Számítási modellek

7. előadás

A sejtautomata koncepciója

A sejtautomata egy természet inspirálta párhuzamos számítási modell, melyet alkalmazhatunk fizikai, kémiai, biológiai vagy közgazdasági természetes folyamatok modellezésére. Stanislaw Ulam és Neumann János vezették be a 40-es években. Jellemzői:

- egy lokálisan uniform architektúra szerint egymással összeköttetésben levő automaták, ún. "sejtek" alkotják, bármely két sejtnek lokálisan ugyanolyan a szomszédsága (legtöbbször az automaták egy térkitöltő rács rácspontjaiban helyezkednek el),
- a sejtek egyformák és egyszerű felépítésűek, egyetlen jellemzőjük az állapotuk,
- a sejtek csak a szomszédaikkal kommunikálnak, saját és szomszédaik aktuális állapota alapján frissítik az állapotukat,
- a gép szinkron módon, diszkrét időskálán működik.

Rengeteg érdekes anyag található interneten (Wikipedián, YouTubeon, Jarkko J Kari (Turku) honlapján, ...). (angolul: cellular automata)

Sejtautomata

Definíció

 $A = \langle X, S, N, f \rangle$ rendezett négyes egy (homogén) sejtautomata, ahol

- X egy vektortér végtelen részhalmaza, a sejttér, elemeit sejteknek nevezzük,
- S egy nemüres, véges halmaz, a sejtállapotok halmaza,
- $N = (n_1, ..., n_m)$ rendezett vektor m-es, a szomszédságvektor, úgy hogy $\forall x \in X, 1 \le i \le m$ esetén $x + n_i \in X$
- $f: S^m \to S$ a lokális frissítési szabály
- Legtöbbször a sejt aktuális állapotától is függ A új állapota, ilyenkor legyen $\mathbf{0} \in N$.

Sejtautomata

- ▶ Ha $X = \mathbb{Z}^d$ és $\mathbf{n_i} \in \mathbb{Z}^d$ ($1 \le i \le m$) akkor a szomszédságvektorra vonatkozó feltétel automatikusan teljesül. Mivel ez egy gyakran előforduló sejttér, ilyenkor röviden $\langle d, S, N, f \rangle$ -t fogunk írni.
- ▶ Bár legtöbbször az $X = \mathbb{Z}^d$ esettel foglalkozunk, de elképzelhető más rács is. Például az euklideszi síkon egy hatszög- vagy háromszögrács, de tekinthetünk rácsokat a tóruszon, hiperbolikus síkon is.
- Az egyszerűség kedvéért feltettük, hogy a sejtautomata homogén, ekkor ugyanis elég egyelten közös lokális frissítési szabályt megadni, amely alapján egy globális frissítést könnyen megadhatunk. A sejtautomata fogalma általánosítható inhomogén sejtterekre is, ekkor a lokális frissítési szabályok nem feltétlen egyformák minden sejtre. Ilyenkor persze az se szükséges, hogy a sejttér vektortér legyen, lehet egy tetszőleges gráf.

Sejtautomata

Definíció

Legyen $N = (\mathbf{n_1}, \dots, \mathbf{n_m})$. Egy $\mathbf{x} \in X$ sejt szomszédainak halmaza $N(\mathbf{x}) = {\mathbf{x} + \mathbf{n_i} | 1 \leq i \leq m}$

Definíció

Egy $c: X \to S$ leképezést konfigurációnak nevezünk.

Definíció

Legyen $A = \langle X, S, N, f \rangle$ egy sejtautomata ahol $N = (\mathbf{n_1}, \dots, \mathbf{n_m})$. Ekkor definiálhatunk egy $G: S^X \to S^X$ globális átmenetfüggvényt. Legyen $c: X \to S$ egy konfiguráció és $\mathbf{x} \in X$ egy tetszőleges sejt. Ekkor

$$G(c)(\mathbf{x}) := f(c(\mathbf{x} + \mathbf{n_1}), \dots, c(\mathbf{x} + \mathbf{n_m})).$$

Neumann és Moore szomszédság

Ha $X = \mathbb{Z}^2$, akkor úgy gondolhatunk a sejtekre, mint a fenti ábra celláira. A zöld sejt Moore-szomszédai: 2-9, a kék sejt Neumann-szomszédai 2-5.

Egy sejt új állapota legtöbbször saját maga előző állapotától is függ, ezért a Moore- illetve Neumann szomszédságot így érdemes definiálni:

$$\begin{split} \textit{N}_{\mathsf{Moore}} &= ((0,0),(0,1),(-1,1),(-1,0),(-1,-1),(0,-1),\\ &\qquad \qquad (1,-1),(1,0),(1,1)).\\ \textit{N}_{\mathsf{Neumann}} &= ((0,0),(0,1),(-1,0),(0,-1),(1,0)). \end{split}$$

Életjáték

Definíció (Conway)

Életjátéknak (game of life, Life, B3S23) nevezzük azt a $GOL = \langle 2, \{0, 1\}, N_{Moore}, f \rangle$ sejtautomatát, ahol

- 1. $f(1, b_2, \dots, b_9) = 1$, ha $\sum_{i=2}^9 b_i \in \{2, 3\}$
- 2. $f(0, b_2, \ldots, b_9) = 1$, ha $\sum_{i=2}^9 b_i = 3$
- 3. $f(b_1, b_2, \ldots, b_9) = 0$, minden más esetben

Tehát egy élő sejt életben marad, ha 2 vagy 3 élő Moore-szomszédja van, minden más esetben elszigetelődés (0-1 szomszéd) vagy túlnépesedés (4-8 szomszéd) miatt meghal.

Egy halott sejtből akkor és csak akkor lesz élő, ha pontosan 3 élő Moore-szomszédja van.

A B3S23 jelölésben a B=birth, S=stay alive, azaz a születéshez 3, az életben maradáshoz 2 vagy 3 Moore-szomszéd kell.

Életjáték – konfigurációtípusok

Definíció

Egy c konfiguráció orbitja az $orb(c) = c, G(c), G^2(c), \ldots$ sorozat.

- c csendélet, ha G(c) = c. A legkisebb csendélet egy 2x2-es blokk.
- ▶ c oszcillátor, ha $\exists i \geq 2$, hogy $G^i(c) = c$ (c időben periodikus). Példa: 3 egymás melletti élő sejt. Ez a legkisebb (2 periódusú) oszcillátor, neve Villogó.
- c űrhajó, ha $\exists i \ge 1$, hogy $\{\mathbf{x} \in \mathbb{Z}^2 \mid G^i(c)(\mathbf{x}) = 1\} = \{\mathbf{x} \in \mathbb{Z}^2 \mid c(\mathbf{x}) = 1\} + \mathbf{y}$ valamely $\mathbf{y} \in X$ -re. A legkisebb méretű űrhajó neve Sikló.
- ▶ c ágyú, ha $\exists \ell \geqslant 0, k \geqslant 1$ és c' űrhajó, hogy $\forall i \in \mathbb{N}$ $\{\mathbf{x} \in \mathbb{Z}^2 \mid G^{(i+1)k+\ell}(c)(\mathbf{x}) = 1\} \supset \{\mathbf{x} \in \mathbb{Z}^2 \mid G^{ik+\ell}(c)(\mathbf{x}) = 1\}$ és $\{\mathbf{x} \in \mathbb{Z}^2 \mid G^{(i+1)k+\ell}(c)(\mathbf{x}) = 1\} \setminus \{\mathbf{x} \in \mathbb{Z}^2 \mid G^{ik+\ell}(c)(\mathbf{x}) = 1\} = \{\mathbf{x} \in \mathbb{Z}^2 \mid c'(\mathbf{x}) = 1\} + \mathbf{y}_k \text{ valamely } \mathbf{y}_k \in X\text{-re.}$

(azaz periódikusan c' egy-egy eltoltjával nő a konfiguráció)

Életjáték – konfigurációtípusok

A Cipó nevű csendélet

A Varangy nevű oszcillátor

A Sikló nevű űrhajó

Életjáték

Bill Gosper siklóágyúja

Wolfram megvizsgálta az $A=\langle 1,\{0,1\},(-1,0,+1),f\rangle$ alakú sejtautomatákat.

 $f:\{0,1\}^3 \rightarrow \{0,1\}$ függvényből 256 lehetőség van. Ezek megfeleltethetők azon 8 hosszúságú bitsorozatoknak, ahol az első bit f(111), a második bit f(110),..., a nyolcadik bit f(000) Ezen a megfeleltetésnek megfelelő decimális számot a sejtautomata Wolfram-kódjának nevezzük. A megfelelő sejtautomatára a Wolfram-kódja alapján hivatkozunk (0-tól 255-ig).

Példa: Mik a 30-as számú egydimenziós, kétállapotú sejtautomata szabályai? Írjuk fel binárisan!

Tehát például f(0,1,1)=1, azaz ha egy élő sejt baloldali szomszédja halott, jobboldali élő, akkor a sejt életben marad.

Tér-idő diagram

Az egydimenziós, kétállapotú sejtautomaták orbitját egy 2 dimenziós képpel, az ún. **tér-idő diagram** segítségével ábrázolhatjuk: a kép első sorában ábrázoljuk a c kezdőkonfigurációt, az i-edikben $G^i(c)$ -t.

Példa: 90-es szabály

111	110	101	100	011	010	001	000
0	1	0	1	1	0	1	0

Wolfram osztályozása

(W1) Majdnem minden kezdőkonfiguráció orbitja egyazon konstans konfigurációban (minden sejt állapota ugyanaz) stabilizálódik.

Pl. 160	111	110	101	100	011	010	001	000
	1	0	1	0	0	0	0	0

(W2) Majdnem minden kezdőkonfiguráció orbitja periodikus.

(W3) Majdnem minden kezdőkonfiguráció kaotikus, véletlenszerű viselkedéshez vezet.

Pl. 126	111	110	101	100	011	010	001	000
	0	1	1	1	1	1	1	0

(W4) Lokális struktúrák alakulnak ki komplex kapcsolattal.

Pl. 110	111	110	101	100	011	010	001	000
	0	1	1	0	1	1	1	0

Példa: 184-es szabály

Közlekedés áramlása.

Az 1-esek autók, melyek akkor lépnek egyet jobbra, ha van előttük egy szabad hely (0). Meglepően jól modellezi a valóságot (folyamatos haladás, stop-go-stop-go, dugó).

25,50, illetve 75 százalékos autósűrűség

Példa: 184-es szabály

184	111	110	101	100	011	010	001	000
	1	0	1	1	1	0	0	0

Pészecskék lerakódása szabálytalan felületre Tekintsünk egy a gravitációval 45 fokos szöget bezáró rácsot. Egy felületet modellezhetünk úgy, hogy minden részecske alatt balra lent és jobbra lent részecske kell legyen. Ennek felülete egy +1 és -1 meredekségű darabokból álló határvonal. A következő iterációban 1-1 új részecske rakódik le a lokális minimum pontokban (10-k fölé)

Példa: 184-es szabály

184	111	110	101	100	011	010	001	000
	1	0	1	1	1	0	0	0

Ballisztikus kioltás. A 00 minta egy balról jobbra haladó pozitív töltésű részecskét, míg az 11 minta ennek egy jobbról balra mozgó antirészecske párját reprezentálja. 01 és 10 a köztes térnek felel meg. Az ellentétes töltésű részecskepárok kioltják egymást.

001001011,
100100110,
010010101,
101001010.

Injektív/szürjektív/bijektív sejtautomata

Egy sejtautomata **injektív/szürjektív/bijektív**, ha *G* injektív/szürjektív/bijektív.

Azaz egy sejtautomata bijektív, ha minden lehetséges c konfigurációjára teljesül, hogy pontosan egy olyan c' konfiguráció van, melyre G(c')=c.

A $p \in S$ sejtállapot **nyugalmi** állapot, ha f(p, ..., p) = p. Ha egy c konfigurációban véges sok sejt van a p nyugalmi állapottól különböző állapotban, akkor azt mondjuk, hogy c a sejtautomata egy **véges konfigurációja**.

Észrevétel: Ha c véges, akkor G(c) is az.

Ha ugyanis c-nek k nyugalmitól különböző állapota van, akkor G(c)-nek legfeljebb k|N|.

Jelölje G_F G-nek a **véges** konfigurációkra való megszorítását.

Reverzibilis sejtautomata

Definíció

Az G globális átmenetfüggvényű sejtautomatát **reverzibilisnek** nevezzük, ha van inverze, azaz egy olyan F globális átmenetfüggvényű sejtautomata, amelyre $F \circ G = G \circ F = id$.

Példa: 1 dimenziós sejtautomata 9 állapottal

Észrevétel: Ha egy sejtautomata revervibilis akkor nyilván bijektív. A fordított állítás nem nyilvánvaló.

Édenkert

Definíció

Egy sejtautomata valamely konfigurációját édenkert konfigurációnak nevezzük, ha nincs megelőzője.

Azaz édenkert csak kezdőkonfigurációként fordulhat elő. **Példa:**

Minden 01010-t tartalmazó c konfiguráció édenkert. Indirekt, tegyük fel, hogy van olyan c', hogy G(c')=c. Tekintsük a középső 0-t, három eset van aszerint, hogy mi c'-ben ennek a sejtnek a szomszédsága. (1) 000, ekkor az előző egyes szomszédsága c'-ben *00, ami nem lehet. (2) 111, ekkor az előző 1-es miatt c'-ben ez előtt 0 áll, de akkor a minta első 0-ja *01-ből lett, ami nem lehet. (3) 100, ekkor a következő 1-es miatt c'-ben 100 után 1-es áll, de akkor a minta utolsó 0-ja 01*-ból lett, ami nem lehet.

Édenkert

Definíció

Egy véges mintát árvának nevezzük, ha minden őt tartalmazó konfiguráció édenkert.

Tehát a fentiek szerint 01010 árva a 110-es szabályú egydimenziós, kétállapotú sejtautomatában.

Tétel

Bármely édenkert tartalmaz árvát.

(nem bizonyítjuk)

Édenkert tétel (Moore (1962), Myhill (1963))

Legyen $A = \langle X, S, N, f \rangle$ egy sejtautomata, ahol X euklideszi tér. Ekkor G szürjektív akkor és csak akkor, ha G_F injektív.

Azaz akkor és csak akkor van árva (édenkert), ha van két véges konfiguráció, melynek ugyanaz a képe. Az ilyen párokat **ikreknek** nevezzük.

Bizonyítás (vázlat): Legyen |S| = s. Csak az euklideszi síkon bizonyítjuk.

Tegyük fel, hogy vannak P és Q ikrek és tegyük fel, hogy befoglalhatók egy-egy $n \times n$ -es négyzetbe. Tegyük fel továbbá, hogy X elemei szomszédságának legfeljebb n a sugara.

Tekintsünk most egy nagy, $mn \times mn$ -es négyzetet. A megelőző konfiguráció egy legfeljebb $(m+2)n \times (m+2)n$ -es területének lehet hatása ezen sejtek állapotára. Ez $(m+2) \times (m+2)$ darab $n \times n$ -es cellára osztható.

Mivel léteznek ikrek, ezen $n \times n$ -es részek $s^{n \times n}$ lehetséges konfigurációja közül legalább 2-nek ugyanaz a hatása. Így legfeljebb $(s^{n \times n}-1)^{(m+2)(m+2)}$ különböző kép állhat elő a lehetséges $s^{mn \times mn}$ közül.

Utóbbi a nagyobb szám, ha m elég nagy, mivel $\log(s^{n^2})m^2>\log(s^{n^2}-1)(m^2+4m+4)$ teljesül, ha m elég nagy.

Tehát van olyan minta az $mn \times mn$ -es négyzet lehetséges kitöltései közül, amely nem áll elő képként, azaz van legfeljebb $mn \times mn$ méretű árva.

Fordítva, tegyük fel, hogy létezik egy R árva. Ekkor létezik $n \in \mathbb{N}$, melyre R befoglalható egy $n \times n$ -es négyzetbe.

Tekintsük az egy nagy, $mn \times mn$ -es négyzetbe foglalható véges konfigurációkat. Ezen konfigurációk következő generációja egy $(m+2)n \times (m+2)n$ -es négyzetbe foglalható, melyet osszunk fel $(m+2) \times (m+2)$ darab $n \times n$ -es négyzetre.

Mivel egyik ilyenben se kaphatjuk R-et, ezért a potenciálisan $s^{mn \times mn}$ konfigurációnak legfeljebb $(s^{n \times n} - 1)^{(m+2)(m+2)}$ fajta képe lehet. Az előző számítás miatt a skatulyelv szerint van két konfiguráció, amelyeknek ugyanaz a képe, azaz vannak ikrek.

Megjegyzés: Azt, hogy X euklideszi tér ott használtuk ki, hogy egy nagy térfogatú kockának a felszíne hozzá képest aszimptotikusan kisebb nagyságrendű sejtet tartalmaz (síkban: terület/kerület). Van olyan sejtatomata pl. a hiperbolikus síkon (ami nem euklideszi tér), amelynek van édenkertje, de nincsenek ikrei és olyan is, amelynek vannak ikrei, de nincs édenkertje.

Következmény

Legyen az A sejtautomata sejttere euklideszi tér és globális átmenetfüggvénye G.

- ► Ha *A* injektív sejtautomata, akkor szürjektív is.
- Ekvivalens az, hogy A injektív és az, hogy A bijektív.

Bizonyítás: Ha G injektív, akkor G_F is, tehát az Éden-tétel miatt szürjektív is. Minden bijektív leképezés szürjektív.

Tétel

Legyen az A sejtautomata sejttere euklideszi tér és globális átmenetfüggvénye G. Ekkor

$$G$$
 injektív $\Leftrightarrow G$ bijektív $\Leftrightarrow G$ reverzibilis \implies

$$G_F$$
 szürjektív $\Leftrightarrow G_F$ bijektív $\Longrightarrow G$ szürjektív $\Leftrightarrow G_F$ injektív

(nem bizonyítjuk)

Például GOL-re alkalmazható az édenkert tétel. Egy csupa halott cellából és egy egyetlen élő sejtből álló konfiguráció könnyen láthatóan iker. Ekkor az édenkert-tétel szerint létezik édenkert. GOL-ben azonban nincs kis méretű édenkert.

R. Banks konstrukciója:

A. Flammenkamp árvája: (kék x: kötelezően halott)

Sejtautomaták számítási ereje

Sejtautomata, mint nyelvanalizáló eszköz:

Definíció

Legyen $A = \langle 1, S, (-1, 0, +1), f \rangle$ egy egydimenziós sejtautomata, $T \subset S$, $F \subset S \setminus T$ továbbá $\sqcup \in S \setminus (T \cup F)$ az A nyugalmi állapota. A felismeri az $L \subseteq T^*$ nyelvet, ha $w \in L$ akkor és csak akkor ha az automatát w-vel indítva (értsd: egymás utáni celláin w olvasható, minden más cella nyugalmi állapotában van) a w első betűjének megfelelő cella F-beli állapotba jut.

Tétel

Legyen adott egy M Turing gép n állapottal és m-elemű szalagábécével. Ekkor van olyan egydimenziós sejtautomata, ami

- lacktriangle háromelemű szomszédsággal és (m+1)n állapottal
- háromelemű szomszédsággal és m + n + 2 állapottal
- hatelemű szomszédsággal és $\max\{n, m\} + 1$ állapottal szimulálni tudja M-et.

Sejtautomaták számítási ereje

Bizonyítás (csak az első):

Legyen $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ egy TG. Megkonstruálunk egy $A = \langle 1, \Gamma \cup Q \times \Gamma, (-1, 0, +1), f \rangle$ egydimenziós sejtautomatát, ami ugyanazt a nyelvet ismeri fel, mint M.

Ha
$$\delta(q,a)=(r,b,R)$$
, valamely $q,r\in Q,a,b\in \Gamma$ -ra, akkor
$$f((q,a),x,y):=(r,x)\quad (\forall x,y\in \Gamma)$$

$$f(x,(q,a),y):=b\quad (\forall x,y\in \Gamma)$$

Ha
$$\delta(q,a)=(r,b,S)$$
, valamely $q,r\in Q,a,b\in \Gamma$ -ra, akkor $f(x,(q,a),y):=(r,b)\ (\forall x,y\in \Gamma)$

Ha
$$\delta(q,a)=(r,b,L)$$
, valamely $q,r\in Q,a,b\in \Gamma$ -ra, akkor
$$f(x,y,(q,a)):=(r,y) \ (\forall x,y\in \Gamma)$$

$$f(x,(q,a),y):=b \ (\forall x,y\in \Gamma)$$

Minden egyéb esetben
$$(x, y, z \in \Gamma \cup Q \times \Gamma)$$

 $f(x, y, z) := y$.

Sejtautomaták számítási ereje

 $T = \Sigma$ és $F = \{q_i\} \times \Gamma$ választással könnyen látható, hogy A-nak éppen az L(M)-beli szavakra tartalmaz az orbitja F-beli állapotot.

Ennek a kezdőcellába másolása és a többi cella nyugalmi állapotba vitele technikai részletkérdés, amit itt nem részletezünk.

Tétel

Tegyük fel, hogy az A egydimenziós sejtautomata által felismert nyelv L. Ekkor készíthető olyan M TG, amelyre L(M) = L.

Ennek a bizonyítása egyszerű és természetes, amit a hallgatóságra bízok.

Megjegyzés: Több dimenziós sejtautomaták Turing-univerzalitása szintén bizonyítható.

Életjáték – eldönthetetlen problémák

Végül bizonyítás nélkül megemlítünk néhány algoritmikus probléma megoldhatóságával kapcsolatos eredményt.

Az Univerzális Turing gép szimulálható az Életjátékban.

Tétel

Minden $\langle M, w \rangle$ (Turing gép,szó) párhoz megkonstruálható egy olyan $c_{\langle M,w \rangle}$ kezdőkonfiguráció GOL-ben, melyre $c_{\langle M,w \rangle}$ kihal $\Leftrightarrow w \in L(M)$.

Tétel

Adott egy c és egy c' konfiguráció GOL-ben. Eldönthetetlen, hogy létezik-e olyan $i \ge 0$, hogy $c' = G^i(c)$.

Tétel

Eldönthetetlen, hogy GOL egy véges mintája kihal-e.

További eldönthetetlen problémák

Tétel (M. Cook, 2004)

A 110-es Wolfram kódú egydimenziós kétálllapotú sejtautomata univerzális, azaz bármely kiszámítható függvény kiszámítható vele.

Tétel

- (1) Eldönthető, hogy egy egydimenziós sejtautomata injektív-e.
- (2) Eldönthető, hogy egy egydimenziós sejtautomata szürjektív-e.

Tétel

- (1) Eldönthetetlen, hogy egy kétdimenziós sejtautomata injektív-e.
- (2) Eldönthetetlen, hogy egy kétdimenziós sejtautomata szürjektív-e.
- (3) Egy kétdimenziós sejtautomata injektivitása rekurzíve felsorolható.
- (4) Egy kétdimenziós sejtautomata nem-szürjektivitása rekurzíve felsorolható.

További eldönthetetlen problémák

Egy konfiguráció **nyugalmi**, ha minden sejt nyugalmi állapotban van. Egy sejtautomata **nilpotens**, ha minden kezdőkonfigurációra nyugalmi konfigurációba jut.

Tétel

- (1) Eldönthetetlen, hogy egy egydimenziós sejtautomata nilpotens-e.
- (2) Eldönthetetlen, hogy egy kétdimenziós sejtautomata nilpotens-e.
- (3) Rekurzíve felsorolható, hogy egy egydimenziós sejtautomata nilpotens-e.
- (4) Rekurzíve felsorolható, hogy egy kétdimenziós sejtautomata nilpotens-e.

További eldönthetetlen problémák

Tétel

- (1) Eldönthetetlen, hogy egy kétdimenziós sejtautomata reverzibilis-e.
- (2) Rekurzíve felsorolható, hogy egy kétdimenziós sejtautomata reverzibilis-e.

Egy G globális átmenetfüggvényű sejtautomata periodikus, ha minden kezdőkonfigurációra G időben periodikus.

Tétel

- (1) Eldönthetetlen, hogy egy kétdimenziós sejtautomata periodikus-e.
- (2) Eldönthetetlen, hogy egy egydimenziós sejtautomata periodikus-e.