Exercice 1. Soit $n \in \mathbb{N}$. On considère la fonction f_n définie pour tout réel x par $f_n(x) = x^n e^{-x}$ et on note

$$I_n = \int_0^1 f_n(x) \, \mathrm{d}x.$$

Calcul de l'intégrale I_1 .

On considère g la fonction définie, pour tout $x \in \mathbb{R}$, par $g(x) = \frac{x+1}{e^x}$.

- **1.** Calculer g' la dérivée de g.
- **2.** En déduire que la fonction F_1 définie, pour tout $x \in \mathbb{R}$, par $F_1(x) = -(x+1) e^{-x}$ est une primitive de f_1 .
- 3. Montrer que $I_1 = 1 2e^{-1}$.

Étude de f_2 .

Dans cette question, on s'intéresse à la fonction f_2 définie sur \mathbb{R} par $f_2(x) = x^2 e^{-x}$.

- **4.** Déterminer les limites de f_2 en $-\infty$ et $+\infty$ en justifiant vos réponses.
- 5. Calculer la dérivée de f_2 et montrer qu'elle est donnée, pour tout $x \in \mathbb{R}$, par

$$f_2'(x) = (2-x)xe^{-x}$$
.

- **6.** Étudier le signe de f'_2 et dresser le tableau de variations de f_2 , en incluant les limites trouvées précédemment.
- 7. Démontrer que pour tout $x \ge 0$, on a $0 \le f_2(x) \le 4 e^{-2}$.
- **8.** En déduire que $0 \leqslant I_2 \leqslant 4 e^{-2}$.
- **9.** À l'aide d'une intégration par parties, montrer que $I_2 = -e^{-1} + 2I_1$.
- **10.** En déduire la valeur de I_2 .

Étude de la suite (I_n) .

On rappelle que par définition, on a 0! = 1 et pour tout $n \in \mathbb{N}$, $(n+1)! = (n+1) \times n!$; donc $n! = 1 \times 2 \times 3 \times \ldots \times (n-1) \times n$.

- **11.** Calculer $I_0 = \int_0^1 e^{-x} dx$.
- 12. Montrer, à l'aide d'une intégration par parties, que pour tout $n \in \mathbb{N}$:

$$I_{n+1} = -e^{-1} + (n+1)I_n.$$

13. En déduire que pour tout $n \in \mathbb{N}$:

$$\frac{I_n}{n!} = 1 - \left(\sum_{k=0}^n \frac{1}{k!}\right) e^{-1}.$$

- **14.** Soit $n \in \mathbb{N}^*$. Étudier les variations de f_n sur l'intervalle [0,1].
- **15.** En déduire que pour tout $n \in \mathbb{N}^*, 0 \leq I_n \leq e^{-1}$.
- **16.** Déterminer la limite de la suite $(u_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par $u_n=\sum_{k=0}^n\frac{1}{k!}$.