testando

October 27, 2025

```
[2]: import pandas as pd
      # Substitua 'nome_do_arquivo.csv' pelo nome real do seu arquivo
      df = pd.read_csv('housing.csv')
 [4]: df.head(5)
 [4]:
         Avg. Area Income Avg. Area House Age Avg. Area Number of Rooms
      0
              79545.45857
                                      5.682861
                                                                  7.009188
              79248.64245
      1
                                      6.002900
                                                                  6.730821
      2
              61287.06718
                                      5.865890
                                                                  8.512727
      3
              63345.24005
                                      7.188236
                                                                  5.586729
                                      5.040555
              59982.19723
                                                                  7.839388
         Avg. Area Number of Bedrooms Area Population
                                                                Price \
      0
                                 4.09
                                            23086.80050 1.059034e+06
                                 3.09
                                            40173.07217 1.505891e+06
      1
      2
                                 5.13
                                            36882.15940 1.058988e+06
      3
                                 3.26
                                            34310.24283 1.260617e+06
      4
                                 4.23
                                            26354.10947 6.309435e+05
                                                    Address
       208 Michael Ferry Apt. 674\nLaurabury, NE 3701...
      1 188 Johnson Views Suite 079\nLake Kathleen, CA...
      2 9127 Elizabeth Stravenue\nDanieltown, WI 06482...
                                 USS Barnett\nFPO AP 44820
      3
      4
                                USNS Raymond\nFPO AE 09386
[13]: import matplotlib.pyplot as plt
      colunas_numericas = df.select_dtypes(include='number').columns
      colunas_numericas = df.select_dtypes(include='number').columns
      # Gerar histogramas para cada coluna numérica
      for coluna in colunas numericas:
          plt.figure(figsize=(8, 5))
```

```
plt.hist(df[coluna], bins=10, color='skyblue', edgecolor='black')
plt.title(f'Histograma da coluna: {coluna}')
plt.xlabel(coluna)
plt.ylabel('Frequência')
plt.grid(True)
plt.show()
```


Avg. Area Income


```
[16]: import pandas as pd
      from sklearn.linear_model import LinearRegression
      from sklearn.model_selection import train_test_split
      from sklearn.metrics import mean_squared_error, r2_score
      # Usar uma variável para prever o preço (exemplo: Area Population)
      X = df[['Area Population']]
      y = df['Price']
      # Treinar o modelo
      modelo = LinearRegression()
      modelo.fit(X, y)
      # Previsões
      y_pred = modelo.predict(X)
      # Plotar os dados e a reta
      plt.figure(figsize=(8, 5))
      plt.scatter(X, y, color='blue', label='Dados reais')
      plt.plot(X, y_pred, color='red', linewidth=2, label='Reta de regressão')
      plt.title('Regressão Linear: Preço vs População da Área')
      plt.xlabel('Area Population')
      plt.ylabel('Price')
```

```
plt.legend()
plt.grid(True)
plt.show()
```



```
import seaborn as sns
import matplotlib.pyplot as plt

# Selecionar apenas colunas numéricas
df_numerico = df.select_dtypes(include='number')

# Gerar o heatmap
plt.figure(figsize=(10, 6))
sns.heatmap(df_numerico.corr(), annot=True, cmap='coolwarm')
plt.title('Mapa de Correlação entre Variáveis Numéricas')
plt.show()
```


Dispersão 3D: Income, House Age e Price


```
[21]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# Selectionar variavel independente e dependente
X = df['Area Population'].values
y = df['Price'].values

# Normalizar os dados
X = (X - X.mean()) / X.std()
y = (y - y.mean()) / y.std()

# Inicializar parametros
```

```
m = 0 \# inclinação
b = 0 # intercepto
alpha = 0.01 # taxa de aprendizado
epochs = 1000 # número de iterações
# Gradiente descendente
for i in range(epochs):
   y_pred = m * X + b
    error = y_pred - y
    cost = (error ** 2).mean()
    # Derivadas
    dm = (2 * (error * X).mean())
    db = (2 * error.mean())
    # Atualização dos parâmetros
    m -= alpha * dm
    b -= alpha * db
# Exibir resultados
print(f"m (inclinação): {m}")
print(f"b (intercepto): {b}")
print(f"Custo final: {cost}")
# Visualizar a reta ajustada
plt.scatter(X, y, color='blue', label='Dados normalizados')
plt.plot(X, m * X + b, color='red', label='Reta ajustada')
plt.title('Gradiente Descendente - Regressão Linear')
plt.xlabel('Area Population (normalizado)')
plt.ylabel('Price (normalizado)')
plt.legend()
plt.grid(True)
plt.show()
```

m (inclinação): 0.4085558786333454 b (intercepto): 5.563549621001604e-17 Custo final: 0.8330820934723008


```
[36]: import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
      from sklearn.preprocessing import PolynomialFeatures
      from sklearn.linear_model import LinearRegression
      from sklearn.model_selection import train_test_split, learning_curve
      from sklearn.metrics import mean_squared_error, r2_score
      X = df[['Area Population']]
      y = df['Price']
      # Transformar em polinômio de grau 2
      poly = PolynomialFeatures(degree=2)
      X_poly = poly.fit_transform(X)
      # Dividir em treino e teste
      X_train, X_test, y_train, y_test = train_test_split(X_poly, y, test_size=0.2,_
       →random_state=42)
      # Treinar o modelo
```

```
modelo = LinearRegression()
modelo.fit(X_train, y_train)
# Previsões
y_pred = modelo.predict(X_test)
# Avaliação
print("Erro quadrático médio (MSE):", mean_squared_error(y_test, y_pred))
print("Coeficiente de determinação (R2):", r2_score(y_test, y_pred))
# Curvas de aprendizado
train_sizes, train_scores, test_scores = learning_curve(
    modelo, X_poly, y, cv=5, scoring='neg_mean_squared_error',
    train_sizes=np.linspace(0.1, 1.0, 10), random_state=42
)
# Média e desvio padrão
train_scores_mean = -np.mean(train_scores, axis=1)
test_scores_mean = -np.mean(test_scores, axis=1)
# Gráfico
plt.figure(figsize=(8, 5))
plt.plot(train_sizes, train_scores_mean, 'o-', color='blue', label='Erro de⊔
 ⇔treino')
plt.plot(train_sizes, test_scores_mean, 'o-', color='red', label='Erro de_u

→teste')
plt.title('Curvas de Aprendizado - Regressão Polinomial (grau 2)')
plt.xlabel('Tamanho do conjunto de treino')
plt.ylabel('Erro quadrático médio')
plt.legend()
plt.grid(True)
plt.show()
```

Erro quadrático médio (MSE): 101934056935.76347 Coeficiente de determinação (R²): 0.1714864341215081


```
[44]: import pandas as pd
      import numpy as np
      from sklearn.linear_model import Ridge, Lasso, ElasticNet
      from sklearn.model_selection import train_test_split
      from sklearn.metrics import mean_squared_error, r2_score
      X = df[['Area Population']]
      y = df['Price']
      # Dividir em treino e teste
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
       →random_state=42)
      # Modelos
      modelos = {
          'Ridge': Ridge(alpha=1.0),
          'Lasso': Lasso(alpha=0.1),
          'ElasticNet': ElasticNet(alpha=0.1, l1_ratio=0.5)
      }
      # Treinar e avaliar
      for nome, modelo in modelos.items():
          modelo.fit(X_train, y_train)
```

```
y_pred = modelo.predict(X_test)
          mse = mean_squared_error(y_test, y_pred)
          r2 = r2_score(y_test, y_pred)
          print(f"{nome} \rightarrow MSE: {mse:.2f}, R<sup>2</sup>: {r2:.4f}")
     Ridge \rightarrow MSE: 101884635124.57, R<sup>2</sup>: 0.1719
     Lasso \rightarrow MSE: 101884635124.67, R<sup>2</sup>: 0.1719
     ElasticNet \rightarrow MSE: 101884635125.39, R<sup>2</sup>: 0.1719
[45]: import pandas as pd
      from sklearn.tree import DecisionTreeClassifier, plot_tree
      from sklearn.model_selection import train_test_split
      from sklearn.metrics import classification_report, confusion_matrix
      import matplotlib.pyplot as plt
      # Criar uma variável de classificação: "cara" (1) se Price > média, "barata"
       ↔(0) se Price <= média
      df['Classe'] = (df['Price'] > df['Price'].mean()).astype(int)
      # Selecionar variáveis independentes
      X = df[['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms',
              'Avg. Area Number of Bedrooms', 'Area Population']]
      y = df['Classe']
      # Dividir em treino e teste
      ⇔random_state=42)
      # Criar e treinar o modelo
      modelo = DecisionTreeClassifier(max_depth=4, random_state=42)
      modelo.fit(X_train, y_train)
      # Avaliar o modelo
      y pred = modelo.predict(X test)
      print("Matriz de Confusão:\n", confusion_matrix(y_test, y_pred))
      print("\nRelatório de Classificação:\n", classification_report(y_test, y_pred))
      # Visualizar a árvore
      plt.figure(figsize=(30, 25))
      plot_tree(modelo, feature_names=X.columns, class_names=['Barata', 'Cara'],
       →filled=True)
      plt.title('Árvore de Decisão - Classificação de Preço')
      plt.show()
     Matriz de Confusão:
      [[359 119]
```

[93 429]]

Relatório de Classificação:

	precision	recall	f1-score	support
0	0.79	0.75	0.77	478
1	0.78	0.82	0.80	522
accuracy			0.79	1000
macro avg	0.79	0.79	0.79	1000
weighted avg	0.79	0.79	0.79	1000

Árvore de Decisão - Classificação de Preço

[35]:

Erro quadrático médio (MSE): 42485358826.53633 Coeficiente de determinação (R^2): 0.6546816913096776

Árvore de Decisão - Regressão com Regularização

[39]:

Estatísticas Descritivas e de Forma:

	Média	Mediana	Desvio Padrão \	
Avg. Area Income	6.858311e+04	6.880429e+04	10657.991214	
Avg. Area House Age	5.977222e+00	5.970429e+00	0.991456	
Avg. Area Number of Rooms				
Avg. Area Number of Bedrooms		4.050000e+00		
Area Population		3.619941e+04	9925.650114	
Price	1.232073e+06		353117.626584	
Classe		1.000000e+00		
	Variância	Mínimo	Máximo \	
Avg. Area Income	1.135928e+08	17796.631190	1.077017e+05	
Avg. Area House Age				
Avg. Area Number of Rooms				
Avg. Area Number of Bedrooms				
Area Population		172.610686		
Price		15938.657920		
Classe	2.500496e-01			
Clabbo	2.0001000 01	0.00000	1.00000000000	
	Amplitude	Assimetria (S	kewness) Curtose	ڊ
Avg. Area Income	8.990512e+04		0.033710 0.044329	
Avg. Area House Age				
Avg. Area Number of Rooms			0.040984 -0.075777	
1176. III Ca Ilambol of Hoomb			0.010001	

Avg. Area Number of Bedrooms Area Population Price Classe	4.500000e+00 6.944910e+04 2.453127e+06 1.000000e+00	0.376128 -0.702064 0.050634 -0.007926 -0.002717 -0.056063 -0.002400 -1.999994
Correlação de Pearson:		
Avg. Area Income Avg. Area House Age Avg. Area Number of Rooms Avg. Area Number of Bedrooms Area Population Price Classe	Avg. Area Income 1.000000 -0.002007 -0.011032 0.019788 -0.016234 0.639734 0.505707	
Avg. Area Income Avg. Area House Age Avg. Area Number of Rooms Avg. Area Number of Bedrooms Area Population Price Classe		of Rooms \ -0.011032 -0.009428 1.000000 0.462695 0.002040 0.335664 0.262750
Avg. Area Income Avg. Area House Age Avg. Area Number of Rooms Avg. Area Number of Bedrooms Area Population Price Classe	Avg. Area Number	of Bedrooms Area Population \ 0.019788
Avg. Area Income Avg. Area House Age Avg. Area Number of Rooms Avg. Area Number of Bedrooms Area Population Price	Price Class 0.639734 0.50570 0.452543 0.36585 0.335664 0.26275 0.171071 0.12966 0.408556 0.32866 1.000000 0.79946	57 50 55 55 52

0.799461 1.000000

Classe

Variáveis mais correlacionadas com 'Price':

 Classe
 0.799461

 Avg. Area Income
 0.639734

 Avg. Area House Age
 0.452543

 Area Population
 0.408556

 Avg. Area Number of Rooms
 0.335664

 Avg. Area Number of Bedrooms
 0.171071

Name: Price, dtype: float64

```
[46]: # Importação de bibliotecas
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import skew, kurtosis
from sklearn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet
from sklearn.preprocessing import PolynomialFeatures
```

```
from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier, u
 →plot_tree
from sklearn.model_selection import train_test_split, learning_curve
from sklearn.metrics import mean squared error, r2 score, 11
 ⇔classification_report, confusion_matrix
# Carregar os dados
\#df = pd.read\_csv('nome\_do\_arquivo.csv') \# Substitua pelo nome real do seu_{\sqcup}
 \rightarrow arquivo
# Selecionar colunas numéricas
df_num = df.select_dtypes(include='number')
# Estatísticas descritivas e de forma
estatisticas = pd.DataFrame({
    'Média': df num.mean(),
    'Mediana': df_num.median(),
    'Desvio Padrão': df_num.std(),
    'Variância': df_num.var(),
    'Minimo': df_num.min(),
    'Máximo': df_num.max(),
    'Amplitude': df_num.max() - df_num.min(),
    'Assimetria': df num.apply(skew),
    'Curtose': df_num.apply(kurtosis)
})
print(" Estatísticas:\n", estatisticas)
# Correlação de Pearson
correlacao = df num.corr()
print("\n Correlação de Pearson:\n", correlacao)
# Heatmap de correlação
plt.figure(figsize=(12, 8))
sns.heatmap(correlacao, annot=True, cmap='coolwarm')
plt.title('Mapa de Correlação de Pearson')
plt.show()
# Regressão Linear Simples
X_lin = df[['Area Population']]
y = df['Price']
modelo_lin = LinearRegression()
modelo_lin.fit(X_lin, y)
y_pred_lin = modelo_lin.predict(X_lin)
print("\n Regressão Linear → R²:", r2_score(y, y_pred_lin))
# Regressão Polinomial + Curvas de Aprendizado
poly = PolynomialFeatures(degree=2)
```

```
X_poly = poly.fit_transform(X_lin)
X_train, X_test, y_train, y_test = train_test_split(X_poly, y, test_size=0.2,__
→random_state=42)
modelo poly = LinearRegression()
modelo_poly.fit(X_train, y_train)
y pred poly = modelo poly.predict(X test)
print("\n Regressão Polinomial → R2:", r2_score(y_test, y_pred_poly))
# Curvas de aprendizado
train_sizes, train_scores, test_scores = learning_curve(
    modelo_poly, X_poly, y, cv=5, scoring='neg_mean_squared_error',
    train_sizes=np.linspace(0.1, 1.0, 10)
)
train_scores_mean = -np.mean(train_scores, axis=1)
test_scores_mean = -np.mean(test_scores, axis=1)
plt.figure(figsize=(8, 5))
plt.plot(train_sizes, train_scores_mean, 'o-', label='Erro de treino')
plt.plot(train_sizes, test_scores_mean, 'o-', label='Erro de teste')
plt.title('Curvas de Aprendizado - Regressão Polinomial')
plt.xlabel('Tamanho do treino')
plt.ylabel('Erro quadrático médio')
plt.legend()
plt.grid(True)
plt.show()
# Modelos Regularizados
X_multi = df[['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of⊔
 ⇔Rooms',
              'Avg. Area Number of Bedrooms', 'Area Population']]
y = df['Price']
X_train, X_test, y_train, y_test = train_test_split(X_multi, y, test_size=0.2,_
⇔random state=42)
modelos = {
    'Ridge': Ridge(alpha=1.0),
    'Lasso': Lasso(alpha=0.1),
    'ElasticNet': ElasticNet(alpha=0.1, l1_ratio=0.5)
}
for nome, modelo in modelos.items():
    modelo.fit(X_train, y_train)
    y_pred = modelo.predict(X_test)
    print(f"{nome} → MSE: {mean_squared_error(y_test, y_pred):.2f}, R<sup>2</sup>:⊔
→{r2_score(y_test, y_pred):.4f}")
# Árvore de Decisão - Regressão
modelo_tree_reg = DecisionTreeRegressor(max_depth=5, min_samples_split=10,_u

→min_samples_leaf=5, random_state=42)
modelo_tree_reg.fit(X_train, y_train)
```

```
y_pred_tree = modelo_tree_reg.predict(X_test)
print("\n Árvore de Regressão → R²:", r2_score(y_test, y_pred_tree))
plt.figure(figsize=(24, 14))
plot_tree(modelo_tree_reg, feature_names=X_multi.columns, filled=True)
plt.title('Árvore de Decisão - Regressão')
plt.show()
# Árvore de Decisão - Classificação
df['Classe'] = (df['Price'] > df['Price'].mean()).astype(int)
X_class = X_multi
y_class = df['Classe']
X_train, X_test, y_train, y_test = train_test_split(X_class, y_class,_

state=42)

state=42)

state=42)

modelo_tree_clf = DecisionTreeClassifier(max_depth=4, random_state=42)
modelo_tree_clf.fit(X_train, y_train)
y_pred_clf = modelo_tree_clf.predict(X_test)
print("\n Árvore de Classificação:\n", classification_report(y_test,_
 →y_pred_clf))
plt.figure(figsize=(24, 14))
plot_tree(modelo_tree_clf, feature_names=X_class.columns,__
 ⇔class_names=['Barata', 'Cara'], filled=True)
plt.title('Árvore de Decisão - Classificação')
plt.show()
```

Estatísticas:

	Média	Mediana	Desvio Padrão	\
Avg. Area Income	6.858311e+04	6.880429e+04	10657.991214	
Avg. Area House Age	5.977222e+00	5.970429e+00	0.991456	
Avg. Area Number of Rooms	6.987792e+00	7.002902e+00	1.005833	
Avg. Area Number of Bedrooms	3.981330e+00	4.050000e+00	1.234137	
Area Population	3.616352e+04	3.619941e+04	9925.650114	
Price	1.232073e+06	1.232669e+06	353117.626584	
Classe	5.006000e-01	1.000000e+00	0.500050	
	Variância	Mínimo	Máximo \	
Avg. Area Income	1.135928e+08	17796.631190	1.077017e+05	
Avg. Area House Age	9.829854e-01	2.644304	9.519088e+00	
Avg. Area Number of Rooms	1.011700e+00	3.236194	1.075959e+01	
Avg. Area Number of Bedrooms	1.523095e+00	2.000000	6.500000e+00	
Area Population	9.851853e+07	172.610686	6.962171e+04	
Price	1.246921e+11	15938.657920	2.469066e+06	
Classe	2.500496e-01	0.000000	1.000000e+00	
	Amplitude	Assimetria (Curtose	
Avg. Area Income	8.990512e+04	-0.033710 0	. 044329	
Avg. Area House Age	6.874784e+00	-0.007212 -0	. 084554	
Avg. Area Number of Rooms	7.523394e+00	-0.040984 -0	.075777	

Avg. Area Number of Bedrooms Area Population Price Classe	6.944910e+04 0.050634	-0.702064 -0.007926 -0.056063 -1.999994
Correlação de Pearson:		
Avg. Area Income Avg. Area House Age Avg. Area Number of Rooms Avg. Area Number of Bedrooms Area Population Price Classe	Avg. Area Income Avg. A 1.000000 -0.002007 -0.011032 0.019788 -0.016234 0.639734 0.505707	Area House Age \ -0.002007 1.000000 -0.009428 0.006149 -0.018743 0.452543 0.365857
Avg. Area Income Avg. Area House Age Avg. Area Number of Rooms Avg. Area Number of Bedrooms Area Population Price Classe	Avg. Area Number of Rooms -0.011033 -0.009423 1.000000 0.462699 0.002040 0.335664 0.262756	2 3 0 5 0 4
Avg. Area Income Avg. Area House Age Avg. Area Number of Rooms Avg. Area Number of Bedrooms Area Population Price Classe	0.465 1.000 -0.025	9788 -0.016234 6149 -0.018743 2695 0.002040 0000 -0.022168 2168 1.000000 1071 0.408556
Avg. Area Income Avg. Area House Age Avg. Area Number of Rooms Avg. Area Number of Bedrooms Area Population Price Classe	Price Classe 0.639734 0.505707 0.452543 0.365857 0.335664 0.262750 0.171071 0.129665 0.408556 0.328662 1.000000 0.799461 0.799461 1.000000	

Regressão Linear \rightarrow R²: 0.16691790652769944

Regressão Polinomial \rightarrow R²: 0.1714864341215081

Ridge \rightarrow MSE: 10089716571.16, R²: 0.9180 Lasso \rightarrow MSE: 10089010509.60, R²: 0.9180 ElasticNet \rightarrow MSE: 10323866841.71, R²: 0.9161

Árvore de Regressão \rightarrow R²: 0.6546816913096776

Árvore de Decisão - Regressão

Árvore de Classificação:

	precision	recall	f1-score	support
0	0.79	0.75	0.77	478
1	0.78	0.82	0.80	522
accuracy	0.70	0.70	0.79	1000
macro avg	0.79	0.79	0.79	1000
weighted avg	0.79	0.79	0.79	1000

Árvore de Decisão - Classificação


```
Importação de bibliotecas
     import pandas as pd # manipulação de dados tabulares
     import numpy as np # operações matemáticas e estatísticas
     import matplotlib.pyplot as plt # criação de gráficos
     import seaborn as sns # gráficos estatísticos avançados
     from scipy.stats import skew, kurtosis # medidas de forma (assimetria e_1
      ⇔curtose)
     # Modelos de regressão e regularização
     from sklearn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet
     from sklearn.preprocessing import PolynomialFeatures # transforma dados parau
      ⇔regressão polinomial
     # Árvores de decisão
     from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier, u
      →plot_tree
     # Utilitários de modelagem
     from sklearn.model_selection import train_test_split, learning_curve
     from sklearn.metrics import mean_squared_error, r2_score, u
      ⇒classification_report, confusion_matrix
```

```
# Carregamento e seleção de dados
# -----
\#df = pd.read\_csv('nome\_do\_arquivo.csv') \# substitua pelo nome real do seu_{\sqcup}
 →arquivo CSV
df_num = df.select_dtypes(include='number') # selectiona apenas colunas_
 →numéricas
# Estatísticas descritivas e de forma
estatisticas = pd.DataFrame({
   'Média': df num.mean(), # média de cada coluna
   'Mediana': df_num.median(), # mediana
   'Desvio Padrão': df_num.std(), # dispersão dos dados
   'Variância': df_num.var(), # variância
   'Minimo': df_num.min(), # menor valor
   'Máximo': df_num.max(), # maior valor
   'Amplitude': df_num.max() - df_num.min(), # diferença entre máximo e mínimo
   'Assimetria': df_num.apply(skew), # inclinação da distribuição
   'Curtose': df_num.apply(kurtosis) # achatamento da distribuição
print(" Estatísticas:\n", estatisticas)
# Correlação de Pearson
correlação = df num.corr() # calcula correlação entre variáveis numéricas
print("\n Correlação de Pearson:\n", correlacao)
# Heatmap para visualizar correlações
plt.figure(figsize=(12, 8))
sns.heatmap(correlacao, annot=True, cmap='coolwarm')
plt.title('Mapa de Correlação de Pearson')
plt.show()
# -----
# Regressão Linear Simples
X_lin = df[['Area Population']] # variável independente
y = df['Price'] # variável dependente
modelo_lin = LinearRegression() # cria o modelo
modelo_lin.fit(X_lin, y) # treina o modelo
y_pred_lin = modelo_lin.predict(X_lin) # faz previsões
print("\n Regressão Linear → R2:", r2_score(y, y_pred_lin)) # avalia o modelo
# Regressão Polinomial + Curvas de Aprendizado
```

```
poly = PolynomialFeatures(degree=2) # transforma para grau 2
X_poly = poly.fit_transform(X_lin) # aplica transformação
X_train, X_test, y_train, y_test = train_test_split(X_poly, y, test_size=0.2,_
→random_state=42)
modelo poly = LinearRegression()
modelo_poly.fit(X_train, y_train)
y_pred_poly = modelo_poly.predict(X_test)
print("\n Regressão Polinomial → R2:", r2_score(y_test, y_pred_poly))
# Curvas de aprendizado
train_sizes, train_scores, test_scores = learning_curve(
   modelo poly, X poly, y, cv=5, scoring='neg mean squared error',
   train_sizes=np.linspace(0.1, 1.0, 10)
train_scores_mean = -np.mean(train_scores, axis=1)
test_scores_mean = -np.mean(test_scores, axis=1)
# Gráfico das curvas
plt.figure(figsize=(8, 5))
plt.plot(train_sizes, train_scores_mean, 'o-', label='Erro de treino')
plt.plot(train_sizes, test_scores_mean, 'o-', label='Erro de teste')
plt.title('Curvas de Aprendizado - Regressão Polinomial')
plt.xlabel('Tamanho do treino')
plt.ylabel('Erro quadrático médio')
plt.legend()
plt.grid(True)
plt.show()
# Modelos Regularizados (Ridge, Lasso, ElasticNet)
X_multi = df[['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of ∪
 →Rooms',
             'Avg. Area Number of Bedrooms', 'Area Population']]
v = df['Price']
X_train, X_test, y_train, y_test = train_test_split(X_multi, y, test_size=0.2,
 →random_state=42)
# Dicionário com os modelos
modelos = {
   'Ridge': Ridge(alpha=1.0),
   'Lasso': Lasso(alpha=0.1),
   'ElasticNet': ElasticNet(alpha=0.1, l1_ratio=0.5)
}
# Treinamento e avaliação
```

```
for nome, modelo in modelos.items():
   modelo.fit(X_train, y_train)
   y_pred = modelo.predict(X_test)
   print(f"{nome} → MSE: {mean_squared_error(y_test, y_pred):.2f}, R<sup>2</sup>:⊔

√{r2_score(y_test, y_pred):.4f}")

# -----
# Árvore de Decisão - Regressão
# -----
modelo_tree reg = DecisionTreeRegressor(max_depth=5, min_samples_split=10,__

→min_samples_leaf=5, random_state=42)
modelo tree reg.fit(X train, y train)
y_pred_tree = modelo_tree_reg.predict(X_test)
print("\n Árvore de Regressão → R<sup>2</sup>:", r2_score(y_test, y_pred_tree))
# Visualização da árvore
plt.figure(figsize=(24, 14))
plot_tree(modelo_tree_reg, feature_names=X_multi.columns, filled=True)
plt.title('Árvore de Decisão - Regressão')
plt.show()
# Árvore de Decisão - Classificação
# Cria uma variável binária: 1 se Price > média, O caso contrário
df['Classe'] = (df['Price'] > df['Price'].mean()).astype(int)
X class = X multi
y_class = df['Classe']
X_train, X_test, y_train, y_test = train_test_split(X_class, y_class, u

→test_size=0.2, random_state=42)
# Treina o classificador
modelo_tree_clf = DecisionTreeClassifier(max_depth=4, random_state=42)
modelo_tree_clf.fit(X_train, y_train)
y_pred_clf = modelo_tree_clf.predict(X_test)
# Avaliação do modelo de classificação
print("\n Árvore de Classificação:\n", classification_report(y_test,_
 →y_pred_clf))
# Visualização da árvore de classificação
plt.figure(figsize=(24, 14))
plot_tree(modelo_tree_clf, feature_names=X_class.columns,__
 plt.title('Árvore de Decisão - Classificação')
plt.show()
```

Estatísticas:

Estatisticas:			
	Média	Mediana	Desvio Padrão \
Avg. Area Income	6.858311e+04	6.880429e+04	10657.991214
Avg. Area House Age	5.977222e+00	5.970429e+00	0.991456
Avg. Area Number of Rooms	6.987792e+00	7.002902e+00	1.005833
Avg. Area Number of Bedrooms	3.981330e+00	4.050000e+00	1.234137
Area Population	3.616352e+04	3.619941e+04	9925.650114
Price	1.232073e+06	1.232669e+06	
Classe	5.006000e-01	1.000000e+00	0.500050
0_000	0.0000000		
	Variância	Mínimo	Máximo \
Avg. Area Income	1.135928e+08	17796.631190	
Avg. Area House Age	9.829854e-01	2.644304	
Avg. Area Number of Rooms	1.011700e+00		1.075959e+01
Avg. Area Number of Bedrooms			6.500000e+00
Area Population	9.851853e+07		6.962171e+04
Price	1.246921e+11	15938.657920	
Classe	2.500496e-01		1.000000e+00
Classe	2.500490e-01	0.000000	1.00000000
	Amnlitudo	Assimetria (Curtogo
Arra Arras Trasma	Amplitude		
Avg. Area Income	8.990512e+04	-0.033710 0	
Avg. Area House Age	6.874784e+00	-0.007212 -0	
Avg. Area Number of Rooms	7.523394e+00	-0.040984 -0	
Avg. Area Number of Bedrooms		0.376128 -0	
Area Population	6.944910e+04	0.050634 -0	
Price	2.453127e+06	-0.002717 -0	
Classe	1.000000e+00	-0.002400 -1	.999994
Correlação de Pearson:			
	•	come Avg. Area	~
Avg. Area Income	1.0000		-0.002007
Avg. Area House Age	-0.0020	007	1.000000
Avg. Area Number of Rooms	-0.0110	032	-0.009428
Avg. Area Number of Bedrooms	0.0197	788	0.006149
Area Population	-0.0162	234	-0.018743
Price	0.6397	734	0.452543
Classe	0.5057	707	0.365857
	Avg. Area Numb	oer of Rooms '	\
Avg. Area Income		-0.011032	
Avg. Area House Age		-0.009428	
Avg. Area Number of Rooms		1.000000	
Avg. Area Number of Bedrooms		0.462695	
Area Population		0.002040	
Price		0.335664	
Classe		0.262750	

Avg. Area Number of Bedrooms $\,$ Area Population $\,$ $\,$ $\,$

Avg. Area Income	0.019788	-0.016234
Avg. Area House Age	0.006149	-0.018743
Avg. Area Number of Rooms	0.462695	0.002040
Avg. Area Number of Bedrooms	1.000000	-0.022168
Area Population	-0.022168	1.000000
Price	0.171071	0.408556
Classe	0.129665	0.328662

					Price	Classe
Avg.	Area	Income			0.639734	0.505707
Avg.	Area	House A	lge		0.452543	0.365857
Avg.	Area	Number	of	Rooms	0.335664	0.262750
Avg.	Area	Number	of	${\tt Bedrooms}$	0.171071	0.129665
Area	Popul	Lation			0.408556	0.328662
Price	Э				1.000000	0.799461
Class	se				0.799461	1.000000

Regressão Linear \rightarrow R²: 0.16691790652769944

Regressão Polinomial \rightarrow R²: 0.1714864341215081

Ridge \rightarrow MSE: 10089716571.16, R²: 0.9180 Lasso \rightarrow MSE: 10089010509.60, R²: 0.9180 ElasticNet \rightarrow MSE: 10323866841.71, R²: 0.9161

Árvore de Regressão \rightarrow R²: 0.6546816913096776

Árvore de Decisão - Regressão

Árvore de Classificação:

	precision	recall	f1-score	support
0	0.79	0.75	0.77	478
1	0.78	0.82	0.80	522
accuracy			0.79	1000
macro avg	0.79	0.79	0.79	1000
weighted avg	0.79	0.79	0.79	1000

