STRONGEST POST-CONDITION EXAMPLE

$$sp(F, c) \triangleq (\exists V. F \land \rho(c))[V/V']$$

Lets calculate sp(y > 0,x=y+1)

$$sp(y > 0,x:=y+1) \triangleq \exists x . \exists y . y > 0 \land \rho(x:=y+1)$$

 $\equiv \exists x . \exists y . y > 0 \land x' = y+1 \land y' = y$
 $\equiv y' > 0 \land x' = y'+1$
 $\equiv y > 0 \land x = y+1$

Alternative Formulation for Assignment Statement:

$$sp(F, \mathbf{x} := \mathbf{e}) \equiv \exists x' . F[x'/x] \land x = e[x'/x]$$

MORE EXAMPLES

 $sp(y > 0,x:=havoc) \triangleq ???$

MORE EXAMPLES

$$sp(y > 0,x:=havoc) \triangleq \exists x . \exists y . y > 0 \land y' = y [\rho(x:=havoc) \triangleq frame(x)]$$

 $\triangleq y > 0$

MORE EXAMPLES

$$sp(y > 0,x:=havoc) \triangleq \exists x . \exists y . y > 0 \land y' = y [\rho(x:=havoc) \triangleq frame(x)]$$

 $\triangleq y > 0$

 $sp(F, x:=havoc) \triangleq \exists x.F$

MORE EXAMPLES

$$sp(y > 0,x:=havoc) \triangleq \exists x . \exists y . y > 0 \land y' = y$$

 $\triangleq y > 0$

 $sp(F, assume(G)) \triangleq ???$

MORE EXAMPLES

$$sp(y > 0,x:=havoc) \triangleq \exists x . \exists y . y > 0 \land y' = y$$

 $\triangleq y > 0$

 $sp(F, assume(G)) \triangleq F \wedge G$

MORE EXAMPLES

$$sp(y > 0,x:=havoc) \triangleq \exists x . \exists y . y > 0 \land y' = y$$

 $\triangleq y > 0$

$$sp(F, assume(G)) \triangleq F \wedge G$$

$$sp(F, assert(G)) \triangleq ???$$

MORE EXAMPLES

$$sp(y > 0,x:=havoc) \triangleq \exists x . \exists y . y > 0 \land y' = y$$

 $\triangleq y > 0$

 $sp(F, assume(G)) \triangleq F \wedge G$

$$sp(\mathsf{F}, \mathsf{assert}(\mathsf{G})) \triangleq \exists V. F \land (G \rightarrow frame(\emptyset))$$

$$\equiv \exists V. F \land (\neg G \lor frame(\emptyset))$$

$$\equiv \exists V. (F \land \neg G) \lor \exists V. (F \land frame(\emptyset))$$

$$\equiv \exists V. (F \land \neg G) \lor F[V'/V] \blacktriangleleft \blacksquare$$

$$\equiv (\exists V. F \land \neg G) \lor F \blacktriangleleft \blacksquare$$

MORE EXAMPLES

$$sp(y > 0,x:=havoc) \triangleq \exists x . \exists y . y > 0 \land y' = y$$

 $\triangleq y > 0$

$$sp(F, assume(G)) \triangleq F \wedge G$$

$$sp(\mathsf{F}, \mathsf{assert}(\mathsf{G})) \triangleq (\exists V. \mathsf{F} \land \neg \mathsf{G}) \lor \mathsf{F}$$

MORE EXAMPLES

$$sp(y > 0,x:=havoc) \triangleq \exists x . \exists y . y > 0 \land y' = y$$

 $\triangleq y > 0$

 $sp(F, assume(G)) \triangleq F \wedge G$

 $sp(\mathsf{F}, \mathsf{assert}(\mathsf{G})) \triangleq (\exists V. \mathsf{F} \land \neg \mathsf{G}) \lor \mathsf{F}$

 $sp(false, \mathbf{c}) \triangleq ???$

EXAMPLES

$$sp(y > 0,x:=havoc) \triangleq \exists x . \exists y . y > 0 \land y' = y$$

 $\triangleq y > 0$

 $sp(F, assume(G)) \triangleq F \wedge G$

 $sp(\mathsf{F}, \mathsf{assert}(\mathsf{G})) \triangleq (\exists V. \mathsf{F} \land \neg \mathsf{G}) \lor \mathsf{F}$

 $sp(false, \mathbf{c}) \triangleq false$

EXAMPLES

- $sp(x > 5, assume(x < 20)) \equiv x > 5 \land x < 20$
- $sp(x > 5, assert(x < 0)) \equiv true$
- $sp(x > 0, x = x + 1) \equiv x > 1$

STRONGEST POST-CONDITION COMPOUND STATEMENTS

• $sp(F, c;c') \triangleq sp(sp(F, c), c')$

STRONGEST POST-CONDITION COMPOUND STATEMENTS

- $sp(F, c;c') \triangleq sp(sp(F, c), c')$
- $sp(F, if(G) then c else c') \triangleq ???$

STRONGEST POST-CONDITION COMPOUND STATEMENTS

- $sp(F, c;c') \triangleq sp(sp(F, c), c')$
- $sp(F, if(G) \text{ then c else c'}) \triangleq sp(F \land G, c) \lor sp(F \land \neg G, c')$

HOMEWORK: PROVE USING DEFINITION OF SP

STRONGEST POST-CONDITION WHILE LOOPS

How to find sp(F, while(G) do c)?

WHILE LOOPS

How to find sp(F, while(G) do c)?

Let us collect all states possible at the end of any iteration

STRONGEST POST-CONDITION WHILE LOOPS

How to find sp(F, while(G) do c)?

