UBC Virtual Physics Circle

The Hacker's Guide to Fermi Estimates

Pedram Amani May 28, 2020

Why estimate?

Physics is fundamentally empirical

Use estimation techniques to

- Apply simplified models quickly
- Check a more rigorous calculation
- Fulfill your curiosity

A Fermi estimate

What is the height of this building?

A Fermi estimate

What is the height of this building?

Reasonable estimate: 56 m

But unnecessary precision! Perhaps keep one significant figure: $60\ m$

Even further: $\sim 100 = 10^2 \ m$

The power of 10

To the nearest order of magnitude:

Earth's population ~ 10 billion $= 10^{10}$

My height, and yours $\sim 1 = 10^0 \ m$

Neuron resting potential $\, \sim -100 \ mV = -10^{-1} \ V \,$

A comparison

Consider the building height in previous example. Is the value closer to my height or the height of the Eiffel tower?

A comparison

Consider the building height in previous example. Is the value closer to my height or the height of the Eiffel tower?

My height $\approx 2 m$

Building height $\approx 60 m$

Eiffel tower height $\approx 300 m$

A comparison

Dividing the values:

$$rac{ ext{Building height}}{ ext{My height}} = 30$$

$$\frac{\text{Eiffel tower height}}{\text{Building height}} = 5$$

The logarithmic scale

Subtracting on the logarithmic scale is dividing on the linear scale.

$$\log(60) - \log(2) = \log(\frac{60}{2}) \approx 1.5$$

$$\log(300) - \log(60) = \log(\frac{300}{60}) \approx 0.7$$

Another interesting result: $4 \approx 10^{0.6} \approx 10$

Moon people

Without looking it up, estimate the number of people that have walked on the moon.

Moon people

Without looking it up, estimate the number of people that have walked on the moon.

A good general approach is to average an underestimate and overestimate.

Underestimate: 1 person

Overestimate: 100 people

Geometric mean

Averaging two estimates:

$$rac{\log(1)+\log(100)}{2}=1=\log(10)$$
 $\sqrt{1 imes100}=10$ people

More generally:
$$\bar{a} = \sqrt{a_1 a_2 \cdots a_n}$$

Short break

Meanwhile, feel free to ask questions!

Power for all

Fermi estimate the annual electricity usage of an average household in Vancouver. Answer in $\,GJ\,$ units.

Power for all

Fermi estimate the annual electricity usage of an average household in Vancouver. Answer in $\,GJ\,$ units.

Instead of estimating right away, we can break it down:

- What is the average power usage per person?
- How many seconds in a year?
- How many people per household?

Sub-estimates

Using this divide and conquer strategy:

Annual energy usage =
$$\frac{10 \cdot 60 J}{1 s \cdot 1 \text{ person}}$$

$$\times \frac{3600 \cdot 24 \cdot 365 \, s}{1 \, \text{year}} \times \frac{4 \, \text{person}}{1 \, \text{household}}$$

$$pprox 80 \frac{GJ}{1 \text{ household} \cdot 1 \text{ year}}$$

Brilliant idea

Can we supply a significant portion of this energy by harvesting potential energy from rainwater? We get a lot of rain afterall.

Brilliant idea

Can we supply a significant portion of this energy by harvesting potential energy from rainwater? We get a lot of rain afterall.

$$U = mgh = \rho Vgh$$

Useful potential energy =
$$\frac{10^3 \cdot 1 \cdot 10 \cdot 3 J}{1 m^2}$$

$$imes rac{5 \cdot 10 \ m^2}{1 \ ext{roof}} imes 0.5 pprox 0.8 \ rac{MJ}{1 \ ext{roof}}$$

And of course

How likely is it that you contract Covid-19 in the next 2 weeks?

And of course

How likely is it that you contract Covid-19 in the next 2 weeks?

Probability of asymptomatic
$$= \frac{100 \text{ asymptomatic cases}}{5 \text{ million people}} = 2 \cdot 10^{-5}$$

Probability of contraction = 2 weeks

$$imes rac{1 ext{ close contact}}{1 ext{ week}} imes rac{2 \cdot 10^{-5} ext{ contraction probability}}{1 ext{ close contact}} pprox 4 \cdot 10^{-5}$$

New cases per 2 weeks = 200

Thank you.

Next time: Random walks!

