

Prof. André Vignatti – DINF - UFPR

NA GRÉCIA ANTIGA

Pensadores: como ganhar uma discussão?

1^a Tentativa: Argumentos Visuais

2ª Tentativa: Argumentos Lógicos:

- 1. Deus é Amor
- 2. Amor é Cego
- 3. Steve Wonder é Cego

CONCLUSÃO: Steve Wonder é Deus!

VERDADEIRO OU FALSO?

AXIOMAS E TEOREMAS

Axioma: verdade evidente, aceita sem questionamentos

Teorema: verdade deduzida logicamente através de outras verdades

Grécia Antiga: o que é "deduzir logicamente"?

LÓGICA BOOLEANA (≈1847)

Deduções Lógicas = Fazer "contas" com lógica

Álgebra Booleana:

- operadores: e, ou, não
- operandos: V, F

Exemplos:

- "2 é par" é VERDADEIRO
- "3 é par" é FALSO
- "2 é par <u>e</u> 3 é par" é FALSO
- "2 é par <u>e</u> 4 é par <u>e</u> 6 é par <u>e</u> 8 é par <u>e</u> 10 é par <u>e</u> 12 é par <u>e</u> 14 é par <u>e</u> 16 é par <u>e</u> 18 é par <u>e</u> 20 é par <u>e</u> 22 é par <u>e</u> 24 é par <u>e</u> 26 é par ..." é VERDADEIRO

Construções com fundações sólidas e boa argamassa

LÓGICA DE PREDICADOS (≈1884)

Melhora a lógica booleana:

- Variáveis
- Quantificadores ("∀", "∃")

Gottlob Frege

Exemplo: " $p(x) : x \in par$ "

- p(2) é VERDADEIRO
- *p*(3) é FALSO
- "p(x), $\forall x = 2k$ " é VERDADEIRO

TEORIA DOS CONJUNTOS (≈1870)

Georg Cantor

Estuda "coleções de objetos":

Objetos: qualquer coisa

objetos = V, F

• Intersecção: $A \cap B$

a <u>e</u> b

• União: $A \cup B$

a <u>ou</u> b

• Complemento: \overline{A}

<u>não</u> a

JUNTANDO LÓGICA E CONJUNTOS:

Vamos ver um exemplo...

PARADOXO DE RUSSELL (≈1901)

Livros autorreferentes: que contém referências a si mesmos

Christos Papadimitriou explica:

Um pouco mais formal:

"o conjunto de todos os conjuntos que não se contêm a si próprios como membros"

Em "matematiquês":

 ${A \mid A \notin A}$

PRINCIPIA MATHEMATICA (≈1912)

Após 10 anos: "Principia Mathematica":

- Reescreveu toda a base da matemática
- Objetivo: provar matematicamente qualquer coisa
- Complicado, mas bem fundamentado

Na pág. 379, a prova que 1+1=2, vejam:

```
PRINCIPIA MATHEMATICA

BY

ALFRED NORTH WHITEHEAD, Sc.D., F.R.S.
Pediew and line Lecturer of Trieity College, Cambridge

AND

BERTRAND RUSSELI, M.A., F.R.S.
Lecturer and line Fellow of Trieity College, Cambridge

VOLUME I

Cambridge

at the University Press

1910
```

```
*54·43. \vdash :: \alpha, \beta \in 1 . \supset : \alpha \cap \beta = \Lambda . \equiv . \alpha \cup \beta \in 2

Dem.

\vdash .*54·26 . \supset \vdash :: \alpha = \iota' x . \beta = \iota' y . \supset : \alpha \cup \beta \in 2 . \equiv . x \neq y .
[*51·231] \qquad \qquad \equiv .\iota' x \cap \iota' y = \Lambda .
[*13·12] \qquad \qquad \equiv .\alpha \cap \beta = \Lambda \qquad (1)
\vdash .(1) . *11·11·35 . \supset
\vdash :. (\exists x, y) . \alpha = \iota' x . \beta = \iota' y . \supset : \alpha \cup \beta \in 2 . \equiv . \alpha \cap \beta = \Lambda \qquad (2)
\vdash .(2) . *11·54 . *52·1 . \supset \vdash . \text{Prop}
From this proposition it will follow, when arithmetical addition has been defined, that 1 + 1 = 2.
```

NOVAS INDAGAÇÕES... (DÉCADA DE 1920)

Apesar do sucesso, Principia Mathematica levantou questões...

Existe um sistema lógico-formal que seja:

- 1. Consistente? (não leva a contradições)
- 2. Completo? (não permite verdades indemonstráveis)
- 3. Decidível? (existe passo-a-passo para decidir se uma verdade se segue dos axiomas ou não)

INCOMPLETUDE (≈1931)

Em 1931, aos 25 anos de idade, Kurt Gödel abalou o mundo da matemática

EM ESSÊNCIA,
O QUE PROVEI FOI
QUE A **ARITMÉTICA**, E
PORTANTO QUALQUER
SISTEMA NELA BASEADO,
É **NECESSARIAMENTE**INCOMPLETA.

Pulitzer Prize-Winner
20th-anniversary Edition With a new preface by the author

GÖDEL, ESCHER, BACH:

an Eternal Golden Braid

DOUGLAS R. HOFSTADTER

A metaphorical fugue on minds and machines in the spirit of Lewis Carroll

INCOMPLETUDE (≈1931)

A frase clássica de Von Neumann "Está tudo acabado" resume a essência da demonstração de Gödel:

Esse é John Von Neummann

 O Teorema da Incompletude significava o fim de um sonho de 2500 anos

INDECIDIBILIDADE (≈1936)

A **decidibilidade** também teve uma resposta decepcionante...

Lembrando...

A Lógica é Decidível?

Ou seja, existe um **passo-a-passo** para decidir se uma verdade **se segue** de axiomas ou não?

Em 1936, foi provado que a lógica era indecidível!

INDECIDIBILIDADE (≈1936)

O que Turing fez?

Formalizou matematicamente:

- "passo-a-passo": algoritmo
- "verdade seguir-se de axiomas": computação

Como Turing fez?

- Definiu um modelo matemático que executava algoritmos e realizava computação
- Provou que o Problema da Parada era indecidível
- O modelo ficou conhecido como Máquina de Turing

Alan Turing

LIMITES LÓGICOS: PROBLEMA DA PARADA

Dois algoritmos:

Diz se um algoritmo pára ou executa eternamente

- Eu páro?
- diz que eu **PARO** então
 - Execute para sempre Senão,
 - Pára a execução

faz o **oposto** do que inha dito que fazia

Uma contradição!

não pode existir!

É uma **limitação** da computação!

MÁQUINA DE TURING E COMPUTADORES

Legal seria a máquina abstrata se tornar concreta...

ENIAC (1946): 1° dispositivo físico a simular completamente a Máquina de Turing

Computadores não podem fazer tudo!

Mas o que eles podem fazer? E como?

TRÊS DÉCADAS DE ALGORITMOS

1940s:

- (1942) Transformada Rápida de Fourier
- (1945) Merge Sort
- (1947) Algoritmo Simplex

1950s:

- (1952) Codificação de Huffman
- (1956) Algoritmo de Kruskal
- (1957) Algoritmo de Prim
- (1959) Algoritmo de Dijkstra

1960s:

- (1962) Árvores AVL
- (1962) Quicksort
- (1962) Ford-Fulkerson
- (1964) Heapsort

ORDENAÇÃO

Algoritmo "força-bruta": n!

Algoritmo "esperto": $n \log_2 n$

n	n!	$n \log_2 n$
10	3.6 milhões	320
100	$\approx 10^{157}$	650
1000		10000
1 milhão		20 milhões

CAIXEIRO VIAJANTE

Maria: vendedora nos 48 estados dos EUA. Fazia essa rota: (total=11126 Km)

Total Distance = 11,126

Depto de Viagens: "Maria, pode fazer melhor?"

Programou para testar as soluções e pegar a melhor:

- 1 semana depois o programa não havia parado...
- ■48! possibilidades

48! é igual a

12.413.915.592.536.072.670.862.289.047.373.375.038.521.486.354.677.760.000.000.000

MORAL DA HISTÓRIA

Alguns problemas são:

·"fáceis": ordenação, ...

Têm solução esperta

•"difíceis": caixeiro viajante, ...

Pergunta "P = NP?":

informalmente é sobre "Problemas Fáceis

versus Difíceis"

COMPLEXIDADE COMPUTACIONAL — NO OESTE

Objetivo: complexidade dos algoritmos e dificuldade de problemas

1ª Tentativa: pensamento e comunicação humana

1943 – modelo de redes neurais

1950s

- Stephen Kleene autômato finito: versão limitada da máquina de Turing
- Noam Chomsky gramáticas livre de contexto: como humanos geram frases

COMPLEXIDADE COMPUTACIONAL — 1960

Pesquisa de Hartmanis e Stearns

Ideia: uso de tempo e memória por algoritmos

 "On the Computational Complexity of Algorithms": nascimento da complexidade moderna

Pesquisa de Donald Knuth

- Matemática rigorosa para analisar algoritmos
- "The Art of Computer Programming Vol 1, 2, 3, ..."

TRATABILIDADE E EFICIÊNCIA — 1960

"Paths, Trees and Flowers" - Jack Edmonds

1° algoritmo eficiente para emparelhamento

"The Dude

Discussão sobre tempo polinomial X exponencial

"Intrinsic Comp. Difficulty of Functions" — Alan Cobham

Tese de Cobham: algoritmo eficiente é de tempo polinomial

Surgimento de "P = NP?"

ENQUANTO ISSO, NO LESTE...

Guerra Fria: outra história independente...

- "Perebor" (Перебор): busca através da força bruta
- "cibernética teórica": termo para complexidade computacional
- Andrey Kolmogorov: complexidade via informação algorítmica
- Leonid Levin: orientado de Kolmogorov, desenvolveu pesquisa no problema "P versus NP"

CARTA DE GÖDEL PARA VON NEUMANN

1956: carta de Gödel para Von Neumann sobre "P = NP ?"

- Carta descoberta em 1988!
- Von Neumann morreu em 1957
- Talvez nunca foi lida por Von Neumann
- Gödel não sabia ser um problema importante

TEORIA NATURAL OU ARTIFICIAL?

Uma ideia científica vem da natureza, ou da criatividade humana?

- Como aliens se comunicariam com nós?
- Se aliens no mesmo nível intelectual dos humanos desenvolveram, então é algo natural!

Problema "P = NP?"- três fontes independentes: EUA, USSR, Carta Godel-Von Neumann