Real Analysis II Homework 5

Due Date: May 29

Solve the following problems.

Problem 1

(a) Let $1 \le p_i, r \le \infty$ and

$$\frac{1}{p_1} + \dots + \frac{1}{p_k} = \frac{1}{r}$$

Prove the following generalization of Hölder's inequality:

$$||f_1 \cdots f_k||_r \le ||f_1||_{p_1} \cdots ||f_k||_{p_k}$$

(b) Let $1 \leq p < r < q \leq \infty$ and define $\theta \in (0,1)$ by

$$\frac{1}{r} = \frac{\theta}{p} + \frac{1-\theta}{q}$$

Prove the interpolation estimate

$$||f||_r \le ||f||_p^{\theta} ||f||_q^{1-\theta}$$

Problem 2 If $f \in L^p(\mathbb{R}^n)$, 0 , show that

$$\lim_{Q\searrow x}\frac{1}{|Q|}\int_{Q}\left|f(y)-f(x)\right|^{p}dy=0\quad\text{a.e.}$$

Problem 3 Show that every subset Λ of a separable metric space (M,d) is separable.