- 1. 由 1,2,3,4,5,6 这 6 个数字可以组成多少个数字不重复且是 6 的倍数的五位数?
 - 解答在这里一个数是 6 的倍数, 与一个数是 2 的倍数且是 3 的倍数是等价的. 而其中为 3 的倍数的数必须满足 "各个数位上的数字之和是 3 的倍数", 因此, 满足题意要求的五位数应有以下几类可能: 第一类, 由 1,2,4,5,6 作数码. 第一步, 2,4,6 选一个作个位数字: P_3^1 . 第二步, 其余四个数字在其他数位: P_4^4 . 所以 $N_1=P_3^1P_4^4$. 第二类, 由 1,2,3,4,5 作数码, 依上法可得 $N_2=P_2^1P_4^4$. 所以 $N=N_1+N_2=P_4^4(P_3^1+P_2^1)=24\times 5=120$. 即 满足条件的五位数共有 120 个.
- 3 封不同的信,有 4 个信箱可供投递,共有多少种投信的方法? 解答在这里解法一元素分析法 (以信为主).第一步,投第一封信,有 4 种不同的投法.第二步,再投第二封信,也有 4 种不同的投法.第三步,最后投第三封信,仍然有 4 种不同的投法.因此,投信的方法共有: 4×4×4 = 4³ = 64(种).解法二位置分析法 (以信箱为主).第一类,四个信箱中的某一个信箱有 3 封信,有投信方法 N₁ = C¹₄C³₃(种).第二类,四个信箱中的某一个信箱有 2 封信,而另一个信箱有 1 封信,有投信方法 N₂ = C²₄C²₃P²₂(种).第三类,四个信箱中的某一个信箱各有 1 封信,有投信方法 N₃ = C³₄P³₃(种).因此,投信的方法共有: N = N₁ + N₂ + N₃ = C¹₄C³₃ + C²₄C³₃P²₅ + C³₄P³₃ = 4 + 36 + 24 = 64(种).
- 3. 一天要排语文、数学、英语、生物、体育、班会六节课 (上午四节、下午两节), 要求上午第一节不排体育课, 数学课排在上午, 班会课排在下午, 有多少种的排课方法?

解答在这里解法一从数学课入手. 第一类, 数学课排在第一节. 班会课限排在下午 (如下图上), 其余四科可任意排入另四节, 得 $N_1=P_2^1P_4^4=48$.

第二类, 数学课排在上午另三节中的一节, 班会课限排在下午, 体育课可排入余下 (不含上午第一节) 三节中的一节 (如上图下), 而其余三科可任意排入另三节, 得 $N_2=\mathrm{P}_3^1\mathrm{P}_2^1\mathrm{P}_3^3=108$. 因此, 共有排法 $N=N_1+N_2=48+108=156$ (种). 解法二从体育课入手. 第一类: 休育课排在上午, $N_1=\mathrm{P}_3^1\mathrm{P}_3^1\mathrm{P}_2^1\mathrm{P}_3^3=108$; 第二类: 体育课排在下午, $N_2=\mathrm{P}_2^2\mathrm{P}_4^4=48$. 因此, 共有排法 $N=N_1+N_2=108+48=156$ (种).

4. 七人坐一排, 要求甲不坐首位, 乙不坐末位, 共有几种不同的坐法? 解答在这里解法一(直接法). 第一类, 如图.

第一步, 甲在第 2 至 6 号位中择一而坐, 得 P_5^1 . 第二步, 乙在第 1 至 6 号位中余下的 5 个位置中择一而坐得 P_5^1 . 第三步, 其余 5 人坐其余 5 个位置, 得 P_5^2 , 所以 $N_1 = P_5^1 P_5^2$. 第二类, 如图.

1	2	3	4	5	6	7
						甲

第一步, 甲坐末位. 得 P_1^1 . 第二步, 其余 6 人坐其余 6 个位置, 得 P_6^6 . 所以 $N_2 = P_6^6$. 于是, 满足条件的不同 坐法共行: $N = N_1 + N_2 = P_5^1 P_5^1 P_5^5 + P_6^6 = 3720$ (种).

解法二 (间接法). 7 人并坐, 共有 P_7^7 种方法. 甲坐首位, 有 P_6^6 种方法; 乙坐末位, 有 P_6^6 种方法; 甲坐首位, 乙坐末位都不符合题意要求, 所以要从 P_7^7 中扣除, 但在扣除的过程中, 甲坐首位恰乙坐末位的情况被减了两次, 因此还需补回一个 P_5^5 . 所以不同的坐法数为 $N=P_7^7-2P_6^6+P_5^5=2720(种)$.

- 5. 从 1,3,5,7 这 4 个数字中任取 3 个,从 0,2,4 这 3 个数字中任取 2 个,可以组成多少个无重复数字的五位数? 解答在这里第一类,取 0,有 $C_4^3C_2^1$ 种取法. 每一种(如 1,3,5,0,2)可组成 $P_4^1P_4^4$ 个五位数,所以 $N_1 = C_4^3C_2^1P_4^1P_4^4$. 第二类,不取 0,有 $C_4^3C_2^2$ 种取法,每一种(如 1,3,5,2,4)可组成 P_5^5 个五位数,所以 $N_2 = C_4^3C_2^3P_5^5$. 于是,组成五位数的个数是 $N = C_4^3C_2^1P_4^4P_4^4 + C_4^3C_2^2P_5^5 = 1248$ (种).
- 6. 如图, 圆上有9个点, 每两点连一线段, 所有线段在圆内最多有几个交点?

解答在这里设线段 AC, BD 在圆内交于点 P, 连接 AB, BC, CD, DA, 得到一个四边形, 于是问题转化为 9个点可组成几个四边形. 所以 $N=\mathbb{C}_9^4=126(\mathbb{C}_9)$.

- 7. 5 位女生和 4 位男生彼此身高不一, 现欲选 3 位女生、2 位男生排成左低右高一行, 有几种排法?
- 8. 从甲、乙、丙、丁、戊 5 位同学中选 3 位,安排每一位到京、津、沪旅游中的一地,有几种选派方法? 解答在这里我们把京, 津, 沪看作 3 个位置,于是问题就转化为 5 位同学选 3 位分坐 3 个位置的问题,所以选派方法共有 $N=\mathrm{P}_5^3=60($ 种).
- 9. 4 件不同的奖品,全部奖给 3 位同学,并要求每人至少一件,有几种奖励方法?
 解答在这里设 4 件奖品为 a, b, c, d, 显然,要将它们分成 2,1,1 三组,因此第一步是组合,得 C₄;我们假定 {a,b}{c}{d} 是一种组合,再让它们坐到甲、乙、丙三个位置上去,因此第二步是排列,得 P₃. 所以不同的奖励法共有 N = C₄²P₃ = 36(种).

10.	. 5 本不同的理科书和 3 本不同的文科书并排放在书架上, 要求 3 本文科书并列, 有几种不同的放法?	解答在
	这里先把 3 本文科书作一个单元与 5 本理科书一起进行全排列, 有 \mathbf{P}^6_6 种排法; 然后考虑 3 本文科书	的全排
	列, 对 P_{s}^{3} 种排法. 根据乘法原理, 共有不同排法为 $P_{s}^{6}P_{s}^{3}=4320$ (种).	

11. 联欢会上要演出 4 个歌唱节目和 3 个舞蹈节目,如果舞蹈节目不能连排,有几种排串节目的方法? 解答在这里如图,先排 4 个歌唱节目,有 P_4^4 种排法;再在图中打 \times 处排入舞蹈节目,有 P_5^3 种排法.因此共有不同排法: $P_4^4P_5^3=1440($ 种).

| × | 歌 | × | 歌 | × | 歌 | × |

12.	5 名运动员参加 100 米决赛, 如果每人到达终点的顺序各不相同, 问: 甲比乙先到达终点的可能有几种?
	解答在这里解法一甲第一个到达, $N_1=\mathrm{P}_4^4$; 甲第二个到达, $N_2=\mathrm{P}_3^1\mathrm{P}_3^3$; 甲第三个到达 $N_3=\mathrm{P}_2^1\mathrm{P}_3^3$; 甲第
	四个到达, $N_4={ m P}_3^3$. 所以 $N={ m P}_4^4+{ m P}_3^1{ m P}_3^3+{ m P}_2^1{ m P}_3^3+{ m P}_3^3=60$ (种). 解法二 5 名运动员到达终点的顺序
	有 ${ m P}_5^5=120(exttt{#神})$,而甲先于乙到达和乙先于甲到达的情况是对称出现的. 所以 $N=rac{1}{2}{ m P}_5^5=60(exttt{#神})$. 解法三
	$N = \mathrm{C}_5^2 \mathrm{P}_3^3 = 60(\red{\phi}).$

13.	若	$: \in \{$	[2, 3, ']	$7\}, y$	$\in \{\cdot$	-31,	-20,	$4\},$	则	xy	可表示不同的值的个数是	()).

A. 1 + 1 = 2

B. 1 + 1 + 1 = 3

C. $2 \times 3 = 6$

D. $3 \times 3 = 9$

14. 已知复数 a + bi, 其中 $a, b \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, 则可组成的不同虚数个数为 ().

A. 100

B. 90

C. 81

D. 46

15. 如图, 用 4 种不同的颜色涂入图中的矩形 A, B, C, D 中, 要求相邻的矩形涂色不同, 则不同的涂法共有 ().

A. 72 种

B. 48 种

C. 24 种

D. 12 种

16. 把 10 个苹果分成三堆, 要求每堆至少 1 个, 至多 5 个, 则不同的分法共有 ().

A. 4 种

B. 5 种

C. 6 种

D. 7种

17. 沿着长方体的棱, 从一个顶点到与它相对的另一个顶点的最近路线共有().

A. 3 条

B. 4 条

C. 5 条

D. 6 条

20. 如图是一电路图, 从 A 到 B 共有 条不同的线路可通电.

21.	若集合 $M = \langle$	$\{-1,1,2\}, \mathbb{I}$	$\mathbf{L} a, b, r \in M$,则	$(x-a)^2 +$	$(y-b)^2 = r^2$	所表示的不同圆共有	个.
-----	-------------------	---------------------------	-------------------------------	-------------	-----------------	-----------	----

- 23. 某乒乓球队行男运动员 7 人, 女运动员 6 人, 从中选出一名担任队长, 共有______ 种不同方案; 从中派出 2 人参加男女混合双打, 共有______ 种不同方案.
- 24. 若 $m \in \{-2, -1, 0, 1, 2, 3\}, n \in \{-3, -2, -1, 0, 1, 2\},$ 且方程 $\frac{x^2}{m} + \frac{y^2}{n} = 1$ 是表示中心在原点的双曲线,则表示不同的双曲线最多有
- 25. 3 张卡片的正反面分别写有数字 1 和 2, 3 和 4, 5 和 6, 若将 3 张卡片并列, 可得到________ 个不同的三位数 (6 不能作 9 用).
- 26. 从 2,3,5,7 这 4 个数字中, 任取两个分别作为分数的分子与分母.
 - (1) 能得到几个不同的分数?
 - (2) 其中有几个是真分数? 几个是假分数?
- 27. 在六棱锥各棱所在的 12 条直线中, 异面直线共有 ().

A. 12 对

B. 24 对

C. 36 对

D. 48 对

28. 有一排 5 个信号的显示窗, 每个窗可亮红灯、绿灯或不亮灯, 则共可发出的不同信号有 ().

A. 2⁵ 种

B. 5² 种

C. 3⁵ 种

D. 5³ 种

A. 9 种

B. 12 种

C. 16 种

D. 24 种

- 30. 3 封不同的信, 投入 4 个信箱, 则并有不同的投法_____ 种.
- 31. 4 个学生报名参加跳高, 跳远, 游泳比赛, 每人限报 1 项, 则不同的报名方法共有______ 种.
- 32. 若集合 $A = \{a_1, a_2, a_3, a_4, a_5\}$, $B = \{b_1, b_2, b_3\}$, 则从集合 A 到 B 可建立______ 个不同的映射, 从集合 B 到集合 A 可建立______ 个不同的映射.

33.	如图, 用 4 种不同的颜色涂入图中编号为 1, 2, 3, 4	的正方形,	要求每个正方形只涂一	一种颜色,	且有公共边的
	两个正方形颜色不同,则共有多少种不同的涂法?				

1	2
3	4

			3	4			
34.	. 从 1 到 100 的自然数中,每次取两个不同的数相加,使它们的和不大于 100,有几种取法? (3+6 与 4+5 算作不同的取法).						
35.	从 1 到 200 这 200 个自然数	中,各个数位上都不	含有数	数字 8	的数有几个?		
36.	有一角硬币 3 枚, 贰元币 6 弘	长, 百元币 4 张, 共同	可组成	多少种	不同的币值.		
37.	设 $a \in \mathbb{N}$, 且 $a < 27$, 则 (27 -	$-a)(28-a)\cdots(34$	- a) ♣	等于 ().		
	A. P_{27-a}^8	B. P_{34-a}^{27-a}		C.	\mathbf{P}^7_{34-a}	D. P_{34-a}^8	
38.	6 人站成一排照相, 其中甲、 ().	乙、丙三人要站在	一起,」	且要求	乙、丙分别站在甲的两边	也, 则不同的排法种数为	
	A. 12	B. 24		С.	48	D. 144	
39.	记 8 个同学排成一排的排列 的大小关系是 ().	数为 $m,8$ 个同学排	 成前月	后两排	(前排 3 人, 后排 5 人)	的排列数为 n , 则 m , n	
	A. $m = n$	B. $m > n$		С.	m < n	D. $n < m < 2n$	
40.	用 0,1,2,3 这 4 个数字, 可以	组成无重复数字的	四位数	的个数	效是 ().		
	A. 6	B. 12		С.	18	D. 24	
41.	5 辆汽车从停车场分五班开出	1, 其中甲车必须在2	乙车之	前开出	,则发车方案种数为().	
	A. 24	B. 48		С.	60	D. 96	
42.	若 $P_n^3 = nP_3^3$, 则 $n =$	·					
43.	若 $P_n^n + P_{n-1}^{n-1} = xP_{n+1}^{n+1}$, 则 x	=					
44.	若 $P_{56}^{n+6}: P_{54}^{n+3} = 30800$, 则 π	n =					
45.	在 10 只不同的抽屉中, 放入	10 种不同的产品,	每只抽	屉只放	了一种,共有	种不同的放法.	
46.	有黄、红、蓝、白、黑五面不同颜	色的信号旗, 按不同	间顺序点	人左到	右排成一排表示不同的信	言号, 则可表示	

种不同的信号.

47.	7 位同学站成一排, 按下列要	要求各存多少种不同的排法:		
	(1) 甲站某一固定位置;			
	(2) 甲站中间, 乙与甲相邻;			
	(3) 甲、乙相邻;			
	(4) 甲、乙两人不能相邻;			
	(5) 甲、乙、丙三人相邻;			
	(6) 甲、乙两人不站在排头和	泊排尾;		
	(7) 甲、乙、丙三人中任何的	两人都不相邻;		
	(8) 甲、乙两人必须相邻, 且	丙不站在排头和排尾.		
48.	在由 0,1,2,3,4,5 这 6 个数	字组成的无重复数字的六位数	数中, 个位数字小于十位数字	的个数是 ().
	A. 210	B. 300	C. 464	D. 600
49.	在由数字 1, 2, 3, 4, 5 组成数	数字不重复的五位数中, 小于	50000 的偶数有 ().	
	A. 60 ↑	B. 48 ↑	C. 36 个	D. 24 个
50.	由 0, 1, 2, 3, 4, 5 这 6 个数:	字组成数字不重复且大于 34	5012 的六位数的个数是 ().
	A. 360	B. 270	C. 269	D. 245
51.	6 个停车位置, 有 3 辆汽车需	틍要停放 , 若要使 3 个空位连	在一起,则停放方法数为().
	A. P ₄ ⁴	B. P ₆ ³	C. P ₆ ⁴	D. P_3^3
52.	6 张同排连号的电影票, 分给	3 名教师和 3 名学生, 若要	求师生相间而坐,则不同的分	法数为 ().
	A. $P_3^3 P_4^3$	B. $(P_3^3)^2$	C. $2(P_3^3)^2$	D. $P_6^6 - (P_3^3)^2$
53.	取 1,2,3,4,5 这 5 个数字中	的两个分别作为一个对数的	底数和真数,则所得的不同值	有 ().
	A. 12 ↑	B. 13 ↑	C. 16 个	D. 20 个
54.	由 0,1,2,3,4,5 这 6 个数字	组成的无重复数字的三位数中	中,奇数个数与偶数个数之比	为 ().
	A. 1:1	B. 2:3	C. 12:13	D. 21:23
55.	直线 $Ax + By = 0$ 的系数	A, B 可以在 0,1,2,3,5,7 i	这六个数字中取值, 则这些方	程所表示的不同直线有
	().			
	A. 30 条	B. 23 条	C. 22 条	D. 14 条
56.	已知集合 $M = \{a_1, a_2, a_3\},$ 映射个数共有 ().	$P = \{b_1, b_2, b_3, b_4, b_5, b_6\}, \not\equiv$	片 M 中的不同元素对应到 P	中的不同像,则这样的
	A. 3	B. 20	C. 64	D. 120

	().					
	A. 14	B. 15	C. 16	D. 17		
58.	赛前将 4 对乒乓球双打选手	介绍给观众,每对选手要连着	介绍, 则介绍这 8 位选手的	下同顺序共有 ().		
	A. P ₈ 种	B. P ₄ 种	C. 2P ₄ 种	D. 16P ₄ 种		
59.	要排一张有 5 个独唱节目和两个合唱节目不相邻,则不同		若合唱节目不排在节目表的	J第一位置上,并且任何		
	A. P ₈	B. $P_5^5 P_3^3$	C. $P_5^5 P_5^3$	D. $P_3^3 P_5^3$		
60.	由 1,4,5,x 这四个数字组成为	无重复数字的四位数, 若所有	4 位数的各位数字之和为 28	88, 则 x 等于 ().		
	A. 2	B. 3	C. 6	D. 8		
61.	6 个人排成一排, 要求甲、乙	、丙 3 人都不排在两端, 求不	下同排法的种数.			
62.	5 男 2 女站成一排, 要求女生	不能排在两端, 且又要相邻,	求不同排法的种数.			
63.	5. 5 人排成一行, 要求甲、乙 2 人之间至少有 1 人, 求不同排法的种数.					
64.	4. 6 人排成一排, 要求甲、乙 2 人之间必有 2 人, 求不同排法的种数.					
65.	一排 6 张椅子上坐 3 个人, 4	承 2 人之间有 1 张空椅子, 求	不同排法的种数.			
66.	8 张椅子排成一排, 有 4 人勍	2坐,每人一个座位,其中恰有	3 个连续空位, 求不同排法的	的种数.		
67.	8 名学生站成前、后两排, 每	排 4 人, 其中要求甲、乙 2 /	人在后排, 丙在前排, 求不同	非法的种数.		
68.	8 人站成一列纵队, 要求甲、	乙、丙 3 人不在排头且要互	相隔开, 求不同排法的种数.			
69.	8 位同学, 其中有 3 位是三妇求不同排法的种数.	子学生, 他们和班主任合影, 要	京求班主任坐中间, 而且左、	占两边都要有三好学生 ,		
70.	6 人并排拍照, 要求甲不坐在	最左边, 乙不坐在最右边, 求	不同排法的种数.			
71.	晚会上有 5 个不同的歌唱节 4 个节目中既要有歌唱节目, (2) 3 个舞蹈节目排在一起; (3) 3 个舞蹈节目彼此隔开; (4) 3 个舞蹈节目先后顺序一	又要有舞蹈节目;	·别按以下要求, 各可排出几和	中不同的节目单: (1) 前		
72.	6 人划船, 其中 2 人只能划右	案,1 人只能划左桨, 若要求	左、右边各 3 人, 则有几种7	下同的划法?		

57. 从 $1,2,\cdots,10$ 这 10 个自然数中,每次取出不同的两个,使它们的乘积是 6 的倍数,则不同的取法总数为

73. 个位和百位的数字是奇数,十位和千位的数字是偶数,且无重复数字的四位数共有多少个?

- 74. 星期一上午某教师要上 3 个班级的课,每班 1 节,若上午规定限排 4 节课,且要求 3 节课不能连排,则这天上午该教师的课程表有几种不同的排法?
- 75. 某天的课程表排入政治、语文、数学、外语、劳技、体育 6 门课, 1 门课排 1 节, 若第 1 节不能排体育, 第 6 节不能排数学, 则共有几种不同排法?
- 76. 由 0,2,5,7,9 这 5 个数字可组成多少个数字不重复且能被 3 整除的四位数?
- 77. 由 0,1,2,3,4,5 这 6 个数字可组成多少个数字不重复且能被 4 整除的四位数? 可组成数字不重复且能被 25 整除的四位数又有多少?
- 78. 由 1,2,3,4,5,6 这 6 个数字可组成多少个数字不重复且是 6 的倍数的五位数?
- 79. 由数字 1, 2, 3, 4, 5 可以组成没有重复数字的五位数 120 个, 若把这些数从小到大排成一列数: 12345, 12354, · · · , 54321, 问:
 - (1) 43251 是这一列数的第几个数?
 - (2) 这列数中的第 93 个数是怎样的一个五位数?
 - (3) 求这一列数各数之和 (不必具体算出).
- 80. 用 1,2,3,4,5,6 这 6 个数字组成无重复数字的四位数.
 - (1) 奇数数字必须在奇数位的有多少个?
 - (2) 奇数位只排奇数数字的有多少个?
 - (3) 奇数数字不排在奇数位的有多少个?
- 81. 从 1,2,3,4,5 这 5 个数字中每次取出 3 个数字组成没有重复数字的三位数, 求所有三位数的个位数的和.
- 82. 用 1,7,8,9 这 4 个数字组成的四位数中, 分别求所有四位数的各位数字的和与所有四位数的和.
- 83. 由 1,4,5,x 这 4 个不同数字组成数字不重复的四位数, 若所有四位数的数字之和是 180, 求 x.
- 84. 用 0,1,2,3,4,5 这 6 个数字组成无重复数字的三位数,求所有这些三位数之和.
- 85. 从 1, 2, 3, 4, 8 这 5 个数字中, 任选两个分别作 a^b 中的底数和指数, 则得到的不同值的幂有多少个?
- 86. 从 1,2,3,…,9 这 9 个数字中任取两个不同的数,分别作一个对数的真数和底数,一共可以得到几个不同的 对数值? 其中比 1 大的有几个?
- 87. 若 $n \neq m$, 则组合数 C_n^m 等于 ().

A.
$$\frac{P_n^m}{n!}$$

B.
$$\frac{n}{m}C_{n-1}^m$$

C. C_m^{n-m+1}

 $D. \frac{n}{n-m} C_{n-1}^m$

88. 计算 $C_{10}^{r+1} + C_{10}^{17-r}$, 值不相同的有 ().

A. 1 个

B. 2 个

C. 3 个

D. 4 个

89. 一组 6 条平行线与另一组 3 条平行线互相垂直,则由它们所围成的矩形个数是().

A. 16 个

B. 45 个

C. 24 个

D. 90 个

90.	从 1,3,5,7,9 这 5 个数字中位是 ().	壬取 3 个 , 从 2,4,6,8 这 4 个	个数字中任取 2 个, 组成数字	不重复的五位数的个数
	A. $P_5^3 P_4^2$	B. $C_5^3 P_5^3 C_5^2 P_4^2$	C. $C_5^3 C_4^2 P_5^5$	D. $P_5^3 P_6^2$
91.	从 4 台 A 型和 5 台 B 型的	电视机中, 任取 3 台, 要求至	少有 A 型和 B 型各一台的	奴法数为 ().
	A. 70	B. 140	C. 84	D. 35
92.	以正方形的 4 个顶点, 4 边中	点和中心这 9 个点中的 3 点	(为顶点的三角形的个数是 ().
	A. 84	B. 81	C. 76	D. 73
93.	平面内有 9 个点, 其中有 4 个数是 ().	·点在一条直线上, 此外无 3	点共线, 经过其中的每 2 个点	京作直线, 不同直线的条
	A. 31	B. 30	C. 29	D. 28
94.	从集合 $P = \{1, 2, 3\}, Q = \{1$ 不同点的个数是 ().	.,4,5,6} 这两个集合中各取-	一个元素作为平面直角坐标系	《中点的坐标, 能确定的
	A. 11	B. 12	C. 23	D. 24
95.	计算: $C_m^5 - C_{m+1}^5 + C_m^4 = $.		
96.	计算: $C_{96}^{94} + C_{97}^{95} + C_{98}^{96} + C_{98}^{97}$	ζ =		
97.	计算: $C_2^2 + C_3^2 + C_4^2 + \dots + C_4^2$	$C_{10}^2 = $		
98.	计算: $C_3^0 + C_4^1 + C_5^2 + C_6^3 + C_6^3$	$\cdots + C_{20}^{17} = $		
99.	从 5 名学生中任选 3 名学生	分别担任 3 种不同的职务, 扌	共有 种小同的办法	失.
100.	有 3 名学生分别担任 5 种不	同职务中的 3 个不同职务, 扌	共有 种不同分法.	
101.	在两条异面直线上分别各有	5 个点和 4 个点, 每两点确定	三一条直线,一共有	_ 条直线.
102.	直线 $l_1 \parallel l_2, l_1$ 上有 4 个点,有 个.	l_2 上有 6 个点, 以这些点为 i	端点连接成线段, 则它们在 l_1	$oldsymbol{oldsymbol{J}}$ $oldsymbol{J}_2$ 之间的交点最多
103.	M 和 N 是两个不重合的平面位置的三棱锥有		在平面 N 内取 4 个点, 则由	这些点最多能决定不同
104.	平面内共有 17 个点, 其中有	且仅有 5 个点共线, 以这些点	京中的 3 个点为顶点的三角形	洪有 个.
105.	以三棱柱的顶点为顶点的四面	面体的个数为		
106.	平面内有7条不同的直线,其个.	中有且仅有两条直线互相平	行, 则这 7 条直线最多能围成	的三角形有

107.	已知一些点的坐标 (x,y) 满,样的三角形共有 $($	足 $ x < 2$, $ y < 2$ 且 $x \in \mathbf{Z}$, y	, ∈ Z, 若以这些点的其中三点	京为顶点作三角形, 则这
	A. 72 个	B. 76 个	C. 80 个	D. 84 个
108.	以正方体的顶点为顶点的四面	而体个数是 ().		
	A. 70	B. 64	C. 58	D. 24
109.	有甲、乙、丙 3 项任务, 其中则不同的选法数共有()		1 人承担, 现从 10 人中选派	₹ 4 人承担这 3 项任务,
	A. 1260 种	B. 2025 种	C. 2520 种	D. 5040 种
110.	将 5 名学生分配到 4 个不同 法共有 ().]的科技小组参加活动, 要求每	每个科技小组至少有一名学生	三参加, 则不同的分配方
	A. 60 种	B. 120 种	C. 240 种	D. 480 种
111.	将 4 名教师分配到 3 个班级	去参加活动, 要求每班至少 1	名的分配方法有().	
	A. 72 种	B. 48 种	C. 36 种	D. 24 种
112.	高三年级有8个班,分派4~	个数学教师任教,每个教师教	两个班,则不同的分派方法有	
	A. $P_8^2 P_6^2 P_4^2 P_2^2$ 种	B. $C_8^2 C_6^2 C_4^2 C_2^2$ 种	C. $C_8^2 C_6^2 C_4^2 C_2^2 C_4^4$ 种	D. $\frac{C_8^2 C_6^2 C_4^2 C_2^2}{4!}$ 种
113.	现有男、女学生共8人,从身不同的选派方案,则男、女生		人分别参加数学、物理与化学	学三科竞赛, 共有 90 种
	A. 男生 2 人, 女生 6 人	B. 男生 3 人, 女生 5 人	C. 男生 5 人, 女生 3 人	D. 男生 6 人, 女生 2 人
114.	把字母 a, a, a, b, b, b 排尿	戊一列, 其中任何两个 b 不能	相邻的排法共有 ().	
	A. 4 种	B. 10 种	C. 24 种	D. 60 种
115.	已知 a ∈ {-2, -1, 0, 1, 2, 3, 4} 最多是 ().	$\{1\}, b \in \{-3, -2, -1, 0, 1, 2, 3, \dots\}$	4,5}, 则方程 $\frac{x^2}{a} + \frac{y^2}{b} = 1$	表示的不同双曲线条数
	A. 48	B. 26	C. 22	D. 14
116.	若 m, n 是不大于 6 的非负氢	整数,则 $C_6^m x^2 + C_6^n y^2 = 1$ 表	長示不同的椭圆个数是 ().
	A. 42	B. 30	C. 12	D. 6
117.	从 5 个学校中选出 8 名学生	组成代表团,要求每校至少有	「1人的选法种数是 ().	
	A. $C_5^1 + C_5^1 C_4^1 + C_5^1 C_4^1 C_3^1$	B. $C_5^3 + C_5^2 C_4^1 + C_5^1 C_4^1 C_3^1$	C. $C_5^1 + P_5^2 + C_5^3$	D. C_8^5
118.	空间有 n 个点, 任意 4 点均	不共面,连接其中任意两点均	有一直线,则成为异面直线的	为对数为 ().
	A. C_n^4	B. $2C_n^4$	C. $3C_n^4$	D. P_n^4

- 119. 若 $C_7^x = C_7^2$, 则 x =_____.
- 120. 若 $C_{18}^{2x} = C_{18}^{16-x}$, 则 x =______
- 121. 若 $C_x^{12} = C_x^8$, 则 x =______.
- 122. 若 C_x^3 : $C_x^2 = 44:3$, 则 x =_____.
- 123. 若 $3C_{x-3}^{x-7} = 5P_{x-4}^2$, 则 x =_____.
- 124. 若 $C_{17}^{2x} + C_{17}^{2x-1} = C_{18}^6$, 则 x =_____.
- 125. 异面直线 l_1 和 l_2 分别有 m 个和 $n(m,n \ge 3)$ 个不同的点, 若以这些点为顶点, 可构成_______ 个三角形, _________ 个四面体.
- 126. 一条直线 a 上有 n 个点, 平面 α 内有 m 个点, 以这些点为顶点, 最多可确定______ 个三棱锥.
- 127. 有两个同心圆,在外圆周上有相异的 6 个点,内圆周上有相异的 3 个点,由这 9 个点所确定的直线最多有______条,最少有_____条.
- 129. 解不等式: $\frac{1}{3} < \frac{C_{x+1}^3}{C_{x-1}^1} < 7$.
- 130. 解不等式: $C_n^{n-5} > C_{n-2}^3 + 2C_{n-2}^2 + n 2$.
- 131. 解不等式: $C_{21}^{x-4} < C_{21}^{x-2} < C_{21}^{x-1}$.
- 132. 解不等式: $C_k^0 + C_k^1 + 2C_k^2 + 3C_k^3 + \cdots + kC_k^k < 500$.
- 133. **解方程**: $C_{16}^{x^2-x} = C_{16}^{5x-5}$.
- 134. **解方程**: $C_{x+3}^{x+1} = C_{x+1}^{x-1} + C_{x+1}^{x} + C_{x}^{x-2}$.
- 135. 计算: $C_{2n}^{17-n} + C_{13+n}^{3n}$.
- 136. 计算: $C_{3n}^{38-n} + C_{21+n}^{3n}$.
- 137. 化简: $1 \cdot 1! + 2 \cdot 2! + \cdots + 10 \cdot 10!$.
- 138. 求证: $\frac{1}{k!} \frac{1}{(k+1)!} = \frac{k}{(k+1)!}$.
- 139. 化简: $\frac{1}{2!} + \frac{2}{3!} + \cdots + \frac{n}{(n+1)!}$.
- 140. 求证: $\frac{k+2}{k!+(k+1)!+(k+2)!} = \frac{1}{(k+1)!} \frac{1}{(k+2)!}.$
- 141. 求和: ; $\frac{3}{1!+2!+3!} + \frac{4}{2!+3!+4!} + \cdots + \frac{n+2}{n!+(n+1)!+(n+2)!}$.

- 142. 求证: $C_n^k = C_2^0 C_{n-2}^k + C_2^1 C_{n-2}^{k-1} + C_2^2 C_{n-2}^{k-2} (k \ge 2)$.
- 143. 求证: $n! + \frac{(n+1)!}{1!} + \frac{(n+2)!}{2!} + \dots + \frac{(n+m)!}{m!} = n! C_{n+m+1}^{n+1}$.
- 144. n 个不同的球放入 n 个不同的盒子中, 若恰好有一个盒子是空盒, 则共有几种不同的放法?
- 145. 从集合 $M = \{1, 2, 3, 4, 5\}$ 到集合 $N = \{a, b, c\}$ 的映射, 要求集合 N 中的元素在集合 M 中都有原像, 这样的映射有几种?
- 146. 如图, $A, B, C \in l_1, D, E, F, G \in l_2, H$ 不属于 $l_1 \cup l_2$, 以这 8 个点中的 3 个点为顶点, 最多可作多少个不同的 三角形?

- 147. ∠AOB 的两边 OA, OB 上分别有异于顶点 O 的 5 个点和 6 个点, 这 12 个点 (连同 O 点) 可作几条不同直 线和几个不同的三角形?
- 149. 以四棱台的顶点为顶点, 时组成多少个四面体?
- 150. 正方体有 8 个顶点, 每 3 点确定 1 个平面, 一共可确定多少个平面?
- 151. 从集合 {51,52,53,···,99} 中任选 2 个数, 使这 2 个数的和为偶数, 有多少种不同的选法?
- 152. 从 1 到 100 的自然数中,每次取两个不同的数相加,使它们的和不大于 100,有几种不同的取法 (1+4 + 5) 与 1 与 1 与 3 + 2 算相同的取法 (1+4 + 5) 字 1 与 3 + 2 算 和 (1+4 + 5) 字 1 与 3 + 2 算 和 (1+4 + 5) 字 1 与 3 + 2 算 和 (1+4 + 5) 字 1 与 3 + 2 算 和 (1+4 + 5) 字 1 与 3 + 2 算 和 (1+4 + 5) 字 1 与 3 + 2 算 和 (1+4 + 5) 字 1 与 3 + 2 算 和 (1+4 + 5) 字 1 与 3 + 2 算 和 (1+4 + 5) 字 1 与 3 + 2 算 和 (1+4 + 5) 字 1 与 3 + 2 算 和 (1+4 + 5) 字 1 与 3 + 2 算 和 (1+4 + 5) 字 1 与 3 + 2 算 和 (1+4 + 5) 字 1 与 3 + 2 算 和 (1+4 + 5) 字 1 中 3 + 2 算 和 (1+4 + 5) 字 1 中 3 + 2 算 和 (1+4 + 5) 字 1 中 3 + 2 算 和 (1+4 + 5) 字 1 中 3 + 2 算 和 (1+4 + 5) 字 1 中 3 + 2 算 和 (1+4 + 5) 字 1 中 3 + 2 算 和 (1+4 + 5) 字 1 中 3 + 2 算 和 (1+4 + 5) 字 1 + 2 和 (1+4 + 5) 2 中 3 + 2 和 (1+4 + 5) 2 中 3 + 2 和 (1+4 + 5) 2 中 3 + 2 和 (1+4 + 5) 2 中 3 + 2 和 (1+4 + 5) 2 中 3 + 2 和 (1+4 + 5) 2 中 3 + 2 和 (1+4 + 5) 2 中 3 + 2 和 (1+4 + 5) 2 中 3 + 2 和 (1+4 + 5) 2 中 3 + 2 和 (1+4 + 5) 2 中 3 + 2 和 (1+4 + 5) 2 中 3 + 2 和 (1+4 + 5) 2 中 3 + 2 和 (1+4 + 5) 2 中 3 + 2 和 (1+4 + 5) 2 中 3 +
- 153. 从 1 到 18 这 18 个自然数中任选 3 个, 使它们的和是 3 的倍数, 有几种选法?
- 154. 从 5 个男乒乓球运动员和 4 个女乒乓球运动员中选出 2 男、2 女进行乒乓球混合双打, 有多少种不同的分组方法?
- 155. 有编号为 1,2,3,4,5,6,7 的 7 个球和编号为 1,2,3,4,5,6,7 的 7 只盒子,将这 7 个球放入这 7 只盒子中,要求每只盒子放 1 个,恰使其中 4 个球的编号与盒子的编号相同,一共有多少种不同的投放方法?
- 156. 9 件相同的奖品分给 3 个学生, 每人至少分得 2 件奖品, 一共存几种不同的分法?
- 157. 7 个相同的球任意放入 4 个不同的盒子中, 每个盒子至少有 1 个球的不同放法有几种?
- 158. 在连续的 6 次射击中, 恰好命中 4 次的情形有多少种?

- 159. 在所有的三位数中(数字允许重复),百位数字,十位数字,个位数字依次减小的有多少个?仅是个位数字比百位数字小的有多少个?
- 160. 圆上有 10 个点, 每两点连成一条线段, 这些线段在圆内最多有多少个交点?
- 161. 将分别写有 a, b, c, d, e, 1, 2, 3, 4, 5 的 10 张纸片排成一列, 要求 5 在最前, 1 在最后, 且数字从大到小, 字母按英文字母表的先后顺序排列, 则有多少种不同的排法?
- 162. 从 1,2,···,10 这 10 个数中任取 3 个互不相邻的自然数, 有儿种不同的取法?
- 163. 从 6 个运动员中, 选出 4 人参加 4×100 米接力赛跑, 若其中甲、乙两人都不能跑第一棒, 共有多少种参赛方案?
- 164. 从 7 名运动员中, 选出 4 人参加 4×100 米接力赛跑, 若要求甲、乙两人都不跑中间两棒, 共有多少种参赛方案?
- 165. 有 6 名运动员参加 4×100 米接力跑, 其中甲不能跑第一棒, 乙不跑第四棒, 共有多少种参赛的方法?
- 166. 3 天中, 考政治、语文、外语、数学、物理和化学 6 科.
 - (1) 每天考一文一理, 有几种不同的安排方法?
 - (2) 每天考一文一理, 且语文、数学不能同一天考, 有几种不同的安排方法?
- 167. 在无重复数字的四位数中, 其中恰有 2 个奇数数字和 2 个偶数数字的四位数共有多少个?
- 168. 从 1,3,5,7 这 4 个数字中任取 3 个, 从 0,2,4 这 3 个数字中任取 2 个, 共可组成多少个无重复数字的五位数?
- 169. 10 个人分乘 3 辆汽车, 要求甲车坐 5 人, 乙车坐 3 人, 丙车坐 2 人, 有多少种不同的乘车方法?
- 170. 某市今年有8项重点工程需要建设,由甲、乙、丙、丁4个建筑公司承包,若要求甲承包3项,乙承包1项, 丙、丁各承包2项,则共有多少种不同的承包方案?
- 171. 有 6 本不同的书, 分给甲、乙、丙 3 人, 按下列要求, 各有几种不同的分法:
 - (1) 甲得 1 本, 乙得 2 本, 丙得 3 本;
 - (2) 每人 2 本;
 - (3) 1 人 1 本, 1 人 2 本, 1 人 3 本.
- 172. 已知集合 A 和集合 B 各含有 12 个元素, $A \cap B$ 含有 4 个元素, 试求同时满足下列两个条件的集合 C 的个数:
 - (1) $C \subset (A \cup B)$, 且 C 中含有 3 个元素;
 - (2) $C \cap A \neq \emptyset$.
- 173. 有翻译 8 人, 其中 3 人只会英语, 2 人只会日语, 其余 3 人既会英语又会日语, 现从中选 6 人, 安排 3 人翻译 英语, 3 人翻译日语, 则不同的安排方法有多少种?

174. 求二项式 $(2x-\frac{3}{2x^2})^7$ 展开式的第四项的二项式系数和第四项的系数. 解答在这里因为 $T_4=T_{3+1}=\mathrm{C}_7^3(2x)^{7-3}(-\frac{3}{2}x^{-2})^3=\mathrm{C}_7^32^4(-\frac{3}{2})^3x^{-2},$ 所以第四项的二项式系数为 C_7^3 , 即 35; 第四项的系数为 $\mathrm{C}_7^3\cdot 2^4(-\frac{3}{2})^3,$ 即 -1890.

175. 求 $(1+x)+(1+x)^2+(1+x)^3+\cdots+(1+x)^{2n}(n\in \mathbf{N})$ 的展开式中念 x^n 项的系数. 解答在这里解法一考虑 $(1+x)^k(n\leq k\leq 2n)$ 展开式的通项, 在 $T_{r+1}=\mathrm{C}^r_kx^r$ 中, 令 r=n, 得 $T_{n-1}=\mathrm{C}^n_kx^n$, 故 x^n 项的系数为

$$C_n^n + C_{n+1}^n + C_{n+2}^n + \dots + C_{2n}^n = C_{n+1}^{n+1} + C_{n+1}^n + C_{n+2}^n + \dots + C_{2n}^n$$

$$= C_{n+2}^{n+1} + C_{n+2}^n + \dots + C_{2n}^n$$

$$= \dots = C_{2n}^{n+1} + C_{2n}^n$$

$$= C_{2n+1}^{n+1}.$$

解法二题中的多项式是以 (1+x) 为公比、项数为 2n 的等比数列的和, 于是, 当 $x \neq 0$ 时, 原式 $=\frac{(1+x)[(1+x)^{2n}-1]}{(1+x)-1}=\frac{(1+x)^{2n+1}-(1+x)}{x}$. 因此, 只需求 $(1+x)^{2n+1}$ 的展开式中含 x^{n+1} 项的系数即可. 而 $(1+x)^{2n+1}$ 展开式的通项为 $T_{r+1}=\mathbf{C}^r_{2n+1}x^r$, 令 r=n+1, 得 $T_{n+2}=\mathbf{C}^{n+1}_{2n-1}x^{n+1}$ 所以题中含 x^n 项的系数为 \mathbf{C}^{n+1}_{2n-1} .

176. 在 $(\sqrt{x} + \frac{1}{\sqrt[3]{x}})^{100}$ 的展开式中, 有多少项是有理项?

解答在这里考虑 $(x^{\frac{1}{2}}+x^{-\frac{1}{3}})^{100}$ 展开式的通项 $T_{r+1}=\mathrm{C}^{r}_{100}x^{\frac{100-r}{2}}\cdot(x^{-\frac{1}{3}})^{r}=\mathrm{C}^{r}_{100}x^{\frac{50-\frac{3r}{6}}{6}}$. 令 $r=6k(k\in\mathbf{Z})$, 则 $0\leq 6k\leq 100$, 即 $r=0,6,12,\cdots,96$. 因此共有 17 个有理项.

- 177. 求 $(x^2 + \frac{1}{x^2} 2)^3$ 展开式中含 x^2 项的表达式. 解答在这里原式 = $(x \frac{1}{x})^6$,它的展开式的通项为 $T_{r+1} = \mathrm{C}_6^r x^{6-r} (-x^{-1})^r = (-1)^r \mathrm{C}_6^r x^{6-2r}$. 令 r = 2,得 $T_{2+1} = \mathrm{C}_6^2 x^2 = 15x^2$,所以含 x^2 的项为 $15x^2$.
- 178. 求 $(1+x+x^2)(1-x)^{10}$ 展开式中含 x^4 项的系数. 解答在这里原式 = $(1-x^3)(1-x)^9$. $(1-x)^9$ 展开式的通项为 $T_{r+1} = C_9^r(-x)^r$. 令 r=4, 得 $T_{4+1} = C_9^4x^4$. 令 r=1, 得 $T_{1+1} = -C_0^1x$. 故 x^4 的系数为 $C_9^4 + C_9^1 = 135$.
- 179. 求 $(ax + by + cz)^n$ 的展开式中含 $x^p y^q z^r$ 项的系数,其中 $p + q + r = n(p,q,r,n \in \mathbf{N})$. 解答在这里原式 = $[(ax+by)+cz]^n$,其展开式的通项为 $T_{k+1} = \mathrm{C}^k_n (ax+by)^{n-k} \cdot (cz)^k$. 令 k = r,得 $T_{r+1} = \mathrm{C}^r_n (ax+by)^{n-r} \cdot (cz)^r$. 而 $(ax+by)^{n-r}$ 展开式的通项为 $T'_{s+1} = \mathrm{C}^s_{n-r} (ax)^{n-r-s} \cdot (by)^s$. 令 s = q,得 $T'_{q+1} = \mathrm{C}^q_{n-r} (ax)^{n-r-q} \cdot (by)^q = \mathrm{C}^q_{n-r} (ax)^p \cdot (by)^q$. 故 $x^p y^q z^r$ 的系数为 $\mathrm{C}^r_n \cdot \mathrm{C}^q_{n-r} a^p b^q c^r$.
- 180. 求 $(x+\frac{1}{x}-1)^5$ 展开式中的常数项. 解答在这里把 $[(x+\frac{1}{x})-1]^5$ 直接展开,即 $[(x+\frac{1}{x})-1]^5=(x+\frac{1}{x})^5-5(x+\frac{1}{x})^4+10(x+\frac{1}{x})^3-10(x+\frac{1}{x})^2+5(x+\frac{1}{x})-1$. 考虑 $x+\frac{1}{x}$ 的对称性,只打在它的偶次幂中,其展开式才会出现常数项.所以常数项为 $(-5)\times 6+(-10)\times 2-1=-51$.

- 181. 求证: $4^n 4^{n-1}C_n^1 + 4^{n-2}C_n^2 4^{n-3}C_n^3 + \dots + 4(-1)^{n-1}C_n^{n-1} + (-1)^nC_n^n = 3^n(n \in \mathbb{N}).$ 解答在这里在" $(a+b)^n = C_n^0a^n + C_n^1a^{n-1}b + \dots + C_n^nb^n$ "中,令 a=4,b=-1 得 $4^n 4^{n-1}C_n^1 + 4^{n-2}C_n^2 4^{n-3}C_n^3 + \dots + 4 \times (-1)^{n-1}C_n^{n-1} + (-1)^nC_n^n = (4-1)^n = 3^n(n \in \mathbb{N}).$
- 182. 求证: $1 C_n^2 + C_n^4 C_n^6 + C_n^8 C_n^{10} + \dots = (\sqrt{2})^n \cos \frac{n\pi}{4}$, $C_n^1 C_n^3 + C_n^5 C_n^7 + C_n^9 C_n^{11} + \dots = (\sqrt{2})^n \sin \frac{n\pi}{4}$. 解答在这里在 $(a+b)^n = C_n^0 a^n + C_n^1 a^{n-1} b + \dots + C_n^{n-1} a b^{n-1} + C_n^n b^n + \emptyset$, a=1, b=1, 则

$$(1+i)^n = C_n^0 + C_n^1 i + C_n^2 i^2 + C_n^3 i^3 + C_n^4 i^4 + \dots + C_n^n i^n$$

$$= (C_n^0 - C_n^2 + C_n^4 - C_n^6 + C_n^8 - C_n^{10} + \dots) + (C_n^1 - C_n^3 + C_n^5 - C_n^7 + C_n^9 - C_n^{11} + \dots) i$$

又 $(1+i)^n = [\sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})]^n = (\sqrt{2})^n(\cos\frac{n\pi}{4} + i\sin\frac{n\pi}{4})$. 比较上述两式, 即得欲证.

- 183. 求证: $C_n^1 + 2C_n^2 + 3C_n^3 + \dots + nC_n^n = n \cdot 2^{n-1} (n \in \mathbb{N}).$ 解答在这里记 $S_n = 0C_n^0 + 1 \cdot C_n^1 + 2C_n^2 + 3C_n^3 + \dots + (n-1)C_n^{n-1} + nC_n^n, \ \ensuremath{\mathfrak{Z}}\ S_n = nC_n^n + (n-1)C_n^{n-1} + \dots + 1 \cdot C_n^1 + 0C_n^0, \$ 两式相加,并利用 $C_n^m = C_n^{n-m}, \ \ensuremath{\mathfrak{Z}}\ 2S_n = n(C_n^0 + C_n^1 + C_n^2 + \dots + C_n^n) = n \cdot 2^n, \$ 所以 $S_n = n \cdot 2^{n-1} (n \in \mathbb{N}).$
- 184. 求证: $C_n^0 + \frac{1}{2}C_n^1 + \frac{1}{3}C_n^2 + \dots + \frac{1}{n+1}C_n^n = \frac{1}{n+1}(2^{n+1}-1)(n \in \mathbf{N}).$ 解答在这里因为

$$\begin{split} \frac{1}{k+1}\mathbf{C}_n^k &= \frac{1}{k+1} \cdot \frac{n!}{k!(n-k)!} = \frac{n!}{(k+1)!(n-k!)} \\ &= \frac{1}{n+1} \cdot \frac{(n+1)!}{(k+1)!(n-k)!} \\ &= \frac{1}{n+1}\mathbf{C}_{n+1}^{k+1}, \end{split}$$

所以左边 = $\frac{1}{n+1}$ ($C_{n+1}^1 + C_{n+1}^2 + C_{n+1}^3 + \dots + C_{n+1}^{n-1}$) = $\frac{1}{n+1}$ ($2^{n+1} - 1$) = 右边.

185. 求证 $C_n^0 C_n^1 + C_n^1 C_n^2 + \dots + C_n^{n-1} C_n^n = \frac{(2n)!}{(n-1)!(n+1)!}$. 解答在这里因为 $(1+x)^{2n} = (1+x)^n (1+x)^n$, $(1+x)^n = C_n^0 + C_n^1 x + C_n^2 x^2 + \dots + C_n^n x^n$, 又因为 $(1+x)^n = C_n^n + C_n^{n-1} x + C_n^{n-2} x^2 + \dots + C_n^0 x^n$, 所以两式的两边相乘,得 $(1+x)^n \cdot (1+x)^n = (C_n^0 + C_n^1 x + C_n^2 x^2 + \dots + C_n^n x^n) \times (C_n^n + C_n^{n-1} x + C_n^{n-2} x^2 + \dots + C_n^0 x^n)$. 上式右边乘积中,含 x^{n+1} 项的系数是 $C_n^0 C_n^1 + C_n^1 C_n^2 + C_n^2 C_n^3 + \dots + C_n^{n-1} C_n^n$. 而在 $(1+x)^{2n}$ 的展开式中含 x^{n+1} 项的系数是 $C_n^{n+1} = \frac{(2n)!}{(n+1)!(2n-n-1)!} = \frac{(2n)!}{(n+1)!(n-1)!}$. 由 $(1+x)^n \cdot (1+x)^n = (1+x)^{2n}$,等式两边展开式中对应项的系数应该相等,于是 $C_n^0 C_n^1 + C_n^1 C_n^2 + C_n^2 C_n^3 + \dots + C_n^{n-1} C_n^n = \frac{(2n)!}{(n+1)!(n-1)!}$.

186. 求证: $(C_n^0)^2 + (C_n^1)^2 + (C_n^2)^2 + \cdots + (C_n^n)^2 = C_{2n}^n (n \in \mathbb{N}).$

解答在这里从 2n 个不同的元素中选取 n 个元素的取法数是 \mathbf{C}_{2n}^n . 我们也可将 2n 个元素平均分成甲、乙两组, 那么取法也可按以下分类进行.

甲组	乙组	取法数
取0个	取 n 个	$\mathbf{C}_n^0 \mathbf{C}_n^n$
取1个	取 n-1 个	$\mathbf{C}_n^1 \mathbf{C}_n^{n-1}$
取2个	取 n-2 个	$\mathbf{C}_n^2 \mathbf{C}_n^{n-2}$
取 n 个	取0个	$C_n^n C_n^0$

由加法原理, $C_n^0 C_n^n + C_n^1 C_n^{n-1} + C_n^2 C_n^{n-2} + \cdots + C_n^n C_n^0 = C_{2n}^n$, 即 $(C_n^0)^2 + (C_n^1)^2 + (C_n^2)^2 + \cdots + (C_n^n)^2 = C_{2n}^n$.

187. 求 53⁵³ 除以 9 的余数.

解答在这里因为
$$53^{53} = (54-1)^{53}$$
 _____ = $54^{53} - C_{53}^1 \cdot 54^{52} + C_{53}^2 \cdot 54^{51} - C_{53}^3 \cdot 54^{50} + \dots + C_{53}^{52} \cdot 54 - 1$ = $9A - 1 = 9A - 9 + 8 = 9B + 8(A, B \in \mathbf{Z})$, 所以所求余数为 8.

188. 求证: $n^{n-1} - 1$ 能被 $(n-1)^2$ 整除 $(n \ge 3, n \in \mathbb{N})$.

解答在这里因为
$$n^{n-1}-1=[(n-1)+1]^{n-1}-1=(n-1)^{n-1}+\mathrm{C}_{n-1}^1(n-1)^{n-2}+\mathrm{C}_{n-1}^2(n-1)^{n-3}+\cdots+\mathrm{C}_{n-1}^{n-3}(n-1)^2+\mathrm{C}_{n-1}^{n-2}(n-1)$$
 而 $\mathrm{C}_{n-1}^{n-2}(n-1)=\mathrm{C}_{n-1}^1(n-1)=(n-1)^2,$ 所以 $n^{n-1}-1$ 能被 $(n-1)^2$ 整除.

189. 求证: $2 < (1 + \frac{1}{n})^n < 3(n \ge 2, n \in \mathbb{N}).$

解答在这里显然,
$$(1+\frac{1}{n})^n = 1 + C_n^1 \cdot \frac{1}{n} + C_n^2 \cdot (\frac{1}{n})^2 + \dots + C_n^n \cdot (\frac{1}{n})^n > 2$$
. 而

$$(1+\frac{1}{n})^n = 1 + C_n^1 \cdot \frac{1}{n} + C_n^2 \cdot (\frac{1}{n})^2 + C_n^3 (\frac{1}{n})^3 + \dots + C_n^n \cdot (\frac{1}{n})^n$$

$$= 2 + \frac{n(n-1)}{2!} \cdot \frac{1}{n^2} + \frac{n(n-1)(n-2)}{3!} \cdot \frac{1}{n^3} + \dots + \frac{n!}{n!} \cdot \frac{1}{n^n}$$

$$= 2 + \frac{1}{2!}(1-\frac{1}{n}) + \frac{1}{3!}(1-\frac{1}{n})(1-\frac{2}{n}) + \dots + \frac{1}{n!}(1-\frac{1}{n})(1-\frac{2}{n}) \cdot \dots \cdot (1-\frac{n-1}{n})$$

$$< 2 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} < 2 + \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1)n}$$

$$= 2 + \left[(1-\frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{4}) + \dots + (\frac{1}{n-1} - \frac{1}{n}) \right] = 3 - \frac{1}{n} < 3.$$

190. 在 $(a-b)^n (n \in \mathbb{N})$ 的展开式中, 第 r 项的二项式系数为 ().

A.
$$C_n^r$$

B.
$$C_n^{r-1}$$

C.
$$(-1)^r C_n^r$$

D.
$$(-1)^{r-1}C_n^{r-1}$$

191. $(\sqrt{3}i - x)^{10}$ 展开式的第 8 项是 ().

A.
$$-360\sqrt{3}x^{7}i$$

B.
$$-135x^3$$

C.
$$360\sqrt{3}x^7i$$

D.
$$3240\sqrt{3}x^3i$$

192. $(\frac{1}{\sqrt{3}} - \sqrt[3]{x})^{20}$ 的展开式中, 不含 x 的项是 ().

A. 第 11 项

B. 第 12 项

C. 第 13 项

D. 第 7 项或第 13 项

193. 若二项式 $(\sqrt[3]{x} - \frac{2}{x})^n$ 展开式中第 8 项是含 $\sqrt[3]{x}$ 的项, 则自然数 n 的值等于 ().

A. 27

B. 28

C. 29

D. 30

	A. 19	B. 20	C. 21	D. 22		
195.	若 $(1+x)^8$ 展开式的中间三项依次成等差数列, 则 x 的值等于 ().					
	A. $\frac{1}{2}$ 或 2	B. $\frac{1}{2}$ 或 4	C. 2 或 4	D. 2 或 $\frac{1}{4}$		
196.	在 $(x-1)^9$ 按 x 降幂排列的	展开式中,系数最大的项是().			
	A. 第 4 项和第 5 项	B. 第 5 项	C. 第 5 项和第 6 项	D. 第 6 项		
197.	在 $(x + \frac{2}{x^2})^n$ 的展开式中,第 3 项为常数,则中间项的表达式为 $($).					
	A. 60	B. $160x^{-3}$	C. 672	D. $960x^{-3}$		
198.	$(x+1)^4 - 4(x+1)^3 + 6(x+1)^4 +$	$(-1)^2 - 4(x+1) + 1$ 等于 ().			
	A. x^4	B. $-x^4$	C. 1	D1		
199.	在 $(x+y)^n$ 的展开式中, 若領	第 7 项的系数最大, 则 n 等于	· ().			
	A. 11, 12, 13	B. 13, 14	C. 11, 15	D. 12,13		
200.	在 $(x-\frac{1}{x})^9$ 的展开式中, x^3 的系数为					
201.	在 $(ax+1)^7$ 的展开式中,若 x^3 的系数是 x^2 的系数与 x^4 的系数的等差中项,且 $a>1$,则 a 的值等					
	于					
202.	在 $(x+1+i)^{10}$ 的展开式中,	x ⁶ 的系数是				
203.	3. 若 $a>0, n\in \mathbb{N},$ 且 $(ax+1)^{2n}$ 和 $(x+a)^{2n+1}$ 展开式的 x^n 的系数相等, 则 a 的収值范围是					
	若 $a > 0, n \in \mathbb{N}, $ 且 $(ax + 1)$	2n 和 $(x+a)^{2n+1}$ 展开式的	x^n 的系数相等, 则 a 的収值	范围是		
204.	若 $a > 0, n \in \mathbb{N}$, 且 $(ax + 1)$ $(\sqrt{x} + \sqrt[3]{x^2})^{12}$ 的展开式的第		x^n 的系数相等, 则 a 的収值	范围是		
		;5 项是		范围是		
205.	$(\sqrt{x} + \sqrt[3]{x^2})^{12}$ 的展开式的第	;5 项是 的第 5 项是 –480, 则复数 z	的值是	范围是		
205. 206.	$(\sqrt{x}+\sqrt[3]{x^2})^{12}$ 的展开式的第 若二项式 $(z-2)^6$ 展开式中	5 项是 的第 5 项是 -480, 则复数 z 5 项和第 7 项系数相等, 则系	的值是 数的最大项是	范围是		
205.206.207.	$(\sqrt{x} + \sqrt[3]{x^2})^{12}$ 的展开式的第 若二项式 $(z-2)^6$ 展开式中日若 $(x+\frac{1}{x})^n$ 展开式中的第 3	5 项是 的第 5 项是 -480, 则复数 z 5 项和第 7 项系数相等, 则系 5 , 不含 a 的项是第	的值是 数的最大项是	范围是		
205.206.207.208.209.	$(\sqrt{x} + \sqrt[3]{x^2})^{12}$ 的展开式的第 若二项式 $(z-2)^6$ 展开式中的第 3 在 $(\sqrt[3]{a} - \frac{1}{\sqrt{a}})^{15}$ 的展开式中 $(\frac{\sqrt{x}}{3} + \frac{3}{\sqrt{x}})^{12}$ 展开式的中间 $(2x^2 + \frac{1}{x})^{12}$ 展开式的常数项	5 5 项是 的第 5 项是 -480, 则复数 z 5 项和第 7 项系数相等, 则系 1, 不含 a 的项是第 1一项等于	的值是 数的最大项是 _ 项.			
205.206.207.208.209.	$(\sqrt{x} + \sqrt[3]{x^2})^{12}$ 的展开式的第 若二项式 $(z-2)^6$ 展开式中日若 $(x+\frac{1}{x})^n$ 展开式中的第 3 在 $(\sqrt[3]{a} - \frac{1}{\sqrt{a}})^{15}$ 的展开式中	5 5 项是 的第 5 项是 -480, 则复数 z 5 项和第 7 项系数相等, 则系 1, 不含 a 的项是第 1一项等于	的值是 数的最大项是 _ 项.			
205.206.207.208.209.210.	$(\sqrt{x} + \sqrt[3]{x^2})^{12}$ 的展开式的第 若二项式 $(z-2)^6$ 展开式中的第 3 在 $(\sqrt[3]{a} - \frac{1}{\sqrt{a}})^{15}$ 的展开式中 $(\frac{\sqrt{x}}{3} + \frac{3}{\sqrt{x}})^{12}$ 展开式的中间 $(2x^2 + \frac{1}{x})^{12}$ 展开式的常数项	的第 5 项是 的第 5 项是 -480, 则复数 z 5 项和第 7 项系数相等, 则系 1, 不含 a 的项是第 1一项等于 5, 6, 7 项的系数成等差数列,	的值是 数的最大项是 _ 项.			

194. 在 $(1+x)^n$ 的二项展开式中, 若第 9 项的系数与第 13 项的系数相等, 则第 20 项的系数等于 ().

213.	在 $(1-x)^9$ 的展开式中, x 的	奇次项系数之和等于	·				
214.	若 $(4x-1)^6 = a_6x^6 + a_5x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$,则 $a_6 + a_5 + a_4 + a_3 + a_2 + a_1 + a_0$ 的值等于						
215.	若 $(1-2x)^6 = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + a_6x^6$,则 $a_6 - a_5 + a_4 - a_3 + a_2 - a_1$ 的值等于						
216.	在 $(2x-1)^5$ 的展开式中, 各项系数的绝对值之和等于						
217.	. 在 $(x+2y)(2x+y)^2(x+y)^3$ 的展开式中, 各项系数的和是						
218.							
219.	$1 + 7C_n^1 + 7^2C_n^2 + 7^3C_n^3 + \cdots$	$\cdot + 7^n C_n^n = \underline{\hspace{1cm}}$					
220.	$1 - 2C_n^1 + 4C_n^2 - \dots + (-2)^n$	$^{n}C_{n}^{n}=$					
221.	$3 + 3^{n-1}C_n^1 + 3^{n-2}C_n^2 + \cdots$	$+3C_n^{n-1}+C_n^n=$					
	$C_{21}^0 - C_{21}^2 + C_{21}^4 - C_{21}^6 + \cdots$						
	. 若 $(2x^2 - \frac{1}{\sqrt[3]{x}})^n$ 的展开式中含有非零常数项, 则正整数 n 的最小值是 $($ $)$.						
	A. 8	B. 6	C. 5	D. 4			
224.	在 $(\sqrt[5]{3} + \sqrt[7]{5})^{24}$ 的展开式中,	整数项是 ().					
	A. 第 12 项	B. 第 13 项	C. 第 14 项	D. 第 15 项			
225.	在 $(\sqrt{3}x + \sqrt[3]{2})^{100}$ 的展开式	\mathbf{h},x 的系数为有理数的项共	有().				
	A. 15 项	В. 16 项	C. 17 项	D. 18 项			
226.	在 $(1-x)^n(1+x)^n$ 的展开式	$CP,$ 若含 x^4 项的系数是 10	,则自然数 n 的值等于 ().			
	A. 3	B. 4	C. 5	D. 6			
227.	在二项式 $(1+x)^n$ 的展开式中, 若相邻两项的系数之比为 $8:15$, 则 n 的最小值是 ().						
	A. 21	B. 22	C. 23	D. 24			
228.	若集合 $P = \{$ 所有小于1993的正奇数 $\}$,则 P 的非空真子集的个数是 ().						
	A. 2^{996}	B. $2^{996} - 2$	C. $2^{996} - 1$	D. 2^{995}			
229.	在 $(2-3x)^n$ 的展开式中, 各	项系数之和是().					
	A. 1		. n 为偶数时是 2, n 为奇数				
000	C. -1). n 为偶数时是 1, n 为奇数	时是 −1			
230.	在 $(1+x)^3 + (1+x)^4 + \cdots$			D 03			
	A. C_{n+3}^3	B. $C_{n+3}^3 - 1$	C. $C_{n+2}^{s} - 1$	D. C_{n+2}^3			

- 231. $(a+b+c)^{10}$ 展开式的项数共有 ().
 - A. 11 项
- B. 66 项
- C. 121 项
- D. 132 项
- 232. 在 $(x+1)(2x+1)(3x+1)\cdots(nx+1)$ 的展开式中, x 的一次项的系数是 ().
 - A. C_n^1

B. C_n^2

- C. C_{n+1}^{1}
- D. C_{n+1}^2
- 233. 在 $(1+x_1)(1+x_2)^2 \cdots (1+x_{n-1})^{n-1}(1+x_n)^n$ 展开式中, 各项系数之和是 ().
 - A. $2^{n(n+1)}$
- B. $2^{\frac{n(n+1)}{2}}$
- C. $2^{n+1} + 2$
- D. $2(2^n 1)$

- 234. 55⁵⁵ 被 8 除所得的余数是 ().
 - A. 7

B. -7

C. 1

D. -1

- 235. 求 $(x^2 + \frac{4}{x^2} 4)^5$ 展开式中含 x^4 项的系数.
- 236. 求 $(x^2 + 3x + 2)^5$ 展开式中含 x 项的系数.
- 237. 求 $(1-x)^5(1+x+x^2)^4$ 展开式中含 x^7 项的系数.
- 238. 求 $(x-2)^4(1+x)^5$ 展开式中含 x^6 项的系数.
- 239. 求 $(x^2 + x 2)^4$ 展开式中含 x^2 项的系数.
- 240. 求 $(2\sqrt{x} \frac{1}{\sqrt{x}})^6$ 展开式中, x 的一次幂的系数.
- 241. 求 $(x+y-3z)^8$ 的展开式中含 x^5yz^2 项的系数.
- 242. 求 $(x + 2y + z)^9$ 展开式中含 $x^2y^3z^4$ 项的系数.
- 243. 求 $(1-2x)^5(2+x)$ 展开式中含 x^3 项的系数.
- 244. 求 $(1+x+x^2)(1-x)^{10}$ 展开式中含 x^4 项的系数.
- 245. \vec{x} $(1+x)^{2n} + x(1+x)^{2n-1} + x^2(1+x)^{2n-2} + \cdots + x^n \cdot (1+x)^n$ 展开式中含 x^n 项的系数.
- 246. 求 $(x-1)-(x-1)^2+(x-1)^3-(x-1)^4+(x-1)^5$ 的展开式中含 x^2 项的系数.
- 247. 若 $(x + x^{\lg x})^5$ 的展开式的第 4 项为 10^6 , 求 x 的值.
- 248. 若 $x(1-x)^4 + x^2(1+2x)^k + x^3(1+3x)^{12}$ 的展开式中 x^4 的系数是 144, 求 k 的值.
- 249. 若 $(x^{\lg x}+1)^n$ 展开式中最后 3 项的二项式系数的和是 22, 而它的中间项是 20000, 求 x 的值.
- 250. 已知 $(x \sin \alpha + 1)^6$ 的展开式中 x^2 项的系数与 $(x \frac{15}{2} \cos \alpha)^4$ 的展开式中 x^3 项的系数相等, 求 α 的值.
- 251. 已知 $(a+b)^n$ 展开式的末 3 项系数之和为 22, 又 $(x^{\lg x}-3)^n$ 展开式的中间项等于 -540000, 求 x 的值.
- 252. 求 $(|x| + \frac{1}{|x|} 2)^3$ 展开式中的常数项.

- 253. 求 $[(1 + \log_3 x)(1 + \log_x 3)]^n$ 的展开式中不含 x 的项.
- 254. 已知 $(\sqrt{x} + \frac{2}{x^2})^n$ 展开式中的第5 项系数与第3 项系数之比是 56:3, 求展开式中不含 x 的项.
- 255. 已知 $(\sqrt{x} + \frac{1}{2 \cdot \sqrt[4]{x}})^n$ 展开式中前 3 项的系数依次成等差数列,求展开式中所有的有理项.
- 256. 已知 $(x \cdot \sqrt{x} \frac{1}{x})^6$ 展开式的第 5 项等于 $\frac{15}{2}$, 求 $\lim_{n \to \infty} (x^{-1} + x^{-2} + \dots + x^{-n})$.
- 257. 已知多项式 $f(x) = (1+x)^m + (1+x)^n (m \in \mathbb{N}, n \in \mathbb{N})$ 的展开式中 x 项的系数为 19.
 - (1) 求 f(x) 中含 x^2 项的系数的最小值;
 - (2) 对于使 f(x) 的 x^2 项的系数取最小值时的 $m, n, \vec{x} f(x)$ 中含 x^7 的项.
- 258. 在 $(x+1)(x+2)(x+3)\cdots(x+10)$ 的展开式中, 7 的系数是多少? x^8 的系数又是多少?
- 259. 求 $(x+1)(x+2)(x+3)\cdots(x+n)$ 展开式中含 x^{n-2} 项的系数.
- 260. 求多项式 $(x^2 + x 1)^9 (2x + 1)^4$ 展开式中 x 的奇次项系数之和.
- 261. 求多项式 $(x^2 + 2x + 2)^{1993} + (x^2 3x 3)^{1993}$ 展开式中 x 的偶次项系数之和.
- 262. 求 $(2-5x+2x^2)^5(2-x)^7$ 展开后各项系数的和.
- 263. 求 $(x^3 + 2x + 1)(5x^2 + 4)$ 展开后各项系数的和.
- 264. 已知 $(1+x)^n$ 展开式中奇数项之和为 A, 偶数项之和为 B, 试证: $A^2-B^2=(1-x^2)^n$.
- 265. 若 $(a+b)^n$ 展开式的所有奇数项的二项式系数之和为 1024,则展开式中间项的系数是 ().
 - A. 330

B. 462

C. 682

- D. 792
- 266. 在 $(x-\frac{1}{x})^n$ 的展开式中, 若奇数项的系数之和为 32, 则含 x^2 项的系数是 ().
 - A. -20

B. -15

C. 15

D. 20

- 267. 若 a 为常数, 则 $\lim_{n \to \infty} \frac{a + \mathcal{C}_n^1 + \mathcal{C}_n^2 + \dots + \mathcal{C}_n^n}{2^n}$ 的值等于 ().
 - A. 0

B. $\frac{1}{2}$

C. 1

- D. $\frac{a}{2}$
- 268. 记 $(1+2x)^n$ 展开式中各项系数和为 a_n , 其二项式系数和为 b_n , 则 $\lim_{n\to\infty}\frac{b_n-a_n}{b_n+a_n}$ 为 (
 - A. 1

B. 0

C. -1

- D. 不存在
- 269. 设 $(1-2x)^8 = a_0 + a_1x + a_2x^2 + \dots + a_8x^8$, 则 $|a_0| + |a_1| + |a_2| + \dots + |a_8|$ 是 ().
 - A. -1

B. 1

C. 2^{8}

D. 3^{8}

- 270. 在 $(x-1)^{11}$ 的展开式中, x 的偶次幂项的系数和为_____.
- 271. 若 2000 < $C_n^1 + C_n^2 + C_n^3 + \cdots + C_n^n <$ 3000, 则 n = .

- 273. 设含有 10 个元素的集合的全部子集为 S, 其中由 3 个元素组成的子集数为 T, 则 $\frac{T}{S}$ 的值为______.
- 274. 设 $(1+x)+(1+x)^2+(1+x)^3+\cdots+(1+x)^n=b_0+b_1x+b_2x^2+\cdots+b_nx^n$, 且 $b_0+b_1+\cdots+b_n=30$, 则自然数 n 的值等于 ().
 - A. 4

В. 5

C. 6

- D. 8
- 275. 在 $(x^2 + x 1)^{100} + (x^2 x 1)^{100}$ 的展开式中, x 的偶次项系数之和为 ().
 - A. 4

B. 5

C. 6

D. 8

- 276. $C_n^0 + 2C_n^1 + 2^2C_n^2 + \cdots + 2^nC_n^n$ 的值为 ().
 - $A. 2^n$

B. 2^{n-1}

C. 3^n

D. 3^{n-1}

- 277. 10110-1 的末尾连续零的个数是 ().
 - A. 1

B 2

C. 3

- D 4
- 278. 若 $\mathbf{C}_n^0(x+1)^n \mathbf{C}_n^1(x+1)^{n-1} + \mathbf{C}_n^2(x+1)^{n-2} \dots + (-1)^n \mathbf{C}_n^n = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$,则 $a_1 + a_2 + \dots + a_n = \underline{\hspace{1cm}}$.
- 279. 已知 x 为实数, i 为虚数单位, 则 $(1+ix)^{50}$ 展开式中实系数项的系数和为_____.
- 280. 设 $a \neq \sqrt{2}$ 的整数部分, $b \neq \sqrt{2}$ 的小数部分, 则 $(a \frac{1}{b})^6$ 展开式的中间项是______.
- 281. 设 $(2x+x^{\lg x})^n$ 展开式各项的二项式系数之和为 256,且二项式系数最大项的值为 1120,求 x.
- 282. 已知 $(\sqrt{x} + \frac{1}{\sqrt[3]{x}})^n$ 展开式系数之和比 $(a+b)^{2n}$ 展开式的系数之和小 240, 求 $(\sqrt{x} + \frac{1}{\sqrt[3]{x}})^n$ 展开式中系数最大的项.
- 283. 求满足 $\{a,b\} \subset A \subseteq \{a,b,c,d,e,f,g\}$ 的集合 A 的个数.
- 284. 设集合 $A = \{0, 2, 5, 7, 9\}$, 从集合 A 中任取两个元素相乘, 它们的积组成集合 B, 求集合 B 的子集的个数.
- 285. 求和: $\mathcal{C}^0_{100} + 4\mathcal{C}^1_{100} + 7\mathcal{C}^2_{100} + \dots + (3n-2)\mathcal{C}^{n-1}_{100} + \dots + 298\mathcal{C}^{99}_{100} + 301\mathcal{C}^{100}_{100} (n \in \mathbb{N}, \ 1 \le n \le 101).$
- 286. 设 $a_0, a_1, a_2, \dots, a_n$ 是等差数列, 求证: $a_0 + C_n^1 a_1 + C_n^2 a_2 + \dots + C_n^n a_n = (a_0 + a_n) \cdot 2^{n-1}$.
- 287. 若 n 为奇数, 求 $7^n + C_n^1 \cdot 7^{n-1} + C_n^2 \cdot 7^{n-2} + C_n^3 7^{n-3} + \dots + C_n^{n-2} \cdot 7^2 + C_n^{n-1} \cdot 7$ 被 9 除所得的余数.
- 288. 求 4713 被 5 除的余数.
- 289. 求 9192 除以 8 所得的余数.
- 290. 求证: $3^{2n} 8n 1(n \in \mathbb{N})$ 能被 64 整除.
- 291. 求证: 数列 $65,65 \times 66,65 \times 66^2,65 \times 66^3,\cdots,65 \times 66^{48},65 \times 66^{49}$ 之和必能被 67 整除.

- 292. 已知 $2^{n+2} \times 3^n + 5n a(n \in \mathbb{N})$ 能被 25 整除, 求 a 的最小正值.
- 293. 求 $x^{10} 3$ 除以 $(x 1)^2$ 所得的余式.
- 294. 求证: 当 $n \ge 3$, $n \in \mathbb{N}$ 时, $n^{n-1} 1$ 能被 $(n-1)^2$ 整除.
- 295. $\mathcal{C}(x-2)^8 = a_8 x^8 + a_7 x^7 + \dots + a_1 x + a_0, \ \mathcal{R}(a_8 + a_6 + a_4 + a_2)$
- 296. 求 $(1-x)+(1-x)^2+(1-x)^3+\cdots+(1-x)^n$ 展开式中所有奇次项系数的和.
- 297. 已知 $(3-x)^n = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_nx^n$, 求 $a_1 + 2a_2 + 2^2a_3 + \dots + 2^{n-1}a_n$.
- 298. 承证: $C_n^0 C_n^1 + C_n^1 C_n^2 + \dots + C_n^{n-1} C_n^n = \frac{(2n)!}{(n-1)!(n+1)!}$
- 299. 求证: $C_n^0 C_m^p + C_n^1 C_m^{p-1} + \dots + C_n^p C_m^0 = C_{m-n}^p (p \le m, n)$.
- 300. 利用 $kC_n^k = nC_{n-1}^{k-1}$, 求证: $C_n^1 + 2C_n^2 + 3C_n^3 + \cdots + nC_n^n = n \cdot 2^{n-1}$.
- 301. 利用 $kC_n^k = nC_{n-1}^{k-1}$, 求证: $C_n^1 2C_n^2 + 3C_n^3 + \cdots + (-1)^{n-1}nC_n^n = 0 (n \ge 2, n \in \mathbb{N})$.
- 302. 利用 $kC_n^k = nC_{n-1}^{k-1}$, 求证: $C_n^0 + 2C_n^1 + 3C_n^2 + \cdots + (n+1)C_n^n = (n+2) \cdot 2^{n-1}$.
- 303. 已知 $n \in \mathbb{N}$, $n \ge 2$, 求证: $2^n > 1 + 2 + \cdots + n$.
- 304. 求证: $3^n > 2^{n-1}(n+2)(n > 2, n \in \mathbf{N})$.
- 305. 已知正数 a,b,c 满足 a+b+c=abc, 求证: $a^n+b^n+c^n>3(1+\frac{n}{2})(n\in {\bf N}).$
- 306. 利用数学归纳法证明: $(\frac{n}{2})^n > n! (n \in \mathbb{N} \text{ 且 } n \geq 6).$
- 307. 已知 $C_{18}^n=C_{18}^{n+2},\,4P_m^2=P_{m+1}^4,\,$ 求 $(1+\sqrt{m}\mathrm{i})^n$ 展开式中所有实数项的和.
- 308. 若实数 x, y 满足 x + y = 1, 求证: $x^5 + y^5 \ge \frac{1}{16}$.
- 309. 已知: |x| < 1, $n \in \mathbb{N}$, $n \ge 2$, 求证: $(1-x)^n + (1+x)^n < 2^n$.
- 310. 计算: $C_{21}^0 C_{21}^2 + C_{21}^4 C_{21}^6 + C_{21}^8 C_{21}^{10} + C_{21}^{12} C_{21}^{14} + C_{21}^{16} C_{21}^{18} + C_{21}^{20}$.
- - (1) 用 q, n 表示 A_n ;
 - (2) 当 -3 < q < 1 时, 求 $\lim_{n \to \infty} \frac{A_n}{2^n}$
 - (3) 设 $b_1 + b_2 + \dots + b_n = \frac{A_n}{2^n}$, 求证: 数列 $\{b_n\}$ 是等比数列.
- 313. 设 $A_n = (1 + \lg x)^n$, $B_n = 1 + n \lg x + \frac{n(n-1)}{2} \lg^2 x (n \ge 3, n \in \mathbf{N})$, 且 $x > \frac{1}{10}$, 试比较 A_n 和 B_n 的大小,并证明你的结论.

- 314. 6 人按下列要求分组, 各有多少种分法.
 - (1) 分成人数为 2, 4 的两组;
 - (2) 分成人数相等的两组;
 - (3) 平均分成两组分别去植树和扫地.
- 315. 某校以单循环制方法进行排球比赛, 其中有两个班级各比赛了 3 次后, 不再参加比赛, 这样一共进行了 84 场 比赛, 问: 开始有多少班级参加比赛?
- 316. 红、黄、绿 3 种颜色的卡片分别写有 A, B, C, D, EE 字母各一张, 每次取出 5 张, 要求字母各不相同、3 种颜色齐全的取法有多少种?
- 317. 设 n 为偶数, 从 $1, 2, \dots, n$ 中选 3 数使之不构成等差数列, 问: 这样的选法有多少种?
- 318. 设集合 $P = \{a_1, a_2, \dots, a_n\}$, 在 P 中取子集 A_1, A_2, A_3 , 使 $A_1 \cap A_2 \cap A_3 = \emptyset$, 这样子集的集合 $\{A_1, A_2, A_3\}$ 共有多少个?
- 319. 如图, 有纵路 10 条, 横路 2 条, 从 A 沿道路行走到 B, 规定行走中不得重走已走过的路, 共有多少种不同的 走法?

- 320. 由 1 分, 2 分, 5 分, 1 角, 2 角, 5 角, 1 元, 2 元, 5 元, 10 元人民币各一张, 可组成多少种不同的币值?
- 321. 壹分币 3 枚、贰角币 6 张、拾元币 4 张, 可以组成多少种不同的币值?
- 322. 求 21600 的正约数的个数 (1 和 21600 也是约数) 及所有约数之和.
- 323. 设自然数 $N = \{1, 2, 3, \cdots\}$ 的子集中含有 4 个元素的子集的个数记为 m, 且这 m 个集合中所有元素之和为 $\frac{1}{12} P^5_{100}$, 求 m.
- 324. 有 11 名工人, 其中 5 名只会做钳工, 4 名只会做车工, 2 名既会做钳工, 又会做车工, 今要选 4 名车工、4 名钳工, 有多少种不同的选法?
- 325. 设 $(1+x+x^2)^n = a_0 + a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$, 求 $a_0 + a_2 + a_4 + \dots + a_{2n}$ 的值.
- 326. 求 $(\sqrt{x}+2)^{2n+1}$ 的展开式中 x 的整数次幂的各项系数之和.
- 327. 求 $(1+i)^{4k-2} (k \in \mathbb{N})$ 展开式中奇数项之和.
- 328. 求证: $(3 + \sqrt{7})^n (n \in \mathbb{N}, n \ge 2)$ 的整数部分为奇数.