DERWENT-

1992-253168

ACC-NO:

DERWENT-

199231

WEEK:

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE:

Pipe jumper for transmission line - comprises aluminium@ pipe with porous anodic oxidn. layer applied on roughened surface of pipe, giving low reflectivity and mild

colour tone

PATENT-ASSIGNEE: FUJIKURA LTD[FUJD]

PRIORITY-DATA: 1990JP-0292106 (October 31, 1990)

PATENT-FAMILY:

PUB-NO PUB-DATE LANGUAGE PAGES MAIN-IPC

JP 04168904 A June 17, 1992 N/A

005

H02G 007/20

APPLICATION-DATA:

PUB-NO APPL-DESCRIPTOR APPL-NO APPL-DATE

JP 04168904A N/A

1990JP-0292106 October 31, 1990

INT-CL (IPC): C25D011/04, H02G007/20

ABSTRACTED-PUB-NO: JP 04168904A

BASIC-ABSTRACT:

Pipe jumper consists of an Al pipe having a porous anodic oxidn. layer with a thickness of 0.3-5 micron applied on a roughened surface of Al pipe.

The pipe jumper is e.g., produced by <u>roughening the surface of an Al pipe to an average roughness of 0.5-5 microns and a max. roughness of 5-50 microns</u> by dry <u>blasting</u> or liquid honing, subjecting to anodic oxidn. in acid electrolysis bath to form an anodic oxidn. layer with thickness of 0.3-5 microns. The abrasive used in the surface roughening, e.g., consists of <u>corundum</u>, Si carbide or silica sand having particle size of 60-300 mesh. The Al pipe is then pref. subjected to water rinsing or weak alkali degreasing before anodic oxidn. The anodic oxidn is carried out in an electrolysation bath contg. sulphuric acid, oxalic acid or phosphoric acid with alternating current, superimposed direct current or pulse current, etc.

USE/ADVANTAGE - Pipe jumper with low reflectivity, in mild colour tone, in harmony with natural scenery is obtd..

CHOSEN-DRAWING: Dwg.0/0

DERWENT-CLASS: M11 X12

⑩ 日本国特許庁(JP)

① 特許出願公開

◎ 公 開 特 許 公 報 (A) 平4-168904

@Int. Cl. 5

識別記号

庁内整理番号

平成 4 年(1992) 6 月17日 43公開

H 02 G 7/20 C 25 D 11/04

J E 7028-5G 7179-4K

> 請求項の数 3 (全5頁) 審査請求 未請求

60発明の名称

架空送電線のパイプジャンパー装置及びその製造方法

20特 顧 平2-292106

22出 願 平2(1990)10月31日

個発 明 者 猿 渡 @発 明 者 崲 前

光

東京都江東区木場1丁目5番1号 東京都江東区木場1丁目5番1号

藤食電線株式会社内 藤食電線株式会社内

②発 明 井 者

正 受

東京都江東区木場1丁目5番1号

藤倉電線株式会社内

上 ⑫発 明 者 棤 Ш 忠 史 雄

東京都江東区木場1丁目5番1号

藤倉電線株式会社内

创出 頣

藤倉電線株式会社

東京都江東区木場1丁目5番1号

個代 理 弁理士 竹 内

1. 発明の名称

架空送電線のパイプジャンパー装置及びその製 造方法

- 2. 特許請求の範囲
- 1)架空送電線のパイプジャンパー装置において、 租面化処理されたアルミニウムパイプ表面に厚さ 0.3μ α ~ 5 μ α の多孔質隔極酸化皮膜が形成 されていることを特徴とする架空送電線のパイプ ジャンパー装置。
- 2) 処理されたアルミニウムパイプの明度が4. 5 ± 1 、反射率 3 0 %以下である請求項 1 記載の 架空送電線のパイプジャンパー装置。
- 3)架空送電線のパイプジャンパー装置において、 アルミニウムパイプを乾式プラスト処理もしくは 液体ホーニング処理で平均粗さ0.5μ ≈ ~ 5μ ■ 、最大粗さ5μm~50μmに粗面化処理した 後、酸性電解浴で陽極酸化を施し、厚さ0.3 μ ■ ~ 5 μ m の多孔質陽極酸化皮膜を形成すること を特徴とする架空送電線のパイプジャンパー装置

の製造方法。

- 2. 発明の詳細な説明
- <産業上の利用分野>

- 本発明は、架空送電線のパイプジャンパー装置 において、周囲の環境に調和された色調を有する ジャンパー装置に関するものである。

<従来の技術><発明が解決しようとする課題> 近年電力需要の増大に伴い、送電線が大サイズ 化、多導体化及び多回線化の傾向がある。

またそれに伴い大容量の発電所から、都市部に 送電する場合の送電ルートについても、用地の事 情により国立、国定公園等環境保護地域内を通っ て送電線を架設しなければならないケースも増加 している.

そして、このような風致地区に架設される送電 線や鉄塔などの送電設備については、周囲の環境 に調和した外観が要求されている。しかしながら 従来に於いては架線されるアルミニウム送電線例 えばACSRについては、周囲の環境に溶け合う ように処理する技術が適用され、明度、反射率に

ついて配慮がなされてきたが、ジャンパー装置に ついては全く顧みることが無く、そのままの状態 で使用されているのが現状である。すなわち従来 は製造されたままの金属光沢を有するジャンパー 装置が用いられ、環境を損なう問題が送電線の面 からは解決されてもなお不十分の誹りをまぬかれ なかった。

特に100万ボルトUHV送電線に使用されるパイプジャンパー装置等ではアルミニウムパイプの大きさが直径20㎝、長さ20m程度の大きいものであるので、非常に目立ち安く、これを何の処理をすることもなくこのまま使用することは周囲の美観を著しく損なうこととなるため問題となっている。

このような問題を解決するための方法としては一般にサンドブラストする方法が考えらるが、この方法では反射率は低減するものの、明度の点ではむしろ白く浮かび上がることから逆効果をきたしていた。

又、鉄塔自体は黒色塗料を塗布する方法が考え

られているが、この方法を鉄塔の側であるからと言ってジャンパー装置のアルミニウムパイプに適用するには、盤膜が電気絶縁性であるために、アルミニウムバイプとパイプスペーサーの接続や、パイプ接続端子などの部品を取り付けるときにはその部分の盤膜を剝離しなければならず、取り付け作業が面倒となる問題がある。

又盤膜に導電性を与えて、盤膜の剝離作業を不要なものとすることも考えられるが、このような 塗料による場合は色ムラを生じ易くなるだけでな く、導電性を付与するために加えるカーボンブラ ックにより局部電池が形成され易くなり、アルミ ニウムパイプの腐食が促進されるというマイナス 効果を有するため実用化することはできない。

本発明は上記の様な従来技術の問題点を解決した低反射率で低明度な表面と色ムラのない表面状態を有するパイプジャンパー装置の提供を目的とするものである。

<課題を解決するための手段>

本発明は上記の実情に鑑みて種々検討の結果な

されたもので、その概要は以下のとおりである。

- 1) 架空送電線のパイプジャンパー装置において、 粗面化処理されたアルミニウムパイプ表面に厚さ 0.3 μ = ~5 μ = の多孔質陽極酸化皮膜が形成 されていることを特徴とする架空送電線のパイプ ジャンパー装置。
- 2) 処理されたアルミニウムパイプの明度が4.5±1、反射率30%以下である請求項1記載の 架空送電線のパイプジャンパー装置。
- 3)架空送電線のパイプジャンパー装置において、アルミニウムパイプを乾式プラスト処理もしくは液体ホーニング処理で平均粗さ0.5μm~5.0μmに粗面化処理した後、酸性電解浴で陽極酸化を施し、厚さ0.3μm~5μmの多孔質陽極酸化皮膜を形成することを特徴とする架空送電線のパイプジャンパー装置の製造方法。

<作用>

本発明ではジャンパー装置のアルミニウムパイ プの表面に粗面化処理が施され、さらにその表面 に陽極酸化処理による多孔質皮膜が形成されたもので、この様な表面層となすことにより環境調和性に優れたパイプジャンパー装置が得られるものである。

この様なパイプジャンパー装置を製造するための方法としてはアルミニウムパイプ表面を先ず中心線平均粗さが 0 . 5 μm ~ 5 μm 、最大粗さ 5 μm ~ 5 0 μm の粗さに粗面化することが必要で * ~ 2

この粗面化処理を行うためのプラスト条件は通常よく用いられる条件でよく、又、研磨剤としてはコランダムや炭化珪素、珪砂等種々のものが使用出来る。研磨材の粒径は#60~300の範囲でパイプの形状や材質に合わせて適度に選択すればよい。又プラスト処理の方式としては乾式、湿式(液体ホーニング)の何れでも良い。

また更にプラスト処理を二段階処理とし、例えば第一段階を粒度の粗い研磨剤でプラスト処理し、 第二段階を粒度の細かい研磨剤でプラスト処理し て、より複雑な粗面化状態にすれば低明度化はよ り促進される。このブラスト処理に於いて全面を ほぼ均一にむらなく粗面化することは、その後多 孔質陽極酸化皮膜を形成し全体的に均一な色ムラ のない状態を得るために重要である。

本発明ではこのように粗面化したものを用いて、硫酸等の酸性浴中で陽極酸化して多孔質の陽極酸化皮膜を形成するが、陽極酸化処理をするに当たっては前処理として、粗面化処理後水洗もしくは弱アルカリ性脱脂剤浴に浸漬するなどして、粗面化処理の際に表面に残留している研磨材を除去することが好ましい。

また粗面化し、清浄化されたアルミニウムパイプ表面に多孔質陽極酸化皮膜を形成するには、硫酸、蓚酸、リン酸等の多孔質皮膜を形成する電解質を添加した水溶液を用いる必要がある。

陽極酸化のための電流波形は通常直流でよいが、 その他に交流、交直重畳、パルス、不完全整流な ど多孔質皮膜を形成し得るものであればどのよう な波形でもよい。

又形成するアルマイト皮膜の厚さは 0. 3 μ μ

のアルミニウム部品にも勿論適用することができる。 例えばジャンパースペーサー、パイプ接続端子、パイプスペーサーやジャンパーソケット等のジャンパー装置の部品やアーマーロッドやスペーサー等の送電線部品がある。

<実施例>

以下実施例について説明する。

実施例1

JIS 6061材の板(50mm×100mm× 2mm)を試料として、#100のコランダムを用いて噴射圧力4kg/cdにて乾式プラスト処理後水洗して表面に残留するコランダム粉末を除去した。

その後温度15℃の15%硫酸浴中で電流密度 2A/da²で、電解時間を変えて直流電解処理し 多孔質隔極酸化皮膜を形成させた。

皮膜形成後の試料の反射率、明度、テスターに よる導通の有無を調べた。

その結果は第1表のとおりであった。

未満と薄すぎると明度が下がらず、又一方膜厚が 5 μm を超えて大きいと明度が低くなりすぎると 共に電気絶縁性となるので好ましくは 0 . 3 μm ~ 5 μm の範囲がよい。

このような皮膜では入射した光は屈折や乱反射 が多数繰り返され、明度が低下するものと考えら れる。

本発明の方法はアルミニウムパイプに限らず他

第 1 表

	電解 時間 分	膜厚μա	反射率	明度	導通
実	1	0.3	2 1	5.5	有
施	3	1	2 1	5.3	有
84	5	2	2 0	4.4	有
	1 0	3	2 1	4.1	有
	1 5	5	2 1	3. 9	有
出			-		
較	0.5	測定不能	20	6.6	有
<i>€</i> 1	3 0	9	2 1	3.3	無

これから明らかな様に多孔質陽極酸化皮膜が 5 μ = を超えると絶縁性となり、パイプジャンパー 装置に部品を取り付ける上で支障を生じることが 分かる。又一方皮膜が 0 . 3 μ = 未満では目的と する5. 5以下の明度が得られないことが分かる。 実施例 2

実施例1に示した板材と同じ板材を用い、#180のコランダムを研磨材として噴射圧力4㎏/ これにて液体ホーニング処理した後水洗して表面に 残留しているコランダム粉末を除去した。

その後温度 1 5 での 1 5 % 硫酸浴中で電流密度 2 A /dm 2 で電解時間を変えて直流電解処理し多孔質陽極酸化処理皮膜を形成させた。

この試料について実施例1と同様表面の反射率、 明度、テスターによる導通の有無を調べた。

その結果は第2表のとおりであった。

が得られないことが分かる。

実施例3

J!S 1050材の板(50mm×100mm× 20mm)を試料として、#100のコランダムを 用いて、噴射圧力4kg/cdにて乾式プラスト処理 後水洗して表面に残留するコランダム粉末を除去 した。

その後温度15℃の15%硫酸浴中で電流密度 2A/dm²で電解時間を変えて直流電解処理し多 孔質隔極酸化皮膜を形成させた。

処理後の試料表面の反射率、明度、テスターに よる導通の有無を調べた。

その結果は第3表のとおりであった。

第 2 表

	電解 時間 分	膜厚μ=	反射率 %	明度	導通
実施例	2 3 5 1 0 1 5	0.3 1 2 3 5	2 I 1 9 2 0 2 1 2 0	5. 5 5. 2 4. 8 4. 1 3. 7	有有有有有
比較例	0.5	測定不能	1 9 2 0	6.5	有無

これからも明らかなように粗面化を液体ホーニング処理で行った場合にも、実施例 1 と同様、陽極酸化皮膜が 0 . 3 μm ~ 5 μm の範囲にないときは表面の導通不良を生じたり、目的とする明度

第 3 表

	電解 時間 分	膜厚μπ	反射率 %	明度	導通
実施例	1 3 5 1 0 1 5	.0.3 1 2 3 5	2 1 2 2 2 2 2 1 2 2	5.4 5.0 4.7 4.3 3.8	有有有有有
比較例	0.5	測定不能 1 0	2 2 2 1	6.7	有無

実施例 4

J I S 2 0 2 4 材の板 (5 0 × 1 0 0 × 2 mm) を試料として、 # 1 0 0 のコランダムを用いて噴 射圧力 4 kg / calにて乾式ブラスト処理後水洗して

特開平4-168904(5)

表面に残留しているコランダム粉末を除去した。

その後温度15℃の15%硫酸浴中で電流密度 2A/da *で電解時間を変えて直流電解処理し多 孔質陽極酸化皮膜を形成させた。

処理後の試料表面の反射率、明度、テスターに よる導通の有無を調べた。

その結果は第4 衷のとおりであった。

第 4 表

	電解 時間 分	膜厚 μm	反射率 %	明度	導通
実	1.5	0.3	2 1	5.4	有
施	5	1	2 2	5.0	有
154	10	2	2 2	4.7	有
	15	3	2 1	4.3	有
	30	5	2 2	3.8	有
比		•			
較	1	測定不能	2 2	6.7	有
[91]	60	8	2 1	3.4	無

以上の実施例から明らかなとおり、アルミニウム板材の種類に関係なく、本発明によるものは膜厚 0.3 μm ~5 μm で反射率、明度、導通において満足すべき結果を得た。

<発明の効果>

本発明によるときは、処理方法が簡単で、従来 全く顧みられなかったパイプジャンパー装置を環 境に適応したものとして提供することができる。

> 特許出願人 **廢倉電線株**式会社 代理人 弁理士 竹内 守