

W261 - CTR Prediction

Group 31

Prabhat Tripathi | Section 2 Suhas Gupta | Section 6 Neha Kumar | Section 6

https://github.com/UCB-w261/f19-final-project-f19-team-31

Context

Problem: Predicting display ad click-through rate (CTR) probs

Data:

- Large dataset (over 50M+, 13GB+ train+test dataset)
 - 45M rows in training, 6M in test dataset
- 13 numeric and 26 categorical features.
 - No semantic information.
- Categorical features hashed to anonymize & regulate size of the variables
- Unbalanced labels
- Large number of distinct features -> large OHE vector (> 33M)
 - Sparse feature matrix

Logistic Regression with L2 Regularization

- Large-scale parallel linear learning algorithm
- Scales well to large number of features
- Sigmoid (logit) -> CTR prob
- Cost: Negative log-loss
- Gradient descent convex optimization

Regularized Logistic Regression

Loss Function

$$J(w) = \frac{-1}{N} \Sigma_{i=1}^N y_i log p_i + (1-y_i) log (1-p_i) + \lambda \frac{1}{2} \Sigma w^2$$

Gradient Descent Step

$$\delta = \frac{\delta L}{\delta w} = \frac{1}{N} \sum_{i=1}^{N} (p_i - y_i) x_i$$

$$\delta_L = \frac{\delta L}{\delta w} = \frac{1}{N} \sum_{i=1}^{N} (p_i - y_i) x_i + \lambda \sum w$$

$$w_0 = w_0 - \alpha * \delta$$

$$w_j = w_j - \alpha * \delta_L$$

$$j = 1, 2, 3, ...$$

Prediction (CTR)

$$sigmoid(t) = p_i = \frac{1}{1 + e^{-t}}$$

t: linear model

W261 LogisticRegression

```
or_df = spark.createDataFrame(
    [(1, 1, 0, 1),
        (1, 1, 0, 0),
        (1, 1, 1, 1),
        (0, 0, 0, 0),
        (1, 0, 1, 1),
        (1, 0, 1, 0),
        (1, 0, 0, 1),
        (1, 1, 1, 0),
    ],
    ["label", "I1", "I2", "I3"])
```


Homegrown Spark RDD Implementation

```
print("Homegrown Logistic Regression results")
print("\n-----")
print("Coefficients: {}".format(models[-1][1:]))
print("Intercept: {}".format(models[-1][0]))
print("-----")

Homegrown Logistic Regression results
```

Coefficients: [0.49895528 0.49922008 0.49930404]
Intercept: 1.257638686726761

Spark ML

```
print("Spark ML results")
print("\n-----")
print("Coefficients: " + str(lrModel.coefficients))
print("Intercept: " + str(lrModel.intercept))
print("\n-----")
Spark ML results
```

```
Coefficients: [0.49353282070393717,0.4935328207039572,0.49353282070393195]
Intercept: 1.2730026935697145
```

Final Notebook

Homegrown Vs Spark ML Model

- Functionally equivalent
- Spark ML -> Better learning throughput
 - Dataframe Vs rdd?

Takeway: We will use Spark ML model for large dataset in this project

Click Through Rate

- Click through rate (Label) is the outcome variable we are trying to predict
- The overall click through rate is **25.62%**
 - Most of the web ad links are not clicked by surfers
 - Smaller sampled datasets have the same Label=0 to Label=1 ratio

Numerical Feature Scale

- For numerical features min-max scaling was used
 - Allows gradient descent to converge

	I 1	12	13	14	15	16	17	18	19	l10	l11	l12	l13
Min	0	-3	0	0	0	0	0	0	0	0	0	0	0
Max	5775	257675	65535	969	23159456	431037	5631 1	6047	29019	11	231	4008	7393

$$Rescaled(e_i) = \frac{e_i - E_{min}}{E_{max} - E_{min}} * (max - min) + min$$

Spark ML Implementation used for the MinMaxScaler

Handling NULL Values

Replace NULL with 0xFFFFFFF

Feature	C1	C2	C3
Before	,	<i>""</i>	0x7e0ccccf
After	0xfffffff	0xfffffff	0x7e0ccccf

Categorical Feature

Replace NULL with column median

Feature	I1	12	13
Before	null	5	3
After	1	5	3

One Hot Encoding: A Scalability Challenge

Categorical Feature Distinct Values

Count of one-hot encoded features			
Pre-Binning	Post-Binning		
33,762,577	19,889		

More than 1500x reduction!

Numerical Feature Normality

- Applying CLT requires *approximately* normal distribution of linear independent variables
- Log transformation of numerical features removes extreme skew

Numerical Feature Value Distribution

Removing Multicollinearity

- No perfect multicollinearity is a required assumption for OLS coefficients to be BLUE
- Threshold for dropping collinear features is a hyperparameter in our model

Initial Dataset Float Tr. **Pipeline** Log Tr. Spark ML pipelines facilitate easy iteration Imputer Consist of <u>transformers</u> and <u>estimators</u> MinMax Tr. Transformers Null String Tr. Binning Tr. StringIndexer + OHE Vector Assembler Logistic **Estimators** Regression **Predicted Probabilities**

Float Tr.

Log Tr.

Imputer

MinMax Tr.

Null String Tr.

Binning Tr.

StringIndexer + OHE

Vector Assembler

Logistic Regression

Predicted Probabilities

Pipeline

- Logistic Regression requires all the features to be stored as a vector in a single column
 - Use: Vector Assembler to collapse columns
 - Omitting features = do not include them in the vector assembler call

Α	В	С	features
1	4	9	[1, 4, 9]
2	3	0	[2, 3, 0]
3	3	1	[3, 3, 1]

Pipeline

Other Built in methods utilized

- Imputer (fill in null values for numeric features with the median)
- MinMax scalar (rescale all the values from 0 to 1)
- StringIndexer + OneHotEncoder
 - HandleInvalid = 'keep' to bin unseen values

Pipeline

Created custom classifiers

- Float Transformer: needed to use downstream transformers
- Log Transformer: Take log of numerical features to reduce skew
- Null String Transformer: Replacing blank strings with 'fffffffff' for easier viewing
- Binning Transformer: Bin categorical values by average y value

More on Our Binning Approach

For each categorical feature:

Phase A: Create Binning Lookup Tables

Step 1

Count the number of distinct values per feature and determine which ones should be binned

Step 2

Take the average y value per distinct value

Step 3

Log transform any results from Step 2 if the median is far below the mean

Step 4

Round results to the tenths place. These are our new values

More on Our Binning Approach

For each categorical feature:

Phase A: Create Binning Lookup Tables

Step 1

Step 2

Step 3

Step 4

Count the number of distinct values per feature and determine which ones should be binned

Take the average y value per distinct value

Log transform any results from Step 2 if the median is far below the mean

Round results to the tenths place. These are our new values

Phase B: Join Back to Original Dataset

Step 5

Step 6

Step 7

Create a list that contains all the lookup tables to loop over

Run a mapper-side join, holding the binning lookup table in memory across all mappers Drop the old column with the original categorical values

Conclusion / Final Model

- Finding the best regParam [0.001,
 0.005, 0.01, 0.05, 0.1]
- Cutoff for dropping categorical variables and binning them instead (10k distinct values versus 100k)
- Logloss on training dataset = 0.4804
- Obtained probabilities for each record on the testing dataset for the purposes of this project
- Next step would be to upload to Kaggle to get the logloss score of the test dataset

Log Loss Score with Altering RegParam

14 minutes 24 seconds

(8 nodes: n1-standard-8)

Confusion Matrix & Accuracy Measurement

	TP	TN
Predicted Positive	3246587	1848263
Predicted Negative	8498851	32246916

Measure	Value
Sensitivity	0.2764
Specificity	0.9458
Precision	0.6372
Negative Predictive Value	0.7914
False Positive Rate	0.0542
False Discovery Rate	0.3628
False Negative Rate	0.7236
Accuracy	0.7743
F1 Score	0.3856
Matthews Correlation Coefficient	0.3086

Generated from http://onlineconfusionmatrix.com

Future Work

- 1. Prevent Overfitting
 - a. Cross Validation
 - b. Using a Dev dataset
- 2. Branching out to other classifiers
 - a. Decision Trees (No linearly separable assumption)
- 3. More Feature Engineering
 - a. Adding a row number feature to reflect that the data was chronologically ordered

Thank you!

Appendix

Scalable Object Oriented Infrastructure

- Two classes define the functionality for all data processing, EDA & feature engineering
 - Allows for flexible usage of methods throughout the project
 - Ensures column oriented database is used in EDA and feature engineering

