```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [2]: df = pd.read_csv('sales_data_sample.csv', encoding='latin1')
    df.head()
```

Out[2]:		ORDERNUMBER	QUANTITYORDERED	PRICEEACH	ORDERLINENUMBER	SALES	ORDERDATE	STATUS	QT
	0	10107	30	95.70	2	2871.00	2/24/2003 0:00	Shipped	
	1	10121	34	81.35	5	2765.90	5/7/2003 0:00	Shipped	
	2	10134	41	94.74	2	3884.34	7/1/2003 0:00	Shipped	
	3	10145	45	83.26	6	3746.70	8/25/2003 0:00	Shipped	
	4	10159	49	100.00	14	5205.27	10/10/2003 0:00	Shipped	

5 rows × 25 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2823 entries, 0 to 2822
Data columns (total 25 columns):

Data	Cotumns (Cotat 25 Cotumns).				
#	Column	Non-Null Count	Dtype		
0	ORDERNUMBER	2823 non-null	int64		
1	QUANTITYORDERED	2823 non-null	int64		
2	PRICEEACH	2823 non-null	float64		
3	ORDERLINENUMBER	2823 non-null	int64		
4	SALES	2823 non-null	float64		
5	ORDERDATE	2823 non-null	object		
6	STATUS	2823 non-null	object		
7	QTR_ID	2823 non-null	int64		
8	MONTH_ID	2823 non-null	int64		
9	YEAR_ID	2823 non-null	int64		
10	PRODUCTLINE	2823 non-null	object		
11	MSRP	2823 non-null	int64		
12	PRODUCTCODE	2823 non-null	object		
13	CUSTOMERNAME	2823 non-null	object		
14	PHONE	2823 non-null	object		
15	ADDRESSLINE1	2823 non-null	object		
16	ADDRESSLINE2	302 non-null	object		
17	CITY	2823 non-null	object		
18	STATE	1337 non-null	object		
19	POSTALCODE	2747 non-null	object		
20	COUNTRY	2823 non-null	object		
21	TERRITORY	1749 non-null	object		
22	CONTACTLASTNAME	2823 non-null	object		
23	CONTACTFIRSTNAME	2823 non-null	object		
24	DEALSIZE	2823 non-null	object		
dtype	es: float64(2), int	t64(7), object(1	6)		

In [4]: df.describe()

memory usage: 551.5+ KB

Out[4]: ORDERNUMBER QUANTITYORDERED PRICEEACH ORDERLINENUMBER	SALE
---	------

	ORDERNUMBER	QUANTITYORDERED	PRICEEACH	ORDERLINENUMBER	SALES	QTR_ID	M¢
count	2823.000000	2823.000000	2823.000000	2823.000000	2823.000000	2823.000000	282
mean	10258.725115	35.092809	83.658544	6.466171	3553.889072	2.717676	
std	92.085478	9.741443	20.174277	4.225841	1841.865106	1.203878	
min	10100.000000	6.000000	26.880000	1.000000	482.130000	1.000000	
25%	10180.000000	27.000000	68.860000	3.000000	2203.430000	2.000000	
50%	10262.000000	35.000000	95.700000	6.000000	3184.800000	3.000000	
75%	10333.500000	43.000000	100.000000	9.000000	4508.000000	4.000000	1
max	10425.000000	97.000000	100.000000	18.000000	14082.800000	4.000000	1

In [5]: fig = plt.figure(figsize=(12,10)) sns.heatmap(df.corr(), annot=True, fmt='.2f') plt.show()

In [6]: df= df[['PRICEEACH', 'MSRP']]

In [7]: df.head()

```
PRICEEACH MSRP
 Out[7]:
          0
                   95.70
                            95
          1
                   81.35
                            95
          2
                   94.74
                            95
           3
                   83.26
                            95
           4
                  100.00
                            95
 In [8]: df.isna().any()
          PRICEEACH
 Out[8]:
          MSRP
                       False
          dtype: bool
 In [9]: df.describe().T
                       count
                                  mean
                                              std
                                                   min
                                                         25% 50%
                                                                    75%
                                                                           max
 Out[9]:
           PRICEEACH 2823.0
                              83.658544 20.174277 26.88
                                                        68.86
                                                               95.7
                                                                    100.0 100.0
                MSRP 2823.0 100.715551 40.187912 33.00 68.00 99.0 124.0 214.0
In [10]: df.shape
          (2823, 2)
Out[10]:
In [11]: from sklearn.cluster import KMeans
          inertia = []
           for i in range(1, 11):
              clusters = KMeans(n_clusters=i, init='k-means++', random_state=42)
              clusters.fit(df)
              inertia.append(clusters.inertia_)
          plt.figure(figsize=(6, 6))
          sns.lineplot(x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], y = inertia)
Out[11]: <AxesSubplot:>
             le6
           5
           4
```

8

10

6

3

2

1

0 -

```
In [12]: kmeans = KMeans(n_clusters = 3, random_state = 42)
           y_kmeans = kmeans.fit_predict(df)
           y_kmeans
          array([2, 2, 2, ..., 0, 0, 0], dtype=int32)
Out[12]:
In [13]: plt.figure(figsize=(8,8))
           \verb|sns.scatterplot(x=df['PRICEEACH'], y=df['MSRP'], hue=y_kmeans)|\\
           plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], c = 'red', label = 'Centroids'
           plt.legend()
```

<matplotlib.legend.Legend at 0x7f9a64686b60> Out[13]:


```
In [14]: kmeans.cluster_centers_
          array([[ 62.49548902, 60.71556886],
Out[14]:
                 [ 97.59890263, 158.7202473 ],
                 [ 94.03841567, 102.88841567]])
```