An Experimental Investigation of the Impingement of a Planar Shock Wave on an Axisymmetric Body at Mach 3

A. Brosh and M.I. Kussoy

December 1983

An Experimental Investigation of the Impingement of a Planar Shock Wave on an Axisymmetric Body at Mach 3

A. Brosh,

M. I. Kussoy, Ames Research Center, Moffett Field, California

Ames Research Center Moffett Field, California 94035

Page intentionally left blank

Page intentionally left blank

Nomenclature

d - diameter of the test body

Fp - focal point on the surface

h - wedge distance from the tunnel wall

M - Mach number

Nr - node of reattachment on the surface

P - pressure

Re - Reynolds number

S - saddle point on the surface

T - temperature

t - time

u, v, w, - velocity components in axial, radial, azimuthal direction

 x, r, ϕ , - coordinates in axial, radial, azimuthal directions

 \boldsymbol{y} - distance from the cylinder surface

 α - wedge angle

 β - shock angle

 δ - boundary layer thickness

 μ - viscosity

 ρ - density

Subscripts

b, body - of the body

d - based on diameter

max - maximum value

min - minimum value

o - of the outer region

R - of the reattachment

s - of the separation

T - total

v - viscous

w - wall value

 $_{\infty}$ - in the far field

1 - post shock conditions

An Experimental Investigation of the Impingement of a Planar Shock Wave on an Axisymmetric Body at Mach 3.

by
A. Brosh,* and M. I. Kussoy,**
NASA Ames Research Center
Moffett Field, California, 94035.

Abstract

This work presents an experimental study of the flow caused by a planar shock wave impinging obliquely on a cylinder. The investigation was undertaken to attain two goals. First, to experimentally investigate and document the complex three-dimensional shock wave and boundarylayer interaction occurring in practical problems, such as the shock wave impingement from the shuttle nose on an external fuel tank, and store carriage interference on a supersonic tactical aircraft. Second, to supply a data base for numerical computations of complex flows. The experimental techniques included pressure measurements and oil flow patterns on the surface of the cylinder, and shadowgraphs and total and static pressure surveys on the leeward and windward planes of symmetry. The complete data is presented in tabulated form for future use. Some typical results are presented separately and discussed in more detail The results reveal a highly complex flow field with two separation zones, regions of high crossflow, and multiple reflected shocks and expansion fans.

^{*} Senior NRC Research Associate.

^{**} Research Scientist.

Introduction

There has always been great interest in the fluid dynamic community in predicting complex flow situations that have practical significance. The present paper describes an investigation, in which a complex flow that has practical applications is documented experimentally. The main goal of this investigation was to obtain measurements of sufficient accuracy and detail to reveal important aspects of a certain class of flows encountered, in order to lead to an improved understanding of the details of such flows. During the last several years, advances in computer speed and memory have made possible the development of new computational techniques and a significant improvement in flow modeling. Obviously the value of any computer code and flow model is measured by its ability to numerically predict a complex flow consistent with experimental measurements. A second equally important goal was to document the experimental results for future use, in order to help assess the worth of the present models used, and more importantly, indicate specific areas where improvement is critically needed in the computational procedures.

The impingement of a planar shock wave on a cylindrical body is typical of an entire class of practical aerodynamic flows. Some realistic examples are the impinging of the bow shock from the shuttle nose on the wing leading edge, the wing shock impinging on an external fuel tank, store-wing interaction, store separation, missile launching from supersonic tactical airplanes, and sabot separation in armour piercing ammunition. In all of these examples, the shock impingment from protuberances on other parts of the vehicle could result in heat transfer, stability, control, and force problems which could materially affect the performance of the body in question.

The main features of the above class of three dimensional shock wave turbulent boundary layer interaction flows are duplicated by the experiment shown in figure 1. The test body consists of a cusp like nose, followed by a long cylindrical section aligned with a Mach 3 free stream flow. A wedge spanning the test section generates a planar shock wave which impinges on the cylinder. The turbulent boundary layer-shock wave interaction zone thus formed on the cylinder is the subject of the investigation. Experimental observations were made using oil flow visualization and static pressure measurements on the surface, and static and total pressure surveys on the plane of symmetry in the flow field. Shadowgraphs were also taken of the interaction region.

This class of flows has been studied for many years. Due to the complexity of this flow, early theoretical studies were concentrated on the prediction of inviscid properties for the oblique reflection of shock waves at a rigid wall. Polachek and Seeger² found that oblique reflections often result in a strong reflected shock wave and, hence, a high peak pressure at the reflecting surface. Whitham^{3,4} has presented an approximate theory for the dynamics of two and three dimensional shock waves, and has applied it to the description of shock impingment on wedges and cones. Bryson and Gross⁵ extended the Whitham theory to blunt two and three dimensional bodies, in particular a cylinder and a sphere. Hung^{6,7} developed a program for the impingment of a shock wave on a general body of revolution. The need for experimental data of this type becomes obvious, and this work attempts to fulfil that need.

Description of The Experiment

Facility

The experiment was conducted in the NASA Ames Research Center High Reynolds Facility, HRC1. This air-charged blow-down facility consists of a large settling tank with flow conditioning screens and interchangeable test sections and nozzles, each designed to produce a particular flow. For the present study, a rectangular supersonic nozzle with a nominal exit Mach number of M=3 was constructed. This supersonic flow exits into a 25.4 cm wide by 38.1 cm high test section. The nominal free stream flow and test conditions are given in Table 1. The useful test time varies from 5 to 60 minutes depending on the total pressure.

Model and Test Setup

The test configuration and coordinate system used are shown in figure 1. The test body consists of a 5.08 cm diameter cylinder with a cusp nose rigidly mounted on the centerline of the rectangular test section. The cusp nose was designed using inviscid characteristics theory in order to eliminate the shock waves emanating from the model nose, and hence to produce a disturbance free flow field upstream of the interaction region. The cylindrical model extends nominally 100 cm upstream from its rear support, placing the cusp nose at the nozzle exit plane.

Several different cylindrical bodies were used, depending on the nature of the measurement being made. One section, 101.6 cm long, was instrumented along one body ray ($\phi_{body} = 0^0$) with surface pressure taps at axial intervals of 2 cm. Additional pressure taps were placed at axial intervals of 20 cm at $\phi_{body} = 90^0$, 180^0 , and 270^0 to verify flow symmetry. This section was used alone to obtain surface pressures. A short section, 17.8 cm long was designed to house a traversing mechanism into which a variety of probes could be attached and moved vertically along a path perpendicular

to the axis of the cylindrical model. A potentiometer geared directly to the probe support provided a precise readout of the probe position y, independent of any driving-gear backlash. The maximum vertical movement of this mechanism was y = 2 cm. Precise axial placement of the various probes was achieved in two ways. First, the traversing mechanism section was used, in conjunction with other short interchangeable sections, to position the survey probe holder at some discrete fixed distances from the model shoulder. Second, the probe itself could slide axially in the holder and then be fixed by means of a set screw.

A two dimensional shock wave generator consisting of a wedge which spans the tunnel width was mounted on the test section wall and attached to a hydraulic cylinder. The hydraulic cylinder had the capacity of continually varying the distance h of the wedge from the tunnel wall, or holding it constant. Three different shock wave generators with wedge angles of $\alpha = 13^{0}$, 16^{0} , and 19^{0} were used. In all cases the maximum wedge thickness was 5.08 cm.

Test Technique

The shock wave generator was placed at a given position, and the tunnel was started. Most of the data presented in this paper were obtained using the 16^0 wedge, at a vertical position h = 6.5 cm from the wall (see figure 1) though some flow visualization data were obtained using the other available shock generators, and at other vertical positions.

The cylindrical test body was fixed in position, leveled, and centered in the test section, and its alignment was checked before each individual run. The cylinder support was designed to allow the test body to be arbitrarily positioned axially (x) and circumferentially (ϕ) . In practice, the cylinder was moved upstream or downstream (from its nominal position) a distance of about ± 7.5 cm, in order to position the probes in the desired axial

location for the flow field surveys. The change in the undisturbed boundary layer height at the measurement station due to the axial movement of the cylinder is approximately 1.2 percent of the nominal boundary layer height, and this was found to have a negligible effect on the measured results.

Surface Pressures

Surface pressures were obtained using strain gage absolute-pressure transducers connected with short lengths of stainless steel tubing to surface pressure taps on the cylindrical surface. The transducers were calibrated before each run by statically varying the wind tunnel test section pressure. By rotating the cylinder $\Delta\phi=10^0$ between runs (at a constant axial position) pressure data were obtained at a sufficiently large number of points on the surface. Between 10-15 presssure readings were measured at each point and their results were first averaged and then interpolated to generate an accurate contour plot of these data. The averaged surface pressure results for a wedge angle of 16^0 are presented in Table 2. The occasional gaps between measurement points in this table represent transducers that were slow in response or had inconsistent calibration curves and their readings were omitted from the presentation. Some surface pressure data was duplicated in different runs to check the reproducibility of the results; this data is also presented in Table 2.

Oil Flow Visualization

The conventional oil flow technique was used to obtain flow patterns on the cylindrical surface. The surface was covered with a sheet of black "monokote" (a Mylar sheet with an adhesive backing) and coated with a mixture of vacuum pump oil, oleic acid, and titanium dioxide. With the cylindrical model and wedge locked into fixed positions, the tunnel was started and run until a surface flow pattern was established that did not vary with time (approximately 3 minutes). Subsequent to the run, the Mylar

sheet was peeled off and placed on a flat backing board for photographing. Fig. 2 shows the model mounted inside the tunnel after the test. The oil flow patterns are seen clearly on its surface. The insert on the upper left corner shows the Mylar sheet after it was peeled off and laid flat on the backing board.

Oil flow patterns representing all the tested flow conditions are presented in fig. 3. The flow conditions of each experiment are recorded at the bottom of each picture. The only additional features in these pictures are the lines marking the windward (0^0) and leeward (180^0) rays of the model.

Flow Field Surveys

Surveys of static and total pressure in the boundary layer were made in the windward ($\phi=0^0$) and leeward ($\phi=180^0$) planes of symmetry intersecting the cylindrical test body. A typical survey was completed in a single test run by prepositioning the survey mechanism and the probe at a given axial location (x) and traversing the boundary layer in one direction (y) from the wall towards the edge of the boundary layer and beyond, a maximum vertical distance, y_{max} , of about 2cm. Surveys were made at axial locations spaced at $\Delta x=0.635$ cm in the interaction region and at $\Delta x=1.27$ cm upstream and downstream of this region. The probe traversing mechanism was capable of advancing the probe in discrete Δy increments as small as 0.005 cm. Measurements were made using varying Δy increments, ranging from Δy as small as 0.02 cm in the vicinity of the wall to Δy about 0.2 cm in the outer portion of the boundary layer. These surveys were taken at only one Reynolds number, $Re=18.2 \times 10^6$ based on the length of the cylindrical body.

Pitot pressures were measured on the windward and leeward symmetry planes using a stainless steel probe that had a uniform wall thickness of 0.003 cm and a rectangular cross section whose outside dimensions were 0.012cm high by 0.1cm wide. The static pressure probe was a 10° cone-ogive followed by a 2° cone-cylinder of 0.07cm diameter. Four small static holes (0.022 cm diameter) were drilled 90° apart, and 0.305 cm from the probe tip according to the criteria developed by Pickney⁸. This probe had the advantage of being less sensitive to flow angularity than the conventional cone - cylinder probe. For redundancy purposes five to ten readings were measured at each point, both for the static and for the total pressure surveys. Later these readings were averaged for further processing.

The averaged pressure measurements are summarized in four tables. Table 3 presents the total pressure on the windward symmetry plane, Table 4 the static pressure on the same plane. Table 5 presents the total pressure on the leeward plane, and Table 6 the static pressure.

Along the windward and leeward symmetry planes, derived parameters such as Mach number, velocity, and density were obtained from the averaged results of the pitot and static pressure surveys. Total temperature was assumed constant and equal to the free stream total temperature. Previous measurements by Kussoy et al⁹ at the same test conditions, indicated that the total temperature varied less than half a percent through the boundary layer.

The experimental uncertainties in the mean flow data in the windward and leeward planes are ± 10 percent for the static pressure (due to flow angularity), ± 6 percent for the static temperature, ± 12 percent for density, ± 3 percent for the velocity and ± 1 percent for the pitot pressure. The uncertainty in y is ± 0.01 cm.

Discussion of the Experimental Results

Flow Field Description

The flow field around the body can be divided into four different regions (a) the windward region where the shock impinges on the cylinder and the flow is governed by the severe pressure gradients and shear stresses caused by the shock; (b) the leeward region, where the flow is generally separated, and is governed by the cross flow and the thickening of the boundary layer; (c) the upstream region, ahead of the shock, where the flow is undisturbed parallel to the body axis at Mach 3; and (d) the downstream region, behind the wedge expansion fan, where the flow is being straightened by the expansion and where the difference in boundary layer thickness between the leeward and windward regions is still causing some cross flow.

Shadowgraphs obtained during the experiment, show the development of a thick boundary layer (\approx 3cm) on the leeward and an extensive forward influence of the impinging shock. These observations also show the planar shock wave and the expansion fan, verifying the existence of a region between them where the flow is at a constant angle to the body axis.

Oil Flow Patterns and their Interpretation

A basic understanding of the character of surface properties can be gained by observing the oil flow patterns. Some of the discussion in this section draws conclusions based also on data measured in the flow field (e.g. boundary layer height, separation bubble size, expansion fans, etc), that will be discussed later. A typical oil flow pattern from the unwrapped mylar sheet is shown in Fig 4a. The corresponding skin friction line pattern, constructed following Peake and Tobak ¹⁰, is shown in Fig 4b. In fig. 4a we can see the main features of the surface flow. On the windward, ($\phi = 0^0$) there are two saddle points S_1 and S_2 , and two nodes of reattachment Nr_1 and Nr_2 . On the leeward ($\phi = 180^0$) there is one node of reattachment Nr_3 , two saddle points S_3 and S_4 , and one focus point Fp. The oil patterns

show two separation lines on the windward symmetry plane originating from S_1 and S_2 . The most upstream of the two lines which originates at S_1 terminates in the focal point Fp, while the other wraps around the body changing its attitude from lateral to axial and becomes a primary leeward separation line *. A secondary leeward separation line originates from S_4 . The pattern of two parallel separation lines on the leeward is typical of a cylinder at an angle of attack, and has been observed previously by Yanta and Wardlaw ¹² and by Boersen¹³. (The surface pattern changes significantly with some flow and geometrical parameters as we shall see later). An additional feature to notice is the intense cross flow on the sides of the body ($10^0 < \phi < 100^0$) between x = 50 cm and x = 60 cm, which is of the same magnitude as the axial flow in this region, as is evident from the lateral direction of the surface lines.

The leeward interaction flow $(120^{\circ} < \phi < 180^{\circ})$ shows three distinct regions. The first region (between x=55 cm and x=60 cm) is characterized by a thick boundary layer and is almost stagnant. The flow direction in this region is very difficult to assess from the oil flow results shown in fig. 4. The adverse pressure gradient which is fed laterally from the free stream to the vicinity of the wall, and the intense cross flow both contribute to the thickening of the boundary layer in this region. The middle region, (between x=60 cm and x=70 cm) is characterized, as mentioned above, by two separation lines similar to those on the back of a cylinder at an angle of attack (see also Peake and Tobak¹⁴). The two separation lines S_2 and S_4 are typical of an imprint of the two pairs of counter rotating wake vortices¹². The downstream region, (from x=70 cm) is affected by

^{*}There is some controversy about the definition of three dimensional separation. One view states that skin friction lines that converge and form a line that passes through a saddle point, form a separation line 10; the other view states that only if a sheet of fluid actually leave the surface the footprint of this sheet on the surface is a separation line 11. In this paper we adopt the first view for convenience, without casting any judgment on the correctness of either of these views.

the expansion fan off the top of the wedge and is therefore of less interest. The straightening of the flow in this region weakens the separation lines which eventually disappear.

In order to gain a better understanding of what effects the variation of wedge height h, total pressure P_T , and wedge angle α , have on the surface skin friction lines as traced out in the oil flow visualization technique, a systematic parametric study was carried out. The various test conditions of this study are listed in Table 1(b). The oil flow results for these conditions are shown in figures 5, 6, and 7. To clarify some of the surface flow details which may not be evident in the reproductions of the oil flow pictures, a sketch interpreting the oil flow results in the vicinity of $\phi = 0^0$ is shown adjacent to each photo. All the measurements which are discussed below were taken at h=6.5 cm, $P_{T\infty}=25 \text{ psia}$, and $\alpha=16^{\circ}$. The surface oil flow for this combination of parameters appears in figures 5b and 6b. The effect of shock wave generator (wedge) angle α is shown in Fig. 5. The sronger shock generated by the 190 wedge (fig. 5c) causes a dual separation line, as was also reported by Sedney and Kitchens¹⁵. This pattern is typical of a large obstacle, of the order of δ , embedded in the boundary layer and can be explained in our case by the large separation bubble which acts as such an obstacle. Surface stream line patterns, on the windward ray ($\phi =$ 0^{0}), show the primary saddle S_{1} and secondary nodal point of attachment Nr_2 very clearly (refer to figure 5b). The primary attachment point Nr_1 almost merges with the secondary saddle S_2 , but can still be distinguished. A decrease in the shock intensity by reducing the wedge angle will cause a respective reduction in bubble size, and will enhance the merging of the secondary saddle and the adjacent node as can be seen in fig. 5b, as observed by Sedney and Kitchens¹⁵ and discussed by Peake and Tobak¹⁸. A further reduction in shock intensity, which causes a corresponding reduction in the separation bubble size, breaks completely the secondary separation line (fig. 5a). This observation is consistent with the results reported by Sedney and Kitchens if the separation bubble deflects the flow like an obstacle embedded in the boundary layer.

A second parameter with similar effects on the separated region is the total pressure P_T . Fig. 6a shows the dual windward separation lines at low total pressure, suggesting the presence of a thick separation bubble. The thick bubble at low pressures can be a Reynolds number effect, since the turbulence transport coefficients are reduced. An increase in total pressure, associated with an increase in Reynolds number and consequently a decrease in bubble size, causes the secondary saddle point to merge with the reattachment node (see fig. 6b). A further increase in pressure (fig. 6c) results in a complete breakdown of the secondary separation line suggesting a further decrease in bubble size.

Several factors contribute to a decrease in shock intensity when the wedge is moved away from the body. The major factor is probably the variations in blockage area between the wedge and the model. A second factor is the boundary layer developing on the wedge ramp, and reducing the shock intensity with distance from its origin. Fig. 7 shows the effect of varying the wedge distance h from the tunnel wall. Although the resulting change in shock intensity at the impingment point is small, we can see its effect. In fig. 7a the distance h is 0.0 cm. i.e. the distance y from the body to the wedge is maximum and consequently the shock is weaker. The result is a small bubble size and the secondary separation line is broken. Driving the wedge to h = 6.5 cm (fig. 7b), and to h = 8cm (fig. 7c) results in a progressively stronger shock. The bubble keeps growing in size, introducing a larger obstacle into the boundary layer. The secondary line of separation becomes complete (fig. 7b), and finally the separation bubble becomes an obstacle big enough to separate the node point Nr_1 from the secondary separaton line S_2 (fig. 7c).

Surface Pressure

Surface static pressure distributions were measured on axial rays every $\Delta \phi = 10^0$ around the cylinder. The windward and leeward results are presented in fig. 8. The main features of the windward profile ($\phi = 0^0$) are the pressure rise at the foot of the shock, the double hump in the high pressure region, and the downstream pressure drop caused by the wedge expansion fan. The second pressure maximum on the windward ray, at z = 60 cm, is not an abberation caused by scatter in the data. The cylindrical body was rotated $\pm 10^{0}$, and moved up and downstream ± 3 cm in order to obtain surface pressures in many points. This second maximum was observed in all measurements independent of body movement, using different pressure taps and different transducers. The leeward profile ($\phi =$ 180°) shows a very small pressure rise, suggesting that this whole region is in a wake of separated flow. The extent of forward influence can also be drawn from this profile, since the plane of the inviscid shock wave passes across the back of the body at x = 62 cm while the actual pressure rise starts at x = 55 cm, meaning about 6 upstream boundary layer thicknesses of forward influence.

Surface pressure contours display a graphic picture of where the pressure extrema and pressure gradients are of significant influence. Fig. 9 shows the experimental surface pressure contours as well as the main features of the oil flow pattern which are sketched in bold lines. The severe pressure gradients at the foot of the shock (x = 52 cm) on the windward plane $(\phi = 0^0)$ are congruent with the dual separation lines in the oil flow picture. Surprisingly, the contours show the same magnitude of pressure gradients in the lateral direction. These gradients are responsible for the severe cross flow which in turn, causes a leeward separation, similar to that

on a cylinder at an angle of attack as was discussed earlier. A somewhat unpredictable feature is the point of minimum pressure at $\phi = 100^{\circ}$ and x = 58cm. This minimum occurs exactly where the leeward separation line bifurcates, and the resulting two lines of separation follow the two pressure valleys that lead downstream from this point. The surface pressure gradients on the leeward are very small, also showing that the flow is of a separated wake type.

Pressure Surveys on the Symmetry Plane

Additional details of this complex flow field were obtained from pressure surveys that were taken on the windward and leeward planes of symmetry. Fig. 10 shows the results of pressure surveys in six locations, representing the main flow features on the windward plane. Fig 10a shows the static pressure P_t , fig 10b the total pressure P_t , and fig. 10c the location and extent of the individual surveys superimposed on a general sketch of the flow field. Survey "A" ahead of the interaction shows the beginning of the static pressure rise near the shock (fig 10a, y = 2 cm), and the upstream boundary layer edge as picked up by the total pressure profile (fig. 10b, y = 1.2 cm). Survey "B" hits the incident shock at the boundary layer edge. Survey "C" traverses the bubble. The pressure at "C" shows no change near the surface, indicating the presence and extent of the bubble in this location; thereafter the static pressure decreases to the pressure of the local expansion fan. To distinguish it from the wedge expansion, this expansion fan is indicated 'separation bubble expansion' in figure 10c, since it originates from the bubble. Traversing further from the body, the survey encounters another shock which is the 'separation shock'. Survey "D" just behind the separation, passes through yet another shock at y = 0.5cm, called the 'recompression shock' for obvious reasons. Surveys "E" and "F"

show the same structure as it receeds from the body surface at a constant angle.

The leeward flow field is simpler. The static pressure surveys in fig. 11a and total pressure in fig. 11b show a single shock passing obliquely through this region. The forward influence of the shock here can be deduced from the axial position of the surveys. Based on inviscid shock calculations, the pressure on the leeward plane of symmetry should start rising at x = 62 cm. However the measured pressure starts to rise at x = 56 cm consistent with the surface measurements. The boundary layer thickness downstream of the interaction is more than the traversing span in this region.

Pressure Contours

The symmetry plane flow structure is illustrated further in fig. 12. Fig. 12a shows the static pressure contours with the three shock waves superimposed. Points of interest in this figure are the two reflected shocks, the pressure hill behind the intersection of the incident shock and the separation shock, and the pressure valley between the two reflected shocks which substantiates the existence of an expansion fan emerging from the separation bubble. The pressure peak at the wall behind the shock system is decaying fairly fast because the wedge expansion fan, from the wedge ramp corner, hits the body at $x \approx 60$ cm. The total pressure contours in fig 12b show the same features, corroborating the above findings. Additional details obtained from the total pressure contours are the boundaries of the separation region which is clearly divided into two distinct bubbles the front one thinner than the other.

Concluding Remarks

- 1) Experimental measurements of a planar shock wave impinging obliquely on a cylinder, were made on the body surface and in the plane of symmetry, to obtain an understanding of a certain class of flows. The flow field includes an incident and reflected shock wave system, windward and leeward three dimensional separation, and severe cross flow. The experiment is of sufficient quality and detail to obtain greater understanding of this class of flows.
- 2) The incident shock wave is sufficiently strong to produce a large, double separation bubble. Two reflected shocks and an expansion fan are observed in the windward region. Wake type flow with double separation is observed in the leeward region. The surface flow structure exhibited an intense lateral cross flow. This cross flow thickens the boundary layer and causes significant upstream influence on the leeward.
- 3) The test results were processed and tabulated for future use as a data bank for computational fluid dynamics.

References

- 1)Marvin, J. G., "Turbulence Modeling for Compressible Flows," NASA TM X-73187, 1977.
- 2) Polachek, H., and Seeger, R. J., "Shock Wave Interaction," <u>Fundamentals of Gas Dynamics.</u>, Edited by H. W. Emmons, Princeton University Press, Princeton N.J., 1958, pp.448-504.
- 3) Whitham, G.B., "A New Approach to Problams of Shock Dynamics: Part I. Two Dimensional Problems," <u>Journal of Fluid Mechanics</u>, Vol. 2, Part 2, March, 1957.
- 4) Whitham, G. B., "A New Approach to Problems of Shock Dynamics: Part II. Three Dimensional Problems," <u>Journal of Fluid Mechanics</u>, Vol. 5, Part 3, April, 1959.
- 5) Bryson, A. E., and Gross, R. W. F., "Diffraction of Strong Shock Waves by Cones, Cylinders, and Spheres," <u>Journal of Fluid Mechanics</u>, Vol. 10, Part 1, February 1961, pp. 1-16.
- 6) Hung, C. M., "Numerical Solution of Supersonic Laminar Flow Over an Inclined Body of Revolution," <u>AIAA Journal</u>, Vol. 18, no. 8, August 1980.
- 7) Hung, C. M., and Chaussee, D. S., "Numerical Solution of Supersonic Turbulent Flow Over an Inclined Ogive Cylinder Flare," <u>AIAA Journal</u>, Vol.19, no. 9, September 1981, pp. 1139-1144.
- 8) Pinckney, S.F., "An Improved Static Probe Design," <u>AIAA Journal</u>, Vol. 12, April 1974, pp. 562-564.
- 9) Kussoy, M.I., Horstman, C.C., and Acharya, M., "An Experimental Documentation of Pressure Gradient, and Reynolds Number Effect, on Compressible Turbulent Boundary Layers," NASA TM-78488, 1978.
 - 10) Peake, D.J., and Tobak, M., "Three Dimensional Interactions and

Vortical Flows with Emphasis on High Speed," NASA TM-81169, March 1980.

- 11) Legendre, R., "Évolution Régulière ou Catastrophique d'Écoulements Permanents Dependant de Paramètres," <u>La Recherche Aérospatiale</u>, no. 1982-4 Juillet-Août, 1982. pp.225-232.(translated by M. Tobak Jan.1983.)
- 12) Yanta, W. J., and Wardlaw, A. B. Jr., "The Secondary Separation Region on a Body at High Angles of Attack," AIAA Paper no. 82-0343, Orlando, Florida. January 11-14, 1982.
- 13) Boersen, S., "Reynolds Number Effects on Pressure and Normal Force Distribution Along a Conically Pointed Circular Cylinder at Mach 2.3," NLR TR 75124-U, September 1975.
- 14) Peake, D. J., and Tobak, M., "Three Dimensional Flows About Simple Components at Angle of Attack," NASA TM-84226, March 1982.
- 15) Sedney, R., and Kitchens, C. L. Jr., "The Structure of Three Dimensional Separated Flows in Obstacle, Boundary Layer Interaction," AGARD no. CP-168 Paper no. 37, Gottingen Germany, May 27-30, 1975.
- 16) Peake, D. J., and Tobak, M., "Three Dimensional Separation And Reattachment," NASA TM-84221, March, 1982.

TABLE 1(a)
Nominal Flow Conditions

$P_{T\infty}$ psia.	10	25	80
M_{∞}	2.80	2.85	2.95
$T_{T\infty}$ 0 K.	278	278	278
T_{∞} ⁰ K.	108.2	105.8	101.4
δ* cm.	0.44	0.35	0.3
δ_0 cm.	1.44	1.22	1.1
Rel x10-8	7.28	18.2	58.3

<u>TABLE 1(b)</u> <u>Nominal Test Conditions</u>

$P_{T\infty}$, psia.	α , deg.	h, cm.
80	16	6.5
25	19	8, 6.5, 0
25	16	8, 6.5, 0
25	13	8, 6.5, 0
10	16	6.5

TEST 47 RUN 165A THETA= -10.0 DEG.

Po = 25 psi		Po = 80 psi	
X(cm)	P(psi)	X(cm)	P(psi)
0.1000E+02	0.6631E+00	0.1000E+02	0.2074E+01
0.1500E+02	0.6488E+00	0.1500E+02	0.2123E+01
0.2000E+02	0.7356E+00	0.2000E+02	0.2171E+01
0.2500E+02	0.7713E+00	0.2500E+02	0.2314E+01
0.3200E+02	0.7912E+00	0.3200E+02	0.2562E+01
0.3400E+02	0.7906E+00	0.3400E+02	0.2531E+01
0.3600E+02	0.7976E+00	0.3600E+02	0.2530E+01
0.3800E+02	0.7974E+00	0.3800E+02	0.2469E+01
0.4000E+02	0.8201E+00	0.4000E+02	0.2472E+01
0.4200E+02	0.7610E+00	0.4200E+02	0.2498E+01
0.4400E+02	0.7786E+00	0.4400E+02	0.2483E+01
0.4800E+02	0.7500E+00	0.4800E+02	0.2388E+01
0.5000E+02	0.7308E+00	0.5000E+02	0.2173E+01
0.5400E+02	0.4101E+01	0.5400E+02	0.1338E+02
0.5600E+02	0.4007E+01	0.5600E+02	0.1287E+02
0.5800E+02	0.3705E+01	0.5800E+02	0.1069E+02
0.6000E+02	0.3165E+01	0.6000E+02	0.1017E+02
0.6200E+02	0.1871E+01	0.6200E+02	0.5886E+01
0.6600E+02	0.8083E+00	0.6600E+02	0.2553E+01
0.6800E+02	0.6114E+00	0.6800E+02	0.1873E+01
0.7000E+02	0.5043E+00	0.7000E+02	0.1520E+01
0.7500E+02	0.4999E+00	0.7500E+02	0.1547E+01

TEST 47 RUN 165B THETA= 0.0 DEG.

$P_0 = 2$	25 psi	Po = 80	9 psi
X(em)	P(psi)	X(cm)	P(psi)
0.1000E+02	0.6848E+00	0.1000E+02	0.2070E+01
0.1500E+02	0.6612E+00	0.1500E+02	0.2113E+01
0.2000E+02	0.7282E+00	0.2000E+02	0.2136E+01
0.2500E+02	0.7769E+00	0.2500E+02	0.2296E+01
0.3200E+02	0.8146E+00	0.3200E+02	0.2498E+01
0.3400E+02	0.8120E+00	0.3400E+02	0.2517E+01
0.3600E+02	0.8287E+00	0.3600E+02	0.2572E+01
0.3800E+02	0.8286E+00	0.3800E+02	0.2497E+01
0.4000E+02	0.8243E+00	0.4000E+02	0.2505E+01
0.4200E+02	0.7770E+00	0.4200E+02	0.2520E+01
0.4400E+02	0.8018E+00	0.4400E+02	0.2506E+01
0.4800E+02	0.7736E+00	0.4800E+02	0.2388E+01
0.5000E+02	0.8357E+00	0.5000E+02	0.2213E+01
0.5400E+02	0.4143E+01	0.5400E+02	0.1320E+02
0.5600E+02	0.4036E+01	0.5600E+02	0.1274E+02
0.5800E+02	0.3714E+01	0.5800E+02	0.1069E+02
0.6000E+02	0.3170E+01	0.6000E+02	0.9923E+01
0.6200E+02	0.1895E+01	0.6200E+02	0.5805E+01
0.6600E+02	0.8159E+00	0.6600E+02	0.2510E+01
0.6800E+02	0.6373E+00	0.6800E+02	0.1884E+01
0.7000E+02	0.5116E+00	0.7000E+02	0.1489E+01
0.7500E+02	0.5376E+00	0.7500E+02	0.1639E+01

TEST 47 RUN 165C THETA= 10.0 DEG.

Po = 25 psi	Po = 80 p	si

10 - 25 psi		10 - 00 psi		
X(cm)	P(psi)	X(cm)	P(psi)	
0.1000E+02	0.6725E+00	0.1000E+02	0.2057E+01	
0.1500E+02	0.6619E+00	0.1500E+02	0.2120E+01	
0.2000E+02	0.7110E+00	0.2000E+02	0.2132E+01	
0.2500E+02	0.7862E+00	0.2500E+02	0.2306E+01	
0.3200E+02	0.8054E+00	0.3200E+02	0.2512E+01	
0.3400E+02	0.7878E+00	0.3400E+02	0.2508E+01	
0.3600E+02	0.8243E+00	0.3600E+02	0.2549E+01	
0.3800E+02	0.8142E+00	0.3800E+02	0.2473E+01	
0.4000E+02	0.7798E+00	0.4000E+02	0.2470E+01	
0.4200E+02	0.7445E+00	0.4200E+02	0.2485E+01	
0.4400E+02	0.7890E+00	0.4400E+02	0.2486E+01	
0.4800E+02	0.7400E+00	0.4800E+02	0.2348E+01	
0.5000E+02	0.8583E+00	0.5000E+02	0.2113E+01	
0.5400E+02	0.4172E+01	0.5400E+02	0.1339E+02	
0.5600E+02	0.4012E+01	0.5600E+02	0.1281E+02	
0.5800E+02	0.3709E+01	0.5800E+02	0.1069E+02	
0.6000E+02	0.3126E+01	0.6000E+02	0.9903E+01	
0.6200E+02	0.1869E+01	0.6200E+02	0.5782E+01	
0.6600E+02	0.7800E+00	0.6600E+02	0.2475E+01	
0.6800E+02	0.6625E+00	0.6800E+02	0.1882E+01	
0.7000E+02	0.5071E+00	0.7000E+02	0.1477E+01	
0.7500E+02	0.5318E+00	0.7500E+02	0.1598E+01	

TEST 47 RUN 165D THETA= 20.0 DEG.

Po = 2	5 psi	Po = 80	psi
X(cm)	P(psi)	X(cm)	P(psi)
0.1000E+02	0.6758E+00	0.1000E+02	0.2087E+01
0.1500E+02	0.6769E+00	0.1500E+02	0.2145E+01
0.2000E+02	0.6603E+00	0.2000E+02	0.2102E+01
0.2500E+02	0.7870E+00	0.2500E+02	0.2318E+01
0.3200E+02	0.8237E+00	0.3200E+02	0.2540E+01
0.3400E+02	0.8035E+00	0.3400E+02	0.2515E+01
0.3600E+02	0.8328E+00	0.3600E+02	0.2590E+01
0.3800E+02	0.8300E+00	0.3800E+02	0.2513E+01
0.4000E+02	0.7920E+00	0.4000E+02	0.2464E+01
0.4200E+02	0.7684E+00	0.4200E+02	0.2536E+01
0.4400E+02	0.7995E+00	0.4400E+02	0.2528E+01
0.4800E+02	0.7385E+00	0.4800E+02	0.2351E+01
0.5000E+02	0.7843E+00	0.5000E+02	0.2297E+01
0.5400E+02	0.3870E+01	0.5400E+02	0.1243E+02
0.5600E+02	0.3846E+01	0.5600E+02	0.1222E+02
0.5800E+02	0.3548E+01	0.5800E+02	0.1069E+02
0.6000E+02	0.3178E+01	0.6000E+02	0.9907E+01
0.6200E+02	0.1901E+01	0.6200E+02	0.5855E+01
0.6600E+02	0.7925E+00	0.6600E+02	0.2548E+01
0.6800E+02	0.6920E+00	0.6800E+02	0.1977E+01
0.7000E+02	0.5071E+00	0.7000E+02	0.1521E+01
0.7500E+02	0.5487E+00	0.7500E+02	0.1704E+01

TEST 47 RUN 165E THETA= 30.0 DEG.

Po = 25 psi		Po = 80 psi	
X(cm)	P(psi)	X(cm)	P(psi)
0.1000E+02	0.6682E+00	0.1000E+02	0.2089E+01
0.1500E+02	0.6924E+00	0.1500E+02	0.2189E+01
0.2000E+02	0.6727E+00	0.2000E+02	0.2101E+01
0.2500E+02	0.8021E+00	0.2500E+02	0.2343E+01
0.3200E+02	0.8197E+00	0.3200E+02	0.2558E+01
0.3400E+02	0.7871E+00	0.3400E+02	0.2535E+01
0.3600E+02	0.8307E+00	0.3600E+02	0.2586E+01
0.3800E+02	0.8220E+00	0.3800E+02	0.2521E+01
0.4000E+02	0.7468E+00	0.4000E+02	0.2426E+01
0.4200E+02	0.7687E+00	0.4200E+02	0.2561E+01
0.4400E+02	0.7947E+00	0.4400E+02	0.2513E+01
0.4800E+02	0.7103E+00	0.4800E+02	0.2324E+01
0.5000E+02	0.7498E+00	0.5000E+02	0.2282E+01
0.5400E+02	0.3447E+01	0.5400E+02	0.1117E+02
0.5600E+02	0.3611E+01	0.5600E+02	0.1149E+02
0.5800E+02	0.3307E+01	0.5800E+02	0.1069E+02
0.6000E+02	0.3076E+01	0.6000E+02	0.9815E+01
0.6200E+02	0.1874E+01	0.6200E+02	0.5845E+01
0.6600E+02	0.7900E+00	0.6600E+02	0.2580E+01
0.6800E+02	0.7222E+00	0.6800E+02	0.2049E+01
0.7000E+02	0.5078E+00	0.7000E+02	0.1550E+01
0.7500E+02	0.6001E+00	0.7500E+02	0.1918E+01

TEST 47 RUN 165F THETA= 40.0 DEG.

Po = 25 psi		Po = 80 psi		
X(cm)	P(psi)	X(cm)	P(psi)	
0.1000E+02	0.6779E+00	Ø.1000E+02	0.2092E+01	
0.1500E+02	0.7084E+00	0.1500E+02	0.2223E+01	
0.2000E+02	0.6994E+00	0.2000E+02	0.2113E+01	
0.2500E+02	0.8273E+00	0.2500E+02	0.2413E+01	
0.3200E+02	0.8454E+00	0.3200E+02	0.2566E+01	
0.3400E+02	0.8002E+00	0.3400E+02	0.2537E+01	
0.3600E+02	0.8499E+00	0.3600E+02	0.2594E+01	
0.3800E+02	0.8337E+00	0.3800E+02	0.2531E+01	
0.4000E+02	0.7332E+00	0.4000E+02	0.2411E+01	
0.4200E+02	0.7733E+00	0.4200E+02	0.2589E+01	
0.4400E+02	0.8018E+00	0.4400E+02	0.2491E+01	
0.4800E+02	0.7111E+00	0.4800E+02	0.2305E+01	
0.5000E+02	0.7382E+00	0.5000E+02	0.2252E+01	
0.5490E+02	0.2969E+01	0.5400E+02	0.9511E+01	
0.5600E+02	0.3355E+01	0.5600E+02	0.1051E+02	
0.5800E+02	0.3105E+01	0.5800E+02	0.9711E+01	
0.6000E+02	0.2980E+01	0.6000E+02	0.9267E+01	
0.6200E+02	0.1858E+01	0.6200E+02	0.5700E+01	
0.6600E+02	0.8159E+00	0.6600E+02	0.2606E+01	
0.6800E+02	0.7561E+00	0.6800E+02	0.2080E+01	
0.7000E+02	0.5184E+00	0.7000E+02	0.1573E+01	
0.7500E+02	0.6809E+00	0.7500E+02	0.2068E+01	

TEST 47 RUN 166A THETA= 50.0 DEG.

Po	=	25	psi	
----	---	----	-----	--

Po = 80 psi

10 - 20 psi		10 - 00 bar		
X(cm)	P(psi)	X(cm)	P(psi)	
0.1000E+02	0.6788E+00	0.1000E+02	0.2105E+01	
0.1500E+02	0.6660E+00	0.1500E+02	0.2217E+01	
0.2000E+02	0.6981E+00	0.2000E+02	0.2077E+01	
0.2500E+02	0.7621E+00	0.2500E+02	0.2337E+01	
0.3200E+02	0.8463E+00	0.3200E+02	0.2548E+01	
0.3400E+02	0.8306E+00	0.3400E+02	0.2580E+01	
0.3600E+02	0.8443E+00	0.3600E+02	0.2621E+01	
0.3800E+02	0.8212E+00	0.3800E+02	0.2548E+01	
0.4000E+02	0.8184E+00	0.4000E+02	0.2527E+01	
0.4200E+02	0.8403E+00	0.4200E+02	0.2582E+01	
0.4400E+02	0.7812E+00	0.4400E+02	0.2507E+01	
0.4800E+02	0.7563E+00	0.4800E+02	0.2294E+01	
0.5000E+02	0.8133E+00	0.5000E+02	0.2338E+01	
0.5400E+02	0.2265E+01	0.5400E+02	0.7196E+01	
0.5600E+02	0.2936E+01	0.5600E+02	0.9374E+01	
0.5800E+02	0.2899E+01	0.5800E+02	0.8789E+01	
0.6000E+02	0.2787E+01	0.6000E+02	0.8592E+01	
0.6200E+02	0.1809E+01	0.6200E+02	0.5554E+01	
0.6600E+02	0.9046E+00	0.6600E+02	0.2723E+01	
0.6800E+02	0.6891E+00	0.6800E+02	0.2085E+01	
0.7000E+02	0.5532E+00	0.7000E+02	0.1662E+01	
0.7500E+02	0.6607E+00	0.7500E+02	0.2070E+01	
00001.02	0.00012.00	0.1000E102	0.200ET01	

TEST 47 RUN 166B THETA= 60.0 DEC.

Po = 25 psi

Po = 80 psi

	•		-
X(cm)	P(psi)	X(cm)	P(psi)
0.1000E+02	0.6744E+00	0.1000E+02	0.2098E+01
0.1500E+02	0.6797E+00	0.1500E+02	0.222E+01
0.2000E+02	0.6890E+00	0.2000E+02	0.2116E+01
0.2500E+02	0.7609E+00	0.2500E+02	0.2289E+01
0.3200E+02	0.8221E+00	0.3200E+02	0.2563E+01
0.3400E+02	0.8344E+00	0.3400E+02	0.2603E+01
0.3600E+02	0.8398E+00	0.3600E+02	0.2644E+01
0.3800E+02	0.8041E+00	0.3800E+02	0.2545E+01
0.4000E+02	0.7807E+00	0.4000E+02	0.2502E+01
0.4200E+02	0.8202E+00	0.4200E+02	0.2523E+01
0.4400E+02	0.7615E+00	0.4400E+02	0.2495E+01
0.4800E+02	0.7450E+00	0.4800E+02	0.2272E+01
0.5000E+02	0.8377E+00	0.5000E+02	0.2286E+01
0.5400E+02	0.1462E+01	0.5400E+02	0.4460E+01
0.5600E+02	0.2365E+01	0.5600E+02	0.7706E+01
0.5800E+02	0.2526E+01	0.5800E+02	0.7804E+01
0.6000E+02	0.2422E+01	0.6000E+02	0.7568E+01
0.6200E+02	0.1691E+01	0.6200E+02	0.5247E+01
0.6600E+02	0.9002E+00	0.6600E+02	0.2683E+01
0.6800E+02	0.7179E+00	0.6800E+02	0.2137E+01
0.7000E+02	0.5892E+00	0.7000E+02	0.1736E+01 /
0.7500E+02	0.6693E+00	0.7500E+02	0.2002E+01/

TEST 47 RUN 166C THETA= 70.0 DEC.

Po	=	25	psi

Po = 80 psi

	-		-
X(cm)	P(psi)	X(cm)	P(psi)
0.1000E+02	0.6660E+00	0.1000E+02	0.2098E+01
0.1500E+02	0.6715E+00	0.1500E+02	0.2175E+01
0.2000E+02	0.7043E+00	0.2000E+02	0.2177E+01
0.2500E+02	0.7718E+00	0.2500E+02	0.2343E+01
0.3200E+02	0.7995E+00	0.3200E+02	0.2535E+01
0.3400E+02	0.8427E+00	0.3400E+02	0.2651E+01
0.3600E+02	0.8378E+00	0.3600E+02	0.2667E+01
0.3800E+02	0.8098E+00	0.3800E+02	0.2583E+01
0.4000E+02	0.7536E+00	0.4000E+02	0.2510E+01
0.4200E+02	0.7901E+00	0.4200E+02	0.2509E+01
0.4400E+02	0.7516E+00	0.4400E+02	0.2459E+01
0.4800E+02	0.7293E+00	0.4800E+02	0.2308E+01
0.5000E+02	0.8241E+00	0.5000E+02	0.2309E+01
0.5400E+02	0.9597E+00	0.5400E+02	0.3043E+01
0.5600E+02	0.1781E+01	0.5600E+02	0.5890E+01
0.5800E+02	0.2145E+01	0.5800E+02	0.6760E+01
0.6000E+02	0.2112E+01	0.6000E+02	0.6618E+01
0.6200E+02	0.1581E+01	0.6200E+02	0.4926E+01
0.6600E+02	0.8881E+00	0.6600E+02	0.2641E+01
0.6800E+02	0.7401E+00	0.6800E+02	0.2205E+01
0.7000E+02	0.6414E+00	0.7000E+02	0.2023E+01
0.7500E+02	0.6767E+00	0.7500E+02	0.2016E+01

TEST 47 RUN 167A THETA= 80.0 DEC.

Po	=	25	nei
	_	20	DS i

Po = 80 psi

. o Lo po.		10 00 ps.		
X(cm)	P(psi)	X(cm)	P(psi)	
0.1000E+02	0.5615E+00	0.1000E+02	0.1999E+ 0 1	
0.1500E+02	0.5526E+00	0.1500E+02	0.2054E+01	
0.2000E+02	0.6113E+00	0.2000E+02	0.2099E+01	
0.2500E+02	0.6146E+00	0.2500E+02	0.2226E+01	
0.3200E+02	0.7371E+00	0.3200E+02	0.2465E+01	
0.3400E+02	0.7640E+00	0.3400E+02	0.2536E+01	
0.3600E+02	0.7373E+00	0.3600E+02	0.2563E+01	
0.3800E+02	0.7139E+00	0.3800E+02	0.2506E+01	
0.4000E+02	0.7145E+00	0.4000E+02	0.2465E+01	
0.4200E+02	0.7021E+00	0.4200E+02	0.2416E+01	
0.4400E+02	0.6624E+00	0.4400E+02	0.2314E+01	
0.4800E+02	0.6894E+00	0.4800E+02	0.2299E+01	
0.5000E+02	0.6021E+00	0.5000E+02	0.2106E+01	
0.5400E+02	0.8702E+00	0.5400E+02	0.3367E+01	
0.5600E+02	0.1119E+01	0.5600E+02	0.3839E+01	
0.5800E+02	0.1657E+01	0.5800E+02	0.5518E+01	
0.6000E+02	0.1777E+01	0.6000E+02	0.5655E+01	
0.6200E+02	0.1398E+01	0.6200E+02	0.4472E+01	
0.6600E+02	0.7898E+00	0.6600E+02	0.2516E+01	
0.6800E+02	0.6695E+00	0.6800E+02	0.2143E+01	
0.7000E+02	0.7123E+00	0.7000E+02	0.2532E+01	
0.7500E+02	0.5808E+00	0.7500E+02	0.1957E+01	
	+ 			

TEST 47 RUN 167B THETA= 90.0 DEC.

Po = 2	25 psi	Po = 80	psi
X(cm)	P(psi)	X(cm)	P(psi)
0.1000E+02 0.1500E+02 0.2000E+02 0.2500E+02 0.3200E+02 0.3600E+02 0.3800E+02 0.4000E+02 0.4200E+02 0.4400E+02	0.5662E+00 0.5297E+00 0.6535E+00 0.6185E+00 0.7672E+00 0.7703E+00 0.7203E+00 0.7203E+00 0.7258E+00 0.7224E+00 0.6835E+00 0.7073E+00	0.1000E+02 0.1500E+02 0.2000E+02 0.2500E+02 0.3200E+02 0.3400E+02 0.3600E+02 0.3800E+02 0.4000E+02 0.4200E+02 0.4200E+02 0.4400E+02 0.4800E+02	0.1970E+01 0.2010E+01 0.2010E+01 0.2151E+01 0.2453E+01 0.2453E+01 0.2473E+01 0.2438E+01 0.2383E+01 0.2246E+01 0.2287E+01
0.5000E+02 0.5400E+02 0.5600E+02 0.5800E+02 0.6000E+02 0.6600E+02 0.6800E+02 0.7000E+02	0.6416E+00 0.1051E+01 0.7107E+00 0.1209E+01 0.1500E+01 0.1316E+01 0.8001E+00 0.7939E+00 0.8151E+00 0.6177E+00	0.5000E+02 0.5400E+02 0.5600E+02 0.5800E+02 0.6000E+02 0.6200E+02 0.6600E+02 0.6800E+02 0.7000E+02 0.7500E+02	0.2087E+01 0.3731E+01 0.2350E+01 0.4021E+01 0.4613E+01 0.3928E+01 0.2465E+01 0.2505E+01 0.2868E+01 0.1989E+01

TEST 47 RUN 168A THETA= 100.0 DEG.

$P_0 = 25 psi$		Po = 80 psi		
X(cm)	P(psi)	X(cm)	P(psi)	
0.1000E+02	0.5575E+00	0.1000E+02	0.1992E+01	
0.1500E+02	0.5961E+00	0.1500E+02	0.2085E+01	
0.2000E+02	0.5936E+00	0.2000E+02	0.2038E+01	
0.2500E+02	0.6021E+00	0.2500E+02	0.2100E+01	
0.3200E+02	0.7509E+00	0.3200E+02	0.2499E+01	
0.3400E+02	0.7386E+00	0.3400E+02	0.2437E+01	
0.3600E+02	0.7396E+00	0.3600E+02	0.2543E+01	
0.3800E+02	0.7233E+00	0.3800E+02	0.2500E+01	
0.4000E+02	0.7180E+00	0.4000E+02	0.2485E+01	
0.4200E+02	0.6754E+00	0.4200E+02	0.2347E+01	
0.4400E+02	0.6820E+00	0.4400E+02	0.2279E+01	
0.4600E+02	0.8280E+00	0.4600E+02	0.2522E+01	
0.4800E+02	0.6763E+00	0.4800E+02	0.2256E+01	
0.5000E+02	0.8110E+00	0.5000E+02	0.2415E+01	
0.5400E+02	0.1165E+01	0.5400E+02	0.3885E+01	
0.5600E+02	0.6186E+00	0.5600E+02	0.2201E+01	
0.5800E+02	0.6947E+00	0.5800E+02	0.2410E+01	
0.6000E+02	0.1121E+01	0.6000E+02	0.3574E+01	
0.6200E+02	0.1203E+01	0.6200E+02	0.3543E+01	
0.6600E+02	0.8262E+00	0.6600E+02	0.2525E+01	
0.6800E+02	0.1049E+01	0.6800E+02	0.3423E+01	
0.7000E+02	0.9083E+00	0.7000E+02	0.3062E+01	
0.7500E+02	0.6485E+00	0.7500E+02	0.2102E+01	

TEST 47 RUN 168B THETA= 110.0 DEG.

Po = 2	25 psi	Po = 8	0 psi
X(cm)	P(psi)	X(cm)	P(psi)
0.1000E+02	0.5563E+00	0.1000E+02	0.1995E+01
0.1500E+02	0.5823E+00	0.1500E+02	0.2056E+01
0.2000E+02	0.6083E+00	0.2000E+02	0.2054E+01
0.2500E+02	0.5945E+00	0.2500E+02	0.2065E+01
0.3200E+02	0.7399E+00	0.3200E+02	0.2520E+01
0.3400E+02	0.7557E+00	0.3400E+02	0.2493E+01
0.3600E+02	0.7362E+00	0.3600E+02	0.2541E+01
0.3800E+02	0.7141E+00	0.3800E+02	0.2492E+01
0.4000E+02	0.7215E+00	0.4000E+02	0.2512E+01
0.4200E+02	0.6877E+00	0.4200E+02	0.2373E+01
0.4400E+02	0.6747E+00	0.4400E+02	0.2350E+01
0.4600E+02	0.8819E+00	0.4600E+02	0.2544E+01
0.4800E+02	0.6998E+00	0.4800E+02	0.2303E+01
0.5000E+02	0.8767E+00	0.5000E+02	0.2457E+01
0.5400E+02	0.1116E+01	0.5400E+02	0.3781E+01
0.5600E+02	0.7753E+00	0.5600E+02	0.2888E+01
0.5800E+02	0.5033E+00	0.5800E+02	0.1542E+01
0.6000E+02	0.8080E+00	0.6000E+02	0.2674E+01
0.6200E+02	0.1045E+01	0.6200E+02	0.3174E+01
0.6600E+02	0.1133E+01	0.6600E+02	0.3520E+01
0.6800E+02	0.1123E+01	0.6800E+02	0.3618E+01
0.7000E+02	0.9440E+00	0.7000E+02	0.3140E+01
0.7500E+02	0.6867E+00	0.7500E+02	0.2187E+01

TEST 47 RUN 168C THETA= 120.0 DEG.

Po = 2	5 psi	Po = 80	psi
X(cm)	P(psi)	X(cm)	P(psi)
0.1000E+02	0.5688E+00	0.1000E+02	0.1967E+01
0.1500E+02	0.5440E+00	0.1500E+02	0.1993E+01
0.2000E+02	0.6414E+00	0.2000E+02	0.2063E+01
0.2500E+02	0.6288E+00	0.2500E+02	0.2083E+01
0.3200E+02	0.7605E+00	0.3200E+02	0.2486E+01
0.3400E+02	0.7813E+00	0.3400E+02	0.2509E+01
0.3600E+02	0.7365E+00	0.3600E+02	0.2495E+01
0.3800E+02	0.7209E+00	0.3800E+02	0.2444E+01
0.4000E+02	0.7412E+00	0.4000E+02	0.2474E+01
0.4200E+02	0.7246E+00	0.4200E+02	0.2370E+01
0.4400E+02	0.6849E+00	0.4400E+02	0.2374E+01
0.4600E+02	0.9402E+00	0.4600E+02	0.2537E+01
0.4800E+02	0.7311E+00	0.4800E+02	0.2314E+01
0.5000E+02	0.9460E+00	0.5000E+02	0.2485E+01
0.5400E+02	0.1114E+01	0.5400E+02	0.3627E+01
0.5600E+02	0.1029E+01	0.5600E+02	0.3482E+01
0.5800E+02	0.5999E+00	0.5800E+02	0.1847E+01
0.6000E+02	0.8528E+00	0.6000E+02	0.1686E+01
0.6200E+02	0.1077E+01	0.6200E+02	0.2587E+01
0.6600E+02	0.1348E+01	0.6600E+02	0.4091E+01
0.6800E+02	0.1181E+01	0.6800E+02	0.3647E+01
0.7000E+02	0.9935E+00	0.7000E+02	0.3156E+01
0.7500E+02	0.7463E+00	0.7500E+02	0.2299E+01

TEST 47 RUN 169A THETA= 130.0 DEG.

Po = 25	5 psi	Po = 80	psi
X(cm)	P(psi)	X(cm)	P(psi)
0.1000E+02	0.6461E+00	0.1000E+02	0.2062E+01
0.1500E+02	0.6513E+00	0.1500E+02	0.2065E+01
0.2000E+02	0.6929E+00	0.2000E+02	0.2137E+01
0.2500E+02	0.6710E+00	0.2500E+02	0.2259E+01
0.3200E+02	0.7788E+00	0.3200E+02	0.2439E+01
0.3400E+02	0.8208E+00	0.3400E+02	0.2566E+01
0.3600E+02	0.8102E+00	0.3600E+02	0.2561E+01
0.3800E+02	0.8019E+00	0.3800E+02	0.2530E+01
0.4000E+02	0.8147E+00	0.4000E+02	0.2535E+01
0.4200E+02	0.7981E+00	0.4200E+02	0.2486E+01
0.4400E+02	0.7728E+00	0.4400E+02	0.2506E+01
0.4600E+02	0.6339E+00	0.4600E+02	0.2356E+01
0.4800E+02	0.7552E+00	0.4800E+02	0.2375E+01
0.5000E+02	0.5967E+00	0.5000E+02	0.2260E+01
0.5400E+02	0.1193E+01	0.5400E+02	0.3616E+01
0.5600E+02	0.1220E+01	0.5600E+02	0.3846E+01
0.5800E+02	0.9091E+00	0.5800E+02	0.2840E+01
0.6000E+02	0.1081E+01	0.6000E+02	0.2452E+01
0.6200E+02	0.1513E+01	0.6200E+02	0.4061E+01
0.6600E+02	0.1479E+01	0.6600E+02	0.4325E+01
0.6800E+02	0.1308E+01	0.6800E+02	0.3876E+01
0.7000E+02	0.1111E+01	0.7000E+02	0.3425E+01
0.7500E+02	0.8757E+00	0.7500E+02	0.2640E+01

TEST 47 RUN 169B THETA= 140.0 DEG.

$P_0 = 25 \text{ psi}$		Po = 80 psi		
X(cm)	P(psi)	X(cm)	P(psi)	
0.1000E+02	0.6510E+00	0.1000E+02	0.2136E+01	
0.1500E+02	0.6032E+00	0.1500E+02	0.2015E+01	
0.2000E+02	0.6820E+00	0.2000E+02	0.2157E+01	
0.2500E+02	0.6660E+00	0.2500E+02	0.2233E+01	
0.3200E+02	0.7590E+00	0.3200E+02	0.2414E+01	
0.3400E+02	0.7988E+00	0.3400E+02	0.2564E+01	
0.3600E+02	0.7747E+00	0.3600E+02	0.2512E+01	
0.380CE+02	0.7809E+00	0.3800E+02	0.2506E+01	
0.4000E+02	0.8013E+00	0.4000E+02	0.2536E+01	
0.4200E+02	0.7665E+00	0.4200E+02	0.2477E+01	
0.4400E+02	0.7495E+00	0.4400E+02	0.2491E+01	
0.4600E+02	0.6731E+00	0.4600E+02	0.2373E+01	
0.4800E+02	0.7458E+00	0.4800E+02	0.2402E+01	
0.5000E+02	0.6291E+00	0.5000E+02	0.2249E+01	
0.5400E+02	0.1090E+01	0.5400E+02	0.3122E+01	
0.5600E+02	0.1200E+01	0.5600E+02	0.3777E+01	
0.5800E+02	0.1271E+01	0.5800E+02	0.3672E+01	
0.6000E+02	0.9775E+00	0.6000E+02	0.2768E+01	
0.6200E+02	0.1516E+01	0.6200E+02	0.4003E+01	
0.6600E+02	0.1550E+01	0.6600E+02	0.4608E+01	
0.6800E+02	0.1376E+01	0.6800E+02	0.4184E+01	
0.7000E+02	0.1170E+01	0.7000E+02	0.3764E+01	
0.7500E+02	0.9521E+00	0.7500E+02	0.3057E+01	

TEST 47 RUN 170A THETA= 150.0 DEG.

Po	=	25	psi	Po	=	80	psi	

X(cm)	P(psi)	X(cm)	P(psi)
0.1000E+02	0.6846E+00	0.1000E+02	0.2176E+01
0.1500E+02	0.6621E+00	0.1500E+02	0.2055E+01
0.2000E+02	0.6848E+00	0.2000E+02	0.2155E+01
0.2500E+02	0.7269E+00	0.2500E+02	0.2243E+01
0.3200E+02	0.7869E+00	0.3200E+02	0.2440E+01
0.3400E+02	0.8183E+00	0.3400E+02	0.2553E+01
0.3600E+02	0.8131E+00	0.3600E+02	0.2544E+01
0.3800E+02	0.8175E+00	0.3800E+02	0.2515E+01
0.4000E+02	0.8328E+00	0.4000E+02	0.2605E+01
0.4200E+02	0.7971E+00	0.4200E+02	0.2508E+01
0.4400E+02	0.7964E+00	0.4400E+02	0.2524E+01
0.4600E+02	0.9096E+00	0.4600E+02	0.2665E+01
0.4800E+02	0.7658E+00	0.4800E+02	0.2421E+01
0.5000E+02	0.9245E+00	0.5000E+02	0.2589E+01
0.5400E+02	0.1030E+01	0.5400E+02	0.2548E+01
0.5600E+02	0.1368E+01	0.5600E+02	0.3779E+01
0.5800E+02	0.1555E+01	0.5800E+02	0.4581E+01
0.6000E+02	0.1317E+01	0.6000E+02	0.4307E+01
0.6200E+02	0.1424E+01	0.6200E+02	0.3300E+01
0.6600E+02	0.1671E+01	0.6600E+02	0.4811E+01
0.6800E+02	0.1500E+01	0.6800E+02	0.4562E+01
0.7000E+02	0.1320E+01	0.7000E+02	0.4227E+01
0.7500E+02	0.1072E+01	0.7500E+02	0.3505E+01

TEST 47 RUN 170B THETA= 160.0 DEG.

Po = 25 psi	Po = 80 psi
	10 - 00 181

			-
X(cm)	P(psi)	X(cm)	P(psi)
0.1000E+02	0.6925E+00	0.1000E+02	0.2168E+01
0.1500E+02	0.6537E+00	0.1500E+02	0.2020E+01
0.2000E+02	0.6921E+00	0.2000E+02	0.2173E+01
0.2500E+02	0.7477E+00	0.2500E+02	0.2282E+01
0.3200E+02	0.8103E+00	0.3200E+02	0.2444E+01
0.3400E+02	0.8321E+00	0.3400E+02	0.2536E+01
0.3600E+02	0.8146E+00	0.3600E+02	0.2552E+01
0.3800E+02	0.8296E+00	0.3800E+02	0.2511E+01
0.4000E+02	0.8243E+00	0.4000E+02	0.2655E+01
0.4200E+02	0.8339E+00	0.4200E+02	0.2524E+01
0.4400E+02	0.7953E+00	0.4400E+02	0.2524E+01
0.4600E+02	0.1024E+01	0.4600E+02	0.2695E+01
0.4800E+02	0.7691E+00	0.4800E+02	0.2435E+01
0.5000E+02	0.1044E+01	0.5000E+02	0.2621E+01
0.5400E+02	0.8669E+00	0.5400E+02	0.2372E+01
0.5600E+02	0.1462E+01	0.5600E+02	0.3893E+01
0.5800E+02	0.1721E+01	0.5800E+02	0.5200E+01
0.6000E+02	0.1682E+01	0.6000E+02	0.5291E+01
0.6200E+02	0.1342E+01	0.6200E+02	0.4466E+01
0.6600E+02	0.1700E+01	0.6600E+02	0.4535E+01
0.6800E+02	0.1608E+01	0.6800E+02	
0.7000E+02	0.1439E+01		0.4654E+01
0.7500E+02		0.7000E+02	0.4529E+01
U. GUULTUZ	0.1197E+01	0.7500E+02	0.3942E+01

TEST 47 RUN 170C THETA= 170.0 DEG.

Po = 25 psi		Po = 8	0 psi
X(cm)	P(psi)	X(cm)	P(psi)
0.1000E+02	0.6771E+00	0.1000E+02	0.2154E+01
0.1500E+02	0.6134E+00	0.1500E+02	0.1960E+01
0.2000E+02	0.6921E+00	0.2000E+02	0.2173E+01
0.2500E+02	0.7477E+00	0.2500E+02	0.2277E+01
0.3200E+02	0.8173E+00	0.3200E+02	0.2430E+01
0.3400E+02	0.8217E+00	0.3400E+02	0.2497E+01
0.3600E+02	0.7925E+00	0.3600E+02	0.2519E+01
0.3800E+02	0.8262E+00	0.3800E+02	0.2481E+01
0.4000E+02	0.8021E+00	0.4000E+02	0.2602E+01
0.4200E+02	0.7971E+00	0.4200E+02	0.2519E+01
0.4400E+02	0.7782E+00	0.4400E+02	0.2459E+01
0.4600E+02	0.1004E+01	0.4600E+02	0.2710E+01
0.4800E+02	0.7558E+00	0.4800E+02	0.2412E+01
0.5000E+02	0.1018E+01	0.5000E+02	0.2648E+01
0.5400E+02	0.7711E+00	0.5400E+02	0.2367E+01
0.5600E+02	0.1525E+01	0.5600E+02	0.4236E+01
0.5800E+02	0.1766E+01	0.5800E+02	0.5471E+01
0.6000E+02	0.1832E+01	0.6000E+02	0.5791E+01
0.6200E+02	0.1825E+01	0.6200E+02	0.5886E+01
0.6600E+02	0.1714E+01	0.6600E+02	0.4914E+01
0.6800E+02	0.1665E+01	0.6800E+02	0.4983E+01
0.7000E+02	0.1536E+01	0.7000E+02	0.4861E+01
0.7500E+02	0.1343E+01	0.7500E+02	0.4294E+01

TEST 47 RUN 171A THETA= 180.0 DEG.

$P_{0} = 3$	25 psi	Po = 8	80 psi
X(cm)	P(psi)	X(cm)	P(psi)
0.1000E+02	0.6885E+00	0.1000E+02	0.2199E+01
0.1500E+02	0.6215E+00	0.1500E+02	0.2039E+01
0.2000E+02	0.6725E+00	0.2000E+02	0.2166E+01
0.2500E+02	0.7290E+00	0.2500E+02	0.2283E+01
0.3200E+02	0.7784E+00	0.3200E+02	0.2414E+01
0.3400E+02	0.7943E+00	0.3400E+02	0.2484E+01
0.3600E+02	0.8170E+00	0.3600E+02	0.2548E+01
0.3800E+02	0.8324E+00	0.3800E+02	0.2502E+01
0.4000E+02	0.8156E+00	0.4000E+02	0.2610E+01
0.4200E+02	0.7928E+00	0.4200E+02	0.2541E+01
0.4400E+02	0.7869E+00	0.4400E+02	0.2452E+01
0.4600E+02	0.8269E+00	0.4600E+02	0.2463E+01
0.4800E+02	0.7633E+00	0.4800E+02	0.2428E+01
0.5000E+02	0.7951E+00	0.5000E+02	0.2322E+01
0.5400E+02	0.7654E+00	0.5400E+02	0.2388E+01
0.5600E+02	0.1550E+01	0.5600E+02	0.4531E+01
0.5800E+02	0.1752E+01	0.5800E+02	0.5579E+01
0.6000E+02	0.1877E+01	0.6000E+02	0.6011E+01
0.6200E+02	0.1907E+01	0.6200E+02	0.6231E+01
0.6600E+02	0.1679E+01	0.6600E+02	0.5279E+01
0.6800E+02	0.1654E+01	0.6800E+02	0.5240E+01
0.7000E+02	0.1559E+01	0.7000E+02	0.5011E+01
0.7500E+02	0.1405E+01	0.7500E+02	0.4449E+01
0110001101		,	1 1/2

TEST 47 RUN 171B THETA= 190.0 DEG.

Po	3	25	DS i
----	---	----	-------------

Po = 80 psi

			_
X(cm)	P(psi)	X(cm)	P(psi)
0.1000E+02	0.7104E+00	0.1000E+02	0.2228E+01
0.1500E+02	0.6385E+00	0.1500E+02	0.2022E+01
0.2000E+02	0.6692E+00	0.2000E+02	0.2149E+01
0.2500E+02	0.7562E+00	0.2500E+02	0.2299E+01
0.3200E+02	0.7943E+00	0.3200E+02	0.2426E+01
0.3400E+02	0.8071E+00	0.3400E+02	0.2477E+01
0.3600E+02	0.8329E+00	0.3600E+02	0.2524E+01
0.3800E+02	0.8270E+00	0.3800E+02	0.2489E+01
0.4000E+02	0.8110E+00	0.4000E+02	0.2556E+01
0.4200E+02	0.7738E+00	0.4200E+02	0.2524E+01
0.4400E+02	0.7847E+00	0.4400E+02	0.2439E+01
0.4600E+02	0.8430E+00	0.4600E+02	0.2482E+01
0.4800E+02	0.7697E+00	0.4800E+02	0.2391E+01
0.5000E+02	0.8181E+00	0.5000E+02	0.2392E+01
0.5400E+02	0.8227E+00	0.5400E+02	0.2405E+01
0.5600E+02	0.1538E+01	0.5600E+02	0.4269E+01
0.5800E+02	0.1766E+01	0.5800E+02	0.5459E+01
0.6000E+02	0.1817E+01	0.6000E+02	0.5768E+01
0.6200E+02	0.1574E+01	0.6200E+02	0.5514E+01
0.6600E+02	0.1608E+01	0.6600E+02	0.3314E+01 0.4421E+01
0.6800E+02	0.1650E+01	0.6800E+02	0.4772E+01
0.7000E+02	0.1542E+01	0.7000E+02	0.4712E+01
0.7500E+02	0.1334E+01	0.7500E+02	
0.1000E.02	0.100 #E 01	₩. (300E TUZ	0.4246E+01

TABLE 2 - SURFACE PRESSURE

TEST 47 RUN 172C THETA= -10.0 DEG.

i
i

Po = 80 psi

10 - 20 ps:		10 do par		
X(cm)	P(psi)	X(cm)	P(psi)	
0.1300E+02	0.6889E+00	0.1300E+02	0.2171E+ 0 1	
0.1800E+02	0.6797E+00	0.1800E+02	0.2037E+01	
0.2300E+02	0.7165E+00	0.2300E+02	0.2247E+01	
0.2800E+02	0.8083E+00	0.2800E+02	0.2402E+01	
0.3500E+02	0.7918E+00	0.3500E+02	0.2463E+01	
0.3700E+02	0.7745E+00	0.3700E+02	0.2478E+01	
0.3900E+02	0.8628E+00	0.3900E+02	0.2545E+01	
0.4100E+02	0.8242E+00	0.4100E+02	0.2598E+01	
0.4300E+02	0.7873E+00	0.4300E+02	0.2501E+01	
0.4500E+02	0.7917E+00	0.4500E+02	0.2513E+01	
0.4700E+02	0.8045E+00	0.4700E+02	0.2499E+01	
0.4900E+02	0.8052E+00	0.4900E+02	0.2436E+01	
0.5100E+02	0.1479E+01	0.5100E+02	0.4555E+01	
0.5300E+02	0.3810E+01	0.5300E+02	0.1247E+02	
0.5700E+02	0.3832E+01	0.5700E+02	0.1219E+02	
0.5900E+02	0.3807E+01	0.5900E+02	0.1176E+02	
0.6100E+02	0.2309E+01	0.6100E+02	0.7403E+01	
0.6300E+02	0.1436E+01	0.6300E+02	0.4474E+01	
0.6500E+02	0.9751E+00	0.6500E+02	0.2966E+01	
0.6900E+02	0.5050E+00	0.6900E+02	0.1609E+01	
0.7100E+02	0.5098E+00	0.7100E+02	0.1448E+01	
0.7300E+02	0.5358E+00	0.7300E+02	0.1481E+01	
0.7800E+02	0.6091E+00	9.7800E+02	0.1911E+01	
0.8300E+02	0.6097E+00	0.8300E+02	0.2059E+01	

TEST 47 RUN 172B THETA= 0.0 DEG.

Po = 25 psi

Po = 80 psi

X(cm)	P(psi)	X(cm)	P(psi)
0.1300E+02	0.6915E+00	0.1300E+02	0.2164E+01
0.1800E+02	0.6858E+00	0.1800E+02	0.2042E+01
0.2300E+02	0.7092E+00	0.2300E+02	0.2231E+01
0.2800E+02	0.8083E+00	0.2800E+02	0.2370E+01
0.3500E+02	0.8027E+00	0.3500E+02	0.2471E+01
0.3700E+02	0.7871E+00	0.3700E+02	0.2450E+01
0.3900E+02	0.8671E+00	0.3900E+02	0.2525E+01
0.4100E+02	0.8303E+00	0.4100E+02	0.2572E+01
0.4300E+02	0.8003E+00	0.4300E+02	0.2535E+01
0.4500E+02	0.7923E+00	0.4500E+02	0.2486E+01
0.4700E+02	0.8077E+00	0.4700E+02	0.2506E+01
0.4900E+02	0.8553E+00	0.4900E+02	0.2404E+01
0.5100E+02	0.1505E+01	0.5100E+02	0.4562E+01
0.5300E+02	0.3875E+01	0.5300E+02	0.1264E+02
0.5700E+02	0.3843E+01	0.5700E+02	0.1223E+02
0.5900E+02	0.3820E+01	0.5900E+02	0.1196E+02
0.6100E+02	0.2328E+01	0.6100E+02	0.7337E+01
0.6300E+02	0.1440E+01	0.6300E+02	0.4447E+01
0.6500E+02	0.9780E+00	0.6500E+02	0.2945E+01
0.6900E+02	0.5115E+00	0.6900E+02	0.1609E+01
0.7100E+02	0.5098E+00	0.7100E+02	0.1439E+01
0.7300E+02	0.5588E+00	0.7300E+02	0.1453E+01
0.7800E+02	0.6134E+00	0.7800E+02	0.1887E+01
0.8300E+02	0.6221E+00	0.8300E+02	0.2084E+01

TEST 47 RUN 172D THETA= 10.0 DEG.

Po = 25 psi

Po = 80 psi

10 -	20 ps:	ro - (psi psi
X(cm)	P(psi)	X(cm)	P(psi)
0.1300E+02	0.7016E+00	0.1300E+02	0.2182E+01
0.1800E+02	0.7162E+00	0.1800E+02	0.2050E+01
0.2300E+02	0.7169E+00	0.2300E+02	0.2213E+01
0.2800E+02	0.8332E+00	0.2800E+02	0.2363E+01
0.3500E+02	0.8090E+00	0.3500E+02	0.2485E+01
0.3700E+02	0.7856E+00	0.3700E+02	0.2451E+01
0.3900E+02	0.8784E+00	0.3900E+02	0.2535E+01
0.4100E+02	0.8483E+00	0.4100E+02	0.2607E+01
0.4300E+02	0.7895E+00	0.4300E+02	0.2538E+01
0.4500E+02	0.8057E+00	0.4500E+02	0.2498E+01
0.4700E+02	0.8232E+00	0.4700E+02	0.2526E+01
0.4900E+02	0.8713E+00	0.4900E+02	0.2489E+01
0.5100E+02	0.1496E+01	0.5100E+02	0.4495E+01
0.5300E+02	0.3781E+01	0.5300E+02	0.1232E+02
0.5700E+02	0.3849E+01	0.5700E+02	0.1217E+02
0.5900E+02	0.3814E+01	0.5900E+02	0.1196E+02
0.6100E+02	0.2357E+01	0.6100E+02	0.7445E+01
0.6300E+02	0.1454E+01	0.6300E+02	0.4492E+01
0.6500E+02	0.9984E+00	0.6500E+02	0.2992E+01
0.6900E+02	0.5115E+00	06900E+02	0.1609E+01
0.7100E+02	0.5278E+00	0.7100E+02	0.1455E+01
0.7300E+02	0.5588E+00	0.7300E+02	0.1455E+01
0.7800E+02	0.6306E+00	0.7800E+02	0.1914E+01
0.8300E+02	0.6500E+00	0.8300E+02	0.2076E+01

TEST 47 RUN 173A THETA= 20.0 DEG.

Po	=	25	psi
----	---	----	-----

Po = 80 psi

			=
X(cm)	P(psi)	X(cm)	P(psi)
0.1300E+02	0.7093E+00	0.1300E+02	0.2286E+01
0.1800E+02	0.6689E+00	0.1800E+02	0.2064E+01
0.2300E+02	0.7602E+00	0.2300E+02	0.2260E+01
0.2800E+02	0.8475E+00	0.2800E+02	0.2403E+01
0.3500E+02	0.8308E+00	0.3500E+02	0.2532E+01
0.3700E+02	0.8189E+00	0.3700E+02	0.2496E+01
0.3900E+02	0.8643E+00	0.3900E+02	0.2569E+01
0.4100E+02	0.8666E+00	0.4100E+02	0.2675E+01
0.4300E+02	0.8463E+00	0.4300E+02	0.2621E+01
0.4500E+02	0.8194E+00	0.4500E+02	0.2540E+01
0.4700E+02	0.8213E+00	0.4700E+02	0.2557E+01
0.4900E+02	0.8548E+00	0.4900E+02	0.2499E+01
0.5100E+02	0.1484E+01	0.5100E+02	0.4430E+01
0.5300E+02	0.3438E+01	0.5300E+02	0.1130E+02
0.5700E+02	0.3782E+01	0.5700E+02	0.1191E+02
0.5900E+02	0.3729E+01	0.5900E+02	0.1175E+02
0.6100E+02	0.2403E+01	0.6100E+02	0.7598E+01
0.6300E+02	0.1499E+01	0.6300E+02	0.4598E+01
0.6500E+02	0.1024E+01	0.6500E+02	0.3058E+01
0.6900E+02	0.5784E+00	0.6900E+02	0.1706E+01
0.7100E+02	0.5356E+00	0.7100E+02	0.1481E+01
0.7300E+02	0.5512E+00	0.7300E+02	0.1479E+01
0.7800E+02	0.6536E+00	0.7800E+02	0.1982E+01
0.8300E+02	0.7248E+00	0.8300E+02	0.2139E+01

TEST 47 RUN 173B THETA= 30.0 DEC.

Po = 25 psi

Po = 80 psi

10 20 psi		• • •		
X(cm)	P(psi)	X(cm)	P(psi)	
0.1300E+02	0.7170E+00	0.1300E+02	0.2237E+01	
0.1800E+02	0.6535E+00	0.1800E+02	0.2102E+01	
0.2300E+02	0.7548E+00	0.2300E+02	0.2283E+01	
0.2800E+02	0.8518E+00	0.2800E+02	0.2403E+01	
0.3500E+02	0.8326E+00	0.3500E+02	0.2514E+01	
0.3700E+02	0.8141E+00	0.3700E+02	0.2530E+01	
0.3900E+02	0.8600E+00	0.3900E+02	0.2600E+01	
0.4100E+02	0.8725E+00	0.4100E+02	0.2684E+01	
0.4300E+02	0.8309E+00	0.4300E+02	0.2612E+01	
0.4500E+02	0.8044E+00	0.4500E+02	0.2577E+01	
0.4700E+02	0.8170E+00	0.4700E+02	0.2550E+01	
0.4900E+02	0.8546E+00	0.4900E+02	0.2499E+01	
0.5100E+02	0.1434E+01	0.5100E+02	0.4337E+01	
0.5300E+02	0.2844E+01	0.5300E+02	0.9360E+01	
0.5700E+02	0.3504E+01	0.5700E+02	0.1116E+02	
0.5900E+02	0.3465E+01	0.5900E+02	0.1061E+02	
0.6100E+02	0.2323E+01	0.6100E+02	0.7392E+01	
0.6300E+02	0.1469E+01	0.6300E+02	0.4552E+01	
0.6500E+02	0.1022E+01	0.6500E+02	0.3074E+01	
0.6900E+02	0.5883E+00	0.6900E+02	0.1742E+01	
0.7100E+02	0.5278E+00	0.7100E+02	0.1528E+01	
0.7300E+02	0.5452E+00	0.7300E+02	0.1487E+01	
0.7800E+02	0.6684E+00	0.7800E+02	0.1978E+01	
0.8300E+02	0.6970E+00	0.8300E+02	0.2154E+01	

TEST 47 RUN 173C THETA= 40.0 DEG.

Po = 25	psi	Po = 80 psi	
X(cm)	P(psi)	X(cm)	P(psi)
0.1300E+02	0.7221E+00	0.1300E+02	0.2235E+01
0.1800E+02	0.6489E+00	0.1800E+02	0.2141E+01
0.2300E+02	0.7520E+00	0.2300E+02	0.2313E+01
0.2800E+02	0.8173E+00	0.2800E+02	0.2360E+01
0.3500E+02	0.8356E+00	0.3500E+02	0.2515E+01
0.3700E+02	0.8220E+00	0.3700E+02	0.2552E+01
0.3900E+02	0.8542E+00	0.3900E+02	0.2600E+01
0.4100E+02	0.8810E+00	0.4100E+02	0.2611E+01
0.4300E+02	0.8268E+00	0.4300E+02	0.2647E+01
0.4500E+02	0.8173E+00	0.4500E+02	0.2588E+01
0.4700E+02	0.8151E+00	0.4700E+02	0.2485E+01
0.4900E+02	0.9001E+00	0.4900E+02	0.2466E+01
0.5100E+02	0.1358E+01	0.5100E+02	0.3948E+01
0.5300E+02	0.2092E+01	0.5300E+02	0.6599E+01
0.5700E+02	0.3302E+01	0.5700E+02	0.1055E+02
0.5900E+02	0.3205E+01	0.5900E+02	0.9663E+01
0.6100E+02	0.2296E+01	0.6100E+02	0.7311E+01
0.6300E+02	0.1493E+01	0.6300E+02	0.4573E+01
0.6500E+02	0.1048E+01	0.6500E+02	0.3149E+01
0.6900E+02	0.5999E+00	0.6900E+02	0.1814E+01
0.7100E+02	0.5392E+00	0.7100E+02	0.1566E+01
0.7300E+02	0.5479E+00	0.7300E+02	0.1551E+01
0.7890E+02	0.6575E+00	0.7800E+02	0.1980E+01
0.8300E+02	0.7149E+00	0.8300E+02	0.2167E+01

TEST 47 RUN 173D THETA= 50.0 DEG.

Po = 2	5 psi	Po = 80	psi
X(cm)	P(psi)	X(cm)	P(psi)
0.1300E+02	0.7214E+00	0.1300E+02	0.2170E+01
0.1800E+02	0.6892E+00	0.1800E+02	0.2132E+01
0.2300E+02	0.7707E+00	0.2300E+02	0.2326E+01
0.2800E+02	0.8014E+00	0.2800E+02	0.2386E+01
0.3500E+02	0.8395E+00	0.3500E+02	0.2558E+01
0.3700E+02	0.8310E+00	0.3700E+02	0.2571E+01
0.3900E+02	0.8559E+00	0.3900E+02	0.2619E+01
0.4163E+02	0.8762E+00	0.4100E+02	0.2592E+01
0.4300E+02	0.8315E+00	0.4300E+02	0.2641E+01
0.4500E+02	0.8093E+00	0.4500E+02	0.2541E+01
0.4700E+02	0.7998E+00	0.4700E+02	0.2440E+01
0.4900E+02	0.9332E+00	0.4900E+02	0.2409E+01
0.5100E+02	0.1292E+01	0.5100E+02	0.3513E+01
0.5300E+02	0.1401E+01	0.5300E+02	0.4166E+01
0.5700E+02	0.2926E+01	0.5700E+02	0.9363E+01
0.5900E+02	0.2860E+01	0.5900E+02	0.8593E+01
0.6100E+02	0.2177E+01	0.6100E+02	0.6889E+01
0.6300E+02	0.1457E+01	0.6300E+02	0.4444E+01
0.6500E+02	0.1056E+01	0.6500E+02	0.3130E+01
0.6900E+02	0.6223E+00	0.6900E+02	0.1875E+01
0.7100E+02	0.5677E+00	0.7100E+02	0.1627E+01
0.7300E+02	0.6030E+00	0.7300E+02	0.1785E+01
0.7800E+02	0.6543E+00	0.7800E+02	0.1980E+01
0.8300E+02	0.7037E+00	0.8300E+02	0.2144E+01

TEST 47 RUN 173E THETA= 60.0 DEG.

Po = 2	5 psi	Po = 80	psi
X(em)	P(psi)	X(cm)	P(psi)
0.1300E+02	0.7043E+00	0.1300E+02	0.2149E+01
0.1800E+02	0.7082E+00	0.1800E+02	0.2209E+01
0.2300E+02	0.7651E+00	0.2300E+02	0.2260E+01
0.2800E+02	0.8070E+00	0.2800E+02	0.2403E+01
0.3500E+02	0.8499E+00	0.3500E+02	0.2594E+01
0.3700E+02	0.8400E+00	0.3700E+02	0.2599E+01
0.3900E+02	0.8634E+00	0.3900E+02	0.2647E+01
0.4100E+02	0.8620E+00	0.4100E+02	0.2603E+01
0.4300E+02	0.8369E+00	0.4300E+02	0.2633E+01
0.4500E+02	0.8082E+00	0.4500E+02	0.2519E+01
0.4700E+02	0.8015E+00	0.4700E+02	0.2462E+01
0.4900E+02	0.9086E+00	0.4900E+02	0.2455E+01
0.5100E+02	0.1076E+01	0.5100E+02	0.2507E+01
0.5300E+02	0.1170E+01	0.5300E+02	0.3843E+01
0.5700E+02	0.2619E+01	0.5700E+02	0.8273E+01
0.5900E+02	0.2555E+01	0.5900E+02	0.7664E+01
0.6100E+02	0.2091E+01	0.6100E+02	0.6533E+01
0.6300E+02	0.1439E+01	0.6300E+02	0.4383E+01
0.6500E+02	0.1081E+01	0.6500E+02	0.3130E+01
0.6900E+02	0.6566E+00	0.6900E+02	0.1954E+01
0.7100E+02	0.5962E+00	0.7100E+02	0.1738E+01
0.7300E+02	0.6722E+00	0.7300E+02	0.2032E+01
0.7800E+02	0.6484E+00	0.7800E+02	0.1930E+01
0.8300E+02	0.7003E+00	0.8300E+02	0.2113E+01

TEST 47 RUN 174A THETA= 60.0 DEG.

Po = 25 psi		Po = 80 psi	
X(cm)	P(psi)	X(cm)	P(psi)
0.1300E+02	0.6367E+00	0.1300E+02	0.2058E+01
0.1800E+02	0.6471E+00	0.1800E+02	0.2116E+01
0.2300E+02	0.7115E+00	0.2300E+02	0.2202E+01
0.2800E+02	0.7119E+00	0.2800E+02	0.2293E+01
0.3500E+02	0.7530E+00	0.3500E+02	0.2510E+01
0.3700E+02	0.7731E+00	0.3700E+02	0.2505E+01
0.3900E+02	0.8007E+00	0.3900E+02	0.2555E+01
0.4100E+02	0.7791E+00	0.4100E+02	0.2473E+01
0.4300E+02	0.7670E+00	0.4300E+02	0.2520E+01
0.4500E+02	0.7514E+00	0.4500E+02	0.2406E+01
0.4700E+02	0.7157E+00	0.4700E+02	0.2323E+01
0.4900E+02	0.8284E+00	0.4900E+02	0.2375E+01
0.5100E+02	0.1124E+01	0.5100E+02	0.2690E+01
0.5300E+02	0.1079E+01	0.5300E+02	0.3610E+01
0.5700E+02	0.2493E+01	0.5700E+02	0.7997E+01
0.5900E+02	0.2459E+01	0.5900E+02	0.7485E+01
0.6100E+02	0.1987E+01	0.6100E+02	0.6308E+01
0.6300E+02	0.1334E+01	0.6300E+02	0.4243E+01
0.6500E+02	0.9999E+00	0.6500E+02	0.3006E+01
0.6700E+02	0.7334E+00	0.6700E+02	0.2297E+01
0.6900E+02	0.5866E+00	0.6900E+02	0.1861E+01
0.7100E+02	0.5418E+00	0.7100E+02	0.1677E+01
0.7300E+02	0.6153E+00	0.7300E+02	0.1999E+01
0.7800E+02	0.5675E+00	0.7800E+02	0.1850E+01
0.8300E+02	0.5982E+00	0.8300E+02	0.2019E+01

TEST 47 RUN 174B THETA= 70.0 DEG.

Po = 25 psi	Po =	80	De i
10 - 20 psi	10 -	-	he r

X(cm)	P(psi)	X(cm)	P(psi)
0.1300E+02	0.6459E+00	0.1300E+02	0.2066E+01
0.1800E+02	0.6656E+00	0.1800E+02	0.2161E+01
0.2300E+02	0.7089E+00	0.2300E+02	0.2225E+01
0.2800E+02	0.7605E+00	0.2800E+02	0.2321E+01
0.3500E+02	0.7493E+00	0.3500E+02	0.2482E+01
0.3700E+02	0.7949E+00	0.3700E+02	0.2525E+01
0.3900E+02	0.8421E+00	0.3900E+02	0.2581E+01
0.4100E+02	0.7829E+00	0.4100E+02	0.2461E+01
0.4300E+02	0.7578E+00	0.4300E+02	0.2443E+01
0.4500E+02	0.7525E+00	0.4500E+02	0.2326E+01
0.4700E+02	0.7240E+00	0.4700E+02	0.2340E+01
0.4900E+02	0.8073E+00	0.4900E+02	0.2391E+01
0.5100E+02	0.9436E+00	0.5100E+02	0.2303E+01
0.5300E+02	0.1200E+01	0.5300E+02	0.3996E+01
0.5700E+02	0.2095E+01	0.5700E+02	0.6655E+01
Ø.5900E+02	0.2169E+01	0.5900E+02	0.6525E+01
0.6100E+02	0.1848E+01	0.6100E+02	0.5759E+01
0.6300E+02	0.1293E+01	0.6300E+02	0.3923E+01
0.6500E+02	0.9867E+00	0.6500E+02	0.2868E+01
0.6700E+02	0.7593E+00	0.6700E+02	0.2306E+01
Ø.6900E+02	0.6119E+00	0.6900E+02	0.1891E+01
Ø.7100E+02	0.6604E+00	0.7100E+02	0.2023E+01
Ø.7300E+02	0.6726E+00	0.7300E+02	0.2152E+01
Ø.7800E+02	0.5772E+00	0.7800E+02	0.1814E+01
Ø.8300E+02	0.5597E+00	0.8300E+02	0.2042E+01

TEST 47 RUN 174C THETA= 80.0 DEG.

Po = 25 psi	Po = 80 psi

X(cm)	P(psi)	X(cm)	P(psi)
0.1300E+02	0.6355E+00	0.1300E+02	0.2073E+01
0.1800E+02	0.6697E+00	0.1800E+02	0.2184E+01
0.2300E+02	0.6590E+00	0.2300E+02	0.2156E+01
0.2800E+02	0.7404E+00	0.2800E+02	0.2316E+01
0.3500E+02	0.7241E+00	0.3500E+02	0.2476E+01
0.3700E+02	0.7788E+00	0.3700E+02	0.2547E+01
0.3900E+02	0.8157E+00	0.3900E+02	0.2607E+01
0.4100E+02	0.7474E+00	0.4100E+02	0.2487E+01
0.4300E+02	0.7230E+00	0.4300E+02	0.2402E+01
0.4500E+02	0.7022E+00	0.4500E+02	0.2326E+01
0.4700E+02	0.7014E+00	0.4700E+02	0.2372E+01
0.4900E+02	0.8551E+00	0.4900E+02	0.2367E+01
0.5100E+02	0.7087E+00	0.5100E+02	0.2236E+01
0.5300E+02	0.1283E+01	0.5300E+02	0.4211E+01
0.5700E+02	0.1486E+01	0.5700E+02	0.4972E+01
0.5900E+02	0.1734E+01	0.5900E+02	0.5536E+01
0.6100E+02	0.1599E+01	0.6100E+02	0.5159E+01
0.6300E+02	0.1198E+01	0.6300E+02	0.3617E+01
0.6500E+02	0.9203E+00	0.6500E+02	0.2768E+01
0.6700E+02	0.7317E+00	0.6700E+02	0.2270E+01
0.6900E+02	0.6636E+00	0.6900E+02	0.2063E+01
0.7100E+02	0.7506E+00	0.7100E+02	0.2451E+01
0.7300E+02	0.7061E+00	0.7300E+02	0.2259E+01
0.7800E+02	0.5531E+00	0.7800E+02	0.1788E+01
0.8300E+02	0.5180E+00	0.8300E+02	0.2081E+01

TEST 47 RUN 175A THETA= 90.0 DEG.

1	Po	=	25	bsi

Po = 80 pei

20 20 201		•••	
X(cm)	P(psi)	X(cm)	P(psi)
0.1300E+02	0.6889E+00	0.1300E+ 02	0.2128E+01
0.1800E+02	0.6706E+00	0.1800E+02	0.2156E+01
0.2300E+02	0.6970E+00	0.2300E+02	0.2201E+01
0.2800E+02	0.7675E+00	0.2800E+02	0.2363E+01
0.3500E+02	0.8454E+00	0.3500E+02	0.2558E+01
0.3700E+02	0.8335E+00	0.3700E+02	0.2622E+01
0.3900E+02	0.8340E+00	0.3900E+02	0.2625E+01
0.4100E+02	0.8027E+00	0.4100E+02	0.2545E+01
0.4300E+02	0.8040E+00	0.4300E+02	0.2421E+01
0.4500E+02	0.7994E+00	0.4500E+02	0.2475E+01
0.4700E+02	0.7870E+00	0.4700E+02	0.2440E+01
0.5100E+02	0.7937E+00	0.5100E+02	0.2365E+01
0.5300E+02	0.1357E+01	0.5300E+02	0.4184E+01
0.5700E+02	0.1021E+01	0.5700E+02	0.3237E+01
0.5900E+02	0.1467E+01	0.5900E+02	0.4506E+01
0.6100E+02	0.1479E+01	0.6100E+02	0.4514E+01
0.6300E+02	0.1207E+01	0.6300E+02	0.3406E+01
0.6500E+02	0.9529E+00	0.6500E+02	0.2695E+01
0.6700E+02	0.7809E+00	0.6700E+02	0.2248E+01
0.6900E+02	0.9472E+00	0.6900E+02	0.2846E+01
0.7100E+02	0.9133E+00	0.7100E+02	0.2739E+01
0.7300E+02	0.7750E+00	0.7300E+02	0.2425E+01
0.7800E+02	0.5879E+00	0.7800E+02	0.1745E+01
0.8300E+02	0.6520E+00	0.8300E+02	0.2178E+01

TEST 47 RUN 175B THETA= 100.0 DEG.

Po = 25 psi

Po = 80 psi

ro = 20 pe:		ro = co psi		
X(cm)	P(psi)	X(cm)	P(psi)	
0.1300E+02	0.7075E+00	0.1300E+02	0.2168E+01	
0.1800E+02	0.6367E+00	0.1800E+02	0.2071E+01	
0.2300E+02	0.6955E+00	0.2300E+02	0.2227E+01	
0.2800E+02	0.7675E+00	0.2800E+02	0.2363E+01	
0.3500E+02	0.8973E+00	0.3500E+02	0.2585E+01	
0.3700E+02	0.8592E+00	0.3700E+02	0.2632E+01	
0.3900E+02	0.8467E+00	0.3900E+02	0.2640E+01	
0.4100E+02	0.8099E+00	0.4100E+02	0.2524E+01	
0.4300E+02	0.8452E+00	0.4300E+02	0.2438E+01	
0.4500E+02	0.8242E+00	0.4500E+02	0.2543E+01	
0.4700E+02	0.7970E+00	0.4700E+02	0.2447E+01	
0.5100E+02	0.8268E+00	0.5100E+02	0.2430E+01	
0.5300E+02	0.1339E+01	0.5300E+02	0.4031E+01	
0.5700E+02	0.6289E+00	0.5700E+02	0.1917E+01	
0.5900E+02	0.1056E+01	0.5900E+02	0.3234E+01	
0.6100E+02	0.1307E+01	0.6100E+02	0.3813E+01	
0.6300E+02	0.1147E+01	0.6300E+02	0.3121E+01	
0.6500E+02	0.9399E+00	0.6500E+02	0.2592E+01	
0.6700E+02	0.9782E+00	0.6700E+02	0.2814E+01	
0.6900E+02	0.1072E+01	0.6900E+02	0.3238E+01	
0.7100E+02	0.9941E+00	0.7100E+02	0.2927E+01	
0.7300E+02	0.8034E+00	0.7300E+02	0.2503E+01	
0.7800E+02	0.6008E+00	0.7800E+02	0.1745E+01	
0.8300E+02	0.6692E+00	0.8300E+02	0.2235E+01	

TEST 47 RUN 175C THETA= 110.0 DEG.

Po = 2	25 psi	Po = 8	0 psi
X(cm)	P(psi)	X(cm)	P(psi)
0.1300E+02	0.7202E+00	0.1300E+02	0.2195E+01
0.1800E+02	0.6092E+00	0.1800E+02	0.2038E+01
0.2300E+02	0.6986E+00	0.2300E+02	0.2181E+01
0.2800E+02	0.7700E+00	0.2800E+02	0.2340E+01
0.3500E+02	0.9072E+00	0.3500E+02	0.2586E+01
0.3700E+02	0.8609E+00	0.3700E+02	0.2586E+01
0.3900E+02	0.8628E+00	0.3900E+02	0.2637E+01
0.4100E+02	0.8258E+00	0.4100E+02	0.2498E+01
0.4300E+02	0.8598E+00	0.4300E+02	0.2462E+01
0.4500E+02	0.8268E+00	0.4500E+02	0.2544E+01
0.4700E+02	0.8080E+00	0.4700E+02	0.2449E+01
0.5100E+02	0.8371E+00	0.5100E+02	0.2456E+01
0.5300E+02	0.1296E+01	0.5300E+02	0.3804E+01
0.5700E+02	0.6541E+00	0.5700E+02	0.1710E+01
0.5900E+02	0.7204E+00	0.5900E+02	0.2132E+01
0.6100E+02	0.1088E+01	0.6100E+02	0.3058E+01
0.6300E+02	0.1061E+01	0.6300E+02	0.2887E+01
0.6500E+02	0.9670E+00	0.6500E+02	0.2635E+01
0.6700E+02	0.1214E+01	0.6700E+02	0.3581E+01
0.6900E+02	0.1132E+01	0.6900E+02	0.3309E+01
0.7100E+02	0.1031E+01	0.7100E+02	0.3307E+01
0.7300E+02	0.8577E+00	0.7300E+02	0.2545E+01
0.7800E+02	0.6372E+00	0.7800E+02	0.2343E+01 0.1837E+01
0.8300E+02	0.7043E+00	0.8300E+02	0.1037E+01

TEST 47 RUN 175D THETA= 120.0 DEG.

Po = 25 psi		Po = 80 psi		
X(cm)	P(psi)	X(cm)	P(psi)	
0.1300E+02	0.7121E+00	0.1300E+02	0.2211E+01	
0.1800E+02	0.6141E+00	0.1800E+02	0.2017E+01	
0.2300E+02	0.6899E+00	0.2300E+02	0.2152E+01	
0.2800E+02	0.7560E+00	0.2800E+02	0.2356E+01	
0.3500E+02	0.8973E+00	0.3500E+02	0.2592E+01	
0.3700E+02	0.8507E+00	0.3700E+02	0.2580E+01	
0.3900E+02	0.8524E+00	0.3900E+02	0.2651E+01	
0.4100E+02	0.8330E+00	0.4100E+02	0.2514E+01	
0.4300E+02	0.8580E+00	0.4300E+02	0.2534E+01	
0.4500E+02	0.8180E+00	0.4500E+02	0.2550E+01	
0.4700E+02	0.8055E+00	0.4700E+02	0.2474E+01	
0.5100E+02	0.8213E+00	0.5100E+02	0.2489E+01	
0.5300E+02	0.1217E+01	0.5300E+02	0.3368E+01	
0.5700E+02	0.7655E+00	0.5700E+02	0.2607E+01	
0.5900E+02	0.7501E+00	0.5900E+02	0.1444E+01	
0.6100E+02	0.1093E+01	0.6100E+02	0.2216E+01	
0.6300E+02	0.1162E+01	0.6300E+02	0.2970E+01	
0.6500E+02	0.1350E+01	0.6500E+02	0.3952E+01	
0.6700E+02	0.1295E+01	0.6700E+02	0.3769E+01	
0.6900E+02	0.1155E+01	0.6900E+02	0.3387E+01	
0.7100E+02	0.1051E+01	0.7100E+02	0.3064E+01	
0.7300E+02	0.8941E+00	0.7300E+02	0.2633E+01	
0.7800E+02	0.6915E+00	0.7800E+02	0.2068E+01	
0.8300E+02	0.7035E+00	0.8300E+02	0.2310E+01	

TEST 47 RUN 176A THETA= 130.0 DEG.

Po = 2	5 psi	Po = 8 6	psi
X(cm)	P(psi)	' X(cm)	P(psi)
9.1300E+02	0.6110E+00	0.1300E+02	0.2107E+01
0.1800E+02	0.5370E+00	0.1800E+02	0.1936E+01
0.2300E+02	0.6191E+00	0.2300E+02	0.2049E+01
0.2800E+02	0.7247E+00 0.7615E+00	0.2800E+02 0.3500E+02	0.2332E+01 0.2417E+01
0.3500E+02		0.3300E+02 0.3700E+02	0.2417E+01 0.2481E+01
0.3700E+02	0.7622E+00 0.7603E+00	0.3700E+02 0.3900E+02	0.2551E+01
0.3900E+02	0.7384E+00	0.3900E+02 0.4100E+02	0.2331E+01 0.2444E+01
0.4100E+02	0.7364E+00 0.7563E+00	0.4100E+02 0.4300E+02	0.2444E+01 0.2494E+01
0.4300E+02	0.7008E+00	0.4500E+02 0.4500E+02	0.2494E+01 0.2461E+01
0.4500E+02	0.7229E+00	0.4700E+02	0.2401E+01 0.2420E+01
0.4700E+02	0.7229E+00 0.6995E+00	0.4700E+02 0.5100E+02	0.2420E+01 0.2301E+01
0.5100E+02	0.0993E+00 0.9671E+00	0.5100E+02 0.5300E+02	0.2301E+01 0.2336E+01
0.5300E+02	0.9671E+00 0.9752E+00	0.5700E+02	0.2336E+01 0.3263E+01
0.5700E+02		0.5700E+02 0.5900E+02	0.1950E+01
0.5900E+02	0.7215E+00 0.1242E+01	0.3900E+02 0.6100E+02	0.1950E+01 0.3195E+01
0.6100E+02 0.6300E+02	- · · - · - · - · - · · · · · · · · · ·	0.6300E+02	0.3193E+01 0.4102E+01
0.6500E+02	0.1385E+01 0.1387E+01	0.6500E+02	0.4166E+01
0.6700E+02	0.1277E+01	0.6700E+02	0.3830E+01
0.6700E+02 0.6900E+02	0.1287E+01 0.1118E+01	0.6900E+02	0.3490E+01
0.0900E+02 0.7100E+02	0.1011E+01	0.7100E+02	0.3152E+01
0.7100E+02 0.7300E+02	0.8879E+00	0.7300E+02	0.3152E+01 0.2851E+01
0.7800E+02 0.7800E+02	0.6982E+00	0.7800E+02	0.2369E+01
0.7800E+02 0.8300E+02	0.622E+00	0.8300E+02	0.2191E+01
U.GOUUETUZ	U.U222ETUU	0.0300E+02	0.2171E-01

TEST 47 RUN 176B THETA= 140.0 DEG.

Po = 2	25 psi	Po = 80	psi
X(cm)	P(psi)	X(cm)	P(psi)
0.1300E+02	0.6014E+00	0.1300E+02	0.2090E+01
0.1800E+02	0.5506E+00	0.1800E+02	0.1977E+01
0.2300E+02	0.6308E+00	0.2300E+02	0.2053E+01
0.2800E+02	0.7293E+00	0.2800E+02	0.2374E+01
0.3500E+02	0.7615E+00	0.3500E+02	0.2417E+01
0.3700E+02	0.7570E+00	0.3700E+02	0.2474E+01
0.3900E+02	0.7799E+00	0.3900E+02	0.2557E+01
0.4100E+02	0.7361E+00	0.4100E+02	0.2484E+01
0.4300E+02	0.7580E+00	0.4300E+02	0.2512E+01
0.4500E+02	0.7231E+00	0.4500E+02	0.2476E+01
0.4700E+02	0.7292E+00	0.4700E+02	0.2445E+01
0.5100E+02	0.7028E+00	0.5100E+02	0.2328E+01
0.5300E+02	0.7976E+00	0.5300E+02	0.2250E+01
0.5700E+02	0.1166E+01	0.5700E+02	0.3647E+01
0.5900E+02	0.8911E+00	0.5900E+02	0.3044E+01
0.6100E+02	0.1185E+01	0.6100E+02	0.2892E+01
0.6300E+02	0.1435E+01	0.6300E+02	0.4193E+01
0.6500E+02	0.1455E+01	0.6500E+02	0.4373E+01
0.6700E+02	0.1366E+01	0.6700E+02	0.4085E+01.
0.6900E+02	0.1213E+01	0.6900E+02	0.3826E+01
0.7100E+02	0.1102E+01	0.7100E+02	0.3535E+01
0.7300E+02	0.9714E+00	0.7300E+02	0.3235E+01
0.7800E+02	0.7933E+00	0.7800E+02	0.2801E+01
0.8300E+02	0.6485E+00	0.8300E+02	0.2335E+01

TEST 47 RUN 176C THETA= 150.0 DEG.

Po = 25 psi		Po = 80 psi		
X(cm)	P(psi)	X(cm)	P(psi)	
0.1300E+02	0.6005E+00	0.1300E+02	0.2052E+01	
0.1800E+02	0.5370E+00	0.1800E+02	0.1997E+01	
0.2300E+02	0.6434E+00	0.2300E+02	0.2136E+01	
0.2800E+02	0.7247E+00	0.2800E+02	0.2340E+01	
0.3500E+02	0.7558E+00	0.3500E+02	0.2429E+01	
0.3700E+02	0.7678E+00	0.3700E+02	0.2449E+01	
0.3900E+02	0.8030E+00	0.3900E+02	0.2546E+01	
0.4100E+02	0.7399E+00	0.4100E+02	0.2497E+01	
0.4300E+02	0.7691E+00	0.4300E+02	0.2491E+01	
0.4500E+02	0.7255E+00	0.4500E+02	0.2495E+01	
0.4700E+02	0.7429E+00	0.4700E+02	0.2474E+01	
0.5100E+02	0.6995E+00	0.5100E+02	0.2325E+01	
0.5300E+02	0.7256E+00	0.5300E+02	0.2266E+01	
0.5700E+02	0.1364E+01	0.5700E+02	0.4008E+01	
0.5900E+02	0.1391E+01	0.5900E+02	0.4339E+01	
0.6100E+02	0.1035E+01	0.6100E+02	0.3119E+01	
0.6300E+02	0.1423E+01	0.6300E+02	0.3823E+01	
0.6500E+02	0.1535E+01	0.6500E+02	0.4440E+01	
0.6700E+02	0.1481E+01	0.6700E+02	0.4323E+01	
0.6900E+02	0.1356E+01	0.6900E+02	0.4213E+01	
0.7100E+02	0.1230E+01	0.7100E+02	0.3958E+01	
0.7300E+02	0.1082E+01	0.7300E+02	0.3677E+01	
0.7800E+02	0.9101E+00	0.7800E+02	0.3167E+01	
0.8300E+02	0.7136E+00	0.8300E+02	0.2474E+01	

TEST 47 RUN 177A THETA= 160.0 DEG.

Po = 2	5 psi	Po = 80	psi
X(cm)	P(psi)	X(cm)	P(psi)
0.1300E+02	0.6308E+00	0.1300E+02	0.2036E+01
0.1800E+02	0.6147E+00	0.1800E+02	0.2036E+01
0.2300E+02	0.6816E+00	0.2300E+02	0.2146E+01
0.2800E+02	0.7722E+00	0.2800E+02	0.2411E+01
0.3500E+02	0.7611E+00	0.3500E+02	0.2422E+01
0.3700E+02	0.7828E+00	0.3700E+02	0.2426E+01
0.3900E+02	0.8283E+00	0.3900E+02	0.2527E+01
0.4100E+02	0.7787E+00	0.4100E+02	0.2512E+01
0.4300E+02	0.8048E+00	0.4300E+02	0.2473E+01
0.4500E+02	0.7846E+00	0.4500E+02	0.2504E+01
0.4700E+02	0.7689E+00	0.4700E+02	0.2504E+01
0.4900E+02	0.8714E+00	0.4900E+02	0.2445E+01
0.5100E+02	0.7440E+00	0.5100E+02	0.2328E+01
0.5300E+02	0.7490E+00	0.5300E+02	0.2275E+01
0.5700E+02	0.1574E+01	0.5700E+02	0.4606E+01
0.5900E+02	0.1667E+01	0.5900E+02	0.5228E+01
0.6100E+02	0.1505E+01	0.6100E+02	0.5157E+01
0.6300E+02	0.1263E+01	0.6300E+02	0.3525E+01
0.6500E+02	0.1519E+01	0.6500E+02	0.3842E+01
0.6700E+02	0.1571E+01	0.6700E+02	0.4235E+01
0.6900E+02	0.1476E+01	0.6900E+02	0.4433E+01
0.7100E+02	0.1393E+01	0.7100E+02	0.4367E+01
0.7300E+02	0.1270E+01	0.7300E+02	0.4189E+01
0.7800E+02	0.1076E+01	0.7800E+02	0.3533E+01
0.8300E+02	0.7754E+00	0.8300E+02	0.2654E+01

TEST 47 RUN 177B THETA= 170.0 DEG.

Po = 25 psi		Po = 80 psi		
X(cm)	P(psi)	X(em)	P(psi)	
0.1300E+02	0.6119E+00	0.1300E+02	0.2017E+01	
0.1800E+02	0.5841E+00	0.1800E+02	0.2056E+01	
0.2300E+02	0.6709E+00	0.2300E+02	0.2143E+01	
0.2800E+02	0.7556E+00	0.2800E+02	0.2470E+01	
0.3500E+02	0.7368E+00	0.3500E+02	0.2400E+01	
0.3700E+02	0.7594E+00	0.3700E+02	0.2434E+01	
0.3900E+02	0.8029E+00	0.3900E+02	0.2512E+01	
0.4100E+02	0.7639E+00	0.4100E+02	0.2522E+01	
0.4300E+02	0.7834E+00	0.4300E+02	0.2467E+01	
0.4500E+02	0.7712E+00	0.4500E+02	0.2516E+01	
0.4700E+02	0.7470E+00	0.4700E+02	0.2512E+01	
0.4900E+02	0.8589E+00	0.4900E+02	0.2524E+01	
0.5100E+02	0.7268E+00	0.5100E+02	0.2338E+01	
0.5300E+02	0.7309E+00	0.5300E+02	0.2274E+01	
0.5700E+02	0.1585E+01	0.5700E+02	0.4967E+01	
0.5900E+02	0.1714E+01	0.5900E+02	0.5586E+01	
0.6100E+02	0.1755E+01	0.6100E+02	0.5794E+01	
0.6300E+02	0.1516E+01	0.6300E+02	0.5412E+01	
0.6500E+02	0.1516E+01	0.6500E+02	0.4509E+01	
0.6700E+02	0.1595E+01	0.6700E+02	0.4646E+01	
0.6900E+02	0.1545E+01	0.6900E+02	0.4805E+01	
0.7100E+02	0.1515E+01	0.7100E+02	0.4823E+01	
0.7300E+02	0.1415E+01	0.7300E+02	0.4642E+01	
0.7800E+02	0.1178E+01	0.7800E+02	0.3790E+01	
0.8300E+02	0.7814E+00	0.8300E+02	0.2714E+01	

TEST 47 RUN 177C THETA= 180.0 DEG.

Po = 25 psi		Po = 80	Po = 80 psi		
X(cm)	P(psi)	X(em)	P(psi)		
0.1300E+02	0.6147E+00	0.1300E+02	0.2006E+01		
0.1800E+02	0.5896E+00	0.1800E+02	0.2018E+01		
0.2300E+02	0.6929E+00	0.2300E+02	0.2143E+01		
0.2800E+02	0.7652E+00	0.2800E+02	0.2402E+01		
0.3500E+02	0.7311E+00	0.3500E+02	0.2373E+01		
0.3700E+02	0.7735E+00	0.3700E+02	0.2420E+01		
0.3900E+02	0.8002E+00	0.3900E+02	0.2479E+01		
0.4100E+02	0.7718E+00	0.4100E+02	0.2528E+01		
0.4300E+02	0.7767E+00	0.4300E+02	0.2463E+01		
0.4500E+02	0.7818E+00	0.4500E+02	0.2483E+01		
0.4700E+02	0.7531E+00	0.4700E+02	0.2492E+01		
0.4900E+02	0.8952E+00	0.4900E+02	0.2404E+01		
0.5100E+02	0.7322E+00	0.5100E+02	0.2334E+01		
0.5300E+02	0.7422E+00	0.5300E+02	0.2248E+01		
0.5700E+02	0.1617E+01	0.5700E+02	0.5096E+01		
0.5900E+02	0.1759E+01	0.5900E+02	0.5709E+01		
0.6100E+02	0.1881E+01	0.6100E+02	0.6070E+01		
0.6300E+02	0.1725E+01	0.6300E+02	0.6038E+01		
0.6500E+02	0.1611E+01	0.6500E+02	0.5241E+01		
0.6700E+02	0.1639E+01	0.6700E+02	0.5131E+01		
0.6900E+02	0.1576E+01	0.6900E+02	0.5068E+01		
0.7100E+02	0.1543E+01	0.7100E+02	0.4987E+01		
0.7300E+02	0.1461E+01	0.7300E+02	0.4733E+01		
0.7800E+02	0.1196E+01	0.7800E+02	0.3834E+01		
0.8300E+02	0.8309E+00	0.8300E+02	0.2929E+01		

TEST 47 RUN 177D THETA= 190.0 DEG.

Po = 25 psi		Po = 80 psi		
X(cm)	P(psi)	X(cm)	P(psi)	
0.1300E+02	0.6181E+00	0.1300E+02	0.2003E+01	
0.1800E+02	0.5830E+00	0.1800E+02	0.2056E+01	
0.2300E+02	0.7099E+00	0.2300E+02	0.2172E+01	
0.2800E+02	0.7817E+00	0.2800E+02	0.2292E+01	
0.3500E+02	0.7495E+00	0.3500E+02	0.2367E+01	
0.3700E+02	0.7724E+00	0.3700E+02	0.2425E+01	
0.3900E+02	0.8014E+00	0.3900E+02	0.2482E+01	
0.4100E+02	0.7770E+00	0.4100E+02	0.2517E+01	
0.4300E+02	0.7761E+00	0.4300E+02	0.2481E+01	
0.4500E+02	0.7724E+00	0.4500E+02	0.2458E+01	
0.4700E+02	0.7511E+00	0.4700E+02	0.2478E+01	
0.4900E+02	0.8891E+00	0.4900E+02	0.2493E+01	
0.5100E+02	0.7449E+00	0.5100E+02	0.2347E+01	
0.5300E+02	0.7379E+00	0.5300E+02	0.2247E+01	
0.5700E+02	0.1615E+01	0.5700E+02	0.4988E+01	
0.5900E+02	0.1739E+01	0.5900E+02	0.5573E+01	
0.6100E+02	0.1684E+01	0.6100E+02	0.5653E+01	
0.6300E+02	0.1329E+01	0.6300E+02	0.4642E+01	
0.6500E+02	0.1503E+01	0.6500E+02	0.4118E+01	
0.6700E+02	0.1573E+01	0.6700E+02	0.4551E+01	
0.6900E+02	0.1491E+01	0.6900E+02	0.4635E+01	
0.7100E+02	0.1410E+01	0.7100E+02	0.4587E+01	
0.7300E+02	0.1288E+01	0.7300E+02	0.4339E+01	
0.7800E+02	0.1104E+01	0.7800E+02	0.3674E+01	
0.8300E+02	0.8863E+00	0.8300E+02	0.3115E+01	

TABLE 3 - TOTAL PRESSURE WINDWARD

TEST	RUN	POINTS	PoNOM	X(cm)	Pref
47	106	63	25.0000	51.2900	14.6875
P(psi)	Υ()	em)	Po(psi)	To(deg.K)	Pw(psi)
1.1305		0072	25.2068	291.7085	0.8497
1.1900		0135	25.0921	290.1509	0.8402
1.4874		0242	25.1085	289.1699	0.8308
1.8606		9326	25.1085	288.3459	0.8308
2.1202 2.4555		0411 0603	25.0921 25.0594	287.7324 286.5457	0.8308 0.8213
2.4961		9624	25.1085	286.2275	0.8355
2.3906		645	25.1085	286.6094	0.8497
2.7314		836	25.0921	285.7285	0.8308
2.7638	0.6	9857	25.1085	285.5905	0.8213
2.9585		1070	25.0594	284.9634	0.8308
3.1532		282	25.0758	284.4527	0.8213
3.3276		1495	25.0594	283.8750	0.8213
3.5101		1686	25.0594	283.7391	0.8213
$3.5020 \\ 3.7535$		1707 2068	25.0594 25.0594	283.5953 283.1208	0.8355 0.8402
3.9753		2429	25.0758	282.6617	0.8402
4.2078		2790	25.0594	282.3307	0.8213
4.2403		2812	25.0594	282.1865	0.8355
4.4188		3151	25.0594	282.0262	0.8355
4.4836	0.3	3173	25.0594	282.0102	0.8213
4.7108		3513	25.0594	281.3043	0.8355
4.6946		3534	25.0594	281.4327	0.8213
5.0353		1001	25.0594	281.1437	0.8213
5.0191 5.3598		1022 1511	25.0840 25.0349	281.1758 280.6779	0.8355 0.8213
5.3598		1511 1532	25.0594	280.6297	0.8213
5.6843		5021	25.0594	280.5011	0.8213
5.6681		5042	25.0267	280.4797	0.8308
5.9871		5509	25.0430	280.1474	0.8213
6.0088		5530	25.1085	279.9865	0.8213
6.3333		5019	25.0594	279.5842	0.8497
6.3170		6040	25.0103	279.7291	0.8497
6.7105		6699 7257	25.0471	279.3829 279.1011	0.8355 0.8213
7.1364 7.1283		7357 7378	25.0594 25.0594	279.1011	0.8213
7.5015		3037	25.0430	279.0634	0.8402
7.8908		3653	25.0594	278.6013	0.8213
7.8746		3674	25.0267	278.5583	0.8402
7.9785	0.8	3908	25.0299	278.2852	0.8383
7.9801		3929	25.0349	278.1765	0.8261
8.1613	_	269	25.0267	277.8698	0.8213
8.4263		012	25.0103	277.7299	0.8213
8.4479	_)033)692	25.0267 25.0349	277.8698 277.5280	0.8402 0.8213
8.6210 8.7345		393	25.0103	277.4068	0.8497
8.7102		414	25.0349	277.5361	0.8213
8.7670		2072	25.0103	277.2452	0.8213
8.7670		2094	25.0430	277.1374	0.8402
8.7800		2752	25.0398	276.9995	0.8327
8.8035		3389	25.0349	276.8087	0.8213
8.8048		1026	25.0267	276.6307	0.8308
8.8157		1048	25.0103	276.5983	0.8497
8.8157		1621 1642	25.0103 25.0594	276.3394 276.4203	0.8213 0.8355
8.8157	1.7	T-	20.0077	4.0.7200	v.0000

TABLE 3 - TOTAL PRESSURE WINDWARD (continued, X51.2900) TEST RUN **POINTS** X(cm) Pref PoNOM 106 63 25.0000 51.2900 14.6875 47 P(psi) Y(cm) Po(psi) To (deg.K) Pw(psi) 8.8157 1.5322 25.0267 276.1667 0.8308 8.8116 1.5938 25.0349 276.1208 0.8355 8.8157 1.6427 25.0594 276.0804 0.8213 0.8213 1.6490 25.0103 276.1775 8.7994 8.8059 1.6512 25.0398 276.1192 0.8383 1.7085 275.9103 0.8497 8.8035 25.0471 275.9508 1.7552 25.0594 0.8497 8.8157

275.9670

0.8213

8.7913

TABLE 3 - TOTAL PRESSURE WINDWARD

TEST 47	RUN 134	POINTS 127	PoNOM 25.0000	X(cm) 51.9250	Pref 14.7601
P(psi)	Υ(.	em)	Po(psi)	To(deg.K)	Pw(psi)
1.4183	0.0	0206	25.2794	295.2916	0.8344
1.4345		0227	25.2467	295.0408	0.8249
1.4345	0.0	0312	25.2549	294.5234	0.8202
1.4345		9355	25.2794	294.3822	0.8344
1.4670		9376	25.2303	293.9427	0.8344
1.4995		3397	25.2303	293.8171	0.8344
1.4833 1.5482		0419 0504	25.2303	293.9427	0.8344
1.6133)504)589	$25.2139 \\ 25.2303$	293.5762 293.3143	0.8249 0.8202
1.6457		9610	25.2303	293.0941	0.8344
1.7107	_	673	25.1812	292.5592	0.8344
1.7026		0695	25.2058	292.5749	0.8344
1.7973	0.0	9801	25.2139	292.1708	0.8344
1.8975		988 6	25.2303	291.9607	0.8202
1.9219	0.6	997	25.2303	291.8976	0.8628
1.9868		971	25.2303	291.7715	0.8344
2.0600	_	9992	25.1812	291.6139	0.8344
2.1168		056	25.2303	291.4878	0.8344
$2.1818 \\ 2.2549$	Ø. 1	1077 1162	25.1812 25.1812	291.3458 291.0302	0.8486 0.8486
2.2955	0.1	183	25.1812	290.9828	0.8344
2.4417		247	25.1812	290.4933	0.8344
2.4417		268	25.1812	290.4775	0.8344
2.5879	0.1	438	25.1812	290.2563	0.8344
2.7991		459	25.1812	290.2563	0.8344
2.7341	0.1	481	25.1812	290.2404	0.8344
3.0265		672	25.1812	289.8557	0.8344
3.1240	0.1	693	25.2303	289.7186	0.8344
3.2539		884	25.1812	289.5604	0.8344
3.3920	_	905	25.1320	289.1330	0.8344
$3.3352 \\ 3.6438$.927 2118	25.1812 25.1320	289.4021 288.6101	0.8059 0.8344
3.6167	_	139	25.1648	288.7792	0.8154
3.8962		309	25.1812	288.6101	0.8059
3.8875		330	25.1812	288.5784	0.8344
3.9200	_	351	25.1812	288.4199	0.8059
4.0743		543	25.1812	288.3089	0.8344
4.1636	0.2	564	25.1812	288.0392	0.8344
4.0987		585	25.1320	288.3565	0.8344
4.2773	_	776	25.1812	287.9757	0.8344
4.3478		1798 1989	25.1648 25.1812	287.8593 287.5630	0.8344
4.5373 4.5318	0.2	969 1010	25.1484	287.6900	0.8344 0.8059
4.6672		201	25.1812	287.4677	0.8059
4.7322		222	25.1566	287.3724	0.8202
4.7160		244	25.1812	287.4677	0.8344
4.8784		456	25.1484	287.1394	0.8344
4.9271	0.3	477	25.1812	287.0864	0.8344
5.0896	_	647	25.1812	286.9274	0.8344
5.0408	_	668	25.1320	286.8956	0.8344
5.0396		690	25.1812	286.8638	0.8344
5.0733		711 908	25.1812 25.1812	286.9592 286.6252	0.8344 0.8344
5.2845 5.3333		029	25.1812	286.6094	0.8344
5.5282		348	25.1812	286.5457	0.8059
5.5769		369	25.1812	286.4821	0.8486
5.5932		391	25.1320	286.5139	0.8344
5.7881		688	25.1320	286.4185	0.8344
5.8287	0.4	730	25.1320	286.1797	0.8344
5.8206		752	25.1812	286.3230	0.8344
5.9830	0.5	049	25.1320	285.9728	0.8344

TABLE 3 - TOTAL PRESSURE WINDWARD (continued, X51.9250)

TEST 47	RUN POINT 134 127	Ponom 25.0000	X(cm) 51.9250	Pref 14.7 60 1
P(psi)	Y(cm)	Po(psi)	To(deg.K)	Pw(psi)
6.0480	0.5070	25.1566	285.8932	0.8344
6.0643	0.5091	25.1320	285.8772	0.8344
6.2105	0.5389	25.1812	285.8295	0.8344
6.2754	0.5410	25.1812	285.5905	0.8344
6.3079	0.5431	25.1320	285.5586	0.8344
6.4379	0.5750	25.1320	285.4949	0.8059
6.5083	0.5771	25.1320	285.4099	0.8344
6.7059	0.6132	25.1320	285.1521	0.8273
6.8927 6.9252	0.6451	25.1320 25.1320	284.9527	0.8344
6.9009	0.6472 0.6493	25.1320	284.8571 284.8730	0.8344 0.8202
6.9740	0.6684	25.1320	284.8251	0.8344
7.0389	0.6706	25.1320	284.6762	0.8154
7.0714	0.6812	25.1320	284.5059	0.8059
7.1202	0.6833	25.1156	284.6656	0.8344
7.1851	0.6918	25.1320	284.4740	0.8344
7.1581	0.6939	25.1320	284.4846	0.8249
7.1851	0.7003	25.0829	284.3782	0.8344
7.2176	0.7046	25.1156	284.1866	0.8344
7.2610	0.7131	25.1320	284.0907	0.8344
7.2826	0.7152	25.1320	283.9948	0.8344
7.3313	0.7258	25.1320	283.9309	0.8344
7.3313	0.7300	25.1320	283.8990	0.8344
7.3313	0.7322	25.1320	283.7711	0.8344
7.4938 7.5425	$0.7662 \\ 0.7683$	25.1320 25.0829	283.7232	0.8344
7.7699	0.8214	25.1320	283.6432 283.7391	0.8628 0.8344
7.8268	0.8235	25.1320	283.6912	0.8202
8.0136	0.8745	25.1320	283.5153	0.8344
8.0367	0.8787	25.1075	283.4673	0.8344
8.2979	0.9318	25.1075	283.3234	0.8344
8.3385	0.9340	25.1320	283.3234	0.8344
8.3385	0.9361	25.0829	283.3234	0.8344
8.4847	0.9849	25.0829	283.1954	0.8344
8.5172	0.9913	25.1156	283.2167	0.8249
8.6472	1.0402	25.1320	283.1634	0.8059
8.6715	1.0423	25.1075	283.1314	0.8202
8.6634 8.7771	1.0444 1.0975	25.1320 25.1320	283.0674 283.0994	$0.8344 \\ 0.8344$
8.7771	1.0996	25.1320 25.1320	282.8753	0.8059
8.7771	1.1017	25.1320	283.0194	0.8202
8.8421	1.1570	25.1320	282.8753	0.8059
8.8583	1.1612	25.1320	282.7792	0.8344
8.8665	1.1633	25.1075	282.8593	0.8344
8.9396	1.2207	25.1320	282.7472	0.8344
8.9314	1.2228	25.1320	282.7472	0.8344
8.9233	1.2271	25.0829	282.7472	0.8344
9.0370	1.2802	25.1075	282.7472	0.8344
9.0289	1.2844	25.1075	282.7632	0.8344
9.2157	1.3418	25.1320	282.6831	0.8344
9.2374	1.3439	25.1320	282.6511	0.8249
9.9142 10.2473	1.4012 1.4055	25.1320 25.1075	282.5710 282.5710	0.8344 0.8202
11.6931	1.4798	25.1075 25.1320	282.3948	0.8344
11.7662	1.4819	25.1320 25.1075	282.3627	0.8344
13.0820	1.5435	25.1320	282.3307	0.8344
13.3743	1.5478	25.1320	282.1223	0.8202
14.1541	1.6158	25.1156	281.9460	0.8344
14.1703	1.6179	25.0829	281.8177	0.8344
14.2678	1.6816	25.1320	282.1384	0.8344
14.2678	1.6859	25.1320	282.0903	0.8202

TABLE 3 - TOTAL PRESSURE WINDWARD

TEST 47	RUN 105	POINTS 71	PoNOM 25.0000	X(cm) 52.5600	Pref 14.6652
P(psi)	Υ(c	em)	Po(psi)	To(deg.K)	Pw(psi)
1.4868		0093	25.0800	292.5697	0.7495
1.4922		9157	25.0800	290.8250	0.7709
1.5003		0242	25.0800	289.7819	0.7495
1.5084		9263	25.0800	289.9400	0.7590
1.5246		0326	25.0800	288.7369	0.7495
1.5354		0348	25.0800	288.2718	0.7685
1.5246		0369	25.0800	288.8003	0.7780
1.5408 1.5461		9411	25.1291	287.6900	0.7780 0.7780
		9433 AE 1 0	25.0637	287.7218	0.7780
1.5853 1.6378		9518 3591	25.0923	286.7604	0.7780 0.7495
1.6271		9581 9603	25.0800 25.0800	285.8135 285.9515	0.7780
1.6783		9666	25.0800	285.3036	0.7709
1.8158		9879	25.0800	284.8571	0.7495
1.8589		9900	25.0800	284.5379	0.7685
2.1393		1112	25.0637	284.2079	0.7590
2.4952		304	25.0800	283.6112	0.7780
2.5599		325	25.0800	283.4833	0.7780
2.9158		516	25.0800	282.6190	0.7780
2.8753		537	25.0800	282.7151	0.7780
3.4658		877	25.0800	282.2986	0.7780
3.4415		898	25.1046	282.2025	0.7638
3.9834		2238	25.0800	281.8819	0.7495
3.9511		2259	25.0800	281.9460	0.7495
4.4094	0.2	2620	25.0964	281.5504	0.7780
4.8327	0.2	2982	25.0800	281.5450	0.7780
4.8408	0.3	3003	25.0800	281.3685	0.7495
5.1481	0.3	3300	25.0800	280.9510	0.7495
5.1562	0.3	3343	25.0800	280.9671	0.7780
5.4231		3704	25.0800	280.6940	0.7638
5.4069		3725	25.1291	280.8546	0.7495
5.7062		1213	25.0800	280.3082	0.7780
5.6981		1235	25.0800	280.3082	0.7495
5.9246		1723	25.0800	280.0938	0.7590
6.1025		5212	25.0800	279.9221	0.7780
6.1187		5233 5749	25.0800 25.0964	279.8900 279.6647	0.7780 0.7590
6.3074 6.5636		5743 5253	25.0904	279.5520	0.763B
6.5393		5274	25.0800	279.6968	0.7780
6.8413		741	25.0800	279.3749	0.7590
7.1486		293	25.0964	279.1064	0.7590
7.1378		315	25.0800	279.2782	0.7495
7.4614		782	25.0800	278.8593	0.7780
7.4533		803	25.0800	278.8915	0.7780
7.7525		3292	25.1046	278.6336	0.7638
7.7687		3313	25.0800	278.6658	0.7495
8.0437		8823	25.0637	278.4938	0.7685
8.2378	0.9	205	25.0800	278.1819	0.7495
8.2378	0.9	226	25.0800	278.2142	0.7780
8.2378	0.9	247	25.0800	278.1173	0.8066
8.4589		757	25.0964	277.7838	0.7495
14.0667		309	25.0964	277.6115	0.7495
14.3121		840	25.1046	277.4068	0.7780
14.3687		393	25.1291	277.1159	0.7495
14.3687	1.1	414	25.0800	277.2452	0.7780

TABLE 3 - TOTAL PRESSURE WINDWARD (continued, X52,5600)

TEST 47	RUN POINTS 105 71 Y(cm)		Ponom 25.0000	X(cm) 52.5600	Pref 14.6652 Pw(psi)	
P(pei)			Po(psi)	To(deg.K)		
14.3687	1.	1924	25.1291	277.1159	0.7495	
14.3687		1945	25.0800	277.0189	0.7780	
14.3525	1.	2561	25.0800	277.1482	0.7495	
14.3687	1.	2582	25.1291	276.8895	0.7780	
14.3525	1.	2603	25.0800	276.9542	0.7780	
14.3418	1.	3241	25.0964	277.0512	0.7780	
14.3525	1.	3984	25.1046	276.9380	0.7780	
14.3525	1.	4005	25.1291	277.0189	0.7780	
14.3283	1.	4706	25.0800	276.8249	0.7638	
14.3040	1.	5365	25.1291	276.6307	0.7780	
14.3040	1.	5386	25.0555	276.8249	0.7638	
14.3202	1.	6002	25.0800	276.3718	0.7495	
14.2824	1.	6618	25.0800	276.2854	0.7590	
14.2932	1.	7212	25.0964	276.1667	0.7685	
14.2878	1.	7234	25.0310	275.9184	0.7495	
14.2878	1.	7743	25.1291	275.9832	0.7495	

TABLE 3 - TOTAL PRESSURE WINDWARD

TEST 47	RUN 107	POINTS 71	PoNOM 25.0000	X(cm) 52.5600	Pref 14.6935
P(psi)	Υ((ema)	Po(psi)	To(deg.K)	Pw(psi)
1.4338	0.6	9106	24.9671	290.7220	0.8033
1.4338	0.6	0169	24.9671	288.3881	0.8175
1.4503	0.0	0191	24.9671	288.3246	0.8033
1.4668	0.6	9254	24.9426	286.9910	0.7890
1.4668		9276	24.9671	286.8956	0.8175
1.4750		9339	24.9671	285.9409	0.8175
1.4832		9361	24.9671	285.8772	0.8175
1.5380		9531 2500	24.9671	285.0804	0.7985
1.6752		9722	24.9671	284.6336	0.8175
1.8781 2.2896		9934	24.9671	283.8563	0.8080
2.1908		l 147 l 168	24.9671	282.8752	0.8175
2.7887		1465	24.9671 24.9507	283.0034 282.4375	0.8033 0.7985
2.8491		1486	24.9671	282.3948	0.8175
3.3510		784	24.9671	281.8818	0.8175
3.9023		2124	24.9180	281.1116	0.7890
3.8365		2145	24.9917	281.2883	0.8175
4.2150		2463	24.9426	280.8064	0.8175
4.2561		2485	24.9671	280.9189	0.8175
4.5770		2846	24.9548	280.4610	0.8033
4.8293	0.3	3164	24.9671	280.2975	0.7985
5.0213		3 48 3	24.9180	279.8900	0.8175
5.0706	0.3	3504	24.9671	279.6969	0.8175
5.2599		3 82 3	24.9671	279.3748	0.8033
5.3175		3844	24.9671	279.2138	0.8175
5.4985		163	24.9671	279.0204	0.7890
5.5150		184	24.9671	278.7465	0.8033
5.6960		1502	24.9671	278.6658	0.8175
5.6960		1524	25.0163	278.7625	0.8175
5.9099 6.1238		1970	24.9671 24.9671	278.3863 278.2465	0.8080 0.8175
6.1074		5416 5437	24.9671	278.1496	0.8175 0.8175
6.4036		5883	24.9671	277.7945	0.8175
6.3707		5904	24.9671	277.7622	0.8033
6.6422		393	24.9426	277.8107	0.8175
6.9714		966	24.9671	277.4553	0.8175
6.9714		988	24.9917	277.3583	0.8175
7.3745		604	25.0163	277.1805	0.7890
7.3580	0.7	7625	24.9671	277.2883	0.8175
7.7365	0.8	3220	25.0163	277.0836	0.7890
7.7365		3241	24.9671	277.0189	0.7890
7.7365		3262	24.9671	277.0189	0.7890
8.0657		3857	24.9671	276.8788	0.8175
8.2796		239	24.9671	276.6954	0.8033
8.2796		260	24.9671	276.6954	0.7890
8.4606		600	24.9835	276.2314	0.8175
8.4441		0621	24.9671	276.0479	0.8175
8.6663	_	301	24.9671	275.9184 275.9832	0.8175 0.7800
8.6581 8.7897)322)938	24.9671 24.9671	275.7726	0.7890 0.8175
8.8062		960	24.9671	275.7888	0.8175
14.3321		597	24.9671	275.7304	0.8118
14.5205		234	24.9917	275.6673	0.7961
14.5247		871	24.9426	275.6105	0.8033
14.5329		892	25.0163	275.7240	0.8175

TABLE 3 - TOTAL PRESSURE WINDWARD (continued, X52.5600)

TEST 47	RUN POINTS 107 71 Y(cm)		PoNOM 25.0000	X(cm) 52.5600	Pref i4.6935 Pw(psi)	
P(psi)			Po(psi)	To(deg.K)		
14.5164		3593	24.9671	275.3674	0.8175	
14.5219		3615	24.9671	275.4323	0.7985	
14.5109		4315	24.9507	275.1836	0.8175	
14.5164		4337	24.9671	275.2052	0.7890	
14.5000	1.	5016	24.9671	275.0538	0.8080	
14.5000	1.	5038	24.9671	274.8807	0.8175	
14.4726	1.	5654	24.9671	275.1187	0.8080	
14.4671	1.	6270	24.9671	275.0430	0.7890	
14.4588	1.	6291	24.9671	275.0755	0.8033	
14.4506	1.	6886	24.9917	274.6698	0.8175	
14.4506	1.	6907	24.9671	274.7834	0.8175	
14.4506	1.	7417	24.9671	274.5562	0.7890	
14.4451		7438	24.9671	274.5778	0.8080	
14.4342		7905	24.9671	274.6535	0.7890	
14.4301		7926	24.9671	274.5643	0.8033	
14.4342		8330	24.9671	274.3288	0.8175	

TABLE 3 - TOTAL PRESSURE WINDWARD

TEST	RUN	POINTS	PoNOM	X(cm)	Pref
47	146	87	25.0000	53.1950	14.7665
P(psi)	Υ(α	em)	Po(psi)	To(deg.K)	Pw(psi)
4.5095		9116	23.1182	289.2517	3.8666
4.5095		159	23.4671	288.7686	3.8832
4.5220		9180	23.5697	288.7052	3.8832
4.5137		3201	23.6860	288.0921	3.8758
4.5220 4.5220)286)307	23.7954 23.7954	287.5630 287.2930	3.8832 3.8942
4.5220		350	23.7954	287.1182	3.8832
4.5157		371	23.7954	286.8956	3.8942
4.5220		668	23.7954	286.1002	3.8832
4.5157		9690	23.7954	286.3071	3.8942
4.5220	0.6	987	23.7817	285.8878	3.8906
4.5220		284	23.7954	285.3992	3.8942
4.5220		306	23.7954	285.1122	3.8832
4.5220		561	23.7954	285.0804	3.8832
4.5220		582	23.7954	284.9527	3.8832
4.5220 4.5658		.603 .900	23.7543 23.7543	285.0485 284.6017	3.9053 3.8832
4.5720		922	23.7543	284.5379	3.8832
4.6345		198	23.7543	284.0268	3.8832
4.6845		219	23.7543	283.8990	3.8832
4.7095	0.2	240	23.7543	283.8350	3.8832
4.8304		538	23.7543	283.6646	3.8832
4.8596		559	23.7543	283.7072	3.8832
5.0263		877	23.7406	283.1953	3.8906
5.2597		196	23.7680	282.7259	3.8832
5.5848 5.7348		706 748	23.7954 23.7954	282.4589 282.2666	3.8832 3.8832
6.1224		279	23.7543	281.9139	3.8832
6.4287	0.4		25.0676	282.1223	3.9053
7.4227	0.4		26.1347	283.1314	3.9495
7.5415	0.4	874	25.3344	282.5709	3.9495
7.7103	0.5	384	24.0416	281.1116	3.9053
7.8353	9.5		23.7954	280.8707	3.8942
8.3104	0.5		23.5491	280.7582	3.8832
8.5542	0.6		23.5081	280.7261	3.8832
9.2732 9.4545	0.6 0.6		23.4671 23.4260	280.6618 280.5493	3.8832 3.8832
10.4610	0.7		23.4260	280.5976	3.8611
10.6985	0.7		23.4055	280.4690	3.8832
11.8363	0.7		23.4260	280.1796	3.8832
12.2614	0.7	720	23.4055	280.0670	3.8832
13.7993	0.8		23.4260	280.0187	3.8611
14.1744	0.8		23.3850	279.8578	3.8832
14.0494	0.8		23.3850	279.9221	3.8832
15.0996	0.88		23.3850	279.7934	3.8832
15.2122 15.2872	0.88 0.88		23.4260 23.3850	279.8256 279.8900	3.8832 3.8832
15.4997	0.93		23.4260	279.6968	3.8832
15.5497	0.93		23.4466	279.6325	3.8832
15.4935	0.97		23.5286	279.2460	3.8721
15.5122	0.97		23.4671	279.2138	3.8832
15.3560	0.99	29	23.6107	279.3427	3.8832
5.2997	0.99		23.6312	279.2782	3.8832
5.3122	1.00		23.6449	279.1923	3.8832
15.1184	1.02	805	23.6928	278.7142	3.8832

TABLE 3 - TOTAL PRESSURE WINDWARD (continued, X53.1950)

TEST 47	RUN POINTS 146 87			Pref 14.7665	
P(psi)	Y(cm)	Po(psi)	To(deg.K)	Pw(psi)	
P(psi) 15.0496 14.7996 14.8371 14.5620 14.5245 14.5370 14.4245 14.4120 14.3995 14.4120 14.3995 14.3870 14.3870 14.3870 14.3870 14.3619 14.3619	Y(cm) 1.0227 1.0630 1.0651 1.1374 1.1395 1.1416 1.2117 1.2138 1.2818 1.2839 1.3561 1.3582 1.3564 1.4283 1.4305 1.4326 1.5006 1.5027 1.5048 1.5664 1.5707 1.6301	23.7133 23.6928 23.7133 23.6723 23.7133	278.6658 278.7142 278.6336 278.5045 278.4400 278.3110 278.1174 278.1496 278.0851 277.9721 277.9882 277.8268 277.7299 277.6653 277.5684 277.5361 277.3745 277.4714 277.5361 277.4068	Pw(pei) 3.8832 3.8832 3.8832 3.8832 3.8832 3.8832 3.8832 3.8832 3.8832 3.8832 3.8832 3.8832 3.8832 3.8832 3.8832 3.8832 3.8832 3.8832	
14.3556 14.3494 14.3494 14.3494 14.3494 14.3369 14.3244 14.3119 14.3244	1.6344 1.6344 1.6960 1.6981 1.7002 1.7576 1.7597 1.8107 1.8128 1.8149	23.6928 23.6928 23.7133 23.6723 23.6723 23.6928 23.6723 23.6723 23.6723 23.6723	23.6723 277.0189 23.7133 276.9865 23.6723 277.0836 23.6723 276.8572 23.6928 276.8410 23.6723 276.8248 23.6723 276.8248 23.6723 276.7278		

TABLE 3 - TOTAL PRESSURE WINDWARD

TEST 47	RUN 104	POINTS 80	PoNOM 25.0000	X(cm) 53.8300	Pref 14.6699
P(psi)	Υ(c	m)	Po(psi)	To(deg.K)	Pw(psi)
2.1726	0.0	135	25.1229	295.8552	0.7790
2.1726	0.0	157	25.1966	296.0272	0.7790
2.1645	_	199	25.1720	294.2253	0.7790
2.1726		220	25.1474	294.3509	0.7790
2.1563		284	25.0983	292.9054	0.7790
$2.1563 \\ 2.1317$)305)390	25.1147 25.0983	293.3037 292.6064	0.7885 0.7700
2.1317)411	25.0983	292.2601	0.7790 0.7790
2.1235		454	25.0737	291.3773	0.7790
2.1235		475	25.0819	291.4457	0.7790
2.1154		560	25.0614	290.5328	0.7862
2.1235	0.0	581	25.0737	290.4933	0.7790
2.1235	0.0	751	25.0491	289.8135	0.7790
2.1181		773	25.0819	289.5815	0.7790
2.1563	_	985	25.0737	288.9429	0.7790
2.1481		.006	25.0491	288.9429	0.7933
$2.2299 \\ 2.2135$		176 197	25.0737 25.0737	288.2613	0.7647 0.7647
2.4180		495	25.0737 25.0614	288.4516 287.8726	0.7790
2.6797		813	25.0491	287.6900	0.8076
2.8051	_	835	25.0491	287.3724	0.7790
3.2522		174	25.0491	287.0864	0.7790
3.4158	0.2	196	25.0737	286.9274	0.7790
4.0210	0.2	535	25.0737	286.5457	0.7790
4.0864		557	25.0491	286.5298	0.7790
4.8388		897	25.0819	286.3654	0.7790
4.5608		918	25.0983	286.4821	0.7790
5.4113 5.4849		3215 3236	$25.0491 \\ 25.0737$	285.9409 285.7020	0.7790 0.7790
5.2477		258	25.0491	286.0683	0.8076
6.0002		576	25.0491	285.3673	0.7790
5.9184		597	25.0655	285.4630	0.7885
6.4950		916	25.0491	285.2398	0.7718
7.0879	0.4	298	25.0860	284.8012	0.7790
7.6686		638	25.0491	284.4420	0.7790
7.7340		659	25.0737	284.4261	0.7790
8.4619		999	25.0491	284.0587	0.7790
8.3393 9.2961		6021 6339	25.0737 25.0737	284.0428 283.7391	0.7790 0.7861
10.2039		5700	25.0491	283.2114	0.7790
10.0077		722	25.0737	283.3394	0.7790
11.2426		061	25.0737	283.0994	0.7790
11.0954		083	25.0737	283.0514	0.7790
12.4939		550	25.0737	282.8273	0.7790
12.6739		571	25.0983	282.8753	0.7790
14.2728		038	25.0614	282.5070	0.7790
15.4137		7548	25.0614	282.3147	0.7862
16.3706		8037 0050	25.0491	282.3307	0.7790 0.7790
16.2888 16.3706		1058 1079	$25.0491 \\ 25.0491$	282.1704 282.3307	0.7790 0.7790
16.8885		1079 1525	25.0491	282.1170	0.7790
16.9267		1525 1546	25.0491	282.0422	0.7790
17.2320		992	25.0983	281.7429	0.7885
17.1721		014	25.0983	281.8819	0.7790
17.2048		205	25.0983	281.6252	0.7790

TABLE 3 - TOTAL PRESSURE WINDWARD (continued, X53.8300)

TEST 47					Pref 14.6699	
P(psi)	Y(cm)		Po(psi)	To(deg.K)	Pw(psi)	
17.2048 17.0944 16.1129 14.7567 14.3014 14.2932 14.2878 14.2823 14.3014 14.3096 14.3096	0.9226 0.9375 0.9863 1.0416 1.0968 1.0989 1.1541 1.2094 1.2646 1.2667		25.0632 25.0614 25.0491 25.0819 25.0737 25.0491 25.0655 25.0983 25.0491 25.0491 25.0819	281.5290 280.9992 280.7582 280.5761 280.5172 280.5654 280.2975 280.0187 279.8256 279.7612 279.8363	0.7872 0.7790 0.7790 0.7790 0.7790 0.7790 0.7695 0.7981 0.7933 0.7790	
14.3341 14.3423 14.3150 14.3750 14.3668 14.3259 14.3259 14.3259 14.3177 14.3382 14.3423 14.3423 14.3423	1.3835 1.3857 1.4451 1.5025 1.5046 1.5577 1.5598 1.6065 1.6087 1.6618 1.7106 1.7128		25.0737 25.0983 25.0655 25.0491 25.0737 25.0983 25.0983 25.0983 25.0737 25.0491 25.0983 25.0491 25.0983	279.6486 279.7612 279.3105 279.1816 279.0204 279.0097 279.0849 279.1816 279.1333 278.8432 278.9882 278.9882 278.9882 278.9882	0.7790 0.7790 0.7885 0.7790 0.7790 0.7790 0.7790 0.7790 0.7790 0.7885 0.7790	

TABLE 3 - TOTAL PRESSURE WINDWARD

TE ST 47	RUN 145	POINTS 81	PoNOM 25.0000	X(cm) 54.4650	Pref 14.7665
P(psi)	Y(c	em)	Po(psi)	To(deg.K)	Pw(psi)
3.3848	0.6	180	26.2283	291.4247	0.7817
3.3848	0.6	9222	26.2283	291.4878	0.7817
3.3848	0.0	92 65	26.2283	290.9828	0.7817
3.3848		286	26.2283	290.8408	0.7817
3.3848		371	26.2283	290.4143	0.7817
3.3848		392	26.2529	290.1614	0.7817
3.3686		9477	26.2775	289.6870	0.7817
3.3767)499)=60	26.2775	289.6554	0.7817
3.3848)562)583	26.2283 26.2038	289.3705	0.7817 0.7817
3.376 7 3.3848)647	26.1792	289.2755 289.0221	0.7817
3.3848)690	26.2283	288.9270	0.7817
3.3848		753	26.1792	288.6736	0.7817
3.3848		775	26.2038	288.4358	0.7817
3.3686		838	26.2283	287.8805	0.7817
3.3767		902	26.2529	287.8964	0.7817
3.3848		242	26.2283	287.6265	0.8103
3.3686		263	26.1792	287.5948	0.7531
3.3686	0.1	284	26.2283	287.5630	0.7817
3.3848	0.1	603	26.2283	287.3724	0.7817
3.3686		624	26.2283	287.2612	0.7817
3.3848		2007	26.2283	286.7207	0.7817
3.3848		2028	26.2283	286.7367	0.7817
3.3767		2368	26.2283	286.6730	0.7817
3.3686		2389	26.2283	286.6730	0.7817
3.3686		2729 2771	26.2775	286.3548	0.7817
3.3767 3.3767		2771 3111	26.2529 26.2283	286.0684 285.7816	0.7817 0.7817
3.3848		1132	26.2283	285.6861	0.7817
3.3848		472	26.2283	285.4949	0.7817
3.3767		515	26.2529	285.3674	0.7674
3.3848		854	26.2283	285.0165	0.7817
3.3767		876	26.2529	284.9846	0.7817
3.4172	0.4	513	26.2775	284.8889	0.7817
3.4739	0.4	534	26.2529	284.7293	0.7817
5.0465		193	26.2447	284.5272	0.7817
9.0578		851	26.2038	284.2824	0.7817
9.0659		872	26.2283	284.2824	0.7817
12.5620		509	26.2283	283.9789	0.7817
13.4684		104	26.2775	283.6752	0.7817 0.7817
13.5978 13.6626		'125 '147	26.2283 26.2775	283.6432 283.5473	0.7817 0.7817
14.0510		805	26.2283	283.2914	0.7531
14.2453		826	26.2529	283.3234	0.7817
14.7848		506	26.1956	283.0887	0.7817
15.1678		101	26.2283	282.9393	0.7817
15.2973		122	26.1792	282.9073	0.7817
15.3621	0.9	143	26.2283	282.8753	0.7817
15.5806		313	26.2283	282.6991	0.7817
15.6372		334	26.2283	282.4108	0.7817
15.6372		356	26.2283	282.3628	0.7817
15.6696		398	26.2283	282.2986	0.7817
15.7991		547	26.2283	282.2025	0.7817
15.8557		611	26.2283	282.1384 281.7536	0.7960 /
16.2037	1.0	163	26.1792	201.7930	0.7817/

TOTAL PRESSURE WINDWARD (continued, X54.4650) TABLE 3 POINTS X(cm) Pref RUN **PoNOM** TEST 14.7665 47 145 81 25.0000 54.4650 To(deg.K) Pw(psi) Y(cm) Po(psi) P(psi) 16.2523 1.0205 26.2283 281.7215 0.7531 16.6407 1.0758 26.2775 281.6252 0.7817 26.2775 1.0779 281.4648 16.7216 0.7817 26.2283 281.2829 17.1209 1.1416 0.7817 17.3691 1.2096 26.1792 281.1758 0.7817 1.2138 26.2283 281.1437 0.7817 17.4824 17.4662 1.2159 26.1792 281.0795 0.7817 17.4500 1.2797 281.0795 26.1792 0.7817 17.4176 1.2818 26.1792 281.0313 0.7817 17.1101 1.3476 26.2283 280.9189 0.7817 281.0153 16.9159 1.3498 26.2775 0.7817 16.3170 1.4135 26.2775 280.7261 0.7817 16.0904 26.2283 1.4156 280.6618 0.7817 15.6210 1.4793 26.2283 280.5654 0.7817 15.4268 1.4814 26.2283 280.4368 0.7817 15.2326 1.5409 26.2775 280.5011 0.7817 15.2164 26.2775 1.5430 280.4368 0.7817 280.0992 26.2283 15.1274 1.6025 0.7674 15.1193 1.6046 26.2283 280.0509 0.7817 15.0869 26.2283 1.6535 280.1152 0.7817 15.1031 1.6577 26.2283 280.1474 0.8103 26.2283 15.1193 1.7130 280.1152 0.7817 15.1355 1.7151 26.2283 280.0509 0.7817 0.7817 1.7172 26.2283 279.9865 15.1193 26.2283 279.8900 15.1597 1.7597 0.7817 15.1597 1.8085 26.2529 279.5359 0.7817

TABLE 3 - TOTAL PRESSURE WINDWARD

TEST 47	RUN 103	POINTS 73	PoNOM 25.0000	X(cm) 55.1000	Pref 14.6639
P(psi)	YC	cm)	Po(psi)	To(deg.K)	Pw(psi)
4.9811		0159	25.1504	299.2044	0.7892
4.9973		0222	25.0604	298.1042	0.7751
4.9972		0244	25.0358	298.1042	0.7892
5.1021		9397	25.1095	297.2150	0.7751
5.1264		0329	25.1340	297.1057	0.7892
5.2071		0392	25.1340	296.5746	0.7892
5.2717		0414 0405	25.1340	296.2307	0.7892
5.2394 5.3605		0435 0477	25.1340 25.1340	296.4809 295.7613	0.7609 0.7892
5.3685		9499	25.1340 25.1340	295.7613	0.7892
5.5058		0541	25.1095	294.9468	0.8034
5.4896		0562	25.1340	295.0409	0.7751
5.7076		0626	25.1340	293.5657	0.7892
5.6995		0647	25.1340	293.7700	0.7892
5.8367		0711	24.9376	292.9998	0.7609
5.8770		0732	24.9867	292.9841	0.7892
6.3211		9923	25.1340	292.5750	0.7892
6.3533	0.6	9945	25.0849	292.6221	0.7892
6.7892	0.1	1136	25.1340	292.1813	0.7609
6.9749	0.1	1157	25.1340	292.0395	0.7892
7.7094		1327	25.1340	291.4878	0.7609
7.6233		1348	25.1340	291.5613	0.7892
8.6135		645	25.1340	291.3616	0.7892
8.9848		1667	25.1013	291.0249	0.7798
10.1714		2007	25.1095	290.6197	0.8034
10.3732		2028	25.1340	290.5091	0.7892
11.6109 11.6486		2346 2368	25.1340 25.0849	289.9717 290.0666	0.7892 0.7892
13.3720		2835	25.1340	289.7186	0.7892
14.8774		3260 3260	25.1340	289.3388	0.7892
15.0550		3281	25.1504	289.1805	0.7892
15.9268		3706	25.1340	288.9904	0.7892
15.9645		3727	25.1340	288.8531	0.7892
16.2093	0.4	1173	25.1340	288.6260	0.7892
16.2012	0.4	194	25.1340	288.6894	0.7892
16.0398	0.4	1640	25.1340	288.1820	0.7892
16.0318		662	25.1340	288.1661	0.7751
15.3940		5108	25.1340	287.9017	0.7703
15.4586		5129	25.1340	288.0709	0.7609
13.7796		5575	25.1340	287.4677	0.7892
13.7043		5596	25.1176	287.4148	0.7892
12.6818 12.7141		5191 5212	25.1340 25.1586	287.1500 287.1023	$0.7892 \\ 0.7892$
12.8594		807	25.1340	286.7207	0.7892
13.1715		7423	25.1340	286.4609	0.7703
13.1823		444	25.1340	286.4185	0.7892
13.5967		3187	25.1340	286.2487	0.7703
13.6343		3209	25.1340	286.0683	0.7892
14.0541		910	25.1340	285.8215	0.7892
14.2720		271	25.1340	285.4789	0.7892
14.5787	0.9	759	25.1340	284.9847	0.7751
14.5707	0.9	780	25.1340	284.8571	0.7892
14.9797	1.0	439	25.1340	284.7719	0.7798
14.9743		460	25.1340	284.9208	0.7892
15.3537	1.1	097	25.1586	284.6496	0.7751

(continued, X55.1000) TOTAL PRESSURE WINDWARD TABLE 3 Pref RUN POINTS **PoNOM** X(cm) TEST 55.1000 14.6639 47 103 73 25.0000 Pw(psi) Y(cm) To (deg.K) Po(psi) P(psi) 15.3617 1.1119 284.6974 0.7892 25.1340 15.6846 1.1756 25.1340 284.3782 0.7892 15.7008 1.1777 25.1340 284.4740 0.7892 16.0075 1.2393 284.2185 25.1340 0.8176 16.0318 1.2414 25.1340 284.1865 0.7892 16.2981 1.3051 283.7391 0.7609 25.1340 16.3088 1.3073 25.1340 284.0268 0.7892 16.0479 1.3667 25.1586 283.8031 0.7751 16.0398 1.3689 25.1586 283.7871 0.7892 283.5872 283.3660 14.5021 1.4283 25.1708 0.8034 14.1779 1.4857 25.1340 0.7798 14.1832 1.4878 25.1340 283.5473 0.7892 14.2478 1.5494 283.1954 0.8034 25.1340 14.2317 1.5515 25.1340 283.2274 0.7892 282.9073

25.1586

25.1340

25.1340

282.7472 282.8432 282.5229 0.7892

0.7892

0.7892 0.7892

14.2155

14.1832

14.1832

14.1994

1.6110

1.6705

1.6726

TABLE 3 - TO: AL PRESSURE WINDWARD

TEST	RUN	POINTS	PoNOM	X(cm)	Pref
47	102	68	25.0000	56.3700	14.6571
P(psi)	Υ(α	em)	Po(psi)	To(deg.K)	Pw(psi)
6.9353	0.6	180	25.0466	286.8002	0.7097
6.9407		222	25.0793	286.7367	0.7383
7.1850		286	25.0466	285.5267	0.7192
7.0547		307	25.0302	285.9091	0.7097
7.3478		0350	25.0302	285.2079	0.7097
7.4944 7.4455		9371 9392	25.0793 25.0302	284.4900 284.8889	0.7097 0.7097
7.7440		9435	25.0629	284.1333	0.7192
7.6246		9456	25.0302	284.2504	0.7383
7.9177		1499	25.0793	283.6432	0.7097
8.0155	0.0	9520	25.0548	283.3713	0.6953
8.2678	0.0	605	25.0425	262.9954	0.7097
8.5908		668	25.0466	282.3841	0.7097
8.6179		9690	25.0302	282.3628	0.7097
9.2312		881	25.0629	281.8498	0.7192
10.2300 10.1322		1093 1114	25.0302 25.0302	280.9832 281.3364	0.7097 0.7097
11.1296		306	25.0548	280.7100	0.7159
12.8407		667	25.0466	280.5226	0.7192
14.7241		2028	25.0302	279.9543	0.7097
14.4962		2049	25.0302	279.9543	0.7097
14.7567	0.2	2070	25.0302	279.7291	0.7383
16.1000		2410	25.0302	279.5359	0.7097
16.1570		2431	25.0302	279.4393	0.7097
16.9604		2792	25.0629	279.2245	0.7097
17.2806 17.2969		3132 3154	25.0302 25.0302	278.9398 279.1171	0.7097 0.6524
17.3620		3515	25.0548	278.8915	0.7097
17.3620		3 5 36	25.0302	278.9560	0.7097
17.3566		8876	25.0466	278.4400	0.7192
17.3457	0.3	8897	25.0302	278.3755	0.7097
17.4109	0.4	1385	25.0302	278.2465	0.7383
17.4028		407	25.0548	278.1335	0.7240
17.3457		1895	25.0302	277.7622	0.7097
17.3294 17.2209		1916 1532	25.0302 25.0302	277.7784 277.6223	0.7097 0.7097
17.1015		5191	25.0302	277.3422	0.7383
17.0852		212	25.0302	277.4068	0.7097
17.0852		233	25.0302	277.4068	0.7097
17.0255		871	25.0302	277.1698	0.7097
16.8789		487	25.0629	277.0728	0.7001
16.5750		3124	25.0302	276.7602	0.7192
13.9832		8803	25.0548	276.5013	0.7240
14.5287		3825 398	25.0302	276.5013 276.2746	0.7097 0.7097
13.5029 13.5111		139 6 1419	25.0302 25.0302	276.3394	0.7097
13.6575		908	25.0302	276.1775	0.7240
13.6494		929	25.0302	276.1451	0.7383
13.9588		566	25.0302	276.0479	0.7097
13.9507		588	25.0548	275.9832	0.7097
14.2193		246	25.0629	275.8536	0.7097
14.4799		883	25.0302	275.4971	0.7097
14.5124		905	25.0302	275.5295	0.7097
14.7513 14.9847		200 200	25.0466 25.0793	275.3782 275.0754	0.7097 0.7097
17.7046	1.0		∠ ∪.∀(70	210.0104	v. (v) (

TABLE 3 - TOTAL PRESSURE WINDWARD (continued, X56.3700) TEST RUN POINTS PoNOM X(cm) Pref 47 102 68 25.0000 56.3700 14.6571 P(psi) Y(cm) Po(psi) To(deg.K) Pw(psi) 14.9928 1.3221 25.0302 275.0917 0.7097 1.3859 15.2289 25.0548 275.1728 0.7097 15.2452 1.3880 25.0302 275.1404 0.7097 15.4488 1.4453 25.0302 274.9619 0.7240 15.4406 1.4475 25.0302 274.9457 0.7383 25.0548 25.0302 15.6523 1.5048 274.7022 0.7097 15.6523 1.5069 274.7834 0.7383 15.8639 1.5622 25.0302 274.5129 0.7192 15.8639 $\mathbf{25.0793}$ 1.5643 274.6860 0.7097 16.0431 1.6153 25.0302 274.4587 0.7097 16.0431 25.0548 1.6174 274.4588 0.7097 15.8531 1.6705 25.0302 274.2963 0.7192 14.7675 1.7236 25.0302 274.4046 0.7192

TABLE 3 - TOTAL PRESSURE WINDWARD

TEST	RUN	POINTS	PoNOM	X(cm)	Pref
47	101	81	25.0000	57.6400	14.6375
P(psi)	Υ(em)	Po(psi)	To(deg.K)	Pw(psi)
7.7791		9137	25.1825	288.9587	0.5922
7.7791		0159	25.1579	288.9269	0.5922
8.1095		9222	25.1579	288.2930	0.5922
8.2968		244	25.1415	287.7535	0.5922
8.8695 8.7869)307 320	25.1088	286.9274	0.5922
9.3197)329)414	25.1252 25.1088	287.0970 286.1479	$0.5922 \\ 0.5922$
9.1338)435	25.1088 25.1088	286.6412	0.5922
9.6129		9456	25.1088	285.5267	0.5922
9.7038		477	25.0965	285.1201	0.5922
10.0920		562	25.1088	284.4740	0.5922
10.0865	0.6	583	25.1088	284.4846	0.5922
10.5711		647	25.1088	284.2185	0.5922
10.5216		668	25.0761	284.2504	0.5922
11.1824		817	25.0761	283.3980	0.5922
11.2650)838 	25.0105	283.1314	0.5922
11.6119 11.6119)881)902	25.0597 25.0433	282.7792 282.6617	$0.5632 \\ 0.5922$
11.9919		987	25.0597	282.2346	0.5922
12.0415		008	25.0597	282.2025	0.5922
13.4788		306	25.0351	281.6814	0.5922
15.1721	0.1	624	25.0351	281.2882	0.5922
15.0564	0.1	645	25.0351	281.3685	0.5922
16.4085		985	25.0269	280.5975	0.5922
16.2708		007	25.0105	280.9189	0.5922
17.1877		325	25.0105	280.3323	0.5922
17.6089		665	25.0105	279.7612	0.5922
17.6007 17.5924		:686 :707	$25.0105 \\ 25.0105$	279.8095 279.8256	0.5922 0.5922
17.7742		005	25.0105	279.6325	0.5922
17.7576		026	25.0105	279:6325	0.5922
17.8237		323	25.0105	279.1494	0.5922
17.8182	0.3	345	25.0269	279.2245	0.5922
17.8403		663	25.0105	279.0043	0.5922
17.8402		685	25.0105	279.0688	0.5922
17.8237		131	25.0269	278.7411	0.5922
17.8237 17.7962		152 598	25.0105 25.0105	278.6658 278.5368	0.5922
17.8072		619	25.0105	278.2949	0.5922 0.5922
17.7797		065	24.9778	278.2035	0.5922
17.7907		086	24.9614	278.0528	0.5922
17.7411	0.5	766	25.0105	277.8914	0.5922
17.7301	0.5	787	24.9941	277.9560	0.5922
17.6695		509	25.0105	277.6438	0.5922
17.6585	0.6		25.0105	277.6976	0.5922
17.6089	0.7		25.0105	277.4068	0.5922
17.6007 17.6089	0.7 0.7	253 274	24.9860	277.3584	0.5922
17.5429		214 996	24.9614 24.9778	277.4391 277.1051	$0.5922 \\ 0.5922$
17.5594	Ø.8		24.9614	277.1159	0.5922
17.4768	0.8		25.0105	276.6954	0.5922
17.4933	0.8		24.9941	276.8464	0.5922
17.4658	0.9	377	24.9778	276.5552	0.5922
17.4768	0.9		24.9614	276.5660	0.5922
17.4603	0.9	483	24.9860	276.5175	0.5922

(continued, X57.6400) TABLE 3 TOTAL PRESSURE VINDWARD TEST RUN POINTS PoNOM X(cm) Pref 14.6375 47 101 81 25.0000 57.6400 Y(cm) P(psi) Po(psi) To(deg.K) Pw(psi) 24.9860 17.4025 1.0227 276.0966 0.5922 276.0642 275.9832 0.5922 17.4107 1.0248 24.9614 17.3281 1.0842 24.9614 0.5922 24.9614 17.3281 1.0864 276.0156 0.5922 17.2455 1.1501 24.9614 275.9508 0.5922 17.2345 1.1522 24.9614 275.8536 0.5922 16.4608 1.2159 24.9614 275.7807 0.5922 24.9614 275.9508 14.2222 1.2797 0.5922 24.9368 275.9184 14.3214 1.2818 0.5922 275.7888 275.6916 14.2057 1.2839 24.9614 0.5922 14.3048 24.9614 1.3413 0.5922 14.3048 1.3434 24.9368 275.6754 0.5922 1.3455 14.3048 25.0105 0.5922 275.6916 14.5030 1.4050 24.9614 275.4647 0.5922 14.5085 1.4071 24.9614 275.5187 0.5922 24.9614 14.7013 1.4666 275.5619 0.5922275.5943 275.3890 24.9614 0.5922 14.7013 1.4687 24.9614 0.5922 14.8555 1.5260 14.8500 1.5282 24.9123 275.3349 0.5922 24.9614 1.5791 0.592215.0317 275.4647 15.0317 1.5813 24.9614 275.3998 0.5922 15.0152 24.9614 1.5834 275.4647 0.5922 24.9491 15.1680 1.6322 275.3106 0.5922 15.2960 1.6853 24.9368 275.0754 0.5922 24.9614 275.0268 15.3126 1.6875 0.5922

274.8591

0.5922

15.4392

TABLE 3 - TOTAL PRESSURE WINDWARD

TEST	RUN	POINTS	Pol	MOM	X(cm)	Pre	
47	100	7 3	25.6	9000	58.	9100	14.6	839
P(psi)	Υ((em)	Po(1	osi)	To (deg.K)	P	w(psi)
9.4776		0244	25.2			.8578		.8186
9.4695		0265	25.2			.3457		.8257
10.2473		0329	25.2			.5091		.8257
10.1339		0350 3405	25.2			.0985		.8257
10.9279 10.8550		9435 9456	$25.2 \\ 25.2$.4813 .5762		.8257 .8257
11.4086		9520	25.2 25.2			3.4939		.8257
11.4626		9541	25.2			4833		.8257
11.8596		9605	25.2			.7456		.8257
12.2944		0668	25.2			.0122	_	.8257
12.3214	0.0	0690	25.2	2106	287	.0228		.8257
12.6334		0732	25.2		286	.2354		.8257
12.6779		9753	25.2			.2275		.8257
13.3423		9923	25.2			.2079		.8257
13.3828		9945	25.2			.1601		.8257
14.1038		1093	25.2			. 6336	_	.8257
14.0606		1114	25.1 25.2			.7826		8257
15.1960 16.1617		1412 1709	25.1 25.1			.8990 .3234		.8257 .8257
16.1401		1730	25.2 25.2			.3767		.8257
16.7721		2049	25.2			.9606		.8257
16.7289		2070	25.2			.1314	_	.8257
17.1462		2389	25.2			.4589		.8257
17.3770	0.2	2707	25.1	1615	281	.6573	0	.8257
17.3811		2729	25. 1		281	.9139		.8257
17.4904		3026	25. 1			.3524		.8257
17.4742		3047	25.2			.3524		.8257
17.5553		3345	25.2			.9510		.8257
17.5877		3791	25.2			.6618		.8257
17.5823 17.5877		3812 1 237	25.1 25.1			.7047 .2760		.8257 .8257
17.5931		1258	25.1			.4690		.8257
17.5877		1662	25.1			.9865		.8257
17.5796		1683	25.2			.0991		.8257
17.5877		1704	25.1			.0670	_	.8257
17.5796	0.5	5108	25.1	615	279	.8256	0	.8257
17.5823		5129	25.1			.8256		.8257
17.5715		5702	25.2			.4071		.8257
17.5607		5724	25.1			.4608		.8351
17.5432		6340	25.1 25.2			. 1977 . 5368		. 8257 . 8257
17.5391 17.5472		5892 5913	25.1			.6336		.8186
17.5391		7508	25.1			.6336		.8257
17.5391		7529	25.1			.5476		.8257
17.5391		3103	25.1	615	278	. 5368	0	.8257
17.5445		3124	25.1		278	.4938		.8257
17.5553	0.8	3697	25.1	861	278	.3110	0	.8257
17.5472	_	3718	25.1			.2787		.8257
17.5553		9377	25.1			.0366		.8115
17.5553	_	9398	25.1			.9721		.8257
17.5661		9611	25.1			.6869	_	.8257
17.5553	_	9632	25.1 25.1			.7299	_	.8257
17.5769 17.5715)184)205	25.1 25.1			.4176 .4230		.8257 .8257
17.5715)758	25.1 25.1			.3422	_	.8257
11.0110	1.6		20.1	010		·OTER	v	. 520.

TABLE 3 - TOTAL PRESSURE WINDWARD (continued, X58.9100)

TEST	RUN	POINTS	PoNOM	X(cm)	Pref
47	100	73	25.0000	58.9100	14.6839
P(psi)	Υ(em)	Po(psi)	To (deg.K)	Pw(psi)
17.5715		0779	25.1615	277.2937	0.8257
17.5661		1416	25.1779	277.1267	0.8257
17.5715 17.5553 17.5391	1. 1.	1437 2032 2605	25.1615 25.1861 25.1615	277.1159 276.9300 276.8087	0.8257 0.8257 0.8257
17.5391	1.1	2627	25.1615	276.7924	0.8257
17.5148		3221	25.1861	276.5498	0.8257
17.5148	1.	3243	25.1861	276.4365	0.8257
17.4905		3816	25.2106	276.3394	0.8257
17.4796		3837	25.1779	276.3178	0.8257
17.4377	1.	4517	25.1615	276.3556	0.8257
17.0367		5133	25.1615	275.7564	0.8257
17.0421		5154	25.1615	275.9184	0.8257
14.5737	1.	5770	25.1615	275.7564	0.8257
14.7196		5791	25.1615	275.7564	0.8257
14.6224		6344	25.1615	275.9832	0.8257
14.6386		6365	25.1861	275.9832	0.8257
14.6386		6386	25.1615	276.0156	0.8540

TABLE 3 - TOTAL PRESSURE WINDWARD

TEST	RUN POINT	S Ponom	X(cm)	Pref
47	99 75	25.0000	60.1800	14.6839
P(psi)	Y(cm)	Po(psi)	To(deg.K)	Pw(psi)
-		-		
10.3082	0.0286	25.2208	292.3911	0.7894
10.2865	0.0329	25.2535	292.0553	0.7703
11.1589	0.0371	25.2044	290.7302	0.7703
11.0668	0.0392	25.2044	291.2985	0.7989
11.9121	0.0477	25.2044	289.6078	0.7774
12.5461	0.0541	25.2044	288.9112	0.7703
12.5786	0.0562	25.2044	288.6577	0.7846
13.0825	0.0626	25.2044	287.9440	0.7703
13.0338	0.0647	25.2044	288.1027	0.7703
13.4483	0.0690	25.2044	287.1499	0.7846
13.4727	0.0711	25.2044	267.1182	0.7989
13.7815	0.0753	25.2044	286.4503	0.7989
13.7571	0.0775	25.2044	286.3229	0.7703
14.1066	0.0838	25.2044	285.7180	0.7703
14.0253	0.0860	25.2044	285.8613	0.7703
14.2855	0.0902	25.2044	285.4949	0.7703
14.3559	0.0923	25.1880	285.3992	0.7703
14.8544	0.1051	25.2535	284.6656	0.7703
14.8056	0.1072	25.2044	284.6974	0.7703
15.1145	0.1136	25.2044	264.3143	0.7703
15.1145	0.1157	25.2044	284.3462	0.7703
15.3705	0.1221	25.1921	283.7392	0.7918
15.6387	0.1284	25.2167	263.3793	0.7774
16.1115	0.1476	25.1880	282.8112	0.7798
16.1224	0.1497	25.2044	282.8753	0.7989
16.5368	0.1645	25.2044	282.4909	0.7846
16.5368	0.1667	25.2044	282.4428	0.7846
16.9758	0.1985	25.2044	281.9300	0.7846
16.9514	0.2007	25.2044 25.2044	$282.0743 \\ 281.8337$	$0.7703 \\ 0.7846$
17.2521	0.2283	$25.2044 \\ 25.1552$	281.6894	0.7703
17.2440 17.4391	$0.2304 \\ 0.2601$	25.2044	281.4006	0.7703
17.4228	0.2623	25.2044	281.3846	0.7846
17.5366	0.2920	25.1798	280.9832	0.7703
17.5366	0.2941	25.2044	280.9189	0.7989
17.5962	0.3238	25.2044	280.8118	0.7798
17.6504	0.3663	25.2044	280.6297	0.7703
17.6423	0.3685	25.1798	260.4369	0.7846
17.6747	0.4109	25.2044	280.3082	0.7703
17.6666	0.4131	25.2044	280.3404	0.7989
17.6829	0.4534	25.2044	279.9543	0.7989
17.6747	0.4555	25.2044	280.0992	0.7703
17.6829	0.5001	25.2044	280.0830	0.7703
17.6829	0.5256	25.2044	279.8900	0.7703
17.6666	0.6106	25.2044	279.7934	0.7703
17.6666	0.6127	25.2044	279.8417	0.7703
17.6341	0.6701	25.1798	279.6969	0.7703
17.6341	0.6722	25.2044	279.6968	0.7703
17.6287	0.7274	25.2044	279.4178	0.7798
17.6260	0.7848	25.1798	279.0849	0.7703
17.6341	0.7869	25.2044	278.8915	0.7989
17.6450	0.8421	25.2044	278.6765	0.7703
17.6504	0.9143	25.1716	278.5690	0.7894
17.6341	0.9780	25.2044	278.5583	0.7798
17.6179	0.9802	25.2044	278.5045	0.7703

(continued, X60.1800) - TOTAL PRESSURE VINDWARD TABLE 3 TEST RUN POINTS PoNOM X(cm) Pref 47 99 75 25.0000 60.1800 14.6839 P(psi) Y(cm) Po(psi) To (deg.K) Pw(psi) 0.9972 17.6179 25.2044 278.4078 0.7703 0.999317.6179 25.2044 278.4077 0.7703 17.5529 1.0588 25.2044 278.2465 0.7703 17.5448 17.4499 25.1798 1.0609 278.2626 0.7703 1.1267 25.2044 278.0420 0.7798 0.7703 17.3253 1.1883 25.2044 277.7945 17.3334 1.1905 25.1798 277.8752 0.7703 17.2115 1.2520 25.2044 277.7622 0.7703 17.2115 1.2542 25.2044 277.6653 0.7989 17.0896 1.3179 25.2044 277.5199 0.7846 25.2044 277.5038 277.2129 17.0814 1.3200 0.7989 1.3795 25.1798 16.9514 0.7989 16.9677 1.3816 25.1552 277.2129 0.7703 16.7888 1.4517 25.1552 277.34220.7703 16.8051 1.4538 25.2290 277.2614 0.7703 1.5176 25.2044 276.9057 0.7846 16.6669 16.6588 1.5197 25.2044 276.9219 0.7989 16.4962 25.1552 1.5813 276.6954 0.7703 25.2044 276.7440 16.5125 1.5834 0.7703

276.8033

16.3770

1.6450

TABLE 3 - TOTAL PRESSURE WINDWARD

TEST	RUN	POINTS	Po NOM 25,000		Pref 14.6839
47	98	61	23,000		
P(psi)	YC	em)	Po(psi) To (deg.K)	Pw(psi)
11.1505	0.6	350	25.177		0.7417
11.2271		371	25.4319		0.7369
12.1469		9435	25.259		0.7513 0.7417
12.0702 12.7874)456)520	25.2925 25.2598		0.7417
12.8695		541	25.2598		0.7513
13.3786		605	25.2598	B 291.3616	0.7369
13.3048		626	25.2598		0.7513
13.8097)690)732	25.2598 25.2762		0.7441 0.7417
14.1177 14.1341		7753	25.2598		0.7226
14.7254		966	25.2352		0.7441
15.2961	0.1	114	25.2229		0.7441
15.8531		306	25.2598		0.7417
15.8257 16.4663		327 603	25.2598 25.2598		0.7226 0.7513
16.4663		624	25.2598		0.7417
16.8440		922	25.2106		0.7513
16.8522		943	25.2598		0.7369
16.8604		964	25.2106		0.7513
17.0821 17.2217	0.2	283 750	25.2352 25.2270		$0.7513 \\ 0.7322$
17.2053	0.2		25.2106		0.7513
17.2628	0.3		25.2352		0.7513
17.2546	0.3		25.2106		0.7441
17.2108 17.2053	0.4 0.4		25.2270 25.2106		0.7417
17.1396	0.4		25.2598		0.7513 0.7513
17.1451	0.4		25.1942		0.7226
17.0684	0.5		25.1942		0.7417
17.0739	0.5		25.2106		0.7226
16.9877 16.9138	0.5 0.6		25.2352 25.2106		0.7298 0.7369
16.8111	0.7		25.2106		0.7226
16.8276	0.7		25.2106		0.7417
16.7455	0.7		25.2106		0.7226
16.7455 16.6633	0.7 0.8		25.1942 25.2106		0.7322 0.7226
16.6551	0.8		25.2106		0.7513
16.5319	0.9	398	25.2106		0.7513
16.5319	0.9		25.2106		0.7226
16.3924 16.3841	1.0	099 184	25.1983 25.2106		0.7226 0.7226
16.3842	1.0		25.2106		0.7369
16.2856	1.0	609	25.1861	280.3966	0.7441
16.1049	1.1		25.1615		0.7513
16.1049 15.9352	1.1· 1.2		25.2106 25.1942		0.7226 0.7322
15.9243	1.2		25.1615		0.7226
15.7600	1.2	924	25.2106	279.6968	0.7513
15.7600	1.2		25.2106		0.7226
15.5794 15.3905	1.3 1.4		25.1942 25.1861	279.6111 279.6003	0.7322 0.7513
15.3987	1.4		25.2106		0.7226
15.2099	1.5	069	25.1861	279.4232	0.7369
15.2181	1.5		25.2106		0.7369
15.0292	1.5		25.1861 25.1615	279.1816 279.2943	0.7226 0.7369
15.0210 14.8485	1.5° 1.6		25.1861 25.1861	278.9882	0.7369 0.7513
14.8567	1.6		25.2106	278.9882	0.7226
14.6925	1.7	087	25.2106	278.9882	0.7226

TABLE 3 - TOTAL PRESSURE WINDWARD

TEST 47	RUN 97	POINTS 59	PoNOM 25.0000	X(cm) 62.7200	Pref 14.6839
P(psi)	YG	em)	Po(psi)	To(deg.K)	Pw(psi)
7.1105	0.0	0137	25.2044	296.8559	0.7217
7.1023		0159	25.1675	296.2541	0.7145
8.6690	0.0	0265	25.1306	295.2367	0.6927
8.7674	0.0	0286	25.1061	295.1662	0.6927
10.4490		0371	25.1061	294.0055	0.6927
10.2358		0392	25.1306	294.4136	0.7217
11.3760		0456	25.1061	293.3143	0.7217
11.2940		0477 0400	25.0816	293.6757	0.6927
11.3596 11.8681		0499 0541	$25.1061 \\ 25.1184$	293.5657 292.5828	0.6927 0.6927
11.8845		0562	25.1104	292.3073	0.0927
12.2086		0647	25.1184	291.6375	0.7072
12.2127		0668	25.1061	291.8031	0.7217
12.4587		0711	25.1061	290.7303	0.7024
12.4505	0.0	0732	25.1061	290.7934	0.7072
12.9017	0.0	0923	25.1061	290.2246	0.7217
13.0001	0.0	0945	25.1225	290.0350	0.7024
13.4964		1136	25.1184	289.5683	0.7072
13.9517		1327	25.1552	289.0854	0.7217
13.9558		1348	25.1184	288.9191	0.7000
14.4383	_	1645 1647	25.1225	288.3459	0.6927
14.4110 14.7611		1667 2007	$25.1061 \\ 25.1061$	288.3565 287.9969	0.7217 0.6927
14.7556		2028	25.1061	288.1027	0.6927
14.9770		2368	25.1184	287.6424	0.7072
15.1575		2856	25.1061	287.1182	0.7145
15.2600		3302	25.1184	286.7525	0.6927
15.3134	0.	3791	25.1061	286.0365	0.6927
15.3024	0.	3812	25.1061	286.0789	0.7024
15.3134		4301	25.1225	285.6542	0.7120
15.2969		4322	25.1552	285.5905	0.6927
15.3298		4768 4768	25.1552	285.3036	0.7217
15.3134		4789 5054	25.1225	285.2504	0.7120
15.3134 15.3052		5256 5278	25.1306 25.1061	285.0485 285.0804	0.6927 0.7072
15.2969		5 8 72	25.1061	284.9208	0.6927
15.3024		5894	25.1225	284.8889	0.7024
15.2887		6531	25.1061	284.3782	0.7145
15.2805	0.1	7317	25.1388	284.0055	0.7120
15.2805	0.7	7338	25.1552	283.9948	0.7217
15.2368		8081	25.1552	283.6859	0.7024
15.2313		B103	25.1061	283.7871	0.6927
15.1821		8846	25.1061	283.4193	0.7024
15.1821		8867	25.1552	283.4513	0.6927
15.1329 15.1411		9143 9165	25.1061 25.1429	283.0353 283.0594	0.6927 0.7000
15.1901		9356	25.1552	282.7151	0.7217
15.1001		9377	25.1388	282.6083	0.7024
14.9688		9227	25.1061	282.3227	0.7072
14.8212		1012	25.1552	282.3948	0.6927
14.8157		1034	25.1388	282.3307	0.7024
14.6571		1841	25.1061	282.0182	0.6927
14.2634		3540	25.1061	281.7856	0.6927
14.2798		3561	25.1552	281.6252	0.7120
14.0747		4475 5004	25.1429	281.2159	0.6927
13.8943		5324 5245	25.1552	281.0795	0.7072
13.8861 13.7261		5345 6110	25.1306	281.0956	0.7072
13.7201		6110 6 875	25.1429 25.1552	280.8145 280.6779	0.7000 0.6927
10.0017	1.,		40.1004	200.U(17	U.U746

TABLE 3 - TOTAL PRESSURE WINDWARD

TEST 47	RUN 96	POINTS 66	PoNOM 25.0000	X(cm) 63.9900	Pref 14.6397
P(psi)	Y(c	em)	Po(psi)	To(deg.K)	Pw(psi)
6.2461		0072	24.9944	300.1577	0.7778
6.2380		9093	25.0436	300.7784	0.7778
8.0044		199	24.9698	298.6338	0.7778
8.0044		220	24.9698	298.4677	0.7778
9.3090		305	24.9698	297.2775	0.7778
9.3009		326	24.9862	297.2514	0.7778
9.9329)411)433	24.9698 24.9698	296.5903	0.7778 0.7778
9.9491 10.2732)518	24.9698	295.9699 295.0096	0.7778
10.2732		539	24.9698	294.6646	0.7492
10.7473		751	24.9575	294.2253	0.7707
10.7594		773	24.9698	294.0997	0.7778
11.2672		964	24.9698	293.4924	0.7683
11.2699		985	24.9698	293.4714	0.7778
11.6832		197	24.9698	292.7716	0.7707
11.6832		219	24.9698	292.6221	0.7778
11.9965	0.1	410	24.9698	292.0867	0.7587
12.0073	0.1	431	24.9207	292.3073	0.7778
12.0073	0.1	452	24.9698	292.3073	0.7492
12.2383	0.1	643	24.9698	291.5981	0.7778
12.2342	0.1	665	24.9698	291.6139	0.7778
12.4854	0.2	2004	24.9698	290.8723	0.7778
12.4935		2026	24.9534	290.9302	0.7587
12.7009		514	24.9502	290.2689	0.7721
12.8338		982	24.9698	289.7029	0.7778
12.8338		8003	24.9534	289.6026	0.7683
12.9180		8491	24.9600	289.0918	0.7778
12.9796		3980	24.9698	288.3881	0.7778
12.9594		001	24.9698	288.4991	0.7778
12.9796 12.9877		490 511	$24.9535 \\ 24.9698$	288.1873	0.7778 0.7635
12.9861		106	24.9502	288.1344 287.5884	0.7778
12.9958		743	24.9698	287.3327	0.7778
12.9796		764	24.9698	287.3088	0.7778
12.9796		380	24.9698	286.9274	0.7778
12.9742		401	24.9698	286.7578	0.7587
12.9675		017	24.9698	286.3309	0.7707
12.9634		081	24.9698	286.5139	0.7778
12.9634		654	24.9534	285.9728	0.7683
12.9634	0.7	676	24.9453	285.9091	0.7635
12.9634	0.8	461	24.9698	285.6462	0.7707
12.9634	0.8	483	24.9698	285.6861	0.7778
12.9553	0.9	205	24.9698	285.2876	0.7707
12.9634		226	24.9207	285.3036	0.7492
12.9310		118	24.9534	284.9846	0.7683
12.9310		139	24.9698	284.9208	0.7635
12.8824		925	24.9698	284.9049	0.7635
12.8932		947	24.9698	284.9315	0.7778
12.8824		010	24.9207	284.3782	0.7778
12.8784		032 348	24.9698	284.4261	0.7778 0.7778
12.7933 12.8014		348 370	24.9698 24.9698	284.1386 284.0907	0.7778
12.7203		370 156	24.9698	283.8031	0.7778
12.7244		177	24.9575	283.8031	0.7635
12.6609		005	24.9534	283.5153	0.7683
			= 1.700 r	200.0100	2000

TABLE 3 - TOTAL PRESSURE WINDWARD (continued, X63.9900)

TEST 47	RUN 96	POINTS 66	PoNOM 25.0000	X(cm) 63.9900	Pref 14.6397
P(psi)	Y(cm)		Po(psi)	To(deg.K)	Pw(psi)
12.6555	1	.4026	24.9207	283.5792	0.7778
12.5907	1	.4791	24.9698	283.3953	0.7707
12.5259	1	. 5534	24.9698	283.3234	0.7778
12.5151	1	. 5556	24.9698	283.2807	0.7683
12.4205	1	. 6299	24.9698	282.8433	0.7778
12.4205	1	. 6320	24.9698	282.9073	0.7635
12.3152	1	.7000	24.9698	282.8112	0.7778
12.3087	1	.7021	24.9600	282.6255	0.7664
12.3098	1	.7043	24.9698	282.6190	0.7778
12.2666	1	.7404	24.9698	282.5229	0.7778
12.2072	1	.7701	24.9698	282.4802	0.7683

TABLE 3 - TOTAL PRESSURE WINDWARD

TEST	RUN	POINTS	PoNOM	X(cm)	Pref
47	143	87	25.0000	65.1800	14.7674
P(psi)	Y(c	em)	Po(psi)	To(deg.K)	Pw(psi)
3.4004	0.0	635	25.5509	284.9527	0.8511
3.4058		656	25.5673	284.8889	0.8606
3.3491	0.0	720	25.4201	284.3143	0.8464
3.3410		741	25.4201	284.1546	0.8321
3.2328		868	25.3874	284.0800	0.8511
4.7357		017	25.3220	283.8670	0.8606
5.4736 7.6223		.038 .251	$25.3465 \\ 25.3220$	283.9309 283.8031	$egin{array}{c} 0.8321 \ 0.8321 \end{array}$
8.3197		272	25.2975	283.7232	0.8464
9.0225		527	25.2893	283.3660	0.8511
9.7468		824	25.2730	283.0353	0.8606
9.8279		845	25.2730	283.0674	0.8606
9.8441		866	25.2730	283.0034	0.8321
10.2982	0.2	228	25.2975	282.7791	0.8464
10.3306		249	25.2730	282.7151	0.8606
10.5252		589	25.2730	282.6511	0.8321
10.5577		2610	25.2730	282.5229	0.8606
10.7361		2971	25.2730	282.1064	0.8464
10.7361 10.8442		1992 1396	$25.2730 \\ 25.2730$	282.2025 281.9353	$0.8606 \\ 0.8416$
10.9469		757	25.2730	281.7215	0.8606
10.9388		778	25.2730	281.5771	0.8464
10.9793		139	25.2730	281.5610	0.8321
11.0037		160	25.2485	281.4327	0.8464
11.0523	0.4	543	25.2730	281.2722	0.8464
11.0604		564	25.2730	281.3685	0.8606
11.0848		946	25.2485	280.9350	0.8321
11.0766		989	25.2730	280.9832	0.8321
11.1091	0.5		25.2566	280.7261	0.8321
11.1415		732 753	$25.2730 \\ 25.3220$	280.6940 280.6297	0.8321 0.8321
11.1253 11.1577		115	25.2730	280.4368	0.8321
11.1577		136	25.2730	280.4047	0.8321
11.1577		518	25.2730	280.3725	0.8321
11.1577	0.6		25.2730	280.4047	0.8321
11.2064	0.6	964	25.2730	280.5493	0.8464
11.2226	0.7	325	25.3220	280.4047	0.8321
11.2226		346	25.2730	280.4047	0.8321
11.1902		750	25.2730	280.0830	0.8321
11.1983		793	25.2975	280.1635	0.8464
11.1902 11.1739	0.8	217	$25.2730 \\ 25.2730$	280.0509 280.0830	0.8606 0.8606
11.1739		600	25.3220	280.0187	0.8321
11.1902	0.8		25.3220	279.9543	0.8606
11.1902	0.9		25.2730	279.7291	0.8321
11.1739	0.9		25.2730	279.8256	0.8321
11.1902	0.9		25.2730	279.7612	0.8606
11.1902	0.9		25.3220	279.6968	0.8321
11.1658	_	108	25.2730	279.4393	0.8321
11.1415		129	25.2730	279.5037	0.8321
11.1685	1.0		25.2730	279.2568	0.8416
11.1415	1.1		25.3220	279.1171	0.8321
11.1415 11.1415	1.1		$25.2975 \\ 25.3220$	279.0204 279.0204	0.8321 0.8321
11.1415	1.1		25.3220	279.1816	0.8321
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/ /
					,

TABLE 3 - TOTAL PRESSURE WINDWARD (continued, X65.1800)

T EST 47	RUN POINTS 143 87	Ponom 25.0000	X(cm) 65.1800	Pref 14.7674
P(psi)	Y(cm)	Po(psi)	To(deg.K)	Pw(psi)
11.1415	1.1552	25.3220	279.0527	0.8606
11.0929	1.1998	25.3220	279.1171	0.8606
11.1091	1.2019	25.3220	279.0849	0.8606
11.1091	1.2041	25.3220	279.0527	0.8606
11.1091	1.2465	25.3220	278.9237	0.8321
11.0929	1.2508	25.2730	278.8593	0.8606
11.0604	1.2933	25.2730	278.9882	0.8321
11.0685	1.2954	25.2730	278.9721	0.8321
11.0604	1.3506	25.3220	278.7625	0.8321
11.0280	1.3549	25.3220	278.7625	0.8321
11.0442	1.3570	25.2730	278.7303	0.8606
11.0118	1.4037	25.2730	278.6658	0.8321
11.0280	1.4080	25.2730	278.6658	0.8321
10.9712	1.4611	25.2975	278.6497	0.8321
10.9631	1.5227	25.2730	278.6336	0.8606
10.9307	1.5248	25.2730	278.5368	0.8606
10.9145	1.5821	25.2730	278.3755	0.8321
10.9145	1.5864	25.3220	278.2465	0.8321
10.8820	1.6437	25.2730	278.2787	0.8321
10.8820	1.6459	25.2730	278.2787	0.8321
10.8820	1.7011	25.3220	278.2465	0.8321
1 0.8820	1.7032	25.2730	278.2787	0.8321
10.8658	1.7075	25.2730	278.1496	0.8321
10.8658	1.7669	25.2730	278.0851	0.8321
10.8658	1.7690	25.3220	278.1496	0.8321
10.8658	1.7712	25.3220	278.0528	0.8321
10.8496	1.8243	25.2730	277.8914	0.8321
10.8496	1.8264	25.2730	277.9236	0.8606
10.8334	1.8285	25.2730	277.8914	0.8321
10.8253	1.8816	25.2485	277.8107	0.8464
10.8009	1.9199	25.2730	277.7622	0.8321
10.8009	1.9220	25.2730	277.6007	0.8321

TABLE 3 - TOTAL PRESSURE WINDWARD

TE ST	RUN	POINTS	PoNOM	X(cm)	Pref
47	144	108	25.0000	66.4600	14.7753
P(psi)	Υ(α	em)	Po(psi)	To(deg.K)	Pw(psi)
2.8014	0.6	9550	25.0505	293.2197	0.7610
2.8092		9571	25.0505	293.1570	0.7610
2.7256		9656	24.8695	291.3720	0.7515
2.6367	0.6	741	24.8037	290.3195	0.7467
2.6367		762	24.8284	290.2247	0.7467
2.5896		826	24.8530	289.5287	0.7324
2.5896)847	24.9024	289.3388	0.7610
2.8877)889 2022	25.0505	289.0221 288.6101	0.7610 0.7610
3.1230 4.2054		9932 9996	$25.0011 \\ 25.0505$	288.0709	0.7610
4.4408		038	25.1739	287.8488	0.7610
5.3663		059	25.1985	287.5948	0.7324
5.5389		102	25.1492	287.6583	0.7896
5.4918	_	123	25.1492	287.6900	0.7610
6.2814	0.1	187	25.2479	286.7472	0.7705
6.3546		208	25.1985	286.4503	0.7610
6.7468		229	25.1492	285.8135	0.7610
6.8410		272	25.2232	285.7976	0.7753
7.1782		357	25.2972	285.3674	0.7753
7.1361 7.617 5		378	25.2972 25.1985	285.3992 284.6337	0.7610 0.7610
7.6253		.548 .569	25.1963	284.6656	0.7610
8.1587		739	25.1985	284.3462	0.7610
8.1980		782	25.1739	284.1227	0.7610
8.6136		951	25.1245	283.7072	0.7753
8.6136	0.1	994	25.1492	283.6432	0.7610
8.9195	0.2	2164	25.1492	283.3714	0.7610
8.9117		185	25.1492	283.3873	0.7610
9.0999		2376	25.1739	282.7632	0.7753
9.1313		2397	25.1985	282.7472	0.7610
$9.2411 \\ 9.2568$		2589 2610	25.1492 25.1492	282.4268 282.4589	0.7610 0.7610
9.3509		.010 2780	25.1492	282.3307	0.7324
9.3509		822	25.1492	282.2666	0.7610
9.4343		3141	25.1492	281.9941	0.7753
9.4764	0.3	3183	25.1492	282.0743	0.7610
9.5706	0.3	502	25.1492	281.7215	0.7610
9.5627		544	25.1492	281.8017	0.7753
9.6333		842	25.1985	281.1758	0.7610
9.6333		8863	25.1985	281.1919	0.7610
9.6490 9.6304		8884 160	25.1985 25.1492	281.0474 280.8225	0.7610 0.7610
9.6804		203	25.1985	280.8707	0.7610
9.6804		224	25.1985	280.9189	0.7896
9.7274	0.4	522	25.1492	280.6940	0.7610
9.7274		543	25.1492	280.5493	0.7610
9.7431	0.4	883	25.1985	280.4690	0.7610
9.7588		925	25.1739	280.1956	0.7610
9.7745		371	25.1985	279.9865	0.7610
9.7667		414	25.1739	279.9543	0.7610
9.7902		8838 8860	25.1492 25.1492	280.0187 270.8578	0.7610 0.7610
9.7902 9.8059		860 881	$25.1492 \\ 25.1985$	279.8578 279.8578	0.7610
9.7902		306	25.1492	279.6325	0.7610
9.7745		348	25.1985	279.6003	0.7610
					- , , , , ,

TABLE 3 - TOTAL PRESSURE WINDWARD (continued, X66.4600)

TEST 47	RUN 144	POINTS 108	Po NOM 25.0000	X(cm) 66.4600	Pref 14.7753
P(psi)	Y(c	m)	Po(psi)	To(deg.K)	Pw(psi)
9.8373		6794	25.1492	279.3104	0.7610
9.8268		6815 7000	25.1656	279.4608	0.7705
9.8843		7283 7284	25.1492	279.2460	0.7610
9.8843		7304	25.1985	279.1171	0.7610
9.8843		7750 7793	25.1985	279.0527	0.7610
9.8608			25.1985 25.1985	279.1494	0.7610
9.8608		7814 3281	25.1985 25.1985	279.1010	0.7610
9.8373 9.8529		3302	25.1985 25.1985	278.7625 278.7948	0.7896
9.8295		3770	25.1492	278.6013	0.7610
9.8373		9237	25.1492	278.6013	0.7610 0.7610
9.8373		9258	25.1739	278.4884	0.7610
9.8295		9725	25.1739	278.3110	0.7610
9.8216		9 74 7	25.1985	278.2787	0.7610
9.8059		9917	25.1492	278.0205	0.7610
9.8059		9938	25.1492	278.2787	0.7324
9.8216		9959	25.1574	278.0635	0.7610
9.8138		0214	25.1492	277.5684	0.7467
9.8216		235	25.1492	277.3098	0.7610
9.8059		256	25.1492	277.5361	0.7610
9.8216		9851	25.1985	277.4068	0.7610
9.8138		894	25.1492	277.2775	0.7610
9.7902		488	25.1492	277.2452	0.7610
9.8059		531	25.1492	277.2129	0.7610
9.8059		552	25.1492	277.3098	0.7896
9.7902		2210	25.1492	277.3098	0.7610
9.7902	1.2	2253	25.1739	277.3098	0.7610
9.8059	1.2	2933	25.1985	277.3422	0.7610
9.7980	1.2	2954	25.1985	277.1805	0.7610
9.7902	1.3	3740	25.2479	277.0512	0.7610
9.8059	1.8	3782	25.1985	276.7601	0.7610
9.8059	1.3	3804	25.2479	276.8248	0.7610
9.7902	1.4	ł568	25.1492	276.6954	0.7610
9.7824	1.4	1589	25.1985	276.6631	0.7753
9.7745		312	25.1492	276.6307	0.7610
9.7745		333	25.1985	276.6631	0.7610
9.7745		354	25.1492	276.6631	0.7610
9.7745		055	25.1492	276.5660	0.7610
9.7745		6076	25.1492	276.5013	0.7610
9.7745		097	25.1492	276.5337	0.7753
9.7745		756	25.1492	276.4203	0.7610
9.7745		820	25.1492	276.3718	0.7610
9.7745		478	25.1492	276.2423	0.7610
9.7745		499	25.0998	276.3070	0.7610
9.7745		521	25.1492	276.2746	0.7610
9.7745		7542	25.1492	276.1451	0.7610
9.7745		115	25.1492	276.0804	0.7610
9.7745 9.7745		8158 8170	25.1492	276.0804	0.7610
		3179	25.1492	276.1127	0.7610
9.7745		3774 2705	25.0998	275.9832	0.7610
9.7667 9.7745		1795 1241	25.1492	275.9184	0.7753
9.7745)241)283	25.1492	276.0156	0.7610
/TU	1.9	400	25.1492	275.9184	0.7705

TABLE 4 - STATIC PRESSURE WINDWARD

TEST	RUN	POINTS	PoNOM	X(cm)	Prof
47	133	75	25.0000	51.2900	14.7794
P(psi)	Y(c	em)	Po(psi)	To(deg.K)	Pw(psi)
0.7859	0.	1524	25.0428	299.8159	0.7588
0.7900		1545	25.0920	298.8829	0.7588
0.7941		1566	25.0920	299.6917	0.7872
0.7839		1630	25.0920	298.4937	0.7730
0.7736 0.7777		1758 1779	25.0920	298.1977	0.7588
0.7736		1864	25.0920 25.0428	297.6988 297.6675	0.7588 0.7872
0.7777		885	25.0920	297.0121	0.7588
0.7695		2097	25.0428	296.4183	0.7872
0.7654		2119	25.0428	296.3870	0.7303
0.7532	0.2	2289	25.0428	296.1994	0.7303
0.7572	0.2	2310	25.0428	296.1056	0.7588
0.7545		2544	25.0592	295.5525	0.7588
0.7409		2735	25.0428	295.2289	0.7588
0.7409		2756	25.0428	295.1035	0.7588
0.7327		2947	25.0428	294.7900	0.7588
0.736B 0.7245		2968 3159	25.0920	294.7274 294.6019	0.7872
0.7245		3181	24.9937 24.9937	294.0019	0.7588 0.7588
0.7177		3457	25.0428	294.2672	0.7588
0.7149		818	25.0592	293.8380	0.7683
0.7041		179	25.0428	293.5029	0.7588
0.7081		200	25.0428	293.2986	0.7588
0.7041	0.4	540	25.0428	293.0627	0.7588
0.7041	0.4	561	24.9937	292.9998	0.7588
0.7000		583	25.0428	292.9683	0.7588
0.7021		071	25.0428	292.8109	0.7588
0.7000		6092	24.9937	292.6221	0.7588
0.7027		581	25.0428	292.4017	0.7588
0.7000 0.7041		6069 5112	24.9937 24.9937	291.8346 291.7085	0.7588
0.6959		579	25.0428	291.7003	0.7588 0.7872
0.7000		622	25.0428	291.3616	0.7588
0.7000		110	25.0428	290.9513	0.7872
0.7000		131	25.0428	291.0460	0.7588
0.6980	0.7		25.0183	290.6039	0.7588
0.6980		662	25.0183	290.5407	0.7588
0.6980	0.8	151	25.0183	290.3827	0.7588
0.6959		703	25.0428	290.2246	0.7588
0.6973		724	25.0101	290.0560	0.7588
0.6918 0.6959		213	25.0428	289.7503 289.8452	0.7588 0.7588
0.6959		234 744	24.9937 24.9937	289.6237	0.7588 0.7588
0.6959		786	24.9937	289.5287	0.7588
0.6959		275	24.9937	289.2122	0.7588
0.6959		317	24.9937	289.1488	0.7588
0.7000		742	25.0428	288.5150	0.7588
0.7000	1.0	764	24.9937	288.4516	0.7588
0.6918	1.1		24.9937	288.5150	0.7588
0.6959	1.1		24.9937	288.5467	0.7588
0.6959	1.1		25.0428	288.0234	0.7730
0.6918	1.1		25.0428	287.5312	0.7588
0.7000	1.1		24.9937	287.4041	0.7588
0.7000	1.2		25.0428	286.6730	0.7588 0.7588
0.7000	1.2	ooo	24.9937	286.8002	0.7588

TABLE 4 - STATIC PRESSURE WINDWARD (continued, X51.2900)

T EST 47	RUN 133	POINTS 75	PoNOM 25.0000	X(cm) 51.2900	Pref 14.77 04
P(psi)	YC	cm)	Po(psi)	To(deg.K)	Pw(psi)
0.6959 0.7000 0.6918 0.6959 0.7021 0.6959 0.7041 0.7061 0.7122 0.7163 0.7388 0.7736	1 1 1 1 1 1 1	2760 2824 3185 3249 3673 4204 4247 4778 5458 5479 6137 6774	25.0428 24.9937 25.0428 25.0428 24.9937 24.9937 24.9937 24.9937 24.9937 24.9937	286.5776 286.3867 285.9728 286.0046 285.9091 285.6861 285.6383 285.4949 285.3673 285.3354 285.3354	0.7588 0.7872 0.7588 0.7588 0.7588 0.7588 0.7588 0.7872 0.7588 0.7588
0.9046 1.0205 1.1869 1.2074 1.3751 1.4161 1.6084	1.' 1.' 1.' 1.'	7518 B219 B835 B856 9430 9493	25.0183 24.9937 24.9937 24.9937 24.9937 24.9937 24.9937	285.0485 284.9102 284.7294 284.7613 284.5379 284.5379 284.4740	0.7730 0.7588 0.7588 0.7588 0.7588 0.7303 0.7872

TABLE 4 - STATIC PRESSURE WINDWARD

TEST 47	RUN 132	POINTS 84	PoNOM 25.0000	X(cm) 51.9250	Pref 14.8169
P(psi)	YC	em)	Po(psi)	To(deg.K)	Pw(psi)
1.1937	0.1	503	25.2794	295.0409	0.7632
1.1815		524	25.2794	295.3542	0.7632
1.1652		545	25.2303	294.1939	0.7632
1.1733		1566	25.2303	294.3195	0.7632
1.1692		1630	25.2794	293.6286	0.7632
1.1652 1.1529		1651 1715	25.2303 25.2794	293.1884 292.9054	0.7632 0.7632
1.1570		736	25.2303	292.6537	0.7346
1.1475		843	25.2303	292.0658	0.7632
1.1326		949	25.2467	291.7610	0.7632
1.1326	0.2	2013	25.2303	291.1722	0.7346
1.1346		2034	25.2303	290.9986	0.7632
1.1204		2097	25.2057	290.5091	0.7632
1.1041		2310	25.2303	290.2563	0.7346
1.0939		2331	25.2303	290.0191	0.7632
1.0837 1.0776		2522 2544	25.2303 25.2303	289.8135 289.7028	0.7632 0.7489
1.0511		2756	25.2303	289.2755	0.7632
1.0654		777	25.2303	289.5604	0.7632
1.0307		947	25.2303	288.7686	0.7632
1.0226		968	25.2057	288.6894	0.7489
0.9982	0.3	308	25.1811	288.4199	0.7632
0.9982		3329	25.1811	288.3881	0.7632
0.9982		3351	25.1811	288.4833	0.7632
0.9534		3669 3601	25.2303	288.2296	0.7632
0.9452 0.9493		3691 3712	25.1811 25.2303	287.9757 288.1027	0.7632 0.7632
0.9126		009	25.1811	287.5948	0.7632
0.9025		052	25.1811	287.6424	0.7632
0.8732		413	25.1975	287.4042	0.7441
0.8475	0.4	880	25.2057	287.1023	0.7489
0.8475		901	25.2303	287.1500	0.7632
0.8271		368	25.1811	286.8638	0.7632
0.8230		390	25.1320	286.6730	0.7918
0.8013 0.7945		8899 367	25.1811 25.1811	$286.3230 \\ 286.2593$	$0.7537 \\ 0.7632$
0.7844		388	25.1811	286.0205	0.7632
0.7782		834	25.2303	285.7498	0.7346
0.7782		855	25.2057	285.7180	0.7489
0.7660	0.7	344	25.1811	285.3992	0.7632
0.7660	0.7	386	25.1811	285.3833	0.7632
0.7538		854	25.1811	285.2717	0.7346
0.7579		896	25.1811	284.9847	0.7632
0.7538		917	25.1811	285.0804	$0.7632 \\ 0.7632$
0.7538 0.7456		363 385	25.1811 25.1320	284.7294 284.8251	0.7632
0.7497		406	25.1811	284.6974	0.7632
0.7456		043	25.1811	284.6974	0.7632
0.7416		086	25.1811	284.6337	0.7632
0.7375	0.9	723	25.2057	284.4420	0.7489
0.7416		765	25.1811	284.3782	0.7346
0.7436		402	25.1811	284.3781	0.7489
0.7483		827	25.1811	284.1440	0.7537
0.7538 0.7619		912 933	25.1811 25.1320	283.7392 283.7391	$0.7632 \\ 0.7632$
0.6017	1.0	700	20.1020	400.1071	v.1002

TABLE 4 - STATIC PRESSURE WINDWARD (continued, X51.9250)

TEST 47	RUN POINTS 132 84	PoNOM 25.0000	X(cm) 51.9250	Pref 14.8169
P(psi)	Y(cm)	Po(psi)	To (deg.K)	Pw(psi)
0.7660	1.1464	25.1811	283.5473	0.7632
0.7660 0.8027	1.1507 1.2017	25.1811 25.1811	283.3394 283.1634	$0.7632 \\ 0.7632$
0.7904	1.2038	25.1811	283.2274	0.7632
0.7986	1.2059	25.1811	283.1634	0.7632
0.8434	1.2633	25.1811	283.0994	0.7632
0.8597	1.2654	25.1811	283.0674	0.7632
0.8597	1.2675	25.1811	283.0674	0.7632
0.8963	1.3206	25.1811	283.0034	$0.7632 \\ 0.7632$
0.9167 1.0063	1.3227 1.3801	$25.1811 \\ 25.1811$	$282.9393 \\ 282.7151$	0.7632
1.1081	1.4353	25.1811	282.5229	0.7346
1.1570	1.4396	25.1811	282.4909	0.7632
1.3362	1.4927	25.1811	282.4268	0.7632
1.3036	1.4948	25.1811	282.5229	0.7632
1.5765	1.5691	25.1320	282.2025	0.7632
1.6743	1.5755	25.1811	282.1224	0.7489
1.8087	1.6477	25.1811	281.9460	0.7632
1.8494	1.6520	25.1811	282.0903	0.7632
1.8576	1.7157	25.1320	282.0102	0.7346
1.8617	1.7242 1.7263	$25.1811 \\ 25.1811$	$281.8177 \\ 281.7856$	$0.7632 \\ 0.7632$
1.8617 1.8657	1.7943	25.1611 25.1647	281.5076	0.7632
1.8657	1.8601	25.1566	281.4809	0.7632
1.3657	1.8644	25.1811	281.3364	0.7632
1.8698	1.9217	25.1811	281.3043	0.7346
1.8678	1.9238	25.1566	281.2882	0.7489
1.8698	1.9791	25.1811	281.2079	0.7632
1.8698	1.9812	25.1320	281.1116	0.7632

TABLE 4 - STATIC PRESSURE WINDWARD

TE ST 47	RUN 131	POINTS 73	PoNOM 25.0000	X(cm) 52.5600	Pref 14.7754
P(psi)	YC	em)	Po(psi)	To(deg.K)	Pw(psi)
1.4364		1524	25.1485	296.2828	0.7568
1.4337	0.	1545	25.1485	296.1368	0.7568
1.4297	0.	1566	25.1485	295.7613	0.7568
1.4317		1588	25.0993	295.5578	0.7568
1.4297		1651	25.1485	295.1349	0.7568
1.4297		673	25.1485	295.0409	0.7568
1.4256		1694	25.0993	294.8841	0.7568
1.4215		1779	25.1239	294.2724	0.7568
1.4215		1800	25.1485	294.2253	0.7568
1.4134	_	1906	25.1239	293.6600	0.7568
1.4134		1928	25.1485	293.6286	0.7568
1.4011		2119	25.0993	293.2985	0.7426
1.4011	_	2161	25.0993	292.9683	0.7568
1.3808		2395 2437	25.0993 25.0993	292.7166 292.6222	0.7568
1.3848			25.0993 25.0993		0.7568
1.3523 1.3543		2671 2692	25.0993 25.0993	292.4017 292.1971	0.7568 0.7568
1.3360		2926	25.0993	291.9292	0.7568
1.3278		2968	25.0993	291.7085	0.7568
1.2911		3499	25.0993	291.4720	0.7426
1.2789		3521	25.0502	291.5193	0.7568
1.2463	_	1052	25.0993	291.1092	0.7568
1.2463		1073	25.0993	291.0776	0.7568
1.2015		1583	25.0993	290.6671	0.7568
1.1954		625	25.0748	290.4775	0.7568
1.1689		5135	25.0993	290.2246	0.7568
1.1526	_	5156	25.0993	290.1509	0.7568
1.1282		687	25.0993	289.8452	0.7568
1.1221		708	25.0993	289.8294	0.7568
1.1200		5239	25.0993	289.7186	0.7568
1.1159	0.6	5261	25.0993	289.6237	0.7568
1.0956	0.7	7068	25.0748	289.1964	0.7568
1.0996	0.7	7089	25.0993	289.2438	0.7568
1.1200	0.7	7896	25.0502	288.8637	0.7568
1.1221		917	25.0993	288.8003	0.7568
1.1445		3661	25.0502	288.4833	0.7568
1.1689		3703	25.0748	288.4516	0.7568
1.2137		192	25.0666	288.0710	0.7568
1.2259		234	25.0993	288.0075	0.7568
1.2219		277	25.0748	287.9599	0.7568
1.2382		340	25.0993	287.6265	0.7568
1.2300		362	25.0502	287.5312	0.7568
1.2259)383 \078	25.0993	287.6583	0.7568
1.2646		978	25.0993	287.3565	0.7568
1.2789		1999 1764	25.0502 25.0993	287.2453	0.7568 0.7568
$1.3156 \\ 1.3441$		785	25.0748	287.1182 286.9274	0.7568 0.7568
1.4949		592	25.0502	286.8320	0.7568
1.5376		656	25.0502	286.7366	0.7568
1.7638		441	25.0502	286.5457	0.7568
1.8452		463	25.0502	286.4185	0.7568
1.8208		484	25.0502	286.4503	0.7568
1.8656		206	25.0502	286.2275	0.7568
1.8656		227	25.0502	286.1957	0.7568
1.8656		249	25.0502	286.1320	0.7568

TABLE 4 - STATIC PRESSURE WINDWARD (continued, X52.5600)

TEST	RUN	POINTS	PoNOM	X(cm)	Pref
47	131	73	25.0000	52.5600	14.7754
P(psi)	YG	cm)	Po(psi)	To(deg.K)	Pw(psi)
1.8656		4034	25.0502	285.9728	0.7568
1.8636 1.8615	1.	4056 4778	25.0502 25.0502	285.9091 285.7817	0.7568 0.7568
1.8636 1.8615		4842 5564	25.0502 25.0502	285.6861 285.6861	0.7568 0.7568
1.8656 1.8656		5585 5606	25.0993 25.0502	285.4949 285.5267	0.7568 0.7568
1.8656		6371	25.0502	285.4311	0.7568
1.8656		6392	25.0502	285.4152	0.7568
1.8595		7072	25.0748	285.1920	0.7568
1.8615		7114	25.0993	285.0804	0.7568
1.8615		7752	25.0993	284.8889	0.7568
1.8588		7773	25.0666	284.6868	0.7568
1.8615		8389	25.0502	284.4421	0.7568
1.8636		8431	25.0748	284.4421	0.7568
1.8615	1.8	B983	25.0502	284.4101	0.7568
1.8615		9005	25.0502	284.2824	0.7568
1.8575		9047	25.0502	284.3143	0.7568

TABLE 4 - STATIC PRESSURE WINDWARD

TEST 47	RUN 130	POINTS 85	PoNOM 25.0000	X(cm) 53.1950	Pref 14.7518
P(psi)	Υ(α	em)	Po(psi)	To(deg.K)	Pw(psi)
1.4756	0.1	503	25.3617	298.1351	0.7214
1.4735		524	25.3127	299.7538	0.7214
1.4749		588	25.3781	295.0826	0.7214
1.4695		673	25.3617	293.6286	0.7214
1.4776		694	25.3617	293.0627	0.7214
1.4776 1.4735		715	25.3617	293.2199 292.7480	0.7214
1.4776		758 779	25.3127 25.3127	292.7400	0.7214 0.7214
1.4735		800	25.3617	292.0237	0.7214
1.4695		864	25.3127	291.4878	0.7214
1.4735		885	25.3127	291.3931	0.7214
1.4735	0.1	970	25.3127	290.7461	0.7214
1.4735	0.1	991	25.3127	290.2879	0.7214
1.4776		182	25.3127	290.0982	0.7214
1.4776		204	25.2882	289.7029	0.7214
1.4776		459	25.3127	289.3388	0.7214
1.4776		480	25.2882	289.1013	0.7214
1.4756		692 712	25.2636	288.4673	0.7214
1.4735 1.4735		2713 2947	25.2636 25.2636	288.5150 287.3247	$0.7214 \\ 0.7214$
1.4735		968	25.2636	287.6265	0.7214
1.4735		181	25.2636	287.1182	0.7214
1.4735		202	25.2636	287.1182	0.7214
1.4776		223	25.2145	287.0546	0.7214
1.4756	0.3	457	25.2145	286.6412	0.7214
1.4776		478	25.1654	286.6412	0.7214
1.4940		030	25.1654	286.3230	0.7214
1.5021		052	25.1654	286.2912	0.7214
1.5021	_	073 500	25.1654	286.1002	0.7214
1.5634 1.5634		583 625	25.1654 25.1654	285.7020 285.8454	0.7214 0.7214
1.6805	0.5		25.1654	285.1761	0.7214
1.8167	0.5		25.1654	284.7932	0.7214
1.8630	0.5		25.1654	284.4208	0.7214
2.0209	0.6		25.1654	284.4421	0.7214
2.0924	0.6	324	25.1654	284.1227	0.7214
2.3150	0.6		25.1654	283.9948	0.7214
2.4049	0.6		25.1654	283.8191	0.7214
2.4253	0.6		25.1654	283.5792	0.7214
2.7357	0.7		25.1654	283.4193	0.7214
2.7112 3.0135	0.7 0.8		25.1409 25.1163	283.4673 283.0034	0.7214 0.7214
3.0911	0.8 0.8	_	25.1163	283.1313	0.7214
3.1401	0.8		25.1654	282.5870	0.7214
3.1319	0.8		25.1654	282.9073	0.7214
3.1401	0.8		25.1654	282.5550	0.7214
2.9604	0.9		25.1163	282.7472	0.7214
2.9216	0.9		25.1409	282.6350	0.7214
2.9399	0.9		25.1654	282.3948	0.7214
2.6826	0.9		25.1163	282.2666	0.7214
2.7725	0.9		25.1654	282.3307 282.1384	0.7214
2.6499 2.4784	0.9 1.0		25.1163 25.1654	282.1364 282.0102	0.7214 0.7214
2.3803	1.0		25.1163	281.9460	0.7214
2.3967	1.0		25.1163	281.9460	0.7214
· · - ·		-	· -		

TABLE 4 - STATIC PRESSURE WINDWARD (continued, X53.1950)

T EST 47	RUN PO 130	1NTS 85 :	PoNOM 25.0000	X(cm) 53.1950	Pref 14.7518
P(psi)	Y(cm)	1	Po(psi)	To (deg.K) Pw(psi)
P(psi) 2.2415 2.2020 2.0536 2.0222 1.9161 1.9433 1.8806 1.8779 1.8738 1.8698 1.8698 1.8657 1.8616 1.8616 1.8595	Y(cm) 1.0827 1.0870 1.1528 1.1549 1.2335 1.2357 1.3164 1.3928 1.3950 1.4672 1.4714 1.4735 1.5500 1.5521 1.6245		25.1163 25.1163 25.1163 25.1163 25.1163 25.1163 25.1163 25.1163 25.1163 25.1163 25.1163 25.1163 25.1163 25.1163 25.1163 25.1163 25.1163 25.1163 25.1163 25.1163	To (deg.K 281.8177 281.7536 281.4969 281.3685 281.2722 281.3685 280.9938 281.0153 280.9189 280.7582 280.6940 280.7582 280.6297 280.4368 280.2439 280.1474	0.7214 0.7214 0.7214 0.7214 0.7214 0.6928
1.8534 1.8575 1.8575 1.8534 1.8534 1.8575 1.8575 1.8575 1.8575 1.8534 1.8575 1.8534 1.8575	1.6902 1.6944 1.6966 1.7624 1.7645 1.8261 1.8283 1.8304 1.8941 1.9436 1.9472		25.0672 25.0672 25.0918 25.1163 25.1163 25.1163 25.1163 25.1163 25.1163 25.1163 25.1163 25.1163 25.1163	279.9865 280.0831 279.9865 279.8417 279.8417 279.7612 279.7612 279.6325 279.5842 279.6003 279.6003 279.2460 279.4715	0.7214 0.7214 0.7214 0.7214 0.7214 0.7214 0.7214 0.7214 0.7214 0.7214 0.7214 0.7214

TABLE 4 - STATIC PRESSURE WINDWARD

TE ST 47	RUN 129	POINTS 80	PoNOM 25.0000	X(cm) 53.8300	Pref 14.7518
P(psi)	YC	em)	Po(psi)	To(deg.K)	Pw(psi)
2.0917	0.1	1524	25.3629	294.9255	0.7505
2.0978		1545	25.3875	295.0095	0.7505
2.0712		588	25.0684	292.9369	0.7220
2.0671		1609	25.0684	292.0553	0.7505
2.0671		1630	25.0520	292.3072	0.7410
2.0549		1694	25.0684	291.3931	0.7505
2.0570		1715	25.1175	291.0460	0.7220
2.0590		1736	25.0684	291.2669	0.7505
2.0518		1821	25.0930 25.1175	290.5723 289.9084	0.7363 0.7505
2.0508 2.0467		l 885 l 906	$25.1175 \\ 25.1175$	289.6395	0.7505 0.7363
2.0508		928	25.1175	289.6237	0.7505
2.0385		2097	25.1175	288.8320	0.7505
2.0385		2119	25.0684	289.1013	0.7505
2.0344		2140	25.0684	288.7052	0.7220
2.0202		2352	25.0684	288.5150	0.7505
2.0140		2374	25.0684	288.1027	0.7505
1.9895		2586	25.0684	287.5630	0.7220
1.9922	0.2	2607	25.0848	287.7535	0.7505
1.9486		2798	25.0684	287.1500	0.7505
1.9609	0.2	2820	25.0684	287.3088	0.7505
1.9404	0.2	2841	25.0684	286.9592	0.7363
1.8955	0.3	3032	25.0684	286.8002	0.7220
1.8894		3053	25.0684	286.7207	0.7505
1.8750		3075	25.0684	286.3867	0.7220
1.8127		3308	25.0561	286.0285	0.7505
1.6788		3839	25.0684	285.5905	0.7505
1.6502		8860	25.0520	285.3460	0.7505
1.5297		1413	25.0684	284.9208	0.7505
1.5562 1.4990		1434 1965	25.0438 25.0684	285.0165 284.4101	0.7505 0.7505
1.4908		1905 1986	25.0684	284.4101	0.7505
1.4867		5007	25.0438	284.4740	0.7505
1.5058		5560	25.0357	284.1866	0.7505
1.5112		5581	25.0193	284.1226	0.7220
1.5644		5112	25.0684	283.7711	0.7220
1.6012		133	25.0193	283.6432	0.7410
1.7667	0.6	685	25.0438	283.3394	0.7505
1.7381	0.6	707	25.0438	283.4193	0.7505
1.9241	0.7	'259	25.0438	283.2114	0.7505
1.9507		'28 0	25.0193	283.2274	0.7505
2.1080		7832	25.0193	282.9393	0.7220
2.1979		854	25.0193	282.8112	0.7505
2.1734		875	25.0438	282.8752	0.7505
2.5699		3746 3747	25.1666	282.5550	0.7505
2.5168		3767	25.1666	282.6617	0.7505
2.9337)659 1680	25.1666	282.2239 282.2986	0.7315 0.7505
2.9582 3.0114)680)487	$25.1666 \\ 25.1175$	282.2986	0.7505 0.7505
3.0073		530	25.1666	282.2025	0.7505
3.0175		551	25.1420	282.1384	0.7505
3.0236		594	25.1175	282.0102	0.7505
3.0263		615	25.1502	281.9674	0.7505
2.8315		252	25.1666	281.4006	0.7220
2.8070		273	25.1666	281.1758	0.7505

TABLE 4 - STATIC PRESSURE WINDWARD (continued, X53.8300)

TEST 47	RUN 129	POINTS 80	PoNOM 25.0000	X(om) 53.8300	Pref 14.7518
P(psi)	Y(c	om)	Po(psi)	To(deg.K)	Pw(psi)
2.8009		1295	25.1420	281.2401	0.7505
2.4595		2038	25.1666	281.1116	0.7220
2.3615		2059	25.1420	281.0956	0.7363
2.4105		2080	25.1666	281 . 1437	0.7505
2.1040		2909	25.1420	281 . 0394	0.7505
1.9813		3673	25.1666	280.9189	0.7505
1.9486		3716	25.1502	280.8118	0.7505
1.8914		4502	25.1666	280.6618	0.7505
1.9097		4523	25.1666	280.7261	0.7505
1.8914		4544	25.1175	280.6618	0.7505
1.8914		5309	25.1666	280.5333	0.7505
1.8873		5330	25.1339	280.4690	0.7410
1.8832		6052	25.1666	280.4368	0.7505
1.8853		6074	25.1175	280.2439	0.7505
1.8873		6095	25.1666	280.3404	0.7505
1.8914		6796	25.1666	280.3725	0.7505
1.8955		6817	25.1175	280.3564	0.7363
1.8914		6838	25.1175	280.3404	0.7505
1.8969		7539	25.1339	280.0080	0.7410
1.8914		7560	25.1666	280.1796	0.7220
1.8996		8240	25.1175	279.9221	0.7505
1.8982		8261	25.1502	279.8363	0.7505
1.8955		8877	25.1175	279.7291	0.7220
1.9036		9451	25.1666	279.5037	0.7220
1.9037	1.	9493	25.1175	279.4232	0.7505

TABLE 4 - STATIC PRESSURE WINDWARD

TEST 47	RUN 128	POINTS 82	PoNOM 25.0000	X(cm) 54.4650	Pref 14.7511
P(psi)	Υ(c	em)	Po(psi)	To(deg.K)	Pw(psi)
2.9581	0.1	503	25.2053	299.9541	0.7603
2.9489		566	25.2298	296.3558	0.7673
2.9530	0.1	588	25.1807	296.6059	0.7673
2.9571		609	25.1807	296.1994	0.7673
2.9327		651	25.2298	294.2253	0.7673
2.9388		673	25.2052	294.9468	0.7532
2.9206 2.9206		1694 1736	25.1807 25.2298	294.0369 293.2828	0.7673 0.7673
2.9246	_	758	25.2052	292.8424	0.7673
2.9084		821	25.1807	292.2443	0.7673
2.9043		843	25.1807	292.3073	0.7673
2.9043		864	25.2298	292.0867	0.7673
2.8881	0.1	.906	25.1315	291.4562	0.7673
2.8922	0.1	928	25.1807	291.2827	0.7673
2.8678		970	25.1807	290.7302	0.7673
2.8739		991	25.2052	290.5249	0.7673
2.8191		140	25.2298	289.9717	0.7673
$2.8273 \\ 2.7502$		2161	25.1807 25.1807	290.2089 289.5920	0.7673 0.7673
2.7340		2480 2501	25.1807	289.0854	0.7673
2.7421		522	25.2298	289.2755	0.7673
2.6772		777	25.1807	288.7686	0.7673
2.6488		2820	25.2052	288.5626	0.7673
2.5568		1117	25.1971	288.2719	0.7673
2.4541	0.3	436	25.1807	287.7059	0.7673
2.4825		457	25.2298	287.8488	0.7673
2.3770		754	25.1807	287.4995	0.7673
2.3527		3797	25.1807	287.5630	0.7673
$2.2796 \\ 2.2655$		094	25.1807 25.1807	287.2135 287.1818	0.7673 0.7673
2.1742		4115 434	25.1807	286.7684	0.7673
2.1802		455	25.1807	286.6888	0.7532
2.0079		859	25.1807	286.1638	0.7673
2.0140	0.4	880	25.1807	286.0842	0.7673
1.8781		284	25.1807	286.0046	0.7673
1.8274		326	25.1807	285.7816	0.7673
1.7185	0.5		25.1807	285.4949	0.7673
1.6469		197	25.1807	285.2717	0.7673
1.6286 1.6123		218 622	25.1807 25.1807	285.1442 284.7453	0.7673 0.7673
1.6144		643	25.1807	284.7932	0.7673
1.6144		664	25.1807	284.7932	0.7673
1.6509		323	25.1807	284.2824	0.7673
1.6671		344	25.1807	284.2185	0.7673
1.6793		365	25.1807	284.1546	0.7673
1.7604		024	25.1807	283.9735	0.7579
1.9024		767	25.1807	284.0268	0.7673
1.8943		788	25.1807	283.9469	0.7673
2.0484		468	25.1971 25.1807	283.5473	0.7673
2.1661 2.1701	0.9	893	25.1807 25.1807	283.3073 283.3553	0.7673 0.7673
2.1701		093 254	25.1315	283.0034	0.7673
2.2756		275	25.1807	283.1314	0.7673
2.4135		870	25.1807	283.0353	0.7673
2.4703	1.0	891	25.2052	282.9553	0.7673

TABLE 4 - STATIC PRESSURE WINDWARD (continued, X54.4650)

TEST 47	RUN 128	POINTS 82	PoNOM 25.0000	X(cm) 54.4650	Pref 14.7511
P(psi)	Υ()	em)	Po(psi)	To(deg.K)	Pw(pei)
2.6326 2.6711		1549 1571	25.1807 25.1807	282.7472 282.4749	0.7673 0.7673
2.8313		2144	25.1807	282.0422	0.7673
2.8212	1.3	2165	25.1807	282.1223	0.7673
2.7786		2803	25.1807	281.7856	0.7673
2.7705		2824	25.1807	281.7856	0.7673
2.7907		2845	25.1807	281.8819	0.7391
2.5393		3567	25.1807	281.6573	0.7673
2.5109		3588	25.1807	281.6894	0.7673
2.2634		4289	25.2298	281.5290	0.7673
2.2066		4311	25.1807	281.3364	0.7673
2.1985		4332	25.1315	281.5610	0.7673
2.0626		5054	25.1807	281.3685	0.7673
2.0322		5075	25.1315	281.3685	0.7673
1.9484		5776	25.1807	281.3899	0.7673
1.9186		6520 6562	25.1807 25.1807	281.2722	0.7673
1.9085 1.9024		7221	25.1807 25.1807	281.0153 280.9832	0.7673 0.7673
1.8943		7242	25.1807	281.0474	0.7673
1.8983		7263	25.1807	281.0474	0.7673
1.8902		7879	25.1807	281.0474	0.7673
1.8902		7943	25.1315	280.9510	0.7673
1.8902		7964	25.1315	280.9189	0.7673
1.8882		B622	25.1561	280.7743	0.7673
1.8781		B644	25.1807	280.7582	0.7673
1.8902		9260	25.1807	280.4047	0.7673
1.8902		9281	25.1807	280.3082	0.7673

TABLE 4 - STATIC PRESSURE WINDWARD

TEST 47	RUN 127	POINTS 84	PoNOM 25.0000	X(cm) 55.1000	Pref 14.7406
P(psi)	Υ(α	em)	Po(psi)	To(deg.K)	Pw(psi)
3.5089	0.1	1503	25.1539	299.3185	0.7463
3.5318		1524	25.1866	298.4988	0.7463
3.5291		1588	25.2030	297.6364	0.7463
3.5372		1609	25.1784	297.2774	0.7463
3.5089		1651	25.2030	296.5121	0.7463
3.5089 3.5009		l 694 l 7 58	25.1539 25.2030	296.0742 295.3542	0.7463 0.7463
3.4929		779	25.1784	295.1662	0.7603
3.4707		864	25.1784	294.0840	0.7463
3.4767		885	25.2030	294.0683	0.7463
3.4263		2076	25.1784	293.7543	0.7603
3.4283	0.2	2097	25.2030	293.7543	0.7463
3.3881		2289	25.1784	292.8110	0.7323
3.3638		2310	25.2030	292.6851	0.7463
3.3256		2522	25.1784	292.2285	0.7463
3.3155		2544	25.1539	292.0867	0.7463
$3.2792 \\ 3.2591$	_	2735 2756	25.1539 25.1784	291.7400 291.5035	0.7463 0.7463
3.2006		8096	25.2030	290.9986	0.7323
3.1865		3117	25.1539	290.9513	0.7463
3.1462		3457	25.1784	290.3511	0.7323
3.1381		3478	25.1539	290.3511	0.7463
3.1059	0.3	8818	25.1539	289.9401	0.7463
3.0898		8839	25.1539	289.8135	0.7603
3.0415		243	25.2030	289.3230	0.7463
3.0414		264	25.1539	289.2755	0.7183
2.9286		1710	25.2030	289.1488	0.7463
$2.9145 \\ 2.7633$		1731 5220	25.2030 25.2030	288.9746 288.6418	0.7463 0.7463
2.7251		241	25.2276	288.4516	0.7463
2.5820		708	25.1539	288.2613	0.7463
2.4732		730	25.2030	288.1027	0.7323
2.2837	0.6	218	25.2030	287.7853	0.7463
2.1951		5261	25.1784	287.5789	0.7463
2.0238		728	25.1784	287.2930	0.7463
1.9572		749	25.2030	287.3088	0.7463
1.8605 1.8262		195	25.1539 25.1784	286.9274 286.8002	0.7463 0.7603
1.7880		'238 '684	25.2030	286.7684	0.7463
1.7819		726	25.1784	286.7843	0.7603
1.7920		3215	25.1539	286.6412	0.7463
1.8121		236	25.1866	286.4185	0.7463
1.8672	0.8	3746	25.2030	286.2487	0.7463
1.9169	0.9	234	25.1539	285.9728	0.7463
1.9432		255	25.2030	285.8135	0.7463
1.9975		723	25.1539	285.6224	0.7183
2.0238		9765 1381	25.1539 25.1866	285.4630 285.1654	0.7463 0.7556
2.1225 2.1547)381)487	25.1866 25.1539	284.9847	0.7556 0.7463
2.1668		509	25.1539	284.7294	0.7463
2.1628		530	25.1539	284.8251	0.7463
2.3019		422	25.2030	284.5698	0.7463
2.3300	1.1	464	25.1784	284.4261	0.7603
2.4248		974	25.1539	284.3462	0.7463
2.4711	1.1	995	25.1784	284.4580	0.7463

TABLE 4 - STATIC PRESSURE WINDWARD (continued, X55.1000)

TEST 47	RUN 127	POINTS 84	Ponom 25.0000	X(cm) 55.1000	Pref 14.7406
P(pei)	Y(c	·m)	Po(psi)	To(deg.K)	Pw(psi)
2.4691		2017	25.2030	284.3782	0.7743
2.5900		2569	25.1866	284.1759	0.7370
2.6142		2590	25.2030	284.0907	0.7463
2.7203		3142	25.1703	283.7924	0.7463
2.8036		3631	25.2030	283.6432	0.7463
2.8439		3673	25.2030	283.6112	0.7463
2.8520		3695	25.2030	283.6752	0.7743
2.8721		4311	25.2030	283.6432	0.7463
2.8883	_	4332	25.2030	283.6432	0.7463
2.8842		4353	25.2030	283.5153	0.7463
2.7694		4990	25.1784	283.2593	0.7463
2.7431		5012	25.1539	283.2433	0.7463
2.6182		5606	25.1539	283.2593	0.7463
2.4893		5628	25.2030	283.0034	0.7463
2.5316	1.5	5649	25.1784	283.0834	0.7463
2.3563	1.0	6 28 6	25.2030	283.0674	0.7743
2.3159	1.0	6328	25.1784	282.9873	0.7603
2.3079	1.0	6 350	25.1539	283.0674	0.7463
2.2434	1.0	6881	25.2030	282.7792	0.7463
2.2354	1.0	6923	25.2030	282.6991	0.7463
2.1991	1.0	6944	25.2030	282.6831	0.7463
2.1507	1.7	7497	25.2030	282.5229	0.7743
2.1413	1.7	7539	25.1866	282.6617	0.7463
2.1265	1.8	3070	25.2030	282.3948	0.7463
2.1198	1.8	3113	25.2030	282.3948	0.7556
2.1104	1.8	3644	25.1539	282.3307	0.7463
2.1104		3665	25.2030	282.3628	0.7183
2.1044		3686	25.1784	282.1865	0.7603
2.1104		9175	25.2030	282.1063	0.7463

TABLE 4 - STATIC PRESSURE WINDWARD

TE ST	RUN	POINTS	PoNOM	X(cm)	Pref
47	126	8 1	25.0000	56.3700	14.7295
P(psi)	Υ((em)	Po(psi)	To(deg.K)	Pw(psi)
4.3246		1 503	24.9612	296.9911	0.7464
4.3577		1566	25.1087	295.4637	0.7464
4.3476		1588	25.1087	295.5735	0.7464
4.3435		1630	25.1087	294.4450	0.7464
4.3557	_	1651	25.1087	294.2567	0.7464
4.3476		1673	25.1087	294.0056	0.7747
4.3232 4.3273		1843	25.1087	293.6600 293.5343	0.7747 0.7747
4.3151		1864 1885	25.1087 25.0596	293.1885	0.7464
4.2786		2034	25.1087	292.5592	0.7464
4.2827		2055	25.1087	292.5592	0.7747
4.2867		2076	25.0596	292.2128	0.7464
4.2380		2374	25.1087	291.7715	0.7653
4.2177		2671	25.1087	291.2669	0.7464
4.2076		2692	25.1087	291.0934	0.7747
4.2015		2968	25.1087	290.7618	0.7747
4.2076	0.2	2990	25.1087	290.4459	0.7606
4.2096	0.3	3329	25.1087	290.0560	0.7558
4.2218	0.3	3648	25.1087	289.6237	0.7464
4.2197	0.3	3691	25.1087	289.3547	0.7747
4.1920		1158	25.1087	288.8426	0.7653
4.1812		1583	25.0596	288.4040	0.7606
4.1690		1604	25.1087	288.1027	0.7747
4.1265		5029	25.0842	288.0551	0.7606
4.1203	_	5050 -450	25.0596	287.9757	0.7747
4.0676		5453 5475	25.1087	287.6265	0.7747
4.0757		5475	25.0596 25.1087	287.5789 287.1500	0.7606 0.7464
4.0351 4.0168		5921 5942	25.0842	286.9751	0.7606
3.9580		5388	25.0923	286.5988	0.7558
3.9215	_	5792	25.0596	286.4503	0.7747
3.9053		5813	25.0842	286.3549	0.7606
3.8065		7408	25.0923	286.0153	0.7653
3.6821		7960	25.0596	285.8454	0.7464
3.6862	0.7	7981	25.0842	285.7976	0.7606
3.4609	0.8	3533	25.1087	285.2717	0.7606
3.4508	0.8	3555	25.1087	285.2398	0.7464
3.0856		128	25.1087	285.0963	0.7747
3.0368		170	25.0596	285.0485	0.7464
2.7609		744	25.1087	284.9048	0.7606
2.6108		765	25.0596	284.8571	0.7747
2.4322		296	25.0596	284.6336	0.7747
2.3673		317	25.1087 25.1087	284.5379 284.6336	0.7747 0.7464
$2.3795 \\ 2.3186$)339)402	25.1067 25.1087	284.4101	0.7747
2.2982)466	25.1087	284.3942	0.7606
2.2902		636	25.1087	283.8670	0.7747
2.2598		657	25.1087	283.9309	0.7747
2.2496		146	25.0596	283.8670	0.7747
2.2455		167	25.1087	283.8990	0.7464
2.2537		188	25.1087	283.8031	0.7747
2.3023		804	25.1087	283.6112	0.7747
2.2739	1.1	826	25.1087	283.6432	0.7747
2.3023		868	25.1087	283.4193	0.7464
2.3470	1.2	2484	25.0596	283.1954	0.7747

TABLE 4 STATIC PRESSURE WINDWARD (continued, X56.3700) TEST RUN POINTS **PoNOM** Pref X(om) 126 47 81 25.0000 56.3700 14.7295 Po(psi) P(psi) Y(cm) To (deg.K) Pw(psi) 2.3856 1.2505 25.1087 283.0994 0.7747 2.4579 1.3164 25.0923 283.0247 0.7653 282.9393 1.3758 2.5337 25.1087 0.7747 1.3801 282.8112 2.5539 25.1087 0.7464 2.5580 1.3822 25.1087 282.6511 0.7747 25.1087 2.6351 1.4438 282.53900.7747 2.6432 1.4459 25.1087 282.5550 0.7464 1.5097 0.7606 2.7244 25.1087 282.4108 2.7406 1.5118 25.1087 282.3628 0.7747 2.8055 1.5712 25.0596 282.0743 0.7747 2.8238 1.5755 25.1087 281.9941 0.7747 2.8948 1.6350 25.1087 281.9139 0.7747 25.1087 2.9232 1.6413 281.7536 0.7747 2.9313 1.6435 25.1087 281.7536 0.7747 3.0003 1.6966 0.7606 25.1087 281.5931 1.6987 3.0166 25.1087 281.5932 0.7747 1.7582 3.0531 25.1087 281.4969 0.7747 1.7645 281.4006 3.0653 25.1087 0.7747 3.0693 1.7667 281.4969 25.1087 0.7464 25.0596 281.2722 3.0653 1.8134 0.7464 3.0409 1.8198 25.1087 281.2079 0.7747 3.0531 1.8219 281.2079 25.1087 0.7747 2.9395 1.8729 25.1087 281.2401 0.7747 2.9313 0.7747 1.8771 25.1087 281.2079 2.9151 1.8792 25.1087 281.1758 0.7464 2.8177 1.9281 25.1087 281.0795 0.7747

TABLE 4 - STATIC PRESSURE WINDWARD

TEST	RUN	POINTS	PoNOM	X(cm)	Pref
47	125	86	25.0000	57.6400	14.7295
P(psi)	Y(c	em)	Po(psi)	To(deg.K)	Pw(psi)
4.3829	0.1	1 503	24.9528	301.3366	0.7389
4.3802		524	24.9364	300.4991	0.7295
4.3789		1566	24.9528	299.5362	0.7107
4.3748 4.3789		l 588 l 609	24.9528 24.9528	298.9763 299.3807	0.7389 0.7389
4.3748		651	24.9528	298.4158	0.7389
4.3708		673	24.9528	297.9067	0.7295
4.3668		758	24.9528	297.5740	0.7389
4.3654		1779	24.9364	296.8246	0.7483
4.3547		843	24.9528	296.1056	0.7389
4.3527		1864	24.9283	295.6987	0.7389
4.3506		1949	24.9283	295.2916 295.1976	0.7389
4.3547 4.3426		1970 2119	24.9528 24.9283	294.8685	0.7389 0.7389
4.3426		2140	24.9528	294.5705	0.7389
4.3385		2310	24.9528	294.1625	0.7389
4.3385		2352	24.9283	294.0841	0.7389
4.3426	0.2	2650	24.9528	293.5971	0.7389
4.3345		2692	24.9528	293.4400	0.7248
4.3224		2947	24.9037	293.0627	0.7389
4.3224		2990	24.9528	292.9369	0.7389
4.3264		3011 3287	24.9528 24.9528	292.8424 292.4017	0.7389 0.7389
4.3103 4.3123		3308	24.9283	292.2758	0.7248
4.3022		3648	24.9528	291.9607	0.7389
4.3009		3669	24.9528	291.8241	0.7389
4.2942		3988	24.9528	291.1723	0.7248
4.2942	0.4	1009	24.9528	291.0302	0.7389
4.2821		1455	24.9528	290.8881	0.7389
4.2861		1476	24.9528	290.7776	0.7389
4.2680 4.2659		1901 1922	24.9528 24.9528	290.5565 290.6039	0.7389 0.7389
4.2498		5347	24.9528	290.1772	0.7389
4.2417		390	24.9528	290.1931	0.7107
4.2256		857	24.9037	289.9401	0.7107
4.2256	0.5	878	24.9528	289.9243	0.7389
4.2095		324	24.9528	289.5287	0.7389
4.2095		367	24.9528	289.4021	0.7389
4.2014		388	24.9528	289.4655	0.7389
4.1705		5919 '493	24.9364 24.9528	289.0432 288.9587	0.7389 0.7389
4.1369 4.1288		'535	24.9528	288.9904	0.7389
4.1167		' 556	24.9528	289.0221	0.7389
4.0885		3108	24.9528	288.7369	0.7389
4.0844	0.8	3130	24.9528	288.5784	0.7389
4.0844		1151	24.9528	288.6736	0.7389
4.0420		703	24.9528	288.2772	0.7389
4.0360		1746 1255	24.9037	288.1661	0.7389
3.9997)255)277	24.9528 24.9528	287.9440 287.8170	0.7389 0.7389
3.9876 3.9876		319	24.9528 24.9528	287.7377	0.7389
3.9876		340	24.9364	287.5207	0.7483
3.9755		447	24.9528	287.1817	0.7248
3.9715		489	24.9528	287.1182	0.7389
3.9150	1.0	0063	24.9528	287.0228	0.7389

(continued, X57.6400) TABLE 4 STATIC PRESSURE VINDWARD RUN POINTS Pref TEST **PoNOM** X(cm) 14.7295 25.0000 57.6400 47 125 86 P(psi) Y(cm) Po(psi) To(deg.K) Pw(psi) 0.7389 3.9211 1.0084 24.9528 286.9751 0.7389 1.0764 24.9528 3.8303 286.5776 24.9528 3.8384 1.0785 286.6094 0.7389 286.4821 24.9528 3.7537 1.1443 0.7389 24.9528 3.7255 1.1507 286.3548 0.7248 3.5439 1.2208 24.9528 286.1957 0.7389 1.2229 24.9528 286.0683 3.4754 0.7389 3.4875 1.2250 24.9528 286.1002 0.7389 1.2994 24.9528 3.0296 286.1002 0.7389 2.9188 1.3036 24.9037 286.0046 0.7389 2.5638 1.3780 24.9528 286.0046 0.7389 24.9528 285.8613 2.4670 1.3822 0.7389 2.3178 1.4566 24.9528 285.6224 0.7389 1.4587 24.9528 285.6861 2.3259 0.7389 2.3016 1.5330 25.0019 285.3992 0.7389 25.0019 2.3057 1.5351 285.3992 0.7389 2.3057 1.5373 25.0019 285.3036 0.7389 24.9528 285.1122 2.3460 1.6052 0.7389 0.7389 2.3420 1.6074 24.9528 285.1442 2.3500 1.6116 24.9528 285.0165 0.7671 25.0019 284.9528 2.3904 0.7389 1.6753 2.4025 1.6796 24.9528 284.8571 0.7389 24.9528 1.7412 284.6974 0.7107 2.4267 24.9528 2.4509 1.7454 284.4740 0.7389 2.4428 1.7475 24.9528 284.6656 0.7389 24.9037 2.4791 1.8070 284.5379 0.7107 2.4932 1.8134 24.9528 284.3462 0.7389 24.9528 284.3782 2.5194 1.8665 0.7107 2.5416 1.8729 24.9528 284.2984 0.7389

24.9528

24.9528

284.1226

283.9629

0.7107

0.7389

2.5759

2.5880

1.9260

1.9281

TABLE 4 - STATIC PRESSURE WINDWARD

TEST	RUN	POINTS	PoNOM	X(cm)	Pref
47	122	68	25.0000	58.9100	14.7118
P(psi)	YC	em)	Po(psi)	To(deg.K)	Pw(psi)
4.2867	0.1	1439	25.3230	291.1880 ~	0.8148
4.3021	0.1	460	25.3393	290.3824	0.8007
4.2907	0.1	1609	25.3230	288.8002	0.8148
4.2927		630	25.2739	288.8637	0.8289
4.2847		1715	25.2739	287.9651	0.8195
4.2807		1779	25.2903	286.8320	0.8195
4.2585 4.2525		1970 1991	25.2739 25.2739	286.0365	0.8148
4.2283		2161	25.2739	285.7498 285.4630	0.8007 0.8289
4.2263		2182	25.2739	285.3195	0.8148
4.2054		2374	25.2575	284.7613	0.8289
4.1920		544	25.2248	283.9629	0.8289
4.1920		2565	25.2248	284.3143	0.8289
4.1880	0.2	2586	25.2248	283.9948	0.8289
4.1772	0.2	2777	25.2412	283.3553	0.8195
4.1706		2968	25.2248	282.9607	0.8101
4.1638		308	25.2248	282.8112	0.8289
4.1659		3329	25.2248	282.7472	0.8007
4.1618		1648	25.2248	282.1544	0.8289
4.1598 4.1558		8669	25.2739	282.2666	0.8007
4.1437		1009 1349	25.2412 25.2003	281.8284 281.2401	0.8289
4.1397		370	25.2248	281.3043	0.8148 0.8289
4.1343		710	25.2248	280.8011	0.8195
4.1235		050	25.2248	280.7743	0.8148
4.1235		071	25.2248	280.6940	0.8007
4.1074		390	25.2248	280.1474	0.8289
4.1054	0.5	411	25.2003	280.2760	0.8148
4.0913		857	25.2248	279.8578	0.8007
4.0913		878	25.2003	279.9061	0.8148
4.0631		303	25.1757	279.6325	0.8007
4.0691		324	25.2003	279.6486	0.8007
4.0470 4.0470		749 770	25.1757 25.1757	279.1816 279.3104	0.8289 0.8007
4.0470		792	25.2248	279.3104	0.8289
4.0309		216	25.2248	279.0527	0.8289
4.0289		238	25.2248	279.1011	0.8007
4.0040		832	25.2248	278.8270	0.8101
3.9785	0.8	470	25.1757	278.7625	0.8007
3.9765	0.8		25.2003	278.7303	0.8148
3.9503		086	25.2248	278.2787	0.8289
3.9503		107	25.1757	278.3271	0.8289
3.9181		723	25.1757	278.1604	0.8195
3.8959		211	25.2003 25.2003	277.6007 277.7864	0.8007
3.9010 3.8858	_	232 445	25.2003 25.1757	277.2344	$0.8219 \\ 0.8195$
3.8576		146	25.1757	277.0512	0.8007
3.8617		167	25.1757	277.1644	0.8007
3.8254		78 3	25.1757	277.0189	0.8007
3.8234		804	25.1757	277.1482	0.8148
3.7945		484	25.1921	276.7925	0.8195
3.7610	1.3	142	25.1757	276.7278	0.8289
3.7670		164	25.1757	276.7440	0.8148
3.7267		950	25.1757	276.7278	0.8148
3.7328	1.3	971	25.2248	276.7278	0.8007

TABLE 4 - STATIC PRESSURE WINDWARD (continued, X58.9100)

TEST 47	RUN 122	POI NTS 68	PoNOM 25.0000	X(cm) 58.9100	Pref 14.7118
P(psi)	YC	cm)	Po(psi)	To(deg.K)	Pw(psi)
3.6804	1.4	1735	25.1757	276.5013	0.8289
3.6844	1.4	1757	25.1757	276.4365	0.8289
3.6079	1.5	5500	25.1757	276.5013	0.8289
3.6059	1.5	5521	25.1757	276.4366	0.8007
3.3783	1.6	6 28 6	25.1511	276.4365	0.8148
3.3379	1.6	6307	25.1757	276.4365	0.8289
2.8478	1.6	6 987	25.1593	276.4257	0.8289
2.4094	1.7	7688	25.1757	276.1775	0.8148
2.3751	1.7	7709	25.1757	276.1127	0.8289
2.2663	1.8	3389	25.1757	276.1775	0.8007
2.2543	1.8	3410	25.1757	276.1451	0.8289
2.2603	1.9	9005	25.1511	276.0965	0.8148
2.2663	1.9	9026	25.1757	275.8860	0.8007

TABLE 4 - STATIC PRESSURE WINDWARD

TEST 47	RUN 121	POINTS 71	PoNOM 25.0000	X(cm) 60.1800	Pref 14.7062
P(psi)	Y(c	m)	Po(psi)	To(deg.K)	Pw(psi)
3.8787	0.1	397	25.2746	293.3457	0.8501
3.8907	0.1	418	25.2746	292.8110	0.8782
3.8626	0.1	439	25.2255	294.3822	0.8501
3.8907		482	25.2746	291.9764	0.8641
3.8746		566	25.2255	290.8092	0.8501
3.8646		651	25.2255	289.8294	0.8501
3.8666		673	25.2746	289.3388	0.8501
3.8304		.821	25.2255	288.5784	0.8501
3.8384		843	25.2255	288.4991	0.8501
3.8002		.991	25.2010	287.8329	0.8641
3.8022		2013	25.2255	287.9123	0.8501
$3.7801 \\ 3.7821$		182 204	25.2255	287.1658	0.8501
3.7720		374	25.2255 25.1764	286.9592 286.3549	0.8782 0.8501
3.7659		565	25.2010	285.9568	0.8501
3.7659		756	25.1518	285.4471	0.8361
3.7606		075	25.1764	284.9421	0.8501
3.7599		393	25.1764	284.7134	0.8501
3.7559		733	25.1764	284.3303	0.8501
3.7552		094	25.1764	283.3660	0.8501
3.7458		391	25.1764	283.0034	0.8501
3.7478		413	25.1764	283.1474	0.8501
3.7364	0.4	731	25.1436	282.5123	0.8595
3.7317	0.5	050	25.1518	282.1865	0.8501
3.7297	0.5	071	25.1764	282.2025	0.8501
3.7217	0.5	347	25.1764	281.9460	0.8501
3.7257		368	25.1764	281.9460	0.8501
3.7176		708	25.1764	281.5076	0.8501
3.7156		006	25.1764	281.1277	0.8501
3.7136		027	25.1764	281.0153	0.8501
3.7056		346	25.1272	280.8867	0.8501
3.7056		367	25.1764	280.9510	0.8782
3.6975 3.6975		749 770	25.1764 25.1436	280.5011	0.8782
3.6895		216	25.1600	280.5119 280.3189	0.8501 0.8501
3.6747		684	25.1436	279.9115	0.8501
3.6653		130	25.1518	279.6164	0.8501
3.6492		618	25.1272	279.2299	0.8501
3.6492		639	25.1272	279.2782	0.8501
3.6331		043	25.1272	279.0204	0.8501
3.6331	0.9		25.1272	278.8915	0.8641
3.6109	0.9	510	25.1764	278.6497	0.8501
3.6089	0.9	532	25.1272	278.6336	0.8501
3.5848	0.9	956	25.1272	278.3593	0.8501
3.5566		445	25.1272	278.2465	0.8501
3.5204		976	25.1272	278.2465	0.8501
3.5204	1.0		25.1272	278.0528	0.8501
3.4841	1.1		25.1272	277.9129	0.8501
3.4358		868	25.1272	277.4714	0.8501
3.4439		889 441	25.4518	277.6007	0.8361
3.3915	1.2		25.1272	277.3583	0.8501
$3.3956 \\ 3.3432$	$\frac{1.2}{1.2}$		25.1272 25.1272	277.2775 277.1482	0.8782 0.8501
3.3432 3.3453	1.3		25.1272 25.1272	277.2614	0.8501 0.8641
3.2909	1.3		25.1436	277.2129	0.8501
3.2707	1.3	O FO	20.1700	211.6127	A . DOA I

PRESSURE WINDWARD (continued, X60.1800) TABLE 4 STATIC TEST RUN POINTS PoNOM X(cm) Pref 14.7062 47 121 71 25.0000 60.1800 P(psi) Y(cm) Po(psi) To (deg.K) Pw(psi) 3.2406 1.4141 25.1518 277.0836 0.8501 276.9219 25.1436 3.1876 1.4672 0.8501 276.8357 3.1352 1.5245 25.1272 0.8501 3.0883 1.5734 25.1436 276.7062 0.8501 3.0413 1.6265 25.1272 276.6631 0.8501 3.0333 1.6286 25.1272 276.6954 0.8501 25.1108 276.5552 2.9849 1.6774 0.8501 1.7369 2.9105 25.1272 276.3718 0.8361 25.1272 2.9205 1.7390 276.4041 0.8501 2.8521 1.7943 25.0781 276.1451 0.8782 1.7964 25.1272 276.2099 2.8581 0.8501 2.7977 276.0804 0.8501 1.8537 25.1272 25.1272 276.1775 0.8782 2.7514 1.9005 25.1272 2.7495 1.9026 276.1613 0.8501 2.6991 1.9493 25.1272 276.1127 0.8501

25.1518

276.0804

0.8641

2.6992

1.9514

TABLE 4 - STATIC PRESSURE WINDWARD

TEST 47	RUN 120	POINTS 79	PoNOM 25.0000	X(cm) 61.4500	Pref 14.7000
P(psi)	Υ(α	em)	Po(psi)	To(deg.K)	Pw(psi)
3.3723	0.1	1418	25.2549	296.3557	0.8832
3.3642		1439	25.2549	297.0121	0.8553
3.3702		460	25.2549	295.1819	0.8692
3.3522		1566	25.2059	293.8170	0.8553
$3.3602 \\ 3.3361$		l 588 l 651	25.2059 25.2059	294.0683 292.9578	0.8553 0.8832
3.3121		736	25.2059	292.1655	0.8692
3.3081		758	25.2059	291.6770	0.8553
3.2960		821	25.2059	291.0776	0.8553
3.2960	0.1	843	25.2059	291.5193	0.8832
3.2840		906	25.1814	290.6987	0.8692
3.2760		928	25.2059	290.4459	0.8832
3.2760		970	25.2059	289.7819	0.8553
3.2680		1991	25.1814	289.5446	0.8832
$3.2579 \\ 3.2639$		2182 2204	25.2059 25.1568	288.9428 289.1488	0.8832 0.8553
3.2546		2374	25.2059	288.3670	0.8646
3.2412		565	25.1568	287.7642	0.8739
3.2298		2777	25.1568	287.2453	0.8832
3.2278	0.2	798	25.1568	287.1182	0.8553
3.2218		968	25.1814	286.7525	0.8832
3.2198		990	25.2059	286.6094	0.8553
3.2118		3181	25.1568	286.1002	0.8553
3.2138		3202	25.1568	286.1797	0.8553 0.8274
3.1998 3.2038		1372 1393	25.1568 25.1568	285.8454 285.9409	0.8553
3.2038		3414	25.1568	285.6542	0.8832
3.1904		606	25.1732	285.1867	0.8646
3.1757	0.3	818	25.1568	284.9527	0.8553
3.1717		8839	25.1077	284.7613	0.8832
3.1556		158	25.1077	284.5698	0.8553
3.1616		179	25.1322	284.5379	0.8692
3.1396 3.1396		!476 :498	25.1568 25.1568	283.9948 283.9789	0.8832 0.8553
3.1195		837	25.1568	283.8351	0.8692
3.0894		305	25.1322	283.4513	0.8692
3.0874		326	25.1568	283.4193	0.8553
3.0634	0.5	772	25.1077	283.2274	0.8832
3.0674		793	25.1077	283.2274	0.8553
3.0273	0.6		25.1241	283.0674	0.8739
3.0005 2.9771		707 174	25.1404	282.7578 282.5870	0.8739
2.9390		662	25.1322 25.1568	282.2506	0.8692 0.8832
2.9390		684	25.1568	282.0422	0.8553
2.9069		108	25.1077	281.8337	0.8553
2.8748	0.8	746	25.1322	281.6734	0.8692
2.8327		340	25.1322	281 . 4969	0.8692
2.7886		893	25.1077	281.2079	0.8692
2.7825		914	25.1568	281.1116	0.8832
2.7798 2.7785		978 999	25.1404 25.1077	280.7475 280.8761	0.8739 0.8646
2.7625	_	360	25.1077 25.1077	280.5333	0.8646 0.8832
2.7545	1.0		25.1077	280.5333	0.8553
2.7224	1.0		25.1568	280.4047	0.8832
2.7264	1.0	912	25.1568	280.3725	0.8553

TABLE 4 - STATIC PRESSURE WINDWARD (continued, X61.4500)

TEST 47	RUN 120	POINTS 79	Ponom 25.0000	X(cm) 61.4500	Pref 14.7000
P(psi)	YG	cm)	Po(psi)	To(deg.K)	Pw(pei)
2.6863		1464	25.1568	280.2117	0.8553
2.6943		1486	25.1568	280.2117	0.8832
2.6421		2123	25.1077	280.0509	0.8692
2.5940		2803	25.1568	280.0026	0.8692
2.5479		3482	25.1322	279.8256	0.8553
2.5579		3503	25.1077	279.8900	0.8553
2.4977	1.	4162	25.1077	279.6325	0.8553
2.5057	1.	4183	25.1077	279.6003	0.8832
2.4496	1.	4820	25.1322	279.3266	0.8553
2.4054	1.	5458	25.1077	279.4071	0.8274
2.4075	1.	5479	25.1077	279.3588	0.8553
2.3533	1.	6095	25.1077	279.2782	0.8553
2.3573	1.	6116	25.1077	279.1816	0.8553
2.3573	1.	6137	25.1077	279.2138	0.8553
2.3132	1.	6732	25.1322	279.1011	0.8832
2.2650	1.	7305	25.1077	279.2783	0.8832
2.2269	1.	7879	25.1077	279.0688	0.8692
2.1808	1.	8431	25.1077	278.8808	0.8832
2.1407	1.	8899	25.1077	278.6981	0.8692
2.1407	1.	8920	25.1077	278.6336	0.8832
2.1066	1.	9387	25.1322	278.2949	0.8832
2.1046	1.	9408	25.1077	278.3755	0.8553
2.0705	1.	9791	25.1322	278.3271	0.8553
2.0644	1.	9812	25.1568	278.2465	0.8553

TABLE 4 - STATIC PRESSURE WINDWARD

TEST	RUN	POINTS	Ponom	X(cm)	Pref
47	119	71	25.0000	62.7200	14.6973
P(psi)	Y(c	em)	Po(psi)	To(deg.K)	Pw(psi)
2.2774	0.1	1439	25.1347	292.1078	0.8530
2.2413	0.1	1460	24.9219	292.3388	0.8158
2.2834	0.1	1524	25.1675	290.8881	0.8437
2.2774	0.1	1609	25.2166	290.3827	0.8437
2.2774		l 6 30	25.2166	290.5091	0.8437
2.2654		694	25.1675	289.8768	0.8437
2.2734		1715	25.1675	289.9717	0.8717
2.2654		1779	25.1675	289.1171	0.8717
2.2674		1800	25.1675	289.4022	0.8577
2.2681		1970	25.1675	288.8214	0.8624
2.2694		2161	25.1675	288.4674	0.8577
2.2694		2182	25.1675	288.4833	0.8717
2.2667 2.2681		2352 2650	$25.1675 \\ 25.1511$	287.7959 287.3830	0.8624 0.8624
2.2674		2947	25.1675	287.0387	0.8717
2.2654		2968	25.1184	286.9592	0.8717
2.2707		328 7	25.1348	286.7685	0.8624
2.2654		3606	25.1184	286.2275	0.8717
2.2674		3627	25.1430	286.5457	0.8577
2.2641		3945	25.1511	286.0684	0.8624
2.2574		285	25.1184	285.8135	0.8437
2.2614		1306	25.1675	285.7498	0.8437
2.2574	0.4	1710	25.1184	285.3354	0.8717
2.2574	0.5	5135	25.1184	285.0165	0.8437
2.2534	0.5	5156	25.1430	285.0645	0.8437
2.2454	0.5	5581	25.1184	284.7932	0.8717
2.2454		602	25.1675	284.8571	0.8437
2.2454		623	25.1184	284.9208	0.8158
2.2413		048	25.1184	284.6974	0.8717
2.2434		069	25.0938	284.3942	0.8437
2.2333		494	25.1184	283.9629	0.8577
2.2333 2.2293		5515 5940	25.1184 25.1184	283.8990 283.5473	0.8717 0.8624
2.2213		'386	25.110 4 25.1184	283.3553	0.8437
2.2173		'408	25.1184	283.2593	0.8717
2.2073		832	25.1184	282.9233	0.8577
2.2053		854	25.1184	282.9073	0.8437
2.1933		3427	25.1184	282.8326	0.8624
2.1746		0022	25.1184	282.4695	0.8437
2.1252	1.0	211	25.1348	282.3414	0.8530
2.0971	1.0	700	25.1184	281.9460	0.8717
2.1011	1.0	721	25.1184	282.1384	0.8577
2.0851		891	25.0692	281.7375	0.8577
2.0881		912	25.1061	281.8257	0.8507
2.0771		082	25.1184	281.6252	0.8717
2.0798		103	25.1020	281.5397	0.8530
2.0571		571	25.1020	281.1759	0.8530
2.0290		938 9718	25.1020 25.1184	281.0474 280.8439	0.8530 0.8530
1.9997 1.9676		8718 8334	25.1184 25.1184		0.8530 0.8624
1.9369	_	971	25.1184 25.1184	280.5226 280.3404	0.8577
1.9409	_	992	25.1184 25.1184	280.2117	0.8717
1.9008		587	25.0692	279.9543	0.8437
1.9008		608	25.0938	279.9221	0.8717
1.8634		288	25.1184	279.7720	0.8530

TABLE 4 - STATIC PRESSURE WINDWARD (continued, X62.7200)

TEST	RUN	POINTS	Ponom	X(cm)	Pref
47	119	71	25.0000	62.7200	14.6973
P(psi)	YC	em)	Po(psi)	To(deg.K)	Pw(psi)
1.8347		5904	25.1184	279.6486	0.8577
1.8287	1.	5925	25.1184	279.6968	0.8437
1.7986		6520	25.1184	279.5359	0.8717
1.7926	1.6541		25.0692 25.1184	279.6325	0.8437
1.7646	1.7072			279.2138	0.8437
1.7666	1.7093		25.0938	279.2943	0.8438
1.7325	1.7603		25.1184	279.1171	0.8717
1.7365		7624	25.1184	279.1494	0.8717
1.7085		8134	25.1184	278.9237	0.8437
1.7025		8155	25.1184	278.9882	0.8717
1.6751		8665	25.1184	278.9882	0.8530
1.6484	1.	9090 9111	25.1184 25.0692	278.7948 278.7625	0.8437 0.8437
1.6524	1.	9132 9578	25.0692 25.1184	278.7948 278.6658	0.8437 0.8624
1.6003		9918	25.1184	278.6336	0.8437

TABLE 4 - STATIC PRESSURE WINDWARD

TEST	RUN	POINTS	PoNOM	X(cm)	Pref
47	118	79	25.0000	63.9900	14.6944
P(psi)	Υ(α	em)	Po(psi)	To(deg.K)	Pw(psi)
1.7160	0.1	1439	24.9016	298.6260	0.8673
1.7334		1460	24.9508	297.3087	0.8530
1.7232		1588	24.9754	296.6527	0.8673
$1.7211 \\ 1.7252$		l 694 l 779	24.9426 24.9262	296.0951 295.6987	0.8673 0.8958
1.7293		800	24.9262	295.6987	0.8673
1.7211	_	864	24.9754	295.1349	0.8673
1.7293		885	24.9262	294.9782	0.8673
1.7293	0.2	2076	24.9754	294.6332	0.8673
1.7293		2097	24.9262	294.7274	0.8958
1.7211		2267	24.9754	294.2567	0.8673
1.7252	_	2289	24.9754	294.2253 293.8485	0.8388 0.8473
1.7211 1.7252		2459 2480	$24.9754 \\ 24.9262$	293.7857	0.8673 0.8958
1.7279	_	2692	24.9754	293.3457	0.8673
1.7334		2926	24.9754	292.7323	0.8816
1.7293	0.3	3117	24.9754	292.4332	0.8673
1.7252		3138	24.9754	292.3388	0.8673
1.7252		3457	24.9426	292.0868	0.8673
1.7238		3818	24.9590	291.4773	0.8673
$1.7252 \\ 1.7211$		3839 1179	$24.9262 \\ 24.9754$	291.5508 290.4301	0.8673 0.8816
1.7201		1200	24.9508	290.6671	0.8602
1.7211		1519	24.9754	290.0824	0.8673
1.7211	0.4	1837	24.9754	289.7503	0.8673
1.7170		1859	24.9754	289.6237	0.8673
1.7211		1880 - 100	24.9754	289.7819	0.8673
1.7170 1.7129	_	5199 5560	24.9754 24.9590	289.2597 288.9270	0.8530 0.8768
1.7088		5006	24.9754	288.8320	0.8673
1.7068		5027	24.9754	288.7052	0.8530
1.7006	0.6	5473	24.9754	288.5150	0.8388
1.7027		5494	24.9754	288.5943	0.8816
1.6966		6940 6060	24.9508	288.0710	0.8673
1.6925 1.6898		5962 7429	24.9754 24.9754	288.1661 287.8488	0.8673 0.8673
1.6823		7875	24.9754	287.5789	0.8673
1.6843		7896	24.9754	287.6583	0.8673
1.6802	0.8	3470	24.9754	287.3088	0.8673
1.6741		3491	24.9754	287.3089	0.8958
1.6652		064	24.9754	286.9804	0.8768
1.6474 1.6536		9659 9680	24.9754 24.9508	286.8638 286.8479	0.8673 0.8673
1.6413		254	24.950B	286.4344	0.8673
1.6392		275	24.9754	286.7048	0.8673
1.6351		530	24.9754	285.6542	0.8673
1.6331)55 <u>1</u>	25.0081	286.0842	0.8578
1.6331		572	24.9754	285.9409	0.8673
1.6209		146	24.9508 25.0245	285.2717 285.2398	0.8673 0.8673
1.6229 1.6147		167 634	25.0245 25.0000	285.1282	0.8673
1.6147		656	24.9754	285.0804	0.8673
1.5969		2165	24.9754	284.9953	0,8578
1.5792		718	24.9918	284.8570	0.8673
1.5655	1.3	3249	24.9754	284 . 5485	0.8673

TABLE 4 - STATIC PRESSURE WINDWARD (continued, X63.9900)

TEST 47	RUN 118	POINTS 79	PoNOM 25.0000	X(cm) 63.9900	Pref 14.6944
P(psi)	Y(cm	1)	Po(psi)	To(deg.K)	Pw(psi)
1.5513	1.37		24.9754	284.4900	0.8673
1.5492 1.5308	1.38 1.43		25.0245 25.0000	284.5379 284.2345	0.8673 0.8673
1.5369 1.5109	1.43 1.48		24.9754 25.0081	284.2824 283.9416	0.8673 0.8673
1.4919	1.53	51	24.9754	283.8457	0.8673
$1.4673 \\ 1.4632$	1.5925 1.5946		24.9754 25.0245	283.4513 283.5153	0.8673 0.8673
1.4673	1.5967 1.6541		25.0245 25.0245	283.6752 283.3073	0.8388 0.8673
1.4386	1.65	62	24.9754	283.3074	0.8673
1.4141 1.4141	1.70 1.70		25.0245 24.9754	282.9713 283.2274	0.8673 0.8673
$1.4141 \\ 1.3895$	1.71		24.9754 25.0081	282.9713 283.0460	0.8958 0.8673
1.3649	1.81	98	24.9754	283.0674	0.8673
1.3649 1.3486	1.82 1.86		$25.0000 \\ 25.0245$	283.0033 282.7151	0.8958 0.8673
1.3513 1.3363	1.8686 1.9153		25.0081 25.0000	282.6724 282.5870	0.8768 0.8673
1.3363	1.91	75	24.9754	282.5870	0.8673
1.3158 1.3199	1.95 1.95		$24.9754 \\ 25.0000$	282.3628 282.3948	0.8673 0.8530
1.3158	1.99	18	25.0245	282.1063	0.8673

TABLE 5 - TOTAL PRESSURE LEEWARD

	ST RU 7 15		POINTS 82		PoNOM 5.0000	X(cm) 53.8300		ref 1.7750
P(psi)		Y(cı	m)	P	o(psi)	To(deg.K)	Pw(psi)
1.1088	1	0.0	116	24	4.2782	298.5715		0.6822
1.1088		0.0			4.2782	298.7273		0.7011
1.0926		0.0			4.4338	297.9639		0.6822
1.0926		0.02			4.6058	297.8547		0.6822
1.2708		0.04			4.9008	297.7612 297.6052		0.7106 0.7106
1.5461 1.4327		0.04 0.04			5.0974 4.9991	297.6675		0.7106
2.0266		0.07			5.1957	297.4700		0.7295
2.5179		0.10			5.2940	296.6371		0.7390
2.4936		0.10			5.2940	296.6371		0.7248
2.8256		0.12		2	5.3432	296.0117		0.7390
2.7284		0.1		2	5.3432	296.1994		0.7106
2.9957		0.1			5.3186	295.3699		0.7390
3.0200		0.15			5.3432	295.3856		0.7390
3.2467		0.19			5.3186	295.0722		0.7248
3.3115		0.19			5.3432	294.7587 294.4607		0.7390 0.7248
3.4734		0.23 0.23			5.3432 5.3678	293.9428		0.7106
3.6192 3.7488		$0.20 \\ 0.27$			5.3432	293.8485		0.7106
3.8460		0.27	_		5.3678	293.8014		0.7248
4.0835		0.3			5.3596	293.4714		0.7295
4.3103		0.3			5.3432	293.0103		0.7295
4.6396		0.4	194	2	5.3432	292.7323		0.7248
4.6882		0.42			5.3432	292.4648		0.7106
4.9797		0.47			5.3678	292.2915		0.7248
4.9959		9.47			5.3432	292.2443		0.7390
5.2713		0.52			5.2940	292.0237		0.7106 0.7390
5.3280		0 . 52 0 . 58			5.3186 5.2940	291.9292 291.5508		0.7390
5.6438 5.6681		0.58 0.58			5.3186	291.5508		0.7248
5.9839		0.64			5.3432	291.3300		0.7390
6.0325		0.64			5.3186	291.1565		0.7248
6.3888		0.76	919	28	5.3432	290.9197		0.7106
6.3969		0.76	940		5.3186	290.8408		0.7390
6.7397		0.76			5.3104	290.4459		0.7295
7.0853		0.82			5.2940	290.1298		0.7248
7.0691		0.82			5.2940	290.1614 289.7819		0.7390 0.7106
7.4254 7.4416		0.87 0.87			5.2940 5.2940	289.6870		0.7390
7.4416		0 . B			5.2940	289.5287		0.7390
7.7655		Ø . 93			5.2940	289.3705		0.7106
7.7331		0.93			5.2940	289.5604		0.7106
7.7655		0.93			5.2940	289.4655		0.7106
8.0570		0.99	929	25	5.3432	289.2122		0.7390
8.0732		0.99			5.3432	289.0221		0.7390
8.0894		0.99			5.3432	289.1488		0.7390
8.2676		1.02			5.2940	288.7686		0.7390 0.7248
8.2757		1.03 1.03			5.2940 5.2940	288.7686 288.3565		0.7248 0.7106
8.3000 8.3108		1.03			5.2940	288.2084		0.7201
8.3324		1.03			5.2940	288.1978		0.7106
8.3162		1.04			5.2940	288.1978		0.7390
8.3324		1.04			5.2940	288.0709		0.7390
8.3405		1.04			5.2940	288.0710		0.7248
8.3972		1.0	588	25	5.2448	287.8170		0.7106

TABLE 5 - TOTAL PRESSURE LEEWARD (continued, X53.8300)

TEST 47	RUN 155	POINTS 82	Ponom 25.0000	X(cm) 53.8300	Prof 14.7750
P(psi)	YG	cm)	Po(psi)	To(deg.K)	Pw(psi)
8.3972		0609	25.2203	287.6583	0.7390
8.5753		1055	25.2940	287.5312	0.7390
8.5915		1097	25.2940	287.4518	0.7248
8.8345		1905	25.3186	287.3565	0.7390
8.8183		1926	25.2940	287.4041	0.7390
8.9316		2712	25.3432	287.0228	0.7106
8.9316		2733	25.3432	286.9910	0.7106
8.9316		2754	25.3432	286.9274	0.7390
8.9478	_	3519	25.2940	286.7367	0.7390
8.9640		3540	25.2448	286.8320	0.7106
8.9640		3561	25.2940	286.7048	0.7390
8.9802		4283	25.2940	286.6094	0.7106
8.9802		4305	25.3432	286.6730	0.7390
8.9640		4326	25.2940	286.6094	0.7106
8.9802		5091	25.3268	286.3972	0.7295
8.9802		5855	25.3186	286.1002	0.7248
8.9802		5876	25.3432	286.0365	0.7390
8.9302		6535	25.2448	286.0046	0.7106
8.9478		6556	25.2448	285.8772	0.7106
8.9802		6577	25.2448	285.9091	0.7390
8.9640		7215	25.2940	285.8772	0.7106
8.9478	1.	72 36	25.2448	285.8135	0.7106
8.9640	1.	7257	25.2448	285.7817	0.7106
8.9640	_	78 31	25.2940	285.4630	0.7390
8.9640	1.	7852	25.2940	285.5108	0.7106
8.9802	1.	8404	25.2940	285.2717	0.7390
8.9559	1.	8425	25.2940	285.2558	0.7248

TABLE 5 - TOTAL PRESSURE LEEWARD

TEST	RUN	POINTS	PoNOM	X(cm)	Pref
47	154	79	25.0000	55.1000	14.7539
P(psi)	Y(c	em)	Po(psi·)	To(deg.K)	Pw(psi)
1.1129		074	25.7231	296.1837	0.7300
1.1048		095	25.7231	295.1349	0.7157
1.1211		116	25.6739	294.9468	0.7157
1.0967		244	25.5755	293.6600	0.7014
1.2840		0329	25.5263	292.4962	0.7157
1.2514 1.2840)350)371	25.4771 25.4771	292.6221 292.3388	0.7157 0.7157
1.5608)435	25.4771	292.3366 291.6454	0.7157
1.6423		456	25.4771	291.3931	0.6872
1.9110		541	25.4771	290.8408	0.7157
2.2449		753	25.4279	290.3195	0.7157
2.3100	0.0	796	25.4771	290.1614	0.7157
2.5543	0.1	.008	25.4279	289.5287	0.6872
2.6032		.030	25.4279	289.4655	0.7157
2.7986		221	25.4279	289.0854	0.6872
2.8312		242	25.4279	288.8320	0.7157
2.8475		263	25.4771 25.4525	288.6101	0.7157 0.7157
3.0347 3.1895		.497 .688	25.4033	288.4040 288.0709	0.7300
3.3767		985	25.4525	287.4201	0.7014
3.5315		198	25.3787	287.3088	0.6872
3.5152		219	25.4279	287.3724	0.7157
3.6944		431	25.4279	286.8320	0.7157
3.6618	0.2	453	25.4279	286.8956	0.7157
3.8409		686	25.4115	286.4291	0.7157
4.0364		1047	25.3787	286.3548	0.6872
4.0527		3069	25.3787	286.2912	0.7157
4.2644		3408	25.4279 25.3787	285.9091 285.7817	0.7157 0.6872
4.2644 4.4598		1430 1791	25.3787	285.4311	0.7157
4.4924		812	25.3787	285.2079	0.6872
4.6878		173	25.3787	285.0485	0.7157
4.7204		194	25.3787	284.8251	0.6872
4.9321	0.4	534	25.3295	284.3782	0.6872
4.9240		555	25.3787	284.4420	0.7157
5.1439		938	25.3295	284.3622	0.7300
5.3800		299	25.3787	284.2504	0.7157
5.6650 5.9419		5766 5276	25.3787 25.3787	283.9149 283.5473	0.7014 0.6872
5.9419		297	25.3787	283.6752	0.7157
6.2676		743	25.3787	283.0994	0.7157
6.2513		764	25.3787	283.1314	0.6872
6.2513		786	25.3295	283.2593	0.7157
6.5445		295	25.3295	283.0834	0.7157
6.8648		826	25.3623	282.7258	0.7157
7.1797		336	25.3787	282.4268	0.7157
7.1878		357	25.3787	282.4109	0.7014
7.4891		1910 1952	25.3787 25.3295	282.1544	0.7157 0.7157
7.4891 7.8719		1952 1526	25.3295 25.3541	282.2666 282.0102	0.7157
7.8637		547	25.3295	282.1384	0.6872
8.2220		205	25.3459	281.9032	0.6967
8.5070		800	25.3541	281.3846	0.7014
8.5151		821	25.3295	281.4327	0.7157
8.5857	1.1	034	25.3787	281.3257	0.7062

TABLE 5	- TOTAL	PRESSURE LEE	WARD (continued, X	(55.1000)
TEST 47		NTS PONOM 25.0000	X(cm) 55.1000	Prof 14.7539
P(psi)	Y(cm)	Po(psi)	To(deg.K)	Pw(pei)
8.6047	1.1076		281.1437	0.6872
8.5966	1.1097		281.2079	0.6872
8.5966	1.1119		281.2401	0.7157
8.6237	1.1140		281.0046	0.6967
8.8083	1.1756		280.9832	0.7157
8.8001	1.1777		281.0153	0.6872
8.9223	1.2542		280.7904	0.6872
8.9223	1.2563		280.7261	0.7157
8.9223	1.2627	25.3787	280.7904	0.7443
8.9712	1.3370	25.3295	280.6618	0.7157
8.9712	1.3391	25.3295	280.6297	0.7157
8.9712	1.3434	25.2804	280.6297	0.6872
9.0037	1.4177	25.3541	280.4529	0.6872
9.0037	1.4198	25.3295	280.5333	0.7157
9.0037	1.4942	25.2804	280.2117	0.6872
9.0037	1.4963	25.3050	280.3082	0.7014
9.0200	1.5685	25.3295	280.2439	0.7157
9.0200	1.6407	25.3295	279.8900	0.7157
9.0200	1.6429	25.3295	279.8578	0.7157
9.0200	1.7087		279.9221	0.7157
9.0200	1.7108		279.8900	0.6872
9.0091	1.7703		279.7719	0.7062
9.0091	1.8319		279.7934	0.6967
9.0037	1.8786		279.4393	0.7014

TABLE 5 - TOTAL PRESSURE LEEWARD

TE ST 47	RUN 153	POINTS 75	PoNOM 25.0000	X(cm) 56.3700	Pref 14.7539
P(psi)	Υ(.		Po(psi)	To(deg.K)	Pw(psi)
1.5414		0031	25.3223	295.5575	0.7678
1.5414		0052	25.2977	294.6328	0.7536
1.5495		0074	25.1258	293.1099	0.7536
1.5495		0095	25.1749	293.7543	0.7536
1.5333		0180	25.0767	291.9607	0.7536
1.5333		0201	25.0767	291.8976	0.7536
1.5495		9286	25.0521	291.0460	0.7678
1.5333		9397	25.0767	291.2354	0.7820
1.5738		9392	25.0521	290.2721	0.7678
1.5819		0414	25.0767	290.2879	0.7536
1.6628		0626	25.0767	289.1805	0.7536
1.6385		9647	25.0767	289.3389	0.7678
1.7599		9860 3001	25.0767	288.5467	0.7536
1.7437		9881	25.0521	288.7845	0.7536
1.8732		1093	25.0767	288.1027	0.7536
1.9056		1114	25.0767	287.9757	0.7536
2.1268		1454	25.0603	287.4571 287.0228	0.7536
2.5153 3.0062		1815 2198	25.0767		0.7536
2.9900		2219	25.0767 25.0767	286.4503 286.4503	0.7536 0.7536
2.9577		2240	25.0275	286.4821	0.7820
3.3867		2601	25.0767	285.9728	0.7536
3.4271		2623	25.0767	285.9728	0.7536
3.8479		2984	25.0767	285.6382	0.7678
3.8479		3005	25.0767	285.5905	0.7536
4.2364		3302	25.0767	284.9527	0.7536
4.2121		3323	25.0767	285.1123	0.7536
4.6734		3791	25.0767	285.0485	0.7536
4.7058		8812	25.0767	284.8889	0.7536
4.7058		8833	25.0767	285.0485	0.7536
5.2129	0.4	279	25.0931	284.4740	0.7536
5.6445	0.4	747	25.1258	283.8990	0.7536
5.6553	0.4	768	25.0603	283.9629	0.7631
6.0492	0.5	51 9 3	25.0767	283.8031	0.7536
6.0654	0.5	214	25.1012	283.7072	0.7536
6.3891	0.5	724	25.0275	283.2593	0.7536
6.3891		745	25.0275	283.4513	0.7536
6.7290		361	25.0767	283.0034	0.7536
6.7506		382	25.0603	283.0034	0.7536
6.9988		956	25.1094	282.6938	0.7631
7.1781		614	25.1012	282.4429	0.7536
7.3603		3251 3250	25.1012	282.4268	0.7536
7.3764		3272	25.1258	282.4268	0.7536
7.6192		1910 1931	25.0767 25.0767	282.0583 282.0102	0.7536 0.7536
7.6354 7.8836		931 9419	25.0767	281.7749	0.7536
7.8782		441 9441	25.0767	281.6573	0.7536 0.7536
8.1857		078	25.0767	281.5290	0.7394
B. 1696		099	25.0767	281.5932	0.7252
8.6551		204	25.0767	281.2079	0.7536
8.6390		225	25.0767	281.2240	0.7536
8.6551		267	25.0767	281.2401	0.7536
8.7199		437	25.1258	281.2401	0.7536
8.7199		458	25.0767	281.0474	0.7394
8.7361		522	25.0767	280.9189	0.7536

TABLE 5	- TOTAL PI	res eure Leevai	TIRE LEEWARD (continued, X56.3)	
T EST	RUN POINTS	Ponom	X(cm)	Pref
47	153 75	25.0000	56.3700	14.7599
P(psi)	Y(cm)	Po(psi)	To(deg.K)	Pw(psi)
8.7307	1.1543	25.0439	280.8333	0.7536
8.8332	1.2011	25.0767	280.4368	0.7536
8.8278	1.2032	25.0767	280.4904	0.7631
8.9141	1.2775	25.0767	280.3404	0.7820
8.9249	1.2797	25.0767	280.3403	0.7536
8.9627	1.4305	25.0275	279.9865	0.7536
8.9789	1.4326	25.0275	279.9543	0.7536
9.0166	1.5048	25.0931	279.9758	0.7536
9.0112 9.0193	1.5046 1.5112 1.5791	25.0767 25.0521	279.8900 279.6164	0.7536 0.7678
9.0112 9.0112	1.5813 1.5855	25.0767 25.0767 25.0767	279.6647 279.6647	0.7536 0.7820
9.0436	1.6450	25.0890	279.7050	0.7536
9.0436	1.7087	25.0767	279.4393	0.7536
9.0436	$1.7108 \\ 1.7682$	25.0767	279.3749	0.7441
9.0436		25.0767	279.5037	0.7536
9.0598	1.7703	25.0767	279.4232	0.7394
9.0598	1.8234	25.1258	279.4232	0.7678
9.0598	1 . 8255	25.1012	279.4392	0.7536
9.0517	1 . 8723	25.0767	279.1333	0.7394

TABLE 5 - TOTAL PRESSURE LEEWARD

TEST 47	RUN 156	POINTS 83	PoNOM 25.0000	X(cm) 57.0050	Pref 14.7750
P(psi)	YG	em)	Po(psi)	To(deg.K)	Pw(psi)
1.5414	0.0	0180	24.6550	294.6019	0.6696
1.5360	0.0	020 1	24.5567	294.7587	0.6696
1.5630	0.0	9397	25.1465	294.2253	0.6886
1.5847		0329	25.2940	293.7543	0.6981
1.6334		0520	25.4906	293.4715	0.6696
1.6172		0541	25.5152	293.5500	0.6838
1.6822		9732	25.5889	293.0102	0.6981
1.7308		9987	25.6135	292.2916	0.6981
1.7471		1008	25.5889	291.8976	0.6696
1.7959		1178	25.5889	291.6139	0.6981
1.7959		1199	25.5889	291.5824	0.6981
1.8121		1221	25.5889	291.6454	0.6696
$1.9583 \\ 2.0070$		1645	25.5889 25.5889	290.9828 290.6355	0.6981 0.6981
1.9908		1667 1688	25.5889	290.0333 290.8881	0.6981
2.1938		2155	25.5398	290.4459	0.6838
2.2832		2176	25.5398	290.1614	0.6981
2.4618		2623	25.5889	289.9717	0.6981
2.6081		2644	25.5398	289.7661	0.6981
3.0033		3111	25.5398	289.4444	0.6981
3.4636		3600	25.5234	289.2544	0.7076
4.0104		1046	25.5398	288.7686	0.6886
4.4598		1492	25.5398	288.4199	0.6981
4.5654		1513	25.5398	288.3881	0.6981
5.1095	0.4	1959	25.5398	288.1027	0.6981
4.9634	0.4	1980	25.4906	288.2296	0.6696
5.6077	0.5	5426	25.5234	287.7853	0.6981
6.1816	0.5	5872	25.4906	287.5630	0.6981
6.2060		5894	25.5152	287.3089	0.6838
6.7556		6361	25.5398	286.9910	0.6981
7.3079		6807	25.4906	286.5882	0.6886
7.8791		7317	25.4906	286.2594	0.6838
7.9035		7338	25.4906	286.2912	0.6981
8.3745		7784 790=	25.5398	286.0683 285.9091	0.6981
8.4070		7805 7826	25.5398 25.5398	285.8454	0.7267 0.6981
8.4070 8.8294		3251	25.4906	285.8135	0.6981
8.8456		3294	25.4906	285.8454	0.6981
8.8456		3315	25.4906	285.7498	0.7267
9.1055		3740	25.4906	285.4630	0.6981
9.1055		3761	25.4415	285.3514	0.6981
9.1705		228	25.5398	285.1122	0.6981
9.1380		249	25.4906	285.2238	0.6838
9.1109		674	25.5234	285.0378	0.6981
9.0974	1.6	142	25.4906	284.8092	0.6981
8.9593	1.0	163	25.4906	284.6336	0.6696
8.9106	1.0	1460	25.4906	284.5059	0.6981
8.9918		9481	25.4906	284.3462	0.6696
8.9593		9503	25.4906	284.3462	0.6696
8.8943		588	25.4415	284.2504	0.7267
8.9187		9630	25.4906	284.3143	0.6838
8.9025		694	25.4415	284.2504	0.6838
8.8781		715	25.4415	284.2504	0.6981
8.8943		736	25.4415	283.9948	0.6696
8.8619	1.6	758	25.4661	283.9629	0.6838

PRESSURE LEEWARD (continued, X57.0050) TABLE 5 TOTAL RUN POINTS **PoNOM** TEST X(cm) Pref 47 156 **6**3 25.0000 57.0050 14.7750 P(pei) Y(cm) Po(psi) To (deg.K) Pw(psi) 8.9106 1.0906 25.4415 283.7391 0.6696 8.8943 1.0927 25.4906 283.7072 0.6838 25.4742 8.9160 1.1310 283.5793 0.6886 8.9268 1.2011 25.4906 283.3553 0.6696 0.6982 8.9512 1.2032 25.4661 283.4673 8.9918 1.2733 25.4906 283.2274 0.6696 8.9918 1.2754 25.4661 283.1634 0.6981 282.9713 9.0243 1.3434 25.4906 0.6981 9.0080 1.3455 25.4415 283.0353 0.6981 25.4415 0.6981 9.0080 283.0034 1.3476 9.0405 1.4135 25.4415 282.8432 0.6981 1.4156 0.6981 9.0243 25.4415 282.9073 9.0243 1.4177 25.3923 282.8112 0.6696 25.4415 282.5336 9.0243 1.4857 0.6886 25.3923 282.6190 9.00801.5494 0.6696 9.0080 1.5515 25.4415 282.7151 0.6696 0.6696 9.0080 25.4415 282.6190 1.5537 9.0243 1.6174 25.4415 282.7472 0.6981 9.0243 1.6195 25.4415 282.6671 0.6838 9.0405 1.6790 25.4415 282.4589 0.6696 9.0243 25.4415 282.5550 0.6838 1.6811 25.4415 9.0243 1.7384 282.2346 0.6696 9.0243 1.7406 25.4415 282.1384 0.6838 282.1704 0.6696 1.7937 25.4415 9.0405 9.0324 1.7979 25.4415 282.2666 0.6981 9.0351 1.8468 25.3923 281.9674 0.6696 9.0405 1.8850 25.3923 281.7856 0.6981 25.4415 281.9139 0.6981 9.0405 1.8871

TABLE 5 - TOTAL PRESSURE LEEWARD

P(psi) Y(cm) Po(psi) To(deg.K) Pw(psi)	TE ST 47	RUN 152	POINTS 92	PoNOM 25.0000	X(cm) 57.6400	Pref 14.7540
1,5325 0,0074 25,5724 297,6664 0,6417 1,5529 0,0095 25,3617 295,1505 0,6417 1,5366 0,0201 25,3122 294,1939 0,6561 1,5366 0,0222 25,3122 293,9742 0,6561 1,5447 0,0307 25,2626 293,1728 0,6273 1,5511 0,0414 25,2626 292,4648 0,6273 1,5529 0,0435 25,3122 292,3073 0,6561 1,5775 0,0626 25,2626 291,7400 0,6561 1,5775 0,0647 25,2626 291,7400 0,6561 1,5775 0,0647 25,2626 291,7400 0,6561 1,5348 0,1136 25,2626 291,7400 0,6561 1,6348 0,1136 25,2626 291,7400 0,6561 1,6676 0,1369 25,2626 290,4775 0,6273 1,6676 0,1391 25,2626 290,4775 0,6273 1,7167 0,1582 25,3122 289,7819 0,6273 1,7167 0,1603	P(psi)	YC	em)	Po(psi)	To(deg.K)	Pw(psi)
1,5325 0,0074 25,5724 297,6664 0,6417 1,5529 0,0095 25,3617 295,1505 0,6417 1,5366 0,0201 25,3122 294,1939 0,6561 1,5366 0,0222 25,3122 293,9742 0,6561 1,5447 0,0307 25,2626 293,1728 0,6273 1,5511 0,0414 25,2626 292,4648 0,6273 1,5529 0,0435 25,3122 292,3073 0,6561 1,5775 0,0626 25,2626 291,7400 0,6561 1,5775 0,0647 25,2626 291,7400 0,6561 1,5775 0,0647 25,2626 291,7400 0,6561 1,5348 0,1136 25,2626 291,7400 0,6561 1,6348 0,1136 25,2626 291,7400 0,6561 1,6676 0,1369 25,2626 290,4775 0,6273 1,6676 0,1391 25,2626 290,4775 0,6273 1,7167 0,1582 25,3122 289,7819 0,6273 1,7167 0,1603	1.5447	0.6	9052	25.5352	296.7152	0.6561
1.5366 0.0221 25.3122 294.1939 0.6561 1.5366 0.0222 25.3122 293.9742 0.6561 1.5447 0.0307 25.2626 293.1728 0.6273 1.5529 0.0329 25.2626 292.7795 0.6273 1.5511 0.0414 25.2626 292.4648 0.6273 1.5557 0.0626 25.2626 291.7400 0.6561 1.5775 0.0647 25.2626 291.7400 0.6561 1.5775 0.0647 25.2626 291.5823 0.6561 1.5775 0.0647 25.2626 291.5823 0.6561 1.5775 0.0647 25.2626 291.7400 0.6561 1.5775 0.0647 25.2626 291.7400 0.6561 1.5775 0.0647 25.2626 291.7400 0.6561 1.5775 0.0647 25.2626 291.4775 0.6273 1.6676 0.1369 25.2626 290.4775 0.6273 1.6676 0.1391 25.2626 289.9084 0.6273 1.7167 0.1603	1.5325	0.0	0074	25.5724	297.6664	0.6417
1.53467 0.0307 25.2626 293.1728 0.6561 1.55427 0.0307 25.2626 293.1728 0.6273 1.5511 0.0414 25.2626 292.4648 0.6273 1.5529 0.0435 25.3122 292.3073 0.6273 1.5529 0.0435 25.3122 292.3073 0.6273 1.5857 0.0626 25.2626 291.7400 0.6561 1.5775 0.0647 25.2626 291.5823 0.6561 1.6021 0.0881 25.2626 291.2512 0.6273 1.6348 0.1157 25.2626 290.4775 0.6273 1.6676 0.1369 25.2626 299.4775 0.6273 1.6676 0.1369 25.2626 289.9084 0.6273 1.7167 0.1582 25.3122 289.7819 0.6273 1.7741 0.1815 25.3122 289.7819 0.6273 1.7823 0.1837 25.2626 289.1711 0.6273 1.8314 0.2049 25.2626 289.1171 0.6273 1.8232 0.2070	1.5529	0.0	0095	25.3617	295.1505	0.6417
1.5447 0.0307 25.2626 292.7728 0.6273 1.5529 0.0329 25.2626 292.7795 0.6273 1.5529 0.0435 25.3122 292.3073 0.6273 1.5857 0.0626 25.2626 291.7400 0.6561 1.5775 0.0647 25.2626 291.5823 0.6561 1.6021 0.0881 25.2626 291.2512 0.6273 1.6348 0.1136 25.2626 290.4775 0.6273 1.66348 0.1157 25.2626 290.4775 0.6273 1.6676 0.1369 25.2626 289.9084 0.6273 1.6676 0.1391 25.2626 289.9401 0.6417 1.7167 0.1582 25.3122 289.7819 0.6273 1.7167 0.1603 25.2626 289.4655 0.6561 1.7741 0.1815 25.3122 289.7819 0.6273 1.8314 0.2049 25.2626 288.5784 0.6273 1.8306 0.2304 25.2626 288.5626 0.6417 1.8806 0.2304	1.5366	0.0	020 1	25.3122	294.1939	0.6561
1.5529 0.0329 25.2626 292.7795 0.6273 1.5511 0.0414 25.2626 292.4648 0.6273 1.5529 0.0435 25.3122 292.3073 0.6261 1.5857 0.0626 25.2626 291.7400 0.6561 1.5775 0.0647 25.2626 291.5823 0.6561 1.6021 0.0881 25.2626 291.2512 0.6273 1.6348 0.1136 25.2626 290.4775 0.6273 1.6676 0.1369 25.2626 290.4775 0.6273 1.6676 0.1369 25.2626 289.9084 0.6273 1.7167 0.1582 25.3122 289.7819 0.6273 1.7747 0.1603 25.2626 289.4655 0.6561 1.7741 0.1815 25.3122 289.0854 0.6273 1.7823 0.1837 25.2626 289.1171 0.6273 1.8314 0.2049 25.2626 288.584 0.6561 1.8232 0.2070 25.2626 288.0392 0.6273 1.9624 0.2516						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
1.5857 0.0626 25.2626 291.7400 0.6561 1.5775 0.0647 25.2626 291.5823 0.6561 1.6021 0.0881 25.2626 291.2512 0.6273 1.6348 0.1136 25.2626 290.4775 0.6273 1.6348 0.1157 25.2626 290.4775 0.6273 1.6676 0.1369 25.2626 289.9084 0.6273 1.6676 0.1391 25.2626 289.9401 0.6417 1.7167 0.1582 25.3122 289.7819 0.6273 1.7167 0.1603 25.2626 289.4655 0.6561 1.7741 0.1815 25.3122 289.0854 0.6273 1.7823 0.1837 25.2626 289.1171 0.6273 1.8314 0.2049 25.2626 288.5784 0.6561 1.8232 0.2070 25.2626 288.1027 0.6417 1.8806 0.2346 25.2626 288.1027 0.6417 1.8969 0.2346 25.2626 288.0392 0.6273 1.9706 0.2516						
1.5775 0.0647 25.2626 291.5823 0.6561 1.6021 0.0881 25.2626 291.2512 0.6273 1.6348 0.1136 25.2626 290.4775 0.6273 1.6676 0.1369 25.2626 290.4775 0.6273 1.6676 0.1391 25.2626 289.9084 0.6273 1.7167 0.1582 25.3122 289.9401 0.6417 1.7167 0.1603 25.2626 289.9465 0.6273 1.7741 0.1815 25.3122 289.0854 0.6273 1.7823 0.1837 25.2626 289.1171 0.6273 1.8314 0.2049 25.2626 289.1171 0.6273 1.8806 0.2304 25.2626 288.5626 0.6417 1.8806 0.2304 25.2626 288.1027 0.6417 1.9624 0.2538 25.3122 287.8170 0.6273 2.1016 0.2920 25.2874 287.6742 0.6417 1.9624 0.2538 25.3122 287.8170 0.6273 2.0935 0.2941						
1.6021 0.0881 25.2626 291.2512 0.6273 1.6348 0.1136 25.2626 290.4775 0.6273 1.6348 0.1157 25.2626 290.4775 0.6273 1.6676 0.1369 25.2626 289.9084 0.6273 1.6676 0.1391 25.2626 289.9401 0.6417 1.7167 0.1582 25.3122 289.7819 0.6273 1.7167 0.1603 25.2626 289.9465 0.6561 1.7741 0.1815 25.3122 289.0854 0.6273 1.7823 0.1837 25.2626 289.1171 0.6273 1.8314 0.2049 25.2626 288.5784 0.6561 1.8232 0.2070 25.2626 288.5626 0.6417 1.8969 0.2346 25.2626 288.0392 0.6273 1.9706 0.2516 25.2874 287.6742 0.6417 1.9624 0.2538 25.3122 287.8170 0.6273 2.1016 0.2920 25.2874 287.2771 0.6561 2.2819 0.3281						_
1.6348 0.1136 25.2626 290.4775 0.6273 1.6348 0.1157 25.2626 290.4775 0.6273 1.6676 0.1369 25.2626 289.9084 0.6273 1.6676 0.1391 25.2626 289.9401 0.6417 1.7167 0.1582 25.3122 289.7819 0.6273 1.7167 0.1603 25.2626 289.4655 0.6561 1.7741 0.1815 25.3122 289.0854 0.6273 1.7823 0.1837 25.2626 289.1171 0.6273 1.8314 0.2049 25.2626 288.5784 0.6561 1.8232 0.2070 25.2626 288.5784 0.6561 1.8806 0.2304 25.2626 288.1027 0.6417 1.8969 0.2346 25.2626 288.0392 0.6273 1.9706 0.2516 25.2874 287.6742 0.6417 1.9624 0.2538 25.3122 287.8170 0.6273 2.1016 0.2920 25.2874 287.2771 0.6561 2.3064 0.381						
1.6348 0.1157 25.2626 290.4775 0.6273 1.6676 0.1369 25.2626 289.9084 0.6273 1.6676 0.1391 25.2626 289.9401 0.6417 1.7167 0.1582 25.3122 289.7819 0.6273 1.7167 0.1603 25.2626 289.4655 0.6561 1.7741 0.1815 25.3122 289.0854 0.6273 1.7823 0.1837 25.2626 289.1171 0.6273 1.8314 0.2049 25.2626 288.5784 0.6561 1.8232 0.2070 25.2626 288.5626 0.6417 1.8806 0.2304 25.2626 288.1027 0.6417 1.8969 0.2346 25.2626 288.0392 0.6273 1.9706 0.2516 25.2874 287.6742 0.6417 1.9624 0.2538 25.3122 287.8170 0.6273 2.1016 0.2920 25.2874 287.2771 0.6561 2.2819 0.3281 25.2626 286.7367 0.6561 2.3064 0.363		_				
1.6676 0.1369 25.2626 289.9084 0.6273 1.6676 0.1391 25.2626 289.9401 0.6417 1.7167 0.1582 25.3122 289.7819 0.6273 1.7167 0.1603 25.2626 289.4655 0.6561 1.7741 0.1815 25.3122 289.0854 0.6273 1.7823 0.1837 25.2626 289.1171 0.6273 1.8314 0.2049 25.2626 288.5784 0.6561 1.8232 0.2070 25.2626 288.5626 0.6417 1.8806 0.2304 25.2626 288.0392 0.6273 1.9706 0.2346 25.2626 288.0392 0.6273 1.9706 0.2516 25.2874 287.6742 0.6417 1.9624 0.2538 25.3122 287.8170 0.6273 2.0935 0.2941 25.3122 287.2771 0.6561 2.2819 0.3281 25.2626 286.7367 0.6561 2.5357 0.3642 25.2626 286.3548 0.6273 2.7650 0.3982						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.6676	0.1	1391	25.2626	289.9401	0.6417
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.7167	0.1	1582	25.3122	289.7819	0.6273
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.1	1603			
1.8314 0.2049 25.2626 288.5784 0.6561 1.8232 0.2070 25.2626 288.5626 0.6417 1.8806 0.2304 25.2626 288.1027 0.6417 1.8969 0.2346 25.2626 288.0392 0.6273 1.9706 0.2516 25.2874 287.6742 0.6417 1.9624 0.2538 25.3122 287.8170 0.6273 2.1016 0.2920 25.2874 287.2294 0.6273 2.0935 0.2941 25.3122 287.2771 0.6561 2.2819 0.3281 25.2626 286.7367 0.6561 2.5357 0.3642 25.2626 286.3548 0.6273 2.4866 0.3663 25.2874 286.4980 0.6273 2.7650 0.3982 25.2626 286.0205 0.6561 2.7486 0.4003 25.2626 285.8613 0.6273 3.0353 0.4364 25.2626 285.8722 0.6561 3.3874 0.4704 25.2626 285.8772 0.6561 3.4038 0.4768						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
1.9624 0.2538 25.3122 287.8170 0.6273 2.1016 0.2920 25.2874 287.2294 0.6273 2.0935 0.2941 25.3122 287.2771 0.6561 2.2819 0.3281 25.2626 287.0546 0.6417 2.3064 0.3302 25.2626 286.7367 0.6561 2.5357 0.3642 25.2626 286.3548 0.6273 2.4866 0.3663 25.2874 286.4980 0.6273 2.7650 0.3982 25.2626 286.0205 0.6561 2.7486 0.4003 25.2626 286.1002 0.6273 3.0353 0.4364 25.2626 285.8613 0.6273 3.0435 0.4407 25.2626 285.8772 0.6561 3.3874 0.4704 25.2626 285.4949 0.6561 3.4038 0.4768 25.2626 285.4311 0.6561 3.7805 0.5214 25.3122 285.1442 0.6273 3.9116 0.5278 25.3122 285.1442 0.6273						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
2.0935 0.2941 25.3122 287.2771 0.6561 2.2819 0.3281 25.2626 287.0546 0.6417 2.3064 0.3302 25.2626 286.7367 0.6561 2.5357 0.3642 25.2626 286.3548 0.6273 2.4866 0.3663 25.2874 286.4980 0.6273 2.7650 0.3982 25.2626 286.0205 0.6561 2.7486 0.4003 25.2626 286.1002 0.6273 3.0353 0.4364 25.2626 285.8613 0.6273 3.0435 0.4407 25.2626 285.8772 0.6561 3.3874 0.4704 25.2626 285.4949 0.6561 3.4038 0.4768 25.2626 285.4311 0.6561 3.4038 0.4768 25.3122 285.1442 0.6273 3.9116 0.5278 25.3122 285.1442 0.6273						
2.2819 0.3281 25.2626 287.0546 0.6417 2.3064 0.3302 25.2626 286.7367 0.6561 2.5357 0.3642 25.2626 286.3548 0.6273 2.4866 0.3663 25.2874 286.4980 0.6273 2.7650 0.3982 25.2626 286.0205 0.6561 2.7486 0.4003 25.2626 286.1002 0.6273 3.0353 0.4364 25.2626 285.8613 0.6273 3.0435 0.4407 25.2626 285.8772 0.6561 3.3874 0.4704 25.2626 285.4949 0.6561 3.3219 0.4725 25.2626 285.4949 0.6561 3.4038 0.4768 25.2626 285.4311 0.6561 3.7805 0.5214 25.3122 285.1442 0.6273 3.9116 0.5278 25.3122 285.1442 0.6273						
2.5357 0.3642 25.2626 286.3548 0.6273 2.4866 0.3663 25.2874 286.4980 0.6273 2.7650 0.3982 25.2626 286.0205 0.6561 2.7486 0.4003 25.2626 286.1002 0.6273 3.0353 0.4364 25.2626 285.8613 0.6273 3.0435 0.4407 25.2626 285.8772 0.6561 3.3874 0.4704 25.2626 285.4949 0.6561 3.3219 0.4725 25.2626 285.5267 0.6561 3.4038 0.4768 25.2626 285.4311 0.6561 3.7805 0.5214 25.3122 285.1442 0.6273 3.9116 0.5278 25.3122 285.1442 0.6273						
2.4866 0.3663 25.2874 286.4980 0.6273 2.7650 0.3982 25.2626 286.0205 0.6561 2.7486 0.4003 25.2626 286.1002 0.6273 3.0353 0.4364 25.2626 285.8613 0.6273 3.0435 0.4407 25.2626 285.8772 0.6561 3.3874 0.4704 25.2626 285.4949 0.6561 3.3219 0.4725 25.2626 285.5267 0.6561 3.4038 0.4768 25.2626 285.4311 0.6561 3.7805 0.5214 25.3122 285.1442 0.6273 3.9116 0.5278 25.3122 285.1442 0.6273	2.3064	0.3	3302	25.2626		
2.7650 0.3982 25.2626 286.0205 0.6561 2.7486 0.4003 25.2626 286.1002 0.6273 3.0353 0.4364 25.2626 285.8613 0.6273 3.0435 0.4407 25.2626 285.8772 0.6561 3.3874 0.4704 25.2626 285.4949 0.6561 3.3219 0.4725 25.2626 285.5267 0.6561 3.4038 0.4768 25.2626 285.4311 0.6561 3.7805 0.5214 25.3122 285.1442 0.6273 3.9116 0.5278 25.3122 285.1442 0.6273						
2.7486 0.4003 25.2626 286.1002 0.6273 3.0353 0.4364 25.2626 285.8613 0.6273 3.0435 0.4407 25.2626 285.8772 0.6561 3.3874 0.4704 25.2626 285.4949 0.6561 3.3219 0.4725 25.2626 285.5267 0.6561 3.4038 0.4768 25.2626 285.4311 0.6561 3.7805 0.5214 25.3122 285.1442 0.6273 3.9116 0.5278 25.3122 285.1442 0.6273						
3.0353 0.4364 25.2626 285.8613 0.6273 3.0435 0.4407 25.2626 285.8772 0.6561 3.3874 0.4704 25.2626 285.4949 0.6561 3.3219 0.4725 25.2626 285.5267 0.6561 3.4038 0.4768 25.2626 285.4311 0.6561 3.7805 0.5214 25.3122 285.1442 0.6273 3.9116 0.5278 25.3122 285.1442 0.6273						
3.0435 0.4407 25.2626 285.8772 0.6561 3.3874 0.4704 25.2626 285.4949 0.6561 3.3219 0.4725 25.2626 285.5267 0.6561 3.4038 0.4768 25.2626 285.4311 0.6561 3.7805 0.5214 25.3122 285.1442 0.6273 3.9116 0.5278 25.3122 285.1442 0.6273						
3.3874 0.4704 25.2626 285.4949 0.6561 3.3219 0.4725 25.2626 285.5267 0.6561 3.4038 0.4768 25.2626 285.4311 0.6561 3.7805 0.5214 25.3122 285.1442 0.6273 3.9116 0.5278 25.3122 285.1442 0.6273						
3.3219 0.4725 25.2626 285.5267 0.6561 3.4038 0.4768 25.2626 285.4311 0.6561 3.7805 0.5214 25.3122 285.1442 0.6273 3.9116 0.5278 25.3122 285.1442 0.6273						
3.4038 0.4768 25.2626 285.4311 0.6561 3.7805 0.5214 25.3122 285.1442 0.6273 3.9116 0.5278 25.3122 285.1442 0.6273						
3.7805 0.5214 25.3122 285.1442 0.6273 3.9116 0.5278 25.3122 285.1442 0.6273						
3.9116 0.5278 25.3122 285.1442 0.6273						
					285.1442	
	4.4466			25.2791	284.9846	0.6465
5.0745 0.6233 25.3122 284.6017 0.6273	5.0745	0.6	5233	25.3122	284.6017	0.6273
4.9763 0.6276 25.2626 284.5858 0.6561	4.9763	0.6	276		284.5858	0.6561
5.7788 0.6743 25.3122 284.3782 0.6273						
5.7051 0.6764 25.2874 284.5059 0.6417						
6.3630 0.7253 25.2791 284.1226 0.6273						
7.0073 0.7741 25.3122 283.7072 0.6273						
6.9827 0.7763 25.2626 283.9469 0.6273 7.6461 0.8251 25.2626 283.5259 0.6465						
8.3504 0.8718 25.3122 283.3553 0.6273						
8.3586 0.8740 25.2874 283.3074 0.6417						
9.0710 0.9207 25.2626 283.0674 0.6273						
9.0382 0.9228 25.2874 283.0514 0.6417						
9.6689 0.9674 25.2626 282.8752 0.6417						

TABLE 5 - TOTAL PRESSURE LEEWARD (continued, X57.6400)

TEST 47	RUN POINTS 152 92		Pol 25.6	NOM 9000	X(d 57.6		Pre:	
P(psi)	Y(c	:m)	Po(p	osi)	To Co	ieg.K)	P	v(psi)
9.7426		9717		2626		2.9073		0.6273
10.4305		0163		2626		2.6831		6273
10.3568		0184		2378		2.7632		0.6417
10.9874		0566		2626		2.6511		0.6273
10.9547		0588		2874		2.5870		0.6417
11.2331		0779		2626		2.6190		0.6273 0.6273
11.3150		0821		2626 2750		2.3948		0.6273
11.2372 11.3314		0842 0864		2626		2.4829 1.7536		0.6273
11.3314		0885		2626		. 7536 ! . 8605		0.6369
11.3641		0927		2130		1.6573		0.6273
11.3642		0949		2378		1.6092		0.6273
11.4460		1034		2130		1.5932		0.6273
11.4215		1055		2626		1.5450		0.6561
11.6590		1501		2461		.4648		0.6273
11.4351		2053		2791		.4969		0.6561
10.3868		2627		2626		.1758		0.6369
9.5460		3221		2626		.0795		0.6417
9.6443		3264		2626		.0795		0.6273
9.2949		3795		2626		7797		0.6273
9.0874		4347		2626		5.5976		0.6273
9.0710		4368		2874		6458		0.6273
8.9892		4878		2626		3.4368		0.6273
9.0055		4899		2626		5.5011		0.6561
9.0219		4921		2626		5.5011		0.6273
8.9783		5409		2791		.4047		0.6369
8.9673		5961		2295		3.3189		0.6465
8.9728		6471		2461		0.0830		0.6369
8.9810		6960		2626		.2278		0.6273
8.9728		6981		2130		2760		0.6273
8.9837		7427		2295		.2010		0.6369
8.9892		7852		2626		.8578		0.6273
8.9973		7873		2626		8900		0.6417
8.9892		8298		3122		7934		0.6273
9.0055		8340		3122		7934		0.6417
9.0055		8659	25.	2461	279	7612		0.6369
8.9892		8999		2626		. 5359	•	0.6273

TABLE 5 - TOTAL PRESSURE LEEWARD

T EST 47	RUN 157	P OINTS 77	Ponom 25.0000	X(cm) 58.2750	Pref 14.7750
P(psi)	YC	cm)	Po(psi)	To(deg.K)	Pw(psi)
1.7275	0.0	0159	25.7364	295.1347	0.7526
1.7438	0.0	01 80	25.7364	295.0095	0.7384
1.7194		0265	25.6872	293.7856	0.7526
1.7275		0286	25.6872	293.7857	0.7384
1.7275		0350	25.6381	292.0237	0.7384
1.7194		0371	25.6135	292.3860	0.7242
1.7681 1.7438		0732 0750	25.5644	290.6987	0.7526
1.7924		0753 1093	25.5889 25.5889	291.0776 290.1298	0.7384 0.7099
1.7843		1114	25.5398	290.1456	0.7242
1.8086		412	25.5889	289.9401	0.7384
1.8329		1433	25.5644	289.6554	0.7526
1.8572		1730	25.5398	289.0538	0.7668
1.8572	0.1	1752	25.5644	289.0221	0.7526
1.9058		2070	25.5398	288.6418	0.7384
1.9220		2092	25.5398	288.3881	0.7384
1.9220		2113	25.5398	288.3881	0.7384
1.9868		2431	25.5398	288.3248	0.7242
1.9544 2.0678		2453 2771	25.5398 25.5889	288.3881 288.0709	0.7384 0.7384
2.0678		2792	25.5644	287.9757	0.7242
2.1704		3111	25.5070	287.4889	0.7384
2.2676		3472	25.5234	287.2135	0.7194
2.3864		3791	25.5070	286.8426	0.7479
2.5539	0.4	131	25.5398	286.4503	0.7384
2.6025		1152	25.5398	286.2593	0.7384
2.7159		1492	25.5398	285.9728	0.7384
2.7888		1513	25.5398	285.9091	0.7242
2.9913		1810 1800	25.4906	285.7180	0.7099
3.0075 2.9427		1832 1853	25.4906 25.5398	285.6224 285.7498	0.7384 0.7099
3.1858		5129	25.5152	285.4630	0.7384
3.2019		5150	25.4906	285.2717	0.7384
3.6880		5702	25.4906	285.1760	0.7384
3.6556	0.5	5724	25.4906	285.1441	0.7242
4.1255	0.6	6340	25.5398	284.9527	0.7384
4.5629		849	25.5398	284.9208	0.7384
4.8222		871	25.4906	284.8251	0.7384
5.6971		7444	25.5152	284.4580	0.7384
5.7295 6.3398		7465 7996	25.5398 25.4742	284.4740 284.1333	0.7384 0.7384
6.8555		3379	25.4906	283.9629	0.738 4
6.8960		3400	25.4906	283.9629	0.7384
7.2471		3634	25.5070	283.7818	0.7289
7.5522		3910	25.5152	283.6912	0.7384
7.5927		3931	25.4906	283.7391	0.7384
7.9573		186	25.4661	283.4513	0.7384
8.0140		207	25.4906	283.3873	0.7384
8.2084		292	25.4906	283.1634	0.7384
8.0950		313	25.4415	283.3553 283.1954	0.7384 0.7384
8.2084 8.4677)356)526	25.4906 25.4661	283.1954 283.1314	0.7364 0.7242
8.5001		547	25.4906	283.0994	0.7384
9.0995		014	25.4906	283.0034	0.7384
9.2454		035	25.4661	282.8593	0.7384

PRESSURE LEEWARD (continued, X58.2750) TABLE 5 TOTAL TEST RUN POINTS **PoNOM** Pref X(om) 25.0000 58.2750 14.7750 47 157 77 P(psi) Y(cm) Po(psi) To (deg.K) Pw(psi) 10.0555 1.0566 25.4742 282.6404 0.7384 10.9844 1.1204 $25.523\overline{4}$ 282.3734 0.7289 12.1456 1.2096 25.4906 282.2346 0.7099 12.1537 1.2117 25.4906 282.2986 0.7384 282.1384 25.4415 12.8179 1.2988 0.7384 12.8260 1.3009 25.4906 282.1384 0.7099 12.6640 1.3944 25.4415 281.9032 0.7384 11.2220 1.4772 25.4415 281.7375 0.7384 11.3841 1.4793 25.4415 281.8177 0.7384 9.7638 25.4906 1.5600 281.5610 0.7384 9.8610 1.5622 25.4415 281.5932 0.7384 9.8286 0.7099 1.5643 25.4906 281.5932 9.2292 1.6365 25.4415 281.3685 0.7384 9.2292 25.4415 281.4969 1.6386 0.7384 9.2130 1.6429 25.4415 281.3043 0.7099 9.1076 1.7087 25.4661 281.1919 0.7384 9.0833 1.7108 25.4415 281.2079 0.7384 9.0995 1.7724 25.4906 281.3043 0.7384 9.0752 1.7746 25.4661 281.2561 0.7384 9.0671 1.8340 25.4415 281.1758 0.7384 0.7384 9.0671 1.8362 25.4415 281.2401 281.1758 9.0509 1.8850 25.4415 0.7384

TABLE 5 - TOTAL PRESSURE LEEWARD

TEST 47	RUN 150	POINTS 97	PoNOM 25.0000	X(cm) 58.9100	Pref 14.7639
P(psi)	Υ(em)	Po(psi)	To (deg.K)	Pw(psi)
1.6991	0.0	915 9	25.3751	291.0144	0.68 82
1.7045	0.0	0180	25.3751	291.2669	0.6882
1.6964	0.6	286	25.3997	289.9084	0.7165
1.7004		307	25.4243	290.2246	0.6882
1.7112		371	25.4734	289.3282	0.6882
1.7246		9477	25.4898	288.7686	0.6976
1.7448		9668	25.4734	288.2613	0.6882
1.7407 1.7568		9690 9923	25.4979 25.5061	288.2772 287.6265	0.7024 0.6976
1.7730		157	25.5225	286.6306	0.6976
1.7904		369	25.4898	286.0683	0.6976
1.8112		582	25.4857	285.2318	0.6953
1.8384		815	25.5102	284.7533	0.7094
1.8616		2176	25.4734	284.3143	0.7165
1.8757	0.2	2198	25.5225	284.0907	0.7024
1.9180		2538	25.4734	283.8990	0.6882
1.9301		2559	25.4979	283.6912	0.7024
1.9744		2920	25.5225	283.5792	0.6882
1.9946		2941	25.4734	283.4513	0.6882
1.9825		2962	25.5225	283.5792	0.7165
$2.0510 \\ 2.0348$		3260 3281	25.5225 25.4734	283.1154 283.3873	0.7165 0.6882
2.1336		3642	25.4734	282.8272	0.7024
2.1396		3663	25.4734	282.7151	0.7024
2.2282		1003	25.5061	282.4268	0.6976
2.3169		385	25.3997	282.1865	0.6882
2.3290		407	25.3751	282.3628	0.6882
2.3330	0.4	428	25.3260	282.1704	0.7165
2.4539	0.4	874	25.3588	281.7963	0.7071
2.7037		320	25.5552	281.5076	0.7071
2.7319		341	25.5716	281.4327	0.6882
2.9495		830	25.4898	281.1437	0.7071
3.5377		0191	25.2769	275.2052	0.6882
$3.2503 \\ 3.3040$		5318 5340	25.4734 25.4734	280.8011 280.6618	0.6976 0.6882
3.6492		807	25.5061	280.4690	0.6882
3.6868		828	25.4734	280.4368	0.6882
3.4531		849	25.4734	280.6297	0.6882
4.0534		295	25.4734	280.3404	0.7165
3.8681	0.7	317	25.5225	280.3082	0.6882
4.0937	0.7	338	25.5225	280.3404	0.7165
4.5007		'8 05	25.4079	280.0830	0.6882
4.5208		'826	25.4243	280.0830	0.7165
5.2017		1442	25.3751	279.8900	0.6882
4.9036		1464	25.3751	279.7934	0.6882
5.2460		3506	25.3751	279.9221 279.6486	0.7165
5.8706 5.9108		037 058	25.3997 25.4243	279.7291	0.7024 0.7165
6.5314		377	25.4243 25.4734	279.3748	0.6882
6.5233		398	25.4734	279.3748	0.7024
6.6159		419	25.3260	279.0527	0.7165
6.5757		441	25.3751	279.0527	0.7024
6.6871		483	25.5061	278.8915	0.6882
7.4110		014	25.5552	278.6981	0.7071
7.3291	1.0	035	25.4734	278.7625	0.7165

TABLE 5 - TOTAL PRESSURE LEEWARD (continued, X58.9100)

TEST 47	RUN 150	POINTS 97	PoNOM 25.000		Pref 14.7639
P(psi)	Y(cm)	Po(psi) To (deg.	.K) Pw(psi)
7.8126	1.	0566	25.497	9 278.50	45 0.7024
7.8126	1.	0609	25.522	278.56	91 0.7165
7.8126	1.	0651	25.522	278.47	23 0.7165
7.8126	1.	1076	25.473	34 275.46	47 0.7165
7.8126	1.	1119	25.424	3 275.49	71 0.6882
7.8126		1182	25.522	25 278.56	
7.8126		1204	25.522		
7.3126		1777	25.473		
7.8126	1.	1798	25.473		
7.8126		2351	25.497		
7.8126		2372	25.473		
7.8126		2414	25.473		
7.8126		2945	25.473		
7.8126		2967	25.473		
7.8126		2988	25.473		
7.3126		3051	26.357		
7.8126		3561	27.995		
7.8126		3604	28.470		
7.8126		4241	26.505		
7.8126		4262	25.735		
7.8126		4283	25.866		
7.8126		4305	26.062		
7.8126		4942	24.785		
7.8126		4963	24.785		
7.8126		5006	24.785		
7.8126		5622	25.129		
7.8126		6216	25.538		
7.8126		6238	25.522		
7.8126		6577	25.227		
7.8126		6599	25.227		
7.8126		6790	25.669		
7.8126		6811	25.596		
7.8126		6875	25.571		
7.8126		7342	25.669		
7.8126		7363	25.669		
7.8126		7852	25.653		
7.8126		7873	25.669	_	
7.8126		7915	25.669		
7.8126		8340	25.407		
7.8126		8383	25.522		
7.8126		8425	25.473		
7.8126		8744	24.998		
6.0120	1.	UITT	47.77C	JU 2(U.DU	TT 0.0002

TABLE 5 - TOTAL PRESSURE LEEWARD

TE ST 47	RUN 151	POINTS 96	PoNOM 25.0000	X(cm) 58.9100	Pref 14.7682
P(psi)	YC	em)	Po(psi)	To(deg.K)	Pw(psi)
1.7808		0074	25.1833	290.5407	0.7797
1.7808		0095	25.1833	290.5560	0.7655
1.7808		0116	25.1834	290.4297	0.7655
1.7646		9137	25.1343	289.3388	0.7512
1.7700		0222	25.1016	288.3459	0.7702
1.7646		9397 9329	25.0852 25.1098	287.4995 287.2771	0.7797 0.7655
1.7646 1.7808		9329 9392	25.1098 25.0852	286.1957	0.7033 0.7797
1.7808		93 <i>92</i> 9414	25.1343	286.3867	0.7512
1.7970		9435	25.1343	286.1002	0.7797
1.7970		0477	25.1343	285.7180	0.7512
1.8051		0499	25.1343	285.6701	0.7797
1.7970		0541	25.1343	285.2079	0.7512
1.8131		9690	25.1588	284.6656	0.7512
1.8131		0711	25.1343	284.5379	0.7512
1.8293		9923	25.1220	283.8989	0.7726
1.8400	0.1	1136	25.1343	283.2381	0.7702
1.8616	0.1	1327	25.1343	282.4589	0.7797
1.8535		1348	25.1343	282.6350	0.7655
1.8859	0.1	1518	25.1343	282.2666	0.7655
1.8778		1539	25.1343	282.2986	0.7797
1.8778		1561	25.1833	282.0102	0.7797
1.9020		1879	25.1588	281.8017	0.7797
1.9424		2176	25.1343	281.1758	0.7797
1.9586		2198	25.0852	281.2401	0.7797
1.9424		2240 2514	25.1343 25.1833	281.4648	0.7512
1.9909 2.0071		2516 2538	25.1833	280.9189 280.8225	0.7512 0.7797
2.0717		2856	25.1343	280.5654	0.7512
2.0637		2877	25.1343	280.6136	0.7512
2.1148		3196	25.1343	280.2868	0.7702
2.1202		3217	25.1343	280.3404	0.7797
2.2172		3642	25.1343	279.7613	0.7655
2.2172	0.3	3663	25.0852	279.7612	0.7797
2.3465	0.4	1046	25.1343	279.4071	0.7512
2.3142		1067	25.1343	279.5037	0.7797
2.3304		1088	25.1343	279.4071	0.7797
2.4597		1555	25.1343	279.1171	0.7512
2.4920		1577	25.1343	279.0527	0.7512
2.6456		5001	25.1343	278.8432	0.7512
2.6860		5023 5426	25.1833	278.7948 278.6658	$0.7512 \\ 0.7512$
2.8315		5447	25.1343 25.1343	278.6336	0.7512
2.8800		5936	25.1343 25.1833	278.5691	0.7512
3.1224 3.1547		5957	25.1343	278.5045	0.7512
3.4295		425	25.1833	278.1173	0.7512
3.4780		446	25.1833	278.2142	0.7797
3.7529		892	25.1343	277.9721	0.7797
3.8013		934	25.0852	277.9236	0.7512
4.2863	0.7	487	25.1098	277.7784	0.7797
4.9894	0.8	3124	25.1098	277.4553	0.7655
5.7006		3655	25.1343	277.4391	0.7655
5.5632		3676	25.0852	277.5038	0.7512
6.3876		249	25.1833	277.3098	0.7512
6.4927	0.9	271	25.1588	277.2290	0.7512

TABLE 5 - TOTAL PRESSURE LEEWARD (continued, X58.9100)

TEST 47	RUN 151	POINTS 96	Ponom 25.0000	X(cm) 58.9100	Pref 14.7682
P(psi)	Y(c	:m)	Po(psi)	To(deg.K)	Pw(psi)
7.0988 7.2362 7.5837 7.5837 7.6645 7.6807 7.9232 7.8828 8.5697	0. 1. 1. 1. 1.	9823 9844 0014 0057 0099 0142 0227 0248 0694	25.183 25.158 25.134 25.134 25.134 25.134 25.085 25.134	8 277.1482 3 276.9219 3 277.0189 3 276.6469 3 276.5983 2 276.4689 3 276.3880	0.7512 0.7512 0.7512 0.7655 0.7655 0.7797 0.7797 0.77655
8.5536 8.5859 9.5288 10.3801 10.4448 10.4610 11.2530 11.2853 11.3338	1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .	0736 0758 1352 1905 1926 1968 2499 2520 2563	25.085 25.085 25.150 25.134 25.134 25.134 25.134 25.134	2 276.1775 6 276.2423 3 275.9832 3 275.8536 3 275.8212 3 275.7564 3 275.8212	0.7512 0.7512 0.7702 0.7512 0.7797 0.7797 0.7797 0.7797
11.9304 12.5947 12.5946 12.9664 12.9503 13.1200 13.1280 13.1927	1 . 1 . 1 . 1 . 1 .	3136 3689 .3710 .4220 .4241 .4836 .4857	25.158 25.134 25.085 25.134 25.085 25.109 25.134	275.8536 3 275.6591 2 275.5619 3 275.4647 2 275.4160 8 275.3674 3 275.3674	0.7797 0.7655 0.7512 0.7797 0.7655 0.7797 0.7512
13.1927 13.1604 13.1604 13.1280 13.0634 13.0877 12.7563 12.8209 12.7563 12.0397	1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .	.5367 .5855 .5898 .5940 .6407 .6429 .6981 .7023 .7045	25.134 25.134 25.134 25.134 25.134 25.134 25.134 25.134	275.1728 275.2052 3 275.0754 3 275.0754 3 275.0592 3 274.9781 3 274.8807 3 274.6103	0.7797 0.7512 0.7512 0.7512 0.7797 0.7655 0.7797 0.7797 0.7797
10.8812 10.9701 9.8306 9.9599 9.4992	1 . 1 . 1 .	.8064 .8085 .8531 .8574 .8956	25.085 25.109 25.134 25.085 25.109	274.6860 274.5237 224.4912	0.7797 0.7512 0.7655 0.7512 0.7655

TABLE 5 - TOTAL PRESSURE LEEWARD

TEST 47	RUN 149	POINTS 60	PoNOM 25.0000	X(cm) 60.1800	Pref 14.7540
P(psi)	Υ(cm)	Po(psi)	To(deg.K)	Pw(psi)
1.7393	0.0	0052	25.4621	291.2670	0.6642
1.7474		0074	25.4621	291.3615	0.6642
1.7365	0.0	020 1	25.3311	289.6765	0.6642
1.7311		9397	25.3147	288.7528	0.6642
1.7474		0329	25.2656	288.8003	0.6642
1.7474 1.7636		9414 3400	25.3147 25.3638	288.1238	0.6642
1.7636		0499 0520	25.3393	287.0546 287.3089	0.6642 0.6642
1.7799		0605	25.3638	286.6729	0.6642
1.7799		0626	25.3638	286.6094	0.6928
1.7799		9987	25.3638	286.0365	0.6642
1.7962		1008	25.3393	285.8454	0.6642
1.8124		1348	25.3311	285.3142	0.6642
1.8450		1688	25.3393	284.7453	0.6642
1.8450 1.8829		1709 2092	25.3638	284.7613	0.6642
1.9100		2474	25.3147 25.3311	284.6124 284.1440	0.6642 0.6642
1.9506		2877	25.3638	283.6912	0.6642
1.9588		899	25.3638	283.5153	0.6642
2.0076	0.3	3238	25.3147	282.7792	0.6642
1.9995		3260	25.3393	282.9073	0.6642
2.0402		3621	25.3147	282.6030	0.6785
2.0401 2.0889		3642	25.3147 25.3147	282.5550	0.6642
2.0808		3961 3982	25.3393	282.2666 282.2987	0.6642 0.6642
2.1540		598	25.3638	281.9460	0.6642
2.1215		619	25.3638	281.9460	0.6642
2.1702		235	25.3638	281.8498	0.6642
2.3573		872	25.3638	281.5290	0.6642
2.4847		509	25.3638	281.0046	0.6642
2.6690		147	25.3311	280.7690	0.6642
2.8805 3.1841		'784 3421	25.3147 25.3638	280.5118 280.4261	0.6642 0.6546
3.6015		037	25.3638	280.0509	0.6642
3.5609		058	25.3393	280.0187	0.6642
3.8943	0.9	356	25.2656	279.7291	0.6642
3.8293		377	25.2901	279.8095	0.6642
4.3823		0057	25.3147	279.3748	0.6642
4.4310 5.0003		1078 1588	$25.3147 \\ 25.3393$	279.3427 279.2783	0.6642
5.0328		609	25.3147	279.3104	0.6642 0.6642
6.1876		480	25.3147	279.1171	0.6642
5.8786		501	25.3638	279.0849	0.6642
6.0738	1.1	522	25.3638	279.0849	0.6642
7.3262		308	25.3638	279.0204	0.6642
7.2692		329	25.3393	279.1011	0.6642
8.5515 9.9177		158 007	25.3638 25.3147	278.7948 278.5260	0.6642
11.1484		772	25.3638	278.3755	0.6642 0.6928
11.1321		793	25.3638	278.5207	0.6642
12.1460		537	25.2983	278.4293	0.6642
12.8562	1.6	238	25.3147	278.0205	0.6642
12.8400		259	25.3393	277.9720	0.6642
13.2059		917	25.3147	277.9882	0.6642
13.1815		938 510	25.3147	277.9882	0.6642
13.3441 13.3279		512 533	25.3638 25.3638	277.9559 277.8914	0.6642 0.6642
13.3604		597	25.3638	277.9882	0.6642 0.6642
13.3767	1.8	_	25.3393	277.6653	0.6642
13.3604	1.8		25.3147	277.6976	0.6642

TABLE 5 - TOTAL PRESSURE LEEWARD

TEST	RUN	POINTS	PoNOM	X(cm)	Pref
47	148	88	25.0000	61.4500	14.7652
P(psi)	Υ(α	om)	Po(psi)	To(deg.K)	Pw(psi)
1.8766		0095	24.9820	290.1772	0.6777
1.8685		9116	24.9820	290.0982	0.6777
1.8685		0137	24.8838	289.6554	0.6777
1.8685 1.8605		0159 0244	24.8838 24.8838	289.3864 289.0854	0.6777 0.6920
1.8685		0265	24.8838	289.1171	0.6777
1.8685		9350	24.9575	288.7369	0.6777
1.8685	0.6	937 1	25.0802	288.2930	0.6777
1.8846		9435	25.1294	288.1978	0.6777
1.9007		9456	25.2276	288.0075	0.6777
1.9168		0477 0541	25.3258	288.0392	0.7064
1.9489		9541 2542	25.4241	287.9123	0.7064
1.9328 1.9650		0562 0902	25.4241 25.5223	287.9229 287.5312	0.696B 0.6777
1.9811		9923	25.5714	287.0705	0.7064
1.9972		1263	25.5714	286.7684	0.7064
2.0132	0.1	1284	25.6206	286.5617	0.6920
2.0508	0.1	1667	25.6370	286.0577	0.7064
2.0776		2028	25.6206	285.4949	0.6777
2.0936		2049	25.6206	285.3513	0.7064
$2.1258 \\ 2.1258$		2410	25.5714	285.2717 285.1760	0.7064
2.1419		2431 2792	25.5714 25.5714	284.9527	0.7064 0.7064
2.1741		2835	25.5714	284.9527	0.7064
2.2062		3196	25.6206	284.5698	0.6777
2.1981		3217	25.5714	284.7772	0.7064
2.2223	0.3	3557	25.5714	284.5059	0.7064
2.2384		3600	25.5960	284.1865	0.7064
2.2545		3939	25.6206	284.0907	0.7064
2.2786 2.2866		3961 4322	25.5960 25.6206	284.0906 283.6752	0.7064 0.7064
2.3108		1 343	25.5714	283.4833	0.7064
2.3349		1725	25.5714	283.0674	0.6873
2.3510		5086	25.5223	283.0353	0.7064
2.3670		5108	25.5223	282.8753	0.7064
2.3831		5426	25.5714	282.6511	0.6777
2.3831		5447	25.5714	282.6190	0.7064
2.3831		5469	25.5714	282.5229	0.7064
2.3992 2.4314		5872 6509	25.5550 25.5714	282.1704 281.8498	0.6968 0.7064
2.4394		6 5 31	25.5469	281.8498	0.7064
2.4742		7189	25.5550	281.5932	0.6968
2.4957		7678	25.5223	281.4006	0.7064
2.5118		7699	25.4978	281.3685	0.7064
2.5225		7805	25.5223	281.4006	0.7064
2.5439		7933	25.5223	281.1758	0.7064
2.5439		7954 9001	25.5223 25.5223	281.0795 280.7261	0.7064 0.7064
2.5600 2.5600		3081 3103	25.5223 25.5223	280.6940	0.7064
2.5922		3591	25.5223	280.6297	0.6777
2.6083		3612	25.4732	280.5976	0.7064
2.7047		9271	25.5223	280.1796	0.7064
2.6967		9292	25.5223	280.1796	0.7064
2.7691		9887	25.5223	280.2439	0.7064
2.8656	0.9	9929	25.4732	280.1152	0.6777

TABLE 5 - TOTAL PRESSURE LEEVARD (continued, X61.4500)

TEST	RUN POINTS	PoNOM	X(cm)	Pref
47	148 88	25.0000	61.4500	14.7652
P(psi)	Y(cm)	Po(psi)	To(deg.K)	Pw(psi)
2.8334	0.9950	25.4732	280.2117	0.7064
3.0103	1.0566	25.4732	279.9865	0.7064
3.0746	1.0588	25.4732	280.0187	0.7064
3.3319	1.1246	25.5223	279.7934	0.6777
3.3641	1.1267	25.4978	279.6325	0.7064
3.7822	1.1905	25.4732	279.2138	0.7064
3.8144 3.7983 4.2164	1.1926 1.1947 1.2563	25.5223 25.5223 25.5223 25.5223	279.1494 279.2299 279.0043	0.7064 0.7064 0.7064
4.2486	1.2584	25.5223	278.9882	0.7064
4.8757	1.3243	25.5223	278.8593	0.7064
4.7310	1.3264	25.5223	278.9076	0.7064
5.5190	1.3944	25.4732	278.6659	0.6920
5.5512	1.3965	25.5223	278.6981	0.7064
6.3874	1.4560	25.4732	278.2465	0.6777
6.3472	1.4581	25.4978	278.3594	0.7064
7.4488	1.5176	25.5223	278.2465	0.7064
7.1272	1.5197	25.5223	278.3755	0.7064
7.4166	1.5239	25.5223	278.2787	0.7064
8.2770	1.5770	25.5223	278.1173	0.7064
8.3172	1.5791	25.5223	278.0205	0.7064
9.0891	1.6344	25.4732	278.1173	0.6777
9.2017	1.6365	25.4732	278.1496	0.6777
9.2982	1.6386	25.4732	278.0851	0.7064
10.2148	1.6896	25.5223	277.7299	0.7064
10.1344	1.6917	25.4732	277.8107	0.7064
10.9867	1.7406	25.4978	277.7945	0.6920
10.9867	1.7427	25.5223	277.6653	0.7064
11.6621	1.7873	25.4732	277.4391	0.7064
11.6782	1.7894	25.4978	277.4391	0.7064
12.3536	1.8340	25.5223	277.4391	0.7064
12.3537	1.8362	25.5223	277.5360	0.7064
12.7718	1.8744	25.4732	277.2614	0.7064

TABLE 5 - TOTAL PRESSURE LEEWARD

TEST	RUN	POINTS	Po	NOM	3	K(cm)	P:	ref
47	147	75	25.	0000	62	2.7200	14	.7665
P(psi)	Y(c	m)	Po(psi)	Т	(deg.K)		Pw(psi)
2.1179	0.0	116	25.	4173	29	2.0080		0.8411
2.1206	0.0	137		4419		92.1601		0.8458
2.1098	0.0			3108	-	90.4670		0.8364
2.0937	0.0			3435		39.8452		0.8269
2.1098	0.0			3190		39.4180		0.8411
2.1584	0.0			3435		38.7686 38.9745		0.8553
2.1503 2.2123	0.0 0.0			2944 3435		38.2507		0.8553 0.8269
2.2474	0.0			3435		37.5471		0.8553
2.2555	0.0			3435		37.5630		0.8553
2.2717	0.0			3435		36.8744		0.8553
2.3040	0.0			3435		36.3867		0.8269
2.2986	0.0	796	25.	3435	28	36.2700		0.8458
2.3148	0.0	88 1		3271		36.0258		0.8458
2.3849	0.1			3435		35.4311		0.8553
2.3741	0.1			3435		35.5161		0.8364
2.4443	0.1			3108		34.9527		0.8458
2.4497	0.1			2944 2944		34.9208		0.8269
2.5549 2.5387	0.100			2944 3190		34.3622 34.4740		0.8411 0.8553
2.6358	0.2			2821		33.8190		0.8482
2.7167	0.2			2944		33.3553		0.8411
2.7409	0.2	-		3190		33.0194		0.8411
2.8057	0.3			2944		32.7472		0.8269
2.8218	0.3	154	25.	2944	28	32.6671		0.8553
2.8704	0.3			2944		32.5550		0.8269
2.9082	0.3			3108		32.4055		0.8458
3.0322	0.4			3271		31.9995		0.8364
2.9998	0.4			2944		32.0422		0.8553
3.1131 3.1455	0.4 0.4			3435 2944	20	31.8498 31.7856		0.8553 0.8269
3.1455	0.4			2944		31.7536		0.8553
3.2264	0.5			2944		31.5183		0.8364
3.2911	0.5			2944		31.2722		0.8269
3.3235	0.6			2944	28	31.2882		0.8411
3.3720	0.6	616	25.	2944	28	31.1116		0.8269
3.3801	0.6			2698		30.9028		0.8411
3.4044	0.7			2944		30.6297		0.8553
3.4206	0.7			2698		30.5493		0.8553
3.4287	0.7			2944 2944		30.3886 30.3082		0.8269 0.8269
$3.4206 \\ 3.4152$	0.7 0.8			2944 2780		30.2439		0.8364
3.4206	0.8 0.8			2944		30.2437		0.8553
3.4044	0.9			2944		79.7720		0.8553
3.3882	0.9			2944		79.8900		0.8553
3.3774	0.9			2780	2'	79.4930		0.8458
3.3720	0.9	908		2698	2'	79.2944		0.8411
3.3720	0.9			2944		79.3427		0.8269
3.3639	1.0			2452		79.2299		0.8269
3.3720	1.0			2944		79.3104		0.8269
3.3477	1.0			2698		78.9721		0.8411
3.3397	1.0			2452		78.8915 78.8432		0.8269 0.8411
$3.3235 \\ 3.3073$	1.1			2452 2452		78.7625		0.8553
3.3397	1.1			2452 2452		78.8270		0.8269
J. 0071	1.2		20.	- TVE	ے			5.0=07

TABLE 5 - TOTAL PRESSURE LEEWARD (continued, X62.7200)

TEST 47	RUN 147	POINTS 75	PoNOM 25.0000	X(cm) 62.7200	Pref 14.7665
P(psi)	Y(om)	Po(psi)	To(deg.K)	Pw(psi)
3.3451 3.4125 3.4367 3.6309 3.6040 3.7928 3.9168 4.1326 4.3429 4.2458 4.7717 4.8446 5.3786	1 1 1 1 1 1 1 1	. 2223 . 3030 . 3051 . 3901 . 3922 . 4645 . 4708 . 5473 . 5494 . 5515 . 6216 . 6238	25.2780 25.2452 25.2452 25.2452 25.2452 25.2452 25.2452 25.2698 25.2944 25.2944 25.2452 25.2452	278.7840 278.5691 278.4884 278.4400 278.2787 278.2895 278.3110 278.1335 278.2787 277.9882 278.0367 277.7945	0.8458 0.8411 0.8269 0.8553 0.8364 0.8553 0.8553 0.8269 0.8553 0.8269
5.5566 5.5485 6.0906 6.2605 7.0130 7.0777 7.8760	1 . 1 . 1 . 1 .	.6938 .6960 .7576 .7597 .8192 .8213 .8744	25.2452 25.2452 25.2452 25.2452 25.2698 25.2944 25.2616	277.5361 277.6007 277.4714 277.5522 277.3422 277.3745 277.2345	0.8269 0.8553 0.8269 0.8269 0.8553 0.8269 0.8553

TABLE 6 - STATIC PRESSURE LEEWARD

TEST	RUN	POINTS	PoN			(cm)	Pre	
47	158	91	25.0	000	55	. 1000	14.7	668
P(psi)	Υ(c	em)	Po(p	si)	То	(deg.K)	F	w(psi)
0.7830	0.1	1206	25.5	255	29	9.7538	0	.7665
0.7890	0.1	1228	25.4	764	29	9.0074		.7944
0.7951		1312	25.4	273	29	7.8859	6	.7944
0.7991		1334	25.3			7.3867	0	.7665
0.7991		1355	25.3			7.6052		.7944
0.7951		1440	25.3			6.3871	_	.7944
0.7991		1525	25.3			5.0095		7944
0.7991 0.7951		l 546 l 567	$\begin{array}{c} 25.3 \\ 25.2 \end{array}$			5.5108 5.3856).7665).7665
0.7951		1652	25.2			4.6228		7758
0.7951		1737	25.2			3.5029		.7944
0.7991		759	25.2			3.3143		.7665
0.7951		1822	25.3			2.9054		.7804
0.7910	0.1	1971	25.3			2.4174		.7665
0.7910		2162	25.2	801		1.9922	0	.7944
0.7910		2205	25.2			1.8031	0	.7944
0.7870		2396	25.3			1.3616		.7665
0.7870		2417	25.2			1.2669		.7944
0.7810		2629	25.2			0.8882		.7665
0.7830		2651	25.2			0.7934		.7665
0.7770		2863	25.2			0.5565		7804
0.7790 0.7750		2884 3139	$25.3 \\ 25.2$			0.5723 9.8241		7944 7851
0.7730		3373	25.2			9.5604		7.7944
0.7710		3755	25.3			9.2438		.7944
0.7710		3776	25.2			9.0538		.7944
0.7669		3798	25.2			9.1805		.7944
0.7690	0.4	1180	25.2	801	28	8.7369	6	.7944
0.7710	0.4	1 520	25.2	801	28	8.4833	6	.7944
0.7710		454 1	25.2			8.5150		.7665
0.7696		4902	25.2			8.0603		.7851
0.7669		5263	25.2			7.9123		7944
0.7710		5306 5445	25.2			7.7694		7944
0.7710 0.7710		5645 5667	$25.2 \\ 25.2$			7.6900 7.6900).7944).7944
0.7710		5028	25.2 25.2			7.3724		.7665
0.7710		5070	25.2			7.1500		.7665
0.7669		6389	25.2			6.9910		.7944
0.7710		6410	25.2			6.9592		.7665
0.7669	0.6	6750	25.2	801	28	6.8638	Q	.7944
0.7710	0.6	6771	25.2	801	28	6.7684	6	.7944
0.7710	0.7	7281	25.2	801	28	6.6730	•	.7665
0.7710		7302	25.2			6.6094		.7665
0.7710		7791	25.2			6.4185		.7665
0.7710		7833	25.2			6.4185		7665
0.7710		7854 3364	25.2			6.2912 6.1320		7665
0.7730 0.7750		3385	$\begin{array}{c} 25.2 \\ 25.2 \end{array}$			6.1320).7665).7944
0.7710		3853	$\begin{array}{c} 25.2 \\ 25.2 \end{array}$			5.9728		.7944
0.7750		3874	25.2			5.8772		.7944
0.7737		405	25.2			5.8029		.7851
0.7790		0021	25.2			5.7180		.7944
0.7790		042	25.2			5.6542		.7944
0.7790		170	25.2			5.3992		.7944
0.7810	1.0	191	25.2	556	28	5.3992	•	.7804

 TABLE 6
 STATIC
 PRESSURE
 LEEWARD
 (continued, X55.1000)

TEST 47	RUN 158	POINTS 91	PoNOM 25.0000	X(cm) 55.1000	Pref 14.7 668
P(psi)	Υ((em)	Po(psi)	To(deg.K)	Pw(psi)
0.7810	1.0	9297	25.2556	285.1601	0.7804
0.7790		0340	25.2310	284.8571	0.7665
0.7830	1.0	0361	25.2310	284.8571	0.7944
0.7830	1.0	9510	25.2310	284.7134	0.7804
0.7830	1.0	953 1	25.2310	284.6974	0.7944
0.7830	1.	1104	25.2801	284.5059	0.7944
0.7870	1.	1125	25.2310	284.4421	0.7944
0.7830	1.	1656	25.2310	284.2824	0.7944
0.7870	1.	1720	25.2801	284.2504	0.7944
0.7870	1.2	2272	25.2310	284.1546	0.7665
0.7870		2315	25.2801	284.1226	0.7944
0.7890		2888	25.2310	284.0587	0.7804
0.7951		2931	25.2310	283.9948	0.7944
0.7910		3504	25.1819	283.9309	0.7665
0.7910		3547	25.2310	284.0268	0.7944
0.7910		1099	25.2310	284.0587	0.7665
0.7951		1142	25.1819	283.9629	0.7944
0.7870		1 715	25.1819	283.9948	0.7665
0.7991		1 736	25.2310	283.9629	0.7665
0.7951		5289	25.2310	283.7072	0.7665
0.7910		5310	25.2310	283.6112	0.7944
0.7951		5331	25.2310	283.5153	0.7944
0.7991		5989	25.2310	283.4993	0.7665
0.7951		6627	25.2310	283.4193	0.7665
0.7951		6648	25.2310	283.2914	0.7944
0.7991		6690	25.2310	283.3553	0.7944
0.7951		7328	25.2065	283.3713	0.7665
0.7930		7944	25.2556	283.0514	0.7804
0.7951		7986	25.1819	283.1314	0.7944
0.7930		3538	25.2310	282.9233	0.7944
0.7951		3560	25.2310	283.0674	0.7665
0.7971		9091	25.2310	282.9073	0.7804
0.7951		9112	25.2310	282.7151	0.7944
0.7991		9622	25.2801	282.6671	0.7804
0.7991		9643	25.2801	282.7792	0.7665
0.7951	2.0	9004	25.2801	282.6511	0.7665

TABLE 6 - STATIC PRESSURE LEEWARD

TEST	RUN	POINTS	PoNOM	X(cm)	Pref
47	159	91	25.0000	57.0050	14.7563
P(psi)	Υ(α	em)	Po(psi)	To(deg.K)	Pw(psi)
1.5760		482	25.2755	298.1353	0.8264
1.5780		503	25.2019	297.5583	0.7981
1.5679		715	25.0791	296.0117	0.7981
1.5679 1.5539		1736	25.0299	295.8552	0.7981
1.5518		1949 1970	24.9808 24.9808	294.4293 294.2567	0.7981 0.7981
1.5357		2140	24.8826	293.6914	0.7698
1.5438		2182	24.9317	293.3929	0.7698
1.5357		2416	24.9317	292.4017	0.7981
1.5337		2437	24.9072	292.4332	0.7840
1.5236	0.2	2607	24.9317	291.2985	0.7698
1.5236		2628	24.9317	291.6770	0.7840
1.5075		2841	24.9317	290.7302	0.7981
1.5035		2862	24.9317	290.8091	0.7981
1.4794 1.4834		3223 3244	24.9317 24.9072	290.1614 290.2089	0.7981 0.7981
1.4539		3584	24.9317	289.7503	0.7981
1.4431		3924	24.9317	289.1805	0.7981
1.4411		3945	24.9563	289.1013	0.7981
1.4230		4306	24.8826	288.5467	0.7981
1.4190	0.4	4328	24.9072	288.6418	0.7981
1.4110		4753	24.9808	288.3247	0.7981
1.4069		4774	24.9317	288.0709	0.7981
1.4110		4795 5041	24.9317	288.2613	0.7981 0.7981
1.4029		5241 5262	24.9317 24.9808	287.6265 287.4677	0.7981
1.4029 1.4029		5708	24.9317	287.2135	0.7981
1.4029		5751	24.9072	287.1341	0.7981
1.3976		6239	24.9153	287.0016	0.7981
1.3908		6707	24.8826	286.5457	0.7981
1.3908		6749	24.8826	286.4662	0.7981
1.3788		7195	24.9317	286.1320	0.7981
1.3748		7216	24.9563	286.0842	0.7840
1.3425		7790 7000	24.8826 24.9317	285.7817 285.6224	0.769 8 0.7981
$1.3365 \\ 1.2714$		7832 8448	24.9317	285.3886	0.7887
1.2138		9086	24.9317	285.0485	0.7981
1.1936		9107	24.9153	284.9846	0.7981
1.0951		9701	24.9808	284.6017	0.7981
1.0890	0.	9744	24.9317	284.6336	0.7698
1.0125	1.0	0317	24.9317	284.1866	0.7698
0.9924		0360	24.9317	284.1546	0.7981
1.0085		0402	24.9317	284.1866 283.9309	0.7981
0.9280		0912	24.9317 24.8826	283.8990	0.7981 0.7981
0.9321 0.9361		0933 0955	24.8826	283.9629	0.7981
0.8851		1549	24.9153	283.8457	0.7981
0.8757		1613	24.8826	283.4513	0.7981
0.8717		1634	24.9072	283.4513	0.7840
0.8596	1.	1698	24.9317	283.2274	0.7981
0.8636		1719	24.9317	283.1634	0.7981
0.8636		1741	24.9317	283.1314	0.7981
0.8556		1953	24.9317	283.1634	0.7981 0.7981
0.8576 0.8475		1974 2526	24.8826 24.8826	283.0834 283.0674	0.7981
0.8475	1	202V	27.002V	200.001T	0.1701

 TABLE 6
 STATIC
 PRESSURE
 LEEVARD
 (continued, X57.0050)

TEST 47	RUN 159	POINTS 91	PoNOM 25.0000	X(cm) 57.0050	Prof 14.7563
P(pei)	Y(c	·m)	Po(psi)	To(deg.K)	Pw(psi)
0.8475	1.2	2548	24.9317	283.0034	0.7981
0.8516	1.2	2569	24.9317	283.0353	0.7981
0.8415	1.3	3121	24.9317	282.7632	0.7981
0.8435		3164	24.9317	282.7151	0.7698
0.8435		3695	24.9317	282.4589	0.7981
0.8395		3737	24.9317	282.3948	0.7840
0.8435		128 9	24.9317	282.0102	0.7981
0.8435		43 11	24.9317	282.1063	0.7981
0.8435		1353	24.8826	282.0422	0.7981
0.8395		1884	24.9317	281.8819	0.7981
0.8435		1905	24.9808	281.7856	0.7981
0.8435		1948	24.8826	281.7536	0.7981
0.8435		1969	24.9317	281.8498	0.7981
0.8435		5500	24.8826	281.7536	0.7981
0.8435		5521	24.8826	281.4969	0.7981
0.8395		5543	24.8826	281.6252	0.7698
0.8475		6074	24.9317	281.4969	0.7981
0.8435		6095	24.8826	281.4327	0.7981
0.8435		6647	24.9317	281.4327	0.7698
0.8455		6668	24.8826	281.4327	0.7981
0.8395		7263	24.9317	281.3364	0.7698
0.8455		7327	24.9317	281.2240	0.7981
0.8395		7921	24.8826	281.0795	0.7981
0.8475		7943	24.9317	280.9832 281.0153	0.7981
0.8462		7964	24.9317		0.7981
0.8475 0.8455		3537 3559	24.9317 24.9072	281.0153 281.0153	0.7981 0.7981
0.8475		3580	24.8826	280.9832	0.7981
0.8475		9068	24.8826	280.8546	0.7981
0.8462)111	24.8826	280.6833	0.7981
0.8475		578	24.9317	280.4690	0.7981
0.8496		9599	24.9072	280.5654	0.7981
0.8475		621	24.8826	280.5333	0.7981
0.8435		9961	24.8826	280.5333	0.7981
0.8496		0045	24.8581	280.5172	0.7981
0.8516		9497	24.8826	280.3725	0.7698
A.0010	٠.٧	7706	47.UU4U	200.0120	V.1070

TABLE 6 - STATIC PRESSURE LEEWARD

TEST	RUN	POINTS	PoNOM	X(cm)	Pref
47	163	83	25.0000	57.6400	14.7445
P(psi)	Υ((-m)	Po(psi)	To(deg.K	Pw(psi)
1 (101)	- ' '	J. 1	TOVPSTA	IO (G C G . III .	14(981)
1.6430		1418	25.1741	292.5277	0.7916
1.6715		1439	25.6165	293.2512	0.8200
1.6755 1.6159		1460 1694	25.5673 24.8791	293.3457 291.5088	0.7916 0.7916
1.6132		1906	24.9283	290.1614	0.7916
1.6105		2097	24.9283	289.7503	0.7916
1.6085		2140	24.9283	289.6554	0.7916
1.6085	0.2	2331	25.0512	289.0221	0.7774
1.6064		2352	25.0757	289.0538	0.7916
1.6023		2544 2565	25.0757	288.7686	0.7916
1.6105		2565 2756	25.1249	288.4516 287.9440	0.7774 0.7916
1.5983 1.5983		2777	25.0512 25.0266	287.9440	0.7632
1.5901		2968	25.0266	287.4518	0.7774
1.5779		3351	25.0266	287.0228	0.7632
1.5738	0.3	3372	25.0266	286.9910	0.7916
1.5616		3712	25.0266	286.8320	0.7632
1.5535		3754	25.0020	286.7843	0.7774
1.5393		4137	25.0757	286.5457	0.7916
1.5291 1.5128		4158 4625	25.0757 25.0266	286.4821 286.2275	0.7916 0.7916
1.5006		4646	25.0266	286.0365	0.7632
1.5047		4668	24.9774	286.1320	0.7916
1.4844		5156	24.9774	285.7180	0.7916
1.4762	0.5	5177	24.9774	285.5267	0.7916
1.4762		5220	25.0266	285.6861	0.7916
1.4579		5857 5070	24.9774	285.3514	0.7774
1.4559 1.4477		5878 6494	24.9283 24.9774	285.0804 284.9527	0.7916 0.7916
1.4477		6515	24.9774	284.7932	0.7916
1.4477		6537	24.9774	284.8571	0.7916
1.4477		7174	25.0266	284.6974	0.7916
1.4477		7195	25.0266	284.5060	0.7774
1.4477		7854	25.0266	284.3782	0.7916
1.4477		7875 7804	25.0266	284.3462	0.7632
1.4437 1.4437		7896 B576	25.0266 25.0102	284.2504 283.7498	0.7916 0.7727
1.4396		9213	25.0266	283.5792	0.7916
1.4396		9234	25.0266	283.5792	0.7916
1.4396	0.9	9255	25.0266	283.4833	0.7632
1.4274		9829	25.0266	283.2914	0.7916
1.4355		9850	24.9774	283.1634	0.7916
1.4315		9893	24.9774 25.0266	282.9713	0.7632
1.4315 1.4111		9914 9487	23.0266 24.9774	283.0353 282.7151	0.7916 0.7916
1.4111		9509	24.9774	282.6511	0.7632
1.4071		9551	24.9774	282.5870	0.7916
1.3338		1316	24.9774	282.5870	0.7632
1.3583		1337	24.9774	282.4268	0.7632
1.3460		1358	24.9774	282.4909	0.7916
1.2118		2017	25.0266	282.2346	0.7916 0.7916
1.1955 1.1874		2038 2059	25.0266 24.9774	282.2025 282.1384	0.7916 0.7632
1.1020		2675	24.9774	281.9139	0.7632
1.0633		2718	24.9774	281.8498	0.7916

PRESSURE LEEVARD (continued, X57.6400) TABLE 6 STATIC TEST RUN POINTS **PoNOM** X(cm) Pref 25.0000 163 83 57.6400 14.7445 47 P(psi) Y(cm) Po(psi) To (deg.K) Pw(pei) 1.0166 1.2845 24.9283 281.4327 0.7916 24.9774 1.0125 1.2866 281.3685 0.7916 24.9774 1.0105 1.2888 281.4006 0.7916 24.9774 0.9962 1.2930 281.4327 0.7916 24.9774 0.9921 1.2972 281.4006 0.7632 24.9774 0.9799 281.2722 1.3100 0.7632 0.9657 1.3121 24.9774 281.1759 0.7916 0.9149 1.3737 24.9283 281.2079 0.7632 0.8986 1.3780 24.9774 281.1758 0.7916 0.8945 281.2079 1.3801 24.9774 0.7916 0.8552 1.4502 24.9447 280.8653 0.7821 0.8294 1.5224 24.9283 280.8225 0.7632 0.8254 24.9283 280.7100 1.5245 0.7774 24.9283 0.8132 1.5904 280.6618 0.7632 24.9529 0.8172 1.5946 280.7100 0.7916 24.9774 0.81321.6711 280.5976 0.7632 0.8132 1.6732 24.9283 289.5654 0.7916 24.9774 289.5976 0.8172 1.6753 0.7632 24.9283 0.8172 1.7497 289.3243 0.7774 280.2761 0.8112 1.7518 24.9283 0.7916 24.9283 289.1796 0.8172 1.8219 0.7916 1.8240 24.9283 289.1474 0.8172 0.7632 260.2117 24.9283 1.8283 0.8132 0.7632 0.8132 1.8941 24.9283 280.1152 0.7916 24.9283 280.1313 1.8962 0.8193 0.7774 0.8172 1.9599 24.9283 280.0830 0.7916 0.7774 0.8152 1.9621 24.9283 280.0509

24.9283

279.8417

0.7774

2.0130

0.8193

TABLE 6 - STATIC PRESSURE LEEWARD

TES	r Run	POINTS	PoNOM	X(cm)	Pref
47		77	25.0000	58.2750	14.7457
D	**		5	m (1 TC)	.
P(psi)	Y	(cm)	Po(psi)	To(deg.K)	Pw(psi)
1.6853	0	. 1397	25.2902	298.5504	0.7967
1.7000	0.	. 1630	25.2575	296.6059	0.7967
1.6940		. 1651	25.1839	296.1837	0.7967
1.6840		. 1843	25.0284	294.1520	0.7873
1.6779		.2034	25.0121	293.2514	0.7967
1.6739		.2246	24.9630	292.4648	0.7826
1.6699		.2459	24.9630 24.9630	291.8346 291.5824	0.7826
1.6719 1.6679		. 2480 . 2650	24.9630	291.0302 291.0302	0.7967 0.7967
1.6639		. 2671	24.9630	290.6987	0.7967
1.6652		.2990	24.9794	290.2668	0.7873
1.6559		.3351	24.9630	289.7186	0.7684
1.6539		.3372	24.9139	289.3863	0.7967
1.6458	0	.3712	24.9630	288.8795	0.7826
1.6438	0.	. 3733	24.9630	288.8320	0.7967
1.6358		. 4094	24.9794	288.6418	0.7873
1.6224		.4561	25.0121	288.0921	0.7778
1.5957		. 5050	24.9630	287.7853	0.7967
1.5957		.5071	24.9876	287.7376	0.7967 0.7967
1.5743 1.5475		. 5560 . 6048	24.9630 24.9630	287.2453 286.7684	0.7967
1.5515		. 6069	24.9630	286.7684	0.7967
1.5475		. 6091	24.9139	286.8320	0.7967
1.5354		. 6537	25.0121	286.5139	0.7967
1.5274		. 6558	24.9630	286.3707	0.7967
1.5114	Ø	.7046	24.9630	286.0683	0.7684
1.5134		.7089	24.9876	286.1320	0.7967
1.4973		.7747	24.9630	285.7657	0.7826
1.4993		.7769	24.9630	285.8135	0.7967
1.4933		.8385	24.9876	285.4630	0.7826
1.4953		.8406	24.9630	285.5267	0.7967
1.4913 1.4913		. 9043 . 9064	$25.0121 \\ 24.9630$	285.2398 285.0804	0.7684 0.7684
1.4873		. 9086	24.9630	285.2079	0.7684
1.4833		.9701	25.0121	284.7294	0.7684
1.4873		. 9723	24.9630	284.6656	0.7684
1.4833		. 9744	24.9630	284.6017	0.7684
1.4833	1 .	.0402	24.9630	284.5698	0.7684
1.4773		. 0424	24.9630	284.3143	0.7826
1.4732		. 1040	24.9630	284.0428	0.7826
1.4752		. 1061	24.9139	284.0268	0.7684
1.4752		. 1677	24.9139 24.9630	284.0268	0.7967
1.4712 1.4712		. 1698 . 2272	24.9030 24.9139	283.9629 283.7072	0.7967 0.7967
1.4712		.2293	24.9139	283.7551	0.7826
1.4672		.2718	24.9630	283.5792	0.7967
1.4712		.2739	25.0121	283.5473	0.7684
1.4672		. 2824	24.9630	283.3873	0.7684
1.4712		. 2845	24.9630	283.3713	0.7967
1.4672		. 2888	24.9139	283.1634	0.7967
1.4692		.2909	24.9384	283.1314	0.7967
1.4692		.3185	25.0612	282.9553	0.7967
1.4712		.3206	25.0611	282.9393	0.7967
1.4391 1.4331		. 3886 . 3928	25.0121 25.0121	282.6831 282.6831	0.7967 0.7826
1.7001	1 .	. 0740	40.VI41	202, VUO I	₩

TABLE 6 - STATIC PRESSURE LEEWARD (continued, X58.2750)

T EST 47	RUN 160	P 01778 77	Ponom 25.0000	X(cm) 58.2750	Prof 14.7457
P(psi)	Y	cm)	Po(psi)	To(deg.K)	Pw(pei)
1.3789	1.4	4566	24.9630	282.6831	0.7967
1.3669	1.4	4608	24.9630	282.5550	0.7967
1.3588	1.4	4629	24.9630	282.4268	0.7967
1.2124	1.5	5330	24.9384	282.0583	0.7826
1.2384	1.5	5351	25.0121	282.1704	0.7967
1.0846	1.5	5989	24.9303	281.8712	0.7778
0.9816	1.0	6647	24.9139	281.7856	0.7684
0.9615	1.0	6668	24.9139	281.6733	0.7967
0.8953	1.7	7327	24.7666	281.4488	0.7967
0.8973	1.7	7348	24.7666	281.4006	0.7684
0.8591		7943	24.8648	281.4327	0.7967
0.8571	1.7	7964	24.8648	281.3685	0.7967
0.8411	1.8	8559	24.9139	281.4006	0.7826
0.8411		8580	24.9139	281.4648	0.7967
0.8331	1.0	9111	24.9630	281.3685	0.7684
0.8371	1.4	9132	24.9630	281.2401	0.7967
0.8371	1.9	9153	24.9630	281.2401	0.7967
0.8371		9663	24.9630	280.9832	0.7967
0.8371		9684	24.9630	281.0313	0.7967
0.8371		0130	24.9384	280.8065	0.7826
0.8371		0152	24.9630	280.9189	0.7684
0.8331		0513	24.9630	280.7582	0.7967

TABLE 6 - STATIC PRESSURE LEEWARD

TE ST 47	RUN 162	POINTS 83	PoNOM 25.0000	X(cm) 58.9100	Pref 14.7445
P(psi)	Y(6		Po(psi)	To(deg.K)	Pw(psi)
1.7232	0.1	1397	24.9897	292.0474	0.7777
1.7009		1609	24.7563	291.3143	0.7777
1.7009	0.1	1630	24.7071	290.9987	0.7777
1.6948	0.	1821	24.6948	290.2088	0.7635
1.6874	0.2	2013	24.6334	289.0221	0.7777
1.6928	0.2	2225	24.7808	288.7052	0.7777
1.7049	0.2	2246	25.0020	288.6260	0.7635
1.8227	0.2	2565	26.9928	288.7844	0.8346
1.8288		2586	27.0419	288.9587	0.8346
1.8268		2607	26.9928	288.6101	0.8346
1.8085		2883	26.7224	287.3406	0.8346
1.8085		2905	26.6978	287.2453	0.8061
1.8024		3266	26.6487	287.0546	0.8346
1.7943		3287	26.6323	286.7472	0.8346
1.7862 1.7767		3648	26.5995 26.3701	286.0683 285.8347	0.8061
1.7456		3669 4030	26.0097	285.2398	0.8251 0.8061
1.7456		4052	25.9605	285.2398	0.8061
1.7253		10 02 4349	25.8622	285.0485	0.8061
1.7293		4391	25.8868	285.0005	0.8061
1.7293		4413	25.8622	285.0165	0.8061
1.7131		4859	25.8458	284.6549	0.7966
1.6968		5284	25.8622	284.2504	0.8061
1.6968		5305	25.8131	284.3143	0.8061
1.6928		5326	25.8131	284.3143	0.7777
1.6765	0.	5899	25.8131	284.1866	0.8061
1.6705		5921	25.7885	284.1226	0.7919
1.6481		6473	25.8131	283.7072	0.8061
1.6441		6515	25.8131	283.7711	0.8061
1.6129		7110	25.7967	283.4513	0.7872
1.5913		7684	25.7148	283.2274	0.7777
1.5832		7705	25.6165	283.1154	0.7919
1.5507		8278	25.3215	282.6831	0.8061
1.5425		B300	25.2232 25.1249	282.6725 282.6030	0.7777 0.7635
1.5243 1.5182		8916 8937	25.1249	282.5870	0.7777
1.5141		9489	25.12 19 25.0757	282.5550	0.7777
1.5121		9532	25.1249	282.4909	0.7777
1.5121		9063	25.2232	282.2025	0.7777
1.5101		0105	25.3215	282.1704	0.8061
1.5222		0679	25.6164	282.2986	0.7777
1.5263		700	25.6656	282.2025	0.8061
1.5283	1.6	721	25.7394	282.2185	0.7919
1.5263	1.1	1252	25.8622	282.1704	0.8061
1.5263	1.1	1273	25.9114	282.1704	0.8346
1.5344	1.1	1316	25.9114	282.0422	0.8061
1.5304		847	25.9114	282.0422	0.7777
1.5263		868	25.9605	281.9460	0.8061
1.5263		1889	25.9605	281.9781	0.8061
1.5222		2463	25.9605	281.5611	0.8062
1.5263		2505 2504	25.9114	281.5932	0.8061
1.5222		2526 2024	25.9114 25.9114	281.6894 281.6894	0.8061 0.8061
1.5141 1.5195		2824 2909	25.9114 25.9605	281.5076	0.7966
1.5195		2999 2994	25.9605	281.3685	0.8061
1.01UM	1 . 2	- / / -	_3.7000		5.0001

TABLE 6 - STATIC PRESSURE LEEWARD (continued, X58.9100)

TEST	RUN POINTS	PoNOM	X(cm)	Prof
47	162 83	25.0000	58.9100	14.7445
P(psi)	Y(cm)	Po(psi)	To(deg.K)	Pw(pei)
1.5181	1.3036	25.9851	281.3203	0.7919
1.5222	1.3100	25.9114	281.1116	0.8061
1.5222	1.3121	25.9114	281.1758	0.8061
1.5182	1.3142	26.0097	281.1758	0.8346
1.5263	1.3270	26.2063	281.1758	0.8061
1.5283	1.3291	26.0589	281.1758	0.8203
1.5263	1.3312	26.0588	281.0795	0.7777
1.5182	1.4077	25.8622	280.8546	0.8061
1.5182	1.4119	25.7639	280.5976	0.7777
1.5182	1.4141	25.7639	280.7261	0.8346
1.5141	1.5012	25.8131	280.5333	0.8346
1.5191	1.5054	25.8131	280.5333	0.8061
1.5060	1.5925	25.8131	280.5976	0.7777
1.5081	1.5946	25.8868	280.4529	0.7919
1.4654	1.6774	25.9114	280.3404	0.8061
1.4532	1.6817	25.9114	280.3404	0.8061
1.4492	1.6838	25.9114	280.2760	0.7777
1.3578	1.7645	25.9360	280.3243	0.8203
1.3233	1.7667	25.9605	280.3725	0.8061
1.1507	1.8452	25.9605	280.1313	0.8061
1.1324	1.8516	25.9605	280.0509	0.8061
1.0188	1.9132	26.0097	279.8900	0.8346
0.9944	1.9196	25.9605	279.8578	0.8061
0.9985	1.9217	25.9605	279.9221	0.8346
0.9254	1.9854	25.9605	279.6968	0.8061
0.9071	1.9876	25.9605	279.6325	0.8061
0.8766	2.0343	25.9605	279.6968	0.8061
0.8645	2.0385	25.9605	279.6968	0.8346

TABLE 6 - STATIC PRESSURE LEEWARD

TEST	RUN	POINTS	POINTS PONOM X(cm)		Pref	
47	161	93	25.0000	60.1800	14.7451	
P(psi)	Y(c	m)	Po(psi)	To(deg.K)	Pw(psi)	
1.7584		375	25.1712	296.2620	0.7596	
1.7604		.397	25.1221	295.6674	0.7596	
1.7503		588	24.9254	294.1311	0.7596	
1.7483		609	24.8763	293.9114	0.7596	
1.7462 1.7442		821 843	24.8271 24.8517	293.0627 292.9368	0.7596 0.7596	
1.7381		991	24.8025	291.9292	0.7596	
1.7381		2013	24.8763	291.8661	0.7596	
1.7442		225	24.8763	291.3932	0.7596	
1.7462		2246	24.8763	291.0460	0.7596	
1.7462	0.2	2544	24.8271	290.5723	0.7596	
1.7462		2586	24.9254	290.4143	0.7596	
1.7463		2883	24.8517	289.7186	0.7455	
1.7462		2905	24.8271	289.6554	0.7879	
1.7422		3244	24.8763	289.0538	0.7313 0.7506	
$1.7442 \\ 1.7422$		3266 3606	24.8517 24.8271	289.2597 288.7686	0.7596 0.7596	
1.7462		3627	24.8763	288.4516	0.7596	
1.7462		3648	24.8763	288.5784	0.7596	
1.7462		1094	24.8271	288.2613	0.7596	
1.7462	0.4	115	24.9254	287.8805	0.7596	
1.7462	-	137	24.8517	288.0868	0.7596	
1.7422		1540	24.8763	287.4041	0.7313	
1.7462		k561	24.8763	287.3724	0.7596	
1.7462		1583	24.8763	287.4041	0.7596	
$1.7381 \\ 1.7422$		5029 5071	24.8763 24.8517	287.1817 287.0546	0.7596 0.7596	
1.7462		5496	24.9746	286.5139	0.7596	
1.7422		5538	24.9009	286.7048	0.7455	
1.7381		6006	24.9090	286.2063	0.7596	
1.7341	0.€	6027	24.9254	286.1957	0.7596	
1.7260		5494	24.8517	285.5586	0.7596	
1.7240		5515	24.8763	285.6543	0.7455	
1.7179		59 8 3	24.8271	285.1760	0.7596	
1.7119		7004	24.8271	285.0166	0.7455	
1.7058 1.6997		7450 7471	24.8763 24.8763	284.9847 284.6815	0.7596 0.7596	
1.6815		3045	24.9254	284.5059	0.7596	
1.6774		3066	24.8271	284.4101	0.7596	
1.6855		3087	24.8763	284.4740	0.7596	
1.6592	0.8	3661	24.8763	284.1706	0.7596	
1.6572		3703	24.8271	284.1226	0.7596	
1.6248		255	24.8763	283.8350	0.7596	
1.6248	•	298	24.8763	283.5792	0.7596	
1.6289)319)893	24.8763 24.8271	283.8031 283.5153	0.7596 0.7596	
1.5965 1.5965		914	24.8517	283.5793	0.7596	
1.5762		487	24.8763	283.3234	0.7596	
1.5722		509	24:8271	283.1314	0.7596	
1.5722	_	530	24.8271	283.0353	0.7596	
1.5601	1.0	976	24.8763	282.9073	0.7596	
1.5581		997	24.8517	282.8273	0.7455	
1.5520	-	146	24.9254	282.8112	0.7596	
1.5479		188	24.9254	282.6991	0.7455	
1.5540	1.1	316	24.9746	282.6351	0.7596	

TABLE 6 - STATIC PRESSURE LEEWARD (continued, X60.1800)

TEST 47	RUN 161	POINTS 93		PoNOM 5.0000		X(cm) 60.1800		Pref 14.7451	
P(psi)	Y(cm)		Po(psi)		To (deg.K)		Pw(pei)		
1.5520		1337	24.9			.6190		7596	
1.5479 1.5480		1379 1401	24.8 24.8			.4589 .3147		7596 7596	
1.5439		1422	24.9			.3628		7596	
1.5398		1719	24.8			. 9781		7596	
1.5358		1762	24.8		281			7596	
1.5236		2357	24.7			.8819		7596	
1.5236		2378	24.7	779		. 6894	0.	7596	
1.5236	1.	2399	24.8	025		.7054	0.	7455	
1.5155	1.	3015	24.8	763	281	. 6252	0.	7596	
1.5115		3036	24.8			. 5610		7313	
1.5155		3057	24.8			. 6252		7596	
1.5115		3695	24.9			. 4327		7596	
1.5074		3716	24.9			.4006		7455	
1.4994	_	4332	24.9		_	.3685		7596	
1.4994		4353	24.9			.3685		7596	
1.4913		4374	24.9			.2079		7596	
1.4953		4396	24.9			.2722		7596	
1.4832		5033	24.8			. 1758		7596	
1.4832		5054 5640	24.8			.2079		7596	
1.4791 1.4751		5649 5691	24.8 24.8			.0795 .0634		7596 7596	
1.4670		6392	24.8			.0034 .7261		7313	
1.4670		6435	24.8			. 6136		7596	
1.4589		7029	24.8			. 5011		7596	
1.4629		7051	24.8			. 5333		7596	
1.4589		7072	24.7			. 5654		7596	
1.4589		7093	24.7			. 5333		7596	
1.4548		7730	24.8			.4368		7596	
1.4548		7752	24.8			. 5976		7596	
1.4548	1.	7773	24.8	271	280	. 5654		7596	
1.4508	1.	8452	24.8	599	280	. 3404	0.	7596	
1.4508	1.	8983	24.8	763	280	.2117	0.	7596	
1.4467	1.	9005	24.8			. 1474		7313	
1.4508		9047	24.8			.1152		7596	
1.4386		9557	24.8			.1152		7313	
1.4427		9642	24.8			.0187		7596	
1.4386	2.	0067	24.8	271	279	. 8900	0.	7596	

Figure 1.- Schematic of test setup.

Figure 2.- Typical oil flow visualization results for a 19° shock generator 6.5 cm from the tunnel wall at Mach = 3.

$RUN^{#}84$ P=25ps; TEST*47 $\alpha = 13^{\circ}$

H=0c Lx=68c

(a) $P_T = 25 \text{ psia, } \alpha = 13^{\circ}, \text{ h} = 0 \text{ cm.}$

Figure 3.- Surface oil flow patterns.

(b) $P_T = 25 \text{ psia, } \alpha = 13^{\circ}, \text{ h} = 4.8 \text{ cm.}$

Figure 3.- Continued.

138

(c) $P_T = 25 \text{ psia, } \alpha = 13^\circ, \ h = 8.0 \text{ cm.}$ Figure 3.- Continued.

RUN# 87 P=10psi TEST#47 A=16°

H= 6.5cm 4=68cm

(d) $P_T = 10 \text{ psia, } \alpha = 16^{\circ}, h = 6.5 \text{ cm.}$

Figure 3.- Continued.

RUN#88 TEST#47

P= 25psi x=16°

H = 0 cm $L_x = 68 cm$

(e) $P_T = 25 \text{ psia, } \alpha = 16^{\circ}, \text{ h} = 0 \text{ cm.}$

Figure 3.- Continued.

TEST*47 P=25psi RUN#79 A=16°

H = 6.5Cm Cx =68Cm

(f) $P_T = 25 \text{ psia, } \alpha = 16^{\circ}, h = 6.5 \text{ cm.}$

Figure 3.- Continued.

RUN#89 P=25psi

H=8cm Lx=68cm

(g) $P_T = 25 \text{ psia, } \alpha = 16^{\circ}, \text{ h} = 8.0 \text{ cm.}$

Figure 3.- Continued.

RUN#86 P=80 PSi TEST#47 A= 16°

H= 6.5cm Lx=68cm

(h) P_T = 80 psia, α = 16°, h = 6.5 cm.

Figure 3.- Continued.

(1) P_T = 25 psia, α = 19°, h = 0 cm. Figure 3.- Continued.

(j) P_T = 25 psia, α = 19°, h = 6.7 cm.

Figure 3.- Continued.

H=844 Lx=6844

(k) P_T = 25 psia, α = 19°, h = 8.0 cm.

Figure 3.- Concluded.

Figure 4.- Typical oil-flow patterns for 19° shock generator at M = 3.

(a) Oil-flow patterns on unwrapped Mylar; (b) skin-friction lines.

Figure 5.- Effect of wedge angle $\,\alpha\,$ on the windward separation pattern at M = 3. (a) $\,\alpha\,$ = 13°; (b) $\,\alpha\,$ = 16°; (c) $\,\alpha\,$ = 19°.

Figure 6.- Effect of total pressure on the windward separation pattern generated by 16° wedge at M = 3. (a) P_{T} = 10 psia; (b) P_{T} = 25 psia; (c) P_{T} = 80 psia.

Figure 7.- Effect of shock generator distance h from the tunnel wall on the windward separation pattern at M=3. (a) h=0 cm; (b) h=6.5 cm; (c) h=8 cm.

Figure 8.- Measured static-pressure distribution on a cylinder with impinging shock wave at M = 3.

Figure 9.- Measured surface-pressure contours on a cylinder with impinging shock wave at M=3.

Figure 10.- Measured pressure profiles on the windward plane of symmetry of cylinder with impinging shock at

(b) Total pressure.

Figure 10.- Continued.

(c) Flow field interpretation.

Figure 10.- Concluded.

SURVEY LOCATIONS

(a) Static pressure.

Figure 11.- Measured pressure profiles on the leeward plane of symmetry of a cylinder with impinging shock at M = 3.

(b) Total pressure.

Figure 11.- Concluded.

M = 3. Figure 12.- Measured pressure contours on the windward plane at

(a) Static pressure.

(b) Total pressure.

Figure 12.- Concluded.

1. Report No.	2. Government Accession No.	3. Recipient's Catalog	No.
NASA TM-84410 4. Title and Subtitle	5. Report Date		
AN EXPERIMENTAL INVESTIGATION OF THE IMPINGEMENT		November 1983	
OF A PLANAR SHOCK WAVE ON AN AXISYMMETRIC BODY AT MACH 3		6. Performing Organi	zation Code
7. Author(s)		8. Performing Organia	ation Report No.
A. Brosh and M. I. Kussoy		A-9490	
		10. Work Unit No.	
9. Performing Organization Name and Address		T-4219	
Ames Research Center Moffett Field, California 94035		11. Contract or Grant No.	
		13. Type of Report and Period Covered	
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546		Technical Memorandum	
		14. Sponsoring Agency	Code
		506-51-11	
15. Supplementary Notes		•	
Point of Contact: M. I. Kussoy, Ames Research Center, M/S 229-1, Moffett			
Field, Calif. 94035 (415) 965-6452 or FTS 448-6452			
16. Abstract			
This work presents an experimental study of the flow caused by a			
planar shock wave impinging obliquely on a cylinder. The investigation			
was undertaken to attain two goals. First, to experimentally investigate			
and document the complex three-dimensional shock wave and boundary-layer			
interaction occurring in practical problems, such as the shock wave			
impingement from the shuttle nose on an external fuel tank, and store carriage interference on a supersonic tactical aircraft. Second, to supply			
a data base for numerical computations of complex flows. The experimental			
techniques included pressure measurements and oil flow patterns on the			
surface of the cylinder, and shadowgraphs and total and static pressure			
surveys on the leeward and windward planes of symmetry. The complete			
data is presented in tabular form for future use. Some typical results			
are presented separately and discussed in more detail. The results reveal			
a highly complex flow field with two separation zones, regions of high			
crossflow, and multiple reflected shocks and expansion fans.			
17. Key Words (Suggested by Author(s))		18. Distribution Statement Unlimited	
Fluid mechanics	on in the contract of the cont		
Boundary layer			
	c	Subject Category - 34	
19. Security Classif, (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22. Price*
Unclassified	Unclassified	160	A06