



Figure 1: Example audio signal in both a) time and b) frequency domain.

## **Assignment 1:**

Consider the audio signal depicted in Figure 1. Figure 1a) shows the time domain representations, where  $x_a(t)$  (dashed line) denotes the original time-continuous signal and  $x(n) = x_a(nT_s)$  the temporal sampled version of it. Figure 1b) shows the frequency domain representation of x(n) expressed in both the angular frequency  $\omega$  (dimensionless) and the frequency f expressed in cycles/sec (or, equivalently, Hertz (Hz)).

a) What is the sampling frequency  $f_s$  at which audio signal  $x_a(t)$  has been sampled? Motivate your answer.

Suppose we are going to decimate the discrete-time signal x by a factor two, see Figure 2a), after which we expand the signal by a factor two (inserting zeros in between every two samples), see Figure 2b).



Figure 2: a) Decimation by a factor two and b) expanding by a factor two.

b) Give a sketch of both the time and frequency domain representation of the signals y(n) and z(n) in Figure 3 and Figure 4, respectively, with the frequency representation expressed in both f and  $\omega$ .



Figure 3: Sketch of a) time and b) frequency domain representation of y(n).



Figure 4: Sketch of a) time and b) frequency domain representation of z(n).

After decimation and expanding, we would like to reconstruct the analog signal  $\hat{x}_a(t)$  by passing the output z(n) of the expander through an ideal D/A convertor.

c) Explain how the ideal D/A convertor looks like and sketch the analog signal  $\hat{x}_a(t)$  (both in time and frequency) in the figure below. Do we have perfect reconstruction? That is, do we have  $\hat{x}_a(t) = x_a(t)$  for all  $t \in \mathbb{R}$ ?



Figure 5: Sketch of the reconstructed analog signal  $\hat{x}_a(t)$  in both a) time and b) frequency domain.