M – 2.ročník - VSTUPNÁ PREVIERKA - PRÍPRAVA

1. Svedok pri výsluchu uviedol: "Popieram tvrdenie obžalovaného, že som sa s ním stretol aspoň päťkrát." Zo svedkovej výpovede vyplýva, že sa s obžalovaným

C stretol najviac štyrikrát

D stretol aspoň štyrikrát

2. Na obrázku je časť grafu funkcie

B/
$$y = 1 - \frac{3}{x^2}$$

C/ y = 2 -
$$\frac{3}{x+1}$$

D/
$$y = 2 - \frac{3}{x-1}$$

D/
$$y = 2 - \frac{3}{x-1}$$
 E/ $y = 1 - \frac{3}{x+2}$

3. Ktoré z tvrdení o funkcii $f : y = (x - 4)^2 + 6$ je nepravdivé:

A/ f je ohraničená zdola B/ H(f) =
$$(-\infty; 6)$$

B/ H(f) =
$$(-\infty; 6)$$

C/ f nie je ani párna, ani nepárna

D/ f nemá nulové body **E**/ f je klesajúca na $(-\infty; 4)$ a rastúca na $(4; \infty)$

4. Výraz $\frac{\frac{1}{x}-1}{1-\frac{1}{x}}$ možno za podmienok ($x \ne 0$, $x \ne \pm 1$) upraviť na tvar

$$B \quad x-1 \qquad \qquad C \quad 1-x^2$$

5. Súčet koreňov sústavy 3x + y = 2

$$2x - 3y = 5$$
 je číslo A 2 B 0 C 4 D 1

6. Riešením nerovnice $-x^2 + x + 2 < 0$ je interval

C
$$(-\infty; -2) \cup (1; -2)$$

A
$$(-2; 1)$$
 B $(-1; 2)$ C $(-\infty; -2) \cup (1; \infty)$ D $(-\infty; -1) \cup (2; \infty)$

- 7. Dané sú množiny $A = (-2, \infty)$; $B = \langle -5, 4 \rangle$. Určte $A \cap B$, $A \cup B$, A B, A'_R .
- 8. Určite zápisom lineárnu funkciu g danú bodmi [-1,2]; [2,3].
- 9. Načrtnite graf a určte nulové body nasledujúcej kvadratickej funkcie:

a:
$$y = -x^2+4x-2$$
 b: $y = (x+1)^2-4$

b:
$$y = (x+1)^2-4$$

10. Určite všetky vlastnosti funkcie danej grafom na obrázku:

$$(6b-9a)^2-64a^2-$$

b)
$$(y + 3)^2 - (y - 1)^2$$

- 12. Riešte kvadratickú rovnicu: $x^2 8x + 12 = 0$

$$\frac{3x-2}{2} \ge 0$$

13. Riešte nerovnicu:

$$1-x$$

- 14. Riešte nerovnicu: 2 |x| > -4

