1 **CALCULS SIMPLES**

- Déterminer directement sans aucun calcul d'intégrale une primitive des fonctions suivantes :

- $x \mapsto xe^{-3x^2}$. 2) $x \mapsto \frac{1}{x(\ln x)^4}$ $x \mapsto \frac{1}{\tan x}$. 4) $x \mapsto \frac{x^2}{1+x^3}$.

- 5) $x \mapsto \frac{\sinh x}{\sin(2x)}$ 6) $x \mapsto \tan^2 x$. 7) $x \mapsto \frac{1}{\cos^2 x \sqrt{\tan x}}$ 8) $x \mapsto \frac{1}{x + \sqrt{x}}$. 9) $x \mapsto \frac{\ln \ln x}{x}$ 10) $x \mapsto e^{e^x + x}$. 11) $x \mapsto \frac{1}{x + x(\ln x)^2}$ 12) $x \mapsto \frac{1}{\cosh^2 x}$. 13) $x \mapsto \frac{1}{\sqrt{x} + \sqrt{x^3}}$ 14) $x \mapsto \frac{1}{x\sqrt{1 + \ln x}}$

- Déterminer une primitive des fonctions suivantes : 2
 - $x \longmapsto \cos^4 x \sin^2 x$.
- 2) $x \longmapsto \cos^3 x \sin^4(2x)$.
- 3 1) 🕑 Déterminer une primitive des fonctions suivantes: **a)** $x \mapsto \frac{1}{1+x+x^2}$. **b)** $x \mapsto \frac{2-5x}{1+x^2}$. **c)** $x \mapsto \frac{3x+2}{2x^2-4x+3}$.

- d) $x \mapsto \frac{x+3}{x^2-2x+5}$ 2) $\bigcirc \bigcirc \bigcirc$ Déterminer une primitive de la fonction $x \mapsto \frac{1}{x^3-1} \operatorname{sur} \mathbb{R} \setminus \{1\}.$
- Calculer, en utilisant l'exponentielle complexe :
 - 1) l'intégrale $\int_{0}^{\infty} e^{t} \sin(3t) dt$.
 - 2) une primitive de $x \mapsto \sin x \operatorname{sh} x$.
- P Soit $f \in \mathscr{C}(I,\mathbb{R})$ dont on note F une primitive. Calculer la dérivée de $x \mapsto x f^{-1}(x) - F(f^{-1}(x))$. Conclusion?
- \mathbb{C} Soit $f \in \mathscr{C}([0,1],\mathbb{R})$. Calculer: $\lim_{x\to 0} \frac{1}{x} \int_0^x f(t) dt$, puis interpréter géométriquement.

INTÉGRATION PAR PARTIES

- 🖰 🖰 Calculer, en intégrant par parties :
 - l'intégrale ∫₀^π e^t sin(3t) dt.
 une primitive de x → sin x sh x.

- (2) (2) Déterminer une primitive des fonctions suivantes en intégrant par parties :

 - $x. \qquad 2) \quad x \longmapsto (x \ln x)^2.$ $4) \quad x \longmapsto \frac{x}{\cos^2 x}.$
 - 6) $x \mapsto \operatorname{Arcsin} x$.
 - $x \longmapsto x \operatorname{ch} x$. 8) $x \longmapsto x \sin^2 x$.
 - $x \longmapsto x \operatorname{Arctan} x$.

$$I_{p,q} = \int_0^1 t^p (1-t)^q dt.$$

1) Montrer que pour tous $p \in \mathbb{N}$ et $q \in \mathbb{N}^*$:

$$I_{p,q} = \frac{q}{p+1} I_{p+1,q-1}.$$

2) En déduire que pour tous $p, q \in \mathbb{N}$:

$$I_{p,q} = \frac{p! \ q!}{(p+q+1)!}.$$

3) En déduire enfin une expression simplifiée de $\sum_{k=0}^{q} {q \choose k} \frac{(-1)^k}{p+k+1} \text{ pour tous } p, q \in \mathbb{N}.$

3 CHANGEMENT DE VARIABLE

- ② ② Déterminer une primitive des fonctions suivantes en commençant par y effectuer un changement de va-

 - 1) $x \mapsto \frac{1}{\sqrt{e^x 1}}$ en posant $t = \sqrt{e^x 1}$. 2) $x \mapsto \frac{1}{\sqrt{1 + x}}$ en posant $t = \sqrt{1 + x}$. 3) $x \mapsto \frac{1}{\cosh x}$ en posant : a) $t = e^x$.
 - b) $t = \sinh x$. c) $t = \operatorname{th} x$.
 - 4) $x \mapsto \sin(\ln x)$ en posant $t = \ln x$. 5) $x \mapsto \frac{1}{x\sqrt{x^2 1}}$ en posant $t = \sqrt{x^2 1}$. 6) $x \mapsto \sqrt{1 x^2}$ en posant $x = \sin t$.

 - 7) $x \mapsto \frac{1}{1 + \tan x}$ en posant $t = \tan x$. 8) $x \mapsto \frac{1}{\sin x + \sin(2x)}$ en posant $t = \cos x$.
- 11
 - $\int_{-1}^{1} t^2 \sqrt{1 t^2} \, \mathrm{d}t \text{ en posant } t = \sin \theta.$
 - 2) $\int_{a}^{1} \frac{\mathrm{d}t}{\mathrm{e}^{t} + 1} \text{ en posant } x = \mathrm{e}^{t}.$
 - $\frac{\mathrm{d}\theta}{\cos\theta} \text{ en posant } x = \sin\theta.$

4)
$$\int_{0}^{1} \frac{dt}{\sqrt{t^2 + t + 1}} \text{ en posant } x = \sqrt{t^2 + t + 1} - t.$$

5)
$$\int_{\frac{1}{2}}^{2} \frac{\ln t}{t^2 + 1} dt \text{ en posant } u = \frac{1}{t}.$$

- 12
- 1) Déterminer une primitive de $x \mapsto \frac{\ln x}{x} \operatorname{sur} \mathbb{R}_+^*$.
- **2)** $\textcircled{\circ}$ $\textcircled{\circ}$ $\textcircled{\circ}$ Soit $\alpha \in \mathbb{R} \setminus \{-1\}$. Déterminer une primitive de $x \longmapsto x^{\alpha} \ln x$ sur \mathbb{R}_{+}^{*} au moyen d'un changement de variable du type $x = t^{\beta}$ avec $\beta \in \mathbb{R}$ à préciser.
- $\bigcirc \bigcirc \bigcirc \bigcirc$ On pose: $S = \int_0^{\frac{\pi}{2}} \frac{\sin t}{\sin t + \cos t} dt$

et:
$$C = \int_0^{\frac{\pi}{2}} \frac{\cos t}{\sin t + \cos t} dt.$$

- 1) Montrer que S = C par changement de variable.
- **2)** Que vaut S + C? En déduire S et C.
- 3) En déduire $\int_0^1 \frac{\mathrm{d}t}{t + \sqrt{1 t^2}}.$
- $\bigcirc \bigcirc \bigcirc \bigcirc$ On pose: $I = \int_{0}^{\frac{\pi}{6}} \frac{\cos^2 t}{\cos(2t)} dt$

et:
$$J = \int_0^{\frac{\pi}{6}} \frac{\sin^2 t}{\cos(2t)} dt.$$

- **2)** Calculer I + J en posant $x = \tan t$.
- **3)** En déduire I et J.
- On fait semblant dans cet exercice de NE PAS connaître la fonction logarithme et pour tout $x \in \mathbb{R}_+^*$,

on pose: $L(x) = \int_{1}^{x} \frac{dt}{t}$. Montrer que pour tous $x, y \in \mathbb{R}_+^*$: L(xy) = L(x) + L(y).

- (b) (c) Montrer que les fonctions suivantes sont dérivables et calculer leurs dérivées :

1)
$$x \longmapsto \int_{-x}^{2x} \frac{\mathrm{d}t}{\sqrt{1+t^4}}$$

2)
$$x \mapsto \int_{-\pi}^{2\pi} \frac{\cos(tx)}{t} dt$$
.

3)
$$x \mapsto \int_0^{\pi_x} f(t+x^2) dt$$
 où $f \in \mathcal{C}(\mathbb{R}, \mathbb{R})$.

4)
$$x \mapsto \int_{0}^{2\pi} f(x-t)\cos t \, dt$$
 où $f \in \mathscr{C}(\mathbb{R}, \mathbb{R})$.

5)
$$x \longmapsto \int_0^x \sqrt{x-t} \sin t \, dt$$
.