2 Eigenschaften des Maß-Integrals

2.1 Konvergenzsätze

Im Folgenden sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $f, f_1, f_2, \ldots : \Omega \to \mathbb{R}$ messbare Funktionen.

Satz 2.1 (Satz von Beppo Levi, Satz von der monotonen Konvergenz) $Sind\ f, f_1, f_2, \ldots \geq 0 \ mit\ f_n \uparrow f, \ so\ gilt$

$$\lim_{n \to \infty} \int f_n d\mu = \int f d\mu.$$

Beweis $\forall f_n \exists (u_{nm})_{m \in \mathbb{N}} \subset \mathcal{E} \text{ mit } u_{nm} \uparrow f_n \text{ für } m \to \infty. \text{ Sei } h_m := \max\{u_{1m}, \dots, u_{mm}\} \implies h_m \uparrow \text{ und } (h_m) \subset \mathcal{E}. \text{ Außerdem: } u_{nm} \leq h_m \text{ für } n \leq m.$

Also: $f_n = \sup_{m \in \mathbb{N}} u_{nm} = \sup_{m \geq n} u_{nm} \leq \sup_{m \in \mathbb{N}} h_m$ und $h_m \leq f_m \leq f$. Insgesamt: $h_m \uparrow f$ und $\lim_{m \to \infty} \int h_m d\mu = \int f d\mu$. Mit $\int h_m d\mu \leq \int f d\mu$ folgt die Behauptung.

Im Folgenden sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $f_1, f_2, f_3, \ldots : \Omega \to \mathbb{R}$ messbare Funktionen.

Satz 2.2 (Lemma von Fatou)

Gilt $f_n \geq 0, n \in \mathbb{N}$, so folgt

$$\int \liminf_{n \to \infty} f_n d\mu \le \liminf_{n \to \infty} \int f_n d\mu$$

Beweis Sei $g_n := \inf_{m \geq n} f_m, f := \liminf_{n \to \infty} f_n$, so gilt $g_n \uparrow f$ und mit Satz 2.1 $\int \liminf_{n \to \infty} f_n d\mu = \lim_{n \to \infty} \int g_n d\mu = \lim\inf_{n \to \infty} \int g_n d\mu \leq \liminf_{n \to \infty} \int f_n d\mu$

Satz 2.3 (Satz von Lebesgue oder Satz von der majorisierten Konvergenz)

Es gelte $\lim_{n\to\infty} f_n(\omega) = f(\omega) \ \forall \omega \in \Omega$. Existert eine μ -integrierbare Funktion $g: \Omega \to \mathbb{R}$ mit der Eigenschaft $|f_n(\omega)| \leq g(\omega) \ \forall \omega \in \Omega, \ \forall n \in \mathbb{N}, \ so \ folgt:$

$$\lim_{n\to\infty} \int f_n d\mu = \int f d\mu$$

Beweis Sei $g_n:=|f_n-f|, h:=|f|+g.$ Wegen $|h|\leq 2g$ ist h μ -integrierbar. Außerdem gilt

$$h - g_n = |f| + g - |f_n - f| \ge |f| + g - |f_n| - |f|$$

= $g - |f_n| \ge 0$

wegen $g_n \to 0$ gilt $h - g_n \to h$, also folgt mit Satz 2.2

$$\int h d\mu = \int \liminf_{n \to \infty} (h - g_n) d\mu$$

$$\leq \liminf_{n \to \infty} \int (h - g_n) d\mu$$

$$= \underbrace{\int h d\mu - \limsup_{n \to \infty} \int g_n d\mu}_{<\infty}$$

 $\implies \limsup_{n\to\infty} \int g_n d\mu \leq 0$ Wegen $g_n \geq 0$ bedeutet dies:

$$\lim_{n \to \infty} \int |f_n - f| d\mu = \lim_{n \to \infty} \int g_n d\mu = 0$$

und damit

$$\left| \int f_n d\mu - \int f d\mu \right| = \left| \int (f_n - f) d\mu \right| \le \int |f_n - f| d\mu \to 0$$

Bemerkung 2.1 Für Wahrscheinlichkeitsmaße lautet Satz 2.3:

Ist $(X_n)_{n\in\mathbb{N}}$ eine Folge von Zufallsvariablen, so dass $X_n \stackrel{f.s.}{\to} X$ (X ist dann automatisch wieder eine Zufallsvariable) und es gibt eine Zufallsvariable Y mit $|X_n| \le Y \ \forall n \in \mathbb{N}$ und $EY < \infty$, so gilt $\lim_{n\to\infty} EX_n = EX$.

Oft kommt man mit einer Majorante der Form $Y \equiv c, c \in \mathbb{R}$ zum Ziel.

2.2 Verhalten bei Transformationen

Es sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und (Ω', \mathcal{A}') ein messbarer Raum und $T: \Omega \to \Omega'$ eine $(\mathcal{A}, \mathcal{A}')$ -messbare Abbildung. Aus Stochastik 1 ist bekannt (vgl. §5.2, Verteilung), dass durch

$$\mu^T: \mathcal{A}' \to [0, \infty], \mu^T(A') := \mu(\underbrace{T^{-1}(A')}_{\in \mathcal{A}}) = \mu(\{\omega \in \Omega | T(\omega) \in A'\})$$

ein Maß auf (Ω', \mathcal{A}') definiert wird (Maßtransport). μ^T heißt **Bildmaß** von μ unter der Tranformation T.

Ist X = T eine Zufallsgröße auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) mit Werten in (Ω', \mathcal{A}') , so nennt man $\mu^T = P^X$ die Verteilung von X. Sei nun weiter $f: \Omega' \to \mathbb{R}$ messbar.

Skizze:
$$(\Omega, \mathcal{A}) \xrightarrow{T} (\Omega', \mathcal{A}')$$

$$\downarrow^f$$
 $(\mathbb{R}, \mathfrak{B})$

Satz 2.4 (Integration bezüglich des Bildmaßes, Transformationssatz)

Mit den obigen Bezeichnungen und Voraussetzungen gilt: f ist genau dann μ^T integrierbar, wenn $f \circ T$ μ -integrierbar ist.

Dann gilt:

$$\int f d\mu^T = \int (f \circ T) d\mu$$

Beweis

(i) Falls $f = \mathbf{1}_A, (A \in \mathcal{A})$ gilt

$$\int f d\mu^{T} = \mu^{T}(A)$$

$$= \mu(T^{-1}(A))$$

$$= \int \mathbf{1}_{T^{-1}(A)} d\mu$$

$$= \int \mathbf{1}_{A} \circ T d\mu$$

$$= \int f \circ T d\mu$$

wegen Satz 1.2(a) folgt damit die Aussage für $f \in \mathcal{E}$

(ii) Sei jetzt $f \geq 0 \implies \exists (u_n)_{n \in \mathbb{N}} \subset \mathcal{E} \text{ mit } u_n \uparrow f \text{ und } \int f d\mu^T = \lim_{n \to \infty} \int u_n d\mu^T$. Offenbar gilt $u_n \circ T \in \mathcal{E}, (u_n \circ T) \uparrow (f \circ T)$ Also folgt:

$$\int f d\mu^{T} = \lim_{n \to \infty} \int u_{n} d\mu^{T}$$

$$\stackrel{(i)}{=} \lim_{n \to \infty} \int (u_{n} \circ T) d\mu$$

$$= \int (f \circ T) d\mu$$

(iii) Ist $f: \Omega' \to \mathbb{R}$ eine beliebige $(\mathcal{A}', \mathfrak{B})$ -messbare Abbildung so gilt

$$\int f^{+} d\mu^{T} < \infty \quad \Longleftrightarrow \quad \int f^{+} \circ T d\mu < \infty$$
$$\int f^{-} d\mu^{T} < \infty \quad \Longleftrightarrow \quad \int f^{-} \circ T d\mu < \infty$$

Da $(f \circ T)^+ = f^+ \circ T, (f \circ T)^- = f^- \circ T, \text{ folgt } f \mu^T\text{-integrierbar} \iff f \circ T$

 μ -integrierbar

$$\int f d\mu^{T} = \int f^{+} d\mu^{T} - \int f^{-} d\mu^{T}$$

$$\stackrel{(ii)}{=} \int f^{+} \circ T d\mu - \int f^{-} \circ T d\mu$$

$$= \int (f \circ T)^{+} d\mu - \int (f \circ T)^{-} d\mu$$

$$= \int f \circ T d\mu.$$

Bemerkung 2.2 Das Beweisverfahren (zuerst für $f \in \mathcal{E}$ (bzw. $f = \mathbf{1}_A$), dann für $f \in \mathcal{E}^+$, dann für f beliebig) heißt **algebraische Induktion** und wird häufig verwendet.

2.3 Nullmengen und Maße mit Dichten

Im Folgenden sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum.

Definition 2.1 $N \in \mathcal{A}$ heißt μ -Nullmenge, falls $\mu(N) = 0$.

Definition 2.2 Ist (A) eine Aussage, die von $\omega \in \Omega$ abhängt, so sagen wir, dass (A) μ -fast überall (μ -f.ü.) gilt, wenn (A) wahr ist $\forall \omega$ außerhalb einer μ -Nullmenge. Ist $\mu = P$ ein Wahrscheinlichkeitsmaß, so sagt man P-fast-überall oder P-fast sicher (P-f.s.)

Satz 2.5

 $f, g: \Omega \to \mathbb{R}$ seien $(\mathcal{A}, \mathfrak{B})$ messbar.

- a) Sei $f \geq 0$. Dann gilt: $\int f d\mu = 0 \iff f = 0, \mu\text{-}f.\ddot{u}$.
- b) Ist f μ -integrierbar und gilt f = g μ -f. \ddot{u} ., so ist auch g μ -integrierbar mit $\int f d\mu = \int g d\mu$.

Beweis

- a) Sei $N := \{ \omega \in \Omega | f(\omega) \neq 0 \}$. $N \in \mathcal{A}$, da f messbar.
 - (i) Annahme: $\int f d\mu = 0$. Sei $A_n := \{ \omega \in \Omega | f(\omega) \ge \frac{1}{n} \} \implies A_n \uparrow N \text{ und } \mu(N) = \lim_{n \to \infty} (\mu(A_n))$. Außerdem gilt $0 = \int f d\mu \ge \int \frac{1}{n} \cdot \mathbf{1}_{A_n} d\mu = \frac{1}{n} \cdot \mu(A_n) \ge 0$ $\implies \mu(A_n) = 0 \ \forall n \in \mathbb{N} \implies \mu(N) = 0$, also f = 0 μ -f.ü.
 - (ii) Annahme: N ist μ -Nullmenge. Sei $g \in \mathcal{E}$, $g(\Omega) = \{\alpha_1, \dots, \alpha_n\}$, $g \leq f$. $\implies g = \sum_{j=1}^n \alpha_j \circ \mathbf{1}_{A_j}$. Falls $\alpha_j > 0 \implies A_j \subset N \implies \int g \mathrm{d}\mu = 0 \xrightarrow{\text{L.1.3}} \int f \mathrm{d}\mu = 0$.

b) Seien zunächst $f, g \ge 0, N := \{f \ne g\} \stackrel{\text{a)}}{\Rightarrow}$

$$\int f d\mu = \int_{N} f d\mu + \int_{N^{C}} f d\mu$$

$$= 0 + \int_{N^{C}} g d\mu$$

$$= \int_{N} g d\mu + \int_{N^{C}} g d\mu$$

$$= \int g d\mu$$

Insbesondere: $\int f \mathrm{d}\mu < \infty \iff \int g \mathrm{d}\mu < \infty$. Seien nun f,g beliebig. Wegen $\{f^+ = g^+\} \supset \{f = g\} \subset \{f^- = g^-\}$ gilt auch $f^+ = g^+$ und $f^- = g^ \mu$ -f.ü. und mit dem vorigen Teil folgt die Behauptung.

Bemerkung 2.3 Im Folgenden sei $L^1(\Omega, \mathcal{A}, \mu) := \{f : \Omega \to \mathbb{R} \mid f \text{ ist messbar und } \mu\text{-integrierbar}\}$ (ist ein Vektorraum) und wir definieren

 $f \sim_{\mu} g : \iff f = g \text{ μ-f.$\ddot{u}.}$ und \sim_{μ} ist Äquivalenzrelation auf $\{f : \Omega \to \mathbb{R} \mid f \text{ ist messbar}\}$. Sei $f^{[\mu]}$ die Äquivalenzklasse zu f.

Mit Satz 2.5: Entweder alle oder keines der Elemente in $f^{[\mu]}$ ist μ -integrierbar und die Integrale sind ggfs. gleich. Außerdem gilt:

 $f_1 \in f^{[\mu]}, g_1 \in g^{[\mu]} \implies f_1 + g_1 \in (f+g)^{[\mu]}.$

 \implies Man kann zum Raum der Äquivalenzklassen übergehen: $L^1(\Omega, \mathcal{A}, \mu)/\sim_{\mu}$ Mit $||f^{[\mu]}||_1 := \int |f| d\mu$ ist eine Norm definiert; sie ist wohldefiniert, da $\int f_1 d\mu = \int f_2 d\mu \ \forall f_1, f_2 \in f^{[\mu]}$.

Wichtig: $f \mapsto \int |f| d\mu =: ||f||$ ist auf $L^1(\Omega, \mathcal{A}, \mu)$ keine Norm, da $||f|| = 0 \implies f \equiv 0$ im Allgemeinen falsch ist!

Satz 2.6 $(L^1(\Omega, \mathcal{A}, \mu)/\sim_{\mu}, ||\cdot||_1)$ ist ein Banachraum.

Definition 2.3 Es seien μ, ν Maße auf dem messbaren Raum (Ω, \mathcal{A}) . Gilt dann $\mu(A) = 0 \implies \nu(A) = 0 \ \forall \ A \in \mathcal{A}$, so heißt ν μ -stetig, in Zeichen $\nu \ll \mu$. Man sagt auch, dass μ das Maß ν dominiert.

Satz 2.7 und Definition

Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $f: \Omega \to \mathbb{R}_+$ $(\mathcal{A}, \mathfrak{B})$ -messbar. Dann wird durch $\nu: \mathcal{A} \to \mathbb{R}_+ \cup \{\infty\}$, $\nu(A) := \int_A f d\mu$ ein Maß auf (Ω, \mathcal{A}) definiert. Man nennt ν das Maß mit der Dichte f bzgl. μ und f eine μ -Dichte von ν . Schreibweise: $f = \frac{d\nu}{d\mu}$

Beweis Wir weisen nach, dass ν ein Maß ist: $\nu \geq 0$ ist klar, da f nach \mathbb{R}_+ abbildet;

(i)
$$\mu(\emptyset) = \int f \cdot \mathbf{1}_{\emptyset} d\mu = 0.$$

(ii) Seien A_1, A_2, \ldots paarweise disjunkt und $A = \sum_{n=1}^{\infty} A_n$. Wegen $f \cdot \mathbf{1}_{\sum_{k=1}^{n} A_k} \uparrow f \cdot \mathbf{1}_A$ folgt mit Satz 2.1:

$$\nu(\sum_{n=1}^{\infty} A_n) = \int f \cdot \mathbf{1}_{A} d\mu$$

$$= \lim_{n \to \infty} \left(\int f \cdot \underbrace{\mathbf{1}_{\sum_{k=1}^{n} A_k}}_{=\sum_{k=1}^{n} \mathbf{1}_{A_k}} d\mu \right)$$

$$= \lim_{n \to \infty} \left(\int \sum_{k=1}^{n} f \cdot \mathbf{1}_{A_k} d\mu \right)$$

$$= \lim_{n \to \infty} \left(\sum_{k=1}^{n} \left(\int f \cdot \mathbf{1}_{A_k} d\mu \right) \right)$$

$$= \sum_{k=1}^{\infty} \nu(A_k)$$

Satz 2.8 (Satz von Radon-Nikodym)

Seien μ, ν Maße auf dem messbaren Raum (Ω, \mathcal{A}) , μ sei σ -endlich. Dann gilt: ν ist genau dann μ -stetig, wenn ν eine Dichte bzgl. μ hat.

Beweis ν hat Dichte bzgl. $\mu \implies \nu(A) = \int_A f d\mu = \int f \cdot \mathbf{1}_A d\mu \xrightarrow{S.2.5a} \nu \ll \mu$. Die andere Richtung siehe z.B. Henze, Stochastik II.

Satz 2.9 Seien μ und ν Maße auf (Ω, \mathcal{A}) , ν habe μ -Dichte f. Dann gilt für alle $(\mathcal{A}, \mathfrak{B})$ -messbaren Abbildungen $g: \Omega \to \mathbb{R}$:

g ist genau dann ν -integrierbar, wenn $g \cdot f$ μ -integrierbar ist und in diesem Fall ist $\int g d\nu = \int g \cdot f d\mu$.

Beweis Übung.

Bemerkung 2.4 Merkregel: $\int g d\nu = \int g \cdot \frac{d\nu}{d\mu} d\mu$.

Beispiel 2.1 Sei $\mu = \lambda$ das Lebesgue-Maß und $\nu = P^X$ die Verteilung einer Zufallsvariablen X. Ist X absolutstetig, so gilt (Stochastik I):

$$P^X(B) = \int_B f_X(x) \mathrm{d}x$$

mit $f_X : \mathbb{R} \to \mathbb{R}_+ \cup \{\infty\}$ und

$$EX = \int_{\Omega} X dP = \int_{\mathbb{R}} x P^X(dx) = \int_{\mathbb{R}} x \cdot f_X(x) dx.$$

mit den Sätzen 2.4 und 2.9.

2.4 Ungleichungen und Räume integrierbarer Funktionen

Hier stellen wir einige Hilfsmittel für später zusammen. Der folgende Satz behandelt den Spezialfall von Wahrscheinlichkeitsmaßen.

Satz 2.10 Es sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum, $X : \Omega \to \mathbb{R}$ eine Zufallsvariable und $\gamma > 0$. Dann gilt:

$$P(|X| \ge a) \le \frac{1}{a^{\gamma}} \cdot E|X|^{\gamma} \quad \forall a > 0.$$

Existiert die Varianz von X, so gilt:

$$P(|X - EX| \ge a) \le \frac{1}{a^2} \cdot \text{Var}(X) \quad \forall a > 0.$$

(Ungleichung von Tschebyschef, siehe Abschnitt 7.6, Stochastik I)

Beweis

Sei $Y: \Omega \to \mathbb{R}$ definiert durch:

$$Y(\omega) = \begin{cases} a, & \text{falls } |X(\omega)| \ge a \\ 0, & \text{sonst} \end{cases}$$

$$\implies |Y| \le |X|$$

$$\implies |Y|^{\gamma} \le |X|^{\gamma} \quad \forall \gamma > 0$$

$$\implies a^{\gamma} P(|X| \ge a) = a^{\gamma} P(|Y| \ge a) = E|Y|^{\gamma} \le E|X|^{\gamma}$$

Für Teil 2 setze $\tilde{X} := X - EX$ und $\gamma = 2$.

Sei $I \subset \mathbb{R}$ ein offenes Intervall und $\Phi: I \to \mathbb{R}$ eine konvexe Funktion, d.h.

$$\Phi(\alpha x + (1 - \alpha)y) \le \alpha \Phi(x) + (1 - \alpha)\Phi(y) \quad \forall x, y \in I, \ \forall \alpha \in [0, 1]$$

Außerdem gilt $\forall y \in I, \exists m \in \mathbb{R}, \text{ mit}$

$$\Phi(x) \ge \Phi(y) + m(x - y)$$

Satz 2.11 (Jensensche Ungleichung)

Es seien $I \subset \mathbb{R}$ ein offenes Intervall, $\Phi: I \to \mathbb{R}$ konvex und X eine Zufallsvariable mit $E|X| < \infty, E|\Phi(X)| < \infty$ und $P(X \in I) = 1$. Dann gilt:

$$EX \in I \text{ und } \Phi(EX) < E\Phi(X)$$

Beweis

Falls $I=(-\infty,\infty)$ ist automatisch $EX\in I$. Ist X< a P-f.s. so gilt: $EX\leq Ea=a$. Falls E(a-X)=0 folgt, da $a-X\geq 0$ $\xrightarrow{\operatorname{Satz}\ 2.5}$ X=a P-f.s. Widerspruch! D.h., falls $I=(\cdot,a)\subset (-\infty,a) \Longrightarrow EX< a$. Analog untere Schranke $\Longrightarrow EX\in I$.

Mit der Vorüberlegung folgt $(y = EX, x = X(\omega))$

$$\Phi(X) \ge \Phi(EX) + m(X - EX)$$
 P-f.s.

für ein $m \in \mathbb{R}$. Erwartungswert auf beiden Seiten führt zur Behauptung (Nullmengen können wir vernachlässigen).

Beispiel 2.2

Für
$$\Phi(x)=|x|, \Phi(x)=x^2$$
 folgt: $|EX|\leq E|X|, (EX)^2\leq EX^2$. ($\Longrightarrow EX^2-(EX)^2=\operatorname{Var}X\geq 0$)

Im Folgenden sei $(\Omega, \mathcal{A}, \mu)$ wieder ein Maßraum.

Definition

Eine messbare Funktion $f: \Omega \to \mathbb{R}$ heißt p-fach μ -integrierbar, wenn $\int |f|^p d\mu < \infty$ mit p > 0.

$$L^{p}(\Omega, \mathcal{A}, \mu) := \{ f : \Omega \to \mathbb{R} | \int |f|^{p} d\mu < \infty \}$$
$$||f||_{p} = \left(\int |f|^{p} d\mu \right)^{\frac{1}{p}}$$

Wie im vorigen Abschnitt ist L^p bzw. $L^p(\Omega, \mathcal{A}, \mu)/\sim_{\mu}$ ein Vektorraum über \mathbb{R} und $||f||_p$ auf den Äquivalenzklassen eine Norm.

Satz 2.12

a) (Höldersche Ungleichung) Es seien $p > 1, f \in L^p(\Omega, \mathcal{A}, \mu), g \in L^q(\Omega, \mathcal{A}, \mu),$ wobei $\frac{1}{p} + \frac{1}{q} = 1$. Dann folgt: $f \cdot g \in L^1(\Omega, \mathcal{A}, \mu)$ und es gilt:

$$||f \cdot g||_1 \le ||f||_p \cdot ||g||_q$$

b) (Minkowskische Ungleichung) Es seien $p \ge 1$ und $f, g \in L^p(\Omega, \mathcal{A}, \mu)$. Dann folgt $f + g \in L^p(\Omega, \mathcal{A}, \mu)$ und es gilt:

$$||f + g||_p \le ||f||_p + ||g||_p$$

Beweis

a) Falls $\int |f|^p d\mu = 0 \xrightarrow{\text{Satz 2.5}} f = 0$ μ -f.s. und die Ungleichung ist richtig. Sei also $||f||_p > 0$ und $||g||_q > 0$ (gleiches Argument). $x \mapsto \log x$ ist konkav, d.h. es gilt: $\alpha \log(a) + (1-\alpha) \log(b) \le \log(\alpha a + (1+\alpha)b) \ \forall a,b > 0,0 < \alpha < 1$. exp(·) auf beiden Seiten:

$$a^{\alpha}b^{1-\alpha} \leq \alpha a + (1-\alpha)b \quad \forall a,b \geq 0,0 < \alpha < 1$$
 Setze $a := \frac{|f(\omega)|^p}{||f||_p^p}, b := \frac{|g(\omega)|^q}{||g||_q^q}, \alpha = \frac{1}{p} \text{ (ω beliebig)}$
$$\Longrightarrow \quad \frac{|f(\omega)| \cdot |g(\omega)|}{||f||_p \cdot ||g||_q} \leq \frac{1}{p} \frac{|f(\omega)|^p}{||f||_p^p} + \frac{1}{q} \frac{|g(\omega)|^q}{||g||_q^q}$$

$$\Longrightarrow \quad |f(\omega)| \cdot |g(\omega)| \quad \leq \frac{1}{p} |f(\omega)|^p ||f||_p^{1-p} ||g||_q + \frac{1}{q} |g(\omega)|^q ||g||_q^{1-q} ||f||_p$$

$$\xrightarrow{\text{Int. "\belieber ω}} \quad ||f \cdot g||_1 \qquad \leq \frac{1}{p} ||f||_p^p ||f||_p^{1-p} ||g||_q + \frac{1}{q} ||g||_q^q ||g||_q^{1-q} ||f||_p$$

$$= \frac{1}{p} ||f||_p ||g||_q + \frac{1}{q} ||g||_q ||f||_p$$

$$\Longrightarrow \quad \text{Behauptung}$$

b) Wegen $|f+g| \le |f| + |g|$ gilt $||f+g||_p \le |||f| + |g||_p$. Also genügt es die Ungleichung für $f+g \ge 0$ zu beweisen. Falls p=1 folgt $||f+g||_1 = \int (f+g) \mathrm{d}\mu = \int f \mathrm{d}\mu + \int g \mathrm{d}\mu = ||f||_1 + ||g||_1$. Sei also p>1. Mit $(f+g)^p \le (2 \cdot \max\{f,g\})^p \le 2^p (|f|^p + |g|^p) \implies (f+g) \in L^p$, also $||f+g||_p < \infty$. Sei $q:=\frac{1}{1-\frac{1}{p}}$. Anwendung von Teil a) liefert:

$$||f+g||_p^p = \int f(f+g)^{p-1} d\mu + \int g(f+g)^{p-1} d\mu$$
a)
$$\leq (||f||_p + ||g||_p)||(f+g)^{p-1}||_q \quad (*)$$

Wegen (p-1)q = p gilt:

$$||(f+g)^{p-1}||_q = \left(\int (f+g)^{(p-1)q} d\mu\right)^{\frac{1}{q}} = ||f+g||_p^{\frac{p}{q}} = ||f+g||_p^{p-1}$$

Falls $||f+g||_p=0$ ist die Ungleichung richtig. Sei also $||f+g||_p>0$. Nehme (*) und teile durch $||f+g||_p^{p-1}$ auf beiden Seiten \implies Behauptung.

Bemerkung

Falls $p = q = 2, \Omega = \{1, \dots, n\}, \mathcal{A} = \mathcal{P}(\Omega), \mu = \sum_{k=1}^{n} \delta_k, f(i) = a_i, g(i) = b_i,$ bekommt man:

$$\sum_{i=1}^{n} a_i b_i \le \left(\sum_{i=1}^{n} a_i^2\right)^{\frac{1}{2}} \cdot \left(\sum_{i=1}^{n} b_i^2\right)^{\frac{1}{2}}$$

In diesem Fall ist Satz 2.12 a) die Cauchy-Schwarz-Ungleichung. Lineare Algebra: $|\langle a, b \rangle| \leq ||a|| \cdot ||b|| \quad \forall a, b \in \mathbb{R}^n$. Das motiviert

Satz 2.13

Es sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $L^2(\Omega, \mathcal{A}, \mu)/\sim_{\mu}$ der Raum der \sim_{μ} -Äquivalenzklassen quadratisch μ -integrierbarer Funktion $f: \Omega \to \mathbb{R}$.

Dann ist $\langle f, g \rangle := \int f \cdot g d\mu$ hierauf ein Skalarprodukt, durch den $L^2(\Omega, \mathcal{A}, \mu) / \sim_{\mu} zu$ einem Hilbertraum wird.

Beweis siehe Henze, Stochastik II

Bemerkung

- a) $(L^p(\Omega, \mathcal{A}, \mu)/\sim_{\mu}, ||\cdot||_p)$ ist ein Banachraum für $p \geq 1$.
- b) Ist $\Phi: L^p(\Omega, \mathcal{A}, \mu) \to \mathbb{R}$ stetig und linear, so existiert ein $g \in L^q(\Omega, \mathcal{A}, \mu)$ mit $\Phi(f) = \int f \cdot g d\mu \quad \forall f \in L^p(\Omega, \mathcal{A}, \mu).$