WHAT IS CLAIMED IS:

10

15

20

- 1. A method for estimating a melting temperature (T_m) for a polynucleotide at a desired ion concentration $[X^+]$, said polynucleotide having a known G-C content value, f(G-C), comprising:
 - (a) obtaining a reference melting temperature (T_m^0) for the polynucleotide, said reference melting temperature being a melting temperature obtained or provided for the polynucleotide at a reference ion concentration $[X^+]_0$; and
 - (b) modifying the reference melting temperature by a logarithm of the ratio of said desired ion concentration to said reference ion concentration, said logarithm being multiplied by a coefficient which is a function of the G-C content value, wherein the estimated melting temperature is calculated using the reference melting temperature.

2. A method for estimating a melting temperature (T_m) for a polynucleotide at a desired ion concentration [X⁺], said polynucleotide having a known G-C content value, f(G-C), comprising:

- (a) obtaining a reference melting temperature (T_m^0) for the polynucleotide, said reference melting temperature being a melting temperature obtained or provided for the polynucleotide at a reference ion concentration $[X^+]_0$; and
- (b) modifying the reference melting temperature by an amount,

$$k(f(G-C)) \times \ln \frac{[X^+]}{[X^+]_0}$$

in which the coefficient k(f(G-C)) is a function of the G-C content value f(G-C), wherein the estimated melting temperature is obtained by using the reference melting temperature.

3. The method of claim 2, wherein the coefficient k has a value determined by the relation

$$k(f(G-C)) = m \cdot f(G-C) + k_0$$
; and

- wherein a first coefficient, m and a second coefficient, k_0 , are optimized for predicting polynucleotide melting temperatures T_m^0 .
 - 4. The method of claim 2, wherein the reference melting temperature T_m^0 is used to calculate T_m according to the formula:

$$T_m = T_m^0 + k \times \ln \frac{[X^+]}{[X^+]_0}.$$

15

5. The method of claim 4, wherein the coefficient k

 $k(f(G-C)) = m \cdot f(G-C) + k_0$; and wherein a first coefficient, m and a second

coefficient, k_0 are optimized for predicting polynucleotide melting temperatures T_m^0 .

6. The method of claim 2, wherein the reference melting temperature T_m^0 is used to calculate T_m according to the formula:

$$T_{m} = T_{m}^{0} + k(f(G - C)) \times \ln \frac{[X^{+}]}{[X^{+}]_{0}} + b \times (\ln^{2}[X^{+}] - \ln^{2}[X^{+}]_{0}).$$

- The method of claim 6, wherein k is $m \cdot f(G C) + k_0$; and wherein a first coefficient, m, a second coefficient, k_0 , and a third coefficient b are optimized for predicting polynucleotide melting temperatures T_m^0 .
 - 8. The method according to claim 5, wherein m is -3.22, k_0 is 6.39.
 - 9. The method according to claim 7, wherein m is -4.62, k_0 is 4.52 and b = -0.985.
- The method of claim 2, wherein the reference melting temperature T_m^0 is used to calculate T_m according to the formula:

$$\frac{1}{T_m} = \frac{1}{T_m^0} + k(f(G - C)) \times \ln \frac{[X^+]}{[X^+]_0}.$$

10

The method of claim 10, wherein the coefficient k has a determined value by the relation $kf(G-C) = m \cdot f(G-C) + k_0$; and wherein a first coefficient, m and a second coefficient, k_0 are optimized for predicting polynucleotide melting temperatures.

12. The method of claim 2, wherein the melting temperature is obtained from the reference T_m^0 by utilizing the formula:

$$\frac{1}{T_m} = \frac{1}{T_m^0} + k \Big(f(G - C) \Big) \times \ln \frac{[X^+]}{[X^+]_0} + b \times \Big(\ln^2 [X^+] - \ln^2 [X^+]_0 \Big).$$

5

- 13. The method of claim 10, wherein k is $m \cdot f(G C) + k_0$; and wherein a first coefficient, m and a second coefficient, k_0 , and a third coefficient b are optimized for predicting polynucleotide melting temperature.
- 10 14. The method of claim 11, wherein k_0 is -6.18 x10⁻⁵; m is 3.85 x10⁻⁵.
 - 15. The method of claim 13, wherein k_0 is -3.95 x10 ⁻⁵; m is 4.29 x10 ⁻⁵; and b is 9.40 x10 ⁻⁶.
- 15 16. The method of claim 2, wherein the G-C content value is the fraction of the polynucleotide's nucleotide bases that are either guanine or cytosine.
 - 17. The method of claim 1, wherein the polynucleotide is DNA.
- 20 18. The method of claim 1, wherein the polynucleotide ranges in length from about 2 to about 500 basepairs.
 - 19. The method of claim 1, wherein the polynucleotide ranges in length from about 5 to about 200 base pairs.

- 20. The method of claim 1, wherein the polynucleotide ranges from about 10 to about 30 basepairs in length.
- 5 21. The method of claim 1, wherein the reference melting temperature is experimentally determined.
 - 22. The method of claim 1, wherein the reference melting temperature is calculated from a theoretical model.

10

- 23. The method of claim 1, wherein the reference melting temperature is obtained by utilizing a nearest neighbor model.
 - 24. The method of claim 1, wherein the reference ion concentration is 1 M.

15

- 25. The method of claim 1, wherein the ion is a monovalent ion.
- 26. The method of claim 1, wherein the ion is selected from the group consisting of the cations of sodium, lithium, potassium, rubidium, cesium and francium.

20

- 27. The method of claim 1, wherein the desired ion concentration ranges between about 1mM and about 5M.
- The method of claim 1, wherein the desired ion concentration ranges between about 10 mM and about 2M.

- 29. The method of claim 1, wherein the desired ion concentration ranges between about 70 mM and about 1021mM.
- 30. A computer system for predicting a melting temperature, which computer system comprises:
 - (a) a memory; and

15

(b) a processor interconnected with the memory and having one or more software components loaded therein,

wherein the one or more software components cause the processor to execute steps of a method according to claim 1.

31. A computer program product comprising a computer readable medium having one or more software components encoded thereon in computer readable form, wherein the one or more software components may be loaded into a memory of a computer system and cause a processor interconnected with said memory to execute steps of a method according to claim 1.