

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC143217
Page: 1 of 75

FCC Radio Test Report FCC ID: 2AD55-CM5136

Original Grant

Report No. : TB-FCC143217

Applicant: P.S.L. LIMITED

Equipment Under Test (EUT)

EUT Name: Wireless Speaker

Model No. : CM5136

Serial No. : CM5136-SP, SOUND TUBE

Receipt Date : 2015-01-26

Test Date : 2015-01-26 to 2014-01-29

Issue Date : 2015-01-30

Standards : FCC Part 15: 2014, Subpart C(15.247)

Test Method : ANSI C63.4:2003

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer :

Approved& Authorized :

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CON	TENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	4
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	8
	1.7 Test Facility	8
2.	TEST SUMMARY	9
3.	CONDUCTED EMISSION TEST	10
	3.1 Test Standard and Limit	10
	3.2 Test Setup	10
	3.3 Test Procedure	10
	3.4 Test Equipment Used	11
	3.5 EUT Operating Mode	
	3.6 Test Data	11
4.	RADIATED EMISSION TEST	14
	4.1 Test Standard and Limit	14
	4.2 Test Setup	15
	4.3 Test Procedure	
	4.4 EUT Operating Condition	
	4.5 Test Equipment	17
5.	RESTRICTED BANDS REQUIREMENT	32
	5.1 Test Standard and Limit	32
	5.2 Test Setup	32
	5.3 Test Procedure	32
	5.4 EUT Operating Condition	
	5.5 Test Equipment	
6.	NUMBER OF HOPPING CHANNEL	46
	6.1 Test Standard and Limit	46
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 EUT Operating Condition	
	6.5 Test Equipment	
	6.6 Test Data	
7.	AVERAGE TIME OF OCCUPANCY	48
	7.1 Test Standard and Limit	48
	7.2 Test Setup	
	7.3 Test Procedure	48

Page: 3 of 75

	7.4. ELIT Operating Condition	40
	7.4 EUT Operating Condition	
	7.5 Test Equipment	
	7.6 Test Data	49
8.	CHANNEL SEPARATION AND BANDWIDTH TEST	61
	8.1 Test Standard and Limit	61
	8.2 Test Setup	61
	8.3 Test Procedure	61
	8.4 EUT Operating Condition	61
	8.5 Test Equipment	
	8.6 Test Data	62
9.	PEAK OUTPUT POWER TEST	70
	9.1 Test Standard and Limit	70
	9.2 Test Setup	70
	9.3 Test Procedure	70
	9.4 EUT Operating Condition	70
	9.5 Test Equipment	
	9.6 Test Data	70
10.	ANTENNA REQUIREMENT	75
	10.1 Standard Requirement	
	10.2 Antenna Connected Construction	
	10.2 Result	

Page: 4 of 75

1. General Information about EUT

1.1 Client Information

Applicant: P.S.L. LIMITED

Address : 8/F, Cheung Lung Ind. Bldg, 10 Cheung Yee Street, Cheung Sha Wan,

Kowloon, Hong Kong

Manufacturer : P.S.L. LIMITED

Address : 8/F, Cheung Lung Ind. Bldg, 10 Cheung Yee Street, Cheung Sha Wan,

Kowloon, Hong Kong

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Wireless Speaker			
Models No.	:	CM5136, CM5136-SP, SOUND TUBE			
Model difference	:	All models are identical in the same PCB layout, interior structure and electrical circuits, The only difference is model name for commercial purpose.			
		Operation Frequency: Bluetooth:2402~2480MHz			
		Number of Channel:	Bluetooth:79 Channels see note (2)		
Product Description	:	Max Peak Output Power:	GFSK: 2.226dBm (Conducted Power)		
Description		Antenna Gain:	0 dBi PCB Antenna		
		Modulation Type:	GFSK 1Mbps(1 Mbps) π /4-DQPSK(2 Mbps) 8-DPSK(3 Mbps)		
Power Supply	:	DC power by USB cable form Host System			
Power Rating	:	DC power by Li-ion battery DC 5V by USB Cable from PC system.			
	•	DC 3.7V by 250 mAh Li-ion Battery.			
Connecting I/O Port(S)	:	Please refer to the User's Manual			

Note:

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (2) This Test Report is FCC Part 15.247 for Bluetooth, and test procedure in accordance with Public Notice: DA 00-705.

(3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457

Page: 5 of 75

02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

⁽⁴⁾ The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested USB Charging with TX Mode

TX Mode

1.4 Description of Support Units

Equipment Information						
Name Model FCC ID/DOC Manufacturer Used "√"						
LCD Monitor	E170Sc	DOC	DELL	√		
PC	OPTIPLEX380	DOC	DELL	√		
Keyboard	L100	DOC	DELL	√		
Mouse	M-UARDEL7 DOC DELL		√			
		Cable Information	n			
Number	Shielded Type	Ferrite Core	Length	Note		
Cable 1	YES	YES	1.5M			
Cable 2 YES		YES	1.5M			
Cable 3	YES	NO	1.5M			
Cable 4	NO	NO	0.5M	Accessories		

Page: 7 of 75

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode Description				
Mode 1	USB Charging with TX GFSK Mode			

For Radiated Test				
Final Test Mode	Description			
Mode 1	USB Charging with TX GFSK Mode			
Mode 2	TX Mode(GFSK) Channel 00/39/78			
Mode 3	TX Mode(π /4-DQPSK) Channel 00/39/78			
Mode 4	TX Mode(8-DPSK) Channel 00/39/78			
Mode 5	Hopping Mode(GFSK)			
Mode 6	Hopping Mode(π /4-DQPSK)			
Mode 7	Hopping Mode(8-DPSK)			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate. We have pretested all the test mode above.

According to ANSI C63.4 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (1 Mbps)
TX Mode: 8-DPSK (3 Mbps)

(2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane as the normal use. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 75

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of Bluetooth mode.

Test Software Version	BK3256 RF Test - V1.3			
Frequency	2402 MHz	2441MHz	2480 MHz	
GFSK	DEF	DEF	DEF	
π /4-DQPSK	DEF	DEF	DEF	
8-DPSK	DEF	DEF	DEF	

1.7 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:

1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 9 of 75

2. Test Summary

FCC Part 15 Subpart C(15.247)					
Standard Section	Test Item	Judgment	Remark		
15.203	Antenna Requirement	PASS	N/A		
15.207	Conducted Emission	PASS	N/A		
15.205	Restricted Bands	PASS	N/A		
15.247(a)(1)	Hopping Channel Separation	PASS	N/A		
15.247(a)(1)	Dwell Time	PASS	N/A		
15.247(b)(1)	Peak Output Power	PASS	N/A		
15.247(b)(1)	Number of Hopping Frequency	PASS	N/A		
15.247(c)	Radiated Spurious Emission	PASS	N/A		
15.247(c) Antenna Conducted Spurious Emission		PASS	N/A		
15.247(a) 20dB Bandwidth PASS N/A		N/A			
Note: N/A is an abbreviation for Not Applicable.					

Page: 10 of 75

3. Conducted Emission Test

3.1 Test Standard and Limit

3.1.1Test Standard FCC Part 15.207

3.1.2 Test Limit

Conducted Emission Test Limit

Eroguenov	Maximum RF Lin	ie Voltage (dBμV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

3.2 Test Setup

3.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Report No.: TB-FCC143217 Page: 11 of 75

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

3.4 Test Equipment Used

Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
EMI Test	ROHDE&		400004	Aug. 08, 2014	Aug.07, 2015
Receiver	SCHWARZ	ESCI	100321	Aug. 06, 2014	Aug.07, 2015
50ΩCoaxial	Anritsu	MP59B	X10321	Aug. 08, 2014	Aug.07, 2015
Switch	Amisu	MESSE	X10321	Aug. 06, 2014	Aug.07, 2015
L.I.S.N	Rohde & Schwarz	ENV216	101131	Aug. 08, 2014	Aug.07, 2015
L.I.S.N	SCHWARZBECK	NNBL 8226-2	8226-2/164	Aug. 08, 2014	Aug.07, 2015

3.5 EUT Operating Mode

Please refer to the description of test mode.

3.6 Test Data

Please see the next page.

EUT: Wireless Speaker **Model Name:** CM5136 25 ℃ Temperature: **Relative Humidity:** 55% DC 5V **Test Voltage:** Terminal: Line **Test Mode:** USB Charging with TX GFSK Mode 2402 MHz Remark: Only worse case is reported

/lk. Fre		•		e- Limit	Over	
MH	z dBuV	dB	dBuV	dBu∀	dB	Detector
0.20	34.57	10.12	44.69	63.36	-18.67	QP
0.20	32.42	10.12	42.54	53.36	-10.82	AVG
0.414	10 30.04	10.05	40.09	57.57	-17.48	QP
0.414	10 25.06	10.05	35.11	47.57	-12.46	AVG
0.574	10 34.11	10.02	44.13	56.00	-11.87	QP
0.574	10 27.02	10.02	37.04	46.00	-8.96	AVG
0.966	30 28.35	10.14	38.49	56.00	-17.51	QP
0.966	60 22.70	10.14	32.84	46.00	-13.16	AVG
1.58	59 27.00	10.10	37.10	56.00	-18.90	QP
1.58	59 21.89	10.10	31.99	46.00	-14.01	AVG
24.054	10 18.08	10.06	28.14	60.00	-31.86	QP
24.054	10 5.29	10.06	15.35	50.00	-34.65	AVG
	0.206 0.206 0.414 0.414 0.574 0.574 0.966 1.585 24.054	Mk. Freq. Level MHz dBuV 0.2060 34.57 0.2060 32.42 0.4140 30.04 0.4140 25.06 0.5740 34.11 0.5740 27.02 0.9660 28.35 0.9660 22.70 1.5859 27.00 1.5859 21.89 24.0540 18.08	Mk. Freq. Level Facto MHz dBuV dB 0.2060 34.57 10.12 0.2060 32.42 10.12 0.4140 30.04 10.05 0.4140 25.06 10.05 0.5740 34.11 10.02 0.5740 27.02 10.02 0.9660 28.35 10.14 0.9660 22.70 10.14 1.5859 27.00 10.10 1.5859 21.89 10.10 24.0540 18.08 10.06	Mk. Freq. Level Factor ment MHz dBuV dB dBuV 0.2060 34.57 10.12 44.69 0.2060 32.42 10.12 42.54 0.4140 30.04 10.05 40.09 0.4140 25.06 10.05 35.11 0.5740 34.11 10.02 44.13 0.5740 27.02 10.02 37.04 0.9660 28.35 10.14 38.49 0.9660 22.70 10.14 32.84 1.5859 27.00 10.10 37.10 1.5859 21.89 10.10 31.99 24.0540 18.08 10.06 28.14	Mk. Freq. Level Factor ment Limit MHz dBuV dBuV dBuV dBuV 0.2060 34.57 10.12 44.69 63.36 0.2060 32.42 10.12 42.54 53.36 0.4140 30.04 10.05 40.09 57.57 0.4140 25.06 10.05 35.11 47.57 0.5740 34.11 10.02 44.13 56.00 0.5740 27.02 10.02 37.04 46.00 0.9660 28.35 10.14 38.49 56.00 0.9660 22.70 10.14 32.84 46.00 1.5859 27.00 10.10 37.10 56.00 1.5859 21.89 10.10 31.99 46.00 24.0540 18.08 10.06 28.14 60.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB 0.2060 34.57 10.12 44.69 63.36 -18.67 0.2060 32.42 10.12 42.54 53.36 -10.82 0.4140 30.04 10.05 40.09 57.57 -17.48 0.4140 25.06 10.05 35.11 47.57 -12.46 0.5740 34.11 10.02 44.13 56.00 -11.87 0.5740 27.02 10.02 37.04 46.00 -8.96 0.9660 28.35 10.14 38.49 56.00 -17.51 0.9660 22.70 10.14 32.84 46.00 -13.16 1.5859 27.00 10.10 37.10 56.00 -18.90 1.5859 21.89 10.10 31.99 46.00 -14.01 24.0540 18.08 10.06 28.14 60.00

EUT: Wireless Speaker **Model Name:** CM5136 25 ℃ **Relative Humidity:** Temperature: 55% **Test Voltage:** DC 5V Terminal: Neutral **Test Mode:** USB Charging with TX GFSK Mode 2402 MHz Remark: Only worse case is reported dBuV QP: AVG: -20 30.000 0.5 (MHz) 0.150 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment dBuV MHz dΒ dBuV dBuV dΒ Detector 0.2060 38.00 10.12 48.12 63.36 -15.24 QΡ 1 0.2060 35.13 10.12 45.25 53.36 -8.11 AVG 2 QΡ 3 0.5820 32.41 10.02 42.43 56.00 -13.57 4 0.5820 25.94 10.02 35.96 46.00 -10.04 AVG 5 0.9620 27.95 10.14 38.09 56.00 -17.91 QΡ 0.9620 22.07 10.14 32.21 46.00 -13.79 AVG 6 7 56.00 -19.28 QΡ 1.4500 26.60 10.12 36.72 8 1.4500 21.00 10.12 31.12 46.00 -14.88 AVG 9 2.1380 25.87 10.06 35.93 56.00 -20.07 QΡ

Emission Level= Read Level+ Correct Factor

21.01

25.16

21.81

10.06

10.06

10.06

31.07

35.22

31.87

46.00 -14.93

56.00 -20.78

46.00 -14.13

2.1380

4.7580

4.7580

10

11

12

AVG

QΡ

AVG

Page: 14 of 75

4. Radiated Emission Test

4.1 Test Standard and Limit

4.1.1 Test Standard FCC Part 15.209

4.1.2 Test Limit

Radiated Emission Limit (9 kHz~1000MHz)

h	adiated Ellission Ellint (5 kilz	1000111112)		
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

Radiated Emission Limit (Above 1000MHz)

Frequency	Class B (dBuV/m)(at 3m)					
(MHz)	Peak	Average				
Above 1000	74	54				

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)

Page: 15 of 75

4.2 Test Setup

Bellow 30MHz Test Setup

Bellow 1000MHz Test Setup

Turntable

EUT

0.8 m lm to 4m

Coaxial Cable

Above 1GHz Test Setup

4.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (5) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (6) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (7) For the actual test configuration, please see the test setup photo.

4.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power in TX mode.

Page: 17 of 75

4.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 08, 2014	Aug.07, 2015
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Aug. 08, 2014	Aug.07, 2015
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	11909A	185903	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	8447B	3008A00849	Mar. 07, 2014	Mar.06, 2015
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar. 07, 2014	Mar.06, 2015
Signal Generator	Rohde & Schwarz	SML03	IKW682-054	Feb. 11, 2014	Feb.10, 2015
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

4.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=1 kHz with Peak Detector for Average Values.

Test data please refer the following pages.

Report No.: TB-FCC143217 Page: 18 of 75

EUT:						Wi	rele	ess	S	pea	akeı	r			Mc	ode	l Na	am	ie :				CM5136					
Гeп	пре	ratı	ıre	:		25	$^{\circ}$ C								Re	lati	ive	Нι	ımi	dit	y:		5	5%				
Tes	t Vo	lta	ge			DC	; 5\	/						·														
٩nt	. Po	ol.				Но	rizo	ont	al																			
Гes	t M	ode) :			TX	GI	-s	K۱	Mod	de 2	24(02M	Hz														
Ren	nar	k:				On	ly١	ΝO	rse	e ca	se	is	repo	ortec	l													
80.0	0 dl	BuV/n	n					_		_														_	_		_	7
30	1	2	No.	\w	han a feel	Moneyela	No. of Ph	je in de la company	3		4 ***	hy	looglaners	in the state of th	and south	Alus	5 *		المراسل المراس	PFI)	F)FC	lav	5C 3i	M Ra Ma		on -6 dl	3 L	
-20 30	0.000		40	5	0	60	70	80					(М	Hz)				300	D	41	00	50)0	600	70	0	1000	0.000
١	No.	Mł	۲.	F	re	q.				din vel	g		Corr Fac		Λ		su ent			Lir	nit		(Οv	er			
					MH:	Z			dΒ	u∨			dB/r	n		dΒ	uV/r	m		dΒ	uV/	m		dE	3	[Dete	ecto
1				31.	39	92		3	32	.21		-	14.8	33		17	7.38	3		40	0.0	0	-	22	.62	2	ре	ak
2				36.	.38	14		3	34	.16		-	17.9	91		16	3.25	5		40	0.0	0	-	23	.75	5	ре	ak
3				92.	.13	88		_	16	.19		-	22.	50		23	3.69	9		43	3.5	0	-	19	.8	1	ре	ak
4			1	20).27	766	;		12	.59		-	22.	50		20	0.09	9		43	3.5	0	_	23	.4	1	ре	ak
5			2	280	0.02	237	,	_	19	.89		-	17.4	18		32	2.4	1		46	3.0	0	_	13	.59	9	ре	ak
6		*	7	'21	.72	259)		11.	52		_	-7.1	0			1.42			46	3.0	0		11				ak
	axim		lata	>	c:Ov	er lin	nit	!:c	ove	maı	rgin	ec	et Fa	ıcto	r												-	

Report No.: TB-FCC143217 Page: 19 of 75

EUT:	Wireless Speaker	Model Name :	CM5136						
Temperature:	25 ℃	Relative Humidity:	55%						
Test Voltage:	DC 5V	DC 5V							
Ant. Pol.	Vertical								
Test Mode:	TX GFSK Mode 2402MHz								
Remark:	Only worse case is reported								

N	lo. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	30.0000	39.96	-13.96	26.00	40.00	-14.00	peak
2		36.3814	43.74	-17.91	25.83	40.00	-14.17	peak
3		45.5348	46.01	-22.51	23.50	40.00	-16.50	peak
4		91.4949	45.76	-22.56	23.20	43.50	-20.30	peak
5		123.2655	50.67	-22.40	28.27	43.50	-15.23	peak
6		721.7259	38.43	-7.10	31.33	46.00	-14.67	peak

^{*:}Maximum data x:Over limit !:over margin

Page: 20 of 75

EUT:	Wireless Speaker	Model Name :	CM5136					
Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V							
Ant. Pol.	Horizontal							
Test Mode:	TX GFSK Mode 2402MHz							
Remark:	No report for the emission which more than 10 dB below the prescribed limit.							

No	. Mk	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.586	46.64	13.44	60.08	74.00	-13.92	peak
2	*	4803.586	34.59	13.44	48.03	54.00	-5.97	AVG

Page: 21 of 75

EUT:	Wireless Speaker	Model Name :	CM5136				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical						
Test Mode:	TX GFSK Mode 2402MHz						
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

No	. Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.559	45.60	13.44	59.04	74.00	-14.96	peak
2	*	4803.559	34.97	13.44	48.41	54.00	-5.59	AVG

Page: 22 of 75

EUT:	Wireless Speaker	Model Name :	CM5136						
Temperature:	25 ℃	Relative Humidity:							
Test Voltage:	DC 3.7V								
Ant. Pol.	Horizontal								
Test Mode:	TX GFSK Mode 2441MHz								
Remark:	No report for the emission which more than 10 dB below the								
	prescribed limit.								

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4881.643	35.32	13.90	49.22	54.00	-4.78	AVG
2		4881.862	49.38	13.90	63.28	74.00	-10.72	peak

Page: 23 of 75

EUT:	Wireless Speaker	Model Name :	CM5136			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical					
Test Mode:	TX GFSK Mode 2441MHz					
Remark:	No report for the emission prescribed limit.	which more than 10 dE	B below the			

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.748	46.02	13.90	59.92	74.00	-14.08	peak
2	*	4881.748	35.60	13.90	49.50	54.00	-4.50	AVG

Page: 24 of 75

EUT:	Wireless Speaker	Model Name :	CM5136				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal						
Test Mode:	TX GFSK Mode 2480MHz						
Remark:	No report for the emission which more than 10 dB below the						
	prescribed limit.						

No.	Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.928	48.19	14.36	62.55	74.00	-11.45	peak
2	*	4959.982	36.16	14.36	50.52	54.00	-3.48	AVG

Page: 25 of 75

EUT:	Wireless Speaker	Model Name :	CM5136			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical					
Test Mode:	TX GFSK Mode 2480MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.916	48.23	14.36	62.59	74.00	-11.41	peak
2	*	4959.979	35.93	14.36	50.29	54.00	-3.71	AVG

Page: 26 of 75

Wireless Speaker	Model Name :	CM5136			
25 ℃	Relative Humidity:	55%			
DC 3.7V					
Horizontal					
TX 8-DPSK Mode 2402MHz					
No report for the emission which more than 10 dB below the					
prescribed limit.					
	25 °C DC 3.7V Horizontal TX 8-DPSK Mode 2402MHz No report for the emission w	25 °C Relative Humidity: DC 3.7V Horizontal TX 8-DPSK Mode 2402MHz No report for the emission which more than 10 dB I			

١	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4803.559	35.32	13.44	48.76	54.00	-5.24	AVG
2			4803.634	48.86	13.44	62.30	74.00	-11.70	peak

Page: 27 of 75

EUT:	Wireless Speaker	Model Name :	CM5136				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	: DC 3.7V						
Ant. Pol.	Vertical						
Test Mode:	TX 8-DPSK Mode 2402MHz						
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

1	Vo.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1			4803.529	47.09	13.44	60.53	74.00	-13.47	peak
2		*	4803.589	34.89	13.44	48.33	54.00	-5.67	AVG

Page: 28 of 75

EUT:	Wireless Speaker	CM5136				
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal					
Test Mode:	TX 8-DPSK Mode 2441MHz	2				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

ı	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1			4881.529	46.48	13.90	60.38	74.00	-13.62	peak
2		*	4881.535	35.50	13.90	49.40	54.00	-4.60	AVG

Page: 29 of 75

EUT:	Wireless Speaker	Model Name :	CM5136			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V	DC 3.7V				
Ant. Pol.	Vertical					
Test Mode:	TX 8-DPSK Mode 2441MHz	2				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No	o. N	1k.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4	4881.541	35.32	13.90	49.22	54.00	-4.78	AVG
2		4	4881.553	48.27	13.90	62.17	74.00	-11.83	peak

Page: 30 of 75

EUT:	Wireless Speaker	Model Name :	CM5136			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V	DC 3.7V				
Ant. Pol.	Horizontal					
Test Mode:	TX 8-DPSK Mode 2480MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

Ν	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4959.316	35.38	14.36	49.74	54.00	-4.26	AVG
2			4959.322	47.45	14.36	61.81	74.00	-12.19	peak

Page: 31 of 75

EUT:	Wireless Speaker	Model Name :	CM5136		
Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	DC 3.7V				
Ant. Pol.					
Test Mode:	TX 8-DPSK Mode 2480MHz				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.				
prescribed littit.					

N	o. N	Λk.	Freq.	•		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4	4959.544	46.63	14.36	60.99	74.00	-13.01	peak
2	*	4	4959.544	35.42	14.36	49.78	54.00	-4.22	AVG

Page: 32 of 75

5. Restricted Bands Requirement

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209 FCC Part 15.205

5.1.2 Test Limit

Restricted Frequency	Class B (dBuV/m)(at 3m)				
Band (MHz)	Peak	Average			
2310 ~2390	74	54			
2483.5 ~2500	74	54			
Note: All postuiction bonds have been tested, only the yearst social property					

Note: All restriction bands have been tested, only the worst case is reported.

5.2 Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked

Report No.: TB-FCC143217 Page: 33 of 75

and then Quasi Peak detector mode re-measured.

(4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.

- (5) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (6) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (7) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 08, 2014	Aug. 07, 2015
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Aug. 08, 2014	Aug.07, 2015
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	11909A	185903	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	8447B	3008A00849	Mar. 07, 2014	Mar.06, 2015
Cable	HUBER+SUHNE R	100	SUCOFLEX	Mar. 07, 2014	Mar.06, 2015
Signal Generator	Rohde & Schwarz	SML03	IKW682-054	Feb. 11, 2014	Feb.10, 2015
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

5.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=1 KHz with Peak Detector for Average Values.

All restriction bands have been tested, only the worst case is reported.

Page: 34 of 75

(1) Radiation Test

EUT:	Wireless Speaker	Model Name :	CM5136		
Temperature:	25 ℃	55%			
Test Voltage:	DC 3.7V				
Ant. Pol.	Horizontal				
Test Mode:	TX GFSK Mode 2402MHz				
Remark:	N/A				

N	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1			2390.000	51.73	0.77	52.50	74.00	-21.50	peak
2			2390.000	34.46	0.77	35.23	54.00	-18.77	AVG
3	,	*	2402.000	82.40	0.82	83.22	Fundamenta	al Frequency	AVG
4	2	Χ	2402.200	84.39	0.82	85.21	Fundamenta	al Frequency	peak

Page: 35 of 75

EUT:	Wireless Speaker	Model Name :	CM5136		
Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	DC 3.7V				
Ant. Pol.	Vertical				
Test Mode:	TX GFSK Mode 2402MHz				
Remark:	N/A				

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	52.75	0.77	53.52	74.00	-20.48	peak
2		2390.000	35.62	0.77	36.39	54.00	-17.61	AVG
3	Χ	2401.800	85.54	0.82	86.36	Fundamental Frequency		peak
4	*	2402.000	83.36	0.82	84.18	Fundamenta	I Frequency	AVG

Page: 36 of 75

EUT:	Wireless Speaker	Model Name :	CM5136					
Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V							
Ant. Pol.	Horizontal							
Test Mode:	TX GFSK Mode 2480 MHz							
Remark:	N/A							
100.0 dBuV/m								

No.	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2480.000	82.38	1.15	83.53	Fundamental	Frequency	AVG
2	Χ	2480.200	84.45	1.15	85.60	Fundamental	Frequency	peak
3		2483.500	61.90	1.17	63.07	74.00	-10.93	peak
4		2483.500	42.41	1.17	43.58	54.00	-10.42	AVG

Page: 37 of 75

EU	Γ:		Wire	eless Sp	eake	r		Mod	lel Naı	me :	CM5	136
Ten	nperatu	ıre:	25 '	°C				Rela	ative H	lumidity:	55%	
Tes	t Volta	ge:	DC:	3.7V							·	
Ant	. Pol.		Vert	ical								
Test Mode: TX GFSK Mode 2480 MHz												
Remark: N/A												
100.0) dBuV/m	1										
50		a.Mar.	3 ×		-Me	New Marie Ma	- Oktory.	A.	~~~~		PART 15C (P	
0.0												
	 63.000 24	73.00 2	483.00	2493.00	2503	3.00 251	3.00	2523	3.00 2	533.00 254	3.00	2563.00 MHz
	lo. Mk	c. Fre	= a.	Read Lev		Corre Facto			sure-	Limit	Over	
_		MH	•	dBu		dB/m			uV/m	dBuV/m	dB	Detector
1	Х	2480.	000	87.5	3	1.15		88	3.68	Fundament	al Frequenc	y peak
2	*	2480.	000	85.4	Ю	1.15		86	3.55	Fundament	tal Frequenc	y AVG
3		2483.	500	64.3	31	1.17		65	5.48	74.00	-8.52	2 peak
4		2483.	500	45.1	2	1.17		46	3.29	54.00	-7.71	AVG
_												

Page: 38 of 75

EUT:	Wireless Speaker	Model Name :	CM5136				
Temperature:	25 ℃	25 ℃ Relative Humidity:					
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal						
Test Mode:	TX 8-DPSK Mode 2402MHz						
Remark: N/A							

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	50.57	0.77	51.34	74.00	-22.66	peak
2		2390.000	32.99	0.77	33.76	54.00	-20.24	AVG
3	Χ	2401.700	84.28	0.82	85.10	Fundamenta	I Frequency	peak
4	*	2402.000	77.38	0.82	78.20	Fundamenta	l Frequency	AVG

Page: 39 of 75

UT	:		Wire	less Spe	eaker			Mod	lel Nar	ne :	CM5136	3
em	peratu	re:	25 °	25 ℃ Relative Humidity: 55%								
est	Voltag	e:	DC 3	3.7V			,					
۱nt.	Pol.		Verti	cal								
est	Mode:	Mode: TX 8-DPSK Mode 2402MHz										
Rem	nark:		N/A									
100.0	dBuV/m		"									
ŀ											3 X	
										(RF) FCC	PART 15C (PEA	ıK)
										1		
50										(RF) FC	C PART 15C (AV	(G)
50												
-										2	· · · · · · · · · · · · · · · · · · ·	moun
0.0												
23	12.000 232	2.00 2	332.00	2342.00	2352.	00 236	2.00	2372	2.00 23	382.00 2393	2.00	2412.00 MF
		_		Read	_	Corre			sure-	Limit	Over	
	lo. Mk		eq.	Leve		Facto	or		ent			
		M	Hz	dBu\	/	dB/m		dB	uV/m	dBuV/m	dB	Detecto
1		2390	.000	53.3	1	0.77		54	1.08	74.00	-19.92	peak
2		2390	.000	34.2	1	0.77		34	1.98	54.00	-19.02	AVG
3	Х	2401	.900	85.7	1	0.82		86	6.53	Fundament	al Frequency	peak
	*	2401		78.6		0.82		70	9.45		tal Frequency	AVG

Page: 40 of 75

EUT:	Wireless Speaker	Model Name :	CM5136				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal						
Test Mode:	TX 8-DPSK Mode 2480MHz						
Remark:	N/A						

N	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Х	2479.900	83.71	1.15	84.86	Fundamenta	l Frequency	peak
2	*	2480.000	76.29	1.15	77.44	Fundamental	Frequency	AVG
3		2483.500	63.93	1.17	65.10	74.00	-8.90	peak
4		2483.500	41.64	1.17	42.81	54.00	-11.19	AVG

Page: 41 of 75

EUT:	Wireless Speaker	Model Name :	CM5136					
Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V							
Ant. Pol.	Vertical							
Test Mode:	TX 8-DPSK Mode 2480MHz							
Remark:	N/A							
100.0 dBuV/m								
1 X 2 X			ART 15C (PEAK)					
0.0								
	2488.00 2498.00 2508.00 2518.00 Reading Correct eq. Level Factor	2528.00 2538.00 2548.00 Measure- ment Limit	2568.00 MHz					
Mi	Hz dBuV dB/m	dBuV/m dBuV/m	dB Detector					

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	X	2479.700	87.44	1.15	88.59	Fundamental	Frequency	peak
2	*	2479.900	80.19	1.15	81.34	Fundamental	Frequency	AVG
3		2483.500	66.69	1.17	67.86	74.00	-6.14	peak
4		2483.500	44.00	1.17	45.17	54.00	-8.83	AVG

(1) Conducted Test

EUT:	Wireless Speaker	Model Name :	CM5136				
Temperature:	25 ℃	Relative Humidity: 5					
Test Voltage:	DC 3.7V						
Test Mode:	TX GFSK Mode 2402MHz / 2480 MHz						
Remark:	N/A						

EUT: Wireless Speaker Model Name: CM5136

Temperature: 25 ℃ Relative Humidity: 55%

Test Voltage: DC 3.7V

Test Mode: GFSK Hopping Mode

Remark: N/A

EUT: Wireless Speaker Model Name : CM5136

Temperature: 25 °C Relative Humidity: 55%

Test Voltage: DC 3.7V

Test Mode: TX 8-DPSK Mode 2402MHz / 2480 MHz

Remark: N/A

EUT: Wireless Speaker Model Name: CM5136

Temperature: 25 °C Relative Humidity: 55%

Test Voltage: DC 3.7V

Test Mode: 8-DPSK Hopping Mode

Remark: N/A

Page: 46 of 75

6. Number of Hopping Channel

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247 (a)(1)

6.1.2 Test Limit

Section	Test Item	Limit
15.247	Number of Hopping Channel	>15

6.2 Test Setup

6.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100 KHz, VBW=100 KHz, Sweep time= Auto.

6.4 EUT Operating Condition

The EUT was set to the Hopping Mode by the Customer.

6.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015

6.6 Test Data

EUT:	Wireless Speaker	Model Name :	CM5136
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		

Test Mode: Hopping Mode (GFSK/ 8-DPSK)

Frequency Range	Quantity of Hopping Channel	Limit
2402MU=-2400MU=	79	>15
2402MHz~2480MHz	79	>15

GFSK Mode

8-DPSK Mode

Report No.: TB-FCC143217 Page: 48 of 75

7. Average Time of OcCupancy

7.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.247 (a)(1)

5.1.2 Test Limit

Section	Test Item	Limit
15.247(a)(1)/ RSS-210	Average Time of	0.4.000
Annex 8(A8.1d)	OcCupancy	0.4 sec

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=1MHz, VBW=1MHz.
- (3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for packet transmitting.
- (8) Measure the maximum time duration of one single pulse.

7.4 EUT Operating Condition

The EUT was set to the Hopping Mode by the Customer.

7.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015

7.6 Test Data

EUT:		Wireless Speaker		Model Name :		CM5136
Temperature:	1	25 ℃		Relative Humidity:		55%
Test Voltage:	ge: DC 3.7V			e: DC 3.7V		
Test Mode: Hopping Mode (GFSK DH1)						
Channel	Pu	lse Time	Total of Dwell	Period Time	Limit	Result
(MHz)		(ms)	(ms)	(s)	(ms)	Nesuit
2402		0.410	131.20			
2441		0.410	131.20	31.60	400	PASS
2480		0.410	131.20			
GESK Hopping Mode DH1						

GFSK Hopping Mode DH1

#VBW 1 MHz

X Axis 2.42 ms 410 μs

410.0000000 μs 0.644 dB

Type Time Time

Center 2.48 GHz Res BW 1 MHz

1R 1∆

Trace (1) (1)

EUT:	Wireless Speaker	Model Name :	CM5136
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Toot Model	Hanning Made (CESK DH2)		

Test Mode: Hopping Mode (GFSK DH3)

	1 -11 3	(/			
Channel (MHz)	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
2402	1.700	272.00			
2441	1.700	272.00	31.60	400	PASS
2480	1.700	272.00			

GFSK Hopping Mode DH3

Page: 53 of 75

EUT:		Wireless	Speaker	Model Name :		CM5136
Temperature		25 ℃		Relative Humidity:		55%
Test Voltage:		DC 3.7V				
Test Mode: Hopping Mode (GFSK DH5)						
Channel	Pu	lse Time	Total of Dwell	Period Time	Limit	Result

Channel (MHz)	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
2402	2.880	307.20			
2441	3.000	320.00	31.60	400	PASS
2480	3.000	320.00			

GFSK Hopping Mode DH5

Page: 55 of 75

Wireless S	Wireless Speaker		Model Name :	
25 ℃		Relative Hum	idity:	55%
est Voltage: DC 3.7V				
Test Mode: Hopping Mode (8-DPSK DH1)				
Pulse Time	Total of Dwell	Period Time	Limit	Result
(ms)	(ms)	(s)	(ms)	Result
0.400	128.00			
0.400	128.00	31.60	400	PASS
0.410	131.20			
-	25 °C DC 3.7V Hopping N Pulse Time (ms) 0.400 0.400	25 °C DC 3.7V Hopping Mode (8-DPSK DH (ms) 0.400 128.00 0.400 128.00	25 °C Relative Hum DC 3.7V Hopping Mode (8-DPSK DH1) Pulse Time (ms) (ms) Period Time (s) 0.400 128.00 0.400 31.60	25 °C Relative Humidity: DC 3.7V Hopping Mode (8-DPSK DH1) Pulse Time (ms) (ms) (ms) (s) (ms) Period Time (ms) (ms) Limit (ms) 0.400 128.00 31.60 400

8-DPSK Hopping Mode DH1

EUT:	Wireless Speaker	Model Name :	CM5136
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Test Mode:	Honning Mode (8-DPSK DH3)		

	riepping mode (e.g. ent. grie)					
Channel (MHz)	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result	
2402	1.720	275.20				
2441	1.740	278.40	31.60	400	PASS	
2480	1.720	275.20				

8-DPSK Hopping Mode DH3

EUT:	Wireless Speaker	Model Name :	CM5136
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		

Test Mode: Hopping Mode (8-DPSK DH5)

Channel (MHz)	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
2402	2.880	307.20			
2441	2.880	307.20	31.60	400	PASS
2480	3.060	326.40			

8-DPSK Hopping Mode DH5

Page: 61 of 75

8. Channel Separation and Bandwidth Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247

8.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	<=1 MHz	2400~2483.5
	(20dB bandwidth)	
	>25KHz or >two-thirds of	
Channel Separation	the 20 dB bandwidth	2400~2483.5
	Which is greater	

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Channel Separation: RBW=30 kHz, VBW=100 kHz.

Bandwidth: RBW=30 kHz, VBW=100 kHz.

- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (4) Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:30 kHz, and Video Bandwidth:100 kHz. Sweep Time set auto.

8.4 EUT Operating Condition

The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Bandwidth Test.

8.5 Test Equipment

Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015

8.6 Test Data

EUT:	Wireless Speaker		Model Name :	CM5136
Temperature:	25	5 °C	Relative Humidity:	55%
Test Voltage:	D	C 3.7V		
Test Mode:	T	K Mode (GFSK)		
Channel frequence	су	99% OBW	20dB Bandwidth	20dB
(MHz)	(MHz) (kHz)		(kHz)	Bandwidth
				*2/3 (kHz)
2402		998.9104	1054.00	702.67
2441		1006.200	1057.00	704.67
2480	990.1778		1100.00	733.33
GFSK TX Mode				

EUT:	Wireless Speaker	Model Name :	CM5136
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Test Mode:	TX Mode (8-DPSK)		
Channel frequency 99% OBW		20dB Bandwidth	20dB
(MHz)	(kHz)	(kHz)	Bandwidth
			*2/3 (kHz)
2402	1941.80	1348.00	898.67
2441	1884.70	1341.00	894.00
2480	1748.20	1342.00	894.67

8-DPSK TX Mode 2402 MHz

Page: 66 of 75

EUT:	Wireless Speaker	Model Name :	CM5136
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		

Test Mode: Hopping Mode (GFSK)

Channel frequency (MHz)	Separation Read Value (kHz)	Separation Limit (kHz)
2402	1005.00	702.67
2441	1005.00	704.67
2480	1005.00	733.33

GFSK Hopping Mode

Report No.: TB-FCC143217 Page: 68 of 75

EUT:	Wireless Speaker	Model Name :	CM5136
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Test Mode:	Honning Mode (8-DPSK)		

10000			
Channel frequency (MHz)		Separation Read Value	Separation Limit (kHz)
		(kHz)	
2402		1020.00	898.67
2441		1020.00	894.00
2480		1020.00	894.67

8-DPSK Hopping Mode

Page: 70 of 75

9. Peak Output Power Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (b) (1)

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	Hopping Channels>75 Power<1W(30dBm) Other <125 mW(21dBm)	2400~2483.5

9.2 Test Setup

9.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW=3 MHz for bandwidth more than 1MHz.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

9.5 Test Equipment

Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
Spectrum	Agilent		MY45106456	Mar. 20. 2014	Mar. 19. 2015
Analyzer	Aylient	E4407B	IVI 1 40 100450	Iviai. 20, 2014	Iviai. 19, 2015

9.6 Test Data

Page: 71 of 75

EUT:	Wireless Speaker	Model Name :	CM5136
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Test Mode:	TX Mode (GFSK)		

	1 /	
Channel frequency (MHz)	Test Result (dBm)	Limit (dBm)
2402	1.991	
2441	2.226	21
2480	2.144	

GFSK TX Mode

GFSK TX Mode

2441 MHz

GFSK TX Mode

Page: 73 of 75

EUT:	Wireless	Speaker	Model N	Name :	CM5136
Temperature:	25 ℃		Relative	Humidity:	55%
Test Voltage:	DC 3.7V				
Test Mode:	TX Mode (8-DPSK)				
Channel frequency (MHz)		Test Result (de	IBm) Limit (dBm)		t (dBm)

Channel frequency (MHz)	Test Result (dBm)	Limit (dBm)
2402	1.796	
2441	2.108	21
2480	2.049	

8-DPSK TX Mode

Page: 74 of 75

2441 MHz

8-DPSK TX Mode

Report No.: TB-FCC143217
Page: 75 of 75

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The directional gain of the PCB antenna used for transmitting is 0 dBi. And the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

10.2 Result

The EUT antenna equipped a PCB Antenna. It complies with the standard requirement.

Antenna Type	
	▼ Permanent attached antenna
	□ Unique connector antenna
	□ Professional installation antenna