What is claimed is:

1	1. A method for computerized calculation of one or more arterial-compliance
2	parameters of a patient, the method comprising:
3	measuring an oscillometric signal and a tonometric arterial signal of the
4	patient;
5	obtaining one or more oscillometric parameters derived from the
6	oscillometric signal;
7	obtaining a sequence of tonometric values that are based on the tonometric
8	signal;
9	receiving the one or more oscillometric parameters and the sequence of
10	tonometric values as inputs into a computer system;
11	calibrating the sequence of tonometric values based on the one or more
12	oscillometric parameters to generate a calibrated tonometric pressure waveform; and
13	processing the calibrated tonometric pressure waveform within the computer
14	system to generate one or more values each corresponding to one of the one or more
15	arterial-compliance parameters.
1	2. The method of claim 1, wherein the calibrating of the sequence of
2	tonometric values includes calibrating each tonometric value S _r (t) as follows:
3	$P_r(t) = ((S_r(t) + additive correction_r) * multiplicative correction_r)$
4	wherein the additive correction, and the multiplicative correction, are calibration
5	constants based at least in part on blood pressure parameters derived from the
6	oscillometric parameters, and each S _r (t) is the tonometric signal value at a time t.
1	3. The method of claim 1, wherein the calibrating of the sequence of
2	tonometric values includes calibrating each tonometric value S _r (t) as follows:
3	$P_r(t) = ((S_r(t) + additive correction_r) * multiplicative correction_r)$
4	wherein the additive correction, and the multiplicative correction, are calculated as
5	follows:
6	the multiplicative correction _r = $(DBP-MBP)/(S_r(t_D)-S_r(t_M))$,

```
7
                     the additive correction<sub>r</sub> = MBP/(multiplicative correction<sub>r</sub>) -S_r(t_M),
 8
            wherein
 9
                     each S<sub>t</sub>(t) is the tonometric signal value at a time t.
                     MBP is a mean arterial-blood-pressure oscillometric parameter measured
10
11
            near time t<sub>M</sub>, and
12
                     DBP is a diastolic-blood-pressure oscillometric parameter measured near
13
            time t<sub>D</sub>.
 1
            4.
                     The method of claim 1, wherein the calibrating of the sequence of
 2
            tonometric values includes calibrating each tonometric value S<sub>r</sub>(t) as follows:
 3
                     P_r(t) = ((S_r(t) + additive correction_r) * multiplicative correction_r)
 4
            wherein the additive correction, and the multiplicative correction, are calculated as
 5
            follows:
 6
                     the multiplicative correction<sub>r</sub> = (SBP-MBP)/(S_r(t_S)-S_r(t_M)),
 7
                     the additive correction<sub>r</sub> = MBP/(multiplicative correction<sub>r</sub>) -S_r(t_M),
 8
            wherein
 9
                     each S_r(t) is the tonometric signal value at a time t,
10
                     MBP is oscillometric mean arterial blood pressure measured near time t_{\rm M},
11
            and
12
                     SBP is oscillometric systolic blood pressure measured near time t<sub>s</sub>.
 1
            5.
                     The method of claim 1, wherein the calibrating of the sequence of
 2
            tonometric values includes calibrating each tonometric value S<sub>r</sub>(t) as follows:
 3
                    P_r(t) = ((S_r(t) + additive correction_r) + multiplicative correction_r)
 4
            wherein the additive correction, and the multiplicative correction, are calculated as
 5
            follows:
 6
                    the multiplicative correction<sub>r</sub> = (SBP - DBP) / (S_r(t_S) - S_r(t_D)), and
 7
                    the additive correction<sub>r</sub> = DBP/(multiplicative correction<sub>r</sub>) -S_r(t_D),
 8
            wherein
 9
                    each S_r(t) is the tonometric signal value at a time t,
10
                    SBP is oscillometric systolic blood pressure measured near time t<sub>s</sub>, and
```

- DBP is oscillometric diastolic blood pressure measured near time t_D.
- 1 6. The method of claim 1, wherein the calibrating of the sequence of
- 2 tonometric values $S_r(t)$ includes generating the calibrated tonometric pressure
- 3 waveform $P_r(t)$ as follows:
- 4 $P_r(t) = ((S_r(t)-b_r)(1/a_r)) + \mathbf{p}$
- 5 where a_r and b_r are calibration constants based at least in part on blood pressure
- 6 parameters derived from the oscillometric signal, and **p** is a hydrostatic pressure
- 7 head parameter constant.
- 1 7. The method of claim 6, wherein the calibrating of the sequence of
- 2 tonometric values $S_r(t)$ includes calculating:
- $a_r = (S_r(t_D)-S_r(t_M))/(DBP-MBP), and$
- 4 $b_r = S_r(t_M) a_r MBP$, wherein
- MBP is oscillometric mean arterial blood pressure measured near time $t_{\rm M}$, and
- DBP is oscillometric diastolic blood pressure measured near time t_D .
- 1 8. The method of claim 6, wherein the calibrating of the sequence of
- 2 tonometric values $S_r(t)$ includes calculating:
- $a_r = (S_r(t_S)-S_r(t_M))/(SBP-MBP), and$
- 4 $b_r = S_r(t_M) a_r MBP$), wherein
- 5 MBP is oscillometric mean arterial blood pressure measured near time t_M , and
- SBP is oscillometric systolic blood pressure measured near time $t_{\rm S}$.
- 1 9. The method of claim 6, wherein the calibrating of the sequence of
- 2 tonometric values S_r(t) includes calculating:
- $a_r = (S_r(t_S)-S_r(t_D))/(SBP-DBP) , and$
- 4 $b_r = S_r(t_D) a_r DBP$, wherein
- 5 SBP is oscillometric systolic blood pressure measured near time t_S, and
- 6 DBP is oscillometric diastolic blood pressure measured near time t_D.

- 1 10. The method of claim 1, wherein the calibrating of the sequence of values 2 includes using a mean blood pressure value and a diastolic blood pressure value 3 from the oscillometric signal to calibrate the sequence of tonometric pressure 4 values. 1 11. The method of claim 1, wherein the calibrating of the sequence of values 2 includes using a mean blood pressure value and a systolic blood pressure value from 3 the oscillometric signal to calibrate the sequence of tonometric pressure values. 1 12. The method of claim 1, wherein the calibrating of the sequence of values 2 includes using a systolic blood pressure value and a diastolic blood pressure value 3 from the oscillometric signal to calibrate the sequence of tonometric pressure 4 values. 1 13. The method of claim 1, further comprising: 2 calculating a first compliance value based on the calibrated radial pressure 3 waveform; 4 estimating end-effects of the oscillometric signal; and 5 correcting the first compliance value using the estimated end effects. 1. 14. The method of claim 1, wherein the processing of the calibrated tonometric 2 pressure waveform includes estimating a first compliance value using a compliance 3 pressure curve. 1 15. The method of claim 2, further comprising: 2 using time points t_M and t_S from the sequence of values based on the 3 tonometric signal, locating corresponding tonometric signal values shifted to the 4 nearest peak (for t_S), nadir (for t_D), and calibrating using the formula
 - using tonometric and oscillometric pressures, P and P_c , computing transmural pressure $P_{TR} = P P_c$ at each time point,

 $P_r(t) = ((S_r(t) + additive correction_r) + multiplicative correction_r),$

5

6

7

8

using P_c and n_c computing V_c ,

9

numerically differentiating the data pairs (-V_c, P_{TR}) to obtain

10

11

$$C = \frac{dV}{dP_{TR}} = -\frac{dV_c}{dP_{TR}}$$
 as a function of P

- 1
 - 16. The method of claim 15, further comprising:
- 2 plotting C(P_{TR}) and reporting C(SBP), C(DBP), C(120), C(80), and
- 3 pressure at C_{max}.
- 1
- 17. The method of claim 15, further comprising:
- 2 calculating a Mean Compliance as follows:

$$\frac{1}{SBP - DBP} \int_{DBP}^{SBP} C(P)dP$$

- 1
- 17. The method of claim 1, further comprising:
- 2 using a tonometric signal to calibrate oscillometric pressure.
- 1
- 18. The method of claim 1, further comprising estimating end-effects of
- 2 oscillometric sensor apparatus on the oscillometric signal.
- 1
- 19. The method of claim 1, further comprising:
- 2 using a tonometric signal to calibrate oscillometric pressure signals in a
- 3 contralateral arterial site.
- 1
- 20. The method of claim 19, further comprising: processing the
- 2 calibrated oscillometric pressure signals within the computer system to generate one
- 3 or more values each corresponding to one of the one or more vascular-compliance
- 4 parameters.

1	21. A system for computerized calculation of one of more vascular-compilance
2	parameters of a patient, the system comprising:
3	a first sensor that measures an oscillometric arterial signal;
4	a second sensor that measures a tonometric arterial signal;
5	a first analog-to-digital converter, operatively coupled to the first sensor, that
6	generates a sequence of oscillometric values that are based on the oscillometric
7	signal;
8	a second analog-to-digital converter, operatively coupled to the second
9	sensor, that generates a sequence of tonometric values that are based on the
10	tonometric signal;
11	a computer system, operatively coupled to the first and second analog-to-
12	digital converters, wherein the computer system processes the first and second
13	sequences of values and calibrates the sequence of tonometric values based on the
14	one or more oscillometric parameters to generate one or more values each
15.	corresponding to one of the one or more vascular-compliance parameters.
1	22. The system of claim 21, wherein the computer system processes the
2	sequence of tonometric values S _r (t) to generate a calibrated tonometric pressure
3	waveform P _r (t) as follows:
4	$P_r(t) = ((S_r(t) + additive correction_r) * multiplicative correction_r)$
5	wherein the additive correction, and the multiplicative correction, are calibration
6	constants based at least in part on blood pressure parameters derived from the
7	oscillometric signal, and $S_r(t)$ is the tonometric signal value at time t.
1	23. The system of claim 22, wherein the computer system calculates:
2	the multiplicative correction = (DBP-MBP) / ($S_r(t_D)-S_r(t_M)$) , and
3	the additive correction _r = $a_r MBP - S_r(t_M)$, wherein
4	MBP is oscillometric mean arterial blood pressure measured near time t_M , and
5	DBP is oscillometric diastolic blood pressure measured near time t _D .
1	24. The system of claim 22, wherein the computer system calculates:

- the multiplicative correction_r = $(SBP-MBP)/(S_r(t_S)-S_r(t_M))$, and
- 3 the additive correction_r = $a_r MBP S_r(t_M)$, wherein
- 4 MBP is oscillometric mean arterial blood pressure measured near time t_M , and
- 5 SBP is oscillometric systolic blood pressure measured near time t_s.
- 1 25. The system of claim 22, wherein the computer system calculates:
- the multiplicative correction_r = $(SBP-DBP)/(S_r(t_S)-S_r(t_D))$, and
- 3 the additive correction_r = $a_r DBP S_r(t_D)$, wherein
- 4 SBP is oscillometric systolic blood pressure measured near time t_s, and
- DBP is oscillometric diastolic blood pressure measured near time t_{D} .
- 1 26. The system of claim 21, wherein the computer system processes the
- 2 sequence of tonometric values S_r(t) to generate a calibrated tonometric pressure
- 3 waveform $P_r(t)$ as follows:
- 4 $P_r(t)=((S_r(t)-b_r)(1/a_r))+ \mathbf{p}$
- b_r where a_r and b_r are calibration constants based at least in part on blood pressure
- parameters derived from the oscillometric signal, and **p** is a hydrostatic pressure
- 7 head parameter constant.
- 1 27. The system of claim 26, wherein the computer system calculates:
- $a_r = (S_r(t_D)-S_r(t_M))/(DBP-MBP) , and$
- $b_r = S_r(t_M) a_r MBP$, wherein
- 4 MBP is oscillometric mean arterial blood pressure measured near time t_M , and
- 5 DBP is oscillometric diastolic blood pressure measured near time t_D.
- 1 28. The system of claim 26, wherein the computer system calculates:
- $a_r = (S_r(t_S)-S_r(t_M))/(SBP-MBP) , and$
- $b_r = S_r(t_M) a_r MBP$), wherein
- 4 MBP is oscillometric mean arterial blood pressure measured near time t_M , and
- SBP is oscillometric systolic blood pressure measured near time t_S.

- 1 29. The system of claim 26, wherein the computer system calculates:
- $a_r = (S_r(t_S)-S_r(t_D))/(SBP-DBP) , and$
- $b_r = S_r(t_D) a_r DBP$, wherein
- SBP is oscillometric systolic blood pressure measured near time t_S, and
- 5 DBP is oscillometric diastolic blood pressure measured near time t_{D} .
- 1 30. The system of claim 21, wherein the computer system uses a mean blood
- 2 pressure value and a diastolic blood pressure value from the oscillometric signal to
- 3 calibrate the sequence of tonometric pressure values.
- 1 31. The system of claim 21, wherein the computer system uses a mean blood
- 2 pressure value and a systolic blood pressure value from the oscillometric signal to
- 3 calibrate the sequence of tonometric pressure values.
- 1 32. The system of claim 21, wherein the computer system uses a systolic blood
- 2 pressure value and a diastolic blood pressure value from the oscillometric signal to
- 3 calibrate the sequence of tonometric pressure values.
- 1 33. The system of claim 21, wherein the computer system calculates a first
- 2 compliance value based on the calibrated radial pressure waveform, estimates end-
- 3 effects of the oscillometric signal; and corrects the first compliance value based on
- 4 the estimated end effects.
- 1 34. The system of claim 21, wherein the computer system generates a first
- 2 compliance value from a compliance pressure curve.
- 1 35. The system of claim 22, wherein the computer system:
- 2 uses time points t_M and t_S from the sequence of values based on the
- 3 tonometric signal, and locates corresponding tonometric signal values shifted to the
- 4 nearest peak (for t_S), nadir (for t_D), and calibrating using the formula
- 5 $P_r(t) = ((S_r(t) + additive correction_r) * multiplicative correction_r),$

- 6 uses tonometric and oscillometric pressures, P and P_c, to compute
- 7 transmural pressure $P_{TR} = P P_c$ at each time point,
- 8 uses P_c and n_c to compute V_c , and
- 9 numerically differentiates the data pairs (-V_c, P_{TR}) to obtain
- 10
- $C = \frac{dV}{dP_{TR}} = -\frac{dV_c}{dP_{TR}}$ as a function of P TR ·
- 1 36. The system of claim 35, wherein the computer system plots $C(P_{TR})$ and
- reporting C(SBP), C(DBP), C(120), C(80), and pressure at C_{max}.
- 3
- 4 37. The system of claim 35, wherein the computer system calculates a mean
- 5 compliance as follows:

$$\frac{1}{SBP - DBP} \int_{DBP}^{SBP} C(P)dP$$

- 1 38. The system of claim 21, wherein the first sensor senses the oscillometric
- 2 signal from one side of a patient, the second sensor senses the tonometric signal
- 3 from a contralateral arterial site, and the computer uses the oscillometric signal to
- 4 calibrate tonometric pressure signals in the contralateral arterial site.
- 1 39. The system of claim 21, wherein the computer system further estimates end-
- 2 effects of oscillometric sensor apparatus on the oscillometric signal.
- 1 40. The method of claim 21, wherein the computer system further uses a
- 2 tonometric signal to calibrate oscillometric pressure signals in a contralateral arterial
- 3 site.
- 1 41. A system for computerized calculation of a vascular compliance parameter
- of a patient, the system comprising:
- a first sensor that measures an oscillometric signal of the patient;

4	a second sensor that measures a tonometric signal of the patient;
5	means for calibrating the tonometric signal based on the oscillometric signal
6	and for calculating a value for the vascular-compliance parameter.
1	42. The system of claim 41, wherein the means for calibrating further includes:
2	means for obtaining a time-correlated dual sequence of digital values that are
3	based on the waveforms monitored by the first and second sensors; and
4	means for processing the input signals to convert the time-correlated dual
5	sequence of digital values to an output signal corresponding to a value of the
6	vascular-compliance parameter.