10. BRUJULA DE TANGENTES

TAREA DE PREPARACION

Nombre Estudiante:	Código:	Plan:
Fecha:	C	

Lea cuidadosamente la guía para está práctica, consulte la bibliografía dada al final de la misma y responda las siguientes preguntas antes de la realización de la practica.

- 1. Encuentre la expresión para el campo magnético creado por dos bobinas circulares de radio *a* y *N* vueltas por donde circula una corriente constante *I*, en configuración Helmholtz (distancia entre sus centros igual al diámetro de las bobinas), en el punto equidistante entre ellas sobre el eje de las bobinas.
- 2. Calcule el valor de la intensidad del campo magnético (en Tesla y en Gauss) en el si su radio a es de 5 cm, N=10 vueltas y la corriente I que circula es de dos amperios. (1 $T=10^4$ Gauss)
- 3. Si Ud hace una medida experimental de un ángulo θ con una incertidumbre $\Delta\theta$, y necesita calcular la función $Tg\theta$, ¿cual es la incertidumbre en el cálculo de $Tg\theta$? (Repase la teoría de error). Calcule $Tg\theta$ y su incertidumbre $\Delta(Tg\theta)$ si la incertidumbre $\Delta\theta$ en la medida del ángulo es de 0.5° y los ángulos θ medidos son 5° , 10° 20° , 40° 60° . Repita los cálculos para la tangente y su incertidumbre si $\Delta\theta$ =2°. IMPORTANTE: PARA ESTOS CÁLCULOS UD DEBE TRABAJAR LOS ÁNGULOS Y SUS INCERTIDUMBRES EN RADIANES.
- 4. Identifique cada una de las magnitudes físicas que Ud. va a medir en este experimento. ¿Cuáles son las magnitudes físicas definidas en la ecuación que describe el fenómeno físico?. Si no coinciden, explique cómo va a obtener las magnitudes físicas de la ecuación para explicar el fenómeno en estudio.

10. BRUJULA DE TANGENTES

1. OBJETIVO

- Hacer una determinación del campo magnético terrestre, magnitud y dirección, en la ciudad de Cali.
- APLICAR LA TEORÍA DE PROPAGACIÓN DEL ERROR.

2. MODELO TEÓRICO

2.1. Determinación del campo magnético terrestre

Existe un campo magnético terrestre B_T cuyas líneas de campo corresponden a las de un gigantesco imán con sus polos Norte y Sur, que atraviesan la superficie terrestre. La línea de campo magnético terrestre que atraviesa la superficie terrestre en la ciudad de Cali la podemos descomponer con respecto a la superficie terrestre en una **componente vertical**

 $B_{T\perp}$ ó perpendicular a la superficie, y una **componente horizontal** $B_{T/\!/}$ ó paralela a la superficie, y un ángulo de inclinación β con respecto a la superficie de la tierra. Una brújula que se soporta de un pivote se orientará indicando la dirección Norte ó Sur de la componente del campo magnético terrestre $B_{T/\!/}$ en el plano de giro de la brújula. Si el campo magnético terrestre lo superponemos con un campo magnético uniforme cuya magnitud y dirección la conocemos perfectamente, una brújula se orientará a lo largo del vector campo magnético neto. Así podemos determinar experimentalmente el campo magnético terrestre, magnitud y dirección.

Dos bobinas circulares de radio R y N vueltas por donde circula una corriente constante I, en configuración Helmholtz (distancia entre sus centros igual al diámetro de las bobinas), crea un campo magnético uniforme B_B en todo punto dentro del volumen encerrado por ellas, Figura 1.

Figura 1. Bobinas en configuración Helmholtz: separadas una distancia igual a su radio, y

110 LABORATORIO FÍSICA FUNDAMENTAL III

Asumiendo un sistema de coordenadas centrado en el punto equidistante entre las dos bobinas sobre el eje de las mismas, la magnitud del campo magnético B_B creado en el origen de coordenadas está dada por la expresión:

Siendo \propto_o la permeabilidad magnética del vacío, cuyo valor en unidades fundamentales es $4\pi \times 10^{-7} \text{ N/A}^2$. La dirección del campo magnético va paralelo al eje de las bobinas y el sentido del vector B_B sigue la regla de la mano derecha. Experimentalmente, en el laboratorio el campo magnético de las bobinas Helmholtz es horizontal.

Debemos superponer la componente horizontal del campo magnético terrestre, $B_{T//}$, con el campo magnético de las bobinas Helmholtz, B_B , orientados de tal forma que son perpendiculares entre sí, como se muestra en la Fig. 2a. La suma vectorial de los dos campos es $B_{R//}$. Pero también, en el plano vertical se superponen la componente vertical del campo magnético terrestre, $B_{T\perp}$ con el campo B_B , dando lugar a un campo $B_{R\perp}$

Figura 2. Direcciones relativas del campo creado por las bobinas Helmholtz y el magnético terrestre a) componente horizontal, b) componente vertical

Si el plano de la bobina se orienta de tal forma que la línea de campo $^{\mathsf{V}}B_{\mathsf{B}}$ sea perpendicular a la componente horizontal del campo magnético terrestre $B_{T//}$, Fig. 1, entonces cuando circula una corriente por las bobinas el campo magnético neto en el origen de coordenadas está dado por:

$$\vec{B}_R \parallel = \vec{B}_B + \vec{B}_T \parallel_{\text{(2a)}}$$

$$\vec{B}_{R_\perp} = \vec{B}_B + \vec{B}_{T_\perp \text{(2b)}}$$

Una brújula colocada en el origen de coordenadas se orientará siguiendo la línea del campo magnético resultante en cada plano. De acuerdo con la figura (2):

$$= \sqrt{3a}$$

$$= \sqrt{3b}$$

$$= \sqrt{3b}$$

10. BRUJULA DE TANGENTES

Los ángulos θ y α , las cuales son las variables que se miden en el experimento, depende del número de espiras N, radio R y corriente I que circula por las bobinas. Si el ángulo es la variable independiente y la corriente I la variable dependiente, las ecuaciones 3 las podemos escribir como:

$$= \sqrt[4]{4b}$$

$$= \sqrt[4]{4a}$$

De las ecuaciones (4) podemos determinar experimentalmente la componente horizontal y la componente vertical del campo magnético terrestre. Conociendo las dos componentes, podemos calcular el vector campo magnético terrestre: magnitud y dirección.

3. DISEÑO EXPERIMENTAL

3.1 Materiales y Equipo

- Bobinas de Helmholtz
- Brújula de Tangentes
- Fuente de 6V_{DC}, 10A
- Reóstato $0 \rightarrow 80\Omega$
- Amperímetro $0 \rightarrow 4A$
- Cables de conexión

3.2 Precauciones

- La brújula debe estar bien equilibrada sobre la mesa y alineada con la dirección norte – sur (N-S) tal que ésta quede perpendicular al eje de las bobinas Helmholtz. Asegúrese que la fricción en el pivote no altere sus medidas.
- 2. La corriente máxima que debe circular es de $I_{max} = 4$ A; al cerrar el circuito verifique que la posición del reóstato está en su máximo valor de resistencia para que la corriente sea mínima.
- 3. Asegúrese que la dirección de circulación de la corriente I en las bobinas es la apropiada para que las direcciones de los campos ${}^{\mathsf{V}}B_{B,}B_{T/\!/}$ y el ángulo θ en el plano horizontal, y ${}^{\mathsf{V}}B_{B,}B_{T\perp}$ y el ángulo α coincidan con lo esquematizado en la Fig. (2).

- 4. Al medir los ángulos θ y α tenga, verifique la incertidumbre. Recuerde que para cálculos debemos usar el ángulo en radianes. Recuerde hacer sus cálculos en las mismas unidades.
- 5. Recuerde que la incertidumbre de $Tg\theta$ y/o $Tg\alpha$ es diferente para cada valor de Theta y alfa

3.3 Montaje

Conecte en serie la fuente de poder, el reóstato, el amperímetro y la bobina, de acuerdo a la figura 3. Con el interruptor abierto <u>oriente</u> las bobinas Helmholtz con respecto a la orientación N-S del campo magnético terrestre (indicado por la brújula) de tal manera que su eje sea perpendicular a la dirección N-S; verificarlo en las dos componentes. Verifique la conexión con el profesor y/o monitor.

112 LABORATORIO FÍSICA FUNDAMENTAL III

Figura 3. Diagrama ilustrativo que muestra cómo se conectan los diversos elementos de circuito en este experimento.

4. PROCEDIMIENTO EXPERIMENTAL

1. Cierre el interruptor. Aumente gradualmente la corriente que circula por la bobina, sin sobrepasar el máximo valor permitido, hasta que el ángulo sea de 20° . Este es un valor apropiado para evitar que la incertidumbre de la tangente sea muy grande.

- Ajuste la salida de la fuente de poder al máximo, y varíe el reóstato hasta que se obtiene la corriente para que el ángulo sea alrededor de 20°, máximo. Regrese la salida de la fuente a cero. Usted debe tomar en ese rango mínimo 10 datos de corriente, y sus respectivos ángulos theta ó alfa.
- 2. Aumente gradualmente la corriente. Para cada valor de I, mida el ángulo θ , mida el ángulo α ; lleve sus datos a la tabla de datos. Tome datos para mínimo 10 valores diferentes de I. Recuerde estar seguro de determinar correctamente la incertidumbre en la medida de los ángulos θ y α .
- 3. Calcule para cada ángulo θ y α , sus respectivas tangentes; las incertidumbres.

5. ANÁLISIS

5.1. Grafique I en función de $tg\theta$. Recuerde tener en consideración las márgenes (ó barras) de error en I y en $tg\theta$. Analice sus resultados de acuerdo con lo esperado teóricamente y dado por la ecuación (4a). Calcule la pendiente de la recta obtenida y su incertidumbre. Anote su valor en la tabla de datos

113

10. BRUJULA DE TANGENTES

- 5.2 Grafique I en función de $tg\alpha$. Recuerde tener en consideración las márgenes (ó barras) de error en I y en $tg\alpha$. Analice sus resultados de acuerdo con lo esperado teóricamente y dado por la ecuación (4b). Calcule la pendiente de la recta obtenida y su incertidumbre. Anote su valor en la tabla de datos.
- 5.3. A partir de los valores experimentales de las pendientes, de acuerdo con las ecuaciones 4, dé un valor con su respetiva incertidumbre para:
- 1. La componente horizontal del campo magnético terrestre.
- 2. La componente vertical del campo magnético terrestre.
 - 5.3. Dé un valor para la magnitud B_T y para el ángulo de inclinación β del campo magnético terrestre en la ciudad de Cali, con sus respectivas incertidumbres.

BIBLIOGRAFÍA DE CONSULTA

[1] Física tomo II, R. A. Serway, cap. 28, 3^{ra} edición. Editorial Mc. Graw Hill. [2] Física Para Ciencias e Ingeniería, Tomo 2; Halliday - Resnick, Editorial CECSA [3] Física; M. Alonso, E. Finn; tomo 2 Editorial Addison Wesley Iberoamericana [4] Física para Ciencias e Ingeniería. Volumen 2; Fisbane, Gasiorowicz, Thornton; Editorial Prentice- Hall Hispanoamericana

114 LABORATORIO FÍSICA FUNDAMENTAL III

TABLA DE DATOS.

Grupo d	e Practica:				Fecha:					_				
Profesor	•				_ Asister	nte:	N=			_				
Nombre	Estudiante	es: Código ———	: Plan:	1 2										
TABLA	TABLA DE DATOS 1:													
	a =			=	±Δa =			N=	=					
	Plano l	norizontal				F	Plano	vertical						
θ	tgθ	$\pm \Delta(tg\theta)$	I	·	θ	tgθ		$\pm \Delta(tg\theta)$	I					

Δθ=		ΔΙ=	± Δθ			±ΔΙ					
m = Δm=			m´ = Δm´ =								
$B_{T//} = \Delta_{BT//} =$											

Cálculos
B _{T//} =
$\Delta B_{T//} =$
$B_{T\perp}$ =
$\Delta B_{T\perp}$ =
$B_T =$
$\Delta B_T =$
$\beta = \Delta \beta =$

10. BRUJULA DE TANGENTES

U <u>J</u>	UI	ΔA	DI	E T	AN	GE	EN'	ГES	S														_						
ſ																												T	
r																											\top	T	
r																											\top	T	
r																											1	1	
F																											\top	7	\top
f																					\dagger	+					\dagger	\dagger	\parallel
r																						t					\top	\top	\top
F																											\top	7	
f																					+	t					\dashv	+	
																						+					\top	\dagger	\top
r	1																				+						\dagger	\dagger	
f																					+						\dashv	+	\top
F																					+	$^{+}$					\dagger	\dagger	\top
f																					+	t					\dashv	\dagger	+
	+																			1	\dagger						\dagger	\dagger	
+			\exists																		+	+					+	\dagger	
F	+		+																		\dagger	t	L				+	\dagger	
+		1																			+	+					+	+	
+	+		\dashv																		+						+	+	
-			\dashv																		+						+	\dashv	
+	+		\dashv													+	+	\dashv			+	t	L			+	+	+	
L														<u> </u>										_			\perp		Щ

