Practical Machine Learning Course Project

Juho Pesonen
31 December 2016

Background

Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement - a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In this project, your goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways. More information is available from the website here: http://groupware.les.inf.puc-rio.br/har (see the section on the Weight Lifting Exercise Dataset).

Data

The training data for this project are available here:

https://d396 qusza 40 orc.cloud front.net/predmachlearn/pml-training.csv

The test data are available here:

https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv

The data for this project come from this source: http://groupware.les.inf.puc-rio.br/har. From there you will be able to find more information about the data.

Purpose

The main purpose of this exercise if to find how accelerometer data can be used to predict wheter a person correctly executes unilater dumbbell biceps curl. For this purpose there is a variable classe in the data: exactly according to the specification (Class A), throwing the elbows to the front (Class B), lifting the dumbbell only halfway (Class C), lowering the dumbbell only halfway (Class D) and throwing the hips to the front (Class E).

Read more: http://groupware.les.inf.puc-rio.br/har#ixzz4UP7Rgq00

Reading data

```
trainingData<-read.csv("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv")
testingData<-read.csv("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv")</pre>
```

Installing packages

```
require(ggplot2)
```

```
## Loading required package: ggplot2
require(caret)
## Loading required package: caret
## Loading required package: lattice
require(randomForest)
## Loading required package: randomForest
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
      margin
Probing the data
dim(trainingData)
## [1] 19622
              160
dim(testingData)
## [1] 20 160
nsv<-nearZeroVar(trainingData, saveMetrics=T)</pre>
##
                            freqRatio percentUnique zeroVar
## X
                             1.000000 100.00000000 FALSE FALSE
                             1.100679
                                        0.03057792 FALSE FALSE
## user_name
## raw_timestamp_part_1
                             1.000000
                                        4.26562022 FALSE FALSE
                            1.000000 85.53154622 FALSE FALSE
## raw_timestamp_part_2
## cvtd_timestamp
                            47.330049 0.01019264 FALSE TRUE
## new_window
                            1.000000 4.37264295 FALSE FALSE
## num_window
                           1.101904 6.77810621 FALSE FALSE
## roll_belt
## pitch_belt
                           1.036082
                                        9.37722964 FALSE FALSE
                            1.058480 9.97349913 FALSE FALSE
## yaw_belt
```

	total_accel_belt	1.063160	0.14779329	FALSE	
	kurtosis_roll_belt	1921.600000	2.02323922	FALSE	TRUE
	kurtosis_picth_belt	600.500000	1.61553358	FALSE	TRUE
	kurtosis_yaw_belt	47.330049	0.01019264	FALSE	TRUE
	skewness_roll_belt	2135.111111	2.01304658	FALSE	TRUE
	skewness_roll_belt.1	600.500000	1.72255631	FALSE	TRUE
	skewness_yaw_belt	47.330049	0.01019264	FALSE	TRUE
	max_roll_belt	1.000000	0.99378249	FALSE	
	max_picth_belt	1.538462	0.11211905	FALSE	
	max_yaw_belt	640.533333	0.34654979	FALSE	TRUE
	min_roll_belt	1.000000	0.93772296	FALSE	
	min_pitch_belt	2.192308	0.08154113	FALSE	FALSE
##	min_yaw_belt	640.533333	0.34654979	FALSE	TRUE
##	amplitude_roll_belt	1.290323	0.75425543	FALSE	FALSE
##	amplitude_pitch_belt	3.042254	0.06625217	FALSE	FALSE
##	amplitude_yaw_belt	50.041667	0.02038528	FALSE	TRUE
##	var_total_accel_belt	1.426829	0.33126083	FALSE	FALSE
##	avg_roll_belt	1.066667	0.97339721	FALSE	FALSE
##	stddev_roll_belt	1.039216	0.35164611	FALSE	FALSE
##	var_roll_belt	1.615385	0.48924676	FALSE	FALSE
##	avg_pitch_belt	1.375000	1.09061258	FALSE	FALSE
##	stddev_pitch_belt	1.161290	0.21914178	FALSE	FALSE
##	var_pitch_belt	1.307692	0.32106819	FALSE	FALSE
##	avg_yaw_belt	1.200000	1.22311691	FALSE	FALSE
##	stddev_yaw_belt	1.693878	0.29558659	FALSE	FALSE
##	var_yaw_belt	1.500000	0.73896647	FALSE	FALSE
	gyros_belt_x	1.058651	0.71348486	FALSE	FALSE
	gyros_belt_y	1.144000	0.35164611	FALSE	FALSE
	gyros_belt_z	1.066214	0.86127816	FALSE	FALSE
	accel_belt_x	1.055412	0.83579655	FALSE	FALSE
##	accel_belt_y	1.113725	0.72877383	FALSE	FALSE
##	accel_belt_z	1.078767	1.52379982	FALSE	FALSE
##	magnet_belt_x	1.090141	1.66649679	FALSE	
##	magnet_belt_y	1.099688	1.51870350	FALSE	FALSE
##	magnet_belt_z	1.006369	2.32901845	FALSE	
	roll_arm	52.338462	13.52563449	FALSE	
	pitch_arm	87.256410	15.73234125	FALSE	
	yaw_arm	33.029126	14.65701763	FALSE	
	total_accel_arm	1.024526	0.33635715		
	var_accel_arm	5.500000	2.01304658		
	avg_roll_arm	77.000000	1.68178575		TRUE
	stddev_roll_arm	77.000000	1.68178575	FALSE	TRUE
	var_roll_arm	77.000000	1.68178575	FALSE	TRUE
##	avg_pitch_arm	77.000000	1.68178575	FALSE	TRUE
	stddev_pitch_arm	77.000000	1.68178575	FALSE	TRUE
	var_pitch_arm	77.000000	1.68178575	FALSE	TRUE
##	avg_yaw_arm	77.000000	1.68178575	FALSE	TRUE
##	stddev_yaw_arm	80.000000	1.66649679	FALSE	TRUE
	var_yaw_arm	80.000000	1.66649679		TRUE
	-v -	1.015504	3.27693405	FALSE	
	gyros_arm_x	1.454369			
	gyros_arm_y	1.454369			
	gyros_arm_z	1.017341	3.95984099		
	accel_arm_x				
##	accel_arm_y	1.140187	2.73672409	FALSE	r aloľ

	_			
	accel_arm_z	1.128000	4.03628580	FALSE FALSE
	magnet_arm_x	1.000000	6.82397309	FALSE FALSE
	magnet_arm_y	1.056818	4.44399144	FALSE FALSE
	magnet_arm_z	1.036364	6.44684538	FALSE FALSE
	kurtosis_roll_arm	246.358974	1.68178575	FALSE TRUE
	kurtosis_picth_arm	240.200000	1.67159311	FALSE TRUE
	kurtosis_yaw_arm	1746.909091	2.01304658	FALSE TRUE
	skewness_roll_arm	249.558442	1.68688207	FALSE TRUE
	skewness_pitch_arm	240.200000	1.67159311	FALSE TRUE
	skewness_yaw_arm	1746.909091	2.01304658	FALSE TRUE
	max_roll_arm	25.666667	1.47793293	FALSE TRUE
	max_picth_arm	12.833333	1.34033228	FALSE FALSE
	max_yaw_arm	1.227273	0.25991234	FALSE FALSE
	min_roll_arm	19.250000	1.41677709	FALSE TRUE
	min_pitch_arm	19.250000	1.47793293	FALSE TRUE
	min_yaw_arm	1.000000	0.19366018	FALSE FALSE
##	amplitude_roll_arm	25.666667	1.55947406	FALSE TRUE
##	amplitude_pitch_arm	20.000000	1.49831821	FALSE TRUE
##	1 -7 -	1.037037	0.25991234	FALSE FALSE
	roll_dumbbell	1.022388	84.20650290	FALSE FALSE
	pitch_dumbbell	2.277372	81.74498012	FALSE FALSE
	yaw_dumbbell	1.132231	83.48282540	FALSE FALSE
	kurtosis_roll_dumbbell	3843.200000	2.02833554	FALSE TRUE
	kurtosis_picth_dumbbell	9608.000000	2.04362450	FALSE TRUE
##	kurtosis_yaw_dumbbell	47.330049	0.01019264	FALSE TRUE
##	skewness_roll_dumbbell	4804.000000	2.04362450	FALSE TRUE
##	skewness_pitch_dumbbell	9608.000000	2.04872082	FALSE TRUE
##	skewness_yaw_dumbbell	47.330049	0.01019264	FALSE TRUE
##	max_roll_dumbbell	1.000000	1.72255631	FALSE FALSE
##	max_picth_dumbbell	1.333333	1.72765263	FALSE FALSE
##	max_yaw_dumbbell	960.800000	0.37203139	FALSE TRUE
##	min_roll_dumbbell	1.000000	1.69197839	FALSE FALSE
##	min_pitch_dumbbell	1.666667	1.81429008	FALSE FALSE
##	min_yaw_dumbbell	960.800000	0.37203139	FALSE TRUE
##	amplitude_roll_dumbbell	8.000000	1.97227602	FALSE FALSE
##	${\tt amplitude_pitch_dumbbell}$	8.000000	1.95189073	FALSE FALSE
##	amplitude_yaw_dumbbell	47.920200	0.01528896	FALSE TRUE
##	total_accel_dumbbell	1.072634	0.21914178	FALSE FALSE
##	var_accel_dumbbell	6.000000	1.95698706	FALSE FALSE
##	avg_roll_dumbbell	1.000000	2.02323922	FALSE FALSE
##	stddev_roll_dumbbell	16.000000	1.99266130	FALSE FALSE
##	var_roll_dumbbell	16.000000	1.99266130	FALSE FALSE
##	avg_pitch_dumbbell	1.000000	2.02323922	FALSE FALSE
##	stddev_pitch_dumbbell	16.000000	1.99266130	FALSE FALSE
##	var_pitch_dumbbell	16.000000	1.99266130	FALSE FALSE
##	avg_yaw_dumbbell	1.000000	2.02323922	FALSE FALSE
##	stddev_yaw_dumbbell	16.000000	1.99266130	FALSE FALSE
##	var_yaw_dumbbell	16.000000	1.99266130	FALSE FALSE
##	gyros_dumbbell_x	1.003268	1.22821323	FALSE FALSE
##	gyros_dumbbell_y	1.264957	1.41677709	FALSE FALSE
##	gyros_dumbbell_z	1.060100	1.04984201	FALSE FALSE
##	accel_dumbbell_x	1.018018	2.16593619	FALSE FALSE
##	accel_dumbbell_y	1.053061	2.37488533	FALSE FALSE
##	accel_dumbbell_z	1.133333	2.08949139	FALSE FALSE

```
## magnet_dumbbell_x
                                             5.74864948
                                                           FALSE FALSE
                                1.098266
## magnet_dumbbell_y
                                             4.30129447
                                                          FALSE FALSE
                                1.197740
                                1.020833
## magnet dumbbell z
                                             3.44511263
                                                           FALSE FALSE
## roll_forearm
                               11.589286
                                            11.08959331
                                                          FALSE FALSE
## pitch_forearm
                               65.983051
                                            14.85577413
                                                          FALSE FALSE
## yaw forearm
                               15.322835
                                            10.14677403
                                                          FALSE FALSE
## kurtosis roll forearm
                              228.761905
                                             1.64101519
                                                           FALSE
                                                                 TRUE
## kurtosis_picth_forearm
                              226.070588
                                             1.64611151
                                                          FALSE
                                                                  TRUE
## kurtosis_yaw_forearm
                               47.330049
                                             0.01019264
                                                           FALSE
                                                                  TRUE
## skewness_roll_forearm
                              231.518072
                                             1.64611151
                                                           FALSE
                                                                  TRUE
## skewness_pitch_forearm
                              226.070588
                                             1.62572623
                                                           FALSE
                                                                  TRUE
## skewness_yaw_forearm
                                                           FALSE
                               47.330049
                                             0.01019264
                                                                  TRUE
## max_roll_forearm
                               27.666667
                                                           FALSE
                                                                 TRUE
                                             1.38110284
## max_picth_forearm
                                2.964286
                                             0.78992967
                                                           FALSE FALSE
## max_yaw_forearm
                                                          FALSE
                              228.761905
                                             0.22933442
                                                                 TRUE
## min_roll_forearm
                               27.666667
                                             1.37091020
                                                           FALSE
                                                                  TRUE
## min_pitch_forearm
                                             0.87147080
                                                           FALSE FALSE
                                2.862069
## min yaw forearm
                              228.761905
                                             0.22933442
                                                           FALSE
                                                                 TRUE
## amplitude_roll_forearm
                               20.750000
                                             1.49322189
                                                          FALSE
                                                                 TRUE
## amplitude_pitch_forearm
                                3.269231
                                             0.93262664
                                                          FALSE FALSE
## amplitude_yaw_forearm
                               59.677019
                                             0.01528896
                                                          FALSE
                                                                TRUE
## total_accel_forearm
                                             0.35674243
                                                           FALSE FALSE
                                1.128928
## var_accel_forearm
                                             2.03343186
                                                          FALSE FALSE
                                3.500000
## avg roll forearm
                               27.666667
                                             1.64101519
                                                          FALSE
                                                                  TRUE
## stddev_roll_forearm
                               87.000000
                                             1.63082255
                                                           FALSE
                                                                  TRUE
## var_roll_forearm
                               87.000000
                                             1.63082255
                                                           FALSE
                                                                  TRUE
## avg_pitch_forearm
                                                           FALSE
                               83.000000
                                             1.65120783
                                                                  TRUE
## stddev_pitch_forearm
                               41.500000
                                             1.64611151
                                                           FALSE
                                                                  TRUE
## var_pitch_forearm
                                                           FALSE
                               83.000000
                                             1.65120783
                                                                 TRUE
## avg_yaw_forearm
                               83.000000
                                                           FALSE
                                                                  TRUE
                                             1.65120783
## stddev_yaw_forearm
                               85.000000
                                             1.64101519
                                                           FALSE
                                                                  TRUE
## var_yaw_forearm
                               85.000000
                                             1.64101519
                                                           FALSE TRUE
## gyros_forearm_x
                                1.059273
                                             1.51870350
                                                           FALSE FALSE
## gyros_forearm_y
                                             3.77637346
                                                           FALSE FALSE
                                1.036554
## gyros forearm z
                                                           FALSE FALSE
                                1.122917
                                             1.56457038
## accel_forearm_x
                                1.126437
                                             4.04647844
                                                          FALSE FALSE
## accel forearm y
                                1.059406
                                             5.11160942
                                                           FALSE FALSE
## accel_forearm_z
                                                          FALSE FALSE
                                1.006250
                                             2.95586586
## magnet_forearm_x
                                                          FALSE FALSE
                                1.012346
                                             7.76679238
## magnet_forearm_y
                                                           FALSE FALSE
                                1.246914
                                             9.54031189
## magnet forearm z
                                1.000000
                                             8.57710733
                                                           FALSE FALSE
## classe
                                                           FALSE FALSE
                                1.469581
                                             0.02548160
```

We notice that there are a lot of variables that have near zero variance. Even though some of them might be useful for this assignment I am still removing all TRUE variables from the further analysis to keep this straightforward.

trainingData<-trainingData[,-nearZeroVar(trainingData)]</pre>

We can still see that there are a lot of variables with missing values. I will now delete all variables with missing values so that they do not interfere with analysis. We also see that X, user_name, timestaps and num window have nothing to do with accelometers so we remove them too.

Fitting the model

Now the data is ready for analysis. I have chosen to use Random Forest approach as it is typically accurate method.

```
set.seed(1111)
inTrain<-createDataPartition(y=trainingData$classe, p=0.7, list=FALSE)
training<-trainingData[inTrain,]
testing<-trainingData[-inTrain,]
modelFit<-randomForest(classe~., data=training, type="class")</pre>
```

Data is cross-validated by taking 70 % of the data for training set and 30 % for testing set.

```
modelFit
```

```
##
## Call:
  randomForest(formula = classe ~ ., data = training, type = "class")
##
                  Type of random forest: classification
                        Number of trees: 500
## No. of variables tried at each split: 7
##
##
           OOB estimate of error rate: 0.5%
## Confusion matrix:
##
        Α
            В
                       D
                            E class.error
## A 3902
                  0
                       0
                            0 0.001024066
       12 2643
                  3
                       0
                            0 0.005643341
## B
## C
       0
            13 2381
                       2
                            0 0.006260434
## D
       0
            0
                 25 2225
                            2 0.011989343
## E
             0
                  3
                       4 2518 0.002772277
```

```
pred<-predict(modelFit,testing)
confusionMatrix(pred, testing$classe)</pre>
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                  Α
                            C
                                  D
                                       Ε
##
            A 1674
                             0
                                  0
##
            В
                  0 1134
                             5
                                       0
                                  0
##
            С
                  0
                       1 1021
                                 11
                                       0
            D
                       0
                                       2
##
                  0
                            0
                               953
##
            Ε
                       0
                             0
                                  0 1080
##
## Overall Statistics
##
##
                   Accuracy : 0.9961
                     95% CI : (0.9941, 0.9975)
##
```

```
##
       No Information Rate: 0.2845
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa: 0.9951
##
   Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
##
                         Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                           1.0000
                                    0.9956
                                             0.9951
                                                       0.9886
                                                                0.9982
## Specificity
                           0.9991
                                    0.9989
                                             0.9975
                                                       0.9996
                                                                1.0000
## Pos Pred Value
                           0.9976
                                    0.9956
                                             0.9884
                                                       0.9979
                                                                1.0000
## Neg Pred Value
                                                                0.9996
                           1.0000
                                    0.9989
                                             0.9990
                                                       0.9978
## Prevalence
                           0.2845
                                    0.1935
                                                       0.1638
                                                                0.1839
                                             0.1743
## Detection Rate
                           0.2845
                                    0.1927
                                             0.1735
                                                       0.1619
                                                                0.1835
## Detection Prevalence
                           0.2851
                                    0.1935
                                             0.1755
                                                       0.1623
                                                                0.1835
## Balanced Accuracy
                           0.9995
                                    0.9973
                                             0.9963
                                                       0.9941
                                                                0.9991
```

The results show that the model is 99.54 % accurate, making the expected out-of-sample error estimate 0.46%. We can now finally predict what the class would be for the testing data subjects:

```
predictfinal<-predict(modelFit, testingData, type="class")
predictfinal</pre>
```

```
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ## B A B A A E D B A A B C B A E E A B B B ## Levels: A B C D E
```