

WHAT IS CLAIMED IS:

- 1 1. A method of forming a bottom oxide layer in a trench structure, the
2 method comprising:
 - 3 (a) providing a semiconductor substrate and forming a trench structure on said
4 semiconductor substrate;
 - 5 (b) performing a the plasma-enhanced chemical vapor deposition (PECVD)
6 process with tetraethylorthosilicate (TEOS) as a gas source to deposit an oxide layer on the
7 bottom and sidewall of said trench structure and said semiconductor substrate; and
 - 8 (c) removing said oxide layer on the sidewall of said trench structure
9 substantially completely and said oxide layer on the bottom of said trench structure partially
10 to define a remaining oxide layer as the bottom oxide layer.
- 1 2. The method according to claim 1 wherein the step (a) further
2 comprises:
 - 3 (a1) forming a pad oxide layer on the semiconductor substrate;
 - 4 (a2) forming a silicon nitride layer on said pad oxide layer; and
 - 5 (a3) removing said silicon nitride layer, said pad oxide layer and said
6 semiconductor substrate partially to form said trench structure.
- 1 3. The method according to claim 2 wherein the step (a3) is performed by
2 a photolithography and dry-etching process.
- 1 4. The method according to claim 1 wherein the trench structure has an
2 aspect ratio between about 3.0 and about 4.0.
- 1 5. The method according to claim 1 wherein said plasma-enhanced
2 chemical vapor deposition (PECVD) process is performed at a temperature of about 440°C to
3 about 520°C.
- 1 6. The method according to claim 1 wherein a ratio of a thickness of said
2 oxide layer deposited on the bottom of said trench structure to a thickness of said oxide layer
3 deposited on the sidewall of said trench structure is between about 1.5 and about 2.3.
- 1 7. The method according to claim 1 wherein the step (c) is performed by
2 a wet-etching process.

1 8. The method according to claim 7 wherein an etching selectivity of said
2 oxide layer on the sidewall of said trench structure to said oxide layer on the bottom of said
3 trench structure is between about 2.5 and about 3.

1 9. The method according to claim 1 wherein after the step (c), the steps of
2 depositing and removing the oxide layer are repeated in sequence for allowing said bottom
3 oxide layer to reach a required thickness.

1 10. The method according to claim 1 wherein said oxide layer comprises a
2 silicon oxide layer.

1 11. A method of fabricating a trench-type power MOSFET, the method
2 comprising:

3 (a) providing a semiconductor substrate and forming a trench structure on the
4 semiconductor substrate;

5 (b) performing the plasma-enhanced chemical vapor deposition (PECVD)
6 process with tetraethylorthosilicate (TEOS) as a gas source to deposit an oxide layer on the
7 bottom and sidewall of said trench structure and said semiconductor substrate;

8 (c) removing said oxide layer on the sidewall of said trench structure
9 substantially completely and said oxide layer on the bottom of said trench structure partially
10 to define the remaining oxide layer as a bottom oxide layer; and

11 (d) forming the trench-type power MOSFET device in said trench structure.

1 12. The method according to claim 11 wherein the step (a) further
2 comprises steps of:

3 (a1) forming a pad oxide layer on said semiconductor substrate;

4 (a2) forming a silicon nitride layer on said pad oxide layer; and

5 (a3) removing said silicon nitride layer, said pad oxide layer and said
6 semiconductor substrate partially to form said trench structure.

1 13. The method according to claim 12 wherein the step (a3) is performed
2 by a photolithography and dry-etching process.

1 14. The method according to claim 11 wherein said trench structure has an
2 aspect ratio between about 3.0 and about 4.0.

1 15. The method according to claim 11 wherein said plasma-enhanced
2 chemical vapor deposition (PECVD) process is performed at a temperature of about 440°C to
3 about 520°C.

1 16. The method according to claim 11 wherein a ratio of a thickness of
2 said oxide layer deposited on the bottom of said trench structure to a thickness of said oxide
3 layer deposited on the sidewall of said trench structure is between about 1.5 and about 2.3.

1 17. The method according to claim 11 wherein the step (c) is performed by
2 a wet-etching process.

1 18. The method according to claim 17 wherein the etching selectivity of
2 said oxide layer on the sidewall of said trench structure to said oxide layer on the bottom of
3 said trench structure is between about 2.5 and about 3.

1 19. The method according to claim 11 wherein between the steps of (c)
2 and (d), the steps of depositing and removing said oxide layer are repeated for allowing said
3 bottom oxide layer to reach a required thickness.

1 20. The method according to claim 11 wherein said oxide layer comprises
2 a silicon oxide layer.

1 21. A method of forming a bottom oxide layer in a trench structure, the
2 method comprising:
3 providing a substrate including a trench having a bottom and a sidewall;
4 depositing an oxide layer on the bottom and sidewall of said trench by plasma-
5 enhanced chemical vapor deposition (PECVD) process with tetraethylorthosilicate (TEOS) as
6 a gas source at a temperature of about 440°C to about 520°C; and
7 removing said oxide layer on the sidewall of said trench substantially
8 completely and said oxide layer on the bottom of said trench partially to form a remaining
9 oxide layer as the bottom oxide layer on the bottom of said trench.

1 22. The method of claim 21 wherein said oxide layer is removed by a wet-
2 etching process having a higher etching selectivity of said oxide layer on the sidewall of said
3 trench to said oxide layer on the bottom of said trench.

1 23. The method of claim 22 wherein the etching selectivity of said oxide
2 layer on the sidewall of said trench to said oxide layer on the bottom of said trench is between
3 about 2.5 and about 3.