```
Linear, Logistic, KNN, SVM, Random Forest
In [317]: import pandas as pd
           import numpy as np
           import seaborn as sns
           import sklearn
           from sklearn import preprocessing
           from sklearn.model selection import train test split
           from sklearn.linear model import LinearRegression
           from sklearn.linear_model import LogisticRegression
           import matplotlib.pyplot as plt
           from sklearn.metrics import confusion matrix, classification report
In [318]: | data = pd.read_csv("Insurance.csv")
           data
Out[318]:
                        sex
                               bmi children smoker
                                                      region
                                                                 charges
                 age
               0
                      female 27.900
                                                             16884.92400
                   19
                                         0
                                               yes southwest
               1
                   18
                       male 33.770
                                                    southeast
                                                              1725.55230
                                                no
               2
                  28
                       male 33.000
                                         3
                                                no
                                                    southeast
                                                              4449.46200
               3
                  33
                       male 22.705
                                         0
                                                    northwest 21984.47061
                                                no
               4
                   32
                       male 28.880
                                         0
                                                    northwest
                                                              3866.85520
                                                no
            1333
                  50
                       male 30.970
                                         3
                                                    northwest
                                                             10600.54830
            1334
                  18
                      female 31.920
                                                    northeast
                                                              2205.98080
                                                no
            1335
                   18
                      female 36.850
                                                    southeast
                                                              1629.83350
                                                no
            1336
                      female 25.800
                                                    southwest
                                                              2007.94500
                                                no
            1337
                  61 female 29.070
                                         0
                                                    northwest 29141.36030
                                               yes
           1338 rows × 7 columns
In [319]: data.columns
Out[319]: Index(['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges'], dtype
           ='object')
In [320]: data['age'].unique()
Out[320]: array([19, 18, 28, 33, 32, 31, 46, 37, 60, 25, 62, 23, 56, 27, 52, 30, 34,
                   59, 63, 55, 22, 26, 35, 24, 41, 38, 36, 21, 48, 40, 58, 53, 43, 64,
                   20, 61, 44, 57, 29, 45, 54, 49, 47, 51, 42, 50, 39], dtype=int64)
In [321]: data['sex'].unique()
```

Out[321]: array(['female', 'male'], dtype=object)

In [322]: data['bmi'].unique()

```
Out[322]: array([27.9 , 33.77 , 33. , 22.705, 28.88 , 25.74 , 33.44 , 27.74 ,
                 29.83 , 25.84 , 26.22 , 26.29 , 34.4 , 39.82 , 42.13 , 24.6
                 30.78 , 23.845 , 40.3 , 35.3 , 36.005 , 32.4 , 34.1 , 31.92 ,
                                                             , 35.6
                 28.025, 27.72, 23.085, 32.775, 17.385, 36.3
                                                                     , 26.315,
                                                             , 36.67 , 39.9 ,
                 28.6 , 28.31 , 36.4 , 20.425, 32.965, 20.8
                      , 36.63 , 21.78 , 30.8 , 37.05 , 37.3
                                                             , 38.665, 34.77
                 24.53 , 35.2 , 35.625, 33.63 , 28.
                                                     , 34.43 , 28.69 , 36.955,
                 31.825, 31.68, 22.88, 37.335, 27.36, 33.66, 24.7, 25.935,
                 22.42 , 28.9 , 39.1 , 36.19 , 23.98 , 24.75 , 28.5
                                                                     , 28.1
                 32.01, 27.4, 34.01, 29.59, 35.53, 39.805, 26.885, 38.285,
                 37.62 , 41.23 , 34.8 , 22.895 , 31.16 , 27.2 , 26.98 , 39.49 ,
                 24.795, 31.3 , 38.28 , 19.95 , 19.3 , 31.6 , 25.46 , 30.115,
                 29.92 , 27.5 , 28.4 , 30.875, 27.94 , 35.09 , 29.7 , 35.72 ,
                 32.205, 28.595, 49.06, 27.17, 23.37, 37.1
                                                             , 23.75 , 28.975,
                 31.35 , 33.915 , 28.785 , 28.3 , 37.4 , 17.765 , 34.7 , 26.505 ,
                 22.04 , 35.9 , 25.555, 28.05 , 25.175, 31.9
                                                             , 36.
                 25.3 , 29.735, 38.83 , 30.495, 37.73 , 37.43 , 24.13 , 37.145,
                 39.52 , 24.42 , 27.83 , 36.85 , 39.6 , 29.8 , 29.64 , 28.215,
                       , 33.155, 18.905, 41.47 , 30.3 , 15.96 , 33.345, 37.7
                 27.835, 29.2 , 26.41 , 30.69 , 41.895, 30.9 , 32.2 , 32.11 ,
                 31.57 , 26.2 , 30.59 , 32.8 , 18.05 , 39.33 , 32.23 , 24.035,
                 36.08 , 22.3 , 26.4 , 31.8 , 26.73 , 23.1 , 23.21 , 33.7 ,
                 33.25 , 24.64 , 33.88 , 38.06 , 41.91 , 31.635, 36.195, 17.8
                 24.51 , 22.22 , 38.39 , 29.07 , 22.135, 26.8 , 30.02 , 35.86 ,
                 20.9 , 17.29 , 34.21 , 25.365, 40.15 , 24.415, 25.2 , 26.84 ,
                 24.32 , 42.35 , 19.8 , 32.395 , 30.2 , 29.37 , 34.2
                                                                     , 27.455,
                 27.55 , 20.615, 24.3 , 31.79 , 21.56 , 28.12 , 40.565, 27.645,
                      , 26.62 , 48.07 , 36.765 , 33.4 , 45.54 , 28.82 , 22.99 ,
                       , 25.41 , 34.39 , 22.61 , 37.51 , 38.
                                                            , 33.33 , 34.865,
                 33.06 , 35.97 , 31.4 , 25.27 , 40.945 , 34.105 , 36.48 , 33.8
                 36.7
                      , 36.385, 34.5 , 32.3 , 27.6 , 29.26 , 35.75 , 23.18 ,
                 25.6 , 35.245, 43.89 , 20.79 , 30.5 , 21.7 , 21.89 , 24.985,
                 32.015, 30.4 , 21.09 , 22.23 , 32.9 , 24.89 , 31.46 , 17.955,
                 30.685, 43.34 , 39.05 , 30.21 , 31.445, 19.855, 31.02 , 38.17 ,
                      , 47.52 , 20.4 , 38.38 , 24.31 , 23.6 , 21.12 , 30.03 ,
                 17.48 , 20.235, 17.195, 23.9 , 35.15 , 35.64 , 22.6 , 39.16 ,
                 27.265, 29.165, 16.815, 33.1 , 26.9 , 33.11 , 31.73 , 46.75 ,
                 29.45 , 32.68 , 33.5 , 43.01 , 36.52 , 26.695, 25.65 , 29.6
                                                     , 38.095, 28.38 , 28.7
                 38.6 , 23.4 , 46.53 , 30.14 , 30.
                 33.82 , 24.09 , 32.67 , 25.1 , 32.56 , 41.325, 39.5 , 34.3
                 31.065, 21.47, 25.08, 43.4, 25.7, 27.93, 39.2, 26.03,
                 30.25 , 28.93 , 35.7 , 35.31 , 31. , 44.22 , 26.07 , 25.8 ,
                 39.425, 40.48 , 38.9 , 47.41 , 35.435, 46.7 , 46.2 , 21.4
                 23.8 , 44.77 , 32.12 , 29.1 , 37.29 , 43.12 , 36.86 , 34.295,
                 23.465, 45.43 , 23.65 , 20.7 , 28.27 , 35.91 , 29.
                                                                     , 19.57 ,
                 31.13 , 21.85 , 40.26 , 33.725 , 29.48 , 32.6 , 37.525 , 23.655 ,
                             , 21.3 , 33.535, 42.46 , 38.95 , 36.1 , 29.3 ,
                 37.8 , 19.
                       , 38.19 , 42.4 , 34.96 , 42.68 , 31.54 , 29.81 , 21.375,
                 39.7
                 40.81 , 17.4 , 20.3
                                     , 18.5 , 26.125, 41.69 , 24.1 , 36.2 ,
                 40.185, 39.27, 34.87, 44.745, 29.545, 23.54, 40.47, 40.66,
                 36.6 , 35.4 , 27.075, 28.405, 21.755, 40.28 , 30.1 , 32.1 ,
                      , 35.5 , 29.15 , 27. , 37.905, 22.77 , 22.8 , 34.58 ,
                      , 19.475, 26.7 , 34.32 , 24.4 , 41.14 , 22.515, 41.8
                 26.18 , 42.24 , 26.51 , 35.815, 41.42 , 36.575, 42.94 , 21.01 ,
                 24.225, 17.67, 31.5, 31.1, 32.78, 32.45, 50.38, 47.6
                 25.4 , 29.9 , 43.7 , 24.86 , 28.8 , 29.5 , 29.04 , 38.94 ,
                       , 20.045, 40.92 , 35.1 , 29.355, 32.585, 32.34 , 39.8 ,
```

```
24.605, 33.99 , 28.2 , 25. , 33.2 , 23.2 , 20.1 , 32.5 , 37.18 , 46.09 , 39.93 , 35.8 , 31.255 , 18.335 , 42.9 , 26.79 , 39.615 , 25.9 , 25.745 , 28.16 , 23.56 , 40.5 , 35.42 , 39.995 , 34.675 , 20.52 , 23.275 , 36.29 , 32.7 , 19.19 , 20.13 , 23.32 , 45.32 , 34.6 , 18.715 , 21.565 , 23. , 37.07 , 52.58 , 42.655 , 21.66 , 32. , 18.3 , 47.74 , 22.1 , 19.095 , 31.24 , 29.925 , 20.35 , 25.85 , 42.75 , 18.6 , 23.87 , 45.9 , 21.5 , 30.305 , 44.88 , 41.1 , 40.37 , 28.49 , 33.55 , 40.375 , 27.28 , 17.86 , 33.3 , 39.14 , 21.945 , 24.97 , 23.94 , 34.485 , 21.8 , 23.3 , 36.96 , 21.28 , 29.4 , 27.3 , 37.9 , 37.715 , 23.76 , 25.52 , 27.61 , 27.06 , 39.4 , 34.9 , 22. , 30.36 , 27.8 , 53.13 , 39.71 , 32.87 , 44.7 , 30.97 ])
```

```
In [323]: data['children'].unique()
Out[323]: array([0, 1, 3, 2, 5, 4], dtype=int64)
In [324]: data['smoker'].unique()
Out[324]: array(['yes', 'no'], dtype=object)
In [325]: data['region'].unique()
Out[325]: array(['southwest', 'southeast', 'northwest', 'northeast'], dtype=object)
In [326]: data['charges'].unique()
Out[326]: array([16884.924 , 1725.5523, 4449.462 , ..., 1629.8335, 2007.945 , 29141.3603])
In [327]: len(data['charges'])
Out[327]: 1338
```

Out[328]:

In [328]: data.head()

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

```
In [329]: data.tail()
```

Out[329]:

	6	age	sex	bmi	children	smoker	region	charges
13	33	50	male	30.97	3	no	northwest	10600.5483
13	34	18	female	31.92	0	no	northeast	2205.9808
13	35	18	female	36.85	0	no	southeast	1629.8335
13	36	21	female	25.80	0	no	southwest	2007.9450
13	37	61	female	29.07	0	yes	northwest	29141.3603

```
In [330]: len(data)
```

Out[330]: 1338

```
In [331]: data.index
```

Out[331]: RangeIndex(start=0, stop=1338, step=1)

```
In [332]: data.dtypes
```

Out[332]: age

age int64
sex object
bmi float64
children int64
smoker object
region object
charges float64
dtype: object

In [333]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):

```
Column
               Non-Null Count Dtype
               1338 non-null
                               int64
 0
     age
 1
               1338 non-null
                               object
     sex
 2
               1338 non-null
     bmi
                               float64
 3
     children 1338 non-null
                               int64
 4
               1338 non-null
     smoker
                               object
 5
     region
               1338 non-null
                               object
 6
     charges
               1338 non-null
                               float64
dtypes: float64(2), int64(2), object(3)
memory usage: 73.3+ KB
```

In [334]: data.describe()

Out[334]:

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

In [335]: corr = data.corr()
corr

Out[335]:

	age	bmi	children	charges
age	1.000000	0.109272	0.042469	0.299008
bmi	0.109272	1.000000	0.012759	0.198341
children	0.042469	0.012759	1.000000	0.067998
charges	0 299008	0 198341	0.067998	1 000000

In [336]: sns.heatmap(corr)

Out[336]: <AxesSubplot:>

In [337]: data.isna()

Out[337]:

	age	sex	bmi	children	smoker	region	charges
0	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False
1333	False	False	False	False	False	False	False
1334	False	False	False	False	False	False	False
1335	False	False	False	False	False	False	False
1336	False	False	False	False	False	False	False
1337	False	False	False	False	False	False	False

```
In [338]: data.isna().sum()
Out[338]: age
                           0
            sex
                           0
            bmi
                           0
            children
                           0
            smoker
            region
                           0
            charges
            dtype: int64
In [339]: data.isnull()
Out[339]:
                                 bmi children smoker
                                                        region charges
                    age
                           sex
                0 False
                         False
                                False
                                         False
                                                  False
                                                         False
                                                                  False
                   False
                         False
                                False
                                         False
                                                  False
                                                         False
                                                                  False
                   False
                         False False
                                         False
                                                         False
                                                                   False
                                                  False
                   False
                         False False
                                         False
                                                  False
                                                         False
                                                                   False
                   False False False
                                         False
                                                  False
                                                         False
                                                                  False
                                                     ...
                                                            ...
             1333 False
                         False False
                                         False
                                                  False
                                                         False
                                                                   False
             1334 False
                         False
                                False
                                                         False
                                                                   False
                                         False
                                                  False
             1335 False
                         False
                                False
                                         False
                                                  False
                                                         False
                                                                   False
             1336 False False False
                                         False
                                                  False
                                                         False
                                                                   False
             1337 False False False
                                         False
                                                  False
                                                         False
                                                                   False
            1338 rows × 7 columns
In [340]: data.isnull().sum()
Out[340]: age
                           0
            sex
            bmi
                           0
            children
                           0
            smoker
                           0
```

region

charges 6 dtype: int64

0

In [342]: sns.histplot(x=data['age'],data=data)

Out[342]: <AxesSubplot:xlabel='age', ylabel='Count'>


```
In [343]: sns.histplot(x=data['bmi'],data=data)
```

Out[343]: <AxesSubplot:xlabel='bmi', ylabel='Count'>


```
In [344]: sns.histplot(x=data['children'],data=data)
```

Out[344]: <AxesSubplot:xlabel='children', ylabel='Count'>


```
In [345]: sns.histplot(x=data['charges'],data=data)
```

Out[345]: <AxesSubplot:xlabel='charges', ylabel='Count'>


```
In [347]: sns.countplot(x='region',data=data,hue='sex')
```

Out[347]: <AxesSubplot:xlabel='region', ylabel='count'>


```
In [349]: plt.bar(data['bmi'],data['charges'])
    plt.xlabel('bmi')
    plt.ylabel('charges')
    plt.show()
```



```
In [351]: plt.bar(data['age'],data['charges'])
    plt.xlabel('age')
    plt.ylabel('charges')
    plt.show()
```



```
In [353]: sns.boxplot(x=data["children"], y=data["charges"], data=data)
```

Out[353]: <AxesSubplot:xlabel='children', ylabel='charges'>


```
In [354]: plt.scatter(x=data['children'],y=data['bmi'],c='g')
    plt.xlabel('children')
    plt.ylabel('bmi')
    plt.show()
```



```
In [355]: sns.boxplot(x=data["children"], y=data["bmi"], data=data)
```

Out[355]: <AxesSubplot:xlabel='children', ylabel='bmi'>


```
In [356]: sns.boxplot(x=data["region"], y=data["bmi"], data=data)
```

Out[356]: <AxesSubplot:xlabel='region', ylabel='bmi'>


```
In [357]: sns.boxplot(x=data["region"], y=data["charges"], data=data)
```

Out[357]: <AxesSubplot:xlabel='region', ylabel='charges'>


```
In [369]: y_pred = model.intercept_ + model.coef_*x_test
print(f"y_pred : {y_pred}")
```

y_pred : [[7982.59832619] [17950.63951722] [16376.73827653] [15852.10452963] [8507.23207309] [11130.40080757] [15852.10452963] [17688.32264377] [10081.13331377] [12704.30204826] [18737.59013756] [17163.68889687] [13228.93579515] [14015.8864155] [7720.28145274] [15589.78765618] [11655.03455446] [12179.66830136] [18475.27326411] [19262.22388446] [16639.05514998] [10868.08393412] [15065.15390929] [16114.42140308] [7720.28145274] [13753.56954205] [14278.20328894] [15589.78765618] [11655.03455446] [10868.08393412] [17688.32264377] [11917.35142791] [16901.37202342] [7982.59832619] [15589.78765618] [16901.37202342] [10868.08393412] [8507.23207309] [18212.95639066] [14802.83703584] [10343.45018722] [18212.95639066] [16114.42140308] [18475.27326411] [11130.40080757] [18737.59013756] [8244.91519964] [10343.45018722] [16376.73827653] [17950.63951722] [18999.90701101] [17426.00577032] [9294.18269343] [14802.83703584] [7720.28145274] [11392.71768101]

[14278.20328894]

- [18737.59013756]
- [9031.86581998]
- [7720.28145274]
- [10605.76706067]
- [18999.90701101]
- [9031.86581998]
- [9031.86581998]
- [18737.59013756]
- [45500 7076540]
- [15589.78765618]
- [15852.10452963]
- [17950.63951722]
- [7982.59832619]
- [9294.18269343]
- [16639.05514998]
- [10033.03314336
- [11130.40080757]
- [7982.59832619]
- [17163.68889687]
- [19262.22388446]
- [14278.20328894]
- [9031.86581998]
- [10605.76706067]
- [17688.32264377]
- [16114.42140308]
- [10111.12110500]
- [8507.23207309]
- [17426.00577032]
- [16901.37202342]
- [9294.18269343]
- [13491.2526686]
- [0556 40056600
- [9556.49956688]
- [14015.8864155]
- [14540.52016239]
- [15852.10452963]
- [13753.56954205]
- [12179.66830136]
- [15852.10452963]
- [18737.59013756]
- [15589.78765618]
- [7982.59832619]
- [16901.37202342]
- [16376.73827653]
- [17688.32264377]
- [18212.95639066]
- [12179.66830136]
- [17950.63951722]
- [9556.49956688]
- [10868.08393412]
- [7982.59832619]
- [19786.85763135]
- [9031.86581998]
- [7982.59832619]
- [14802.83703584]
- [7720.28145274]
- [17426.00577032] [11917.35142791]
- [9818.81644033]
- 7982.59832619
- [19524.5407579]

- [9294.18269343]
- [7982.59832619]
- [11655.03455446]
- [19524.5407579]
- [12179.66830136]
- [8244.91519964]
- [16114.42140308]
- [15589.78765618]
- [12966.6189217]
- [15065.15390929]
- [17688.32264377]
- [15589.78765618]
- [17426.00577032]
- [12179.66830136]
- [14015.8864155]
- [14540.52016239]
- [7720.28145274]
- [7982.59832619]
- [12966.6189217]
- [11655.03455446]
- [15065.15390929]
- [7982.59832619]
- [7982.59832619]
- [7720.28145274]
- [16639.05514998]
- [14802.83703584]
- [19262.22388446]
- [12179.66830136]
- [11917.35142791]
- [19786.85763135]
- [18212.95639066]
- [17426.00577032]
- [7720.28145274]
- [13753.56954205]
- [7720.28145274]
- [12704.30204826]
- [14540.52016239]
- [9818.81644033]
- [16639.05514998]
- [17426.00577032]
- [15589.78765618]
- [14015.8864155]
- [16376.73827653]
- [16376.73827653]
- [15589.78765618]
- [9031.86581998]
- [11655.03455446]
- [19786.85763135]
- [18212.95639066]
- [9818.81644033]
- [11392.71768101]
- [8507.23207309]
- [12441.98517481] [17163.68889687]
- [17688.32264377]
- [12441.98517481]
- [11392.71768101]

- [10343.45018722]
- [17688.32264377]
- [18475.27326411]
- [10081.13331377]
- [12966.6189217]
- [9031.86581998]
- [18475.27326411]
- [10343.45018722]
- [12179.66830136]
- [18737.59013756]
- [18999.90701101]
- [15852.10452963]
- [14015.8864155]
- [9556.49956688]
- [10081.13331377]
- [8769.54894653]
- [15327.47078274]
- [15065.15390929]
- [13753.56954205]
- [18999.90701101]
- [16639.05514998]
- [11130.40080757]
- [7982.59832619]
- [12966.6189217]
- [16376.73827653]
- [12441.98517481]
- [7982.59832619]
- [16376.73827653]
- [15065.15390929]
- [13753.56954205]
- [13753.56954205]
- [17163.68889687]
- [13228.93579515]
- [12966.6189217]
- [7720.28145274]
- [13491.2526686]
- [14015.8864155]
- [8244.91519964]
- [17950.63951722]
- [10868.08393412]
- [16901.37202342]
- [9294.18269343]
- [9818.81644033]
- [11392.71768101]
- [19786.85763135]
- [17426.00577032]
- [8769.54894653]
- [7720.28145274]
- [14540.52016239]
- [8244.91519964]
- [16901.37202342]
- [17426.00577032]
- [10081.13331377]
- [7982.59832619] [9294.18269343]
- [11392.71768101]
- [9031.86581998]

[7982.59832619]

```
[19524.5407579]
            [ 8507.23207309]
            [18475.27326411]
            [16376.73827653]
            [11917.35142791]
            [17163.68889687]
            [17426.00577032]
            [10868.08393412]
            [ 7982.59832619]
            [15065.15390929]
            [11392.71768101]
            [15327.47078274]
            [ 8507.23207309]
            [19262.22388446]
            [ 9294.18269343]
            [17426.00577032]
            [16639.05514998]
            [14278.20328894]
            [15327.47078274]
            [ 9556.49956688]
            [19786.85763135]
            [16901.37202342]
            [11130.40080757]
            [18737.59013756]
            [16376.73827653]
            [ 9818.81644033]
            [ 8769.54894653]
            [ 7720.28145274]
            [13491.2526686 ]
            [ 7982.59832619]
            [18999.90701101]
            [14540.52016239]
            [14015.8864155]
            [15065.15390929]
            [13228.93579515]
            [14540.52016239]
            [15327.47078274]
            [ 7982.59832619]
            [12179.66830136]]
In [370]: |print(x_train.shape)
           print(y_test.shape)
           print(y_pred.shape)
           (1070, 1)
           (268,)
           (268, 1)
In [371]: y_test = y_test.values.reshape(-1,1)
In [372]: print(y_test.shape)
           (268, 1)
```

```
In [373]: | rss = np.sum((y_test - y_pred) ** 2)
In [374]: print("RSS:", rss)
          RSS: 36846983136.88877
In [375]: x1 = data['bmi']
          y = data['charges']
In [376]: x1_train, x1_test, y_train, y_test = train_test_split(x1, y, test_size = 0.2,
In [377]: | print(x1_train.shape)
          print(x1_test.shape)
          print(y_train.shape)
          print(y_test.shape)
          (1070,)
          (268,)
          (1070,)
           (268,)
In [378]: x1 train = x1 train.values.reshape(-1,1)
In [379]: |x1_test = x1_test.values.reshape(-1,1)
In [380]: model1 = LinearRegression()
In [381]: |model1.fit(x1_train,y_train)
Out[381]: LinearRegression()
In [382]: model1.score(x1_test,y_test)
Out[382]: 0.05716373981200229
In [383]: |print(f"intercept: {model1.intercept }")
          print(f"slope: {model.coef_}")
          intercept: 2001.129553376486
          slope: [262.31687345]
```

```
In [384]: y1_pred = model1.coef_*x1_test + model1.intercept_
print(f"y1_pred: {y1_pred}")
```

y1 pred: [[15009.47211896] [13548.64220518] [15547.67261351] [15412.20718291] [10165.667668 [14592.09214359] [15734.39523407] [12470.41060215] [11531.30565757] [11666.77108818] [10982.12147946] [19099.06363198] [13841.54043351] [12618.69033024] [14606.73705501] [13058.03767273] [10313.94739609] [12142.73070921] [15371.93367651] [14156.40602896] [14174.71216823] [16298.2243236] [12157.37562062] [11739.99564526] [13026.91723597] [12400.84727292] [12018.24896217] [14204.00199106] [14046.56919333] [11322.61566989] [15108.32527102] [11886.44475942] [10279.16573148] [13687.76886363] [11465.4035562] [10905.23569452] [14925.26387832] [11410.48513839] [16298.2243236] [13166.04389443] [14083.18147188] [14592.09214359] [12190.32667131] [15584.28489205] [10641.62728903] [12470.41060215] [14928.92510617] [13599.89939514] [8609.64583001] [12539.97393138] [13559.62588874] [12874.97628003] [10661.76404223] [11410.48513839] [12018.24896217]

[18191.07912416] [13922.0874463]

- [14852.03932123]
- [10870.45402991]
- [17748.07055382]
- [15009.47211896]
- [14279.05716207]
- [12431.96770968]
- [12296.50227908]
- [15531.19708817]
- [13826.89552209]
- [12505.19226676]
- [10780.75394749]
- [11009.58068837]
- [9513.96910997]
- [14626.87380821]
- [15948.57706353]
- [12582.0780517]
- [11009.58068837]
- [12992.13557136]
- [14800.78213128]
- [12018.24896217]
- [12230.60017771]
- [11264.03602423]
- [11600.8689868]
- [8157.48419003]
- [14279.05716207]
- [11079.14401759]
- [12728.52716586]
- [14000.80384516]
- [18674.3612009]
- [11264.03602423]
- [18070.25860498]
- [14209.49383284]
- [14105.148839
- [12261.72061447]
- [10731.32737146]
- [14123.45497827]
- [13801.26692711]
- [10279.16573148]
- [12794.42926724]
- [11447.09741693] [15734.39523407]
- [15357.2887651]
- [10592.200713
- [14452.96548514]
- [10835.6723653]
- [10934.52551736]
- [14742.20248561]
- [10418.29238993]
- [12366.06560831]
- [11044.36235298]
- [13058.03767273]
- [15653.84822128]
- [12922.57224213]
- [12150.05316492]
- [12955.52329282]
- [11218.27067605]
- [17131.15366041]

- [11809.55897448]
- [12508.85349462]
- [17524.73565472]
- [11183.48901144]
- [16539.86536197]
- [13687.76886363]
- [11373.87285985]
- [15044.25378357]
- [13237.43783758]
- [10165.667668
- [13640.17290153]
- [14559.14109291]
- [11287.83400528]
- [10041 04707307
- [10941.84797307]
- [16781.50640034]
- [15584.28489205]
- [15976.03627244]
- [9653.09576843]
- [12192.15728524]
- [15090.01913175]
- [12106.11843067]
- [9543.2589328]
- [11357.3973345]
- [16016.30977883]
- [8713.99082385]
- [16018.14039276]
- [13618.20553441]
- [14566.46354861]
- [14300.40354001
- [11264.03602423]
- [15170.56614454]
- [13652.98719902]
- [12122.59395601]
- [12754.15576084]
- [13936.73235771]
- [14888.65159977] [10557.41904839]
- [15935.76276604]
- [42205 47055200]
- [13305.17055288]
- [15739.88707585]
- [13861.6771867]
- [16700.95938755]
- [11849.83248088]
- [13826.89552209]
- [12157.37562062]
- [12018.24896217]
- [14595.75337145]
- [13076.343812
- [15533.02770209]
- [13720.71991432]
- [12984.81311565]
- [14139.93050361]
- [15492.7541957]
- [14888.65159977]
- [12691.91488732]
- [11959.6693165]
- [12157.37562062]
- [12911.58855857]

- [14731.21880205]
- [9305.27912229]
- [10661.76404223]
- [9861.78575611]
- [11983.46729755]
- [14888.65159977]
- [13861.6771867]
- [8331.3925131]
- [17868.891073
- [12853.0089129]
- [10070.47574379]
- [12957.35390674]
- [17131.15366041]
- [10244.38406686]
- [12673.60874805]
- [12270.8736841]
- [18593.81418811]
- [9270.49745767]
- [12853.0089129]
- [13826.89552209]
- [17305.06198347]
- [9470.03437572]
- [10974.79902375]
- [9131.37079922]
- [9543.2589328] [12633.33524166]
- [14870.3454605]
- [10940.01735914]
- [12270.8736841]
- [14526.19004222]
- [15584.28489205]
- [10421.95361778]
- [14485.91653582] [12713.88225445]
- [11787.59160736]
- [14487.74714975]
- [11586.22407539] [16818.11867888]
- [12508.85349462]
- [12226.93894985]
- [10378.01888354]
- [14313.83882668]
- [14522.52881437]
- [14888.65159977]
- [13460.77273668]
- [12609.5372606]
- [13358.25835677]
- [14324.82251024]
- [13058.03767273]
- [13200.82555904]
- [9653.09576843]
- [14000.80384516]
- [8922.68081153] [12192.15728524]
- [10568.40273195]
- [12887.79057751]
- [14229.63058604]

```
[12362.40438045]
            [15492.7541957]
            [14313.83882668]
            [12190.32667131]
            [17707.79704742]
            [ 8957.46247615]
            [12574.75559599]
            [12948.20083711]
            [10418.29238993]
            [13200.82555904]
            [16435.52036813]
            [12995.79679921]
            [19399.28431601]
            [16459.31834918]
            [15496.41542355]
            [13720.71991432]
            [14083.18147188]
            [10905.23569452]
            [14928.92510617]
            [13717.05868647]
            [13801.26692711]
            [15879.01373431]
            [15705.10541124]
            [11844.3406391]
            [11425.13004981]
            [14204.00199106]
            [12783.44558367]
            [16574.64702658]
            [14279.05716207]
            [12296.50227908]
            [ 9479.18744536]
            [15322.50710048]
            [12915.24978642]
            [11635.65065142]
            [14244.27549745]
            [14925.26387832]
            [16261.61204506]
            [16257.9508172]
            [15392.07042971]
            [11566.08732219]]
In [385]: y_test = y_test.values.reshape(-1,1)
In [386]: RSS1 = np.sum((y test - y1 pred) ** 2)
In [387]: print(f"RSS :{RSS1}")
          RSS:37720249591.561134
```

```
In [388]: plt.scatter(x=data['charges'],y=data['smoker'])
    plt.xlabel("charges")
    plt.ylabel("smoker")
    plt.title("charges vs smoker")
    plt.show()
```



```
In [389]: smoke = pd.get_dummies(data['smoker'],drop_first=True)
In [390]: data['smoke'] = smoke
In [391]: data.head()
```

Out[391]:

age	sex	bmi	children	smoker	region	charges	smoke
0 19	female	27.900	0	yes	southwest	16884.92400	1
1 18	male	33.770	1	no	southeast	1725.55230	0
2 28	male	33.000	3	no	southeast	4449.46200	0
3 33	male	22.705	0	no	northwest	21984.47061	0
4 32	. male	28.880	0	no	northwest	3866.85520	0

```
In [392]: xa = data['charges']
          ya = data['smoke']
In [393]: xa train, xa test, ya train, ya test = train test split(xa,ya,test size=0.2,rd
In [394]: print(xa_train.shape)
          print(xa test.shape)
          print(ya_train.shape)
          print(ya_test.shape)
          (1070,)
          (268,)
          (1070,)
          (268,)
In [395]: | xa_train = xa_train.values.reshape(-1,1)
          xa_test = xa_test.values.reshape(-1,1)
In [396]: modela = LogisticRegression()
          modela.fit(xa_train,ya_train)
Out[396]: LogisticRegression()
In [397]: modela.score(xa_test,ya_test)
Out[397]: 0.9104477611940298
In [398]: |print(f"intercept: {modela.intercept_}")
          print(f"slope: {modela.coef_}")
          intercept: [-5.65519559]
          slope: [[0.00025126]]
In [399]: modela.classes_
Out[399]: array([0, 1], dtype=uint8)
```

```
In [400]: modela.predict proba(xa test)
Out[400]: array([[9.94735580e-01, 5.26442035e-03],
                                    [9.42812396e-01, 5.71876039e-02],
                                    [9.69064287e-01, 3.09357129e-02],
                                    [9.54639685e-01, 4.53603154e-02],
                                    [9.94099298e-01, 5.90070182e-03],
                                    [1.66198820e-02, 9.83380118e-01],
                                    [9.65015950e-01, 3.49840505e-02],
                                    [9.38539065e-01, 6.14609354e-02],
                                    [9.92487229e-01, 7.51277130e-03],
                                    [6.78235221e-01, 3.21764779e-01],
                                    [9.22852359e-01, 7.71476405e-02],
                                    [9.40251179e-01, 5.97488210e-02],
                                    [9.83087762e-01, 1.69122385e-02],
                                    [9.79838602e-01, 2.01613981e-02],
                                    [9.95364614e-01, 4.63538622e-03],
                                    [9.67759830e-01, 3.22401699e-02],
                                    [5.32771446e-01, 4.67228554e-01],
                                    [9.82766883e-01, 1.72331167e-02],
                                    [1.89608694e-01, 8.10391306e-01],
In [401]: ya pred = modela.predict(x test)
In [402]: |print(f"ya pred :{ya pred}")
                     000
                       0 0 0 0 0 0 0 0 0 0 0
In [403]:
                    pd.DataFrame(confusion_matrix(ya_test,ya_pred),columns=['Predicted No','Predicted No','Predicted
Out[403]:
                               Predicted No Predicted Yes
                        No
                                              214
                                                                         0
```

Yes

54

0

```
In [404]: print(classification_report(ya_test,ya_pred))
```

	precision	recall	f1-score	support
0	0.80	1.00	0.89	214
1	0.00	0.00	0.00	54
accuracy			0.80	268
macro avg	0.40	0.50	0.44	268
weighted avg	0.64	0.80	0.71	268

C:\Users\Noah\anaconda3\lib\site-packages\sklearn\metrics_classification.py: 1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\Noah\anaconda3\lib\site-packages\sklearn\metrics_classification.py: 1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\Noah\anaconda3\lib\site-packages\sklearn\metrics_classification.py: 1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

```
In [405]: gender = pd.get_dummies(data['sex'],drop_first=True)
```

```
In [406]: data['gender'] = gender
```

In [407]: data.head()

Out[407]:

	age	sex	bmi	children	smoker	region	charges	smoke	gender
0	19	female	27.900	0	yes	southwest	16884.92400	1	0
1	18	male	33.770	1	no	southeast	1725.55230	0	1
2	28	male	33.000	3	no	southeast	4449.46200	0	1
3	33	male	22.705	0	no	northwest	21984.47061	0	1
4	32	male	28.880	0	no	northwest	3866.85520	0	1

```
In [408]: xb = data['charges']
yb = data['gender']
```

```
In [409]: xb_train, xb_test, yb_train, yb_test = train_test_split(xb, yb, test_size = 0.
```

```
In [410]: print(xb_train.shape)
          print(xb_test.shape)
          print(yb_train.shape)
          print(yb_test.shape)
           (1070,)
           (268,)
           (1070,)
          (268,)
In [411]: |xb_train = xb_train.values.reshape(-1,1)
          xb test = xb test.values.reshape(-1,1)
In [412]: | modelb = LogisticRegression()
In [413]: |modelb.fit(xb_train,yb_train)
Out[413]: LogisticRegression()
In [414]: |modelb.score(xb_test,yb_test)
Out[414]: 0.48880597014925375
In [415]: modelb.classes
Out[415]: array([0, 1], dtype=uint8)
In [416]: | print(f"intercept: {modelb.intercept }")
          print(f"slope: {modelb.coef_}")
          intercept: [-2.47525154e-10]
          slope: [[5.74297972e-06]]
In [417]: modelb.predict_proba(xb_test)
Out[417]: array([[0.49763616, 0.50236384],
                  [0.48370543, 0.51629457],
                  [0.48737015, 0.51262985],
                  [0.48509926, 0.51490074],
                  [0.49698055, 0.50301945],
                  [0.44459853, 0.55540147],
                  [0.486644 , 0.513356 ],
                  [0.48326817, 0.51673183],
                  [0.49559122, 0.50440878],
                  [0.47197603, 0.52802397],
                  [0.48187464, 0.51812536],
                  [0.48343983, 0.51656017],
                  [0.49090114, 0.50909886],
                  [0.48987846, 0.51012154],
                  [0.49836689, 0.50163311],
                  [0.48712661, 0.51287339],
                  [0.46847777, 0.53152223],
                  [0.49079192, 0.50920808],
                  [0.45947488, 0.54052512],
                     ****
```

```
In [418]: yb_pred = modelb.predict(xb_test)
```

```
In [419]: print(f"yb_pred:{yb_pred}")
```

In [420]: pd.DataFrame(confusion_matrix(yb_test,yb_pred),columns=['Predicted No','Predic

Out[420]:

	Predicted No	Predicted Yes
No	0	137
Yes	0	131

In [421]: print(classification_report(yb_test,yb_pred))

	precision	recall	f1-score	support	
0 1	0.00 0.49	0.00 1.00	0.00 0.66	137 131	
accuracy macro avg weighted avg	0.24 0.24	0.50 0.49	0.49 0.33 0.32	268 268 268	

C:\Users\Noah\anaconda3\lib\site-packages\sklearn\metrics_classification.py: 1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\Noah\anaconda3\lib\site-packages\sklearn\metrics_classification.py: 1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\Noah\anaconda3\lib\site-packages\sklearn\metrics_classification.py: 1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

```
In [422]: xc = data['bmi']
yc = data['gender']
```

```
In [423]: xc_train, xc_test, yc_train, yc_test = train_test_split(xc, yc, test_size=0.2,
In [424]: print(xc_train.shape)
          print(xc_test.shape)
          print(yc_train.shape)
          print(yc_test.shape)
          (1070,)
          (268,)
          (1070,)
          (268,)
In [425]: | xc_train = xc_train.values.reshape(-1,1)
          xc_test = xc_test.values.reshape(-1,1)
In [426]: | modelc = LogisticRegression()
In [427]: modelc.fit(xc_train,yc_train)
Out[427]: LogisticRegression()
In [428]: modelc.score(xc_test,yc_test)
Out[428]: 0.5223880597014925
In [429]: modelc.classes
Out[429]: array([0, 1], dtype=uint8)
In [430]: print(f"modelc intercept: {modelc.intercept }")
          modelc intercept: [-0.33149167]
In [431]: print(f"modelc slope: {modelc.coef_}")
          modelc slope: [[0.01202926]]
```

```
In [432]: modelc.predict proba(xc test)
Out[432]: array([[0.47604136, 0.52395864],
                  [0.48802447, 0.51197553],
                  [0.47163274, 0.52836726],
                  [0.472742 , 0.527258 ],
                  [0.51580451, 0.48419549],
                  [0.4794629, 0.5205371],
                  [0.47010421, 0.52989579],
                  [0.49687877, 0.50312123],
                  [0.50459236, 0.49540764],
                  [0.50347973, 0.49652027],
                  [0.50910246, 0.49089754],
                  [0.44268433, 0.55731567],
                  [0.4856203, 0.5143797],
                  [0.49566087, 0.50433913],
                  [0.47934281, 0.52065719],
                  [0.49205266, 0.50794734],
                  [0.51458768, 0.48541232],
                  [0.49957028, 0.50042972],
                  [0.47307183, 0.52692817],
In [433]: |yc_pred = modelc.predict(xc_test)
         pd.DataFrame(confusion_matrix(yc_test,yc_pred), columns = ['Predicted No','Pre
In [434]:
Out[434]:
                Predicted No Predicted Yes
            No
                        45
                                    92
           Yes
                        36
                                    95
In [435]: print(classification report(yc test,yc pred))
                         precision
                                       recall f1-score
                                                          support
                      0
                              0.56
                                         0.33
                                                   0.41
                                                              137
                      1
                              0.51
                                         0.73
                                                   0.60
                                                              131
                                                   0.52
                                                              268
               accuracy
                              0.53
                                         0.53
                                                   0.51
                                                              268
              macro avg
          weighted avg
                              0.53
                                         0.52
                                                   0.50
                                                              268
In [436]: from sklearn.neighbors import KNeighborsClassifier
```

```
In [437]: from sklearn import preprocessing
          label encoder = preprocessing.LabelEncoder()
          data['region'] = label_encoder.fit_transform(data['region'])
          print(data.head())
                      sex
                              bmi
                                   children smoker
                                                     region
                                                                           smoke
                                                                                  gender
              age
                                                                  charges
               19
                  female
                           27.900
                                           0
                                                yes
                                                             16884.92400
                                                                               1
          1
               18
                     male
                           33.770
                                           1
                                                          2
                                                              1725.55230
                                                                               0
                                                                                        1
                                                 no
          2
                                           3
                                                          2
                                                                               0
                                                                                        1
               28
                     male 33.000
                                                              4449.46200
                                                 no
          3
               33
                     male 22.705
                                           0
                                                 no
                                                          1 21984.47061
                                                                               0
                                                                                        1
               32
                     male 28.880
                                           0
                                                 no
                                                              3866.85520
                                                                               0
                                                                                        1
In [438]: | xk = data['bmi']
          yk = data['region']
          xk
          yk
Out[438]: 0
                   3
                   2
          1
          2
                   2
          3
                   1
          4
                   1
          1333
                   1
          1334
                   0
          1335
                   2
                   3
          1336
          1337
                   1
          Name: region, Length: 1338, dtype: int32
In [439]: xk_train,xk_test,yk_train,yk_test = train_test_split(xk,yk,test_size=0.2,randd
In [440]: print(xk_train.shape)
          print(xk_test.shape)
          print(yk_train.shape)
          print(yk_test.shape)
           (1070,)
           (268,)
           (1070,)
           (268,)
In [441]: | xk train = xk train.values.reshape(-1,1)
          xk_test = xk_test.values.reshape(-1,1)
In [442]: NN = KNeighborsClassifier(n neighbors=5)
In [443]: NN.fit(xk train,yk train)
Out[443]: KNeighborsClassifier()
```

In [444]: NN.score(xk_test,yk_test)

C:\Users\Noah\anaconda3\lib\site-packages\sklearn\neighbors_classification.p y:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosi s`), the default behavior of `mode` typically preserves the axis it acts alon g. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eli minated, and the value None will no longer be accepted. Set `keepdims` to Tru e or False to avoid this warning.

mode, _ = stats.mode(_y[neigh_ind, k], axis=1)

Out[444]: 0.40298507462686567

In [445]: yNN_pred = NN.predict(xk_test)

C:\Users\Noah\anaconda3\lib\site-packages\sklearn\neighbors_classification.p y:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosi s`), the default behavior of `mode` typically preserves the axis it acts alon g. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eli minated, and the value None will no longer be accepted. Set `keepdims` to Tru e or False to avoid this warning.

mode, _ = stats.mode(_y[neigh_ind, k], axis=1)

```
In [446]: print(f"yNN_pred : {yNN_pred}")
```

yNN_pred: [2 3 1 1 0 3 3 1 0 1 3 2 0 0 2 3 0 2 1 0 0 2 0 1 1 3 0 2 0 0 1 0 1 0 1 0 1 0 1 1 0 2 2 1 2 3 1 3 0 1 3 0 0 0 3 2 1 2 0 3 0 2 3 2 2 2 0 1 1 1 1 3 0 3 3 2 2 3 3 1 0 0 1 1 0 2 0 2 1 2 0 3 0 3 0 3 2 3 1 2 3 3 1 0 2 1 1 3 0 1 1 3 2 0 2 2 2 0 0 2 1 2 0 3 0 3 1 0 0 2 2 2 1 1 0 3 0 3 1 1 3 0 2 0 2 0 1 3 2 2 2 2 1 0 3 3 1 1 3 0 2 0 0 3 0 0 2 0 2 0 0 1 3 2 2 2 0 2 1 2 0 2 1 1 0 0 0 3 1 1 0 1 0 2 2 2 2 1 0 3 3 1 1 3 0 2 0 0 3 0 0 2 0 0 0 1 0 2 0 2 3 1 2 1 0 1 0 1 3 1 2 1 1 2 0 1 2 0 1 3 1 2 2 2 2 0 2 1 3 0 3 3 1 2 2 2 2 2 2 1 0 3 3 1 1 2 2 2 2 2 2 1 0 3 3 1 1 2 2 2 2 2 2 1 0 3 3 2 1 3 0 2 2 1 0]

In [447]: pd.DataFrame(confusion_matrix(yk_test,yNN_pred),columns=['Predicted 0','Predicted 0',

Out[447]:

	Predicted 0	Predicted 1	Predicted 2	Predicted 3
Actual 0	29	20	6	6
Actual 1	17	23	11	15
Actual 2	16	14	37	15
Actual 3	15	10	15	19

```
In [448]: print(classification_report(yk_test,yNN_pred))
                         precision
                                       recall f1-score
                                                           support
                      0
                               0.38
                                         0.48
                                                    0.42
                                                                61
                      1
                               0.34
                                         0.35
                                                    0.35
                                                                66
                      2
                               0.54
                                         0.45
                                                    0.49
                                                                82
                      3
                               0.35
                                         0.32
                                                    0.33
                                                                59
                                                    0.40
                                                               268
               accuracy
              macro avg
                               0.40
                                         0.40
                                                    0.40
                                                               268
                                                    0.40
           weighted avg
                               0.41
                                         0.40
                                                               268
In [449]: xk1 = data['charges']
           xk1
Out[449]: 0
                   16884.92400
                    1725.55230
           1
           2
                    4449.46200
           3
                   21984.47061
           4
                    3866.85520
                       . . .
           1333
                   10600.54830
           1334
                    2205.98080
          1335
                    1629.83350
           1336
                    2007.94500
           1337
                   29141.36030
           Name: charges, Length: 1338, dtype: float64
In [450]: yk = data['region']
          yk
Out[450]: 0
                   3
                   2
           1
           2
                   2
           3
                   1
           4
                   1
                  . .
          1333
                   1
           1334
                   0
           1335
                   2
           1336
                   3
           1337
           Name: region, Length: 1338, dtype: int32
In [451]: xk1_train, xk1_test, yk_train, yk_test = train_test_split(xk1,yk,test_size=0.2
```

```
In [452]: print(xk1 test.shape)
           print(xk1 train.shape)
           print(yk test.shape)
           print(yk train.shape)
            (268,)
            (1070,)
            (268,)
           (1070,)
In [453]: | xk1_test = xk1_test.values.reshape(-1,1)
           xk1 train = xk1 train.values.reshape(-1,1)
In [454]: | NN1 = KNeighborsClassifier(n_neighbors=5)
In [455]: | NN1.fit(xk1_train,yk_train)
Out[455]: KNeighborsClassifier()
In [456]: | NN1.score(xk1_test,yk_test)
           C:\Users\Noah\anaconda3\lib\site-packages\sklearn\neighbors\_classification.p
           y:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosi
           s`), the default behavior of `mode` typically preserves the axis it acts alon
           g. In SciPy 1.11.0, this behavior will change: the default value of `keepdims
             will become False, the `axis` over which the statistic is taken will be eli
           minated, and the value None will no longer be accepted. Set `keepdims` to Tru
           e or False to avoid this warning.
             mode, _ = stats.mode(_y[neigh_ind, k], axis=1)
Out[456]: 0.332089552238806
In [457]: yNN1 pred = NN1.predict(xk1 test)
           C:\Users\Noah\anaconda3\lib\site-packages\sklearn\neighbors\_classification.p
           y:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosi
           s`), the default behavior of `mode` typically preserves the axis it acts alon
           g. In SciPy 1.11.0, this behavior will change: the default value of `keepdims
             will become False, the `axis` over which the statistic is taken will be eli
           minated, and the value None will no longer be accepted. Set `keepdims` to Tru
           e or False to avoid this warning.
              mode, _ = stats.mode(_y[neigh_ind, k], axis=1)
In [458]: |print(f"yNN1_pred : {yNN1_pred}")
           yNN1_pred: [2 3 3 0 1 0 0 0 0 2 1 0 1 0 2 1 1 1 1 2 0 0 1 1 0 0 0 3 1 3 0 0
           0 0 1 0 2
            0 3 2 0 0 0 0 1 1 0 3 3 0 1 2 0 2 2 1 0 2 3 2 2 0 1 1 0 3 1 2 1 0 2 2 3 1
            1 \; 0 \; 1 \; 1 \; 1 \; 0 \; 1 \; 1 \; 3 \; 3 \; 0 \; 2 \; 0 \; 2 \; 0 \; 1 \; 0 \; 1 \; 0 \; 0 \; 2 \; 0 \; 3 \; 1 \; 1 \; 1 \; 3 \; 3 \; 1 \; 3 \; 2 \; 0 \; 3 \; 1 \; 0 \; 1 \; 1
            2 2 0 1 3 0 1 2 0 0 3 2 3 1 0 3 2 1 1 3 2 3 2 2 3 2 2 0 0 0 3 3 1 0 1 2 0
            2 0 2 0 0 2 2 2 0 3 0 2 2 2 0 2 1 2 0 0 1 2 1 3 3 0 2 1 0 1 2 2 0 0 1 2 3
            1 \; 3 \; 2 \; 1 \; 1 \; 2 \; 2 \; 0 \; 1 \; 0 \; 0 \; 1 \; 1 \; 0 \; 2 \; 3 \; 3 \; 1 \; 0 \; 2 \; 2 \; 3 \; 0 \; 3 \; 1 \; 1 \; 0 \; 2 \; 2 \; 0 \; 2 \; 3 \; 3 \; 2 \; 0 \; 2 \; 3
            1 2 2 3 0 3 2 1 3 0 3 0 1 1 1 2 0 1 3 1 1 3 0 0 1 0 1 3 2 0 1 2 2 0 3 3 2
            2 2 0 2 1 2 2 1 3]
```

In [459]: pd.DataFrame(confusion_matrix(yk_test,yNN1_pred),columns=['Predicted 0','Predicted 0'

Out[459]:

	Predicted 0	Predicted 1	Predicted 2	Predicted 3
Actual 0	25	11	12	13
Actual 1	20	22	14	10
Actual 2	18	21	30	13
Actual 3	18	16	13	12

In [460]: print(classification_report(yk_test,yNN1_pred))

	precision	recall	f1-score	support
0	0.31	0.41	0.35	61
1	0.31	0.33	0.32	66
2	0.43	0.37	0.40	82
3	0.25	0.20	0.22	59
accuracy			0.33	268
macro avg	0.33	0.33	0.32	268
weighted avg	0.34	0.33	0.33	268

KNN not good on large datasets

In [461]: data.head()

Out[461]:

	age	sex	bmi	children	smoker	region	charges	smoke	gender
0	19	female	27.900	0	yes	3	16884.92400	1	0
1	18	male	33.770	1	no	2	1725.55230	0	1
2	28	male	33.000	3	no	2	4449.46200	0	1
3	33	male	22.705	0	no	1	21984.47061	0	1
4	32	male	28.880	0	no	1	3866.85520	0	1

```
In [462]: from sklearn import svm
```

In [463]: xs = data['charges']

In [464]: ys = data['smoke']

```
In [465]: print(xs)
          0
                   16884.92400
          1
                    1725.55230
          2
                    4449.46200
          3
                   21984.47061
          4
                    3866.85520
                      . . .
          1333
                   10600.54830
          1334
                    2205.98080
          1335
                    1629.83350
          1336
                    2007.94500
          1337
                   29141.36030
          Name: charges, Length: 1338, dtype: float64
In [466]: print(ys)
          0
                   1
          1
                   0
          2
                   0
          3
                   0
          4
                   0
          1333
                   0
          1334
          1335
                   0
                   0
          1336
          1337
                   1
          Name: smoke, Length: 1338, dtype: uint8
In [467]: xs_train, xs_test, ys_train, ys_test = train_test_split(xs,ys,test_size=0.2,ra
In [468]: print(xs_train.shape)
          print(xs_test.shape)
          print(ys_train.shape)
          print(ys_test.shape)
           (1070,)
           (268,)
           (1070,)
           (268,)
In [469]: xs train = xs train.values.reshape(-1,1)
          xs_test = xs_test.values.reshape(-1,1)
In [470]: models = svm.SVC()
          models.fit(xs_train,ys_train)
Out[470]: SVC()
In [471]: models.score(xs_test,ys_test)
Out[471]: 0.9328358208955224
```

```
In [472]: plt.scatter(x = data['charges'],y = data['smoke'])
    plt.xlabel('charges')
    plt.ylabel("smoke")
    plt.show()
```



```
In [473]: from sklearn.ensemble import RandomForestRegressor
In [476]: regressor = RandomForestRegressor(n_estimators = 500, random_state = 1)
    regressor.fit(xs_train,ys_train)
Out[476]: RandomForestRegressor(n_estimators=500, random_state=1)
In [477]: regressor.score(xs_train,ys_train)
```

Out[477]: 0.9414024055614973