Modelowanie epidemii

Asia Dąbrowska i Ania Szymik 6 czerwca 2024

Opis modelu

Nasz model ma na celu symulację rozprzestrzeniania się choroby w populacji z uwzględnieniem grupy osób bardziej podatnych na zachorowania, na przykład ze względu na choroby towarzyszące, takie jak choroby autoimmunologiczne. Jest to rozszerzenie modelu VAP-SIRS (VAccination Passes in Susceptible-Infectious-Recovered-Susceptible model) [1], zatem strategie, które będzimy zastosować, to między innymi:

- Podział populacji na osoby zaszczepione i niezaszczepione.
- Dalsza segmentacja populacji na grupę o większej i standardowej podatności na zachorowanie.
- Symulacja interwencji, takich jak szczepienia czy izolacja, aby zobaczyć ich wpływ na dynamikę epidemii.
- Analiza, jak zmienia się dynamika epidemii po uwzględnieniu zróżnicowania populacji według podatności na zachorowanie.

Kluczowe elementy naszego modelu to:

- Wskaźniki transmisji choroby, różne dla osób z chorobami współistniejącymi i pozostałej części populacji.
- Tempo i efektywność szczepień oraz poziom restrykcji społecznych, dzięki którym możemy badać wpływ podjętych działań na przebieg epidemii.
- Dynamika odporności populacji, czyli wpływ tempa utraty odporności, zarówno nabytej przez przebycie choroby, jak i przez szczepienie, na liczbę chorych.

Są one istotne z punktu widzenia epidemii, ponieważ reprezentują mechanizmy kluczowe dla przewidywania rozprzestrzeniania się choroby oraz efektywności działań prewencyjnych.

Potencjalne źródła danych do estymowania parametrów modelu:

- Liczba osób cierpiacych na choroby autoimmunologiczne z danych statystycznych kraju.
- Dane o skuteczności szczepionek z badań klinicznych.
- Informacje o zachorowalności i śmiertelności z raportów epidemiologicznych.

Budowa modelu

Model, jak wspomniano wcześniej, powstał w oparciu o model VAP-SIRS, który uwzględnia podział populacji na osoby niezaszczepione i zaszczepione przynajmniej raz (indeks v).

Wśród osób niezaszczepionych uwzględniony jest podział na osoby planujące i nieplanujące się zaszczepić, oznaczane odpowiednio indeksami n i d.

Osoby podatne z grupy zaszczepionych są także w tym modelu podzielone na dwie grupy. Grupa S_1 reprezentuje osoby, które są postrzegane jako zaszczepione, ale w rzeczywistości są podatne ze względu na nieskuteczność szczepionki. Grupa S_2 to z kolei osoby, u których odporność nabyta po szczepieniu zanikła.

W naszym modelu, każdy z kompartmentów został dodatkowo podzielony na dwa, reprezentujące osoby o przeciętnej i zwiększonej (indeks m) podatności na zachorowania.

Tak więc osoby z grup S_d i $S_m d$, które nie planują się szczepić, przechodzą proporcjonalnie do liczby spotkań z osobami z grup I do I_d i $I_m d$, odpowiednio ze współczynnikami β i β_m , a następnie, w tempie γ do R_d i $R_m d$. Po upływie $\frac{1}{\kappa}$ dni wracają znowu do S_d i $S_m d$.

Osoby z grup S_n i $S_m n$ szczepią się w tempie v i v_m . Skuteczność szczepień jest różna dla tych dwóch grup i jest to odpowiednio a i a_m . Tak więc osób skutecznie zaszczepionych w grupach V i V_m przybywa w tempie av i $a_m v_m$. Osoby, które zaszczepiły się nieskutecznie trafiają do grup S_1 i S_{m1} ze współczynnikami (1-a)v oraz $(1-a_m)v_m$.

Po czasie $\frac{1}{\omega}$ lub $\frac{1}{\omega_m}$, zarówno osoby skutecznie (V, V_m) , jak i nieskutecznie zaszczepione $(S_1, S_m 1)$ przechodzą do grupy S_2 lub $S_m 2$, czyli grupy osób świadomych tego, że utraciły odporność po szczepieniu.

Pozostałe przejścia są analogiczne do modelu SIRS, czyli Susceptible \rightarrow Infected \rightarrow Recovered \rightarrow Susceptible, z uwzględnieniem podziału tych grup i odpowiednimi współczynnikami. Schemat modelu przedstawiony jest na Rys. 1.

Rysunek 1: Schemat modelu

Poniżej przedstawiony jest układ równań odpowiadający naszemu modelowi.

Susceptible
$$\frac{dS_d}{dt} = -\beta(I + I_m + I_v + I_{mv})S_d + \kappa R_d \\ \frac{dS_n}{dt} = -\beta(I + I_m + I_v + I_{mv})S_n - vS_n + \kappa R_n \\ \frac{dS_1}{dt} = v_r(1 - a)S_2 + v(1 - a)S_n + v(1 - a)R_n + v_r(1 - a)R_v - \omega S_1 - (\beta(I + I_m) + \beta_v(I_v + I_{mv}))S_1 \\ \frac{dS_2}{dt} = -v_rS_2 + \omega V + \omega S_1 - (\beta(I + I_m) + \beta_v(I_v + I_{mv}))S_2 + \kappa R_v$$

More susceptible

Note Susceptible
$$\frac{dS_{md}}{dt} = -\beta_m (I + I_m + I_v + I_{mv}) S_{md} + \kappa R_{md} \\ \frac{dS_{mn}}{dt} = -\beta_m (I + I_m + I_v + I_{mv}) S_{mn} - v_m S_{mn} + \kappa R_{mn} \\ \frac{dS_{m1}}{dt} = v_{mr} (1 - a_m) S_{m2} + v_m (1 - a_m) S_{mn} + v_m (1 - a_m) R_{mv} + v_{mr} (1 - a_m) R_{mv} - \omega_m S_{m1} - (\beta_m (I + I_m) + \beta_{mv} (I_v + I_{mv})) S_{m1}$$

$$\frac{dS_{m2}}{dt} = -v_{mr}S_{m2} + \omega_m V_m + \omega_m S_{m1} - (\beta_m (I + I_m) + \beta_{mv} (I_v + I_{mv}))S_{m2} + \kappa R_{mv}$$

$$\frac{dV}{dt} = vaS_n + v_r aS_2 - \omega V + v_r aR_v + vaR_n$$

$$\frac{dV_m}{dt} = v_m a_m S_{mn} + v_{mr} a_m S_{m2} - \omega_m V_m + v_{mr} a_m R_{mv} + v_m a_m R_{mn}$$

Infected

Infected
$$\frac{dI_d}{dt} = \beta(I + I_m + I_v + I_{mv})S_d - \gamma I_d$$

$$\frac{dI_n}{dt} = \beta(I + I_m + I_v + I_{mv})S_n - \gamma I_n$$

$$\frac{dI_{md}}{dt} = \beta_m(I + I_m + I_v + I_{mv})S_{md} - \gamma I_{md}$$

$$\frac{dI_{mn}}{dt} = \beta_m(I + I_m + I_v + I_{mv})S_{mn} - \gamma I_{mn}$$

$$\frac{dI_1}{dt} = (\beta(I + I_m) + \beta_v(I_v + I_{mv}))S_1 - \gamma I_1$$

$$\frac{dI_2}{dt} = (\beta(I + I_m) + \beta_v(I_v + I_{mv}))S_2 - \gamma I_2$$

$$\frac{dI_{m1}}{dt} = (\beta_m(I + I_m) + \beta_{mv}(I_v + I_{mv}))S_{m1} - \gamma I_{m1}$$

$$\frac{dI_{m2}}{dt} = (\beta_m(I + I_m) + \beta_{mv}(I_v + I_{mv}))S_{m2} - \gamma I_{m2}$$

Recovered

Recovered
$$\begin{aligned} \frac{dR_v}{dt} &= \gamma (I_1 + I_2) - \kappa R_v - \upsilon_r R_v \\ \frac{dR_{mv}}{dt} &= \gamma (I_{m1} + I_{m2}) - \kappa R_{mv} - \upsilon_{mr} R_{mv} \\ \frac{dR_d}{dt} &= \gamma I_d - \kappa R_d \\ \frac{dR_n}{dt} &= \gamma I_n - \kappa R_n - \upsilon R_n \\ \frac{dR_{md}}{dt} &= \gamma I_{md} - \kappa R_{md} \\ \frac{dR_{md}}{dt} &= \gamma I_{mn} - \kappa R_{mn} - \upsilon_m R_{mn} \end{aligned}$$

Parametry modelu

Jeszcze gdzieś o beta i beta m

- \bullet f, f_v poziomy restrykcji dla osób niezaszczepionych i zaszczepionych
- γ tempo zdrowienia, $\frac{1}{\gamma}$ odpowiada średniej długości czasu trwania choroby
- $\bullet \ \kappa$ tempo utraty naturalnej odporności
- \bullet β_0 współczynnik kontaktów/zakaźnosci, odzwierciedlający częstość kontaktów prowadzących do zachorowania
- v współczynik szczepień, tj. ułamek populacji, która szczepi się w ciągu dnia
- v_r współczynnik ponownego zaszczepienia
- \bullet ω tempo utraty odporności nabytej przez szczepienie
- a skuteczność szczepionki

Oraz odpowiednio $\beta_{m0}, v_m, v_{mr}, \omega_m$ i a_m charakteryzujące grupę bardziej podatnych osób. Finalnie wykorzystane w równaniach parametry $\beta,\,\beta_v\,\,\beta_m$ i $\beta_m v$ zostały otrzymane poprzez uwzględnienie połączonego wpływu zakaźności i restrykcji społecznych, tj.

$$\beta = \beta_0 \cdot (1 - f)$$

$$\beta_v = \beta_0 \cdot (1 - f_v)$$

$$\beta_m = \beta_{m0} \cdot (1 - f)$$

$$\beta_m v = \beta_{m0} \cdot (1 - f_v)$$

Stale parametry

N=100 – całkowita liczebność populacji. Przyjęłyśmy 100, aby wartości na wykresach były łatwo interpretowalne jako udział procentowy.

d=0.12 – udział osób, które nie planują się szczepić. Wartość z oryginalnego modelu VAP-SIRS. m=0.05 – udział osób z chorobami autoimmunologicznymi. Wartość zaczerpnięta z narodowych statystyk [2].

a = 0.95 – skuteczność szczepionki. Wartość z badań nad szczepionką firmy Pfizer [4].

 $a_m=0.8$ – skuteczność szczepionki wśród osób z chorobami autoimmunologicznymi. Wartość oszacowana (trudno znaleźć dane na ten temat).

gamma = 1/7 - przyjęty przez nas czas trwania choroby to 1 tydzień.

 $I_{percn} = 0.01$ – przyjęta część populacji, która jest chora na początku

 $omega = omega_m = 1/365$ – przyjęty czas utraty odporności nabytej dzięki szczepieniu to 1 rok. kappa = 1/400 – arbitralnie przyjęty czas utraty odporności nabytej dzięki szczepieniu to 400 dni.

Wartości początkowe

Wartości początkowe wybrałyśmy analogicznie do przyjętych w wyjściowym modelu, uwzględniając podział na osoby bardziej podatne ze współczynnikiem m. Są to:

$$\begin{split} S_d &= d \cdot (1-m) \cdot N \\ S_n &= (1-d) \cdot (1-m) \cdot N \\ S_{mn} &= (1-d) \cdot m \cdot N \\ S_{md} &= d \cdot m \cdot N \\ S_v &= 0 \\ I_d &= I_{percn} \cdot S_d \\ I_n &= I_{percn} \cdot S_n \\ I_{md} &= I_{percn} \cdot S_{md} \\ I_{mn} &= I_{percn} \cdot S_{mn} \\ I_v &= 0 \\ V &= 0 \\ R &= 0 \end{split}$$

Scenariusze

Pojemność szpitali

W naszym modelu epidemiologicznym zakładamy, że zdolność szpitali do przyjęcia pacjentów wynosi 10% populacji. Kluczowe parametry wpływające na szczyt zakażeń to: beta (część kontaktów prowadzących do zakażenia), f (obostrzenia), v (jaki procent populacji szczepi się w ciągu jednego dnia) oraz procent niewykrytych przypadków.

Szczyt zakażeń występuje na początku epidemii, dlatego istotne są parametry dotyczące osób niezaszczepionych lub całej populacji. Model wykazuje największą wrażliwość na zmiany w wartości parametru f, opisującego obostrzenia dla osób, które nie zostały ani razu zaszczepione. Nawet niewielka zmiana o 0.01 powoduje, że procent zarażonych wzrasta o 5

Inne istotne parametry to: jaka część niezaszczepionej nigdy populacji szczepi się dziennie (v) oraz jak skutecznie jesteśmy w stanie diagnozować ludzi, wysyłając ich do kwarantanny, z której nie mogą zarażać reszty populacji.

Najbardziej efektywną i realistyczną strategią jest wprowadzanie jak największych obostrzeń dla osób niezaszczepionych ani raz, promowanie szczepień oraz jak najskuteczniejsza i najszybsza diagnoza przypadków zakażenia w celu izolacji chorych osób.

Model jest również wrażliwy na beta - jej drobne zmiany są silnie odzwierciedlane w ilości zachorowań. Jednak nie jest to parametr, którym powinniśmy się bezkarnie bawić, ponieważ jest oparty o dane biologiczne i środowiskowe.

Impact of the Beta Coefficient on the Total Case Count

Rysunek 2

Rysunek 3

Rysunek 4

Wpływ pór roku na zarażenia

Wiele chorób powodowanych przez wirusy układu oddechowego, takich jak na przykład grypa, wykazuje podobną tendencję w liczbie zachorowań w ciągu roku. Osiągają one szczyt zimą, wiosną i latem spadają do prawie znikomego poziomu i ponownie wzrastają na jesień [3]. Wzrost zachorowań w ziomwych miesiącach jest spowodowany kilkoma czynnikami, takimi jak większa ilość czasu spędzanego w pomieszczeniach, suche powietrze, które sprzyja przetrwaniu wirusów, oraz obniżona odporność spowodowana brakiem światła słonecznego. Latem z kolei, kiedy ludzie spędzają więcej czasu na zewnątrz, a wilgotne i ciepłe warunki są mniej sprzyjające dla przetrwania i transmisji wirusów, zakaźność jest mniejsza.

Tę sytuację udało się nam zamodelować przy użyciu naszego modelu, posługując się różnymi wartościami parametramów β i β_m w zależności od pory roku – dla każdej z nich po dwie wartości, odpowiadające początkowi i środkowi pory roku. Wyniki symulacji przedstawione są na Rys. 5.

Poza pierwszym szczytem zachorowań na początku epidemii, możemy zaobserwoać na nim powtarzające się piki – pierwszy pod koniec jesieni i drugi, większy, w środku zimy. Parametry β , których używałyśmy przedstawione są w Tabeli 1.

Rysunek 5: Liczba chorych w zależności od pory roku.

	β	β_m
Wiosna	0.02,0.02	0.06, 0.06
Lato	0.01, 0.02	0.05, 0.06
Jesień	0.04, 0.04	0.2, 0.2
Zima	0.4, 0.4	0.6, 0.6

Tabela 1: Wartości β dla symulacji zmian sezonowych.

Wpływ β dla bardziej podatnych osób na dynamikę epidemii

Ania Szymik

Jedną z cech populacji, którą chcemy modelować jest wpływ grupy bardziej podatnych osób na dynamikę epidemii. Warto więc zbadać, w jaki sposób rozprzestrzenianie się choroby zależy od współczynnika β w tej grupie osób. Jako że parametr ten związany jest z zakaźnością tudzież częstością kontaktów prowadzących do zachorowania, grupą, na którą najbardziej interesuje nas jego wpływ jest ponownie grupa zainfekowanych.

Po przeprowadzeniu symulacji z różnymi wartościami parametru β_m , przy pozostałych parametrach domyślnych, można wysunąć wniosek, że wpływa on nie tylko na szczytową liczbę zachorowań, ale także na to, kiedy ta szczytowa wartość wystąpi. Im mniejsza β_m , tym bardziej jest on przesunięty w czasie i tym mniejszą ma wartość, zarówno jeśli chodzi o osoby podatne, jak i pozostałą część populacji, jak widać na Rys. 6 i ref.

Rysunek 6: Zależność między całkowitą zmianą liczby chorych w czasie a wielkością parametru β_m .

Rysunek 7: Zależność między zmianą liczby chorych w czasie a wielkością parametru β_m , z podziałem według podatności.

Te wnioski mogą mieć znaczenie dla strategii kontroli epidemii, na przykład poprzez ochronę osób bardziej podatnych na zakażenie. Obserwowane zmiany nie są jednak bardzo duże – różnica niecałych 6 punktów procentowych dla całej populacji w przypadku 5-krotnego zwiększenia parametru β_m – ze względu na małą liczność tej grupy osób. Oczywiście, nie należy ich bagatelizować, ale, jak pokazały wcześniejsze analizy, kluczowymi narzędziami w walce z epidemiami są środki prewencyjne, takie jak restrykcje i zachęcanie do szczepień ogółu populacji.

Wpływ tempa szczepień bardziej podatnych osób na dynamikę epidemii Asia Dąbrowska

Dopasowywanie parametrów do danych

Zdefiniowanego przez nas układu równań użyłyśmy także do wygenerowania danych syntetycznych, aby następnie sprawdzić, jak dobrze model jest w stanie się do nich dopasować. Aby symulować niedokładności danych w rzeczywistym świecie, zakłóciłyśmy tak wygenerowane dane przy użyciu funkcji sinus o amplitudzie 0.2 i okresie 365 (symulacja zmian sezonowych) oraz przez dodanie losowego szumu gaussowskiego o odchyleniu standardowym 1. Uzyskane w ten sposób dane przedstawione są na Rys. ??a.

W celu dopasowania naszego modelu do wygenerowanych danych, użyłyśmy funkcji scipy.optimize.minimize do przewidzenia parametrów, które pozwalają nam jak najdokładniej odwzorować te dane. Jako funkcję straty użyłyśmy zmodyfikowanego błędu średniokwadratowego.

$$\frac{\sum_{j=1}^{liczba\ dni} (\sum_{i=1}^{liczba\ zmiennych} (prawdziwa\ wartosc_i - predykcja_i)^2)}{liczba\ dni}$$

Tak dopasowane do danych parametry przedstawiłyśmy na Rys. 9. Jak można zauważyć wartości parametrów nie odbiegają znacząco od wartości początkowych użytych do dopasowania. Nie-

mniej jednak, pomimo wolnego tempa optymalizacje, otrzymałyśmy parametry, które pozwalają na bardzo dobre odwzorowanie trendów zaszumionych danych Rys. 8 b.

Ograniczeniem naszego modelu jest to, że nie będzie on dobrze przewidywał dynamiki epidemi dla zmieniających się parametrów. Dobrze można to zauważyć na próbie dopasowania naszego modelu do scenariusza z porami roku Rys 10.

Dane ze scenariusza ze szpitalem

Rysunek 8

Rysunek 9: Porównanie parametrów, przy użyciu których były generowane dane z parametrami dopasowanymi przez scipy.optimize.minimize.

Dane ze scenariusza z porami roku

(b) Dane z dopasowanego modelu

Rysunek 10

Rysunek 11: Porównanie parametrów, przy użyciu których były generowane dane z parametrami dopasowanymi przez scipy.optimize.minimize.

Źródła

- 1. Krueger, T., Gogolewski, K., Bodych, M., Gambin, A., Giordano, G., Cuschieri, S., Czypionka, T., Perc, M., Petelos, E., Rosińska, M., and Szczurek, E. (2022). Risk assessment of COVID-19 epidemic resurgence in relation to SARS-CoV-2 variants and vaccination passes. Communications Medicine, 2(1), 23. https://doi.org/10.1038/s43856-022-00084-w
- 2. Agencja Badań Medycznych. (n.d.). Badania kliniczne z obszaru chorób autoimmunologicznych. Prezentujemy efekty wybranych projektów dofinansowanych przez Agencję Badań Medycznych. https://abm.gov.pl/pl/aktualnosci/2525,Badania-kliniczne-z-obszaru-chorob-autoimmunologicznych-Prezentujemy-efekty-wybr.html
- 3. Park, A. (2024, March 6). Is COVID-19 a Seasonal Virus Yet?. Time. https://time.com/6852850/iscovid-19-seasonal-virus/
- 4. Katella, K. (2024, April 24). Comparing the COVID-19 Vaccines: How Are They Different?. Yale Medicine. https://www.yalemedicine.org/news/covid-19-vaccine-comparison