Colle 0

Mesure de moment d'inertie - Corrigé

Équipe PT – PT★ La Martinière Monplaisir

C2-09

- ▶ le tourillon de (2), de centre C, roule sans glisser en A sur la portée cylindrique de (S_0);
- ► R_1 est un repère tel que $\overrightarrow{OA} = r\overrightarrow{x_1}$ et on pose $\theta = (\overrightarrow{x_0}, \overrightarrow{x_1})$;
- ► R_2 est un repère lié à 2 avec $\varphi = (\overrightarrow{x_1}, \overrightarrow{x_2})$. On suppose que $\varphi = 0$ lorsque $\theta = 0$.

Question 1 Donner la relation entre φ et θ .

Question 2 Déterminer l'équation du mouvement de **(2)** par rapport à **(** S_0 **)** en fonction de θ .

Question 3 On suppose que l'angle θ reste petit au cours du mouvement. Montrer que le mouvement est périodique et déterminer la période T des oscillations de (2).

Question 4 En déduire le moment d'inertie *I* de **(S)** sachant que : T = 5 s; a = 12,5 mm; r = 141,1 mm; g = 9,81 m s⁻²; m = 7217 g; f = 0,15.

Question 5 Déterminer l'angle θ_0 maxi pour qu'il n'y ait pas glissement en A. Faire l'application numérique.

Dispositif da mesare de moment d'inertie.

1/2

1-RSG on A
$$V(A \in S/R) = \vec{b} = V(C \in S/R) + A(A = F2(S/R))$$

where $(\Gamma - \alpha -) \vec{\theta} = \vec{\eta} = \alpha = \pi - A = (\vec{q} + \vec{\theta}) = \pi -$