(19) 대한민국특허청(KR) (12) 공개특허공보(A)

(51) Int. CI.

(11) 공개번호

특2002-0073476

G02B 6/00

(43) 공개일자

2002년09월26일

(21) 출원번호

10-2002-7006456 2002년05월 15일

(22) 출원일자

2002년05월 15일

번역문제출일자 (86) 국제출원번호

PCT/US2001/28677

(87) 국제공개번호

WO 2002/23229

(86) 국제출원출원일자

2001년09월15일

(87) 국제공개일자

2002년03월21일

. . .

(81) 지정국

국내특허 : 알바니아 아르메니아 오스트리아 오스트레일리아 아제르바이잔 보스니아-헤르체고비나 바베이도스 불가리아 브라질 벨라루스 캐나다 스위스 중국 쿠바 체코 독일 덴마크 에스토니아 스페인 핀랜드 영국 그루지야 헝가리 이스라엘 아이슬란드 일본 케냐 키르기즈 북한 대한민국 카자흐스탄 세인트루시아 스리랑카 라이베리아 레소토 리투아니아 룩셈부르크 라트비아 몰도바 마다가스카르 마케도니아 몽고 말라위 멕시코 노르웨이 뉴질랜드 슬로베니아 슬로바키아타지키스탄 투르크메니스탄 터어키 트리니다드토바고 우크라이나 우간다 미국 우즈베키스탄 베트남 폴란드 포르투칼 루마니아 러시아 수단 스웨덴 싱가포르 아랍에미리트 안티구아바부다 코스타리카 도미니카연방 알제리 모로코 탄자니아 남아프리카 벨리즈 모장비크 에쿠아도르 AP ARIPO특허 : 케냐 레소토 말라위 수단 스와질랜드 우간다시에라리온 가나 감비아 짐바브웨

EA 유라시아특허 : 아르메니아 아제르바이잔 벨라루스 키르기즈 카자흐 스탄 몰도바 러시아 타지키스탄 투르크메니스탄

EP 유럽특허 : 오스트리아 벨기에 스위스 독일 덴마크 스페인 프랑스 영국 그리스 아일랜드 이탈리아 룩셈부르크 모나코 네덜란드 포르투 칼 스웨덴 핀랜드

OA OAPI특허 : 부르키나파소 베넹 중앙아프리카 콩고 코트디브와르 카메룬 가봉 기네 말리 모리타니 니제르 세네갈 차드 토고 기네비쏘적도기네

(30) 우선권주장

09/633,308 2000년09월15일 미국(US)

09/728,447 2000년12월01일 미국(US)

09/952,280 2001년09월12일 미국(US)

(71) 출원인

퍼스트 퀄러티 파이버스 인코퍼레이티드

미국 뉴욕주 그레이트 네크 커터밀 로드 80

(72) 발명자

보다기하산 미국뉴욕주킹스포인트와일드우드로드107

이기성

(74) 대리인

<u>심사청구 : 없음</u>

(54) 반결정성 중합체로 제조된 광학섬유의 제조장치

요약

본 발명은 반결정성 중합체로 제조된 광학섬유의 제조장치에 관한 것으로서,

.

1 1 1

압출기는 중합체 수지를 가열하여 용융된 중합체를 제조하고, 상기 용융된 중합체를 일정 압력에서 공급하며, 기어 펌프는 유체상태로 압출기에 연결되어 용융된 중합체를 받고, 중합체의 유속을 제어하며, 스피너렛은 유체상태로 기어 펌프에 연결되어 용융된 중합체를 광학섬유로 방사하며, 가열기는 섬유가 스피너렛을 방출한 후에 광학섬유의 온도를 제어하며, 상기 광학섬유는 방사형 변형체를 제거 하기위해서 용융온도에서 실내온도로 천천히 냉각시키며, 감기 롤러는 섬유가 스피너렛을 방출한 후에 광학섬유를 연신하여 용융된 중합체의 결정성을 최대로 하는 것을 특징으로 한다.

대표도

도1

명세서

본 출원은 2000년 9월 15일에 반-결정질 중합체로 제조된 광섬유의 제조장치란 제목으로 제출된 미국 특 허 출원 제 09/728,447의 연속된 일부이고, 2000년 12월 15일에 반-결정질 중합체로 제조된 광섬유의 제 조장치란 제목으로 제출된 미국특허 출원 제 09/633,308호의 계속된 일부이다.

발명의 상세한 설명

반-결정질 중합체는 몇년 동안 직물 사용을 위한 섬유 제조에 사용되어왔다. 섬유의 물리적 특성은 섬유 스핀시 중합체 분자의 방향 및 조성된 구조 형태에 의존한다. 섬유의 기계적 특성은 분자의 방향에 직접 관련된다. 고분자의 수지는 같은 조건하에서 처리된다면 더 높은 강도의 섬유를 생성한다. 방향의 정도 가 높아질수록 주어진 섬유의 장력도 높아진다. 그러나, 결정도 및 결정질 구조는 좋은 입체 안정성의 섬유를 생성하는데 매우 중요한 역할을 한다. 좁은 분자량 분포의 고분자 올레핀 중합체의 선택은 불순 물을 최소화한다. 상기 중합체는 쉽게 압출되고 조절된 형태의 과도하게 투명한 섬유로 드로잉된다. 고 분자가 강한 섬유를 형성하고 매우 강한 섬유를 얻고 무정형 및 결정질 방향 모두의 매우 높은 정도를 얻는다. 상기 중합체를 이용하여 얻은 높은 결정도는 무정형 중합체를 이용하여 얻을 수 없는 입체 안정 성을 제공한다.

저온에서 폴리올레핀이 용융되기 때문에, 상기 중합체의 압출 및 처리는 모든 다른 중합체와 비교할 때최소 에너지가 필요하다. 예를 들면, 유리는 1200℃에서 용융되고 다른 무정형 중합체는 폴리올레핀과비교할 때 훨씬 더 높은 온도에서 용융된다. 그러므로, 유리 및 다른 무정형 중합체보다 폴리올레핀반-결정질 성유로부터 광성유를 제조하는 것이 훨씬 경제적이다. 상기 성유는 고유의 저밀도 때문에 훨씬 더 가볍고 취급에 우수한 용이성이 있다. 유리 섬유는 간단히 취급에 너무 무겁고 잘 깨지고 복잡한클래딩(cladding) 및 끝과 끝을 부착하는 장치가 필요하다.

폴리프로필렌, 나일론 및 폴리에스테르를 포함하는 합성 섬유의 제조에서, 용용된 중합체는 작은 구멍을 통해 압출되어 회전 롤에서 드로잉 및 고체화된 필라멘트를 형성한다. 2차 단계에서 고체화된 필라멘트 는 느린 롤에서 빠른 롤를 통과하여 직경의 몇배로 드로잉한다. 필라멘트 형성 방법은 용융 스핀시 드로 잉으로 고체 상 신축방법으로 공지되어있다.

드로잉 방법에서, 필라멘트는 우선 국지적 네킹(necking)을 보이지만 자연드로우 비율로 공지된 지점에서 실제로 일정해진다. 네킹 영역 및 드로잉된 필라멘트는 중합제 사슬 방향의 충분히 증가된 수준을 나타낸다[Fankuchen, I., Mark, H.: J. Appl. Phys. 15, p. 364 (1944); Wyckoff, H.W.: J. Polym. Sci. 62, p. 83(1962); Kasai, N., Kakudo, M.: J. Polym. Sci., pt. A2, p. 1955 (1961); Samuels, R.J.: J.Polym. Sci. A-2 6, p. 2021 (1968); White, J.L., Dharod, K.C., Clark, E.S.: J.Appl. Polym. Sci. 18, p. 2539 (1974): Sze, G.M., Spruiell, J.E., White, J.L.: J. Appl. Polym. Sci. 20, p. 1823 (1976); Nadella, H.P., Spruiell, J.E., White, J.L.: J. Appl. Polym. Sci. 22, p. 3121 (1978); Kitao, T., Spruiell, J.E., White, J.L.: Polym. Eng. Sci. 19, p. 761 (1979)]. 드로잉 처리시 일어나는 또 다른 현상은 연장된 진공과 함께 많은 '가는 섬유'를 포함하는 비균질 구조로 개시 고체 균질 필라멘트를 변형하는 섬유성 연축의 조성이다[Samuels, R.J.: J. Polym. Sci. A-2 6, p. 2021 (1968); White, J.L., Dharod, K.C., Clark, E.S.: J. Appl. Polym. Sci. 19, p. 2539 (1974): Sze, G.M., Spruiell, J.E., White, J.L.: J. Appl. Polym. Sci. 20, p. 1823 (1976); Nadella, H.P., Spruiell, J.E., White, J.L.: J. Appl. Polym. Sci. 20, p. 1823 (1976); Nadella, H.P., Spruiell, J.E., White, J.L.: J. Appl. Polym. Sci. 22, p. 3121 (1978); Kitao, T., Spruiell, J.E., White, J.L.: Polym. Eng. Sci. 19, p. 761 (1979); Statton, W.O.: J. Polym. Sci. 41, p. 143; Sakaoku, K., Peterline, A: J. Polym. Sci. A-2 9, p. 895 (1974); Glenz, W., Morossoff, N., Peterlin, A.: Polymer Letters 9, p. 211 (1971); Muzzy, J.E., Hansen, D.: Textile Res. J. 41, p. 436 (1971); Vonk, C.G.: Colloid Polym. Sci. 257, p. 1021 (1979)]. &기가 문제이고 용융 스핀과의 상호작용이 고려된다. 일반적으로, 섬유성 연축의 관찰은 상기 현상의 존재가 저술자에 의해 알려진 특성 및 때때로 가설 메카니즘에 서 질적이다[Sakaoku, K., Peterline, A: J. Polym. Sci. A-2 9, p. 895 91971); Peterlin, A.: J. Polym. Sci. 9, p. 61 (1965)]. SAXS 및 주사전자현미경(SEM)을 이용한 연구[Sze, G.M., Spruiell, J.E., White, J.L.: J. Appl. Polym. Sci. 20, p. 1823 (1976); Kitao, T., Spruiell, G.M., Spruiell, J.E., White, J.L.: J. Appl. Polym. Sci. 20, p. 1823 (1976); Kitao, T., Spruiell,

1 111 1 11 111

1 141 . (1111)

J.E., White, J.L.: Polym. Eng. Sci. 19, p. 761 (1979)]는 고밀도 폴리에틸렌 및 폴리프로필렌에서 섬 유성 연축은 증가하는 드로잉 온도로 감소하고 드로잉 비율로 증가하는 경향이 있음을 나타낸다.

박면이 요약

본 발명은 반결정성 중합체로 제조된 광학섬유를 제조하는 장치에 관한 것이다. 상기 장치는 하기를 포함한다: 압축기는 중합체 수지를 가열하여 용용된 중합 체를 제조하고, 일정압력에서 용용된 중합체를 제공한다. 기어 펌프는 압출기와 유체상태로 연결되고, 용용된 중합체를 받고, 중합체의 유속을 제어한다. 스피너렛은 기어 펌프와 유체상태로 연결되고, 용용된 중합체를 광학섬유로 방사한다. 가열기는 섬유가 스피너렛로 방출된 후에 광학섬유의 온도를 조절한다. 상기 광학섬유는 용융물로부터 실내온도로 천천히 냉각되어 방사형 변형체를 제거한다. 감기 롤러는 섬유가 스피너렛을 방출시킨후 광학 섬유를 인장시켜서 용융된 중합체의 결정성을 최대로한다.

용융된 스핀 폴리프로필렌 필라멘트의 연신동안 섬유화 및 공백 상태가 또한 개시되었다. 상기 섬유화 방행은 광각X-선 분산 및 복굴절에 특징이 있다. 결정성은 DSC 기술에 의해서 측정된다. 섬유화 상부구 조의 상태는 SEM에 따르고, 공극(void) 구조는 SAXS에 의해서 연구되었다. 공극 분율은 또한 밀도 및 결 정성 측정의 조합을 통해서 평가된다. 하기의 결론에 도달하였다:

- 1) 배향성에 있어서 통상의 변화가 관찰되었다. 배향성은 용융 방사동안 감기 속도, 중합체 분자량 및 연신비를 증가시킨다. 배향성은 연신온도를 증가시키면 약간 감소된다.
- 2) 결정성은 연신비 및 연신온도가 증가되면 증가되지만, 연구된 분자량의 범위에서 큰 영향을 주지 못 했다.
- 3) SEM 현미경사진에 의해서 성유의 수준의 정량적 관찰은 25℃에서 연신된 후 성유화가 매우 광범위하다는 것을 나타낸다. 섬유화는 연신온도가 증가되면 낮 아지지만, 연신비 및 중합체 분자량이 증가되면 증가된다. 낮은 감기 속도(및 방사방향)에서 방사된 필라멘트는 더 높은 감기속도에서 방사된 것에 비래서 상대적으로 덜 섬유화된다.
- 4) 미세공극의 부피 분율은 약 0.0004 내지 0.028(0.04 내지 2.8%)의 범위이다.
- 5) SAXS 기술로부터 계산된 미세공극의 부피 분율은 결정성(DSC 기술) 및 밀도 측정의 조합으로부터 측정되는 미세공극 분율과 잘 보정된다.
- 6) 미세 공극의 부피 분율은 하기의 경우에 증가된다:
- a) 연신비가 증가되면,
- b)연신온도가 증가되면,
- c)분자량이 증가되면,
- d)용융방사동안 감기속도가 증가되면,
- 7)기니어(Guinier)분석은 평균공극크기가 섬유 축에 평행하게 25 내지 40nm의 크기이고, 섬유축과 수직 으로 15 내지 30nm의 크기이다. 평균 공극 크기는 연신온도가 증가되고, 분자량이 감소되면 증가되지 만, 연신비 또는 방사 방향이 큰 기능을하는 것은 아니다.
- 8) 공극 수밀도는 연신온도가 강소되면 증가되고, 연신비, 분자량 및 방사방향이 증가되면 증가된다.
- 9)성유 방향 기계적 성질은 개발된 방향으로 보정하는 경향이 있으며, 실질적으로 섬유화 또는 공극분율 의 기능은 아니다.

도면의 간단한 설명

.

. . . .

- 도 1은 본 발명의 장치의 제1 구체예의 도식도이고;
- 도 2는 본 발명의 장치의 제2 구체예의 도식도이고;
- 도 3A는 본 발명의 스피너렛의 단면도이고;
- 도 3B는 본 발명의 스피너렛의 단부도이고;
- 도 4는 본 발명의 섬유의 제1 아테뉴에이션(attenuation) 그래프이고;
- 도 5는 본 발명의 섬유의 제2 아테뉴에이션 그래프이고;
- 도 6은 850nm에서 도 5의 확대도이고;
- 도 7은 1310nm에서 도 5의 확대도이고;
- 도 8은 표 5의 섬유의 아테뉴에이션 그래프이고;
- 도 9는 표 6의 섬유의 아테뉴에이션 그래프이고;
- 도 10은 표 7의 섬유의 아테뉴에이션 그래프이고;
- 도 11은 표 8의 섬유의 아테뉴에이션 그래프이고;
- 도 12는 표 9의 섬유의 아테뉴에이션 그래프이고;
- 도 13은 표 10의 섬유의 아테뉴에이션 그래프이고;
- 도 14는 표 기의 섬유의 아테뉴에이션 그래프이고;

1 111 1

도 15는 표 12의 섬유의 아테뉴에이션 그래프이고;

도 16는 표 13의 성유의 아테뉴에이션 그래프이고;

도 17는 표 14의 섬유의 아테뉴에이션 그래프이고;

도 18은 표 15의 섬유의 아테뉴에이션 그래프이다.

실시예

1. 장치와 물질

본발명은 원료물질로서 무기질의 유리, 무정형질 또는 다른 공중합체 대신에 반-결정질의 호모폴리머를 채용한다. 이것을 유리 또는 다른 최근에 사용되어지는 수지에 대하여 다음과 같은 이점을 준다.

첫째, 협소한 분자량 분포와 최소화된 공정 첨가물을 가진 고분자량의 중합체를 선택함으로써 불순물이 낮다. 폴리에틸렌 수지는 600 PPM 이하의 단지 매우 낮은 양의 항산화제를 가지고 있다. 항산화제는 수지위에 매우 적은 금속의 양과 다른 불순물이 회피되어져 공정 중에 열분해를 방지하는데 사용된다. 이수지에 대한 가스배출은 14 PPM이고 폴리디스퍼시티(polydispersity)가 4 보다 적다. 배출물이 다이를 나가기 전 뿐만 아니라 섬유 최종 구조의 형성 전에 다이 벽에서 쉬어(shear)의 영향으로 방사형 형상의 변화를 제거하기 위해서 그와같은 협소한 분자량의 분포가 매우 중요한 인자이다. 고밀도, 고분자량 폴리올레핀, 분자량이 50,000-300,000의 범위에 걸친 수지 및

(3의 폴리디스퍼시티가 매우 바람직한 물질이다. 폴리프로필렌, 이소타틱 폴리스티렌, 폴리에틸렌 옥사이드, 폴리옥시메틸렌, 나이론(예를들어, 나이론 6066 같은), 폴리비닐리덴 플로우라이드 및 유사물과같은 다른 반-결정질 호모폴리머가 그와 같은 광확적 적용에 진보된 섬유를 형성하는데 이용되어진다.이들 수지에 대한 결정 정도는 폴리에틸렌 수지의 그것에 비해서 높지 않기 때문에, 조절되어진 구조의작은 결정을 형성하기 위하여 중합 동안에 5%에까지 세척제를 넣어줄 수 있고 형성되어진 섬유에서 바람직하지 않은 밀도의 변화를 제저할 수 있다. '반-결정질'이라는 용어는 본 가르침에 의해서 생산되어진 최종의 섬유 산물이 약 30%에서 약 99%의 결정도를 가짐을 의미한다.

둘째로, 반-결정질 수지는 가공하기 쉽고 유리와 무정형의 중합체에 비하여 매우 낮은 가공 온도(생산동 안에 낮은 에너지 비용)에서 순수한 섬유로 형성되어질 수 있다. 따라서 그들은 유리에 비하여 매우 낮 은 밀도를 가지고 있어 조작하기 쉽다.

섬유 방적은 두 가지 다른 방법으로 수행된다. 이들은 전통적인 방적이고 높은 속도의 방적이다. 전통적 인 방적은 두개의 분리되어진 단계에 의해서 수행된다. 첫째는, 섬유는 즉시 수조로 보내져서 냉각되어 지고 식혀지고 다음에 잡아 늘린 섬유로 모아진다. 이들 섬유는 공정의 다음 단계로 넘어간다. 고속의 방적 공정에서는 섬유는 최초의 수지로부터 최종의 늘려진 섬유로 단일의 단계로 만들어진다.

당기술 업계에서는 일반적인 두 단계의 방적과 늘림 방법이 무정형이고 결정 방향이 높은 정도를 가진 성유를 생산한다는 것이 잘 알려져 있다. 대조적으로, 기계적인 을린 단계가 없기 때문에 낮은 질의 성 유가 고속의 방적에 의해서 생산된다. 그러나, 생산율이 관습적인 섬유 방적과 비교하여 고속의 방적이 매우 높다. 비록 매우 높게 방향되어 있고 매우 강한 섬유가 그와 같은 방법에 의해서 생산되나, 섬유안 에서 구조적 차이는 제거되지 않았다. 반면에, 대상 발명은 결정질및 무정형 방향 모두 최대 정도를 가 진 구조적 형태가 조절되어진 개조되어진 섬유를 생산한다.

본원 발명은 섬유의 방적동안에 구조적인 변이를 정확하게 조절하고 연속적인 방법으로 및 하나의 효율적인 공정으로 광학섬유에서 생산하기 위하여 섬유 방적 라인으로 단계적 끌림 절차를 통합하였다. 이발명은 낮은 장력에서 방적 동안에 발생할 수 있는 불완전한 결정을 제거하고, 스페루리틱(sperulitic)형상을 라멜라 결정상으로 변환시키고, 섬유안에 있는 다른 형태적 결정 및 모든 미세구멍를 제거한다. 상기는 본 발명에서 섬유의 형성 동안에 온도와 장력을 정확하게 조절함으로서 성취되어질 수 있다. 온도는 사출기 및 출사돌기같은 섬유 제조 동안에 주요한 성분 둘레에 가열 지역을 제공함으로서 조절된다. 부가적으로, 공기 가열기가 출사돌기로부터 용융된 필라먼트의 배출의 지점으로 따뜻한 공기를 제공한다. 이 지점은 용융물로부터 공기중으로 섬유의 조절되어진 느리고 조절되어진 식힘을 허용하도록 구멍이 뚫린 스커트에 의해서 둘려져 있는게 바람직하다.

장력은 여러개의 필요한 가공 지점들 사이에 감겨지지 않은 상태에서 냉각섬유가 통과하는 장력 롤과 테이크 업 롤러에 의해서 조절된다.

본 발명의 장치의 최초의 실시예은 그림 1에 보인다. 위에서 언급된 특별한 폴리머 수지가 사출기 103의 호퍼 101으로 부가된다. 사출기는 예를들어 50 barr와 약 250 barr 그리고 보다 바람직하게는 약 200 barr 사이에서 일정한 압력으로 용융된 폴리머를 기어 펌프 105로 공급한다. 정밀 기어 펌프 105는 출사 돌기 107에서 일정한 흐름 비율로 제공하기 위해서 사용된다.

스핀 펌프 105가 적극적인 배제, 수력 분할을 가진 네 개의 스팀 기어 펌프, 이고 예를 들어서 0.01 평방 센티미터/회전 과 약 3 ccm/rev. 사이, 바람직하게는 약 1.2 ccm/rev. 사이에서 출사돌기 107를 통하여 중합체의 일정한 비율로 제공한다. 이 펌프 105는 매우 중요하며 필라먼트를 따라서 그리고 연속적으로 토우를 따라서 선형적인 밀도를 가지도록 어떤 흐름의 속도의 변화도 제거된다.

출사돌기 107로부터 나온 필라먼터 109가 나오면서, 배출구로부터 (약 예를들어 200미터/분 과 약 600 미터/분 사이, 바람직하게는 약 500 미터/분)으로 가속화되며, 중합체가 여전히 녹는 동안에 스트레칭이 일어나도록 허용한다. 통과하는 공기 호름은 공기 가열기 112에 의해서 가열되고 스커트 111, 바람직하게는 필라먼트 109 통과하도록 진입 배출을 가지는 챔버와 상호작용하며, 다음에 천천히 늘려지고, 반용 융된 필라먼트를 식힌다. 더욱 특별하게는, 공기 가열기 112가 따뜻한 공기를 송풍기에 의해 스커트 11에 통과시킨다. 공기 가열기 11로부터의 공기는 용융된 필라먼트와 대기중의 공기 온도 예를들어 약 20℃와 약 10℃사이, 바람직하게는 약 100℃ 사이의 온도이다. 공기 가열기 112로부터의 송풍은 약 5 입방

피트/분과 약 100 cft/분 사이, 바람직하게는 약 50 cft/분의 사이에서 되어진다. 하나의 공기 가열기 112와 스커트 111 가 보여지지만, 본 대상 발명은 필라먼트 109가 그들의 냉각을 조절하기 위하여 통과하는, 하나 이상의 앞선 온도 지점형성하는 공기가열기 112와 스커트 116를 계획한다. 공기 가열기 112 로부터의 속도와 온도는 필라먼트를 따라서 일정성 가지게 도와주도록 조절된다. 출사돌기 아래 일에 십미터 아래, 이들의 피라먼트 109가 함께 가고, 통과되어, 테이크 업 바대 113위로 풀려지다. 바채 113의 속도는 실 라인에서의 장력을 결정하고, 바대 113의 속도가 예를 들어 약 10 %의 장력을 얻을 수 있도록 예를들어 약 220 미터/분과 약 660 m/분 사이에, 바람직스럽기는 약 550m/분이 되도록 한다, 섬유의 끌림은 잡아당기 공정이고, 이것은 필라먼트의 축과 평행하도록 중합체 분자의 방향을 중가시킴으로서 필라먼트의 강도를 증가시킨다. 고체상태에서 당김은 고속 방적에서와 같은 사출 동안에 용융된 상태에서 일어나는 스트레칭보다 분자의 방향성을 생산하는데 보다 효율적이다.

이 단계에서, 피라먼트 109의 토우는 최초 지점 뜨거운 당김 오븐 115로 를 을 두개의 공급을 통해서 전해준다. 이 첫 번째 당김 단계에서 필라먼트는 유리 전이 온도 위의 온도, 용융온도 이하에서 늘려진다. 첫 번째의 당김 단계에서, 온도는 예를 들어 약 250℃에서 약 110℃사이, 바람직하게는 약 100℃인동안에, 당김 비율은 예를 들어 약 1과 3 사이, 바람직하게는 약 2의 비율이다. 당겨진 필라먼트는 두번째 당김 지정 117에서 상승된 온도와 결과적으로 지점 119에서 벼려져 최종의 섬유구조를 완벽하게 하고 응축시키도록 더욱 스트레치된다. 두 번째 당김 단계에서, 온도는 예를들어 약 90℃와 약 155℃ 사이, 바람직하게는 약 150℃의 온도이면서, 당김의 비율은 예를들어, 약 2차 약 20사이, 그리고 바람직하게는 약 12사이이다. 섬유는 약 90℃와 155℃사이, 바람직하게는 150℃에서, 장력하에서 벼려진다. 섬유는다음에 자동적으로 감져기고, 지점 121에서 운반을 위해서 담아진다.

배출기 103과 방정 혜트 107주변에 원하는 온도을 제공하는, 바람직하게는 전기적으로 조절되고 상자안 에 송풍기 또는 팬과 연결되어진 가열 단위가 있는 여러 개의 가열 지점 123이 있다. 용융된 필라먼트가 대 응용기 모든 근표 근물되어는 기를 든 기가 쓰는 어디 개국 기을 처음 120여 쓰러. 응용는 글러딘그가 다이를 빠져나오는 관습적인 방적과 달리, 따뜻한 공기가 가열기 112에 의해서 섬유둘레에 방사의 형태 적 변이를 제거하기 위해 그들을 일정하게 식히기 위해서 동시에 제공되어진다, 위에서 언급하였듯이, 이들 섬유는 결정을 최대화하기 위해서 높은 방적 스트레스하에서 테이크 업 롤 113 또는 바대에 의해서 조심스럽게 고체화된고, 바람직한 테이크 업 속도로 회전하는 공급 롤 위에서 당겨져 내려진다. 이 지점 섬유는 중합체 (완벽하게 결정인 섬유의 중심 지점에서 늘려진 사슬 형상을 가진)결정을 매우 높은 c-축 방향을 보이고, 매우 높은 정도의 무정형과 결정형의 방향성을 가진 무정형 과 결정형 지점을 바꾸는 두 개 상의 형태로 덥개에 의해 둘러져 있다. 이들은 완정하게 방향화된 섬유가 모든 다른 불순물을 제거하 기 위할 뿐만 아니라 그들의 결정도를 보존하기 위해서 장력 롤 118로부터 장력하에서 최종 가열 맞춤 지점 119로 통과한다. 이들 불순물의 하나의 예는 이들의 완전히 방향되어진 섬유의 구조내에서 여전히 존재하는 크기가 일에서 수백 앙스롬에 분포하는 매우 작은 구멍들이다. 불완전한 결정화는 본발명에 의 해서 당기과 방적 동안에 불순물의 형성이므로 막아진다. 결국, 섬유는 윈드업 보빈 125를 포함하는 테 이크-업 지점 121에서 감겨진다 용융온도에 가가운 당감 온도에서 본발명에의해 당겨진 섬유는 중심부에 서 매우 투명하고 매우 높게 확장된 결정 구조를 가진다. 그같은 섬유는 어테뉴에션 손실에서 감소뿐만 아니라 높은 전달 속도를 제공하는 매우 높은 c-축 결정 방향을 높게 보인다, 게다가. 그같은 매우 높은 결정상의 섬유는 매우 높은 5-14g/데니어의 매우 높은 강함(tenacity)을 가질 것이다. 유리 섬유에 대한 강함은 5-8g/데니어 이다. 본 발명에 다른 반-결정성에 대한 깨짐의 확장 퍼센트는 1%- 25%에서 깨지는 퍼센트 확장을 가진다. 본 발명에 따른 매우 높은 결정성은 이들 섬유에서의 어떤 분자적 수축을 막는 다. 결과적으로, 우수한 차원의 안정성이 다른 환경적 조건아래에서 그같은 섬유로부터 예상된다. 이들 반-결정 섬유가 우수한 덕틸리티(ductility)를 가지기 때문에 다루기가 쉽고 갈라짐이 없이 급혀질 수 있다. 그들은 긴 거리 시설에서 끝의 수를 적게 필요하고 곡면의 독특한 반지름에 의해서 거의 끝이 없 이 생산될 수 있다. 그들은 쉽게 빛의 근원 또는 다른 섬유와 연결될 수 있다.

본 발명의 두 번째 구체화는 도 2에서 보인다. 도 2의 두 번째 구체화는 도 1에서의 최초의 구체화의 많은 같은 성분을 공유하며, 이 들 두개의 구체화에서의 같은 성분은 위에서 도 1에 관하여서 설명되어 있고, 같은 구성 번호을 공유한다. 도 1의 비슷하게, 압력, 속도, 당김비율 인자들 모두가 도 2에 적용된다. 도 1의 구체예와는 달리, 도 2의 구체예는 제1 중합체의 외장과 제2 중합체의 내부 핵심부를 갖는 성유의 제조에 이용된다. 선택적으로 상기 내부 핵심부는 제2 중합체로 이루어진 대신에 중공일 수 있다. 상기 내부 핵심부가 중공인 경우, 이는 공기(내부 핵심부에서 고체 중합체보다 더 빛을 투과할 수 있음), 진공 또는 기체(예를들면 질소, 또는 헬륨)를 포함할 수 잇으며, 이는 공기보다 빛을 더 잘 투과시킨다. 성유에 구멍이 뚫려 있는 경우, 성유 피복은 고체 성유보다 더 낮다. 또한 본 발명의 성유가제1 중합체의 외장을 갖는 경우 클래딩을 요구하지 않는다.

제1 중합체의 외장 및 제2 중합체의 내부 핵심부를 갖는 섬유를 제조하기위해서, 두개의 호퍼(101A) 및 (101B)가 각각 압출기(103A) 및 (103B)로 공급된다. 기어 펌프 (105A) 및(105B)가 압출기 (103A) 및 (103B)로 각각 연결된다. 기어 펌프 (105A) 및(105B)가 유체 상태로 스피너렛(107)에 연결된다. 스피너렛(107)은 호퍼(101A), 압출기(103A) 및 기어 펌프(105A)로부터 중합체(또는 기체)를 가하는 독특한 형태(도 3A 및 도 3B에 개시됨)를 가지며, 호퍼(101A), 압출기(103A) 및 기어 펌프(105A)로부터 중합체를도포한다. 특히, 스피너렛(107)은 도 3A 및 도 3B에서 개시된 바와 같이 한개의 구멍(301)을 가지며, 제1 중합체 및 제2 중합체가 순서적으로 통과하여 제1 중합체의 외장 및 제2 중합체의 내부 핵심부를 갖는 섬유를 형성한다. 스피너렛(107)은 독일의 Fourne Polymertechnik에 의해서 제조된 스피너렛이며, 하나, 또는 하나 이상의 구멍을 갖는다. 그리고 형성된 필라멘트가 도 1의 제1 구체예에서 기술된 바와 같이 처리되고, 도 1의 감기롤(113)에서 시작하여, 모든 스테이션을 통해서 도 1의 감기 스테이션에 연결된다. 중합체 대신에 공기 또는 기체가 섬유, 호퍼(101A), 압출기(103A) 및 기어 펌프(105A)의 내부 핵심부를 채우고, 공기/기체 공급원(109)에 의해서 대체된다. 이와 같이 공기 기체공급원(201)은 유체상태로 스피너렛(107)에 연결된다.

1 111 1

다음 본 발명의 제3 구체예에 있어서, 본 구체예는 본 발명의 제1 구체예의 온도 제어 프로토콜을 포함하며, 장력 조절 프로토콜은 연속적인 방법, 또는 비연속적인 형태에서 선택적으로 사용될 수도 있고, 사용되지 않을 수도 있다. 본 발명의 장치의 제3 구체예에 있어서, 도 1을 다시 참고하여, 도 1의 압력, 속도, 온도 및 연신비 변수가 제3 구체예에 적용된다. 상기에 언급된 특정 중합체 수지가 압출기(103)의 호퍼(101)에 부가된다. 상기 압출기가 일정 압력에서 기어펌프(105)로 용융된 중합체를 공급한다. 정밀한 기어 펌프(105)가 스피너렛(107)으로 일정한 중합체 유속으로 공급된다.

상기 스핀 펌프(105)는 양의 변위, 기어 펌프이고, 스피너렛(107)을 통해서 중합체의 일정한 유속을 제 공한다. 상기 펌프(105)는 매우 중요하며, 특정의 유속변화가 필라멘트를 따라서, 끌려서 선형 밀도를 갖도록 제거된다.

필라멘트(109)가 스피너렛(107)으로부터 나오는 경우, 이는 출구로부터 가속화되어, 중합체가 여전히 용용되어 있는 상태에서 스트레칭된다. 가로축 공기 스트림이 공기 가열기(112)에 의해서 가열되고, 스커트(111)에 연결되고, 바람직하게는 필라멘트(109)가 통과하는 진입 및 출구를 갖는 챔버에 연결되고, 스트레치된 반용융된 필라멘트가 천천히 냉각된다. 특히 공기 가열기(112)가 블로어에 의해서 따뜻한 공기를 통과하여 스커트(111)로 간다. 공기 가열기(111)로부터의 공기는 용융된 필라멘트의 온도와 실내공기온도 사이의 온도이다. 오직 하나의 공기 가열기(112) 및 스커트(111)가 개시되어 있으며, 본 발명은 하나 이상의 온도 영역을 형성하는 하나 이상의 공기 가열기(112) 및 스커트(111)에 관한 것이며, 각 온도 영역은 전의 온도 영역보다 낮은 온도 준위를 가지며, 상기 필라멘트(109)가 통과되어 그들의 냉각을 조절한다. 상기 냉각은 또한 에어 챔버에 반대로 하나 이상의 온수조에서 실시될 수 있다. 공기가열기(112)로부터 공기 스트림의 속도 및 온도가 제어되어 필라멘트를 따라 균일성을 유지하는데 도와준다.

몇개의 가열 영역(123)이 있으며, 바람직하게 전기적으로 제어된 가열단위이며, 블라우워 또는 팬과 조합되어 압출기(103)와 스피닝 헤드(107) 주변을 소망하는 온도로 유지한다. 종래의 스피닝과는 달리, 용용된 필라멘트가 다이로 방출되어, 따뜻한 공기 및/또는 따뜻한 물이 동시에 가열기(112)에 의해서 섬유주변으로 가해져서 방사형 변형체를 제거하기위해서 이들을 균일하게 냉각시킨다. 상기에서 언급한 바와같이 본 발명의 제3 구체예에서, 상기 섬유가 제1 구체예에서 기술된 바와 같이 즉시 또는 다음 단계후에 제어된 장력 처리로 진행될 수 도 잇고 그렇지 않을 수도 있다.

장력 제어 프로토콜을 포함하는 본 발명의 제4 구체예가 본 발명의 제1 구체에의 온도 제어방법으로 또는 제어방법 없이 다음에 기술되며, 제어방법을 갖는다면 통과 직후 즉시 처리된다(예를들면 연속적 또는 비연속적). 다시 도 1의 압력, 속도, 온도 및 연신 변수가 제4 구체예에 적용된다. 도 1에서 언급된 바와 같이, 이전에 필라멘트가 함께 진행되고, 감기 고데트(113)를 통과한다. 고데트(113)의 균일한 속도는 필라멘트 속도 및 구조적인 균일성에 있어서 중요하다. 고데트(113)의 속도가 트레드 라인에서 장력을 측정한다. 섬유의 연신은 스트레칭 처리이고, 중합체 분자의 배향을 증가시킴에 의해서 필라멘트의 강도가 증가되며, 필라멘트의 축과 평행하다. 고체 상태에서 연신은 고속 방사와 같은 압출과정동안 용융된 상태에서 나타나는 스트레칭보다 분자의 제조방향에서 더욱 효과적이다.

상기 단계에서, 필라멘트(109)의 끌기가 두개의 공급 롤을 통해서 제1 영역 열 연신 오븐(115)으로 전달된다. 제1 연신 단계에서, 필라멘트는 유리전이온도보가 높고 용융온도보다 낮은 온도에서 스트레칭된다. 연신 필라멘트가 높은온도에서 제2 연신 영역(117)을 통해서 추가적으로 스트레칭되고, 결과적으로최종의 섬유 구조를 완전히 동결하는 장력하에서 스테이션(119)에서 어닐링된다. 그리고 상기 섬유가 자동적으로 감겨서 스테이션(121)에서 적재를 위해서 포장된다.

상기에서 기술한 바와 같이, 그리고 상기 섬유가 높은 스피링 응력하에서 고데트 및 감기 롤에 의해서 고화되어, 최대의 결정성을 보이며, 목적하는 감기 속도에서 회전하는 공급롤에서 연신된다. 상기 필라 멘트가 제1 고온 공기 연신 스테이션(115)을 통해서 장력 롤(114)로부터 더 높은 장력하에서 전달되며, 여기서 7배미만의 자연 연신비가 적용된다. 이는 모든 넥을 제거할 것이며, 구형 결정을 박막형태로 변형시킨다. 그리고 장력 롤(116)으로부터 고 장력하에서 상기 섬유가 제2 연신 스테이션(117)로 들어가고, 이는 연속적으로 최대 연신비 및 더 높은 연신온도에서 연속적으로 연신된다. 이 단계에서, 생성된 성유는 중합체 결정의 매우 높은 C-축 배향을 나타내며(섬유의 핵심 영역에서 연장된 사슬 형태, 이는 완전한 결정성이며), 비정질 및 결정성 배향의 높은 정도를 갖는 결정 및 비정질 영역을 바꾸는 두개의 상 형태를 갖는 외장에 의해서 둘러싸인다. 그리고 완전히 배향된 섬유가 장력 롤(118)로부터 장력하에서 최종 열 장치 스테이션(119) 를 통과하여 모든 다른 불순물을 제거할 뿐만아니라 그들의 결정을 보호한다. 상기 불순물의 한가지 예로는 극도로 작은 공극이 있으며, 1 내지 수백 Å의 범위에 있고, 이들은 완전히 배향된 섬유의 구조내에 여전히 존재한다. 본 발명에 의해서 방사 및 연신하는 동안 불순물이 형성되는 경우 불완전한 결정이 제거된다. 최종적으로 상기 섬유가 감기 스테이션(121)에서 감기고, 마지막 보빈(125)을 포함한다. 상기에서 기술된 바와 같이, 본 발명의 4번째 구체예에서, 상기 섬유는 즉시 또는 단계적으로 본 발명의 제1 구체예의 온도 제어 프로토콜로 먼저 처리될 수도 있고 그렇지않을 수도 있다.

111.

111 . .

압출조건의 제한되지 않은 예가 하기의 표 1에 개시되어 있다.

[丑 1]

소변 HJL H 2000년 5월			24	AGE SEG		Ì	1	1						· in	F	S C	rbyrbych			8	10.5			li		34
	٤			TE O	7	ᅱ	22	3.72	-				Sin Sin					L L	8		10 P	3	2,	2,3 2.2 3.3	_	e om
10 gr	ā		므	-làj	_ <u>-</u> ;;		7		8	<u> </u>	17 17 17 17 17 17 17 17 17 17 17 17 17 1			ž	를 10 오 개 다	公会に見		<u>_</u>	-	•	1	ñE:	7	Į.	_	44. 44.
3	1	4	ब्र	2	7	וְּ	å	4	Ġ	Н	ш	×		157			Н	_	Н	K	8	П	۰		Н	
	1	4	3	3	4	3	Š	3	9	Н		ď	ш	751.7			Н	ш	Н	8	8		2.7		Н	H
1	1	۲	3	3	Į	H	1	Ą	Н	2	ğ	š	ĕ	23,7	78	264.0	Н	200 2	ž	190	à	П	3	1	Н)
	4	4	3	1		7	×	j	H	Н	Ц	Š	Ħ	1937	J		Ц	_	П	뚕	â		1	Ę	Н	
Š	1	4	9	8	,	٦	200	1	ž 15	23		Š	ĕ	194,7	×		Ц	_	Н	U	ŝ		ž	Ŀ	Н	
	-	4	57,5	3		7	8	1443	Н	Н	Š	Š	×	257		H	L	٠.	š	ĕ	ŝ	Γ	2	2	┢	1
1	-	4			8	DOI PROMISE	appears lead out		L		L	L		Γ	H	+	-	⊢	r	L		Γ	ž	Ŀ	H	1
1	1	┨		1	1	Н	+	Н	,	Н	Н	135	9	1111	2	R	9	_	Н	330	â		14	31	Н	
1		4		H	Н	Н	Н	Н	H	133	ä	ž	243	ž	¥	ž	Š	150	Ě	ĕ	8		ä	¥	۲	
Š		-	33,0	1 15,0	0.0	7	1	پ	2	Н	L	ä	5	ž	N	-	٤	٠.	۰	٤	a	Ī	ē	=	۲	1
		4	33,6	137	ķ	1.7	5	3		Н	L	155	ğ	25.5	7	L	ļ.	L	r	E	ă	Ī	É	Ŀ	۲	l
		4	33	1	ė	1	-	1	0 2	Н	Н	ĕ	87	231.2	2	H	L		Н	Š	E		8	=	۲	1
		4	ž	3		5	1	7	2 5	Н	Н	ă	3	23.2	v	H	Ě	L	H	š	ĕ	Ī	ş	Ŀ	H	l
1		┥	S				186	•	1	Н	Н	152	83	1512	y	Н	L		Н	136	Ė		ž	2	H	١
		٦	ď			,	, ,	•		-	Н	153	83	251,5	¥		9	١.,	┝	260	ĕ	ľ	š	=	۲	ı
Ц	Ц	Н	8	H	Н	H		H	Ц	Ë	Н	ĕ	5	212	V	-	4		٠	ĕ	ă		ž	E	t	١
L		l	Ī	t	t	t	t	t	ŀ	╀	1	L	1	T	t	t	╀	╀	ł	1	1	T	t	T	+	1
	क्रापुर ता	1	ſ		₹	7	(A) (A) (A)	뢷	1	1	1	9 2	ट्रायर	9	0.5-27105	7		스탠니文 0.3mm는 기통하시 않는다		783	22	Ī	t	Ī	ŀ	Ì
	3	(A) 10 12 18 (A)	9																							

도 2의 구체예로 가해질 수 있는 중합체 수지의 한정되지 않은 실시예는 하기 표 2에 개시되어있다.

[H. 2]

+ + + +

				개시용용	
	高 直	용용호름	MWD	<u> 온도 C</u>	생플중량
1	WRD5-1561/LR-10207-80-A	1.5	Broad	260	50 lbs.
2	WDR5-1562/LR-10207-80-B	6	Medium	250	50 lbs.
3	WRD5-1563/LR-10207-80-C	10	Narrow	245	50 lbs.
4	WRD5-1554/LR-10207-80-D	3.5	Broad	250	50 lbs.
5	WRD5-1565/LR-10207-80-E	10	Broad	245	50 lbs.
6	WRD5-1566/LR-10207-80-F	10	Broad	245	50 lbs.
1					

표 2에 언급되지만, 주 발명의 반-결정질 섬유의 제조를 위해 여기서 사용된 수지는 하기 조성을 갖는다:

- · 3-7ppm(백만분의 1) 마그네슘, 바람직하게는 5ppm 이하.
- · 1-5중량% TiO2 또는 폴리테트라플로우로에틸렌, 바람직하게는 1중량%.

.

- · 30-50ppm 알루미늄, 바람직하게는 42ppm이하.
- · 20-50ppm 영소, 바람직하게는 24ppm이하.
- · 600ppm이하의 스테아르산 칼슘.
- · 0.02 내지 1.00중량% Irganox 1010 (Rhom Haas제 산화제), 바람직하게는 0.03중량% 이하.
- · 400 내지 500ppm Irgafos 168(I.C.I.제), 바람직하게는 400ppm.
- · 0.1 내지 1,000의 MFI(용융 흐름 지수), 바람직하게는 10이하.
- · 1 내지 10중량% 크실렌, 바람직하게는 2중량%이하.
- · 1 내지 10중량% 가용성 데칼린, 바람직하게는 2중량%이하.
- · 0.1 내지 10.0중량% CH B(Geigy Industrial Chemical Corp.제 변색 방지제), 바람직하게는 0.3중량% 이하.
- · 1 내지 5중량% DSI(Freeman Chemical Corp.제 정전기방지제), 바람직하게는 2.5중량%.
- · 1-50ppm 기체제거, 바람직하게는 15ppm이하.

도 2의 프로토콜을 적용하는 표 2의 선택된 수지에 대한 드로잉 조건은 하기 표 3에 개시되어있다.

[X 3]

생풀 1				
	오분		콜스탠드 속도	
돌스반드	(°F)	돌스탠드 인자	(fpm)	감기
1 2 3 4 생품 3	300 299 296	1 6 6.1 6.2	5 34 34 35	유소레소나 959 장력 15 계이즈 2
뀰스탠드	오른 (°F)	콜스탄드 인자	콥스탠드 속도 (fpm)	광기
1 2 3 4	293 293 301	1 8 9 10	5 46 52 58	유스레소나 959 장력 15 게이즈 2
생품 6				
	오본 (°F)	돌스탠드 인자	출소탠드 속도 (fpm)	감기
<u> </u>	(+)	투드센츠 먼지	(Apm)	
1	293	1	5	유스레소나 959

다음 표 4에 언급된 표 3의 섬유 샘플 3개는 표 3의 드로잉 조건에 대한 장력 데이타를 제공했다. 표 4에 보이는 바와 같이, 본 발명의 섬유는 14g/denier 만큼의 높은 장력 및 6과 같이 낮은 신장률을 나타

1 1 1

냈고; 두가지 값 모두는 당 분야의 시스템으로 제조된 중합체 및 유리 섬유보다 실제로 더 좋다.

[丑 4]

	선형말도	최대 하중	최대에서 강성력	최대에서 인장변형물	계수	최대하중에서 에너지
	(den)	(gf)	(gf/den)	(%)	(gf/den)	(gf-mm)
ī	12.00	167.52	13.96	16.7	136.13	4477.96
2	12.00	167.42	13.95	16.7	131.59	4530.95
3	12.00	169.01	14.08	16.7	147.74	4574.25
평균	12.00	167.98	14.00	16.7	138.49	4527.72
S.D.	0.00	0.89	0.07	0,0	8.33	48.22
C.V.	0.00	0.53	0.53	0.0	6.02	1.07
최소	12.00	167.42	13.95	16.7	131.59	4477.96
최대	12.00	169.01	14.08	16.7	147.74	4574.25
1	10.00	110.57	11.06	18.3	112.40	3323.90
2	10.00	89.52	8.95	11.7	87.54	1557.03
3	12.00	96.27	8.02	13.3	71.52	1928.63
평균	10.67	98.79	9.34	14.4	90.49	2269.85
S.D.	1.15	10.75	1.55	3.5	20.60	931.55
C.V.	10.83	10.88	16.64	24.0	22.76	41.04
최소	10.00	89.52	8.02	11.7	71.52	1557.03
최대	12.00	110.57	11.06	18.3	112.40	3323.90
1	12.00	114.86	9.57	6.7	167.74	1150.06
2	9.00	114.23	12.69	6.7	176.86	1081.01
3	9.00	130.84	14.54	8.3	240.54	1628.25
명군	10.00	119.98	12.27	7.2	195.05	1286.44
S.D.	1.73	9.42	2.51	1.0	39.66	298.02
C.V.	17.32	7.85	20.46	13.3	20.33	23.17
최소	9.00	114.23	9.57	6.7	167.74	1081.01
최대	12.00	130.84	14.54	B.3	240.54	1628.25

본 발명의 방법으로 제조된 성유는 하기 프로토콜에 기초한 광투과율로 평가된다. 외부 직경 710㎞의 대략 50cm 길이의 성유가 사용되었다. 사용된 광원은 안도(Ando) 모델 AQ-43038 백색광원, 안도 모델 넘버AQ-4139 1310nm 레이저원 및 안도 모델 넘버 AQ-4147 850nm 레이저원이다. 안도 모델 넘버 AQ-63108 광스펙트럼 분석기 및 안도 모델 넘버 AQ-1950 및 AQ-1951 헤드의 안도 모델 넘버 AQ-1125 전력기가 또한사용되었다.

초기에, 특정 섬유 종결 제조 없이 섬유를 분석하였다. 백색광원을 스펙트럼 분석기에 우선 직접 결합하여 기준 그래프를 얻었다. 본 발명의 섬유를 그후 삽입하고 측정하였다. 결과의 섬유 그래프로부터 기준 그래프의 공제가 도 4에 도시되어있다. 도 4의 수직선은 중요한 통신 파장인 850nm에서 9.6dB 및 1310nm에서 19.5dB의 강쇄 값을 보인다.

다음, 섬유의 끝을 닦고 상기 기술된 레이저 광원 및 전력기를 더 정확한 감쇄 측정을 위해 사용하였다. 우선, 레이저 광원을 유리 섬유로 전력기에 직접 결합하여 기준 데이타를 얻었다.

다음, 본 발명의 섬유를 유리 섬유의 자리에 삽입하였다. 결과의 섬유 데이타에서 기준 데이타를 공제. 850nm 파장에 대해, 섬유 강쇄는 3.7dB(-3.8dBm(기준)- -7.dBm(섬유))이었다. 1310nm 파장에 대해, 섬유 강쇄는 10.88dB(-3.3dBm(기준)- -13.18dBm(섬유))이었다.

마지막으로, 1차 백색고아 분석을 닦은 본 발명의 끝을 닦은 섬유로 반복하였다. 도 5-7에 결과의 감쇄 가 도시되어있다. 도 5에 수직선의 850nm 및 1310nm 모두에서 만들어진 감쇄가 도시되어있다. 도 6은 도 5의 850nm 감쇄의 확대도이다. 도 7은 도 5의 1310nm 감쇄의 확대도이다.

다음, 본 발명의 방법으로 제조된 섬유를 광투과성에 대한 다른 섬유와 비교하였다. Netest, Inc.제 2500 광섬유 분석 시스템을 모든 시험에 사용하였다. 600nm 내지 1600nm의 광 파장이 섬유를 통과했다. 2500 광섬유 분석 시스템은 광투과 값을 dB로 제공했다. 표 5-15는 각각 62.5 m 유리 광섬유(표5)에 대해 600내지 1600nm의 파장에 대한 광투과 값(dB로)을 도시한다; 750 m Mitsubishi 광섬유의 390nm 길이(표 6); 2500 광섬유 분석 시스템의 오버필름노드를 적용한 750 m Mitsubishi 광섬유의 390nm 길이(표 7); 1000 m Mitsubishi 광섬유의 390nm 길이(표 8); 주 발명의 광섬유의 390nm 길이(표 9); 2500 광섬유 분석 시스템의 제한 노드를 적용한 주 발명의 반-결정질 광섬유의 390nm 길이(표 10); 표 10 실시예의 제시험(표 11); 2500 광섬유 분석 시스템의 오버필 모드를 적용한 주 발명의 반-결정질 광섬유의 390nm 길이(표 13); South Bend,

4 4 4 x

Inc.제 0.87nm 반-결정질 섬유의 390nm 길이(표 14); 및 표 14 실시예의 재시험(표 15).

[丑 5]

(nm)	dB	(11m)	dB	(nm)	dΒ	(nm)	dB
600	0.043	860	-0.005	1120	0.004	1380	0.001
610	0.036	870	-0.004	1130	0.005	1390	0.003
620	0.030	880	-0.007	1140	0.004	1400	0.001
630	0.027	890	0.002	1150	0.000	1410	0.004
640	0.024	900	-0.009	1160	0.001	1420	0.004
650	0.022	910	0.002	1170	0.001	1430	0.002
660	0.002	920	-0.005	1180	0.005	1440	0.001
670	0.020	930	-0.003	1190	0.002	1450	0.001
680	0.019	940	-0.004	1200	0.003	1460	0.002
690	0.008	950	-0.005	1210	-0.003	1470	0.006
700	0.009	960	-0.004	1220	0.005	1480	0.003
710	0.006	970	-0.007	1230	0.006	1490	0.004
720	0.006	980	0.006	1240	-0.002	1500	0.002
730	0.006	990	0.006	1250	-0.001	1510 -	-0.001
740	0.003	1000	0.003	1260	0.001	1520	-0.001
750	0.005	1010	0.001	1270	0.002	1530	0.003
760	0.001	1020	0.005	1280	0.006	1540	0.004
770	0.001	1030	0.005	1290	0.004	1550	0.005
780	-0.004	1040	0.007	1300	0.000	1560	0.004
790	-0.003	1050	-0.001	1310	0.001	1570	0.005
800	-0.003	1060	0.005	1320	0.003	1580	0.003
810	-0.003	1070	0.004	1330	0.004	1590	0.004
820	-0.001	1080	-0.001	1340	0.004	1600	-0.001
830	-0.005	1090	0.004	1350	0.005		
840	-0.003	1100	-0.003	1360	0.001		
850	-0.005	1110	0.000	1370	0.002		

[丑 6]

(nm)	dB	(സമ)	dB	(1001)	dB	(nm)	dB
600	9.653	860	12.939	1120	36.183	1380	52.187
610	9.670	870	14.637	1130*	49.850	1390	51.206
620	9.736	880	16.530	1140*	51.230	1400	49.546
630	9.757	890	21.636	1150*	51.787	1410	48.580
640	9.705	900	22.855	1160*	52.027	1420	47.288
650	9.709	910	19.023	1170*	52.589	1430	46.482
660	9.726	920	15,504	1180*	52.791	1440	46.280
670	9.778	930	13.474	1190*	52.094	1450	45.967
680	9.926	940	12.555	1200*	50.873	1460	46.420
690	9.926	950	12.635	1210*	46.906	1470	47.327
700	9.997	960	13.529	1220	37.395	1480	48.225
710	10.891	970	14.878	1230	31.794	1490	49.126
720	11.307	980	19.763	1240	28.213	1500	49.070
730	11.826	990	21.971 -	1250	25.444	1510	47.731 ·
740	11.710	1000	24.198	1260	23.784	1520	45.981
750	11.218	1010	24.064	1270	23.439	1530	45.159
760	10.915	1020	22.788	1280	23.367	1540	45.879
770	10.858	1030	22.217	1290	23.818	1550	47.166
780	10.842	1040	21.274	1300	24.745	1560	49.660
790	11.097	1050	19.048	1310	26.557	1570	53.145
800	11.309	1060	18.157	1320	30.705	1580	54.326
810	11.375	1070	17.160	1330	42.133	1590	52.994
820	11.346	1080	16.933	1340*	51.076	1600	53.190
830	11.308	1090	17.679	1350*	52.223		
840	11.442	1100	19.569	1360*	52.356		
850	11.868	1110	26.225	1370*	53.068		

[班 7]

(nm)	dВ	(nm)	dΒ	(nm)	₫₿	(nm)	dВ
600	13.185	860	16.547	1120	38.302	1380	50.373
610	13.284	870	18.277	1130	49.547	1390	50.526
620	13.377	880	20.969	1140	50.583	1400	50.187
630	13.424	890	25.402	1150	51.112	1410	49.687
640	13.417	900	26.316	1160	51.587	1420	49.143
650	13.443	910	22.574	1170	51.923	1430	48.707
660	13.497	920	18.897	1180	51.901	1440	48.454
670	13.576	930	16.972	1190	51.447	1450	48.472
680	13.742	940	16.180	1200	50.783	1460	48.809
690	13.797	950	16.310	1210	46.332	1470	49.437
700	13.891	960	17.174	1220	39.306	1480	50.362
710	14.113	970	18.554	1230	34.122	1490	50.929
720	14.557	980	22.844	1240	30.902	1500	50.813
730	15.021	990	25.065	1250	28.144	1510 -	49.505
740	14.928	1000	27.014	1260	26.744	1520	48.227
750	14.497	1010	26.788	1270	26.378	1530	47.660
760	14.235	1020	25.712	1280	26.461	1540	48.127
770	14.202	1030	25.210	1290	26.982	1550	49.527
780	14.333	1040	23.925	1300	27.931	1560	51.57?
790	14.575	1050	22.073	1310	29.901	1570	53.019
800	14.786	1060	21.122	1320	34.052	1580	53.479
810	14.858	1070	20.200	1300	43.172	1590	53.508
820	14.863	1080	20.035	1340	49.178	1600	53:042
830	14.857	1090	20.808	1350	49.163		
840	15.005	1100	22.955	1360	49.287		
850	15.501	1110	28.954	1370	49.824		

[3. 恶]

(om)	₫B	(mn)	dB	(nm)	₫B	(nm)	dB
600	12.629	860	15.802	1120	38.558	1380	54.799
610	12.671	870	16.763	1130*	52.374	1390	53.274
620	12.720	880	19.316	1140*	53.623	1400	51.769
630	12.747	890	24.411	1150*	53.248	1410	50.822
640	12.686	900	25.787	1160*	54.627	1420	49.575
650	12.695	910	22.089	1170*	55.801	1430	49.141
660	12.706	920	17.781	1180*	54.909	1440	48.976
670	12.760	930	16.409	1190*	54.460	1450	48.563
680	12.751	940	15.502	1200*	53.748	1460	49.238
690	12.773	950	15.575	1210*	49.565	1470	49.329
700	12.847	960	16.511	1220	39.981	1480	50.800
710	13.024	970	17.839	1230	34.452	1490	52.058
720	13.431	980	22.523	1240	30.977	1500	52.202
730	13.963	990	24.717	1250	28.272	1510	50.357
740	13.891	1000	26.897	1260	26.607	1520	48.722
750	13.399	1010	26.852	1270	26.256	1530	48.033
760	13.808	1020	25.542	1280	26.284	1540	48.689
770	13.748	1030	25.092	1290	26.748	1550	50.001
780	13.731	1040	24.195	1300	27.673	1560	52.540
790	13.987	1050	21.934	1310	29.447	1570	55.611
800	14.216	1060	21.040	1320	33.506	1580	58.537
810	14.292	1070	20.028	1330	44.486	1590	58.610
820	14.262	1080	19.773	1340*	52.828	1600	57.155
830	14.233	1090	20.471	1350*	54.737		
840	14.359	1100	22.301	1360*	54.805		
850	14.774	1110	28.793	1370*	55.373		

[班 9]

(nm)	dB	(nm)	dВ	(1111)	dB	(nn)	dВ
600	10.381	860	13.713	1120	36.124	1380	100.000
610	10.406	870	15.428	1130*	49.603	1390	66.298
620	10.486	880	17.358	1140*	50.821	1400	69.706
630	10.515	890	22.528	1150*	51.282	1410	56.471
640	10.477	900	23.733	1160+	51.824	1420	64.875
650	10.486	910	19.890	1170+	52.409	1430	61.195
660	10.502	920	16.278	1180*	52.229	1440	61.173
670	10.560	930	14.237	1190*	51.870	1450	58.226
680	10.576	940	13.348	1200+	51.269	1460	58.376
690	10.605	950	13.482	1210*	46.580	1470	63.069
700	10.680	960	14.474	1220	36.992	1480	100.000
710	10.864	970	15.841	1230	31.541	1490	100.000
720	11.283	980	19.738	1240	28.047	1500	100.000
730	11.818	990	21.897	1250	25.301	1510	100.000
740	12.449	1000	24.073	1260	23.688	1520	100.000
750	11.949	1010	23.917	1270	23.327	1530	73.387
760	11.638	1020	22.597	1280	23.372	1540	56.705
770	11.588	1030	22.152	1290	23.857	1550	60.803
780	11.577	1040	21.191	1300	24.809	1560	100.000
790	11.834	1050	18.951	1310	26.646	1570	100.000
800	12.059	1060	18.037	1320	30.863	1580	100.000
810	12.126	1070	17.021	1330	42.283	1590	62.133
820	12.102	1080	16.791	1340*	50.471	1600	67.620
830	12.083	1090	17.505	1350*	50.933		
840	12.225	1100	19.422	1360*	51.943		
850	12.657	1110	26.089	1370*	53.052		:

[H. 10]

(nm)	dB	(nm)	dB	(nm)	dB_	(nm)	dB
600	8.774	890	19.719	1180+	50.437	1470	44.398
610	8.781	900	20.948	1190*	49.714	1480	45.387
620	8.817	910	17.129	1200*	48.895	1490	46.535
630	8.763	920	13.537	1210	44.677	1500	46.814
640	8.705	930	11.506	1220	35.174	1510	45.806
650	8.639	940	10.623	1230	29.607	1520	44.834
660	8.641	950	10.757	1240	26.079	1530	44.156
670	8.642	960	11.797	1250	23.382	1540	44.316
680	8.630	970	13.159	1260	21.769	1550	46.065
690	9.340	980	18.509	1270	21.396	1560	47.567
700	9.385	990	20.578	1280	21.430	1570	49.000
710	9.528	1000	22.655	1290	21.904	1580	49.604
720	9.925	1010	22.454	1300	22.841	1590	50.594
730	10.427	1020	21.089	1310	24.669	1600	50.383
740	10.321	1030	20.612	1320	28.871	1610	48.200
750	9.810	1040	19.607	1330	40.369	1620	: 46.552
760	9.456	1050	17.354	1340*	47.805	1630	44.963
<i>7</i> 70	9.368	1060	16.428	1350*	48.403	1640	··42.440
780	9.435	1070	15.401	1360+	49.780	1650	39.513
790	9.528	1080	15.152	1370*	49.881	1660	36.347
800	9.715	1090	15.839	1380*	49.464	1670	33.743
810	9.757	1100	17.729	1390*	48.338	1680	31.170
820	9.699	1110	24.290	1400*	46.343	1690	28.274
830	9.643	1120	34.236	1410*	45.010	1700	25.575
840	9.757	1130*	47.850	1420*	44.113	1710	23.906
850	10.145	1140*	48.804	1430	43.374	1720	22.672
860	11.147	1150*	49.823	1440	43.019	1730	21.781
870	12.791	1160*	50.674	1450	42.877	1740	21.028
880	15.378	1170*	50.694	1460	43.518	1750	20.876

[班 11]

(0m)	d₿	(nm)	dB	(ana)	dB	(nm)	dВ
600	8.842	890	19.778	1180*	50.487	1470	44.163
610	8.844	900	21.001	1190*	49.325	1480	45.399
620	8.895	910	17.171	1200*	49.269	1490	46.504
630	8.834	920	13.584	1210*	44.796	1500	47.308
640	8.775	930	11.554	1220	35.128	1510	46.253
650	8.713	940	10.670	1230	29.623	1520	44.695
660	8.715	950	10.802	1240	26.117	1530	44.003
670	8.712	960	11.835	1250	23.418	1540	44.372
680	8.689	970	13.203	1260	21.801	1550	45.225
690	9.397	980	18.539	1270	21.426	1560	47.746
700	9.437	990	20.618	1280	21.459	1570	49.846
710	9.588	1000	22.696	1290	21.931	1580	52.131
720	9.979	1010	22.499	1300	22.869	1590	49.697
730	10.480	1020	21.130	1310	24,689	1600	50.017
740	10.378	1030	20.661	1320	28.895	1610	48.099
750	9.864	1040	19.655	1330	40.207	1620	47.789
760	9.511	1050	17.399	1340*	48.274	1630	45.442
770	9.420	1060	16.470	1350*	48.161	1640	42.262
780	9.491	1070	15.446	1360*	49.510	1650	39.443
790	9.582	1080	15.198	1370*	50.007	1660	36.444
800	9.769	1090	15.882	1380*	49.489	1670	33.776
810	9.811	1100	17.771	1390*	48.667	1680	31.205
820	9.752	1110	24.334	1400*	46.397	1690	28.315
830	9.698	1120	34.298	1410*	44.995	1700	25.745
840	9.812	1130*	48.105	1420*	43.993	1710	23.890
850	10.198	1140*	48.903	1430	43.481	1720	22.747
860	11.203	1150*	49.750	1140*	43.126	1730	21.823
870	12.848	1160*	50.283	1450	42.946	1740	21.117
880	15.432	1170*	50.295	1460*	43.454	1750	20.854

[丑 12]

(nm)	ďВ	· (nm)	dВ	(nm)	dB	(nm)	ďB
600	-5.337	890	6.285	1180	34.527	1470	28.480
610	-5.219	900	7.104	1190	34.051	1480	29.817

	620	-5.128	910	3.466	1200	33.361	1490	31.074
	630	-5.082	920	-0.191	1210	28.392	1500	32.010
	640	-5.105	930	-2.048	1220	21.332	1510	31.852
	650	-5.100	940	-2.798	1230	16.315	1520	31.227
	660	-5.086	950	-2.546	1240	13.216	1530	30.801
	670	-5.044	960	-1.528	1250	10.566	1540	31.082
	680	-5.026	970	-0.113	1260	9.208	1550	32.165
Ì	690	-4.873	980	5.426	1270	8.852	1560	33.794
	700	-4.791	990	7.565	1280	8.918	1570	35.159
	710	-4.578	1000	9.432	1290	9.458	1580	35.596
	720	-4.138	1010	9.160	1300	10.444	1590	35.471
i	730	-3.684	1020	8.061	1310	12.442	1600	35.000
	740	-3.788	1030	7.527	1320	16.621	1610	34.083
ı	750	-4.228	1040	6.224	1330	25.734	1620	32.850
	760	-4.511	1050	4.348	1340	32.038	1630	31.360
	770	-4.562	1060	3.383	1350	32.876	1640	29.434
	780	-4.563	1070	2.475	1360	33.594	1650	27.083
	790	4.318	1080	2.323	1370	34.212	1660	24.387
	800	-4 .121	1090	3.128	1380	33.824	1670	21.959
	810	-4 .059	1100	5.301	1390	32.602	1680	19.552
	820	-4.041	1110	11.301	1400	30.827	1690	16.856
	830	-4.068	1120	20.617	1410	29.406	1700	14.300
Ì	840	-3.922	1130	31.783	1420	28.317	1710	12.590
	850	-3.444	1140	32.959	1430	27.606	1720	11.334
	860	-2.401	1150	33.651	1440	27.220	1730	10.415
	870	-0.691	1160	34.237	1450	27.192	1740	9.701
	880	1.974	1170	34.593	1460	27.618	1750	9.340

[H 13]

(nm)	dB	(mn)	dB	(mn)	dB	(nm)	dB
600*	62.255	86D*	100.000	1120*	100.000	1380*	100.000
610*	100,000	870*	59.091	1130*	100.000	1390*	66.298
620*	47.328	880*	100.000	1140*	60.253	1400*	69.706
630*	57.769	890*	100.000	1150*	59.477	1410*	56.471

640*	51.761	900*	61.301	1160*	61.202	1420*	64.875
650*	100.000	910*	60.821	1170*	61.934	1430*	61.195
660*	50.556	920*	54.693	1180*	60.940	1440*	61.173
670*	56.721	930*	57.117	1190*	100.000	1450*	58.226
680*	100.000	940*	60.572	1200*	61.949	1460*	58.376
690*	63.770	950*	56.965	1210*	64.255	1470*	63.039
700*	100.000	960*	61.624	1220*	63.147	1480*	100.000
710*	64.007	970*	100.000	1230*	64.532	1490*	100.000
720*	55.631	980*	60.502	1240*	65.634	1500*	100.000
730*	100.000	990*	62.316	1250*	61.977	1510*	100.000
740*	100.000	1000*	100.000	1260*	59.644	1520*	100.000
750*	60.805	1010*	100.000	1270*	59.936	1530*	73.387
760*	100.000	1020*	63.868	1280*	57.734	1540*	56.705
770*	100.000	1030*	62.990	1290*	61.049	1550*	60.803
780*	100.000	1040*	60.415	1300*	100.000	1560*	100.000
790*	63.502	1050*	100.000	1310*	70.399	1570*	100.000
800*	58.857	1060*	69.162	1320*	58.090	1580*	100.000
810*	75.356	1070*	100.000	1330*	67.198	1590*	62.1,33
820*	57.289	1080*	64.076	1340*	59.067	1600*	67.620
830*	100.000	1090*	60.938	1350*	100.000		
840°	100.000	1100*	100.000	1360*	67.702		
850*	100.000	1110*	58.979	1370*	100.000		

[H. 14]

(ara)	dB	(nm)	dB	(nm)	dB	(mn)	dB
600+	47.386	860*	57.702	1120*	57.180	1380*	60.461
610*	100.000	870*	55.810	1130*	59.590	1390+	66.785
620*	100.000	880*	58.310	1140*	63.530	1400+	61.388
630*	46.934	890*	63.055	1150*	64.065	1410*	100.000
640*	48.358	900*	57.220	1160*	70.487	1420*	61.483

650°	47.695	910*	100.000	1170*	100.000	1430*	63.979
660*	100.000	920*	100.000	1180*	64.619	1440*	60.596
670*	100.000	930*	100.000	1190*	64.591	1450*	61.274
680*	50.241	940*	100.000	1200*	100.000	1460*	67.941
690*	58.952	950*	55.660	1210*	64.554	1470*	58.440
700*	100.000	960*	53.755	1220*	64.545	1480*	100,000
71'0*	53.527	970*	53.440	1230+	63.703	1490*	100.000
720*	56.022	980*	58.719	1240*	60.679	1500*	57.345
730*	55.009	990*	56.909	1250*	65.525	1510*	68.865
740*	56.680	1000*	100,000	1260*	65.501	1520*	65.305
750*	59.446	1010*	65.181	1270*	100.000	1530*	60.674
760*	55.141	1020*	63.892	1280*	63.028	1540*	60.979
770*	61.179	1030*	61.046	1290+	60.686	1550*	64.194
780*	65.462	1040*	63.602	1300*	62.908	1560+	100.000
790*	56.345	1050*	100.000	1310+	100.000	1570*	100.000
800*	54.962	1060*	100.000	1320*	100.000	1580*	58.337
810*	100.000	1070*	61.379	1330*	64.271	1590*	100.000
820*	59.622	1080*	60.786	1340*	60.931	1600*	61.698
830*	57.904	1090*	60.456	1350*	100.000		İ
840*	62.566	1100+	57.701	1360*	73.630		
850*	55.194	1110*	56.981	1370*	61.903		

[丑 15]

(nm)	dB	(nm)	dB	(nm)	dB_	(nm)	dB		
600*	100.000	860*	53.722	1120*	59.880	1380*	60.885		
610*	100.000	870*	54.951	1130*	62.199	1390*	100.000		
620*	50.427	880*	53.620	1140*	64.085	1400*	100.000		
630*	46.451	890*	60.045	1150*	64.065	1410*	62.529		
640*	52.337	900*	58.050	1160*	100.000	1420*	100.000		
650°	50.126	910*	57.288	1170*	60.911	1430*	63.744		

11111

660*	100.000	920*	63.294	1180*	100.000	1440*	61.192
670*	55.359	930*	100.000	1190*	63.065	1450*	60.548
680*	49.226	940*	57.637	1200*	62.588	1460*	64.631
690*	46.164	950*	55.436	1210*	61.321	1470*	66.751
700*	54.803	960*	53.292	1220*	100.000	1480*	59.763
710*	100.000	970*	55.574	1230*	71.299	1490*	64.960
720*	100.000	980°_	58.215	1240*	61.625	1500*	100.000
730*	51.524	990*	5 7.550	1250*	63.861	1510*	100.000
740*	100.000	1000*	61.161	1260*	66.470	1520*	61.570
750*	100.000	1010*	61.781	1270*	77.228	1530*	1,00.000
760*	54.471	1020*	63.699	1280*	66.038	1540*	60.010
770*	55.159	1030*	61.046	1290*	100.000	1550*	60.710
780*	100.000	1040*	64.394	1300+	64.048	1560*	59.641
790*	57.436	1050*	60.241	1310*	60.854	1570*	66.068
800*	69.276	1060*	65.937	1320*	67.366	1580*	100.000
810*	62.692	1070*	64.389	1330*	61.383	1590*	68.815
820*	55.412	1080*	69.632	1340*	67.698	1600*	100.000
830*	55.023	1090*	59.887	1350*	61.919		
840*	56_545	1100*	61.567	1360*	100.000		
850*	54.599	1110*	58.704	1370*	73.806		

우선 표 5에 언급된 62.5㎞ 유리 광섬유를 표준으로 사용하였고, 600 내지 1600nm 스펙트럼을 가로지르는 및 투과성을 보인다. 표 6, 7 및 8을 표 9, 10, 11 및 12와 비교하여 본 발명의 반-결정질 광섬유가 공지된 무정형 광섬유와 비교되는 양으로 850nm 및 1310nm 파장을 포함하지만 제한하지는 않는 비교가능한 파장에서 및 투과를 보인다. 850nm에서, 공지된 무정형 광섬유는 11.868dB, 15.501dB 및 14.774dB의 값을 갖는 반면 본 발명의 반-결정질 광섬유는 12.657dB, 10.145dB, 10.198dB 및 3.444dB의 값을 갖는다. 똑같이, 1310nm에서, 공지된 무정형 광섬유는 26.557dB, 29.901dB 및 29.447dB의 값을 갖는 반면 본 발명의 반-결정질 광섬유는 26.646dB, 24.669dB, 24.689dB 및 12.442dB의 값을 갖는다.

본 발명의 반-결정질 광섬유(표 9, 10, 11 및 12)와 공지된 반-결정질 섬유(표 13, 14 및 15)의 비교는 공지된 반-결정질 폴리에틸렌 섬유가, 특히 850nm 및 1310nm가 아닌 파장에서 측정가능한 양의 빛을 통 과하지 못하는 것을 보인다. 850nm에서, 공지된 반-결정질 섬유는 100.00dB, 55.194dB 및 54.599dB의 값 을 갖는 반면 1310nm에서는 70.399dB, 100.00dB 및 60.038dB의 값을 갖는다. 표 9, 10 및 11의 본 발명 의 반-결정질 섬유와 다르게 표 13, 14 및 15의 공지된 반-결정질 폴리에틸렌 섬유는 빛 콘딧으로 무익 하다.

(57) 청구의 범위

청구항 1

중합체 수지를 가열하여 용융된 중합체를 제조하고, 상기 용융된 중합체를 일정 압력에서 공급하는 압출 기:

상기 용융된 중합체를 받고, 중합체의 유속을 제어하는 압출기와 유체상태로 연결된 기어 펌프;

상기 용윰된 중합체를 광학섬유로 방사하는 기어 펌프와 유체상태로 연결된 스피너렛; 및

성유가 스피너렛을 방출된 후 광학섬유의 온도를 조절하는 열공급원으로 이루어지고, 상기 온도를 조절 함에 의해서 용융된 중합체의 결정성을 최대로 하는 것을 특징으로 하는 광학섬유의 제조장치.

청구항 2

제 1 항에 있어서,

상기 열공급원은 다수의 수직배열된 온도 영역을 포함하고, 각 영역은 바로 위의 영역보더 온도가 낮은 것을 특징으로 하는 광학섬유의 제조장치.

청구항 3

제 2 항에 있어서.

1:11:00

최저 온도 영역으로 방출되는 광학섬유의 온도는 실내온도에 가까운 것을 특징으로 하는 광학섬유의 제조장치.

청구항 4

제 1 항에 있어서.

성유가 스피너렛을 방출한 후에 광학섬유의 연신을 위해서 추가적으로 감기 롤러를 포함하는 것을 특징으로 하는 광학섬유의 제조장치.

청구항 5

제 4 항에 있어서,

섬유가 연신되고, 온도가 제어된 후 광학섬유를 연신하기위해서 적어도 하나의 연신 스테이션을 추가적 으로 포함하는 것을 특징으로 하는 광학섬유의 제조장치.

청구항 6

제 5 항에 있어서,

성유가 연신되어진 후에 광학 성유를 어닐하기위해서 어닐링 스테이션을 추가적으로 포함하는 것을 특징 으로 하는 광학성유의 제조장치.

청구항 7

중합체 수지를 가열하여 용융된 중합체를 제조하고, 상기 용융된 중합체를 일정 압력에서 공급하는 압출 기;

상기 용융된 중합체를 받고, 중합체의 유속을 제어하는 압출기와 유체상태로 연결된 기어 펌프;

상기 용용된 중합체를 광학섬유로 방사하는 기어 펌프와 유체상태로 연결된 스피너렛; 및

섬유가 스피너렛을 방출된 후 광학섬유를 연신하는 감기 롤러를 포함하고,

상기 광학성유를 연신시켜서 용융된 중합체의 결정성을 최대로 하는 것을 특징으로 하는 광학섬유의 제 조장치.

청구항 8

제 7 항에 있어서.

상기 섬유가 스피너렛을 방출한 후 광학섬유의 온도를 조절하기위해 가열기를 추가적으로 포함하는 것을 특징으로 하는 광학섬유의 제조장치.

청구항 9

제 8 항에 있어서,

상기 섬유가 연신되고, 온도가 조절되어진 후 광학섬유를 연신하기위해서 적어도 하나의 연신 스테이션 을 추가적으로 포함하는 것을 특징으로 하는 광학섬유의 제조장치.

청구항 10

제 9 항에 있어서.

상기 섬유가 연신되어진 후에 광학 섬유를 어닐하기위해서 어닐링 스테이션을 추가적으로 포함하는 것을 특징으로 하는 광학섬유의 제조장치.

청구항 11

제 8 항에 있어서,

상기 가열기는 다수의 수직으로 배열된 온도 영역을 포함하고, 각 영역은 위의 영역보다 온도가 더 낮은 것을 특징으로 하는 광학성유의 제조장치.

청구항 12

제 11 항에 있어서,

최저 온도 영역으로 방출된 광학섬유의 온도는 실내온도에 가까운 것을 특징으로 하는 광학섬유의 제조 장치.

청구항 13

제 7 항에 있어서,

상기 섬유가 연신되어진 후에 광학 섬유를 연신하기위한 적어도 하나의 연신스테이션을 추가적으로 포함 하는 것을 특징으로 하는 광학섬유의 제조장치.

청구항 14

제 13 항에 있어서,

상기 섬유가 연신되어진 후에 광학 섬유를 어닐하기우해서 어닐링 스테이션을 추가적으로 포함하는 것을 특징으로 하는 광학섬유의 제조장치.

청구항 15

- -

중합체 수지를 가열하여 용융된 중합체를 제조하고, 상기 용융된 중합체를 일정 압력에서 공급하는 압출기:

상기 용융된 중합체를 받고, 중합체의 유속을 제어하는 압출기와 유체상태로 연결된 기어 펌프;

상기 용융된 중합체를 광학섬유로 방사하는 기어 펌프와 유체상태로 연결된 스피너렛; 및

섬유가 스피너렛을 방출된 후 광학섬유의 온도를 제어하는 열공급원; 및

섬유가 스피너렛을 방출된 후 광학섬유를 연신하는 감기 롤러를 포함하고, 상기 광학섬유의 온도를 조절하고, 연신시켜서 용융된 중합체의 결정성을 최대로 하는 것을 특징으로 하는 광학섬유의 제조장치.

청구항 16

제 15 항에 있어서,

상기 가열기는 다수의 수직으로 배열된 온도 영역을 포함하고, 각 영역은 위의 영역보다 온도가 더 낮은 것을 특징으로 하는 광학섬유의 제조장치.

청구항 17

제 16 항에 있어서,

최저 온도 영역으로 방출된 광학섬유의 온도는 실내온도에 가까운 것을 특징으로 하는 광학섬유의 제조 장치.

청구항 18

제 15 항에 있어서,

상기 섬유가 연신되어지고, 온도가 조절되어진 후에 광학 섬유를 연신하기위한 적어도 하나의 연신 스테 이션을 추가적으로 포함하는 것을 특징으로 하는 광학섬유의 제조장치.

청구항 19

제 18 항에 있어서,

상기 성유가 연신되어진 후에 광학 성유를 어닐하기위해서 어닐링 스테이션을 추가적으로 포함하는 것을 특징으로 하는 광학성유의 제조장치.

청구항 20

중합체 수지를 가열하여 용융된 중합체를 제조하고;

스피너렛에서 상기 용융된 중합체를 광학 섬유로 방사하고; 및

상기 섬유가 스피너렛을 방출한 후에 광학섬유의 온도를 조절하며,

상기 온도를 조절하여 용융된 중합체의 결정성을 최대로 하는 것을 특징으로 하는 광학섬유의 제조방 법.

청구항 21

제 20 항에 있어서,

방사전에 용융된 중합체 유속를 조절하는 것을 추가적으로 포함하는 것을 특징으로 하는 광학섬유의 제 조방법.

청구항 22

제 20 항에 있어서,

온도를 조절하는 것은 다수의 수직으로 배열된 온도 여역의 온도를 조절하는 것을 포함하고, 상기 광학 섬유가 전해지고, 각 영역은 위의 영역보다 온도가 낮은 것을 특징으로 하는 광학섬유의 제조방법.

청구항 23

제 22 항에 있어서,

최저 온도 영역으로 방출되는 광학섬유의 온도는 실내온도에 가까운 것을 특징으로 하는 광학섬유의 제 조방법.

청구항 24

제 20 항에 있어서,

섬유가 스피너렛을 방출한 후에 광학섬유를 연신시키는 것을 추가적으로 포함하는 것을 특징으로 하는 광학섬유의 제조방법.

청구항 25

+ + ; ;

, 1 , 1 4 4 5 5 5 5 6 6 6 6 6 6 6 6

제 24 항에 있어서.

- -상기-광학성유를 연신시키는 -것을-추가적으로 포함하는-것을 특징으로-하는-광학성유의-제조방법---

40-22

- -

청구항 26

제 25 항에 있어서,

상기 광학섬유를 어닐링하는 것을 추가적으로 포함하는 것을 특징으로 하는 광학섬유의 제조방법.

청구항 27

중합체 수지를 가열하여 용융된 중합체를 제조하고;

스피너렛에서 상기 용융된 중합체를 광학 섬유로 방사하고; 및

상기 섬유가 스피너렛을 방출한 후에 광학섬유를 연신하며,

상기 연신에 의해서 용융된 중합체의 결정성을 최대로 하는 것을 특징으로 하는 광학섬유의 제조방법.

청구항 28

제 27 항에 있어서,

방사전에 용융된 중합체 유속를 조절하는 것을 추가적으로 포함하는 것을 특징으로 하는 광학섬유의 제 조방법.

청구항 29

상기 섬유가 스피너렛을 방출한 후에 광학섬유의 온도를 조절하는 것을 추가적으로 포함하는 것을 특징 으로 하는 광학섬유의 제조방법.

청구항 30

제 29 항에 있어서,

상기 광학섬유를 연신시키는 것을 추가적으로 포함하는 것을 특징으로 하는 광학섬유의 제조방법.

청구항 31

제 30 항에 있어서,

상기 연신된 광학섬유를 어닐링하는 것을 추가적으로 포함하는 것을 특징으로 하는 광학섬유의 제조방 법.

청구항 32

제 29 항에 있어서,

온도를 조절하여 다수의 수직으로 배열된 온도 영역의 온도를 조절하는 것을 포함하고, 상기 광학섬유가 전해지고, 각 영역은 위의 영역보다 온도가 낮은 것을 특징으로 하는 광학섬유의 제조방법.

청구항 33

제 32 항에 있어서,

최저 온도영역으로 방출되는 광학섬유의 온도는 실내온도에 가까운 것을 특징으로 하는 전해지고, 각 영역은 위의 영역보다 온도가 낮은 것을 특징으로 하는 광학섬유의 제조방법.

청구항 34

제 27 항에 있어서,

상기 광학섬유를 연신시키는 것을 추가적으로 포함하는 것을 특징으로 하는 전해지고, 각 영역은 위의 영역보다 온도가 낮은 것을 특징으로 하는 광학섬유의 제조방법.

청구항 35

제 34 항에 있어서,

상기 연신된 광학성류를 어닐링하는 것을 추가적으로 포함하는 것을 특징으로 하는 전해지고, 각 영역은 위의 영역보다 온도가 낮은 것을 특징으로 하는 광학성유의 제조방법.

청구항 36

중합체 수지를 가열하여 용융된 중합체를 제조하고;

스피너렛에서 상기 용융된 중합체를 광학 섬유로 방사하고;

상기 섬유가 스피너렛을 방출한 후에 광학섬유의 온도를 조절하며; 및

섬유가 스피너렛을 방출된 후에 광학섬유를 연신하며.

÷ -

상기 온도를 조절하고, 연신시킴에 의해서 용융된 중합체의 결정성을 최대로 하는 것을 특징으로 하는 광학성유의 제조방법.

청구항 37

1 1 1 .

.

제 36 항에 있어서.

방사전에 용융된 중합체 유속를 조절하는 것을 추가적으로 포항하는 것을 특징으로 하는 광학섬유의 제 조방법.

청구항 38

제 36 항에 있어서,

온도를 조절하는 것은 다수의 수직으로 배열된 온도 영역의 온도를 조절하는 것을 포함하고, 상기 광학 섬유가 전해지고, 각 영역은 위의 영역보다 온도가 낮은 것을 특징으로 하는 광학섬유의 제조방법.

청구항 39

제 38 항에 있어서,

최저 온도 영역으로 방출되는 광학섬유의 온도는 실내온도에 가까운 것을 특징으로 하는 광학섬유의 제 조방법.

청구항 40

제 36 항에 있어서,

상기 광학섬유를 연신하는 것을 추가적으로 포함하는 것을 특징으로 하는 광학섬유의 제조방법.

청구항 41

제 40 항에 있어서,

상기 연신된 광학섬유를 어닐링하는 것을 추가적으로 포함하는 것을 특징으로 하는 광학섬유의 제조방 법

청구항 42

중합체 수지를 가열하여 용융된 중합체를 제조하고, 상기 용융된 중합체는 스피너렛에서 광학섬유로 방 사되며,

상기 광학섬유의 온도가 섬유가 스피너렛을 방출된 후에 제어되어 용융된 중합체의 결정성을 최대로 하는 것을 특징으로 하는 광학섬유.

청구항 43

제 42 항에 있어서,

상기 용융된 중합체 유속은 용융된 중합체가 방사되기 전에 제어되는 것을 특징으로 하는 광학섬유.

청구항 44

제 42 항에 있어서,

온도는 상기 광학섬유가 전해지는 다수의 수직으로 배열된 온도 영역을 사용하여 제어되고, 각 영역은 위의 영역보다 온도가 낮은 것을 특징으로 하는 광학섬유.

청구항 45

제 44 항에 있어서,

최저 온도 영역으로 방출되는 광학섬유의 온도는 실내온도에 가까운 것을 특징으로 하는 광학섬유.

청구항 46

제 42 항에 있어서,

상기 광학섬유는 섬유가 스피너렛을 방출한 후에 연신하는 것을 특징으로 하는 광학섬유.

청구항 47

제 46 항에 있어서,

상기 광학섬유가 연신 스테이션을 사용하여 연신되는 것을 특징으로 하는 광학섬유.

청구항 48

제 47 항에 있어서.

상기 연신된 광학 섬유가 어닐링되는 것을 특징으로 하는 광학섬유.

청구항 49

: | ₹ : .

중합체 수지를 가열하여 용융된 중합체를 제조하고, 상기 용융된 중합체는 스피너렛에서 광학섬유로 방 사되며,

상기 광학성유는 성유가 스피너렛을 방출한 후에 연신되고. 용융된 중합체의 결정성이 최대가 되는 것을 ---특징으로 하는 광학성유.

40-24

청구항 50

제 49 항에 있어서,

상기 용융된 중합체 유속은 용융된 중합체가 방사되기전에 제어되는 것을 특징으로 하는 광학섬유.

청구항 51

제 49 항에 있어서.

상기 광학섬유의 온도가 섬유가 스피너렛을 방출한 후에 제어되는 것을 특징으로 하는 광학섬유.

청구항 52

제 51 항에 있어서,

상기 광학섬유가 연신 스테이션을 사용하여 연신되는 것을 특징으로 하는광학섬유.

청구항 53

제 52 항에 있어서,

상기 연신된 광학섬유가 어닐되는 것을 특징으로 하는 광학섬유.

청구항 54

제 51 항에 있어서,

온도는 상기 광학성유가 전해지는 다수의 수직으로 배열된 온도 영역을 사용하여 제어되고, 각 영역은 위의 영역보다 온도가 낮은 것을 특징으로 하는 광학섬유.

청구항 55

제 54 항에 있어서,

최저 온도 영역으로 방출되는 광학섬유의 온도는 실내온도에 가까운 것을 특징으로 하는 광학섬유.

청구항 56

제 49 항에 있어서,

상기 광학섬유가 연신 스테이션을 사용하여 연신되는 것을 특징으로 하는 광학섬유.

청구항 57

제 56 항에 있어서,

상시 연신된 광학섬유가 어닐되는 것을 특징으로 하는 광학섬유.

청구항 58

중합체 수지를 가열하여 용융된 중합체를 제조하고, 상기 용융된 중합체는 스피너렛에서 광학섬유로 방 사되며.

섬유가 스피너렛을 방출한 후에 광학섬유의 온도는 제어되고, 광학섬유가 연신되며, 용융된 중합체의 결 정성이 최대가 되는 것을 특징으로 하는 광학섬유.

청구항 59

제 58 항에 있어서,

상기 용융된 중합체 유속은 용융된 중합체가 방사되기전에 제어되는 것을 특징으로 하는 광학섬유.

청구항 60

제 58 항에 있어서,

온도는 상기 광학섬유가 전해지는 다수의 수직으로 배열된 온도 영역을 사용하여 제어되고, 각 영역은 위의 영역보다 온도가 낮은 것을 특징으로 하는 광학섬유.

청구항 61

제 60 항에 있어서,

최저 온도 영역으로 방출되는 광학성유의 온도는 실내온도에 가까운 것을 특징으로 하는 광학섬유.

청구항 62

제 58 항에 있어서,

상기 광학섬유가 연신 스테이션을 사용하여 연신되는 것을 특징으로 하는 광학섬유.

청구항 63

- 제-62 -항에 -있어서-,

, , , à à à a z . . . à **à à à à à à**

* * - :

4 -

. | . | | | | | | | | | |

상시 연신된 광학성유가 어닐되는 것을 특징으로 하는 광학성유.

도면

도면1

도면2

도면3

[도 3A]

[도 3B]

도면4

도연5

도면6

도명7

도면8

40-31 .

도면10

도면11

도면12

1 12 1

40-35

도면14

1 12 1

1 12 1

40-37

- :

Jr 19 40

. -