I. Exercices

I.1. Degré de la dérivée

Soit $F \in \mathbb{K}(X)$. Montrer que si $\deg(F')lt; \deg(F) - 1$, alors $\deg(F) = 0$.

II. Indicators

III. Degré de la dérivée

Écrire F=A/B et calculer le degré de F' en fonctions des degrés respectifs de A et B.

IV. Corriges

V. Degré de la dérivée

On écrit F = A/B, avec $\deg(F) = \deg(A) - \deg(B)$. On a $F' = (A'B - AB')/B^2$, et donc $\deg(F') = \deg(A'B - AB') - 2\deg(B)$. Or, $\deg(A'B) = \deg(AB') = \deg(A) + \deg(B) - 1$. Si $\deg(A'B - AB') = \deg(A) + \deg(B) - 1$, on aurait $\deg(F') = \deg(F) - 1$, ce qui n'est pas le cas. On a donc $\deg(A'B - AB')lt$; $\deg(A'B) = \deg(AB')$. Mais si $A = a_k X^k + \ldots$ et $B = b_n X^n + \ldots$, alors $A'B = ka_k b_n X^{k+n-1} + \ldots$ et $AB' = na_k b_n X^{k+n-1} + \ldots$ Pour que $\deg(A'B - AB')$ soit inférieur strict à n + k - 1, il est donc nécessaire que k = n, c'est-à-dire que A et B aient le même degré. Ceci signifie exactement $\deg(F) = 0$.