Framework para detecção de ataques DDoS

Autor Bruno Riccelli dos Santos Silva ^{1,2}

¹Universidade Federal do Ceará

²Laboratório de Engenharia de Sistemas de Computação - LESC

25 de agosto de 2017

- Introdução
 - Objetivos
 - Framework
- Métricas utilizadas
 - Entropia de IPs origem
 - Variação de IPs origem
- 3 Dataset
 - Considerações
- Próximos passos

Sumário

- Introdução
 - Objetivos
 - Framework
- 2 Métricas utilizadas
 - Entropia de IPs origem
 - Variação de IPs origem
- 3 Dataset
 - Considerações
- 4 Próximos passos

Introdução Motivação

Ataques DDoS

Tentativa de tornar os recursos de um sistema indisponíveis aos utilizadores.

Tipos

- Ataque de vulnerabilidade.
- Inundação na largura de banda.
- Inundação na conexão.

Exemplos

• SIDDOS, UDP Flood, Smurf ...

Introdução Motivação

Ataques DDoS

Tentativa de tornar os recursos de um sistema indisponíveis aos utilizadores.

Tipos

- Ataque de vulnerabilidade.
- Inundação na largura de banda.
- Inundação na conexão.

Exemplos

• SIDDOS, UDP Flood, Smurf ...

Introdução Motivação

Ataques DDoS

Tentativa de tornar os recursos de um sistema indisponíveis aos utilizadores.

Tipos

- Ataque de vulnerabilidade.
- Inundação na largura de banda.
- Inundação na conexão.

Exemplos

• SIDDOS, UDP Flood, Smurf ...

- Desenvolver um framework para detecção de ataques DDoS baseado em uma medida de correlação encontrada na literatura;
- Filtrar e selecionar conjuntos de dados para análise e realizar medições estatísticas;
- Implementar em software o framework proposto;
- Avaliar o framework em termos de taxa de acerto com um caso real de ataque.

- Desenvolver um framework para detecção de ataques DDoS baseado em uma medida de correlação encontrada na literatura;
- Filtrar e selecionar conjuntos de dados para análise e realizar medições estatísticas;
- Implementar em software o framework proposto;
- Avaliar o framework em termos de taxa de acerto com um caso real de ataque.

- Desenvolver um framework para detecção de ataques DDoS baseado em uma medida de correlação encontrada na literatura;
- Filtrar e selecionar conjuntos de dados para análise e realizar medições estatísticas;
- Implementar em software o framework proposto;
- Avaliar o framework em termos de taxa de acerto com um caso real de ataque.

- Desenvolver um framework para detecção de ataques DDoS baseado em uma medida de correlação encontrada na literatura;
- Filtrar e selecionar conjuntos de dados para análise e realizar medições estatísticas;
- Implementar em software o framework proposto;
- Avaliar o framework em termos de taxa de acerto com um caso real de ataque.

Componentes do framework

- Pré processamento.
- Módulo de detecção em hardware.
- Gerenciador de segurança.

Medida de correlação NaHiD

$$NaHiD(X,Y) = 1 - \frac{1}{n} \sum_{i=1}^{n} \frac{|X(i) - Y(i)|}{||meanX - SDX| - X(i)| + ||meanY - SDY| - Y(i)|}$$
(1)

onde X e Y são objetos de tráfego e n é a dimensão deles.

Sumário

- Introdução
 - Objetivos
 - Framework
- 2 Métricas utilizadas
 - Entropia de IPs origem
 - Variação de IPs origem
- 3 Dataset
 - Considerações
- 4 Próximos passos

Métricas utilizadas

- Entropia de IPs origem;
- Variação de IPs origem;
- Packet Rate

Métricas utilizadas

- Entropia de IPs origem;
- Variação de IPs origem;
- Packet Rate

Métricas utilizadas

- Entropia de IPs origem;
- Variação de IPs origem;
- Packet Rate

Entropia de IPs origem

$$H(X) = -\sum_{i}^{n} p(x_i) \log 2p(x_i); \qquad (2)$$

Onde X é uma variável aleatória e n é o número total de valores possíveis para IPs origem.

Variação de IPs origem

Variação de IPs origem

$$V(x) = \frac{\delta}{N} \tag{3}$$

onde δ é o número de mudanças de IPs origem em uma dada janela de tempo e N é o número de IPs origem nessa janela.

Tabela de validação

Tabela: Objetos de tráfego de rede

Objeto	F1	F2	F3
O_1	365	2.52	0.9533
O_2	379	2.55	0.9709
O_3	345574	12.98	0.94
O_4	166453	12.7	0.9866
O_5	357663	12.79	0.94

Onde cada objeto representa uma instância de tráfego e F1, F2 e F3 representam, o Packet Rate, Variação de IPs origem e Entropia de IPs origem, respectivamente.

Tabela de validação

Tabela: Objetos de tráfego de rede

Objeto	NaHiD	
O_1, O_2	0.9917	
O_2, O_3	0.5600	
O_3, O_1	0.5600	
O_3, O_5	0.9924	
O_5 , O_1	0.5600	

Onde ${\cal O}_5$ e ${\cal O}_3$ são instâncias de tráfego normais e ${\cal O}_1, {\cal O}_2$ e ${\cal O}_4$ são padrões de ataques.

Sumário

- Introdução
 - Objetivos
 - Framework
- 2 Métricas utilizadas
 - Entropia de IPs origem
 - Variação de IPs origem
- Open the second of the seco
 - Considerações
- 4 Próximos passos

Midwagan da casido al

D----:--

Dataset avaliado pelo framework

Descrição	
SRC ADD	
DES ADD	
PKT ID	
FROM NODE	
TO NODE	
PKT TYPE	
PKT SIZE	
FLAGS	
FID	
SEQ NUMBER	
NUMBER OF PKT	
NUMBER OF BYTE	
NODE NAME FROM	
NODE NAME TO	
PKT IN	
PKTOUT	
PKTR	
PKT DELAY NODE	
PKTRATE	
BYTE RATE	
PKT AVG SIZE	
UTILIZATION	
PKT DELAY	
PKT SEND TIME	
PKT RESEVED TIME	
FIRST PKT SENT_	
LAST PKT RESEVED	

Dataset avaliado pelo framework

Considerações

- Filtragem por IP destino.
- Janela contendo 1 segundo de tráfego.
- Média do Packet Rate.
- Variação de IPs origem como mudança sem "memória".
- Escolha do limiar de correlação.
- Tráfego normal "estático".

Sumário

- Introdução
 - Objetivos
 - Framework
- 2 Métricas utilizadas
 - Entropia de IPs origem
 - Variação de IPs origem
- Open Dataset
 - Considerações
- 4 Próximos passos

Próximos passos

- Abrir e tratar datasets MIT DARPA e outros.
- Terminar gerenciador de segurança.
- Criar arquivo para comunicação com FPGA ?.
- Validar os resultados.

