데이터스트

홈 태그 방명록

카테고리 없음 by 꿀먹은데이터 • 2022. 1. 12. • 수정 • 삭제

```
FID
                            환자 아이디
             1000 non-null
IID
             1000 non-null
                            환자 아이디
AGE_B
             1000 non-null
                            나이
                            흡연 여부 1:비흡연, 2: 과거 흡
SMOK_B
             990 non-null
연, 3: 흡연자
SMOKA_MOD_B
             679 non-null
                            하루 평균 흡연량 (nan -> 0으로
전 처 리 )
ALCO_B
             965 non-null
                            음주 여부 1: 예, 2: 아니오, nan
: ?
                            1회당 잔수로 환산 ...?
ALCO_AMOUNT_B 915 non-null
             927 non-null
                            1: 예, 2: 아니오
EXER_B
             46 non-null
                            . 데이터가 적음
MDM_B
MHTN_B
             120 non-null
                            . 데이터가 적음
                            . 데이터가 적음
MLPD_B
             28 non-null
                            . 데이터가 적음
PHTN_B
             153 non-null
                            . 데이터가 적음
PDM_B
             67 non-null
                            . 데이터가 적음
PLPD_B
             36 non-null
                            신장
HT_B
             998 non-null
WT_B
             998 non-null
                            허리둘레 (필요없을 듯)
WAIST_B
             971 non-null
SBP_B
             988 non-null
                            수축기혈압
DBP_B
             989 non-null
                            이완기혈압
CHO_B
             995 non-null
                            총 콜레스테롤
LDL_B
             995 non-null
                            저밀도 콜레스테롤
TG_B
             995 non-null
                            중성지방
HDL_B
             987 non-null
                            고밀도 콜레스테롤
FBS_B
                            공복혈당
             998 non-null
GOT_B
             996 non-null
                            AST(GOT)
                            ALT(GPT)
GPT_B
             996 non-null
```

분류 전체보기 🔞

파이썬 머신러닝 완벽 가 이드

AI 데이터 연구단

공지사항

최근글 : 인기글

[2022 동계 인턴십]암… 2022.01.12

[동계인턴 십] 암 예… 2022.01.11

[2022 동계인턴십] 암 예측 2022.01.10

GGT_B URIC_B		r_GTP 요산(Uric acid)
PCAN80 PCAN81 PCAN82 PCAN83 PCAN84 PCAN86 PCAN89 FCAN80 FCAN81 FCAN82 FCAN83 FCAN84 FCAN84 FCAN86	4 non-null 15 non-null 0 non-null 1 non-null 8 non-null 4 non-null 18 non-null 30 non-null 69 non-null 1 non-null 23 non-null 20 non-null 35 non-null	 . 데이터가 적음
FEV1 느낌) FVC BIL WBC CREAT STOMA COLON LIVER LUNG PROST THROI	569 non-null 569 non-null 948 non-null 928 non-null 962 non-null 1000 non-null 1000 non-null 1000 non-null 1000 non-null 1000 non-null	800초과 (이상치 처리하여 null값된 비슷한 이유로 위와 같다고 생각. 총빌리루빈(T-bilirubin) 백혈구(WBC) 크레아티닌(Creatinine) 암 암 암
BREAC RECTM SCOLON SRECTM SPROST STHROI SBREAC SLUNG SSTOMA SLIVER SEX1 CRC SCRC	1000 non-null 1000 non-null	암 암 관련 수치 암 관련 수치

[FIND-A] 금 융경제학… 2022.01.09

Sleep Al Challen… 2022.01.07

최근댓글

태그

사이킷런, 머신러닝, 파이썬머신러닝완벽가이 드, 수면다원검사, 수면, AI데이터연구단

전체 방문자

3

Today: 0 Yesterday: 0

PCAN80	996
PCAN81	985
PCAN82	1000
PCAN83	999
PCAN84	992
PCAN86	996
PCAN89	982
FCAN80	970
FCAN81	931
FCAN82	999
FCAN83	977
FCAN84	980
FCAN86	965
FCAN89	989
dtype:	int64

위 사진을 보면 null값이 대부분이기 때문에 drop하는 것이 낫다고 생각했다.

'MDM_B', 'MHTN_B', 'MLPD_B', 'PHTN_B', 'PDM_B', 'PLPD_B' -> null 값이 많이 나오기에 drop하였다.

```
df=data.loc[:,['SCOLON', 'SRECTM', 'SPROST', 'STHROI', 'SBREAC',
'SLUNG', 'SSTOMA', 'SLIVER', 'SCRC']]
df
```

	SCOLON	SRECTM	SPROST	STHROI	SBREAC	SLUNG	SSTOMA	SLIVER	SCRC
0	11.500000	11.500000	11.500000	11.500000	11.500000	11.500000	11.500000	11.500000	11.500000
1	11.500000	11.500000	11.500000	11.500000	2.833333	11.500000	11.500000	11.500000	11.500000
2	11.500000	11.500000	11.500000	11.500000	11.500000	11.500000	11.500000	11.500000	11.500000
3	11.400000	11.400000	11.400000	11.400000	11.400000	11.400000	-5.350000	11.400000	11.400000
4	4.733333	4.733333	4.733333	4.733333	4.733333	4.733333	4.733333	4.733333	4.733333
995	4.600000	4.600000	4.600000	4.600000	4.600000	4.600000	1.183333	4.600000	4.600000
996	19.700000	19.700000	19.700000	19.700000	19.700000	19.700000	19.700000	19.700000	19.700000
997	13.600000	13.600000	13.600000	13.600000	13.600000	13.600000	13.600000	13.600000	13.600000
998	14.600000	14.600000	14.600000	14.600000	14.600000	14.600000	14.600000	14.600000	14.600000
999	13.500000	13.500000	13.500000	13.500000	13.500000	13.500000	13.500000	13.500000	13.500000
1000 rows × 9 columns									

'SCOLON', 'SRECTM', 'SPROST', 'STHROI', 'SBREAC', 'SLUNG', 'SSTOMA', 'SLIVER', 'SCRC' 까지 모두 암 관련 수치로 0과 1로 이뤄진 암 관련 변수들로 구분이 되므로 drop해도 된다고 생각하였다.

'FEV1', 'FVC'의 경우 이상치로 인해 569개의 데이터만이 남았고 따로 변수의 설명을 찾지 못해 drop하였다.

또한 'ALCO_AMOUNT_B','SMOKA_MOD_B' 의 경우 'ALCO_B'와 'SMO K_B'가 있기 때문에 양보다는 여부가 중요하다고 생각하여 drop하였다.

df.info()

0	AGE_B	788 non-null	int64
1	SMOK_B	788 non-null	float64
2	ALCO_B	788 non-null	float64
3	EXER_B	788 non-null	float64
4	HT_B	788 non-null	float64
5	WT_B	788 non-null	float64
6	WAIST_B	788 non-null	float64
7	SBP_B	788 non-null	float64
8	DBP_B	788 non-null	float64
9	CHO_B	788 non-null	float64
10	LDL_B	788 non-null	float64
11	TG_B	788 non-null	float64
12	HDL_B	788 non-null	float64
13	FBS_B	788 non-null	float64
14	GOT_B	788 non-null	float64
15	GPT_B	788 non-null	float64
16	GGT_B	788 non-null	float64
17	URIC_B	788 non-null	float64
18	BIL	788 non-null	float64
19	WBC	788 non-null	float64
•••			
28	RECTM	788 non-null	int64
29	SEX1	788 non-null	int64
30	CRC	788 non-null	int64

train/test data set 분할

먼저 전체 데이터 프레임에서 타겟값을 제외한 나머지 columns X_df로 설정하고, LUNG을 y_df로 설정한다. (폐암(LUNG)의 경우만을 살펴보았다.)

```
#폐암
features=['LUNG','STOMA','COLON','LIVER','LUNG','PROST','THROI',
'BREAC','RECTM']
y_df =df['LUNG']
X_df =df.drop(features, axis=1)
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X_df,y_df,test_size=0.2)
```

예측한 결과값 중 다수의 분류기가 결정한 예측값을 최종 보팅 결과값으로 선정하는 하드 보팅(hard voting)과 분류기들의 레이블 값 결정 확률을 모두 더하여 이를 평균 내어 확률 값이 가장 높은 레이블을 최종 보팅결과값으로 선정하는 소프트 보팅(soft voting)이 있다.

```
import matplotlib.pyplot as plt
import numpy as np
#분류 모델
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.metrics import confusion_matrix,classification_repo
rt #정오분류표
from sklearn.metrics import accuracy_score,precision_score,recal
I_score, f1_score, roc_auc_score #정확도, 민감도
from sklearn.metrics import roc_curve, auc #ROC 곡선 그리기
#최적화
from sklearn.model_selection import learning_curve, validation_cu
rve #학습곡선, 검증곡선
from sklearn.model_selection import GridSearchCV #하이퍼파라미터
from sklearn.model_selection import cross_val_score #교차타당도
 #추가
```

투표 기법 사용

```
logistic = LogisticRegression(solver='liblinear',penalty='12')
tree = DecisionTreeClassifier(max_depth=None, criterion='entropy'
knn = KNeighborsClassifier(n_neighbors=1,p=2,metric='minkowski')
forest = RandomForestClassifier()
adaboost = AdaBoostClassifier()
voting_estimators = [('logistic', logistic), ('tree', tree), ('knn',
knn)]
voting = VotingClassifier(estimators=voting_estimators,voting='s
oft')
#소프트 보팅 이용 (분류기들의 레이블)
#투표 기법 사용
a_clf_labels = ['Logistic regression', 'Decision tree', 'KNN', 'Maj
ority voting']
a_all_clf = [logistic,tree,knn,voting]
#배깅
b_clf_labels = ['Decision tree', 'Random forest']
b_all_clf = [tree, forest]
```

```
#부스팅
c_clf_labels = ['Decision tree', 'Ada boost']
c_all_clf = [tree,adaboost]
for clf, label in zip(a_all_clf,a_clf_labels):
    scores = cross_val_score(estimator=clf, X=X_train, y=y_train, c
v=10, scoring='roc_auc')
    print('ROC AUC: %0.3f (sd : %0.3f),[%s]' %(scores.mean(),sco
res.std(), label))
ROC AUC: 0.788 (sd : 0.173), [Logistic regression]
ROC AUC: 0.489 (sd : 0.009), [Decision tree]
ROC AUC: 0.643 (sd : 0.200), [KNN]
ROC AUC: 0.848 (sd : 0.134), [Majority voting]
colors=['r','g','b','black']
for clf, label, clr in zip(a_all_clf, a_clf_labels, colors):
    clf.fit(X_train,y_train)
    y_pred = clf.predict_proba(X_test)[:,1]
    fpr,tpr,thresholds = roc_curve(y_true=y_test,y_score=y_pred)
    roc_auc=auc(x=fpr,y=tpr)
    plt.plot(fpr,tpr,color=clr,label='%s(auc=%0.3f)'%(label,roc_
auc))
plt.legend(loc='lower right')
plt.grid()
plt.xlabel('False positive rate(fpr)')
plt.ylabel('True postivie rate (tpr)')
plt.show()
   1.0
   0.8
True postivie rate (tpr)
   0.6
   0.4
                                    Logistic regression(auc=0.798)
   0.2
                                    Decision tree(auc=0.546)
                                    KNN(auc=0.490)
                                    Majority voting(auc=0.774)
   0.0
                   0.2
                                        0.6
                                                   0.8
        0.0
                             0.4
                                                             1.0
                          False positive rate(fpr)
colors=['r','g']
for clf, label, clr in zip(b_all_clf, b_clf_labels, colors):
    clf.fit(X_train,y_train)
    y_pred = clf.predict_proba(X_test)[:,1]
    fpr,tpr,thresholds = roc_curve(y_true=y_test,y_score=y_pred)
    roc_auc=auc(x=fpr,y=tpr)
    plt.plot(fpr,tpr,color=clr,label='%s(auc=%0.3f)'%(label,roc_
auc))
plt.legend(loc='lower right')
```

plt.grid()

plt.xlabel('False positive rate(fpr)')

```
plt.ylabel('True postivie rate (tpr)')
plt.show()
```



```
colors=['r','g']
for clf,label,clr in zip(c_all_clf,c_clf_labels,colors):
    clf.fit(X_train,y_train)
    y_pred = clf.predict_proba(X_test)[:,1]
    fpr,tpr,thresholds = roc_curve(y_true=y_test,y_score=y_pred)
    roc_auc=auc(x=fpr,y=tpr)
    plt.plot(fpr,tpr,color=clr,label='%s(auc=%0.3f)'%(label,roc_auc))

plt.legend(loc='lower right')
plt.grid()
plt.xlabel('False positive rate(fpr)')
plt.ylabel('True postivie rate (tpr)')
plt.show()
```


오류나는 이유 찾기.

```
# params ={'logistic__C':[0.001,0.1,100.0],
# 'tree__max_depth':[1,2,3,4,5],
# 'knn_n_neighbor':[1,2,3,4,5]}
# grid=GridSearchCV(estimator=voting,param_grid=params,cv=10,scoring='roc_auc')
```

```
# grid.fit(X_train,y_train)
# for r,_ in enumerate(grid.cv_results_['mean_test_score']):
     print(grid.cv_results_['mean_test_score'][r],
            grid.cv_results_['std_test_score'][r]/2.0,
#
            grid.cv_results_['params'][r])
#
#print(grid.best_params_)
feat_labels= X_df.columns
importance =forest.feature_importances_
indices=np.argsort(importance)[::-1]
for f in range(X_train.shape[1]):
    print("%3d) %-*s %f" %(f+1,30,feat_labels[indices[f]],import
ance[indices[f]]))
                                               0.091153
1) AGE B
```

```
0.081651
   SBP B
                                      0.068084

 GOT B

                                      0.055883

 CHO B

                                      0.053626
 5) HT B
 6) LDL B
                                      0.052642
                                      0.051184

 7) FBS B

                                      0.050210

 DBP B

                                      0.049429
 9) HDL B
                                      0.048541
10) GGT B
11) GPT B
                                      0.047066
12) WBC
                                      0.046800
13) TG B
                                      0.043891
                                      0.041170
14) WAIST B
15) BIL
                                      0.039988
16) CREAT
                                      0.039222
                                      0.035575
17) URIC B
                                      0.035290
18) WT B
19) SMOK B
                                      0.033658
20) EXER B
                                      0.014176
21) ALCO B
                                      0.010767
                                      0.009406
22) SEX1
23) CRC
                                      0.000589
```

```
plt.bar(range(X_train.shape[1]),importance[indices],align='cente
r')
plt.xticks(range(X_train.shape[1]),feat_labels[indices],rotation
=45,size=8)
plt.title('feature importance')
plt.show()
```


♡ 공감 🖒 🗓 👓

댓글 0

여러분의 소중한 댓글을 입력해주세요.

등록

(1 2 3 4 5 ··· 15)