

FINAL

**Intrinsic Remediation
Engineering Evaluation/Cost Analysis Addendum
for Site SS27/XYZ**

**Dover Air Force Base
Dover, Delaware**

Prepared For

**Air Force Center for Environmental Excellence
Technology Transfer Division
Brooks Air Force Base, Texas
San Antonio, Texas**

**and
Dover Air Force Base
Dover, Delaware**

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

September 1999

DTIC QUALITY INSPECTED 4

19991021 100

PARSONS

Parsons Engineering Science, Inc. • A Unit of Parsons Infrastructure & Technology Group Inc.
1700 Broadway, Suite 900 • Denver, Colorado 80290 • (303) 831-8100 • Fax: (303) 831-8208 • www.parsons.com

21 September 1999

Mr. Jerry Hansen
Technical Program Manager
AFCEE/ERT
3207 North Road, Bldg. 532
Brooks AFB, TX 78235-5363

Subject: Submittal of the Final Intrinsic Remediation Engineering Evaluation/Cost Analysis Addendum for Site SS27/XYZ, Dover Air Force Base, Delaware (Contract F41624-92-D-8036-0006)

Dear Mr. Hansen:

Enclosed please find two copies of the September 1999 Final Intrinsic Remediation Engineering Evaluation/Cost Analysis (EE/CA) Addendum for Site SS27/XYZ, Dover Air Force Base (AFB), Delaware. This report was prepared by Parsons Engineering Science, Inc. (Parsons ES) for the Air Force Center for Environmental Excellence Technology Transfer Division (AFCEE/ERT) and Dover AFB.

The intent of the Addendum was to evaluate the effectiveness of natural attenuation in remediating fuel contamination in groundwater at Site SS27/XYZ. The draft Addendum was submitted to AFCEE in August 1999. Comments on the draft Addendum were received from AFCEE as reviewed by Jon Atkinson (dated 17 September 1999). Responses to these comments were prepared by Parsons ES and are attached to this Addendum.

If you have any questions or comments regarding this package, please do not hesitate to contact me at (303) 831-8100.

Sincerely,

PARSONS ENGINEERING SCIENCE, INC.

Bruce M. Henry
Bruce M. Henry, P.G.
Project Manager

Enclosures

c.c. Joan Deramo – Dover AFB (two copies)
 Mr. Don Campbell – USEPA NRMRL (two copies)

**FINAL
INTRINSIC REMEDIATION
ENGINEERING EVALUATION/ COST ANALYSIS ADDENDUM**

for

**SITE SS27/XYZ
DOVER AIR FORCE BASE
DOVER, DELAWARE**

September 1999

Prepared for:

**AIR FORCE CENTER FOR ENVIRONMENTAL EXCELLENCE
BROOKS AIR FORCE BASE
SAN ANTONIO, TEXAS**

AND

**DOVER AIR FORCE BASE
DOVER, DELAWARE**

Prepared by:

**Parsons Engineering Science, Inc.
1700 Broadway, Suite 900
Denver, Colorado 80290**

TABLE OF CONTENTS

	Page
LIST OF ACRONYMS AND ABBREVIATIONS	iii
1.0 Introduction.....	1
1.1 Scope and Objectives	1
1.2 Site Background	2
2.0 Monitoring Results	4
2.1 Flow Direction and Gradient	4
2.2 LNAPL.....	13
2.3 Total BTEX in Groundwater	13
2.4 Inorganic Chemistry and Geochemical Indicators of Biodegradation ...	19
2.4.1 Oxidation/Reduction Potential.....	21
2.4.2 Dissolved Oxygen	21
2.4.3 Ferrous Iron	26
2.4.4 Nitrate + Nitrite.....	26
2.4.5 Sulfate	29
2.4.6 Methane	29
3.0 Summary and Conclusions	32
4.0 References	32

Attachment A - Analytical Results February 1999 and September 1997

Attachment B - Responses to Comments

LIST OF TABLES

No.	Title	Page
1A	Summary of Groundwater Analytical Methods - September 1997	5
1B	Summary of Groundwater Analytical Methods - February 1999.....	6
2	Well Point Construction Summary - February 1999	7
3	Summary of Water Level Elevation Data	8
4	Summary of Fuel Hydrocarbon Compounds Detected in Groundwater.....	14
5	Summary of Groundwater Geochemical Data	22

TABLE OF CONTENTS (Continued)

LIST OF FIGURES

No.	Title	Page
1	Site Features and Sampling Locations	3
2	Potentiometric Surface Maps for Shallow Wells (1994 and 1999).....	11
3	Groundwater Elevation Versus Time for Selected Wells.....	12
4	Total BTEX Isopleth Maps	18
5	Total BTEX Versus Time - April 1994 to February 1999	20
6	Redox Potential Isopleth Maps	24
7	Dissolved Oxygen Isopleth Maps	25
8	Ferrous Iron Isopleth Maps	27
9	Nitrate and Nitrite (as Nitrogen) Isopleth Maps	28
10	Sulfate Isopleth Maps	30
11	Methane Isopleth Map	31

LIST OF ACRONYMS AND ABBREVIATIONS

AFB	Air Force Base
AFCEE	Air Force Center for Environmental Excellence
AMC	Air Mobility Command
BTEX	benzene, toluene, ethylbenzene, and xylenes
CO ₂	carbon dioxide
DO	dissolved oxygen
EE/CA	Engineering Evaluation/ Cost Analysis
ft/day	feet per day
ft/ft	foot per foot
ft/yr	feet per year
Fe ⁺³	ferric iron
Fe ⁺²	ferrous iron
IRP	Installation Restoration Program
HAZWRAP	Hazardous Waste Remedial Actions Program
JP-4	jet fuel
LNAPL	light non-aqueous phase liquid
LTM	long-term monitoring
MTBE	methyl tertiary-butyl ether
µg/L	micrograms per liter
mg/L	milligrams per liter
mV	millivolts
NRMRL	National Risk Management Research Laboratory
NW/SE	northwest to southeast
ORP	oxidation/reduction potential
Parsons ES	Parsons Engineering Science, Inc.
redox	reduction/oxidation
RI/FS	remedial investigation/feasibility study
SAIC	Science Applications International Corporation
SPTG	Support Group
TMB	trimethylbenzene
TOC	total organic carbon
TRC	Tracer Research Corporation
USEPA	United States Environmental Protection Agency

1.0 INTRODUCTION

This addendum was prepared for the Air Force Center for Environmental Excellence (AFCEE) by Parsons Engineering Science, Inc. (Parsons ES) as an update to the *Final Intrinsic Remediation Engineering Evaluation/Cost Analysis (EE/CA) for Site SS27/XYZ* at Dover Air Force Base (AFB) in Dover, Delaware (Parsons ES, 1996, hereafter referred to as the "EE/CA"). The EE/CA was conducted to evaluate intrinsic remediation (natural attenuation) of groundwater contaminated by petroleum hydrocarbons for Installation Restoration Program (IRP) Site SS27/XYZ, the fuel pump station (Building 950), at Dover AFB. The EE/CA sampling event was conducted in April 1994. This addendum summarizes the results of second and third sampling events conducted in September 1997 and February 1999 as part of the continuing evaluation of intrinsic remediation at the site. Results and predictions presented in the EE/CA are used as the basis for comparison.

In the EE/CA, comparison of benzene, toluene, ethylbenzene, and xylenes (BTEX); electron acceptor; and biodegradation byproduct isopleth maps for the site indicated strong qualitative evidence of biodegradation of BTEX compounds. Geochemical data strongly suggested that aerobic biodegradation of fuel hydrocarbons was occurring at the site. In addition, the data also suggested that anaerobic biodegradation was occurring via sulfate reduction, denitrification, and iron reduction. Patterns observed in the distribution of fuel hydrocarbons, electron acceptors, and biodegradation byproducts indicated that biodegradation was reducing dissolved BTEX concentrations in site groundwater.

While the results presented in the EE/CA indicated that intrinsic remediation of BTEX compounds was occurring at the site, it was suggested that without engineered source reduction, intrinsic remediation alone might not be sufficient to ensure protection of human health and the environment. This was due to a plume of mobile and residual light non-aqueous phase liquid (LNAPL) present in the subsurface.

Therefore, the Air Force recommended that engineered source removal (i.e., bioslurping and bioventing) be implemented in conjunction with intrinsic remediation, long-term monitoring (LTM), and institutional controls. During 1995, AFCEE and Dover AFB conducted a bioslurping pilot study at the site to evaluate the effectiveness of this technology. Based on these test results, Dover AFB designed a bioslurping system and planned to install that system at the site in April 1996. To date, the system has not been installed. Therefore, natural attenuation processes are acting alone to reduce BTEX mass and concentration.

1.1 Scope and Objectives

The primary objective of this addendum is to evaluate changes in (1) concentrations of dissolved BTEX, (2) BTEX plume extent, and (3) natural attenuation mechanisms that are responsible for reducing BTEX mass and concentration between April 1994 and February 1999. Data collected in April 1994 for the EE/CA are used as a baseline for comparison. Groundwater samples were collected in September 1997 and February 1999 by researchers from the United States Environmental Protection Agency (USEPA)

National Risk Management Research Laboratory (NRMRL) Subsurface Protection and Remediation Division. Samples were collected from 14 existing monitoring points in September 1997, and from 12 existing and replacement monitoring wells/points in February 1999. Monitoring wells/points with free product were not sampled in 1997 and 1999. In addition, several wells/points did not yield sufficient groundwater for sampling in 1997 or 1999 due to low water table elevations.

1.2 Site Background

Dover AFB is located in Kent County, Delaware. The Base occupies approximately 4,000 acres of land including annexes, easements, and leased property. The land surrounding the Base is relatively flat. The surrounding properties include light commercial and residential properties, croplands, and wetlands. The St. Jones River is located about 2,500 feet southwest of Site SS27/XYZ, and Delaware Bay is located approximately 4 miles to the east of Dover AFB.

The Base has operated since 1941, and is currently a member of the Air Mobility Command (AMC), which hosts the 436th Support Group (SPTG). The Base's main mission is to provide global strategic airlift capability, primarily with C-5 Galaxy transport aircraft.

Site SS27/XYZ is located in the northwestern corner of the Base at the northwest end of the northwest to southeast (NW/SE) runway and east of US Route 113 (Figure 1). The site includes the northwest apron, the northwest corner of the NW/SE runway, the former X, Y, and Z refueling pads (currently known as the AA, BB, and CC refueling pads), and all adjacent areas that contain monitoring wells/points. Jet fuel (JP-4) leaks emanating from subsurface fuel lines and/or ancillary equipment have contaminated soil and groundwater at Site SS27/XYZ. Building 950 has served as a fuel pumping station for refueling pads X, Y, and Z since fueling operations began. Underground fuel lines are used to transfer jet fuel from the fuel pump station at Building 950 to the fuel hydrants at pads X, Y, and Z. Site SS27/XYZ was included in the IRP process at the Base because Base personnel reported fuel floating on rainwater that collects in control pits in front of Building 950 (Science Applications International Corporation (SAIC), 1989).

Soil and groundwater contamination was detected at Site SS27/XYZ in June 1984 during preliminary site characterization activities conducted as part of the Phase II IRP investigations (SAIC, 1986). A second soil and groundwater investigation was conducted at the site in 1989 (SAIC, 1989). Additional site characterization activities, including a soil gas survey, soil borings, monitoring well installations, and soil and groundwater sampling, were conducted at Site SS27/XYZ (Dames & Moore and Hazardous Waste Remedial Actions Program (HAZWRAP), 1993). Results of the study indicated areas of petroleum hydrocarbon contamination along fuel lines, and the distribution of fuel hydrocarbons also suggest that fuel constituents extend beneath the fueling pads. Other tests performed at the site as part of a Base-wide remedial investigation/feasibility study (RI/FS) program included leak tests on all underground JP-4 pipelines in 1991 (Tracer Research Corporation (TRC), 1991); and a Base-wide ecological risk assessment conducted in 1993 (HAZWRAP, 1993). Site SS27/XYZ has been the subject of two previous environmental investigations in which a groundwater

contaminant plume was identified. Dissolved constituents included benzene, ethylbenzene, xylene, and 1,4-dichlorobenzene (Dames & Moore and HAZWRAP, 1993), resulting from the release of JP-4 fuel into the subsurface.

2.0 MONITORING RESULTS

Researchers from the USEPA NRMRL collected groundwater samples from 14 monitoring wells/points in September 1997, and from 12 monitoring wells/points in February 1999. Analytical methods used for groundwater sample analyses are summarized in Tables 1A and 1B. Prior to the 1999 sampling event, six monitoring points had to be replaced because the original monitoring points had been damaged by paving operations at the site. Monitoring point construction data for the six replacement points are summarized in Table 2. Groundwater samples were analyzed in the field for dissolved oxygen (DO), temperature, pH, conductivity, oxidation/reduction potential (ORP), alkalinity, carbon dioxide (CO_2), sulfide, and ferrous iron (Fe^{2+}). Additional sample volume was analyzed at the USEPA NRMRL in Ada, Oklahoma for total fuel carbon (1997 only), BTEX, trimethylbenzenes (TMBs), methyl tertiary-butyl ether (MTBE) (1999 only), methane, ethane and ethene (1999 only), nitrate + nitrite, ammonia, chlorides, total organic carbon (TOC), and sulfate. Prior to purging and sampling each well/point, groundwater levels were measured to the nearest 0.01 foot in 1997, and to the nearest 0.1 foot in 1999.

2.1 Flow Direction and Gradient

Depth to groundwater was measured in 4 monitoring wells in 1997 and in 16 monitoring wells/points in February 1999. Table 3 summarizes groundwater elevations measured in April 1994, September 1997, and February 1999. Isopleth maps for groundwater elevations measured in April 1994 and February 1999 are presented in Figure 2. Where wells/points are clustered with varied aquifer intervals, only wells/points reflecting the shallowest groundwater elevation were used to construct the contour intervals for April 1994. There are insufficient data to contour water table elevations for 1997 or 1999. The predominant direction of shallow groundwater flow at the site is to the southwest. Groundwater elevations observed in some wells were anomalous and were not used in the construction of the water table surface map. Anomalous water levels in some areas of the site are likely the result of perched water due to discontinuous, low permeability silty clay layers present beneath the site (Parsons ES, 1996).

Water levels were lower in all wells/points measured from April 1994 to September 1997, and from September 1997 to February 1999. Changes in water elevations for the period between April 1994 and February 1999 are shown for selected wells in Figure 3. Decreases in water elevations between April 1994 and February 1999 ranged from 3.83 feet (DM344S) to 7.09 feet (DM342S), and averaged 5.7 feet (as measured in 12 wells). The cause of the drop in groundwater levels is unknown, but may result from changes in annual precipitation rates or man-made features.

The average hydraulic gradient toward the southwest from the source area was 0.0021 foot per foot (ft/ft) in April 1994. Although the water table experienced a

TABLE 1A
SUMMARY OF GROUNDWATER ANALYTICAL METHODS
SEPTEMBER 1997
SITE SS27/XYZ
INTRINSIC REMEDIATION EE/CA ADDENDUM
DOVER AFB, DELAWARE

Analyte	Method	Field (F) or Fixed-Base Laboratory (L)
Oxidation/Reduction Potential	Direct Reading Meter	F
Dissolved Oxygen	Direct Reading Meter	F
Conductivity	Direct Reading Meter	F
Temperature	Direct Reading Meter	F
pH	Direct Reading Meter	F
Ferrous Iron (Fe^{2+})	Colorimetric, Hach® Method 8146 or equivalent	F
Hydrogen Sulfide	Colorimetric, Hach® Method 8131 or equivalent	F
Carbon Dioxide	Titrimetric, Hach® Method 1436-01 or equivalent	F
Alkalinity (Carbonate [CO_3^{2-}] and Bicarbonate [HCO_3^-])	Titrimetric, Hach® Method 8221 or equivalent	F
Nitrate + Nitrite	Environmental Protection Agency Method 353.1	L
Ammonia	Environmental Protection Agency Method 350.1	L
Chlorides	Lachat I.C. Method 10-511-00-1A	L
Sulfate	Lachat I.C. Method 10-511-00-1A	L
Methane	RSKSOP-175 ^{a/} and RSKSOP-194	L
Total Organic Carbon	RSKSOP-102	L
BTEX, TMBs, and Total Fuel Carbon ^{b/}	RSKSOP-133	L

^{a/} RSKSOP = Robert S. Kerr Laboratory (now known as NRMRL) standard operating procedure.

^{b/} BTEX = Benzene, toluene, ethylbenzene, and xylenes; TMB = trimethylbenzene.

TABLE 1B
SUMMARY OF GROUNDWATER ANALYTICAL METHODS
FEBRUARY 1999
SITE SS27/XYZ
INTRINSIC REMEDIATION EE/CA ADDENDUM
DOVER AFB, DELAWARE

Analyte	Method	Field (F) or Fixed-Base Laboratory (L)
Oxidation/Reduction Potential	Direct Reading Meter	F
Dissolved Oxygen	Direct Reading Meter	F
Conductivity	Direct Reading Meter	F
Temperature	Direct Reading Meter	F
pH	Direct Reading Meter	F
Ferrous Iron (Fe^{2+})	Colorimetric, Hach® Method 8146 or equivalent	F
Sulfide	Colorimetric, Hach® Method 8131 or equivalent	F
Carbon Dioxide	Titrimetric, Hach® Method 1436-01 or equivalent	F
Alkalinity (Carbonate [CO_3^{2-}] and Bicarbonate [HCO_3^-])	Titrimetric, Hach® Method 8221 or equivalent	F
Nitrate + Nitrite	Lachat FIA Method 10-107-04-2-A	L
Ammonia	Lachat FIA Method 10-107-06-1-A	L
Chlorides	Waters Capillary Electrophoresis Method N-601	L
Sulfate	Waters Capillary Electrophoresis Method N-601	L
Methane, Ethane and Ethene	RSKSOP-175 ^a and RSKSOP-194	L
Total Organic Carbon	RSKSOP-102	L
BTEX, TMBs, and MTBE ^b	RSKSOP-122	L

^a RSKSOP = Robert S. Kerr Laboratory (now known as NRMRL) standard operating procedure.

^b BTEX = Benzene, toluene, ethylbenzene, and xylenes; TMB = trimethylbenzene;

MTBE = methyl-tertiary butyl ether.

TABLE 2
WELL POINT CONSTRUCTION SUMMARY
FEBRUARY 1999
SITE SS27/XYZ
INTRINSIC REMEDIATION EE/CA ADDENDUM
DOVER AFB, DELAWARE

Push ID	Depth (ft bgs) ^a	Screened Interval		Annular Seal (ft bgs)	Remarks
		New (ft bgs)	Original (ft bgs)		
CPT 08SR	16.6	6.8-16.6	10.0-16.6	Came out with push rods	strong hydrocarbon odor
CPT 08DR	27.4	24.2-27.4	24.0-27.3	23.8-24.0	strong hydrocarbon odor
CPT 15SR	17.0	7.2-17.0	14.6-17.9	6.8-7.0	
CPT 19DR*	33.0	24.9-31.5	22.7-26.0	24.6-24.8	
CPT 1SR	17.0	7.2-17.0	13.7-17.0	6.8-7.0	placed through existing manhole access
CPT 11SR	18.0	8.2-18.0	15.5-18.8	7.8-8.0	hydrocarbon odor

*The screen in CPT 19DR was originally set from about 27 to 33 feet, however the whole assembly moved up 1.5 feet as the rods were retracted. An electronic water level indicator was used to sound the bottom and it was determined that the well was intact.

^a ft bgs = feet below ground surface.

TABLE 3
SUMMARY OF WATER LEVEL ELEVATION DATA
SITE SS27/XYZ
INTRINSIC REMEDIATION EE/CA ADDENDUM
DOVER AFB, DELAWARE

Measurement Location	Northing (ft) ^{b/}	Easting (ft)	Date (mo/yr) ^{c/}	Datum Elevation (ft amsl) ^{d/}	Total Depth (ft bgs) ^{e/}	LNAPL ^{a/} Observed (Yes/No)	Water Depth (ft)	Water Level Elevation (ft amsl)
Monitoring Points								
CPT-01S	413590	480024	Apr-94	26.48	17.00	No	9.22	17.26
CPT-01SR ^{f/}	413590	480024	Feb-99	NM ^{g/}	17.00	No	14.1	NA ^{h/}
CPT-02S	413721	480113	Apr-94	25.51	13.00	No	7.18	18.33
CPT-03S	413754	479968	Apr-94	25.64	13.00	No	8.04	17.60
CPT-04S	413863	479748	Apr-94	26.31	17.00	No	8.50	17.81
CPT-05S	NM	NM	Apr-94	NM	NA	No	NM	NM
CPT-06S	413657	480522	Apr-94	24.10	16.60	No	6.60	17.50
CPT-07S	415476	479293	Apr-94	25.85	15.00	No	6.92	18.93
CPT-07D	415475	479294	Apr-94	25.83	28.20	No	7.02	18.81
CPT-08P	NM	NM	Apr-94	NM	12.10	No	DRY	NA
CPT-08S	414102	479416	Apr-94	26.18	16.6	No	8.42	17.76
CPT-08D	NM	NM	Apr-94	NM	27.30	No	8.52	NA
CPT-09S	414644	479271	Apr-94	23.98	18.60	No	6.04	17.94
CPT-10S	414410	479107	Apr-94	NM	18.60	No	7.85	NA
CPT-11P	NM	NM	Apr-94	NM	13.00	No	6.15	NA
CPT-11S	NM	NM	Apr-94	NM	18.80	No	8.70	NA
CPT-11SR	NM	NM	Feb-99	NM	18.80	No	13.4	NA
CPT-12P	NM	NM	Apr-94	NM	5.10	No	DRY	NA
CPT-12S	413955	479095	Apr-94	26.24	17.80	No	8.76	17.48
CPT-12D	413955	479103	Apr-94	26.23	23.40	No	8.83	17.40
CPT-13S	414106	479154	Apr-94	27.03	17.30	No	9.18	17.85
CPT-14S	413951	479626	Apr-94	NM	17.60	No	NM	NM
	413951	479626	Feb-99	NM	17.60	No	DRY	NA
CPT-14D	NM	NM	Feb-99	NM	NM	No	15.5	NA
CPT-15S	414104	479746	Apr-94	25.44	17.90	Yes ^{i/}	8.45	16.99
CPT-15SR	414104	479746	Feb-99	NM	17.90	Yes	13.2	NA
CPT-16S	414307	479748	Apr-94	NM	13.40	No	5.65	NA
CPT-16D	414307	479748	Apr-94	NM	24.10	No	6.06	NA
	414307	479748	Sep-97	NM	24.10	No	NM	NM
	414307	479748	Feb-99	NM	24.10	No	12.2	NA
CPT-17S	413912	479430	Apr-94	26.98	18.80	No	9.35	17.63
CPT-18S	413813	479294	Apr-94	26.11	18.70	Yes ^{j/}	12.10	14.01
CPT-19P	413733	479484	Apr-94	NA	10.10	No	NM	NM
CPT-19S	413733	479484	Apr-94	NM	15.90	No	8.96	NA
CPT-19D	413733	479484	Apr-94	NM	26.00	No	8.85	NA
CPT-19DR	413733	479484	Feb-99	NM	26.00	No	15.4	NA

TABLE 3 (Continued)
SUMMARY OF WATER LEVEL ELEVATION DATA
SITE SS27/XYZ
INTRINSIC REMEDIATION EE/CA ADDENDUM
DOVER AFB, DELAWARE

Measurement Location	Northing (ft) ^{b/}	Easting (ft)	Date (mo/yr) ^{c/}	Datum Elevation (ft amsl) ^{d/}	Total Depth (ft bgs) ^{e/}	LNAPL ^{a/} Observed (Yes/No)	Water Depth (ft)	Water Level Elevation (ft amsl)
CPT-20S	413842	479557	Apr-94	26.74	15.40	No	9.13	17.61
CPT-21S	414447	480032	Apr-94	24.42	14.90	No	4.36	20.06
CPT-22S	414388	480694	Apr-94	25.92	17.90	No	6.31	19.61
CPT-22D	414388	480694	Apr-94	NM	30.40	No	9.33	NA
CPT-23S	NM	NM	Apr-94	NM	NA	No	NM	NM
CPT-24S	NM	NM	Apr-94	NM	15.60	No	DRY	NA
CPT-25S	414674	480669	Apr-94	26.59	20.90	No	9.00	17.59
CPT-26S	414382	481072	Apr-94	24.88	23.20	No	9.16	15.72
CPT-27S	413518	478754	Apr-94	26.04	17.40	No	9.83	16.21
CPT-27D	413518	478754	Apr-94	NM	28.40	No	NM	NM
CPT-28S	413685	478465	Apr-94	27.47	20.40	No	11.08	16.39
	413685	478465	Feb-99	27.47	20.40	No	16.1	11.37
CPT-29S	NM	NM	Apr-94	NM	16.30	No	NM	NM
75S	413225	478969	Apr-94	27.18	27.66	No	10.27	16.91
75D	413236	478978	Apr-94	27.10	35.86	No	10.41	16.69
76S	412555	479452	Apr-94	30.90	29.60	No	14.58	16.32
76D	412549	479447	Apr-94	30.88	37.42	No	14.56	16.32
77S	412880	479886	Apr-94	23.97	18.23	No	NM	NM
77D	412889	479894	Apr-94	23.49	22.64	No	NM	NM
78S	412821	478908	Apr-94	29.66	30.68	No	13.22	16.44
78D	412827	478900	Apr-94	29.95	37.71	No	13.52	16.43
DM 204S	415508	480856	Apr-94	24.91	16.00	No	6.87	18.04
DM 204D	415504	480861	Apr-94	24.76	34.00	No	6.73	18.03
DM 336S	412263	479909	Apr-94	24.37	16.00	No	7.93	16.44
DM 336D	412262	479912	Apr-94	24.38	36.00	No	8.53	15.85
DM 338S	412932	479324	Apr-94	28.68	20.00	No	NM	NM
DM 338D	412935	479321	Apr-94	28.83	39.00	No	NM	NM
DM 339S	412894	480158	Apr-94	24.81	14.50	No	NM	NM
DM 339D	412891	480157	Apr-94	24.74	28.00	No	NM	NM
DM 340S	413925	480765	Apr-94	22.16	18.50	No	4.79	17.37
DM 341S	413750	480309	Apr-94	25.42	19.00	No	NM	NM
DM 341D	413755	480303	Apr-94	25.60	28.00	No	NM	NM
DM 342S	414840	479750	Apr-94	24.94	19.00	No	4.61	20.33
	414840	479750	Feb-99	24.94	19.00	No	11.7	13.24
DM 342D	414838	479748	Apr-94	25.09	28.00	No	4.72	20.37
	414838	479748	Sep-97	25.09	28.00	No	8.62	16.47
	414838	479748	Feb-99	25.09	28.00	No	11.5	13.59

TABLE 3 (Concluded)
SUMMARY OF WATER LEVEL ELEVATION DATA
SITE SS27/XYZ
INTRINSIC REMEDIATION EE/CA ADDENDUM
DOVER AFB, DELAWARE

Measurement Location	Northing (ft) ^{b/}	Easting (ft)	Date (mo/yr) ^{c/}	Datum Elevation (ft amsl) ^{d/}	Total Depth (ft bgs) ^{e/}	LNAPL ^{f/} Observed (Yes/No)	Water Depth (ft)	Water Level Elevation (ft amsl)
DM 343S	413597	479448	Apr-94	26.62	18.00	No	8.65	17.97
	413597	479448	Sep-97	26.62	18.00	No	11.82	14.80
	413597	479448	Feb-99	26.62	18.00	No	14.9	11.72
DM 343D	413603	479439	Apr-94	26.62	30.00	No	8.60	18.02
	413603	479439	Sep-97	26.62	30.00	No	11.80	14.82
	413603	479439	Feb-99	26.62	30.00	No	14.9	11.72
DM 344S	414415	480259	Apr-94	23.44	18.00	Yes	9.67	13.77
	414415	480259	Sep-97	23.44	18.00	Yes	NM	NM
	414415	480259	Feb-99	23.44	18.00	Yes	13.5	9.94
DM 344D	414408	480263	Apr-94	23.49	30.00	No	4.36	19.13
	414408	480263	Sep-97	23.49	30.00	No	7.57	15.92
	414408	480263	Feb-99	23.49	30.00	No	10.0	13.49
DM 345S	414255	479634	Apr-94	25.60	19.00	No	6.32	19.28
	414255	479634	Feb-99	25.60	19.00	No	FLOODED	NA
DM 346S	414670	478942	Apr-94	29.62	22.00	No	10.34	19.28
DM 346D	414674	478945	Apr-94	29.56	45.00	No	10.28	19.28
DM 347S	NA	NA	Apr-94	NM	NA	No	9.48	NA
DM 347D	NA	NA	Apr-94	NM	NA	No	9.50	NA
DM 348S	414290	478418	Apr-94	29.27	20.00	No	10.02	19.25
DM 348D	414295	478421	Apr-94	29.13	34.00	No	11.26	17.87
DM 349S	413817	478125	Apr-94	32.43	28.00	No	19.75	12.68
DM 349D	413821	478130	Apr-94	32.00	35.00	No	19.34	12.66
DM-383S	NM	NM	Feb-99	NM	NM	No	16.5	NA

^{a/} LNAPL = Light non-aqueous phase liquid.

^{b/} ft = Feet.

^{c/} mo/yr = Month and year.

^{d/} ft amsl = Feet above mean sea level.

^{e/} ft bgs = Feet below ground surface.

^{f/} R = Replacement monitoring point.

^{g/} NM = Not measured.

^{h/} NA = Not available.

^{i/} Emulsification was observed in monitoring point during sampling.

POTENTIOMETRIC
SURFACE MAPS
FOR SHALLOW WELLS
(1994 AND 1999)

PARSONS
PARSONS ENGINEERING SCIENCE, INC.
Site SS-2/XYZ
Intrinsic Remediation EE/CA Addendum
Dover AFB, Delaware
Denver, Colorado

Denver, Colorado

FEET

LEGEND

DM 341 ② MONITORING WELL	—20—	WATER TABLE SURFACE CONTOUR (FEET ABOVE MEAN SEA LEVEL). DASHED WHERE INFERRED
CPT-01 ③ TEST LOCATION INSTALLED BY CPT RIG.	12.68	WATER TABLE SURFACE ELEVATION (FEET ABOVE MEAN SEA LEVEL)
/R INDICATES REPLACEMENT WELL INSTALLED IN 1999	(12.68)	DATA NOT USED TO DEVELOP CONTOURS
□ FORMER C-10 FUELING PAD		APPROXIMATE GROUNDWATER FLOW DIRECTION

FIGURE 3
GROUNDWATER ELEVATION VERSUS TIME FOR SELECTED WELLS
SITE SS27/XYZ
INTRINSIC REMEDIATION EE/CA ADDENDUM
DOVER AFB, DELAWARE

significant decrease, the limited data for February 1999 is consistent with groundwater flow towards the southwest. An average hydraulic conductivity of 60.5 feet per day (ft/day) and an effective porosity of 0.3 were used to calculate an average groundwater advective velocity for the site in the EE/CA. Given an average hydraulic gradient of 0.002 ft/ft in 1994, an average advective groundwater velocity of 155 feet per year (ft/yr) is calculated from the source area to the southwest.

Vertical gradients also were calculated for the site in 1994. A downward vertical gradient existed across most of the site, ranging from 0.009 ft/ft at CPT-07 to 0.014 ft/ft at CPT-12. However, no downward vertical gradients were evident in 1999. Instead, an upward vertical gradient was calculated for the site in 1999. These upward gradients ranged from 0.0 ft/ft at DM343 to 0.3 ft/ft at DM344. The shift from a predominately downward vertical gradient to an upward vertical gradient is likely related to the decrease in shallow water table elevations.

2.2 LNAPL

LNAPL was observed at monitoring well/point locations DM344S, CPT-15S, and CPT-18 in April 1994 (Table 3). A mobile LNAPL recovery and remediation pilot study using bioslurping was conducted in 1995, and a product skimmer installed in well DM344S. LNAPL was subsequently observed at well/points CPT-15SR (1999) and DM344S (1997 and 1999). To date, a full scale bioslurping system has not been installed. Therefore, areas of free product and/or residual LNAPL soil contamination remain at the site, and act as a continuing source for groundwater contamination.

2.3 Total BTEX in Groundwater

BTEX compounds were detected in groundwater samples collected from 4 of the 14 monitoring wells/points included in the September 1997 sampling event, and in groundwater samples collected from 5 of the 12 monitoring wells/points included in the February 1999 sampling event. BTEX concentrations in groundwater are summarized for the period from April 1994 to February 1999 in Table 4. In order to evaluate trends in BTEX concentrations and distribution through time, the areal distributions of total BTEX in groundwater for April 1994, September 1997, and February 1999 are presented on Figure 4. For all clustered well/point locations, the sample from the well/point with the highest BTEX concentration is shown and used to contour BTEX isopleths.

Results of the September 1997 and February 1999 sampling events indicate that the BTEX plume has decreased in concentration, and the extent of the BTEX plume has stabilized. The BTEX plume has stabilized along a northeast to southwest trend and is approximately 1,200 feet wide and 2,400 feet long based on the 10 micrograms per liter ($\mu\text{g}/\text{L}$) contour inferred from 1999 sampling data.

Total BTEX concentrations ranged up to 411,000E $\mu\text{g}/\text{L}$ (extrapolated value) for well location DM344S and 11,300,000E $\mu\text{g}/\text{L}$ for well location CPT-15S for the April 1994 sampling event. Emulsified LNAPL was observed in the samples from these locations in 1994, and the high BTEX concentrations are indicative of the LNAPL in

TABLE 4
SUMMARY OF FUEL HYDROCARBON COMPOUNDS DETECTED IN GROUNDWATER
SITE SS27/XYZ
INTRINSIC REMEDIATION EE/CA ADDENDUM
DOVER AFB, DELAWARE

Sample Location	Sampling Date	Benzene ($\mu\text{g/L}$) ^e	Toluene ($\mu\text{g/L}$)	Ethylbenzene ($\mu\text{g/L}$)	Total Xylenes ($\mu\text{g/L}$)	Total BTEX ^a ($\mu\text{g/L}$)	Total	Trimethylbenzenes ($\mu\text{g/L}$)	TVH ^b (mg/L) ^f	TEH ^c (mg/L) ^g	Fuel Carbon (mg/L)	MTBE ^d (mg/L)	
Groundwater Monitoring Points													
CPT-1SR	Feb-99	BLQ ^v	BLQ	BLQ	ND ^v	ND ^v	ND	NS ⁱ	NS	NS	ND	ND	
CPT-02S	Apr-94	0.4J ^j	2.3J	ND	1.2J	3.9	ND	0.2	ND	ND	NS	NS	
CPT-06S	Apr-94	ND	7.4	ND	1.3J	8.7	ND	0.2	ND	ND	NS	NS	
CPT-07S	Apr-94	ND	15	0.4J	1.9J	17	ND	0.2	ND	ND	NS	NS	
	Sep-97	ND	ND	ND	ND	ND	ND	NS	NS	ND	ND	NS	
CPT-08S	Apr-94	0.9J	7.4	0.4J	1.5J	10	0.9J	0.2	0.7	0.7	NS	NS	
CPT-08D	Apr-94	7.7	19	2.6J	7.5	37	7.6J	0.4	ND	ND	NS	NS	
CPT-09S	Apr-94	2.2J	2.6J	ND	1.7J	6.5	0.6J	0.2	ND	ND	NS	NS	
	Sep-97	BLQ	ND	BLQ	ND	ND	BLQ	NS	NS	BLQ	NS	NS	
CPT-10S	Apr-94	ND	3.9J	ND	0.8J	4.7	ND	ND	ND	ND	NS	NS	
Duplicate	Apr-94	0.9J	6.5	0.4J	1.3J	9.1	ND	0.2	0.7	0.7	NS	NS	
CPT-11P	Apr-94	ND	6.5	ND	1.3J	7.8	ND	0.2	ND	ND	NS	NS	
CPT-11S	Apr-94	ND	8.8	0.5J	1.7J	11	ND	0.2	ND	ND	NS	NS	
CPT-11SR	Feb-99	ND	BLQ	ND	BLQ	ND	ND	NS	NS	NS	ND	ND	
CPT-12S	Apr-94	0.4J	3.7J	ND	1.0J	5.1	ND	0.2	ND	ND	NS	NS	
CPT-12D	Apr-94	1.7J	8.3	1.1J	3.6J	15	2.8J	ND	ND	ND	NS	NS	
CPT-13S	Apr-94	0.9J	5.6	0.8J	3.0J	10	ND	ND	ND	ND	NS	NS	
CPT-14S	Apr-94	920	430	210	790	2,350	455	14	5.9J	NS	NS	NS	
Duplicate	Apr-94	960	460	240	940	2,600	744	NS	NS	NS	NS	NS	
CPT-14D	Feb-99	12.6	21.7	4.9	21.1	60.3	10	13.3	NS	NS	NS	185	
CPT-15S	Apr-94	970,000E ^v	2,500,000E	1,600,000E	6,200,000E	11,300,000	11,600,000E	NS	NS	NS	NS	NS	
CPT-16S	Apr-94	14	34	54	55	157	180	1.1	2.5	NS	NS	NS	

TABLE 4 (Continued)

SUMMARY OF FUEL HYDROCARBON COMPOUNDS DETECTED IN GROUNDWATER
SITE SS27/XYZ
INTRINSIC REMEDIATION EE/CA ADDENDUM
DOVER AFB, DELAWARE

Sample Location	Sampling Date	Benzene ($\mu\text{g/L}$) ^e	Toluene ($\mu\text{g/L}$)	Ethylbenzene ($\mu\text{g/L}$)	Total Xylenes ($\mu\text{g/L}$)	Total BTEX ^a ($\mu\text{g/L}$)	Total Trimethylbenzenes ($\mu\text{g/L}$)	TVH ^b ($\mu\text{g/L}$) ^d	TEH ^c ($\mu\text{g/L}$)	Fuel Carbon (mg/L)	MTBE ^d (mg/L)
CPT-16D	Apr-94	350E	64	28	38	480	61	NS	NS	NS	NS
	Sep-97	394	2.1	36.2	4.6	43.7	2	NS	NS	1160	NS
Duplicate	Sep-97	403	2.2	37.2	4.7	44.7	2	NS	NS	1190	NS
	Feb-99	587	4.3	232	10.6	834	19.1	NS	NS	NS	3.1
CPT-18S	Apr-94	6,500	13,000	820	2,600	23,000	980	NS	NS	NS	NS
CPT-19S	Apr-94	ND	ND	ND	1.4J	1.4	2.3	ND	ND	ND	ND
CPT-19D	Apr-94	22	49	12	53	136	22	0.4	ND	ND	NS
CPT-19DR	Feb-99	34.8	12.6	4.4	18.8	70.6	9.1	NS	NS	NS	333
CPT-21S	Apr-94	55	150	30	143	378	32	1.4	0.8	NS	NS
CPT-22S	Apr-94	6.7	45	7	48	107	26	0.5	ND	ND	NS
CPT-22D	Apr-94	1.1J	14	0.7J	3.0J	19	2.8J	NS	NS	NS	NS
CPT-25S	Apr-94	1.2J	13	2.1J	8.9	25	8.1	ND	ND	ND	NS
CPT-26S	Apr-94	0.9J	6.1	1.5J	6.6J	15	6.5	NS	NS	NS	NS
	Sep-97	BLQ	ND	ND	ND	ND	1.9	NS	NS	34.3	NS
CPT-27S	Apr-94	0.7J	6	1.5J	6.3	15	6.9J	0.2	ND	NS	NS
	Sep-97	ND	ND	ND	ND	ND	NS	NS	ND	ND	NS
CPT-27D	Apr-94	5.4	18	1.7J	6.2J	31	2.0J	NS	NS	NS	NS
	Sep-97	ND	ND	ND	ND	ND	NS	NS	ND	ND	NS
CPT-28S	Apr-94	5	54	5	25	89	8.7J	NS	NS	NS	NS
	Feb-99	BLQ	BLQ	ND	ND	ND	NS	NS	NS	NS	1.1
CPT-29S	Apr-94	ND	22	0.5J	2.2J	25	1.8J	NS	NS	NS	NS
Duplicate	Apr-94	ND	21	0.6J	2.6J	24	2.0J	NS	NS	NS	NS
DM 341S	Mar-94	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS

TABLE 4 (Continued)

SUMMARY OF FUEL HYDROCARBON COMPOUNDS DETECTED IN GROUNDWATER
SITE SS27/XYZ
INTRINSIC REMEDIATION EE/CA ADDENDUM
DOVER AFB, DELAWARE

Sample Location	Sampling Date	Benzene ($\mu\text{g/L}$) ^e	Toluene ($\mu\text{g/L}$)	Ethylbenzene ($\mu\text{g/L}$)	Total Xylenes ($\mu\text{g/L}$)	Total BTXE ^f ($\mu\text{g/L}$)	Total TVH ^g (mg/L) ^h	Trimethylbenzenes ($\mu\text{g/L}$)	TEH ⁱ (mg/L) ^h	Fuel (mg/L)	Carbon (mg/L)	MTBE ^j (mg/L)
Groundwater Monitoring Wells												
DM 341D	Mar-94	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS
DM 341DD	Mar-94	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS
DM 342S	Mar-94	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS
	Sep-97	ND	ND	ND	ND	BLQ	ND	NS	NS	NS	BLQ	NS
	Feb-99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DM342D	Mar-94	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS
	Sep-97	ND	BLQ	ND	BLQ	ND	ND	ND	ND	ND	BLQ	NS
	Feb-99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DM343S	Mar-94	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS
	Sep-97	ND	ND	ND	ND	ND	ND	1.5	NS	NS	41.1	NS
	Feb-99	BLQ	BLQ	BLQ	BLQ	ND	BLQ	NS	NS	NS	NS	35.9
Duplicate	Feb-99	ND	BLQ	BLQ	BLQ	ND	BLQ	NS	NS	NS	NS	34.1
DM343D	Mar-94	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS
	Sep-97	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS
	Feb-99	ND	BLQ	ND	BLQ	ND	ND	NS	NS	NS	NS	15.3
DM344S	Mar-94	26,000E	49,000E	66,000E	270,000E	411,000E	1,900,000E	NS	NS	NS	NS	NS
	Sep-97	5,930	1,910	1,030	3,390	12,300	1,440	NS	NS	18,300	NS	NS
	Feb-99	2,010	198	447	2,640	5,300	1,340	NS	NS	NS	NS	22.7
DM344D	Mar-94	560	ND	82	5J	64/J	NS	NS	NS	NS	NS	NS
	Sep-97	1.6	BLQ	BLQ	BLQ	1.6	BLQ	NS	NS	NS	15.6	NS
	Feb-99	7.6	BLQ	2.8	BLQ	10.4	2.1	NS	NS	NS	NS	7.5
DM345S	Mar-94	ND	ND	16	13	29	NS	NS	NS	NS	NS	NS
Duplicate	Mar-94	ND	ND	16	14	30	NS	NS	NS	NS	NS	NS

TABLE 4 (Concluded)

SUMMARY OF FUEL HYDROCARBON COMPOUNDS DETECTED IN GROUNDWATER
SITE SS27/XYZ
INTRINSIC REMEDIATION EE/CA ADDENDUM
DOVER AFB, DELAWARE

Sample Location	Sampling Date	Benzene ($\mu\text{g/L}$) ^c	Toluene ($\mu\text{g/L}$)	Ethylbenzene ($\mu\text{g/L}$)	Total Xylenes ($\mu\text{g/L}$)	Total BTEX ^a ($\mu\text{g/L}$)	Trimethylbenzenes ($\mu\text{g/L}$)	TVH ^b (mg/L) ^d	TEH ^e (mg/L)	Fuel	Carbon (mg/L)	MTBE ^f (mg/L)
DM-349S	Sep-97	0.9	BLQ	ND	BLQ	0.9	1.8	NS	NS	11.8	NS	NS
Duplicate	Sep-97	BLQ	ND	ND	ND	ND	1.8	NS	NS	38.9	NS	NS
DM-349D	Sep-97	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS

^a BTEX = Benzene, Toluene, Ethylbenzene, and Total Xylenes.^b TVH = Total Volatile Hydrocarbons.^c TEH = Total Extractable Hydrocarbons.^d MTBE = Methyl tertiary-butyl ether.^e $\mu\text{g/L}$ = micrograms per liter.^f mg/L = milligrams per liter.^g BLQ = Below Limit of Quantitation.^h ND = Not detected above the reported quantification limit.ⁱ NS = Not sampled.^j J = Indicates an estimated value when the compound is detected, but is below the Practical Quantitation Limit.^k E = Extrapolated value.

**TOTAL BTEX
ISOPIELETH MAPS**

Site SS27/XYZ
Intrinsic Remediation EE/CA Addendum
Dover AFB, Delaware

**PARSONS
ENGINEERING SCIENCE, INC.**

Denver, Colorado

-18-

FIGURE 4

FEBRUARY 1999

SEPTEMBER 1997

LEGEND

DM 341 ● MONITORING WELL
CPT-01 ● TEST LOCATION INSTALLED BY CPT RIG.
/R INDICATES REPLACEMENT WELL INSTALLED IN 1999
□ FORMER C-10 FUELING PAD APPROXIMATE GROUNDWATER FLOW DIRECTION
—10— TOTAL BTEX CONCENTRATION IN MICROGRAMS PER LITER ($\mu\text{g/L}$)
TOTAL BENZENE, TOLUENE, ETHYLBENZENE AND XYLEMES (BTEX) CONCENTRATIONS ($\mu\text{g/L}$)

ND NOT DETECTED
BLQ BELOW LIMIT OF QUANTITATION
(LNAPL) LNAPL EMULSIFIED IN SAMPLE

APRIL 1994

the sample. In September 1997, total BTEX concentrations ranged up to 12,300 µg/L at the source area (well DM344S), a concentration representative of dissolved BTEX in groundwater. The maximum BTEX concentration further decreased to 5,300 µg/L (well location DM344S) for the February 1999 sampling event.

Figure 5 shows the total BTEX concentrations versus time for select wells/points along the plume axis. Shallow well/point locations CPT-11S, CPT-28S, and DM344S have all shown a decrease in BTEX concentration from April 1994 to February 1999. Wells/points screened in lower aquifer depths also experienced a decrease in BTEX concentration (CPT-19D and DM344D) from April 1994 to February 1999, with the exception of CPT-16D. Located beneath the LNAPL source area, the increase in BTEX concentration at CPT-16D is likely a result of downward migration of BTEX contaminants.

The observed BTEX plume stability is in contrast to an expanding plume as predicted by Bioplume II modeling presented in the EE/CA. The observed plume has not expanded as predicted by all of the Bioplume II models constructed for the EE/CA. The plume has stabilized, rather than migrating an additional 950 feet downgradient as predicted for a five-year simulation with no source removal. The difference between predicted and observed plume behavior may be attributed to a lower hydraulic gradient and groundwater velocity than previously estimated at the site; LNAPL sorbing to soil particles in the vadose zone due to a drop of the water table across the site; less groundwater volume in contact with residual LNAPL contamination due to the water table drop; and/or a more rapid rate of biodegradation than previously calculated.

2.4 Inorganic Chemistry and Geochemical Indicators of Biodegradation

As discussed in the EE/CA, microorganisms obtain energy for cell production and maintenance by facilitating thermodynamically advantageous oxidation/reduction (redox) reactions involving the transfer of electrons from electron donors to available electron acceptors. This results in the oxidation of the electron donor and the reduction of the electron acceptor. Electron donors at Site SS27/XYZ are natural organic carbon and fuel hydrocarbon compounds. Fuel hydrocarbons are completely degraded or detoxified if they are utilized as the primary electron donor for microbial metabolism (Bouwer, 1992).

Electron acceptors are elements or compounds that occur in relatively oxidized states and include DO, nitrate, manganese, ferric iron, sulfate, and carbon dioxide. Microorganisms preferentially utilize electron acceptors while metabolizing fuel hydrocarbons (Bouwer, 1992). DO is utilized first as the prime electron acceptor. After the DO is consumed, anaerobic microorganisms use electron acceptors in the following order of preference: nitrate, ferric iron, sulfate, and carbon dioxide. Anaerobic destruction of the BTEX compounds is associated with the accumulation of fatty acids, production of methane, solubilization of iron (ferrous iron), and reduction of nitrate and sulfate (Cozzarelli *et al.*, 1990; Wilson *et al.*, 1990).

It was suggested in the EE/CA that biodegradation of fuel hydrocarbons is occurring at the site via aerobic respiration and the anaerobic processes of iron reduction, sulfate

FIGURE 5
TOTAL BTEX VERSUS TIME
APRIL 1994 TO FEBRUARY 1999
SITE SS27/XYZ
INTRINSIC REMEDIATION E&CA ADDENDUM
DOVER AFB, DELAWARE

reduction, methanogenesis, and, to a lesser extent, denitrification. Areas of the site which show the greatest variation in concentrations of geochemical parameters relative to background conditions generally correspond well with areas of relatively low redox potential and high BTEX concentration. Geochemical parameters for site groundwater observed for September 1997 and February 1999 are discussed below. Table 5 summarizes the geochemical parameters analyzed during the April 1994, September 1997, and February 1999 sampling events.

2.4.1 Oxidation/Reduction Potential

ORP is a measure of the relative tendency of a solution to accept or transfer electrons. ORP was measured at 8 of 12 wells sampled during February 1999. The dominant electron acceptor being reduced by microbes during BTEX oxidation is related to the ORP of the groundwater. ORP data for the site are summarized in Table 5. Concentration isopleth maps of ORP measured at the site in April 1994, September 1997, and February 1999 are presented on Figure 6.

Comparison of Figures 4 and 6 indicates that areas with low ORP coincide with areas characterized by high dissolved BTEX concentrations. Comparison of ORP values measured in April 1994, September 1997, and February 1999 (Figure 6 and Table 5) suggest that the ORP of the groundwater at the site may be increasing (i.e., the lower limit of redox potential is increasing). ORP values ranged between -431 millivolts (mV) to 380 mV in April 1994, from -133 mV to 275 mV in September 1997, and from 11 mV to 147 mV in February 1999.

Results of the February 1999 sampling event may indicate a more oxidizing groundwater environment across the site. In particular, ORP measurements at CPT-16D, centrally located within the BTEX plume, increased from -431 mV in 1994 to -35 mV in September 1997, and to 147 mV in 1999. While the measurement of ORP is sensitive to methods of field measurement and sampling techniques, an increase in ORP could be related to lower groundwater levels (see earlier discussion of potential concentration-reducing effects) or to a decrease in microbial activity due to decreasing BTEX concentrations.

These data suggest that dissolved BTEX at the site may be subjected to a variety of biodegradation processes, including aerobic respiration, denitrification, and iron reduction. However, many authors have noted that field ORP data alone cannot be used to reliably predict the electron acceptors that may be operating at a site, because the platinum electrode probes are not sensitive to some redox couples (e.g., sulfate/sulfide) (Stumm and Morgan, 1981; Godsey, 1994; Lovley *et al.*, 1994).

2.4.2 Dissolved Oxygen

DO concentrations were measured at 7 wells/points in September 1997, and at 12 wells/points in February 1999 (Table 5). DO concentration contour maps for the April 1994, September 1997, and February 1999 sampling events are presented in Figure 7. Comparison of Figure 4 with Figure 7 shows that elevated total BTEX concentrations correspond to areas characterized by reduced DO concentrations. The lowest DO

TABLE 5
SUMMARY OF GROUNDWATER GEOCHEMICAL DATA
SITE SS27XXZ
INTRINSIC REMEDIATION E&CA ADDENDUM
DOVER AFB, DELAWARE

Sample Location	Sampling Date	Water Temp. (°C) ^b	pH (su) ^c	Conduc-tivity (µmhos/cm ^d)	Dissolved Oxygen (mg/L) ^e	Redox Potential (mV) ^f	Total Alkalinity (mg/L)	Carbon Dioxide (mg/L)	Nitrate + Nitrite as N (mg/L)	Nitrate (mg/L)	Ammonia (mg/L)	Sulfate (mg/L)	Hydrogen Sulfide (mg/L)	Ferrous Iron (mg/L)	Ethane (mg/L)	Chloride (mg/L)	TOC ^g (mg/L)
Groundwater Monitoring Points																	
CPT-01S	Apr-94	12.7	4.79	NA ^b	0.4	-48	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
CPT-01SR	Feb-99	13.0	5.60	149	1.2	80	20	50	NS	NS	<0.10 ^g	31	<0.1	1.5	1.01	ND ^y	3.63
CPT-02S	Apr-94	NS	5.67	NA	0.1	-356	110	NS	0.25	0.002	NS	29	0.072	0.65	R ^x	NS	NS
CPT-03S	Apr-94	13.1	5.84	NA	5.0	NA	NS	NS	1.1	ND	NS	25	0.022	0.34	NS	NS	NS
CPT-04S	Apr-94	13.1	5.88	NA	0.3	6	NS	NS	1.3	0.002	NS	25	0.027	1.7	NS	NS	NS
CPT-06S	Apr-94	14.0	6.01	NA	0.5	93	38	NS	ND	ND	60	0.006	1.7	R	NS	NS	NS
CPT-07S	Apr-94	14.7	5.25	NA	4.9	191	22	NS	2.7	0.001	NS	17	0.022	0.26	R	NS	NS
CPT-07D	Apr-94	14.8	5.30	NA	5.2	187	NS	NS	ND	0.001	NS	28	0.049	0.10	NS	NS	NS
CPT-08S	Apr-94	15.8	5.37	NA	0.4	-161	37	NS	0.20	0.006	NS	26	0.027	2.1	R	NS	NS
CPT-08D	Apr-94	16.2	4.86	NA	0.3	130	15	NS	0.80	0.001	NS	51	0.026	1.8	R	NS	NS
CPT-09S	Apr-94	14.2	6.19	NA	0.7	NA	102	NS	ND	ND	NS	40	0.017	1.7	R	NS	NS
CPT-09	Sep-97	NA	6.34	755	NS	-133	397	NS	NS	NS	1.2	9.7	30	1.6	8.3	NS	4.4
CPT-10S	Apr-94	14.2	6.28	NA	0.5	-370	41	NS	3.5	0.004	NS	23	0.016	1.6	R	NS	NS
CPT-11P	Apr-94	14.1	5.47	NA	6.1	149	9	NS	10.6	0.048	NS	26	0.019	1.7	R	NS	NS
CPT-11S	Apr-94	14.9	5.34	NA	0.4	39	12	NS	18.4	0.014	NS	8.7	0.019	1.0	R	NS	NS
CPT-11SR	Feb-99	11.0	5.80	125	6.5	109	40	10	7.21	NS	NS	<0.10	12.5	<0.1	<0.1	ND	1.01
CPT-12S	Apr-94	14.7	4.93	NA	0.3	89	24	NS	2.6	0.003	NS	4.0	0.035	1.5	R	NS	NS
CPT-12D	Apr-94	15.5	4.92	NA	0.4	130	13	NS	0.15	0.001	NS	54	0.025	0.23	R	NS	NS
CPT-13S	Apr-94	15.5	5.26	NA	0.4	NA	22	NS	1.1	ND	NS	30	0.040	1.3	R	NS	NS
CPT-14S	Apr-94	16.9	6.02	NA	0.6	-104	198	NS	1.3	0.009	NS	9.6	0.041	1.5	R	NS	NS
CPT-14D	Feb-99	14.3	NS	NA	4.5	84	NS	NS	NS	NS	NS	<0.1	0.4	0.306	ND	ND	1.08
CPT-15S	Apr-94	14.0	5.81	NA	0.3	-153	NS	NS	NS	NS	NS	ND	NS	NS	NS	NS	NS
CPT-16S	Apr-94	17.0	5.72	NA	4.2	-120	122	NS	1.7	0.006	NS	7.4	0.021	1.6	R	NS	NS
CPT-16D	Apr-94	16.5	6.08	NA	0.3	-431	195	NS	NS	NS	NS	ND	NS	R	NS	NS	NS
CPT-17S	Apr-94	14.0	5.73	NA	0.3	10	NS	NS	0.80	0.004	NS	49	0.19	1.5	NS	NS	NS
CPT-18S	Apr-94	14.0	6.38	NA	0.5	-94	155	NS	0.30	ND	NS	4.9	ND	1.6	R	NS	NS
CPT-19S	Apr-94	13.7	5.96	NA	0.4	-62	163	NS	0.55	0.003	NS	64	0.022	1.4	R	NS	NS
CPT-19D	Apr-94	15.5	4.95	NA	0.6	115	14	NS	0.05	0.001	NS	27	0.010	0.09	R	NS	NS
CPT-19DR	Feb-99	13.6	6.30	362	1.2	11	120	50	<0.10	NS	NS	<0.10	20.2	<0.1	2.5	2.84	ND
CPT-20S	Apr-94	12.1	5.70	NA	0.4	-90	NS	NS	NS	NS	NS	ND	NS	NS	NS	NS	NS
CPT-21S	Apr-94	NA	NA	1.0	NA	23	NS	1.1	0.001	NS	19	0.026	1.7	R	NS	NS	NS
CPT-22S	Apr-94	13.1	7.31	NA	0.6	109	NS	NS	1.1	0.004	NS	33	0.012	0.35	R	NS	NS
CPT-22D	Apr-94	15.0	6.15	NA	0.3	285	NS	NS	NS	NS	NS	ND	NS	R	NS	NS	NS
CPT-23S	Apr-94	13.0	6.03	NA	0.5	137	NS	NS	ND	0.005	NS	60	0.064	1.3	R	NS	NS
CPT-26S	Apr-94	13.5	6.23	NA	0.8	37	NS	NS	0.05	ND	NS	19	0.061	1.4	R	NS	NS
CPT-27S	Apr-94	15.0	4.47	NA	2.2	185	5	NS	0.05	0.014	NS	33	0.033	0.16	R	NS	NS
	Sep-97	NA	5.13	195	<1	160	0.75	NS	ND	0.12	0.006	NS	36	0.12	0.06	NS	28

S:\\ES\\remmed\\boplume\\45006\\update\\ss27-xyz.xls

TABLE 5 (Concluded)
SUMMARY OF GROUNDWATER GEOCHEMICAL DATA
SITE SS27/XYZ
INTRINSIC REMEDIATION EE/CA ADDENDUM
DOVER AFB, DELAWARE

Sample Location	Sampling Date	Water Temp. (°C) ^b	Conductivity (mhos/cm) ^c	Dissolved Oxygen (mg/L) ^e	Redox Potential (mV) ^f	Total Alkalinity (mg/L)	Carbon Dioxide (mg/L)	Nitrate + Nitrite as N (mg/L)	Nitrate (mg/L)	Ammonia (mg/L)	Sulfate (mg/L)	Hydrogen Sulfide (mg/L)	Ferrous Iron (mg/L)	Methane (mg/L)	Ethene (mg/L)	Chloride (mg/L)	TOC ^a (mg/L)	
Monitoring Wells																		
CPT-27D	Apr-94	17.3	4.96	NA	0.6	88	9	NS	NS	NS	ND	NS	R	NS	NS	NS	NS	
	Sep-97	NA	5.33	148	NS	218	10	370	0.17	NS	ND	31	NS	3.7	0.055	NS	13	
CPT-28S	Apr-94	20.7	6.29	NA	0.2	-103	53	NS	NS	NS	ND	NS	R	NS	NS	NS	2.5	
	Feb-99	15.1	5.70	101	0.2	120	20	50	0.1	NS	<0.10	18.2	<0.1	0.029	ND	ND	3.43	
CPT-29S	Apr-94	15.5	5.38	NA	1.9	380	NS	NS	NS	NS	ND	NS	R	NS	NS	NS	1.42	
DM 204S																		
	Apr-94	10.6	6.50	NA	2.0	229	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	
DM 204D	Apr-94	11.7	6.47	NA	0.3	-233	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	
	Sep-97	NA	14.3	5.67	NA	0.3	-209	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	
DM 339S	Apr-94	16.5	5.81	NA	0.2	-216	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	
	Feb-99	10.1	4.80	NA	NA	352	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	
DM 340S	Apr-94	NA	5.54	NA	2.0	221	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	
	Sep-97	NA	5.50	NA	3.3	238	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	
DM 341S	Apr-94	10.1	5.29	NA	NA	60	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	
	Feb-99	19.5	6.01	56	7.4	273	<1	36	2.77	NS	NS	ND	2.3	NS	0.06	ND	NS	
DM 341D	Apr-94	11.7	5.72	NA	7.4	37	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	
	Sep-97	17.8	5.72	57	5.6	261	12	76	0.68	NS	NS	NS	NS	NS	NS	NS	NS	
DM 342S	Apr-94	13.0	5.70	62	3.2	139	20	5	0.27	NS	NS	<0.10	11.4	<0.1	0.1	0.016	ND	
	Feb-99	NA	5.60	89	1.7	134	20	5	0.5	NS	NS	<0.10	12.3	<0.1	<0.1	ND	ND	
DM 342D	Apr-94	11.7	5.72	NA	7.4	37	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	
	Sep-97	19.8	5.72	57	5.6	261	12	76	0.68	NS	NS	ND	14	NS	0.06	ND	NS	
DM 343S	Apr-94	14.7	5.67	NA	0.2	166	NS	NS	NS	NS	NS	<0.10	11.4	<0.1	0.1	0.016	ND	
	Sep-97	19.8	5.75	313	0.2	-44	103	NS	NS	NS	NS	2.1	53	0.1	26	1.7	NS	
Feb-99	10.3	5.60	195	2.0	NA	40	170	<0.10	NS	NS	0.22	61.2	0.1	30	0.523	ND	ND	
DM 343D	Apr-94	17.0	5.50	NA	0.3	120	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	
	Sep-97	19.2	5.53	259	0.2	107	45	NS	NS	NS	NS	0.68	65	ND	23	0.21	NS	
DM 343S	Apr-94	16.0	5.60	232	0.4	NA	20	120	<0.10	NS	NS	0.12	68.1	0.1	35	0.131	ND	
	Feb-99	NA	5.60	NA	0.2	-44	103	NS	NS	NS	NS	2.1	53	0.1	26	1.7	NS	
DM 344S	Apr-94	18.7	6.45	456	<0.1	-58	236	NS	ND	NS	1.45	17	1.0	4.5	9.5	NS	5.6	
	Sep-97	12.3	6.40	439	0.2	NA	240	40	<0.10	NS	NS	0.5	10	0.4	22	14.4	0.004	
Feb-99	17.3	5.87	113	<0.1	129	32	164	0.6	NS	NS	ND	24	NS	5.3	0.038	NS	4.1	
DM 344D	Apr-94	12.0	6.20	235	0.6	NA	100	40	<0.10	NS	NS	<0.10	14	0.1	4	2.29	ND	
	Sep-97	13.5	5.47	NA	7.5	373	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1.38	
DM 346S	Apr-94	13.5	5.47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.8	
	Sep-97	18.7	6.18	NA	4.5	359	NS	NS	NS	NS	NS	1.45	17	1.0	4.5	9.5	NS	
Feb-99	NA	5.99	NA	8.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NS	
DM 348S	Apr-94	9.9	5.99	NA	4.8	275	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	
	Sep-97	13.1	5.60	NA	130	NA	240	5	106	0.74	NS	ND	39	NS	0.07	ND	NS	NS
DM 348D	Apr-94	NA	5.53	133	NA	241	6	100	1.93	NS	ND	35	NS	ND	ND	ND	9.5	
	Sep-97	NA	5.27	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.59	
DM 349D	Apr-94	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NS	
	Sep-97	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.59	

^a mg/L = milligrams per liter.

^b °C = degrees Celsius.

^c su = Standard units.

^d µhos/cm = micromhos per centimeter.

^e ND = Not detected.

^f mV = millivolts.

^g NS = Not sampled.

^h NA = Not analyzed.

concentration measured at the site during the 1999 sampling event was 0.2 milligrams per liter (mg/L) at DM344, located in the BTEX source area, and also at CPT-28, located at the toe of the plume. Background DO concentrations measured across the site in April 1994 ranged from 4.9 mg/L to 7.4 mg/L for wells CPT-07 and DM342, respectively. In February 1999, background DO concentrations ranged from 4.5 mg/L (CPT-14) to 6.5 mg/L (CPT-11). Low DO concentrations relative to background DO in areas of elevated BTEX concentration indicates that aerobic respiration is a significant process of fuel hydrocarbon biodegradation at the site.

2.4.3 Ferrous Iron

Ferrous iron (Fe^{2+}) is a byproduct of the anaerobic biodegradation process of ferric iron (Fe^{3+}) reduction. Accumulation of ferrous iron in groundwater indicates that this microbially assisted process is or has occurred recently. Ferrous iron concentrations were measured at the site and are presented in Table 5. Ferrous iron concentration contour maps for April 1994, September 1997, and February 1999 are shown on Figure 8. Comparison of Figures 4 and 8 shows that areas with elevated BTEX concentrations also have elevated concentrations of ferrous iron.

Concentrations of ferrous iron measured at the site in February 1999 ranged from less than 0.1 mg/L at CPT-28 to 40 mg/L at CPT-16. Ferrous iron concentrations show a general increase over time (from 1994 to 1999), with a notable increase at CPT-16 (1.6 mg/L in 1994 to 40 mg/L in 1999). Monitoring point CPT-16 is located near the center of the BTEX plume. The increase in ferrous iron concentration at this monitoring point appears to be a direct result of BTEX oxidation via iron reduction, since a marked decrease in BTEX concentration also was observed. The relationships implied by comparison of Figure 4 and Figure 8 suggest that the area of iron reduction is expanding with respect to elevated BTEX concentrations within the contaminant plume.

Recent evidence suggests that the reduction of ferric iron to ferrous iron cannot proceed without microbial mediation (Lovley and Phillips, 1988; Lovley *et al.*, 1991; Chapelle, 1993); therefore, the presence of ferrous iron strongly suggests that ferric iron is being used as an electron acceptor at the site. The coincident ferrous iron and BTEX plumes at Site SS27/XYZ indicates that the reduction of ferric iron to ferrous iron occurs during biodegradation of BTEX compounds. The general increase in ferrous iron from 1994 to 1999 further indicates that iron reduction is an ongoing process.

2.4.4 Nitrate + Nitrite

Nitrate and nitrite concentrations were measured separately in 1994, while nitrate + nitrite (as nitrogen) concentrations were measured during the 1997 and 1999 sampling events (Table 5). Concentration isopleth maps for nitrate + nitrite for April 1994, September 1997, and February 1999 are shown on Figure 9. The data for evaluating potential trends in nitrate + nitrite concentrations over time are limited. For February 1999, concentrations of nitrate + nitrite within the plume area ranged from less than 0.1 mg/L to 0.1 mg/L, while the one measurement outside of the contaminant plume

FIGURE 9

**NITRATE AND NITRITE
(AS NITROGEN)
ISOPLETH MAPS**

Site SS27/XYZ

Intrinsic Remediation EECA Addendum

Dover AFB, Delaware

PARSONS

PARSONS ENGINEERING SCIENCE, INC.

Denver, Colorado

PARSONS
PARSONS ENGINEERING SCIENCE, INC.
Site SS27/XYZ
Intrinsic Remediation EECA Addendum
Dover AFB, Delaware

F. Colorado

FEBRUARY 1999

SEPTEMBER 1997

APRIL 1994

LEGEND

DM 341 ◊ MONITORING WELL	1.1 DISSOLVED NITRATE AND NITRITE CONCENTRATION (AS NITROGEN) MILLIGRAMS PER LITER (mg/L)
CPT-01 ◊ MONITORING POINT AND CPT TEST LOCATION INSTALLED BY CPT RIG.	—1.0— DISSOLVED NITRATE AND NITRITE ISOPLETH (mg/L) (DASHED WHERE INFERRED)
— APPROXIMATE GROUNDWATER FLOW DIRECTION	

/R INDICATES REPLACEMENT WELL
INSTALLED IN 1999

-28-

area shows a relatively higher background concentration of 7.21 mg/L (CPT-11). The low concentrations of nitrate + nitrite within the BTEX plume coupled with the relatively higher background concentrations of nitrate + nitrite indicate that anaerobic biodegradation of BTEX is occurring through the microbially mediated process of denitrification. However, the low concentration of nitrate in background groundwater, generally less than 10 mg/L, suggests that denitrification will be limited by the availability of nitrate as an electron acceptor.

2.4.5 Sulfate

Sulfate concentrations were measured during the April 1994, September 1997, and February 1999 sampling events (Table 5). The correlation of depleted sulfate concentrations with the highest BTEX concentrations provides strong evidence that anaerobic biodegradation of the BTEX compounds is occurring at the site through the microbially mediated process of sulfate reduction.

Concentrations of sulfate measured at the site during February 1999 ranged from 1.92 mg/L to 68.1 mg/L. Sulfate concentration contour maps for April 1994, September 1997, and February 1999 are shown on Figure 10. Comparison of Figures 4 and 10 shows that the areas with the elevated BTEX concentrations have depleted sulfate concentrations.

Concentrations of sulfate decreased from 1994 to 1999 at 5 locations, and increased at 4 locations. The area of depleted sulfate concentrations generally is centered about location CPT-16, which is centrally located within the BTEX plume. Notable decreases in sulfate concentrations occurred within the BTEX plume source area at well CPT-16 (7.4 mg/L to 1.92 mg/L) and in well DM344 (18 mg/L to 10 mg/L). The decrease in sulfate concentrations at these locations suggests that sulfate reduction has continued at the site, at least within the BTEX source area.

2.4.6 Methane

During methanogenesis, an anaerobic biodegradation process, carbon dioxide (or acetate) is used as an electron acceptor, and methane is produced. The presence of methane in groundwater is indicative of strongly reducing conditions and microbial degradation of fuel hydrocarbons. Elevated methane concentrations were detected in groundwater at Site SS27/XYZ during all sampling events (Table 5).

Methane solubility in water is approximately 24.4 mg/L at 25 degrees Celsius (Yalkowsky and Dannenfelser, 1992). During the April 1994 sampling event, reported laboratory concentrations exceeded methane solubility by several orders of magnitude. Therefore, the 1994 methane concentrations greater than approximately 24 mg/L may indicate the presence of "microsized" bubbles of methane gas in collected water samples. These data are not considered reliable in quantifying degradation due to methanogenesis at the site.

Methane concentrations in 1999 were elevated within the center of the BTEX plume, at concentrations less than the solubility limit of methane in groundwater at ambient temperatures. Methane concentrations for February 1999 are shown on Figure 11.

FIGURE 10

**SULFATE
ISOPLETH MAPS**

Site SS27/XYZ
Intrinsic Remediation EE/CA Addendum
Dover AFB, Delaware
**PARSONS
ENGINEERING SCIENCE, INC.**
Denver, Colorado

-30-

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70200
70201
70202
70203
70204
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
70224
70225
70226
70227
70228
70229
70230
70231
70232
70233
70234
70235
70236
70237
70238
70239
70240
70241
70242
70243
70244
70245
70246
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
70258
70259
70260
70261
70262
70263
70264
70265
70266
70267
70268
70269
70270
70271
70272
70273
70274
70275
70276
70277
70278
70279
70280
70281
70282
70283
70284
70285
70286
70287
70288
70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
70200
70201
70202
70203
70204
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
70224
70225
70226
70227
70228
70229
70230
70231
70232
70233
70234
70235
70236
70237
70238
70239
70240
70241
70242
70243
70244
70245
70246
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
70258
70259
70260
70261
70262
70263
70264
70265
70266
70267
70268
70269
70270
70271
70272
70273
70274
70275
70276
70277
70278
70279
70280
70281
70282
70283
70284
70285
70286
70287
70288
70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
70200
70201
70202
70203
70204
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
70224
70225
70226
70227
70228
70229
70230
70231
70232
70233
70234
70235
70236
70237
70238
70239
70240
70241
70242
70243
70244
70245
70246
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
70258
70259
70260
70261
70262
70263
70264
70265
70266
70267
70268
70269
70270
70271
70272
70273
70274
70275
70276
70277
70278
70279
70280
70281
70282
70283
70284
70285
70286
70287
70288
70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
70200
70201
70202
70203
70204
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
70224
70225
70226
70227
70228
70229
70230
70231
70232
70233
70234
70235
70236
70237
70238
70239
70240
70241
70242
70243
70244
70245
70246
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
70258
70259
70260
70261
70262
70263
70264
70265
70266
70267
70268
70269
70270
70271
70272
70273
70274
70275
70276
70277
70278
70279
70280
70281
70282
70283
70284
70285
70286
70287
70288
70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
70200
70201
70202
70203
70204
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
70224
70225
70226
70227
70228
70229
70230
70231
70232
70233
70234
70235
70236
70237
70238
70239
70240
70241
70242
70243
70244
70245
70246
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
70258
70259
70260
70261
70262
70263
70264
70265
70266
70267
70268
70269
70270
70271
70272
70273
70274
70275
70276
70277
70278
70279
70280
70281
70282
70283
70284
70285
70286
70287
70288
70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
70200
70201
70202
70203
70204
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
70224
70225
70226
70227
70228
70229
70230
70231
70232
70233
70234
70235
70236
70237
70238
70239
70240
70241
70242
70243
70244
70245
70246
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
70258
70259
70260
70261
70262
70263
70264
70265
70266
70267
70268
70269
70270
70271
70272
70273
70274
70275
70276
70277
70278
70279
70280
70281
70282
70283
70284
70285
70286
70287
70288
70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
70200
70201
70202
70203
70204
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
70224
70225
70226
70227
70228
70229
70230
70231
70232
70233
70234
70235
70236
70237
70238
70239
70240
70241
70242
70243
70244
70245
70246
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
70258
70259
70260
70261
70262
70263
70264
70265
70266
70267
70268
70269
70270
70271
70272
70273
70274
70275
70276
70277
70278
70279
70280
70281
70282
70283
70284
70285
70286
70287
70288
70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
70200
70201
70202
70203
70204
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
70224
70225
70226
70227
70228
70229
70230
70231
70232
70233
70234
70235
70236
70237
70238
70239
70240
70241
70242
70243
70244
70245
70246
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
70258
70259
70260
70261
70262
70263
70264
70265
70266
70267
70268
70269
70270
70271
70272
70273
70274
70275
70276
70277
70278
70279
70280
70281
70282
70283
70284
70285
70286
70287
70288
70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
70200
70201
70202
70203
70204
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
70224
70225
70226
70227
70228
70229
70230
70231
70232
70233
70234
70235
70236
70237
70238
70239
70240
70241
70242
70243
70244
70245
70246
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
70258
70259
70260
70261
70262
70263
70264
70265
70266
70267
70268
70269
70270
70271
70272
70273
70274
70275
70276
70277
70278
70279
70280
70281
70282
70283
70284
70285
70286
70287
70288
70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
70200
70201
70202
70203
70204
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
70224
70225
70226
70227
70228
70229
70230
70231
70232
70233
70234
70235
70236
70237
70238
70239
70240
70241
70242
70243
70244
70245
70246
70247
70248
7024

FIGURE 11

METHANE ISOPOLETH MAP

Site SS27/XYZ
Intrinsic Remediation EE/CA Addendum
Dover AFB, Delaware

PARSONS
PARSONS ENGINEERING SCIENCE, INC.
Denver, Colorado

The highest methane concentrations were detected at CPT-16 (20.3 mg/L) and DM344 (14.4 mg/L), located within the BTEX source area. Elevated methane concentrations coincident with elevated BTEX concentrations is a strong indicator that the microbially mediated process of methanogenesis is occurring at the site.

3.0 SUMMARY AND CONCLUSIONS

Results from groundwater monitoring conducted during September 1997 and February 1999 indicate that natural attenuation of BTEX continues at Site SS27/XYZ. The areal extent of the BTEX plume does not appear to have increased since 1994; rather, the plume extent appears to be stable or diminishing slightly. The distribution of electron acceptors/metabolic byproducts that are involved in biologically mediated redox reactions indicate that these reactions continue to occur within the BTEX plume. Data suggest that degradation of dissolved BTEX at the site is occurring via the biodegradation processes of aerobic respiration, iron reduction, sulfate reduction, methanogenesis, and, to a lesser extent, denitrification.

Monitoring results indicate that the Bioplume II models presented in the EE/CA report (Parsons ES, 1996) overestimated both the overall size and the maximum concentration of dissolved BTEX that would be present in the plume over time.

While the extent of the BTEX plume has not increased, the continued presence of elevated dissolved BTEX concentrations suggests that both mobile and residual LNAPL persists in the groundwater and within the capillary fringe or saturated zone (i.e., a smear zone). A decrease in the average groundwater elevation of 5.7 feet from April 1994 to February 1999 has decreased the volume of groundwater in contact with saturated soil in the source area, potentially reducing the rate of BTEX mass flux to groundwater.

LTM should be continued to confirm stabilization of the dissolved BTEX plume and to document the continuing occurrence of microbially mediated biodegradation. LTM also is required to assess changes in groundwater elevation and the corresponding effect on dissolved BTEX concentrations or plume stability. An increase in groundwater levels would increase the volume of groundwater in contact with mobile or residual LNAPL, thereby potentially increasing the rate of mass flux of BTEX to groundwater. This could potentially reverse the observed decreasing trend in BTEX concentrations, and/or destabilize the dissolved BTEX plume.

4.0 REFERENCES

- Bouwer, E.J., 1992, Bioremediation of Subsurface Contaminants, In R. Mitchell, editor, Environmental Microbiology, Wiley-Liss, New York, New York.
- Chapelle, F.H., 1993, Ground-water Microbiology and Geochemistry. John Wiley and Sons, Inc., New York, NY.
- Cozzarelli, I.M., Eganhouse, R.P., and Baedecker, M.J., 1990, Transformation of Monoaromatic Hydrocarbons to Organic Acids in Anoxic Ground Water Environment. Environmental and Geological Water Science, 16.

Dames & Moore and Hazardous Waste Remedial Actions Program (HAZWRAP), 1993, Current Situation Report for Dover AFB, Delaware. May.

Godsey, E.M. 1994. Microbiological and Geochemical Degradation Processes, In: Symposium on Intrinsic Bioremediation in Ground Water. Denver, Colorado. August 30 - September 1. p.35-40.

HAZWRAP, 1993, Base-Wide Water Level Summary Report, Dover Air Force Base, Dover, Delaware, submitted by Dames & Moore, February 15, 1993.

Lovley, D.R., and Phillips, E.J.P., 1988, Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese: Applied and Environmental Microbiology, v. 54, no. 6, p. 1472 - 1480.

Lovley, D.R., Phillips, E.J.P., and Lonergan, D.J., 1991, Enzymatic versus nonenzymatic mechanisms for Fe(III) reduction in aquatic sediments: Environmental Science and Technology, v. 26, no. 6, p. 1062 - 1067.

Lovley, D.R., F.H. Chapelle, and J.C. Woodward. 1994. Use of dissolved H₂ concentrations to determine distribution of microbially catalyzed redox reactions in anoxic groundwater. Environmental Science and Technology, v. 28, no. 7., p. 1205-1210.

Parsons Engineering Science, Inc. (Parsons ES), 1996, Final Intrinsic Remediation Engineering Evaluation/Cost Analysis for Site SS27/XYZ, Dover Air Force Base, Delaware. January.

Science Applications International Corporation (SAIC), 1986, USAF Installation Restoration Program - Dover AFB, Delaware, Phase II - Stage I Confirmation/Quantification.

SAIC, 1989, Installation Restoration Program - Stage 2 Draft Final Report, Dover Air Force Base, Delaware.

Stumm, W. and Morgan, J.J. 1981. Aquatic Chemistry. John Wiley & Sons, New York, NY.

Tracer Research Corporation (TRC), 1991, Tracer Tight™ Leak Test of 48 Underground Storage Tanks and 20,650 Feet of JP-4 Pipelines, Dover AFB, Dover, Delaware.

Wilson, B.H., Wilson, J.T., Campbell, D.H., Bledsoe, B.E., and Armstrong, J.M., 1990, Biotransformation of Monoaromatic and Chlorinated Hydrocarbons at an Aviation Gasoline Spill Site. Geomicrobiology Journal, 8:225-240.

Yalkowsky, S.H., and Dannenfelser, R.M. 1992. The AQUASOL Database of Aqueous Solubility. Fifth edition. University of Arizona, College of Pharmacy, Tucson, Arizona.

ATTACHMENT A

ANALYTICAL RESULTS

FEBRUARY 1999 AND SEPTEMBER 1997

739691.06
Dover AFB
Update GW Analytical
Data

Ref: 97-LP90/vg

September 24, 1997

Dr. Don Campbell
National Risk Management Research Laboratory
Subsurface Protection & Remediation Division
U.S. Environmental Protection Agency
P.O. Box 1198
Ada, OK 74820

THRU: S.A. Vandegrift ✓

Dear Don:

Attached are the results of time-sensitive parameters determined on field samples from Bolling AFB, Washington, DC and Dover AFB, Dover, DE. The analyses were performed between September 9 and 13 to satisfy Service Requests #SFTA-3-136 and SFTA-3-137.

The analyses were done using various Hach kits and meters provided on-site by Mr. Mike Cook. Please note that many samples had high levels of ferrous iron that interfered with CO₂ titrations; therefore, CO₂ was not determined for those samples.

Quality control data is reported for each day analyses were performed.

If you have any questions concerning this data, please feel free to contact me.

Sincerely,

A handwritten signature in cursive script that reads "Lynda Pennington". Below the signature, the name "Lynda Pennington" is printed in a smaller, more formal font.
Lynda Pennington

xc: R.L. Cosby
G.B. Smith
J.L. Seeley ✓

ManTech Environmental Research Services Corporation

R.S. Kerr Environmental Research Laboratory, P.O. Box 1198, 919 Research Drive
Ada, Oklahoma 74821-1189 405-436-8660 FAX 405-436-8501

<u>Sample</u>	<u>pH</u>	<u>mV Redox</u>	<u>$\mu\text{S}/\text{cm}$</u>	<u>Conductivity</u>	<u>mg/L (as CaCO_3)</u>	<u>Ferrous Iron</u>	<u>mg/L H_2S</u>	<u>ppm CO_2</u>
<u>9-10-97 Quality Control</u>								
1413 Cond. Std.				1420				
7.00 pH Buffer	7.00							
Redox A		226						
Redox B		293						
2.0 mg/L Fe^{++} Std.					2.04			
Fe^{2+} Blank					0.00			
Alk. Std.				247				

Dover AFB, Dover, DE
September 11-13, 1997

<u>Sample</u>	<u>pH</u>	<u>mV Redox</u>	<u>$\mu\text{S}/\text{cm}$</u>	<u>Conductivity</u>	<u>mg/L (as CaCO_3)</u>	<u>Ferrous Iron</u>	<u>mg/L H_2S</u>	<u>ppm CO_2</u>
DM 343-S	5.75	-44.3	313	103	25.8	0.1	NA	NA
DM 343-D	5.53	+107	259	45	22.8	<0.1	NA	NA
DM-16S		--	--	FUEL ONLY	--	NO WATER RECOVERED	--	--
DM-16D	6.54	-34.8	384	213	19.8	<0.1	NA	NA
DM-342S	6.01	+273	56	<1	0.06	NA	36	36
DM-342D	5.72	+261	57	12	0.06	NA	76	76
DM-344S	6.45	-58.0	456	236	4.50	1.0	NA	NA
DM-344D	5.87	+129	113	32	5.25	NA	164	164
CPT-9	6.34	-133	755	397	15.5	0.3	NA	NA
CPT-27D	5.33	+218	148	10	3.70	NA	370	370
CPT-27S	5.13	+275	195	<1	0.12	NA	160	160

Ref. 97-LH55

September 25, 1997

Dr. Don Campbell
National Risk Management Research Laboratory
Subsurface Protection and Remediation Division
U.S. Environmental Protection Agency
P.O. Box 1198
Ada, OK 74820

THRU: S.A. Vandegrift ✓

Dear Don:

As requested in Service Request #SF-3-280, gas analysis was performed for methane on samples from Dover AFB. The samples were received on September 16, 1997. The analyses were performed on September 17, 1997. These analyses were performed as per RSKSOP-194, and the calculations were done as per RSKSOP-175.

If you should have any questions, please feel free to contact me.

Sincerely,

A handwritten signature in black ink, appearing to read "Lisa C Hopkins".

Lisa Hopkins

xc: R.L. Cosby
J.T. Wilson
G.B. Smith
J.L. Seeley *fb*

ManTech Environmental Research Services Corporation

R.S. Kerr Environmental Research Laboratory, P.O. Box 1198, 919 Research Drive
Ada, Oklahoma 74821-1189 405-436-8660 FAX 405-436-8501

MANTECH
TECHNOLOGY

Ref: 97-SH65

September 22, 1997

Dr. Don Campbell
National Risk Management Research Laboratory
Subsurface Protection & Remediation Division
U.S. Environmental Protection Agency
P.O. Box 1198
Ada, OK 74820

THRU: S.A. Vandegrift ✓

Dear Don:

Attached are TOC results for 13 Dover liquids submitted September 19, 1997 under Service Request #SF-3-280. Sample analysis was begun September 22, 1997 and completed September 22, 1997 using RSKSOP-102.

Blanks, duplicates, and AQC samples were analyzed along with your samples, as appropriate, for quality control. If you have any questions concerning this data, please feel free to ask me.

Sincerely,

Sharon Hightower

xc: R.L. Cosby
G.B. Smith
J.L. Seeley ✓

Ref: 97-LB66
September 18, 1997

Dr. Don Campbell
National Risk Management Research Laboratory
Subsurface Protection and Remediation Division
U.S. Environmental Protection Agency
P.O. Box 1198
Ada, OK 74820

THRU: Steve Vandegrift ✓

Dear Don:

Please find attached the analytical results for the Dover AFB service request SF-3-280 requesting the analysis of ground water samples to be analyzed for benzene, toluene, ethylbenzene, p-, m-, and o-xylene, 1,3,5-, 1,2,4-, and 1,2,3-trimethylbenzene and total fuel carbon. We received your 15 samples, in duplicate, September 16, 1997 in capped, lead lined 40 mL VOA vials. The samples were analyzed on September 17-18, 1997. All samples were acquired and processed using the Millennium data system. A 4 point (1-500 ppb) external calibration curve was used to determine the concentration for all compounds.

RSKSOP-133 "Simultaneous Analysis of Aromatics and Total Fuel Carbon by Dual Column/Dual Detector Gas Chromatography in Ground Water Samples" was used for these analyses. Autosampling was performed using a Dynatech-Precision autosampler in-line with a Tekmar LSC 2000 sample concentrator.

.Sincerely,

Lisa R. Black

xc: R.L. Cosby
G.B. Smith
J.T. Wilson
J.L. Seeley ✓
B

ManTech Environmental Research Services Corporation

R.S. Kerr Environmental Research Laboratory, P.O. Box 1198, 919 Research Drive
Ada, Oklahoma 74821-1189 405-436-8660 FAX 405-436-8501

Ref. 97-DK287vg

October 8, 1997

Dr. Don Campbell
National Risk Management Research Laboratory
Subsurface Protection and Remediation Division
U.S. Environmental Protection Agency
P.O. Box 1198
Ada, OK 74820

THRU: S.A. Vandegrift ✓

Dear Dr. Campbell:

This report contains the results of my GC/MSD analysis of one floating product sample, designated "16S", from Dover AFB, for Service Request #SF-3-280. The following compounds were quantitated: benzene, toluene, ethylbenzene, p-xylene, m-xylene, o-xylene, 1,3,5-trimethylbenzene (1,3,5-TMB), 1,2,4-trimethylbenzene (1,2,4-TMB), 1,2,3-trimethylbenzene (1,2,3-TMB), naphthalene, 2-methylnaphthalene and 1-methylnaphthalene.

The analytical method was a modification of RSKSOP-124. Cool on-column injection (0.1 µl) was used with electronic pressure control set for a constant flow of 1.0 ml/min. The capillary GC column consisted of a 30m X 0.25mm Restek Stabilwax (Crossbonded Carbowax-PEG, 0.5µm film) plus an SGE 0.2m X 0.53 mm ID deactivated Carbowax capillary precolumn. SIM mode GC/MSD was used with the ions chosen from those listed in EPA method 524.2 Revision 3.0, where available. Multiple ions were acquired and ion ratios used to verify the accuracy of target compound identification. Standards calibration ranged from 0.025 to 250 µg/ml and was divided into a low level (0.025 to 2.5 ug/ml) and high level (2.5 to 250 ug/ml) curve for improved quantitative accuracy. The sample was analyzed as a 1:40 methylene chloride dilution. Complete reports detailing the acquisition method and calibration curves have been recorded. The sample was received on October 6, 1997. SIM mode analyses for quantitation of target compounds was performed October 7, 1997.

The fuel product density was measured at 0.7485 g/ml.

If you require further information, please feel free to contact me.

Sincerely,

A handwritten signature in black ink that reads "David A. Kovacs".
David A. Kovacs

xc: R.L. Cosby ✓
J.L. Seeley ✓
G.B. Smith

ManTech Environmental Research Services Corporation

R.S. Kerr Environmental Research Laboratory, P.O. Box 1198, 919 Research Drive
Ada, Oklahoma 74821-1189 405-436-8660 FAX 405-436-8501

MANTECH

Ref: 97-LP98/vg
97-MW57/vg

September 26, 1997

Dr. Don Campbell
National Risk Management Research Laboratory
Subsurface Protection & Remediation Division
U.S. Environmental Protection Agency
P.O. Box 1198
Ada, OK 74820

THRU: S.A. Vandegrift ✓

Dear Don:

Attached are the results of 14 Dover AFB samples submitted to MERSC as part of Service Request #SF-3-280. The samples were received and analyzed September 17, 1997. The methods used for analysis were EPA Methods 353.1 for NO_2 and NO_3 , 350.1 for NH_3 , and Lachat I.C. Method 10-511-00-1A for Cl and SO_4^{2-} . Quality assurance measures performed on this set of samples included spikes, duplicates, known AQC samples and blanks.

If you have any questions concerning these results, please feel free to contact us.

Sincerely,

Lynda Pennington
Lynda Pennington

Mark White

Mark White

xc: R.L. Cosby
G.B. Smith
J.L. Seeley

ManTech Environmental Research Services Corporation

R.S. Kerr Environmental Research Laboratory, P.O. Box 1198, 919 Research Drive
Ada, Oklahoma 74821-1189 405-436-8660 FAX 405-436-8501

Groundwater Sampling Record
Monitoring Well No. 16D

9-12-97

Dover AFB

5 [] SAMPLE EXTRACTION METHOD:

- [] Bailer made of: _____
 [] Pump, type: _____
 [] Other, describe: _____

Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE

6 [] ON-SITE MEASUREMENTS:

Time	0825	0830	0835			Measured with
Temp (°C)	19.9	19.6	19.6			
pH						
Cond ($\mu\text{S}/\text{cm}$)						
DO (mg/L)	6.3	6.1	0.1			
Redox (mV)						
Salinity						

7 [] SAMPLE CONTAINERS (material, number, size):

Check-off

1 [] EQUIPMENT CLEANED BEFORE USE WITH _____
 Items Cleaned (List):

2 [] PRODUCT DEPTH _____ FT. BELOW DATUM
 Measured with: _____

WATER DEPTH 0.5 inch Casing FT. BELOW DATUM
 Measured with: _____

3 [] WATER-CONDITION BEFORE WELL EVACUATION (Describe):

Color: _____
 Turbidity: _____
 Odor: _____
 Other Comments: _____

4 [] WELL EVACUATION:

Method: _____

Volume Removed: _____

Observations: Turbidity (clear slightly cloudy very cloudy)
 Water level (rose fell no change)
 Water odors: _____
 Other comments: _____

* 165 well
 yielded fuel
 only

Groundwater Sampling Record
Monitoring Well No. DM 343D

9-14-97

Dover AFB

5 [] SAMPLE EXTRACTION METHOD:

- [] Bailer made of: _____
 [] Pump, type: _____
 [] Other, describe: _____

Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE

6 [] ON-SITE MEASUREMENTS:

Time	11656	11655	1700		Measured with
Temp (°C)	14.1	15.9	14.2		
pH					
Cond ($\mu\text{S}/\text{cm}$)					
DO (mg/L)	0.1	0.2	0.2		
Redox (mV)					
Salinity					

7 [] SAMPLE CONTAINERS (material, number, size):

Check-off

1 [] EQUIPMENT CLEANED BEFORE USE WITH _____
 Items Cleaned (List):

2 [] PRODUCT DEPTH _____ FT. BELOW DATUM
 Measured with: _____

WATER DEPTH 7 11, 8' FT. BELOW DATUM
 Measured with: _____

3 [] WATER CONDITION BEFORE WELL EVACUATION (Describe):

Color: _____
 Turbidity: _____
 Odor: _____
 Other Comments: _____

4 [] WELL EVACUATION:

Method: _____

Volume Removed: _____

Observations: Turbidity (clear slightly cloudy very cloudy)

Water level (rose fell no change)

Water odors: _____

Other comments: _____

Groundwater Sampling Record
Monitoring Well No. DM 3445

9-12-97

Pauer & FB

5 [] SAMPLE EXTRACTION METHOD:

- [] Bailer made of: _____
 [] Pump, type: _____
 [] Other, describe: _____

Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE

6 [] ON-SITE MEASUREMENTS:

Time	<u>1105</u>					Measured with
Temp (°C)	<u>18.7</u>					
pH						
Cond ($\mu\text{S}/\text{cm}$)						
DO (mg/L)	<u>6.0</u>					
Redox (mV)						
Salinity						

7 [] SAMPLE CONTAINERS (material, number, size):

Check-off

1 [] EQUIPMENT CLEANED BEFORE USE WITH _____
 Items Cleaned (List):

2 [] PRODUCT DEPTH _____ FT. BELOW DATUM
 Measured with: _____

WATER DEPTH Product on Top FT. BELOW DATUM
 Measured with: _____

3 [] WATER-CONDITION BEFORE WELL EVACUATION (Describe):

Color: _____
 Turbidity: _____
 Odor: _____
 Other Comments: _____

4 [] WELL EVACUATION:

Method: _____

Volume Removed: _____

Observations: Turbidity (clear slightly cloudy very cloudy)

Water level (rose fell no change)

Water odors: _____

Other comments: _____

Groundwater Sampling Record
Monitoring Well No. DM 342D

9-12-97

5 [] SAMPLE EXTRACTION METHOD:

- [] Bailer made of: _____
 [] Pump type: _____
 [] Other, describe: _____

Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE

6 [] ON-SITE MEASUREMENTS:

Time	0955	1003	1008	1017	Measured with
Temp (°C)	18.1	17.9	17.5	17.8	
pH					
Conc (µS/cm)					
DO (mg/L)	5.9	5.6	5.4	5.6	
Redox (mV)					
Salinity					

7 [] SAMPLE CONTAINERS (material, number, size):

Check-off

1 [] EQUIPMENT CLEANED BEFORE USE WITH
 Items Cleaned (List):

2 [] PRODUCT DEPTH _____ FT. BELOW DATUM
 Measured with: _____

WATER DEPTH 8, 9 ft FT. BELOW DATUM
 Measured with: _____

3 [] WATER-CONDITION BEFORE WELL EVACUATION (Describe):
 Color: _____
 Turbidity: _____
 Odor: _____
 Other Comments: _____

4 [] WELL EVACUATION:
 Method: _____
 Volume Removed: _____
 Observations: Turbidity (clear slightly cloudy very cloudy)
 Water level (rose fell no change)
 Water odors: _____
 Other comments: _____

MANTECH

MEMORANDUM

MANTECH ENVIRONMENTAL RESEARCH SERVICES CORP
Environmental Science

In reply refer to : 98-SH15
Contract #68-C-98-138

To: Dr. Don Campbell From: Sharon Hightower *JK*

Thru: Dennis Fine *DJF*

Subject: SF-0-49 Date: March 8, 1999

Copies: R.L. Cosby
G.B. Smith
J.L. Seeley *JLS*
L.K. Pennington *LKP*

Attached are TOC results for 12 Dover samples submitted March 1, 1999 under Service Request #SF-0-49. Sample analysis was begun March 4, 1999 and completed March 4, 1999 using RSKSOP-102.

Blanks, duplicates, and AQC samples were analyzed along with your samples, as appropriate, for quality control. If you have any questions concerning this data, please feel free to ask me.

KAMPBELL DOVER LIQUIDS SF-0-49
SAMPLES RECEIVED 3/1/99
SAMPLES ANALYZED 3/4/99 BY SHARON HIGHTOWER
SAMPLES DATED 2/23/99

SAMPLE % TOC

CPT-1	2.11
CPT-11SR	1.08
CPT-16D	4.32
CPT-19DR	2.87
CPT-28	1.42
DM342D	.893
DM342S	.970
CPT-343D	4.77
CPT-343S	5.77
CPT-344D	2.77
DUP	2.75
WP39	71.7
BLANK	<.4
CPT-344S	10.7
XD	1.31
5 MG/L	5.68
WP39	71.4

WP39 std. t.v.= 76.0 +/- 7.60

MEMORANDUM

**MANTECH ENVIRONMENTAL RESEARCH SERVICES CORP.
Environmental Science**

**In reply refer to: 99-21LP/lp
Contract # 68-C-98-138**

To: Dr. Don Campbell

Thru: D.D. Fine *D.D.F.*

From: Lynda Pennington *LKP*

Subject: SR # SF-0-49

Ref:

Copies: R.L. Cosby

Date: March 10, 1999

G.B. Smith

J.L. Seeley *JLS*

Attached are inorganic results for 12 Dover, Delaware groundwater samples submitted to MERSC under Service Request # SF-0-49. The samples were received March 1, 1999 and were analyzed March 3 and 4, 1999. The methods used were Waters capillary electrophoresis method N-601 for chloride and sulfate and Lachat FIA methods 10-107-04-2-A for nitrate plus nitrite and 10-107-06-1-A for ammonia.

Quality control measures performed along with your samples included analysis of blanks, duplicates, spikes, known WPO samples and check standards.

If you have any questions concerning this data, please feel free to contact me.

Rec'd March 1, 1999
Analyzed March 3 and 4
by L. Pennington

SF-0-49
Don Campbell
Dover, DE

Page 1

Sample	Chloride (mg/L)	Sulfate (mg/L)	NO ₂ +NO ₃ (N) (mg/L)	Ammonia (mg/L)
CPT-1	3.63	31.0	<.10	<.10
CPT-11SR	1.01	12.5	7.21	<.10
CPT-16D	1.12	1.92	<.10	<.10
CPT-19DR	4.43	20.2	<.10	<.10
CPT-28	3.43	18.2	0.10	<.10
DM 342D	(0.98) (1.07)	(11.3) (11.4)	0.27	<.10
DM 342S	1.17	12.3	0.50	<.10
CPT 343D	5.31	68.1	<.10	0.12
CPT 343S	4.79	61.2	(<.10) (<.10)	(0.22) (0.22)
CPT 344D	1.38	14.0	<.10	<.10
CPT 344S	3.78	10.0	<.10	0.50
X-D	7.15	18.0	(<.10) (<.10)	(<.10) (<.10)
Blank	<.50	<.50	<.10	<.10
WPO	10.9	59.0	11.4	5.15
WPO T.V.	10.8	58.0	12.0	4.80
Check Std.	5.40	5.05	1.08	1.00
Check Std. T.V.	5.00	5.00	1.00	1.00
Spike Recovery	102%	101%	93%	104%

MEMORANDUM

**MANTECH ENVIRONMENTAL RESEARCH SERVICES CORP.
Environmental Science**

**In reply refer to: 99-AZ12
68-C-98-138**

To: Dr. Don Campbell

Thru: Dennis Fine *D.Fine*

From: Amy Zhao

A.Z.

Subject: SF-0-49

Date: March 10, 1999

Copies: R.L. Cosby

G.B. Smith

J.L. Seeley *WGL fm JLS*

As requested in Service Request #SF-0-49, gas analysis was performed for methane, ethylene and ethane from Dover AFB. The samples were received on March 1, 1999, and analyzed on March 5, 1999. Calculations were done as per RSKSOP-175. Analyses were performed as per RSKSOP-194.

If you have any questions concerning this data, please feel free to contact me.

ManTech Environmental Research Services Corporation

R.S. Kerr Environmental Research Center, P.O. Box 1198, 919 Kerr Research Drive
Ada, Oklahoma 74821-1198 580-436-8660 FAX 580-436-8501

Printed 03/10/99 SF-0-49

Originator: Don Campbell

Site:Dover AFB

Sample Received 03/01/99

Analyst: A. Zhao

Sample Analyzed 03/05/99

Sample	Methane ppm (Gas)	Methane ppm mg/L(Water)	Ethylene ppm (Gas)	Ethylene ppm mg/L(Water)	Ethane ppm (Gas)	Ethane ppm (Water)
100 ppm CH4	9.81E+01	~	**	~	**	~
100 ppm C2H4	**	~	9.58E+01	~	**	~
100 ppm C2H6	**	~	**	~	9.90E+01	~
HP. Helium Blank	~	**	~	**	~	**
Lab Blank	~	**	~	**	~	**
CPT-1(2-22)	~	1.01	~	**	~	**
CPT-11SR(2-22)	~	**	~	**	~	**
CPT-14D(2-22)	~	0.306	~	**	~	**
CPT-16D(2-22)	~	20.3	~	**	~	**
CPT-19DR(2-22)	~	2.84	~	**	~	**
CPT-19DR Lab Dup(2-22)	~	2.82	~	**	~	**
CPT-28(2-23)	~	0.029	~	**	~	**
CPT-343D (2-23)	~	0.131	~	**	~	**
CPT-343S (2-23)	~	0.523	~	**	~	**
CPT-344D (2-23)	~	2.29	~	**	~	**
CPT-344S (2-23)	~	14.4	~	0.004	~	**
CPT-344S Field Dup (2-23)	~	14.2	~	0.004	~	**
100,000 PPMCH4	9.44E+04	~	**	~	**	~
DM342D (2-23)	~	0.016	~	**	~	**
DM342S (2-23)	~	**	~	**	~	**
DM342S Field Dup (2-23)	~	**	~	**	~	**
10 PPM CH4	1.04E+01	~	**	**	**	~
10 PPMC2H4	**	~	9.20E+00	~	**	~
10 PPMC2H6	**	~	**	~	9.90E+00	~
1000 PPM CH4	1.05E+03	~	**	~	**	~
Lower Limit of Quantitation	10.0	0.001	10.0	0.003	10.0	0.002

Units for the samples are mg/L dissolved in water.

Units for the standards are parts per million.

sample date is represented in (), 1999.

** denotes None Detected.

* denotes Below Limit of Quantitation.

~ denotes Not Applicable.

MANTECH

Ref: 99-MB8
Contract #68-C-98-138
March 8, 1999

Dr. Don Campbell
National Risk Management Research Laboratory
Subsurface Protection and Remediation Division
U.S. Environmental Protection Agency
P.O. Box 1198
Ada, OK 74820

THRU: Dr. D. Fine *Donnie*

Dear Don:

Please find attached the analytical results for Service Request # SF-0-49 requesting the analysis of aqueous samples from Dover AFB, DE to be analyzed for BTEXXX, TMB's and MTBE. The 12 samples plus duplicates were received in capped, 40 mL VOA vials on March 1, 1999. The samples were analyzed on March 5, 1999. All samples were acquired using the Millennium data system. A 5 point (1-1000 ppb) external calibration curve was used to determine the concentration for all compounds. Sample CPT-344S was diluted 1:10 with boiled milli-Q water.

RSKSOP-122 "Analysis of Volatile Aromatic Hydrocarbons with Separation of Xylene Isomers by Purge & Trap Gas Chromatography" was used for these analyses. Auto-sampling was performed using a Dynatech Precision autosampler system in line with a Tekmar LSC 2000 concentrator.

Sincerely,

Mark Blankenship
Mark Blankenship

xc: R.L. Cosby
J.L. Seeley *wel fm JLS*
G.B. Smith

ManTech Environmental Research Services Corporation

R.S. Kerr Environmental Research Laboratory, P.O. Box 1198, 919 Research Drive
Ada, Oklahoma 74821-1189 405-436-8660 FAX 405-436-8501

SAMPLE NAME MTBE BENZENE TOLUENE ETHYL BENZENE p-XYLENE m-XYLENE o-XYLENE 1,3-B-TMB 1,2,4-TMB 1,2,3-TMB

10 PPB STD	10.2	9.5	9.2	10.1	9.5	9.6	9.1	10.0	9.5	9.2
20 PPB QA\QC STD	20.9	18.5	18.3	18.8	19.1	18.9	18.4	20.4	19.5	18.0
CPT-1	ND	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	ND	ND	ND
CPT-113R	ND	ND	BLQ	ND	ND	BLQ	ND	ND	ND	ND
CPT-14D	185	12.6	21.7	4.9	4.7	11.8	4.6	2.3	7.7	3.3
CPT-16D	3.1	587	4.3	232	2.5	3.1	5.0	7.0	1.2	10.9
CPT-19DR	333	34.8	12.6	4.4	6.8	5.0	7.0	3.0	6.1	BLQ
CPT-26	1.1	BLQ	BLQ	ND						
10 PPB STD	10.2	9.5	9.4	10.4	9.8	9.8	9.3	10.2	9.6	9.3
DM-342D	ND									
DM-342S	ND									
CPT-343D	15.3	ND	BLQ	ND	ND	BLQ	ND	ND	ND	ND
CPT-343S	35.9	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	ND	BLQ	ND
CPT-343S LAB DUPLICATE	34.1	ND	BLQ	BLQ	BLQ	BLQ	BLQ	ND	BLQ	ND
CPT-344D	7.5	7.6	BLQ	2.8	BLQ	BLQ	ND	2.1	BLQ	BLQ
CPT-344S	22.7	20.0	19.6	447	722	1370	549	238	796	302
GC LAB BLANK	ND									

ND = None Detected; BLQ = Below Limit of Quantitation, 1 ppb.

Analyzed 3/5/99

Water Quality Analyses - Dover AFB - February 1999

Sample Alkalinity Ferrous Sulfide Free CO₂
 mg/L mg/L mg/L mg/L

CPT-11SR 40 <.1 <.1 10

CPT-19DR 120 2.5 <.1 50

DM-3835 Dry well

CPT-1 20 1.5 <.1 50

CPT-14S No yield well

CPT-14D Too turbid 0.4 <.1 Turbid

DM-342D 20 0.1 <.1 5

DM-342S 20 <.1 <.1 5

CPT-28 20 <.1 <.1 50

CPT-15SR No yield well

DM-345 Flush mount cavity filled with water

CPI-16D 200 40. 0.1 100

DM-344S 240 32. 0.4 40

DM-344D 100 4.0 0.1 40

DM-343S 40 30. 0.1 170

DM-343D 20 35. 0.1 120

8/2

Note: Water table down because of
 a dry spring.

SS27/XVI

Water Quality Analyses - Dover AFB - February 1999

Sample	Temp °C	pH	Cond μS/cm	D O mg/L	Redox mV	<u>Notes</u>	$\frac{\Delta fC}{TOC}$
DM-3445	12.3	6.4	439	0.2	N.D.	Floating Product	13.5
DM-3435	10.3	5.6	195	2.0	N.D.		14.9
DM-344D	12.0	6.2	235	0.6	N.D.		10.0
CPT-16D	15.1	6.4	325	0.4	+147		12.2
CPT-15SR	-	-	-	-	-	No water yield-fuel in dribbles	13.2
DM-3425	8.8	5.6	89	1.7	+134		11.7
CPT-14D	14.3	-	108	4.5	+84	Low yield	15.5
CPT-1	13.0	5.6	149	1.2	+80		14.1
CPT-14S	-	-	-	-	-	Dry well 2 ^H mud	-
DM-342D	13.0	5.7	62	3.2	+139		11.5
CPT-28	15.1	5.7	101	0.2	+120		16.1
DM-345	-	-	-	-	-	No cavity flooded	-
DM-3835	-	-	-	-	-	No water yield	16.5
CPT-11SR	11.0	5.8	125	6.5	+109		13.4
CPT-19DR	13.6	6.3	362	1.2	+11		15.4
DM-343D	16.0	5.6	232	0.4	N.D.		14.9

P.K.

ATTACHMENT B
RESPONSES TO COMMENTS

20 September 1999

Mr. Jerry Hansen
Technical Program Manager
AFCEE/ERT
3207 North Road, Bldg. 532
Brooks AFB, TX 78235-5363

Subject: Responses to AFCEE Comments on the Draft Intrinsic Remediation
Engineering Evaluation/Cost Analysis Addendum for Site SS27/XYZ, Dover
AFB, Delaware (Contract F41624-92-D-8036-0025)

Dear Mr. Hansen:

This letter provides responses to comments received on the Draft Intrinsic Remediation Engineering Evaluation/Cost Analysis (EE/CA) Addendum for Site SS27/XYZ, Dover Air Force Base (AFB), Delaware. This draft EE/CA was prepared by Parsons Engineering Science, Inc. (Parsons ES) for the Air Force Center for Environmental Excellence Technology Transfer Division (AFCEE/ERT) and Dover AFB. The intent of the addendum was to evaluate changes in concentrations and the extent of groundwater contaminated with fuel hydrocarbons at Site SS27/XYZ. The draft addendum was submitted to AFCEE in August 1999. Comments on the draft report were received from AFCEE as reviewed by Mr. Jon Atkinson of AFCEE, dated 17 September 1999. Responses to these comments were prepared by Parsons ES and are presented herein.

GENERAL COMMENTS

Comment 1) Page 3, Sec 1.2, Para 2, Sent 5: Although this sentence states that JP-4 fuel is currently used at the Base, my understanding is that the Air Force has not used JP-4 for several years. Consequently, this sentence may need to be revised accordingly.

Parsons ES Response: JP-4 was in use at the time that fuel leaks were detected at Site SS27/XYZ. Any reference to current use of fuel at the site will be limited to "jet fuel" in general.

Comment 2) Pages 6 and 7, Tables 1A and 1B: For the analyte Alkalinity, the typo "Biocarbonate" needs to be corrected.

Parsons ES Response: *The text will be corrected as indicated.*

Comment 3) Page 9, Sec 2.1, Para 3, Sent 3: Recommend reporting hydraulic conductivity in units of ft/day, because they are more commonly used than ft/min.

Parsons ES Response: *Hydraulic conductivity will be reported in units of feet per day (ft/day) as recommended.*

Comment 4) Page 15, Sec 2.1, Para 1, Last Sent: To correct terminology, suggest changing "groundwater table" to "water table."

Parsons ES Response: *The text will be corrected as indicated.*

Comment 5) Page 21, Sec 2.3, Para 2: Here, and throughout the document, recommend reporting analytical results to no more than three significant figures to better reflect the accuracy and precision of these measurements.

Parsons ES Response: *Analytical results will be reported to no more than three significant figures throughout the document as recommended.*

Comment 6) Pages 22, Fig 5: To enhance readability, suggest placing the log scale on the right-hand y-axis also.

Parsons ES Response: *The log scale will be placed on the right-hand y-axis as suggested.*

Comment 7) Page 23, Sec 2.4, Para 2: Suggest adding manganese to the list of electron acceptors.

Parsons ES Response: *Manganese will be added to the list of electron acceptors as suggested.*

Mr. Jerry Hansen
20 September 1999
Page 3

Comment 8) Pages 23 and 24, Sec 2.4, Para 3, Sent 1: The typo "hat" needs to be corrected.

Parsons ES Response: *The typo will be corrected to "that."*

Comment 9: Pages 35 and 37, Sec 3.0, Last Sent: Recommend stating whether or not PES believes that manganese reduction is occurring at the site.

Parsons ES Response: *Manganese was not analyzed by the USEPA NRMRL during any of the sampling events (April 1995, September 1997, and February 1999). Therefore, Parsons ES can not state whether manganese reduction is occurring at the site.*

Comment 10) Page 37, Sec 3.0, Para 2, Line 3: Suggest changing "persists on" to "persists in."

Parsons ES Response: *The text will be changed as suggested.*

If you have any questions, have additional comments, or require additional information, please call me at (303) 831-8100.

Sincerely,

PARSONS ENGINEERING SCIENCE, INC.

Bruce M. Henry
Bruce M. Henry, P.G.
Project Manager

cc: File 729691.06000