b) Modelo de ANOVA con un factor aleatorio.

$$y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$
 con i=1,...,a; j=1,...,n

 y_{ij} : Respuesta para el tratamiento i en la réplica j

μ: Media global

τ_i: Efecto del tratamiento i

 ε_{ij} : Error aleatorio

Con au_i y au_{ij} como variables aleatorias

Supuestos:

 τ_i : Independientes y $\tau i \sim N$ (0, σ_{τ}^2) ε_{ij} : Independientes y $\varepsilon ij \sim N$ (0, σ^2)

Para este caso:

Variable dependiente: Contenido de calcio

Factor: Lote. a=5

Replicas por factor: n=5

Observaciones totales: N=a*n=5*5=25

Las hipótesis a probar serán:

 $H_0: \sigma_{\tau}^2 = 0$

H₁: $\sigma_{\tau}^2 > 0$

Análisis exploratorio:

Observando el plot box se puede ver que existe un efecto significativo por parte del factor.

c) Tabla ANOVA:

Pruebas de efectos inter-sujetos

Variable dependiente: Contenido de Calcio

Tallade depondent Content of Callet								
		Tipo III de suma		Media				
Origen		de cuadrados	gl	cuadrática	F	Sig.		
Intersección	Hipótesis	13744,280	1	13744,280	513881,691	,000		
	Error	,107	4	,027ª				
Factor	Hipótesis	,107	4	,027	5,600	,003		
	Error	,096	20	,005 ^b				

a. MS(Factor)

b. MS(Error)

Dado el p-value=0,003, el cual se encuentra resaltado en violeta, se puede rechazar la hipótesis nula y se puede decir que hay suficiente evidencia muestral para afirmar que la elección del lote afecta a la cantidad de calcio.

d) Test de Levenne:

H₀:
$$\sigma_1^2$$
=...= σ_4^2 = σ^2

H₁: $\exists \sigma_i^2 \neq \sigma^2$

Prueba de igualdad de Levene de varianzas de error^{a,b}

		Estadístico de			
		Levene	gl1	gl2	Sig.
Contenido de Calcio	Se basa en la media	,205	4	20	,933
	Se basa en la mediana	,138	4	20	,966
	Se basa en la mediana y con	,138	4	19,142	,966
	gl ajustado				
	Se basa en la media	,218	4	20	,925
	recortada				

Prueba la hipótesis nula de que la varianza de error de la variable dependiente es igual entre grupos.

a. Variable dependiente: Contenido de Calcio

b. Diseño: Intersección + Factor

Siendo el p-value=0,933 no se puede rechazar la hipótesis nula, por lo que se asume igualdad de varianzas.

Test de normalidad (Shapiro-Wilk, ya que N<50):

H₀)
$$e_{ij} \sim N(0, \sigma^2)$$

H₁) No H₀

Pruebas de normalidad

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
Residuo para VarDep	,138	25	,200*	,947	25	,212

^{*.} Esto es un límite inferior de la significación verdadera.

Como el p-value=0,212>0,20 no se puede rechazar la hipótesis nula y concluir que se cumple el test de normalidad de residuos.

a. Corrección de significación de Lilliefors

Residuo para VarDep

Aleatoreidad e independencia de los residuos:

Valor pronosticado para VarDep

Se observa que los puntos están distribuidos alrededor del eje X y que ninguno está alejado más de 3 unidades, por lo que se concluye que los residuos están distribuidos aleatoriamente e independientemente.