DSC 215 - PROBABILITY AND STATISTICS FOR DATA SCIENCE

INTRODUCTION TO INFERENCE

COMPUTER SCIENCE & ENGINEERING
HALICIOĞLU DATA SCIENCE INSTITUTE

Statistical Inference

- The process by which we estimate parameters of interest from the data, and quantify the uncertainty in our estimates.
- Example: Estimating a population proportion using a sample proportion
- Tools we will introduce and use:
- Point estimates
- Confidence Intervals = range of plausible values for the true population value
- Hypothesis Tests = method to evaluate claims about the population

Point Estimates and Sources of Error

- Say you poll 1000 people on their voting intentions and 43% say they support candidate A.
- 43% would be a **point estimate**, **denoted** \hat{p} , of the voting intentions of the entire population (our parameter of interest), denoted p.
- \hat{p} is usually different from p, and the difference is called the error.
- Sources of error:
 - Sampling uncertainty/error: due to variability between different groups of 1000 people in our example, usually related to sample size, n
 - Bias: due to systematic error (e.g., you collect your samples from Candidate A's family and friends, poorly worded questions in poll)

Point Estimates and Sources of Error

- Thought experiment: How does \hat{p} behave when p is, say, 75%?
- Recall that \hat{p} is an estimate you get from sampling a subset of the population, and p is the true population value (usually not available to us).
- To get a sense of how \hat{p} behaves, we randomly sample 1000 "people", and find that

$$\hat{p}_1 = \frac{763}{1000} = 0.763 \implies \text{error} = 0.763 - 0.75 = 0.013$$

- We sample another 1000 people and get $\hat{p_2} = 0.741$
- We sample another 1000 people and get $\hat{p}_3 = 0.749$

Sampling Distribution

- The **center** of the sampling distribution, denoted $\bar{x}_{\hat{p}}$ is 0.7501 (very close to p=0.75)
- The "variability" of the point estimates, is denoted the **standard error**, denoted $SE_{\hat{p}}$. It is the standard deviation of \hat{p} . In our example, $SE_{\hat{p}} = 0.0136$.
- The distribution looks like a normal distribution
- Remember: We never observe the sampling distribution. This was a thought experiment.

• Informally: The Central Limit Theorem (CLT) tells us that when the observations are independent and n is large, \hat{p} will follow a normal distribution with

$$\mu_{\hat{p}} = p \text{ and } SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

- The Success/Failure Condition is a rule of thumb: For the CLT to hold, we need $np \ge 10$ and $n(1-p) \ge 10$
- Exercise: Does the success/failure condition hold with our previous example?

• Example (part 1): Compute the mean and standard error of \hat{p} when p=0.75 and n=1000, using the CLT

• Answer:
$$\mu_{\hat{p}} = 0.75$$
 and $SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.75 \times 0.25}{1000}} \approx 0.0137$

- Example (part 2): How frequently does \hat{p} falls within 2% of the true population value, p = 0.75?
 - The question is asking us for $\mathbb{P}(|\hat{p}-p| \le 0.02) = \mathbb{P}(p-0.02 \le \hat{p} \le p+0.02)$.
 - We know (part 1, and the CLT) that \hat{p} is approximately normal with: $\mu_{\hat{p}}=0.75$ and $SE_{\hat{p}}pprox0.0137$.
- We can use what we know about normal distributions!
 - Either we numerically calculate: $\mathbb{P}(0.73 \le \hat{p} \le 0.75) = \frac{1}{\sqrt{2\pi \cdot SE_{\hat{p}}}} \int_{0.73}^{0.77} e^{-\frac{(x-0.75)^2}{2 \cdot (SE_{\hat{p}})^2}} dx$
 - Or use Z-scores/tables: $Z_{0.73} = \frac{0.73 0.75}{0.0137} \approx -1.4599$ and $Z_{0.77} = \frac{0.77 0.75}{0.0137} \approx 1.4599$
- In either case, we get: $\mathbb{P}(0.73 \le \hat{p} \le 0.77) \approx 0.8599$

- Interpretation: If we run the experiment a very large number of times each time taking n=1000 samples from a large population with p=0.75, then
 - Approximately 86% of the time, we will get an estimate \hat{p} that falls within 0.02 of the true value of p.
- To summarize: We approximated the sampling distribution, with a normal distribution (using the CLT), and used the normal distribution to estimate how frequently \hat{p} that falls within 0.02 of the true p
- Finally, recall that applying the CLT requires
 - The samples to be *independent*: reasonable assumption if they are randomly assigned to control/ treatment groups, or if they are drawn randomly from a large population.
 - The success/failure condition to hold: $np \ge 10$ and $n(1-p) \ge 10$

Using the CLT in Practice

- In the real world, we don't have access to p, only to \hat{p} . We still would like to understand how well \hat{p} approximates p.
- To use the CLT, we have to check the success/failure condition, and the independence condition.
- Not knowing p, has no effect on whether our sample is independent.
- For the S/F condition, simply replace p by \hat{p} , so just check that $n\hat{p} \ge 10$ and $n(1-\hat{p}) \ge 10$.
- Similarly, to estimate $SE_{\hat{p}}$, we can simply replace p by \hat{p} to get

$$SE_{\hat{p}} \approx \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Using the CLT in Practice

- Example: Suppose you randomly sample n=1000 people, and find that 761 of them support candidate A.
- Calculate \hat{p} and $SE_{\hat{p}}$
- Answer:

$$\hat{p} = \frac{761}{1000} = 0.761$$

•
$$SE_{\hat{p}} \approx \sqrt{\frac{0.761(1 - 0.761)}{1000}} = 0.0135$$

• Remark: If the true value of p was 0.75 as in our previous example, then $SE_{\hat{p}}=0.0137$, as calculated before. This is quite close to our estimate of 0.0135 obtained using 0.761 instead of 0.75.