Quantum Physics 1 2022

Class 13 – The Step Barrier and Scattering

TISE reminder

$$\frac{\partial^2 \psi(x)}{\partial x^2} + \frac{2m}{\hbar^2} (E - V)\psi(x) = 0$$

Piecewise potentials 1 reminder

Solution to the TISE in a region where V is a constant and E>V:

$$\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} + (E - V)\psi(x) = 0$$
Guess: $\psi = e^{ikx}$

Guess:
$$\psi = e^{ikx}$$

$$-\frac{\hbar^2 k^2}{2m} = (E - V) \qquad \Rightarrow \qquad k = \pm \sqrt{\frac{2m(E - V)}{\hbar^2}}$$

$$\psi = Ae^{ikx} + Be^{-ikx}$$

Piecewise potentials 2 reminder

Solution to the TISE in a region where V is a constant and E<V:

$$\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} - |E - V| \psi(x) = 0$$
Guess: $\psi = e^{ikx}$

$$\frac{\hbar^2 k^2}{2m} = -|E - V| \qquad \Rightarrow \qquad k = \pm i \sqrt{\frac{2m|E - V|}{\hbar^2}}$$
Let $K = ik = \pm \sqrt{\frac{2m|E - V|}{\hbar^2}}$ (: K is a real number)
$$\psi = Ae^{Kx} + Be^{-Kx}$$
 (exponential growth or decay)

The Step Potential

- State general solutions in each region.
- Carefully eliminate non-physical possibilities.
- Match wavefunctions the boundary.
 - Two possibilities E>V and E<V.

We will work this case together on the worksheet

An example

- Let's consider the situation where a wave is incident from the left onto a barrier at x=0.
- The wavefunction for pure momentum wave moving left is:

$$\Psi(x,t) = Ae^{ikx - i\omega t}$$

- What can the wave do?
 - It can bounce back, going the other way. $\Psi(x,t) = Be^{-ikx-i\omega t}$
 - It can pass through the boundary. $\Psi(x,t) = Ce^{ikx-i\omega t}$

Solutions in two regions

$$\psi_1(x,t) = (Ae^{ik_1x} + Be^{-ik_1x})$$
$$\psi_2(x,t) = Ce^{ik_2x}$$

1)
$$A + B = C$$
 (continuity)

2)
$$ik_1A - ik_1B = ik_2C$$
 ("smoothity")

$$B = C - A \quad \Rightarrow \quad i2k_1A = i(k_2 + k_1)C \quad \Rightarrow \quad C = \frac{2k_1}{k_2 + k_1}A$$

$$B = \frac{k_1 - k_2}{k_2 + k_1} A$$

In terms of energy:
$$\frac{C}{A} = \frac{2\sqrt{2mE/\hbar^2}}{\sqrt{2mE/\hbar^2} + \sqrt{2m(E-V)/\hbar^2}} = \frac{2\sqrt{E}}{\sqrt{E} + \sqrt{(E-V)}}$$

For E>>V, C/A \Rightarrow 1. For E=V, C/A \Rightarrow 2

Probability current in two regions

$$j(x,t) = \frac{-i\hbar}{2m} \left(\Psi^* \frac{\partial}{\partial x} \Psi - \Psi \frac{\partial}{\partial x} \Psi^* \right)$$

which for a pure momentum state is: $j = k\Psi^*\Psi$

$$\begin{split} j_{incident} &= +\frac{\hbar k_1}{m} A^2 \\ j_{reflected} &= -\frac{\hbar k_1}{m} B^2 \\ j_{transmitted} &= +\frac{\hbar k_2}{m} C^2 \\ T &\equiv \frac{j_{transmitted}}{j_{incident}} = \frac{k_2 C^2}{k_1 A^2} = \frac{k_2}{k_1} \left(\frac{2k_1}{k_2 + k_1}\right)^2 = \frac{4k_1 k_2}{(k_2 + k_1)^2} \end{split}$$

and for E<V

1)
$$A + B = C$$
 (continuity)
2) $ik_1A - ik_1B = -KC$ ("smoothity")
 $B = C - A \Rightarrow i2k_1A = (-K + ik_1)C \Rightarrow C$
 $= \frac{2k_1}{-K + ik_1}A$ $j_{incident} = +\frac{\hbar k_1}{m}A^2$
 $B = \frac{ik_1 + K}{ik_1 - K}A$ $j_{reflected} = -\frac{\hbar k_1}{m}B^2 = -\frac{\hbar k_1}{m}A^2$
 $j_{transmitted} = \frac{-i\hbar}{2m}\left[\psi^*\frac{\partial\psi}{\partial x} - \psi\frac{\partial\psi^*}{\partial x}\right] = 0$
 $T \equiv \frac{j_{transmitted}}{j_{incident}} = \frac{k_2C^2}{k_1A^2} = \frac{k_2}{k_1}\left(\frac{2k_1}{k_2 + k_1}\right)^2$
 $= \frac{2k_1k_2}{(k_2 + k_1)^2}$
 $R = 1$

The reflection and transmission coefficients R and T for a particle incident upon a potential step. The abscissa E/V_0 is the ratio of the total energy of the particle to the increase in its potential energy at the step. The case $k_1 = 2k_2$ corresponds to $E/V_0 =$

$$R = 1 - T$$

$$= \left(\frac{1 - \sqrt{1 - \frac{V_o}{E}}}{1 + \sqrt{1 - \frac{V_o}{E}}}\right)^2$$

10

Figure 5-23
Probability density in a model of barrier penetration.

The Step Barrier

Barrier Potential

$$V(x) = \begin{cases} 0 & \text{for } x < 0 \text{ and } x > a \\ V_0, & 0 < x < a \end{cases}$$

Figure 5-21
Reflection and transmission of a classical particle by a rectangular potential energy barrier.

Case 1 $E < V_0$

$$\psi(x) = \begin{cases} Ae^{ik_1x} + Be^{-ik_1} & x < 0\\ Ce^{-k_2x} + De^{k_2x} & 0 < x < a\\ \hat{A}e^{ik_1x} + \hat{B}e^{-ik_1x} & x > a \end{cases}$$
(5-73)

where

$$\begin{cases} k_1 = \frac{\sqrt{2mE}}{\hbar} \\ k_2 = \frac{\sqrt{2m(V_0 - E)}}{\hbar} \end{cases}$$

We expect a wavefunction that looks like this

Use
$$\hat{B} = 0$$
 for $x > a$

Express B, C, D, \hat{A} in terms of A.

$$x = 0$$

$$\psi(x): Ae^{ik_1x} + Be^{-ik_1x} \qquad Ce^{-k_2x} + De^{k_2x}$$

$$\psi(0): A + B = C + D \qquad (1)$$

$$\psi'(x): ik_1Ae^{ik_1x} - ik_1Be^{-ik_1x} \qquad -k_2Ce^{-k_2x} + k_2De^{k_2x}$$

$$\psi'(0): ik_1(A - B) = -k_2(C - D) \qquad (2)$$

x = a

$$\psi(x): \qquad Ce^{-k_2x} + De^{k_2x} \qquad \hat{A}e^{ik_1x} \qquad (3)$$

$$\psi(a): \qquad Ce^{-k_2a} + De^{k_2a} \qquad = \hat{A}e^{ik_1a}$$

$$\psi'(x): \qquad -k_2(Ce^{-k_2x} - De^{k_2x}) \qquad ik_1\hat{A}e^{ik_1x} \qquad (4)$$

$$\psi'(a): \qquad -k_2(Ce^{-k_2a} - De^{k_2a}) \qquad = ik_1\hat{A}e^{ik_1a}$$

16

$$\left| \frac{A}{\hat{A}} \right|^2 = 1 + \frac{1}{4} \left(\frac{k_2}{k_1} + \frac{k_1}{k_2} \right)^2 \sinh k_2 \, a$$

$$\left| \frac{B}{\hat{A}} \right|^2 = \frac{1}{4} \left(\frac{k_2}{k_1} + \frac{k_1}{k_2} \right)^2 \sinh k_2 \, a$$

Transmission coefficient *T*

$$T = \left| \frac{\hat{A}}{A} \right|^2 = \frac{1}{1 + \frac{1}{4} \left(\frac{k_2}{k_1} + \frac{k_1}{k_2} \right) \sinh^2 k_2} = \frac{1}{1 + \frac{\sinh^2 k_2 a}{4 \frac{E}{V_0} \left(1 - \frac{E}{V_0} \right)}}$$

Reflection coefficient R

$$R = \left| \frac{B}{A} \right|^2 = \left| \frac{B}{\hat{A}} \right|^2 \left| \frac{\hat{A}}{A} \right|^2$$

$$= \frac{1}{4} \left(\frac{k_2}{k_1} + \frac{k_1}{k_2} \right)^2 \sinh^2 k_2 \, a * \left| \frac{\hat{A}}{A} \right|^2$$

Recall
$$T = \left| \frac{\hat{A}}{A} \right|^2 = \frac{1}{1 + \frac{1}{4} \left(\frac{k_2}{k_1} + \frac{k_1}{k_2} \right)^2 \sinh^2 k_2 a}$$

Note: T + R = 1

Approximate transmission coefficient when $a\rangle \frac{1}{k_2}$

$$T = 16 \frac{E}{V_0} \left(1 - \frac{E}{V_0} \right) e^{-2k_2 a}$$

$$\sinh u = \frac{1}{2} \left(e^u - e^{-u} \right) \quad and \quad u = k_2 a$$

This form is frequently used as an approximation in tunnelling calculations.

Examples: STM, Quantum wells and barriers in semiconductors, nuclear decay

Case 2 $E > V_0$

$$\psi(x)$$

$$= \begin{cases} \hat{A}e^{ik_1x} + \hat{B}e^{-ik_1x} & x > a \\ Ae^{ik_1x} + Be^{-ik_1x} & x < 0 \end{cases}$$

$$= \begin{cases} Ce^{ik_3x} + De^{-ik_3x} & 0 < x < a \text{ note } k_3 \end{cases}$$

where
$$\begin{cases} k_1 = \frac{\sqrt{2mE}}{\hbar} \\ k_3 = \frac{\sqrt{2m(E-V_0)}}{\hbar} \end{cases}$$

Follow the method used in case 1 ($E < V_0$)

$$T = \frac{1}{1 + \frac{\sin^2 k_3 a}{4 \frac{E}{V_0} \left(\frac{E}{V_0} - 1\right)}}$$

Ramsauer effect:

Note if $k_3 a = \pi, 2\pi, 3\pi...$, then

T = 1 and R = 0.

from Eisberg and Resnick