LAB1 Report

Pin-Jing, Li (111511015 ouo.ee11@nycu.edu.tw) Jing-Kai, Huang Duan-Kai, Wu

September 17, 2025

In lab 1 We explored the basic configuration of e^2 studio, ultrasound module and the basic signal processing flow of the wireless transmitted signal.

1 Hardware configuration

2 Error Source Analysis

We inspect the relative distance and try to determine the model of the error.

Pair (cm)	$n_{ m theory}^*$	$n_{ m meas}$	$\Delta n_{\mathrm{theory}}^*$	$\Delta n_{\rm meas}$	$\frac{\Delta n_{\mathrm{meas}}}{\Delta n_{\mathrm{theory}}^*}$	Relative Error (%)
$20\rightarrow40$	$184.97 { o} 369.94$	$231 \rightarrow 412$	184.97	181	0.979	-2.1
$40 \rightarrow 60$	$369.94 { o} 554.91$	$412 \rightarrow 598$	184.97	186	1.006	+0.6
$60 \rightarrow 80$	$554.91 { o} 739.88$	$598 \rightarrow 773$	184.97	175	0.946	-5.4
80→100	$739.88 { o} 924.86$	$773 \to 953$	184.97	180	0.973	-2.7

Table 1: Relative Distance Comparison (Measured vs. Theoretical)

We retrieve back $n_{\rm meas}$ by aligning the starting sample by the maximum Tx data. We plot out the

Figure 1: Comparing robust and non-robust design for linear precoder

$$\Delta = a + bn_{\text{meas}}$$

With linear regression we found $a \simeq 53.14, b \simeq -0.02469,$ and we therefore perform the correction on the measurements

3 Signal Processing

some discussion below:

True Distance (cm)	$n_{\rm meas}$	\hat{n} (Corrected)	n^* (Theory)	Error After Correction (cm)
20	231	183.56	184.97	-0.15
40	412	369.04	369.94	-0.10
60	598	559.39	554.91	+0.48
80	773	738.65	739.88	-0.13
100	953	922.23	924.86	-0.28

Table 2: Corrected Sample Index and Residual Distance Error (Linear Model)

Figure 2: block diagram: signal \rightarrow BPF \rightarrow demod (mixer) \rightarrow LPF \rightarrow envelope.

• Correct "Detection" threshold. The physically correct measure of the time of flight (TOF) would be the *wavefront* of the received signal.

Figure 3: bpf

Bandpass Filtering

Given the sampled received signal x(t), we first apply a bandpass filter to isolate the signal components near the carrier frequency. The bandpass-filtered signal is

$$x_{\rm bpf}(t) = x(t) * h_{\rm bpf}(t) \tag{1}$$

where * denotes convolution and $h_{\rm bpf}(t)$ is the impulse response of the bandpass filter.

Filter Design. We choose a 6th-order IIR Butterworth bandpass filter with half-power frequencies

$$f_{\text{bp},1} = f_c - 2f_w, \qquad f_{\text{bp},2} = f_c + 2f_w,$$

where the carrier frequency $f_c=40~\mathrm{kHz}$ and the signal bandwidth is

$$f_w = \frac{1}{T_{\rm burst}} \approx 5 \text{ kHz}.$$

To ensure the filter design remains within valid frequency bounds, we compute:

$$\begin{split} \mathtt{bp_bw} &= \max \bigl(2f_w, \ 12 \ \mathrm{kHz} \bigr), \\ \mathtt{bp_f1} &= \max \bigl(10, \ f_c - \mathtt{bp_bw} \bigr), \\ \mathtt{bp_f2} &= \min \bigl(\frac{F_s}{2} - 10, \ f_c + \mathtt{bp_bw} \bigr), \end{split}$$

where F_s is the sampling frequency.

MATLAB Implementation. The filter is implemented and applied using MATLAB as follows:

```
bp_bw = max(2*fw, 12e3); % Bandwidth selection
bp_f1 = max(10, fc - bp_bw); % Lower cutoff frequency
bp_f2 = min(Fs/2-10, fc + bp_bw); % Upper cutoff frequency

dbp = designfilt('bandpassiir','FilterOrder',6, ...
    'HalfPowerFrequency1', bp_f1, ...
    'HalfPowerFrequency2', bp_f2, ...
    'SampleRate', Fs);

rx_bp = filtfilt(dbp, rx_dc); % Zero-phase filtering
```

This produces the zero-phase bandpass-filtered signal $x_{\text{bpf}}(t)$.

Demodulation

After bandpass filtering, we demodulate the signal by multiplying it with a complex exponential at the carrier frequency f_c :

$$x_{\rm de}(t) = x_{\rm bpf}(t) \cdot e^{-j2\pi f_c t} \tag{2}$$

In the frequency domain, this shifts the bandpass signal to baseband, centering its spectrum around 0 Hz.

```
w0 = 2*pi*fc/Fs; % Normalized carrier frequency (rad/sample)
lo = exp(-1j*w0*n); % Complex exponential for downconversion
bb = rx_bp .* lo; % Complex baseband signal
```


Figure 4: demod

Low-Pass Filtering

The downconverted signal still contains high-frequency components due to the product term. We pass $x_{de}(t)$ through a low-pass filter to retain only the baseband component.

Filter Design. We use a FIR low-pass filter with passband edge at $f_{\rm LP} = f_{\rm c}$ and stopband starting at $1.6 f_{\rm LP}$:

This yields the complex baseband signal $x_{\rm bb}(t)$ with high-frequency components removed.

_

Envelope Detection

Since the original signal is carried by f_c , it can be expressed as

$$x(t) = A\cos(2\pi f_c t + \phi).$$

After demodulation, we have

$$\text{Re}\{x_{\text{de}}(t)\} = x(t)\cos(2\pi f_c t) = \frac{A}{2}[\cos(\phi) + \cos(4\pi f_c t + \phi)].$$

Thus, the envelope amplitude is halved. We compensate for this loss by multiplying by 2 when extracting the magnitude of the analytic signal:

```
env = 2 * abs(bb_f);
```

This produces the envelope of the baseband signal, scaled back to its original amplitude.

Figure 5: Time domain signal before and after filtering & demodulation

References

- [1] C.-Y. Chang and C.C. Fung, "Sparsity enhanced mismatch model for robust spatial intercell interference cancelation in heterogeneous networks," *IEEE Trans. on Communications*, vol. 63(1), pp. 125-139, Jan. 2015.
- [2] I. P. Roberts, Y. Zhang, T. Osman, and A. Alkhateeb, "Real-world evaluation of full-duplex millimeter wave communication systems," *IEEE Trans. Wireless Commun.*, early access, Mar. 2024.

- [3] K. Shen and W. Yu, "Fractional Programming for Communication Systems—Part I: Power Control and Beamforming," *IEEE Transactions on Signal Processing*, vol. 66, no. 10, pp. 2616-2630, May 15, 2018, doi: 10.1109/TSP.2018.2812733.
- [4] J. Ho, A. Jain, and P. Abbeel, "Denoising diffusion probabilistic models," *Advances in Neural Information Processing Systems*, vol. 33, pp. 6840–6851, 2020.
- [5] T. O'Shea and J. Hoydis, "An introduction to deep learning for the physical layer," *IEEE Transactions on Cognitive Communications and Networking*, vol. 3, no. 4, pp. 563–575, 2017.
- [6] M. Servetnyk and C. C. Fung, "Distributed fronthaul-constrained joint transmission design and selection using augmented consensus-based dual decomposition," *Journal of Communications and Networks*, vol. 24, no. 4, pp. 419–437, Aug. 2022, doi: 10.23919/JCN.2022.000030.