



# Algoritmos para o Freeze-Tag e Problemas de Robótica de Enxame Relacionados<sup>a</sup>

Aluno: Lucas de Oliveira Silva

Orientador: Lehilton Lelis Chaves Pedrosa

Instituto de Computação, Unicamp

10 de Março de 2025

 $<sup>^</sup>a$  Financiado pela Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) processo #2022/13435-4

#### Sumário

Problemas Estudados

Trabalhos Futuros

## **Problemas Estudados**

Freeze-Tag Problem

Problemas Estudados
Freeze-Tag Problem
Contexto
Resultados Teóricos
Resultados Experimentais
Angular Freeze-Tag Problem
Minimum Scan Cover

# Freeze-Tag Problem

Contexto













### Motivação

• Modela problemas de transmissão de dados e design de redes;

#### Motivação

- Modela problemas de transmissão de dados e design de redes;
- Soluções são árvores binárias geradoras de altura mínima;

#### Motivação

- Modela problemas de transmissão de dados e design de redes;
- Soluções são árvores binárias geradoras de altura mínima;
- Ligado às árvores de multicast (estruturas de comunicação da camada de aplicação).

# Definição - Instância

• Conjunto de n robôs R;

# Definição - Instância

- Conjunto de *n* robôs *R*;
- Robô inicial  $r_0 \in R$  (fonte);

## Definição - Instância

- Conjunto de *n* robôs *R*;
- Robô inicial  $r_0 \in R$  (fonte);
- Função de distância dist:  $R \times R \to {\rm I\!R}^+$ .

- O conjunto de movimentos (schedule ou árvore de ativação):
  - Árvore binária  $\mathcal{T}$  enraizada em  $r_0$  que visita todos os robôs;

- O conjunto de movimentos (*schedule* ou árvore de ativação):
  - Árvore binária  $\mathcal{T}$  enraizada em  $r_0$  que visita todos os robôs;
  - Minimizamos o *makespan*, isto é, o tempo total de ativação.

- O conjunto de movimentos (*schedule* ou árvore de ativação):
  - Árvore binária  $\mathcal{T}$  enraizada em  $r_0$  que visita todos os robôs;
  - Minimizamos o *makespan*, isto é, o tempo total de ativação.

- Árvore binária  $\mathcal{T}$  enraizada em  $r_0$  que visita todos os robôs;
- Minimizamos o *makespan*, isto é, o tempo total de ativação.



- Árvore binária  $\mathcal{T}$  enraizada em  $r_0$  que visita todos os robôs;
- Minimizamos o *makespan*, isto é, o tempo total de ativação.



- Árvore binária  $\mathcal{T}$  enraizada em  $r_0$  que visita todos os robôs;
- Minimizamos o *makespan*, isto é, o tempo total de ativação.



- Árvore binária  $\mathcal{T}$  enraizada em  $r_0$  que visita todos os robôs;
- Minimizamos o *makespan*, isto é, o tempo total de ativação.



- Árvore binária  $\mathcal{T}$  enraizada em  $r_0$  que visita todos os robôs;
- Minimizamos o *makespan*, isto é, o tempo total de ativação.



- Árvore binária  $\mathcal{T}$  enraizada em  $r_0$  que visita todos os robôs;
- Minimizamos o *makespan*, isto é, o tempo total de ativação.



# Freeze-Tag Problem

Resultados Teóricos

## Conjectura Inicial

#### Conjectura (Arkin et al. [ABF+06])

O FTP é NP-difícil para as distâncias Euclidiana ( $L_2$ ) ou de Manhattan ( $L_1$ ) no plano  $\mathbb{R}^2$ .

## Conjectura Inicial

#### Conjectura (Arkin et al. [ABF+06])

O FTP é NP-difícil para as distâncias Euclidiana ( $L_2$ ) ou de Manhattan ( $L_1$ ) no plano  $\mathbb{R}^2$ .

Problema 35 do The Open Problems Project [ODM01].

#### **Resultados Anteriores**

#### Teorema (Arkin et al. [ABF+02])

Existe um EPTAS para o FTP com distâncias  $L_p$  em qualquer espaço de dimensão fixa  ${\rm I\!R}^{\rm d}$ , com tempo de execução  $O(n\log n) + 2^{O((1/\varepsilon)^2\log 1/\varepsilon)}$ .

#### **Resultados Anteriores**

#### Teorema (Arkin et al. [ABF+02])

Existe um EPTAS para o FTP com distâncias  $L_p$  em qualquer espaço de dimensão fixa  ${\rm I\!R}^{\rm d}$ , com tempo de execução  $O(n\log n) + 2^{O((1/\varepsilon)^2\log 1/\varepsilon)}$ .

#### Teorema (Abel et al. [AAY17])

O FTP é NP-difícil para distância L<sub>2</sub> no plano.

#### **Resultados Anteriores**

#### Teorema (Arkin et al. [ABF+02])

Existe um EPTAS para o FTP com distâncias  $L_p$  em qualquer espaço de dimensão fixa  ${\rm I\!R}^{\rm d}$ , com tempo de execução  $O(n\log n) + 2^{O((1/\varepsilon)^2\log 1/\varepsilon)}$ .

#### Teorema (Abel et al. [AAY17])

O FTP é NP-difícil para distância  $L_2$  no plano.

#### Teorema (Demaine e Rudoy [DR17])

O FTP é NP-difícil para distâncias  $L_p$ , onde p > 1, em 3D.

#### **Nossos Resultados**

Teorema (Pedrosa e Silva [PdOS23b])

O FTP é fortemente NP-difícil para distância  $L_1$  em 3D.

#### **Nossos Resultados**

#### Teorema (Pedrosa e Silva [PdOS23b])

O FTP é fortemente NP-difícil para distância  $L_1$  em 3D.

#### Corolário (Pedrosa e Silva [PdOS23b])

O FTP é NP-difícil em grades 3D sem pesos nas arestas.

#### **Resultado Anterior**

Teorema (Arkin et al. [ABF+02])

O FTP é fortemente NP-difícil em estrelas com pesos nas arestas.

## Corolário (Pedrosa e Silva [PdOS23a])

O FTP é NP-difícil em árvores binárias enraizadas, sem pesos nas arestas, com a fonte na raiz e robôs desativados apenas nas folhas.

## Corolário (Pedrosa e Silva [PdOS23a])

O FTP é NP-difícil em árvores binárias enraizadas, sem pesos nas arestas, com a fonte na raiz e robôs desativados apenas nas folhas.

### Corolário (Pedrosa e Silva [PdOS23a])

O FTP é fortemente NP-difícil em árvores ternárias enraizadas, com pesos nas arestas, a fonte na raiz e um robô desativado em cada outro nó.

### **Resultado Anterior**

## Teorema (Arkin et al. [ABF+02])

É NP-difícil aproximar o FTP em grafos com pesos nas arestas dentro de um fator menor que 5/3, mesmo se o grafo tiver grau máximo 4 e possuir exatamente um robô em cada nó.

#### **Teorema**

É NP-difícil aproximar o FTP em grafos sem pesos nas arestas dentro de um fator de até  $^{3}/_{2}$ , mesmo se o grafo tiver diâmetro 2 e possuir ao menos um robô em cada nó.

# Freeze-Tag Problem

**Resultados Experimentais** 

 Experimentos foram realizados devido à ausência de implementações exatas;

- Experimentos foram realizados devido à ausência de implementações exatas;
- Duas formulações MIP implementadas usando Gurobi;

- Experimentos foram realizados devido à ausência de implementações exatas;
- Duas formulações MIP implementadas usando Gurobi;
- Uma formulação CP implementada usando o CP-SAT do Google OR-Tools;

- Experimentos foram realizados devido à ausência de implementações exatas;
- Duas formulações MIP implementadas usando Gurobi;
- Uma formulação CP implementada usando o CP-SAT do Google OR-Tools;
- Avaliação feita com instâncias usando a distância  $L_2$  em  $\mathbb{R}^2$ .

### Tornando um PTAS mais Prático

Implementamos o EPTAS de Arkin et al.  $[ABF^+06]$ , substituindo a enumeração lenta do algoritmo por nossa formulação CP.



# **Problemas Estudados**

**Angular Freeze-Tag Problem** 

### Problemas Estudados

Freeze-Tag Problem

Angular Freeze-Tag Problem Contexto

Resultados Teóricos

Minimum Scan Cover

# **Angular Freeze-Tag Problem**

Contexto











# Motivação

• Recursos limitados restringem o movimento dos satélites;

### Motivação

- Recursos limitados restringem o movimento dos satélites;
- Grandes distâncias impossibilitam um broadcast simultâneo;

### Motivação

- Recursos limitados restringem o movimento dos satélites;
- Grandes distâncias impossibilitam um broadcast simultâneo;
- O crescimento das constelações de satélites exige protocolos eficientes de transmissão de dados.

# Definição - Instância

ullet Conjunto  $P=\{p_1,\ldots,p_n\}\subseteq {\rm I\!R}^{
m d}$  de posições distintas;

# Definição - Instância

- Conjunto  $P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^d$  de posições distintas;
- Cada  $p_i$  corresponde a um satélite associado a  $\alpha_i$ ;

# Definição - Instância

- Conjunto  $P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^d$  de posições distintas;
- Cada  $p_i$  corresponde a um satélite associado a  $\alpha_i$ ;
- Inicialmente, apenas  $p_1$  contém um dado a ser propagado.

# Definição - Solução

As sequências de rotações onde o objetivo é minimizar o makespan:

# Definição - Solução

As sequências de rotações onde o objetivo é minimizar o makespan:



# **Angular Freeze-Tag Problem**

Resultados Teóricos

### **Resultados Anteriores**

## Teorema (Fekete e Krupke [FK18])

É NP-difícil aproximar o AFTP em 2D dentro de um fator menor que  $^{5}/_{3}$ .

#### **Resultados Anteriores**

## Teorema (Fekete e Krupke [FK18])

É NP-difícil aproximar o AFTP em 2D dentro de um fator menor que  $^{5}/_{3}$ .

## Teorema (Fekete e Krupke [FK18])

Existe uma 9-aproximação para o AFTP em 2D, assumindo um limite inferior de  $\varepsilon > 0$  para a rotação inicial de qualquer satélite que rotacione sua antena.

Chamamos de **energia total** de uma solução a soma da rotação total realizada por todos os satélites.

Chamamos de **energia total** de uma solução a soma da rotação total realizada por todos os satélites.

#### **Teorema**

Seja I uma instância do AFTP em 2D, E um número real e k um inteiro positivo. Então, existe um algoritmo que roda em tempo  $(n\frac{Ek}{\varepsilon})^{O(\frac{Ek}{\varepsilon})}$  e ou prova que toda solução ótima requer mais de E de energia total, ou encontra uma solução com makespan no máximo (1+1/k)OPT(I).

Chamamos de **energia total** de uma solução a soma da rotação total realizada por todos os satélites.

#### **Teorema**

Seja I uma instância do AFTP em 2D, E um número real e k um inteiro positivo. Então, existe um algoritmo que roda em tempo  $(n\frac{Ek}{\varepsilon})^{O(\frac{Ek}{\varepsilon})}$  e ou prova que toda solução ótima requer mais de E de energia total, ou encontra uma solução com makespan no máximo (1+1/k)OPT(I).

#### **Teorema**

Para todo inteiro positivo k, existe uma (1+1/k)-aproximação para o AFTP em 2D com o objetivo de minimizar a energia total, que roda em tempo  $(n\frac{k}{\varepsilon})^{O(\frac{k}{\varepsilon})}$ .

# **Problemas Estudados**

Minimum Scan Cover

#### Problemas Estudados

Freeze-Tag Problem
Angular Freeze-Tag Problem

Minimum Scan Cover

Contexto

Resultados Teóricos para 1D Resultados Teóricos para 2D

# Minimum Scan Cover

Contexto

O **Minimum Scan Cover** (MSC) foi introduzido em 2021 [FKK21] como um problema de comunicação ponto a ponto entre satélites:



O **Minimum Scan Cover** (MSC) foi introduzido em 2021 [FKK21] como um problema de comunicação ponto a ponto entre satélites:



### Origem

O **Minimum Scan Cover** (MSC) foi introduzido em 2021 [FKK21] como um problema de comunicação ponto a ponto entre satélites:



### Origem

O **Minimum Scan Cover** (MSC) foi introduzido em 2021 [FKK21] como um problema de comunicação ponto a ponto entre satélites:



 $p_4$ 

## Motivação

 É possível usar tanto transmissão direcional quanto recepção omnidirecional;

### Motivação

- É possível usar tanto transmissão direcional quanto recepção omnidirecional;
- Mas exige duas antenas, aumentando custo e complexidade.

## Definição - Instância

ullet Conjunto  $P=\{p_1,\ldots,p_n\}\subseteq {\rm I\!R}^{
m d}$  de posições distintas;

### Definição - Instância

- Conjunto  $P = \{p_1, \dots, p_n\} \subseteq {\rm I\!R}^{\rm d}$  de posições distintas;
- Grafo G = (P, E) onde  $E \subseteq P \times P$ .

**Escalonamento**  $\mathcal{S} \colon E \to \mathbb{R}^+$  onde queremos minimizar  $\max_{e \in E} \mathcal{S}(e)$ :



**Escalonamento**  $\mathcal{S} \colon E \to \mathbb{R}^+$  onde queremos minimizar  $\max_{e \in E} \mathcal{S}(e)$ :



**Escalonamento**  $\mathcal{S} \colon E \to \mathrm{I\!R}^+$  onde queremos minimizar  $\max_{e \in E} \mathcal{S}(e)$ :



**Escalonamento**  $\mathcal{S} \colon E \to \mathrm{I\!R}^+$  onde queremos minimizar  $\max_{e \in E} \mathcal{S}(e)$ :



### Minimum Scan Cover

Resultados Teóricos para 1D

### **Resultado Anterior**

### Teorema (Fekete et al. [FKK21])

Mesmo em 1D, para todo  $\gamma \geq 1$ , uma  $\gamma$ -aproximação para o MSC implica que P = NP.

### Nossos Resultados

#### **Teorema**

Existe um algoritmo  $\mathcal{FPT}$  para o MSC em 1D, parametrizado pela largura de árvore k, que roda em tempo  $k^{O(k)} \cdot n$ .

### **Nossos Resultados**

#### **Teorema**

Existe um algoritmo  $\mathcal{FPT}$  para o MSC em 1D, parametrizado pela largura de árvore k, que roda em tempo  $k^{O(k)} \cdot n$ .

#### Corolário

Existe uma 3-aproximação para o MSC em 1D em grafos planares, que roda em tempo  $O(n^2)$ .

### Minimum Scan Cover

Resultados Teóricos para 2D

### **Resultados Anteriores**

### Teorema (Fekete et al. [FKK21])

Mesmo em 2D, para todo  $\gamma < 3/2$ , uma  $\gamma$ -aproximação para o MSC em grafos bipartidos implica que P = NP.

### **Resultados Anteriores**

### Teorema (Fekete et al. [FKK21])

Mesmo em 2D, para todo  $\gamma < 3/2$ , uma  $\gamma$ -aproximação para o MSC em grafos bipartidos implica que P = NP.

## Teorema (Fekete et al. [FKK21])

Existe uma  $\frac{9}{2}$ -aproximação para o MSC em 2D em grafos bipartidos.

## **Preliminares**

Uma instância usando  $\ell=8$  direções:



### **Nossos Resultados**

#### **Teorema**

Existe um algoritmo  $\mathcal{FPT}$  para MSC em 2D, parametrizado pela largura de árvore k e  $\ell$ , que roda em tempo  $k^{O(k\ell\log(\ell))} \cdot n$ .

### **Nossos Resultados**

#### **Teorema**

Existe um algoritmo  $\mathcal{FPT}$  para MSC em 2D, parametrizado pela largura de árvore k e  $\ell$ , que roda em tempo  $k^{O(k\ell\log(\ell))} \cdot n$ .

#### Corolário

Existe uma 3-aproximação para MSC em 2D em grafos planares parametrizada por  $\ell$ , que roda em tempo  $\ell^{O(\ell)} \cdot n + O(n^2)$ .

### **Preliminares**

Uma instância de ângulo mínimo não nulo  $\lambda$ :



#### Nosso Resultado

#### **Teorema**

Existe uma 2-aproximação para o MSC em 2D parametrizada pela largura de árvore k e  $\lceil 1/\lambda \rceil$ , que roda em tempo  $\lambda^{-O(k^2 + \frac{k \log k}{\lambda})} \cdot (\log k)^{O(k^2)} \cdot n$ .

### Esboço da Prova

• Seja  $\mathcal{I}=(P,G)$  uma instância de ângulo mínimo não nulo  $\lambda;$ 

### Esboço da Prova

- Seja  $\mathcal{I} = (P, G)$  uma instância de ângulo mínimo não nulo  $\lambda$ ;
- Recebemos uma decomposição em árvore de G com largura k;

### Esboço da Prova

- Seja  $\mathcal{I} = (P, G)$  uma instância de ângulo mínimo não nulo  $\lambda$ ;
- Recebemos uma decomposição em árvore de G com largura k;
- *WLOG*, considere que  $\lambda < \pi$ .

• Seja  $M := \lfloor \pi/\lambda \rfloor \geq 1$ ;

- Seja  $M := |\pi/\lambda| \ge 1$ ;
- O disco ao redor de cada  $p_i \in P$  é dividido em 4M setores:

- Seja  $M := |\pi/\lambda| \ge 1$ ;
- O disco ao redor de cada  $p_i \in P$  é dividido em 4M setores:

- Seja  $M := |\pi/\lambda| \ge 1$ ;
- O disco ao redor de cada  $p_i \in P$  é dividido em 4M setores:



$$heta:=rac{\pi}{2M}<\lambda$$
 e os setores são  $c_j$  para  $j\in\{0,\ldots,4M-1\}=[4M-1]$ 

Consideramos uma relaxação  $\hat{\mathcal{I}} := \mathcal{I}$  dependendo de  $\theta$ :

# Consideramos uma relaxação $\hat{\mathcal{I}}:=\mathcal{I}$ dependendo de $\theta$ :



### Observação

Cada solução ótima de custo N $\theta$  corresponde a uma função  $\hat{h} \colon P \to [4M-1]^{N+1}.$ 

## Observação

Seja  $t^*$  o ótimo de  $\mathcal{I}$ . Então,  $t^* \leq 3\pi \lceil \log_2(k+1) \rceil$ 

Pela  $2^a$  Observação, existe uma solução de  $\hat{\mathcal{I}}$  com custo  $N\theta$ , onde:

$$N \le rac{3\pi\lceil\log_2(k+1)
ceil}{ heta} = 6\lfloor\pi/\lambda\rfloor\lceil\log_2(k+1)
ceil$$

Particionamos o intervalo de tempo  $[0, (N+1)\theta)$ :

Particionamos o intervalo de tempo  $[0, (N+1)\theta)$ :



#### Lema

Existe uma solução de custo no máximo  $\lfloor t^*/\theta \rfloor \theta$  para  $\hat{\mathcal{I}}$ , que mapeia arestas para pontos em  $\{i \cdot \theta \mid i \in [N]\}$ .

Seja  $\mathcal{S}^*$  uma solução ótima para  $\mathcal{I}$ .

Se o ângulo entre  ${\bf e}$  e  ${\bf f}$  não é zero, então ele é ao menos  $\lambda>\theta$ :

Se o ângulo entre  ${\bf e}$  e  ${\bf f}$  não é zero, então ele é ao menos  $\lambda>\theta$ :



## Caso contrário, o ângulo entre ${\bf e}$ e ${\bf f}$ é zero:



Construímos uma solução  $\hat{\mathcal{S}}$  para  $\hat{\mathcal{I}}$  a partir de  $\mathcal{S}^*$ :

# Construímos uma solução $\hat{S}$ para $\hat{I}$ a partir de $S^*$ :



# Construímos uma solução $\hat{\mathcal{S}}$ para $\hat{\mathcal{I}}$ a partir de $\mathcal{S}^*$ :



Usando programação dinâmica sobre a decomposição em árvore calculamos uma solução ótima para  $\hat{\mathcal{I}}$  em tempo:

$$N^{O(k^2)} \cdot M^{O(Nk)} \cdot k^{O(1)} \cdot n = \lambda^{-O(k^2 + \frac{k \log k}{\lambda})} \cdot (\log k)^{O(k^2)} \cdot n$$

# Seja $\hat{\mathcal{S}}^*$ uma solução ótima para $\hat{\mathcal{I}}$ :



• Se o ângulo entre  ${\bf e}$  e  ${\bf f}$  não é zero, então é maior que  $\theta$ ;

- Se o ângulo entre  $\mathbf{e}$  e  $\mathbf{f}$  não é zero, então é maior que  $\theta$ ;
- Logo,  $|\hat{S}^*(\mathbf{e}) \hat{S}^*(\mathbf{f})| > \theta$ , e não pertencem ao mesmo  $E^i$ .

# Construímos uma solução $\mathcal{S}$ para $\mathcal{I}$ a partir de $\hat{\mathcal{S}}^*$ :



Arestas no mesmo  $E^i \checkmark$ 







Sabemos que 
$$|\hat{\mathcal{S}}^*(e) - \hat{\mathcal{S}}^*(f)| = |i - j| \cdot \theta \ge \phi$$



Logo, por definição, 
$$|S(e) - S(f)| = 2|i - j| \cdot \theta \ge \phi + \theta$$



Arestas no mesmo  $E^i \checkmark$   $\mathbf{e} \in E^i$  e  $\mathbf{f} \in E^j$  onde  $i \neq j \checkmark$ 

Então, S é válido.

Portanto, pelo  $1^{\circ}$  Lema, o custo de  ${\mathcal S}$  é no máximo  $2\lfloor t^*/\theta \rfloor \theta \leq 2t^*$ 

#### Nosso Resultado

#### Corolário

Existe uma 5-aproximação para o MSC em 2D em grafos planares parametrizada por  $\lceil 1/\lambda \rceil$ , que roda em tempo  $\lambda^{-O(1/\lambda)} \cdot n + O(n^2)$ .

# **Trabalhos Futuros**

• NP-dificuldade do FTP para a distância L<sub>1</sub> no plano;

- NP-dificuldade do FTP para a distância *L*<sub>1</sub> no plano;
- Aproximação de fator constante para métricas gerais ou árvores;

- NP-dificuldade do FTP para a distância *L*<sub>1</sub> no plano;
- Aproximação de fator constante para métricas gerais ou árvores;
  - ∘ O melhor fator conhecido é  $O(\sqrt{\log n})$  [KLS05].

- NP-dificuldade do FTP para a distância L<sub>1</sub> no plano;
- Aproximação de fator constante para métricas gerais ou árvores;
  - O melhor fator conhecido é  $O(\sqrt{\log n})$  [KLS05].
- Combinação CP + PTAS com outros problemas NP-difíceis.

## **Angular Freeze-Tag Problem**

 E e/ou k no expoente do tempo de execução das aproximações;

## **Angular Freeze-Tag Problem**

- E e/ou k no expoente do tempo de execução das aproximações;
- Dificuldade do AFTP para minimização da energia total;

## **Angular Freeze-Tag Problem**

- E e/ou k no expoente do tempo de execução das aproximações;
- Dificuldade do AFTP para minimização da energia total;
- Uma aproximação para 3D.

#### Minimum Scan Cover

• Eliminar a dependência de  $\lambda$ , melhorar o fator para  $1+\varepsilon$  ou obter um  $\mathcal{FPT}$  exato;

#### Minimum Scan Cover

- Eliminar a dependência de  $\lambda$ , melhorar o fator para  $1+\varepsilon$  ou obter um  $\mathcal{FPT}$  exato;
- Algum limite inferior/superior não trivial para 3D.

Obrigado a todos pela atenção...

Obrigado a todos pela atenção...

Fim.

#### Referências i

[AAY17] Zachary Abel, Hugo A. Akitaya, and Jingjin Yu. Freeze tag awakening in 2D is NP-hard. In Abstracts from the 27th Fall Workshop on Computational Geometry, pages 105–107, 2017. 31, 32, 33

[ABF<sup>+</sup>02] Esther M. Arkin, Michael A. Bender, Sandor P. Fekete, Joseph S. B. Mitchell, and Martin Skutella. The Freeze-Tag Problem: How to Wake up a Swarm of Robots. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 568–577. Society for Industrial and Applied Mathematics, 2002.
6, 7, 8, 9, 10, 11, 31, 32, 33, 36, 39

[ABF<sup>+</sup>06] Esther M. Arkin, Michael A. Bender, Sandor P. Fekete, Joseph S. B. Mitchell, and Martin Skutella. The Freeze-Tag Problem: How to Wake Up a Swarm of Robots. Algorithmica, 46(2):193–221, 2006. 29, 30, 46

[DR17] Erik D. Demaine and Mikhail Rudoy.
Freeze tag is hard in 3D.

In Abstracts from the 27th Fall Workshop on Computational Geometry, 2017.
31, 32, 33

[FK18] Sándor P. Fekete and Dominik Krupke. Beam it up, Scotty: Angular freeze-tag with directional antennas. EuroCG 2018 Berlin, 2018. 50, 51, 52, 53, 63, 64

[FKK21] Sándor P. Fekete, Linda Kleist, and Dominik Krupke. Minimum scan cover with angular transition costs. SIAM Journal on Discrete Mathematics, 35(2):1337–1355, 2021. 71, 72, 73, 74, 84, 88, 89

#### Referências ii

[KLS05] Jochen Könemann, Asaf Levin, and Amitabh Sinha.

Approximating the degree-bounded minimum diameter spanning tree problem.

Algorithmica, 41(2):117-129, February 2005.

132, 133, 134, 135

[ODM01] Joseph O'Rourke, Erik D. Demaine, and Joseph S. B. Mitchell.

TOPP: Problem 35: Freeze-Tag: Optimal Strategies for Awakening a Swarm of Robots —

topp.openproblem.net.

https://topp.openproblem.net/p35, 2001.

[Accessed 04-12-2024].

29, 30

[PdOS23a] Lehilton Lelis Chaves Pedrosa and Lucas de Oliveira Silva.

Freeze-Tag Remains NP-hard on Binary and Ternary Trees.

In Anais do VIII Encontro de Teoria da Computação (ETC 2023). Sociedade Brasileira de Computação - SBC. August 2023.

37. 38

[PdOS23b] Lehilton Lelis Chaves Pedrosa and Lucas de Oliveira Silva.

Freeze-Tag is NP-Hard in 3D with L<sub>1</sub> distance.

In Proceedings of the XII Latin-American Algorithms, Graphs and Optimization Symposium. Elsevier

BV, 2023.

34, 35