Differentialrechnung für Funktionen einer Variablen

Definitionen

• Die Funktion y = f(x) heißt an der Stelle x_0 (mit $U(x_0) \subset Db(f)$) differenzierbar, wenn der Grenzwert $f'(x_0) := \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ existiert.

 $f'(x_0)$ heißt 1. Ableitung (Differentialquotient) von f an der Stelle x_0 .

• f heißt in einem Intervall I differenzierbar, wenn f an jeder inneren Stelle von I differenzierbar ist, und an evtl. vorhandenen Randpunkten einseitig differenzierbar ist.

Bezeichnungen: $y' = f'(x) = \frac{d}{dx}f(x) = \frac{dy}{dx}$

• Höhere Ableitungen: $f^{(0)}(x) := f(x)$, $f^{(n)}(x) := \frac{d}{dx}(f^{(n-1)}(x))$, n = 1, 2, 3, ...

Ableitungen der wichtigsten Grundfunktionen

f(x)	f'(x)
xα	$\alpha x^{\alpha-1}$
a ^x	a ^x ln a
e ^X	e ^X
log _a x	1/(xlna)
ln x	1/x
sin x	cos x
cosx	- sin x
tanx	$1 + \tan^2 x = 1/\cos^2 x$
cot x	$-(1+\cot^2 x) = -1/\sin^2 x$
sinh x	cosh x
cosh x	sinh x

f(x)	f'(x)
tanhx	$1 - \tanh^2 x = 1/\cosh^2 x$
cothx	$1 - \coth^2 x = -1/\sinh^2 x$
arcsin x	$1/\sqrt{1-x^2}$
arccos x	$-1/\sqrt{1-x^2}$
arctanx	$1/(1+x^2)$
arc cot x	$-1/(1+x^2)$
ar sinh x	$1/\sqrt{x^2+1}$
ar cosh x	$1/\sqrt{x^2-1}$
ar tanh x	$1/(1-x^2)$
ar coth x	$1/(1-x^2)$

Wichtige Differentiationsregeln

Linearität	$(c_1u(x) + c_2v(x))' = c_1u'(x) + c_2v'(x)$
Produktregel	(u(x)v(x))' = u'(x)v(x) + u(x)v'(x)
Quotientenregel	$(\frac{u(x)}{v(x)})' = \frac{u'(x)v(x)-u(x)v'(x)}{(v(x))^2}$
Kettenregel	$(f(g(x)))' = f'(g(x)) \cdot g'(x)$
Logarithmische Differentiation	$f(x) = u(x)^{V(x)} \Rightarrow \ln(f(x)) = v(x) \cdot \ln(u(x))$ $\Rightarrow \frac{f'(x)}{f(x)} = v'(x) \cdot \ln(u(x)) + v(x) \cdot \frac{u'(x)}{u(x)}$ $\Rightarrow f'(x) = u(x)^{V(x)} (v'(x) \cdot \ln(u(x)) + v(x) \cdot \frac{u'(x)}{u(x)})$