A simple but effective solution for Task 1 of KDD Cup 2022 Challenge on improving product search

Jinrui Liang, Yali Shangguan, Zhaohao Liang Netease Games Operation Department

Outline

- Datasets and Features
- Models
 - Problem Definition
 - Dataset Split
 - Model Selections
- Training Settings
- Experimental Results
 - Local Results
 - Online Results
 - Unworked Attempts

Datasets and Features

- Contains a list of query-result paired with annotated E/S/C/I labels, and it includes queries from English, Japanese and Spanish [2].
- Contains many fields from the query and product
- Relationship between Product type and Gain

Table 1: Relationship between Product type and Gain

Product type	Gain
Exact(E)	1.0
Substitute(S)	0.1
Complement(C)	0.01
Irrelevant(I)	0.0

Models

- Problem Definition
 - Inputs
 - query + <SEP> + product title + '' + product description + '' + product bullet point + '' + product brand + '' + product color name
 - Outputs
 - A value, which is regarded as the predicted gain for the input <query, product>
- Dataset Split
 - the proportion of the validation set: 0.1
 - use the data that appear in Task 1 from Task 2 as supplementary data

Models

- Model Selections
 - BERT Encoder + Regression Layer
 - supplementary data(data-sup) + k-fold

Table 2: Model Selections

Locale	Selected Model
us	DeBERTaV3-large [1]
es	mDeBERTaV3-base [1]
jр	mDeBERTaV3-base [1]

Training Settings

 strictly follow the implementation described in the original paper [1] for the settings of the hyper-parameters

Table 3: Training settings for DeBERTaV3-large

Tal	ble	4:	Training	settings	for n	nDeBERTaV3-base
-----	-----	----	----------	----------	-------	-----------------

Hyper-parameters	Value
epochs	3
learning rate	8e-6
batch size	32
random state	42
learning rate scheduler	linear scheduler
weight decay	0.01
Adam betas	(0.9, 0.999)
Adam eps	1e-6
grad max norm	1.0
warmup steps	100
dropout rate	0.15
validation steps	500

Hyper-parameters	Value
epochs	3
learning rate	2e-5
batch size	32
random state	42
learning rate scheduler	linear scheduler
weight decay	0.01
Adam betas	(0.9, 0.999)
Adam eps	1e-6
grad max norm	1.0
warmup steps	100
dropout rate	0.1
validation steps	500

Experimental Results

Local Results

- Both supplementary data and k-fold training consistently improve the model results
- Combining supplementary data and k-fold training gives the best performance

Table 5: Local results of us locale

Table 6: Local results of es locale

Table 7: Local results of jp locale

Model	Fold	Val nDCG
baseline	-	0.8972
baseline-sup	-	0.8998
baseline-2fold	0	0.8975
baseline-2fold	1	0.8967
baseline-2fold	ensemble	0.9005
baseline-sup-2fold	0	0.9013
baseline-sup-2fold	1	0.9007
baseline-sup-2fold	ensemble	0.9021

Model	Fold	Val nDCG
baseline	-	0.8997
baseline-sup	-	0.9011
baseline-2fold	0	0.8995
baseline-2fold	1	0.8989
baseline-2fold	ensemble	0.9010
baseline-sup-2fold	0	0.9051
baseline-sup-2fold	1	0.9043
baseline-sup-2fold	ensemble	0.9053

Model	Fold	Val nDCG
baseline	-	0.8971
baseline-sup	-	0.8974
baseline-2fold	0	0.8984
baseline-2fold	1	0.8969
baseline-2fold	ensemble	0.8985
baseline-sup-2fold	0	0.8993
baseline-sup-2fold	1	0.8989
baseline-sup-2fold	ensemble	0.9001

Experimental Results

- Online Results
 - baseline-sup-2fold-all gives the best result

Table 8: Online(Final) results

Model	Public Test nDCG	Private Test nDCG	
baseline(official)	0.8503	-	
baseline(ours)	0.8968	-	+0.0465
baseline-sup-us	0.8981	-	
baseline-sup-all	0.8983	-	+0.0480
baseline-2fold-us	0.8983	-	
baseline-2fold-all	0.8988	-	+0.0485
baseline-sup-2fold-us	0.9009	-	
baseline-sup-2fold-es-jp	0.9008	-	
baseline-sup-2fold-all	0.9012	0.9008	+0.0509

Experimental Results

- Unworked Attempts
 - Pseudo labels
 - 4-fold
 - InfoXLM