Countable and Non-Countable Sets

H. Han

October 3, 2023

Countability

Countability

A set S is countable if there exists a bijection $f: S \to \mathbb{N}$.

- N is countable.
- Z is countable.
- \mathbb{Q} is countable.
- \bullet \mathbb{R} is uncountable.

In particular, a countable set must contain infinitely many elements.

Countability

Let C_i be countable sets.

- $C_0 \cup C_1$ is countable.
- By induction, $\bigcup_{i=0}^{n} C_i$ is countable, for finite n.
- $C_0 \times C_1$ is countable.
- By induction, $X_{i \in 1, \dots, n} C_i = C_0 \times C_1 \times \dots \times C_n$ is countable, for finite n.
- $L = \bigcup_{i \in \mathbb{N}} C_i$ is countable: an surjection from $N \times N$ to L
- $G = X_{i \in \mathbb{N}} C_i$ is **NOT** countable!

Countability

$$G = X_{i \in \mathbb{N}} C_i$$
 is **NOT** countable!

Injection from [0,1] to G: G is not countable.

 $0.123456789101 \cdots$