KOMUNIKAČNÍ TECHNOLOGIE (BPC-KOM)

Ústav telekomunikací Fakulta elektrotechniky a komunikačních technologií VUT v Brně

doc. Ing. Jan Jeřábek, Ph.D. ierabeki@feec.vutbr.cz

Plán přednášky

Technika sítí a protokolů

- Základní stavební kameny Internetu
- Protokoly (obecný popis)
- Přístupové sítě
- Transportní sítě
- Vzájemné propojení sítí
- Základní parametry paketové sítě
- Komunikační modely
- Úkoly komunikačního řetězce
- Architektura komunikace systémů, vrstvy, protokoly
- Základní popis síťových modelů ISO/OSI a TCP/IP

Základní stavební prvky současného Internetu

- Internet
 - Koncové systémy (end system, device, host)
 - Propojovací trasy
 - Různá přenosová média
 - Různé přenosové rychlosti (bps)
 - Data přenášena po částech (pakety)
 - Propojující (mezilehlé) zařízení
 - Různá pojmenování dle typu technologie
 - Obecně směrovač (router) a paketový přepínač (packet switch)
 - Úkol předávání paketů (forwarding)
 - Vyhledávání přenosových tras (routes)
- Dva základní typy sítí
 - Poskytovatelé připojení (ISP)
 - Různé typy, přístupové technologie
 - Poskytovatelé obsahu (CDN)

Zjednodušené schéma

Základní stavební prvky současného Internetu

- Protokoly
 - Řídí odesílání, příjem, zpracování informací
 - Transmission Control Protocol (TCP) a Internet Protocol (IP) -> sada TCP/IP
 - Specifikovány v dokumentech RFC vydávaných IETF
 - Číselné označení, stav, návaznost
- Další standardy
 - IEEE
 - ITU-T
 - □ 3GPP
 - □ ...

Základní stavební prvky současného Internetu

- Internet = infrastruktura poskytující služby distribuovaným aplikacím
- Aplikace = počítačový program, spuštěn jako proces
 v OS
- Rozhraní
 - Definuje strukturu a formát zpráv
 - Socket interface

Protokoly (obecný popis)

- Důležitá složka komunikace v počítačových sítích
- Způsob interakce mezi komunikujícími stranami
- Analogie k mezilidské komunikaci, vždy i schopnost řešení mimořádných stavů
- Díky výpočetní technice velmi různorodá schémata, možná vysokorychlostní výměna informací
- Max. nízké desítky protokolů nutné znát pro pochopení způsobu fungování datových sítí (existují tisíce protokolů)
 - Jednoduché až velmi komplexní
 - Obecné až velmi specifické použití
- Nutné znát a dodržovat specifikaci, pokud spolu mají procesy komunikovat. Definováno zejména
 - Formát a pořadí zpráv
 - Způsob reakce na určité události

Přístupové sítě (technologie)

- Důležitá část internetové infrastruktury
- Edge network (host) <> Access network <> Edge router
- Řada technologií pro připojení např. domácích/podnikových sítí
 - xDSL např. VDSL, nesymetrické přenosové rychlosti
 - Kabelové sítě DOCSIS, stávající infrastruktura
 - Wi-Fi a příbuzné bezdrátové sítě
 - Ethernet LAN, symetrické rychlosti
 - 🗖 FTTH optika až k zákazníkovi, PON
 - 3G/4G/LTE mobilní sítě vysoká mobilita
 - Satelitní sítě dostupnost mimo obydlené oblasti

Transportní sítě (jádro sítě)

- Důležitá část internetové infrastruktury, např. jádro sítě ISP
- Vzájemné propojení přístupových sítí
 - Směrovače, ústředny
 - Přenosové trasy
- □ Různé technologie
 - Kapacity sdíleny pro více přístupových sítí
 - Kumulativně až násobky Tb/s
- Různé způsoby přenosu dat (komutace)
 - Komutace paketů a okruhů

Vzájemné propojení sítí

- Potřeba propojení jednotlivých ISP, CDN -> Internet
- Autonomní systémy (AS)
 - Desítky tisíc
 - Nemožné propojit přímo každý s každým
 - Přímé × zprostředkované propojení (IXP, Tier1/tranzit AS)
- Internet Exchange Point (IXP)
 - Propojení velkého množství geograficky blízkých AS
 - Existují tisíce těchto uzlů
- Tier1/tranzit AS
 - Globální sítě propojující geograficky vzdálené AS, bez koncových zákazníků
 - Existují stovky těchto sítí

pohled na Internet Zjednodušené schéma propojení sítí globálnější (AS),

transportní sítě, jejich přístupové propojení

Vzájemné propojení sítí

- Nejčastější komutace paketů (směrovače předávají pakety)
- Přenosová trasa mezi komunikujícími koncovými zařízeními
 - Nemalé množství směrovačů (až desítky), možnost zjištění přes traceroute
 - Každý směrovač rozhoduje kam paket předá (směrovací tabulky)
 - Dosahované parametry na trase ovlivněny např.:
 - Výkonnost zařízení, jejich počet, aktuální zatížení
 - Typ dílčích přenosových tras, jejich fyzická délka, zaplnění jejich kapacit
 - Použitý komunikační protokol

Základní parametry paketové sítě

- Měřeno prostřednictvím parametrů definujících jak rychle jsme přes tuto síť schopni přenášet informace
 - Teoretická přenosová rychlost
 - šířka pásma (bandwidth)
 - datová rychlost (data rate)
 - Reálná přenosová rychlost
 - propustnost sítě (throughput)
 - Zpoždění (delay, latency)
 - Ztrátovost paketů
 - Procento paketů, které nejsou v pořádku doručeny k adresátovi
 - Způsobeno např. přetížením zařízení či poruchami trasy
 - Ideálně 0 %, reálně blízko 0 %, popř. max. jednotky %
- Pojmy jsou často používány špatně

Teoretická přenosová rychlost

- Šířka pásma tradičně spjata s kmitočtovým rozmezím, radiový přenos [Hz]
- Sítě častěji v násobcích bitů za sekundu, (b/s; bps = bit per second, česky bit/s), dnes typicky v Mbit/s (Mbps) a Gbit/s (Gbps)
 - počet bitů, které lze daným kanálem přenést za sekundu (specifikace)
 - teoretická hodnota, nelze dosáhnout v koncové aplikaci
 - stejné jednotky jsou využívány i pro propustnost a datovou nebo přenosovou rychlost
 - př.: síť s rychlostí 100 Mbit/s za 1 sekundu se přenese 100 miliónů bitů, vyslání jednoho bitu trvá pouze 10 ns
- megabit (Mbit)
 - □ u přenosových rychlostí 10⁶ (1 000 000 bitů)
 - □ u velikosti dat značí 2²⁰ (1 048 576 bitů)
 - obdobně pro další používané jednotky, kbit, Gbit, Tbit, ...
- □ Pozor na pojmy "bit" (b) a "byte" (B)
 - □ 1 B = 8 b

Propustnost

- měřená veličina v reálném nasazení technologie/protokolu a mezi koncovými systémy
- Nižší než teoretická šířka pásma
- Propustnost omezena
 - charakterem komunikace
 - formátem zpráv
 - konstrukcí a vytížením všech zařízení a kanálů po trase
- □ Př.:
 - šířka pásma 100 Mbit/s (standardní Fast Ethernet)
 - měřená propustnost maximálně ~ 95 Mbit/s
- V případě přenosové trasy s více segmenty
 - Dána vždy nejpomalejším úsekem celé trasy (bottleneck link)

Zpoždění

- Jak dlouho skutečně trvá přenos 1 b po dané trase [s]
- Závislé především na
 - délce trasy, jejím aktuálním zatížení a chybovosti
 - velikosti přenášené zprávy
 - šířce pásma daného kanálu
 - mezilehlých zařízeních
- Rychlost šíření signálu je fyzikálně limitována
 - \circ 3.10 8 m/s ve vakuu
 - □ 2,3.10⁸ m/s v měděném kabelu
 - □ 2.10⁸ m/s v optickém vláknu
- Obousměrné koncové zpoždění (round-trip time = RTT)
 - Součet zpoždění tam a zpět, možnost zjistit pomocí ping
- RTT při přenosu mezi koncovými stanicemi
 - cím méně, tím pro komunikaci lépe
 - v jedné lokalitě se pohybuje okolo 1 ms
 - přenos mezi kontinenty až 100 ms
 - přenos země-družice-země i 300 ms

Komunikační modely

- Základním účelem komunikace je vzájemná výměna informací mezi dvěma uživateli (procesy)
 - zdroj
 - spotřebič
- Komunikaci Ize rozdělit na:
 - komunikace uvnitř sítí servisní část komunikace v rámci infrastruktury
 - komunikace mezi koncovými uživateli komunikace přes sítě
- Základní pojmy (nejedná se o formální definice)
 - data reprezentace faktů, pojmů nebo instrukcí ve formalizované podobě vhodné pro komunikaci, interpretace informace pro strojové zpracování
 - informace význam dat pro uživatele

Schéma datové komunikace

Základní úkoly pro přenos informací

- vlastní přenos informace
 - kódování dat
 - přizpůsobení pro komunikační kanál
- vyhledání cesty spojení dvou uživatelů v síti
 - směrování
- použití vhodného způsobu komunikace, řízení výměny dat
 - protokoly

Úkoly komunikačního řetězce

Řízení výměny informací

způsob organizace přenosu dat mezi zdrojem a cílem

Definice rozhraní

rozhraní s přenosovým systémem musí být definováno (např. tvar a velikosti signálů)

Synchronizace

 mezi přijímačem a vysílačem musí existovat určité formy časového sjednocení (rozeznání jednotlivých signálových elementů)

Formátování zpráv

unifikace způsobu sestavení obsahu zprávy (dorozumění se)

Adresování a směrování

jednoznačný způsob určení cíle a nalezení cesty k němu

Další možnosti komunikačního řetězce

- Vícenásobné využití přenosových systémů
 - komunikační řetězec je sdílen více uživateli (procesy)
- Řízení systému
 - konfigurace, dohled, reakce na chyby a přetížení, ...
- Detekce a korekce chyb přenosu
- Zotavení se ze ztrát informací v komunikačním systému
 - navrácení se do stavu, který byl před ztrátou informace
- Řízení přenosu
 - zajištění, aby nedocházelo k zahlcení systému
- Ochrana zpráv
 - posílaná data může přijímat pouze zvolený příjemce

Architektura komunikace systémů, vrstvy a protokoly

Základní model komunikace – principiální schéma

Aspekty komunikace

- Problematiku přenosu od jednoho uživatele
 k druhému lze ukázat na příkladu
- Modelová situace
 - □ dva politici (ČR a Rakousko)
 - první rozumí česky a druhý německy
 - je nutné, aby se nějakým způsobem domluvili, aby došlo k předání určité informace
 - komunikace mezi nimi bude probíhat na celkem sedmi úrovních (vrstvách)

Vrstvy komunikace

Zjednodušený obrázek (pouze tři vrstvy)

Sedm vrstev komunikace

Aplikační vrstva (7)

- politici vzdáleni
- musí mezi nimi existovat komunikační systém
- mezi politiky a komunikačním systémem musí existovat rozhraní vstup do komunikačního systému

Prezentační vrstva (6)

musí existovat zařízení překladu různých způsobů vyjadřování (jazyků, abeced)

Relační vrstva (5)

- politici působí např. v nějakém institutu
- musí existovat způsob, jak nasměrovat hovor na příslušného politika

Transportní vrstva (4)

- "spojovatelky" obou institutů navážou koncové spojení
- potvrzují si průběžně, že spolu komunikují, udržují spojení po dobu hovoru politiků
- provedou ukončení spojení

Sedm vrstev komunikace

□ Síťová vrstva (3)

- komunikační systém musí vyhledat nejvhodnější cestu hovoru mezilehlou sítí (směrování)
- uzly sítě spolu komunikují a vyhledávají optimální spojení

Spojová vrstva (2)

- zařízení, které přenášený hovor vždy mezi uzly "očistí" od šumů a přeslechů
- zbavení chyb vzniklých během přenosu mezi jednotlivými uzly

Fyzická vrstva (1)

- zařízení přizpůsobující probíhající hovor přenosovému médiu
- zabezpečit fyzický přístup signálu na přenosové médium

Vertikální a horizontální komunikace

Vertikální komunikace

- probíhá formou požadavků od nejvyšší úrovně směrem k nejnižší (a naopak)
- komunikující strany vnímají komunikaci horizontálně, ve skutečnosti vždy probíhá vertikálně (kromě nejnižší úrovně) přes jednotlivé úrovně systému
- □ př.:
 - politik chce komunikovat
 - aktivuje systém zadáním jména, adresy a jazyka druhého politika
 - informaci obdrží překladatel (nižší úroveň)
 - převede informaci o jazyku do formy, kterou znají všichni překladatelé v systému a vše pošle dále
 - na nižších vrstvách pak obdobně
- Obecně tento postup umožňuje připravovat znalosti tak, aby mohly být odeslány přes přenosové médium

Vertikální a horizontální komunikace

Horizontální komunikace

- probíhá na dvou odpovídajících si úrovních
- forma "společné řeči"
- př.:
 - politici mohou používat společné pojmy či např. zkratky
 - překladatelé se musí domluvit na jazyku, kterému oba rozumí
 - obdobně i na nižších vrstvách
- "společná řeč" se nazývá protokol
 - musí existovat na každé dvojici vzájemně si odpovídajících úrovní komunikačního systému
 - nutná i domluva na společném postupu
 - ke každé informaci převzaté od vyšší úrovně přidána informace pro domluvu s protější úrovní
 - Opačně u dat přicházejících od nižší úrovně dojde k očištění od informací sloužících pro řízení této dané úrovně
- Horizontální komunikace je vždy pouze virtuální (výjimka fyzická vrstva)

Protokol

- množina pravidel určujících formát a význam rámců, paketů a zpráv vyměňovaných mezi partnerskými vrstvami
- komunikační protokol vytváří dojem horizontální komunikace
- Klíčové prvky protokolu jsou
 - syntax (skladba) zahrnuje formáty dat a úrovně signálů, jak má signál či data vypadat
 - sémantika (≈ význam) obsahuje řídící informace pro spolupráci řízení vrstev a opravu chyb
 - časování zahrnuje rychlost výměny dat, počet opakování a posloupnosti zpráv

Protokol

- řídící informace obsažené v protokolu jsou vždy primárně srozumitelné a určené pouze stejnolehlé vrstvě na vzdáleném systému
- z důvodu kompatibility musí být protokol detailně specifikován
- v konkrétní vrstvě běžně více než jeden protokol
- soubor protokolů (protocol stack nebo protocol suite)
 - řeší celou komunikaci komplexně
 - zabývá se problematikou více úrovní
 - každý z protokolů ze sady řeší pouze určitý podproblém komunikace
 - Nižší vrstvy poskytují služby vyšším vrstvám, nutná vertikální komunikace a předávání informací
 - V OS spolupracující procesy, fronty, funkce, časovače, rozhraní
 - Nižší vrstvy nelze realizovat bez hardware

SÍŤOVÝ MODEL ISO/OSI

Základní popis referenčního modelu ISO/OSI

- síťová komunikace od začátků založena na vrstvách
- vznikaly různé vzájemně nekompatibilní a uzavřené architektury
 - zpravidla využívány na úrovni jedné společnosti, vzájemně nepropojitelné
- potřeba propojení -> vznik otevřeného standardu
- International Organization for Standardization (ISO)
- model Open System Interconnection Reference Model (OSI)
 - podchycuje všechny nezbytné aspekty komunikace
 - výchozím modelem komunikační architektury pro počítačově řízenou výměnu dat
 - základ pro realizaci veřejných datových sítí

Zkratky z obrázku

- APDU (Application Protocol Data Unit), datová jednotka aplikačního protokolu
- PPDU (Presentation Protocol Data Unit), datová jednotka prezentačního protokolu
- SPDU (Session Protocol Data Unit), datová jednotka relačního protokolu
- TPDU (Transport Protocol Data Unit), datová jednotka transportního protokolu

Základní popis referenčního modelu ISO/OSI

- úlohou je především poskytovat společnou základnu pro další aktivity
- implementace není přímo specifikována
- všeobecné principy sedmivrstvé síťové architektury
 - □ účel každé vrstvy
 - funkce dané vrstvy
 - služby poskytované vyšší vrstvě
 - služby požadované od vrstvy nižší
- Vrstvy číslovány od nejnižší

Základní popis referenčního modelu ISO/OSI

- implementace vrstev
 - může být v software nebo hardware
 - vrstvy 1-2 jsou zejména hardwarové
 - Vrstva 3 dominantně hardwarová nebo softwarová
 - vrstvy 4-7 zejména softwarové
- Možné dělení vrstev
 - vrstvy 1-4 poskytovatelé transportní služby
 - vrstvy 5-7 uživatelé transportní služby
- Nejčastější rozdělení
 - Vrstvy 1-3 lokální, tvoří komunikační podsíť
 - starají o komunikaci přes síťovou infrastrukturu
 - fyzická vrstva, detekce a oprava chyb, směrování
 - ve většině mezilehlých prvků
 - Vrstvy 4-7 koncové
 - vytvoření vazby komunikujících aplikací
 - nachází se především v koncových uzlech

Základní popis referenčního modelu ISO/OSI

- Virtuálnost přímé (horizontální) komunikace
- Průchod přes mnoho uzlů, průchod všemi vrstvami
- Vždy nutný sestup až na fyzickou vrstvu

Zapouzdřování a rozbalení jednotek

Stručný popis vrstev ISO/OSI

Aplikace		Application
Aplikační vrstva	(7)	Application Layer
 Prezentační vrstva 	(6)	Presentation Layer
Relační vrstva	(5)	Session Layer
 Transportní vrstva 	(4)	Transport Layer
Síťová vrstva	(3)	Network Layer
 Spojová (linková) vrstva 	(2)	Link Layer
Fyzická vrstva	(1)	Physical Layer

Aplikace

- koncové procesy (uživatelské úlohy)
- rozptýleny po síti, potřeba komunikovat mezi sebou za účelem splnění úloh
- klade požadavky na komunikaci
 - (ne)spolehlivost
 - reakční schopnost
 - □ rozlišitelnost systému
- logické prostředí sítě skryto před uživatelem
- rozhraní

- Fyzická vrstva
 - Fyzické charakteristiky médií a rozhraní
 - Reprezentace bitů
 - Přenosová rychlost
 - Synchronizace mezi vysílačem a příjemcem
 - Přizpůsobení se charakteru kanálu a topologii sítě (bod-bod, vícebodová)
 - Přenosový režim z hlediska oboustrannosti komunikace

- Spojová vrstva
 - Vytváření rámců
 - Adresování v rámci dané sítě
 - Řízení toku dat
 - Řízení chybových stavů
 - Přístupové metody ke sdílenému médiu

- □ Síťová vrstva
 - Logické adresování
 - Směrování mezi jednotlivými sítěmi

- □ Transportní vrstva
 - Adresování konkrétní služby
 - Segmentace a znovu-skládání dat
 - Řízení spojení mezi komunikujícími aplikačními protokoly
 - Řízení toku dat
 - Řízení chybových stavů

- □ Relační vrstva
 - Řízení dialogu mezi aplikačními protokoly
 - Synchronizace

- Prezentační vrstva
 - Transformace kódování
 - Šifrování
 - Komprese

- Aplikační vrstva
 - Zpřístupnění komunikačního prostředí ISO/OSI

SÍŤOVÝ MODEL TCP/IP

Základní popis síťového modelu TCP/IP

- □ TCP/IP × ISO/OSI
- název podle přenosových protokolů
 - TCP (Transmission Control Protocol)
 - □ IP (Internet Protocol)
- TCP/IP
 - označuje celou soustavu protokolů
 - ucelená soustava názorů jak by se počítačové sítě měly budovat a fungovat
 - představa o členění síťového programového vybavení na vrstvy
 - úkoly vrstev, způsob plnění úkolů
 - síťová architektura, velmi vhodná pro praktickou implementaci

- základní vlastnosti ISO/OSI (pro srovnání s TCP/IP)
 - rozdílné výchozí postoje tvůrců
 - hlavní slovo zástupci spojových organizací důraz na vlastnosti sítě
 - spojovaný a spolehlivý charakter služeb
 - připojované hostitelské počítače relativně jednoduchá úloha
 - praxe ukázala, že v otázce zajištění spolehlivosti to není ideální
 - vyšší vrstvy nemohou považovat spolehlivou komunikační síť
 za dostatečně spolehlivou pro své potřeby
 - snaží se zajistit si požadovanou míru spolehlivosti vlastními silami
 - zajišťováním spolehlivosti se do určité míry zabývá každá vrstva ISO/OSI

- □ základní vlastnosti TCP/IP (pro srovnání s ISO/OSI)
 - zajištění spolehlivosti je především problémem koncových účastníků komunikace -> řešeno až na úrovni transportní vrstvy
 - některé funkce přeneseny na úroveň koncových stanic
 - šetří přenosové kapacity
 - ztráty paketů v komunikační síti
 - může k nim docházet bez varování a bez snahy o nápravu
 - ne bezdůvodně
 - best effort
 - zahazovat pakety až tehdy, když je skutečně nemůže doručit
 - poškození při přenosu
 - není dostatek místa ve vyrovnávací paměti
 - výpadek spojení

- TCP/IP předpokládá
 - jednoduchou a rychlou komunikační podsíť
 - nespojovaný charakter přenosu v komunikační síti (nespojovanou) službu
 - inteligentní hostitelské počítače
 - □ jen čtyři vrstvy

Vrstva síťového rozhraní

- □ Nejnižší vrstva (spojová a fyzická z ISO/OSI)
- Funkce spojené s ovládáním přenosové cesty, vysílání datových paketů
- Vrstva není v rámci TCP/IP blíže specifikována,
 závislá na přenosové technologii
- Tvořena zpravidla jednoduchým ovladačem (device driver)
- Fyzická a spojová vrstva dle ISO/OSI

Internetová (síťová) vrstva

- Vrstva nezávislá na konkrétní přenosové technologii
- Označována též jako IP vrstva (odpovídá síťové z OSI)
- Hlavním úkolem je doručování paketů přes různé sítě
- Datagramová služba
- Musí zvládnout odlišnosti dílčích sítí na přenosové trase
 - Různé fyzické adresy
 - Různá maximální velikost rámce, formát
 - Odlišný charakter poskytovaných služeb
- Pokud více připojených sítí pro každou samostatný ovladač

Transportní vrstva

- Název odvozen od protokolu TCP (Transmission Control Protocol)
- Hlavním úkolem je zajištění přenosu mezi koncovými účastníky – aplikačními programy
- Schopna zajistit
 - regulaci toku dat
 - spolehlivost
 - změnu charakteru přenosu na spojovaný
 - (vše pouze v případě TCP)
- Druhým nejvýznamnějším transportním protokolem je UDP (User Datagram Protocol)

Aplikační vrstva

- Nejvyšší vrstva tvořena přímo aplikačními protokoly
- Rozdíl od OSI prezentační a relační služby si tato vrstva musí zajistit sama (pokud je potřebuje)
- Pokud nepotřebuje není zbytečná režie
- Vrstva tedy může být výrazně složitější a obsáhlejší než v případě ISO/OSI
- Na této vrstvě se můžeme setkat s velkým množstvím protokolů:
 - HTTP (Hypertext Transfer Protocol), základní přenosový protokol ve WWW (World Wide Web) prostředí
 - FTP (File Transfer Protocol), protokol pro přenos souborů
 - SMTP (Simple Mail Transfer Protocol), hlavní protokol pro přenos elektronické pošty
 - DNS (Domain Name System), protokol pro práci se jmennými názvy (adresami) v celém Internetu
 - DHCP (Dynamic Host Configuration Protocol), protokol procentralizovanou správu IP adres na lokální síti

Filozofie vzájemného propojování sítí v TCP/IP

- Základní snaha univerzální propojení všech stanic v sítích různých typů – vzniká soustava vzájemně propojených sítí – internetworking
- Základní propojovací zařízení sítí IP směrovač

Filozofie vzájemného propojování sítí v TCP/IP

- Z pohledu koncových stanic (hosts) vnitřní struktura sítí irelevantní
- Internet = konglomerát dílčích sítí různého typu, propojených směrovači, na síťové vrstvě; jednotné adresování IP

Základní princip adresování v TCP/IP

- dva základní typy adres uzlů
 - fyzická adresa
 - zpravidla od výrobce
 - důležitá pro adresování v rámci konkrétní sítě
 - závislá na konkrétní technologii sítě
 - spjata s konkrétním hardware
 - není možné komunikovat mezi různými sítěmi
 - vyšší (abstraktní) adresa
 - platná globálně a v libovolné síti
 - IP adresa
 - pouze logická
 - používaná především na úrovni Internetové vrstvy
 - spjata především se software
- Doplnění pomocí DNS jmen
 - Jmenný odkaz na konkrétní uzel
 - Př. seznam.cz

Souběh aplikací a zapouzdřování

<u>Protokolové datové</u> <u>jednotky vrstev</u>

- Aplikační vrstva –data
- Transportní vrstva –segment(datagram)
- Internetová vrstva –paket (datagram)
- Vrstva síťového rozhraní rámec

Souběh aplikací a zapouzdřování

Softwarový pohled na TCP/IP

- □ TCP/IP v operačním systému IP modul
 - □ Skládá se z
 - transportní a síťové vrstvy
 - mechanizmů front, časovačů
 - Běžná součást OS (× sada IPv6)
- Aplikační vrstva implementována až v konkrétní aplikaci
- □ IP modul
 - (de)multiplex aplikačních protokolů
 - Pracuje se síťovými rozhraními

Softwarový pohled na TCP/IP

Základní způsoby komunikace z hlediska její organizace

Klient-Klient (P2P)

- Všechny stanice v rámci systému jsou si rovny
- Všechny stanice obsahují jak klientskou, tak serverovou část (servent)

Klient-Server

Rozlišuje klientské stanice zasílající požadavky na zpracování serveru

