美赛题目类型:

	MCM		ICM
Α	连续型	D	运筹学/网络科学
В	离散型	Е	环境科学
С	大数据	F	政策

优秀论文一定要多看,学习写作方法,建模思路

优秀论文 ftp 上有部分, 10.132.219.5:7547

怎么研读论文

参考"关于数学建模的几个问题整理"。

寒假培训计划:

1. 初步安排两次的论文汇报,各个组针对每次任务中拿到的往年题目,学习相应的优秀论文,并做 ppt 进行约 20 分钟的汇报 (一定要全员参与!)

不知道如何准备 ppt, 可以参考以下问题:

这篇论文解决了什么问题?难点在哪?论文分成几部分展开建模和陈述?

论文的优势在哪?用到了哪些关键建模方法,得出什么结论?如果你拿到这道题目,你会如何解决?你可以从这篇论文的学习中得到哪些启发?

2. 时间安排

	组员一	组员二	组员三	2024/1/24 2019赛题	2024/1/29 2020赛题
1	郭腾跃	廖一帆	胡琦俊	2019A	2020C
2	章曼璐	赵蘅	陈好	2019B	2020D
3	蒋锦鑫	孙菲璐	刘子强	20190	2020A
4	黄兆伦	李德泽	朱至轩	2019D	2020B
5	俞心乐	钟志军	薛景润	2019A	2020C
6	张颖	潘蕾蕾	胡健成	2019B	2020D
7	王旖旎	金晓宇	徐羚杰	20190	2020A
8	严宗翔	管玺豪	郑杨华	2019D	2020B
9	黄一凡	林正凯	鲍劭谆	2019A	2020C
10	李嘉慧	岑柯杭	梁飞羽	2019B	2020D
11	王蕊	林蕾	陈慧玉	20190	2020A
12	管焌羽	张鹏远	赵俊伟	2019D	2020B
13	胡文博	李文涛	何金贝利	2019A	2020C
14	高家祺	陈濠	秦筱竣	2019B	2020D
15	杨政	林元涛	胡文祺	20190	2020A
16	邱心怡	曾振铭	倪锦炜	2019D	2020B

3. 研读完填写 excel 总结表

, ,		<u> </u>		_
选题	优秀论文编号	论文标题	组别	解决了什么问题
2017 MCM Problem A: Managing The Zambezi River	2017A_65448	A Multi-Dam System Design for Zambezi River	国夕场组	解决卡里巴大坝急 需维护的问题,就 如何设计一种新的 大坝系统提出建议

论文优势	用到哪些模型,分别用于解决什么子问是	论文写作怎么样	图表怎么样	论文的劣势	学习启发,感想
搜索的资料很全面,有 模型检测,思路清晰, 考虑周到,模型可扩展 性强	水动力模型; 灰色关联度分析用于选址; 差分模型, 为计算有大坝系统的河流径流量提供递推公式; 确定调度策略, 应对紧急水流情况	符号贴切实意,公式 和表格摆放整齐,段 落分明,重点突出		前期文字繁多, 后期图表排版一 般	灰色关联度分析方法用来考虑选择证;差分模型,当偏微 办方程过于复杂时,可将模型商化成差分模型,提供递 型商化成差分模型,提供递 推公式;需要有误差分析; 多查阅相关文献资料。

4. 练习 latex 论文写作

4.1 图表的创建和引用

The above data is combined to form a correlation heat map between features, as shown in Fig. 3.

Figure 3: Heatmap of Features

4.2 公式编辑和引用

太阳高度角 α_s [3]

 $\sin\alpha_s=\cos\delta\cos\varphi\cos\omega+\sin\delta\sin\varphi$

太阳方位角 γ_s [4]

$$\cos \gamma_s = \frac{\sin \delta - \sin \alpha_s \sin \varphi}{\cos \alpha_s \cos \varphi}$$

其中 φ 为当地纬度, 北纬为正; ω 为太阳时角

$$\omega = \frac{\pi}{12}(ST - 12),$$

其中 ST 为当地时间, δ 为太阳赤纬角[5]

$$\sin \delta = \sin \frac{2\pi D}{365} \sin \left(\frac{2\pi}{360} 23.45\right),$$

其中 D 为以春分作为第 0 天起算的天数,例如,若春分是 3 月 21 日,则 4 月 1 日对应 D=11。

法向直接辐射辐照度 DNI(单位: kW/m²)是指地球上垂直于太阳光线的平面单位面积上、单位时间内接收到的太阳辐射能量,可按以下公式近似计算[6]

$$\begin{split} \text{DNI} &= G_0 \left[a + b \exp \left(-\frac{c}{\sin \alpha_s} \right) \right], \\ a &= 0.4237 - 0.00821 (6 - H)^2, \\ b &= 0.5055 + 0.00595 (6.5 - H)^2, \\ c &= 0.2711 + 0.01858 (2.5 - H)^2, \end{split}$$

其中 G_0 为太阳常数,其值取为 $1.366\,\mathrm{kW/m^2},\ H$ 为海拔高度 (单位: km)。

3. 定日镜场的输出热功率 E_{field} 为

$$E_{\mathrm{field}} = \mathrm{DNI} \cdot \sum_{i}^{N} A_{i} \eta_{i},$$

其中 DNI 为法向直接辐射辐照度; N 为定日镜总数(单位: 面); A_i 为第 i 面定日镜采光面积(单位: \mathbf{m}^2); η_i 为第 i 面镜子的光学效率。

4. 定日镜的光学效率 η 为

 $\eta = \eta_{\rm sb} \eta_{\rm cos} \eta_{\rm at} \eta_{\rm trunc} \eta_{\rm ref},$

其中

法向辐照度表示地球上垂直于太阳光线的平面单位面积上、单位时间内接收到的太阳辐射能量,计算公式(14)如下:

$$DNI = G_0 \left[a + b \exp \left(\frac{-c}{\sin \alpha_s} \right) \right],$$

$$a = 0.4237 - 0.00821(6 - H)^2$$

$$b = 0.5055 + 0.00595(6.5 - H)^2$$

$$c = 0.2711 + 0.01858(2.5 - H)^2$$
(14)