Raport: Organizacja projektu badawczego

Michał Gawryluk

16 czerwca 2020

1 Wprowadzenie

to 7.79.

Celem raportu jest wykorzystanie metod poznanych na przedmiocie Órganizacja projektu badawczego"i ukazanie wszystkich narzędzi git,LaTeX, cmake, języka programistycznego do automatycznego generowania pracy badawczej. Do raportu został użyty zbiór danych o przestępczości w USA per stan. R został wybrany, jako główny język programistyczny do analityki.

Wykres populacji z przestępczością o charakterze napaści został zaprezentowany poniżej. Każdy punkt reprezentowany jest przez jeden stan.

Rysunek 1: Zależność ceny od przebiegu

Całość danych użytych do raportu została zaprezentowana w Tablica 1. W całym zbiorze średnia liczba napaści wynosi 170.76 a średni liczba mordersw

Tablica 1: Podstawowe statystyki dla wykorzystanych danych

	Murder	Assault	UrbanPop
1	13.200	236	58
2	10	263	48
3	8.100	294	80
4	8.800	190	50
5	9	276	91
6	7.900	204	78
7	3.300	110	77
8	5.900	238	72
9	15.400	335	80
10	17.400	211	60
11	5.300	46	83
12	2.600	120	54
13	10.400	249	83
14	7.200	113	65
15	2.200	56	57
16	6	115	66
17	9.700	109	52
18	15.400	249	66
19	2.100	83	51
20	11.300	300	67
21	4.400	149	85
22	12.100	255	74
23	2.700	72	66
24	16.100	259	44
25	9	178	70
26	6	109	53
27	4.300	102	62
28	12.200	252	81
29	2.100	57	56
30	7.400	159	89
31	11.400	285	70
32	11.100	254	86
33	13	337	45
34	0.800	45	44
35	7.300	120	75
36	6.600	151	68
37	4.900	159	67
38	6.300	106	72
39	3.400	174	87
40	14.400	279	48
41	3.800	86	45
42	13.200	188	59
43	12.700	201	80
44	3.200	120	80
45	2.200	48	32
46	8.500	156	63
47	4	145	73
48	5.700	81	39
49	2.600	53	66
50	6.800	161	60
		- *	

2 Kod

Kod pierwszego rozwiązania oparty jest o następujące pakiety.

Listing 1: Wykorzystanie pakiety (zawarte w pliku ./analiza/analiza_mg.R)

```
1 library( dplyr)
2 library( stargazer)
```

Fragment tworzący automatyczne wartości.

Listing 2: Tworzenie tablicy (zawarte w pliku ./analiza/analiza_mg.R)

```
1  dMeanAssault <- mean( df$Assault)
3  dMeanMurder <- mean( df$Murder)
4  
5  '%+%' <- paste0
6  
7  conn <- file( "./analiza/analiza_mg_mean_assault.tex", open = "wt")
8  writeLines( "\\(" %+% as.character( round( dMeanAssault, 2)) %+% "\\)",
       conn)
9  close( conn)
10  
11  conn <- file( "./analiza/analiza_mg_mean_murder.tex", open = "wt")
12  writeLines( "\\(" %+% as.character( round( dMeanMurder, 2)) %+% "\\)",
       conn)
13  close( conn)</pre>
```