УТВЕРЖДАЮ

Заместитель генерального директора, заместитель генерального конструктора

АО «Корпорация «Комета»
П.Я. Носатенко
«202 г.

ТЕХНИЧЕСКОЕ ЗАДАНИЕ НА СОСТАВНУЮ ЧАСТЬ ОПЫТНО-КОНСТРУКТОРСКОЙ РАБОТЫ

«Создание шагового двигателя

прецизионной зеркальной сканирующей

оптико-механической системы»

Шифр: «Зеркало-ШД»

Директор филиала АО «Корпорация «Комета» –				
«НПЦ ОЭКН»				
«»	— Н.А. Погребский —202 г.			

Начальник 384 ВП МО РФ
Д.С. Дворник
202___ г.

- 1 Наименование, шифр составной части (СЧ) опытноконструкторской работы (ОКР), основание, исполнитель и сроки выполнения СЧ ОКР
- 1.1 Наименование работы: «Создание шагового двигателя прецизионной зеркальной сканирующей оптико-механической системы».
 - 1.2 Шифр: «Зеркало-ШД»
- 1.3 Основание для выполнения: государственный контракт № 2124730200232447000218099/099-К260/21/23 от 25 февраля 2021 г. между Госкорпорацией «Роскосмос» и АО «Корпорация «Комета», ТЗ на ОКР «Зеркало».
- 1.4 Заказчик Акционерное общество «Корпорация космических систем специального назначения «Комета» (АО «Корпорация «Комета»).
 - 1.5 Исполнитель определяется по результатам закрытого конкурса.
- 1.6 Сроки выполнения этапов СЧ ОКР определяются договором и графиком исполнения к договору. Предельный срок выполнения СЧ ОКР 29.05.2023

2 Цель выполнения, наименование и индекс изделия

- 2.1 Целью выполнения СЧ ОКР является создание шагового двигателя, входящего в состав прецизионной зеркальной сканирующей оптико-механической системы (ПЗС ОМС).
 - 2.2 Наименование изделия: шаговый двигатель (далее ШД).
 - 2.3 Индекс изделия: не присваивается.
 - 2.4 В ходе выполнения СЧ ОКР должны быть разработаны:
- рабочая конструкторская документация (РКД) и технологическая документация (ТД) на ШД;
 - КД и ТД на макетный образец ШД;
 - план мероприятий по внедрению технологии;
 - отчет о патентных исследованиях;
 - отчёт о выполнении СЧ ОКР.

- 2.5 При выполнении СЧ ОКР должны быть изготовлены:
 - макетные образцы ШД 6 шт.;
 - опытные образцы ШД 7 шт.

3 Технические требования

- 3.1 Состав изделия.
- 3.1.1 Состав изделия определяется разработчиком ШД, уточняется на этапе разработки РКД и согласуется с заказчиком.

В течение месяца с момента подписания договора исполнитель должен согласовать с заказчиком схему деления структурную на изделие и перечень (комплектность) документации.

- 3.2 Требования назначения
- 3.2.1 Номинальный шаг ШД $-1,8^{\circ}$. Неравномерность шага не более 5 % от номинального значения.

 Π р и м е ч а н и е — Значение неравномерности шага уточняется на этапе разработки РКД.

- 3.2.2 Вид ШД гибридный, число фаз ШД две.
- 3.2.3 ШД должен иметь возможность изменения направления вращения (быть реверсивным).

Примечание – Взаимосвязь диаграммы напряжений (порядка чередования управляющих импульсов) и направления вращения вала ШД должны быть согласованы с заказчиком.

- 3.2.4 Электрическая постоянная времени обмоток ШД должна быть не более 2 мс.
- 3.2.5 ШД должен соответствовать требованиям ТЗ при работе совместно с блоком управления (аппаратурой (системой) управления) со следующими параметрами:
 - 3.2.5.1 Напряжение питания должно быть $(27^{+2,0}_{-1.5})$ В.
 - 3.2.5.2 Схема коммутации фаз ШД четырехтактная биполярная парная.

- 3.2.5.3 Блок управления должен обеспечивать поддержание тока в обмотках ШД (токовое регулирование):
- в режиме фиксированной стоянки (без подачи управляющих импульсов) ток фазы должен быть $(1,0\pm0,1)$ A;
- в режиме вращения (при коммутации фаз) ток фазы должен быть $(2.8\pm0.5)~\mathrm{A.}$
- 3.2.5.4 Блок должен иметь возможность изменения чередования управляющих импульсов для обеспечения изменения направления вращения.
- 3.2.6 Электрическая принципиальная схема ШД должна быть согласована с Заказчиком.

Примечание – Согласуется с заказчиком в течение двух месяцев с момента подписания договора.

- 3.2.7 Максимальный статический синхронизирующий момент в режиме фиксированной стоянки под током должен быть не менее 0,5 Н·м.
- 3.2.8 Статический фиксирующий момент (момент удержания в обесточенном состоянии) должен быть не менее 0,1 Н·м.
 - 3.2.9 Максимальная приемистость должна быть не менее 800 шаг/с.

Примечание приемистости уточняется на этапе разработки РКД.

- 3.2.10 Номинальный вращающий момент должен быть не менее $0.9 \, \mathrm{H} \cdot \mathrm{M}$.
- 3.2.11 ШД должен допускать работу при номинальном моменте нагрузки с моментом инерции нагрузки $-0.02 \text{ кг} \cdot \text{м}^2$, при этом значение максимальной частоты отработки шагов при плавном увеличении частоты управляющих импульсов должно быть не менее 600 шаг/c.

Примечание - Параметры разгона (начальная частота, скорость изменения частоты и время) уточняются на этапе разработки РКД.

- 3.3 Требования радиоэлектронной защиты
- 3.3.1 Пиковые значения напряжений низкочастотных кондуктивных помех $(U_{\text{пик}})$ в цепях питания, создаваемых изделием не должны превышать следующих значений:
 - в полосе частот 0,03 0,06 кГц включительно

 $U_{\text{пик}} = [105 - 16,77 \cdot \lg(f/0,03)]$ дБмкВ;

— в полосе частот 0.06 - 0.25 к Γ ц включительно

 $U_{\text{пик}} = 100 \text{ дБмкВ};$

- в полосе частот 0.25 - 1.7 к Γ ц включительно

 $U_{\text{пик}} = [100 + 3.6 \cdot \lg(f / 0.25)]$ дБмкВ;

в полосе частот 1,7 − 10 кГц включительно

 $U_{\text{пик}} = 103 \text{ дБмкВ};$

где f - частота в цепях питания, Γ ц

Напряжение низкочастотных кондуктивных помех, измеренное осциллографом с рабочим диапазоном 50 МГц, не должно превышать 1,4 В от пика до пика.

- 3.3.2 Изделие должно функционировать с заданным качеством в условиях воздействия низкочастотных кондуктивных помех в цепях питания, эффективные значения напряжений $U_{3\varphi\varphi}$ которых не превышают следующих значений:
 - в полосе частот 0.02 1.7 к Γ ц включительно

$$U_{9\varphi\varphi} = [0.8 + 0.1 \cdot \lg(f/0.02)] B;$$

- в полосе частот 1,7 - 10 к Γ ц включительно

 $U_{\theta\phi\phi}=1,0$ B.

- 3.3.3 Изделие должно функционировать с заданным качеством в условиях воздействия кондуктивных радио помех в цепях питания, пиковые значения напряжений $U_{\text{пик}}$ которых не превышают следующих значений:
 - в полосе частот 0.01 0.02 МГц включительно

U_{пик}=120 дБмкВ;

- в полосе частот 0.02 - 0.15 МГц включительно

 $U_{\text{пик}} = [120 - 18, 3 \cdot \lg(f/0,02)]$ дБмкВ;

в полосе частот 0,15 – 300 МГц включительно

 $U_{\text{пик}} = [109 - 3 \cdot \lg(f/0.15)]$ дБмкВ.

3.3.4 Изделие должно функционировать с заданным качеством в условиях воздействия импульсных помех в цепях питания со следующими параметрами:

- амплитуда импульсов положительной и отрицательной полярности между шинами питания 27 В изделия величиной $(10,0\pm0,5)$ В, длительностью $(100,0\pm5,0)$ мкс при длительности переднего фронта не более 5 мкс. Частота повторения импульсов 1 Γ ц в течение 1 мин (или в течение периода времени, необходимого для оценки функционирования изделия);
- амплитуда импульсов положительной и отрицательной полярности между каждой из шин питания 27 В и корпусом (синфазно) величиной ($35,0\pm0,5$) В, длительностью импульса ($100,0\pm5,0$) мкс при длительности фронта не более 5 мкс. Частота повторения импульсов 1 Гц в течение 1 мин (или в течение периода времени, необходимого для оценки функционирования изделия);
- изменение напряжения (всплески и провалы) между шинами питания 27 В при коммутации (подключении, отключении) смежных нагрузок до $(2,0\pm0,1)$ В, длительностью до 50 мс.
- 3.3.5 Изделие должно функционировать с заданным качеством в условиях воздействия электрического поля, пиковые значения которого соответствуют в полосе частот 0.1 1000 МГц включительно

$$E_{\text{пик}} = [116 - 4 \cdot \lg(f/0.1)]$$
 дБмкВ/м;

3.4 Требования живучести и стойкости к внешним воздействиям

- 3.4.1 ШД должен сохранять работоспособность после воздействия механических и акустических воздействий по классификации ГОСТ РВ 0020-39.304-2019 для группы 5.3, со следующими уточнениями:
- механический удар одиночного действия с пиковым ударным ускорением 98,1 м/с 2 (10 g) длительностью импульса от 5,0 до 10,0 мс;
- квазистатические и низкочастотные динамические (менее 20 Γ ц) ускорения суммарной амплитудой до 60 м/с² (6 g) длительностью до 600 c;
- акустическое давление с максимальной огибающей в октавных поддиапазонах частот в соответствии с таблицей 1.

Таблица 1 – Среднеквадратический уровень акустического давления

31,5	63,0	125,0	250,0	500,0	1000,0	2000,0	4000,0
Marchan	апьный ср	епнеквалиа	тический у	ровень аку	стического	лавления в	
vianchiv	ianbibin op	одпокрадра	111 10 OKK	pobolita axij		A0201411111 2	
	•	азонах част		posons unj		A	

- 1 Суммарный эксплуатационный среднеквадратический уровень по всему частотному диапазону составляет 142,0 дБ.
 - 2 Длительность действия при акустических испытаниях 69 с.

Примечания

- 1 Перечень и режимы испытаний в соответствии с группой 5.3 по классификации ГОСТ РВ 0020-39.304-2019 уточняются на этапе разработки РКД.
- 2 Допускается проверку изделия на прочность при воздействии акустического давления подтверждать расчетным методом.
- 3.4.2 ШД должен сохранять свои эксплуатационные характеристики в соответствии с пп. 3.2.1, 3.2.3, 3.2.7-3.2.11 в течение всего срока активного воздействии электронного И существования при протонного радиационных поясов Земли (ЕРПЗ), естественных высокоэнергетических протонов (ВЭП), тяжёлых заряженных частиц (ТЗЧ) галактических и солнечных ГСО космических лучей (ГКЛ И СКЛ) на В течение 10 лет. Характеристики радиационных внешних воздействующих факторов в соответствии с ОСТ 134-1044-2007 и ГОСТ РВ 0020.39.305-2019.

Примечание - Значения накопленных (поглощенных) доз уточняются на этапе разработки РКД.

- 3.4.3 В ШД должны быть применены средства защиты по предотвращению отказа вследствие возникновения одиночных радиационных эффектов (ОРЭ) при воздействии высокоэнергетичных протонов и ТЗЧ.
- 3.4.4 Комплекс работ по обеспечению стойкости ШД к ионизирующим излучениям космического пространства должен проводиться по программе обеспечения стойкости (ПОСТ) в соответствии с ОСТ 134-1034-2012, РД 134-0139-2005.

ПОСТ разрабатывается в соответствии с требованиями «Положения РК-11», ГОСТ РВ 0020-39.302-2019, ОСТ 134-1044-2007, и оформляется приложением к программе обеспечения надежности (ПОН).

3.4.5 ШД должен быть стойким к циклическому воздействию температуры (5 циклов, скорость изменения температуры не должна превышать $10~^{\circ}$ C в час) от минус $50~^{\circ}$ C до плюс $50~^{\circ}$ C.

Примечание – Параметры цикла уточняются на этапе разработки РКД.

3.4.6 ШД и его составные части должны нормально функционировать после хранения, механического воздействия при транспортировании и работе в составе ПЗС ОМС.

П р и м е ч а н и е - Под нормальным функционированием понимается выполнение требований пп. 3.2.1, 3.2.3, 3.2.7-3.2.11.

3.4.7 ШД должен сохранять работоспособность в условиях воздействия пониженного атмосферного давления определенных для группы 5.3 по ГОСТ РВ 0020-39.304-2019. Испытания на стойкость к воздействию пониженного атмосферного давления допускается проводить при давлении не более $1,33 \times 10^{-3}$ Па $(1 \times 10^{-5} \text{ мм рт.ст.})$.

Примечания

- 1 Испытания по п. 3.4.7 допускается проводить в составе основного изделия.
- 2 Под нормальным функционированием понимается выполнение требований пп. 3.2.1, 3.2.3, 3.2.7-3.2.11.
 - 3.5 Требования надежности.
- 3.5.1 Работы по обеспечению надежности на этапах создания ШД должны проводиться согласно: «Положению РК-11», ГОСТ В 21256-89, ГОСТ РО 1410-001-2009, ГОСТ РВ 0027-102-2019, ГОСТ 27.310-95.
- 3.5.2 Критерием отказа изделия является невыполнение команд на вращение ротора с заданными по пп. 3.2.1, 3.2.3, 3.2.11 требованиями, при параметрах питания по п. 3.2.5.

- 3.5.3 Предельным состоянием ШД считают:
- нарушение изоляции обмоток ШД, в следствие старения, приводящее к невыполнению требований пп.3.2.1, 3.2.3, 3.2.11;
- нарушение контактов и соединений электрических цепей ШД, приводящее к невыполнению требований пп.3.2.1, 3.2.3, 3.2.11;
- чрезмерный механический износ или разрушение подшипников ШД, приводящие к невыполнению требований пп.3.2.1, 3.2.3, 3.2.11;
- радиоэлектронное и электромагнитное взаимодействия, приводящие к невыполнению требований пп.3.2.1, 3.2.3, 3.2.11.
- 3.5.4 Безотказность ШД в условиях и режимах эксплуатации, установленных в п. 3.7.2, в пределах срока активного существования (САС), характеризуется вероятностью безотказной работы не менее 0,9995.

Подтверждается расчетно-экспериментальным методом.

- 3.5.5 Долговечность ШД в условиях и режимах эксплуатации, установленных в пп. 3.7.1, 3.7.2 характеризуют следующие показатели:
 - 3.5.5.1 Срок службы ШД должен быть не менее 15 лет, в том числе:
 - эксплуатация и хранение в наземных условиях 5 лет;
- эксплуатация в рабочих условиях в составе ПЗС ОМС (п. 3.7.2), в пределах САС 10 лет;
 - количество циклов включения не менее 109 500.

Срок службы ШД подтверждается расчетным методом по результатам анализа сведений о долговечности его составных частей.

3.5.6 На этапе разработки РКД должны быть разработаны в соответствии с «Положением РК-11» и согласованы с заказчиком: анализ видов, последствий и критичности отказов (АВПКО), программа обеспечения стойкости (ПОСТ), комплексная программа экспериментальной отработки (КПЭО), программа обеспечения надежности (ПОН), тепловой расчет.

3.6 Требования эргономики, обитаемости и технической эстетики

Требования эргономики, обитаемости и технической эстетики не предъявляются.

- 3.7 Требования к эксплуатации, хранению, удобству технического обслуживания и ремонта
- 3.7.1 В наземных условиях ШД должен эксплуатироваться и храниться в отапливаемых помещениях со следующими условиями:
 - температура окружающей среды от плюс 15 °C до плюс 30 °C;
 - относительная влажность не более 75 %;
 - атмосферное давление от $0.95 \cdot 10^5$ до $1.08 \cdot 10^5$ Па.

 Π р и м е ч а н и е — ШД должен сохранять свои эксплуатационные характеристики в соответствии с пп. 3.2.1, 3.2.3, 3.2.7-3.2.11 после длительного хранения при пониженной температуре окружающей среды - минус 30 °C.

- 3.7.2 Рабочие условия эксплуатации по классификации ГОСТ РВ 0020-39.304-2019 для группы 5.3, с уточнением: диапазон рабочих температур от минус 30 °C до плюс 30 °C. Изделие должно выполнять свои функции и сохранять параметры в пределах установленных норм после воздействия пониженной температуры до минус 60 °C в течение 14 часов.
- Примечание Проверки параметров по пп. 3.2.1, 3.2.3, 3.2.7-3.2.11 должны быть выполнены при воздействии повышенной и пониженной температуры среды с учетом требований ГОСТ РВ 0020-57.306-2019.
- 3.7.3 Хранение ШД должно осуществляться в складских помещениях, защищающих его от атмосферных осадков, при отсутствии в воздухе паров кислот, щелочей и других агрессивных веществ.
 - 3.7.4 ШД должен иметь тару для хранения и транспортировки.
- 3.7.5 Режим работы продолжительный S1 по ГОСТ IEC 60034-1-2014 со следующими уточнениями:
 - 20 % времени САС ШД функционирует в режиме вращения;
- 80 % времени САС ШД функционирует в режиме фиксированной стоянки под током в соответствии с п. 3.2.7.

- 3.7.6 Требования к удобству технического обслуживания и ремонта
- 3.7.6.1 В процессе наземной эксплуатации и хранения ШД не должен подвергаться техническому обслуживанию.

П р и м е ч а н и е – Допускается проведение проверок параметров ШД:

- в объеме входного контроля неустановленного в ПЗС ОМС ШД, после хранения более шести месяцев без штатной тары;
- в объеме контроля параметров по пп 3.14.7, 3.14.8 установленного в ПЗС ОМС ШД, после хранения более шести месяцев.
 - 3.8 Требования транспортабельности
- 3.8.1 ШД, упакованный в штатную тару предприятия-изготовителя, должен допускать возможность транспортирования любым видом транспорта на любые расстояния при следующих условиях:
 - температура окружающего воздуха от минус 50 °C до плюс 50 °C;
 - относительная влажность до 98 % при температуре 25 °C.
 - 3.9 Требования безопасности
- 3.9.1 Требования безопасности при создании ШД должны обеспечиваться по ГОСТ 12.2.007.0-75.
- 3.9.2 Экологическая безопасность должна быть обеспечена конструкцией, технологией изготовления, выбором соответствующих комплектующих изделий межотраслевого применения (КИМП), покупных изделий, материалов, покрытий, техническими и организационными мероприятиями.
- 3.9.3 Применяемые материалы, покупные изделия, покрытия и КИМП ШД должны быть пожаробезопасными, взрывобезопасными на всех этапах эксплуатации. Конструкция ШД и составных частей должна обеспечивать безопасность обслуживающего персонала при проведении работ на всех этапах его эксплуатации и должна удовлетворять требованиям по безопасности.
- 3.9.4 Должна быть разработана в соответствии с «Положением РК-11» и согласована с заказчиком программа обеспечения безопасности (ПОБ).

3.10 Требования обеспечения режима секретности

Требования обеспечения режима секретности не предъявляются.

3.11 Требования защиты от ИТР

Требования защиты от ИТР не предъявляются.

- 3.12 Требования стандартизации, унификации
- 3.12.1 Работы по стандартизации и унификации должны проводиться в соответствии с требованиями стандартов ЕСКД, ЕСТД, «Положения РК-11», КСОТТ, ГОСТ РВ 0015-207-2018.
- 3.12.2 При выполнении СЧ ОКР должны применяться и использоваться документы по стандартизации в соответствии с их областью применения и включенные в сводный перечень документов по стандартизации оборонной продукции.
 - 3.13 Требования технологичности
- 3.13.1 Создание ШД должно осуществляться с максимально возможным использованием типовых технологических процессов предприятия-изготовителя.
- 3.13.2 Технологичность конструкции разрабатываемого ШД, должна определяться с учетом литерности выпускаемой по ТЗ РКД и выражаться посредством основных типовых качественных характеристик в соответствии с требованиями ОСТ 92-4618-98 «Отраслевая система обеспечения технологичности изделий приборостроения. Методики оценки производственной технологичности конструкции изделий специальной РЭА».
- 3.13.3 Условия разработки технологических процессов должны соответствовать «Положению РК-11».

3.14 Конструктивные требования

3.14.1 Технический облик, габаритные и присоединительные размеры ШД должны соответствовать эскизу (приложение А).

Примечания

- 1 Технический облик, габаритные и присоединительные размеры уточняются и согласуются с заказчиком на этапе разработки КД на макетный образец ШД.
- 2 Габаритные размеры макетных образцов ШД могут отличаться от габаритных размеров ШД не более чем на 20 %. Габаритные размеры макетных образцов согласуются с заказчиком на этапе разработки КД на макетный образец ШД.
 - 3.14.2 Масса ШД должна быть не более 0,9 кг

Примечание – масса макетных образцов ШД не более 1,2 кг.

- 3.14.3 Конструкция ШД должна быть максимально облегчена и обеспечивать беспрепятственное удаление летучих конденсирующих веществ из внутреннего объема двигателя.
- 3.14.4 ШД должен иметь фланцевое исполнение с возможностью подключения нагрузки с двух противоположных сторон ШД (к двум концам вала).

 Π р и м е ч а н и е — Диаметр выходного вала — 8 мм (выступание валов за пределы корпуса должно быть не менее 20 мм), с осевым отверстием М3 (глубиной 7 мм) и шпоночным пазом (с двух сторон).

- 3.14.5 Выводы обмоток должны располагаться радиально, вблизи присоединительного фланца.
- 3.14.6 ШД должен изготавливаться по технической документации, утвержденной в установленном порядке.
- 3.14.7 Сопротивление изоляции электрически разобщенных токоведущих цепей ШД относительно корпуса, а также между любыми такими цепями в нормальных климатических условиях по ГОСТ 15150-69 должно быть не менее 20 МОм.
- 3.14.8 Изоляция электрически разобщенных токоведущих цепей ШД относительно корпуса, а также между любыми такими цепями в нормальных климатических условиях ГОСТ 15150-69 должна выдерживать без пробоя и

перекрытия в течение 1 мин воздействие испытательного напряжения не менее 250 В (амплитудное значение) синусоидальной формы частотой 50 Гц.

3.14.9 Металлизация ШД должна осуществляться по ГОСТ 19005-81. Значение переходного сопротивления не более 0,2·10⁻³ Ом.

Примечание – Способ металлизации определяется на этапе разработки РКД.

- 3.14.10 Должна быть обеспечена противокоррозионная защита материалов, примененных в ШД. Не допускается защита ЛКМ корпусных деталей ШД.
- 3.14.11 Конструкция ШД не должна иметь острых кромок, способных повредить его кабельную часть и кабельную часть ПЗС ОМС.

4 Технико-экономические требования

Предельная стоимость работ определяется по результатам закрытого конкурса.

5 Требования по каталогизации

Требования каталогизации не предъявляются.

6 Требования к видам обеспечения

- 6.1 Требования к нормативно-техническому обеспечению
- 6.1.1 Разрабатываемая документация должна быть выполнена в соответствии с требованиями стандартов ЕСКД, ЕСТД, ЕСПД и иных нормативных документов, действующих в отрасли и у исполнителя.
 - 6.2 Требования к метрологическому обеспечению
- 6.2.1 Организация работ по метрологическому обеспечению должна отвечать требованиям «Положением РК-11-КТ», ГОСТ РВ 0008-000-2019, ГОСТ РВ 0008-001-2013, ОСТ 92-1371-99, ОСТ 134-1028-2012 с изм. 1.
- 6.2.2 На этапах разработки РКД и ТД для изготовления и проведении испытаний макетного образца ШД, разработки РКД и ТД, предварительных испытаний опытного образца ШД исполнителем должна быть проведена

- метрологическая экспертиза (МЭ) с привлечением представителей аккредитованной в установленном порядке на данный вид деятельности организации в соответствии с требованиями ОСТ 92-4286-89. Результаты МЭ должны быть предоставлены Заказчику.
- 6.2.3 Программы и методики испытаний должны быть разработаны по ГОСТ РВ 15.211-2002, ГОСТ РВ 0020-57.310-2019, на этапе РКД проведена их метрологическая экспертиза и согласованы с заказчиком.
- 6.2.4 Наименование, обозначение, правила написания и применения единиц физических величин конструкторской документации должны соответствовать требованиям ГОСТ 8.417-2002.
- 6.2.5 Метрологическое обеспечение испытаний разрабатываемых изделий должно соответствовать требованиям ГОСТ РВ 0008-006-2020.
- 6.2.6 Измерения должны выполняться по стандартизованным, либо аттестованным в порядке, установленном приказом Минпромторга России от 15.12.2015 № 4091, методикам (методам) измерений, разработанным по ГОСТ Р 8.563-2009.
- 6.2.7 Величины параметров и характеристик изделия, а также результаты их измерений должны представляться в единицах величин в соответствии с постановлением Правительства Российской Федерации от 31 октября 2009 г. № 879 и ГОСТ 8.417-2002, формы представления погрешности результатов измерений должны соответствовать МИ 1317-2004.
- 6.2.8 Основные термины и определения в области метрологии должны соответствовать РМГ 29-2013.
- 6.2.9 Средства измерений (СИ), применяемые для измерений, должны быть утвержденных типов в соответствии с приказом Минпромторга РФ от 28.08.2020 № 2905 и быть поверены в соответствии с приказом Минпромторга РФ от 31.07.2020 № 2510.
- 6.2.10 Испытательное оборудование (ИО) должно быть аттестовано в соответствии с ГОСТ Р 8.568-2017 или ГОСТ РВ 0008-002-2013.

- 6.2.11Метрологическое обеспечение измерительных систем должно соответствовать требованиям ГОСТ Р 8.596-2002.
- 6.2.12Технические системы и устройства с измерительными функциями должны соответствовать требованиям ГОСТ Р 8.674-2009.
- 6.2.13 В случае комплектования изделия средствами измерений, они должны выбираться из «Перечня средств измерений военного назначения, разрешенных для комплектации вооружения, военной техники и поставки Министерству обороны Российской Федерации». Применение средств измерений, не вошедших в обоснованных «Перечень...», допускается В случаях ПО согласованию положительного заключения ФГБУ «ГНМЦ» Заказчиком, при наличии Минобороны России и протокола согласования в соответствии с ГОСТ 2.124-2014.
 - 6.3 Требования к диагностическому обеспечению. Требования к диагностическому обеспечению не предъявляются.
- 6.4 Требования к математическому, программному и информационно-лингвистическому обеспечению.

Требования к математическому, программному и информационно-лингвистическому обеспечению не предъявляются.

- 7 Требования к сырью, материалам и комплектующим изделиям межотраслевого применения.
- 7.1 При разработке ШД должны применяться материалы, КИМП и другие покупные изделия (ПИ) преимущественно отечественного производства (ОП).
- 7.2 Применение в конструкции КИМП, металлических и неметаллических материалов должно быть определено с учетом «Перечня применяемых материалов ПЗС OMC ВЕИР.203332.706», В изделии требований по пожаровзрывобезопасности, потере массы $(\Pi M),$ содержанию конденсирующих веществ (ЛКВ) в соответствии с ГОСТ Р 50109-92 и согласовано с Заказчиком.

- 7.3 Перечень КИМП, ПИ, металлических и неметаллических материалов должен быть представлен на согласование Заказчику на этапе разработки РКД.
- 7.4 Применяемые при изготовлении ШД материалы, КИМП и ПИ должны быть выбраны, исходя из их назначения, показателей долговечности и условий эксплуатации, и подвергнуты входному контролю в соответствии с ГОСТ РВ 0015-308-2017.
- 7.5 КИМП, ПИ, материалы, применяемые при изготовлении ШД, должны иметь паспорта, сертификаты или иную документацию, подтверждающую их соответствие НД.
- 7.6 КИМП, ПИ и материалы должны быть применены в условиях и режимах, соответствующих требованиям, указанным в государственных стандартах и ТУ на них. Гарантийный срок ПКИ и материалов должен обеспечивать гарантийный срок ШД.

8 Требования к консервации, упаковке и маркировке

- 8.1 ШД должен иметь маркировку, содержащую обозначение изделия и заводской номер.
- 8.2 ШД должен упаковываться в транспортную тару, отвечающую требованиям ГОСТ В 9.001-72.
- 8.3 Тип тары (пластиковая, деревянная или иная) определяется на этапе разработки РКД.
 - 8.4 Тара должна обеспечивать защиту изделия от пыли и влаги.
 - 8.5 Тара должна иметь маркировку по ГОСТ 14192-96.
- 8.6 Консервация ШД для хранения и транспортирования должна проводиться в соответствии с ГОСТ 9.014-78 и ГОСТ ВД 9.014-80.

9 Требования к учебно-тренировочным средствам

Требования к учебно-тренировочным средствам не предъявляются.

10 Специальные требования

10.1 Патентные исследования при выполнении СЧ ОКР «Зеркало-ШД» должны проводиться в соответствии с ГОСТ Р 15.011-96 «Система разработки и постановки продукции на производство. Патентные исследования. Содержание порядок проведения» с оформлением отчета о патентных исследованиях и представлением его заказчику.

11 Требования защиты государственной тайны при выполнении СЧ ОКР

Требования защиты государственной тайны при выполнении СЧ ОКР не предъявляются.

12 Требования к порядку разработки конструкторской документации на военное время.

Требования не предъявляются.

13 Этапы выполнения СЧ ОКР

Таблица 2

Номер		Документы,
этапа	Наименование этапа, содержание работ	разрабатываемые при
Jiuna		выполнении работ по этапу
		КД и ТД на макетный
		образец ШД. Акт о
	Разработка КД и ТД на макетный образец ШД.	разработке КД на макетный
1	Изготовление 2 шт. макетных образцов ШД.	образец ШД. Акт об
1	Проведение испытаний 2 шт. макетных	изготовлении макетных
	образцов ШД.	образцов ШД. Протоколы
		испытаний макетных
		образцов ШД
2	Изготовление и поставка 4 шт. макетных	Акт об изготовлении
<u> </u>	образцов ШД.	макетных образцов ШД.

Номер	TT ~	Документы,
этапа	Наименование этапа, содержание работ	разрабатываемые при
0 2 0 1 1 0		выполнении работ по этапу
		РКД и ТД на ШД. Акт о
1 3 1	Разработка РКД и ТД на ШД.	разработке КД на ШД.
	Проведение патентных исследований.	Отчёт о патентных
		исследованиях.
	Изготовление ОО ШД для проведения ПрИ.	Акт об изготовлении ОО
4	Проведение ПрИ. Корректировка РКД и ТД по	ШД. Акт и протоколы ПрИ
4	результатам испытаний. Присвоение литеры	ОО ШД. РКД и ТД на ШД с
	«О» РКД и ТД на ШД.	литерой «О».
	Изготовление, проведение ПСИ и поставка 6	Акты об изготовлении ОО
5	шт. ОО ШД для комплектования ОО ПЗС	ШД. Акт и протоколы ПСИ
	ОМС. Разработка научно-технического отчета	ОО ШД. Отчёт о
	по СЧ ОКР	выполнении СЧ ОКР. План
	Разработка плана мероприятий по внедрению	мероприятий по внедрению
	разработанной технологии.	разработанной технологии.

Сроки выполнения этапов и СЧ ОКР в целом будут определены графиком исполнения к договору.

14 Порядок выполнения и приемки СЧ ОКР

- 14.1 Правила, порядок выполнения и приемки этапов СЧ ОКР должны соответствовать требованиям «Положения РК-11», ГОСТ РВ 15.203-2001, ГОСТ РВ 2.902-2005, ГОСТ 2.102-2013, ГОСТ 2.103-2013, ГОСТ РВ 0015-210-2020 и настоящего ТЗ.
- 14.2 При выполнении работ по этапам исполнитель разрабатывает и предъявляет Заказчику документы в соответствии с графиком исполнения к договору.
- 14.3 Разрабатываемая документация должна соответствовать требованиям «Положения РК-11», ГОСТ РВ 0015-110 -2018, стандартов ЕСКД, ЕСТД, ЕСПД и быть оформлена на электронном и бумажном носителях.
- 14.4 Разработанная документация (полный комплект РКД и ТД) должна быть передана заказчику в составе отчетных документов на соответствующих

этапах в бумажном (учтенную копию архивного экземпляра) и электронном виде (сканированные оригиналы документов в формате pdf).

- 14.5 В паспортах (формулярах) на ШД должна быть проставлена отметка, подтверждающая выполнение требований «Положения РК-11».
- 14.6 Контроль над выполнением работ по настоящему ТЗ осуществляется ВП Минобороны России на предприятии-исполнителе СЧ ОКР.

При выполнении настоящей составной части опытно-конструкторской работы должен быть разработан план-график изготовления изделия, согласованный с исполнителем, ВП Минобороны России при исполнителе, 384 ВП Минобороны России и утвержденный филиалом АО «Корпорация «Комета» – «НПЦ ОЭКН».

- 14.7 На этапе 1 СЧ ОКР исполнитель должен разработать в соответствии с требованиями ГОСТ РВ 2.902-2005 перечень (комплектность) документации на ШД. Перечень должен быть составлен с учетом приложения Б, согласован с ВП Минобороны России при исполнителе и утвержден филиалом АО «Корпорация «Комета»-«НПЦ ОЭКН».
- 14.8 На этапе 1 СЧ ОКР исполнитель должен разработать перечень комплектности ТД на ШД. Перечень должен быть составлен с учетом приложения Б, согласован с филиалом АО «Корпорация «Комета»-«НПЦ ОЭКН».
- 14.9 При необходимости и по согласованию с Заказчиком допускается изготовление технологической оснастки и оборудования (аппаратуры) и для изготовления и испытания ШД.
- 14.10 Исполнитель вправе привлекать к выполнению работы сторонние организации по согласованию с Заказчиком.

15 Порядок внесения изменений

- 15.1 Требования настоящего ТЗ могут быть уточнены по согласованию сторон.
- 15.2 Порядок внесения и оформления изменений в техническое задание определяется в соответствии с ГОСТ РВ 15.201-2003.

Перечень принятых сокращений

ЕСКД – единая система конструкторской документации

ЕСТД – единая система технологической документации

ОКР – опытно-конструкторская работа

ПЗС ОМС - прецизионная зеркальная сканирующая оптико-механическая

система

ОО – опытный образец

КИМП – комплектующие изделия межотраслевого применения

ПИ – покупные изделия

ОП – отечественное производство

ПМИ – программа и методики испытаний

РКД – рабочая конструкторская документация

СИ – средство измерения

СК – средство контроля

СЧ – составная часть

ТД – технологическая документация

ТЗ – техническое задание

ШД – шаговый двигатель

ЭД – эксплуатационная документация

Приложение Б

(обязательное)

Перечень разрабатываемой документации на ШД

Номер		Наименование документа	Детали	Узлы	ШД
строки	документа	-			
-1		Конструкторская документац	Р		
1		Спецификация	-	•Б	•АБ
2		Чертеж детали	•Б	-	•
3	СБ	Сборочный чертёж	_	•Б	•АБ
4	ГЧ	Габаритный чертёж	_	-	•АБ
5	E1	Схема деления структурная	_	-	•АБ
6	Э3	Схема электрическая принципиальная	_	-	•АБ
7	ПЭ4	Перечень элементов	-	_	∘Б
8	BC	Ведомость спецификаций	_	∘Б	•АБ
9	ВП	Ведомость покупных изделий	-	οБ	•АБ
10	PP12	Расчет надежности	_	_	•АБ
11	PP14	Расчет на прочность	∘Б	∘Б	•АБ
13	PP17	Расчет тепловой			•АБ
14	PP23	Расчет радиационной стойкости	_	-	•АБ
15	Д51	Перечень (комплектность) документации	_	-	•АБ
16	Д52	Программа обеспечения надежности (ПОН)	-	-	•АБ
17	Д52.1	Программа обеспечения стойкости (ПОСТ)	-	-	•АБ
18	i i	Комплексная программа экспериментальной отработки	-	-	•АБ
19		Программа обеспечения безопасности (ПОБ)	-	-	•АБ
20		Анализ видов, последствий и критичности отказов	-	-	•АБ
21	И7	Инструкция по входному контролю	_	_	•АБ
22	ТУ	Технические условия	_	_	•АБ

Номер		Наименование документа	Детали	Узлы	ШД
	документа	-	/ \		
23	РЭ	Руководство по эксплуатации	-	_	•АБ
24	ПМ	Программа и методики испытаний		-	•АБ
25	ПС	Паспорт	-	∘Б	•АБ
26	ЭТ	Этикетка	∘Б	∘Б	∘Б
		Технологическая документац	ия		
27	ТЛ	Титульный лист	°*1B	∘*¹Б	•Б
28	MK	Маршрутная карта* ²	٥	٥	-
29	КТП	Карта технологического процесса	•*Б	•*B	•*Б
30	КТТП	Карта типового технологического процесса	°*¹B	∘*¹Б	_
31	КГТП	Карта группового технологического процесса	°*1B	°*1Б	_
32	ВТП	Ведомость деталей (сборочных единиц) к типовому (групповому) технологическому процессу	o*1	o*1	
33	КЭ	Карта эскизов	0	0	0
34	ТИ	Технологическая инструкция	•Б на сбор	очно-мон	тажные
				и испыт	
35	ТНК	Технико-нормировочная карта	•Б	•Б	•Б
36	ВО	Ведомость оснастки	0	٥	•Б
37	ВОБ	Ведомость оборудования	0	0	•Б
38	BM	Ведомость материалов	-	-	•Б
39	ВСН	Ведомость специфицированных норм расхода материалов	_	_	•Б
40	ВТД	Ведомость технологических документов* ⁴	_	-	•Б
41	-	Ведомость подетальных норм расхода драгоценных материалов, сплавов и их солей	-	-	^Б
	Перечень ООО	Перечень особо ответственных операций		•Б	
43	-	Технологический паспорт на изделия, составные части изделия и ДСЕ технологический процесс изготовления которых содержит особо ответственные операции		•Б	

Условные обозначения, применяемые в таблице:

- документ обязательный;
- – необходимость создания документов определяется исполнителем по согласованию с заказчиком;
- ^ необходимость создания документов определяется заказчиком по согласованию с исполнителем;
 - А документ согласовывается с главным конструктором ПЗС ОМС;
 - Б документ согласовывается с ВП Минобороны России исполнителя;
 - *- документ разрабатывается на единичный ТП;
 - $*^{1}$ документ разрабатывается на ТТП, ГТП;
- *2— маршрутное описание единичных технологических процессов применяется для документов, разрабатываемых на стадиях «Предварительный проект» и «Опытный образец» (опытная партия) и выполняется на формах МК с применением краткой формы записи содержания по всем операциям в технологической последовательности их выполнения, без указания переходов и технологических режимов;

Комплектность документации, определяемая настоящим перечнем, может дополняться и уточняться по согласованию сторон в установленном порядке.

Приложение В

(справочное)

Перечень ссылочных нормативных документов

Положение РК-11 Положение РК-11-КТ	Положение о порядке создания, производства и эксплуатации (применения) ракетных и космических комплексов.
ГОСТ РВ 2.902-2005	Единая система конструкторской документации. Порядок проверки, согласования и утверждения конструкторской документации.
ΓΟCT PB 0008-000-2019	Государственная система обеспечения единства измерений. Метрологическое обеспечение вооружения и военной техники. Основные положения.
ΓΟCT PB 0008-001-2013	Государственная система обеспечения единства измерений. Обеспечение единства измерений при выполнении государственного оборонного заказа. Общие требования к организации и порядку проведения метрологических работ.
ΓΟCT PB 0008-002-2013	Государственная система обеспечения единства измерений. Аттестация испытательного оборудования, применяемого при оценке соответствия оборонной продукции. Организация и порядок проведения.
ΓΟCT PB 0008-003-2019	Государственная система обеспечения единства измерений. Метрологическая экспертиза образцов вооружения и военной техники Организация и порядок проведения.
ΓΟCT PB 0015-110 -2018	Система разработки и постановки продукции на производство. Военная техника. Документация отчетная научно-техническая на научно-исследовательские работы, аванпроекты и опытно-конструкторские работы.
ГОСТ РВ 0008-006-2020	Государственная система обеспечения единства измерений. Метрологическое обеспечение испытаний вооружения и военной техники. Основные положения.

ΓΟCT PB 15.201-2003	Система разработки и постановки продукции на производство. Военная техника. Тактико-техническое (техническое) задание на выполнение опытно-конструкторских работ.
ΓΟCT PB 15.203-2001	Система разработки и постановки продукции на производство. Военная техника. Порядок выполнения опытно-конструкторских работ по созданию изделий и их составных частей. Основные положения.
ΓΟCT PB 0015-207-2018	Система разработки и постановки продукции на производство. Военная техника. Порядок проведения работ по стандартизации и унификации в процессе разработки и постановки на производство изделий. Основные положения.
ΓΟCT PB 0015-210-2020	Система разработки и постановки продукции на производство. Военная техника. Испытания опытных образцов изделий и опытных ремонтных образцов изделий. Основные положения.
ΓΟCT PB 15.211-2002	Система разработки и постановки продукции на производство. Военная техника. Порядок разработки программ и методик испытаний опытных образцов изделий. Основные положения.
ГОСТ РВ 0015-308-2017	Система разработки и постановки продукции на производство. Военная техника. Входной контроль изделий. Основные положения.
ΓΟCT PB 0020-39.302-2019	Комплексная система контроля качества. Аппаратура, приборы, устройства и оборудование военного назначения. Требования к программам обеспечения надежности и стойкости к воздействию специальных факторов.
ГОСТ РВ 0020-39.304-2019	Комплексная система контроля качества. Аппаратура, приборы, устройства и оборудование военного назначения. Требования стойкости к внешним воздействующим факторам.
ГОСТ РВ 0020-57.310-2019	Комплексная система контроля качества. Аппаратура, приборы, устройства и оборудование военного назначения. Методы оценки соответствия конструктивно-техническим требованиям.
ГОСТ РВ 0027-102-2019	Надежность военной техники. Программа обеспечения надежности. Общие требования.

ГОСТ РВ 0009-001-2019

Единая система защиты от коррозии и старения. Военная техника. Упаковка для транспортирования и хранения. Общие требования.

ГОСТ РВ 0020-39.305-2019

Комплексная система контроля качества. Аппаратура, приборы, устройства и оборудование военного назначения. Требования стойкости к воздействию поражающих факторов ядерного взрыва, ионизирующих излучений ядерных установок и космического пространства.

OCT 134-1034-2012

Аппаратура, приборы, устройства и оборудование космических аппаратов. Методы испытаний и оценки стойкости бортовой радиоэлектронной аппаратуры космических аппаратов к воздействию электронного и протонного излучений космического пространства по дозовым эффектам.

РД 134-0139-2005

Аппаратура, приборы, устройства и оборудование космических аппаратов. Методы оценки стойкости к воздействию заряженных частиц космического пространства по одиночным сбоям и отказам (с Изм. N 1, 2).

ΓΟCT PB 0020.39.302-2019

Комплексная система общих технических требований. Аппаратура, приборы, устройства и оборудование военного назначения. Требования к программам обеспечения надежности и стойкости к воздействию ионизирующих и электромагнитных изучений.

OCT 134-1044-2007

Аппаратура, приборы, устройства и оборудование космических аппаратов. Методы расчета условий борту радиационных на космических аппаратов и установления требований по стойкости радиоэлектронной аппаратуры космических аппаратов воздействию заряженных частиц космического пространства естественного происхождения.

ΓOCT B 21256-89

ΓΟCT PO 1410-001-2009

Системы и комплексы космические. Порядок заданий требований, оценки и контроля надежности.

ΓΟCT P 8.563-2009

Государственная система обеспечения единства измерений. Методики (методы) измерений.

ГОСТ Р 8.568-2017	Государственная система обеспечения единства измерений. Аттестация испытательного оборудования Основные положения.
ГОСТ Р 8.596-2002	Государственная система обеспечения единства измерений. Метрологическое обеспечение измерительных систем. Основные положения.
ΓΟCT P 8.674-2009	Государственная система обеспечения единства измерений. Общие требования к средствам измерений и техническим системам с измерительными функциями.
ΓΟCT P 15.011-96	Система разработки и постановки продукции на производство. Патентные исследования. Содержание и порядок проведения.
ГОСТ 2.102-2013	Единая система конструкторской документации. Виды и комплектность конструкторских документов.
ГОСТ 2.103-2013	Единая система конструкторской документации. Стадии разработки.
ГОСТ 2.124-2014	Единая система конструкторской документации. Порядок применения покупных изделий.
ГОСТ 8.417-2002	Единая система конструкторской документации. Единицы величин.
ГОСТ 9.014-78	Единая система защиты от коррозии и старения. Временная противокоррозионная защита изделий. Общие требования
ГОСТ 12.2.007.0-75	Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности.
ΓΟCT 14.201-83	Обеспечение технологичности конструкции изделия изделий. Общие требования.
ГОСТ 14.206-73	Технологический контроль конструкторской документации.
ГОСТ 27.310-95	Надежность в технике. Анализ видов, последствий и критичности отказов. Основные положения.
ГОСТ 14192-96	Маркировка грузов.
ΓΟCT IEC 60034-1-2014	Машины электрические вращающиеся. Часть 1.

Номинальные значения параметров и эксплуатационные характеристики.

ГОСТ ВД 9.014-80

Единая система защиты от коррозии и старения. Временная противокоррозионная защита изделий. Общие технические требования.

OCT 92-1371-99

Отраслевая система метрологического обеспечения качества. Изделия ракетно-космической техники. Метрологическое обеспечение разработки.

OCT 92-4286-89

Отраслевая система метрологического обеспечения качества. Порядок проведения метрологической экспертизы технической документации.

OCT 134-1028-2012

Ракетно-космическая техника. Требования к системам менеджмента качества предприятий, участвующих в создании, производстве и эксплуатации изделий (с изм. 1).

МИ 1317-2004

Рекомендация. Государственная система обеспечения единства измерений. Результаты и характеристики погрешности измерений. Формы представления. Способы использования при испытаниях образцов продукции и контроле их параметров.

PMΓ 29-2013

Рекомендации по межгосударственной стандартизации. Государственная система обеспечения единства измерений Метрология. Основные термины и определения.

У61-2278-ТУ

Металлизация изделий. Технические условия.

ΓΟCT 15150-69

Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

ΓOCT 19005-81

Средства обеспечения защиты изделий ракетной и ракетно-космической техники от статического электричества. Общие требования к металлизации и заземлению (с Изм. № 1, 2).

ΓΟCT P 50109-92

Материалы неметаллические. метод испытания на потерю массы и содержание летучих конденсирующих веществ при вакуумно-тепловом воздействии

Лист согласования

к техническому заданию на СЧ ОКР

«Создание шагового двигателя прецизионной зеркальной сканирующей оптикомеханической системы»

От 333 ВП МО РФ

W. Berure 6

От АО «Корпорация «Комета»

4 Maranione B.C.1

От 384 ВП МО РФ

От ВП МО РФ

price (UB,

Приложение А (справочное)

