Mecânica dos Sólidos

Mecânica dos Sólidos

Deformação

Mecânica dos Sólidos

Deformação

Deformação corpo deformável

Deformação corpo deformável R •

R, Q e P são pontos no interior do corpo na região $\Omega_{\rm o}$

Deformação corpo deformável R •

Deformação corpo deformável R

Deformação corpo deformável

Deformação corpo deformável

corpo deformável

corpo deformável

A deformação é, então, definida por mudanças no comprimento de segmentos e ângulos

A deformação é, então, definida por mudanças no comprimento de segmentos e ângulos

Na direção longitudinal,

A deformação é, então, definida por mudanças no comprimento de segmentos e ângulos

Na direção longitudinal,

$$\epsilon_{\text{med}} = \frac{\Delta s' - \Delta s}{\Delta s}$$

A deformação é, então, definida por mudanças no comprimento de segmentos e ângulos

Na direção longitudinal,

$$\epsilon_{\text{med}} = \frac{\Delta s' - \Delta s}{\Delta s}$$

A deformação é, então, definida por mudanças no comprimento de segmentos e ângulos

Na direção longitudinal,

$$\epsilon_{\text{med}} = \frac{\Delta s' - \Delta s}{\Delta s}$$

$$\epsilon = \lim \frac{\Delta s' - \Delta s}{\Delta s}$$
. $\Delta s \rightarrow 0$

A deformação é, então, definida por mudanças no comprimento de segmentos e ângulos

Na direção longitudinal,

$$\epsilon_{\text{med}} = \frac{\Delta s' - \Delta s}{\Delta s}$$

$$\Delta s' = \Delta s + \epsilon_{\text{med}} \Delta s$$

$$\varepsilon = \lim_{\Delta s \to 0} \frac{\Delta s' - \Delta s}{\Delta s}$$

A deformação é, então, definida por mudanças no comprimento de segmentos e ângulos

Na direção longitudinal,

$$\epsilon_{\text{med}} = \frac{\Delta s' - \Delta s}{\Delta s}$$

$$\Delta s' = \Delta s + \epsilon_{\text{med}} \Delta s$$

A deformação é, então, definida por mudanças no comprimento de segmentos e ângulos

Na direção longitudinal,

$$\epsilon_{\text{med}} = \frac{\Delta s' - \Delta s}{\Delta s}$$

$$\Delta s' = \Delta s + \epsilon_{\text{med}} \Delta s$$

$$\varepsilon = \lim_{\Delta s \to 0} \frac{\Delta s' - \Delta s}{\Delta s}$$

configuração original

configuração atual

configuração original

configuração atual

configuração original

configuração atual

As deformações nos tres eixos levam aos elongamentos nas tres direções

As deformações nos tres eixos levam aos elongamentos nas tres direções

$$\Delta x' = (1 + \epsilon_x) \Delta x$$

$$\Delta y' = (1 + \epsilon_y) \Delta y$$

$$\Delta z' = (1 + \epsilon_z) \Delta z$$

A chapa da Fig. (a) abaixo sofre uma deformação e adquire a configuração da Fig. (b). Se os lados AB e CD permanecem horizontais após a deformação, determinar: (i) a deformação longitudinal média ao longo de AB; e (ii) a deformação angular (por cisalhamento) média em relação aos eixos x e y.

(i) Deformação longitudinal média.

(i) Deformação longitudinal média.

(i) Deformação longitudinal média.

Após a deformação, a reta AD passa a ter comprimento A'D'.

D

(i) Deformação longitudinal média.

(i) Deformação longitudinal média.

Após a deformação, a reta AD passa a ter comprimento A'D'.

Assim,

(i) Deformação longitudinal média.

Após a deformação, a reta AD passa a ter comprimento A'D'.

Assim,

A'D' =
$$[(250 - 2)^2 + (3)^2]^{1/2}$$

(i) Deformação longitudinal média.

Após a deformação, a reta AD passa a ter comprimento A'D'.

Assim,

A'D' =
$$[(250 - 2)^2 + (3)^2]^{1/2}$$

A'D' = 248,018 mm

(i) Deformação longitudinal média.

Após a deformação, a reta AD passa a ter comprimento A'D'.

Assim,

A'D' =
$$[(250 - 2)^2 + (3)^2]^{1/2}$$

A'D' = 248,018 mm

A deformação específica média na direção y pode ser calculada por

(i) Deformação longitudinal média.

Após a deformação, a reta AD passa a ter comprimento A'D'.

Assim,

A'D' =
$$[(250 - 2)^2 + (3)^2]^{1/2}$$

A'D' = 248,018 mm

A deformação específica média na direção y pode ser calculada por

 $\varepsilon_{\text{med}} = (A'D' - AD) / AD$

(i) Deformação longitudinal média.

Após a deformação, a reta AD passa a ter comprimento A'D'.

Assim,

A'D' =
$$[(250 - 2)^2 + (3)^2]^{1/2}$$

A'D' = 248,018 mm

A deformação específica média na direção y pode ser calculada por

 $\varepsilon_{\text{med}} = (A'D' - AD) / AD$

 $\varepsilon_{\text{med}} = (248,018 - 250) / 250$

(i) Deformação longitudinal média.

Após a deformação, a reta AD passa a ter comprimento A'D'.

Assim,

A'D' =
$$[(250 - 2)^2 + (3)^2]^{1/2}$$

A'D' = 248,018 mm

A deformação específica média na direção y pode ser calculada por

 $\varepsilon_{\text{med}} = (A'D' - AD) / AD$

 $\epsilon_{\text{med}} = (248,018 - 250) / 250$

 $\epsilon_{med} = -7,93 \times 10^{-3} \text{ mm/mm}$

$$\gamma_{xy} = \pi/2 - \theta'$$

Para calcular a deformação angular, tem-se

$$\gamma_{xy} = \pi/2 - \theta$$

Mas γ_{xy} é também encontrado por

Para calcular a deformação angular, tem-se

$$\gamma_{xy} = \pi/2 - \theta$$

Mas γ_{xy} é também encontrado por

$$\gamma_{xy} = \tan^{-1} [3/(250 - 2)]$$

Para calcular a deformação angular, tem-se

$$\gamma_{xy} = \pi/2 - \theta$$

Mas γ_{xy} é também encontrado por

$$\gamma_{xy} = \tan^{-1} [3/(250 - 2)]$$

$$\gamma_{xy} = 0.0121 \text{ rd}$$

Mecânica dos Sólidos

Deformação

Fim do Cap. 2