CHEAT SHEET

MACHINE LEARNING FOR DUMMIES CHEAT SHEET

From Machine Learning For Dummies

By John Paul Mueller, Luca Massaron

Machine learning is an incredible technology that you use more often than you think today and with the potential to do even more tomorrow. The interesting thing about machine learning is that both R and Python make the task easier than more people realize because both languages come with a lot of built-in and extended support (through the use of libraries, datasets, and other resources). With that in mind, this cheat sheet helps you access the most commonly needed reminders for making your machine learning experience fast and easy.

CHOOSING THE RIGHT ALGORITHM FOR MACHINE LEARNING

Machine learning involves the use of many different algorithms. This table gives you a quick summary of the strengths and weaknesses of various algorithms.

Algorithm	Best at	Pros	Cons
-----------	---------	------	------

Bioinformatics Seldom overfits Automatically handles missing values Biased in multiclass pri toward more frequent No need to transform any variable No need to tweak parameters Can be used by almost anyone with excellent results Gradient Boosting Apt at almost any machine learning problem Apt at almost any Search engines (solving the problem of Search engines (solving the problem of Seldom overfits estimating values at th extremities of the distr response values Biased in multiclass pri toward more frequent It can extremities of the distr response values Biased in multiclass pri toward more frequent It can overfit if run for the district of the extremities of the district of the extremities of the district of the extremities of the district of the district of the extremities of the district of the extremities of the				
Bioinformatics Seldom overfits Automatically handles missing values Automatically handles missing values Biased in multiclass protoward more frequent No need to transform any variable No need to tweak parameters Can be used by almost anyone with excellent results Gradient Boosting Apt at almost any machine learning problem Search engines (solving the problem of learning to rank) Automatically handles missing Weaker on regression estimating values at the extremities of the districtions estimating values at the extremities of the distriction and extremities of the districtions of toward more frequent Biased in multiclass protoward more frequent It can overfit if run for the iterations iterations Sensitive to noisy data outliers Sensitive to noisy data outliers Doesn't work well with parameter tuning Automatically handles missing	ma	nachine learning		Difficult to interpret
Automatically handles missing values No need to transform any variable No need to tweak parameters Can be used by almost anyone with excellent results Gradient Boosting Apt at almost any machine learning problem Search engines (solving the problem of perblem of perblem of perblem of problem	·		Seldom overfits	Weaker on regression when estimating values at the extremities of the distribution of
No need to transform any variable No need to tweak parameters Can be used by almost anyone with excellent results Gradient Boosting Apt at almost any machine learning problem most nonlinear function Search engines (solving the problem of learning to rank) Search engines (solving the problem of learning to rank) Automatically handles missing			handles missing	
transform any variable No need to tweak parameters Can be used by almost anyone with excellent results Gradient Boosting Apt at almost any machine learning approximate iterations problem most nonlinear function Search engines (solving the problem of learning to rank) Best in class problem of predictor Automatically handles missing				toward more frequent classes
Can be used by almost anyone with excellent results Gradient Boosting Apt at almost any machine learning approximate problem most nonlinear function Search engines (solving the problem of learning to rank) Automatically handles missing			transform any	
almost anyone with excellent results Gradient Boosting				
machine learning approximate iterations problem most nonlinear function Sensitive to noisy data outliers (solving the Best in class problem of predictor learning to rank) Doesn't work well with parameter tuning Automatically handles missing			almost anyone with excellent	
Search engines outliers (solving the Best in class problem of predictor learning to rank) Doesn't work well with parameter tuning Automatically handles missing	ma	nachine learning	approximate most nonlinear	It can overfit if run for too man iterations
problem of predictor learning to rank) Doesn't work well withe parameter tuning Automatically handles missing			Post in class	Sensitive to noisy data and outliers
Automatically handles missing	pro	roblem of		Doesn't work well without
			handles missing	parameter tuning
No need to transform any variable			transform any	

Linear regression	Baseline predictions	Simple to understand and explain	You have to work hard to make it fit nonlinear functions
	Econometric predictions	It seldom overfits	Can suffer from outliers
	Modelling marketing responses	Using L1 & L2 regularization is effective in feature selection	
		Fast to train	
		Easy to train on big data thanks to its stochastic version	
Support Vector Machines	Character recognition	Automatic nonlinear feature creation	Difficult to interpret when applying nonlinear kernels
	Image recognition	Can approximate complex	Suffers from too many examples, after 10,000 examples it starts taking too
	Text classification	nonlinear functions	long to train
K-nearest Neighbors	Computer vision	Fast, lazy training	Slow and cumbersome in the predicting phase
	Multilabel tagging	Can naturally handle extreme multiclass	Can fail to predict correctly due to the curse of dimensionality
	Recommender systems	problems (like tagging text)	9
	Spell checking problems		

Adaboost	Face detection	Automatically handles missing values	Sensitive to noisy data and outliers
		No need to transform any variable	Never the best in class predictions
		It doesn't overfit easily	
		Few parameters to tweak	
		It can leverage many different weak-learners	
Naive Bayes	Face recognition	Easy and fast to implement, doesn't require	Strong and unrealistic feature independence assumptions
	Sentiment analysis	too much memory and can be used for online learning	Fails estimating rare occurrences
	Spam detection		Suffers from irrelevant features
	Text classification	Easy to understand	
		Takes into account prior knowledge	

Neural Networks	Image recognition	Can approximate any nonlinear function	Very difficult to set up
	Language		Difficult to tune because of too
	recognition and		many parameters and you have
	translation	Robust to outliers	also to decide the architecture of the network
	Speech	Works only with a	
	recognition	portion of the examples (the	Difficult to interpret
	Vision recognition	support vectors)	Easy to overfit
Logistic regression	Ordering results	Simple to	You have to work hard to make
	by probability	understand and explain	it fit nonlinear functions
	Modelling		Can suffer from outliers
	marketing responses	It seldom overfits	
		Using L1 & L2	
		regularization is	
		effective in feature selection	
		reature selection	
		The best	
		algorithm for	
		predicting probabilities of an	
		event	
		Fast to train	
		Easy to train on	
		big data thanks to its stochastic	
		version	
SVD	Recommender	Can restructure	Difficult to understand why data
	systems	data in a meaningful way	has been restructured in a certain way

PCA	Removing collinearity Reducing dimensions of the dataset	Can reduce data dimensionality	Implies strong linear assumptions (components are a weighted summations of features)
K-means	Segmentation	Fast in finding clusters	Suffers from multicollinearity
			Clusters are spherical, can't
		Can detect outliers in multiple	detect groups of other shape
		dimensions	Unstable solutions, depends on initialization

GETTING THE RIGHT LIBRARY FOR MACHINE LEARNING

When working with R and Python for machine learning, you gain the benefit of not having to reinvent the wheel when it comes to algorithms. There is a library available to meet your specific needs — you just need to know which one to use. This table provides you with a listing of the libraries used for machine learning for both R and Python. When you want to perform any algorithm-related task, simply load the library needed for that task into your programming environment.

Algorithm	Python implementation	R implementation
Adaboost	sklearn.ensemble.AdaBoostClassifier	library(ada) : ada
	sklearn.ensemble.AdaBoostRegressor	

Gradient Boosting	sklearn.ensemble.GradientBoostingClassifier	library(gbm) : gbm
	sklearn.ensemble.GradientBoostingRegressor	
K-means	sklearn.cluster.KMeans	library(stats) : kmeans
	sklearn.cluster.MiniBatchKMeans	
K-nearest Neighbors	sklearn.neighbors.KNeighborsClassifier	library(class): knn
	sklearn.neighbors.KNeighborsRegressor	
Linear regression	sklearn.linear_model.LinearRegression	library(stats) : lm
	sklearn.linear_model.Ridge	library(stats) : glm
	sklearn.linear_model.Lasso	library(MASS) : lm.ridge
	sklearn.linear_model.ElasticNet	library(lars) : lars
	sklearn.linear_model.SGDRegressor	library(glmnet) : glmnet
Logistic regression	sklearn.linear_model.LogisticRegression	library(stats) : glm
	sklearn.linear_model.SGDClassifier	library(glmnet) : glmnet
Naive Bayes	sklearn.naive_bayes.GaussianNB	library(klaR) : NaiveBayes
	sklearn.naive_bayes.MultinomialNB	library(e1071) : naiveBayes
	sklearn.naive_bayes.BernoulliNB	
Neural Networks	sklearn.neural_network.BernoulliRBM	library(neuralnet) : neuralnet
	(in version 0.18 of Scikit-learn, a new implementation of supervised neural network	library(AMORE) : train
	will be introducted)	library(nnet) : nnet

	5	
PCA	sklearn.decomposition.PCA	library(stats): princomp
		library(stats) : stats
Random Forest	sklearn.ensemble.RandomForestClassifier	library(randomForest) : randomForest
	sklearn.ensemble.RandomForestRegressor	
	sklearn.ensemble.ExtraTreesClassifier	
	sklearn.ensemble.ExtraTreesRegressor	
Support Vector Machines	sklearn.svm.SVC	library(e1071) : svm
Wachines	sklearn.svm.LinearSVC	
	sklearn.svm.NuSVC	
	sklearn.svm.SVR	
	sklearn.svm.LinearSVR	
	sklearn.svm.NuSVR	
	sklearn.svm.OneClassSVM	
SVD	sklearn.decomposition.TruncatedSVD	library(irlba) : irlba
	sklearn.decomposition.NMF	library(svd) : svd

LOCATING THE ALGORITHM YOU NEED FOR MACHINE LEARNING

There are a number of different algorithms you can use for machine learning. However, finding the specific algorithm you want to know about can be difficult. This table provides you with the online location for information about the algorithms used in machine learning.

Algorithm	Туре	Python/R URL
Naive Bayes	Supervised classification, online	http://scikit-learn.org/stable/modules/naive_bayes.html
	learning	https://cran.r-project.org/web/packages/bnlearn/index.html
PCA	Unsupervised	http://scikit-learn.org/stable/modules/generated/sklearn.decomp
		https://cran.r-project.org/web/packages/ggfortify/vignettes/plot_p
SVD	Unsupervised	http://scikit- learn.org/stable/modules/generated/sklearn.decomposition.Trunc
		https://cran.r-project.org/web/packages/svd/index.html
K-means	Unsupervised	http://scikit-learn.org/stable/modules/generated/sklearn.cluster.k
		https://cran.r-project.org/web/packages/broom/vignettes/kmeans
K-nearest Neighbors	Supervised regression and	http://scikit-learn.org/stable/modules/neighbors.html
	classification	https://cran.r-project.org/web/packages/kknn/index.html
Linear Regression	Supervised regression, online learning	http://scikit- learn.org/stable/modules/generated/sklearn.linear_model.LinearF
	icarriing	https://cran.r-project.org/web/packages/phylolm/index.html
Logistic Regression	Supervised classification, online learning	http://scikit- learn.org/stable/modules/generated/sklearn.linear_model.Logistic
	Carriing	https://cran.r- project.org/web/packages/HSAUR/vignettes/Ch_logistic_regressior

Neural Networks	Unsupervised Supervised regression	http://scikit-learn.org/dev/modules/neural_networks_supervised.h
	and classification	https://cran.r-project.org/web/packages/neuralnet/index.html
Support Vector Machines	Supervised regression and	http://scikit-learn.org/stable/modules/svm.html
	classification	https://cran.r-project.org/web/packages/e1071/index.html
Adaboost	Supervised classification	http://scikit- learn.org/stable/modules/generated/sklearn.ensemble.AdaBoost(
		https://cran.r-project.org/web/packages/adabag/index.html
Gradient Boosting	Supervised regression and	https://cran.r-project.org/web/packages/adabag/index.html http://scikit- learn.org/stable/modules/generated/sklearn.ensemble.GradientB
	regression	http://scikit-
	regression and classification Supervised regression and	http://scikit- learn.org/stable/modules/generated/sklearn.ensemble.GradientB
Boosting	regression and classification Supervised regression	http://scikit- learn.org/stable/modules/generated/sklearn.ensemble.GradientB https://cran.r-project.org/web/packages/gbm/index.html http://scikit-