TEXT AS DATA: WHAT YOU NEED TO KNOW

Nelson Auner

Prepared for TGG

October 16, 2014

A quick aside...

I will not write any more bad code I will not write any more bad code

A quick aside...

I will not write any more bad code I will not write any more bad code

Outline

- Motivation
- Q Goals
- 3 Text as Data
 - Overview
 - Parsing
 - Multinomial Models
 - Topic Models
- Cluster Model
 - Algorithm
- 6 Application
 - Congressional Speech Data

Motivation: Historical

Motivation: Historical

THE

FEDERALIST:

A COLLECTION OF

ESSAYS,

WRITTEN IN FAVOUR OF THE

NEW CONSTITUTION,

AS AGREED UPON BY THE

FEDERAL CONVENTION,

SEPTEMBER 17, 1787.

Motivation: In the News

Motivation: In the News

managers that invest in pharma stocks.

How do they do it?

How do they do it?

 "Treato distills the collective patient voice from blogs and forums using Natural Language Processing, Big Data and a proprietary patient language..."

Public Sector Use

Public Sector Use

Complete list and details on PRISM web page: Go PRISMFAA

TOP SECRET//SI//ORCON//NOFORN

Outline

- Motivation
- 2 Goals
- 3 Text as Data
 - Overview
 - Parsing
 - Multinomial Models
 - Topic Models
- 4 Cluster Model
 - Algorithm
- 6 Application
 - Congressional Speech Data

Can you...

Can you...

• explain the basics of text analysis to a potential client?

Can you...

- explain the basics of text analysis to a potential client?
- identify opportunity to utilize text analysis?

Can you...

- explain the basics of text analysis to a potential client?
- identify opportunity to utilize text analysis?
- commicate why text analysis is difficult?

Outline

- Motivation
- Q Goals
- Text as Data
 - Overview
 - Parsing
 - Multinomial Models
 - Topic Models
- 4 Cluster Model
 - Algorithm
- 6 Application
 - Congressional Speech Data

• A document is a collection of words or phrases.

- A document is a collection of words or phrases.
- Our datasets are collections of documents

- A document is a collection of words or phrases.
- Our datasets are collections of documents

Table: What did homework consist of?

- A document is a collection of words or phrases.
- Our datasets are collections of documents

Table: What did homework consist of?

Document	Content							
1	Some computation and formula proving, a lot of R code							
2	Problems, computation using R							
3	Some computations and writing R code							
4	Proofs, problems, and programming work							

• Greatest, Greatly, and Greatliest....

• Greatest, Greatly, and Greatliest....

```
It ain't that easy...
```

Greatest, Greatly, and Greatliest....

It ain't that easy...

Crystial rosey yeah I poe that We connected with Cali we back door that

Greatest, Greatly, and Greatliest....

It ain't that easy...

Crystial rosey yeah I poe that We connected with Cali we back door that You see my wrist man keep your pink wrist bands She can't believe I'm in a chevy even though I'm rich man

• Greatest, Greatly, and Greatliest....

It ain't that easy...

Crystial rosey yeah I poe that
We connected with Cali we back door that
You see my wrist man keep your pink wrist bands
She can't believe I'm in a chevy even though I'm rich man
Chevy Ridin' High - Dre (of Cool and Dre) f/ Rick Ross

• If word order doesn't matter, then we can treat each document as a "bag of words".

- If word order doesn't matter, then we can treat each document as a "bag of words".
- ullet The number of words can be modeled \sim multinomial

- If word order doesn't matter, then we can treat each document as a "bag of words".
- ullet The number of words can be modeled \sim multinomial

Table: Creating a word-count matrix from text

Document	Some	comp	formula	prov	R	code	use	problem	writ	program	work
1	1	1	1	1	1	1	0	0	0	0	0
2	0	1	0	0	1	0	1	1	0	0	0
3	1	1	0	0	1	0	0	0	1	0	0
4	0	0	0	1	0	0	0	1	0	1	1

A better model: Metadata

 We would like to add structure to the model for inference or prediction

A better model: Metadata

- We would like to add structure to the model for inference or prediction
- Metadata is data that accompanies a document

A better model: Metadata

- We would like to add structure to the model for inference or prediction
- Metadata is data that accompanies a document

Table: What did homework consist of?

A better model: Metadata

- We would like to add structure to the model for inference or prediction
- Metadata is data that accompanies a document

Table: What did homework consist of?

Grade	Content
A+	Some computation and formula proving, a lot of R code
В	Problems, computation using R
В	Some computations and writing R code
C+	Proofs, problems, and programming work

A topic is a distribution of words. In a topic model, documents are made of a mixtures of topics.

¹Wang, 2012. Sparse Coding and an Application to Topic Modeling.

²Auner, 2014. Combining Latent Topics with Document Attributes in Text Analysis

A topic is a distribution of words. In a topic model, documents are made of a mixtures of topics.

Running Topic

Stride, Pacing, Stretch

¹Wang, 2012. Sparse Coding and an Application to Topic Modeling.

²Auner, 2014. Combining Latent Topics with Document Attributes in Text Analysis

A topic is a distribution of words.

In a topic model, documents are made of a mixtures of topics.

Running Topic

Stride, Pacing, Stretch

Bike Topic

Pedal, Helmet, Gears

¹Wang, 2012. Sparse Coding and an Application to Topic Modeling.

²Auner, 2014. Combining Latent Topics with Document Attributes in Text **Analysis**

A topic is a distribution of words. In a topic model, documents are made of a mixtures of topics.

Running Topic

Stride, Pacing, Stretch

Bike Topic

Pedal, Helmet, Gears

Swimming

Stroke, Air, Water

¹Wang, 2012. Sparse Coding and an Application to Topic Modeling.

²Auner, 2014. Combining Latent Topics with Document Attributes in Text Analysis

A topic is a distribution of words.

In a topic model, documents are made of a mixtures of topics.

Running Topic

Stride, Pacing, Stretch

Bike Topic

Pedal, Helmet, Gears Swimming

Stroke, Air, Water

• A book about triathalon training $\sim \theta_1$ Running + θ_2 Biking + θ_3 Swimming

¹Wang, 2012. Sparse Coding and an Application to Topic Modeling.

²Auner, 2014. Combining Latent Topics with Document Attributes in Text Analysis

A topic is a distribution of words.

In a topic model, documents are made of a mixtures of topics.

Running Topic

Stride, Pacing, Stretch

Bike Topic

Pedal, Helmet, Gears

Swimming

Stroke, Air, Water

- A book about triathalon training $\sim heta_1$ Running $+ heta_2$ Biking $+ heta_3$ Swimming
- Issue: We can no longer collapse observations, must use all n observations

¹Wang, 2012. Sparse Coding and an Application to Topic Modeling.

²Auner, 2014. Combining Latent Topics with Document Attributes in Text Analysis

A topic is a distribution of words.

In a topic model, documents are made of a mixtures of topics.

Running Topic

Stride, Pacing, Stretch

Bike Topic

Pedal, Helmet, Gears

Swimming

Stroke, Air, Water

- A book about triathalon training $\sim heta_1$ Running + $heta_2$ Biking + $heta_3$ Swimming
- Issue: We can no longer collapse observations, must use all n observations
- Workarounds: See Ryan's paper¹ or mine ²

¹Wang, 2012. Sparse Coding and an Application to Topic Modeling.

²Auner, 2014. Combining Latent Topics with Document Attributes in Text Analysis

Outline

- Motivation
- Q Goals
- 3 Text as Data
 - Overview
 - Parsing
 - Multinomial Models
 - Topic Models
- 4 Cluster Model
 - Algorithm
- 6 Application
 - Congressional Speech Data

Cluster Model

Goal

- Want to use the Topic Model but incorporate Metadata
- Also want computational ease

Cluster Model

Goal

- Want to use the Topic Model but incorporate Metadata
- Also want computational ease

Approach

- Restrict each document to only one topic ⇒ "cluster"
- Can collapse observations over unique (metadata, cluster) combination
- $x_i \sim MN(q_{ij}, m_{ij});$ $q_{ij} = \frac{\exp(\alpha_j + y_i \phi_j + u_i \Gamma_{kj})}{\sum_{l=1}^p \exp(\alpha_l + y_i \phi_l + u_i \Gamma_{kl})}$

1 Initialize cluster membership u_i for i = 1, ..., n

- **1** Initialize cluster membership u_i for i = 1, ..., n
- ② Determine parameters α, ϕ, Γ by fitting a multinomial regression on $y_i|x_i, u_i$ with a gamma lasso penalty (Taddy 2013)

- **1** Initialize cluster membership u_i for i = 1, ..., n
- ② Determine parameters α, ϕ, Γ by fitting a multinomial regression on $y_i|x_i, u_i$ with a gamma lasso penalty (Taddy 2013)
- **③** For each document i, determine new cluster u_i membership as $argmax_{k=1,..,K} [\ell(u_i|\alpha,\phi,\Gamma)]$

- **1** Initialize cluster membership u_i for i = 1, ..., n
- ② Determine parameters α, ϕ, Γ by fitting a multinomial regression on $y_i|x_i, u_i$ with a gamma lasso penalty (Taddy 2013)
- **③** For each document i, determine new cluster u_i membership as $argmax_{k=1,...K} [\ell(u_i|\alpha,\phi,\Gamma)]$
- **1** Check if current cluster assignment is different from previous cluster assignment , $(\mathbf{u}^{(t)} = \mathbf{u}^{(t-1)})$. If so, return to step 2. If not, end algorithm.

Outline

- Motivation
- Q Goals
- 3 Text as Data
 - Overview
 - Parsing
 - Multinomial Models
 - Topic Models
- 4 Cluster Model
 - Algorithm
- 6 Application
 - Congressional Speech Data

Comparison with the Topic Model

Good news: We are able to recover similar topics with our model:

Table: Comparison of top word loadings on a stem-cell topic

Cluster Membership	Topic Model (LDA)*
umbilic.cord.blood	pluripotent.stem.cel
cord.blood.stem	national.ad.campaign
blood.stem.cel	cel.stem.cel
adult.stem.cel	stem.cel.line

^{*}Results reported in Taddy (2012)

Incorporating metadata: Restaurant Review

Imma Let you Finish, but the Dirichlet was the greatest prior of all time!

Imma Let you Finish, but the Dirichlet was the greatest prior of all time!

Results

Results

	term	loading
1	yeezus	5.48
2	constel	3.79
3	homm	3.79
4	preach	3.79
5	bound	3.6
6	thoma	3.38
7	thirti	3.32
8	rocka	3.31
9	rowland	3.25
10	jamaican	3.23
11	blocka	3.22
12	movement	3.22
13	unlik	3.08

Dip your feet in

Dip your feet in

- Textir or Gamlr package by Matt Taddy
- Currently only for R
- Python coming soon!

Thank You

Thank You

