) $\forall a \in G \quad \exists a^{-1} \in G : a \cdot a^{-1} = a^{-1} \cdot a = e$ Inverse

Falls zusätzlich

4) $a \cdot b = b \cdot a$ $\forall a, b \in G$ Kommutativität

gilt, dann heißt G abelsche Gruppe.

b) |G| heißt Ordnung der Gruppe G.

3.10 Beispiel

- a) $(\{e\},\cdot)$ ist Gruppe
- b) $\mathbb{R}, \mathbb{Z}, \mathbb{Q}$ mit ' + ' ist abelsche Gruppe. Inverse zu a ist -a.
- c) $\mathbb{R},\mathbb{Z},\mathbb{Q}$ mit '·' keine Gruppen. Problem: 0 besitz keine Inverse, weil $0\cdot a=1\mathbf{f}$
- $\Rightarrow \mathbb{R}, \mathbb{Q}$ mit '·' Gruppen, wenn man 0 weglässt
- d) Einzige endliche Gruppen von reellen Zahlen:

$$-(\{1\},\cdot)$$
 bzw. $(\{0\},+)$
 $-(\{1,-1\},\cdot)$

Für weitere endliche Gruppen muss man Restklassen (Beispiel 3.12) Matrizen oder Permutationen betrachten

- e) $\mathcal{S}_2 = \{ id, (12) \}$ und $\mathcal{S}_3 = \{ id, (12), (23), (13), (123), (132) \}$ sind Gruppen (s. 3.11)
- f) $V_4 = \{id, \pi, \sigma, \eta\}$ aus Beispiel 3.7 ist die Symmetriegruppe des Rechtecks und heißt 'Kleinsche Vierergruppe' (V_4 Gruppe: s. 3.16 e).

3.11 Satz (Symmetrische Gruppe)

 \mathscr{S}_n ist eine <u>nicht</u> abelsche Gruppe. (Name: Symmetrische Gruppe)

Beweis

• assoziativ:
$$\pi, \sigma, \eta \in \mathscr{S}_n \Rightarrow \underbrace{(\pi \cdot \sigma) \cdot \eta}_{\text{Verknüpfung von Abbildungen}} = \pi^{\uparrow}(\sigma^{\uparrow}\eta)$$

- Neutral element: id, denn $\mathrm{id} \cdot \pi = \pi \cdot \mathrm{id} = \pi \qquad \forall \pi \in \mathscr{S}_n$
- Inverse: Alle Pfeile eines Zyklus werden umgedreht, d.h. die Zyklen werden rückwärts gelesen:

Fixpunkte und 2er-Zyklen ändern sich dabei nicht:

$$\sigma = (1678)(23) \Rightarrow \sigma^{-1} = (1876)(23)$$

Setzt man die Pfeile von den Graphen π und π^{-1} zusammen, ändert sich nichts, d.h. $\pi \cdot \pi^{-1}(i) = i \Rightarrow \pi \cdot \pi^{-1} = \mathrm{id} = \pi \cdot \pi^{-1}$

• nicht abelsch: Bemerkung 3.6d)

15.11.16

3.12 Beispiel

Restklassen modulo $n : \mathbb{Z}_n = \{0, 1, ..., n-1\},$

- a) (\mathbb{Z}_n, \oplus) mit $a \oplus b = a + b \mod n$. Z.B. in \mathbb{Z}_3 ist $2 \oplus 1 = 0$
 - (\mathbb{Z}_n, \oplus) ist abelsche Gruppe:
 - abgeschlossen: $a + b \mod n \in \{0, ..., n 1\}$
 - assoziativ: $a + (b + c) \mod n = (a + b) + c \mod n$
 - Neutralelement: $a + 0 \equiv 0 + a \equiv a \pmod{n}$
 - Inverse zu $a \in \mathbb{Z}_n$: Für welches $b \in \mathbb{Z}_n$ ist $a+b \mod n = 0$? Wähle b so, dass a+b=n, falls $a \neq 0$ (sonst b=0) z.B. in $\mathbb{Z}_3 : a=1 \Rightarrow b=2$, $a=2 \Rightarrow b=1$, a=0,b=0
 - kommutativ: $a + b \mod n = b + a \mod n$
- b) (\mathbb{Z}_n, \odot) mit $a \odot b = ab \mod n$ Ist i.A. keine Gruppe:
 - -assoziativ \checkmark
 - Neutralelement: e = 1 \checkmark
 - Aber: 0 hat keine Inverse! Es gibt kein $a \in \mathbb{Z}_n$: $\underbrace{0 \cdot a \mod n}_{0} = 1$ (f)
 Hat $z \neq 0$ eine Inverse bzgl. \odot ?

 \bar{z} invers zu z, wenn $\bar{z}\cdot z\equiv 1\pmod n$ z.B. in \mathbb{Z}_{15} gilt:

- * $2 \cdot 8 = 16 \equiv 1 \pmod{15}$, d.h. 2 und 8 sind zueinander invers * Alle Vielfachen von 5 haben Rest 0, 5, 10, d.h. $k \cdot 5 \mod 15 \in \{0, 5, 10\} \quad \forall k \in \mathbb{Z} \Rightarrow 5 \text{ hat kein Inverses}$
- Allgemein:

$$z$$
 invertierbar $\Leftrightarrow \exists \bar{z} \in \mathbb{Z}_n : z \odot \bar{z} = 1$
 $\Leftrightarrow \exists \bar{z} \in \mathbb{Z}_n \quad \exists q \in \mathbb{Z} : \bar{z} \cdot z = qn + 1$
 $\Leftrightarrow \exists \bar{z}, q \in \mathbb{Z} : \bar{z} \cdot z - qn = 1$
 $\stackrel{*}{\Leftrightarrow} \operatorname{ggT}(z, n) = 1$

Beweis von *

' \Leftarrow ' Lemma von Bézout/Erweiterter Euklidischer Algorithmus (EEA): $a,b\in\mathbb{Z}\Rightarrow \exists s,t\in\mathbb{Z}: \mathrm{ggT}(a,b)=s\cdot a+t\cdot b$ Hier: $a=z,\quad b=n,\quad s=\bar{z},\quad t=-q$

'⇒' Übung (Übungsblatt 5, A1c)

Also: Nur die zu n teilerfremden Zahlen in \mathbb{Z}_n haben Inverse. Z.B.: In \mathbb{Z}_{15} sind 1, 2, 4, 7, 8, 11, 13, 14 bzgl. \odot invertierbar.

Bezeichnung: $\mathbb{Z}_n^* = \{z \in \mathbb{Z}_n \mid \operatorname{ggT}(z,n) = 1\}$ ist Gruppe mit Ordnung $|\mathbb{Z}_n^*| = \varphi(n)$ (Eulersche φ -Funktion, $\varphi(n)$ ist Anzahl der zu n teilerfremden Zahlen zwischen 1 und n).

Berechnung der Inversen in \mathbb{Z}_n^* :

EEA:
$$z \in \mathbb{Z}_n^* \Rightarrow \exists s, t \in \mathbb{Z} : sz + tn = 1$$

 $\Rightarrow s \cdot z \equiv 1 \pmod{n}$
 $\Rightarrow s \text{ invers zu } z$

3.13 Satz (Eigenschaften von Gruppen)

G Gruppe.

- i) Das Neutralelement von G ist eindeutig.
- ii) Die Inverse zu jedem $a \in G$ ist eindeutig.

iii)
$$a, b \in G \Rightarrow (ab)^{-1} = b^{-1} \cdot a^{-1}$$

Beweis

i) Angenommen e_1, e_2 Neutralelemente $\Rightarrow e_1 = e_1 \cdot e_2 = e_2$

ii) Angenommen
$$a \in G$$
 hat 2 Inversen x, y $x, y \in G \Rightarrow x = x \underbrace{(ay)}_{e} = \underbrace{(xa)}_{e} y = y$

iii) *
$$(ab)^{-1} \cdot (ab) \stackrel{=}{\underset{\text{Vor.}}{=}} (b^{-1}a^{-1})(ab) = b^{-1} \underbrace{(a^{-1}a)}_{e} b = \underbrace{b^{-1}b}_{e} = e$$

* $(ab)(ab)^{-1}$ analog

3.14 Satz (Gleichungen lösen in Gruppen)

G Gruppe, $a, b \in G$

i)
$$\exists ! x \in G : a \cdot x = b$$
. Es ist $x = a^{-1} \cdot b$

ii)
$$\exists ! y \in G : y \cdot a = b$$
. Es ist $y = b \cdot a^{-1}$

iii)
$$ax = bx$$
 für ein $x \in G \Rightarrow a = b$
bzw. $ya = yb$ für ein $y \in G \Rightarrow a = b$ (Kürzungsregel)

Beweis

i)
$$x = a^{-1}b$$
 erfüllt $ax = a(a^{-1}b) = \underbrace{(aa^{-1})}_e b = b$

ii) Analog zu i)

iii)
$$a = a\underbrace{(xx^{-1})}_e = (ax)x^{-1} = (bx)x^{-1} = b\underbrace{(xx^{-1})}_e = b$$

Untergruppen und Nebenklassen

3.15 Definition (Untergruppe)

 (G,\cdot) Gruppe, $\emptyset \neq U \subseteq G$. U heißt Untergruppe von G $(U \leq G)$, wenn U bzgl. '.' eine Gruppe ist.

Bemerkung

22.11.16

- Abgeschlossenheit prüfen: $\forall u, v \in U : uv \in U$
- \bullet e von G ist auch e von U
- \bullet Inversen in U gleich wie in G

(wegen Satz 3.13)

3.16 Beispiel

- a) $(\mathbb{Z}, +) \le (\mathbb{Q}, +) \le (\mathbb{R}, +)$
- b) $(\{-1,1\},\cdot) \le (\mathbb{Q} \setminus \{0\},\cdot) \le (\mathbb{R} \setminus \{0\},\cdot)$
- c) $V_4 = \{ id, \underbrace{(AB)(CD)}_{\pi}, \underbrace{(AC)(BD)}_{\sigma}, \underbrace{(AD)(BC)}_{\eta} \} \leq \mathscr{S}_4 \text{ (Bsp. 3.7, 3.10) weil } V_4$ abgeschlossen, $id \in V_4$, $\gamma^{-1} = \gamma$ $\forall \gamma \in V_4$

3.17 Beispiel

Es ist $U = 3\mathbb{Z} = \{3k \mid k \in \mathbb{Z}\}$ eine Untergruppe von $(\mathbb{Z}, +)$.

- Mehr Klassen gibt es nicht, da $3\mathbb{Z} + 3 = 3\mathbb{Z} + 0$, $3\mathbb{Z} + 4 = 3\mathbb{Z} + 1$, $3\mathbb{Z} 1 = 3\mathbb{Z} + 2$
- Repräsentanten sind nicht eindeutig, -1 auch Repräsentant von $3\mathbb{Z} + 2 = 3\mathbb{Z} 1$
- Grundidee: Nebenklassen von U unterteilen $G = \mathbb{Z}$ in disjunkte Äquivalenzklassen. Hier: $x \sim_U y \Leftrightarrow \exists u \in 3\mathbb{Z} : u + x = y$, z.B. $4 \sim_U 10$, da $\underbrace{6}_{\in 3\mathbb{Z}} + 4 = 10$

3.18 Satz + Definition (Rechtsnebenklasse, Repräsentant)

G Gruppe, $U \leq G$.

- i) Für $x, y \in G : x \sim_U y : \Leftrightarrow \exists u \in U : ux = y$. Behauptung: \sim_U Äquivalenzrelation.
- ii) $Ux:=\{ux\mid u\in U\}$ (mit $x\in G$) heißt Rechtsnebenklasse von U in G. x heißt Repräsentant der Klasse Ux [Linksnebenklassen analog: xU]
- iii) $G/U := \{Ux \mid x \in G\}$ Menge der Rechtsnebenklassen von U in G.

 Behauptung: G/U ist eine disjunkte Zerlegung von G in Äquivalenzklassen Ux.

Repräsentanten

Rechtsnebenklassen

Beweis

i)
$$-x \sim_U x$$
, da $\underbrace{e}_{\in U} \cdot x = x$ (Reflexivität) $-$ (Symmetrie)

$$x \sim_U y \Rightarrow \exists u \in U : ux = y$$

 $\Rightarrow x = \underbrace{u^{-1}}_{\in U} y = x$
 $\Rightarrow y \sim_U x$

- (Transitivität)

$$x \sim_U y, \ y \sim_U z \Rightarrow \exists u, u' \in U : ux = y, \ u'y = z$$

 $\Rightarrow u'y = u'(ux) = \underbrace{(u'u)}_{\in U} x = z$
 $\Rightarrow x \sim_U z$

iii)
$$-Ux = \{ux|u \in U\} = \{y \in G | \underbrace{\exists u : ux = y}_{y \sim_U x} \} = \{y \in G | y \sim_U x\} \Rightarrow Ux$$

Äquivalenzklassen von $x \in G$

– Für je 2 Äquivalenzklassen Ux, Uy gilt: Ux = Uy oder $Ux \cap Uy = \emptyset$ (wegen Transitivität)

3.19 Beispiel

 $\mathbb{Z}_3 := \mathbb{Z}/3\mathbb{Z} = \{3\mathbb{Z}+0,\ 3\mathbb{Z}+1,\ 3\mathbb{Z}+2\} = \{3\mathbb{Z}+3,\ 3\mathbb{Z}-2,\ 3\mathbb{Z}+11\}$ Man schreibt oft $\mathbb{Z}_3 = \{\underline{0},\underline{1},\underline{2}\}$ (wobei $j=3\mathbb{Z}+j$) oder einfach $\mathbb{Z}_3 = \{0,1,2\}$ Allgemein: $\mathbb{Z}_n := \mathbb{Z}/n\cdot\mathbb{Z},\ n\in\mathbb{N}$ Beobachtung in \mathbb{Z}_3 : Ist $x\in\underline{1},y\in\underline{2}$, dann ist immer $x+y\in\underline{0}$

3.20 Kriterium

G Gruppe, $U \leq G$.

Für je 2 beliebige Klassen, $Ux, Uy \quad (x, y \in G)$ gelte: $x' \in Ux, \ y' \in Uy \Rightarrow x' \cdot y' \in U(xy)$

3.21 Definition (Wohldefiniertheit)

Wenn Kriterium 3.20 erfüllt ist, kann man auf G/U eine Verknüpfung definieren:

$$*: G/U \times G/U \to G/U \text{ mit}$$

 $(Ux) * (Uy) = U(xy)$

Produkt in G

Man sagt: Wenn 3.20 erfüllt, ist '*' wohldefiniert.

3.22 Beispiel

23.11.16

a) * wohldefiniert auf $(\mathbb{Z}_n, +)$ (ohne Beweis)

Bemerkung: $x \sim_U y \Leftrightarrow \exists u \in 3\mathbb{Z} : u + x = y$ $\Leftrightarrow x \equiv y \pmod{3}$

Daraus ergibt sich die Def. aus Bsp. 3.12 mit $\mathbb{Z}_3 = \{0, 1, 2\}$ und $x \oplus y = x + y \pmod{3}$

b) $U = \{id, (12)\} \leq \mathcal{S}_3$. Auf \mathcal{S}_3/U ist * nicht wohldefiniert (Übung).

3.23 Satz (Faktorengruppe/Quotientengruppe)

 $U \leq G$, Gruppe.

Wenn '*' aus Def 3.21 wohldefiniert, dann ist (G/U, *) eine Gruppe.

(Name: Quotientengruppe/Faktorengruppe)

Beweis: Übung.

Bemerkung: G abelsch \Rightarrow '*' immer wohldefiniert, d.h. G/U Gruppe.

3.24 Lemma

G Gruppe, $U \leq G$, $U \text{ endlich} \Rightarrow |Ux| = |U| \quad \forall x \in G$

Beweis

 $\varphi: U \to Ux, \quad u \mapsto u \cdot x \text{ bijektiv:}$

- surjektiv, da $\varphi(U) = Ux$
- injektiv, da $\varphi(u_1) = \varphi(u_2) \Rightarrow u_1 x = u_2 x$ $\stackrel{\cdot x^{-1}}{\Rightarrow} u_1 = u_2$

$$\Rightarrow |U| = |Ux|$$

3.25 Theorem (Lagrange)

G endliche Gruppe, $U \leq G \Rightarrow |U|$ teilt |G| und $|G/U| = \frac{|G|}{|U|}$.

Beweis

Seien $U_{x_1}, ..., U_{x_q}$ die q verschiedenen Rechtsnebenklassen von U in G. $\Rightarrow G = \dot{\bigcup}_{i=1}^q U x_i \Rightarrow |G| = \sum_{i=1}^q \underbrace{|U x_i|}_{=|U|} = q \cdot |U|.$

Ordnung und zyklische Gruppen

3.26 Definition (Potenzen)

$$(G,\cdot) \text{ Gruppe, } a \in G.$$
 Definiere $a^0 := e, \quad a^1 := a, \quad \underbrace{a^m := (a^{m-1}) \cdot a}_{\text{für } m \in \mathbb{N}}, \quad a^m := \underbrace{(a^{-1})^{-m}}_{\text{für } m \in \mathbb{Z}^-}$

als Potenzen von $a \in G$.

3.27 Satz (Rechenregeln)

G Gruppe, $a \in G$. Es gilt:

i)
$$(a^{-1})^m = (a^m)^{-1} = a^{-m} \quad \forall m \in \mathbb{Z}$$

ii)
$$a^m a^n = a^{m+n} \quad \forall m, n \in \mathbb{Z}$$

iii)
$$(a^m)^n = a^{m \cdot n} \quad \forall m, n \in \mathbb{Z}$$

Beweis

i) a) m positiv:

* Inverses für
$$a^m$$
, wenn $m \ge 0$:
Es ist $a^m \cdot \underbrace{(a^{-1})^m}_{\text{Inverse}} = \underbrace{a \cdot a \cdot \dots \cdot a}_{\text{m-mal}} \cdot \underbrace{a^{-1} \cdot \dots \cdot a^{-1}}_{\text{m-mal}} = e$

$$\Rightarrow (a^m)^{-1} = (a^{-1})^m$$
* nach Definition: $a^{-m} = (a^{-1})^{+m}$

$$\Rightarrow i) \text{ gilt für } m \ge 0$$

b) m negativ:

*
$$a^{-m} = (\underbrace{(a^{-1})^{-1}}^{\in \mathbb{N}})^{-m} \stackrel{\text{Def.}}{=} (a^{-1})^m$$

*
$$a^{m} = (a^{-1})^{-m} \stackrel{\text{a}}{=} (a^{-m})^{-1}$$

 $\Rightarrow (a^{m})^{-1} = ((a^{-m})^{-1})^{-1} = a^{-m}$

ii) + iii) analog mit m oder n negativ oder positiv

3.28 Satz + Definition (Ordnung, zyklische Gruppe)

G endliche Gruppe, $g \in G$.

- i) Es gibt eine kleinste Zahl $n \in \mathbb{N}$ mit $g^n = e$. n heißt Ordnung $\mathcal{O}(g)$ von g.
- ii) $\{g^0=e,g^1,g^2,...,g^{n-1}\} \leq G$ und heißt die von g erzeugte zyklische Gruppe $\langle g \rangle$.
- iii) $g^{|G|} = e$

Beweis

i) $G \text{ endlich} \Rightarrow \exists i, j \in \mathbb{N} : g^i = g^j \text{ und } i > j$ $\Rightarrow g^{i-j} = g^i g^{-j} = \underbrace{g^i}_{=g^j} (g^j)^{-1} = e$

Wähle $n = \min\{k \in \mathbb{N} | g^k = e\}.$

- ii) $-\langle g \rangle \text{ abgeschlossen, da } g^m \cdot g^k = g^{m+k} \in \langle g \rangle$ $-g^0 = e \in \langle g \rangle$ $-(g^m)^{-1} = g^{-m} = \underbrace{g^n}_{\bullet} \cdot g^{-m} \in \langle g \rangle$
- iii) Lagrange: $n \mid |G| \Rightarrow n \cdot k = |G|$ für ein $k \in \mathbb{N}$ $\Rightarrow g^{|G|} = g^{nk} = \underbrace{(g^n)^k}_e = e^k = e$

3.29 Bemerkung

Eine endliche Gruppe heißt zyklisch, falls sie von einem Element erzeugt wird.

Beispiel

• (\mathbb{Z}_n, \oplus) zyklisch, da $1 \in \mathbb{Z}_n$ und $1^2 = 1 + 1 = 2$, $1^3 = 1 + 1 + 1 = 3$, ..., $1^n = (1^{n-1}) \cdot 1 = (n-1) + 1 = n$ und $n \equiv 0 \pmod{n}$ \mathbb{Z}_n hat Ordnung n, da $1^n = 0$

 \bullet Drehungen, die ein regelmäßiges n-Eck in sich selbst überführen, sind zyklisch:

$$(ABC)^0 = id$$
, $(ABC) = (ABC)$, $(ABC)^2 = (ACB)$, $(ABC)^3 = id$
 $\langle (ABC) \rangle = \{ id, (ABC), (ACB) \} \le \mathscr{S}_3$

• \mathcal{S}_3 oder V_4 nicht zyklisch.

3.30 Korollar

- i) Satz von Euler: $n \in \mathbb{N}, \ a \in \mathbb{Z}, \ \operatorname{ggT}(a,n) = 1 \Rightarrow a^{\varphi(n)} \equiv 1 \pmod{n}$
- ii) Kleiner Satz von Fermat: $p \text{ Primzahl}, \ a \in \mathbb{Z}, \quad p \nmid a \Rightarrow a^{p-1} \equiv 1 \pmod p$

Beweis

Wir können annehmen, dass $1 \le a < n$, denn $a^{\varphi(n)} \mod n = \underbrace{(a \mod n)}_{\{1,\dots,n-1\}}^{\varphi(n)} \mod n$ $\Rightarrow a \in \mathbb{Z}_n^*$

$$\mathbb{Z}_n^* \text{ endliche Gruppe} \Rightarrow a^{\frac{-\varphi(n)}{\left|\mathbb{Z}_n^*\right|}} \equiv 1 \pmod{n}$$
 ii) Folgt aus i) für $n=p, \ \varphi(p)=p-1$

4 Ringe und Körper

Grundlegende Eigenschaften

4.1 Definition (Ring)

Sei $\mathcal{R} \neq \emptyset$ eine Menge mit 2 Verknüpfungen + und ·.

- i) Man nennt $(\mathcal{R}, +, \cdot)$ einen Ring, wenn gilt:
 - 1) $(\mathcal{R}, +)$ ist abelsche Gruppe mit Neutralelement 0 und Inverse -a von a.
 - 2) (\mathcal{R}, \cdot) ist abgeschlossen und assoziativ (Halbgruppe).
 - 3) Distributivgesetze: $a \cdot (b+c) = ab + ac$ $(a+b) \cdot c = ac + bc$ $\forall a, b, c \in \mathcal{R}$

29.11.16

- ii) $(\mathcal{R}, +, \cdot)$ heißt <u>kommutativ</u>, falls '·' zusätzlich kommutativ ist
- iii) $(\mathcal{R}, +, \cdot)$ heißt Ring mit Eins, falls es bezüglich '.' ein Neutralelement | gibt mit $a \cdot |= |\cdot a| = a \quad \forall a \in \mathcal{R}$.
- iv) Ist $(\mathcal{R}, +, \cdot)$ Ring mit Eins, so heißen die bezüglich '·' invertierbaren Elemente Einheiten.

Bezeichnung:

- $-a^{-1}$ Inverse von a bzgl. '.'
- $-\mathcal{R}^* := \text{Menge aller Einheiten in } \mathcal{R}$

4.2 Beispiel

- a) Trivialer Ring $(\{0\}, +, \cdot)$
- b) $(\mathbb{Z},+,\cdot)$ kommutativer Ring mit Eins. Einheiten: $1,-1\Rightarrow \underline{\mathbb{Z}^*=\{-1,1\}}$ kein Ring! Ebenso $(\mathbb{Q},+,\cdot)$ und $(\mathbb{R},+,\cdot)$ mit $\mathbb{Q}^*=\mathbb{Q}\setminus\{0\}$ und $\mathbb{R}^*=\mathbb{R}\setminus\{0\}$
- c) $(2\mathbb{Z}, +, \cdot)$ Ring, kommutativ, ohne Eins
- d) $n \in \mathbb{N}_{\geq 2} : (\mathbb{Z}_n, \oplus, \odot)$ kommutativer Ring mit Eins
- e) $(\mathbb{R}^n, +, \cdot)$ kommutativer Ring mit Eins: $(\cdot \text{ und } + \text{Komponentenweise})$ Bemerkung: $\mathcal{R}_1, ..., \mathcal{R}_n$ Ringe $\Rightarrow \mathcal{R}_1 \times ... \times \mathcal{R}_n$ Ring
- f) $(\mathcal{M}_n(\mathbb{R}), +, \cdot)$ (für $n \geq 2$) Ring mit Eins $(= E_n)$. Nicht kommutativ!

4.3 Satz (Rechenregeln für Ringe)

 $(\mathcal{R}, +, \cdot)$ Ring, $a, b, c \in \mathcal{R}$

- i) $a \cdot 0 = 0 \cdot a = 0$
- ii) $(-a) \cdot b = a \cdot (-b) = -(ab)$
- iii) (-a)(-b) = ab

Beweis

- i) Es ist $a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0$ Addiere $-a \cdot 0$: $a \cdot 0 - a \cdot 0 = a \cdot 0 + a \cdot 0 - a \cdot 0$ $\Leftrightarrow 0 = a \cdot 0$ Analog: $0 = 0 \cdot a$
- ii) Es ist $(-a)b + ab = \underbrace{(-a+a)}_{=0}b = 0 \cdot b \stackrel{\text{i}}{=} 0$ $\Rightarrow (-a)b$ invers zu ab und (-a)b = -(ab)Analog: a(-b) = -(ab)
- iii) $(-a)(-b) \stackrel{\text{ii}}{=} -(a(-b)) \stackrel{\text{ii}}{=} -(-(ab)) = ab$

4.4 Bemerkung

- a) \mathcal{R} Ring mit Eins $\Rightarrow 1, -1 \in \mathcal{R}^*$ Achtung! Z.B. in $(\mathbb{Z}_2, \oplus, \odot)$ ist 1 = -1
- b) In einem kommutativen Ring gilt der binomische Lehrsatz: $(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^i \cdot b^{n-i}$
- c) In 4.3: Rechenregeln für Multiplikation mit additiven Inversen, z.B.: $a \cdot (-b)$ Über Addition mit multiplikativen Inversen keine Aussage möglich (z.B. keine Regel für $a^{-1} + b$).

4.5 Definition (Körper)

Ein kommutativer Ring mit Eins $(\mathcal{K}, +, \cdot)$ heißt Körper, falls $\mathcal{K}^* = \mathcal{K} \setminus \{0\}$. D.h. jedes $x \in \mathcal{K} \setminus \{0\}$ ist bezüglich '.' invertierbar.

4.6 Beispiel

- a) $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ Körper $[(\mathbb{C}, +, \cdot)$ auch] $(\mathbb{Z}, +, \cdot)$ kein Körper, da $\mathbb{Z}^* = \{1, -1\}$.
- b) $\mathbb{Z}_n^* = \{z \in \mathbb{Z}_n | \operatorname{ggT}(z, n) = 1\}$ Gruppe bezüglich ' \odot ' $\Rightarrow (\mathbb{Z}_n^*, \oplus, \odot)$ Körper $\Leftrightarrow n$ Primzahl

4.7 Satz (Rechenregeln für Körper: Nullteilerfreiheit)

 $(\mathcal{K}, +, \cdot)$ Körper, $a, b \in \mathcal{K}$. Dann gilt

- a) alle Rechenregeln für Ringe gelten auch für Körper
- b) $ab = 0 \Leftrightarrow a = 0 \lor b = 0$ [Gegenbeispiel: $(\mathbb{Z}_6, \oplus, \odot)$, weil $2 \odot 3 = 0$]

Beweis

 $' \Leftarrow' \text{ klar (Satz 4.3i)}$

$$'\Rightarrow' ab=0$$
. Angenommen $a\neq 0 \Rightarrow b=1 \cdot b=(a^{-1}a)b=a^{-1}\underbrace{(ab)}_{=0}\overset{\text{4.3i}}{=}0$

Strukturgleichheit von Ringen

4.8 Definition (Ringhomomorphismus, Ringisomorphismus)

Geg. $(\mathcal{R}, +, \cdot)$, $(\mathcal{R}', \boxplus, \boxdot)$ Ringe

- i) $\psi : \mathcal{R} \to \mathcal{R}'$ heißt Ringhomomorphismus, falls $\psi(x+y) = \psi(x) \boxplus \psi(y)$ und $\psi(xy) = \psi(x) \boxdot \psi(y) \quad \forall x, y \in \mathcal{R}$
- ii) Wenn ψ bijektiv ist, heißt ψ Ringisomorphismus. In diesem Fall heißen $\mathcal{R}, \mathcal{R}'$ isomorph (d.h. sie sind strukturgleich). Man schreibt $\mathcal{R} \cong \mathcal{R}'$

4.9 Beispiel

a)
$$\psi: (\mathbb{Z}, +, \cdot) \to (\mathbb{Z}_n, \oplus, \odot)$$

 $x \mapsto x \mod n$
 $x + y \to x + y \pmod n$, $x \cdot y \to x \cdot y \pmod n$
 ψ Ringhomomorphismus
Nicht injektiv: $\psi(1) = \psi(n+1) = 1$

30.11.16

b) $(\{w, f\}, XOR, \land) \cong (\mathbb{Z}_2, \oplus, \odot)$ Boolsche Algebra, siehe PÜ

50

Chinesischer Restsatz

4.10 Bemerkung

Gegeben:
$$m_1, ..., m_n \in \mathbb{N}, \ a \in \mathbb{Z}, \ M = m_1 \cdot ... \cdot m_n$$

$$\Rightarrow \underbrace{(a \mod M)}_r \mod m_i = a \mod m_i \quad \forall i$$

Beweis

Z.z.: $r \equiv a \pmod{m_i}$ Division mit Rest:

$$\exists q \in \mathbb{Z} : a = qM + r$$

$$= \underbrace{\left(q\frac{M}{m_i}\right)}_{\in \mathbb{Z}, \text{ da } m_i \mid M} m_i + r$$

$$\Rightarrow a \equiv r \pmod{m_i}$$

4.11 Chinesischer Restsatz

Gegeben:

- $m_1, ..., m_n \in \mathbb{N}$ paarweise teilerfremd
- $M = m_1 \cdot ... \cdot m_n$
- $a_1, ..., a_n \in \mathbb{Z}$

Dann existiert $0 \le x < M$ mit

$$\left. \begin{array}{ll}
 x & \equiv a_1 \pmod{m_1} \\
 x & \equiv a_2 \pmod{m_2} \\
 \vdots & \\
 x & \equiv a_n \pmod{m_n}
\end{array} \right\} \underline{\text{Simultane Kongruenz}}$$

Beweis

Es ist
$$\operatorname{ggT}\left(m_i, \underbrace{\frac{M}{m_i}}_{M_i}\right) = 1 \quad \forall i \in \{1, ..., n\}.$$

$$\stackrel{\operatorname{EEA}}{\Rightarrow} \exists \ s_i, t_i \in \mathbb{Z} : t_i m_i + s_i M_i = 1$$

Setze:
$$e_i := s_i M_i \Rightarrow e_i \equiv \begin{cases} 1 \pmod{m_i} \\ 0 \pmod{m_j}, \ j \neq i \end{cases}$$

 $\Rightarrow x \stackrel{4.10}{=} \sum_{i=1}^{n} a_i e_i \mod M$ ist Lösung der simultanen Kongruenz.

4.12 Beispiel

a)
$$m_1 = 3$$
, $m_2 = 4$, $m_3 = 5 \Rightarrow M = 60$
Finde $x \in [0, 60)$ mit $x \equiv \begin{cases} 2 \pmod{3} & (= a_1) \\ 3 \pmod{4} & (= a_2) \\ 2 \pmod{5} & (= a_3) \end{cases}$

Es ist

$$- M_1 = \frac{M}{m_1} = \frac{60}{3} = 20$$
$$- M_2 = \frac{60}{4} = 15$$
$$- M_3 = \frac{60}{5} = 12$$

EEA:

$$-7 \cdot 3 + (-1) \cdot 20 = 1$$

$$-4 \cdot 4 + (-1) \cdot 15 = 1$$

$$-5 \cdot 5 + (-2) \cdot 12 = 1$$

$$\Rightarrow x = [2 \cdot (-20) + 3 \cdot (-15) + 2 \cdot (-24)] \mod 60 = -133 \mod 60 = 47$$

b) Was ist
$$2^{1000} \mod \underbrace{1155}_{\substack{=3 \cdot 5 \cdot 7 \cdot 11 \\ m_1 m_2 m_3 m_4}}$$
?

1) Berechne $2^{1000} \mod 3, 5, 7 \pmod{11}$

*
$$2^{1000} \mod 3 = (-1)^{1000} \mod 3 = 1 = a_1$$

* $2^{1000} \mod 5 = 4^{500} \mod 5 = (-1)^{500} = 1 = a_1$

*
$$2^{1000} \mod 7 = 2^3 \stackrel{\cdot 333+1}{\longrightarrow} \mod 7 = 1 \cdot 2 \mod 7 = 2 = a_3$$

*
$$2^{1000} \mod 5 = 4^{500} \mod 5 = (-1)^{500} = 1 = a_2$$

* $2^{1000} \mod 7 = 2^3 \stackrel{\cdot 333+1}{= 8} \mod 7 = 1 \cdot 2 \mod 7 = 2 = a_3$
* $2^{1000} \mod 11 = 2^5 \stackrel{\cdot 200}{= 32} \mod 11 = (-1)^{200} = 1 = a_4$

2) Suche
$$0 \le x < 1155 \text{ mit } x \equiv \begin{cases} 1 \pmod{3} \\ 1 \pmod{5} \\ 2 \pmod{7} \\ 1 \pmod{11} \end{cases}$$

Chinesischer Restsatz: x = 331

4.13 Satz (Eindeutigkeit Chines. Restsatz)

Die Lösung x aus 4.11 ist eindeutig.

Beweis

Z.z.: $\psi : \mathbb{Z}_M \to \mathbb{Z}_{m_1} \times ... \times \mathbb{Z}_{m_n}, \quad x \mapsto (x \mod m_1, ..., x \mod m_n)$ ist bijektiv (Ringisomorphismus)

• ψ Ringhomomorphismus:

$$\psi(x \oplus y) = \psi(x + y \mod M)$$

$$= ((x + y \mod M) \mod m_1, ..., (x + y \mod M) \mod m_n)$$

$$\stackrel{4.10}{=} (x + y \mod m_n, ..., x + y \mod m_n)$$

$$= \psi(x) \oplus \psi(y)$$

Analog mit $\psi(x \odot y) = \psi(x) \odot \psi(y)$

- ψ surjektiv: Zu jedem n-Tupel aus $\underbrace{\mathbb{Z}_{m_1} \times ... \times \mathbb{Z}_{m_n}}_{\ni (a_1,...,a_n)}$ gibt es Lösung $x \in \mathbb{Z}_M$ (4.11).
- ψ injektiv: Da $|\mathbb{Z}_M| = |\mathbb{Z}_{m_1} \times ... \times \mathbb{Z}_{m_n}| \Leftrightarrow M = m_1 \cdot ... \cdot m_n$ D.h. kein Element word doppelt 'getroffen'

 $\Rightarrow \psi$ bijektiv, also Isomorphismus

4.14 Beispiel

Gilt
$$\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$$
? Nein. z.B. $\underbrace{\mathbb{Z}_2^* = \{1\}}_{\varphi(2)=1}$, $\underbrace{\mathbb{Z}_4^* = \{1,3\}}_{\varphi(4)=2}$ Aber: $\mathbb{Z}_8^* = \{1,3,5,7\}$ und $4 = \varphi(8) \neq \varphi(2) \cdot \varphi(4)$

4.15 Korollar

- $M = m_1 \cdot \cdot m_n$ mit m_i paarweise teilerfremd und $m_i \in M$ $\Rightarrow \varphi(M) = \varphi(m_1) \cdot \cdot \varphi(m_n)$
- Insbesondere:

Inspessingere.
$$M = p_1^{a_1} \cdot \ldots \cdot p_k^{a_k}, \quad p_i \in \mathbb{P} \text{ (Primzahl)}, \quad p_i \neq p_j \text{ für } i \neq j, \quad a_i \in \mathbb{N}$$

$$\Rightarrow \varphi(M) = (p_1 - 1)p_1^{a_1 - 1} \cdot \ldots \cdot (p_k - 1)p_k^{a_k - 1}$$

Beweis

Wegen 4.13 ist
$$\mathbb{Z}_{M} \cong \mathbb{Z}_{m_{1}} \times ... \times \mathbb{Z}_{m_{n}}$$
 mittels ψ .
 $\Rightarrow x$ Einheit $\Leftrightarrow \psi(x) = (x \mod m_{1}, ..., x \mod m_{n})$ Einheit $\Leftrightarrow x \mod m_{i}$ Einheit $\forall i \Rightarrow \varphi(M) = \varphi(m_{1}) \cdot ... \cdot \varphi(m_{n})$ Es ist $\varphi(p^{a}) = \underbrace{p^{a} - p^{a-1}}_{|\mathbb{Z}_{p^{a}}|} = (p-1)p^{a-1}$
$$\underbrace{\frac{a \mid |\mathbb{Z}_{p^{a}}| \quad \text{Vielfache von } p \quad |\varphi(p^{a}) = |\mathbb{Z}_{p^{a}}^{*}|}_{p \mod p} = 0$$

$$\underbrace{\frac{a \mid |\mathbb{Z}_{p^{a}}| \quad \text{Vielfache von } p}_{p \mod p} = \underbrace{\frac{\varphi(p^{a}) = |\mathbb{Z}_{p^{a}}^{*}|}_{p-1 = p^{1} - p^{0}}}_{p^{2} \mod p} = 0$$

$$\underbrace{\frac{p - 1 = p^{1} - p^{0}}_{p \mod p}}_{p \mod p} = \underbrace{\frac{p - 1}{p^{2} \mod p}}_{p \mod p}_{p \mod p} = \underbrace{\frac{p - 1}{p^{2} \mod p}}_{p \mod p} = \underbrace{\frac{p - 1$$

Polynomringe

06.12.16

In Mathe I wurde für den Ring $(\mathbb{Z}, +, \cdot)$ folgendes eingeführt:

- Division mit Rest
- Erweiterter Euklidischer Algorithmus
- kgV, ggT, Primzahlzerlegung

4.16 Definition (Polynom)

 \mathcal{K} - Körper mit Nullelement \mathcal{O} und Einselement 1.

- i) Ein Polynom über \mathcal{K} ist ein Ausdruck $f = \underbrace{a_0 x^0}_{a_0} + \underbrace{a_1 x^1}_{a_1 x} + \dots + a_n x^n$ mit $n \in \mathbb{N}, \ a_i \in \mathcal{K}$ Koeffizienten von f (auch f(x) anstatt f). Ist $a_i = 0 \quad \forall i \in \{1, ..., n\}$, so schreibt man f = 0 (Nullpolynom)
- ii) $\mathcal{K}[x] = \text{Menge aller Polynome "uber \mathcal{K} in einer Variablen x}$
- iii) $f, g \in \mathcal{K}[x]$ sind gleich, wenn gilt

a)
$$f = a_0 + ... + a_n x^n$$

 $g = b_0 + ... + b_m x^m \text{ mit } a_n \neq 0, \ b_m \neq 0$
 $\Rightarrow m = n \text{ und } a_i = b_i \ \forall i \in \{1, ..., n\}$
oder

b)
$$f = 0 \text{ und } g = 0$$

4.17 Beispiel

a)
$$f(x) = f = 3x^2 - \frac{2}{3}x + 1 \in \mathbb{R}[x]$$

b)
$$g = x^7 + x^2 \in \mathbb{Z}_2[x]$$
, d.h. Koeffizienten $\in \{0, 1\}$

4.18 Satz + Definition (Polynomring)

 \mathcal{K} Körper.

 $\mathcal{K}[x]$ ist kommutativer Ring mit Eins. Dabei ist für $f=\sum_{i=0}^n a_i x^i,$ $g=\sum_{j=0}^m b_j x^j$

•
$$f + g = \sum_{i=0}^{\max\{m,n\}} (a_i + b_i) x^i$$

•
$$f \cdot g = (a_0 + a_1 x + \dots + a_n x^n)(b_0 + b_1 x + \dots + b_m x^m)$$

$$= \underbrace{a_0 \cdot b_0}_{c_0} + \underbrace{(a_0 \cdot b_1 + a_1 \cdot b_0)}_{c_1} x + \dots + \underbrace{a_n b_m}_{c_{n+m}} x^{n+m}$$
mit $c_i = \sum_{k=0}^{i} a_k \cdot b_{i-k}$ (Faltungsprodukt)
[Anmerkung: $a_i = 0 = b_j$ für $i > n$ bzw. $j > m$]

- Einselement: f = 1
- Nullelement f = 0

 $\mathcal{K}[x]$ heißt der Polynomring in einer Variablen über \mathcal{K} .

Beweis

Ringeigenschaften nachrechnen

4.19 Bemerkung

- $a_0, a_1x, a_2x^2, ..., a_nx^n$ heißen Monome
- $a_n x^n$ heißt <u>Leitterm</u> von $f = a_0 + ... + a_n x^n$ mit $a_n \neq 0$

4.20 Beispiel

In $\mathbb{Z}_3[x]$: $f = 2x^3 + 1$, g = x - 1 = x + 2, da $-1 \equiv 2 \pmod{3}$

•
$$f + g = 2x^3 + x + \underbrace{1+2}_{\equiv 0 \pmod{3}} = 2x^3 + x$$

•
$$f \cdot g = (2x^3 + 1)(x + 2) = 2x^4 + x + \underbrace{4x^3}_{\equiv 1 \pmod{3}} + 2 = 2x^4 + x + x^3 + 2$$

Grad eines Polynoms

4.21 Definition (Grad)

 $f \in \mathcal{K}[x], \quad f = a_0 + ... + a_n x^n \qquad a_n \neq 0$ $n \text{ heißt der } \underline{\text{Grad}} \text{ von } f, \operatorname{grad}(f) = n$ $\operatorname{grad}(0) = -\infty, \quad \operatorname{grad}(g) = 0, \text{ falls } g \text{ konstant}$

4.22 Satz (Grad verknüpfter Funktionen)

Beweis

- Stimmt für f = 0 oder g = 0
- Angenommen die Leitterme von f bzw. g sind $a_n x^n$ bzw. $b_m x^m$ mit $a_n \neq 0, \quad b_m \neq 0.$ ⇒ grad(f) = n, grad(g) = m und $\underbrace{a_n \cdot b_m x^{n+m}}_{\neq 0, \text{ da } \mathcal{K} \text{ K\"{o}rper } (4.7)}$ ist Leitterm von $f \cdot g$ ⇒ grad(fg) = n + m

4.23 Korollar (Inversen in $\mathcal{K}[x]$)

 $\mathcal{K}[x]^* = \{ f \in \mathcal{K}[x] \mid \operatorname{grad}(f) = 0 \}$ (nur konstante Polynome $\neq 0$ invertierbar)

Beweis

$$f \cdot f^{-1} = 1 \Rightarrow \operatorname{grad}(ff^{-1}) = \operatorname{grad}(f) + \operatorname{grad}(f^{-1}) \stackrel{4.22}{=} \operatorname{grad}(1) = 0$$
$$\Leftrightarrow \operatorname{grad}(f) = \operatorname{grad}(f^{-1}) = 0$$

Polynomdivision mit Rest

4.24 Bemerkung

Für $b \in \mathcal{K}$ ist $f(b) = \sum_{i=0}^{n} a_i \cdot b^i$, falls $f = \sum_{i=0}^{n} a_i \cdot x^i \in \mathcal{K}[x]$. Man kann zeigen, dass $\psi_b : \mathcal{K}[x] \to \mathcal{K}$ $f \mapsto f(b)$ ein surjektiver Homomorphismus ist.

4.25 Definition (Teilbarkeit)

 \mathcal{K} Körper, $f, g \in \mathcal{K}[x]$. f|g, falls $g \in \mathcal{K}[x]$ existiert mit g = qf (nach 4.22: $\operatorname{grad}(f) \leq \operatorname{grad}(g)$).

4.26 Satz (Division mit Rest in K[x])

 \mathcal{K} Körper, $f \in \mathcal{K}[x]$, $0 \neq g \in \mathcal{K}[x]$.

Dann existieren eindeutig bestimmte Polynome $q, r \in \mathcal{K}[x]$ mit f = qg + r und grad(r) < grad(g).

Bezeichnung: $r = f \mod g$, $q = f \operatorname{div} g$

Beweis

vgl. Mathe I für Z, Literatur

4.27 Beispiel

$$f = x^4 + 2x^3 - x + 2 \text{ und } g = 3x^2 - 1 \in \mathbb{Q}[x]$$

$$\left(\begin{array}{ccc} x^4 + 2x^3 & -x & +2 \end{array}\right) : \left(3x^2 - 1\right) = \frac{1}{3}x^2 + \frac{2}{3}x + \frac{1}{9} + \frac{-\frac{1}{3}x + \frac{19}{9}}{3x^2 - 1} \\ & -\frac{x^4}{2x^3 + \frac{1}{3}x^2} - x \\ & -\frac{2x^3}{3x^2 - \frac{1}{3}x} + 2 \\ & -\frac{1}{3}x^2 - \frac{1}{3}x + 2 \\ & -\frac{1}{3}x^2 + \frac{19}{9} \\ & -\frac{1}{3}x + \frac{19}{9} \\ & \text{Mit. } \frac{1}{3}x^2 + \frac{2}{3}x + \frac{1}{3} = q \text{ und } -\frac{1}{3}x + \frac{19}{9} = r \text{ (Best)}.$$

Mit $\frac{1}{3}x^2 + \frac{2}{3}x + \frac{1}{9} = q$ und $-\frac{1}{3}x + \frac{19}{9} = r$ (Rest). Aufhören bei grad(r) < grad(g)!

4.28 Korollar

 \mathcal{K} Körper, $a \in \mathcal{K}$, $f \in \mathcal{K}[x]$

$$\underbrace{(x-a)}_{\text{teilt f restlos}} | f \Leftrightarrow f(a) = 0$$
 07.12.16

Beweis

$$(\Rightarrow) \exists q \in \mathcal{K}[x] : f = q(x - a) \Rightarrow f(a) = q(a) \underbrace{(a - a)}_{0} = 0$$

(
$$\Leftarrow$$
) Division mit Rest: $f = q(x - a) + r$, $\operatorname{grad}(r) < \operatorname{grad}(x - a) \pmod{q|f}$
 $\Rightarrow \operatorname{grad}(r) \le 0$, d.h. $r = c \ne 0$ konstant oder $r = 0$
 $0 = f(a) = q(a) \underbrace{(a - a)}_{=0} + r(a) \Rightarrow r = 0$

Euklidischer Algorithmus in $\mathcal{K}[x]$

4.29 Definition (Normiertheit)

 \mathcal{K} Körper.

- i) $f = a_0 + ... + a_n x^n \in \mathcal{K}[x], \quad a_n \neq 0$ heißt <u>normiert</u>, wenn $a_n = 1$
- ii) $g,h \in \mathcal{K}[x]$, g,h nicht beide 0. $f = \operatorname{ggT}(g,h)$, falls $f \in \mathcal{K}[x]$ normiertes Polynom von maximalem Grad ist, das g und h teilt.
- iii) $g, h \in \mathcal{K}[x] \setminus \{0\}$. f = kgV(g, h), falls $f \in \mathcal{K}[x]$ ein normiertes Polynom von minimalem Grad ist, das von g und h geteilt wird.

4.30 Bemerkung

- a) g = x, $h = x + 1 \in \mathbb{Q}[x]$ $g|x(x+1), \quad h|x(x+1)$ $g|2x(x+1), \quad h|2x(x+1)$ $kgV(g,h) = x(x+1) = x^2 + x$, da $2x^2 + 2x$ nicht normiert! $\rightarrow \text{Normierung macht Ergebnisse eindeutig.}$
- b) Normierung erfolgt, indem man durch Koeffizienten des Leitterms 'teilt': $f = a_n x^n + ... + a_0 \Rightarrow a_n^{-1} \cdot f = \underbrace{x^n + ... + a_n^{-1} a_0}_{\text{normiert}}$
- c) kgV(g, h) existiert und ist eindeutig.
 - Existenz: g|gh, h|gh (gh gemeinsames Vielfaches)
 - Eindeutig: $f_1 = \text{kgV}(g, h)$, $f_2 = \text{kgV}(g, h)$ $\Rightarrow g, h|f_1 \text{ und } g, h|f_2$ $\Rightarrow g, h|(f_1 - f_2)$ $f_1, f_2 \text{ normiert und von gleichem (minimalen) Grad.}$

```
\Rightarrow grad (f_1 - f_2) < grad (f_1)

\Rightarrow f_1 - f_2 = 0, denn sonst wäre kgV(g, h) = f_1 - f_2 \notzur Minimalität des Grades

\Rightarrow kgV eindeutig.
```

d) ggT(g,h) existiert und ist eindeutig. Beweis folgt wie in Mathe I für $\mathbb Z$ aus:

4.31 Lemma von Bézout

```
g, h \in \mathcal{K}[x] nicht beide gleich 0.

\Rightarrow \exists s, t \in \mathcal{K}[x] : sg + th = ggT(g, h)
```

Beweis

Siehe 4.33 (EEA).

Beweis Eindeutigkeit von ggT

```
f = \operatorname{ggT}(g,h), \quad f' = \operatorname{ggT}(g,h)

(f,f') Funktionen desselben Grades und normiert)

\Rightarrow \exists s',t' \in \mathcal{K}[x]: f' = s' \cdot g + t' \cdot h

f|g \wedge f|h \Rightarrow f|f'

\Rightarrow \exists q \in \mathcal{K}[x]: f' = qf

\Rightarrow \operatorname{grad}(f') = \operatorname{grad}(q) + \operatorname{grad}(f)

\operatorname{grad}(f) = \operatorname{grad}(f') \Rightarrow \operatorname{grad}(q) = 0

\operatorname{grad}(q) = 0 \Rightarrow q = c \neq 0, \quad c \in \mathcal{K}

\Rightarrow f' = cf

f, f' \text{ normiert } \Rightarrow c = 1
```

4.32 Satz (Euklidischer Algorithmus EA in K[x])

```
Eingabe: g, h \in \mathcal{K}[x], nicht beide gleich 0

1: if h = 0 then

2: y \coloneqq g

3: end if

4: if h|g then

5: y \coloneqq h

6: end if

7: if h \neq 0 \land h \nmid g then

8: x \coloneqq g, y \coloneqq h
```

```
9: while (x \mod y) \neq 0 do

10: r \coloneqq x \mod y

11: x \coloneqq y, \quad y \coloneqq r

12: end while

13: end if

14: d \coloneqq a_n^{-1}y (Normierung von y, siehe 4.30)

Ausgabe: d = \operatorname{ggT}(g, h)
```

Beweis

```
Wie für \mathbb{Z} in Mathe I.
Hinweis: d|g und d|h \Leftrightarrow d|(g \mod h) und d|h.
Begründung: g = qh + (g \mod h).
```

4.33 Satz (Erweiterter Euklidischer Algorithmus EEA in $\mathcal{K}[x]$)

```
Eingabe: g, h \in \mathcal{K}[x], nicht beide gleich 0
 1: if h = 0 then
 2:
           y \coloneqq g, \quad s \coloneqq 1, \quad t \coloneqq 0
 3: end if
 4: if h|g then
           y \coloneqq h, \quad s \coloneqq 0, \quad t \coloneqq 1
 5:
 6: end if
 7: if h \neq 0 \land h \nmid g then
           x \coloneqq g, \quad y \coloneqq h
 9:
           s_1 \coloneqq 1, \ s_2 \coloneqq 0, \ t_1 \coloneqq 0, \ t_2 \coloneqq 1
10:
           while (x \mod y) \neq 0 do
                q \coloneqq x \text{ div } y, \quad r \coloneqq x \mod y
11:
                s \coloneqq s_1 - qs_2, \quad t \coloneqq t_1 - qt_2
12:
13:
                s_1 \coloneqq s_2, \quad s_2 \coloneqq s
                t_1 \coloneqq t_2, \quad t_2 \coloneqq t
14:
15:
                x \coloneqq y, \quad y \coloneqq r
           end while
16:
17: end if
18: d \coloneqq a_n^{-1} y (Normierung von y, siehe 4.30)
19: s \coloneqq a_n^{-1} s, t \coloneqq a_n^{-1} t (Normierung von s, t, siehe 4.30)
Ausgabe: d = ggT(g, h), s, t für ggT(g, h) = sg + th
```

4.34 Beispiel

Nebenrechnung

Achtung: Polynomdivision in $\mathbb{Z}_3[x]$, nicht normale Polynomdivision!

•
$$(x^3+2x^2 + 2) : (x^2+x) = x+1$$
 $-x^3-x^2$
 $x^2 + 2$
 $-x^2-x$
 $2x + 2$ (= r)

•
$$t = 1 - (x+1)(2x+1) = 1 - (2x^2+1) = x^2$$

•
$$(x^2+x): (2x+2) = 2^{-1}x$$
 $-x^2-x$
 0

• Normierung von y:

$$d = a_n^{-1}y = 2^{-1}(2x+2)$$

$$= x+1$$

$$s = 2^{-1}(2x+2) = x+1$$

$$t = 2^{-1} \cdot x^2 = 2x^2, \text{ da } 2^{-1} = 2$$

• Probe:

$$d = sg + th = (x+1)(x^4 + x^3 + 2x^2 + 1) + (2x^2)(x^3 + 2x^2 + 2)$$

$$= x^5 + x^4 + 2x^3 + x + x^4 + x^3 + 2x^2 + 1 + 2x^5x^4 + x^2$$

$$= 3x^5 + 3x^4 + 3x^3 + 3x^2 + x + 1$$

$$= 0x^5 + 0x^4 + 0x^3 + 0x^2 + x + 1$$

$$= x + 1 = ggT(g, h)$$

Primelemente in $\mathcal{K}[x]$

<u>Primelemente</u> sind Polynome, die sich nicht als Produkt von zwei Polynomen vom Grad ≥ 1 darstellen lassen. So ist z.B. $2x^2 + 2x = 2x(x+1)$ kein Primelement, jedoch sind die Faktoren 2x und x+1 Primelemente.

4.35 Definition (Primelemente = irreduzible Polynome)

13.12.16

 $p \in \mathcal{K}[x]$ mit grad $(p) \ge 1$ heißt <u>irreduzibel</u>, falls gilt:

$$\forall f, g \in \mathcal{K}[x] : p = f \cdot g \text{ ist } \operatorname{grad}(f) = 0 \text{ oder } \operatorname{grad}(g) = 0$$

4.36 Beispiel

- a) x + 1, $2x \in \mathbb{R}[x]$ irreduzibel. Allg.: $ax + b \quad (a \neq 0)$ irreduzibel in $\mathcal{K}[x]$
- b) $x^2-2\in\mathbb{Q}[x]$ ist irreduzibel: Angenommen nicht, dann $x^2-2=\underbrace{(ax+b)}_{\text{Nullstelle:}-\frac{b}{a}}\underbrace{(cx+d)}_{\text{Nullstelle:}-\frac{d}{c}}$ $(a,c\neq 0)$ $\Rightarrow x^2-2$ hat auch Nullstelle $-\frac{b}{a}\in\mathbb{Q}$ \not Widerspruch: Nullstelle von x^2-2 sind aus \mathbb{R}
- c) $x^2 2 \in \mathbb{R}[x]$ nicht irreduzibel: $x^2 2 = \underbrace{(x \sqrt{2})}_{\in \mathbb{R}[x]} \cdot \underbrace{(x + \sqrt{2})}_{\in \mathbb{R}[x]}$
- d) $x^2 + 1$ hat in \mathbb{R} keine Nullstelle und ist somit irreduzibel in $\mathbb{R}[x]$. Anmerkung: In $\mathbb{C}[x]$ ist $x^2 + 1$ kein Primelement (siehe Kapitel 5)
- e) $x^2 + 1 = (x+2)(x+3)$ in $\mathbb{Z}_5[x]$ \rightarrow nicht irreduzibel in $\mathbb{Z}_5[x]$

4.37 Satz (Irreduzibles Polynom)

 $f \in \mathcal{K}[x]$, grad $(f) \ge 1$. Dann sind äquivalent:

- (1) f irreduzibel
- (2) $g, h \in \mathcal{K}[x], f|g \cdot h \Rightarrow f|g \vee f|h$

Beweis

 $(1) \Rightarrow (2)$

Angenommen
$$f \nmid g \stackrel{(1)}{\Rightarrow} \operatorname{ggT}(f,g) = 1$$

$$\stackrel{\text{B\'ezout}}{\Rightarrow} \exists s, t \in \mathcal{K}[x] : sf + tg = 1$$

$$\Rightarrow sfh + tgh = h$$

$$\text{Wissen:} f|fsh \text{ und } f|tgh \quad (f|gh \text{ Voraussetzung von (2)})$$

$$\Rightarrow f|h$$

 $(2) \Rightarrow (1)$

Angenommen
$$f = gh$$
. Zeigen: $\operatorname{grad}(h) = 0$.
$$f = gh \overset{(2)}{\Rightarrow} f|g \vee f|h \quad \text{O.B.d.A: } f|g$$

$$\Rightarrow \operatorname{grad}(f) \underset{f|g}{\leq} \operatorname{grad}(g) \underset{h \neq 0}{\leq} \operatorname{grad}(h) + \operatorname{grad}(g) = \operatorname{grad}(\underbrace{h \cdot g}_{=f})$$
 (damit müssen also alle '\(\leq'\) sein: '=')
$$\Rightarrow \operatorname{grad}(h) = 0$$

4.38 Korollar

 $f \in \mathcal{K}[x]$, grad $(f) = n \ge 1$. Dann:

- 1) f hat höchstens n Nullstellen $a_1, ..., a_k \in \mathcal{K}$
- 2) $f = (x a_1) \cdot ... \cdot (x a_k) \cdot \bar{f} \text{ mit } \operatorname{grad}(\bar{f}) = \operatorname{grad}(f k).$ $[f \text{ normiert}, k = n \Rightarrow f = (x - a_1) \cdot ... \cdot (x - a_n)]$

Beweis

 $\underline{n=1}$: f=ax+b hat Nullstelle $-a^{-1}b$

n > 1: Hat f keine Nullstelle, so fertig. Sonst:

Sei
$$a$$
 Nullstelle $\Rightarrow f = (x - a)g$, $\operatorname{grad}(g) = n - 1$.
Sei $b \neq a$ weitere Nullstelle $\Rightarrow (x - b)|(x - a)g$
 $x - b$ irreduzibel, $(x - b) \not|(x - a) \Rightarrow (x - b)|g$
 $\Rightarrow b$ Nullstelle von g

Per Induktion hat g - n - 1 Nullstellen. Behauptung folgt.

4.39 Satz (Existenz eindeutiger irreduzibler Polynome)

 $f \in \mathcal{K}[x]$ mit Leitterm $a_n x^n, n \geq 1$ \Rightarrow Es existieren eindeutig bestimmte irreduzible Polynome $p_1, ..., p_l$ und $m_1, ..., m_l \in \mathbb{N}$ mit $f = a_n p_1^{m_1} \cdot ... \cdot p_l^{m_l}$

Beweis

Wie in \mathbb{Z} .

4.40 Bemerkung

 $(\mathbb{Z}_n, \oplus, \odot)$ Körper $\Leftrightarrow n$ Primzahl Analog in $\mathcal{K}[x]$: Sei $f \in \mathcal{K}[x]$, $\operatorname{grad}(f) = n$ $(\mathcal{K}[x]_n, +, \odot_f)$ mit

- $\mathcal{K}[x]_n := \{g \in \mathcal{K}[x] \mid \operatorname{grad}(g) < n\}$
- $g \odot_f h = (g \cdot h) \mod f$

ist kommutativer Ring mit Eins.

$$\mathcal{K}[x]_n^* = \{ g \in \mathcal{K}[x]_n \mid ggT(g, f) = 1 \}$$

Man kann zeigen:

- a) $\mathbb{Z}_p[x]_n$ Körper der Ordnung $p^n \Leftrightarrow f$ irreduzibel, p Primzahl.
- b) Jeder endliche Körper hat Primzahlpotenzordnung und ist durch seine Ordnung bis auf Isomorphie eindeutig festgelegt.

5 Komplexe Zahlen

Problem (16 Jhdt.):

- Gleichungen wie z.B. $x^2=-1$ haben keine reelle Lösung. Dagegen hat $x^2=-1$ imaginäre Lösungen ('imaginaires' Descartes) $x_{1/2}=\pm\sqrt{-1}$
- $x^4=1$ hat zwei reelle Lösungen $x=\pm 1$ und zwei imaginäre Lösungen $x=\pm \sqrt{-1}$
- $x^2 + 2x + 2$ hat die imaginären Lösungen $-1 \pm \sqrt{-1}$

5.1 Definition (Grundbegriffe)

- $i := \sqrt{-1}$ heißt imaginäre Einheit (Euler 1777)
- $\mathbb{C} := \{a + bi \mid a, b \in \mathbb{R}\}$ Menge der komplexen Zahlen
- Für $z=a+b\pmb{i}$ heißt $\mathrm{Re}(z):=a$ Realteil von z und $\mathrm{Im}(z):=b$ Imaginärteil von z

Gaußsche Zahlenebene und Polarkoordinaten

5.2 Gaußsche Zahlenebene (1831)

Beobachtung: $a + bi \leftrightarrow \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$ ('korrespondiert eineindeutig zu')

$$r = \sqrt{a^2 + b^2}$$
$$a = r \cdot \cos(\varphi)$$
$$b = r \cdot \sin(\varphi)$$

Daraus ergibt sich die Darstellung in Polarkoordinaten:

$$r \ge 0$$
, $\varphi \in [0, 2\pi)$ bzw. $(r, \varphi) \in [0, \infty) \times [0, 2\pi)$
 $\Rightarrow a + b\mathbf{i} = r(\cos(\varphi) + \mathbf{i}\sin(\varphi))$

5.3 Definition (Betrag)

14.12.16

Für $z = a + bi \in \mathbb{C}$ ist $|z| := \sqrt{a^2 + b^2}$ der Betrag von z.

5.4 Bemerkung

Jede Zahl $z = a + bi \in \mathbb{C} \setminus \{0\}$ lässt sich durch den Winkel $\varphi \in [0, 2\pi)$ und durch den Betrag |z| eineindeutig darstellen: $z = |z| \underbrace{(\cos(\varphi) + i \sin(\varphi))}_{e^{i\varphi}}$

5.5 Formel von Euler

$$e^{i\varphi} = \cos(\varphi) + i\sin(\varphi), \quad \varphi \in \mathbb{R}$$

Beweisidee (später mit Taylorreihen)

$$\underbrace{\sum_{k=0}^{\infty} \frac{(\boldsymbol{i}\varphi)^k}{k!}}_{\text{später: } e^{\boldsymbol{i}\varphi}} = \underbrace{\sum_{k=0}^{\infty} (-1)^k \cdot \frac{\varphi^{2k}}{(2k)!}}_{\text{cos}(\varphi), \text{ gerade } k} + \boldsymbol{i} \cdot \underbrace{\sum_{k=0}^{\infty} (-1)^k \cdot \frac{\varphi^{2k+1}}{(2k+1)!}}_{\text{sin}(\varphi), \text{ ungerade } k}$$

Anmerkung: $\mathbf{i}^0 = 1$, $\mathbf{i}^1 = \mathbf{i}$, $\mathbf{i}^2 = -1$, $\mathbf{i}^3 = -\mathbf{i}$, $\mathbf{i}^4 = \mathbf{i}^0 = 1$ $\Rightarrow \langle \mathbf{i} \rangle$ zyklische Gruppe der Ordnung 4

5.6 Bemerkung

Damit ergibt sich für $z \in \mathbb{C}$ die Darstellung $z = |z|e^{i\varphi}$, φ wie in Abbildung 5.2

5.7 Bemerkung

 $e^{i\varphi}$ liegt für $\varphi \in \mathbb{R}$ auf dem Einheitskreis, d.h. $\varphi \to e^{i\varphi}$ ist Kreisfunktion. Für Frequenzanalyse (Fourierreihen):

t... Zeit, $\omega \in \mathbb{Z}...$ Frequenz.

Dann beschreibt $e^{i(t\cdot 2\pi)\omega}$ eine Schwingung, z.B.:

- $\omega = 1$: in einer Zeiteinheit (ZE) wird Einheitskreis 1 mal durchlaufen
- $\omega = k$: in einer ZE wird Einheitskreis k mal durchlaufen

Verknüpfungen auf $\mathbb C$

- 1) $(\mathbb{C}, +) \cong (\mathbb{R}^2, +)$, d.h. (a+bi)+(a'+b'i)=(a+a')+(b+b')i (Vektoraddition)
- 2) Wie wählt man Multiplikation, so daß C Körper wird?

Man möchte, dass Potenzregel gilt, z.B:

$$e^{i\varphi} \cdot e^{i\varphi'} = e^{i(\varphi + \varphi')} \Leftrightarrow$$

$$(\cos \varphi + \mathbf{i} \sin \varphi)(\cos \varphi' + \mathbf{i} \sin \varphi') = \cos(\varphi + \varphi') + \mathbf{i} \sin(\varphi + \varphi')$$

Damit scheidet die komponentenweise Multiplikation aus. Mit den üblichen Rechenregeln aus \mathbb{R} :

$$(\cos \varphi + i \sin \varphi)(\cos \varphi' + i \sin \varphi') =$$

$$\underbrace{\cos\varphi\cos\varphi' - \sin\varphi\sin\varphi'}_{\cos(\varphi+\varphi')} + i\underbrace{\left(\sin\varphi\cos\varphi' + \cos\varphi\sin\varphi'\right)}_{\sin(\varphi+\varphi')}$$

Für $z = a + b\mathbf{i} = |z|e^{\mathbf{i}\varphi}$ und $z'=a'+b'i=|z'|e^{i\varphi'}$ ist das Produkt $zz'=z|z'|e^{i\varphi'}=|z'||z|e^{i(\varphi+\varphi')}$ eine

Drehstreckung des Vektors $\begin{pmatrix} a \\ b \end{pmatrix}$

3) Die Inverse einer Drehstreckung $re^{i\varphi}$ ist dann eine Stauchung $\frac{1}{r}$ verknüpft

mit einer Drehung um
$$-\varphi$$
: $z=re^{i\varphi} \Leftrightarrow z^{-1}=\frac{1}{r}e^{i-\varphi}$, da $zz^{-1}=r\frac{1}{r}e^{i(\varphi-\varphi)}=1\cdot e^0=1$

In der Schreibweise z = a + bi, z' = a' + b'i ergibt sich: $zz' = (a+b\mathbf{i})(a'+b'\mathbf{i}) = aa'-bb'+(ab'+ba')\mathbf{i}$, denn $a = r \cos \varphi$, $b = r \sin \varphi$, $a' = r' \cos \varphi'$, $b' = r' \sin \varphi'$.

Für
$$z = a + bi \in \mathbb{C}$$
 ist die Inverse $z^{-1} = \frac{1}{a+bi} = \frac{a-bi}{(a+bi)(a-bi)} = \frac{a-bi}{a^2-i^2b^2} = \frac{a-bi}{a^2+b^2}$

Definition (Konjugierte) 5.8

Falls $z = a + bi \in \mathbb{C}$, heißt $\bar{z} := a - bi$ die zu z Konjugierte.

5.9 Bemerkung

- Es folgt $z^{-1} = \frac{\bar{z}}{|z|^2}$
- $z \cdot \bar{z} = |z|^2 \in \mathbb{R}$

Satz (C Körper) 5.10

 $(\mathbb{C},+,\cdot)$ mit

•
$$(a+bi) + (a'+b'i) = (a+a') + (b+b')i$$
 und

$$\bullet (a+bi)(a'+b'i) = aa'-bb'+(ab'+a'b)i$$

ist ein Körper.

Nullelement: $\mathcal{O} = 0 + 0i$ Einselement: 1 = 1 + 0i

Beweis

Nachrechnen.

Beispiel

$$\bullet \ (1+i) = \sqrt{2}e^{i\cdot\frac{\pi}{4}}$$

•
$$(2+i)(3-4i) = 6+4+(3-8)i = 10-5i$$

$$\bullet \ \ \frac{i+1}{2i-1} = \underbrace{\frac{(i+1)(2i+1)}{(2i-1)}\underbrace{(2i+1)}_{\bar{z}}}_{} = \frac{1-2+i(2+1)}{-4-1} = -\frac{1}{5} + \frac{3}{5}i$$

5.11 Rechenregeln (Konjunktion, Betrag)

 $w,z\in\mathbb{C}$

a)
$$\overline{w \pm z} = \overline{w} \pm \overline{z}$$

 $\overline{w \cdot z} = \overline{w} \cdot \overline{z}$
 $\overline{\overline{z}} = z$
 $\Rightarrow z \mapsto \overline{z}$ Körperisomorphismus

b)
$$Re(z) = \frac{z + \bar{z}}{2}$$
, $Im(z) = \frac{z - \bar{z}}{2i}$

c)
$$|z| \ge 0$$
, $|z| = 0 \Leftrightarrow z = 0$ (positive Definitheit)

d)
$$|z| = |\bar{z}| = \sqrt{z\bar{z}}$$

e)
$$|wz| = |w| \cdot |z|$$

f)
$$|w+z| \le |w| + |z|$$
 Dreiecksungleichung $|w-z| \ge |w| - |z|$ (Beweis: Übung)

20.12.16

5.12 Bemerkung

a) Alternative Konstruktion von \mathbb{C} .:

4.40: $\mathcal{K}[x]_n$ wird Körper, wenn man durch irreduzibles Polynom f vom Grad n teilt (Modulorechnung).

Mit
$$\mathcal{K} = \mathbb{R}$$
, $n = 2$, $f = x^2 + 1$ ist

$$(a + bx) \odot_f (a' + b'x) = aa' + bb'x^2 + (ab' + ba')x \mod f$$

= $(aa' - bb') + (ab' + ba')x$

Statt x schreibt man \boldsymbol{i} , $\boldsymbol{i}^2 = -1$

b) $x^2 + 1 = (x - i)(x + i)$ ist nicht irreduzibel in $\mathbb{C}[x]$. Tatsächlich besitzt in \mathbb{C} jede quadratische Gleichung 2 Lösungen.

Allgemein: Fundamentalsatz der Algebra:

$$\overline{f \in \mathbb{C}[x]}$$
, $a_n x^n$ Leitterm, $n \ge 1$.

$$\Rightarrow f$$
hat genau n Nullstellen $b_1,...,b_n$ (nicht notw. verschieden) mit

$$f = a_n(x - b_1) \cdot \dots \cdot (x - b_n)$$

Das heißt, lineare Polynome ax+b mit $a\neq 0$ sind die einzigen Primelemente in $\mathbb{C}[x].$

c) Wurzelberechnung:
$$z = |z|(\cos \varphi + i \sin \varphi)$$

 $\Rightarrow \pm \sqrt{z} = \pm \sqrt{|z|}(\cos \frac{\varphi}{2} + i \sin \frac{\varphi}{2})$, da
 $(e^{i\psi})^2 = e^{i2\psi} = e^{i\psi} \cdot e^{i\psi}$

d) Übertragung des Grenzwertes von Folgen/Funktionen in R auf Folgen in C:

$$\begin{array}{ll} a_n \to c, & a_n, c \in \mathbb{C} \Leftrightarrow \forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : \underbrace{|a_n - c|}_{\text{Abstand von a und c}} < \epsilon \end{array}$$

- Konvergenz von Reihen in €
- Aus absoluter Konvergenz folgt Konvergenz (mit $\triangle\text{-}\textsc{Ungleichung})$ $\sum_{n=1}^{\infty} z_n$ ist absolut konvergent, wenn $\sum_{n=1}^{\infty} |z_n|$ konvergiert.

Beispiel: $\sum_{k=0}^{\infty} \frac{z^k}{k!}$ konvergiert $\forall z \in \mathbb{C}$, insbesondere für $z = i\varphi$ (5.5)

e) C hat alle analytischen Eigenschaften von R, außer: Auf \mathbb{C} gilt es keine vollständige Ordnung \leq , die mit + und \cdot verträglich wäre, d.h. für die gelten würde

$$a \le b$$
, $c \le d \Rightarrow a + c \le b + d$
 $a \le b$, $r \ge 0 \Rightarrow ra \le rb$

Wiederholung/Zusammenfassung zu $\mathbb C$ 5.13

(Selbst Zeichnungen analog zu 5.x anfertigen ist hilfreich)

- Komplexe Zahl: $z = a + bi, a, b \in \mathbb{R}, i^2 = -1$ Im Folgenden ist $z = a + bi, z' = a' + b'i \in \mathbb{C}$ z.B. $x^2 + 2x + 3$ hat in $\mathbb C$ Nst. $x_{1/2} = \frac{-2 \pm \sqrt{4-12}}{2} = -1 \pm \sqrt{2}i$
- Es gibt 2 Darstellungen:

1)
$$z = a + bi, z.B.z = 2 + 2i$$

 $|z| = \sqrt{a^2 + b^2} = \sqrt{8}$

2) Polarkoordinaten:

$$z = |z|e^{i\varphi} \ z^* = \cos(\frac{\pi}{4}) \cdot i\sin(\frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$
$$\Rightarrow z = |z|z^* = \sqrt{8}e^{i\frac{\pi}{4}}$$

- Formel von Euler: $e^{i\varphi} = \cos(\varphi) + i\sin(\varphi)$
- Addition: z + z' = a + a' + (b + b')iMan sieht hier : $|z + z'| \le |z| + |z'|$
- Multiplikation:

$$zz' = (a+bi)(a'+b'i)$$

$$= aa' - bb' + (ab' + a'b)i$$

$$= |z||z'|e^{i\varphi}e^{i\varphi'}$$

$$= |z||z'|e^{i(\varphi+\varphi')}$$

• (Drehstreckung)

z.B.:
$$\begin{aligned} 1+i &= \sqrt{2}e^{i\frac{\pi}{4}} \\ \frac{1}{2} + \frac{\sqrt{3}}{2}i &= e^{i\frac{\pi}{3}} \\ (1+i)(\frac{1}{2} + \frac{\sqrt{3}}{2}i) &= \frac{1-\sqrt{3}}{2} + \frac{1+\sqrt{3}}{2}i = \sqrt{2}e^{i(\frac{7\pi}{12})} \\ \text{(Drehung um } 60^\circ \text{ von } 1+i) \end{aligned}$$

•
$$\bar{z} = a - bi$$

 $z\bar{z} = (a + bi)(a - bi) = a^2 + b^2 = |z|^2$
z.B. $z = 1 + 3i, \bar{z} = 1 - 3i, z\bar{z} = 1 + 9 \Rightarrow |z| = \sqrt{10}$

6 Lineare Abbildungen

Bemerkung

Ein K-VR besitzt Skalare $\lambda \in K$, K Körper.

Bisher $\mathcal{K} = \mathbb{R}$.

Speziell: $\mathcal{K}^n = \{v = (v_1, ..., v_n) \mid v_i \in \mathcal{K} \ \forall i = 1, ..., n\}$ ist \mathcal{K} -Vektorraum.

 \mathbb{Z}_2^2 ist \mathbb{Z}_2 -Vektorraum:

$$\mathbb{Z}_2^2 = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$$

•
$$v + w = \begin{pmatrix} v_1 + w_1 \mod 2 \\ v_2 + w_2 \mod 2 \end{pmatrix}$$
 $v, w \in \mathbb{Z}_2^2$

•
$$\lambda v = \begin{pmatrix} \lambda v_1 \mod 2 \\ \lambda v_2 \mod 2 \end{pmatrix}$$
 $\lambda \in \mathbb{Z}_2, \ v \in \mathbb{Z}_2^2$

• Nullelement: $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

6.1 Definition (Lineare Abbildung, Isomorphismus)

 $V, W \mathcal{K}$ -Vektorräume.

i) $\varphi: V \to W$ heißt lineare Abbildung, falls

a)
$$\varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2)$$
 $\forall v_1, v_2 \in V$

b)
$$\varphi(\lambda v) = \lambda \varphi(v)$$
 $\forall v \in V \ \forall \lambda \in \mathcal{K}$

ii) Ist die lineare Abbildung $\varphi:V\to W$ bijektiv, so heißt φ (Vektorraum-)Isomorphismus, man schreibt $V\cong W$ (V isomorph zu W)

Bemerkung

Erfüllt φ Bedingung i), so heißt φ auch (Vektorraum-)Homomorphismus.

6.2 Bemerkung

i)
$$\varphi(\mathcal{O}) = \mathcal{O}$$

ii)
$$\varphi(\sum_{i=1}^n \lambda_i v_i) = \sum_{i=1}^n \lambda_i \varphi(v_i)$$

6.3Beispiel

- a) Nullabbildung $\varphi: V \to W, v \mapsto \mathcal{O}$ linear
- b) $\varphi: V \to V$, $v \mapsto \mu v$ für festes $\mu \in \mathcal{K}$ linear

c)
$$\varphi: \mathbb{R}^3 \to \mathbb{R}^3$$
, $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} x_1 \\ x_2 \\ -x_3 \end{pmatrix}$ Spiegelung an x_1x_2 - Ebene, linear

d)
$$\varphi: \mathbb{R}^2 \to \mathbb{R}^2$$
, $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1^2 \\ x_2 \end{pmatrix}$ nicht linear $[x \mapsto x^2$ nicht linear]

6.4 Bemerkung

 $A \in \mathcal{M}_{m,n}(\mathcal{K}), \quad \mathcal{K} \text{ K\"{o}rper} \stackrel{2.6}{\Rightarrow} \varphi : \mathcal{K}^n \to \mathcal{K}^m, \quad v \mapsto Av \text{ linear}$ Zeigen später: Alle linearen Abbildungen $\varphi: \mathcal{K}^n \to \mathcal{K}^m$ lassen sich durch Matrix $A \in \mathcal{M}_{m,n}(\mathcal{K})$ darstellen.

Kern und Rang

Motivation

Gegeben: LGS Ax = b mit $A \in \mathcal{M}_{m,n}(\mathcal{K}), b \in \mathcal{K}^m$

Gesucht: Lösung $x \in \mathcal{K}^n$

z.B.:
$$A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 0 \end{pmatrix}, b = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}$$

Spezielle Lösung:
$$x_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
. Da $A \begin{pmatrix} 0 \\ 0 \\ \lambda \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, ist auch

$$A \underbrace{\begin{pmatrix} 1 \\ 0 \\ \lambda \end{pmatrix}}_{\text{Gerade}} = A \left(x_0 + \begin{pmatrix} 0 \\ 0 \\ \lambda \end{pmatrix} \right) = \underbrace{Ax_0}_{b} + A \underbrace{\begin{pmatrix} 0 \\ 0 \\ \lambda \end{pmatrix}}_{\mathcal{O}} = b \Rightarrow \begin{pmatrix} 1 \\ 0 \\ \lambda \end{pmatrix} \text{ ist Lösung von } Ax = b$$

$$\Rightarrow H' = \left\{ \begin{pmatrix} 1 \\ 0 \\ \lambda \end{pmatrix} \middle| \lambda \in \mathbb{R} \right\}, \quad H = \left\{ \begin{pmatrix} 0 \\ 0 \\ \lambda \end{pmatrix} \middle| \lambda \in \mathbb{R} \right\} \text{ (s.u.)}$$

6.5Definition (Homogenes LGS, Lösungsraum)

 $Ah = \mathcal{O}, h \in \mathcal{K}^n$ heißt homogenes LGS.

$$Ah = \mathcal{O}, h \in \mathcal{K}^n \text{ heißt homogenes LGS.}$$

$$H := \{h \in \mathcal{K}^n \mid \overline{Ah = \mathcal{O}}\} \text{ Lösungsraum des homogenen LGS.}$$

$$\ker A, \text{vgl. } 6.8$$

6.6 Satz (Lösung eines LGS)

21.12.16

Angenommen, es existiert eine Lösung x_0 von Ax = b. Dann ist x Lösung $\Leftrightarrow x = x_0 + h, h \in H$

Beweis

(⇒)
$$x \text{ L\"osung} \Rightarrow \mathcal{O} = Ax - Ax_0 = A(\underbrace{x - x_0}_{=:h}) \Rightarrow h \in H$$

(⇐) $x = x_0 + h, h \in H \Rightarrow Ax = A(x_0 + h) = Ax_0 + \underbrace{Ah}_{=:o} = b$

Bemerkung

- Wenn x Lösung von Ax = b, so setzt sich x zusammen aus spezieller Lösung x_0 +Lösung von homogenem LGS.
- Anzahl Lösungen von Ax = b ist gleich der Anzahl der Lösungen von $Ax = \mathcal{O}$ dim(Lösungsraum) = dim(H)
- H heißt Kern von A

6.7 Satz (Lineare Abbildung UVR)

 $\varphi: V \to W$ linear

i)
$$U \le V$$
 UVR $\Rightarrow \underbrace{\varphi(U)}_{\text{Bild von } U} \le W$ UVR von W .

ii) dim
$$(U) < \infty \Rightarrow \dim (\varphi(U)) \le \dim (U)$$

Beweis

i)
$$-\mathcal{O} \in U \Rightarrow \varphi(\mathcal{O}) = \mathcal{O} \in \varphi(U)$$
$$-v, w \in U \Rightarrow \varphi(v) + \varphi(w) = \varphi(\underbrace{v+w}) \in \varphi(U)$$
$$-\lambda \in \mathcal{K}, \quad v \in U \Rightarrow \lambda \varphi(v) = \varphi(\underbrace{\lambda v}) \in \varphi(U)$$

ii) $\varphi: V \to W$ linear $\{u_1, ..., u_k\}$ Basis von U $[u \in U \Rightarrow u = \lambda_1 u_1 + ... + \lambda_k u_k]$ $\Rightarrow \{\varphi(u_1), ..., \varphi(u_k)\}$ Erzeugendensystem von U, enthält Basis von $U \Rightarrow$ Behauptung

6.8 Definition (Rang, Kern)

i) $\varphi: V \to W$ linear, $\dim(V) < \infty$.

Dann heißt dim ($\varphi(V)$) Rang von φ , rg (φ) .

UVR wegen 6.7

Im Beispiel (Motivation) ist rg(A) = 2, weil die Matrix auf eine Ebene abbildet.

$$Av = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} v_1 + \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \end{pmatrix} v_2 + \underbrace{\begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix}}_{\mathcal{O}} v_3$$

ii) $\varphi: V \to W$ linear.

 $\ker(\varphi) = \{v \in V \mid \varphi(v) = \mathcal{O}\}\ \text{heißt Kern von } \varphi.$

Im Beispiel (Motivation) ist $H = \left\{ \begin{pmatrix} 0 \\ 0 \\ \lambda \end{pmatrix} \middle| \lambda \in \mathbb{R} \right\} = \ker(A)$, da jeder

Gerade dieser Form auf den Nullvektor, \mathcal{O} , abgebildet wird.

6.9 Satz (Kern)

 $\varphi:V\to W$ linear

- i) $\ker(\varphi)$ ist UVR von V
- ii) φ injektiv $\Leftrightarrow \ker(\varphi) = \{\mathcal{O}\}\$

Beweis

i)
$$-\varphi(\mathcal{O}) = \mathcal{O} \Rightarrow \mathcal{O} \in \ker(\varphi)$$

$$-u, v \in \ker(\varphi) \Rightarrow \underbrace{\varphi(u)}_{=\mathcal{O}} + \underbrace{\varphi(v)}_{=\mathcal{O}} = \mathcal{O} = \varphi(u+v) \Rightarrow u+v \in \ker(\varphi)$$

$$-\lambda \in \mathcal{K}, v \in \ker(\varphi) \Rightarrow \mathcal{O} = \lambda \varphi(v) = \varphi(\lambda v) \Rightarrow \lambda v \in \ker(\varphi)$$

- ii) (\Rightarrow) φ injektiv, $\varphi(\mathcal{O}) = \mathcal{O}$. Da φ injektiv, kannn kein weiteres Element auf \mathcal{O} abgebildet werden.
 - (\Leftarrow) Angenommen, $\varphi(v_1) = \varphi(v_2)$ $v_1, v_2 \in V$ $\Rightarrow \mathcal{O} = \varphi(v_1) - \varphi(v_2) = \varphi(v_1 - v_2)$ $\Rightarrow v_1 - v_2 = \mathcal{O}$, da $\ker(\varphi) = \{\mathcal{O}\}$ $\Rightarrow v_1 = v_2$

6.10 Beispiel

$$A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad \varphi : \mathbb{R}^3 \to \mathbb{R}^3, \quad x \mapsto Ax$$

•
$$\mathbb{R}^{3} = \langle e_{1}, e_{2}, e_{3} \rangle_{\mathbb{R}} \Rightarrow \varphi(\mathbb{R}^{3}) = \langle \varphi(e_{1}), \varphi(e_{2}), \varphi(e_{3}) \rangle_{\mathbb{R}} = \left\langle \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\rangle_{\mathbb{R}} = \left\langle \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \right\rangle_{\mathbb{R}}$$

$$\Rightarrow \operatorname{rg}(\varphi) = 2$$

•
$$\varphi(x) = \mathcal{O} \Leftrightarrow Ax = \mathcal{O} \Leftrightarrow x = \begin{pmatrix} 0 \\ 0 \\ \lambda \end{pmatrix}, \quad \lambda \in \mathbb{R}$$

$$\ker(\varphi) = H = \left\{ \lambda \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \middle| \lambda \in \mathbb{R} \right\}$$

Bemerkung

$$\dim(\ker(\varphi)) + \operatorname{rg}(\varphi) = \dim(\mathbb{R}^3)$$

$$1 + 2 = 3$$

6.11 Satz (Lineare Abbildung)

V, W sind \mathcal{K} -Vektorräume, $\dim(V) = n$ Gegeben: $\{v_1, ..., v_n\}$ Basis von $V, w_1, ..., w_n \in W$ nicht notw. verschieden

 $\exists ! \text{ lin.Abb. } \varphi : V \to W \text{ mit } \varphi(v_i) = w_i \ \forall i, \text{ und zwar}$

$$(\triangle) v = \sum_{i=1}^{n} \lambda_i v_i \xrightarrow{\varphi} w = \sum_{i=1}^{n} \lambda_i \underbrace{\varphi(v_i)}_{w_i}$$

Das heißt: Wenn man weiß, wie die Basisvektoren abgebildet werden, dann kennt man die lineare Abbildung vollständig. (vgl. Bemerkung 2.5 + Beispiel 2.4b))

Beweis

Für φ aus (\triangle) gilt:

- φ linear \checkmark
- $\varphi(v_i) = w_i \ \forall i \checkmark$

• φ eindeutig: Angenommen es gibt $\psi:V\to W$ linear mit $\psi(v_i)=w_i\Rightarrow$

$$\psi\left(\underbrace{\sum_{i=1}^{n} \lambda_{i} v_{i}}_{v}\right) = \underbrace{\sum_{i=1}^{n} \lambda_{i} \underbrace{\psi(v_{i})}_{=w_{i}}}_{=w_{i}} = \varphi\left(\underbrace{\sum_{i=1}^{n} \lambda_{i} v_{i}}_{v}\right)$$

6.12 Beispiel

 $\varphi:\mathbb{R}^3\to\mathbb{R}^3$ Drehung um Winkel α um $z\mathrm{-Achse}.$

$$B = \{e_1, e_2, e_3\}$$

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \xrightarrow{\varphi} \begin{pmatrix} \cos \alpha \\ \sin \alpha \\ 0 \end{pmatrix}$$

$$A = (Ae_1, Ae_2, Ae_3) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix}, \text{ vgl. Bsp. 2.4b}$$

6.13 Beispiel

 $\varphi:\mathbb{R}^3\to\mathbb{R}^2,\ v\mapsto Av,\ A=\begin{pmatrix}1&2&0\\2&4&0\end{pmatrix}$

$$\bullet \ \ker(\varphi) = \left\langle \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} \right\rangle_{\mathbb{R}}$$

• Bild von \mathbb{R}^3 :

$$\varphi(\mathbb{R}^3) = \langle \varphi(e_1), \varphi(e_2), \varphi(e_3) \rangle_{\mathbb{R}}$$
$$= \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\rangle_{\mathbb{R}}$$
$$= \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle_{\mathbb{R}}$$

$$- \varphi : \ker(\varphi) \to \{\mathcal{O}\}$$
$$- v \notin \ker(\varphi) \Rightarrow \varphi(v) \neq 0$$

10.01.17

6.14 Satz (Dimensionsformel)

V,W $\mathcal{K}-\text{Vektorr\"{a}ume},$ $\dim(V)=n, \ \ \varphi:V\to W$ lineare Abbildung. Dann ist

$$\dim(V) = \underbrace{\dim(\ker \varphi)}_{\text{`Defekt von }\varphi'} + \operatorname{rg}(\varphi)$$

Beweis:

Sei $\{u_1,...,u_k\}$ Basis von ker φ . Ergänze zu Basis $\{u_1,...,u_n\}$ von V und setze $U:=\langle u_{k+1},...,u_n\rangle_{\mathcal{K}}$

Da $\ker \varphi \cap U = \{\mathcal{O}\}$ und $V = U + \ker \varphi$, ist

$$\dim(V) = \dim(\ker \varphi) + \dim(U) - \underbrace{\dim(U \cap \ker \varphi)}_{=0}$$

Zeige:
$$\dim(U) \stackrel{1)}{=} \dim(\varphi(U)) \stackrel{2)}{=} \underbrace{\dim(\varphi(V))}_{\operatorname{rg}(\varphi)}$$

1)

$$\begin{aligned} \ker \varphi \cap U &= \{\mathcal{O}\} \Rightarrow \ker(\varphi/U) = \{\mathcal{O}\} \\ &\stackrel{6.9}{\Rightarrow} \varphi/U \text{ injektiv} \\ &\Rightarrow \dim(U) = \dim(\varphi(U)) \end{aligned}$$

$$\begin{bmatrix} \text{Bem:} & \{u_{k+1,\dots,u_n}\} \text{Basis von } U & \overset{\varphi/U \text{ injektiv}}{\Rightarrow} \{\varphi(u_{k+1}),\dots,\varphi(u_n)\} \text{ Basis von } \varphi(U) \end{bmatrix}$$

$$\dim(\varphi(U)) = \dim(\varphi(V)), \text{ da}$$

$$\varphi(V) = \varphi(U + \ker \varphi)$$

$$\stackrel{\varphi \text{ linear}}{=} \varphi(U) + \underbrace{\varphi(\ker \varphi)}_{\{\mathcal{O}\}}$$

$$= \varphi(U)$$

6.15 Korollar

V,W \mathcal{K} -Vekorräume mit $\dim(V)=\dim(W)=n, \ \varphi:V\to W$ lineare Abbildung. Dann sind äquivalent:

- i) φ surjektiv,
- ii) φ injektiv,
- iii) φ bijektiv.

Beweis

$$6.14 \Rightarrow n = \dim(\ker \varphi) + \operatorname{rg}\varphi$$

 $\varphi \text{ surjektiv } \Leftrightarrow \operatorname{rg}\varphi = n \Leftrightarrow \dim(\ker \varphi) = 0 \stackrel{6.9}{\Leftrightarrow} \varphi \text{ injektiv}$

Lösungen von LGS, Rang von Matrizen

Gegeben: LGS mit Ax = b, $A \in \mathcal{M}_{m,n}(\mathcal{K})$, $b \in \mathcal{K}^m$, \mathcal{K} Körper. Gesucht: $\mathcal{L} := \{x \in \mathcal{K}^n \mid Ax = b\}$ Lösungsraum

Sei $x_0 \in \mathcal{L}$ eine spezielle Lösung.

$$\stackrel{6.6}{\Rightarrow} \mathcal{L} = x_0 + \ker \varphi, \quad \varphi : \mathcal{K}^n \to \mathcal{K}^m, \quad x \mapsto Ax$$

D.h. Größe von \mathcal{L} gegeben durch dim(ker φ).

6.16 Bemerkung

$$\dim(\ker \varphi) = n - \operatorname{rg}\varphi \qquad (6.14)$$

$$\varphi(\mathcal{K}^n) = \langle \varphi(e_1), ..., \varphi(e_n) \rangle_{\mathcal{K}} = \langle \underbrace{Ae_1, ... Ae_n}_{\text{Spalten von } A} \rangle_{\mathcal{K}}$$

$$\Rightarrow \operatorname{rg}\varphi = \operatorname{Anzahl} \operatorname{der \ linear \ unabh\"{angigen} \ Spalten}$$

 \Rightarrow rg $\varphi=$ Anzahl der linear unabhängigen Spalten von $A=\underline{\rm Spaltenrang}$ von A

Man kann zeigen: Spaltenrang von A = Zeilenrang von A (Anzahl linear unabhängiger Zeilen von A)

Insgesamt: $\dim(\ker \varphi) = n$ - Spaltenrang von A = n- Zeilenrang von A

7 Lineare Abbildungen und Matrizen

Erinnerung

(1.29): Ein Vektor hat bezüglich unterschiedlicher Basen unterschiedliche Linear-kombinationen und damit auch unterschiedliche Koordinaten, z.B.

$$v = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \in \mathbb{R}^2 \text{ hat bezüglich } B = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\} \text{ die Linearkombination } \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \underbrace{3}_{\lambda_1} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \underbrace{1}_{\lambda_2} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \text{ das heißt } \lambda_1 = 3 \text{ und } \lambda_2 = 1 \text{ sind die Koordinaten von } v \text{ bezüglich der Basis } B. \text{ Bezüglich der Standardbasis hat } v \text{ die Koordinaten ten } \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \underbrace{4}_{\cdot} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \underbrace{3}_{\cdot} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

7.1 Definition (Koordinatenvektor)

 $V \ \mathcal{K}$ -Vektorraum, $B \subseteq V$ Basis, $B = \{v_1, ..., v_n\}$.

Wenn
$$v \in V$$
 und $v = \lambda_1 v_1 + ... + \lambda_n v_n$, dann heißt $K_B(v) = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \in \mathcal{K}^n$

<u>Koordinatenvektor</u> von v bezüglich der Basis B.

$$\left[\text{Im Beispiel oben ist } K_B\left(\begin{pmatrix}4\\3\end{pmatrix}\right) = \begin{pmatrix}3\\1\end{pmatrix} = \begin{pmatrix}\lambda_1\\\lambda_2\end{pmatrix}.\right]$$

Basistransformationen

Umrechnung von Koordinaten bezüglich verschiedener Basen.

7.2 Beispiel

1) Gesucht: 'Weltkoordinaten'
$$(x_1, x_2)^T$$
 bzgl. Basis $C = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$.

Es ist $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}$

Mit z.B.: $\lambda_1 = 3$, $\lambda_2 = 1$:

$$\Rightarrow \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

Basiswechselmatrix Koordinaten bzgl. C , Position des Greifarms

11.01.17

2) Gesucht: Koordinaten
$$\mu_1, \mu_2$$
 bezüglich Basis $D = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix} \right\}$.
Es ist $\mu_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \mu_2 \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

$$\lambda_1 = 1, \quad \lambda_2 = 0 : \begin{pmatrix} 1 \\ 1 \end{pmatrix} = (-1) \begin{pmatrix} 1 \\ 2 \end{pmatrix} + 1 \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

$$\lambda_1 = 0, \quad \lambda_2 = 1 : \begin{pmatrix} 1 \\ 0 \end{pmatrix} = (-3) \begin{pmatrix} 1 \\ 2 \end{pmatrix} + 2 \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

Daraus ergibt sich in Matrixschreibweise:

$$\underbrace{\begin{pmatrix} -1 & -3 \\ 1 & 2 \end{pmatrix}}_{\text{Basiswechselmatrix}} \cdot \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$

Z.B.:
$$\lambda_1 = 3$$
, $\lambda_2 = 1 \Rightarrow \begin{pmatrix} -1 & -3 \\ 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} -6 \\ 5 \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} = \text{Koordinaten (-vektor) bzgl. } D$

Definition (Basiswechselmatrix) 7.3

V Vektorraum, $B = \{v_1, ..., v_n\}, C = \{w_1, ..., w_n\}$ Basen von V. Schreibe v_i als Linearkombination der Vektoren aus C: $v_1 = s_{11}w_1 + ... + s_{n1}w_n$

$$v_1 = s_{11}w_1 + \dots + s_{n1}w_n$$
:

 $v_n = s_{1n}w_1 + \dots + s_{nn}w_n$

Dann heißt die Matrix $S_{B,C} = \begin{pmatrix} s_{11} & \cdots & s_{1n} \\ \vdots & \ddots & \vdots \\ s_{n1} & \cdots & s_{nn} \end{pmatrix}$ Basiswechselmatrix von Basis B nach C.

Spalte i enthält die Koordinaten von v_i bzgl.

Satz (Koordinaten umrechnen)

V, B, C wie in 7.3.

Für
$$v \in V$$
 ist $K_C(v) = S_{BC} \cdot K_B(v)$

Beweis

$$v = \sum_{k=1}^{n} \lambda_k \cdot \underbrace{v_k}_{\sum_{l=1}^{n} S_{lk} w_l (7.3)} \Rightarrow K_B(v) = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$$
$$= \sum_{l=1}^{n} \left(\sum_{k=1}^{n} \lambda_k \cdot s_{lk} \right) w_l$$
$$= \mu_l \qquad \text{(Koordinaten in Basis } C\text{)}$$

Darstellungsmatrizen

7.5 Beispiel

Skizze: Siehe 7.2.

Roboter soll folgende Operation $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ ausführen:

$$\varphi\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right) = 2 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

<u>Gegeben</u>: Aktuelle Position $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, $B = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$, $C = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \right\}$

<u>Gesucht</u>: λ_1, λ_2 , so dass Greifarm in neuer Position $\varphi\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right) = 2\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

Methode aus 7.3:
$$\varphi\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}\right) = \begin{pmatrix} 2 \\ 0 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\varphi\left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}\right) = \begin{pmatrix} 0 \\ 2 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} - 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\bigoplus_{A_{\varphi}^{C,B} \text{ (Def. 7.6)}} (Def. 7.6) \text{ aktuelle Pos. bzgl. C} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = K_B\left(\varphi\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right)\right)$$

Z.B. Greifarm in $\binom{x_1}{x_2} = \binom{1}{3}$ soll nach $\varphi\left(\binom{3}{1}\right) = \binom{6}{2}$ bewegt werden. Dazu muss man λ_1, λ_2 auf $\begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 2 & -2 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ einstellen.

Probe:
$$\lambda_1$$
 $\begin{pmatrix} 1 \\ 1 \end{pmatrix} + \lambda_2$ $\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \end{pmatrix} = \varphi \begin{pmatrix} 3 \\ 1 \end{pmatrix}) \checkmark$

Definition (Darstellungsmatrix)

V, W Vektorraum endlicher Dimension mit Basen $B = \{v_1, ..., v_n\}$ von V und $C = \{w_1, ..., w_m\}$ von $W. \varphi : V \to W$ lineare Abbildung.

Schreibe $\varphi(v_i)$ als Linearkombination der Vektoren aus C: $\varphi(v_1) = a_{11}w_1 + \dots + a_{m1}w_m$

$$\varphi(v_1) = \underbrace{a_{11}w_1 + \dots + a_{m1}w_m}_{:}$$

$$\varphi(v_n) = a_{1n}w_1 + \dots + a_{mn}w_m$$
 Dann heißt $A_{\varphi}^{B,C} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$ Darstellungsmatrix von φ bzgl. B und C .

Schreibweisen

1)
$$A_{\varphi}^{B,B} = A_{\varphi}^{B}$$

2) Falls
$$B = \{e_1, ..., e_n\} = C$$
, (also $V = W$), schreibe A_{φ}

Bem.: φ durch $A_{\varphi}^{B,C}$ eindeutig bestimmt.

Satz (Koordinatenvektor und Lineare Abbildung)

 V, W, B, C, φ wie in 7.6 Gegeben: $v \in V$, $K_B(v)$.

Dann ist $K_C(\varphi(v)) = A_{\varphi}^{B,C} \cdot K_B(v)$

Beweis

•
$$K_B(v) = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}, \quad A_{\varphi}^{B,C} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

$$A_{\varphi}^{B,C} \cdot K_B(v) = \begin{pmatrix} \sum_{i=1}^n a_{1i} \lambda_i \\ \vdots \\ \sum_{i=1}^n a_{mi} \lambda_i \end{pmatrix}$$

•
$$\varphi(v) = \varphi(\sum_{i=1}^{n} v_i \lambda_i) = \sum_{i=1}^{n} \lambda_i \cdot \underbrace{\varphi(v_i)}_{=\sum_{k=1}^{m} a_{ki} w_k} (7.6)$$

$$= \sum_{k=1}^{m} \underbrace{\left(\sum_{i=1}^{n} \lambda_i \cdot a_{ki}\right)}_{\text{Koord, von } \varphi(v) \text{ bzel } C$$

$$\Rightarrow K_C(\varphi(v)) = \begin{pmatrix} \sum_{i=1}^n \lambda_i a_{1i} \\ \vdots \\ \sum_{i=1}^n \lambda_i a_{mi} \end{pmatrix} \qquad \Box$$

7.8 Beispiel

Gegeben: Basis $B = \{v_1, v_2, v_3\}$ von V und Basis $C = \{w_1, w_2\}$ von W, $\overline{\varphi: V \to W} \text{ mit } A_{\varphi}^{B,C} = \begin{pmatrix} 1 & 1 & -2 \\ 2 & 0 & 3 \end{pmatrix}.$

Angenommen, $v \in V$ mit $K_B(v) = \begin{pmatrix} 5 \\ -2 \\ 4 \end{pmatrix}$.

$$\Rightarrow \underbrace{\mathbf{K}_{C}(\varphi(v))}_{\text{Koordinaten bzgl. }C, \\ \text{nachdem } \varphi \text{ ausgeführt wurde}} = \begin{pmatrix} 1 & 1 & -2 \\ 2 & 0 & 3 \end{pmatrix} \cdot \mathbf{K}_{B}(v) = \begin{pmatrix} -5 \\ 22 \end{pmatrix}$$

Bemerkung (Geordnete Basen)

17.01.17

In 7.3 und 7.6 haben die Basisvektoren von $B = \{v_1, ..., v_n\}$ und $C = \{w_1, ..., w_m\}$ eine bestimmte Reihenfolge (Nummerierung). Man sagt es sind geordnete Basen und schreibt dafür $B = (v_1, ..., v_n)$, $C = (w_1, ..., w_m)$, um anzuzeigen, dass die Basiselemente nicht vertauscht werden dürfen.

Beispiel

$$B = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix}, \quad C = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \end{pmatrix}$$

$$\Rightarrow S_{B,C} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \text{ da:}$$

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 0 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + 1 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 1 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + 0 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 0 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 1 \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + 0 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

7.9 Beispiel

In 7.5 ist
$$A_{\varphi}^{C,B} = \underbrace{S_{C,B}}_{2)} \cdot \underbrace{A_{\varphi}^{C}}_{1)}$$

- 1) Streckung im Faktor 2 bezüglich $C=(e_1,e_2)$ $A_{\varphi}^C=\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$
- 2) Basiswechssel von C nach $B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix}$ $\begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 1 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 0 \\ 1 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} + (-1) \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\Rightarrow S_{C,B} = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}$ Probe:

$$\underbrace{\begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}}_{S_{C,B}} \cdot \underbrace{\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}}_{A_{\varphi}^{C}} = \underbrace{\begin{pmatrix} 0 & 2 \\ 2 & -2 \end{pmatrix}}_{A_{\varphi}^{C,B}}$$

7.10 Satz (Umrechnen von Darstellungsmatrizen)

 $\varphi: V \to W$ lineare Abbildung, B, B' Basen von $V, \quad C, C'$ Basen von W.

$$\Rightarrow A_{\varphi}^{B',C'} = S_{C,C'} \cdot A_{\varphi}^{B,C} \cdot S_{B',B}$$

$$\begin{bmatrix} \text{Bemerkung: in 7.9: } A_{\varphi}^{C,B} = S_{C,B} \cdot A_{\varphi}^{C,C} \cdot S_{C,C} \text{ mit } S_{C,C} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E_2 \text{ ist 'Spezialfall'.} \end{bmatrix}$$

Beweis:

Sei $v \in V$.

$$A_{\varphi}^{B',C'} \cdot \mathbf{K}_{B'}(v) \stackrel{7.7}{=} \mathbf{K}_{C'}(\varphi(v))$$

$$\stackrel{7.4}{=} S_{C,C'} \cdot \overbrace{\mathbf{K}_{C}(\varphi(v))}$$

$$\stackrel{7.7}{=} S_{C,C'} \cdot \overbrace{A_{\varphi}^{B,C} \cdot \mathbf{K}_{B}(v)}$$

$$\stackrel{7.4}{=} S_{C,C'} \cdot A_{\varphi}^{B,C} \cdot S_{B',B} \cdot \mathbf{K}_{B'}(v)$$

7.11 Bemerkung zu Darstellungsmatrizen

V bzw. W K-Vektorraum mit Basen $B = (v_1, ..., v_n)$ bzw. $C = (w_1, ..., w_m)$, $\varphi : V \to W$ lineare Abbildung.

Für $v \in W$ kann $K_B(v)$ aufgefasst werden als Bild der Koordinatenabbildung.

$$K_B: V \to \mathcal{K}^n, \quad v = \sum_{i=1}^n \lambda_i v_i \mapsto \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$$

Daraus ergibt sich folgendet Übersicht:

$$V \xrightarrow{\varphi} W$$

$$K_B \downarrow \qquad \qquad \downarrow K_C$$

$$K^n \xrightarrow{A_{\varphi}^{B,C}} K^m$$

 \Rightarrow Jede lineare Abbildung $\varphi : \mathcal{K}^n \to \mathcal{K}^m$ (\mathcal{K} Körper) ist von der Form $\varphi(x) = A \cdot x$ für eine geeignete Matrix $A \in \mathcal{M}_{m,n}(\mathcal{K})$.

Beweis

Wenn
$$V = \mathcal{K}^n$$
 und $W = \mathcal{K}^m$, benutze für B und C kanonische Basis.
$$\Rightarrow \mathrm{K}_C(\varphi(v)) = \varphi(v) \stackrel{7.4}{=} A_\varphi^{B,C} \cdot \mathrm{K}_B(v) = A_\varphi^{B,C} \cdot v \qquad \Box$$
 Matrix · Vektor

7.12 Satz (Eigenschaften von Darstellungsmatrizen)

U, V, W Vektorräume mit Basen B, C, D. φ, ψ lineare Abbildungen.

i) Sei
$$\varphi, \psi: V \to W.$$
 Dann ist $A_{\varphi+\psi}^{B,C} = A_{\varphi}^{B,C} + A_{\psi}^{B,C}$

ii) Sei
$$\varphi:U\to W$$
. Dann ist $A_{\lambda\varphi}^{B,C}=\lambda A_{\varphi}^{B,C}, \quad \lambda\in\mathcal{K}$

iii) Sei
$$\varphi:U\to V,\quad \psi:V\to W.$$
 Dann ist
$$A_{\psi\circ\varphi}^{B,D}=A_{\psi}^{C,D}\cdot A_{\varphi}^{B,C}$$
 Bemerkung: Verknüpfung linearer Abbildungen entspricht dem Matrixpro-

dukt der Darstellungsmatrizen.

7.12 hier ohne Beweis.

Matrixinversen

Erinnerung

(4.2): $\mathcal{M}_n(\mathcal{K})$ mit Matrixaddition und -multiplikation ist ein Ring mit Eins $(=E_n)$. D.h. $A \in \mathcal{M}_n(\mathcal{K})$ kann Inverse A^{-1} besitzen. Für A^{-1} gilt: $A \cdot A^{-1} = A^{-1} \cdot A = E_n$.

Fragen:

- Welche $A \in \mathcal{M}_n(\mathcal{K})$ besitzen Inverse $A^{-1} \in \mathcal{M}_n(\mathcal{K})$?
- Wie berechnet man A^{-1} ?

7.13 Beispiel

$$A = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \text{ hat Inverse } A^{-1} = \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & 0 \end{pmatrix}, \text{ da:}$$
$$\begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E_2$$

7.14 Bemerkung

Idee: $A \in \mathcal{M}_n(\mathcal{K})$ kann als Darstellungsmatrix A_{φ}^B der linearen Abbildung $\varphi : \mathcal{K}^n \to \mathcal{K}^n, \ \varphi(v) = Av$ bezüglich Basis B aufgefasst werden.

7.15 Satz (Invertierbarkeit)

V
 $\mathcal{K}\text{-Vektorraum},$ $\dim(V)=n,~B$ Basis, $\varphi:V\to V$ linear mit Darstellungsmatri
x $A_{\varphi}^{B}.$ Dann:

 φ invertierbar $\Leftrightarrow A_\varphi^B$ invertierbar

Das heißt: $A_{\varphi^{-1}}^B=(A_{\varphi}^B)^{-1}$

Beweis

- $\begin{array}{ll} (\Rightarrow) \ \ \mathrm{Zeige:} \ (A_{\varphi}^B) \cdot (A_{\varphi^{-1}}^B) = E_n \\ \varphi \ \ \mathrm{invertierbar} \Rightarrow A_{\varphi}^B \cdot A_{\varphi^{-1}}^B \stackrel{7.12}{=} A_{\varphi \circ \varphi^{-1}}^B = E_n \\ \mathrm{Analog:} \ A_{\varphi^{-1}}^B \cdot A_{\varphi}^B = E_n \end{array}$
- $(\Leftarrow) \text{ Sei nun } A_{\varphi}^{B} \text{ invertierbar.}$ $\Rightarrow \exists Y \in \mathcal{M}_{n}(\mathcal{K}) : A_{\varphi}^{B} \cdot Y = Y \cdot A_{\varphi}^{B} = E_{n}$ $\stackrel{7.14}{\Rightarrow} Y = A_{\psi}^{B} \text{ mit } \psi(v) = Y \cdot v$ $\begin{cases} E_{n} = A_{\psi}^{B} \cdot A_{\psi}^{B} \stackrel{7.12}{=} A_{\varphi \circ \psi}^{B} \\ E_{n} = A_{\psi}^{B} \cdot A_{\varphi}^{B} \stackrel{7.12}{=} A_{\psi \circ \varphi}^{B} \end{cases}$ $\Rightarrow \varphi \circ \psi = \psi \circ \varphi = id_{v}$ $\Rightarrow \varphi \text{ hat Inverse } \psi$

7.16 Satz (Invertierbarkeit, Rang)

 $A \in \mathcal{M}_n(\mathcal{K})$ invertierbar $\Leftrightarrow \underbrace{\operatorname{rg}(A) = n}_{\text{d.h. alle Spalten \& Zeilen}}$

18.01.17

Beweis

$$7.14 \Rightarrow A = A_{\varphi}^{B} \text{ für } \varphi : \mathcal{K}^{n} \to \mathcal{K}^{n}, \quad \varphi(v) = Av$$

$$A \text{ invertierbar } \stackrel{7.15}{\Leftrightarrow} \varphi \text{ invertierbar } \Leftrightarrow \varphi \text{ bijektiv } \stackrel{6.15}{\Leftrightarrow} \varphi \text{ surjektiv }$$

 $\Leftrightarrow \operatorname{rg}(\varphi) = n$ $\stackrel{6.16}{\Leftrightarrow} \operatorname{rg}(A) = n$

7.17 Beispiel

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \Rightarrow \operatorname{rg}(A) = 1 \Rightarrow A \text{ nicht invertierbar}$$

$$A = \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix} \Rightarrow \operatorname{rg}(A) = 2 \Rightarrow A \text{ invertierbar (weil Rang voll)}.$$

7.18 Berechnung der Matrixinverse (A^{-1})

Gegeben: Quadratische Matrix $A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \in \mathcal{M}_n(\mathcal{K}), \quad \mathcal{K} \text{ K\"orper.}$

Gesucht: Matrixinverse $A^{-1} \in \mathcal{M}_n(\mathcal{K})$.

Voraussetzungen

Das sogenannte <u>Gauß-Jordan-Verfahren</u> zur Berechnung der Matrixinversen baut auf der Berechnung der Lösungen von Gleichungssystemen Ax = b mit **quadratischer** Matrix A auf. Deswegen werden zunächst einige Regeln angegeben, die zur Lösung linearer Gleichungssysteme benutzt werden. Dabei wird im Folgenden das LGS mit Hilfe der erweitertern Koeffizientenmatrix (A|b) beschrieben: Wenn

$$b = (b_1, ..., b_n)^T \in \mathcal{K}^n \text{ schreibt man } (A|b) = \begin{pmatrix} a_{11} & ... & a_{1n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{n1} & ... & a_{nn} & b_n \end{pmatrix}.$$

Die Lösungsmenge des LGS ändert sich nicht, wenn man an (A|b) folgende elementaren Zeilenumformungen aus dem Gaußverfahren durchführt:

1. Erweiterung einer Zeile mit einem Skalar $\lambda \in \mathcal{K}, \lambda \neq 0$,

- 2. Addition von Zeilen,
- 3. Tauschen von Zeilen.

Gauß-Jordan-Algorithmus

Im Unterschied zum Gauß-Algorithmus bringt man das LGS Ax = b nicht auf Dreiecksform, sondern man formt die Zeilen so um, dass A zur Einheitsmatrix E_n wird. Dabei wird b automatisch zum Lösungsvektor x umgeformt: Man erhält das System $(E_n|x)$.

Berechnung der Inversen A^{-1}

Zur Berechnung der Inversen muss nun das System $AX = E_n$ gelöst werden. Man erreicht dies, indem der Gauß-Jordan-Algorithmus simultan auf die n LGS $Ay = e_j, \quad j = 1, ..., n$ angewendet wird. Dazu stellt man das System $(A|E_n)$ auf. Durch Zeilenumformungen überführt man nun A in die Einheitsmatrix, wobei die rechte Seite in die Lösungsmatrix X überführt wird. Man erhält so das System $(E_n|X) \text{ mit } X = A^{-1}.$

Anmerkung: Das Verfahren zeigt auch, ob A überhaupt eine Inverse besitzt. Be-

sitzt A keine Inverse, so kann man A nicht in die Einheitsmatrix umformen.

Beispiel

Gegeben:
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$$

Algorithmus zur Berechnung von A^{-1} erweitert den Gauß-Algorithmus zur Lösung

z.B.
$$Ax = b$$
 mit $b = \begin{pmatrix} 10\\15 \end{pmatrix}$

Gauß-Jordan-Verfahren:

Gauß-Jordan-Verfahren:
$$\begin{pmatrix} 2 & 1 & 10 \\ 1 & 3 & 15 \end{pmatrix} \xrightarrow{II=I-2\cdot II} \begin{pmatrix} 2 & 1 & 10 \\ 0 & -5 & -20 \end{pmatrix} \xrightarrow{-\frac{1}{5}\cdot II} \begin{pmatrix} 2 & 1 & 10 \\ 0 & 1 & 4 \end{pmatrix} \xrightarrow{I=I-II} \begin{pmatrix} 2 & 0 & 6 \\ 0 & 1 & 4 \end{pmatrix} \xrightarrow{\frac{1}{2}\cdot I} \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 4 \end{pmatrix}$$

$$\Rightarrow x = \begin{pmatrix} 3 \end{pmatrix} \text{Lösung}$$

$$\Rightarrow x = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$
 Lösung

Für Inverse: Suche Matrix, die
$$A \cdot X = E_n$$
 löst.
$$AX = E_n \Leftrightarrow A \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Leftrightarrow \underbrace{A \begin{pmatrix} x_{11} \\ x_{12} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}}_{(*)} \text{ und } \underbrace{A \begin{pmatrix} x_{12} \\ x_{22} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}}_{(**)}$$

Wende Gauß-Jordan-Algorithmus simultan auf LGS (*) und (**) an.

$$\begin{pmatrix} 2 & 1 & 1 & 0 \\ 1 & 3 & 0 & 1 \end{pmatrix} \stackrel{II=I-2II}{\rightarrow} \begin{pmatrix} 2 & 1 & 1 & 0 \\ 0 & -5 & 1 & -2 \end{pmatrix} \stackrel{-\frac{1}{5}II}{\rightarrow} \begin{pmatrix} 2 & 1 & 1 & 0 \\ 0 & 1 & -\frac{1}{5} & \frac{2}{5} \end{pmatrix} \stackrel{I=I-II}{\rightarrow}$$

$$\begin{pmatrix} 2 & 0 & \frac{6}{5} & -\frac{2}{5} \\ 0 & 1 & -1\frac{1}{5} & \frac{2}{5} \end{pmatrix} \stackrel{\frac{1}{2}I}{\rightarrow} \begin{pmatrix} 1 & 0 & \frac{3}{5} & -\frac{1}{5} \\ 0 & 1 & -1\frac{1}{5} & \frac{2}{5} \end{pmatrix} \Rightarrow \begin{pmatrix} \frac{3}{5} & -\frac{1}{5} \\ -\frac{1}{5} & \frac{2}{5} \end{pmatrix} = X = A^{-1}$$

7.19 Lemma

V K-Vektorraum, B, C Basen $\Rightarrow S_{B,C} = (S_{C,B})^{-1}$

Beweis

Sei
$$v \in V$$
.

$$\underbrace{S_{C,B} \cdot \left(S_{B,C} \cdot K_B(v)\right)}_{=E_n} = S_{C,B} \cdot K_C(v) = K_B(v)$$

7.20 Beispiel

$$\begin{split} V &= \mathbb{R}^2, \quad B = \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right), \quad C = \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) \\ \text{Aus 7.2: } S_{B,C} &= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \text{ aus 7.9: } S_{C,B} &= \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \\ \text{Tatsächlich ist } \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \end{split}$$

7.21 Korollar

 $\varphi: V \to V$, B, C Basen von V, $S:=S_{B,C}$

$$\Rightarrow A_{\varphi}^{C} = SA_{\varphi}^{B}S^{-1}$$

Beweis

$$SA_{\varphi}^{B}S^{-1} \stackrel{7.19}{=} S_{B,C}A_{\varphi}^{B,B}S_{C,B} = A_{\varphi}^{C,C} = A_{\varphi}^{C}$$

7.22 Beispiel

$$V=\mathbb{R}^2,\quad B=\Big(\begin{pmatrix}1\\1\end{pmatrix},\begin{pmatrix}1\\0\end{pmatrix}\Big),\quad C=\Big(\begin{pmatrix}1\\0\end{pmatrix},\begin{pmatrix}0\\1\end{pmatrix}\Big)$$

Wie sieht Darstellungsmatrix von einer Drehung $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ um den Winkel $\frac{\pi}{2}$ bzgl. B aus?

Wissen:
$$D_{\frac{\pi}{2}} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = A_{\varphi}^{C}$$
 Drehung um $\frac{\pi}{2}$ bzgl. C

$$A_{\varphi}^{B} = S_{C,B} \underbrace{D_{\frac{\pi}{2}}}_{A_{\varphi}^{C,C}} S_{B,C}$$

$$= \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & -1 \\ 2 & 1 \end{pmatrix}$$

8 Determinanten

 $7.16: A \in \mathcal{M}_n(\mathcal{K}) \text{ invertierbar } \Leftrightarrow \operatorname{rg}(A) = n$

In diesem Kapitel werden invertierbare Matrizen mit Hilfe der Determinante charakterisiert.

Das ist einfacher zu implementieren.

8.1 Definition (A_{ij})

 $A \in \mathcal{M}_n(\mathcal{K}), \quad i, j \in \{1, ..., n\}. \quad A_{ij} \in \mathcal{M}_{n-1}(\mathcal{K})$ sei die Matrix, die man aus A durch Streichen der i-ten Zeile und j-ten Spalte erhält.

z.B.:
$$A = \begin{pmatrix} 1 & 2 & -3 \\ 0 & 1 & -1 \\ -2 & 1 & 1 \end{pmatrix} \Rightarrow A_{23} = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$

8.2 Definition (Rekursive Definition der Determinante)

24.01.17

$$A \in \mathcal{M}_n(\mathcal{K}).$$

$$\underline{n=1}$$
: $A=(a), \det(A) := a \in \mathcal{K}$

 $n \ge 2$: Entwicklung nach der 1. Zeile (7.4):

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \ddots & \ddots & \vdots \\ a_{n1} & \cdots & \cdots & a_{nn} \end{pmatrix}$$

$$\det(A) = +a_{11} \cdot \det(A_{11}) - a_{12} \cdot \det(A_{12}) + a_{13} \cdot \det(A_{13}) \pm \dots (-1)^{n+1} a_{1n} \cdot \det(A_{1n})$$
$$= \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \cdot \det(A_{1j})$$

8.3 Beispiel

a)
$$\det \begin{pmatrix} 1 & 1 \\ 2 & -3 \end{pmatrix} = 1 \cdot (-3) - 1 \cdot 2 = -5$$

$$\det \begin{pmatrix} + & -1 \\ a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

Man multipliziert die Werte auf der Hauptdiagonale und zieht die der Nebendiagonale ab.

b)
$$\det \begin{pmatrix} \frac{+}{a_{11}} & \frac{-}{a_{12}} & \frac{+}{a_{13}} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) +$$

$$a_{13}(a_{21}a_{33} - a_{22}a_{31}) = \dots$$

Regel von Sarrus:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \\ & & & & & + \end{pmatrix}$$

Zum Beispiel: det
$$\begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 2 \\ 1 & 0 & 3 \end{pmatrix} = 3 + 4 + 0 - (-1) - 0 - 0 = 8$$

c) Für $n \times n$ -Matrizen gibt es im Allgemeinen n! Summanden. Viele Nullen in der Matrix machen die Berechnung einfacher, z.B.:

$$\det\begin{pmatrix} 1 & -2 & 0 \\ 1 & 2 & -3 \\ 4 & 1 & 1 \end{pmatrix} = 0 - (-2) \cdot \det\begin{pmatrix} 1 & -3 \\ 4 & 1 \end{pmatrix} + 0 = 26$$

Falls Nullen nicht in 1. Zeile stehen: Man kann nach jeder beliebigen Zeile oder Spalte entwickeln:

Regeln zur Berechenung der Determinante

8.4 Satz (Entwicklungssatz von Laplace)

 $A \in \mathcal{M}_n(\mathcal{K})$

- i) Entwicklung nach *i*-ter Zeile: $\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \cdot \det(A_{ij})$
- ii) Entwicklung nach *j*-ter Spalte: $\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \cdot \det(A_{ij})$

8.4 hier ohne Beweis, zu lang.

8.5 Beispiel

a)
$$A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 0 & 3 \\ 2 & 0 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \end{pmatrix} \leftarrow \text{(Vorzeichen, } (-1)^{i+j},$$
Schachbrettmuster)

- nach 1. Spalte:
$$\det(A) = 2 \cdot \det\begin{pmatrix} 0 & 3 \\ 0 & 4 \end{pmatrix} - (-1) \det\begin{pmatrix} -1 & 1 \\ 0 & 4 \end{pmatrix} + 2 \cdot \det\begin{pmatrix} -1 & 1 \\ 0 & 3 \end{pmatrix}$$
$$= 2 \cdot 0 + 1 \cdot (-4) + 2 \cdot (-3)$$
$$= -10$$

- nach 2. Spalte:

$$det(A) = -(-1) \cdot det \begin{pmatrix} -1 & 3 \\ 2 & 4 \end{pmatrix} + 0 + 0$$

$$= -10$$

Also: Am Besten, man entwickelt nach Zeile oder Spalte, in der viele Nullen stehen.

b) Falls es nur wenige Nullen gibt: Erzeuge möglichst viele Nullen mit Gauß, denn:

$$A = \underbrace{\begin{pmatrix} a_{11} & \cdots & \cdots & a_{1n} \\ 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix}}_{\text{obere Dreiecksmatrix}}$$

$$\Rightarrow \det(A) = a_{11} \cdot \det \begin{pmatrix} a_{22} & \cdots & \cdots & a_{2n} \\ 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix}$$

$$= a_{11} \cdot a_{22} \cdot \det \begin{pmatrix} a_{33} & \cdots & \cdots & a_{3n} \\ 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix}$$

$$= \cdots$$

$$= a_{11} \cdot a_{22} \cdot a_{33} \cdot \cdots \cdot a_{nn}$$

Analog für unter Dreiecksmatrix:

$$\det \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 0 \\ a_{n1} & \cdots & \cdots & a_{nn} \end{pmatrix} = a_{11} \cdot \dots \cdot a_{nn}$$

Für den Gauß-Algorithmus müssen folgende Regeln beachtet werden:

8.6 Satz (Eigenschaften von Determinanten)

$$A, B \in \mathcal{M}_n(\mathcal{K}), \quad A = (S_1, ..., S_n), \quad s_1, ..., s_n \in \mathcal{K}^n, \quad s_i' \in \mathcal{K}^n$$

Folgende Eigenschaften gelten sowohl für Spalten als auch für Zeilen:

D1)
$$\det(s_1, ..., \underbrace{s_i + s_i'}_{i-\text{te Spalte}}, ..., s_n) = \det(s_1, ..., s_i, ..., s_n) + \det(s_1, ..., s_i', ..., s_n)$$

Beweis: Nach Spalte i entwickeln.

D2) Beim Vertauschen von 2 Spalten ändert sich das Vorzeichen der Determinante.

Beweis Hier ohne Beweis.

D3)
$$\det(s_1, ..., \lambda s_i, ..., s_n) = \lambda \cdot \det(s_1, ..., s_n), \quad \lambda \in \mathcal{K}$$

Beweis: Nach Spalte i entwickeln.

D4)
$$\det(\lambda \cdot A) = \det(\lambda s_1, ..., \lambda s_n) \stackrel{D3}{=} \lambda^n \det(A)$$

D5) Ist
$$s_i = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$
, so ist $\det(A) = 0$

Beweis: Nach Spalte i entwickeln.

D6) Besitzt
$$A$$
 zwei identische Spalten, so ist $\det(A) = 0$.
Beweis: Vertausche Spalten und erhalte Matrix A' mit $A' = A$.
Nach D2: $\det(A) = -\det(A) \Rightarrow \det(A) = 0$, falls $\mathcal{K} \neq \mathbb{Z}_2$.
Falls $\mathcal{K} = \mathbb{Z}_2$: Es gilt auch $\det(A) = 0$ mit vollständiger Induktion.

D7)
$$\det(s_1, ..., \underbrace{s_i + \lambda s_j}_{i-\text{te Spalte}}, ..., s_n) = \det(A)$$
 $(i \neq j, j \in [1, n])$
Beweis: D1, D3, D6.

D8) $det(A \cdot B) = det(A) \cdot det(B)$ **Beweis** Hier ohne Beweis.

D9)
$$det(A^T) = det(A)$$

Beweis: Folgt aus 8.4.

8.7 Beispiel

$$\det \begin{pmatrix} 0 & 1 & 2 \\ -2 & 0 & 3 \\ 0 & -2 & 3 \end{pmatrix} \stackrel{z_1 \leftrightarrow z_2}{=} - \det \begin{pmatrix} -2 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & -2 & 3 \end{pmatrix} \stackrel{III=III+2II}{=} - \det \begin{pmatrix} -2 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 7 \end{pmatrix}$$

$$= -14$$

Charakterisierung invertierbarer Matrizen

8.8 Satz (Invertierbarkeit von Matrizen)

 $A \in \mathcal{M}_n(\mathcal{K})$ invertierbar $\Leftrightarrow \det(A) \neq 0$ In diesem Fall gilt: $\det(A^{-1}) = (\det(A))^{-1}$.

Beweis

$$(\Rightarrow) \det(A) \cdot \det(A^{-1}) \stackrel{D8}{=} \det(A \cdot A^{-1}) = \det(E) = 1$$
$$\Rightarrow \det(A) \neq 0, \ \det(A^{-1}) = \det(A)$$

(⇐) Sei A nicht invertierbar $\stackrel{7.16}{\Rightarrow}$ rg(A) < n \Rightarrow Spalten von A sind linear abhängig, d.h.:

$$\exists i: s_i = \sum_{k=1, k \neq i}^n \lambda_k s_k$$

$$s_1, ..., s_n \text{ Spalten von } A$$

$$\Rightarrow \det(A) \stackrel{D7}{=} \det(s_1, ..., s_i - \sum_{k=1, k \neq i}^n \lambda_k s_k, ..., s_n)$$

$$\underbrace{- \det(s_1, ..., s_i - \sum_{k=1, k \neq i}^n \lambda_k s_k, ..., s_n)}_{i-\text{te Spalte}} \stackrel{D5}{=} 0 \qquad \Box$$

8.9 Bemerkung

a) Seien $v_1, v_2, v_3 \in \mathbb{R}^3$, z.B.

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$

Das von v_1, v_2, v_3 gebildete Parallelepiped P:

Man kann ausrechnen, dass $|\det(v_1,v_2,v_3)|$ das Volumen von P ist. Es ist $\left|\det\begin{pmatrix}1&0&1\\0&1&0\\0&0&2\end{pmatrix}\right|=2$. Dies gilt in analoger Weise in \mathbb{R}^2 für ein Parallelogramm, das von $v_1,v_2\in\mathbb{R}^2$ gebildet wird und für höhere Dimensionen $n\geq 4$.

b) Es gibt eine alternative Berechnung von A^{-1} , z.B. wenn $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathcal{K}) \Rightarrow A^{-1} = (\det(A))^{-1} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, \ \det\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} ad - bc & 0 \\ 0 & \underbrace{ad - bc}_{\det(A)} \end{pmatrix}$

Allgemeine Formel für $A \in \mathcal{M}_n(\mathcal{K})$ komplizierter (auf unserem Level nicht verständlich).

Eigenwerte und Eigenvektoren 9

Anwendungen

Markov-Ketten (Kaufverhalten), Eigenfaces, Page-Rank-Algorithm, etc.

9.1 Beispiel

$$A = \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{3} \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}).$$

Da
$$A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 und $A \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, streckt A in Richtung $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ um den

Faktor 2 und staucht in Richtung $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ um den Faktor $\frac{1}{3}$.

Man nennt $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ Eigenvektor (EV) von A zum Eigenwert (EW) 2 und $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Eigenvektor zum Eigenwert $\frac{1}{3}$.

Definition (Eigenvektor, Eigenwert, Eigenraum)

Sei $A \in \mathcal{M}_n(\mathcal{K}), v \in \mathcal{K}^n, v \neq \mathcal{O}$, heißt Eigenvektor (EV) zum Eigenwert (EW) $\lambda \in \mathcal{K}$, falls $Av = \lambda v$.

Die Menge $Eig(\lambda) := \{v \in \mathcal{K}^n | Av = \lambda v\}$ heißt Eigenraum von λ .

z.B. ist
$$\begin{pmatrix} 4 \\ 0 \end{pmatrix}$$
 auch EV zum EW 2 von $A = \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{3} \end{pmatrix}$

9.3 Beispiel

Konstruiere Matrix $A \in \mathcal{M}_2(\mathbb{R})$, die in Richtung $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ um $\lambda_1 = 2$ streckt und

in Richtung $v_2 = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$ um $\lambda_2 = \frac{2}{3}$ staucht.

Man erhält:

a)
$$A \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} \Rightarrow \begin{cases} I & a_{11} + a_{12} = 2 \\ II & a_{21} + a_{22} = 2 \end{cases}$$

b)
$$A \begin{pmatrix} 3 \\ -1 \end{pmatrix} = \frac{2}{3} \begin{pmatrix} 3 \\ -1 \end{pmatrix} \Rightarrow \begin{cases} III & 3a_{11} - a_{12} = 2\\ IV & 3a_{21} - a_{22} = -\frac{2}{3} \end{cases}$$

$$III = III + I:$$
 $4a_{11} = 4,$ $a_{11} = 1 \xrightarrow{I} a_{12} = 1$
 $IV = IV + II:$ $4a_{21} = \frac{4}{3},$ $a_{21} = \frac{1}{3} \xrightarrow{II} a_{22} = \frac{5}{3}$
 $\Rightarrow A = \begin{pmatrix} 1 & 1\\ \frac{1}{3} & \frac{5}{3} \end{pmatrix}$

Eigenwertproblem

Geg.: $A \in \mathcal{M}_n(\mathcal{K})$. Ges.: Eigenvektor und Eigenwert Grundidee zur Berechnung von EV + EW: Ang. $v \neq \mathcal{O}$ ist EV von A zum EW $\lambda \in \mathcal{K}$.

$$Av = \lambda v \Leftrightarrow Av = (\lambda \cdot E_n)v$$

$$\Leftrightarrow Av - \lambda E_n v = \mathcal{O}$$

$$\Leftrightarrow \underbrace{(A - \lambda E_n)}_{\in \mathcal{M}_n(\mathcal{K})} v = \mathcal{O}$$

D.h. $v \in \ker(A - \lambda E_n)$! Da $v \neq \mathcal{O}$, ist $\ker(A - \lambda E_n) \neq \{\mathcal{O}\}$ und somit $A - \lambda E_n$ weder injektiv (6.9) noch umkehrbar (6.15). Ergebnis:

9.4 Satz $(A - \lambda E_n)$

Sei $A \in \mathcal{M}_n(\mathcal{K})$.

- 1) $\lambda \text{ EW von } A \Leftrightarrow \det(A \lambda E_n) = 0$
- 2) $Eig(\lambda) = \ker(A \lambda E_n)$
- 3) EV $v \neq \mathcal{O}$ ist Lösung $(A \lambda E_n)v = \mathcal{O}$.

Beweis

Siehe oben. \Box

9.5 Beispiel

Gegeben: $A = \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ Gesucht: EW + EV

Benutze 9.4.1): Es ist
$$\det(A - \lambda E_2) = \det\begin{pmatrix} 1 - \lambda & 1 \\ -2 & 4 - \lambda \end{pmatrix} = (1 - \lambda)(4 - \lambda) + 2$$

$$= \lambda^2 - 5\lambda + 6$$

$$= 0$$

 $\Rightarrow \lambda_1 = 3, \quad \lambda_2 = 2 \stackrel{9.4.1)}{\Rightarrow} A \text{ hat EW } \lambda_1 \text{ und } \lambda_2.$

Die EV $v_1, v_2 \in \mathbb{R}^2$ erfüllen somit

a)
$$(A - \lambda_1 E_2)v_1 = \mathcal{O}$$

 $\Leftrightarrow \begin{pmatrix} 1 - 3 & 1 \\ -2 & 4 - 3 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = 0 \Leftrightarrow I : -2x + y = 0, \quad II : -2x + y = 0$
 $\Leftrightarrow y = 2x$
 $\stackrel{x=1}{\Rightarrow} v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \text{ EV zum EW } \lambda_1 = 3.$
 $Eig(3) = \langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \rangle_{\mathbb{R}}$

b) Analog für
$$\lambda_2 = 2$$
. Zu Lösen $\begin{pmatrix} -1 & 1 \\ -2 & 2 \end{pmatrix} \cdot \underbrace{\begin{pmatrix} x' \\ y' \end{pmatrix}}_{v_2} = \mathcal{O} \Rightarrow v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
$$Eig(2) = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rangle_{\mathbb{R}}$$

9.6 Definition (charakteristisches Polynom)

31.01.17

Für $A \in \mathcal{M}_n(\mathcal{K})$ heißt $P_A(\lambda) = \det(A - \lambda E_n)$ das <u>charakteristische Polynom</u> von A.

9.7 Bemerkung

 $P_A(\lambda)$ ist Polynom vom Grad n, falls $A \in \mathcal{M}_n(\mathcal{K})$ (folgt aus Definition der Determinante 8.2). Die Nullstellen von $P_A(\lambda)$ sind die Eigenwerte von A.

 \Rightarrow für $\mathcal{K} = \mathbb{R}$: A hat $\leq n$ Eigenwerte.

 $K = \mathbb{C}$: genau n Eigenwerte (nicht notwendigerweise verschieden), 5.11 b).

Diagonalisierbarkeit von Matrizen

9.8 Definition (Diagonalmatrix)

$$D \in \mathcal{M}_n(\mathcal{K})$$
 heißt Diagonalmatrix, wenn $D = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}$

9.9 Bemerkung

a) Mit Diagonalmatrizen kann man leichter rechnen, denn:

$$\bullet \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix} \cdot \begin{pmatrix} \mu_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \mu_n \end{pmatrix} = \begin{pmatrix} \lambda_1 \mu_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \mu_n \end{pmatrix} \\
\bullet \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}^k = \begin{pmatrix} \lambda_1^k & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n^k \end{pmatrix}, \quad k \in \mathbb{N}$$

b) Deswegen folgende Grundidee:

Sei $A \in \mathcal{M}_n(\mathcal{K})$.

Bringe A auf Diagonalgestalt: Fasse dazu A als Darstellungsmatrix von $\varphi(v) = Av$ bzgl. Standardbasis E auf, d.h. $A = A_{\varphi}^{E}$. Suche Basis B, so dass A_{φ}^{B} Diagonalmatrix ist. Wenn es eine solche Basis B gibt, dann gilt:

9.10 Beispiel

$$\begin{split} A &= \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}). \\ \text{Aus 9.5 EV: } v_1 &= \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad v_2 &= \begin{pmatrix} 1 \\ 1 \end{pmatrix}. \text{ EW: } \lambda_1 = 3, \quad \lambda_2 = 2. \\ \text{W\"{a}hle als Basis } B &= (v_1, v_2). \\ \Rightarrow S_{B,E} &= \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} = S \Rightarrow S_{E,B} = S^{-1} \stackrel{8.9b}{=} \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix} \end{split}$$

$$\Rightarrow D = S^{-1}AS = \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$$

$$\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$
Somit ist z.B. $A^5 = \underbrace{SDS^{-1}}_{A} \cdot \underbrace{SDS^{-1}}_{A} \cdot \dots \cdot \underbrace{SDS^{-1}}_{A}$

$$= SD^5S^{-1} = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 243 & 0 \\ 0 & 32 \end{pmatrix} \cdot \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} -179 & 211 \\ -422 & 454 \end{pmatrix}$$

Fragen

- 1) Ist jede Matrix $A \in \mathcal{M}_n(\mathcal{K})$ diagonalisierbar?
- 2) Wie diagonalisiert man A?

9.11 Definition (Diagonalisierbarkeit)

- i) $A \in \mathcal{M}_n(\mathcal{K})$ heißt <u>diagonalisierbar</u>, wenn es eine invertierbare Matrix $S \in \mathcal{M}_n(\mathcal{K})$ gibt, so dass $A = SDS^{-1}$, D Diagonalmatrix.
- ii) Eine lineare Abbildung $\varphi:V\to V, \ \dim(V)<\infty$, heißt diagonalisierbar, falls es eine Basis B gibt, so dass A_{φ}^{B} Diagonalmatrix.

9.12 Satz (Spektralsatz)

- i) $A \in \mathcal{M}_n(\mathcal{K})$ diagonalisierbar $\Leftrightarrow \exists n$ linear unabhängig EV $\underbrace{v_1,...,v_n}_{\text{Basis von }\mathcal{K}^n}$. In diesem Fall ist $A = SDS^{-1}$, wobei $S = (v_1,...,v_n)$ und $D = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}$ mit v_i EV zum EW λ_i von A.
- ii) A hat n verschiedene EW $\lambda_1,...,\lambda_n\Rightarrow A$ diagonalisierbar.

Beweis

i)
$$A$$
 diagonalisierbar $\stackrel{9.11i}{\Leftrightarrow} \exists S$ mit $S^{-1}AS = \begin{pmatrix} \mu_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \mu_n \end{pmatrix}$

$$\Leftrightarrow AS = S \cdot \begin{pmatrix} \mu_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \mu_n \end{pmatrix}.$$
Sei $S = (s_1, ..., s_n)$. Für Spalte $i : As_i = \mu_i s_i$ $i = 1, ..., n$

$$\Leftrightarrow s_i \text{ EV zum EW } \mu_i, \text{ damit muss } s_i = v_i, \quad \mu_i = \lambda_i.$$

Insgesamt: $\underbrace{S \text{ invertierbar}}_{A \text{ diagonalisierbar}} \Leftrightarrow \underbrace{\operatorname{rg}(S) = n}_{\text{d.h. Spalten l.u.}}$

ii) $\lambda_1,...,\lambda_n$ sind paarweise verschiedene EW. Zeige per Induktion, dass EV linear unabhängig:

$$n=1 \rightarrow \checkmark$$

Induktion: $n-1 \to n$

IV: $\underbrace{v_1,...,v_{n-1}}_{\mathrm{EV}}$ linear unabhängig

IA: $v_1, ..., v_n$ linear unabhängig

Angenommen nicht, dann ist $v_n = \sum_{i=1}^{n-1} a_i v_i$ (*)

a)
$$\lambda_n v_n = \sum_{i=1}^{n-1} a_i \lambda_n v_i$$

b)
$$\lambda_n v_n = A v_n \stackrel{(*)}{=} \sum_{i=1}^{n-1} a_i A v_i = \sum_{i=1}^{n-1} a_i \lambda_i v_i$$

IV: $v_1, ..., v_{n-1}$ linear unabhängig \Rightarrow mind. ein $a_i \neq 0$ $\stackrel{a)=b}{\Rightarrow} \lambda_i = \lambda_n$ f

9.13 Beispiel

- a) $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ ist nicht diagonalisierbar, da $P_A(\lambda) = \lambda^2 + 1$ keine Nullstellen in \mathbb{R} hat.
- b) Nicht jede Matrix hat n verschiedene EW, z.B. $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ hat EW $\begin{pmatrix} 1 \\ 1 \\ \end{pmatrix}$ $\begin{pmatrix} 0 \\ 1 \\ \end{pmatrix}$

$$\lambda_1 = 2, \quad \lambda_2 = 1 \text{ mit EV } v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad v_1' = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

wobei
$$Eig(2) = \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\rangle_{\mathbb{R}}, \quad Eig(1) = \left\langle \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\rangle_{\mathbb{R}}$$

10 Norm und Skalarprodukt

10.1 Beispiel

Im \mathbb{R}^2 hat man folgende Möglichkeiten:

• Längenmessung: Norm eines Vektors $v \in \mathbb{R}^2$, $v = \begin{pmatrix} x \\ y \end{pmatrix}$

$$||v|| := \sqrt{x^2 + y^2}$$

• Abstandsmessung zwischen 2 Elementen $v = \begin{pmatrix} x \\ y \end{pmatrix}, \quad v' = \begin{pmatrix} x' \\ y' \end{pmatrix}$

$$d(v, v') := ||v - v'||$$

• Winkelberechnung mit Skalarprodukt: Sei α der Winkel, der von v und v' eingeschlossen wird und

$$(v|v') = \left(\begin{pmatrix} x \\ y \end{pmatrix} \middle| \begin{pmatrix} x' \\ y' \end{pmatrix} \right) := xx' + yy'$$

das Skalarpodukt von v und v'. Dann ist

$$\cos(\alpha) = \frac{(v|v')}{\|v\| \cdot \|v'\|}$$

Wenn ||v|| = ||v'|| = 1, so ist $\cos(\alpha) = (v|v')$.

Es ist für
$$v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 und $v' = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$: $||v|| = \sqrt{1^2 + 1^2} = \sqrt{2}$, $||v'|| = \sqrt{1^2 + 0^2} = 1$, $d(v, v') = \left\| \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\| = \left\| \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\| = 1$, $(v|v') = 1 \cdot 1 + 1 \cdot 0 = 1$, $\cos(\alpha) = \frac{(v|v')}{||v|| \cdot ||v'||} = \frac{1}{2} \Rightarrow \alpha = \frac{\pi}{4}(45^\circ)$

Wie kann man Norm (Länge, Abstand) und Skalarprodukt (Winkel) für beliebige \mathbb{R} -Vektorräume verallgemeinern?

10.2 Definition (Skalarprodukt, Norm, Abstand, Vektorraum)

01.02.17

Sei V \mathbb{R} -Vektorraum.

a) Eine Abbildung $(\cdot|\cdot): V \times V \to \mathbb{R}, \ (v,w) \mapsto (v|w)$ heißt Skalarprodukt, falls:

- i) (Positive Definitheit) $(v|v) \ge 0 \quad \forall v \in v$ $(v|v) = 0 \Leftrightarrow v = 0$
- ii) (Symmetrie) $(v|w) = (w|v) \ \forall v, w \in V$
- iii) (Bilinearität)

*
$$(\lambda v|w) = (v|\lambda w) = \lambda(v|w) \quad \forall \lambda \in \mathbb{R} \quad \forall v, w \in V$$

* $(u+v|w) = (u|w) + (v|w) \quad \forall u, v, w \in V$

- b) Ein \mathbb{R} -Vektorraum mit Skalarprodukt heißt Euklidischer Vektorraum.
- c) $||v|| := \sqrt{(v|v)}$ heißt (Euklidische) Norm und d(v, w) = ||v w|| (Euklidischer) Abstand.

10.3 Beispiel

a) Das Skalarprodukt in 10.1 erfüllt a)i)-iii) von Def 10.2

i)
$$(v|v) = \begin{pmatrix} x \\ y \end{pmatrix} | \begin{pmatrix} x \\ y \end{pmatrix} \end{pmatrix} = x^2 + y^2 \ge 0 \quad \forall v \in \mathbb{R} \text{ und}$$
 $(v|v) = 0 \Leftrightarrow x = y = 0 \Leftrightarrow v = 0 \checkmark$

ii),iii) nachrechnen ✓

b) Allgemein heißt im
$$\mathbb{R}^n$$
 $(v|w) := \sum_{i=1}^n v_i w_i, \quad v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}, \quad w = \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}$ das Standardskalarprodukt $\|v\| = \sqrt{(v|v)} = \sqrt{v_1^2 + \ldots + v_n^2}$.

c) Für $V=\mathcal{C}[a,b]=\{f:[a,b]\to\mathbb{R}\mid f \text{ ist stetig}\}$ kann man leicht nachrechnen, dass

$$(f|g) := \int_a^b f(t) \cdot g(t) dt$$

ein Skalarprodukt ist. Die Norm ist dann

$$||f|| = \sqrt{\int_a^b f^2(t)dt}$$

und erfüllt folgende Eigenschaften:

10.4 Satz (Eigenschaften Norm)

V \mathbb{R} -Vektorraum.

i) (Positive Definitheit)

$$||v|| \ge 0 \quad \forall v \in V$$

 $||v|| = 0 \Leftrightarrow v = \mathcal{O}$

- ii) $\|\lambda v\| = |\lambda| \cdot \|v\|$ $\forall \lambda \in \mathbb{R} \ \forall v \in V$
- iii) (\triangle -Ungleichung) $||v+w|| \le ||v|| + ||w|| \forall v, w \in V$

Bemerkung

- i) und ii) sind klar.
 - iii) beweist man mit 10.5, Cauchy-Schwarz-Ungleichung (C-S).

10.5 Satz (Cauchy-Schwarz-Ungleichung)

 $|(v|w)| \le ||v|| \cdot ||w|| \quad \forall v, w \in V, \quad V \quad \mathbb{R} - \text{Vektorraum}$ Gleichheit $\Leftrightarrow v, w$ linear abhängig

Beweis

Hier ohne Beweis, siehe Literatur oder Wikipedia: Cauchy-Schwartzsche Ungleichung. $\hfill\Box$

Beweis von \triangle -Ungleichung aus 10.4

$$\begin{aligned} \|v + w\|^2 &= (v + w|v + w) \\ &= \underbrace{(v|v)}_{\|v\|^2} + \underbrace{2(v|w)}_{\leq 2\|v\| \cdot \|w\|} + \underbrace{(w|w)}_{\|w\|^2} \\ &\stackrel{C-S}{\leq} (\|v\| + \|w\|)^2 \end{aligned}$$

10.6 Bemerkung

Es ist
$$(v|w) = \underbrace{v^T \cdot w}_{\text{Matrixprodukt}}$$
 für $v, w \in \mathbb{R}^n$ z.B $\begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} \begin{vmatrix} -1 \\ 2 \\ 1 \end{pmatrix} = (1, 0, 3) \cdot \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} = -1 + 0 + 3 = 2$

10.7 Beispiel

$$\begin{split} v &= \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}, \quad w &= \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix} \in \mathbb{R}^3 \\ (v|w) &= -2 + 4 + 4 = 6 \\ \|v\| &= \sqrt{1 + 4 + 1} = \sqrt{6} \\ \|w\| &= \sqrt{4 + 4 + 16} = \sqrt{24} \\ d(v, w) &= \|v - w\| = \sqrt{9 + 0 + 9} = \sqrt{18} \\ \cos(\alpha) &= \frac{(v|w)}{\|v\| \cdot \|w\|} = \frac{6}{\sqrt{6} \cdot \sqrt{24}} = \frac{1}{2} \Leftrightarrow \alpha = \frac{\pi}{3} \end{split}$$

11 Orthonormalsysteme

11.1 Definition (Grundbegriffe)

V euklidischer Vektorraum

- i) v, w heißen orthogonal (senkrecht), $v \perp w$, falls (v|w) = 0, $(\mathcal{O} \text{ ist } \perp \text{ zu allen } v \in V)$.
- ii) $M \subseteq V$ heißt Orthogonalsystem (OGS), falls $(v|w) = 0 \quad \forall v, w \in M$ und $v \neq w$. Wenn zusätzlich $||v|| = 1 \quad \forall v \in M$, so heißt M Orthonormalsystem (ONS).
- iii) Ist $\dim(V) < \infty$, so heißt M Orthonormalbasis von V, falls M ONS und M ist Basis von V.

11.2 Bemerkung

Jedes ONS ist linear unabhängig: $\{v_1,...,v_n\} \subseteq V$ ONS. $\mathcal{O} = \lambda_1 v_1 + ... + \lambda_k v_k, \text{ zu zeigen: } \lambda_1 = ... = \lambda_k = 0$ $\Leftrightarrow 0 = (v_1|\lambda_1 v_1 + ... + \lambda_k v_k) = \lambda_1 \underbrace{(v_1|v_1)}_{=||v||=1} + \lambda_2 \underbrace{(v_1|v_2)}_{\perp, \text{ also } 0} + ... + \lambda_k \underbrace{(v_1|v_k)}_{\perp, \text{ also } 0} = \lambda_1 \Rightarrow \lambda_1 = 0$

Analog für $\lambda_2, ..., \lambda_k$

Gram-Schmidtsches Orthogonalisierungsverfahren

Grundidee im \mathbb{R}^n mit 3 Vektoren $v_1, v_2, v_3 \in \mathbb{R}^n$:

Gegeben: $v_1, v_2, v_3 \in \mathbb{R}^n$

Gesucht: OGS $\{w_1, w_2, w_3\}$ mit $\langle w_1, w_2, w_3 \rangle_{\mathbb{R}} = \langle v_1, v_2, v_3 \rangle_{\mathbb{R}}$

- 1. $w_1 = v_1$
- 2. $w_2 = \lambda \cdot w_1 + v_2$ (verlängere/verkürze w_1 , so dass $w_2 \perp w_1$) $\mathcal{O} = (w_1|w_2) = (w_1|\lambda w_1 + v_2) = \lambda ||w_1||^2 + (w_1|v_2) \Leftrightarrow \lambda = -\frac{(w_1|v_2)}{||w_1||^2}$

3.
$$w_3 = \lambda'_1 w_1 + \lambda'_2 w_2 + v_3$$

 $\mathcal{O} = (w_3 | w_2) = (\lambda'_1 w_1 + \lambda'_2 w_2 + v_3 | w_2) = \lambda'_2 ||w_2||^2 + (v_3 | w_2) \Rightarrow \lambda'_2 = -\frac{(v_3 | w_2)}{||w_2||^2}$
 $\mathcal{O} = (w_3 | w_1) \Leftrightarrow \lambda'_1 = -\frac{(w_1 | v_3)}{||w_1||^2}$

Allgemein:

11.3 Satz (Gram-Schmidt)

Gegeben: $v_1, ..., v_k \in V$, V euklidischer Vektorraum.

Gesucht: ONS von $\langle v_1, ..., v_k \rangle_{\mathbb{R}}$.

Definiere dazu $w_1 := v_1$, $w_{r+1} = v_{r+1} + \sum_{i=1}^r \lambda_i^{(r+1)} w_i$ mit $\lambda_i^{(r+1)} = -\frac{(w_i|v_{r+1})}{\|w_i\|^2}$ (falls $w_i \neq \mathcal{O}$) und $y_r := \frac{w_r}{\|w_r\|}$ (falls $w_r \neq \mathcal{O}$). Dann gilt

d.h.
$$w_i \neq 0$$
 für $i=1,...,k$

- 1) Bricht die Iteration nach i Schritten ab mit $i \leq k$ <u>nicht</u> ab, so ist $\{w_1, ..., w_k\}$ OGS und $\{y_1, ..., y_k\}$ ONS von $\langle v_1, ..., v_k \rangle_{\mathbb{R}}$
- 2) Bricht die Iteration nach r Schritten ab (d.h. $w_r = 0$), so gilt: $v_1, ..., v_{r-1}$ linear unabhängig und $v_1, ..., v_r$ linear abhängig

Beweis

Wie oben, vollständige Induktion.

11.4 Beispiel

07.02.17

$$v_1, v_2 \in \mathbb{R}^3, \quad v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$$

Suche ONB der Ebene $\langle v_1, v_2 \rangle_{\mathbb{R}}$.

Gram-Schmidt:

1.
$$w_1 = v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

2.
$$w_2 = v_2 + \lambda_1 w_1 \text{ mit } \lambda_1 = -\frac{(v_2, w_1)}{\|w_1\|^2} = -\frac{4}{2} = -2$$

$$\Rightarrow w_2 = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} - 2 \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$$

$$\Rightarrow \text{OGB} : \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} \right\}$$

$$\text{ONB} : \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \frac{1}{\sqrt{6}} \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} \right\}$$

11.5 Definition (Orthogonale Matrix)

 $A \in \mathcal{M}_n(\mathbb{R})$ heißt <u>orthogonal</u>, falls ihre Spalten eine Orthogonalbasis des \mathbb{R}^n bilden.

 $\mathcal{O}(n) := \{ A \in \mathcal{M}_n(\mathbb{R}) \mid A \text{ orthogonal} \} \text{ heißt orthogonale Gruppe } (\mathcal{O}(n) \text{ ist tatsächlich Gruppe}).$

11.6 Beispiel

$$A = \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix}, \quad \varphi \in \mathbb{R}$$

•
$$\left(\begin{pmatrix} \cos(\varphi) \\ \sin(\varphi) \end{pmatrix} \middle| \begin{pmatrix} -\sin(\varphi) \\ \cos(\varphi) \end{pmatrix} \right) = 0$$

•
$$\left\| \begin{pmatrix} \cos(\varphi) \\ \sin(\varphi) \end{pmatrix} \right\| = \left\| \begin{pmatrix} -\sin(\varphi) \\ \cos(\varphi) \end{pmatrix} \right\| = \sqrt{\cos^2(\varphi) + \sin^2(\varphi)} = 1$$

 E_n ist auch orthogonal (Ist die Eins 1 in der Gruppe $\mathcal{O}(n)$, 3.9).

11.7 Satz (Orthogonale Matrix)

Für $A \in \mathcal{O}(n)$ gilt:

i)
$$A^T \cdot A = E_n$$
, d.h. $A^{-1} = A^T$

ii)
$$||Av|| = ||v||$$
 Längentreue

iii)
$$|\underbrace{\det(A)}_{\in \mathbb{R}}| = 1$$

Beweis

$$A = (s_1, ..., s_n)$$

i)
$$\{s_1, ..., s_n\}$$
 ONB $\Rightarrow (s_i, s_j) = \begin{cases} 1 & i = j \\ 0 & u \neq j \end{cases} \Rightarrow A^T \cdot A = E_n$

ii)
$$||Av||^2 = \underbrace{(Av)}_{\in \mathbb{R}^n} \underbrace{Av}_{\in \mathbb{R}^n} = (Av)^T \cdot (Av) = v^T \cdot \underbrace{A^T \cdot A}_{-E} \cdot v = (v|v) = ||v||^2$$

iii)
$$1 = \det(E_n) = \det(A^T \cdot A) \stackrel{8.6, D9}{=} \det(A^T) \cdot \det(A)$$

= $(\det(A))^2 \Rightarrow \det(A) = \pm 1$

11.8 Bemerkung

Man kann zeigen, dass jede symmetrische Matrix $A \in \mathcal{M}_n(\mathbb{R})$ n (nicht notwendigerweise verschiedene) reelle Eigenwerte hat und othogonal diagonalisierbar ist, d.h. $\exists \ S \in \mathcal{O}(n) : \underbrace{S^{-1} \cdot A \cdot S}_{S^T A S} = D$ (D Diagonalmatrix, die die EW von A enthält). Die Spalten von S sind die EV von A.

12 Taylorreihen

Ziel

Beweis von $e^{i\varphi} = \cos(\varphi) + i\sin(\varphi), \qquad (\varphi \in \mathbb{R}).$ Dazu zeigt man

1.
$$e^x = \exp(x) = \sum_{j=0}^{\infty} \frac{x^j}{j!}$$
 $(x \in \mathbb{R})$

- 2. Man erweitert für $z \in \mathbb{C}$ $\exp(z) := \sum_{j=0}^{\infty} \frac{z^j}{j!}$
- 3. Zum Schluss zeigt man $\exp(i\varphi) = \cos(\varphi) + i\sin(\varphi)$, indem man $\cos(\varphi)$ und $\sin(\varphi)$ als Reihen darstellt.

Hier wird nur ein Teil von 1) bewiesen. Dabei wird $(e^x)' = e^x \quad \forall x \in \mathbb{R}$ als bekannt vorrausgesetzt. 3) wird ebenfalls gezeigt. Dazu Taylorpolynome:

Man möchte k-mal diffbare Funktion $f:I\to\mathbb{R}$ durch ein Polynom $T_k(x)$ möglichst gut annähern. Dazu wählt man T_k so, dass $T_k^{(j)}(x_0)=f^{(j)}(x_0)$ für ein $x_0\in I,\quad j=0,\ ...,\ k.$

12.1 Definition (Taylorpolynom, Restglied)

Sei $I=(a,b), x_0 \in I, f: I \to \mathbb{R}$ k-mal differenzierbar, dann heißt

$$T_k : \mathbb{R} \to \mathbb{R}, \quad T_k(x) := \sum_{j=0}^k \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j$$

k-tes Taylerpolynom von f in x_o .

Die Fehlerdifferenz

$$R_k: I \to \mathbb{R}, \quad R_k(x) := f(x) - T_k(x)$$

nennt man k-tes Restglied von f in x_0 .

12.2 Bemerkung

 T_k ist das eindeutig bestimmte Polynom vom Grad $\leq k$, das $T_k^{(j)}(x_0) = f^{(j)}(x_0)$ erfüllt $\forall j = 0, ..., k$:

$$T_k(x) = a_0 + a_1(x - x_0) + \dots + a_j(x - x_0)^j + \dots + a_k(x - x_0)^k$$

$$a_j = \frac{f^{(j)}(x_0)}{j!}$$

$$\Rightarrow T_k^{(j)}(x) = j! a_j + c_j(x - x_0) + \dots + c_k(x - x_0)^{k-j}$$

$$\Rightarrow T_k^{(j)}(x_0) = j! \cdot a_j = f^{(j)}(x_0)$$

12.3 Satz von Taylor

Sei $x_0 \in I = (a, b), \quad f: I \to \mathbb{R} \quad (k+1)$ -mal diffbar, $k \in \mathbb{N}_0$. Dann gibt es zu jedem $x \in I$ eine Stelle ξ zwischen x und x_0 , so dass

$$R_k(x) = \frac{f^{(k+1)}(\xi)}{(k+1)!} (x - x_0)^{k+1}$$

(Lagrange-Form des Restgliedes).

Beweis

Sei $g(x) = (x - x_0)^{k+1}$. Es gilt $g^{(j)}(x_0) = 0$ und $R_k^{(j)}(x_0) = 0$ $\forall j = 0, ..., k$. Verwendet wird der 2. Mittelwertsatz (Mathe II).

$$\Rightarrow \frac{R_{k}(x)}{g(x)} = \frac{R_{k}(x) - R_{k}(x_{0})}{g(x) - g(x_{0})} \stackrel{2.MWS}{=} \frac{R'_{k}(\xi_{1})}{g'(\xi_{1})} \qquad \xi_{1} \text{ zwischen } x \text{ und } x_{0}$$

$$= \frac{R'_{k}(\xi_{1}) - R'_{k}(x_{0})}{g'(\xi_{1}) - g'(x_{0})} \stackrel{2.MWS}{=} \frac{R''_{k}(\xi_{2})}{g''(\xi_{2})} \qquad \xi_{2} \text{ zwischen } \xi_{1} \text{ und } x_{0}.$$

$$\vdots$$

$$\frac{2MWS}{g^{k+1}(\xi_{k+1})} \frac{R_{k}^{(k+1)}(\xi_{k+1})}{g^{k+1}(\xi_{k+1})} = \frac{f^{(k+1)}(\xi_{k+1})}{(k+1)!} \qquad \xi_{k+1} \text{ zwischen } \xi_{k} \text{ und } x_{0}$$
Setze $\xi = \xi_{k+1}$, Behauptung folgt.

12.4 Beispiel

08.02.17

Berechne $\sin(1)$ mit einer Fehlerdifferenz kleiner als 10^{-3} .

Aus 12.3
$$f(x) = T_k(x) + \overbrace{R_k(x)}^{\text{Fehler}}$$

 $\Rightarrow |R_k(x)| = \frac{|f^{(k+1)}(\xi)|}{(k+1)!} |x - x_0|^{k+1} < 10^{-3} \text{ mit } \xi \text{ zwischen } x \text{ und } x_0.$

Suche $k \in \mathbb{N}$, für das Ungleichung erfüllt ist: $f(x) = \sin(x), \quad f'(x) = \cos(x), \quad f''(x) = -\sin(x),$

$$f'''(x) = -\cos(x), \quad f^{(4)}(x) = f(x)$$

$$\Rightarrow f^{(2n)}(x)=(-1)^n\sin(x), \quad f^{(2n+1)}(x)=(-1)^n\cos(x) \qquad n\geq 0$$
 Wähle als Entwicklungspunkt $x_0=0.$

Damit ist
$$|R_k(x)| = |R_k(1)| = \frac{|f^{(k+1)}(\xi)|}{(k+1)!} |1 - 0|^{k+1} \le \frac{1}{(k+1)!} \le \frac{1}{1000}$$

 $\Leftrightarrow (k+1)! > 1000 \Leftrightarrow k \ge 6$

Wähle k = 6:

Dann ist
$$f(1) = \sin(1)$$

$$\approx T_6(1) = \frac{\sin(0)}{0!} (1 - 0)^0 + \frac{\cos(0)}{1!} (1 - 0)^1 + \frac{-\sin(0)}{2!} (1 - 0)^2 + \dots + \frac{-\sin(0)}{6!} (1 - 0)^6$$

$$= 0 + 1 + 0 + -\frac{1}{6} + 0 + \frac{1}{120} - 0 = \frac{101}{120}$$

$$= 0,841\overline{6}$$

Für Funktionen, die unendlich oft differenzierbar sind (z.B. e^x , $\sin x$), kann man sogar eine Taylorreihe aufstellen:

12.5 Definition (Tylorreihe)

Sei $x_0 \in I = (a, b), \quad f: I \to \mathbb{R}$ unendlich oft diffbar. Dann heißt

$$T: \mathbb{R} \to \mathbb{R}, \quad T(x) = \sum_{j=0}^{\infty} \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j$$

Taylorreihe von f in x_0 .

12.6 Bemerkung

- 1) T(x) muss nicht konvergent sein.
- 2) Wenn T(x) konvergiert für ein $x \neq x_0$, so muss T(x) nicht notwendig gegen f(x) konvergieren.

12.7 Beispiel

Man kann zeigen, dass $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = \begin{cases} e^{-\frac{1}{x}} & x > 0 \\ 0 & x \leq 0 \end{cases}$ beliebig oft diffbar ist.

Da $f^{(j)}(0) = 0 \quad \forall j \in \mathbb{N}_0$, ist $T(x) = 0 \quad \forall x \in \mathbb{R}$, aber $f(x) \neq 0$ für x > 0.

12.8 Satz (Konvergenz Taylorreihe)

Seien $x_0, x \in I$ und sei f unendlich oft diffbar.

T(x) konvergiert genau dann gegen f(x), wenn $R_k(x) \stackrel{k \to \infty}{\to} 0$

Beweis

Da $T_k(x)$ die k-te Partialsumme von T(x) ist und $|f(x) - T_k(x)| = |R_k(x)| \stackrel{k \to \infty}{\to} 0$, ist f(x) der Grenzwert von $T_k(x)$ für $k \to \infty$.

12.9 Beispiel

- a) $f(x) = \sin(x)$, $x_0 = 0$ (nur ungerade Ableitungen relevant, sonst = 0): $\Rightarrow T(x) = \sum_{j=0}^{\infty} \frac{(-1)^j x^{2j+1}}{(2j+1)!}$ Da $|R_k(x)| = \frac{|f^{(k+1)}(\xi)|}{(k+1)!} |x x_0|^{k+1} \le \frac{1}{(k+1)!} |x|^{k+1} \xrightarrow{k \to \infty} 0$ (weil Fakultät schneller wächst als jedes Polynom, Mathe II) ist $T(x) = \sin(x) \quad \forall x \in \mathbb{R}$
- b) Ebenso ist für $f(x) = \cos(x)$, $x_0 = 0$: $\cos(x) = \sum_{j=0}^{\infty} \frac{f^{(j)}(0)}{j!} (x 0)^j = \sum_{j=0}^{\infty} \frac{(-1)^j x^{2j}}{(2j)!}$ Beweis Konvergenz analog zu a)
- c) $f(x) = e^x$, $x_0 = 0$: $\Rightarrow T(x) = \sum_{j=0}^{\infty} \frac{e^0}{j!} x^j = \sum_{j=0}^{\infty} \frac{x^j}{j!}$ Für jedes $x \in \mathbb{R}$ ist $|R_k(x)| = \frac{f^{(k+1)}(\xi)}{(k+1)!} |x|^{k+1} \leq \frac{e^{|x|}}{(k+1)!} |x|^{k+1} \xrightarrow{k \to \infty} 0$ (Begründung wie bei a)) $\stackrel{12.8}{\Rightarrow} T(x) = e^x \quad \forall x \in \mathbb{R}$. Somit ist $\exp(x) = e^x$ gezeigt.
- d) Für $z \in \mathbb{C}$ definiert man nun $e^z := \exp(z) = \sum_{j=0}^{\infty} \frac{z^j}{j!}$. Der Konvergenzradius ρ von $\exp(z)$ ist nach Euler (Mathe II)

$$\rho = \lim_{j \to \infty} \left| \frac{a_j}{a_{j+1}} \right| \text{ mit } a_j = \frac{1}{j!}$$

Da $\left|\frac{a_j}{a_{j+1}}\right| = \frac{(j+1)!}{j!} = j+1 \stackrel{j\to\infty}{\to} \infty$, ist $\rho = \infty$ und $\exp(z)$ ist absolut konvergent $\forall z \in \mathbb{C}$ (5.11 d).

Deswegen kann man $\exp(z)$ umordnen und für z = ix, $x \in \mathbb{R}$, ergibt sich Formel von Euler (5.5) :

$$e^{ix} = \exp(ix) = \sum_{j=0}^{\infty} \frac{(ix)^j}{j!} = \underbrace{\sum_{j=0}^{\infty} \frac{(-1)^j x^{2j}}{(2j)!}}_{\cos(x)} + i \underbrace{\sum_{j=0}^{\infty} \frac{(-1)^j x^{2j+1}}{(2j+1)!}}_{\sin(x)},$$

da
$$\mathbf{i}^0 = 1$$
, $\mathbf{i}^1 = \mathbf{i}$, $\mathbf{i}^2 = -1$, $\mathbf{i}^3 = -1$, $\mathbf{i}^4 = \mathbf{i}$

e) Wegen c):
$$e^1 = e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$