Task 1: Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapour in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized) Weather Forecast Website example)

Umidità: Relative humidity, Pressione atmosferica: Air total pressure (1 hPa: 0.1 kPa), Temperatura effettiva: temperature to be utilize

According to the psychrometric chart,

$$\omega$$
= 0.0055

The wet bulb temperate is Twb = 6C

$$\omega = \frac{0.622Pv}{Pa} = \frac{0.622Pv}{P-Pv} = 0.005$$

Introduce P=101.9kPA into the equation

$$Pv = 0.893 \ kPA$$

$$\phi = \frac{\text{mv}}{\text{mg}} = 90\%$$

For ideal gases
$$m = \frac{PV}{RspT}$$
 We know that Rsp=0.4615

the pressure of water vapor Pv=0.893kPa

The volume of Aula A = V

$$mv = \frac{0.893V}{0.4615*230} = 8.41*10^{-3}v$$
 $mg = \frac{mv}{90\%} = 9.34*10^{-3}V$

Task 2 Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

Task 2:

Noc=2

Height=2.5m2

Conditioned Floor Area=200m2

$$\dot{Q}_{\text{igsensible}}$$
=136+2.2 A_{cf} +22 N_{oc} = 136+2.2(200)+22(2) =**620W**

$$\dot{Q}_{iglatent}$$
 =20+0.22 Acf +12 Noc =20+0.22(200)+12(2) =88 W

Table 3 Unit Leakage Areas

Construction	Description	A_{ul} , cm ² /m ²	
Tight	Construction supervised by air-sealing specialist	0.7	
Good	Carefully sealed construction by knowledgeable builder	1.4	
Average	Typical current production housing	2.8	
Leaky	Typical pre-1970 houses	5.6	
Very leaky	Old houses in original condition	10.4	

Situation	Include	Exclude	
Ceiling/roof combination (e.g., cathedral ceiling without attic)	Gross surface area		
Ceiling or wall adjacent to attic	Ceiling or wall area	Roof area	
Wall exposed to ambient	Gross wall area (including fenestra- tion area)		
Wall adjacent to unconditioned buffer space (e.g., garage or porch)	Common wall area	Exterior wall area	
Floor over open or vented crawlspace	Floor area	Crawlspace wall area	
Floor over sealed crawlspace	Crawlspace wall area	Floor area	
Floor over conditioned or semiconditioned basement	Above-grade basement wall area	Floor area	

Aul (ideal)=1.4
$$\frac{cm^2}{m^2}$$

$$A_{es} = A_{wall} + A_{roof} = 200 + 144 = 344m^2$$

 $AL=Aes \times Aul=344 \times 1.4=481.6 cm^{2}$

The cooling temperature in Brindisi \longrightarrow Tcooling=24°C

The heating temperature in Brindisi \longrightarrow Theating=20°C

 $\Delta T cooling = 31.1^{\circ}C-24^{\circ}C=7.1^{\circ}C=7.1K$

 $\Delta Theating = 20^{\circ}C-(-4.1)^{\circ}C=24.1^{\circ}C=24.1K$

 $DR=7.1^{\circ}C = 7.1K$

Is given
$$\longrightarrow IDFheating=0.073 \frac{L}{\text{s.cm}^2}$$
 $IDFcooling=0.033 \frac{L}{\text{s.cm}^2}$

 $V_{\text{infiltration heating}} = A_L IDF = 481.6 \times 0.073 = 35.157 \frac{L}{s}$

 $V_{\text{infiltration cooling}} = A_L IDF$

$$=481.6 \times 0.033 = 15.89 \frac{L}{s}$$

 $\dot{V}_{\text{ventilation}} = 0.05 A c f + 3.5 (Nbr + 1) = 0.05 \times 200 + 3.5 \times 2 = 17 \frac{L}{s}$

 $\dot{V}_{\rm inf-ventilation\ heating}$ =35.157+17=52.157 $\frac{L}{s}$

 $\dot{V}_{\rm inf-ventilation cooling}$ =15.89+17=32.893

Is given \longrightarrow $C_{sensibe}$ =1.23, C_{latent} =3010, $\Delta\omega_{cooling}$ =0.0039

 $\dot{Q}_{\rm inf-\,ventilation\,heating\,sensible} = C_{\rm sensible} \dot{V} \, \Delta T_{\rm heating} = 1.23 \times 52.157 \times 24.1 = 1546.09 W$

 $\dot{Q}_{\rm inf-\,ventilation\,cooling\,sensible} = C_{\rm sensible} \dot{V} \,\, \Delta T_{\rm cooling} = 1.23 \times 32.893 \times 7.1 = 287.25 W$

 $\dot{Q}_{\rm inf-\,ventilation\,cooling\,latent} = C_{\rm latent} \dot{V} \,\, \Delta w_{\rm cooling} = 3010 \times 32.893 \times 0.0039 = 386.13 W$