Testing for Differential Expression with DESeq2

Laura Pikkupeura

Teacher

- Laura Pikkupeura
- PhD student in Sandelin and Jensen Labs
- Mail: <u>laura.pikkupeura@bric.ku.dk</u>
- Background:
 - MSc Molecular Biomedicine
 - PhD Stem cell biology, genomics and transcriptomics

Lecture outline

Theory:

- Introduction to testing in transcriptomics
- Overview of DESeq2

Practical:

- Gene expression in the fissing yeast stress response
- Gene expression in Inflammatory bowel disease.
- DESeq2 applied to pseudo-aligned reads.

This is where the fun biology starts!

Top hits

Samples Experiment Sequencing and Mapping **EDA** DE **Functional** Sequence **GWAS** Motif category overlap enrichment enrichment Biological interpretation Candidate validation

Idea/hypothesis **Experiment Design**

Bioinformatics leg work

Biological/clinical analysis

Importance of QC and filtering

Testing in transcriptomics

EDA

Exploratory data analysis deals with global differences

But what if we want to say something about whether a single gene is changing?

The basic idea of testing

The basic idea of testing

Effect size vs significance

Effect Size:

Magnitude of the effect

Significance (p-value):

How much we believe the effect

Large sample size + low variance > even small effect sizes can be significant!

The basic idea of testing

Different types of replication

The use of technical replicates

Technical replicates:

- Useful for EDA.
- Measure technical noise.
- Determine whether the sample pipeline is stable - technical replicates should be most similar.
- Samples are not independent: Should not be (directly) included in the DE analysis.

Biological replicates:

- Useful for DE analysis.
- Determine the biological variation in gene expression.

The inherent problem of testing in high-throughput data

- Very small sample size (usually 3 replicates per condition).
- Extremely high
 number of tests –
 problems with
 multiple testing.

DESeq2

Why DESeq2?

Top 75

- 1 Biocinstaller (30871)
- 2 BiocGenerics (24259)
- 3 IRanges (21715)
- 4 S4Vectors (21507)
- 5 Biobase (20177)
- 6 AnnotationDbi (18365)
- 7 zlibbioc (16565)
- 8 GenomicRanges (15948)
- 9 limma (15149)
- 10 XVector (14705)
- 11 GenomeInfoDb (13745)
- 12 Biostrings (13522)
- 13 BiocParallel (13081)
- 14 SummarizedExperiment (12860)
- 15 annotate (10588)
- 16 GenomicAlignments (10213)
- 17 biomaRt (10090)
- 18 rtracklayer (9969)
- 19 Rsamtools (9770)
- 20 genefilter (9552)
- 21 DelayedArray (9180)
- 22 GenomicFeatures (8799)
- 23 graph (8539)
- 24 edgeR (7979)
- 25 preprocessCore (7447)

- 26 DESeq2 (7296) <
- 27 geneplotter (7050)
- 28 affy (5888)
- 29 BSgenome (5812)
- 30 affyio (5525)
- 31 rhdf5 (5272)
- 32 RBGL (5122)
- 33 multtest (5047)
- 34 Rgraphviz (4985)
- 35 VariantAnnotation (4774)
- 36 impute (4656)
- 37 qvalue (4248)
- 38 AnnotationHub (4171)
- 39 GEOquery (4032)
- 40 ShortRead (3907)
- 41 ensembldb (3727)
- 42 interactiveDisplayBase (3569)
- 43 ProtGenerics (3395)
- 44 DNAcopy (3300)
- 45 GSEABase (3203)
- 46 DESeq (3116)
- 47 biovizBase (3050)
- 48 sva (2791)
- 49 Gviz (2657)
- 50 KEGGREST (2632)

- Third most downloaded Rpackage for DE
- Benchmarks show good performance in most cases
- Well made vignettes and guide available
- Defaults work well out of the box
- Same developers as Salmon, resulting in a highly optimised Salmon > tximport > DESeq2 pipeline.

What DESeq2 does (tl;dr)

Samples

80822	90845	54240	52896	4729	54654
81205	181063	54218	104702	4849	54568
81394	91434	54175	52962	4877	55282
116837	205921	75741	100362	23484	122619
10047	82464	8674	11691	966	6285
796	4922	2404	3427	1003	2728
5185	6827	10631	4192	705	7515
35167	23788	31257	13726	1657	10852
35786	23955	31758	13857	1640	10666
2680	6431	2863	3709	634	3627
887	4837	4694	4562	852	3011
7	39	3	6	1	15
13	27	7	3	0	22

	log2FoldChange	Pvalue
ENSG00000274443	18.65756435	1.56E-08
ENSG00000274766	18.65756435	1.56E-08
ENSG00000275953	18.65756435	1.56E-08
ENSG00000276375	18.65756435	1.56E-08
ENSG00000278520	18.65756435	1.56E-08
ENSG00000279173	18.65756435	1.56E-08
ENSG00000279302	18.65756435	1.56E-08
ENSG00000279756	18.65756435	1.56E-08
ENSG00000202019	18.86227633	1.08E-08

~ Experimental groups

Components of DESeq2

- Normalisation.
- 2. Estimating dispersion.
- 3. Sharing information across genes.
- 4. Testing (Using GLMs and Wald Tests).
- 5. Correction for multiple testing with independent filtering.

Counts Per Million (CPM)

- As you already know, the individual samples in the EM cannot be compared before they have been normalised.
- The main reason for this is differences in library size or sequencing depth between samples in the same experiments.
- The basic way of dealing with this problem is to consider counts as fractions of total, usually scaled to a human scale unit, such as countsper-million (cpm) or tags-per-million (tpm)

RNA composition

Without DE

```
sample1 sample2 sample3
## 1
          10
                   22
                            31
                   42
## 2
                            61
## 3
                   62
                            91
                   22
## 4
          10
                            31
                   22
## 5
          10
                            31
                   22
## 6
          10
                            31
```

```
## sample1 sample2 sample3
## [1,] 0.1111111 0.1145833 0.1123188
## [2,] 0.2222222 0.2187500 0.2210145
## [3,] 0.3333333 0.3229167 0.3297101
## [4,] 0.1111111 0.1145833 0.1123188
## [5,] 0.1111111 0.1145833 0.1123188
## [6,] 0.1111111 0.1145833 0.1123188
## attr(,"scaled:scale")
## sample1 sample2 sample3
## 90 192 276
```

With DE

problems --> add a lot of count to many gene (eq to exp chnage in many genes) it will affect DE of other gene when we

```
use total count for normalization 22 sample3
                                         31
we need assumption below
                                42
                                         61
                        30
                                62
                                         91
                                        124
                        10
                               110
                               110
                                        124
             ## 5
                        10
                                        124
             ## 6
                               110
                        10
```

```
## [1,] 0.1111111 0.04824561 0.05585586
## [2,] 0.2222222 0.09210526 0.10990991
## [3,] 0.3333333 0.13596491 0.16396396
## [4,] 0.1111111 0.24122807 0.22342342
## [5,] 0.1111111 0.24122807 0.22342342
## [6,] 0.1111111 0.24122807 0.22342342
## attr(,"scaled:scale")
## sample1 sample2 sample3
## 90 456 555
```

DESeq2 solves this by estimating normalisation factors. Importantly, this **assumes that most genes are not DE!**

2. Dispersion

 Y_{gj} is the count for gene g in sample j

$$Y_{gj} \sim NB(\mu_{gj}, \mu_{gj} + \mu_{gj}^2 \phi_g)$$

negative binomial dist

Where u_{qj} is the mean expression:

$$\mu_{gj} = M_j p_{pj}$$

Where M is the library size and p_{pj} the fraction of the gene within M.

$$BCV = \sqrt{\phi_g}$$

Intuitively:

- Gene expression varies between samples due to sequencing noise (Modelled with a poisson distribution)
- Gene expression varies between samples due to biological variation
- DESeq2 models gene expression as a negative binomial distribution, where the biological coefficient of variation (BCV) measures excess variance compared to poisson

Total CV^2 = Technical CV^2 + Biological CV^2

3. Information sharing

- It is difficult to estimate the variance of the expression of a single gene with very few replicates
- 2. DESeq2 solves this issue by assuming genes with the same expression tend to have the same variance (BCV)
- 3. By "shrinking" the individual estimates of variance towards the global trend DESeq2 obtains better downstream results.

^{*} Additionally, DESeq2 also filters out outliers using Cook's distance

4. Testing

Black box warning!

DESeq2 uses generalised linear models (GLMs) to test for differential expression, allowing for highly complex experimental setups.

Importantly, this allows for correction of *batch effects* as we discussed in the PCA lecture.

Here, we will only deal with simple group-wise comparisons in abstract terms

4. Testing

- Once shrunken dispersions estimates have been obtained, DESeq2 uses the Wald test to test for differences between groups
- Hypotheses:
 - H₀: log₂FC between two groups is zero
 - H₁: log₂FC between two groups is not zero
- Alternatively, the threshold can also be set to something other than zero:
 - H₀: log₂FC between two groups is less than 1 (in either direction)
 - H₁: log₂FC between two groups is more than 1 (in either direction)
- The results is an estimate of the logFC and a p-value for each gene!

Summary on Dispersion and Testing

Var(Expression) = Across group variability + Biological Variability + Measurement Error

Effects of conditions, this is what we want to find.

Variation in expression between individuals.

Variation in expression due to sequencing.

This is what we test for! Shared across genes.

Sample independent (hopefully!).

Dominant for highly expressed genes

Dominant for lowly expressed genes.

Correction for multiple testing

- As we are testing thousands of genes, we must correct for multiple testing.
- DESeq2 be defaults uses an extension of the FDR-correction procedure based on *independent filtering*:
 - Due to sequencing noise, lowly expressed features will often vary too much to detect DE even very high logFCs.
 - Including many extra lowly expressed genes therefore decreases the number of DE genes due to more strict correction for multiple testing.
 - DESeq2 removes lowly expressed genes before FDR-correction to maximise the number of genes detected as DE.
- Statistical note: This is only valid if the filtering statistic (mean expression in this case) is *independent* under the null hypothesis (there is no relation between mean expression and tendency to be DE)

Genes ranked by mean expression

Components of DESeq2

- Normalisation.
- 2. Estimating dispersion.
- 3. Sharing information across genes.
- 4. Testing (Using GLMs and Wald Tests).
- 5. Correction for multiple testing with independent filtering.

Other functionalities

- Variance-stabilizing transformations: An alternative to the standard log2transformation (vst and rlog).
- Shrink both dispersion and logFCs
- Make PCA-plots
- Use a more advanced independent filtering approach called independent hypothesis weighting (IHW)
- Test complex multifactorial designs using Likehood ratio tests.
- New: Tissue decomposition (unmix)

DESeq2 practical

- Example of complete analysis starting from a count matrix:
 - Setting up the data.
 - Running the DESeq2 functions.
 - Producing essential diagnostic plots.
 - Inspecting the results.
- You will redo the analysis on another dataset
- Demonstration of how to use tximport to import Salmon quantifications into DESeq2.

Warning!

- DESeq2 is based on Bioconductor
- Bioconductor uses a quite rare Rprogramming system called S4.
- Bioconductor IS NOT the tidyverse!
- DO NOT expect everything to be a tibble!
- You might to read help files for the functions to know what to do!

Next lecture

- Now you have used DESeq2 to find genes that show statistically significant changes between groups.
- Can you say something about these sets of genes?
- You can look at whether the genes as a group are associated to some known biological pathway or process.
- Monday you will look at GO-term enrichment.