OSVETLJEVANJE

- Računamo interakcijo svetlobe s površinami
- Bolj ali manj kompleksna simulacija fizike

Osvetljevanje

Lokalno in globalno osvetljevanje

- Glede simulacijo širjenja svetlobe po prostoru lahko ločimo
- Lokalno osvetljevanje
 - poenostavljeno
 - le en odboj med izvorom in gledalcem
 - računanje osvetlitve ene ploskve je neodvisno od ostalih
 - ni senc
 - enostavna implementacija v cevovodu
- Globalno osvetljevanje:
 - upoštevamo več odbojev svetlobe od predmetov
 - algoritmi temeljijo na sledenju žarkov
 - računsko zahtevno

Osvetlitveni model

Osvetlitveni model – reflection model

- Za dobro upodobitev predmetov moramo znati modelirati kako se svetloba odbija od predmetov
 - odboj, odsev reflection
 - odboj je odvisen od materiala
- Kako se svetloba odbija od npr.
 - ogledala
 - papirja
 - lesa
 - kovine

- Osvetlitveni model določa kako svetloba interaktira s predmetom
- Enostaven model: odbita svetloba je vsota treh komponent
 - razpršeni odboj (diffuse)
 - zrcalni odboj (specular)
 - ambientna osvetlitev (ambient)
- S tovrstno predstavitvijo lahko zajamemo velik nabor realnih materialov

- Material, ki odbija svetlobo enakomerno na vse strani
- Ni važno s katere strani oz. pod kakim kotom ga gledamo, izgleda približno enako
- Motni, nesvetleči materiali, ki so drobno hrapavi na površini
 - papir
 - neobdelan les
 - neobdelan kamen

Odbita svetloba:

- proporcionalna s kosinusom kota med vpadno svetlobo in normalo na površino
- večji kot, manj je površina svetla
- pravilo imenujemo Lambertov kosinusni zakon (Johann Heinrich Lambert, 1760)
- površinam oz. materialom zato rečemo tudi Lambertovi

Razpršeni odboj

Komponente:

- \mathbf{n} normala na površino (normirana)
- □ *l* smer svetlobe (normirana)
- k_d razpršena odbojnost RGB vektor, ki določa koliko svetlobe se odbije – barva materiala
- c_l intenziteta vpadne svetlobe RGB vektor
- □ *c* − intenziteta odbite svetlobe − RGB vektor
- V enačbi ni smeri pogleda e od povsod predmet izgleda enako

Razpršeni odboj

$$c = c_l k_d(\boldsymbol{n} \cdot \boldsymbol{l}) = c_l k_d \cos \theta$$

- Odblesk/sijaj (specular highlight)
 - zabrisan odsev vira svetlobe
 - položaj je odvisen od smeri gledanja
- Svetleče površine
 - polirana kovina
 - lakirani materiali, npr. avto
 - plastika

Idealen odboj v ogledalu

- popolnoma gladka površina
- kot vpada = kot odboja
- Tipični materiali niso popolnoma odbojni
 - svetleči materiali, so mikro hrapavi

Zrcalni odboj

- Svetloba se odbija približno v smeri idealnega odboja
- Phongov model (Bui-Tuong Phong, 1975)
 - kot α med idealnim odbojem $\textbf{\textit{R}}$ in smerjo pogleda $\textbf{\textit{e}}$ določa količino odbite svetlobe
 - parameter zrcalnega odboja p
 določa velikost razpršitve večji p,
 bližje smo idealnemu odboju

Zrcalni odboj

$$c = c_l k_s (\mathbf{R} \cdot \mathbf{e})^p$$

$$R = 2(l \cdot n)n - l$$

Phongov model

Blinnov model (Jim Blinn, 1977)

- Podoben Phongu
 - ne potrebujemo izračuna odboja
 - kompromisni vektor h, ki je na sredini med $m{l}$ in $m{e}$
 - če je blizu normale, smo blizu popolnega odboja
 - parameter svetlosti p
- Če sta luč in gledalec daleč od površine, lahko predpostavimo, da je h konstanten
 - hitrejši izračun

$$c = c_l k_s (\boldsymbol{h} \cdot \boldsymbol{n})^p$$

$$h = \frac{l+e}{|l+e|}$$

- V realnosti je del svetlobe povsod, saj se odbija od sten in ostalih predmetov v sceni
- Pri lokalni osvetlitvi jo aproksimiramo z ambientno svetlobo
 - predstavlja približen prispevek svetlobe k splošni sceni ne glede na položaj luči in predmetov
- Povsod dodamo konstantno osvetlitev
- Nimamo več popolnoma temnih delov

Ambientna svetloba

$$c = c_a k_a$$

Izračun osvetlitve

- Imamo lahko več virov svetlobe, seštejemo prispevke vseh
- c_a in c_i določajo RGB jakost in barvo svetlobnih virov
- k_a , k_d in k_s določajo RGB odbite količine svetlobe snovi barvo predmeta
- Izračun s Phongovim modelom (za več luči):

$$c = c_a k_a + \sum_i c_i (k_d (\boldsymbol{l}_i \cdot \boldsymbol{n}) + k_s (\boldsymbol{R}_i \cdot \boldsymbol{e})^p)$$

- Lambert, Phong, Blinn so enostavni modeli materialov
 - poznamo tudi bolj kompleksne, fizikalno osnovane npr. Oren-Nayar, Cook-Torrence, Ward itn.
- Posplošeno lahko odboj zapišemo s funkcijo: BRDF
 - za vsak par: smer vpadne svetlobe (luči) i, in smeri odboja (gledalca) r, določi koliko svetlobe se odbije do gledalca
- Prej omenjeni modeli so posebni (analitični) primeri BRDF

BRDF

- BRDF je štiridimenzionalna funkcija kotov vpadne in odbite svetlobe
 - $BRDF(\theta_i, \phi_i, \theta_r, \phi_r)$
 - koti predstavljajo vektorja vpadne (θ_i, ϕ_i) in odbite (θ_r, ϕ_r) svetlobe v sferičnih koordinatah
 - fizikalno predstavlja delež sevalnosti, ki se odbije v smeri *r*, glede na skupno obsevanost v točki odboja
- Odboj od luči c_i do opazovalca lahko zapišemo kot:
 - $c = c_i BRDF(\theta_i, \phi_i, \theta_r, \phi_r) cos\theta_i$

BRDF

- Lahko jih izmerimo!
 - 4D tabela vrednosti
 - lahko se spreminjajo tudi v času –
 5D
 - Knjižnice vrednosti
 - vsaka snov ima nekaj milijonov npr.
 90x90x180x5 = 4.374.000 meritev
- Izmerjene vrednosti lahko parametriziramo, dobimo analitičen model
- Lahko jih narišemo!
- Lahko se jih <u>učimo</u>

<u>Demo: Time varying BRDF, pokaže gonioreflectometer</u>

BRDF

 Izmerjene vrednosti lahko neposredno uporabimo pri upodabljanju

Luči

Luč

- Luči imajo lahko različne parametre
 - barvo
 - površino s katere sevajo svetlobo
 - usmerjenost
 - tudi površine, ki odbijajo svetlobo, so viri svetlobe
- Večina interaktivnih (npr. OpenGL) in bolj kompleksnih okolij podpira:
 - usmerjene luči (sonce)
 - točkaste luči (žarnica)
 - reflektorje
- Za implementacijo potrebujemo izračun vektorja proti luči \boldsymbol{l} in jakosti/barve s katero je točka osvetljena c_l
 - npr. Phong: $c = c_a k_a + c_l (k_d (\mathbf{l} \cdot \mathbf{n}) + k_s (\mathbf{R} \cdot \mathbf{e})^p)$

- Izvor je zelo daleč
 - približek sonca
- Določata jo barva c_{src} in smer $m{d}$
 - žarki svetlobe so si vzporedni smer
 d je enaka
 - floor jakost/barva c_{src} je povsod enaka
- Implementacija

$$l = -d$$

$$c_l = c_{src}$$

Usmerjena luč

- Enostaven model žarnice
- Svetlobo seva v vse smeri enako
- Kot vpadne svetlobe je odvisen od položaja p
- Jakost pada s kvadratom razdalje
- Implementacija

$$l = \frac{p-v}{|p-v|}$$

$$c_l = \frac{c_{Src}}{f(|\boldsymbol{p} - \boldsymbol{v}|^2)}$$

Točkasta luč

Seva v neko smer d

- poleg položaja p ima torej tudi usmeritev
- Jakost:
 - odvisna od širine **stožca** θ_{max}
 - pada proti robu stožca s potenco f
- Implementacija

$$l = \frac{p-v}{|p-v|}$$

$$c_l = \begin{cases} 0, & \check{c}e - l \cdot d \le \cos(\theta_{max}) \\ c_{src}(-l \cdot d)^f, sicer \end{cases}$$

Reflektor

Osvetljevanje v grafičnem cevovodu

Osvetljevanje - implementacija

Izberemo model materiala, npr. Phongov

$$c = c_a k_a + c_l (k_d (\boldsymbol{l} \cdot \boldsymbol{n}) + k_s (\boldsymbol{R} \cdot \boldsymbol{e})^p)$$

- Glede na izbrani model lahko definiramo lastnosti materiala kot uniforme, lastnosti oglišč ali jih podamo v ločeni teksturi
 - npr. jakost ambientnega (k_a) , razpršenega (k_d) in zrcalnega odboja (k_s) , koeficient zrcalnega odboja (p)
- Za izračun potrebujemo tudi pravilne normale v ogliščih
- Kdaj računamo osvetlitev?
 - v ogliščih (bolj učinkovito)
 - za vsak fragment/piksel poligona (lepše, več računanja)

Tudi

- Gouraudovo senčenje (Henri Gouraud, 1971)
- per-vertex shading
- Osvetlitev izračunamo v vsakem oglišču poligona
 - torej v senčilniku oglišč
- Barvo-svetlost prenesemo v senčilnik fragmentov preko interpolirank
 - se torej bilinearno interpolira v notranjosti trikotnika

Osvetljevanje v ogliščih

- za mehke prehode med ploskvami normale postavimo na povprečje normal ploskev, ki se stikajo v oglišču
- 3D modelirniki to navadno avtomatsko počnejo, lahko preklapljamo med flat in average normalami

Gouraudovo senčenje je

- hitro (osvetlitev računamo le v ogliščih)
- kvaliteta je problematična predvsem, ko je število poligonov majhno
 - boljše rezultate dosežemo z večjim številom poligonov

Osvetljevanje v ogliščih

- Flat shading
 - nezvezen izgled, morda to želimo
- Cel poligon je enako osvetljen
 - računamo na nivoju oglišč
 - v senčilniku oglišč ali geometrije
- Implementacija
 - normale oglišč morajo biti enake (pravokotne na trikotnik)
 - barvo iz senčilnika prenesemo preko interpoliranke s tipom interpolacije flat, da se ne interpolira med oglišči

- Tudi
 - Phongovo (mehko) senčenje
 - Per-pixel shading
- Osvetlitev izračunamo v vsakem pikslu/fragmentu poligona
 - torej v senčilniku fragmentov
- Za izračun osvetlitve v točki, rabimo normalo v vsakem fragmentu
 - v senčilnik fragmentov normale prenesemo kot interpoliranke
- Boljša kvaliteta, precej mehkejši rezultat kot Gouraud
 - počasnejše, sploh če je v sceni več luči

Osvetljevanje v fragmentih

REFERENCE

- N. Guid: Računalniška grafika, FERI Maribor
- J.D. Foley, A. Van Dam et al.: Computer Graphics: Principles and Practice in C, Addison Wesley