지능화 캡스톤 프로젝트-06

Benchmark Results of Project #1

2024. 04. 08

김 현 용

충북대학교 산업인공지능학과

강의 목차

Benchmark Results

- Using the original (imbalanced) dataset
- After performing data augmentation
- Using a balanced dataset
- from EfficientNet_B0 transfer learning

학습 결과 (1) – imbalanced data

■ 데이터셋 분할

• 원래 데이터는 클래스별로 0.1% ~ 85.2%의 극심한 불균형 분포를 보임

• train : val : test = 65% : 20% : 15% = **112,421** : **32,085** : 28,444

■ 학습 결과

Python 3.10.9 (tags/v3.10.9:1dd9be6, Dec 6 2022, 20:01:21) [MSC v.1934 64 bit (AMD64)] on win32 >>> runfile('D:\\S2-Python\S3-Python\S46-Cap_cnn_wafer\S4Wm_train.py', wdir='D:\S4W52-Python\S4W6-Cap_cnn_wafer') 총 데이터 개수 - train : val = 112.421 : 32.085

Epoch	Bes	t Acc/trn	Acc/val	Time/e	Elapsed hrs	Exp. end date (hrs)			
1	+	94.85%	90.66%	8.43m	0.14h	2023-04-02-Sun 10:37 (7.0h)			
2	+	96.28%	95.44%	7.91m	0.27h	2023-04-02-Sun 10:24 (6.8h)			
3	+	96.63%	95.79%	8.39m	0.41h	2023-04-02-Sun 10:27 (6.9h)			
4	+	96.91%	96.89%	8.07m	0.55h	2023-04-02-Sun 10:25 (6.8h)			
44	+	98.38%	98.24%	7.95m	5.89h	2023-04-02-Sun 10:17 (6.7h)			
45	-	98.41%	98.11%	7.92m	6.02h	2023-04-02-Sun 10:17 (6.7h)			
46	-	98.42%	98.11%	7.91m	6.15h	2023-04-02-Sun 10:17 (6.7h)			
47	-	98.43%	98.18%	7.88m	6.28h	2023-04-02-Sun 10:16 (6.7h)			
48	-	98.41%	98.20%	7.93m	6.42h	2023-04-02-Sun 10:16 (6.7h)			
49	-	98.44%	98.08%	7.91m	6.55h	2023-04-02-Sun 10:16 (6.7h)			
50	-	98.47%	98.07%	7.91m	6.68h	2023-04-02-Sun 10:16 (6.7h)			

Best accuracy: (train) 98.38%, (val) 98.24%

Best model: best model 2404021016.pth

학습 결과 (1) — imbalanced data

■ 학습 결과

- Best accuracy: (train) 98.38%, (val) 98.24% → 실제로 혼동행렬 상에서는 클래스별 정확도의 편차가 심함
- 불균형 데이터셋인 경우 accuracy는 정확한 평가지표가 될 수 없다!

학습 결과 (2) – imbalanced data + online-D.A.

■ 데이터셋 분할

- 원래 데이터는 클래스별로 0.1% ~ 85.2%의 극심한 불균형 분포를 보임
- train : val : test = 17,982 : 5,129 : 3,847 (총 30%)

■ 데이터 분포 (테스트셋)

학습 결과 (2) — imbalanced data + online-D.A.

■ 학습 결과

- (augmentation) train : val : test = 0 : X : X
- 학습조건 : batch size 112, Adam (lr=0.001) 50 epoch, 2hr 소요
- (정확도) train: val: test = 98.24%: 98.64%: 98.48%

대이터 transform 정의

Resize(224),

RandomRotation(45, fill=1),

RandomHorizontalFlip(),

RandomVerticalFlip(),

RandomResizedCrop(224, scale=(0.9, 1.0), ratio=(0.8, 1.25)),

RandomAffine(scale=(0.8, 1.2), shear=5, fill=1)

학습 결과 (3) – Balanced data

■ 데이터셋 분할

• 클래스별로 under/over-sampling을 통해 동일한 개수로 만듦

• train: val: test = 18,000: 5,535: **4,158** (총 30%)

■ 학습 결과: (Accuracy) train: val: test = 95.69%: 93.53%: 93.55%

학습 결과 (3) – Balanced data

■ 학습 결과 비교

- Balanced dataset으로 학습한 모델의 성능 비교
- 테스트 데이터셋 : 불균형 데이터셋 VS 균일 데이터셋

No.	Defect Class	Imba	lanced dat	aset	Balanced dataset			
INO.	Defect Class	Precision Recall F1-score		Precision Recall F:		F1-score		
0	Center	89.32	94.16	91.68	95.97	98.05	97.00	
1	Donut	91.41	89.83	90.61	96.65	93.82	95.16	
2	Edge-Loc	74.69	79.22	76.89	84.14	90.69	87.29	
3	Edge-Ring	96.91	95.02	95.96	95.57	98.05	96.79	
4	Loc	79.32	55.63	65.40	84.97	84.42	84.69	
5	Near-full	93.26	95.89	94.56	99.78	100.00	99.89	
6	none	51.59	95.02	66.87	93.82	91.99	92.90	
7	Random	92.69	68.61	78.85	97.99	94.81	96.37	
8	Scratch	93.26	56.93	70.70	93.92	90.26	92.05	
Average		84.72	81.15	82.89	93.65	93.57	93.57	

학습 결과 (3) – Balanced data

■ 학습결과 비교

Confusion matrix 비교 (actual label 기준 비율)

■ EfficientNet_B0


```
(classifier): Sequential(
  (0): Dropout(p=0.2, inplace=True)
  (1): Linear(in_features=1280, out_features=1000, bias=True)
)
```

■ pretrained model 불러오기

```
model = torchvision.models.efficientnet_b0(weights='DEFAULT')
# ConvNet as fixed feature extractor vs. Finetuning
for param in model.parameters():
    param.requires_grad = False # 파라미터 고정

# 새로 생성된 모듈의 매개변수는 기본값이 requires_grad=True임
num_in_features = model.classifier[1].in_features
model.classifier[1] = nn.Linear(in_features=num_in_features,
    out_features=num_class)
```


■ EfficientNet_B0

• train: val: test = 18,000: 5,535: 4,158 (총 30%)

• 학습 조건 : batch size 24, Adam (Ir=0.001), 50 epoch, 3hr 소요

• 학습 결과 : (Accuracy) train : val : test = 98.21% : 94.35% : 93.15%

■ 학습결과 비교

- 테스트 데이터셋: Balanced data
- EfficientNetB0 vs 제안하는 CNN 모델

No.	Defect Class	Ef	ficientNetB	0	제안하는 CNN 모델			
140.	Defect class	Precision	Recall	F1-score	Precision	Recall	F1-score	
0	Center	94.87	96.10	95.48	95.97	98.05	97.00	
1	Donut	95.20	94.37	94.78	96.65	93.82	95.16	
2	Edge-Loc	84.51	90.91	87.59	84.14	90.69	87.29	
3	Edge-Ring	97.52	93.51	95.47	95.57	98.05	96.79	
4	Loc	87.24	81.39	84.21	84.97	84.42	84.69	
5	Near-full	99.78	100.00	99.89	99.78	100.00	99.89	
6	none	88.11	97.84	92.72	93.82	91.99	92.90	
7	Random	97.12	95.02	96.06	97.99	94.81	96.37	
8	Scratch	95.15	89.18	92.07	93.92	90.26	92.05	
Average		93.28	93.15	93.21	93.65	93.57	93.57	

Confusion matrix

개인별 발표 주제 선정

■ 발표 주제 선정

- 논문, 인터넷, 책자 등 활용 → 출처를 **필히** 명시할 것
- 아래 주제나 자율주제로 10분 발표

김정식(8)

프로젝트	주제	세부내용	발표자(2인)
	Data augmentation	geometric, photometric,	이치호, 최현동
	CNN 분류와 회귀	분류 모델과 회귀 모델의 구조	김정식(16), 오동엽
#1	최적화 알고리즘	GD, Momentum, Adam, / batch size – SGD	김봉균,
	과적합 방지 규제화	BN, Dropout,	이찬희, 이민수
	하이퍼파라미터 조정	Ir, batch size, epochs 등 (자동화 : Optuna)	오혜민, 오세광
	YOLO hyps	Setting hyperparameters	이준혁, 사수진
μn	YOLO train arguments	imgsz, epoch,	김혜영, 최은주
#2	YOLO data augmentation	mosaic, mixup,	이선명, 김정호
	Data labeler (Tool)	Annotation Tools	이선경, 김영명
자율주제	객체 분할	U-net	이형욱,
ᄭᆯᅮᄱ	모델경량화	Tensorrt	조성현,

조별 토의 및 멘토링

조	조원	조원 진행상황 점검	
1	이치호, 이선명, 김정호	환경설정 완료, 데이터셋 증량, PyTorch	Data 파악 및 증량
2	이형욱, 최은주, 오혜민	환경설정 완료, 데이터 증강, CNN 설계, 모델 설계, 학 습PyTorch	딥러닝 개발환경 구 축
3	이선경, 김정식(16)	환경설정 완료, 데이터 증강(이), CNN 설계 중(김)	CNN 모델 설계
4	최현동, 이찬희, 사수진	환경설정 완료, 데이터 증강, CNN 설계중	모델 학습 및 추론
5	김영명, 오세광, 김정식(8)	환경설정 완료, 데이터 증강 진행중 (전원불참)	혼동행렬 및 시각화
6	오동엽, 이민수, 조성현	환경설정 완료, 데이터 증강, CNN 설계중	비교 실험 (모델 구조, hyperparameters, 전 이학습 등)
7	이준혁, 김혜영, 김봉균	환경설정_Colab, 환경설정, 데이터 증량	발표자료 작성

강의 일정

주차	날짜	발표 주제		비고				
1	3/04	[강의] 교과목소개 및 딥러닝 / 조 편성 , 주제발표 → [과제] 논문리뷰						
2	3/11	[강의] Project #1: CNN 분류(데이터 공개), 노트북 대여 → [과제] 중간고사 풀이						
3	3/18	[강의] 딥러닝 개발환경(CUDA) 구축, Dataset 설명, 조별 토의	및 멘토링	비대면수업				
4	3/25	[강의] OpenCV와 Matplotlib 시각화, 조별 토의 및 멘토링		비대면수업				
5	4/01	[강의] CNN 논문작성법과 적용 사례, 조별 토의 및 멘토링	비대면수업					
6	4/08	프로젝트점검(사전발표),조별토의 및 멘토링	일정검토	비대면수업				
7	4/15	프로젝트 최종점검(사전발표), 조별 토의 및 멘토링		비대면수업				
8	4/22	Project #1 발표평가						
9	4/29	[강의] Project #2 : YOLO를 이용한 객체 검출 → [과제] 기말고사 풀이						
10	5/06	[<mark>동영상 강의</mark>] YOLO 모델 개발 실습 → [과제] 논문리뷰						
11	5/13	가디언 모임으로 수업 대체 (불참시 결석 처리)		비대면수업				
12	5/20	[강의] YOLOv8과 객체분할, 조별 토의 및 멘토링						
13	5/27	주제발표						
14	6/03	프로젝트 최종점검(사전발표), 조별 토의 및 멘토링						
15	6/10	Project #2 발표평가						

프로젝트 #1 추진 일정

	1주	2주	3주	4주	5주	6주	7주	8주	
항 목	3/4~	3/11~	3/18~	3/25~	4/1~	4/8~	4/15~	4/22~	비고
	논문리뷰		개인발표 주제선정	중간고사 문제풀이				중간발표	
Data 파악 및 증량								프로젝트#1_발 자료양식	·
딥러닝 개발환경 구축								1440 1	
CNN 모델 설계									
모델 학습 및 추론									
혼동행렬 및 시각화									
비교 실험 (모델 구조, hyperparameters, 전이 학습 등)									
발표자료 작성									

