

Examen ISEC 2012-2013

Auteurs

J.-C. Bajard, L. Perret

Version du 13 février 2014

Calculatrice et documents interdits. Le barème est donné à titre indicatif.

Exercice 1 – Cours (4 points)

- Comment fonctionne l'authentification par MAC?
- Comment fonctionne le CBC-MAC?
- Donner les deux grandes phases du protocole TLS?
- Donner le principe de la certification X.509?
- Que pensez vous de la sécuité d'un certificat X.509 qui utilise MD5?

Exercice 2 – Maple (4 points)

Nous décrivons ici un algorithme proposé par Shanks pour calculer le logarithme discret dans \mathbb{Z}_p (avec p premier). C'est un compromis temps-mémoire basé sur l'observation suivante. Soient $m = \lceil \sqrt{p} \rceil$, g un élément générateur et $\beta = g^x \mod p$. La division Euclidienne de x par m donne x = mj + i, $0 \le i, j < m$. Nous avons alors $\beta(g^{-i}) \equiv g^{mj} \mod p$. La méthode BSGS consiste à calculer une table des $\beta g^{-i} \mod p$, $0 \le i < m$ (pas de bébés), ainsi que des $g^{mj} \mod p$, $0 \le j < m$ (pas de géants), et à trouver la valeur commune à ces deux tables :

- 1. Calculer $q^{mj} \mod p$, $0 \le j \le m$.
- 2. Trier les paires $(j, g^{mj} \mod p)$ selon la deuxième coordonnée; soit L_1 la liste obtenue.
- 3. Calculer $\beta g^{-i} \mod p$, $0 \le i < m$.
- 4. Trier les paires $(i, \beta q^{-i} \mod p)$ selon leur deuxième coordonnée, soit L_2 la liste obtenue.
- 5. Trouver $(j, y) \in L_1$, et $(i, y) \in L_2$.
- 6. Retourner x = ? (à compléter)
- Compléter la dernière ligne de l'algorithme (i.e. ligne 6).
- Ecrire une procédure GiantStep:=proc(g,p) qui prend en entrées un générateur g, ainsi que le modulo p et retourne la liste L_1 .
- Ecrire une procédure BabyStep:=proc(beta,g,p) qui prend en entrées beta (β), un générateur g, et le modulo p et retourne la liste L_2 .
- En déduire la procédure Shanks: = proc (beta, g, p) qui implante l'algorithme ci-dessus.

Exercice 3 – Miller-Rabin (6 points)

Soit n un entier premier impair. Notons $n=m\cdot 2^h+1$, avec m impair et $h\geq 0$. Soit a un entier premier avec n. On construit la suite :

$$b_0 \equiv a^m \mod n, b_1 \equiv b_0^2 \mod n, \dots, b_h \equiv b_{h-1}^2 \mod n.$$

- Montrer que $b_h \equiv b_0^{2^h} \mod n$.
- En déduire que $b_h \equiv 1 \mod n$.

Dans la suite, on suppose que $b_0 \neq 1$. Soit $i, 0 < i \leq h$, le plus petit indice i tel que $b_i \equiv 1 \mod n$.

– Montrer que $b_{i-1}^2 - 1 \equiv 0 \mod n$ et $b_{i-1} \not\equiv 1 \mod n$.

- Expliquer pourquoi le polynôme $X^2 1$ n'a que deux racines modulo n.
- En déduire que $b_{i-1} \equiv -1 \mod n$.

On montre que si $n \geq 3$ est un entier composé impair de la forme $n = m \cdot 2^h + 1$, avec m impair et $h \geq 0$, alors le nombre d'entiers $a \in \mathbb{Z}_n^*$ pour lesquels la suite b_0, \ldots, b_h vérifie :

- 1. $b_h \equiv 1 \mod n$,
- 2. $b_{i-1} \equiv -1 \mod n$ avec $i, 0 < i \le h$, le plus petit indice i tel que $b_i \equiv 1 \mod n$, est inférieur à (n-1)/2.
 - Proposer une méthode pour tester si un nombre est composé?
 - Proposer une méthode pour tester si un nombre est premier?

Exercice 4 – Merkle-Damgård (6 points)

Soient $f: \{0,1\}^{n+r} \mapsto \{0,1\}^n$ une fonction de compression sans-collision (i.e. $\forall x,y \in \{0,1\}^{n+r}, f(x) = f(y)$ implique que x=y), $\mathrm{IV} \in \{0,1\}^n$ un vecteur d'initialisation. La chaîne x (de longueur $\leq 2^r$) est divisée en t blocs de r bits x_1,\ldots,x_t . Soit x_{t+1} un autre bloc de r bits qui contient la représentation binaire de la longueur de la chaîne x. On calcule l'empreinte de x comme :

$$H_0 = \text{IV}, \ H_i = f(H_{i-1} \mid\mid x_i), \ \forall i, 1 \le i \le t, \ H_{t+1} = f(H_t \mid\mid x_{t+1}).$$

Dans la suite, on note par MD(x) l'empreinte d'une chaîne x (c'est à dire H_{t+1}).

- Soient $x, y \in \{0, 1\}^*$ tels que MD(x) = MD(y). Montrer que x et y sont de la même taille.
- Plus généralement, montrer que MD(x) = MD(y) implique :

$$x_i = y_i, \forall i, 1 \le i \le t + 1,$$

avec t le nombre de blocs de x.

- En déduire que la fonction MD est sans-collision.