Errata till boken Räkna med variation

Fel i svar och lösningar

Uppgift	Står	Ska stå
2.4c) lsn	$P(F1 \cup F2) - 2P(F1 \cap F2)$	$P(F1 \cup F2) - P(F1 \cap F2)$
3.48b) lsn	$\frac{7}{10}$	$\frac{3}{10}$
4.40c) svar	101 st	16 st
4.40c) lsn	$P\left(\overline{X} < 1 - 1.65 \cdot \frac{0.4}{\sqrt{n}} \middle \mu = 0.7\right) = P\left(\overline{X} < 0.751 \middle \overline{X} \in N\left(0.7, \frac{0.4}{\sqrt{n}}\right)\right) = \Phi\left((0.751 - 0.7) \middle/ \left(\frac{0.4}{\sqrt{n}}\right)\right).$ Då detta uttryck ska vara 0.90 innebär det att $(0.751 - 0.7) \middle/ \left(\frac{0.4}{\sqrt{n}}\right) = \lambda_{0.10}$ vilket ger $n = \left(\lambda_{0.10} \cdot \frac{0.4}{(0.751 - 0.7)}\right)^2 = 100.8$. Man måste ha 101 patienter.	$P\left(\overline{X} < 1 - 1.65 \cdot \frac{0.4}{\sqrt{n}} \middle \mu = 0.7\right) = P\left(\frac{\overline{X} - 0.7}{0.4/\sqrt{n}} < \frac{1 - 0.7}{0.4/\sqrt{n}} - 1.65\right) = \Phi\left(\frac{1 - 0.7}{0.4} \cdot \sqrt{n} - 1.65\right).$ Då detta uttryck ska vara 0.90 innebär det att $\sqrt{n}(1 - 0.7)/0.4 - 1.65 = \lambda_{0.10}$ vilket ger $n = ((\lambda_{0.10} + 1.65) \cdot 0.4/(1 - 0.7))^2 = 15.28$. Man måste ha 16 patienter.
5.33 lsn		parenteser saknas kring intervall
5.44c)	$I_{\mu_x - \mu_y} = (-0.1 \pm 2.0484 \cdot 0.0376) = (-1.1770, -0.0230)$	$I_{\mu_x - \mu_y} = (+0.1 \pm 2.0484 \cdot 0.0376) = (0.0230, 0.1770)$
5.64a) svar	Alternativt $t = 2.75 > \lambda_{0.01}$. H_0 förkastas på nivå 0.01.	Normalapproximation kan inte användas eftersom $150 \cdot 0.06 \cdot (1 - 0.06) = 8.46 < 10$.
5.64a) lsn	Lösningsalternativ II:	Normalapproximation kan inte användas eftersom $150 \cdot 0.06 \cdot (1 - 0.06) = 8.46 < 10$.
6.1g)	och ett 95% kalibreringsintervall är $I_{x_o} = x_0^* \pm t_{0.025}(4) \cdot d(x_0^*)$ = (38.99, 39.24)	och ett 99% kalibreringsintervall är $I_{x_o} = x_0^* \pm t_{0.005}(4) \cdot d(x_0^*)$ $= (38.91, 39.32)$
6.13	$(98 \cdot 10^3, 460 \cdot 10^3)$	$(99.49 \cdot 10^3, 464.6 \cdot 10^3)$
6.27 uppg	$\beta_0^* = 209$	$\beta_0^* = 206$

6.27d)	$I_{y(45)} = \left(-\infty, 203\right)$	$I_{y(45)} = (-\infty, 199)$
9.17	perioden 1979 till 2008	perioden 1980 till 2008

Språkliga missar

UPPGIFT	Står	Ska stå
3.35	Diskutera:	c) Diskutera:
4.27a)	kvicksilverhalten	dioxinhalten
9.13b)	fler än en	mer än