

© Country Life Expectancy

under supervision of:

Prof/Amira Yassin Eng/Fatma Kamal

Understanding Life Expectancy 📺

Problem statement

Life expectancy is a vital measure of a nation's healthcare effectiveness. However, it varies widely due to complex economic and environmental factors Countries. So, understanding the key contributors to live expectancy can help policymakers develop focused strategies to enhance public health outcomes.

Objective

Predict Life Expectancy (Years) for nations using machine learning to uncover complex relationships between health, economic, demographic, and behavioral factors.

Key Features

Health indicators (e.g., vaccination coverage, mortality rates, HIV/AIDS prevalence), Economic metrics (e.g., GDP, health expenditure), Demographic data (e.g., total population, thinness percentage), Behavioral factors (e.g., alcohol consumption rate).

OUR PROCESS

OUR PROCESS

Data overview Reading & knowing size and features

Schema To understand the data

	_
Unnamed: 0	An index or unique identifier for the rows in the dataset, often auto-generated.
Nation	The name of the nation or country corresponding to the data entry.
Survey_Year	The year when the survey or data collection occurred.
Country_Category	The economic or regional classification of the country (e.g., 'Developing', 'Developed').
Mortality_Adults	The adult mortality rate per 1000 adults aged 15-60.
Infant_Deaths_Count	The total number of infant (children under 1 year) deaths per year.
Alcohol_Consumption_Rate	The per capita alcohol consumption rate in liters per year.
Expenditure_Percentage_GDP	The percentage of the Gross Domestic Product (GDP) spent on health.
Hepatitis_B_Vaccination_Coverage	The percentage of the population vaccinated against Hepatitis B (التهاب الكبد B).
Measles_Infection_Count	The total number of reported measles cases (الحصبة).
Body_Mass_Index_Avg	The average body mass index (BMI) of the population.
Polio_Vaccination_Coverage	The percentage of the population vaccinated against Polio (تطعيم شلل الاطفال).
Total_Health_Expenditure	The total health expenditure per capita (in USD).
Diphtheria_Vaccination_Coverage	The percentage of the population vaccinated against Diphtheria (الديفيتريا).
HIV_AIDS_Prevalence_Rate	The prevalence rate of HIV/AIDS in the population as a percentage (الايدز).
Gross_Domestic_Product	The Gross Domestic Product (GDP) per capita (in USD).
Total_Population	The total population of the country.
Thinness	The percentage of the population classified as thin (low BMI).
Life_Expectancy_Years	The average number of years a person is expected to live.

01

Data Overview

Using info to look through the data

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2938 entries, 0 to 2937
Data columns (total 19 columns):
    Column
                                      Non-Null Count Dtvpe
    Unnamed: 0
                                      2938 non-null
                                                      int64
    Nation
                                      2937 non-null
                                                      object
    Survey Year
                                      2936 non-null
                                                      float64
    Country Category
                                                      object
                                      2935 non-null
    Mortality Adults
                                      2925 non-null
                                                      float64
    Infant Deaths Count
                                      2938 non-null
                                                      int64
    Alcohol Consumption Rate
                                      2744 non-null
                                                      float64
    Expenditure_Percentage_GDP
                                                      float64
                                      2938 non-null
    Hepatitis_B_Vaccination_Coverage 2385 non-null
                                                      float64
    Measles_Infection_Count
                                      2936 non-null
                                                      float64
 10 Body Mass Index Avg
                                      2904 non-null
                                                      float64
 11 Polio Vaccination Coverage
                                      2919 non-null
                                                      float64
 12 Total Health Expenditure
                                      2711 non-null
                                                      float64
 13 Diphtheria Vaccination Coverage
                                                      float64
                                      2919 non-null
 14 HIV AIDS Prevalence Rate
                                      2938 non-null
                                                      float64
 15 Gross_Domestic_Product
                                      2490 non-null
                                                      float64
 16 Total_Population
                                      2286 non-null
                                                      float64
 17 Thinness
                                      2904 non-null
                                                      float64
18 Life_Expectancy_Years
                                      2928 non-null
                                                      float64
dtypes: float64(15), int64(2), object(2)
memory usage: 436.2+ KB
```

01

Data Overview 🗆

Describe to get statistics about the data

	Unnamed: 0	Survey_Year	Mortality_Adults	Infant_Deaths_Count	Alcohol_Consumption_Rate	Expenditure_Percentage_GDP	Hepatitis_B_Vaccination_Coverage	Mea
count	2938.000000	2936.00000	2925.000000	2938.000000	2744.000000	2938.000000	2385.000000	
mean	1468.500000	2007.52282	164.865299	30.303948	4.602861	738.251295	80.940461	
std	848.271871	4.61257	124.316868	117.926501	4.052413	1987.914858	25.070016	
min	0.000000	2000.00000	1.000000	0.000000	0.010000	0.000000	1.000000	
25%	734.250000	2004.00000	74.000000	0.000000	0.877500	4.685343	77.000000	,
50%	1468.500000	2008.00000	144.000000	3.000000	3.755000	64.912906	92.000000	
75%	2202.750000	2012.00000	228.000000	22.000000	7.702500	441.534144	97.000000	
max	2937.000000	2015.00000	723.000000	1800.000000	17.870000	19479.911610	99.000000	

01

Data Overview -

Shape (2938,19)

Some of the data are Categorical Nation and Country Category and other are numerical so make two lists to define them

Finally we spitted the data into train and test set

Data exploration Detecting missing values & skewness

outliers

Inspect the data for:

missing values
Outliers
Duplicates
Skewness

Missing values

There are missing values
With different ranges
In the dataset

train_set.isna().sum()	
Nation	1
Survey_Year	0
Country_Category	3
Mortality_Adults	9
Infant_Deaths_Count	0
Alcohol_Consumption_Rate	150
Expenditure_Percentage_GDP	0
Hepatitis_B_Vaccination_Coverage	449
Measles_Infection_Count	2
Body_Mass_Index_Avg	26
Polio_Vaccination_Coverage	14
Total_Health_Expenditure	178
Diphtheria_Vaccination_Coverage	14
HIV_AIDS_Prevalence_Rate	0
Gross_Domestic_Product	354
Total_Population	521
Thinness	26
Life_Expectancy_Years	7
dtype: int64	

Outliers

Using Boxplot there are a lot of outliers appear in each column

Skewness

Using Histogram, there skewness in the data some to the left other to the right

Data Exploration conclusion

- •Unnamed Column: It is useless, so we dropped it.
- •Data Types: Defined the train_set into categorical and numerical types.
- •Duplicates: There are no duplicate entries in the train_set.
- •Missing Values: Most columns have a small number of missing values, but:
 - •Gross Domestic Product: 15.25% missing
 - •Total Population: 22.19% missing
 - •Hepatitis B Vaccination Coverage: 18.82% missing
 - •Total Health Expenditure: 7.73% missing
 - Alcohol Consumption Rate: 6.60% missing
- •Skewness: Many columns exhibit skewness, which should be handled appropriately.
- •Outliers: Detected many outliers through boxplots. These should be removed or handled.
- •Scaling: The train_set has varying ranges, so it needs to be scaled.

Data preprocessing Cleaning and transform the data

preprocessing data through:

Handling wrong values
Replacing missing values
Handling outliers
Handling skewness

Handling wrong values

Some percentage column have wrong values that are beyond 100 so we replaced it by Nan

1
0
3
9
0
150
0
449
2
26
14
178
14
0
354
521
26
7

Handling wrong values

The Expenditure_percentage_GDP has Almost half of the values Non values So we dropped it

Nation	0.042553
Survey_Year	0.000000
Country_Category	0.127660
Mortality_Adults	0.382979
Infant_Deaths_Count	0.000000
Alcohol_Consumption_Rate	6.382979
Expenditure_Percentage_GDP	44.680851
Hepatitis_B_Vaccination_Coverage	19.106383
Measles_Infection_Count	0.085106
Body_Mass_Index_Avg	1.106383
Polio_Vaccination_Coverage	0.595745
Total_Health_Expenditure	7.574468
Diphtheria_Vaccination_Coverage	0.595745
HIV_AIDS_Prevalence_Rate	0.000000
Gross_Domestic_Product	15.063830
Total_Population	22.170213
Thinness	1.106383
Life_Expectancy_Years	0.297872
dtype: float64	

Replacing missing values

- Filled the missing values using pandas fillna with median
- We dropped the row with missing value in nation
- In country category there were some countries that hasn't been provided searched in the internet and filled it

Nation	0
Survey_Year	0
Country_Category	0
Mortality_Adults	0
Infant_Deaths_Count	0
Alcohol_Consumption_Rate	0
Hepatitis_B_Vaccination_Coverage	0
Measles_Infection_Count	0
Body_Mass_Index_Avg	0
Polio_Vaccination_Coverage	0
Total_Health_Expenditure	0
Diphtheria_Vaccination_Coverage	0
HIV_AIDS_Prevalence_Rate	0
Gross_Domestic_Product	0
Total_Population	0
Thinness	0
Life_Expectancy_Years	0
dtype: int64	

Handling outliers

- We used clip() func to remove data that is over first and third quartile
- Then we use sns.boxplot() for visualization

Handling skewness

When we handle skewing, we must take care of positive skewness and negative skewness

Positive skewness

We have tested 4 transformers to decide which will have best result to solve positive skewness which is :

Yeo-Johnson

	Mortality_Adults	Infant_Deaths_Count	${\bf Alcohol_Consumption_Rate}$	Measles_Infection_Count	HIV_AIDS_Prevalence_Rate	Gross_Domestic_Product	Total_Population	Thinness
Log	-1.221521	0.323474	-0.327322	0.179176	1.094774	-0.704610	-1.303018	0.029753
Square Root	-0.073241	0.686234	-0.150476	0.838711	1.044908	0.608273	0.651534	0.382103
Yeo-Johnson	-0.116153	0.128084	-0.086623	0.088557	0.775877	-0.070137	-0.121003	0.005102
Quantile	1.294335	0.000955	-1.660091	0.152245	0.791542	1.423249	1.401660	0.881403
Original	0.773016	1.264455	0.629462	1.185867	1.204355	1.167220	1.200303	1.096385

Negative skewness

We have tested 6 transformers to decide which will have best result to solve negative skewness which is :

Square

	$He patitis_B_Vaccination_Coverage$	Polio_Vaccination_Coverage	Diphtheria_Vaccination_Coverage
Exponential	2.551724	1.890686	1.960884
Square	-0.995997	-1.039938	-1.056863
Cube	-0.861488	-0.846765	-0.858272
Reciprocal	1.366001	1.710508	1.724131
Log	-1.248873	-1.480947	-1.500760
quantile	-0.199443	0.143486	0.070557
Original	-1.126357	-1.255547	-1.275907

Handling skewness Result

After positive and negative skewness

Data analysis & visualization **Understanding** relations between

features

Data visulaization

Analysis and Visualization:

- Data over years
- Sum Mortality Adults over the Years
- Developed vs Developing
- Correlation and multivariable analysis

Data visulaization

Data average over years

Data visulaization

Sum Mortality Adults over the Years

Data visulaization

Developed vs Developing

Comparing by count of country_category

Data visulaization

Developed vs Developing

Mean of Alcohol Consumption Rate by Country Category

Data visulaization

Correlation and multivariable analysis

Correlation matrix to visualize correlation between columns and each other

Mortality_Adults -	1	0.4	-0.2	-0.19	0.22	-0.4	-0.36	-0.13	-0.35	0.61	-0.35	0.079	0.35	-0.71
Infant_Deaths_Count -	0.4	1	-0.31	-0.3	0.58	-0.45	-0.43	-0.15	-0.42		-0.36		0.43	-0.57
	-0.2	-0.31	1	0.14	-0.19		0.26		0.26	-0.18			-0.42	0.38
accination_Coverage -	-0.19	-0.3	0.14	1	-0.21	0.15	0.51	0.059	0.54	-0.2	0.17	-0.13	-0.12	0.25
sles_Infection_Count -	0.22	0.58	-0.19	-0.21	1	-0.32	-0.32	-0.16	-0.32	0.24	-0.2	0.26		-0.35
ody_Mass_Index_Avg -	-0.4	-0.45		0.15	-0.32	1				-0.48		-0.062	-0.56	0.56
accination_Coverage -	-0.36	-0.43	0.26	0.51	-0.32		1	0.16	0.85	-0.47		-0.1	-0.28	0.56
_Health_Expenditure -	-0.13	-0.15			-0.16	0.22	0.16	1	0.17	-0.11	0.14	-0.044	-0.28	0.22
accination_Coverage -	-0.35	-0.42	0.26	0.54	-0.32		0.85	0.17	1	-0.46		-0.093	-0.29	0.56
IDS_Prevalence_Rate -	0.61		-0.18	-0.2		-0.48	-0.47	-0.11	-0.46	1	-0.34		0.38	-0.79
ss_Domestic_Product -	-0.35	-0.36			-0.2			0.14		-0.34	1	-0.046	-0.34	0.53
Total_Population -				-0.13	0.26	-0.062	-0.1	-0.044	-0.093		-0.046	1		-0.091
Thinness -			-0.42	-0.12		-0.56	-0.28	-0.28	-0.29		-0.34		1	-0.51
fe_Expectancy_Years -	-0.71	-0.57	0.38		-0.35	0.56	0.56		0.56	-0.79	0.53	-0.091	-0.51	1
	-Adults -	- Count	n_Rate -	verage -	Count -	ex_Avg -	verage -	nditure -	verage -	e_Rate -	Product -	oulation -	hinness -	y_Years -

04 Data visulaization

Correlation and multivariable analysis

Using scatterplot to show if there is any pattern in features with target column

Feature improvement

Encoding categorical and scaling the data

Feature improvment

Improving features:

- Converting categorial into numerical
 - Scaling data

Feature improvment

Converting categorial into numerical

Using label encoder to replace categorial data with numerical

```
from sklearn.preprocessing import StandardScaler, LabelEncoder
le = LabelEncoder()
cat_cols = train_set.select_dtypes(include = 'object').columns
for cols in cat_cols:
    train_set[cols] = le.fit_transform(train_set[cols])
```

Feature improvment

Scaling data

Using StandardScalar() to scale data

	Nation	Survey_Year	Country_Category	Mortality_Adults	Infant_Deaths_Count	Alcohol_Consumption_Rate	Hepatitis_B_Vaccination_Coverage	Measles_Infection_Count	Body_Mass_Index_Avg	Polio_Vaccination_Coverage
456	-0.371770	0.120589		-0.882069	-1.207603	1.036716	0.366584	-1.138337	0.986362	0.857934
462	0.357794	-1.170885		0.723701	1.450872	-1.227000	0.366584	1.283716	-1.206391	-0.209686
2172	-1.666745	0.120589		1.523380	1.450872	0.799704	-1.605286	0.969293	-0.969473	-1.395884
2667	-1.028377	1.196817		-0.421840	-0.603821	-0.001250	0.564677	-1.138337	1.006525	0.615331
381	-0.244096	1.412063		-0.896061	-0.282802	0.884792	0.665321	-1.138337	1.238402	0.615331

Models training Train 10 different models

05 Models training

We start with training 10 models which are:

- Random Forest regressor
- Extra Tree regressor
- Gradientboost regressor
- XGB regressor
- Linear regression
- Polynomial regression (1 to 5) degree

Models Evaluation Choosing the best model

06

Compare between models Performance on the training And cross Validation

Training

	Model	RMSE	R2 Score
0	Random Forest	7.280226e-01	0.994084
1	Extra Trees Regressor	1.337159e-04	1.000000
2	GradientBoost Regressor	2.002980e+00	0.955222
3	XGB Regressor	2.379262e-01	0.999368
4	Linear Regression	4.202001e+00	0.802928
5	Polynomial Regression (Degree 1)	4.202001e+00	0.802928
6	Polynomial Regression (Degree 2)	2.707620e+00	0.918175
7	Polynomial Regression (Degree 3)	1.622808e+00	0.970607
8	Polynomial Regression (Degree 4)	4.919876e-13	1.000000
9	Polynomial Regression (Degree 5)	1.898513e-13	1.000000

Mean RMSE	Mean R2 Score
2.080178	0.951072
1.918487	0.958538
2.466475	0.931106
2.059091	0.952201
4.233687	0.798767
4.233687	0.798767
2.947941	0.901861
5.146466	0.692076
28.562343	-12.356042
12.580725	-1.363345

Cross Val

Models Evaluation =

Validation Training

Models Evaluation =

From the evaluation:
some models show a high performance on both
Training and Validation

Random Forest XGBoost

Which we can choose between them

Models Evaluation

From the evaluation:
Other models perform bad on both the sets
Linear Regression
indication for Underfitting

Others perform very well on the training but performance Decrees on the validation Higher order polynomials

Random Forest

Would be the Chosen model as it is the less shown overfitting

Pipeline **ALL IN ONE**

07 Pipeline

Compress all the preprocessing, Cleaning, Transformation, Scaling, encoding, modeling and Predicting in one function

Takes row data as input and return prediction in one shot

07 Pipeline

Hyperparameter, Finetuning

Trying to finetune the performance

O8 Hyperparameter finetuning

Using grid search we tried manually to set a

combination of parameters

We fitted 5 folds for each 1920 Candidates which is overall number of Fits equal to 9400 fit

Unfortunately, the RMSE still the same

```
param_grid = {
    'model__n_estimators': [100, 200, 300],
    'model__max_depth': [None, 10, 20, 30],
    'model__min_samples_split': [2, 5, 10],
    'model__min_samples_leaf': [1, 2, 4],
    'model__max_features': ['auto', 'sqrt',
    'model__bootstrap': [True, False]
}
```


09 Test Set

As we have a pipeline, we passed the test set to it And it gives us the predictions directly

R2 Score 0.95

RMSE 2.14

Model Deployment Lunch the model into production

O8 Saving & Deployment

We saved the model using pickle module And then deployed it using Streamlit

We created a website for the naïve user to enter the raw data and get the prediction

THANKS

Ahmed Mostafa Gamal Eldein