Sorsz.	Ú j él	Halmazok	Bevál. élek sz.
1	B - C	$H_{-}=\{B,C\}$	1
2	B - E	$H_{-}=\{B,C,E\}$	2
3	F - G	$H_1,H_{\overline{z}}=\{F,G\}$	3
4	E - J	$H_{f H}=\{B,C,E,J\},\; H_2$	4
5	I - L	$H_1,H_2,H_3=\{{\color{red} L},L\}$	5
6	K - L	$H_1,H_2,H_3=oxed{L,K,L}$	6
7	J - K	$H_{oldsymbol{+}} = H_1 \underline{\cup} H_3 = \{ \underline{B}, C, E, \underline{I}, J, \underline{K}, L \}, H_2$	7
8	A - B	$H_{\mathbf{T}} = \{ A, B, C, E, I, J, K, L \}, H_2$	8
9	C - D	$H_{1} = \{A, B, C, D, E, I, J, K, L\}, H_{2}$	9
10	A - H	$H_{1} = \{A, B, C, D, E, H, I, J, K, L\}, H_{2}$	10
11	D - N	$H_{1} = \{A, B, C, D, E, H, I, J, K, L, N\}, H_{2}$	11
12		$A \subseteq H_1, E \subseteq H_1$	11
13	K - N	$K \subseteq H_1, N \subseteq H_1$	11
14	M - N	$H_{1} = \{A, B, C, D, E, H, L, J, K, L, M, N\}, H_{2}$	12
15	D - J	$D \subseteq H_1, \ J \subseteq H_1$	12
16	H - J	$H\subseteq H_1, J\subseteq H_1$	12
17	H - K	$H \subseteq H_1, K \subseteq H_1$	12
18	A - F	$H_{f H} = H_1 \cup H_2$	13

2.2. táblázat.

2.2. A legrövidebb út problémája

E fejezetben azzal foglalkozunk, hogy egy hálózat két pontja között hogyan lehet megkeresni a legrövidebb utat. A legrövidebb út kifejezést természetesen tágabb értelemben használjuk: jelenthet időben legrövidebb utat ill. legolcsóbb utat is.

Az alapfeladat a következő: adott egy N-pontú (P_1, \ldots, P_N) hálózat, melynek éleihez távolságértékek (időtartam, költség, stb.) vannak rendelve. Jelölje $\nu(P_i, P_j)$ a P_i és P_j pontok távolságát $(\nu(P_i, P_j) = \nu(P_j, P_i))$. Keressük a hálózat két adott pontja (kezdő- és célpont) közti legrövidebb utat. Természetesen semmi megszorítást nem jelent, ha úgy sorszámozzuk a pontokat, hogy a kezdőpontot P_1 a célpontot pedig P_N jelölje. A feladatot az ún. Dijkstra algoritmus segítségével, két részben oldjuk meg.

Az algoritmus első része

Jelöljük a P_1 -ből a P_i pontba vezető legrövidebb út hosszát $t(P_i)$ -vel $(i=1,\ldots,N)$. Az első rész lényege, hogy minden ponthoz meghatározzuk a $t(P_i)$ értéket. Ezt úgy hajtjuk végre, hogy az n-edik lépésben $(n=1,2,\ldots,N)$ meghatározzuk a kezdőponthoz az n-edik legközelebbi pontot. Ezt a pontot M_n -nel jelöljük és n-edik megoldott pontnak hívjuk. Az $t(P_i)$ értékeket a rájuk vonatkozó felső becsléseket finomítva kapjuk meg. Kezdeti felső becslésként szimbolikusan ∞ -t használunk.

Tegyük fel, hogy már meghatároztuk az M_1, \ldots, M_n pontokat, és a hozzájuk vezető legrövidebb utak hosszát és vannak felső becsléseink is néhány nem megoldott pont esetén a hozzájuk vezető legrövidebb út hosszára. Tekintsük most az M_n megoldott pontot és a hozzá tartozó legrövidebb útvonalhosszhoz adjuk hozzá a vele szomszédos még nem megoldott pontok M_n -től mért távolságait. Amennyiben az így kapott összeg

valamelyik még nem megoldott pontra kisebb lesz, mint az erre a pontra vonatkozó eddigi felső becslés, akkor használjuk ezt az összeget a továbbiakban felső becslésként. Az M_{n+1} az a P_i pont lesz, amelynek a legkisebb a felső becslése és $t(P_i)$ ez a felső becslés lesz. Ha több ilyen pont is van, akkor bármelyiket választhatnánk közülük, de állapodjunk meg abban, hogy mindig a legkisebb sorszámút választjuk ilyenkor. A használt algoritmus tehát a következő. (Az eljárás során $t(P_i)$ a P_i -be vezető legrövidebb út hosszának felső becslését jelenti. Ezen értékek egyenként válnak a tényleges $t(P_i)$ értékekké.)

- 2.3. Algoritmus. (A legrövidebb út meghatározása a Dijkstra algoritmussal.)
- 1. $t(P_i) := \infty \ (i = 1, ..., N), \ t(P_1) := 0$
- 2. $M_1 := P_1, n := 1$.
- 3. Válasszunk egy M_n -nel szomszédos még nem megoldott P pontot, amely még nem lett kiválasztva M_n -hez. Ha nincs ilyen, akkor ugorjunk az 5. pontra.
- 4. Legyen $\delta := t(M_n) + \nu(M_n, P)$. Ha $\delta < t(P)$, akkor $t(P) := \delta$. Vissza a 3. ponthoz.
- 5. $\gamma := \min_{P} \{t(P)\}$, ahol a minimumot az összes még nem megoldott P pontra kell venni.
- 6. M_{n+1} az a még nem megoldott P pont lesz, melyre $t(P) = \gamma$. Ha több ilyen P is van, akkor vesszük a legkisebb sorszámút. n := n + 1.
- 7. Ha $n \leq N-1$, akkor vissza a 3. ponthoz, egyébként ugrás az algoritmus második részére.

Az algoritmus második része

A második lépésben az előző pontban kiszámított legrövidebb úthosszak segítségével meghatározzuk a P_1 -ből P_N -be vezető legrövidebb utat. Tegyük fel, hogy a P_1 -ből P_N -be vezető legrövidebb út áthalad a P_j ponton. Ekkor a legrövidebb úton haladva P_j -be azon P_j -vel szomszédos P_i pontból kell érkeznünk, melyre $\nu(P_i, P_j) = t(P_j) - t(P_i)$. Ha több ilyen P_i pont is van, akkor a legrövidebb út elágazik, azaz a feladatnak több megoldása is lesz. A fent leírt eljárást a P_N ponttól indítva meghatározhatjuk a legrövidebb utat.

A fenti algoritmussal kapcsolatban megjegyezzük, hogy ha P_N helyett másik célpontot választunk, akkor az eljárás első lépése nem fog megváltozni, csak az útvonalmeghatározásnál kell figyelembe venni a megváltozott célpontot. Ezzel szemben, ha a kezdőpontot változtatjuk meg, akkor az összes $t(P_i)$ értéket újra ki kell számolni, mivel az eddigiek a P_1 ponttól mért minimális távolságokat adták meg.

Mintafeladat

Következzék egy feladat, mellyel szemléltetni szeretnénk a Dijkstra algoritmust. Adott 10 város (P_1, \ldots, P_{10}) melyek között a 2.5. ábrának megfelelően vannak öszszekötő utak. Minden úthoz adott az az idő (órában) amely alatt egy szállítmány képes azon az úton végighaladni. Feladatunk az, hogy egy szállítmányt a P_1 városból

a lehető legrövidebb idő alatt eljuttassunk a P_{10} városba. Melyik útvonalat válasszuk, és minimálisan hány óra alatt lehet a szállítást kivitelezni?

2.5. ábra. Hálózat a legrövidebb út problémájához

A megoldás első lépését, azaz a P_1 pontból a többi pontba vezető legrövidebb utak hosszát a 2.3. táblázat segítségével számítottuk ki. A táblázat fejlécében a hálózat pontjait tüntettük fel. Első sorában a P_1 ponthoz 0 értéket írtunk, mivel a P_1 -ből a P_1 -be vezető legrövidebb út hossza nyilvánvalóan nulla $(t(P_1) = 0, M_1 = P_1)$. A többi ponthoz vezető utak hosszait egyelőre ∞ -nel becsültük felülről. A P_1 pont tehát megoldott, így tekintenünk kell a P_1 -gyel szomszédos pontokat $(P_2, P_7$ és P_8), és ezek P_1 -től mért távolságait hozzá kell adnunk $t(P_1)$ -hez. Ezek az összegek láthatók a táblázat 2. sorában. Közülük a 2 a legkisebb, de ehhez az értékhez két pont is tartozik, a P_2 és a P_7 . Válasszuk P_2 -t, mert ennek a kisebb a sorszáma. Ezzel a P_2 pont is megoldottá vált $(M_2 = P_2, t(P_2) = 2)$. A megoldott pontokhoz tartozó legrövidebb utak hosszát vastagon szedtük.

Most már két megoldott pontunk van, P_1 és P_2 . P_2 szomszédos a P_3 és P_8 nem meghatározott pontokkal. Emiatt a táblázat 3. sorába beírjuk a P_3 oszlopába a $t(P_2) + \nu(P_2, P_3) = 3$ értéket, mivel az az eddig ott álló ∞ becslésnél jobb, valamint a P_8 oszlopába a $t(P_2) + \nu(P_2, P_8) = 3$ értéket, mivel az jobb az eddig ott álló 4-es értéknél. A P_7 pontra vonatkozó 2-es értéket továbbvisszük a 3. sorba. A 3. sorban a legkisebb elem a kettes, így $M_3 = P_7$ és $t(P_7) = 2$. Az eljárást hasonlóan folytatjuk tovább, míg minden csúcsra meg nem kapjuk a legrövidebb út hosszát. Az egyes csúcsokra ezeket a hosszokat a táblázat megvastagított számai adják. Pl. $t(P_6) = 4$ és $t(P_9) = 3$. Persze számunkra a $t(P_{10}) = 4$ érték fontos, hiszen ez adja meg, hogy a P_1 pontból a P_{10} pontba vezető legrövidebb út hossza 4 óra lesz.

Az algoritmus második részében meghatározzuk a legrövidebb útvonalat. P_{10} -be összesen öt ponton keresztül érkezhetünk. Mivel $t(P_{10}) - t(P_6) = 4 - 4 = 0 \neq 2 = \nu(P_{10}, P_6)$, ezért a legrövidebb út nem a P_6 ponton keresztül éri el P_{10} -et. Könnyen ellenőrizhető, hogy a legrövidebb út vagy a P_9 ponton keresztül megy $(t(P_{10}) - t(P_9) = 4 - 3 = 1 = \nu(P_{10}, P_9))$, vagy a P_3 ponton keresztül $(t(P_{10}) - t(P_3) = 4 - 3 = 1 = \nu(P_{10}, P_3))$. Ezt az eljárást tovább folytatva két legrövidebb útvonalat kapunk: $P_1 - P_7 - P_9 - P_{10}$ ill. $P_1 - P_2 - P_3 - P_{10}$.

Osszefoglalva tehát, a szállítmány minimális menetideje 4 óra és kétfajta útvonal közül választhatunk: $P_1-P_7-P_9-P_{10}$ ill. $P_1-P_2-P_3-P_{10}$.

	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}
1.	0	∞								
2.		2	∞	∞	∞	∞	2	4	∞	∞
3.			3	∞	∞	∞	2	3	∞	∞
4.			3	∞	∞	4		3	3	∞
5.				5	∞	4		3	3	4
6.				5	∞	4			3	4
7.				5	∞	4				4
8.				5	7					4
9.				5	7					
10.					7					

2.3. táblázat. A mintafeladat megoldása.

2.3. Maximális független élrendszer

Elészér-két új fegalem kerül bevezetésre.

2.4. Definíció. A $\mathcal{G} = (\mathcal{C}, E)$ gráfet páres gráfnak nevezzük, ha a csúcspentek \mathcal{C} halmaza két diszjunkt nemüres \mathcal{C}_1 és \mathcal{C}_2 részhalmazekra benthaté-ágy, hegy élek csak \mathcal{C}_1 és \mathcal{C}_2 között vezetnek.

2.5. DEFINÍCIÓ. Egy gráfban bizenyes élek rendszerét <u>független élrendszernek</u> nevezzük, ha a rendszerben szereplő élek párenként nem szemszédesak.

Képzeljük el, hegy egy ünnepség nyitétáncára több lány és ítú jelentkezett. A táncések mindegyike nyilatkezett arrél, hegy kit tart elfegadhaté-partnernek a másik nem önkéntesei közül. A nyilatkezatek alapján meg lehet rajzelni egy gráfet, melynek csúcsai a nyitétáncra jelentkező személyek. Közéjük élet akker húzunk, ha kölcsönösen elfegadják egymást táncpartnernek. Világes, hegy az ilyméden adédé gráf páres, és ha az alapján kijelölánk néhány táncelé párt, akker ők egy független élrendszert generálnak a gráfban. Az ünnepség szervezől-szeretnék, hegy a lehető legtöbb pár vegyen részt a nyitétáncen. Tehát egy maximális független élrendszert kellene kiválasztani az adeet páres gráfbél.

A megeldás alapetlete Kőnig Dénes magyar matematikus nevéhez fűződik és <u>magyar médszernek</u> vagy <u>alternáló atak médszerének</u> nevezik. Az eljárás feltételez egy klindulási független élrendszert, amelyek elemszámát lépésenként eggyel növelve jut el az eptimumhez. Több megeldás is előferdulhat (pl. a kezdő-független élrendszer megválasztása befelyáselhatja a végeredményt), de ezek egyenrangúak abban az értelemben, hogy a kiválasztott élek maximális száma ugyanannyi. A feladat általában egyetlen maximális független élrendszer megadása.

Kiindulási független élrendszert meghatárezni nagyen egyszerű. Ennek szemléltetésére legyen ábrázelva a páres-gráf úgy, hegy a $C_1 \subseteq C$ csúcsait egy felső, a $C_2 \subseteq C$ csúcsait egy alsó-serban helyezzük el, majd húzzuk be a két halmaz között a létező éleket (ld. 2.6. ábra).