Symmetry 9

https://github.com/heptagons/lenses 2024/1/15

Abstract

Symmetry 9

1 Rhombi

Rhombus	Name	θ_1	θ_2	Area
$R_3(\frac{1}{2},1)$	a	$\alpha/2$	$2\alpha/2$	$\sin(\alpha) \approx 0.866$
$R_5(\frac{1}{2},2)$	b	$\beta/2$	$4\beta/2$	$\sin(2\beta) \approx 0.587$
$R_5(1,\frac{3}{2})$	c	$2\beta/2$	$3\beta/2$	$\sin(\beta) \approx 0.951$
$R_7(\frac{1}{2},3)$	d	$\gamma/2$	$6\gamma/2$	$\sin(3\gamma) \approx 0.433$
$R_7(1,\frac{5}{2})$	e	$2\gamma/2$	$5\gamma/2$	$\sin(\gamma) \approx 0.781$
$R_7(\frac{3}{2},2)$	f	$3\gamma/2$	$4\gamma/2$	$\sin(2\gamma) \approx 0.974$
$R_9(\frac{1}{2},4)$	g	$\delta/2$	$8\delta/2$	$\sin(4\delta) \approx 0.342$
$R_9(1,\frac{7}{2})$	h	$2\delta/2$	$7\delta/2$	$\sin(\delta) \approx 0.642$
$R_9(\frac{3}{2},3)$	a	$3\delta/2$	$6\delta/2$	$\sin(3\delta) \approx 0.866$
$R_9(2, \frac{5}{2})$	i	$4\delta/2$	$5\delta/2$	$\sin(2\delta) \approx 0.984$

Table 1: Rhombi $R_m(\omega_1, \omega_2)$ for symmetries $m=\{3,5,7,9\}$ internal angles $\theta_1<\theta_2$ $(\theta_1+\theta_2=\pi)$ and areas. $\alpha=2\pi/3,\ \beta=2\pi/5,\ \gamma=2\pi/7$ and $\delta=2\pi/9$ $(3\delta=\alpha)$.

Star	Name	Area	Polygon
$S_3(\frac{1}{2},1)$	-	6 a	6/2 hexagram
$S_3(1,1)$	\mathcal{A}	3a	Regular hexagon
$S_5(\frac{1}{2},4)$	-	5 b	10/4 decagram
$S_5(1,3)$	\mathcal{B}	5c	$ (5/2)_{\alpha} $ decagram
$S_5(2,2)$	\mathcal{C}	5(c + b)	Regular decagon
$S_7(\frac{1}{2},6)$	-	7 d	14/6 14-gram
$S_7(1,5)$	\mathcal{D}	7e	$ (7/4)_{\alpha} $ 14-gram
$S_7(2,4)$	\mathcal{E}	7(e+f)	$ (7/2)_{\alpha} $ 14-gram
$S_7(3,3)$	\mathcal{F}	$7(\mathbf{e} + \mathbf{f} + \mathbf{d})$	Regular 14-gon
$S_9(\frac{1}{2},7)$	-	9 g	18/8 18-gram
$S_9(1,6)$	$\mathcal G$	9h	$ (9/6)_{\alpha} $ 18-gram
$S_9(2,5)$	\mathcal{H}	$9(\boldsymbol{h}+\boldsymbol{i})$	$ (9/4)_{\alpha} $ 18-gram
$S_9(3,4)$	\mathcal{I}	$9(\boldsymbol{h}+\boldsymbol{i}+\boldsymbol{a})$	$ (9/2)_{\alpha} $ 18-gram
$S_9(4,4)$	\mathcal{J}	$9(\boldsymbol{h} + \boldsymbol{i} + \boldsymbol{a} + \boldsymbol{g})$	Regular 18-gon

Table 2: Stars $S_m(\omega_1, \omega_2)$ for symmetries $m = \{3, 5, 7, 9\}$. We use the names $\{\mathcal{A}, \mathcal{B}, ... \mathcal{J}\}$ when both ω_1 and ω_2 are integers.

1.1 Stars from rhombi

Figure 1: The symmetry 9 four rhombi $\{h, i, a, g\}$ produce the four stars $\{\mathcal{G}, \mathcal{H}, \mathcal{I}, \mathcal{J}\}$ with areas 9h, 9(h+i), 9(h+i+a) and 9(h+i+a+g) respectivelly.

Figure 1 show nine copies of symmetry-9 rhombi $\{\pmb{h},\pmb{i},\pmb{a},\pmb{g}\}$ to form four stars.

2 Hexagons

2.1 Hexagons angles

Hexagon	Name	$(\omega_1,\omega_2,\omega_3)$	Polygon
$H_3(1,1)$	\boldsymbol{A}	(1, 1, 1)	Regular hexagon
$H_5(1,1)$	B	(1, 1, 3)	Sormeh Dan Girih tile
$H_5(1,2)$	$oldsymbol{C}$	(1, 2, 2)	Shesh Band Girih tite
$H_7(1,1)$	-	(1, 1, 5)	self-intersecting
$H_7(1,2)$	D	(1, 2, 4)	
$H_7(1,3)$	$oldsymbol{E}$	(1, 3, 3)	
$H_7(2,2)$	$oldsymbol{F}$	(2, 2, 3)	
$H_9(1,1)$	-	(1, 1, 7)	self-intersecting
$H_9(1,2)$	\boldsymbol{G}	(1, 2, 6)	
$H_9(1,3)$	\boldsymbol{H}	(1, 3, 5)	
$H_9(1,4)$	I	(1, 4, 4)	
$H_9(2,2)$	J	$(2,\ 2,\ 5)$	
$H_9(2,3)$	\boldsymbol{K}	$(\mathbf{2,3,4})$	
$H_9(3,3)$	$m{A}$	(3, 3, 3)	equivalent to $H_3(1,1)$

Table 3: Hexagons $H_m(\omega_1, \omega_2)$ for symmetries $m = \{3, 5, 7, 9\}$.

Figure 3 show the hexagons defined as $H_m(\omega_1, \omega_2)$ for symmetries $\{3, 5, 7, 9\}$. Always $\omega_1 \leq \omega_2 \leq \omega_3$ and $\omega_1 + \omega_2 + \omega_3 = m$. The six consecutive angles of the hexagons are $(\omega_1, \omega_2, \omega_3, \omega_1, \omega_2, \omega_3)$.

2.2 Hexagons areas

Figure 2: Hexagons formed adding and substracting rhombi.

Figure 2 show how to calculate the area of the symmetry 9 hexagons in function of the symmetry 9 rhombi. From (i) to (vi) we equate the area of sum of the polygons in the top with the area of the sum of the

polygons of the bottom:

$$a + G = i + h \tag{1}$$

$$g + H = a + h \tag{2}$$

$$I = 2g + h \tag{3}$$

$$\mathbf{g} + \mathbf{J} = 2\mathbf{i} \tag{4}$$

$$K = g + a + i \tag{5}$$

$$\mathbf{A} = 3\mathbf{a} \tag{6}$$

Using the last equations we form the table 4

Hexagon	g,h,a,i area	H,I,J,K area
G	i+h-a	I+J-K
H	a+h-g	H
I	$2\boldsymbol{g}+\boldsymbol{h}$	I
J	$2\boldsymbol{i}-\boldsymbol{g}$	J
K	$m{g}+m{a}+m{i}$	K
$m{A}$	3a	$2\boldsymbol{K} + \boldsymbol{H} - \boldsymbol{I} - \boldsymbol{J}$

Table 4: Symmetry 9 hexagons areas in function of rhombi g,h,a,i and hexagons H,I,J,K.

2.3 Hexagons from stars

Figure 3: Symmetry 9 stars $\{\mathcal{G}, \mathcal{H}, \mathcal{I}, \mathcal{J}\}$ dissected to get the six hexagons $\{\mathcal{G}, \mathcal{H}, \mathcal{I}, \mathcal{J}, \mathcal{K}, \mathcal{A}\}$.

Figure 3 show the disposition of the symmetry 9 four stars. We denote the 18 vertices of stars $\{\mathcal{G}, \mathcal{H}, \mathcal{I}, \mathcal{J}\}$ as $\{G_0, G_1, ..., G_{17}\}$, $\{H_0, H_1, ..., H_{17}\}$, $\{I_0, I_1, ..., I_{17}\}$ and $\{I_0, G_1, ..., I_{17}\}$ respectively. For simplification only some vertices are labeled in the figure. First we make coincident at vertice O all the vertices G_0, H_0, I_0, J_0 . With the center at O we rotate all stars to make coincidents G_{17} , H_{17} , I_{17} and I_{17} . The rotations also joined another different vertices.

First we add three new edges (in red) joining the stars \mathcal{J} and \mathcal{I} vertices: $\overline{J_3I_2}$, $\overline{J_5I_4}$ and $\overline{J_7I_6}$ dissecting the red region into four hexagons, two of them essentially different. The three consective angles of the two hexagons are shown: I (1,4,4) and K (3,4,2).

Then we add three new edges (in orange) joining the stars \mathcal{I} and \mathcal{H} vertices: $\overline{I_3H_2}$, $\overline{I_5H_4}$ and $\overline{I_7H_6}$ dissecting the orange region into four hexagons, two of them new. The three consective angles of the the two hexagons are show: **H** (1,5,3) and **A** (3,3,3).

Finally we add three more edges (in green) joining the stars \mathcal{H} and \mathcal{G} vertices: $\overline{H_3G_2}$, $\overline{H_5G_4}$ and $\overline{H_7G_6}$ dissecting the green region into four hexagons, two of them new. The three consective angles of the the two hexagons are show: \mathbf{G} (1,6,2) and \mathbf{J} (2,5,2).