___ Higher Institute of Technological Studies of Bizerte

AY: 2022-2023 Midterm Exam | AI-ECUE221 13/04/23 (09:00→10:00) M1-S2: Dept. of Electrical Engineering Teacher: A. Mhamdi Time Limit: 1h

This document contains 6 pages numbered from 1/6 to 6/6. As soon as it is handed over to you, make sure that it is complete. The 3 tasks are independent and can be treated in the order that suits you.

The following rules apply:

- **1** No document is allowed in the examination room.
- **2** Any electronic material, except basic calculator, is prohibited.
- **8 Round results** to the nearest thousandth (i.e., third digit after the decimal point).
- Mysterious or unsupported answers will not receive full credit.
- **6 Label all relevant aspects** of the graph, if you are asked to draw one.
- **6** Hand in your answer sheets at the end of the exam.
- **Task №3 consists of MCQs** (Multiple Choice Questions). Each correct answer will grant a mark with no negative scoring.

Task Nº1

25mn | (7 points)

Consider the following matrix of features X and the corresponding target vector y:

$$\mathbf{X} = \begin{bmatrix} 0.25 & 1 \\ 3 & -1 \\ 2 & -0.5 \\ 1 & 0.5 \end{bmatrix} \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} 1.075 \\ -1.05 \\ -0.425 \\ 0.525 \end{bmatrix}$$

We suppose that y is linearly dependent on features in X to which we need to add a bias.

Using the **stochastic gradient descent** algorithm (**SGD**), determine the parameter vector $\boldsymbol{\theta}$ which maps X to y. The initial value of $\boldsymbol{\theta}$ is $\begin{bmatrix} 0.1 & 0 & -0.1 \end{bmatrix}^T$. The learning rate is set at 0.1. Reproduce and fill in the following table on your paper.

k	1	2	3	4
$h_{\theta}\left(x_{k}\right)$	0	0.281	-0.740	0.141
$egin{aligned} eta &= \left[egin{array}{c} heta_1 \ heta_2 \ heta_3 \end{array} ight] \end{aligned}$	0.208 0.027 0.007	$ \begin{bmatrix} 0.0744 \\ -0.372 \\ 0.140 \end{bmatrix} $	0.106 -0.31 0.125	$ \begin{bmatrix} 0.172 \\ -0.243 \\ 0.158 \end{bmatrix} $

Task Nº2

15mn | (6 points)

What will be the output of cell #5 after code showing hereafter is being executed.

[1]: using DataFrames, MLJ

[2]: Xdf = DataFrame(A=rand(-5:.2:3, 4), B=-1:2, C=rand(100:7:1000, 4))

Α В C [2]: Float64 Int64 Int64 2.2 1 -1 639 2 2.8 0 632 3 -2.0 1 345 4 2.2 2 639

[3]: describe(Xdf, :min, :max, :mean, :std)

variable min max mean std [3]: Symbol Real Real Float64 Float64 1 -2.0 2.8 1.3 2.21811 2 2 В -1 0.5 1.29099 3 С 63**9** 345 563.75 145.871

[4]: schema(Xdf)

[4]: names scitypes types

A Continuous Float64
B Count Int64
C Count Int64

[5]: sc = Standardizer(count=true)
Xsc = machine(sc, Xdf) |> fit! |> MLJ.transform

[Info: Training machine(Standardizer(features = Symbol[], ...), ...).

[5]:		A	В	C
		Float64	Float64	Float64
	1	0.405751	-1.1619	0.515868
	2	0.676252	-0.387298	0.46788
	3	-1.48775	0.387298	-1.49962
	4	0.405751	1.1619	0.515868

AY: 2022-2023 M1-S2: Dept. of Electrical Engineering Midterm Exam AI-ECUE221 13/04/23 (09:00→10:00) Teacher: A. Mhamdi	Full Name: ID: Class: Room: Time Limit:	
Answe	er Sheet	
<u>Task Nº3</u>		🖫 20mn (7 points)
(a) (½ point) How is Machine Learning	while ML is about ML. es on learning thing. abeled examples result, and there	hrough data. s to try to predict future data, the model. What is the best
 (c) (½ point) What is a well-designed/w One that has been trained One that has been trained permutations in the trainin One that has been trained ✓ One that has a high degree results 	with labeled tra with an exhaus ng data and tested with	aining data stive set of all conditions and
 (d) (½ point) Your data science team was sages. The team has gathered a didentified as spam or not spam. If your call this data set? ○ ML algorithm √ Training set 	atabase of 1000 ou are using su	000 messages that have been pervised ML, what would you

~ ~∵		
	(e)	$(\frac{1}{2}$ point) Asian user complains that your company's facial recognition model does not properly identify their facial expressions. What should you do?
		 Retrain your model with updated hyperparameter values.
		$\sqrt{}$ Include Asian faces in your training data and retrain your model.
		 Include Asian faces in your test data and retrain your model.
		 Retrain your model with smaller batch sizes.
	(f)	$\binom{1}{2}$ point) When we discuss "STATE", it is seen a categorical variable. When facing these type of variables - what step is required?
		 Including all columns
		Removing all columns.
		√ Using dummy variables.
	(g)	$\binom{1}{12}$ point) Which of the following groups are not ML techniques?
		√ Flux and MLJ
		Classification and clustering
		Anomaly detection and recommendation systems
	(h)	$\binom{\eta}{2}$ point) Why is it important for ML algorithms to have access to high-quality data?
		 It will take too long for programmers to scrub poor data.
		\bigcirc If the data is high quality, the algorithms will be easier to develop.
		$\sqrt{\ }$ If the data is low quality, you will get inaccurate results.
		 Low-quality data requires much more processing power than high- quality data.
	(i)	($^{1\!\!}_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $
		 Finding items/events that often co-occur (e.g., grocery items that are usually bought together by a customer).
		 Predicting a class/category of a case (e.g., a cell is benign or malignant, or a customer will churn or not).

Do not write anything here

acteristics).

 $\sqrt{}$ Predicting a continuous value (e.g., the price of a house based on its char-

		Do not write anything here
~		
(j) ($\frac{1}{2}$ poin	t) To predict a quantity value. use "".
		sification $\sqrt{\text{regression}}$ \bigcirc clustering \bigcirc dimensionality reduction
(k	, - .	t) Supervised learning deals with labeled data, while unsupervised learnls with labeled data. $\sqrt{\text{True}}$ \bigcirc False
(1)) ($\frac{1}{2}$ poin	t) In the context of calculus, what is $\frac{df}{dx}$?
	C	Equivalent to f divided by x
	1	The derivative of f wrt x
	C	The prediction function
	C	The derivative of x
(m)) ($\frac{1}{2}$ poin	t) Which of the below is a popular method to handle missing data in a
	given co	olumn?
	C	Replace with the standard deviation of the column.
	C	Replace with the min or max of the column.
	1	Replace with the mean of the column.
(n) ($\frac{1}{2}$ poin	t) With traditional programming, the programmer typically inputs com-
	mands.	With ML, the programmer inputs ""
	C	algorithms
	1	/ data
	C	supervised learning
	C	unsupervised learning