Homework 6 - Relations and Functions

October 17, 2020

RELATIONS

- 1. (8 pts) Let $R1 = \{(1, 2), (2, 3), (3, 4)\}$ and $R2 = \{(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 4)\}$
- 1), (3, 2), (3, 3), (3, 4)} be relations from $\{1, 2, 3\}$ to $\{1, 2, 3, 4\}$. Find
- a) R1 U R2
- b) R1 ∩ R2
- c) R1 R2
- d) R2 R1
- 2. (15 pts) Determine whether the relation R on the set of all real numbers is reflexive, symmetric, antisymmetric, and/or transitive, where $(x, y) \in R$ if and only if
- a) x + y = 0
- b) $x = \pm y$
- c) x y is a rational number.
- d) x = 2y
- e) $xy \ge 0$
- 3. (12 pts)
- (a) Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of ordered pairs (a, c), where $a \in A$, $c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by S \circ R. Now R be the relation $\{(1, 2), (1, 3), (2, 3), (2, 4), (3, 1)\}$, and let S be the relation $\{(2, 1), (3, 1), (3, 2), (4, 2)\}$. Find S \circ R.
- (b) Let R be a relation on the set A. The powers R^n , n = 1, 2, 3, ..., are defined recursively by $R^1 = R$ and $R^{n+1} = R^n \circ R$. Now let R be the relation on the set $\{1, 2, 3, 4, 5\}$ containing the ordered pairs $(1, 1), (1, 2), (1, 3), (2, 3), (2, 4), (3, 1), (3, 4), (3, 5), (4, 2), (4, 5), (5, 1), (5, 2), and (5, 4). Find <math>R^2$, R^3 , R^4 and R^5 .

4. (15 pts) Suppose that R and S are reflexive relations on a set A. Prove or disprove each of these statements. (Note that $R1 \oplus R2$ consists of all ordered pairs (a, b), where student a has taken course b but does not need it to graduate or needs course b to graduate but has not taken it.)

- a) R \cup S is reflexive.
- b) R \cap S is reflexive.
- c) $R \oplus S$ is irreflexive.
- d) R S is irreflexive.
- e) S o R is reflexive.

ORDERED RELATIONS

1. (24 pts) Fill in the following table describing the characteristics of the given ordered sets. Answer with T for True or F for False. (Note that " \subset " indicates proper containment, that is, for two sets A and B, A \subset B if and only if A \subseteq B \land A \neq B.)

	Partial Order	Total Order	Well Order
< ℕ , <>			
$<\mathbb{N}$, \leq $>$			
$<\mathbb{Z}$, $\leq>$			
$<\mathbb{R}$, \leq $>$			
$<\mathbb{P}(\mathbb{N})\;,\subset>$			
$<\mathbb{P}(\mathbb{N})\;,\subseteq>$			
$<\mathbb{P}(\{a\}),\subseteq>$			
$<\mathbb{P}(\varnothing)\;,\subseteq>$			

2. (12 pts) Let $A = \{a, b, c\}$. Use Hasse diagrams to describe all partial orderings on A for which a is a minimal element.

EQUIVALENCE RELATIONS

1. (5 pts) Give a specific reason why the following set R does not define an equivalence relation on the set $\{1, 2, 3, 4\}$.

$$R = \{(1,1), (2,2), (3,3), (4,4), (2,3), (3,2), (2,4), (4,2)\}$$

2. (5 pts) The following set R defines an equivalence relation on the set $\{1, 2, 3\}$, where aRb means that $(a,b) \in R$.

$$R = \{(1,1), (2,2), (3,3), (2,3), (3,2)\}$$

What are the equivalence classes?

- 3. (8 pts) Let X be a finite set. For subsets, A, B $\in \mathcal{P}(X)$, let A R B if |A| = |B|. This is an equivalence relation on $\mathcal{P}(X)$. If $X = \{1, 2, 3\}$, list the equivalence classes.
- 4. (12 pts)

Define a relation on \mathbb{Z} by a R b if $a^2 = b^2$.

- (a) Prove that R is an equivalence relation
- (b) Describe the equivalence classes (with respect to the relation R above).

FUNCTIONS

- 1. (10 pts) Let $A = \{0, 1, 2\}$ Find all total functions $f: A \rightarrow A$ for which $f^2(x) = f(x)$. (Note: $f^2 = f \circ f$)
- (a) How many such functions are there?
- (b) List all such functions.
- 2. (10 pts) Let P be a set of people, and let Q be a set of occupations. Define a function $f: P \to Q$ by setting f(p) equal to p's occupation. What must be true about the people in P for f to be a total function?
- 3. (10 pts) Let $S = \{0, 1, 2, 3, 4, 5\}$, and let $\mathcal{P}(S)^*$ be the set of all nonempty subsets of S. Define a function $m: \mathcal{P}(S)^* \to S$ by

$$m(H)$$
 = the largest element in H

for any nonempty subset $H \subseteq S$.

- (a) Is *m* one-to-one? Why or why not?
- (b) Does $m \text{ map } \mathcal{P}(S)^*$ onto S? Why or why not?
- 4. (12 pts)

Define a function $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ by f(x) = (2x + 3, x-4)

- (a) Is f one-to-one? Prove or disprove.
- (b) Does f map \mathbb{Z} onto $\mathbb{Z} \times \mathbb{Z}$? Prove or disprove.