Chapitre 1

Espace vectoriel E

Exemple 1 $(\overrightarrow{x} \in \mathbb{R}^2)$

Du fait de l'équivalence entre ces trois représentations, géométrique, numérique et algébrique, tout ce qui est vrai ou faux pour l'un l'est aussi pour l'autre ¹. Savoir passer d'une représentation à l'autre est essentiel pour bien comprendre l'algèbre linéaire.

^{1.} Il y a des limites à cette équivalence. La représentation géométrique est uniquement pertinente dans le plan et l'espace. La représentation numérique est limitée aux espaces vectoriels de dimension finie.

Exemple 2 (Exemples d'ensembles de vecteurs : $E = \{\overrightarrow{x}\}\)$

Il existe de très nombreux ensembles où il est possible d'effectuer une addition et une homothétie soit une combinaison linéaire, par exemples :

- l'ensemble des n-uplets réels : $\overrightarrow{x} = (x_1, x_2, \dots, x_n)$ et $E = \mathbb{R}^n$ et , où chaque x_i est un réel.
- l'ensemble des matrices carrés réels : $\overrightarrow{x} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix}$ et $E = \mathcal{M}_n(\mathbb{R})$, où
 - chaque $a_{i,j}$ est un un réel,
- l'ensemble des solutions d'une équations différentielles linéaire d'ordre 1 homogène : $\overrightarrow{x} = f$ une fonction C^1 tel que $f' + a_0 f = 0$ et $E = \{ f \in C_1 : f' + a_0 f = 0 \}$,

- l'ensemble des polynômes réels : $\overrightarrow{x} = a_0 + a_1 X^1 + a_2 X^2 + \dots + a_n X^n$ et $E = \mathbb{R}[X]$, l'ensemble des suites réels : $\overrightarrow{x} = (u_n)_{n \in \mathbb{N}}$ et $E = \mathbb{R}^{\mathbb{N}}$,

Une stratégie efficace pour étudier ces ensembles est :

- 1. de définir une structure algébrique abstraite constituée de propriétés partagés par tous les ensembles : cette structure s'appelle l'espace vectoriel et permet d'effectuer des combinaisons linéaires,
- 2. de démontrer des énoncés sur cette structure : ce qui est vrai ou faux dans cette structure l'est aussi pour tous les cas particuliers.

Structure algébrique 1.1

Définition 1 (Loi de composition interne : $\overrightarrow{x} \triangle \overrightarrow{y}$)

Soit A un ensemble. Une loi de composition interne, \triangle , est une application qui, à deux éléments de A, associe un élément de A:

$$\triangle \begin{vmatrix} A \times A & \longrightarrow & A \\ (x,y) & \longmapsto & x \triangle y \end{vmatrix}.$$

Définition 2 (Propriétés)

On dit que \triangle

- 1. est associative : si $\in (x, y, z) \in A^3$, $x \triangle (y \triangle z) = (x \triangle y) \triangle z$. On ne considèrera que des loi associatives.
- 2. est commutative : si $\forall (x,y) \in A^2, x \triangle y = y \triangle x$;
- 3. admet un élément neutre si $\exists e \in A$ tel que $\forall x \in A, x \triangle e = e \triangle x = x$. Il existe au plus un élément e vérifiant cette propriété, et on l'appelle le neutre de la loi \triangle .
- 4. est symétrique (ou inverse si loi est \times , ou opposé si la loi est +) Si \triangle est une loi associative qui admet un neutre e, et si $x \in A$, on appelle de x pour la loi \triangle tout élément $x' \in A$ tel que $x \triangle x' = x' \triangle x = e$. Si \triangle est également associative, il existe au plus un élément x' vérifiant cette propriété, et on l'appelle le symétrique de x pour la loi \triangle .

Définition 3 (Groupe)

Un groupe est un couple (G, \triangle) où G est un ensemble et \triangle une loi de composition interne sur G associative, admettant un neutre et pour laquelle tout élément de G admet un symétrique pour la loi \triangle . Un groupe est dit abélien ou commutatif si la loi \triangle est de plus commutative.

Exemple 3 (Le Groupe $(\mathbb{R}^n, +)$)

La loi d'addition sur \mathbb{R}^n est définie par

$$+ \begin{vmatrix} \mathbb{R}^n \times \mathbb{R}^n & \longrightarrow \mathbb{R}^n \\ (\vec{x} = (x_1, x_2, \dots, x_n), \overrightarrow{y} = (y_1, y_2, \dots, y_n)) & \longmapsto \overrightarrow{x} + \overrightarrow{y} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n) \\ - \text{associative} : \text{Soit } \overrightarrow{x} = (x_1, x_2, \dots, x_n), \overrightarrow{y} = (y_1, y_2, \dots, y_n), \overrightarrow{z} = (z_1, z_2, \dots, z_n) \in \mathbb{R}^n.$$

- associative: Soit
$$\vec{x} = (x_1, x_2, \dots, x_n), \vec{y} = (y_1, y_2, \dots, y_n), \vec{z} = (z_1, z_2, \dots, z_n) \in \mathbb{R}^n$$

On a :

$$\overrightarrow{x} + (\overrightarrow{y} + \overrightarrow{z}) = (x_1, x_2, \dots, x_n) + ((y_1, y_2, \dots, y_n) + (z_1, z_2, \dots, z_n))$$

$$= (x_1, x_2, \dots, x_n) + (y_1 + z_1, y_2 + z_2, \dots, y_n + z_n)$$

$$= (x_1 + y_1 + z_1, x_2 + y_2 + z_2, \dots, x_n + y_n + z_n)$$

$$= (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n) + (z_1, z_2, \dots, z_n)$$

$$= ((x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n)) + (z_1, z_2, \dots, z_n)$$

$$= (\overrightarrow{x} + \overrightarrow{y}) + \overrightarrow{z}$$

— commutative : Soit $\overrightarrow{x} = (x_1, x_2, \dots, x_n), \overrightarrow{y} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$. On a :

$$\overrightarrow{x} + \overrightarrow{y} = (x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n)
= (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)
= (y_1 + x_1, y_2 + x_2, \dots, y_n + x_n)
= \overrightarrow{y} + \overrightarrow{x'}$$

— élément neutre : Soit $\overrightarrow{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ Montrons que $\overrightarrow{0} = (0, 0, \dots, 0)$ est l'élément neutre On a :

$$\overrightarrow{x} + \overrightarrow{0} = (x_1 + 0, x_2 + 0, \dots, x_n + 0)$$

$$= (x_1, x_2, \dots, x_n)$$

$$= \overrightarrow{x}$$

— symétrique : Soit $\overrightarrow{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ Montrons que $-\overrightarrow{x} = (-x_1, -x_2, \dots, -x_n)$ est l'opposé de \overrightarrow{x} . On a :

$$\overrightarrow{x} + (-\overrightarrow{x}) = (x_1, x_2, \dots, x_n) + (-x_1, -x_2, \dots, -x_n)$$

$$= (x_1 - x_1, x_2 - x_2, \dots, x_n - x_n)$$

$$= (0, 0, \dots, 0)$$

$$= \overrightarrow{0}$$

Donc $(\mathbb{R}^n, +)$ est un groupe commutatif.

Définition 4 (Loi de composition externe : $\lambda \cdot \overrightarrow{x}$)

Soit \mathbb{K} et A deux ensembles. Une loi de composition externe, ., est une application qui, à un élément de \mathbb{K} et un élément de A, associe un élément de A:

Exemple 4 $((\mathbb{R}^n,.))$

La loi de multiplication sur \mathbb{R}^n est définie par

Par exemple sur \mathbb{R}^2 , 2.(1, -2) = (2, -4).

Définition 5 ($Corps \ \mathbb{K} : \mathbb{R} \ ou \ \mathbb{C}$)

Dans ce cours, un corps $\mathbb K$ désigne soit l'ensemble des nombres réels $\mathbb R$ ou soit l'ensemble des nombres complexes $\mathbb C$.

Définition 6 (Espace vectoriel : $\lambda \overrightarrow{x} + \mu \overrightarrow{y}$)

Soit K un corps.

Un K-espace vectoriel est un triplet (E, +, .) où + est une loi de composition interne sur E et . est une loi de composition externe sur E, vérifiant les propriétés suivantes :

- 1. (E, +) est un groupe commutatif;
- 2. la loi . est compatible avec la structure de groupe (E, +), i.e.
 - (a) $\forall (\lambda, \mu) \in \mathbb{K}^2, \, \forall \overrightarrow{x} \in E, \, (\lambda + \mu). \, \overrightarrow{x} = (\lambda. \, \overrightarrow{x}) + (\mu. \, \overrightarrow{x});$
 - (b) $\forall \lambda \in \mathbb{K}, \, \forall (\overrightarrow{x}, \overrightarrow{y}) \in E^2, \, \lambda.(\overrightarrow{x} + \overrightarrow{y}) = (\lambda.\overrightarrow{x}) + (\lambda.\overrightarrow{y});$
 - (c) $\forall \overrightarrow{x} \in E, 1_{\mathbb{K}}.\overrightarrow{x} = \overrightarrow{x};$
 - (d) $\forall (\lambda, \mu) \in \mathbb{K}^2, \, \forall \overrightarrow{x} \in E, \, \lambda.(\mu.\overrightarrow{x}) = (\lambda\mu).\overrightarrow{x}.$

Un élément d'un \mathbb{K} -espace vectoriel est appelé un vecteur et est noté dans ce cours avec une flèche \overrightarrow{x} . Un élément du corps \mathbb{K} est un scalaire et est noté dans ce cours à l'aide d'une lettre grecque, λ .

Exemple 5

- les n-uplets \mathbb{K}^n muni des lois usuelles,
- les matrices $\mathcal{M}_{n,p}(\mathbb{K})$ muni des lois usuelles,
- si X est un ensemble et E un \mathbb{K} -espace vectoriel, l'ensemble des fonctions $\mathcal{F}(X, E)$ muni des lois usuelles.

1.2 Construire des espaces vectoriels

1.2.1 Sous-espace vectoriel : $F \subset E$ et F e.v.

Définition

Définition-Proposition 1 (Sous espace vectoriel)

Soit (E, +, .) un \mathbb{K} -espace vectoriel et F une partie de E. On dit que F est un sous espace vectoriel de E si

- F est non vide,
- F est stable par +, i.e. $\forall \overrightarrow{x}, \overrightarrow{y} \in F, \overrightarrow{x} + \overrightarrow{y} \in F$,
- F est stable par . , i.e. $\forall \lambda \in \mathbb{K},\, \forall \overrightarrow{x} \in F,\, \lambda.\, \overrightarrow{x} \in F.$

Muni des lois induites, F est alors un espace vectoriel.

Exemple 6

 $F = \{(x, y) \in \mathbb{R}^2 : x + 2y = 0\}$ \mathbb{R}^2 car:

est un sous espace vectoriel de

— non vide :

 $(0,0) \in \mathbb{R}^2 \text{ car } 0 + 2.0 = 0.$

— stable par + :

Soit $\overrightarrow{x}_1 = (x_1, y_1)$, $\overrightarrow{x}_2 = (x_2, y_2) \in F$ d'où $x_1 + 2y_1 = 0$ et $x_2 + 2y_2 = 0$. Montrons que $\overrightarrow{x}_1 + \overrightarrow{x}_2 = (x_1 + x_2, y_1 + y_2) \in F$.

i.e. montrons que $(x_1 + x_2) + 2(y_1 + y_2) = 0$.

$$(x_1 + x_2) + 2(y_1 + y_2) = x_1 + 2y_1 + x_2 + 2y_2 = 0 + 0 = 0.$$

— stable par . :

Soit $\lambda \in \mathbb{R}$ et $\overrightarrow{x} = (x, y) \in F$ d'où $x_1 + 2y_1 = 0$ et $x_2 + 2y_2 = 0$.

Montrons que $\lambda \overrightarrow{x} = (\lambda x, \lambda y) \in F$.

i.e. montrons que $(\lambda x) + 2(\lambda y) = 0$.

On a

$$(\lambda x) + 2(\lambda y) = \lambda(x + 2y) = \lambda 0 = 0.$$

Proposition 1.2.1 (Critère d'un sous-espace vectoriel)

Soit E un \mathbb{K} -espace vectoriel et $F \subset E$. F est un sous espace vectoriel de E si et seulement si

 $-\overrightarrow{0_E} \in F$;

 $-\forall \lambda \in \mathbb{K}, \forall \overrightarrow{x}, \overrightarrow{y} \in F, \lambda \overrightarrow{x} + \overrightarrow{y} \in F.$

Engendré par une famille finie : $Vect(\vec{x}_1, \dots, \vec{x_p}) = \{\lambda_1 \cdot \vec{x_1} + \dots + \lambda_p \cdot \vec{x_p}\}$

Définition 7 (Famille finie)

Soit E un \mathbb{K} -espace vectoriel.

Une famille finie de vecteurs de E est un p-uplet $\mathcal{F} = (\overrightarrow{x}_1, \dots, \overrightarrow{x}_p)$ formée de vecteurs de E, où $p \in \mathbb{N}$.

Définition 8 (Combinaison linéaire)

Avec les mêmes notations, une combinaison linéaire de la famille \mathcal{F} est un vecteur $\overrightarrow{x} \in E$ de la forme $\overrightarrow{x} = \lambda_1 . \overrightarrow{x_1} + \cdots + \lambda_p . \overrightarrow{x_p}$ où $\lambda_1, \dots, \lambda_p \in \mathbb{K}$.

Les scalaires $\lambda_1, \ldots, \lambda_p$ sont appelés coefficients de la combinaison linéaire.

On note $\text{Vect}(\mathcal{F})$ l'ensemble des combinaison linéaires de la famille $(\overrightarrow{x}_1,\ldots,\overrightarrow{x}_p)$.

$$\operatorname{Vect}(\mathcal{F}) = \{\lambda_1.\overrightarrow{x_1} + \dots + \lambda_p.\overrightarrow{x_p} : \lambda_1, \dots, \lambda_p \in \mathbb{K}\}.$$

Par convention, $Vect(\emptyset) = \{\overrightarrow{0}_E\}.$

Définition-Proposition 2 (Espace engendré)

Soit E un \mathbb{K} -espace vectoriel et $(\overrightarrow{x}_1, \dots, \overrightarrow{x}_p)$ une famille de vecteurs de E.

L'ensemble $\operatorname{Vect}(\overrightarrow{x}_1,\ldots,\overrightarrow{x}_p)$ est un sous espace vectoriel de E, appelé espace engendré par la famille $(\overrightarrow{x}_1,\ldots,\overrightarrow{x}_p)$. Il s'agit du plus petit (pour l'inclusion) sous espace vectoriel de E contenant $\overrightarrow{x}_1,\ldots,\overrightarrow{x}_p$.

Exemple 7 (Droite vectoriel)

Lorsque que p=1 avec $\overrightarrow{x} \neq \overrightarrow{0}$, $\operatorname{Vect}(\overrightarrow{x}) = \{\lambda.\overrightarrow{x}: \forall \lambda \in \mathbb{K}\}$ est la **droite vectorielle** engendrée par \overrightarrow{x} . On la note $\mathbb{R}\overrightarrow{x}$.

Une droite vectorielle dans \mathbb{R}^2 est

Exemple 8 (Plan vectoriel)

Lorsque que p=2 avec $\overrightarrow{x_1}$ non colinéaire à $\overrightarrow{x_2}$, $\operatorname{Vect}(\overrightarrow{x_1}, \overrightarrow{x_2}) = \{\lambda.\overrightarrow{x_1} + \mu.\overrightarrow{x_2} : \forall \lambda, \mu \in \mathbb{K}\}$ est le plan vectorielle engendrée par $(\overrightarrow{x_1}, \overrightarrow{x_2})$. On le note $\mathbb{R}\overrightarrow{x_1} + \mathbb{R}\overrightarrow{x_2}$. Un plan vectorielle dans \mathbb{R}^3 est

Intersection $F_1 \cap F_2$

Proposition 1.2.2

Soit E un \mathbb{K} -espace vectoriel, F_1, \ldots, F_p des sous espaces vectoriels de E. Alors l'intersection $\bigcap_{i=1}^p F_i$ est également un sous espace vectoriel.

 $\begin{array}{l} - \ \ stable \ par + : \\ \text{Soit} \ \overrightarrow{x}_1, \overrightarrow{x}_2 \in \cap_{i=1}^p F_i \ \text{d'où pour tout} \ i \in \llbracket 1, p \rrbracket : \overrightarrow{x}_1, \overrightarrow{x}_2 \in F_i. \\ \text{Ainsi pour tout} \ i \in \llbracket 1, p \rrbracket : \overrightarrow{x}_1 + \overrightarrow{x}_2 \in F_i \ \text{donc} \ \overrightarrow{x}_1 + \overrightarrow{x}_2 \in \cap_{i=1}^p F_i. \end{array}$

Soit $\lambda \in \mathbb{R}$ et Soit $\overrightarrow{x} \in \cap_{i=1}^p F_i$ d'où $\forall i \in [\![1,p]\!]: \overrightarrow{x} \in F_i$. Ainsi pour tout $i \in [\![1,p]\!]: \lambda \overrightarrow{x} \in F_i$ donc $\lambda \overrightarrow{x} \in \cap_{i=1}^p F_i$.

Exemple 9

 $F = \overbrace{\{(x,y,z) \in \mathbb{R}^3 : z=0\}}^{=F_1} \cap \overbrace{\{(x,y,z) \in \mathbb{R}^3 : z=x\}}^{=F_2} \text{ l'intersection de deux plans vectoriels, } F_1 \text{ et } F_2 \text{ dans } \mathbb{R}^3$

Somme de sous-espaces vectoriels : $F_1 + F_2 = \{\vec{x} + \vec{y} : \vec{x} \in F_1, \vec{y} \in F_2\}$

Remarque 1

L'union $\bigcup_{i=1}^{p} F_i$ n'est presque jamais un sous espace vectoriel.

Sur cette figure, les vecteurs \overrightarrow{x} , $\overrightarrow{y} \in F_1 \cup F_2$ et on a $\overrightarrow{x} + \overrightarrow{y} \notin F_1 \cup F_2$. La somme permet de construire le plus petit (au sens de l'inclusion) sous espace vectoriel de E contenant F_1 et F_2 .

Définition-Proposition 3 (Somme)

Soit E un \mathbb{K} -espace vectoriel, F_1 et F_2 deux sous-espaces vectoriels de E. On appelle **somme** de F_1 et F_2 l'ensemble F_1+F_2 des vecteurs de la forme $\overrightarrow{x}+\overrightarrow{y}$ où $\overrightarrow{x}\in F_1$ et $\overrightarrow{y} \in F_2$; autrement dit,

$$F_1 + F_2 = \{\overrightarrow{x} + \overrightarrow{y} : \overrightarrow{x} \in F_1, \overrightarrow{y} \in F_2\}.$$

 $F_1 + F_2$ est un sous espace vectoriel de E.

Plus précisément $F_1 + F_2$ est le plus petit (au sens de l'inclusion) sous espace vectoriel de Econtenant F_1 et F_2 .

$$\begin{split} \mathbf{D\acute{e}monstration:} & - \textit{non vide:} \\ \overrightarrow{0} \in F_1, F_2 \text{ d'où } \overrightarrow{0} = \underbrace{\overrightarrow{0}}_{\in F_1} + \underbrace{\overrightarrow{0}}_{\in F_2} \in F_1 + F_2. \\ - \textit{stable par + :} \\ & \text{Soit } \overrightarrow{x_1} + \overrightarrow{y_1}, \overrightarrow{x_2} + \overrightarrow{y_2} \in F_1 + F_2. \\ & \overrightarrow{x_1} + \overrightarrow{y_1} + \overrightarrow{x_2} + \overrightarrow{y_2} = \underbrace{\overrightarrow{x_1} + \overrightarrow{x_2}}_{\in F_1} + \underbrace{\overrightarrow{y_1} + \overrightarrow{y_2}}_{\in F_2} \in F_1 + F_2. \end{split}$$

- stable par . :
Soit
$$\lambda \in \mathbb{R}$$
 et $\overrightarrow{x} + \overrightarrow{y} \in F_1 + F_2$.
 $\lambda(\overrightarrow{x} + \overrightarrow{y}) = \underbrace{\lambda \overrightarrow{x}}_{\in F_1} + \underbrace{\lambda \overrightarrow{y}}_{\in F_2} \in F_1 + F_2$.

Exemple 10

Soit $\mathbb{R}\overrightarrow{x}_1$ et $\mathbb{R}\overrightarrow{x}_2$ deux droite vectorielles distinctes. La somme de ces deux espace vectoriels forme le plan vectoriel $\mathbb{R}\overrightarrow{x}_1 + \mathbb{R}\overrightarrow{x}_2$.

Définition 9 (Somme directe)

Avec les mêmes notations, on dit que la somme $F_1 + F_2$ est directe si tout vecteur de la somme se décompose **de façon unique** sous la forme $\overrightarrow{x} + \overrightarrow{y}$ où $\overrightarrow{x} \in F_1$ et $\overrightarrow{y} \in F_2$. On note alors la somme $F_1 \oplus F_2$.

Proposition 1.2.3 (Critère 1)

Avec les mêmes notations, la somme $F_1 + F_2$ est directe si et seulement si

$$\forall \overrightarrow{x} \in F_1, \forall \overrightarrow{y} \in F_2: \overrightarrow{x} + \overrightarrow{y} = \overrightarrow{0_E} \Rightarrow \overrightarrow{x} = \overrightarrow{y} = \overrightarrow{0_E}.$$

Démonstration:

 $\begin{array}{c} - (\Longrightarrow): \\ \text{Soit } \overrightarrow{x} \in F_1 \text{ et } \overrightarrow{y} \in F_2 \text{ tel que } \overrightarrow{x} + \overrightarrow{y} = \overrightarrow{0}. \text{ On a aussi } \overrightarrow{\underbrace{0}} + \overrightarrow{\underbrace{0}} = \overrightarrow{0}. \text{ L'unicit\'e de } \\ \text{d\'ecomposition permet d'identifier } \overrightarrow{x} = \overrightarrow{0} \text{ et } \overrightarrow{y} = \overrightarrow{0}. \end{array}$

 $- (\Leftarrow):$ Supposons qu'un $\overrightarrow{z} \in F_1 + F_2$ se décompose de 2 façons : $\overrightarrow{z} = \underbrace{\overrightarrow{x}}_{\in F_1} + \underbrace{\overrightarrow{y}}_{\in F_2}$ et $\overrightarrow{z} = \underbrace{\overrightarrow{x}}_{\in F_1} + \underbrace{\overrightarrow{y}}_{\in F_2}$. On soustrait ces deux égalités :

$$\overrightarrow{0} = \underbrace{\overrightarrow{x} - \overrightarrow{x}}_{\in F_1} + \underbrace{\overrightarrow{y} - \overrightarrow{y}}_{\in F_2}.$$

D'après l'hypothèse, on a $\overrightarrow{x} - \overrightarrow{x'} = \overrightarrow{0}$ et $\overrightarrow{y} - \overrightarrow{y'} = \overrightarrow{0}$, d'où l'unicité de la décomposition avec $\overrightarrow{x} = \overrightarrow{x'}$ et $\overrightarrow{y} = \overrightarrow{y'}$.

Proposition 1.2.4 (Critère 2)

Avec les mêmes notations, la somme $F_1 + F_2$ est directe si et seulement si $F_1 \cap F_2 = \{\overrightarrow{O_E}\}$.

Démonstration:

$$- (\Longrightarrow)$$

- $\Rightarrow):$ * $\{\overrightarrow{0_E}\} \subset F_1 \cap F_2 : \overrightarrow{0_E} \in F_1, F_2 \text{ donc } \overrightarrow{0_E} \in F_1 \cap F_2.$ * $F_1 \cap F_2 \subset \{\overrightarrow{0_E}\} : \text{Soit } \overrightarrow{x} \in F_1 \cap F_2. \text{ On a } \overrightarrow{0} = \overrightarrow{x} + \overrightarrow{E_F} = \overrightarrow{x} = \overrightarrow{0} + \overrightarrow{0} = \overrightarrow{0}.$ Par unicité de

la décomposition, on identifie $\overrightarrow{x} = \overrightarrow{0}$.

Du fait de la double inclusion, on a $F_1 \cap F_2 = \{\overrightarrow{0_E}\}\$.

 $(\Leftarrow) :$ Supposons qu'un $\overrightarrow{z} \in F_1 + F_2$ se décompose de 2 façons : $\overrightarrow{z} = \overrightarrow{x} + \overrightarrow{y}$ et $\overrightarrow{z} = \overrightarrow{x} + \overrightarrow{y}$.

On soustrait ces deux égalités :

$$\underbrace{\overrightarrow{x} - \overrightarrow{x'}}_{\in F_1} = \underbrace{\overrightarrow{y} - \overrightarrow{y'}}_{\in F_2}.$$

Comme $F_1 \cap F_2 = \{\overrightarrow{0_E}\}$, on a $\overrightarrow{x} - \overrightarrow{x'} = \overrightarrow{0}$ et $\overrightarrow{y} - \overrightarrow{y'} = \overrightarrow{0}$, d'où l'unicité de la décomposition avec $\overrightarrow{x} = \overrightarrow{x'}$ et $\overrightarrow{x} = \overrightarrow{y'}$.

Exemple 11

Géométriquement, l'intersection entre deux plans vectoriels distincts, F_1 et F_2 , est une droite vectoriel, $F_1 \cap F_2$, donc la somme n'est pas directe.

Si $F_1 = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$ et $F_1 = \{(x, y, z) \in \mathbb{R}^3 : x - y + z = 0\}$. On a :

$$\overrightarrow{x} = (x, y, z) \in F_1 \cap F_2 \Leftrightarrow \begin{cases} x + y + z = 0 \\ x - y + z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + y + z = 0 \\ -2y = 0 \quad L_2 \leftarrow L_2 - L_1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + z = 0 \\ y = 0 \end{cases}$$

$$\Leftrightarrow z = \lambda, x = -\lambda, y = 0, \quad \forall t \in \mathbb{R}$$

$$\Leftrightarrow (x, y, z) = \lambda(-1, 0, 1), \quad \forall t \in \mathbb{R}$$

$$\Leftrightarrow (x, y, z) \in \text{Vect}(-1, 0, 1)$$

Finalement $F_1 \cap F_2 = \mathbb{R}(-1, 0, 1)$.

Définition 10 (Supplémentaires)

Avec les mêmes notations, si la somme $F_1 + F_2$ est directe et égale à E, on dit que F_1 et F_2 sont supplémentaires, et on note

$$E = F_1 \oplus F_2$$
.

Exemple 12

Montrons que $\mathbb{R}_n[X] = \mathbb{R}_{n-1}[X] \oplus \operatorname{Vect}(X^n)$.

—
$$\mathbb{R}_n[X] = \mathbb{R}_{n-1}[X] + \text{Vect}(X^n)$$
:
Soit $P = a_0 + a_1X + \dots + a_{n-1}X^{n-1} + a_nX^n \in \mathbb{R}_n[X]$. On a

$$P = \overbrace{a_0 + a_1 X + \dots + a_{n-1} X^{n-1}}^{\in \mathbb{R}_{n-1}[X]} + \overbrace{a_n X^n}^{\in \operatorname{Vect}(X^n)}.$$

$$--\mathbb{R}_{n-1}[X] \cap \operatorname{Vect}(X^n) = \{\overrightarrow{0}_{\mathbb{R}_n[X]}\} :$$
Soit $P \in \mathbb{R}_{n-1}[X] \cap \operatorname{Vect}(X^n)$.

Comme $P \in \mathbb{R}_{n-1}[X]$, on a deg(P) < n. Comme $P \in \text{Vect}(X^n)$, on a $P = \lambda X^n$. Si $\lambda \neq 0$, on a $deg(P = \lambda X^n) = n$, d'où une contradiction. Donc P = 0.

Définition-Proposition 4 (Somme)

Soit E un \mathbb{K} -espace vectoriel et F_1, \ldots, F_p des sous-espaces vectoriels de E. On appelle **somme** de F_1, \ldots, F_p l'ensemble $\sum_{k=1}^p F_k$ des vecteurs de la forme $\overrightarrow{x_1} + \overrightarrow{x_2} + \cdots + \overrightarrow{x_p}$ où $\overrightarrow{x_1} \in F_1$, $\overrightarrow{x_2} \in F_2$, ..., $\overrightarrow{x_p} \in F_p$; autrement dit,

$$\sum_{k=1}^{p} F_k = \{\overrightarrow{x_1} + \overrightarrow{x_2} + \dots + \overrightarrow{x_p} : \overrightarrow{x_1} \in F_1, \overrightarrow{x_2} \in F_2, \dots, \overrightarrow{x_p} \in F_p\}.$$

Il s'agit d'un sous espace vectoriel de E; plus précisément S est le plus petit (au sens de l'inclusion) sous espace vectoriel de E contenant F_1, \ldots, F_p .

Définition 11 (Somme directe)

Avec les mêmes notations, on dit que la somme $\sum_{i=1}^p F_i$ est **directe** si tout vecteur de la somme se décompose **de façon unique** sous la forme $\overrightarrow{x_1} + \overrightarrow{x_2} + \cdots + \overrightarrow{x_p}$ où $\overrightarrow{x_1} \in F_1$, $\overrightarrow{x_2} \in F_2$, ..., $\overrightarrow{x_p} \in F_p$. On note alors la somme $\bigoplus_{k=1}^p F_k$.

Proposition 1.2.5 (Critère 1)

Avec les mêmes notations, la somme $\sum_{i=1}^{p} F_i$ est directe si et seulement si

$$\overrightarrow{x_1} \in F_1, \overrightarrow{x_2} \in F_2, ..., \overrightarrow{x_p} \in F_p, \overrightarrow{x_1} + \overrightarrow{x_2} + \cdots + \overrightarrow{x_p} = \overrightarrow{0_E} \implies \overrightarrow{x_1} = \cdots = \overrightarrow{x_p} = \overrightarrow{0_E}.$$

Remarque 2

Le critère 2 ne se généralise pas (simplement) pour p > 2. $E = \mathbb{R}^2, \ \overrightarrow{x_1} = (1,0), \ \overrightarrow{x_2} = (0,1)$ et $\overrightarrow{x_3} = (1,1)$. On a $\mathbb{R}\overrightarrow{x_1} \cap \mathbb{R}\overrightarrow{x_2} = \mathbb{R}\overrightarrow{x_1} \cap \mathbb{R}\overrightarrow{x_3} = \mathbb{R}\overrightarrow{x_2} \cap \mathbb{R}\overrightarrow{x_3} = \{(0,0)\}$. Cependant la somme $\mathbb{R}\overrightarrow{x_1} + \mathbb{R}\overrightarrow{x_2} + \mathbb{R}\overrightarrow{x_3}$ n'est pas directe car (1,1) = 1(1,1) et (1,1) = 1(1,0) + 1(0,1).

1.2.2 Espace vectoriel produit : $(\vec{x_1}, \vec{x_2}) \in E_1 \times E_2$

Définition 12 (Produit cartésien)

Soit $(E_1, +_1, ._1)$ et $(E_2, +_2, ._2)$ deux K-espaces vectoriels.

On pose

$$E = E_1 \times E_2 = \{ (\overrightarrow{x_1}, \overrightarrow{x_2}) : \overrightarrow{x_1} \in E_1, \overrightarrow{x_2} \in E_2 \}.$$

E est le **produit cartésien** des ensembles E_1, E_2 .

On définit la loi de composition interne + sur E par :

$$\forall (\overrightarrow{x_1}, \overrightarrow{x_2}) \in E, (\overrightarrow{y_1}, \overrightarrow{y_2}) \in E, \quad (\overrightarrow{x_1}, \overrightarrow{x_2}) + (\overrightarrow{y_1}, \overrightarrow{y_2}) = (\overrightarrow{x_1} + 1, \overrightarrow{y_1}, \overrightarrow{x_2} + 2, \overrightarrow{y_2}).$$

De même, on définit la loi de composition externe . sur E par :

$$\forall \lambda \in \mathbb{K}, \forall (\overrightarrow{x_1}, \overrightarrow{x_2}) \in E, \lambda.(\overrightarrow{x_1}, \overrightarrow{x_2}) = (\lambda._1\overrightarrow{x_1}, \lambda._2\overrightarrow{x_2})$$

Exemple 13

Pour $p \in \mathbb{N}^*$ et E un \mathbb{K} -espace vectoriel, on définit E^p par

$$E^p = \prod_{k=1}^p E.$$

Notez le cas particulier $E = \mathbb{K}$, où $E^p = \mathbb{K}^p$.

Proposition 1.2.6

E ainsi défini est un \mathbb{K} -espace vectoriel.

Définition 13

On définit de manière analogue le \mathbb{K} -espace vectoriel E, produit cartésien des ensembles E_1,\ldots,E_n , $(E_1,+_1,\cdot_1)$, $(E_2,+_2,\cdot_2)$, ..., $(E_p,+_p,\cdot_p)$ de \mathbb{K} -espaces vectoriels $E=\prod_{k=1}^p E_k=\{(\overrightarrow{x_1},\ldots,\overrightarrow{x_p}):\overrightarrow{x_1}\in E_1,\ldots,\overrightarrow{x_p}\in E_p\}$.

1.3 Base: $\forall \vec{x} \in E, \exists! (\lambda_1, \dots \lambda_p), \quad \vec{x} = \lambda_1 \vec{e_1} + \dots + \lambda_p \vec{e_p}$

1.3.1 Définition

Famille génératrice : existence

Définition 14 (Famille génératrice)

Une famille finie $\mathcal{F} = (\overrightarrow{e}_1, \dots, \overrightarrow{e_p})$ est **génératrice** de E si tout vecteur de E est combinaison linéaire de \mathcal{F} , c'est à dire si $\operatorname{Vect}(\mathcal{F}) = E$, c'est à dire si

$$\forall \overrightarrow{x} \in E, \exists \lambda_1, \dots, \lambda_p \in \mathbb{K}, \quad \overrightarrow{x} = \lambda_1 \overrightarrow{e_1} + \lambda_2 \overrightarrow{e_2} + \dots + \lambda_p \overrightarrow{e_p}.$$

Exemple 14

La famille $\{(1,1),(0,1),(1,-1)\}$ est génératrice de \mathbb{R}^2 . En effet, soit $\overrightarrow{x}=(x,y)\in\mathbb{R}^2$, on a :

$$(x,y) = \frac{x+y}{2}(1,1) + \frac{x-y}{2}(1,-1).$$

En revanche, la combinaison linéaire n'est pas unique car (x, y) = x(1, 1) + (y - 1)(0, 1).

Famille libre: unicité

Définition 15 (Famille libre)

Une famille finie $\mathcal{F} = (\overrightarrow{e}_1, \dots, \overrightarrow{e}_p)$ est libre si tout vecteur appartenant à l'espace vectoriel

engendré par la famille s'exprime de manière unique comme combinaison linéaire de la famille, c'est à dire si

$$\forall \overrightarrow{x} \in \text{Vect}((\overrightarrow{e}_1, \dots, \overrightarrow{e}_p), \exists! \lambda_1, \dots, \lambda_n \in \mathbb{K}, \quad \overrightarrow{x} = \lambda_1 \overrightarrow{e}_1 + \lambda_2 \overrightarrow{e}_2 + \dots + \lambda_p \overrightarrow{e}_p)$$

Autrement dit aucun des vecteurs de la famille n'est combinaison linéaire des autres.

Proposition 1.3.1 (Critère)

Une famille finie $\mathcal{F} = (\overrightarrow{e}_1, \dots, \overrightarrow{e_p})$ est libre si et seulement si la seule combinaison linéaire de \mathcal{F} nulle est triviale, c'est à dire

$$\forall \lambda_1, \dots, \lambda_p \in \mathbb{K}, \quad \lambda_1 \overrightarrow{e_1} + \dots + \lambda_n \overrightarrow{e_n} = \overrightarrow{0_E} \Rightarrow \lambda_1 = \lambda_2 = \dots = \lambda_p = 0_{\mathbb{K}}.$$

Démonstration : La démonstration est similaire au critère 2 de la somme directe (voir démonstration 1.2.1).

Exemple 15

Dans l'exemple précédent, on a démontré qu'un vecteur pouvait s'exprimer à l'aide de deux combinaisons linéaires distinctes. Avec ce dernier critère, la démonstration serait : Soit $\lambda, \beta, \alpha \in \mathbb{R}$ tel que

$$\lambda(1,1) + \beta(0,1) + \alpha(1,-1) = (0,0).$$

On a:

$$\begin{cases} \lambda + \alpha &= 0 \\ \lambda + \beta - \alpha &= 0 \end{cases} \Rightarrow \begin{cases} \lambda &= 1 \\ \alpha &= -1 \\ \beta &= -2 \end{cases}$$

On vérifie que (1,1) - 2(0,1) - (1,-1) = (0,0).

Base : existence et unicité

Définition 16

On dit que la famille $\mathcal{F} = (\overrightarrow{e}_1, \dots, \overrightarrow{e_p})$ est une base de E si elle est libre et génératrice. De façon équivalente, la famille $(\overrightarrow{e}_1, \dots, \overrightarrow{e_p})$ est une base de E si

$$\forall \overrightarrow{x} \in E, \exists! \lambda_1, \dots, \lambda_p \in \mathbb{K}, \quad \overrightarrow{x} = \lambda_1 \overrightarrow{e_1} + \lambda_2 \overrightarrow{e_2} + \dots + \lambda_p \overrightarrow{e_p}.$$

Exemple 16

L'espace vectoriel des polynôme de degré inférieur ou égal à n, $\mathbb{K}_n[X]$, admet une base $(1, X, X^2, \dots, X^n)$, appelée base canonique.

Exemple 17

L'espace vectoriel des matrices carrés de taille 2, $M_2(\mathbb{R})$, admet une base $\begin{pmatrix} 1,0\\0,0 \end{pmatrix}, \begin{pmatrix} 0,1\\0,0 \end{pmatrix}, \begin{pmatrix} 0,0\\1,0 \end{pmatrix}, \begin{pmatrix} 0,0\\0,1 \end{pmatrix}$), appelée base canonique.

Remarque 3

On n'a pas unicité de la base. Par exemple pour $\mathbb{K}_n[X]$, avec les x_i n+1 scalaires distincts, les polynômes de Lagrange

$$l_i(X) = \prod_{j=0, j \neq i}^{n} \frac{X - x_j}{x_i - x_j}$$

$$l_i(X) = \frac{X - x_0}{x_i - x_0} \cdots \frac{X - x_{i-1}}{x_i - x_{i-1}} \frac{X - x_{i+1}}{x_i - x_{i+1}} \cdots \frac{X - x_n}{x_i - x_n}$$

forment une base de $\mathbb{K}_n[X]$.

1.3.2 Existence d'une base

Définition 17 (Dimension finie)

Soit E un \mathbb{K} -espace vectoriel.

On dit que E est de dimension finie s'il existe une famille finie génératrice de E, et de dimension infinie sinon.

Exemple 18

L'espace vectoriel des polynôme est de dimension infinie.

En revanche, l'espace vectoriel des polynôme de degré inférieur ou égal à n est finie.

Exemple 19

L'espace vectoriel des fonctions continues réels est de dimension infinie.

Théorème 1.3.2 (Théorème de la base incomplète)

Soit E un espace vectoriel de dimension finie et \mathcal{L} une famille libre de E. Alors il existe une base \mathcal{B} de E telle que $\mathcal{L} \subset \mathcal{B}$.

Démonstration: La démonstration repose sur l'algorithme suivant :

Soit la partie libre initiale \mathcal{L} .

Comme E est un espace vectoriel de dimension finie, il existe une famille finie, \mathcal{G} , génératrice de

Tant que \mathcal{L} n'est pas génératrice de E:

- 1. Puisque $\mathcal G$ engendre E et que $\mathcal L$ n'est pas génératrice de E, il existe un vecteur \overrightarrow{g} de $\mathcal G$ qui n'est pas une combinaison linéaire d'éléments de \mathcal{L} .
- 2. On remplace \mathcal{L} par $\mathcal{L} \cup \{\overrightarrow{g}\}\$, qui est encore libre car le nouveau vecteur n'est pas une combinaison linéaire des précédents.

La boucle se termine en un nombre fini d'étapes puisqu'on ajoute à chaque étape un élément de $\mathcal G$ différent des précédents et que \mathcal{G} est fini. \mathcal{L} est alors une partie génératrice, donc une base de E.

Théorème 1.3.3 (Théorème de la base extraite)

Soit E un espace vectoriel de dimension finie et G une famille génératrice de E. Alors il existe une base \mathcal{B} de E telle que $\mathcal{B} \subset \mathcal{G}$.

Démonstration: La démonstration est identique à la précédente exceptée que $\mathcal{L} = \emptyset$.

1.3.3 Unicité du cardinal de la base

Proposition 1.3.4

Si E est un espace vectoriel de dimension finie admettant une famille génératrice de n vecteurs, alors toute famille de n+1 vecteurs est liée.

Démonstration: Démontrons cette proposition par récurrence.

— Initialisation :

Soit (\overrightarrow{g}_1) une famille génératrice de E.

Soit $(\overrightarrow{v}_1, \overrightarrow{v}_2)$ une famille de E. Il existe λ_1 et λ_2 dans $\mathbb R$ tel que $\overrightarrow{v}_1 = \lambda_1 \overrightarrow{g}_1$ et $\overrightarrow{v}_2 = \lambda_2 \overrightarrow{g}_1$. Si $\lambda_1 = \lambda_2 = 0$ alors la famille $(\overrightarrow{v}_1 = \overrightarrow{0}, \overrightarrow{v}_2 = \overrightarrow{0})$ est liée. Si $\lambda_1 \neq 0$, alors $\overrightarrow{v}_1 = \frac{\lambda_2}{\lambda_1} \overrightarrow{v}_2$. Les vecteurs sont colinéaires donc liées.

Idem si $\lambda_2 \neq 0$.

— Hérédité :

Soit $(\overrightarrow{g_1}, \ldots, \overrightarrow{g_n})$ une famille génératrice de E.

Soit $(\overrightarrow{v}_1, \overrightarrow{v}_2, \dots \overrightarrow{v}_{n+1})$ une famille de n+1 vecteurs de E.

Pour tout $i \in [1, n+1]$, il existe $\lambda_{i,1}, \lambda_{i,2}, \ldots, \lambda_{i,n} \in \mathbb{K}$ tel que

$$\overrightarrow{v}_i = \lambda_{i,1} \overrightarrow{q}_1 + \lambda_{i,2} \overrightarrow{q}_2 + \dots + \lambda_{i,n} \overrightarrow{q}_n$$

Quitte à réorganiser les deux familles, on peut supposer que $\lambda_{n+1,n} \neq 0$. Pour tout $i \in [1, n]$, on a

$$\overrightarrow{v}_i - \frac{\lambda_{i,n}}{\lambda_{n+1,n}} \overrightarrow{v}_{n+1} = \in \operatorname{Vect}(\overrightarrow{g_1}, \dots, \overrightarrow{g}_{n-1}).$$

On applique l'hypothèse de récurrence à l'espace vectoriel générée par la famille $(\overrightarrow{g_1}, \dots, \overrightarrow{g}_{n-1})$. Donc la famille $(\overrightarrow{v}_1 - \frac{\lambda_{1,n}}{\lambda_{n+1,n}}\overrightarrow{v}_{n+1}, \dots, \overrightarrow{v}_n - \frac{\lambda_{n,n}}{\lambda_{n+1,n}}\overrightarrow{v}_{n+1})$ est liée. Il existe $\beta_1, \beta_2, \dots, \beta_n \in \mathbb{K}$ non tous nuls tel que :

$$\beta_1(\overrightarrow{v}_1 - \frac{\lambda_{1,n}}{\lambda_{n+1,n}} \overrightarrow{v}_{n+1}) + \dots + \beta_n(\overrightarrow{v}_n - \frac{\lambda_{n,n}}{\lambda_{n+1,n}} \overrightarrow{v}_{n+1}) = \overrightarrow{0}.$$

d'où

$$\beta_1 \overrightarrow{v}_1 + \dots + \beta_n \overrightarrow{v}_n - (\beta_1 \frac{\lambda_{1,n}}{\lambda_{n+1,n}} + \dots + \beta_n \frac{\lambda_{n,n}}{\lambda_{n+1,n}}) \overrightarrow{v}_{n+1} = \overrightarrow{0}.$$

La famille est donc liée.

Proposition 1.3.5

Si E est un espace vectoriel de dimension finie admettant une famille génératrice de n vecteurs, alors toute famille ayant strictement plus de n vecteurs est liée.

Démonstration: Si la famille a strictement plus de n vecteurs, on peut en enlever pour constituer une famille de n+1 vecteurs qui est donc liée d'après la proposition précédente. A fortiori, la famille initiale est liée.

Proposition 1.3.6 (Unicité du cardinal d'une base)

Soit E un espace vectoriel de dimension finie et $(\overrightarrow{e}_1, \ldots, \overrightarrow{e}_p)$ et $(\overrightarrow{f}_1, \ldots, \overrightarrow{f}_q)$ deux bases de E. Alors p = q.

 $\textbf{Démonstration}: \ (\overrightarrow{e}_1, \dots, \overrightarrow{e_p}) \text{ est une famille génératrice de } E. \text{ Comme } (\overrightarrow{f}_1, \dots, \overrightarrow{f_q}) \text{ est libre d'après}$ la proposition précédente, $q\leqslant p$. Par symétrie, on a aussi $p\leqslant q$. Finalement p=q.

Cette proposition nous permet cette définition.

Définition-Proposition 5 (Dimension)

La dimension d'un espace vectoriel de dimension finie est égale au cardinal d'une base quelconque de E.

Proposition 1.3.7 (Critère)

Soit E un espace vectoriel de dimension n.

 $Si(\overrightarrow{e}_1,\ldots,\overrightarrow{e_n})$ est une famille libre, alors $(\overrightarrow{e}_1,\ldots,\overrightarrow{e_n})$ est une base de E. $Si(\overrightarrow{e}_1,\ldots,\overrightarrow{e_n})$ est une famille génératrice, alors $(\overrightarrow{e}_1,\ldots,\overrightarrow{e_n})$ est une base de E.

Exemple 20

Pour tout polynôme P appartenant à $\mathbb{K}_n[X]$, la combinaison linéaire des polynômes de Lagrange $\sum_{j=0}^{n} P(x_j)l_j(X)$ avec x_0, \dots, x_n n+1 scalaires distincts est égale au polynôme P aux

points x_0, \ldots, x_n , donc égal à P. Les polynômes de Lagrange forment une famille génératrice de n+1 vecteurs. Comme $\dim(\mathbb{K}_n[X]) = n+1$, ils forment une base de $\mathbb{K}_n[X]$.

Proposition 1.3.8

Soit E un espace vectoriel de dimension finie et F un sous espace vectoriel de E. Alors F est également de dimension finie et $\dim F \leqslant \dim E$, avec égalité si et seulement si F = E.

1.3.4 Base adaptée

Définition 18 (Base adaptée)

Soit E un \mathbb{K} -espace vectoriel de dimension n et F un sous espace vectoriel de E. La base $(\overrightarrow{e}_1,\ldots,\overrightarrow{e_n})$ est dite adaptée à F si et seulement s'il existe $p\in \llbracket 1,n\rrbracket$ tel que $(\overrightarrow{e}_1,\ldots,\overrightarrow{e_p})$ soit une base de F.

Exemple 21

La base ((1,-1,0),(0,1,-1),(0,0,1)) est adaptée à $F = \{(x,y,z) \in \mathbb{R}^3 : x+y+z=0\}$ dans l'espace vectoriel \mathbb{R}^3 car ((1,-1,0),(0,1,-1)) est une base de F.

Proposition 1.3.9 (Existence d'une base adaptée)

La base ainsi définie existe.

Démonstration: Comme F est un espace vectoriel de dimension finie, il existe une base $(\overrightarrow{e}_1, \ldots, \overrightarrow{e_p})$ de F. Cette famille est libre dans E. On la complète en une base de E d'après le théorème de la base incomplète.

Définition 19

Soit E un \mathbb{K} -espace vectoriel de dimension finie, F_1, \ldots, F_p des sous-espaces vectoriels supplémentaires de E et B une base de E.

La base \mathcal{B} est dite adaptée à la décomposition $E = \bigoplus_{k=1}^p F_k$ si et seulement si \mathcal{B} peut s'écrire comme la concaténation de $\mathcal{B}_1, \ldots, \mathcal{B}_p$ où \mathcal{B}_k est une base de F_k pour tout $k \in [1, p]$.

Proposition 1.3.10

La base ainsi définie existe.

Proposition 1.3.11

Soit E un \mathbb{K} -espace vectoriel de dimension finie et \mathcal{B} une base de E.

On suppose que \mathcal{B} s'écrit comme la concaténation de $\mathcal{B}_1, \ldots \mathcal{B}_p$.

Pour $k \in [1, p]$, notons F_k le sous espace vectoriel engendré par \mathcal{B}_k .

Alors les sous-espaces vectoriels F_1, \ldots, F_p sont supplémentaires.

1.4 Théorèmes en dimension finie

Proposition 1.4.1 (Existence d'un supplémentaire)

Dans un espace vectoriel de dimension finie, tout sous espace vectoriel admet un supplémentaire.

Autrement dit, soit E est un espace vectoriel de dimension finie et F un sous espace vectoriel de E.

Alors il existe un sous espace vectoriel G de E tel que $E = F \oplus G$.

Démonstration: Soit \mathcal{B}_1 une base de F que l'on complète avec \mathcal{B}_2 pour former une base de E. D'après la proposition 1.3.11, si on pose G l'espace vectoriel engendrée par \mathcal{B}_2 , alors $E = F \oplus G$.

Proposition 1.4.2

Soit $E_1, \ldots E_p$ des \mathbb{K} -espaces vectoriels.

L'espace vectoriel produit $\prod_{k=1}^p E_k$ est de dimension finie si et seulement si $\forall k \in [1, p], E_k$ est de dimension finie.

De plus, dans ce cas,

$$\dim(\prod_{k=1}^{p} E_k) = \sum_{k=1}^{p} \dim(E_k).$$

Démonstration: On suppose p = 2.

Soit $(\overrightarrow{e_1},\ldots,\overrightarrow{e_n})$ une base de E_1 et $(\overrightarrow{f_1},\ldots,\overrightarrow{f_q})$ une base de E_2 . Alors $((\overrightarrow{e_1},\overrightarrow{0}_F),\ldots,(\overrightarrow{e_n},\overrightarrow{0}_F),(\overrightarrow{0}_E,\overrightarrow{f_1}),\ldots,(\overrightarrow{0}_E,\overrightarrow{f_q}))$ est une base de $E_1\times E_2$.

— Génératrice :

Generatrice: Soit $(\overrightarrow{x}, \overrightarrow{y}) \in E_1 \times E_2$. Comme $\overrightarrow{x} \in E_1$ et $(\overrightarrow{e_1}, \dots, \overrightarrow{e_n})$ est une famille génératrice de E_1 , il existe $\lambda_1, \dots, \lambda_n \in \mathbb{K}$ tel que $\overrightarrow{x} = \lambda_1 \overrightarrow{e_1} + \dots + \lambda_n \overrightarrow{e_n}$. Comme $\overrightarrow{y} \in E_2$ et $(\overrightarrow{f_1}, \dots, \overrightarrow{f_q})$ est une famille génératrice de E_2 , il existe $\beta_1, \dots, \beta_q \in \mathbb{K}$ tel que $\overrightarrow{y} = \beta_1 \overrightarrow{f_1} + \dots + \beta_q \overrightarrow{f_q}$. D'où $(\overrightarrow{x}, \overrightarrow{y}) = \lambda_1 (\overrightarrow{e_1}, \overrightarrow{0}_F) + \dots + \lambda_n (\overrightarrow{e_n}, \overrightarrow{0}_F) + \beta_1 (\overrightarrow{0}_E, \overrightarrow{f_1}) + \dots + \beta_q (\overrightarrow{0}_E, \overrightarrow{f_q})$.

- Libre:

Soit $\lambda_1, \ldots, \lambda_n, \beta_1, \ldots, \beta_q \in K$ tel que

$$\lambda_1(\overrightarrow{e_1},\overrightarrow{0}_F) + \dots + \lambda_n(\overrightarrow{e_n},\overrightarrow{0}_F) + \beta_1(\overrightarrow{0}_E,\overrightarrow{f_1}) + \dots + \beta_q(\overrightarrow{0}_E,\overrightarrow{f_q}) = (\overrightarrow{0}_E,\overrightarrow{0}_F).$$

D'où:

$$(\lambda_1 \overrightarrow{e_1} + \dots + \lambda_n \overrightarrow{e_n}, \beta_1 \overrightarrow{f_1} + \dots + \beta_q \overrightarrow{f_q}) = (\overrightarrow{0}_E, \overrightarrow{0}_F).$$

Par identification, on obtient $\lambda_1 \overrightarrow{e_1} + \cdots + \lambda_n \overrightarrow{e_n} = \overrightarrow{0}_E$ et $\beta_1 \overrightarrow{f_1} + \cdots + \beta_q \overrightarrow{f_q} = \overrightarrow{0}_F$. Comme $(\overrightarrow{e_1}, \dots, \overrightarrow{e_n})$ une famille libre de E_1 et $(\overrightarrow{f_1}, \dots, \overrightarrow{f_q})$ de E_2 , $\lambda_1 = \dots = \lambda_n = \beta_1 = \dots = \beta_q = 0$.

Corollaire 1.4.3

Pour $p \in \mathbb{N}^*$ et E un \mathbb{K} -espace vectoriel.

L'espace vectoriel E^p est de dimension finie si et seulement si E l'est; dans ce cas, on a $\dim(E^p) = p.\dim(E)$.

Proposition 1.4.4 (Formule de Grassmann)

Soit E un \mathbb{K} -espace vectoriel dimension finie et F_1 , F_2 deux sous espace vectoriel de E. On a :

$$\dim(F_1 + F_2) = \dim F_1 + \dim F_2 - \dim(F_1 \cap F_1).$$

Démonstration: Une idée est de remarquer l'analogie avec la formule ensembliste :

$$\operatorname{card}(A) + \operatorname{card}(B) = \operatorname{card}(A \cup B) + \operatorname{card}(A \cap B).$$

Soit C une base de $F \cap G$. On la complète en une base A de F et en une base B de G. $A \cup B$ est une base F + G et $A \cap B = C$ est une base de $F \cap G$.

Proposition 1.4.5

Soit E un \mathbb{K} -espace vectoriel et $F_1, \ldots F_p$ des sous-espaces vectoriels de dimension finie de E.

Alors la somme $\sum_{k=1}^{p} F_k$ est également de dimension finie, et

$$\dim\left(\sum_{k=1}^{p} F_k\right) \leqslant \sum_{k=1}^{p} \dim(F_k).$$

De plus, il y a égalité si et seulement si la somme $\sum_{k=1}^{p} F_k$ est directe.

Proposition 1.4.6

Soit E un \mathbb{K} -espace vectoriels de dimensions finies et F_1, \ldots, F_p des sous espaces vectoriels de E.

On suppose que

$$\sum_{k=1}^{p} \dim F_k = \dim E.$$

 $Les\ conditions\ suivantes\ sont\ alors\ \'equivalentes:$

- 1. les sous espaces vectoriels F_1, \ldots, F_p sont supplémentaires,
- 2. les sous espaces vectoriels F_1, \ldots, F_p sont en somme directe,
- 3. $\sum_{k=1}^{p} F_k = E$.