

TFG del Grado en Ingeniería Informática

título del TFG Documentación Técnica

Presentado por nombre alumno en Universidad de Burgos — 22 de abril de 2019

Tutor: nombre tutor

Índice general

Indice general]
Índice de figuras	III
Índice de tablas	IV
Apéndice A Software plan	1
A.1. Introduction	
A.2. Project Management	
A.3. Time plan	
A.4. Feasibility study	
Apéndice B Requirements Specification	5
B.1. Introduction	. 5
B.2. General objectives	
B.3. Requirements Catalogue	
B.4. Requirements specification	. 5
Apéndice C Design specification	7
C.1. Introduction	
C.2. Data design	
C.3. Precedural design	. 7
C.4. Architectural design	. 7
Apéndice D Technical Programming Documentation	9
D.1. Introduction	. 0
D.2. Directory structure	

D.3. Programmer's Manual	9
D.4. Compilation, installation and execution of the project	9
D.5. System tests	9
Apéndice E User documentation	11
E.1. Introduction	11
E.2. User requirements	11
E.3. Installation	11
E.4. User manual	11
Bibliografía	13

Índice de figuras

Índice de tablas

Apéndice A

Software plan

A.1. Introduction

In the following annex, the organizational aspects of the study of different NER classifiers and the development of the software are documented. More precisely, the software development process and tools that were used to manage the process are described, followed by a examination of the course of the project. The second part of the annex examines the project's viability, including the calculation of involved costs and profit possibilities.

A.2. Project Management

Scrum The project's management is inspired by the Scrum model used in agile software development. The model is based on the assumption that projects are too big to be planned in it's entirety at the start. Therefore only a rough outline is made at the start. The project is divided into several milestones that provide an agile approach.

Scrum is a team based approach to project management. Due to the fact that this bachelor thesis is only written by one person the majority of the concepts can't be applied exactly as intended by Scrum. Consequently the project management approach is only loosely based on Scrum.

One concept that is applied are Sprints. In this case most sprints cycles had a duration of approximately a month. Some are bigger and some are smaller due to the complexity of tasks at hand and the time available. Sprint

meetings between the author and the project's coordinator were held every two weeks, usually around the middle and end of each sprint. In the meeting in the middle the tasks progress was discussed, while in the meeting at the end the results of the sprint was discussed and the next sprint was vaguely planned. The second meeting can therefore be seen as the Sprint Planning and Sprint Review. The project's coordinator can be seen as the Project Owner of the Scrum model, prioritizing tasks and guiding the project's direction.

Github and ZenHub The project is hosted on github. To organize tasks ZenHub was used. Zenhub provides a board to visualize tasks as well as it provides an overview of the remaining workload. It also offers several tools to inspect work velocity. Each Github issue is assigned a amount of story points, estimating the tasks size. In this case each point is the equivalent of the workload of <points hours.

A.3. Time plan

The Kick-Off Meeting took place in the second week of December 2018. The elemental ideas of the project were discussed. Due to exams and other private responsibilities the project wasn't directly started after the meeting. Instead the 9. of January marked the beginning of the project.

Some milestones were smaller than others in a similar time frame. This is due to responsibilities of other classes and exam periods which reduced time availability during the semester.

The next paragraphs give an overview over the phases of development.

Milestone 1 (9.01-14.01.2019): Initial project setup/ Research regarding NLP

In the first relatively small Milestone the projects infrastructure was set up. Also some research regarding the theoretical concepts of NLP and NER were done and documented.

Milestone 2 (8.02-31.02.2019): NLTK-Experiments/ Preprosessing Data

The second Milestone consisted of researching and experimenting with one of the libraries (NLTK) used later on in the project. An initial NER chunker was introduced and functions prepossessing the Data were written. Ideally this milestone would have been bigger and the project would have advanced much more, but my laptop broke and had to be send in. Due too the bad infrastructure of the university not much could have been worked on.

Milestone 3 (01.03-08.04.2019): NLTK

Milestone 3 was the biggest Milstone to that point. Things got serious as different NLTK chunkers got introduced and a training script was wtitten. Inicially the due date was the end of march. But some complications in having to figure out how to train NER chunkers without any use cases in the internet and the midterm exam period it had to be postponed by a week.

Milestone 4 (09.04-31.04.2019): Other Classifiers

In the inicial plan it was planned to create a few other classifiers with other libraries such as Stanford Core, Sklearn and OpenNLP. But that plan changed a bit. Together with the projects coordinatior the decision to develop a different classifier using more advanced machine learning techniques was made. Do to the postponement of the last milesone, exams and working on a bigger project in another class most of april couldn't be used for this milestone as the commit history suggests. The project of the other class was related to this theme as it covered sentiment analysis with the sklearn library. The concepts learned and applied there were adapted towards named entity recognition and incorporated into this project.

Milestone 4 (01.05-30.05.2019): Evaluation

Milestone 5 (01.06-31.06.2019): Endstage

A.4. Feasibility study

Economic viability

Legal Feasibility

Apéndice ${\cal B}$

Requirements Specification

- **B.1.** Introduction
- B.2. General objectives
- **B.3.** Requirements Catalogue
- **B.4.** Requirements specification

Apéndice ${\cal C}$

Design specification

- C.1. Introduction
- C.2. Data design
- C.3. Precedural design
- C.4. Architectural design

Apéndice D

Technical Programming Documentation

- D.1. Introduction
- D.2. Directory structure
- D.3. Programmer's Manual
- D.4. Compilation, installation and execution of the project
- D.5. System tests

Apéndice ${\cal E}$

User documentation

- E.1. Introduction
- E.2. User requirements
- E.3. Installation
- E.4. User manual

Bibliografía