

REC'D 3 1 OCT 2003 PCT WIPO

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 50 360.5

Anmeldetag:

29. Oktober 2002

Anmelder/inhaber:

Robert Bosch GmbH, Stuttgart/DE

Bezeichnung:

Nachbrenneinrichtung und Verfahren zum Betreiben

einer Nachbrenneinrichtung

IPC:

F 23 D, F 23 N, H 01 M

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 20. Oktober 2003 **Deutsches Patent- und Markenamt** Der Präsident

Im Auftrag

()el

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH RULE 17.1(a) OR (b)

A 9161

5 R. 302820

ROBERT BOSCH GMBH, 70442 Stuttgart

10

Nachbrenneinrichtung und Verfahren zum Betreiben einer Nachbrenneinrichtung

15

20

25

30

35

Stand der Technik

Die Erfindung geht aus von einer Nachbrenneinrichtung nach der Gattung des Anspruchs 7 bzw. von einem Verfahren zum Betreiben einer Nachbrenneinrichtung nach der Gattung des Anspruchs 1.

Bei brennstoffzellengestützten Transportsystemen kommen zur Gewinnung des benötigten Wasserstoffs aus kohlenwasserstoffhaltigen Kraftstoffen sog. chemische Reformer zum Einsatz.

Die optimale Betriebstemperatur eines chemischen Reformers liegt meist weit oberhalb seiner Umgebungstemperatur. Insbesondere bei Fahrzeugen für den Individualverkehr führt dies zu Problemen. Die zahlreichen Stillstandsphasen des Fahrzeugs führen zu einer großen Anzahl von Kaltstartphasen, in welcher insbesondere der chemische Reformer nicht optimal arbeitet. Bei sehr geringer Last erreicht der Reformer ebenfalls u.U. die optimale Betriebstemperatur durch die in ihm anfallende Wärme nicht oder verliert sie während des Betriebs.

Insbesondere sei brennstoffzellengestützten Antriebsystemen chemischem Reformer ist es daher vorteilhaft, Nachbrenneinrichtungen einzusetzen, welche insbesondere die Aufgabe haben, mit der durch sie erzeugten Wärme den chemischen Reformer schnell auf Betriebstemperatur bringen und/oder anfallende Restgase thermisch zu verwerten.

5

10

20

30

35

Die Nachbrenneinrichtung verbrennt die brennbaren Restgase, beispielsweise Restwasserstoff, unter Flammenbildung und/oder zumindest teilweise katalytisch und ist mit dem chemischen Reformer thermisch gekoppelt: Meist jedoch reicht die Wärmeenergie der brennbaren Restgase alleine nicht aus, eine ausreichend große Wärmeleistung Verfügung zur stellen. Deshalb wird meist zusätzlich oder Brennstoff in die Nachbrenneinrichtung eingemessen. Dabei wird der Brennstoff, welcher vorzugsweise in flüssiger Form vorliegt, durch aufwendige und fehleranfällige Einrichtungen fein verteilt als Tröpfchenwolke mit möglichst Tröpfchendurchmesser in einen Brennraum eingespritzt. Tröpfchendurchmesser geringe ist notwendig, den Brennstoff möglichst großflächig mit Sauerstoff und Wärme in Kontakt zu bringen und um so den Verbrennungsvorgang möglichst vollständig zu vollziehen.

Nachteilig ist dabei, daß Zumeßeinrichtungen zur Erzeugung 25 einer Tröpfchenwolke mit kleinem Tröpfchendurchmesser sehr aufwendig, kostenintensiv und fehleranfällig sind. notwendige geringe Tröpfchendurchmesser kann oft nur durch die Anwendung hohen Brennstoffdrucks erzielt werden, wobei die Erzeugung hohen Drucks verhältnismäßig viel Leistung beansprucht und insbesondere die Anlage zur Erzeugung des Drucks viel Raum beansprucht. Solche Zumeßeinrichtungen haben darüber hinaus üblicherweise sehr Zumeßöffnungen, welche durch Verbrennungsrückstände Ablagerungen das Zumeßverhalten der Zumeßeinrichtung unzulässig und schlecht kontrollierbar verändern. Alternativ oder unterstützend zu der Anwendung hohen Brennstoffdrucks sind zur feinen Zerstäubung des Brennstoffs Lösungen mit Luftunterstützung bekannt, wobei der Brennstoff bzw.

Restgas vor er Verbrennung ausreichend lange mit Luft verwirbelt wird. Nachteilig ist hierbei der relativ große Raumbedarf, die aufwendige und störanfällig Regelung der Luftzumessung und der zusätzliche Energiebedarf.

5

10

15

20

Schließlich ergibt sich insbesondere bei geringer Leistung die Gefahr einer unvorhergesehenen Flammlöschung der offenen kontinuierlich brennenden Flamme im Brennraum. Wärmeleistung der Nachbrenneinrichtung ist deshalb nach unten hin stark eingeschränkt. Weiterhin ist stets gewisser Zeitbedarf zur Abschaltung der Brennstoffzufuhr oder der Neuzündung der Flamme notwendig. In dieser Zeit kann sich Brennstoff bzw. Restgas im Brennraum ansammeln. Dies beeinflußt die Neuzündung negativ, ein ggf. vorhandener Katalysator kann beschädigt werden und unverbrannter Brennstoff bzw. Restgas kann in die Atmosphäre entweichen. Trotz all der genannten Maßnahmen bleiben im Abgas der Nachbrenneinrichtung unverbrannte bzw. unvollständig verbrannte Anteile zurück, welche teilweise giftig oder chemisch aggressiv sind. Dies führt zu einer erhöhten Umweltbelastung und Materialbelastung, außerdem wird Brennwert des Brennstoffs bzw. des Restgases nur unvollständig ausgenutzt.

25 Vorteile der Erfindung

30

35

Das erfindungsgemäße Verfahren und die erfindungsgemäße Nachbrenneinrichtung mit den kennzeichnenden Merkmalen der unabhängigen Ansprüche haben demgegenüber den Vorteil, Zumessung von Brennstoff auf bzw. die offenporige hitzebeständige Schaumkeramik ohne den Einsatz aufwendiger Zerstäubungseinrichtungen zur Erzeugung feinster Brennstofftropfen eine sehr gute Brennstoffverteilung Brennraum bzw. in der Schaumkeramik erfolgt. Die damit einhergehende verhältnismäßig große Berührungsfläche Luftsauerstoff führt zu einer nahezu vollständigen Verbrennung des zugeführten Brennstoffes und Restgases und damit zu einem hervorragenden Wirkungsgrad und sehr geringen Schadstoffemissionen. Die Anforderungen an die · Zumeßeinrichtung bzw. die Brennstoffduse, welche den Brennstoff in den Brennraum bzw. auf oder in die Schaumkeramik einmißt, sind sehr gering, da die Verteilung des Brennstoffes innerhalb der Schaumkeramik erfolgt.

5

10

15

20

25

30

35

Durch die geringe Wärmekapazität der Schaumkeramik und den in der Schaumkeramik gleichmäßig und großräumig verteilten Verbrennungsvorgang, heizt sich die Schaumkeramik schnell auf, womit schon nach kurzer Betriebsdauer und eventuell auftretender kurzzeitiger Unterbrechung der Brennstoffzufuhr eine Fremdzündung durch beispielsweise Zündkerzen bei Wiederaufnahme der Brennstoffzufuhr nicht notwendig ist. Die Nutzung der Abqaswärme Rückführung der aus der Verbrennung entstehenden Abgase über eine Rückführungsleitung und einen Wärmetauschkanal, welcher zugeführte Luft und/oder den Brennraum die Schaumkeramik, insbesondere Kaltstartbetrieb, im Abgaswärme wärmt, führt zu einer verkürzten Kaltstartphase und damit zu einer weiteren Verringerung Schadstoffemissionen sowie zu einer weiteren Verbesserung Kraftstoffumsetzung. Durch die Erfassung Verbrennungsgeschwindigkeit ist es möglich, die rückgeführte Wärmemenge zu regeln. Damit ist es möglich, Kaltstartphase ein Höchstmaß an Wärmemenge zurückzuführen ohne bei steigender Verbrennungsgeschwindigkeit Nachbrenneinrichtung oder deren Betrieb ungünstige Temperaturen zu erzeugen.

Vorteilhaft ist weiterhin, daß die Schaumkeramik einen Teil des zugemessenen Brennstoffs zunächst aufnimmt, ohne daß dieser sofort gezündet wird. Vielmehr verteilt sich ein Teil des Brennstoff zuerst in der Schaumkeramik, bevor er an seiner Oberfläche gezündet wird. Die Schaumkeramik ist also in der Lage, eine gewisse Menge Brennstoff zunächst zu speichern. Diese Eigenschaft ist beispielsweise bei einem Anfahren der Nachbrenneinrichtung aus dem kalten Zustand bei nur ungenügender Fremdzündung durch beispielsweise eine Glühwendel von Vorteil, da der Brennstoff nicht sofort unverbrannt durch den Brennraum hindurch entweichen kann.

Vielmehr wird er in der Schaumkeramik gespeichert und steht der Verbrennung weiterhin zur Verfügung. Verpuffungsvorgänge im Brennraum bzw. eine Anreicherung des Brennstoff-Luft-Gemisches über die Zündfähigkeit hinaus werden somit weitgehend verhindert.

5

10

15

25

30

Weiterhin sehr vorteilhaft ist außerdem, daß weitgehend unabhängig von der geometrischen Formgebung Schaumkeramik die Verteilung des Brennstoffs vorrangig selbsttätig stattfindet. Dies läßt eine sehr anpassungsfähige Platzierung der Schaumkeramik im Brennraum bzw. in der Nachbrenneinrichtung zu, um beispielsweise die thermische Kopplung zwischen Schaumkeramik und Brennraum, bzw. mit anderen Elementen der Nachbrenneinrichtung, verbessern.

Darüber hinaus hat die erfindungsgemäße Nachbrenneinrichtung einen sehr großen Wärmeleistungsbereich, der insbesondere durch die Möglichkeit zustande kommt. sehr kleine 20 Wärmeleistungen einzustellen. Durch diese einstellbaren sehr kleinen Wärmeleistungen bzw. Brennleistungen ist es möglich, schadstoffintensive, materialbelastende und wirkungsgradmindernde Aus-Einschaltvorgänge und der Nachbrenneinrichtung zu vermeiden, insbesondere bei Lastwechselvorgängen typisch für den automobilen Individualverkehr.

Vorteilhafte Weiterbildungen der erfindungsgemäßen Nachbrenneinrichtung sowie des erfindungsgemäßen Verfahrens Betreiben einer Nachbrenneinrichung gehen aus jeweiligen Unteransprüchen hervor.

In einer ersten vorteilhaften Weiterbildung des erfindungsgemäßen Verfahrens, wird die 35 Verbrennungsgeschwindigkeit anhand einer Temperaturmessung festgestellt. Besonders vorteilhaft kann diese durch eine berührungslose und damit weitgehend verschleißfreie Infrarotlichtmessung erfolgen.

In einer weiteren vorteilhaften Weiterbildung wird die Menge der rückgeführten Verbrennungsgase auf Basis der festgestellten Verbrennungsgeschwindigkeit geregelt.

5 Vorteilhaft weitergebildet wird erfindungsgemäße das Verfahren außerdem durch einen weiteren Verfahrensschritt, der, abhängig von der erfaßten Verbrennungsgeschwindigkeit, die Zufuhr von Luft, Brennstoff und/oder Restgas regelt. Wobei in einer weiteren Weiterbildung die Zufuhr von Luft in 10 den Brennraum Luftanteil bzw. der am Brennstoff/Gas-Luftgeschmisch erhöht wird, um die Temperatur im Brennraum bzw. in der Schaumkeramik zu senken.

Umfaßt das Verfahren außerdem einen Verfahrensschritt, in welchem der Brennraum bzw. die Schaumkeramik elektrisch beheizt wird, wird das Verfahren ebenfalls vorteilhaft weitergebildet. Dadurch kann der Brennraum bzw. Schaumkeramik beispielsweise noch vor dem Beginn der Kaltstartphase beheizt werden, womit die Kaltstartphase der 20 Nachbrenneinrichtung weiterhin verkürzt wird. Ebenso kann in Weise die jeweils notwendige Zündenergie bereitgestellte werden oder eine notwendige Zündtemperatur erzeugt werden.

25 Vorteilhaft weitergebildet werden kann die Nachbrenneinrichtung dadurch, daß die Schaumkeramik zumindest teilweise aus Siliziumkarbid besteht. Siliziumkarbid ist hitzebeständig, hervorragend exzellenter Wärmeleiter und verleiht der Schaumkeramik 30 überdies eine gute mechanische Steifigkeit bei Außerdem geringer Dichte. leitet Siliziumkarbid elektrischen Strom relativ gut. Die gute elektrische Leitfähigkeit kann zu meßtechnischen Zwecken ausgenutzt werden, um beispielsweise die Temperatur über den durch Strom und Spannung hergeleiteten elektrischen Widerstand zu 35 bestimmen, oder der Verbrennungsvorgang kann insbesondere durch die Wärmewirkung des elektrischen Stromes beeinflußt, gesteuert oder, z.B. bei katalytischer Verbrennung, gänzlich erzielt werden, beispielsweise im Teillastbetrieb.

Vorteilhaft ist es weiterhin, wenn die Schaumkeramik durch sog. Retikulieren, was beispielsweise thermisch oder chemisch durchgeführt werden kann, offenporig gemacht wird.

5 Dadurch läßt sich ein sehr hohes Maß an Offenporigkeit erzielen und zudem läßt sich die Porengröße sehr leicht, bevorzugt im Bereich von 0,05 mm bis 5 mm, bei der Herstellung der Schaumkeramik einstellen.

Vorteilhafterweise steht die Schaumkeramik mit zumindest einem Teil der Wandung des Brennraums oder des ersten Gehäuses in gutem wärmeleitendem Kontakt, da dadurch die Wärme schnell und effizient an beispielsweise den Reformer oder eine Brennstoffzelle abgegeben werden kann. Ebenso kann der Brennraum bzw. die Schaumkeramik durch diese Wandung des Brennraums bzw. des ersten Gehäuses von außen beheizt werden, beispielsweise durch einen rückgeführten Abgasstrom, ohne daß Abgas in den Brennraum oder die Schaumkeramik gelangt.

20

25

30

35

Durch die Anordnung von Wärmeleitelementen innerhalb des ersten Gehäuses, insbesondere auch innerhalb der Schaumkeramik, ist es vorteilhaft möglich, Wärme aus einem relativ warmen Bereich in einen dazu relativ kühlen Bereich zu leiten, insbesondere in den Bereich der Luftzufuhr oder in den Bereich in dem der Brennstoff oder die Restgase eingemessen werden. Dadurch wird die kühlende Wirkung der zugeführten Reaktanden kompensiert und Reaktionsgeschwindigkeit, insbesondere in Kaltstartphasen, in genannten Bereichen angehoben. Die Reaktionsgeschwindigkeiten verlaufen dadurch Bereichen des Brennraums bzw. der Schaumkeramik gleichmäßig. Besonders ist vorteilhaft, wenn die Wärmeleitelemente aus Metall oder einer metallhaltigen Legierung bestehen, Metalle besonders gute Wärmeleiter sind und außerdem gute mechanische sowie chemische Eigenschaften aufweisen.

Vorteilhaft ist weiterhin, die Wärmeenergie der heißen Abgase durch eine Rückführungsleitung und einen

Wärmetauschk der Schaumkeramik dem Brennraum und/oder 'der zugeführten Luft, ' und damit der Verbrennungsreaktion selbst, zuzuführen. Dadurch wird die qualitativ niederwertige Abgaswärme genutzt, um insbesondere in Kaltstartphasen die Verbrennungsgeschwindigkeit schnell zu steigern und um die Reaktanden bzw. den Brennraum vorzuwärmen.

Vorteilhaft ist es weiterhin, wenn ein Regler die Rückführung der Abgase regelt oder steuert. Es ist dadurch 10 vorteilhaft möglich, heiße Abgase dosiert rückzuführen und die rückgeführte Wärmemenge so dem Wärmebedarf anzupassen. Insbesondere wird dadurch eine Überhitzung Nachbrenneinrichtung verhindert und der Abgasgegendruck so 15 gering wie möglich gehalten.

Vorteilhaft ist weiterhin, die Wärmetauschkanäle aus zylindrischen Rohren zu fertigen, da diese kostengünstig und einfach zu verarbeiten sind.

Zeichnung

5

Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden 25 Beschreibung näher erläutert. Es zeigten:

30

20

- Fig. 1 eine schematische Darstellung eines ersten Ausführungsbeispiels einer erfindungsgemäßen Nachbrenneinrichtung als Prinzipskizze,
- Fig. 2 eine auszugsweise schematische Darstellung eines zweiten erfindungsgemäßen Ausführungsbeispiels im Bereich des Brennraums,
- 35 Fig. 3 einen auszugsweisen Schnitt durch die offenporige Schaumkeramik als Prinzipskizze,
 - Fig. 4 eine schematische Darstellung eines dritten erfindungsgemäßen Ausführungsbeispiels,

Fig. 5 eine schematische Schnittdarstellung des dritten erfindungsgemäßen Ausführungsbeispiels in einer Draufsicht,

5

- Fig. 6 eine schematische Darstellung eines vierten erfindungsgemäßen Ausführungsbeispiels und
- Fig. 7 eine schematische Darstellung eines fünften erfindungsgemäßen Ausführungsbeispiels.

Beschreibung der Ausführungsbeispiele

15

Nachfolgend werden Ausführungsbeispiele der Erfindung beispielhaft beschrieben. An diesen Ausführungsbeispielen läßt sich das erfindungsgemäße Verfahren besonders vorteilhaft anwenden. In den Figuren sind gleiche Bauteile jeweils mit übereinstimmenden Bezugszeichen versehen. Pfeile symbolisieren jeweils die Kraftstoff- und Gasströme.

20

25

30

35

Ein dargestelltes Ausführungsbeispiel in Fig. 1 erfindungsgemäßen Nachbrenneinrichtung 1 weist ein an den Enden geschlossenes rohrzylindrisches zweites Gehäuse 14, eine Düse 2, einen Regler 17 und eine Rückführungsleitung 16 auf. Die Düse 2 greift in die oben liegende Stirnseite des zweiten Gehäuses 14 ein und ist axialmittig zu einer Achse 22 angeordnet, welche in diesem Ausführungsbeispiel mit der Symmetrieachse des zweiten Gehäuses 14 identisch ist. Die oben liegende Stirnseite des zweiten Gehäuses 14 weist außerdem noch eine auf, welche in Luftzufuhr 3 Ausführungsbeispiel als bloße Öffnung realisiert Seitlich nahe des unteren Endes des zweiten Gehäuses befindet sich eine Austrittsöffnung 7, welche in Austrittsrohr 15 mündet. Das Austrittsrohr 15, eine erste Abgasleitung 20 und die Rückführungsleitung 16 münden in den Regler 17. Die Rückführungsleitung 16 führt von dem Regler zu der oberen Stirnseite des zweiten Gehäuses 14 und mündet dort in das zweite Gehäuse 14 ein. Im Inneren des

zweiten Gehauses 14 befindet sich unter anderem ein Brennraum 8, welcher in Fig. 1 nicht dargestellt ist.

Die Funktionsweise ist wie folgt:

5

10

Durch die Düse 2 wird entweder nur Brennstoff vorzugsweiser flüssiger Form, nur Restgas aus z.B. einem Reformierungsprozeß oder Brennstoffzellenprozeß oder Gemisch dieser beiden brennbaren Stoffe in den im zweiten Gehäuse 14 liegenden in Fig. 1 nicht dargestellten Brennraum eingemessen. Durch die Luftzufuhr 3. wird Verbrennung benötigte Luft angesaugt. Eine Zwangszuführung von Luft oder anderen sauerstoffhaltigen Substanzen jedoch denkbar.

15

20

25

30

35

Die an der Austrittsöffnung 7 austretenden Abgase strömen durch das Austrittsrohr 15 in den Regler 17 ein und werden zumindest teilweise über die Rückführungsleitung 16 in das zweite Gehäuse 14 zurückgeführt. Die zurückgeführten Abgase geben im Inneren des zweiten Gehäuses 14 Wärmeenergie ab, ohne daß die rückgeführten Abgase sich mit dem Brennstoff, den Restgasen oder der Luft vermischen, und werden über eine in Fig. 1 nicht dargestellte erste Abgasleitung 19 in die Umwelt oder in einen anderen Prozeß überführt. Die durch den Regler 17 nicht zurückgeführten Abgase werden vom Regler 17 durch eine zweite Abgasleitung 20 in die Umwelt oder einen anderen Prozeß geleitet.

In diesem Ausführungsbeispiel wird durch nicht dargestellte Infrarotsensoren die momentane Temperatur oder die momentane Temperaturverteilung im Inneren des zweiten Gehäuses 14 bzw. dem nicht dargestellten Brennraum 8 gemessen. Dadurch kann insbesondere die momentane Verbrennungsgeschwindigkeit Brennraum 8 festgestellt werden. In Abhängigkeit der Verbrennungsgeschwindigkeit wird in diesem Ausführungsbeispiel die Menge der in das zweite Gehäuse 14 zurückgeführten Abgase geregelt. Auch die jeweiligen Anteile und Mengen von Luft, Brennstoff und Restgasen, die durch die Düse 2 bzw. durch die Luftzufuhr 3 in das zweite Gehäuse 14

gelangen, werden abhängig von der Verbrennungsgeschwindigkeit erfindungsgemäß reguliert. Denkbar ist auch, die jeweiligen Anteile und Mengen von Luft, Brennstoff und Restgasen zeitgesteuert zu verändern. 5 werden beispielsweise bei Kaltstartbeginn weniger Reaktanden zugeführt und der Brennstoffanteil erhöht, wobei zu einem späteren Zeitpunkt beispielsweise der Luftanteil angehoben wird und die Menge der Reaktanden insqesamt erhöht wird. Bei zu hoher Temperatur 10 erfindungsgemäß die Luftzufuhr bzw. der Luftanteil Brennraum 8 erhöht.

Zusätzlich kann auch noch ein Lambda-Sensor vorhanden sein.

Fig. 2 zeigt eine auszugsweise schematische Darstellung zweiten erfindungsgemäßen Ausführungsbeispiels Bereich des Brennraums 8, welcher in dem in dieser Figur nicht dargestellten zweiten Gehäuse 14 angeordnet ist. Der Brennraum 8 ist seitlich durch ein rohrzylindrisches erstes Gehäuse 5, oben durch einen oberen Ring 9 und unten durch 20 einen unteren Ring 10 im Gehäuse 5 abgegrenzt. Der obere Ring 9 grenzt den Brennraum 8 gegen eine Düse 2 ab und der untere Ring 11 gegen einen Austrittsraum 11. Der Brennraum 8 diesem Ausführungsbeispiel ist in gänzlich Schaumkeramik 4 gefüllt. Die Poren der Schaumkeramik sind in 25 Quer- und Längsrichtung miteinander verbunden und lassen insbesondere so eine hervorragende Durchströmung und nahezu vollständige Verbrennung zu. Die Oberfläche Schaumkeramik 4 · ist in diesem Ausführungsbeispiel vollständig mit einer aus CuO bestehenden katalytischen 30 Schicht überzogen.

Ein auszugsweiser Schnitt ist als Prinzipskizze in Fig. 3 dargestellt. Erkennbar sind die in den Trägerschaum 12 35 eingebetteten Poren 13.

Die Schaumkeramik ist z. B. Retikulieren durch des Trägerschaums 12, wie z.B. Polyurethanschaum, und anschließender Behandlung mit einer Siliziumkarbiasuspension, beispielsweise suspendiertes Keramikpulver aus Siliziumkarbid, herstellbar.

Die Düse 2 nimmt an ihrem der Schaumkeramik 4 abgewandten axialen Ende Brennstoff, Restgas, Luft oder eine Mischung dieser Bestandteile auf und mißt sie an ihrem unteren axialen Ende, welcher der Schaumkeramik 4 zugewandt ist, durch eine nicht dargestellte Öffnung in die Schaumkeramik 4 ein. Luft wird zudem über eine Luftzufuhr 3 dem Brennraum 8 bzw. der Verbrennung zugeführt. Auch die Einbringung eines 10 Restgas-Luft- oder Restgas-Sauerstoff-Gemisches ist über die Luftzufuhr 3 möglich. Brennstoff, Restgas oder eine Mischung dieser Bestandteile entzündet sich mit Luft Sauerstoff bzw. reagiert chemisch im laufenden Betrieb an der heißen Oberfläche der Schaumkeramik 4.

15

20

25

30

35

Der Verbrennungsvorgang kann aber auch durch nicht dargestellte Zündeinrichtungen in Gang gebracht, bzw. aufrecht erhalten werden. Solche Zündeinrichtungen sind beispielsweise als nicht dargestellte elektrische Glühkerze oder Glühwendel zwischen Düse 2 und Schaumkeramik angebracht. Es ist auch möglich, die Zündeinrichtung in der Schaumkeramik 4 anzubringen. Es ist ebenso denkbar, Zündeinrichtung so zu gestalten, daß die gesamte Schaumkeramik 4, oder zumindest ein Teil davon, elektrisch beheizt wird, daß dadurch eine Zündeinrichtung gebildet wird. Schließlich kann die Schaumkeramik 4 auch von außen oder durch die Implementierung von Drähten beheizt werden. Dadurch wird der erfindungsgemäße Nachbrenneinrichtung 1 möglich.

Nach erfolgter Oxidation des Brennstoffes und/oder Restgase, entweichen die Verbrennungsgase nach unten durch den unteren Ring 10 in den Austrittsraum 11, um dann hier durch Austrittsöffnungen 7 zu entweichen.

Das erste Gehäuse 5 steht großflächig mit in dieser Figur dargestellten Wärmetauschkanälen 18 in wärmeleitendem Kontakt.

Im Inneren der Schaumkeramik 4 verlaufen streifenförmige Wärmeleitelemente 23. Sie können beispielsweise rohrförmig oder zylinderrohrförmig sein. In diesem Ausführungsbeispiel verlaufen die Wärmeleitelemente 23 von oben nach unten, parallel zur Achse 22. Sie dienen zum Transport von Wärme in Bereiche innerhalb des ersten Gehäuses 5, welche sich beispielsweise in einer Kaltstartphase, relativ zu anderen Bereichen innerhalb des ersten Gehäuses 5, nur langsam erwärmen. Beispielsweise kann so Wärme von einem Bereich nahe des unteren Rings 10 in einen Bereich nahe des oberen Rings 9 geleitet werden. Zumindest ein Teil der Wärmeleitelemente 23 können auch den oberen Ring 9 hindurchgreifen und beispielsweise die durch die Luftzufuhr 3 zugeführte Luft ebenso können sie durch den unteren anwärmen, greifen. um Wärmeenergie aus den Verbrennungsgasen abzuleiten. Die Wärmeleitelemente 23 sind so anzuordnen, daß sie möglichst nicht direkt mit den durch die Düse zugemessenen Kraftstoffen beaufschlagt werden.

Fig. 4 zeigt ein drittes erfindungsgemäßes Ausführungsbeispiel ähnlich dem Ausführungsbeispiel aus Fig. 2. Jedoch weist dieses Ausführungsbeispiel zusätzlich die Rückführungsleitung 16 auf, welche die Verbrennungsgase über die Austrittsöffnung 7, das Austrittsrohr 15 und den Regler 17 in das untere Ende der Wärmetauschkanäle 18 leiten. Wie in Fig. 5 ersichtlich, verlaufen die Wärmetauschkanäle 18, im Ausführungsbeispiel, der Figuren 4 und 5 in einer Hälfte eines an einem Ende geschlossenen hohlzylindrisch geformten Rohres 21. Die Rohre 21 verlaufen von unter nach oben entlang der seitlichen Wandung des ersten Gehäuses 5 und sind thermisch mit dem Brennraum 8 bzw. dem ersten Gehäuse 5 gekoppelt. Das Rohr 21 wird durch eine den Rohrquerschnitt teilende Rohrwandung 24 in zwei Hälften geteilt, wobei die dem ersten Gehäuse 5 zuwandte Hälfte den Wärmetauschkanal 18 darstellt und die abgewandte Hälfte eine erste Abgasleitung 19. Die Rohrwandung 24 verläuft bis kurz geschlossene Ende des Rohres 24 um eine Verbindung zwischen

10

15

20

25

30

35

dem Wärmetausenkanal 18 und der ersten Abgasleitung 19 zu schaffen. Ansonsten trennt er die beiden Hälften des Rohres 21 hermetisch ab. Die Rohre 21 sind in gleichmäßigen Abständen radial um das erste Gehäuse 5 verteilt. Die Rohre 21 und das erste Gehäuse 5 sind von dem zweiten Gehäuse 14 umgeben, wobei die seitlichen Wandungen des zweite Gehäuses 14 insbesondere wärmeisolierend wirken.

Der Regler 17 bestimmt die Menge des rückgeführten Verbrennungsgase und leitet sie über die Rückführungsleitung 16 in das untere Ende des Rohres 21 in die Wärmetauschkanäle 18. Beispielsweise in einer Kaltstartphase wird die in den Verbrennungsgasen enthaltene Wärme dem ersten Gehäuse 5 und damit dem Brennraum 8 und dem oberhalb des oberen Ringes liegenden Raum zugeführt. Die Verbrennungsgeschwindigkeit läßt sich dadurch in einer Kaltstartphase beschleunigen und dadurch die Kaltstartphase verkürzen. Insbesondere durch die zugeführte Wärme der zugemessene Kraftstoff leichter und schneller verdampfen. Über die Abgasleitung 19 verlassen die Verbrennungsgase dann die Nachbrenneinrichtung 1. Die nicht rückgeführten Verbrennungsgase werden über eine zweite Abgasleitung 20 ebenfalls aus der Nachbrenneinrichtung 1 befördert.

10

15

20

25

30

Fig. 6 zeigt ein viertes Ausführungsbeispiel ähnlich dem in den Figuren 4 und 5 gezeigten dritten Ausführungsbeispiel. Die Rückführungsleitung 16 teilt die rückgeführten Verbrennungsgase jedoch in Wärmetauschkanäle 18 auf, welche durch den Brennraum 8 bzw. die Schaumkeramik 4 verlaufen. Die Wärmetauschkanäle 18 sind rohrzylindrisch geformt und verlaufen durch die seitlichen Wandungen des ersten Gehäuses 5. Ein zweites Gehäuse 14 ist nicht vorhanden.

Fig. zeigt ein fünftes erfindungsgemäßes 35 Ausführungsbeispiel mit dem in dem zweiten Gehäuse angeordneten ersten Gehäuse 5. Die rückgeführten Verbrennungsgase werden über die Rückführungsleitung durch eine im zweiten Gehäuse 14 angeordnete erste Öffnung 25 in das Innere des zweiten Gehäuses 14 geführt und werden

wischen den beiden Genausen gebildeten Wärmetauschkanal 18 zu einer zweiten Öffnung 26 des zweiten Gehäuses 14 geleitet. Dort verlassen die Verbrennungsgase über die erste Abgasleitung 19 die Nachbrenneinrichtung 1. Das erste Gehäuse 5 ist hermetisch gegen die rückgeführten Verbrennungsgase abgedichtet und nimmt beispielsweise einer Kaltstartphase Wärme aus den rückgeführten Verbrennungsgasen auf. Dadurch werden der Brennraum 8 bzw. die Schaumkeramik 4, welche im Inneren des ersten Gehäuses 10 angeordnete sind, aufgeheizt.

5 R. 302819

ROBERT BOSCH GMBH, 70442 STUTTGART

10

Ansprüche

- 1. Verfahren zum Betreiben einer Nachbrenneinrichtung (1), 15 insbesondere für chemische Reformer zur Gewinnung Wasserstoff, zur Wärmebereitstellung Brennstoffen aus und/oder Restgasen aus einem Reformierungsund/oder einem Brennstoffzellenprozeß, mit einer Düse zum 20 Einmessen von Brennstoff und/oder Restgasen und/oder Luft in zumindest teilweise mit einer Schaumkeramik
- einen zumindest teilweise mit einer Schaumkeramik (4) gefüllten Brennraum (8) sowie einer Austrittsöffnung (7) zur Ableitung der Verbrennungsgase,

mit folgenden Verfahrensschritten:

25 - Erfassen der Verbrennungsgeschwindigkeit im Brennraum (8) und/oder in der Schaumkeramik (4),

30 - Regeln des Anteils der rückgeführten Verbrennungsgase durch Veränderung der Menge der rückgeführten Verbrennungsgase

- 2. Verfahren nach Anspruch 1,
- daß das Verfahren einen Verfahrensschritt umfaßt, durch welchen die Verbrennungsgeschwindigkeit im Brennraum (8) und/oder in der Schaumkeramik (4) durch eine

Temperaturmessung, insbesondere durch Infrarotlichtmessung, erfaßt wird.

- 3. Verfahren nach Anspruch 1 oder 2,
- 5 dadurch gekennzeichnet, daß die Menge der rückgeführten Verbrennungsgase auf der Basis der festgestellten Verbrennungsgeschwindigkeit im Brennraum (8) und/oder der Schaumkeramik (4) geregelt wird.
- 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Verfahren einen Verfahrensschritt umfaßt, durch welchen die Zufuhr von Brennstoff, Restgas und/oder Luft abhängig von der erfassten Verbrennungsgeschwindigkeit geregelt wird.
 - Verfahrensschritt nach Anspruch 4, dadurch gekennzeichnet,

daß bei zu hoher Temperatur bzw. zu großer 20 Verbrennungsgeschwindigkeit die Zufuhr von Luft durch die Luftzufuhr (3) bzw. der Luftanteil im Brennraum (8) erhöht wird.

- 6. Verfahrensschritt nach einem der Ansprüche 1 bis 5,
- 25 dadurch gekennzeichnet,
 daß das Verfahren einen Verfahrensschritt umfaßt, durch
 welchen der Brennraum (8) und/oder die Schaumkeramik (4)

- 7. Nachbrenneinrichtung (1), insbesondere für chemische Reformer zur Gewinnung von Wasserstoff, zur Wärmebereitstellung aus Brennstoffen und/oder Restgasen aus einem Reformierungs- und/oder aus einem Brennstoffzellenprozeß mit zumindest einer Düse (2) zur
- Zumessung von Brennstoff und Restgasen in einen in einem ersten Gehäuse (5) angeordneten Brennraum (8) und zumindest einer Luftzufuhr (3),

dadurch gekennzeichnet.

elektrisch beheizt werden.

daß der Brennraum (8) zumindest teilweise mit einer hitzebeständigen offenporigen Schaumkeramik (4) gefüllt ist, welche zumindest teilweise mit einem katalytischen Material überzogen ist.

5

8. Nachbrenneinrichtung nach Anspruch 7, dadurch gekennzeichnet,

daß das katalytische Material aus ZnCuO und/oder CuO besteht.

10

9. Nachbrenneinrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet,

daß die Schaumkeramik (4) zumindest teilweise aus Siliziumkarbid besteht.

15

10. Nachbrenneinrichtung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet,

daß die Schaumkeramik (4) durch Retikulieren offenporig gemacht ist.

20

11. Nachbrenneinrichtung nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet,

daß die Schaumkeramik (4) elektrisch beheizbar ist.

25 12. Nachbrenneinrichtung nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet,

daß die Schaumkeramik (4) mit zumindest einem Teil des ersten Gehäuses (5) in gutem wärmeleitendem Kontakt steht.

- 30 13. Nachbrenneinrichtung nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, daß innerhalb des ersten Gehäuses (5) Wärmeleitelemente (23) verlaufen.
- 14. Nachbrenneinrichtung nach Anspruch 13,
 dadurch gekennzeichnet,
 daß die Wärmeleitelemente (23) aus Metall oder einer
 Metallegierung bestehen und in der Schaumkeramik (4) oder in
 dem Bereich der Luftzufuhr (3) verlaufen.

15. Nachbrenneinrichtung nach einem der Ansprüche 7 bis 14, dadurch gekennzeichnet,

daß die Nachbrenneinrichtung (1)zumindest eine Rückführungsleitung (16)zum Rückführen der bei der Verbrennung entstehenden Verbrennungsgase in zumindest einen Wärmetauschkanal (18) aufweist, welcher mit dem Brennraum (8) bzw. der Schaumkeramik (4) thermisch gekoppelt ist und die Abgaswärme in den Brennraum (8), in die Schaumkeramik 10 (4) und/oder in den Bereich der Luftzufuhr (3) leitet.

16. Nachbrenneinrichtung nach Anspruch 15, dadurch gekennzeichnet,

15

daß die Nachbrenneinrichtung (1) einen Regler (17) aufweist, der die Rückführung der bei der Verbrennung entstehenden Verbrennungsgase in den zumindest einen Wärmetauschkanal (18) regelt oder steuert.

- 17. Nachbrenneinrichtung nach Anspruch 15 oder 16,
- 20 dadurch gekennzeichnet,
 daß der zumindest eine Wärmetauschkanal (18) aus Rohren
 (21), insbesondere in hohlzylindrischer Form, besteht.
- 18. Nachbrenneinrichtung nach einem der Ansprüche 15 bis 17, 25 dadurch gekennzeichnet,

daß zumindest ein Teil der Wärmetauschkanäle (18) radial um den Brennraum (8) parallel zu einer Achse (22) angeordnet ist.

- 19. Nachbrenneinrichtung nach Anspruch 15 bis 17,
 dadurch gekennzeichnet,
 daß zumindest ein Teil der Wärmetauschkanäle (18) durch den
 Brennraum (8) bzw. die Schaumkeramik (4) verläuft.
- 35 20. Nachbrenneinrichtung nach Anspruch 15 bis 17, dadurch gekennzeichnet, daß der zumindest eine Wärmetauschkanal (18) den Abgasstrom auf und/oder um das erste Gehäuse (5) leitet.

5 R. 302819

ROBERT BOSCH GMBH, 70442 STUTTGART

10

Zusammenfassung

Die Erfindung betrifft eine Nachbrenneinrichtung (1) und ein 15 Verfahren zum Betreiben einer Nachbrenneinrichtung insbesondere für chemische Reformer zur Gewinnung Wasserstoff, zur Wärmebereitstellung aus Brennstoffen und/oder Restgasen aus einem Reformierungs- und/oder aus einem Brennstoffzellenprozeß. Dabei wird einem ersten 20 (5) und/oder dem darin angeordneten wenigsten teilweise mit einer hitzebeständigen offenporigen Schaumkeramik (4) gefüllten Brennraum (8) Wärme aus rückgeführten Verbrennungsgasen geregelt zugeführt. Die Regelung erfolgt beispielsweise auf Grund der im Brennraum 25 mit einer Infrarotlichtmessung erfassten Temperatur.

(Fig. 1)

30

Fig. 1

Fig. 2

Fig. 3

Fig. 6

Fig. 7