CMOS Process

Tyndall 10V 1.5micron Process

Starting Material

- P on P+ epi material
- Pseudo twin well process

 All furnace ramps in this process are up from 800°C and down to 800°C

- Some dimensions in Angstroms
- 1A=10nm

Zero Level Alignment Mark

 A mark is etched into the silicon for use as an alignment target

- Initial Oxide
- Temp 975°C
- Time 90min
- \bullet Gas O_2
- Target Tox 52nm
- Ramp up 20min O₂
- Ramp down 30min N₂

NWell Mask and Implant

- PWell is the inverse of the NWell
- That is the NWell is drawn and the PWell mask is generated from it

PWell Mask and Implant

- PWell areas exposed
- Resist protects NWell areas
- Resist stripped after implant

Twin Well Drive

- Well Drive
- Ramp up 30min/N₂
- Temp 1100°C
- Time 22hrs/N₂
- Time 120min/O₂
- Ramp down 60min/N₂
- Strip grown oxide
- The original epi interface is now about 4µm deep because of up diffusion of boron

LOCOS Process 1

- Pad Oxidation
- **Temp 900°C**
- Time 152min/O₂
- Time 20min/ N_2
- Ramp up 10min/O₂
- Ramp dn 20min/N₂
- 100nm Nitride Deposition
- Temp 800°C
- Time 33min approx

LOCOS Process 2

- Etch the nitride, stop on the oxide
- Strip the resist

Boron Field Mask and Implant

Boron is implanted into the field areas of the PWell to increase the surface doping concentration

Phosphorous Field Mask and Implant

Phos is implanted into the non-active NWell areas

LOCOS 3 Field Oxide Growth

- Field oxidation
- Temp 1000°C
- Time 60min/N₂
- Time 180min/Wet H_2/O_2
- Time $5min/O_2$
- Time $10\min/N_2$
- Ramp up $20\min/N_2$
- Ramp dn 40min /N₂
- Target Tox 700nm
- Remove nitride

Sacrificial Oxide Growth and Vt Adjust Implant

- Grow SAC oxide 28nm
- Temp 950°C
- Time 24min /O₂
- Time 16min $/O_2$ -TCA
 - > cannot be modelled, take as O₂
- Time 20min $/N_2$
- Ramp up $18min/O_2$
- Ramp dn 30min /N₂
- Target Tox 28nm
- Implant Vt adjust
- Strip SAC oxide

Gate Oxidation

Polysilicon Deposition

Polysilicon Doping

- Dope the poly with phos
- Temp 900°C
- Time 10min N₂(4l/m)/O₂(95ml/m)
- Time 90min (POCl₅) N₂(95ml/m)/O₂(95ml/m
- Time 10min N₂(4l/m)/O₂(95ml/m)
- Ramp up 10min N₂
- Ramp dn 20min N₂
- Pattern the poly mask

Etch Polysilicon

- Etch the poly leaving the tracks behind
- Strip the resist

Poly Oxidation

- Polysilicon is reoxidised
- **■** Temp 900°C
- Stabilisation Time 20min $N_2(4l/m)/O_2(1.8l/m)$
 - Time 105min O₂
 - Ramp up 10min $N_2(4l/m)/O_2$ (1.8l/m)
- Ramp dn 20min N₂

Polysilicon Capacitor Formation

- By adding a second layer of polysilicon (200nm) and doping it
- A poly-poly capacitor can be formed between the 2 levels of polysilicon
- These capacitors are only allowed in the field areas.
 They are not allowed over active area

N+ Source/Drain Mask and Implant

- Implant Phos/As for the N+ source/drains
- Phos 5e13@110keV
- As 6e15@110keV
- The poly protects the channel areas

N+ Anneal

- N+ anneal of the implant
- Temp 900°C
- Time 60min N₂
- Ramp up 5 $\min N_2$
- Ramp dn 20min N₂

P+ Source/Drain Mask and Implant

- Boron is implanted into the P+ S/D regions
- Boron 4e15@15keV

Deposit BPSG Reflow and Anneal

- BPSG deposition
 - > 350
 - > 4% B 4%P
- Reflow Anneal
- Temp 900°C
- Time 3min O₂
- Time 5min H_2/O_2
- Time $3min O_2$
- **■** Time 30min N₂
- Ramp up 10min O₂
- Ramp dn 20min N₂

Contact Mask and Etch

- Contact holes are etched with a taper etch through to the S/D and the polysilicon
- This is a dry etch process (RIE)

Plan View of Contact Location

- All previous cross-sections through A-B
- The Polysilicon contact is not made in the thin ox/active area, but on the field oxide area
- Poly contact cannot be seen in the A-B cross section
- See C-D section next slide

C-D Cross-Section Showing Polysilicon Contact

Sputter Mask and Etch Metal 1

Patterned and then etched

Deposit Interlevel Dielectric mask and Etch vias

- Most modern small geometry processes will have more than 1 level of metal ours uses a Spin on Glass
- SOG sinter
- Temp 425°C
- **Time 75min N**₂

Metal 2 Sputter Mask and Etch

- 1.0µm of aluminium silicon is deposited for metal 2
- The Wafers are then alloyed or sintered
- Alloy
- Temp 400°C
- Time 15min N_2
- Time 60min N_2/H_2
- Time $5min N_2$

Finished Product

Metal Gate Field Device

- A channel can be inadvertently formed in the field areas
- It is important that this device is not turned on

Polysilicon Gate Field Device

- Poly gate device should have a lower threshold than the metal gate device
- Threshold of the field devices should be higher than the power supply voltage

High-k + Metal Gate Transistors

Improved Transistor Density ~2x

Improved Transistor Switching Speed >20%

Reduced Transistor Switching Power ~30%

65 nm Transistor

45 nm HK + MG

