1º Exercício – Programa de PMR-3401

Data de entrega: 17/05/21__ (até as 23:59 hs)

Método de Runge-Kutta

Um motorista de um carro esportivo perdeu o controle de seu veículo ao arrancar. Casos como esse ocorrem com frequência e nem sempre se pode culpar somente o motorista. A distribuição de massa e o tipo de tração do veículo influenciam em sua estabilidade. Por isso, as companhias de seguro realizam um estudo desse problema e isso é a motivação desse exercício.

Alguns vídeos que evidenciam o fenômeno podem ser vistos no moodle.

Com o intuito de estudar estes casos, será realizada a seguinte modelagem com um carro

de tração traseira:

Por meio da mecânica lagrangiana e considerando o efeito giroscópico das rodas chegam-se as seguintes equações para carros com **tração traseira** (ver figura):

$$m_{total} \, \ddot{x} + m_1 \, L(\dot{\theta}^2 \cos \theta + \, \ddot{\theta} \sin \theta) = -F + F_1 \cos(\theta) \tag{1}$$

$$m_1 \ddot{x} L sen(\theta) + m_1 \ddot{\theta} L^2 + 2 I \omega \dot{\theta} = 0$$
 (2)

Considere:

$$m_{total}=1939~(kg);~L=~2,95~(m);~I=1~(kg~m^2);~\omega=10~rad/s$$

$$\mu = 0.42$$
; $\beta = 0.02$

$$F = \beta m g; F_1 = \mu m_1 g$$

1) Considerando as constantes dadas, resolva as equações para 0<t<20s, com as condições iniciais $\dot{\theta}=0~rad/s,~\theta=10^{\circ}, x=0~m$, $\dot{x}=0~m/s$, para $m=0.6~m_{total}$ (motor dianteiro) e $m_1=0.4~m_{total}$

utilizando:

- a) Método de Euler.
- b) Método de Runge-Kutta de 2ª ordem (Euler modificado) (RK2)
- c) Método de Runge-Kutta de 4ª ordem (RK4)

Para os três métodos verifique a influência do passo " Δt " sobre a solução (ou seja, resolva considerando três diferentes valores de " Δt "). Para cada item e valor de " Δt " plote θ , $\dot{\theta}$ num mesmo gráfico e \dot{x} , \ddot{x} num mesmo gráfico – pra isso utilize escalas diferentes na plotagem de θ , $\dot{\theta}$, \dot{x} e \ddot{x} , ou seja, p.ex. θ . 10^p , $\dot{\theta}$. 10^q , \dot{x} . 10^r e \ddot{x} . 10^s . Encontre valores apropriados de p, q, r, e s de forma que todos os gráficos apareçam na plotagem.

2) O comportamento de veículos **com tração dianteira** é modelado substituindo na equação (1)

$$F = -\mu \, m \, g$$
; $F_1 = -\beta \, m_1 \, g$

e o comportamento de veículos com **com tração nas quatro rodas** é modelado substituindo na equação (1):

$$F = -\mu \, m \, g; \, F_1 = \mu \, m_1 \, g$$

Baseado nisso, resolva os cinco casos apresentados na tabela abaixo utilizando **apenas o método RK4** e para um **único valor de passo** (escolha o mais apropriado). Considere as mesmas propriedades, condições iniciais e o mesmo intervalo de tempo (0<t<20) utilizados no problema anterior. Para cada caso, plote θ , $\dot{\theta}$ num mesmo gráfico e \dot{x} , \ddot{x} num mesmo gráfico – pra isso utilize escalas diferentes na plotagem de θ , $\dot{\theta}$, \dot{x} e \ddot{x} , ou seja, p.ex θ . 10^p , $\dot{\theta}$. 10^q , \dot{x} . 10^r e \ddot{x} . 10^s . Encontre valores apropriados de p, q, r, e e de forma que todos os gráficos apareçam na plotagem.

.

Caso	Motor	Tração	m	m_1	Exemplo
1	Dianteiro	Traseira	$0.8m_{total}$	$0,2\ m_{total}$	F23-248
2	Dianteiro	Dianteira	$0,8m_{total}$	$0,2~m_{total}$	
3	Traseiro	Dianteira	$0,2\ m_{total}$	$0,8m_{total}$	
4	Traseiro	Traseira	$0,2\ m_{total}$	$0,8~m_{total}$	
5	Traseiro	4 rodas	$0,2m_{total}$	$0.8m_{total}$	
	Dianteiro		$0.8\ m_{total}$	$0,2~m_{total}$	

Discutir brevemente a estabilidade aceleração alcançada em cada caso baseado nos resultados obtidos.

APRESENTAÇÃO DOS RESULTADOS

Os trabalhos podem ser feitos em grupos de dois alunos. Os resultados devem ser apresentados da seguinte forma:

- a) Inicialmente apresente todos os equacionamentos analíticos e numéricos do problema a serem implementados no Python, SCILAB ou MATLAB;
- b) Deve-se obrigatoriamente implementar o programa de forma a definir um módulo geral com o algoritmo de Runge-Kutta (conforme o caso) que integre qualquer sistema de equações de primeira ordem (sem limitações). A representação de um sistema particular de equações a ser resolvido no programa deve ser feita através da implementação de uma função ("function") no Python, SCILAB ou MATLAB. O algoritmo de Runge-Kutta deve ser implementado e NÃO será aceita a utilização de comandos prontos do Python, SCILAB ou MATLAB para a solução das E.D.Os ou integração numérica;
- c) Use os comandos do Python, SCILAB ou MATLAB para as plotagens (coloque título, legendas e unidades nos gráficos). Os gráficos devem ser legíveis e de fácil leitura);
- d) NÃO use os comandos de manipulação simbólica do Python, SCILAB ou MATLAB.
- e) Entregue as listagens dos arquivos *.py, *.sci ou *.m) os quais devem estar decentemente comentados;
- f) O relatório (pdf) contendo a listagem do algoritmo (pdf) deve ser entregue na forma digital no moodle.
 O relatório deve ser organizado em seções, os resultados devem ser discutidos e apresentados na sequência descrita neste EP, e no final do relatório deve incluir uma conclusão;
- g) Qualquer discussão ou comparação deve ser acompanhada de gráficos e/ou outras indicações que o levaram às conclusões.