Задача 2. «Просачивание»

Внутри цилиндрической трубки с внутренним радиусом R находится сплошной цилиндр длиной l, радиус которого незначительно отличается от R. Между стенками трубки и боковой поверхностью цилиндра существует тонкий зазор толщиной h. Во всех пунктах данной задачи будем полагать, что толщина этого зазора постоянна и h << R. Из этого условия следует, что средняя скорость течения жидкости в зазоре значительно

превышает скорость движения цилиндра. Поэтому при расчете сил вязкого трения движением цилиндра можно пренебречь и считать, что сила, действующая на движущийся цилиндр, равна силе, действующей на цилиндр неподвижный.

При протекании жидкости через зазор на стенки трубки и боковую поверхность цилиндра

действует со стороны жидкости сила трения (вязкого). Величина этой силы, действующей на единицу площади поверхности (как внутренней поверхности трубки, так и боковой поверхности цилиндра), определяется по формуле

$$f = \gamma \frac{v_{cp.}}{h} \,, \tag{1}$$

где $v_{cp.}$ - средняя скорость течения жидкости в зазоре¹,

 γ - постоянный коэффициент, зависящий только от свойств жидкости, который считайте известным. Такая же по модулю сила действует и на движущуюся жидкость. Понятно, что для того, чтобы жидкость протекала через зазор, необходимо создать некоторую разность давлений $\Delta P = P_0 - P_1$ с разных сторон цилиндра.

1. Неподвижный цилиндр.

Пусть цилиндр закреплен внутри цилиндра с помощью нити. С разных сторон цилиндра создана разность давлений $P_0 - P_1 = \Delta P$.

- 1.1 Определите среднюю скорость течения жидкости в зазоре $v_{cp.}$
- 1.2 Определите расход жидкости (объем, протекающий за единицу времени) в зазоре.
- 1.3 Определите силу натяжения нити. Почему, и на сколько эта сила отличается от разности сил давления?

2. «Тонем и всплываем!»

Трубку с цилиндром расположили вертикали и закрыли ее нижний торец. Верхний торец открыт, жидкость полностью заполняет трубку. Плотность жидкости обозначим ρ_0 , а плотность материала цилиндра ρ_1 , причем $\rho_1 > \rho_0$.

2.1 Пусть цилиндр опускается с постоянной скоростью u. Чему равна средняя скорость движения жидкости в зазоре?

 $^{^{1}}$ Строго говоря, скорость течения жидкости в зазоре зависит от расстояния до стенки, однако для решения данной задачи нет необходимости рассматривать точное распределение скоростей жидкости, вполне достаточно определить именно среднюю скорость течения в зазоре.

- 2.2 Определите разность давлений жидкости между нижним и верхним основаниями цилиндра $\Delta P = P_0 P_1$. Почему, и на сколько отличается эта разность давлений от гидростатического давления столба жидкости в зазоре?
- 2.3 Найдите скорость u, с которой будет опускаться цилиндр.

Рассмотрим всплытие цилиндра. Пусть плотность материала цилиндра меньше плотности жидкости $\rho_1 < \rho_0$.

- 2.4 Определите разность давлений жидкости между нижним и верхним основаниями цилиндра $\Delta P = P_0 P_1$ в этом случае.
- 2.5 Определите скорость u, с которой будет всплывать цилиндр.

Задача 3. «Морской бой»

Данную задачу предлагаем Вам решить графическим методом. Для решения задачи необходимы линейка и карандаш. Все необходимые построения и измерения проделывайте на отдельном выданном Вам листе. Не забудьте вложить этот лист в вашу тетрадь!

На рисунке изображено взаимное расположение двух кораблей. Начало системы координат выбрано в точке, в которой первоначально находится корабль А. Две клетки соответствуют расстоянию в 1 км. Скорость кораблей одинакова по модулю и равна 10 м/с. Скорость корабля А направлена под углом 30° к оси ОУ.

1. Выход на боевую позицию.

- 1.1 Определите, с какой скоростью корабль A движется относительно корабля Б. Укажите модуль этой скорости $|\vec{v}_{AOMH\bar{b}}|$ и угол α , образованный вектором скорости с осью ОХ.
- 1.2 Определите минимальное расстояние между кораблями $S_{\mathit{MИH}}$.
- 1.3 Какое время будут двигаться корабли до сближения на минимальное расстояние t_{MUH} ?
- 1.4 Определите координаты кораблей $x_{\scriptscriptstyle A}$, $y_{\scriptscriptstyle A}$ и $x_{\scriptscriptstyle B}$, $y_{\scriptscriptstyle B}$ в этот момент времени.

2. Атака.

- 2.1 В момент сближения на минимальное расстояние корабль Б осуществляет запуск торпеды, скорость которой относительно корабля $|\vec{v}_{TomnB}|$ составляет 20 м/с. Под каким углом β к направлению движения корабля Б необходимо выпустить торпеду, чтобы поразить корабль A?
- 2.2 Чему равна скорость движения торпеды относительно воды $|\vec{v}_{\textit{ТотиВ}}|$, и под каким углом γ к оси OX она направлена?
- 2.3 Какое время t_T понадобится торпеде для достижения цели?
- 2.4 Где будет находиться корабль A (x_{A1} , y_{A1}) в момент попадания торпеды?

Примечание. Значения углов можете определять приближенно, правильно считая клеточки!