Name: Mobina Amrollahi

CheatSheet

Linear Models

- 1. Linear regression is a linear model, trying to predict a continuous scaler.
- 2. **RSS** in linear regression minimizes the sum of the squared distances between the label of each data point and the predicted value.
- 3. The weights can be found by **maximizing the likelihood of the data** under the assumption of Gaussian noise, which is equivalent to **minimizing the RSS**.
- 4. Finding the weights by solving the normal equations might not be possible as X^TX might not exist.
- 5. If X, the feature matrix, is **full rank**, then the optimal solution for linear regression exists and is unique.
- 6. three assumptions of linear regression: 1. Data is linear, 2. Data points are independent, 3. The residual follows normal distribution with zero mean.
- 7. The perceptron learning algorithm guarantees convergence for the dataset that is **linearly separable**, regardless of the initial data or weights.
- 8. **Logistic regression** is a linear model because the decision boundary is a linear function of the input features.
- 9. The **monotonicity** of the sigmoid function, ensures the logistic regression produce a linear decision boundary. By changing sigmoid to sine for inastance, logistic regression becomes a non-linear model.

Gradient Descent Algorithm

1. Batch size affect both the **forward** and **backward** propagation.

Convolution

- 1. Kernel is a small matrix. They're typically small and scan across the image.
- 2. Feature maps: the result of applying filters to the input.
- 3. The primary purpose of a convolution layer is to extract spatial features from the input.
- 4. A convolution operation multiplies kernel and input element-wise, then sums them up.

Batch	Mini - Batch	Stochastic
 process the entire dataset at once smoother, more accurate gradient estimates computationally expensive at practice 	 helps escape local minima during optimization introduces noise into the optimization process small to medium batch sizes can lead to better generalization 	update weights using one sample at a time

Table 1: Comparison between Different Algorithms

Box Filter	Sharpening Filter	Sobel (Vertical Edge)	Sobel (Horizontal Edge)
$\begin{bmatrix} \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \end{bmatrix}$	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$
 Averages neighboring pixels Smooths the image Reduces noise Removes sharp features 	 Enhances edges Emphasizes differences with neighbors Increases sharpness High-pass filter 	 Detects vertical edges Computes horizontal gradients Sensitive to vertical features Emphasizes vertical boundaries 	 Detects horizontal edges Computes vertical gradients Sensitive to horizontal features Emphasizes horizontal boundaries

Table 2: Comparison of Different Filters and Their Properties

- 5. Hand-Crafted Kernels:
- 6. Despite hand-crafted filters, the learned ones are randomly initialized, and then optimized through back-propagation.
- 7. Convolution uses a set of kernels, each applied to an individual input channel.
- 8. The main effect of **stride** is that it reduces the output feature map.
- 9. The main effect of **padding** is to ensure all pixels are equally used.
- 10. Number of trainable parameters in each convolution layer: $K \times K \times C_{in} \times C_{out}$.

- 11. Number of multi-add operations or computational cost in each convolution layer: $K \times K \times C_{in} \times C_{out} \times W' \times D'$.
- 12. **Dilated convolutions** enlarges the receptive field by introducing gaps (holes) in the kernel to cover a larger area. For a dilation "rate" d, d-1 spaces are inserted between kernel elements such that d=1 corresponds to a regular convolution.
- 13. Output dimension: $W' = \frac{W K + 2P (k-1)(d-1)}{S} + 1$.
- 14. Receptive Field: the region of the input space that affects a particular unit in the network.

$$\forall l: R_l = R_{l-1} + (k_l - 1) \times J_{l-1} \times d_l$$

The jump J_l describes how far we move in the input when moving one unit in the feature map:

$$J_l = J_{l-1} \times S_l$$
, and $J_0 = 1$, $R_0 = 1$

where

- R_l : receptive field size at layer l
- k_l : kernel size at layer l
- J_{l-1} : jump (effective stride) from the previous layer
- S_l : stride at layer l
- d_l : dilation rate at layer l

In which, you can see for a network with one layer, only **the kernel size** can affect the receptive field. However, once the number of kernels increases, the **stride** and **pooling layers** also affect it.

- 15. 1×1 Convolution: is used to reduce the number of channels (dimensionality) while introducing non-linearity.
- 16. **Pooling layers** reduce the output feature maps, while avoid overfitting, and enlarging the receptive field.
- 17. Solving the high dimension problem:

Depthwise Separable Convolution

- 18. Activation functions are element-wise function that introduce non-linearity. Tanh and sigmoid have gradient vanishing problems, meanwhile ReLU has the problem of **dying neurons**. One attempt to fix the dying neurons problem is to use **leaky ReLU**.
- 19. Nearest Neighbors, Bi-Linear Interpolation, Bed of Nails, and Max-Unpooling are all deterministic up sampling techniques, meanwhile transposed convolution is learnable.

- 20. **Bed of Nails** is followed by a convolution layer that can interpolate or blend the sparse data points to generate meaningful and smooth output.
- 21. Max-Unpooling it's always following a corresponding max-pooling layer.
- 22. Transposed convolution is often **incorrectly** called **de-convolution**. However de-convolution refers to the inverse operation of standard convolution. The name **transposed** corresponds to multiplying by the transpose of the convolution kernel matrix. Transposed convolutions swap the forward and backward passes of a convolution. **Output size formula**:

$$W_{out} = S \times (W - 1) + K - 2P$$

- 23. In transposed convolution if s > 1 we will put s 1 zeros between input elements and in the boarders.
- 24. Unlike deep convolutional networks, **attention** mechanisms can capture long-range dependencies in a single layer. They're called global extractors, because each query attends all the keys and values.
- 25. Scaled Dot-Product Attention:

Attention
$$(Q, K, V) = \text{Softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

- $Q \in \mathbb{R}^{n \times d}$
- $K \in \mathbb{R}^{m \times d}$
- $V \in \mathbb{R}^{m \times p}$
- d_k : Dimensionality of keys (used for scaling)
- 26. Self-Attention with a Single Input Matrix X:

$$Q = XW_O$$
, $K = XW_K$, $V = XW_V$

Attention(X) = Softmax
$$\left(\frac{(XW_Q)(XW_K)^T}{\sqrt{d_k}}\right)(XW_V)$$

- When using self-attention, X is projected into Q, K, V using trainable weight matrices.
- This allows each token in X to attend to others, learning dependencies across positions.
- 27. Convolution and attention layers can be interpreted as variations of fully-connected layers, since they're all matrix multiplications. However, pooling layers (e.g., max pooling, average pooling) perform non-parametric reduction operations and are not typically expressed as matrix multiplications.

Convolution Neural Network

1. Winners of ImageNet Comparison:

AlexNet	VGG	ResNet	DenseNet
 8 layers ReLU Activation Function High number of kernels at each layer Different kernel sizes of 11 × 11, 5 × 5, 3 × 3. Introduced Dropout Trained with Data Augmentation Overlap pooling layer 	 19 Layers ReLU Activation Function Fixed pattern of conv + conv + pool at each layer Fixed kernel size of 3 × 3. Max pooling 2 × 2 with stride = 2 Same padding everywhere Has a degradation problem: vanishing gradients or explosion Prone to Overfit 	 Skip connection: preventing the gradient vanishing Batch Normalization: preventing the gradient explosion Each residual network: 3 × 3 conv + Batch Normalization + ReLU + 3 × 3 conv + Batch Normalization 	 Concatenates the outputs from different layers. Computes vertical gradients Uses more memory compare to ResNet

Table 3: Comparison of Different Deep Learning Architectures

2. In **DenseNet**, the *l*-th layer receives as input the concatenation of all feature maps produced by previous layers:

$$x_l = H_l([x_0, x_1, x_2, ..., x_{l-1}])$$

Where:

- $[x_0, x_1, ..., x_{l-1}]$ represents the concatenation of feature maps along the channel dimension.
- $H_l(\cdot)$ is the composite function of operations: BatchNorm, ReLU, and Convolution.
- If the growth rate is k, the input depth to layer l is:

$$d_{in} = d_0 + k \times (l-1)$$

- 3. In Transfer Learning:
 - (a) Train a network like VGG or ResNet on a large dataset
 - (b) Freeze the earlier convolution layers weights
 - (c) Replace the fully connected layer with new layer specific to the task
- 4. Weight Initialization in CNNs:
- 5. **Batch Normalization**: During training, the mean and variance are computed from each minibatch. During testing, the moving average of the mean and variance, calculated during training, is used instead.
- 6. Batch size has an impact in batch normalization.
- 7. During the prepossessing we want the **input data** to be **normalized** and **zero-centered**.

Xavier Initialization	Kaiming Initialization	Random Initialization
• $W \sim \mathcal{N}\left(0, \frac{2}{n_{in} + n_{out}}\right)$ • Works well with sigmoid and tanh activations.	• $W \sim \mathcal{N}\left(0, \frac{2}{n_{in}}\right)$ • Best for ReLU and Leaky ReLU activations.	 W ~ N(0, 10⁻²) Works on small networks still have problems on deep networks Weight gradients in deeper layers have variances of nearly zero

Table 4: Weight Initialization

- 8. **Data augmentation** increases the diversity of the training dataset, forcing the model to generalize better. However, the labels of the augmented data remain the **same**.
- 9. During training, **Dropout** randomly deactivates neurons with probability p, which lowers the expected output. To maintain consistency between training and testing:
 - Inverted Dropout (common): During training, scale the output of active neurons by $\frac{1}{1-p}$.
 - Standard Dropout: During training, no scaling is applied. During testing, scale the activations by (1-p).
- 10. Since in the drop-out neurons will randomly be set to zero, the number of trainable parameters won't change.
- 11. Drop-out is only applied to the **hidden** layer, and not the output layer.