Aula 12

Danilo Machado Pires

<u>danilo.pires@unifal-mg.edu.br</u>

Leonardo Henrique Costa

<u>Leonardo.costa@unifal-mg.edu.br</u>

https://atuaria.github.io/portalhalley

Anuidades temporárias imediatas

- \triangleright Variável aleatória tempo T, discreta.
- \blacktriangleright No caso de anuidades temporárias, essas são válidas enquanto a pessoa de idade x for viva até no máximo n anos.
 - > Então, para o caso discreto, o V.P.A. de anuidades temporárias temos:
- > VPA de uma anuidade antecipada.

$$Z = \begin{cases} \ddot{a}_{\overline{T+1|}} & 0 \le T < n \\ \ddot{a}_{\overline{n|}} & T \ge n \end{cases}$$

$$\ddot{a}_{x:\overline{n|}} = E(Z) = \sum_{t=0}^{n-1} {}_{t}E_{x} = \sum_{t=0}^{n-1} v^{t} {}_{t}p_{x}$$

Exemplo 5:

Seja uma pessoa de 30 anos que queira comprar uma anuidade que paga 1 u.m. com pagamento **antecipado** por um período de 4 anos. Considerando a tábua de mortalidade dada e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento

imediato.

Idade	q_X	p_X	l_x	$\ddot{z} = \sum_{i=1}^{4-1} E_i = \sum_{i=1}^{3} nt_i n$
25	0,00077	0,99923	100000	$\ddot{a}_{30:\overline{4} } = \sum_{t=0}^{\infty} {}_{t}E_{30} = \sum_{t=0}^{\infty} v^{t} {}_{t}p_{30}$
26	0,00081	0,99919	99923	
27	0,00085	0,99915	99842	$\ddot{a}_{30:\overline{4} } = 1 + vp_{30} + v^2 _2p_{30} + v^3 _3p_{30}$
28	0,00090	0,99910	99757	30:4
29	0,00095	0,99905	99667	
30	0,00100	0,99900	99572	$\ddot{a}_{30:\overline{4} } = 1 + \frac{1}{1,05}p_{30} + \left(\frac{1}{1,05}\right)^2 p_{30}p_{31} + \left(\frac{1}{1,05}\right)^3 p_{30}p_{31}$
31	0,00107	0,99893	99472	$ a_{30:4} = 1 + 1,05^{P30} + (1,05)^{P30P31} + (1,05)^{P30P31}$
32	0,00114	0,99886	99365	
33	0,00121	0,99879	99251	$\ddot{a}_{30:\overline{4 }} = 3,71$
34	0,00130	0,99870	99131	
35	0,00139	0,99861	99002	

Anuidades temporárias imediatas

> VPA de uma anuidade Postecipada.

$$Z = \begin{cases} a_{\overline{T|}} & 0 \le T < n \\ a_{\overline{n|}} & T \ge n \end{cases}$$

$$a_{x:\overline{n|}} = E(Z) = \sum_{t=1}^{n} {}_{t}E_{x} = \sum_{t=1}^{n} v^{t} {}_{t}p_{x}$$

Exemplo 6:

Seja uma pessoa de 30 anos que queira comprar uma anuidade que paga 1 u.m. com pagamento **postecipado** por um período de 4 anos. Considerando a tábua de mortalidade dada e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

			4 4	
Idade	q_X	p_X	l_x	$a_{20.\overline{41}} = \sum_{t} E_{20} = \sum_{t} v^{t} p_{20}$
25	0,00077	0,99923	100000	$a_{30:\overline{4} } = \sum_{t=1}^{t} {}_{t}E_{30} = \sum_{t=1}^{t} {}_{t}p_{30}$
26	0,00081	0,99919	99923	
27	0,00085	0,99915	99842	$a_{30:\overline{4} } = vp_{30} + v^2 _2p_{30} + v^3 _3p_{30} + v^4 _4p_{30}$
28	0,00090	0,99910	99757	
29	0,00095	0,99905	99667	$a_{30:\overline{4} } = \frac{1}{1,05}p_{30} + \left(\frac{1}{1,05}\right)^2 p_{30}p_{31} + \left(\frac{1}{1,05}\right)^3 p_{30}p_{31}p_{32} +$
30	0,00100	0,99900	99572	
31	0,00107	0,99893	99472	$\left(\frac{1}{1,05}\right)^4 p_{30} p_{31} p_{32} p_{33}$
32	0,00114	0,99886	99365	
33	0,00121	0,99879	99251	$a_{30:\overline{4 }} = 3,52$
34	0,00130	0,99870	99131	
35	0,00139	0,99861	99002	

➤ Exemplo 7

Seja uma pessoa de 25 anos que queira comprar uma anuidade que paga 1 u.m. com pagamento **antecipado** por um período de 40 anos. Considerando a tábua de mortalidade AT-2000 feminina e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

 $\ddot{a}_{25:\overline{40|}}$

$$\omega = 117, x = 25$$

$$\omega = 117, x = 25$$

$$Y = \begin{cases} \ddot{a}_{\overline{T+1|}} & se \ 0 < T < n \\ \ddot{a}_{\overline{n|}} & se \ T \ge n \end{cases}$$

$$E(Y) = \ddot{a}_{x:\overline{n|}} = \sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|}} P_{x}(T=t) + \sum_{t=n}^{\infty} \ddot{a}_{\overline{n|}} P_{x}(T=t)$$

$$\ddot{a}_{x:\overline{n|}} = \sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|}} P_x(T=t) + \ddot{a}_{\overline{n|}} \sum_{t=n}^{\infty} P_x(T=t)$$

$$\ddot{a}_{x:\overline{n|}} = \sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|}} P_x(T=t) + \ddot{a}_{\overline{n|}} P_x(T\geq n)$$

$$\ddot{a}_{x:\overline{n|}} = \left(\sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|}} \, t \, p_x q_{x+t}\right) + \ddot{a}_{\overline{n|}} \, {}_{n} p_x = \sum_{t=0}^{n-1} v^t \, {}_{t} p_x$$

> Exemplo 8

Seja uma pessoa de 25 anos que queira comprar uma anuidade que paga 1 u.m. com pagamento **antecipado** por um período de 40 anos. Considerando a tábua de mortalidade AT-2000 feminina e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

$$\ddot{a}_{40:\overline{40|}} = \left(\sum_{t=0}^{39} \frac{1 - v^{t+1}}{1 - v} t^{t+1} p_{25} q_{25+t}\right) + \left(\frac{1 - v^{40}}{1 - v}\right) q_{25} q_{25}$$

$$\ddot{a}_{40:\overline{40|}} = 1,0584 + 16,78173 = 17,8402$$

Exemplo 9:

Seja uma pessoa de 25 anos que queira comprar uma anuidade que paga 1 u.m. com pagamento **antecipado** por um período de 5 anos. Considerando a tábua de mortalidade dada e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

iiiicaiaco.				5-1 4
Idade	q_X	p_X	l_x	$\ddot{a}_{25:\overline{5} } = \sum_{t}^{3} E_{25} = \sum_{t}^{3} v^{t}_{t} p_{25}$
25	0,00077	0,99923	100000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
26	0,00081	0,99919	99923	
27	0,00085	0,99915	99842	$\ddot{a}_{25:\overline{5} } = 1 + vp_{25} + v^2 _2p_{25} + v^3 _3p_{25} + v^4 _4p_{25}$
28	0,00090	0,99910	99757	
29	0,00095	0,99905	99667	$\ddot{a}_{25:\overline{5 }} = 1 + \left(\frac{1}{1,05}\right)p_{25} + \left(\frac{1}{1,05}\right)^2 \frac{l_{27}}{l_{25}} + \left(\frac{1}{1,05}\right)^3 \frac{l_{28}}{l_{25}} + \left(\frac{1}{1,05}\right)^4 \frac{l_{29}}{l_{25}}$
30	0,00100	0,99900	99572	$(1,05)^{P25}$ $(1,05)$ l_{25} $(1,05)$ l_{25}
31	0,00107	0,99893	99472	
32	0,00114	0,99886	99365	
33	0,00121	0,99879	99251	$\ddot{a}_{25:\overline{5} } = 4,53$
34	0,00130	0,99870	99131	
35	0,00139	0,99861	99002	

Exemplo 10:

Seja uma pessoa de 25 anos que queira comprar uma anuidade que paga 1 u.m. com pagamento **postecipado** por um período de 4 anos. Considerando a tábua de mortalidade dada e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento

imediato.

Idade	q_X	p_X	l_x
25	0,00077	0,99923	100000
26	0,00081	0,99919	99923
27	0,00085	0,99915	99842
28	0,00090	0,99910	99757
29	0,00095	0,99905	99667
30	0,00100	0,99900	99572
31	0,00107	0,99893	99472
32	0,00114	0,99886	99365
33	0,00121	0,99879	99251
34	0,00130	0,99870	99131
35	0,00139	0,99861	99002

Exemplo 10:

Seja uma pessoa de 25 anos que queira comprar uma anuidade que paga 1 u.m. com pagamento **postecipado** por um período de 4 anos. Considerando a tábua de mortalidade dada e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

micarato.			4 4	
Idade	q_X	p_X	l_x	$a_{25:\overline{4} } = \sum_{t=1}^{7} {}_{t}E_{25} = \sum_{t=0}^{7} {}_{t}p_{25}$
25	0,00077	0,99923	100000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
26	0,00081	0,99919	99923	
27	0,00085	0,99915	99842	$a_{25:\overline{4} } = vp_{25} + v^2 _2p_{25} + v^3 _3p_{25} + v^4 _4p_{25}$
28	0,00090	0,99910	99757	
29	0,00095	0,99905	99667	$a_{25:\overline{4} } = \left(\frac{1}{1,05}\right)p_{25} + \left(\frac{1}{1,05}\right)^2 \frac{l_{27}}{l_{25}} + \left(\frac{1}{1,05}\right)^3 \frac{l_{28}}{l_{25}} + \left(\frac{1}{1,05}\right)^4 \frac{l_{29}}{l_{25}}$
30	0,00100	0,99900	99572	$ u_{25:4} - \left(\overline{1,05}\right)^{p_{25}} + \left(\overline{1,05}\right)^{25} + \left(\overline{1,05}\right)^{25} + \left(\overline{1,05}\right)^{25} + \left(\overline{1,05}\right)^{25}$
31	0,00107	0,99893	99472	
32	0,00114	0,99886	99365	
33	0,00121	0,99879	99251	$a_{25:\overline{4 }} = 3,53$
34	0,00130	0,99870	99131	
35	0,00139	0,99861	99002	

Anuidades temporárias imediatas

$$\ddot{a}_{x:\overline{n|}} = 1 + vp_x + v^2 _2p_x + v^3 _3p_x + v^4 _4p_x + \dots + v^{n-1} _{n-1}p_x$$

$$a_{x:\overline{n-1}|} = vp_x + v^2 p_x + v^3 p_x + v^4 p_x + \cdots + v^{n-1} p_x$$

$$\ddot{a}_{x:\overline{n|}} = 1 + a_{x:\overline{n-1|}}$$

Anuidades temporárias imediatas- Tempo discreto

Variável aleatória tempo T, discreta.

VPA de uma anuidade antecipada.

► VPA de uma anuidade Postecipada.

$$Z = \begin{cases} \ddot{a}_{\overline{T+1|}} & 0 \le T < n \\ \ddot{a}_{\overline{n|}} & T \ge n \end{cases} \qquad \ddot{a}_{x:\overline{n|}} = \mathbf{1} + a_{x:\overline{n-1|}}$$

$$\ddot{a}_{x:\overline{n|}} = 1 + a_{x:\overline{n-1|}}$$

$$Z = \begin{cases} a_{\overline{T|}} & 0 \le T < n \\ a_{\overline{n|}} & T \ge n \end{cases}$$

$$\ddot{a}_{x:\overline{n|}} = E(Z) = \sum_{t=0}^{n-1} {}_{t}E_{x} = \sum_{t=0}^{n-1} {v^{t}}_{t}p_{x}$$

$$\ddot{a}_{x:\overline{n|}} = E(Z) = \sum_{t=0}^{n-1} {}_{t}E_{x} = \sum_{t=0}^{n-1} {}_{t}v_{t} p_{x} \qquad a_{x:\overline{n|}} = E(Z) = \sum_{t=1}^{n} {}_{t}E_{x} = \sum_{t=1}^{n} {}_{t}v_{t} p_{x}$$

$$\ddot{a}_{x:\overline{n|}} = \left(\sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|}} \, t \, p_x q_{x+t}\right) + \ddot{a}_{\overline{n|}} \, {}_n p_x$$

$$\ddot{a}_{x:\overline{n|}} = \left(\sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|}\ t} p_x q_{x+t}\right) + \ddot{a}_{\overline{n|}\ n} p_x \qquad \qquad a_{x:\overline{n|}} = \left(\sum_{t=1}^{n-1} a_{\overline{t}|\ t} p_x q_{x+t}\right) + a_{\overline{n|}\ n} p_x$$