Question 1. Calculation

Given the following time series y_t .

		\	St	(2)	
·	τ	y_t	St	>1	
	1	1			
	2	3 -	1+3=2		
	3	5	3+5=4	2+4 = 3	-
	4	8	3-8 = 6.5	4+6.5 = 5.25	+
	5	12	8-16 = 10	6.5 +10 = 8.2	

- a. Calculate the moving average series with $k=2\,$
- b. Calculate the moving average series with $k=3\,$
- $_{\sim}$ c. Calculate the double moving average series with k=3

Question 2. Application of MA: Forecasting Linear Trend Time Series

We assume the series in question 1 has linear trend. Use double smoothing average to estimate the linear trend (slope) of the time series. Use the estimated linear trend to predict the next value (y_s) \checkmark

$$b_1 = \hat{\beta}_1 = \frac{2}{k-1} \left(\hat{s}_T^{(1)} - \hat{s}_T^{(2)} \right) = \frac{2}{k-1} \left[\frac{\hat{s}_T^{(1)}}{\hat{s}_T^{(2)}} \right]$$

$$= 2 \left[10 - 8.25 \right] = 5.5$$

$$\hat{A}_{L} = \hat{S}_{5}^{(1)} + 3.5 = 10 + 3.5 = 13.5$$