Due: Tuesday 02/25/2020

1.25 Prove that, in a topological space X, if U is open and C is closed, then U-C Is open and C-U is closed.

Proof. Let X be a topological space with U being open and C being closed.

Notice, U-C can be rewritten to $U\cap C^{\complement}$. By definition of closed set we have that the complement is open. Thus, as U is open and finite intersections of open sets are open we must have that U-C is open.

Notice, C-U can be rewritten to $C \cap U^{\complement}$. By definition of open set we have that the complement is open. Thus, as C is closed and arbitrary unions of closed sets are closed we must have that C-U is closed.

1.26 Prove that closed balls are closed sets in the standard topology on \mathbb{R}^2 .

Proof. If the closed ball $\mathcal{B}(x,\epsilon)$ is equal to X, then \mathcal{B} must be closed as the complement is the empty set which by definition must be open. Thus, \mathcal{B} must be closed.

Suppose that the closed ball \mathcal{B} is not equal to X and hence not the empty set. Then there must exist an element $y \in \mathcal{B}^{\complement}$. Let the $d(x,y) = h > \epsilon$.

WTS:
$$\mathcal{B}'(y, h - \epsilon) \subset \mathcal{B}^{\complement}$$

Suppose by way of contradiction, the open ball $\mathcal{B}'(y, h - \epsilon) \not\subset \mathcal{B}^{\complement}$. Then, there exists a $z \in \mathcal{B}'$ such that $z \in \mathcal{B}$.

Notice, $d(x,y) \le d(x,z) + d(z,y)$. Which gives us $d(x,z) \le \epsilon$, $d(z,y) < h - \epsilon \Rightarrow r + d(z,y) < h - \epsilon + \epsilon < h$, and d(x,z) + d(z,y) < h.

Then by transitivity, we have that d(x,y) < h. But this is a contradiction as d(x,y) = h. Thus, we have that $z \notin \mathcal{B}'$ which then gives us $z \in \mathcal{B}^{\complement}$. Hence, $\mathcal{B}' \subset \mathcal{B}^{\complement}$. And so, z is an interior point of $\mathcal{B}^{\complement}$ and implies that $\mathcal{B}^{\complement}$ must be open.

Therefore, by definition of closed we must have that \mathcal{B} is closed.

1.27 The infinite comb C is the subset of the plane illustrated in Figure 1.17 and defined by

$$C = \{(x,0)|0 \le x \le 1\} \cup \left\{ \left(\frac{1}{2^2}, y\right)|n = 0, 1, 2, \dots \text{ and } 0 \le y \le 1 \right\}$$

(a) Prove that C is not closed in the standard topology on \mathbb{R}^2 . WTS: $\mathbb{R}^2 - C$ is not open

Consider the point $p=(0,1/2)\in\mathbb{R}^2-C$ and ball centered at point p with radius $\epsilon>0$. We can find some $\frac{1}{2^n}<\epsilon$. Hence, the point $(\frac{1}{2^n},\frac{1}{2})$ has distance to p less than ϵ . Thus, we have 0 as a limit point of C, but $(0,\frac{1}{2})\not\in C$. Hence, C is not closed in the standard topology on \mathbb{R}^2 . (b) Prove that C is closed in the vertical interval topology on \mathbb{R}^2 .

RECALL: Vertical Interval Topology is generated by $\{\{a\}\times(b,c)\subset\mathbb{R}^2|a,b,c\in\mathbb{R}\}\}$

WTS:
$$\mathbb{R}^2 - C$$
 is open

1.33 Prove theorem 1.17: Let X be a topological space.

- *Proof.* (a) Prove that \varnothing and X are closed sets. Notice, $\varnothing, X \subseteq X$ and $X - \varnothing = X$. Thus, as \varnothing is open,X is closed. Similarly, $\varnothing - X = \varnothing$. Thus, \varnothing and X are closed sets.
- (b) Prove that the intersection of any collection of closed sets in X is a closed set Let $\cap_{i \in I} U_i$ be the intersection of a indexed collection of closed sets of X. Taking the complement, we have $\cap_{i \in I} X U_i$. Since, each U_i is closed for each $i \in I$, we have $X U_i$ is open for each $i \in I$. Thus, we have a intersection of arbitrary open sets which is open. Therefore, $\cap_{i \in I} U_i$ is closed. The intersection of any collection of closed such that in X is a closed set.
- (c) Prove that the union of finitely many closed sets in X is a closed set. Let $\bigcup_{i=1}^n U_i$ be a union of a finite number of closed sets in X. Taking the complement, we have $\bigcap_{i=1}^n X U_i$. Since, each U_i is closed, we must have $X \bigcup_i$ is open. Therefore, the complement is a finite union of open sets, which is open. Thus, $\bigcup_{i=1}^n U_i$ is closed. Thus, the union of finitely many closed sets in X is a closed set.

1.35 Show that \mathbb{R} in the lower limit topology is Hausdorff.

Proof. Suppose a, b are distinct point in the lower limit topology. Assume without loss of generality, a < b. Notice, [a, b) and [b, b + 1) are disjoint open neighborhoods of a and b. Therefore, \mathbb{R} is Hausdorff in the lower limit topology.

1.36 Show that \mathbb{R} in the finite complement topology is not Hausdorff.

Proof. By way of contradiction, suppose U,V are disjoint open sets. Then, $V\subset (\mathbb{R}-U)$. Notice, $\mathbb{R}-U$ is a finite set and so V is finite. But $\mathbb{R}-V$ is infinite, which is a contradiction to V is open.

Therefore, \mathbb{R} in the finite complement topology is not Hausdorff.

- 2.02 Prove theorem 2.2: Let X be a topological space and A and B be subsets of X.
 - (a) If C is a closed set in X and $A \subset C$, then $\mathrm{Cl}(A) \subset C$ Let C be a closed set in X and $A \subset C$. Notice the Cl(A) is the finite intersection of closed sets. Thus, $Cl(A) \subset C$ as C is either the smallest closed set in the intersection or larger than the Cl(A).
 - (b) If $A \subset B$ then $\mathrm{Cl}(A) \subset \mathrm{Cl}(B)$ Let $A \subset B$. Notice, that the Cl(A) and Cl(B) are the smallest closed sets containing A and B respectively. Since, A is contained in Cl(B) we must have that $Cl(A) \subset Cl(B)$

Due: Tuesday 02/25/2020

(c) A is closed if and only if A = Cl(A)

Assume A is closed. Then, A is in the intersection of all closed sets and Cl(A) is the smallest closed set containing A. Thus, the intersection will be equal to A. Therefore A = Cl(A)

Suppose A=Cl(A). Notice, Cl(A) is closed as the finite intersection of closed sets is closed.

Therefore, A is closed.

2.07– Let $B=\left\{\frac{a}{2^n}\in\mathbb{R}|a\in\mathbb{Z},n\in\mathbb{Z}_+\right\}$. Show that B is dense in \mathbb{R}

Proof. Let $\epsilon > 0, x \in \mathbb{R}$, and $a_1, a_2 \in B$ such that $a_1 < x < a_2$. Define $a_1 := \frac{m-1}{2^n}$ and $a_2 := \frac{m+1}{2^n}$. Notice, $\frac{m-1}{2^n} < x < \frac{m+1}{2^n}$ implies $\frac{-1}{2^n} < x - \frac{m}{2^n} < \frac{1}{2^n}$. We can then manipulate this further for $|x - \frac{m}{2^n}| < \frac{1}{2^n} < \epsilon$. Thus, we have $Cl(B) = \mathbb{R}$ Therefore, B is dense in \mathbb{R} .

2.10 Prove Theorem 2.5: Let X be a topological space, A be a subset of X, and y be an element of X. Then $y \in Cl(A)$ if and only if every open set containing y intersects A.

Proof. Let (X, \mathcal{T}) be a topological space, $A \subset X$ and $y \in X$.

(\Rightarrow) WTS: If $y \in Cl(A)$ then $\forall U \in \mathcal{T}$ such that $y \in U$ we will have the following $U \cap A \neq \emptyset$

By way of contradiction, suppose $y \notin Cl(A)$. Then there exists a closed set C such that $y \notin C$. Thus, X-C is open and $y \in X-C \subset X-A$. Notice, $(X-C) \cap A = \varnothing$. This is a contradiction as X-C is an open set containing y, yet $(X-C) \cap = \varnothing$. Therefore, if $y \in Cl(A)$ then every open set containing y intersects A.

(\Leftarrow) WTS: If $\forall U \in \mathcal{T}$ such that $y \in U$ and $U \cap A \neq \emptyset$ then $y \in Cl(A)$

Let U be open and $U \cap A \neq \emptyset$. By theorem 2.4, We have that $U \in Int(A)$. Recall, by definition $Int(A) \subset A \subset Cl(A)$. Since, $y \in U \in Int(A)$ it follows that $y \in Cl(A)$ Therefore $\forall U \in \mathcal{T}$ such that $y \in U$ and $U \cap A \neq \emptyset$ then $y \in Cl(A)$

- 2.11 Prove Theorem 2.6: For sets A and B in a topological space X, the following hold:
 - (a) $\operatorname{Cl}(X A) = X \operatorname{Int}(A)$

If we take the complement of both sides we have the following:

$$X - Cl(X - A) = Int(A)$$

Notice, a point $x \notin Int(A) \Leftrightarrow \forall U \in \mathcal{T}$ such that $x \in U$, $U \not\subset A$ and $U \cap (X - A) \neq \emptyset \Leftrightarrow x \in Cl(X - A)$.

Thus, $x \in Int(A) \Leftrightarrow x \in X - Cl(X - A)$.

Therefore, Cl(X - A) = X - Int(A)

(b) $Int(A) \cap Int(B) = Int(A \cap B)$

Let $n \in Int(A) \cap Int(B)$. Then $n \in Int(A)$ and $n \in Int(B)$. Which gives us that A is a neighborhood of n and B is a neighborhood of n. Thus, $A \cap B$ is a neighborhood of n. Hence, $n \in Int(A \cap B)$.

Therefore, $Int(A) \cap Int(B) \subset Int(A \cap B)$

Let $n \in Int(A \cap B)$. Then, $A \cap B$ is a neighborhood of n. It follows that $n \in Int(A)$ and $n \in Int(B)$. Thus, $n \in Int(A) \cap Int(B)$. Therefore, $Int(A \cap B) \subset Int(A) \cap Int(B)$,

Therefore, $Int(A) \cap Int(B) = Int(A \cap B)$

- 2.13 Determine the set of limit points of *A* in each case.
 - (a) A = (0, 1] in the lower limit topology on \mathbb{R} . A' = [0, 1)
 - (b) $A = \{a\}$ in $X = \{a, b, c\}$ with topology $\{X, \varnothing, \{a\}, \{a, b\}\}$ $A' = \{b, c\}$
 - (c) $A = \{a, c\}$ in $X = \{a, b, c\}$ with topology $\{X, \emptyset, \{a\}, \{a, b\}\}$ $A' = \{b, c\}$
 - (d) $A = \{b\}$ in $X = \{a, b, c\}$ with topology $\{X, \emptyset, \{a\}, \{a, b\}\}$ $A' = \{a, c\}$
 - (e) $A = (-1,1) \cup \{2\}$ in the standard topology on \mathbb{R} A' = [-1,2]
 - (f) $A = (-1, 1) \cup \{2\}$ in the lower limit topology on $\mathbb{R} A' = [-1, 2)$
 - (g) $A=\{(x,0)\in\mathbb{R}^2|x\in\mathbb{R}\}$ in \mathbb{R}^2 with the standard topology. $A'=\mathbb{R}$
 - (h) $A=\{(0,x)\in\mathbb{R}^2|x\in\mathbb{R}\}$ in \mathbb{R}^2 with the topology generated by the basis in Exercise 1.19
 - (i) $A=\{(x,0)\in\mathbb{R}^2|x\in\mathbb{R}\}$ in \mathbb{R}^2 with the topology generated by the basis Exercise 1,19 $A'=\mathbb{R}$
- 2.20 Prove Theorem 2.11 : Let A be a subset of \mathbb{R}^n in the standard topology. If x is a limit point of A, then there is a sequence of points in A that converges to x.

Proof. WTS: $x \in A' \Rightarrow \exists (x_n)$

Let $x \in A$ be a limit point and let $n \in \mathbb{Z}_+$. Then, for each $x_n \in B(x, \frac{1}{n}) \cap A - x$. Notice, $x_n \neq x$ and $x_n \in A$. Since, $d(x_n, x) \leq \frac{1}{n}$, we have x_n converges to x.

Therefore, If x is a limit point of A, then there is a sequence of points in A that converges to x.

Due: Tuesday 02/25/2020

2.21 Determine the set of limit points of the set

$$S = \left\{ \left(x, \sin\left(\frac{1}{x}\right) \right) \in \mathbb{R}^2 | 0 < x \le 1 \right\}$$

as a subset of \mathbb{R}^2 in the standard topology. (The closure of S in the plane is known as the topologist's sine curve.)

Proof. Let $y \in [-1,1]$ and p=(0,y). Notice, for every neighborhood of radius r, $B(p,r)-\{p\}$ contain points in S. Let $n \in \mathbb{R}$ such that $\frac{1}{2\pi n} < r$. Then, $sin(\frac{1}{x})$ maps to all values of [-1,1], for some $x \in (\frac{1}{2\pi(n+1)},\frac{1}{2\pi n})$.

Thus, every point in S is a limit point