Assignment-4

Assignment Date	17 October 2022
Student Name	M.Hema preethi
Student Roll Number	962719106009
Maximum Marks	2Marks

Question 1:

Download the dataset

Link:

https://drive.google.com/file/d/1Sjqx5H5R86tRp2YZKzzd4_iEfjChZ3ob/view?usp=sharing

Question 2:

Import required library

Solution:

import pandas as pd import numpy as np from keras import utils import matplotlib.pyplot as plt import seaborn as sns

from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder

from keras.models import Model

from keras.layers import LSTM, Activation, Dense, Dropout, Input, Embedding

from keras.optimizers import RMSprop

from keras.preprocessing.text import Tokenizer

from keras.preprocessing import sequence

from keras.utils import to_categorical

Question 3:

Read dataset and do pre-processing

Solution:

Read dataset

```
!unzip "/content/archive.zip"
df = pd.read csv('spam.csv',delimiter=',',encoding='latin-1')
df
Pre processing
df.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'],axis=1,inplace=True)
df
sns.countplot(df.v1,palette='Set3')
plt.xlabel('Label')
plt.title('Number of ham and spam messages')
X = df.v2
Y = df.v1
le = LabelEncoder()
Y = le.fit_transform(Y)
Y = Y.reshape(-1,1)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.15)
max\_words = 1000
max len = 150
tok = Tokenizer(num_words=max_words)
tok.fit_on_texts(X_train)
sequences = tok.texts_to_sequences(X_train)
sequences_matrix = utils.pad_sequences(sequences,maxlen=max_len)
```

sequences_matrix.shape

sequences_matrix.ndim

sequences_matrix = np.reshape(sequences_matrix,(4736,150,1))
sequences_matrix.ndim

Question 4:

Create model

Solution:

from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.layers import Embedding

model = Sequential()

Question 5:

Add layers(LSTM, Dense-(Hidden layers), output)

Solution:

```
model.add(Embedding(max_words,50,input_length=max_len))
model.add(LSTM(units=64,input_shape = (sequences_matrix.shape[1],1),return_sequences=True))
model.add(LSTM(units=64,return_sequences=True))
model.add(LSTM(units=64,return_sequences=True))
model.add(LSTM(units=64))
model.add(Dense(units = 256,activation = 'relu'))
model.add(Dense(units = 1,activation = 'sigmoid'))
       archive.zip
                                   / [14] model = Sequential()
spam.csv
                                     Add layers(LSTM,Dense-(Hidden layers),output)
                                   [16] model.add(Embedding(max_words,50,input_length=max_len))
                                          model.add(LSTM(units=64,input_shape = (sequences_matrix.shape[1],1),return_sequences=Tru
                                          model.add(LSTM(units=64,return_sequences=True))
                                         model.add(LSTM(units=64,return_sequences=True))
                                         model.add(LSTM(units=64))
                                         model.add(Dense(units = 256,activation = 'relu'))
                                         model.add(Dense(units = 1,activation = 'sigmoid'))
```

Question 6:

Compile the model

Solution:

```
model.summary()
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])
```


Question 7:

Fit the model

Solution:

$$\label{eq:condition} \begin{split} X = model.fit(sequences_matrix, Y_train, batch_size=128, epochs=5, validation_split=0.2) \\ X \end{split}$$

Question 8:

Save the model

Solution:

model.save

Question 9:

Test the model

```
Solution:
test_sequences = tok.texts_to_sequences(X_test)
test_sequences_matrix = utils.pad_sequences(test_sequences,maxlen=max_len)
accr = model.evaluate(test_sequences_matrix,Y_test)
I = accr[0]
a = accr[1]
print('Test set\n Loss: {:0.3f}\n Accuracy: {:0.3f}'.format(I,a))
                                      + Code + Text
                             □ ×
      Q
                                     [19] model.save
       DB ..
                                           <bound method Model.save of <keras.engine.sequential.Sequential object at 0x7f2643a9c750>>
 \{x\}
     sample_data
       archive.zip
                                       Test the model
       spam.csv
                                     [20] test_sequences = tok.texts_to_sequences(X_test)
                                           test_sequences_matrix = utils.pad_sequences(test_sequences,maxlen=max_len)
                                     / [21] accr = model.evaluate(test_sequences_matrix,Y_test)
                                           27/27 [=======] - 4s 88ms/step - loss: 0.0814 - accuracy: 0.9797
                                        1 = accr[0]
                                           print('Test \ set \ Loss: \ \{:0.3f\} \ Accuracy: \ \{:0.3f\}'.format(1,a))
                                           Test set
Loss: 0.081
Accuracy: 0.980
 <>
```