1 Конечные поля

Определение 1.1 (Конечное поле).

Следствие 1.2. Конечные поля имеют конечную характеристику Доказательство.

$$\underbrace{1 + \dots + 1}_{n} = \underbrace{1 + \dots + 1}_{m}$$

$$\underbrace{1 + \dots + 1}_{n} = 0$$

Что это вообще такое

Теорема 1.3. Если F - конечное поле характеристики p, то $|F|=p^k$

ДОКАЗАТЕЛЬСТВО. Так как F - конечное поле $\mathbb{Z}_p \subseteq F$, тогда F - линейное пространство (почему это линейное пространство) над \mathbb{Z}_p , в таком случае имеется базис $e_1,...,e_k$. Пусть $a \in F$ б тогда

П

$$a = a_1 e_1 + ... + a_k e_k \quad a_1, ..., a_k \in \mathbb{Z}_p$$

И так как $|\mathbb{Z}_p|=p$, то $|F|=p^k$ - количество комбинаций $a_1,...,a_k$

Следствие 1.4. *Если* $m \neq p$, то поля из m элементов не существует Доказательство. ???

Теорема 1.5 (Мечта школьника). Если F - поле характеристики p, то

$$(x+y)^p = x^p + y^p$$

Доказательство. Пусть $x, y \in F$, тогда по формуле бинома ньютона

$$(x+y)^p = \sum_{i=0}^p C_p^i x^i y^{p-i}$$

Рассмотрим первый и последний элемент этой суммы. По формуле сочетания

$$C_p^0 = \frac{p!}{0!(p-0)!} = 1$$

$$C_p^p = \frac{p!}{p!(p-p)!} = 1$$

поэтому

$$(x+y)^{p} = \sum_{i=0}^{p} C_{p}^{i} x^{i} y^{p-i}$$

$$= C_{p}^{0} x^{0} y^{p} + \sum_{i=1}^{p-1} C_{p}^{i} x^{i} y^{p-i} + C_{p}^{p} x^{p} y^{0}$$

$$= y^{p} + \sum_{i=1}^{p-1} C_{p}^{i} x^{i} y^{p-i} + x^{p}$$

Рассмотрим оставшуюся часть суммы, то есть для $i \neq 0 \neq p$. По формуле сочетания

$$C_p^i = \frac{p!}{i!(p-i)!} = p \cdot c_i \quad i \neq 0 \neq p$$

где c_i - некоторое число, зависимое от i. Подставляя C_p^i получаем

$$\sum_{i=1}^{p-1} C_p^i x^i y^{p-i} = \sum_{i=1}^{p-1} p c_i x^i y^{p-i} = \sum_{i=1}^{p-1} \underbrace{(1 + \dots + 1)}_{p} c_i x^i y^{p-i} = 0$$

так как элемент $p \in F$ равен нулю. Таким образом

$$(x+y)^p = y^p + \sum_{i=1}^{p-1} C_p^i x^i y^{p-i} + x^p = x^p + y^p$$

Теорема 1.6. Если F - поле характеристики p, то

$$((x+y)^p)^k = (x^p)^k + (y^p)^k$$

Доказательство.

$$(x+y)^{p^k} = ((x+y)^p)^{p^{k-1}}$$

$$= (x^p + y^p)^{p^{k-1}}$$

$$= ((x^p + y^p)^p)^{p^{k-2}}$$

$$= \dots$$

$$= (x^{p^{k-1}} + y^{p^{k-1}})^{p^1}$$

$$= x^{p^k} + y^{p^k}$$

Теорема 1.7. Если F - конечное поле и |F| = m, тогда существует корень уравнения типа $x^{m-1} - x$

Доказательство. Пусть $F'=\{F\setminus\{0\},\cdot,1,-1\},\ F'$ является группой и |F'|=m-1. Пусть $a\in F',$ тогда по $\ref{eq:F'}$?

$$a^{m-1} = 1$$

То есть все ненулевые элементы группы удовлетворяют $x^{m-1} = 0$.

Так как $x^m - x = x(x^{m-1} - 1)$, то и нулевой элемент и ненулевые элементы являются корнями этого уравнения.

Теорема 1.8. Если существует поле F, такое что $|F| = p^k$, то существует поле F', такое что $|F'| = p^{k'}$, при любом $k' \le k$

ДОКАЗАТЕЛЬСТВО. Если a|b, то $(x^a-1)|(x^b-1)$ (как так). Предположим b=ac, то есть

$$x^{b} = (x^{a})^{c} - 1 = (x^{a} - 1)((x^{a})^{c-1} + (x^{a})^{c-2} + \dots + x^{a} + 1)$$

F - корни многочлена $x^{p^k} - x = x(x^{p^{k-1}} - 1)$ Что дальше в этой теореме?

Что дальше в этой главе?