X20(c)DO2633

1 Allgemeines

Das Modul ist ein digitales Ausgangsmodul mit Phasenanschnittsteuerung, das mit 2 Triac Ausgängen in 3-Leitertechnik ausgeführt ist. Die Versorgung L und N wird direkt am Modul eingespeist.

- · 2 digitale Ausgänge
- · Ausgänge mit integrierter Snubber Beschaltung
- 48 bis 240 VAC Ausgänge
- · L-schaltend
- Nulldurchgangserkennung
- Phasenanschnittsteuerung
- · Drahtbrucherkennung pro Kanal
- Negative Halbwellen können ausgeblendet werden
- 50 Hz oder 60 Hz
- · 3-Leitertechnik
- 240 V Codierung
- · OSP-Modus
- · Frequenz-Modus

Gefahr!

Gefahr von Stromschlag!

Die Feldklemme darf nur in gestecktem Zustand Spannung führen und niemals unter Spannung gezogen, gesteckt oder in abgezogenem Zustand unter Spannung gesetzt werden!

2 Coated Module

Coated Module sind X20 Module mit einer Schutzbeschichtung der Elektronikbaugruppe. Die Beschichtung schützt X20c Module vor Betauung und Schadgasen.

Die Elektronik der Module ist vollständig funktionskompatibel zu den entsprechenden X20 Modulen.

In diesem Datenblatt werden zur Vereinfachung nur Bilder und Modulbezeichnungen der unbeschichteten Module verwendet.

Die Beschichtung wurde nach folgenden Normen qualifiziert:

- Betauung: BMW GS 95011-4, 2x 1 Zyklus
- · Schadgas: EN 60068-2-60, Methode 4, Exposition 21 Tage

3 Bestelldaten

Bestellnummer	Kurzbeschreibung
	Digitale Ausgänge
X20DO2633	X20 Digitales Ausgangsmodul, 2 Triac-Ausgänge, 48 bis 240 VAC, 2 A, L-schaltend, Phasenanschnittsteuerung, 240 V codiert
X20cDO2633	X20 Digitales Ausgangsmodul beschichtet, 2 Triac-Ausgänge, 48 bis 240 VAC, 2 A, L-schaltend, Phasenanschnittsteuerung, 240 V codiert
	Erforderliches Zubehör
	Busmodule
X20BM32	X20 Busmodul, für doppeltbreite Module, 240 VAC codiert, interne I/O-Versorgung durchverbunden
X20cBM32	X20 Busmodul, beschichtet, für doppeltbreite Module, 240 VAC codiert, interne I/O-Versorgung durchverbunden
	Feldklemmen
X20TB32	X20 Feldklemme, 12-polig, 240 VAC codiert

Tabelle 1: X20DO2633, X20cDO2633 - Bestelldaten

4 Technische Daten

Produktbezeichnung	X20DO2633	X20cDO2633
Kurzbeschreibung		
I/O-Modul	2 digitale Ausgänge 48 bis	s 240 VAC in 3-Leitertechnik
Allgemeines	, i i	
B&R ID-Code	0xAC39	0xE680
Statusanzeigen		etriebszustand, Modulstatus
Diagnose		
Modul Run/Error	Ja. per Status-Li	ED und SW-Status
Ausgänge	· ·	ED und SW-Status
Leistungsaufnahme	, μ	
Bus	0,	6 W
I/O-intern	•	-
I/O-extern		-
Zusätzliche Verlustleistung durch Aktoren (ohmsch)	+(6 W
[W] 1)		
Potenzialtrennung		
Kanal - Bus	,	Ja
Kanal - Kanal	N	lein
Zertifizierungen		
CE		Ja
cULus		Ja
ATEX Zone 2 2)	,	Ja
KC	Ja	-
GOST-R	,	Ja
Digitale Ausgänge		
Ausführung	Т	riac
Beschaltung	L-sch	naltend
Nennspannung	48 bis	240 VAC
max. Spannung	264	I VAC
Nennfrequenz	47 bis	s 63 Hz
Ausgangsnennstrom		2 A
Summennennstrom		4 A
Maximalstrom		
Ausgangsstrom	2.	.5 A
Summenstrom	Ę	5 A
Anschlusstechnik	3-Leite	ertechnik
Nulldurchgangserkennung		Ja
Minimaler Haltestrom I _H	15	5 mA
Leckstrom	max 2 mA hei	240 V bei 50 Hz
Lookottom		ei 240 V bei 60 Hz
	,	
Restspannung (On State Voltage)	1,	,5 V
Phasenanschnittsteuerung		
Bereich	5 bis	s 95%
Auflösung	1	1%
Genauigkeit (60 bis 240 VAC)	<10	00 μs
Spannungsüberwachung L - N		Ja
Zusatzfunktionen	Drahtbruc	herkennung
Überspannungsschutz zwischen L und N		/aristor

Tabelle 2: X20DO2633, X20cDO2633 - Technische Daten

Produktbezeichnung	X20DO2633	X20cDO2633			
Isolationsspannungen					
Feldklemme - Bus	Geprüft mit 2300 VAC (Rev. <e0 1500="" td="" vac)<=""><td>Geprüft mit 1500 VAC</td></e0>	Geprüft mit 1500 VAC			
Feldklemme - 24 V	Geprüft mit 2300 VAC (Rev. <e0 2000="" td="" vac)<=""><td>Geprüft mit 2000 VAC</td></e0>	Geprüft mit 2000 VAC			
Feldklemme - PE	Geprüft mit 2300 VAC (Rev. <e0 1500="" td="" vac)<=""><td>Geprüft mit 1500 VAC</td></e0>	Geprüft mit 1500 VAC			
Schutzbeschaltung					
extern	Siehe Abschnitt "E:	xterne Sicherungen"			
intern	Snubber Beschaltung	(RC-Glied) und Varistor			
Einsatzbedingungen					
Einbaulage					
waagrecht		Ja			
senkrecht		Ja			
Aufstellungshöhe über NN (Meeresspiegel)					
0 bis 2000 m	Keine Eins	schränkung			
>2000 m	Reduktion der Umgebungste	mperatur um 0,5°C pro 100 m			
Schutzart nach EN 60529	IF	IP20			
Umgebungsbedingungen					
Temperatur					
Betrieb					
waagrechte Einbaulage	-25 bi	s 60°C			
senkrechte Einbaulage	-25 bi	s 50°C			
Derating	Siehe Absch	nitt "Derating"			
Lagerung	-40 bi	s 85°C			
Transport	-40 bi	s 85°C			
Luftfeuchtigkeit					
Betrieb	5 bis 95%, nicht kondensierend	Bis 100%, kondensierend			
Lagerung	5 bis 95%, nich	t kondensierend			
Transport	5 bis 95%, nich	t kondensierend			
Mechanische Eigenschaften					
Anmerkung	Feldklemme 1x X20TB32 gesondert bestellen	Feldklemme 1x X20TB32 gesondert bestellen			
	Busmodul 1x X20BM32 gesondert bestellen	Busmodul 1x X20cBM32 gesondert bestellen			
Rastermaß	25 +0	^{0,2} mm			

Tabelle 2: X20DO2633, X20cDO2633 - Technische Daten

- 1) Anzahl der Ausgänge x Restspannung (On State Voltage) x Ausgangsnennstrom (Ein Berechnungsbeispiel ist auf der B&R Homepage im Downloadbereich des Moduls zu finden.)
- 2) Ta min.: 0°C Ta max.: siehe Umgebungsbedingungen

5 Status-LEDs

Für die Beschreibung der verschiedenen Betriebsmodi siehe X20 System Anwenderhandbuch, Kapitel 2 "Systemeigenschaften", Abschnitt "re-LEDs".

Abbildung	LED	Farbe	Status	Beschreibung
	r	Grün	Aus	Modul nicht versorgt
			Single Flash	Modus RESET
			Blinkend	Modus PREOPERATIONAL
es =			Ein	Modus RUN
1 2 5			Flackernd	Modul befindet sich im OSP-Zustand
			(ca. 10 Hz)	
8 4 5	е	Rot	Aus	Modul nicht versorgt oder alles in Ordnung
X20			Ein	Fehler- oder Resetzustand
			Single Flash	Nulldurchgangssignal ist ausgefallen
The same of the sa	e + r	Rot ein / grüne	r Single Flash	Firmware ist ungültig
	1 - 2	Orange		Ansteuerstatus des korrespondierenden digitalen Ausgangs

6 Anschlussbelegung

Beim Verdrahten des Moduls sind folgende Punkte zu beachten:

- Aus thermischen Gründen sind zur Verdrahtung des Moduls bei allen Leitungen Querschnitte ≥1,5 mm² zu verwenden.
- Die Nullleiterrückführung der Ausgänge ist für jeden Kanal einzeln auf die Feldklemme zu verdrahten und darf nicht im Feld gebrückt werden.
- Bei der 240 V Versorgung ist ein Netzfilter vorzusehen. Dieses muss bei 150 kHz eine Dämpfung von ≥40 dB aufweisen und mindestens bis 5 MHz wirken.

7 Anschlussbeispiel

2-Leitertechnik

3-Leitertechnik

8 OSP-Hardwarevoraussetzungen

Um den OSP-Modus sinnvoll einzusetzen, sollte beim Aufbau der Applikation sichergestellt werden, dass die Energieversorgung des Ausgangsmoduls und der CPU voneinander unabhängig gestaltet sind.

9 Ausgangsschema

10 Externe Sicherungen

Folgende Schutzbeschaltung ist für einen sicheren Betrieb einzuhalten:

	Schutzbeschaltung	Wert
Bei den Zuleitungen	Sicherung	T 10 A
Bei den Ausgängen	Sicherung	Schmelzintegral I²t ≤ 78 A²s bei tp = 10 ms
Bei induktiver Last	Varistor1)	z. B. Varistor mit 275 V _{RMS} bei 240 VAC
Für Versorgungsspannung	Netzfilter ²⁾	Dämpfung von ≥40 dB bei 150 kHz, Wirkbereich bis 5 MHz

- 1) Siehe auch Abschnitt 14 "Betrieb mit Induktiven Lasten" auf Seite 7
- 2) Für die Einhaltung der Grenzwerte der Normen EN 61131, EN 55011 bzw. EN 55022 (jeweils Klasse A) ist der Einbau eines Netzfilters in die 240 V Versorgungsleitung erforderlich. Als Filter kann z. B. das Netzfilter FN 2412-8-44 der Fa. Schaffner verwendet werden.

 Treten an den Versorgungsleitungen priodische Transienten gegen Erdpotenzial auf (wie sie zum Beispiel bei vorgeschalteten Frequenzumrichtern vorkommen können), ist zusätzlich zum symmetrischen auch noch ein asymmetrischer Filter einzusetzen, der derartige Potenzialänderungen unter wenigen Volt hält (z. B. "Sinus Plus" von Schaffner).

11 Derating

Für den Strom ist das unten angeführte Derating zu beachten:

12 Funktionsprinzip

Das digitale Ausgangsmodul wurde zur Phasenanschnittsteuerung von ohmschen und induktiven Verbrauchern konzipiert. Die Triacausgänge sind nicht kurzschlussfest ausgeführt. Mit der integrierten Drahtbrucherkennung können Defekte des Verbrauchers oder der Verkabelung erkannt werden (siehe 13 "Drahtbrucherkennung" auf Seite 6).

Das Modul verfügt über eine interne Nulldurchgangserkennung. Die Nulldurchgangserkennung bildet die Basis für eine Software PLL, die ein 200faches der Nulldurchgangsfrequenz erzeugt. Das Ausgangsignal der PLL bildet den Basistakt für die PWM Ausgänge sowohl im digitalen als auch im analogen Modus.

Bei Erkennen eines Ausfalls von Perioden oder zu kurzen Perioden wird die Ansteuerung der Ausgänge bis zum korrekten Einschwingen der PLL abgeschaltet. Der Einschwingvorgang kann mehrere Sekunden dauern. Weiters werden das "ZeroCrossingStatus" Bit gesetzt und die Error LED aktiviert (gültiger Frequenzbereich der Versorgung 45 bis 65 Hz).

Information:

Der durch die PLL und die Kommunikation erzeugte Jitter der Ausgangssignale beträgt bis zu 0,5%.

13 Drahtbrucherkennung

Das Modul ist mit einer Drahtbrucherkennung für jeden Kanal ausgestattet. Zu beachten ist, dass die Drahtbrucherkennung nur bei aktiviertem Ausgang arbeitet. Wenn der Ausgang ausgeschaltet ist, wird ein Drahtbruch nicht erkannt.

Weiters funktioniert die Drahtbrucherkennung bei induktiven Lasten nicht oder nur eingeschränkt. Dies ist abhängig von der Induktivität der Last und im Bedarfsfall vor Verwendung zu ermitteln.

14 Betrieb mit Induktiven Lasten

Der Triacausgang wird prinzipbedingt mit dem Stromnulldurchgang gelöscht. Durch den verzögerten Stromnulldurchgang bei induktiven Lasten tritt der Effekt auf, dass bei höheren Ausgabewerten (je nach Induktivität der Last, zwischen 50 und 100%) der Triac schon wieder gezündet wird, obwohl er noch gar nicht gelöscht ist. Es wird also eine Vollwelle ausgegeben. Dies führt dazu, dass der zur Verfügung stehende Steuerbereich (0 bis 95%) verändert wird.

Für die Drahtbrucherkennung (LowCurrentStatus) wird eine Ansteuerlücke benötigt in der der Triac nicht gezündet sein darf. Die bei induktiven Lasten entstehende Vollwelle führt dazu, dass die Drahtbrucherkennung anspricht obwohl der Ausgang ausreichend belastet ist.

Dieses Verhalten kann dazu verwendet werden um die Vollwelle zu erkennen und den Steuerbereich entsprechend anzupassen (Bsp: Wenn die Drahtbrucherkennung ab 70% Ansteuerung anspricht heißt das, dass 0 bis **70%** Ansteuerung, 0 bis **100%** Ausgabe entsprechen).

Bei induktiven Lasten ist zusätzlich zwischen dem Ausgang DO x und der Phase L ein geeigneter Varistor vorzusehen (z. B. ein Varistor mit 275 V_{RMS} bei 240 VAC).

15 Registerbeschreibung

15.1 Allgemeine Datenpunkte

Neben den in der Registerbeschreibung beschriebenen Registern verfügt das Modul über zusätzliche allgemeine Datenpunkte. Diese sind nicht modulspezifisch, sondern enthalten allgemeine Informationen wie z. B. Seriennummer und Hardware-Variante.

Die allgemeinen Datenpunkte sind im X20 System Anwenderhandbuch, Kapitel 4 "X20 System Module", Abschnitt "Allgemeine Datenpunkte" beschrieben.

15.2 Funktionsmodell 0 - Standard und Funktionsmodell 2 - Frequenzmodus

Das Funktionsmodell 2 unterscheidet sich von Funktionsmodell 0 nur durch die Möglichkeit Halbwellenmuster in verschiedenen Frequenzen zu erzeugen. Dafür besitzt es das zustätzliche Register 18 "CfO_Frequency".

Register	Name	Datentyp	Lesen		Schreiben	
			Zyklisch	Azyklisch	Zyklisch	Azyklisch
Konfiguratio	n - Allgemein					
4	AnalogOutput01	USINT			•	
6	AnalogOutput02	USINT			•	
18	CfO_Frequency	UINT				•
20	CfO_SwitchOffValue1	USINT				•
22	CfO_SwitchOffValue2	USINT				•
28	CfO_OutputConfig	USINT				•
29	CfO_OutputTolerance	USINT				•
Kommunikat	ion					
2	DigitalOutput	USINT			•	
	DigitalOutput01	Bit 0	1			
	DigitalOutput02	Bit 1				
30	StatusInput01	USINT	•			
	LowCurrentStatus1	Bit 0	1			
	LowCurrentStatus2	Bit 1]			
	ZeroCrossingInput	Bit 4	1			
	ZeroCrossingStatus	Bit 7	1			

15.3 Funktionsmodell 1 - OSP

Register	Name	Datentyp	Lesen		Schreiben	
			Zyklisch	Azyklisch	Zyklisch	Azyklisch
Konfiguratio	n - Allgemein					
4	AnalogOutput01	USINT			•	
6	AnalogOutput02	USINT			•	
20	CfO_SwitchOffValue1	USINT				•
22	CfO_SwitchOffValue2	USINT				•
28	CfO_OutputConfig	USINT				•
29	CfO_OutputTolerance	USINT				•
Konfiguratio	n - OSP		,	·		
34	OSP-Ausgabe im Modul aktivieren	USINT			•	
	OSPValid	Bit 0				
32	CfgOSPMode	USINT				•
36	CfgOSPValue	USINT				•
38	CfgOSPValue01	USINT				•
40	CfgOSPValue02	USINT				•
Kommunikat	ion	·		·		
2	Schaltzustand der digitalen Ausgänge 1 bis 2	USINT			•	
	DigitalOutput01	Bit 0	1			
	DigitalOutput02	Bit 1				
30	Status der Ausgänge	USINT	•			
	LowCurrentStatus1	Bit 0				
	LowCurrentStatus2	Bit 1				
	ZeroCrossingInput	Bit 4				
	ZeroCrossingStatus	Bit 7				

15.4 Funktionsmodell 254 - Bus Controller

Register	Offset1)	Name	Datentyp	Le	sen	Schr	eiben
				Zyklisch	Azyklisch	Zyklisch	Azyklisch
Konfiguration	- Allgemein						
4	0	AnalogOutput01	USINT			•	
6	2	AnalogOutput02	USINT			•	
20	-	CfO_SwitchOffValue1	USINT				•
22	-	CfO_SwitchOffValue2	USINT				•
28	-	CfO_OutputConfig	USINT				•
29	-	CfO_OutputTolerance	USINT				•
Kommunikatio	on						
30	0	Status der Ausgänge	USINT	•			
		LowCurrentStatus1	Bit 0				
		LowCurrentStatus2	Bit 1	1			
		ZeroCrossingInput	Bit 4				
		ZeroCrossingStatus	Bit 7				

¹⁾ Der Offset gibt an, wo das Register im CAN-Objekt angeordnet ist.

15.4.1 CAN-I/O Bus Controller

Das Modul belegt an CAN-I/O 1 analogen logischen Steckplatz.

15.5 Allgemeines

Das digitale Ausgangsmodul wurde zur Phasenanschnittsteuerung von Ohmschen und Induktiven Verbrauchern konzipiert. Die Triacausgänge sind nicht kurzschlussfest verfügen jedoch über eine Drahtbrucherkennung welche verwendet werden kann um Defekte des Verbrauchers oder der Verkabelung zu erkennen.

Das Modul verfügt über eine interne Nulldurchgangserkennung. Die Nulldurchgangserkennung bildet die Basis für eine Software-PLL, welche ein 200-faches der Nulldurchgangsfrequenz erzeugt. Das Ausgangsignal der PLL bildet den Basistakt für die 2 PWM-Ausgänge sowohl im digital als auch im analog Modus.

Bei Erkennen eines Ausfalls von Perioden, oder zu kurzen Perioden wird die Ansteuerung der Ausgänge bis zum korrekten Einschwingen der PLL abgeschaltet (kann mehrere Sekunden dauern), das "ZeroCrossingStatus" Bit wird gesetzt sowie die Error Led aktiviert (gültiger Frequenzbereich der Versorgung 45 Hz bis 65 Hz).

Information:

Der durch die PLL und die Kommunikation erzeugte Jitter der Ausgangssignale beträgt bis zu 0,5%.

15.6 Digitale Ausgänge

Der Ausgangszustand der als digital definierten Ausgänge wird synchron zum angeschlossenen Netz auf die Ausgangsports der Ansteuerschaltung übertragen. Der Einschaltzustand wird beim Spannungsnulldurchgang der positiven Halbwelle übernommen und der Ausschaltzustand beim Stromnulldurchgang jeder Halbwelle.

15.6.1 Schaltzustand der digitalen Ausgänge 1 bis 2

Name:

DigitalOutput

DigitalOutput01 bis DigitalOutput02

In diesem Register ist der Schaltzustand der digitalen Ausgänge 1 bis 2 hinterlegt.

Nur Funktionsmodell 0 - Standard:

In der AS I/O-Konfiguration kann mittels der Einstellung "Gepackte Ausgänge" bestimmt werden, ob alle Bits dieses Registers einzeln im AS I/O-Mapping als Datenpunkte aufgelegt werden ("DigitalOutput01" bis "DigitalOutput0x") oder ob dieses Register als einzelner USINT-Datenpunkt ("DigitalOutput") angezeigt werden sollen.

Datentyp	Werte	Information
USINT	0 bis 3	Gepackte Ausgänge = Ein
	Siehe Bitstruktur	Gepackte Ausgänge = Aus oder Funktionsmodell <> 0 - Standard

Bitstruktur:

Bit	Bezeichnung	Wert	Information
0	DigitalOutput01	0	Digitalausgang 01 rückgesetzt
		1	Digitalausgang 01 gesetzt
1	DigitalOutput02	0	Digitalausgang 02 rückgesetzt
		1	Digitalausgang 02 gesetzt

Information:

Die Zustände in diesen Registern werden nur übernommen, wenn die Konfiguration der Kanäle im "Konfiguration der Ausgangskanäle" entsprechend auf DIGITAL eingestellt sind.

Bei Verwendung der Einstellung "Gepackte Ausgänge" müssen ALLE Kanäle auf DIGITAL eingestellt sein. Gemischter Betrieb ist nicht möglich.

15.7 Analoge Ausgänge

Der Ausgangswert der als analog definierten Ausgänge (Einheit Prozent) wird synchron zum angeschlossenen Netz auf die Ansteuerports durchgeschaltet. Der Analogwert wird mit einer Auflösung von 1% im Bereich (Ausgangswert > SwitchOffValue) und (Ausgangswert <= 95%) an den TRIAC Ansteuerport ausgegeben.

Für die Drahtbrucherkennung ist eine kurze Einschaltverzögerung des Triacs erforderlich. Daher bleibt auch bei Ausgangswerten >= 96% eine kleine Ansteuerlücke.

Änderungen des Ausgangswertes werden mit der nächsten positiven Halbwelle übernommen.

15.7.1 Einschaltwinkel der analogen Ausgänge 1 bis 2

Name:

AnalogOutput01 bis AnalogOutput02

In diesen Registern wird der Einschaltwinkel für die Phasenanschnittsteuerung eingestellt.

Werte zwischen 0 bis 100 entsprechen dem Ausgangswert des jeweiligen Kanals in Prozent. Werte größer 100 entsprechen 100%.

Datentyp	Werte
USINT	0 bis 100

Information:

Die in diesen Registern eingestellten Einschaltwinkel der Phasenanschnittsteuerung werden nur übernommen, wenn die Konfiguration der Kanäle im "Konfiguration der Ausgangskanäle" entsprechend auf ANALOG eingestellt sind.

15.8 Ausgangskonfiguration

15.8.1 Einstellen des Halbwellenmusters

Name:

CfO Frequency

Mit diesem, nur in Funktionsmodell 2 - Frequenzmodus verwendeten Register kann die Ausgabe von Halbwellenmuster in verschiedenen Frequenzen eingestellt werden. Der Einschaltwinkel der Ausgänge wird dadurch nicht beeinflusst. Folgende Frequenzmuster können eingestellt werden:

· 100 Halbwellen

• 50 Halbwellen

• 33 Halbwellen

· 25 Halbwellen

Bei mehrkanaligen Betrieb sollte der zweite Kanal mit verzögerten Halbwellen betrieben werden, um eine gleichmäßigere Belastung des Moduls zu gewährleisten.

Datentyp	Werte
UINT	Siehe Bitstruktur

Bitstruktur:

Bit	Beschreibung	Wert	Information
0 - 3	Kanal 1	0000	100 Halbwellen/Sec
		0001	50 Halbwellen/Sec
		0010	25 Halbwellen/Sec
		0011	33 Halbwellen/Sec
		0101	50 Halbwellen/Sec verzögert um 1 Halbwelle
		0110	25 Halbwellen/Sec verzögert um 2 Halbwellen
		0111	33 Halbwellen/Sec verzögert um 1 Halbwelle
4 - 7	Kanal 2	0000 bis 0111	Siehe Kanal 1
8 - 15	Reserviert	-	

Information:

Die Funktion steht erst ab Firmware-Version 940 zur Verfügung. Diese kann ab Hardware-Variante 8 eingespielt werden.

15.8.2 Einstellen des Ausschaltzeitpunktes

Name:

CfO_SwitchOffValue1 und CfO_SwitchOffValue2

In diesem Register wird festgelegt, wie weit vor dem Nulldurchgang das interne Ansteuerungssignal für den Triac abgeschaltet wird. Eine Erhöhung dieses Wertes kann notwendig sein um bei leichten Störungen in der Netzfrequenz ein Fehlzünden des Triacs zu vermeiden.

Bei kleinen Lasten ist darauf zu achten, dass dieser Abschaltwert nicht zu groß (früh) gewählt wird, um ein vorzeitiges Abschalten zu vermeiden.

Der Triac kann selbstverständlich nur vor dem eingestelleten Ausschaltzeitpunkt gezündet werden.

"SwitchOffValue" in der AS I/O-Konfiguration.

Datentyp	Werte	Bedeutung
USINT	5 bis 50	Ausschaltzeitpunkt in %

15.8.3 Konfiguration der Ausgangskanäle

Name:

CfO_OutputConfig

In diesem Register ist die Konfiguration der Ausgangskanäle hinterlegt.

"Output type digital/analog" und "Output type full/have wave" in der AS I/O-Konfiguration

USINT Siehe Bitstruk	uktur

Bitstruktur:

Bit	Bezeichnung	Wert	Information
0	Kanal 1: Digital / Analog Ausgang	0	Ausgangskanal 1 wird als digitaler Ausgang definiert. Der Ausgangsstatus wird durch Bit 0 im DigitalOutput 1 - 2 Register definiert.
		1	Ausgangskanal 1 wird als analoger Ausgang definiert. Der Ausgangsstatus wird durch AnalogOutput01 Register definiert.
1	Kanal 2: Digital / Analog Ausgang	0	Ausgangskanal 2 wird als digitaler Ausgang definiert. Der Ausgangsstatus wird durch Bit 1 im DigitalOutput 1 - 2 Register definiert.
		1	Ausgangskanal 2 wird als analoger Ausgang definiert. Der Ausgangsstatus wird durch AnalogOutput02 Register definiert.
2 - 3	Reserviert	-	
4	Kanal 1: Voll / Halbwellenansteuerung ¹⁾	0	Vollwellenansteuerung auf Ausgangskanal 1
		1	Negative Halbwelle an Ausgangskanal 1 wird unterdrückt.
5	Kanal 2: Voll / Halbwellenansteuerung ¹⁾	0	Vollwellenansteuerung auf Ausgangskanal 2
		1	Negative Halbwelle an Ausgangskanal 2 wird unterdrückt.
6 - 7	Reserviert	-	

1) Nicht im Funktionsmodell 2 - Frequenzmodus verfügbar.

15.8.4 Schaltverhalten bei Nulldurchgangsfehlern

Name:

CfO OutputTolerance

Mit diesem Register kann das Schaltverhalten des Triggers eingestellt werden. Nach der in Bit 0 bis 4 konfigurierten Anzahl der Nulldurchgangsfehler wird der Ausgang für mindestens 3 Perioden ausgeschaltet. Anschließend erfolgt die Synchronisation auf das Nullsignal entsprechend Bit 7.

Datentyp	Werte
USINT	Siehe Bitstruktur

Bitstruktur:

Bit	Beschreibung	Wert	Information
0 - 4	Trigger für Resync	0 bis 30	Anzahl der Nulldurchgangsfehler
5 - 6	Reserviert	-	
7	Fast Settling	0	Schnellabgleich
		1	PLL-Abgleich

Schnellabgleich

Bei dieser Option wird der Triggerpunkt der Zündung nach jedem einzelnen Nulldurchgang und Eingangsjitter geregelt.

- · Vorteil: Erweiterte Toleranz und schnellere Reaktion auf Netzfrequenz-Schwankungen
- Nachteil: Ein erhöhter Einschaltjitter des Zündsignals von ±100 µSec zum Nulldurchgangsignal

PLL-Abgleich

Bei dieser Option werden die Abstände zwischen den Nulldurchgängen gemessen und die PLL-Frequenz entsprechend dieser Messung nachgeführt.

- · Vorteil: Jitterfreies Zündsignal
- Nachteil: Nach Ausschalten des Ausganges werden zusätzliche Messphasen benötigt, bevor der Ausgang wieder eingeschaltet werden kann.

Information:

Die Funktion steht erst ab Firmware-Version 928 zur Verfügung. Diese kann ab Hardware-Variante 8 bzw. Hardware-Revision B4 eingespielt werden.

15.9 Status der Ausgänge

Name:

LowCurrentStatus1 bis LowCurrentStatus2 ZeroCrossingInput ZeroCrossingStatus StatusInput01

In diesem Register ist der Betriebsstatus der Ausgänge abgebildet.

Zur Ermittlung des "LowCurrentStatus" wird kurz vor jeder Triaczündung überprüft ob vom Ausgang über den Verbraucher eine Verbindung zum Neutralleiter besteht.

Nur Funktionsmodell 0 - Standard:

In der AS I/O-Konfiguration kann mittels der Einstellung "Gepackte Ausgänge" bestimmt werden, ob alle Bits dieses Registers einzeln im AS I/O-Mapping als Datenpunkte aufgelegt werden ("LowCurrentStatus1" bis "ZeroCrossingStatus") oder ob dieses Register als einzelner USINT-Datenpunkt ("StatusInput01") angezeigt werden sollen.

Datentyp	Werte	nformation	
USINT	0 bis 255	Gepackte Ausgänge = Ein	
	Siehe Bitstruktur	Gepackte Ausgänge = Aus oder Funktionsmodell <> 0 - Standard	

Bitstruktur:

Bit	Bezeichnung	Wert	Information
0	LowCurrentStatus1	0	Stromfluss am aktivierten Ausgang 1
		1	Kein Stromfluss am aktivierten Ausgang 1
1	LowCurrentStatus2	0	Stromfluss am aktivierten Ausgang 2
		1	Kein Stromfluss am aktivierten Ausgang 2
2 - 3	Reserviert	-	
4	ZeroCrossingInput	0	Nulldurchgangssignal im Bereich der negativen Halbwelle.
		1	Nulldurchgangssignal im Bereich der positiven Halbwelle.
5 - 6	Reserviert	-	
7	ZeroCrossingStatus	0	Nulldurchgangssignal OK
		1	Nulldurchgangssignal ausgefallen

15.10 Funktionsmodell "OSP"

Im Funktionsmodell "OSP" (Operator Set Predefined) definiert der Anwender einen analogen Wert bzw. ein digitales Muster. Dieser OSP-Wert wird ausgegeben, sobald die Kommunikation zwischen Modul und Master abbricht.

Funktionsweise

Der Anwender hat die Wahl zwischen zwei OSP-Modi:

- · Letzten gültigen Wert halten
- · Durch statischen Wert ersetzen

Im ersten Fall behält das Modul den letzten Wert als gültig erkannten Ausgabezustand bei.

Bei Auswahl des Modus "Durch statischen Wert ersetzen" muss auf dem dazugehörigen Value-Register ein plausibler Ausgabewert eingetragen sein. Bei Auftritt eines OSP-Ereignisses wird dieser Wert anstatt des aktuell vom Task angeforderten Wertes ausgegeben.

15.10.1 OSP-Ausgabe im Modul aktivieren

Name:

OSPValid

Dieser Datenpunkt bietet die Möglichkeit die Ausgabe des Moduls zu starten und während des laufenden Betriebs den OSP-Anwendungsfall anzufordern.

Datentyp	Werte
USINT	Siehe Bitstruktur

Bitstruktur:

	Bit	Bezeichnung	Wert	Information
ſ	0	OSPValid	0	OSP-Betrieb anfordern (nach Erststart oder Modul in Standby)
			1	Normalbetrieb anfordern
Ī	1 - 7	Reserviert	0	

Das OSPValid-Bit existiert einmal am Modul und wird vom Anwendertask verwaltet. Zum Start der aktivierten Kanäle muss es gesetzt werden. Solange das OSPValid-Bit im Modul gesetzt bleibt, verhält sich das Modul äquivalent zum Funktionsmodell "Standard".

Ereignet sich ein OSP-Ereignis, z. B. Abbruch der Kommunikation zwischen Modul und Master CPU, wird modulseitig das OSPValid-Bit zurückgesetzt. Das Modul fällt in den OSP-Zustand und die Ausgabe erfolgt entsprechend der Konfiguration im "OSPMode"-Register.

Grundsätzlich gilt:

Auch nach Regenerierung des Kommunikationskanals steht der OSP-Ersatzwert weiter an. Der OSP-Zustand wird erst wieder verlassen, wenn ein gesetztes OSPValid-Bit übertragen wird.

Bei Neustart der Master CPU wird das OSPValid-Bit in der Master CPU neu initialisiert. Es muss ein weiteres Mal durch die Applikation gesetzt und über den Bus übertragen werden.

Bei kurzzeitigen Kommunikationsfehlern zwischen Modul und Master CPU (z. B. durch EMV) fällt der Refresh der zyklischen Register für einige Buszyklen aus. Modulintern wird das OSPValid-Bit zurückgesetzt - in der CPU bleibt das gesetzte Bit hingegen erhalten. Bei der nächsten erfolgreichen Übertragung wird das modulinterne OSPValid-Bit wieder gesetzt und das Modul kehrt automatisch in den Normalbetrieb zurück.

Wird von Seiten des Tasks in der Master CPU die Information benötigt, in welchem Ausgabemodus sich das Modul momentan befindet, kann das ModulOK-Bit ausgewertet werden.

Warnung!

Wird das OSPValid-Bit modulseitig auf "0" zurückgesetzt, hängt der Ausgabezustand nicht mehr vom zuständigen Task in der Master CPU ab. Trotzdem erfolgt, je nach Konfiguration des OSP Ersatzwertes, eine Ausgabe.

15.10.2 OSP-Modus einstellen

Name:

CfqOSPMode

Dieses Register steuert grundlegend das Verhalten eines Kanals im OSP-Anwendungsfall.

Datentyp	Werte	Bedeutung	
USINT	0	urch statischen Wert ersetzen	
	1	Letzten gültigen Wert halten	

15.10.3 OSP digitalen Ausgabewert festlegen

Name:

CfgOSPValue

Dieses Register beinhaltet den digitalen Ausgabewert, der im Modus "Durch statischen Wert ersetzen" bei OSP Betrieb ausgegeben wird.

Datentyp	Werte
USINT	Siehe Bitstruktur

Bitstruktur:

Bit	Bezeichnung	Wert	Information
0		0 oder 1	OSP-Ausgabewert für Kanal DigitalOutput00
х		0 oder 1	OSP-Ausgabewert für Kanal DigitalOutput0x

Warnung!

Der "OSPValue" wird vom Modul nur dann übernommen, wenn das "OSPValid"-Bit im Modul gesetzt wurde.

15.10.4 OSP analogen Ausgabewert festlegen

Name:

CfgOSPValue01 bis CfgOSPValue02

Dieses Register beinhaltet den analogen Ausgabewert, der im Modus "Durch statischen Wert ersetzen" bei OSP-Betrieb ausgegeben wird.

Datentyp	Werte
USINT	0 bis 100

Warnung!

Der "OSPValue" wird vom Modul nur dann übernommen, wenn das "OSPValid"-Bit im Modul gesetzt wurde.

15.11 Minimale Zykluszeit

Die minimale Zykluszeit gibt an, bis zu welcher Zeit der Buszyklus heruntergefahren werden kann, ohne dass Kommunikationsfehler auftreten. Es ist zu beachten, dass durch sehr schnelle Zyklen die Restzeit zur Behandlung der Überwachungen, Diagnosen und azyklischen Befehle verringert wird.

Minimale Zykluszeit		
Alle Kanäle	250 μs	

15.12 Minimale I/O-Updatezeit

Die minimale I/O-Updatezeit gibt an, bis zu welcher Zeit der Buszyklus heruntergefahren werden kann, so dass in jedem Zyklus ein I/O-Update erfolgt.

Minimale I/O-Updatezeit			
Alle Kanäle	150 µs		