High-Speed Encryption Algorithm with Polynomial Roots

Mohamed Emary Mohamed Abdelfattah Abdelfattah Zakaria

Shrouk Elsayed Dalia Abdallah Sara Reda

February 12, 2024

Abstract

Encryption algorithms play a critical role in protecting sensitive data in the digital age. However, traditional symmetric encryption methods like AES suffer from high computational complexity that hinders performance. Our project proposes a novel polynomial interpolation based encryption algorithm that aims to accelerate encryption and decryption speeds. The algorithm leverages polynomials generated from secret keys. It then uses an efficient hybrid root finding technique called HybridBF to encode messages into ciphertext roots and decode them back to plaintext. Extensive testing on 1000 sample plaintext-key pairs shows the new algorithm is significantly faster than AES for both encryption and decryption. The hybrid root finder combines aspects of bisection and false position methods, demonstrating faster convergence than either individual technique. By exploiting polynomials and highly optimized root finding, this project delivers an encryption algorithm with superior efficiency while maintaining security. The improved performance could enable broader adoption of strong encryption across communication networks and data storage systems.

Contents

Introduction	4
Root Finding Methods	5
Bisection Method	6
False Position Method	6
HybridBF Algorithm5.1 Our Equations	7 8 8
Root Finding Algorithms Performance Results 6.1 False Position	9 9 10 11 11 12
Encryption Algorithm Steps 7.1 Encryption Process	13 13 14
Results8.1 Encode Time Comparison8.2 Decode Time Comparison8.3 Total Time Comparison	14 14 15 16
Future Work	18
References	19
ist of Figures	
1HybridBF Steps Flowchart2Iterations Comparison3CPU Time Comparison4Function Value Comparison5Encryption Steps Flowchart6Decryption Steps Flowchart7Encoding Time Comparison8Total Encoding Time Comparison9Decoding Time Comparison10Total Decoding Time Comparison11Total Time Comparison	7 11 12 13 14 15 15 16 16
	Bisection Method False Position Method HybridBF Algorithm 5.1 Our Equations 5.2 Equations From Paper Root Finding Algorithms Performance Results 6.1 False Position 6.2 Bisection Method 6.3 Hybrid Method 6.4 Conclusion 6.4.1 Iterations 6.4.2 CPU Time 6.4.3 Function Value Encryption Algorithm Steps 7.1 Encryption Process 7.2 Decryption Process Results 8.1 Encode Time Comparison 8.2 Decode Time Comparison 8.3 Total Time Comparison 8.4 ThybridBF Steps Flowchart 2 Iterations Comparison 3 CPU Time Comparison 4 Function Value Comparison 5 Encryption Steps Flowchart 6 Encryption Steps Flowchart 7 Encoding Time Comparison 8 Total Encoding Time Comparison 8 Total Encoding Time Comparison 9 Decoding Time Comparison 1 Total Encoding Time Comparison 1 Total Encoding Time Comparison 1 Total Encoding Time Comparison 1 Total Decoding Time Comparison 1 Total Decoding Time Comparison

List of Tables

1	Our Equations	8
2	Equations From Paper	8
3	False Position	9
4	Bisection	10
5	Hybrid	10

1 Introduction

The ever-evolving landscape of cyber threats demands constant innovation in the field of cryptography. Existing encryption algorithms, while providing valuable protection, are often riddled with limitations. Computational complexity can hinder performance, and the rise of quantum computing casts a shadow on the future of established methods. This project presents a groundbreaking departure from tradition, introducing a novel encryption algorithm that leverages the potent combination of polynomials and root finding methods.

This paper delves into the intricate details of the algorithm, meticulously explaining each step of the encryption and decryption processes. We provide a comprehensive analysis of its performance, Comparing it with established methods such as AES, showcasing its significant speed advantage.

2 Root Finding Methods

At the heart of our innovative encryption algorithm lies a powerful mathematical tool: root finding methods. These methods, while seemingly abstract, play a crucial role in ensuring the security and efficiency of our solution. But before we delve into their specific application, let's unpack what they are and why they hold such significance.

In essence, root finding methods aim to solve the equation f(x) = 0, where f(x) is any function. They essentially seek the "roots" of the function, which are the values of x that make the function evaluate to zero. This seemingly simple task becomes incredibly powerful in cryptography.

In our algorithm, we leverage this power by strategically designing the function f(x) to incorporate the encryption key as an unknown variable. Through carefully chosen root finding methods, we iteratively approach the function's roots, and in the decryption process, utilize these roots to recover the original data. The elegance of this approach lies in its inherent security: without knowledge of both the root finding method and how the key is embedded within the function, an attacker would face a near-impossible task of finding the correct roots, keeping your data safe.

However, the importance of root finding methods extends far beyond encryption. They have diverse applications across various fields. In numerical analysis, they are used for solving differential equations and optimization problems among other things. In engineering design, they are crucial for calculating parameters in fields like fluid dynamics and structural analysis. In computer graphics, they are essential for generating realistic images and animations.

Root finding algorithms also have a significant role in machine learning. They are utilized in optimization methods like gradient descent, which is a common technique for training models. The goal of these methods is to minimize a loss function, thereby improving the model's accuracy.

They also have a vital role in economics and finance. They are used to calculate internal rates of return, solve equilibrium equations in economic models, and find optimal investment strategies.

And finally, we will be using root finding methods to solve the polynomial equations that we will be using in our encryption algorithm.

3 Bisection Method

The Bisection Method is a straightforward and reliable numerical method used for solving equations in mathematics, particularly in the field of engineering. It solves equations by repeatedly bisecting an interval and then selecting a subinterval in which a root must lie for further processing.

There are several key advantages to the bisection method:

- Guaranteed convergence. The bracketing approach is known as the bisection method, and it is always convergent.
- Errors can be managed. Increasing the number of iterations in the bisection method always results in a more accurate root.
- Doesn't demand complicated calculations. There are no complicated calculations required when using the bisection method. To use the bisection method, we only need to take the average of two values.
- Error bound is guaranteed. There is a guaranteed error bound in this technique, and it reduces with each repetition. Each cycle reduces the error bound by 12 per cent.
- The bisection method is simple and straightforward to programme on a computer.
- In the case of several roots, the bisection procedure is quick.

But there are also some limitations to the bisection method:

- Although the Bisection method's convergence is guaranteed, it is often slow.
- Choosing a guess that is close to the root may necessitate numerous iterations to converge.
- Some equations' roots cannot be found. Because there are no bracketing values, like $f(x) = x^2$.
- Its rate of convergence is linear.
- It is incapable of determining complex roots.
- If the guess interval contains discontinuities, it cannot be used.
- It cannot be applied over an interval where the function returns values of the same sign.

4 False Position Method

In mathematics, the regula falsi, method of false position, or false position method is a very old method for solving an equation with one unknown; this method, in modified form, is still in use. In simple terms, the method is the trial and error technique of using test ("false") values for the variable and then adjusting the test value according to the outcome. This is sometimes also referred to as "guess and check". Versions of the method predate the advent of algebra and the use of equations.

There are several key advantages to the false position method:

- Convergence is guarenteed: this method is bracketing method and it is always convergent.
- Error can be controlled: increasing number of iteration always yields more accurate root.
- Does not require derivative: this method does not require derivative calculation.

But there are also some limitations to the false position method:

- Slow Rate of Convergence: Although convergence of Regula Falsi method is guaranteed, it is generally slow.
- Can not find root of some equations. For example: $f(x) = x^2$ as there are no bracketing values.
- It has linear rate of convergence.
- It fails to determine complex roots.
- It can not be applied if there are discontinuities in the guess interval.
- It can not be applied over an interval where the function takes values of the same sign.

5 HybridBF Algorithm

The HybridBF algorithm is a hybrid algorithm between the bisection method and false position method. The algorithm works as follows:

- 1. Take the polynomial and the interval that contains the root.
- 2. In each iteration, the algorithm will apply the bisection method and the false position method and get the root from each method.
- 3. The algorithm will choose the root that will give the smallest absolute value of the polynomial.
- 4. The algorithm will stop when the absolute value of the polynomial is less than a certain tolerance we define.

Figure 1: HybridBF Steps Flowchart

To test the algorithm we have used the same 25 equations with each method and run each method (Bisection, False Position, and Hybrid) 500 times for each problem and then we have calculated the average time. We have also calculated the number of iterations each method have taken for each problem.

We have also used the same tolerance for each method which is 10^{-14}

These are the equations that we have used with each method:

5.1 Our Equations

In these equations we have tried to use different types of functions and intervals to test our methods.

Table 1: Our Equations

No	Equation	Equation Code	Interval
<i>P</i> 1	$f(x) = x^3 + 4x^2 - 10 = 0$	x**3 + 4*x**2 - 10	[0, 4]
P2	$f(x) = x^2 - 4$	x**2 - 4	[0, 4]
P3	$f(x) = e^x - 2$	math.exp(x) - 2	[0, 2]
P4	$f(x) = \sin(x)$	math.sin(x)	[2, 6]
P5	$f(x) = x^3 - 6x^2 + 11x - 6$	x**3 - 6*x**2 + 11*x - 6	[1, 2.5]
P6	$f(x) = x^2 + 3x + 2$	x**2 + 3*x + 2	[-2.5, -1.5]
P7	$f(x) = \cos(x) - x$	math.cos(x) - x	[0, 1]
P8	$f(x) = 2^x - 8$	2**x - 8	[2,4]
P9	$f(x) = \tan(x)$	math.tan(x)	[-1, 1]
P10	$f(x) = x^4 - 8x^3 + 18x^2 - 9x + 1$	x**4 - 8*x**3 + 18*x**2 - 9*x + 1	[2, 4]

5.2 Equations From Paper

We got these equations from this paper and we have used the same intervals too.

Table 2: Equations From Paper

No	Equation	Equation Code	Interval	Reference
P11	$f(x) = x^2 - 3$	x**2 - 3	[1,2]	Harder [18]
P12	$f(x) = x^2 - 5$	x**2 - 5	[2,7]	Srivastava[9]
P13	$f(x) = x^2 - 10$	x**2 - 10	[3,4]	Harder [18]
P14	$f(x) = x^2 - x - 2$	x**2 - x - 2	[1,4]	Moazzam [10]
P15	$f(x) = x^2 + 2x - 7$	x**2 + 2*x - 7	[1,3]	Nayak[11]
P16	$f(x) = x^3 - 2$	x**3 - 2	[0,2]	Harder [18]
P17	$f(x) = xe^x - 7$	x * math.exp(x) - 7	[0,2]	Callhoun [19]
P18	$f(x) = x - \cos(x)$	x - math.cos(x)	[0,1]	Ehiwario [6]
P19	$f(x) = x\sin(x) - 1$	x * math.sin(x) - 1	[0,2]	Mathews [20]
P20	$f(x) = x\cos(x) + 1$	x * math.cos(x) + 1	[-2, 4]	Esfandiari [21]
P21	$f(x) = x^{10} - 1$	x**10 - 1	[0,1.3]	Chapra [17]

No	Equation	Equation Code	Interval	Reference
P22	$f(x) = x^2 + e^{x/2} - 5$	x**2 + (2.71828**(x/2)) - 5	[1,2]	Esfandiari [21]
P23	$f(x) = \sin(x)\sinh(x) + 1$	math.sin(x) * math.sinh(x) + 1	[3,4]	Esfandiari [21]
P24	$f(x) = e^x - 3x - 2$	(2.71828**x) - 3*x - 2	[2,3]	Hoffman [22]
P25	$f(x) = \sin(x) - x^2$	math.sin(x) - x**2	[0.5,1]	Chapra[17]

6 Root Finding Algorithms Performance Results

These are the results we got with each method. We have run each method 500 times on each equation and took the average time to get the highest accuracy possible.

6.1 False Position

These are the results we got with False Position method:

Table 3: False Position

	False Position Algorithm						
Problem	Iter	Avg CPU Time	Approximate Root	Function Value	Lower Bound	Upper Bound	
P1	80	0.000229008	1.3652300134140964	-7.11E-15	1.3652300134140964	4	
P2	33	4.399728775024414e-05	1.999999999999978	-8.88E-15	1.999999999999978	4	
P3	51	5.6000232696533204e-05	0.6931471805599422	-6.22E-15	0.6931471805599422	2	
P4	8	6.000041961669922e-06	3.141592653589793	1.2246467991473532e-16	3.141592653589793	3.1415926535899232	
P5	2	0	1	0	1	2.5	
P6	31	4.800844192504883e-05	-2	-5.33E-15	-2.5	-2	
P7	12	1.101541519165039e-05	0.7390851332151551	9.2148511043888e-15	0.7390851332151551	1	
P8	30	4.401159286499024e-05	2.999999999999987	-7.11E-15	2.999999999999987	4	
P9	2	1.991748809814453e-06	0	0	0	1	
P10	13	4.0007591247558594e-05	3.1117486563092474	0	3.1117486563092474	3.111748656309248	
P11	14	1.7997264862060548e-05	1.732050807568876	-4.00E-15	1.732050807568876	2	
P12	50	6.600427627563476e-05	2.2360679774997876	-9.77E-15	2.2360679774997876	7	
P13	17	2.2464752197265626e-05	3.162277660168379	-1.78E-15	3.162277660168379	4	
P14	38	5.301380157470703e-05	1.999999999999971	-8.66E-15	1.999999999999971	4	
P15	21	3.1998634338378904e-05	1.8284271247461896	-2.66E-15	1.8284271247461896	3	
P16	41	5.600643157958984e-05	1.2599210498948719	-6.22E-15	1.2599210498948719	2	
P17	30	3.40123176574707e-05	1.5243452049841437	-7.99E-15	1.5243452049841437	2	
P18	12	1.2005805969238282e-05	0.7390851332151551	-9.21E-15	0.7390851332151551	1	
P19	7	7.99846649169922e-06	1.1141571408719306	8.881784197001252e-16	1.0997501702946164	1.114157140871930	
P20	13	1.1332988739013672e-05	2.0739328090912146	7.771561172376096e-16	2.0739328090912146	2.5157197710146586	
P21	139	0.000183961	0.999999999999991	-8.88E-15	0.999999999999991	1.3	
P22	16	3.3281803131103514e-05	1.6490135532979475	-1.78E-15	1.6490135532979475	2	
P23	45	7.994651794433594e-05	3.2215883990939416	6.328271240363392e-15	3.2215883990939416	4	
P24	45	6.818151473999023e-05	2.1253934262332246	-9.77E-15	2.1253934262332246	3	
P25	17	2.703714370727539e-05	0.8767262153950554	7.882583474838611e-15	0.8767262153950554	1	

6.2 Bisection Method

These are the results we got with Bisection method:

Table 4: Bisection

	Bisection Algorithm						
Problem	Iter	Avg CPU Time	Approximate Root	Function Value	Lower Bound	Upper Bound	
P1	50	7.303380966186524e-05	1.3652300134140951	-2.84E-14	1.3652300134140916	1.3652300134140987	
P2	1	0	2	0	0	4	
P3	49	4.200363159179687e-05	0.6931471805599436	-3.33E-15	0.6931471805599401	0.6931471805599472	
P4	50	3.406333923339844e-05	3.141592653589793	1.2246467991473532e-16	3.1415926535897896	3.1415926535897967	
P5	48	7.496118545532227e-05	2.00000000000000018	0	1.999999999999964	2.0000000000000007	
P6	1	1.9011497497558594e-06	-2	0	-2.5	-1.5	
P7	48	3.201484680175781e-05	0.7390851332151591	2.55351295663786e-15	0.7390851332151556	0.7390851332151627	
P8	1	1.9893646240234374e-06	3	0	2	4	
P9	1	1.991748809814453e-06	0	0	-1	1	
P10	49	9.199857711791992e-05	3.111748656309249	1.0658141036401503e-14	3.1117486563092456	3.1117486563092527	
P11	48	4.000377655029297e-05	1.7320508075688785	4.440892098500626e-15	1.732050807568875	1.732050807568882	
P12	50	3.901958465576172e-05	2.2360679774997854	-1.95E-14	2.236067977499781	2.236067977	
P13	48	3.7988662719726566e-05	3.1622776601683817	1.5987211554602254e-14	3.162277660168378	3.1622776601683853	
P14	50	4.400014877319336e-05	1.999999999999991	-2.66E-15	1.999999999999964	2.00000000000000018	
P15	49	5.607509613037109e-05	1.828427124746188	-1.15E-14	1.8284271247461845	1.8284271247461916	
P16	49	3.8086414337158205e-05	1.2599210498948743	5.329070518200751e-15	1.2599210498948707	1.2599210498948779	
P17	49	3.905820846557617e-05	1.5243452049841473	3.375077994860476e-14	1.5243452049841437	1.5243452049841508	
P18	48	2.9998779296875e-05	0.7390851332151591	-2.55E-15	0.7390851332151556	0.7390851332151627	
P19	49	0.000136974	1.114157140871928	-3.00E-15	1.1141571408719244	1.1141571408719315	
P20	51	5.606412887573242e-05	2.0739328090912155	-1.33E-15	2.073932809091213	2.073932809091218	
P21	48	4.004716873168945e-05	1.0000000000000001	1.1102230246251565e-14	0.999999999999966	1.00000000000000058	
P22	44	5.988311767578125e-05	1.649013553297948	0	1.6490135532978911	1.6490135532980048	
P23	48	6.889772415161133e-05	3.2215883990939425	-5.55E-15	3.221588399093939	3.221588399093946	
P24	48	4.5994281768798825e-05	2.1253934262332272	5.329070518200751e-15	2.1253934262332237	2.125393426233231	
P25	47	6.799602508544923e-05	0.8767262153950632	-8.88E-16	0.8767262153950597	0.8767262153950668	

6.3 Hybrid Method

These are the results we got with hybrid method:

Table 5: Hybrid

	Hybrid Algorithm					
Problem	Iter	Avg CPU Time	Approximate Root	Function Value	Lower Bound	Upper Bound
	10	3.6006927490234375e-05	1.3652300134140964	-7.11E-15	1.365230013413779	1.3675001980274413
P2	1	1.9969940185546874e-06	2	0	0	4
P3	10	1.399993896484375e-05	0.6931471805599453	0	0.6931471805599334	0.695162706
P4	6	1.006174087524414e-05	3.141592653589793	1.2246467991473532e-16	3.1415903579556947	3.141592653604888
P5	1	3.940105438232422e-06	1	0	1	2.5
P6	1	1.9888877868652345e-06	-2	0	-2.5	-1.5
P7	8	1.1938095092773438e-05	0.7390851332151606	1.1102230246251565e-16	0.739085133	0.7422270732175922
P8	1	2.0036697387695312e-06	3	0	2	4
P9	1	2.0928382873535157e-06	0	0	-1	1
P10	8	2.4066925048828126e-05	3.1117486563092474	0	3.1085379927858856	3.1117486563092536
P11	8	1.7096519470214843e-05	1.7320508075688772	-4.44E-16	1.7320508075688001	1.7350578402209837
P12	10	1.4061450958251953e-05	2.236067977499789	-3.55E-15	2.236067977499364	2.243929153983615
P13	8	1.393747329711914e-05	3.1622776601683795	1.7763568394002505e-15	3.16227766	3.1672187190124017
P14	2	2.0089149475097657e-06	2	0	1.5	2.5
P15	5	8.056163787841797e-06	1.828427125	0	1.8284271247430004	1.8284271247493797
P16	9	1.2000083923339844e-05	1.2599210498948723	-4.00E-15	1.259921049893984	1.2611286403176987
P17	11	1.3935565948486329e-05	1.5243452049841444	0	1.5243452049841386	1.526033337108763

	Hybrid Algorithm					
Problem	Iter	Avg CPU Time	Approximate Root	Function Value	Lower Bound	Upper Bound
P18	8	1.0064601898193359e-05	0.7390851332151606	-1.11E-16	0.739085133	0.7422270732175922
P19	6	8.002758026123047e-06	1.1141571408719302	2.220446049250313e-16	1.1132427327642702	1.1141571408719768
P20	10	1.5938282012939452e-05	2.073932809091215	-2.22E-16	2.0739328090911866	2.078935003337393
P21	12	1.6058921813964842e-05	0.999999999999999	-1.11E-15	0.999999999999305	1.000343363282986
P22	8	2.393531799316406e-05	1.6490135532979473	-3.55E-15	1.6490135532974015	1.6531560376633945
P23	9	1.7997264862060548e-05	3.221588399093942	3.3306690738754696e-16	3.2215883990939242	3.2224168881395068
P24	9	1.2019157409667969e-05	2.125393426233225	-7.11E-15	2.1253934262325003	2.1275213330097245
P25	7	1.1998653411865234e-05	0.8767262153950581	4.773959005888173e-15	0.8767262153886713	0.8772684454348731

As we see from the table above the hybrid method tend to be faster and take much less iterations than both Bisection and False Position methods.

6.4 Conclusion

Our conclusions based on the tables and the plots are:

Side Note: The equation $f(x) = x^3 - 6x^2 + 11x - 6$ in P5 has two roots. In the false position and hybrid methods, the equation has a root at 1. On the other hand, the bisection method identifies another root at approximately 2.000000000000018 within the interval [1, 2.5].

6.4.1 Iterations

Figure 2: Iterations Comparison

The hybrid method demonstrates superior performance compared to both the bisection and false position methods in terms of the number of iterations required.

As we see here in P21 the false position method have much more number of iterations than both hybrid and bisection methods which will lead to more CPU time as we will see in the next section.

6.4.2 CPU Time

Figure 3: CPU Time Comparison

The hybrid method shows significant improvement over the bisection method in terms of CPU time, with a ratio of 21:4. This translates to approximately 84% for the hybrid method and 16% for the bisection method.

The hybrid method shows significant improvement over the false position method in terms of CPU time, with a ratio of 19:6. This translates to approximately 76% for the hybrid method and 24% for the false position method.

As a general trend, the hybrid method is faster than both the bisection and false position methods when it comes to finding the approximate root.

6.4.3 Function Value

Figure 4: Function Value Comparison

The hybrid method outperforms both the bisection and false position methods in terms of function value, with smaller values that are closer to zero.

7 Encryption Algorithm Steps

7.1 Encryption Process

The algorithm encrypts plaintext message using a polynomial and root finding method to generate a ciphertext. The encryption process works as follows:

- 1. Take the plaintext message and convert each 4 characters to an integer value using their ASCII values.
- 2. Take the key from the user which will be used to generate the polynomial. The encryption key consists of a set of 5 integer values x_1 , x_2 , y, s, and r.
 - 1. x_1 and x_2 define x interval for the polynomial.
 - 2. y defines the start of y interval for the polynomial and the end will be the negative of y to ensure that the polynomial crosses the x-axis and has a root.
 - 3. *s* defines the number of sections that we want to divide the interval into which will affect the degree of the polynomial.
 - 4. r is used as a random state for the random number generator. The random values will always be the same for the same r value.
- 3. Use the encryption key to generate points that will be used to generate the polynomial. The points are generated using the following steps:
 - 1. Divide the interval $[x_1, x_2]$ into s equal sections.
 - 2. Divide the interval [y, -y] into s equal sections.
 - 3. Generate points from the two intervals that will be used to generate the polynomial.
 - 4. Use the random numbers we got r to add some noise to the points.
 - 5. Apply lagrange interpolation to the points to generate the polynomial.
- 4. Now we have the polynomial and the plaintext integer representation so we will subtract the plaintext integer from the polynomial representation
- 5. We get the root of the polynomial which will be the ciphertext using HybridBF algorithm which is a hybrid algorithm between the bisection method and false position method and it will be discussed later.

Figure 5: Encryption Steps Flowchart

7.2 Decryption Process

The algorithm decrypts the ciphertext message using the polynomial. The decryption process works as follows:

- 1. Take the ciphertext and the key from the user which will be used to generate the polynomial again.
- 2. Use the key to generate the polynomial using the same steps as the encryption process.
- 3. Now we have the polynomial and the ciphertext so we will substitute the ciphertext in the polynomial to get the plaintext integer representation.
- 4. Convert the integer representation to the plaintext message by converting each integer to 4 characters using their ASCII values.

Figure 6: Decryption Steps Flowchart

8 Results

The algorithm was tested using 1000 different plaintext messages and keys and was compared against AES encryption algorithm which is a symmetric encryption algorithm. The results showed that the algorithm is much faster than AES.

8.1 Encode Time Comparison

The algorithm showed a significant improvement in the encoding time compared to AES. The encoding time was measured using the time library in python and the results are shown in this figure:

Figure 7: Encoding Time Comparison

And when we sum the encoding time for all the 1000 messages we get the following results:

Figure 8: Total Encoding Time Comparison

8.2 Decode Time Comparison

The algorithm have also showed a significant improvement in the decoding time compared to AES. The results are shown in this figure:

Figure 9: Decoding Time Comparison

And when we sum the decoding time for all the 1000 messages we get the following results:

Figure 10: Total Decoding Time Comparison

8.3 Total Time Comparison

The total time for both algorithms was also measured and compared. The results are shown in this figure:

Figure 11: Total Time Comparison

And when we sum the total time for all the 1000 messages we get the following results:

Figure 12: Total Time Comparison

9 Future Work

After the successful implementation of the algorithm, we are planning to work on:

- Create a messaging application that uses the algorithm to secure the messages. The application will be a web application that will allow users to send and receive messages securely.
- The messaging application will feature end-to-end encryption, ensuring that only the intended recipient can read the messages. This is achieved by implementing our unique high-speed encryption algorithm.
- Users will be able to create an account, start conversations, and send send messages. Each message sent through the application is encrypted before it leaves the sender's device and can only be decrypted by the intended recipient. This ensures the privacy and security of the communication, even if the data is intercepted during transmission.
- The application will also include features such as group messaging, file sharing, and message notifications. The user interface will be intuitive and user-friendly, making it easy for users to navigate and use the application.

10 References

- 1. jagpreet kaur, Dr. Ramkumar K.R.. A Cryptographic Algorithm using Polynomial Interpolations for Mitigating Key-Size Based Attacks, 14 September 2022, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-2050151/v1]
- 2. Badr, El-Sayed & Attiya, Hala & El Ghamry, Abdallah. (2022). Novel hybrid algorithms for root determining using advantages of open methods and bracketing methods. Alexandria Engineering Journal. 61. 11579-11588. 10.1016/j.aej.2022.05.007.