Lecture 6: 22 April, 2021

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning April–July 2021

Predicting numerical values

- Data about housing prices
- Predict house price from living area

Features	Outcome
~	ا ساب
3000	540
1416	232
2400	369
1600	330
2104	400
Living area (feet ²)	Price (1000\$s)

Predicting numerical values

- Data about housing prices
- Predict house price from living area

- Scatterplot corresponding to the data
- Fit a function to the points

Living area (feet ²)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
:	
	70

2/12

A richer set of input data

Living area (feet ²)	#bedrooms	Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
1	:	:
7.	F 8	

2 features

Outre

- A richer set of input data
- Simplest case: fit a linear function with parameters

$$\theta = (\theta_0, \theta_1, \theta_2)$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Living area (feet ²)	#bedrooms	Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
3000	4	340

- A richer set of input data
- Simplest case: fit a linear function with parameters $\theta = (\theta_0, \theta_1, \theta_2)$ $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$

Living area (feet ²)	#bedrooms	Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
4	:	:

- A richer set of input data
- Simplest case: fit a linear function with parameters $\theta = (\theta_0, \theta_1, \theta_2)$ $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$

■ Input
$$x$$
 may have k features (x_1, x_2, \dots, x_k)

■ By convention, add a dummy feature $x_0 = 1$

Living area (feet ²)	#bedrooms	Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
i	:	1

- A richer set of input data
- Simplest case: fit a linear function with parameters

$$\rightarrow \theta = (\theta_0, \theta_1, \theta_2)$$

$$(h_{\theta}(x)) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

- Input x may have k features (x_1, x_2, \dots, x_k)
- By convention, add a dummy feature $x_0 = 1$
- \blacksquare For k input features

$$h_{\theta}(x) = \sum_{i=0}^{k} \theta_i x_i$$

Living area (feet ²)	#bedrooms	Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
8		:
12	1 5	(5)

3/12

■ Training input is

$$\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$$

- Each input x_i is a vector $(x_i^1, ..., x_i^k)$
- Add $x_i^0 = 1$ by convention
- y_i is actual output

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Each input x_i is a vector $(x_i^1, ..., x_i^k)$
 - Add $x_i^0 = 1$ by convention
 - y_i is actual output
- How far away is our prediction $h_{\theta}(x_i)$ from the true answer y_i ?

■ Training input is

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)\}$$

- Each input x_i is a vector $(x_i^1, ..., x_i^k)$
- Add $x_i^0 = 1$ by convention
- y_i is actual output
- How far away is our prediction $h_{\theta}(x_i)$ from the true answer y_i ?
- Define a cost (loss) function

$$J(\theta) = \underbrace{\frac{1}{2}}_{i=0}^{n} (h_{\theta}(x_{i}) - y_{i})^{2}$$

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Each input x_i is a vector $(x_i^1, ..., x_i^k)$
 - Add $x_i^0 = 1$ by convention
 - y_i is actual output
- How far away is our prediction $h_{\theta}(x_i)$ from the true answer y_i ?
- Define a cost (loss) function

$$J(\theta) = \frac{1}{2} \sum_{i=0}^{n} (h_{\theta}(x_i) - y_i)^2$$

Essentially, the sum squared error (SSE)

n fred, SSE is fine

■ Training input is

$$\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$$

- Each input x_i is a vector $(x_i^1, ..., x_i^k)$
- Add $x_i^0 = 1$ by convention
- y_i is actual output
- How far away is our prediction $h_{\theta}(x_i)$ from the true answer y_i ?
- Define a cost (loss) function

$$J(\theta) = \frac{1}{2} \sum_{i=\P}^{n} (h_{\theta}(x_i) - y_i)^2$$

- Essentially, the sum squared error (SSE)
- Divide by n, mean squared error (MSE)

4/12

■ Write x_i as row vector $\begin{bmatrix} 1 & x_i^1 & \cdots & x_i^k \end{bmatrix}$

$$\bullet X = \begin{bmatrix} 1 & x_1^1 & \cdots & x_1^k \\ 1 & x_2^1 & \cdots & x_2^k \\ & \ddots & & \\ 1 & x_i^1 & \cdots & x_n^k \end{bmatrix}, y = \begin{bmatrix} y_1 \\ y_2 \\ \cdots \\ y_i \\ \cdots \\ y_n \end{bmatrix}$$

$$X \cdot \theta \begin{bmatrix} 1 & x_i^1 & \cdots & x_i^k \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$

■ Write θ as column vector, $\underline{\theta}^T = \begin{bmatrix} \theta_0 & \theta_1 & \cdots & \theta_k \end{bmatrix}$

5/12

• Write x_i as row vector $\begin{bmatrix} 1 & x_i^1 & \cdots & x_i^k \end{bmatrix}$

$$\blacksquare X = \begin{bmatrix}
1 & x_1^1 & \cdots & x_1^k \\
1 & x_2^1 & \cdots & x_2^k \\
& & \cdots \\
1 & x_i^1 & \cdots & x_i^k \\
& & \cdots \\
1 & x_n^1 & \cdots & x_n^k
\end{bmatrix}, y = \begin{bmatrix}
y_1 \\
y_2 \\
\cdots \\
y_i \\
\cdots \\
y_n
\end{bmatrix}$$

- Write θ as column vector, $\theta^T = \begin{bmatrix} \theta_0 & \theta_1 & \cdots & \theta_k \end{bmatrix}$
- $J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x_i) y_i)^2 = \frac{1}{2} (X\theta y)^T (X\theta y)$

$$X\Theta = \begin{bmatrix} h_{\theta}(x_i) \\ \vdots \\ h_{\theta}(x_n) \end{bmatrix}$$

■ Write x_i as row vector $\begin{bmatrix} 1 & x_i^1 & \cdots & x_i^k \end{bmatrix}$

$$\blacksquare X = \begin{bmatrix}
1 & x_1^1 & \cdots & x_1^k \\ 1 & x_2^1 & \cdots & x_2^k \\ & \ddots & & \\ 1 & x_i^1 & \cdots & x_n^k \\ & \ddots & & \\ 1 & x_n^1 & \cdots & x_n^k
\end{bmatrix}, y = \begin{bmatrix}
y_1 \\ y_2 \\ \vdots \\ y_n \\ y_n
\end{bmatrix}$$

- Write θ as column vector, $\theta^T = \begin{bmatrix} \theta_0 & \theta_1 & \cdots & \theta_k \end{bmatrix}$
- Minimize $J(\theta)$ set $\nabla_{\underline{\theta}} J(\theta) = 0$

Madhavan Mukund

■ To minimize, set $\nabla_{\theta} \frac{1}{2} (X\theta - y)^T (X\theta - y) = 0$

6/12

Madhavan Mukund Lecture 6: 22 April, 2021 DMML Apr-Jul 2021

- To minimize, set $\nabla_{\theta} \frac{1}{2} (X\theta y)^{\dot{\tau}} (X\theta y) = 0$
- Expand, $\frac{1}{2}\nabla_{\theta} \left(\underline{\theta^{T}X^{T}X\theta} \underline{y^{T}X\theta} \underline{\theta^{T}X^{T}y} + \underline{y^{T}y} \right) = 0$

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - y)^{T} (X\theta - y)$$

■ To minimize, set
$$\nabla_{\theta} \frac{1}{2} (X\theta - y)^T (X\theta - y) = 0$$

Expand,
$$\frac{1}{2}\nabla_{\theta} \left(\theta^{T}X^{T}X\theta + \underbrace{y^{T}X\theta - \theta^{T}X^{T}y}_{n} + y^{T}y\right) = 0$$

• Check that
$$y^T X \theta = \theta^T X^T y = \sum_{i=1}^n h_{\theta}(x_i) \cdot y_i$$

Madhavan Mukund Lecture 6: 22 April, 2021

6/12

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - y)^{T} (X\theta - y)$$

- To minimize, set $\nabla_{\theta} \frac{1}{2} (X\theta y)^T (X\theta y) = 0$
- Expand, $\frac{1}{2}\nabla_{\theta} \left(\theta^{T}X^{T}X\theta y^{T}X\theta \theta^{T}X^{T}y + y^{T}y\right) = 0$
 - Check that $y^T X \theta = \theta^T X^T y = \sum_{i=1}^n h_{\theta}(x_i) \cdot y_i$
- Combining terms, $\frac{1}{2}\nabla_{\theta} \left(\theta^{T}X^{T}X\theta 2\theta^{T}X^{T}y + y^{T}y\right) = 0$

Madhavan Mukund

■ To minimize, set $\nabla_{\theta} \frac{1}{2} (X\theta - y)^T (X\theta - y) = 0$

■ Expand,
$$\frac{1}{2}\nabla_{\theta} \left(\theta^T X^T X \theta - y^T X \theta - \theta^T X^T y + y^T y\right) = 0$$

• Check that $y^T X \theta = \theta^T X^T y = \sum_i h_{\theta}(x_i) \cdot y_i$

Combining terms, $\frac{1}{2}\nabla_{\theta} \left((X^{T}X\theta - 2\theta^{T}X^{T}y + y^{T}y) = 0 \right)$

• After differentiating, $X^T X \theta - X^T y = 0$

- To minimize, set $\nabla_{\theta} \frac{1}{2} (X\theta y)^T (X\theta y) = 0$
- Expand, $\frac{1}{2}\nabla_{\theta} \left(\theta^{T}X^{T}X\theta y^{T}X\theta \theta^{T}X^{T}y + y^{T}y\right) = 0$
 - Check that $y^T X \theta = \theta^T X^T y = \sum_{i=1}^n h_{\theta}(x_i) \cdot y_i$
- Combining terms, $\frac{1}{2}\nabla_{\theta} \left(\theta^{T}X^{T}X\theta 2\theta^{T}X^{T}y + y^{T}y\right) = 0$
- After differentiating, $X^T X \theta X^T y = 0$
- Solve to get normal equation, $\theta = (X^T X)^{-1} X^T y$

■ Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution

Madhavan Mukund Lecture 6: 22 April, 2021 DMML Apr-Jul 2021

- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Slow if n large, say n > 10
 Matrix inversion (X^TX)⁻¹ is expensive, also need invertibility

Madhavan Mukund Lecture 6: 22 April, 2021 DMML Apr-Jul 2021

- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^TX)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess

- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^TX)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess

- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^TX)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Keep adjusting the line to reduce SSE

Madhavan Mukund Lecture 6: 22 April, 2021 DMML Apr-Jul 2021 7/

- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^TX)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Keep adjusting the line to reduce SSE
- Stop when we find the best fit line

Stop when incremental progress < E

7/12

- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^TX)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Keep adjusting the line to reduce SSE
- Stop when we find the best fit line
- How do we adjust the line?

7/12

Madhavan Mukund Lecture 6: 22 April, 2021 DMML Apr-Jul 2021

■ How does cost vary with parameters

$$\theta = (\theta_0, \theta_1, \dots, \theta_k)$$
?

 $\theta = (\theta_0, \theta_1, \dots, \theta_k)?$ • Gradients $\frac{\partial}{\partial \theta_i} J(\theta)$

■ How does cost vary with parameters

$$\theta = (\theta_0, \theta_1, \dots, \theta_k)$$
?

- $\theta = (\theta_0, \theta_1, \dots, \theta_k)?$ Gradients $\frac{\partial}{\partial \theta_i} J(\theta)$
- Adjust each parameter against gradient

$$\theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$
She size

How does cost vary with parameters

$$\theta = (\theta_0, \theta_1, \dots, \theta_k)$$
?

- Gradients $\frac{\partial}{\partial \theta_i} J(\theta)$
- Adjust each parameter against gradient

$$\bullet \theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

• For a single training sample (x, y)

$$\frac{\partial}{\partial \theta_i} J(\theta) = \frac{\partial}{\partial \theta_i} \frac{1}{2} (h_{\theta}(x) - y)^2$$

■ How does cost vary with parameters

$$\theta = (\theta_0, \theta_1, \dots, \theta_k)$$
?

- Gradients $\frac{\partial}{\partial \theta_i} J(\theta)$
- Adjust each parameter against gradient

$$\bullet \theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

■ For a single training sample (x, y)

$$\frac{\partial}{\partial \theta_{i}} J(\theta) = \frac{\partial}{\partial \theta_{i}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_{i}} (h_{\theta}(x) - y)$$

■ How does cost vary with parameters

$$\theta = (\theta_0, \theta_1, \dots, \theta_k)$$
?

- Gradients $\frac{\partial}{\partial \theta_i} J(\theta)$
- Adjust each parameter against gradient

$$\bullet \theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

• For a single training sample (x, y) n = 1

$$\frac{\partial}{\partial \theta_{i}} J(\theta) = \frac{\partial}{\partial \theta_{i}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_{i}} (h_{\theta}(x) - y)$$

$$= (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_{i}} \left[\left(\sum_{i=1}^{k} \theta_{j}(x) \right) - y \right]$$

Madhavan Mukund Lecture 6: 22 April, 2021 DMML Apr-Jul 2021 8 / 12

■ How does cost vary with parameters

$$\theta = (\theta_0, \theta_1, \dots, \theta_k)$$
?

- Gradients $\frac{\partial}{\partial \theta_i} J(\theta)$
- Adjust each parameter against gradient

$$\bullet \theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

• For a single training sample (x, y)

$$\frac{\partial}{\partial \theta_{i}} J(\theta) = \frac{\partial}{\partial \theta_{i}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_{i}} (h_{\theta}(x) - y)$$

$$= (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_{i}} \left[\left(\sum_{i=1}^{k} \theta_{i}(x) \right) - y \right]$$

Madhavan Mukund Lecture 6: 22 April, 2021 DMML Apr-Jul 2021 8 / 12

■ For a single training sample (x, y), $\frac{\partial}{\partial \theta_i} J(\theta) = (h_{\theta}(x) - y) \cdot x_i$

9/12

- For a single training sample (x, y), $\frac{\partial}{\partial \theta_i} J(\theta) = (h_{\theta}(x) y) \cdot x_i$
- Over the entire training set, $\frac{\partial}{\partial \theta_i} J(\theta) = \sum_{i=1}^n (h_{\theta}(x_i) y_i) \cdot x_i^i$

9/12

- For a single training sample (x, y), $\frac{\partial}{\partial \theta_i} J(\theta) = (h_\theta(x) y) \cdot x_i$
- Over the entire training set, $\frac{\partial}{\partial \theta_i} J(\theta) = \sum_{j=1}^n (h_{\theta}(x_j) y_j) \cdot x_j^i$

Batch gradient descent

- Compute $h_{\theta}(x_j)$ for entire training set $\{(x_1, y_1), \dots, (x_n, y_n)\}$
- Adjust each parameter

$$\theta_{i} = \theta_{i} - \alpha \frac{\partial}{\partial \theta_{i}} J(\theta)$$

$$= \theta_{i} - \alpha \cdot \sum_{j=1}^{n} (h_{\theta}(x_{j}) - y_{j}) \cdot x_{j}^{i}$$

Repeat until convergence

- For a single training sample (x, y), $\frac{\partial}{\partial \theta_i} J(\theta) = (h_{\theta}(x) y) \cdot x_i$
- Over the entire training set, $\frac{\partial}{\partial \theta_i} J(\theta) = \sum_{j=1}^n (h_{\theta}(x_j) y_j) \cdot x_j^i$

Batch gradient descent

- Compute $h_{\theta}(x_i)$ for entire training set $\{(x_1, y_1), \ldots, (x_n, y_n)\}\$
- Adjust each parameter

$$\theta_{i} = \theta_{i} - \alpha \frac{\partial}{\partial \theta_{i}} J(\theta)$$

$$= \theta_{i} - \alpha \cdot \sum_{j=1}^{n} (h_{\theta}(x_{j}) - y_{j}) \cdot x_{j}^{i}$$

Repeat until convergence

Stochastic gradient descent

- For each input x_i , compute $h_{\theta}(x_i)$
- Adjust each parameter $\theta_i = \theta_i - \alpha \cdot (h_{\theta}(x_i) - y) \cdot x_i^i$

Mini batch stocheshic a.D.

9/12

- For a single training sample (x, y), $\frac{\partial}{\partial \theta_i} J(\theta) = (h_\theta(x) y) \cdot x_i$
- lacksquare Over the entire training set, $\frac{\partial}{\partial \theta_i} J(\theta) = \sum_{j=1}^n (h_{\theta}(x_j) y_j) \cdot x_j^i$

Batch gradient descent

- Compute $h_{\theta}(x_j)$ for entire training set $\{(x_1, y_1), \dots, (x_n, y_n)\}$
- Adjust each parameter

$$\theta_{i} = \theta_{i} - \alpha \frac{\partial}{\partial \theta_{i}} J(\theta)$$

$$= \theta_{i} - \alpha \cdot \sum_{j=1}^{n} (h_{\theta}(x_{j}) - y_{j}) \cdot x_{j}^{i}$$

Repeat until convergence

Stochastic gradient descent

- For each input x_j , compute $h_{\theta}(x_j)$
- Adjust each parameter $\theta_i = \theta_i \alpha \cdot (h_\theta(x_i) y) \cdot x_i^i$

Pros and cons

- Faster progress for large batch size
- May oscillate indefinitely

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Noisy outputs from a linear function
 - $y_i = \theta^T x_i + \epsilon$
 - ullet $\epsilon \sim \mathcal{N}(0, \sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $y_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = \theta^T x_i$

$$y = mx + c$$

+nois

10 / 12

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Noisy outputs from a linear function
 - $y_i = \theta^T x_i + \epsilon$
 - ullet $\epsilon \sim \mathcal{N}(0,\sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - \blacksquare $y_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = \theta^T x_i$
- Model gives us an estimate for θ , so regression learns μ_i for each x_i

10 / 12

■ Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$

100 com tossa

- Noisy outputs from a linear function
- $\mathbf{v}_i = \theta^T x_i + \epsilon$

- outin 1 63 head 37 tal
- ullet $\epsilon \sim \mathcal{N}(0,\sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
- Eshnote p (heads)?

- $\mathbf{v}_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = \theta^T x_i$
- Model gives us an estimate for θ , so regression learns μ_i for each x_i
- Want Maximum Likelihood Estimator (MLE) maximize

$$\mathcal{L}(\theta) = \prod_{i=1}^{n} P(y_i \mid x_i; \theta)$$

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Noisy outputs from a linear function
 - $y_i = \theta^T x_i + \epsilon$
 - lacksquare $\epsilon \sim \mathcal{N}(0,\sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - \blacksquare $y_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = \theta^T x_i$

(0,1)3(0,9)2

(0.6)3(0.4)2

- DIN HTHTH β = 0,6

 β· (1-β).β (1-β)β

 0, 025
- Model gives us an estimate for θ , so regression learns μ_i for each x_i
- Want Maximum Likelihood Estimator (MLE) maximize

$$\mathcal{L}(\theta) = \prod_{i=1}^{n} P(y_i \mid x_i; \theta)$$

■ Instead, maximize log likelihood

10 / 12

$$\ell(\theta) = \log \left(\prod_{i=1}^{n} P(y_i \mid x_i; \theta) \right) = \sum_{i=1}^{n} \log \left(P(y_i \mid x_i; \theta) \right)$$

•
$$y_i = \mathcal{N}(\mu_i, \sigma^2)$$
, so $P(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(y-\mu_i)^2}{2\sigma^2}}$

11 / 12

•
$$y_i = \mathcal{N}(\mu_i, \sigma^2)$$
, so $P(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta^T x_i)^2}{2\sigma^2}}$

11 / 12

•
$$y_i = \mathcal{N}(\mu_i, \sigma^2)$$
, so $P(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta^T x_i)^2}{2\sigma^2}}$

Log likelihood

$$\ell(\theta) = \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta^T x_i)^2}{2\sigma^2}} \right)$$

11 / 12

•
$$y_i = \mathcal{N}(\mu_i, \sigma^2)$$
, so $P(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta^T x_i)^2}{2\sigma^2}}$

Log likelihood (assuming <u>natural logarithm</u>)

$$\ell(\theta) \neq \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} X^{-\frac{(y-\theta^T x_i)^2}{2\sigma^2}} \right) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) - \sum_{i=1}^{n} \frac{(y-\theta^T x_i)^2}{2\sigma^2}$$

$$\log \left(\mathbf{a} \cdot \mathbf{b} \right)$$

11 / 12

•
$$y_i = \mathcal{N}(\mu_i, \sigma^2)$$
, so $P(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta^T x_i)^2}{2\sigma^2}}$

Log likelihood (assuming natural logarithm)

$$\ell(\theta) = \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta^T x_i)^2}{2\sigma^2}} \right) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) - \sum_{i=1}^{n} \frac{(y-\theta^T x_i)^2}{2\sigma^2}$$

■ To maximize $\ell(\theta)$ with respect to θ , ignore all terms that do not depend on θ

11 / 12

•
$$y_i = \mathcal{N}(\mu_i, \sigma^2)$$
, so $P(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta^T x_i)^2}{2\sigma^2}}$

Log likelihood (assuming natural logarithm)

$$\ell(\theta) = \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta^T x_i)^2}{2\sigma^2}} \right) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) - \sum_{i=1}^{n} \frac{(y-\theta^T x_i)^2}{2\sigma^2}$$

- To maximize $\ell(\theta)$ with respect to θ , ignore all terms that do not depend on $\overline{\theta}$
- Optimum value of θ is given by

$$\hat{\theta}_{\mathsf{MSE}} = rg \max_{\theta} \left[-\sum_{i=1}^{n} (y_i - \theta^T x_i)^2 \right]$$

11 / 12

•
$$y_i = \mathcal{N}(\mu_i, \sigma^2)$$
, so $P(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y - \mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y - \theta^T x_i)^2}{2\sigma^2}}$

Log likelihood (assuming natural logarithm)

$$\ell(\theta) = \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta^T x_i)^2}{2\sigma^2}} \right) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) - \sum_{i=1}^{n} \frac{(y-\theta^T x_i)^2}{2\sigma^2}$$

- To maximize $\ell(\theta)$ with respect to θ , ignore all terms that do not depend on θ
- Optimum value of θ is given by

$$\hat{\theta}_{\text{MSE}} = \arg\max_{\theta} \left[-\sum_{i=1}^{n} (y_i - \theta^T x_i)^2 \right] = \arg\min_{\theta} \left[\sum_{i=1}^{n} (y_i - \theta^T x_i)^2 \right]$$

11 / 12

•
$$y_i = \mathcal{N}(\mu_i, \sigma^2)$$
, so $P(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-(\theta^T x_i)^2)^2}{2\sigma^2}}$

Log likelihood (assuming natural logarithm)

$$\ell(\theta) = \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta^T x_i)^2}{2\sigma^2}} \right) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) - \sum_{i=1}^{n} \frac{(y-\theta^T x_i)^2}{2\sigma^2}$$

- To maximize $\ell(\theta)$ with respect to θ , ignore all terms that do not depend on θ
- Optimum value of θ is given by

$$\hat{\theta}_{\mathsf{MSE}} = \arg\max_{\theta} \left[-\sum_{i=1}^{n} (y_i - \theta^T x_i)^2 \right] = \arg\min_{\theta} \left[\sum_{i=1}^{n} (y_i - \theta^T x_i)^2 \right]$$

Assuming data points are generated by linear function and then perturbed by Gaussian noise, SSE is the "correct" loss function to maximize likelihood

