RNA-seq analysis in Galaxy

Fabian Kilpert¹ & Pavan Videm²

¹MPI-IE Freiburg ²University of Freiburg

The RNA-seq approach

cheap & fast

Transcriptome reconstruction—akin to reassembling magazine articles after they have been through a paper shredder. [Korf, Nat Meth, 2013]

...and the quality?

[Korf, Nat Meth, 2013]

Challenges:

- Sample RNA is from a different source than the reference genome
- Incompletely processed RNAs or transcriptional noise
- Biases in sequencing (e.g. PCR in library preparation)

RNA-seq library construction

[Zeng & Mortazavi, Nat Immun, 2012]

RNA-seq applications

Allows for:

high-throughput whole genome gene expression analysis

Two main research aims:

I. Transcript discovery

Which RNA molecules are in my sample?

- novel isoforms and alternative splicing
- non-coding RNAs
- single nucleotide variations
- fusion genes

II. RNA quantification

What is the concentration of RNAs?

- absolute gene expression (within sample)
- differential gene expression (between biological samples)
- isoform expression / differential exon usage / alternative splicing

Hands-on example dataset

RNA-seq data from *Drosophila melanogaster*

Step 1: Preprocessing of raw sequencing reads

- Sequencer → FASTQ files
- inspect quality of raw sequencing reads with FastQC
- optional (depending on QC results):
 - trim low quality bases from 3' end of the reads
 (use e.g. cutadapt, Trim Galore!)
 - clip adapter sequences

```
(use e.g. cutadapt, Trim Galore!)
```

trim poly(A) tails
 (use e.g. PRINSEQ)

http://galaxy.uni-freiburg.de/u/tutor/p/rna-seq

Step 1: Inspecting the FASTQ files

Step 2: Annotating RNA-seq reads

How do I identify my reads?

If there is <u>reference data</u> (model organism):

Reference-based mapping

of RNA-seq reads to a genome and/or transcriptome using a sequence aligner (Bowtie, BWA, SHRiMP, Stampy, etc.)

Reference-based mapping (splice-aware)

of RNA-seq reads to a genome using a <u>splice-aware</u> sequence aligner (<u>TopHat</u>, MapSplice, SpliceMap, etc.)

If there is <u>no</u> reference data (non-model organism):

De novo assembly (+ additional annotation step)
Does not use a reference genome
(Trinity, Trans-AbySS, Velvet-Oases, etc.)

Combined (reference-based + de novo)

Sources of reference annotations

Where do I get reliable reference annotations?

There are joint projects to produce and maintain annotations on selected organisms:

rather conservative

Annotations of known genes, repeats, etc. are provided in **GTF** (Gene transfer format) file format. Tab separated text file, e.g.:

```
1→transcribed_unprocessed_pseudogene→gene→11869→14409→.→+→.→gene_id "ENSG00000223972"; X→Ensembl→Repeat→2419108→2419128→42→.→.→hid=trf; hstart=1; hend=21;
```

RNA-seq alignment strategies

Transcriptome alignment

- reliable gene models required
- no detection of novel genes

Genome alignment (splice-aware read alignment)

+ detection of novel genes and isoforms

TopHat2 – A popular splice-aware aligner

[Kim et al., Genome Res, 2013]

http://galaxy.uni-freiburg.de/u/tutor/p/rna-seq

Step 2: Mapping of the reads with TopHat

Visualization of alternative splicing

http://galaxy.uni-freiburg.de/u/tutor/p/rna-seq

Step 2: Mapping of the reads with TopHat

Hands-on!

Step 3: Inspecting the TopHat results

Step 2 (continued): Annotating RNA-seq reads without reference

How do I identify my reads?

If there is <u>reference data</u> (model organism):

Reference-based mapping

of RNA-seq reads to a genome and/or transcriptome using a sequence aligner (Bowtie, BWA, SHRiMP, Stampy, etc.)

Reference-based mapping (splice-aware)

of RNA-seq reads to a genome using a <u>splice-aware</u> sequence aligner (<u>TopHat</u>, MapSplice, SpliceMap, etc.)

If there is <u>no</u> reference data (non-model organism):

De novo transcriptome assembly (+ additional annotation step)
Does not use a reference genome
(Trinity, Trans-AbySS, Velvet-Oases, etc.)
Combined (reference-based + de novo)

Step 2 (continued): Annotating RNA-seq reads without reference

How do I identify my reads?

If there is <u>reference data</u> (model organism):

Reference-based mapping

of RNA-seq reads to a genome and/or transcriptome using a sequence aligner (Bowtie, BWA, SHRiMP, Stampy, etc.)

Reference-based mapping (splice-aware)

of RNA-seq reads to a genome using a <u>splice-aware</u> sequence aligner (<u>TopHat</u>, MapSplice, SpliceMap, etc.)

If there is <u>no</u> reference data (non-model organism):

De novo transcriptome assembly (+ additional annotation step)

Does not use a reference genome (Trinity, Trans-AbySS, Velvet-Oases, etc.)

Combined (reference-based + de novo)

NO Hands-on!

Step 4: Reconstruction of the transcriptome (transcriptome assembly)

How do I get a full catalog of transcripts and their variations from short reads?

Transcriptome assembly became possible due to new technology (RNA-seq) producing millions of short reads (with >100x coverage per base pair of a transcript)

→ Assemble near complete snapshot of the transcriptome (including isoformes and rare transcripts)

Isoform detection using cufflinks (transcript assembly from mapped reads)

- a Paired-end reads (fragments) are mapped with a splice-aware aligner (e.g. TopHat2)
- b cufflinks connects overlapping (compatible) fragments in an overlap graph
 - node: fragment
 - edge: connects compatible fragments
 Overlap implies that fragments
 originate from the same isoform
- Paths through graph correspond to sets of mutually compatible fragments that could be merged into complete isoforms

cufflinks tries to find the minimum number of paths, each representing a different isoform of a transcript

http://galaxy.uni-freiburg.de/u/tutor/p/rna-seq

Step 4: Predict novel transcripts with Cufflinks

Step 5: Quantification of transcript level

What is the expression level of the genomic features (genes, isoforms, ...)?

→ count the reads per feature

- relatively easy: count the number of reads per gene, exon, ...
- How to handle multi-mapping reads (i.e. reads with multiple alignments)?
 - discard multi-mapping reads: ok at gene and exon level
 - probabilistic selection: recommended for repetitive elements
- How to distinguish between different isoforms?
 - gene level (i.e. do not distinguish between isoforms)
 - transcript level (requires to estimate abundance of isoforms)
 - exon level

http://galaxy.uni-freiburg.de/u/tutor/p/rna-seq

Step 5: Count the number of reads per annotated gene with htseq-count

Normalization

- Normalization aims to make expression levels comparable across
 - features (genes, isoforms, ...)
 - **libraries** (samples)
- Normalization methods:
 - RPKM / FPKM (Cufflinks /Cuffdiff) [Mortazavi et al., Nat Meth, 2008]
 - TMM (edgeR) [Robinson & Oshlack, Genome Biol, 2010]
 - DESeq2 (DESeq2) [Love et al., Genome Biol, 2014]

Normalization across samples

"Only the **DESeq and TMM normalization methods are robust to** the presence of **different library sizes** and widely **different library compositions**..."

Dillies et al., Brief Bioinf, 2013

DESeq: normalise counts k_{ij} for gene i in library j by size factor s_j $s_j/s_{j'} = \mathop{\rm median}_{\hat{l}} \; \{k_{ij'}/k_{ij'}\}$

Analysis of differential gene expression

Selected programs to analyse differential expression (DE)

- at gene level:
 - DEseq2 [Love et al., Genome Biol., 2014]
 - edgeR [Robinson et al., Bioinformatics, 2010]
- at transcript level:
 - Cuffdiff2 [Trapnell et al., Nat. Biotech., 2013]
- differential usage of exons:
 - DEXseq [Anders et al., Genome Res., 2012]

Core idea:

- model the gene counts by negative binomial distribution
- account for variability of gene expression across biological replicates

Impact of sequencing depth and number of replicates on differential expression analysis

- number of replicates has greater effect on DE detection accuracy than sequencing depth (more replicates = increased statistical power)
- DE detection of lowly expressed genes is very sensitive to number of reads and replication
- DE detection of highly expressed genes possible already at low sequencing depth

Impact of sequencing depth and number of replicates on differential expression analysis

- number of replicates has greater effect on DE detection accuracy than sequencing depth (more replicates = increased statistical power)
- DE detection of lowly expressed genes is very sensitive to number of reads and replication
- DE detection of highly expressed genes possible already at low sequencing depth

http://galaxy.uni-freiburg.de/u/tutor/p/rna-seq

Steps 5&6: Analysing differential gene expression with DESeq2

http://galaxy.uni-freiburg.de/u/tutor/p/rna-seq

Step 7: Functional enrichment among differentially expressed genes

Differential splicing analysis

- selected programs to analyse differential splicing
 - at isoform level:
 - Cuffdiff2 [Trapnell et al., Nat. Biotech., 2013]
 - MISO [Katz et al., Nat. Methods, 2010]
 - at exon level:
 - DEXseq [Anders et al., Genome Res., 2012]
 - at junction level:
 - MATS [Shen et al., Nucleic Acids Res., 2012]

Recent review:

Hooper JE. A survey of software for genome-wide discovery of differential splicing in RNA-Seq data. Human Genomics, 2014

http://galaxy.uni-freiburg.de/u/tutor/p/rna-seq

Steps 8&9: Inference of differential exon usage with DEXSeq

Tutorial Overview

The End.

Thank you for your attention!

References

Brooks, A. N. et al. Conservation of an RNA regulatory map between Drosophila and mammals. Genome Res. 21, 193–202 (2011)

Dillies, M.-A. et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform 14, 671–683 (2013)

Katz, Y. et al. Sashimi plots: Quantitative visualization of alternative isoform expression from RNA-seq data. bioRxiv (2014)

Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology 14, R36 (2013)

Korf, I. Genomics: the state of the art in RNA-seq analysis. Nat Meth 10, 1165–1166 (2013)

Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Meth 5, 621–628 (2008)

Rapaport, F. et al. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biology 14, R95 (2013)

Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010)

Zeng, W. & Mortazavi, A. Technical considerations for functional sequencing assays. Nat Immunol 13, 802–807 (2012)