DEPTH FIRST SEARCH

Depth-first search

- Depth-first search is a widely used graph traversal algorithm besides breadthfirst search
- It was investigated as strategy for solving mazes by Trémaux in the 19th century
- It explores as tar as possible along each branch before backtracking // BFS was a layer-by-layer algorithm
- Time complexity of traversing a graph with DFS: O(V+E)
- Memory complexity a bit better than that of BFS !!!
- By itself the DFS isn't all that useful, but when augmented to perform other tasks such as count connected components, determine connectivity, or find bridges/articulation points then DFS really shines.

Depth-first search

dfs(vertex)

vertex set visited true print vertex

for v in vertex neighbours
if v is not visited
dfs(v)

dfs(vertex)

Stack stack vertex set visited true stack.push(vertex)

while stack not empty actual = stack.pop()

for v in actual neighbours
if v is not visited
v set visited true
stack.push(v)

RECURSION

ITERATION

<u>Applications</u>

- Topological ordering
- Kosaraju algorithm for finding strongly connected components in a graph which can be proved to be very important in recommendation systems (youtube)
- Detecting cycles (checking whether a graph is a DAG or not)
 - ▶ Processes waiting for each other → this is a cycle
 - Generating mazes OR finding way out of a maze

Symmetry in DFS

We can go to the opposite direction, it is going to be a valid DFS as well !!!

Symmetry in DFS

We can go to the opposite direction, it is going to be a valid DFS as well !!!

Symmetry in DFS

We can go to the opposite direction, it is going to be a valid DFS as well !!!

DFS IMPLEMENTATION

Memory Complexity

- We just have to store as many items in the stack as the height of the tree
- Which is log/N!!!
- The memory complexity will be O(logN)

- Breadth-First Search: O(N)
- Depth-First Search: O(logN)
 - Depth-First Search is **preferred** most of the time
 There may be some situations where BFS is better
 - Artificial intelligence
 - Robot movements

Basic DFS


```
# Global or class scope variables
n = number of nodes in the graph
g = adjacency list representing graph
visited = [false, ..., false] # size n
function dfs(at):
 if visited[at]: return
 visited[at] = true
 neighbours = graph[at]
 for next in neighbours:
   dfs(next)
# Start DFS at node zero
start node = 0
dfs(start node)
```

Connected Components

Sometimes a graph is split into multiple components. It's useful to be able to identify and count these components.

Connected Components

Sometimes a graph is split into multiple components. It's useful to be able to identify and count these components.

Connected Components

Assign an integer value to each group to be able to tell them apart.

We can use a DFS to identify components. First, make sure all the nodes are labeled from [0, n) where n is the number of nodes.

... and so on for the other components


```
# Global or class scope variables
n = number of nodes in the graph
g = adjacency list representing graph
count = 0
components = empty integer array # size n
visited = [false, ..., false] # size n
function findComponents():
 for (i = 0; i < n; i++):
  if !visited[i]:
   count++
   dfs(i)
 return (count, components)
function dfs(at):
 visited[at] = true
   components[at] = count
 for (next : g[at]):
  if !visited[next]:
   dfs(next)
```

What else can DFS do?

We can augment the DFS algorithm to:

- Compute a graph's minimum spanning tree.
- Detect and find cycles in a graph.
- Check if a graph is bipartite.
- Find strongly connected components.
- Topologically sort the nodes of a graph.
- Find bridges and articulation points.
- Find augmenting paths in a flow network.
- Generate mazes.