Geometría Moderna II 2019-2

Guía de ejercicios para al Evaluación Parcial 03

EVALUACIÓN PARCIAL 03 DEL LUNES 08-ABRIL-2019 AL VIERNES 12-ABRIL-2019 De 20:00 a 21:00 HORAS - Salón P-108

INSTRUCCIONES:

- La tercera evaluación parcial consistirá en una exposición de un problema de la siquiente lista.
- La asistencia a las sesiones de exposiciones forma parte de dicha evaluación.
- Cada estudiante deberá exponer solamente algunos ejercicios de la presente lista. La asignación de ejercicios se realizará en el momento que inicie la sesión de exposiciones. Sugerencia: Recomendamos ampliamente resolver TODA la tarea con anticipación.
- Deberán entregar por escrito los ejercicios que se expongan a más tardar el Viernes 12 de abril de 2019 a las 20:00 horas.

Polos y polares

- 1. Demostrar que en un triángulo rectángulo las mediatrices concurren en el punto medio de la hipotenusa.
- 2. Sea $\zeta(P,\rho)$ y L un punto en el plano tal que $\rho<|LP|$. Demostrar que la recta que contiene a los puntos de tangencia a $\zeta(P,\rho)$ de las tangentes a $\zeta(P,\rho)$ desde L es la polar de L.
- 3. Sea l una recta y L un punto en el plano. Construir $\zeta(P,\rho)$ tal que l sea polar de L respecto a $\zeta(P,\rho)$. ¿Cuántas maneras hay de hacerlo?
- 4. Demostrar que
 - a) Un par de puntos son conjugados con respecto a $\zeta(P,\rho)$ entonces sus polares son rectas conjugadas respecto a $\zeta(P,\rho)$.
 - b) Un par de rectas son conjugadas con respecto a $\zeta(P,\rho)$ entonces sus polos son puntos conjugados respecto a $\zeta(P,\rho)$.
- 5. Demostrar que si a y b son rectas conjugadas respecto a $\zeta(P,\rho)$ tales que $a\cap b=\{X\}$ con $\rho<|XP|$ entonces $|a\cap\zeta(P,\rho)|=2$ y $|b\cap\zeta(P,\rho)|=0$ o $|a\cap\zeta(P,\rho)|=0$ y $|b\cap\zeta(P,\rho)|=2$.
- 6. Sea \mathbb{L} el conjunto de rectas incidentes en el punto L en el plano. Determinar el lugar geométrico de los puntos conjugados a L en l para cada $l \in \mathbb{L}$.
- 7. Considerar $\Box ABCD$ un cuadrado y $\zeta(P,\rho)$ para demostrar que A es conjugado de C respecto a $\zeta(P,\rho)$ si y solamente si B es conjugado de D respecto a $\zeta(P,\rho)$.
- 8. Sean $\zeta(A,\alpha)$ y $\zeta(B,\beta)$ circunferencias con la propiedad de tener a la recta t como una tangente común. Demostrar que si Γ es la familia de circunferencias coaxiales a la que pertenecen $\zeta(A,\alpha)$ y $\zeta(B,\beta)$, $\zeta(A,\alpha)\cap t=\{P\}$ y $\zeta(B,\beta)\cap t=\{Q\}$ entonces P y Q son puntos conjugados con respecto a $\zeta(X,\xi)$ para cualquier $\zeta(X,\xi)\in\Gamma$.

Tarea 03 Marzo 2019

Geometría Moderna II 2019-2

- 9. Sea $\zeta(P,\rho)$ y $A \neq P$. Construir la polar de A con el uso de únicamente regla.
- 10. Sea $\zeta(P,\rho)$ y A un punto en el plano tal que $\rho \leq |PA|$. Construir las tangentes a $\zeta(P,\rho)$ por A con el uso de únicamente regla.
- 11. Triángulo autopolar¹:
 - a) Construir un triángulo que sea autopolar respecto a $\zeta(P,\rho)$ dada una recta c y $A \in c$.
 - b) Demostrar que el otrocentro de un triángulo autopolar respecto a $\zeta(P,\rho)$ es P.
- 12. Demostrar que si un triángulo es autopolar respecto a $\zeta(P,\rho)$ entonces:
 - a) Solamente un vértice del triángulo se encuentra dentro de la circunferencia.
 - b) El ángulo interno del vértice que se encuentra dentro de la circunferencia es mayor a uno recto.
- 13. Dado $\triangle ABC$ con la propiedad de tener un ángulo interno mayor que uno recto. Construir una circunferencia $\zeta(P,\rho)$ tal que $\triangle ABC$ sea autopolar respecto a $\zeta(P,\rho)$. ¿Cuántas maneras hay de hacerlo?
- 14. Demostrar que si $\{A,B,C,D\}\subseteq \zeta(P,\rho)$ entonces el triángulo diagonal de $\Box ABCD$ es autopolar respecto a $\zeta(P,\rho)$.
- 15. Demostrar que si $\triangle ABC$ es autopolar respecto a $\zeta(P,\rho)$ entonces el inverso de la circunferencia que inscribe a $\triangle ABC$ respecto a $\zeta(P,\rho)$ es la circunferencia de los nueve puntos de $\triangle ABC$.

Tarea 03 Marzo 2019

 $^{^1\}triangle ABC$ es autopolar respecto a $\zeta(P,\rho)$ si y solamente si cada vértice es polo del lado opuesto respecto a $\zeta(P,\rho)$.