1. Appendix

1. Proof of Theorem ??

We prove a slight more general version of our result. Consider an infinite horizon, incomplete markets economy in which an agent maximizes utility function $U: \mathbb{R}^n_+ \to \mathbb{R}$ subject to an infinite sequence of budget constraints. We assume that U is concave and differentiable. Let $\mathbf{x}(s^t)$ be a vector of n goods and let $\mathbf{p}(s^t)$ be a price vector in state s^t with $p_i(s^t)$ denoting the price of good i. We use a normalization $p_1(s^t) = 1$ for all s^t . Let $b(s^t)$ be the agent's asset holdings, and let $\mathbf{e}(s^t)$ be a stochastic vector of endowments.

Consumer maximization problem

$$\max_{\mathbf{x}_{t},b_{t}} \sum_{t=0}^{\infty} \beta^{t} \Pr\left(s^{t}\right) U(\mathbf{x}\left(s^{t}\right)) \tag{1}$$

subject to

$$\mathbf{p}(s^t)\mathbf{x}(s^t) + q(s^t)b(s^t) = \mathbf{p}(s^t)\mathbf{e}(s^t) + P(s_t)b(s^{t-1})$$
(2)

and $\{b\left(s^{t}\right)\}$ is bounded and $\{q(s^{t})\}$ is the price of the risk-free bond.

The Euler conditions are

$$\mathbf{U}_{x}(s^{t}) = U_{1}(s^{t})\mathbf{p}(s^{t})$$

$$\Pr(s^{t}) U_{1}(s^{t}) q(s^{t}) = \beta \sum_{s^{t+1} > s^{t}} \Pr(s^{t+1}) U_{1}(s^{t+1}).$$
(3)

Proposition 1 Consider an allocation $\{\mathbf{x}_t, b_t\}$ that satisfies (2), (3) and $\{b_t\}_t$ is bounded. Then $\{\mathbf{x}_t, b_t\}$ is a solution to (1).

Proof. The proof follows closely Constantinides and Duffie (1996). Suppose there is another budget feasible allocation $\mathbf{x} + \mathbf{h}$ that maximizes (1). Since U is strictly concave,

$$\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} U(\mathbf{x}_{t} + \mathbf{h}_{t}) - \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} U(\mathbf{x}_{t})$$

$$\leq \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} \mathbf{U}_{x}(\mathbf{x}_{t}) \mathbf{h}_{t}$$

$$(4)$$

To attain $\mathbf{x}+\mathbf{h}$, the agent must deviate by φ_t from his original portfolio b_t such that $\{\varphi_t\}_t$ is bounded, $\varphi_{-1}=0$ and

$$\mathbf{p}(s^t)\mathbf{h}\left(s^t\right) = P(s_t)\varphi(s^{t-1}) - q(s^t)\varphi(s^t)$$

Multiply by $\beta^t \Pr(s^t) U_1(s^t)$ to get:

$$\beta^{t} \operatorname{Pr}\left(s^{t}\right) U_{1}(s^{t}) \mathbf{p}(s^{t}) \mathbf{h}\left(s^{t}\right) = \beta^{t} \operatorname{Pr}\left(s^{t}\right) U_{1}(s^{t}) \varphi(s^{t-1}) - q(s^{t}) \beta^{t} \operatorname{Pr}\left(s^{t}\right) U_{1}(s^{t}) \varphi(s^{t})$$

$$= \beta^{t} \operatorname{Pr}\left(s^{t}\right) U_{1}(s^{t}) \varphi(s^{t-1}) - \beta^{t+1} \sum_{s^{t+1} > s^{t}} \operatorname{Pr}\left(s^{t+1}\right) U_{1}\left(s^{t+1}\right) \varphi(s^{t})$$

where we used the second part of (3) in the second equality. Sum over the first T periods and use the first part of (3) to eliminate $\mathbf{U}_x(\mathbf{x}_t) = U_1(s^t)\mathbf{p}(s^t)$

$$\sum_{t=0}^{T} \beta^{t} \operatorname{Pr}\left(s^{t}\right) \mathbf{U}_{x}(\mathbf{x}_{t}) \mathbf{h}\left(s^{t}\right) = -\sum_{s^{T+1} > s^{T}} \beta^{T+1} \operatorname{Pr}\left(s^{T+1}\right) U_{1}\left(s^{T+1}\right) \varphi(s^{T}).$$

Since $\{\varphi_t\}_t$ is bounded there must exist $\bar{\varphi}$ s.t. $|\varphi_t| \leq \bar{\varphi}$ for all t. By Theorem 5.2 of Magill and Quinzii (1994), this equilibrium with debt constraints implies a transversality condition on the right hand side of the last equation, so by transitivity we have

$$\lim_{T \to \infty} \sum_{t=0}^{T} \beta^{t} \operatorname{Pr}\left(s^{t}\right) \mathbf{U}_{x}(\mathbf{x}_{t}) \mathbf{h}\left(s^{t}\right) = 0.$$

Substitute this into (4) to show that h does not improve utility of consumer. ■

2. Proof of Theorem ??

Proof. The optimal Ramsey plan solves the following Bellman equation. Let $V(b_{-})$ be the maximum ex-ante value the government can achieve with debt b_{-} .

$$V(b_{-}) = \max_{c(s), l(s), b(s)} \sum_{s} \pi(s) \left\{ c(s) - \frac{l(s)^{1+\gamma}}{1+\gamma} + \beta V(b(s)) \right\}$$
 (5)

subject to

$$c(s) + b(s) = l(s)^{1+\gamma} + \beta^{-1}P(s)b_{-}$$
 (6a)

$$c(s) + g(s) \le \theta l(s) \tag{6b}$$

Let $\bar{b} = -B$

$$b < b(s) < \bar{b} \tag{6c}$$

Part 1 of Theorem ??

Lemma 1 There exists $a\bar{b}$ such that $b_t \leq \bar{b}$. This is the natural debt limit for the government.

Proof. As we drive μ to $-\infty$, the tax rate approaches a maximum limit, $\bar{\tau} = \frac{\gamma}{1+\gamma}$. In state s, the government surplus,

$$S(s,\tau) = \theta^{\frac{\gamma}{1+\gamma}} (1-\tau)^{\frac{1}{\gamma}} \tau - g(s),$$

which is maximized at $\tau = \frac{\gamma}{1+\gamma}$ when $(1-\tau)^{\frac{1}{\gamma}}\tau$ is also maximized. This would impose a natural borrowing limit for the government.

From now we assume that \bar{b} represents the natural borrowing limit. We begin with some useful lemmas

let $L \equiv l^{1+\gamma}$., To make this problem convex,

Substitute for c(s)

$$V\left(b_{-}\right) = \max_{L\left(s\right),b\left(s\right)} \sum_{s \in S} \pi\left(s\right) \left[\frac{1}{1+\gamma} L\left(s\right) + \frac{1}{\beta} P\left(s\right) b_{-} - b\left(s\right) + \beta V\left(b\left(s\right)\right) \right]$$

s.t.

$$\frac{1}{\beta}P(s)b - b(s) + g(s) \leq \theta L^{\frac{1}{1+\gamma}}(s) - L(s)$$

$$b(s) \leq \bar{b}$$

$$L(s) \geq 0.$$

Lemma 2 V(b) is stictly concave, continuous, differentiable and $V(b) < \beta^{-1}$ for all $b < \bar{b}$. The feasibility constraint binds for all $b \in (-\infty, \bar{b}], \ s \in S$ and $(L^*(s))^{1-\frac{1}{1+\gamma}} \ge \frac{1}{1+\gamma}$.

Proof. Concavity

 $V\left(b\right)$ is concave because we maximize linear objective function over convex set.

Binding feasibility

Suppose that feasibility does not bind for some b, s. Then the optimal L(s) solve $\max_{L(s) \geq 0} \pi(s) \frac{\gamma}{1+\gamma} L(s)$ which sets $L(s) = \infty$. This violates feasility for any finite b, b(s).

Bounds on L

Let $\phi(s) > 0$ be a Lagrange multiplier on the feasibility. The FOC for L(s) is

$$\frac{1}{1+\gamma} + \phi(s) \left(\frac{1}{1+\gamma} L(s)^{\frac{1}{1+\gamma}-} - \theta \right) = 0.$$

This gives

$$\frac{1}{1+\gamma}L^{\frac{1}{1+\gamma}-1}-\theta=-\frac{1}{\lambda}\frac{\gamma}{1+\gamma}<0$$

 $^{^{1} \}text{This last condition simply means that we do not tax to the right of the peak of the Laffer curve. The revenue maximizing tax is <math>1-\bar{\tau}=\frac{1}{1+\gamma}$. At the same time $1-\tau=l^{\gamma}$ so if taxes are always to the left of the peak, $\frac{1}{1+\gamma}\leq l^{\gamma}=\left(L^{\frac{1}{1+\gamma}}\right)^{\gamma}=L^{1-\frac{1}{1+\gamma}}$.

or

$$L^{1-\frac{1}{1+\gamma}} \ge \frac{\theta}{1+\gamma}.$$

Continuity

For any L that satisfy $L^{1-\frac{1}{1+\gamma}}\geq \frac{\theta}{1+\gamma}$, define function Ψ that satisfies $\Psi\left(L^{\frac{1}{1+\gamma}}-\theta L\right)=L$. Since $L^{\frac{1}{1+\gamma}}-L$ is strictly decreasing in L for $L^{1-\frac{1}{1+\gamma}}\geq \frac{1}{1+\gamma}$, this function is well defined. Note that $\Psi\left(\int_{-\infty}^{\infty}\frac{1}{1+\gamma}L^{\frac{1}{1+\gamma}-1}-\theta\right)=0$

 $1 \text{ (so that } \Psi > 0 \text{, i.e. } \Psi \text{ is strictly decreasing) and } \Psi'' \underbrace{\left(\frac{1}{1+\gamma}L^{\frac{1}{1+\gamma}-1}-1\right)^2}_{>0} + \underbrace{\Psi}_{<0} \underbrace{\frac{1}{1+\gamma}\frac{\gamma}{1+\gamma}L^{\frac{1}{1+\gamma}-2}}_{<0} = 0$

(so that $\Psi''\geq 0$, $\Psi''>0$, i.e. Ψ is strictly concave on the interior). Ψ is also continuous. When $L^{1-\frac{1}{1+\gamma}}=\frac{1}{1+\gamma}, L=(1+\gamma)^{-\frac{(1+\gamma)}{(\gamma)}}$. Let $D\equiv (1+\gamma)^{\frac{-1}{\gamma}-(1+\gamma)}$. Then the objective is

$$V\left(b_{-}\right) = \max_{b\left(s\right)} \sum_{s \in S} \pi\left(s\right) \left[\Psi\left(\frac{1}{\beta}P\left(s\right)b - b\left(s\right) + g\left(s\right)\right) + \frac{1}{\beta}P\left(s\right)b_{-} - b\left(s\right) + \beta V\left(b\left(s\right)\right)\right]$$

s.t.

$$\begin{array}{rcl} b\left(s\right) & \leq & \bar{b} \\ \\ \frac{1}{\beta}P\left(s\right)b_{-} - b\left(s\right) + g\left(s\right) & \leq & D. \end{array}$$

This function is continuous so V is also continuous.

Differentiability

Continuity and convexity implies differentiability everywhere, including the boundaries.

Strict concavity

 Ψ is strictly concave, so on the interior V is strictly concave.

Next we characterize policy functions

Lemma 3 $b(b_{-}, s)$ is an increasing function of b for all s for all (b_{-}, s) where b(s) is interior.

Proof. Take the FOCs for b(s) from the condition in the previous problem. If b(s) is interior

$$\Psi\left(\frac{1}{\beta}P(s)b_{-}-b(s)+g(s)\right)=\beta V(b(s)).$$

Suppose $b_1 < b_2$ but $b_2\left(s\right) < b_1\left(s\right)$. Then from stict concavity

$$V\left(b_{2}\left(s\right)\right) < V'\left(b_{1}\left(s\right)\right)$$

$$\Psi\left(\frac{1}{\beta}P\left(s\right)b_{2} - b_{2}\left(s\right) + g\left(s\right)\right) > \Psi\left(\frac{1}{\beta}P\left(s\right)b_{1} - b_{1}\left(s\right) + g\left(s\right)\right).$$

Lemma 4 There exists an invariant distribution of the stochastic process $b_{t+1} = b(s_{t+1}, b_t)$

Proof. The state spaces for b_t and s_t are compact. Further the transition function on $s_{t+1}|s_t$ is trivially increasing under i.i.d shocks. We can apply standard arguments as in (s_t) (see corollary 3) to argue that there exists invariant distribution of assets.

Now we characterize the support of this distribution using further properties of the policy rules for $b(s|b_-)$

Lemma 5 For any $b_- \in (\underline{b}, \overline{b})$, there are s, s'' s.t. $b(s) \ge b_- \ge b(s'')$. Moreover, if there are any states s'', s''' s.t. $b(s'') \ne b(s''')$, those inequalities are strict.

Proof. The FOCs together with the envelope theorem imply that $\mathbb{E}P(s)V'(b(s)) = V'(b_-) + \kappa(s)$ We can rewrite this as $\tilde{\mathbb{E}}V'(b(s)) = b + \kappa(s)$ with $\tilde{\pi}(s) = P(s)\pi(s)$

Now if there is at least one b(s) s.t. $b(s) > b_-$, by strict concavity of V there must be some s'' s.t. b(s'') < b.

If there is at least one b(s) s.t. $b(s) < b_-$, the inequality above is strictly only if $b(s''') = \bar{b}$ for some s'''. But $V(\bar{b}) < V(b)$ so there must be some s'' s.t. b(s'') > b. Equality is possible only if $b_- = b(s)$ for all s.

Lemma 6 Let $\mu(b,s)$ be the optimal policy function for the Lagrange multiplier $\mu(s)$. If P(s') > P(s'') then there exists a $b^*_{s',s''}$ such that for all b < (>) $b_{1,s',s''}$ we have $\mu(b,s') > (<)$ $\mu(b,s'')$. If $\underline{b} < b^*_{s',s''} < \overline{b}$ then $\mu(b^*_{s',s''},s') = \mu(b^*_{s',s''},s'')$.

Proof. Suppose that $\mu(b, s') \leq \mu(b, s'')$. Subtracting the implementability for s'' from the implementability constraint for s' we have

$$\frac{P(s') - P(s'')}{\beta}b = S_{s'}(\mu(b, s')) - S_{s''}(\mu(b, s'')) + b'(b, s') - b'(b, s'')$$

$$\geq S_{s'}(\mu(b, s')) - S_{s''}(\mu(b, s')) + b'(b, s') - b'(b, s'')$$

$$\geq S_{s'}(\mu(b, s')) - S_{s''}(\mu(b, s')) = g(s'') - g(s')$$

We get the first inequality from noting that $S_s(\mu') \geq S_s(\mu'')$ if $\mu' \leq \mu''$. We obtain the second inequality by noting that $\mu(b,s') \leq \mu(b,s'')$ implies $b'(b,s') \geq b'(b,s'')$ (which comes directly from the concavity of V). Thus, $\mu(b,s') \leq \mu(b,s'')$ implies that

$$b \ge \frac{\beta(g(s'') - g(s'))}{P(s') - P(s'')} = b_{s',s''}^* \tag{7}$$

The converse of this statement is that if $b < b^*_{s',s''}$ then $\mu(b,s') > \mu(b,s'')$. The reverse statement that $\mu(b,s') \geq \mu(b,s'')$ implies $b \leq b^*_{s,s'}$ follows by symmetry. Again, the converse implies that if $b > b^*_{s',s''}$ then $\mu(b,s') < \mu(b,s'')$. Finally, if $\underline{b} < b^*_{s',s''} < \overline{b}$ then continuity of the policy functions implies that there must exist a root of $\mu(b,s') - \mu(b,s'')$ and that root can only be at $b^*_{s',s''}$.

Lemma 7 $P \in \mathcal{P}^*$ is necessary and sufficient for existence of b^* such that $b(s, b^*) = b*$ for all ss

Proof. The necessary part follows from taking differences of the (6a) for s', s''. We have

$$[P(s) - P(s'')]\frac{b^*}{\beta} = g(s) - g(s'')$$

Thus $P \in \mathcal{P}^*$. The sufficient part follows from the Lemma 6. If $P \notin \mathcal{P}^*$, equation 7 that defines $b^*_{s',s''}$ will not be same across all pairs. Thus b^* that satisfies $b(s;b^*)$ independent of s will not exist. \blacksquare

Lemma 7 implies that under the hypothesis of part 1 of the Theorem $\ref{thm:prop:eq}$ there cannot exist an interior absorbing point for the dynamics of debt. This allows us to construct a sequences $\{b_t\}_t$ such that $b_t < b_{t+1}$ with the property that $\lim_t b_t = \underline{b}$. Thus, for any $\epsilon > 0$, there exists a finite history of shocks that can take us arbitrarily close to \underline{b} . Since the shocks are i.i.d this finite sequence will repeat i.o. With a symmetric argument we can show that b_t will come arbitrarily close to its upper limit i.o too

Part 2 of Theorem ??

In this first section we will show that there exists b_1 , and if p is sufficiently volatile a b_2 , such that if $b_t \le b_1$ then

$$\mu_t \geq \mathbb{E}_t \mu_{t+1}$$

and if $b_t \geq b_2$ then

$$\mu_t \leq \mathbb{E}_t \mu_{t+1}$$
.

Recall that b is decreasing in μ , so this implies that if b_t is low (large) enough then there will exist a drift away from the lower (upper) limit of government debt.

With Lemma 6 we can order the policy functions $\mu(b,\cdot)$ for particular regions of the state space. Take b_1 to be

$$b_1 = \min\left\{b_{s',s''}^*\right\}$$

and WLOG choose $\underline{b} < b_1$. For all $b < b_1$ we have shown that P(s) > P(s') implies that $\mu(b, s) > \mu(b, s')$. The FOC for the problem imply,

$$\mu_t = \mathbb{E}_t p_{t+1} \mu_{t+1} + \underline{\kappa}_t \tag{8}$$

The inequality in the resource constraint implies that $\xi(s) \geq 0$ implying that $\mu(s) \leq 1$. With some minor algebra algebra we obtain

By decomposing $\mathbb{E}\mu_{t+1}p_{t+1}$ in equation (8), we obtain (using $\mathbb{E}_tp_{t+1}=1$)

$$\mu_t = \mathbb{E}\mu_{t+1} + \text{cov}_t(\mu_{t+1}, p_{t+1}) + \kappa_t \tag{9}$$

Our analysis has just shown that for $b_t < b_1$ we have $cov_t(\mu_{t+1}, p_{t+1}) > 0$ so

$$\mu_t > \mathbb{E}_t \mu_{t+1}$$
.

If p is sufficiently volatile:

$$P(s') - Ps'' > \frac{\beta(g_{s''} - g_{s'})}{\overline{b}}$$

then

$$b_2 = \max\left\{b_{s',s''}^*\right\} < \overline{b}$$

and through a similar argument we can conclude that $cov_t(\mu_{t+1}, p_{t+1}) < 0$

$$\mu_t < \mathbb{E}_t \mu_{t+1}$$

for $b_t > b_2$ (note $b_t > \underline{b}$ implies $\kappa_t = 0$) which gives us a drift away from the upper-bound.

Part 3 of Theorem ??

When $P \in \mathcal{P}^*$, Lemma 7 implies existence of b^* as the steady state debt level.

Lemma 8 There exists μ^* such that μ_t is a sub-martingale bounded above in the region $(-\infty, \mu^*)$ and super-martingale bounded below in the region $(\mu^*, \frac{1}{1+\gamma})$

Proof. Let μ^* be the associated multiplier, i.e $V_b(b^*) = \mu^*$. Using the results of the previous section, we have that $b_1 = b_2 = b^*$, implying that $\mu_t < (>)\mathbb{E}_t \mu_{t+1}$ for $b_t < (>)b^*$.

Lastly we show that $\lim_t \mu_t = \mu^*$. Suppose $b_t < b^*$, we know that $\mu_t > \mu^*$. The previous lemma implies that in this region, μ_t is a super martingale. The lemma 3 shows that $b(b_-, s)$ is continuous and increasing. This translates into $\mu(\mu(b_-), s)$ to be continuous and increasing as well. Thus

$$\mu_t > \mu^* \implies \mu(\mu_t, s_{t+1}) > \mu(\mu^*, s_{t+1})$$

or

$$\mu_{t+1} > \mu^*$$

Thus $\mu*$ provides a lower bound to this super martingale. Using standard martingale convergence theorem converges. The uniqueness of steady state implies that it can only converge to $\mu*$. For $\mu < \mu*$, the argument is symmetric.

3. Proof of Theorem ??

Working with the first order conditions of problem 5, we obtain

$$l(s)^{\gamma} = \frac{\mu(s) - 1}{(1 + \gamma)\mu(s) - 1} = 1 - \tau(\mu(s)),$$

implying the relationship between tax rate τ and multiplier μ given by

$$\tau(\mu) = \frac{\gamma\mu}{(1+\gamma)\mu - 1} \tag{10}$$

The rest of the first order conditions are summarized below

$$\frac{b P(s)}{\beta} = S(\mu(s), s) + b(s)$$
$$V'(b) = \mathbb{E}P(s)\mu(s)$$
$$\mu(s) = V'(b(s))$$

where $S(\mu, s)$ is the government surplus in state s given by

$$S(\mu, s) = (1 - \tau(\mu))^{\frac{1}{\gamma}} \tau(\mu) - g(s) = I(\mu) - g(s)$$

The proof of the theorem will have four steps:

Step 1: Obtaining a recursive representation of the optimal allocation in the incomplete markets economy with payoffs P(s) with state variable μ_-

Given a pair $\{P(s), g(s)\}$, since V'(b) is one-to-one, so we can re-characterize these equations as searching for a function $b(\mu)$ and $\mu(s|\mu)$ such that the following two equations can be solved for all μ .

$$\frac{b(\mu_{-})P(s)}{\beta} = I(\mu(s)) - g(s) + b(\mu(s))$$
(11)

$$\mu = \mathbb{E}\mu(s)P(s) \tag{12}$$

Step 2: Describe how the policy rules are approximated

Usually perturbation approaches to solve equilibrium conditions as above look for the solutions to $\{\mu(s|\mu_-)\}$ and $b(\mu_-)$ around deterministic steady state of the model. Thus for any b^{ss} , there exists a μ^{ss} that will solve

$$\frac{b^{SS}}{\beta} = I(\mu^{SS}) - \bar{g} + b^{SS}$$

For example if we set the perturbation parameter q to scale the shocks, $g(s) = \mathbb{E}g(s) + q\Delta_g(s)$ and $P(s) = 1 + q\Delta_P(s)$, the first order expansion of $\mu(s|\mu_-)$ will imply that it is a martingale. Such

approximations are not informative about the ergodic distribution. ²

In contrast we will approximate the functions $\mu(s|\mu_-)$ around around economy with payoffs in $\bar{P} \in \mathcal{P}^*$.

In contrast we a) explicitly recognize that policy rules depend on payoffs: $\mu(s|\mu_-,\{P(s)\}_s)$ and $b(\mu_-,\{P(s)\}_s)$ and then take take the first order expansion with respect to both μ_- and $\{P(s)\}$ around the vector $(\bar{\mu},\{\bar{P}(s)\}_s)$ where $\bar{P}(s)\in\mathcal{P}^*$: these payoffs support an allocation such that limiting distribution of debt is degenerate around the some value \bar{b} ; and $\bar{\mu}$ is the corresponding limiting value of multiplier. The next two expression make the link between $\bar{\mu}$ and \bar{b} explicit.

$$\bar{b} = \frac{\beta}{1 - \beta} \left(I(\overline{\mu}) - \overline{g} \right) \tag{13a}$$

where $\overline{g} = \mathbb{E}g$ and \overline{p} as

$$\overline{P}(s) = 1 + \frac{\beta}{\overline{b}}(g(s) - \overline{g}) \tag{13b}$$

As noted before $b(\overline{\mu}; \overline{p}) = \overline{b}$ solves the the system of equations (11-12) for $\mu'(s) = \overline{\mu}$ when the payoffs are $\overline{P}(s)$

We next obtain the expressions that characterize the linear approximation of $\mu(s|\mu_-,\{P(s)\})$ and $(\mu_-,\{P(s)\})$ around some arbitrary point $(\bar{\mu},\{\bar{P}(s)\}_s)$ where $\bar{P}(s)\in\mathcal{P}^*$. We will use these expressions to compute the mean and variance of the ergodic distribution associated with the approximated policy rules. Finally as a last step we propose a particular choice of the point of approximation.

The derivatives $\frac{\delta\mu(s|\mu_{-},\{P(s)\}}{\delta\mu_{-}}$, $\frac{\delta\mu(s|\mu_{-},\{P(s)\}}{\delta P(s)}$ and similarly for $b(\mu_{-},\{P(s)\}$ are obtained below: Differentiating equation (11) with respect to μ around $(\overline{\mu},\overline{P})$ we obtain

$$\frac{\overline{P}(s)}{\beta}\frac{\partial b}{\partial \mu_{-}} = \left[I'(\overline{\mu}) + \frac{\partial b}{\partial \mu_{-}}\right]\frac{\partial \mu(s)}{\partial \mu_{-}}.$$

Differentiating equation (12) with respect to μ_{-} we obtain

$$1 = \sum_{s} \pi(s) \overline{P}(s) \frac{\partial \mu'(s)}{\partial \mu_{-}}$$

combining these two equations we see that

$$\frac{1}{\beta} \left(\sum_{s} \pi(s) \overline{P}(s)^{2} \right) \frac{\partial b}{\partial \mu_{-}} = I'(\overline{\mu}) + \frac{\partial b}{\partial \mu_{-}}$$

Noting that $\mathbb{E}\overline{P}^2(s)=1+\frac{\beta^2}{\overline{b}^2}\sigma_g^2$ we obtain

$$\frac{\partial b}{\partial \mu_{-}} = \frac{I'(\overline{\mu})}{\frac{\beta}{\overline{b}^2} \sigma_g^2 + \frac{1-\beta}{\beta}} < 0 \tag{14}$$

²One can do higher order approximations, but part 3 of theorem **??** hints that for economies with payoffs close to \mathcal{P}^* , the stochastic steady state in general is far away from μ^{SS} .

as $I'(\overline{\mu}) < 0$. We then have directly that

$$\frac{\partial \mu'(s)}{\partial \mu} = \frac{\overline{P}(s)}{\frac{\beta^2}{\overline{h}^2} \sigma_g^2 + 1} = \frac{\overline{P}(s)}{\mathbb{E}\overline{P}(s)^2}$$
 (15)

We can perform the same procedure for P(s). Differentiating equation (11) with respect to P(s) we around $(\overline{\mu}, \overline{P})$ we obtain

$$\frac{\overline{P}(s')}{\beta} \frac{\partial b}{\partial P(s)} + 1_{s,s'} \frac{\overline{b}}{\beta} - \frac{\pi(s)\overline{b}\overline{P}(s')}{\beta} = \left[I'(\overline{\mu}) + \frac{\partial b}{\partial \mu} \right] \frac{\partial \mu(s')}{\partial P(s)}$$
(16)

Here $1_{s,s'}$ is 1 if s=s' and zero otherwise. Differentiating equation (12) with respect to P(s) we obtain

$$0 = \pi(s)\overline{\mu} - \pi(s)\overline{\mu} + \sum_{s'} \pi(s)\overline{P}(s')\frac{\partial \mu(s')}{\partial P(s)} = \sum_{s'} \pi(s')\overline{P}(s')\frac{\partial \mu(s')}{\partial P(s)}$$

Again we can combine these two equations to give us

$$\frac{\mathbb{E}\overline{P}(s)^2}{\beta} \frac{\partial b}{\partial P(s)} + \frac{\pi(s)\overline{b}}{\beta} (\overline{P}(s) - \mathbb{E}\overline{P}(s)^2) = 0$$

or

$$\frac{\partial b}{\partial P(s)} = \pi(s) \overline{b} \frac{\overline{\mathbb{E}P}^2 - \overline{P}(s)}{\overline{\mathbb{E}P}^2}$$
(17)

Going back to equation (16) we have

$$\frac{\partial \mu(s')}{\partial P(s)} = \frac{\overline{b}}{\beta \left[I'(\overline{\mu}) + \frac{\partial b}{\partial \mu} \right]} \left(1_{s,s'} - \frac{\pi(s)\overline{P}(s)\overline{P}(s')}{\mathbb{E}\overline{P}^2} \right)$$
(18)

Step 3: Getting expressions for the mean and variance of the ergodic distribution around some arbitrary point of approximation

For an arbitrary $(\overline{\mu}, \{\overline{P}(s)\}_s)$, using the derivatives that we computed, we can characterize the dynamics of $\hat{\mu} \equiv \mu_t - \overline{\mu}$ using our approximated policies.

$$\hat{\mu}_{t+1} = B\hat{\mu}_t + C,$$

where B(s) and C(s) are respective derivatives. Note that both are random variables and let us denote their means \overline{B} and \overline{C} , and variances σ_B^2 and σ_C^2 . Suppose that $\hat{\mu}$ is distributed according to the ergodic distribution of this linear system with mean $\mathbb{E}\hat{\mu}$ and variance σ_μ^2 . Since

$$B\hat{\mu} + C$$
.

has the same distribution we can compute the mean of this distribution as

$$\begin{split} \mathbb{E}\hat{\mu} &= \mathbb{E}\left[B\hat{\mu} + C\right] \\ &= \mathbb{E}\left[\mathbb{E}_{\hat{\mu}}\left[B\hat{\mu} + C\right]\right] \\ &= \mathbb{E}\left[\overline{B}\hat{\mu} + \overline{C}\right] \\ &= \overline{B}\mathbb{E}\hat{\mu} + \overline{C} \end{split}$$

solving for $\mathbb{E}\hat{\mu}$ we get

$$\mathbb{E}\hat{\mu} = \frac{\overline{C}}{1 - \overline{B}} \tag{19}$$

For the variance $\sigma_{\hat{\mu}}^2$ we know that

$$\sigma_{\hat{\mu}}^2 = \operatorname{var}(B\hat{\mu} + C) = \operatorname{var}(B\hat{\mu}) + \sigma_C^2 + 2\operatorname{cov}(B\hat{\mu}, C)$$

Computing the variance of $B\hat{\mu}$ we have

$$\operatorname{var}(B\hat{\mu}) = \mathbb{E}\left[(B\hat{\mu} - \overline{B}\mathbb{E}\hat{\mu})^2 \right]$$

$$= \mathbb{E}\left[(B\hat{\mu} - \overline{B}\hat{\mu} + \overline{B}\hat{\mu} - \overline{B}\mathbb{E}\hat{\mu})^2 \right]$$

$$= \mathbb{E}\left[\mathbb{E}_{\hat{\mu}} \left[(B - \overline{B})^2 \hat{\mu}^2 + 2(B - \overline{B})(\hat{\mu} - \mathbb{E}\hat{\mu})\overline{B}\mathbb{E}\hat{\mu} + (\hat{\mu} - \mathbb{E}\hat{\mu})^2 \overline{B}^2 \right] \right]$$

$$= \mathbb{E}\left[\sigma_B^2 \hat{\mu}^2 + (\hat{\mu} - \mathbb{E}\hat{\mu})^2 \overline{B} \right]$$

$$= \sigma_B^2 (\sigma_{\hat{\mu}}^2 + (\mathbb{E}\hat{\mu})^2) + \sigma_{\hat{\mu}}^2 \overline{B}^2$$

while for the covariance of $B\hat{\mu}$ and C

$$cov(B\hat{\mu}, C) = \sigma_{BC}\mathbb{E}\hat{\mu}$$

Putting this all together we have

$$\sigma_{\hat{\mu}}^2 = \frac{\sigma_B^2 (\mathbb{E}\hat{\mu})^2 + \sigma_{BC} \mathbb{E}\hat{\mu} + \sigma_C^2}{1 - \overline{B}^2 - \sigma_B^2}$$
(20)

Step 4: Choice of the point of approximation

To get the expressions in Theorem **??**, we finally choose a particular $\overline{P} = P^*(s) \in \mathcal{P}^*$. This will be the closest complete market economy to our the given P(s) in L^2 sense. Formally,

$$\min_{\tilde{P} \in \mathcal{P}^*} \sum_{s} \pi(s) (P(s) - \tilde{P}(s))^2.$$

Since all payoffs in \mathcal{P}^* are associated with some b^* and μ^* via equations (13), we can re write the above problem as choosing $\overline{\mu}$ so as to minimize the variance of the difference between P(s) and the set of steady state payoffs. Let P^* be the solution to this minimization problem. The first order condition for

this linearization gives us

$$2\sum_{s'} \pi (P(s') - P^*(s', \mu^*)) \frac{\delta P^*(s, \mu^*)}{\delta \mu^*} = 0$$

as noted before

$$P^*(s) = 1 - \frac{\beta}{b^*(\mu^*)} (g(s) - \mathbb{E}g)$$

thus

$$\frac{\delta P^*}{\delta \mu^*} \propto P^* - 1$$

Thus we can see the the optimal choice of $\overline{\mu}$ is equivalent to choosing $\overline{\mu}$ such that

$$0 = \sum_{s'} \Pi_{s'}(P(s') - P^*(s', \mu^*))(P^*(s', \mu^*) - 1)$$

$$= -\sum_{s'} \Pi_{s'}(P(s') - P^*(s', \mu^*)) + \sum_{s'} \Pi_{s'}(P(s') - P^*(s', \mu^*))P^*(s', \mu^*)$$

$$= \sum_{s'} \Pi_{s'}(P(s') - P^*(s', \mu^*))P^*(s', \mu^*)$$

$$= \mathbb{E}\left[(P - P^*)P^*\right]$$
(21)

At these values of $\overline{P}=P^*$ and $\overline{\mu}=\mu^*$ we have that C for our linearized system is

$$C(s') = \sum_{s} \left\{ \frac{b^*}{\beta \left[I'(\overline{\mu}) + \frac{\partial b}{\partial \mu} \right]} \left(1_{s,s'} - \frac{\pi(s)P^*(s)P^*(s')}{\mathbb{E}\overline{P}^2} \right) (P(s) - P^*(s)) \right\}$$

Taking expectations we have that

$$\overline{C} = \sum_{s} \left\{ \frac{b^{*}}{\beta \left[I'(\overline{\mu}) + \frac{\partial b}{\partial \mu} \right]} \left(\pi(s) - \frac{\pi(s)P^{*}(s)}{\mathbb{E}\overline{P}^{2}} \right) (P(s) - P^{*}(s)) \right\}$$

$$= \frac{b^{*}}{\beta \left[I'(\overline{\mu}) + \frac{\partial b}{\partial \mu} \right]} \left(\mathbb{E}(P - \overline{P}) - \frac{\mathbb{E}\left[(P - \overline{P})\overline{P} \right]}{\mathbb{E}\overline{P}^{2}} \right)$$

$$= 0$$
(22)

Thus the linearized system will have the same mean for μ , $\overline{\mu}$, as the closest approximating steady state payoff structure.

We can also compute the variance of the ergodic distribution for μ . Note

$$\begin{split} C(s') &= \sum_{s} \left\{ \frac{b^*}{\beta \left[I'(\overline{\mu}) + \frac{\partial b}{\partial \mu} \right]} \left(1_{s,s'} - \frac{\pi(s)P^*(s)P^*(s')}{\mathbb{E}P^{*2}} \right) (P(s) - P^*(s)) \right\} \\ &= \frac{b^*}{\beta \left[I'(\overline{\mu}) + \frac{\partial b}{\partial \mu} \right]} \left(P(s') - P^*(s') - P^*(s') \frac{\sum_{s} \pi(s)P^*(s)(p_s - P^*(s))}{\mathbb{E}P^{*2}} \right) \\ &= \frac{b^*}{\beta \left[I'(\overline{\mu}) + \frac{\partial b}{\partial \mu} \right]} (P(s') - P^*(s)) \end{split}$$

As noted before

$$\sigma_{\mu}^2 = \frac{{b^*}^2}{\beta^2 \left[I'(\overline{\mu}) + \frac{\partial b}{\partial \mu}\right]^2 \left(1 - \overline{B}^2 - \sigma_B^2\right)} \|P - P^*\|^2$$

The variance of government debt in the linearized system is

$$\sigma_b^2 = \frac{b^{*2} \left(\frac{\partial b}{\partial \mu}\right)^2}{\beta^2 \left[I'(\overline{\mu}) + \frac{\partial b}{\partial \mu}\right]^2 \left(1 - \overline{B}^2 - \sigma_B^2\right)} \|P - P^*\|^2$$

This can be simplified using the following expressions:

$$I'(\overline{\mu}) + \frac{\partial b}{\partial \mu} = \frac{\mathbb{E}P^{*2}}{\beta} \frac{\partial b}{\partial \mu},$$

$$\overline{B} = \frac{1}{\mathbb{E}P^{*2}}$$

and

$$\sigma_B^2 = \frac{\operatorname{var}(P^*)}{(\mathbb{E}P^{*2})^2}$$

to

$$\sigma_b^2 = \frac{b^{*2}}{\mathbb{E}P^{*2} \text{var}(P^*)} \|P - P^*\|^2$$
 (23)

Noting that $\mathbb{E}P^{*2} = 1 + \text{var}(P^*) > 1$, we have immediately that up to first order the relative spread of debt is bounded by

$$\frac{\sigma_b}{b^*} \le \sqrt{\frac{\|P - P^*\|^2}{\operatorname{var}(P^*)}} \tag{24}$$

4. Proof of Theorem ??

Proof.

Using Theorem **??** let $\tilde{b} = b_1 - b_2$. Under the normalization that $b_2 = 0$, the variable \tilde{b} represents public debt government or the assets of the productive agent. Specializing the formulations in section **??** we have the optimal plan solves the following Bellman equation.

$$V(\tilde{b}_{-}) = \max_{c_1(s), c_2(s), b'(s)} \sum_{s} \pi(s) \left\{ \omega \left[u(c_1(s), l_1(s)) \right] + (1 - \omega) \left[c_2(s) \right] + \beta V(\tilde{b}(s)) \right\}$$
(25)

subject to

$$c_1(s) - c_2(s) + \tilde{b}(s) = l(s)^{1+\gamma} + \beta^{-1}P(s)\tilde{b}_{-}$$
(26a)

$$nc_1(s) + (1 - n)c_2(s) + g(s) \le \theta_2 l(s)n$$
 (26b)

$$c_2(s) \ge 0 \tag{26c}$$

$$\overline{b} \ge \tilde{b}(s) \ge \underline{b} \tag{26d}$$

Let $\mu(s), \phi(s), \lambda(s), \underline{\kappa}(s), \overline{\kappa}(s)$ be the Lagrange multipliers on the respective constraints. The FOC are summarized below

$$\omega - \mu(s) = n\phi(s) \tag{27a}$$

$$1 - \omega + \mu(s) - \phi(s)(1 - n) + \lambda(s) = 0$$
(27b)

$$-\omega l^{\gamma}(s) + \mu(s)(1+\gamma)l^{\gamma}(s) + n\phi(s)\theta = 0$$
(27c)

$$\beta V'(\tilde{b}(s)) - \mu(s) - \overline{\kappa}(s) + \kappa(s) = 0 \tag{27d}$$

and the envelope condition

$$V'(\tilde{b}_{-}) = \sum_{s} \pi(s)\mu(s)\beta^{-1}P(s)$$
 (27e)

To show part 1 of Theorem **??**, we show that $\frac{\omega}{n} > \frac{1+\gamma}{\gamma}$ is sufficient for the Lagrange multiplier $\lambda(s)$ on the non-negativity constraint to bind.

Lemma 9 The multiplier on the budget constraint $\mu(s)$ is bounded above

$$\mu(s) \le \min \left\{ \omega - n, \frac{\omega}{1 + \gamma} \right\}$$

Similiarly the multiplier of the resource constraint is bounded below,

$$\phi(s) \ge \max\left\{1, \frac{\omega}{n} \left\lceil \frac{\gamma}{1+\gamma} \right\rceil\right\}$$

Proof.

Notice that the labor choice of the productive household implies $\frac{1}{1-\tau} = \frac{\theta_2}{l^{\gamma}(s)}$.

As taxes go to $-\infty$ (27c) implies that $\mu(s)$ approaches $\frac{\omega}{1+\gamma}$ from below. Similarly the non-negativity of $c_2(s)$ imposes a lower bound of 1 on $\phi(s)$. This translates into an upper bound of $\omega-n$ on μ .

Lemma 10 There exists $a\bar{\omega}$ such that $\omega > \bar{\omega}$ implies $c_2(s) = 0$ for all b

Proof.

By the KKT conditions $c_2(s)=0$ if $\lambda(s)>0$. Now (27b) implies this is true if $\mu(s)<\omega-n$. The previous lemma bounds $\mu(s)$ by $\frac{\omega}{1+\gamma}$.

We can thus define $\bar{\omega} = n\left(\frac{1+\gamma}{\gamma}\right)$ as the required threshold Pareto weight to ensure that the unproductive agent has zero consumption forever.

Now for the rest of the parts $\omega < n \frac{1+\gamma}{\gamma}$, we can have postive transfers for low enough public debt. In particular, we can define a maximum level of debt $\mathcal B$ that is consistent with an interior solution for the unproductive agents' consumption.

Guess an interior solution $c_{2,t} > 0$ or $\lambda_t = 0$ for all t. This gives us $l(s) = l^*$ defined below:

$$l^* = \left[\frac{n\theta}{\omega - (\omega - n)(1 + \gamma)}\right]^{\frac{1}{\gamma}} \tag{28}$$

As long as $\omega < n\left(\frac{1+\gamma}{\gamma}\right)$ At the interior solution $\tilde{b}(s) = \tilde{b}_-$ and using the implementability constraint and resource constraints (26a) and (26b) respectively, we can obtain the expression for $c_2(s)$

$$c_2(s) = n\theta l^* - n{l^*}^{1+\gamma} - \tilde{b}_{-}(1 - P(s)\beta^{-1}) - g(s)$$

Non-negativity of c_2 implies,

$$\tilde{b}_{-} \le \frac{g(s) - n\theta l^* + n l^{*1+\gamma}}{\beta^{-1} P(s) - 1}$$

We can also express this as

$$\tilde{b}_{-} \le \frac{g(s) - \tau^* y^*}{\beta^{-1} P(s) - 1},$$

where the right hand side of the previous equation is just the present discounted value of the pri-

mary deficit of the government at the constant taxes τ^* associated with l^* defined in (28). As long as $\beta^{-1}P(s)-1>0$, this object is well defined, we define $\mathcal{B}=\min_s\left[\frac{g(s)-n\theta l^*+nl^{*1+\gamma}}{\beta^{-1}P(s)-1}\right]$. Thus for $\tilde{b}_-<\mathcal{B}$ the optimal allocation has constant taxes given by τ^* and debt \tilde{b}_- , while transfers are given by

$$T(s) = n\theta l^* - n l^{*1+\gamma} - \tilde{b}_{-}(1 - P(s)\beta^{-1}) - g(s),$$

and are strictly positive.

For initial debt greater than \mathcal{B} , we distinguish cases when payoffs are perfectly aligned with g(s) i.e belong to the set \mathcal{P}^* and when they are not. For part 2 case b, let $P \notin \mathcal{P}^*$.

Lemma 11 There exists $a \, \check{b} > \mathcal{B}$ such that there are two shocks \underline{s} and \overline{s} and the optimal choice of debt starting from $\tilde{b}_{-} \leq \check{b}$ satisfies the following two inequalities:

$$\tilde{b}(s, \tilde{b}_{-}) > \mathcal{B}$$

$$\tilde{b}(\overline{s}, \tilde{b}_{-}) \leq \mathcal{B}$$

Proof. At \mathcal{B} , there exist some \overline{s} such that $T(\overline{s},\mathcal{B}) = \epsilon > 0$. Now define \check{b} as follows:

$$\check{b} = \mathcal{B} + \frac{\epsilon \beta}{2P(\overline{s})}$$

Now suppose to the contrary $\tilde{b}(\overline{s}, \tilde{b}_{-}) > \mathcal{B}$ for some $\tilde{b}_{-} \leq \check{b}$. This implies that $\tau(s, \tilde{b}_{-}) > \tau^*$ and $T(\overline{s}, \tilde{b}_{-}) = 0.3$

The government budget constraint implies

$$\frac{P(\overline{s})\tilde{b}_{-}}{\beta} + g(s) = \tilde{b}(\overline{s}, \tilde{b}_{-}) + (1 - \tau(\overline{s}, \tilde{b})_{-})l(\overline{s}, \tilde{b}_{-}).$$

As,

$$\frac{P(\overline{s})\tilde{b}_{-}}{\beta} + g(\overline{s}) \leq \frac{P(\overline{s})\mathcal{B}}{\beta} + g(\overline{s}) + \frac{\epsilon}{2} < \frac{P(\overline{s})\mathcal{B}}{\beta} + g(\overline{s}) + \epsilon$$

This further implies,

$$\tilde{b}(\overline{s},\tilde{b}_{-}) + (1 - \tau(\overline{s},\tilde{b}_{-}))l(\tau(\overline{s},\tilde{b}_{-})) > [\tilde{b}(\overline{s},\tilde{b}_{-}) + (1 - \tau^{*})l^{*} > \mathcal{B} + (1 - \tau^{*})l^{*} > \frac{P(\overline{s})\tilde{b}_{-}}{\beta} + g(\overline{s}) + T(\overline{s},\tilde{b}_{-}) = \frac{P(\overline{s})\tilde{b}_{-}}{\beta} + g(\overline{s}) + C(\overline{s},\tilde{b}_{-}) +$$

Combining the previous two inequalities yields a contradiction. The second inequality, $\tilde{b}(\underline{s}, \tilde{b}_{-}) > \mathcal{B}$ follows from the definition of \mathcal{B} .

Now define $\overline{\mu}(\tilde{b}(s, \tilde{b}_{-}))$ as $\max_{s} \mu(s, \tilde{b}_{-})$ and $\hat{s}(\tilde{b}_{-})$ as the shock that achieves this maximum. Now we show that $\hat{\mu}(\tilde{b}(s, \tilde{b}_{-}))$ is finite for all $b_{-} < \overline{b}$. We show the claim for the natural debt limit.

Let $b^n(s)=(\beta^{-1}P(s)-1)^{-1}\left[\theta^{\frac{\gamma}{1+\gamma}}\left(\frac{1}{1+\gamma}\right)^{\frac{1}{\gamma}}\left(\frac{\gamma}{1+\gamma}\right)-g(s)\right]$ be the maximum debt supported by a particular shock s. The natural debt limit is defined as $\overline{b}^n=\min_s b^n(s)$. Note that $\lim_{b\to \overline{b}^n}\mu(\tilde{b}_-)=\infty$

³Explain why

Now choose s such that $b^n(s) > \overline{b}^n$ and consider the debt choice next period for the same shock s when it comes in with debt \overline{b}^n .

Suppose it chooses $\tilde{b}(s,\overline{b}^n)=\overline{b}^n$, then taxes will have to be set to $\frac{\gamma}{1+\gamma}$ and the tax income will be $\frac{\gamma}{1+\gamma}l(\frac{\gamma}{1+\gamma})=\theta^{\frac{\gamma}{1+\gamma}}\left(\frac{1}{1+\gamma}\right)^{\frac{1}{\gamma}}\left(\frac{\gamma}{1+\gamma}\right)$. The budget constraint will then imply that,

$$\frac{\overline{b}^n P(s)}{\beta} + g(s) = \theta^{\frac{\gamma}{1+\gamma}} \left(\frac{1}{1+\gamma} \right)^{\frac{1}{\gamma}} \left(\frac{\gamma}{1+\gamma} \right) + \overline{b}^n$$

$$\overline{b}^n = (P(s)\beta^{-1} - 1)^{-1} \left(\theta^{\frac{\gamma}{1+\gamma}} \left(\frac{1}{1+\gamma} \right)^{\frac{1}{\gamma}} \left(\frac{\gamma}{1+\gamma} \right) - g(s) \right)$$

However the right hand side is the definition of $b^n(s)$ and,

$$b^n(s) > \overline{b}^n$$
.

Thus we have a contradiction and the optimal choice of debt at the natural debt limit $\tilde{b}(s,\overline{b}^n)<\overline{b}^n$. This inturn means that $\lim_{\tilde{b}\to\overline{b}^n}\overline{\mu}(\tilde{b})<\infty$.

Now note that $\overline{\mu}(\tilde{b}_{-}) - \mu(\tilde{b}_{-})$ is continuous on $[\check{b}, \quad \overline{b}^n]$ and is bounded below by zero, therefore attains a minimum at \tilde{b}^{min} . Let $\delta = \hat{\mu}(\tilde{b}^{min}) - \mu(\tilde{b}^{min}) > \eta > 0$. If this was not true then $P(s) \in \mathcal{P}^*$ as μ will have an absorbing state.

Let $\mu(\omega, n) = \omega - n$. This is the value of μ when debt falls below \mathcal{B} .

Now consider any initial $\tilde{b}_{-} \in [\mathcal{B}, \overline{b}^n]$. If $\tilde{b}_{-} \leq \check{b}$, then by lemma 11, we know that \mathcal{B} will be reached in one shock. Otherwise if $\tilde{b}_{-} > \check{b}$, we can construct a sequence of shocks $s_t = \hat{s}(\tilde{b}_{t-1})$ of length $N = \frac{\mu(\omega,n)-\mu(\bar{b}_{-})}{\delta}$. There exits t < N such that $\tilde{b}_t < \check{b}$, otherwise,

$$\mu_t > \mu(\tilde{b}_-) + N\delta > \mu(\omega, n)$$

Thus we can reach \mathcal{B} in finite steps. Since shocks are i.i.d, this is an almost sure statement. At \mathcal{B} , transfers are strictly positive for some shocks $T_t > 0$ a.s. and taxes are given by τ^* .

Now consider the payoffs $P \in \mathcal{P}^*$ such that the associated steady state debt $b^* > \mathcal{B}$. Under the guess $T_t = 0$, the same algebra as in Theorem **??** goes through and we can show that $\tilde{b}_- = b^*$ is a steady state for the heterogeneous agent economy. Thus the heterogeneous agent economy for a given $P \in \mathcal{P}^*$ has a continuum of steady states given by the set $[\bar{b}, \quad \mathcal{B}] \cup \{b^*\}$.

In the region $\tilde{b}_- > b^*$, as before μ_t is supermartingale bounded below by b^* . Since there is a unique fixed point in the region $\tilde{b}_- \in [b^*, \overline{b}^n]$, μ_t converges to μ^* associated with b^* . Transfers are zero and taxes are given by τ^{**}

$$\tau^{**} = \frac{\gamma \mu^*}{(1+\gamma)\mu^* - 1} \tag{29}$$

In the region $[\mathcal{B}, b^*]$ the outcomes depend on the exact sequence of shocks we can show that

 μ_t is a submartingale. This follows from the observation that for all $\tilde{b}_- \geq \mathcal{B}$, we have T(s) = 0 and the outcomes from the representative agent economy allow us to order $\mu(s)$ relative P(s). At $\tilde{b}_- = \mathcal{B}$, $\mu(s) = \omega - n$ and is constant. Thus in the region $[\mathcal{B}, B^*]$, μ_t is sub martingale and it converges. However f \tilde{b}_t gets sufficiently close to \tilde{b} , then it can converge to \mathcal{B} and if it gets sufficiently close to b^* , it can converge to b^* . Either of this can happen with strictly positive probability.

5. Proof of Theorem ??

The Bellman equation for the optimal planners problem with log quadratic preferences and IID shocks can be written as

$$V(x,\rho) = \max_{c_1,c_2,l_1,x',\rho'} \sum_{s} \pi(s) \left[\alpha_1 \left(\log c_1(s) - \frac{l_1(s)^2}{2} \right) + \alpha_2 \log c_2(s) + \beta V(x'(s),\rho'(s)) \right]$$

subject to the constraints

$$1 + \rho'(s)[l_1(s)^2 - 1] + \beta x'(s) - \frac{x\frac{P(s)}{c_2(s)}}{\mathbb{E}\left[\frac{P(s)}{c_2(s)}\right]} = 0$$
(30)

$$\mathbb{E}\frac{P(s)}{c_1(s)}(\rho'(s) - \rho) = 0$$
(31)

$$\theta_1(s)l_1(s) - c_1(s) - c_2(s) - g = 0 \tag{32}$$

$$\rho'(s)c_2(s) - c_1(s) = 0 (33)$$

where the $\pi(s)$ is the probability distribution of the aggregate state s. If we let $\pi(s)\mu(s)$, λ , $\pi(s)\xi(s)$ and $\pi(s)\phi(s)$ be the Lagrange multipliers for the constraints (30)-(33) respectively then we obtain the following FONC for the planners problem ⁴

$$c_1(s): \frac{\alpha_1 \pi(s)}{c_1(s)} - \frac{\lambda \pi(s)}{c_1(s)^2} (\rho'(s) - \rho) - \pi(s)\xi(s) - \pi(s)\phi(s) = 0$$
(34)

$$\frac{\alpha_2 \pi(s)}{c_2(s)} + \frac{x P(s) \pi(s)}{c_2(s)^2 \mathbb{E}[\frac{P}{c_2}]} \left[\mu(s) - \frac{\mathbb{E}[\mu \frac{P}{c_2}]}{\mathbb{E}[\frac{P}{c_2}]} \right] - \pi(s) \xi(s) + \pi(s) \rho'(s) \phi(s) = 0$$
(35)

$$l_1(s): -\alpha_1 \pi(s) l_1(s) + 2\mu(s) \pi(s) \rho'(s) l_1(s) + \theta_1(s) \pi(s) \xi(s) = 0$$
(36)

$$x'(s)$$
:
$$V_x(x'(s), \rho'(s)) + \mu(s) = 0 \tag{37}$$

$$\rho'(s):$$

$$\beta V_{\rho}(x'(s), \rho'(s)) + \frac{\lambda \pi(s)}{c_1(s)} + \mu(s)[l_1(s)^2 - 1] + \pi(s)\phi(s)c_2(s) = 0$$
(38)

 $^{^4}$ Appendix $\ref{Appendix}$ discuses the associated second order conditions that ensure these policies are optimal

In addition there are two envelope conditions given by

$$V_x(x,\rho) = -\sum_{s'} \frac{\mu(s')\pi(s')\frac{P(s)}{c_2(s')}}{\mathbb{E}[\frac{P}{c_2}]} = -\frac{\mathbb{E}[\mu\frac{P}{c_2}]}{\mathbb{E}[\frac{P}{c_2}]}$$
(39)

$$V_{\rho}(x,\rho) = -\lambda \mathbb{E}\left[\frac{P}{c_1}\right] \tag{40}$$

In the steady state, we need to solve for a collection of allocations, initial conditions and Lagrange multipliers $\{c_1(s),c_2(s),l_1(s),x,\rho,\mu(s),\lambda,\xi(s),\phi(s)\}$ such that equations (30)-(40) are satisfied when $\rho'(s)=\rho$ and x'(s)=x. It should be clear that if we replace $\mu(s)=\mu$, equation (37) and the envelope condition with respect to x is always satisfied. Additionally under this assumption equation (35) simplifies significantly,since

$$\frac{xP(s)\pi(s)}{c_2(s)^2\mathbb{E}\left[\frac{P}{c_2}\right]}\left[\mu(s) - \frac{\mathbb{E}\left[\mu\frac{P}{c_2}\right]}{\mathbb{E}\left[\frac{P}{c_2}\right]}\right] = 0$$

The first order conditions for a steady can then be written simply as

$$1 + \rho[l_1(s)^2 - 1] + \beta x - \frac{xP(s)}{c_2(s)\mathbb{E}\left[\frac{P}{C_2}\right]} = 0$$
(41)

$$\theta_1(s)l_1(s) - c_1(s) - c_2(s) - g = 0 \tag{42}$$

$$\rho c_2(s) - c_1(s) = 0 \tag{43}$$

$$\frac{\alpha_1}{c_1(s)} - \xi(s) - \phi(s) = 0 \tag{44}$$

$$\frac{\alpha_2}{c_2(s)} - \xi(s) + \rho\phi(s) = 0 \tag{45}$$

$$[2\mu\rho - \alpha_1]l_1(s) + \theta_1(s)\xi(s) = 0 \tag{46}$$

$$\lambda \left(\frac{P(s)}{c_1(s)} - \beta \mathbb{E} \left[\frac{P}{c_1} \right] \right) + \mu [l_1(s)^2 - 1] + \phi(s) c_2(s) = 0$$
 (47)

We can rewrite equation (44) as

$$\frac{\alpha_1}{c_2(s)} - \rho \xi(s) - \rho \phi(s) = 0$$

by substituting $c_1(s) = \rho c_2(s)$. Adding this to equation (45) and normalizing $\alpha_1 + \alpha_2 = 1$ we obtain

$$\xi(s) = \frac{1}{(1+\rho)c_2(s)} \tag{48}$$

which we can use to solve for $\phi(s)$ as

$$\phi(s) = \frac{\alpha_1 - \rho \alpha_2}{(\rho(1+\rho)) c_2(s)} \tag{49}$$

From equation (41) we can solve for $l_1(s)^2 - 1$ as

$$l_1(s)^2 - 1 = \frac{x}{\rho \mathbb{E}\left[\frac{P}{c_2}\right]} \left(\frac{P(s)}{c_2(s)}\right) - \beta \mathbb{E}\left[\frac{P}{c_2}\right] - \frac{1}{\rho}$$

This can be used along with equations (47) and (49) to obtain

$$\left(\frac{\lambda}{\rho} + \frac{\mu x}{\rho \mathbb{E}\left[\frac{P}{c_2}\right]}\right) \left(\frac{P(s)}{c_2(s)} - \beta \mathbb{E}\left[\frac{P}{c_2}\right]\right) = \frac{\mu}{\rho} + \frac{\rho \alpha_2 - \alpha_1}{\rho(1+\rho)}$$

Note that the LHS depends on s while the RHS does not, hence the solution to this equation is

$$\lambda = -\frac{\mu x}{\mathbb{E}\left[\frac{P}{c_2}\right]} \tag{50}$$

and

$$\mu = \frac{\alpha_1 - \rho \alpha_2}{1 + \rho} \tag{51}$$

Combining these with equation (46) we quickly obtain that

$$\left[2\rho \frac{\alpha_1 - \rho \alpha_2}{1 + \rho} - \alpha_1\right] l_1(s) + \frac{\theta_1(s)}{(1 + \rho) c_2(s)} = 0$$

Then solving for $l_1(s)$ gives

$$l_1(s) = \frac{\theta_1(s)}{(\alpha_1(1-\rho) + 2\rho^2\alpha_2) c_2(s)}$$

Remark 1 Note that the labor tax rate is given by $1 - \frac{c_1(s)l_1(s)}{\theta(s)}$. The previous expression shows that labor taxes are constant at the steady state. This property holds generally for CES preferences separable in consumption and leisure

This we can plug into the aggregate resource constraint (42) to obtain

$$l_1(s) = \left(\frac{1+\rho}{\alpha_1(1-\rho) + 2\rho^2 \alpha_2}\right) \frac{1}{l_1(s)} + \frac{g}{\theta_1(s)}$$

letting $C(\rho) = \frac{1+\rho}{\alpha_1(1-\rho)+2\rho^2\alpha_2}$ we can then solve for $l_1(s)$ as

$$l_1(s) = \frac{g \pm \sqrt{g^2 + 4C(\rho)\theta_1(s)^2}}{2\theta_1(s)}$$

The marginal utility of agent 2 is then

$$\frac{1}{c_2(s)} = \left(\frac{1+\rho}{C(\rho)}\right) \left(\frac{g \pm \sqrt{g^2 + 4C(\rho)\theta_1(s)^2}}{2\theta_1(s)^2}\right)$$

Note that in order for either of these terms to be positive we need $C(\rho) \ge 0$ implying that there is only one economically meaningful root. Thus

$$l_1(s) = \frac{g + \sqrt{g^2 + 4C(\rho)\theta_1(s)^2}}{2\theta_1(s)}$$
 (52)

and

$$\frac{1}{c_2(s)} = \left(\frac{1+\rho}{C(\rho)}\right) \left(\frac{g + \sqrt{g^2 + 4C(\rho)\theta_1(s)^2}}{2\theta_1(s)^2}\right)$$
(53)

A steady state is then a value of ρ such that

$$x(s) = \frac{1 + \rho[l_1(\rho, s)^2 - 1]}{\frac{P(s)/c_2(\rho, s)}{\mathbb{E}[\frac{P}{c_3}](\rho)} - \beta}$$
 (54)

s independent of s.

The following lemma, which orders consumption and labor across states, will be useful in proving the parts of proposition **??**. As a notational aside we will often use $\theta_{1,l}$ and $\theta_{1,h}$ to refer to $\theta_1(s_l)$ and $\theta_1(s_h)$ respectively. Where s_l refers to the low TFP state and s_h refers to the high TFP state.

Lemma 12 Suppose that $\theta_1(s_l) < \theta_2(s_h)$ and ρ such that $C(\rho) > 0$ then

$$l_{1,l} = \frac{g + \sqrt{g^2 + 4C(\rho)\theta_{1,l}^2}}{2\theta_{1,l}} > \frac{g + \sqrt{g^2 + 4C(\rho)\theta_{1,h}^2}}{2\theta_{1,h}} = l_{1,h}$$

and

$$\frac{1}{c_{2,l}} = \frac{1+\rho}{C(\rho)} \frac{g+\sqrt{g^2+4C(\rho)\theta_{1,l}^2}}{2\theta_{1,l}^2} > \frac{1+\rho}{C(\rho)} \frac{g+\sqrt{g^2+4C(\rho)\theta_{1,h}^2}}{2\theta_{1,h}^2} = \frac{1}{c_{2,h}}$$

Proof. The results should follow directly from showing that the function

$$l_1(\theta) = \frac{g + \sqrt{g^2 + 4C(\rho)\theta}}{2\theta}$$

is decreasing in θ . Taking the derivative with respect to θ

$$\begin{split} \frac{dl_1}{d\theta}(\theta) &= -\frac{g}{2\theta^2} - \frac{\sqrt{g + 4C(\rho)\theta^2}}{2\theta^2} + \frac{4C(\rho)\theta}{2\theta\sqrt{g^2 + 4C(\rho)\theta^2}} \\ &= -\frac{g}{2\theta^2} - \frac{g + 4C(\rho)\theta^2 - 4C(\rho)\theta^2}{2\theta^2\sqrt{g^2 + 4C(\rho)\theta^2}} \\ &= -\frac{g}{2\theta^2} - \frac{g}{2\theta^2\sqrt{g^2 + 4C(\rho)\theta^2}} < 0 \end{split}$$

That $\frac{1}{c_{2,l}} > \frac{1}{c_{2,h}}$ follows directly.

Now we use these lemma to prove the part 1 and part 2 of theorem ??

Proof.

[Part 1.] For a riskfree bond when P(s) = 1. In order for there to exist a ρ such that equation (54) is independent of the state (and hence have a steady state) we need the existence of root for the following function

$$f(\rho) = \frac{1 + \rho[l_1(\rho, s_h)^2 - 1]}{1 + \rho[l_1(\rho, s_l)^2 - 1]} - \frac{\frac{1/c_2(\rho, s_h)}{\mathbb{E}[\frac{P}{c_2}](\rho)} - \beta}{\frac{1/c_2(\rho, s_l)}{\mathbb{E}[\frac{P}{c_2}](\rho)} - \beta}$$

From lemma 12 we can conclude that

$$1 + \rho[l_1(\rho, s_l)^2 - 1] > 1 + \rho[l_1(\rho, s_h)^2 - 1]$$
(55)

and

$$\frac{1/c_2(\rho, s_l)}{\mathbb{E}\left[\frac{P}{c_2}\right](\rho)} - \beta > \frac{1/c_2(\rho, s_h)}{\mathbb{E}\left[\frac{P}{c_2}\right](\rho)} - \beta \tag{56}$$

for all $\rho > 0$ such that $C(\rho) \ge 0$. To begin with we will define ρ such that $C(\rho) > 0$ for all $\rho > \rho$. Note that we will have to deal with two different cases.

 $\alpha_1(1-\rho)+2\rho^2\alpha_2>0$ for all $\rho\geq 0$: In this case we know that $C(\rho)\geq 0$ for all ρ and is bounded above and thus we will let $\rho = 0$.

 $\alpha_1(1-\rho)+2\rho^2\alpha_2=0$ for some $\rho>0$: In this case let ρ be the largest positive root of $\alpha_1(1-\rho)+2\rho^2\alpha_2$. Note that $\lim_{\rho \to \rho^+} C(\rho) = \infty$

With this we note that⁵

$$\lim_{\rho \to \rho^+} \frac{1 + \rho[l_1(\rho, s_h)^2 - 1]}{1 + \rho[l_1(\rho, s_l)^2 - 1]} = 1$$

We can also show that

$$\lim_{\rho \to \underline{\rho}^+} \frac{\frac{1/c_2(\rho, s_h)}{\mathbb{E}[\frac{P}{c_2}](\rho)} - \beta}{\frac{1/c_2(\rho, s_l)}{\mathbb{E}[\frac{P}{c_2}](\rho)} - \beta} < 1$$

which implies that $\lim_{\rho \to \rho^+} f(\underline{\rho}) > 0$.

Taking the limit as $\rho \to \infty$ we see that $C(\rho) \to 0$, given that $\frac{g}{\theta(s)} < 1$, we can then conclude that

$$\lim_{\rho \to \infty} 1 + \rho [l_1(\rho, s)^2 - 1] = -\infty$$

Thus, there exists $\bar{\rho}$ such that $1 + \bar{\rho}[l_1(\bar{\rho}, s_l)^2 - 1] = 0$. ⁶ From equation (55), we know that

$$0 = 1 + \overline{\rho}[l_1(\overline{\rho}, s_l)^2 - 1] > 1 + \overline{\rho}[l_1(\overline{\rho}, s_h)^2 - 1]$$

 $^{(\}rho, \infty)$

which implies in the limit

$$\lim_{\rho \to \overline{\rho}^{-}} \frac{1 + \rho[l_1(\rho, s_h)^2 - 1]}{1 + \rho[l_1(\rho, s_l)^2 - 1]} = -\infty$$

which along with

$$\frac{\frac{1/c_2(\rho, s_h)}{\mathbb{E}\left[\frac{P}{c_2}\right]} - \beta}{\frac{1/c_2(\rho, s_l)}{\mathbb{E}\left[\frac{P}{c_2}\right]} - \beta} \ge -1$$

allows us to conclude that $\lim_{\rho\to \overline{\rho}^-} f(\rho) = -\infty$. The intermediate value theorem then implies that there exists ρ_{SS} such that $f(\rho_{SS}) = 0$ and hence that ρ_{SS} is a steady state.

Finally, as $\rho_{SS}<\overline{\rho}$ we know that

$$1 + \rho_{SS}[l_1(\rho_{SS}, s_l) - 1] > 0$$

as $\frac{1/c_2(\rho,s_l)}{\mathbb{E}[\frac{P}{c_2}]}>1$ we can conclude

$$x_{SS} = \frac{1 + \rho_{SS}[l_1(\rho_{SS}, s_l) - 1]}{\frac{1/c_2(\rho, s_l)}{\mathbb{E}[\frac{P}{c_2}](\rho)} - \beta} > 0$$

implying that the government will hold assets in the steady state (under the normalization that agent 2 holds no assets).

[Part 2] As noted before, since $g/\theta(s) < 1$ for all s we have

$$\lim_{n \to \infty} 1 + \rho [l_1(\rho, s)^2 - 1] = -\infty$$

Thus, there exists ρ_{SS} such that

$$0 > 1 + \rho_{SS}[l_1(\rho_{SS}, s_l)^2 - 1] > 1\rho_{SS}[l_1(\rho_{SS}, s_h)^2 - 1]$$

It is then possible to choose P(s) such that $\beta < \frac{P(s)/c_2(\rho_{SS},s)}{\mathbb{E}[\frac{P}{c_2}]}$ such that

$$1 > \frac{1 + \rho_{SS}[l_1(\rho_{SS}, s_l)^2 - 1]}{1 + \rho_{SS}[l_1(\rho_{SS}, s_h)^2 - 1]} = \frac{\frac{P(s_l)/c_2(\rho_{SS}, s_l)}{\mathbb{E}[\frac{P}{c_2}]} - \beta}{\frac{P(s_h)/c_2(\rho_{SS}, s_h)}{\mathbb{E}[\frac{P}{c_S}]} - \beta}$$
(57)

Implying that for Payoff shocks P(s), ρ_{SS} is a steady state level for the ratio of marginal utilities, with steady state marginal utility weighted government debt

$$x_{SS} = \frac{1 + \rho_{SS}[l_1(\rho_{SS}, s_l)^2 - 1]}{\frac{P(s_l)/c_2(\rho_{SS}, s_l)}{\mathbb{E}[\frac{P}{c_2}]} - \beta} < 0$$

Thus, in the steady state, the government is holding debt, under the normalization that the unproductive worker holds no assets. Note this imposes a restriction of $\frac{P(s_l)}{P(s_h)}$.

$$\frac{P(s_l)c_2^{-1}(\rho_{SS}, s_l) - \beta \mathbb{E} P c_2^{-1}}{P(s_h)c_2^{-1}(\rho_{SS}, s_h) - \beta \mathbb{E} P c_2^{-1}} < 1$$

or

$$\frac{P(s_l)}{P(s_h)} < \frac{c_2^{-1}(\rho_{SS}, s_h)}{c_2^{-1}(\rho_{SS}, s_l)} < 1$$

or

Thus $P(s_l) < P(s_h)$ i.e payoffs have to be sufficiently procyclical.