# Written Assignment 0

# Niraj Venkat

## Exercise 2.1

## Proving $\chi = V - E + F = 1$ for a polygonal disk:

If we start with a polygonal disk which has non-triangular faces, we can triangulate it by adding diagonals. Each diagonal increases the number of edges and faces by 1. This process of triangulation leaves  $\chi$  invariant. Now that all the faces are triangular, the remainder of the proof must show that  $\chi=1$ . We start by removing triangles from the boundary which involves either:

- Removing 1 face and 1 edge
- Removing 1 vertex, 2 edges and 1 face

Both would leave  $\chi$  the same. We are left with the base case which is just a triangle which has  $\chi = 3 - 3 + 1 = 1$ .

# Proving $\chi = V - E + F = 2$ for a polygonal sphere:

We project the polyhedron to the 2D plane to re-use the previous result. To do this imagine shining a light from the top and casting a shadow on a surface placed on the bottom. This would yield a projection which has the same number of edges and vertices as before. If this is not the case, then we are allowed to reposition the vertices so that it casts a proper shadow. We are allowed to do this since  $\chi$  is a topological property. The shadow we cast will have one less face than the original because that face is now the boundary of our shadow. So  $\chi = 1 + 1 = 2$  for the polygonal sphere.

#### Exercise 2.2

#### Angles argument:

- **Triangles**. The interior angle of an equilateral triangle is 60 degrees. Thus on a regular polyhedron, only 3, 4, or 5 triangles can meet a vertex. If there were more than 6 their angles would add up to at least 360 degrees which they can't. Consider the possibilities:
  - 3 triangles meet at each vertex, giving rise to a Tetrahedron
  - 4 triangles meet at each vertex, giving rise to an Octahedron
  - 5 triangles meet at each vertex, giving rise to an Icosahedron
- **Squares**. Since the interior angle of a square is 90 degrees, at most three squares can meet at a vertex. This is indeed possible and it gives rise to a hexahedron or cube.
- Pentagons. As in the case of cubes, the only possibility is that three pentagons meet at a vertex. This gives rise to a Dodecahedron.
- **Hexagons** or regular polygons with more than six sides cannot form the faces of a regular polyhedron since their interior angles are at least 120 degrees.

We end up with 5 platonic solids.

#### Connectivity argument:

Because this is a regular polytope/mesh, the valence of each vertex is equal, so we argue each face is an identical n-gon, for some positive n.

Being regular implies  $n \geq 3$ .

With the same argument, each vertex is identical, so let d be the degree of vertices.

Being regular implies  $d \geq 3$ .

As usual V is number of vertices, E is number of edges and F is number of faces.

Each edge touches two faces, so  $\frac{nF}{2} = E \implies F = \frac{2E}{n}$ . Each edge touches two vertices, so  $\frac{dV}{2} = E \implies V = \frac{2E}{d}$ .

Using Euler's formula:

$$\chi = 2 = V - E + F$$

$$= \frac{2E}{d} - E + \frac{2E}{n}$$

$$= E\left(\frac{2}{d} - 1 + \frac{2}{n}\right)$$

From earlier  $n \geq 3$  and  $d \geq 3$ , so we get  $\frac{1}{n} \leq \frac{1}{3}$  and  $\frac{1}{d} \leq \frac{1}{3}$ . E must be positive so:

$$\frac{2}{d} - 1 + \frac{2}{n} > 0$$

$$\frac{1}{d} > \frac{1}{2} - \frac{1}{n} > \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$

$$3 \le d < 6$$

When d = 3,  $\frac{1}{n} > \frac{1}{6}$ , so n = 3, 4 or 5.

When d = 4,  $\frac{1}{n} > \frac{1}{4}$ , so n = 3.

When d = 5,  $\frac{1}{n} > \frac{3}{10}$ , so n = 3.

Overall, this gives us the following table of platonic solids:

| d | n | V  | E  | F  | Solid        | Mesh |  |  |
|---|---|----|----|----|--------------|------|--|--|
| 3 | 3 | 4  | 6  | 4  | Tetrahedron  | LATE |  |  |
| 3 | 4 | 8  | 12 | 6  | Cube         | LATE |  |  |
| 3 | 5 | 20 | 30 | 12 | Dodecahedron | LATE |  |  |
| 4 | 3 | 6  | 12 | 8  | Octahedron   | LATE |  |  |
| 5 | 3 | 12 | 30 | 20 | Icosahedron  | LATE |  |  |

The whole 'LATE' thing is a joke that can be found here.

Previous formulas apply here, with n=3 and d=6. We apply the Euler-Poincaré formula:

$$\chi = 2 - 2g = V - E + F$$

$$= \frac{2E}{d} - E + \frac{2E}{n}$$

$$= \frac{2E}{6} - E + \frac{2E}{3}$$

$$= 0$$

So we get  $2(1-g) = 0 \implies g = 1$ , which is a torus.

#### Exercise 2.4

Let the number of vertices with irregular valence be n.

The valences of these n vertices are  $v_1, v_2, \ldots, v_n$ , and we assume  $v_i \geq 3$ . Using the previous formula for regular triangle mesh with degree d: dV = 2E = 3F. This degree for irregular mesh is not uniformly d so we now have:

$$6(V - n) + \sum_{i}^{n} v_{i} = 2E = 3F$$

$$\implies F = \frac{6(V - n) + \sum_{i}^{n} v_{i}}{3}$$

We apply the Euler-Poincaré formula, and express in terms of V:

$$\begin{split} \chi &= 2 - 2g = V - E + F \\ &= V - \frac{3}{2}F + F \\ &= V - \frac{1}{2}F \\ &= V - \frac{6(V - n) + \sum_{i}^{n}v_{i}}{6} \\ &= n - \frac{\sum_{i}^{n}v_{i}}{6} \end{split}$$

So  $n = 2 - 2g + \frac{\sum_{i=0}^{n} v_i}{6}$ . Because  $v_i \ge 3$ :

$$\sum_{i=1}^{n} v_i \ge 3n \implies \frac{\sum_{i=1}^{n} v_i}{6} \ge \frac{n}{2} \implies n-2+2g \ge \frac{n}{2} \implies n \ge 4-4g$$

When g = 0: we have  $n \ge 4$ .

When g = 1: we have n = 0 from Exercise 2.3

When  $g \geq 2$ : we have  $n \leq -4$ .

 $\overline{n}$  is non-negative, and if  $n=0=2\chi$ , implies  $\chi=0$  for genus  $g\geq 2$  which is invalid. So the valid values start from  $n\geq 1$ .

Which gives us our result:

$$m(K) = \begin{cases} 4, & g = 0 \\ 0, & g = 1 \\ 1, & g \ge 2 \end{cases}$$

#### Triangle mesh:

Each edge has 2 faces on either side, each face is bounded by 3 edges. So 3F = 2E or E: F = 3: 2.

We apply the Euler-Poincaré formula:

$$\chi = 2 - 2g = V - E + F$$

$$= V - E + \frac{2}{3}E$$

$$\implies E = 3(V - 2 + 2q)$$

An edge connects two vertices, but we can say that the edge belongs to only one of the vertices. So, mean valence for a triangle mesh of large V:

$$\lim_{V \to \infty} \frac{2E}{V} = \lim_{V \to \infty} \frac{6(V - 2 + 2g)}{V} = 6$$

## Exercise 2.6

#### Quad mesh:

Very similar to the previous calculation, except each face is bounded by 4 edges, so E: F=4: 2=2: 1. We apply the Euler-Poincaré formula and get: E=2(V-2+2g)

Mean valence for a quad mesh of large V:

$$\lim_{V \to \infty} \frac{2E}{V} = 4$$

## Exercise 2.7

#### Tet mesh:

TODO: find a proper explanation:

I found an explanation from Stack Exchange which gives us the following result:

$$V:E:F:T=1:4:6:3$$

whereas the data included in the problem gives us something like:

$$V:E:F:T=2:14:3:1$$

So, I don't know what to make of this proof.

$$F'_{j} = \begin{cases} F_{j} + {d+1 \choose j}, & \text{if } j = 0, 1, 2, \dots, d-1, \\ F_{d} + d, & \text{if } j = d, \end{cases}$$

where  $F'_j$  is the number of d-dimensional faces in T' for each j = 0, 1, 2, ..., d. Hence, if you refine the mesh on M nicely (i.e., avoid fiddling with boundaries of all n-simplices), then the ratio

$$F_0: F_1: \ldots: F_{d-1}: F_d$$

Let d be a positive integer and M a d-dimensional triagularizable geometric object. Let  $F_j$  denote the number of j-dimensional faces of a triangularization T of M. (For example,  $F_0$  is the number of vertices and  $F_1$  is the number of edges.) Each time a new vertex is added into the interior of an n-simplex in T, we see that the new triangularization T' satisfies

should tend to

$$\binom{d+1}{0}:\binom{d+1}{1}:\ldots:\binom{d+1}{d-1}:d,$$

as the number of vertices increases. In particular, for d=3, one would expect

$$\frac{F_1}{F_0} \approx \frac{\binom{3+1}{1}}{\binom{3+1}{0}} = 4.$$

If we are allowed to play with the boundaries of *n*-simplices, then the ratios  $\frac{F_j}{F_{j-1}}$  for  $j=1,2,\ldots,d$  may not have limits, or can tend to arbitrarily large values, provided that  $d\geq 3$ .

# Exercise 2.8

Luckily the mesh in this problem matches the one in the coding exercise!





(a) Original subset  $\mathcal{K}'$ 

(b) Boundary  $\mathrm{bd}(\mathcal{K}')$ 



(c) Interior  $int(\mathcal{K}')$ 

 $\underline{\text{Twin}}$ 

| h         | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|-----------|---|---|---|---|---|---|---|---|---|---|
| $\eta(h)$ | 4 | 2 | 1 | 5 | 0 | 3 | 7 | 6 | 9 | 8 |

 $\underline{\mathrm{Next}}$ 

Looks like this:



Exercise 2.12

$$A_{0} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \qquad A_{1} = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Exercise 2.13

For a simplicial k-manifold, the link of every vertex (0-simplex) looks like a (k-1)-dimensional sphere. A simplicial 1-complex is just a graph, but a simplicial 1-manifold is not an arbitrary graph. The degree of each vertex is no greater than 2, so the link of every vertex should be a pair of vertices. So it cannot contain anything other than isolated paths of edges and closed loops of edges.

Exercise 2.14

The boundary of a simplicial surface will have zero or more closed loops. Each connected set of vertices with a boundary will generate a closed loop for its boundary.

Exercise 2.15

Taking the boundary  $bd(\mathcal{K})$  means removing the interior:  $bd(\mathcal{K}) = Cl(\mathcal{K}) \setminus int(\mathcal{K})$ We could say that  $int(bd(\mathcal{K})) = Cl(bd(\mathcal{K}))$  which gives us our result.

Alternatively, in DDG the boundary is defined as the closure of the set of all simplices  $\sigma$  that are proper faces of exactly one simplex of  $\mathcal{K}$ . The result of taking the boundary is a (k-1)-submanifold without any proper faces of exactly one simplex. This means  $\sigma$  for  $\mathrm{bd}(\mathcal{K})$  becomes  $\emptyset$ .

$$\operatorname{bd}(\operatorname{bd}(\mathcal{K})) = \operatorname{Cl}(\sigma) = \operatorname{Cl}(\emptyset) = \emptyset.$$