Úvod, opakování, funkce jedné reálné proměnné

Jiří Vítovec

1. přednáška z IMA (1. týden semestru)

Přednášky z Matematické Analýzy

Určeno studentům FIT VUT

Obsah

Co je Matematická analýza?

Číselné obory

Množina reálných čísel

Funkce a základní vlastnosti

Přehled elementárních funkcí

Další speciální funkce

Inverzní funkce

Skládání funkcí

Transformace grafu funkce

Polynomy

Kvadratický polynom

Racionální lomená funkce a parciální zlomky

Co je Matematická analýza?

- ► Matematická analýza základní disciplína matematiky.
- Základní pojmy Matematické analýzy: funkce, limita, derivace, integrál a nekonečné součty.
- Základem Matematické analýzy je tzv. infinitezimální počet neboli calculus (infinitezimální = nekonečně malý).

Matematika → **Matematická analýza** → Teorie Funkcí → Diferenciální počet → Integrální počet → Nekonečné řady → Diferenciální rovnice

Číselné obory

- ▶ Přirozená čísla: $\mathbb{N} = \{1, 2, 3, ...\}$ $(\mathbb{N}_0 = \mathbb{N} \cup \{0\}).$
- ► Celá čísla: $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}.$
- ▶ Racionální čísla: $\mathbb{Q} = \{q = \frac{z}{n}: z \in \mathbb{Z}, n \in \mathbb{N}\}.$ Čísla, která nejsou racionální, tj. nelze je vyjádřit jako podíl celého a přirozeného čísla, nazýváme iracionální a značíme \mathbb{I} .
- ► Reálná čísla: R = Q ∪ I. K reálným číslům lze jednoznačně přiřadit všechny body nekonečné přímky (číselné osy) dle jejich vzdálenosti od počátku.
- ► Komplexní čísla: \(\mathbb{C} = \{z = a + bi : a, b \in \mathbb{R}, i^2 = -1\). Komplexním číslem z nazýváme uspořádanou dvojici reálných čísel [a, b] a píšeme z = [a, b] = a + bi. Číslu a říkáme reálná část komplexního čísla z, číslu b imaginární část komplexního čísla z.

Množina reálných čísel $\mathbb R$

Nejznámějšími podmnožinami reálných čísel (vedle množin \mathbb{N} , \mathbb{Z} a \mathbb{Q} , kde platí $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q}$) jsou **intervaly**. Nechť $a,b \in \mathbb{R}$, a < b. Připomeňme:

- ▶ $(a, b) = \{x \in \mathbb{R} : a < x < b\}$
- $(a, \infty) = \{ x \in \mathbb{R} : a < x \}$
- $(-\infty, b) = \{ x \in \mathbb{R} : x < b \}$
- $(-\infty, b) = \{x \in \mathbb{R} : x \le b\}$
- $(-\infty,\infty)=\mathbb{R}$

Prvky $-\infty$ a ∞ , tzv. *nevlastní body*, **nepatří** do $\mathbb{R}!$ Zavedeme označení $\mathbb{R}^* = \mathbb{R} \cup \{-\infty, \infty\}$.

Funkce

Definice (Zobrazení)

Nechť D, M jsou neprázdné množiny. **Zobrazení** f množiny D do množiny M, zapisujeme $f:D\to M$, je předpis, který **každému** prvku $x\in D$ přiřadí **právě jeden** prvek $y\in M$.

- ► Tímto "předpisem" rozumíme vybranou podmnožinu uspořádaných dvojic (x, y) z kartézského součinu D × M.
- Množina D se nazývá definiční obor zobrazení f.
- ▶ Množina $H, H \subseteq M$, definovaná jako

$$H = f(D) = \{f(x) : x \in D\}$$

se nazývá **obor hodnot zobrazení** f.

Prvek y se nazývá hodnota zobrazení f v x nebo též obraz x a značí se f(x). Tedy y = f(x).

Definice (Funkce)

Nechť $D \subseteq \mathbb{R}$. Zobrazení $f: D \to \mathbb{R}$ se nazývá **reálná funkce jedné reálné proměnné** (dále jen **funkce**). Zapisujeme y = f(x).

- ▶ Množina D = D(f) se nazývá **definiční obor funkce** f.
- ▶ Množina H(f), $H(f) \subseteq \mathbb{R}$, definovaná jako

$$H(f) = \{f(x) : x \in D\}$$

se nazývá **obor hodnot funkce** f.

- x se nazývá proměnná (argument) funkce f.
- ▶ Číslo $f(x_0)$ se nazývá **funkční hodnota funkce** f v bodě x_0 .

Poznámka

Není-li definiční obor funkce zadán, jedná se o množinu všech $x \in \mathbb{R}$, pro která má daná funkce smysl.

Příklad

- ▶ Určete definiční obor funkce $f(x) = \frac{x+9}{x^3-5x}$.
- ▶ Určete definiční obor funkce $g(x) = \sqrt[4]{x^2 5x + 6}$.
- ▶ Určete definiční obor funkce $h(x) = \log_2(9 x^2)$.

Řešení:

$$D(f) = \mathbb{R} \setminus \{\pm \sqrt{5}, 0\}, \ D(g) = (-\infty, 2) \cup (3, \infty), \ D(h) = (-3, 3)$$

Poznámka

Ze SŠ víme, že při určování definičního oboru funkcí tvaru

- $f(x) = \frac{g(x)}{h(x)}$ platí $h(x) \neq 0$.
- $f(x) = \sqrt[2n]{g(x)}$ platí $g(x) \ge 0$.
- $f(x) = \log_a[g(x)]$ platí g(x) > 0.

Definice (graf funkce)

Množina všech bodů roviny daných souřadnicemi [x, f(x)] se nazývá **graf funkce** f.

Příklad

Obr. : Funkce $f(x) = x^2$.

Obr. : Nejde o graf funkce.

Definice (Ohraničenost)

Buď f funkce, $M \subseteq D(f)$. Řekneme, že funkce f je na množině M

- **zdola ohraničená**, jestliže existuje $d \in \mathbb{R}$ takové, že pro každé $x \in M$ platí $f(x) \ge d$,
- ▶ zhora ohraničená, jestliže existuje $h \in \mathbb{R}$ takové, že pro každé $x \in M$ platí $f(x) \leq h$,
- ▶ **ohraničená**, jestliže existují $d, h \in \mathbb{R}$ takové, že pro každé $x \in M$ platí d < f(x) < h.

Příklad

Obr.: Funkce ohraničená zhora.

Obr.: Ohraničená funkce.

Definice (Parita)

Buď f taková funkce, že pro její definiční obor platí

$$x \in D(f) \Rightarrow -x \in D(f).$$

▶ Řekneme, že funkce f je **sudá**, jestliže pro $\forall x \in D(f)$ platí

$$f(-x)=f(x).$$

▶ Řekneme, že funkce f je **lichá**, jestliže pro $\forall x \in D(f)$ platí

$$f(-x) = -f(x).$$

Příklad

Rozhodněte o případné sudosti a lichosti následujících funkcí:

a)
$$f(x) = \frac{x^2 - 1}{x^4 + 3}$$
 b) $g(x) = \frac{x + 1}{x - 1}$ c) $h(x) = \log_2 \frac{x + 1}{x - 1}$

Řešení: a) sudá, b) ani sudá, ani lichá c) lichá

Příklad

Obr. : Graf sudé funkce je symetrický podle osy *y*.

Obr. : Graf liché funkce je symetrický podle počátku.

Základní vlastnosti sudých a lichých funkcí:

- ▶ Je-li lichá funkce f definovaná v bodě 0, tak platí f(0) = 0.
- ▶ Jedinou funkcí, zároveň sudou i lichou, je funkce f(x) = 0.
- Součet dvou sudých (resp. lichých) funkcí je sudá (resp. lichá) funkce.
- ► Součet liché a sudé funkce není ani lichá ani sudá funkce.
- ► Součin dvou sudých (resp. lichých) funkcí je vždy sudá funkce.
- ► Součin liché funkce a sudé funkce je lichá funkce.
- ► Libovolnou funkci (s definičním oborem symetrickým kolem nuly) lze jednoznačně rozložit na součet sudé a liché funkce

$$f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}.$$

Příklad Zapište funkci $f(x)=rac{x+1}{x-1},\ D(f)=\mathbb{R}\setminus\{\pm 1\}$, jako součet sudé a

liché funkce. [**Řešení**: $f(x) = \frac{x^2+1}{x^2-1} + \frac{2x}{x^2-1}$]

Definice (Periodičnost)

Nechť $p \in \mathbb{R}, p > 0$. Řekneme, že funkce f je **periodická** s **periodou** p, jestliže pro všechna $x \in D(f)$ platí

$$x + p \in D(f), \qquad f(x + p) = f(x).$$

Příklad

Obr.: Periodická funkce.

Definice (rostoucí a klesající funkce na množině)

Buď f funkce, $M \subseteq D(f)$. Řekneme, že funkce f je na množině M

rostoucí, jestliže

$$\forall x_1, x_2 \in M : x_1 < x_2 \quad \Rightarrow \quad f(x_1) < f(x_2),$$

neklesající, jestliže

$$\forall x_1, x_2 \in M : x_1 < x_2 \quad \Rightarrow \quad f(x_1) \leq f(x_2),$$

klesající, jestliže

$$\forall x_1, x_2 \in M : x_1 < x_2 \quad \Rightarrow \quad f(x_1) > f(x_2),$$

nerostoucí, jestliže

$$\forall x_1, x_2 \in M : x_1 < x_2 \quad \Rightarrow \quad f(x_1) \geq f(x_2).$$

Definice (monotónost)

- Funkce je monotóní na množině M, pokud je neklesající na M, nebo nerostoucí na M.
- ► Funkce je ryze monotóní na množině M, pokud je klesající na M, nebo rostoucí na M.

Příklad

Obr. : Rostoucí funkce.

Obr. : Neklesající funkce.

Definice (kladná a záporná)

Bud' f funkce a $M \subseteq D(f)$.

- ▶ Funkce f je **kladná** na M, pokud f(x) > 0 pro $\forall x \in M$.
- ▶ Funkce f je **nezáporná** na M, pokud $f(x) \ge 0$ pro $\forall x \in M$.
- ▶ Funkce f je **záporná** na M, pokud f(x) < 0 pro $\forall x \in M$.
- ▶ Funkce f je **nekladná** na M, pokud $f(x) \le 0$ pro $\forall x \in M$.
- ▶ Bod [0, f(0)] nazýváme průsečík funkce f s osou y.
- Je-li f(x₀) = 0, pak nazýváme bod [x₀, 0] průsečík funkce f s osou x.

Příklad Popište zobrazenou funkci pomocí právě zmíněných pojmů.

Přehled elementárních funkcí

1) Mocninné funkce

Obr. : *x*²

Obr. : x^2 , x^4

Obr. : x^2 , \sqrt{x}

Obr. : *x*³

Obr. : x^3 , x^5

Obr. : $\frac{1}{x}$, $\frac{1}{x^2}$

2) Exponenciální a logaritmické funkce

Obr. : 2^{x} , $(\frac{1}{2})^{x}$, $\log_{2} x$, $\log_{\frac{1}{2}} x$

Obr. : e^x , $\ln x$ (e = 2,718281828...)

3) Goniometrické funkce

Obr. : $\sin x$

Obr. : $\cos x$

Obr. : $\sin x$, $\cos x$

Obr. : tg x, cotg x

4) Cyklometrické funkce (inverzní ke goniometrickým)

Obr. : $\sin x$, $\arcsin x$

Obr. : $\cos x$, $\arccos x$

Obr. : tg x, arctg x

Obr. : $\cot x$, $\operatorname{arccotg} x$

Další speciální funkce

- ▶ Celá část: f(x) = [x]. Funkce splňuje $[x] \le x < [x] + 1$.
- **Signum**: $f(x) = \operatorname{sgn} x$. Funkce je definována jako

$$\operatorname{sgn} x = \begin{cases} 1 & \operatorname{pro} x > 0, \\ 0 & \operatorname{pro} x = 0, \\ -1 & \operatorname{pro} x < 0. \end{cases}$$

► Charakteristická funkce množiny M: $f(x) = \chi_M(x)$. Funkce je definovna jako

$$\chi_M(x) = \begin{cases} 0 & \text{pro } x \notin M, \\ 1 & \text{pro } x \in M. \end{cases}$$

Inverzní funkce

Definice (Prostá funkce)

Nechť f je funkce a $M \subseteq D(f)$. Řekneme, že funkce f je na množině M **prostá**, jestliže pro každou dvojici $x_1, x_2 \in M$ platí

$$x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2).$$

Vodorovné přímky protnou graf prosté funkce nejvýše jednou.

- ▶ Je-li funkce f na M ryze monotónní, pak je f na M prostá.
- ▶ Opak (f je prostá $\Rightarrow f$ je ryze monotónní) **neplatí**! (Proč?)

Definice (Inverzní funkce)

Nechť f je prostá funkce. Funkce f^{-1} , která každému $y \in H(f)$ přiřazuje právě to x, pro které platí y = f(x), se nazývá **inverzní funkcí k funkci** f. Píšeme $x = f^{-1}(y)$.

Nechť f je prostá funkce. Potom platí

- $D(f^{-1}) = H(f), H(f^{-1}) = D(f).$
- $f(f^{-1}(x)) = x, x \in D(f^{-1})$ a $f^{-1}(f(x)) = x, x \in D(f)$.
- $(f^{-1})^{-1} = f.$
- ▶ Je-li funkce f rostoucí/klesající, je také funkce f⁻¹ rostoucí/klesající.
- ▶ Grafy funkcí f a f^{-1} jsou symetrické podle osy I. a III. kvadrantu (přímky y = x).

Výpočet inverzní funkce f^{-1} z funkce f

- 1) V zápisu y = f(x) zaměníme x a y, čímž dostaneme x = f(y).
- 2) Z rovnice x = f(y) vyjádříme y a máme předpis $y = f^{-1}(x)$.

Příklad

U zadané funkce f najděte definiční obor D(f) a ověřte, že f je na množině D(f) prostá. Potom určete f^{-1} , $D(f^{-1})$, H(f) a $H(f^{-1})$.

(i)
$$f(x) = \frac{x+1}{x-1}$$
 [Řeš.: $f^{-1}(x) = \frac{x+1}{x-1}$, $D(f) = \mathbb{R} \setminus \{1\}$, $D(f^{-1}) = \mathbb{R} \setminus \{1\}$]

(ii)
$$f(x) = e^{2-x}$$
 [Řeš.: $f^{-1}(x) = 2 - \ln(x)$, $D(f) = \mathbb{R}$, $D(f^{-1}) = (0, \infty)$]

(iii)
$$f(x) = \sin\left(\frac{\sqrt{x}}{\sqrt{x}+1}\right)$$
 [Řeš.: $f^{-1}(x) = \left(\frac{\arcsin x}{1 - \arcsin x}\right)^2$, $D(f) = \langle 0, \infty \rangle$, $D(f^{-1}) = \langle 0, \sin 1 \rangle$]

K elementární funkci je inverzní vždy jiná elementární funkce:

f(x)	D(f)	$f^{-1}(x)$	$D(f^{-1})$
x^2	$x \in (0, \infty)$	\sqrt{x}	$x \in \langle 0, \infty \rangle$
x^2	$x \in (-\infty,0)$	$-\sqrt{x}$	$x \in \langle 0, \infty \rangle$
χ^3	$x \in \mathbb{R}$	$\sqrt[3]{X}$	$x \in \mathbb{R}$
e^{x}	$x \in \mathbb{R}$	ln x	$x \in (0, \infty)$
a ^x	$x \in \mathbb{R}$	$\log_a x$	$x \in (0, \infty)$
sin x	$x \in \langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$	arcsin x	$x \in \langle -1, 1 \rangle$
cos x	$x \in \langle 0, \pi \rangle$	arccos x	$x \in \langle -1, 1 \rangle$
tg x	$x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	arctg x	$x \in \mathbb{R}$
cotg x	$x \in (0,\pi)$	arccotg x	$x \in \mathbb{R}$

Skládání funkcí

Mezi základní operace s funkcemi (vedle skládání funkcí), patří sčítání, odčítání, násobení a dělení funkcí definované takto:

$$(f+g)(x) = f(x) + g(x),$$

$$(f-g)(x) = f(x) - g(x),$$

$$(f \cdot g)(x) = f(x) \cdot g(x),$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}.$$

Poznámka

Předpokládáme, že definiční obory funkcí f a g jsou shodné, navíc u dělení funkcí je $D\left(\frac{f}{g}\right)$ zúžen o ta x, pro která platí g(x)=0.

Definice (Složená funkce)

Nechť u = g(x) je funkce s definičním oborem D(g) a oborem hodnot H(g). Nechť y = f(u) je funkce s definičním oborem D(f) a navíc platí $H(g) \subseteq D(f)$.

Složenou funkcí $(f \circ g)(x)$ rozumíme přiřazení, které $\forall x \in D(g)$ přiřadí y = f(u) = f(g(x)). Funkci g nazýváme **vnitřní složkou** a funkci f **vnější složkou** složené funkce. Tedy $(f \circ g)(x) = f(g(x))$.

Příklad

- ▶ Určete obě složky f(x) a g(x) funkce $F(x) = \sin x^2$.
- ▶ Určete všechny tři složky f(x), g(x) a h(x) funkce $G(x) = \sqrt[3]{e^{2x-4}}$.
- Alespoň třemi způsoby složte funkce: $f(x) = \ln x$, $g(x) = \arcsin x$ a $h(x) = x^3$.

Věta (O skládání prostých funkcí)

- Libovolné složení dvou rostoucích funkcí je rostoucí funkce.
- Libovolné složení dvou klesajících funkcí je rostoucí funkce.
- Libovolné složení rostoucí a klesající funkce je klesající funkce.
- Libovolné složení dvou prostých funkcí je prostá funkce.
- Složení dvou navzájem inverzních funkcí je identita, tj. y = x.

(Důkaz prvních tří tvrzení vyplyne z věty o derivaci složené funkce.)

Poznámka

Při určování definičních oborů složených funkcí je nutné zapsat všechny podmínky! Definiční obor je pak průnik těchto podmínek. Zejména při určování definičního oboru složených funkcí tvaru

$$f(x) = \frac{g(x)}{h(x)} \quad \text{plati} \quad h(x) \neq 0.$$

•
$$f(x) = \sqrt[2n]{g(x)}$$
 platí $g(x) \ge 0$.

$$f(x) = \log_a[g(x)] \quad \text{plati} \quad g(x) > 0.$$

•
$$f(x) = \operatorname{tg}[g(x)]$$
 platí $g(x) \neq (2k+1)\frac{\pi}{2}, k \in \mathbb{Z}$.

•
$$f(x) = \cot [g(x)]$$
 platí $g(x) \neq k\pi, k \in \mathbb{Z}$.

•
$$f(x) = \arcsin[g(x)]$$
 platí $-1 \le g(x) \le 1$.

▶
$$f(x) = \arccos[g(x)]$$
 platí $-1 \le g(x) \le 1$.

Příklad

Určete definiční obory následujících funkcí:

$$f(x) = \frac{5-2x}{\ln(3-2x)}$$
, $g(x) = \sqrt{\ln(5x - x^2 - 5)}$, $h(x) = \arccos\frac{2x-1}{x+3}$

$$\check{\mathbf{Res.}}: D(f) = (-\infty,1) \cup (1,\frac{3}{2}), \quad D(g) = \langle 2,3 \rangle, \quad D(h) = \langle -\frac{2}{3},4 \rangle$$

Transformace grafu funkce

Nechť je dána funkce y = f(x) a nenulová reálná čísla a, b.

- ▶ Uvažujme funkci $y_1 = f(x + a)$. Tato funkce má vůči původní funkci graf posunutý buď **doleva** (je-li a > 0), nebo **doprava** (pro a < 0), a to o velikost čísla a.
- ▶ Uvažujme funkci $y_2 = f(x) + b$. Tato funkce má vůči původní funkci graf posunutý buď **nahoru** (je-li b > 0), nebo **dolů** (pro b < 0), a to o velikost čísla b.

Obr. :
$$f(x) = (x+1)^3$$

Obr. :
$$f(x) = x^3 + 1$$

Nechť je dána funkce y = f(x).

- ▶ Uvažujme funkci $y_3 = |f(x)|$. Tato funkce má vůči původní funkci **graf** nacházející se **pod osou** x symetricky **překlopený** podle osy x **nad osu** x.
- ▶ Uvažujme funkci $y_4 = f(|x|)$. Tato funkce je sudá a má vůči původní funkci **graf vpravo od osy y** totožný a zároveň symetricky **překlopený** podle osy **y doleva od osy y**.
- ▶ Uvažujme funkci $y_5 = -f(x)$. Tato funkce má **graf** vůči původní funkci symetricky **překlopený podle osy** x.
- ▶ Uvažujme funkci $y_5 = f(-x)$. Tato funkce má **graf** vůči původní funkci symetricky **překlopený podle osy** y.

Polynomy

Funkci

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0,$$

kde $a_0,\ldots,a_n\in\mathbb{R}$, $a_n\neq 0$ nazýváme **polynom stupně** $n,\ n\in\mathbb{N}_0.$

- ▶ Čísla a_0, \ldots, a_n nazýváme **koeficienty** polynomu P.
- ► Koeficient an nazýváme **vedoucí koeficient**
- ► Koeficient *a*₀ nazýváme **absolutní člen**.
- ▶ Je-li $a_n = 1$, říkáme, že polynom P je **normovaný**.

Obr. :
$$P_0(x) = 2$$
 Obr. : $P_1(x) = 2x-1$ Obr. : $P_2(x) = x^2-2$

Příklad (Operace s polynomy)

Sčítání, odčítání polynomů a násobení polynomu konstantou:

$$(3x^{2} - 2x + 4) - 2(x^{3} + x^{2} + 2x - 1)$$

$$= 3x^{2} - 2x + 4 - 2x^{3} - 2x^{2} - 4x + 2$$

$$= -2x^{3} + x^{2} - 6x + 6.$$

Násobení polynomů:

$$(2x^{2} - 3)(x^{3} + 2x + 3)$$

$$= 2x^{2}(x^{3} + 2x + 3) - 3(x^{3} + 2x + 3)$$

$$= 2x^{5} + 4x^{3} + 6x^{2} - 3x^{3} - 6x - 9$$

$$= 2x^{5} + x^{3} + 6x^{2} - 6x - 9.$$

Příklad (Operace s polynomy)

▶ Dělení polynomu $P_n(x)$ polynomem $Q_m(x)$, $n \ge m$:

$$(4x^4 - x^3 + x^2 - 3x + 7) : (x^2 + 2) = 4x^2 - x - 7 + \frac{-x + 21}{x^2 + 2}.$$

$$- \underbrace{(4x^4 + 8x^2)}_{0 - x^3 - 7x^2 - 3x + 7}$$

$$- (-x^3 - 2x)$$

$$0 - 7x^{2} - x + 7$$

$$- \frac{(-7x^{2} - 14)}{0 - x + 21}$$

Zkuste sami!

Definice (Kořen, násobnost, kořenový činitel)

Číslo $x_0 \in \mathbb{C}$, pro které $P_n(x_0) = 0$ nazýváme **kořen** polynomu P_n .

Kořen $x_0 \in \mathbb{C}$ je k-násobným kořenem polynomu P_n , $1 \le k \le n$, pokud $(x - x_0)^k$ dělí $P_n(x)$ beze zbytku a $(x - x_0)^{k+1}$ nedělí $P_n(x)$.

Pokud k = 1, mluvíme o **jednoduchém kořenu**.

Lineárnímu výrazu $(x-x_0)$ říkáme **kořenový činitel** polynomu P_n .

Věta

Je- $li x_0 \in \mathbb{R}$ k-násobným kořenem polynomu P_n , pak existuje polynom Q_{n-k} takový, že platí

$$P_n(x) = (x - x_0)^k Q_{n-k}(x).$$

Příklad

Polynomy $P(x) = x^4 - 16$, $Q(x) = x^4 - 9x^2$, $R(x) = x^4 - 2x^2 + 1$ rozlož na součin kořenových činitelů a urči kořeny a násobnost.

Věta (Základní věta algebry a rozklad polynomu v oboru \mathbb{C})

Polynom stupně n má právě n (ne nutně různých) komplexních kořenů x_1, x_2, \ldots, x_n a platí

$$P_n(x) = a_n(x - x_1)(x - x_2) \cdots (x - x_n).$$

Poznámka

- ▶ Je-li komplexní číslo $x_0 = a + bi$, $a, b \in \mathbb{R}$, $b \neq 0$ kořenem polynomu P_n , pak je kořenem i číslo komplexně sdružené $\overline{x_0} = a bi$.
- Počet reálných kořenů polynomu stupně n je buď n, nebo o sudý počet menší.
- Polynom lichého stupně má alespoň jeden reálný kořen.

Příklad

U polynomu $P_5(x) = x^5 - 7x^3 + 2x^2 + 3$ naznačte varianty o počtu reálných a komplexních kořenů.

Věta (Rozklad polynomu na součin v oboru ℝ)

Každý polynom je v reálném oboru možné zapsat jako součin vedoucího koeficientu, kořenových činitelů a kvadratických polynomů s komplexními kořeny.

Věta (Celočíselné kořeny)

Nechť P je normovaný polynom s celočíselnými koeficienty. Pak jsou všechny jeho celočíselné kořeny dělitelé jeho absolutního člene.

Příklad

$$P(x) = x^4 - 5x^3 + x^2 + 21x - 18$$
, tedy $a_0 = 18$.

Všechny celočíselné kořeny jsou tedy mezi děliteli čísla 18:

$$\pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18.$$

Skutečně

$$P(x) = (x-1)(x+2)(x-3)^{2}.$$

Hornerovo schéma je algoritmus používaný při rozkladu polynomu s celočíselnými koeficienty na součin kořenových činitelů. Umožní najít všechny jeho racionální kořeny tvaru $\alpha=\frac{p}{q}$, kde $p,q\in\mathbb{Z}$.

Hornerovo schéma - postup

Koeficienty $a_n, \ldots, a_0 \in \mathbb{Z}$ polynomu

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

a číslo $\alpha = \frac{p}{q}$ - **potencionální kořen** polynomu P_n (kde p je dělitel čísla a_0 a q je dělitel čísla a_n) sepíšeme do tabulky

Čísla b_{n-1}, \ldots, b_{-1} dopočítáme následujícím způsobem:

$$b_{n-1} = a_n,$$
 $b_{k-1} = \alpha b_k + a_k,$ $k = 0, ..., n-1.$

Tím získáme polynom

$$Q_{n-1}(x) = b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + \cdots + b_1x + b_0$$

a číslo b_{-1} takové, že platí

$$P_n(x) = (x - \alpha)Q_{n-1}(x) + b_{-1}.$$

- Pokud vyjde $b_{-1} = 0$, tak α **je kořenem** polynomu P_n a můžeme zkoušet hledat další kořen polynomu P_n aplikací celého postupu na polynom Q_{n-1} .
- ▶ Pokud vyjde $b_{-1} \neq 0$, tak α **není kořenem** polynomu P_n a zkusíme celý postup s jiným číslem α .

Příklad

Rozložte polynom $P(x) = x^4 - 5x^3 + x^2 + 21x - 18$ na součin kořenových činitelů.

Celočíselné kořeny jsou mezi čísly $\pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18$.

	1	-5	1	21	-18
1	1	-4	-3	18	0
1	1	-3	-6	12	_
-1	1	-5	2	16	_
2	1	-2	-7	4	_
-2	1	-6	9	0	_
:	:	:	:	_	_

Našli jsme kořeny
$$1, -2$$
.
 $Q(x) = x^2 - 6x + 9$
 $P(x) = (x-1)(x+2)Q(x)$

Celkem tedy:

$$P(x) = (x-1)(x+2)(x^2-6x+9) = (x-1)(x+2)(x-3)^2$$
.
Kořeny 1, –2 jsou jednoduché, kořen 3 je dvojnásobný.

Kvadratický polynom $P(x) = ax^2 + bx + c$

▶
$$D = b^2 - 4ac$$
.

•
$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$$

►
$$P(x) = a(x - x_1)(x - x_2)$$
.

$$P(x) = a(x - x_1)(x - x_2). \quad D < 0 \quad \Rightarrow \quad x_1 = \overline{x_2}, \quad x_{1,2} \in \mathbb{C}.$$

$$P(x) = ax^2 + bx + c$$
, $a > 0$. $P(x) = ax^2 + bx + c$, $a < 0$.

$$P(x) = ax^2 + bx + c, \ a < 0.$$

Doplnění na čtverec

$$ax^2 + bx + c = a(x^2 + \frac{b}{a}x + \frac{c}{a}),$$
 $x^2 + px + q = (x + \frac{p}{2})^2 - \frac{p^2}{4} + q.$

Příklad

Nakresli graf kvadratické funkce y, tak že najdete vrchol paraboly doplněním na čtverec:

$$y = x^{2} + 6x + 5,$$

 $y = x^{2} + 6x + 9 - 9 + 5,$
 $y = (x + 3)^{2} - 4.$

Parabola má vrchol v bodě [-3, -4] a je otevřena směrem nahoru.

Racionální lomená funkce a parciální zlomky

Definice

Nechť P_n a Q_m jsou polynomy stupně n a m. Funkci tvaru

$$R(x) = \frac{P_n(x)}{Q_m(x)}$$

nazýváme racionální lomená funkce. Navíc funkce R(x) je

- ryze lomená, jestliže n < m,
- neryze lomená, jestliže $n \ge m$.

Věta

Každou neryze lomenou funkci je možné (pomocí dělení polynomů) vyjádřit jako součet polynomu a ryze lomené racionální funkce, tedy

$$R(x) = \frac{P_n(x)}{Q_m(x)} = S_{n-m}(x) + \frac{T_k(x)}{Q_m(x)},$$

kde S_{n-m} a T_k jsou polynomy stupně (n-m) a k a platí k < m.

Rozklad ryze lomené racionální funkce na parciální zlomky Nechť $\frac{P_n(x)}{Q_m(x)}$ je ryze lomená racionální funkce (m>n), kde je znám úplný rozklad polynomu Q_m v oboru \mathbb{R} , tj. $\frac{P_n(x)}{Q_m(x)}$ je tvaru

$$\frac{a_nx^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0}{b_m(x - x_1)^{k_1}(x - x_2)^{k_2} \dots (x - x_i)^{k_i}(x^2 + p_1x + q_1)^{r_1}(x^2 + p_2x + q_2)^{r_2} \dots (x^2 + p_ix + q_i)^{r_j}},$$

kde $x_1, ..., x_i$ jsou reálné kořeny polynomu Q_m s násobností $k_1, ..., k_i$ a $r_1, ..., r_j$ je násobnost kvadratických členů s komplexními kořeny. Potom se dá $\frac{P_n(x)}{Q_m(x)}$ zapsat jako součet tzv. **parciálních zlomků**. Ten vytvoříme tak, že **každé** závorce v rozkladu Q_m přiřadíme **vlastní** součet parciálních zlomků a **všechny** zlomky sečteme.

Lineárnímu členu $(x-x_0)^k$ odpovídá součet parc. zlomků

$$\frac{A_k}{(x-x_0)^k} + \frac{A_{k-1}}{(x-x_0)^{k-1}} + \cdots + \frac{A_1}{(x-x_0)}$$
.

lacktriangle Kvadr. členu $(x^2+px+q)^r$ odpovídá součet parc. zlomků

$$\frac{B_r x + C_r}{(x^2 + px + q)^r} + \frac{B_{r-1} x + C_{r-1}}{(x^2 + px + q)^{r-1}} + \cdots + \frac{B_1 x + C_1}{(x^2 + px + q)}.$$

Příklad

Naznačte rozklad racionálně lomených funkcí na parciální zlomky. Použijte koeficientů *A*, *B*, *C*, ..., které už nedopočítávejte!

$$R(x) = \frac{x^4 + 7x + 13}{x^5 - x}.$$

$$R(x) = \frac{x^4 + 5x + 11}{x^6 + 2x^4 + x^2}.$$

(iii)
$$R(x) = \frac{x^9 + 2}{(x-1)(x^2 - 1)(x^3 - 1)(x^4 - 1)}.$$

(iv)

$$R(x) = \frac{x^9 + 17}{(x^6 - 1)(x^4 - 1)}.$$

Postup na výpočet koeficientů parciálních zlomků

Mějme rovnici, kde levá strana je racionální lomená funkce $\frac{P_n(x)}{Q_m(x)}$ a pravá strana je její rozklad na parciální zlomky s koeficienty $A_1,...,A_m$. Vynásobíme rovnici výrazem $Q_m(x)$, čímž se zbavíme zlomků. Používají se 3 postupy na určení koeficientů $A_1,...,A_m$:

- (i) **Univerzální postup.** Je vhodný a jediný, pokud všechny kořeny $Q_m(x)$ jsou komplexní. Roznásobíme a sečteme výrazy ve vzniklé rovnici. Porovnáme koeficienty u stejných mocnin na obou stranách rovnice, čímž dostaneme soustavu m rovnic o m neznámých. Jejím vyřešením získáme hodnoty $A_1, ..., A_m$.
- (ii) **Dosazovací metoda**. Dá se použít pouze tehdy, když všechny kořeny $Q_m(x)$ jsou jednoduché reálné. Dosazujeme do vzniklé rovnice postupně všechny kořeny polynomu $Q_m(x)$, čímž okamžitě získáváme hodnoty $A_1, ..., A_m$.
- (iii) **Kombinovaná metoda**. Spočívá v kombinaci předešlých postupů a je vhodná ve většině případů, kdy kořeny polynomu $Q_m(x)$ jsou jak komplexní, tak reálné či pouze reálné násobné.

Příklad

Rozložte racionálně lomené funkce na součet parciálních zlomků.

$$R(x) = \frac{x+2}{x^3 - x}.$$

$$R(x) = \frac{5x^2 - 14x + 17}{(x - 5)^2(x - 1)^2}.$$

(iii)

$$R(x) = \frac{16x - 12}{x^4 + 4x^2}$$
.

(iv)

$$R(x) = \frac{4}{x^4 + 1}.$$

Řešení: (i)
$$R(x) = -\frac{2}{x} + \frac{3/2}{x-1} + \frac{1/2}{x+1}$$
, (ii) $R(x) = \frac{9/2}{(x-5)^2} + \frac{1/2}{(x-1)^2}$, (iii) $R(x) = -\frac{3}{x^2} + \frac{4}{x} - \frac{4x-3}{x^2+4}$, (iv) $R(x) = \frac{\sqrt{2}x+2}{x^2+\sqrt{2}x+1} - \frac{\sqrt{2}x-2}{x^2-\sqrt{2}x+1}$.