On the Cartwright-Felleisen-Wadler conjecture

Ohad Kammar University of Oxford **Dylan McDermott** University of Cambridge

HOPE 2017

Extensible semantics

- ► Traditional semantics: the meaning of a program changes when we add something to the language
- ► Extensible semantics [Reynolds '74, Cartwright and Felleisen '94]: meaning should be stable under language extension

Extensible semantics

- ► Traditional semantics: the meaning of a program changes when we add something to the language
- ► Extensible semantics [Reynolds '74, Cartwright and Felleisen '94]: meaning should be stable under language extension

Can we do extensible monadic semantics?

Extensible monadic semantics [Wadler '98]

- Given a signature Σ
 - ▶ e.g. $\{\text{read}: 1 \rightarrow V, \text{ write}: V \rightarrow 1\}$
- ▶ A monad T_{ε} for $\varepsilon \subseteq \Sigma$
 - And a monad morphism $T_{arepsilon} o T_{arepsilon'}$ for $arepsilon \subseteq arepsilon'$

Interpret terms $\Gamma \vdash M : A$ that only use effects in ε as

$$\varepsilon \llbracket M \rrbracket : \llbracket \Gamma \rrbracket \to T_{\varepsilon} \llbracket A \rrbracket$$

Adding to Σ doesn't change the semantics of a given program!

Given a non-extensible semantics (with monad T), can we give an extensible semantics?

Given a non-extensible semantics (with monad T), can we give an extensible semantics?

Yes: just choose $T_{\varepsilon} = T$.

▶ Doesn't help us reason about smaller parts of the language

Given a non-extensible semantics (with monad T), can we give an extensible semantics?

Yes: just choose $T_{\varepsilon} = T$.

▶ Doesn't help us reason about smaller parts of the language

If ε is smaller than Σ then T_{ε} should be "simpler" than T.

Example: if T is the state+continuations monad

$$(V \Rightarrow - \Rightarrow R) \Rightarrow V \Rightarrow R$$

 $T_{\{write\}}$ should be

$$(1 + V) \times -$$

Goal

Give a construction that:

- Gives us the best possible monads T_{ε}
- ▶ Is general: works for as many effects as possible
- ► Constructs a model with the right behaviour:

$$\varepsilon \llbracket M \rrbracket = \varepsilon \llbracket N \rrbracket \Leftrightarrow \llbracket M \rrbracket = \llbracket N \rrbracket$$

Related work

- Cartwright and Felleisen '94: non-monadic extensible semantics
- Katsumata '14: give a construction for free monads. Uses a more general notion of effect system
- Kammar '14: gives a construction for algebraic T
 - Based on factorizations of morphisms of Lawvere theories

Definition (Factorization system)

A factorization system for the category C consists of:

- ▶ A class \mathcal{E} of morphisms $e: X \rightarrow Y$ ("epis")
- ▶ A class \mathcal{M} of morphisms $m: X \rightarrowtail Y$ ("monos")

such that:

Every morphism f: X → Y can be factored into an epi followed by a mono:

Some other conditions hold

Examples of factorization systems

▶ **Set**: surjections and injections

- ▶ ω **Cpo**: dense epis (closure of image equals domain) and full monos ($n \times \sqsubseteq n y \Rightarrow x \sqsubseteq y$)
- Presheaves: componentwise surjections and componentwise injections

Theorem

Let $m: S \rightarrow T$ be a strong monad morphism, and factorize m componentwise:

If \mathcal{E} is closed under S and products then:

- R is a strong monad
- e and n are strong monad morphisms

For every $op_S : \llbracket A \rrbracket \to S \llbracket B \rrbracket$ we can define $op_R := e_{\llbracket B \rrbracket} \circ op_S$.

Theorem

Let $m: S \rightarrow T$ be a strong monad morphism, and factorize m componentwise:

If \mathcal{E} is closed under S and products then:

- R is a strong monad
- e and n are strong monad morphisms

For every $\operatorname{op}_S : \llbracket A \rrbracket \to S \llbracket B \rrbracket$ we can define $\operatorname{op}_R := e_{\llbracket B \rrbracket} \circ \operatorname{op}_S$.

We are given T, but what should S and m be?

Using free monads

Want to choose S and m so that R:

- ightharpoonup Supports exactly the operations in arepsilon
- ▶ Behaves like T (i.e. $\varepsilon \llbracket M \rrbracket = \varepsilon \llbracket N \rrbracket \Leftrightarrow \llbracket M \rrbracket = \llbracket N \rrbracket$)

Using free monads

Want to choose S and m so that R:

- Supports exactly the operations in ε
- ▶ Behaves like T (i.e. $\varepsilon \llbracket M \rrbracket = \varepsilon \llbracket N \rrbracket \Leftrightarrow \llbracket M \rrbracket = \llbracket N \rrbracket$)

Use the free monad for ε :

- ▶ Epi \Rightarrow R and S have exactly the same operations
- ▶ Mono \Rightarrow R behaves like T?
 - This depends on the factorization system

We need the free monad to preserve epis.

Using free monads

Theorem

Suppose that $\mathcal C$ has directed colimits and $F:\mathcal C\to\mathcal C$ preserves them. If F also preserves $\mathcal E$ -morphisms then the free monad preserves epis.

Use

$$F = \sum_{(\text{op}: A \to B) \in \varepsilon} A \times (B \Rightarrow (-))$$

to get the free monad we want

Get *m* from initiality of the free monad

Examples

In Set:

▶ If *T* is state+continuations:

$$T_{\emptyset} = \operatorname{Id}$$
 $T_{\{\operatorname{read},\operatorname{write}\}} = V \Rightarrow V \times T_{\{\operatorname{read}\}} = V \Rightarrow T_{\{\operatorname{write}\}} = (1 + V) \times -$

► Non-example: can't get writer+nondeterminism from state+nondeterminism

In ω **Cpo**:

▶ If T is exceptions+partiality then $T_{\{diverge\}}$ is partiality

Presheaves:

▶ If *T* is local state [Plotkin and Power '02] then

$$T_{\{\text{read,write}\}} n X = V^n \Rightarrow V^n \times X n$$

Correctness

We want
$$\varepsilon \llbracket M \rrbracket = \varepsilon \llbracket N \rrbracket \Leftrightarrow \llbracket M \rrbracket = \llbracket N \rrbracket$$

Need a notion of predicate

- Factorization systems of interest induce fibrations [Hughes and Jacobs '03]
- What does a suitable factorization system look like?

Anything else?

- Reynolds uses projection theorems
- ▶ Partial maps between non-extensible and extensible semantics

How general is the construction?

- ➤ The category needs enough structure, including a suitable factorization system
 - All of our examples have this (but others might not!)
- ▶ We don't assume anything about T
 - ► This works for *arbitrary* effects
 - But Σ contains only Kleisli arrows
- We only consider effects
 - Can't add/remove other language features (e.g. linear types)
- More interesting effect systems?

Future work

- Correctness proofs using fibrations
- ▶ How easy is it to use the construction?
- ▶ More examples: full ground state, probability, ...

Conclusions

- Can construct extensible semantics from non-extensible semantics
- Construction is general
 - ▶ No restrictions on *T*
- ➤ Still work in progress don't know if the extensible semantics is correct!