

Dr. Christian Czymara

FORSCHUNGSPRAKTIKUM I UND II: LÄNGSSCHNITTDATENANALYSE IN R

Preparing panel data session iv

AGENDA

- •Today we will get to know the nature of panel data
- Different ways to organize it
- And various ways to combine different data sets in R

THE NATURE OF PANEL DATA

- Panel data have a three-dimensional structure
- Units (i = 1, ..., n): E. g. persons
- Variables (v = 1, ..., V): E. g. poverty status
- Time-points or waves (t = 1, ..., T): E. g. 2020

- •How can you organize three-dimensional data space in a two-dimensional dataset?
- •Cross-sectional dataset with n units and v variables:

ID	Var1	•••	VarV	
1	а	•••	d	
2	b	•••	е	
•••	•••	•••	f	Units
n	С	•••	g	
	Va	riables		

•Two panel waves; each with n units and v variables:

ID	Var1	•••	VarV
1	а	• • •	d
2	b	•••	е
• • •	•••	• • •	f
n	С	• • •	g

ID	Var1	•••	VarV
1	a	•••	d
2	b	•••	е
•••	•••	•••	f
n	С	•••	g

Time is a relevant information

ID	t	Var1	•••	VarV
1	2011	а	•••	d
2	2011	b	•••	е
•••	2011	•••	•••	f
n	2011	С	•••	g

ID	t	Var1	•••	VarV
1	2012	a	•••	d
2	2012	b	•••	е
•••	2012	•••	•••	f
n	2012	С	•••	g

THE PANEL DATA CUBE

Time adds a third dimension

→ Panel data are cubic

			וט	L	Varı	•••	varv
on.		ID	t	Var1	•••	VarV	d
711	ID	t	Var1	•••	VarV	d	е
ID	t	Var1	•••	VarV	d	е	f
1	2011	a	•••	d	е	f	g
2	2011	b	•••	е	f	g	
•••	2011	•••	•••	f	g		
n	2011	C	• • •	g			

JA.	Aime			ID	t		Var1	•••
			ID	t		Var1	•••	VarV
	ID	t		Var1		•••	VarV	d
ID	t		Var1	•••		VarV	d	е
1	2011		a	•••		d	е	f
2	2011		b	•••		е	f	g
•••	2011		•••	•••		f	g	
n	2011		С	•••		g		

Variables

VarV

WIDE OR LONG?

WIDE AND LONG FORMAT

- Three dimensional panel data can be organized in a two-dimensional matrix in two ways
- Wide format

 - Repeated measurements as separate variables
 - n rows and t * v columns
- Long format
- n * t rows and v columns

WIDE FORMAT

ID	Gender	Poor_2012	Poor_2014	Poor_2016
1	0	0	0	1
2	1	1	0	0
• • •	• • •	• • •	• • •	• • •
999	1	1	1	1
1000	0	0	0	0

- Time dimension integrated in columns
- Variable names need to indicate time-point of measurement

LONG FORMAT

ID	Year	Poor
1	2012	0
1	2014	0
1	2016	1
• • •	• • •	• • •
1000	2012	0
1000	2014	0
1000	2016	0

- Time dimension integrated in rows
- Dataset needs a variables indicating time point at which information has been recorded

WIDE VS LONG FORMAT

ID	Poor_2012	Poor_2014	Poor_2016
1	0	0	1
2	1	0	0
• • •	• • •	• • •	• • •
999	1	1	1
1000	0	0	0

ID	Year	Poor
1	2012	0
1	2014	0
1	2016	1
• • •	• • •	
	2012	0
	 2012 2014	

WIDE VS LONG FORMAT

- Most methods require long format
- Wide format better for analyzing associations of repeated measurements
- Wide format also demonstrates that measurements are not independent
- Hierarchical data structure; repeated measurements nested in units (e. g. person-years)

WIDE VS LONG IN R

- One way to wide and long transform data is provided by the tidyr package
- From wide to long: gather ()
- From long to wide: spread()
- In the context of panel data, however, working with the panelr package is easier
- First, declare the panel structure of the data using the panel_data() function, e.g.: panel_data(pcspoverty, id = ID, wave = year)
- From wide to long: long_panel()
- From long to wide: widen_panel()

LONG PANEL ()

long_panel(wide_data, prefix = "_", periods =
c(2012, 2014, 2016), label_location = "end")

ID	Poor_2012	Poor_2014	Poor_2016
1	0	0	1
2	1	0	0
• • •	• • •	• • •	• • •
999	1	1	1
1000	0	0	0

year	Poor
2012	0
2014	0
2016	1
• • •	
2012	0
2014	0
2016	0
	2012201420122014

WIDEN PANEL ()

- widen_panel(long_data, separator = "_")
- Both commands only work when information on the person and time identifiers was already provided with panel data()

ID	year	Poor
1	2012	0
1	2014	0
1	2016	1
•••	•••	
1000	2012	0
1000	2014	0
1000	2016	0

ID	Poor_2012	Poor_2014	Poor_2016
1	0	0	1
2	1	0	0
•••	•••	•••	•••
999	1	1	1
1000	0	0	0

PREPARING PANEL DATA IN R

IMPORTING DIFFERENT FILE TYPES

- There are numerous ways to store data, each needs a different import function in R
- Stata's dta files: read_dta() (haven package)
- Excel xlsx files: read_excel() (readxl package)
- -CSV files: read.csv() (base R)
- •(Rdate files: load() (base R)
- And a lot more...

PANEL DATA MANAGEMENT

- Raw data typically provides units nested in time points
- Each new wave adds a new dataset

					ID	t		Var1	•••	VarV
			ID	t			Var1	•••	VarV	d
	ID	t			Var1		•••	VarV	d	е
ID	t		Var1		•••		VarV	d	е	f
1	2011		a		•••		d	е	f	g
2	2011		b		•••		е	f	g	
• • •	2011		•••		•••		f	g		
n	2011		С		•••		g			

PANEL DATA MANAGEMENT

- •Which period should be analyzed? (determine t)
- •Which variables are relevant? (determine v)
- •What is target population? (determine n)
- -Identify which datasets provide necessary information

PANEL DATA MANAGEMENT

- Moreover, data from one wave may be provided in several files
- For example GSOEP: individual and household questionnaires

ID	HHID	t	Age	Gender
1	100	2011	36	0
2	101	2011	42	1
3	101	2011	40	0
4	102	2011	19	1

HHID	t	Income	Rent
100	2011	2200	900
101	2011	4100	1300
102	2011	1390	450

BINDING DATA

 Binding means combining rows (rbind()) or columns (cbind()) of two tables

ID	HHID	t	Age	Gender
1	100	2011	36	0
2	101	2011	42	1
3	101	2011	40	0

ID	HHID	t	Age	Gender
4	100	2011	8	1
5	101	2011	6	1

ID	HHID	t	Age	Gender
1	100	2011	36	0
2	101	2011	42	1
3	101	2011	40	0
4	100	2011	8	1
5	101	2011	6	1

BINDING ROWS

Binding waves (in long format) means adding rows to an

existing dataset -> rbind()

ID	HHID	t	Age	Income
1	100	2011	36	2200
2	101	2011	42	3100
3	101	2011	40	1600

ID	HHID	t	Age	Income
1	100	2012	37	2400
2	101	2012	43	3100
3	101	2012	41	1900

ID	HHID	t	Age	Income
1	100	2011	36	2200
2	101	2011	42	3100
3	101	2011	40	1600
1	100	2012	37	2400
2	101	2012	43	3100
3	101	2012	41	1900

BINDING ROWS

ID	HHID	t	Age	Income
1	100	2011	36	2200
2	101	2011	42	3100
3	101	2011	40	1600

ID	HHID	t	Age	Income
1	100	2012	37	2400
2	101	2012	43	3100
3	101	2012	41	1900

ID	HHID	t	Age	Income
1	100	2011	36	2200
1	100	2012	37	2400
2	101	2011	42	3100
2	101	2012	43	3100
3	101	2011	40	1600
3	101	2012	41	1900

Sorted by ID (and t)

BINDING COLUMNS

■Binding variables means adding columns → cbind()

ID	HHID	t	Age
1	100	2011	36
2	101	2011	42
3	101	2011	40
1	100	2012	37
2	101	2012	43
3	101	2012	41

ID	HHID	t	Age	Income
1	100	2011	36	2200
2	101	2011	42	3100
3	101	2011	40	1600
1	100	2012	37	2400
2	101	2012	43	3100
3	101	2012	41	1900

ID	HHID	t	Income
1	100	2011	2200
2	101	2011	3100
3	101	2011	1600
1	100	2012	2400
2	101	2012	3100
3	101	2012	1900

BINDING DATA

- A drawback of rbind() is that it will only work when both tables have the same number of columns
- •... and cbind() only when both data sets have the same number of rows
- Hence, rbind() will only work when both data sets have the exact same variables (as in the example)
- •... and cbind() is useful when you have the exact same observations in two datasets (hardly the case)

JOIN()

- •The functions of the join family of the dplyr package combine two (or more) tables / data sets
- Let us call table 1 master data. It is the one to which we add other data (e.g.: individual-level GSOEP data)
- •Table 2 should be added to data set 1, let us call it using data (e.g.: additional household-level GSOEP data)
- •Finally, we need to know based on which column(s) we want to merge both data sets, let us call this the key variable
- •The general syntax is: join_type (masterData, usingData, by = keyVariable)
- For example: innerJoinDf <- inner_join(soep_ind, soep_hh, by = c("hid","welle"))</pre>

DPLYER'S JOIN TYPES

- •Inner Join (inner_join()): Combines observations of data 1 and 2 that are available in both data sets
- Left Join (left join ()): Adds data 2 to data 1
- Right Join (right_join()): Adds data 1 to data 2
- •Full Join (full_join()): Combines observations of data 1 and 2 that are available in either data set
- Semi Join (semi_join()): Similar to inner_join()
- Anti Join (anti_join ()): Only keeps observations of data 1 that are not available in data 2

INNER JOIN()

- Adds master data to using data based on key variable
- Only includes observations that exist in both data
- •E. g.: inner join(master, using, by = "ID")

•	•		/	
ınner]0	ın	(X,	V)

ID	Age	Gender	1	ID	Income	Rent
1	36	0		1	2200	900
2	42	1		2	4100	1300
3	23	0		4	3600	1200

ID	Age	Gender	Income	Rent
1	36	0	2200	900
2	42	1	4100	1300

left_join(x, y)

LEFT JOIN()

- Adds using data to master data based on key variable
- Only includes observations that are included in the master data
- Generates NA if observation missing in using data
- •E.g.:left join(master, using, by = "ID")

ID	Age	Gender	ID	Income	Rent
1	36	0	1	2200	900
2	42	1	2	4100	1300
3	23	0	4	3600	1200

ID	Age	Gender	Income	Rent
1	36	0	2200	900
2	42	1	4100	1300
3	23	0	NA	NA

right_join(x, y)

RIGHT JOIN()

- Adds master data to using data based on key variable
- Only includes observations that are included in the using data
- Generates NA if observation missing in master data
- •E. g.: right join(master, using, by = "ID")

ID	Age	Gender
1	36	0
2	42	1
3	23	0

ID	Income	Rent
1	2200	900
2	4100	1300
4	3600	1200

ID	Age	Gender	Income	Rent
1	36	0	2200	900
2	42	1	4100	1300
4	NA	NA	3600	1200

FULL JOIN()

full_join(x, y)

- Adds master data to using data based on key variable
- Includes all observations that exist in either data
- •E. g.: full join(master, using, by = "ID")

ID	Age	Gender
1	36	0
2	42	1
3	23	0

ID	Income	Rent
1	2200	900
2	4100	1300
4	3600	1200

ID	Age	Gender	Income	Rent
1	36	0	2200	900
2	42	1	4100	1300
3	23	0	NA	NA
4	NA	NA	3600	1200

SEMI JOIN()

- Adds master data to using data based on key variable
- Only includes observations that exist in both data
- •... but only keeps variables that exist in the master data
- •E. g.: semi join(master, using, by = "ID")

Age Gender

36

23

\		V
	7	

1	ID	Income	Rent
	1	2200	900
	2	4100	1300
	4	3600	1200

ID	Age	Gender
1	36	0
2	42	1

semi_join(x, y)

ANTI JOIN()

- Keeps observations of the master data that do not match the using data
- Generates NA if missing in master data
- •E. g.: anti_join (master, using, by = "ID")

ID	Age	Gender
1	36	0
2	42	1
3	23	0

ID	Income	Rent
1	2200	900
2	4100	1300
4	3600	1200

ID	Age	Gender
3	23	0

anti_join(x, y)

JOINING CLUSTERED DATA

- •The logic of each join function also applies when we have several observations per key variable value (e. g.: multiple interviews per individual)
- In this case, each person-year in data 1 will get the (time constant) person value of the respective person in data 2

ID	Year	income
1	2021	980
1	2022	1000
2	2021	2600
2	2022	2600
3	2021	2300
3	2022	2400

ID	Birth year
1	1980
2	2002
3	1967

JOINING CLUSTERED DATA

- The same logic also applies for multiple members per household
- In this case, each respondent of the household in data 1 will get the household's value in data 2

ID	HHID	age
1	100	34
2	100	57
3	101	35
4	102	64
5	102	24
6	102	36

HHID	rent
100	900
101	1300
102	1700

MULTIPLE DATA SETS OR MULTIPLE KEY VARIABLES

More than two data sets can also easily be combined stepwise:

```
→left_join(data1, data2, by = "id") %>%
left_join(., data3, by = "id") %>%
left_join(., data4, by = "id")
```

•With panel data, we will often have to combine data sets based on multiple key variables because we have variation by person and by wave (so person ID and year):

```
left_join(data1, data2, by=c("id", "year"),
match="all")
```

Of couse, don't forget to assign these operations to an object

MULTIPLE KEY VARIABLES

•What if you want to add household-level panel data to individual-level panel data (Like the GSOEP)?

ID	HHID	t	Age	Gender
1	100	2011	36	0
1	100	2012	37	0
2	101	2011	40	1
2	101	2012	41	1
3	101	2011	37	0
3	101	2012	38	0

HHID	t	Income	Rent
100	2011	4500	1400
100	2012	4800	1400
101	2011	2200	800
101	2012	2000	820

MULTIPLE KEY VARIABLES

ID	HHID	t	Age	Gender
1	100	2011	36	0
1	100	2012	37	0
2	101	2011	40	1
2	101	2012	41	1
3	101	2011	37	0
3	101	2012	38	0

ID	HHID	t	Age	Gender	Income	Rent
1	100	2011	36	0	4500	1400
1	100	2012	37	0	4800	1400
2	101	2011	40	1	2200	800
2	101	2012	41	1	2000	820
3	101	2011	37	0	2200	800
3	101	2012	38	0	2000	820

→ Combination of HHID and tuniquely identifies observations

SUMMING UP

- Simple combination of data sets can be achieved with rbind() or cbind()
- •However, in many instances this is not sufficient (e.g., missing data in one data set, clustered data, ...)
- •The join () family, which merges data based on key variables, helps in these cases
- •This is especially relevant in the case of panel data, where we have multiple observations per unit
- •I.e.: each observation (person-year) can only be identified by the (time-constant) person ID and the wave simultaneously
- ALWAYS CHECK YOUR DATA MANUALLY AFTER COMBINING

LITERATURE

- Chapter 2 (pages 15 48) in: Andreß, Golsch, & Schmidt (2014). <u>Applied panel data analysis for economic and social surveys</u>. Springer Science & Business Media
- •More on joining with R: http://rstudio-pubs-static.s3.amazonaws.com/227171_618ebdce0b9d44f3af65700e833593db.html