4. Machine Learning Overview

4.4 Neural networks

Ricardo Brauner

31 Julho, 2020

Instituto UFC Virtual

Artificial neural network

- An information processing system
- Designed to simulate human brain
- Composed of artificial neurons
- Simplified human brain

Artificial neural network

- Simulate human intelligence
- Reflects some basic features of human brain:
 - Parallel information processing,
 - Learning,
 - Association,
 - Pattern classification,
 - Memory

Biological neuron

Artificial Neuron

- Conceptually derived from biological neurons
- Has multiple inputs and produce a single output which can be sent to multiple other neurons
- The weighted sum of all the inputs
- Add a bias term to this sum
- Sum is then passed through a activation function to produce the output

Perceptron

Perceptron

Input vector: $X = [x_0, x_1, ..., x_n]^T$.

Weight: $W = [\omega_0, \omega_1, ..., \omega_n]^T$, where ω_0 is the bias.

Activation function: $0 = sign(net) = \begin{cases} 1, net > 0, \\ -1, otherwise. \end{cases}$

$$net = \sum_{i=0}^{n} \omega_i x_i = \mathbf{W}^T \mathbf{X}$$

Classifier

- The perceptron is equivalent to a classifier.
- Its input is the high-dimensional vector X
- it performs binary classification on input samples in the high-dimensional space.
- If $W^TX > 0$, the sample is classified into one class.
- Otherwise, the sample is classified into the other class.

Boundary

The boundary $W^TX = 0$ is a high-dimensional hyperplane.

Segmentation point

Ax + B = 0

Segmentation line

Ax + By + C = 0

Segmentation surface Ax + By + Cz + D = 0

Layers

- Multiple layers
- Especially in deep learning
- Neurons of one layer connect only to neurons of the immediately preceding and immediately following layers

Layers

- The input layer receives external data
- The output layer produces the final result
- In between them are zero or more hidden layers.
- Single layer or single neuron

Activation functions

- Non-linear
- If the function is linear, the entire network is equivalent to a single-layer linear model.
- Continuously differentiable
- Enables gradient-based optimization methods.
- Range: When the range of the activation function is finite, gradient-based training methods tend to be more stable.
- When the range is infinite, training is generally more efficient but it is easy to diverge.
- Smaller learning rates are typically necessary.

Activation functions

- Monotonicity: The loss function in a single-layer model is convex.
- Smooth: Generalizes better in some cases.
- Approximating identity near the origin: learn efficiently when its weights are initialized with small random values.

Sigmoid function

$$f(x) = \frac{1}{1 + e^{-x}}$$

Tanh function

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Softsign function

$$f(x) = \frac{x}{|x| + 1}$$

Rectified Linear Unit (ReLU) function

$$y = \begin{cases} x, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

Softplus function

$$f(x) = \ln(e^x + 1)$$

Types of Neural Networks

Single Perceptron

Only represents the linear decision surface

Hyperplane

Multi-layer Fully Connected

- If we connect many perceptrons
- Like a human brain does and
- Non-linear activation function with a function,
- Express a wide range of non-linear surfaces

Feedforward Neural Network

one of the simplest

Widely used

Fastest development

input node does not support computation

Convolutional Neural Network

- Respond to surrounding units
- Image processing
- A convolutional layer: slides a filter on the signal
- A pooling layer: merges info to reduce size
- A fully connected layer: final decision

Convolutional Neural Network

Recurrent Neural Network

- Captures dynamic information in sequential data
- Periodical connections of hidden layer
- Can classify sequential data
- Used in scenarios related to sequences
- Videos, audio and sentences

Recurrent Neural Network

- Neuron output is one of its inputs
- Input can be delayed

