

浙江大学伊利诺伊大学厄巴纳香槟校区联合学院

Zhejiang University-University of Illinois at Urbana Champaign Institute

ECE 448: Artificial Intelligence Lecture 10: Probability

Prof. Hongwei Wang hongweiwang@intl.zju.edu.cn

Prof. Mark Hasegawa-Johnson jhasegaw@illinois.edu

Outline

- 1. Motivation: Why use probability?
 - Laziness, Ignorance, and Randomness
 - Rational Bettor Theorem
- 2. Review of Key Concepts
 - Outcomes, Events
 - Jointly random variables: Joint, Marginal, and Conditional pmf
 - Independent vs. Conditionally Independent events

Outline

- 1. <u>Motivation: Why use probability?</u>
 - <u>Laziness, Ignorance, and Randomness</u>
 - Rational Bettor Theorem
- 2. Review of Key Concepts
 - Outcomes, Events
 - Jointly random variables: Joint, Marginal, and Conditional pmf
 - Independent vs. Conditionally Independent events

Motivation: Planning under uncertainty

- Recall: representation for planning
- States are specified as conjunctions of predicates
 - Start state: At(Me, UIUC) ∧ TravelTime(35min,UIUC,CMI) ∧ Now(12:45)
 - Goal state: At(Me, CMI, 15:30)
- Actions are described in terms of preconditions and effects:
 - Go(t, src, dst)
 - Precond: At(Me,src) ∧ TravelTime(dt,src,dst) ∧ Now(≤t)
 - Effect: At(Me, dst, t+dt)

Motivation: Planning under uncertainty

- Let action Go(t) = leave for airport at time t
 - Will *Go(t)* succeed, i.e., get me to the airport in time for the flight?
- Problems:
 - Partial observability (road state, other drivers' plans, etc.)
 - Noisy sensors (traffic reports)
 - Uncertainty in action outcomes (flat tire, etc.)
 - Complexity of modeling and predicting traffic
- Hence a purely logical approach either
 - Risks falsehood: "Go(14:30) will get me there on time," or
 - Leads to conclusions that are too weak for decision making:
 - Go(14:30) will get me there on time if there's no accident, it doesn't rain, my tires remain intact, etc., etc.
 - Go(04:30) will get me there on time

Probabilistic assertions summarize effects of

- Laziness: reluctance to enumerate exceptions, qualifications, etc. --possibly a deterministic and known environment, but with
 computational complexity limitations
- Ignorance: lack of explicit theories, relevant facts, initial conditions, etc.
 --- environment that is unknown (we don't know the transition function) or partially observable (we can't measure the current state)
- Intrinsically random phenomena environment is **stochastic**, i.e., given a particular (action, current state), the (next state) is drawn at random with a particular probability distribution

Outline

- 1. <u>Motivation: Why use probability?</u>
 - Laziness, Ignorance, and Randomness
 - Rational Bettor Theorem
- 2. Review of Key Concepts
 - Outcomes, Events
 - Jointly random variables: Joint, Marginal, and Conditional pmf
 - Independent vs. Conditionally Independent events

Making decisions under uncertainty

Suppose the agent believes the following:

```
P(Go(deadline-25) gets me there on time) = 0.04
P(Go(deadline-90) gets me there on time) = 0.70
P(Go(deadline-120) gets me there on time) = 0.95
P(Go(deadline-180) gets me there on time) = 0.9999
```

- Which action should the agent choose?
 - Depends on preferences for missing flight vs. time spent waiting
 - Encapsulated by a *utility function*
- The agent should choose the action that maximizes the expected utility:

 $Prob(A succeeds) \times Utility(A succeeds) + Prob(A fails) \times Utility(A fails)$

• More generally: the <u>expected utility</u> of an action is defined as:

$$E[Utility|Action] = \sum_{outcomes} P(outcome|action)Utility(outcome)$$

- Utility theory is used to represent and infer preferences
- Decision theory = probability theory + utility theory

Where do probabilities come from?

Frequentism

- Probabilities are relative frequencies
- For example, if we toss a coin many times, P(heads) is the proportion of the time the coin will come up heads
- But what if we're dealing with an event that has never happened before?
 - What is the probability that the Earth will warm by 0.15 degrees this year?

Subjectivism

- Probabilities are degrees of belief
- But then, how do we assign belief values to statements?
- In practice: models. Represent an *unknown event* as a series of *better-known events*
- A theoretical problem with Subjectivism:

Why do "beliefs" need to follow the laws of probability?

The Rational Bettor Theorem

- Why should a rational agent hold beliefs that are consistent with axioms of probability?
 - For example, $P(A) + P(\neg A) = 1$

- Suppose an agent believes that P(A)=0.7, and $P(\neg A)=0.7$
- Offer the following bet: if A occurs, agent wins \$100. If A doesn't occur, agent loses \$105. Agent believes P(A)>100/(100+105), so agent accepts the bet.
- Offer another bet: if ¬A occurs, agent wins \$100. If ¬A doesn't occur, agent loses \$105. Agent believes P(¬A)>100/(100+105), so agent accepts the bet. Oops...
- **Theorem:** An agent who holds beliefs inconsistent with axioms of probability can be convinced to accept a combination of bets that is guaranteed to lose them money

- Humans are pretty good at estimating some probabilities, and pretty bad at estimating others. What might cause humans to mis-estimate the probability of an event?
- What are some of the ways in which a "rational bettor" might take advantage of humans who mis-estimate probabilities?

Outline

- 1. Motivation: Why use probability?
 - Laziness, Ignorance, and Randomness
 - Rational Bettor Theorem
- 2. Review of Key Concepts
 - Outcomes, Events
 - Jointly random variables: Joint, Marginal, and Conditional pmf
 - Independent vs. Conditionally Independent events

- Probabilistic statements are defined over events, or sets of world states
 - A = "It is raining"
 - B = "The weather is either cloudy or snowy"
 - C = "I roll two dice, and the result is 11"
 - D = "My car is going between 30 and 50 miles per hour"
- An EVENT is a SET of OUTCOMES
 - B = { outcomes : cloudy OR snowy }
 - C = { outcome tuples (d1,d2) such that d1+d2 = 11 }
- Notation: P(A) is the probability of the set of world states (outcomes) in which proposition A holds

Kolmogorov's axioms of probability

- For any propositions (events) A, B
 - $0 \le P(A) \le 1$
 - P(True) = 1 and P(False) = 0
 - $P(A \lor B) = P(A) + P(B) P(A \land B)$
 - Subtraction accounts for double-counting

• Based on these axioms, what is $P(\neg A)$?

- These axioms are sufficient to completely specify probability theory for discrete random variables
 - For continuous variables, need *density functions*

- OUTCOME or ATOMIC EVENT: is a complete specification of the state of the world, or a complete assignment of domain values to all random variables
 - Atomic events are mutually exclusive and exhaustive
- E.g., if the world consists of only two Boolean variables *Cavity* and *Toothache*, then there are four outcomes:

Outcome #1: $\neg Cavity \land \neg Toothache$

Outcome #2: ¬*Cavity* ∧ *Toothache*

Outcome #3: *Cavity* ∧ ¬*Toothache*

Outcome #4: *Cavity* ∧ *Toothache*

Outline

- 1. Motivation: Why use probability?
 - Laziness, Ignorance, and Randomness
 - Rational Bettor Theorem
- 2. Review of Key Concepts
 - Outcomes, Events
 - Jointly random variables: Joint, Marginal, and Conditional pmf
 - Independent vs. Conditionally Independent events

Joint probability distributions

 A joint distribution is an assignment of probabilities to every possible atomic event

Atomic event	Р
¬Cavity ∧ ¬Toothache	0.8
¬Cavity ∧ Toothache	0.1
Cavity ∧ ¬Toothache	0.05
Cavity \(\tau \) Toothache	0.05

• Why does it follow from the axioms of probability that the probabilities of all possible atomic events must sum to 1?

- $P(X_1, X_2, ..., X_N)$ refers to the probability of a particular outcome (the outcome in which the events $X_1, X_2, ...,$ and X_N all occur at the same time)
- $P(X_1, X_2, ..., X_N)$ can also refer to the complete TABLE, with 2^N entries, listing the probabilities of X_1 either occurring or not occurring, X_2 either occurring or not occurring, and so on.
- This ambiguity, between the probability VALUE and the probability TABLE, will be eliminated next lecture, when we introduce random variables.

- Suppose we have a joint distribution of N random variables, each of which takes values from a domain of size D:
 - What is the size of the probability table?
 - Impossible to write out completely for all but the smallest distributions

- The marginal distribution of event X_k is just its probability, $P(X_k)$.
- To talk about marginal distributions only makes sense if you're not given $P(X_k)$. Instead, you're given the joint distribution, $P(X_1, X_2, ..., X_N)$, and from it, you need to calculate $P(X_k)$.
- You calculate $P(X_k)$ from $P(X_1, X_2, ..., X_N)$ by <u>marginalizing</u>. $P(X_k)$ is called the marginal distribution of event X_k .

Marginal probability distributions

 From the joint distribution p(X,Y) we can find the marginal distributions p(X) and p(Y)

P(Cavity, Toothache)	
¬Cavity ∧ ¬Toothache	0.8
¬Cavity ∧ Toothache	0.1
Cavity ∧ ¬Toothache	0.05
Cavity ∧ Toothache	0.05

P(Cavity)	
¬Cavity	?
Cavity	?

P(Toothache)	
¬Toothache	?
Toochache	?

- From the joint distribution p(X,Y) we can find the *marginal distributions* p(X) and p(Y)
- To find p(X = x), sum the probabilities of all atomic events where X = x:

$$P(X = 1) = P(X = 1, Y = 1) + P(X = 1, Y = 2) + P(X = 1, Y = 3) + \cdots$$

This is called marginalization (we are marginalizing out all the variables except X)

Conditional distributions

- The conditional probability of event X_k , given event X_j , is the probability that X_k has occurred if you already know that X_i has occurred.
- The conditional distribution is written $P(X_k | X_i)$.
- The probability that both X_i and X_k occurred was, originally, $P(X_i, X_k)$.
- But now you know that X_j has occurred. So all of the other events are no longer possible.
 - Other events: probability used to be $P(\neg X_i)$, but now their probability is 0.
 - Events in which X_j occurred: probability used to be $P(X_j)$, but now their probability is 1.
- So we need to renormalize: the probability that both X_j and X_k occurred, GIVEN that X_i has occurred, is $P(X_k \mid X_i) = P(X_i, X_k) / P(X_i)$.

Conditional Probability: renormalize (divide)

- Probability of cavity given toothache:
 P(Cavity = true | Toothache = true)
- For any two events A and B,

$$P(A \mid B) = \frac{P(A \land B)}{P(B)} = \frac{P(A, B)}{P(B)}$$

The set of all possible events used to be this rectangle, so the whole rectangle used to have probability=1.

Now that we know B has occurred, the set of all possible events = the set of events in which B occurred. So we renormalize to make the area of this circle = 1.

Conditional probability

P(Cavity, Toothache)	
¬Cavity ∧ ¬Toothache	0.8
¬Cavity ∧ Toothache	0.1
Cavity ∧ ¬Toothache	0.05
Cavity ∧ Toothache	0.05

P(Cavity)	
¬Cavity	0.9
Cavity	0.1

P(Toothache)	
¬Toothache	0.85
Toochache	0.15

- What is $p(Cavity = true \mid Toothache = false)$? $p(Cavity \mid \neg Toothache) = 0.05/0.85 = 1/17$
- What is p(Cavity = false | Toothache = true)?
 p(¬Cavity | Toothache) = 0.1/0.15 = 2/3

Conditional probability

 A conditional distribution is a distribution over the values of one variable given fixed values of other variables

P(Cavity, Toothache)	
¬Cavity ∧ ¬Toothache	0.8
¬Cavity ∧ Toothache	0.1
Cavity ∧ ¬Toothache	0.05
Cavity ∧ Toothache	0.05

P(Cavity Toothache = true)	
¬Cavity	0.667
Cavity	0.333

P(Toothache Cavity = true)	
¬Toothache	0.5
Toochache	0.5

P(Cavity Toothache = false)	
¬Cavity	0.941
Cavity	0.059

P(Toothache Cavity = false)	
¬Toothache	0.889
Toochache	0.111

Normalization trick

• To get the whole conditional distribution $p(X \mid Y = y)$ at once, select all entries in the joint distribution table matching Y = y and renormalize them to sum to one

P(Cavity, Toothache)		
¬Cavity ∧ ¬Toothache	0.8	3
¬Cavity ∧ Toothache	0.1	L
Cavity ∧ ¬Toothache	0.0)5
Cavity ∧ Toothache	0.0)5
Select		
Toothache, Cavity = false		
¬Toothache	0.8	
Toochache	0.1	
Renormalize		
P(Toothache Cavity = false)		
¬Toothache	0.889	
Toochache	0.111	

Normalization trick

- To get the whole conditional distribution p(X | Y = y) at once, select all
 entries in the joint distribution table matching Y = y and renormalize them to
 sum to one
- Why does it work?

$$P(x|y) = \frac{P(x,y)}{\sum_{x'} P(x',y)} = \frac{P(x,y)}{P(y)}$$
 by

by marginalization

 $P(A \mid B) = \frac{P(A, B)}{P(B)}$

- Definition of conditional probability:
- Sometimes we have the conditional probability and want to obtain the joint:

$$P(A, B) = P(A | B)P(B) = P(B | A)P(A)$$

• Definition of conditional probability:

- $P(A \mid B) = \frac{P(A, B)}{P(B)}$
- Sometimes we have the conditional probability and want to obtain the joint:

$$P(A, B) = P(A | B)P(B) = P(B | A)P(A)$$

The chain rule:

$$P(A_1, ..., A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1, A_2)...P(A_n \mid A_1, ..., A_{n-1})$$

$$= \prod_{i=1}^n P(A_i \mid A_1, ..., A_{i-1})$$

Product Rule Example: The Birthday problem

- We have a set of *n* people. What is the probability that two of them share the same birthday?
- Easier to calculate the probability that *n* people *do not* share the same birthday

$$P(B_1, ..., B_n \text{ distinct})$$

= $P(B_1, B_2 \text{ distinct})P(B_1, B_2, B_3 \text{ distinct}|B_1, B_2 \text{ distinct}) ...$
 $P(B_1, B_2, ... B_n \text{ distinct}|B_1, ... B_{n-1} \text{ distinct})$

$$P(B_1, ..., B_n \text{ distinct}) = \left(\frac{364}{365}\right) \left(\frac{363}{365}\right) ... \left(\frac{365-n+1}{365}\right)$$

The Birthday problem

• For 23 people, the probability of sharing a birthday is above 0.5!

http://en.wikipedia.org/wiki/Birthday_problem

Outline

- 1. Motivation: Why use probability?
 - Laziness, Ignorance, and Randomness
 - Rational Bettor Theorem
- 2. Review of Key Concepts
 - Outcomes, Events
 - Jointly random variables: Joint, Marginal, and Conditional pmf
 - Independent vs. Conditionally Independent events

Independence ≠ Mutually Exclusive

- Two events A and B are *independent* if and only if $p(A \land B) = p(A, B) = p(A) p(B)$
 - In other words, $p(A \mid B) = p(A)$ and $p(B \mid A) = p(B)$
 - This is an important simplifying assumption for modeling, e.g., Toothache and Weather can be assumed to be independent?
- Are two mutually exclusive events independent?
 - No! Quite the opposite! If you know A happened, then you know that B _didn't_ happen!!
 p(A \times B) = p(A) + p(B)

Independence ≠ Conditional Independence

- Two events A and B are *independent* if and only if $p(A \land B) = p(A) p(B)$
 - In other words, $p(A \mid B) = p(A)$ and $p(B \mid A) = p(B)$
 - This is an important simplifying assumption for modeling, e.g., Toothache and Weather can be assumed to be independent
- Conditional independence: A and B are conditionally independent given C iff
 - $p(A \wedge B \mid C) = p(A \mid C) p(B \mid C)$
 - Equivalent:
 p(A | B, C) = p(A | C)
 - Equivalent:
 p(B | A, C) = p(B | C)

Independence ≠ Conditional Independence

Toothache: Boolean variable indicating whether the patient has a toothache

Cavity: Boolean variable indicating whether the patient has a cavity

By William Brassey Hole(Died:1917)

Catch: whether the dentist's probe catches in the cavity

By Dozenist, CC-SA 3.0

• If the patient has a toothache, then it's likely he has a cavity. Having a cavity makes it more likely that the probe will catch on something.

• If the probe catches on something, then it's likely that the patient has a cavity. If he has a cavity, then he might also have a toothache.

• So Catch and Toothache are not independent

...but they are Conditionally Independent

- Here are some reasons the probe might not catch, despite having a cavity:
 - The dentist might be really careless
 - The cavity might be really small
- Those reasons have nothing to do with the toothache!

$$P(Catch|Cavity, Toothache) = P(Catch|Cavity)$$

Catch and Toothache are conditionally independent given knowledge of Cavity

...but they are Conditionally Independent

These statements are all equivalent:

P(Catch|Cavity, Toothache) = P(Catch|Cavity)P(Toothache|Cavity, Catch) = P(Toothache|Cavity)

P(Toothache, Catch|Cavity) = P(Toothache|Cavity) P(Catch|Cavity)

...and they all mean that **Catch** and **Toothache** are **conditionally independent** given knowledge of **Cavity**

Outline

- 1. Motivation: Why use probability?
 - Laziness, Ignorance, and Randomness
 - Rational Bettor Theorem
- 2. Review of Key Concepts
 - Outcomes, Events
 - Jointly random variables: Joint, Marginal, and Conditional pmf
 - Independent vs. Conditionally Independent events