Să se determine soluția/le optimă/e a problemei de transport determinând soluția inițială \overline{X}_0 cu:

• metoda costurilor minime;

• metoda diagonalei (colțul de N-V).

Nu putem rezolva PTN, fără să le aducem la PTE (similar cu (PPL)_g \rightarrow (PPL)_s). Deoarece, "cererea < oferta", echilibrăm problema prin introducerea unui nou centru de desfacere "fictiv", " C_4^f ", care va conține cantitatea "fictivă" de marfă " $b_4 = \sum_{i=1}^3 a_i - \sum_{j=1}^3 b_j = 45 - 40 = 5$ " și care va avea costurile de transport aferente egale cu zero. Așadar, **tabelul PTE** este următorul:

	C	1	C	2	C	3	C	<i>f</i> 4	
D_1		3		3		2		0	20
	x_{11}	l	x_{12}	2	x_{13}	3	x_{12}	1	
D_2		1		2		4		0	15
	x_{23}	1	x_{22}	2	x_{23}	3	x_{2^2}	1	
D_3		4		1		4		0	10
	x_{33}	L	x_{32}	2	χ_{33}	3	x_{34}	1	
	1	0	2	0	1	0	5	5	

Modelul matematic asociat PTE este:

$$\begin{cases} (1)(min)f(x_{11},x_{12},x_{13},x_{14},x_{21},x_{22},x_{23},x_{24},x_{31},x_{32},x_{33},x_{34}) = 3x_{11} + 3x_{12} + 2x_{13} + 0 \cdot x_{14} + x_{21} + 2x_{22} + \\ +4x_{23} + 0 \cdot x_{24} + 4x_{31} + x_{32} + 4x_{33} + 0 \cdot x_{34} \\ \begin{cases} x_{11} + x_{12} + x_{13} + x_{14} = 20 \\ x_{21} + x_{22} + x_{23} + x_{24} = 15 \\ x_{31} + x_{32} + x_{33} + x_{34} = 10 \end{cases} \\ (2)\begin{cases} x_{11} + x_{21} + x_{31} = 10 \\ x_{21} + x_{22} + x_{32} = 20 \\ x_{31} + x_{32} + x_{33} = 10 \\ x_{14} + x_{24} + x_{34} = 0 \end{cases} \\ (3)x_{ij} \geq 0; \ i \in \overline{1,3}, j \in \overline{1,4} \end{cases}$$

Numărul total al soluțiilor de bază pentru o PTE este de cel mult: $C_{m \cdot n}^{m+n-1} = C_{3 \cdot 4}^{3+4-1} = C_{12}^{6} = \frac{12!}{6!6!} = 924$

Etapele algoritmului de rezolvare a PTE

- 1. Se determină $\bar{X}_0 S.B.A.I.$ cu:
 - metoda diagonalei (a colțului de N-V);
 - metoda costurilor minime.
- 2. Se aplică criteriul de optim (verificăm dacă soluția \bar{X}_0 este sau nu optimă);
- 3. (Evident, în cazul în care soluția nu este optimă) Se aplică criteriul de intrare în bază (se determină ce variabilă nebazică devine bazică);
- 4. Se aplică criteriul de ieșire din bază (se determină care dintre variabilele bazice devine nebazică);
- 5. Se face schimbarea de bază, determinându-se o nouă S.B.A. \bar{X}_1 mai "bună" decât vechea soluție \bar{X}_0 ($f(\bar{X}_1) \leq f(\bar{X}_0)$) construindu-se un nou tabel al PTE;
- 6. Se repetă etapele 2.– 5. până la obținerea (unei) soluției optime $\bar{X}_{optimă}$.

Atenție, la finalul procedurii, trebuie:

- să avem m+n-1 componente bazice, la noi, 3 (depozite)+4(centre)-1=6;
- restul de mn-(m+n-1) sunt componente nebazice, la noi, 12-6=6;
- toate cantitățile de marfă rămase în depozite trebuie să fie egale cu 0;
- toate cantitățile solicitate de centre toate îndeplinite (valorile cerute rămase=0);
- să vedem dacă sunt verificate toate ecuațiile din modelul matematic (sumele pe linii și pe coloane).

Toate cele 7 ecuații sunt verificate de cele 12 numere, deci este o soluție:

- de bază, căci variabilele secundare sunt 0,
- admisibilă, căci toate componentele sunt ≥ 0,
- nedegenerată, căci toate cele 6 componente principale sunt ≠ 0.

Pasul3: Criteriul de intrare

$$\delta_{kl} = max\{\delta_{ij} > 0/(i,j) \text{ celulă nebazică}\} \Rightarrow x_{kl} (\downarrow)$$

$$\delta_{kl} = max\{ \delta_{13}, \delta_{14}, \delta_{21}, \delta_{32} \} = \delta_{13} \Rightarrow x_{13}(\downarrow)$$

Pasul4: Criteriul de ieșire

 $\theta \stackrel{\text{def}}{=} min\{\bar{x}_{ij} \geq 0 / cu \ x_{ij} \text{ aflate aflate în celulele}$ cu număr par din ciclul celulei $(k, l)\}$

Desenăm ciclul celulei $x_{13}(\downarrow)$

$$(3) \qquad \underbrace{(2,2)}_{10+\theta=15} \qquad \longrightarrow \qquad \underbrace{(2,3)}_{5-\theta=\star} \qquad (2)$$

$$\theta = \min \left\{ \underbrace{x_{23}}_{=5}, \underbrace{x_{14}}_{=10} \right\} \Rightarrow \theta = 5 \Rightarrow (x_{23} \rightarrow)$$

Pasul5: Schimbarea de bază

Vechea bază:

În soluția veche:

{variabila nebazică " $x_{13} = 0 = *$ " variabila bazică " $x_{23} = 5$ "

Noua bază:

În soluția nouă:

(variabila bazică " $x_{13} = 5 (= \theta)$ " (variabila bazică " $x_{23} = 5$ "

S-a făcut un nou tabel al PT→atenție la verificări!

Pas	ul1': \overline{X}_1 — SBA	
Pasul2': Criteriul de optim	– aplicare – $∀ δ_{ij} ≤ 0$, pentru " $∗$ "	$\delta_{14} = -0 + 0 - 4 + 2 = -2 < 0$ $\delta_{21} = -1 + 3 - 3 + 2 = 1 > 0$ $\delta_{23} = -4 + 2 - 3 + 2 = -3 < 0$ $\delta_{24} = -0 + 2 - 3 + 0 = -1 < 0$ $\delta_{31} = -4 + 3 - 2 + 4 = 1 > 0$ $\delta_{32} = -1 + 3 - 2 + 4 = 4 > 0$
	– concluzie –	$\exists \ \delta_{ij} > 0 \Rightarrow ar{X}_0 \not\equiv ar{X}_{optimreve{a}}$

Reluând pașii de la 2 la 5 de cinci ori am ajuns la SO a PT

Pasul5"": Schimbarea de bază

	– aplicare – $∀ δ_{ij} ≤ 0$, pentru "* "	$\delta_{11} = -3 + 3 - 2 + 1 = -1 < 0$ $\delta_{23} = -4 + 2 - 3 + 2 = -3 < 0$ $\delta_{24} = -0 + 0 - 3 + 2 = -1 < 0$ $\delta_{31} = -4 + 1 - 2 + 1 = -4 < 0$ $\delta_{33} = -4 + 1 - 3 + 2 = -3 < 0$ $\delta_{34} = -0 + 1 - 3 + 0 = -2 < 0$
Pasul2'''': Criteriul de optim	– concluzie –	Toţi $\delta_{ij} < 0 \Rightarrow \bar{X}_0 \equiv \bar{X}_{optimă}^{PTE}$ (unică) $\stackrel{\text{eliminăm } C_4^f}{\Longrightarrow}$ $\begin{cases} \bar{X}_{optimă}^{PTN} = (0,5,10,10,5,0,0,10,0) \in \mathbb{R}^9 \\ f(\bar{X}_{optimă}^{PTN}) = 65 \text{ u. m. } (\mathbf{mii dolari}) \\ \text{(soluție optimă unică pentru PTN)} \end{cases}$ $C_1 C_2 C_3 3 3 2 20 10$ $D_2 1 2 4 15 10 15 4 10 10 20 10$

Reţinem: "Schema de rezolvare" a PTN: $PTN \xrightarrow{\text{echilibrăm} \\ \text{problema}} PTE \xrightarrow{\text{echilibrăm} \\ \text{problema}} PTE \xrightarrow{\text{rezolvare a PTE}} \overline{X}_{optimă}^{PTE} \xrightarrow{\text{eliminăm componentele}} \overline{X}_{optimă}^{PTN}$