Théorie des groupes

Feuille de TD3

Exercice 1. Soit p un nombre premier et $n \ge 1$ un entier.

- 1. Dénombrer (à isomorphismes près) les groupes *abéliens* de cardinal p^n et constater que ce nombre ne dépend pas de p.
- 2. Montrer qu'une partie H de $G := (\mathbf{Z}/p\mathbf{Z})^n$ est un sous-groupe de G si et seulement si c'est aussi un sous-espace vectoriel (sur le corps $\mathbf{Z}/p\mathbf{Z}$). En déduire le nombre de sous-groupes d'ordre p^2 de G. Nombre de sous-groupes d'ordre p^r ?

Exercice 2. Soit G un groupe tel que Aut(G) est cyclique.

- 1. Montrer que G est abélien.
- 2. Si G est fini, montrer que G est cyclique. On précisera alors les différentes possibilités pour l'ordre de G.

Exercice 3. On considère un sous-groupe fini G de $GL_n(\mathbf{Q})$, que l'on fait agir de manière naturelle sur \mathbf{Q}^n . Nous allons montrer que G est conjugué à un sous-groupe de $GL_n(\mathbf{Z})$.

- 1. Montrer qu'un sous-groupe $H < (\mathbf{Q}^n, +)$ de type fini est libre de rang $r \leq n$.
- 2. En déduire que le sous-groupe $M:=\sum_{g\in G}g\cdot(\mathbf{Z}^n)$ est libre de rang n.
- 3. Montrer qu'il existe une matrice $P \in GL_n(\mathbf{Q})$ telle que $PGP^{-1} < GL_n(\mathbf{Z})$.

Exercice 4. On considère le sous-groupe $\mathbb{S}^1 < \mathbf{C}^{\times}$ des nombres complexes de module 1.

- 1. Montrer que \mathbb{S}^1 est isomorphe à \mathbf{R}/\mathbf{Z} .
- 2. À quel groupe bien connu est isomorphe $\mathbb{C}^{\times}/\mathbb{S}^1$?

Exercice 5. Soit $k \ge 2$ un entier et considérons $\varphi_k : \mathbf{C}^\times \longrightarrow \mathbf{C}^\times$ donné par $\varphi_k(z) = z^k$. Rappeler pourquoi φ_k est un morphisme et donner son noyau et son image. En déduire un exemple de groupe G et d'un sous-groupe normal $N \triangleleft G$ tel que $G/N \simeq G$.

Exercice 6. Soient G un groupe et $H \triangleleft G$ d'indice fini n. Montrer que pour tout $g \in G$, $g^n \in H$. Donner un exemple de sous-groupe $H \triangleleft G$ d'indice n et d'un élément $g \in G$ tel que $g^n \notin H$ (on pourra chercher un exemple dans $G = S_3$).

Exercice 7 (Sous-groupes caractéristiques). Soit G un groupe. Un sous-groupe H de G est dit caractéristique si pour tout $\alpha \in \operatorname{Aut}(G)$, on a $\alpha(H) = H$. Cela est noté $H \triangleleft G$.

- 1. Montrer que $H \triangleleft G$ implique $H \triangleleft G$. Donner un exemple de sous-groupe d'un groupe G qui est normal mais pas caractéristique.
- 2. Montrer que $K \triangleleft H \triangleleft G$ implique $K \triangleleft G$.
- 3. Montrer que $K \triangleleft H \triangleleft G$ implique $K \triangleleft G$.
- 4. Montrer que le centre et le groupe dérivé d'un groupe G sont caractéristiques dans G.

Exercice 8. Trouver (par exemple dans $G = D_4$) un exemple de sous-groupes $K \triangleleft H$ et $H \triangleleft G$ mais où pour autant K n'est pas normal dans G.

Exercice 9. Donner la liste des sous-groupes normaux de D_3 et D_4 . Généraliser à D_n .

Exercice 10. Soit G un groupe non abélien d'ordre 8.

- 1. Montrer que G contient un élément x d'ordre 4 et que le groupe qu'il engendre est normal dans G.
- 2. Soit alors $y \in G \setminus \langle x \rangle$; montrer que $y^2 = 1$ ou $y^2 = x^2$.
- 3. Si $y^2 = 1$, montrer que $yxy = x^{-1}$ et en déduire que G est isomorphe à D_4 .
- 4. Dans le cas restant, écrire la table de G est conclure que G est isomorphe à Q_8 .
- 5. Donner la liste des groupes d'ordre 8 à isomorphisme près.

Exercice 11. Calculer $\operatorname{Aut}(G)$ pour $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ et $G = S_3$. Dans le deuxième cas, on pourra s'intéresser à l'image des deux transpositions $(1\,2)$ et $(1\,3)$.

Exercice 12. On se propose de calculer $\operatorname{Aut}(G)$ avec $G = \mathbf{Z}/4\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$. On note x un générateur de $\mathbf{Z}/4\mathbf{Z}$ et y un générateur de $\mathbf{Z}/2\mathbf{Z}$. Tout élément de G s'écrit donc nx + my avec $0 \le n \le 3$ et m = 0 ou 1.

- 1. Montrer que pour tout $\varphi \in \operatorname{Aut}(G)$, $\varphi(2x) = 2x$.
- 2. En envisageant les choix possibles pour $\varphi(x)$ et $\varphi(y)$, justifier que $\operatorname{Aut}(G)$ est d'ordre 8.
- 3. On pose $\varphi(x)=3x+y$ et $\varphi(y)=2x+y$. Montrer que φ s'étend en un automorphisme d'ordre 4. De même, montrer que $\psi(x)=3x+y$ et $\psi(y)=y$ définit un automorphisme d'ordre 2.
- 4. Vérifier que $\psi \circ \varphi \circ \psi = \varphi^{-1}$ et en déduire que $\operatorname{Aut}(G) \simeq D_4$.

Exercice 13. Montrer que le groupe $Aut(D_4)$ est isomorphe à D_4 (on pourra étudier les choix possibles pour les images de r et s par un automorphisme). Préciser à quel sous-groupe correspond $Int(D_4)$ dans cette description.