Claims:

1. Compound of the formula

where

 R_1 is a) hydrogen, hydroxyl or amino; or

b) C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, C_1 - C_8 -alkanoyl, C_1 - C_8 -alkoxycarbonyl, aryl- C_0 - C_4 -alkyl or heterocyclyl- C_0 - C_4 -alkyl, which radicals may be substituted by 1-4 C_1 - C_8 -alkyl, halogen, oxo, cyano, trifluoromethyl, C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxycarbonyl, aryl or heterocyclyl; R_2 is a) C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, C_1 - C_8 -alkylsulphonyl, C_3 - C_8 -cycloalkylsulphonyl, aryl- C_0 - C_8 -alkylsulphonyl, heterocyclylsulphonyl, C_3 - C_1 -cycloalkyl- C_1 - C_8 -alkanoyl, aryl- C_3 - C_8 -cycloalkanoyl, C_1 - C_8 -alkanoyl, C_1 - C_8 -alkoxycarbonyl, optionally N-monoor N,N-di- C_1 - C_8 -alkylated carbamoyl- C_0 - C_8 -alkyl, aryl- C_0 - C_4 -alkyl or heterocyclyl- C_0 - C_4 -alkyl, which radicals may be substituted by 1-4 C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, C_3 - C_8 -cycloalkoxy, amino, C_1 - C_8 -alkylamino, di- C_1 - C_8 -alkylamino, C_1 - C_8 -alkanoylamino, C_1 - C_8 -alkoxy-carbonylamino, halogen, oxo, cyano, hydroxyl, trifluoromethyl, C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy-carbonyl, aryl or heterocyclyl; or

b) together with R₁ and the nitrogen atom to which they are bonded is a saturated or partly unsaturated, 4-8-membered, heterocyclic ring which may contain an additional nitrogen, oxygen or sulphur atom or an -SO- or -SO2- group, and the additional nitrogen atom may optionally be substituted by C₁-C₈-alkyl, C₁-C₈-alkanoyl, C₁-C₈-alkoxycarbonyl, aryl or heteroaryl radicals, in which case this heterocyclic ring may be part of a bicyclic or tricyclic ring system having a total of up to 16 members and the second ring may also contain a nitrogen, oxygen or sulphur atom or an -SO- or -SO2- group, and the nitrogen atom of the second ring may optionally be substituted by C₁-C₈-alkyl, C₁-C₈-alkanoyl, C₁-C₈-alkoxy-carbonyl, aryl or heterocyclyl radicals, and all ring systems mentioned may be substituted by 1-4 C₁-C₈-alkyl, halogen, hydroxyl, oxo, trifluoromethyl, C₁-C₈-alkoxy, C₁-C₈-alkoxy-C₁-C₈-alkoxy-C₁-C₈-alkoxy-C₁-C₈-alkoxy-C₁-C₈-alkoxy-C₁-C₈-alkoxy-C₁-C₈-alkoxy-C₁-C₈-alkoxy-C₁-C₈-alkoxy-C₁-C₈-alkylamino, N,N-di-C₁-C₈-alkylamino, aryl-C₀-C₄-alkyl, aryloxy-C₀-C₄-alkyl, aryl-C₀-C₄-alkyl

 $\label{eq:continuous_continuous$

R₆ is hydrogen or hydroxyl;

R. in each case independently, are 1-4 radicals selected from: hydrogen, halogen, C₁-C₈-alkyl, 3- to 8-membered cycloalkyl, polyhalo-C₁-C₄-alkyl, C₁-C₄alkoxy-C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkoxy-C₁-C₄-alkyl, 3- to 8-membered cycloalkoxy-C₁-C₄-alkyl, hydroxyl, C₁-C₈-alkanoyloxy-C₁-C₄-alkyl, hydroxy-C₂-C₈-alkyl, C₁-C₄alkylthio-C₁-C₄-alkyl, C₁-C₈-alkylsulphonyl-C₁-C₄-alkyl, thiazolylthio-C₁-C₄-alkyl, thiazolinylthio-C₁-C₄-alkyl, imidazolylthio-C₁-C₄-alkyl, optionally N-oxidized pyridylthio-C₁-C₄alkyl, pyrimidinylthio-C₁-C₄-alkyl, optionally partially hydrogenated pyridyl- or N-oxidopyridyl-C₁-C₄-alkyl, C₁-C₄-alkylsulphonylamino-C₁-C₄-alkyl, trifluoro-C₁-C₈-alkylsulphonylamino-C₁-C₄-alkyl, pyrrolidino-C₁-C₄-alkyl, piperidino-C₁-C₄-alkyl, piperazino-C₁-C₄-alkyl, $morpholino-C_1-C_4-alkyl,\ thiomorpholino-C_1-C_4-alkyl,\ S-oxothiomorpholino-C_1-C_4-alkyl,\ S.S-oxothiomorpholino-C_1-C_4-alkyl,\ S.S-oxothiom$ dioxothiomorpholino-C₁-C₄-alkyl, cyano-C₁-C₄-alkyl, carboxy-C₁-C₄-alkyl, C₁-C₄-alkoxycarbonyl-C₁-C₄-alkyl, carbamoyl-C₁-C₈-alkyl, N-mono- or N,N-di-C₁-C₄-alkylcarbamoyl-C₁-C₄alkyl, unsubstituted or mono-, di- or tri-C₁-C₄-alkyl-, -C₁-C₄-alkoxy-, -hydroxy-, -C₁-C₄-alkylamino-, -di-C₁-C₄-alkylamino-, -halogen- or -trifluoromethyl-substituted phenyl or naphthyl, hydroxy-C₂-C₈-alkoxy, halo-C₂-C₈-(hydroxy)alkoxy, C₁-C₈-alkylsulphonyl-C₁-C₄-(hydroxy)alkoxy, amino-C₁-C₄-alkyl, C₁-C₄-alkylamino-C₁-C₄-alkyl, N, N-di-C₁-C₄-alkylamino-C₁-C₄alkyl, N-C₁-C₄-alkanoylamino-C₁-C₄-alkyl, C₁-C₈-alkoxycarbonylamino-C₁-C₄-alkyl, optionally partially hydrogenated pyridyl- or N-oxidopyridyl-C₁-C₄-alkyl, piperazino-C₁-C₄-alkyl, N'-C₁-C₄-alkylpiperazino-C₁-C₄-alkyl, N'-C₂-C₈-alkanoylpiperazino-C₁-C₄-alkyl, morpholino-C1-C4-alkyl, thiomorpholino-C1-C4-alkyl, S-oxothiomorpholino-C1-C4-alkyl, S,S-dioxothiomorpholino-C₁-C₄-alkyl, amino-C₁-C₄-alkoxy, C₁-C₄-alkylamino-C₁-C₄-alkoxy, N,N-di-C₁-C₄ $alkylamino-C_1-C_4-alkoxy,\ C_1-C_4-alkanoylamino-C_1-C_4-alkoxy,\ C_1-C_8-alkoxycarbonylamino-C_1-C_4-alkoxy,\ C_1-C_8-alkoxycarbonylamino-C_1-C_4-alkoxy,\ C_1-C_8-alkoxycarbonylamino-C_1-C_4-alkoxy,\ C_1-C_8-alkoxycarbonylamino-C_1-C_4-alkoxycarbonylamino-C_1-C_4-alkoxycarbonylamino-C_1-C_8-alkoxycarbonyl$ C₁-C₄-alkoxy, C₁-C₈-alkanoyl-C₂-C₄-alkoxy which bears the alkanoyl group in a position higher than the α-position, C₁-C₈-alkoxy, 3- to 8-membered cycloalkoxy, C₂-C₈-alkenyloxy, 3to 8-membered cycloalkoxy- C_1 - C_4 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkoxy, C_1 - C_4 -alkoxy- C_2 - C_4 - C_4 -alkoxy- C_2 - C_4 alkenyl, C2-C8-alkenyloxy-C1-C4-alkoxy, C1-C4-alkoxy-C2-C4-alkenyloxy, C2-C8-alkenyloxy-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkoxy, C₁-C₈-alkylsulphonyl-C₁-C₄-alkoxy, C₁-C₄-alkylthioC₁-C₄-(hydroxy)alkoxy, unsubstituted or mono-, di- or tri-C₁-C₄-alkyl-, -C₁-C₄-alkoxy-, -hydroxy-, -C₁-C₄-alkylamino-, -di-C₁-C₄-alkylamino-, -halo- and/or -trifluoromethylsubstituted phenyl- or naphthyl- C_1 - C_4 -alkoxy, polyhalo- C_1 - C_4 -alkoxy, optionally partially hydrogenated pyridyl- or N-oxidopyridyl-C₁-C₄-alkoxy, thiazolyl-C₁-C₄-alkoxy, optionally N-oxidized morpholino- C_1 - C_4 -alkoxy, thiazolylthio- C_1 - C_4 -alkoxy, thiazolinylthio- C_1 - C_4 -alkoxy, imidazolylthio-C₁-C₄-alkoxy, optionally N-oxidized pyridylthio-C₁-C₄-alkoxy, pyrimidinylthio-C₁-C₄-alkoxy, amino-C₁-C₄-alkoxy, C₁-C₄-alkylamino-C₁-C₄-alkoxy, N,N-di-C₁-C₄-alkylamino-C₁-C₄-alkoxy, C₁-C₈-alkanoylamino-C₁-C₄-alkoxy, C₁-C₈-alkylsulphonylamino-C₁-C₄-alkoxy, trifluoro- C_1 - C_8 -alkylsulphonyl- C_1 - C_4 -alkoxy, pyrrolidino- C_1 - C_4 -alkoxy, piperidino- C_1 - C_4 alkoxy, cyano-C₁-C₄-alkoxy, carboxy-C₁-C₄-alkoxy, C₁-C₄-alkoxycarbonyl-C₁-C₄-alkoxy, carbamoyl-C₁-C₄-alkoxy, N-C₁-C₈-alkylcarbamoyl-C₁-C₄-alkoxy or N-mono- or N,N-di-C₁-C₄alkylcarbamovi-C₁-C₄-alkoxy, carboxy-C₁-C₄-alkyl, C₁-C₄-alkoxycarbonyl-C₁-C₄-alkyl, carbamoyi-C1-C8-alkyl, N-mono- or N,N-di-C1-C4-alkylcarbamoyl-C1-C4-alkyl, carboxy-C1-C4alkoxy, C₁-C₄-alkoxycarbonyl-C₁-C₄-alkoxy, carbamoyl-C₁-C₈-alkoxy, N-Mono- or N,N-di-C₁-C₄-alkylcarbamoyl-C₁-C₄-alkoxy, C₁-C₄-alkylamino or N,N-di-C₁-C₄-alkylamino, or salt or prodrug thereof, or where one or more atoms are replaced by their stable, nonradioactive isotopes, preferably pharmaceutically usable salt thereof.

2. Compound according to Claim 1, where

R₁ is a) hydrogen; or

5 - 73

- b) C₁-C₈-alkyl or C₃-C₈-cycloalkyl;
- R_2 is a) C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, C_1 - C_8 -alkanoyl, heterocyclyl- C_1 - C_8 -alkanoyl, C_3 - C_{12} -cycloalkyl- C_1 - C_8 -alkanoyl or aryl- C_1 - C_8 -alkanoyl, which radicals may be substituted by 1-4 C_1 - C_8 -alkyl, C_1 - C_8 -alkylamino, cyano, halogen, hydroxyl, C_1 - C_6 -alkanoylamino, C_1 - C_8 -alkoxy, oxo, trifluoromethyl or aryl; or
- b) together with R₁ and the nitrogen atom to which they are bonded are a saturated or partly unsaturated, 4-8-membered, heterocyclic ring which may contain an additional nitrogen or oxygen atom, in which case the additional nitrogen atom may optionally be substituted by C₁-C₈-alkyl or C₁-C₈-alkanoyl, and this heterocyclic ring may be part of a bicyclic or tricyclic ring system having a total of up to 16 ring members and the second ring may also contain a nitrogen or oxygen atom, in which case the nitrogen atom of the second ring may optionally be substituted by C₁-C₈-alkyl or C₁-C₈-alkanoyl, and all ring systems mentioned may be substituted by 1-4 C₁-C₈-alkyl, hydroxyl, oxo, C₁-C₈-alkoxy, C₁-C₈-alkanoylamino or aryloxy-C₀-C₄-alkyl-C₁-C₈-alkoxy; R₃ is hydrogen;

R₄ is hydrogen;

R₅ are each independently hydrogen or C₁-C₈-alkyl;

R₆ is hydrogen;

R are each independently 1-4 radicals selected from:

hydrogen, C_1 - C_8 -alkyl, halogen, trifluoromethyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkoxy- C_1 - C_4 -alkoxy- C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxy, or pharmaceutically usable salt thereof.

3. Compound according to Claim 1 of the formula

$$\begin{array}{c|c} & OH & \\ \hline & NR_1R_2 \\ \hline & NR_3R_4 & \\ \end{array} \hspace{0.5cm} \text{(ia)}$$

where R, R₁, R₂, R₃, R₄ and R₅ are each as defined in Claim 1.

4. Compound according to Claim 1,

where R₂ together with R₁ and the nitrogen atom to which they are bonded is a substituted or unsubstituted heterocyclic ring selected from pyrrolidino, piperidino, pyridinyl, piperazino, morpholino, thiomorpholino, furanyl, tetrahydrofuranyl, pyranyl, tetrahydropyranyl, thiazolyl, oxazolyl, imidazolyl, indolinyl, isoindolinyl, 2,3-dihydrobenzimidazolyl, 1,2,3,4-tetrahydroquinolyl, 1,2,3,4-tetrahydroisoquinolyl, 1,2,3,4-tetrahydro-1,3-benzodiazinyl, 1,2,3,4-tetrahydro-1,4-benzodiazinyl, 3,4-dihydro-2H-1,4-benzoxazinyl, 3,4-dihydro-2H-1,3-benzothiazinyl, 3,4,5,6,7,8-hexahydro-2H-1,4-benzothiazinyl, 3,4,5,6,7,8-hexahydro-2H-1,4-benzothiazinyl, 9-azabicyclo[3.3.1]non-9-yl, 1-azepan-1-yl, 2,8-diazaspiro[4.5]dec-8-yl, octahydroisoindol-2-yl, 4-azatricyclo[5.2.1.0^{2,6}]dec-4-yl, 3-azabicyclo[3.2.1]oct-3-yl, 3,7-diazabicyclo[3.3.1]non-3-yl, 3-azabicyclo[3.3.1]non-3-yl, 8-azabicyclo[3.2.1]oct-8-yl, 3-azabicyclo[3.2.2]non-3-yl, 2,3,4,5-tetrahydro-1H-1-benz[6,7-b]azepinyl and 5,6-dihydrophenanthridinyl.

5. Compound according to one of Claims 1-4 for use in a method for therapeutically treating the human or animal body.

- 6. Pharmaceutical preparation comprising, as an active pharmaceutical ingredient, a compound according to one of Claims 1-4 in free form or as a pharmaceutically usable salt.
- 7. Use of a compound according to one of Claims 1 4 for the preparation of a pharmaceutical preparation with renin-inhibiting action.
- 8. Use of a compound according to one of Claims 1 4 for the preparation of a pharmaceutical preparation for the treatment or prevention of hypertension, heart failure, glaucoma, cardiac infarction, kidney failure or restensis.