FI	M	5
		_

2010-11

MATHEMATIK

Stunde vom 03.12.2010

 $m_t \cdot m_n$

=-1

In dieser und der nächsten Stunde haben wir uns mit Tangenten und Normalen beschäftigt. Anstelle eines Tafelbildes hier die wichtigsten Punkte in einer Übersicht! Jetzt zur Normalen...

Normale in einem Punkt aufstellen

Bei gegebener Funktion f(x) und gegebenem Punkt P(a|f(a)) stellt man die Normale folgendermaßen auf:

- 1) f'(x) bilden, f'(a) ausrechnen
- 2) Tangente mit der Gleichung t: y=mx+c allgemein hinschreiben
- 3) In t: y=mx+c die Steigung m durch $-\frac{1}{f'(a)}$ ersetzen
- 4) c bestimmen mit einer Punktprobe für P auf t über $f(a) = -\frac{1}{f'(a)} \cdot a + c$
- 5) t: y=mx+c mit den Zahlen m und c hinschreiben. Fertig.

Ein (einfaches) Beispiel

Wir untersuchen $f(x)=x^2$ und bestimmen die Normale in P(3|9).

- 1) f'(x)=2x und f'(3)=6.
- 2) t: y=mx+c (naja, nicht so aufwendig...)
- 3) t: $y = -\frac{1}{6}x + c$ (auch nicht so schwer...)
- 4) $9 = -\frac{1}{6} \cdot 3 + c$ und das bedeutet 9 = -2 + c oder c = 11. 5) t: $y = -\frac{1}{6} x + 11$

Das ist im Grunde schon alles, was du wissen musst.

Auch hier kann man die Aufgaben wieder ziemlich kompliziert machen, indem man zum Beispiel auch den Punkt P nicht mehr vorgibt, oder danach fragt, welche Normale die x-Achse unter dem Winkel 30° schneidet o.ä.!

Merken solltest du dir auf jeden Fall: Die Steigung der Normalen ist der negative Kehrwert der Steigung der Tangenten!

Das gilt für alle Geraden, die senkrecht aufeinander stehen; ihre Steigungen sind immer zueinander die negativen Kehrwerte oder kurz: Das Produkt beider Steigungen ist -1...