Indiana University Bloomington

CSCI B 565

Data Mining

Data Analytics for IU Bus System

Group Name : RedMiners

Authors:

Jayasankar, Siddharth Nagarajan, Ganesh Madhavan, Sarvothaman

Supervisor:
DR. DALKILIC,
MEHMET

December 17, 2015

Abstract

University Bus systems are widely used for shuttling students, faculty and patrons in and out of University campuses and still remains the easiest way to reach the University Campuses. Indiana University operates its bus system under the name IU Bus and the details are available at http://www.iubus.indiana.edu/campus_bus/index.html

This paper attempts to develop an uniform framework and processes for analyzing IU Bus data and thus along the process hopes to establish a general framework. Any such framework should be able to transform practical nuances into presentable data analytics. The areas focused in this paper consider various aspects of discussion with the key stake holders, developing glossary, developing metrics for measuring performance, data pipe lining, data visualization, Model creation and model verification.

This project uses MySql as its preferred database for storing operational data, Neo4j graphical database for holding aggregated data, Tableau Public for visualizing the data and R for model creation and verification.

Contents

```
Introduction
          2
Problem Description
           3
Constraints
           Data Management
        4.1
                Source Data Model
        4.2
                Intermediate Model
        4.3
                Final Data Model
                                          9
                Data Preparation
        4.4
                                        10
           \begin{array}{c} 5 \\ \text{Exploratory Analysis} \end{array}
11
           6
Reporting
16
           7
Visualization
18
           8
Statistical Model
21
```

9 Future Work

- 21 10 Concluding remarks
- 21 11 References

1 Introduction

University Bus systems are critical for shuttling students in and out of university campuses. These bus systems are not only used at Indiana University, but also at other universities like University Transit Service, University of Virginia http://www.virginia.edu/parking/uts/, The Bus, Boston University system http://www.bu.edu/thebus/. All these universities have similar kind of schedules for different terms like Spring, Fall and special trips during late nights, called NightOwl in the IU System. All these services have an live tracking system which records the bus statuses, Geo-locations of buses and their stops and is presented real-time to the users.

IU Bus system has four routes A,B,E and X and has about 52 stops including the minor and major stops. These busses are scheduled about one bus in every 15 minutes for use of its passengers. IU Bus System commits itself to keep up the time as per the schedule at http://www.iubus.indiana.edu/campus_bus/bus_schedule.html, however as with any transportation system, the bus gains or looses speed during the course of the travel.

Thus, primary interest of this study if to understand the time difference between the schedule time and the actual time, $t_{schedule} - t_{actual}$. An model was created in Neo4j depicting the acutal bus system

2 Problem Description

3 Constraints

4 Data Management

4.1 Source Data Model

Text Explanation here

DBMAP_StopID ID : int(11) Index : double Stop : varchar(255)

DBMAP_RouteID ID: varchar(150) Index: varchar(150) Route ID: varchar(150) Field3: varchar(150)

DBMAP_ScheduleData

Route: varchar(255) Time: time Stop: varchar(255)

DBMAP_WeatherData ID: int(11)

EDT : datetime MinTemp : double Precipitation : varchar(255) Events : varchar(255)

DBMAP_WorkRecord

ID: int(11)
Clock In: time
Clock Out: time
Driver: varchar(150)
Shift Type: varchar(150)
daynum: int(11)
Date: date
Route: varchar(150)
Bus: int(11)

DBMAP_GPSData

BUS_ID: int(11)
LAT: float
LONGI: float
x: int(11)
y: int(11)
timestamp: varchar(100)

DBMAP_IntervalData

id : int(10)
from_id : int(10)
to_id : int(10)
time_id : int(10)
bus_id : int(10)
route_id : int(10)
when_time : timestamp

Text Explanation here

IU_SPRING_Drivers

Driver: varchar(30) Driver ID: int(11)

IU_SPRING_Buses

Bus ID : smallint(6)

IU_SPRING_Dates

Date: datetime

IU_SPRING_Schedules

Schedule Key : int(11) Schedule ID : varchar(10) Start Times : time

IU_SPRING_ScheduleNames

Schedule Name: varchar(255)

IU_SPRING_Shifts

Shift ID: int(11) Date : datetime

Schedule Name: varchar(10) Driver : varchar(30)

Bus ID: smallint(6)

IU_SPRING_Trips

Trip ID: int(11) Shift ID: int(11)

Schedule ID: varchar(150) Starting Time: time Inbound: int(11) Outbound: int(11) To Mall: int(11) From Mall: int(11)

Comments: varchar(500)

NOAA_Weather

STATION_NAME: varchar(150)

DATE : date PRCP : int(11)

Measurement Flag: varchar(150)

SNOW: int(11) TMIN : float FOG : int(11) RAIN: int(11) HEAVY_FOG: int(11) THUNDER: int(11)

4.2 Intermediate Model

INTER_FIRST_STOP

SCHEDULE_ID: mediumtext
SCHEDULE_TIME: time
STOP_ID: int(11)
STOP_ORDER: double
DOW: mediumtext
MIDPOINT: int(11)
UP_DOWN: bigint(20)

TRIP_ID: int(11)

INTER_LAST_STOP

SCHEDULE_ID: mediumtext
SCHEDULE_TIME: time
STOP_ID: int(11)
STOP_ORDER: double
DOW: mediumtext
MIDPOINT: int(11)
UP_DOWN: bigint(20)
TRIP_ID: int(11)

INTER_TRIPS_START_END

SCHEDULE_ID : mediumtext

TRIP_ID : int(11)
Date : date
Inbound : int(11)
outbound : int(11)
trip_start_time : time
trip_end_time : time

INTER_SPRING_TRIPS

schedule name: varchar(10)

dt : date

Starting Time: time Inbound: int(11) outbound: int(11)

INTER_RUN_STOP_TRIPS

Route: varchar(150)

Date : date
TripID : longtext
from_id : int(11)
to_id : int(11)
sec_time : int(11)
when_time : timestamp
stop_order : longtext
bus_id : int(11)

id: mediumtext

integration_key : mediumtext

travel_flag : bigint(20)

INTER_RUN_START_TRIPS

Route: varchar(150)

Date: date
TripID: longtext
from_id: int(11)
to_id: int(11)
sec_time: int(11)
when_time: timestamp
stop_order: longtext
bus_id: int(11)

id : mediumtext

integration_key : mediumtext
travel_flag : bigint(20)

INTER_RUNS_START_END

start_time : time
Date : date
Route : varchar(6)
TrinID : double

TripID : double end_time : time

4.3 Final Data Model

Text Explanation here

S_Times 😊 UNIT_TIME : time

S_Schedule ROUTE_ID: varchar(50) STOP_ID: int(11) SCHEDULE_TIME : time SCHEDULE_DOW: varchar(1)

S_Weather

PRECIPITATION: varchar(25)

MIN_TEMP : float

S_Bus BUS_ID : int(11) CAP: int(11) AVL: int(11)

S_Shift ID : int(11) CLOCK_IN : time CLOCK_OUT : time DRIVER: varchar(150) SHIFT_TYPE: varchar(150) DAYNUM : int(11) SHIFT_DATE : date ROUTE: varchar(150) BUS_ID: int(11)

SCHEDULE_ID : mediumtext SCHEDULE_TIME : time STOP_ID : int(11) STOP_ORDER : int(11) DOW: mediumtext MIDPOINT : int(11)
UP_DOWN : int(11) TRIP_ID: int(11)

Text Explanation here

W_RUNS_F

id : mediumtext

integration_key : varchar(35) Route : varchar(150) time_date : date

time_date : date trip_id : longtext

STOP1_NAME : varchar(255) STOP2_NAME : varchar(255) STOP2_TIME : time

TRAVEL2_TIME : int(11) STOP3_NAME : varchar(255)

STOP3_TIME : time
TRAVEL3_TIME : int(11)
STOP4_NAME : varchar(255)

STOP4_TIME : time TRAVEL4_TIME : int(11) STOP5_NAME : varchar(255)

STOP5_TIME : time TRAVEL5_TIME : int(11)

STOP6_NAME : varchar(255) STOP6_TIME : time

TRAVEL6_TIME: int(11) STOP7_NAME: varchar(255) STOP7_TIME: time

TRAVEL7_TIME : int(11) STOP8_NAME : varchar(255)

STOP8_TIME : time
TRAVEL8_TIME : int(11)
STOP9_NAME : varchar(255)
STOP9_TIME : time

TRAVEL9_TIME : time
TRAVEL9_TIME : int(11)
STOP10_NAME : varchar(255)
STOP10_TIME : time

TRAVEL10_TIME : int(11)

W_SHED_D

integration_key : varchar(35)
schedule_id : mediumtext

trip_id : int(11)
DOW : mediumtext

STOP1_NAME : varchar(255) STOP1_TIME : time

STOP_1ID: int(11)
STOP2_NAME: varchar(255)
STOP2_TIME: time

STOP2_ID : int(11) STOP3_NAME : varchar(255)

STOP3_TIME : time STOP3_ID : int(11)

STOP4_NAME : varchar(255)

STOP4_TIME : time STOP4_ID : int(11)

STOP5_NAME : varchar(255) STOP5_TIME : time

STOP5_ID : int(11) STOP6_NAME : varchar(255)

STOP6_ID: int(11) STOP7_NAME: varchar(255)

STOP7_TIME : time STOP7_ID : int(11)

STOP6_TIME: time

STOP8_NAME : varchar(255)

STOP8_TIME : time STOP8_ID : int(11)

STOP9_NAME : varchar(255)

STOP9_TIME : time STOP9_ID : int(11) STOP10_NAME : varchar(255)

STOP10_TIME : time STOP10_ID : int(11)

F_TRIPS_COMPARED

SCHEDULE_ID: mediumtext

TRIP_ID: int(11)
Date: date
Inbound: int(11)
outbound: int(11)
schedule_start: time
actual_start: time
schedule_end: time
actual_end: time

4.4 Data Preparation

5 Exploratory Analysis

Text Explanation here

Text Explanation here

Text Explanation here

6 Reporting

Text Explanation here

7 Visualization

Text Explanation here

Text Explanation here

Text Explanation here

- 8 Statistical Model
- 9 Future Work
- 10 Concluding remarks
- 11 References