Übungsblatt 3

Übungsgruppe 1

Daniel Schubert Anton Lydike

Donnerstag 07.11.2019

Aufgabe 1) ___ /6p.

1. $I \vDash A \rightarrow B \Leftrightarrow I \not\vDash A \text{ oder } I \vDash B$

,,⇒" Betrachte $A=B=\text{ist_gerade}(x),$ es folgt nun $A\to B\equiv A\to A,$ was immer Wahr ist. Dagegen gilt $I\not\models A$

Die Rückrichtung gilt nicht, da für $I \not\models A$ und $I \models B$ jeweils unterschiedliche β gewählt werden können, weswegen die beiden Aussagen nicht ohne weiteres zusammengeführt werden können.

$$I \not \models A \text{ oder } I \vDash B \overset{\text{Def. Modell}}{\Longleftrightarrow} \forall \beta : I, \beta \not \models A \text{ oder } \forall \hat{\beta} : I, \hat{\beta} \vDash B$$

,,∉"

$$I \not\models A \text{ oder } I \vDash B \Rightarrow \text{ für alle } \beta \text{ gilt } I, \beta \not\models A \text{ oder für alle } \hat{\beta} \text{ gilt } I, \hat{\beta} \vDash B \quad \text{(Def. Modell)}$$

$$\Rightarrow \text{ für alle } \beta \text{ gilt } (I, \beta \not\models A \text{ oder } I, \beta \vDash B) \quad \text{(Meta)}$$

$$\Rightarrow \text{ für alle } \beta \text{ gilt } (I, \beta \vDash \neg A \text{ oder } I, \beta \vDash B) \quad \text{(A3)}$$

$$\Rightarrow \text{ für alle } \beta \text{ gilt } I, \beta \vDash \neg A \lor B \quad \text{(A4)}$$

$$\Rightarrow \text{ für alle } \beta \text{ gilt } I, \beta \vDash A \to B \quad \text{(Def. Modell)}$$

$$\Rightarrow I \vDash A \to B \quad \text{(Def. Modell)}$$

Alter beweis:

$$I \vDash A \to B \Rightarrow \forall \beta : I, \beta \vDash A \to B$$
 (Def. Modell)

$$\Rightarrow \forall \beta : I, \beta \vDash \neg (A \land \neg B)$$
 (Meta)

$$\Rightarrow \forall \beta : I, \beta \vDash \neg A \lor \neg (\neg B)$$
 (De Morgan)

$$\Rightarrow \forall \beta : I, \beta \vDash \neg A \lor B$$
 (Meta)

$$\Rightarrow \forall \beta : (I, \beta \vDash \neg A \text{ oder } I, \beta \vDash B)$$
 (A4)

$$\Rightarrow \forall \beta : (I, \beta \not\vDash A \text{ oder } I, \beta \vDash B)$$
 (A3)

$$\Rightarrow I \not\vDash A \text{ oder } I \vDash B$$
 (Def. Modell)

2. $I, \beta \models \forall x . A \Rightarrow I, \beta \models \exists x . A$

$$I, \beta \vDash \forall x . A \Rightarrow \text{ für alle } d \in D \text{ gilt } I, \beta \{x \mapsto d\} \vDash A$$
 (A5)
 $\Rightarrow \text{ es existiert ein } d \in D \text{ mit } I, \beta \{x \mapsto d\} \vDash A$ (Meta)
 $\Rightarrow I, \beta \vDash \exists x . A$ (A5)

Aufgabe 2) ___ /9p.

- 1. (a) Ja, da die Klammerung um die linke Seite komplett gültig ist
 - (b) Nein, da $A \rightarrow B$ nicht aus Regeln hergeleitet werden kann (siehe 4.)
 - (c) Nein, analog zu (b)
 - (d) **Nein**, da ∃-Quantor nicht für universelle Formeln zugelassen ist (siehe 3.)
 - (e) Nein, da weder die implikation, noch die biimplikation zulässig sind
- 2. Betrachte $(\forall x. P(x)) \land \forall y. Q(y)$ mit Interpretationen I, J und $I \subset J$:

$$D_J := \{\Delta, \Box, \circ, \not \Rightarrow\}$$
 $P^J(x) := x \text{ ist konvex}$ $Q^J(x) := tt$
 $D_I := \{\Delta, \Box\} \subset D_J$ $P^I(x) := x \text{ hat Ecken}$ $Q^I(x) := tt$

Es folgt, dass $\forall d \in D_I : P^I(d) \iff P^J(d) \text{ und } \forall d \in D_I : Q^I(d) \iff Q^J(d), \text{ jedoch ist } P^I(\mathfrak{A}) \iff P^J(\mathfrak{A}), \text{ we shalb}$

Es st nur für die erset Formel möglich, da nur die erste Formel universell ist.

- 3. Es existiert keine Regel, die es erlaubt den \exists -Quantor herzuleiten.
- 4. Pfeile sind böse

Aufgabe 3) ___ /10p.

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.

Gesamtpunkte: $_/25$ p.