Signals and Systems

Wang Lingfang (王玲芳)

(School of Optoelectronic Science and Engineering, UESTC)

Email: <u>lf.wang@uestc.edu.cn</u>

Tel: 18581848032

Sep.2020---- Jan. 2021

Exercise #from Chapter 3

Let x[n] be a periodic signal with period N=8 and Fourier series coefficients $a_k=-a_{k-4}$. A

signal
$$y[n] = \left(\frac{1+(-1)^n}{2}\right)x[n-1]$$

With period N = 8 is generated. Denoting the

Fourier series coefficients of y[n] by b_k , find a

function f[k] such that $b_k = f[k]a_k$

Open Question is only supported on Version 2.0 or newer.

Solution:

We have

$$\mathbf{e}^{\mathbf{j}4(2\pi/8)n}x[n] = \mathbf{e}^{\mathbf{j}\pi n}x[n]$$

$$= (-1)^n x[n] \overset{FS}{\leftrightarrow} a_{k-4}$$
and therefore, $(-1)^{n+1}x[n] \overset{FS}{\leftrightarrow} -a_{k-4}$
If $a_k = -a_{k-4}$, then $x[\mathbf{0}] = x[\pm 2] = x[\pm 4] = \ldots = 0$.

Now, note that in the signal p[n] = x[n-1], $p[\pm 1] = p[\pm 3] = \cdots = 0$.

Now let us plot the signal
$$\mathbf{z}[n] = \left(\frac{1+(-1)^n}{2}\right)$$
,

so
$$z[n] = 0$$
, for $n = odd$,
 $z[n] = 1$, for $n = even$.

clearly, the signal y[n] = z[n]p[n] = p[n],

because p[n] is zero whenever z[n] is zero.

Therefore, y[n] = x[n-1].

The FS coefficients are $b_k = a_k e^{-jk(2\pi/8)}$

So, $f[k] = e^{-jk(2\pi/8)}$

Notice:

In this and the following chapters

Notation: $\tilde{x}(t) \rightarrow periodic \ signal$ $x(t) \rightarrow aperiodic \ signal$

4. The Continuous time Fourier Transform

4.1 Representation of Aperiodic signals:
The Continuous time Fourier Transform

4.1.1 Development of the Fourier transform representation of the continuous time Fourier transform

(1) Example (From Fourier series to Fourier transform)

$$a_k = \frac{2\sin(k\omega_0 T_1)}{k\omega_0 T}$$

(1) Example (From Fourier series to Fourier transform)

$$T=4T_1$$

$$T=8T_1$$

$$T=16T_1$$

$$Ta_k = \frac{2\sin(\omega T_1)}{\omega}|_{\omega = k\omega_0}$$

(1) Example (From Fourier series to Fourier transform)

$$Ta_k = \frac{2\sin(\omega T_1)}{\omega}|_{\omega = k\omega_0}$$

(2) Fourier transform representation of Aperiodic signal

For periodic signal:
$$\widetilde{x}(t)$$

$$\begin{cases} \widetilde{x}(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} \\ a_k = \frac{1}{T} \int_T \widetilde{x}(t) e^{-jk\omega_0 t} dt \end{cases}$$

For aperiodic signal x(t):

$$x(t) = \lim_{T \to \infty} \tilde{x}(t)$$
, or $\tilde{x}(t) \xrightarrow{T \to \infty} x(t)$

When
$$T\to\infty$$
,
$$\tilde{\chi}(t) \xrightarrow{T\to\infty} \chi(t)$$

$$\omega_0 = \frac{2\pi}{T} \xrightarrow{T\to\infty} d\omega$$

$$k\omega_0 \xrightarrow{T\to\infty} \omega$$

So
$$a_k T = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt = X(j\omega)$$

The development is gained as following:

$$x(t) = \lim_{T \to \infty} \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$$

$$= \lim_{T \to \infty} \sum_{k=-\infty}^{+\infty} \frac{X(jk\omega_0)}{T} e^{jk\omega_0 t}$$

$$= \lim_{\omega_0 \to 0} \sum_{k=-\infty}^{+\infty} X(jk\omega_0) e^{jk\omega_0 t} \frac{\omega_0}{2\pi}$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$$

Fourier transform:
$$\begin{cases} X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt \\ x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega)e^{j\omega t}d\omega \end{cases}$$
 or
$$x(t) \overset{F}{\longleftrightarrow} X(j\omega)$$

Relation between Fourier series and Fourier transform:

$$\begin{cases} a_{k} = \frac{1}{T} X(j\omega) |_{\omega = k\omega_{0}} & (Periodic \ signal) \\ X(j\omega) = T \cdot a_{k} |_{k\omega_{0} = \omega} & (Aperiodic \ signal) \end{cases}$$

In other way, Specifically

$$\tilde{x}(t) \stackrel{FS}{\longleftrightarrow} a_k$$

$$a_k = \frac{1}{T} \int_T \tilde{\mathbf{x}}(t) e^{-jk\omega_0 t} dt$$

x(t) is one period of $\tilde{x}(t)$ over $s \leq t \leq s + T$

$$a_k = \frac{1}{T} \int_T \tilde{\mathbf{x}}(t) e^{-jk\omega_0 t} dt = \frac{1}{T} \int_S^{S+T} \mathbf{x}(t) e^{-jk\omega_0 t} dt$$

extend to all
$$t$$
, $=\frac{1}{T}\int_{-\infty}^{+\infty}x(t)e^{-jk\omega_0t}dt$

Comparing the following two equations:

$$a_k = \frac{1}{T} \int_{-\infty}^{+\infty} x(t) e^{-jk\omega_0 t} dt$$

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt$$

Conclusion:

$$a_k = \frac{1}{T}X(j\omega)|_{\omega = k\omega_0}$$

$$x(t) \stackrel{F}{\longleftrightarrow} X(j\omega)$$

In polar form:

$$X(j\omega) = |X(j\omega)|e^{j\varphi(\omega)} = |X(j\omega)|e^{j\angle X(j\omega)}$$

In rectangular form:

$$X(j\omega) = R_e[X(j\omega)] + jI_m[X(j\omega)]$$

Now we have $X(j\omega)$, we can derive $\hat{x}(t)$ from it

$$\widehat{x}(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$$

Question:: when is $\hat{x}(t)$ a valid representation of the original signal x(t)?

4.1.2 Convergence of Fourier transform

Dirichlet conditions:

(1) x(t) is absolutely integrable.

$$\int_{-\infty}^{+\infty} |x(t)| dt < \infty$$

- (2) x(t) have a finite number of maxima and minima within any finite interval.
- (3) x(t) have a finite number of discontinuity within any finite interval. Furthermore, each of these discontinuities must be finite.

4.1.2 Convergence of Fourier transform

Dirichlet conditions satisfied

→ signal has Fourier transform

However, Some periodic signals, neither absolutely integrable, nor square integrable, however, it still has FT

For example,

$$x(t) = e^t u(t)$$

It has not FT.

Note: Dirichlet conditions can be extanded to the Singularity Functions.

Key point Review:

Fourier Transform pair

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$$

or
$$x(t) \stackrel{F}{\longleftrightarrow} X(j\omega)$$

Relation between Fourier series and Fourier transform:

$$\begin{cases} a_{k} = \frac{1}{T} X(j\omega) |_{\omega = k\omega_{0}} & (Periodic \ signal) \\ X(j\omega) = T \cdot a_{k} |_{k\omega_{0} = \omega} & (Aperiodic \ signal) \end{cases}$$

4.1.3 Examples of Continuous time Fourier Transform

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt = \int_{0}^{\infty} e^{-at}e^{-j\omega t}dt = \frac{1}{a+j\omega}, (a>0)$$

In polar form:

$$X(j\omega) = |X(j\omega)|e^{j\varphi(\omega)} = |X(j\omega)|e^{j\angle X(j\omega)}$$

magnitude

$$|X(j\omega)| = \frac{1}{\sqrt{a^2 + \omega^2}} \quad \varphi(\omega) = -\tan^{-1}(\frac{\omega}{a})$$

phase

In rectangular form:

$$X(j\omega) = \frac{1}{a+j\omega} = \frac{a}{a^2+\omega^2} + \frac{-j\omega}{a^2+\omega^2}$$

$$X(j\omega) = R_e[X(j\omega)] + jI_m[X(j\omega)]$$

Example 4.2
$$x(t) = e^{-a|t|}, a > 0$$

$$X(j\omega) = \int_{-\infty}^{\infty} e^{-a|t|} e^{-j\omega t} dt$$

$$=\int_{-\infty}^{0}e^{at}e^{-j\omega t}dt+\int_{0}^{\infty}e^{-at}e^{-j\omega t}dt$$

$$= \frac{1}{a - j\omega} + \frac{1}{a + j\omega}$$

$$\therefore X(j\omega) = \frac{2a}{a^2 + \omega^2}$$

Note:

$$x(t) = sign(t) \cdot e^{-a|t|}$$

$$f(t) = \operatorname{sign}(t) = \begin{cases} +1 & (t > 0) \\ -1 & (t < 0) \end{cases}$$

$$f(t) = \lim_{a \to 0} x(t) = \lim_{a \to 0} [sign(t) \cdot e^{-a|t|}]$$

$$F(\omega) = \lim_{a \to 0} X(j\omega) = \lim_{a \to 0} \frac{-2j\omega}{a^2 + \omega^2} = \frac{2}{j\omega}$$

$$|F(\omega)| = \frac{2}{\omega} \qquad \varphi(\omega) = \begin{cases} -\frac{\pi}{2} & (\omega > 0) \\ +\frac{\pi}{2} & (\omega < 0) \end{cases}$$

Example 4.4
$$x(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & |t| > T_1 \end{cases}$$

$$X(j\omega) = \int_{-T_1}^{T_1} e^{-j\omega t} dt = \frac{2\sin(\omega T_1)}{\omega}$$

$$Sa(\theta) = \frac{\sin(\theta)}{\theta}$$

$$X(j\omega) = 2T_1 \left(\frac{\sin(\omega T_1)}{\omega T_1}\right) = 2T_1 Sa(\omega T_1)$$
Sample function

$$\varphi(\omega) = \begin{cases} 0, & \left(\frac{2n\pi}{T_1} < |\omega| < \frac{(2n+1)\pi}{T_1}\right) \\ \mp \pi, & \left(\frac{(2n+1)\pi}{T_1} < |\omega| < \frac{2(n+1)\pi}{T_1}\right) \end{cases}$$

$\begin{array}{c|c} & 1 & t \\ \hline & & \\ \hline & -T_1 & 0 & T_1 \\ \end{array} \rightarrow t$

Inverse Fourier transform

$$\hat{x}(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} 2 \frac{\sin \omega T_1}{\omega} e^{j\omega t} d\omega$$

As $\omega \to \infty$, this signal converges to x(t) everywhere, except at the discontinuities.

 $t = \pm T_1$, $\hat{x}(t)$ converges to ½, which is the average of the values of x(t) on both sides of the discontinuity.

$$\begin{array}{c|c}
 & X(j\omega) \\
\hline
 & W
\end{array}$$

$$X(j\omega) = \begin{cases} 1, & |\omega| < W \\ 0, & |\omega| > W \end{cases}$$

$$x(t) = \frac{1}{2\pi} \int_{-W}^{W} e^{j\omega t} d\omega = \frac{\sin(Wt)}{\pi t}$$

$$\frac{\sin(Wt)}{\pi t} = \frac{W}{\pi} \sin c \left(\frac{Wt}{\pi}\right)$$

$$\frac{\sin(\pi\theta)}{\pi\theta} = \sin c(\theta)$$

----Sinc function

$$x(t) = \delta(t)$$

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt = \int_{-\infty}^{+\infty} \delta(t)e^{-j\omega t}dt = 1$$

$$x(t) = \delta(t) \stackrel{F}{\longleftrightarrow} X(j\omega) = 1$$

Vise versa
$$f(t) = 1$$
 \longleftrightarrow $F(j\omega) = 2\pi\delta(\omega)$

$$FT^{-1}[2\pi\delta(\omega)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi\delta(\omega)e^{j\omega t}d\omega = 1$$

$$\therefore \delta(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 1 \cdot e^{-j\omega t} dt$$

$$\delta(y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{\pm jy\xi} d\xi$$

4.2 The Fourier Transform for Periodic Signal

Periodic signal:

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$$

thus
$$e^{jk\omega_{0}t} \stackrel{F}{\longleftrightarrow} 2\pi\delta(\omega - k\omega_{0})$$

$$x(t) = \sum_{k=0}^{+\infty} a_{k}e^{jk\omega_{0}t} \stackrel{F}{\longleftrightarrow} X(j\omega) = \sum_{k=0}^{+\infty} a_{k}2\pi\delta(\omega - k\omega_{0})$$

Example (1)

$$e^{j\omega_0 t} \stackrel{F}{\longleftrightarrow} 2\pi \delta(\omega - \omega_0)$$
 (4.21)

Solution:
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$$

$$e^{j\omega_0 t} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} 2\pi \delta(\omega - \omega_0) e^{j\omega t} d\omega$$

Example 4.7

$$x(t) = \sin \omega_0 t \overset{F}{\longleftrightarrow} X(j\omega) = j\pi \delta(\omega + \omega_0) - j\pi \delta(\omega - \omega_0)$$

$$x(t) = \cos \omega_0 t \xrightarrow{r} X(j\omega) = \pi \delta(\omega + \omega_0) + \pi \delta(\omega - \omega_0)$$

Compare these results from two examples

$$x(t) = \sin \omega_0 t \xrightarrow{F} X(j\omega) = j\pi \delta(\omega + \omega_0) - j\pi \delta(\omega - \omega_0)$$

$$x(t) = \cos \omega_0 t \overset{F}{\longleftrightarrow} X(j\omega) = \pi \delta(\omega + \omega_0) + \pi \delta(\omega - \omega_0)$$

$$e^{j\omega_0 t} \stackrel{F}{\longleftrightarrow} 2\pi \delta(\omega - \omega_0)$$

Example 4.6 The FS of periodic signal

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{\sin k \, \omega_0 T_1}{k\pi} e^{jk\omega_0 t}$$

The FT of x(t) is

$$X(j\omega) = \sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$$

Example 4.8

$$x(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT) \quad \stackrel{F}{\longleftarrow} \quad X(j\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta(\omega - k\frac{2\pi}{T})$$

The FS of
$$x(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT) = \sum_{k=-\infty}^{+\infty} \frac{1}{T} e^{jk\omega_0 t}$$

By using (4.21), it is easy to get the FT pairs.

Example:

Consider the periodic signal $\tilde{x}(t)$ in the Figure, which is composed solely of impulses.

- (a) What is the fundamental period T_0 ?
- (b) Find the Fourier series of $\tilde{x}(t)$.

Example:

(c) Find the Fourier transform of the signal in the following figures.

Solution:

(a) By inspection, $T_0=6$.

(b)
$$a_k = \frac{1}{T_0} \int_{T_0} \tilde{x}(t) e^{-jk\left(\frac{2\pi}{T_0}\right)t} dt$$

we integrate from -3 to 3:

$$a_{k} = \frac{1}{6} \int_{-3}^{3} \left[\frac{1}{2} \delta(t+1) + \delta(t) + \frac{1}{2} \delta(t-1) \right] e^{-jk\left(\frac{2\pi}{6}\right)t} dt$$

$$= \frac{1}{6} \left(\frac{1}{2} e^{jk\left(\frac{2\pi}{6}\right)} + 1 + \frac{1}{2} e^{-jk\left(\frac{2\pi}{6}\right)} \right)$$

$$= \frac{1}{6} \left(1 + \cos\frac{2\pi k}{6} \right)$$

(c) Find the Fourier transform of the signal in the following figures.

$$X_{1}(j\omega) = \int_{-\infty}^{\infty} x_{1}(t)e^{-j\omega t} dt = \int_{-\infty}^{\infty} \left[\frac{1}{2}\delta(t+1) + \delta(t) + \frac{1}{2}\delta(t-1)\right]e^{-j\omega t} dt$$
$$= \frac{1}{2}e^{j\omega} + 1 + \frac{1}{2}e^{-j\omega} = 1 + \cos \omega$$

$$X_{2}(\omega) = \int_{-\infty}^{\infty} x_{2}(t)e^{-j\omega t} dt = \int_{-\infty}^{\infty} [\delta(t) + \frac{1}{2}\delta(t-1) + \frac{1}{2}\delta(t-5)]e^{-j\omega t} dt$$
$$= 1 + \frac{1}{2}e^{-j\omega} + \frac{1}{2}e^{-j5\omega}$$

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

4.3 Properties

of the

Continuous

time

Fourier

Transform

Section	Property	Aperiodic signal		Fourier transform
		x(t)		$X(j\omega)$
		y(t)		$Y(j\omega)$
4.3.1	Linearity	ax(t) + by(t)		$aX(j\omega) + bY(j\omega)$
4.3.2	Time Shifting	$x(t-t_0)$		$e^{-j\omega t_0}X(j\omega)$
4.3.6	Frequency Shifting	$e^{j\omega_0 t}x(t)$		$X(j(\omega-\omega_0))$
4.3.3	Conjugation	$x^*(t)$		$X^*(-j\omega)$
4.3.5	Time Reversal	x(-t)		$X(-j\omega)$
4.3.5	Time and Frequency Scaling	x(at)		$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
4.4	Convolution	x(t) * y(t)		$X(j\omega)Y(j\omega)$
4.5	Multiplication	x(t)y(t)		$\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta) Y(j(\omega-\theta)) d\theta$
4.3.4	Differentiation in Time	$\frac{d}{dt}x(t)$		$j\omega X(j\omega)$
4.3.4	Integration	$\int_{-\infty}^{t} x(t)dt$		$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$
4.3.6	Differentiation in Frequency	tx(t)		$j\frac{d}{d\omega}X(j\omega)$
4.3.3	Conjugate Symmetry for Real Signals	x(t) real		$\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re e\{X(j\omega)\} = \Re e\{X(-j\omega)\} \\ \Im m\{X(j\omega)\} = -\Im m\{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \end{cases}$
				$ \langle X(j\omega) = -\langle X(-j\omega) \rangle $
4.3.3	Symmetry for Real and Even Signals	x(t) real and even		$X(j\omega)$ real and even
4.3.3	Symmetry for Real and Odd Signals	x(t) real and odd		$X(j\omega)$ purely imaginary and ode
4.3.3	Even-Odd Decompo-	$x_e(t) = \mathcal{E}v\{x(t)\} [x \in \mathcal{E}v(t)]$		$\Re\{X(j\omega)\}$
	sition for Real Sig- nals	$x_o(t) = \mathfrak{O}d\{x(t)\} [x \in X]$	x(t) real]	$j\mathcal{G}m\{X(j\omega)\}$
4.3.7	Parseval's Relation	on for Aperiodic Signal $\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) ^2 d\omega$	ls	

4.3 Properties of the Continuous time Fourier Transform

$$\begin{cases} x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega & eq. 4.8/4.24 \\ X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt & eq. 4.9/4.25 \end{cases}$$

$$\begin{cases} x(t) & -- \rightarrow \mathbf{F}^{-1} \{X(j\omega)\} \\ X(j\omega) & -- \rightarrow \mathbf{F} \{x(t)\} \end{cases}$$

4.3 Properties of the Continuous time Fourier Transform

For example

$$\begin{cases} \frac{1}{a+j\omega} = \mathbf{F}\{e^{-at}u(t)\} \\ e^{-at}u(t) = \mathbf{F}^{-1} \left\{\frac{1}{a+j\omega}\right\} \end{cases}$$

$$e^{-at}u(t) \stackrel{F}{\longleftrightarrow} \frac{1}{a+j\omega}$$

4.3.1 Linearity

If
$$x(t) \stackrel{F}{\longleftrightarrow} X(j\omega)$$
 $y(t) \stackrel{F}{\longleftrightarrow} Y(j\omega)$ then

$$ax(t) + by(t) \stackrel{F}{\longleftrightarrow} aX(j\omega) + bY(j\omega)$$

4.3.2 Time Shifting

If
$$x(t) \stackrel{F}{\longleftrightarrow} X(j\omega)$$

then $x(t-t_0) \stackrel{F}{\longleftrightarrow} e^{-j\omega t_0} X(j\omega)$
 $\text{Pr } oof: x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$
 $x(t-t_0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega(t-t_0)} d\omega$
 $= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{-j\omega t_0} e^{j\omega t} d\omega$
That is $x(t-t_0) \stackrel{F}{\longleftrightarrow} e^{-j\omega t_0} X(j\omega)$

Example 4.9

$$x(t) = \frac{1}{2}x_1(t-2.5) + x_2(t-2.5)$$

$$\frac{1}{-\frac{3}{2}} \quad 0 \quad \frac{3}{2}$$

$$X_1(j\omega) = \frac{2\sin(\omega/2)}{\omega}$$

$$X_2(j\omega) = \frac{2\sin(3\omega/2)}{\omega}$$

$$X(j\omega) = e^{-j5\omega/2} \left\{ \frac{\sin(\omega/2) + 2\sin(3\omega/2)}{\omega} \right\}$$

4.3.3 Conjugation and Conjugate Symmetry

(1) If
$$x(t) \stackrel{F}{\longleftrightarrow} X(j\omega)$$

then $x^*(t) \stackrel{F}{\longleftrightarrow} X^*(-i\omega)$

$$\operatorname{Pr} oof: x^{*}(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X^{*}(j\omega) e^{-j\omega t} d\omega$$
$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X^{*}(-j\omega) e^{j\omega t} d\omega$$

4.3.3 Conjugation and Conjugate Symmetry

(2) If
$$x(t) = x^*(t)$$
 (real)
then $X(j\omega) = X^*(-j\omega)$

Ex.
$$x(t) = e^{-at}u(t)$$

 $X(j\omega) = \frac{1}{a+j\omega}$
 $X(-j\omega) = \frac{1}{a-j\omega} = X^*(-j\omega)$

(3) If
$$x(t) = x_e(t) + x_o(t) = x^*(t)$$
 (real)

then

$$X(j\omega) = X_R(j\omega) + jX_I(j\omega) = X_e(j\omega) + X_o(j\omega)$$

and

$$x_{e}(t) \stackrel{F}{\longleftrightarrow} X_{R}(j\omega) = X_{e}(j\omega)$$
$$x_{o}(t) \stackrel{F}{\longleftrightarrow} jX_{I}(j\omega) = X_{o}(j\omega)$$

Prove by yourself!

$$u(t) = \frac{1}{2} + \frac{1}{2}sign(t)$$

$$\mathbf{u}(\mathbf{t}) \qquad \text{sign}(t) = \begin{cases} +1 & (t>0) \\ -1 & (t<0) \end{cases} \xrightarrow{F} \frac{2}{j\omega}$$

$$FT[u(t)] = \dots = \pi \delta(\omega) + \frac{1}{j\omega}$$

4.3.4 Differentiation and Integration

(1) If
$$x(t) \stackrel{F}{\longleftrightarrow} X(j\omega)$$

then $x'(t) \stackrel{F}{\longleftrightarrow} j\omega X(j\omega)$

$$\begin{cases} x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega & eq. 4.24 \\ X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt & eq. 4.25 \end{cases}$$

4.3.4 Differentiation and Integration

(1) If
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$$
$$x(t) \stackrel{F}{\longleftrightarrow} X(j\omega)$$

$$\frac{dx(t)}{dt} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} j\omega X(j\omega) e^{j\omega t} d\omega = j\omega \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$$

So
$$\frac{dx(t)}{dt} \stackrel{F}{\longleftrightarrow} j\omega X(j\omega)$$

4.3.4 Differentiation and Integration

(2) If
$$x(t) \stackrel{F}{\longleftrightarrow} X(j\omega)$$

$$\int_{-\infty}^{t} x(\tau)d\tau \stackrel{F}{\longleftrightarrow} \frac{1}{j\omega} X(j\omega) + \pi X(0)\delta(\omega)$$

Proof:

$$\int_{-\infty}^{t} x(\tau)d\tau = x(t) * u(t)$$

$$x(t) \stackrel{F}{\longleftrightarrow} X(j\omega)$$

$$u(t) \stackrel{F}{\longleftrightarrow} \frac{1}{j\omega} + \pi\delta(\omega)$$

$$x(t) * u(t) \stackrel{F}{\longleftrightarrow} \frac{1}{j\omega} X(j\omega) + \pi X(0)\delta(\omega)$$

Example
$$\frac{d}{dt} [\delta(t)] \overset{FT}{\leftrightarrow} ??$$

From
$$\delta(t) \overset{FT}{\leftrightarrow} 1$$
 $\delta(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\omega t} d\omega$

$$\frac{d}{dt} \left[\mathcal{S}(t) \right] = \frac{1}{2\pi} \int_{-\infty}^{\infty} (j\omega) e^{j\omega t} d\omega$$

So
$$FT \left[\frac{d}{dt} \delta(t) \right] = j\omega$$
 or $\frac{d}{dt} \delta(t) = \delta'(t) \stackrel{FT}{\longleftrightarrow} j\omega$

$$\frac{d^n}{dt^n} \delta(t) \stackrel{FT}{\longleftrightarrow} (j\omega)^n$$

Example 4.12

Determine the FT of x(t)

$$g(t) = \frac{d}{dt}x(t) = \frac{1}{-1} + \frac{1}{0} + \frac$$

$$G(j\omega) = \frac{2\sin(\omega)}{\omega} - e^{j\omega} - e^{-j\omega}$$
$$X(j\omega) = \frac{1}{j\omega}G(j\omega) + \pi G(0)\delta(\omega)$$

$$X(j\omega) = \frac{1}{j\omega}G(j\omega) + \pi G(0)\delta(\omega)$$

$$X(j\omega) = \frac{2\sin(\omega)}{j\omega^2} - \frac{2\cos(\omega)}{j\omega}$$

4.3.5 Time and Frequency Scaling

If
$$x(t) \stackrel{F}{\longleftrightarrow} X(j\omega)$$

then
$$x(at) \stackrel{F}{\longleftrightarrow} \frac{1}{a} X(\frac{j\omega}{a})$$

 $Proof: x(at) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega at} d\omega$

Proof:
$$x(at) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega at} d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{1}{|a|} X(j\omega/a) e^{j\omega t} d\omega$$

$$\therefore x(at) \stackrel{F}{\longleftrightarrow} \frac{1}{|a|} X(j\omega/a)$$

Especially,
$$x(-t) \stackrel{F}{\longleftrightarrow} X(-j\omega)$$

$$x(\frac{t-b}{a}) \stackrel{F}{\longleftrightarrow} |a| X(ja\omega)e^{-jb\omega}$$

Prove it by yourself!

4.3.6 Duality
If
$$x(t) \stackrel{F}{\longleftrightarrow} X(j\omega)$$
then $X(jt) \stackrel{F}{\longleftrightarrow} 2\pi x(-\omega)$

$$Proof: x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$$

$$exchange \qquad t \quad and \quad \omega:$$

$$x(\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jt) e^{j\omega t} dt$$

$$2\pi \quad x(-\omega) = \int_{-\infty}^{+\infty} X(jt) e^{-j\omega t} dt$$

$$\therefore X(jt) \stackrel{F}{\longleftrightarrow} 2\pi \quad x(-\omega)$$

Example 4.13

$$g(t) = \frac{2}{1+t^2}$$

$$x(t) = e^{-a|t|}$$

From FT pair
$$X(t) = e^{-a|t|} \xrightarrow{F} X(j\omega) = \frac{2a}{a^2 + \omega^2}$$

And Duality, we get

$$\therefore g(t) = \frac{2}{1+t^2} \stackrel{F}{\longleftrightarrow} G(j\omega) = 2\pi e^{-|\omega|}$$

Example

From FT pair
$$\frac{d^n}{dt^n} \delta(t) \overset{FT}{\longleftrightarrow} (j\omega)^n$$

And Duality, we get

$$t^n \stackrel{FT}{\longleftrightarrow} 2\pi (j)^n \frac{d^n}{d\omega^n} [\delta(\omega)]$$

Example
$$x'(t) = \frac{d}{dt}x(t) \longleftrightarrow j\omega X(j\omega)$$

Using Duality, we get

$$-jtx(t) \stackrel{F}{\longleftrightarrow} \frac{d}{d\omega} X(j\omega) \tag{4.40}$$

Example
$$te^{-at}u(t) \stackrel{F}{\longleftrightarrow} \frac{1}{(a+j\omega)^2}, (a>0)$$

$$x(t-t_0) \stackrel{F}{\longleftrightarrow} e^{-j\omega t_0}X(j\omega)$$

Using Duality, we get

$$e^{j\omega_0 t} x(t) \stackrel{F}{\longleftrightarrow} X(j(\omega - \omega_0))$$
 (4.41)

Example

$$\frac{1}{\pi t} \xrightarrow{F} -j \operatorname{sign}(\omega) = \begin{cases} -j & (\omega > 0) \\ +j & (\omega < 0) \end{cases}$$

From FT pair

$$\operatorname{sign}(t) = \begin{cases} +1 & (t > 0) \\ -1 & (t < 0) \end{cases} \longleftrightarrow \frac{2}{j\omega}$$

Using Duality, we can get it easily.

$$\frac{2}{jt} \stackrel{F}{\longleftrightarrow} 2\pi \operatorname{sign}(-\omega)$$

$$\xrightarrow{-j} \stackrel{j}{\longleftrightarrow} \omega$$

4.3.7 Parseval's Relation

If
$$x(t) \stackrel{F}{\longleftrightarrow} X(j\omega)$$

then
$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(j\omega)|^2 d\omega$$

Proof:
$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} x(t)x^*(t)dt$$

$$= \int_{-\infty}^{+\infty} x(t) \left[\frac{1}{2\pi} \int_{-\infty}^{+\infty} X^*(j\omega) e^{-j\omega t} d\omega \right] dt$$

$$=\frac{1}{2\pi}\int_{-\infty}^{+\infty}X^*(j\omega)\left[\int_{-\infty}^{+\infty}x(t)e^{-j\omega t}dt\right]d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X^*(j\omega) X(j\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(j\omega)|^2 d\omega$$

Example 4.14 read by yourself!

$$x(t) = (\frac{\sin t}{\pi t})^2 \quad \stackrel{F}{\longleftarrow} \quad \longrightarrow$$

$$\int_{-\infty}^{+\infty} t^2 \left(\frac{\sin t}{\pi t}\right)^4 dt = ?$$

Solution:

$$\therefore g(t) = tx(t) = t(\frac{\sin t}{\pi t})^2 \stackrel{F}{\longleftrightarrow}$$

$$\begin{array}{c|c}
 & 1 \\
\hline
2\pi \\
 & 2
\end{array}$$

$$\begin{array}{c|c}
 & -2 \\
\hline
2\pi \\
\hline
2\pi \\
\end{array}$$

$$G(j\omega) = -j\frac{d}{d\omega}X(j\omega)$$

$$x(t) = \left(\frac{\sin t}{\pi t}\right)^2 \quad \stackrel{F}{\longleftarrow} \quad$$

$$\int_{-\infty}^{+\infty} t^2 \left(\frac{\sin t}{\pi t}\right)^4 dt = ?$$

Solution:

$$\therefore g(t) = tx(t) = t(\frac{\sin t}{\pi t})^2$$

Solution:

$$g(t) = tx(t) = t(\frac{\sin t}{\pi t})^{2} \xrightarrow{F} \xrightarrow{\frac{1}{2\pi} \frac{j}{2} - j\frac{d}{d\omega}X(j\omega)} \omega$$

$$g(t) = tx(t) = t(\frac{\sin t}{\pi t})^{2} \xrightarrow{F} \xrightarrow{\frac{-1}{2\pi} \frac{j}{2}} \omega$$

$$\int_{-\infty}^{\infty} \left| g(t) \right|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| G(j\omega) \right|^2 d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{2\pi} \left| \frac{1}{2\pi} d\omega \right|^2 d\omega = \frac{1}{2\pi} \int_{-\infty}^{2\pi} \left| \frac{1}{2\pi} d\omega \right|^2 d\omega$$

$$= \frac{1}{2\pi} \int_{-2}^{2} \frac{1}{4\pi^{2}} d\omega = \frac{1}{2\pi^{3}} \qquad \therefore \int_{-\infty}^{+\infty} t^{2} \left(\frac{\sin t}{\pi t}\right)^{4} dt = \frac{1}{2\pi^{3}}$$

4.4 The Convolution Property

Consider an LTI system:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$$
$$= \lim_{n \to \infty} \frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} X(jk\omega_0) e^{jk\omega_0 t} \omega_0$$

$$H(jk\omega_0) = \int_{-\infty}^{+\infty} h(t)e^{-jk\omega_0 t}dt$$

For LTI system,

$$\frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} X(jk\omega_0) e^{jk\omega_0 t} \omega_0$$

$$-- \rightarrow \frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} X(jk\omega_0) H(jk\omega_0) e^{jk\omega_0 t} \omega_0$$

$$y(t) = \lim_{\omega_0 \to 0} \frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} X(jk\omega_0) H(jk\omega_0) e^{jk\omega_0 t} \omega_0 = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) H(j\omega) e^{j\omega t} d\omega,$$

from inverse Fourier transform

$$y(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} Y(j\omega) e^{j\omega t} d\omega$$

So
$$Y(j\omega) = X(j\omega)H(j\omega)$$

Another way to derive the result:

$$y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau$$

$$Y(j\omega) = F\{y(t)\}$$

$$= \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau \right] e^{-j\omega t} dt$$

$$interchange the order$$

$$= \int_{-\infty}^{+\infty} x(\tau) \left[\int_{-\infty}^{+\infty} h(t-\tau)e^{-j\omega t} dt \right] d\tau$$

$$= \int_{-\infty}^{+\infty} x(\tau) [H(j\omega)] e^{-j\omega \tau} d\tau = H(j\omega)X(j\omega)$$

4.4.1 Examples

Example 4.15
$$h(t) = \delta(t - t_0)$$
 $H(j\omega) = e^{-j\omega t_0}$

:
$$y(t) = x(t) * h(t) = x(t) * \delta(t - t_0) = x(t - t_0)$$

$$\therefore Y(j\omega) = X(j\omega)H(j\omega)$$

So,
$$y(t) = x(t - t_0) \stackrel{F}{\longleftrightarrow} e^{-j\omega t_0} X(j\omega) = Y(j\omega)$$

4.4.1 Examples

Example 4.16: a differentiator
$$y(t) = \frac{dx(t)}{dt}$$

$$y(t) = \frac{dx(t)}{dt} \stackrel{F}{\longleftrightarrow} Y(j\omega) = j\omega X(j\omega)$$

From previous knowledge:

$$h(t) = \delta'(t)$$
 $H(j\omega) = j\omega$

$$y(t) = x(t) * h(t), Y(j\omega) = j\omega X(j\omega)$$

Example 4.17: integrator

$$y(t) = \int_{-\infty}^{\tau} x(\tau) d\tau$$

$$\therefore y(t) = x(t) * u(t)$$

$$\therefore h(t) = u(t) \overset{FT}{\longleftrightarrow} H(j\omega) = \pi \delta(\omega) + \frac{1}{j\omega}$$

$$y(t) = x(t) * u(t) \longleftrightarrow Y(j\omega) = \frac{1}{j\omega} X(j\omega) + \pi X(0) \delta(\omega)$$

$$h(t) = e^{-at}u(t), a > 0$$

$$x(t) = e^{-bt}u(t), b > 0$$

$$X(j\omega) = \frac{1}{b+j\omega}$$

$$H(j\omega) = \frac{1}{a + j\omega}$$

$$Y(j\omega) = X(j\omega)H(j\omega) = \frac{1}{(a+j\omega)(b+j\omega)}$$

$$Y(j\omega) = X(j\omega)H(j\omega) = \frac{1}{(a+j\omega)(b+j\omega)}$$

By partial-fraction expansions

$$Y(j\omega) = \frac{A}{a+j\omega} + \frac{B}{b+j\omega} \quad \text{and} \quad A = \frac{1}{b-a} = -B$$

$$\therefore Y(j\omega) = \frac{1}{b-a} \left[\frac{1}{a+j\omega} - \frac{1}{b+j\omega} \right]$$
Inverse FT
$$y(t) = \frac{1}{b-a} \left[e^{-at}u(t) - e^{-bt}u(t) \right]$$
If $a=b$,
$$Y(j\omega) = \frac{1}{(a+j\omega)^2} \quad y(t) = te^{-at}u(t)$$
Deduce it by yourself!

Deduce it by yourself!

Example 4.18 and 4.20

Ideal Lowpass filter

$$H(j\omega) = \begin{cases} 1, & |\omega| \le \omega_c \\ 0, & |\omega| > \omega_c \end{cases}$$

$$h(t) = \frac{\sin \omega_c t}{\pi t}$$

$$x(t) = \frac{\sin \omega_i t}{\pi t}$$

$$X(j\omega) = \begin{cases} 1, & |\omega| \le \omega_i \\ 0, & |\omega| > \omega_i \end{cases}$$

$$:: Y(j\omega) = H(j\omega)X(j\omega)$$

$$\therefore Y(j\omega) = \begin{cases} 1, & |\omega| \le \omega_0 \\ 0, & |\omega| > \omega_0 \end{cases}$$

$$\omega_0 = \min(\omega_c, \omega_i)$$

$$\therefore y(t) = \begin{cases} \frac{\sin \omega_c t}{\pi t}, & \text{if} & \omega_c \leq \omega_i \\ \frac{\sin \omega_i t}{\pi t}, & \text{if} & \omega_c > \omega_i \end{cases}$$

Example

Hilbert transform(Extension Problems 4.48)

$$y(t) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{x(\tau)}{t - \tau} d\tau$$

$$\begin{array}{c|c} x(t) & h(t) & y(t) = x(t)*h(t) \\ \hline X(j\omega) & H(j\omega) & Y(j\omega) = X(j\omega) H(j\omega) \end{array}$$

$$h(t) = \frac{1}{\pi t} \qquad H(j\omega) = -j\operatorname{sign}(\omega) = \begin{cases} -j & (\omega > 0) \\ +j & (\omega < 0) \end{cases}$$

When $x(t) = \cos \omega_0 t$, $y(t) = \sin \omega_0 t$. Prove it by yourself!

Example

$$Y(j\omega) = [H_1(j\omega) + H_2(j\omega)]X(j\omega)$$

Example

$$x(t) \stackrel{FT}{\longleftrightarrow} X(j\omega)$$

$$\tilde{x}(t) = \sum_{n=-\infty}^{\infty} x(t - nT) = x(t) * \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

$$\tilde{X}(j\omega) = \sum_{k=-\infty}^{\infty} \frac{2\pi}{T} X(jk\frac{2\pi}{T}) \delta(\omega - k\frac{2\pi}{T})$$

Example

$$x(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT)$$

$$X(j\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta(\omega - k \frac{2\pi}{T})$$

$$Y(j\omega) = X(j\omega)H(j\omega)$$

$$= \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} H(jk\frac{2\pi}{T})\delta(\omega - k\frac{2\pi}{T})$$

$$-\frac{2\pi}{T} \frac{\partial}{\partial x} \frac{\partial x}{\partial x}$$

$$Y_{1}(j\omega) = \frac{2\pi}{T} \sum_{k=-1}^{+1} \delta(\omega - k\frac{2\pi}{T}) = \frac{2\pi}{T} \left[\delta(\omega + \frac{2\pi}{T}) + \delta(\omega) + \delta(\omega - \frac{2\pi}{T})\right]$$

$$Y_{2}(j\omega) = \frac{2\pi}{T} \delta(\omega)$$

$$\therefore y_{1}(t) = \frac{1}{T} [1 + 2\cos(\frac{2\pi}{T}t)]$$

$$\Rightarrow a$$

$$\therefore y_2(t) = \frac{1}{T}$$

Waveform in time domain?

$$y(t) = x(t) * h(t) \stackrel{F}{\longleftrightarrow} Y(j\omega) = X(j\omega)H(j\omega)$$

$$y(t) = x(t)h(t) \stackrel{F}{\longleftrightarrow} Y(j\omega) = ??????$$

4.5 The Multiplication Property

The multiplication(modulation) property:

$$\begin{array}{c|c}
\hline
s(t) & r(t) \\
\hline
p(t) & \end{array}$$

$$r(t) = s(t)p(t) \stackrel{F}{\longleftrightarrow} R(j\omega) = \frac{1}{2\pi} S(j\omega) * P(j\omega)$$

Proof:

In the way Similar to the Convolution Property, You can do it by yourself!

Example 4.22 (Demodulation) r(t) r(t)

$$p(t) = \cos \omega_0 t$$

$$P(j\omega) = \pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0)$$

$$G(j\omega) = \frac{1}{2\pi} R(j\omega) * P(j\omega)$$

$$= \frac{1}{2}S(j\omega) + \frac{1}{4}S(j(\omega - 2\omega_0)) + \frac{1}{4}S(j(\omega + 2\omega_0))$$

As shown in Figure 4.24.It will be discussed in Ch.8.

Example 4.23
$$x(t) = \frac{(\sin t)\sin(t/2)}{\pi t^2}$$

$$x(t) = \pi \left(\frac{\sin t}{\pi t}\right) \left(\frac{\sin(t/2)}{\pi t}\right)$$

$$X(j\omega) = \frac{1}{2}F\left\{\frac{\sin t}{\pi t}\right\} * F\left\{\frac{\sin(t/2)}{\pi t}\right\}$$

$$* \int_{0}^{F\left\{\frac{\sin(t/2)}{\pi t}\right\}} \frac{1}{2} \int_{0}^{A} \frac{X(j\omega)}{\pi t} dt$$

4.5.1 Frequency-Selective Filtering with Variable Center Frequency

A Bandpass Filter:

$$y(t) = e^{j\omega_c t}x(t)$$

$$F(j\omega) = W(j(\omega + \omega_c))$$

4.6 Tables of Fourier Properties and of Basic Fourier Transform Pairs

Table 4.1 Table 4.2

Section	Property	Aperiodic signal	Fourier transform
		x(t) $y(t)$	$X(j\omega)$ $Y(j\omega)$
4.3.1 4.3.2 4.3.6	Linearity Time Shifting Frequency Shifting	$ax(t) + by(t)$ $x(t - t_0)$ $e^{j\omega_0 t}x(t)$	$aX(j\omega) + bY(j\omega)$ $e^{-j\omega t_0}X(j\omega)$ $X(j(\omega - \omega_0))$
4.3.3 4.3.5	Conjugation Time Reversal	$x^*(t)$ x(-t)	$X^*(-j\omega)$ $X(-j\omega)$
4.3.5	Time and Frequency Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
4.4	Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$
4.5	Multiplication	x(t)y(t)	$\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta) Y(j(\omega-\theta)) d\theta$
4.3.4	Differentiation in Time	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$
4.3.4	Integration	$\int_{-\infty}^{t} x(t)dt$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$
4.3.6	Differentiation in Frequency	tx(t)	$j\frac{d}{d\omega}X(j\omega)$
4.3.3	Conjugate Symmetry for Real Signals	x(t) real	$\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re e\{X(j\omega)\} = \Re e\{X(-j\omega)\} \\ \Im e\{X(j\omega)\} = -\Im e\{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \\ \Im e\{X(j\omega)\} = -\Im e\{X(-j\omega)\} \end{cases}$
4.3.3	Symmetry for Real and Even Signals	x(t) real and even	$X(j\omega)$ real and even
4.3.3	Symmetry for Real and Odd Signals	x(t) real and odd	$X(j\omega)$ purely imaginary and odd
4.3.3	Even-Odd Decompo- sition for Real Sig- nals	$x_e(t) = \mathcal{E}v\{x(t)\}$ [$x(t)$ real] $x_o(t) = \mathcal{O}d\{x(t)\}$ [$x(t)$ real]	$\Re\{X(j\omega)\}\ j \mathcal{G}m\{X(j\omega)\}$
4.3.7		on for Aperiodic Signals $\frac{1}{2\pi} \int_{-\pi}^{+\infty} X(j\omega) ^2 d\omega$	

Signal	Fourier transform	Fourier series coefficients (if periodic)
		(ii periodic)
$\sum_{n=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$	a_k
† 0 0	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0$, otherwise
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{ otherwise}$
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1$, $a_k = 0$, $k \neq 0$ (this is the Fourier series representation for any choice of $T > 0$
Periodic square wave $s(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$ and $s(t+T) = x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$
$\sum_{=-\infty}^{+\infty} \delta(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k
$g(t) \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	_
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	_
$\delta(t)$	1	_
q(t)	$\frac{1}{j\omega} + \pi \delta(\omega)$	_
$\delta(t-t_0)$	$e^{-j\omega t_0}$	_
$e^{-at}u(t)$, $\Re e\{a\}>0$	$\frac{1}{a+j\omega}$	_
$e^{-at}u(t)$, $\Re e\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$	-
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),$ $\Re e\{a\} > 0$	$\frac{1}{(a+j\omega)^n}$	_

4.7 System Characterized by Linear Constant-**Coefficient Differential Equation**

Constant-coefficient differential equation:

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{dx^k(t)}{dt^k}$$

Fourier transform:

$$\sum_{k=0}^{N} a_k (j\omega)^k Y(j\omega) = \sum_{k=0}^{M} b_k (j\omega)^k X(j\omega)$$

Define:
$$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = \frac{\sum_{k=0}^{M} b_k (j\omega)^k}{\sum_{k=0}^{N} a_k (j\omega)^k} \quad (frequency response)$$

$$\frac{dy(t)}{dt} + ay(t) = x(t) \qquad (a > 0)$$

$$H(j\omega) = \frac{1}{a + j\omega}$$

$$h(t) = e^{-at}u(t)$$

Example 4.25
$$\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 3y(t) = \frac{dx(t)}{dt} + 2x(t)$$

$$H(j\omega) = \frac{(j\omega) + 2}{(j\omega)^2 + 4(j\omega) + 3} = \frac{j\omega + 2}{(j\omega + 1)(j\omega + 3)}$$

By partial-fraction expansions:
$$H(j\omega) = \frac{1/2}{j\omega + 1} + \frac{1/2}{j\omega + 3}$$

$$h(t) = \frac{1}{2} \left[e^{-t} u(t) + e^{-3t} u(t) \right]$$

Example 4.26 If
$$\chi(t) = e^{-t}u(t)$$
 in Example 4.25

$$\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 3y(t) = \frac{dx(t)}{dt} + 2x(t)$$
$$(j\omega)^2Y(j\omega) + 4j\omega Y(j\omega) + 3Y(j\omega)$$

$$= j\omega X(j\omega) + 2X(j\omega)$$

$$H(j\omega) = \frac{1/2}{j\omega + 1} + \frac{1/2}{j\omega + 3} \qquad X(j\omega) = \frac{1}{j\omega + 1}$$

$$Y(j\omega) = H(j\omega)X(j\omega) = \frac{1/2}{(j\omega + 1)^2} + \frac{1/2}{(j\omega + 1)(j\omega + 3)}$$

$$Y(j\omega) = \frac{1/2}{(j\omega + 1)^2} + \frac{1/2}{(j\omega + 1)(j\omega + 3)}$$

$$= \frac{\frac{1}{2}(j\omega + 3) + \frac{1}{2}(j\omega + 1)}{(j\omega + 1)^2(j\omega + 3)}$$

$$=\frac{j\omega+2}{(j\omega+1)^2(j\omega+3)}$$

By partial-fraction expansions

$$Y(j\omega) = \frac{A_1}{(j\omega + 1)^2} + \frac{A_2}{j\omega + 1} + \frac{A_3}{j\omega + 3}$$

$$A_1 = \frac{1}{2}, A_2 = \frac{1}{4}, A_3 = -\frac{1}{4}$$

$$y(t) = \left[\frac{1}{2}te^{-t} + \frac{1}{4}e^{-t} - \frac{1}{4}e^{-3t}\right]u(t)$$

Example:

Consider the unit impulse response of an LTI system is $h(t) = \frac{\sin \pi t \sin 2\pi t}{\pi t^2}$.

- (a) Determine and sketch $H(j\omega)$.
- (b) Given the input

$$x(t) = 1 + \sin \frac{\pi t}{2} + \cos 2 \pi t + \sin 5 \pi t$$
determine the output y(t).

(a)
$$h(t) = \frac{\sin \pi t \sin 2\pi t}{\pi t^2} = \pi \cdot \frac{\sin \pi t}{\pi t} \cdot \frac{\sin 2\pi t}{\pi t} = \pi \cdot h_1(t) \cdot h_2(t)$$

$$h_1(t) \stackrel{F}{\leftrightarrow} H_1(j\omega)$$

$$h_2(t) \stackrel{F}{\leftrightarrow} H_2(j\omega)$$

So
$$H(j\omega) = \pi \cdot \frac{1}{2\pi} H_1(j\omega) * H_2(j\omega) = \frac{1}{2} H_1(j\omega) * H_2(j\omega)$$

(b) Since
$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$$
,
$$y(t) = \sum_{k=-\infty}^{+\infty} a_k \mathbf{H}(jk\omega_0) e^{jk\omega_0 t}$$

And we have obtained
$$H(j\omega) = \begin{cases} \frac{\pi}{-\frac{1}{2}(\omega - 3\pi)} & |\omega| < \pi \\ -\frac{1}{2}(\omega - 3\pi) & \pi < \omega < 3\pi \end{cases}$$

$$\frac{1}{2}(\omega + 3\pi) - 3\pi < \omega < -\pi$$

$$0 & others$$

From $x(t) = 1 + \sin \frac{\pi t}{2} + \cos 2\pi t + \sin 5\pi t$, we need determine

the values of :
$$H(j0) = \pi$$
, $H\left(j\frac{\pi}{2}\right) = \pi$, $H(j2\pi) = \frac{\pi}{2}$, $H(j5\pi) = 0$

So
$$y(t) = \pi + \pi \sin \frac{\pi t}{2} + \frac{\pi}{2} \cos 2 \pi t$$

Exercise:

Consider the following linear constant-coefficient differential equation:

$$\frac{dy(t)}{dt} + 2y(t) = A\cos\omega_0 t.$$

Find the value of ω_0 such that y(t) will have a maximum amplitude of A/3. Assume that the resulting system is linear and time-invariant.

Solution:

Let
$$x(t) = A\cos\omega_0 t$$
 so
$$\frac{dy(t)}{dt} + 2y(t) = x(t)$$

The frequency response of the system is

$$H(j\omega) = \frac{1}{2+j\omega}$$

We know that the resulting system is linear and time-invariant

So, the output of the system is

$$y(t) = H(j\omega)x(t)$$

$$= |H(j\omega_0)|A\cos(\omega_0 t + \emptyset)$$

where
$$|H(j\omega_0)| = \frac{1}{\sqrt{4 + \omega_0^2}}$$

 $\emptyset = \angle H(jw_0)$

For the maximum value of y(t) to be A/3, we require $\frac{1}{4+\omega_0^2} = \frac{1}{9}$

So
$$\omega_0 = \pm \sqrt{5}$$

4 The continuous time Fourier transform

Resume of Chapter 4

Key points of analysis:

$$\begin{array}{c|c} x(t) & h(t) \\ \hline X(j\omega) & H(j\omega) \end{array} \begin{array}{c|c} y(t) = x(t)*h(t) \\ \hline Y(j\omega) = X(j\omega) H(j\omega) \end{array}$$

Key points of calculation:

Fourier Properties and Basic Fourier Transform Pairs

Two important properties:

Convolution Property

Multiplication Property

Homework for Chapter 4:

4.3 4.4(a) **4.10** 4.11 4.14 **4.15**

4.24 **4.25** 4.32(a)(b) **4.35** 4.36

4.37 4.43

Signals and Systems

Chapter 5

The Discrete Time Fourier
Transform

- 5. The Discrete Time Fourier Transform
 - 5.1 Representation of aperiodic signal:DTFT
 - **5.1.1 Development of DTFT**
 - (1) Fourier series (periodic signal)

$$\begin{cases} x[n] = \sum_{k=< N>} a_k e^{jk(2\pi/N)n} \\ a_k = \frac{1}{N} \sum_{n=< N>} x[n] e^{-jk(2\pi/N)n} \end{cases}$$

(2) Fourier transform (aperiodic signal)

$$\begin{cases} x[n] = \frac{1}{2\pi} \int_{2\pi}^{\infty} X(e^{j\omega}) e^{j\omega n} d\omega \\ X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} \end{cases}$$

Fourier series (periodic signal)

$$\begin{cases} x[n] = \sum_{k = < N >} a_k e^{jk(2\pi/N)n} \\ a_k = \frac{1}{N} \sum_{n = < N >} x[n] e^{-jk(2\pi/N)n} \end{cases}$$

Fourier transform (aperiodic signal)

$$a_k = \frac{1}{N} \sum_{n=\leq N >} x[n] e^{-jk(2\pi/N)n}$$

$$= \frac{1}{N} \sum_{-N_1}^{N_1} x[n] e^{-jk(2\pi/N)n}$$

$$=\frac{1}{N}\sum_{-\infty}^{\infty}x[n]e^{-jk(2\pi/N)n}$$

 $X(e^{j\omega})$

Definition of DTFT

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

$$x[n] \stackrel{DTFT}{\longleftrightarrow} X(e^{j\omega})$$
 or $x[n] \stackrel{FT}{\longleftrightarrow} X(e^{j\omega})$

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

$$X(e^{j\omega}) = |X(e^{j\omega})|e^{j\angle X(e^{j\omega})}$$

$$|X(e^{j\omega})|$$
 ----Magnitude $\angle X(e^{j\omega})$ ---phase

$$x[n] \stackrel{FT}{\leftrightarrow} X(e^{j\omega})$$

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

5.1.2 Examples of DTFT

Example
$$f[n] = a^n u[n]$$
 $|a| < 1$

$$F(e^{j\omega}) = \sum_{n=0}^{\infty} a^n e^{-jn\omega} = \frac{1}{1 - ae^{-j\omega}}$$

$$(= \frac{1}{(1 - a\cos\omega) + ja\sin\omega})$$

Example
$$x[n] = \begin{cases} 1.0 \le n \le N - 1 \\ 0. other n \end{cases}$$

$$X(e^{j\omega}) = \sum_{n=0}^{N-1} e^{-j\omega n} = \frac{1 - e^{-jN\omega}}{1 - e^{-j\omega}}$$

Magnitude
$$|X(e^{j\omega})| = \frac{\sin(N\omega/2)}{\sin(\omega/2)}$$

$$\angle X(e^{j\omega}) = -(N-1)\omega/2$$

Example

$$f[n] = \frac{\sin \omega_0 \, n}{\pi n}$$

Prove it by yourself!

Commonly Used DTFT Pairs

Sequence

$$\delta[n] \longleftrightarrow 1$$

$$1 \longleftrightarrow$$

$$e^{j\omega_o n}$$
 \longleftrightarrow

$$u[n] \longleftrightarrow$$

$$\alpha^n u[n], \quad (|\alpha| < 1)$$

$$\leftrightarrow \sum_{k=0}^{\infty} 2\pi \delta(\omega + 2\pi k)$$

$$\sum 2\pi\delta(\omega-\omega_o+2\pi k)$$

$$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$$

$$\frac{1}{1-\alpha} \frac{1}{\rho^{-j\omega}}$$

Time-shifting

5.2 The Properties of DTFT(5.3~5.6)

The properties of DTFT are similar to the properties of FT in continuous-time.

Table 5.1

Type of Prop	perty Seque	ence DTFT
	x[n]	$X(e^{j\omega})$
	h[n]	$H(e^{j\omega})$
	y[n]	$Y(e^{j\omega})$
Linearity	ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$

 $x[n-n_0]$

 $e^{-J\omega n_0}X(e^{J\omega})$

Frequency-shifting

$$e^{j\omega_0n}x[n]$$

$$X(e^{j(\omega-\omega_0)})$$

Differentiation

$$\int \frac{dX(e^{j\omega})}{d\omega}$$

Convolution
$$y[n] = x[n] * h[n]$$
 $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$

Modulation x[n]y[n]

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$$

Parseval's relation

$$\sum_{n=-\infty}^{\infty} x[n] y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) Y^*(e^{j\omega}) d\omega$$

Example If it is known that $a^n u[n] \Leftrightarrow \frac{1}{1 - ae^{-j\omega}}$, please give the value of

$$\mathbf{I} = \int_{-\pi}^{\pi} \frac{1}{(1 - ae^{-j\omega})(1 - be^{-j\omega})} d\omega$$

Solution

Because

$$a^{n}u[n] \Leftrightarrow \frac{1}{1-ae^{-j\omega}}; b^{n}u[n] \Leftrightarrow \frac{1}{1-be^{-j\omega}}$$

From the convolution in time domain, the following equation can be obtained

$$a^n u[n] * b^n u[n]$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{(1 - ae^{-j\omega})(1 - be^{-j\omega})} e^{jn\omega} d\omega$$

So, Let n=0,we can get

$$\mathbf{I} = 2\pi \, \mathbf{a}^n \, u[\mathbf{n}] * \mathbf{b}^n \, u[\mathbf{n}] \big|_{\mathbf{n}=0} = 2\pi \sum_{m=0}^{n} \mathbf{a}^m \mathbf{b}^{n-m} \big|_{\mathbf{n}=0} = 2\pi$$

TABLE 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Section	Property	Aperiodic Signal	Fourier Transform
		x[n]	$X(e^{j\omega})$ periodic with
	¥9	y[n]	$Y(e^{j\omega})$ period 2π
5.3.2	Linearity	ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$
5.3.3	Time Shifting	$x[n-n_0]$	$e^{-j\omega n_0}X(e^{j\omega})$
5.3.3	Frequency Shifting	$e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$
5.3.4	Conjugation	$x^*[n]$	$X^*(e^{-j\omega})$
5.3.6	Time Reversal	x[-n] ($x[n/h]$ if $n = multiple of h$	$X(e^{-j\omega})$
5.3.7	Time Expansion	$x_{(k)}[n] = \begin{cases} x[n/k], & \text{if } n = \text{multiple of } k \\ 0, & \text{if } n \neq \text{multiple of } k \end{cases}$	$X(e^{jk\omega})$
5.4	Convolution	x[n] * y[n]	$X(e^{j\omega})Y(e^{j\omega})$
5.5	Multiplication	x[n]y[n]	$\frac{1}{2\pi} \int_{2\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$
5.3.5	Differencing in Time	x[n] - x[n-1]	$(1-e^{-j\omega})X(e^{j\omega})$
5.3.5	Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{(1 - e^{-j\omega})X(e^{j\omega})}{1 - e^{-j\omega}}X(e^{j\omega})$
5.3.8	Differentiation in Frequency	nx[n]	$+\pi X(e^{j0}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$ $j \frac{dX(e^{j\omega})}{d\omega}$
5.3.4	Conjugate Symmetry for Real Signals	x[n] real	$\begin{cases} X(e^{j\omega}) = X^{\bullet}(e^{-j\omega}) \\ \Re e\{X(e^{j\omega})\} = \Re e\{X(e^{-j\omega})\} \\ \Im m\{X(e^{j\omega})\} = -\Im m\{X(e^{-j\omega}) \\ X(e^{j\omega}) = X(e^{-j\omega}) \\ \not \leq X(e^{j\omega}) = -\not \leq X(e^{-j\omega}) \end{cases}$
5.3.4	Symmetry for Real, Even Signals	x[n] real and even	$X(e^{j\omega})$ real and even
5.3.4	Symmetry for Real, Odd Signals	x[n] real and odd	$X(e^{j\omega})$ purely imaginary and odd
5.3.4	Even-odd Decomposition	$x_e[n] = \mathcal{E}v\{x[n]\}$ [x[n] real]	$\Re\{X(e^{j\omega})\}$
	of Real Signals	$x_o[n] = Od\{x[n]\}$ [x[n] real]	$i \mathcal{G}m\{X(e^{j\omega})\}$
5.3.9	Parseval's Re	lation for Aperiodic Signals	J = (- //
v* (*)	1 00	$x^{2} = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) ^{2} d\omega$	

5.8 Finite-dimensional LTI Systems

Linear constant coefficients difference equation:

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})}$$

Example: Causal LTI system

$$y[n] - ay[n-1] = x[n], |a| < 1$$

So
$$Y(e^{j\omega}) - ae^{-j\omega}Y(e^{j\omega}) = X(e^{j\omega})$$

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{1}{1 - ae^{-j\omega}}$$

$$h[n] = a^n u[n]$$

Example: Causal LTI system

$$y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = 2x[n]$$

So
$$Y(e^{j\omega}) - \frac{3}{4}e^{-j\omega}Y(e^{j\omega}) + \frac{1}{8}e^{-2j\omega}Y(e^{j\omega}) = 2X(e^{j\omega})$$

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{2}{1 - \frac{3}{4}e^{-j\omega} + \frac{1}{8}e^{-2j\omega}}$$

$$H(e^{j\omega}) = \frac{2}{1 - \frac{3}{4}e^{-j\omega} + \frac{1}{8}e^{-2j\omega}}$$

$$= \frac{2}{(1 - \frac{1}{2}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})} = \frac{4}{1 - \frac{1}{2}e^{-j\omega}} - \frac{2}{1 - \frac{1}{4}e^{-j\omega}}$$

$$h[n] = 4(\frac{1}{2})^n u[n] - 2(\frac{1}{4})^n u[n]$$

Example:

A particular discrete-time system has input x[n] and output y[n]. The Fourier transforms of these signals are related by the following equation:

$$Y(\mathbf{e}^{j\omega}) = 2X(\mathbf{e}^{j\omega}) + \mathbf{e}^{-j\omega}X(\mathbf{e}^{j\omega}) - \frac{dX(\mathbf{e}^{j\omega})}{d\omega}$$

- (a) Is this system linear? Clearly justify your answer.
- (b) Is the system time-invariant? Clearly justify your answer.
- (c) What is y[n] if $x[n] = \delta[n]$?

Solution:

(a) Here
$$Y(\mathbf{e}^{j\omega}) = 2X(\mathbf{e}^{j\omega}) + \mathbf{e}^{-j\omega}X(\mathbf{e}^{j\omega}) - \frac{dX(\mathbf{e}^{j\omega})}{d\omega}$$

The system is linear because if

$$x[n] = ax_1[n] + bx_2[n]$$

Then $y[n] = ay_1[n] + by_2[n]$, where $y_1[n]$ is obtained from $x_1[n]$ via the given transfer function. The similar result applies for $y_2[n]$.

(b) The system is time-varying by the following argument.

If
$$x[n] \to y[n]$$
, does $x[n-1] \to y[n-1]$?
$$x[n-1] \stackrel{F}{\leftrightarrow} e^{-j\omega} X(e^{j\omega})$$

The corresponding $Y(e^{j\omega})$ is

$$2e^{-j\omega}X(e^{j\omega}) + e^{-j\omega}X(e^{j\omega})e^{-j\omega} + je^{-j\omega}X(e^{j\omega}) -$$

$$e^{-j\omega} \frac{dX(e^{j\omega})}{d\omega} \neq e^{-j\omega} \left[2X(e^{j\omega}) + e^{-j\omega}X(e^{j\omega}) - \right]$$

$$dX(e^{j\omega})$$

(c) If
$$x[n] = \delta[n]$$
,
 $X(\mathbf{e}^{j\omega}) = \mathbf{1}$
then $Y(\mathbf{e}^{j\omega}) = \mathbf{2} + \mathbf{e}^{-j\omega}$
so $y[n] = 2\delta[n] + \delta[n-1]$

No Class Test and Homework for Chapter 5