Zimski ispitni rok iz predmeta "**Elektronika 2**" 14.2.2017.

Zadatak 1 – 10 bodova

Za diferencijsko pojačalo sa slike zadano je $U_{DD} = U_{SS} = 10 \text{ V}$, $R_{g1} = R_{g2} = 10 \text{ k}\Omega$, $R_D = 2 \text{ k}\Omega$ i $R_S = 6 \text{ k}\Omega$. Tranzistori T_1 i T_2 imaju jednake parametre $I_{DSS} = 9 \text{ mA}$ i $U_P = -3 \text{ V}$. Zanemariti porast struje odvoda u području zasićenja.

- a) Izračunati struje I_{DQ} i napone U_{DSQ} za oba tranzistora u statičkoj radnoj točki (3 boda).
- b) Odrediti naponska pojačanja zajedničkog i diferencijskog signala $A_{Vz} = u_{iz}/u_z$ i $A_{Vd} = u_{iz}/u_d$, te faktor potiskivanja ρ (5 bodova).

c) Izračunati izlazni napon ako je napon $u_g = 150 \sin \omega t$ mV (2 boda).

Zadatak 2 – 10 bodova

Za pojačalo na slici zadano je $U_{CC}=12~{\rm V}$, $R_G=20~{\rm k}\Omega$, $R_D=1,5~{\rm k}\Omega$, $R_E=4~{\rm k}\Omega$, $R_T=1~{\rm k}\Omega$, $C_G=500~{\rm nF}$ i $C_E=2~{\rm \mu}{\rm F}$. Parametri tranzistora su $I_{DSS}=20~{\rm mA}$, $U_P=-2~{\rm V}$, $\beta\approx h_{fe}=100~{\rm i}~U_\gamma=0,7~{\rm V}$. Zanemariti serijski otpor baze $r_{bb'}$ te poraste struje odvoda s naponom u_{DS} u području zasićenja i struje kolektora s naponom u_{CE} u normalnom aktivnom području. Naponski ekvivalent temperature iznosi $U_T=25~{\rm mV}$.

- a) Odrediti otpor R_S kojim će se postići struja $I_{DQ} = 5$ mA te izračunati struju I_{CQ} i napone U_{DSQ} i U_{CEQ} u statičkoj radnoj točki (2 boda).
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku niskofrekvencijsku analizu (2 boda).
- c) Izračunati pojačanje $A_V = U_{iz}/U_{ul}$ na srednjim frekvencijama (2 boda).
- d) Izračunati donju graničnu frekvenciju pojačanja A_V (4 boda).

Zadatak 3 – 10 bodova

Za pojačalo na slici zadano je:

$$U_{CC} = 12 \text{ V}, R_g = 50 \text{ k}\Omega,$$

$$C_B = 5 \mu \text{F}$$
, $R_1 = 400 \text{ k}\Omega$,

$$R_2 = 200 \text{ k}\Omega$$
, $R_C = 2 \text{ k}\Omega$,

$$R_E = 500 \Omega$$
, $C_E = 120 \mu F$,

 $C_C = 4 \ \mu \text{F} \ \text{i} \ R_T = 500 \ \Omega$. Parametri

tranzistora su $\beta \approx h_{fe} = 100$,

$$U_{v} = 0.7 \text{ V}, r_{bb'} = 50 \Omega,$$

 $C_{b'e} = 15 \text{ pF}$ i $C_{b'c} = 1 \text{ pF}$. Zanemariti porast struje kolektora s naponom u_{CE} u normalnom aktivnom području. Naponski ekvivalent temperature iznosi $U_T = 25 \text{ mV}$.

- a) Izračunati struju I_{CQ} i napon U_{CEQ} tranzistora u statičkoj radnoj točki (2 boda).
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku visokofrekvencijsku analizu (2 boda).
- c) Izračunati pojačanje $A_{Ig} = I_{iz}/I_g$ na srednjim frekvencijama (2 boda).
- d) Izračunati gornju graničnu frekvenciju pojačanja A_{Ig} (4 boda).

Zadatak 4 – 12 bodova

Za pojačalo na slici zadano je $U_{DD}=15 \text{ V}$, $R_G=1 \text{ M}\Omega$, $R_D=700 \Omega$, $R_S=500 \Omega$, $R_C=5 \text{ k}\Omega$ i $R_T=6 \text{ k}\Omega$. Parametri tranzistora su $I_{DSS}=16 \text{ mA}$, $U_P=-2 \text{ V}$, $\beta \approx h_{fe}=100 \text{ i}$ $U_\gamma=0.7 \text{ V}$. Zanemariti serijski otpor baze $r_{bb'}$ te poraste struje kolektora s naponom u_{CE} u normalnom aktivnom području i struje odvoda s naponom u_{DS} u području zasićenja. Naponski ekvivalent temperature $U_T=25 \text{ mV}$.

- a) Izračunati statičku radnu točku (2 boda).
- b) Odrediti tip povratne veze i nacrtati *A*-granu pojačala bez povratne veze za mali signal (**2 boda**).
- c) Odrediti pojačanje A-grane (4 boda).
- d) Odrediti koeficijent povratne veze β (2 boda).
- e) Odrediti pojačanje $A_{Vf} = u_{iz}/u_{ul}$ i ulazni otpor R_{ulf} pojačala s povratnom vezom (**2 boda**).

Zadatak 5 – 8 bodova

U pojačalu s povratnom vezom prijenosna funkcija osnovnog pojačala i koeficijent povratne veze su:

$$A(j\omega) = \frac{10^4}{\left(1 + j\omega/10^4\right)^2 \left(1 + j\omega/10^6\right)} , \qquad \beta(j\omega) = \beta_0 \frac{1 + j\omega/10^5}{1 + j\omega/10^6} .$$

Grafičkim postupkom crtanjem Bodeovog dijagrama odrediti β_0 uz koje će pojačalo biti stabilno s faznim osiguranjem $F.O. = 45^{\circ}$. Koliko je pri tome amplitudno osiguranje?

Na dijagramima označiti koordinatne osi, a u aproksimiranim karakteristikama upisati nagibe pojedinih odsječaka.

(Bodeov dijagram – 4 boda, β – 2 boda, A.O. – 2 boda)

Popis složenijih formula:

$$i_D = I_{DSS} \left(1 - \frac{u_{GS}}{U_P} \right)^2 \left(1 + \lambda u_{DS} \right)$$

$$i_C = \beta I_B \left(1 + \frac{u_{CE}}{U_A} \right)$$