PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-036703

(43) Date of publication of application: 10.02.1998

(51)Int.Cl.

C09C 1/50 C08K 3/04

CO8L 21/00

(21)Application number: 08-192509

(71)Applicant: NIPPON STEEL CHEM CO LTD

NIPPON STEEL CORP

(22)Date of filing:

22.07.1996

(72)Inventor: KURIHARA MASAKI

KANAI TAKAAKI YANO HIROYUKI

SUMIMOTO ISAO **IIJIMA TAKASHI**

(54) CARBON BLACK AND RUBBER COMPOSITION

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a carbon black capable of obtaining a tire treated having a very excellent fuel cost reducing property while maintaining a high level abrasion resistance by making adsorption specific surface area, etc., thereof within specific ranges. SOLUTION: This carbon black belongs to a hard type region having 120–170m2/g CTAB (absorption specific surface area) and 110-130ml/100g compression DBP (24M4DBP) and has selective characteristics such as a nitrogen adsorbing specific surface area (N2SA):N2SA<CTAB+40, an aggregate breaking index (Ds): Ds≤0.17, a relative discoloring strength (TITN): 110≤TITN≤150, a toluene coloring transmittance: toluene coloring transmittance ≥50, V(25-30): V(25-30)≥35ml/100g and H/O: H/O≥0.20. Provided that Ds shows an absolute value of an inclination of a straight line obtained by a single regression of plots of natural logarithms of respective measured values of oil absorbing amounts for respective compressions 1-6 on a graph by setting the natural logarithms of the number of compression as a horizontal axis, and the natural logarithms of DBP oil absorbing amounts after performing the number of compressions as a vertical axis, in a usual method of measuring the compressed DBP oil absorbing amount.

LEGAL STATUS

[Date of request for examination]

20.05.2003

[Date of sending the examiner's decision of

26.09.2006

rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection] [Date of extinction of right]

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平10-36703

(43)公開日 平成10年(1998) 2月10日

(51) Int.Cl. 6	識別記号 庁内整理番号	FI	技術表示箇所
C 0 9 C 1/50	PBF	C 0 9 C 1/50 PBF	
C08K 3/04	KCT	C 0 8 K 3/04 K C T	
C08L 21/00)	C 0 8 L 21/00	
		審査請求 未請求 請求項の数2 〇L	(全 6 頁)
(21)出顧番号	特願平8 -192509	(71)出願人 000006644	
(22)出願日	平成8年(1996)7月22日	新日鐵化学株式会社 東京都中央区新川二丁目31番:	1 号
		(71)出願人 000006655 新日本製鐵株式会社	

福岡県北九州市小倉北区中井4丁目6-14 (72)発明者 金井 孝陽

福岡県北九州市小倉南区葉山町3丁目4番

東京都千代田区大手町2丁目6番3号

5号

(72)発明者 栗原 正樹

(74)代理人 弁理士 藤本 博光 (外1名)

最終頁に続く

(54) 【発明の名称】 カーボンプラック及びゴム組成物

(57)【要約】

【課題】 高水準の耐摩耗性を保持しながら、非常に優 れた低燃費性をもつタイヤトレッド用ゴム組成物を提供 すること。

- *【解決手段】 C T A B が 1 2 0~1 7 0 (m²/g) 、圧 縮DBP (24M4DBP) が110~130 (ml/100g) のハ ード系領域に属し、かつ
- (1) 窒素吸着比表面積(N₂SA); N₂SA≦CTAB+40
- (2) アグリゲート破壊指数 (Ds); Ds≦0. 17
- (3) 比着色力(TINT); 110≦TINT≦150
- (4)トルエン着色透過度 ;トルエン着色透過度≥50(%)
- (5) V $(25\sim30)$; V $(25\sim30) \ge 3.5$ (ml/100g)
- (6) H/O
- ; H/O ≧0. 20

の選択的特性を有するカーボンブラック、及び該カーボ

量部配合したゴム組成物。

ンブラックをゴム100重量部に対して20~100重

1

【特許請求の範囲】

【請求項1】

*圧縮DBP(24M4DBP)が110~130 (ml/100g) の

 $CTABが120~170 (m^2/g)$ 、* ハード系領域に属し、かつ

- (1) 窒素吸着比表面積 (N₂ S A); N₂ S A ≤ C T A B + 4 O
- (2) アグリゲート破壊指数(Ds); Ds≤0.17
- (3) 比着色力(TINT);110≦TINT≦150
- (4)トルエン着色透過度 ;トルエン着色透過度≥50 (%)
- (5) V (25~30) ;

; V $(25\sim30) \ge 3.5 \text{ (ml/100g)}$

(6) H/O

 $; H/O \ge 0.20$

の選択的特性を有するカーボンブラック。(但し、Dsは圧縮DBP吸油量(単位:ml/100g)を測定する常法において、圧縮回数の自然対数を横軸に、その圧縮回数後におけるそれぞれのDBP吸油量の自然対数を縦軸にとったグラフに、圧縮回数 $1\sim6$ 回のDBP吸油量の各測定値の自然対数をプロットし、単回帰により求めたその直線の傾きの絶対値を示し、 $V(25\sim30)$ は水銀ポロシメーターにより測定される直径 $25nm\sim30nm$ の空隙の総容積を示し、H/0は燃焼法により測定されるカーボンブラック単位重量あたりの水素重量の酸素重量に対する割合を示す。)

【請求項2】 ゴム100重量部に対し、請求項1記載 20 のカーボンブラックを20~100重量部配合したこと を特徴とするゴム組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ゴム配合用カーボンブラック及びそれを使用した高水準の耐摩耗性を保持しながら、非常に優れた低燃費性をもつタイヤトレッド用ゴム組成物に関する。

[0002]

【従来の技術】ゴム配合用のカーボンブラックは、ASTM D1765に示される様にその目的に応じ様々な種類があり、それらは通常、比表面積、ストラクチャーなど各種特性により分類されている。これらのうち、タイヤトレッド用カーボンブラックについては、ゴム組成物として高度の耐摩耗性、低燃費性を実現することが要求されている。これらの要求性能を満たすためのカーボンブラックとしては、例えば、耐摩耗性を向上させるためには、窒素吸着比表面積(N_2 SA)が大きく、圧縮DBP(24M4DBP)が大きいものが有効であり、また低燃費性を改善するためには、窒素吸着比表面積(N_2 SA)が小さく、圧縮DBP(24M4DBP)が大きいものが有効であると一般に考えられている。

【0003】さらに近年においては、耐摩耗性または低燃費性を一層向上させるべく、あるいは両特性の両立を図るべく種々の検討がなされている。たとえば、本願発明者らは特開平7-233332号公報において、耐摩耗性をより向上させる手段として、カーボンブラックのストラ※

※クチャーの機械的強度に着目して、アグリゲート破壊指 10 数(Ds)を一定値以下に制御することを提案してい る。アグリゲート破壊指数(Ds)の定義については後 述するが、圧力を加えてストラクチャーの一部を破壊し た後に圧縮DBP吸油量を測定する常法において、圧縮 によるアグリゲートの破壊状況に着目するものである。 【0004】また、カーボンブラックのアグリゲート形 態を示す指標として、水銀ポロシメーターにより測定し たアグリゲート空隙容積のモード直径(Dmp)を指標 として用いる発明が、特開平6-172587号公報などにお いて開示されている。さらにまた、特開平7-179663号 公報においては、水銀ポロシメーターにより測定したア グリゲート粒間ポアのうち、6~15nmに相当する非 常に小さい空隙や細隙(PV)が、カーボンブラックの 基本粒子間のくびれやアグリゲート内部のミクロな空隙 に相当し、この空隙容積が相対的に多い場合はゴム成分 に配合したときにこの空隙内により多くのゴム成分を取 り込み、強固な結合層を形成する指標となりうることが 提案されている。

【0005】また、カーボンブラック表面特性に着目し、単位重量当たりの酸素と水素の合計含有量を一定値以下に低減することによりゴム組成物に高度の耐摩耗性とともに高グリップ性能を付与する発明が、特開平4-108837号公報に記載されている。

[0006]

【発明が解決しようとする課題】しかしながら、高水準の耐摩耗性を保持しながら、より優れた低燃費性をもつゴム組成物を提供するために、カーボンブラックに求められる品質要求はますます高度化している。かかる現状から本発明の目的は、新規なゴム配合用カーボンブラック及びそれを使用した高水準の耐摩耗性を保持しながら、非常に優れた低燃費性をもつタイヤトレッド用ゴム組成物を提供することにある。

[0007]

【課題を解決するための手段】上記の目的を達成するための本発明によるカーボンブラックは、 $CTABが120~170 (m^2/g)$ 、圧縮DBP (24M4DBP) が 110~130 (m1/100g) のハード系領域に属し、かつ

- (1) 窒素吸着比表面積 (N₂SA); N₂SA≦CTAB+40
- (2) アグリゲート破壊指数 (Ds); Ds≦0.17
- (3) 比着色力(TINT); 110≤TINT≤150

3

(4)トルエン着色透過度 ;トルエン着色透過度≥50(%)

(5) V (25~30)

; V $(25\sim30) \ge 3.5 \text{ (ml/100g)}$

(6) H/O

; H/O ≥0. 20

の選択的特性を有することを特徴とするものである。

【0008】但し、上記のDsは圧縮DBP吸油量(単位:m1/100g)を測定する常法において、圧縮回数の自然対数を横軸に、その圧縮回数後におけるそれぞれのDBP吸油量の自然対数を縦軸にとったグラフに、圧縮回数 $1\sim6$ 回のDBP吸油量の各測定値の自然対数をプロットし、単回帰により求めたその直線の傾きの絶対値を示し、 $V(25\sim30)$ は、水銀ポロシメーターにより測定される直径25nm ~30 nmの空隙の総容積を示し、H/Oは、燃焼法により測定されるカーボンブラック単位重量あたりの水素重量の酸素重量に対する割合を示すものとする。

【0009】また上記の目的を達成するための本発明のゴム組成物は、ゴム100重量部に対し、請求項1記載のカーボンブラックを20~100重量部配合したことを特徴とする。

【0010】ここで上記本発明のカーボンブラックを構成する各選択的特性値は、以下の測定方法によるものとする-

- (a) CTAB (CTAB 吸着比表面積); ASTM D3765に準拠する。
- (b) 圧縮DBP (24M4DBP); ASTM D3493に 準拠する。即ち24000psiの圧力を加えて圧縮を 4回繰り返した後のDBP吸油量である24M4DBP を測定する。
- (c) N₂ S A (窒素吸着比表面積); A S T M D 30 3 7 に準拠する。

【0011】(d)Ds(アグリゲート破壊指数);カーボンブラックに24000psiの圧力を加えてストラクチャーの一部を破壊した後に圧縮DBP吸油量(単位:m1/100g)を測定する常法において、圧縮回数の自然対数を横軸に、その圧縮回数後におけるそれぞれのDBP吸油量の自然対数を縦軸にとったグラフに、圧縮回数1~6回のDBP吸油量の各測定値の自然対数をプロットし、単回帰により求めたその直線の傾きの絶対値をDsと定義する。

- (e) TINT (比着色力); ASTM D3265に 40 準拠する。
- (f)トルエン着色透過度; JIS K-6221 (ゴム用カーボンブラック試験方法) に準拠する。

【0012】(g) V (25~30) (直径25nm~30 nmの空隙の総容積);水銀ポロシメーター((株)島津製作所製、Micromeritics Auto-Pore 9200)を用いて、セル中に約0.15gのカーボンブラックを充填し、水銀圧力を増加させながら圧入水銀量を測定する。そのときの水銀圧力と水銀が圧入するカーボンブラックの空隙直径は、Washburnの式により算出される。空隙

直径 2 5 n m相当の圧力までに圧入した水銀の総容積 (単位:m1/100g) から空隙直径 3 0 n m相当の圧力ま でに圧入した水銀の総容積(単位:m1/100g) を差し引 いた値(単位:m1/100g) を直径 2 5 n m ~ 3 0 n mの 空隙の総容積 V (25~30) とする。

【0013】(h) H/O;ガス熱伝導検出器を備えた元素分析装置(Carlo Erba 1106)を用いて、コンテナ中に約2mgのカーボンブラックを充填し、以下の方法でカーボンブラック単位重量あたりの水素重量、酸素重量を測定し、そのときの比率をH/Oと定義する。

①水素重量;Heキャリアガス中に高濃度酸素を導入した条件下で、約1800℃でカーボンブラックを瞬間燃焼し、さらに Cr_2O_3 と接触させて完全燃焼ガスを得る。燃焼ガスを分離カラムで分離し、分離された H_2O をガス熱伝導検出器で測定する。

②酸素重量;Heキャリアガス中で、約1060℃でカーボンブラックを熱分解する。発生ガスを特殊な活性カーボンと接触させてCOに変換し、そのCOをガス熱伝導検出器で測定する。

【 $0 \ 0 \ 1 \ 4$ 】本発明におけるカーボンブラックは、 $C \ T$ $A \ B \ が \ 1 \ 2 \ 0 \sim 1 \ 7 \ 0 \ (m^2/g)$ 、圧縮 $D \ B \ P$ ($24 \ M4DB$ P)が $1 \ 1 \ 0 \sim 1 \ 3 \ 0 \ (m1/100g)$ のハード系領域に属し、特に以下の特性を有するものでなければならない。・先ず $C \ T \ A \ B$ ($CTAB \ W$ 着比表面積)は、 $1 \ 2 \ 0 \sim 1 \ 7 \ 0 \ (m^2/g)$ の範囲とする。この値が $1 \ 2 \ 0 \ 4 \ 5 \ 0 \ b$ いと配合ゴム組成物の耐摩耗性が低下し、 $1 \ 7 \ 0 \ 4 \ 5 \ 0$ きいと耐摩耗性の低下と低燃費性の悪化をきたし、いずれも好ましくない。

・圧縮DBP(24M4DBP)は、110~130 (ml/100g) の範囲とする。この値が110より小さいと配合ゴム組成物の耐摩耗性の低下と低燃費性の悪化をきたし、130より大きいと加工性が低下し、いずれも好ましくない。

【0015】・ N_2SA (窒素吸着比表面積)は、CTAB 吸着比表面積に40 を加えた値以下とする。この値を超えると配合ゴム組成物の耐摩耗性の低下と低燃費性の悪化をきたし好ましくない。下限値については特に限定しないが、検討した範囲ではCTAB 吸着比表面積の値以下($N_2SA \leq CTAB$)のものは得られていない。

・アグリゲート破壊指数 (Ds) は 0. 17以下とする。この値を超えると配合ゴム組成物の耐摩耗性が低下し好ましくない。下限値については特に限定はないが、検討した範囲では 0.08以下のものは得られていない。

【0016】・比着色力(TINT)は110~150の範囲とする。この値が110より小さいと配合ゴム組

1

成物の耐摩耗性が低下し、150より大きいと低燃費性 が悪化し、いずれも好ましくない。

・トルエン着色透過度は50%以上とする。この値を下回ると配合ゴム組成物の耐摩耗性が低下し、好ましくない。上限値については特に限定はない。

【0017】・V(25~30)は、35(m1/100g)以上とする。この値を下回ると配合ゴム組成物の耐摩耗性が低下し好ましくない。上限値については特に限定はないが、検討した範囲では55以上のものは得られていない。この25nm~30nmという空隙直径はゴム分子 10の平均的な大きさと同程度と見なされる。したがって、V(25~30)が多いほど、カーボンブラックのアグリゲート空隙内に入り込み相互作用して補強特性に関与するゴム分子が多くなることになる。すなわち、カーボンブラックのV(25~30)が多いほど、それを使用したゴム組成物の補強特性が向上し耐摩耗性が向上する。

【0018】ところで特開平7-179663号公報においては、水銀ポロシメーターにより測定したアグリゲート粒間ポアのうち、 $6\sim15$ nmの空隙総容積(PV)が相対的に多い場合は、耐摩耗性、低燃費性に優れたゴム組 20成物を提供することができることが提案されている。しかし、直径25nm ~30 nmの空隙よりもはるかに小さい直径6nm ~15 nmの空隙の総容積では、カーボンブラックとゴムが相互作用するカーボンブラック表面付近のミクロな領域での現象に着目しているが、これはカーボンブラックによるゴム補強機構の説明としては不十分である。

【0019】なぜなら、カーボンブラックによるゴム補強は、ゴム分子がカーボンブラック空隙内に取り込まれることによって発現されるが、それにはカーボンブラッ 30 クのゴム分子を取り込み得る空隙容積が大きな因子となるはずである。したがって、直径25nm~30nmの空隙よりもはるかに小さい直径6nm~15nmの空隙の総容積では耐摩耗性、低燃費性に優れたゴム組成物を提供するための指標としては不十分である。

【0020】・H/Oは、0.20以上とする。この値を下回ると配合ゴム組成物の耐摩耗性の低下と低燃費性の悪化をきたし好ましくない。上限値については特に限定はないが、検討した範囲では0.50以上のものは得られていない。

・水素含有量は、耐摩耗性に寄与する活性水素の量を反映し、酸素含有量は発熱性に悪影響を及ぼす含酸素官能基の量を反映する。すなわち、カーボンブラックのH/Oの値が大きいほど、それを使用したゴム組成物は高水準の耐摩耗性を保持したうえで、低燃費性が向上する。

【0021】ところで特開平4-108837号公報においては、カーボンブラック単位重量当たりの酸素と水素の合計含有量を一定値以下に低減することにより、ゴム組成物に高度の耐摩耗性とともに高グリップ性能を付与する発明が提案されている。しかし、水素含有量を低下させ 50

ると耐摩耗性に寄与する活性水素の量が減少するため、 耐摩耗性、低燃費性に優れたゴム組成物を提供するため の指標としては不十分である。

【0022】上記した本発明の各特性を備えるカーボンブラックは、炉頭部に接線方向空気供給口と炉軸方向に装着された燃焼バーナーを備える燃焼室と、該燃焼室と同軸的に連設された原料油噴射ノズルを有する2~3段階の狭径反応室及び広径反応室により構成されるオイルファーネス炉を用い、原料油の供給量及び原料油の供給箇所、燃料油及び空気、酸素ガスまたはその混合物からなる燃焼用ガスの供給量等を調整することによって製造することができる。また特に本発明の重要特性であるV(25~30)及びH/Oを所定の範囲に制御する方法としては、前述の製造方法において原料油量及び原料供給箇所などの変更が有効である。

【0023】上記の特性と成分組成を備えたカーボンブラックは、常法に従ってポリブタジエンゴム、スチレンブタジエンゴム、イソプレンゴム、ブチルゴム等のジエン系合成ゴム、天然ゴムもしくは前記ジエン系合成ゴムと天然ゴムの1種もしくは2種以上に配合する。カーボンブラックの配合比率は、ゴム成分100重量部に設定する。カーボンブラックの配合比率が20重量部を設定する。カーボンブラックの配合比率が20重量部を下廻ると配合ゴムに十分な耐摩耗性が付与されず、100重量部を越えると配合物の粘度が上昇するため混練加工性が著しく減退する。配合に際しては、加硫剤、加硫促進剤、加硫促進助剤、酸化(老化)防止剤、軟化剤、可塑剤等の必要成分とともに混練し加硫処理することによって、高水準の耐摩耗性を保持しながら、非常に優れた低燃費性を持った所望のタイヤトレッド用ゴム組成物を得ることができる。

【0024】また一方で、タイヤトレッド用ゴム組成物としては、優れた耐摩耗性とグリップ特性が要求される場合がある。その場合は、カーボンブラックの一般特性を、所定範囲に制御したうえで、製造工程内での表面賦活により含酸素官能基を除去し、除去された箇所に、グリップ特性を向上させることに寄与する特定の官能基が生成することにより、優れた耐摩耗性とグリップ特性を発現できることを、われわれは別途知見として得ている。

40 [0025]

【発明の実施の形態】以下本発明の実施の形態を実施例とともに説明する。本発明の特性を備えるカーボンブラックの製造方法に使用されるオイルファーネス炉の一例としては、炉の軸方向に装着した燃料バーナーの周囲から接線方向に空気を供給する空気供給口を有する燃焼室(内径 350mm、長さ 200mm)に引き続き、半角 15°のテーパ角を有する縮小テーパ部、円筒直管部(内径 150mm,長さ 250mm)、各々炉軸に対して直角方向に原料が供給できる原料供給口を備えた第 1 反応室

) (内径 105mm, 長さ 1720mm)、第 2 反応室(内径

75mm, 長さ 600mm)、拡大テーパ部 (テーパ角 度:半角 3°)、および、冷却水スプレー装置を備えた 反応停止部(内径 170mm)から構成されるオイルファ ーネス炉を用いて、第1反応室、第2反応室、拡大テーパ 部のうち任意に1箇所以上でかつ炉断面に対して原料が 均一に供給される様に、原料供給口を選択し、原料に石 炭系重質油(比重 1.05 (100/4℃)、BMC I 150)を 用いるとともに、製造条件を適宜変更することにより、 本発明の特性を備えるカーボンブラックを得る。

[0026]

【実施例】以下、本発明をさらに理解しやすくするため に具体的な実施例について説明する。かかる実施例は本* *発明の一態様を示すものであり、本発明はこれによって 限定されるものではなく本発明の範囲で任意に変更でき る。

8

【0027】実施例1~3及び比較例1~3

実施例におけるカーボンブラックは、上記のオイルファ ーネス炉を用いて、表1に示す通り、原料油量、燃料油 量及び空気供給量、原料供給箇所等の条件を変更して製 造した。このようにして得られたカーボンブラックの特 性値を表3上部欄にまとめて示す。

10 [0028]

【表1】

						比較例	
		1	2	· 3.	ı	2	3
原料油量	第1原料	46	47	50	195	75	185
(kg/b)	第2原料	80	. 80	79		115	
	第3原料	65	54	70			
燃料油量	.	94	94	94	98	97	97
(kg/h)							
空気供給量		1295	1285	1280	1295	1300	1290
(Nu3/h)	1		1	l			

【0029】製造した各実施例、比較例でのカーボンブ ラックのゴム組成物としての性能評価は、表2に示すA STM D3192に準拠して行った。即ちカーボンブ ラックは天然ゴムとともに配合混練し、加硫条件145 ℃、30分で加硫を行ってゴム組成物とした。

[0030]

【表2】

配合材料	配合部数(phr)
NR-RSS#1	100
カーボンブラック	50*1
酸化亜鉛	5
ステアリン酸	3
benzothiazyl disulfide	0.6
硫黄	2. 5

した。 (1) 摩耗特性の評価

※【0031】ゴム組成物の耐摩耗性と燃費特性の評価を

下記の条件で行い、その結果を表3下部欄にまとめて示

表3の耐摩耗性の評価は、岩本製作所社製ランボーン摩 耗試験機を用いてスリップ率25%、60%の2条件で 下記の通りで行った。

*1:標準配合部数を示す。

30

; 岩本製作所社製 単連ランボーン摩耗試験機 **①**装置 ; 外径305mm、粒GC、粒度80、結合度K

③サンプル; 外径49mm、内径23mm、幅5mm

40砂 ; カーボランダム90メッシュ

サンプル速度 50.8m/分(330rpm) ⑤条件

> 落砂量 15g/分

【0032】(2) 燃費特性の評価

★クトロメーターを用いて60℃の損失正接(以下tan

また表3の燃費特性の評価は、東洋精機社製粘弾性スペ★ δ (60℃)で示す)を測定した。

> ①装置 粘弾性スペクトロメーター ; 東洋精機社製

②サンプル ; 長さ20mm、幅5mm、厚さ2mm

③測定温度 ; 60℃ ❷周波数 ; 20Hz **⑤**初期ひずみ; 10%

6振幅 2 %

【0033】ただし耐摩耗性、燃費特性の値は、汎用グ 50 レードN-220標準品(新日鐵化学製;ニテロン#3

00)を100としたときの対比で示した。なおタイヤ トレッド用カーボンブラックとしては、一般にN-11 ○、N-220等の汎用グレードが多く用いられてい る。そこでここでは、汎用グレードからの改良度合いを 性能の指標とする意味で、汎用グレードN-220標準 品をリファレンス(標準値100)とした。実施例、比 較例の耐摩耗性、燃費特性の評価はN-220標準品 (ニテロン#300)の標準配合とゴム硬度を等しくし て行った。すなわち実施例、比較例についてはカーボン* *ブラックの配合変量を行い、N-220標準品(ニテロ ン#300)の標準配合とゴム硬度の等しい点での耐摩 耗性、燃費特性の値を採用して比較した。耐摩耗性は値 の高いものほど摩耗が少なく耐摩耗性が優れていること を示す。燃費特性は値の低いものほど発熱が小さく燃費 特性が優れていることを示す。

10

[0034] 【表3】

	項目	N-220 標準品		実施例			比較例	
カ			1	2	3	1	2	з.
1	CTAB (m ² /g)	114	139	145	141	142	147	152
ポン	N.SA (m2/g)	123	155	179	168	178	178	189
ンプラック	24M4DBP (m1/100g)	98	115	118	119	117	120	120
	`D s ()	0.12	0. 13	0. 13	0. 13	0. 12	0. 14	0.13
	TINT (%)	124	126	127	122	124	124	127
#	HAZV若色活過度(%)	94	68	75	72	76	74	73
性	Y(25~30) (m1/100g)	10.0	36. 6	37. 1	39. 1	40. 5	11.3 -	15. 4
黛	H/O (+)	0.18	0. 36	0. 23	0. 30	0. 19	0.32	0.17
ゴ	ランは・-ン摩耗 25% (%)	100	109	111	115	110	102	104
ム	ランギ - ×) 原和 60% (%)	100	112	114	120	113	105	103
性	ten 6 (60°C) (%)	100	86	88	83	98	88	99

【0035】表3に示したとおり、本発明で規定した条 件を満たす実施例1~3はすべて、比較例1~3よりも 高水準の耐摩耗性を保持しながら、非常に優れた低燃費 性をもつことがわかる。一方本発明で規定した条件を満 たしていない比較例1~3の場合は、標準品より改善さ れてはいるが、実施例ほど両特性が同時に改善されてい ない。即ち比較例1では、カーボンブラックの特性値で ある V (25~30) については本発明の範囲内にあるため 30 用したゴム組成物を、トラック、バス及び乗用車のタイ 高水準の耐摩耗性を保持しているが、H/Oについては 本発明の範囲外にあるため実施例1~3よりも低燃費性 が悪化している。比較例2ではH/Oについては本発明 の範囲内にあるため良好な燃費特性を有しているが、V※

※ (25~30) については本発明の範囲外にあるため実施例 1~3よりも耐摩耗性が低下している。比較例3ではV (25~30)、H/Oのいずれも本発明の範囲外にあるた め実施例1~3よりも耐摩耗性の低下と低燃費性の悪化 の両方を招いている。

[0036]

【発明の効果】本発明のカーボンブラック及びそれを使 ヤトレッド用として用いた場合、高水準の耐摩耗性を保 持しながら、非常に優れた低燃費性をもつタイヤトレッ ド用ゴム組成物を提供することができる。

フロントページの続き

(72)発明者 矢野 博之

福岡県北九州市小倉北区中井4丁目10-3

(72)発明者 住本 勲

福岡県行橋市西泉7丁目17-13

(72)発明者 飯島 孝

神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社技術開発本部内