ÇEV 361 Coğrafi Bilgi Sistemleri ve Uzaktan Algılama

Uzaktan Algılamada Görüntü İşleme

© Doç. Dr. Özgür ZEYDAN

https://ozgurzeydan.com.tr/

Uzaktan Algılamada Görüntü Önişleme

- Bozuklukların düzeltilmesi
- Radyometrik bozukluklar
- Sensör kaynaklı
- Atmosferik bozukluklar
- Geometrik bozukluklar
- Sistematik
- Sistematik olmayan

- »Görüntünün iyileştirilmesi
- Yeni görüntü oluşturma (dönüşüm)

Bozuklukların Düzeltilmesi: Görüntü Haritaya Kodlama

http://www.nrcan.gc.ca/earth-sciences/geomatics/satellite-imagery-air-photos/satellite-imagery-products/educational-resources/9403

Görüntü Örnekleme Yöntemleri

- Geometrik kaydetme için piksellerdeki dijital rakam (DN) değerlerinin tekrar hesaplanmasıdır.
- 1.En Yakın Komşuluk
- 2.BiDoğrusal İnterpolasyon
- 3.Kübik Fonksiyon

En Yakın Komşuluk (Nearest neighbour)

http://www.nrcan.gc.ca/earth-sciences/geomatics/satellite-imagery-air-photos/satellite-imagery-products/educational-resources/9403

Görüntü Örnekleme Yöntemleri

BiDoğrusal İnterpolasyon (Bilinear interpolation)

Kübik Fonksiyon (Cubic convolution)

http://www.nrcan.gc.ca/earth-sciences/geomatics/satellite-imagery-air-photos/satellite-imagery-products/educational-resources/9403

Görüntü Örnekleme Yöntemleri

	En yakın komşuluk	BiDoğrusal İnterpolasyon	Kübik Fonksiyon
Geometrik özellikler	Kötü	İyi	En İyi
Radyometrik özellikler	En İyi	İyi	Kötü
Bilgisayardaki işlem süresi	Hızlı	Orta	Yavaş

Görüntünün İyileştirilmesi: Kontrastın Ayarlanması

http://www.tankonyvtar.hu/hu/tartalom/tamop425/0027_DAI6/ch01s04.html

LEOWorks – Kontrast Ayarlama

>Tools > Colour Manipulation

RGB Görüntü ile Kontrast Ayarlanmış Görüntü

Görüntünün İyileştirilmesi: Filtreler

Belirli bir hücredeki DN değerinin, bu hücrenin etrafındaki komşu hücrelerin DN değerlerinin kullanılması ile değiştirilmesi için yapılan aritmetik ve mantıksal işlemler.

Filtre Hesaplama Örneği

Kenar iyileştirme vb. filtrelerde faktörün 0 olması durumunda faktör 1'e eşitlenir.

Değerlerin 0 ile 255 arasında çıkması için offset değeri eklenir.

Yüksek Geçirgen (High Pass) Filtre

⊳Görüntüyü keskinleştirmek için kullanılır.

12	61	123
44	110	99
26	32	142

~	
()rııınal	görüntü
	gorarica

-1	-1	-1
-1	16	-1
-1	-1	-1

Filtre

12	61	123
44	152	99
26	32	142

Filtrelenmiş Görüntü

$$\frac{(-1)*12 + (-1)*61 + (-1)*123 + (-1)*44 + 16*110 + (-1)*99 + (-1)*26 + (-1)*32 + (-1)*142}{(-1) + (-1) + (-1) + (-1) + (-1) + (-1) + (-1) + (-1) + (-1)} = 152,625 \implies 152$$

Düşük Geçirgen (Low Pass) Filtre

Görüntüyü bulanıklaştırmak ve gürültü (noise) giderimi için kullanılır.

12	61	123
44	110	99
26	32	142

1	1	1
1	1	1
1	1	1

12	61	123
44	72	99
26	32	142

$$\frac{1*12+1*61+1*123+1*44+1*110+1*99+1*26+1*32+1*142}{1+1+1+1+1+1+1+1+1} = 72,111 \Rightarrow 72$$

Kenar İyileştirmesi (Edge Detection)

Geometrik detayların arttırılması ve kenar belirleme için kullanılır.

12	61	123
44	110	99
26	32	142

-1	-1	-1
-1	8	-1
-1	-1	-1

12	61	123
44	255	99
26	32	142

$$\frac{(-1)*12 + (-1)*61 + (-1)*123 + (-1)*44 + 8*110 + (-1)*99 + (-1)*26 + (-1)*32 + (-1)*142}{(-1) + (-1) + (-1) + (-1) + (-1) + (-1) + (-1) + (-1)} = \frac{341}{1} = 341 \Rightarrow 255$$

LEOWorks – Filtre Uygulama

>Tools > Apply Filter

Normal Bant ile Bulanıklaştırma Filtresi Uygulanmış Bant

Pan-Keskinleştirme (Pan-Sharpening)

Pan keskinleştirme, görüntünün spektral özelliklerini korurken uzaysal çözünürlüğünü artıran bir görüntü dönüştürme işlemidir.

https://www.gezgin.gov.tr/pansharp/

LEOWorks - Pan-Keskinleştirme

➤ Tools > Pan Sharpening

Pan-Keskinleştirilmiş Görüntü

RGB Görüntü ile Pan-Keskinleştirilmiş RGB Görüntü Farkı

Yeni Görüntü Oluşturma (Dönüşüm)

- Çoklu bant işlemleri ile yeni görüntüler oluşturulur.
- RGB görüntüleme
- İndekslerin hesaplanması
- Jeoformül

Normalleştirilmiş Fark Bitki İndeksi (NDVI)

- Normalized Difference Vegetation Index (NDVI)
- >-1 ile +1 arasındadır.
- +1'e yakın değerler bitki varlığını gösterir.

$$NDVI = \frac{(NIR - R)}{(NIR + R)}$$

https://www.mathworks.com/help/images/spectral-indices.html

Normalleştirilmiş Fark Bitki İndeksi (NDVI)

$$NDVI_{L8} = \frac{Band_5 - Band_4}{Band_5 + Band_4}$$
 Landsat 8 OLI

 $NDVI_{L5} = \frac{Band_4 - Band_3}{Band_4 + Band_3}$ Landsat 5 TM

 $NDVI_{S2} = \frac{Band_8 - Band_4}{Band_9 + Band_4}$ Sentinel 2 MSI

https://www.cropin.com/blogs/ndvi-normalized-difference-vegetation-index

https://www.geo.university/pages/spectral-indices-with-multispectral-satellite-data

LEOWorks - NDVI

>Tools > NDVI

Normalized Difference Vegetation Index

1981–2018 Yıllık Ortalama NDVI

https://www.mdpi.com/2072-4292/15/14/3616

Landsat TM Bant Özelliklerine Göre Endeksler

Endeksler	İşlemler
Bitki indeksi	B4-B3
Normalize Fark Bitki İndeksi (NDVI)	(B4-B3) / (B4+B3)
Demir Oksit	B3/B1
Kil Mineralleri	B5/B7
Demirli Mineraller	B5/B4
Mineral Kompozisyonu	B5/B7, B5/B4, B3/B1
Hidrotermal Kompozisyon	B5/B7, B3/B1, B4/B3

Table 2. Satellite-derived indexes used for water features extraction (in Landsat imagery: Green = Band 2, Red = Band 3, NIR (near-infrared) = Band 4, MIR (middle-infrared) = Band 5, SWIR (shortwave-infrared) = Band 7).

Index	Equation	Remark	Reference	
Normalized Difference	NDWI = (Green - NIR)/(Green +	Water has positive value	[24]	
Water Index	NIR)	Water has positive value		
Normalized Difference	NDMI = (NIR - MIR)/(NIR +	Water has positive value	[36]	
Moisture Index	MIR)	Water has positive value		
Modified Normalized	MNDWI = (Green - MIR)/(Green	Water has positive value	[18]	
Difference Water Index	+ MIR)	Water has positive value		
Water Datie In Inc	WRI = (Green + Red)/(NIR +	Value of water body is	[27]	
Water Ratio Index	MIR)	greater than 1	[37]	
Normalized Difference	NDVI = (NID = D od)/(NID + D od)	Water has recetive value	[38]	
Vegetation Index	NDVI = (NIR - Red)/(NIR + Red)	Water has negative value		
Automated Water	$AWEI = 4 \times (Green-MIR) - (0.25)$	Water has positive value	[20]	
Extraction Index	\times NIR + 2.75 \times SWIR)	Water has positive value	[39]	

Rokni, K.; Ahmad, A.; Selamat, A.; Hazini, S. Water Feature Extraction and Change Detection Using Multitemporal Landsat Imagery. *Remote Sens.* **2014**, *6*, 4173-4189.

Bant Aritmetiği

»Mevcut bantların bir aritmetik ifade içerisinde kullanılmasıyla yeni bir görüntü oluşturma.

- >Örnek:
- Transformed Vegetation Index (TVI) hesaplanması
- $TVI = \sqrt{(NDVI + 0.5)}$

LEOWorks – Bant Aritmetiği

>Tools > Band Aritmethic

LEOWorks – TVI

Bitki İndeksleri

Applied Computing and Geosciences 7 (2020) 100032

Table 3List of vegetation indices.

INDICES	FORMULA	DATE
Normalized Differential Vegetation Index (NDVI)	(NIR – Red)/(NIR + Red)	(Rouse et al., 1973)
Soil-Adjusted Vegetation Index (SAVI)	[(NIR - Red)/(NIR + Red + 0.5)] * (1 + 0.5)	Huete (1988)
Atmospherically Resistant	(NIR - (Red −1*(Blue -	(Kaufman and
Vegetation Index (ARVI)	Red)))/(NIR + (Red -1*(Blue - Red)))	Tanre et al., 1992)
Enhanced Vegetation Index (EVI)	2.5*((NIR - Red)/((NIR + 6*Red -7.5*Blue)+1))	(Huete <i>et. al.,</i> 2002)

Görüntü Yorumlama – Regresyon Analizi

Sahada ölçülen parametreleri uzaktan algılama verisi yardımıyla tahmin etmek için regresyon denklemi geliştirilmesidir.

```
Y= β_0 + β_1 * X_1 + ε (Basit doğrusal regresyon)
Y= β_0 + β_1 X_1 + β_2 X_2 + ..... + β_n X_n + ε (Çoklu doğrusal regresyon)
```

- Y: Bağımsız değişken (sahada ölçülen parametre)
- X_{1...n}: Bağımlı değişken(ler) (belirli banttaki piksel değeri)
- ►B_{1...n}: Katsayı(lar)
- >ε: Hata terimi

Regresyon Analizi - Su Kalitesi

Table 1 Regression equations for prediction of Secchi disk transparency from Landsat TM data

Image date	Equation	r^2
7/3/73	ln(SDT) = 2.965(MSS1:MSS2) - 0.0847(MSS1) - 2.99	0.791
8/7/75	ln(SDT) = 5.230(MSS1:MSS2) - 0.245(MSS1) - 2.37	0.759
9/6/83	ln(SDT) = 3.029(MSS1:MSS2) - 0.264(MSS1) - 0.384	0.599
8/21/86	ln(SDT) = 1.324(TM1:TM3) + 0.00777(TM1) - 4.87	0.867
8/26/88	ln(SDT) = 0.657(TM1:TM3) - 0.0114(TM1) - 2.39	0.929
6/16/91	ln(SDT) = 0.546(TM1:TM3) + 0.0562(TM1) - 4.43	0.526
7/18/91	ln(SDT) = 0.882(TM1:TM3) + 0.0754(TM1) - 7.07	0.756
9/4/91	ln(SDT) = 1.073(TM1:TM3) + 0.0828(TM1) - 8.23	0.816
9/20/91	ln(SDT) = 1.113(TM1:TM3) + 0.115(TM1) - 10.14	0.608
8/24/93	ln(SDT) = 1.162(TM1:TM3) + 0.0352(TM1) - 6.05	0.722
7/29/95	ln(SDT) = 1.262(TM1:TM3) + 0.0376(TM1) - 6.25	0.902
7/15/96	ln(SDT) = 1.066(TM1:TM3) - 0.0588(TM1) - 0.557	0.771
9/7/98	ln(SDT) = 0.953(TM1:TM3) - 0.00815(TM1) - 3.18	0.841

Kloiber S M, Brezonik P L, Bauer M E (2002) Application of Landsat imagery to regional-scale assessments of lake clarity, Water Research, 36, 4330–4340.

Regresyon Analizi - Su Kalitesi

Table 7: Regression model for the estimation of TSS from Sentinel-2A MSI.

Sentinel-2A regression model equation for estimation of TSS	Band combination for deriving R_{rs} (= x)	R^2	MAE	NMAE%	RMSE
$y = 93011x^2 - 82773x + 18442$	(B4 + (B8/B4))/2	0.6133	5.4969	4.3039	8.3845
$y = 89013x^2 - 78936x + 17526$	(B8A + (B8/B4))/2	0.5940	9.5691	6.8105	13.4793
$y = 83708x^2 - 73811x + 16299$	$\big(B8+\big(B8/B4\big)\big)/2$	0.5998	6.6792	7.5058	12.9244
$y = 19420x^2 - 26272x + 8945.4$	B4/B3	0.4846	23.7299	15.7569	24.8370
$y = 46042x^2 - 32585x + 5822.6$	(B3 + (B4/B3))/2	0.4722	13.9118	12.9250	21.7248

Table 8: Regression model for the estimation of TSS from Landsat-8 OLI.

Landsat OLI regression model equation for estimation of TSS	Band combination for deriving $R_{rs}(=x)$	R^2	MAE	NMAE%	RMSE
y = 2781.9x - 1393.5	B2	0.9240	4.7391	12.3842	3.3185
y = 27176x - 1184.6	В3	0.9245	6.8510	29.896	12.8425
y = 2454.1x - 1584.4	B3/B2	0.9249	0.5473	0.7000	0.0349
$y = 1714.7 \ln(x) + 1171$	B3/B4	0.9161	2.3885	9.3736	2.1329
$y = 1905.3 \ln(x) + 821.01$	B3/B2	0.9159	3.7496	12.1181	4.5714

Ouma, Yashon O., Noor, Kimutai, Herbert, Kipkemoi, Modelling Reservoir Chlorophyll-a, TSS, and Turbidity Using Sentinel-2A MSI and Landsat-8 OLI Satellite Sensors with Empirical Multivariate Regression, *Journal of Sensors*, 2020, 8858408, 21 pages, 2020. https://doi.org/10.1155/2020/8858408

Görüntülerin Sınıflandırılması

http://www.tankonyvtar.hu/hu/tartalom/tamop425/0027_DAI6/ch01s04.html

Görüntülerin Sınıflandırılması

https://seos-project.eu/classification/classification-c04-p01.html

Sınıflandırma

LEOWorks - Denetimsiz Sınıflandırma

>Tools > Classification > Unsupervised

LEOWorks - Denetimsiz Sınıflandırma

Tools > Classification > Legend

Kaynaklar

- Düzgün Ş. (2010) Uzaktan Algılamaya Giriş Uzaktan Algılamaya Giriş ders notları Ünite 5 Veri Görüntü Önişleme http://www.acikders.org.tr/mod/resource/view.php?id=373
- LEOWorks 4.3 User Manual