FEB 02 2021 MATH 134B

CHAO-MING LIN

1. Some option strategies

The interested reader is referred to "Trade Options with an Edge" [1] by R. Richards or website Tastytrade for further understanding. They have done some researches and will provide you statistical evidences that support their claims. Let's list some famous option strategies here:

-Butterfly: A butterfly spread is an options strategy combining bull and bear spreads, with a fixed risk and capped profit. These spreads, involving either four calls or four puts are intended as a market-neutral strategy and pay off the most if the underlying does not move prior to option expiration.

Example (Strangles with different Delta). Take Apple's options for example, we have

Figure 2. PL at expiration

A butterfly consists of four contracts, a short put butterfly means you collect premium. On fig 1, we sell a 125-strike put and a 115-strike put, then we buy two 120-strike puts. Both the maximum profit and the maximum loss are limited, also the PoP is 85% which is quite decent. In this case, if you consider the ratio of your maximum profit and the buying power, that will be

$$\frac{41}{459} \sim 9\%$$
.

So based on Black-Scholes model, you have a 85% chance to have a 9% return on Capital. The P50 is 84%, which is also high. So short butterflies are a popular strategy for option-sellers.

Remark. A remark here is that to make a **Butterfly**, you need four contracts. If the Bid/Ask spread is too wide, then it is hard to fill your order and your profit will also be reduced. So make sure this company's options have sufficient liquidity.

Theorem (The Put-Call Parity Equation). Let K be the strike price and T be the periods until expiration, then we have

$$Call(K,T) - Put(K,T) = PV(F_{0,T} - K),$$

where Call is the call price, Put is the put price, and PV is the present value.

2. Question solving

Question (3.7). Verify that you earn the same profit and payoff by

- (a) shorting the S&R index for \$1000 and
- (b) selling a 1050-strike S&R call, buying a 1050-strike put, and borrowing \$1029.41.
- (a) The profit and payoff for shorting the S&R index for \$1000 will be the following

Shorting S&R index for \$1000						
S&R index	\$900	\$950	\$1000	\$1050	\$1100	
Closed S&R	-\$900	-\$950	-\$1000	-\$1050	-\$1100	
Payoff	-\$900	-\$950	-\$1000	-\$1050	-\$1100	
Future Value	\$1020	\$1020	\$1020	\$1020	\$1020	
Profit	\$120	\$70	\$20	-\$30	-\$80	

(b) The profit and payoff for selling a 1050-strike S&R call with premium \$71.802, buying a 1050-strike put with premium \$101.214, and borrowing \$1029.41 will be the following

Selling 1050-strike call, buying 1050-strike put, and borrowing money						
S&R index	\$900	\$950	\$1000	\$1050	\$1100	
Call	\$0	\$0	\$0	\$0	-\$50	
Put	\$150	\$100	\$50	\$0	\$0	
Borrowing	-\$1050	-\$1050	-\$1050	-\$1050	-\$1050	
Payoff	-\$900	-\$950	-\$1000	-\$1050	-\$1100	
Future Value	\$1020	\$1020	\$1020	\$1020	\$1020	
Profit	\$120	\$70	\$20	-\$30	-\$80	

Note that the future value will be

 $FV = (\$1029.41 (Borrowing) + \$71.802 (Call's Premium) - \$101.214 (Put's Premium)) \times 1.02 \\ \sim \$1020.$

Question (3.8). Suppose the premium on a 6-month S&R call is \$109.20 and the premium on a put with the same strike price is \$60.18. What is the strike price?

Solution. By the Put-Call Parity Equation, we assume the current strike is K, then we have

$$Call(K, 6-month) - Put(K, 6-month) = PV(F_{0.6-month} - K),$$

which implies that

$$$109.20 - $60.18 = PV($1020 - $K) = $1000 - $\frac{K}{1.02}.$$

We get

$$$K = ($1000 - $49.02) \times 1.02 \sim $970.$$

Question (3.9). Construct payoff and profit diagrams for the purchase of a 950-strike S&R call and sale of a 1000-strike S&R call. Verify that you obtain exactly the same profit diagram for the purchase of a 950-strike S&R put and sale of a 1000-strike S&R put. What is the difference in the payoff diagrams for the call and put spreads? Why is there a difference?

Solution. If you buy a 950-strike S&R call with premium \$120.405 and sell of a 1000-strike S&R call with premium \$93.809, since the strike you buy is less than the strike you sell, this will be a long call spread, the payoff and profit diagrams will be the following

Long call spread						
S&R index	\$900	\$950	\$1000	\$1050	\$1100	
950-strike Call	\$0	\$0	\$50	\$100	\$150	
1000-strike Call	\$0	\$0	\$0	-\$50	-\$100	
Payoff	\$0	\$0	\$50	\$50	\$50	
Future Value	-\$27.128	-\$27.128	-\$27.128	-\$27.128	-\$27.128	
Profit	-\$27.128	-\$27.128	\$22.872	\$22.872	\$22.872	

Note that the future value will be

$$FV = -(\$120.405 - \$93.809) \times 1.02 = -\$27.128$$

On the other hand, if you buy a 950-strike S&R put with premium \$51.777 and sell a 1000-strike S&R put with premium \$74.201, since the strike you buy is less than the strike you sell, this will be a short put spread, the payoff and profit diagrams will be the following

Short put spread						
S&R index	\$900	\$950	\$1000	\$1050	\$1100	
950-strike Put	\$50	\$0	\$0	\$0	\$0	
1000-strike Put	-\$100	-\$50	\$0	\$0	\$0	
Payoff	-\$50	-\$50	\$0	\$0	\$0	
Future Value	\$22.872	\$22.872	\$22.872	\$22.872	\$22.872	
Profit	-\$27.128	-\$27.128	\$22.872	\$22.872	\$22.872	

Note that the future value will be

$$FV = (\$74.201 - \$51.777) \times 1.02 = \$22.872.$$

So we obtain the same profit diagram, the difference is that the payoff diagram for the second one is exactly \$50 lower than the payoff diagram for the first one. This is because you have to pay premium to fill a long call spread in the beginning. On the other hand, for short put spread, you obtain premium in the beginning, so you have different payoff diagrams. But by Put-Call Parity Equation, we can see that

$$\begin{cases} \operatorname{Call}(950, T) - \operatorname{Put}(950, T) &= \operatorname{PV}(1020 - 950) = 68.628, \\ \operatorname{Call}(1000, T) - \operatorname{Put}(1000, T) &= \operatorname{PV}(1020 - 1000) = 19.608. \end{cases}$$

Hence,

$$\begin{split} & \text{FV}\left(\text{Call}(1000, T) - \text{Call}(950, T)\right) + \max\{0, K - 950\} - \max\{0, K - 1000\} \\ &= \text{FV}\left(\text{Put}(1000, T) - \text{Put}(950, T) - \text{PV}(1000 - 950)\right) + \max\{0, K - 950\} - \max\{0, K - 1000\} \\ &= \text{FV}\left(\text{Put}(1000, T) - \text{Put}(950, T)\right) - 50 + \max\{0, K - 950\} - \max\{0, K - 1000\} \\ &= \text{FV}\left(\text{Put}(1000, T) - \text{Put}(950, T)\right) + \max\{0, 950 - K\} - \max\{0, 1000 - K\} \end{split}$$

Question (3.13). Draw profit diagrams for the following positions:

- a. 1050-strike S&R straddle.
- b. Written 950-strike S&R straddle.
- c. Simultaneous purchase of a 1050-strike straddle and sale of a 950-strike S&R straddle.

Solution.

a. For the 1050-strike S&R straddle, you buy the 1050-strike call with premium \$71.802 and buy the 1050-strike put with premium \$101.214, thus

Long 1050-strike straddle						
S&R index	\$950	\$1000	\$1050	\$1100	\$1150	
1050-strike Call	\$0	\$0	\$0	\$50	\$100	
1050-strike Put	\$100	\$50	\$0	\$0	\$0	
Payoff	\$100	\$50	\$0	\$50	\$100	
Future Value	-\$176.476	-\$176.476	-\$176.476	-\$176.476	-\$176.476	
Profit	-\$76.476	-\$126.476	-\$176.476	-\$126.476	-\$76.476	

Note that the future value will be

$$FV = -(\$71.802 + \$101.214) \times 1.02 = -\$176.476$$

b. For the written 950-strike S&R straddle, you sell the 950-strike call with premium \$120.405 and sell the 950-strike put with premium \$51.777, thus

Short 950-strike straddle						
S&R index	\$850	\$900	\$950	\$1000	\$1050	
950-strike Call	\$0	\$0	\$0	-\$50	-\$100	
950-strike Put	-\$100	-\$50	\$0	\$0	\$0	
Payoff	-\$100	-\$50	\$0	-\$50	-\$100	
Future Value	\$175.626	\$175.626	\$175.626	\$175.626	\$175.626	
Profit	\$75.626	\$125.626	\$175.626	\$125.626	\$75.626	

Note that the future value will be

$$FV = (\$120.405 + \$51.777) \times 1.02 = \$175.626$$

c. If we buy a 1050-strike straddle and sell a 950-strike S&R straddle. First, we buy the 1050-strike call with premium \$71.802 and buy the 1050-strike put with premium \$101.214. Then, we sell the 950-strike call with premium \$120.405 and sell the 950-strike put with premium \$51.777. Thus,

Long 1050-strike straddle and short 950-strike straddle						
S&R index	\$900	\$950	\$1000	\$1050	\$1100	
1050-strike Call	\$0	\$0	\$0	\$0	\$50	
1050-strike Put	\$150	\$100	\$50	\$0	\$0	
950-strike Call	\$0	\$0	-\$50	-\$100	-\$150	
950-strike Put	-\$50	\$0	\$0	\$0	\$0	
Payoff	\$100	\$100	\$0	-\$100	-\$100	
Future Value	-\$0.85	-\$0.85	-\$0.85	-\$0.85	-\$0.85	
Profit	\$99.15	\$99.15	-\$0.85	-\$100.85	-\$100.85	

Note that the future value will be

$$FV = -\left(\$71.802 + \$101.214\right) \times 1.02 + \left(\$120.405 + \$51.777\right) \times 1.02 = -\$0.85$$

Question (3.18). Verify that the butterfly spread in Figure 3 can be duplicated by the following transactions (use the option prices in Table 1, see below):

- a. Buy 35 call, sell two 40 calls, buy 45 call.
- b. Buy 35 put, sell two 40 puts, buy 45 put.
- c. Buy stock, buy 35 put, sell two 40 calls, buy 45 call.

FIGURE 3. Comparison of Butterfly and written straddle

Table 1. Black-Scholes option prices

Black–Scholes option prices assuming stock price = \$40, volatility = 30%, effective annual risk-free rate = 8.33% (8%, continuously compounded), dividend yield = \$0, and 91 days to expiration.

Strike	Call	Put
35	\$6.13	\$0.44
40	\$2.78	\$1.99
45	\$0.97	\$5.08

Solution.

a. If we buy 35-strike call with premium \$6.13, sell two 40-strike calls with premium \$2.78 each, and buy 45-strike call with premium \$0.97. Thus, in the beginning, you pay $$6.13 - 2 \times $2.78 + $0.97 = 1.54 premium, so it is a long call butterfly. The following is the payoff and profit diagram

Long call Butterfly						
Stock price	\$30	\$35	\$40	\$45	\$50	
35-strike Call	\$0	\$0	\$5	\$10	\$15	
two 40-strike Call	\$0	\$0	\$0	-\$10	-\$20	
45-strike Call	\$0	\$0	\$0	\$0	\$5	
Payoff	\$0	\$0	\$5	\$0	\$0	
Future Value	-\$1.57	-\$1.57	-\$1.57	-\$1.57	-\$1.57	
Profit	-\$1.57	-\$1.57	\$3.43	-\$1.57	-\$1.57	

Note that to compute the future value, you can either use the effective annual risk-free rate or the continuously compounded one, if the number you are multiplying is small, then the answers will be really close to each other.

(Effective annual risk-free)

$$FV = -\$1.54 \times (1 + 8.33\% \times \frac{91}{365}) = -\$1.572.$$

(Continuously compounded)

$$FV = -\$1.54 \times \exp(8\% \times \frac{91}{365}) = -\$1.571.$$

b. If we buy 35-strike put with premium \$0.44, sell two 40-strike puts with premium \$1.99 each, and buy 45-strike put with premium \$5.08. Thus, in the beginning, you pay $$0.44 - 2 \times $1.99 + $5.08 = 1.54 premium, so it is a long put butterfly. The following is the payoff and profit diagram

Long put Butterfly						
Stock price	\$30	\$35	\$40	\$45	\$50	
35-strike Put	\$5	\$0	\$0	\$0	\$0	
two 40-strike Put	-\$20	-\$10	\$0	\$0	\$0	
45-strike Put	\$15	\$10	\$5	\$0	\$0	
Payoff	\$0	\$0	\$5	\$0	\$0	
Future Value	-\$1.57	-\$1.57	-\$1.57	-\$1.57	-\$1.57	
Profit	-\$1.57	-\$1.57	\$3.43	-\$1.57	-\$1.57	

c. If we buy stock at \$40, buy 35-strike put with premium \$0.44, sell two 40-strike calls with premium \$2.78 each, and buy 45-strike call with premium \$0.97, then, in the beginning, we pay $$40 + $0.44 - 2 \times $2.78 + $0.97 = 35.85 .

Long call Butterfly + Put-Call Parity							
Stock price	\$30	\$35	\$40	\$45	\$50		
Close Stock	\$30	\$35	\$40	\$45	\$50		
35-strike Put	\$5	\$0	\$0	\$0	\$0		
two 40-strike Call	\$0	\$0	\$0	-\$10	-\$20		
45-strike Call	\$0	\$0	\$0	\$0	\$5		
Payoff	\$35	\$35	\$40	\$35	\$35		
Future Value	-\$36.57	-\$36.57	-\$36.57	-\$36.57	-\$36.57		
Profit	-\$1.57	-\$1.57	\$3.43	-\$1.57	-\$1.57		

Note that here, the continuously compounded one is more accurate, we can compute the future value using either way.

(Effectixve annual risk-free)

$$FV = -\$35.85 \times (1 + 8.33\% \times \frac{91}{365}) = -\$36.595.$$

(Continuously compounded)

$$FV = -\$35.85 \times \exp(8\% \times \frac{91}{365}) = -\$36.572.$$

References

- [1] R. Richards, Trade Options with an Edge.
- [2] Tastytrade . https://www.tastytrade.com
- [3] Investopedia, Butterfly Spread.
 https://www.investopedia.com/terms/b/butterflyspread.asp