(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出限公開番号

特開平8-259279

(43)公開日 平成8年(1996)10月8日

(51)Int.CL ⁶	親別記号	F I 技術表示値所
C03C 27/12		C 0 3 C 27/12 L
		N
		Z
B32B 17/10		B32B 17/10
B60J 1/00		B60J 1/00 H
	來施查會	: 未請求 請求項の数25 OL (金 11 頁) 最終頁に続く
(21)出版書号	特膜平7-165489	(71)出版人 000002200
and white	ਪ ਜੀ-7 & (100€) & 830 €	セントラル研予株式会社 山口県宇部市大字神宇部5253番地
(22)出順日	平成7年(1995) 6月30日	(72)発明者 近藤 剛
(31)優先權主學番号	At-191517 - 7044	三 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二
(32) 優先日	平7 (1995) 1 月23日	株式会社硝子研究所内
(33) 優先根主要因		(74)代理人 护理士 坂本 荣一
(33)を対して作品というを記り	DA (JF)	(12)1(壁入 开建工 秋平 木

(54) 【発明の名称】 合せガラス及びその製造方法

(57)【要約】

【目的】 従来の合せガラスと同等の品質を維持しつつ、中間膜層に断熱性能や紫外線遮断性能、電波透過性能等の機能性をもたらしめ、建築用はもちろん、自動車用窓材として各種部署に適用できる合せガラスを得る。 【構成】 少なくとも2枚の透明ガラス板状体の間に中間膜層を有する合せガラスにおいて、該中間膜層の中に粒径が0.2 μm以下の機能性超微粒子を分散せしめてなるものとした合せガラス。 (2)

特開平8-259279

ı

【特許請求の範囲】

【請求項1】 少なくとも2枚の透明ガラス板状体の間 に中間膜層を有する合せガラスにおいて、該中間膜層の 中に粒径が 0.2μm以下の機能性超微粒子を分散せしめ てなるものとしたことを特徴とする合せガラス。

【請求項2】 前記中間膜が、ポリビニルプチラール系 **樹脂膜であることを特徴とする請求項1記載の合せガラ**

【請求項3】 前記中間膜が、エチレンー酢酸ピニル共 重合体系樹脂膜であることを特徴とする請求項1記載の 10 合せガラス。

【請求項4】 前記機能性組織粒子の粒径が、0.15~ 0.001 μm であることを特徴とする請求項1万至3記載 の合せガラス。

【請求項 5】 前記機能性超微粒子の混合割合が、10.0 vt%以下であることを特徴とする請求項1乃至4記載の 合せガラス。

【請求項6】 前記機能性超微粒子の混合割合が、 2.0 ~0.01wt%であることを特徴とする請求項1乃至5記載 の合せガラス。

【請求項7】 前記機能性超微粒子が、Sn、Ti、Si、Z n. Zr. Fe, Al. Cr. Co, Ce, In, Ni, Ag, Cu, Pt, M n、Ta、W、V、Moの金属、酸化物、窒化物、硫化物あ るいはSbやF のドープ物の各単独物、もしくはこれらの 中から少なくとも2種以上を選択してなる複合物、また はさらに当該各単独物もしくは複合物に有機樹脂物を含 む湿合物または有機樹脂物を被覆した被膜物であること を特徴とする請求項1乃至6記載の合せガラス。

【請求項8】 前記中間膜が、有機系紫外線吸収剤、有 機系熱線吸収剤あるいは顔料の各単独もしくはこれらを 30 せガラスの製造方法。 含有してなることを特徴とする請求項1乃至7記載の合 せガラス。

【請求項9】 前記合せガラスが、建築用ガラスである ことを特徴とする請求項1乃至8記載の合せガラス。

【請求項10】 前記合せガラスが、自動車用ウインドウ ガラスであることを特徴とする請求項1乃至8記載の合 せガラス。

【請求項11】 少なくとも2枚の透明ガラス板状体の問 に中間膜層を有する合せガラスを製造する方法におい て、粒径が 0.2μm以下の機能性超微粒子を分散せしめ 40 た該中間膜を用いて前記少なくとも2枚のガラス板を合 せガラス化処理をすることを特徴とする合せガラスの製 **造方法。**

【請求項12】 前記中間膜が、ポリピニルブチラール系 樹脂膜であることを特徴とする請求項11記載の合せガラ スの製造方法。

【請求項13】 前記ポリビニルブチラール系樹脂膜が、 粒径が 0.2μm 以下の機能性超微粒子を可塑剤中に80.0 wt%以下分散せしめて機能性超微粒子分散可塑剤とし、

ール系樹脂中に、ポリピニルブチラール系樹脂に対し機 能性超微粒子分散可塑剤を50wt%以下少なくとも分散添 加し、適宜その他の添加剤を加え、混合混練することで 機能性超微粒子を均一に分散した膜用原料樹脂から得た ことを特徴とする譜求項11乃至12記載の合せガラスの製 造方法。

2

【請求項14】 前記機能性超微粒子分散可塑剤が、粒径 が 0.2μm 以下0.001 μm以上の機能性超微粒子を可塑 剤中に20.0vt%以下分散せしめてなるものであることを 特徴とする請求項12乃至13記載の合せガラスの製造方 法。

【論求項15】 前記中間膜が、ポリビニルプチラール系 樹脂を溶解する溶剤に前記粒径が 0.2μm 以下0.001 μ m以上の機能性超微粒子を少なくとも均一または均一状 に分散した後、当該溶剤を適宜可塑剤ならびにその他の 添加剤とともにポリビニルプチラール系樹脂に均一溶解 させ混合混練して膜用原料樹脂からフイルム化し、50~ 110 ℃で乾燥して得たポリピニルブチラール系樹脂膜で あることを特徴とする請求項11記載の合せガラスの製造 20 方法。

【請求項16】 前記中間膜が、ガラス転移点である55~ 90℃の温度以上に加熱して軟化したポリピニルブチラー ル系樹脂に少なくとも前記粒径が 0.2 μm 以下0.001 μ m以上の機能性超微粒子を直接添加し混合混練して均一 分散した瓝用原料樹脂から得たポリビニルプチラール系 樹脂膜であることを特徴とする請求項11記載の合せガラ スの製造方法。

【請求項17】 前記中間膜が、エチレン一酢酸ビニル共 重合体系樹脂であることを特徴とする請求項11記載の合

【舘求項18】 前記エチレン-酢酸ビニル共宜合体系樹 脂が、粒径が 0.2μm 以下の機能性超微粒子を可塑剤中 に80, 0wt%以下分散せしめて機能性超微粒子分散可塑剤 とし、次いで該機能性超微粒子分散可塑剤をエチレンー 酢酸ピニル共食合体系樹脂中に、エチレン一酢酸ピニル 共重合体系制脂に対し機能性超微粒子分散可塑剤を50wt %以下少なくとも添加し、適宜その他の添加剤を加え、 混合混練することで機能性超微粒子を均一に分散した膜 用原料樹脂から得たことを特徴とする請求項11および17 記載の合せガラスの製造方法。

【請求項19】 前記機能性超微粒子分散可塑剤が、粒径 が 0.2μm 以下0.001 μm 以上の機能性超微粒子を可塑 剤中に20.0wt%以下分散せしめてなるものであることを 特徴とする請求項11および17乃至18記載の合せガラスの 製造方法。

【請求項20】 前記中間膜が、エチレン-酢酸ビニル共 重合体系術脂用溶剤に前記粒径が 0.2μm 以下0.001 μ m以上の機能性超微粒子を少なくとも均一または均一状 に分散した後、当該溶剤を適宜その他の添加剤とともに 次いで該機能性超微粒子分散可塑剤をポリビニルブチラ 50 エチレン-- 酢酸ビニル共重合体系樹脂に均一溶解させ混 (3)

20

30

特期平8-259279

合混練して膜用原料樹脂からフイルム化し、50~110 ℃ で乾燥して得たエチレン-酢酸ビニル共取合体系樹脂で あることを特徴とする請求項11および17記載の合せガラ スの製造方法。

【請求項21】 前記中間膜が、ガラス転移点である55~ 90℃の温度以上に加熱して軟化したエチレン一酢酸ビニ ル共重合体系樹脂に少なくとも前記粒径が 0.2 um 以下 0.001 μm以上の機能性超微粒子を直接添加し混合混練 して均一分散した膜用原料樹脂から得たエチレン一酢酸 ビニル共重合体系樹脂であることを特徴とする請求項11 10 および17記載の合せガラスの製造方法。

【請求項22】 前記機能性超微粒子が、Sn、Ti、Si、Z n, Zr, Fe, Al, Cr, Co, Ce, In, Ni, Ag, Cu, Pt, M n、Ta、W、V、Moの金属、酸化物、窒化物、硫化物あ るいはSbやF のドープ物の各単独物、もしくはこれらの 中から少なくとも2種以上を選択してなる複合物、また はさらに当該各単独物もしくは複合物に有機樹脂物を含 む混合物または有機樹脂物を被覆した被膜物であること を特徴とする請求項11万至21記載の合せガラスの製造方 法。

【請求項23】 前記膜用原料樹脂の膜化が、常法の型押 出し法またはカレンダーロール法によることを特徴とす る請求項11乃至17記載の合せガラスの製造方法。

【請求項24】 前記合せガラス化処理が、オートクレー ブ法によることを特徴とする請求項11万至17記載の合せ ガラスの製造方法。

【請求項25】 前記合せガラス化処理が、減圧下で常温 から120 ℃まで昇温する中で80~120 ℃の温度範囲で20 ~30分間の加熱によることを特徴とする請求項11および 18乃至22記載の合せガラスの製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、着色、熱線や紫外線遮 断膜、電波透過等各種の機能性超微粒子を適宜有する樹 脂中間膜層を用いて合せ処理することでなる合せガラス とその製造方法に関する。

【0002】冷暖房効果を向上せしめるような優れた日 射透過率、環境や人に優しくなる紫外線遮断等を有する とともに、比較的高いものから低いものまで幅広い可視 光線透過率を有するものであり、AM電波、FM電波等の放 40 送における受信障害あるいはゴースト現象等の電波障害 を低減ができ、電波透過性能を必要とする無色から有色 と各種色調の合せガラスとして使用可能な電波透過型熱 線紫外線遮蔽ガラス等であって、建築用窓材としてはも ちろん、特に自動車用窓材、例えばフロントウインド ー、リヤウインドーあるいはサイドウインドーまたはサ ンルーフ等に、また飛行機用窓材、さらにはその他産業 用部材等幅広く適用できる有用な機能性を有する合せガ ラス及びその製造方法を提供するものである。

[0003]

【従来技術】近年、建築用ガラスにおけるクリアや着 色、断熱や紫外線遮断および電波透過等の機能付与はも ちろん、車輌用ガラスにおいても車内に通入する太陽輌 射エネルギーを遮蔽し、車内の温度上昇、冷欝負荷を低 減させる目的から熱線遮蔽ガラス、さらに人的物的両面

や環境に優しくするため紫外線遮蔽を付加したものが車 **輌用に採用されている。また最近は特に該車輌用ガラス** において、グリーン色調で充分な可視光透過率を有しな がら高熱線紫外線遮蔽性能を持ちかつ各種電波の高透過 性能が要求されるようになってきており、なかでも微粒

子あるいは超微粒子を合せガラスの中間層に分散したよ うなものとしては次のようなものが知られている。

【0004】例えば特開平2-22152 号公報には、短波長 光線遮断性合せガラス用中間膜が記載されており、特定 された一般式で表されるベンゾトリアゾール誘導体から なる群より運ばれる少なくとも1種の光吸収剤と、少な くとも90重量%が 250~400nmの粒径範囲にある粒径分 布の微粒子状無機物質とを含有する可塑化ポリピニルブ チラール樹脂よりなり、400nm 以下の波長の光を実質的 に遮断し、かつ450mm以上の波長の光を実質的に透過さ せるものが開示され、光吸収剤の含有量が0.4~6 重量 %であり、微粒子状無機物質の含有量が 2~17重量%で あることが開示されている。

【0005】また例えば、特開平4-160041号公報には、 自動車用窓ガラスが記載されており、透明板状部材間に 平均粒径0.1 μm 以下の超微粒子とガラス成分との混合 層を形成してなるものが記載され、透明板状部材間に2 超微粒子とガラス成分とを挟み、ガラス成分によって透 明板状部材同士を接着すること、あるいは透明板状部材 間にプラスチツクの中間層 (PVB)を設け、この中間層と 各板状部材との間に夫々粒径0.1 μm 以下の超微粒子と ガラス成分との混合層を形成してなること、あるいは平 均粒径0.3 ~0.5 μm のスペーサ用微粒子を混合層中に 混在させること等が開示されている。

【0006】また例えば、特開平4-261842号公報には、 合わせガラスが記載されており、有機ガラスと、透明体 と、有機ガラス及び透明体間に配設された中間膜と、を 有する合わせガラスであって、中間膜が、ビニルシラン をグラフト変性したエチレン・エチルアクリレート共重 合樹脂を含有する樹脂組成物にて形成されているものが 開示され、樹脂組成物が、ピニルシランをグラフト変性 したエチレン・エチルアクリレート共食合樹脂100 重量 部と二酸化ケイ素微粒子3~30重量部とを含有すること が開示されている。

[0007]

【発明が解決しようとする問題点】前述したような、例 えば特開平2-22152 号公報等に記載された短波長光線遮 断性合せガラス用中間膜は、ポリビニルブチラール樹脂 に添加される少なくとも90重量%が250 ~400nm の粒径 50 範囲にある粒径分布の微粒子状無機物質が光散乱剤とし

(4)

特開平8-259279

5

て400nm 以下の紫外線部分を散乱させるようにして光吸 収剤の選択的吸収を促進し400mm 以下の波長の光を実質 的に遮断するとともに、例えば450 ~700nmの波長範囲 で光線透過率が70%以上等、450mm 以上の波長の光を実 質的に透過させ透明性を保持し、しかも100Vの白色電球 像の緑における観察で濁りが無く、黄色味を示す波長42 Onm における光線透過率も50%以上であって、良好な接 着性を示すというものであるが、例えば断熱性能をもた らしめるため、少なくとも90重量%が250 ~400nm の粒 径範囲にある粒径分布の断熱性微粒子状無機物質をポリ 10 ビニルブチラール樹脂に添加した際に、例えば450~70 Omm の波長範囲で光線透過率が70%以上でしかも自動車 用窓ガラスとして採用し得るようになることの記載もま た示唆する記載もないものであり、断熱性微粒子状無機 物質の粒径が比較的大きいことはもちろんその添加量も 例えば2~17重量%と多くすることが必要である。

【0008】また、例えば特開平4-160041号公報に記載 された自動車用窓ガラスは、透明板状部材間に平均粒径 0.1 µm 以下の超微粒子と有機ケイ素あるいは有機ケイ 素化合物のガラス成分との混合層を形成するようにし、 合わせガラスのガラス同士あるいはプラスチツクの中間 層であるポリピニルプチラール (PVB)とガラスを接合し たというものであって、ヒータ用としてのデイフロスタ 機能、冷暖房効率アップ用としての赤外線反射機能及び /またはシート抵抗が約500 Q/ロである電磁シールド 機能を有することとなるというものであり、PVB やエチ レン-酢酸ビニル共食合体系樹脂膜(EVA) 等の中間膜の みで2枚のガラスを接合した通常の合せガラスの構成の 中で断熱機能、紫外線遮断機能、電波透過機能あるいは 無色乃至着色を同時に発現し得るようなものではない し、また通常の合せガラスと同等の接着力を得ることが できるか危惧されるところであり、コスト的にもアップ する要因があるものである。

【0009】また、例えば特開平4-261842号公報に記載された合わせガラスは、有機ガラスを使用するためのものであって、ビニルシランをグラフト変性したエチレン・エチルアクリレート共重合樹脂100 度量部に対し、粒径が0.1~400mμのコロイダルシリカや超微粒子シリカ等の二酸化ケイ素微粒子3~30度量部とを含有するようにし、粒径を400mμ以下とすることで可視光線の波長(4 4000~780nm)より短いため、中間腹を通過する光の散乱を防ぎ、その中間膜のくもり改善を効果的にしようとするものであるものの、そのくもり度(ヘイズ)はJIS K6714に基づく測定で4%以下程度であり、必ずしも充分な自動車用窓ガラス、特にフロントガラスとは言い難いものである。

[0010]

【問題点を解決するための手段】本発明は、従来のこのような点に鑑みてなしたものであり、従来から使用されている合せガラス用中間膜層に影響を与えることなく、

中間膜層に機能性超微粒子を適宜分散し含有せしめることで、断熱性能や紫外線遮断性能や電波透過性能等の機能特性を付与し、しかもクリア乃至着色の色調の制御および透視性の確保や反射性とぎらつき感の防止等をバランスよくもたらしめ、従来の合せガラスと変わらない品質を得るようにでき、特殊成分組成ガラスや特殊表面加工ガラスを必要とせず、かつ現在使用中の合せガラスと超ラインをそのままで合せガラス化処理作業で行うことができ、例えばガラスとガラス、ガラスとブラスチック、バイレイヤガラス等を安価にかつ容易にしかもガラスの大きさや形態に自由自在に対応し得て製造でき、建築用窓材はもちろん自動本用窓材、飛行機用窓材、ことに風防用ガラスにも充分適用でき、最近のニーズに最適なものとなる有用な機能的な合せガラスを提供するもの

【0011】すなわち、本発明は、少なくとも2枚の透明ガラス板状体の間に中間膜層を有する合せガラスにおいて、該中間膜層の中に粒径が 0.2μm以下の機能性超微粒子を分散せしめてなるものとしたことを特徴とする合せガラス。

【0012】ならびに、前記中間膜が、ポリビニルブチ-ラール系樹脂膜であることを特徴とする上述した合せガ ラス。また、前記中間膜が、エチレン一酢酸ビニル共乗 合体系樹脂膜であることを特徴とする上述した合せガラ ス。

【0013】さらに、前記機能性超微粒子の粒怪が、0.15~0.001μmであることを特徴とする上述した合せガラス。さらに、前記機能性超微粒子の混合割合が、10.0 vt%以下であることを特徴とする上述した合せガラス。【0014】さらにまた、前記機能性超微粒子の混合割合が、2.0~0.01vt%であることを特徴とする上述した合せガラス。またさらに、前記機能性超微粒子が、Sn、Ti、Si、Zn、Zr、Fe、Al、Cr、Co、Ce、In、Ni、Ag、Cu、Pt、Mn、Ta、W、V、Moの金属、酸化物、窒化物、硫化物あるいはSbやFのドープ物の各単独物もしくはこれらの中から少なくとも2種以上を選択してなる複合物、またはさらに当該各単独物もしくは複合物に有機樹脂物を含む混合物または有機樹脂物を被覆した被膜物であることを特徴とする上述した合せガラス。

【0015】またさらに、前記中間膜が、有機系紫外線 吸収剤、有機系熱線吸収剤あるいは顔料の各単独もしく はこれらを含有してなることを特徴とする上述した合せ ガラス

【0016】またさらに、前記合せガラスが、建築用ガラスであることを特徴とする上述した合せガラス。またさらに、前記合せガラスが、自動取用ウインドウガラスであることを特徴とする上述した合せガラス。

【0017】ならびに、少なくとも2枚の透明ガラス板 状体の間に中間膜層を有する合せガラスを製造する方法 50 において、粒径が 0.2μm以下の機能性超微粒子を分散

30

(5)

特開平8-259279

7

せしめた該中間膜を用いて前記少なくとも2枚のガラス 板を合せガラス化処理をすることを特徴とする合せガラ スの製造方法。

【0018】また、前記中間膜が、ポリビニルブチラー ル系樹脂膜であることを特徴とする上述した合せガラス の製造方法。またさらに、前記ポリビニルブチラール系 樹脂膜が、粒径が 0.2μm 以下の機能性超微粒子を可塑 剤中に80.0wt%以下分散せしめて機能性超微粒子分散可塑剤をポリビ ニルブチラール系樹脂中に、ポリビニルブチラール系樹 10 活に対し機能性超微粒子分散可塑剤を50wt%以下少なくとも分散添加し、適宜その他の添加剤を加え、混合混練 することで機能性超微粒子を均一に分散した膜用原料樹 胎から得たことを特徴とする上述した合せガラスの製造 55年 2.8

【0019】またさらに、前記機能性超級粒子分散可塑剤が、粒径が 0.2 μm 以下0.001 μm以上の機能性超微粒子を可塑剤中に20.0wt%以下分散せしめてなるものであることを特徴とする上述した合せガラスの製造方法。

【0020】また、前記中閲聴が、ポリビニルブチラール系樹脂を溶解する溶剤に前記粒径が 0.2μm 以下0.00 1 μm以上の機能性超微粒子を少なくとも均一または均一状に分散した後、当該溶剤を適宜可塑剤ならびにその他の添加剤とともにポリビニルブチラール系樹脂に均一溶解させ混合混練して膜用原料樹脂からフイルム化し、50~110 ℃で乾燥して得たポリビニルブチラール系樹脂膜であることを特徴とする上述した合せガラスの製造方法。

【0021】また、前記中間膜が、ガラス転移点である55~90℃の温度以上に加熱して軟化したポリビニルブチ 30 ラール系樹脂に少なくとも前記粒径が 0.2μm 以下0.00 1 μm以上の機能性超微粒子を直接添加し混合混錬して均一分散した膜用原料樹脂から得たポリビニルブチラール系樹脂膜であることを特徴とする上述した合せガラスの製造方法。

【0022】また、前記中間膜が、エチレン一酢酸ビニル共重合体系樹脂であることを特徴とする上述した合せガラスの製造方法。またさらに、前記エチレン一酢酸ビニル共重合体系樹脂が、粒径が 0.2μm 以下の機能性超微粒子を可塑剤溶液中に80.0mt%以下分散せしめて機能性超微粒子分散可塑剤とし、次いで該機能性超微粒不分散可塑剤をエチレン一酢酸ビニル共重合体系樹脂中に、エチレン一酢酸ビニル共重合体系樹脂に対し機能性超微粒子分散可塑剤を50wt%以下少なくとも添加し、適宜その他の添加剤を加え、混合混練することで機能性超微粒子を均一に分散した膜用原料樹脂から得たことを特徴とする上述した合せガラスの製造方法。

【OO23】またさらに、前記機能性超微粒子分散可塑 割合が10.0vt%以下であるとしたのは、可視光域の散乱 剤が、粒径が 0.2μm 以下0.001 μm 以上の機能性超微 反射を抑制しながら、例えば日射透過率が65%以下等熱 粒子を可塑剤中に20.0vt%以下分散せしめてなるもので 50 線遮蔽性能等超微粒子の機能特性を充分発揮する量を確

あることを特徴とする上述した合せガラスの製造方法。 【0024】また、前配中間膜が、エチレン一酢酸ビニル共重合体系樹脂用溶剤に前記粒径が 0.2μm 以下0.001 μm以上の機能性超微粒子を少なくとも均一または均一状に分散した後、当該溶剤を適宜その他の添加剤とともにエチレン一酢酸ビニル共重合体系樹脂に均一溶解させ混合混練して膜用原料樹脂からフイルム化し、50~110℃で乾燥して得たエチレン一酢酸ビニル共重合体系樹脂であることを特徴とする上述した合せガラスの製造方法。

【0025】また、前記中間膜が、ガラス転移点である55~90℃の温度以上に加熱して軟化したエチレン一酢酸ビニル共重合体系樹脂に少なくとも前記粒径が 0.2μm以下0.001 μm以上の機能性超微粒子を直接添加し混合混練して均一分散した膜用原料樹脂から得たエチレン一酢酸ビニル共重合体系樹脂であることを特徴とする上述した合せガラスの製造方法。

【0026】さらに、前記機能性超微粒子が、Sn、Ti、Si、Zn、Zr、Fe、Al、Cr、Co、Ce、In、Ni、Ag、Cu、Pt、Mn、Te、W、V、Moの金属、酸化物、蜜化物、硫化物あるいはSbやPのドープ物の各単独物、もしくはこれらの中から少なくとも2種以上を選択してなる複合物、またはさらに当該各単独物もしくは複合物に有機樹脂物を含む混合物または有機樹脂物を被覆した被膜物であることを特徴とする上述した合せガラスの製造方法。

【0027】またさらに、前記膜用原料樹脂の膜化が、常法の型押出し法またはカレンダーロール法によることを特徴とする上述した合せガラスの製造方法。またさらに、前記合せガラス化処理が、オートクレーブ法によることを特徴とする上述した合せガラスの製造方法。

【0028】またさらに、前記合せガラス化処理が、減 圧下で常温から120 ℃まで昇温する中で80~120 ℃の温 度節囲で20~30分間の加熱によることを特徴とする上述 した合せガラスの製造方法。ここで、前記したように、 中間膜層の中に粒径が0.2 μm 以下の機能性超微粒子を 分散せしめてなるものとしたのは、可視光域の散乱反射 を抑制しながら、例えば日射透過率が65%以下等熱線遮 蔽性能等超微粒子の機能特性を充分発揮しつつ、超低へ 一ズ値、電波透過性能、適明性を確保するためと、超微 粒子を含有せしめても従来の合せガラス用中間膜として 例えば接着性、透明性、耐久性等の物性を維持し、通常 の合せガラス製造ラインで通常作業で合せガラス化処理 ができるようにするためである。好ましくは粒径が0.15 μm 以下程度であり、より好ましくは約0.10~0.001 μ m 程度である。なお粒径分布の範囲については、例えば 約0.03~0.01μm 程度と均一化されていることがよい。 【0029】また、中間膜層への機能性超微粒子の混合 割合が10.0vt%以下であるとしたのは、可視光域の散乱 反射を抑制しながら、例えば日射透過率が65%以下等熱 (6)

特願平8-259279

10

保し、さらに超低ヘーズ値、電波透過性能、透明性であ るようにし、しかも超微粒子を含有せしめても従来の合 せガラス用中間膜として例えば接着性、透明性、耐久性 **等の物性を維持し、通常の合せガラス製造ラインによる** 通常作業で合せガラス化処理ができるようにするため で、前記粒径とも深い関係にあり、10.0wt%を超えるよ うになると次第に上記要件を特に自動車用窓材はもちろ ん建築用窓材としても実現し難くなるためである。こと に例えば建築用合せガラス向けとして可視光透過率Tvが 35%以上の場合は無機額料系超微粒子の混合割合が約10 10 ~0.1 wt%程度必要であり、建築用としては約9~0.01 wt%程度、より好ましくは8~0.05wt%程度であり、自 動市用としては好ましい混合割合としては約2.0~0.01 wt%程度、より好ましくは1.5 ~0.05wt%程度、さらに 好ましくは1.0 ~0.1wt %程度である。いずれにしても 合せガラスとしての性能保持とめざす機能性能との兼ね 合いでその混合割合(含有量)は決定されるものであ

9

【0030】さらに、中間膜が、ポリビニルブチラール系樹脂膜(PVB系)、あるいはエチレン一酢酸ビニル共第20合体系樹脂膜(EVA系)であるとしたのは、これらが合せガラス用中間膜として汎用性のものであるから好ましく、合せガラスとしての品質をニーズに整合し得るような中間膜層となるものであれば特に限定するものではない。具体的には可塑性PVB [積水化学工業社製、三菱モンサント社製等]、EVA [デュポン社製、武田薬品工業社製、デュラミン]、変性EVA [東ソー社製、メルセンG]等である。なお、紫外線吸収剤、抗酸化剤、帯電防止剤、熱安定剤、滑剤、充填剤、着色、接着調整剤等を適宜添加配合する。30

【0031】なお、中間膜として、本超微粒子入り中間 膜と従来の中間膜とを、例えば両者を重ね合わせるある いは本超微粒子入り中間膜を従来の中間膜でサンドイッ チする等の構成とするものとしてもよい。

【0032】またさらに、機能性超微粒子が、Sn、Ti、Si、Zn、Zr、Fe、A1、Cr、Co、Ce、In、Ni、Ag、Cu、Pt、Mn、Ta、W、V、Moの金属、酸化物、窒化物、硫化物あるいはSbやFのドープ物の各単独物、もしくはこれらの中から少なくとも2種以上を選択してなる複合物、またはさらに当該単独物もしくは複合物に有機樹脂を含む混合物または有機樹脂物を被覆した被膜物であるものとしたのは、各単独もしくは複合物、混合物、被膜物として断熱性能、紫外線遮蔽性能、着色性能、遮光性等を適宜発現し、建築用や自動車用に求められる種々の機能性および性能を含せガラスとして発現せしめるためである。

【0033】また機能性超微粒子としては、例えばSn、Ti、Si、Zn、Zr、Fe、Al、Cr、Co、Ce、In、Ni、Ag、Cu、Pt、Mn、Ta、W、V等のほかMoなどの各種金属。例えばSnO2、TiO2、SiO2、ZrO2、ZnO、Fe2O2、Al2O3、

FeO、Cr2 Oa、Co2 Oa、CeO2、In2 Oa、NiO、MnO、Cu O 等の各種酸化物。例えばTiN、AlN 等の窒化物、あるいは窒素酸化物。例えばZnS 等の確化物。例えば9wt%Sb2 Oa-SnO2 (ATO) [住友大阪セメント社製]、F-SnO2 等のドープ物。さらに例えばSnO2-10wt%Sb2 Oa、In2 Oa-5wt% SnO3 (ITO) [三菱マテリアル社製] 等の複合物である。フッ素樹脂、PTPE、ルブロン [ダイキン工業 (株)]、セフラルループ [セントラル硝子 (株)]、低分子量TF E などが続げられ、またATO やITO は自動車用としてその要件を備え特に好ましいものである。

【0034】さらに例えば Co_2O_0 -Al $_2O_0$ (TM3410、 $0.01\sim 0.02\,\mu$ m)、 tiO_1 -NiO-Co $_2O_0$ -ZnO(TM3320、 $0.01\sim 0.02\,\mu$ m)、 Fe_2O_0 -ZnO-Cr $_2O_0$ (TM3210、 $0.01\sim 0.02\,\mu$ m) 〔それぞれ大日精化工業社製〕等の無機顔料超微粒子が挙げられ、また例えば具体的にはTiO₂ 超微粒子としては IT-S-UD $[0.02\,\mu$ m、出光石油化学社製〕、UFO1 $[0.018\,\mu$ m、タイオキサイド・ケミカルズ社製]等、 Fe_2O_0 超微粒子としてはナノタイト 〔超微粒子球形へマタイト、 $0.06\,\mu$ m 、昭和電工社製〕等が挙げられ、具体的に挙げていない超微粒子でも適宜必要に応じて求められる機能特性を合せガラスの品質を維持しつつ発揮することができるものであれば特に限定することなく使用できることは言うまでもない。

【0035】またさらに、有機系紫外線吸収剤あるいは 有機系熱線吸収剤については、有機系紫外線吸収剤とし ては例えば2-(2'-ヒドロキシ-5'-メチルフェニル)ベン ゾトリアソール、2-(2'-ヒドロキシ-3',5'- ジ・tert-ブチルフェニル) ベンゾトリアゾール、2-(2'-ヒドロキ シ-3'-tert- ブチル-5'-メチルフェニル) -5- クロロベ 30 ンソトリアゾール、2-(2'-ヒドロキシ-3',5'- ジ・tert - ブチルフェニル)-5-クロロペンプトリアプール、2-(2'-ヒドロキシ-3',5'- ジ・tert- アミルフェニル) ベ ンソトリアソール等のベンソトリアソール系誘導体、ま た例えば2.4-ジヒドロキシベンソフェノン、2-ヒドロキ シ-4- メトキシベンゾフェノン、2-ヒドロキシ-4- オク トキシベンソフェノン、2-ヒドロキシ-4- ドデシルオキ シベンソフェノン、2,2'- ジヒドロキシ-4- メトキシベ ンソフェノン、2.2- ジヒドロキシ-4.4-ジメトキシベ ンゾフェノン、2-ヒドロキシ-4- メトキシ-5- スルホベ ンソフェノン等のベンソフェノン系誘導体、また2-エチ ルヘキシル-2- シアノ-3,3'-ジフェニルアクリレート、 エチル-2- シアノ-3,3'-ジフェニルアクリレート等のシ アノアクリレート系誘導体などが挙げられる。具体的に は例えばTINUVIN327〔チバガイギー社製〕等である。 【0036】さらに有機系熱線吸収剤としては例えばNI R-AM1 [帝国化学産業社製]、ことに近赤外線吸収剤と してはSIR-114 、SIR-128 、SIR-130 、SIR-132 、SIR-169、SIR-103 、PA-1001 、PA-1005 〔三井東圧化学社 製] 等が挙げられる。特に建築用や自動車用に求められ 50 る合せガラスの品質を維持しつつ発揮するものであれ

(7)

特開平8-259279

11

ば、限定することなく使用できることは言うまでもない。

【0037】またさらに、前記した構成でなる合せガラスは種々の建築用窓材等として使用できることはもちろん、特に自動車用窓材として例えばフロントガラス、リアガラスことにシェードパンド付きリアガラス、サイドガラスあるいはサンルーフガラスあるいは他の種々のガラス等に使用できるものである。

【0038】さらに、PTFEなどのフッ素樹脂、シリコーンレジン、シリコーンゴムなどの有機樹脂の微粒子が挙 10 げられ、これらはPVB 膜とガラスなどの透明板との接着強度を低減するために用いられる。すなわちATO、ITOなどの金属酸化物は規格以上の接着強度を付与するようなことが起こりうるために、パンメル値を適宜下げて調整し規格値内に下げるために、例えば前記ガラス表面へのプライマー塗布、前記フッ素樹脂、シリコーンレジン、シリコーンゴム等の有機樹脂を被覆した被膜物などと同様の目的で用いる。

【0039】また、一般にガラスアンテナ付きガラスのシート抵抗値としては、例えば20Kロ/ロ以上の抵抗値 20であって、特にアンテナと接触する際には、10M Q/ロ以上の高抵抗値であることが好ましく、10M Q/ロ未満のシート抵抗値では、積層体にする以前のガラス板の電波透過性に比し充分安定確実に1dB(絶対値として)以内の変動差内に収めることができないものであり、より充分安定確実に1dB以内の変動差内、例えば0.8 dB以内の変動差内とするためには15M Q/ロ以上、さらに電波透過性能および光学特性ならびに物理的化学的特性を充分演足する好ましい積層体のシート抵抗値としては20M Q/ロ以上10G Q/ロ以下程度の範囲であり、より好ま 30 しいシート抵抗値としては22M Q/ロ以上10G Q/ロ以下程度の範囲である。

【0040】 該ガラス板状体とほぼ同等の電波透過性能を有する前記積層体と特に光学特性上で巧みに相互に絡ませ相乗効果をもたらしめるようにすることで、電波透過性能および熱線遮蔽性能を高めたことはもちろん、格段に優れた光学的機能を備える卓越した特に自動車用窓ガラスとして最適なものとしたものである。

【0041】すなわち、自動車用窓ガラスとして、電液透過性能を前記ガラス板状体に限り無く近づけほぼ同等 40としかつ熱線遮蔽性能を日射透過率が65%以下と格段に高め居住性をさらに向上したなかで、運転者や搭乘者等が安全上等で必要である可視光透過率を65%以上とした透視性、例えば可視光透過率が70%以上等を確保し法規上もクリアできるようにでき、しかも運転者や搭乗者等における透視性低下、誤認あるいは目の疲労等の防止に必要である可視光反射率を従来の値よりさらに低減せしめることができ、最適な電波透過型熱線紫外線遮蔽合せガラスとなる。自動車用として好ましくは可視光透過率が68~70%以上、可視光反射率が14%以下、しかも日射 50

透過率が60%以下、刺激純度が15~10%以下であり、建築用として好ましくは可視光透過率が30%以上、可視光反射率が20%以下、しかも日射透過率が65%以下、刺激

純度が20%以下である。 【0042】さらにまた、前記電波透過型熱線紫外線遮蔽の合せガラスは、例えばガラス板状体の周辺部の黒枠内で周級端からある幅で全周部分または給電点部よりやや大きめの部分を除いて、あるいは該給電点部と同様にししかもモール(枠体)を一体成型または後付けする部分を除き、さらには該アンテナ導体部分の全部または一部を除いて超微粒子を含む機能性中間膜を採用する等、

10 分を除さ、さらには限アンナー導体部分の全部または一部を除いて超微粒子を含む機能性中間膜を採用する等、その構成は適宜自在になし得ることは言うまでもない。
【0043】さらにまた、中間膜が熱線遮蔽性能を有してかつシート抵抗値を半導体膜乃至絶縁膜と高い値であることにより、AM電波、FM電波等の放送における受信であることにより、AM電波、FM電波等の放送における受信であるいはTV映像でのゴースト現象等の電波障害などをより確実に発現しないようにすることができ、充分な電波透過性能を有するガラスを得て、環境に優しいものとすることができるものである。また例えば、ガラスアンフナ素子に前記高抵抗の熱線遮蔽性能を有する膜を直接積層した場合においても、電波受信性能の低下には影響を及ぼすことがないようにしたと言えるものとなるものである。

【0044】また、前記したようにガラス板状体としては無機質ガラス、有機ガラスあるいはこれらの複合ガラス、特に所謂フロート法で製造された無機質で透明なクリア乃至希色ガラス、強化ガラスやそれに類するガラス、ブライマーや各種機能性膜等被覆膜付きガラスであり、はがリーン系ガラスやブロンズがラスであり、さらに例えばグレー系ガラスやブルーがガラスであり、さらに例えばグレー系ガラスやブルーがガラスであり、さらに例えばグレー系ガラスへのほかに関ガラス、バイレヤーガラス等、さらに平板あるいは曲げ板等各種板ガラス製品として使用できることは別えのmm程度以下であり、建築用としては約1.0mm程度以上的10mm程度以下が好ましく、自動車用としては約1.5mm程度以上約3.0mm程度以下が好ましく、より好ましくは約2.0mm程度以上約2.5mm程度以下のガラスである。

【0045】さらに、PVB 系またはEVA 系樹脂腺が、粒径が0.2 μm 以下の機能性超微粒子を可塑剤中に80.0 wt %以下分散せしめて機能性超微粒子分散可塑剤をPVB 系またはEVA 系樹脂溶液中に、PVB 系またはEVA 系樹脂に対し機能性超微粒子分散可塑剤をPVB 系またはEVA 系樹脂溶液中に、PVB 系またはEVA 系樹脂に対し機能性超微粒子分散可塑剤を50 wt %以下少なくとも分散添加し、適宜その他の添加剤を加え、混合混練して膜用原料樹脂から得たこととしたのは、可塑剤溶液中に削記機能性超微粒子を分散せしめる方が分散し易く、粒径が0.2 μm以下の機能性超微粒子の分散を充分均一化することができ、透明性が得られるためであり、その混合量が80.0 wt %を超えると次第に分散が難しくなって均一化が確実で

(8)

特別平8-259279

13

なくなり易くなるためであり、好ましくは20.0wt%程度 以下、より好ましくは10.0vt%程度以下、さらに好まし くは5.0wt %以下0.5wt %以上程度であって、少なすぎ ても前記効果がなくなる。

【0046】またPVB 系またはEVA 系樹脂に対し機能性 超微粒子分散可塑剤の分散添加が50wt%を超えると、PV B 系またはEVA 系樹脂中での分散のみでなく、合せガラ スの中間膜としての性能に支障をきたすようになり易い からであり、好ましくは45wt%程度以下、より好ましく は40wt%程度以下10wt%程度以上である。また、混合混 10 **練には通常のミキサー、パンパリーミキサーやプラベン** ダーミキサー、ニーダー等を用いる。

【0047】さらにまた、可塑剤としては、例えばジオ クチルフタレート(DOP)、ジイソデシルフタレート(DID P)、ジトリデシルフタレート(DTDP)、ブチルベンジルフ タレート(BBP) などのフタル酸エステル、またトリクレ シルホスフェート(TCP)、トリオクチルホスフェート(T OP) などのリン酸エステル、またトリブチルシトレー ト、メチルアセチルリシノレート(MAR) などの脂肪酸エ ステル、またトリエチレングリコール・ジー2- エチルブ 20 チレート(3GH)、テトラエチレングリコール・ジヘキサ ノールなどのポリエーテルエステルなど、またさらにこ れらの混合物が挙げられる。

【0048】さらに、前記PVB 系樹脂を溶解する溶剤と しては、例えばエチルアルコール、n-ブロピルアルコー ル、イソプロピルアルコール、n-プチルアルコール、メ チレンクロライド等が挙げられる。さらにまた、前記EV A 系樹脂を溶解する溶剤としては、例えばトルエン、キ シレン、メチレンクロライド等が挙げられる。

【0049】さらに、前記膜用原料樹脂の膜化として は、常法の型押出し法またはカレンダーロール法等であ る。中間膜の膜厚としては約0.2 ~1.2mm 程度、好まし くは約0.3 ~0.9mm 程度である。

【0050】さらに、前記合せガラス化処理としては、 オートクレープ法、減圧下で常温から120 ℃まで昇温す る中で80~120 ℃の温度範囲で20~30分間の加熱等であ り、膜表面に均一な凹凸のしぼを設ける。なお、場合に よって種々の簡易な合せガラス化処理を適宜適用できる ことは言うまでもない。

[0051]

【作用】前述したとおり、本発明の合せガラスは、着 色、熱線や紫外線遮断膜、電波透過等各種の機能性能を 有する粒径が0.2 μm 以下である超微粒子を適宜分散含 有せしめた樹脂中間膜層でもって合せ処理することでな る合せガラスとその製造方法としたことにより、従來か ら使用されている合せガラス用中間膜層に影響を与える ことなく、断熱性能や紫外線遮断性能や電波透過性能等 の機能特性を付与し、しかもクリア乃至着色の色調の側 御およびペーズ値が極めて低く優れた透視性の確保なら びに反射性とぎらつき感の防止等をバランスよくもたら 60 袋内を脱気減圧し、約80~110 ℃程度で約20~30分程度

14

しめ、例えば自動車用安全ガラスに係わるJIS R 3212の 各試験等をクリアする等、従来の合せガラスと変わらな い品質を得ることができ、特殊成分組成ガラスや特殊表 面加工ガラスを必要とせず、かつ現在使用中の合せガラ ス製造ラインをそのままで合せガラス化処理と作業で行 うことができ、安価にかつ容易にしかもガラスの大きさ や形態に自由自在に対応し得て合せガラスを得ることが できるものである。

【0052】ひいては、冷暖房効果を高め居住性を向上 せしめるような優れた日射透過率、環境や人に優しくな る紫外線遮断等を有するとともに、比較的高いものから 低いものまで幅広い可視光線透過率を有するものとする ことができ、AM電波、FM電波TV電波帯等の放送における 受信障害などの低減をすることができ、通常のフロート ガラス並の電波透過性能であることから、車輌用のテレ ビ、ラジオ、携帯電話等のためのガラスアンテナの受信 性能を低下させることなく、あるいはゴースト現象等の 電波障害を低減することができ、本来のガラスアンテナ 性能を発揮させ、車輌内外での快適な環境を確保するこ とができることとなり、電波透過性能を必要とする無色・ から有色と各種色調、はたまたガラスとガラス、ガラス と合成樹脂板、パイレヤー等の合せガラスとして使用可 能な電波透過型熱線紫外線遮蔽ガラス等となり、建築用 窓材としてはもちろん、特に自動車用窓材、例えばフロ ントウインドー、リヤウインドーあるいはサイドウイン ドーまたはサンルーフ、シェードバンド等に、ことに風 防用ガラスにも充分適用でき、また飛行機用窓材等幅広 く適用でき、最近のニーズに最適なものとなる有用な機 能性を有する合せガラス及びその製造方法を提供するも 30 のである。

[0053]

【実施例】以下、実施例により本発明を具体的に説明す る。ただし本発明は係る実施例に限定されるものではな

【0054】<u>実施例1</u>

20vt%ATO(導電性アンチモン含有錫酸化物) 超微粒子 (粒径0.02 µm 以下) 分散含有DOP(ジオクチルフタレー ト) 10gと通常の DOP 130gをPVB(ポリピニルブチラー ル)樹脂 485mに添加し、他の紫外線吸収剤等とともに 40 3本ロールのミキサーにより約70℃で約15分間程度練り 込み混合した。得られた製膜用原料樹脂を型押出機にて 190 ℃前後で厚み約0.8mm 程度にフイルム化しロールに 巻き取った。なお、フイルム表面には均一な凹凸のしば を設けた。

【0055】次に大きさ約300mmx300mm、厚さ約2.3mm のクリアガラス基板(FL2.3) を2枚用意し、該基板と同 じ大きさに前記フイルムを裁断し、調製した中間膜を該 2枚のクリアガラス基板の間に挟み積層体とした。

【0056】次いで該積層体をゴム製の真空袋に入れ、

(9)

特開平8-259279

15

保持した後一旦常温までにし、袋から取り出した積層体をオートクレーブ装置に入れ、圧力約10~14kg/cm²、 温度約110~140 ℃程度で約20~40分間程度の加圧加熱 して合せガラス化処理をした。

【0057】得られた合せガラスについて下記の測定および評価を行った。

[光学特性]:分光光度計(340型自記、日立製作所製)で液長340~1800mmの間の透過率を測定し、JIS Z 8722及びJIS R 3106又はJIS Z 8701によって可視光透過率Tv(380~780mm)、目射透過率Ts(340~1800mm)、刺激 10純度(%)、色調等を求めた。

【くもり度】: ヘーズ値H をJIS K6714 に準拠して行い 求めた。建築用としては3%以下、自動車用としては1 %以下を合格とした。

【電波透過性】: KEC 法測定 (電界シールド効果測定器) によって、電波10~1000Mi2の範囲の反射損失値 (dB) を通常の板厚3mm のクリアガラス(FL3t)単板品と対比。その幾の絶対値 (△dB) が 2dB以内を合格とした。 【接着性】: −18±0.6 ℃の温度で16±4 時間放置し

【仮名性】: - 18至0.6 Cの温度で18至4 時間放通し (積層体とした。 調整後、ハンマー打でのガラスの剥離での中間膜露出程 20 ス化処理をした。 度。少ないものを合格とした。 【0062】得6

[耐熱性]: 100 ℃の煮沸水中にて2 時間程度煮沸した後、周辺10mmを除き、残りの部分での泡の発生、くもり、ガラスのひび割れ等の異常がないものを合格とした。

「耐湿性」: 50±2 ℃、相対湿度95±4 %の調整内に 2週間静置した後、泡の発生、くもり、ガラスのひび割 れ等の異常がないものを合格とした。

「電気的特性」:三菱油化製表面高抵抗計(HIRESTA HT -210)によって測定。

【0058】(シート抵抗値) (M Q/口)。10M Q/ 口以上合格。

〔なお、基本的にはJIS R 3212等安全ガラス、特に合せ ガラスの項に準拠。〕

その結果、可視光透過率Tvが約76.8%程度、日射透過率 Tsが約58.6%程度、刺激純度Peが0.7 %程度で淡いグレ 一系のニュートラル色調、反射によるギラツキもなく、 ヘーズ値Hが約0.3 %程度となり、充分優れた熱線遮蔽 性等の光学特性、格段に高い表面抵抗率で通常単板ガラ ス並み、例えば80MHz(FMラジオ波帯) 、約520 ~1630KH 40 z(AMラジオ波帑) 等特に通常単板ガラスと同等の電波透 過性を示し、かつ充分安定な優れた接着性と耐熱性なら びに耐湿性を示しいずれも合格であり、通常の合せガラ スと変わらない合せガラスを得ることができ、優れた居 住性をもちかつ運転者や搭乗者あるいは環境に優しく安 全性が高くしかもAM帯をはじめ各種電波を快適に受信が でき、建築用窓ガラスはもちろん自動車用窓ガラス、こ とにアンテナ導体と同時に備える自動車用窓ガラスに対 しても充分採用でき、期待に充分答えることができるも のであった。

【0059】なお、他に耐候性(例、サンシヤインウエザーメーターで約1000時間:可視光透過率がほぼ変化が

ないこと) 等の種々の特性をも評価したところ、いずれ も合格するものであった。

【0060】<u>寒施例2</u>

20wt%ATO(導電性アンチモン含有錫酸化物) 超微粒子 (粒径0.02μm 以下) 分散含有3GH(トリエチレングリコール・ジー2-エチルブチレート) 10gと通常の3GH 13 0 gをPVB(ポリピニルブチラール) 樹脂 485gに添加し、さらに接着調整剤としてトスパール120(東芝シリコーン) を5g添加し、他の紫外線吸収剤等とともに3本ロールのミキサーにより約70℃で約15分間程度練り込み混合した。得られた製膜用原料樹脂を型押出機にて190℃前後で呼み約0.8mm 程度にフイルム化しロールに巻き取り、実施例1と同様にして表面には均一な凹凸のしばを設けた呼み約0.8mm 程度の中間膜を得た。

【0061】次に大きさ約300mmx300mm、厚さ約2.0mm のクリアガラス基板(FL2)を用いて実施例1と同様にして積層体とした。次いで実施例1と同様にして合せガラス化処理をした。

【0062】得られた合せガラスは、Tvが76.5%、Tsが58.6%、Hが0.4%等実施例1と同様に優れた光学特性ならびに電波透過性、品質等の各物性をバランスよく示す所期のものであった。

【0063】寒施例3

30

20wt%ITO(導電性錫含有インジウム酸化物) 超微粒子 (粒径0.1 μm 以下) 分散含有BBP(ブチルベンジルフタレート) 10g と通常の BBP90g をPVB 樹脂 323g に添加し、実施例1と同様にして表面には均一な凹凸のしぼを設けた厚み約0.8mm 程度の中間膜を得た。

【0064】次に大きさ約300mmx300mm、厚さ約2.0mm のクリアガラス基板(FL2) を用いて実施例1と同様にし て積層体とした。次いで実施例1と同様にして合せガラ ス化処理をした。

【0065】得られた合せガラスは、Tvが76.3%、Tsが51.5%、Hが0.4%等実施例1と同様に優れた光学特性ならびに電波透過性、品質等の各物性をバランスよく示す所期のものであった。またバンメル値は7~8程度であり、建築用合せガラスに適するものであった。

【0066】<u>寒施例4</u>

20wt%ITO(導電性鍋含有インジウム酸化物) 超微粒子 (粒径0.1 μm 以下) 分散含有BBP(プチルベンジルフタレート) 10g と通常の BBP90g をPVB 樹脂 323g に添加し、さらに接着調整剤としてトスパール120(東芝シリコーン) を5g 添加し、実施例1と同様にして表面には均一な凹凸のしぼを設けた厚み約0.8mm 程度の中間膜を得た。

【0067】次に大きさ約300mmx300mm、厚さ約2.0mm のクリアガラス基板(FL2)を用いて実施例1と同様にし 50 て積層体とした。次いで実施例1と同様にして合せガラ (10)

特別平8-259279

ス化処理をした。

【0068】得られた合せガラスは、Tvが76.2%、Tsが 51.6%、Hが0.4 %等実施例1と同様に優れた光学特性 ならびに電波透過性、品質等の各物性をバランスよく示 す所期のものであった。またパンメル値は3~4程度で あり、自動車用合せガラスとして適するものであった。 【0069】<u>寒施例5</u>

17

実施例3の成分と量に対し、さらに有機系熱線吸収剤10 g添加し、実施例1と同様にして表面均一凹凸のしぼを 設けた厚み約0.8mm 程度の中間膜を得た。

【0070】次に実施例2と同様のクリアガラス基板(F L2) を用いて実施例 I と同様にして稍層体とし、次いで 実施例1と同様にして合せガラス化処理をした。得られ た合せガラスは、Tvが64.3%、Tsが32.8%、Hが0.4 % 等、やや可視光透過率が下がるものの実施例1よりこと に断熱性能が優れ、他は実施例1と同様に優れた光学特 性ならびに電波透過性、品質等の各物性をバランスよく 示す所期のものであった。

【0071】<u>実施例6</u>

20wt%ITO 超微粒子 (粒径0.1 μm 以下) 分散含有 DID 20 P(ジイソデシルフタレート)7gと通常のDIDP95gをPVB 樹脂 323gに添加し、実施例1と同様にして表面均一凹 凸のしぼを設けた原み約0.8mm 程度の中間膜を得た。

【0072】次に同様の大きさと厚みのクリアガラスの うち1枚をグリーンガラス基板(NFL2)に替えて用い、実 施例1と同様にして精層体とした。次いで実施例1と同 様にして合せガラス化処理をした。

【0073】得られた合せガラスは、Tvが73.3%、Tsが 42.0%、Hが0.2 %等、実施例1より断熱性能にかなり 優れるほか、実施例1と同様に優れた光学特性ならびに 30 電波透過性、品質等の各物性をバランスよく示す所期の ものであった。

【0074】<u>実施例7</u>

20wt%ITO 超微粒子(粒径0.1 μm 以下)分散含有 DID P(ジイソデシルフタレート)7gと通常のDIDP95gをPVB 樹脂 323gに添加し、さらに接着調整剤としてトスパー ル120(東芝シリコーン)を5g添加し、実施例1と同様 にして表面均一凹凸のしばを設けた厚み約0.8mm 程度の 中間膜を得た。

【0075】次に同様の大きさと厚みのクリアガラスの 40 うち1枚をグリーンガラス基板(NFL2)に替えて用い、実 施例1と同様にして積層体とした。次いで実施例1と同 様にして合せガラス化処理をした。

【0076】得られた合せガラスは、Tvが73、2%、Tsが 42.1%、Hが0.2 %等、実施例1より断熱性能にかなり 優れるほか、実施例1と同様に優れた光学特性ならびに 電波透過性、品質等の各物性をパランスよく示す所期の ものであった。

【0077】<u>実施例8</u>

面均一凹凸のしぼを設けた厚み約0.8mm 程度の中間膜を 得た。

【0078】次に同様の大きさと厚みのクリアガラスの うち1枚をブルーガラス基板(BFL2)に替えて用い、実施 例1と同様にして積層体とした。次いで実施例1と同様 にして合せガラス化処理をした。

【0079】得られた合せガラスは、Tvが76.0%、Tsが 49.5%、Hが0.2 %等、実施例1より断熱性能がやや優 れるほか、実施例1と同様に優れた光学特性ならびに電 10 波透過性、品質等の各物性をバランスよく示す所期のも のであった。

【0080】実施例9実施例8と同様の厚み約0.8㎜ 程 度の中間膜を用い、次に同様の大きさと厚み のクリアガラスのうち1枚をプロンズガラス基板(MFL2) に替えて用い、実施例1と同様にして積層体とし、次い

で実施例1と同様にして合せガラス化処理をした。

【0081】得られた合せガラスは、Tvが75.1%、Tsが 52.1%、Hが0.2 %等実施例1と同様に優れた光学特性 ならびに電波透過性、品質等の各物性をバランスよく示 す所期のものであった。

【0082】<u>実施例10</u>

実施例8と同様の厚み約0.8mm 程度の中間膜を用い、次 に同様の大きさと厚みのクリアガラスのうち1枚をグレ ーガラス基板(GFL2)に替えて用い、実施例1と同様にし て積層体とし、次いで実施例1と同様にして合せガラス 化処理をした。

【0083】得られた合せガラスは、Tvが76.0%、Tsが 54.5%、Hが0.2 %等実施例1と同様に優れた光学特性 ならびに重波透過性、品質等の各物性をパランスよく示 す所期のものであった。

【0084】<u>実施例11</u>

40wt%無機頗料超微粒子であるTM3410 (Co2Os- Al2Os 、 粒径0.01~-0.02 µm、大日精化工業社製〕分散含有DOP 20gと通常の TCP(トリクレシルホスフェート)120g をPVB(ポリビニルブチラール) 樹脂 480gに添加したも のを実施例1と同様にして練り込み混合した。これを実 施例1と同様にして厚み約0.8mm 程度の中間膜を得た。 次いで実施例1と同様にして合せガラス化処理をした。 【0085】得られた合せガラスは、Tvが73、8%、Tsが

50.2%、Peが7.8 %の鮮やかなブルー系の色調であっ て、Hが0.2 %等、着色に係わる影響を除けば、ほぼ実 施例1と同様に優れた光学特性ならびに電波透過性、品 實等の各物性をバランスよく示す所期のものであった。

【0086】 <u>実施例12</u>

30wt%無機額料超微粒子であるTM3320 [TiO₈-NiO-Co₂O₂ -2n0、粒径0.01~0.02 um 、大日精化工業社製〕分散含 有DOP 30gと通常の MAR(メチルアセチルリシノレー ト)100gをPVB(ポリピニルブチラール) 樹脂 480gに添 加したものを実施例1と同様にして練り込み混合した。 実施例6と同様の成分と量で、実施例1と同様にして表 50 これを実施例1と同様にして厚み約0.8mm程度の中間膜

(11)

特開平8-259279

19

612-455-3801

を得た。次いで実施例1と同様にして合せガラス化処理 をした。

【0087】得られた合せガラスは、Tvが77.8%、Tsが60.2%、Peが13.8%の鮮やかなグリーン系の色調であって、Hが0.2%等、着色に係わる影響を除けば、実施例1と同様に優れた光学特性ならびに電波透過性、品質等の各物性をバランスよく米す所期のものであった。

【0088】実施例13

30wt%無機額料超微粒子であるTM3210 [Fex 0s - Zn0-Crx 0 1 、粒径0.01~0.02 μm 、大日精化工業社製] 分散合有 10 DOP 20g と通常の 3GH(トリエチレングリコール・ジー2 - エチルブチレート)150gをPVB(ポリビニルブチラール) 樹脂 480gに添加したものを実施例1と同様にして練り込み混合した。これを実施例1と同様にして厚み約0.8mm 程度の中間膜を得た。次いで実施例1と同様にして合せガラス化処理をした。

【0089】得られた合せガラスは、Tvが67.8%、Tsが51.8%、Peがやや高めではあるが鮮やかなグリーン系の色調であって、Hが0.2%等、可視光透過率がやや低下するなど着色に係わる影響を受けるものの、実施例1と20同様に優れた光学特性ならびに電波透過性、品質等の各物性をバランスよく示す所期のものであった。

【0090】実施例14

20wt%AT0 超微粒子分散メチルエチルケトン溶液10gと まで合せガラス化処理と作業で行うことができ、安価3GH(トリエチレングリコール・ジ-2- エチルブチレート)150gをPVB(ポリビニルブチラール) 樹脂 490gに添 応し得て実施でき、ひいては冷暖房効果を高め居住性加し、接着調整剤、紫外線吸収剤などとともに3本ロールのミキサーにより約80℃で約20mmHgに減圧しながら約 とができ、AM電波、FM電波TV電波帯等を通常のフロー1時間程度加熱練り込み混合した。これを実施例1と同様にして厚み約0.8mm 程度の中間膜を得た。次いで実施 30 オ、携帯電話等のためのガラスアンテナ性能を発揮させ、建屋や車の利力スアンテナ性能を発揮させ、建屋や車のサフェール・ジー2- エチルブチレー かつ容易にしかもガラスの大きさや形態に自由自在に対して実施でき、ひいては冷暖房効果を高め居住性の上せしめ、環境や人に優しく、幅広い透視性を得るとができ、AM電波、FM電波TV電波帯等を通常のフローがラス立の電波透過性能として車輌用のテレビ、ラジーは、技術でき、大変を発展でき、本来のガラスアンテナ性能を発揮させ、建屋や車のガラスアンテナ性能を発揮させ、建屋や車のガラスアンテナ性能を発揮させ、建屋や車のガラスアンテナ性能を発揮させ、建屋や車のガラスアンテナ性能を発揮させ、建屋や車のガラスアンテナ性能を発揮させ、建屋や車のガラスアンテナ性能を発揮され、東京のガラスアンテナ性能を発揮され、東京のガラスアンテナ性能を発揮され、東京のガラスアンテナ性能を発揮され、東京のガラスアンテナ性能を発揮されています。

【0091】得られた合せガラスは、Tvが76.4%、Tsが51.6%、Hが0.4%等実施例1と同様に優れた光学特性ならびに軽波透過性、品質等の各物性をバランスよく示す所期のものであった。

【0092】実施例15

約100 ℃程度に加熱して水飴状になったPVB(ポリピニルブチラール) 樹脂 490gにATO 超微粒子2gを添加し、 紫外線吸収剤などとともに3本ロールのミキサーにより* *約80℃程度で約1時間程度加熱練り込み混合した。これ を実施例1と同様にして厚み約0.8mm 程度の中間膜を得 た。次いで実施例1と同様にして合せガラス化処理をし た。

【0093】得られた合せガラスは、Tvが77.5%、Tsが55.7%、Hが0.2%等実施例1と同様に優れた光学特性ならびに電波透過性、品質等の各物性をバランスよく示す所期のものであった。

【0094】なお、パンメル値については、実施例1と 2ならびに実施例5~15においても実施例3と4のよう にして適宜建築用あるいは自動車用として調整して用い ることができることは言うまでもない。

[0095]

【発明の効果】以上前述したように、本発明は粒径0.2 μπ 以下の機能性超微粒子を中間膜層に分散含有する合 せガラス及びその製造方法としたことにより、従来から 使用されている合せガラス用中間膜層に大きな影響を与 えることなく、断熱性能や紫外線遮断性能や電波透過性 能等の機能特性を付与し、しかもクリア乃至着色の色調 の制御およびヘーズ値が極めて低く優れた透視性の確保 ならびに反射性とぎらつき感の防止等をバランスよくも たらしめ、従来の合せガラスと変わらない品質を得るよ うにでき、現在使用中の合せガラス製造ラインをそのま まで合せガラス化処理と作業で行うことができ、安価に かつ容易にしかもガラスの大きさや形態に自由自在に対 応し得て実施でき、ひいては冷暖房効果を高め居住性を 向上せしめ、環境や人に優しく、幅広い透視性を得るこ とができ、AM電波、FM電波TV電波帯等を通常のフロート ガラス並の電波透過性能として車輌用のテレビ、ラジ き、本来のガラスアンテナ性能を発揮させ、建屋や車輌 内外での快適な環境を確保することができることとな り、無色から有色と各種色調の合せガラスとして使用可 能な電波遊過型熱線紫外線遮蔽ガラス等となり、各種建 **築用窓材としてはもちろん、特に各種自動車用窓材、こ** とに風防用ガラス、また飛行機用窓材、その他産業用ガ ラス等幅広く適用でき、最近のニーズに最適なものとな る有用な機能性を有する合せガラス及びその製造方法を 提供することができる。

フロントページの続き

(51) Int. Cl.

識別記号 庁内整理番号

FΙ

技術表示簡所

E 0 6 B 5/00

E06B 5/00

Z