

Image degradation/restoration process

Gaussian Noise

$$P(z) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(z-\bar{z})^2/2\sigma^2}$$

Rayleigh Noise

$$P(2) = \begin{cases} \frac{2}{b}(2-\alpha)e^{-(2-\alpha)^{2}/b} \\ \frac{2}{b}(2-\alpha)e^{-(2-\alpha)^{2}/b} \\ \frac{2}{2} = \alpha + \sqrt{\pi b/4} \end{cases}$$

$$\overline{Z} = \alpha + \sqrt{\pi b/4}$$

$$\overline{G}^{2} = \frac{b(4-\pi)}{4}$$

Erlang (Gamma) Noise

$$P(2) = \begin{cases} \frac{a2}{(b-1)!} e^{-a2} ; 2 > 0 \\ 0 ; 2 < 0 \end{cases}$$

$$\overline{2} = \frac{b}{a}$$

$$\sigma^{2} = \frac{b}{a^{2}}$$

Exponential Noise

$$|\mathcal{C}|^{2} = \begin{cases} 2 & 0 \\ 0 & 0 \end{cases}; \quad 2 < 0$$

$$|\mathcal{C}|^{2} = \begin{cases} 2 & 0 \\ 0 & 0 \end{cases}; \quad 2 < 0$$

$$|\mathcal{C}|^{2} = \begin{cases} 2 & 0 \\ 0 & 0 \end{cases}; \quad 2 < 0$$

Uniform Noise

$$P(2) = \begin{cases} b-\alpha \\ b-\alpha \end{cases}; \quad \alpha \leq 2 \leq b \end{cases}$$

$$\overline{2} = (\alpha + b)$$

$$\overline{2} = (b-\alpha)^{2}$$

$$\overline{2} = (b-\alpha)^{2}$$

Impulse Noise

$$P(2) = \begin{cases} P_0 & j & 2=a \\ P_b & j & 2=b \\ 0 & j & otherwise \end{cases}$$

Test image

pattern used to illustrate the characteristics of the noise PDFs shown in Fig. 5.2.

Image degradation

a b c d e f

FIGURE 5.4 Images and histograms resulting from adding Gaussian, Rayleigh, and gamma noise to the image in Fig. 5.3.

Image degradation

FIGURE 5.4 (Continued) Images and histograms resulting from adding exponential, uniform, and salt and pepper noise to the image in Fig. 5.3.

Filters

- Arithmetic Mean
- Geometric Mean
- Harmonic Mean
- Contra harmonic Mean
- Order Static
- Alpha trimmed

mean

Arithmetic filter

$$\hat{f}(n,y) = \frac{1}{mn} \sum_{s,t} g(s,t)$$

Geometric mean filter

$$\hat{f}(x,y) = \begin{cases} \overline{11} & g(s,t) \end{cases}$$

$$\begin{cases} (s,t) \in S_{ny} \end{cases}$$

Marmonic mean filter f(x,y) = $(S,t) \in S_{RY}$ g(S,t)mean filter Contraharmonic $\hat{f}(x,y) = \underbrace{\{g(s,t)\}^{Q+1}}_{\{s,t\} \in S_{ner}}$

(S,+1 & S =) } q (S,+1 & S =) } q a b c d

FIGURE 5.7

(a) X-ray image.(b) Image corrupted by additive Gaussian noise. (c) Result of filtering with an arithmetic mean filter of size 3×3 . (d) Result of filtering with a geometric mean filter of the same size.

(Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

a b c d

FIGURE 5.8

(a) Image corrupted by pepper noise with a probability of 0.1. (b) Image corrupted by salt noise with the same probability. (c) Result of filtering (a) with a 3×3 contraharmonic filter of order 1.5. (d) Result of filtering (b) with Q = -1.5.

a b

FIGURE 5.9

Results of selecting the wrong sign in contraharmonic filtering.

(a) Result of filtering Fig. 5.8(a) with a contraharmonic filter of size 3×3 and Q = -1.5. (b) Result of filtering 5.8(b)

with Q = 1.5.

Order Static filter

$$\hat{f}(n,y) = \begin{cases} median \\ (s,t) \in S_{ny} \end{cases} \mathcal{J}(s,t)$$

$$\hat{f}(n,y) = \min_{(s,t) \in S_{ny}} \left\{ g(s,t) \right\}$$

$$\hat{f}(n,y) = \begin{cases} max \\ (s,t) \in S_{ny} \end{cases} \begin{cases} g(s,t) \end{cases}$$

Midpoint filter

$$\hat{f}(x,y) = \frac{1}{2} \left\{ \max_{(S,t) \in S_{xy}} \left\{ g(s,t) \right\} + \min_{(S,t) \in S_{xy}} \left\{ g(s,t) \right\} \right\}$$

Alpha Trimmed filter

$$\hat{f}(x,y) = \frac{1}{mn-J} \underbrace{\sum_{s,t} \mathcal{F}_{r}(s,t)}_{s,t}$$

a b c d

FIGURE 5.10

(a) Image corrupted by saltand-pepper noise with probabilities Pa = Pb = 0.1.
(b) Result of one pass with a median filter of size 3 × 3.
(c) Result of processing (b) with this filter.
(d) Result of processing (c) with the same filter.

a b

FIGURE 5.11

(a) Result of filtering Fig. 5.8(a) with a max filter of size 3×3 . (b) Result of filtering 5.8(b) with a min filter of the same size.

a b c d e f

FIGURE 5.12

(a) Image corrupted by additive uniform noise. (b) Image additionally corrupted by additive salt-and-pepper noise. Image (b) filtered with a 5×5 ; (c) arithmetic mean filter; (d) geometric mean filter; (e) median filter; and (f) alphatrimmed mean filter with d = 5.