$\Delta; \Phi \vdash \kappa_1 \lesssim \kappa_2$ κ_1 is a consistent subkind of κ_2

$$\begin{tabular}{lll} {\tt KCHoleL} & {\tt KCHoleR} & {\tt KCRespectEquiv} \\ \hline $\Delta;\Phi\vdash{\tt KHole}\lesssim\kappa$ & $\Delta;\Phi\vdash\kappa\lesssim{\tt KHole}$ & $\Delta;\Phi\vdash\kappa_1\equiv\kappa_2$ \\ \hline & {\tt KCSubsumption} \\ \hline & {\tt \Delta};\Phi\vdash\tau:{\tt Ty} \\ \hline $\Delta;\Phi\vdash{\tt S}(\tau)\lesssim{\tt Ty}$ & \\ \hline \end{tabular}$$

t valid type variable

t is valid if it is not a builtin-type or keyword, begins with an alpha char or underscore, and only contains alphanumeric characters, underscores, and primes.

 $\Delta; \Phi \vdash \kappa \text{ kind} \mid \kappa \text{ forms a kind}$

$$\frac{\texttt{KFTy}}{\Delta; \Phi \vdash \texttt{Ty kind}} \qquad \frac{\texttt{KFHole}}{\Delta; \Phi \vdash \texttt{KHole kind}} \qquad \frac{\Delta; \Phi \vdash \tau : \texttt{Ty}}{\Delta; \Phi \vdash \texttt{S}(\tau) \texttt{ kind}}$$

 $\Delta; \Phi \vdash \kappa_1 \equiv \kappa_2 \mid \kappa_1 \text{ is equivalent to } \kappa_2$

$$\begin{array}{lll} & \text{KESymm} & \text{KETrans} \\ & \Delta; \Phi \vdash \kappa_1 \equiv \kappa_2 & \Delta; \Phi \vdash \kappa_1 \equiv \kappa_2 \\ \hline \Delta; \Phi \vdash \kappa \equiv \kappa & \Delta; \Phi \vdash \kappa_2 \equiv \kappa_1 & \Delta; \Phi \vdash \kappa_1 \equiv \kappa_3 \\ \end{array}$$

KESingEquiv
$$\frac{\Delta; \Phi \vdash \tau_1 \equiv \tau_2 : Ty}{\Delta; \Phi \vdash S(\tau_1) \equiv S(\tau_2)}$$

 $\Delta; \Phi \vdash \tau : \kappa$ τ is assigned non-singleton kind κ

$$\begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \end{array} \\ & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \end{array} \\ & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \end{array} \\ & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \end{array} \\ & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \end{array} \\ & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \end{array} \\ & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \end{array} \\ & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \\ & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \\ & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \\ & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \\ & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \\ & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \\ & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \\ \end{array} \\ & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \end{array} \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \\ \end{array} \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \end{array} \\ \begin{array}{lll} & \end{array} \begin{array}{lll}$$

 $\Delta; \Phi \vdash \tau : \kappa_1 \Rightarrow \lfloor \kappa_2 \rfloor$ τ of kind κ_1 is self-recognized to consistent subkind κ_2

$$\frac{\Delta; \Phi \vdash \tau : \mathtt{Ty}}{\Delta; \Phi \vdash \tau : \mathtt{Ty}} \qquad \qquad \frac{\Delta; \Phi \vdash \tau : \mathtt{KHole}}{\Delta; \Phi \vdash \tau : \mathtt{KHole}}$$

 $\Delta; \Phi \vdash \kappa_1 \Rightarrow \lceil \kappa_2 \rceil$ κ_1 is unrecognized to consistent superkind κ_2

KUSing

$$\frac{\Delta; \Phi \vdash \tau : \mathtt{Ty} \qquad \Delta; \Phi \vdash \tau : \mathtt{Ty} \Rrightarrow \lfloor \mathtt{S}(\tau) \rfloor}{\Delta; \Phi \vdash \mathtt{S}(\tau) \Rrightarrow \lceil \mathtt{Ty} \rceil} \qquad \frac{\mathtt{KUHole}}{\Delta; \Phi \vdash \mathtt{KHole} \Rrightarrow \lceil \mathtt{KHole} \rceil}$$

 $\Delta; \Phi \vdash \tau_1 \equiv \tau_2 : \kappa$ τ_1 is equivalent to τ_2 and has kind κ_2

$$\begin{array}{ll} \text{KCESymm} \\ \underline{\Delta}; \Phi \vdash \tau : \kappa \\ \overline{\Delta}; \Phi \vdash \tau \equiv \tau : \kappa \end{array} \qquad \begin{array}{ll} \text{KCESymm} \\ \underline{\Delta}; \Phi \vdash \tau_1 \equiv \tau_2 : \kappa \\ \overline{\Delta}; \Phi \vdash \tau_2 \equiv \tau_1 : \kappa \end{array}$$

$$\begin{array}{ll} \text{KCETrans} & \text{KCESingEquiv} \\ \underline{\Delta; \Phi \vdash \tau_1 \equiv \tau_2 : \kappa} & \Delta; \Phi \vdash \tau_2 \equiv \tau_3 : \kappa \\ \hline \Delta; \Phi \vdash \tau_1 \equiv \tau_3 : \kappa & \underline{\Delta; \Phi \vdash \tau_1 \equiv \tau_2 : \text{Ty}} \end{array}$$

 $\Phi \vdash \hat{\tau} \Rightarrow \kappa \leadsto \tau \dashv \Delta$ $\hat{\tau}$ synthesizes kind κ and elaborates to τ

TElabSConst

$$\frac{}{\Phi \vdash c \Rightarrow \$(c) \rightsquigarrow c \dashv \cdot}$$

TElabSBinOp

$$\begin{array}{ll} \Phi \vdash \hat{\tau}_1 \Leftarrow \operatorname{Ty} \leadsto \tau_1 : \operatorname{Ty} \dashv \Delta_1 & \Delta_1; \Phi \vdash \tau_1 : \operatorname{Ty} \Rrightarrow \left[\operatorname{S}(\tau_1)\right] \\ \Phi \vdash \hat{\tau}_2 \Leftarrow \operatorname{Ty} \leadsto \tau_2 : \operatorname{Ty} \dashv \Delta_2 & \Delta_2; \Phi \vdash \tau_2 : \operatorname{Ty} \Rrightarrow \left[\operatorname{S}(\tau_2)\right] \\ \hline \Phi \vdash \hat{\tau}_1 \oplus \hat{\tau}_2 \Rightarrow \operatorname{S}(\tau_1 \oplus \tau_2) \leadsto \tau_1 \oplus \tau_2 \dashv \Delta_1 \cup \Delta_2 \end{array}$$

TElabSList

$$\frac{\Phi \vdash \hat{\tau} \Leftarrow \mathsf{Ty} \leadsto \tau : \mathsf{Ty} \dashv \Delta \qquad \Delta; \Phi \vdash \tau : \mathsf{Ty} \Rrightarrow \left[\mathsf{S}(\tau) \right]}{\Phi \vdash \mathsf{list}(\hat{\tau}) \Rightarrow \mathsf{S}(\mathsf{list}(\tau)) \leadsto \mathsf{list}(\tau) \dashv \Delta}$$

TElabSVar

$$\label{eq:total_total_total_total_total} \frac{t : \kappa \in \Phi}{\Phi \vdash t \Rightarrow \kappa \leadsto t \dashv \cdot} \qquad \frac{t \not \in \Phi}{\Phi \vdash t \Rightarrow \texttt{KHole} \leadsto (\!\![t\!\!])^u_{\mathsf{id}(\Phi)} \dashv u :: (\!\![])[\Phi]}$$

TElabSHole

$$\overline{\Phi \vdash ()^u \Rightarrow \mathsf{KHole} \leadsto ()^u_{\mathsf{id}(\Phi)} \dashv u :: ()[\Phi]}$$

TElabSNEHole

$$\frac{\Phi \vdash \hat{\tau} \Rightarrow \kappa \leadsto \tau \dashv \Delta}{\Phi \vdash (|\hat{\tau}|)^u \Rightarrow \mathsf{KHole} \leadsto (|\tau|)^u_{\mathsf{id}(\Phi)} \dashv \Delta, u :: (\![\![\Phi]\!])}$$

 $\Phi \vdash \hat{\tau} \Leftarrow \kappa_1 \leadsto \tau : \kappa_2 \dashv \Delta$ $\hat{\tau}$ analyzes against kind κ_1 and elaborates to τ of consistent subkind κ_2

TElabASubsume

$$\frac{\hat{\tau} \neq t \text{ where } t \notin \Phi}{\hat{\tau} \neq (|\hat{\tau}'|)^u} \qquad \frac{\hat{\tau} \neq t \text{ where } t \notin \Phi}{\Phi \vdash \hat{\tau} \Rightarrow \kappa' \leadsto \tau \dashv \Delta} \qquad \Delta; \Phi \vdash \kappa' \lesssim \kappa}{\Phi \vdash \hat{\tau} \Leftarrow \kappa \leadsto \tau : \kappa' \dashv \Delta}$$

 ${\tt TElabAUVar}$

$$\frac{t\not\in\Phi}{\Phi\vdash t\Leftarrow \mathtt{KHole} \leadsto (\!\!|t|\!\!)^u_{\mathsf{id}(\Phi)} : \mathtt{KHole}\dashv u :: (\!\!|)[\Phi]}$$

TElabAEHole

$$\overline{\Phi \vdash (\!(\!)^u \Leftarrow \kappa \leadsto (\!(\!)^u_{\mathsf{id}(\Phi)} : \kappa \dashv u :: \kappa[\Phi]\!)}$$

TElabANEHole

$$\frac{\Phi \vdash \hat{\tau} \Rightarrow \kappa' \leadsto \tau \dashv \Delta}{\Phi \vdash (|\hat{\tau}|)^u \Leftarrow \kappa \leadsto (|\tau|)^u_{\mathsf{id}(\Phi)} : \kappa \dashv \Delta, u :: \kappa[\Phi]}$$

 $\Delta_1; \Phi_1 \vdash \tau \rhd \hat{\rho} \dashv \Phi_2; \Delta_2$ $\hat{\rho}$ analyzes against τ yielding new tyvar and hole bindings

RESVar

$$\frac{t \text{ valid } \Delta; \Phi \vdash \tau : \kappa_1 \quad \Delta; \Phi \vdash \tau : \kappa_1 \Rrightarrow \lfloor \kappa_2 \rfloor}{\Delta; \Phi \vdash \tau \rhd t \dashv t :: \kappa_2; \cdot}$$

$$\frac{\text{RESVarHole}}{\Delta;\Phi \vdash \tau \rhd (\!|\!|)^u \dashv \cdot;u::(\!|\!|)[\Phi]} \qquad \frac{\neg(t \text{ valid})}{\Delta;\Phi \vdash \tau \rhd (\!|t|)^u \dashv \cdot;u::(\!|\!|)[\Phi]}$$

 $\Gamma; \Phi \vdash e \Rightarrow \hat{\tau} \leadsto d \dashv \Delta$ e synthesizes type τ and elaborates to d

ESDefine

$$\begin{split} & \Phi_1 \vdash \hat{\tau} \Rightarrow \kappa \leadsto \tau \dashv \Delta_1 \\ & \Delta_1; \Phi_1 \vdash \tau \rhd \hat{\rho} \dashv \Phi_2; \Delta_2 \qquad \Gamma; \Phi_1 \cup \Phi_2 \vdash e \Rightarrow \tau_1 \leadsto d \dashv \Delta_3 \\ \hline & \Gamma; \Phi_1 \vdash \mathsf{type} \ \hat{\rho} = \hat{\tau} \ \mathsf{in} \ e \Rightarrow \tau_1 \leadsto \mathsf{type} \ \hat{\rho} = \tau \ \mathsf{in} \ d \dashv \Delta_1 \cup \Delta_2 \cup \Delta_3 \end{split}$$

 $\Delta; \Gamma; \Phi \vdash d : \tau$ d is assigned type τ

$$\frac{\Delta; \Phi_1 \vdash \tau \rhd \hat{\rho} \dashv \Phi_2; \Delta \qquad \Delta; \Gamma; \Phi_1 \cup \Phi_2 \vdash d : \tau}{\Delta; \Gamma; \Phi_1 \vdash \mathsf{type} \ \hat{\rho} = \tau \ \mathsf{in} \ d : \tau}$$

Theorem 1 (Well-Kinded Elaboration)

- (1) If $\Phi \vdash \hat{\tau} \Rightarrow \kappa \leadsto \tau \dashv \Delta$ and $\Delta; \Phi \vdash \tau : \kappa'$ then $\Delta; \Phi \vdash \tau : \kappa' \Rrightarrow \lfloor \kappa \rfloor$ (2) If $\Phi \vdash \hat{\tau} \Leftarrow \kappa_1 \leadsto \tau : \kappa_2 \dashv \Delta$ then $\Delta; \Phi \vdash \kappa_1 \lesssim \kappa_2$ and $\exists \kappa_3$ such that
- $\Delta; \Phi \vdash \kappa_3 \lesssim \kappa_2 \text{ and } \Delta; \Phi \vdash \tau : \kappa_3$

This is like the Typed Elaboration theorem in the POPL19 paper except that (1) synthesis produces the most refined kind while assignment prefers Ty (see Kind Assignment Ty Affinity theorem) and (2) analysis doesn't necessarily produce the most consistent subkind for τ .

Theorem 2 (Type Elaboration Synthesis Singleton Affinity) If $\Phi \vdash \hat{\tau} \Rightarrow \kappa \leadsto \tau \dashv \Delta$ then $\Delta; \Phi \vdash \tau : \kappa \Rightarrow \lfloor \kappa \rfloor$

Type Elaboration synthesis always synthesizes the most self-recognized kind.

Theorem 3 (Kind Assignment Unicity)

If $\Delta; \Phi \vdash \tau : \kappa \text{ and } \Delta; \Phi \vdash \tau : \kappa' \text{ then } \kappa = \kappa'$

This is like the Type Unicity theorem in the POPL19 paper.

Theorem 4 (Kind Assignment Ty Affinity)

If
$$\Delta; \Phi \vdash \tau : \kappa \ then \ \Delta; \Phi \vdash \tau \Longrightarrow \lceil \kappa \rceil \ \kappa$$

Kind assignment assigns Ty rather than $S(\tau)$. The kind is explicitly refined where needed in other places using the recognition judgment: $\Delta; \Phi \vdash \tau : \kappa_1 \Rightarrow \lfloor \kappa_2 \rfloor$.

Theorem 5 (Type Elaboration Unicity)

- (1) If $\Phi \vdash \hat{\tau} \Rightarrow \kappa_1 \leadsto \tau_1 \dashv \Delta_1$ and $\Phi \vdash \hat{\tau} \Rightarrow \kappa_2 \leadsto \tau_2 \dashv \Delta_2$ then $\kappa_1 = \kappa_2$, $\tau_1 = \tau_2$, $\Delta_1 = \Delta_2$
- (2) If $\Phi \vdash \hat{\tau} \Leftarrow \kappa \leadsto \tau_1 : \kappa_1 \dashv \Delta_1 \text{ and } \Phi \vdash \hat{\tau} \Leftarrow \kappa \leadsto \tau_2 : \kappa_2 \dashv \Delta_2 \text{ then } \tau_1 = \tau_2, \ \kappa_1 = \kappa_2, \ \Delta_1 = \Delta_2$

This is like the Elaboration Unicity theorem in the POPL19 paper.

Theorem 6 (Kind Precision)

If
$$\Phi \vdash \hat{\tau} \Rightarrow \kappa \leadsto \tau \dashv \Delta$$
 and $\Phi \vdash \hat{\tau} \Leftarrow \kappa' \leadsto \tau : \kappa'' \dashv \Delta$ then $\Delta; \Phi \vdash \kappa \lesssim \kappa'$

Kind Precision says that any kind κ that successfully analyzes against $\hat{\tau}$ is a consistent superkind of the one that is synthesized from $\hat{\tau}$. In other words, the kind that is synthesized is the most precise.

Theorem 7 (Reognition Inversion)

If
$$\Delta; \Phi \vdash \tau : \kappa_2 \Rightarrow \lfloor \kappa_1 \rfloor \ then \ \Delta; \Phi \vdash \kappa_1 \Rightarrow \lceil \kappa_2 \rceil$$

Unrecognizing inverts self-recognition.