Universidade Federal de Pelotas

Cursos de Ciência e Engenharia de Computação

Disciplina: Sistemas Discretos

Lista de Exercícios – Noções de Lógica

 Quais dessas sentenças são proposições? Quais são os valores-verdade das que são proposições?

a) Curitiba é a capital do Paraná. é proposição, V

b) Joinville é a capital de Santa Catarina. é proposição, F

c) 2 + 3 = 5 é proposição, V

d) 5+7=10 é proposição, F

e) x + 2 = 11 não é proposição

f) Não ultrapasse. não é proposição

g) Que horas são? ${\bf não}$ é proposição h) 4+x=5 ${\bf não}$ é proposição

i) $2^n \ge 100$ **não** é proposição

- 2) Construa as tabelas verdade para as seguintes fórmulas e classifique-as:
 - a) $p \lor \sim (p \land q)$ Tautologia, satisfazível

р	Q	(p ∧ q)	~(p ∧ q)	p ∨ ~(p ∧ q)
V	V	V	F	V
V	F	F	V	V
F	V	F	V	V
F	F	F	V	V

b) $p \lor \sim r \to \sim (p \land q)$ Satisfazível e falsificável

р	q	r	~r	$p \wedge q$	~(p ∧ q)	p ∨ ~r	$p \vee \sim r \rightarrow \sim (p \wedge q)$
V	V	>	F	V	F	V	F
V	V	F	V	V	F	V	F
V	F	V	F	F	V	V	V
V	F	F	V	F	V	V	V
F	V	V	F	F	V	F	V
F	V	F	V	F	V	V	V
F	F	V	F	F	V	F	V
F	F	F	V	F	V	V	V

c) ~p \((p \(^q) \) Contradição, falsificável

р	Q	~p	~q	(p ∧ ~q)	~p ∧ (p ∧ ~q)
V	V	F	F	F	F
V	F	F	V	V	F
F	V	V	F	F	F
F	F	V	V	F	F

d) $p \land q \rightarrow (p \leftrightarrow q)$ Tautologia, satisfazível

р	Q	p∧q	$p \leftrightarrow q$	$p \land q \to (p \leftrightarrow q)$
V	V	V	V	V
V	F	F	F	V
F	V	F	F	V
F	F	F	V	V

3) Sabendo que as proposições p e q são verdadeiras e que a proposição r e s são falsas, determinar o valor-verdade (V ou F) das seguintes proposições:

a)
$$p \land \sim q$$

= $V \land \sim V = V \land F = F$

c)
$$\sim p \wedge q$$

= $\sim V \wedge V = F \wedge V = F$

d)
$$\sim p \vee q$$

= $\sim V \vee V = F \vee V = V$

e)
$$\sim p \land \sim q$$

= $\sim V \land \sim V = F \land F = F$

f)
$$\sim p \lor \sim q$$

= $\sim V \lor \sim V = F \lor F = F$

g)
$$(s \leftrightarrow r) \leftrightarrow (p \leftrightarrow q)$$

= $(F \leftrightarrow F) \leftrightarrow (V \leftrightarrow V) = V \leftrightarrow V = V$

h)
$$(r \rightarrow p) \lor (s \rightarrow q)$$

= $(F \rightarrow V) \lor (F \rightarrow V) = V \lor V = V$

i)
$$\sim r \rightarrow (p \land q)$$

= $\sim F \rightarrow (V \land V) = V \rightarrow V = V$

$$\begin{split} j) \quad & (r \to q) \leftrightarrow (\sim p \leftrightarrow r) \\ & = \ & (F \to V) \leftrightarrow (\sim V \leftrightarrow F) = (F \to V) \leftrightarrow (F \leftrightarrow F) = V \leftrightarrow V \ = V \end{split}$$

- 4) Suponha o conjunto universo {1, 2, 3, 4, 5, 6, 7, 8, 9}. Apresente pelo menos um contra exemplo para cada uma das seguintes proposições:

 - a) $(\forall x)(x+5 < 12)$ x = 7, x = 8, x = 9b) $(\forall x)(x \in \text{primo})$ x = 1, x = 4, x = 6, x = 8, x = 9
 - c) $(\forall x)(x^2 > 1)$ x = 1
 - d) (∀x)(x é par) x = 1, x = 3, x = 5, x = 7, x = 9
- 5) Sendo o conjunto A= {5, 7, 8, 9, 11, 13} e utilizando o quantificador existencial, escreva as frases:
 - a) Existe elemento de A que é número ímpar;
 - (∃x)(x é ímpar)
 - b) Existem dois elementos diferentes que são primos
 - $(\exists x)(\exists y)(x \in primo \land y \in primo \land x \neq y)$
 - c) Não existe elemento de A que seja múltiplo de 6;
 - ~(∃x)(x é múltiplo de 6)
- 6) Considere que p e q são proposições.
 - P: Eu comprei um bilhete de loteria esta semana
 - Q: Eu ganhei uma bolada de um milhão de dólares na sexta-feira Expresse cada uma dessas proposições em uma sentença em português.
 - a) ~p

Eu não comprei um bilhete de loteria esta semana

b) p v q

Eu comprei um bilhete de loteria esta semana ou eu ganhei uma bolada de um milhão de dólares na sexta-feira

c) $p \rightarrow q$

Se eu comprei um bilhete de loteria esta semana então eu ganhei uma bolada de um milhão de dólares na sexta-feira

d) $p \wedge q$

Eu comprei um bilhete de loteria esta semana e eu ganhei uma bolada de um milhão de dólares na sexta-feira

e) $p \leftrightarrow q$

Eu comprei um bilhete de loteria esta semana se e somente se eu ganhei uma bolada de um milhão de dólares na sexta-feira

f) $\sim p \rightarrow \sim q$

Se eu não comprei um bilhete de loteria esta semana então eu não ganhei uma bolada de um milhão de dólares na sexta-feira

g) ~p ∧ ~q

Eu **não** comprei um bilhete de loteria esta semana **e** eu **não** ganhei uma bolada de um milhão de dólares na sexta-feira

h) ~p v (p \wedge q) Eu ${\bf n \tilde{a} o}$ comprei um bilhete de loteria esta semana ${\bf o u}$ eu comprei um bilhete de loteria esta semana e eu ganhei uma bolada de um milhão de dólares na sextafeira.