In [1]:

```
#Importing Libraries needed for the Project
import pandas as pd
import matplotlib.pyplot as plt
```

Create a DataFrame from the CSV file.

In [2]:

data=pd.read_csv('time-series-19-covid-combined.csv',parse_dates=['Date']) #reading the csv filr of covid-19 data
copydata=data
data

Out[2]:

	Date	Country/Region	Province/State	Confirmed	Recovered	Deaths
0	2020-01-22	Afghanistan	NaN	0	0.0	0
1	2020-01-23	Afghanistan	NaN	0	0.0	0
2	2020-01-24	Afghanistan	NaN	0	0.0	0
3	2020-01-25	Afghanistan	NaN	0	0.0	0
4	2020-01-26	Afghanistan	NaN	0	0.0	0
231739	2022-04-12	Zimbabwe	NaN	247094	0.0	5460
231740	2022-04-13	Zimbabwe	NaN	247160	0.0	5460
231741	2022-04-14	Zimbabwe	NaN	247208	0.0	5462
231742	2022-04-15	Zimbabwe	NaN	247237	0.0	5462
231743	2022-04-16	Zimbabwe	NaN	247237	0.0	5462

Merge the data for countries with multiple regions in order to provide a single time-series for each Country

In [3]:

231744 rows × 6 columns

#creating a single time-series for each country by using groupby and sum
ts=data.groupby(['Country/Region','Date']).sum()
ts

Out[3]:

		Confirmed	Recovered	Deaths
Country/Region	Date			
Afghanistan	2020-01-22	0	0.0	0
	2020-01-23	0	0.0	0
	2020-01-24	0	0.0	0
	2020-01-25	0	0.0	0
	2020-01-26	0	0.0	0
Zimbabwe	2022-04-12	247094	0.0	5460
	2022-04-13	247160	0.0	5460
	2022-04-14	247208	0.0	5462
	2022-04-15	247237	0.0	5462
	2022-04-16	247237	0.0	5462

161568 rows × 3 columns

Print the total number of confirmed cases and number of deaths in each country in the last reported day.

In [4]:

```
#filling None in the place of NaN Province/State values
copydata['Province/State']=copydata['Province/State'].fillna('None')
copydata
```

Out[4]:

	Date	Country/Region	Province/State	Confirmed	Recovered	Deaths
0	2020-01-22	Afghanistan	None	0	0.0	0
1	2020-01-23	Afghanistan	None	0	0.0	0
2	2020-01-24	Afghanistan	None	0	0.0	0
3	2020-01-25	Afghanistan	None	0	0.0	0
4	2020-01-26	Afghanistan	None	0	0.0	0
231739	2022-04-12	Zimbabwe	None	247094	0.0	5460
231740	2022-04-13	Zimbabwe	None	247160	0.0	5460
231741	2022-04-14	Zimbabwe	None	247208	0.0	5462
231742	2022-04-15	Zimbabwe	None	247237	0.0	5462
231743	2022-04-16	Zimbabwe	None	247237	0.0	5462

231744 rows × 6 columns

In [5]:

```
#last reported day data
date_filter=copydata.loc[copydata['Date']==copydata['Date'].max()]
date_filter
```

Out[5]:

	Date	Country/Region	Province/State	Confirmed	Recovered	Deaths
815	2022-04-16	Afghanistan	None	178387	0.0	7676
1631	2022-04-16	Albania	None	274462	0.0	3496
2447	2022-04-16	Algeria	None	265739	0.0	6874
3263	2022-04-16	Andorra	None	40709	0.0	153
4079	2022-04-16	Angola	None	99194	0.0	1900
			•••	•••		
228479	2022-04-16	West Bank and Gaza	None	656617	0.0	5656
229295	2022-04-16	Winter Olympics 2022	None	535	0.0	0
230111	2022-04-16	Yemen	None	11817	0.0	2148
230927	2022-04-16	Zambia	None	318467	0.0	3973
231743	2022-04-16	Zimbabwe	None	247237	0.0	5462

284 rows × 6 columns

```
In [6]:
```

```
#grouping data by country and state
t=date_filter.groupby(['Country/Region','Province/State']).max()
t
```

Out[6]:

		Date	Confirmed	Recovered	Deaths
Country/Region	Province/State				
Afghanistan	None	2022-04-16	178387	0.0	7676
Albania	None	2022-04-16	274462	0.0	3496
Algeria	None	2022-04-16	265739	0.0	6874
Andorra	None	2022-04-16	40709	0.0	153
Angola	None	2022-04-16	99194	0.0	1900
			•••		
West Bank and Gaza	None	2022-04-16	656617	0.0	5656
Winter Olympics 2022	None	2022-04-16	535	0.0	0
Yemen	None	2022-04-16	11817	0.0	2148
Zambia	None	2022-04-16	318467	0.0	3973
Zimbabwe	None	2022-04-16	247237	0.0	5462

284 rows × 4 columns

In [7]:

```
#sum of confirmed cases and deaths of all the states of each country
res=t.groupby('Country/Region')['Confirmed','Deaths'].sum()
res
```

C:\Users\Kirti\AppData\Local\Temp/ipykernel_21324/4132366157.py:2: FutureWarning: Indexing with multiple keys (implicitly c
onverted to a tuple of keys) will be deprecated, use a list instead.
 res=t.groupby('Country/Region')['Confirmed','Deaths'].sum()

Out[7]:

Confirmed Deaths

Country/Region		
Afghanistan	178387	7676
Albania	274462	3496
Algeria	265739	6874
Andorra	40709	153
Angola	99194	1900
West Bank and Gaza	656617	5656
Winter Olympics 2022	535	0
Yemen	11817	2148
Zambia	318467	3973
Zimbabwe	247237	5462

198 rows × 2 columns

What are the 10 countries with the highest number of confirmed COVID-19 cases?

In [8]:

```
res.nlargest(10,'Confirmed')['Confirmed']
```

Out[8]:

```
Country/Region
                  80625120
US
India
                  43042097
                  30250077
Brazil
                  27874269
France
                  23416663
Germany
United Kingdom
                  21916961
Russia
                  17801103
Korea, South
                  16305752
Italy
                  15659835
Turkey
                  14991669
Name: Confirmed, dtype: int64
```

What are the 10 countries with the highest number of deaths?

In [9]:

res.nlargest(10, 'Deaths')['Deaths']

Out[9]:

Country/Region US Brazil India Russia 988609 US 988609
Brazil 662185
India 521751
Russia 365774
Mexico 323938
Peru 212619
United Kingdom 172014
Italy 161602
Indonesia 155844 155844 145159 Indonesia France

Name: Deaths, dtype: int64

Plot a graph of the number of confirmed cases over time for each country.

In [10]:

```
#pl stores the value of confirmed cases for each country per day
pl=data.groupby(['Country/Region','Date'])['Confirmed'].sum()
for i in data['Country/Region'].unique():
    plt.xlabel('Date')
    plt.ylabel('Confirmed Cases')
    plt.title(i)
    pl.loc[i].plot()
    plt.show()
```


0

Jul

Oct

Jan Apr 2021 Date

Apr

Jan 2022

Oct

0

Apr Jul

Oct

Jan Ap 2021 Date Apr

Countries already leaving exponential growth

```
In [15]:
```

```
l=['Fiji','Georgia','MS Zaandam','Rwanda']
for i in 1:
   plt.xlabel('Date')
   plt.ylabel('Confirmed Cases')
   plt.title(i)
   pl.loc[i].plot()
   plt.show();
```


Countries showing linear growth

```
In [16]:
```

```
l=['Honduras','Egypt']
for i in 1:
    plt.xlabel('Date')
    plt.ylabel('Confirmed Cases')
    plt.title(i)
    pl.loc[i].plot()
    plt.show();
```


Create a bar plot that shows the number of deaths per 100 confirmed cases (observed case-fatality ratio) for the 20 most affected countries.

```
In [17]:
```

```
res['fatality_ratio'] = ((res['Deaths']/res['Confirmed'])*100).round(2) #calculating fatality ratio
res1=res
res1.drop(['Confirmed','Deaths'], axis =1) #dropping unncessary columns
top = res1.nlargest(20,'fatality_ratio')['fatality_ratio'] #20 most affected countries
```

In [18]:

```
ax = top.plot.barh(x='Fatality Ratio', y='Country/Region') #plotting horizontal bar graph
ax.bar_label(ax.containers[0])
plt.legend(['Fatality Ratio']);
```


Compute the ratio between the total number of confirmed cases and the population size of each country. The file worldpopulation.json contains data on the population size of each country. Note that countries may have different names in different data sets (e.g., United Kingdom/U.K., US/USA/U.S.). What are the 10 countries with the highest number of confirmed COVID-19 cases per capita?

In [19]:

```
# reading the world population data from a csv and convert it to a DataFrame
population = pd.read_json('worldpopulation.json')
population.head()
```

Out[19]:

	Rank	country	population	World
0	1	China	1388232693	0.185
1	2	India	1342512706	0.179
2	3	U.S.	326474013	0.043
3	4	Indonesia	263510146	0.035
4	5	Brazil	211243220	0.028

In [20]:

Out[20]:

	Rank	Country/Region	population	World
0	1	China	1388232693	0.185
1	2	India	1342512706	0.179
2	3	US	326474013	0.043
3	4	Indonesia	263510146	0.035
4	5	Brazil	211243220	0.028
190	191	San Marino	32104	0.000
191	192	Palau	21726	0.000
192	193	Nauru	10301	0.000
193	194	Tuvalu	9975	0.000
194	195	Holy See	801	0.000

195 rows × 4 columns

In [21]:

```
merge_table = pd.merge(res, population, on = "Country/Region", how = "inner")
#create a new column confirmed per captia and update the column values
merge_table['confirmed/capita']=merge_table['Confirmed']/merge_table['population']
merge_table
```

Out[21]:

	Country/Region	Confirmed	Deaths	fatality_ratio	Rank	population	World	confirmed/capita
0	Afghanistan	178387	7676	4.30	40	34169169	0.005	0.005221
1	Albania	274462	3496	1.27	136	2911428	0.000	0.094271
2	Algeria	265739	6874	2.59	35	41063753	0.005	0.006471
3	Andorra	40709	153	0.38	186	68728	0.000	0.592320
4	Angola	99194	1900	1.92	50	26655513	0.004	0.003721
186	Vietnam	10417887	42934	0.41	14	95414640	0.013	0.109185
187	West Bank and Gaza	656617	5656	0.86	119	4928225	0.001	0.133236
188	Yemen	11817	2148	18.18	49	28119546	0.004	0.000420
189	Zambia	318467	3973	1.25	65	17237931	0.002	0.018475
190	Zimbabwe	247237	5462	2.21	69	16337760	0.002	0.015133

191 rows × 8 columns

In [22]:

```
# top 10 countries with confirmed cases per capita
merge_table.nlargest(10, 'confirmed/capita')[['Country/Region', 'confirmed/capita']]
```

Out[22]:

	Country/Region	confirmed/capita
3	Andorra	0.592320
47	Denmark	0.550374
77	Iceland	0.550321
147	San Marino	0.494456
83	Israel	0.484074
156	Slovenia	0.481270
122	Netherlands	0.481126
106	Maldives	0.474423
9	Austria	0.470859
155	Slovakia	0.461321

In this part we would like to test the hypothesis that the spread of the virus is slowed down by warm weather. Plot a graph of the monthly number of confirmed cases vs. the average monthly temperature for a few selected countries, and analyze the correlation between these two factors. You may use the file climate.json which contains monthly climate date from over 100 stations around the world, or use your own data sources.

```
import json
# read the json file
with open('climate.json') as f:
    climate_rec = json.load(f)

# create an empty data frame
climate = pd.DataFrame()

# create columns and fill them from the file
climate['city'] = [record['city'] for record in climate_rec]
climate['Country/Region'] = [record['country'] for record in climate_rec]

# create 12 months columns for each country and fill them with their avg temperature every month
for i in range(12):
    climate[f'month_{i+1}_avg'] = [(record['monthlyAvg'][i]['high'] + record['monthlyAvg'][i]['low'])/2 for record in climate_rec]

country_avg = climate.groupby('Country/Region').mean(numeric_only=True).round(2).reset_index()
country_avg
```

	Country/Region	month_1_avg	month_2_avg	month_3_avg	month_4_avg	month_5_avg	month_6_avg	month_7_avg	month_8_avg	month_9_avg	mo
0	Argentina	25.00	24.00	22.50	18.50	15.50	12.50	11.50	13.00	15.00	
1	Australia	22.00	22.25	20.12	17.00	14.12	11.62	10.62	11.75	13.88	
2	Austria	0.00	2.00	5.50	10.50	15.00	18.50	20.00	20.00	15.50	
3	Belgium	3.50	4.50	7.50	9.50	14.00	16.00	18.50	18.50	15.00	
4	Brazil	26.17	26.33	25.83	24.83	22.17	21.33	20.83	22.33	23.17	
5	Bulgaria	-0.50	1.50	6.00	11.00	15.00	19.00	21.00	21.00	16.50	
6	Canada	-6.14	-4.86	-0.57	5.71	11.29	16.36	18.93	18.57	15.14	
7	Chile	21.50	21.00	19.00	15.50	12.50	10.50	9.00	11.00	12.50	
8	China	0.50	3.50	8.75	15.25	20.75	25.00	28.00	27.50	22.50	
9	Czech Republic	0.00	1.50	5.00	9.00	14.50	17.50	19.50	19.00	14.00	
10	Denmark	1.50	2.00	4.00	8.00	12.50	15.50	18.00	18.00	13.50	
11	France	6.00	6.50	9.50	12.00	16.25	20.00	21.50	21.50	18.50	
12	Germany	1.00	0.50	4.50	8.50	14.00	16.50	19.00	19.00	15.00	
13	Greece	9.50	9.50	11.00	14.50	18.50	22.50	25.00	25.00	22.00	
14	Hawaii	22.50	22.50	23.50	24.00	24.50	26.50	26.50	26.50	26.50	
15	Hong Kong	15.00	16.00	18.50	22.50	26.50	28.50	29.00	29.00	28.00	
16	Hungary	0.00	2.00	6.50	12.00	17.00	20.50	22.00	22.00	17.00	
17	Iceland	1.00	0.00	1.00	3.50	7.00	10.00	11.50	11.00	8.50	
18	India	18.17	20.67	24.17	27.17	28.83	28.83	27.67	27.33	27.00	
19	Indonesia	27.75	27.50	28.00	28.00	28.00	27.50	27.00	27.00	22.50	
20	Ireland	4.50	5.00	6.00	7.50	11.00	13.00	15.00	14.50	12.50	
21	Israel	10.75	11.25	13.50	17.50	21.00	23.75	26.00	26.00	24.50	
22	Italy	6.17	7.17	10.67	13.17	18.50	22.33	25.00	25.00	20.50	
23	Japan	5.25	6.00	9.00	14.50	19.00	23.00	27.00	28.25	24.25	
24	Malaysia	28.00	28.50	29.00	28.50	29.00	28.50	28.50	28.50	28.50	
25	Mexico	14.00	16.00	17.50	19.50	20.00	19.50	18.50	18.50	18.00	
26	Morocco	15.00	16.50	18.50	19.00	20.00	22.50	24.00	24.00	23.00	
27	Netherlands	5.00	4.50	8.00	9.00	13.50	14.00	16.00	16.00	13.50	
28	New Zealand	17.67	18.00	16.50	14.17	11.83	9.67	8.83	9.50	11.17	
29	Norway	-2.00	-1.00	1.00	6.00	11.50	15.50	17.50	17.50	12.50	
30	Poland	-1.00	-0.50	3.00	8.50	14.00	16.50	19.50	18.50	13.50	
31	Portugal	11.00	11.50	13.00	13.75	15.50	17.50	18.75	19.25	18.25	
32	Russia	-5.75	-6.75	-1.50	5.50	10.75	15.75	18.25	16.25	10.75	
33	Singapore	27.00	28.00	28.50	28.50	28.50	28.50	28.00	28.00	28.50	
34	South Africa	21.00	21.25	20.00	17.50	14.50	12.00	11.75	13.25	16.00	
35	South Korea	-2.00	0.50	6.50	13.00	18.00	22.50	25.50	26.00	21.50	
36	Spain	8.70	10.00	12.20	13.60	16.90	21.10	24.00	24.20	21.30	
37	Sweden	-1.50	-2.00	1.00	5.50	10.50	15.00	17.00	16.00	11.50	
38	Switzerland	1.00	2.00	6.00	9.00	14.00	17.00	19.00	19.00	14.50	
39	Thailand	25.33	26.50	28.33	30.00	29.33	29.00	28.50	28.17	28.17	
40	Turkey	5.00	6.00	9.00	13.00	17.50	22.50	24.50	25.00	20.50	
41	United Arab Emirates	19.50	20.50	23.00	27.00	31.50	34.00	35.50	36.00	33.50	
42	United Kingdom	7.00	7.50	9.00	11.00	14.00	17.00	19.00	19.00	16.50	
43	United States	5.21	6.43	10.31	14.55	18.98	23.07	25.36	24.88	21.81	
44	Vietnam	22.25	22.75	24.75	27.75	28.75	29.50	29.00	28.75	28.25	
4											•

```
In [24]:
```

```
can = ts.loc['Australia'].reset_index()
can
```

Out[24]:

	Date	Confirmed	Recovered	Deaths
0	2020-01-22	0	0.0	0
1	2020-01-23	0	0.0	0
2	2020-01-24	0	0.0	0
3	2020-01-25	0	0.0	0
4	2020-01-26	4	0.0	0
		•••		
811	2022-04-12	5207650	0.0	6648
812	2022-04-13	5262359	0.0	6693
813	2022-04-14	5308858	0.0	6727
814	2022-04-15	5345438	0.0	6755
815	2022-04-16	5384615	0.0	6779

816 rows × 4 columns

In [25]:

```
can['y/m'] = can['Date'].dt.to_period('M')
z =pd.DataFrame(can.groupby('y/m')['Confirmed'].max())
a = z.diff().fillna(z.loc['2020-01'])
a = a.reset_index()
a = a.set_index('y/m')
a['Confirmed'].plot(kind = 'bar',figsize=(10, 10))
```

Out[25]:

<AxesSubplot:xlabel='y/m'>

In [26]:

```
country_avg[country_avg['Country/Region'] =='Canada']
```

Out[26]:

	Country/Region	month_1_avg	month_2_avg	month_3_avg	month_4_avg	month_5_avg	month_6_avg	month_7_avg	month_8_avg	month_9_avg	mon
6	Canada	-6.14	-4.86	-0.57	5.71	11.29	16.36	18.93	18.57	15.14	
4											•

ts

Out[27]:

Confirmed	Recovered	Deaths
0	0.0	0
0	0.0	0
0	0.0	0
0	0.0	0
0	0.0	0
247094	0.0	5460
247160	0.0	5460
247208	0.0	5462
247237	0.0	5462
247237	0.0	5462
	0 0 0 0 0 247094 247160 247208 247237	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 247094 0.0 247160 0.0 247208 0.0 247237 0.0

161568 rows × 3 columns

In [28]:

```
bel = 'Belgium'
belg = ts.loc[bel].reset_index()
belg['y/m'] = belg['Date'].dt.to_period('M')
z1 = pd.DataFrame(belg.groupby('y/m')['Confirmed'].max())
a1 = z1.diff().fillna(z1.loc['2020-01'])
a1['Confirmed'].plot(kind = 'bar',figsize=(10, 10))
```

Out[28]:

<AxesSubplot:xlabel='y/m'>

In [29]:

a1.reset_index()

Out[29]:

	y/m	Confirmed
0	2020-01	0.0
1	2020-02	1.0
2	2020-03	12774.0
3	2020-04	35744.0
4	2020-05	9862.0
5	2020-06	3046.0
6	2020-07	7324.0
7	2020-08	16485.0
8	2020-09	33216.0
9	2020-10	310777.0
10	2020-11	148116.0
11	2020-12	69151.0
12	2021-01	63657.0
13	2021-02	61358.0
14	2021-03	110942.0
15	2021-04	107776.0
16	2021-05	71772.0
17	2021-06	23130.0
18	2021-07	39584.0
19	2021-08	59949.0
20	2021-09	60290.0
21	2021-10	115696.0
22	2021-11	405385.0
23	2021-12	339308.0
24	2022-01	1049896.0
25	2022-02	402075.0
26	2022-03	293734.0
27	2022-04	121915.0

In [30]:

country_avg[country_avg['Country/Region'] == bel]

Out[30]:

	Country/Region	month_1_avg	month_2_avg	month_3_avg	month_4_avg	month_5_avg	month_6_avg	month_7_avg	month_8_avg	month_9_avg	mon
3	Belgium	3.5	4.5	7.5	9.5	14.0	16.0	18.5	18.5	15.0	
4											•

In [31]:

```
h = 'Hungary'
hun = ts.loc[h].reset_index()
hun['y/m'] = hun['Date'].dt.to_period('M')
z2 = pd.DataFrame(hun.groupby('y/m')['Confirmed'].max())
a2 = z2.diff().fillna(z2.loc['2020-01'])
a2['Confirmed'].plot(kind = 'bar',figsize=(10, 10))
```

Out[31]:

<AxesSubplot:xlabel='y/m'>

In [32]:

country_avg[country_avg['Country/Region'] == h]

Out[32]:

	Country/Region	month_1_avg	month_2_avg	month_3_avg	month_4_avg	month_5_avg	month_6_avg	month_7_avg	month_8_avg	month_9_avg	mo
16	Hungary	0.0	2.0	6.5	12.0	17.0	20.5	22.0	22.0	17.0	
4											•

In [33]:

```
m = 'Morocco'
rocco = ts.loc[m].reset_index()
rocco['y/m'] = rocco['Date'].dt.to_period('M')
z3 = pd.DataFrame(rocco.groupby('y/m')['Confirmed'].max())
a3 = z3.diff().fillna(z3.loc['2020-01'])
a3['Confirmed'].plot(kind = 'bar',figsize=(10, 10))
```

Out[33]:

<AxesSubplot:xlabel='y/m'>

In [34]:

country_avg[country_avg['Country/Region'] == m]

Out[34]:

	Country/Region	month_1_avg	month_2_avg	month_3_avg	month_4_avg	month_5_avg	month_6_avg	month_7_avg	month_8_avg	month_9_avg	mo
26	Morocco	15.0	16.5	18.5	19.0	20.0	22.5	24.0	24.0	23.0	
4											•

```
In [35]:
```

```
new = 'US'
land = ts.loc[new].reset_index()
land['y/m'] = land['Date'].dt.to_period('M')
z4 = pd.DataFrame(land.groupby('y/m')['Confirmed'].max())
a4 = z4.diff().fillna(z4.loc['2020-01'])
a4['Confirmed'].plot(kind = 'bar',figsize=(10, 10))
```

Out[35]:

<AxesSubplot:xlabel='y/m'>

Articulate three additional research questions related to COVID-19 data and try to provide answers to them using the given data set.

1. What are the countries having Death Percentage above 5%? Also, plot histogram

In [36]:

```
#calculating and sorting countries having Death % greater than 5
death_percentage = res[res.fatality_ratio > 5].sort_values('fatality_ratio', ascending = True)
#dropping unnecessary columns
death_percentage = death_percentage.drop(['Confirmed','Deaths'], axis =1)
death_percentage
```

Out[36]:

fatality_ratio

Country/Region	
Somalia	5.14
Syria	5.65
Mexico	5.66
Peru	5.98
Sudan	7.94
Yemen	18.18
MS Zaandam	22.22

In [37]:

#plotting bar graph of the data sorted above
death_percentage.plot.bar()

Out[37]:

<AxesSubplot:xlabel='Country/Region'>

2. Plot bar graph of the countries having lowest deaths

In [38]:

#Calculating countries having lowest deaths

Top_10_countries_lowest_deaths = data.groupby('Country/Region', as_index=False)['Deaths'].max('Date').sort_values('Deaths', ascending = Ti
Top_10_countries_lowest_deaths

Out[38]:

	Country/Region	Deaths
117	Micronesia	0
76	Holy See	0
113	Marshall Islands	0
194	Winter Olympics 2022	0
5	Antarctica	0
168	Summer Olympics 2020	0
106	MS Zaandam	2
135	Palau	6
190	Vanuatu	7
150	Samoa	10

In [39]:

```
#plotting the dataframe concluded above
import seaborn as sns
import plotly.express as px
plt.style.use('fivethirtyeight')
%matplotlib inline
plt.rcParams['figure.figsize'] = (15, 5)
ax = sns.barplot(x = Top_10_countries_lowest_deaths['Country/Region'], y = Top_10_countries_lowest_deaths['Deaths'], palette = 'dark')
ax.set_xlabel(xlabel = 'Countries', fontsize = 10)
ax.set_ylabel(ylabel = 'Deaths', fontsize = 10)
ax.set_title(label = 'Lowest Deaths of 10 countries', fontsize = 20)
plt.xticks(rotation = 90)
plt.show()
```


3. Calculate the total number of confirmed cases of Australia till 12th August 2021.

In [40]:

```
#Locating data for that specific country and date
data.loc[(data['Country/Region']=='Australia') & (data['Date']=='2021-08-12')]
```

Out[40]:

	Date	Country/Region	Province/State	Confirmed	Recovered	Deaths
7912	2021-08-12	Australia	Australian Capital Territory	129	0.0	3
8728	2021-08-12	Australia	New South Wales	12629	0.0	93
9544	2021-08-12	Australia	Northern Territory	199	0.0	0
10360	2021-08-12	Australia	Queensland	1948	0.0	7
11176	2021-08-12	Australia	South Australia	868	0.0	4
11992	2021-08-12	Australia	Tasmania	235	0.0	13
12808	2021-08-12	Australia	Victoria	21098	0.0	820
13624	2021-08-12	Australia	Western Australia	1059	0.0	9

In [41]:

```
#adding all the confirmed cases of the states present in that country
data.loc[(data['Country/Region']=='Australia') & (data['Date']=='2021-08-12')]['Confirmed'].sum()
```

Out[41]:

38165