MATH 110 –Spring 2016 — Homework 1 Solutions

Utsav Baral, SID 25694452

1.2 #1, 2, 7, 8, 10, 13, 17 **1.3** #1, 3, 8, 12, 19, 25, 29

1.2

- 1. Problem: Label the following statements as True or False
 - (a) Every vector space contains a zero vector.

TRUE. By the definition of the properties of vector spaces, there must be a zero vector or else the set is not a vector space.

(b) A vector space may have more than one zero vector.

FALSE. By contradiction, Suppose there are multiple values for zero, u and u'. u+u'=u and u'+u=u' therefore u=u' and our assumption that there are more than one zero is false.

(c) In any vector space, ax = bx implies that a = b.

FALSE. When $x = \vec{0}$ then $ax = bx \ \forall a, b \in \mathbb{F}$

(d) In any vector space, ax = ay implies that x = y.

FALSE. If a = 0, then $ax = ay \ \forall x, y \in V$

(e) A vector in \mathbb{F}^n may be regarded as a matrix in $M_{n\times 1}(\mathbb{F})$.

TRUE. The single column of the matrix can be interpreted as a vector and vise versa because there is a one to one correspondence and both are members of a vector space.

(f) $An \ m \times n \ matrix \ has \ m \ columns \ and \ n \ rows.$

|FALSE|. It has m rows and n columns

(g) In $P(\mathbb{F})$ only polynomials of the same degree may be added.

FALSE. Any degree polynomial may be added.

(h) If f and g are polynomials of degree n, then f + g is a polynomial of degree n.

 \overline{FALSE} . Counter example: $f = -2x^n$ and $g = 2x^n$

(i) If f is a polynomial of degree n and c is a nonzero scalar, then cf is a polynomial of degree n.

TRUE. f has term ax^n , where $a \neq 0$ so cf will have term $(c \cdot a)x^n$ where $ca \neq 0$

- (j) A nonzero scalar of \mathbb{F} may be considered to be a polynomial in $P(\mathbb{F})$ having degree zero. \boxed{TRUE} . Any polynomial, $f \in P(\mathbb{F})$, with degree 0 is written as $f = a_0$, where $a_0 \in \mathbb{F}$. Thus, any non-zero scalar $k \in \mathbb{F}$ maps to the zero-degree polynomial f = k and any zero-degree polynomial $f = k' : k' \in \mathbb{F}$ maps to the non-zero scalar k' Establishing a bijective correspondence
- (k) Two functions in $F(S, \mathbb{F})$ are equal if and only if they have the same value at each element of S.

 \overline{TRUE} . That is the definition of equals.

2. <u>Problem:</u> Write the zero vector of $M_{3\times 4}(\mathbb{F})$

$$\begin{bmatrix} \mathbf{O}_{\mathbb{F}} & \mathbf{O}_{\mathbb{F}} & \mathbf{O}_{\mathbb{F}} & \mathbf{O}_{\mathbb{F}} \\ \mathbf{O}_{\mathbb{F}} & \mathbf{O}_{\mathbb{F}} & \mathbf{O}_{\mathbb{F}} & \mathbf{O}_{\mathbb{F}} \\ \mathbf{O}_{\mathbb{F}} & \mathbf{O}_{\mathbb{F}} & \mathbf{O}_{\mathbb{F}} & \mathbf{O}_{\mathbb{F}} \end{bmatrix}$$

7. <u>Problem:</u> Let $S = \{0,1\}$ and $\mathbb{F} = \mathbb{R}$. In $F(S,\mathbb{R})$, show that f = g and f + g = h, where f(t) = 2t + 1, $g(t) = 1 + 4t - 2t^2$, and $h(t) = 5^t + 1$.

Solution:

F is the set of all functions that map the set $\{0,1\}$ to the set \mathbb{R} So the functions $f,g,h\in F(S,\mathbb{R})$ given to us can be thought of as any function that is defined for the input values of 0 and 1 To show that f=g we show that f and g map the values 0 and 1 to the same values in \mathbb{R} , respectively:

$$f(0) = 2 \cdot (0) + 1 = \mathbf{1}, \qquad f(1) = 2 \cdot (1) + 1 = \mathbf{3}$$

$$g(0) = 1 + 4 \cdot (0) - 2 \cdot (0)^2 = \mathbf{1}, \qquad g(1) = 1 + 4 \cdot (1) - 2 \cdot (1)^2 = \mathbf{3}$$

$$f(0) = g(0) \wedge f(1) = g(1) \qquad \qquad \therefore \boxed{f(t) = g(t) \text{ in } F(S, \mathbb{R})}$$

Now to show that f + g = h in $F(S, \mathbb{R})$, we repeat the same process as above for (f + g)(t) and h(t):

$$(f+g)(0) = 2, h(0) = 2$$

 $(f+g)(1) = 6, h(1) = 6$
 $(f+g)(0) = h(0) \land (f+g)(1) = h(1) \therefore (f+g)(t) = h(t) \text{ in } F(S,\mathbb{R})$

8. <u>Problem:</u> In any vector space \mathbf{V} , show that, (a+b)(x+y) = ax + ay + bx + by for any $x, y \in V$ and any $a, b \in \mathbb{F}$.

Solution:

Starting with (a + b)(x + y), we first let z = x + y; we know that $z \in \mathbf{V}$ by the 1st property of vector spaces. We can rewrite our equation as (a + b)(z). But by **Axiom 8**, we can rewrite this as az + bz. Replacing z with our original relation, we transform our expression to a(x + y) + b(x + y). And by **Axiom 7** this is the same as ax + ay + bx + by. Thus completing our proof.

10. <u>Problem:</u> Let **V** denote the set of all differentiable real-valued functions defined on the real line. Prove that **V** is a vector space with the operations of addition and scalar multiplication defined in Example 3.

Solution:

We know that the addition and scalar multiplication operations defined in Example 3 satisfy the 8 Axioms for Vector Spaces. So we just have to show that applying either operation on the vectors results in another vector also in \mathbf{V} .

For the addition property, we have that (f+g)(x) = f(x)+g(x) and we know that f(x) and g(x) are both differntiable $\forall x \in \mathbb{R}$. For (f+g)(x) to be in \mathbf{V} , it must also be differentiable on the real line and map $\mathbb{R} \mapsto \mathbb{R}$. But this is definitely the case because (f+g)'(x) = f'(x)+g'(x) and we are guaranteed f' and g' exist and are in \mathbb{R} .

For multiplication, we have that $(cf)(x) = c \cdot f(x)$. And again, we have that $(cf)'(x) = c \cdot f'(x)$ which means, by the same justification as above, that $(cf)(x) \in \mathbf{V}$ as well.

13. <u>Problem:</u> Let **V** denote the set of ordered pairs of real numbers. If (a1, a2) and (b1, b2) are elements of **V** and $c \in \mathbb{R}$, define (a1, a2) + (b1, b2) = (a1 + b1, a2b2) and c(a1, a2) = (ca1, a2). Is **V** a vector space over \mathbb{R} with these operations? Justify your answer.

Solution:

No, it is not a vector space because **Axiom 3** and **Axiom 4** contradict each other. **Axiom 3** states that: $\exists \ \vec{0} \in \mathbf{V} : \forall \ \vec{v} \in \mathbf{V} \ (\vec{v} + \vec{0} = \vec{v})$ which implies that the $\vec{0} = (0,1)$. **Axiom 4** states that: $\forall \vec{x} \in \mathbf{V}, \exists \vec{y} \in \mathbf{V} : (\vec{x} + \vec{y} = \vec{0})$. However, with the vector $\vec{u} = (0,0)$, there is no other vector $\vec{u}' \in \mathbf{V}$ such that $\vec{u} + \vec{u}' = \vec{0}$, because such a vector would have to satisfy the equation $u'_2 \cdot 0 = 1$ where $u'_2 \in \mathbb{R}$

17. <u>Problem:</u> Let $V = \{(a_1, a_2) : a_1, a_2 \in \mathbb{F}\}$, where \mathbb{F} is a field. Define addition of elements of \mathbf{V} coordinatewise, and for $c \in \mathbb{F}$ and $(a_1, a_2) \in \mathbf{V}$, define $c(a_1, a_2) = (a_1, 0)$. Is \mathbf{V} a vector space over \mathbb{F} with these operations? Justify your answer.

Solution:

[NO]. Because the multiplication operation violates **Axiom 5**. Which is that $1 \cdot x = x, \ \forall \ x \in \mathbf{V}$. Which would mean that $1 \cdot (a1, a2) = (a1, a2), \ \forall \ a_1, a_2 \in \mathbb{F}$ But in fact $1 \cdot (a1, a2) \neq (a1, a2) \ \forall \ a_2 \neq 0$

1.3

- 1. Problem: Label the following statements as true or false.
 - (a) If V is a vector space and W is a subset of V that is a vector space, then W is a subspace of V.

 \overline{FALSE} . Because the subset has to be closed under addition and scalar multiplication as well.

- (b) The empty set is a subspace of every vector space.
 - FALSE. It needs a zero vector in the set, but there are no vectors in the set.
- (c) If V is a vector space other than the zero vector space, then V contains a subspace W such that $W \neq V$.

 \overline{TRUE} . The zero-vector space is a subspace itself.

- (d) The intersection of any two subsets of V is a subspace of V.
 - \overline{FALSE} . The zero vector may not necessarily be in the intersection of two arbitrary subsets.
- (e) An $n \times n$ diagonal matrix can never have more than n nonzero entries.
 - \overline{TRUE} . A diagonal matrix is by definition the matrix with all zeroes except the diagonal which may or may not be zero, so it can have at most n n nonzero entries.
- (f) The trace of a square matrix is the product of its diagonal entries.

|FALSE|. It is the sum.

(g) Let W be the xy - plane in \mathbb{R}^3 that is, $W = \{(a_1, a_2, 0) : a_1, a_2 \in \mathbb{R}\}$. Then $W = \mathbb{R}^2$.

 \overline{FALSE} . vectors in W are \mathbb{R}^3 which is not comparable with vectors in \mathbb{R}^2

3. <u>Problem:</u> Prove that $(aA + bB)^t = aA^t + bB^t$ for any $A, B \in M_{m \times n}(F)$ and any $a, b \in F$ Solution:

$$(\mathbf{a}\mathbf{A} + \mathbf{b}\mathbf{B})^{\mathbf{T}} = \begin{bmatrix} aA_{11} & aA_{12} & \dots & aA_{1n} \\ aA_{21} & aA_{22} & \dots & aA_{2n} \\ \vdots & \vdots & & \vdots \\ aA_{m1} & aA_{m2} & \dots & aA_{mn} \end{bmatrix} + \begin{bmatrix} bB_{11} & bB_{12} & \dots & bB_{1n} \\ bB_{21} & bB_{22} & \dots & bB_{2n} \\ \vdots & \vdots & & \vdots \\ bB_{m1} & bB_{m2} & \dots & bB_{mn} \end{bmatrix}^{T}$$

$$= \begin{bmatrix} aA_{11} + bB_{11} & aA_{12} + bB_{12} & \dots & aA_{1n} + bB_{1n} \\ aA_{21} + bB_{21} & aA_{22} + bB_{22} & \dots & aA_{2n} + bB_{2n} \\ \vdots & & \vdots & & \vdots \\ aA_{m1} + bB_{m1} & aA_{m2} + bB_{m2} & \dots & aA_{mn} + bB_{mn} \end{bmatrix}^{T}$$

$$=\begin{bmatrix} aA_{11} + bB_{11} & aA_{21} + bB_{21} & \dots & aA_{n1} + bB_{n1} \\ aA_{12} + bB_{12} & aA_{22} + bB_{22} & \dots & aA_{n2} + bB_{n2} \\ \vdots & \vdots & & \vdots \\ aA_{1m} + bB_{1m} & aA_{2m} + bB_{2m} & \dots & aA_{nm} + bB_{nm} \end{bmatrix}$$

$$=\begin{bmatrix} aA_{11} & aA_{21} & \dots & aA_{m1} \\ aA_{12} & aA_{22} & \dots & aA_{m2} \\ \vdots & \vdots & & \vdots \\ aA_{1n} & aA_{2m} & \dots & aA_{nm} \end{bmatrix} + \begin{bmatrix} bB_{11} & bB_{21} & \dots & bB_{m1} \\ bB_{12} & bB_{22} & \dots & bB_{m2} \\ \vdots & \vdots & & \vdots \\ bB_{1n} & bB_{2n} & \dots & bB_{nm} \end{bmatrix}$$

$$= \mathbf{a}\mathbf{A}^{\mathbf{T}} + \mathbf{b}\mathbf{B}^{\mathbf{T}} \blacksquare$$

- **8.** <u>Problem</u> Determine whether the following sets are subspaces of \mathbb{R}^3 under the operations of addition and scalar multiplication defined on \mathbb{R}^3 . Justify your answers.
 - (a) $W_1 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 = 3a_2 \text{ and } a_3 = -a_2\}$ YES, it is a subspace. Because the variables can be thought of as coordinates in 3D and with the given constraints, give us a line in 3 dimension, which is indeed a subspace of \mathbb{R} .
 - (b) $W_2 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 = a_3 + 2\}$ YES, it's a subspace. Because this is a plane in 3 dimensions, which is a subspace.
 - (c) $W_3 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : 2a_1 7a_2 + a_3 = 0\}$ YES, it's a subspaces. Again, this is just a plane in \mathbb{R}^3 , thus it is a subspace.
 - (d) $W_4 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 4a_2 a_3 = 0\}.$ [YES. a subspace] Again this is a plane, so the vectors belonging to this set will form a subspace.
 - (e) $W_5 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 + 2a_2 3a_3 = 1\}$ NO, Not a subspace. Because the zero vector is not in the set.

for example \nwarrow and \nearrow that sums to \uparrow , but $\vec{v} = (\uparrow) \notin W_6$

- (f) $W_6 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : 5a_1^2 3a2^2 + 6a_3^2 = 0\}$ NO. This is a cone in 3 dimension, so you could have two vectors along the side that,
- 12. <u>Problem:</u> An $m \times n$ matrix A is called upper triangular if all entries lying below the diagonal entries are zero, that is, if $A_{ij} = 0$ whenever i > j. Prove that the upper triangular matrices form a subspace of $M_{m \times n}(F)$.

Solution:

Let's denote the subset of upper triangular matrices in $M_{m\times n}$ as M_{UT} . we know that $\vec{0} \in M_{UT}$ since the matrix with all zeroes is upper triangular. Let A and B be matrices in M_{UT} , A+B is also guranteed to be upper triangular, because $0_{\mathbb{F}} + 0_{\mathbb{F}} = 0_{\mathbb{F}}$ and thus in M_{UT} as well. Scalar multiplication holds as well because any $c \in \mathbb{F}$ times $0_{\mathbb{F}} = 0_{\mathbb{F}}$. And the axiomss for

the operations hold as well because we are dealing with a subset of an already proven Vector Space.

19. <u>Problem:</u> Let W_1 and W_2 be subspaces of a vector space \mathbf{V} and $w_1, w_2, ..., w_n$ are in W. Prove that $W_1 \cup W_2$ is a subspace of V i.f.f $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$

Solution:

We will first proove the back direction, that is: $W_1 \subseteq W_2$ or $W_2 \subseteq W_1 \implies W_1 \cup W_2$ is a subspace of **V**. There are two cases: if $W_1 \subseteq W_2$, then $W_1 \cup W_2 = W_2$ or if $W_2 \subseteq W_1$, in which case $W_1 \cup W_2 = W_1$ and we are given that W_1 and W_2 are subspaces, so we're done.

To complete the whole proof, we now just have to proove that $W_1 \cup W_2$ is a subspace of $\mathbf{V} \implies W_1 \subseteq W_2$ or $W_2 \subseteq W_1$. For contradiction, assume that the latter condition does not hold, that means that there must exist some element $\vec{w} \in W_1$ and some element \vec{w}' such that $\vec{w} \notin W_2 \& \vec{w}' \notin W_1$. Under the addition property we know that $(\vec{w} + \vec{w}') \in W_1 \cup W_2$. Which means $(\vec{w} + \vec{w}')$ either in W_1 or W_2 or both. But $\vec{w} + \vec{w}' \notin W_1$, because that would imply $\vec{w}' \in W_1$ by the closure property, and similarly $\vec{w} + \vec{w}' \notin W_2$ by the same reasoning. CONTRADICTION! Our initial assumption must have been incorrect $: W_1 \subseteq W_2$ or $W_2 \subseteq W_1$ must hold, thus completing the proof.

25. <u>Problem:</u> Let W_1 denote the set of all polynomials $f(x) \in P(\mathbb{F})$ such that f(x) only consists of terms with even degree on the x term. And let W_2 denote the set of all polynomials $g(x) \in P(\mathbb{F})$ such that g(x) only consists of terms with odd degree on the x term. Proove that $P(\mathbb{F}) = W_1 \bigoplus W_2$

Solution:

We have to show that (1) $W_1 \cap W_2 = \{0\}$ and that (2) $W_1 + W_2 = P(\mathbb{F})$.

- (1) A polynomial that satisfies the properties of both W_1 and W_2 has coefficients on both even and odd degree terms equal to 0. This means that the only polynomial that satisfies both conditions is the 0 polynomial, thus $W_1 \cap W_2 = \{0\}$
- (2) Any $f(x) \in W_1$ can be written as: $a_0x^0 + a_2x^2 + a_4x^4 + ... + a_{2k}x^{2k}$ and likewise any $g(x) \in W_2$ can be written as: $b_1x^1 + b_3x^3 + b_5x^5 + ... + b_{2k+1}x^{2k+1}$. And we know that any polynomial $h(x) \in P(\mathbb{F})$ can be written as: $c_0x^0 + c_1x^1 + c_2x^2 + c_3x^3 + c_4x^4 + ... + c_nx^n$. So for the arbitrary polynomial, we just need to set every $a_i = c_i$, if i is even and every $b_i = c_i$, if i is odd, and we get that f(x) + g(x) = h(x)
- **29.** Problem: Let F be a field that is not of characteristic 2. Define:

$$W_1 = \{ A \in M_{n \times n}(\mathbb{F}) : A_{ij} = 0 \text{ whenever } i \leq j \}$$

and W_2 to be the set of all symmetrics \times n matrices with entries from \mathbb{F} . Both W_1 and W_2 are subspaces of $M_{n\times n}(\mathbb{F})$. Prove that $M_{n\times n}(\mathbb{F})=W_1\bigoplus W_2$.

Solution:

Again, we must show that (1) $W_1 \cap W_2 = \{0\}$ and that (2) $W_1 + W_2 = P(\mathbb{F})$.

- (1) A polynomial that satisfies the properties of both W_1 and W_2 must be the zero matrix because a lower triangular mtrix which is symmetric will necessarily mean that every element is 0 obviously.
- (2) For any matrix $A \in M_{n \times n}$ we can construct $B \in W_1$ and $D \in W_2$ such that A = B + D like so. $\forall i, j : i \geq j$ set $D_{ij} := A_{ij}$. This also defines the lower half of matrix D by symmetry. Now, $\forall i, j : i < j$ set $B_{ij} := A_{ij} D_{ij}$ and this completely defines matrix $D = \blacksquare$