

Redes II

Matheus Cândido Teixeira

Exercício 3

Topologia

1. Mostrar e explicar a configuração passo a passo;

I. Para configurar a rede é necessário, a princípio, configurar os endereços das interfaces de todos os roteadores na rede. Este passo é igual para os CEs, PEs e Ps.

Configuração para os CEs

```
configure terminal
       ip address 10.10.10.1 255.255.255.255
   interface F0/0
end
[CE-1]
configure terminal
   interface loopback 0
       ip address 10.10.20.1 255.255.255.255
   interface F0/0
[CE2]
configure terminal
   interface F0/0
[CE-2]
configure terminal
   interface loopback 0
       ip address 10.0.3.1 255.255.255.252
[CE3]
configure terminal
```

Configuração para os PEs

```
configure terminal
   interface F1/0
[PE2]
configure terminal
end
[PE3]
configure terminal
   interface F2/0
```

Para a configuração do Provider

```
[P1]

configure terminal

interface loopback 0

ip address 172.100.0.1 255.255.255

no shutdown

interface F1/0

ip address 10.1.0.2 255.255.255

no shutdown

interface F2/0

ip address 10.1.0.10 255.255.255

no shutdown

interface F3/0

ip address 10.1.0.16 255.255.255

no shutdown

interface F3/0

ip address 10.1.0.6 255.255.255.252

no shutdown
```

A configuração das interfaces permite apenas a comunicação com roteadores que estão no mesmo enlace. Por exemplo, o roteador CE1 pode se comunicar com o roteador PE1 na interface que os conecta, mas não com o loopback dele. Na figura a seguir, é possível verificar este fato:

```
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.0.1.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 16/28/36 ms
CE1#ping 172.0.0.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.0.0.1, timeout is 2 seconds:
.....
Success rate is 0 percent (0/5)
CE1#
```

II. Após configurar os endereços das interfaces, é necessário configurar os protocolos de roteamento IGP, neste caso o OSPF. Os roteadores PE1, PE2, PE3 e P1 estão no *ProcessID* 1, os roteadores CE1, CE2 e CE3 estão no *ProcessID* 2 e os roteadores CE-1 e CE-2 estão no *ProcessID* 3.

Configuração para os CEs

```
configure terminal
       network 0.0.0.0 255.255.255.255 area 0
[CE-1]
configure terminal
   router ospf 3
       network 0.0.0.0 255.255.255.255 area 0
[CE2]
configure terminal
   router ospf 2
       network 0.0.0.0 255.255.255.255 area 0
end
[CE-2]
configure terminal
   router ospf 3
       network 0.0.0.0 255.255.255.255 area 0
end
[CE3]
configure terminal
       network 0.0.0.0 255.255.255.255 area 0
```

Configuração para os PEs

```
[PE1]

configure terminal

interface loopback 0

ip ospf 1 area 0

interface F0/0

ip ospf 1 area 0

interface F1/0

ip ospf 2 area 0

interface F2/0

ip ospf 3 area 0

end

[PE2]

configure terminal

interface loopback 0

ip ospf 1 area 0

interface F0/0

ip ospf 1 area 0

interface F1/0

ip ospf 1 area 0

interface F1/0

ip ospf 2 area 0

end
```

```
[PE3]

configure terminal

interface loopback 0

ip ospf 1 area 0

interface F0/0

ip ospf 1 area 0

interface F1/0

ip ospf 3 area 0

interface F2/0

ip ospf 2 area 0

end
```

Configuração para o Provider

```
configure terminal
router ospf 1
network 0.0.0.0 255.255.255 area 0
```

III. Até este momento todas as configurações necessárias nos roteadores dos clientes já estão concluídas. Agora é necessário configurar a rede MPLS. Para ativar o MPLS, é preciso ativá-lo nas interfaces dos roteadores que estão na rede MPLS.

Para a configuração dos PEs

```
[PE1]
configure terminal
    interface F0/0
    mpls ip
end
[PE2]
configure terminal
    interface F0/0
    mpls ip
end
[PE3]
configure terminal
    interface F0/0
    mpls ip
end
```

Para a configuração do Provider

```
configure terminal
   interface loopback 0
    mpls ip
   interface F1/0
   mpls ip
   interface F2/0
   mpls ip
   interface F3/0
   mpls ip
```

IV. Agora com o MPLS ativado é preciso configurar as VPNs nos PEs. Neste exercício há duas VPNs: (1) "Cliente_A" (Rodando o protocolo OSPF com Process ID igual a 2); (2) "Cliente_B" (Rodando o protocolo OSPF com Process ID igual a 3);

Configuração necessária apenas para os PEs

```
[PE1]
configure terminal
   ip vrf Cliente A
       rd 2000:1
       route-target both 2000:1
       rd 2000:2
       route-target both 2000:2
       ip vrf forwarding Cliente_A
       ip vrf forwarding Cliente_B
end
[PE2]
configure terminal
   ip vrf Cliente_A
       rd 2000:1
       route-target both 2000:1
   ip vrf Cliente_B
       rd 2000:2
       route-target both 2000:2
   interface F1/0
       ip vrf forwarding Cliente_A
[PE3]
configure terminal
   ip vrf Cliente_A
       rd 2000:1
        route-target both 2000:1
   ip vrf Cliente B
       rd 2000:2
       route-target both 2000:2
       ip vrf forwarding Cliente_B
   interface F2/0
       ip vrf forwarding Cliente_A
```

V. Agora é necessário configurar o protocolo de roteamento BGP. Na configuração do protocolo é necessário declarar que todos os PEs são vizinhos do PE que está sendo configurado. É, também, preciso ativar o IPV4 na rede, isso é feito utilizando o comando address-family vpnv4.

```
[PE1]

configure terminal

router bgp 2000

neighbor 172.0.0.3 remote-as 2000

neighbor 172.0.0.3 update-source loopback 0
```

```
neighbor 172.0.0.2 remote-as 2000
       neighbor 172.0.0.2 update-source loopback 0
       address-family vpnv4
           neighbor 172.0.0.2 activate
           neighbor 172.0.0.3 activate
end
[PE2]
configure terminal
   router bgp 2000
       neighbor 172.0.0.1 remote-as 2000
       neighbor 172.0.0.1 update-source loopback 0
       neighbor 172.0.0.2 remote-as 2000
       neighbor 172.0.0.2 update-source loopback 0
        address-family vpnv4
           neighbor 172.0.0.1 activate
end
[PE3]
configure terminal
   router bgp 2000
       neighbor 172.0.0.1 remote-as 2000
       neighbor 172.0.0.1 update-source loopback 0
       neighbor 172.0.0.3 remote-as 2000
       neighbor 172.0.0.3 update-source loopback 0
           neighbor 172.0.0.1 activate
            neighbor 172.0.0.3 activate
end
```

VI. Por fim, é necessário configurar a redistribuição de rotas OSPF através do protocolo BGP, o que é feito utilizando o comando **address-family ipv4 vrf** *nomaDaVrf*. Também é preciso distribuir o BGP através do OSPF para a distribuição de rotas aprendidas a partir de outros protocolos.

Configurações apenas para os PEs

```
[PE1]
configure terminal
  router bgp 2000
    address-family ipv4 vrf Cliente_A
        redistribute ospf 2
    address-family ipv4 vrf Cliente_B
        redistribute ospf 3
  router ospf 2
    redistribute bgp 2000 subnets
  router ospf 3
```

```
redistribute bgp 2000 subnets
[PE2]
configure terminal
    router bgp 2000
        address-family ipv4 vrf Cliente_A
            redistribute ospf 2
        address-family ipv4 vrf Cliente_B
           redistribute ospf 3
    router ospf 2
        redistribute bgp 2000 subnets
    router ospf 3
        redistribute bgp 2000 subnets
end
[PE3]
configure terminal
    router bgp 2000
        address-family ipv4 vrf Cliente_A
            redistribute ospf 2
        address-family ipv4 vrf Cliente_B
           redistribute ospf 3
    router ospf 2
       redistribute bgp 2000 subnets
    router ospf 3
        redistribute bgp 2000 subnets
```

VII. Após estas configurações, os roteadores na mesma VRF devem ser capazes de encontrar rotas para os demais

```
CE1#show ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 6 subnets, 2 masks

O IA 10.0.3.0/30 [110/2] via 10.0.1.2, 02:10:49, FastEthernet0/0

C 10.10.10.1/32 is directly connected, Loopback0

C 10.0.1.0/30 is directly connected, FastEthernet0/0

O IA 10.0.3.4/30 [110/2] via 10.0.1.2, 02:10:49, FastEthernet0/0

O IA 10.10.40.1/32 [110/3] via 10.0.1.2, 02:10:49, FastEthernet0/0

O IA 10.10.50.1/32 [110/3] via 10.0.1.2, 02:10:49, FastEthernet0/0

CE1#
```

```
CE-1#show ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks

O IA 10.0.3.0/30 [110/2] via 10.0.1.6, 00:00:01, FastEthernet0/0

C 10.1.4/30 is directly connected, FastEthernet0/0

O IA 10.10.30.1/32 [110/3] via 10.0.1.6, 00:00:01, FastEthernet0/0

CE-1#
```

2. Em cada etapa da configuração, mostrar e explicar a tabela de roteamento de cada roteador e também a tabela LFIB dos roteadores da rede MPLS;

I. Apenas os endereços das interfaces configurados:

Apenas com as interfaces configuradas, apenas as redes conectadas as interfaces devem ser visíveis. Até este momento não há tabela de rotas e, portanto, a tabela LFIB ainda não pode ser construída.

CE1#show ip route

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

- C 10.10.10.1/32 is directly connected, Loopback0
- C 10.0.1.0/30 is directly connected, FastEthernet0/0

CE-1#show ip route

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

- C 10.0.1.4/30 is directly connected, FastEthernet0/0
- C 10.10.20.1/32 is directly connected, Loopback0

CE-2#show ip route

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

- C 10.0.3.0/30 is directly connected, FastEthernet0/0
- C 10.10.30.1/32 is directly connected, Loopback0

CE2#show ip route

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

- C 10.0.3.4/30 is directly connected, FastEthernet0/0
- C 10.10.40.1/32 is directly connected, Loopback0

CE3#show ip route

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

- C 10.0.3.0/30 is directly connected, FastEthernet0/0
- C 10.10.50.1/32 is directly connected, Loopback0

PE1#show ip route

172.0.0.0/32 is subnetted, 1 subnets

- C 172.0.0.1 is directly connected, Loopback0 10.0.0.0/30 is subnetted, 3 subnets
- C 10.1.0.0 is directly connected, FastEthernet0/0
- C 10.0.1.0 is directly connected, FastEthernet1/0
- C 10.0.1.4 is directly connected, FastEthernet2/0

PE2#show ip route

172.0.0.0/32 is subnetted, 1 subnets

- C 172.0.0.3 is directly connected, Loopback0 10.0.0.0/30 is subnetted, 1 subnets
- C 10.1.0.8 is directly connected, FastEthernet0/0

PE3#show ip route

172.0.0.0/32 is subnetted, 1 subnets

- C 172.0.0.2 is directly connected, Loopback0 10.0.0.0/30 is subnetted, 3 subnets
- C 10.0.3.0 is directly connected, FastEthernet1/0
- C 10.0.3.4 is directly connected, FastEthernet2/0
- C 10.1.0.4 is directly connected, FastEthernet0/0

P1#show ip route

172.100.0.0/32 is subnetted, 1 subnets

- C 172.100.0.1 is directly connected, Loopback0 10.0.0.0/30 is subnetted, 3 subnets
- C 10.1.0.8 is directly connected, FastEthernet2/0
- C 10.1.0.0 is directly connected, FastEthernet1/0
- C 10.1.0.4 is directly connected, FastEthernet3/0
 - II. Como o protocolo de roteamento IGP configurado já há rotas nos roteadores que constituem a rede MPLS, porém os roteadores dos clientes ainda não possuem rotas pois eles não estão conectados diretamente a redes com mesmo *ProcessID* que eles e, portanto, o protocolo IGP não pode criar rotas.

CE1#show ip route

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

- C 10.10.10.1/32 is directly connected, Loopback0
- C 10.0.1.0/30 is directly connected, FastEthernet0/0

CE-1#show ip route

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

- C 10.0.1.4/30 is directly connected, FastEthernet0/0
- C 10.10.20.1/32 is directly connected, Loopback0

CE-2#show ip route

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

- C 10.0.3.0/30 is directly connected, FastEthernet0/0
- C 10.10.30.1/32 is directly connected, Loopback0

CE2#show ip route

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

- C 10.0.3.4/30 is directly connected, FastEthernet0/0
- C 10.10.40.1/32 is directly connected, Loopback0

CE3#show ip route

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

- C 10.0.3.0/30 is directly connected, FastEthernet0/0
- C 10.10.50.1/32 is directly connected, Loopback0

PE1#show ip route

172.100.0.0/32 is subnetted, 1 subnets

- O 172.100.0.1 [110/2] via 10.1.0.2, 00:01:10, FastEthernet0/0 172.0.0.0/32 is subnetted, 3 subnets
- C 172.0.0.1 is directly connected, Loopback0
- O 172.0.0.2 [110/3] via 10.1.0.2, 00:01:10, FastEthernet0/0
- O 172.0.0.3 [110/3] via 10.1.0.2, 00:01:10, FastEthernet0/0 10.0.0.0/8 is variably subnetted, 7 subnets, 2 masks
- O 10.1.0.8/30 [110/2] via 10.1.0.2, 00:01:10, FastEthernet0/0
- O 10.10.10.1/32 [110/2] via 10.0.1.1, 00:03:52, FastEthernet1/0
- C 10.1.0.0/30 is directly connected, FastEthernet0/0
- C 10.0.1.0/30 is directly connected, FastEthernet1/0
- O 10.1.0.4/30 [110/2] via 10.1.0.2, 00:01:11, FastEthernet0/0
- C 10.0.1.4/30 is directly connected, FastEthernet2/0
- O 10.10.20.1/32 [110/2] via 10.0.1.5, 00:03:44, FastEthernet2/0

PE2#show ip route

172.100.0.0/32 is subnetted, 1 subnets

O 172.100.0.1 [110/2] via 10.1.0.10, 00:02:02, FastEthernet0/0

172.0.0.0/32 is subnetted, 3 subnets

- O 172.0.0.1 [110/3] via 10.1.0.10, 00:01:52, FastEthernet0/0
- O 172.0.0.2 [110/3] via 10.1.0.10, 00:02:02, FastEthernet0/0
- C 172.0.0.3 is directly connected, Loopback0

10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks

- C 10.1.0.8/30 is directly connected, FastEthernet0/0
- C 10.0.3.0/30 is directly connected, FastEthernet1/0
- O 10.1.0.0/30 [110/2] via 10.1.0.10, 00:01:52, FastEthernet0/0
- O 10.1.0.4/30 [110/2] via 10.1.0.10, 00:02:02, FastEthernet0/0
- O 10.10.50.1/32 [110/2] via 10.0.3.1, 00:02:31, FastEthernet1/0

PE3#show ip route

172.100.0.0/32 is subnetted, 1 subnets

- O 172.100.0.1 [110/2] via 10.1.0.6, 00:02:03, FastEthernet0/0 172.0.0.0/32 is subnetted, 3 subnets
- O 172.0.0.1 [110/3] via 10.1.0.6, 00:02:03, FastEthernet0/0
- C 172.0.0.2 is directly connected, Loopback0
- O 172.0.0.3 [110/3] via 10.1.0.6, 00:02:03, FastEthernet0/0 10.0.0.0/8 is variably subnetted, 7 subnets, 2 masks
- O 10.1.0.8/30 [110/2] via 10.1.0.6, 00:02:03, FastEthernet0/0
- C 10.0.3.0/30 is directly connected, FastEthernet1/0
- O 10.1.0.0/30 [110/2] via 10.1.0.6, 00:02:03, FastEthernet0/0
- C 10.0.3.4/30 is directly connected, FastEthernet2/0
- C 10.1.0.4/30 is directly connected, FastEthernet0/0
- O 10.10.30.1/32 [110/2] via 10.0.3.1, 00:03:46, FastEthernet1/0
- O 10.10.40.1/32 [110/2] via 10.0.3.5, 00:03:48, FastEthernet2/0

P1#show ip route

172.100.0.0/32 is subnetted, 1 subnets

- C 172.100.0.1 is directly connected, Loopback0 172.0.0.0/32 is subnetted, 3 subnets
- O 172.0.0.1 [110/2] via 10.1.0.1, 00:02:09, FastEthernet1/0
- O 172.0.0.2 [110/2] via 10.1.0.5, 00:02:09, FastEthernet3/0
- O 172.0.0.3 [110/2] via 10.1.0.9, 00:02:09, FastEthernet2/0 10.0.0.0/30 is subnetted, 3 subnets
- C 10.1.0.8 is directly connected, FastEthernet2/0
- C 10.1.0.0 is directly connected, FastEthernet1/0
- C 10.1.0.4 is directly connected, FastEthernet3/0
- III. Com o protocol IGP atuando, é possível ativar o MPLS nas redes e, assim, criar rotas. O MPLS utiliza o IGP para distribuir labels utilizando o protocolo LDP. Porém, mesmo com o MPLS configurado ainda não há VPN criadas, portanto, não houve alterações para os nós clientes.

```
E1#show mpls forwarding-table
Local Outgoing
                     Prefix
                                        Bytes Label
                                                      Outgoing
                                                                  Next Hop
                                        Switched
Label Label or VC
                     or Tunnel Id
                                                      interface
      Pop Label
                     10.1.0.4/30
                                                      Fa0/0
                                                                  10.1.0.2
      Pop Label
                     10.1.0.8/30
                                                      Fa0/0
                                                                  10.1.0.2
                                        ø
      No Label
                     10.10.10.1/32
                                                                  10.0.1.1
                                                      Fa1/0
      No Label
                     10.10.20.1/32
                                                      Fa2/0
                                                                  10.0.1.5
20
                     172.0.0.2/32
                                                      Fa0/0
                                                                  10.1.0.2
                     172.0.0.3/32
                                                      Fa0/0
                                                                  10.1.0.2
      Pop Label
                     172.100.0.1/32
                                                      Fa0/0
                                                                  10.1.0.2
```

PE2#sh	ow mpls forwar	ding-table			
Local	Outgoing	Prefix	Bytes Label	Outgoing	Next Hop
Label	Label or VC	or Tunnel Id	Switched	interface	
16	Pop Label	10.1.0.0/30		Fa0/0	10.1.0.10
17	Pop Label	10.1.0.4/30		Fa0/0	10.1.0.10
18	No Label	10.10.50.1/32		Fa1/0	10.0.3.1
19	16	172.0.0.1/32		Fa0/0	10.1.0.10
20	17	172.0.0.2/32		Fa0/0	10.1.0.10
21	Pop Label	172.100.0.1/32	0	Fa0/0	10.1.0.10

PE3#sh	ow mpls forwar	ding-table			
Local	Outgoing	Prefix	Bytes Label	Outgoing	Next Hop
Label	Label or VC	or Tunnel Id	Switched	interface	
16	Pop Label	10.1.0.0/30		Fa0/0	10.1.0.6
17	Pop Label	10.1.0.8/30		Fa0/0	10.1.0.6
18	No Label	10.10.30.1/32		Fa1/0	10.0.3.1
19	No Label	10.10.40.1/32		Fa2/0	10.0.3.5
20	16	172.0.0.1/32		Fa0/0	10.1.0.6
21	18	172.0.0.3/32		Fa0/0	10.1.0.6
22 _	Pop Label	172.100.0.1/32	0	Fa0/0	10.1.0.6

P1#sho	w mpls forward	ling-table			
Local	Outgoing	Prefix	Bytes Label	Outgoing	Next Hop
Label	Label or VC	or Tunnel Id	Switched	interface	
16	Pop Label	172.0.0.1/32		Fa1/0	10.1.0.1
17	Pop Label	172.0.0.2/32		Fa3/0	10.1.0.5
18	Pop Label	172.0.0.3/32	0	Fa2/0	10.1.0.9

IV. Com o forwarding ativado nos PEs, já é possível ver os clientes (CEs) que pertencem a cada VPN.

PE1#show ip route vrf Cliente_A

10.0.0.0/30 is subnetted, 1 subnets

C 10.0.1.0 is directly connected, FastEthernet1/0

PE1#show ip route vrf Cliente_B

10.0.0.0/30 is subnetted, 1 subnets

C 10.0.1.4 is directly connected, FastEthernet2/0

PE2#show ip route vrf Cliente_A

10.0.0.0/30 is subnetted, 1 subnets

C 10.0.3.0 is directly connected, FastEthernet1/0

PE3#show ip route vrf Cliente_A

10.0.0.0/30 is subnetted, 1 subnets

C 10.0.3.4 is directly connected, FastEthernet2/0

PE3#show ip route vrf Cliente_B

10.0.0.0/30 is subnetted, 1 subnets

C 10.0.3.0 is directly connected, FastEthernet1/0

- V. Apenas ativando o VPNV4 não há alterações na rede. É necessário ativar a redistribuição do protocolo BGP e das rotas OSPF ainda. Após ativar a redistribuição de BGP e de OSPF:
 - Os CEs são capazes de ver as rotas dos demais CEs através da rede MPLS:

CE1#show ip route

10.0.0.0/8 is variably subnetted, 6 subnets, 2 masks

O IA 10.0.3.0/30 [110/2] via 10.0.1.2, 00:00:24, FastEthernet0/0

C 10.10.10.1/32 is directly connected, Loopback0

C 10.0.1.0/30 is directly connected, FastEthernet0/0

O IA 10.0.3.4/30 [110/2] via 10.0.1.2, 00:00:24, FastEthernet0/0

O IA 10.10.40.1/32 [110/3] via 10.0.1.2, 00:00:24, FastEthernet0/0

O IA 10.10.50.1/32 [110/3] via 10.0.1.2, 00:00:24, FastEthernet0/0

CE-1#show ip route

10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks

O IA 10.0.3.0/30 [110/2] via 10.0.1.6, 00:02:58, FastEthernet0/0

C 10.0.1.4/30 is directly connected, FastEthernet0/0

C 10.10.20.1/32 is directly connected, Loopback0

O IA 10.10.30.1/32 [110/3] via 10.0.1.6, 00:02:44, FastEthernet0/0

CE-2#show ip route

10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks

C 10.0.3.0/30 is directly connected, FastEthernet0/0

O IA 10.0.1.4/30 [110/2] via 10.0.3.2, 00:02:51, FastEthernet0/0

O IA 10.10.20.1/32 [110/3] via 10.0.3.2, 00:02:51, FastEthernet0/0

C 10.10.30.1/32 is directly connected, Loopback0

CE2#show ip route

10.0.0.0/8 is variably subnetted, 6 subnets, 2 masks

O IA 10.0.3.0/30 [110/2] via 10.0.3.6, 00:04:10, FastEthernet0/0

O IA 10.10.10.1/32 [110/3] via 10.0.3.6, 00:03:10, FastEthernet0/0

O IA 10.0.1.0/30 [110/2] via 10.0.3.6, 00:04:23, FastEthernet0/0

C 10.0.3.4/30 is directly connected, FastEthernet0/0 C 10.10.40.1/32 is directly connected, Loopback0

O IA 10.10.50.1/32 [110/3] via 10.0.3.6, 00:04:23, FastEthernet0/0

CE3#show ip route

10.0.0.0/8 is variably subnetted, 6 subnets, 2 masks

C 10.0.3.0/30 is directly connected, FastEthernet0/0

O IA 10.10.10.1/32 [110/3] via 10.0.3.2, 00:03:03, FastEthernet0/0

O IA 10.0.1.0/30 [110/2] via 10.0.3.2, 00:04:43, FastEthernet0/0

O IA 10.0.3.4/30 [110/2] via 10.0.3.2, 00:04:03, FastEthernet0/0

O IA 10.10.40.1/32 [110/3] via 10.0.3.2, 00:04:18, FastEthernet0/0

C 10.10.50.1/32 is directly connected, Loopback0

ii. Os PEs são capazes de verificar as rotas para todos os clientes que pertencem a uma determinada VPN.

PE1#show ip route vrf Cliente_A

Routing Table: Cliente_A

10.0.0.0/8 is variably subnetted, 6 subnets, 2 masks

- B 10.0.3.0/30 [200/0] via 172.0.0.3, 00:08:23
- O 10.10.10.1/32 [110/2] via 10.0.1.1, 00:07:29, FastEthernet1/0
- C 10.0.1.0/30 is directly connected, FastEthernet1/0
- B 10.0.3.4/30 [200/0] via 172.0.0.2, 00:08:23
- B 10.10.40.1/32 [200/2] via 172.0.0.2, 00:08:23
- B 10.10.50.1/32 [200/2] via 172.0.0.3, 00:08:38

```
PE1#show ip route vrf Cliente_B
Routing Table: Cliente B
  10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks
  10.0.3.0/30 [200/0] via 172.0.0.2, 00:08:39
С
  10.0.1.4/30 is directly connected, FastEthernet2/0
    10.10.20.1/32 [110/2] via 10.0.1.5, 00:07:42, FastEthernet2/0
   10.10.30.1/32 [200/2] via 172.0.0.2, 00:07:24
PE2#show ip route vrf Cliente_A
Routing Table: Cliente_A
  10.0.0.0/8 is variably subnetted, 6 subnets, 2 masks
C 10.0.3.0/30 is directly connected, FastEthernet1/0
B 10.10.10.1/32 [200/2] via 172.0.0.1, 00:09:07
B 10.0.1.0/30 [200/0] via 172.0.0.1, 00:11:22
B 10.0.3.4/30 [200/0] via 172.0.0.2, 00:10:07
B 10.10.40.1/32 [200/2] via 172.0.0.2, 00:10:22
O 10.10.50.1/32 [110/2] via 10.0.3.1, 00:10:42, FastEthernet1/0
PE2#show ip route vrf Cliente B
Routing Table: Cliente B
  10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks
B 10.0.3.0/30 [200/0] via 172.0.0.2, 00:10:07
  10.0.1.4/30 [200/0] via 172.0.0.1, 00:11:22
   10.10.20.1/32 [200/2] via 172.0.0.1, 00:09:07
   10.10.30.1/32 [200/2] via 172.0.0.2, 00:08:52
PE3#show ip route vrf Cliente_A
Routing Table: Cliente_A
  10.0.0.0/8 is variably subnetted, 6 subnets, 2 masks
B 10.0.3.0/30 [200/0] via 172.0.0.3, 00:10:33
B 10.10.10.1/32 [200/2] via 172.0.0.1, 00:09:33
B 10.0.1.0/30 [200/0] via 172.0.0.1, 00:11:33
C 10.0.3.4/30 is directly connected, FastEthernet2/0
O 10.10.40.1/32 [110/2] via 10.0.3.5, 00:10:41, FastEthernet2/0
   10.10.50.1/32 [200/2] via 172.0.0.3, 00:10:48
PE3#show ip route vrf Cliente_B
Routing Table: Cliente_B
  10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks
C 10.0.3.0/30 is directly connected, FastEthernet1/0
B 10.0.1.4/30 [200/0] via 172.0.0.1, 00:11:33
  10.10.20.1/32 [200/2] via 172.0.0.1, 00:09:18
   10.10.30.1/32 [110/2] via 10.0.3.1, 00:09:17, FastEthernet1/0
```

VI. Com a rede configurada e o redistribute do BGP e do OSPF a tabela LFIB adiciona todos os Clientes na tabela e cria labels para eles.

PE1#show mpls forwarding-table

```
        Local Outgoing
        Prefix
        Bytes Label
        Outgoing
        Next Hop

        Label Label or VC
        or Tunnel Id
        Switched
        interface

        16
        Pop Label
        10.1.0.4/30
        0
        Fa0/0
        10.1.0.2

        17
        Pop Label
        10.1.0/30[V]
        0
        Fa0/0
        10.1.0.2

        18
        No Label
        10.0.1.4/30[V]
        0
        aggregate/Cliente_A

        20
        17
        172.0.0.2/32
        0
        Fa0/0
        10.1.0.2

        21
        18
        172.0.0.3/32
        0
        Fa0/0
        10.1.0.2

        22
        Pop Label
        172.100.0.1/32
        0
        Fa0/0
        10.1.0.2

        23
        No Label
        10.10.10.1/32[V]
        0
        Fa1/0
        10.0.1.1

        24
        No Label
        10.10.20.1/32[V]
        0
        Fa2/0
        10.0.1.5
```

PE2#show mpls forwarding-table

```
        Local Outgoing
        Prefix
        Bytes Label
        Outgoing
        Next Hop

        Label Label or VC
        or Tunnel Id
        Switched
        interface

        16
        Pop Label
        10.1.0.0/30
        0
        Fa0/0
        10.1.0.10

        17
        Pop Label
        10.10.50.1/32[V]
        0
        Fa1/0
        10.0.3.1

        19
        16
        172.0.0.1/32
        0
        Fa0/0
        10.1.0.10

        20
        17
        172.0.0.2/32
        0
        Fa0/0
        10.1.0.10

        21
        Pop Label
        172.100.0.1/32
        0
        Fa0/0
        10.1.0.10

        22
        No Label
        10.0.3.0/30[V]
        0
        aggregate/Cliente_A
```

PE3#show mpls forwarding-table

Loca	al Outgoing	Prefix	Bytes L	abel Outg	oing Next Hop
Labe	el Label or V	C or Tunnel	ld Swi	itched in	terface
16	Pop Label	10.1.0.0/30	0	Fa0/0	10.1.0.6
17	Pop Label	10.1.0.8/30	0	Fa0/0	10.1.0.6
18	No Label	10.10.40.1/3	32[V] 0	Fa2/	0 10.0.3.5
19	No Label	10.0.3.4/30	[V] 0	aggre	gate/Cliente_A
20	16 17	72.0.0.1/32	0	Fa0/0 1	.0.1.0.6
21	18 17	72.0.0.3/32	0	Fa0/0 1	.0.1.0.6
22	Pop Label	172.100.0.1	/32 0	Fa0/0	10.1.0.6
23	No Label	10.0.3.0/30	[V] 0	aggre	gate/Cliente_B
24	No Label	10.10.30.1/3	32[V] 0	Fa1/	0 10.0.3.1

P1#show mpls forwarding-table

Loca	I Outgoing	Prefix	Bytes Label	Outgoing	Next Hop
Labe	l Label or VC	or Tunnel Id	d Switched	interfa	ce
16	Pop Label	172.0.0.1/32	13656	Fa1/0	10.1.0.1
17	Pop Label	172.0.0.2/32	13745	Fa3/0	10.1.0.5
18	Pop Label	172.0.0.3/32	12975	Fa2/0	10.1.0.9

3. Explicar o resultado dos seguintes comandos em todos os LSR;

PE1

Este comando exibe todas as interfaces do roteador que estão com o MPLS ativo. Neste caso, apenas FO/O está ativo.

PE1#show mpls interfaces

Interface IP Tunnel BGP Static Operational FastEthernet0/0 Yes (ldp) No No No Yes

Este comando lista a interfaces que estão associadas a alguma VRF.

PE1#show ip vrf interfaces

Interface	IP-Address	VRF	Protocol
Fa1/0	10.0.1.2	Cliente_A	up
Fa2/0	10.0.1.6	Cliente_B	up

Este comando mostra as rotas para atingir todos os clientes que estão na VPN "Cliente A".

PE1#show ip route vrf Cliente_A

Este comando mostra as rotas para atingir todos os clientes que estão na VPN "Cliente_B".

PE1#show ip route vrf Cliente_B

Este comando mostra todas as redes associadas a VRF "Cliente A".

PE1#show ip bgp vpnv4 vrf Cliente_A

Network	Next Hop	Metric Lo	cPrf	Weight	Path
Route Distinguisher	: 2000:1 (default	for vrf Clie	nte_A	.)	
*> 10.0.1.0/30	0.0.0.0	0		32768	?
*>i10.0.3.0/30	172.0.0.3	0	100	0	?
*>i10.0.3.4/30	172.0.0.2	0	100	0	?
*> 10.10.10.1/32	10.0.1.1	2		32768	?
*>i10.10.40.1/32	172.0.0.2	2	100	0	?
*>i10.10.50.1/32	172.0.0.3	2	100	0	?

Este comando mostra todas as redes associadas a VRF "Cliente B".

PE1#show ip bgp vpnv4 vrf Cliente_B

Network	Next Hop	Metric Loc	:Prf W	leight	Path
Route Distinguisher	: 2000:2 (default fo	or vrf Clier	nte_B)		
*> 10.0.1.4/30	0.0.0.0	0		32768	?
*>i10.0.3.0/30	172.0.0.2	0	100	0	?
*>i10.10.30.1/32	172.0.0.2	2	100	0	?

Envia um ICMP para o Cliente 10.10.10.1 que está na VRF "Cliente A"

```
PE1#ping vrf Cliente_A 10.10.10.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.10.10.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 20/26/40 ms
```

PE2

Este comando exibe todas as interfaces do roteador que estão com o MPLS ativo. Neste caso, apenas F0/0 está ativo.

PE2#show mpls interfaces

Interface IP Tunnel BGP Static Operational FastEthernet0/0 Yes (ldp) No No No Yes

Este comando lista a interfaces que estão associadas a alguma VRF.

PE2#show ip vrf interfaces

Interface IP-Address VRF Protocol Fa1/0 10.0.3.2 Cliente_A up

Este comando mostra as rotas para atingir todos os clientes que estão na VPN "Cliente_A".

PE2#show ip route vrf Cliente_A

Este comando mostra as rotas para atingir todos os clientes que estão na VPN "Cliente_B".

PE2#show ip route vrf Cliente_B

Este comando mostra todas as redes associadas a VRF "Cliente A".

PE2#show ip bgp vpnv4 vrf Cliente_A

Network	Next Hop	Metric	LocPrf	Weight	Path
Route Distinguisher	: 2000:1 (default f	or vrf C	liente_A)	
*>i10.0.1.0/30	172.0.0.1	0	100	0	?
*> 10.0.3.0/30	0.0.0.0	0		32768	?
*>i10.0.3.4/30	172.0.0.2	0	100	0	?
*>i10.10.10.1/32	172.0.0.1	2	100	0	?
*>i10.10.40.1/32	172.0.0.2	2	100	0	?
*> 10.10.50.1/32	10.0.3.1	2		32768	?

Este comando mostra todas as redes associadas a VRF "Cliente B".

PE2#show ip bgp vpnv4 vrf Cliente_B

```
Metric LocPrf Weight Path
  Network
                   Next Hop
Route Distinguisher: 2000:2 (default for vrf Cliente_B)
                                                          0 ?
*>i10.0.1.4/30
                   172.0.0.1
                                            0
                                                  100
*>i10.0.3.0/30
                   172.0.0.2
                                                  100
                                                          0 ?
*>i10.10.30.1/32
                   172.0.0.2
                                             2
                                                  100
                                                          0 ?
```

Envia um ICMP para o Cliente 10.10.10.1 que está na VRF "Cliente_A"

PE2#ping vrf Cliente_A 10.10.10.1

```
Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.10.10.1, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 56/61/68 ms
```

PE3

Este comando exibe todas as interfaces do roteador que estão com o MPLS ativo. Neste caso, apenas F0/0 está ativo.

PE3#show mpls interfaces

Interface IP Tunnel BGP Static Operational FastEthernet0/0 Yes (ldp) No No No Yes Este comando lista a interfaces que estão associadas a alguma VRF.

PE3#show ip vrf interfaces

Interface	IP-Address	VRF	Protocol
Fa2/0	10.0.3.6	Cliente_A	up
Fa1/0	10.0.3.2	Cliente B	up

Este comando mostra as rotas para atingir todos os clientes que estão na VPN "Cliente_A".

PE3#show ip route vrf Cliente_A

Este comando mostra as rotas para atingir todos os clientes que estão na VPN "Cliente_B".

PE3#show ip route vrf Cliente_B

Este comando mostra todas as redes associadas a VRF "Cliente A".

PE3#show ip bgp vpnv4 vrf Cliente_A

```
Network Next Hop Metric LocPrf Weight Path Route Distinguisher: 2000:1 (default for vrf Cliente_A) *>i10.0.1.0/30 172.0.0.1 0 100 0 ?
```

*>i10.0.3.0/30	172.0.0.3	0	100	0	?
*> 10.0.3.4/30	0.0.0.0	0		32768	?
*>i10.10.10.1/32	172.0.0.1	2	100	0	?
*> 10.10.40.1/32	10.0.3.5	2		32768	?
*>i10.10.50.1/32	172.0.0.3	2	100	0	?

Este comando mostra todas as redes associadas a VRF "Cliente B".

PE3#show ip bgp vpnv4 vrf Cliente_B

Network	Next Hop	Metric Lo	cPrf Weight	Path
Route Distinguishe	r: 2000:2 (default	for vrf Clie	nte_B)	
*>i10.0.1.4/30	172.0.0.1	0	100 0	?
*> 10.0.3.0/30	0.0.0.0	0	32768	?
*> 10.10.30.1/32	10.0.3.1	2	32768	?

Envia um ICMP para o Cliente 10.10.10.1 que está na VRF "Cliente_A"

PE3#ping vrf Cliente_A 10.10.10.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.10.10.1, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 48/56/72 ms

P1

Este comando exibe todas as interfaces do roteador que estão com o MPLS ativo.

P1#show mpls interfaces

Interface	IP	Tunnel	BGP	Static	Operational
FastEthernet1/0	Yes (ldp)	No	No	No	Yes
FastEthernet2/0	Yes (ldp)	No	No	No	Yes
FastEthernet3/0	Yes (ldp)	No	No	No	Yes

4. Mostrar e explicar as tabelas de rotas dos roteadores dos clientes;

O roteador CE1 (OSPF 2) aprende as rotas dos roteadores CE2 e CE3 através do OSPF 2 que é distribuído através do BGP.

CE1#show ip route

```
10.0.0.0/8 is variably subnetted, 6 subnets, 2 masks
O IA 10.0.3.0/30 [110/2] via 10.0.1.2, 00:21:58, FastEthernet0/0
C 10.10.1.0/32 is directly connected, Loopback0 (CE1)
C 10.0.1.0/30 is directly connected, FastEthernet0/0
O IA 10.0.3.4/30 [110/2] via 10.0.1.2, 00:21:58, FastEthernet0/0
O IA 10.10.40.1/32 [110/3] via 10.0.1.2, 00:21:58, FastEthernet0/0 (CE2)
O IA 10.10.50.1/32 [110/3] via 10.0.1.2, 00:21:58, FastEthernet0/0 (CE3)
```

O roteador CE-1 (OSPF 3) aprende as rotas do roteador CE-2 através do OSPF 3 que é distribuído através do BGP.

CE-1#show ip route

```
10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks
O IA 10.0.3.0/30 [110/2] via 10.0.1.6, 00:02:58, FastEthernet0/0
C 10.0.1.4/30 is directly connected, FastEthernet0/0
C 10.10.20.1/32 is directly connected, Loopback0 (CE-1)
O IA 10.10.30.1/32 [110/3] via 10.0.1.6, 00:02:44, FastEthernet0/0 (CE-2)
```

O roteador CE-2 (OSPF 3) aprende as rotas do roteador CE-1 através do OSPF 3 que é distribuído através do BGP.

CE-2#show ip route

```
10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks
C 10.0.3.0/30 is directly connected, FastEthernet0/0
O IA 10.0.1.4/30 [110/2] via 10.0.3.2, 00:02:51, FastEthernet0/0
O IA 10.10.20.1/32 [110/3] via 10.0.3.2, 00:02:51, FastEthernet0/0 (CE-1)
C 10.10.30.1/32 is directly connected, Loopback0 (CE-2)
```

O roteador CE2 (OSPF 2) aprende as rotas dos roteadores CE1 e CE3 através do OSPF 2 que é distribuído através do BGP.

CE2#show ip route

```
10.0.0.0/8 is variably subnetted, 6 subnets, 2 masks
O IA 10.0.3.0/30 [110/2] via 10.0.3.6, 00:04:10, FastEthernet0/0
O IA 10.10.1/32 [110/3] via 10.0.3.6, 00:03:10, FastEthernet0/0 (CE1)
O IA 10.0.1.0/30 [110/2] via 10.0.3.6, 00:04:23, FastEthernet0/0
C 10.0.3.4/30 is directly connected, FastEthernet0/0
C 10.10.40.1/32 is directly connected, Loopback0 (CE2)
O IA 10.10.50.1/32 [110/3] via 10.0.3.6, 00:04:23, FastEthernet0/0 (CE3)
```

O roteador CE3 (OSPF 2) aprende as rotas dos roteadores CE1 e CE2 através do OSPF 2 que é distribuído através do BGP.

CE3#show ip route

```
10.0.0.0/8 is variably subnetted, 6 subnets, 2 masks
C 10.0.3.0/30 is directly connected, FastEthernet0/0
O IA 10.10.10.1/32 [110/3] via 10.0.3.2, 00:03:03, FastEthernet0/0 (CE1)
O IA 10.0.1.0/30 [110/2] via 10.0.3.2, 00:04:43, FastEthernet0/0
O IA 10.0.3.4/30 [110/2] via 10.0.3.2, 00:04:03, FastEthernet0/0
O IA 10.10.40.1/32 [110/3] via 10.0.3.2, 00:04:18, FastEthernet0/0 (CE2)
C 10.10.50.1/32 is directly connected, Loopback0 (CE3)
```

5. Depois de configurada e testada a rede, pare o algoritmo de roteamento no CE-1 e mostre o que muda na tabela de rotas no PE1, CE1 e CE3;

Antes de parar o algoritmo de roteamento, o estado das rotas dos roteadores é:

```
PE1#show mpls forwarding-table
Local Outgoing Prefix
                              Bytes Label Outgoing Next Hop
Label Label or VC or Tunnel Id Switched interface
16 Pop Label 10.1.0.4/30 0 Fa0/0 10.1.0.2
17 Pop Label 10.1.0.8/30 0
                                       Fa0/0 10.1.0.2

        18
        No Label
        10.0.1.0/30[V]
        0
        aggregate/Cliente_A

        19
        No Label
        10.0.1.4/30[V]
        0
        aggregate/Cliente_B (CE-1)

            172.0.0.2/32 0 Fa0/0 10.1.0.2
172.0.0.3/32 0 Fa0/0 10.1.0.2
20 17
21 18
22 Pop Label 172.100.0.1/32 0 Fa0/0 10.1.0.2
23 No Label 10.10.10.1/32[V] 0
                                          Fa1/0 10.0.1.1
24 No Label 10.10.20.1/32[V] 0
                                         Fa2/0 10.0.1.5 (CE-1)
PE1#show ip route vrf Cliente_B (CE-1 pertence a vrf Cliente_B)
Routing Table: Cliente_B
  10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks
  10.0.3.0/30 [200/0] via 172.0.0.2, 00:48:41
   10.0.1.4/30 is directly connected, FastEthernet2/0
0
    10.10.20.1/32 [110/2] via 10.0.1.5, 00:47:44, FastEthernet2/0 (CE-1)
B 10.10.30.1/32 [200/2] via 172.0.0.2, 00:47:26
CE1#show ip route (CE1 não "vê" CE-1 pois está em VRF diferente)
  10.0.0.0/8 is variably subnetted, 6 subnets, 2 masks
O IA 10.0.3.0/30 [110/2] via 10.0.1.2, 00:43:27, FastEthernet0/0
C 10.10.10.1/32 is directly connected, Loopback0
C 10.0.1.0/30 is directly connected, FastEthernet0/0
O IA 10.0.3.4/30 [110/2] via 10.0.1.2, 00:43:27, FastEthernet0/0
O IA 10.10.40.1/32 [110/3] via 10.0.1.2, 00:43:27, FastEthernet0/0
O IA 10.10.50.1/32 [110/3] via 10.0.1.2, 00:43:27, FastEthernet0/0
CE3#show ip route (CE3 não "vê" CE-1 pois está em VRF diferente)
  10.0.0.0/8 is variably subnetted, 6 subnets, 2 masks
C 10.0.3.0/30 is directly connected, FastEthernet0/0
O IA 10.10.10.1/32 [110/3] via 10.0.3.2, 00:43:32, FastEthernet0/0
O IA 10.0.1.0/30 [110/2] via 10.0.3.2, 00:45:12, FastEthernet0/0
O IA 10.0.3.4/30 [110/2] via 10.0.3.2, 00:44:32, FastEthernet0/0
O IA 10.10.40.1/32 [110/3] via 10.0.3.2, 00:44:47, FastEthernet0/0
C 10.10.50.1/32 is directly connected, Loopback0
CE-2#show ip route (CE-2 está na mesma VRF que CE-1)
  10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks
C 10.0.3.0/30 is directly connected, FastEthernet0/0
O IA 10.0.1.4/30 [110/2] via 10.0.3.2, 00:43:47, FastEthernet0/0
O IA 10.10.20.1/32 [110/3] via 10.0.3.2, 00:43:47, FastEthernet0/0 (CE-1)
C 10.10.30.1/32 is directly connected, Loopback0
CE-1#show running-config
Building configuration...
router ospf 3
           log-adjacency-changes
```

network 0.0.0.0 255.255.255 area 0

II. Após parar o algoritmo de roteamento (no router ospf 3)

PE1#show mpls forwarding-table

Local Outgoing Prefix Bytes Label Outgoing Next Hop Label Label or VC or Tunnel Id Switched interface 16 Pop Label 10.1.0.4/30 0 Fa0/0 10.1.0.2 Pop Label 10.1.0.8/30 0 17 Fa0/0 10.1.0.2 18 No Label 10.0.1.0/30[V] 0 aggregate/Cliente_A No Label 10.0.1.4/30[V] 0 19 aggregate/Cliente_B Fa0/0 10.1.0.2 20 17 172.0.0.2/32 0 172.0.0.3/32 0 Fa0/0 10.1.0.2 21 18 22 Pop Label 172.100.0.1/32 0 Fa0/0 10.1.0.2 23 No Label 10.10.10.1/32[V] 0 Fa1/0 10.0.1.1

PE1#show ip route vrf Cliente_B

Routing Table: Cliente_B

10.0.0.0/8 is variably subnetted, 3 subnets, 2 masks

- B 10.0.3.0/30 [200/0] via 172.0.0.2, 00:56:31
- C 10.0.1.4/30 is directly connected, FastEthernet2/0
- B 10.10.30.1/32 [200/2] via 172.0.0.2, 00:55:16

CE1#show ip route

10.0.0.0/8 is variably subnetted, 6 subnets, 2 masks

- O IA 10.0.3.0/30 [110/2] via 10.0.1.2, 00:43:27, FastEthernet0/0
- C 10.10.10.1/32 is directly connected, Loopback0
- C 10.0.1.0/30 is directly connected, FastEthernet0/0
- O IA 10.0.3.4/30 [110/2] via 10.0.1.2, 00:43:27, FastEthernet0/0
- O IA 10.10.40.1/32 [110/3] via 10.0.1.2, 00:43:27, FastEthernet0/0
- O IA 10.10.50.1/32 [110/3] via 10.0.1.2, 00:43:27, FastEthernet0/0

CE3#show ip route

10.0.0.0/8 is variably subnetted, 6 subnets, 2 masks

- C 10.0.3.0/30 is directly connected, FastEthernet0/0
- O IA 10.10.1/32 [110/3] via 10.0.3.2, 01:01:29, FastEthernet0/0
- O IA 10.0.1.0/30 [110/2] via 10.0.3.2, 01:03:09, FastEthernet0/0
- O IA 10.0.3.4/30 [110/2] via 10.0.3.2, 01:02:29, FastEthernet0/0
- O IA 10.10.40.1/32 [110/3] via 10.0.3.2, 01:02:44, FastEthernet0/0
- C 10.10.50.1/32 is directly connected, Loopback0

CE-2#show ip route

10.0.0.0/8 is variably subnetted, 3 subnets, 2 masks

- C 10.0.3.0/30 is directly connected, FastEthernet0/0
- O IA 10.0.1.4/30 [110/2] via 10.0.3.2, 00:56:41, FastEthernet0/0
- C 10.10.30.1/32 is directly connected, Loopback0