অধায় ৪: বাসায়নিক পরিবর্তন

জানমলক প্রশোতর:

প্রশ্ন-১. প্রভাবক কী?

উত্তরঃ যে পদার্থ অল্প পরিমাণে বিক্রিয়কের সংস্পর্শে উপস্থিত থেকে রাসায়নিক বিক্রিয়ার গতি বৃদ্ধি বাহ্রাস করে এবং বিক্রিয়া শেষে নিজে গঠনে ও ভরে অপরিবর্তিত থাকে তাকে প্রভাবক বলে।

প্রশ্ন-২. আবিষ্ট প্রভাবক কী?

উত্তরঃ যে রাসায়নিক বিক্রিয়ায় একটি বিক্রিয়কের প্রভাবে যদি অপর একটি বিক্রিয়ক প্রভাবিত হয় তবে প্রথম প্রভাবকটিকে আবিষ্ট প্রভাবক বলে।

প্রশ্ন-৩. প্রভাবক বিষ কী?

উত্তর: যে সমস্ত পদার্থ প্রভাবকের প্রভাবন ক্ষমতা ধ্বংস করে দেয় তাদেরকে প্রভাবক বিষ বলে।

প্রশ্ন-৪. তাপহারী বিক্রিয়া কাকে বলে?

উত্তরঃ যে রাসায়নিক পরিবর্তনের ফলে তাপশক্তির শোষণ এবং বিক্রিয়া অঞ্চলের তাপমাত্রাহ্রাস পায় তাকে তাপহারী বিক্রিয়া বলে।

প্রশ্ন-৫. অত্যানুকূল তাপমাত্রা কী?

উত্তরঃ যে সর্বনিমু তাপমাত্রায় তাপোৎপাদী শিল্প প্রক্রিয়ায় যথোপযুক্ত কম সময়ে আশানুরুপ বা লাভজনক উৎপাদন করা সম্ভব সেই তাপমাত্রাকে অত্যানুঞ্ছল তাপমাতা বলে।

প্রশ্ন-৬. বন্ধন শক্তি কী?

উত্তরঃ কোন যৌগে উপস্থিত সকল নির্দিষ্ট বন্ধনের বন্ধন বিয়োজন শক্তির গড় মানকে ঐ নির্দিষ্ট বন্ধনটির বন্ধনশক্তি বলে। প্রশ্ন-৭. ল্যাভয়সিয়ের সূত্রটি কী?

উত্তর: কোন বিক্রিয়া সম্মুখ দিকে ঘটলে যে এনথালপি পাওয়া যায় বিক্রিয়াটি বিপরীত দিকে ঘটলেও একই পরিমাণ বিপরীত চিহ্ন বিশিষ্ট এনথালপি পাওয়া যাবে।

প্রশ্ন-৮. হেসের সূত্রটি কী?

উত্তর: যদি আদি ও শেষ অবস্থা স্থির থাকে তবে কোন রাসায়নিক বিক্রিয়া দুই বা ততধীক উপায়ো যেকোনো ধাপে সংঘটিত হতে পারে, তবে যে পথই অবলম্বর করা হোকনা কেন, মোট বিক্রিয়া এনথালপি বা বিক্রিয়া তাপ সমান বা একই থাকবে। প্রশ্ন-৯. পর্যাপ্ত তাপ কী?

উত্তর: পর্যাপ্ত পরিমাণ দ্রাবকে এক মোল দ্রব দ্রবীভূত করলে যে তাপ শোষিত বা উদগীরিত হয়, তাকে ঐ দ্রব্যের দ্রবণ তাপ বলে।

প্রশ্ন-১০. ধনাতাক প্রভাবক কী?

উত্তরঃ যে প্রভাবক কোন রাসায়নিক বিক্রিয়ার স্বাভাবিক গতিতে বৃদ্ধি করে তাকে ধনাত্মক প্রভাবক বলে।

আকাচন অংশঃ-জ্ঞানমূলক প্রশ্ন

- বিক্রিয়ার অর্ধায়ৢ কী?
- ২. মোলার সাম্ধ্রবক কাকে বলে?

- ৩. একমুখী বিক্রিয়া কাকে বলে?
- 8. এসিড কী?
- ে ক্ষারক কী?
- ৬. অনুবন্ধী ক্ষারক কী?
- ৭. মনপ্রোটিক ক্ষারক কী?
- ৮. হেসের ধ্রুব তাপ মসষ্টিকরণ সূত্র বিবৃত কর।
- ৯. ল্যাটিস এনথালপি কী?
- ১০. সমআয়ন কী?
- ১১. অবস্থা পরিবর্তন তাপ কাকে বলে?
- ১২. লবণ দ্রবণের তাপ নিরপেক্ষতা কী?
- ১৩. রাসায়নিক পরিবর্তন কী?
- ১৪. শক্তি পৰ্বত কী?

অনুধাবনমূলক প্রশ্লোত্তর

প্রশ্ন-১. তীব্র অমু বা ক্ষারের ক্ষেত্রে কোন সাম্যাবস্থার সৃষ্টি হয় না কেন?

উত্তর: অম্ল-ক্ষারক প্রশমন বিক্রিয়ার ক্ষেত্রে ণেকন বিশেষ অবস্থায় যদি বিক্রিয়ার সম্মুখবর্তী ও পশ্চাৎবর্তী গতি সমান হয়, তখন অম্ল ক্ষারক সাম্যাবস্থা সৃষ্টি হয়। তীব্র অম্ল ও ক্ষারক যে কোন ঘনমাত্রায় দ্রবণে অ-আয়নিত অম্ল বা ক্ষারকের পরিমাণ প্রায় শূন্য হয়। অর্থাৎ পশ্চাৎবর্তী বিক্রিয়ার গতি প্রায় শূন্য হয়। ফলে এক্ষেত্রে সাম্যাবস্থার সৃষ্টি হয় না।

প্রশ্ন-২. বিক্রিয়া সংঘটনের জন্য প্রয়োজন উপযুক্ত পরিবেশ- ব্যাখ্যা কর।

উত্তর: বিক্রিয়া সংঘটনে উপযুক্ত পরিবেশ আবশ্যক। উপযুক্ত পরিবেশ না পেলে বিক্রিয়া সংঘটিত হয় না। বিক্রিয়া সংঘটনে পরিবেশ তৈরিতে তাপ,চাপ, বিদ্যুৎ প্রবাহ প্রভৃতি ব্যবহার করা হয়। যেমন: অক্সিজেন ও হাইড্রোজেনকে কাছাকাছি রেখে অনেক বছর অতিবাহিত করলেও পানি উৎপন্ন হবে না। তবে বিদ্যুৎ প্রবাহ চালনা করলে সাথে সাথে বিক্রিয়া সংঘটিত হয়। এ থেকে বোঝা যায় যে, বিক্রিয়া সংঘটনে উপযুক্ত পরিবেশ সৃষ্টি করা একান্তই আবশ্যক।

প্রশ্ন-৩. $PCI_5 \Leftrightarrow PCI_3 + CI_2$; বিক্রিয়াটিতে চাপের প্রভাব ব্যাখ্যা কর।

উত্তরः $PCI_5 \Leftrightarrow PCI_3 + CI_2$; বিক্রিয়াটিতে সম্মুখ দিকে অসংখ্য অণু বা মোল সংখ্যা বৃদ্ধি পায় এবং পশ্চাত দিকে মোল সংখ্যা হ্রাস পায়। কাজেই এই বিক্রিয়ার ওপর চাপ বৃদ্ধি করলে কিছু PCI_3 কিছু CI_2 এর সাথে বিক্রিয়া করে PCI_5 এর পরিমাণ বৃদ্ধি করে এবং অণুর সংখ্যা কমাবে। ফলে চাপ বৃদ্ধি করলে PCI_5 এর বিয়োজন মাত্রা হ্রাস পাবে। বিপরীত ক্রমে, চাপ হ্রাস করলে PCI_5 এর বিয়োজন মাত্রা বৃদ্ধি পাবে।

প্রশ্ন-৪. সাম্যাবস্থার উপর ঘনমাত্রার প্রভাব ব্যাখ্যা কর।

উত্তর: ঘনমাত্রাহ্রাস অথবা বৃদ্ধি সাম্যাবস্থাকে প্রভাবিত করে। সাম্যমিশ্রণে কোন বিক্রিয়ক যোগ করলে বা বিক্রিয়া স্থল হতে কোন উৎপাদ সরিয়ে নিলে বিক্রিয়কের ঘনমাত্র বৃদ্ধি পায় ফলে সাম্যাবস্থাটি তখন ডানদিকে সরে যাবে। অপরদিকে সাম্য মিশ্রণে উৎপাদ যোগ করলে বা বিক্রিয়াস্থল হতে কোন বিক্রিয়ক সরিয়ে নিলে উৎপাদের ঘনমাত্রা বৃদ্ধি পাবে ফলে সাম্যাবস্থা বাম দিকে সরে আাসে এবং ঘনমাত্রার পরিবর্তনকে প্রশমিত করে।

প্রশ্ন-৫. শক্তিশালী এসিডের অনুবন্ধী ক্ষার এবং দুর্বল এসিডের অনুবন্ধী ক্ষার শক্তিশালী হয় কেন?

উত্তর: হাইড্রসিড যেমন: HF,HCI,HBr,HI প্রভৃতি এসিডের তীব্রতা এসিড সমূহের ঋণাত্মক আয়নের আকারের উপর নির্ভরশীল। আয়নের আকার যত বাড়বে তাদের অম্লুত্ব তত বাড়াবে এবং ক্ষারকত্ব তত হ্রাস পাবে। সে হিসেবে ক্ষারকত্বের নিম্নক্রম হ্রাস হচ্ছে—

 $F^->CI^->Br^->I^-$ এবং অস্লুত্বের নিমুক্রমহাস হচ্ছে HI>HBr>HCI>HF। অতএব দেখা যাচ্ছে F^- হচ্ছে উপরের ক্রমে শক্তিশালী ক্ষারক তাই তার অনুবন্ধী এসিড HF একটি দুর্বল এসিড এবং I হচ্ছে দুর্বল ক্ষারক তাই তার অনুবন্ধী এসিড HI হচ্ছে শক্তিশালী এসিড।

প্র্যাকটিস অংশ:-অনুধাৰনমূলক প্রস্থা:

- ১. $H_2 + 1_2 = 2HI$ বিক্রিয়াটির উপর চাপের কোন প্রভাব নেই কেন?
- ২. বন্ধন শক্তির সাথে বিক্রিয়া এনথালপির সম্পর্ক কী?
- ৩. Na₂CO₃ এর জলীয় দ্রবণ ক্ষারীয় কেন?
- 8. CuSO4 এর জলীয় দ্রবণ অম্লীয় কেন?
- ৫. N₂ ও H₂ থেকে NH₃ থেকে উৎপাদন অধিক চাপে ত্ররান্বিত হয় কেন?
- ৬. সাম্যাবস্থার চলমান প্রকৃতি কেন?
- ৭. H_2SO_4 তীব্র হলেও $CH_3\ COOH$ মৃদু এসিড হওয়ার কারণ ব্যাখ্যা কর।
- ৮. H2SO4 ও HCIO4 এর মধ্যে কোনটি তীব্র এসিড?
- ৯. NH4OH ও HCIO4 এর মধ্যে কোনটি শক্তিশালী ক্ষার? ব্যাখ্যা কর।
- ১০. বিক্রিয়ার হার বিক্রিয়কের ঘন মাত্রার উপর নির্ভর করে কেন?

১নং সজনশীল প্রশ্নোতর:

একজন ছাত্র লা-শাতেলিয়া নীতি বুঝার জন্য বিভিন্ন তাপমাত্রা ও চাপের নিম্নের বিক্রিয়াটি সম্পন্ন করল এবং সর্বোচ্চ পরিমাণ শিল্পোৎপাদনের জন্যে কয়েকটি শর্ত নির্ধারণ করলো।

$$A_2 + 3B_2 \rightarrow 2AB_3; \Delta H = -92kJ/mol$$

- ক. মোলারিটি কী?
- খ. সাম্ধ্রেবক এর মান শূন্য বা অসীম হতে পারে কী?
- গ. উদ্দীপকের পরিক্ষার সাম্যাবস্থার উপর চাপের প্রভাব ব্যাখ্যা কর।
- ঘ. উদ্দীপকের পরিক্ষাটিতে তাপমাত্রা কমিয়ে বা বাড়িয়ে করলে কী সমস্যা হবে।

উত্তরঃ (ক

নির্দিষ্ট তাপমাত্রায় প্রতি লিটার দ্রবণে দ্রবীভূত দ্রবের গ্রাম-আণবিক ভর বা মোল সংখ্যাকে ঐ দ্রবণের মোলারিটি বা মোলার ঘনমাত্রা বলে।

উত্তরঃ (খ)

সাম্প্রেবকের মান শূন্য বা অসীম হতে পারে না।

সম্যাবস্থায় বিক্রিয়ক এবং উৎপাদ উভয়ই থাকে। কোন বিক্রিয়া সাম্যবস্থায় বিক্রিয়ক এবং উৎপাদ উভয়ই থাকে। কোন বিক্রিয়া সম্পন্ন হলে বা বিক্রিয়া সংগঠিত না হলেই কেবল সাম্প্রেবকের মান যথাক্রমে অসীম বা শূন্য হয়। তাই সাম্প্রেবকের মান ক্ষুদ্রাতিক্ষুদ্র বা অসীম হতে পারে কিন্তু শূন্য বা অসীম হতে পারে না।

উত্তরঃ (গ

উদ্দীপকের বিক্রিয়া অনুযায়ী চাপ মোল বিক্রিয়ক পদার্থ থেকে দুই মোল উৎপাদ পদার্থ তৈরি হয়। অর্থাৎ বিক্রিয়ক অপেক্ষা উৎপাদের মোল সংখ্যা কম। তাই বিক্রিয়ার ফলে গ্যাসের মোল সংখ্যা কমতে থাকে অর্থাৎ মোলার আয়তন কমে যায়; ফলে একই আয়তনে গ্যাসের চাপ কমে। তাই সাম্যাবস্থা অর্জিত হওয়ার পর চাপ চাড়ালে বিক্রিয়া সামনের দিকে অগ্রসর হয়ে উৎপাদ AB্ব এর পরিমাণ বাড়ায়। কেননা তার ফলে সিস্টেম গ্যাসীয় মোল সংখ্যা কমবে এবং সে সময় চাপ কমবে, যা চাপ বাড়ানোকে প্রশমিত করে। আবার চাপ কমালে বিক্রিয়াটি পিছনদিকে সরে যাবে অর্থাৎ কিছু AB_3 বিয়োজিত হয়ে A_2 ও B_2 উৎপন্ন করবে।

উত্তরঃ (ঘ)

ঘ. উদ্দীপকের পরীক্ষার বিক্রিয়া একটি তাপোৎপাদী বিক্রিয়া অর্থাৎ এক্ষেত্রে তাপ নির্গত হয়। তাই পরীক্ষাটি তাপমাত্রা বাড়িয়ে করলে বিক্রিয়াটি পশ্চাৎদিকে ঘটবে। অর্থাৎ কিছু উৎপাদ (AB_3) বিয়োজিত হয়ে $A_2 \, {}^{\circ} B_2$ উৎপান্ন করবে। অর্থাৎ তাপমাত্রা বাড়ালে AB_3 উৎপাদনের হার ্রাস পাবে।

অপরদিকে, পরীক্ষাটি তাপমাত্রা কমিয়ে করলে সাম্যের অবস্থান ডান দিকে অধিক অগ্রসর হয়ে উৎপাদ (AB_3) এর পরিমাণ বৃদ্ধি করবে। আবার তাপমাত্রা বেশি কমালে AB_3 এর উৎপাদনের হার কমে যাবে।

২নং সজনশীল প্রশ্লোতর

$$AY_{5(g)} \Leftrightarrow AY_{3(g)} + Y_{2(g)} -$$

- ক. সমসত্ব সাম্যবস্থা কী?
- খ. $Al_2(SO_4)_3$ এর জলীয় দ্রবণ অম্লধর্মী ব্যাখ্যা কর।
- গ. উদ্দীপকের উল্লেখিত বিক্রিয়ায় লা-শ্যাটেলিয়ার নীতি অনুসাযায়ী উপাদানসমূহের ঘনমাত্রা পরিবর্তন ঘটানো হলে কী পরিবর্তন ঘটবে?
- ঘ. উদ্দীপকের বিক্রিয়ার $\,K_{_{\scriptscriptstyle p}}$ এর রাশিমালা প্রতিপাদন কর।

উত্তরঃ (ক

যে সাম্যাবস্থায় কোন উভমুখী বিক্রিয়ার সবগুলো বিক্রিয়ক এবং উৎপাদ একই ভৌত অবস্থায় থাকে তাকে সমসত্ব সামম্যবস্থা বলে।

উত্তরঃ (খ

 $Al_2(SO_4)_3$ এর জলীয় দ্রবণ অস্লধর্মী। জলীয় দ্রবণে $Al_2(SO_4)_3$ বিয়োজিত হয়ে Al^{3+} এবং SO_4^{2-} উৎপন্ন করে। এ দিকে পানি বিয়োজিত হয়ে H^+,OH^- আয়নে পরিণত হয়।

$$Al_2(SO_4)_3$$
 (জলীয়) $\rightarrow 2Al^{3+} + 3SO_4^{2-}$

$$6H_2O \rightarrow 6H^+ + 60H^-$$

$$Al_2(SO_4)_3 + 6H_2O \rightarrow 2Al(OH)_3 + 3H_2SO_4$$

উৎপন্ন $H_{\gamma}SO_4$ তীব্র অ্যাসিড। সুতরাং $Al_{\gamma}(SO_4)_3$ এর জলীয় দ্রবণ অম্লধর্মী।

উত্তরঃ (গ

যদি কোন বিক্রিয়ার সাম্যাসস্থায় উপস্থিত বস্তুসমুহের একটির ঘনমাত্রা পরিবর্তন করা হয় তবে লা-শাতেলিয়ে নীতি অনুযায়ী সাম্যাবস্থা এমনভাবে বদলাবে যে সে ঘনমাত্রা পরিবর্তনের প্রভাব প্রশমিত হয়। উদ্দীপকের বিক্রিয়াটি হচ্ছে-

$$AY_{5(g)} \Leftrightarrow AY_{3(g)} + Y_{2(g)} -$$
 তাপ

বিক্রিয়ায় সাম্যাবস্থা অর্জিত হওয়ার পর বিক্রিয়ক AY_5 এর ঘনমাত্রা বাড়ালে বিক্রিয়া সামনের দিকে অগ্রসর হয়ে বিক্রিয়কের ঘনমাত্রা কিছুটা হ্রাস করবে। অপর দিকে উৎপাদ AY_3 ও Y_2 এর ঘনমাত্রা বাড়ালে বিক্রিয়া পিছনের দিকে অগ্রসর হবে। অর্থাৎ কিছু উৎপাদ বিক্রিয়া করে AY_5 উৎপন্ন করবে। ফলে AY_3 ও Y_2 এর ঘনমাত্রা কমবে।

উত্তরঃ (ক

উদ্দীপকের বিক্রিয়া : $AY_{5(g)} \Longleftrightarrow AY_{3(g)} + Y_{2(g)}$

ধরা যাক, $1 \bmod AY_5$ কে তাপ দেওয়ার ফলে সাম্যাবস্থা lpha অংশ বিয়েজিত হয়ে $lpha \bmod AY_3$ ও $lpha \bmod AY_2$ উৎপন্ন হয়েছেঅ সুতরাং AY_5 এর অবিয়োজিত মোল সংখ্যা =(1 - lpha) বিক্রিয়া V লিটার পাত্রে নিষ্পন্ন করা হয়।

$$AY_{5(g)} \Leftrightarrow AY_{3(g)} + Y_{2(g)}$$

প্রাথমিক অবস্থা : $1 \operatorname{mol} \quad 0 \operatorname{mol} \quad 0 \operatorname{mol}$ সাম্যাবস্থা : $(1 - \alpha) \operatorname{mol} \quad \alpha \operatorname{mol} \quad \alpha \operatorname{mol}$ বিক্রিয়ায় উপস্থিত মোট মোলসংখ্যা = $1 - \alpha + \alpha + \alpha$

$$= 1 + \alpha$$

মোট চাপ P হলে AY_5 এর আংশিক চাপ,

 $P_{AY_5} = AY_5$ এর মোল ভগ্নাংশ imes মোট চাপ $= rac{1-lpha}{1+lpha} imes P$

অনুরুপভাবে,

$$P_{AY^3} = \frac{\alpha}{1+\alpha}.P$$

$$P_{Y2} = \frac{\alpha}{1+\alpha}.P$$

$$\therefore K_{P} = \frac{P_{AY_{3}} \times P_{y_{2}}}{P_{AY_{5}}} = \frac{\frac{\alpha}{1+\alpha} . P \times \frac{\alpha}{1+\alpha} . P}{\frac{1-\alpha}{1+\alpha} . p}$$

$$= \frac{\alpha^2}{(1+\alpha)^2} \times \frac{1+\alpha}{1-\alpha}.P$$

$$=\frac{\alpha^2 \times P}{1-\alpha^2}$$

$$\therefore K_P = \frac{\alpha^2 \times P}{1 - \alpha^2}$$

৩নং সজনশীল প্রস্লোত্তর

 $Fig-0.1\ M\ NaOH$ ক্ষার দ্বারা HCI এর প্রশমন।

- ক. সাম্ধ্রেক K_p
- খ. দেখাও যে, pH + pOH = 14
- গ. প্রদত্ত এসিড ক্ষারক টাইট্রেশন ফেনলফথ্যালিন উপযুক্ত নির্দেশক, মিথাইল অরেঞ্জ নয় কেন?
- ঘ. HCI এসিডের পরিবর্তে CH_3COOH ব্যবহার করলে এ দুপ এক লিটার বাফার দ্রবণ কিভাবে তৈরি করা যায় যার $p^H=5.0$ যেখানে $K_a=1.8\times 10^{-5}$

টিভাৰত (ভা

কোন গ্যাসীয় বিক্রিয়ার সাম্যাবস্থায় অংশগ্রণকারী পদার্থসমূহের সক্রিয় ভরকে তাদের আংশিক চাপের মাধ্যমে প্রকাশ করলে ওয সাম্যধুবক পাওয়া যায়, তাকে $K_{_{D}}$ বলে।

উত্তরঃ (খ

আমরা জানি, $25^{\circ}C$ তাপমাত্রায় পানির আয়নিক গুণফল, $K_{\scriptscriptstyle W}=1\times10^{-14}$

$$\therefore [H^+][OH] = 10^{-14}$$

বা, $\log[H^+] + \log[OH] = \log(10^{-14})$ [উভয়পক্ষে - \log নিয়ে]
বা, $-\log[H^+] - \log[OH] = \log(10^{-14})$
বা, $pH + pOH = 14$ (দেখানো হলো)

উত্তরঃ (গ)

প্রদত্ত এসিড ক্ষারক টাইট্রেশন ফেনলফ্থ্যালিন নির্দেশক হওয়ার কারণ নিমুরুপ: প্রদত্ত এসিড ক্ষারকের ট্রাইট্রেশনের প্রশমন রেখাচিত্র অনুসারে তুল্যবিন্দু অতিক্রমের সময় pH 6 থেকে 10 এ পরিবর্তিত হয়। মিথাইল অরেঞ্জের pH বিস্তার 3.1 থেকে 4.4 হওয়ার কারণে এক্ষেত্রে ফেনলফথেলিন উপযুক্ত নির্দেশক।

উত্তরঃ (ঘ)

এখানে প্রদত্ত এসিড হিসেবে CH_3COOH এবং ক্ষার হিসেবে NaOH ব্যবহার করা হয়। এক্ষেত্রে, হেন্ডারসন হ্যাসেলবাথ সমীকরণ অনুসারে পাই,

$${
m pH} = {}_{_{P}}K_{_{a}} + \log \frac{\left[\text{लবণ}\right]}{\left[\text{এসিড}\right]}$$
 বা, $5 = 4.74 + \log \frac{\left[\text{लবণ}\right]}{\left[\text{এসিড}\right]}$ এখানে,
$$\frac{\left[\text{लবণ}\right]}{\left[\text{এসিড}\right]} = 0.26$$
 ${
m pH} = 5$
$$K_{_{a}} = 1.8 \times 10^{-5}$$

$$\vdots_{_{P}} K_{_{a}} = -\log K_{_{a}} = -\log(1.8 \times 10^{-5})$$

$$= 4.74$$
 এক্ষেত্রে, লবণ হবে সোডিয়াম অ্যাসিটেট ।

অর্থাৎ এক লিটার বাফার দ্রবণে এমন পরিমাণ সোডিয়াম অ্যাসিটেট ও এসিটিক এসিড নিতে হবে যাতে তাদের মোলের অনুপাত 1.89 হয়।

৪নং সুজনশাল প্রশ্নোতর

মঈন 0.5M~AB দ্রবণ নিয়ে 10~মিনিট পর লক্ষ করল যে AB দ্রবণের ঘনমাত্রা 0.2M~হয়ে গেছে এবং প্রদত্ত পরীক্ষা থেকে সে একটি গ্রাফ আঁকল যা নিচে দেয়া হল:

- ক. বিক্রিয়ার হার কী?
- খ. বিক্রিয়ার হারের সাথে বিক্রিয়কের প্রকৃতির প্রভাব ব্যখ্যা কর।
- গ. মঈনের কৃত পরীক্ষার বিক্রিয়ার হার নির্ণয় করো।
- ঘ. উল্লেখিত গ্রাফের আলোকে মঈনের পরীক্ষাকৃত বিক্রিয়াটির প্রকৃতি বিশ্লেষণ করো।

৬ওরঃ (ক্

প্রতি একক সময়ে বিক্রিয়কের ঘনমাত্রাহ্রাস অথবা বিক্রিয়ায় সৃষ্ট উৎপাদের ঘনমাত্রা বৃদ্ধির হারকে বিক্রিয়ার হার হলা হয়।

উত্তরঃ (খ

বিক্রিয়কের অণু আয়নিক অবস্থায় থাকলে বিক্রিয়ার গতি প্রবল হয়। যেমন: দ্বি-বিয়োজন ও প্রশমন বিক্রিয়া খুব দ্রুত সংঘটিত হয়। জারণ-বিজারণ বিক্রিয়া ও আয়নিক বিক্রিয়া হতে মন্থর হয়ে থাকে। কারণ এইসব ক্ষেত্রে পরমাণুর সর্ববহিঃস্থ কক্ষের ইলেকট্রন আদান- প্রদান হতে বেশ সময়ের প্রয়োজন হয় এবং বাহির হতে শক্তি প্রয়োগ করতে হবে।

উত্তরঃ (গ)

এখানে, বিক্রিয়ার হার সময়ের সাথে পরিবর্তিত হয় না। তাই এটি একটি শূন্য ক্রমের বিক্রিয়া। উৎপাদের ঘনমাত্রা, $x=0.20~{
m M}$ ।

ঘনমাত্রা $0.20~\mathrm{M}$ হতে সময় লেগেছে, $t=10~\mathrm{মিনিট}$ ।

সুতরাং, বিক্রিয়ার হার ধ্রুবক,
$$k=rac{x}{t}$$

$$k=rac{0.20\,{
m mol}\,{
m L}^{-1}}{10\! imes\!60\,{
m sec}}$$

$$= 3.33 \times 10^{-4} mol L^{-1} sec^{-1}$$

যেহেতু বিক্রিয়াটি শূন্য ক্রমের সেহেতু বিক্রিয়ার হার ঘনমাত্রার উপর নির্ভর করে না।

$$-\frac{d[AB]}{dt} = k[AB]^{0}$$

$$-\frac{d[AB]}{dt} = k$$

$$-\frac{d[AB]}{dt} = 3.33 \times 10^{-4} \text{ mol } L^{-1} \text{ sec}^{-1}$$

সুতরাং, বিক্রিয়ার হার = $3.33 \times 10^{-4} mol L^{-1} sec^{-1}$

উত্তরঃ (ঘ`

মঈরন কৃত পরীক্ষার লেখটিত্র থেকে দেখা যায় যে, $-\frac{d[AB]}{dt}$ বা বিক্রিয়ার হার সময়ের সাথে কোনো পরিবর্থন হয় না। সুতরাং এটি একটি শূন্য ক্রম বিক্রিয়া।

প্রদত্ত বিক্রিয়া : AB

উৎপাদ

বিক্রিয়ার হার =
$$-\frac{d[AB]}{dt}$$

বিক্রিয়ার হারের সমীকরণ,

$$-\frac{d[AB]}{dt} = k [AB]$$

বা,
$$-\frac{digl[ABigr]}{dt}=k_0igl[ABigr]^0$$
 [যেহেতু শূন্য ক্রম]

বা,
$$-\frac{d[AB]}{dt} = k_0$$

বা, -
$$d[AB] = k_0 dt$$

বা,
$$f$$
 - d [AB] = $f k_0 dt$

বা, - [AB] =
$$k_0$$
t [k_0 = হার ধ্রুবক]

বা,
$$k_0 = -\frac{AB}{t}$$

উপরিউক্ত সমীকরণ অনুযায়ী, $\frac{d[AB]}{dt}$ বনাম সময় t বিন্দু স্থাপন করলে প্রাপ্ত সরলরেখা x অক্ষের সমান্তরাল হবে, যা উদ্দীপকের লেখচিত্রের ন্যায়।

সুতরাং, মঈনের কৃত পরীক্ষার বিক্রিয়ার হার সময়ের সাথে অপরিবর্তিত থাকে; যা একটি শূন্যক্রমের বিক্রিয়া।

প্র্যাকটিস অংশ:- সুজনশীল রচনামূলক প্রপ্না

১। নিচের পাত্র ২টি পর্যবেক্ষন করঃ

- ক. লা শাতেলিয়ারের নীতি কী?
- খ. বিক্রিয়াটিতে চাপের প্রভাব ব্যাখ্যা কর।
- গ. ১নং পাত্রের দ্রবনের মান গণনা কর।
- ঘ. মানের একটি বাফার দ্রবণ তৈরি করতে ১নং পাত্রের দ্রবনের সাথে ২নং পাত্রের কত দ্রবণকে যোগ করার প্রয়োজন পড়বে?

২। চিত্রটি লক্ষ কর এবং প্রশ্নগুলোর উত্তর দাওঃ

- ক. পোলারায়র কী?
- খ. $\left[Cu(NH_3)_4\right]^{2+}$ আয়নে কোন কোনধরনের বন্ধন বিদ্যমান?
- গ. উদ্দীপকের লেখচিত্র হতে সংশ্লিষ্ট সক্রিয়নশক্তি ও বিক্রিয়া তাপ নির্ণয কর।
- ঘ. উদ্দীপকের সংশ্লিষ্ট বিক্রিয়ার ধনাত্বক প্রভাবক যোগ করলে বিক্রিয়ার হার সক্রিয়ন শক্তি এবং লেখচিত্রের উপর কোনো প্রভাব পড়বে কিনা ব্যাখ্যা কর

91

- যা একটি বিক্রিয়ার সক্রিয়ণ শক্তির লেখ।
- ক. ধনাতৃক প্রভাবক কী?
- খ. রাসায়নিক বিক্রিয়া প্রভাবকের ভূমিকা ব্যাখ্যা কর।
- গ. লেখচিত্র হতে বিক্রিয়াটির সক্রিয়ন শক্তি এবং এর মান হিসাব কর এবং দেখাও যে এটি তাপোৎপাদী না তাপহারী?
- ঘ. উদ্দীপকে বিক্রিয়াটির হার একটি মাত্র বিক্রিয়ার গতি সক্রিয়ণ শক্তি দ্বারা নিয়ন্ত্রিতক হয় উক্তিটি বিশ্লেষন কর।
- ৪। নিচের বিক্রিয়াটি লক্ষ করঃ

$$C_6H_{12}O \xrightarrow{\quad A\quad} 2C_2H_5OH + 2CO_2$$

- ক. শূণ্য ক্রম বিক্রিয়া কী?
- খ. প্রথম ক্রম বিক্রিয়া ও দ্বিতীয় ক্রম বিক্রিয়ার মধ্যে দুটি পার্থক্য নিদের্শ কর।
- গ. উদ্দীপকের বিক্রিয়ায় এনজাইমের ভূমিকা কী এনজাইমের এ ধরনের ভূমিকার কারণ বিশ্লেষন কর।
- ঘ. অনুঘটক হিসেবে A জাতীয় পদার্থের ক্রিয়া কৌশল বর্ণনা কর।
- e। তানভীর ও আমজাদ দুজনেই বাজার থেকে কিছু টয়লেট্রিজ কিনল। আমজাদের টয়লেট্রিজ সামগ্রীগুলোর $_pH$ মান $8.8\,$ এবং তানভীরের টয়লেট্রিজ গুলোর $_pH$ মান $5.5\,$ এ রক্ষিত ছিল।
- ক, অশ্লীয় বাফার কী?
- খ. এসিডের তীব্রতা কেন্দ্রীয় পরমাণুর চার্জের উপর কীভাবে নির্ভর করে।

- গ. উদ্দীপকে উল্লেখিত সামগ্রী উৎপাদনে $_{\scriptscriptstyle P}H$ নিয়ন্ত্রণ করতে হয় কেন ব্যাখ্যা কর।
- ঘ. তানভীর ও আমজাদের মধ্যে কার সিদ্ধান্ত ভুল ছিল। বিশ্লেষন কর।