Critical Points Transferring between two Diffeomorphic Manifolds

WU Zihan

2022-10-31

1 Introduction

1.1 We we have

M,N are manifolds, $F:M\to N$ is a diffeomorphism. $h:N\to\mathbb{R}$ denotes the depth function of Cell surface N.

$$M \xrightarrow{F} N \xrightarrow{h} \mathbb{R} \tag{1}$$

1.2 We want

We want to find the representative points for protrusions on N, namely the critical points of h. Specifically, we want to find the set of points $p \in N$ such as $dh_p = 0$. [1, Exercise 11.24]

Depth function h is a smooth function on N, so it is difficult to calculate properties of h directly. One can define the induced depth function $H = h \circ F$ to manipulate h on M. Also, it is natural to consider the $F^*(dh): TM \to \mathbb{R}$ on M as a corresponding of dh on N:

$$F_p^*(\mathrm{d}h)(v) = \mathrm{d}h_{F(p)}\left(dF_p(v)\right), \quad v \in T_pM \tag{2}$$

We have the following lemma to calculate $F^*(dh)$. [1, Proposition 11.25]

Lemma 1. Let M, N be smooth manifolds, $F: M \to N$ be a diffeomorphism. Let $h: N \to \mathbb{R}$ be a smooth function. Denote $H = h \circ F$. We have

$$F^*(\mathrm{d}h) = \mathrm{d}H\tag{3}$$

Proof of Lemma 1. $\forall p \in M, v \in T_pM$, we have

$$(F^*dh)_p(v) = (dF_p^*(dh_{F(p)}))(v)$$

$$= dh_{F(p)}(dF_p(v))$$

$$= dF_p(v)h$$

$$= v(h \circ F)$$

$$= d(h \circ F)_p(v)$$

Theorem 2. Let M, N be smooth manifolds, $F: M \to N$ be a diffeomorphism. Let $h: N \to \mathbb{R}$ be a smooth function. If $P \subseteq N$ is the critical point set of h and $Q \subseteq M$ is the critical point set of $H = h \circ F$, then $F^{-1}(P) = Q$.

Proof of Theorem 2. It suffices to show that $F^{-1}(P) \subseteq Q$ and $Q \subseteq F^{-1}(P)$.

1) $Q \subseteq F^{-1}(P)$:

Consider $q \in Q$ and $v \in T_{F(q)}N$. We have

$$dH_q = 0.$$

Since F is a diffeomorphism, we have $\mathrm{d}F_q^{-1}(v)\in T_qM$. By definition, we have

$$dh_{F(q)}(v) = [F_q^*(dh)](dF_q^{-1}(v))$$
(4)

And from Lemma 1, noticing $dH_q = 0$, we have

$$[F_q^*(\mathrm{d}h)](\mathrm{d}F_q^{-1}(v)) = \mathrm{d}H_q(\mathrm{d}F_q^{-1}(v)) = 0$$
 (5)

Thus

$$dh_{F(q)}(v) = 0, \quad \forall v \in T_{F(q)}N \tag{6}$$

which is exactly

$$F(q) \in P \tag{7}$$

$$\Rightarrow \quad q \in F^{-1}(P) \tag{8}$$

$$\Rightarrow Q \subseteq F^{-1}(P) \tag{9}$$

 $2) F^{-1}(P) \subseteq Q$:

For all $p \in P$,

$$dh_p = 0 (10)$$

Similar to the proof of 1), $\forall v \in T_{F^{-1}(p)}M$, we have

$$dH_{F^{-1}(p)}(v) = dh_p(dF_{F^{-1}(p)}(v)) = 0.$$
(11)

Thus

$$F^{-1}(p) \in Q,\tag{12}$$

which gives

$$F^{-1}(P) \subseteq Q \tag{13}$$

From Theorem 2, we can calculate the critical point set of H to get the critical point set of h.

References

[1] J. M. Lee, *Introduction to Smooth Manifolds*, ser. Graduate Texts in Mathematics. Springer, 2013.