Пороговая функция

Определение:

Булева функция $f(A_1,A_2,\ldots,A_n)$ называется **пороговой** (англ. threshold function), если ее можно представить в виде $f(A_1,A_2,\ldots,A_n)=[\sum\limits_{i=1}^n A_ia_i\geqslant T]$, где a_i — **вес** (англ. weight) аргумента A_i , а T — **порог** (англ. threshold) функции f; a_i , $T\in R$

Обычно пороговую функцию записывают в следующим виде: $f = [a_1, a_2, a_3, \dots, a_n; T]$.

Содержание

- 1 Пример
- 2 Примеры пороговых функций
- 3 Пример непороговой функции
- 4 Значимость пороговых функций
- 5 См. также
- 6 Источники информации

Пример

Рассмотрим функцию трёх аргументов $f(A_1,A_2,A_3)=[3,4,6;5]$. Согласно этой записи имеем

$$a_1 = 3; a_2 = 4; a_3 = 6; T = 5.$$

Все наборы значений аргументов A_1, A_2, A_3 , на которых функция принимает единичное (либо нулевое) значение, можно получить из соотношения вида $3A_1 + 4A_2 + 6A_3 \geqslant 5$.

Если
$$A_1=0,\,A_2=0,\,A_3=0,\,$$
 то $0<5\Rightarrow f=0.$ Если $A_1=0,\,A_2=0,\,A_3=1,\,$ то $6\geqslant 5\Rightarrow f=1.$ Если $A_1=0,\,A_2=1,\,A_3=0,\,$ то $4<5\Rightarrow f=0.$ Если $A_1=0,\,A_2=1,\,A_3=1,\,$ то $10\geqslant 5\Rightarrow f=1.$ Если $A_1=1,\,A_2=0,\,A_3=0,\,$ то $3<5\Rightarrow f=1.$ Если $A_1=1,\,A_2=0,\,A_3=1,\,$ то $9\geqslant 5\Rightarrow f=1.$ Если $A_1=1,\,A_2=1,\,A_3=0,\,$ то $7\geqslant 5\Rightarrow f=1.$ Если $A_1=1,\,A_2=1,\,A_3=0,\,$ то $13\geqslant 5\Rightarrow f=1.$ Если $A_1=1,\,A_2=1,\,A_3=1,\,$ то $13\geqslant 5\Rightarrow f=1.$

Таким образом, заданная функция принимает единичное значение на наборах 001,011,101,110,111. Её минимальная форма имеет вид

$$f = A_1 A_2 + A_3.$$

Утверждение:

Для всякой пороговой функции справедливо

$$[a_1,a_2,a_3,\ldots,a_n;T] = [ka_1,ka_2,ka_3,\ldots,ka_n;kT],$$

где k — положительное вещественное число.

 \triangleright

Чтобы убедиться в этом достаточно записать

$$ka_1A_1 + ka_2A_2 + \ldots + ka_nA_n \geqslant kT$$

 $ka_1A_1 + ka_2A_2 + \ldots + ka_nA_n < kT$

и разделить обе части неравенства на k.

 \triangleleft

Примеры пороговых функций

Примерами пороговых функций служат функции AND и OR. Представим функцию AND в виде [1,1;2]. Докажем, что это именно пороговая функция, подставив все возможные значения аргументов:

$$A_1=0, A_2=0$$
, to $0<2\Rightarrow f=0$. $A_1=0, A_2=1$, to $1<2\Rightarrow f=0$. $A_1=1, A_2=0$, to $1<2\Rightarrow f=0$. $A_1=1, A_2=1$, to $2\geqslant 2\Rightarrow f=1$.

Таблица значений совпадает с таблицей истинности функции AND, следовательно AND пороговая функция.

Функцию OR представим в виде [1,1;1]. Аналогично докажем, что это пороговая функция:

$$A_1=0,\,A_2=0$$
, to $0<1\Rightarrow f=0$. $A_1=0,\,A_2=1$, to $1\geqslant 1\Rightarrow f=1$. $A_1=1,\,A_2=0$, to $1\geqslant 1\Rightarrow f=1$. $A_1=1,\,A_2=1$, to $2\geqslant 1\Rightarrow f=1$.

Таблица значений совпадает с таблицей истинности функции OR, следовательно OR — пороговая функция.

Пример непороговой функции

Утверждение:

Функция
$$XOR$$
 — непороговая.

 \triangleright

Предположим, что ${
m XOR}$ — пороговая функция. При аргументах (0,0) значение функции ${
m XOR}$ равно 0. Тогда по определению пороговой функции неравенство $A_1x_1+A_2x_2\geqslant T$ не должно выполняться. Подставляя значение аргументов, получаем, что T>0. При аргументах (0,1) и (1,0) значение функции ${
m XOR}$ равно 1. Тогда по определению выполняется неравенство $A_1x_1^{'}+A_2x_2\geqslant T$, подставляя в которое значения соответствующих аргументов, получаем $A_1\geqslant T,A_2\geqslant T$. Отсюда следует, что $A_1>0,A_2>0$ и $A_1+A_2\geqslant 2T$. При аргументах (1,1) значение функции ${
m XOR}$ равно 0, следовательно неравенство $A_1x_1+A_2x_2\geqslant T$

выполняться не должно, то есть $A_1+A_2 < T$. Но неравенства $A_1+A_2 \geqslant 2T$ и $A_1+A_2 < T$ при положительных A_1, A_2 и T одновременно выполняться не могут. Получили противоречие, следовательно, функция XOR — непороговая.

Значимость пороговых функций

Пороговые функции алгебры логики представляют интерес в связи с простотой технической реализации, в связи со своими вычислительными возможностями, а также благодаря возможности их обучения. Последнее свойство с успехом применяется на практике при решении плохо формализуемых задач. Пороговые функции применяются в качестве передаточных функций в искусственных нейронах, из которых состоят искусственные нейронные сети. А так как искусственный нейрон полностью характеризуется своей передаточной функцией, то пороговые функции являются математической моделью нейронов.

См. также

- Булевы функции
- Замкнутые классы булевых функций

Источники информации

- Пороговая функция (http://www.simvol.biz/uploadfiles/File/sostav/books/Diskret mat1.pdf)
- Википедия Искусственный нейрон (http://ru.wikipedia.org/wiki/Искусственный нейрон)

Источник — «http://neerc.ifmo.ru/wiki/index.php?title=Пороговая функция&oldid=85627»

■ Эта страница последний раз была отредактирована 4 сентября 2022 в 19:36.