Refining your plots

Daniel Anderson Week 6, Class 1

Agenda

- Axes and aspect ratios
- Annotations
- Themes

What we won't get to

Each of the following are pretty fundamental to good data viz, but we won't have time to go over them today. Please make sure to read the corresponding chapters:

- Handling high data density (lots of overlapping points)
- Compound figures
 - See {patchwork} and {cowplot}
- Exporting figures

Learning Objectives

- Understand how to make a wide variety of tweaks to ggplot to essentially make it look however you want it to.
- Understand common modifications to plots to make them more clear and reduce cognitive load

Axes

• Cartesian coordinates - what we generally use

Different units

Aspect ratio

Same scales

Use coord_fixed()

Changing aspect ratio

- Explore how your plot will look in its final size
- No hard/fast rules (if on different scales)
- Not even really rules of thumb
- Keep visual perception in mind
- Try your best to be truthful show the trend/relation, but don't exaggerate/hide
 it

Handy function

(from an apparently deleted tweet)

```
here's my favorite helper #rstats function. preview ggsave() output

ggpreview <- function (..., device = "png") {
  fname <- tempfile(fileext = pasteO(".", device))
  ggplot2::ggsave(filename = fname, device = device, ...)
  system2("open", fname)
  invisible(NULL)
}

— tj mahr  (atjmahr) January 9, 2019
```

Gist

(side note: gists are a good way to share things)

- See the full code/example here
- Let's take 7 minutes to play around:
 - Create a plot (could even be the example in the gist)
 - Try different aspect ratios by changing the width/length

Scale transformations

Raw scale

Log10 scale

GDP per capita on Five Continents

GDP per capita on Five Continents

Scales

Scales

Don't transform twice

```
ggplot(d, aes(log_x, 1)) +
  geom_point(color = "#0072B2") +
  scale_x_log10()
```


Careful with labeling

- Has the scale or the data been log transformed?
- Specify the base

```
library(ggtext)
ggplot(d, aes(log_x, 1)) +
  geom_point(color = "#0072B2") +
  labs(x = "log<sub>10</sub>(x)") +
  theme(axis.title.x = element_markdown())
```


Labels should denote the data, not the scale of the axis

```
ggplot(d, aes(x, 1)) +
geom_point(color = "#0072B2") +
scale_x_log10()

1.050
1.025
> 1.000
0.975
0.950
1 10 100
x
```

Labeling the above with $log_{10}(x)$ would be ambiguous and confusing

Labels and captions

Disclaimer

- APA style requires the labels be made in specific ways
- Much of the following discussion still applies
- Our book (Wilke) uses a similar style throughout

Title

What is the point of your figure? What are you trying to communicate

- Figures should have only one title
- Use integrated title/subtitles for sharing with a broad audience
 - Blog posts
 - Social media
 - Reports to stakeholders
- Keep figures in subtext when there's a designated format you must adhere to
- Make sure your figure has a title
 - Should not start with "This figure displays/shows..."

Caption

Consider stating the data source

Axis labels

- The title for the axis
- Critical for communication
- **Never** use variable names (very common and very poor practice)
- State the measure and the unit (if quantitative)
 - e.g., "Brain Mass (grams)", "Support for Measure (millions of people)", "Dollars spent"
 - Categorical variable likely will not need to the measurement unit

Omission

- Consider omitting obvious or redundant labels
 - o Use labs(x = NULL) or labs(x = "")

Omission

• Do not omit title that are not obvious

Don't overdo it

Annotations

Among the most effective

• If possible, try to remove legends, and just include annotations

Building up a plot

```
remotes::install_github("clauswilke/dviz.supp")
head(tech_stocks)
```

```
## # A tibble: 6 x 6
## # Groups: ticker [1]
    company ticker date
                               price index_price price_indexed
##
    <chr>
             <chr> <date>
                                            <dbl>
                                                         <dbl>
##
                                <dbl>
## 1 Alphabet GOOG 2017-06-02 975.6
                                           285.2
                                                      342.0757
## 2 Alphabet GOOG 2017-06-01 966.95
                                           285.2
                                                      339.0428
## 3 Alphabet GOOG 2017-05-31 964.86
                                           285.2
                                                      338.3100
## 4 Alphabet GOOG
                  2017-05-30 975.88
                                           285.2
                                                      342.1739
## 5 Alphabet GOOG
                  2017-05-26 971.47
                                           285.2
                                                      340.6276
## 6 Alphabet GOOG
                    2017-05-25 969.54
                                           285.2
                                                      339.9509
```

ggplot(tech_stocks, aes(date, price_indexed, color = ticker)) +
 geom_line()


```
ggplot(tech_stocks, aes(date, price_indexed, color = ticker)) +
  geom_line() +
  scale_color_0kabeIto()
```


Bad

Good


```
ggplot(tech_stocks, aes(date, price_indexed, color = ticker)) +
 geom_line() +
 scale_color_0kabeIto(name = "Company",
                       breaks = c("FB", "GOOG", "MSFT", "AAPL"),
                       labels = c("Facebook", "Alphabet", "Microsoft", "Appl
 scale_x_date(name = "",
               limits = c(ymd("2012-06-01"), ymd("2018-10-31")),
               expand = c(0,0) +
 scale v continuous(name = "Stock Price, Indexed",
                     labels = scales::dollar) +
 geom_text(data = filter(tech_stocks, date == "2017-06-02"),
            aes(y = price_indexed, label = company),
            color = "gray40",
           nudge_x = 20,
           hjust = 0,
            size = 10) +
 guides(color = "none") +
 labs(title = "Tech growth over time",
       caption = "Data from Wilke (2019): Fundamentals of Data Visualization
```


Data from Wilke (2019): Fundamentals of Data Visualization

Labeling bars

```
avs <- tech_stocks %>%
  group_by(company) %>%
  summarize(stock_av = mean(price_indexed)) %>%
  ungroup() %>%
  mutate(share = stock_av / sum(stock_av))
  avs

## # A tibble: 4 x 3
```

Bar plot

```
ggplot(avs, aes(fct_reorder(company, share), share)) +
  geom_col(fill = "#0072B2")
```


Quick aside

Let's actually make a bar plot theme

```
bp_theme <- function(...) {
   theme_minimal(...) +
    theme(panel.grid.major.y = element_blank(),
        panel.grid.minor.x = element_blank(),
        panel.grid.major.x = element_line(color = "gray80"),
        plot.title.position = "plot")
}</pre>
```


Tech company market control

Data from Clause Wilke Book: Fundamentals of Data Visualizations

Tech company market control

Data from Clause Wilke Book: Fundamentals of Data Visualizations

Last alternative

Tech company market control

Data from Clause Wilke Book: Fundamentals of Data Visualizations

Distributions

```
ggplot(iris, aes(Sepal.Length, fill = Species)) +
  geom_density(alpha = 0.3)
```



```
ggplot(iris, aes(Sepal.Length, fill = Species)) +
  geom_density(alpha = 0.3) +
  scale_fill_OkabeIto()
```


Labeling

One method

Other options

- Rather than using a new data frame, you could use multiple calls to annotate.
- One is not necessarily better than the other, but I prefer the data frame method
- Keep in mind you can **always** use multiple data sources within a single plot
 - Each layer can have its own data source
 - Common in geographic data in particular

Annotate example

```
ggplot(iris, aes(Sepal.Length, fill = Species)) +
  geom_density(alpha = 0.3) +
  scale_fill_OkabeIto() +
  scale_color_OkabeIto() +
  annotate("text", label = "setosa", x = 5.45, y = 1, color = "gray40") +
  annotate("text", label = "versicolor", x = 6, y = 0.8, color = "gray40") +
  annotate("text", label = "virginica", x = 7, y = 0.6, color = "gray40") +
  guides(fill = "none")
```


ggrepel

Plot text directly

```
cars <- rownames_to_column(mtcars)

ggplot(cars, aes(hp, mpg)) +
  geom_text(aes(label = rowname))</pre>
```


Repel text

```
library(ggrepel)
ggplot(cars, aes(hp, mpg)) +
  geom_text_repel(aes(label = rowname))
```


Slightly better

Common use cases

- Label some sample data that makes some theoretical sense (we've seen this before)
- Label outliers
- Label points from a specific group (e.g., similar to highlighting can be used in conjunction)

Some new data

```
remotes::install_github("kjhealy/socviz")
library(socviz)
```

by_country

```
## # A tibble: 17 x 8
            consent_law [2]
## # Groups:
    consent_law country donors_mean donors_sd gdp_mean health_mean roads_mean
##
##
    <chr>
                <chr>
                              <dbl>
                                        <dbl>
                                                 <dbl>
                                                             <dbl>
                                                                        <dbl>
## 1 Informed
                Austra...
                           10.635
                                    1.142808 22178.54
                                                          1957.5
                                                                    104.8757
## 2 Informed
                Canada
                           13.96667 0.7511607 23711.08
                                                          2271.929 109.2601
## 3 Informed
                Denmark
                           13.09167 1.468121 23722.31
                                                          2054.071 101.6363
## 4 Informed
                Germany 13.04167 0.6111960 22163.23
                                                          2348.75
                                                                   112.7887
## 5 Informed
                Ireland 19.79167 2.478437 20824.38
                                                          1479.929 117.7742
## 6 Informed
                Nether...
                        13.65833 1.551807 23013.15
                                                          1992.786
                                                                   76.09357
## # ... with 11 more rows, and 1 more variable: cerebvas_mean <dbl>
```

Scatterplot

```
ggplot(by_country, aes(gdp_mean, health_mean)) +
  geom_point()
```


Outliers

Combine with highlighting

```
library(gghighlight)
ggplot(by_country, aes(gdp_mean, health_mean)) +
  geom_point() +
  gghighlight(gdp_mean > 25000 | gdp_mean < 20000) +
  geom_text_repel(aes(label = country))</pre>
```

 Notice you only have to specify the points to highlight and geom_text_repel will then only label those points

Combine with highlighting

Switch to make outliers grayed out and labeled

Note I found the exact gray color by looking at the source code. Specifically, it is the output from ggplot2::alpha("grey", 0.7)

By group

By group

GDP and Health

Countries with a presumed organ donation consent are highlighted

Data from the General Social Science Survey, Distributed through the socviz R package

Themes (quickly)

ggthemes

- Great place to start. All sorts of themes.
- Includes color scales, etc., that align with themes
- You can even conform with other software
 - fit into an economics conference with theme_stata

See the themes here

ggthemeassist

- Another great place to start with making major modifications/creating your own custom theme
- Can't do everything, but can do a lot
- See here

(demo)

theme() for everything else

- You can basically change your plot to look however you want through theme
- Generally a bit more complicated
- I've used ggplot for *years* and only really now gaining fluency with it

Quick example

From Lab 3

Hurricane Google trends over time

Source: https://github.com/fivethirtyeight/data/tree/master/puerto-rico-media

```
p + theme(panel.grid.major = element line(colour = "gray30"),
          panel.grid.minor = element_line(colour = "gray30"),
          axis.text = element_text(colour = "gray80"),
          axis.text.x = element_text(colour = "gray80"),
          axis.text.y = element text(colour = "gray80"),
          axis.title = element_text(colour = "gray80"),
          legend.text = element_text(colour = "gray80"),
          legend.title = element_text(colour = "gray80"),
          panel.background = element_rect(fill = "gray10"),
          plot.background = element_rect(fill = "gray10"),
          legend.background = element_rect(fill = NA, color = NA),
          legend.position = c(0.20, -0.1),
          legend.direction = "horizontal",
          plot.margin = margin(10, 10, b = 20, 10),
          plot.caption = element_text(colour = "gray80", vjust = 1),
          plot.title = element text(colour = "gray80"))
```


Next time Our final lab!