> #Лабораторная работа #1

#Операции с математическими выражениями и функциями в Maple

#Задание 1

#Упростить выражение (разделить две алгебраические дроби)

 $simplify\ expr := simplify(expr)$

$$expr := \frac{(9x^5 + 36x^4 + 9x^3 - 90x^2 - 36x + 72)(x^3 + 3x^2 - 4x)}{(x^4 + x^3 - 9x^2 + 11x - 4)(x^3 + 6x^2 + 12x + 8)}$$

$$simplify \ expr := 9x$$
(1)

> $sub_expr_1 := (9 x^5 + 36 x^4 + 9 x^3 - 90 x^2 - 36 x + 72);$ $sub_expr_2 := (x^3 + 3 x^2 - 4 x);$ $sub_expr_3 := (x^4 + x^3 - 9 x^2 + 11 x - 4);$ $sub_expr_4 := (x^3 + 6 x^2 + 12 x + 8);$ $9 (x - 1)^2 (x + 2)^3$ (2)

⇒ factor_sub_expr_1 := factor(sub_expr_1);
factor_sub_expr_2 := factor(sub_expr_2);
factor_sub_expr_3 := factor(sub_expr_3);
factor_sub_expr_4 := factor(sub_expr_4);
factor_expr :=
$$\frac{factor_sub_expr_1 \cdot factor_sub_expr_2}{factor_sub_expr_3 \cdot factor_sub_expr_4}$$

 $factor_sub_expr_1 := 9 (x - 1)^2 (x + 2)^3$
 $factor_sub_expr_2 := x (x + 4) (x - 1)$
 $factor_sub_expr_3 := (x + 4) (x - 1)^3$

$$factor_sub_expr_4 := (x+2)^3$$

$$factor\ expr := 9x$$
(3)

> #Задание 2

#Приведите выражение к многочлену стандартного вида

> expand(
$$(5x-4)\cdot(3x^2+2)\cdot(4x+1)$$
);
 $60x^4-33x^3+28x^2-22x-8$ (4)

>
$$factor(60 x^4 - 33 x^3 + 28 x^2 - 22 x - 8);$$

(5 x - 4) (3 x² + 2) (4 x + 1)

#Задание 3

#Разложить многочлен на множители

>
$$factor(6x^4 + 23x^3 - 9x^2 - 92x - 60);$$

 $(6x + 5)(x - 2)(x + 3)(x + 2)$
(6)

$$= expand((6x+5) \cdot (x-2) \cdot (x+3) \cdot (x+2)); 6x^4 + 23x^3 - 9x^2 - 92x - 60$$
 (7)

- **_>** #Задание 4
- \rightarrow # Постройте график многочлена $P_5(x)$ и найдите все его корни.
- > $plot(7x^5 25x^4 37x^3 + 217x^2 234x + 72, x = -10..10, y = -30..30);$

- > $solve(7x^5 25x^4 37x^3 + 217x^2 234x + 72 = 0);$ $1, 2, 3, -3, \frac{4}{7}$ (8)
- > $fsolve(7x^5 25x^4 37x^3 + 217x^2 234x + 72 = 0);$ -3., 0.5714285714, 1., 2., 3. (9)
- **>** #Задание 5

#Разложите рациональную дробь на сумму простейших дробей

= **>** #Задание 6

#Решите графически уравнение и найдите его приближенные корни с точностью до 10^{-5}

>
$$ln_plot := plot \left(ln^2(x-2), x = \frac{Pi}{2} ... 2 \cdot Pi, color = blue \right) :$$

$$cos_plot := plot \left(1.5 \cos(2x) - 1, x = \frac{Pi}{2} ... 2 \cdot Pi, color = red \right) :$$

display([ln_plot, cos_plot]);

> evalf
$$\left(fsolve \left(\ln^2(x-2) = 1.5\cos(2x) - 1, x = \frac{3\pi}{4} ... \pi \right), 6 \right);$$

evalf $\left(fsolve \left(\ln^2(x-2) = 1.5\cos(2x) - 1, x = \pi ... \frac{5\pi}{4} \right), 6 \right);$

> #Задание 7

#Докажите, что $\lim_{n\to\infty} (a_n) = a$, определив номер n_{ε}

начиная с которого все члены последовательности \cdot (a_n) попадут в ϵ

– окрестность точки а

. Проиллюстрируйте полученный результат с помощью чертежа в Maple, положив $\epsilon=0,\,1$

>
$$a_n := \frac{7n+2}{2n-1}$$
:
 $a := \frac{7}{2}$:
 $e := 0.1$:

>
$$solve(a_n < a + e)$$
 (12)

> $y1 := plots[pointplot](\{seq([n, a_n], n = 1..40)\}):$ y2 := plot([a - 0.1, a, a + 0.1], x = 1..40, color = [blue, red, blue]):plots[display](y1, y2);

> #Задание 8

#Вычислите пределы числовых последовательностей

$$\lim_{n \to \infty} \left(\sqrt{n^2 + 3 n - 2} - \sqrt{n^2 - 3} \right)$$

$$\frac{3}{2} \tag{13}$$

>
$$limit \left(\left(\frac{(n^2 - 6n + 5)}{n^2 - 5n + 5} \right)^{3n + 2}, n = infinity \right)$$

 $e^{-3} (14)$

> #Задание 9

Для заданной кусочно — непрерывной функции выполните следующие действия:

- #1. Определите ее через функциональный оператор и постройте график.
- #2. В точке разрыва и на бесконечности найдите односторонние пределы.
- #3. Найдите производную и неопределенный интеграл на каждом из промежутков непрерывности.
- #4. Постройте в одной системе координат графики функции, производной #и какой —нибудь первообразной.
- #5. Найдите площадь криволинейной трапеции, ограниченной графиком #функции и прямыми
- # x = 1, x = 5, y = 0. Сделайте чертеж.

= **>** #1)

> func := $x \rightarrow piecewise(x \ge -Pi, 5 \cdot e^{-0.3x}, x < Pi, 3 \cdot sin(2x))$: func(x);

$$\begin{cases} 5 e^{-0.3x} & -\pi \le x \\ 3 \sin(2x) & x < \pi \end{cases}$$
 (15)

> plot(func(x), x = -2 Pi ..Pi, discont = true, color = blue);

> #2)

$$limit(func(x), x = -Pi, left);$$

 $limit(func(x), x = -Pi, right);$
 $limit(func(x), x = -infinity);$
 $limit(func(x), x = infinity);$

0.

12.83166198

$$-3...3.$$

0. (16)

> $f_int := int(func(x), x) :$ evalf $(f_int, 5);$

$$\begin{cases}
-1.5000\cos(2.x) & x \le -3.1416 \\
-16.667 e^{-0.30000x} + 41.272 & -3.1416 < x
\end{cases}$$
(17)

> $f_diff := diff(func(x), x) :$ evalf $(f_diff, 5);$

$$\begin{cases} 6.\cos(2.x) & x < -3.1416 \\ Float(undefined) & x = -3.1416 \\ -1.5000 e^{-0.30000x} & -3.1416 < x \end{cases}$$
 (18)

> plot([int(func(x), x), diff(func(x), x), func(x)], discont = true, x = -4 Pi ..Pi, legend = []);

> plot1 := plot(func(x), discont = true, x = 1 ...5, color = red) : plot2 := plot([[[1,-2], [1,5]], [[5,-2], [5,5]], 0], x = 0 ...6, y = -2 ...5, color = blue) : plots[display](plot1, plot2);result := convert(int(func(x), x = 1 ...5), rational);

 $result := \frac{75013}{8694} \tag{19}$

#Задание 10
#1. Постройте кривые на плоскости. Для кривой 2-го порядка
#2. Найдите каноническое уравнение с помощью ортогонального преобразования
#1)

$$fl := 0.8 \exp^{-0.7x} \sin(6x + 5);$$

$$f1 := 0.8 \exp^{-0.7x} \sin(6x + 5)$$

$$f2 := 4x^2 + y^2 + 16x + 4xy + 8y + 15$$

$$f3_x = 2\cos(t) + 2t\sin(t)$$

$$f3_y := 2\sin(t) - 2t\cos(t)$$

$$f4 := 1 - 2\sin\left(3\phi + \frac{\pi}{4}\right)$$
(20)

 $\rightarrow plot(fl(x));$

> #Используем функцию implicitplot из пакета plots для построения графика неявно заданной функции, задав диапазоны значений переменных х и у

$$f2 := 4 x^2 + 4 x \cdot y + y^2 + 16 x + 8 y + 15;$$

 $plots[implicit plot](f2 = 0, x = -10..10, y = -10..10);$

$$f2 := 4x^2 + 4xy + y^2 + 16x + 8y + 15$$

ightharpoonup #Определили параметрическую функцию $f3_x(t)$ и $f3_y(t)$. Затем выведем график, создав список точек, вычислив значения x и y для диапазона значений параметра t

$$f3_x := t \to 2(\cos(t) + t \cdot \sin(t));$$

$$f3_y := t \rightarrow 2(\sin(t) - t \cdot \cos(t));$$

$$plot([f3_x(t), f3_y(t), t = -10...10]);$$

$$f3_x := t \mapsto 2 \cdot \cos(t) + 2 \cdot t \cdot \sin(t)$$

$$f3_y := t \mapsto 2 \cdot \sin(t) - 2 \cdot t \cdot \cos(t)$$

> #Используем функцию implicitplot из пакета plots для построения графика в полярных координатах.

$$f4 := 1 - 2\sin\left(3 t + \frac{\text{Pi}}{4}\right);$$

plots[polarplot](f4, t = 0..2 Pi);

$$f4 := 1 - 2\sin\left(3 t + \frac{\pi}{4}\right)$$

> #2)

#Построим матрицу коэффециентов квадратичной формы

with(plots) :
with(LinearAlgebra) :

M := Matrix([[4, 2], [2, 1]]);

$$M := \left[\begin{array}{cc} 4 & 2 \\ 2 & 1 \end{array} \right] \tag{21}$$

> #Найдём собственные векторы этой матрицы $v \coloneqq LinearAlgebra[Eigenvectors](M)$;

$$v := \begin{bmatrix} 5 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 & -\frac{1}{2} \\ 1 & 1 \end{bmatrix}$$
 (22)

#Нормализуем полученные векторы

v1 := Normalize(Column(v[2], [1]), Euclidean);

v2 := Normalize(Column(v[2], [2]), Euclidean);

$$vI := \begin{bmatrix} \frac{2\sqrt{5}}{5} \\ \frac{\sqrt{5}}{5} \end{bmatrix}$$

$$v2 := \begin{bmatrix} -\frac{\sqrt{5}}{5} \\ \frac{2\sqrt{5}}{5} \end{bmatrix}$$
(23)

> #При помощи нормализованных собственных векторов получим значения новых x и y для подстановки

#x1 = v1[2]·x2 + v2[1]·y2;
#y1=v1[2]·x2 + v2[2]·y2;
subs(x1=v1[1]·x2 + v2[1]·y2, y1=v1[2]·x2 + v2[2]·y2,
$$4 \cdot x1^2 + 4 \cdot x1 \cdot y1 + y1^2 + 16 \cdot x1 + 8 \cdot y1 + 15$$
);
expr := simplify(%);

$$4\left(\frac{2x2\sqrt{5}}{5} - \frac{y2\sqrt{5}}{5}\right)^{2} + 4\left(\frac{2x2\sqrt{5}}{5} - \frac{y2\sqrt{5}}{5}\right)\left(\frac{x2\sqrt{5}}{5} + \frac{2y2\sqrt{5}}{5}\right) + \left(\frac{x2\sqrt{5}}{5} + \frac{2y2\sqrt{5}}{5}\right)^{2} + 8x2\sqrt{5} + 15$$

$$expr := 5x2^{2} + 8x2\sqrt{5} + 15$$
(24)

> #Bыделим из этого выражения полный квадрат $sq_expr := Student[Precalculus][CompleteSquare](expr);$

$$sq_expr := 5\left(x2 + \frac{4\sqrt{5}}{5}\right)^2 - 1$$
 (25)

> #Приведём полученное выражение к каноническому виду

$$can_expr := subs \left(x2 = x - \frac{4\sqrt{5}}{5}, sq_expr \right);$$

$$can expr := 5 x^2 - 1$$
(26)

> #Изобразим график полученного уравнения

 $plots[implicitplot](can_expr, x = -10..10, y = -10..10);$

