Likelihood comparison

If the true model is

$$y_1 = X(\beta_1 + \Gamma_1(\alpha_1'x)) + Xb_1 + \epsilon y_2 = X(\beta_2 + \Gamma_2(\alpha_2'x)) + Xb_2 + \epsilon$$
 (1)

If we assume they share the same α , the two models are

$$y_1 = X(\beta_1 + \Gamma_1(\alpha'x)) + Xb_1 + \epsilon$$

$$y_2 = X(\beta_2 + \Gamma_2(\alpha'x)) + Xb_2 + \epsilon$$
(2)

df = 3

Let's compare the log likelihood calculated from the LME, by using the $\hat{\alpha}$ estimated from

- purity method 1 (coefficient),
- purity method 2 (outcome),
- likelihood method 1 $(f(\theta; y|x))$,
- likelihood method 2 $(f(\theta; y))$,
- likelihood method 3 $(E(\theta))$

Besides, if we simulate the drug and place bo dataset with different α , let's test whether there are significant difference between estimating with one shared α or not.

```
fit_drg_est_1 = lmer(y \sim tt + I(tt^2) + W1 + W1 * tt + W1 * I(tt^2) +
                          (tt + I(tt^2)|subj),
                        data = dat_drg, REML = FALSE)
fit_pbo_est_2 = lmer(y \sim tt + I(tt^2) + W2 + W2 * tt + W2 * I(tt^2) +
                       (tt + I(tt^2) | subj),
                     data = dat_pbo, REML = FALSE)
fit_drg_est_2 = lmer(y \sim tt + I(tt^2) + W2 + W2 * tt + W2 * I(tt^2) +
                       (tt + I(tt^2)|subj),
                     data = dat_drg, REML = FALSE)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00203211 (tol = 0.002, component 1)
fit pbo est 3 = lmer(y \sim tt + I(tt^2) + W3 + W3 * tt + W3 * I(tt^2) +
                       (tt + I(tt^2) | subj),
                     data = dat_pbo, REML = FALSE)
fit drg est 3 = lmer(y \sim tt + I(tt^2) + W3 + W3 * tt + W3 * I(tt^2) +
                       (tt + I(tt^2)|subj),
                     data = dat_drg, REML = FALSE)
fit_pbo_est_4 = lmer(y \sim tt + I(tt^2) + W4 + W4 * tt + W4 * I(tt^2) +
                       (tt + I(tt^2) | subj),
                     data = dat_pbo, REML = FALSE)
fit_drg_est_4 = lmer(y ~ tt + I(tt^2) + W4 + W4 * tt + W4 * I(tt^2) +
                       (tt + I(tt^2)|subj),
                     data = dat_drg, REML = FALSE)
fit_pbo_est_5 = lmer(y ~ tt + I(tt^2) + W5 + W5 * tt + W5 * I(tt^2) +
                       (tt + I(tt^2) | subj),
                     data = dat_pbo, REML = FALSE)
fit drg est 5 = 1 mer(y \sim tt + I(tt^2) + W5 + W5 * tt + W5 * I(tt^2) +
                       (tt + I(tt^2)|subj),
                     data = dat_drg, REML = FALSE)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
fit pbo est 6 = lmer(y \sim tt + I(tt^2) + W6 + W6 * tt + W6 * I(tt^2) +
                       (tt + I(tt<sup>2</sup>) |subj),
                     data = dat_pbo, REML = FALSE)
fit_drg_est_6 = lmer(y ~ tt + I(tt^2) + W6 + W6 * tt + W6 * I(tt^2) +
                       (tt + I(tt^2)|subj),
                     data = dat_drg, REML = FALSE)
11 = summary(fit_pbo_est_1)$logLik + summary(fit_drg_est_1)$logLik
12 = summary(fit_pbo_est_2)$logLik + summary(fit_drg_est_2)$logLik
13 = summary(fit_pbo_est_3)$logLik + summary(fit_drg_est_3)$logLik
14 = summary(fit_pbo_est_4)$logLik + summary(fit_drg_est_4)$logLik
15 = summary(fit_pbo_est_5)$logLik + summary(fit_drg_est_5)$logLik
16 = summary(fit_pbo_est_6)$logLik + summary(fit_drg_est_6)$logLik
likes = c(10,11,12,13,14,15,16)
```

Method	Purity (coefficient)	Purity (outcome)	loglikelihood (condition)	loglikelihood (outcome)	loglikelihood (mean)	Random
loglikelihood	d -6094.255	-6097.163	-6094.360	-6131.375	-6132.756	-6109.696
p-value		0.121	0.975	0.991	5.55e-16	1.11e-16