MATH 131: Numerical Methods for scientists and engineers – Discussion 3: Coding

The goals of this discussion section are:

- Get a deeper understanding of using root-finding algorithms. Use the codes you developed for Assignment 1.
- Get familiar with Interpolation.
- 1. Pair-up with a classmate and write a MATLAB function, called Secant_method that inputs a function, f, an initial guess x_0 , an error tolerance, tol, and a maximum number of iterations, N, and outputs the root of f obtained using the Secant method (denoted by c), starting with x_0 .
- 2. Consider the function $f(x) = 2x\cos(x) + x$ over [1, 10]. We want to solve f(x) = 0 within 10^{-10} accuracy.
 - (a) Use your bisection method code and call c_1 the solution.
 - (b) Use your fixed-point iteration code and call c_2 the solution.
 - (c) Use your Newton's method code and call c_3 the solution.
 - (d) Use your Secant method code and call c_4 the solution.
 - (e) Plot on the same graph the function and c_1 , c_2 , c_3 , c_4 the four solutions. Comment.
 - (f) Swap your function codes with your neighbor. Do you find the same solutions?
- 3. Consider the function $f(x) = 2x\cos(x) + x$ over [0,2], and consider $x_0 = 0$, $x_1 = 1$, $x_2 = 2$. Write the Lagrange polynomial interpolant of f.
- 4. *If there is still time:* create a MAtlab function that computes the Lagrange polynomial interpolant of a function *f*.