Bounded arithmetic for simpler proof assistants

Paweł Balawender

University of Warsaw

September 4th, 2025

• Proof assistants use strong foundations (HOL, CIC, choice, quotients).

- Proof assistants use strong foundations (HOL, CIC, choice, quotients).
- Most theorems need far less.

- Proof assistants use strong foundations (HOL, CIC, choice, quotients).
- Most theorems need far less.
- Costs of strength:

- Proof assistants use strong foundations (HOL, CIC, choice, quotients).
- Most theorems need far less.
- Costs of strength:
 - Huge tactic space -> harder search.

- Proof assistants use strong foundations (HOL, CIC, choice, quotients).
- Most theorems need far less.
- Costs of strength:
 - Huge tactic space -> harder search.
 - Loss of computational content (e.g., noncomputable).

- Proof assistants use strong foundations (HOL, CIC, choice, quotients).
- Most theorems need far less.
- Costs of strength:
 - Huge tactic space -> harder search.
 - Loss of computational content (e.g., noncomputable).
- Reverse mathematics seeks to determine which axioms are actually needed

- Proof assistants use strong foundations (HOL, CIC, choice, quotients).
- Most theorems need far less.
- Costs of strength:
 - Huge tactic space -> harder search.
 - Loss of computational content (e.g., noncomputable).
- Reverse mathematics seeks to determine which axioms are actually needed
- Aim: formalize theorems in the weakest adequate system.

Bounded arithmetic studies some of the weakest arithmetical theories. Here, we will consider $I\Delta_0$, V^0 .

Bounded arithmetic studies some of the weakest arithmetical theories. Here, we will consider $I\Delta_0$, V^0 .

At the bottom:

Bounded arithmetic studies some of the weakest arithmetical theories. Here. we will consider $I\Delta_0$, V^0 .

At the bottom:

• you are not able to prove the Pigeonhole Principle ($V^0 \nvDash PHP$)

Bounded arithmetic studies some of the weakest arithmetical theories. Here. we will consider $I\Delta_0$, V^0 .

At the bottom:

- you are not able to prove the Pigeonhole Principle ($V^0 \nvdash PHP$)
- nor that the exponential function is total! $(I\Delta_0 \nvdash \forall x \exists ! y \ \exp(x, y))$

Bounded arithmetic studies some of the weakest arithmetical theories. Here. we will consider $I\Delta_0$, V^0 .

At the bottom:

- you are not able to prove the Pigeonhole Principle ($V^0 \nvdash PHP$)
- nor that the exponential function is total! $(I\Delta_0 \nvdash \forall x \exists ! y \ \exp(x, y))$

Bounded arithmetic studies some of the weakest arithmetical theories. Here. we will consider $I\Delta_0$, V^0 .

At the bottom:

- you are not able to prove the Pigeonhole Principle ($V^0 \nvDash PHP$)
- nor that the exponential function is total! $(I\Delta_0 \nvdash \forall x \exists ! y \ \exp(x,y))$

You need to explicitly add strength, then can:

Bounded arithmetic studies some of the weakest arithmetical theories. Here. we will consider $I\Delta_0$, V^0 .

At the bottom:

- you are not able to prove the Pigeonhole Principle ($V^0 \nvdash PHP$)
- nor that the exponential function is total! $(I\Delta_0 \nvdash \forall x \exists ! y \ \exp(x,y))$

You need to explicitly add strength, then can:

• prove properties of binary addition $(I\Delta_0 \vdash \forall x \forall y \ x + y = y + x)$

Bounded arithmetic studies some of the weakest arithmetical theories. Here. we will consider $I\Delta_0$, V^0 .

At the bottom:

- you are not able to prove the Pigeonhole Principle ($V^0 \nvdash PHP$)
- nor that the exponential function is total! $(I\Delta_0 \nvdash \forall x \exists ! y \ \exp(x,y))$

You need to explicitly add strength, then can:

- prove properties of binary addition $(I\Delta_0 \vdash \forall x \forall y \ x + y = y + x)$
- define a sorting function

Bounded arithmetic studies some of the weakest arithmetical theories. Here. we will consider $I\Delta_0$, V^0 .

At the bottom:

- you are not able to prove the Pigeonhole Principle ($V^0 \nvdash PHP$)
- nor that the exponential function is total! $(I\Delta_0 \nvdash \forall x \exists ! y \ \exp(x,y))$

You need to explicitly add strength, then can:

- prove properties of binary addition $(I\Delta_0 \vdash \forall x \forall y \ x + y = y + x)$
- define a sorting function
- prove standard graph theorems.

The goals of this presentation

Why formalize arithmetic?

These theories correspond nicely to complexity classes.

We want to formalize theorems of the form $I\Delta_0 \vdash \phi(x,y)$ to explore computational contents of the proofs.

② Demonstrate that it is possible to formalize it

4 / 26

First, this is our vocabulary (think of them just as some UTF8 symbols, no meaning at all):

• variable names (x, y, z, ...)

- variable names (x, y, z, ...)
- logical connectives (\neg, \land, \lor) and constants (\bot, \top)

- variable names (x, y, z, ...)
- logical connectives (\neg, \land, \lor) and constants (\bot, \top)
- quantifiers (\forall, \exists)

- variable names (x, y, z, ...)
- logical connectives (\neg, \land, \lor) and constants (\bot, \top)
- quantifiers (\forall, \exists)
- parentheses

- variable names (x, y, z, ...)
- logical connectives (\neg, \land, \lor) and constants (\bot, \top)
- quantifiers (\forall, \exists)
- parentheses
- function symbols:

- variable names (x, y, z, ...)
- logical connectives (\neg, \land, \lor) and constants (\bot, \top)
- quantifiers (\forall, \exists)
- parentheses
- function symbols:
 - zero-ary: 0, 1,

- variable names (x, y, z, ...)
- logical connectives (\neg, \land, \lor) and constants (\bot, \top)
- quantifiers (\forall, \exists)
- parentheses
- function symbols:
 - zero-ary: 0, 1,
 - binary: addition (+), multiplication (⋅)

- variable names (x, y, z, ...)
- logical connectives (\neg, \land, \lor) and constants (\bot, \top)
- quantifiers (\forall, \exists)
- parentheses
- function symbols:
 - zero-ary: 0, 1,
 - binary: addition (+), multiplication (⋅)
- relation symbols:

- variable names (x, y, z, ...)
- logical connectives (\neg, \land, \lor) and constants (\bot, \top)
- quantifiers (∀,∃)
- parentheses
- function symbols:
 - zero-ary: 0, 1,
 - binary: addition (+), multiplication (·)
- relation symbols:
 - binary: =, <

- variable names (x, y, z, ...)
- logical connectives (\neg, \land, \lor) and constants (\bot, \top)
- quantifiers (∀,∃)
- parentheses
- function symbols:
 - zero-ary: 0, 1,
 - binary: addition (+), multiplication (·)
- relation symbols:
 - binary: =, <

First, this is our vocabulary (think of them just as some UTF8 symbols, no meaning at all):

- variable names (x, y, z, ...)
- logical connectives (\neg, \land, \lor) and constants (\bot, \top)
- quantifiers (\forall, \exists)
- parentheses
- function symbols:
 - zero-ary: 0, 1,
 - binary: addition (+), multiplication (⋅)
- relation symbols:
 - binary: =, <

Technicality: require the = symbol be the actual equality on underlying objects. Will skip equality axioms later.

Terms:

• every variable is a term

Terms:

- every variable is a term
- 0,1 are terms

Terms:

- every variable is a term
- 0, 1 are terms
- if t_1, t_2 are terms, then $t_1 + t_2$ and $t_1 \cdot t_2$ are terms.

Terms:

- every variable is a term
- 0, 1 are terms
- if t_1, t_2 are terms, then $t_1 + t_2$ and $t_1 \cdot t_2$ are terms.

Terms:

- every variable is a term
- 0, 1 are terms
- if t_1, t_2 are terms, then $t_1 + t_2$ and $t_1 \cdot t_2$ are terms.

Formulas:

 \bullet \bot , \top are formulas

Terms:

- every variable is a term
- 0, 1 are terms
- if t_1, t_2 are terms, then $t_1 + t_2$ and $t_1 \cdot t_2$ are terms.

Formulas:

- \bullet \bot , \top are formulas
- if t_1, t_2 are terms, then $t_1 \leq t_2, t_1 = t_2$ are formulas

Terms:

- every variable is a term
- 0, 1 are terms
- if t_1, t_2 are terms, then $t_1 + t_2$ and $t_1 \cdot t_2$ are terms.

Formulas:

- \bullet \bot , \top are formulas
- if t_1, t_2 are terms, then $t_1 \leqslant t_2, t_1 = t_2$ are formulas
- if A, B are formulas, so are $A \wedge B$, $A \vee B$, $\neg A$.

The syntax of our theory: what it " $\phi(x,y)$ "? Terms and formulas

Terms:

- every variable is a term
- 0, 1 are terms
- if t_1, t_2 are terms, then $t_1 + t_2$ and $t_1 \cdot t_2$ are terms.

Formulas:

- \bullet \bot , \top are formulas
- if t_1, t_2 are terms, then $t_1 \leq t_2, t_1 = t_2$ are formulas
- if A, B are formulas, so are $A \wedge B$, $A \vee B$, $\neg A$.
- if A is a formula and x is a variable, then $\forall xA$, $\exists xA$ are formulas

We use any standard deduction system for classical, first-order logic.

• disjunction introduction: $A \vdash A \lor B$ (from a proof of A you can derive a proof of $A \vee B$)

- disjunction introduction: $A \vdash A \lor B$ (from a proof of A you can derive a proof of $A \vee B$)
- \exists introduction: $\phi(a) \vdash \exists x, \phi(x)$ (technical restrictions on a needed)

- disjunction introduction: $A \vdash A \lor B$ (from a proof of A you can derive a proof of $A \vee B$)
- \exists introduction: $\phi(a) \vdash \exists x, \phi(x)$ (technical restrictions on a needed)
- double negation elimination: $\neg \neg A \vdash A$ (prove A from $\neg \neg A$)

- disjunction introduction: $A \vdash A \lor B$ (from a proof of A you can derive a proof of $A \vee B$)
- \exists introduction: $\phi(a) \vdash \exists x, \phi(x)$ (technical restrictions on a needed)
- double negation elimination: $\neg \neg A \vdash A$ (prove A from $\neg \neg A$)
- implication elimination (modus ponens): $A \rightarrow B, A \vdash B$

- disjunction introduction: $A \vdash A \lor B$ (from a proof of A you can derive a proof of $A \vee B$)
- \exists introduction: $\phi(a) \vdash \exists x, \phi(x)$ (technical restrictions on a needed)
- double negation elimination: $\neg \neg A \vdash A$ (prove A from $\neg \neg A$)
- implication elimination (modus ponens): $A \rightarrow B, A \vdash B$
- . . .

- disjunction introduction: $A \vdash A \lor B$ (from a proof of A you can derive a proof of $A \vee B$)
- \exists introduction: $\phi(a) \vdash \exists x, \phi(x)$ (technical restrictions on a needed)
- double negation elimination: $\neg \neg A \vdash A$ (prove A from $\neg \neg A$)
- implication elimination (modus ponens): $A \rightarrow B, A \vdash B$
- . . .

We use any standard deduction system for classical, first-order logic.

- disjunction introduction: $A \vdash A \lor B$ (from a proof of A you can derive a proof of $A \vee B$)
- \exists introduction: $\phi(a) \vdash \exists x, \phi(x)$ (technical restrictions on a needed)
- double negation elimination: $\neg \neg A \vdash A$ (prove A from $\neg \neg A$)
- implication elimination (modus ponens): $A \rightarrow B, A \vdash B$
- . . .

Syntactic sugar: $A \rightarrow B := \neg A \lor B$.

The axioms: what is $I\Delta_0$? 1-BASIC axioms

Table 1: 1-BASIC axioms

Axiom	Statement
B1.	$x+1 \neq 0$
B2.	$x + 1 = y + 1 \implies x = y$
В3.	x + 0 = x
B4.	x + (y + 1) = (x + y) + 1
B5.	$x \cdot 0 = 0$
В6.	$x \cdot (y+1) = (x \cdot y) + x$
B 7 .	$(x \le y \land y \le x) \implies x = y$
B8.	$x \le x + y$
C.	0+1=1

Not much!

Not much!

• Can we prove that addition is commutative?

Not much!

• Can we prove that addition is commutative? NO!

Not much!

- Can we prove that addition is commutative? NO!
- Can we prove that addition is associative?

9/26

Not much!

- Can we prove that addition is commutative? NO!
- Can we prove that addition is associative? NO!

Axiom schema of induction

Definition (Induction Scheme).

If Φ is a set of formulas, then Φ -IND axioms are the formulas

$$(\varphi(0) \land \forall x (\varphi(x) \rightarrow \varphi(x+1))) \rightarrow \forall z \varphi(z),$$

where $\varphi \in \Phi$. $\varphi(x)$ may have free variables other than x.

Axiom schema of induction

Definition (Induction Scheme).

If Φ is a set of formulas, then Φ -IND axioms are the formulas

$$(\varphi(0) \land \forall x (\varphi(x) \rightarrow \varphi(x+1))) \rightarrow \forall z \varphi(z),$$

where $\varphi \in \Phi$. $\varphi(x)$ may have free variables other than x.

The theory having axioms **B1-B8**, together with induction for arbitrary formulas from our vocabulary, is the **Peano** arithmetic (a very strong system).

Axiom schema of induction

Definition (Induction Scheme).

If Φ is a set of formulas, then Φ -IND axioms are the formulas

$$(\varphi(0) \land \forall x (\varphi(x) \rightarrow \varphi(x+1))) \rightarrow \forall z \varphi(z),$$

where $\varphi \in \Phi$. $\varphi(x)$ may have free variables other than x.

The theory having axioms **B1-B8**, together with induction for arbitrary formulas from our vocabulary, is the **Peano** arithmetic (a very strong system).

By carefully controlling Φ , we obtain **interesting** theories.

Complexity of formulas

Definition (Bounded Quantifiers).

$$\exists x \leq t A := \exists x (x \leq t \land A)$$

$$\forall x \le t A := \forall x (x \le t \to A)$$

(the variable x must not occur in the term t) Quantifier that occur in this form are **bounded**.

Complexity of formulas

Definition (Bounded Quantifiers).

$$\exists x \leq t A := \exists x (x \leq t \land A)$$

$$\forall x \leq t A := \forall x (x \leq t \to A)$$

(the variable x must not occur in the term t) Quantifier that occur in this form are **bounded**.

A formula is Δ_0 (**bounded**) if every quantifier in it is bounded.

A formula is Σ_1 if it is of the form $\exists x_1, \ldots, \exists x_k \phi$ and ϕ is bounded.

1-BASIC axioms together with induction for bounded formulas only give us a well-studied system called $I\Delta_0$.

The following formulas (and their universal closures) are theorems of $I\Delta_0$ (Cook & Nguyen, 2010):

• x + y = y + x (commutativity of +)

1-BASIC axioms together with induction for bounded formulas only give us a well-studied system called $I\Delta_0$.

The following formulas (and their universal closures) are theorems of $I\Delta_0$ (Cook & Nguyen, 2010):

- x + y = y + x (commutativity of +)
- (x + y) + z = x + (y + z) (associativity of +)

12 / 26

1-BASIC axioms together with induction for bounded formulas only give us a well-studied system called $I\Delta_0$.

The following formulas (and their universal closures) are theorems of $I\Delta_0$ (Cook & Nguyen, 2010):

- x + y = y + x (commutativity of +)
- (x + y) + z = x + (y + z) (associativity of +)
- $\bullet x < x$

1-BASIC axioms together with induction for bounded formulas only give us a well-studied system called $I\Delta_0$.

The following formulas (and their universal closures) are theorems of $I\Delta_0$ (Cook & Nguyen, 2010):

- x + y = y + x (commutativity of +)
- (x + y) + z = x + (y + z) (associativity of +)
- \bullet x < x
- 0 < x

1-BASIC axioms together with induction for bounded formulas only give us a well-studied system called $I\Delta_0$.

The following formulas (and their universal closures) are theorems of $I\Delta_0$ (Cook & Nguyen, 2010):

- x + y = y + x (commutativity of +)
- (x + y) + z = x + (y + z) (associativity of +)
- $\bullet x < x$
- 0 < x
- $\forall x \, \forall y \, (0 < x \rightarrow \exists q \, \exists r \, (r < x \land y = x \cdot q + r))$ (division theorem)

Defining new functions in $I\Delta_0$

We say that a function $f(\vec{x})$ is provably total in $I\Delta_0$ if there is a formula $\phi(\vec{x}, y)$ in Σ_1 (i.e. of the form $\exists \ldots \exists \psi$ for ψ bounded) such that:

$$I\Delta_0 \vdash \forall x \exists ! y \phi(\vec{x}, y)$$

and that

$$y = f(\vec{x}) \iff \phi(\vec{x}, y)$$

Examples:

• the function $LimitedSub(x, y) := max\{0, x - y\}$

- the function $LimitedSub(x, y) := max\{0, x y\}$
- the function x div y := |x/y| is defined by

$$z = \lfloor x/y \rfloor \leftrightarrow ((y \cdot z \le x \land x < y(z+1)) \lor (y = 0 \land z = 0)).$$

Examples:

- the function $LimitedSub(x, y) := max\{0, x y\}$
- the function x div y := |x/y| is defined by

$$z = \lfloor x/y \rfloor \leftrightarrow ((y \cdot z \le x \land x < y(z+1)) \lor (y = 0 \land z = 0)).$$

x mod y

- the function $LimitedSub(x, y) := max\{0, x y\}$
- the function x div y := |x/y| is defined by

$$z = \lfloor x/y \rfloor \leftrightarrow ((y \cdot z \le x \land x < y(z+1)) \lor (y = 0 \land z = 0)).$$

- x mod y
- $\bullet |\sqrt{X}|$

- the function $LimitedSub(x, y) := max\{0, x y\}$
- the function x div y := |x/y| is defined by

$$z = \lfloor x/y \rfloor \leftrightarrow ((y \cdot z \le x \land x < y(z+1)) \lor (y = 0 \land z = 0)).$$

- x mod y
- $\bullet |\sqrt{X}|$

- the function $LimitedSub(x, y) := max\{0, x y\}$
- the function x div y := |x/y| is defined by

$$z = \lfloor x/y \rfloor \leftrightarrow ((y \cdot z \le x \land x < y(z+1)) \lor (y = 0 \land z = 0)).$$

- x mod y
- $\bullet |\sqrt{X}|$

Examples:

- the function $LimitedSub(x, y) := max\{0, x y\}$
- the function x div y := |x/y| is defined by

$$z = \lfloor x/y \rfloor \leftrightarrow ((y \cdot z \le x \land x < y(z+1)) \lor (y = 0 \land z = 0)).$$

- x mod y
- $\bullet |\sqrt{X}|$
- . . .

For all of these, you need to prove existence and uniqueness of the result.

Examples:

- the function $LimitedSub(x, y) := max\{0, x y\}$
- the function x div y := |x/y| is defined by

$$z = \lfloor x/y \rfloor \leftrightarrow ((y \cdot z \le x \land x < y(z+1)) \lor (y = 0 \land z = 0)).$$

- x mod y
- $\bullet |\sqrt{X}|$
- . . .

For all of these, you need to prove existence and uniqueness of the result.

BUT: $I\Delta_0$ can't "prove total" the exponential function $(x \mapsto 2^x)!$

Examples:

- the function $LimitedSub(x, y) := max\{0, x y\}$
- the function x div $y := \lfloor x/y \rfloor$ is defined by

$$z = \lfloor x/y \rfloor \leftrightarrow ((y \cdot z \le x \land x < y(z+1)) \lor (y = 0 \land z = 0)).$$

- x mod y
- $\bullet \left\lfloor \sqrt{x} \right\rfloor$
- ...

For all of these, you need to prove existence and uniqueness of the result.

BUT: $I\Delta_0$ can't "prove total" the exponential function $(x \mapsto 2^x)!$

NOTE: the computational content of $I\Delta_0$ is well-studied.

NOTE: $I\Delta_0$ doesn't align well with practical computer science.

Theories corresponding to complexity classes

The idea is similar.

The idea is similar.

• We still operate in first-order, classical logic.

Theory	Characterizes	Examples
V ⁰ VTC ⁰ VL V ¹	FAC ⁰ FTC ⁰ FLOGSPACE FPTIME	 ⊬ Pigeonhole; ⊢ properties of binary + ⊢ Pigeonhole; defines sorting

The idea is similar.

- We still operate in first-order, classical logic.
- Instead of one sort, we have two:

Theory	Characterizes	Examples
V ⁰ VTC ⁰ VL V ¹	FAC ⁰ FTC ⁰ FLOGSPACE FPTIME	⊬ Pigeonhole; ⊢ properties of binary +⊢ Pigeonhole; defines sorting

The idea is similar.

- We still operate in first-order, classical logic.
- Instead of one sort, we have two:
 - num (representing unary numbers)

Theory	Characterizes	Examples
V ⁰ VTC ⁰ VL V ¹	FAC ⁰ FTC ⁰ FLOGSPACE FPTIME	 ⊬ Pigeonhole; ⊢ properties of binary + ⊢ Pigeonhole; defines sorting

The idea is similar.

- We still operate in first-order, classical logic.
- Instead of one sort, we have two:
 - num (representing unary numbers)
 - str (representing binary strings)

Theory	Characterizes	Examples
V ⁰ VTC ⁰ VL V ¹	FAC ⁰ FTC ⁰ FLOGSPACE FPTIME	 ✓ Pigeonhole; ⊢ properties of binary + ⊢ Pigeonhole; defines sorting

The idea is similar.

- We still operate in first-order, classical logic.
- Instead of one sort, we have two:
 - num (representing unary numbers)
 - str (representing binary strings)
- Instead of induction we have finite set comprehension (finite sets \equiv binary strings)

Theory	Characterizes	Examples
V ⁰ VTC ⁰ VL V ¹	FAC ⁰ FTC ⁰ FLOGSPACE FPTIME	 ⊬ Pigeonhole; ⊢ properties of binary + ⊢ Pigeonhole; defines sorting

How would you even formalize this field?

Requirements on the product

Transfer proofs of the form $V^0 \vdash x + y = y + x$ from paper to computer.

Make "cheating" difficult or visible for the reader.

Enable easy interactive proving inside of the weak arithmetic.

Problems to avoid

No way to express that *Prop* is Δ_0 or Σ_1 in any of the existing systems. Rocg, Lean and Isabelle/Pure all don't foster a shallow embedding.

```
inductive Formula
l false : Formula
 eq (term1 term2 : Term) : Formula
 implies (f1 f2 : Formula) : Formula
```

Defining a proof system from scratch can take years of works to become usable

The 90% solution

```
class IOPENModel (M : Type _) where
  num : Type*
  B1 : num.realizes B1 statement
  B2 : num.realizes B2 statement
  open induction (phi: Formula) :
    phi.IsOpen -> num.realizes (makeInduction phi)
theorem add assoc (M : IOPENModel)
  : forall x y z : M.num, (x + y) + z = x + (y + z) := by
  have ind := M.open_induction $
    ((x' +' y') + z') =' (x' + (y' + z'))
  -- simps of axioms
  intro x y z
```

Another design will be necessary for proof-theoretical results

What's formalized?

- the $I\Delta_0$ theory and the two-sorted V^0 theory
- basic properties of the $I\Delta_0$ system proofs by induction on a Δ_0 formula
- partial proof of $V^0 \vdash MIN$, first step towards obtaining induction in V^0

How it looks like?

```
intro x
 apply ind
  · intro a ha ha'
    exists a
    constructor
    · apply b8
    · rfl
```

Thanks!

https://github.com/ruplet/formalization-of-bounded-arithmetic

This project has been supported by the ZSM IDUB program at the University of Warsaw

Bonus: finite axiomatizability of V^0

The theory V^0 is finitely axiomatizable (Cook & Nguyen, 2010).

You don't need an induction axiom scheme, nor a comprehension axiom scheme. The instantiations of induction to around 20 formulas and of comprehension to 12 formulas suffice.

Moreover, since the theories VC expressing complexity classes C are constructed from axioms of V^0 + a complete problem for C taken as an axiom. So they are also finitely axiomatizable and (very) expressive.

Perhaps V^0 is a good theory for automated proof search. I haven't managed to explore this direction yet.

V^0 definition: 2-BASIC axioms

Two sorts: unary numbers (x, y, z, ...), binary strings (X, Y, Z, ...).

$$\text{Symbols: } L^2_{\mathcal{A}} = [0,1,+,\cdot, \mathsf{len}, =_{\mathit{num}}, =_{\mathit{str}}, \leq, \in].$$

B1.
$$x + 1 \neq 0$$

B3.
$$x + 0 = x$$

B5.
$$x \cdot 0 = 0$$

B7.
$$(x \le y \land y \le x) \rightarrow x = y$$

B9.
$$0 \le x$$

B11.
$$x \le y \leftrightarrow x < y + 1$$

L1.
$$X(y) \to y < |X|$$

CE
$$(|V| | |V| \land \forall)$$

B10.
$$x \le y \lor y \le x$$

B12.
$$x \neq 0 \to \exists y \leq x (y + 1 = x)$$

L2.
$$y + 1 = |X| \to X(y)$$

B2. $x + 1 = y + 1 \rightarrow x = y$ **B4.** x + (y + 1) = (x + y) + 1

B6. $x \cdot (y + 1) = (x \cdot y) + x$

SE.
$$(|X| = |Y| \land \forall i < |X| (X(i) \leftrightarrow Y(i))) \rightarrow X = Y$$

B8. x < x + y

Notation: $\exists X \leqslant y \phi := \exists X (|X| \leqslant y \land \phi).$

Definition (Comprehension Axiom).

If Φ is a set of formulas, the comprehension scheme for Φ (denoted Φ-COMP) consists of all instances

$$\exists X \leq y \ \forall z < y \ (X(z) \leftrightarrow \varphi(z)),$$

where $\varphi(z) \in \Phi$ and X does not occur free in $\varphi(z)$. Here $\varphi(z)$ may have additional free variables of either sort besides z.

Definition (V_i) .

For $i \geq 0$, the theory V_i has vocabulary L^2_A and is axiomatized by **2-BASIC** together with Σ_i^B -COMP.

Bibliography

```
    Jiatu Li's introduction from 1st July 2025:

    https://eccc.weizmann.ac.il/report/2025/086/
Cook, S., & Nguyen, P. (2010). Logical foundations of proof complexity.
   Cambridge University Press.
   https://doi.org/10.1017/CBO9780511676277http:
   //web.archive.org/web/20240713034207/https:
   //www.karlin.mff.cuni.cz/~krajicek/cook-nguyen.pdf
```