

Algorithms for Scientific Computing

d-Dimensional Hierarchical Basis

Felix Dietrich

Technische Universität München

Department of Informatics 5

Chair of Scientific Computing in Computer Science (SCCS)

Summer 2020

• Start with 2*d* example (compare tutorials):

$$f := 16x_1(x_1 - 1)x_2(x_2 - 1), \qquad \Omega = [0, 1]^2 \qquad \Rightarrow f|_{\partial\Omega} = 0$$

• Consider hierarchical surplus at grid points with n = 3, $h_3 = 2^{-3}$

Intermezzo/"Big Picture": Archimedes' Quadrature

• Start with 2*d* example (compare tutorials):

$$f := 16x_1(x_1 - 1)x_2(x_2 - 1), \qquad \Omega = [0, 1]^2 \qquad \Rightarrow f|_{\partial\Omega} = 0$$

• Consider hierarchical surplus at grid points with n = 3, $h_3 = 2^{-3}$

"Big Picture": Archimedes' Quadrature (2)

$$\int_{\Omega} f \, d\vec{x} = 4/9 = 0.\overline{4}$$

• Consider volume of subvolumes (pagodas) for quadrature

"Big Picture": Archimedes' Quadrature (2)

$$\int_{\Omega} f \, d\vec{x} = 4/9 = 0.\overline{4} \qquad \qquad \sum = \frac{441}{1024} = 0.4306640625$$

• Consider volume of subvolumes (pagodas) for quadrature

1 16384	1 2048	1 16384	1 256	1 16384	1 2048	1 16384
1 2048	<u>1</u> 256	$\frac{1}{2048}$	$\frac{1}{32}$	$\frac{1}{2048}$	<u>1</u> 256	1 2048
1 16384	$\frac{1}{2048}$	1 16384	$\frac{1}{256}$	1 16384	$\frac{1}{2048}$	1 16384
1 256	$\frac{1}{32}$	<u>1</u> 256	1 4	<u>1</u> 256	$\frac{1}{32}$	<u>1</u> 256
1 16384	$\frac{1}{2048}$	1 16384	$\frac{1}{256}$	1 16384	$\frac{1}{2048}$	1 16384
1 2048	1 256	$\frac{1}{2048}$	$\frac{1}{32}$	$\frac{1}{2048}$	1 256	1 2048
1 16384	$\frac{1}{2048}$	1 16384	1 256	1 16384	$\frac{1}{2048}$	1 16384

"Big Picture": Archimedes' Quadrature (3)

What, if we leave out (adaptively) all subvolumes with volume $<\varepsilon=\frac{1}{256}$?

"Big Picture": Archimedes' Quadrature (3)

What, if we leave out (adaptively) all subvolumes with volume $<\varepsilon=\frac{1}{256}$?

• 49 grid points (full grid) ⇒ 17 grid points (*sparse grid*)

Approximation of volume:

$$\frac{441}{1024} = 0.4306640625$$
 \Rightarrow $\frac{27}{64} = 0.421875$

Part I

Hierarchical Decomposition, d-Dimensional

Recall: Archimedes and Hierarchical Basis (in 1D)

Archimedes Quadrature:

Hierarchical Basis:

- use nodal basis functions $\phi_{l,i}$ with $\mathscr{I}_l := \{i : 1 \le i < 2^l, i \text{ odd}\}$ \leadsto hierarchical basis $\Psi_n := \bigcup_{l=1}^n \{\phi_{l,i} : i \in \mathscr{I}_l\}$
- hierarchical function spaces $W_l := \operatorname{span} \{ \phi_{l,i} : i \in \mathscr{I}_l \}$ and $V_l = V_{l-1} \oplus W_l$
- unique hierachical representation $u = \sum_{l=1}^n w_l = \sum_{l=1}^n \sum_{i \in \mathscr{I}_l} v_{l,i} \phi_{l,i}$
- size of surpluses $v_{l,i}$ roughly decays with 4^{-n} for smooth functions

Hierarchical Decomposition - Step by Step

Now (and more formally), starting with d-dimensional hierarchical decompositions . . .

Transfer from d = 1 to d > 1

- Functions in multiple variables $\vec{x} = (x_1, \dots, x_d)$
- Domain $\Omega := [0,1]^d$
- We consider only functions u which are 0 on $\partial\Omega$ (on the edges of the square, faces of the cube, ...)
- Each hierarchical grid described by multi-index

$$\vec{l} = (l_1, \dots, l_d) \in \mathbb{N}^d$$

• Grids have different mesh-widths in different dimensions:

$$\vec{h}_{\vec{l}} := (h_1, \dots, h_d) := (2^{-l_1}, \dots, 2^{-l_d}) =: 2^{-\vec{l}}$$

Hierarchical Decomposition, d > 1

Introducing further notation (which we'll need later on):

• Grid points (for function evaluations):

$$\vec{x}_{\vec{l},\vec{i}} = (i_1 \cdot h_{l_1}, \dots, i_d \cdot h_{l_d})$$

Comparisons of multi-indices component-wise:

$$\vec{l} \leq \vec{i}$$
 \iff $l_k \leq i_k, \ k = 1, \ldots, d$

- Two norms for multi-indices \vec{l}
 - index sum: $|\vec{l}|_1 := |l_1| + ... + |l_d|$
 - maximum index: $|\vec{l}|_{\infty} := \max\{|l_1|, \dots, |l_d|\}$

Note: taking the absolute values, $|\cdot|$, for $l_k \in \mathbb{N}$ is not necessary, but is part of the usual definition of $|\cdot|_1$ and $|\cdot|_{\infty}$

Practicing Identifiers \vec{l} , $\vec{h}_{\vec{l}}$, $\vec{x}_{\vec{l},\vec{j}}$

Piecewise *d*-linear Functions

Suitable generalization of piecewise linear functions

- Piecewise *d*-linear functions w.r.t. $\vec{h}_{\vec{l}}$ grid
 - \rightarrow If you fix d-1 coordinates, they are linear in remaining x_i
- $V_{\vec{l}}$: space of all functions for given \vec{l}

Piecewise *d*-linear Functions

Suitable generalization of piecewise linear functions

- Piecewise *d*-linear functions w.r.t. $\vec{h}_{\vec{l}}$ grid
 - \rightarrow If you fix d-1 coordinates, they are linear in remaining x_i
- $V_{\vec{l}}$: space of all functions for given \vec{l}

Alternative point of view:

- Define suitable basis Φ_i
- Regard V_i as span of Φ_i
- d-dimensional basis functions:
 products of one-dimensional hat functions:

$$\phi_{\vec{l},\vec{i}}(\vec{x}) = \prod_{j=1}^{d} \phi_{l_j,i_j}(x_j) = \phi_{l_1,i_1}(x_1) \cdot \phi_{l_2,i_2}(x_2) \cdot \ldots \cdot \phi_{l_d,i_d}(x_d)$$

d-dimensional Basis Functions

- Basis functions are *pagoda functions* (not pyramids!)
- Examples: $\phi_{(1,1),(1,1)}$, and $\phi_{(2,3),(3,5)}$:

Function Spaces $V_{\vec{l}}$ and V_n

Basis for space of piecewise linear functions w.r.t. h_i grid

$$\Phi_{\vec{l}} := \{ \phi_{\vec{l},\vec{l}}, \vec{1} \le \vec{i} < 2^{\vec{l}} \}$$

Function space

$$V_{\vec{l}} := \operatorname{span}\{\Phi_{\vec{l}}\}$$

with

$$\dim V_{\vec{l}} = (2^{l_1} - 1) \cdot \ldots \cdot (2^{l_d} - 1) \in O(2^{|\vec{l}|_1})$$

• Special case $I_1 = ... = I_d \rightsquigarrow$ function space denoted as V_n :

$$V_n := V_{(n,\ldots,n)}$$

Hierarchical Increments W_i

Analogous to 1*d*:

- Omit grid points with even index (exist on coarser grid)
- · Now in all directions

$$\mathscr{I}_{\vec{l}} := \{ \vec{i} : \vec{1} \leq \vec{i} < 2^{\vec{l}}, \text{ all } i_j \text{ odd} \}$$

⇒ Hierarchical increment spaces

$$W_{\vec{l}} := \operatorname{span}\{\phi_{\vec{l},\vec{i}}\}_{\vec{l} \in \mathscr{I}_{\vec{l}}}$$

contain all functions of V_i that vanish at all grid points of all coarser grids

Hierarchical Increments $W_{\vec{l}}$ vs. Nodal Basis

Hierarchical Subspace Decomposition

• For $\vec{l}' \in \mathbb{N}^d$ we obtain a unique representation of each $u \in V_{\vec{l}'}$ as

$$u = \sum_{\vec{j} < \vec{j}'} w_{\vec{j}}$$

with $w_{\vec{i}} \in W_{\vec{i}}$

⇒ Representation in the *hierarchical basis*

$$u = \sum_{\vec{l} \leq \vec{l}'} w_{\vec{l}} = \sum_{\vec{l} \leq \vec{l}'} \sum_{\vec{i} \in \mathscr{I}_{\vec{l}}} v_{\vec{l}, \vec{i}} \phi_{\vec{l}, \vec{i}}$$

with d-dimensional hierarchical surpluses $v_{\vec{l},\vec{i}}$

Determining the Hierarchical Surpluses in 2D

We now compute the hierarchical surpluses $v_{\vec{l},\vec{l}}$ for some $u \in V_n = V_{(n,n)}$:

$$u(\vec{x}) = \sum_{\phi_{\vec{l},\vec{i}} \in \Phi_{(n,n)}} u(x_{\vec{l},\vec{i}}) \cdot \phi_{\vec{l},\vec{i}}(\vec{x}) = \sum_{i_1=1}^{2^n-1} \sum_{i_2=1}^{2^n-1} u(x_{\vec{n},\vec{i}}) \cdot \phi_{n,i_1}(x_1) \phi_{n,i_2}(x_2)$$

Determining the Hierarchical Surpluses in 2D

We now compute the hierarchical surpluses $v_{\vec{l},\vec{l}}$ for some $u \in V_n = V_{(n,n)}$:

$$u(\vec{x}) = \sum_{\phi_{\vec{l},\vec{i}} \in \Phi_{(n,n)}} u(x_{\vec{l},\vec{i}}) \cdot \phi_{\vec{l},\vec{i}}(\vec{x}) = \sum_{i_1=1}^{2^n-1} \sum_{i_2=1}^{2^n-1} u(x_{\vec{n},\vec{i}}) \cdot \phi_{n,i_1}(x_1) \phi_{n,i_2}(x_2)$$

First step

Hierarchization in x₁-direction
 (fix x₂ and employ 1d hierarchization in x₁-direction):

$$u(\vec{x}) = \sum_{l_1=1}^{n} \sum_{i_1 \in \mathscr{I}_{l_1}} \sum_{i_2=1}^{2^{n}-1} v_{l_1,i_1}(x_{n,i_2}) \cdot \phi_{l_1,i_1}(x_1) \cdot \phi_{n,i_2}(x_2)$$

with 1*d* surplus (still depending on x_2 , evaluated at all $x_2 = x_{n,i_2}$)

$$V_{l_1,i_1}(x_2) = u(x_{l_1,i_1},x_2) - \frac{u(x_{l_1,i_1-1},x_2) + u(x_{l_1,i_1+1},x_2)}{2}$$

Note: the indices $i \pm 1$ of the grid points x_{l_1,i_1-1} and x_{l_1,i_1+1} are even, such that the corresponding hierarchical basis functions belong to a parent/ancestor level.

Determining the Hierarchical Surpluses in 2D (2)

A bit more intuitive:

We mark the grid points of the corresponding ansatz functions we use (before and after)

Determining the Hierarchical Surpluses in 2D (3)

Second step

• Hierarchize every $v_{l_1,i_1}(x_2)$ (separately) in x_2 dimension::

$$u(\vec{x}) = \sum_{l_1=1}^n \sum_{i_1 \in \mathscr{I}_{l_1}} \sum_{l_2=1}^n \sum_{i_2 \in \mathscr{I}_{l_2}} v_{(l_1,l_2),(i_1,i_2)} \cdot \phi_{l_1,i_1}(x_1) \cdot \phi_{l_2,i_2}(x_2)$$

Determining the Hierarchical Surpluses

Now: compute the *d*-dim. hierarchical surpluses $v_{\vec{l},\vec{l}}$ for some $u(\vec{x}) \in V_n$:

$$u(\vec{x}) = \sum_{\phi_{\vec{l},\vec{i}} \in \Phi_{(n,\dots,n)}} u(x_{\vec{l},\vec{i}}) \cdot \phi_{\vec{l},\vec{i}}(\vec{x}) = \sum_{\phi_{\vec{l},\vec{i}} \in \Phi_{(n,\dots,n)}} u(x_{\vec{l},\vec{i}}) \cdot \phi_{l_1,i_1}(x_1) \cdot \dots \cdot \phi_{l_d,i_d}(x_d)$$

Determining the Hierarchical Surpluses

Now: compute the *d*-dim. hierarchical surpluses $v_{\vec{l},\vec{l}}$ for some $u(\vec{x}) \in V_n$:

$$u(\vec{x}) = \sum_{\phi_{\vec{l},\vec{i}} \in \Phi_{(n,\dots,n)}} u(x_{\vec{l},\vec{i}}) \cdot \phi_{\vec{l},\vec{i}}(\vec{x}) = \sum_{\phi_{\vec{l},\vec{i}} \in \Phi_{(n,\dots,n)}} u(x_{\vec{l},\vec{i}}) \cdot \phi_{l_1,i_1}(x_1) \cdot \dots \cdot \phi_{l_d,i_d}(x_d)$$

First step

• Hierarchization in x_d -direction (fix $x_1, ..., x_{d-1}$ and employ 1d hierarchization):

$$u = \sum_{l_{d}=1}^{n} \sum_{i_{d} \in \mathscr{I}_{l_{d}}} \sum_{\phi_{\vec{l},\vec{i}} \in \Phi_{(n,\dots,n)}} v_{l_{d},i_{d}}(x_{\vec{n},(i_{1},\dots,i_{d-1})}) \cdot \phi_{l_{d},i_{d}}(x_{d}) \cdot \phi_{l_{1},i_{1}}(x_{1}) \cdot \dots \cdot \phi_{l_{d-1},i_{d-1}}(x_{d-1})$$

with 1*d* surplus – evaluted at $(x_1, \ldots, x_{d-1}) = x_{\vec{n},(i_1,\ldots,i_{d-1})}$:

$$v_{l_d,i_d}(x_1,\ldots,x_{d-1}) = u(x_1,\ldots,x_{d-1},x_{l_d,i_d}) - \frac{u(x_1,\ldots,x_{d-1},x_{l_d,i_d-1}) + u(x_1,\ldots,x_{d-1},x_{l_d,i_d+1})}{2}$$

Determining the Hierarchical Surpluses

Second step

• Hierarchize every $v_{l_d,i_d}:\mathbb{R}^{d-1}\to\mathbb{R}$ (separately) in its first argument:

$$u(\vec{x}) = \sum_{l_{d}=1}^{n} \sum_{i_{d} \in \mathscr{I}_{l_{d}}} \sum_{l_{d-1}=1}^{n} \sum_{i_{d-1} \in \mathscr{I}_{l_{d-1}}} \sum_{\phi_{\vec{l},\vec{i}} \in \Phi_{(n,\dots,n)}} \left(V_{l_{d},i_{d}}(X_{\vec{n},(i_{1},\dots,i_{d-2})}) \cdot \phi_{l_{d},i_{d}}(X_{d}) \cdot \phi_{l_{d-1},i_{d-1}}(X_{d-1}) \cdot \phi_{l_{1},i_{1}}(X_{1}) \cdot \dots \cdot \phi_{l_{d-2},i_{d-2}}(X_{d-2}) \right)$$

Steps 3 to d

- All steps correspondingly for each remaining dimension
- Afterwards we have computed surpluses $v_{\vec{l},\vec{i}}$ (functions in zero parameters / scalar values)

$$u(\vec{x}) = \sum_{\vec{l}} \sum_{\vec{i} \in \mathscr{I}_{\vec{l}}} v_{\vec{l},\vec{i}} \cdot \phi_{l_1,i_1}(x_1) \cdot \dots \cdot \phi_{l_d,i_d}(x_d) = \sum_{\vec{l}} \sum_{\vec{i} \in \mathscr{I}_{\vec{l}}} v_{\vec{l},\vec{i}} \phi_{\vec{l},\vec{i}}(\vec{x}) = \sum_{\vec{l}} w_{\vec{l}}(\vec{x})$$

where $\sum_{\vec{l}} \sum_{i \in \mathscr{I}_{\vec{l}}}$ is short for $\sum_{l_d=1}^n \sum_{i_d \in \mathscr{I}_{l_d}} \cdots \sum_{l_1=1}^n \sum_{i_1 \in \mathscr{I}_{l_1}}$

Comparison 2D with Wavelet Transform

First level:

- First step: split into nodal basis and hierarchical surpluses (1st argument)
- Second step: split into nodal basis and hierarchical surpluses (2nd argument)

Comparison 2D with Wavelet Transform (2)

Second level:

- First step: split into nodal basis and hierarchical surpluses (1st argument)
- Second step: split into nodal basis and hierarchical surpluses (2nd argument)

Part II

Hierarchical Decomposition – Outlook on Cost and Accuracy

Analysis of Hierarchical Decomposition

- Contribution of summands in hierarchical decomposition
 - \rightarrow in 1D:

$$u = \sum_{l=1}^{n} w_l = \sum_{l=1}^{n} \sum_{i \in \mathscr{I}_l} v_{l,i} \phi_{l,i}$$

 \rightarrow in dD:

$$u = \sum_{\vec{l}} w_{\vec{l}} = \sum_{\vec{l}} \sum_{\vec{i} \in \mathscr{I}_{\vec{l}}} v_{\vec{l}, \vec{i}} \phi_{\vec{l}, \vec{i}}(\vec{x})$$

- start analysis in univariate setting
- · and port to mulitvariate setting
 - → Cost/benefit analysis quantifies reduction of effort
- Need several norms to measure w_l

Norms of Functions

As always, we assume sufficiently smooth functions $u:[0,1] \to \mathbb{R}$, then:

Maximum norm

$$||u||_{\infty}:=\max_{x\in[0,1]}|u(x)|$$

• L² norm

$$||u||_2 := \sqrt{\int_0^1 u(x)^2 dx},$$

for the L^2 scalar product

$$(u,v)_2 := \int_0^1 u(x)v(x) dx$$

Energy norm

$$||u||_E := ||u'||_2$$

Norms of Basis Functions

For the basis functions $\phi_{l,i}$, we obtain

$$\|\phi_{I,i}\|_{\infty} = 1$$
 $\|\phi_{I,i}\|_{2} = \sqrt{\frac{2h_{I}}{3}}$
 $\|\phi_{I,i}\|_{E} = \sqrt{\frac{2}{h_{I}}}$

Estimation of Surpluses

• Consider surplus $v_{l,i}$ of basis function $\phi_{l,i}$:

$$V_{l,i} := u(x_{l,i}) - \frac{1}{2}(u(x_{l,i-1}) + u(x_{l,i+1}))$$

- u two times differentiable
- \Rightarrow We can then write $v_{l,i}$ as (see separate proof)

$$v_{l,i} = \int_0^1 \psi_{l,i}(x) u''(x) dx$$
 with $\psi_{l,i} := -\frac{h_l}{2} \phi_{l,i}$

• $v_{l,i}$ depends on u'', thus we define for future use

$$\mu_2(u) := \|u''\|_2$$
 and $\mu_{\infty}(u) := \|u''\|_{\infty}$.

ightarrow note: $\mu_2(u)$ and $\mu_\infty(u)$ are properties of the function u

Estimation of Surplusses (2)

• With integral representation $v_{l,i} = \int_0^1 -\frac{h_l}{2} \phi_{l,i}(x) u''(x) dx$, we can bound

$$|v_{l,i}| \leq \frac{h_l}{2} \cdot \left(\int_0^1 \phi_{l,i} \, dx \right) \cdot \mu_{\infty}(u) = \frac{h_l^2}{2} \cdot \mu_{\infty}(u) \in \mathscr{O}(h_l^2)$$

• and, via Cauchy-Schwartz inequality $|(u, v)| \le ||u|| \cdot ||v||$,

$$|v_{l,i}| \leq \frac{h_l}{2} ||\phi_{l,i}||_2 \cdot \mu_2(u|_{T_i}) = \sqrt{\frac{h_l^3}{6}} \cdot \mu_2(u|_{T_i}),$$

where $u|_{T_i}$ restricts u to the support $T_i = [x_{l,i-1}, x_{l,i+1}]$ of $\phi_{l,i}$

Estimation of w_l

Ш

• Estimate contribution of entire level / in hierarchical decomposition of u, i.e.

$$w_l = \sum_{i \in \mathscr{I}_l} v_{l,i} \phi_{l,i}$$

- Use that supports of $\phi_{l,i}$ are pairwise disjoint
- Maximum norm

$$\|w_l\|_{\infty} \leq \frac{h_l^2}{2} \cdot \mu_{\infty}(u) \in \mathscr{O}(h_l^2)$$

• L^2 norm

$$||w_{l}||_{2}^{2} = \sum_{i \in \mathscr{I}_{l}} |v_{l,i}|^{2} \cdot ||\phi_{l,i}||_{2}^{2} \leq \frac{h_{l}^{3}}{6} \cdot \frac{2h_{l}}{3} \cdot \sum_{i \in \mathscr{I}_{l}} \mu_{2}(u|_{T_{i}})^{2} = \frac{h_{l}^{4}}{9} \mu_{2}(u)^{2}$$

$$\Rightarrow \|w_l\|_2 \in \mathscr{O}(h_l^2)$$

Estimation of w_l (2)

• Energy norm

$$||w_{l}||_{E}^{2} = \sum_{i \in \mathscr{I}_{l}} |v_{l,i}|^{2} \cdot ||\phi_{l,i}||_{E}^{2} = \sum_{i \in \mathscr{I}_{l}} |v_{l,i}|^{2} \frac{2}{h_{l}}$$

$$\leq \frac{2}{h_{l}} \cdot \frac{h_{l}^{4}}{4} \cdot \frac{1}{2h_{l}} \mu_{\infty}(u)^{2} = \frac{h_{l}^{2}}{4} \mu_{\infty}(u)^{2}$$

$$(2^{l-1} = 1/(2h_l)$$
 summands)

$$\Rightarrow \|\mathbf{w}_l\|_E \in \mathscr{O}(h_l)$$

Estimation of w_l (3)

• We can write *u* (twice differentiable) as infinite series

$$u=\sum_{l=1}^{\infty}w_{l}$$

- Convergent in all three norms
- Approximation error given as

$$u - u_n := u - \sum_{l=1}^{n} w_l = \sum_{l=n+1}^{\infty} w_l$$

- \Rightarrow in maximum and L^2 norm: $\mathcal{O}(h_n^2)$
- \Rightarrow in energy norm: $\mathcal{O}(h_n)$

Part III

Hierarchical Decomposition - Cost and Accuracy, *d*-Dimensional

Towards *d* Dimensions: Norms of $\phi_{\vec{l},\vec{j}}$

- Estimating the w_j will enable us to select those subspaces that contribute most to overall solution (best cost-benefit ratios)
- Same procedure as for d = 1,
 but slightly more complicated functions

Towards *d* Dimensions: Norms of $\phi_{\vec{l},\vec{j}}$

- Estimating the w_{j} will enable us to select those subspaces that contribute most to overall solution (best cost-benefit ratios)
- Same procedure as for d = 1,
 but slightly more complicated functions

Start with norms

Maximum norm:

$$\|\phi_{\vec{l},\vec{i}}\|_{\infty} := \max_{\vec{x} \in [0,1]^d} |\phi_{\vec{l},\vec{i}}(\vec{x})| = 1$$

• *L*² norm:

$$\|\phi_{\vec{l},\vec{i}}\|_2 := \sqrt{\int_{[0,1]^d} \phi_{\vec{l},\vec{i}}(\vec{x})^2 d\vec{x}} = \prod_{j=1}^d \|\phi_{l_j,l_j}\|_2 = \sqrt{\left(\frac{2}{3}\right)^d \prod_{j=1}^d h_{l_j}} = \sqrt{\left(\frac{2}{3}\right)^d 2^{-|\vec{l}|_1}}$$

Norms of $\phi_{\vec{l},\vec{l}}$ (2)

• Energy norm (defined as L^2 norm of the Euclidean norm of the gradient $\nabla \phi_{\vec{l},\vec{j}}$):

$$\begin{split} \|\phi_{\vec{l},\vec{i}}\|_{E} &:= \sqrt{\int_{[0,1]^{d}} \nabla \phi_{\vec{l},\vec{i}}(\vec{x}) \cdot \nabla \phi_{\vec{l},\vec{i}}(\vec{x}) \, d\vec{x}} = \ldots = \\ &= \sqrt{2 \left(\frac{2}{3}\right)^{d-1} \sum_{j=1}^{d} \frac{h_{1} \cdot \ldots \cdot h_{d}}{h_{j}^{2}}} \qquad \text{(here always: } h_{j} := h_{l_{j}}\text{)} \\ &= \sqrt{2 \left(\frac{2}{3}\right)^{d-1} 2^{-|\vec{l}|_{1}} \sum_{j=1}^{d} 2^{2l_{j}}} \end{split}$$

Norms of $\phi_{\vec{l},\vec{j}}$ (2)

• Energy norm (defined as L^2 norm of the Euclidean norm of the gradient $\nabla \phi_{\vec{l},\vec{j}}$):

$$\begin{split} \|\phi_{\vec{l},\vec{i}}\|_{E} &:= \sqrt{\int_{[0,1]^{d}} \nabla \phi_{\vec{l},\vec{i}}(\vec{x}) \cdot \nabla \phi_{\vec{l},\vec{i}}(\vec{x}) \, d\vec{x}} = \dots = \\ &= \sqrt{2 \left(\frac{2}{3}\right)^{d-1} \sum_{j=1}^{d} \frac{h_{1} \cdot \dots \cdot h_{d}}{h_{j}^{2}}} \qquad \text{(here always: } h_{j} := h_{l_{j}}\text{)} \\ &= \sqrt{2 \left(\frac{2}{3}\right)^{d-1} 2^{-|\vec{l}|_{1}} \sum_{j=1}^{d} 2^{2l_{j}}} \end{split}$$

• For the two-dimensional settings (d = 2), we obtain

$$\|\phi_{\vec{l},\vec{i}}\|_{E} = \sqrt{\frac{4}{3}\left(\frac{h_{1}}{h_{2}} + \frac{h_{2}}{h_{1}}\right)}$$

Estimation of Surpluses

• Hierarchical surpluses now depend on mixed 2nd derivatives

$$\partial^{2d} u := \frac{\partial^{2d} u}{\partial x_1^2 \cdot \ldots \cdot \partial x_d^2}$$

Estimation of Surpluses

Hierarchical surpluses now depend on mixed 2nd derivatives

$$\partial^{2d} u := \frac{\partial^{2d} u}{\partial x_1^2 \cdot \ldots \cdot \partial x_d^2}$$

If we define

$$\psi_{\vec{l},\vec{i}} := \prod_{j=1}^{d} \psi_{l_j,i_j} = \left(\prod_{j=1}^{d} \frac{-h_j}{2}\right) \phi_{\vec{l},\vec{i}} = (-1)^{d} 2^{-|\vec{l}|_1 - d} \phi_{\vec{l},\vec{i}}$$

we can derive an integral representation similar to 1D:

$$v_{\vec{l},\vec{i}} = \int_{[0,1]^d} \psi_{\vec{l},\vec{i}} \cdot \partial^{2d} u \, d\vec{x}$$

(Proof: Fubini's theorem and 1*d* integral representation)

Estimation of Surpluses (2)

• We define (correspondingly to 1d)

$$\mu_2(u) := \|\partial^{2d}u\|_2$$
 and $\mu_\infty(u) := \|\partial^{2d}u\|_\infty$

• We can thus bound $v_{\vec{l},\vec{l}}$ as

$$|v_{\vec{l},\vec{i}}| \leq \left(\prod_{j=1}^d \frac{h_j}{2}\right) \cdot \left(\int\limits_{[0,1]^d} \phi_{\vec{l},\vec{i}} d\vec{x}\right) \cdot \mu_{\infty}(u) = \left(\prod_{j=1}^d \frac{h_j^2}{2}\right) \cdot \mu_{\infty}(u) = 2^{-2|\vec{l}|_1 - d} \mu_{\infty}(u)$$

and

$$|V_{\vec{l},\vec{i}}| \leq \left(\prod_{j=1}^{d} \frac{h_{j}}{2}\right) \|\phi_{\vec{l},\vec{i}}\|_{2} \cdot \mu_{2}(u|_{T_{\vec{i}}}) = \sqrt{\frac{h_{1}^{3} \cdot \ldots \cdot h_{d}^{3}}{6^{d}}} \cdot \mu_{2}(u|_{T_{\vec{i}}})$$

$$= \left(\frac{1}{6}\right)^{d/2} 2^{-3|\vec{l}|_{1}/2} \mu_{2}(u|_{T_{\vec{i}}})$$

Estimation of $w_{\vec{l}}$

- Obtain estimates for w_i in subspace W_i analogously as in 1d:
- ightarrow Make use of the fact that supports of basis functions for a grid are disjoint (apart from the boundaries)

Estimation of w_i

- Obtain estimates for w_i in subspace W_i analogously as in 1d:
- → Make use of the fact that supports of basis functions for a grid are disjoint (apart from the boundaries)
- Maximum norm

$$\|\mathbf{w}_{\vec{l}}\|_{\infty} \leq \left(\prod_{j=1}^{d} \frac{h_j^2}{2}\right) \cdot \mu_{\infty}(u) = 2^{-2|\vec{l}|_1 - d} \mu_{\infty}(u),$$

• L^2 norm

$$\|\mathbf{w}_{\bar{l}}\|_{2} \leq \left(\prod_{j=1}^{d} \frac{h_{j}^{2}}{3}\right) \cdot \mu_{2}(u) = 3^{-d} \cdot 2^{-2|\vec{l}|_{1}} \mu_{2}(u),$$

Energy norm

$$\|w_{\vec{j}}\|_{E} \leq \sqrt{\frac{1}{4} \left(\frac{1}{12}\right)^{d-1} \sum_{j=1}^{d} \frac{h_{1}^{4} \cdot \ldots \cdot h_{d}^{4}}{h_{j}^{2}}} \cdot \mu_{\infty}(u) = \sqrt{\frac{1}{4} \left(\frac{1}{12}\right)^{d-1} 2^{-4|\vec{j}|_{1}} \sum_{j=1}^{d} 2^{2l_{j}}} \cdot \mu_{\infty}(u)$$

Analysis of Cost-Benefit Ratio

- Consider not individual basis functions, but whole hierarchical increments
- From the tableau of subspaces, select those subspaces that minimize the cost, or maximize the benefit respectively,

for $u:[0,1]^d \to \mathbb{R}$ (*u* sufficiently often differentiable)

Analysis of Cost-Benefit Ratio

- Consider not individual basis functions, but whole hierarchical increments
- From the tableau of subspaces, select those subspaces that minimize the cost, or maximize the benefit respectively,

for $u:[0,1]^d \to \mathbb{R}$ (*u* sufficiently often differentiable)

Cost

Measure cost in number of grid points ("coefficients")

$$c(\vec{l}) = |\mathscr{I}_{\vec{l}}| = 2^{|\vec{l}|_1 - d}$$

Analysis of Cost-Benefit Ratio

- Consider not individual basis functions, but whole hierarchical increments
- From the tableau of subspaces, select those subspaces that minimize the cost, or maximize the benefit respectively,

for $u:[0,1]^d \to \mathbb{R}$ (*u* sufficiently often differentiable)

Cost

• Measure cost in number of grid points ("coefficients")

$$c(\vec{l}) = |\mathscr{I}_{\vec{l}}| = 2^{|\vec{l}|_1 - d}$$

Benefit

- Let $L \subset \mathbb{N}^d$ be the set of indices of all selected grids, then

$$u_L := \sum_{\vec{l} \in L} w_{\vec{l}}$$
 and $u - u_L = \sum_{\vec{l} \notin L} w_{\vec{l}}$

Analysis of Cost-Benefit Ratio (2)

• For each component w_i , we have derived bounds of the type

$$\|\mathbf{w}_{\vec{l}}\| \leq \mathbf{s}(\vec{l}) \cdot \mu(u)$$

with $s(\vec{l})=2^{-d}\cdot 2^{-2|\vec{l}|_1}$ or $s(\vec{l})=3^{-d}\cdot 2^{-2|\vec{l}|_1}$ and appropriate indices for norm and μ

We obtain

$$||u - u_L|| \leq \sum_{\vec{l} \notin L} ||w_{\vec{l}}|| \leq \left(\sum_{\vec{l} \notin L} s(\vec{l})\right) \mu(u)$$

$$= \left[\left(\sum_{\vec{l} \in \mathbb{N}^d} s(\vec{l})\right) - \left(\sum_{\vec{l} \in L} s(\vec{l})\right)\right] \mu(u)$$

- 1st factor depends only on selected subspaces, 2nd factor only on u
- Justifies to interpret $s(\vec{l})$ as benefit/contribution of subspace $W_{\vec{l}}$

Quality of Approximation of Full Grid V_n

Examine cost $c(\vec{l})$ and benefit $s(\vec{l})$ for full grid

- Regular grid with mesh-width $h = 2^{-n}$ in each direction (*full grid*) for function space $V_n \leadsto \text{total cost}$ dim $V_n \in \mathcal{O}(2^{dn})$, or dim $V_n \in \mathcal{O}(h^{-d})$
- Considered subset of hierarchical increments:

$$L_n := \{ \vec{I} : |\vec{I}|_{\infty} \leq n \}.$$

• Bounds in L^2 and maximum norm involve factor

$$s(\vec{l}) = C \cdot 2^{-2|\vec{l}|_1}$$

 \rightarrow In the following estimation, leave out \vec{l} -independent factor C \rightsquigarrow can be appended to the estimate in the end

Quality of Approximation of Full Grid V_n (2)

· We can estimate

$$\sum_{\vec{l} \in L_n} s(\vec{l}) = \sum_{\vec{l} \in L_n} 2^{-2|\vec{l}|_1} = \sum_{l_1=1}^n \cdots \sum_{l_d=1}^n 2^{-2(l_1+\cdots+l_n)} = \left(\sum_{k=1}^n 2^{-2k}\right)^d \\
= \left(\frac{1}{4} \cdot \frac{1 - \frac{1}{4}^n}{1 - \frac{1}{4}}\right)^d = \left(\frac{1}{3}\right)^d \left(1 - 2^{-2n}\right)^d \ge \left(\frac{1}{3}\right)^d \left(1 - d \cdot 2^{-2n}\right)^d$$

using $(1-\varepsilon)^d \ge 1 - d\varepsilon$ for $0 \le \varepsilon \le 1$ and $d \in \mathbb{N}$

 \Rightarrow For $n \rightarrow \infty$ we obtain

$$\sum_{\vec{l} \in \mathbb{N}^d} s(\vec{l}) = \left(\frac{1}{3}\right)^d \quad \text{and thus} \quad \sum_{\vec{l} \not\in L_n} s(\vec{l}) \leq \left(\frac{1}{3}\right)^d \cdot d \cdot 2^{-2n}$$

• Leads to bounds for the approximation error in L^2 - and maximum norm

$$||u - u_{L_n}|| \le C \cdot \sum_{\vec{l} \notin L_n} s(\vec{l}) \le \frac{C \cdot d}{3^d} 2^{-2n} \in O(h_n^2)$$

with constant *C* (independent of *n*)

Part IV

Sparse Grids

Sparse Grids

Final steps to high-dimensional numerics

• Consider sum of benefits/contributions (for L^2 and maximum norm)

$$\sum_{\vec{l} \in L_n} 2^{-2|\vec{l}|_1}$$

- \Rightarrow Equal benefit of hierarchical increments $W_{\vec{l}}$ for constant $|\vec{l}|_1$
- Same for cost $c(\vec{l}) = 2^{|l|_1 d}$ (number of grid points of $W_{\vec{l}}$)

Sparse Grids

Final steps to high-dimensional numerics

• Consider sum of benefits/contributions (for L^2 and maximum norm)

$$\sum_{\vec{l} \in L_n} 2^{-2|\vec{l}|_1}$$

- \Rightarrow Equal benefit of hierarchical increments $W_{\vec{l}}$ for constant $|\vec{l}|_1$
- Same for cost $c(\vec{l}) = 2^{|l|_1 d}$ (number of grid points of $W_{\vec{l}}$)
- \Rightarrow Constant *cost-benefit ratio* $c(\vec{l})/s(\vec{l})$ for constant $|\vec{l}|_1$

Sparse Grids

Ш

Final steps to high-dimensional numerics

• Consider sum of benefits/contributions (for L^2 and maximum norm)

$$\sum_{\vec{l}\in L_n} 2^{-2|\vec{l}|_1}$$

- \Rightarrow Equal benefit of hierarchical increments $W_{\vec{l}}$ for constant $|\vec{l}|_1$
- Same for cost $c(\vec{l}) = 2^{|l|_1 d}$ (number of grid points of $W_{\vec{l}}$)
- \Rightarrow Constant *cost-benefit ratio* $c(\vec{l})/s(\vec{l})$ for constant $|\vec{l}|_1$

Full grids?

- Quadratic extract of subspaces is not economical:
 We take large subgrids with low contribution
- We could have taken others with much higher contribution

Sparse Grids!

- cost-benefit analysis: equal contribution of hierarchical increments $W_{\vec{l}}$ for constant $|\vec{l}|_1$
- Best choice: Cut diagonally in tableau of subspaces:

$$L_n^1 := \{ \vec{l} : |\vec{l}|_1 \le n + d - 1 \}$$

⇒ Resulting *sparse grid space*

$$V_n^1 := \bigoplus_{|\vec{l}|_1 \le n+d-1} W_{\vec{l}}$$

Sparse Grids!

• Diagonal cut in tableau of subspaces:

$$L_n^1 := \{ \vec{l} : |\vec{l}|_1 \le n + d - 1 \}$$

⇒ Resulting *sparse grid space*

$$V_n^1 := \bigoplus_{|\vec{l}|_1 \le n+d-1} W_{\vec{l}}$$

- Sparse grid for d = 2 and overall level n = 5
- Grid points $x_{\vec{l},\vec{l}}$ of same cost/benefit ratio in same color

Sparse Grids – Cost

Number of grid points?

• For d = 2:

$$\dim V_n^1 = \sum_{|\vec{l}|_1 \le n+1} \dim W_{\vec{l}} = \sum_{|\vec{l}|_1 \le n+1} 2^{|\vec{l}|_1-2} = \sum_{k=1}^n k \cdot 2^{k-1} = 2^n (n-1) + 1,$$

Sparse Grids – Cost

Number of grid points?

• For *d* = 2:

$$\dim V_n^1 = \sum_{|\vec{l}|_1 \le n+1} \dim W_{\vec{l}} = \sum_{|\vec{l}|_1 \le n+1} 2^{|\vec{l}|_1-2} = \sum_{k=1}^n k \cdot 2^{k-1} = 2^n (n-1) + 1,$$

• For d = 3:

dim
$$V_n^1 = \sum_{k=1}^n \frac{k(k+1)}{2} \cdot 2^{k-1} = 2^n \left(\frac{n^2}{2} - \frac{n}{2} + 1 \right) - 1$$
,

 \Rightarrow Both in $\mathcal{O}(2^n \cdot n^{d-1})$

Sparse Grids – Cost

Number of grid points?

• For d = 2:

$$\dim V_n^1 = \sum_{|\vec{l}|_1 \le n+1} \dim W_{\vec{l}} = \sum_{|\vec{l}|_1 \le n+1} 2^{|\vec{l}|_1 - 2} = \sum_{k=1}^n k \cdot 2^{k-1} = 2^n (n-1) + 1,$$

• For d = 3:

dim
$$V_n^1 = \sum_{k=1}^n \frac{k(k+1)}{2} \cdot 2^{k-1} = 2^n \left(\frac{n^2}{2} - \frac{n}{2} + 1 \right) - 1$$
,

- \Rightarrow Both in $\mathcal{O}(2^n \cdot n^{d-1})$
- Holds for general d as well (proof with some combinatorics)
- Expressed in terms of $N = 2^n$ (max. points per dimension):

$$\Rightarrow \mathscr{O}(N(\log N)^{d-1})$$

Sparse Grids – Cost (2)

In numbers...

Compare cost for full grid V_n and sparse grid V_n^1 :

$$d = 2$$
:

n
 1
 2
 3
 4
 5
 ...
 10

 dim
$$V_n = (2^n - 1)^2$$
 1
 9
 49
 225
 961
 ...
 1,046,529

 dim $V_n^1 = 2^n(n-1) + 1$
 1
 5
 17
 49
 129
 ...
 9,217

Sparse Grids – Cost (3)

 \dots and for overall level n = 5 in different dimensions

d	<i>V</i> ₅	V_5^1
1	31	31
2	961	129
3	29,791	351
4	923,521	769
5	28,629,151	1,471
6	887,503,681	2,561
7	27,512,614,111	4,159
8	852,891,037,441	6,401
9	26,439,622,160,671	9,439
10	819,628,286,980,801	13,441

• The higher the dimension, the higher the benefit of sparse grids!

Sparse Grids – Examples

Sparse Grids of overall level n = 6 in d = 2 and d = 3

Sparse Grids – Accuracy

Much fewer grid points ⇒ much lower accuracy?

 Would force us to choose larger n to obtain similar accuracy (and spoil everything)

Sparse Grids – Accuracy

Much fewer grid points ⇒ much lower accuracy?

- Would force us to choose larger n to obtain similar accuracy (and spoil everything)
- Error in L^2 and maximum norm: Compute sum $(|\vec{l}|_1 = k + 1)$:

$$\sum_{\vec{l} \notin L_n^1} s(\vec{l}) = \sum_{k=n+1}^{\infty} k \cdot 2^{-2(k+1)} = \left(\frac{n}{12} + \frac{1}{9}\right) 2^{-2n}$$

• And for d = 3 (with $|\vec{l}|_1 = k + 2$):

$$\sum_{\vec{l} \notin L_n^1} s(\vec{l}) = \sum_{k=n+3}^{\infty} \frac{k(k+1)}{2} \cdot 2^{-2(k+2)} = \left(\frac{n^2}{96} + \frac{11n}{288} + \frac{1}{27}\right) 2^{-2n}$$

Sparse Grids – Accuracy (2)

In general, it can be shown

- Error of interpolation in L^2 and maximum norm is $\mathcal{O}(2^{-2n}n^{d-1})$ \Rightarrow or, expressed in mesh size $h := 2^{-n}$: $\mathcal{O}(h^2(\log \frac{1}{h})^{d-1})$
- Only polynomial (in n) factor worse than full grid with $\mathcal{O}(2^{-2n})$ \Rightarrow or, expressed in mesh size $h := 2^{-n}$: $\mathcal{O}(h^2)$

Outlook on Energy norm: (→ Algorithms for Scientific Computing II)

- Analysis is more complicated (lines through subspaces with similar $s(\vec{l})$, and thus $c(\vec{l})/s(\vec{l})$, are more complicated)
- Overall result even better:
 obtain accuracy of 𝒪(2⁻ⁿ) with only 𝒪(2ⁿ) grid points
 → no polynomial terms (of type n^d) left!

- Part 1: Hierarchical Decomposition, *d*-Dimensional
- Part 2: Hierarchical Decomposition Outlook on Cost and Accuracy
- Part 3: Hierarchical Decomposition Cost and Accuracy, d-Dimensional
- Part 4: Sparse Grids