

**Systems and Methods for
Digital Document Processing**

Inventor: Majid Anwar

Related Applications

10

This application claims priority to earlier filed British Patent Application No. 0009129.8, filed 14 April 2000, and US Patent Application Serial Number 09/703,502 filed 31 October 2000, both having Majid Anwar as an inventor, the contents of which are hereby incorporated by reference.

Field of the Invention

The invention relates to data processing systems, and more particularly, to methods and systems for processing digital documents to generate an output representation of a source document as a visual display, a hardcopy, or in some other display format.

Background

As used herein, the term "digital document" is used to describe a digital representation of any type of data processed by a data processing system which is intended, ultimately, to be output in some form, in whole or in part, to a human user, typically by being displayed or reproduced visually (e.g., by means of a visual display unit or printer), or by text-to-speech conversion, etc. A digital document may include any features capable of representation, including but not limited to the following: text; graphical images; animated graphical images; full motion video images; interactive icons, buttons, menus or hyperlinks. A digital document may also include non-visual elements such as audio (sound) elements.

5 Data processing systems, such as personal computer systems, are typically required to process "digital documents," which may originate from any one of a number of local or remote sources and which may exist in any one of a wide variety of data formats ("file formats"). In order to generate an output version of the document, whether as a visual display or printed copy, for example, it is necessary for the computer system to interpret the original data file and to
10 generate an output compatible with the relevant output device (e.g., monitor, or other visual display device or printer). In general, this process will involve an application program adapted to interpret the data file, the operating system of the computer, a software "driver" specific to the desired output device and, in some cases (particularly for monitors or other visual display units), additional hardware in the form of an expansion card.

15 This conventional approach to the processing of digital documents in order to generate an output is inefficient in terms of hardware resources, software overheads and processing time, and is completely unsuitable for low power, portable data processing systems, including wireless telecommunication systems, or for low cost data processing systems such as network terminals, etc. Other problems are encountered in conventional digital document processing systems,
20 including the need to configure multiple system components (including both hardware and software components) to interact in the desired manner, and inconsistencies in the processing of identical source material by different systems (e.g., differences in formatting, color reproduction, etc.). In addition, the conventional approach to digital document processing is unable to exploit the commonality and/or re-usability of file format components.

25 **Summary of the Invention**

It is an object of the present invention to provide digital document processing methods and systems, and devices incorporating such methods and systems, which obviate or mitigate the aforesaid disadvantages of conventional methods and systems.

The systems and methods described herein provide a display technology that separates the
30 underlying functionality of an application program from the graphical display process, thereby eliminating or reducing the application's need to control the device display and to provide

5 graphical user interface tools and controls for the display. Additionally, such systems reduce or
eliminate the need for an application program to be present on a processing system when
displaying data created by or for that application program, such as a document or video stream.
Thus it will be understood that in one aspect, the systems and methods described herein can
display content, including documents, video streams, or other content, and will provide the
10 graphical user functions for viewing the displayed document, such as zoom, pan, or other such
functions, without need for the underlying application to be present on the system that is
displaying the content. The advantages over the prior art of the systems and methods described
herein include the advantage of allowing different types of content from different application
programs to be shown on the same display within the same work space. Many more advantages
15 will be apparent to those of ordinary skill in the art and those of those of ordinary skill in the art
will also be able to see numerous way of employing the underlying technology of the invention
for creating additional systems, devices, and applications. These modified systems and alternate
systems and practices will be understood to fall within the scope of the invention.

20 More particularly, the systems and methods described herein include a digital content
processing system that comprises an application dispatcher for receiving an input byte stream
representing source data in one of a plurality of predetermined data formats and for associating
the input byte stream with one of the predetermined data formats. The system may also comprise
a document agent for interpreting the input byte stream as a function of the associated
25 predetermined data format and for parsing the input byte stream into a stream of document
objects that provide an internal representation of primitive structures within the input byte
stream. The systems also include a core document engine for converting the document objects
into an internal representation data format and for mapping the internal representation data to a
location on a display. A shape processor within the system processes the internal representation
30 data to drive an output device to present the content as expressed through the internal
representation.

Embodiments of the invention will now be described, by way of example only, with
reference to the accompanying drawings.

5 **Brief Description of the Drawings**

The foregoing and other objects and advantages of the invention will be appreciated more fully from the following further description thereof, with reference to the accompanying drawings, wherein:

10 Figure 1 is a block diagram illustrating an embodiment of a digital document processing system in accordance with the present invention.

Figure 2 is a block diagram that presents in greater detail the system depicted in Figure 1;

Figure 3 is a flowchart diagram of one document agent;

Figure 4 depicts schematically an exemplary document of the type that can be processed by the system of Figure 1;

15 Figure 5 depicts flowchart diagrams of two exemplary processes employed to reduce redundancy within the internal representation of a document; and

Figures 6-8 depict an exemplary data structure for storing an internal representation of a processed source document.

Detailed Description of Certain Illustrated Embodiments

20 The systems and methods described herein include computer programs that operate to process an output stream or output file generated by an application program for the purpose of presenting the output on an output device, such as a video display. The applications according to the invention can process these streams to create an internal representation of that output and can further process that internal representation to generate a new output stream that may be displayed on an output device as the output generated by the application according to the invention. Accordingly, the systems of the invention decouple the application program from the display process thus relieving the application program from having to display its output onto a

5 particular display device and further removes the need to have the application program present when processing the output of that application for the purpose of displaying that output.

To illustrate this operation, Figure 1 provides a high-level functional block diagram of a system 10 that allows a plurality of application programs, shown collectively as element 13, to deliver their output streams to a computer process 8 that processes those output streams and 10 generates a representation of the collective output created by those streams for display on the device 26. The collective output of the application programs 13 is depicted in Figure 1 by the output printer device 26 that presents the output content generated by the different application programs 13. It will be understood by those of skill in the art the output device 26 is presenting output generated by the computer process 8 and that this output collectively carries the content of the plural application programs 13. In the illustration provided by Figure 1, the presented content comprises a plurality of images and the output device 26 is a display. However, it will be apparent to those of skill in the art that in other practices the content may be carried in a format other than images, such as auditory tactile, or any other format, or combination of formats suitable for conveying information to a user. Moreover, it will be understood by those of skill in the art that the type of output device 26 will vary according to the application and may include devices for presenting audio content, video content, printed content, plotted content or any other type of content. For the purpose of illustration, the systems and methods described herein will largely be shown as displaying graphical content through display devices, yet it will be understood that these exemplary systems are only for the purpose of illustration, and not to be 25 understood as limiting in anyway. Thus the output generated by the application programs 13 is processed and aggregated by the computer process 8 to create a single display that includes all the content generated by the individual application programs 13.

In the depicted embodiment, each of the representative outputs appearing on display 26 is termed a document, and each of the depicted documents can be associated with one of the 30 application programs 13. It will be understood that the term document as used herein will encompass documents, streamed video, streamed audio, web pages, and any other form of data that can be processed and displayed by the computer process 8. The computer process 8 generates a single output display that includes within that display one or more of the documents

5 generated from the application programs 13. The collection of displayed documents represents
the content generated by the application programs 13 and this content is displayed within the
program window generated by the computer process 8. The program window for the computer
process 8 also may include a set of icons representative of tools provided with the graphical user
interface and capable of allowing a user to control the operation, in this case the display, of the
10 documents appearing in the program window.

In contrast, the conventional approach of having each application program form its own
display would result in a presentation on the display device 26 that included several program
windows, typically one for each application program 13. Additionally, each different type of
program window would include a different set of tools for manipulating the content displayed in
15 that window. Thus the system 10 of the invention has the advantage of providing a consistent
user interface, and only requiring knowledge of one set of tools for displaying and controlling the
different documents. Additionally, the computer process 8 operates on the output of the
application programs 13, thus only requiring that output to create the documents that appear
within the program window. Accordingly, it is not necessary that the application programs 13 be
20 resident on the same machine as the process 8, nor that the application programs 13 operate in
concert with the computer process 8. The computer process 8 needs only the output from these
application programs 13, and this output can be derived from stored data files that were created
by the application programs 13 at an earlier time. However, the systems and methods described
herein may be employed as part of systems wherein an application program is capable of
25 presenting its own content, controlling at least a portion of the display 26 and presenting that
content within a program window associated with that application program. In these
embodiments the systems and methods of the invention can work as separate applications that
appear on the display within a portion of the display provided for its use.

More particularly, Figure 1 depicts a plurality of application programs 13. These
30 application programs can include word processing programs such as Word, WordPerfect, or any
other similar word processing program. It can further include programs such as Netscape
Composer that generates HTML files, Adobe Acrobat that processes PDF files, a web server that
delivers XML or HTML, a streaming server that generates a stream of audio-visual data, an e-

5 mail client or server, a database, spreadsheet or any other kind of application program that delivers output either as a file, data stream, or in some other format suitable for use by a computer process. In the embodiment of Figure 1 each of the application programs 13 presents its output content to the computer process 8. In operation this can occur by having the application process 13 direct its output stream as an input byte stream to the computer process 8.

10 The use of data streams is well known to those of ordinary skill in the art and described in the literature, including for example, Stephen G. Kochan, Programming in C, Hayden Publishing (1983). Optionally, the application program 13 can create a data file such as a Word document, that can be streamed into the computer process 8 either by a separate application or by the computer process 8.

15 The computer process 8 is capable of processing the various input streams to create the aggregated display shown on display device 26. To this end, and as will be shown in greater detail hereinafter, the computer process 8 processes the incoming streams to generate an internal representation of each of these input streams. In one practice this internal representation is meant to look as close as possible to the output stream of the respective application program 13.

20 However, in other embodiments the internal representation may be created to have a selected, simplified or partial likeness to the output stream generated by the respective application program 13. Additionally and optionally, the systems and methods described herein may also apply filters to the content being translated thereby allowing certain portions of the content to be removed from the content displayed or otherwise presented. Further, the systems and methods

25 described herein may allow alteration of the structure of the source document, allowing for repositioning content within a document, rearranging the structure of the document, or selecting only certain types of data. Similarly in an optional embodiment, content can be added during the translation process, including active content such as links to web sites. In either case, the internal representation created by computer process 8 may be further processed by the computer process 8

30 to drive the display device 26 to create the aggregated image represented in Figure 1.

Turning to Figure 2, a more detailed representation of the system of Figure 1 is presented. Specifically, Figure 2 depicts the system 10 which includes that computer process 8, the source documents 11, a and a display device 26. The computer process 8 includes a plurality of

5 document agents 12, an internal representation format file and process 14, buffer storage 15, a library of generic objects 16, a core document engine that in this embodiment comprises a parsing module 18, and a rendering module 19, an internal view 20, a shape processor 22 and a final output 24. Figure 2 further depicts an optional input device 30 for transmitting user input 40 to the computer process 8. The depicted embodiment includes a process 8 that comprises a
10 shape processor 22. However, it will be apparent to those of ordinary skill in the art, that the depicted process 8 is only exemplary and that the process 8 may be realized through alternate processes and architectures. For example, the shape processor 22 may optionally be realized as a hardware component, such as a semiconductor device, that supports the operation of the other elements of the process 8. Moreover, it will be understood that although Figure 2 presents
15 process 8 as a functional block diagram that comprises a single system, it may be that process 8 is distributed across a number of different platforms, and optionally it may be that the elements operate at different times and that the output from one element of process 8 is delivered at a later time as input to the next element of process 8.

20 As discussed above, each source document 11 is associated with a document agent 12 that is capable of translating the incoming document into an internal representation of the content of that source document 11. To identify the appropriate document agent 12 to process a source document 11, the system 10 of Figure 1 includes an application dispatcher (not shown) that controls the interface between application programs and the system 10. In one practice, the use of an external application programming interface (API) is handled by the application dispatcher which passes data, calls the appropriate document agent 12, or otherwise carries out the request made by the application program. To select the appropriate document agent 12 for a particular source document 11, the application dispatcher advertises the source document 11 to all the loaded document agents 12. These document agents 12 then respond with information regarding their particular suitability for translating the content of the published source document 11. Once
25 the document agents 12 have responded, the application dispatcher selects a document agent 12 and passes a pointer, such as a URI of the source document 11, to the selected document agent 12.
30

5 In one practice, the computer process 8 may be run as a service under which a plurality of threads may be created thereby supporting multi-processing of plural document sources 11. In other embodiments, the process 8 does not support multi-threading and the document agent 12 selected by the application dispatcher will be called in the current thread.

10 It will be understood that the exemplary embodiment of Figure 2 provides a flexible and extensible front end for processing incoming data streams of different file formats. For example, optionally, if the application dispatcher determines that the system lacks a document agent 12 suitable for translating the source document 11, the application dispatcher can signal the respective application program 13 indicating that the source document 11 is in an unrecognized format. Optionally, the application program 13 may choose to allow the reformatting of the source document 11, such as by converting the source document 11 produced by the application program 13 from its present format into another format supported by that application program 13. 15 For example an application program 13 may determine that the source document 11 needs to be saved in a different format, such as an earlier version of the file format. To the extent that the application program 13 supports that format, the application program 13 can resave the source document 11 in this supported format in order that a document agent 12 provided by the system 10 will be capable of translating the source document 11. Optionally, the application dispatcher, upon detecting that the system 10 lacks a suitable document agent 12, can indicate to a user that a new document agent of a particular type may be needed for translating the present source document 11. To this end, the computer process 8 may indicate to the user that a new document 20 agent needs to be loaded into the system 10 and may direct the user to a location, such as a web site, from where the new document agent 12 may be downloaded. Optionally, the system could fetch automatically the document agent without asking the user, or could identify a generic agent 12, such as a generic text agent that can extract portions of the source document 11 representative 25 of text. Further, agents that prompt a user for input and instruction during the translation process 30 may also be provided.

In a still further optional embodiment, an application dispatcher in conjunction with the document agents 12 acts as an input module that identifies the file format of the source document 11 on the basis of any one of a variety of criteria, such as an explicit file-type identification

5 within the document, from the file name, including the file name extension, or from known characteristics of the content of particular file types. The bytestream is input to the document agent 12, specific to the file format of the source document 11.

10 Although the above description has discussed input data being provided by a stream or computer file, it shall be understood by those of skill in the art that the system 10 may also be applied to input received from an input device such as a digital camera or scanner as well as from an application program that can directly stream its output to the process 8, or that has its output streamed by an operating system to the process 8. In this case the input bytestream may originate directly from the input device, rather from a source document 11. However, the input bytestream will still be in a data format suitable for processing by the system 10 and, for the purposes of the invention, input received from such an input device may be regarded as a source document 11.

15 As shown in Figure 2, the document agent 12 employs the library 16 of standard objects to generate the internal representation 14, which describes the content of the source document in terms of a collection of document objects whose generic types are as defined in the library 16, together with parameters defining the properties of specific instances of the various document objects within the document. Thus, the library 16 provides a set of types of objects which the document agents 12, the parser 18 and the system 10 have knowledge of. For example, the document objects employed in the internal representation 14 may include: text, bitmap graphics and vector graphics document objects which may or may not be animated and which may be two- or three-dimensional; video, audio and a variety of types of interactive objects such as buttons 20 and icons. Vector graphics document objects may be PostScript-like paths with specified fill and transparency. Bitmap graphic document objects may include a set of sub-object types such as for example JPEG, GIF and PNG object types. Text document objects may declare a region of stylized text. The region may include a paragraph of text, typically understood as a set of characters that appears between two delimiters, like a pair of carriage returns. Each text object 25 may include a run of characters and the styling information for that character run including one or more associated typefaces, points and other such styling information.

30

5 The parameters defining specific instances of document objects will generally include
dimensional co-ordinates defining the physical shape, size and location of the document object
and any relevant temporal data for defining document objects whose properties vary with time,
thereby allowing the system to deal with dynamic document structures and/or display functions.
10 For example, a stream of video input may be treated by the system 10 as a series of figures that
are changing at a rate of, for example, 30 frames per second. In this case the temporal
characteristic of this figure object indicates that the figure object is to be updated 30 times per
second. As discussed above, for text objects, the parameters will normally also include a font
and size to be applied to a character string. Object parameters may also define other properties,
such as transparency. It will be understood that the internal representation may be saved/stored
15 in a file format native to the system and that the range of possible source documents 11 input to
the system 10 may include documents in the system's native file format. It is also possible for the
internal representation 14 to be converted into any of a range of other file formats if required,
using suitable conversion agents.

20 Figure 3 depicts a flow chart diagram of one exemplary process that may be carried out
by a document agent 12. Specifically, Figure 3 depicts a process 50 that represents the operation
of an example document agent 12, in this case a document agent 12 suitable for translating the
contents of a Microsoft Word document into an internal representation format. Specifically, the
process 50 includes an initialization step 52 wherein the process 50 initializes the data structures,
memory space, and other resources that the process 50 will employ while translating the source
25 document 11. After step 52 the process 50 proceeds to a series of steps, 54, 58 and 60, wherein
the source document 11 is analyzed and divided into subsections. In the process 50 depicted in
Figure 3 steps 54, 58 and 60, subdivide the source document 11 as it is streamed into the
document agent 12 first into sections, then subdivides the sections into paragraphs and then
subdivides paragraphs into the individual characters that make up that paragraph. The sections,
30 paragraphs and characters identified within the source document 11 may be identified within a
piece table that contains pointers to the different subsections identified within the source
document 11. It will be understood by those of skill in the art that the piece table depicted in
Figure 3 represents a construct employed by MSWord for providing pointers to different

5 subsections of a document. It will further be understood that the use of a piece table or a piece table like construct is optional and depends on the application at hand, including depending on the type of document being processed.

As the process 50 in step 60 begins to identify different characters that appear within a particular paragraph, the process 60 may proceed to step 62 wherein a style is applied to the 10 character or set of characters identified in step 60. The application of a style is understood to associate the identified characters with a style of presentation that is being employed with those characters. The style of presentation may include properties associated with the character including font type, font size, whether the characters are bold, italic, or otherwise stylized. Additionally, in step 62 the process can determine whether the characters are rotated, or being positioned for following a curved path or other shape. Additionally, in step 62 style associated with the paragraph in which the characters occur may also be identified and associated with the characters. Such properties can include the line spacing associated with the paragraph, the margins associated with the paragraph, the spacing between characters, and other such properties.

15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405

5 document has been processed the system 8 can transmit, save, export or otherwise store the
translated document for subsequent use. The system can store the translated file in a format
compatible with the internal representation, and optionally in other formats as well including
formats compatible with the file formats of the source documents 11 (for which it may employ
'export document agents' not shown capable of receiving internal representation data and
10 creating source document data), or in a binary form, a textual document description structure,
marked-up text or in any other suitable format; and may employ a universal text encoding model,
including unicode, shiftmapping, big-5, and a luminance/chrominance model.

15 As can be seen from the above, the format of the internal representation 14 separates the
"structure" (or "layout") of the documents, as described by the object types and their parameters,
from the "content" of the various objects; e.g. the character string (content) of a text object is
separated from the dimensional parameters of the object; the image data (content) of a graphic
object is separated from its dimensional parameters. This allows document structures to be
defined in a compact manner and provides the option for content data to be stored remotely and
to be fetched by the system only when needed. The internal representation 14 describes the
20 document and its constituent objects in terms of "high-level" descriptions.

25 The document agent 12 described above with reference to Figure 3 is capable of
processing a data file created by the MSWord word processing application and translating that
data file into an internal representation that is formed from a set of object types selected from the
library 16, that represents the content of the processed document. Accordingly, the document
agent 12 analyzes the Word document and translates the structure and content of that document
into an internal representation known to the computer process 8. One example of one type of
Word document that may be processed by the document agent 12 is depicted in Figure 4.
Specifically, Figure 4 depicts a Word document 32 of the type created by the MSWord
30 application program. The depicted document 32 comprises one page of information wherein that
one page includes two columns of text 34 and one figure 36. Figure 4 further depicts that the
columns of text 34 and the figure 36 are positioned on the page 38 in such a way that one column
of text runs from the top of the page 38 to the bottom of the page 38 and the second column of

5 text runs from about the center of the page to the bottom of the page with the figure 36 being disposed above the second column of text 34.

As discussed above with reference to Figure 3 the document agent 12 begins processing the document 32 by determining that the document 32 comprises one page and contains a plurality of different objects. For the one page found by the document agent 12, the document 10 agent 12 identifies the style of the page, which for example may be a page style of an 8.5 x 11 page in portrait format. The page style identified by the document agent 12 is embodied in the internal representation for later use by the parser 18 in formatting and flowing text into the document created by the process 8.

For the document 32 depicted in Figure 4 only one page is present. However, it will be understood that the document agent 12 may process Word documents comprising a plurality of pages. In such a case the document agent 12 would process each page separately by creating a page then filling it with objects of the type found in the library. Thus page style information can include that a document comprises a plurality of pages and that the pages are of a certain size. Other page style information may be identified by the document agent 12 and the page style information identified can vary according to the application. Thus different page style information may be identified by a document agent capable of processing a Microsoft Excel document or a real media data stream.

As further described with reference to Figure 3 4 once the document agent 12 has identified the page style the document agent 12 may begin to break the document 32 down into 25 objects that can be mapped to document objects known to the system and typically stored in the library 16. For example, the document agent 12 may process the document 32 to find text objects, bitmap objects and vector graphic objects. Other type of object types may optionally be provided including video type, animation type, button type, and script type. In this practice, the document agent 12 will identify a text object 34 whose associated style has two columns. The 30 paragraphs of text that occur within the text object 34 may be analyzed for identifying each character in each respective paragraph. Process 50 may apply style properties to each identified character run and each character run identified within the document 32 may be mapped to a text

5 object of the type listed within the library 16. Each character run and the applied style can be
understood as an object identified by the document agent 12 as having been found within the
document 32 and having been translated to a document object, in this case a text object of the
type listed within the library 16. This internal representation object may be streamed from the
document agent 12 into the internal representation 14. The document agent 12 may continue to
10 translate the objects that appear within the document 32 into document objects that are known to
the system 10 until each object has been translated. The object types may be appropriate for the
application and may include object types suitable for translating source data representative of a
digital document, an audio/visual presentation, a music file, an interactive script, a user interface
file and an image file, as well as any other file types.

15 Turning to Figure 5, it can be seen that the process 80 depicted in Figure 5 allows for
compacting similar objects appearing within the internal representation of the source document
11, for the purpose of reducing the size of the internal representation. For example, Figure 5
depicts a process 80 wherein step 82 has a primitive library object A being processed by, in step
84, inserting that primitive object into the document that is becoming the internal representation
20 of the source document 11. In step 88 another object B, provided by the document agent 12 is
delivered to the internal representation file process 14. The process 80 then undertakes the
depicted sequence of steps 92 through 98 wherein characteristics of object A are compared to the
characteristics of object B to determine if the two objects have the same characteristics. For
example, if object A and object B represent two characters such as the letter P and the letter N, if
25 both characters P and N are the same color, same font, same size and the same style such as bold
or italicized, then the process 80 in step 94 joins the two objects together within one object
classification stored within the internal representation. If these characteristics do not match then
the process 80 adds them to the internal representation as two separate objects.

Figure 5 depicts a process 80 wherein the internal representation file 14 compacts the
30 objects as a function of the similarity of physically adjacent objects. Those of ordinary skill in
the art will understand that this is merely one process for compacting the objects and that other
techniques may be employed. For example, in an optional practice, the compaction process may
comprise a process for compacting objects that are visually adjacent.

5 Figures 6, 7 and 8 depict the structure of the internal representation of a document that
has been processed by the system depicted in Figures 1 and 2. The internal representation of the
document may be embodied as a computer file or as data stored in core memory. However, it
will be apparent to those of ordinary skill in the art that data structure selected for capturing or
transporting the internal representation may vary according to the application and any suitable
10 data structure may be employed with the systems and methods described herein without
departing from the scope of the invention.

As will be described in greater detail hereinafter the structure of the internal
representation of the processed document separates the structure of the document from the
content of the document. Specifically, the structure of the document is captured by a data
15 structure that shows the different document objects that make up the document, as well as the
way that these document objects are arranged relative to each other. This separation of structure
from content is shown in Figure 6 wherein the data structure 110 captures the structure of the
document being processed and stores that structure in a data format that is independent of the
actual content associated with that document. Specifically, the data structure 110 includes a
20 resource Table 112 and a document structure 114. The resource table 112 provides a list of
resources for constructing the internal representation of the document. For example the resource
table 112 can include one or more tables of common structures that occur within the document,
such as type faces, links, and color lists. These common structures may be referenced
numerically within the resource table 112. The resources of resource table 112 relate to the
25 document objects that are arranged within the document structure 114. As Figure 6 shows, the
document structure 114 includes a plurality of containers 118 that are represented by the sets of
the nested parentheses. Within the containers 118 are a plurality of document objects 120. As
shown in Figure 6 the containers 118 represent collections of document objects that appear
within the document being processed. As further shown by Figure 6 the containers 118 are also
30 capable of holding sub-containers. For example, the document structure 114 includes one top-
level container, identified by the set of outer parentheses labeled 1, and has three nested
containers 2, 3 and 4. Additionally, the container 4 is double nested within container 1 and
container 3.

5 Each container 118 represents features within a document, wherein the features may be a collection of individual document objects, such as the depicted document objects 120. Thus for example, a document, such as the document 32 depicted in Figure 4, may include a container representative of the character run wherein the character run includes the text that appears within the columns 34. The different document objects 120 that occur within the character run
10 container may, for example, be representative of the different paragraphs that occur within that character run. The character run container has a style associated with it. For example, the character run depicted in Figure 4 can include style information representative of the character font type, font size, styling, such as bold or italic styling, and style information representative of the size of the column, including width and length, in which the character run, or at least a
15 portion of that character run, occurs. This style information may be later used by the parser 18 to reformat and reflow the text within the context specific view 20. Another example of a container may be a table that, for example, could appear within a column 34 of text in document 32. The table may be a container with objects. The other types and uses of containers will vary according to the application at hand and the systems and methods of the invention are not limited to any
20 particular set of object types or containers.

Thus, as the document agent 12 translates the source document 11, it will encounter objects that are of known object types, and the document agent 16 will request the library 16 to create an object of the appropriate object type. The document agent 12 will then lodge that created document object into the appropriate location within document structure 114 to preserve
25 the overall structure of the source document 11. For example, as the document agent 12 encounters the image 36 within the source document 11, the document agent 12 will recognize the image 36, which may for example be a JPEG image, as an object of type bitmap, and optionally sub-type JPEG. This document agent 12, as shown in steps 64 and 68 of Figure 3, can create the appropriate document object 120 and can lodge the created document object 120 into
30 the structure 114. Additionally, the data for the JPEG image document object 120, or in another example, the data for the characters and their associated style for a character run, may be stored within the data structure 150 depicted in Figure 8.

5 As the source document 11 is being processed, the document agent 12 may identify other
containers wherein these other containers may be representative of a subfeature appearing within
an existing container, such as a character run. For example, these subfeatures may include links
to referenced material, or clipped visual regions or features that appear within the document and
that contain collections of individual document objects 120. The document agent 12 can place
10 these document objects 120 within a separate container that will be nested within the existing
container. The arrangement of these document objects 120 and the containers 118 are shown in
Figure 7A as a tree structure 130 wherein the individual containers 1, 2, 3 and 4 are shown as
containers 132, 134, 138 and 140 respectively. The containers 118 and the document
objects 120 are arranged in a tree structure that shows the nested container structure of
15 documents structure 114 and the different document objects 120 that occur within the containers
118. The tree structure of Figure 7A also illustrates that the structure 114 records and preserves
the structure of the source document 11, showing the source document as a hierarchy of
document objects 120, wherein the document objects 120 include the style information, such as
for example the size of columns in which a run of characters appears, or temporal information,
such as the frame rate for streamed content. Thus, each document's graphical structure is
20 described by a series of parameterized elements. One example of this is presented below in
Table 1.

TABLE 1

parameters	e.g
Type	Bitmap
Bounding Box	400,200; 600,700 units (bottom left, top right)
Fill	Object 17
Alpha	0 (none)
Shape	Object 24
Time	0,-1 (infinity) [start, end]

5 As can be seen, Table 1 presents an example of parameters that may be used to describe a
document's graphical structure. Table one presents examples of such parameters, such as the
object type, which in this case is a Bitmap object type. A bounding box parameter is provided
and gives the location of the document object within the source document 11. Table one further
provides the Fill employed and an alpha factor that is representative of the degree of transparency
10 for the object. A Shape parameter provides a handle to the shape of the object, which in this case
could be a path that defines the outline of the object, including irregularly shaped objects. Table
1 also presents a time parameter representative of the temporal changing for that object. In this
example, the image is stable and does not change with time. However, if the image object
presented streamed media, then this parameter could contain a temporal characteristic that
15 indicates the rate at which the object should change, such as a rate comparable to the desired
frame rate for the content.

Thus, the structural elements are containers with flowable data content, with this flowable
data held separately and referenced by a handle from the container. In this way, any or all data
content can be held remotely from the document structure. This allows for rendering of the
20 document in a manner that can be achieved with a mixture of locally held and remotely held data
content. Additionally, this data structure allows for rapid progressive rendering of the internal
representation of the source document 11, as the broader and higher level objects can be rendered
first, and the finer features can be rendered in subsequent order. Thus, the separate structure and
25 data allows visual document to be rendered while streaming data to “fill” the content.

Additionally, the separation of content and structure allows the content of the document to
readily be edited or changed. As the document structure is independent from the content,
different content can be substituted into the document structure. This can be done on container
by container basis or for the whole document. The structure of the document can be delivered
30 separately from the content and the content provided later, or made present on the platform to
which the structure is delivered.

Additionally, Figure 7A shows that the structure of a source document 11 can be
represented as a tree structure 130. In one practice the tree structure may be modified and edited

5 to change the presentation of the source document 11. For example, the tree structure may be modified to add additional structure and content to the tree 130. This is depicted in Figure 7B that shows the original tree structure of Figure 7A duplicated and presented under a higher level container. Thus, Figure 7B shows that a new document structure, and therefore new representation, may be created by processing the tree structure 130 produced by the document
10 agent 12. This allows the visual position of objects within a document to change, while the relative position of different objects 120 may remain the same. By adjusting the tree structure 130, the systems described herein can edit and modify content. For example, in those applications where the content within the tree structure 130 is representative of visual content, the systems described herein can edit the tree structure to duplicate the image of the document,
15 and present side by side images of the document. Alternatively, the tree structure 130 can be edited and supplemented to add additional visual information, such as by adding the image of a new document or a portion of that document. Moreover, by controlling the rate at which the tree structure is changed, the systems described herein can create the illusion of a document gradually changing, such as sliding across a display, such as display device 26, or gradually changing into a new document. Other effects, such as the creation of thumbnail views and other similar results
20 can be achieved and those of ordinary skill by making modifications to the systems and methods described herein and such modified systems and methods will fall within the scope of the invention.

25 The data of the source document 11 is stored separately from the structure 114. To this end, each document object 120 includes a pointer to the data associated with that object and this information may be arranged within an indirection list such as the indirection list 160 depicted in Figure 8. In this practice, and as shown in Figure 8, each document object 120 is numbered and an indirection list 152 is created wherein each document object number 154 is associated with an
30 offset value 158. For example the document object number 1, identified by reference number 160, may be associated with the offset 700, identified by reference number 162. Thus, the indirection list associates the object number 1 with the offset 700. The offset 700 may represent a location in core memory, or a file offset, wherein the data associated with object 1 may reside. As further shown in Figure 8 a data structure 150 may be present wherein the data that is

5 representative of the content associated with a respective document object 120 may be stored. Thus for example, the depicted object 1 at jump location 700 may include the unicode characters representative of the characters that occur within the character run of the container 1 depicted in Figure 6. Similarly, the object 2 data, depicted in Figure 8 by reference number 172, and associated with in core memory location 810, identified by reference numeral 170, may be
10 representative of the JPEG bit map associated with a bit map document object 120 referenced within the document structure 114 of Figure 6.

15 It will be noted by those of skill in the art, that as the data is separated from the structure, the content for a source document is held in a centralized repository. As such, the systems described herein allow for compressing across different types of data objects. Such processes provide for greater storage flexibility in limited resource systems.

20 Returning to Figure 2, it will be understood that once the process for compacting the content of an internal representation file completes compacting different objects, these objects are passed to the parser 18. The parser 18 parses the objects identified in the structure section of the internal representation, and with reference to the data content associated with this object, it re-applies the position and styling information to each object. The renderer 19 generates a context-specific representation or "view" 20 of the documents represented by the internal representation 14. The required view may be of the all the documents, a whole document or of parts of one or some of the documents. The renderer 19 receives view control inputs 40 which define the viewing context and any related temporal parameters of the specific document view
25 which is to be generated. For example, the system 10 may be required to generate a zoomed view of part of a document, and then to pan or scroll the zoomed view to display adjacent portions of the document. The view control inputs 40 are interpreted by the renderer 19 to determine which parts of the internal representation are required for a particular view and how, when and for how long the view is to be displayed.

30 The context-specific representation/view 20 is expressed in terms of primitive shapes and parameters.

5 The renderer 19 may also perform additional pre-processing functions on the relevant parts of the internal representation 14 when generating the required view 20 of the source document 11. The view representation 20 is input to a shape processor 22 for processing to generate an output in a format suitable for driving an output device 26, such as a display device or printer.

10 The pre-processing functions of the renderer 19 may include colour correction, resolution adjustment/enhancement and anti-aliasing. Resolution enhancement may comprise scaling functions which preserve the legibility of the content of objects when displayed or reproduced by the target output device. Resolution adjustment may be context-sensitive; e.g. the display resolution of particular objects may be reduced while the displayed document view is being panned or scrolled and increased when the document view is static.

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Optional, there may be a feedback path 42 between the parser 18 and the internal representation 14, e.g. for the purpose of triggering an update of the content of the internal representation 14, such as in the case where the source document 11 represented by the internal representation comprises a multi-frame animation.

20 The output from the renderer 19 expresses the document in terms of primitive objects. For each document object, the representation from the renderer 19 defines the object at least in terms of a physical, rectangle boundary box, the actual outline path of the object bounded by the boundary box, the data content of the object, and its transparency.

25 The shape processor 22 interprets the primitive object and converts it into an output frame format appropriate to the target output device 26; e.g. a dot-map for a printer, vector instruction set for a plotter, or bitmap for a display device. An output control input 44 to the shape processor 22 provides information to the shape processor 22 to generate output suitable for a particular output device 26.

30 The shape processor 22 preferably processes the objects defined by the view representation 20 in terms of "shape" (i.e. the outline shape of the object), "fill" (the data content

5 of the object) and "alpha" (the transparency of the object), performs scaling and clipping appropriate to the required view and output device, and expresses the object in terms appropriate to the output device (typically in terms of pixels by scan conversion or the like, for most types of display device or printer). The shape processor 22 optionally includes an edge buffer which defines the shape of an object in terms of scan-converted pixels, and preferably applies anti-
10 aliasing to the outline shape. Anti-aliasing may be performed in a manner determined by the characteristics of the output device 26, by applying a grey-scale ramp across the object boundary. This approach enables memory efficient shape-clipping and shape-intersection processes, and is memory efficient and processor efficient as well. A look-up table, or other technique, may be employed to define multiple tone response curves, allowing non-linear rendering control. The
15 individual primitive objects processed by the shape processor 22 are combined in the composite output frame. The design of one shape processor suitable for use with the systems described herein is shown in greater detail in the patent application entitled Shape Processor, filed on even date herewith, the contents of which are incorporated by reference. However, any suitable shape processor system or process may be employed without departing from the scope of the invention.

20 As discussed above, the process 8 depicted in Figure 1 can be realized as a software component operating on a data processing system such as a hand held computer, a mobile telephone, set top box, facsimile machine, copier or other office equipment, an embedded computer system, a Windows or Unix workstation, or any other type of computer/processing platform capable of supporting, in whole or in part, the document processing system described
25 above. In these embodiments, the system can be implemented as a C language computer program, or a computer program written in any high level language including C++, Fortran, Java or Basic. Additionally, in an embodiment where microcontrollers or DSPs are employed, the systems can be realized as a computer program written in microcode or written in a high level language and compiled down to microcode that can be executed on the platform employed. The
30 development of such systems is known to those of skill in the art, and such techniques are set forth in Intel® StrongARM processors SA-1110 Microprocessor Advanced Developer's Manual. Additionally, general techniques for high level programming are known, and set forth in, for example, Stephen G. Kochan, Programming in C, Hayden Publishing (1983). It is noted that

5 DSPs are particularly suited for implementing signal processing functions, including preprocessing functions such as image enhancement through adjustments in contrast, edge definition and brightness. Developing code for the DSP and microcontroller systems follows from principles well known in the art.

Accordingly, although Figs. 1 and 2 graphically depicts the computer process 8 as comprising a plurality of functional block elements, it will be apparent to one of ordinary skill in the art that these elements can be realized as computer programs or portions of computer programs that are capable of running on the data processing platform to thereby configure the data processing platform as a system according to the invention. Moreover, although Fig. 1 depicts the system 10 as an integrated unit of a document processing process 8 and a display device 26, it will be apparent to those of ordinary skill in the art that this is only one embodiment, and that the systems described herein can be realized through other architectures and arrangements, including system architectures that separate the document processing functions of the process 8 from the document display operation performed by the display 26. Moreover, it will be understood that the systems of the invention are not limited to those systems that include a display or output device, but that the systems of the invention will encompass those processing systems that process one or more digital documents to create output that can be presented on an output device. However, this output may be stored in a data file for subsequent presentation on a display device, for long term storage, for delivery over a network, or for some other purpose than for immediate display. Accordingly, it will be apparent to those of skill in the art that the systems and methods described herein can support many different document and content processing applications and that the structure of the system or process employed for a particular application will vary according to the application and the choice of the designer.

From the foregoing, it will be understood that the system of the present invention may be "hard-wired"; e.g. implemented in ROM and/or integrated into ASICs or other single-chip systems, or may be implemented as firmware (programmable ROM such as flashable ePROM), or as software, being stored locally or remotely and being fetched and executed as required by a particular device. Such improvements and modifications may be incorporated without departing from the scope of the present invention.

5 Those skilled in the art will know or be able to ascertain using no more than routine experimentation, many equivalents to the embodiments and practices described herein. For example, the systems and methods described herein may be stand alone systems for processing source documents 11, but optionally these systems may be incorporated into a variety of types of data processing systems and devices, and into peripheral devices, in a number of different ways.

10 In a general purpose data processing system (the "host system"), the system of the present invention may be incorporated alongside the operating system and applications of the host system or may be incorporated fully or partially into the host operating system. For example, the systems described herein enable rapid display of a variety of types of data files on portable data processing devices with LCD displays without requiring the use of browsers or application

15 programs. Examples of portable data processing devices which may employ the present system include "palmtop" computers, portable digital assistants (PDAs, including tablet-type PDAs in which the primary user interface comprises a graphical display with which the user interacts directly by means of a stylus device), internet-enabled mobile telephones and other communications devices. This class of data processing devices requires small size, low power processors for portability. Typically, these devices employ advanced RISC-type core processors designed in to ASICs (application specific integrated circuits), in order that the electronics package is small and integrated. This type of device also has limited random access memory and typically has no non-volatile data store (e.g. hard disk). Conventional operating system models, such as are employed in standard desktop computing systems (PCs), require high powered central

20 processors and large amounts of memory to process digital documents and generate useful output, and are entirely unsuited for this type of data processing device. In particular, conventional systems do not provide for the processing of multiple file formats in an integrated manner. By contrast, the systems described herein employ common processes and pipelines for all file formats, thereby providing a highly integrated document processing system which is

25 extremely efficient in terms of power consumption and usage of system resources.

30 The system of the invention may be integrated at the BIOS level of portable data processing devices to enable document processing and output with much lower overhead than conventional system models. Alternatively, these systems may be implemented at the lowest system level just above the transport protocol stack. For example, the system may be

5 incorporated into a network device (card) or system, to provide in-line processing of network traffic (e.g. working at the packet level in a TCP/IP system).

The systems herein can be configured to operate with a predetermined set of data file formats and particular output devices; e.g. the visual display unit of the device and/or at least one type of printer.

10 The systems described herein may also be incorporated into low cost data processing terminals such as enhanced telephones and "thin" network client terminals (e.g. network terminals with limited local processing and storage resources), and "set-top boxes" for use in interactive/internet-enabled cable TV systems. The systems may also be incorporated into peripheral devices such as hardcopy devices (printers and plotters), display devices (such as digital projectors), networking devices, input devices (cameras, scanners, etc.) and also multi-function peripherals (MFPs). When incorporated into a printer, the system enables the printer to receive raw data files from the host data processing system and to reproduce the content of the original data file correctly, without the need for particular applications or drivers provided by the host system. This avoids or reduces the need to configure a computer system to drive a particular type of printer. The present system directly generates a dot-mapped image of the source document suitable for output by the printer (this is true whether the system is incorporated into the printer itself or into the host system). Similar considerations apply to other hardcopy devices such as plotters.

15

20

When incorporated into a display device, such as a projector, the system again enables the 25 device to display the content of the original data file correctly without the use of applications or drivers on the host system, and without the need for specific configuration of the host system and/or display device. Peripheral devices of these types, when equipped with the present system, may receive and output data files from any source, via any type of data communications network.

30 Additionally, the systems and methods described herein may be incorporated into in-car systems for providing driver information or entertainment systems, to facilitate the delivery of information within the vehicle or to a network that communicates beyond the vehicle. Further, it

5 will be understood that the systems described herein can drive devices having multiple output sources to maintain a consistent display using modifications to only the control parameters. Examples include, but are not limited to, a STB or in-car system incorporating a visual display and print head, thereby enabling viewing and printing of documents without the need for the source applications and drivers.

10 From the foregoing, it will be understood that the system of the present invention may be "hard-wired"; e.g. implemented in ROM and/or integrated into ASICs or other single-chip systems, or may be implemented as firmware (programmable ROM such as flashable ePROM), or as software, being stored locally or remotely and being fetched and executed as required by a particular device.

15

Accordingly, it will be understood that the invention is not to be limited to the embodiments disclosed herein, but is to be understood from the following claims, which are to be interpreted as broadly as allowed under the law.