Quantum Physics I Notes

Sean Wu

December 30, 2019

Contents

1	Lec 1: Superposition Intuition	2
2	Lec 2: Physical Effects explained by Quantum Mechanics but not Classical Mechanics 2.1 Atoms exist	2 2 2
	2.3 Atomic Spectra	3 3 3 4
	2.5 Electron Diffraction	4
3	\ 1 1 /	5 5 6 6 7 7 7 8 9 9 11 14
4	4.1 Fourier Series	16 16 16

1 Lec 1: Superposition Intuition

- Physical processes in the lab are unpredictable, nondeterminate, random
- Probability forced by observation

Uncertainty Principle: For incompatible properties, you cannot have an object w/ defined values for both properties at the same time

- ex. position and momentum
- If one property is determined, the object is in superposition of values for the other property
- Quantum effects negligible for large objects
- Quantum effects only significant for small objects w/ small energies
- ex. atoms, electrons, molecules

2 Lec 2: Physical Effects explained by Quantum Mechanics but not Classical Mechanics

- 1. Atoms exist
- 2. Randomness exists
- 3. Atomic Spectra are discrete and have structure
- 4. Photoelectric effect
- 5. Electron Diffraction
- 6. Bell's Poor Inequality

2.1 Atoms exist

- e^- orbiting nucleus in Bohr atom is an accelerating charged particle and so emits light (loses energy)
- Thus Bohr atom doesn't work classically because it collapses as the electron spirals around nucleus while releasing energy by radiation

2.2 Randomness exists

• Self explanatory

2.3 Atomic Spectra

$$\frac{1}{\lambda} = R \cdot \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) \text{ for } n_i \in \mathbb{Z}, n_2 > n_1$$

$$\tag{1}$$

- R is the Rydberg constant which depends on the element but is independent of the emission series
- This eqn shows that the atomic spectra are discrete and have structure, but classical mechanics doesn't have discrete energy levels (no energy quantization)

2.4 Photoelectric Effect

 V_0 : Stopping voltage req to stop e^- from being released by photoelectric effect

I: Current generated in circuit

Prediction	Result	
• More intense beam $\implies e^-$ w/ higher KE	• Same KE regardless of intensity	
• $V_0 \propto I$	• V_0 indep of intensity	
• V_0 indep of frequency ν	• $V_0 \propto \nu$	

- Rate of e^- release depends on intensity
- But for $\nu < \frac{W}{h}$ (less than critical frequency), no e^- released regardless of intensity (not enough energy)
- Einstein's explanation: Light comes in chunks with defined energy $E = h\nu$

$$KE = h\nu - W \tag{2}$$

where W is the work required to remove the e^-

• Recall E = pc and $c = \lambda \nu$

$$\therefore \quad p = \frac{h}{\lambda} \tag{3}$$

• This implies that the discrete packets of light w/ wavelength λ have momentum p by above eqn (wave-particle duality)

2.4.1 Waves vs Particles

- Waves can interfere with themselves (Young's Double Slit)
- Waves are **not localized**; particles are
- An interference pattern (wave) implies that **amplitudes** but intensities do not

- Classical particles can pass through either top or bottom slit
- Passing classical particles through double slit leads to 2 peaks near the 2 openings
- e^- can interfere with themselves (wave behaviour) in double slit
- Each e^- takes superposition of the possible paths; We don't know if it took the top or bottom bath
- An e^- is neither strictly a particle nor strictly a wave

Light comes in chunks 2.4.2

• Light has an energy and momentum

$$E = h\nu \tag{4}$$

$$p = \frac{h}{\lambda} \tag{5}$$

Electron Diffraction 2.5

• Bragg's Law

$$\frac{1}{\lambda} = \frac{n}{2dsin\theta} \tag{6}$$

$$\frac{1}{\lambda} = \frac{n}{2dsin\theta}$$

$$p = \frac{h}{\lambda}$$
(6)

2.6 Bell's Inequality

• For 3 binary properties A, B, C, Bell's Inequality states

$$N(A, \overline{B}) + N(B, \overline{C}) \ge N(A, \overline{C})$$
 (8)

where N(X,Y) is the number of objects with properties X and Y

- e^- have 3 binary properties (angular momentum about x-, y-, and z-axes)
- However, it violates Bell's Inequality

$$N(\uparrow_0, \downarrow_\theta) + N(\uparrow_\theta, \downarrow_{2\theta}) \le N(\uparrow_0, \downarrow_{2\theta}) \tag{9}$$

• Can't add probabilities classically with basic addition

3 Lec 3: The Wave Function

3.1 de Broglie Relations

$$E \sim \hbar$$
 $E = h\nu$
$$p = \hbar k \qquad p = \frac{h}{\lambda}$$
 (10)

$$\hbar = \frac{h}{2\pi} \qquad \omega = 2\pi\nu \qquad k = \frac{2\pi}{\lambda} \tag{11}$$

 ω : angular frequency [rad/s]

k: wavenumber [rad/m]

3.2 Systems in Classical Mechanics vs Quantum Mechanics

- In Classical Mechanics, an object's state is fully defined by its position and momentum vectors $\{x, p\}$
- All other properties can be found using \mathbf{x} and \mathbf{p}
- ex. energy $E(\mathbf{x}, \mathbf{p})$ and angular momentum $\mathbf{L}(\mathbf{x}, \mathbf{p})$
- But in **Quantum Mechanics** (real life), there is uncertainty (Uncertainty Principle)

$$\Delta \mathbf{x} \Delta \mathbf{p} \gtrsim \hbar$$
 (12)

3.3 Quantum Mechanics Postulates

- 1. The state of a quantum object is **completely** specified by a wavefunction $\Psi(x)$
- 2. $\mathbb{P} = |\Psi(x)|^2$ determines the probability density that the object in state $\Psi(x)$ will be found at x
- i.e. probability that upon measurement, the object is found at position x
- 3. Given two possible wavefunctions (or states) of a quantum system corresponding to distinct wavefunctions $\Psi_1(x)$ and $\Psi_2(x)$, the system can **also** be in a **superposition** of $\Psi_1(x)$ and $\Psi_2(x)$

$$\Psi(x) = \alpha \Psi_1(x) + \beta \Psi_2(x) \quad \alpha, \beta \in \mathbb{C}$$
 (13)

such that $\Psi(x)$ is properly normalized

- Wavefunction can be expressed as a linear combination of 2 possible wavefunctions (superposition)
- i.e. superposition of 2 quantum states results in another valid quantum state

The Wavefunction $\Psi(x)$ 3.4

- Wavefunction $\Psi(x)$ is a complex function and **must** be single valued and continuous
- The probability $|\Psi(x)|^2$ is always real and nonnegative
- Probability density means

$$\mathbb{P}(x, x + dx) = \mathbb{P}(x)dx = |\Psi(x)|^2 dx \tag{14}$$

- Units of wavefunction are $[\Psi(x)] = \frac{1}{\sqrt{L}}$
- Recall that for complex numbers,

$$|\beta|^2 = \beta^* \beta \tag{15}$$

$$|\beta|^2 = \beta^* \beta$$

$$|e^{i\alpha}|^2 = e^{i\alpha} e^{-i\alpha} = 1$$
(15)

Normalization of Wavefunctions 3.5

Probability must be normalized such that the sum of probabilities is 1 over an interval

$$\int_{All} \mathbb{P}(x)dx = \int_{All} |\Psi(x)|^2 dx = 1 \tag{17}$$

If wave function is not normalized, then use

$$\mathbb{P}(x) = \frac{|\Psi(x)|^2}{\int_{AU} |\Psi(x)|^2 dx}$$
 (18)

3.6 Plane Waves

- de Broglie says a particle with energy $E \sim \hbar \omega$ and momentum $p = \hbar k$ has a plane wave wavefunction
- General plane wave:

$$\Psi(x) = e^{i(kx - wt)} \tag{19}$$

- Note: plane wave is a complex function (need to remember that there is an imaginary component)
- But not all wavefunctions are plane waves; some are well localized

3.7 Superposition of 2 waves

• Using the rule $|\beta|^2 = \beta^* \beta$, the probability with superposition is:

$$\mathbb{P} = |\alpha \Psi_1 + \beta \Psi_2|^2 = (\alpha^* \Psi_1^* + \beta^* \Psi_2^*)(\alpha \Psi_1 + \beta \Psi_2)$$
 (20)

$$= |\alpha|^2 |\Psi_1|^2 + |\beta|^2 |\Psi_2|^2 + \alpha^* \Psi_1^* \beta \Psi_2 + \alpha \Psi_1 \beta^* \Psi_2^*$$
(21)

$$= \mathbb{P}_1 + \mathbb{P}_2 + \alpha^* \Psi_1^* \beta \Psi_2 + \alpha \Psi_1 \beta^* \Psi_2^* \tag{22}$$

where $\alpha^* \Psi_1^* \beta \Psi_2 + \alpha \Psi_1 \beta^* \Psi_2^*$ are the **interference terms**

- The first term in the interference terms is the conjugate of the 2nd term
- Therefore the interference term is real but not necessarily nonnegative, so the overall probability will still be real
- Note: Superposition principle and interpretation of probability as $|\Psi(x)|^2$ gives correction to classical probability (the interference terms)
- Shows that probabilities don't add as they do classically in Bell's Inequality (i.e. probability of both is **not** the sum of the individual probabilities)

Wavefunctions add; probabilities do not

3.8 Superposition of many waves

- As you add more plane waves to a superposition, the wavefunction and probability distribution become more localized (i.e. Δx decreases)
- For lots of plane waves, get a very narrow probability distribution and wavefunction
- There will be very few peaks, so particle is very likely to be found at those positions: $\Delta x \sim \text{small}$
- But that requires a superposition of many momenta (each plane wave has a different λ and $p = \frac{h}{\lambda}$) so $\Delta p \sim$ large as required by the Uncertainty Principle

3.8.1 Fourier Transforms for wave functions

Theorem 1. Any well behaved f(x) can be built by superimposing enough plane waves e^{ikx}

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \widetilde{f}(k)e^{ikx}dk$$
 (23)

where $\widetilde{f}(x)$ gives the amplitude of the plane wave with wavelength $\lambda = \frac{2\pi}{k}$

• Every mode has a definite wavelength $\lambda = \frac{2\pi}{k}$

- Note: Fourier Transform coefficients of x are all equivalent
- Can use Inverse Fourier Transform to get $\widetilde{f}(k)$ from f(x)

$$\widetilde{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ikx}dx$$
(24)

• Physics Version: any $\Psi(x)$ can be expressed as the superposition of states with definite momentum $p=\hbar k$

$$\Psi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \widetilde{\Psi}(x) e^{ikx} dk$$
 (25)

- The Fourier Transform associates a magnitude and phase for each possible wave vector
- Note: if the wavefunction is well localized to a position, the Fourier Transform is not well localized (... not having definite momentum)
- Similarly, if there is definite momentum, position is not well defined, but the Fourier Transform will have a single peak (position very localized)

3.9 Probability density for Wavenumber/Momentum

• Similar to probability density for position x, the probability density for momentum p/wavenumber k is given by the norm squared of the wavefunction in the k-space

$$\mathbb{P}(k) = |\Psi(k)|^2 \tag{26}$$

3.10 Wavefunction Examples

3.10.1 Gaussian Wavefunctions

$$\Psi(x) = \frac{1}{0.5\sqrt{2\pi}} exp\left(-\frac{(x+3)^2}{2\cdot 0.5}\right) \quad (27) \quad \Psi(x) = \frac{1}{0.5\sqrt{2\pi}} exp\left(-\frac{(x-2.5)^2}{2\cdot 0.5}\right) \quad (30)$$

Figure 1: Ex. Gaussian Wavefunction

Figure 2: Ex. Gaussian Wavefunction

$$x \sim x_1$$
 (28) $x \sim x_2$ (31)
 $\Delta x \sim \text{small}$ (29) $\Delta x \sim \text{small}$ (32)

• For both Gaussian wavefunctions above, there is no definite wavelength, so $\Delta p \sim large$

Figure 3: Probability density

Figure 4: Probability density

Figure 5: Wavefunction in k-space

Figure 6: Wavefunction in k-space

$$p \sim ???$$

$$p \sim ??? \tag{35}$$

$$\Delta p \sim large$$

$$p \sim ???$$
 (35)
 $\Delta p \sim large$ (36)

Figure 7: Probability density of wavefunction having specific wavenumbers k tion having specific wavenumbers k

3.10.2 Plane Waves (Complex Exponential Form)

Figure 9: Ex. Plane Wavefunction

Figure 10: Ex. Plane Wavefunction

$$x \sim ???$$
 (38) $x \sim ???$ (42) $\Delta x \sim \text{large}$ (40) $\Delta x \sim \text{large}$

Figure 11: Probability density

Figure 12: Probability density

- Note: wavefunction is not properly normalized
- Particle can be anywhere $(\Delta x \sim \text{large})$
- But $\Psi(x)$ has a very defined wavelength and wavenumber, so the particle has a defined momentum $p=\hbar k$

Figure 13: Wavefunction in k-space

Figure 14: Wavefunction in k-space

Figure 15: Probability density of wavefunction having specific wavenumbers k tion having specific wavenumbers k

$$p \sim \hbar k_1 \qquad (44) \qquad p \sim \hbar k_2 \qquad (46)$$

$$\Delta p \sim small$$
 (45) $\Delta p \sim small$ (47)

3.10.3Superposition of 2 Wavefunctions

$$\Psi(x) = \frac{1}{4} \frac{1}{0.5\sqrt{2\pi}} exp\left(-\frac{(x+3)^2}{2 \cdot 0.5}\right)$$
(48)

$$+\frac{3}{4}\frac{1}{0.5\sqrt{2\pi}}exp\left(-\frac{(x-2.5)^2}{2\cdot0.5}\right)$$
 (49)

$$\Psi(x) = e^{ik_1x} + e^{ik_2x} \tag{52}$$

$$= -e^{ix} + 0.25e^{5ix} (53)$$

 $\mathbb{R}e(\Psi)$

Figure 17: Ex. Superposition of 2 Gaussian Wavefunctions

Figure 18: Ex. Superpositions of 2 Plane Wavefunctions

$$x \sim \text{in betw } x_1 \text{ and } x_2 \text{ on avg}$$
 (50)

$$x \sim \text{in betw } x_1 \text{ and } x_2 \text{ on avg}$$
 (50)

$$\Delta x \sim (x_1 - x_2) \tag{51}$$

$$x \sim \text{some info}$$
 (54)

$$\Delta x \sim \text{huge}$$
 (55)

Figure 19: Probability density

Figure 20: Probability density

$$\Psi(x) = e^{ikx_1} + e^{ikx_2} \tag{56}$$

$$\begin{aligned}
\nu(x) &= e^{-x} + e^{-z} & (50) \\
&= e^{ix} + 0.3e^{5ix} & (57)
\end{aligned}$$

$$\Psi(x) = \frac{1}{4} \frac{1}{0.5\sqrt{2\pi}} exp\left(-\frac{(x+3)^2}{2 \cdot 0.5}\right)$$
(58)
$$+\frac{1}{0.5\sqrt{2\pi}} exp\left(-\frac{(x-2.5)^2}{2 \cdot 0.5}\right)$$
(59)

Figure 21: Wavefunction in k-space

Figure 22: Wavefunction in k-space

4 Aside: More about Fourier Transforms

4.1 Fourier Series

• Can represent any periodic function f(x) with a Fourier series

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$$
 (60)

Figure 23: Graph of a periodic sawtooth function in the real x-space

4.2 Fourier k-space (Frequency domain)

- Can also describe the Fourier representation by plotting the strength of each sine/cosine term as a function of frequency/wavenumber (k), $\widetilde{f}(k)$
- Frequency representation is obtained by applying the Fourier Transform to the original function in the time domain
- Wavenumber used as dependent variable on x-axis
- Fourier coefficients a_n or b_n are then used as the amplitude of each wavenumber

Figure 24: Graph of a periodic sawtooth function in Fourier k-space

- For the Fourier Transform of the sawtooth function, the k-space graph has discrete nonzero values for only specific wavenumbers, which means that "in-between" frequencies/wavenumbers are not needed
- Note: amplitude of the function is large for small wavenumbers k and decreases for larger k
- Therefore, high frequency terms can be considered negligible (can approximate Fourier series with the first few terms)

4.3 How Period Length affects the Fourier Transform

- Can represent any function in the "real x-space" (wiggly function) or in the "Fourier k-space" (spiky function)
- The shorter the period of the original function, the sparser the Fourier representation; i.e. less wavenumbers required (Red sawtooth function)
- The longer the period, the denser the Fourier representation (Blue sawtooth function)
- The main contributing wavenumbers are condensed centrally closer to the small k-values
- Since $k = \frac{2\pi}{\lambda} = \frac{2\pi}{cT}$, $k \sim \frac{1}{T}$
- So if the original function has a longer period T, its Fourier series needs sinusoids with longer periods (smaller k)
- i.e. the more "stretched out" a function is in the real space (longer period), the more centralized/"squished" it is in the Fourier space
- Note: "periodic" functions with infinite period are aperiodic functions (never repeats itself)
- As the period approaches infinity, spikes in the k-space get infinitely squished together and

form a continuous function

• Therefore, while a periodic function can be represented by a discrete set of sines and cosines (only some wavenumbers), an aperiodic function (most functions) can only be formed from a **continuous** sum of sines and cosines (include all intermediate wavenumbers)

Figure 25: Graph of 2 sawtooth functions with different periods. The blue function has a longer period, while the red function has a shorter period.

Figure 26: Graph of 2 sawtooth functions approximated with the first few terms of their Fourier series (real space)

Figure 27: Graph of 2 sawtooth functions in Fourier k-space