

Plano de Ensino para o Ano Letivo de 2020

	IDE	ENTIFICAÇÃO			
Disciplina:				Có	digo da Disciplina:
Robôs Móveis Autônomos					MIN603
Course:					
Autonomous Mobile Robot					
Materia:					
Periodicidade: Semestral	Carga horária total:	80	Carga horária sema	nal: 00	0 - 00 - 04
Curso/Habilitação/Ênfase:			Série:	Períod	0:
Administração			4	Matut	tino
Administração			4	Notur	no
Engenharia de Alimentos			5	Diurn	0
Engenharia de Controle e Aut	omação		6	Notur	no
Engenharia de Controle e Aut	omação		5	Diurn	0
Engenharia de Computação			5	Diurn	0
Engenharia Civil			5	Diurn	0
Engenharia Civil			6	Notur	no
Design			4	Notur	no
Design			4	Matut	tino
Engenharia Eletrônica			5	Diurn	0
Engenharia Eletrônica			6	Notur	no
Engenharia Elétrica			6	Notur	no
Engenharia Elétrica			5	Diurn	0
Engenharia Mecânica			6	Notur	no
Engenharia Mecânica			5	Diurn	0
Engenharia de Produção			5	Diurn	0
Engenharia de Produção			6	Notur	no
Engenharia Química			5	Diurn	0
Engenharia Química			6	Notur	rno
Professor Responsável:		Titulação - Gradu	ação		Pós-Graduação
Alexandre Harayashiki Moreira	a	Engenheiro er	m Controle e Autor	mação	Mestre
Professores:		Titulação - Gradu	ação		Pós-Graduação
Alexandre Harayashiki Moreira	a	Engenheiro er	m Controle e Autor	mação	Mestre

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

Conhecimentos:

- c6) Sólida formação em manufatura integrada por computador e automação industrial, em especial, com os seguintes conhecimentos da área de robótica:
- Tipos de robôs autônomos;
- Tipos de locomoção em robôs móveis;
- Mecânica, sensores e atuadores de robôs autônomos;
- Cinemática do movimento de robôs móveis;
- Navegação de robôs móveis autônomos;
- Arquitetura de controle de robôs móveis autônomos;

2020-MIN603 página 1 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

Habilidades:

- h3) Atuar em equipe multidisciplinares;
- h8) Comunicar eficientemente nas formas oral e escrita, no padrão formal da língua portuguesa;
- h11) Desenvolver raciocínio espacial, lógico e matemático;
- h12) Desenvolver e/ou utilizar novas ferramentas e técnicas;
- h17) Projetar e conduzir experimentos;
- h21) Interpretar resultados de experimentos e de simulações de modelos matemáticos;
- h22)Analisar criticamente os modelos empregados no estudo de problemas de engenharia;
- 1 Atuar em equipe;
- 2 Comunicar eficientemente nas formas oral e escrita, no padrão formal da língua portuguesa;
- 3 Percepção do conjunto e capacidade de síntese;
- 4 Desenvolver raciocínio espacial, lógico e matemático;
- 5 Desenvolver e utilizar novas ferramentas e técnicas;
- 6 Conduzir experimentos e interpretar resultados;
- 7 Avaliar criticamente os modelos estabelecidos.

Atitudes:

- al) Ter espírito de liderança e capacidade para inserir-se no trabalho em equipe;
- a4) Ter visão sistêmica e interdisciplinar na solução de problemas técnicos;
- a5) Ter percepção do conjunto e capacidade de síntese;
- a8) Ter posição crítica com relação a conceitos de ordem de grandeza;
- al0) Ter compromisso com a segurança no trabalho.
- 1 Saber inserir-se no trabalho em equipe;
- 2 Ter visão sistêmica e interdisciplinar na solução de problemas técnicos;
- 3 Ter percepção do conjunto e capacidade de síntese;
- 4 Ter posição crítica com relação a conceitos de ordem de grandeza;
- 5 Ter compromisso com a segurança no trabalho.

EMENTA

Estudo e análise de robôs móveis autônomos. Classificação, tipos de locomoção e sensores para robôs móveis. Arquiteturas de controle reativo, deliberativo, hierárquico e híbrido. Cinemática, localização e planejamento de trajetória. Práticas de laboratório utilizando ferramentas como MATLAB, V-REP e Robot Operating System (ROS).

2020-MIN603 página 2 de 9

SYLLABUS

Study and analysis of autonomous mobile robots. Classification, locomotion types and sensors for mobile robots. Reactive, deliberative, hierarchical and hybrid control architectures. Kinematics, localization and motion planning. Practical experiments using tools such as MATLAB, V-REP and Robot Operating System (ROS).

TEMARIO

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Laboratório - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Problem Based Learning
- Project Based Learning

METODOLOGIA DIDÁTICA

Aulas expositivas;

Estudo de caso;

Realização de práticas experimentais;

Desenvolvimento de trabalhos em equipe.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

Cálculo: derivada, integral, equações diferencias;

Programação: linguagens e estrutura de algoritmos;

Sensores e Atuadores elétricos;

Microprocessadores e microcontroladores;

Eletrônica básica;

CONTRIBUIÇÃO DA DISCIPLINA

A disciplina Robôs Autônomos fornece uma visão dos robôs móveis autônomos. São estudados sensores, atuadores, tipos de robôs, locomoção, navegação e arquiteturas de controle. Essa disciplina integra conhecimentos de diversas áreas, tais como, sistemas mecânicos, eletrônica, microcontroladores, computação e instrumentação. Nessa disciplina os alunos entram em contato com robôs móveis autônomos que estão atualmente em grande avanço para usos residenciais e pessoais.

BIBLIOGRAFIA

Bibliografia Básica:

ARKIN, Ronald C. Behavior-based robotics. Cambridge, Massachusetts: Mit Press, 1998. 491 p. (Intelligent Robots and Autonomous Agents). ISBN 0262011654.

MURPHY, Robin R. Introduction to AI robotics. Cambridge, Massachusetts: Mit Press, 2000. 466 p. (Intelligent Robots and Autonomous Agents). ISBN 0262133830.

2020-MIN603 página 3 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

SIEGWART, Roland; NOURBAKHSH, Illah R. Introduction to autonomous mobile robots. Cambrige, Mass: Mit Press, 2004. 321 p. (Intelligent Robotics and Autonomous Agents). ISBN 026219502X.

Bibliografia Complementar:

CASTLEMAN, Kenneth R. Digital image processing. Englewood Cliffs, NJ: Prentice Hall, c1996. 667 p. ISBN 0132114674.

CONRAD, James M; MILLS, Jonathan W. Stiquito: advanced experiments with a simple and inexpensive robot. Califórnia: IEEE Computer Society, 1998. 317 p. ISBN 0-8186-7408-3.

DE SILVA, Clarence W. Mechatronics: an integrated approach. Boca Raton: CRC, 2005. 1312 p. ISBN 0849312744.

ROSÁRIO, João Maurício. Princípios de mecatrônica. São Paulo, SP: Pearson Prentice Hall, 2005. 356 p. ISBN 8576050102.

WEBSTER, John G., ed. The measurement, instrumentation, and sensors: handbook. Boca Raton: CRC: IEEE, 1999. ISBN 0-8493-8347-1.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina semestral, com trabalhos.

Pesos dos trabalhos:

 $k_1: 1,0 \quad k_2: 1,0$

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

As notas dos trabalhos consistem da média semestral de trabalhos práticos realizados durante as aulas.

2020-MIN603 página 4 de 9

OUTRAS INFORMAÇÕES	
	1

2020-MIN603 página 5 de 9

_		SOFTWARES NECESSÁRIOS PARA A DISCIPLINA
Arduino	IDE	
MATLAB		

2020-MIN603 página 6 de 9

APROVAÇÕES

Prof.(a) Alexandre Harayashiki Moreira Responsável pela Disciplina

Prof.(a) Angelo Sebastiao Zanini Coordenador do Curso de Engenharia de Computação

Prof.(a) Cassia Silveira de Assis Coordenador(a) do Curso de Engenharia Civil

Prof.(a) Claudia Alquezar Facca Coordenador(a) do Curso de Design

Prof.(a) David Garcia Penof Coordenador do Curso de Engenharia de Produção

Prof.(a) Edval Delbone Coordenador(a) do Curso de Engenharia Elétrica

Prof.(a) Eliana Paula Ribeiro Coordenador(a) do Curso de Engenharia de Alimentos

Prof.(a) Fernando Silveira Madani Coordenador(a) do Curso de Eng. de Controle e Automação

Prof.(a) Luciano Gonçalves Ribeiro Coordenador(a) do Curso de Engenharia Química

Prof.(a) Ricardo Balistiero Coordenador(a) do Curso de Administração

Prof.(a) Sergio Ribeiro Augusto Coordenador do Curso de Engenharia Eletrônica

2020-MIN603 página 7 de 9

Coordenadora	do Curso de Engenharia I	Mecânica	
Data de Aprov	ação:		

2020-MIN603 página 8 de 9

PROGRAMA DA DISCIPLINA				
Nº da	Conteúdo	EAA		
semana				
22 L	Introdução à disciplina. Exemplos de robôs existentes.	0		
23 L	Tipos de robôs e formas de locomoção.	0		
24 L	Cinemática de robôs móveis com rodas diferenciais.Prática	11% a 40%		
	utilizando o MATLAB.			
25 L	Sensores utilizados no robôs móveis.	0		
26 L	Prática de sensores de distância ópticos.	91% a		
		100%		
27 L	Atuadores utilizados nos robôs móveis.	0		
28 L	Prática de movimentação de robô com rodas diferenciais.	91% a		
		100%		
29 L	Prática de movimentação do robô utilizando sensores de distância	91% a		
	e movimentação.	100%		
30 L	Prática de movimentação do robô utilizando sensores de distância	91% a		
	e movimentação.	100%		
31 L	Navegação e localização.	0		
32 L	Tipos de arquiteturas de controle de robôs móveis autônomos.	0		
33 L	Prática de sensores de distância ultrassônicos.Prática de	91% a		
	controle do robô usando informações do sensores de distância.	100%		
34 L	Métodos de planejamento de trajetórias para robôs	41% a 60%		
	móveis.Introdução ao ROS.Prática de navegação utilizando ROS e			
	Navigation Stack.			
Legenda	: T = Teoria, E = Exercício, L = Laboratório			

2020-MIN603 página 9 de 9