1. Another scheduling problem. Here's the idea: do the quickest jobs first.

```
Sort the t_i Output 1 \leq i \leq n in increasing order of t_i
```

The total time taken is $O(n \log n)$.

To show that this is optimal, we'll prove a basic property of this scheduling problem.

Claim. Suppose $t_i < t_j$. Consider any schedule in which job j is done before job i. Then, swapping jobs i and j (and leaving the rest of the schedule unchanged) yields a smaller total waiting time.

Proof. Let S be the schedule in which j is done before i. Divide this schedule into three phases: (1) jobs before j, (2) jobs starting with j but before i, and finally (3) the remaining jobs starting with i.

The swap yields a new schedule, call it \overline{S} , in which phase-one jobs and phase-three jobs have exactly the same waiting times as in S. But the jobs in the middle phase have their waiting times shrunk by $t_j - t_i$. Therefore, \overline{S} is better than S.

- 2. Two-coloring a graph. Some observations about two-coloring a graph G:
 - \bullet Different connected components of G can be handled separately.
 - Fix any vertex u. If there is a valid two-coloring in which u is white, then there is also a valid two-coloring in which it is black (just flip all colors in u's connected component).
 - Therefore, if G is two-colorable, then in each connected component, we can pick any node and color it black; thereafter the colors of the other nodes in that component are fully determined.

The algorithm:

- 1. Find the connected components of G.
- 2. For each connected component C:
 - Pick a vertex in that component.
 - Run breadth-first search starting at that vertex (this search will be limited to C).
 - Color all nodes in C at even distance black and all nodes at odd distance white.
- 3. For each edge in G:
 - If the endpoints have the same color, halt and output "not two-colorable".

Output "two-colorable".

Each of the steps (1)–(3) is linear-time, and thus the overall running time is linear.

Justification: Suppose, first, that G is two-colorable. Then, by the remarks above, the algorithm will discover a valid coloring, and this will be validated in step (3).

Conversely, if G is not two-colorable, then whatever coloring is obtained in steps (1)–(2) is necessarily invalid. This will be detected in step (3).

3. Textbook problem 4.1.

A	B	C	D	E	F	G	H
: 0	∞	∞	∞	∞	∞	∞	∞
0	1	∞	∞	4	8	∞	∞
0	1	3	∞	4	7	7	∞
0	1	3	4	4	7	5	∞
0	1	3	4	$\boxed{4}$	7	5	8
0	1	3	4	4	7	5	8
0	1	3	4	4	6	5	6
0	1	3	4	4	6	5	6
0	1	3	4	4	6	5	6

- 4. Non-optimality of greedy set cover. There is a counterexample in Section 5.4 of the textbook.
- 5. (a) One way Alice can choose a set of guests S is to first let S contain all n people, and then eliminate any people that absolutely have to be eliminated.

Which people are these? Anybody with less than five friends.

This suggests a simple algorithm:

Initialize S to contain all n people While S contains a person p with fewer than five friends in $S\colon$ Remove p from S

Claim. Let S^* be any optimal solution. Then throughout the execution of the algorithm, S^* is always contained in S.

Proof. Our initial setting of S certainly contains S^* . And any person p we subsequently eliminate has less than five friends in S (and thus less than five friends in S^*) and so cannot be in S^* . Since we never eliminate a person in S^* , set S always contains S^* .

Moreover, every node in the final set S it has at least five neighbors in S. Therefore $S = S^*$.

(b) Here's a simple linear-time implementation. The set S is maintained as a Boolean array invite.

```
Q = (\text{empty queue}) \; / / \; \text{people to be eliminated} For each person p:  \text{invite}[p] = \text{true } / / \; \text{Boolean array that indicates who is invited set friends}[p] \; \text{to the the number of friends of } p \\ \text{if friends}[p] < 5: \\ \text{inject}(Q,p) \; / / \; \text{mark } p \; \text{for elimination} \\ \text{invite}[p] = \text{false}  While Q is not empty:  p = \text{eject}(Q) \\ \text{for all friends } q \; \text{of } p \text{:}
```

```
\begin{aligned} & \texttt{friends}[q] = \texttt{friends}[q] - 1 \\ & \texttt{if friends}[q] < 5 \text{ and invite}[q] = \texttt{true:} \\ & \texttt{inject}(Q,q) \\ & \texttt{invite}[q] = \texttt{false} \end{aligned}
```

Every person p to be eliminated ends up in the queue at some stage. When p is pulled off the queue, it is officially eliminated, in the sense that its neighbors have their friend-count decremented. Moreover, p is only added to the queue once; thereafter invite[p] becomes false.

The form of the input is rather like the adjacency list of a graph. Setting the friends array is like computing the degree of every node in that graph: linear time. Likewise, the innermost loop is like iterating through the neighbors of a specific node in the graph.

Thus the overall running time is the same as that of a basic graph search algorithm like DFS, that is, O(n+m), where m is the number of friend-pairs (edges).

6. A natural approach: on your first tank of gas, go as far as possible within M miles; that is, go up to the largest $m_i \leq M$. On your second tank, go to the largest m_j with $m_j - m_i \leq M$, and so on.

Here's the pseudocode.

```
i=1 // index of current position while i< n: j=i // index of next gas stop while j< n and m_{j+1}-m_i \leq M: j=j+1 output ''stop at m_j'' i=j
```

The running time is O(n): the indices i, j each do a single pass through the array of mile-posts.

To see why this strategy is optimal, let S_1, S_2, \ldots denote the mileage posts at which we end up stopping. For instance, if our third stop is at m_{10} , then $S_3 = m_{10}$.

Let T_1, T_2, \ldots be any other valid solution: any sequence of stops that doesn't run out of gas. We'll show that our solution (S_k) is at least as good as (T_k) .

```
Claim. S_k \geq T_k for all k.
```

Proof. We can prove this by induction on k. It certainly holds for k = 1, by the way in which we choose the first stopping point.

So let's say it holds up to the first k stops (that is, $S_k \ge T_k$), and let's look at k+1. Since $T_{k+1} - T_k \le M$ and $S_k \ge T_k$, it follows that $T_{k+1} - S_k \le M$. By definition, $S_{k+1} - S_k$ is the longest stretch starting at S_k that is at most M miles long. Therefore, $S_{k+1} \ge T_{k+1}$.

7. Given a set of intervals, let's sort them by ending-point so that we have $[\ell_1, u_1], \ldots, [\ell_n, u_n]$ where $u_1 \leq u_2 \leq \cdots \leq u_n$.

Here's the idea: we need at least one point in the very first interval, $[\ell_1, u_1]$. We might as well take this point to be u_1 , because it touches as least as many other intervals as any other point in $[\ell_1, u_1]$. Then we can recurse.

```
Let I be the set of n intervals Let C = \{\} (selected points) While I is not empty: Find the smallest u_i in I Add u_i to C Remove intervals containing u_i from I
```

To understand why this greedy strategy is optimal, we show that there is always an optimal solution in which the leftmost point is u_1 . With this in place, we can then remove every interval that u_1 touches, leaving a smaller version of the original problem; and recurse.

Claim. Let $x_1 < x_2 < \cdots < x_m$ be any solution, that is, a set of points that touches all the intervals. Then swapping x_1 with u_1 also yields a solution.

Proof. The leftmost point, x_1 , must satisfy $x_1 \leq u_1$; otherwise none of the points touches $[\ell_1, u_1]$.

The intervals touched by x_1 all start before x_1 , and thus before u_1 ; and they end after u_1 , since u_1 is the leftmost ending point. Therefore, any interval touched by x_1 is also touched by u_1 , and the substitution $x_1 \to u_1$ also generates a valid solution.

The greedy algorithm can be implemented in time $O(n \log n)$; do you see how?