QuC HW04

Corbin T. Rochelle

February 20, 2022

Question 1

Α.

The initial realization I made was that that the Eigenvectors, $|E_1\rangle$, $|E_2\rangle$, $|E_3\rangle$, and $|E_4\rangle$, were the same values for all values of ham2factorC; however the Eigenvalues change with a different pattern: namely $|E_1\rangle$ is the negation of $|E_2\rangle$ and $|E_3\rangle$ is the negation of $|E_4\rangle$, while $|E_2\rangle$ is calculated with 1 + ham2factorC and $|E_4\rangle$ is calculated with 1 - ham2factorC! ASK ABOUT THE FINAL PART OF THIS QUESTION

В.

The first thing I notice is that the Eigenvalues follow the same pattern described for the system in question 1A. The second thing I notice is that although the Eigenvalues follow that pattern, the Eigenvectors do not. The $|\psi_{initial}\rangle$ is the same as $|\psi_{final}\rangle$ because the $P_j(t)$ function requires the norm to be taken of both wave functions. The norm of $|\psi_{initial}\rangle = |\psi_{final}\rangle$ for all four values, creating a straight line. The values in the vector are changing, but the norm of the values are always the same.

$\mathbf{C}.$

I found two Hamiltonians that meet the following criteria:

$$H_{total} = (\sigma^x \bigotimes \sigma^x) + C(\sigma^x \bigotimes \sigma^x)$$
and
$$H_{total} = (\sigma^z \bigotimes \sigma^z) + C(\sigma^z \bigotimes \sigma^z)$$

For both of these the bell state is $|\psi_{initial}\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$ ASK ABOUT THIS!

Question 2

- **A**.
- В.
- $\mathbf{C}.$
- D.