README.md 2024-05-14

Project Description for Handover

Project Title: Hourly Forecasting of Message Volume and Anomaly Classification

Development Environment: Ubuntu

1. Hourly Forecasting of Message Volume (NMSG)

Objective: Develop a model using the NeuralProphet algorithm to forecast the hourly volume of incoming messages to the servers based on historical data.

Data Source: Sourced from the S3 production "Performance" bucket, stored in "/Data/train_data/".

Development Process:

- **Proof of Concept (POC):** Initiated in "notebooks/NeuralProphet_NMSG_testing.ipynb" before modularizing into the "src" folder.
- Folder Structure:
 - "src/components": Houses defined components utilized within specific pipelines.
 - "src/pipelines": Contains key pipelines for the project:
 - 1. ETL_pipeline.py: For Export-Transform-Load operations on the data.
 - 2. Hyperparam_tuning.py: Conducts hyperparameter tuning using MLflow for model optimization.
 - **3. Predict_pipeline.py:** Utilized for making predictions on the selected model post hyperparameter tuning.

Note: Uncommenting "-e ." in the initial run of requirements.txt activates setup.py, facilitating the use of Python modules from different locations. Following this, it can be commented out.

2. Anomaly Classification

Objective: Develop an anomaly detection model that utilizes the LSTM RNN algorithm to predict anomalies based on historical patterns, using the last 24 hours of performance data.

Development Process:

- **Proof of Concept (POC):** Currently in the POC stage, with development stages documented in the following notebooks:
 - notebooks/LSTM_Classification_data_preparation.ipynb: Details the data preprocessing stage.
 - notebooks/LSTM_Classification_model.ipynb: Focuses on the implementation of the LSTM model itself.