Vortragsreihe der LUG Tübingen

04. Mai 2004

Ulrich Ölmann

WLAN Hintergründe und Betrieb unter Linux

Gliederung des Vortrags

- Einleitung
 - IEEE 802.11
 - Schnittstelle zu Linux
 - Praktische Beispiele
 - Zusammenfassung

Gliederung des Vortrags

- Einleitung
 - IEEE 802.11
 - Schnittstelle zu Linux
 - Praktische Beispiele
 - Zusammenfassung

Drahtlose digitale Datenübertragung im Alltag

Rauch- und Morsezeichen: bit/min oder gar bit/h

Videotext

• Pager: Scall, Quix, digitale Funkmeldeempfänger (FW, DRK, ...)

 Schnurlostelefone nach DECT-Standard (Digital Enhanced Cordless Telecommunications): 1.8 GHz, 32 kbit/s

Drahtlose digitale Datenübertragung im Alltag

Digitale Mobiltelefonnetze:

- GSM: 900 MHz oder 1.8 GHz, 14.4 kbit/s

- UMTS: 2 Mbit/s

GPS: 1.2 GHz und 1.5 GHz

- Satellitentelefone (Iridium-Netz)
- Digitaler Rundfunk (Radio, Fernsehen), terrestrisch oder über Satelit

Drahtlose digitale Datenübertragung unter Linux

Amateur-Funk, AX.25: 1-80kbit/s

IrDA: 115.2 kbit/s

Metricom Starmode Radio IP: 100 kbit/s

• Bluetooth: 2.45 GHz, 723 kbit/s

WLAN nach IEEE 802.11: 2.4 GHz oder 5 GHz, 2 – 108 Mbit/s

Gliederung des Vortrags

- Einleitung
 - IEEE 802.11
 - Schnittstelle zu Linux
 - Praktische Beispiele
 - Zusammenfassung

Nomenklatur

MAC - Medium Access Control

Teil des WLAN-Gerätes, das Protokoll und Verbindung organisiert

Funkmodem

Teil des WLAN-Gerätes, das durch Modulation von Funksignalen Daten mit dem "Äther" austauscht

Diversity

Generisches Konzept zur Steigerung der Zuverlässigkeit durch Einbringen von Redundanz

Nomenklatur

Spread Spectrum

Technik zur Erhöhung der Zuverlässigkeit der Funkverbindung Erlaubt unabhängigen Systemen die Koexistenz Zwingt dabei zur Teilung der Bandbreite

DS - Direct Sequence (Spread Spectrum Technik)

Vorteil: Läuft auf einzelnem großen Kanal

Nachteil: Benötigt aufwendigeres Funkmodem

FH - Frequency Hopping (Spread Spectrum Technik)

Vorteil: Kostengünstigeres Modem

Nachteil: Läuft auf mehreren schmalen Kanälen

Standardisierung innerhalb von 802.11

- Langwieriger Prozess innerhalb des IEEE 802.11 Kommitees
- Sehr komplexes Ergebnis durch zuviele enthaltene Features

802.11 spezifiziert:

- ein MAC Protokoll
- drei alternative physikalische Schichten:
 - Frequency Hopping (1 Mbit/s)
 - Direct Sequence (1 und 2 Mbit/s)
 - · Infrarot (1 Mbit/s bei 850 nm)

Aufbau einer Funknetzwerkkarte

MAC - Medium Access Control

- Sinnvolle Netzwerke bestehen aus mindestens 2 Knoten, die über ein gemeinsames Medium kommunizieren.
- Erfolgreiche Kommunikation bedeutet hierbei: Ein Knoten spricht, der Rest lauscht.
- MAC-Protokoll sorgt für faire Verteilung der Redezeit und möglichst geringe Beeinträchtigungen in Folge von Durcheinandersprechen.
- Beispiel: Tokennet
- Beispiel: Ethernet

MAC - Medium Access Control

- 802.11 MAC-Protokoll ähnlich bewährter Ethernet-Technik
 (CSMA/CD Carrier Sense Multiple Access / Collision Detection)
- Entscheidender Unterschied: Keine Kollisionserkennung möglich
 ⇒ CSMA/CA Carrier Sense Multiple Access / Collision Avoidance
- Zusätzliche Techniken zur Effizienzsteigerung:
 - MAC Retransmissions
 - Fragmentation
 - RTS/CTS (Request To Send / Clear To Send)

MAC - Netzwerktopologie: Ad-Hoc-Netzwerk

- Alle Knoten sind gleichberechtigt
- Knoten können wie bei Ethernet beliebig aus dem Netz entfernt oder zu dem Netz hinzugefügt werden.
- Voraussetzung für ein Ad-Hoc-Netzwerk: Jeder Knoten muß die restlichen Knoten "sehen" können.

MAC - Netzwerktopologie: Verwaltetes Netzwerk

• Es gibt ausgezeichnete Knoten: Access Points

- Sie erfüllen besondere Funktionen:
 - Bridge zwischen WLAN und Ethernetsegment
 - Out of Range Forwarding
 - Access Control
 - Roaming

MAC - Sicherheit

- Zugangskontrolle:
 - ESSID (Extended Service Set ID) → "Netzwerkname"
 - MAC-ACLs (Access Control Lists)
 - · Reichweite der Funknetzwerkkarte

- Sicherheit gegen Belauschen
- Sicherstellung der Datenintegrität

MAC - Sicherheit

⇒ Quintessenz:

Traue den aktuellen Sicherheitsfeatures von 802.11 nicht!

⇒ Ausweg:

Nimm die Sicherheit selbst in die Hand (Verwendung von SSH, HTTP über SSL/TLS, VPN-Lösung, ...)

Ausblick:

IEEE 802.11-i enthält Spezifikation von WPA (Wi-Fi Protected Access), WPA2 (verwendet AES statt RC4) soll Mitte 2004 spezifiziert sein.

Standards innerhalb von 802.11

Standards innerhalb von 802.11

• 802.11-g

802.11-b + 6, 9, 12, 18, 24, 36, 48, 54 & 108 Mbit/s

Standardisierung im Juni 2003 abgeschlossen.

Daher bei "frühen" Geräten nicht notwendig Interoperabilität mit 802.11-g Geräten anderer Hersteller.

Bei "frühen" Geräten ebenfalls Störung von 802.11-b Netzwerken möglich.

• 802.11-a

5 GHz, keine Interoperabilität mit 802.11-b

Gliederung des Vortrags

- Einleitung
 - IEEE 802.11
 - Schnittstelle zu Linux
 - Praktische Beispiele
 - Zusammenfassung

Linux Wireless Extensions

- Als OpenSource-Projekt von Jean Tourrilhes 1996 angeregt (Autor des Linux Wireless LAN HOWTO)
- Enthalten im Linux-Kernel seit mind. Version 2.2.14 bzw. 2.3.30
- Aktuelle Version: WE-16
- Rahmenvorgaben für WLAN-Treiber:
 Neue Menge von ioctl-Calls und /proc/net/wireless

```
Ulla@laptop-ulla:~> cat /proc/net/wireless
Inter-| sta-| Quality | Discarded packets | Missed | WE
face | tus | link level noise | nwid crypt frag retry misc | beacon | 16
eth1: 0000 205. 0. 28. 0 0 0 0 0 0
ulla@laptop-ulla:~> ■
```


Linux Wireless Tools

Darauf aufbauend die Wireless-Tools:

iwconfig Konfiguriere ein WLAN-Gerät

iwpriv Konfiguriere optionale (private) Features

iwspy
 Statistiken von spezifischen WLAN-Knoten

iwlist Detailliertere Informationen von einem WLAN-Gerät

· iwevent Zeige Wireless Events an

· ifrename Benenne Netzwerkinterface um

- Aktuelle Version: Wireless Tools 26 (27-beta vorhanden)
- Referenzimplementation, Alternativen vorhanden

Linux Wireless Tools: iwconfig

Konfiguration eines WLAN-Gerätes:

```
- 0 x
-M ulla@laptop-ulla:~
laptop-ulla: " # iwconfig eth1 essid LUGT channel 3 mode Managed ap 00:09:5B:97:D5:A3
laptop-ulla:~ # iwconfig eth1 key s:"Linux User Group"
laptop-ulla: " # iwconfig eth1 key restricted
laptop-ulla:~ #
laptop-ulla:~ # iwconfig eth1
          NOT READY! ESSID: "LUGT"
eth1
          Mode: Managed Channel: 3 Access Point: 00:09:5B:97:D5:A3
          Tx-Power=31 dBm Sensitivity=0/200
          Retry min limit: 0 RTS thr=0 B Fragment thr=0 B
          Encryption key:4C69-6E75-7820-5573-6572-2047-726F-7570
                                                                   Security mode:restricted
          Link Quality: 0 Signal level: 0 Noise level: 0
          Rx invalid nwid: 0 Rx invalid crupt: 0 Rx invalid frag: 0
          Tx excessive retries:0 Invalid misc:0 Missed beacon:0
laptop-ulla:~ #
```


Linux Wireless Tools: iwpriv

Konfiguration von treiberspezifischen Features des WLAN-Gerätes:

```
• 🗆 ×
-₩ ulla@laptop-ulla:~
laptop-ulla:~ # iwpriv eth1
          Available private ioctl:
eth1
                           (8BE0) : set
                                                   & get
          reset
          getBeaconPeriod (8BE1) : set
                                                   & get
                                                           1 int
          setBeaconPeriod (8BE2) : set
                                                   & get
                                          1 int
                           (8BE3) : set
                                                           1 int
          getPolicy
                                                   & get
          setPolicy
                           (8BE4) : set
                                                   & get
                                         1 int
                           (8BE5) : set
          getMac
                                                   & get
                                                          64 addr
                           (8BE6) : set
                                          1 addr
                                                   & get
                                                           0
          addMac
                           (8BE8) : set
                                          1 addr
                                                   & get
          delMac
          kickMac
                           (8BEA) : set
                                          1 addr
                                                   & get
          kickAll.
                           (8BEC) : set
                                                   & get
                           (8BED) : set
                                                   & get
                                                           1 int
          get_wpa
                           (8BEE) : set
                                         1 int
          set_wpa
                                                   & get
          oid
                           (8BF0) : set
                                         1 int
                                                   & get
                                                   & get 256 byte
          get_oid
                           (8BF1) : set
                                          0
          set_oid
                           (8BF2) : set 256 bute
                                                  & get
laptop-ulla:~ # iwpriv eth1 setPolicy 2
laptop-ulla: # iwpriv eth1 addMac 00:09:5B:97:D5:A3
laptop-ulla:~ #
```


Linux Wireless Tools: iwlist

Detailliertere Informationen zum akt. Zustand des WLAN-Gerätes

Paket Sniffer: Kismet

- Schaltet das WLAN-Gerät in besonderen Promiscous Mode
- Detektiert auf diese passive Weise sämtlichen drahtlosen Verkehr, ohne selbst Spuren zu hinterlassen
- Analysiert eintreffende Pakete, ordnet sie nach Netzen und erlaubt direkten Zugriff auf Informationen über diese Netze
- Protokolliert den Paketdatenstrom zur weiteren Analyse mit tcpdump oder ethereal im WTAP-Format
- Erlaubt mit Hilfe von gpsd die Erstellung genauer Karten

Paket Sniffer: Kismet

Kismet-Protokoll meiner Anfahrt von Stuttgart nach Tübingen

Name	T H Ch Pa	ackts Fl	ags IP Range	Size	Ntwr
KrzNet	A N 011	24	0.0.0.0	OB	
Privat	A Y 005	1	0.0.0.0	OB	Pcke
T-Mobile_T-Com	A N 006	1	0.0.0.0	OB	
T-Mobile_T-Com	A N 011	1	0.0.0.0	OB	Cryp.
Mohring	A Y 011	4	0.0.0.0	OB	
Wireless	A N 006	1	0.0.0.0	OB	We
default	A Y 006	6	0.0.0.0	1k	
default	A N 011	1	0.0.0.0	OB	Nois
win2linux8.2	A N 006	1 2	0.0.0.0	OB	
andy	A N 006	2	0.0.0.0	OB	Disc
router	A N 009	2	0.0.0.0	OB	
ConnectionPoint	A N 010	5	0.0.0.0	OB	Pkts
tikogrupo	A Y 011	1	0.0.0.0	OB	
WirelessTeam	A Y 006	1	0.0.0.0	OB	
Probe Networks	G N	19	0.0.0.0	OB	
					Elaps
					00:33
tatus					
Found new network "tiko	grupo" bssid 00	:09:5B:A	D:B4:4C WEP Y Ch	11 @ 11.00 mk	oit
Saving data files.					
Found new network "Wire	lessTeam" bssid	00:04:E	2:7D:23:2E WEP Y	Ch 6 @ 11.00	mbit
Found new probed networ	"ALIAFAFAMACAY	2017477°	^F^F^W^S^P" heei	1.00-04-23-75	F2-49

Gliederung des Vortrags

- Einleitung
 - IEEE 802.11
 - Schnittstelle zu Linux
 - Praktische Beispiele
 - Zusammenfassung

Praktische Beispiele

- Zwei beteiligte Laptops mit Cardbus WLAN-Karten Netgear WG511
- Verwendeter Chipsatz: Prism GT, unter Linux unterstütz durch prism54-Treiber (siehe Linksammlung am Ende)
- Karte wird in der aktuellen Knoppix-Distribution unterstützt

Vorbereitung: Boote auf Laptops A und B Knoppix

Praktische Beispiele

- In den Beispielen werden Übertragungstests durchgeführt, hierzu werden abkürzend die folgenden Shell-Scripte benutzt:
 - transmit.sh

```
#!/bin/sh
time dd if=/dev/zero bs=1M count=32 |
netcat -w 2 192.168.0.2 1234
```

receive.sh

```
#!/bin/sh
netcat -l -p 1234 > /dev/null
```

 Zur Messung müssen zunächst auf Laptop B receive.sh und dann auf Laptop A transmit.sh gestartet werden.
 Laptop A gibt anschließend die Zeit für die Übertragung von 32 MB Nullen über das WLAN aus.

Praktische Beispiele: Ad-Hoc Netzwerk

Grundkonfiguration der Netzwerkkarten

Laptop A

iwconfig eth0 mode Ad-Hoc ifconfig eth0 192.168.0.1

Laptop B

iwconfig eth0 mode Ad-Hoc \ essid LUGT ifconfig eth0 192.168.0.2

Ping von Laptop A an Laptop B (schlägt fehl!)

Laptop A

ping 192.168.0.2

 Bei Laptop A fehlt die ESSID: Korrektur, erfolgreicher Ping und Zeitmessung

Laptop A

iwconfig eth0 essid LUGT ping 192.168.0.2 ./transmit.sh

Laptop B

./receive.sh

Praktische Beispiele: Verwaltetes Netzwerk

 Neue Konfiguration der Netzwerkkarten (A wird Access-Point, B einfacher teilnehmender Knoten)

Laptop A

Laptop B

iwconfig eth0 mode Master

iwconfig eth0 mode Managed

 Ping von Laptop A an Laptop B funktioniert, anschließend Messung der Übertragungsrate

Laptop A

Laptop B

ping 192.168.0.2
./transmit.sh

./receive.sh

Praktische Beispiele: WEP-Verschlüsselung

Neue Konfiguration der Netzwerkkarten (Schlüssel wird eingetragen und automatisch auf 'restricted'-Modus geschaltet)

Laptop A
iwconfig eth0 key \
 s:"Ulrich Ölmann"
 s:"Ulrich Ölmann"
Laptop B
iwconfig eth0 key \
 s:"Ulrich Ölmann"

 Ping von Laptop A an Laptop B funktioniert, anschließend Messung der Übertragungsrate

```
ping 192.168.0.2
./transmit.sh
```

Laptop A

Laptop B

./receive.sh

Gliederung des Vortrags

- Einleitung
 - IEEE 802.11
 - Schnittstelle zu Linux
 - Praktische Beispiele
 - Zusammenfassung

Zusammenfassung

- 802.11 als eine von vielen aktuellen Techniken zur drahtlosen Datenübertragung ist praxistauglich
- Zugrundeliegende Technik ist sehr komplex
- Geräte werden günstiger, Linux-Treiber zahlreicher und stabiler
- Vielseitige Anwendbarkeit: von Ad-Hoc-Netzen bis zu verwalteten Netzwerken mit Roaming
- Drahtlose Sicherheit zur Zeit noch nicht "out of the box"

Links zum Thema

Wireless LAN resources for Linux

Kismet

```
http://www.kismetwireless.net/
```

Airsnort

Webseite der Treiberentwickler für Prism-Chipsätze

