• Probability of observing a statistic equal to the one seen in the data, or one that is more "extreme", when the null hypothesis is true

	Null hypothesis is true	Null hypothesis is false
Behaviour of a statistic		

 Probability of observing a statistic equal to the one seen in the data, or one that is more "extreme", when the null hypothesis is true

• Requires:

- Knowledge of the null hypothesis
- Choice of a statistic
- Concept of repeating the whole study in the same way
 - Same study design
 - Same sampling scheme
 - Same definition of the statistic

- Probability of observing a statistic equal to the one seen in the data, or one that is more "extreme", when the null hypothesis is true
- Requires:
 - Knowledge of the null hypothesis
 - Choice of a statistic
 - Concept of repeating the whole study in the same way
 - Same study design
 - Same sampling scheme
 - Same definition of the statistic

- Probability of observing a statistic equal to the one seen in the data, or one that is more "extreme", when the null hypothesis is true
- Requires:
 - Knowledge of the null hypothesis
 - Choice of a statistic
 - Concept of repeating the whole study in the same way
 - Same study design
 - Same sampling scheme
 - Same definition of the statistic

A normally distributed statistic

A gammadistributed statistic Gamma(1, 0.5)

Uniform distribution

 P-values have a uniform distribution when the null hypothesis is true

QQ plot

Observed vs. expected

• -log₁₀ p-values

Basics of power

Decision based on a Statistic	Null hypothesis is true	Null hypothesis is false
Reject the null	α	$1-\beta$
Do not reject	$1-\alpha$	$oldsymbol{eta}$

- Power: probability that the null is rejected when it is false
- α : Type 1 error
- β : Type 2 error

Power

Depends on 3 factors

- α
- β
- Effect size: i.e. the difference between the distributions

For example: the t-test comparing 2 groups

- Null hypothesis: two groups have the same mean
- The usual statistic is

$$\frac{(mean_1 - mean_2)}{sd_{pooled}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

- Result implicitly assumes you are interested in a general phenomenon – i.e. *inference*
- Power varies with
 - How far apart are the means
 - Standard deviation (sd)

Now

- Read in phenotypes.aug.csv
- Select 30 people
 - Test for association between parahippocampal cortical volume and GENDER
 - Test for association between parahippocampal volume and MYSTERY

(pause)

QQ plot: N=30. 35 different datasets sampled GENDER (red); MYSTERY (blue)

Volcano plot: N = 30 35 different datasets sampled

N=250

Comments

- Variability is only due to random sampling
 - Computer did the sampling
- As the sampled N → the full sample size (1000) the same individuals will be resampled
 - Studying the variability of the estimated "Statistics" can be informative
 - Bootstrap when N-sampled = full N

- Please go to
- https://bit.ly/HWSEQR to fill out the survey for this section