Cultural homophily and Collaboration in Global Teams

Gábor Békés* and Gianmarco I.P. Ottaviano**

*CEU, KRTK KTI and CEPR
** Bocconi University, Baffi-CAREFIN, IGIER, CEP and CEPR

CEU MRSS Seminar // February 2022

Introduction

Introduction: Globalization and homophily in teams

- Globalization mixing the best of global expertise in multinational teams
 - Diversity benefits: learning, innovation
 - ► Hurdles: communication, trust
- Interaction between people of different cultural background key to understand function of teams
- Homophily is association of similar people (shared cultural background)
- ► What we know most: how teams are formed, tie-formation, friendship networks
- Our focus is collaboration (work for a common purpose)

Introduction: Globalization and homophily in teams

► How does cultural **homophily** – barriers related to **culture** – affect **collaboration** in multinational **teams**?

Introduction

000000000

Introduction

Introduction: Measuring choice homophily

- ► Homophily = Opportunity (induced) + Preference (choice)
 - Opportunity: mechanically induced distributions across categories define the probability they choose similar others
- Challenge: partial out induced homophily to measure choice homophily in a setup with external validity to modern workplaces
 - ▶ Option A: With experiment / random team formation
 - ▶ Option B: With observational data / modeling baseline.

Introduction

Introduction: Using football data to capture collaboration

- ► Teams: use professional football top European leagues
- Collaboration: measured by pass rate between a pair of players
 - ► Team (squad) composition is exogenous to players
 - Collaboration is individual choice
- Ideal setting:
 - Observe collaboration repeatedly in great detail
 - ► Collaborative with well defined objectives and roles.
 - ▶ Rules are simple and known allow calculating baseline
 - ▶ Global workplace: several countries, players from 130 countries

Homophily: induced and choice

Measuring cultural homophily

- Cultural background (culture') set of cultural traits
- Language, norms, values and attitudes learnt at home
- Proxy through nationality and colonial (empire) legacy.
- ► Team members of same culture collaborate more than team members of different culture.
 - 'Border effect' hamper collaboration

Introduction

How we measure choice homophily: Data and model

- Exhaustive dataset recording passing events from professional football
 - ▶ Spain, Germany, France, Italy and England, 8 seasons
 - ▶ 7000 Players from 132 countries, characteristics
 - ▶ 10.7 million passes (passer, receiver: ID, location)
- Baseline discrete choice model of players' passing behavior
 - Pass rate for a pair of players is pinned down by their characteristics and opportunities during the matches
 - Estimate directly in model.

Related literature

- ▶ Diversity in teams Lazear (1999) Lang (1986)
- ▶ Diverse environments, performance in cities, plants: Ottaviano and Peri (2006, 2005) Buchholz (2021)
- Diversity in teams: team performance and composition
 - ► Hockey: Kahane et al. (2013), Football: Nüesch and Haas (2013), Tovar (2020).
 - ► Ethnic conflict: Hjort (2014), Laurentsyeva (2019),
 - ► Team formation process Calder-Wang et al. (2021)
- ► Homophily in finding partners in scientific publishing: Freeman and Huang (2015), AlShebli et al. (2018)
- ► Homophily network friendships Currarini et al. (2009, 2010)
- ► Review psychology to management (Lawrence and Shah, 2020; Ertug et al., 2021).

Contributions

- 1. Focus on everyday workplace collaboration high skilled, lowly charged context in a developed area with no real conflicts.
- 2. Well defined measure of collaboration at individual level through time (not rare pair formation)
- 3. Careful model of baseline, both theory and empirics (go beyond randomization)
- 4. Rich and precise measures of individual characteristics
- 5. Very large, global sample external validity

Preview of results

- ▶ Baseline difference is 6.6%
- Once partialling out induced homophily, player pairs of same culture have a 2.5% higher pass rate (choice homophily bias)
- Culture: both same nationality and colonial (empire) background matters.
- Homophily bias is higher for ...
 - deep collaboration intensive passing (vs one shot passes)
 - young players (vs veterans)
 - players playing in a foreign country (vs domestic)

Data collection and definitions

Data: scope

- 5 top leagues (France, Germany, Spain, Italy, England),
- ▶ 8 seasons (2011/12-2018/19) every teams play with every other twice
 - ▶ 20 (18) teams per league, 14,608 games in total
 - 800 passes/game/team
- teams, 154 different team, each with 25-30 strong squad, regular churning (twice a year)
- events: 10.7 million passes in total
- ▶ players: 7,000, from 132 countries

Raw data 1: events

- Event data as xml file
- Structured text, events with features, qualifiers
 - separately recorded with a timestamp
 - ► A pass between players, type of pass, success
- Webscraping
 - originally created by OPTA (cameras+algorithms + humans)
 - Scraped from a sports website
 - Pass events separated

Data as text: people (players)

Webscraping

- Source: Transfermarkt, a player information database
- ► Player characteristics:
 - nationalities,
 - position in team
 - age, height
 - player valuations over time

Data as text: names

- ► Player characteristics:
- ► All common aspects of working with names
- Entity resolutions (accents, middle names, nick-names)
- Combing datasets: entity resolution / coreference
 - Matching algorithm by motifs
- ► Entity resolution II: country names

Data: defining culture

- ► Culture ...
- ► Same nationality (citizenship)
- Shared history colonial (empire) legacy
 - Argentina-Spain, England-Egypt (ruler and colony)
 - Uruguay-Argentina (colony siblings),
 - Ukraine-Russia, Northern Ireland-Ireland (same country once)
- Same language not colony
 - Switzerland and Germany, Congo and France

Homophily: induced and choice 2 . colony siblings

Data: Same nationality definition

- ▶ 26% of players have two or three nationalities
 - Born in a country and moved to another as minor and got nationality with family (Argentina and Spain)
 - Parents have multiple nationalities (French and Algerian)
- Same nationality definition = two players have a common nationality

Data: Same nationality definition

Man City players Ryad Mahrez(Alg, Fr) and Aymeric Laporte(Fr, Es) in 2020

Data: aggregation

- From a choice model, aggregate to relative frequencies
- Aggregate to half-seasons (16-20 games) compromise
 - Squads are large, only 11 players at field at once, lot of variation across games, selection major issue for a single game.
 - ► Noise is high / randomness of games
 - There is churning in mid-season
 - ▶ Player quality stable in half-season / vary long run
- ▶ Object of interest = pass count for player pairs
- compared to total passes by passer when both on pitch + total passes at team.

Model

Model: setup

- ▶ Football team N = 11 players, two players indexed o, d.
- ► The passer's decision = problem of passing the ball to the receiver who generates the highest expected benefit for the team.
- ▶ Game = series of short units of time (t) up to T ('periods').
- $ightharpoonup T^{o,d}$ is subset of passing episodes: both players are on the pitch, player o has ball possession
- A 'pass' (o, d, t) = player o ('passer') to teammate d ('receiver'). Started by o in t, received by d in t + 1

The modeling task

- Discrete choice dynamic programming model
- to disentangle choice from opportunity in an internally consistent way
- controlling for
 - observable player characteristics (such as team, position, valuation, citizenship)
 - pass features (such as average distance)

Introduction

Model: The passer's decision

Value of having a ball = two components: what the player may do + option value of a pass.

$$U_t^o = \ln u_t^o + \max_{\{d\}_{d=0}^N} \left\{ \beta \varphi^d E \left[U_{t+1}^d \right] - \widetilde{c}^{o,d} + z_t^d \right\} \tag{1}$$

Model: The passer's decision

Introduction

Value of having a ball = two components: what the player may do + option value of a pass.

$$U_t^o = \ln u_t^o + \max_{\{d\}_{d=0}^N} \left\{ \beta \varphi^d E \left[U_{t+1}^d \right] - \widetilde{c}^{o,d} + z_t^d \right\}$$
 (1)

- ▶ In u_t^d = benefit due to player d's characteristics
- $ightharpoonup z_t^d = \text{random part (shock'), Gumbel } (\kappa)$
- $ightharpoonup \widetilde{c}^{o,d} = \text{challenges} \text{'passing cost'}$
- $ightharpoonup \varphi^d$ = probability of successful pass to receiver d
- β = relative importance the team attaches to passing in general (style)

Model: The player's decision 2

- ► The probability that player *o* with ball in *t* successfully passes to teammate *d* depends on
 - the (relative) value of both players
 - ability to pass/receive a pass successfully
 - cost of the pass
- Aggregation to T probabilities to relative frequency
- Probability = the average share of successful passes that player o makes to player d per episode over a half-season
 - ▶ in the subset of time (passing episodes) T^{o,d} when both o and d are fielded and player o has ball possession

Introduction

Probability of a successful pass

$$\pi_t^{o,d} = \left(V_{t+1}^d\right)^{\kappa\beta\varphi^d} \left(c^{o,d}\right)^{-\kappa} \left(\Lambda_{t+1}^o\right)^{-\kappa} \tag{2}$$

with
$$\Lambda_{t+1}^o \equiv \left[\sum_{s=1}^N \left(V_{t+1}^s \right)^{\kappa \beta \varphi^s} (c^{o,s})^{-\kappa} \right]^{\frac{1}{\kappa}}$$
 (3)

- V_{t+1}^d : player d controlling the ball in period t+1 ($V_t^o \equiv \exp E[U_{t+1}^o]$)
- $ightharpoonup \varphi^d$ his probability of taking control of the ball
- $ightharpoonup c^{o,d}$ the difficulty of passing the ball to him
- $\land \Lambda^o_{t+1}$: relative to the team's average benefit from its players s=1,...,N controlling the ball in period t+1 (V^s_{t+1}), weighted by their probability of taking control of the ball (φ^s) and the difficulty of passing the ball to them ($c^{o,s}$).

Model: Passing cost

Introduction

Model passing cost

$$\widetilde{c}^{o,d} = \left(g^{o,d}\right)^{\gamma} \left(I^{o,d}\right)^{\lambda} \tag{4}$$

- \triangleright $g^{o,d}$ captures all distance-related frictions
- ► I^{o,d} captures all non-distance-related frictions.
 - effect of same/different cultural traits
 - also: experience in playing together, physical difference
 - May be high if o and d find it hard to collaborate
- In model, assume separability (true empirically)

Model: pass rate over a half-season

Define

Introduction

- P: total number of team passing episodes
- \triangleright $P^{o,d}$ number of passing episodes involving a pass from o to d
- $ightharpoonup T^{o,d}$: the number of passing episodes when both o and d are fielded and player o has ball possession.

Half-season 'pass rate' $p^{o,d} = T^{o,d} \pi_t^{o,d} / P$, and thus

$$\log p^{o,d} = \log T^{o,d} - \log P - \kappa \log \Lambda_{t+1}^o + \kappa \beta \varphi^d \log V_{t+1}^d$$
(5)
$$-\kappa \gamma \log g^{o,d} - \kappa \lambda \log I^{o,d}$$

Model: pass rate over a half-season

The pass rate in a half-season depends on

- P: total number of team passing episodes
- $ightharpoonup T^{o,d}$: the number of passing episodes when both o and d are fielded and player o has ball possession.
- Passer characteristics
- Receiver characteristics
- Passing frictions
- Homophily

Estimation model and results

Model Estimation

- ▶ Homophily: $SameCult_{o,d}$ as the same culture indicator (0/1).
- Model pass rate = f(player characteristics, position, passing friction, homophily)
- Poisson model for count of passes conditional on total passes
- Poisson (PPML-FE) with many fixed effects has several advantages over In count (Fally, 2015; Santos-Silva and Tenreyro, 2021)
 - ▶ Result is robust to OLS with In *count*

Estimated model: Frictions

Introduction

We capture distance-related frictions that make it difficult to pass the ball from o to d

 $PassFric_{o,d,t} = \gamma_1 PassDist_{o,d,t} + \gamma_2 Forwardness_{o,d,t} + \eta Position_o Position_d$ (6)

- a half-season PassDist_{o,d,t} is the average distance of passes between the two players
- ► Forwardness_{o,d,t} is the share of passes between the two players with a forward direction
- Position_o Position_d is a dummy variable capturing the two players positions

Introduction

Estimated models: Poisson with player characteristics / FE

(1) Poisson model with passer and receiver characteristics

$$E(pass_count_{o,d,t}|...) = exp(\delta SameCult_{o,d} + PassFric_{o,d,t} + \ln T_{o,d,t} + \sum_{j=o}^{d} (\eta_{j} value_{j,t} + \theta_{j} playerchar_{j,t}))$$

$$(7)$$

(2) Poisson model with passer*half-season + receiver*half-season FE

$$E(pass_count_{o,d,t}|...) = exp(\delta SameCult_{o,d} + PassFric_{o,d,t} + \ln T_{o,d,t} + v_{o,t} + v_{d,t})$$
(8)

Estimated models: Poisson with player characteristics / FE

Arsenal: Bellerin and Cazorla and Ozil and Cazorla

Introduction

Estimated models: Poisson with culture traits

- ► Poisson model with passer*half-season and receiver*half-season FE,
- ► Same culture indicator *SameCulto.d* separately in three traits:
 - SameNato,d Same nationality
 - ► SameCol_{o,d} Same colonial legacy but not same nationality
 - SameLan_{o,d} Same language but no colonial legacy, not same nationality

$$E(pass_count_{o,d,t}|...) = exp(\delta_1 SameNat_{o,d} + \delta_2 SameCol_{o,d} + \delta_3 SameLan_{o,d} + PassFric_{o,d,t} + \ln T_{o,d,t} + + v_{o,t} + v_{d,t}))$$
(9)

Results: Baseline models

Introduction

Dep.var: Pass count	(No ctrls)	(Player chars)	(Player FE)
Same culture (any) (0/1)	0.0655***	0.0204***	0.0250***
	(0.0091)	(0.0038)	(0.0042)
Average length of passes (In)		-0.6759***	-0.7944***
		(0.0077)	(0.0094)
Average forwardness Ind (0-1)		0.0066	0.0143
		(0.0077)	(0.0099)
Receiver valuation (In)		0.0103***	
		(0.0015)	
Team FE	yes	yes	yes
Passer, Receiver-position FE		yes	yes
Passer, Receiver characteristics		yes	
Passer-half_season, Receiver-half_season FE			yes
Pseudo R ²	0.078	0.741	0.759

Poisson regression model. N= 668,108. Standard errors, clustered at player 1 level, are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. Player features: position, value, total passes, citizenship. Exposure=In shared passes together

Result discussion

- (Unconditional) Same culture players tend to pass 6.5% more compared to different culture players
- ▶ Partialing out baseline homophily: it is around 2.5%
 - Robust to a variety of specifications I.- confounders/selection
 - More variables on passes (direction)
 - Physical differences
 - Assortative matching
 - Experience with club
 - Robust to a variety of specifications II.- functional form
 - ▶ Allowing minutes coefficient to vary (1.07)
 - log count as dependent variable.

Results: Cultural traits

Introduction

Dep.var: Pass count	(No ctrls)	(Player chars)	(Player FE)
Same nationality $(0/1)$	0.0799***	0.0238***	0.0301***
	(0.0102)	(0.0042)	(0.0048)
Same colonial legacy $(0/1)$	0.0140	0.0227***	0.0234***
	(0.0149)	(0.0058)	(0.0066)
Same language only $(0/1)$	0.0501**	0.0008	0.0066
	(0.0213)	(0.0089)	(0.0095)
Team FE	yes	yes	yes
Passer, Receiver-position FE		yes	yes
Passer, Receiver characteristics		yes	
Passer-half_season, Receiver-half_season FE			yes
Pass direction, distance	yes	yes	yes
Pseudo R ²	0.07835	0.74164	0.75930

Poisson regression model. N= 668,108. Standard errors, clustered at player 1 level, are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. Player features: position, value, total passes, citizenship. Exposure=In shared passes together.

Deeper collaboration

- Passing is collaboration
- Deeper collaboration = pass sequences (like ABAB)
- For deeper collaboration, trust/understanding/taste should be more important
- Instead of pass count: count of pass sequences

Results: deeper collaboration – pass sequence

	pass seq count sequences (1)	complex pass seq count (2)
Same culture (any) (0/1)	0.0209*** (0.0039)	0.0501 *** (0.0071)
Pseudo R ²	0.74590	0.55971

Poisson regression model. N= 668,108. Standard errors, clustered at player 1 level, are in parentheses. **** p < 0.01, *** p < 0.05, ** p < 0.1. Both columns: Player1*half-season FE, Player2*half-season FE+ friction. Exposure=In shared passes together

Deeper collaboration - result discussion

- Deeper collaboration = pass sequences (like ABAB)
- Same culture premium is substantially higher for more complicated passes. (5% vs 2%)
- For deeper collaboration, trust/understanding/taste is more important: same cultural background pairs collaborate substantially more.

Introduction

Heterogeneity of homophily premium - by passer

- Heterogeneity from the passer's point of view
- Various features linked to theory in management or labour economics
 - Experience (age)
 - Being in minority or majority (play at home or abroad)
 - Status (valuation)

Heterogeneity of homophily premium

Introduction

Heterogeneity source		Freq	Coeff %	Sig
Nationality = league	Home national Foreign national	57% 43%	1.70 3.40	yes
Player values (eur)	Low (below 3.5m, avg=1m) Medium (1-16m, avg=4.3m) High (16m+, avg=22m)	27.4% 48.4% 22.2%	2.17 2.60 2.62	no no
Age category (ys)	Veteran (29.3+, avg=31.9) Experienced (23-29, avg=26) Young (below 23ys, avg=21)	25% 50% 25%	1.99 2.44 3.38	no yes
With same club (day)	Low (below 164, mean: 75) Medium (165-959, mean 484) High (960+, mean: 1850)	25% 50% 50%	2.29 2.70 2.37	no no

Baseline Poisson FE regression model, defined by the passing player characteristic. Base is first line. Sig: difference statistically significant at 5%.

Result discussion: Heterogeneity

Introduction

Heterogeneity from the passer's point of view

- Age: younger players have twice the bias
- ▶ Minority: players who play abroad have also twice the bias
- Status: The bias does not depend on the quality of players (valuation)

Results summary

- Evidence of homophily: player pairs of same culture pass more
- ► Same nationality / same historical (colonial) legacy similar.
- ► More likely engaged in deeper collaboration

Summary

- We isolated choice homophily to learn about any possible premium of cultural homophily for workplace collaboration
- ► Culture: same nationality and legacy of shared history via colonial rule or past in a union.
- ▶ Homophily is pervasive even in teams of
 - very high skill individuals
 - with clear common objectives and aligned incentives
 - and involved in well defined tasks
 - activities not particularly language-intensive.