

Informe Laboratorio: Análisis Numérico Práctica No. 7

Daniel Delgado Código: 2182066 Grupo: B2

Escuela de Ingeniería de Sistemas e Informática Universidad Industrial de Santander

16 de febrero de 2021

1. Introducción

2. Desarrollo

2.1. Aplicando

- 1. Aproximaciones
 - a) Para realizar la aproximación de la segunda derivada de cos(x) con h = 0.01 para x = 1, necesitamos realizar el siguiente cálculo:

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$
$$f''(1) = \frac{\cos(1+0.05) - 2\cos(1) + \cos(1-0.05)}{0.05^2}$$
$$f''(1) = \frac{\cos(1.05) - 2\cos(1) + \cos(0.95)}{0.05^2}$$

Ejecutando en una terminal de MatLab con format long para realizar la aproximación:

```
val = (cos(1.05)-2*cos(1)+cos(0.95))/(0.05^2)

val =

-0.540189752267617
```

$$f''(1) = -0.540189752267617$$

b) De igual manera, para realizar la aproximación de la segunda derivada de cos(x) con h = 0.01 para x = 1, se realiza el siguiente cálculo:

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$
$$f''(1) = \frac{\cos(1+0.01) - 2\cos(1) + \cos(1-0.01)}{0.01^2}$$
$$f''(1) = \frac{\cos(1.01) - 2\cos(1) + \cos(0.99)}{0.01^2}$$

Que al ejecutar en una terminal de MatLab con el mismo formato anterior, da como resultado:

```
val = (cos(1.01)-2*cos(1)+cos(0.99))/(0.01^2)

val =

-0.540297803365286
```

$$f''(1) = -0.540297803365286$$

c) Ahora, para realizar la aproximación de la segunda derivada con la versión alterna de la ecuación, tenemos que realizar el siguiente proceso:

$$f''(x) = \frac{-f(x+2h) + 16f(x+h) - 30f(x) + 16f(x-h) - f(x-2h)}{12h^2}$$

$$f''(1) = \frac{-\cos(1+2(0.1)) + 16\cos(1+0.1) - 30\cos(1) + 16\cos(1-0.1) - \cos(1-2(0.1))}{12(0.1)^2}$$

$$f''(1) = \frac{-\cos(1.2)) + 16\cos(1.1) - 30\cos(1) + 16\cos(0.9) - \cos(0.8))}{12(0.1)^2}$$

Aplicando el formato long a la terminal, y ejecutando para obtener el resultado respectivo, nos da como resultado:

```
val = (-cos(1.2)+16*cos(1.1)-30*cos(1)+16*cos(0.9)-cos(0.8))/(12*(0.1^2))

val =

-0.540301706068029
```

$$f''(1) = -0.540301706068029$$

d) Ahora, partiendo de cada uno de los resultados obtenidos, podemos realizar la comparación respecto al valor real, o aproximado de manera directa por MatLab. Como primera medida, tenemos que calcular la segunda derivada para la función $\cos(x)$.

$$f(x) = \cos(x),$$

$$f'(x) = -\sin(x),$$

$$f''(x) = -\cos(x)$$

Entonces, ejecutando en una terminal de MatLab:

```
-cos(1)

ans =

-0.540302305868140
```

A partir de este valor, podemos calcular el error relativo para cada uno de los valores calculados anterior mente:

$$Er_{a} = \left| \frac{-0.540189752267617 - (-0.540302305868140)}{-0.540302305868140} \right| \times 100 = 0.020831597292951\%$$

$$Er_{b} = \left| \frac{-0.540297803365286 - (-0.540302305868140)}{-0.540302305868140} \right| \times 100 = -8.333303051082726 \times 10^{-4}\%$$

$$Er_{c} = \left| \frac{-0.540301706068029 - (-0.540302305868140)}{-0.540302305868140} \right| \times 100 = -1.110119472948147 \times 10^{-4}\%$$

Entonces, ya con estos valores, podemos observar que, de los resultados aproximados, el que presenta el menor error relativo, es el tercer valor Er_c con un error de tan solo el $-1.110119472948147 \times 10^{-4}$ %. Es decir que, para este caso, es este valor que presenta mayor precisión en el cálculo de la aproximación.

2. Diferenciación numérica

Dada una función f''(x), se nos pide realiza una aproximación para x=-3.5 con h=0.05. Para realizar esto, se nos da una tabla con diferentes valores y la propiedad para esta función que dice f''(x)=f''(-x+0.5). Finalmente, se nos recuerda que, para $f''(x)\approx \frac{2f_0-5f_1+4f_2-f_3}{h^2}$.

De manera inicial, es identificar los valores, que se van a emplear para realizar el cálculo de la aproximación. El primer valor que podemos tomar es f_0 que, para este caso, sería f''(-3.5). Partiendo de la propiedad de la función, tenemos que:

$$f_0 \rightarrow -3.5 = -x + 0.5 \rightarrow -3.5 - 0.5 = -x \rightarrow 4 = x$$

Teniendo este valor definido, podemos realizar el remplazo dentro de la ecuación dada para así realizar la aproximación de f''(-3.5):

$$f_0 = f(4) = 0.629492$$

 $f_1 = f(4.05) = 0.610192$
 $f_2 = f(4.1) = 0.592710$
 $f_3 = f(4.15) = 0.577125$

$$f''(-3.5) \approx \frac{2f_0 - 5f_1 + 4f_2 - f_3}{h^2} = \frac{2(0.629492) - 5(0.610192) + 4(0.592710) - 0.577125}{0.05^2}$$

Que, ejecutando en una terminal de MatLab:

```
1 (2*(0.629492)-5*(0.610192)+4*(0.592710)-0.577125)/(0.05^2)

2 ans =

0.695600000000018
```

 $f''(x) \approx 0.695600000000018$