

### Predição de morte em pacientes de UTIs a partir de modelo de Machine Learning

Aprendizado de Máquina aplicado a Sinais e Imagens Médicas

Carlos Alberto Pessin de Souza



### **CONTEXTO E RELEVÂNCIA**

- Avaliação de risco e predição de prognóstico de pacientes de UTIs
- Decisão clínica por intervenção
- Priorização orientada de recursos

### **TÉCNICAS VIGENTES**

- Tradicionalmente baseadas em técnicas estatísticas
- APACHE (Acute Physiology and Chronic Health Evaluation)
  - Sistema de Score calculado a partir de 14 variáveis fisiológicas e históricas coletadas nas primeiras 24 horas após internação
  - Regressão logística
  - Cálculo relativamente simples
- Desempenho AUC-ROC (Badawi et al., 2018)
  - APACHE IV 0,85
  - SOFA (Sequential Organ Failure Assessment) 0,81
  - DRS (Discharge Readiness Score) 0,88

### **APACHE**

### Introdução

### **APACHE II SCORE**

### AGE Points ≤ 44y 0 45-54y 2 55-64y 3 65-74y 5 ≥75y 6

| CHRONIC HEALTH Points                                       |       |  |  |  |  |  |
|-------------------------------------------------------------|-------|--|--|--|--|--|
| Non-operative, or emergency post-op & any conditions below* | 5     |  |  |  |  |  |
| Elective operation & any conditions below*                  |       |  |  |  |  |  |
| *Cirrhoeis w/ portal Hypertensia                            | on or |  |  |  |  |  |

\*Cirrhosis w/ portal Hypertension or encephalopathy; class IV angina, chronic hypoxia, TCO2 or polycytemia; chronic dialysis; immunocompromised

### TOTAL APACHE SCORE = AP + CHP + APS

Sum Age Points (AP) + Chronic Health Points (CHP) + Acute Physiologic Score (APS) points.



\*1 Sum all variables 1-12 for Acute Physiologic Score (APS) (use one variable each for 5 and 9).

Use the worst value from the preceding 24h.

APACHE II: a severity of disease classification system.
Crit Care Med 1985;13:818-29.

|    | the preceding 24n. Chi care wed 1965, 15.616-29.                                              |       |           |           |           |            |             |         |             |        |
|----|-----------------------------------------------------------------------------------------------|-------|-----------|-----------|-----------|------------|-------------|---------|-------------|--------|
| AC | ACUTE PHYSIOLOGIC SCORE*1 (APS)                                                               |       |           |           |           |            |             |         |             |        |
|    | Physiologic Points                                                                            |       |           |           |           |            |             |         |             |        |
| Va | riable                                                                                        | 4     | 3         | 2         | 1         | 0          | 1           | 2       | 3           | 4      |
| 1  | Temp °F                                                                                       | ≤85.9 | 86.0-89.5 | 89.6-93.1 | 93.2-96.7 | 96.8-101.2 | 101.3-102.1 |         | 102.2-105.7 | ≥105.8 |
|    | °C                                                                                            | ≤29.9 | 30-31.9   | 32-33.9   | 34-35.9   | 36 - 38.4  | 38.5-38.9   |         | 39-40.9     | ≥41    |
| 2  | HR, bpm                                                                                       | ≤39   | 40-54     | 55-69     |           | 70-109     |             | 110-139 | 140-179     | ≥180   |
| 3  | MAP, mmHg                                                                                     | ≤49   |           | 50-69     |           | 70-109     |             | 110-129 | 130-159     | ≥160   |
| 4  | RR, bpm                                                                                       | ≤5    |           | 6-9       | 10-11     | 12-24      | 25-34       |         | 35-49       | ≥50    |
| 5  | 5 Oxygenation: Use A-a Gradient (5a) if FiO₂ ≥0.5 or use PaO₂ (5b) if FiO₂ <0.5 (see page 17) |       |           |           |           |            |             |         |             |        |
| 5a | A-a Gradient                                                                                  |       |           |           |           | <200       |             | 200-349 | 350-499     | ≥500   |
| 5b | PaO <sub>2</sub>                                                                              | ≤54   | 55-60     |           | 61-70     | >70        |             |         |             |        |
| 6  | Na+ (S, mmo/L)                                                                                | ≤110  | 111-119   | 120-129   |           | 130-139    | 150-154     | 155-159 | 160-179     | ≥180   |
| 7  | K+ (S, mmo/L)                                                                                 | ≤2.4  |           | 2.5-2.9   | 3.0-3.4   | 3.5-5.4    | 5.5-5.9     |         | 6.0-6.9     | ≥7.0   |
| 8  | Cr (S, mg/dL)                                                                                 |       |           | <0.6      |           | 0.6-1.4    |             | 1.5-1.9 | 2.0-3.4     | ≥3.5   |
| 9  | 9 Arterial pH is preferred. Use venous HCO3 if no ABGs.                                       |       |           |           |           |            |             |         |             |        |
| 9a | pH (arterial)                                                                                 | ≤7.14 | 7.15-7.24 | 7.25-7.32 |           | 7.33-7.49  | 7.5-7.59    |         | 7.6-7.69    | ≥7.7   |
| 9b | HCO <sub>3</sub> (venous)                                                                     | ≤14   | 15-17.9   | 18-21.9   |           | 22-31.9    | 32-40.9     |         | 41-51.9     | ≥52    |
| 10 | WBC, cells/uL                                                                                 | ≤1.0  |           | 1.0-2.9   |           | 3.0-14.9   | 15-19.9     | 20-39.9 |             | ≥40    |
| 11 | Hct, %                                                                                        | ≤20   |           | 20-29.9   |           | 30-45.9    | 46-49.9     | 50-59.9 |             | ≥60    |
| 12 | 2 GCS coma Score = 15 - GCS Score (see below, Record e.g.: "GCS 9 = E2 V4 M3 at 17:35h".)     |       |           |           |           |            |             |         |             |        |

| Score   | Mortality |
|---------|-----------|
| 0 - 4   | 4%        |
| 5 - 9   | 4%        |
| 10 - 14 | 15%       |
| 15 - 19 | 25%       |
| 20 - 24 | 40%       |
| 25 - 29 | 55%       |
| 30 - 34 | 75%       |
| > 34    | 85%       |

| <b>GLASGOW COMA SCALE (GCS)</b> |                     | *Teasdale G, Jennett B. Lancet 1974,2:81-84 |        |                            |  |
|---------------------------------|---------------------|---------------------------------------------|--------|----------------------------|--|
| EYE Opening                     | Best VERBAL         | Best MOTOR                                  | Points |                            |  |
|                                 |                     | follows commands                            | 6      | SCORE:                     |  |
|                                 | oriented            | localizes pain                              | 5      | Sum Points (eye+verbal+    |  |
| spontaneous                     | confused            | withdraws to pain                           | 4      | motor categ).              |  |
| to command                      | inappropriate words | flexor response                             | 3      | 0                          |  |
| to painful stimuli              | incomprehensible    | extension (abnl)                            | 2      | Severe ≤ 8.<br>Mod = 9-12. |  |
| no response                     | no response         | no response                                 | 1      | Minor ≥ 13.                |  |

### APLICAÇÃO DE IA

- Informatização de dados médicos
- Aumento da capacidade de processamento
- Desenvolvimento de técnicas de IA
- Desafio WiDS (Women in Data Science) 2020 Universidade de Stanford
  - Equipe vencedora
    - Classificador híbrido AUC 0,915
    - APACHE IV AUC 0,868

### **OBJETIVO**

- Desenvolvimento de um classificador baseado em técnicas de Machine Learning supervisionado para predição de morte em pacientes de UTI's a partir de múltiplas variáveis
- Consolidação da possibilidade de desenvolvimento de um modelo prático baseado em IA que possa ser mais eficiente do que as técnicas atualmente empregadas

### **BANCO DE DADOS**

- WiDS 2020
  - Global Open Source Severity of Illness Score (GOSSIS) Massachusetts Institute of Technology (MIT)
- 91.713 pacientes
  - 83.781 sobreviveram (91,4%)
  - 7.907 morreram (8,6%)
- 147 UTIs
- 185 características para cada paciente

### **BANCO DE DADOS**

| Tipo de dado            | Exemplos                                                          | Quantidade |
|-------------------------|-------------------------------------------------------------------|------------|
| Demográficos            | Idade, gênero, altura, status pré internação,<br>entre outros     | 16         |
| Exames<br>laboratoriais | Concentração de hemoglobinas, sódio no sangue, entre outros       | 76         |
| Vitais                  | Temperatura, pressão arterial, batimentos cardíacos, entre outros | 52         |
| Índices de risco        | APACHE                                                            | 41         |

### IMPUTAÇÃO DE DADOS

- Valores vazios no banco de dados
  - Não podem ser entrada no classificador
- 1. Remoção de características e padrões com mais de 20% de informações faltantes
  - Redução de erro de imputação
  - 46% das características removidas (100 restantes)
  - 8% dos pacientes removidos (84.716 restantes)

### IMPUTAÇÃO DE DADOS

- 2. Imputação variáveis categóricas
  - Vazio como nova categoria
- 3. Imputação variáveis numéricas
  - Valor gerado aleatoriamente a partir de distribuição normal de outros valores da característica
  - Intervalo de CDF 0,4 a 0,6

### REMOÇÃO DE OUTLIERS

- Redução de interferência de valores muito externos
- 1. Intervalo média +/- 15 desvios-padrão
  - <1% de pacientes removidos</p>

### SEPARAÇÃO TREINO E TESTE

- Para avaliação da capacidade de generalização do modelo a dados não vistos na fase de aprendizagem
- Dados de teste passam pelas mesmas operações definidas com os dados de treino
- 1. Recorte aleatório mantendo proporção entre classes
  - 90% treino 10% teste

### NORMALIZAÇÃO LINEAR

- Ordem de grandeza das variáveis pode interferir na avaliação do modelo
- 1. Todas características dos dados de treino com média O e desvio padrão 1
  - Dados de teste passam por mesma operação

### REMOÇÃO DE OUTLIERS DE TREINO

- Redução de interferência de valores externos
- 1. Intervalo média +/- 10 desvios-padrão
  - 1,5% de pacientes removidos

### **DESBALANÇO ENTRE CLASSES**

- 8,6% pacientes morreram vs. 91,4% pacientes sobreviveram
- Risco de desequilíbrio da superfície de decisão gerando classificador "viciado" em classificar pacientes como sobreviventes
- 1. Subamostragem aleatória de 10% de pacientes da classe de pacientes sobreviventes
  - Redução brusca do número de dados
  - Pacientes que morreram passaram a representar pouco menos de 50%

### TRANSFORMAÇÃO DO ESPAÇO

### **PCA**

- 1. Transformação linear do espaço de características utilizando matriz de transformação que diagonaliza matriz de covariância
- Novas componentes possuem mínima correlação linear
- Nova matriz de covariância quantifica a variância que cada componente empresta ao conjunto geral
- Componentes de menor variância podem ser interpretadas como ruído e removidas
- 2. Remoção de 45 componentes
  - <5% de variância removida</p>

### TRANSFORMAÇÃO DO ESPAÇO

### **ICA**

- The Cocktail Party Problem
- Assume que atuais componentes são uma combinação de fontes completamente independentes



### TRANSFORMAÇÃO DO ESPAÇO

### ICA

- Estratégia derivada do Teorema do Limite Central
  - Soma de sinais independentes gera uma gaussiana
  - Gaussianidade
     Independência
  - FastICA busca iterativamente uma matriz de transformação linear que maximiza critérios de não-gaussianidade das fontes (negentropia)
- 1. Transformação linear do espaço de características
  - Construção de um espaço de mesmas dimensões cujas componentes possuem mínima correlação

### SELEÇÃO DE CARACTERÍSTICAS

### **RANDOM FOREST**

- Dentro das características restantes, é legítimo assumir que nem todas são relevantes para este processo de classificação
- Como quantificar?
  - Parâmetro feature importance Random Forest
- 1. Remoção das 15 características menos relevantes
- Criação de um espaço reduzido
  - Diminuição da complexidade da tarefa de classificação
  - Favorecimento do foco do classificador nas características mais relevantes

 Algoritmo responsável pela criação de uma regra/superfície de decisão que se adapte aos dados de treino disponíveis e que seja capaz de receber um novo padrão e classificá-lo

### **RANDOM FOREST**

- Criação de uma série de árvores de decisão, utilizando características e padrões diferentes, selecionados aleatoriamente
- A classificação é definida pela classe que mais vezes foi resultado da classificação em cada uma das árvores
- Maior capacidade de generalização da classificação
  - Menor chance de sobreajuste
- Modelo final construído com 1000 árvores

### **RANDOM FOREST** Root Node Age Sub Tree >30 **418** 18-30 Decision Node Smoker Low Risk Weight yes 20 >60 460 High Risk Low Risk High Risk Low Risk Understanding the risks to prevent a heart attack.

Leaf Nodes

**RANDOM FOREST** 



### SVM

- Construção de superfície de decisão que maximiza a distância entre padrões específicos (vetores de suporte do modelo) e este hiperplano
- Costuma ser eficiente em problemas de alta dimensionalidade, apesar de sua relativa baixa complexidade
- 1. Foram testados diferentes kernels não-lineares
  - a. Rbf
  - b. Polinomial (de segundo a quinto grau)
  - c. Sigmóide

### HÍBRIDO

- Consiste na combinação de diferentes classificadores
- A classificação final é dada pela classe que foi mais vezes resultado de classificação de um classificador individual
- Cada classificador pode se adaptar melhor a um conjunto de padrões
  - Combiná-los pode favorecer na eficiência e generalização do modelo
- Foram combinados os modelos que estavam tendo melhor desempenho nas validações iniciais
  - Random Forest, SVM rbf e SVM polinomial de grau 4

### VALIDAÇÃO CRUZADA

### K-FOLD

- Para avaliação dos modelos, os dados de treino foram redivididos em 10 partes
  - 9 dessas partes foram destinadas a treinamento e 1 para validação
  - Cada uma das partes foi selecionada aleatoriamente,
     mantendo-se a proporção entre as classes
- Toda a etapa de treinamento (a partir da normalização) foi repetida,
   10 vezes, alternando a porção de dados utilizadas para validação

### VALIDAÇÃO CRUZADA

### **MÉTRICAS**

- Acurácia
- Sensibilidade
- Especificidade
- AUC-ROC
- A avaliação de cada modelo foi dada pela média das métricas entre as 10 repetições

### **TESTE**

- Modelo de melhor desempenho em validação foi treinado novamente com todo conjunto de treino (treino + validação)
- Testado nos dados de teste separados inicialmente
- Reavaliado, métrica final

## esultados

### PRÉ-PROCESSAMENTO

- Banco de dados original
  - 91.713 pacientes e 180 características
  - 8,6% pacientes morreram vs. 91,4% pacientes sobreviveram
- Banco de dados final
  - 19.407 pacientes e 40 características
  - 49,4% pacientes morreram vs. 50,6% pacientes sobreviveram
- Redução do espaço em quase 16 milhões de variáveis (restando aproximadamente de 4,7% do total de parâmetros)

## esultados

### PRÉ-PROCESSAMENTO

- Ajuste fino na remoção de variáveis
  - Redução da complexidade do modelo
    - Possibilidade de utilizar técnicas mais simples
    - Menor custo computacional
    - Aumento do "foco" em variáveis mais significativas
  - Redução na capacidade de aprendizagem
    - Exclusão de informação significativa para a classificação
- Alternativas para exclusão massiva
  - Técnica mais rebuscada de imputação de dados
  - Desbalanço de classes
    - Sobreamostragem da classe menos numerosa
    - Técnicas de regularização de classificador

# Resultados (Discussão

### VALIDAÇÃO

### MÉTRICAS

| Classificador  | Rando  | m Forest  | SVM – rbf |           | SVM – polinomial<br>(4° grau) |           | Híbrido |           |
|----------------|--------|-----------|-----------|-----------|-------------------------------|-----------|---------|-----------|
| Métrica        | Treino | Validação | Treino    | Validação | Treino                        | Validação | Treino  | Validação |
| Acurácia       | 88,77% | 75.39%    | 75.82%    | 77.89%    | 99.99%                        | 72.52%    | 81,25%  | 83.11%    |
| Sensibilidade  | 89.42% | 79.10%    | 71.92%    | 71.74%    | 99.98%                        | 68.45%    | 70,48%  | 66.12%    |
| Especificidade | 88.15% | 75.05%    | 79.49%    | 78.46%    | 100.00%                       | 72.89%    | 91.39%  | 84.69%    |
| AUC-ROC        | 0.888  | 0.771     | 0.757     | 0.751     | 1.000                         | 0.707     | 0.809   | 0.754     |

### **TESTE**

### RANDOM FOREST

| Métrica        | Dados de teste |  |
|----------------|----------------|--|
| Acurácia       | 75,57%         |  |
| Sensibilidade  | 81,91%         |  |
| Especificidade | 74,98%         |  |
| AUC-ROC        | 0,784          |  |

## esultados

### **AVALIAÇÃO DOS RESULTADOS**

- O projeto de classificador atingiu desempenho regular na tarefa de classificação
  - 0,784 em AUC
  - o DRS: 0,88
  - APACHE: 0,868
  - Modelo IA vencedor WiDs: 0,915
- A abrupta exclusão de 95% dos dados, bem como a simplicidade das técnicas utilizadas explicam tal desempenho inferior

### **AVALIAÇÃO DOS RESULTADOS**

- Considerando a aplicação do modelo, faz-se interessante a escolha de um modelo que privilegie a sensibilidade em relação à especificidade
  - Identificar os pacientes que precisam de intervenção
- Já na ótica da priorização de recursos, o bom desempenho em especificidade pode dar segurança ao bem identificar pacientes de menor risco

### Conclusão

- A análise de risco de morte em pacientes internados em UTI's é extremamente relevante tanto para o cuidado clínico como pode ser essencial na administração de recursos
- A informatização dos dados médicos, junto com o desenvolvimento da capacidade de processamento e das técnicas de Inteligência Artificial, traz à tona o potencial de desenvolvimento de técnicas que possam ser mais eficientes e práticas para tal função
- O trabalho foi bem sucedido em desenvolver um modelo baseado em Machine Learning de classificação e, apesar de ter atingido resultados inferiores a outras técnicas, demonstra o potencial deste tipo de ferramenta

### **D**' 90 eter

Breiman, L. (2001). Random Forests. Machine Learning 45, P5-32. https://doi.org/10.1023/A:1010933404324

Carvalho, G. A., Rezende, A. A. B., Reis, G. R., & Gardenghi, G. (2020). Uso do escore APACHE IV como preditor de mortalidade e tempo de permanência em uma unidade de terapia intensiva. Revista Pesquisa em Fisioterapia 10(1), P9-15. <a href="https://doi.org/10.17267/2238-2704rpf.v10i1.2606">https://doi.org/10.17267/2238-2704rpf.v10i1.2606</a>

Clifford, G. D. (2005). Singular Value Decomposition & Independent Component Analysis for Blind Source Separation - Course materials for HST582J/6.555J/16.456J, Biomedical Signal and Image Processing. Massachusetts Institute of Technology OpenCourseWare <a href="http://ocw.mit.edu">http://ocw.mit.edu</a>

Cohen, S., Dagan, N., Cohen-Inger, N., Ofer, D., & Rokach, L. (2021). ICU Survival Prediction Incorporating Test-Time Augmentation to Improve the Accuracy of Ensemble-Based Models. IEEE Access 9, P91584-91592. https://doi.org/10.1109/ACCESS.2021.3091622

Emanuel, E. J., Persad, G., Upshur, R., Thome, B., Parker, M., Glickman, A., Zhang, C., Boyle, C., Smith, M., & Phillips, J. P. (2020). Fair Allocation of Scarce Medical Resources in the Time of Covid-19. New England Journal of Medicine 382(21), P2O49-2O55. <a href="https://doi.org/10.1056/NEJMsb2005114">https://doi.org/10.1056/NEJMsb2005114</a>

Freitas, E. R. F. S. (2010). Perfil e gravidade dos pacientes das unidades de terapia intensiva: aplicação prospectiva do escore APACHE II. Rev. Latino-Am. Enfermagem 18(3), P317-323. <a href="https://doi.org/10.1590/S0104-11692010000300004">https://doi.org/10.1590/S0104-11692010000300004</a>

Jentzer, J. C., Diepen, S. D., Murphree, D. H., Ismail, A. S., Keegan, M. T., Morrow, D. A., Barsness, G. W., & Anavekar, N. S. (2020). Admission diagnosis and mortality risk prediction in a contemporary cardiac intensive care unit population. <u>American Heart Journal</u> 224, P57-64. <a href="https://doi.org/10.1016/j.ahj.2020.02.018">https://doi.org/10.1016/j.ahj.2020.02.018</a>

Pisner, D. A., & Schnyer, D. M. (2020). Chapter 6 - Support vector machine. Machine Learning - Methods and Applications to Brain Disorders. P101-121. https://doi.org/10.1016/B978-0-12-815739-8.00006-7.

Zimmerman, J. E., Kramer, A. A., McNair, D. S., & Malila, F. M. (2006). Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today's critically ill patients. Crit Care Med. 34(5), P1297-1310. https://doi.org/10.1097/01.ccm.0000215112.84523.f0