Math 55a: Honors Abstract Algebra

Homework Assignment #5 (30 Septemer 2016): Linear Algebra V: "Eigenstuff" (with a prelude on exact sequences and more duality)

The terms "proper value", "characteristic value", "secular value", and "latent-value" or "latent root" are sometimes used [for "eigenvalue"] by other authors. The latter term is due to Sylvester [Collected Papers III, 562–4] because such numbers are "latent in a somewhat similar sense as vapour may be said to be latent in water or smoke in a tobacco-leaf." We will not adhere to his terminology.

— N. Dunford and J.T. Schwartz: Linear Operators, Part I, pages 606–7.

A bit about exact sequences:

- 1. i) Suppose $0 \to V_1 \to V_2 \to V_3 \to \cdots \to V_n \to 0$ is an exact sequence of linear transformations between vector spaces all of which are finite dimensional. Prove that $\sum_{i=1}^{n} (-1)^i \dim V_i = 0$.
 - ii) Given positive integers d_i (i = 1, ..., n) such that $\sum_{i=1}^{n} (-1)^i d_i = 0$, must there exist an exact sequence as in (i) such that dim $V_i = d_i$ for each i?

The next two questions explore further aspects of duality. For problem 2, vectors v_1, \ldots, v_N in an n-dimensional vector space V are said to be "in general linear position" if every choice of n vectors v_{i_1}, \ldots, v_{i_n} with $i_1 < i_2 < \cdots < i_N$ yields a basis for V. For example, this condition is satisfied by $v_i = (1, x_i) \in F^2$ for any pairwise distinct $x_i \in F$ (even though they are quite special in that any three points are collinear). More generally $(1, x_i, x_i^2, \ldots, x_i^d)$ works in F^{d+1} , again assuming the x_i are pairwise distinct.

- 2. Let V be an n-dimensional space over any field F, and for some $N \geq n$ let $v_1, \ldots, v_N \in V$ be any vectors that span V. Then we have a map $s: F^N \to V$ taking any (a_1, \ldots, a_N) to $\sum_{i=1}^N a_i v_i$. By hypothesis s is surjective. Hence we have an injective map $s^*: V^* \to (F^N)^*$. We've identified F^N with its own dual, so we can regard s^* as a map $V^* \to F^N$, and we then have a quotient map $q: F^N \to F^N/V^* =: W$, with $\dim W = N n$. Let $w_1, \ldots, w_N \in W$ be the images of the unit vectors. Prove that v_1, \ldots, v_N are in general linear position if and only if w_1, \ldots, w_N are in general linear position.
- 3. Let F be a field of characteristic zero, so F contains a copy of \mathbf{Z} . For a finite-dimensional vector space V/F, a "lattice" $L \subset V$ is the \mathbf{Z} -span of an F-basis for V, that is, an additive subgroup of the form

$$L = \left\{ \sum_{i=1}^{n} a_i v_i \mid a_i \in \mathbf{Z} \ (1 \le i \le n) \right\}$$

where (v_1, \ldots, v_n) is a basis for V (equivalently, the image of $\mathbf{Z}^n \subset F^n$ under an invertible linear map $F^n \to V$).¹ The *dual lattice* is a subset of the dual vector space V^* defined by

$$L^* = \{ v^* \in V^* \mid \forall v \in L, \ v^*(v) \in \mathbf{Z} \}.$$

Prove that L^* is in fact a lattice in V^* .

The rest of the problems are taken from (or based on problems from) Chapter 5 of Axler. Unless stated otherwise **F** can be any field, and **C** can be any algebraically closed field; do not assume that vector spaces are finite-dimensional unless you must. From 5A:

- 4. Solve problems 2 and 3 (pages 138 and 139; remember that Axler's "null" is our "ker").
- 5. (Basically problem 13 on p.139)
 - i) If V is a finite-dimensional vector space over $\mathbf{F} = \mathbf{R}$ or \mathbf{C} , and ϵ is any positive real number, prove that for every $T \in \operatorname{End}(V)$ there exists $\alpha \in \mathbf{R}$ such that $|\alpha| < \epsilon$ and $T \alpha I$ is invertible. (This is one way to show that when V is finite-dimensional the invertible operators are "dense in $\operatorname{End}(V)$ ", using terminology that we'll develop at the start of 55b.)
 - ii) Show (by constructing V and T) that for any field F there is a vector space V/F and a linear operator $T:V\to V$ such that for all $\alpha\in F$ the operator $T-\alpha I$ is not invertible.
- 6.-7. Solve problems 15 and 21 on page 140.
- 8.–9. Solve problems 29 and 31 on page " $\approx 100\sqrt{2}$ " (hint for Problem 31: you can replace the assumption that V has finite dimension by the hypothesis that every finite-dimensional subspace of V has a complement.)

From 5B:

- 10. Solve exercises 5 and 10 on page 153. (Naturally this is related with 5A exercise 15.)
- 11. Solve exercises 11, 12 on page 153. For 12, only one of "if" and "only if" fails over **R** which one? and the other holds over any field.

Exercise 10 has the following important consequence: if $P \in F[z]$ and P(T) = 0 for some linear operator $T \in \text{End}(V)$, then every eigenvalue of T is a root of P. For instance, the only possible eigenvalues of a linear involution are ± 1 , the roots of $z^2 - 1$. Several other exercises on this page are variations on this theme.

This problem set is due Friday, 7 October, at the beginning of class.

¹NB once $n \geq 2$ a lattice, like a vector space, can have many different choices of generators v_i ; e.g. \mathbf{Z}^2 itself we can choose $v_1 = (20, 17)$ and $v_2 = (7, 6)$. We shall pursue this further after developing the determinant and related constructions.