# Cryptographie

# Cryptographie

Cours 5

Authentification
Application
Echange de clef

Jérémy Briffaut STI 2A



# Plan

Authentification & SSL & Application





# **Authentification & Application**

### Introduction

- Apparition des systèmes distribués
- Réseaux à grande échelle
- préserver la confidentialité des données
- préserver l'intégrité des données
- authentifier le correspondant
- Assurer la non-répudiation



### **Authentification**

#### **Définition**

- La personne à qui j'envoie un message crypté est-elle bien celle à laquelle je pense ?
- La personne qui m'envoie un message crypté est-elle bien celle à qui je pense ?





### Authentification

### **Technique d'Identification**

- Prouveur
  - Celui qui s'identifie, qui prétend être...
- Vérifieur
  - Fournisseur du service
- Challenge
  - Le Vérifieur va lancer un challenge au prouveur que ce dernier doit réaliser



### Technique A Clé Publique

### **Principe**

- Algorithme RSA = Réversible
  - ((Mess)CPu)CPr = ((Mess)CPr)CPu
- Confidentialité

Authentification

### Technique A Clé Publique

#### Confidentialité



LE TEXTE EST TOTALEMENT
CONFIDENTIEL CAR LE
DESTINATAIRE EST LE SEUL A
AVOIR LA CLÉ PRIVÉE

### TECHNIQUE A CLÉ PUBLIQUE

#### **AUTHENTIFICATION**



ON EST SÛR DE L'IDENTITÉ
DE L'ÉMETTEUR CAR IL EST
LE SEUL À POUVOIR
CHIFFRER UN MESSAGE
AVEC CETTE CLÉ PRIVÉE

### TECHNIQUE A CLÉ PUBLIQUE

#### **PROTOCOLE**

Serveur d'authentification - Annuaire (Clé Publiques de F & D...)



- 1) F demande la Clé Publique de D
- 2) S envoie la Clé Publique de D à F
- 3) F envoie le « challenge » à D: Décrypte mon message M1(If) et renvoie mon If pour me le prouver!
- 4) D décrypte M1 et demande à 5 la Clé Publique de F
- 5) S envoie la Clé Publique de F à D
- 6) A son tour D envoie un « challenge » à F: Décrypte mon message M2(If, Id) et renvoie mon Id!
- 7) F décrypte M2 et renvoie M3(Id) à D pour lui montrer qu'il y est arrivé
- 8) F & D peuvent maintenant par ex s'envoyer des messages en créant une Clé Privée à partir de (If, Id)

### TECHNIQUE A CLÉ SECRÈTE

### PROTOCOLE DE NEEDHAM — SCHROEDER

Serveur d'authentification - Annuaire

(Clés Secrètes de F & D)



- 1) F demande une *Clé de Session* pour pouvoir parler avec D
- 2) S envoie à F M1 crypté par la *Clé*Secrète de F:
- M1 = une Clé de Session CSfd en clair et une cryptée par la Clé Secrète de D (CSfd)CPd
- 3) F envoie le « challenge » à D: Décrypte mon message M2((CSfd)CPd) et renvoie un Id crypté par CSfd
- 4) D décrypte M2 et envoie son «
  challenge » : Décrypte mon message
  M3((Id)C5fd) et renvoie Id-1
- 5) F décrypte M3 et renvoie M4((Id-1)CSfd)
- 6) F & D peuvent donc s'envoyer des messages avec la *Clé de Session* (MESSAGE)CSfd



→ FONCTION DE HACHAGE





— ALGORITHMES DE HACHAGE LES PLUS UTILISÉS: MD5 (128 BITS) ET SHA (160 BITS)

# -PB DU HACHAGE : ON EST PAS SUR DE L'EXPÉDITEUR

→ SCELLEMENT DES DONNÉES



### Certification

# **PGP**

# **Pretty good privacy**





# **PGP (Pretty Good Privacy)**

#### Introduction

- PGP est un cryptosystème (système de chiffrement)
- inventé par Philip zimmermann, un analyste informaticien
- Il est très rapide et sûr ce qui le rend quasiment impossible à cryptanalyser

#### Principes

 Hybride = Repose sur la Combinaison de la cryptographie à clé publique et la cryptographie à clé secrète

### Étapes du chiffrement

- PGP crée une clé secrète IDEA de manière aléatoire, et chiffre les données avec cette clé.
- PGP chiffre la clé secrète IDEA précédemment créée au moyen de la clé RSA publique du destinataire

### Étapes du Déchiffrement

- PGP déchiffre la clé secrète IDEA au moyen de la clé RSA privée.
- PGP déchiffre les données avec la clé secrète IDEA précédemment obtenue.

### PGP

#### FONCTIONNALITÉS

- SIGNATURE ÉLECTRONIQUE ET VÉRIFICATION D'INTÉGRITÉ DE MESSAGES
- CHIFFREMENT DES FICHIERS LOCAUX: FONCTION UTILISANT IDEA.
- GÉNÉRATION DE CLEFS PUBLIQUES ET PRIVÉES
- GESTION DES CLEFS:
  - DISTRIBUTION DE LA CLÉ PUBLIQUE AUX PERSONNES VOULANT ENVOYER UN MESSAGE
- CERTIFICATION DE CLEFS:
  - AJOUT D'UN SCEAU NUMÉRIQUE POUR GARANTIR
     L'AUTHENTICITÉ DES CLÉS PUBLIQUES
- RÉVOCATION, DÉSACTIVATION, ENREGISTREMENT DE CLEFS

### PGP

#### FORMAT DES CERTIFICATS

- Le numéro de version de PGP
  - Version de pgp avec lequel a été créé le certificat
- La clef publique du détenteur du certificat:
  - Partie publique de la bi-clé
- Les informations du détenteur du certificat
  - nom, ID utilisateur, photographie, etc.
- La signature numérique du détenteur du certificat :
  - = auto signature = signature effectuée avec la clef privée correspondant à la clef publique associée au certificat.
- La période de validité du certificat:
  - Dates/heures de début et d'expiration du certificat
- L'algorithme de chiffrement symétrique:
  - CAST, IDEA ou DES



### **PGP** versus X509

|                           | PGP                                                                       | X509          |
|---------------------------|---------------------------------------------------------------------------|---------------|
| AUTORITÉ DE CERTIFICATION | Tous les utilisateurs                                                     | 1 SEULE       |
| SIGNATURE NUMÉRIQUE       | Plusieurs                                                                 | 1 SEULE       |
| DÉTENTEUR DE CLÉ          | PLUSIEURS                                                                 | 1 SEUL        |
| RÉVOCATION                | ÉMETTEUR + CEUX AJOUTÉS<br>PAR L'ÉMETTEUR COMME<br>AUTORITÉ DE RÉVOCATION | ÉMETTEUR SEUL |

# Microsoft Passport





# **Microsoft .NET Passport**

- service en ligne gratuit
- permet de se connecter (en toute sécurité ?)
   à n'importe quel service ou site Web
   Passport participant
- Utilisation d'une adresse de messagerie et d'un mot de passe unique



# Microsoft .NET Passport

- Contenu obligatoire
  - Email (nom d'utilisateur)
  - Mot de passe
- Contenu optionnel
  - Phrase de rappel
  - Clé de sécurité
  - Numéro de mobile
  - Date de naissance, coordonnées
  - Informations bancaires

### MICROSOFT .NET PASSPORT



-L'UTILISATEUR CONTACTE UN SITE

PASSPORT A 64bit unique identifier

L'UTILIS A 64bit unique identifier

REDIRIG E 64bit unique

Partic 9 Site

—L'UTILISATEUR S'AUTHENTIFIE ET REÇOIT UN COOKIE CHIFFRÉ

-L'UTILISATEUR EST
REDIRIGÉ VERS LE
PREMIER SITE QUI LIT LE
COOKIE

-L'UTILISATEUR RESTE AUTHENTIFIÉ POUR TOUT AUTRE SITE Interr

### Authentification Réseau

Protocole SSL



# SSL (Secure Sockets Layer)

#### Définition

- « Couche de Sockets Sécurisée »
- Protocole d'échange de données au dessus de TCP/IP qui assure:
  - Confidentialité des échanges entre 2 applications
  - Authentification des serveurs
- Indépendant du protocole Utilisé (HTTP, FTP, ...)

# SSL (Secure Sockets Layer)

### Principe

- Utilise RSA (clé publique) pour s'échanger des clés DES (clé Secrète)
  - → Protocole de négociation (choix clés)
  - → Protocole d'échange (chiffré par DES)
- Authentifie un navigateur, pas une personne

### Compatibilité

- Presque Tous les Navigateurs
- Affichage du cadenas en bas pour les sites Sécurisés
- Un serveur sécurisé possède une URL commencant par https://



### Phase de Négociation

- Authentification
  - Utilise des certificats émis par une autorité de certification
  - Authentifier le serveur vis à vis du client (navigateur)
  - Authentifier le navigateur vis à vis du serveur
- Génération des clés de session
  - Technique à clé publique vue précédemment
  - Création des clés de session
- Fin de négociation
  - Client & serveur sont authentifiés mutuellement
  - Ils ont leurs clés secrètes pour la phase d'échange

### **SSL: Introduction**

- SSL défini par netsacpe et intégré au browser
- Première version de SSL testé en interne Première version de SSL diffusé : V2 (1994)
- Version actuelle V3
- Standard à l'IETF au sein du groupe Transport Layer Security (TLS)
- Standard au sein du WAP Forum Wireless Transport Layer Security (WTLS)

# SSL: Architecture



# Ports au dessus de SSL (1/2)

| Protocole<br>sécurisé | Port | Protocole non sécurisé | Application                                                               |
|-----------------------|------|------------------------|---------------------------------------------------------------------------|
| HTTPS                 | 443  | HTTP                   | Transactions requête-<br>réponse sécurisées                               |
| SSMTP                 | 465  | SMTP                   | Messagerie électronique                                                   |
| SNNTP                 | 563  | NNTP                   | News sur le réseau Internet                                               |
| SSL-LDAP              | 636  | LDAP                   | Annuaire X.500 allégé                                                     |
| SPOP3                 | 995  | POP3                   | Accès distant à la boîte aux<br>lettres avec rapatriement des<br>messages |

# Ports au dessus de SSL (2/2)

| Protocole<br>sécurisé | Port | Protocole non sécurisé | Application                                                                 |
|-----------------------|------|------------------------|-----------------------------------------------------------------------------|
| FTP-DATA              | 889  | FTP                    | Transfert de fichiers                                                       |
| FTPS                  | 990  | FTP                    | Contrôle du transfert de fichiers                                           |
| IMAPS                 | 991  | IMAP4                  | Accès distant à la boîte aux lettres avec ou sans rapatriement des messages |
| TELNETS               | 992  | Telnet                 | Protocole d'accès distant à un système informatique                         |
| IRCS                  | 993  | IRC                    | Protocole de conférence par l'écrit                                         |

### **SSL: Services**

- Authentification
  - Serveur (obligatoire), client (optionnel)
  - Utilisation de certificat X509 V3
  - A l'établissement de la session.
- Confidentialité
  - Algorithme de chiffrement symétrique négocié, clé généré à l'établissement de la session.
- Intégrité
  - Fonction de hachage avec clé secrète : hmac(clé secrète, h, Message)
- Non Rejeu
  - Numéro de séquence

## **SSL: Protocoles**



### Handshake (1/6)

- Authentification du serveur et éventuellement du client,
- Négociation des algorithmes de chiffrement et de hachage, échange d'un secret,
- Génération des clés.

# Handshake (2/6)

| Message      | Type de<br>message | Sens de transmission           | Signification                                                |
|--------------|--------------------|--------------------------------|--------------------------------------------------------------|
| HelloRequest | optionnel          | serveur <del>client &gt;</del> | ►Ce message demande au client d'entamer<br>le Handshake.     |
| ClientHello  | obligatoire        | client <del>serveur</del>      | Ce message contient :                                        |
|              |                    |                                | le numéro de version du protocole SSL ;                      |
|              |                    |                                | le nombre aléatoire : client_random ;                        |
|              |                    |                                | l'identificateur de session : session_ID ;                   |
|              |                    |                                | la liste des suites de chiffrement choisies par le client ;  |
|              |                    |                                | la liste des méthodes de compression choisies par le client. |
| ServerHello  | obligatoire        | serveur — client >             | ►Ce message contient :                                       |
|              |                    |                                | le numéro de version du protocole SSL ;                      |
|              |                    |                                | un nombre aléatoire : serveur_random ;                       |
|              |                    |                                | l'identificateur de session : session_ID ;                   |
|              |                    |                                | une suite de chiffrement ;                                   |
|              |                    |                                | une méthode de compression.                                  |

# Handshake (3/6)

| Certificate        | Optionnel   | serveur <del>client</del><br>client <del>serveur</del> | Ce message contient le certificat du serveur ou celui du client si le serveur le lui réclame et que le client en possède un. |
|--------------------|-------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| ServerKeyExchange  | Optionnel   | serveur <del>client</del>                              | Ce message est envoyé par le serveur que s'il ne possède aucun certificat, ou seulement un certificat de signature.          |
| CertificateRequest | Optionnel   | serveur <del>client</del>                              | Par <del>ce⊨me</del> ssage, le serveur réclame un certificat au client.                                                      |
| ServerHelloDone    | Obligatoire | serveur <del>client</del>                              | Ce message signale la fin de l'envoi des<br>messages ServerHello et subséquents.                                             |

# Handshake (4/6)

| ClientKeyExchange | Obligatoire | client <del>serveur</del>                      | Ce message contient le PreMasterSecret crypté à l'aide de la clé publique du serveur.                                                      |
|-------------------|-------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| CertificateVerify | Optionnel   | client <del>serveur</del>                      | Ce message permet une vérification explicite du certificat du client.                                                                      |
| Finished          | obligatoire | serveur <u>client</u><br>client <u>serveur</u> | Ce message signale la fin du protocole  Handshake et le début de l'émission des  données protégées avec les nouveaux  paramètres négociés. |

# Handshake (5/6)



# Handshake (6/6)



# ChangeCipherSpec (CCS)

 ChangeCipherSpec signale au Record toute modification des paramètres de sécurité,

Constitué d'un message (1 octet)

### Le protocole Record

- Reçoit les données des couches supérieures : (Handshake, Alert, CCS, HTTP, FTP ...), et les transmet au protocole TCP.
- Après application de :
  - la fragmentation des données en blocs de taille maximum de 2<sup>14</sup> octets
  - la compression des données, fonction prévue mais non supportée actuellement
  - la génération d'un condensât pour assurer le service d'intégrité
  - le chiffrement des données pour assurer le service de confidentialité

### Le protocole *Alert*

- Le protocole *Alert* peut être invoqué :
  - par l'application, par exemple pour signaler la fin d'une connexion
  - par le protocole Handshake suite à un problème survenu au cours de son déroulement
- par la couche Record directement, par exemple si l'intégrité d'un message est mise en doute

# Le protocole *Alert* (2)

| Message                 | Contexte                                                                                                                            | Туре                   |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|
| bad_certificate         | échec de vérification d'un certificat                                                                                               | fatal                  |  |
| bad_record_mac          | réception d'un MAC erroné                                                                                                           | fatal                  |  |
| certificate_expired     | certificat périmé                                                                                                                   | fatal                  |  |
| certificate_revoked     | certificat mis en opposition (révoqué)                                                                                              | fatal                  |  |
| certificate_unknown     | certificat invalide pour d'autres motifs que ceux précisés précédemment                                                             | fatal                  |  |
| close_notify            | interruption volontaire de session                                                                                                  | fatal                  |  |
| decompression_failure   | les données appliquées à la fonction de décompression sont invalides (par exemple, trop longues)                                    | fatal                  |  |
| handshake_failure       | impossibilité de négocier des paramètres satisfaisants                                                                              | fatal                  |  |
| illegal_parameter       | un paramètre échangé au cours du protocole<br>Handshake dépasse les bornes admises ou ne<br>concorde pas avec les autres paramètres | fatal                  |  |
| no_certificate          | réponse négative à une requête de certificat                                                                                        | avertissement ou fatal |  |
| unexpected_message      | arrivée inopportune d'un message                                                                                                    | fatal                  |  |
| unsupported_certificate | le certificat reçu n'est pas reconnu par le destinataire                                                                            | avertissement ou fatal |  |

# SSL: charges (1/2)

- Les choix pour les calculs de la charge cryptographique de SSL:
  - algorithme de chiffrement du protocole record : DES 64 bits en mode CBC ;
  - algorithme de chiffrement asymétrique : RSA 1024 bits ;
  - fonction de hachage : MD5 ;
  - itinéraire de certification comprenant une seule étape ;
  - certificat du serveur : autorité de certification unique, déjà connue du client (un seul certificat dans le message Certificate);
  - taille des informations contenues, du message *Certificate* : 500 Koctets (notons que la taille des informations du certificat est dans la plupart des cas inférieure) ;
  - seule le serveur est certifié.

# SSL: charges (2/2)

| Opération                                                                                                        | Temps de calcul pour le client (ms)                       | Temps de calcul pour le serveur (ms) | Total (ms) |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------|------------|
| Ouverture d'une nouvelle session (Handshake complet)                                                             | 18,94                                                     | 16,9                                 | 35,85      |
| Rafraîchissement d'une session (Handshake simplifié)                                                             | 0,11                                                      | 0,11                                 | 0,22       |
| Ouverture d'une nouvelle connexion                                                                               | 0,079                                                     | 0,071                                | 0,15       |
| Temps de calcul pour 16Ko<br>de données (chiffrement ou<br>déchiffrement, élaboration et<br>vérification du MAC) | e données (chiffrement ou<br>echiffrement, élaboration et |                                      | 10,8       |

# SSL: liste non exhaustive de serveur

| Nom de l'API                      | Fournisseur                        | Adresse                              |  |  |
|-----------------------------------|------------------------------------|--------------------------------------|--|--|
| AOLserver 2.3                     | America Online Inc                 | http://www.aolserver.com             |  |  |
| Alibaba2.0                        | Computer Software<br>Manufacturers | http://www.csm.co.at/alibaba/        |  |  |
| Apache 1.3                        | The Apach&roup                     | http://www.apache.org                |  |  |
| Commerce Server/400 1.0C          | I/NET, Inc.                        | http://www.inetmi.com                |  |  |
| Enterprise Server 3.0             | Novonyx                            | http://www.novonyx.com               |  |  |
| Enterprise Web Secure/VM 1.       | Beyond-Software Incorporated       | http://www.beyond-software.com       |  |  |
| Internet Information Server 4.0   | MicrosoftCorp.                     | http://www.microsoft.com/iis         |  |  |
| Java Server 1.1                   | Sun Microsystems                   | http://www.java.sun.com              |  |  |
| Lotus Domino Go Webserver 4.6.1   | IBM                                | http://www.ibm.com                   |  |  |
| Netscap∉nterprise Server 3.5      | Netscape Communications Co         | http://www. netscape.com             |  |  |
| OracleWeb Application Server 3.01 | Oracle Corp.                       | http://www.oracle.com/products       |  |  |
| Roxen Challenger 1.2b I           | Idonex                             | http://www.roxen.com                 |  |  |
| SSLava                            | Phaos Technologies                 | http://www.phaos.com/main.htm        |  |  |
| WebSite Professional 2.2          | O'Reilly Software                  | http://www.website.oreilly.com/      |  |  |
| WebTen 2.1                        | Tenon Intersystems                 | http://www.tenon.com/products/webten |  |  |
| Zeus Web Application Server 3     | Zeus Technology                    | http://www.zeustech.net              |  |  |

### SSL : liste de suite de chiffrement supportée par un serveur

|               | Serveur et Versio | n      |      | Apache<br>SSLLeay 08.0 | Jigsaw<br>2.0 Beta 1 | Microsoft IIS/4.0 | Netscape<br>Entreprise3.0L | Netscape<br>Entreprise 3.0F | SSLava<br>Beta 1 |
|---------------|-------------------|--------|------|------------------------|----------------------|-------------------|----------------------------|-----------------------------|------------------|
|               |                   |        |      | 2.0 2010 1             |                      |                   | <u> </u>                   |                             |                  |
|               | Suite             | Export | Code |                        |                      |                   |                            |                             |                  |
|               |                   |        |      |                        |                      |                   |                            |                             |                  |
|               | RC4-40 MD5        | ✓      | 0x03 | •                      | •                    | •                 | •                          | •                           | •                |
|               | RC4-128 MD5       |        | 0x04 | •                      | •                    | •                 | •                          |                             | •                |
|               | RC4- 128 SHA      |        | 0x05 | •                      | •                    | •                 |                            |                             | •                |
| RSA           | RC2 CBC-40 MD5    | ✓      | 0x06 | •                      | •                    | •                 | •                          | •                           |                  |
|               | IDEA CBC SHA      |        | 0x07 | •                      | •                    |                   |                            |                             |                  |
|               | DES40 CBC SHA     | ✓      | 0x08 | •                      | •                    | •                 |                            |                             | •                |
|               | DESCBC SHA        |        | 0x09 | •                      | •                    | •                 | •                          |                             | •                |
|               | 3DES EDE CBC SHA  |        | 0x0A | •                      | •                    | •                 | •                          |                             |                  |
|               | DES40 CBC SHA     | ✓      | 0x0B |                        | •                    |                   |                            |                             |                  |
| DH et<br>DSA  | DES CBC SHA       |        | 0x0C |                        | •                    |                   |                            |                             |                  |
|               | 3DES EDE CBC SHA  |        | 0x0D |                        | •                    |                   |                            |                             |                  |
|               | DES40 CBC SHA     | ✓      | 0x0E |                        | •                    |                   |                            |                             |                  |
| DH et<br>RSA  | DES CBC SHA       |        | 0x0F |                        | •                    |                   |                            |                             |                  |
|               | 3DES EDE CBC SHA  |        | 0x10 |                        | •                    |                   |                            |                             |                  |
|               | DES40 CBC SHA     | ✓      | 0x11 |                        | •                    |                   |                            |                             |                  |
| DHE et<br>DSA | DES CBC SHA       |        | 0x12 |                        | •                    |                   |                            |                             |                  |
|               | 3DES EDE CBC SHA  |        | 0x13 |                        | •                    |                   |                            |                             |                  |
|               | DES40 CBC SHA     | ✓      | 0x14 |                        | •                    | •                 |                            |                             |                  |
| DHE et<br>RSA | DES CBC SHA       |        | 0x15 |                        | •                    | •                 |                            |                             |                  |
|               | 3DES EDE CBC SHA  |        | 0x16 |                        | •                    | •                 |                            |                             |                  |

# SSL: liste non exhaustive d'APIs

| Nom de l'API                      | Fournisseur                        | Adresse                              |  |  |  |
|-----------------------------------|------------------------------------|--------------------------------------|--|--|--|
| AOLserver 2.3                     | America Online Inc                 | http://www.aolserver.com             |  |  |  |
| Alibaba2.0                        | Computer Software<br>Manufacturers | http://www.csm.co.at/alibaba/        |  |  |  |
| Apache 1.3                        | The Apach@roup                     | http://www.apache.org                |  |  |  |
| Commerce Server/400 1.0C          | I/NET, Inc.                        | http://www.inetmi.com                |  |  |  |
| Enterprise Server 3.0             | Novonyx                            | http://www.novonyx.com               |  |  |  |
| Enterprise Web Secure/VM 1.       | Beyond-Software Incorporated       | http://www.beyond-software.com       |  |  |  |
| Internet Information Server 4.0   | MicrosoftCorp.                     | http://www.microsoft.com/iis         |  |  |  |
| Java Server 1.1                   | Sun Microsystems                   | http://www.java.sun.com              |  |  |  |
| Lotus Domino Go Webserver 4.6.1   | IBM                                | http://www.ibm.com                   |  |  |  |
| Netscap∉nterprise Server 3.5      | Netscape Communications Co         | http://www. netscape.com             |  |  |  |
| OracleWeb Application Server 3.01 | Oracle Corp.                       | http://www.oracle.com/products       |  |  |  |
| Roxen Challenger 1.2b I           | Idonex                             | http://www.roxen.com                 |  |  |  |
| SSLava                            | Phaos Technologies                 | http://www.phaos.com/main.htm        |  |  |  |
| WebSite Professional 2.2          | O'Reilly Software                  | http://www.website.oreilly.com/      |  |  |  |
| WebTen 2.1                        | Tenon Intersystems                 | http://www.tenon.com/products/webten |  |  |  |
| Zeus Web Application Server 3     | Zeus Technology                    | http://www.zeustech.net              |  |  |  |

### **Attaques**

- Pistes d'attaques classiques
- Vulnérabilités
- Scénarios d'attaque



### **Attaques classiques**

### Pistes classiques

- Casser les clefs
- Attack replay
- Man in the middle
- Attaque à clair ouvert

### ■ Parades de SSL

- Taille des clefs
- Nonces (connection id)
- Certificats servent à passer les clefs
- Clefs + Aléas

### Sources de vulnérabilité

■ Taille des clefs

■ SSL v2

Certificats

Implémentations

# Scénarios d'attaque

■ SSL v2: Forcer une faible taille de clef

■ Tous: Diffie-Hellman anonyme

■ SSL v3: Accepte Finished avant ChangeCipherSpec

■ SSL v3 : Envoi de données chiffrées avant réponse serveur au *Finished*.

- Faible clefs
- Pas de vérification d'intégrité





■ Tiers à l'écoute





- Envoi de données chiffrées
- Permet de casser la clef, puis de répondre





### Plan

- I. Histoire, définition et objectifs de la cryptographie
  - Concepts et algorithmes de permutation et de substitution
- II.Chiffrement Symétrique
  - · DES, 3DES, AES, IDEA
- III.Chiffrement Asymétrique
  - · RSA, ElGamal
- IV.Signature, Hachage et Scellement
- V. Echange de clés
  - Algorithme Deffie-Hellman
- VI.Hachage: MD5, SHA-1, SHA-2
- VII.Code d'Authentification & MAC



Authentification Mutuelle Et Echange de Clefs de session





- Relations entre échange de clefs et authentification mutuelle
  - L'échange de clefs doit être authentifié pour éviter les attaques
  - Une <u>clef de session</u> permet d'étendre l'authentification à l'ensemble de la communication
  - Protocole d'authentification mutuelle avec échange de clefs
    - → fournit authentification mutuelle et un échange de clefs authentifié tout-en-un
- Types d'échange de clefs
  - Transport
    - → Exemple : transport RSA (utilisé par SSL)
  - Génération
    - → Exemple : Diffie-Hellman

- La première méthode d'échange de clés publiques à avoir été décrite fut celle de Diffie-Hellman (1976).
  - Cette méthode repose sur une fonction à sens unique du logarithme secret.
- Les échanges de clés publiques vont se faire,
  - en générant un secret partagé sur un réseau non sécurisé.
  - l'échange de clés publiques se fera alors de manière sécurisée permettant ainsi d'employer des chiffrements sysmétriques de manière évolutive.
- Cette méthode est tout de même sensible à l'attaque par interposition (man in the middle) néanmoins cet inconvénient peut être résolu en signant les échanges.
- Le protocole <u>IKE</u> (Internet Key Exchange en IPSec) est un système d'échange Diffie-Hellman avec authentification.
- IPSec exploite le chiffrement sysmétrique en mode CBC pour le chiffrement et les HMAC pour l'authentification des gros volumes de données.



- Transport de clef
  - Échange de clef de session
  - Exemple avec chiffrement asymétrique :





### ■ <u>Diffie-Hellman</u>: <u>principe</u>

- Qu'est-ce que le protocole DH ?
  - → Protocole cryptographique qui permet à deux tiers de générer un secret partagé sans informations préalables l'un sur l'autre
- Principe
  - → Échange de valeurs publiques
- Fonctionnement:





### **Algorithme Diffie-Hellman**

#### Génération de clés de session

- 1- p un grand nombre premier ; α un générateur de Zp\*.
- 2- A choisit a, et calcule  $\alpha a = \alpha^a \mod p$ .
- 3- B choisit b, et calcule  $\alpha b = \alpha^b \mod p$ .
- 4- A et B s'échange αa et αb.
- 5- A calcule α<sup>^</sup>(ba) mod p et B calcule αab mod p.



 $K = A^b \mod p = (g^a \mod p)^b \mod p = g^{ab} \mod p = (g^b \mod p)^a \mod p = B^a \mod p$ 



- Sensible à l'attaque de l'intercepteur
  - → L'attaquant, Caroline, envoie sa valeur publique à la place d'Alice et de Bernard.
    - Elle partage ainsi un secret avec chaque tiers.
  - → Solution: authentifier les valeurs publiques
    - le protocole résultant s'appelle Diffie-Hellman authentifié.
- Propriété de Perfect Forward Secrecy (PFS)
  - → Principe
    - La découverte du secret à long terme ne compromet pas les clefs de session
    - Propriété fournie lorsque le secret à long terme n'intervient pas dans la génération ou la protection en confidentialité des clefs
  - → DH authentifié fournit la PFS si les seules valeurs à long terme sont celles utilisées pour l'authentification (i.e. les valeurs privées/publiques sont à court terme)

Logarithme secret et man in the middle





# Chiffrement à clef publique

Algorithme El-Gamal



### El-Gamal fabrication de la clé

Inspiré de Diffie-Hellman

#### Destinataire

- 1. Choisit un nombre premier p et un générateur g de  $\mathbb{Z}_p$
- 2. sélectionne aléatoirement un nombre  $a \in \mathbb{Z}_p$
- 3. public  $(p, g, g^a \mod p)$

#### El-Gamal protocole

#### Expéditeur:

- 1. soit m le message avec m < p choisit **aléatoirement** un entier  $b \in \mathbb{Z}_p^*$
- 2. calcule  $\mathbf{c_1} = \mathbf{g^b} \bmod \mathbf{p}$  et  $\mathbf{c_2} = \mathbf{m} \cdot (\mathbf{g^a})^b \bmod \mathbf{p}$
- 3. envoie  $c = (c_1, c_2)$

#### Destinataire:

- 1. calcule  $\mathbf{d_1} = (\mathbf{c_1})^{\mathbf{p-1-a}} \bmod \mathbf{p} = (\mathbf{c_1})^{-\mathbf{a}} \bmod \mathbf{p} = \mathbf{g^{-ab}} \bmod \mathbf{p}$
- 2. puis calcule  $\mathbf{d_2} = \mathbf{d_1}.\mathbf{c_2} \bmod \mathbf{p} = \mathbf{g^{-ab}}.\mathbf{m}.(\mathbf{g^a})^b \bmod \mathbf{p} = \mathbf{m}$

### El-Gamal exemple

1. 
$$p = 111111117$$
 ,  $g = 1111112$  et  $a = 1234$ 

- 2. A calcule  $k_a = 111112^{1234} \mod 111111117 = 7218868$
- 3. A publie  $p = 111111117, g = 1111112, k_a = 7218868$

#### El-Gamal exemple

- 1. B choisit b = 876 et a pour message 99999
- 2. B calcule  $c_1 = 111112^{876} \mod 111111117 = 8671412$
- 3. et  $c_2 = 99999.7218868^{876} \mod 111111117 = 3205709$
- 4. B envoie (8671412, 3205709)
- 1. A calcule  $d_1 = 8671412^{-1234} \mod 111111117 = 5300581$
- 2. et  $d_2 = 5300581 * 3205709 \mod 111111117 = 999999$