

پردازش گفتار

نمایشهای سیگنال گفتار و استخراج ویژگی

هادی ویسی

h.veisi@ut.ac.ir

دانشگاه تهران – دانشکده علوم و فنون نوین

فمرست

- مدل منبع -فیلتر
- محلیل فوریه کوتاهمدت 🔾
 - LPC تحليل
 - محاسبه ضرایب LPC
- تحلیل طیفی و خطای پیشبینی
 - کاربردها و مثال
 - تحلیل کپستروم
 - مثال
 - o روش MFCC
- o فركانس زيروبمي (Pitch)

مدل منبع-فیلتر . . .

هدف

- نمایش و مدلسازی سیگنال گفتار
- کاربرد در کلیه سیستمهای پردازشهای گفتار
- o رمز گذاری، شبیه سازی، سنتز گفتار، تشخیص گفتار و ...

م تجزیه سیگنال گفتار 🔾

- منبعی که از فیلتر خطی متغیر با زمان عبور میکند
 - منبع = جریان هوا در تارهای صوتی
 - فیلتر = نشانگر رزنانسهای مجرای گفتار

مدل منبع-فیلتر

h[n] تخمين فيلتر

- روشهای مبتنی بر مدلهای تولید گفتار
- o رمز گذاری پیشبینی خطی (linear predictive coding)
 - o تحلیل کپسترال (cepstral analysis) م تحلیل
 - روشهای مبتنی بر مدلهای دریافت گفتار
 - o کپستروم مل-بسامد (mel-frequency cepstrum)

e[n] تخمین منبع

- بعد از تخمین فیلتر
- محاسبه منبع با عبور دادن سیگنال گفتار از فیلتر معکوس

- مدم ایستا (stationary) بودن سیگنال گفتار 🌣
 - مشخصات آن با زمان تغییر میکند
- سیگنال در طول ادای یک واج (۲۵ تا ۲۵۰ میلی ثانیه) تقریباً ایستاست
- و با تقریب، فرض می شود سیگنال گفتار در زمانهای کوتاه ایستا است
 - یک بخش کوتاهمدت سیگنال گفتار = فریم (قاب)
 - طول هر فریم باید به گونهای باشد که شامل فقط یک واج و یا واج گونه باشد
 - طول هر قاب در کاربردهای واقعی: بین ۱۰ تا ۵۰ میلی ثانیه

تحلیل فوریه کوتاهمدت . . .

- تجزیه سیگنال گفتار به مجموعهای از بخشهای کوتاه (فریم=قاب)
 - طول فریمها باید به اندازه کافی کوچک = سیگنال ایستا (stationary) باشد
 - o مشخصات آما*ر*ی سیگنال ثابت باشد
 - ثابت ماندن رفتار سیگنال (دورهای بودن یا ظاهر شبیه به نوفه داشتن)

تحليل فوريه كوتاهمدت . . .

مسیگنال کوتاهمدت

m (قاب) •

قاب = سیگنال کوتاهمدت

$$X_m[n] = X[n] W_m[n]$$

ینجره (window)

- پنجره به جز در یک منطقه کوچک (طول مشخص) در همه جا صفر است
- هرچند تابع پنجره می تواند مقادیر مختلفی برای قالبهای مختلف m داشته باشد اما معمولاً پنجره برای تمامی قابها پکسان است

$$W_m[n] = W[m-n]$$

- (طول قاب =N) w[n] = 0 for |n| > N/2 طول قاب
 - نمایش فوریه کوتاه مدت برای قاب

$$X_m(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x_m[n]e^{-j\omega n} = \sum_{n=-\infty}^{\infty} w[m-n]x[n]e^{-j\omega n}$$

تحلیل فوریه کوتاهمدت ...

۰ پنجرهگذاری . . .

(Rectangular) مستطیلی

$$\begin{split} h_{\pi}[n] &= u[n] - u[n-N] \\ H_{\pi}(e^{j\omega}) &= \frac{1 - e^{-j\omega N}}{1 - e^{-j\omega}} = \frac{\left(e^{j\omega N/2} - e^{-j\omega N/2}\right)e^{-j\omega N/2}}{\left(e^{j\omega/2} - e^{-j\omega/2}\right)e^{-j\omega/2}} \\ &= \frac{\sin \omega N/2}{\sin \omega/2} e^{-j\omega(N-1)/2} = A(\omega)e^{-j\omega(N-1)/2} \end{split}$$

$$H_{h}(e^{j\omega}) = (1-\alpha)H_{\pi}(e^{j\omega}) - (\alpha/2)H_{\pi}(e^{j(\omega-2\pi/N)}) - (\alpha/2)H_{\pi}(e^{j(\omega+2\pi/N)})$$

Hadi Veisi (h.veisi@ut.ac.ir)

تحليل فوريه كوتاهمدت . . .

و پنجرهگذاری

Rectangular: $w[n] \equiv 1$

Hanning: $0.5 + 0.5c_1$ $c_k = \cos \frac{2\pi kn}{M+1}$ rapid sidelobe decay

Hamming: $0.54 + 0.46c_1$ best peak sidelobe

انتخاب بهتر!

پردازش گفتار: نمایشهای سیگنال گفتار و استخراج ویژگی النتال

تحلیل فوریه کوتاهمدت . . .

برای سیگنال دورهای $X_m[n]$ با دوره M داریم \circ

$$X_{m}(e^{j\omega}) = \sum_{k=-\infty}^{\infty} X_{m}[k]\delta(\omega - 2\pi k/M)$$

$$W(e^{j\omega}) = \sum_{n=-\infty}^{\infty} w[n]e^{-j\omega n} = \mathbf{w[n]}$$
 متبدیل فوریه پنجره

 $W(e^{-j\omega})e^{-j\omega m} = W[m-n]$ تبدیل فوریه •

- بنابراین (تبدیل فوریه یک قاب)
- ضرب در حوزه زمان x[n]w[m-n] معادل کانولوشن در حوزه فرکانس است

$$X_m(e^{j\omega}) = \sum_{n=-\infty}^\infty X_m[n]e^{-j\omega n} = \sum_{n=-\infty}^\infty w[m-n]x[n]e^{-j\omega n} = \sum_{k=-\infty}^\infty X_m[k]W(e^{j(\omega-2\pi k/N)})e^{j(\omega-2\pi k/N)m}$$
 جمع وزندار ($e^{j\omega}$) ها

تحلیل فوریه کوتاهمدت ...

 $W(e^{j\omega}) \approx 0 \text{ for } |\omega - \omega_k| > \lambda$

باید $X_m(e^{j\omega})$ از $x_m[n]$ باید \circ

- پاسخ فرکانسی پنجره در خارج از lobe اصلی صفر باشد
- $\lambda = 4\pi/N$ و برای پنجره مستطیلی داریم $\lambda = 2\pi/N$ و برای پنجره همینگ
 - پس برای پنجره مستطیلی باید $N \ge M$ (سیگنال) پنجره مستطیلی باید $N \ge M$
 - o طول پنجره حداقل یک دوره تناوب زیروبمی (pitch period) باشد
 - $N \ge 2M$ و برای پنجره همینگ •
 - طول پنجره حداقل دو دوره تناوب زیروبمی (pitch period) باشد

\mathbf{F}_0 در عمل: مقدار زیروبمی را نداریم = درنظر گرفتن کمترین مقدار \circ

- برای $N=40~{
 m ms}$ برای $N=20~{
 m ms}$ باید $N=20~{
 m ms}$ برای مستطیلی) و $N=50{
 m Hz}$ (برای همینگ)
 - اگر سیگنال با طول $40~{
 m ms}$ غیرایستا باشد؟؟
- o پنجره مستطیلی تفکیک زمانی (Time Resolution) بهتری نسبت به پنجره همینگ فراهم می کند

تحلیل فوریه کوتاهمدت . . .

از طرفی

- پاسخ فرکانسی خارج از lobe اصلی صفر نیست
- دامنه فرکانس در 10be دوم در مستطیلی 17~dB و برای همینگ حدود 10be کمتر از 10be اصلی است (برای هنینگ حدود 10be)
 - پس هارمونیک kام $X_{
 m m}({
 m e}^{{
 m j}2\pi{
 m k}/{
 m M}}$ نه تنها حاوی $X_{
 m m}({
 m k})$ بلکه حاوی جمع وزندار $X_{
 m m}({
 m e}^{{
 m j}2\pi{
 m k}/{
 m M}}$ نیز است
 - o نشت طیفی (spectral leakage)

در عمل انت**خ**اب بهتر!

• پنجره مستطیلی یا همینگ؟

مقايسه	همینگ	مستطيلي	ویژ گی
مستطیلی بهتر است	دو دوره تناوب زیروبمی	یک دوره تناوب زیروبمی	طول پنجره (Time Resolution)
همینگ بهتر است	44 dB کمتر از lobe اصلی	17 dB کمتر از lobe اصلی	نشت طیفی (Spectral Leakage)

در عمل: طول پنجره حدود 20 تا 30 میلی ثانیه

تحلیل فور په کوتاهمدت . . .

Hadi Veisi (h.veisi@ut.ac.ir)

تحلیل فوریه کوتاهمدت . . .

پردازش گفتار: نمایشهای سیگنال گفتار و استخراج ویژگی

تحليل فوريه كوتاهمدت

و طیفنگار

باند پهن

- ٥ پنجره زمانی کوتاه
- ۰ کمتر از ۱۰ میلی ثانیه
 - ٥ تفكيك زماني خوب
- تفکیک بسامد پایین تر
- (>200Hz) پهن (o

باند باریک

- ٥ پنجره زمانی بلند
- بزرگتر از ۲۰ میلی ثانیه
 - ٥ تفكيك زماني كمتر
 - تفکیک بسامد بهتر
- فیلترهای باریک (100Hz: ،

4000 2000 0 0.1 0.2 0.3 0.4 0.5 0.6 Time (seconds)

مدل منبع-فیلتر

Gain

o مدل منبع –فیلتر (Source-Filter)

• تولید گفتار واکدار و بیواک

• نحوه تخمين فيلتر؟ منبع؟

...LPC تحليل

(LPC: Linear Predictive Coding) رمزگذاری پیشبینی کننده خطی \circ

- مبانی ریاضی از سال ۱۹۲۷ (Yule) و ۱۹۳۱ (Walker)
- الگوریتم بدست آوردن ضرایب در ۱۹۴۷ (Levinson) و ۱۹۶۰ (Durbin)
 - تحلیل LPC یا مدلسازی خود بازگشتی (AR: Auto-Regressive)
- روش پر کاربرد در نمایش سیگنال گفتار و تخمین پارامترهای اصلی آن (سریع و ساده)
 - تخمین فیلتر (و منبع) در مدل منبع –فیلتر
 - ه امکان مدل کردن H(z) با یک فیلتر تمام-قطب (با تعداد قطبهای کافی) های مدل کردن H(z)

تعداد P قطب
$$H(z) = \frac{X(z)}{E(z)} = \frac{1}{1 - \sum_{k=1}^{p} a_k z^{-k}} = \frac{1}{A(z)}$$

...LPC تحليل

$$A(z) = 1 - \sum_{k=1}^{p} a_k z^{-k}$$

$$x[n] = \sum_{k=1}^{p} a_k x[n-k] + e[n]$$
 (Z در حوزه زمان (معکوس تبدیل •

LP =(ک سیگنال از روی P نمونه قبلی و سیگنال تحریک) اتخمین نمونه P

LPC مرتبه تحلیل = P

LPC ضرایب تحلیل =a_k

سیگنال تحریک (Excitation) باقیمانده (Residual)

 $\tilde{X}[n] = \sum_{k=1}^{p} a_k X[n-k]$

- تخمين
- $e[n] = x[n] \tilde{x}[n] = x[n] \sum_{k=1}^{p} a_k x[n-k]$ خطای تخمین
 - a_k مساله: نحوه پیدا کردن ضرایب •

تحلیل LPC؛ محاسبه ضرایب . . .

- ۰ هدف: کمینه کردن خطای تخمین
- $\mathbf{x}_{\mathrm{m}}[\mathrm{n}]$ مربعات خطا برای قاب سیگنال گفتار ullet

$$E_m = \sum_n e_m^2[n] = \sum_n \left(x_m[n] - \tilde{x}_m[n] \right)^2 = \sum_n \left(x_m[n] - \sum_{j=1}^p a_j x_m[n-j] \right)^2$$

ضرب داخلی خطا و سیگنال

مشتق گیری بر حسب a_i و برابر صفر قرار دادن •

$$\langle \mathbf{e}_m, \mathbf{x}_m^i \rangle = \sum_n e_m[n] x_m[n-i] = 0$$
 $1 \le i \le p$

اصل تعامد (Orthogonality Principle): بردار خطای تخمین گر بهینه (از نظر مربعات خطا) بر نمونههای قبلی سیگنال متعامد است

تحلیل LPC؛ محاسبه ضرایب . . .

٥ معادلات

$$\langle \mathbf{e}_m, \mathbf{x}_m^i \rangle = \sum_n e_m[n] x_m[n-i] = 0 \qquad 1 \le i \le p$$

$$e[n] = x[n] - \tilde{x}[n] = x[n] - \sum_{n=1}^{p} a_n x[n-k]$$

$$\sum_{n} x_m[n-i]x_m[n] = \sum_{j=1}^{p} a_j \sum_{n} x_m[n-i]x_m[n-j]$$
 $i = 1, 2, ..., p$ تعداد P معادله خطی •

$$\phi_m[i,j] = \sum_n x_m[n-i]x_m[n-j]$$
 تعریف ضرایب همبستگی •

$$\sum_{i=1}^{p} a_{j} \phi_{m}[i,j] = \phi_{m}[i,0]$$
 $i = 1,2,...,p$:(Yule-Walker انگاه داریم (معادله):

$$\sum_{m} u_{m}^{2}[n] = 1$$
 معمولاً خطای تخمین به گونهای نرمال میشود که انرژی آن واحد باشد •

$$e_m[n] = Gu_m[n]$$
 مرابطه بین خطای اصلی و خطای نرمال شده •

$$E_m = \sum_n e_m^2[n] = G^2 \sum_n u_m^2[n] = G^2 = 1$$
آنگاه مقدار خطای تخمین

تحلیل LPC؛ محاسبه ضرایب ...

- و روشهای حل معادلات
- روش کوواریانس (Covariance)
- روش خودهمبستگی (Autocorrelation)
- روش لاتيس: لوينسون دوربين (Levinson-Durbin)

تحلیل LPC؛ محاسبه ضرایب . . .

$$\phi_m[i,j] = \sum_{n=0}^{N-1} x_m[n-i]x_m[n-j] = \sum_{n=-i}^{N-1-j} x_m[n]x_m[n+i-j] = \phi_m[j,i]$$
 ... \circ

$$\sum_{j=1}^{p} a_j \phi_m[i,j] = \phi_m[i,0] \qquad i = 1, 2, ..., p$$

$Φ = VDV^t$: Φ تجزیه ماتریس

- ه ماتریس \overline{V} پایین مثلثی با قطر اصلی 1 است \overline{V}
 - o ماتریس D قطری است

$$\phi[i,j] = \sum_{k=1}^{j} V_{ik} d_k V_{jk} \qquad \qquad 1 \leq j < i \qquad \Longrightarrow \qquad V_{ij} d_j = \phi[i,j] - \sum_{k=1}^{j-1} V_{ik} d_k V_{jk} \qquad \qquad 1 \leq j < i$$

$$\phi[i,i] = \sum_{k=1}^{i} V_{ik} d_k V_{ik} \qquad \qquad bar{d_i} = \phi[i,i] - \sum_{k=1}^{i-1} V_{ik}^2 d_k , \qquad i \ge 2 \qquad bar{d_1} = \phi[1,1]$$

روان پردازش گفتار: نمایشهای سیگنال گفتار و استخراج ویژگی التنظامی با دازش گفتار: نمایشهای سیگنال گفتار و استخراج ویژگی

تحلیل LPC محاسبه ضرایب . . .

و روش کواریانس

با داشتن V، مقدار Υ (به صورت بازگشتی) قابل محاسبه است \bullet

$$Y_i = \psi_i - \sum_{j=1}^{i-1} V_{ij} Y_j$$
, $2 \le i \le p$ $Y_1 = \psi_1$

$$\begin{aligned} a_i &= Y_i \, / \, d_i - \sum_{j=i+1}^p V_{ji} a_j \ , \qquad 1 \leq i$$

• با داشتن Y، ضرایب a بدست می آید

تحلیل LPC، تحلیل طیفی . . .

$$H(e^{j\omega}) = \frac{G}{1 - \sum_{k=1}^{p} a_k e^{-j\omega k}} = \frac{G}{A(e^{j\omega})}$$

o تحلیل طیفی با LPC ...

- یک فیلتر تمام-قطب (IIR)
- با رسم $H(e^{j\omega})$ قلههایی را در ریشههای مخرج داریم •

تحلیل LPC، تحلیل طیفی . . .

o انتخاب مرتبه O

- مدل تمام –قطب مادامی که از تعداد قطبهای زیاد استفاده می کنند، تقریب خوبی دارد
 - حتی برای واجهای خیشومی که صغر هم دارند
 - به طور میانگین طیف گفتار شامل یک قطب در هر کیلو هر تز
 - در عمل $P = F_S + (2 \ or \ 4)$ تقریب خوبی است

بسامد نمونه گیری برحسب کیلوهرتز $F_{\scriptscriptstyle S}$ $oldsymbol{\circ}$

پردازش گفتار: نمایشهای سیگنال گفتار و استخراج ویژگی

تحلیل LPC، خطای پیشبینی . . .

خطای پیشبینی (سیگنال تحریک یا باقیمانده)

$$e[n] = x[n] - \tilde{x}[n] = x[n] - \sum_{k=1}^{p} a_k x[n-k]$$

- گفتار بیواک: بهطور تقریبی باید نوفه سفید باشد (در عمل، این تقریب کاملا خوب است)
 - گفتار واکدار: که بهطور تقریبی باید زنجیره پالسی باشد (در عمل اینگونه نیست)
- گفتار واقعی کاملاً دورهای نیست (یک مؤلفه تصادفی نیز دارد) و فرض تمام-قطب در مجموع معتبر نیست (صفرها با فیلتر LPC مدلسازی نشده)
 - o تولید گفتار (سنتز) با این روش = گفتار رباتی

مىبايست زنجيره يالس باشند

تحلیل LPC؛ کارپردها ...

- استفاده در کدینگ و سنتز گفتار
- استفاده از ضرایب LP به عنوان ویژگی (در پردازش گفتار) \circ

$$X(e^{j\omega}) = \frac{G}{FT([1,a_1,a_2,...,a_P])}$$

o تخمین طیف (پوش طیف) از روی ضرایب LP

- تخمین فرکانس فرمنتها
 - قلههای پوش طیف گفتار
- تخمین فرکانس زیروبمی (Pitch)
- محاسبه سیگنال تحریک (باقیمانده) با فیلتر کردن معکوس
- محاسبه همبستگی و یافته نقطه بیشینه جهت تخمین دوره تناوب آن

Speech s(n)
$$A(z) = \frac{1}{H(z)} = 1 + \sum_{k=1}^{p} a_k z^{-k}$$
 Residual e(n)

تحلیل LPC بثال . . .

o یک فریم از واج /e/ فارسی

تحليل LPC بثال

```
FrameLen = 20: % in ms
14
    LPCOrder = 10:
15 [SpeechSig,Fs,Bits]=wavread('voiced-e.wav');
16 FrameLen = FrameLen*Fs/1000;
     SpeechSig=SpeechSig./(1.01*abs(max(SpeechSig))); % Normalize to [-1,1]
18
     SpeechSig=SpeechSig(FrameLen+1:2*FrameLen);
19
    Win=hamming (FrameLen);
20
     SpeechSig=SpeechSig.*Win; % windowing
     SpeechCorr=xcorr(SpeechSig,SpeechSig);
22
     SpeechCorr=SpeechCorr./(abs(max(SpeechCorr)));
23
     SpeechCorr = SpeechCorr(end/2:end);
24
     % Compute LP coeffs
26 A=SpeechCorr(1:LPCOrder); % P order autocorr
     r=SpeechCorr(2:(LPCOrder+1));
28
    A=toeplitz(A); % Toeplitz autocorr matrix
29
    L=-inv(A) *r;
    LPCoeffs = [1;L]; % this is eq. to LPCoeffs=lpc(SpeechSig, LPCOrder)
     % Compute residuals
33
     Residual =conv(SpeechSig,LPCoeffs); % convolution of speech signal and the filter (investignation)
34
     Residual=Residual (round (LPCOrder/2):length (Residual) -round (LPCOrder/2)-1);
36
     % Pitch Estimation from Residuals
    ResidualCorr=xcorr(Residual, Residual); %auto-correlation
38 ResidualCorr = ResidualCorr(end/2:end);
39
    ResidualCorr=ResidualCorr./(abs(max(ResidualCorr)));
40 MinPitch=20; %min pitch period
41 MaxPitch=160; % max pitch
42 ResidualCorrInterval=ResidualCorr(MinPitch:MaxPitch);
43
    [PitchVal, PicthLoc] = max (ResidualCorrInterval); % find the (second) peak
44
     PitchPeriod=MinPitch+PicthLoc;
     PitchFreq=(1./PitchPeriod) *Fs:
45
46
47
    % Formant Estimation from LP Spectrum
     LPSpec=abs(fft(LPCoeffs,Fs)); %Calculate LP Spectrum (takig FFT from LP coeffs)
48
49
    LPSpec=LPSpec.^(-1);
    LPSpec=20*log10(LPSpec);
```

۰ نمونه کد

• از سایت بردارید

- و روشهای معادل
- (LSF: Line Spectral Frequencies) بسامدهای طیفی خط ٥ رايج در کدينگ
 - ضرایب بازتاب (Reflection Coefficients)
 - نسبتهای لگاریتم-مساحت (Log-Area Ratios)
 - ریشههای چندجملهای (Roots of Polynomial)

پردازش گفتار: نمایشهای سیگنال گفتار و استخراج ویژگی

تحلیل LPC

$$x[n] = \sum_{i=1}^{p} a_i x[n-i] + \sum_{i=0}^{q} a_j e[n-j]$$

مدل عمومی تخمین

- (e) نمونه زمان n بر حسب p نمونه قبلی (x) خودش و p نمونه ورودی \bullet
- AR: Auto-Regressive اگر q=0: تخمین فقط بر حسب نمونههای قبلی خودش = مدل q=0 مدل مدل تمام قطب
 - MA: Moving Average اگر p=0: تخمین فقط بر حسب نمونههای ورودی = مدل همای ورودی مدل همای معام صفر
 - ${
 m ARMA}$ اگر $p \neq 0$ و $q \neq 0$: تخمین بر حسب نمونههای قبلی و ورودی = مدل ${
 m argma}$ مدل ترکیبی صفر-قطب

- (Cepstrum) ایده تحلیل کپستروم
- (Healy , John Tukey) Bogert در سال ۱۹۶۴ توسط •
- تخمین فیلتر (h) و منبع (e) در مدل منبع –فیلتر با جدا کردن آنها از همدیگر

- با داشتن این رابطه، می توان فیلتر (h) و منبع (e) را بدست آورد
- کپستروم (Cepstrum) = یک تبدیل همریخت برای تبدیل کانولوشن به جمع

پردازش گفتار: نمایشهای سیگنال گفتار و استخراج ویژگی

تحلیل کیستروم . . .

o تفکیک فیلتر (h) و منبع (e) با تبدیل همریخت

در صورتی که بخواهیم e[n] را تخمین بزنیم، از فیلتر e[n] زیر استفاده میکنیم •

$$l[n] = \begin{cases} 1 & |n| \ge N \\ 0 & |n| < N \end{cases}$$

o بخشی از خروجی تبدیل هم ریخت معادل فیلتر و بخش دیگر معادل منبع است

تعریف کیستروم حقیقی

 $c[n] = \mathcal{F}^{-1}\{\log |\mathcal{F}\{x[n]\}|\}$ معکوس تبدیل فوریه لگاریتم دامنه تبدیل فوریه ullet

$$c[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \ln|X(e^{j\omega})| e^{j\omega n} d\omega$$

🔾 تعریف کیستروم موهومی

$$\hat{x}[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \ln X(e^{j\omega}) \ e^{j\omega n} d\omega$$

$$\hat{X}(e^{j\omega}) = \ln X(e^{j\omega}) = \ln |X(e^{j\omega})| + j\theta(\omega)$$

$$\theta(\omega) = \arg \left[X(e^{j\omega}) \right]$$

- ... (Liftering) ليفتر كردن
- جدا کردن منبع از فیلتر با فیلتر کردن کیستروم
- ليفتر كردن زمان پايين (Low-time liftering)

$$l[n] = \begin{cases} 1 & |n| < N \\ 0 & |n| \ge N \end{cases}$$
 20 مقدار 15 یا 20

٥ محاسبه فرمنتها: گرفتن تبدیل فوریه (و بدست آوردن لگاریتم طیف)، و یافتن نقاط بیشینه

تحلیل کیستروم . . .

- ... (Liftering) ليفتر كردن
- ليفتر كردن زمان بالا (High-time liftering)
 - م بخش انتهایی کیستروم = سیگنال تحریک

o محاسبه فرکانس زیروبمی (pitch): یافتن نقطه بیشینه روی کپستروم لیفتر شده

Hadi Veisi (h.veisi@ut.ac.ir)

• برای سیگنال واکدار

دانشاً ه

تحلیل کیستروم: مثال . .

- ۰ برای سیگنال واکدار
- یک فریم از واج /e/ فارسی

گرفتن تبدیل فوریه (محاسبه لگاریتم طیف) و یافتن نقاط بیشینه

٣٩

۰ برای سیگنال بیواک

یک فریم از واج f/ فارسی lacktriangle


```
FrameLen = 20: % in ms
12
           LifterCutOff = 20; % cut off of the liftering, 15 or 20
13
            [SpeechSig,Fs,Bits]=wavread('voiced-e.wav');
14
15
16
            FrameLen = FrameLen*Fs/1000:
17
            SpeechSig=SpeechSig./(1.01*abs(max(SpeechSig))); % Normalize to [-1,1]
18
            SpeechSig=SpeechSig(FrameLen+1:2*FrameLen);
19
            Win=hamming (FrameLen);
            SpeechSig=SpeechSig.*Win; % windowing
21
           Cepstrum=log(abs(fft(SpeechSig)));
22
            Cepstrum=ifft(Cepstrum);
23
24
           % Liftering (High-time)
25
            Cepstrum2=Cepstrum(1:length(Cepstrum)/2)'; % the cepstrum is symmetric
26
           LifterHigh=zeros(1,length(Cepstrum2));
27
            LifterHigh (LifterCutOff:length(LifterHigh))=1;
28
            CepstrumHighTime=real (Cepstrum2.*LifterHigh);
29
30 % Liftering (Low-time)
31
           LifterLow=zeros(1,length(Cepstrum2)):
           LifterLow(1:LifterCutOff)=1;
33
           CepstrumLowTime=real(Cepstrum2.*LifterLow);
34
35
           % Pitch estimation
36 [PitchVal, PitchLoc]=max(CepstrumHighTime);
            PitchPeriod=PitchLoc:
38 □PitchFreq=(1/PitchPeriod)*Fs;
39
40 % Formant estimation
41
           CepstrumLowTime2=CepstrumLowTime(1:LifterCutOff);
           CepstrumLowTime2Spec=fft(CepstrumLowTime2,Fs); % spectrum of low-time cepstrum
42.
43
            CepstrumLowTime2Spec2=CepstrumLowTime2Spec(1:Fs/2); % spectrum is symmetric
            CepstrumLowTime2Spec2=real(CepstrumLowTime2Spec2);
44
            k=1:
45
46 ☐ for i=2:length (CepstrumLowTime2Spec2) -1
               if (CepstrumLowTime2Spec2(i-1) < CepstrumLowTime2Spec2(i)) & (CepstrumLowTime2Spec2(i+1) < CepstrumLowTime2Spec2(i+1) < Cepstru
```

نمونه کداز سایت بردارید

تحليل كيستروم

- در نظر گرفتن لگاریتم طیف به عنوان شکل موج سیگنال
 - استفاده به عنوان ویژگی: نمایش فشرده پوش طیف
 - ضرایب مستقل از هم
 - ∘ توانایی بالا در تشخیص واکداری و فرکانس Pitch
 - نامگذاری: معکوس کردن هجای اول کلمات معادل
- کپستروم (Cepstrum) در مقابل اسپکتروم (طیف) (Spectrum)
 - Frequency در مقابل Quefrency •
 - ليفتر كردن (Liftering) در مقابل فيلتر كردن (Filtering)

روش MFCC

• ضرایب کیستروم در مقیاس مل

- MFCC: Mel-Frequency Cepstral Coefficients
 - در سال ۱۹۸۰ توسط Davis و Mermelstein
 - پرکاربردترین ویژگی گفتار در سیستمهای تشخیص گفتار
 - در واقع نوعی کپستروم حقیقی است (با تفاوتهای زیر)
 - o تبدیل فوریه مورد استفاده در آن FFT است
 - ه تبدیل معکوس فوریه DCT است
- o یک مقیاس غیر خطی (مل) فرکانسی در آن استفاده میشود = شبیه سازی رفتار سیستم شنوایی

روش MFCC

0 مراحل

۱ – فریمگذاری

- طول هر فریم از کاربردی به کاربرد دیگر متفاوت است (معمولاً بین ۱۰ تا ۵۰ میلی ثانیه)
 - فریمهای متوالی با همدیگر همپوشانی (Overlap) دارند (۲۵٪ تا ۷۵٪ طول فریم)
- برای سیگنالی با نرخ نمونه برداری $16 \mathrm{kHz}$ و فریمهای $20~\mathrm{ms}$: بردار N=320 بُعدی

$\mathbf{x}[n] = x[n] - \alpha x[n-1], \ 0 \le n < N \ (\mathbf{Pre-Emphasis Filter})$ فيلتر پيش تأكيد – ۲

- فیلتر بالاگذر برای تقویت فرکانسهای (فرمنتهای) بالا ٥ حذف اثرات طيفي حنجره (دو قطب) و لبها (يک صفر)
 - α مقدار معمول برای ضریب پیشتاکید
 - $0.9 \le \alpha \le 1.0$ همواره
 - بردار N=320 يُعدي

Hadi Veisi (h.veisi@ut.ac.ir)

روش MFCC

۳- پنجرهگذاری

معمولاً پنجره همینگ - بردار N=320 بُعدی •

$$X_a[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi nk/N}$$
, $0 \le k < N$

۴- محاسبه (توان) طیف

- استفاده از FFT
- چون سیگنال حقیقی است، متقارن است، کافیست نصف آن را نگه داریم
 - بردار N=160 بُعدى

روش MFCC

۵- بانک فیلتر در مقیاس مل . . .

- مدل کردن حساسیت گوش انسان نسبت به حوزههای مختلف فرکانس
 - گوش به اطلاعات فر کانس پایین ارزش بیشتری میدهد
- عملکرد گوش برای فرکانسهای کمتر از یک کیلو هر تز، خطی و برای فرکانسهای بالاتر
 لگاریتمی است

- استفاده از تعداد محدودی فیلتر
- ٥ بين ٢٠ تا ٣٠ فيلتر (مقدار رايج = ٢٤)
- کاهش ابعاد بردار ویژگی: N=24 بُعدی
- ضرب فیلترها در طیف و محاسبه انرژی هر فیلتر

$$S[m] =$$

$$\left[\sum_{k=0}^{N-1} \left| X_a[k] \right|^2 H_m[k] \right], \qquad 0 \leq m < M$$

روش MFCC

۵- بانک فیلتر در مقیاس مل

• فيلترها

برای 8 kHz

$$H_{m}[k] = \begin{cases} 0 & k < f[m-1] \\ \frac{(k-f[m-1])}{(f[m]-f[m-1])} & f[m-1] \le k \le f[m] \\ \frac{(f[m+1]-k)}{(f[m+1]-f[m])} & f[m] \le k \le f[m+1] \\ 0 & k > f[m+1] \end{cases}$$

$$B^{-1}(b) = 700 \left(\exp(b/1125) - 1 \right)$$

$$S[m] = \ln \left| S[m] \right|$$
 بردار ویژگی: $N=24$ بُعدی •

V – تبدیل کسینوسی گسسته (DCT: Discrete Cosine Transform)

• معادل معکوس تبدیل فوریه در کیستروم حقیقی

$$c[n] = \sum_{m=0}^{M-1} S[m] \cos \left(\pi n (m+1/2)/M \right)$$
 $0 \le n < M$ معمولاً این مقدار مقدار نصف تعداد فیلترهاست

- N=12 بُعدی N=12 بُعدی •
- کاهش ابعاد بردار ویژگی از ۳۲۰ به ۱۲!

روش MFCC

o مشتقات ضرایب MFCC

- ضرایب MFCC فقط شامل اطلاعات استاتیک هر فریم است
- اطلاعات پویا و اثر فریمهای مجاور (به دلیل غیر ایستان بودن گفتار) نیز لازم است
 - محاسبه مشتقات زمانی از روی فریمهای مجاور

2= مقدار معمول $\Delta C[n] = \sum_{i=-k}^{k} (i.C[n+i]) / \sum_{i=-k}^{k} i^2$

روش رگرسیون خطی (k) فریم قبل و (k) فریم بعد)

$$\Delta^{2}C[n] = \frac{2\left\{ \left(\sum_{i=-k}^{k} i^{2} \right) \left(\sum_{i=-k}^{k} C[n+i] \right) - (2k+1) \sum_{i=-k}^{k} \left(i^{2}C[n+i] \right) \right\}}{\left(\sum_{i=-k}^{k} i^{2} \right)^{2} - (2k+1) \left(\sum_{i=-k}^{k} i^{4} \right)}$$

مقدار معمول 1 (یا 2)

$$\Delta C[n] = C[n+k] - C[n-k]$$

روش تفاضل (سادهتر)

$$\Delta^2 C[n] = \Delta C[n+k] - \Delta C[n-k] = C[n+2k] - 2C[n] + C[n-2k]$$

اضافه کردن مشتق اول و دوم به بردار ویژگیها: اندازه بردار ویژگی: N=3*12 بُعدی •

روش MFCC

نرمالسازی میانگین

- (CMS: Cepstral Mean Subtraction) تفاضل میانگین کپسترال
- نرمالسازی میانگین کپسترال (CMN: Cepstral Mean Normalization)
 - یکی از رایج ترین، ساده ترین و مؤثر ترین روشهای نرمالسازی
- برای حذف اثر کانال (مثل خط تلفن، تنوع میکروفون و ...) و نویزهای کانوالوشونده
- متوسط بردارهای ویژگی کپسترال (در طول چند صد فریم) محاسبه و سپس این مقدار
 میانگین از هر یک از بردارها کم میشود

• نویز کانوالوشونده در حوزهٔ زمان = ضرب شونده در حوزه طیف = جمعشونده در حوزهٔ کپسترال

$$\mathbf{C}[k] = \mathbf{C}[k] - \mathbf{\mu}$$
بر دار ویژگیهای MFCC

$$\boldsymbol{\mu} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{C}[k]$$

روش MFCC

- و تبدیلی همریخت نیست
- مگر اینکه جای لگاریتم گرفتن و محاسبه انرژی فلیتر بانک عوض شود

- اما تقریبی از یک تبدیل همریخت است
- ullet مزیت محاسبه به ترتیب بیان شده در MFCC مقاوم بودن به نویز در تخیمن طیف

- م برای تشخیص گفتار بسیار مناسب است
 - در سایر کاربردها هم کارایی خوبی دارد!

فركانس زيرويمي (Pitch) ...

کاربردها

- ویژگی بسیار مهمی در سنتز گفتار برای مدلسازی نوا
- استفاده در زبانهای زبانهای (Tonal) در تشخیص گفتار
 - ٥ تغيير زيروبمي سبب تغيير معنى مىشود
 - استفاده به عنوان یک ویژگی (در تشخیص گوینده)
 - ٥ در مدل منبع -فیلتر یکی از یارامترهای تولید گفتار است

۰ روشهای تشخیص

- مبتنی بر کپستروم
- خودهمبستگی (بیشینه مقدار خودهمبستگی به غیر از نقطه صفر)
- همبستگی متقاطع نرمال شده (Normalized Cross-Correlation)

فرکانس زیرویمی (Pitch) ...

ㅇ روش خودهمبستگی . . .

- بیشترین مقدار تابع خودهمبستگی در قاب (فریم)
- ه نقطه m=0 (شروع سیگنال) بیشینهی مطلق تابع خودهمبستگی است و باید آن را نادیده گرفت.
 - o N = تعداد نمونه ها

$$\widehat{R}[m] = \frac{1}{N} \sum_{n=0}^{N-1-|m|} w[n] \mathbf{x}[n] w[n+|m|] \mathbf{x}[n+|m|]$$

- دورههای زیروبمی می توانند حداقل ۴۰ هر تز (برای صدای مردانه با زیروبمی بسیار پایین) و حداکثر ۶۰۰ هر تز (برای صدای زنانه یا کودکانه با زیروبمی بسیار بالا) باشند
 - o جستجو برای بیشینه درون یک بازه صورت می گیرد

• مقادیر زیروبمی در مناطق بیواک تصادفی هستند

ㅇ روش خودهمبستگ

فرکانس زیرویمی (Pitch) . . .

فرکانس زیرویمی (Pitch)

• مشابه روش خودهمبستگی با مقداری بهبود

$$\alpha_t(T) = \cos(\theta) = \frac{<\mathbf{x}_t, \mathbf{x}_{t-T}>}{|\mathbf{x}_t||\mathbf{x}_{t-T}|} = \frac{\sum_{n=-N/2}^{N/2-1} x[t+n]x(t+n-T)}{\sqrt{\sum_{n=-N/2}^{N/2-1} x^2[t+n]\sum_{m=-N/2}^{N/2-1} x^2[t+m+T]}}$$

- این تخمین غیراریب است (روش خودهمبستگی اریب دارد)
 - واریانس پایین تری از تخمین خودهمبستگی دارد
- برخلاف روش خودهمبستگی، طول پنجره میتواند کمتر از دوره زیروبمی باشد
 - o بهطوری که فرض مانا بودن صحیحتر است و وضوح زمانی بیشتری دارد
- ردیابی زیروبمی با این روش معمولاً بهتر از خودهمبستگی هستند اما مستلزم محاسبات سشتری هستند