randomly sample $S_0[j].x$ from X; $S_0[j].y \leftarrow f(S_0[j].x)$; for $i \in 0 \dots \infty$ do b iterate "generations" for $i \in 1...ps$ do \triangleright new pop. via mutation and crossover

if
$$\Re_0^1 < cr$$
 then $N_i[j].x \leftarrow \text{binary}(S_i[[\Re_i^n]].x, S_i[[\Re_i^n]].x);$
else $N_i[j].x \leftarrow \text{move}(S_i[[\Re_i^n]].x);$

 $N_i[i].y \leftarrow f(N_i[i].x)$;

 $S_{i+1} \leftarrow Roulette \ Wheel: select \ ps \ records \ from \ P_i = S_i \cup N_i$

such that, for each of the ps slots, the probability of $P_i[j]$ to be chosen is **proportional to P_i[j].y.**