Speaker Recognition

Dr. Anil Kumar Vuppala
IIIT-Hyderabad

Introduction

Speaker Recognition: Man v/s Machine

- Recognizing people solely by their speech
- Who has spoken rather than what is spoken?
- Recognizing people by listening Speaker recognition by man
- Recognizing people by signal processing and pattern recognition – Speaker recognition by machine
- Speaker recognition by machine is also termed as Automatic speaker recognition

Speaker Recognition by Machine

- Some signal processing features are extracted from the speech signal using the existing signal processing tools
- Reference speaker models are built using the pattern recognition tools for extracted features
- Speaker models are used for recognizing speakers
- It is a fact that machine depends more on physiological aspect of speaker information and less on behavioral aspect of speaker information

Automatic Speaker Recognition

- Biometric Speaker Recognition
 - Speech as a biometric feature for person authentication
 - Security purpose
 - Shall I allow this person to do his/her business?
 - Commercial and Defense Applications
 - Banking transactions, entry to protected areas
- Forensic Speaker Recognition
 - Speech as a forensic evidence for person identification
 - Criminal investigation
 - Is the given speech data really spoken by this person?
 - Who among the suspects has spoken this message?

Classification of Speaker Recognition

- Speaker Recognition: Recognizing speakers by extracting and modeling signal processing features from the speech signal
- Classification
 - Speaker verification v/s Speaker identification
 - Text-dependent v/s Text-indenpendent
 - Closed set v/s Open set

Speaker Verification v/s Identification

- Verifying the identity claim of a speaker
 - I am so and so, please allow me to use
- Identifying the speaker of the speech signal
 - I will not tell who I am, bet you identify me

Speech Modalities

Text-dependent recognition

- Recognition system knows text spoken by person
- Examples: fixed phrase, prompted phrase
- Used for applications with strong control over user input
- Knowledge of spoken text can improve system performance

• Text-independent recognition

- Recognition system does not know text spoken by person
- Examples: User selected phrase, conversational speech
- Used for applications with less control over user input
- More flexible system but also more difficult problem
- Speech recognition can provide knowledge of spoken text

Closed-set v/s Open-set

- Closed-Set: Speech during testing is always from one of the enrolled speakers
 - Identify who is the speaker among the enrolled
- Open-Set: Speech during testing may be from the speaker who is not enrolled
 - Identify whether he/she belongs to the enrolled set or not
 - If so, identify who is the speaker among the enrolled

Speaker Recognition by Pattern Recognition Approach

- Pattern recognition task
 - Feature extraction
 - Training/Pattern classification
 - Testing/Pattern comparison
- Feature extraction
 - Digital signal processing tools
- Training
 - Pattern recognition tools
- Testing
 - Spectral dissimilarity measures

Feature Extraction

- Reduced data rate and enhance relevant information
- The accuracy of classification is strongly determined by its selection

Speech analysis

- Segmental (1-5 ms)
- Sub-segmental (10-40 ms)
- Supra-segmental (100 ms)

Speech signal processing

- FFT-implemented filterbanks
- LP analysis
- Cepstral Analysis
- Sinusoidal Analysis

Speaker Modelling

Speaker Recognition system (training process)

Speaker Models

- Dynamic Time Warping (DTW)
- Vector Quantization (VQ)
- Gaussian Mixture Model (GMM)
- Hidden Markov Models (HMM)
- Neural Network Models (NN)
- Support Vector machine (SVM)

Gaussian Mixture Model (GMM)

Each speaker is modeled by a sum of different Gaussians

Gaussian mixture models (cont.)

For a D-dimensional feature vector $, \vec{t}$ he mixture density used for the likelihood function is defined as follows:

$$p(\vec{x}|\lambda) = \sum_{i=1}^{M} w_i p_i(\vec{x}) \qquad \sum w_i = 1$$

Gaussian densities $p_i(\vec{x}e)$ ach parameterized by a $D \times 1$ mean vector \vec{u} and a $D \times D$ covariance matrix Σ_i :

$$p_{i}(\vec{x}) = \frac{1}{(2\pi)^{D/2} |\Sigma_{i}|^{1/2}} e^{-(1/2)(\vec{x} - \vec{\mu}_{i})' \sum (\vec{x} - \vec{\mu}_{i})}$$

Collectively, the parameters of the density model are denoted as

$$\lambda = (w_i, \vec{u}_i, \Sigma_i)$$

Identification vs verification

Phases of Speaker Identification System

Phases of Speaker Verification System

Speaker Recognition

Fig.: Block diagram of speaker recognition using GMM-UBM

Experimental Description

- Database
 - TIMIT (630 speakers, 438 males and 192 females)
 - 10 sentences for each speaker, 3 s each.
 - Subset of 100 speakers
 - Training: First 8 sentences, Testing: Last 2 sentences
- Speaker-Specific Feature
 - MFCC
- Modelling
 - **▶** GMM-UBM
- UBM Training
 - 1 Hour of speech
 - Performance is 99% for TIMIT database by using 512 mixtures.

Speaker Recognition Results

Table: Speaker recognition performance (percentage of identification) under noisy environment. In table abbreviations DEG, TP, SP1, SP2, TSP1 and TSP2 refer to degraded speech, temporal processing, multi band spectral subtraction, MMSE-STSA estimator, combined temporal and multi-band spectral subtraction, and combined temporal and MMSE-STSA estimator, respectively.

SNR	0 dB	3 dB	6 dB	9 dB	12 dB	15 dB	20 dB	30 dB
DEG	1.50	2.00	2.00	3.50	10.50	23.50	51.50	89.00
TP	3.00	5.00	16.00	21.00	33.50	42.50	78.50	87.50
SP1	6.00	19.00	32.00	49.50	49.50	70.50	87.00	92.00
CD2	F F0	12.00	21.00	26.00	F7 00	77.00	96 50	01 50

Thank you

