	It is a non-Evlenium graph. We neet to use minimum lost to turn it to a Eulerian graph
	A graph is Eulerian if two vertiles have odd degree
	there are 6 verties with
	we can add 2 edges to eliminate 4 vertices with old degree, thus the new graph is a Enterin that
	Thus, the shortest voute is 17+2=19 long
/.	the course dock well to did the thouse
goodness of fit.	that the difference be tween two categorical detact is generated by run down ness. It can test in dependence & Tutos' X2 text is used to text in dependence & Conthigency table

P(X X+X>0) = p(x, x+x) p(x+x) = X. Yore is IN(o) SO X+Y is garssian too = P(+7-X|x)P(x) $= \frac{(1-p(x))p(x)}{1}$ = -2 p(x) + 2 p(x) # done (A) 20% Figure Commonwork Figure

of 100000 0 0000000000000000000000000000	
122	
6 rolls 1 6 21 56 126 250 446 726	
76 R4 Mg	
1 4 10 20 35 54 74 92	
1 3 6 10 15 19 21 21 19 15	
0	
1, 2, 3 4, 5, 6, 78, 4, 10, 11, 12, 13/4	
path one	
od die	
2	
Elgain / > Eloss) should continue	
+ f (1+2+3+4+5+6).	
Elgan for next roduds) = E (2+3+4+5+6)	
	-
4. 1. 2(1.) 1. 35	

E. Lsmail = (3) Stay . 1x = 53 1-3x . x dx = 53 (3X - 2X) dx $= \frac{3x^2}{3} + \frac{1}{3} + \frac{1}{3} - \frac{1}{3} + \frac{1}{2} = \frac{1}{3}$ = 1 + 3 + 2/89 3 E Lbig = SI (X dy) x dx $=\int_{1}^{2}\left(\frac{3\times 1}{5\times 1}\right)\times dx$ = 5 = (-3×+ =x)dx = -3x2/1 - 24/2 - 2/ay (1-x) = = 1 - 3 - 1 - 2 (replied by 1 - / 20) ELmiddele = 1 - Elsaull - Elsig

W(2) #	total # of combinations is 1 of k people have wrough hats: (k) ! k where ! k = k! \$ (-1)	
	$E(k) = \frac{1}{2} \frac{1}{(k)!k} \cdot k$ $= \frac{1}{k=0} \frac{1}{(N-k)!} \frac{1}{120} \frac{1}{1!} \frac{1}{k}$	
	$E(k') = \sum_{k=0}^{N} \frac{1}{N!} (k) k ^{2}$ $= \sum_{k=0}^{N} \frac{1}{N!} (k) k ^{2}$ $= \sum_{k=0}^{N} \frac{1}{N-k!} (k) k ^{2}$	
(3)	$\forall \operatorname{or}(k) : \in (k^2) - (Ek)^2$	
MARIEMAN	C) the four conservation	

8 assume 2k < n 42k+1 as failure any path with beginning of I is emisted a path consisting of all (k+1) H is assumed as accept. thoose (1-1-2k) sandomly from all other paths starthy with 1-1 as failures.

The rest are regarded as retry. $9 E(L) = \frac{1}{2}(10) + \frac{1}{2} \cdot \frac{1}{2}(1+10) + \frac{1}{2} \cdot (2+10)$ t - - ! [9+10] + - 10 $= 10 + \frac{1}{4} + \frac{2}{8} + \cdots + \frac{9}{2^{10}}$ $= 10 + \frac{11}{4} + \frac{11}{8} + \cdots + \frac{11}{4} + \frac{11}{4$

11.	chuss Myllode:
	det _ivit_ (self vul) self vulne = Vul
100	self, Next = None
	To delete the node next to A, defined as temp
temp = A	Next; A. next = temp. next.
13	
	No, to create an object, complete information
	No, to crente an object, complete information is needed.
2	similar function as virtue constructor
	Buse * P = new B()
	Base & PI = new p > A()
Who	re B(1) is a derived class of A(-)
14	Tes, it is
	Prepared by Index no.
X6AEY 107/151	Stitute of Comment Prince

15 will implement it using recursive method: det mytun (mystr; 1'. i): +1=): return 1 + j= i+1 & mg+r(i) = mystr[s] return 2 it my str [i] = my str [i] return my fun Emystr, i+1, 5-1]+2 : [my str (i) ! = my str [] ! return mox (my from (seq, 1, j-1), my from (seq, 241, j)) 16. First split the string by in it generates spront, in verse the list. Prepared by Third: is join (List) to form a new striking

17 psudo-lode: 1. find the local minute & day o is local priming 2. find the local maximuladay Nis book moving 1+ PN > PN-1, [Max, Max], --] 3 choose two largest number from Lmax, - win, max, - m 18. design a recursive soluthur. det myfun (N, List, index)

1 f | hot in index & ten (Index) >0 return -1 or condition This not - N= N-1 connected in the LIst = L', st removed (ist (L'est (0) [i])) residen! result. append [i]
vol = my fun (M, List I, Index I) it val ==-1: result, remove Li]; return else! return i