USEMO 2020/1

Dylan Yu

July 23, 2021

Problem 1. Which positive integers can be written in the form

$$\frac{\operatorname{lcm}(x,y) + \operatorname{lcm}(y,z)}{\operatorname{lcm}(x,z)}$$

for positive integers x, y, z?

Solution. I claim all even integers (and only even integers) suffice. Let *k* be an integer, and let

$$f(x,y,z) = \frac{\operatorname{lcm}(x,y) + \operatorname{lcm}(y,z)}{\operatorname{lcm}(x,z)}.$$

Then

$$f(k, k^2, k) = \frac{\operatorname{lcm}(k, k^2) + \operatorname{lcm}(k^2, k)}{\operatorname{lcm}(k, k)} = \frac{k^2 + k^2}{k} = 2k.$$

Thus if k = 1, 2, ..., then we can create all even integers as desired.

Now we will show all odds cannot be created. Two solutions (the first is recommended):

Solution via v_2 Because f(x, y, z) is an integer, we must show

$$\nu_2(\text{lcm}(x,y) + \text{lcm}(y,z)) > \nu_2(\text{lcm}(x,z)) = \max(\nu_2(x), \nu_2(z)).$$

WLOG let $v_2(x) \ge v_2(z)$. Then again we have to show

$$\nu_2(\operatorname{lcm}(x,y) + \operatorname{lcm}(y,z)) > \nu_2(x).$$

Let us now do casework on the size of y with respect to x and z:

- Case 1 ($\nu_2(y) \ge \nu_2(x) \ge \nu_2(z)$). Then $\nu_2(\operatorname{lcm}(x,y)) = \nu_2(\operatorname{lcm}(y,z)) = \nu_2(y)$, so $\nu_2(\operatorname{lcm}(x,y) + \operatorname{lcm}(y,z)) > \min(\nu_2(\operatorname{lcm}(x,y)), \nu_2(\operatorname{lcm}(y,z))) = \nu_2(y) \ge \nu_2(x)$ as desired.
- Case 2 ($\nu_2(x) > \nu_2(y) \ge \nu_2(z)$). Then $\nu_2(\operatorname{lcm}(x,y)) = \nu_2(x)$ and $\nu_2(\operatorname{lcm}(y,z)) = \nu_2(y)$, so

$$\nu_2(\text{lcm}(x,y) + \text{lcm}(y,z)) \ge \min(\nu_2(\text{lcm}(x,y)), \nu_2(\text{lcm}(y,z))) = \nu_2(y) < \nu(x),$$

implying f(x, y, z) is not an integer, so this case is impossible.

• Case 3 ($\nu_2(x) \ge \nu_2(z) > \nu_2(y)$). Also impossible, left as exercise to the reader.

Thus, $v_2(\operatorname{lcm}(x, y) + \operatorname{lcm}(y, z)) > v_2(x)$ as desired.

Solution via casework Let us consider all possible parities of x, y, z (assume f(x, y, z) is an integer, of course):

$x \pmod{2}$	y (mod 2)	$z \pmod{2}$	$f(x,y,z) \pmod{2}$
0	0	0	Case 1
0	0	1	Case 2
0	1	0	Case 3
0	1	1	Case 4
1	0	0	Case 5
1	0	1	Case 6
1	1	0	Case 7
1	1	1	Case 8

• Case 1. Let x = 2a, y = 2b, z = c. Then

$$f(x,y,z) = \frac{\text{lcm}(2a,2b) + \text{lcm}(2b,2c)}{\text{lcm}(2a,2c)} = \frac{\text{lcm}(a,b) + \text{lcm}(b,c)}{\text{lcm}(a,c)} = f(a,b,c).$$

Thus, we will eventually reach a case where not all x, y, z are divisible by 2, i.e. one of the cases 2 through 7.

• Case 2. Let x = 2a, y = 2b, z = 2c + 1. Then

$$f(x,y,z) = \frac{\operatorname{lcm}(2a,2b) + \operatorname{lcm}(2b,2c+1)}{\operatorname{lcm}(2a,2c+1)} = \frac{\operatorname{lcm}(a,b) + \operatorname{lcm}(b,2c+1)}{\operatorname{lcm}(a,2c+1)} = f(a,b,2c+1).$$

Thus, we will eventually reach another case.

• Case 3. Let x = 2a, y = 2b + 1, z = 2c. Then

$$f(x,y,z) = \frac{\text{lcm}(2a,2b+1) + \text{lcm}(2b+1,2c)}{\text{lcm}(2a,2c)} = f(a,2b+1,c).$$

Thus, we will eventually reach another case.

• Case 4. Let x = 2a, y = 2b + 1, z = 2c + 1. Then

$$f(x,y,z) = \frac{\text{lcm}(2a,2b+1) + \text{lcm}(2b+1,2c+1)}{\text{lcm}(2a,2c+1)}.$$

The numerator is odd whereas the bottom is even, so f(x, y, z) cannot be an integer.

- Case 5. Identical to case 2.
- Case 6. Let x = 2a + 1, y = 2b, z = 2c + 1. Then

$$f(x,y,z) = \frac{\text{lcm}(2a+1,2b) + \text{lcm}(2b,2c+1)}{\text{lcm}(2a+1,2c+1)} = 2f(2a+1,b,2c+1) = \text{even}.$$

- Case 7. Identical to case 4.
- Case 8. Let x = 2a + 1, y = 2b + 1, z = 2c + 1. Then

$$f(x,y,z) = \frac{\text{lcm}(2a+1,2b+1) + \text{lcm}(2b+1,2c+1)}{\text{lcm}(2a+1,2c+1)} = \frac{\text{even}}{\text{odd}},$$

so if $f(x, y, z) \in \mathbb{Z}$, then it must be even.

Thus, f(x, y, z) is always even as desired.