PAMO Stream Test 2

April Camp 2019

Time: $4\frac{1}{2}$ hours

1. Let Γ be the circumcircle of an acute triangle ABC. The perpendicular line to AB passing by C cuts AB in D and Γ again in E. The bisector of the angle C cuts AB in F and Γ again in G. The line GD meets again Γ in H and the line HF meets it again in I. Prove that AI = EB.

As CG is the bisector of the angle $\angle ACB$, we have $\angle AHG = \angle ACG = \angle GCB$. We have $\angle HAB = \angle HCB$ as these angles intersect the same arc HB. Considering the triangle ADH, we have

$$\angle HDB = \angle HAB + \angle AHG$$
$$= \angle HCB + \angle GCB$$
$$= \angle GCH.$$

We have $\angle FDH = 180^{\circ} - \angle HDB = 180^{\circ} - \angle CGH$. So the quadrilateral CFDH has two of its opposite angles that are supplementary and so the points C, F, D and H are concyclic. Subsequently $\angle GCE = \angle FCD = \angle FHD = \angle IHG = \angle ICG$. Furthermore

$$\angle ACI = \angle ACG - \angle ICG$$

= $\angle GCB - \angle GCE$
= $\angle ECB$.

Consequently, AI = BE.

2. Find all non-negative integers n for which the equation

$$(x^2 + y^2)^n = (xy)^{2018}$$

admits positive integral solutions.

Let n, x and y be such that $(x^2+y^2)^n=(xy)^{2018}$. According to the AM-GM, we have $x^2+y^2\geq 2xy>xy$. So n<2018. Let $d=\gcd(x,y)$ and set $a=\frac{x}{d},\ b=\frac{y}{d}$. Then

$$d^{2n}(a^2 + b^2)^n = d^{2 \times 2018}(ab)^{2018}$$
$$(a^2 + b^2)^n = d^{2(2018 - n)}(ab)^{2018}.$$

1

As b divides $(ab)^{2018}$, we have that b divides $(a^2 + b^2)^n$. But gcd(a, b) = 1 so $gcd(a^2, b) = 1$ and so $gcd(a^2 + b^2, b) = 1$. Consequently, b = 1. The same argument shows that a = 1. Hence we get

$$2^n = d^{2(2018-n)}.$$

Consequently, $d=2^k$ with $2^n=2^{4036k-2nk}$ and n=4036k-2nk. Then $n(2k+1)=4k\cdot 1009$. Since $\gcd(2k+1,4k)=1$, we have that 2k+1 divides 1009 which is a prime, and so 2k+1=1009 or 2k+1=1. Hence k=504 or k=0, and n=2016 or n=0, respectively. Conversely, we check that $x=y=2^{504}$ satisfies

$$(2^{1008} + 2^{1008})^{2016} = (2^{504} \times 2^{504})^{2018} = 2^{2034144},$$

and so n = 2016 is a solution. A solution for n = 0 is provided by x = y = 1.

- 3. Adamu and Afaafa choose, each in his turn, positive integers as coefficients of a polynomial of degree n. Adamu wins if the polynomial obtained has an integer root; otherwise, Afaafa wins. Afaafa plays first if n is odd; otherwise Adamu plays first. Prove that:
 - i) Adamu has a winning strategy if n is odd.
 - ii) Afaafa has a winning strategy if n is even.
 - i) Assume that n is odd so the polynomial is of the form $a_{2k+1}x^{2k+1} + a_{2k}x^{2k} + \cdots + a_1x + a_0$ for some nonnegative integer k. Afaafa plays first choosing a_i for some $i \in \{0, 1, \ldots, 2k+1\}$. Next, Adamu chooses a_{2k+1-i} equal to a_i . Using the same process in the next choices we obtain a polynomial having -1 as root so that Adamu wins.
 - ii) Assume that n is even then the polynomial is of the form $a_{2k}x^{2k} + a_{2k-1}x^{2k-1} + \cdots + a_1x + a_0$ for some positive integer k. Adamu plays first, if he chooses some a_{2i} or a_{2i-1} (for $i \in \{1, \ldots, k\}$), then Afaafa chooses respectively $a_{2i-1} = a_{2i}$ or $a_{2i} = a_{2i-1}$; if he writes a_0 she writes $a_{2j-1} = 1$ for any remaining $j \in \{1, \ldots, k\}$ (the least possible choice). In this way Afaafa is able to get $a_{2i-1} \leq a_{2i} \forall i \in \{1, \ldots, k\}$ after her last move. Suppose that the polynomial obtained has an integer root $-\alpha$ (where $\alpha \geq 1$) then

$$a_0 = \alpha^{2k-1}(a_{2k-1} - a_{2k}\alpha) + \dots + \alpha(a_1 - a_2\alpha) \le 0,$$

which is a contradiction. So Afaafa wins.