Natural Analogues of Geological Repositories, and WIPP

"At first I saw absolutely nothing. When I was able to open my eyes, I stood still, far more stupefied than astonished."

—Henry Lawson in "Journey to the Center of the Earth" by Jules Verne.

Natural Analogues

Can natural analogues be used examples of long-term geological storage

of SNP?

The Oklo Mine:

A uranium mine in

The Gabon

Republic.

In circa 1970, U core samples were deficient wrt ²³⁵U.

²³⁵U is normally 0.72%

Some cores samples contained as little as 0.44% ²³⁵U. Why? Was some being stolen?

Follow-up analyses of core samples indicated the presence of more than 30 elements that usually occur as fission products.

In 1972, Francis Perrin

Concluded that, at one time, the Oklo site had yielded a self-sustaining nuclear chain reaction.

French physicist (1901-1992). Helped establish in 1939 the possibility of nuclear energy production of electricity.

Evidence that, within a Uore body, a natural reactor became critical, consumed about six tons of fuel during a 600,000 to 5 million-year period, and then the reaction ceased all in Pre-Cambrian times (about 2 billion years [2 Ga] ago).

Era	Period / Epoch		
CAENOZOIC	Pleistocene		4.0
	Pliocene		1.8
	Miocene		5
	Oligocene		25
	Eocene		38
	Palaeocene		55
MESOZOIC			65
	Cretaceous		
			144
	Jurassic		
			213
	Triassic		
	Permian		248
ZOIC	Carboniferous	Pennsylvanian	286
		Mississippian	
	Devonian		354
PALAEOZOIC	Silurian		412
	Ordovician		435
	Cambrian		492
			570
	Precambrian		Millions of years
Copyright © 1997 The Br	ritish Fossil Company Inc.		

Uranium enrichment? Not needed. About 17% ²³⁵U when the Earth was formed.

Two billion years ago (2 Ga), there would have been 3 to 4% 235U at Oklo.

Fossil Reactor 15, located in Oklo. U oxide remains are visible as the yellowish rock.

Migration of fisson products and actinides at the Oklo natural reactor sites. From Berzero and D'Alessandro, 1990; Brookins, 1990; Cowan, 1976, and Curtis et al., 1989).

Radionuclide	Observation	
Americium	The yields from the reactions may have been limited.	
Barium	Behavior of fissiogenic barite masked by naturally occurring barite.	
Bismuth	209 Bi was derived from the decay of 237 Np. Remained with the host UO_2 possibly as a sorbate (half-life of 237 Np is 2.12×10^6 years).	
Bromide	Assumed to have migrated from the host UO ₂	
Cadmium	Migrated from the host UO ₂ possibly by volatilization.	
Indium	¹¹⁵ In was likely retained (half-life of 4.4 x 10 ¹⁴ years).	
Iodine	Fissiogenic iodine was not retained.	
Molybdenum	About 80% of the fissiogenic Mo isotopes had migrated from the host UO_2 but were retained as a sulfide mineral within 1.5 m of the reactor zone in the sandstone gangue (the half-life of 100 Mo is 8.5 x 10^{18} years)	
Neodymiun	Retained in the host UO ₂ . Stable, fissiogenic ¹⁴³ Nd present in greater amounts than background levels.	
Neptunium	Assumed to have been retained by sorption and solid solution with ${\rm UO_2}$ as inferred by the presence of ${\rm ^{209}Bi}$.	

Implications about storage

It appeared that many fission products remained in the ore body despite the movement of groundwater through the sandstone.

The presence of ⁹⁹Ru suggested that ⁹⁹Tc was once present (half-life of 2.12 x 10⁵ years [212 Ka]).

Stable, deep storage for billions of years.

Cigar Lake, Saskatchewan

1.3 billion-year-old (1.3 Ga) U deposit

About 430 m below land surface. Contains about 8% U.

Groundwater saturated since hydrothermal formation.

Cigar Lake Deposit

Clay (illite) above the ore.

The clay layer provided long-term protection of UO_2 . Groundwater flowed over the deposit and not through it. The clay is a natural barrier.

Only chemical diffusion through the clay. Dissolution of UO₂ limited by its solubility.

Waste Isolation Pilot Plant (WIPP)

Geological repository for DOE transuranic wastes (TRU) such as Np, Pu, Am, and Cm.

WIPP

10,240-acre (4,144 ha-) site near Carlsbad, New Mexico.

Disposal area 2,150 feet deep (655 m).

Waste disposal since 1999.

DOE/defense/legacy-related wastes only. High-level waste and spent nuclear fuel are not allowed.

http://www.wipp.energy.gov/ (2:34)

Burial in Permian-Age Salt Deposits

Origin of Halite (Salt)

Origin of Halite (Salt)

Evaporites: Minerals that precipitate from sea water

as the water evaporates.

By geological processes, a structural basin holding sea water can be isolated from the sea. As the water evaporates, minerals form. Carbonates then gypsum because they are less soluble than halite or potash (potassium carbonate or hydroxide)

Good Public Relations

"Visitors to Carlsbad, New Mexico are encouraged to visit the WIPP Experience Exhibit. Friendly staff are available to answer questions about this one-of-a-kind facility. Free 250-million-year-old (250 Ma) rock salt samples are available for all visitors."

Class Assignment 7

Speciation and Solubility of Uranium, Cesium, and Strontium.
Not in the textbook.

Rubric:

The assignment is worth 20 points.

There are 10 questions. Each is worth 2 points.

Questions?

