Université de Montréal

 ${\rm IFT6561-Simulation:}$ Aspects stochastiques

Devoir 5

par:

Eugénie Yockell (20071932) Cong Liu (20161998)

Date de remise: 2 décembre 2020

On sait que Cov(X,Y) = E[XY] - E[X]E[Y]. On définit une fonction $g(\mu)$ où on veut un intervalle de confiance pour $g(\mu)$ où $\mu = (\mu_1, ..., \mu_d)$ et g est continue mais potentiellement non linéaire.

$$Cov(X, Y) = g(\mu_1, \mu_2, \mu_3) = \mu_3 - \mu_1 \mu_2$$

où
$$\mu_1 = \frac{1}{n} \sum_{i=1}^n X_i$$
, $\mu_2 = \frac{1}{n} \sum_{i=1}^n Y_i$ et $\mu_3 = \frac{1}{n} \sum_{i=1}^n X_i Y_i$.

En utilisant le théorème de delta, pour $g: \mathbb{R}^d \to \mathbb{R}$ cotinûment différentiable dans un voisinage de μ , on sait que $r(n)(Y_n - \mu) \Rightarrow Y$ quand $n \to \infty$, alors

$$r(n)(g(\mathbf{Y}_n) - g(\boldsymbol{\mu})) \Rightarrow (\nabla g(\boldsymbol{\mu}))^{\mathsf{T}} \mathbf{Y}$$

Étant donné que ce sont des moyennes empiriques, on peut appliquer le corollaire sous le théorème central limite où nous avons

$$\sqrt{n}(\mathbf{Y}_n - \boldsymbol{\mu}) \Rightarrow \mathbf{Y} \sim N(0, \Sigma)$$

Le théorème nous dis que $\sqrt{n}(g(\mathbf{Y}_n) - g(\boldsymbol{\mu})) \sim N(0, \sigma_g)$. Où $\sigma_g = (\nabla g(\boldsymbol{\mu}))^{\mathsf{T}} \Sigma \nabla g(\boldsymbol{\mu})$. Et l'intervalle de confiance est $[g(\mathbf{Y}_n) \pm \Phi^{-1}(1 - \alpha/2)\sigma_g/\sqrt{n}]$. Il nous faut alors σ_g pour définir l'intervalle de confiance.

Définissons la matrice de covariance Σ ,

$$\Sigma = \begin{pmatrix} Var(X) & Cov(X,Y) & Cov(X,XY) \\ Cov(Y,X) & Var(Y) & Cov(Y,XY) \\ Cov(XY,X) & Cov(XY,Y) & Var(XY) \end{pmatrix} = \begin{pmatrix} \sigma_1^2 & \sigma_{12}^2 & \sigma_{13}^2 \\ \sigma_{12}^2 & \sigma_{2}^2 & \sigma_{23}^2 \\ \sigma_{13}^2 & \sigma_{23}^2 & \sigma_{3}^2 \end{pmatrix}$$

Calculons $\nabla g(\boldsymbol{\mu})$,

$$(\nabla g(\boldsymbol{\mu}))^{\mathsf{T}} = \begin{pmatrix} -\mu_2 & -\mu_1 & 1 \end{pmatrix}$$

Ainsi,

$$\sigma_g = \begin{pmatrix} -\mu_2 & -\mu_1 & 1 \end{pmatrix} \begin{pmatrix} \sigma_1^2 & \sigma_{12}^2 & \sigma_{13}^2 \\ \sigma_{12}^2 & \sigma_2^2 & \sigma_{23}^2 \\ \sigma_{13}^2 & \sigma_{23}^2 & \sigma_3^2 \end{pmatrix} \begin{pmatrix} -\mu_2 \\ -\mu_1 \\ 1 \end{pmatrix}$$

$$\begin{split} \sigma_g &= \left((-\mu_2 \sigma_1^2 - \mu_1 \sigma_{12}^2 + \sigma_{13}^2) \right. \left. (-\mu_2 \sigma_{12}^2 - \mu_1 \sigma_2^2 + \sigma_{23}^2) \right. \left. (-\mu_2 \sigma_{13}^2 - \mu_1 \sigma_{23}^2 + \sigma_3^2) \right) \begin{pmatrix} -\mu_2 \\ -\mu_1 \\ 1 \end{pmatrix} \\ &= \mu_2 \sigma_1^2 + \mu_1 \mu_2 \sigma_{12}^2 - \mu_2 \sigma_{13}^2 + \mu_1 \mu_2 \sigma_{12}^2 + \mu_1 \sigma_2^2 - \mu_1 \sigma_{23}^2 - \mu_2 \sigma_{13}^2 - \mu_1 \sigma_{23}^2 + \sigma_3^2 \\ &= \mu_2^2 \sigma_1^2 + \mu_1^2 \sigma_2^2 + \sigma_3^2 - 2\mu_2 \sigma_{13}^2 - 2\mu_1 \sigma_{23}^2 + 2\mu_1 \mu_2 \sigma_{12}^2 \end{split}$$

Le candidat évident est de remplacer par les estimateurs de variance et covariance,

$$\hat{\sigma}_g = \mu_2^2 \hat{\sigma}_1^2 + \mu_1^2 \hat{\sigma}_2^2 + \hat{\sigma}_3^2 - 2\mu_2 \hat{\sigma}_{13}^2 - 2\mu_1 \hat{\sigma}_{23}^2 + 2\mu_1 \mu_2 \hat{\sigma}_{12}^2$$

οù,

$$\hat{\sigma}_{12} = \frac{1}{n-1} \sum_{i}^{n} (X_i - \overline{X}_n) (Y_i - \overline{Y}_n)$$

$$\hat{\sigma}_{13} = \frac{1}{n-1} \sum_{i}^{n} (X_i - \overline{X}_n) (X_i Y_i - \overline{XY}_n)$$

$$\hat{\sigma}_{23} = \frac{1}{n-1} \sum_{i}^{n} (Y_i - \overline{Y}_n) (X_i Y_i - \overline{XY}_n)$$

$$\hat{\sigma}_1 = \frac{1}{n-1} \sum_{i}^{n} (X_i - \overline{X}_n)^2$$

$$\hat{\sigma}_2 = \frac{1}{n-1} \sum_{i}^{n} (Y_i - \overline{Y}_n)^2$$

$$\hat{\sigma}_3 = \frac{1}{n-1} \sum_{i}^{n} (X_i Y_i - \overline{XY}_n)^2$$

Nous savons σ_g est fortement consistant, puisque les estimateurs de moyennes et variances sont consistants. Puisque σ_g est fortement consistant nous avons le TLC,

$$\frac{\sqrt{n}(g(\mathbf{Y}_n) - g(\boldsymbol{\mu}))}{\sigma_q} \Rightarrow N(0, 1) \quad \text{pour } n \to \infty$$

Et l'intervalle de confiance à 95% est,

$$\left[g(\mathbf{Y}_n) \pm \Phi^{-1} (1 - \alpha/2) \sigma_g / \sqrt{n} \right] \\
\left[g(\mathbf{Y}_n) \pm 1.96 \frac{(\mu_2^2 \hat{\sigma}_1^2 + \mu_1^2 \hat{\sigma}_2^2 + \hat{\sigma}_3^2 - 2\mu_2 \hat{\sigma}_{13}^2 - 2\mu_1 \hat{\sigma}_{23}^2 + 2\mu_1 \mu_2 \hat{\sigma}_{12}^2)}{\sqrt{n}} \right]$$

 $\mathbf{a})$

Dans cette question, on fait m=1000 simulations. À chaque simulation il y a n=100 observations de variables aléatoires exponentielles. Au seuil du risque $\alpha=0.05$, le résultat obtenu est à la table 1 et la figure 1.

	Valeur
Esperance coverage probability $\hat{\rho}$	0.665
Confidence interval for p	(0.582, 0.766)
Average width of confidence probability W	0.581

Table 1: Statistiques des estimation de IC en utilisant χ^2 distribution pour n=100

Figure 1: distribution empirique avec χ^2 et m=1000, n=100

b)

Dans la question b , on a fait m=1000 simulations, à chaque simulation il y a n=100 observations de variables aléatoire exponentielle. Au seuil du risque $\alpha=0.05$, le résultat obtenu est à la table 2 et à la figure 2

	Valeur
Esperance coverage probability $\hat{\rho}$	0.661
Confidance interval for p	(0.633, 0.689)
Average width of confidence probability W	0.176

Table 2: Statistiques des estimation de IC en utilisant χ^2 distribution pour n=1000

Figure 2: Distribution empirique avec χ^2 m = 1000 et n = 1000

Discussion

Selon des statistiques, on trouve que lorsqu'on augmente la taille d'échantillon de n=100 à n=1000, la largeur de l'intervalle de confiance diminue, la probabilité de couvrage de p devient plus petite, la performance devient plus faible. En effet, en calculant l'intervalle de confiance de la variance, on a supposé au préalable que $\frac{(n-1)S_n^2}{\sigma^2}$ suit une distribution χ^2 . On remarque sur la figure 1 et 2 que ce n'est pas la vraie distribution. Et donc en grandissant la taille d'échantillon, il y a plus de chance que cette intervalle de confiance ne contient pas la vraie valeur 1.

c)

Dans cette partie, on utilise la méthode bootstrap avec m=1000 exemples. Au seuil du risque $\alpha=0.05$, le résultat obtenu est à la table 3 et à la figure 3.

	Valeur
Esperance coverage probability $\hat{\rho}$	0.838
Confidance interval for p	(0.797, 0.845)
Average width of confidence probability W	0.943

Table 3: Statistiques des estimation de IC en utilisant basic nonparametric boostrap

Figure 3: distribution empirique avec basic non-para boostrap m = 1000, n = 100

Discussion

En comparant avec les résultats obtenues en a) et b), on constate qu'avec la méthode boostrap non-paramétrique, la probabilité de couvrage a beaucoup augmenté, la largeur de l'IC devient plus grande, la performance est significativement améliorée. En effet, en utilisant le méthode Bootstrap non-paramétrique, au lieu de supposer une distribution, on réechantillonne plusieurs fois pour avoir plus d'information de l'échantillon initiale.

Nous avons,

$$MSE = Biais^{2} + Variance$$

$$MSE \le \left(\frac{\kappa_{0}\beta^{n_{0}}}{n - n_{0}}\right)^{2} + \left(\frac{\kappa_{1}}{n - n_{0}}\right)$$

Une heuristique simple pour mesurer la valeur optimal de warm-up qui minimise le MSE est la solution graphique proposée par Welch (1983). Le but est de trouver une valeur de n_0 tel que le processus du coût moyen semble s'aplatir en fonction du temps. Comme les réalisations individuelles du processus peuvent avoir une grande variance, on génère k répétitions de réalisation du coût. Ces réalisations sont généré à partir de m étapes, soit le n. On doit avoir un m très grand, beaucoup plus grand que la valeur anticipé de n_0 . Les étapes sont comme suit,

- 1. On fait k simulations de longueur mIl est préférable de prendre k=5 ou k=10On définit C_{ij} comme l'observation j à la répétition i
- 2. Pose $\bar{C}_j = \sum_{i=1}^k C_{ij}/k$
- 3. On applique un lissage des hautes fréquences par une moyenne mobile de longueur w $\bar{C}_{j}(w) = \frac{1}{2w+1} \sum_{s=-w}^{w} \bar{C}_{j+s}$
- 4. On étudie ensuite le graphique de $\bar{C}_j(w)$ en fonction de j où n_0 est le j Il est conseillé de tester différentes valeurs de longueur w et prendre la plus petite valeurs de w qui correspond à un graphique raisonnablement lisse Si aucun résultat n'est satisfaisant, augmenter k et m
- 5. On choisit la valeur de n_0 comme le j au moment où le processus semble avoir convergé graphiquement

Avec cette heuristique, il est possible de déterminer une valeur optimal de n_0 qui minimise le MSE. Une des difficultés est qu'il faut que k soit assez grand si les réalisations de coût ont une grande variance entre eux. [1]

Dans le cas où $n \to \infty$, comme κ_0 et κ_1 sont des constantes, il existe une borne supérieure pour chaque terme tel $max(\kappa_0^2, \kappa_1)$ et on peut poser,

$$MSE \in \mathcal{O}\left(\frac{\beta^{2n_0}}{(n-n_0)^2} + \frac{1}{n-n_0}\right)$$

Lorsque $n \to \infty$ le terme de β^{2n_0} devient négligeable par rapport à son dénominateur en n^2 qui fait tendre rapidement le biais vers 0. De plus, lorsque $n \gg n_0$, le terme pour le biais diminue plus rapidement que le terme pour la variance. Nous avons alors,

$$MSE \in \mathcal{O}\left(\frac{1}{n-n_0}\right)$$

Ainsi, quand $n \to \infty$, le n_0 optimal asymptotique est évidemment $n_0 = 0$. Ce résultat n'est pas étonnant, par exemple, Blomqvist (1970) a montré que pour le processus M/M/1 et

pour d'autre processus de file d'attentes, avec un n assez grand, le MSE est minimal lorsque $n_0=0$. De plus, le warm-up permet de particulièrement diminuer le MSE lorsque le biais de l'initialisation est grand et que l'auto-corrélation est forte. Dans ce cas, on retrouve encore que la valeur de n_0 qui minise le MSE diminue à la même vitesse que n augmente. On conclue alors que pour de très grande valeur de n, la warm-up n'est pas conseillé lorsque la mesure de performance est le MSE. [1]

Montrons que la somme de k exponentielle de moyenne $1/\gamma$ est équivalente à la distribution de Erlang. Étudions les MGF,

$$M_{exp}(t) = \frac{\gamma}{\gamma - t}$$

$$M_{erlang}(t) = (1 - \frac{t}{\gamma})^{-k}$$

On sait que pour une variable $S = \sum_{i=1}^{k} X_i$ où X_i sont variables exponentielles iid, la MGF est $M_S(t) = M_{X_1}(t) M_{X_2}(t) ... M_{X_k}(t)$. Nous avons alors,

$$M_{\sum exp} = M_{exp}(t)^k$$

$$= \left(\frac{\gamma}{\gamma - t}\right)^k$$

$$= \left(\frac{\gamma}{\gamma} \frac{1}{1 - \frac{t}{\gamma}}\right)^k$$

$$= \left(\frac{1}{1 - \frac{t}{\gamma}}\right)^k = \left(1 - \frac{t}{\gamma}\right)^{-k} = M_{erlang}(t)$$

Ainsi, on voit que les deux méthodes sont équivalentes.

Si la méthode de sommation de variables exponentielles est équivalente à $Erlang(k, \gamma)$, alors on maximise la corrélation dans les deux systèmes. Posons $X_1 \sim Erlang(k, \gamma_1)$ et $X_2 \sim Erlang(k, \gamma_2)$. On génère X_1 et X_2 avec des sommes d'exponentielles où on utilise l'exponentielle inverse $F^{-1}(U, \gamma) = \frac{-ln(1-U)}{\gamma}$.

$$Y_{11} = F^{-1}(u_1, \gamma_1) \qquad Y_{21} = F^{-1}(u_1, \gamma_2)$$

$$Y_{12} = F^{-1}(u_2, \gamma_1) \qquad Y_{22} = F^{-1}(u_2, \gamma_2)$$
...
$$Y_{1k} = F^{-1}(u_K, \gamma_1) \qquad Y_{2k} = F^{-1}(u_K, \gamma_2)$$

$$X_1 = \sum_{i=1}^k Y_{1i}(U, \gamma_1) \qquad X_2 = \sum_{i=1}^k Y_{2i}(U, \gamma_2)$$

En effet, selon le théorème 2.5 du manuel, la pair $(X,Y) = (F^{-1}(U), G^{-1}(U))$ où $U \sim U(0,1)$ maximise la corrélation entre X et Y.

Les distributions de Erlang peuvent alors être généré comme,

$$G_{\gamma_1}^{-1}(\bar{U}_1) = \sum_{i=1}^k \frac{-\ln(1-U_i)}{\gamma_1} = \frac{-1}{\gamma_1} \ln\left(\prod_{i=1}^k (1-U_i)\right)$$
$$G_{\gamma_2}^{-1}(\bar{U}_2) = \sum_{i=1}^k \frac{-\ln(1-U_i)}{\gamma_2} = \frac{-1}{\gamma_2} \ln\left(\prod_{i=1}^k (1-U_i)\right)$$

On peut écrire les équations comme,

$$\gamma_1 G_{\gamma_1}^{-1}(\bar{U}_1) = -\ln\left(\prod_{i=1}^k (1 - U_i)\right)$$
$$\gamma_2 G_{\gamma_2}^{-1}(\bar{U}_2) = -\ln\left(\prod_{i=1}^k (1 - U_i)\right)$$

ainsi,

$$\gamma_1 G_{\gamma_1}^{-1}(\bar{U}_1) = \gamma_2 G_{\gamma_2}^{-1}(\bar{U}_2)
\Rightarrow G_{\gamma_1}^{-1}(\bar{U}_1) = \frac{\gamma_2}{\gamma_1} G_{\gamma_2}^{-1}(\bar{U}_2)
\Rightarrow \bar{U}_1 = G_{\gamma_1}(\frac{\gamma_2}{\gamma_1} G_{\gamma_2}^{-1}(\bar{U}_2))$$

Une propriété de la distribution Erlang, pose que si $X \sim Erlang(k, \gamma)$ alors $aX \sim Erlang(k, \frac{\gamma}{a})$. Ainsi,

$$\begin{split} G_{\gamma_{1}}^{-1}(\bar{U}_{1}) &= \frac{\gamma_{2}}{\gamma_{1}} G_{\gamma_{2}}^{-1}(\bar{U}_{2}) \\ \Rightarrow G_{\gamma_{1}}^{-1}(\bar{U}_{1}) &= G_{\frac{\gamma_{1}}{\gamma_{2}}\gamma_{2}}^{-1}(\bar{U}_{2}) \\ \Rightarrow G_{\gamma_{1}}^{-1}(\bar{U}_{1}) &= G_{\gamma_{1}}^{-1}(\bar{U}_{2}) \\ \Rightarrow \bar{U}_{1} &= \bar{U}_{2} \end{split}$$

Ainsi, on est bien dans le cas du théorème 2.5 du manuel où on maximise la corrélation.

Définissons maintenant la corrélation maximale,

$$\rho(X_1, X_2) = \frac{\mathbb{E}[(X_1 - \mu_1)(X_2 - \mu_2)]}{\sigma_1 \sigma_2}$$

où

$$X_1 = G_{\gamma_1}^{-1}(\bar{U}) = \frac{-1}{\gamma_1} \ln \left(\prod_{i=1}^k (1 - U_i) \right) \qquad X_2 = G_{\gamma_2}^{-1}(\bar{U}) = \frac{-1}{\gamma_2} \ln \left(\prod_{i=1}^k (1 - U_i) \right)$$

$$\mu_1 = \frac{k}{\gamma_1}$$
 $\qquad \qquad \mu_2 = \frac{k}{\gamma_2}$ $\qquad \qquad \sigma_1 = \frac{\sqrt{k}}{\gamma_1}$ $\qquad \qquad \sigma_2 = \frac{\sqrt{k}}{\gamma_2}$

Nous avons alors,

$$\rho(X_1, X_2) = \frac{\mathbb{E}\left[\left(\frac{-1}{\gamma_1}\ln(\prod_{i=1}^k (1 - U_i)) - \frac{k}{\gamma_1}\right)\left(\frac{-1}{\gamma_2}\ln(\prod_{i=1}^k (1 - U_i)) - \frac{k}{\gamma_2}\right)\right]}{\frac{\sqrt{k}}{\gamma_1}\frac{\sqrt{k}}{\gamma_2}}$$

$$= \frac{\gamma_1\gamma_2}{k}\mathbb{E}\left[\left(\frac{-1}{\gamma_1}\ln(\prod_{i=1}^k (1 - U_i)) - \frac{k}{\gamma_1}\right)\left(\frac{-1}{\gamma_2}\ln(\prod_{i=1}^k (1 - U_i)) - \frac{k}{\gamma_2}\right)\right]$$

$$= \frac{\gamma_1\gamma_2}{k}\mathbb{E}\left[\left(\frac{-1}{\gamma_1}\right)\left(\ln(\prod_{i=1}^k (1 - U_i)) + k\right)\left(\frac{-1}{\gamma_2}\right)\left(\ln(\prod_{i=1}^k (1 - U_i)) + k\right)\right]$$

$$= \frac{\gamma_1\gamma_2}{k}\frac{1}{\gamma_1\gamma_2}\mathbb{E}\left[\left(\ln(\prod_{i=1}^k (1 - U_i)) + k\right)\left(\ln(\prod_{i=1}^k (1 - U_i)) + k\right)\right]$$

$$= \frac{1}{k}\mathbb{E}\left[\left(\ln(\prod_{i=1}^k (1 - U_i)) + k\right)^2\right]$$

On remarque que ça correspond à la définition de la variance d'une Erlang $\gamma=-1=$ où la variance est $k/\gamma^2=k$. Nous avons alors,

$$\rho(X_1, X_2) = \frac{1}{k}k = 1$$

Les deux distributions sont alors corrélées au maximum et sont indépendantes du facteur γ .

On cherche ici a étudier différentes variable de contrôle pour l'option asiatique. On veut évaluer les méthodes les plus efficaces selon les paramètres de l'option asiatique.

i)
$$t_j = (110 + j)/365$$

	K=80	K=90	K=100	K=110
Without any VRT	21.377	11.656	1.909	-7.821
Geometric variance control variable	21.377	11.637	1.896	-7.427
Sum variance control variable	21.912	12.183	2.429	-7.302
Both variance control variables	21.379	11.623	1.90	-7.837
Antithetic variates	16.468	6.795	1.010	nan

Table 4: Espérance de X pour $t_j = (110+j)/365$

	K=80	K=90	K=100	K=110
Without any VRT	3.095	3.107	3.133	3.058
Geometric variance control variable	44129	43897	47998	1.098
Sum variance control variable	87	110	84	97
Both variance control variables	43 654	44 258	46 938	6.651×10^6
Antithetic variates	3542	80	80 639	nan

Table 5: Variance reduction factor (VCF) pour $t_j = (110 + j)/365$

ii)
$$t_j = (12j)/365$$

	K=80	K=90	K=100	K=110
Without any VRT	259 354	244 996	244 894	265 725
Geometric variance control variable	99 724	63 151	72 333	61 839
Sum variance control variable	232 953	232 943	232 943	232 928
Both variance control variables	$232\ 985$	233 900	$233\ 992$	234 252
Antithetic variates	232 940	232 938	232 920	232 923

Table 6: Espérance de X pour $t_j=(12j)/365\,$

	K=80	K=90	K=100	K=110
Without any VRT	3.247×10^{12}	3.247×10^{12}	8.338×10^{12}	1.833×10^{12}
Geometric variance control variable	7.017	2.860	1.114	1.292
Sum variance control variable	1.908×10^{10}	4.101×10^{10}	3.689×10^7	2.676×10^{8}
Both variance control variables	3.527×10^9	3.251×10^{6}	5.949×10^{5}	9.245×10^{5}
Antithetic variates	1.325×10^{8}	4.382×10^{8}	3.125×10^7	1.732×10^9

Table 7: Variance reduction factor (VCF) pour $t_j = (12j)/365$

iii) $t_j = j/365$

	K=80	K=90	K=100	K=110
Without any VRT	20.797	11.116	1.335	-8.385
Geometric variance control variable	20.784	11.043	1.485	-5.477
Sum variance control variable	20.783	11.0434	1.303	-8.437
Both variance control variables	20.783	11.043	1.334	-8.498
Antithetic variates	20.390	10.986	3.146	0.387

Table 8: Espérance de X pour $t_j = j/365$

	K=80	K=90	K=100	K=110
Without any VRT	42.353	42.028	43.116	43.825
Geometric variance control variable	4 080	$4\ 223$	4415	2.51
Sum variance control variable	2.499×10^{8}	4.762×10^{10}	1.259×10^{8}	5.624×10^{6}
Both variance control variables	8.133×10^9	3.418×10^8	$155 \ 854$	8.535×10^{7}
Antithetic variates	$25\ 898$	182	147	542

Table 9: Variance reduction factor (VCF) pour $t_j=j/365$

Discussion

D'après des statistiques on constate qu'il n'y a pas une méthode qui est toujours robuste peu importe des paramètres. En fait, des performances des différents méthodes de variance de contrôle dépendent vraiment du choix de paramètres. Selon les tableaux des espérances de payoff, en changeant des valeurs du paramètre K, l'estimateur VC et l'estimateur arithméthique n'ont plus la même espérance.

References

[1] A. M. Law, Simulation Modeling and Analysis. McGraw-Hill Education, 2013.