Primes

Discrete Mathematics Andrei Bulatov

Previous Lecture

- Integers
- Division
- Properties of divisibility
- The division algorithm

Primes

- Every integer n (except for 1 and -1) has at least 2 positive divisors, 1 and n (or -n).
- A positive number that does not have any other positive divisor is called prime
- Prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, ...
- Mersenne numbers are the numbers of the form $M_n = 2^n 1$
- There are many prime numbers among Mersenne numbers. The greatest known prime number is $M_{32582657} = 2^{32582657} 1$
- The next candidate is $M_{M_{61}} = 2^{2305843009213693951} 1$
- A positive number that is not prime is called composite

Composite Numbers

- Every composite number has a prime divisor.
- Proof.

Let S be the set of all composite numbers that do not have a prime divisor

Since $S \subseteq \mathbb{N}$, by the Well-Ordering Principle, it has a least element r.

As r is not prime, it has a divisor, therefore, r = uv for some positive integers u and v.

u < r and v < r. Therefore $u \notin S$, and u has a prime divisor p. Since p | u and u | r, we conclude that p | r, a contradiction.

How many prime numbers are there?

- Theorem (Euclid)
 There are infinitely many prime numbers.
- Proof.

A contradiction.

By contradiction. Suppose that $\{p_1, p_2, \ldots, p_k\}$ is the set of all prime numbers, and let $a = p_1 p_2 \ldots p_k + 1$ Since a is greater than any member of the list, a is composite. By the previous statement, a has a prime divisor, that is for some p_j we have $p_j \mid a$ Since $p_i \mid a$ and $p_i \mid p_1 p_2 \ldots p_k$ we have $p_i \mid a - p_1 p_2 \ldots p_k = 1$

• If n is a positive integer, then there are approximately $\frac{n}{\ln n}$ prime numbers not exceeding n

Open Problems about Primes

Goldbach's Conjecture

Every positive even number can be represented as the sum of two prime numbers.

For example: 4 = 2 + 2, 8 = 5 + 3, 42 = 37 + 5

Goldbach's conjecture is known to be true for even numbers up to $\ 2\cdot 10^{17}$

The Twin Prime Conjecture

Twin primes are primes that differ by 2, such as 3 and 5, 5 and 7, 11 and 13, etc.

The Twin Prime Conjecture asserts that there are infinitely many twin primes.

The record twin primes: $16,896,987,339,975 \cdot 2^{171,960} \pm 1$

The Greatest Common Divisor

- For integers a and b, a positive integer c is said to be a common divisor of a and b if c | a and c | b
- Let a, b be integers such that $a \ne 0$ or $b \ne 0$. Then a positive integer c is called the greatest common divisor of a, b if
 - (a) c | a and c | b (that is c is a common divisor of a, b)
 - (b) for any common divisor d of a and b, we have d | c
- What are the common divisors, and the greatest common divisor of 42 and 70?
- The greatest common divisor of a and b is denoted by gcd(a,b)

The Greatest Common Divisor (cntd)

Theorem

For any positive integers a and b, there is a unique positive integer c such that c is the greatest common divisor of a and b

First try:

Take the largest common divisor, in the sense of usual order Does not work: Why every other common divisor divides it?

The Greatest Common Divisor (cntd)

Proof.

Given a, b, let $S = \{ as + bt \mid s,t \in \mathbb{Z}, as + bt > 0 \}$.

Since $S \neq \emptyset$, it has a least element c. We show that c = gcd(a,b)

We have c = ax + by for some integers x and y.

If $d \mid a$ and $d \mid b$, then $d \mid ax + by = c$.

If $c \nmid a$, we can use the division algorithm to find a = qc + r, where q,r are integers and 0 < r < c.

Then $r = a - qc = a - q(ax + by) = a(1 - qx) + b(-qy) \in S$, a contradiction

Therefore c | a, and by a similar argument c | b.

The Greatest Common Divisor (cntd)

Proof. (cntd)

Finally, if c and d are greatest common divisors, then $c \mid d$ and $d \mid c$. Thus c = d.

Q. E. D.

Homework

Exercises from the Book

No. 2, 4, 12, 15, 16 (page 230)