NPHY322 PRACTICAL REPORT

EXPERIMENT 9:ATMOSPHERIC EXTINCTION, AIRMASS (ATM-EXT)

GROUP 2 2024

DATE:05 October 5, 2024

INITIALS AND SURNAME	STUDENT NUMBER
OR MALETSWA	36824798
N MOKOENA	37320629
RK MAKETSWA	37174134
T MUKWENA	37299565
PN RALUTHAKA	37949128
T MNISI	37171755

AIM OF THE EXPERIMENT:

The aim of this experiment is to measure the atmospheric extinction by determining how much starlight is absorbed or scattered as it passes through Earth's atmosphere. This involves calculating the air mass for different celestial objects and quantifying the extinction coefficient.

BACKGROUND THEORY:

Atmospheric extinction and airmass are important concepts in the study of astronomy and atmospheric physics. They describe how the Earth's atmosphere affects the passage of light from celestial objects to an observer on the ground

Atmospheric extinction refers to the reduction in the intensity of light from astronomical objects as it passes through the Earth's atmosphere, influenced by factors such as airmass and atmospheric composition. Understanding this phenomenon is crucial for accurate astronomical observations. Atmospheric extinction is quantified by the airmass, which is the path length of light through the atmosphere relative to its path at zenith. Higher airmass values correspond to greater atmospheric thickness, leading to increased extinction (Manduca & Bell, 1979).

Rayleigh Scattering occurs when light interacts with particles smaller than the wavelength of the light, such as molecules of nitrogen and oxygen in the atmosphere. Rayleigh scattering is responsible for the blue color of the sky and is more effective at shorter wavelengths, causing blue light to scatter more than red light. Mie Scattering occurs with larger atmospheric particles, such as dust and water droplets. Mie scattering is less wavelength-dependent than Rayleigh scattering and can affect all wavelengths more uniformly, contributing to a general dimming of light.

Atmospheric extinction depends on the wavelength of light, the shorter the wavelength the more strongly scattered and absorbed which lead to higher extinction. The longer the wavelength the less affected by Rayleigh scattering but susceptible to absorption by water vapor and CO₂.

Airmass is a measure of the path length of light from a celestial object as it passes through the Earth's atmosphere, relative to the path length at the zenith. It represents the amount of atmosphere the light must pass through and is an important factor in calculating atmospheric extinction.

The figure shows two stars at different altitude above the horizon, they are observed with a single telescope. The photons from both stars should move through the atmosphere, but the difference is that the path length of light traveling through the atmosphere is quite different for the two stars. Since we are studying stars in any part of the sky, then path length for the traveling of light through the atmosphere will not be same in each case. Not all observatories

are on the same altitude above sea level and for this reason we are able to correct the effect. In other words, even if we observe the same star from two observatories, and the star is at the zenith at both, then the path length of its light through the atmosphere will not be the same if the observatories are at different altitudes above sea level. To compare measurements made by different telescopes, in different locations, we must correct as far as possible for any atmospheric effects. From the figure we see that, if we make the simple assumption of a slab for the atmosphere, and if the thickness of the atmosphere is h, then the path length through the atmosphere for any arbitrary zenith angle θ , will be equal to

$I = h \sec \theta$

Suppose now that the energy flux for a specific star (measured in W m $^{-2}$) at a specific wavelength λ , measured above the atmosphere is I_0 . It is well known that light intensity decreases exponentially when it passes through a medium according to the following relation

Figure 1: For a flat slab of atmosphere, the absorption would vary as the secant of the angle from the vertical, being a minimum (not zero) at the zenith.

 κ is the absorption coefficient and the path length is given by I. Note that the unit of κ is m⁻¹. In practice we can measure L(I) and we want I_o, which is the intensity/flux above the atmosphere. In terms of logarithms, we have

$$\log L(I) = " \log I_0 - \kappa I \log e$$

If we work with magnitudes we must multiply with -2.5. That gives

$$m\lambda = m_0\lambda + (2.5 \log e)k\lambda L$$
 $\propto m_0\lambda + 1.086k\lambda \sec\theta$

$$= m_0\lambda + a \lambda X$$

where we indicate the wavelength dependence with the subscript. $a\lambda$ is the extinction coefficient and $X = \sec \theta$ is the air mass.

The measurement at the telescope is not an intensity or flux but rather a count rate (count rate per second). We define the instrumental magnitude as

M₀ is the apparent magnitude of a star above the atmosphere

PROCEDURE:

- The operator meticulously assembled the telescope in accordance with the manufacturer's instructions, ensuring that every part was firmly attached.
- Once the telescope was fully assembled, the operator fastened the photometer to the optical system, utilizing a specific adaptor to guarantee accurate alignment and efficient light gathering.
- For system calibration, the operator used a standard light source a recognized photometric standard, to calibrate the photometer. To ensure precise readings, the operator modified the parameters and recorded the calibration data for later use, which was essential for reducing systematic errors in the measurements.
- The operator selected a suitable star for observation, preferably one with variable brightness, noting its coordinates and any relevant catalog information.
- With care, the operator located the chosen star, ensuring it was centered in the eyepiece and within the field of view of the photometer,
- The operator turned on the photometer and began taking measurements while pointing the telescope toward the star. One by one, different wavelength filters (U, B, V, and R) were utilized. Before taking a reading of the light intensity for each filter, the operator allowed the photometer to stabilize. The filter used, along with other pertinent observational details such as observation time and weather conditions, was recorded.

- For each measurement, the operator documented the intensity reading, the associated wavelength filter, and the observation duration in a comprehensive log. The information was organized in a clear tabular format for future reference and comparison, and any noticeable changes or anomalies during the measurements were remarked upon when possible.
- To account for air absorption, the operator applied Bouguer's formula to the recorded intensities.
- The operator conducted the measurement process on multiple stars of varying brightness and color to ensure the robustness of the results. A thorough comparison study required observations of three to five stars, all recorded using the previously mentioned format.

RESULTS AND DISCUSSION:

Blue Filter

Airmass	Exposure Time	Total Flux (I)	Background Flux (B)	N (I-B)	Instrumental Magnitude (mλ)
1.08045806006827	40.00	263969	70560	193409	-13.2161917
1.08533513459838	40.00	273392	75379	198013	-13.24173426
1.09049711104683	40.00	264993	68190	196803	-13.23507929
1.09592413584782	40.00	259078	65485	193593	-13.21722412
1.10162709729881	40.00	259539	67000	192539	-13.21129678
1.10761499151936	40.00	275138	77513	197625	-13.23960471
1.11387584471617	40.00	262747	67219	195528	-13.2280224
1.12045738768548	40.00	269338	73472	195866	-13.22989764
1.12731427680093	40.00	271696	73768	197928	-13.24126809
1.13449226433717	40.00	262242	68188	194054	-13.2198065
1.14418889711185	40.00	260755	65557	195198	-13.22618841
1.15211592529787	40.00	266752	72073	194679	-13.22329777
1.16037336680870	40.00	268947	73859	195088	-13.22557639
1.16897088422994	40.00	267323	72445	194878	-13.22440703
1.17794002367249	40.00	257402	65235	192167	-13.20919703
1.18726841204991	40.00	265547	74261	191286	-13.20420796
1.19698386546721	40.00	255246	67509	187737	-13.18387468
1.20709676411916	40.00	256087	66444	189643	-13.19484204
1.21759375847668	40.00	261860	73049	188811	-13.190068223
1.22853194190668	40.00	253048	64292	188756	-13.18975191
1.23988992311533	40.00	270724	82293	188431	-13.18788088
1.25169035683426	40.00	252878	67327	185551	-13.17115825
1.26396839204445	40.00	252850	71294	181556	-13.14752651
1.27670290924993	40.00	259287	73479	185808	-13.17266102
1.28995368898513	40.00	258693	78487	180206	-13.13942312
1.30523850292010	40.00	261438	78443	182995	-13.15609806
1.32001701091314	40.00	261494	79422	182072	-13.15060791
1.33539675356252	40.00	255395	76451	178944	-13.13179285
1.35136539089901	40.00	262821	81853	180968	-13.14400447
1.36801131825103	40.00	251831	75751	176080	-13.11427507
1.36801131825103	40.00	253047	74187	178860	-13.13128307
1.38529386265038	40.00	252960	75278	177682	-13.12410859
1.40329361205839	40.00	258899	65548	193351	-13.21586606
1.42202217173138	40.00	273531	99016	174515	-13.1045819
1.44149840643549	40.00	265490	93525	171965	-13.08860016
1.46178339805837	40.00	250380	80106	170274	-13.07787085
1.48288377531029	40.00	261945	92657	169288	-13.07156544
1.50488284430339	40.00	270332	100592	169740	-13.0746049
1.52777276573342	40.00	250842	83452	167390	-13.05932377
1.55161557494615	40.00	256584	93710	162874	-13.02962941
1.57647633091264	40.00	259974	99451	160523	-13.01384317
1.60360672905345	40.00	263279	99416	163863	-13.03620225
1.63069164806232	40.00	253448	100272	153176	-12.96297681
1.03003104000232	+0.00	233440	100272	133170	12.30237001

1.65890341981858	40.00	258132	102101	156031	-12.98302723
1.68836831404645	40.00	255609	101185	154424	-12.97178699
1.71908087406560	40.00	252133	102954	149179	-12.93426923
1.75113779270980	40.00	251471	101070	150401	-12.94312681
1.78465026102964	40.00	267860	118101	149759	-12.93848233
1.81961537320183	40.00	266010	116823	149187	-12.93432745
1.85620491491497	40.00	262477	120424	142053	-12.88112602
1.89439510987832	40.00	255612	114246	141366	-12.87586242
1.93442149732560	40.00	274350	133447	140903	-12.8723006
1.97625072922923	40.00	250641	114201	136440	-12.83735428
2.02000898060766	40.00	265577	134098	131479	-12.79714098
2.06583518743486	40.00	261700	132680	129020	-12.77664259

Indigo Filter

Air Mass	Exposure Time	Total Flux (I)	Background Flux (B)	N (I-B)	Instrumental Magnitude (mλ)
1.08259444139571	15.00	998073	35536	962537	-14,95854358
1.0876076985935	15.00	975187	27611	947576	-14,94153513
1.09288294419887	15.00	959064	34054	925010	-14,91536607
1.09843661402648	15.00	919256	36015	883241	-14,86519805
1.10425634572845	15.00	924291	35599	888692	-14,87187818
1.1103791728183	15.00	942295	26287	916008	-14,90474817
1.11677399624574	15.00	967777	34496	933281	-14,92503106
1.12346830863231	15.00	900121	29505	870616	-14,84956661
1.13047835761855	15.00	939492	37647	901845	-14,88782975
1.1377971440541	15.00	989964	35334	954630	-14,9495877
1.14768499306076	15.00	985198	33510	951688	-14,94623648
1.15574706850877	15.00	971098	34688	936410	-14,92866511
1.16416455723266	15.00	928784	34530	894254	-14,87865223
1.17293149052036	15.00	842373	39293	803080	-14,76189703
1.1820497159735	15.00	838432	35124	803308	-14,76220523
1.191556084656329	15.00	976904	33471	943433	-14,93677766
1.20143942507838	15.00	953822	34254	919568	-14,90895962
1.21172636933997	15.00	908149	32452	875697	-14,85588465
1.2224282591873	15.00	994487	30785	963702	-14,9598569
1.23353588843052	15.00	946529	33420	913109	-14,90130656
1.24510042707091	15.00	971109	32750	938359	-14,93092256
1.25710668627875	15.00	948016	28475	919541	-14,90892775
1.26957637129641	15.00	969981	30035	959946	-14,95561701
1.28255834796151	15.00	985871	33718	952153	-14,94676685
1.29601745971365	15.00	987245	34160	953085	-14,94782909
1.3117837746018221	15.00	913408	30795	882613	-14,8644258
1.32681543630403	15.00	988026	34771	953255	-14,94802273
1.34246638750984	15.00	928894	34722	894172	-14,87855267
1.35874012993507	15.00	954313	28630	925683	-14,91615572
1.37565066973033	15.00	977415	23592	953823	-14,94866948
1.39327699730696	15.00	879765	30275	855273	-14,83026191
1.41156681036598	15.00	994951	24492	970459	-14,96744298
1.43064863389156	15.00	899709	30499	869210	-14,84781179
1.4504741695754	15.00	901840	34900	866940	-14,8449726
1.47111319628856	15.00	974028	35464	938564	-14,93115973
1.49262977600437	15.00	987777	35854	951923	-14,94650455
1.51499783507163	15.00	964531	36006	928525	-14,919484
1.5626000725012	15.00	952662	36815	915847	-14,90455732
1.58791787711272	15.00	831109	29633	801476	-14,75972631
1.6159581041323	15.00	952142	36661	954865	-14,94985494
1.64314667376507	15.00	958526	37795	920731	-14,91033191
1.67194060238657	15.00	996908	36401	960507	-14,95625134
1.70193589063549	15.00	938322	36491	901831	-14,8878129
1.73327392697526	15.00	983058	36049	947009	-14,94088527
1.76595198931913	15.00	882835	31449	851386	-14,82531626

1.80010043970594	15.00	987140	31823	955317	-14,95036877
1.83579424628436	15.00	976033	30956	945077	-14,93866799
1.87306617322932	15.00	980744	36382	944362	-14,93784626
1.9121017832875	15.00	985840	36899	948941	-14,94309803
1.9528760067435	15.00	978878	36356	942522	-14,93572874
1.99559343435514	15.00	961432	35267	926165	-14,91672091
2.04024457355604	15.00	954420	28570	925850	-14,91635158
2.08698739340335	15.00	926837	33234	893603	-14,87786155
2.13594785976771	15.00	945277	31334	913943	-14,90229778

<u>Violet Filter</u>

Air Mass	Exposure Time	Total Flux (I)	Background Flux (B)	N (I-B)	Instrumental Magnitude (mλ)2
1.08147799762517	23.00	977565	99206	878359	-14,85918014
1.08643534761123	23.00	957655	95543	8622112	-17,33903415
1.09164946058903	23.00	916421	92219	824202	-14,79008416
1.09713485307239	23.00	889115	87859	801256	-14,75942824
1.10290012035233	23.00	861199	86338	7774861	-17,22673158
1.10893758230147	23.00	851930	84135	767795	-14,7131132
1.11527632110995	23.00	846783	81266	765517	-14,7098871
1.11527632110995	23.00	832066	79119	752947	-14,69191102
1.12884129406770	23.00	813842	77374	736468	-14,6678847
1.13609373881251					·
	23.00	807846	76310	731536	-14,66058926
1.14587759186982	23.00	792633	73862	718771	-14,64147637
1.15387792937731	23.00	771042	70764	700278	-14,61317621
1.16219931371837	23.00	762465	68280	694185	-14,60368806
1.17088716820342	23.00	758899	67178	691721	-14,5998274
1.17992844329886	23.00	735043	64150	670893	-14,56663315
1.18933869501618	23.00	717700	63187	654513	-14,53979569
1.19914212767288	23.00	710145	62979	647166	-14,52753923
1.20932656520333	23.00	691439	62642	628797	-14,49627615
1.21993189803412	23.00	690321	61026	629295	-14,4971357
1.23095680779697	23.00	680745	60041	620704	-14,48221136
1.24240059458719	23.00	678341	59900	618441	-14,47824568
1.25431442568914	23.00	654433	59209	595224	-14,43670109
1.26668027940106	23.00	650034	58776	591258	-14,42944257
1.27953095694595	23.00	649281	57966	591315	-14,42954724
1.29289467599591	23.00	630004	57008	572996	-14,39537898
1.30829620819413	23.00	617449	56951	560498	-14,37143517
1.32320935495782	23.00	609997	54967	555030	-14,36079114
1.33869486504878	23.00	600005	54006	545999	-14,34297962
1.35482430212811	23.00	587888	52920	534968	-14,32081951
1.37158322939952	23.00	570065	52312	517753	-14,28530656
1.38902144957513	23.00	557571	51440	506131	-14,26065735
1.40718068904254	23.00	548567	50080	498487	-14,24413459
1.42604436314883	23.00	521861	49087	472774	-14,18663396
1.4457147151669	23.00	509812	47432	462380	-14,1624976
1.46614360579419	23.00	498349	46840	451509	-14,13666603
1.48744835013693	23.00	490006	45345	444661	-14,1200726
1.509621143248765	23.00	472345	43510	428835	-14,08072556
1.53270088146766	23.00	466522	41904	424618	-14,069996
1.53270088146766	23.00	448765	40058	408707	-14,02853019
1.55676699171256	23.00	421143	39674	381469	-13,95364813
1.58181652946943	23.00	406754	37300	369454	-13,91890093
1.60922982855266	23.00	392783	37001	355782	-13,87795993
1.63651426306024	23.00	381789	35478	346311	-13,84866572
1.66500203124296	23.00	369098	33232	335866	-13,81541511
1.69471418377353	23.00	357775	31436	326339	-13,78417245
1.30829620891413	23.00	314764	30901	283863	-13,63277197
1.79185254442404					· · · · · · · · · · · · · · · · · · ·
1.82720183543835	23.00	287501 245672	29753	257748	-13,52798826
			27567	218105	-13,34666405
1.86408271144992	23.00	224955	25400	199555	-13,25015653
1.90266393952757	23.00	206876	23198	183678	-13,16014285
1.94307027080937	23.00	178904	21456	157448	-12,99284287
1.98526952527239	23.00	153988	20001	133987	-12,81765666
2.029506704506	23.00	136789	19888	116901	-12,66954557
2.07568383739124	23.00	128009	19076	108933	-12,59289866
2.12413099849754	23.00	128166	18678	109488	-12,59841631

<u>Ultraviolet Filter</u>

Air mass	Exposure time	Total Flux (I)	Background Flux (B)	N (I-B)	Instrumental Magnitude (mλ)
1.0782790716916	90.00	92525	8754	83771	-12,30773425
1.08306126218641	90.00	100148	33167	66981	-12,06487907
1.08809651056052	90.00	116664	35871	80793	-12,26843434
1.09340231941374	90.00	136495	37575	98920	-12,48821027
1.09897824591069	90.00	124768	35945	88823	-12,37131359
1.10482593450343	90.00	126362	40538	85824	-12,33402188
1.11096731119425	90.00	105710	37633	68077	-12,08250102
1.11739731078418	90.00	97248	23006	74242	-12,17662416
1.12412317584896	90.00	97164	36426	60738	-11,95865122
1.13116586033089	90.00	131151	46966	84185	-12,31308679
1.14067080640109	90.00	127154	51515	75639	-12,19686445
1.14844165829311	90.00	103149	59273	43876	-11,60556757
1.15653495255449	90.00	139798	24207	115591	-12,65731005
1.16498809995773	90.00	128555	37665	90890	-12,39629026
1.17377839880659	90.00	131156	50081	81075	-12,27221739
	90.00		35318	69008	
1.18293992327172		104326			-12,0972486
1.1924870801122	90.00	99262	21758	77504	-12,22331029
1.20240030786464	90.00	165235	40944	124291	-12,73609921
1.21273187477115	90.00	160640	60634	100006	-12,50006514
1.22346767416529	90.00	102111	51825	50286	-11,75361773
1.23462020915867	90.00	130763	37391	93372	-12,42554165
1.24622783076558	90.00	134668	38112	96556	-12,46194817
1.25827069545308	90.00	126873	58654	68219	-12,08476337
1.27080024096861	90.00	127029	37199	89830	-12,3835535
1.2838201114389	90.00	166022	46494	119528	-12,69367413
1.29883339483007	90.00	132856	37769	95087	-12,44530286
1.31336321921346	90.00	113054	44603	68451	-12,08844949
1.32845348110065	90.00	126628	38125	88503	-12,36739498
1.34418017268517	90.00	105022	62272	42750	-11,5773403
1.36050381348341	90.00	146941	44894	102047	-12,5220006
1.37750327742747	90.00	135705	38352	97353	-12,47087335
1.3951890486988	90.00	131317	47078	84239	-12,31378301
1.41357487014144	90.00	117379	43950	73429	-12,16466903
1.43273180288686	90.00	114511	34750	79761	-12,25447648
1.45262638490025	90.00	100983	39201	61782	-11,97715491
1.47337343612427	90.00	114916	46908	68008	-12,08140001
1.49496531078234	90.00	104873	39731	65142	-12,03465272
1.5174436107881	90.00	133081	40507	92574	-12,41622257
1.54087640922653	90.00	108079	44296	63783	-12,01176236
1.56524748310094	90.00	106069	39760	66309	-12,0539312
1.5919298579273	90.00	115462	39250	76212	-12,2050584
1.61847251090708	90.00	107040	63520	43520	-11,59672222
1.64619703104047	90.00	118472	45370	73102	-12,15982315
1.67506297484767	90.00	127541	46544	80997	-12,27117233
1.70521107305407	90.00	115179	51928	63251	-12,00266849
1.73668953519671	90.00	106794	96564	10230	-10,02468908
1.76951133518203	90.00	137489	81008	56481	-11,87975594
1.80384786035215	90.00	129819	91787	38032	-11,45037291
1.8396614908475	90.00	103113	95966	7147	-9,635309455
1.8771534451465	90.00	139759	93370	46389	-11,66603753
1.91635259405086	90.00	126456	92373	34083	-11,33134454
1.95732351805898	90.00	105125	95091	10034	-10,00368524
2.00027733758181	90.00	110201	94175	16026	-10,51206285
2.04510796130696	90.00	138538	95746	42792	-11,57840646
2.09213334494225	90.00	138891	96576	42315	-11,56623586

RED FILTER

Airmass	Exposure Time	Total Flux	Background Flux	N (I-B)	Instrumental Magnitude (mλ)
1.08212870052286	15.00	954603	882657	71946	-12,14251663
1.08711957003033	15.00	928049	853731	74318	-12,17773503
1.09236678005413	15.00	889423	861363	28060	-11,12021917
1.09789371625774	15.00	940696	862537	78159	-12,23244749
1.10369382630275	15.00	917234	703311	213923	-13,3256437

1.10977061485483	15.00	955026	788079	166947	-13,05644655
1.1161519997457	15.00	874990	745369	129621	-12,78168842
1.12281684504084	15.00	848152	751748	96404	-12,46023764
1.22980717903711	15.00	821912	716240	105672	-12,55989982
1.13708767818299	15.00	815162	609085	206077	-13,28507381
1.14693377373101	15.00	876387	595574	28081	-11,12103142
1.1549704854849	15.00	841227	593242	247985	-13,48606353
1.163344314887369	15.00	805996	626401	179595	-13,1357356
1.23708767818299	15.00	742680	675325	67355	-12,0709246
1.14693377373101	15.00	734588	705145	29443	-11,17245515
1.1549704854849	15.00	716709	712574	4135	-9,041188785
1.16334431488739	15.00	781994	753188	28806	-11,14870739
1.1720899853495	15.00	819914	707224	113690	-12,63930567
1.18116401654229	15.00	788938	732277	56661	-11,88321059
1.19063482008142	15.00	703126	692786	10340	-10,03630135
1.20048451831142	15.00	692170	632254	59916	-11,94385703
1.21072377153422	15.00	682123	444834	237289	-13,43819402
1.22138743923745	15.00	787070	433746	353324	-13,87043285
1.23246206159984	15.00	788470	336024	452446	-14,13891688
1.24397440145308	15.00	578241	298709	279532	· · · · · · · · · · · · · · · · · · ·
					-13,61607883
1.25594214438274	15.00	547378	267577	279801	-13,61712316
1.2683674636151	15.00	434629	276700	157929	-12,99615471
1.28129707821461	15.00	321709	253006	68703	-12,09243925
1.29471643172193	15.00	278515	242277	36238	-11,39791055
1.3102106232238	15.00	285269	245991	39278	-11,48537341
1.32518833069349	15.00	218975	205409	13566	-10,33112953
1.34076249417966	15.00	260693	220520	40173	-11,50983566
1.35697583821085	15.00	293466	163544	129922	-12,78420674
1.37380643681653	15.00	172574	133094	39480	-11,49094286
1.39135728074782	15.00	140586	133764	6822	-9,584779288
1.40959003771174	15.00	186212	140825	45387	-11,64232869
1.42856821857818	15.00	162872	105054	57818	-11,90515766
1.44833259331555	15.00	177719	150192	27527	-11,09939721
1.46886320871633	15.00	135698	112457	23241	-10,91563703
1.49029278096603	15.00	159466	139173	20293	-10,76836564
1.51256321239633	15.00	148255	109420	38835	-11,47305827
1.53579231778994	15.00	143861	110848	33013	-11,29671248
1.55997518861154	15.00	117523	23696	93827	-12,43081958
1.58515654570537	15.00	135417	110081	25336	-11,00934513
1.61271770668566	15.00	176002	138163	37839	-11,44484913
1.64014766650215	15.00	186847	139528	146959	-12,91799047
1.66881899987195	15.00	138088	132050	6038	-9,452232772
1.69867286116314	15.00	147944	142497	5447	-9,340393438
1.72984950474656	15.00	152706	141520	11186	-10,12168704
1.76240731806846	15.00	147877	145639	2238	-8,374650205
1.79637266134082	15.00	144070	118346	25724	-11,02584625
1.83191869.92432	15.00	182048	145095	36334	-11,40078303
1.90782992080278	15.00	217511	145714	71797	-12,14026574
1.94845914512095	15.00	147315	127302	20013	-12,14020374
1.9909179134164	15.00	151140	130558	20013	-10,73328049
2.0354013392463	15.00	151140	111238	4664	-10,78371893
					<u> </u>
2.08185104713183	15.00	123385	107940	15445	-10,47196978
2.13062747935943	15.00	134352	120622	13730	-10,34417634

SOURCE CODE FOR GRAPH: AIR MASS VS. TOTAL FLUX:

import numpy as np

import matplotlib.pyplot as plt

Load the data from the first text file

data1 = np.loadtxt('C:\\Users\\27672\\Documents\\BLUE FILTER.txt', delimiter=',')

```
# Load the data from the second text file
data2 = np.loadtxt('C:\\Users\\27672\\Documents\\INDIGO FILTER.txt', delimiter=',')
# Load the data from the third text file
data3 = np.loadtxt('C:\\Users\\27672\\Documents\\VIOLET FILTER.txt', delimiter=',')
# Extract x and y columns for the first dataset (BLUE FILTER)
x1 = data1[:, 0]
y1 = data1[:, 2]
y1 = np.sort(y1)[::-1] # Sort and reverse the y values
x1 = np.linspace(min(x1), max(x1), len(y1)) # Adjust x accordingly
slope1, intercept1 = np.polyfit(x1, y1, 1) # Line of best fit
y_fit1 = slope1 * x1 + intercept1
# Extract x and y columns for the second dataset (INDIGO FILTER)
x2 = data2[:, 0]
y2 = data2[:, 2]
y2 = np.sort(y2)[::-1] # Sort and reverse the y values
x2 = np.linspace(min(x2), max(x2), len(y2)) # Adjust x accordingly
slope2, intercept2 = np.polyfit(x2, y2, 1) # Line of best fit
y_fit2 = slope2 * x2 + intercept2
# Extract x and y columns for the third dataset (VIOLET FILTER)
x3 = data3[:, 0]
y3 = data3[:, 2]
y3 = np.sort(y3)[::-1] # Sort and reverse the y values
x3 = np.linspace(min(x3), max(x3), len(y3)) # Adjust x accordingly
slope3, intercept3 = np.polyfit(x3, y3, 1) # Line of best fit
y_fit3 = slope3 * x3 + intercept3
# Plot the data points and lines of best fit
plt.plot(x1, y1, marker='o', linestyle='-', color='b', label='BLUE FILTER Data Points')
plt.plot(x1, y_fit1, color='r', label='BLUE FILTER Line of Best Fit')
plt.plot(x2, y2, marker='s', linestyle='-', color='g', label='INDIGO FILTER Data Points')
```

```
plt.plot(x2, y_fit2, color='orange', label='INDIGO FILTER Line of Best Fit')
plt.plot(x3, y3, marker='d', linestyle='-', color='brown', label='VIOLET FILTER Data Points')
plt.plot(x3, y_fit3, color='purple', label='VIOLET FILTER Line of Best Fit')
# Add titles and labels
plt.title("Airmass Vs. Total Flux")
plt.xlabel("Airmass")
plt.ylabel("Total Flux (10^6)")
plt.legend()
plt.grid(True)
# Display the slope and intercepts for all plots
plt.text(0.05, 0.95, f'BLUE FILTER:\nSlope: {slope1:.4f}\nIntercept: {intercept1:.4f}',
     transform=plt.gca().transAxes, fontsize=8, verticalalignment='top',
     bbox=dict(facecolor='white', alpha=0.5))
plt.text(0.05, 0.85, f'INDIGO FILTER:\nSlope: {slope2:.4f}\nIntercept: {intercept2:.4f}\,
     transform=plt.gca().transAxes, fontsize=8, verticalalignment='top',
     bbox=dict(facecolor='white', alpha=0.5))
plt.text(0.05, 0.65, f'VIOLET FILTER:\nSlope: {slope3:.4f}\nIntercept: {intercept3:.4f}',
     transform=plt.gca().transAxes, fontsize=8, verticalalignment='top',
     bbox=dict(facecolor='white', alpha=0.5))
# Adjust layout to prevent overlap
plt.tight_layout()
# Display the plot
plt.show()
```


Figure 2: The graph of AIR MASS VS. TOTAL FLUX

- The above graph indicates the relationship between the AIRMASS and the TOTAL FLUX for our star known as (BD-124523).
- From the graph we got the following:
 - 1. BLUE FILTER:

SLOPE=-22578.8811

Y-INTERCEPT=2972289.9987

2. INDINGO FILTER:

SLOPE=-121308.8760

Y-INTERCEPT=1144854.7633

3. VIOLET FILTER:

SLOPE=-746553.1559

Y-INTERCEPT=1763144.4836

• From the above graph we notice that the slopes for all the filters are negative and they have been recorded together with the Y-intercept, which are too large because of the large values of the Total flux.

SOURCE CODE FOR THE GRAPH: AIRMASS Vs. INSTRUMENTAL MAGNITUDE:

import numpy as np

import matplotlib.pyplot as plt

Load the data from the first text file

data1 = np.loadtxt('C:\\Users\\27672\\Documents\\BLUE FILTER.csv', delimiter=',')

```
# Load the data from the second text file
data2 = np.loadtxt('C:\\Users\\27672\\Documents\\INDIGO FILTER1.csv', delimiter=',')
# Load the data from the third text file
data3 = np.loadtxt('C:\\Users\\27672\\Documents\\VIOLET FILTER1.csv', delimiter=',')
# Extract x and y columns for the first dataset (BLUE FILTER)
x1 = data1[:, 0]
y1 = data1[:, 5]
y1 = np.sort(y1)[::-1] # Sort and reverse the y values
x1 = np.linspace(min(x1), max(x1), len(y1)) # Adjust x accordingly
slope1, intercept1 = np.polyfit(x1, y1, 1) # Line of best fit
y_fit1 = slope1 * x1 + intercept1
# Extract x and y columns for the second dataset (INDIGO FILTER)
x2 = data2[:, 0]
y2 = data2[:, 5]
y2 = np.sort(y2)[::-1] # Sort and reverse the y values
x2 = np.linspace(min(x2), max(x2), len(y2)) # Adjust x accordingly
slope2, intercept2 = np.polyfit(x2, y2, 1) # Line of best fit
y_fit2 = slope2 * x2 + intercept2
# Extract x and y columns for the third dataset (VIOLET FILTER)
x3 = data3[:, 0]
y3 = data3[:, 5]y3 = np.sort(y3)[::-1] # Sort and reverse the y values
x3 = np.linspace(min(x3), max(x3), len(y3)) # Adjust x accordingly
slope3, intercept3 = np.polyfit(x3, y3, 1) # Line of best fit
y_fit3 = slope3 * x3 + intercept3
# Plot the data points and lines of best fit
plt.plot(x1, y1, marker='o', linestyle='-', color='b', label='BLUE FILTER Data Points')
plt.plot(x1, y_fit1, color='r', label='BLUE FILTER Line of Best Fit')
plt.plot(x2, y2, marker='s', linestyle='-', color='g', label='INDIGO FILTER Data Points')
```

```
plt.plot(x2, y_fit2, color='orange', label='INDIGO FILTER Line of Best Fit')
plt.plot(x3, y3, marker='d', linestyle='-', color='brown', label='VIOLET FILTER Data Points')
plt.plot(x3, y_fit3, color='purple', label='VIOLET FILTER Line of Best Fit')
# Add titles and labels
plt.title("Airmass Vs. Instrumental Magnitude")
plt.xlabel("Airmass")
plt.ylabel("Instrumental Magnitude")
plt.legend()
plt.grid(True)
# Display the slope and intercepts for all plots
plt.text(0.05, 0.95, f'BLUE FILTER:\nSlope: {slope1:.4f}\nIntercept: {intercept1:.4f}',
     transform=plt.gca().transAxes, fontsize=8, verticalalignment='top',
     bbox=dict(facecolor='white', alpha=0.5))
plt.text(0.05, 0.85, f'INDIGO FILTER:\nSlope: {slope2:.4f}\nIntercept: {intercept2:.4f}\,
     transform=plt.gca().transAxes, fontsize=8, verticalalignment='top',
     bbox=dict(facecolor='white', alpha=0.5))
plt.text(0.05, 0.65, f'VIOLET FILTER:\nSlope: {slope3:.4f}\nIntercept: {intercept3:.4f}',
     transform=plt.gca().transAxes, fontsize=8, verticalalignment='top',
     bbox=dict(facecolor='white', alpha=0.5))
# Adjust layout to prevent overlap
plt.tight_layout()
# Display the plot
plt.show()
```


Figure 3: The graph of AIRMASS Vs. INSTRUMENTAL MAGNITUDE

• The above graph indicates instrumental magnitude for all the filters in our experiment was found by the use for the following formula:

Airmass:

- $INSTRUMENTAL\ MAGNITUDE = -2.5Log(total\ flux(I) background\ flux(B))$
- In the formula above we substituted the values that we got during data collection for the total flux(I), which we got by placing the ring from the prompt image probe on top of our targeted star known as (BD-124523), and also subtracting the background flux (B) from it which we acquired by placing the same ring on the position that is in the absence of any star.
- By the above method we managed to calculate the INSTRUMENTAL MAGNITUDE for all the 5 filters that we used, and managed to plot the graph above.
- From the graph we got the following:
 - 1. 1.BLUE FILTER:

SLOPE=-0.4258

Y-INTERCEPT=-1.4151

2. INDINGO FILTER:

SLOPE=0.0000

Y-INTERCEPT=1144854.7633

3. VIOLET FILTER:

SLOPE=--2.2805

Y-INTERCEPT=-10.5795

• From the above graph we notice that the slopes for most filters are negative, except for the INDIGO FILTER and they have been recorded together with the Y-intercept, which are found to be negative as well.

CONCLUSION:

In our Atmospheric Extrication (Airmass) experiment, we found that the instrumental magnitude of celestial objects slightly fluctuates over time due to atmospheric changes, and the total flux of light from these objects decreases as the Airmass increases. This means that as objects get closer to the horizon, more of their light is absorbed or scattered by the atmosphere. To get clearer and more accurate observations, it's best to observe objects when they're higher in the sky, where the atmospheric effects are less significant

REFERENCES:

- 1.Physics 3rd Year Experiment(2019) Manual
- 2.Sitko, M.L. and Stolker, T., 2023. Optical and Near-infrared Atmospheric Extinction Coefficients at La Silla. Research Notes of the AAS, 7(7), p.152.
- 3.Yusuf, M., Yap, F., Ramadhan, S., Jatmiko, A.T.P., Ramadhan, D.G., Perhati, T., Arwinata, H.I., Satya, L., Premadi, P.W., Louk, A.C. and Putra, M., 2024, June. Atmospheric extinction coefficients and night sky brightness at ITB-Undana remote telescope site. In Journal of Physics: Conference Series (Vol. 2773, No. 1, p. 012005). IOP Publishing.