

UE 3,2 : Physiologie

Chapitre 1 : activation rythmique de la contraction cardiaque

Pr. Stéphane DOUTRELEAU

Objectifs pédagogiques du cours

- 1. Connaître le tissu électrogénique
- 2. Connaître l'origine et les déterminants de l'automaticité et de la conduction
- 3. Connaître l'influence du système nerveux autonome sur l'automaticité et la conduction
- 4. Connaître les principales anomalies de l'automaticité et de la conduction

Plan

- 1. Le tissu électrogénique
- 2. Automaticité
- 3. Conduction
- 4. Contrôle de l'automaticité et de la conduction
- 5. Anomalies de l'automaticité et de la conduction

Plan

- 1. Le tissu électrogénique
- 2. Automaticité
- 3. Conduction
- 4. Contrôle de l'automaticité et de la conduction
- 5. Anomalies de l'automaticité et de la conduction

Le Tissu électrogénique

- Génère automatiquement un potentiel d'action (PA) – c'est <u>l'automaticité</u>
- Transmission de la dépolarisation à l'ensemble des structures cardiaques – c'est la <u>conduction</u>
- Deux types cellulaires
 - Cellules nodales (nœud sinusal, nœud AV et tronc du faisceau de His)
 - Cellules spécialisées de Purkinje (branches du faisceau de His et réseau de Purkinje)

Le Tissu électrogénique

Le tissu électrogénique : anatomie

Plan

- 1. Le tissu électrogénique
- 2. Automaticité
- 3. Conduction
- 4. Contrôle de l'automaticité et de la conduction
- 5. Anomalies de l'automaticité et de la conduction

Automaticité : généralités

- Larges glycoprotéines
- Densité au niveau des disques intercalaires
- Deux types
 - Ligands dépendants (modulations physiologiques)
 - Voltage dépendants (propriétés basales)
 - Sodiques, calciques, potassique et chlore.
- Plusieurs sous-types
 - Canal sodique rapide
 - Canal calcique lent
 - Canal potassique

Automaticité

Automaticité

les potentiels d'action cardiaques

automaticité – potentiel pacemaker

- fuites de Na+ vers l'intérieur de la cellule
- canal I_f (f = funny) courant entrant non sélectif (Ca²⁺ et Na⁺)
- courant calcique entrant transitoire

l'automaticité dans le tissu électrogénique

toutes les cellules nodales sont automatiques

- la fréquence spontanée de dépolarisation est variable :
 - 90 à 100/min pour le nœud sinusal
 - 40 à 50/min pour le nœud auriculo-ventriculaire =
 ECHAPPEMENT jonctionnel
 - 20 à 30/min pour le tissu électrogénique ventriculaire = <u>ECHAPPEMENT</u> ventriculaire

Le potentiel d'action (PA)

automaticité – conductances ioniques

Principaux courants ioniques

• Phase 0 : courant sodique entrant

Phase 1 : courant sortant de potassium

Phase 2 : courant entrant de calcium s'équilibrant avec un courant sortant de K +

<u>Phase 3</u>: Fermeture canaux Ca²⁺ et ouverture canaux K⁺

Phase 4 : restauration des équilibres ioniques par la pompe Na+/K+

Plan

- 1. Le tissu électrogénique
- 2. Automaticité
- 3. Conduction
- 4. Contrôle de l'automaticité et de la conduction
- 5. Anomalies de l'automaticité et de la conduction

Conduction du potentiel d'action

1. Naissance du potentiel d'action dans le nœud sinusal

vitesse = 0.5 m.s^{-1}

2. propagation du potentiel d'action dans les oreillettes

vitesse = 1 m.s^{-1}

3. dépolarisation du nœud auriculo-ventriculaire RALENTISSEMENT

vitesse = 0.05 m.s^{-1}

4. conduction rapide du PA
à la pointe du cœur
(vitesse = 1 m.s⁻¹) puis
dans le réseau de Purkinje
des deux ventricules

vitesse = 4 m.s^{-1}

conduction dans le tissu électrogénique

CONTRACTION DES OREILLETTES

Disques intercalaires

la conduction – la période réfractaire

Plan

- 1. Le tissu électrogénique
- 2. Automaticité
- 3. Conduction
- 4. Contrôle de l'automaticité et de la conduction
- 5. Anomalies de l'automaticité et de la conduction

contrôle de l'automaticité et de la conduction

Effets d'une stimulation sympathique

Effets d'une stimulation sympathique

- augmentation de l'excitabilité
 - effet <u>BATHMOTROPE</u> positif

- accélération de l'automaticité
 - effet <u>CHRONOTROPE</u> positif

- facilitation (accélération) de la conduction
 - effet <u>DROMOTROPE</u> positif

Effets d'une stimulation parasympathique

Effets d'une stimulation parasympathique

- diminution de l'excitabilité
 - effet <u>BATHMOTROPE</u> négatif

- diminution de l'automaticité
 - effet CHRONOTROPE négatif

- ralentissement de la conduction
 - effet <u>DROMOTROPE</u> négatif
 - possibilité d'échappement

balance sympatho-vagale

de l'automaticité à la fréquence cardiaque (Fc)

FEIN VAGAL prédominant +++

Plan

- 1. Le tissu électrogénique
- 2. Automaticité
- 3. Conduction
- 4. Contrôle de l'automaticité et de la conduction
- 5. Anomalies de l'automaticité et de la conduction

Anomalies/particularités de l'automaticité

- rythme sinusal c'est le nœud sinusal qui est le pacemaker <u>physiologique</u>
- rythme jonctionnel le pacemaker est le nœud AV
- rythme idioventriculaire le pacemaker est le tronc du faisceau de His
- foyers ectopiques auriculaires ou ventriculaires

Anomalies de la conduction

- anomalies de conduction entre les oreillettes
- anomalies de conduction entre les oreillettes et les ventricules
 - bloc auriculo-ventriculaires (BAV)
- anomalies de conduction sur les branches du faisceau de His
 - bloc de la branche droite
 - bloc de la branche gauche

Mutations génétiques canaux ioniques

Gènes codant pour les principaux canaux ioniques cardiaques et syndromes électrocardiographiques associés.

Canaux	Courants ioniques	Gènes	Syndromes congénitaux
Sodiques	$I_{ m Na}$	Nav1.5, SCN5A	LQT3, Brugada, BAV
Calciques	$I_{Ca,L}$	Cav1.2, CACNA1C	LQT8, Timothy syndrome
	$I_{\mathrm{Ca,T}}$	Cav3.2, Cav3.1 (a1G)	Inconnu
Potassiques	I_{Ks}	KvLQT1 ou KCNQ1	LQT1 et JLN, SQTS2
		minK, KCNE1	LQT5
	$I_{\mathbf{Kr}}$	KCNH2 ou HERG	LQT2, SQTS1
	nairi	MiRP, KCNE2	LQT6
	$I_{\mathbf{Ko}}$	KCND (Kv1.4, Kv4.2/4.3)	Inconnu
	I _{Kur}	Kv1.2/1.5, Kv2.1	Inconnu
	I_{K1}	Kir (2,3,6), KCNJ2	LQT7, SQTS3
	$I_{Kplateau}$	GIRK, Kir + SUR	Inconnu
	$I_{ m K\ ATP/Ach}$		Inconnu
Pacemaker	$I_{\mathbf{f}}$	HCN4	Déficience sinusale

BAV: blocauriculoventriculaire; JLN: syndrome de Jervell et Lange-Nielsen; LQT: QT long; SQTS: syndrome QT court.

Messages essentiels du cours

- l'automaticité est liée à des cellules spécialisée qui génèrent régulièrement et spontanément des potentiels d'action
- la conduction permet une contraction coordonnée de toutes les cavités cardiaques
- le SNA permet de contrôler ces paramètres

Mentions légales

L'ensemble de ce document relève des législations française et internationale sur le droit d'auteur et la propriété intellectuelle. Tous les droits de reproduction de tout ou partie sont réservés pour les textes ainsi que pour l'ensemble des documents iconographiques, photographiques, vidéos et sonores.

Ce document est interdit à la vente ou à la location. Sa diffusion, duplication, mise à disposition du public (sous quelque forme ou support que ce soit), mise en réseau, partielles ou totales, sont strictement réservées à l'Université Grenoble Alpes (UGA).

L'utilisation de ce document est strictement réservée à l'usage privé des étudiants inscrits en Première Année Commune aux Etudes de Santé (PACES) à l'Université Grenoble Alpes, et non destinée à une utilisation collective, gratuite ou payante.

