2016级《高等数学(A)II》期末试卷

- 一、选择和填空题(共10题,每题4分,共40分)
- 1. 函数 $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & x^2 + y^2 \neq 0 \\ 0 & x^2 + y^2 = 0 \end{cases}$ 在 O(0,0)处【填入上表】.
 - A. 极限存在 B. 连续
- C. 偏导数存在
- 2. 设 $\Phi(cx-az,cy-bz)=0$, Φ 具连续偏导数,则 $a\frac{\partial z}{\partial r}+b\frac{\partial z}{\partial v}=$ 【*填入上表*】.
 - A. *a*

- D. a+b+c
- 3. 函数 $f(x,y) = 3 x^2 y^2$ 在点(1,1)处沿过该点的曲线 $x^2 + y^2 = 2$ 的内 法向量的方向导数为【填入上表】.
 - A. 2
- B. $2\sqrt{2}$
- C.4
- $D.4\sqrt{2}$
- 4. 设 D 是直线 $y = x, y = 0, x = \pi$ 所围成的闭区域,则 $\iint_{\mathbb{R}} \frac{\sin x}{x} dx dy = \left[\frac{\sqrt{x}}{x} \right]$.
 - A. 1
- B. 2
- C. 3
- D. 4
- 5. 设 $f(x) = x \ (0 \le x \le \pi)$, 且 $f(x) = \frac{a_0}{2} + \sum_{n=0}^{\infty} a_n \cos nx$, 则 $a_2 = 【 填入上表】 .$
- 6. 设 $s(x) = \sum_{n=1}^{\infty} nx^{n-1}$,则 $s(\frac{1}{2}) = 【 填入上表】$.
- 7. 设 $I = \int_{L} (x^3 + 4xy^3) dx + (6x^{\lambda-1}y^2 5y^4) dy$ 与路径 L 无关,则 $\lambda =$ 【 填表】.
 - A.0
- B. 1
- D. 3
- 8. 下列级数中条件收敛的是【填入上表】.
 - A. $\sum_{n=0}^{\infty} \frac{\sin n}{n^2}$

- B. $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2^{n^2}}{n!}$
- C. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\ln(1+\frac{1}{n})}{\sqrt{(3n-2)(3n+2)}}$ D. $\sum_{n=3}^{\infty} \frac{\ln^2 n}{n} \cos n\pi$

- 9. 曲面 $z = e^{x+1}y + (y-1)\arctan x$ 上点(0,1,e)处的法线方程为【填入上表】.
 - A. ex + ey z = 0

- B. ex + e(y-1) (z-e) = 0
- C. $\frac{x-0}{1} = \frac{y-1}{1} = \frac{z-e}{-e}$
- D. $\frac{x-0}{e} = \frac{y-1}{e} = \frac{z-e}{-1}$
- 10. 方程 $y'' 2y' 3y = e^x + 2e^{3x}$ 的特解形式是【*填入上表*】.
 - A. $Axe^{-x} + Be^{3x}$

B. $Ae^{-x} + Bxe^{3x}$

C. $Axe^x + Be^{3x}$

- D. $Ae^x + Bxe^{3x}$
- 二、完成下列各题(共5题,每题6分,共30分)
- 1. 设 $z = \ln(1+e^{xy}) + \arctan x(y-1)$, 计算 $\frac{\partial z}{\partial x}\Big|_{(0,1)}$.
- 2. 设z = f(x, xy), f 具有二阶连续偏导数,计算 $\frac{\partial^2 z}{\partial x \partial y}$.
- 3. 将函数 $f(x) = \frac{1}{x} + \ln x$ 展开为关于 x 1 的幂级数.
- 4. 求由曲面 $z = x^2 + y^2, z = 0, |x| + |y| = 1$ 所围曲项柱体的体积.
- 5. 计算 $\int_{L} \frac{(x+y)dx + (-x+y)dy}{x^2+y^2}$, 其中 $L: x^2+y^2 = a^2$, 逆时针方向.
- 三**、完成下列各题**(共3题,每题10分,共30分)
- 1. 在力场 $\vec{F} = (yz, zx, xy)$ 作用下,质点由原点沿直线运动到椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 上第一卦限的点 $M(\xi, \eta, \zeta)$ 处,问当 ξ, η, ζ 取何值时, \vec{F} 所做 功 W 最大? 并求 W 的最大值.
- 2. 用高斯公式计算 $\Phi = \bigoplus_{\Sigma} 2xye^{y^2} dydz e^{y^2} dzdx + z^2 dxdy$,

其中 Σ 为锥面 $z = \sqrt{x^2 + y^2}$ 与球面 $z = \sqrt{2 - x^2 - y^2}$ 所围立体表面的外侧.

3. 已知曲线 y = y(x) 上点 P(x,y) 处的法线与 x 轴交点为 Q,且线段 PQ 被 y 轴 平分. 求该曲线满足的微分方程,并求满足条件 v(1) = 0 的解.