Fisheye State Routing (FSR): Protocol and OMNeT++ Implementation

Bekir Burak Çelik

Middle East Technical University CENG513 - Wireless Communication and Networks

Outline

FSR Protocol Overview

OMNeT++ Implementation & Results

Introduction to FSR

- Proactive, link-state protocol for ad hoc networks
- Multi-level fisheye scopes to balance detail vs. overhead
- Maintains full network topology at each node

Network Model & Data Structures

- **Neighbor List** A_i : one-hop neighbors
- Topology Table TT_i : (LS(j), SEQ(j))

Destination	Scope	Next Hop	Distance	Last Update (s)
В	1-hop	В	1	1.0
С	2-hop	В	2	3.5
D	>2-hop	C	2	8.0
E	>2-hop	C	3	9.5

- Next Hop Table $NEXT_i$ and Distance Table D_i
- Min-hop paths (link weight = 1)

Fisheye Scopes

- Scope levels: define concentric hop-radius zones
- High update frequency for near nodes, low for distant
- Example: 1-hop (black), 2-hop (gray), > 2-hop (white)

Advertisement Table Example

Link State Advertisement Table at Node 11

Destination	Next Hop	Seq. No.	Scope Level
1 (1-hop)	1	15	1
2 (2-hop)	3	14	2
5 (> 2-hop)	4	10	3

- \bullet Entries with Scope =1 updated every $\Delta_1\,s$
- Scope = 2 every Δ_2 s, Scope = 3 every Δ_3 s

Advantages of FSR

- Reduced overhead: up to 80% control load saved with 3 scopes
- Low latency: routes ready in background
- Scalability: overhead grows slowly with network size
- Mobility resilience: accuracy increases as packet nears destination

Simulation Environment

- OMNeT++ v6.1 with INET 4.5.4
- FSR module is added to the src/inet/routing
- Network size, mobility of the nodes, network connectivity and link capacity experiments
- Each simulation run 30 times. Results show the averages.

FSR Module Design

- FSR.ned: simple module parameters
- FSR.cc/.h: maintain tables, schedule timers, broadcast LSAs
- FsrPacket.msg: Defines the FSR link state advertisement messages
- FsrNode.ned: Defines the FSR nodes

Simulation Setup

- Network Size: Nodes are configured in square topology (4, 9, ..., 81, 100 nodes).
- Mobility: Intermediate nodes move upwards with varying speed.
- **Network Connectivity**: Average degree of the nodes increased step by step.
- Link Capacity: Capacity of the link increased step by step.

Measured Metrics

- End-to-End Throughput
- End-to-End Delay
- Packet Delivery Ratio
- Average Data bits
- Average Control bits

Network Size

The network size is increased step by step. Every time the measurements are taken from top left to bottom right node.

Network Connectivity

The transmission range of the radios increased step by step so that each time scope-1 grew bigger.

Network Connectivity Results

Network Mobility

The even numbered columns are moved upwards with increasing speed. The connections between the nodes change frequently.

Network Mobility Results

Link Capacity Results

The capacity of the link between the nodes increased step by step

