BİÇİMSEL DİLLER VE OTOMATLAR ÖDEV-4

1)

- a) (aVb)*abb(aVb)* ifadesini kabul eden NFA'yı oluşturunuz.
- b) Oluşturduğunuz NFA'yı DFA'ya dönüştürünüz.
- c) b'de elde ettiğiniz DFA'yı –gerekliyse- indirgeyerek; indirgenmiş DFA'nın durum/geçiş diyagramını çiziniz.
- **2)** Aşağıda bir determinist sonlu durumlu otomatın durum/geçiş tablosu moore modelinde verilmiştir.

$$K = \{q0, q1, q2, q3, q4, q5, q6, q7\}, F = \{q0, q5, q6\} \Sigma = \{a, b, c\}, s = \{q0\}, q5, q6\} \Sigma = \{a, b, c\}, s = \{q0\}, q5, q6\} \Sigma = \{a, b, c\}, s = \{q0\}, q5, q6\} \Sigma = \{a, b, c\}, s = \{q0\}, q5, q6\} \Sigma = \{a, b, c\}, s = \{q0\}, q5, q6\} \Sigma = \{a, b, c\}, s = \{q0\}, q5, q6\} \Sigma = \{a, b, c\}, s = \{q0\}, q5, q6\} \Sigma = \{a, b, c\}, s = \{q0\}, q5, q6\} \Sigma = \{a, b, c\}, s = \{q0\}, q5, q6\} \Sigma = \{a, b, c\}, s = \{q0\}, q5, q6\} \Sigma = \{a, b, c\}, s = \{q0\}, q5, q6\} \Sigma = \{a, b, c\}, s = \{q0\}, q5, q6\} \Sigma = \{a, b, c\}, s = \{q0\}, q5, q6\} \Sigma = \{a, b, c\}, s = \{q0\}, q6\}, $

	а	b	С	Çıkış
q0	q1	q7	q7	1
q1	q2	q3	q4	0
q2	q2	q5	q7	0
q3	q6	q3	q7	0
q4	q3	q2	q7	0
q5	q1	q7	q7	1
q6	q1	q7	q7	1
q7	q7	q7	q7	0

- a) Tablo üzerinde –gerekli ise- durum indirgemesi yapınız.
- **b)** Yukarıdaki tanımlar ve durum/geçiş tablosunu göz önünde bulundurularak, tanımlanan DFA'nın durum/geçiş diyagramını çiziniz.
- c) Bu DFA aşağıdaki ifadelerden hangisini (hangilerini) düzenli ifade olarak kabul edebilir? Tartışınız.
 - i. $L(M) = {a[(b \lor ca)b* a \lor (a \lor cb)a*b]}*$
 - ii. $L(M) = {a[(b \lor ca)b* a \lor (a \lor cb)a*b]}^+$
 - iii. $L(M) = \{a[(b \lor c)b \ a \lor (a \lor cb)ab]\}^*$
- **3)** Aşağıda verilen determinist otomata ilişkin düzenli ifadeyi sistematik yolla bulunuz. Ara adımlarda oluşan ifadeleri sadeleştiriniz.

Ödevlerinizi, **14 Aralık 2011 Çarşamba 23:00**'e kadar **Ninova** üzerinden 'doc' veya 'pdf' uzantılı bir dosya şeklinde teslim edebilirsiniz.

b)
$$E(qp) = qo$$

 $E(q1) = q1$
 $E(q2) = q1$
 $E(q3) = q3$.
 $S = (qo) = A$
 $S'(A, a) = (qo, q1) = B$
 $S'(B, a) = (qo, q1) = B$
 $S'(B, b) = (qo, q1) = B$
 $S'(C, a) = (qo, q1) = B$
 $S'(C, a) = (qo, q1) = B$
 $S'(C, a) = (qo, q1) = D$
 $S'(E, a) = (qo, q1, q3) = E$
 $S'(E, a) = (qo, q1, q3) = D$

olugan OFA:

D, Eile F Dsonknon durinker.

0	Bonel	time	rendreni:	
	A			
3	IXI	B		
	1	-)		

_					
3	X	B			
C	X	X			
0	×	×	X	10	
E	X	X	X	DA	1 =
F	X	×	X	0	4
			1	AND STREET, ST	

Gerelline gafi!

Indiregenmis OfAnn dum/gea. dyogrami

Xo={A} $x_1 = SB$ $x_2 - SC$ $x_3 - SO_1 = f$

bu stonerta illelih Copuli itale: L> um)= 6 a (avba) 66 (avb) 2)

a) Durum indirgemesi yapılırsa, q0, q5, q6 durumlarının uyuşmakta olduğu görülür. Tablonun yeni hali:

	а	b	С	Çıkış
q0	q1	q7	q7	1
q1	q2	q3	q4	0
q2	q2	q0	q7	0
q3	q0	q3	q7	0
q4	q3	q2	q7	0
q7	q7	q7	q7	0

Kabul edilebilir durum olarak yalnızca q0 var.

b) DFA'yı çizersek:

c) Otomatın kabul ettiği düzenli ifade: L(M) = {a[(b V ca)b* a V (a V cb)a*b]}* olacaktır.

İkinci ifade otomatın boş katar ile sonlanma olayını(s=F olduğundan) kapsamamaktadır.

Üçüncü ifade ise otomatı kabul edilmeyen durumlara götürür(Örneğin, acba katarı ile otomat q2'de sonlanır).

90=910 V -1 91=900 V 92 a V 92b 92= 95 b V 91b

92=(91aUL)bVq1b 92=91(abVb)Vb

q1=q0aVq2(aVb)
=(q1aV L) a V q1(abVb) Vb) (aVb)
=q1aaVa Vq1 (abVb)a Vq1(abVb)b VbaVbb
=q1(oaV (bVb)(aVb)) V (aVbaVbb)

q1=(aVbaVbb) (aaV(abVb) (aVb))*

L(M) = Q1 V Q2 = Q1 V Q1 (a6Vb) Vb = Q1 (LV (abVb)) Vb $L(M) = (aVbaVbb) (aaV (a6Vb) (aVb))^{*} (LV (a6Vb)) Vb$