VECTOR

Đại học Khoa học Tự Nhiên, ĐHQG Thành phố Hồ Chí Minh

Ngày 23 tháng 2 năm 2023

Vector 1 / 34

- Vector
- 2 Chuẩn và khoảng cách
- 3 Cơ sở và cơ sở trực giao

4 Thuật giải Gram-Schmidt

Vector 2 / 34

Outlines

- Vector
- Chuẩn và khoảng cách
- Cơ sở và cơ sở trực giao
- Thuật giải Gram-Schmidt

Các phép toán trên vector

Cho u = $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ và v = $(y_1, y_2, \dots, y_n) \in \mathbb{R}^n$. Ta có các phép toán sau.

- $u = v \text{ n\'eu } x_1 = y_1, x_2 = y_2, \dots, x_n = y_n.$
- $u + v = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n).$
- $u v = (x_1 y_1, x_2 y_2, \dots, x_n y_n).$
- $ku = (kx_1, kx_2, \dots, kx_n), k \in \mathbb{R}$.

Nếu u, v, w $\in \mathbb{R}^n$ và $k \in \mathbb{B}$ thì

- u + v = v + u.
- \bullet (u + v) + w = u + (v + w).
- k(u + v) = ku + kv.
- \bullet (k+m)u = ku + mu.
- \bullet (k+m)u = ku + mu.

Tổ hợp tuyến tính

Cho $u_1, u_2, \ldots, u_m \in V$. Một tố hợp tuyến tính của $u_1, u_2, \ldots, u_m \in V$ là một vector có dạng

$$u = \alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_m u_m, \quad \alpha_i \in R$$

Khi đó, đắng thức trên được gọi là dạng biểu diễn của u theo các vector u_1, u_2, \ldots, u_m

Để kiểm tra u là tố hợp tuyến tính của u_1, u_2, \ldots, u_n trong \mathbb{R}^n , ta áp dung các bước sau:

- Lập ma trận mở rộng $A = (u_1^I u_2^I u_m^I | u^I)$
- Giải hệ phương trình ứng với ma trận mở rộng A. Nếu hệ phương trình vô nghiệm, kết luận u không phải là tổ hợp tuyến tính của u_1, u_2, \ldots, u_n và ngược lai.

Ví du

Xét xem u = (-3, 1, 4) có là tố hợp tuyến tính của các vector $u_1 = (1, 2, 1), u_2 = (-1, -1, 1), u_3 = (-2, 1, 1)$ hay không?

Lập
$$A = (u_1^T u_2^T u_m^T | u^T) = \begin{pmatrix} 1 & -1 & 2 & -3 \\ 2 & -1 & 1 & 1 \\ 1 & 1 & 1 & 4 \end{pmatrix}$$

Dùng các phép biến đối sơ cấp, ta nhận được ma trận có dạng bậc thang của A.

$$\begin{pmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 1
\end{pmatrix}$$

Hệ phương trình có nghiệm duy nhất $(\alpha_1, \alpha_2, \alpha_3) = (1, 2, 1)$. Vậy u là tổ hợp tuyến tính của u_1, u_2, u_3 . Dạng biểu diễn của u là $u = u_1 + 2u_2 + u_3$.

Vector 6 / 34

Độc lập và phụ thuộc tuyến tính

Cho $u_1, u_2, \ldots, u_n \in V$. Xét phương trình

$$\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_m u_m = 0 \tag{1}$$

- Nếu 1 chỉ có nghiệm tầm thường $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$ thì ta nói u_1, u_2, \ldots, u_n độc lập tuyến tính.
- Nếu 1 chỉ có nghiệm không tầm thường $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$ thì ta nói u_1, u_2, \ldots, u_n phụ thuộc tuyến tính.

Nói cách khác,

- Nếu phương trình 1 có nghiệm duy nhất thì u_1, u_2, \dots, u_n độc lập tuyến tính.
- Nếu phương trình 1 vô sô

Vector 7 / 34

Thuật toán kiếm tra tính độc lập tuyến tính của các vector u_1, u_2, \ldots, u_n trong K^n

- B1. Lập ma trận A bằng cách xếp u_1, u_2, \ldots, u_n thành các cột hoặc thành các dòng.
- B2. Xác định hạng R(A) của A.
 - Nếu R(A) = n thì u_1, u_2, \dots, u_n độc lập tuyến tính.
 - Nếu R(A) < n thì u_1, u_2, \dots, u_n phụ thuộc tuyến tính

Trường hợp m = n, ta có A là ma trận vuông. Khi đó có thể thay bước 2 bằng bước 2' sau đây:

- B2'. Tính định thức của ma trân A
 - Nếu $det(A \neq 0)$ thì u_1, u_2, \dots, u_n độc lập tuyến tính.
 - Nếu det(A=0) thì u_1, u_2, \dots, u_n phụ thuộc tuyến tính

Vector 8 / 34

Trong không gian \mathbb{R}^4 , cho các vector $u_1 = (-1, 2, -1, 2), u_2 = (2, 2, -4, 2), u_3 = (1, 3, 1, 2)$. Hãy kiểm tra xem u_1, u_2, u_3 độc lập tuyến tính hay phụ thuộc tuyến tính?

Lâp ma trân A

$$A = \left(u_1^T u_2^T u_3^T\right) = \begin{pmatrix} -1 & 2 & 1 \\ 2 & 2 & 3 \\ -1 & -4 & 1 \\ 2 & 2 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} -1 & 2 & 1 \\ 0 & 6 & 5 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{pmatrix}$$

Ta có R(A) = 3, suy ra u_1, u_2, u_3 độc lập tuyến tính.

Ví dụ - Sinh viên tự giải

Trong không gian \mathbb{R}^5 , cho các vector $u_1 = (1, 2, -3, 5, 1), u_2 = (1, 3, -13, 22, -1), u_3 = (3, 5, 1, -2, 5).$ Hãy kiểm tra xem u_1, u_2, u_3 độc lập tuyến tính hay phụ thuộc tuyến tính?

Outlines

- 1 Vector
- 2 Chuẩn và khoảng cách
- 3 Cơ sở và cơ sở trực giao
- 4 Thuật giải Gram-Schmidt

Vector 11 / 34

Tích vô hướng

Định nghĩa

Cho V là không gian vector, ánh xạ

$$\langle,\rangle := V \times V \longrightarrow \mathbb{R}$$

$$(u,v) \longrightarrow \langle u,v\rangle$$

được gọi là một tích vô hướng trong V nếu $\forall u, v, w \in V$ và $\forall \alpha, \beta \in \mathbb{R}$ thỏa các tính chất sau

- $\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \langle \mathbf{u}, \mathbf{w} \rangle + \beta \langle \mathbf{v}, \mathbf{w} \rangle$
- $\langle u, \alpha v + \beta w \rangle = \alpha \langle u, v \rangle + \beta \langle u, w \rangle$
- $\langle u, u \rangle \geq 0$, trong đó $\langle u, u \rangle \Leftrightarrow u = 0$

Một không gian vector hữu hạn chiều với tích vô hướng được gọi là một không gian Fuclid

Tích vô hướng

Ví du

Với
$$u=(x_1,x_2),v=(y_1,y_2)\in\mathbb{R}^2$$
, ta định nghĩa $\langle u,v
angle:=x_1y_1+2x_1y_2+2x_2y_1+5x_2y_2$

- a) Chứng minh $\langle u, v \rangle$ là một tích vô hướng trong \mathbb{R}^2 .
- b) Tính ((2,3),(-1,2))

Chuẩn

Tích vô hướng chính tắc

Cho không gian vector \mathbb{R}^n , với $u=(x_1,x_2,\ldots,x_n)$ và $v=(y_1,y_2,\ldots,y_n)$, ta định nghĩa

$$\langle u, v \rangle = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n$$

được gọi là tích vô hướng chính tắc trong \mathbb{R}^n

Định nghĩa

ullet Chuấn hay độ dài của vector u, ký hiệu $\|u\|$, được định nghĩa

$$||u|| := \sqrt{\langle u, u \rangle}$$

• Tích vô hướng được áp dụng là tích vô hướng chính tắc.

Vector

Chuẩn

Tính chất

Cho $u \in \mathbb{R}^n$ và $\lambda \in \mathbb{R}$, khi đó

- $\langle u, u \rangle = \|u\|^2$
- $||u|| = 0 \Leftrightarrow u = 0$
- $\|\lambda u\| = |\lambda| \|u\|$

Ví du

Trong \mathbb{R}^3 với tích vô hướng chính tắc và u = (1, -2, 3). Tìm ||u||. Ta có $||u|| = \sqrt{14}$

Khoảng cách

Dinh nghĩa

Trong không gian \mathbb{R}^n , cho các vector $u, v \in \mathbb{R}^n$, khi đó khoảng cách giữa 2 vector u, v được định nghĩa là

$$d(u,v) := \|u-v\|$$

Bổ đề

Cho $u, v, w \in \mathbb{R}^n$, ta có các khẳng định sau

- $d(u, v) = 0 \Leftrightarrow u = v$
- d(u, v) = d(v, u)
- d(u, w) < d(u, v) + d(v, w)

Outlines

- Vector
- 2 Chuẩn và khoảng cách
- 3 Cơ sở và cơ sở trực giao
- 4 Thuật giải Gram-Schmidt

Vector 17 / 34

Cơ sở

Tập sinh

Cho V là không gian vector và S là tập con của V. Tập S được gọi là tập sinh của V nếu mọi vector của V đều là tổ hợp tuyến tính của S. Khi đó, ta nói S sinh ra V hoặc V được sinh bởi S, ký hiệu $V = \langle S \rangle$

Ví du

Trong không gian \mathbb{R}^3 , hỏi S có là tập sinh trong các trường hợp sau không.

a)
$$S = \{u_1 = (1, 1, 1), u_2 = (1, 2, 1), u_3 = (2, 3, 1)\}.$$

b)
$$S = \{u_1 = (1, 1, -1), u_2 = (2, 3, 1), u_3 = (3, 4, 0)\}$$

Cơ sở

Định nghĩa

Cho V là không gian vector và B là tập con của V. Tập B được gọi là cơ sở của V nếu B là một tập sinh của V và B độc lập tuyến tính.

Ví du

Trong không gian \mathbb{R}^3 , cho $u_1=(1,1,1), u_2=(1,2,1), u_3=(2,3,1).$ Kiểm tra B có là cơ sở của \mathbb{R}^3 không?

Theo ví dụ trên, B là tập sinh của \mathbb{R}^3 .

Kiểm tra B độc lập tuyến tính, ta lập ma trận

$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 2 & 3 & 1 \end{pmatrix}$$

Ta có R(A)=3 nên suy ra B độc lập tuyến tính. Vậy B là cơ sở của

Cơ sở

Ví du

Kiếm tra xem tập nào là cơ sở của không gian \mathbb{R}^3

a)
$$B_1 = \{u_1 = (1, -2, 1), u_2 = (1, 3, 2), u_3 = (-2, 1, -2)\}$$

b)
$$B_1 = \{u_1 = (2, -1, 0), u_2 = (1, 2, 3), u_3 = (5, 0, 3)\}$$

Trực giao

Định nghĩa

Cho V là không gian Euclid.

- a) Với $u,v\in V$, ta nói u trực giao với v nếu $\langle u,v\rangle=0$, ký hiệu $u\perp v$.
- b) Nếu $\varnothing \subset A \subseteq V$ thì ta đặt

$$A^{\perp} := \{ u \in V | \langle u, a \rangle = 0, \forall a \in A \}$$

Khi đó A^{\perp} là một không gian con của V và ta gọi A^{\perp} là không gian trực giao với A.

Nhân xét

- $\{0\} = V \text{ và } A^{\perp} = \{0\} = V$
- $A^{\perp} = \langle A \rangle$ và $A^{\perp} \cap A \subset \{0\}$

ctor 21 / 34

Trưc giao

Để tìm không gian trực giao với không gian vector sinh bởi một tập hợp thì ta chỉ cần tìm không gian trực giao với tập hợp đó.

Ví du

Cho $V = \mathbb{R}^4$ với tích vô hướng chính tắc và W sinh bởi

$$\{u_1 = (1, 2, 1, 1), u_2 = (2, 3, -2, 1), u_3 = (4, 7, 0, 3)\}$$

Tìm W^{\perp}

Giả sử
$$u=(x,y,z,t)\in W^{\perp}$$
, ta có

$$\begin{cases} \langle u, u_1 \rangle = 0 \\ \langle u, u_2 \rangle = 0 \Longrightarrow \begin{cases} x + 2y + z + t = 0 \\ 2x + 3y - 2z + t = 0 \\ 4x + 7y + 3t = 0 \end{cases}$$

Trực giao

Giải hệ phương trình trên ta được u = (7a + b, -4a - b, a, b) với $a,b\in\mathbb{R}$. Suy ra W^{\perp} có cơ sở là

$$\{(7, -4, 1, 0), (1, -1, 0, 1)\}$$

Ví du

Trong không gian \mathbb{R}^4 cho tích vô hướng \langle , \rangle được định nghĩa như sau: $u = (x_1, x_2, x_3, x_4), v = (y_1, y_2, y_3, y_4),$ $\langle u, v \rangle = x_1 y_1 + 2x_2 y_2 + x_3 y_3 + 2x_4 y_4$ Đặt W là không gian sinh bởi các vector

$$u_1 = (1, 1, 3, 1), u_2 = (5, 1, -1, -3), u_3 = (-1, 1, 5, 3)$$

Tìm một cơ sở cho không gian con W^{\perp} .

Co sở trực giao và co sở trực chuẩn

Dinh nghĩa

Cho V là không gian Euclid n chiều và $B = \{u_1, u_2, \dots, u_n\}$ là một $c\sigma s\sigma cua V$.

- B là cơ sở trực giao nếu $\langle u_i, u_i \rangle = 0, \forall i \neq j$
- B là cơ sở trực chuẩn nếu B là cơ sở trực giao và $||u_i||=1, \forall i=1,\ldots,n$

Nếu $\{u_1, u_2, \dots, u_n\}$ là cơ sở trực giao thì $\left\{\frac{u_1}{\|u_1\|}, \dots, \frac{u_n}{\|u_n\|}\right\}$ là cơ sở trực chuẩn.

Outlines

- Vector
- 2 Chuẩn và khoảng cách
- 3 Cơ sở và cơ sở trực giao
- Thuật giải Gram-Schmidt

Vector 25 / 34

Cho $\{u_1, u_2, \dots, u_n\}$ là họ các vector nằm trong không gian Euclid V, từ các vector $\{u_1, u_2, \dots, u_n\}$ ta sẽ xây dựng một họ trực giao $\{v_1, v_2, \dots, v_n\}$ hoặc họ trực chuẩn $\{q_1, q_2, \dots, q_n\}$.

- B1. Đặt $v_1 = u_1$, nếu $v_1 = 0$ thì họ không độc lập tuyến tính và kết thúc.
- B2. Đặt $v_2 = u_2 \frac{\langle u_2, v_1 \rangle}{\|v_1\|^2} v_1$. Nếu $v_2 = 0$ thì họ không độc lập tuyến tính và kết thúc.

B3. Đặt $v_3 = u_3 - \frac{\langle u_3, v_1 \rangle}{\|v_4\|^2} v_1 - \frac{\langle u_3, v_2 \rangle}{\|v_2\|^2} v_2.$ Nếu $v_3 = 0$ thì ho không đôc lập tuyến tính và kết thúc.

• Tổng quát với vector v_m được xác định dưới dang sau

$$v_{m} = u_{m} + \lambda_{1}v_{1} + \cdots + \lambda_{m-1}v_{m-1}, \lambda_{i} = -\frac{\langle u_{m}, v_{i} \rangle}{\|v_{i}\|^{2}}$$

Như vây ta đã xây dựng được một họ các vector trực giao $\{v_1, v_2, \ldots, v_n\}$

B4. Nếu yêu cầu xây dựng họ các vector trực chuẩn, ta tìm các vector trực chuẩn như sau

$$q_1 = \frac{v_1}{\|v_1\|}, q_2 = \frac{v_2}{\|v_2\|}, \dots, q_n = \frac{v_n}{\|v_n\|}$$

Ví du 1

Trong không gian Euclid \mathbb{R}^4 với tích vô hướng chính tắc cho các vector $u_1 = (1, 1, 1), u_2 = (0, 1, 1), u_3 = (0, 0, 1)$. Hãy trực chuẩn hóa ho vector trên nếu có thể.

B1. Đặt
$$v_1 = u_1 = (1, 1, 1), \|v_1\|^2 = 1^2 + 1^2 + 1^2 = 3$$
B2.

$$\langle u_2, v_1 \rangle = 0.1 + 1.1 + 1.1 = 2$$

$$v_2 = u_2 - \frac{\langle u_2, v_1 \rangle}{\|v_1\|^2} v_1 = (0, 1, 1) - \frac{2}{3} (1, 1, 1) = \left(\frac{-2}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

$$\|v_2\|^2 = \frac{2}{3}$$

B3.

$$\langle u_3, v_1 \rangle = 1, \langle u_3, v_2 \rangle = \frac{1}{3}$$
 $v_3 = u_3 - \frac{\langle u_3, v_1 \rangle}{\|v_1\|^2} v_1 - \frac{\langle u_3, v_2 \rangle}{\|v_2\|^2} v_2 = \left(0, \frac{-1}{2}, \frac{1}{2}\right)$
 $\|v_3\|^2 = \frac{1}{2}$

Như vậy ta có họ trực giao tương ứng

$$v_1 = (1, 1, 1), v_2 = \left(\frac{-2}{3}, \frac{1}{3}, \frac{1}{3}\right), v_3 = \left(0, \frac{-1}{2}, \frac{1}{2}\right)$$

Để tìm họ trực chuẩn, ta thực hiện thêm bước chuẩn hóa

$$q_1 = rac{v_1}{\|v_1\|} = rac{1}{\sqrt{3}}(1, 1, 1)$$
 $q_2 = rac{v_2}{\|v_2\|} = rac{1}{\sqrt{6}}(-2, 1, 1)$
 $q_3 = rac{v_3}{\|v_3\|} = rac{1}{\sqrt{2}}(0, -1, 1)$

ctor 30 / 34

Ví dụ 2

Trong không gian Euclid \mathbb{R}^4 với tích vô hướng chính tắc cho các vector $u_1 = (1, 1, 0, 0), u_2 = (1, 0, -1, 1), u_3 = (0, 1, 1, 1)$. Hãy trực chuẩn hóa họ vector trên nếu có thể.

Mệnh đề

Cho $B=\{u_1,u_2,\ldots,u_n\}$ là một cơ sở trực chuẩn của không gian Euclid V và $u\in V$. Khi đó

$$u = \langle u, u_1 \rangle u_1 + \cdots + \langle u, u_n \rangle u_n$$

Ví du

Cho cơ sở trực chuẩn của không gian Euclid \mathbb{R}^3 với tích vô hướng chính tắc

$$B = \left\{ u_1 = \left(\frac{1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}, \frac{-2}{\sqrt{6}} \right), u_2 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right), u_3 = \left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt$$

Hãy tìm tọa độ vector u = (3, -2, 1) theo cơ sở B.

Vector 32 / 34

Dinh nghĩa

Cho W là không gian con của không gian Euclid V. Khi đó với mỗi vector $u \in V$ đều viết được một cách duy nhất dưới dang

$$u = u_0 + v$$
 trong đó $u_0 \in W$ và $v \in W^{\perp}$

Ta goi u_0 là hình chiếu trực giao của u lên W và ký hiệu $u_0 = pr_W(u)$.

Định lý

Cho V là không gian Euclid và W và W là một không gian con của V. Giả sử $\{u_1, u_2, \dots, u_n\}$ là một cơ sở trực chuẩn của W và $u \in V$.

$$pr_W(u) = \langle u, u_1 \rangle u_1 + \cdots + \langle u, u_n \rangle u_n$$

Ví du

Tiếp theo ví dụ 2 đã trực chuẩn ở trên, tìm hình chiếu trực giao của vector u=(1,2,0,3) lên W.

Từ kết quả trực chuẩn hóa, ta nhận được cơ sở trực chuẩn như sau

$$q_1 = \left(\frac{1}{\sqrt{2}}(1,1,0,0)\right), q_2 = \left(\frac{1}{\sqrt{10}}(1,-1,-2,2)\right),$$

$$q_3 = \left(\frac{1}{\sqrt{15}}(-1,1,2,3)\right)$$

$$\left\langle u,q_{1}\right
angle \,q_{1}=\left(rac{3}{2},rac{3}{2},0,0
ight),\left\langle u,q_{2}
ight
angle \,q_{2}=\left(rac{1}{2},rac{-1}{2},-1,1
ight),\left\langle u,q_{3}
ight
angle \,q_{3}=\left(rac{-2}{3},rac{2}{3},rac{4}{3},2
ight)$$

Vậy hình chiếu trực giao của u lên W là $pr_W(u) = \left(\frac{4}{3}, \frac{5}{3}, \frac{1}{3}, 3\right)$