

UNIVERSITY OF CHANA

(All rights reserved)

${\tt BSc/BA}, \, {\tt FIRST} \, {\tt SEMESTER} \, {\tt EXAMINATIONS:} \, 2015/2016$

SCHOOL OF ENGINEERING

DEPARTMENT OF BIOMEDICAL ENGINEERING

FAEN 201: CALCULUS II (4 credits)

INSTRUCTION:

ANSWER ANY FIVE OUT OF THE FOLLOWING SEVEN QUESTIONS TIME ALLOWED:

THREE (3) HOURS

1. (a) Evaluate the limit of the sequence:

$$a_n = \frac{3^n + 4^{n+1}}{3^n - 4^n}$$

for all $n \in \mathbb{N}$.

(8 marks)

(b) Evaluate the limit of the sequence:

$$a_n = \sqrt{n^2 + 3n} - \sqrt{n^2 - 3n}$$

for all $n \in \mathbb{N} - \{1, 2\}$.

(12 marks)

- (c) Give the εN definition of a convergent sequence. Show, using your definition, that the sequence $a_n = \frac{2n + 3}{\ln x 4}$ converges to $\frac{2}{5}$. (20 marks)
- 2. (a) Let p be a real number such that p > -1 and $p \neq 0$. Prove by induction that

$$(1+p)^n > 1 + np$$

for every integer $n \geq 2$.

(15 marks)

(b) Using your results in (a) above, show that the sequence $a_n = \left(1 + \frac{1}{n}\right)^n$ for all integers $n \ge 1$ is a monotone increasing sequence.

c) i. Use the comparison test to test for convergence for

$$\int_3^4 \frac{\ln x}{(x-3)^4}.$$

(7 marks)

ii. Use the ratio criterion test to find the interval of absolute convergence of the power series

$$\sum_{n=1}^{\infty} \left(\frac{x^n}{n^3 \cdot 3^{n-1}} \right) \cdot$$

(8 marks)

3. (a) Find f_x , f_y , f_{xx} and f_{yy} of

i.
$$f(x,y) = xe^{xy}$$

ii.
$$(f(x,y) = \sqrt{x^2 + y^2})$$
 (12 marks)

(b) Given that $f(x,y) = x^3 + y^3 - 6xy$ where x = cost and y = sint, find

i.
$$\frac{df}{dt}$$
 (8 marks)

ii. the value of
$$\frac{df}{dt}$$
 when $t = \frac{\pi}{2}$. (4 marks)

iii. Find the critical point(s) of f(x, y)

(10 marks)

iv. Determine the nature of the critical point(s) of f(x, y).

(6 marks)

4. (a) Give a precise definition of the Gamma function Γ .

Prove that
$$\Gamma(v+1) = v\Gamma(v)$$
 where $v > 0$.

(16 marks)

(b) Using your results (b) above and the fact that $\Gamma(v+1)=v!$ for v=1,2,3,..., evaluate

i.
$$\int_0^\infty x^6 e^{-2x} dx$$

ii.
$$\int_0^\infty \sqrt{y} e^{-y^2} dy.$$

(12 marks)

(c) Given that

$$\int_0^{\frac{\pi}{2}} \sin^{2u-1}\theta \cos^{2v-1}\theta \, d\theta = \frac{1}{2} \frac{\Gamma(u)\Gamma(v)}{\Gamma(u+v)},$$

evaluate

i.
$$\int_0^{\frac{\pi}{2}} \sin^3\theta \cos^2\theta d\theta$$

ii.
$$\int_0^{\frac{\pi}{2}} \cos^8\theta \, d\theta$$
. (14 marks)

- 5. (a) The temperature at the point (x, y, z) in a solid piece of metal is given by $f(x, y, z) = \frac{1}{\sqrt{5}}e^{3x+2y+z}$ degrees.
 - i. In what direction at the point (0,0,0) does the temperature increase most rapidly?
 - ii. Find the rate of increase in temperature in the solid metal. (12 marks)
 - (b) Find the directional derivative of $f(x,y) = 3xy^3 + y^2z^2$ at the point (1,-2,-2) in the direction from that point towards the origin.

 (15 marks)
 - (c) Evaluate $\int_C 4x^3 ds$, where C is the line segment from (-2,-1) to (2,4) and ds is a path on C. (13 marks)
- 6. (a) Compute the double integral

$$\iint\limits_{R} \left[x^2 y^2 + \cos(\pi x) + \sin(\pi y) \right] dA,$$

where $R = [-2, -1] \times [0, 1]$.

(15 marks)

- (b) Using Green's theorem and polar coordinates or otherwise, evaluate $\oint_C y^3 dx = x^3 dy$, where C is the positively oriented circle of radius 2 centred at the origin.

 (13 marks)
- (c) For the vector function $F = (yz^2)\mathbf{i} + (xy)\mathbf{j} + (yz)\mathbf{k}$, compute div(curl F). (12 marks)
- 7. (a) Use Green's theorem to evaluate $\oint xy \, dx + x^2 \phi^5 \, dy$ where C is the triangle with vertices (0,0), (1,0) and (1,2) positively oriented. (13 marks)
 - (b) Compute the Laplacian of the function $f(x, y, z) = x^3 3x^2y^2 + z^3$. (12 marks)
 - (c) How much work is accomplished by the force $F(x,y) = (2xy^2)\mathbf{i} + (xy)\mathbf{j}$ in pushing a particle from (0,0) to (3,9) along the parabola $y = \omega^2$?