Lösungen zu den Aufgaben

1. Aufgabe

Eine logistische Regression wurde an einen Datensatz angepasst. Es ergaben sich folgende Koeffizienten (jeweils Punktschätzer):

```
Konstante = -1.9 x = 0.7 z = 0.7
```

x ist ein metrischer Prädiktor mit einem Range von 0 bis 10; z ist eine binärer Prädiktor (mit den Werten 0 und 1).

Visualisieren Sie die Kurven in einem Diagramm für

```
a. \mathscr{L} vs. x
b. Pr(y = 1) vs. x
```

Lösung

Wir definieren die Variablen:

```
d <-
  tibble(
    x = seq(from = 0, to = 10, by = 0.1),
    z = 1,
    y_z0_linear = -1.9 + 0.7 * x + 0*z,
    y_z1_linear = -1.9 + 0.7 * x + 1*z,
    p_y_z0 = plogis(y_z0_linear),
    p_y_z1 = plogis(y_z1_linear)</pre>
```

Hier ist das Diagramm mit Logits auf der Y-Achse:

```
d %>%
  ggplot() +
  aes(x = x) +
  geom_line(aes(y = y_z0_linear), color = "blue") +
  geom_line(aes(y = y_z1_linear), color = "red")
```


plot of chunk unnamed-chunk-3

Hier ist das Diagramm mit Wahrscheinlichkeit auf der Y-Achse:

```
d %>%
  ggplot() +
  aes(x = x) +
  geom_line(aes(y = p_y_z0), color = "blue") +
  geom_line(aes(y = p_y_z1), color = "red")
```


plot of chunk unnamed-chunk-4

2. Aufgabe

Forschungsfrage: Ist der Zusammenhang von Körpergröße und 'Mann' positiv? Gehen also höhere Werte in Körpergröße height einher mit einer höheren Wahrscheinlichkeit, dass es sich um einen Mann male handelt?

Berechnen Sie ein Bayes-Modell mit tidymodels und geben Sie die Modellgüte an!

Hinweise:

- o Rechnen Sie in Zentimeter um.
- Die AV sollte vom Typ factor sein bei einer Klassifikation, sonst beschwert sich Tidymodels.
- o Stratifizieren Sie bei der Aufteilung von Train- und Test-Sample.
- o Verwenden Sie eine 10-fache Kreuzvalidierung mit 10 Wiederholungen.
- o Geben Sie die Modellgüte für folgende Koeffizienten an: ROC AUC, Sensitivität, Spezifität, PPV
- Verwenden Sie Rezept-Schritte (steps) nach eigenem Dafürhalten.
- o Stoppen Sie die Zeit, die Ihr Computer braucht, um das Modell zu berechnen.
- o Viel Spaß :-)

Lösung

Vorbereitung

```
library(tidymodels)
library(tidyverse)
library(tictoc)  # Zeitmessung der Rechenzeit

d <- read_csv(
  "https://vincentarelbundock.github.io/Rdatasets/csv/openintro/speed_gender_height.csv")

## New names:
## Rows: 1325 Columns: 4
## — Column specification
##
## (1): gender dbl (3): ...1, speed, height
## i Use `spec()` to retrieve the full column
## specification for this data. i Specify the
## column types or set `show_col_types = FALSE`
## to quiet this message.
## • `` -> `...1`
```

Bereiten wir die Daten vor:

Datenaufteilung

Es ist praktisch, die AV vorab in einen Faktor umzuwandeln (s. weiter unten):

```
d <-
    d %>%
    mutate(gender = factor(gender))

Zur Erinnerung: tidymodels modelliert die erste Stufe der AV:
levels(d$gender)
## [1] "female" "male"

Also lieber re-leveln:
```

```
d <-
   d %>%
   mutate(gender = relevel(gender, ref = "male"))
levels(d$gender) # check
```

Dann kommt die initial Datenaufteilung:

```
d_split <- initial_split(d, strata = "gender")
d_train <- training(d_split)
d_test <- testing(d_split)</pre>
```

Modelldefinition

[1] "male" "female"

```
logist_mod <-
  logistic_reg()

rsmpling <- vfold_cv(d_train, strata = "gender", repeats = 5)

recipe1 <- recipe(gender ~ height, data = d_train) %>%
  step_mutate(height = height * 2.54) %>%
  step_impute_knn()

wf1 <-
  workflow() %>%
  add_model(logist_mod) %>%
  add_recipe(recipe1)
```

Modell fitten

```
tic() # Stoppuhr an
fit1 <-
 fit_resamples(wf1,
               rsmpling,
               metrics = metric set(roc auc, sens, spec, ppv)
toc() # Stoppuhr aus
## 16.078 sec elapsed
fit1
## # Resampling results
## # 10-fold cross-validation repeated 5 times using stratification
## # A tibble: 50 × 5
                       id
                       id id2 .metrics
<chr> <chr> <chr> <chr> 
##
    splits
     <list>
## 1 <split [892/101]> Repeat1 Fold01 <tibble>
## 2 <split [893/100]> Repeat1 Fold02 <tibble>
## 3 <split [894/99]> Repeat1 Fold03 <tibble>
## 4 <split [894/99]> Repeat1 Fold04 <tibble>
## 5 <split [894/99]> Repeat1 Fold05 <tibble>
## 6 <split [894/99]> Repeat1 Fold06 <tibble>
## 7 <split [894/99]> Repeat1 Fold07 <tibble>
## 8 <split [894/99]> Repeat1 Fold08 <tibble>
## 9 <split [894/99]> Repeat1 Fold09 <tibble>
## 10 <split [894/99]> Repeat1 Fold10 <tibble>
\#\# \# ... with 40 more rows, and 1 more variable:
## # .notes <list>
```

Ergebnisse im Train-Sample

Da wir nicht gesagt haben, dass die Vorhersagen gespeichert werden sollen, können wir Sie uns auch nicht anschauen:

```
collect_predictions(fit1)
## Error in `collect_predictions()`:
## ! The `.predictions` column does not exist. Refit with the control argument `save_pred = TRUE` to save predictions.
```

Das hätten wir so machen können, also mit control (), dann können wir die Vorhersagen speichern:

Dauert schon ein bisschen...

Dabei ist die logistische Regression sehr wenig rechenintensiv.

```
fit2
## # Resampling results
## # 10-fold cross-validation repeated 5 times using stratification
## # A tibble: 50 × 6
    splits
                      id id2 .metrics
<chr> <chr> <chr> <chr> 
##
     <list>
## 1 <split [892/101]> Repeat1 Fold01 <tibble>
## 2 <split [893/100] > Repeat1 Fold02 <tibble>
## 3 <split [894/99]> Repeat1 Fold03 <tibble>
## 4 <split [894/99]> Repeat1 Fold04 <tibble>
  5 <split [894/99]> Repeat1 Fold05 <tibble>
## 6 <split [894/99]> Repeat1 Fold06 <tibble>
   7 <split [894/99]> Repeat1 Fold07 <tibble>
## 8 <split [894/99]> Repeat1 Fold08 <tibble>
## 9 <split [894/99]> Repeat1 Fold09 <tibble>
## 10 <split [894/99]> Repeat1 Fold10 <tibble>
\#\# \# ... with 40 more rows, and 2 more variables:
     .notes <list>, .predictions <list>
collect metrics(fit2)
## # A tibble: 4 × 6
0.808 50 0.00907
## 2 roc_auc binary 0.881
## 3 sens binary 0.650
                                50 0.00443
                              50 0.0044
## 3 sens binary
## 4 spec binary
                     0.921
                              50 0.00432
## # ... with 1 more variable: .config <chr>
```

Vorhersagen im Train-Sample

Schauen wir uns die Vorhersagen im Train-Sample, zusammengefasst über die alle Faltungen und Wiederholungen (? collect_predictions).

```
collect predictions(fit2, summarize = TRUE)
## # A tibble: 993 × 6
##
       .row gender .config
                                        .pred_male
      <int> <fct> <chr>
##
## 1 1 female Preprocessor1 Mod...
                                               0.589
          2 female Preprocessor1_Mod... 0.104
3 female Preprocessor1_Mod... 0.0159
## 3
           3 female Preprocessor1 Mod...
         4 female Preprocessor1_Mod... 0.0253
         5 female Preprocessor1_Mod...
6 female Preprocessor1_Mod...
                                             0.166
0.161
## 5
## 6
## 7
         7 female Preprocessor1_Mod...
                                              0.0702
          8 female Preprocessor1 Mod ...
                                               0.0683
```

```
## 9 9 female Preprocessor1_Mod... 0.161
## 10 10 female Preprocessor1_Mod... 0.108
## # ... with 983 more rows, and 2 more
## # variables: .pred_female <dbl>,
## # .pred_class <fct>
```

ROC-Kurve im Train-Sample

```
roc_data <-
 fit2 %>%
  collect_predictions(summarize = TRUE) %>%
 select(.pred male) %>%
 bind_cols(d_train) %>%
 roc_curve(truth = gender, estimate = .pred_male)
## New names:
## • `...1` -> `...2`
roc_data
## # A tibble: 989 × 3
##
       .threshold specificity sensitivity
##
           <dbl>
                       <dbl>
                                <dbl>
##
##
        0.000262
                     0
   2
                                    1
         0.000289
                                    0.997
##
   3
                     0
         0.000304
                      0.00152
                                    0.997
         0.00130
                      0.00304
                                    0.997
##
   5
##
         0.00200
                      0.00457
                                    0.997
   7
         0.00217
                      0.00457
##
                                    0.994
##
         0.00382
                      0.00609
                                    0.994
                      0.00761
##
  9
        0.00403
                                   0.994
## 10
        0.00405
                     0.00913
                                    0.994
\#\# \# ... with 979 more rows
```

Plotten:

```
roc_data %>%
  ggplot(aes(x = 1- specificity, sensitivity)) +
  geom_path() +
  geom_abline(lty = 3) +
  coord_equal() +
  theme_bw()
```


plot of chunk unnamed-chunk-16

Gar nicht schlecht!

Vorhersagegüte im Test-Sample

```
lm1_lastfit
## # Resampling results
## # Manual resampling
## # A tibble: 1 × 6
                      id
                              .metrics .notes
## splits
                     <chr> <list> <list>
##
   st>
## 1 <split [993/332]> train/... <tibble> <tibble>
## # ... with 2 more variables:
## # .predictions <list>, .workflow <list>
collect_metrics(lm1_lastfit)
## # A tibble: 4 \times 4
##
    .metric .estimator .estimate .config
                        <dbl> <chr>
   <chr> <chr>
            binary
## 1 sens
                           0.721 Preprocessor1...
## 2 spec
            binary
                          0.937 Preprocessor1...
          binary
## 3 ppv
                          0.851 Preprocessor1...
## 4 roc auc binary
                          0.909 Preprocessor1...
collect_predictions(lm1_lastfit)
## # A tibble: 332 × 7
             .pred_male .pred_female .row
##
    id
                              - <dbl> <int>
    <chr>
                       _
<dbl>
   1 train/test ...
##
                      0.0261
                                    0.974
                                             9
  2 train/test ...
                    0.0673
                                   0.933
                                             37
                    0.344
## 3 train/test ...
                                  0.656
                                             45
                      0.0261
                                   0.974
                                             47
   4 train/test ...
  5 train/test ...
                     0.698
                                   0.302
                                             49
##
                     0.106
   6 train/test ...
                                   0.894
##
                                             51
##
   7 train/test ...
                     0.242
                                   0.758
                                             52
                    0.698
  8 train/test ...
                                  0.302
                                  0.958
## 9 train/test ...
                    0.0421
0.106
                                             56
## 10 train/test ...
                                   0.894
                                             58
\#\# \# ... with 322 more rows, and 3 more
## #
      variables: .pred class <fct>,
     gender <fct>, .config <chr>
####
```

ROC-Kurve

```
lm1_lastfit %>%
  collect_predictions() %>%
  roc_curve(truth = gender, estimate = .pred_male) %>%
  ggplot(aes(x = 1 - specificity, sensitivity)) +
  geom_path() +
  geom_abline(lty = 3) +
  coord_equal() +
  theme_bw()
```


plot of chunk unnamed-chunk-20

a. Ja; Transformation der Art y = a + bx nennt man *linear*.

- b. Nein; der Punktschätzer des Achsenabschnitts ändert sich nicht durch die Transformation.c. Ja; der der Punktschätzer des Regressionsgewichts ändert sich durch die Transformation.d. Ja; Bei zentrierten Daten ändert sich der Punktschätzer des Regressionsgewichts durch die Transformation.