

Binārā meklēšana (BinSearch)

Ievaddati stdin Izvaddati stdout

```
bool binary_search(int n, int p[], int target){
   int left = 1, right = n;
   while(left < right){
      int mid = (left + right) / 2;
      if(p[mid] == target)
           return true;
      else if(p[mid] < target)
           left = mid + 1;
      else
           right = mid - 1;
   }
   if(p[left] == target) return true;
   else return false;
}</pre>
```

Ir skaidri redzams, ka, ja p ir sakārtots, tad šis kods atgriež true tad un tikai tad, ja target atrodas p. No otras puses, tas tā var nebūt, ja p nav sakārtots.

Ir dots naturāls skaitlis n un virkne $b_1, \ldots, b_n \in \{\text{true}, \text{false}\}$. Tiek garantēts, ka $n = 2^k - 1$ un k ir naturāls skaitlis. Uzdevums ir ģenerēt permutāciju p no $\{1, \ldots, n\}$, kas atbilst noteiktiem nosacījumiem. Ar S(p) tiek apzīmēts indeksu skaits $i \in \{1, \ldots, n\}$, kuram binary_search(n, p, i) neatgriež b_i . Ir jāatrod tāda permutācija p, lai S(p) ir mazs (tas ir paskaidrots "Ierobežojumi" sadaļā).

Piezīme. Skaitļu $\{1, \ldots, n\}$ permutācija ir n skaitļu virkne, kurā katrs skaitlis no 1 līdz n ir sastopams $tie\check{s}i$ vienu reizi.

levaddati

Ievaddatos ir vairāki testpiemēri. Pirmajā rindā ir testpiemēru skaits T. Nākamajās rindās ir dots testpiemēru apraksts. Katra testpiemēra apraksta pirmajā rindā ir vesels skaitlis n, bet otrajā rindā ir n simbolus gara virkne, kurā ir tikai simboli '0' un '1'. Šie simboli nav atdalīti ar atstarpēm. Ja i-tais simbols virknē ir '1', tad $b_i =$ true, un, ja tas ir '0', tad $b_i =$ false.

Izvaddati

Izvaddatos ir jābūt T rindām - visu testpiemēru atbildēm. Katrā rindā jābūt permutācijai p, kas ir ģenerēta atbilstošajam testpiemēram.

lerobežojumi

- Ar $\sum n$ ir apzīmēta viena testa visu n vērtību summa.
- $1 \le \sum n \le 100000$.
- $1 \le \overline{T} \le 7000$.
- $n = 2^k 1$ un $k \in \mathbb{N}, k > 0$.
- Ja $S(p) \leq 1$ visiem viena apakšuzdevuma testiem, tad tiek piešķirti 100% no apakšuzdevuma maksimālā punktu skaita.
- Citādi, ja $0 \le S(p) \le \lceil \log_2 n \rceil$ (tas ir $1 \le 2^{S(p)} \le n+1$) visiem viena apakšuzdevuma testiem, tad tiek piešķirti 50% no apakšuzdevuma maksimālā punktu skaita.

#	Punkti	Ierobežojumi
1	3	$b_i = { t true}.$
2	4	$b_i = { t false}.$
3	16	$1 \le n \le 7.$
4	25	$1 \le n \le 15.$
5	22	$n=2^{16}-1$ un katrs b_i tiek izvēlēts vienmērīgi, neatkarīgi un nejauši no $\{true, false\}$.
6	30	Bez papildu ierobežojumiem.

Piemēri

Ievaddati	Izvaddati
4	1 2 3
3	1 2 3 4 5 6 7
111	3 2 1
7	7 6 5 4 3 2 1
1111111	
3	
000	
7	
00000000	
2	3 2 1
3	7 3 1 5 2 4 6
010	
7	
0010110	

Paskaidrojumi

1. piemērs Pirmajos divos testpiemēros S(p) = 0.

Trešajā testpiemērā S(p)=1. Tas ir tādēļ, ka binary_search(n, p, 2) atgriež true, lai gan $b_2=$ false.

Ceturtajā testpiemērā S(p)=1. Tas ir tādēļ, ka binary_search(n, p, 4) atgriež true, lai gan $b_4=$ false.

2. piemērs Abos testpiemēros S(p) = 0.