MSO202A COMPLEX ANALYSIS Assignment 4

Exercise Problems:

1. Verify Cauchy's theorem for $f(z) = z^2$ over the boundary of the square with vertices 1+i, -1+i, -1-i and 1-i, counterclockwise.

Proof: Let $C = \bigcup_{j=1}^4 C_j$, where C_j , j = 1, 2, 3, 4, are the four sides of the square represented as $C_1 : \alpha_1(x) = x - i$, x goes from -1 to 1. $C_2 : \alpha_2(y) = 1 + iy$, y goes from -1 to 1. $C_3 : \alpha_3(x) = x + i$, x goes from 1 to -1 $C_4 : \alpha_4(y) = -1 + iy$, y goes from 1 to -1. Therefore,

$$\oint_C f(z) dz = \int_{-1}^1 (x-i)^2 dx + \int_{-1}^1 (1+iy)^2 i dy + \int_{1}^{-1} (x+i)^2 dx + \int_{1}^{-1} (-1+iy)^2 i dy.$$

$$= \int_{-1}^1 [(x^2 - 1 - 2ix) dx + (1 - y^2 + 2iy) i dy - (x^2 - 1 - 2ix) dx - i(1 - y^2 + 2iy) dy] = 0.$$

2. Use ML-inequality to prove the following:

(a)
$$\left| \int_{\gamma} \frac{1}{1+z^2} dz \right| \leq \frac{\pi}{3}$$
, γ is the arc of $|z| = 2$ from 2 to $2i$.

(b)
$$\left| \int_{\gamma} (1+z^2) dz \right| \leq \pi R(R^2+1)$$
, γ is the semicircular arc of $|z| = R$.

Proof:

(a)
$$\left| \frac{1}{1+z^2} \right| \le \frac{1}{|z|^2 - 1} = \frac{1}{3}, L = \pi.$$

(b)
$$|(1+z^2)| \le |z|^2 + 1 = R^2 + 1, L = \pi R.$$

3. By parametrizing the curve or otherwise, evaluate:

- (a) $\int_C \tan z \, dz$, where C is the circle |z| = 1 oriented counter -clockwise.
- (b) $\int_C \operatorname{Re} z^2 dz$, C is the circle |z| = 1 oriented counter -clockwise.
- (c) $\int_C e^{4z} dz$, C is the shortest path from 8-3i to $8-(3+\pi)i$.

Proof:

(a) 0, as $\tan z$ is analytic in a disc containing the unit circle |z|=1.

1

(b)
$$\int_C \text{Re } z^2 dz = \int_0^{2\pi} \cos 2\theta d\theta = 0.$$

(c) As
$$e^{4z}$$
 has primitive $F(z) = \frac{e^{4z}}{4}$, $\int_C e^{4z} dz = F(8 - (3 + \pi)i) - F(8 - 3i)$.

4. Use Cauchy's integral formula to find all simple closed curves C for which the following holds:

(a)
$$\int_C \frac{1}{z} dz = 0$$
, (b) $\int_C \frac{e^{1/z}}{z^2 + 9} dz = 0$.

Proof: (a) Any simple closed curve C which does not enclose 0. (b) Any simple closed curve C which does not enclose $0, \pm 3i$.

5. Integrate $\frac{z^2}{z^4-1}$ counter-clockwise around the circle (a)|z+1|=1 (b) |z+i|=1.

Proof: (a)
$$z^4 - 1 = (z^2 + 1)(z^2 - 1), \frac{z^2}{z^4 - 1} = \frac{z^2 - 1 + 1}{z^4 - 1} = \frac{1}{z^2 + 1} + \frac{1}{z^4 - 1}, \int_C \frac{z^2}{z^4 - 1} dz = 0 + 2\pi i f(-1) = -\frac{\pi i}{2}, \text{ where } f(z) = \frac{z^2}{(z - 1)(z^2 + 1)}.$$

- (b) Similar.
- 6. Integrate the functions counter-clockwise on the unit circle |z|=1: $(a)\frac{z^3}{2z-i}$ (b) $\frac{\cosh 3z}{2z}$ (c) $\frac{z^3\sin z}{3z-1}$.

Proof: (a)
$$2\pi i \frac{z^3}{2}|_{z=i/2}$$
. (b) $2\pi i \frac{\cosh 3z}{2}|_{z=0}$. (c) $2\pi i \frac{z^3 \sin z}{3}|_{z=1/3}$.

7. Let Γ denote the positively (counter-clockwise) oriented boundary of the square whose sides lie on the lines $x=\pm 2$ and $y=\pm 2$. Using Cauchy's integral formula, evaluate the following integrals:

$$(a) \int_{\Gamma} \frac{\cos z}{z(z^2 + 8)} dz \quad (b) \int_{\Gamma} \frac{z}{2z + 1} dz.$$

Proof: Using the Cauchy integral formula:

(a) $i\pi/4$.

(b)
$$\int_{\gamma} \frac{z/2}{z+1/2} dz = 2i\pi(-1/4) = -i\pi/2.$$

Problem for Tutorial:

8. Let C be the positively oriented circle |z|=3. If $f(w)=\int_C \frac{2z^2-z-2}{z-w}\,dz$, $|w|\neq 3$, then show that $f(2)=8i\pi$. What is f(w), if |w|>3?

Proof: $f(2) = \int_C \frac{2z^2 - z - 2}{z - 2} dz = 2\pi i (2z^2 - z - 2)|_{z=2} = 8\pi i$. When |w| > 3, the integrand is analytic in a open set containing C (since w lies outside C) and is hence 0.

9. Use Cauchy's integral formula to find closed contours C in complex plane satisfying (a) $\int_C \log(z) dz = 0$ (b) $\int_C \frac{\cos z}{z^6 - z^2} dz = 0$.

Proof: (a) Any closed contours C which is contained in the simply connected domain $\mathbb{C} \setminus$ the negative real axis.

- (b) Any closed contours C which does not enclose $0, \pm 1, \pm i$.
- 10. Using Cauchy's integral formula, integrate counterclockwise:

$$\oint_C \frac{\text{Ln } (z+1)}{z^2 + 1} dz, \quad C: |z - 2i| = 2.$$

Proof:

$$\oint_C \frac{\operatorname{Ln}\ (z+1)}{z^2+1}\ dz = \frac{i}{2}\oint_C \operatorname{Ln}\ (z+1)\left[\frac{1}{z-i} - \frac{1}{z+i}\right]\ dz = \frac{i}{2}\oint_C \frac{\operatorname{Ln}\ (z+1)}{z-i}\ dz = -\pi \operatorname{Ln}(1+i).$$

as z = -i lies out side |z - 2i| = 2 and hence the integral of that term is zero by Cauchy's integral formula.