Fourier Series Approximation of a Square Wave

Cameron Williams

ECE 351-51

Lab Report 8

 $24~{\rm March}~2020$

1 Introduction

The objective of this lab was to use Fourier series to approximate periodic time-domain signals. For the purposes of this lab, the square wave function pictured below was used.

2 Methodology

The simplified a_k and b_k values for the Fourier series approximation may be seen in the Equations section. I implemented them as functions in my Python script and used them to print out the first two values of a_k , a_0 and a_1 . I also printed out the values of b_1 , b_2 , and b_3 . These values may be seen in the Appendix. Next, I implemented a summation of the Fourier series in my Python script and plotted the it for values N=1, N=3, N=15, N=15, N=150, and N=1500. These plots may be seen in the Results section.

3 Equations

$$a_k = 0$$

$$b_k = \frac{2}{k\pi} [1 - \cos(k\pi)]$$

Results

Fourier Series Approximations of x(t) (N=1, N=3, N=15)

Fourier Series Approximations of x(t) (N=50, N=150, N=1500)

Questions

1. Is x(t) an even or an odd function? Explain why.

The function is odd since it is not mirrored across the y-axis $(X_n = -X_{-n})$.

2. Based on your results from Task 1, what do you expect the values of a_2 , a_3 , ..., a_n to be? Why?

I expect all values of a_k to be 0 because that's what the equation for a_k simplifies to.

3. How does the approximation of the square wave change as the value of N increases? In what way does the Fourier series struggle to approximate the square wave?

The approximation gets closer and closer to the square wave as N increases. The Fourier series struggles to approximate the square wave at the straight vertical edges.

4. What is occurring mathematically in the Fourier series summation as the value of N increases?

As the value of N increases, each new component gets smaller and smaller, but pushes the total x(t) ever closer to resembling the waveform being approximated.

5. Leave any feedback on the clarity/usefulness of the purpose, deliverables, and expectations for this lab.

The purpose, deliverables, and expectations for this lab were communicated clearly.

Appendix

Python output of requested a_k and b_k values:

$$a_0 = 0$$
, $a_1 = 0$
 $b_1 = 1.2732395447351628$, $b_2 = 0.0$, $b_3 = 0.4244131815783876$