Les Systèmes d'Exploitation: Concepts et Programmation

Samia Bouzefrane
MCF en Informatique, CNAM

samia.bouzefrane@cnam.fr
http://cedric.cnam.fr/~bouzefra

Introduction

Structure générale d'un système informatique

Définition d'un système informatique

> Un système informatique

- Matériel
 - Unité centrale, disques, réseau, périphériques
- Système d'exploitation
 - Gestion utilisateurs, SGF, ressources (accès, partage, distribution, échange...)
- Programmes d'application
- Utilisateurs
 - Login, droits, accès

Exemple : Architecture de Windows NT 4.0

Évolution des systèmes d'exploitation

- Batch
- Multiprogrammé
- Multi-utilisateurs centralisé
 - Temps partagé, transactionnel
- Distribué
- •Temps réel

Éléments d'un S.E.

Matériel Services de l'OS Abstraction utilisateur

Processeur	Gestion de processus, Ordonnancement, signaux, Protection, Synchronisation, Allocation	Processus
Mémoire	Allocation, protection, Mémoire virtuelle	Espace d'adressage
E/S	Gestion d'iT ; DMA ; Synchronisation	Dispositif physique d'E/S Appels système
Disque	Gestion de la persistance des données ; SGF	Fichiers
Réseau	Protocole de sécurité ; SGF distribué	RPC ; Serveur de fichiers

Matériel

Le matériel

- Principes de fonctionnement de l'UC
 - Calcul, contrôle, bus, pipe-line
- La hiérarchie mémoire
 - Registres, caches, MC, disques, réseau
- Les E/S
 - Interruptions, DMA

Les constituants d'un ordinateur

Le processeur et la mémoire

> Caractéristiques principales

- La largeur du bus données (64 bits) et la largeur du bus adresse (32/64bits)
- Le nombre de mots de la mémoire
- Les temps de cycle (processeur, bus mémoire)
- Le nombre de cycles par instruction
- Le débit d'instructions
- Le processeur est un chip VLSI ~ 100 millions de transistors
- La mémoire centrale est réalisée à partir de boîtiers de 16, 64, 256, 1024 Méga bits.

Les bus de données/adresse/contrôle

Le principe de Von Neuman

Exemples de processeurs

→ *Pentium IV 2002*

- 64 bits données et 32 bits adresses
- -H = jusqu'à 2.53 Ghz.
- Cache L1:12K/8K L2:512 K on chip
- Nb transistors = 42 millions

> IBM Power IV

- 64 bits adresses et données
- -H = 1.3 Ghz
- Cache 64 K/64K L2 : 1,4 M. on chip 128 M off chip
- Nb transistors = 170 millions
- 2 procs + cache L2 on chip

Exemples de processeurs

> *Pentium4* 2004

- 64 bits adresses et 32/64 données
- $-H = 3.6 \, Ghz$
- Cache L1:12K/16K L2:1M on chip
- Nb transistors = 100 millions

➤ IBM Power5 (Bi-processeur)

- 64 bits adresses et données

-H = 1.9 Ghz

- Cache 64 K/32K - L2: 1,9 M. on chip 36 M off

chip

– 2 procs + cache L2 on chip

Algorithme exécuté par le processeur

Lecture instruction

Modification compteur ordinal

Décodage instruction

Lecture opérandes

Exécution instruction

Test des interruptions

La mémoire

La hiérarchie mémoire

Gérée par :

- Le compilateur
- Un dispositif câblé

- Le système d'exploitation

- La création de fichiers (SGF)

La mémoire centrale

- •La mémoire, contenant des instructions et des données, est organisée en un ensemble de mots numérotés consécutivement à partir de 0
- •Le N° associé à chacun de ces mots est l'adresse physique
- •L'ensemble de ces adresses forme l'espace d'adressage physique de la mémoire

Gestion de la mémoire centrale

- Taille mémoire limitée mêm si de plus en plus importante
- Découpage de la mémoire en :
 - zones de taille variable
 - pages de taille fixe : la *pagination*
- segments (chaque segment contient un nombre fixe de pages mémoire) : la *segmentation*

Les Entrées/Sorties

Gestion des E/S et des fichiers

- Les dispositifs d'E/S
- Intégration des E/S dans le SE
- Le Système de Gestion de fichiers
 - Le type fichier
 - Les méthodes d'accès
 - L'allocation sur le disque
 - Le RAID
- Exemples UNIX, Linux, Windows

Introduction

- Un écran vidéo ; un clavier
- Un disque magnétique
- Une imprimante

Caractéristiques communes :

-Les périphériques d'E/S sont beaucoup plus lents que l'unité de traitement

→ Libérer l'UC des opérations d'E/S

Comment?

L'accès direct mémoire (DMA)

- Technique qui fournit un chemin direct entre le bus d'E/S et la mémoire sans intervention du processeur.
- •Le DMA soulage l'UC du contrôle des entrées-sorties
- •L 'E/S "vole" un cycle mémoire à l'UT pour réaliser un transfert
- •L'exécution du programme UC continue pendant le transfert DMA
- •Si conflit d'accès à la mémoire priorité au DMA

Accès Direct Mémoire

Les types d'interruption

1- Interne à l'unité de traitement

- *division par 0
- * dépassement de capacité numérique
- * erreur de parité sur la mémoire
- * erreur de transmission
- * défaut d'alimentation électrique

2- La sollicitation d'une unité périphérique

- * commande pupitre (RAZ INIT)
- * demande de service pour envoyer ou recevoir une donnée

3- Les Appels superviseur provoqués par le programme

- * Lancement de tâches
- * Allocation de ressources matérielles (mémoire disque imprimante ...)
- * Réalisés par des instructions de type SVC (Supervisor Call)

4- Moyen de communication entre unités de traitements dans une architecture multiprocesseur.

Les Processus

Critères de découpage en processus concurrents

- > parallélisme physique présent dans l'application
- un processus pour chaque organe d'entrée/sortie : imprimante, souris,
- processus clients et processus serveurs dans un système réparti
- processus de lecture de capteurs dans un système embarqué (réseaux de capteurs)
- parallélisme logique de l'application
- activités avec différentes échéances ou importances.
- activités avec différents comportements : périodiques, réactives, cycliques.
- activités de natures différentes : calcul, acquisition, présentation, client, serveur.
- activités distantes, réparties ou mobiles
- regroupement des actions fonctionnellement proches pour limiter les interactions interprocessus.

Représentation des processus

> Processus :

- entité d'exécution (séquence d'actions) d'un programme
- exécution sur un processeur
- représentation de ce processus (par une structure de données) dans le moteur d'exécution (le noyau du système)

> Décomposition d'une application en processus

- statique : le nombre des processus est fixe et connu dès le départ
- dynamique : création et destruction pendant le déroulement

> Niveau et hiérarchie de processus

- un seul niveau : tous égaux (ex. Concurrent Pascal)
- hiérarchie de processus avec emboîtement (ex. Unix, Ada): relation père-fils et arborescence de la descendance, le père doit attendre que tous ses fils aient terminé.

> Création de processus

- par déclaration d'un modèle (type, classe) et instanciation d'un objet selon ce modèle (ex. Ada, Java)
- par création d'une copie (clone) du père dans son état au moment de la création du fils (ex. Unix, Linux : fork)

Gestion système des processus

États d'un processus

- -prêt (activable): le processus possède toutes les ressources pour s'exécuter sauf le processeur
- élu (actif): a obtenu le processeur qui exécute les instructions de son code
- bloqué: processus bloqué en attente d'un événement (fin d'E/S)

Création des processus

➤ Initialisation de processus

- passage de paramètres à la création (ex. Unix/Linux : exec)
- pas de paramètre, donc acquisition explicite par le processus une fois créé (ex. Unix/Linux : **fork** crée un processus avec duplication du code et données)

> Démarrage ou activation des processus

- à la création (les processus sont créés actifs, en Ada)
- à l'instanciation de classes (création de threads en Java)
- ➤ Mode de comportement des processus: séquentiel, cyclique, périodique, etc.

> Terminaison de processus

- fin correcte du code
- terminaison imposée par le noyau (erreur, dépassement de ressource)
- auto terminaison (suicide) sur exception
- terminaison forcée par un autre processus(« CTRL/C » sous Unix/Linux)
- jamais : processus cyclique permanent ("démon")
- jamais : boucle infinie par erreur

Descripteur de processus

Bloc de contrôle (utilisé par le système) comporte :

- identificateur repérant de manière unique chaque processus
- état du processus
- environnement volatile (copie des registres du processeur, du compteur ordinal et du pointeur de pile, à la fin de la dernière élection)
- liens permanents de chaînage vers les descripteurs de ressources

Ordonnancement des processus

- ➤ Allocation du processeur
 - sans réquisition possible (préemption) jusqu'à fin de l'état actif
 - avec réquisition si :
 - activation d'un processus plus "prioritaire"
 - baisse dynamique de "priorité"
 - fin de quantum d'allocation
- > quelques règles de gestion des processus prêts:
 - ancienneté (FIFO)
 - quantum de taille fixe ou variable
 - priorités fixes ou dynamiques

Ordonnancement des processus Linux

Trois politiques d'ordonnancement sous Linux :

- -SCHED_FIFO: pour ordonnancer des processus non préemptibles
- -SCHED_RR: pour ordonnancer des processus préemptibles (quantum de temps)
- *-SCHED_OTHER* : pour ordonnancer des processus quelconques
- -Les processus de la *SCHED_FIFO* sont plus prioritaires que ceux de la *SCHED_RR* qui eux sont plus prioritaires que ceux de la *SCHED_OTHER*.

Les priorités :

- •varient de 1 à 99 dans la *SCHED_FIFO* et la *SCHED_RR* (le processus de priorité 99 est le plus prioritaire).
- égales à 0 dans la SCHED_OTHER.

Conclusion

Le rôle du système d'exploitation

- > Le SE est une interface entre les applications et le matériel
- Le SE a pour responsabilités de :
 - gérer les ressources (mémoire, disque, périphérique, processeur, etc.)
 - associer les protections nécessaires à la gestion des ressources
 - fournir un accès équitable aux différentes ressources partagées
 - ordonnancer les programmes pour assurer une bonne qualité de service

Caractéristiques des SE modernes

- Multi-threading
 - Processus légers
- Multi-processus
- Multi-cœur, partage mémoire (multi-processeur)
- Architecture à micro-noyaux (micro-kernel)
 - Gestion de l'adressage
 - Communication interprocess
 - Ordonnancement
- Système distribué

Bibliographie

