	+262/1/8+
Veillez à bien noircir les cases.	
	$egin{array}{cccccccccccccccccccccccccccccccccccc$
Codez votre numéro d'étudiant ci-contre → et écrivez votre nom et prénom ci-dessous :	
-	
Nom et prénom :	
Attention à ne pas vous tromper,	
toute erreur invalide la copie!	
${f Statistiques-QCM}$	1 – 6 Octobre 2021
-	
Règlement – L'épreuve dure 30 minutes. Les téléphones, phones portables doivent être éteints et rangés. Les	
Les questions ont en général une seule bonne réponse, sa	auf si le contraire est indiqué dans l'énoncé. Le barême est
indiqué pour chaque question. Attention il v. 2. questions de cours pour lesque	elles une réponse fausse fait perdre 1 ou 2 points.
	enes une reponse rausse rait perure 1 ou 2 points.
Question 1 [6 points, pour les deux sous-questions] On	considère la variable statistique
x = (36, 26, 1, 9, 23, 26,	26, 29, 32, 32, 36, 39).
a) Le premier quartile q_1 de x , selon la définition du cours,	est donné par :
	$q_1 = 36$ $q_1 = 33$ $q_1 = 29$
$ \begin{array}{cccc} & 2 & & \\ & q_1 = 1 & & \\ & q_1 = \frac{295}{12} & & \\ & q_1 = 23 & \\ & q_1 = 16 & & \\ & q_1 = \frac{39}{2} & & \\ & q_1 = \frac{113}{4} & \\ \end{array} $	
	Aucune de ces réponses
b) Quelles sont les valeurs extrêmes (représentées par des redu cours? (ne cochez qu'une réponse contenant la liste de t	
39, 36, 1 et 9 39 et 36 1, 9 et 39	9 39 et 1 39,36 et 9 39
39, 36, 1 et 9	extrêmes. $\boxed{9}$ $\boxed{1}$ 39, 36 et 1 e de ces réponses n'est correcte
Explication: On commence par calculer le premier quart	
ICC = 32 - 23 = 9. Les valeurs extrêmes sont les valeurs	de l'échantillon en dehors de l'intervalle de la moustache
$[M_B, M_H]$. Ici, $32 + 1.5 * 9 > 39$ est supérieur au maximur $M_{H_B} = 22$. Il se plant 2 en leurs extrêmes $1 * 1 * 1 * 0$	n donc $M_H = 39$ mais $23 - 1.5 * 9 = \frac{1}{2}$ on obtient donc
$M_B = 23$. Il y a donc 2 valeurs extrêmes : 1 et 9.	
Question 2 [2 points] On considère la variable statistique	ue
y = (36, 23, 2, 21, 13, 23)	, 26, 30, 32, 32, 36, 40).
Quelle est la fréquence cumulée $F(36)$ du caractère 36 pour	: y ?
	$F(26) = \frac{1}{2}$ $F(26) = \frac{1}{2}$ $F(26) = \frac{3}{2}$
$F(36) = 11$ $F(36) = \frac{11}{12}$ $F(36) = \frac{11}{12}$	F(36) = 9 $F(36) = 36$ $F(36) = u$
	$F(36) = \frac{1}{3}$
Emplication : On demandait isi la fréquence la notation ét	

Explication: On demandait ici la fréquence, la notation était différente du cours, on aurait noté en cours $f(36) = \frac{2}{12}$. J'ai aussi compté juste pour ceux qui répondaient la fréquence cumulée notée $F(36) = \frac{11}{12}$ dans le cours.

Question 3	10	nainta ai	:ata	1		~:	mám amaa	£0	
Question 3	4	points si	juste,	-1	point	$_{\rm S1}$	reponse	iausse	

On considère les variables statistiques x, y dans \mathbb{R}^n . On rappelle que cor(x, y) est la corrélation empirique de x et y. Quelle condition parmi les conditions suivantes est équivalente à cor(x, y) = -1?

il existe $t > 0$ et $c > 0$ tels que $y = tx + c$ $x = y$	il existe $t \in \mathbb{R}$ et $c > 0$ tels que $y = tx + c$
il existe $t < 0$ et $c < 0$ tels que $y = tx + c$	il existe $t > 0$ et $c \in \mathbb{R}$ tels que $y = tx + c$
il existe $t < 0$ et $c \in \mathbb{R}$ tels que $y = tx + c$	il existe $t \in \mathbb{R}$ et $c < 0$ tels que $y = tx + c$
il existe $t \in \mathbb{R}$ et $c \in \mathbb{R}$ tels que $y = tx + c$	Aucune de ces réponses

Question 4 [Cours : 2 points si juste, -2 points si réponse fausse]

Soit une variable statistique $x=(x_1,\cdots,x_n)$ avec n=2l et \overline{x} sa moyenne, x^* son réarrangement croissant. Quelle est la définition de la moyenne empirique de x?

	$\overline{x} = \frac{1}{n} \sum_{k=1}^{n} x_k $	$\overline{x} = \frac{1}{n-1} \sum_{k=1}^{n} (x_k - \overline{x})^2$	$\overline{x} = \frac{1}{n-1} \sum_{k=1}^{n-1} x_k$
$\overline{x} = \frac{1}{n-1} \sum_{k=1}^{n-1} (x_k - \overline{x})^2$		$\overline{x} = \frac{1}{n-1} \sum_{k=1}^{n} x_k^2$	$\overline{x} = \frac{1}{n} \sum_{k=1}^{n-1} x_k$
$\overline{x} = \frac{1}{n} \sum_{k=1}^{n-1} x_k^2 \qquad $		n-1	n-1
$\overline{x} = \frac{1}{n} \sum_{k=1}^{n-1} (x_k - \overline{x})^2$	$\overline{x} = \frac{1}{n-1} \sum_{k=1}^{n-1} x_k^2$	$\overline{x} = \frac{1}{n} \sum_{k=1}^{n} x_k^2$	$\overline{x} = \frac{1}{n-1} \sum_{k=1}^{n} x_k$
	Aucune de ce		

Question 5 [3 points]

Cinq amis de L1 d'informatique se demandent si leur moyenne y sur l'année de L1 est déterminée en terme d'une relation affine simple par leur note x au cours d'informatique obligatoire du premier semestre. Voici le tableau de leurs notes.

	étudiant 1	étudiant 2	étudiant 3	étudiant 4	étudiant 5
Note d'informatique x	8	18	10	16	7
Note sur l'année y	12	17	13	15	12

La variance empirique (biaisée) de x est donnée (en arrondissant si nécessaire à deux décimales) par :

	. ,			
	V(x) = 793	V(x) = 3.76		
V(x) =	19.36 $\qquad \qquad \qquad \qquad V(x)$	V(x) = 69 $V(x)$	$= 59$ \square $V($	x) = 13.80
		Aucune de ces réponses	3	

+262/3/6+

Question 6 [5 points]

On reprend les mêmes données qu'à la question précédente. En arrondissant toujours à deux décimales, la droite de régression linéaire de la note sur l'année par rapport à la note d'informatique est :

 $\pmb{Explication}:$ Par la formule du cours, on trouve d'abord $a=\frac{cov(x,y)}{cov(x,x)}.$ Ici, la covariance (biaisée) est

$$C(x,y) = \frac{1}{n} \sum_{k=1}^{n} (x_k - \overline{x})(y_k - \overline{y}) = 8.36$$

et la variance (biaisée) est

$$V(x) = C(x,x) = \frac{1}{n} \sum_{k=1}^{n} (x_k - \overline{x})^2 = 19.36,$$

on obtient le quotient :

$$a = \frac{8.36}{19.36} \simeq 0.43.$$

On a donné 2 points si a est juste. Ensuite, on obtient

$$b = \overline{y} - a\overline{x} = 13.80 - \frac{8.36}{19.36} * 11.80 \simeq 8.70.$$

Si a est faux mais b est cohérent selon la formule suivante, on a mis aussi 2 points. Attention, en calculant avec arrondi de a, on trouve $13.80-0.43*11.80 \simeq 8.73$ cela fait une erreur d'arrondi. On a donné 2 points dans ce cas à "Aucune de ces réponses", qui est la réponse si on a fait cette erreur d'arrondi.