Аналитическая геометрия и Основы высшей алгебры

Конспект по 1 семестру факультета прикладной математики и информатики (лектор: Б. Б. Комраков)

Оглавление

1	Уравнение плоскости и прямой в пространстве. 1.1 Уравнение плоскости.			
1				
	1.2	Уравнение прямой в пространстве	5	
2	Линии и поверхности второго порядка			
	2.1	Эллипс	8	
	2.2	Гипербола	10	
	2.3	Эксцентриситет и директрисы эллипса и гиперболы	12	
	2.4	Парабола	14	
	2.5	Линии второго порядка	15	
	2.6	Поверхности второго порядка	19	
II	O	сновы высшей алгебры	21	
3	Kor	мплексные числа.	22	
0	3.1	Понятие комплексного числа. Арифметические операции с комплексными		
	0.1	числами.	22	
	3.2	Извлечение корня из комлпексного числа.	23	
	J			
4	Алі	гебраические структуры	25	
	4.1	Бинарные отношения	25	
	4.2	Отображения	26	
	4.3	Бинарная алгебраическая операция	28	
5	Мн	огочлены	30	
	5.1	Кольцо многочленов	30	
6	Матрицы и определители			
	6.1	Определитель матрицы	32	
	6.2	Алгоритм Евклида. Основная теорема арифметики. Китайская теорема об		
		OCTATKAX	34	

Часть I Аналитическая геометрия

Глава 1

Уравнение плоскости и прямой в пространстве.

1.1 Уравнение плоскости.

• Нормальным вектором плоскости называется ненулевой вектор, перпендикулярный плоскости.

Рассмотрим некоторую плоскость Π , проходящую через т. $M_0(x_0, y_0, z_0) \perp n(A, B, C)$. т. $M(x, y, z) \in \Pi \iff \overrightarrow{MM_0} \perp n \iff \overrightarrow{M_0M} \cdot n = 0$.

$$\overrightarrow{MM_0}(x-x_0,y-y_0,z-z_0),$$
 $M_0\in\Pi\Longleftrightarrow A(x-x_0)+B(y-y_0)+C(z-z_0)=0$ — уравнение плоскости, проходящей через $\overrightarrow{MM_0}\perp n$

$$M \in \Pi \iff A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

 $Ax + By + Cz - \underbrace{Ax_0 - By_0 - Cz_0}_{D = -Ax_0 - By_0 - Cz_0} = 0$, тогда:

$$Ax + By + Cz + D = 0, \ A^2 + B^2 + C^2 \neq 0$$
 — общее уравнение плоскости.

Теорема.

- 1. Любая плоскость может быть задана общим уравнением.
- 2. В ДПСК любое общее уравнение определяет плоскость.

Теорема. $\Pi y cmb \ \Pi_1 : A_1 x + B_1 y + C_1 z + D_1 = 0, \ \Pi_2 : A_2 x + B_2 y + C_2 z + D_2 = 0.$

• если
$$\Pi_1 = \Pi_2$$
, то $\exists \lambda \in \mathbb{R} : \lambda = \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} = \frac{D_1}{D_2}$.

- ecau $\Pi_1 \parallel \Pi_2 \Longleftrightarrow n_1 \parallel n_2 \iff A_1 = \lambda A_2, \ B_1 = \lambda B_2, \ C_1 = \lambda C_2, \ D_1 \neq \lambda D_2.$
- $ecnu \Pi_1 \perp \Pi_2 \iff n_1 \perp n_2 \iff A_1A_2 + B_1B_2 + C_1C_2 = 0.$

•
$$cos(\Pi_1, \Pi_2) = cos(n_1, n_2) = \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \cdot \sqrt{A_2^2 + B_2^2 + C_2^2}}$$
.

• Общее уравнение плоскости называется полным, если все его коэффициенты отличны от 0, но если хотя бы один из коэффициентов равен 0, то называется неполным.

Пусть Ax + By + Cz + D = 0 — полное общее уравнение. Перенесем D и разделим:

$$\frac{Ax}{-D} + \frac{By}{-D} + \frac{Cz}{-D} = 1 \Rightarrow \frac{x}{\frac{-D}{A}} + \frac{y}{\frac{-D}{B}} + \frac{z}{\frac{-D}{C}} = 1 \text{ (заменяем: } \frac{-D}{A} = a, \frac{-D}{B} = b, \frac{-D}{C} = c)$$

$$\Rightarrow \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 - ypashehue \ \textit{плоскости в отрезках}.$$

Пусть Π — произвольная плоскость, n — единичный вектор и имеет координаты $n(cos\alpha, cos\beta, cos\gamma)$, где $\alpha = \angle(n, Ox), \ \beta = \angle(n, Oy), \ \gamma = \angle(n, Oz)$

 $x \cdot cos \alpha + y \cdot cos \beta + z \cdot cos \gamma - p = 0$ — нормальное уравнение плоскости

• Отклонением
$$\delta(M,\Pi)$$
 называется число, равное $\delta(M,\Pi) = \begin{cases} \rho(M,\Pi) = \overrightarrow{M'M} & \uparrow \uparrow n \\ -\rho(M,\Pi), \overrightarrow{M'M} & \uparrow \downarrow n \end{cases} \Rightarrow \rho(M,\Pi) = |\delta(M,\Pi)|.$

Теорема. Eсли $x \cdot cos\alpha + y \cdot cos\beta + z \cdot cos\gamma - p = 0$ — нормальное уравнение плоскости Π , то отношение $m.M_0(x_0, y_0, z_0)$ до плоскости Π равняется:

$$\delta(M_0, \Pi) = x_0 \cdot \cos\alpha + y_0 \cdot \cos\beta + z_0 \cdot \cos\gamma - p$$
$$\rho(M_0, \Pi) = |\delta(M_0, \Pi)|$$

Стоит принять во внимание, что $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$.

Нормальное уравнение можно построить из общего уравнения, домножив его на **нор-мирующий множитель**:

$$\lambda = \pm \frac{1}{\sqrt{A^2 + B^2 + C^2}}$$

Пусть плоскость П проходит через т. $M_0(x_0, y_0, z_0)$ параллельно двум неколлениарным векторам $a(a_1, a_2, a_3)$ и $b(b_1, b_2, b_3)$.

$$M(x,y,z)\in\Pi\Longleftrightarrow\overrightarrow{M_0M},\,a,b$$
 — компланарны $(\overrightarrow{M_0M}\cdot a\cdot b=0)$ $\overrightarrow{MM_0}(x-x_0,y-y_0,z-z_0)$

Если плоскость П проходит через 3 точки, не лежащие на одной прямой $M_0(x_0,y_0,z_0)$, $M_1(x_1,y_1,z_1),\ M_2(x_2,y_2,z_2)$, то в качестве неколлинеарных векторов, параллельных плоскости, можно взять $a=\overrightarrow{M_0M_1}$ и $b=\overrightarrow{M_0M_2}$ и тогда уравнение примет вид:

Т.к. вектор $a(a_1, a_2, a_3) \not\parallel b(b_1, b_2, b_3)$, $\Pi \parallel a$ и $\Pi \parallel b$, и то векторы a и b на плоскости Π образуют базис \Rightarrow любой вектор, параллельный плоскости, в том числе и $\overrightarrow{M_0M}$, если т. $M \in$ плоскости, может быть разложен по этому базису, т.е. представим в виде:

$$M_0M = t \cdot a + s \cdot b, \quad t, s \in R \Rightarrow$$

$$\begin{cases} x-x_0=t\cdot a_1+s\cdot b_1,\\ y-y_0=t\cdot a_2+s\cdot b_2,\\ z-z_0=t\cdot a_3+s\cdot b_3. \end{cases} \Rightarrow \begin{cases} x=x_0+t\cdot a_1+s\cdot b_1,\\ y=y_0+t\cdot a_2+s\cdot b_2,\\ z=z_0+t\cdot a_3+s\cdot b_3. \end{cases} --- \begin{matrix} \textit{napamempuческое уравнение}\\ \textit{n.лоскости} \end{cases}$$

• Пучок плоскостей — совокупность всех плоскостей, проходящих через прямую Δ , причем Δ — ось пучка плоскостей.

Теорема. Пусть
$$\begin{cases} \Pi_1: A_1x+B_1y+C_1z+D_1=0,\\ \Pi_2: A_2x+B_2y+C_2z+D_2=0 \end{cases},\ \Delta\in\Pi_1,\Pi_2,\ mor \partial a\\ \alpha(A_1x+B_1y+C_1z+D_1)+\beta(A_2x+B_2y+C_2z+D_2)=0\ -\ nлоскость,\ npoxodящая\ через\ \Delta,\ npuчем\ \alpha^2+\beta^2\neq 0. \end{cases}$$

• Множество всех плоскостей, проходящих через одну и ту же точку, называется связкой.

Пусть $M_0(x_0, y_0, z_0)$ — точка связки с центром, тогда уравнение связки выглядит следующим образом : $A(x-x_0) + B(y-y_0) + C(z-z_0) + D = 0$, причем $A^2 + B^2 + C^2 + D^2 \neq 0$.

1.2 Уравнение прямой в пространстве.

Пусть Δ — прямая, $M_0(x_0,y_0,z_0)$, M(x,y,z) — различные точки, при этом $M_0 \in \Delta$, $a(a_1,a_2,a_3)$ — вектор, параллельный прямой Δ (направляющий вектор). Тогда $a \parallel M_0M \Leftrightarrow M \in \Delta \Leftrightarrow \exists t \in R$:

$$\overrightarrow{M_0M} = ta. (1)$$

Вектор $\overrightarrow{M_0M}$ имеет координаты $(x-x_0,y-y_0,z-z_0)$. Тогда из (1) мы получим

$$\frac{x-x_0}{a_1} = \frac{y-y_0}{a_2} = \frac{z-z_0}{a_3} = t$$
 — каноническое уравнение прямой в пространстве.

Отсюда получим

$$\begin{cases} x = x_0 + ta_1, \\ y = y_0 + ta_2, \\ z = z_0 + ta_3; \end{cases}$$
 — параметрическое уравнение прямой в пространстве.

Пусть у нас есть ещё одна точка $M_1(x_1,y_1,z_1)$, которая также принадлежит прямой Δ , тогда в качестве вектора a можно взять вектор $\overline{M_0M_1}(x_1-x_0,y_1-y_0,z_1-z_0)$. По итогу получаем

$$\frac{x-x_0}{x_1-x_0}=\frac{y-y_0}{y_1-y_0}=\frac{z-z_0}{z_1-z_0}$$
 — уравнение прямой, проходящей через две точки.

Пусть есть две не параллельные плоскости $\Pi_1: A_1x + B_1y + C_1z + D_1 = 0$ и $\Pi_2: A_2x + B_2y + C_2z + D_2 = 0$. Тогда прямую в пространстве можно задать как пересечение этих плоскостей:

$$\begin{cases} \Pi_1: A_1x + B_1y + C_1z + D_1 = 0 \\ \Pi_2: A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$
 — уравнение прямой как пересечение двух плоскостей.

Пример: Пусть прямая Δ задана как пересечение двух плоскостей:

$$\begin{cases} \Pi_1: 2x - 3y + 2z - 5 = 0, \\ \Pi_2: 3x + 2y + z - 1 = 0. \end{cases}$$
 Задача — найти параметрическое уравнение этой прямой.

Нужно найти точку, принаждежащую этой прямой, а также направляющий вектор. Точку на прямой будем искать как общую точку для плоскостей, пересечение которых образуют эту прямую. Одну из координат можно взять любой (к примеру, возьмём z=0), тогда получим систему уравнений:

$$\begin{cases} \Pi_1: 2x - 3y = 5, \\ \Pi_2: 3x + 2y = 1; \end{cases}$$
, решение которого $x = 1, y = -1.$

Тогда искомая точка A имеет координаты (1, -1, 0).

Направляющий вектор можно найти как векторное произведение нормальных векторов плоскостей — полученный вектор будет параллелен прямой. Для первой плоскости $n_1(2, -3, 2)$,

для второй
$$n_2(3,2,1)$$
. Их векторное произведение: $\begin{bmatrix} n_1,n_2 \end{bmatrix} = \begin{vmatrix} i & j & k \\ 2 & -3 & 2 \\ 3 & 2 & 1 \end{vmatrix} = -7i + 4j + 13k \Rightarrow$

a(-7,4,13) — направляющий вектор прямой Δ .

В итоге по найдённой точке и направляющему вектору получаем искомое параметрическое уравнение прямой:

$$\begin{cases} x = 1 - 7t, \\ y = -1 + 4t, \\ z = 13t. \end{cases}$$

Рассмотрим взаимное расположение плоскости и прямой в пространстве. Пусть плоскость П задана уравнением $Ax + By + Cz + D = 0 \Rightarrow n(A, B, C)$ — нормальный вектор плоскости. Прямая же будет иметь направляющий вектор $a(a_1, a_2, a_3) \parallel \Delta$. $M_0(x_0, y_0, z_0) \in \Delta$.

1. $\Delta \in \Pi \Leftrightarrow a \perp n$ и $M_0 \in \Pi$. Последнее возможно $\Leftrightarrow Ax_0 + By_0 + Cz_0 + D = 0$.

2. $\Delta \parallel \Pi \Leftrightarrow a \perp n$ и $M_0 \notin \Pi$. Последнее возможно $\Leftrightarrow Ax_0 + By_0 + Cz_0 + D \neq 0$.

3. $\Delta \cup \Pi \Leftrightarrow a \not\perp n \Leftrightarrow a \cdot n \neq 0$.

Синус угла между прямой и плоскостью можно находить по следующей формуле:

$$\sin\varphi = \frac{n \cdot a}{|n| \cdot |a|} = \frac{Aa_1 + Ba_2 + Ca_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \sqrt{A^2 + B^2 + C^2}}$$

Рассмотрим взаимное расположение прямых в пространстве. Прямая Δ_1 имеет направляющий вектор $a(a_1,a_2,a_3)$ и точку $M_1(x_1,y_1,z_1)$. Прямая Δ_2 имеет направляющий вектор $b(b_1,b_2,a_3)$ и точку $M_2(x_2,y_2,z_2)$.

П

- 1. Прямые совпадают $(\Delta_1 = \Delta_2) \Leftrightarrow a \parallel b \parallel \overrightarrow{M_1 M_2}$.
- 2. Прямые параллельны $(\Delta_1 \parallel \Delta_2) \Leftrightarrow a \parallel b \not \parallel \overrightarrow{M_1 M_2}$.
- 3. Прямые пересекаются $(\Delta_1 \cup \Delta_2) \Leftrightarrow a \not\parallel b$ и $a,b,\overrightarrow{M_1M_2}$ компланарные.
- 4. Прямые не пересекаются и не параллельны $(\Delta_1 \stackrel{.}{-} \Delta_2) \Leftrightarrow a \not \mid b$ и $a,b,\overrightarrow{M_1M_2}$ некомпланарные.

Косинус угла между прямыми можно найти по следующей формуле:

$$\cos\varphi = \frac{a \cdot b}{|a| \cdot |b|}$$

Глава 2

Линии и поверхности второго порядка

2.1Эллипс.

 \bullet **Эллипс** — это множество точек плоскости, сумма расстояния от которых до двух данных точек F_1, F_2 этой плоскости есть величина постоянная (большая, чем расстояние от F_1 до F_2). В свою очередь, точки F_1, F_2 называются фокусами эллипса.

Выведем формулу эллипса. Обозначим за 2c расстояние между фокусами $F_1(-c,0)$ и $F_2(c,0)$. За 2a обозначим сумму расстояний от F_1 до M(x,y) и от F_2 до M(x,y), где M — точка эллипса. Очевидно, что $2a > 2c \Rightarrow a > c$. Тогда $2a = |MF_1| +$ $\overline{|MF_2|} = \sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2}.$ Второй корень перенесём в правую часть равенства и возведём всё в квадрат. В итоге получим: $x^2 + c^2 + 2xc + y^2 = 4a^2 - 4a\sqrt{(x-c)^2 + y^2} + x^2 + c^2 - 2xc + y^2$. Приведём подобные: $4a\sqrt{(x-c)^2+y^2}$ = $4a^2 - 4xc$. Поделим на 4 и получим: $a\sqrt{(x-c)^2 + y^2} = a^2 - xc.$

Снова обе части возводим в квадрат: $a^{2}(x^{2} + c^{2} - 2xc + y^{2}) = a^{4} + x^{2}c^{2} - 2a^{2}xc.$

Раскроем скобки в правой части и приведём подобные: $a^2x^2 + a^2c^2 + a^2y^2 = a^4 + x^2c^2$. Немного преобразуем это равенство: $x^2(a^2-c^2)+a^2y^2=a^2(a^2-c^2)$. Вспомним, что $a>c\Rightarrow a^2>c^2\Rightarrow a^2-c^2>0$. Обозначим за $b=\sqrt{a^2-c^2}\Rightarrow b^2=a^2-c^2\Rightarrow a^2-c^2>0$

из равенства получаем: $b^2x^2 + a^2y^2 = b^2a^2$.

Поделим обе части на (a^2b^2) :

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

т.е. любая точка M(x,y), удовлетворяющая этому каноническому уравнению, принадлежит эллипсу.

Мы показали, что любая точка, удовлетворяющая уравнению $2a = \sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2}$, удовлетворяет каноническому уравнению. Теперь покажем, что любая точка $M(x_0, y_0)$, удовлетворяющая каноническому уравнению, принадлежит эллипсу (обратная задача).

Перепишем каноническое уравнение следующим образом: $\frac{y_0^2}{b^2} = 1 - \frac{x_0^2}{a^2}$. Домножим на b^2 и

получим
$$y_0^2 = b^2(1 - \frac{x_0^2}{a^2}).$$

Тогда
$$\overline{|MF_1|} = \sqrt{(x_0+c)^2 + y_0^2} = \sqrt{(x_0+c)^2 + b^2(1-\frac{x_0^2}{a^2})} = \sqrt{x_0^2 + c^2 + 2x_0c + b^2 - b^2\frac{x_0^2}{a^2}} = [b^2 = a^2 - c^2] = \sqrt{x_0^2 + c^2 + 2x_0c + a^2 - c^2 - (a^2 - c^2)\frac{x_0^2}{a^2}} = \sqrt{2x_0c + a^2 + c^2\frac{x_0^2}{a^2}} = \sqrt{(a + \frac{cx_0}{a})^2} = [a + \frac{cx_0}{a}].$$

Значит,
$$\overline{|MF_1|}=|a+\frac{c}{a}x_0|$$
. Аналогично, $\overline{|MF_2|}=|a-\frac{c}{a}x_0|$.

$$\frac{x_0^2}{a^2} \leqslant 1 \Leftrightarrow -1 \leqslant \frac{x_0}{a} \leqslant 1 \Leftrightarrow -c \leqslant \frac{c}{a} x_0 \leqslant c. \text{ T.k. } c < a \Rightarrow -a \leqslant \frac{c}{a} x_0 \leqslant a.$$

Значит,
$$\overline{|MF_1|} = |a + \frac{c}{a}x_0| = a + \frac{c}{a}x_0$$
, $\overline{|MF_2|} = |a - \frac{c}{a}x_0| = a - \frac{c}{a}x_0$.

 $\overline{|MF_1|} + \overline{|MF_2|} = a + \frac{c}{a}x_0 + a - \frac{c}{a}x_0 = 2a \Rightarrow \forall$ точка, удовлетворяющая каноническому уравнению, принадлежит эллипсу.

Исследуем форму эллипса.

Рассмотрим каноническое уравнение эллипса $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Из него следует, что $\frac{x^2}{a^2} \leqslant 1 \Rightarrow |x| \leqslant a$. Аналогично $\frac{y^2}{b^2} \leqslant 1 \Rightarrow |y| \leqslant b$. Значит, эллипс ограничен прямоугольником, а его вершины имеют координаты $A_1(-a,0), A_2(a,0), B_1(0,-b), B_2(0,b)$.

Если точка $M_1(x,y)$ принадлежит эллипсу, то и точки $M_2(-x,y), M_3(x,-y), M_4(-x,-y)$ принаждлежат эллипсу \Rightarrow эллипс симметричек относительно осей O_x и O_y , а точка O— центр эллипса.

Прямая, проходящая через фокусы — **большая ось эллипса**, а перпендикулярная — **малая ось эллипса**. a, b — полуоси.

Рассмотрим 1-ю четверть, где $x \ge 0$ и $y \ge 0$. Выразим из уравнения y: $y^2 = b^2(1 - \frac{x^2}{a^2}) \Rightarrow y = b\sqrt{1 - \frac{x^2}{a^2}} \Rightarrow y = \frac{b}{a}\sqrt{a^2 - x^2}$.

Возьмём производную: $y' = \frac{-2bx}{2a\sqrt{a^2 - x^2}} = -\frac{b}{a}\frac{x}{\sqrt{a^2 - x^2}} < 0 \Rightarrow y$ убывает.

Возьмём вторую производную: $y'' = -\frac{b}{a}(\frac{1}{\sqrt{a^2-x^2}} + 2x(-1)\frac{1}{2}\frac{1}{\sqrt{a^2-x^2}}) = -\frac{b}{a}\frac{a^2-x^2+x^2}{\sqrt{a^2-x^2}} = -\frac{b}{a}\frac{a^2-x^2+x^2}{\sqrt{a^2-x^2}}$

 $\frac{-ba}{\sqrt{a^2-x^2}} < 0 \Rightarrow$ функция выпукла вверх. Аналогично можно рассмотреть эллипс в других четвертях.

ПРИМЕР:
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$
.

$$a^2 = 25 \Rightarrow a = 5, b^2 = 9 \Rightarrow b = 3.$$

2.2 Гипербола.

• Гипербола — это множество всех точек плоскости, модуль разности расстояний от которых до двух данных точек F_1 и F_2 (фокусы) есть величина постоянная и меньше, чем $\overline{|F_1F_2|}$.

Рассмотрим упомянутые расстояния: $\overline{|MF_1|} = \sqrt{(x+c)^2+y^2}$; $\overline{|MF_2|} = \sqrt{(x-c)^2+y^2}$. $|\overline{|MF_1|}-\overline{|MF_2|}| = 2a < 2c \Rightarrow a < c$.

$$|\sqrt{(x+c)^2+y^2}-\sqrt{(x-c)^2+y^2}|=2a-$$
 уравнение гиперболы.

Преобразуем данное уравнение. Раскроем модуль и перенесём второй корень в пра-

вую часть: $\sqrt{(x+c)^2+y^2}=\sqrt{(x-c)^2+y^2}\pm 2a$. Возведём обе части в квадрат: $(x+c)^2+y^2=(x-c)^2+y^2+4a^2\pm 4a\sqrt{(x-c)^2+y^2}$.

Расскрывая скобки и приведя подобные, получим $4xc=4a^2\pm 4a\sqrt{(x-c)^2+y^2}$. Обе части можно поделить на 4: $xc=a^2\pm a\sqrt{(x-c)^2+y^2}$.

Перенесём a^2 вправо и возведём ещё раз в квадрат: $x^2c^2 + a^4 + 2a^2xc = a^2x^2 + a^2c^2 - 2a^2xc + a^2y^2$. Приведя подобные и вынеся общие члены за скобки, получим $x^2(c^2 - a^2) - a^2y^2 = a^2(c^2 - a^2)$.

Обозначим за $b = \sqrt{c^2 - a^2}$ и сделаем замену: $x^2b^2 - a^2y^2 = a^2b^2$. Поделим всё на a^2b^2 и получим каноническое уравнение гиперболы:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

Теперь покажем, что любая точка M(x,y), удовлетворяющая каноническому уравнению, принадлежит гиперболе.

Из канонического уравнения
$$y^2=(\frac{x^2}{a^2}-1)b^2$$
. $\overline{|MF_1|}=\sqrt{(x+c)^2+y^2}=\sqrt{x^2+c^2+2xc+b^2\frac{x^2}{a^2}-b^2}=\sqrt{x^2+c^2+2xc+c^2\frac{x^2}{a^2}-x^2-c^2+a^2}=\sqrt{a^2+(\frac{cx}{a})^2+2xc}=|a+\frac{c}{a}x|$. Аналогичным образом $\overline{|MF_2|}=|a-\frac{c}{a}x|$.

Т.к. $\frac{x^2}{a^2} \leqslant 1 \Rightarrow x^2 \delta a^2 \Rightarrow$ имеем два случая

1.
$$x \leqslant a \Rightarrow \frac{x}{a} \leqslant 1 \Rightarrow \frac{c}{a}x \geqslant c$$
. Ho $c > a \Rightarrow \overline{|MF_1|} = a + \frac{c}{a}x, \overline{MF_2} = \frac{c}{a}x - a$ и $|\overline{|MF_1|} - \overline{|MF_2|}| = |a + \frac{c}{a}x - \frac{c}{a}x - a| = 2a$.

$$2. \ x \leq -a \Rightarrow -\frac{x}{a} \leqslant 1 \Rightarrow -\frac{c}{a}x \leqslant c > a \Rightarrow \overline{|MF_1|} = -a - \frac{c}{a}x, \overline{MF_2} = a - \frac{c}{a}x \text{ M} = a - \frac$$

Исследуем форму гиперболы.

Пересечения: точки $A_1(-a,0)A_2(a,0)$ — с осью O_x , а с осью O_y пересечений нет.

Гипербола симметрична относительно O_x и O_y (из-за квадратов в каноническом уравнении). Ось O_x — действительная ось гиперболы (на ней лежат точки F_1, F_2), ось O_y — мнимая ось гиперболы.

Середина $\overline{F_1F_2}$ — центр гиперболы. Точки A_1, A_2 — вершины гиперболы, a, b — полюсы гиперболы. Если a=b, то гиперболу называют равносторонней.

Рассмотрим гиперболу в первой четверти. $y^2=(\frac{x^2}{a^2}-1)b^2\Rightarrow y^2=\frac{b^2}{a^2}(x^2-a^2)\Rightarrow y=\frac{b}{a}\sqrt{x^2-a^2}.$

$$y'=rac{b}{a}\cdotrac{1}{2}\cdotrac{2x}{\sqrt{x^2-a^2}}=rac{bx}{a\sqrt{x^2-a^2}}>0\Rightarrow y$$
 возрастает.

$$y'' = \frac{b}{a} \cdot \left(\frac{2x}{\sqrt{x^2 - a^2}} - x - \frac{2x}{\frac{2}{\sqrt{x^2 - a^2}}} \right) = \frac{b}{a} \cdot \left(\frac{x^2 - a^2 - x^2}{(x - a)^2 \sqrt{x^2 - a^2}} \right) = \frac{-ab}{(\sqrt{x^2 - a^2})^3} < 0 \Rightarrow функция выпукла вверх по y .$$

Асимптоты гиперболы должны удовлетворять формуле y=kx+l. $k=\lim_{x\to +\infty}\frac{f(x)}{x}=\lim_{x\to +\infty}\frac{b\sqrt{x^2-a^2}}{x}=\frac{b}{a}.$

$$l=\lim_{x\to +\infty}f(x)-kx=\lim_{x\to +\infty}\left(\frac{b}{a}\sqrt{x^2-a^2}-\frac{b}{a}x=\frac{b}{a}\lim_{x\to +\infty}\frac{-a^2}{\sqrt{x^2-a^2}+x}\right)=0\Rightarrow\text{ асимпто-ты: }y=\frac{b}{a}x;y=-\left(\frac{b}{a}x\right).$$

Сопряженная гипербола. Её точки удовлетворяют каноническому уравнению $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$.

Пример: $\frac{x^2}{25} - \frac{y^2}{9} = 1$.

a = 5, b = 3. Асимптоты удовлетворяю уравнению $y = \pm \frac{3}{5}x$.

Эксцентриситет и директрисы эллипса и гиперболы. 2.3

Вспомним формулы их двух прошлых параграфов:

2c — растояние между фокусами. Эллипс: $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,\ a>c, b=a^2-c^2.$ Гипербола: $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1,\ c>a,b=c^2-a^2.$

• Эксцентриситет — величина, равная $\varepsilon = \frac{c}{a}$.

Утверждение: для эллипса $c < a \Rightarrow 0 < \varepsilon < 1$: $\varepsilon = \frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a} = \sqrt{1 - \left(\frac{b}{a}\right)^2}$. Для гиперболы $c > a \Rightarrow \varepsilon > 1$: $\varepsilon = \frac{c}{a} = \frac{\sqrt{a^2 + b^2}}{a} = \sqrt{1 + \left(\frac{b}{a}\right)^2}$. Чем больше эксцентриситет, тем уже эллипс (гипербола).

• Директрисы — прямые, проходящие параллельно малой оси эллипса (мномой оси гиперболы) на расстоянии $\frac{a}{\varepsilon}$ от центра эллипса (гиперболы).

• Директриса и фокус, расположенные по одну сторону от O_y , называются **соответствующими**.

$$\rho(F_i, \Delta_i) = |c - \frac{a}{\varsigma}|, i = \overline{1, 2}; F_1(-c, 0), F_2(c, 0).$$

Теорема (основное свойство директрис). Пусть M(x,y)- любая точка эллипса/гиперболы. Тогда $\varepsilon=\dfrac{\overline{|MF_i|}}{\rho(M,\Delta_i)},\$ где Δ_i,F_i- соответствующие.

lacktriangle Докажем для эллипса. Для гиперболы доказательство аналогичное. Достаточно рассмотреть оба случая (i=1 и i=2):

$$\begin{split} & \frac{\overline{|MF_2|}}{M, \Delta_2)} = \frac{a - \varepsilon_x}{\frac{a}{\varepsilon} - x} = \varepsilon. \\ & \frac{\overline{|MF_1|}}{M, \Delta_1)} = \frac{a + \varepsilon_x}{\frac{a}{\varepsilon} + x} = \varepsilon. \end{split}$$

2.4 Парабола.

Пусть F — точка на плоскости (фокус). $F \notin \Delta$, где Δ — директриса.

• **Парабола** — множество точек плоскости, каждая из которых равноудалена от F u om Δ .

Введём обозначения. $p=\overline{|DF|}, F(\frac{p}{2},0), \Delta:$ $x=-\frac{p}{2}, M(x,y)$ — точка, принадлежащая параболе, $\rho(M,\Delta)=\overline{|MF|}.$

$$|x+rac{p}{2}|=\sqrt{(x-rac{p}{2})^2+y^2}$$
 из определения параболы. Возведём обе части в квадрат: $x^2+px+rac{p^2}{4}=x^2-px+rac{p^2}{4}+y^2\Rightarrow$

$$y^2 = 2px$$

— каноническое уравнение параболы.

Покажем, что любая точка $M_1(x_1, y_1)$, удовлетворяющая каноническому уравнению, принадлежит эллипсу.

$$\overline{|M_1F|} = \sqrt{(x_1 - \frac{p}{2})^2 + y_1^2} = \sqrt{x_1^2 + \frac{p^2}{4} - 2px_1 - px_1} = \sqrt{x_1^2 + \frac{p^2}{4} + px_1} = \sqrt{(x_1 + \frac{p}{2})^2} = |x_1 + \frac{p}{2}| = \rho(M_1, \Delta) \Rightarrow \overline{|M_1F|} = \rho(M_1, \Delta).$$

Следствие. 1. $x \geqslant 0$ — парабола в <u>правой</u> полуплоскости;

- 2. Если точка $M(x,y)\in$ параболе, то и $M'(x,-y)\in$ параболе;
- 3. Ось, проходящая через фокусы ocь симметрии;

4.
$$y \geqslant 0: y = \sqrt{px} \Rightarrow y' = \frac{\sqrt{2p}}{2\sqrt{x}} > 0 \Rightarrow y$$
 bospacmaem.

Линии второго порядка. 2.5

ullet **Линии второго порядка** — это множество точек плоскости, координаты которых удовлетворяют следующему уравнению: $Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0$, где A, B, C не обращаются одновременно в нуль $(A^2 + B^2 + C^2 \neq 0)$.

Выведем некоторые линии второго порядка. Пусть $B \neq 0$ в Oxy. Преобразуем ДПСК Oxy в O'x'y' поворотом на угол φ . Тогда

$$\begin{cases} x = x'\cos\varphi - y'\sin\varphi, \\ y = x'\sin\varphi + y'\cos\varphi. \end{cases}$$

Подставив всё в уравнение для линий второго порядка, получим

 $A(x'\cos\varphi - y'\sin\varphi)^2 + 2B(x'\cos\varphi - y'\sin\varphi)(x'\sin\varphi +$ $y'cos\varphi$) + $C(x'sin\varphi + y'cos\varphi)^2$ + $2D(x'cos\varphi - y'cos\varphi)^2$ $y'sin\varphi$) + $2E(x'sin\varphi + y'cos\varphi)$ + F = 0.

Расскроем скобки и сделаем следующие замены:

$$\begin{cases} A' = Acos^{2}\varphi + 2Bcos\varphi sin\varphi + Csin^{2}\varphi \\ B' = -Acos\varphi sin\varphi + B(cos^{2}\varphi - sin^{2}\varphi) + Csin\varphi cos\varphi \\ C' = Asin^{2}\varphi - 2Bsin\varphi cos\varphi + Ccos^{2}\varphi \\ D' = D(x'cos\varphi - y'sin\varphi) \\ E' = E(x'sin\varphi + y'cos\varphi) \\ F' = F \end{cases}$$

В итоге получим $A'x'^2 + 2Bx'y' + C'y'^2 + 2D'x' + 2E'y' + F' = 0$.

Покажем, что A', B' и C' не обращаются в нуль одновременно от противного: пусть A' = B' = C' = 0. Тогда, рассмотрев первые три равенства в замене, сложим 1 и 3 уравнение и получим систему:

$$\begin{cases} A\cos 2\varphi + B\sin 2\varphi = 0\\ -A\sin 2\varphi + B\cos 2\varphi = 0 \end{cases}$$

Значит $A = \frac{\Delta_1}{\Delta} = 0, B = \frac{\Delta_2}{\Delta} = 0.$

Т.к. B' = 0, то $B(\cos^2\varphi - \sin^2\varphi) + (C - A)\cos\varphi\sin\varphi = 0 \Leftrightarrow B\cos2\varphi + \frac{C - A}{2}\sin2\varphi = 0$. От сюда получаем, что $tg2\varphi=\frac{2B}{A-C}$ — угол, на который нужно повернуть оси.

Если A = C, то $\varphi = \frac{\pi}{4}$. При повороте на этот угол получаем новую систему координат. Рассмотрим следующие случаи:

1. $A'C' \neq 0$.

$$A'\left((x')^2 + \frac{2D'}{A'}x' + (\frac{D'}{A'})^2\right) - \frac{D'^2}{A'} + C'\left((y')^2 + 2\frac{E'}{C'}y' + (\frac{E'}{C'})^2\right) - \frac{E'^2}{C'} + F = 0.$$

Преобразуем, чтобы получить квадраты сумм:

$$A' \Big(x' + \frac{D'}{A'} \Big)^2 + C' \Big(y' + \frac{E'}{C'} \Big)^2 + F - \frac{(D')^2}{A'} - \frac{(E')^2}{C'} = 0.$$

Сделаем замену: $\begin{cases} F' = F - \frac{(D')^2}{A'} - \frac{(E')^2}{C'}, \\ x'' = x' + \frac{D'}{A'}, \\ y'' = y' + \frac{E'}{C'}. \end{cases}$ — параметрический сдвиг координатных осей.

Получим
$$A'(x'')^2 + C'(y'')^2 + F' = 0 \Leftrightarrow \frac{(x'')^2}{-\frac{F'}{A'}} + \frac{(y'')^2}{-\frac{F'}{C'}} = 1.$$

Если $-\frac{F'}{A'}>0, -\frac{F'}{C'}>0,$ то заменив соответствующие дроби на a^2,b^2 получим $\frac{(x'')^2}{a^2} + \frac{(y'')^2}{b^2} = 1$ — эллипс.

Если
$$-\frac{F'}{A'} < 0, -\frac{F'}{C'} < 0$$
, то получим $\frac{(x'')^2}{a^2} + \frac{(y'')^2}{b^2} = -1$ — мнимый эллипс.

Если же эти дроби разных знаков, то получим $\frac{(x'')^2}{a^2} - \frac{(y'')^2}{b^2} = 1$ — гипербола.

В итоге получили несколько линий 2-го порядка:

1.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 — эллипс;

$$2. \ \frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$$
 — мнимый эллипс;

$$3. \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 — гипербола;

4.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$
 — пара мнимых пересекающихся прямых (точка);

5.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$
 — пара пересекающихся прямых (точка);

Уравнение для прямых и мнимых прямых можно получить при условии, если F'=0.

Тогда
$$A'(x'')^2 + C'(y'')^2 = 0 \Rightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} = 0.$$

2.
$$A'C' = 0 \Rightarrow A' \neq 0, C = 0.$$

 $A'(x')^2 + 2D'x' + 2E'y' + F = 0. A' \neq 0.$

$$A'\left((x')^2 + \frac{2D'}{A'}x' + (\frac{D'}{A'})^2\right) - \frac{(D')^2}{A'} + 2E'y' + F = 0.$$

Рассмотрим случай, когда $E' \neq 0$. Тогда $A'(x' + \frac{D'}{A'})^2 + 2E'(y' + \frac{F}{2E'} - \frac{(D')^2}{2E'A'}) = 0$.

Сделав замену
$$x'' = x' + \frac{D'}{A'}$$
, $y'' = y' + \frac{F}{2E'} - \frac{(D')^2}{2E'A'}$ получим $A'(x'')^2 + 2E'y'' = 0 \Rightarrow$

$$(x'')^2 = -\frac{2E'}{A'}y'' \Rightarrow [-\frac{2E'}{A'} = 2p] \Rightarrow (x'')^2 = 2py''$$
 — уравнение параболы.

Случай, когда
$$E'=0$$
. Тогда $A'(x'+\frac{D'}{A'})^2+F-\frac{D'^2}{A}=0$. Заменим $F'=F-\frac{D'^2}{A}, x''=$

$$x'+rac{D'}{A'}, y''=y'\Rightarrow A'x''^2+F'=0\Rightarrow x''^2=-rac{F'}{A'}.$$
 Если $-rac{F'}{A'}>0$, то $(x'')^2=a^2\Rightarrow x''=\pm a.$ Если $-rac{F'}{A'}<0$, то $(x'')^2=-a^2.$ Если $-rac{F'}{A'}\Rightarrow (x'')^2=0.$

В итоге получили:

6.
$$y^2 = 2px$$
 — парабола;

7.
$$x^2 - a^2 = 0$$
 — пара параллельных прямых;

8.
$$x^2 + a^2 = 0$$
 — пара мнимых параллельных прямых;

9.
$$x^2 = 0$$
 — пара пересекающихся прямых.

Теорема. Для любой линии второго порядка существует система координат, в которой эта линия определена одним из следующих канонических уравнений:

1.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - \text{PLAUDE};$$

$$2. \frac{x^2}{a^2} + \frac{y^2}{b^2} = -1 -$$
мнимый эллипс;

3.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 — гипербола;

4.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$
 — пара мнимых пересекающихся прямых (точка);

5.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$
 — пара пересекающихся прямых (точка);

6.
$$y^2 = 2px - napaбола;$$

7.
$$x^2 - a^2 = 0$$
 — пара парамельных прямых;

8.
$$x^2 + a^2 = 0 - napa$$
 мнимых параллельных прямых;

9.
$$x^2 = 0$$
 — napa пересекающихся прямых.

Пример: Определить, какая линия второго порядка задана уравнением и нарисовать её на плоскости: $x^2 - 12xy - 4y^2 + 12x + 8y + 5 = 0$.

$$A = 1, C = -4, 2B = -12.$$

Найдём угол φ , на который нужно повернуть ДПСК:

$$tg2\varphi=rac{2B}{A-C}=-rac{12}{5}$$
. Из тригонометрии: $tg2\varphi=rac{2tg\varphi}{1-tg^2\varphi}$. Заменим $tg\varphi=t$.

$$\frac{2t}{1-t^2} = -\frac{12}{5} \Rightarrow \frac{t}{1-t^2} = -\frac{6}{5}.$$

$$6t^{2} - 5t - 6 = 0 \Rightarrow t = \frac{5 + 13}{12} = \frac{3}{2} \Rightarrow tg\varphi\frac{3}{2}.$$

От сюда:
$$sin\varphi = \frac{3}{\sqrt{13}}, cos\varphi = \frac{2}{\sqrt{13}}$$
 Делаем замену, переходя к новой ДПСК:

$$\begin{cases} x = \frac{1}{\sqrt{13}} (2x' - 3y') \\ y = \frac{1}{\sqrt{13}} (3x' + 2y') \end{cases}$$

$$\frac{1}{13}(4x'^2 - 12x'y' + 9y'^2) - \frac{12}{13}(6x'^2 - 6y'^2 - 5x'y') - \frac{4}{13}(9x'^2 + 12x'y' + 4y'^2) + \frac{12}{\sqrt{13}}(2x' - 3y') + \frac{8}{\sqrt{13}}(3x' + 2y') + 5 = 0$$

Задача была получить 0 перед x'y'. Проверим, найдя коэффициенты перед множителями:

$$x'^{2}: \frac{4}{13} - \frac{72}{13} - \frac{36}{13} = -8$$
$$y'^{2}: \frac{9}{13} + \frac{72}{13} - \frac{16}{13} = 5$$
$$x'y': -\frac{12}{13} + \frac{60}{13} - \frac{48}{13} = 0$$

В итоге получили:
$$-8x'^2 + 5y'^2 + \frac{48}{\sqrt{13}}x' - \frac{20}{\sqrt{13}}x' - \frac{20}{\sqrt{13}}y' + 5 = 0.$$

Теперь сделаем ещё одно преобразование ДПСК: параллельный перенос (таким образом, мы избавимся от x' и y', оставив только x'^2 и y'^2).

Преобразуем:
$$-8(x'^2 - \frac{6}{\sqrt{13}}x' + \frac{9}{13}) + \frac{72}{13} + 5(y'^2 - \frac{4}{\sqrt{13}}y' + \frac{4}{13}) - \frac{20}{13} + 5 = 0 \Leftrightarrow -8(x' - \frac{3}{\sqrt{13}})^2 + 5(y' - \frac{2}{\sqrt{13}})^2 + 9 = 0$$

Делаем замену, переходя к новой ДПСК:

Делаем замену, 1
$$\begin{cases} x'' = x' - \frac{3}{\sqrt{13}} \\ y'' = y' - \frac{2}{\sqrt{13}} \end{cases}$$
 Подставляем:

$$-8x''^2 + 5y''^2 + 9 = 0 \Leftrightarrow \frac{x''^2}{\frac{9}{8}} - \frac{y''^2}{\frac{9}{5}} = 1$$
— гипербола.

$$a^2 = \frac{9}{8}, b^2 = \frac{9}{5}$$

Некоторые точки искомой линии второго порядка: (2,3), (-3,2).

На рисунке преобразованные ДПСК отмечены так: синия — изначальная, оранжевая после поворота, зелённая — после параллельного переноса. Сама линия 2-го порядка (гипербола) нарисована фиолетовым. Иллюстрация примерная (более точный график был сделал в десмосе ниже).

2.6 Поверхности второго порядка.

ullet Поверхность второго порядка — множество точек пространства, координаты которых удовлетворяют уравнению следующего вида: $a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy +$ $2a_{13}xz + 2a_{23}yz + 2a_{1}x + 2a_{2}y_{2}a_{3}z + a = 0.$

Теорема. Для любой поверхности второго порядка существует пространтсвенная ДП в которой эта поверхность определена одним из следующих канонических уравнений:

1. $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ — эллипсоид;

2. $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1$ — мнимый эллипсоид;

3. $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ — однополостной гиперболоид;

4. $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$ — двуполостной гиперболоид;

5. $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$ — конус второго порядка;

6. $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$ — мнимый конус второго порядка;

7. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$ — эллиптический параболоид;

8. $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z$ — гиперболический параболоид; Теорема. Для любой поверхности второго порядка существует пространтсвенная ДПСК

1.
$$\frac{x^2}{a_2^2} + \frac{y^2}{b_2^2} + \frac{z^2}{c_2^2} = 1 - \text{эмипсоид};$$

2.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1$$
 — мнимый эллипсоид;

3.
$$\frac{x^2}{a_1^2} + \frac{y^2}{b_1^2} - \frac{z^2}{c_1^2} = 1 - oднополостной гиперболоид,$$

4.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1 - двуполостной гиперболоид,$$

5.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$
 — конус второго порядка;

6.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$$
 — мнимый конус второго порядка;

7.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z -$$
эмиптический параболоид;

8.
$$\frac{x^2}{a_0^2} - \frac{y^2}{b_0^2} = 2z - ғиперболический параболоид,$$

9.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 — эллиптический цилиндр;

$$10. \; rac{x^2}{a_0^2} + rac{y^2}{b_0^2} = -1 \; - \;$$
 мнимый эллиптический цилиндр;

11.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 — гиперболический цилиндр,

12.
$$y^2 = 2px - napaболоический цилиндр,$$

11.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 — гиперболический цилиндр;
12. $y^2 = 2px$ — параболоический цилиндр;
13. $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ — пара пересекающихся плоскостей; $x^2 - y^2 = 0$

14.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$
 — пара мнимых пересекающихся плоскостей;
15. $x^2 - a^2 = 0$ — пара параллельных плоскостей;
16. $x^2 + a^2 = 0$ — пара мнимых параллельных плоскостей;

15.
$$x^2 - a^2 = 0$$
 — пара параллельных плоскостей;

16.
$$x^2 + a^2 = 0$$
 — пара мнимых парамельных плоскостей.

17.
$$x^2 = 0$$
 — пара совпадающих плоскостей.

Часть II Основы высшей алгебры

Глава 3

Комплексные числа.

3.1 Понятие комплексного числа. Арифметические операции с комплексными числами.

• Комплексным числом называют выражение вида z = a + bi, где a, b - dействительные числа, а i - cимвол, называемый **мнимой единицей**.

Пример:
$$i^2 = -1$$
, $z = 3 + 2i$ — комплексное число, $a = 3, b = 2$.

a = Rez - действительная часть комплексного числа.

b = Imz — мнимая часть комплексного числа.

- Комплексное число, у которого действительная часть равна нулю, называется **чисто мнимым**. Комплексное число, у которого мнимая часть равна нулю **действительное число**.
- Пусть есть два комплексных числа $z_1 = a_1 + b_1 i, z_2 = a_2 + b_2 i$. Они называются **равными**, если их действительные и мнимые части равны $(a_1 = a_2, b_1 = b_2 \Rightarrow z_1 = z_2)$.
- Суммой двух компексных чисел z_1 и z_2 называется комплексное число $z = (a_1 + a_2) + (b_1 + b_2)i$ (т.е. складываются действительные и мнимые части).

Свойства суммы комплексных чисел:

1. $z_1 + z_2 = z_2 + z_1$ (коммутативность).

- 2. $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$ (accoulamus ность).
- 3. (Введение разности комплексных чисел) $z_1 z_2 = (a_1 a_2) + (b_1 b_2)i$. Следует из суммы: $z + z_2 = z_1 \Rightarrow z_1 z_2 = z$.

Введём произведение комплексных чисел: $z_1z_2 = (a_1 + b_1i)(a_2 + b_2i) = a_1a_2 + a_1b_2i + b_1a_2i - b_1b_2 = (a_1a_2 - b_1b_2) + (a_1b_2 + b_1a_2)i = z$ — произведение двух комплексных чисел z_1 и z_2 .

Свойства произведения комплексных чисел:

- 1. $z_1 z_2 = z_2 z_1$ (коммутативность).
- 2. $(z_1z_2)z_3 = z_1(z_2z_3)$ (ассоциативность).

- 3. $z_1(z_2+z_3)=z_1z_2+z_1z_3$ (дистрибутивность относительно сложения).
- Пусть z = a + bi. Комплексное число $\overline{z} = a bi$ называется **сопряжённым** комплексным числом к комплексному числу z (равны действительные части, а мнимые отличаются на знак).

Введём деление комплексных чисел: $\frac{z_1}{z_2} = \frac{a_1 + b_1 i}{a_2 + b_2 i} = \left[\text{домножим на сопряженное знаменателю}\right] = \frac{(a_1 + b_1 i)(a_2 - b_2)}{(a_2 + b_2 i)(a_2 - b_2)} = \frac{(a_1 + b_1 i)(a_2 - b_2 i)}{a_2^2 + b_2^2}$

Пример: Пусть $z_1 = 2 - 3i, z_2 = -3 + 7i.$

$$z_1 + z_2 = -1 + 4i;$$

$$z_1 - z_2 = 5 - 10i$$
;

$$z_1 z_2 = (2 - 3i)(-3 + 7i) = -6 + 14i + 9i + 21 = 15 + 23i;$$

$$\frac{z_1}{z_2} = \frac{2 - 3i}{-3 + 7i} = \frac{(2 - 3i)(-3 - 7i)}{(-3 + 7i)(-3 - 7i)} = \frac{-6 - 14i + 9i - 21}{9 + 49} = \frac{-27 - 5i}{58}.$$

Свойства сопряжённых комплексных чисел:

1.
$$z + \overline{z} = 2Rez = 2a$$
; $z - \overline{z} = 2iImz = 2bi$.

2.
$$z = \overline{z} \Leftrightarrow z \in \mathbb{R}$$
.

3.
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}; \overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}$$

$$igoplus \Pi$$
усть $z_1 = a_1 + b_1 i, z_2 = a_2 + b_2 i.$ $z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2) i.\overline{z_1 + z_2} = (a_1 + a_2) - (b_1 + b_2) i = (a_1 - b_1 i) + (a_2 - b_2 i) = \overline{z_1} + \overline{z_2}$. С вычитанием аналогично.

4.
$$\overline{z_1 z_2} = \overline{z_1 z_2}$$
.

$$5. \ \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}.$$

3.2 Извлечение корня из комлпексного числа.

Пусть z — некоторое комплексное число.

• Корнем n-ой степени из комплексного числа z называется число z_0 такое, что z_0 в степени n равно Самому комплексному числу z. То есть $z_0^n = z$.

Теорема. Извлечение корня n-ой степени из комплексного числа $z = \rho e^{i\varphi}$ всегда возможно u, $npu \ z \neq 0$, даёт ровно n различных значений:

$$z_k = \sqrt[n]{\rho} e^{i\frac{\varphi + 2\pi k}{n}}, \ k = 0, \dots, n - 1,$$

где $\sqrt[n]{\rho}$ — действительное положительное число, n-ая степень которого равна ρ .

ПРИМЕР: Извлечение квадратного корня из комплексного числа.

Пусть
$$z = a + bi$$
, $z_0 = \sqrt{z}$, то есть $z_0^2 = z$, $z_0 = a_0 + b_0i$.

Тогда
$$(a_0+b_0i)^2=a_0^2+2a_0b_0i-b_0^2=a+bi$$
. Следовательно, получаем систему
$$\begin{cases} a_0^2-b_0^2=a,\\ 2a_0b_0=b; \end{cases}$$
 \Rightarrow

$$\begin{cases} a_0^4 - 2a_0^2b_0^2i - b_0^4 = a^2, \\ 4a_0^2b_0^2 = b^2; \end{cases} \Rightarrow (a_0^2 + b_0^2)^2 = a^2 + b^2 \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = \sqrt{a^2 + b^2}; \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = \sqrt{a^2 + b^2}; \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = \sqrt{a^2 + b^2}; \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = \sqrt{a^2 + b^2}; \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = \sqrt{a^2 + b^2}; \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = \sqrt{a^2 + b^2}; \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = \sqrt{a^2 + b^2}; \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = \sqrt{a^2 + b^2}; \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = \sqrt{a^2 + b^2}; \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = \sqrt{a^2 + b^2}; \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = \sqrt{a^2 + b^2}; \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = \sqrt{a^2 + b^2}; \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = \sqrt{a^2 + b^2}; \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = \sqrt{a^2 + b^2}; \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = \sqrt{a^2 + b^2}; \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = \sqrt{a^2 + b^2}; \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = \sqrt{a^2 + b^2}; \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = \sqrt{a^2 + b^2}; \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = \sqrt{a^2 + b^2}; \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = \sqrt{a^2 + b^2}; \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = \sqrt{a^2 + b^2}; \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = \sqrt{a^2 + b^2}; \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = a, \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = a, \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = a, \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = a, \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = a, \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = a, \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = a, \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = a, \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \\ a_0^2 + b_0^2 = a, \end{cases} \Rightarrow \begin{cases} a_0^2 - b_0^2 = a, \end{cases} \Rightarrow \begin{cases} a_0^$$

Глава 4

Алгебраические структуры

4.1 Бинарные отношения.

Пусть X и Y — непустые множества.

• Множество $X \times Y = \{(x,y) \mid x \in X, y \in Y\}$ называется **декартовым произве- дением** X на Y.

ПРИМЕР: Пусть
$$X = \{1, 2\}, Y = \{2, 3\}.$$
 Тогда $X \times Y = \{(1, 2), (1, 3), (2, 2), (2, 3)\}.$ В свою очередь $Y \times X = \{(2, 1), (3, 1), (2, 2), (3, 2)\}.$

Возьмём Y = X.

• Декартовое произведение $X^2 = X \times X = \{(x,y) \mid x \in X, y \in X\}$ называется де-картовым квадратом.

Пример: Возьмём множество
$$X$$
 из предыдущего примера. Тогда $X \times X = \{(1,1),(1,2),(2,1),(2,2)\}.$

• Любое подмножество декартового квадрата является **бинарным отношением**, определенным на $\sigma \subset X^2$.

Пример: Если
$$(x,y) \in \sigma$$
, то $[\frac{x}{y} = \sigma] \Longleftrightarrow x\sigma y$.
 Если множество L — прямые, то L^2 — пары прямых. Тогда если $\sigma = ||$ и $|| \subset L^2$, то $(\Delta_1, \Delta_2) \in || \Longleftrightarrow \Delta_1 || \Delta_2$.

- ullet Бинарное отношение $\sigma \subset X^2$ называется **отношением эквивалентности**, если выполняются условия
 - 1. $\forall x \in X \quad x \sigma x \ ((x, x) \in \sigma) \textbf{pefinekcushocmb}.$
 - 2. $x\sigma y, y\sigma z \Rightarrow x\sigma z \ ((x,y) \in \sigma \ \text{и} \ (y,z) \in \sigma \Rightarrow (x,z) \in \sigma)$ **транзитивность**.
 - 3. $x\sigma y \Rightarrow y\sigma x \ ((x,y) \in \sigma \Rightarrow (y,x) \in \sigma)$ симметричность.

Обозначение: \sim (например $x \sim y$).

ПРИМЕР: Пусть $X = \{1, 2, 3\}$. Тогда $\sigma = \{(1, 1)\}$ — нет рефлексивности.

$$\sigma = \{(1,1),(2,2),(3,3),(1,2),(2,1),(1,3)\}$$
 — нет симметричности. $\sigma = \{(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1)\}, (2,1),(1,3) \Rightarrow (2,3) \in \sigma$ — ?!, нет транзитивности.

• Подмножество $\overline{x} = \{x' \in X \mid x' \sim x\}$ множества X при $x \in X$ называется **классом** эквивалентности элемента x. Любой элемент $x' \in \overline{x}$ называется представителем класса \overline{x} .

Лемма. $x_1 \sim x_2 \Longleftrightarrow \overline{x}_1 = \overline{x}_2, \ x_1, x_2 \in X$.

 $lack \Rightarrow$) $x_1 \sim x_2 \Rightarrow$ возьмём произвольный $x \in \overline{x}_1 \Rightarrow x \sim x_1, x_1 \sim x_2 \Rightarrow x \sim x_2 \Rightarrow x \in \overline{x}_2 \Rightarrow \overline{x}_1 = \overline{x}_2.$

$$\Leftarrow$$
) $\overline{x_1} = \overline{x_2}$. Возьмем $x_1 \in \overline{x_1}$ и $x_2 \in \overline{x_2} \Rightarrow x_1 \in \overline{x_2} \Rightarrow x_1 \sim x_2$.

• Если X представимо в виде объединения попарно непересекающихся подмножеств $(X = \bigcup x_i, \ x_i \cup x_j = \varnothing)$, то данное множество разбивается на эти подмножества.

Теорема. Пусть на множестве X задано бинарное отношение эквивалентности, тогда X разбивается на непересекающиеся классы эквивалентности.

$$\blacklozenge$$
 $\forall x \in X, x \in \overline{x} \subset X, X = \bigcup_{x \in X} \{x\} \subset \bigcup_{x \in X} \overline{x} \subset X$. С другой же стороны $X = \bigcup_{x \in X} \overline{x}$.

Покажем, что два класса эквивалентности \overline{x}_1 и \overline{x}_2 не пересекаются или совпадают ($\overline{x}_1 = \overline{x}_2$ или $\overline{x}_1 \cap \overline{x}_2 = \varnothing$):

Пусть $\overline{x}_1 \cap \overline{x}_2 \neq \emptyset$. Тогда найдется $x \in \overline{x}_1 \in \overline{x}_2 \Rightarrow x \in \overline{x}_1, x \in \overline{x}_2 \Rightarrow x \sim x_1, x \sim x_2 \Rightarrow [x_1 \sim x, x_2 \sim x \Rightarrow x_1 \sim x_2] \Rightarrow$ если $x_1 \sim x_2$, то $\overline{x}_1 = \overline{x}_2$ по лемме.

- ullet Бинарное отношение σ на множестве X называется **отношением порядка**, если выполняются условия
 - 1. $\forall x \in X \quad x\sigma x pef$ лексивность.
 - 2. $x\sigma y, y\sigma z \Rightarrow x\sigma z mpaнзиmuвность$.
 - 3. $x\sigma y \Rightarrow x = y ahmucummempuuhocmb$.

Обозначение: \leq (например $x \leq y$).

Пример: Пусть $X = \{1, 2\}$. Тогда $\sigma = \{(1, 1), (2, 2), (1, 2), (2, 1)\}$ — нет антисимметричности. $\sigma = \{(1, 1), (2, 2), (1, 2)\}$ — отношение порядка.

4.2 Отображения.

Пусть X, Y — некоторые непустые множества.

• Определено однозначное **отображение** множества X на множество Y, если каждому элементу из множества X соответствует единственный элемент из множества Y. Обозначение: $f: x \to Y$ $x \in X$ или $f: x \mapsto y$ f(x) = y.

- Если отображение f элемент x ставит в соответствие элементу y, то говорят, что y образ элемента x, а x nрообраз элемента y. Обозначение: $\{x \in X \mid f(x) = y\}$ nолный nрообраз элемента y; $\{f(x) \mid \forall x \in X\} = Imf = f(X) \subset Y$ образ x npu f.
- Отображение $f: X \to Y$ называется **инъективным**, если $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2) \quad \forall x_1, x_2 \in X$.
- Отображение $f: X \to Y$ называется **сюръективным**, если $\forall y \in Y \; \exists x \in X : f(x) = y.$
- Отображение $f: X \to Y$ называется **биективным**, если оно инъективно и сюръективно (взаимнооднозначное соответствие).
- Два отображения $f: X \to Y$ и $g: X' \to Y'$ называются **равными**, если X = X', Y = Y' и $\forall x \in X$ f(x) = g(x).

Пусть $f: X \to Y$ — некоторое отображение. $X' \subset X$. Тогда

• Отображение $g: X' \to Y'$ называется **ограничением (сужением) отображения** f на множестве X', если $\forall x \in X'$ g(x) = f(x). Обозначение: $f|_{X'}$. Само же отображение $f: X \to Y$ называется **продолжением отображения** g на множестве X.

Пусть $f: X \to Y$ и $q: Y \to Z$. Тогда

• Отображение $g \circ f : X \to Z$ которое работает так, что $\forall x \in X \ (g \circ f)(x) = g(f(x))$, называется композицией отображений g u f.

ПРИМЕР: Пусть
$$f(x) = sinx$$
, $g(x) = x^2 + x + 1$. Тогда $(g \circ f)(x) = g(f(x)) = g(sinx) = sin^2x + sinx + 1$; $(f \circ g)(x) = f(g(x)) = f(x^2 + x + 1) = sin(x^2 + x + 1)$. Из полученного выше следует, что $f \circ g \neq g \circ f$.

Композиция отображений обладает свойством **ассоциативности**, то есть выражение $(h \circ g) \circ f = h \circ (g \circ f)$ верно. Докажем это:

$$((h \circ g) \circ f)(x) = (h \circ g)(f(x)) = h(g(f(x)));$$

$$(h \circ (g \circ f))(x) = h((g \circ f)(x)) = h(g(f(x))).$$

Теорема. Пусть $f: X \to Y, g: Y \to Z \ u \ h = g \circ f$. Тогда

- 1. если f и g инъективны, то h инъективно;
- 2. если f и q сюръективны, то h сюръективно;
- 3. если f и q биективны, то h биективно.

٠

- 1. Пусть f и g инъекции, тогда $\forall x_1, x_2 \in X, \ x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2), \ g(f(x_1)) \neq g(f(x_2)) \Rightarrow h$ инъективно, так как $(g \circ f)(x_1) = g(f(x_1)) = h(x_1), \ (g \circ f)(x_2) = g(f(x_2)) = h(x_2), \ h(x_1) \neq h(x_2).$
- 2. Пусть f и g сюръекции. Тогда, т.к. g сюръекция $\forall z \in Z \exists y \in Y : g(y) = z$. А так как f сюръекция, то $\forall y \in Y \ \exists x \in X : f(x) = y \Rightarrow \forall z \in Z \ \exists x : h(x) = (g \circ f)(x) = g(f(x)) = g(y) = z$ сюръекция.

- 3. Биективность вытекает из двух предыдущих пунктов.
- Отображение $e_x: X \to X$ такое, что $\forall x \in X \ e_x(x) = x$ называется тождественным отображением множества X.

Пусть $f: X \to Y$ — некоторое отображение.

ullet Отображение g:Y o X называется **обратным** для отображения f, если $g\circ f=e_x,$ $f\circ g=e_y.$

ПРИМЕР: Пусть
$$f(x) = lnx, g(x) = e^x$$
. Тогда $f(g(x)) = f(e^x) = lne^x = x = g(f(x)) = e^{lnx} = x$.

Теорема. Отображение $f: X \to Y$ имеет обратное \iff оно биективно.

4.3 Бинарная алгебраическая операция.

Пусть X — некоторое непустое множество.

• Отображение $f: X^2 \to X$, действующее так, что $(a,b) \mapsto c \forall a,b \in X^2, c \in X$ называется бинарной алгебраической операцией. Обозначается $f: (a,b) \mapsto c$ или f(a,b) = c.

Для произвольной алгебраической операции a*b=c, где * — символ символ (они могут выглядеть по-разному: $+,-,\cdot$ и так далее).

• Множество X с определенной на нем алгебраической операцией * является **алгебраической структурой**. Обозначается (X,*).

Пример: $(N, \cdot), (N, +)$ — две разные алгебраические структуры.

- *Алгебраическая операция* * называется
 - 1. **ассоциативной**, если $(x * y) * z = x * (y * z) \quad \forall x, y, z \in X$;
 - 2. коммутативной, если $x * y = y * x \quad \forall a, b.$

Пример: Для структуры (R,+) операция + ассоциативна, т.к. a+(b+c)=(a+b)+c. Для структуры (R,-) операция -"не ассоциативна, т.к. $a-(b-c)\neq (a-b)-c$. Также операция + является коммутативной в отличие от операции -.

• Элемент $n \in X$ называется **нейтральным** элементом в X относительно операции $* \iff n * x = x * n = x \quad \forall x \in X.$

ПРИМЕР: Рассмотрим несколько структур их нейтральные элементы:

$$(R, +), n = 0$$
 $x + 0 = 0 + x = x;$
 $(R, \cdot), n = 1$ $x \cdot 1 = 1 \cdot x = x;$
 $(R, -), \not\exists n$ $x - n \neq n - x \neq x.$

Теорема. Структура (X, *) имеет не больше одного нейтральгого элемента.

lack От противного. Пусть $\exists n_1, n_2: n_1 \neq n_2$. Тогда $n_1 * n_2 = n_1, \ n_2 * n_1 = n_2 \Rightarrow n_1 = n_2$, что является противоречием.

Пусть $(X, *), \exists n \in X.$

• Элемент $x' \in X$ называется **симметричным** для элемента $x \in X$ относительно операции *, если x' * x = x * x' = n.

Теорема. Если в (X,*) операция * ассоциативна и $\exists n \in X$, то $\forall a \in X$ может существовать не более одного симметричного элемента.

$$lack$$
От противного. Пусть $\exists a \in X: \exists a', a''$ Тогда $a'*a = a*a' = n, \ a''*a = a*a'' = n \Rightarrow a' = a'*n = a'*(a*a'') = (a'*a)*a'' = n*a'' = a'' \Rightarrow a' = a''.$

Рассмотрим некоторые операции и их характеристику:

Операция	Аддитивная запись	Мультипликативная запись
Знак	+	·
Название	сложение	умножение
Результат	сумма	произведение
Нейтральный элемент	0	1
Симметричный элемент	-x (противоположный)	x^{-1} (обратный)

Глава 5

Многочлены

5.1 Кольцо многочленов.

Пусть P — некоторое поле.

• Выражение вида $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, где $\alpha_i \in P, i = \overline{0,n}$ называется многочленом над полем P. Обозначение: f(x). При этом элементы a_i называются коэффициентами многочлена, x — переменными многочлена, $a_i x^i$ — членом многочлена. Число n называется степенью многочлена, если $a_n \neq 0$, а $a_i = 0 \forall i > n$. Обозначение: $n = \deg f(x)$. При этом коэффициент a_n называется старшим коэффициентом, а a_0 — свободным членом.

Пример: Пусть
$$f(x) = 5x^2 + 3x + 7$$
. Тогда $deg\ f(x) = 2,\ a_2 = 5,\ a_1 = 3,\ a_0 = 7$.

- Если все коэффициенты многочлена равны нулю, то многочлен называется **нулевым многочленом**. Степень нулевого многовлена не определена.
- Два многочлена f(x) и g(x) называются равными \iff $deg\ f(x) = deg\ g(x)$ и равны коэффициенты при соответствующих степенях x.

Множество всех многочленов над полем P от переменной x обозначается как P[x].

Пример: Множества $\mathbb{R}[x]$ и $\mathbb{C}[x]$ — множества всех многочленов от переменной x с действительными и комплексными коэффициентами соответственно.

Рассмотрим два многочлена:

$$f(x) = a_n x^n + \ldots + a_1 x + a_0, \ deg \ f(x) = n, \ a_n \neq 0,$$

 $g(x) = b_k x^k + \ldots + b_1 x + b_0, \ deg \ g(x) = k, \ n \geqslant k.$

- Суммой многочленов f(x) и g(x) называется многочлен вида $(f+g)(x) = c_n x_n + \ldots + c_1 x + c_0$, $c_i = a_i + b_i \forall i = \overline{0, n}$, $c_i = a_i \forall i = \overline{k+1, n}$. $deg\ (f+g)(x) \leqslant max\{deg\ f(x),\ deg\ g(x)\}.$
- Произведением многочленов f(x) и g(x) называется многочлен вида $f(x) \cdot g(x) = d_{n+k}x^{n+k} + \ldots + d_1x + d_0$, $d_i = \sum_{s+l=i} a_s b_l$, $i = \overline{0, n+k}$. $deg\ (f(x) \cdot g(x)) = deg\ f(x) + deg\ g(x)$, $d_{n+k} = \sum_{s+l=n+k} a_s b_l = a_n b_k$.

Теорема. Множество P[x] является ассоциативным, коммутативным кольцом с еди-

ницей относительно операции сложения и умножения многочленов.

lack Пусть $f(x), g(x) \in P[x]$. Тогда $f(x) + g(x) \in P[x], f(x) \cdot g(x) \in P[x]$.

Рассмотрим множество P[x] относительно операции + и докажем аксиомы кольца.

- 1. $f(x) + g(x) = (a_n + b_n)x^n + \ldots + (a_1 + b_1)x + (a_0 + b_0) = (b_n + a_n) \cdot x^n + \ldots + (b_1 + a_1)x + (b_0 + a_0) = g(x) + f(x)$. Значит, операция коммутативна.
- 2. (f(x) + g(x)) + h(x) = f(x) + (g(x) + h(x)). Значит, операция ассоциативна.
- 3. Пусть n(x) = 0. Тогда $f(x) + 0(x) = (a_n + 0)x^n + (a_1 + 0)x + a_0 + 0 = f(x)$. Значит, суещствует нейтральный элемент.
- 4. $f(x) = a_n x^n + \ldots + a_1 x + a_0$. $-f(x) = -a_n x^n \ldots a_1 x + a_0 \Rightarrow f(x) + (-f(x)) = 0$. Значит, для произвольного элемента суещствует обратный.
- 5. $(f(x) + g(x))h(x) = f(x)h(x) + g(x)h(x) \Rightarrow P[x]$ кольцо. Проверим операцию умножения:

$$f(x) \cdot g(x) = g(x) \cdot f(x);$$

$$(f(x) \cdot g(x))h(x) = f(x) \cdot (g(x) \cdot h(x));$$

 $f(x) = 1 \Rightarrow f(x)g(x) = g(x)$. Обратного элемента не существует, следовательно множество является кольцом, но не является полем.

 \boxtimes

Свойства кольца многочленов:

- 1. В кольце многочленов не существует делителей нуля.
 - lackПусть $f(x) \neq 0, \ a \neq 0, \ g(x) \neq 0, \ b \neq 0.$ Тогда $f(x) \cdot g(x) \neq 0, \ a \cdot b \neq 0.$
- 2. Закон сокращения: $f(x)h(x) = g(x)h(x) \Rightarrow f(x) = g(x)$.
 - igle $f(x)h(x)-g(x)h(x)=0 \Rightarrow h(x)(f(x)-g(x))=0 \Rightarrow f(x)-g(x)=0 \Rightarrow$ так как в кольце нет делителей нуля, f(x)=g(x).
- 3. $\exists f^{-1} \iff f(x) = a \neq 0$.

$$\spadesuit$$
 \Rightarrow) Пусть $\exists f^{-1}(x) : f^{-1}(x) \cdot f(x) = 1$. $deg\ (f^{-1}(x) \cdot f(x)) = deg\ f^{-1}(x) + deg\ f(x) = 0 \Rightarrow deg\ f(x) = 0 \Rightarrow f(x) = a$.

$$\Leftarrow$$
) Пусть $f(x)=a\neq 0$. Тогда $f^{-1}(x)=rac{1}{a}$.

Глава 6

Матрицы и определители

6.1 Определитель матрицы.

Пусть дана квадратная матрица $A \in P_{n,n}$. Число $det A = \sum_{\alpha \in \delta_n} (-1)^{\varepsilon(\alpha)} a_{1\alpha_1} \cdot a_{2\alpha_2} \cdot \cdots \cdot a_{n\alpha_n}$ называется определителем матрицы A.

Пример:

1)
$$n = 1, A = (a_{11}), \delta_1 = (1)$$

2) $n = 2, A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \delta_2 = (1, 2), (2, 1)$
3) $n = 3, A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, \delta_2 = (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 2, 1), (3, 1, 2). det A = a_{11}a_{22}a_{33} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32} + a_{12}a_{23}a_{31} - a_{13}a_{22}a_{31} + a_{13}a_{21}a_{32}.$

У диагональной матрицы определитель равен произведению диагональных элементов, а определитель единичной матрицы равен 1.

Свойства определителя:

- 1. Если матрица B получена из матрицы A, поменяв местами две строки, то det B = -det A.
 - lackПоменяем строки с номерами s,k и s < k. Тогда $\forall j: a_{sj} = b_{kj}, a_{kj} = b_{sj}, a_{ij} = b_{ij} \forall j \neq s, i \neq k$.

По определению
$$det A = \sum_{\alpha \in \delta_n} (-1)^{\varepsilon(\alpha)} a_{1\alpha_1} \cdot \ldots \cdot a_{s\alpha_s} \cdot \ldots \cdot a_{k\alpha_k} \cdot a_{n\alpha_n} = \sum_{\alpha \in \delta_n} (-1)^{\varepsilon(\alpha)} b_{1\alpha_1} \cdot \ldots \cdot b_{k\alpha_s} \cdot \ldots \cdot b_{s\alpha_k} \cdot b_{n\alpha_n} = \sum_{\alpha \in \delta_n} (-1)^{\varepsilon(\alpha)} b_{1\alpha_1} \cdot \ldots \cdot b_{s\alpha_s} \cdot \ldots \cdot b_{k\alpha_k} \cdot b_{n\alpha_n} = -det B \text{ (т.е. поменялась чётность перестановки)}.$$

- 2. Если матрица содержит две одинаковые строки, то её определитель равен нулю.
 - ♦ detA = -detA (по первому свойству).
- 3. Если любую строки матрицы A умножить на скаляр $\lambda \in P$, то получится матрица $B \colon det B = \lambda det A$.
 - $igoplus A = (a_{ij}) \in P_{n,n}, B = (b_{ij}) \in P_{n,n}.$ Пусть мы умножили k-ю строку матрицы A и получили матрицу $B \Rightarrow b_{kj} = \lambda a_{kj} \forall j = \overline{1,n}, b_{ij} = a_{ij} \forall i \neq k.$

Тогда $detB=\sum_{\alpha\in\delta_n}(-1)^{\varepsilon(\alpha)}b_{1\alpha_1}\cdot\ldots\cdot b_{k\alpha_k}\cdot\ldots\cdot b_{n\alpha_n}=$ [заменим на элементы матрицы $A] = \sum_{\alpha \in \delta_n} (-1)^{\varepsilon(\alpha)} a_{1\alpha_1} \cdot \ldots \cdot \lambda a_{k\alpha_k} \cdot \ldots \cdot a_{n\alpha_n} = \lambda \sum_{\alpha \in \delta_n} (-1)^{\varepsilon(\alpha)} a_{1\alpha_1} \cdot \ldots \cdot a_{k\alpha_k} \cdot \ldots \cdot a_{n\alpha_n} = \lambda det A.$

Следствие. Если матрица содержит нулевую строку, то её определитель равен нулю.

Следствие. $\forall A \in P_{n,n} : det(\lambda A) = \lambda^n det A$.

Следствие. Если матрица содержит две пропорциональные строки, то её определитель равен нулю.

5. Определитель матрицы не изменится, если к любой его строке прибавить другую, умноженную на произвольный элемент поля P.

6. Определитель матрицы при транспонировании не меняется.

$$A = (a_{ij}), A^T = B = (b_{ij}), a_{ij} = b_{ji} \forall i, j = \overline{1, n}.$$

$$det A = \sum_{\alpha \in \delta_n} (-1)^{\varepsilon(\alpha)} a_{1\alpha_1} \cdot \ldots \cdot a_{\alpha_n n} = \sum_{\alpha \in \delta_n} (-1)^{\varepsilon(\alpha)} b_{\alpha_1 1} \cdot \ldots \cdot b_{\alpha_n n}.$$

Каждая перестановка множителей порождает транспозицию в перестановке, состоящей из индексов ⇒ переупорядочивание элементов в произведении влечёт за собой цепочку транспозиций, переводящих перестановки, притом чётность этих перестановок будет совпадать $\Rightarrow det A = \sum_{\alpha \in \delta_n} (-1)^{\varepsilon(\beta)} b_{1\beta_1} \cdot \ldots \cdot b_{n\beta_n} = det B$.

Следствие. Все свойства строк матрицы равносильны и для столбцов

6.2 Алгоритм Евклида. Основная теорема арифметики. Китайская теорема об остатках.

Пусть $a, b \in z, b \neq 0$. Тогда любое число можно представить в виде: $a = bq + r, 0 \leq r < |b|$. К примеру, -23 = 5(-5) + 2. Остаток (r) - число неотрицательное. Притом, такое представление является единственным (доказать можно от противного).

Число b **делит число** a, если a = bq (т.е. остаток равен нулю).

Если число b делит число a, то принято обозначать это следующим образом: b|a.

Свойства делимости:

1. $a|b,b|c \Rightarrow a|c$

$$\blacklozenge b|c \Rightarrow c = bq_1. \ a|b \Rightarrow b = aq_2 \Rightarrow c = aq_1q_2 = aq.$$

2. $a|b \Rightarrow a|bc \forall c \in Z$

3. $c|a, c|b \Rightarrow c|(a+b)$

$$\blacklozenge c|a \Rightarrow a = cq_1, c|b \Rightarrow b = cq_2 \Rightarrow (a+b) = c(q_1+q_2) = cq.$$

- Натуральное (целое положительное) число называется **простым**, если оно делится только на себя и единицу. Единица не простое число.
- Пусть $d|a\ u\ d|b$, тогда число d называется **общим делителей чисел** a,b.
- Общий делитель, который делится на любой другой общий делитель, называется наибольшим общим делителем (НОД).
- Eсли HOД(a, b) = 1, то эти числа называются взаимно простыми.

Выведем алгоритм нахождения НОД двух чисел. Пусть $a, b \in Z, a > b$. $a = bq_1 + r_1, 0 < r_1 < b$. НОД $(a, b) = \text{НОД}(b, r_1)$.

$$d|a, d|b \Rightarrow r_1 = a - bq_1 \Rightarrow d|r_1, d|b$$

$$d|b, d|r_1 \Rightarrow a = bq_1 + r_1 \Rightarrow d|a, d|b$$

$$HOД(a,b) = HOД(b,r_1) = HOД=(r_1,r_2) = HOД(r_2,r_3) = \dots = HOД(r_{n-1},r_n).$$

Таким образом, получили **алгоритм Евклида** нахождения НОД двух чисел. Проделываем его до момента, пока не получим нулевой остаток: последний ненулевой остаток будет являться НОДом.

Любое натуральное число, не равное 1, можно представить в виде произведения простых чисел следующим образом: $a = p_1^{\alpha_1} \cdot ... \cdot p_k^{\alpha_k}, \quad p_i \neq p_j \quad \forall i \neq j, \quad i, j = \overline{1,k}.$

K примеру, $600 = 2^2 \cdot 3 \cdot 5^5$.

- $Ecnu\ a|c,b|c,\ mo\ c$ называется **общим кратным** этих чисел.
- Пусть $m \in N$. Говорят, что **число** а **сравнимо с числом** b **по модулю** m, если разность a b делится на m. Обозначение: $a \equiv b \pmod{m} \Leftrightarrow m \mid (a b)$.

Свойства сравнений:

- 1. $a \equiv a(mod m) pef$ лексивность.
- 2. $a \equiv b(modm), b \equiv c(modm) \Rightarrow a \equiv c(modm) mpaнзиmuвность.$
- 3. $a \equiv b(modm) \Rightarrow b = a(modm) cummempuчноcmь$.

Рассмотрим систему сравнений $\begin{cases} x \equiv b_1(modm_1), \\ \dots \\ x \equiv b_k(modm_k). \end{cases}$

- Систему сравнений называют совместной, если она имеет хотя бы одно решение.
- Система сравнений называется **приведённой**, если числа $m_1, ..., m_k$ попарно взаимно просты.

Теорема (Китайская теорема об остатках). Приведённая система сравнений всегда совместна и равносильна сравнению $x \equiv b_1 x_1 \frac{m}{m_1} + ... + b_k x_k \frac{m}{m_k} (modm)$, где $m = m_1 \cdot ... \cdot m_k, x_i$ — произвольное решение сравнения $\frac{m}{m_i} x \equiv 1 (modm_i)$.