Question number	Answer	Notes	Marks
2 (a)	9 (kPa);		1
(b)	(liquid) pressure = depth (of liquid) \times density \times g ;	accept d, h, height for depth rho, p for density g.f.s or gravitational field strength for g reject gravity for g	1
(c)	substitution; rearrangement; evaluation; e.g. pressure difference = 9 kPa 9000 = d × 960 × 10 d = 9000 / (9600) d = 0.94 (m)	allow ecf from (a) allow use of g = 9.8(1) m/s² giving 0.96 m allow 0.937(5) POT error penalty of 1 mark, except if formula is incorrect i.e. no 'g'	3

Total for Question 2 = 5 marks

Question number	Answer	Notes	Marks
4	MP1 nebula/gas cloud;		5
	MP2 protostar;		
	MP3 main sequence (then red supergiant);		
	MP4 supernova;		
	MP5 neutron star/ black hole;	1 mark penalty for any incorrect sequence	

Total for Question 4 = 5 marks

Question number	Answer	Notes	Marks
5 (a)	substitution into given equation $v^2 = u^2 + (2 \times a \times s)$; evaluation of v^2 ; evaluation of v to 3sf or more i.e. 16.1 (m/s);	accept mgh = $1/2$ mv ² accept use of g = $9.8(1)$ m/s ² giving v = 16.0 , 15.97 etc.	3
	e.g. $v^2 = u^2 + (2 \times a \times s)$ $v^2 = 0^2 + (2 \times 10 \times 13)$ $v^2 = 260$ $v = \sqrt{260} = 16.1 \text{ (m/s)}$		
(b)	any FIVE from:		5
	MP1 ball has weight;	allow 'has gravitational force' REJECT 'has gravity'	
	MP2 ball accelerates;	REJECT 'balls slows down'	
	MP3 drag increases (while accelerating);	allow 'air resistance' for 'drag'	
	MP4 resultant force decreases;		
	MP5 (so) acceleration decreases;		
	MP6 drag = weight / resultant = 0 / forces balanced;		
	MP7 terminal velocity/constant speed /acceleration=0;		

Total for Question 5 = 8 marks