MATHEMATICS METHODS

MAWA Semester 1 (Unit 3) Examination 2016 Calculator-free Marking Key

Section One: Calculator-free

(50 Marks)

Question 1(a)(i)

Solution	
$y = \left(\cos(x)\right)^{-\frac{1}{2}}$	
$\frac{dy}{dx} = -\frac{1}{2} \left(-\sin(x)\right) \left(\cos(x)\right)^{-\frac{3}{2}}$	
Marking key/mathematical behaviours	Marks
rewrites as a power	1
differentiates using chain rule	1

Question 1(a)(ii)

Solution

$$\frac{dy}{dx} = \frac{2e^{2x}(-\cos(1-x)) - 4e^{2x}\sin(1-x)}{\left(2e^{2x}\right)^2}$$

Marking key/mathematical behaviours	Marks
 correctly determines numerator of derivative 	1
 correctly determines denominator of derivative 	1

Question 1(b)

Solution

$$\frac{dy}{dx} = 6x(2x+1)^5 + (-3x^2).5(2x+1)^4.2$$
$$= 6x(2x+1)^4 [(2x+1)+5x]$$
$$= 6x(2x+1)^4 (7x+1)$$

Marking key/mathematical behaviours	
correctly differentiates using product and chain rule	1
correctly factorises	1
correctly simplifies	1

Question 2(a)

Solution					
$\int \frac{x^3}{2} - x + 1 dx$		r^4	r^2		
$\int \frac{x}{2} - x + 1 dx$	=	<u>~</u> .	$-\frac{x}{2} + x$	c + c	,
J 2		8	2		

Marking key/mathematical behaviours	Marks
correctly integrates each term	1
correctly adds constant of integration (1 mark penalty once only throughout	1
the rest of question 2)	

Question 2(b)

Marking key/mathematical behaviours	Marks
correctly simplifies integral	1
correctly integrates each term	1

Question 2(c)

Solution
$$\int 2x(x+1)^2 dx$$

$$= \int 2x^3 + 4x^2 + 2x dx = \frac{x^4}{2} + \frac{4x^3}{3} + x^2 + c$$

Marking key/mathematical behaviours	Marks
correctly expands and simplifies integral	1
correctly integrates each term	1

Question 2(d)

Solution

$$\int e^{\frac{x}{2}} - \cos\left(\frac{2x}{3}\right) dx = 2e^{\frac{x}{2}} - \frac{3}{2}\sin\left(\frac{2x}{3}\right) + c$$

Marking key/mathematical behaviours	Marks
correctly integrates first term	1
correctly integrates second term	1

Question 3(a)

Solution	
d = 0.3	
Marking key/mathematical behaviours	Marks
determines correct value	1

Question 3(b)

Marks
1
1

Question 3(c)

Sol	lution
	ulion

- (i) 0.6
- (ii) 0.5
- (iii) $\frac{6}{9}$

` ' 9	
Marking key/mathematical behaviours	Marks
obtains correct value	1
obtains correct value	1
obtains correct value	1

MATHEMATICS METHODS SEMESTER 1 (UNIT 3) EXAMINATION

CALCULATOR-FREE MARKING KEY

Question 4(a)

Solution	
$f''(x) = 3(2x)(2x+6)(x^2+1)^2 + 2(x^2+1)^3$	
Marking key/mathematical behaviours	Marks
determines the first part of the derivative using the product rule	1
determines the second part of the derivative using the product rule	1

Question 4(b)

Solution	
f''(-3) = 2000	
Marking key/mathematical behaviours	Marks
• determines the value of the second derivative at $x = -3$	1

Question 4(c)

Question +(o)	
Solution	
Since $f'(-3) = 0$ and $f''(-3) = 2000 > 0$ the point is a local minimum.	
Marking key/mathematical behaviours	Marks
• determines $f'(-3)$	1
states the point is a local minimum.	1

Question 5(a)

Question 5(a)	
Solution	
(i) $E(H) = E(X) + 3 = 30$	
(ii) $Var(H) = Var(X) = 25$	
Marking key/mathematical behaviours	Marks
calculates correct value of E(H)	1
 calculates correct value of Var(H) 	1
,	

Question 5(b)	
Solution	
(i) $E(G) = 2 E(H) = 2(30) = 60$	
(ii) standard deviation of $G = 2 \times \text{standard deviation of } H = 10$	
Marking key/mathematical behaviours	Marks
 calculates correct value of E(G) 	1
 calculates correct value of the standard deviation of H 	1

Question 6

Solution $\frac{d^2y}{dx^2} = 3\sqrt{2x - 3} - 2$

$$\frac{dy}{dx} = (2x - 3)^{\frac{3}{2}} - 2x + c_1 \implies 4 = (4)^{\frac{3}{2}} - 7 + c_1 \implies c_1 = 3$$

$$y = \frac{1}{5}(2x - 3)^{\frac{5}{2}} - x^2 + 3x + c_2 \implies -\frac{4}{5} = \frac{1}{5} - 4 + 6 + c_2 \implies c_2 = -3$$

$$\therefore y = \frac{1}{5}(2x - 3)^{\frac{5}{2}} - x^2 + 3x - 3$$

$$y = \frac{1}{5}(2x - 3)^{\frac{5}{2}} - x^2 + 3x - 3$$

Marking key/mathematical behaviours	Marks
correctly determines first derivative	1
$ullet$ correctly determines the value of $\ c_1$	1
• correctly determines <i>y</i>	1
 correctly determines the value of c₂ and writes y in terms of x 	1
2	

Question 7

$$\frac{dy}{dx} = \frac{(2x-1)^2(1) - 4(2x-1)(x+1)}{(2x-1)^4}$$

$$\frac{dy}{dx}\bigg|_{x=1} = \frac{1(1) - 2(4)}{1}$$

$$= -7$$

$$y = -7x + c$$

$$8 = -7(1) + c$$

$$c = 15$$

$$y = -7x + 15$$

Marking key/mathematical behaviours	Marks
 correctly determines the numerator of the derivative using the quotient rule 	1
 correctly determines the denominator of the derivative using the quotient rule 	1
 correctly determines the gradient of the curve at (1,8) 	1
ullet correctly substitutes the point $(1,8)$ into the equation to evaluate c	1
correctly determines the equation of the tangent	1

Question 8 (a)

Solu	ition	
(1)	3	1
3	=	27

(3) 27	
Marking key/mathematical behaviours	Marks
determines correct probability	1

Question 8(b)

\sim	
C. O	li ition
. 7()	lution
-	

$$\left(\frac{1}{3}\right)^2 \left(\frac{2}{3}\right) = \frac{2}{27}$$

Marking key/mathematical behaviours	Marks
determines correct probability	1

MATHEMATICS METHODS SEMESTER 1 (UNIT 3) EXAMINATION

CALCULATOR-FREE MARKING KEY

Question 8(c)

Solution	
$\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^2 \times 3 = \frac{4}{9}$	
Marking key/mathematical behaviours	Marks
correctly multiplies by three	1
determines correct probability	1

Question 8(d)

Solution	
$1 - \left(\frac{2}{3}\right)^3 = \frac{19}{27}$	
Marking key/mathematical behaviours	Marks
recognises complementary events	1
determines correct probability	1

Question 9(a)

Solution $ \int_{\frac{\pi}{6}}^{\pi} \cos(3x) \ dx = \left[\frac{\sin 3x}{3}\right]_{\frac{\pi}{6}}^{\pi} $ $ = -\frac{1}{3} $	
Marking key/mathematical behaviours	Marks
correctly integrates	1
correctly evaluates	1

Question 9(b)

Solution $\frac{d}{dx} \left(\int_{2}^{x} \sqrt{3 - 2t^2} dt \right) = \sqrt{3 - 2x^2}$	
Marking key/mathematical behaviours	Marks
correctly applies fundamental theorem	1

Question 9(c)

Solution			
$\int_0^2 \frac{d}{dx} \left(\frac{1}{x} \right)^2 dx$	$\left(\frac{-x^2}{1+x}\right)$	dx =	$\left[\frac{1-x^2}{1+x}\right]_0^2$
=	-1	_ 1 = .	-2

Marking key/mathematical behaviours	Marks
correctly integrates	1
correctly evaluates	1