Mach3 Version 3.x Macro Programmers Reference Manual

Draft Revision 0.11 31-Sept-2009

Mach3 v3.x VB Programmers Reference Manual

Table of Contents

iction	
Scripting Functions Grouped Alphabetically	
ActivateSignal	
AppendTeachFile	
AskTextQuestion	
CloseDigFile	
CloseTeachFile	
Code	
CoupleSlave	
DeactivateSignal	
DoMenu	
DoOEMButton	
DoSpinCCW	
DoSpinCW	
DoSpinStop	
EndTHC	
FeedRate	
FileName	
GetABSPosition	
GetACoor	
GetCoord	
GetCurrentTool	
GetDRO	
GetDROString	
GetIJMode	
GetLED	
GetMainFolder	
GetOEMDRO	
GetOEMLed	
GetPage	
GetParam	
GetPortByte	
GetToolParam	
GetRPM	
GetSafeZ	
GetScale	
GetSelectedTool	
GetTimer	
GetToolChangeStart	
GetToolDesc	
GetTurretAng	
GetUserDRO	
GetUserLabel	
GetUserLED	
GetVar	

Mach3 v3.x VB Programmers Reference Manual

GetXCoor	52
GetYCoor	53
GetZCoor	54
GotoSafeZ	55
HelpAbout	5 <i>6</i>
IsActive	
IsDiameter	
IsEstop	
IsLoading	60
IsMoving	61
IsOutputActive	62
IsSafeZ	
IsStopped	64
IsSuchSignal	65
JogOff	66
JogOn	67
LoadFile	
LoadRun	
LoadStandardLayout	70
LoadTeachFile	
LoadWizard	
MachMsg	
MaxX	
MaxY	
Message	
MinX	
MinY	
nFmt	
NotifyPlugins	
OpenDigFile	
OpenTeachFile	
Param1	
Param2	85
Param3	
PlayWave	
PutPortByte	
Question	
QueueDepth	
Random	
RefCombination	
ResetAxisSwap	
ResetTHC.	
RetractMode	
roun	
RunFile	
SaveWizard	98

Mach3 v3.x VB Programmers Reference Manual

SetButtonText	99
SetCurrentTool	100
SetDRO	101
SetFeedRate	102
SetFormula	103
SetIJMode	104
SetMachZero	105
SetOEMDRO	
SetPage	107
SetParam	108
SetPulley	110
SetSafeZ	111
SetScale	112
SetSpinSpeed	113
SetTicker	114
SetTimer	115
SetToolParam	116
SetToolX	117
SetToolZ	118
SetTriggerMacro	119
SetUserDRO	120
SetUserLabel	121
SetUserLED	122
SetVar	123
SingleVerify	124
SingleVerifyReport	
Sleep	126
Speak	127
StartTHC	128
StraightFeed	
StraightTraverse	
SwapAxis	
SystemWaitFor	
THCOff	
THCOn	
ToggleScreens	
ToolLengthOffset	
VerifyAxis	
ZeroTHC	
Legacy Functions Grouped By Function	
Modbus Functions Grouped Alphabetically	
Serial Output Functions Grouped Alphabetically	

Introduction

This Programmers Reference Manual documents the commonly used VB function calls available to macro programmers using Mach3 version 3. This information is being provided primarily to help Mach3 users understand existing macro code. While this interface will continue to be supported by future Mach3 versions for some period of time, Mach version 4 will provide a completely new, much more regular interface, *much* higher functionality interface for VB macro programming. It is *strongly* recommended that all new VB code use the new interface, as support for this old one *will* be discontinued at some point in the, possibly not too distant, future. In addition, it is unlikely there will be any further updates or bug fixes to this now obsolete interface after the release of Mach3 version 4, so any existing bugs and anomolies (and there are quite a few) will remain.

No attempt has been made to make this an exhaustive document covering all of the VB functionality. There are many functions which were never previously documented, or which were documented incorrectly. In many cases, these functions are not included in this document. There are a number of functions which were partially documented, but found to either not function as documented, to have significant restriction in their operation, or, in some cases, were felt to be either of no real value, or even risky to use. These functions are generally not included in this document. The functionality described herein has been tested against Mach3 version 3.042.020. Some functions may behave differently in other versions. Some functions will be missing entirely in some earlier versions.

Legacy Scripting Functions Grouped Alphabetically

ActivateSignal

Sub ActivateSignal (SigNum As Integer)

This function causes the specified Mach output signal to be driven to its active state. If the signal is defined in Config->Ports&Pins as ActiveHigh, it will be driven to a logic High level, otherwise it will be driven to a logic Low level.

Arguments:

SignalID must be one of the pre-defined Mach3 VB output signal constants (see VB Constants), or other value or expression that evaluates to one of those values.

Return Value:

None

Example:

```
ActivateSignal(OUTPUT2) 'Turn on Flux Capacitor Sleep(1000) 'Give it time to charge fully DeactivateSignal(OUTPUT2) 'Turn it off
```

See also:

DeactivateSignal(), VB Constants

AppendTeachFile

Function AppendTeachFile(Filename As String) As Integer

This function re-opens an existing Teach file at Gcode\Filename in the Mach3 directory, and appends any commands subsequently executed via MDI or Code() to that file, until CloseTeachFile() is executed. The specified file must already exist.

Arguments:

Filename is the name of the Teach file to be re-opened. The file must reside in the Gcode subdirectory of the Mach3 install directory.

Return Value:

A non-zero value is returned if the operation was successful.

Example:

```
' Create a new Teach File in Mach3\Gcode
MyTeachFile = "TeachMe.nc"
Err = OpenTeachFile(MyTeachFile)
If Err <> 0 Then
     ' Teach file created successfully
     ' Write some G Code to it
     Code "G00 X0 Y0"
     Code "G02 X0 Y0 I-1 J0 F40"
     ' Close the Teach file
     CloseTeachFile()
     ' Now load the teach file for execution
     LoadTeachFile()
Else
     ' OpenTeachFile failed
     Message "Unable to open Teach File"
End If
```

See also:

OpenTeachFile(), CloseTeachFile()

AskTextQuestion

Function AskTextQuestion(Prompt As String) As String

This function displays a dialog box containing the specified prompt string, and waits for the user to enter a text string in the dialogs text box. The user entered string is returned to the caller.

Arguments:

Prompt string is the string that will be displayed above the text box when the dialog is displayed.

Return Value:

The text string entered by the user.

Example:

```
Dim UsersName As String
UsersName = AskTextQuestion("Please enter your name:")
Message "Hello, " & UsersName & "!"
```


See also:

Message(), Question(), AskTextQuestion(), MachMsg(), GetCoord()

CloseDigFile

Sub CloseDigFile()

This function closes an open digitizing file. If there is no open digitizing file, it does nothing.

Arguments:

None

Return Value:

None

Example:

```
OpenDigFile()

ProbeOutline()

CloseDigFile()

' Open the digitizing file

Call my custom probing function

Close the digitizing file
```

See also:

OpenDigFile(), SetProbeActive(), IsProbing()

CloseTeachFile

Sub CloseTeachFile()

This function closes an open Teach file. The file must have previously been opened by either OpenTeachFile, or AppendTeachFile(). If not Teach file is currently open, it does nothing.

Arguments:

None

Return Value:

None

Example:

```
TeachFile = "MyTeachFile.nc"
Dim Err As Integer
Err = OpenTeachFile(TeachFile)
If Err = 0 Then
    MsgBox("Unable To Open: " & Teachfile)
Else
     ' MDI commands entered here are written to TeachFile
     Code ("G55")
     Code ("G00 X0.000 Y0.000 Z0.500")
End If
' Now close TeachFile
CloseTeachFile()
' Do something else here
' Now re-open TeachFile for append
Err = AppendTeachFile(TeachFile)
If Err = 0 Then
    MsgBox("Unable To Open: " & TeachFile)
Else
     ' MDI commands entered here are written to TeachFile
     Code ("G56")
     Code ("G00 X0.000 Y0.000 Z0.500")
End If
' Now close TeachFile
CloseTeachFile()
```

See also:

OpenTeachFile(), AppendTeachFile()

Code

Sub Code(Gcode As String)

This function executes the single line of G-code passed as the argument, exactly as if it had been entered on the MDI line, or encountered in a G-Code program. Note that the G-code line is placed in the execution queue, but, in general, the Code() function will return before the line has actually been executed. If it is important that your program know that the line has completed execution, a While loop must be used with the IsMoving() function, as shown in the example below.

Note also that if a Teach file is currently open, the G-code line will not actually be executed, but will simply be written out to the Teach file.

The following optional modes of the Code() function are documented here only for completeness. Their use is discouraged, and support for them may be discontinued at any time, without warning.

```
Sub Code("LOAD:" & FilePath)
```

This mode loads a G-Code file from the specified FilePath. The LoadFile() function should be used instead.

```
Sub Code("SAVE XML")
```

This method immediately saves the XML configuration file.

Arguments:

A single G-code line to be executed as a String

Return Value:

None

Example:

```
'Select our fixture
Code("G55")
' Move away from the vise
Code("G00 X-4.000 Y1.000 Z1.000")
' Wait for movement to complete
While (IsMoving())
    ' Sleep, so other threads can run while we're waiting
        Sleep(100)
Wend
' Done
```

See also:

CoupleSlave

Sub Function CoupleSlave(State As Integer)

This function causes any slaved axis to be coupled to, or de-coupled from, its master axis during homing.

Arguments:

State is an Integer value of 0 or 1 that defines whether the slave axis should be coupled to its master axis during homing. If State is 0, the axes will be un-coupled. If State is 1, the axes will be coupled.

Return Value:

None

Example:

```
'Define the axes
Dim Xaxis As Integer
Xaxis = 0
Dim Yaxis As Integer
Yaxis = 0

'Couple the slaved A axis to its master X axis
CoupleSlave(1)
'Home the master and slave
SingleVerify(Xaxis)
'Un-couple the X and A axes
CoupleSlave(0)
```

See also:

None

DeactivateSignal

Sub DeactivateSignal (SigNum As Integer)

This function causes the specified Mach output signal to be driven to its inactive state. If the signal is defined in Config->Ports&Pins as ActiveHigh, it will be driven to a logic Low level, otherwise it will be driven to a logic High level.

Arguments:

SignalID must be one of the pre-defined Mach3 VB output signal constants (see VB Constants), or other value or expression that evaluates to one of those values.

Return Value:

None

Example:

```
ActivateSignal (OUTPUT2)

' Turn on Flux Capacitor
Sleep(1000)

' Give it time to charge fully
' Turn it off
```

See also:

ActivateSignal (), VB Constants

DoMenu

Sub DoMenu (MenuIndex As Integer, MenuItem As Integer)

This function allows a macro script to invoke any function available through any of the Mach3 menus, exactly as if the user had clicked on the menu with the mouse. The specific menu item to be invoked is specified by the two arguments. The first indicates which menu the item to be invoked resides in. The second indicates which item within that menu is to be invoked.

Arguments:

MenuIndex is the 0-based index of the menu to activate. The File menu is index 0, the Config menu is index 1, etc.

MenuItem is the 0-based index of the menu item to activate. The first item on a given menu is index 0, the second is index 1, etc.

Return Value:

None

Example:

```
' Define menu indices, left-to-right, starting with 0
Dim FileMenu As Integer
FileMenu = 0
Dim ConfiqMenu As Integer
ConfigMenu = 1
' Define File menu items, top-to-bottom, starting with 0
Dim FileMenuLoadGCodeMenuItem
FileMenuLoadGCodeMenuItem = 0
Dim FileMenuLazyCAMMenuItem As Integer
FileMenuLazyCAMMenuItem = 1
Dim FileMenuCloseFilesMenuItem As Integer
FileMenuCloseFilesMenuItem = 2
Dim FileMenuExitMenuItem As Integer
FileMenuExitMenuItem = 3
' Define Config menu items, top-to-bottom, starting with 0
Dim ConfigMenuDefineNativeUnitsMenuItem As Integer
ConfigMenuDefineNativeUnitsMenuItem = 0
Dim ConfigMenuPortsAndPinsMenuItem As Integer
ConfigMenuPortsAndPinsMenuItem = 1
' Pop-up the Config->Ports & Pins dialog
DoMenu (ConfigMenu, ConfigMenuPortsAndPinsMenuItem)
```

See also:

DoButton(), DoOEMButton()

DoOEMButton

Sub DoOEMButton(OEMButtonCode As Integer)

This function allows a macro to execute any on-screen button function which has an assigned Button OEM code. The specified function is invoked exactly as if the user had clicked the corresponding onscreen button with the mouse. Note that no actual on-screen button need exist for this function to work. This is simply an easy means to execute any of the "OEM Button" functions through VB.

Arguments:

OEMButtonCode must be one of the pre-defined Mach3 OEM Button Code constants (see VB Constants), or other value or expression that evaluates to one of those values.

Return Value:

None

Example:

```
' Define OEM codes for Mist On and Mist Off
Dim OEMButtonMistOn As Integer
OEMButtonMistOn = 226
Dim OEMButtonMistOff As Integer
OEMButtonMistOff = 227
' Turn Mist coolant on for 3 seconds
DoOEMButton(OEMButtonMistOn)
Sleep(3000)
DoOEMButton(OEMButtonMistOff)
```

See also:

DoButton(), DoOEMButton(), DoMenu()

DoSpinCCW

Sub DoSpinCCW()

This function turns the spindle on, rotating counter-clockwise.

```
Arguments:
```

None

Return Value:

None

Example:

```
'Turn on the spindle, turning CCW
DoSpinCCW()
'Let it run 5 seconds
Sleep(5000)
'Now turn it off
DoSpinStop()
```

See also:

DoSpinCW(), DoSpinStop()

DoSpinCW

Sub DoSpinCW()

This function turns the spindle on, rotating clockwise.

```
Arguments:
```

None

Return Value:

None

Example:

```
'Turn on the spindle, turning CW
DoSpinCW()
'Let it run 5 seconds
Sleep(5000)
'Now turn it off
DoSpinStop()
```

See also:

DoSpinCCW(), DoSpinStop()

DoSpinStop

Sub DoSpinStop()

This function turns off the spindle.

```
Arguments:
```

None

Return Value:

None

Example:

```
'Turn on the spindle, turning CW
DoSpinCW()
'Let it run 5 seconds
Sleep(5000)
'Now turn it off
DoSpinStop()
```

See also:

DoSpinCW(), DoSpindCCW()

EndTHC

Sub EndTHC()

This function turns off torch height control. It is functionally identical to THCOff().

Arguments:

None

Return Value:

None

Example:

```
StartTHC() ' Turn on torch height control
... ' Do some cutting here
EndTHC() ' Turn off torch height control
```

See also:

StartTHC(), THCOn(), EndTHC(), THCOff(), ZeroTHC(), ResetTHC()

FeedRate

Sub FeedRate() As Double

This function gets the current feedrate. Note that Feedrate is specified in units per minute.

Arguments:

Feedrate specified in units/minute, as a Double

Return Value:

None

Example:

```
' Set the feedrate to 123.456 inches/minute
SetFeedRate(123.456 / 60)
' Get the current feedrate, in inches/minute, and display it
CurrentFeedrate = FeedRate()
' Display it on the status line
Message "Current feedrate = " & CurrentFeedrate
```

See also:

SetFeedrate()

FileName

Function FileName() As String

This function returns the filename and path of the currently loaded G-Code file, if any. If no file is currently loaded, the string "No File Loaded." is returned instead.

Arguments:

None

Return Value:

Current G-Code file name and path, or "No File Loaded."

Example:

```
'Show user current G-Code file name and path Message "Current file is: " & FileName()
```

See also:

LoadFile(), LoadRun()

GetABSPosition

Function GetABSPosition(Axis As Integer) As Double

This function returns the machine position of the specified axis

Arguments:

Axis is the axis whose machine position is being requested as follows:

0 = X Axis

1 = Y Axis

2 = Z Axis

3 = A Axis

4 = B Axis

5 = C Axis

Return Value:

Machine position as a Double

Example:

```
'Define the axes
Dim Xaxis As Integer
Xaxis = 0
Dim Yaxis As Integer
Yaxis = 1
Dim Zaxis As Integer
Zaxis = 2

'Get Y Axis Machine Position
Dim AxisPos As Double
AxisPos = GetABSPosition(Yaxis)
'Put it on the status line
Message "Y Axis Machine Pos = " & AxisPos
```

See also:

SetMachZero(), MinX(), MaxX(), MinY(), MaxY()

GetACoor

Function GetACoor() As Double

This function is used in conjuction with the GetCoord() function to get X, Y, Z and A axis coordinate values from the user. The GetACoor() function will return the A value entered by the user in the last GetCoord() function call.

Arguments:

None

Return Value:

A Axis coordinate value from last GetCoord() call

Example:

```
GetCoord("Enter target coordinates:")
Message "Coordinates are: " & GetXCoor() & " " & GetYCoor() & " "
& GetZCoor() & " " & GetACoor()
```


See also:

GetCoord(), GetXCoor(), GetZCoor()

GetCoord

Sub GetCoord(Prompt As String)

This function display a dialog box containing the Prompt string, along with four textboxes, labelled X, Y, Z and A, into which the user can enter four coordinate values. The values are stored in variables within Mach3 which can be retrieved using the GetXCoor(), GetYCoor(), GetZCoor() and GetACoor() functions.

Arguments:

Prompt is a String that is displayed in the dialog box.

Return Value:

None

Example:

```
GetCoord("Enter target coordinates:")
Message "Coordinates are: " & GetXCoor() & " " & GetYCoor() & " "
& GetZCoor() & " " & GetACoor()
```


See also:

GetXCoor(), GetYCoor(), GetZCoor(), GetACoor()

GetCurrentTool

Function GetCurrentTool() As Integer

This function returns the currently active tool number.

Arguments:

None

Return Value:

Current tool number, 1-253.

Example:

```
'Tell the user which tool is active

Message "Current Tool is " & GetCurrentTool() & " = > " &

GetToolDesc()
```

See also:

SetCurrentTool(), GetSelectedTool(), ToolLengthOffset(), GetToolParam(), SetToolParam(), GetToolChangeStart(), GetToolDesc(), SetToolX(), SetToolZ()

GetDRO

Function GetDRO(DRONum As Integer) As Double

This legacy function takes the DRO number passed as its argument, adds 800 to it, and returns the value of the Mach OEM DRO of that number. GetDRO(DRONum) is exactly equivalent to GetOEMDRO(DRONum + 800). The only difference between this function and GetOEMDRO() is that this function adds 800 to DRONum to calculate the actual DRO number to be accessed. This function is deprecated, and its use is *strongly* discouraged. Use of the GetOEMDRO/SetOEMDRO and GetUserDRO/SetUserDRO functions is strongly recommended.

Arguments:

DRONum is the OEM DRO number to read, minus 800. Valid DRONums are from 0 to 200, which correspond to OEM DRO numbers 800 to 1000.

Return Value:

Contents of OEM DRO DRONum + 800

Example:

```
' Define the axes
Dim Xaxis As Integer
Xaxis = 800
Dim Yaxis As Integer
Yaxis = 801
Dim Zaxis As Integer
Zaxis = 802

' Write 1.2345 to Z axis DRO
SetOEMDRO(Zaxis, 1.2345)
' Show the user the Z Axis DRO value, using GetOEMDRO()
MsgBox "Using GetOEMDRO() Z Axis DRO reads: " & GetOEMDRO(Zaxis)
' Now show him the same thing, this time using GetDRO()
MsgBox "Using GetDRO() Z Axis DRO reads: " & GetDRO(Zaxis-800)
```

See also:

SetOEMDRO(), GetOEMDRO(), SetUserDRO(), GetUserDRO()

GetDROString

Function GetDROString(DRONum As Integer) As String

This legacy function takes the DRO number passed as its argument, adds 800 to it, and returns the value of the Mach OEM DRO of that number, rounded to four decimal places, and formatted as a String. This function is deprecated, and its use is *strongly* discouraged. Use of the GetOEMDRO/SetOEMDRO and GetUserDRO/SetUserDRO functions is strongly recommended.

Arguments:

DRONum is the OEM DRO number to read, minus 800. Valid DRONums are from 0 to 200, which correspond to OEM DRO numbers 800 to 1000.

Return Value:

Contents of OEM DRO DRONum + 800

Example:

```
'Define the axes
Dim Xaxis As Integer
Xaxis = 800
Dim Yaxis As Integer
Yaxis = 801
Dim Zaxis As Integer
Zaxis = 802
'Write 1.2345 to Z axis DRO
SetOEMDRO(Zaxis, 1.2345)
'Show the user the Z Axis DRO value, using GetOEMDRO()
MsgBox "Using GetOEMDRO() Z Axis DRO reads: " & GetOEMDRO(Zaxis )
'Now show him the same thing, this time using GetDRO()
MsgBox "Using GetDRO() Z Axis DRO reads: " & GetDRO(Zaxis-800)
```

See also:

SetOEMDRO(), GetOEMDRO(), SetUserDRO(), GetUserDRO()

GetIJMode

Function GetIJMode() As Integer

This function returns the current IJ mode (absolute/incremental), as set in Config->GeneralConfig.

Arguments:

None

Return Value:

0 indicates absolute IJ mode is enabled 1 indicates incremental IJ mode is enabled

Example:

See also:

SetIJMode()

GetLED

Function GetLED(LEDNum As Integer) As Integer

This legacy function takes the LED number passed as its argument, adds 800 to it, and returns the state of the Mach OEM LED of that number. GetLED(LEDNum) is exactly equivalent to GetLED(LEDNum + 800). This function is deprecated, and its use is *strongly* discouraged. Use of the GetOEMLED and GetUserLED/SetUserLED functions is strongly recommended.

Arguments:

LEDNum is the OEM LED number to read, minus 800. Valid DRONums are from 0 to 55, which correspond to OEM LED numbers 800 to 855.

Return Value:

0 indicates LED (LEDNum+800) is currently turned off 1 indicates LED (LEDNum+800) is currently turned on

Example:

```
' Define the LEDs
Dim InchModeLED As Integer
Dim mmModeLED As Integer
' Are we in inch or metric mode?
' First, doing it the "wrong" way...
' Force Inch mode
Code "G20"
InchModeLED = 1
mmModeLED = 2
If GetLED(InchModeLED) Then
     ' We are in Inch Mode
     Message "Inch Mode"
ElseIf GetLED (mmModeLED) Then
     ' We are in mm Mode
     Message "mm Mode"
End If
' Now doing it the "right" way ...
' Force mm mode
Code "G21"
InchModeLED = 801
mmModeLED = 802
If GetOEMLED(InchModeLED) Then
     ' We are in Inch Mode
     Message "Inch Mode"
ElseIf GetOEMLED(mmModeLED) Then
     ' We are in mm Mode
     Message "mm Mode"
End If
```

See also:

GetOEMLED(), SetUserLED(), GetUserLED()

GetMainFolder

Function GetMainFolder() As String

This function returns the full path to the Mach3 installation folder

Arguments:

None

Return Value:

String full filesystem path to Mach3 installation folder

Example:

```
'Show the user where Mach3 is installed
Message "Mach3 is installed at: " & GetMainFolder()
```

See also:

GetOEMDRO

Function GetOEMDRO(DRONum As Integer) As Double

This function returns the value of OEM DRO DRONum.

Arguments:

DRONum must be a valid OEM DRO number.

Return Value:

Returns a Double value of the specified DRO

Example:

See also:

SetOEMDRO(), SetUserDRO(), GetUserDRO()

GetOEMLed

Function GetOEMLED(LEDNum As Integer) As Integer

This function returns the value of OEM LED LEDNum.

Arguments:

LEDNum must be a valid OEM LED number.

Return Value:

Returns an Integer value representing the current state of the specified LED. 0 indicates the LED of off (unlit), 1 indicated the LED is on (lit).

Example:

See also:

SetOEMLED(), SetUserLED(), GetUserLED()

GetPage

Function GetPage() As Integer

This function returns the number of the currently active screenset page

Arguments:

None

Return Value:

Current screenset page number, as Integer

Example:

See also:

SetPage()

GetParam

Function GetParam(ParamName As String) As Double

This function allows a number of Mach3 internal parameters (not to be confused with G-code parameters) to be read. Each Mach3 parameter is identified by name. The current value of the parameter whose name is given by ParamName is returned as a Double. Valid parameters are:

Parameter	Description
XMachine	X axis machine position
YMachine	Y axis machine position
ZMachine	Z axis machine position
Encoder1	Encoder1 Count
Encoder2	Encoder2 Count
Encoder3	Encoder3 Count
Encoder4	Encoder4 Count
MPG1	MPG1 Count
MPG2	MPG2 Count
MPG3	MPG3 Count
XScale	X axis scale factor
YScale	Y axis scale factor
ZScale	Z axis scale factor
AScale	A axis scale factor
BScale	B axis scale factor
CScale	C axis scale factor
FeedRate	Feedrate
Units	Current units (inch/mm). $0 = mm$, $1 = inch$
StepsPerAxisX	X axis steps per unit
StepsPerAxisY	Y axis steps per unit
StepsPerAxisZ	Z axis steps per unit
StepsPerAxisA	A axis steps per unit
StepsPerAxisB	B axis steps per unit
StepsPerAxisC	C axis steps per unit
VelocitiesX	X axis maximum velocity, from motor tuning, in units/second
VelocitiesY	Y axis maximum velocity, from motor tuning, in units/second
VelocitiesZ	Z axis maximum velocity, from motor tuning, in units/second
VelocitiesA	A axis maximum velocity, from motor tuning, in units/second
VelocitiesB	B axis maximum velocity, from motor tuning, in units/second
VelocitiesC	C axis maximum velocity, from motor tuning, in units/second
AccelerationX	X axis maximum acceleration, from motor tuning
AccelerationY	Y axis maximum acceleration, from motor tuning
AccelerationZ	Z axis maximum acceleration, from motor tuning
AccelerationA	A axis maximum acceleration, from motor tuning
AccelerationB	B axis maximum acceleration, from motor tuning
AccelerationC	C axis maximum acceleration, from motor tuning

Mach3 v3.x VB Programmers Reference Manual

SpindleSpeed	Should modify Spindle Speed, but does not work in all versions. User SetSpinSpeed() instead.
ZInhibitOn	Z Inhibit Enable. 0=Z inhibit disabled, 1=Z inhibit enabled. When Z inhibit is enabled,
	the Z axis will not be allowed to move below the depth specified by the ZinhibitDepth
	parameter.
ZInhibitDepth	Z Inhibit Depth. When Z inhibit is enabled, the Z axis will not be allowed to move
	below the depth specified by the ZinhibitDepth parameter.
SafeZ	SafeZ height
XDRO	X axis DRO
YDRO	Y axis DRO
ZDRO	Z axis DRO
ADRO	A axis DRO
BDRO	B axis DRO
CDRO	C axis DRO
Boundry	Toolpath Boundaries display enable. 0=>disable boundaries display, 1=>enable
	boundaries display
XRefPer	X axis homing speed, as % of rapid speed
YRefPer	Y axis homing speed, as % of rapid speed
ZRefPer	Z axis homing speed, as % of rapid speed
ARefPer	A axis homing speed, as % of rapid speed
BRefPer	B axis homing speed, as % of rapid speed
CRefPer	C axis homing speed, as % of rapid speed
TotalHours	Running count of total Mach3 up-time

Arguments:

ParamName is the String name of the parameter to be returned. This must be one of the above names.

Return Value:

Current value of the requested parameter as a Double

Example:

```
'Get the new scale factor from the user

ScaleFactor = Question "Enter new scale factor:"

'Set the new scale factor for X/Y/Z

SetParam("Xscale", ScaleFactor)

SetParam("Yscale", ScaleFactor)

SetParam("Zscale", ScaleFactor)
```

See also:

SetParam()

GetPortByte

Function GetPortByte(PortAddr As Integer) As Integer

This function reads the 8-bit PC I/O port whose address is given by PortAddr, and returns the 80bit data value read from the port as an unsigned integer value. This function can be used for reading hardware devices not directly supported by Mach3.

Arguments:

PortAddr is the Integer address of the port to be read

Return Value:

Unsigned 8-bit integer value read from the port.

Example:

```
'Our port address
PortAddr = 1016 '0x3f8
'Read data register of parallel port at 0x3f8
PortData = GetPortByte(PortAddr)
```

See also:

PutPortByte()

GetToolParam

Function GetToolParam(ToolNum As Integer, ParamNum As Integer)

This function allows any tool parameter, except the description text, for any tool to be read. ToolNum is the number of the tool whose parameters are being set, and can be from 1 to 255. ParamNum is a parameter number, defined as follows:

For Mach3Mill:

- 1 = Diameter
- 2 = Z Offset
- 3 = X Wear
- 4 = Z Wear

For Mach3Turn:

- 1 = Tip Type
- 2 = Tool Radius
- 3 = X Offset
- 4 = Z Offset
- 5 = X Wear
- 6 = Z Wear
- 7 = Turret Angle

Arguments:

ToolNum is an Integer tool number, and must be between 1 and 255.

Return Value:

Requested parameter value, as a Double

Example:

```
' Define some constants
DiameterParam = 1
ZoffsetParam = 2
Xwear Param = 3
ZwearParam = 4
' Display tool #23 parameters
Diam = GetToolParam(23, DiameterParam)
Length = GetToolParam(23, ZoffsetParam)
Xwear = GetToolParam(23, XwearParam)
Zwear = GetToolParam(23, ZwearParam)
Desc = GetToolDesc(23)
Message "Tool 23: Diam=" & Diam & " Length=" & Length _
& " Xwear=" & Xwear & " Zwear=" & Zwear & " Desc=" & Desc
```

See also:

SetToolParam(), GetToolDesc()

GetRPM

Function GetRPM() As Double

This function returns the currently commanded spindle speed (S-word) as a Double. Note that this returns the most recent S-word value, and not the actual spindle RPM.

Arguments:

None

Return Value:

Currently commanded spindle speed as a Double.

Example:

```
'Show current S-word
Message "S-Word = " & GetRPM()
```

See also:

SetSpinSpeed(), DoSpinCW(), DoSpinCCW(), DoSpinStop()

GetSafeZ

Function GetSafeZ() As Double

This function returns the current SafeZ height.

Arguments:

None

Return Value:

Current SafeZ height as a Double.

Example:

```
'Get current SafeZ height
OldSafeZ = GetSafeZ()
'Set new SafeZ height
NewSafeZ = 1.5750
SetSafeZ(NewSafeZ)
...
'Restore old SafeZ height
SetSafeZ(OldSafeZ)
```

See also:

SetSafeZ()

GetScale

Function GetScale(Axis As Integer) As Double

This function returns the current scale factor for axis Axis.

Arguments:

Axis is the Integer Axis. 0=X, 1=Y, 2=Z, 3=A, etc.

Return Value:

Current scale factor for specified axis, as a Double

Example:

```
' Define some constants
Xaxis = 0
Yaxis = 1
Zaxis = 2
' Get the curent axis scale factors
OldXScaleFactor = GetScale(Xaxis)
OldYScaleFactor = GetScale(Yaxis)
OldZScaleFactor = GetScale(Zaxis)
' Get the new scale factor from the user
ScaleFactor = Question("Enter new scale factor:")
' Set new scale factors for X/Y/Z
SetScale(Xaxis, ScaleFactor)
SetScale(Yaxis, ScaleFactor)
```

See also:

SetScale()

GetSelectedTool

Function GetSelectedTool() As Integer

This function returns the tool specified by the most recent toolchange (M6) command. This function is typically used in the M6Start macro to make the selected tool the current tool.

Arguments:

None

Return Value:

Selected tool as an Integer

Example:

```
' Sample M6Start macro
' Get selected tool
NewTool = GetSelectedTool()
' Make it the current tool
SetCurrentTool(NewTool)
```

See also:

GetCurrentTool(), SetCurrentTool()

GetTimer

Function GetTimer(TimerNum As Integer) As Double

This function returns the current count for the specified timer. Mach3 provides 25 timers, numbered 0 to 24, which can be used for timing in VB scripts. To time an event, first clear the timer using SetTimer(), then use GetTimer() to read the timer. Note that this function works only with the parallel port driver, and support for this function may be removed without notice in a future release.

Arguments:

TimerNum is an Integer timer number, which must be between 0 and 24.

Return Value:

Double value of timer TimerNum.

Example:

See also:

SetTimer()

GetToolChangeStart

Function GetToolChangeStart(Axis As Integer) As Double

This function returns the position of the specified axis at the time a toolchange started. This is typically used in an M6End macro to restore the axis positions to the positions they were in before the toolchange.

Arguments:

Axis is the Integer Axis. 0=X, 1=Y, 2=Z, 3=A, etc.

Return Value:

Double position of the specified axis at the start of the last toolchange.

Example:

See also:

GetSelectedTool(), GetCurrentTool(), SetCurrentTool()

GetToolDesc

Function GetToolDesc(ToolNum As Integer) As String

This function returns the tool descriptor text for the tool specified by ToolNum.

Arguments:

ToolNum is an Integer tool number, from 1 to 255

Return Value:

Tool table description text for specified tool, as a String

Example:

```
'Show user the current tool description
Message "Tool " & GetCurrentTool() & ": " & _
GetToolDesc(GetCurrentTool())
```

See also:

GetToolParam(), SetToolParam()

GetTurretAng

Function GetTurretAng() As Double

This function returns the current lathe tool turret angle.

```
Arguments:
```

None

Return Value:

Current lathe tool turret angle, as a Double

```
Example:

' Display the current tool turret angle
  Message "Tool turret position = " & GetTurretAng()
```

GetUserDRO

Function GetUserDRO(DRONum As Integer) As Double

This function returns the value of User DRO DRONum as a Double.

Arguments:

DRONum is the Integer User DRO number to be set. Valide User DRO numbers range from 1000-2254.

Return Value:

Current value of USerDRO DROVal as a Double

Example:

```
' Define some constants
MyWidgetDRO = 1125
' Set MyWidgetDRO to 1.234
SetUserDRO(MyWidgetDRO, 1.234)
...
' Get current value of MyWidgetDRO
MyDROVal = GetUserDRO(MyWidgetDRO)
```

See also:

GetUserDRO(), SetOEMDRO(), GetOEMDRO()

GetUserLabel

Function GetUserLabel(LabelNum As Integer) As String

This function allows the user to retrieve the value of an on-screen User label. "User" lables are those that are created in the screen designer with the default text containing the String "UserLabel" followed by one or more digits.

Arguments:

LabelNum is the numeric portion of the user label default text. LabelNum must be between 0 and 255.

Return Value:

None

Example:

```
'Change the text in UserLabel25
SetUserLabel(25, "This is Label 25")
...
'Retrieve the text from UserLabel25
LabelText = GetUserLabel(25)
```

See also:

SetUserLabel()

GetUserLED

Function GetUserLED(LEDNum As Integer) As Integer

This function allows the current state of a User LED to be retrieved.

Arguments:

LEDNum is the User LED whose state is to be retrieved, which must be in the range of 1000 to 2254

Return Value:

Current state of the specified User LED. 0 indicates the LED is off (unlit), 1 indicates the LED is on (lit).

Example:

```
' Define some constants
FluxCapacitorControl = OUTPUT1 ' Output that controls the flux
capacitor
FluxCapacitorLED = 1234 ' LED that indicates flux capacitor is
active
' Turn on the Flux capacitor
ActivateSignal(FluxCapacitorControl)
' Turn on the Flux Capacitor LED for the operator
SetUserLED(FluxCapacitorLED, 1)
...
' Is the Flux Capacitor on?
FluxCapacitorOn = GetUserLED(FluxCapacitorLED)
```

See also:

GetUserLED(), SetOEMLED(), GetOEMLED()

GetVar

Function GetVar(VarNum As Integer) As Double

This function returns the current value of the Mach variable specified by VarNumas a Double. Mach variables are accessible both to VB scripts, using the SetVar() and GetVar() functions, as well as G-code programs, using the #nnnn syntax.

Arguments:

VarNum is Integer the number of the Mach variable to be retrieved.

Return Value:

Current value of the specified variable, as a Double.

Example:

```
' Set a variable 1234 to our target position of 2.3456
SetVar(1234, 2.3456)
' Now move X to our target position
Code "G0 X #1234"
' Or, another way...
Code "G0 X " & GetVar(1234)
```

See also:

SetVar()

GetXCoor

Function GetXCoor() As Double

This function is used in conjuction with the GetCoord() function to get X, Y, Z and A axis coordinate values from the user. The GetXCoor() function will return the X value entered by the user in the last GetCoord() function call.

Arguments:

None

Return Value:

X Axis coordinate value from last GetCoord() call

Example:

```
GetCoord("Enter target coordinates:")
Message "Coordinates are: " & GetXCoor() & " " & GetYCoor() _
& " " & GetZCoor() & " " & GetACoor()
```


See also:

GetCoord(), GetYCoor(), GetZCoor(), GetACoor()

GetYCoor

Function GetYCoor() As Double

This function is used in conjuction with the GetCoord() function to get X, Y, Z and A axis coordinate values from the user. The GetYCoor() function will return the Y value entered by the user in the last GetCoord() function call.

Arguments:

None

Return Value:

Y Axis coordinate value from last GetCoord() call

Example:

```
GetCoord("Enter target coordinates:")
Message "Coordinates are: " & GetXCoor() & " " & GetYCoor() _
& " " & GetZCoor() & " " & GetACoor()
```


See also:

GetCoord(), GetXCoor(), GetZCoor(), GetACoor()

GetZCoor

Function GetZCoor() As Double

This function is used in conjuction with the GetCoord() function to get X, Y, Z and A axis coordinate values from the user. The GetZCoor() function will return the Z value entered by the user in the last GetCoord() function call.

Arguments:

None

Return Value:

Z Axis coordinate value from last GetCoord() call

Example:

```
GetCoord("Enter target coordinates:")
Message "Coordinates are: " & GetXCoor() & " " & GetYCoor() _
& " " & GetZCoor() & " " & GetACoor()
```


See also:

GetCoord(), GetXCoor(), GetYCoor(), GetACoor()

GotoSafeZ

Sub GotoSafeZ()

This function will move the Z axis to the Safe_Z position, if Safe_Z is enabled in Config->Safe_Z Setup. If Safe_Z is not enabled, an error message will be displayed on the status line, and no move takes place.

```
Arguments:
    None

Return Value:
    None

Example:
    ' Move Z axis to Safe_Z position
    GotoSafeZ()

See also:
```

GetSafeZ(), SetSafeZ()

HelpAbout

Sub HelpAbout()

This function displays a dialog box showing the current version of the scripting engine.

```
Arguments:
```

None

Return Value:

None

Example:

'Show the user the scripting engine version HelpAbout()

IsActive

Function IsActive(Signal As Integer) As Boolean

This function returns a Boolean True if the current state of the specified input signal is its active state Note that in terms of actual signal level, the term "active" depends on how the signal is defined. If the signal is defined in Config->Ports&Pins->InputSignals as ActiveLow, then IsActive() will return True when that signal is being driven to a logic low. If the signal is defined in Config->Ports&Pins->InputSignals as ActiveHigh, then IsActive() will return True when that signal is being driven to a logic high.

Arguments:

Signal is an integer value corresponding to one of pre-defined input signal constants.

Return Value:

False indicates the signal is currently in its inactive state True indicates the signal is currently in its active state

Example:

```
'Show the user the state of the INPUT #1 input
If IsActive(INPUT1) Then
Message "INPUT #1 input is active"
Else
Message "INPUT #1 input is inactive"
End If
```

IsDiameter

Function IsDiameter() As Integer

This lathe-only function returns 1 if Mach3 is currently operating in Diameter mode.

Arguments:

None

Return Value:

0 indicates Mach3 is currently operating in Radius mode 1 indicates Mach3 is currently operating in Diameter mode

Example:

```
'Tell the user what mode we're in
If IsDiameter() Then
Message "Currently in Diameter mode"
Else
Message "Currently in Radius mode"
End If
```

IsEstop

Function IsEStop() As Integer

This function returns 1 if Mach3 is currently in E-Stop mode.

Arguments:

None

Return Value:

0 indicates Mach3 is currently not in E-Stop mode 1 indicates Mach3 is currently in E-Stop mode

Example:

```
Dim FluxCapacitorControl As Integer
FluxCapacitorControl = OUTPUT3

' Are we in E-Stop?
If IsEStop() Then
    'Yes, so turn off the flux capacitor
    DeactivateOutput(FluxCapacitorControl)
Else
    'No, so turn on the flux capacitor
    ActivateOutput(FluxCapacitorControl)
End If
```

IsLoading

Function IsLoading() As Integer

This function returns 1 if a G-code file is currently being loaded.

Arguments:

None

Return Value:

0 indicates a G-code file is not currently being loaded 1 indicates a G-code file is currently being loaded

Example:

```
Dim FluxCapacitorControl As Integer
FluxCapacitorControl = OUTPUT3

' Are we in loading a new G-code file?
If IsLoading() Then
    ' Yes, so turn off the flux capacitor
    DeactivateOutput(FluxCapacitorControl)
Else
    ' No, so turn on the flux capacitor
    ActivateOutput(FluxCapacitorControl)
End If
```

IsMoving

Function IsMoving() As Integer

This function returns 1 if any axis is currently moving. This is most often used when commanding motion within a macro, to pause macro execution until the motion is complete. This is a complement to IsStopped().

Arguments:

None

Return Value:

0 if all axes currently stopped 1 if any axis is currently moving

Example:

See also:

IsStopped()

IsOutputActive

Function IsOutputActive(Signal As Integer) As Boolean

This function returns Boolean True if the current state of the specified output signal is its active state Note that in terms of actual signal level, the term "active" depends on how the signal is defined. If the signal is defined in Config->Ports&Pins->OutputSignals as ActiveLow, then IsOutputActive() will return a True value when that signal is being driven to a logic low. If the signal is defined in Config->Ports&Pins->InputSignals as ActiveHigh, then IsOutputActive() will return a True value when that signal is being driven to a logic high.

Arguments:

Signal is an integer value corresponding to one of pre-defined output signal constants.

Return Value:

A Boolean value indicating the state of the specified output signal.

Example:

```
' Set OUTPUT1 to its active state
ActivateSignal(OUTPUT1)
' Show the user the state of the OUTPUT #1 input
If IsActive (OUTPUT1) Then
     MsgBox "OUTPUT #1 output is active"
Else
     MsgBox "OUTPUT #1 output is inactive"
End If
' Set OUTPUT1 to its inactive state
DeactivateSignal(OUTPUT1)
' Show the user the state of the OUTPUT #1 input
If IsActive (OUTPUT1) Then
     MsgBox "OUTPUT #1 output is active"
Else
     MsgBox "OUTPUT #1 output is inactive"
End If
```

IsSafeZ

Function IsSafeZ() As Integer

This function returns 1 if Safe Z is enabled in Config->Safe Z Setup.

Arguments:

None

Return Value:

0 indicates Safe_Z is not enabled in Config->Safe_Z Setup 1 indicates Safe_Z is enabled in Config->Safe_Z Setup

Example:

```
' Show user IsSafeZ()
If IsSafeZ() Then
          Message "SafeZ is enabled"
Else
          Message "SafeZ is disabled"
End If
```

IsStopped

Function IsStopped() As Integer

IsMoving()

This function returns 1 if all axes are currently stopped. This is most often used when commanding motion within a macro, to pause macro execution until the motion is complete. This is a complement to IsMoving().

```
Arguments:
None

Return Value:
0 if any axis is currently moving
1 if all axes is currently stopping

Example:
' Move Z axis to Safe_Z position
GotoSafeZ()
' Wait for SafeZ move to complete
Sleep(100)
While Not IsStopped()
Sleep(100)
Wend

See also:
```

IsSuchSignal

Function IsSuchSignal(SignalID As Integer) As Integer

This function returns an Integer value indicating whether the specified signal is defined in Config->Ports&Pins. A 0 return value indicates the signal is not defined, while a non-zero return value indicates the signal is defined. This can be used, for example, to ensure a PROBE input is properly defined before trying to do probing.

Arguments:

SignalID must be one of the pre-defined Mach3 VB output signal constants (see VB Constants), or other value or expression that evaluates to one of those values.

Return Value:

Signal definition state, as an Integer. $0 \Rightarrow$ signal is not defined, $1 \Rightarrow$ signal is defined

Example:

JogOff

Function JogOff(Axis As Integer)

This function is used to stop jogging of the specified axis. It is typically used in conjuction with JogOn() to jog an axis under control of a script.

Arguments:

Axis is an Integer, specifying the axis for which to disable jogging. 0=X, 1=Y, 2=Z, 3=A, etc.

Return Value:

None

Example:

```
' Define some constants
Xaxis = 0
Yaxis = 1
Zaxis = 2
Plus = 0
Minus = 1
' Jog the Y axis in the minus direction for one second
JogOn(Yaxis, Minus)
Sleep(1000)
' Now stop it
JogOff(Yaxis)
```

See also:

JogOn()

JogOn

Function JogOn(Axis As Integer, Dir as Integer)

This function is used to start an axis jogging in a specified direction at the current default jog speed. Once the axis starts jogging, it will continue until stopped by means if the JogOff() function, execution of a Stop button command, E-stop, or hitting a limit.

Arguments:

Axis is an Integer, specifying the axis for which to disable jogging. 0=X, 1=Y, 2=Z, 3=A, etc. Dir is the direction in which to jog. 0=+ direction, 1=- direction

Return Value:

None

Example:

```
' Define some constants
Xaxis = 0
Yaxis = 1
Zaxis = 2
Plus = 0
Minus = 1
' Jog the Y axis in the minus direction for one second
JogOn(Yaxis, Minus)
Sleep(1000)
' Now stop it
JogOff(Yaxis)
```

See also:

JogOff()

LoadFile

Sub LoadFile(FilePath As String)

This function loads the G-code file specified by FilePath.

Arguments:

FilePath is the full filesystem path to the G-code file to be loaded

Return Value:

None

Example:

```
' Load the roadrunner demo file
LoadFile("C:\Mach3\Gcode\roadrunner.tap")
' Now run it
RunFile()
```

See also:

RunFile()

LoadRun

Sub LoadRun(Filepath As String)

This function loads the G-code file specified by Filepath, then immediately begins execution. This is exactly equivalent to a LoadFile() followed by a RunFile().

Arguments:

Filepath is the String path to the G-code file to be run.

Return Value:

None

Example:

'Load and run the roadrunner demo file LoadRun("C:\Mach3\Gcode\roadrunner.tap")

See also:

LoadFile(), RunFile(), Filename(), IsLoading()

LoadStandardLayout

Sub LoadStandardLayout()

This function re-loads the current default screenset. In most cases, this will be the currently loaded screenset. This is used primarily to re-load the default screenset when exiting a Wizard.

Arguments:

None

Return Value:

None

Example:

`Load default screenset LoadStandardLayout()

See also:

ToggleScreens()

LoadTeachFile

Sub LoadTeachFile()

This function loads the most recent Teach file into Mach3 for execution. The file must first have opened or created using OpenTeachFile() or AppendTeachFile() during the current Mach3 session.

Arguments:

None

Return Value:

None

Example:

```
' Create a new Teach File in Mach3\Gcode
MyTeachFile = "TeachMe.nc"
Err = OpenTeachFile(MyTeachFile)
If Err <> 0 Then
     ' Teach file created successfully
     ' Write some G Code to it
     Code "G00 X0 Y0"
     Code "G02 X0 Y0 I-1 J0 F40"
     ' Close the Teach file
     CloseTeachFile()
     ' Now load the teach file for execution
     LoadTeachFile()
Else
     ' OpenTeachFile failed
     Message "Unable to open Teach File"
End If
```

See also:

OpenTeachFile(), AppendTeachFile(), CloseTeachFile()

LoadWizard

Sub LoadWizard(WizardName As String)

This function loads and runs the specified wizard. Wizards reside in the Mach3\Addons directory, and each wizard consists of a number of files with a subdirectory of the Addons directory. The WizardName String passed as the argument to LoadWizard must be just the name of the top-level subdirectory for the wizard.

Arguments:

WizardName is the name of the Wizard to be run, as a String

Return Value:

None

Example:

'Load and run the "Circular Pocket" Wizard LoadWizard ("Circular Pocket")

MachMsg

Function MachMsg(Prompt As String, Title As String, DialogType As Integer) As Integer

This function display a dialog box with one of several different combinations of buttons, and waits for the user to click one of the buttons. The Title argument String is displayed in the title bar of the dialog. The Message argument String is displayed in the client portion of the dialog, above the buttons. Clicking on any button closes the dialog, and the return value of the function indicates which button the user clicked.

Arguments:

Message is the String to be displayed in the client ares of the dialog, above the button(s) Title is the String to be displayed in the title bar of the dialog

DialogType is an Integer value which defines which buttons will be displayed on the dialog as follows:

```
0 = OK button

1 = OK, Cancel buttons

2 = Abort, Retry, Ignore buttons

3 = Yes, No, Cancel buttons

4 = Yes, No buttons

5 = Retry, Cancel buttons

6 = Cancel, Try Again, Continue buttons
```

Return Value:

Integer value indicating which button the user clicked, as follows:

```
OK
           = 1
Cancel
           = 2
Abort
           =3
Rety
           =4
           =5
Ignore
Yes
           =6
           = 7
No
Try Again = 10
Continue
           = 11
```

Example:

```
' Define some constants for MachMsg dialog types
MachMsgTypeOK = 0
MachMsgTypeOKCancel = 1
MachMsgTypeAbortRetryIgnore = 2
MachMsgTypeYesNoCancel = 3
MachMsgTypeYesNo = 4
MachMsgTypeRetryCancel = 5
MachMsgTypeCancelTryAgainContinue = 6
' Define some constants for MachMsg return codes
MachMsgReturnOK = 1
MachMsgReturnCancel = 2
```

Mach3 v3.x VB Programmers Reference Manual

```
MachMsqReturnAbort = 3
MachMsgReturnRetry = 4
MachMsgReturnIgnore = 5
MachMsgReturnYes = 6
MachMsgReturnNo = 7
MachMsgReturnTryAgain = 10
MachMsqReturnContinue = 11
' Display an Abort/Retry/Ignore dialog
Ret = MachMsg("Flux Capacitor Failed to Start",
     "Flux Capacitor Warning", MachMsgTypeAbortRetryIgnore)
If Ret = MachMsqReturnAbort Then
     ' Handle Abort here
ElseIf Ret = MachMsgReturnRetry Then
    ' Handle Retry here
ElseIf Ret = MachMsgReturnIgnore Then
     ' Handle Ignore here
End If
```


See also:

Message(), Question(), AskTextQuestion(), GetCoord(),

MaxX

Function MaxX() As Double

This function returns the maximum X extent of the currently open G-code file as a Double

Arguments:

None

Return Value:

Maximum X extent of currently loaded G-code file as a Double

Example:

```
'Show user the current program extents

Message "MinX=" & MinX() & " MaxX=" & MaxX() & _

" MinY=" & MinY() & " MaxY=" & MaxY()
```

See also:

MinX(), MinY, MaxY()

MaxY

Function MaxY() As Double

This function returns the maximum Y extent of the currently open G-code file as a Double

Arguments:

None

Return Value:

Maximum Y extent of currently loaded G-code file as a Double

Example:

```
'Show user the current program extents

Message "MinX=" & MinX() & " MaxX=" & MaxX() & _

" MinY=" & MinY() & " MaxY=" & MaxY()
```

See also:

MaxX(), MinY, MaxY()

Message

Sub Message(MessageText As String)

This function displays MessageText on the status line.

Arguments:

MessageText is the String text to display on the status line.

Return Value:

None

Example:

```
' Display the current tool number on the status line Message "Current tool is " & GetCurrentTool()
```

See also:

Message(), Question(), Ask TextQuestion(), MachMsg(), GetCoord()

MinX

Function MinX() As Double

This function returns the minimum X extent of the currently open G-code file as a Double

Arguments:

None

Return Value:

Minimum X extent of currently loaded G-code file as a Double

Example:

```
'Show user the current program extents

Message "MinX=" & MinX() & " MaxX=" & MaxX() & _

" MinY=" & MinY() & " MaxY=" & MaxY()
```

See also:

MinX(), MinY, MaxY()

MinY

Function MinY() As Double

This function returns the minimum Y extent of the currently open G-code file as a Double

Arguments:

None

Return Value:

Minimum Y extent of currently loaded G-code file as a Double

Example:

```
'Show user the current program extents

Message "MinX=" & MinX() & " MaxX=" & MaxX() & _

" MinY=" & MinY() & " MaxY=" & MaxY()
```

See also:

MinX(), MinY, MaxY()

nFmt

Function nFmt(Val As Double, Digits As Integer) As Double

This function rounds a Double value to the specified number of decimal places

Arguments:

Val is the Double value to be rounded Digits is the number of digits right of the decimal place to round to

Return Value:

Rounded vale, as a Double

Example:

```
'Round 1.23456789 to 4 decimal places
'Display it - will display as 1.2345
Message nFmt(1.23456789, 4)
```

Mach3 v3.x VB Programmers Reference Manual

NotifyPlugins

Sub NotifyPlugins(Event As Integer)

This function invokes the MyNotify method of all currently loaded Plug-ins, passing Event as the argument.

Arguments:

Event is an Integer value that will be passed as the argument to the MyNotify methods of all loaded plug-ins.

Return Value:

None

Example:

OpenDigFile

Sub OpenDigFile()

This function opens a digitization log file. When OpenDigFile is executed a FileOpen dialog will be displayed, and the user can select an existing file, or enter a new file name, to which digitization (probing) data points will be written. Once opened, G31 commands will cause the probe trigger position to be written to the digitization file. When digitization is complete, CloseDigFile() can be used to close the file.

Arguments: None
Return Value: None
Example:
See also:

OpenTeachFile

Function OpenTeachFile (Filename As String) As Integer

This function re-opens an existing Teach file at Gcode\Filename in the Mach3 directory, and appends any commands subsequently executed via MDI or Code() to that file, until CloseTeachFile() is executed.

```
Arguments:
  F
Return Value:
  Α
Example:
  'Create a new Teach File in Mach3\Gcode
  MyTeachFile = "TeachMe.nc"
  Err = OpenTeachFile(MyTeachFile)
  If Err <> 0 Then
        ' Teach file created successfully
        ' Write some G Code to it
        Code "G00 X0 Y0"
        Code "G02 X0 Y0 I-1 J0 F40"
        ' Close the Teach file
        CloseTeachFile()
        ' Now load the teach file for execution
       LoadTeachFile()
  Else
        ' OpenTeachFile failed
       Message "Unable to open Teach File"
  End If
See also:
  AppendTeachFile(), CloseTeachFile()
```

Param1

Function Param1() As Double

This function returns the value of the P parameter passed to an M-macro.

Arguments:

None

Return Value:

Double value passed a P parameter to M-macro

Example:

```
'This macro expects three arguments: P, Q, & R
'If put into an M-macro, and invoked via MDI, it will
'display the argument values on the status line
'For example, if using M1200:
'M1200 P1.234 Q2.345 R3.456
'Executing the above line to MDI will display:
'P=1.234 Q=2.345 R=3.456
Parg = Param1()
Qarg = Param2()
Rarg = Param3()
Message "P=" & Parg & "P=" & Qarg & "R=" & Rarg
```

See also:

Param2(), Param3()

Param2

Function Param2() As Double

This function returns the value of the Q parameter passed to an M-macro.

Arguments:

None

Return Value:

Double value passed a Q parameter to M-macro

Example:

```
'This macro expects three arguments: P, Q, & R
'If put into an M-macro, and invoked via MDI, it will
'display the argument values on the status line
'For example, if using M1200:
'M1200 P1.234 Q2.345 R3.456
'Executing the above line to MDI will display:
'P=1.234 Q=2.345 R=3.456
Parg = Param1()
Qarg = Param2()
Rarg = Param3()
Message "P=" & Parg & "P=" & Qarg & "R=" & Rarg
```

See also:

Param1(), Param3()

Param3

Function Param3() As Double

This function returns the value of the R parameter passed to an M-macro.

Arguments:

None

Return Value:

Double value passed a R parameter to M-macro

Example:

```
'This macro expects three arguments: P, Q, & R
'If put into an M-macro, and invoked via MDI, it will
'display the argument values on the status line
'For example, if using M1200:
'M1200 P1.234 Q2.345 R3.456
'Executing the above line to MDI will display:
'P=1.234 Q=2.345 R=3.456
Parg = Param1()
Qarg = Param2()
Rarg = Param3()
Message "P=" & Parg & "P=" & Qarg & "R=" & Rarg
```

See also:

Param1(), Param2()

PlayWave

Sub PlayWave(Filename As String)

This function plays a .WAV file through the PCs audio system. Filename gives the name of the WAV file to be played. All WAV files must reside in the Mach3 directory.

Arguments:

Filepath is the String filepath to the WAV file to be played

Return Value:

None

Example:

PlayWave("C:\WINDOWS\Media\Windows XP Startup.wav")

PutPortByte

Sub PutPortByte(PortAddr As Integer, Value As Integer)

This function writes the 8-bit data given by Value to the 8-bit PC I/O port whose address is given by PortAddr. This function can be used for writing hardware devices not directly supported by Mach3.

Arguments:

PortAddr is the Integer address of the port to be written Value is the Integer value to be written. Only the 8 LSBs are written.

Return Value:

None

Example:

```
'Our port address
PortAddr = 1016 '0x3f8
PortData = 154 '0xa5
'Write 0xa5 to data register of parallel port at 0x3f8
PortData = PutPortByte(PortAddr, PortData)
```

See also:

GetPortByte()

Question

Function Question(Prompt As String) As Double

This function displays a dialog box with an OK button, and a text box into which the user can enter a numeric value. The Prompt string is displayed above the test box. This value is returned as a Double. This can be used for getting a single numeric value from the user.

Arguments:

Prompt is the prompt string displayed in the Question dialog.

Return Value:

Double value entered into text box by user

Example:

```
' Get next X position from user
NextPos = Question("Enter next X position:")
' Go there
Code "G00 X" & NextPos
```


See also:

Message(), Question(), AskTextQuestion(), MachMsg(), GetCoord()

QueueDepth

Function QueueDepth() As Integer

This function returns the current number of entries in the trajectory planning queue.

Arguments:

None

Return Value:

Number of trajectory planner queue entries as an Integer

```
Message "Queue depth = " & QueueDepth()
```

Random

Function Random() As Double

This function returns a pesudo-random number between 0 and 1. This can be used in place of the VB rnd() function.

Arguments:

None

Return Value:

Next pseudo-random number in sequence, as a Double

Example:

```
'Get next random number
NextRand = Random()
```

RefCombination

Sub RefCombination(Axes As Integer)

This function allows any combination of axes to be simultaneously referenced (homed). Which axes will be referenced is determined by the Axes argument, which is a bit-mapped variable, with the bits mapped as defined below.

Arguments:

Axes is a bit-mapped value the defines which axes are to be referenced. The value of Axes can be calculated by adding the values corresponding to the individual axes to be referenced. The axis values are:

X = 1 Y = 2 Z = 4 A = 8 B = 16C = 32

So, for example, to reference the X, Z and B axes, Axes = 1 + 4 + 16 = 21.

Return Value:

None

Example:

```
' Define some constants
RefX = 1
RefY = 2
RefZ = 4
RefZ = 8
RefB = 16
RefC = 32
' Reference Y, Z and C axes
RefCombination(RefY + RefZ + RefC)
```

See also:

VerifyAxis(), SingleVerify(), SingleVerifyReport()

ResetAxisSwap

Sub ResetAxisSwap()

This function un-does the effect of a preceding SwapAxis(). Note that this is the only way to undo a Swap, and it is illegal to perform two SwapAxis() calls without an intervening ResetAxisSwap().

Arguments:

None

Return Value:

None

Example:

```
' Define some constants
Xaxis = 0
Yaxis = 1
Zaxis = 2
' Swap X and Y axes
SwapAxis(Xaxis, Yaxis)
' Do something with swapped axes here...
' Undo the SwapAxis
ResetAxisSwap()
' Now Swap Y and Z axes
SwapAxis(Yaxis, Zaxis)
```

See also:

SwapAxis()

ResetTHC

Sub ResetTHC()

This function resets the Torch Height. This function is identical to ZeroTHC(), except if a program is running, it does nothing.

Arguments:

None

Return Value:

None

Example:

Reset THC ResetTHC()

See also:

THCOn(), THCOff()

RetractMode

Function RetractMode() As Integer

This function returns the current Peck Drilling retract mode. If a G98 was last run, it will return a 0. If a G99 was most recently run, it will return a 1.

Arguments:

None

Return Value:

Integer value indicating which peck cycle was last run. 0=G98, 1=G99.

Example:

```
'Run a G98
Code "G98 Z-0.5 R0.1 F10"
' Wait for it to complete
While IsMoving()
     Sleep 100
Wend
' Now show retract mode - should show 0
MsgBox("RetractMode = " & RetractMode())
Code "Hit CycleStart to continue..."
' Run a G99
Code "G99 Z-0.5 R0.1 F10"
' Wait for it to complete
While IsMoving()
     Sleep 100
Wend
' Now show retract mode - should show 1
MsgBox("RetractMode = " & RetractMode())
Code "Hit CycleStart to continue..."
```

roun

Function roun(Val As Double) As Double

This function rounds the Double value specified by Val to four decimal placed.

Arguments:

Val is the Double value to be rounded

Return Value:

Double value of Val rounded to four decimal places

Example:

```
'Round 1.23456789
Message "1.23456789 rounds to " & roun(1.23456789)
```

See also:

Round()

RunFile

Sub RunFile()

This function begins execution of the currently loaded G-code program, if any. This is functionally identical to DoOEMButton(CYCLESTART)

Arguments:

None

Return Value:

None

Example:

```
' Load our G-code file
LoadFile("MyGCode.tap")
' Run it
RunFile()
```

See also:

FileName(), LoadFile(), LoadRun(), IsLoading(), DoOEMButton()

SaveWizard

Sub SaveWizard()

This function can be used within a wizard to save the user-entered parameter value settings for the wizard, so the same values will be loaded the next time the wizardis invoked.

Arguments:

None

Return Value:

None

Example:

'Save current Wizard parameter values SaveWizard()

SetButtonText

Sub SetButtonText(Text As String)

This function allows the text of an on-screen button to be changed by that buttons associated button script. This can be used to change the text on a button based on the state of a variable or mode.

Arguments:

Text is a String that specifies the new text to be displayed on the button.

Return Value:

None

Example:

```
' Example Spindle On/Off Toggle Button
SpindleCWLED = 11
If GetOEMLED(SpindleCWLED) Then
    ' Spindle is on, so turn it off
    DoSpinStop()
    SetButtonText("Spindle On")
Else
    ' Spindle is off, so turn it on
    DoSpinCW()
    SetButtonText("Spindle Off")
End If
```

SetCurrentTool

Sub SetCurrentTool(ToolNum As Integer)

This function sets the current tool number to ToolNum. This is typically used in the M6Start script to make the selected tool the current tool.

Arguments:

ToolNum is an Integer tool number, from 1 to 255.

Return Value:

None

Example:

```
'Typical M6Start script
'Get selected tool
NewTool = GetSelectedTool()
'Make it the current tool
SetCurrentTool(NewTool)
```

See also:

GetCurrentTool(), GetSelectedTool()

SetDRO

Function SetDRO(DRONum As Integer, DROVal As Double)

This legacy function sets the DRO number specified by DRONum plus 800 to the value specified by DROVal. SetDRO(DRONum, DROVal) is exactly equivalent to SetOEMDRO(DRONum + 800, DROVal). The only difference between this function and SetOEMDRO() is that this function adds 800 to DRONum to calculate the actual DRO number to be set. This function is deprecated, and its use is *strongly* discouraged. Use of the GetOEMDRO/SetOEMDRO and GetUserDRO/SetUserDRO functions is strongly recommended.

Arguments:

DRONum is the Integer OEM DRO number to read, minus 800. Valid DRONums are from 0 to 200, which correspond to OEM DRO numbers 800 to 1000.

DROVal is the Double value to which the specified DRO will be set.

Return Value:

None

Example:

```
'Define the axes
Dim Xaxis As Integer
Xaxis = 800
Dim Yaxis As Integer
Yaxis = 801
Dim Zaxis As Integer
Zaxis = 802

'Write 1.2345 to Z axis DRO using SetDRO
SetOEMDRO(Zaxis - 800, 1.2345)
'Show the user the Z Axis DRO value, using GetOEMDRO()
MsgBox "Using SetDRO() Z Axis DRO reads: " & GetOEMDRO(Zaxis )
'Write 2.3456 to Z axis DRO using SetOEMDRO
SetOEMDRO(Zaxis, 2.3456)
'Show the user the Z Axis DRO value, using GetOEMDRO()
MsgBox "Using SetOEMDRO() Z Axis DRO reads: " & GetOEMDRO()
```

See also:

SetOEMDRO(), GetOEMDRO(), SetUserDRO(), GetUserDRO(), GetDRO()

SetFeedRate

Sub SetFeedRate(FeedRate As Double)

This function sets the feedrate. Note that FeedRate is specified in units per second, rather than units per minute.

Arguments:

FeedRate specified in units/second, as a Double

Return Value:

None

Example:

'Set the feedrate to 123.456 inches/minute

SetFeedRate(123.456 / 60)

' Get the current feedrate, in inches/minute, and display it

CurrentFeedrate = FeedRate()

' Display it on the status line

Message "Current feedrate = " & CurrentFeedrate

See also:

FeedRate()

SetFormula

Sub SetFormula(Formula As String, Axis As Integer)

This function sets one of the axis formulas, accessible by FunctionCfg's->Formulas. These allow motion for axes to be defined by formulas involving the positions of other axes, using algebraic and trigonometric functions. Note that for Formulas to take effect, you must check the "Formulas enabled" checkbox in FunctionCfg's->Formulas.

Arguments:

Formula is a String that defines the algebraic/trigonometric function to be used to calculate axis position.

Axis is an Integer value that defines which axis the Formula is to be applied to

Return Value:

None

Example:

```
' Define some constants
Xaxis = 0
Yaxis = 1
Zaxis = 2
' Define the axis formulas such that a programmed linear move
' Y causes a causes a sinusoidal move in X
' Z axis should move normally
SetFormula("Z", Zaxis)
SetFormula("Y", Yaxis)
SetFormula("Sin(y)", Xaxis)
```

SetIJMode

Sub SetIJMode(IJMode As Integer)

This function sets the IJ mode. IJMode = 0 sets absolute mode, while IJMode = 1 sets incremental mode.

Arguments:

IJMode is the Integer mode to select. 0=Absolute, 1=Incremental

Return Value:

None

Example:

```
' Define some constants
IJAbsolute = 0
IJIncremental = 1
' Set IJMode to incremental
SetIJMode(IJIncremental)
```

See also:

GetIJMode()

SetMachZero

Sub SetMachZero(Axis As Integer)

This function zeroes the machine position of the specified axis to the current position.

Arguments:

Axis is an Integer value identifying the axis to be zeroed. 0=X, 1=Y, 2=Z, 3=Z, etc.

Return Value:

None

Example:

```
' Define some constants
Xaxis = 0
Yaxis = 1
Zaxis = 2
' Set machine zero for Y axis to current position
SetMachZero(Yaxis)
```

SetOEMDRO

Sub SetOEMDRO(DRONum As Integer, DROVal as Double)

This function sets the OEM DRO specified by DRONum to the value specifed by DROVal.

Arguments:

DRONum is an Integer value or expression that evaluates to one of the OEM DRO numbers.

Return Value:

None

Example:

```
' Define some constants

XaxisDRO = 0

YaxisDRO = 1

ZaxisDRO = 2

' Set Z Axis DRO to 1.234

SetOEMDRO(ZaxisDRO, 1.234)
```

See also:

GetOEMDRO(), SetUserDRO(), GetUserDRO()

SetPage

Sub SetPage(PageNum As Integer)

This function switches the current display page to the one specified by PageNum.

Arguments:

PageNum is the Integer number of the display page to switch to.

Return Value:

None

Example:

```
'For 1024.set, change to Diagnostics page SetPage(5)
```

See also:

GetPage()

SetParam

Sub SetParam(ParamName As String, ParamVal As Double)

This function allows a number of Mach3 internal parameters (not to be confused with G-code parameters) to be set. Each Mach3 parameter is identified by name. The parameter whose name is given by ParamName is set to the value given by ParamVal. Valid parameters are:

Parameter Name	Description
RPMOverRide	When this parameter is set to 1, the True Spindle Speed DRO (OEM DRO 39) is
	made writeable, over-riding Mach3s normal calculation of True Spindle Speed.
Xscale	X axis scale factor
YScale	Y axis scale factor
ZScale	Z axis scale factor
AScale	A axis scale factor
BScale	B axis scale factor
CScale	C axis scale factor
FeedRate	Feedrate
Units	Current units (inch/mm). $0 = mm$, $1 = inch$
StepsPerAxisX	X axis steps per unit
StepsPerAxisY	Y axis steps per unit
StepsPerAxisZ	Z axis steps per unit
StepsPerAxisA	A axis steps per unit
StepsPerAxisB	B axis steps per unit
StepsPerAxisC	C axis steps per unit
VelocitiesX	X axis maximum velocity, from motor tuning, in units/second
VelocitiesY	Y axis maximum velocity, from motor tuning, in units/second
VelocitiesZ	Z axis maximum velocity, from motor tuning, in units/second
VelocitiesA	A axis maximum velocity, from motor tuning, in units/second
VelocitiesB	B axis maximum velocity, from motor tuning, in units/second
VelocitiesC	C axis maximum velocity, from motor tuning, in units/second
AccelerationX	X axis maximum acceleration, from motor tuning
AccelerationY	Y axis maximum acceleration, from motor tuning
AccelerationZ	Z axis maximum acceleration, from motor tuning
AccelerationA	A axis maximum acceleration, from motor tuning
AccelerationB	B axis maximum acceleration, from motor tuning
AccelerationC	C axis maximum acceleration, from motor tuning
SpindleSpeed	Should modify Spindle Speed, but does not work on all versions. Use SetSpinSpeed()
	instead.
ZInhibitOn	Z Inhibit Enable. 0=Z inhibit disabled, 1=Z inhibit enabled. When Z inhibit is
	enabled, the Z axis will not be allowed to move below the depth specified by the
	ZinhibitDepth parameter.
ZInhibitDepth	Z Inhibit Depth. When Z inhibit is enabled, the Z axis will not be allowed to move
	below the depth specified by the ZinhibitDepth parameter.
SafeZ	SafeZ height

Mach3 v3.x VB Programmers Reference Manual

Boundry	Toolpath Boundaries display enable. 0=>disable boundaries display, 1=>enable
	boundaries display
XRefPer	X axis homing speed, as % of rapid speed
YRefPer	Y axis homing speed, as % of rapid speed
ZRefPer	Z axis homing speed, as % of rapid speed
ARefPer	A axis homing speed, as % of rapid speed
BRefPer	B axis homing speed, as % of rapid speed
CRefPer	C axis homing speed, as % of rapid speed
ToolPathLock	Toolpath Lock enable. 0=>Toolpath unlocked, 1=>Toolpath locked. When the
	toolpath is locked, it cannot be moved, scaled or rotated.
PrepMove	Preparatory Move Dialog Inhibit. 0=>Allow showing of Preparatory Move dialogs,
	1=>Inhibit showing of Preparatory Move dialogs
AutoToolChange	??? – Indicates auto toolchanger in use?
ADirActive	??? – Reverse direction of A axis?

Arguments:

ParamName is the String name of the parameter to be set. This must be one of the above names. ParamVal is the Double value to which the specified parameter will be set.

Return Value:

None

Example:

```
'Get the new scale factor from the user
ScaleFactor = Question "Enter new scale factor:"
'Set the new scale factor for X/Y/Z
SetParam("Xscale", ScaleFactor)
SetParam("Yscale", ScaleFactor)
SetParam("Zscale", ScaleFactor)
```

See also:

GetParam()

SetPulley

Sub SetPulley(Pulley As Integer)

This function sets the current spindle pulley number. This allows Mach3 to properly scale the spindle speed output based on the current pulley and commanded spindle speed. Pulley ratios and allowable speed ranges are configured in Config->SpindlePulleys

Arguments:

Pulley is an Integer pulley number, from 1 to 15

Return Value:

None

Example:

```
' Prompt the user for new pulley setting
NewPulley = Question "Enter new pulley number:"
' Tell Mach3
SetPulley(NewPulley)
```

SetSafeZ

Sub SetSafeZ(SafeZ As Double)

This function sets a new value for SafeZ. Note that SafeZ must be enabled in Config->SafeZConfig

Arguments:

SafeZ is the Double value to set SafeZ to

Return Value:

None

Example:

```
'Change SafeZ to +2.000
SetSafeZ(2.000)
```

SetScale

Sub SetScale(Axis As Integer, Scale As Double)

This function sets the scale factor for axis Axis to the value given by Scale.

Arguments:

Axis is the Integer Axis. 0=X, 1=Y, 2=Z, 3=A, etc. Scale is the Double Scale factor

Return Value:

None

Example:

```
' Define some constants
Xaxis = 0
Yaxis = 1
Zaxis = 2
' Get the curent axis scale factors
OldXScaleFactor = GetScale(Xaxis)
OldYScaleFactor = GetScale(Yaxis)
OldZScaleFactor = GetScale(Zaxis)
' Get the new scale factor from the user
ScaleFactor = Question("Enter new scale factor:")
' Set new scale factors for X/Y/Z
SetScale(Xaxis, ScaleFactor)
SetScale(Zaxis, ScaleFactor)
```

See also:

GetScale()

SetSpinSpeed

Sub SetSpinSpeed(RPM As integer)

This function sets the spindle speed, in RPM, exactly as the "S" word in G-code does.

Arguments:

RPM is the Integer spindle speed desired.

Return Value:

None

Example:

```
`Turn spindle on at 2500 RPM
SetSpinSpeed(2500)
DoSpinCW()
```

See also:

DoSpinCW(), DoSpinCCW(), DoSpinStop()

SetTicker

Sub SetTicker(TickerNum As Integer, TickerText As String)

This function loads the text given by TickerText into the ticker specified by TickerNum. A Ticker is a scrolling text label, with its default text set to "Tickernn", where "nn" is a number between 0 and 255. A long message can be put in a Ticker, and it will scroll continuously so the entire message is visible, even if the label is shorter than the text.

Arguments:

TickerNum is the Integer number of the ticker to be written TickerText is the String text to be written to ticker TickerNum

Return Value:

None

Example:

```
'Write the current file path to Ticker 25
SetTicker(25, FileName())
```

See also:

SetUserLabel(), Message()

SetTimer

Function SetTimer(TimerNum As Integer)

This function clears the specified timer. Mach3 provides 25 timers, numbered 0 to 24, which can be used for timing in VB scripts. To time an event, first clear the timer using SetTimer(), then use GetTimer() to read the timer. Note that this function works only with the parallel port driver, and support for this function may be removed without notice in a future release.

Arguments:

TimerNum is an Integer timer number, which must be between 0 and 24.

Return Value:

None

Example:

See also:

GetTimer()

SetToolParam

Sub SetToolParam(ToolNum As Integer, ParamNum As Integer, ParamVal As Double)

This function allows any tool parameter for any tool to be set. ToolNum is the number of the tool whose parameters are being set, and can be from 1 to 255. ParamNum is a parameter number, defined as follows:

For Mach3Mill:

- 1 = Diameter
- 2 = Z Offset
- 3 = X Wear
- 4 = Z Wear

For Mach3Turn:

- 1 = Tip Type
- 2 = Tool Radius
- 3 = X Offset
- 4 = Z Offset
- 5 = X Wear
- 6 = Z Wear
- 7 = Turret Angle

Arguments:

ToolNum is an Integer tool number, and must be between 1 and 255. ParamNum is an Integer parameter number, defined as described above.

Return Value:

None

Example:

```
' Define some constants
DiameterParam = 1
ZoffsetParam = 2
Xwear Param = 3
ZwearParam = 4
' Define tool #23
SetToolParam(23, DiameterParam, 0.2500) ' Set tool diameter = 1/4"
SetToolParam(23, ZoffsetParam, 1.2500) ' Set length offset = 1.25"
SetToolParam(23, XwearParam, 0.0005) ' Set X wear = 0.0005"
SetToolParam(23, ZwearParam, 0.0013) ' Set Z wear = 0.0013"
```

See also:

GetToolParam(), GetToolDesc()

SetToolX

Function SetToolX(Pos As Double)

This function sets the X axis DRO to the value given by Pos, then displays the message "Work Offset Shifted" on the status line. Note that with the exception of this message, SetToolX() is functionally identical to using SetOEMDRO to modify the X axis DRO value directly.

Arguments:

Pos is the Double position to which the X axis DRO will be set.

Return Value:

None

Example:

```
'Prompt the user to zero the X axis
Message "Move X axis to zero position. Press OK when ready..."
'Zero the X axis DRO
SetToolX(0.0000)
```

See also:

SetToolZ()

SetToolZ

Function SetToolZ(Pos As Double)

This function sets the Z axis DRO to the value given by Pos, then displays the message "Work Offset Shifted" on the status line. Note that with the exception of this message, SetToolZ() is functionally identical to using SetOEMDRO to modify the Z axis DRO value directly.

Arguments:

Pos is the Double position to which the Z axis DRO will be set.

Return Value:

None

Example:

```
'Prompt the user to zero the Z axis
Message "Move Z axis to zero position. Press OK when ready..."
'Zero the Z axis DRO
SetToolZ(0.0000)
```

See also:

SetToolX()

SetTriggerMacro

Sub SetTriggerMacro(MacroNum As Integer)

This function allows an M-macro to be associated with OEM code 301. This can be used to cause one of the OEM Trigger signals to automatically run a macro when asserted. To do this, the OEM Trigger signal must first be configured in Config->Ports&Pins->InputSignals. Then the OEM Trigger must be associated with OEM code 301 in Config->SystemHotKeys. Finally, SetTriggerMacro must be used to define which M-macro will be executed when OEM button code 301 is executed.

Arguments:

MacroNum is the number of the M-macro to be run when OEM button code 301 is executed.

Return Value:

None

Example:

- ' Assume OEMTRIGGER5 is assigned to OEM code 301
- 'Assign the M1025 macro to OEM Code 301 SetTriggerMacro(1025)
- $^{\backprime}$ Now, when <code>OEMTRIGGER5</code> is driven to its active level, <code>M1025.mls</code> will be executed

SetUserDRO

Sub SetUserDRO(DRONum As Integer, DROVal As Double)

This function sets the value of User DRO DRONum to DROVal.

Arguments:

DRONum is the Integer User DRO number to be set. Valide User DRO numbers range from 1000-2254.

DROVal is the Double value to which the User DRO will be set

Return Value:

None

Example:

```
' Define some constants
MyWidgetDRO = 1125
' Set MyWidgetDRO to 1.234
SetUserDRO(MyWidgetDRO, 1.234)
...
' Get current value of MyWidgetDRO
MyDROVal = GetUserDRO(MyWidgetDRO)
```

See also:

GetUserDRO(), SetOEMDRO(), GetOEMDRO()

SetUserLabel

Sub SetUserLabel(LabelNum As Integer, LabelText As String)

This function allows the user to change an on-screen "User" labels from VB, rather than by using a screenset editor. "User" lables are those that are created in the screen designer with the default text containing the String "UserLabel" followed by one or more digits.

Arguments:

LabelNum is the numeric portion of the user label default text. LabelNum must be between 0 and 255.

LabelText is the text to be placed into the label.

Return Value:

None

Example:

```
'Change the text in UserLabel25
SetUserLabel(25, "This is Label 25")
...
'Retrieve the text from UserLabel25
LabelText = GetUserLabel(25)
```

SetUserLED

Sub SetUserLED(LEDNum As Integer, State As Integer)

This function allows the state of a User LED to be set or cleared. User LEDs are numbered from

Arguments:

LEDNum is the User LED to be set, and must be in the range of 1000 to 2254 State is the new state of the User LED. 0 indicates the LED is off (unlit), 1 indicates the LED is on (lit).

Return Value:

None

Example:

```
' Define some constants
FluxCapacitorControl = OUTPUT1 ' Output that controls the flux
capacitor
FluxCapacitorLED = 1234 ' LED that indicates flux capacitor is
active
' Turn on the Flux capacitor
ActivateSignal(FluxCapacitorControl)
' Turn on the Flux Capacitor LED for the operator
SetUserLED(FluxCapacitorLED, 1)
...
' Is the Flux Capacitor on?
FluxCapacitorOn = GetUserLED(FluxCapacitorLED)
```

See also:

GetUserLED(), SetOEMLED(), GetOEMLED()

SetVar

Sub SetVar(VarNum As Integer, Val As Double)

This function sets the Mach variable specified by VarNum to the value given by Val. Mach variables are accessible both to VB scripts, using the SetVar() and GetVar() functions, as well as G-code programs, using the #nnnn syntax.

Arguments:

VarNum is Integer the number of the Mach variable to be set. Val is the Double value to which the variable will be set

Return Value:

None

Example:

```
' Set a variable 1234 to our target position of 2.3456 SetVar(1234, 2.3456) 
' Now move X to our target position Code "GO X \#1234"
```

See also:

GetVar()

SingleVerify

Sub SingleVerify(Axis As Integer)

This function performs a position verify on a single axis by homing that axis, and, once homed, zeroing the work offset, then returning to the initial offset. This is commonly used at the beginning of a program to ensure the fixture offset is set properly, or after a crash to restore the correct work offset.

Arguments:

Axis in an Integer value that specifies the first axis to verify. 0=X, 1=Y, 2=Z, 3=A, etc.

Return Value:

None

Example:

```
Xaxis = 0
Yaxis = 1
Zaxis = 2
' Verify Z axis work offset is properly set
SingleVerify(Zaxis)
```

See also:

SingleVerifyReport(), VerifyAxis(), RefCombination()

SingleVerifyReport

Function SingleVerifyReport(Axis As Integer)

This function performs a position verify on a single axis by homing that axis, and, once homed, zeroing the work offset, then returning to the initial offset. When complete, a message is displayed showing how far each axis was offset from its correct home position. This function is identical to the SingleVerify function except for this message display. This is commonly used at the beginning of a program to ensure the fixture offset is set properly, or after a crash to restore the correct work offset.

Arguments:

Axis in an Integer value that specifies the first axis to verify. 0=X, 1=Y, 2=Z, 3=A, etc.

Return Value:

None

Example:

```
Xaxis = 0
Yaxis = 1
Zaxis = 2
' Verify Z axis work offset is properly set, and report error, if
any
SingleVerifyReport(Zaxis)
```

See also:

SingleVerifyReport(), VerifyAxis(), RefCombination()

Sleep

Sub Sleep(Time As Integer)

This function causes the VB program to pause for the specified period of time, in mSec. During this time, other processes can have access to the CPU. A Sleep() call should always be inserted in any loop which might remain active for any period of time, for example the While loop used to wait for a move command to complete.

Arguments:

Time, an Integer value expressing the sleep time in milliseconds.

Return Value:

None

Example:

```
' Move to zero position
Code "G0 X0.000 Y0.000"
' Wait for move to complete
While IsMoving()
    ' Let other processes have CPU while we wait
    Sleep 100
Wend
```

Speak

Sub Speak(TextToSpeak As String)

This function uses speech synthesis to "speak" the String argument. Note that your PC must have a working audio system, and speech must first be enabled by checking the "Allow Speech" checkbox in Config->GeneralConfiguration.

Arguments:

TextToSpeak is a String to be spoken

Return Value:

None

Example:

'Tell the user to load the next workpiece Speak("Please load next workpiece. Hit CycleStart When Ready") Code "M00"

StartTHC

Sub StartTHC()

This function turns on torch height control. It is functionally identical to THCOn().

```
Arguments:
    None

Return Value:
    None

Example:
    StartTHC() ' Turn on torch height control
    ... ' Do some cutting here
    EndTHC() ' Turn off torch height control
```

See also:

THCOn(), THCOff(), EndTHC(), ZeroTHC(), ResetTHC()

StraightFeed

Sub StraightFeed(X As Double, Y As Double, Z As Double, A As Double, B As Double, C As Double)

This function performs a feedrate move to the specified position. Note that all axis positions must be specified. This is exactly equivalent to Code "G1 Xn.nnn Yn.nnn Zn.nnn An.nnn Bn.nnn Cn.nnn".

Arguments:

X is a Double specifying the target position for the X axis

Y is a Double specifying the target position for the Y axis

Z is a Double specifying the target position for the Z axis

A is a Double specifying the target position for the A axis

B is a Double specifying the target position for the B axis

C is a Double specifying the target position for the C axis

Return Value:

None

Example:

```
'Send all axes to zero position at current feedrate StraightTraverse(0.000, 0.000, 0.000, 0.000, 0.000, 0.000)
```

See also:

StraightTraverse(), Code()

StraightTraverse

Sub StraightTraverse(X As Double, Y As Double, Z As Double, A As Double, B As Double, C As Double)

This function performs a rapid move to the specified position. Note that all axis positions must be specified. This is exactly equivalent to Code "G0 Xn.nnn Yn.nnn Zn.nnn An.nnn Bn.nnn Cn.nnn".

Arguments:

X is a Double specifying the target position for the X axis

Y is a Double specifying the target position for the Y axis

Z is a Double specifying the target position for the Z axis

A is a Double specifying the target position for the A axis

B is a Double specifying the target position for the B axis

C is a Double specifying the target position for the C axis

Return Value:

None

Example:

```
'Send all axes to zero position
StraightTraverse(0.000, 0.000, 0.000, 0.000, 0.000)
```

See also:

StraightFeed(), Code()

SwapAxis

Sub SwapAxis(FirstAxis As Integer, SecondAxis As Integer)

This function swaps the STEP and DIR pins for the two specified axes. This has precisely the same effect as changing the pin settings in Config->Ports&Pins. Note that no other axis parameters or settings are changed. If the two specified axes have different acceleration and velocity settings, unreliable operation will likely result. Note also that if you exit Mach3 while the swap is in effect, the swapped pins will be written to the XML configuration file, and the swap will still be in effect the next time you start Mach3. It is illegal to perform two consecutive swaps, without first executing a ResetAxisSwap(). Doing so will likely result in incorrect operation.

Arguments:

FirstAxis in an Integer value that specifies the first axis to swap. 0=X, 1=Y, 2=Z, etc. SecondAxis in an Integer value that specifies the second axis to swap. 0=X, 1=Y, 2=Z, etc.

Return Value:

None

Example:

```
Xaxis = 0
Yaxis = 1
Code "G0 X0 Y0"
' Cut a 45 degree diagonal line from lower right to upper left
Code "G1 X-1 Y1"
Code "G0 X0 Y0"
' Now swap X and Y axes
SwapAxis(Xaxis, Yaxis)
' Cut a 45 degree diagonal line from upper left to lower right
Code "G1 X-1 Y1"
Code "G0 X0 Y0"
```

See also:

ResetAxisSwap()

SystemWaitFor

Sub SystemWaitFor(Signal As Integer)

This function will halt macro execution until the specified signal becomes active. This can be used to synchronize macro execution to an external event, such as a switch closure. If the signal is defined in Config->Ports&Pins as ActiveHigh, it will wait until the signal is driven to a logic High level, otherwise it will wait until the signal is driven to a logic Low level.

Arguments:

SignalID must be one of the pre-defined Mach3 VB output signal constants (see VB Constants), or other value or expression that evaluates to one of those values.

Return Value:

None

Example:

```
' INPUT1 indicates adequate coolant level
If IsActive(INPUT1) Then
    ' Uh-oh! Coolant is low - Tell the user
    Message "Operation Halted Due To Low Coolant! Please Add
Coolant..."
    ' Now wait until he tops it off
    SystemWaitFor(INPUT1)
End If
```

THCOff

Sub THCOff()

This function turns off the torch height control.

THCOn(), ZeroTHC()

THCOn

Sub THCOn()

This function turns on the torch height control.

```
Arguments:
None

Return Value:
None

Example:
' Turn on THC
THCOn()
```

THCOff(), ZeroTHC()

ToggleScreens

Sub ToggleScreens()

This function toggles the active screenset between the "complex" and "simple" (.set and .sset) screensets of the same base name. For example, if the current screenset is the default "1024.set", this function will load the "1024.sset" screenset, and vice-versa. This function can be used to toggle between any two screensets by simply giving both the same base filename, and giving one the .set extension, and the other the .sset extension.

Arguments:

None

Return Value:

None

Example:

```
' Toggle to simple screenset
ToggleScreens()
' Wait 5 seconds
Sleep 5000
' Toggle back to complex screenset
ToggleScreens()
```

ToolLengthOffset

Function ToolLengthOffset() As Double

This function returns the tool length offset for the current tool.

Arguments:

None

Return Value:

Tool length offset for current tool, as a Double

Example:

```
' Get the current tool length offset
LengthOffset = ToolLengthOffset
'Tell the user
Message "Tool length offset = " & LengthOffset
```

See also:

GetCurrentTool(), SetCurrentTool(), GetSelectedTool(), GetToolParam(), SetToolParam(), SetToolX(), SetToolZ(), GetToolDesc()

VerifyAxis

Sub VerifyAxis(Silent As Boolean)

This function verifies the positions of all axes by performing a home operation on all axes simultaneously, then moving all axes to position 0.0000 of the current fixture. If Safe_Z is enabled, a move to Safe_Z will be performed first. If the Silent argument is True, then upon completion, a message is displayed on the status line showing the offset errors of all axes from their home position. This function I used to ensure that no position loss has occurred, and/or to correct any position loss that may have occurred since the previous home or verify operation.

Arguments:

Silent is a Boolean value that, if true, causes a message to be displayed on completion of the verify indicating the offsets, if any, of each axis from its correct position.

Return Value:

None. All axes machine zeroes are reset to their correct position, and all axes are moved to position 0.0000 of the current fixture.

Example:

```
' Make sure all axes are in correct position
VerifyAxis()
' Load the G-code file
LoadFile("MyGCodeFile.nc")
' Wait for Load to Complete
While IsLoading()
        Sleep 100
Wend
' Run the File
DoOEMButton(CycleStartButton)
' Wait for it to complete
While (GetOEMLED(StartLED))
        Sleep 100
Wend
```

See also:

SingleVerify(), SingleVerifyReport(), RefCombination()

ZeroTHC

Sub ZeroTHC()

This function zeroes the torch height correction factor.

Legacy Functions Grouped By Function

Modbus Functions Grouped Alphabetically

Serial Output Functions Grouped Alphabetically