NATIONAL UNIVERSITY OF SINGAPORE

MA3269 - MATHEMATICAL FINANCE I

(Semester 1: AY2016/2017)

Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. Write your matriculation/student number only. **Do not write your name**.
- 2. This examination paper contains **FOUR** (4) questions and comprises **FIVE** (5) printed pages.
- 3. This examination carries a total of **65** marks.
- 4. Answer **ALL** questions.
- 5. This is a **CLOSED BOOK** examination.
- 6. You are allowed to use four A4-size, double-sided help sheets.
- 7. You may use **non-programmable** calculators. However, you should lay out systematically the various steps in the calculations.

Question 1 [20 marks]

In this question, r_x , μ_x , σ_x and \mathbf{w}_x denote respectively the rate of return, mean, standard deviation and weight vector of a portfolio of risky assets labelled x.

A financial market consisting of n (n > 2) risky assets and a risk-free asset satisfies the Capital Asset Pricing Model. Portfolios g and m are respectively the global minimum-variance portfolio of risky assets and the market (tangency) portfolio. Portfolios x and y are distinct portfolios on the minimum-variance frontier for risky assets.

In the $\sigma - \mu$ plane, the Capital Market Line passes through the origin.

It is given further that $\mu_g = \frac{1}{6}$, $\mu_x = 0$, $\sigma_g^2 = \frac{1}{12}$ and $\sigma_x^2 = \sigma_y^2 = \frac{1}{4}$.

Find

- (i) the risk-free rate,
- (ii) the equation of the efficient frontier for risky assets, giving your answer in the form $\mu = f(\sigma)$,
- (iii) the equation of the asymptote to the efficient frontier curve,
- (iv) μ_{v} ,
- (v) μ_m and σ_m^2 ,
- (vi) the beta of the portfolio whose weight vector is $\frac{1}{4} (\mathbf{w}_g + \mathbf{w}_m + \mathbf{w}_x + \mathbf{w}_y)$,
- (vii) $\operatorname{corr}\left(r_{v}, r_{m}\right)$, the correlation between r_{v} and r_{m} .

Question 2 [15 marks]

In this question, all options have the same underlying non-dividend-paying stock and time to maturity T. Let S_T denote the terminal price of the underlying stock.

- (a) Let $K_2 > K_1 > 0$. A capped call option has payoff function $\max(\min(S_T, K_2) K_1, 0)$.
 - (i) Draw the payoff table and sketch the payoff diagram for this option.
 - (ii) Let *r* be the continuously compounded risk-free rate. Describe a portfolio consisting of the risk-free asset and two put options that has the same payoff as the above option.
- (b) The diagram below shows part of the payoff diagram for a portfolio created by writing n_1 put options with strike price 80, holding n_2 call options with strike price 90, holding n_3 put options with strike price 100 and writing 1 call option with strike price K, where 100 < K < 120.

- (i) Determine and write down the values of n_1 , n_2 , n_3 and K. No working is required.
- (ii) Draw the payoff diagram for $80 \le S_T \le 120$.
- (c) A non-dividend-paying stock has a current price of \$10. One month later, the stock price will either move up by 10% or move down by 5%. The continuously-compounded risk-free rate is 0.06. A one-month European option has payoff function $\max\left(\frac{(S_1-1)^2}{10}-7,0\right)$, where S_1 is the stock price at the end of one month. Use a single-period binomial model to price this option. Give your answer to **three significant figures**.

Question 3 [15 marks]

(a) A trader with an initial wealth of \$1 and utility function

$$U(w) = \ln(w), \quad w > 0$$

is offered a lottery that pays \$(ax) or \$(-bx), with equal probabilities, where a > 0, b > 0 and 0 < bx < 1. Let the certainty equivalent of the lottery be denoted by C(x).

- (i) Find C(x) in terms of a, b and x. Simplify your answer.
- (ii) For the case when $a \le b$, show that C(x) is a strictly decreasing function of x.
- (iii) For the case when a > b, find in terms of a and b the range of values of x for which the trader will avoid the lottery.
- (iv) For the case when a > b, find the maximum value of C(x) in terms of a and b. Deduce that the trader will play the lottery when C(x) attains its maximum value.
- (b) Let U_1 and U_2 be twice differentiable concave utility functions defined on $(0, \infty)$ and let U be defined on $\{U_2(x): x \in \mathbf{R}\}$ by

$$U(x) = U_1(U_2^{-1}(x)),$$

where U_2^{-1} denotes the inverse of U_2 .

Let R_1 and R_2 denote the Arrow-Pratt absolute risk aversion functions associated with U_1 and U_2 respectively. It is given that $R_1(x) > R_2(x)$ for all x > 0.

Prove that

(i)
$$\frac{d^2U}{dx^2} = \frac{U_1'(t)}{\left(U_2'(t)\right)^2} \left(R_2(t) - R_1(t)\right), \text{ where } t = U_2^{-1}(x),$$

(ii) U is a concave utility function.

Question 4 [15 marks]

In this question, r_x , μ_x , σ_x and \mathbf{w}_x denote respectively the rate of return, mean, standard deviation and weight vector of a portfolio of risky assets labelled x. The covariance and correlation between r_x and r_y are denoted respectively by σ_{xy} and ρ_{xy} . Two portfolios x and y are said to be orthogonal if $\sigma_{xy} = 0$.

A financial market consisting of n (n > 2) risky assets and a risk-free asset satisfies the Capital Asset Pricing Model. Let μ and \mathbf{C} denote respectively the mean vector and covariance matrix of the risky assets. Let g and m be the global minimum-variance portfolio of risky assets and the market (tangency) portfolio respectively. Let x be a portfolio of risky assets **not** lying on the minimum-variance frontier for risky assets and y be a portfolio on the minimum-variance frontier for risky assets such that $\mu_y = \mu_x$ ($\neq \mu_g$)

Let $a = \mathbf{1}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{1}$, $b = \mathbf{1}^{\mathrm{T}} \mathbf{C}^{-1} \boldsymbol{\mu} > 0$ and $c = \boldsymbol{\mu}^{\mathrm{T}} \mathbf{C}^{-1} \boldsymbol{\mu}$, where **1** is the column vector of ones.

- (i) By expressing \mathbf{w}_y in the form $\alpha \frac{\mathbf{C}^{-1} \mathbf{\mu}}{b} + (1 \alpha) \frac{\mathbf{C}^{-1} \mathbf{1}}{a}$, for some $\alpha \in \mathbf{R}$, show that $\sigma_{xy} = \sigma_y^2$.
- (ii) Let $r_p = \gamma r_y + (1 \gamma) r_g$, where $\gamma \in \mathbf{R}$, be the rate of return of a portfolio p on the minimum-variance frontier for risky assets. Show that

$$\rho_{px} = \frac{\gamma \sigma_y^2 + (1 - \gamma) \sigma_g^2}{\sigma_x \sqrt{\gamma^2 \sigma_y^2 + (1 - \gamma^2) \sigma_g^2}}.$$

Hence, show that the minimum-variance portfolio of risky assets having the highest correlation with portfolio x is portfolio y.

- (iii) Show that \mathbf{w}_x can be expressed in the form $\mathbf{w}_g + \mathbf{w}_a + \mathbf{w}_b$, where the mean of portfolio a is zero and portfolios g, a and b are pair-wise orthogonal.
- (iv) Suppose μ_x is greater than the risk-free rate. Let z be the portfolio on the Capital Market Line such that $\mu_z = \mu_x$. Show that

$$\rho_{xz} = \frac{\sigma_z}{\sigma_x}.$$

END OF PAPER