Предел функции и непрерывность

Определение предела функции

Мы переходим к ещё одному ключевому понятию в математическом анализе — понятию предела функции. Понятие предела функции — это способ формализации таких важнейших концепций, как непрерывность и производная.

Определение. Проколотой ε -окрестностью точки x_0 называется множество

$$U'_{\varepsilon}(x_0) = \{x : 0 < |x - x_0| < \varepsilon\}.$$

Определение (Предел по Коши). Пусть функция f определена в некоторой проколотой окрестности точки x_0 . Пределом функции f в точке x_0 называется такое число a, что выполняется следующее. Для любого $\varepsilon > 0$ существует такое $\delta > 0$, что если x принадлежит проколотой δ -окрестности x_0 , то f(x) принадлежит ε -окрестности точки a.

Формально,

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall x \in U'_{\delta}(x_0) \, (|f(x) - a| < \varepsilon).$$

В таком случае пишут $a = \lim_{x \to x_0} f(x)$ или $f(x) \xrightarrow[x \to x_0]{} a$.

Определение (Предел по Гейне). Пусть функция f определена в некоторой проколотой окрестности точки x_0 . Пределом функции f в точке x_0 называется такое число a, что выполняется следующее. Для любой последовательности $\{x_n\}_{n=1}^{\infty}$, стремящейся к x_0 , но не достигающей её (то есть $x_n \neq x_0$ ни для какого n) справедливо

$$f(x_n) \xrightarrow[n \to \infty]{} a.$$

Замечание. Аналогично определяются пределы, равные $+\infty$ и $-\infty$.

Теорема 1 (Эквивалентность двух определений, 6/д). Определения по Коши и по Гейне эквивалентны.

1. Найдите предел функции $f(x) = \frac{x^2 - 16}{x^2 - 4x}$ в точке $x_0 = 4$ и докажите наличие предела по определению (по Коши).

$$(yeb) \times > 4)$$

$$-4+\times < \varepsilon \cdot \times$$

$$(1-\varepsilon) \cdot \times < 4)$$

$$\times < \frac{4}{1-\varepsilon}$$

$$\sqrt{1-\varepsilon}$$

Аналогично определяется дельта_2 (для случая x < 4).

Теорема 2 (Арифметические операции под знаком предела). Пусть f(x), g(x)- две функции, причём $\lim_{x\to x_0} f(x)=a$, $\lim_{x\to x_0} g(x)=b$. Тогда

- $f(x) \pm g(x) \rightarrow a \pm b$;
- $f(x)g(x) \rightarrow ab$;
- Echu $b \neq 0$, mo $\frac{f(x)}{g(x)} \rightarrow \frac{a}{b}$.

Непрерывные функции

Определение. Функция f называется nenpepushoŭ в точке x_0 , если

$$\lim_{x \to x_0} f(x) = f(x_0).$$

 Φ ункция f называется henpepushoù, если она непрерывна в каждой своей точке.

Замечание. На интуитивном уровне непрерывность функции означает, что её график можно нарисовать, не отрывая ручки от бумаги.

Ji puller Hours uperen f(x)
To pulsep. However the special fix) $\lim_{x \to +8\times} \int \int$
2 48×/
$\frac{\ln \cot T}{(2\pi)^2 + 8\pi} = \frac{\ln 1}{(2\pi)^2 + 8\pi} = 0.$
£(2Ti) = 0. ▼
Ecure +- renpeparbua BTIT, 70
lim f(x) = f(2) = 0.
X-211 12 menp u
uz nemp u
1) Все элементарные Фунеции петр. На
bien or a con orpa.
2) Cymua, pagnoció, rpaybe, racinol reap.
goyneyun - neup. goynessene
3) Kourozniyal Henp, apyrkisiis - nenp, pyrkisia
$\ln \cos(x^3 + x)$

Последняя функция непрерывна в точке 0, поскольку определена в ней и составлена из элементарных функций.

3. Найдите

- (a) $\lim_{x\to 1} \frac{x^2-4}{x^2-x-2}$;
- (c) $\lim_{x \to +\infty} \frac{x^2 4}{x^2 x 2}$;

- **(b)** $\lim_{x \to 2} \frac{x^2 4}{x^2 x 2};$
- (d) $\lim_{x \to -1} \frac{x^2 4}{x^2 x 2}$.

a)
$$x_0 = 1$$
.

 $-3 = \frac{3}{2}$.

 $-2 = \frac{3}{2}$.

b) $x_0 = 2$.

 $x_0 = 2$.

6)
$$x_0 = +\infty$$

$$7 \cdot \frac{x^2 - y}{x^2 - x - 2} \cdot \text{(rpegen or no cn - 7eu)}.$$

$$\lim_{x \to +\infty} f(x) = 1.$$

$$\lim_{x \to +\infty} \frac{x^2 - y}{x^2 - x - 2} = \infty.$$

$$\lim_{x \to +\infty} \frac{x^2 - y}{x^2 - x - 2} = \infty.$$

$$\lim_{x \to +\infty} \frac{x^2 - y}{x^2 - x - 2} = \infty.$$

Если мы хотим воспользоваться любым способом раскрытия неопределённостей любого вида, например,

нам необходимо сначала проверить непрерывность функции в точке.

Предел функции VS предел последовательности

Последние два предела -- вообще говоря отличаются! Но если функция хорошо себя ведёт на бесконечности (например, если она монотонна), то эти пределы равны.

Так бывает не всегда. Пример:

$$f(x) = \sin JT x$$

$$\lim_{n \to \infty} \sin JT h = 0$$

$$\lim_{n \to \infty} \sin JT h = \sin JT x$$