Logique

Un ensemble compréhensible de notes de cours

 $\begin{array}{c} Auteur \\ {\rm Yago\ IGLESIAS} \end{array}$

9 novembre 2024

Table des matières

L	Introduction	1
2	Ordres	1
	2.1 Les axiomes des ordres	
	2.2 Morphismes d'ordres	2
	2.3 Bon ordre	2
3	Axiomatisation de l'arithmétique	3
	3.1 Introduction	3
	3.2 Définition inductive	
	3.3 Axiomatisation et les axiomes de Peano	
	3.4 Définition par récurrence	
	3.5 Quelques propriétés de $\mathbb N$	
4	La théorie des ensembles	8
	4.1 Axiomes de la théorie des ensembles	8
5	Comparaison des ensembles infinis	11
	5.1 Axiome du choix	

1 Introduction

Ce document est un recueil de notes de cours sur la logique niveau L3. Il est basé sur les cours de Mme. Sylvy Anscombe à Université Paris Cité, cependant toute erreur ou inexactitude est de ma responsabilité. Si bien Yago IGLESIAS est l'auteur de ce document, il n'est pas le seul contributeur. Un remerciement particulier à Gabin Dudillieu pour sa participation active à la rédaction de ce document. Tout futur contributeur peut se retouver dans la section contributeurs du répertoire GitHub.

Toute erreur signalée ou remarque est la bienvenue. Sentez-vous libres de contribuer à ce document par le biais de GitHub, où vous pouvez trouver le code source de ce document et une version pdf à jour. Si vous n'êtes pas familiers avec *Git* ou LATEX, vous pouvez toujours me contacter par mail.

2 Ordres

2.1 Les axiomes des ordres

Définition 2.1 (Relation d'ordre). On dit que la relation \leq sur un ensemble E non vide est une relation d'ordre au sens large sur E si elle est :

- Réflexive : $\forall x \in E, x \leq x$
- Anti-symétrique : $\forall x, y \in E, (x \leq y \text{ et } y \leq x) \implies x = y$
- Transitive: $\forall x, y, z \in E, (x \leq y \text{ et } y \leq z) \implies x \leq z$

Aussi, on dit que la relation < sur un ensemble E non vide est une relation d'ordre au sens strict sur E si :

$$\forall x, y \in E, x < y \iff x \leqslant y \text{ et } x \neq y$$

On peut l'axiomatiser de la manière suivante :

- < est une relation d'ordre strict sur E si elle est :
- Irréflexive : $x \not< x$
- Transitive: $\forall x, y, z \in E, (x < y \text{ et } y < z) \implies x < z$

On peut aussi maintenant définir \leqslant de la manière suivante :

$$x \le y \iff x < y \text{ ou } x = y$$

Définition 2.2 (Ensemble ordonné). On dit qu'un ensemble (E, \leq) est ordonné si E est non vide et qu'il est muni d'une relation d'ordre \leq .

Définition 2.3 (Relation totale). On dit qu'une relation d'ordre \leq est totale sur E si pour $\forall x, y \in E$, x et y sont comparables.

Lemme 2.1. Soit < une relation d'ordre strict, soit \le l'ordre large associé, \le est totale si et seulement si :

$$\forall x, y \in E(x < y \text{ ou } y < x \text{ ou } x = y \text{ (Trichotomie)})$$

Exemple 2.1.1. — $x \subseteq y$ si et seulement si $|x| \le |y|$ pour $x, y \in \mathbb{C}$, n'est pas anti-symétrique car $-1 \subseteq 1 \subseteq -1$: ce n'est pas une relation d'ordre large car $1 \ne -1$.

- $(\mathscr{P}(\mathbb{N}), \subseteq)$: Ensemble ordonné d'ordre large pas total $(\{2\} \not\subseteq \{17\} \text{ et } \{17\} \not\subseteq \{2\})$
- (\mathbb{N},\leqslant) : Ensemble ordonné d'ordre large total, et qui admet en plus un minimum
- (\mathbb{Q}, \leq) : Ensemble ordonné d'ordre large total, et ensemble qui est dense
- (\mathbb{R}, \leq) : Ensemble ordonné d'ordre large total, et ensemble qui est dense

2.2 Morphismes d'ordres

Définition 2.4. Un morphisme d'ordres entre 2 ensembles d'ordre $(A, \leqslant_A), (B, \leqslant_B)$ est une application $\varphi : A \to B$ tel que $\forall x, y \in A, x \leqslant_A y \iff \varphi(x) \leqslant_B \varphi(y)$

Définition 2.5. Un isomorphisme d'ordres est un morphisme d'ordres bijectif.

Remarque 2.2.1. Un isomorphisme est une bijection croissante dont la réciproque est croissante.

2.3 Bon ordre

Définition 2.6. Une relation d'ordre \leq sur E définit un bon ordre sur E si :

- $\leq \text{est un ordre total}$
- Tous sous-ensemble de E non vide a un plus petit élément, c'est-à-dire pour tout $A\subseteq E$, $A\neq\emptyset$, il existe $a\in A$ tel que $\forall b\in A,\ a\leqslant b$

Exemple 2.3.1. $-(\mathbb{N}, \leqslant)$: Bon ordre

— (\mathbb{Z}, \leq) : N'est pas un bon ordre car $]-\infty,0]$ n'est pas borné à gauche

- $-([0,1], \leq)$: N'est pas un bon ordre ([0,1] n'admet pas de minimum)
- $(\mathscr{P}(\mathbb{N}), \subseteq)$: N'est pas un bon ordre: Pas total
- -- (\emptyset, \emptyset) : Bon ordre

Proposition 2.1. Soit (A, \leq_A) un bon ordre. Soit $B \subseteq A$ et soit \leq_B une relation d'ordre large de B, alors (B, \leq_B) est bien ordonnée.

Démonstration. Soit $C \subseteq B$ non vide, alors $C \subseteq A$ non vide. Donc il existe $c \in C$ l'élément le plus petit de C par rapport à \leq_A . On veut que c soit l'élément le plut petit pour \leq_B . Soit $d \in C$, donc $c \leq_A d$ et puis $c \leq_B d$.

Exemple 2.3.2. $-\left(\left\{\frac{1}{n}|n\in\mathbb{N}^*\right\},\leqslant\right)$ n'est pas un bon ordre

—
$$\left(\left\{-\frac{1}{n}|n\in\mathbb{N}^*\right\},\leqslant\right)$$
 est un bon ordre : il existe un isomorphisme $\left(\left\{-\frac{1}{n}|n\in\mathbb{N}^*\right\},\leqslant\right)\to(\mathbb{N},\leqslant)$

Proposition 2.2. Un ensemble non vide total ordonné (E, \leq) est bien ordonné si et seulement si il vérifie la propriété de récurrence bien fondée pour tout sous ensemble $J \subseteq E$:

$$\forall y \in E, \forall z \in E, \ avec \ z < y, \ alors \ (z \in J \implies y \in J) \implies J = E$$

 $D\acute{e}monstration$. On reformule par contraposée la proposition de récurrence bien fondée :

$$\exists x \in E \setminus J \implies \exists y \in E \setminus J \text{ tel que } \forall z \in E, \ z < y \implies z \in J \text{ ce qui veut dire que } y = \min(E \setminus J)$$

C'est la proposition des bons ordres pour $E \setminus J \subseteq E$.

Exemple 2.3.3. Pour $x, y \in \mathbb{Z}$, on écrit x|y si et seulement si $\exists z \in \mathbb{Z}$ tel que $y = x \cdot z$

- $(\mathbb{Z}, |)$ n'est pas un bon ordre car -1|1|-1 et $-1 \neq 1$
- $(\mathbb{N}, |)$ est une relation d'ordre pas totale car $2 \nmid 3 \nmid 2$
- (\mathbb{N}, \leq) bon ordre car il n'existe pas de suite infinie décroissante dans \mathbb{N}

3 Axiomatisation de l'arithmétique

3.1 Introduction

Nous avons besoin d'une définition explicite de N. Un exemple est la définition naïve suivante :

$$0 = \emptyset$$
 $1 = |$
 $2 = ||$
 $3 = |||$

où S(x) = x |. Mais cela est loin d'être pratique.

3.2 Définition inductive 4

3.2 Définition inductive

On se place dans un univers avec deux symboles : 0 et S.

De cette manière, l'ensemble des entiers naturels est défini comme le plus petit ensemble \mathbb{N} qui contient 0 et qui est stable (clôt) par application du successeur S, i.e. si $x \in \mathbb{N}$ alors $S(x) \in \mathbb{N}$.

Notons Cl(A) la clôture de A par application de S et le fait que $0 \in A$:

$$Cl(A) = \{0 \in A \text{ et } x \in \mathbb{N} \implies S(x) \in A\}$$

Remarque 3.2.1. Si chacun des ensembles d'une famille $(A_i)i \in I$ vérifie Cl(A), alors leur intersection aussi.

Ainsi,
$$\mathbb{N} = \bigcap_{Cl(A)} A$$
.

3.3 Axiomatisation et les axiomes de Peano

Définition 3.1 (Axiomes pour les naturels). — Successeur non nul : $\forall x \in \mathbb{N}, S(x) \neq 0$

- Injectivité du successeur : $\forall x, y \in \mathbb{N}, S(x) = S(y) \implies x = y$
- Récurrence : Pour toute propriété P « bien définie » sur $\mathbb N$ alors

$$(P(0) \land \forall x \in \mathbb{N}, P(x) \implies P(S(x))) \implies \forall x \in \mathbb{N}, P(x)$$

Lemme 3.1 (Raisonement par récurrence). Tout entier est soit 0 soit un successeur :

$$\forall x \in \mathbb{N}, x = 0 \lor \exists y \in \mathbb{N}, x = S(y)$$

Démonstration. Par récurrence, la propriété $P(x) = x = 0 \lor \exists y \in \mathbb{N}, x = S(y)$.

- P(0) est vraie car 0=0.
- On suppose P(x) vraie, donc P(S(x)).

Notons que dans cette preuve la propriété de récurrence n'est pas utilisée.

Définition 3.2 (Prédécesseur). Pour tout élément non nul, on appelle prédécesseur de x un élément y tel que S(y) = x.

Exercice 3.3.1. Montrer que les trois axiomes de Peano sont indépendants, c'est à dire, construire pour chacun des axiomes un contre-modèle \mathcal{N} , avec un élément distingué 0 et une fonction $S: \mathcal{N} \to \mathcal{N}$, où l'axiome dont on veut montrer qu'il est indépendant n'est pas vérifié, mais les deux autres le sont.

3.4 Définition par récurrence

On peut définir < par :

$$x \leq y \iff$$
 il existe une suite finie $x S(x), S(S(x)), \ldots, S(S(\ldots S(x)), \ldots) = y$

mais ceci n'est pas une définition du premier ordre.

L'objectif est de définir $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}:$

$$-x + 0 = x$$

$$--x + S(y) = S(x+y)$$

Mas pour cela nous avons besoin du théorème suivant :

Théorème 3.1 (Dedekind 1888). Si E un ensemble non vide, $a \in E$ et $h : E \to E$ une fonction. Alors il existe une unique fonction $f : \mathbb{N} \to E$ telle que :

$$- f(0) = a$$

$$--f(S(x)) = h(f(x))$$

 $D\acute{e}monstration$. L'unicité se démontre par récurrence. Soit g une fonction vérifiant les mêmes propriétés que f.

$$-g(0) = a = f(0)$$

— Si on a
$$g(x) = f(x)$$
 alors $f(S(x)) = h(f(x)) = h(g(x)) = g(S(x))$

Démontrons maintenant l'existence. Nous avons besoin d'une relation entre les éléments de E et les éléments de \mathbb{N} , pour pouvoir définir une propriété de clôture. Pour cela on travaillera sur les sous ensembles de $\mathbb{N} \times E$. Cette propriété de clôture est inspirée par la définition de f, pour les sous-ensembles R de $\mathbb{N} \times E$.

$$Cl(A) = (0, a) \in R \text{ et } \forall n \in \mathbb{N}, \forall y \in E, (n, y) \in R \implies (S(n), h(y)) \in R$$

On peut vérifier que si R est le graphe d'une fonction f alors on retrouve les équations du théorème.

L'ensemble des $R \subset \mathbb{N} \times E$ vérifiant la propriété de clôture est non vide car il contient $\mathbb{N} \times E$. On peut donc poser :

$$G = \bigcap_{Cl(R)} R$$

Il s'agit de montrer que G est le graphe d'une fonction f vérifiant les équations du théorème. Pour cela, il suffit de montrer que G est une fonction.

- On a bien Cl(G).
- Tout élément $n \in \mathbb{N}$ possède une unique image par la relation de graphe G. Par récurrence :
 - Pour n = 0, on a $(0, a) \in G$ car Cl(G).
 - Pour n = S(x), on a $(n, h(y)) \in G$, pour $(n, y) \in G$.
- Tout élément $n \in \mathbb{N}$ possède une unique image par la relation de graphe G. Par récurrence :
 - Pour n = 0 s'il existe $b \neq a$ tel que $(0, b) \in G$. On a que $G' = G \setminus \{(0, b)\}$ vérifie Cl(G'), donc $G' \subset G$ ce qui est absurde.
 - Si n = S(m). Par hypothèse de récurrence n a une seule image par G, qu'on note X.On sait aussi que S(n) a pour image h(x). Supposons que S(n) ait pour image $y \neq h(x)$. On pose $G' = G \setminus \{(n,y)\}$ et on va aboutir à une contradiction en montrant que G' vérifie Cl(G').
 - On note que $(0, a) \in G$ et comme $0 \neq S(n)$, on a $(0, a) \in G'$.
 - Soit $d \in \mathbb{N}$ et $z \in E$ tel que $(d, z) \in G'$ alors $(d, z) \in G$ et donc $(S(d), h(z)) \in G$.
 - Si $d \neq m$ et $S(d) \neq S(n)$ alors $(S(d), h(z)) \in G'$.
 - Si d=m, donc z=x et alors $(S(d),h(z))=(m,h(x))\in G'$.

— Si $d \neq n$ alors $(S(d), h(z)) \in G'$. Donc Cl(G') ce qui est absurde.

Exercice 3.4.1. Démontrer que chacun des axiomes de Peano sont bien nécessaire pour le théorème de Dedekind.

Corollaire 3.2 (Définition par récurence avec paramètre). Soit A un ensemble et E un ensemble non vide. Soit $g: A \to E$ et $h: E \times A \to E$ deux fonctions. Alors il existe une unique fonction $f: \mathbb{N} \times A \to E$ telle que :

$$-f(0,y) = g(y) \ \forall y \in A$$

$$- f(S(x), y) = h(f(x, y), y) \ \forall x \in \mathbb{N}, \forall y \in A$$

 $D\acute{e}monstration.$ On note E^A l'ensemble des fonctions de A dans E On veut définir par récurrence la fonction

$$\tilde{f}: A \to E^{A}
x \mapsto f_{x}: A \to E
y \mapsto f(x, y)$$
(1)

— Unicité : Soit f, f' deux fonctions vérifiant les propriétés du corollaire. On définit \tilde{f} et \tilde{f}' en utilisant 1. Donc $f = f' \iff \tilde{f} = \tilde{f}'$. Maintenant on étudie juste l'unicité de \tilde{f} .

$$\begin{split} & - \tilde{f}(0) = g = \tilde{f}'(0) \\ & - \tilde{f}(S(x)) = \tilde{h}(\tilde{f}(x)) \text{ et } \tilde{f}'(S(x)) = \tilde{h}(\tilde{f}'(x)). \end{split}$$

Comme elles vérifient les équations du théorème de Dedekind, on a $\tilde{f}=\tilde{f}'$ et donc f=f'.

— Existence : Soit

$$\begin{array}{ccc} \tilde{h}: E^A & \to & E^A \\ k & \mapsto & h(k(y), y) \end{array}$$

Soit $\tilde{f}:\mathbb{N}\to E^A$ définie par le théorème de récurrence :

$$- \tilde{f}(0) = g$$

$$- \tilde{f}(S(x)) = \tilde{h}(\tilde{f}(x))$$

Maintenant

$$f: \mathbb{N} \times A \rightarrow E$$

 $(x,y) \mapsto \tilde{f}(x)(y)$

$$f(0,y) = \tilde{f}(0)(y) = g(y)$$

$$\begin{array}{lcl} f(S(x),y) & = & \tilde{f}(S(x))(y) \\ & = & \tilde{h}(\tilde{f}(x))(y) \\ & = & h(\tilde{f}(x)(y),y) \\ & = & h(f(x,y),y) \end{array}$$

Exemple 3.4.1. On veut définir l'addition par récurrence comme suit :

$$-x + 0 = x$$

$$--x + S(y) = S(x+y)$$

Pour le faire on pose :

$$-A = \mathbb{N}$$

$$--g = id_{\mathbb{N}}$$

$$-h(x,y) = S(x)$$

Par le corollaire précédent, il existe une unique fonction $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ telle que :

$$\begin{array}{rcl} f: \mathbb{N} \times \mathbb{N} & \to & \mathbb{N} \\ f(0,y) & = & g(y) = y \\ f(S(x),y) & = & h(f(x,y),y) = S(f(x,y)) \end{array}$$

Ainsi, l'addition est bien définie par récurrence.

Exemple 3.4.2. On veut définir une fonction $mult : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ telle que :

$$x \cdot 0 = 0$$

$$x \cdot S(y) = x \cdot y + x$$

Comme pour la multiplication on commence par poser :

$$--A=\mathbb{N}$$

$$-g = 0$$

$$-h(x,y) = x + y$$

Et on a par le corollaire précédent :

$$\begin{array}{rcl} f: \mathbb{N} \times \mathbb{N} & \rightarrow & \mathbb{N} \\ f(0,y) & = & g(y) = 0 \\ f(S(x),y) & = & h(f(x,y),y) = f(x,y) + y \end{array}$$

Et ainsi la multiplication est bien définie par récurrence.

Exemple 3.4.3 (Puissances itérées de Knuth). Wikipedia

$$--x\uparrow 0=1$$

$$--x\uparrow S(y)=x^{x\uparrow y}$$

$$--x \uparrow \uparrow y = \underbrace{x \uparrow x \uparrow \dots \uparrow x}_{y \text{ fois}}$$

3.5 Quelques propriétés de N

Proposition 3.1.
$$\forall x, y, z \in \mathbb{N}, x + (y + z) = (x + y) + z$$

Démonstration.
$$-z = 0: x + (y + 0) = x + y = (x + y) + 0$$

 $-z = S(z'):$

$$\begin{array}{rcl} x + (y + S(z')) & = & x + S(y + z') \\ & = & S(x + (y + z')) \\ & = & S((x + y) + z') \\ & = & (x + y) + S(z') \end{array}$$

Proposition 3.2. Propriétés de l'addition et de la multiplication

$$-0+x=0, \ \forall x\in\mathbb{N}$$

$$-S(x) + y = S(x+y), \ \forall x, y \in \mathbb{N}$$

$$-x+y=y+x, \ \forall x,y\in\mathbb{N}$$

$$-x \cdot (y+z) = x \cdot y + x \cdot z, \ \forall x, y, z \in \mathbb{N}$$

$$-x \cdot (y \cdot z) = (x \cdot y) \cdot z, \ \forall x, y, z \in \mathbb{N}$$

$$-0 \cdot x = 0, \ \forall x \in \mathbb{N}$$

$$-S(x) \cdot y = x \cdot y + y, \ \forall x, y \in \mathbb{N}$$

$$-x \cdot y = y \cdot x, \ \forall x, y \in \mathbb{N}$$

$$-1 \cdot x = x \cdot 1 = x, \ \forall x \in \mathbb{N}$$

Exemple 3.5.1. Montrer que, à partir des axiomes ou les propriétés déjà démontrés, on a :

$$z + x = z' + x \implies z = z'$$

 $x + z = y + z' \implies z = z'$

Démonstration. Si z + S(n) = z' + S(n) alors S(z + n) = S(z' + n). Par injectivité de S on a z + n = z' + n et donc z = z'.

4 La théorie des ensembles

On note par $A \subset B$ que $\forall x \in A, x \in B$

4.1 Axiomes de la théorie des ensembles

Axiome 4.1 (Extensionnalité).

$$\forall A \ \forall B (A = B \iff \forall x (x \in A \iff x \in B))$$

Axiome 4.2 (Compréhension). Pour toute propriété P(x), exprimée dans le langage de la théorie des ensembles du premier ordre,

$$\forall A \; \exists B \subset A \; \text{des éléments de } A \; \text{qui vérifient } P(x)$$

Qui est équivalent à :

$$\forall A \; \exists B \; \forall x (x \in B \iff x \in A \land P(x))$$

Cet ensemble est unique par extensionnalité et il est noté $\{x \in A \mid P(x)\}$.

Axiome 4.3 (Des paires).

$$\forall A \ \forall B \ \exists C \ \forall \ x \ (x \in C \iff x = A \lor x = B)$$

Il est noté $\{A, B\}$.

Axiome 4.4 (Réunion).

$$\forall A \; \exists B \; (\forall x \in B \iff (\exists C \in A \land x \in C))$$

Noté $\bigcup A$.

Axiome 4.5 (Ensemble des parties).

$$\forall A \exists B \forall C (C \in B \iff \forall C \subseteq A)$$

On note $B = \mathcal{P}(A)$.

Axiome 4.6 (Infini).

$$\exists A (\emptyset \in A \land \forall x (x \in A \implies x \cup \{x\} \in A))$$

On peut noter cette opération x^+ .

Remarque 4.1.1. Soit A un ensemble non vide, on définit alors :

$$\bigcap A = \Big\{ x \in \bigcup A \mid \forall B \ (B \in A \iff x \in B) \Big\}$$

Soit A un ensemble donné par l'axiome de l'infini, on considère l'ensemble :

$$\{B \in \mathcal{P}(A) \mid \emptyset \in B \land \forall x (x \in B \implies x^+ \in B)\} = \mathbb{N}$$

Notez bien que l'axiome de l'infini est valide pour :

$$\mathbb{N} \cup \{\mathbb{N}, \mathbb{N}^+, \mathbb{N}^{++}, \ldots\}$$

Proposition 4.1 (Couples de Wiener-Kuratowski). À deux ensembles a, B on peut associer un ensemble, noté (A, B) défini par

$$(A, B) = \{\{A\}, \{A, B\}\}\$$

On a pour tout A, B, C, D:

$$((A,B) = (C,D) \iff (A = C \land B = D))$$

Démonstration. Si $A = C \land B = D$, alors (A, B) = (C, D). On suppose (A,B) = (C,D), i.e. $\{\{A\}, \{A,B\}\} = \{\{C\}, \{C,D\}\}$.

— Si $A \neq B$ on a $\{A\} \neq \{A, B\}$, donc $\{\{A\}, \{A, B\}\}$ n'est pas in singleton. De même pour $\{\{C\}, \{C, D\}\}$.

Il y a deux (ou moins) éléments dans $\{\{C\}, \{C, D\}\}\$, donc $\{C\}$ et $\{C, D\}$ sont différents. Et donc $C \neq D$.

Il y a un seul singleton dans $\{\{A\}, \{A, B\}\}\$, donc $\{A\} = \{C\}$, donc A = C.

On a aussi

$${A,B} = {C,D}$$

, donc
$$\{A, B\} \setminus \{A\} = \{C, D\} \setminus \{C\}$$
 donc $B = D$.

— Le reste est laissé en exercice pour le lecteur.

On note

$$\Pi A = \left\{ f : A \to \bigcup A \mid \forall x \in A \ (f(x) \in x) \right\}$$

Proposition 4.2.

$$\{B \in \mathcal{P}(A) \mid \emptyset \in B \land \forall x (x \in B \implies x^+ \in B)\} = \mathbb{N}$$

Démonstration. Soit A_1, A_2 tel que $\emptyset \in A_i$ et $\forall x (x \in A_i \implies x^+ \in A_i)(*)$ On veut montrer que

$$\bigcap_{A\subseteq A_1,\,A(*)}=\bigcap_{A\subseteq A_2,\,A(*)}$$

Sans perte de généralité on suppose $A_1\subseteq A_2$ (On peut le supposer car $A_1\cap A_2$ satisfait (*)) Maintenant on a

$$\bigcap_{A\subseteq A_1,\,A(*)}\supseteq\bigcap_{A\subseteq A_2,\,A(*)}$$

Mais A_1 est un sous-ensemble de A_2 qui satisfait (*), donc

$$A_1 \supset \bigcap_{A \subseteq A_2, A(*)}$$

et alors

$$\bigcap_{A\subseteq A_1,\,A(*)}=\bigcap_{A\subseteq A_2,\,A(*)}$$

Définition 4.1. $\forall x, y \text{ on note}$

$$(x,y) = \{\{x\}, \{x,y\}\}$$

et

$$(x,x) = \{\{x\}, \{x,x\}\} = \{\{x\}, \{x\}\} = \{\{x\}\}\}$$

et

$$(x,y) = (u,v) \iff x = u \land y = v$$

Définition 4.2. $A \times B = \{(x, y) \in \mathscr{PP}(A \times B) \mid x \in A \land y \in B\}$

Définition 4.3. Un graphe fonctionnel est G tel que $\exists A \exists B$ qui vérifient :

$$\phi(G, A, B) = (G \subseteq A \times B \land \forall x (x \in A \to \exists! y, (x, y) \in G))$$

Définition 4.4. Soit A, B:

$$B^A = \{ G \in \mathscr{P}(A \times B) \mid \phi(G, A, B) \}$$

Axiome 4.7 (Choix). Soit A un ensemble, il existe une fonction $f: \mathcal{P}(A) \setminus \{\emptyset\} \to A$ telle que

$$\forall B \in \mathscr{P}(A) \setminus \{\emptyset\}, \ f(B) \in B$$

Ce qui est équivalent a :

$$\forall A \exists f \in A^{\mathscr{P}(A) \setminus \{\emptyset\}} \forall B \in \mathscr{P}(A) \setminus \{\emptyset\}, \ f(B) \in B$$

5 Comparaison des ensembles infinis

5.1 Axiome du choix

On n'arrive pas à démontrer que tout ensemble infini contient un sous-ensemble dénombrable si on ne suppose pas AC.

Définition 5.1 (Famille).

$$\{(i, A_i) \mid i \in I\}$$

Axiome 5.1 (Formulation équiavalente de l'axiome du choix I). Pour toute famille non vide $(A_i)_{i\in I}$ il existe une fonction $f: I \to \bigcup i \in IA_i$ qui vérifie $F(i) \in A_i$, $\forall i$

Axiome 5.2 (Formulation équiavalente de l'axiome du choix II). Si $(A_i)_{i \in I}$ est une famille non vide d'ensembles non vides,

$$\emptyset \neq \prod_{i \in I} A_i = \left\{ f : I \to \bigcup_{i \in I} A_i \mid f(i) \in A_i \right\}$$

Théorème 5.1. Tout ensemble infini possède un sous ensemble dénombrable.

Démonstration. Soit E un ensemble infini $(\nexists n \in \mathbb{N} \mid E \cong N_{\leq n})$. Il suffit de trouver une fonction injective $\phi : \mathbb{N} \to E$. Soit $f : \mathscr{P}(E) \setminus \{\emptyset\} \to E$ du choix. On définit :

$$\Phi: \mathbb{N} \to \mathscr{P}(E)$$

Donc $\Phi(0) = E$.

Proposition 5.1. Un ensemble est infini si et seulement si il est équipotent une partie propre.

 $D\'{e}monstration.$