PyLith v3.0 Tutorial

Quasi-static Poroelasticity with No Fault

Robert Walker Matthew Knepley Brad Aagaard

June 21, 2022

2D Magma Reservoir Using Poroelasticity: examples/magma-2d

Model flow and deformation for a magma reservoir with poroelastic properties that differ from the surrounding domain.

Steps in example

- Step 1 Magma influx with displacement and pressure boundary conditions
- Step 2 Magma influx with updating porosity, displacement and pressure boundary conditions

Concepts covered

- Generation of mesh using Cubit
- Variable mesh size with distance from the magma reservoir
- Quasistatic simulations for poroelasticity
- Elastic bulk rheology
- Dirichlet fluid pressure boundary condition
- Initial condition for fluid pressure

Cubit: Geometry

Cubit: Creating the finite-element mesh

We create the mesh using geometric primitives

Files used in simulations

Files are in directory examples/magma-2d

README.md Brief description of the various examples

- *.cfg PyLith parameter files
- *.jou Cubit Journal scripts used to generate the mesh
- *.exo Finite-element mesh files generated by Cubit
- *.spatialdb Spatial database files
 - viz Directory containing ParaView Python scripts
 - output Directory containing simulation output; created automatically when running the simulations

Step 1: Overview

Inflation of the magma reservoir

Step 1: Physics

$$\vec{s} = (\vec{u} \quad p \quad \epsilon_v)^T$$

$$\nabla \cdot \boldsymbol{\sigma}(\vec{u},p) = \vec{0}$$

$$\frac{\partial \zeta(\vec{u},p)}{\partial t} + \nabla \cdot \vec{q}(p) = 0$$

$$\nabla \cdot \vec{u} - \epsilon_v = 0$$

$$u_x = 0 \text{ on boundary_xneg}$$

$$u_x = 0 \text{ on boundary_xpos}$$

$$u_y = 0 \text{ on boundary_yneg}$$

$$p = 0 \text{ on boundary_thow}$$

$$p(t = 0) = 5 \text{ MPa in domain}$$

Auxiliary Fields

for Quasistatic Linear Isotropic Poroelasticity

Origin	Variable	Description	Position	Notes
Material	ρ_b	Rock Density	0	
	$ ho_f$	Fluid Density	1	
	μ_f	Fluid Viscosity	2	
	ϕ	Porosity	3	
	$ec{f_b}$	Body Force	+1	
	\vec{g}	Gravity	+1	
	γ	Fluid Source	+1	
Rheology	σ_R	Reference Stress	NumAux - 7	
	ϵ_R	Reference Strain	NumAux - 6	
	G	Shear Modulus	NumAux - 5	
	K_d	Drained Bulk Modulus	NumAux - 4	
	α	Biot Coefficient	NumAux - 3	
	M	Biot Modulus	NumAux - 2	$\frac{K_f}{\phi} + \frac{K_s}{\alpha - d}$
	\boldsymbol{k}	Permeability	NumAux - 1	7 7
Input	K_s	Solid Grain Bulk Modulus	-	
	K_f	Fluid Bulk Modulus	-	

$$\vec{s} = (\vec{u} \quad p \quad \epsilon_v)^T$$

$$\nabla \cdot \boldsymbol{\sigma}(\vec{u},p) = \vec{0}$$

$$\frac{\partial \zeta(\vec{u},p)}{\partial t} + \nabla \cdot \vec{q}(p) = 0$$

$$\nabla \cdot \vec{u} - \epsilon_v = 0$$

$$u_x = 0 \text{ on boundary_xneg}$$

$$u_x = 0 \text{ on boundary_xpos}$$

$$u_y = 0 \text{ on boundary_yneg}$$

$$p = 0 \text{ on boundary_ypos}$$

$$p = 10 \text{ MPa on boundary_flow}$$

$$p(t = 0) = 5 \text{ MPa in domain}$$

$$\vec{s} = (\vec{u} \quad p \quad \epsilon_v)^T$$

$$\nabla \cdot \boldsymbol{\sigma}(\vec{u},p) = \vec{0}$$

$$\frac{\partial \zeta(\vec{u},p)}{\partial t} + \nabla \cdot \vec{q}(p) = 0$$

$$\nabla \cdot \vec{u} - \epsilon_v = 0$$

$$u_x = 0 \text{ on boundary_xneg}$$

$$u_x = 0 \text{ on boundary_xpos}$$

$$u_y = 0 \text{ on boundary_yneg}$$

$$p = 0 \text{ on boundary_yneg}$$

$$p = 0 \text{ on boundary_yneg}$$

$$p = 0 \text{ on boundary_thos}$$

$$p = 10 \text{ MPa on boundary_flow}$$

$$p(t = 0) = 5 \text{ MPa in domain}$$

```
[pylithapp.problem]
solution = pylith.problems.SolnDispPresTracStrain
[pylithapp.problem.solution.subfields]
displacement.basis_order = 2
pressure.basis_order = 1
trace strain.basis order = 1
[pylithapp.problem]
normalizer = spatialdata.units.NondimElasticQuasistatic
normalizer.length_scale = 100.0*m
normalizer.relaxation_time = 0.2*year
normalizer.shear_modulus = 10.0*GPa
```


$$\vec{s} = (\vec{u} \quad p \quad \epsilon_v)^T$$

$$\nabla \cdot \boldsymbol{\sigma}(\vec{u},p) = \vec{0}$$

$$\frac{\partial \zeta(\vec{u},p)}{\partial t} + \nabla \cdot \vec{q}(p) = 0$$

$$\nabla \cdot \vec{u} - \epsilon_v = 0$$

$$u_x = 0 \text{ on boundary_xneg}$$

$$u_x = 0 \text{ on boundary_xpos}$$

$$u_y = 0 \text{ on boundary_ypos}$$

$$p = 0 \text{ on boundary_ypos}$$

$$p = 10 \text{ MPa on boundary_flow}$$

$$p(t = 0) = 5 \text{ MPa in domain}$$

```
[pylithapp.problem]
materials = [crust, intrusion]
materials.crust = pylith.materials.Poroelasticity
materials.intrusion = pylith.materials.Poroelasticity
[pylithapp.problem.materials]
crust.bulk_rheology = pylith.materials.IsotropicLinearPoroelasticity
intrusion.bulk_rheology = pylith.materials.IsotropicLinearPoroelastic
[pylithapp.problem.materials.crust]
description = crust
label_value = 1
db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Poroelastic properties for the crust
db_auxiliary_field.values = [solid_density, fluid_density, fluid_visc
db_auxiliary_field.data = [2500*kg/m**3, 1000*kg/m**3,
                                                                0.001
. . .
```

$$\vec{s} = (\vec{u} \quad p \quad \epsilon_v)^T$$

$$\nabla \cdot \boldsymbol{\sigma}(\vec{u},p) = \vec{0}$$

$$\frac{\partial \zeta(\vec{u},p)}{\partial t} + \nabla \cdot \vec{q}(p) = 0$$

$$\nabla \cdot \vec{u} - \epsilon_v = 0$$

$$u_x = 0 \text{ on boundary_xneg}$$

$$u_x = 0 \text{ on boundary_xpos}$$

$$u_y = 0 \text{ on boundary_yneg}$$

$$p = 0 \text{ on boundary_yneg}$$

$$p = 0 \text{ on boundary_ynos}$$

$$p = 10 \text{ MPa on boundary_flow}$$

$$p(t = 0) = 5 \text{ MPa in domain}$$

```
[pylithapp.problem]
bc = [bc_xneg, bc_xpos, bc_yneg, bc_ypos, bc_flow]
bc.bc_xneg = pylith.bc.DirichletTimeDependent
bc.bc_xpos = pvlith.bc.DirichletTimeDependent
bc.bc_yneg = pylith.bc.DirichletTimeDependent
bc.bc_ypos = pylith.bc.DirichletTimeDependent
bc.bc_flow = pylith.bc.DirichletTimeDependent
[pvlithapp.problem.bc.bc_flow]
constrained_dof = [0]
label = boundary_flow
field = pressure
db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Flow into external boundary of condu
db_auxiliary_field.values = [initial_amplitude]
db_auxiliary_field.data = [10.0*MPa]
```

$$\begin{array}{c} \nabla \cdot \pmb{\sigma}(\vec{u},p) = \vec{0} \\ \frac{\partial \zeta(\vec{u},p)}{\partial t} + \nabla \cdot \vec{q}(p) = 0 \\ \nabla \cdot \vec{u} - \epsilon_v = 0 \\ u_x = 0 \text{ on boundary_xneg} \\ u_x = 0 \text{ on boundary_xpos} \\ u_y = 0 \text{ on boundary_yneg} \\ p = 0 \text{ on boundary_ypos} \\ p = 10 \text{ MPa on boundary_flow} \end{array}$$

p(t=0) = 5 MPa in domain

 $\vec{s} = (\vec{u} \quad p \quad \epsilon_v)^T$

```
[pylithapp.problem]
ic = [domain]
ic.domain = pylith.problems.InitialConditionDomain

[pylithapp.problem.ic.domain]
db = spatialdata.spatialdb.UniformDB
db.description = Initial conditions for domain
db.values = [displacement_x, displacement_y, pressure, trace_strain]
db.data = [0.0*m, 0.0*m, 5.0*MPa, 0.0]
```


Step 1: Input files

mesh_quad.exo Finite-element mesh generated using Cubit pylithapp.cfg PyLith parameter file common to all steps step01_inflation.cfg PyLith parameter file

Step 1: Run the simulation

```
pylith step01_inflation.cfg
# Output
  >> /Users/baagaard/software/unix/py39-veny/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
  -- meshiocubit(info)
  -- Reading finite-element mesh
  >> /Users/baagaard/src/cig/pylith/libsrc/pylith/meshio/MeshIOCubit.cc:157:void pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::_readVertices(pylith::meshio::_readVertices(pylith::meshio::_readVertices(pylith::meshio::_readVertices(pylith::meshio::_readVertices(pylith::meshio::_readVertices(pylith::_readVertices(pylith::_readVertices(pylith::_readVertices(p
  -- meshiocubit(info)
  -- Component 'reader': Reading 747 vertices.
  >> /Users/baagaard/src/cig/pylith/libsrc/pylith/meshio/MeshIOCubit.cc:217:void pylith::meshio::MeshIOCubit::_readCells(pylith::meshio:
  -- meshiocubit(info)
   -- Component 'reader': Reading 705 cells in 2 blocks.
# -- many lines omitted --
50 TS dt 1 time 49
           O SNES Function norm 3.049429649018e-03
          Linear solve converged due to CONVERGED ATOL iterations 1
           1 SNES Function norm 5.567219918314e-16
     Nonlinear solve converged due to CONVERGED FNORM ABS iterations 1
51 TS dt 1. time 50.
  >> /Users/baagaard/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
  -- timedependent(info)
  -- Finalizing problem.
```


Step 1: Visualize results

Run the viz/plot_dispwarp.py Python script from within ParaView

Step 2: Physics

$$\vec{s} = (\vec{u} \quad p \quad \epsilon_v \quad \vec{v} \quad P_{dot} \quad E_{dot})^T$$

$$\nabla \cdot \boldsymbol{\sigma}(\vec{u},p) = \vec{0}$$

$$\frac{\partial \zeta(\vec{u},p)}{\partial t} + \nabla \cdot \vec{q}(p) = 0$$

$$\nabla \cdot \vec{u} - \epsilon_v = 0$$

$$\dot{\vec{u}} - \vec{0} = \vec{0}$$

$$\dot{p} - P_{dot} = 0$$

$$\dot{\epsilon}_v - E_{dot} = 0$$

$$u_x = 0 \text{ on boundary_xneg}$$

$$u_x = 0 \text{ on boundary_xpos}$$

$$u_y = 0 \text{ on boundary_ypos}$$

$$p = 0 \text{ on boundary_thow}$$

$$p(t = 0) = 5 \text{ MPa in domain}$$

$$\begin{split} \vec{s} &= (\vec{u} \quad p \quad \epsilon_v \quad \vec{v} \quad P_{dot} \quad E_{dot})^T \\ & \quad \nabla \cdot \boldsymbol{\sigma}(\vec{u}, p) = \vec{0} \\ & \frac{\partial \zeta(\vec{u}, p)}{\partial t} + \nabla \cdot \vec{q}(p) = 0 \\ & \quad \nabla \cdot \vec{u} - \epsilon_v = 0 \\ & \quad \dot{\vec{u}} - \vec{0} = \vec{0} \\ & \quad \dot{p} - P_{dot} = 0 \\ & \quad \dot{\epsilon}_v - E_{dot} = 0 \\ & \quad u_x = 0 \text{ on boundary_xneg} \\ & \quad u_x = 0 \text{ on boundary_xpos} \\ & \quad u_y = 0 \text{ on boundary_ypos} \\ & \quad p = 0 \text{ on boundary_thow} \\ & \quad p(t = 0) = 5 \text{ MPa in domain} \end{split}$$

$$\vec{s} = (\vec{u} \quad p \quad \epsilon_v \quad \vec{v} \quad P_{dot} \quad E_{dot})^T$$

$$\nabla \cdot \boldsymbol{\sigma}(\vec{u}, p) = \vec{0}$$

$$\frac{\partial \zeta(\vec{u}, p)}{\partial t} + \nabla \cdot \vec{q}(p) = 0$$

$$\nabla \cdot \vec{u} - \epsilon_v = 0$$

$$\dot{\vec{u}} - \vec{0} = \vec{0}$$

$$\dot{p} - P_{dot} = 0$$

$$\dot{\epsilon}_v - E_{dot} = 0$$

$$u_x = 0 \text{ on boundary_xneg}$$

$$u_x = 0 \text{ on boundary_xpos}$$

$$u_y = 0 \text{ on boundary_yneg}$$

$$p = 0 \text{ on boundary_yneg}$$

$$p = 0 \text{ on boundary_yneg}$$

$$p = 10 \text{ MPa on boundary_flow}$$

$$p(t = 0) = 5 \text{ MPa in domain}$$

$$\frac{\partial \phi}{\partial t} = (\alpha - \phi) \,\dot{\epsilon}_v + \frac{(1 - \alpha) (\alpha - \phi)}{K_{dr}} \dot{p}$$
$$\phi^{n+1} = \phi^n + \left[(\alpha - \phi^n) \,\dot{\epsilon}_v^n + \frac{(1 - \alpha) (\alpha - \phi^n)}{K_{dr}} \dot{p}^n \right] \Delta t$$

```
\vec{s} = (\vec{u} \quad p \quad \epsilon_v \quad \vec{v} \quad P_{dot} \quad E_{dot})^T
                                             [pylithapp.problem]
          \nabla \cdot \boldsymbol{\sigma}(\vec{u}, p) = \vec{0}
                                            solution = pylith.problems.SolnDispPresTracStrainVelPdotTdot
      \frac{\partial \zeta(\vec{u}, p)}{\partial t} + \nabla \cdot \vec{q}(p) = 0
                                             [pylithapp.problem.solution.subfields]
                                            displacement.basis_order = 2
           \nabla \cdot \vec{u} - \epsilon_v = 0
                                            pressure.basis_order = 1
                                            trace strain.basis order = 1
             \vec{i}\vec{i} - \vec{0} = \vec{0}
                                            velocity.basis_order = 2
            \dot{p} - P_{dot} = 0
                                            pressure_t.basis_order = 1
                                            trace_strain_t.basis_order = 1
           \dot{\epsilon}_n - E_{dot} = 0
     u_x = 0 on boundary_xneq
                                             [pylithapp.problem]
     u_x = 0 on boundary_xpos
                                            normalizer = spatialdata.units.NondimElasticQuasistatic
                                            normalizer.length_scale = 100.0*m
     u_y = 0 on boundary_yneg
                                            normalizer.relaxation_time = 0.2*year
     p=0 on boundary_vpos
                                            normalizer.shear_modulus = 10.0*GPa
  p=10\,\mathrm{MPa} on boundary_flow
   p(t=0) = 5 MPa in domain
```



```
\vec{s} = (\vec{u} \quad p \quad \epsilon_v \quad \vec{v} \quad P_{dot} \quad E_{dot})^T
                                          [pylithapp.problem]
          \nabla \cdot \boldsymbol{\sigma}(\vec{u}, p) = \vec{0}
                                          materials = [crust, intrusion]
                                          materials.crust = pylith.materials.Poroelasticity
     \frac{\partial \zeta(\vec{u}, p)}{\partial t} + \nabla \cdot \vec{q}(p) = 0
                                          materials.intrusion = pylith.materials.Poroelasticity
          \nabla \cdot \vec{u} - \epsilon_{\alpha} = 0
                                          [pylithapp.problem.materials]
                                          crust.bulk_rheology = pylith.materials.IsotropicLinearPoroelasticity
            \vec{\vec{u}} - \vec{0} = \vec{0}
                                          intrusion.bulk_rheology = pylith.materials.IsotropicLinearPoroelastic
           \dot{p} - P_{dot} = 0
                                          crust.use_state_variables = True
          \dot{\epsilon}_v - E_{dot} = 0
                                          intrusion.use_state_variables = True
    u_x = 0 on boundary_xneq
    u_x = 0 on boundary_xpos
                                          [pylithapp.problem.materials.crust]
                                          description = crust
    u_y = 0 on boundary_yneg
                                          label_value = 1
     p=0 on boundary_vpos
  p=10\,\mathrm{MPa} on boundary_flow
                                          db_auxiliary_field = spatialdata.spatialdb.UniformDB
   p(t=0) = 5 MPa in domain
                                          db_auxiliary_field.description = Poroelastic properties for the crust
                                          db_auxiliary_field.values = [solid_density, fluid_density, fluid_visc
```

```
\vec{s} = (\vec{u} \quad p \quad \epsilon_v \quad \vec{v} \quad P_{dot} \quad E_{dot})^T
               \nabla \cdot \boldsymbol{\sigma}(\vec{u}, p) = \vec{0}
         \frac{\partial \zeta(\vec{u}, p)}{\partial t} + \nabla \cdot \vec{q}(p) = 0
                \nabla \cdot \vec{u} - \epsilon_{\alpha} = 0
                   \vec{\vec{u}} - \vec{0} = \vec{0}
                  \dot{p} - P_{dot} = 0
                \dot{\epsilon}_n - E_{dot} = 0
       u_x = 0 on boundary_xneq
       u_x = 0 on boundary_xpos
       u_y = 0 on boundary_yneg
        p=0 on boundary_vpos
    p=10\,\mathrm{MPa} on boundary_flow
     p(t=0) = 5 MPa in domain
```

```
[pylithapp.problem]
bc = [bc_xneg, bc_xpos, bc_yneg, bc_ypos, bc_flow]
bc.bc_xneg = pylith.bc.DirichletTimeDependent
bc.bc_xpos = pvlith.bc.DirichletTimeDependent
bc.bc_yneg = pylith.bc.DirichletTimeDependent
bc.bc_ypos = pylith.bc.DirichletTimeDependent
bc.bc_flow = pylith.bc.DirichletTimeDependent
[pvlithapp.problem.bc.bc_flow]
constrained_dof = [0]
label = boundary_flow
field = pressure
db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Flow into external boundary of condu
db_auxiliary_field.values = [initial_amplitude]
db_auxiliary_field.data = [10.0*MPa]
```

$$\vec{s} = (\vec{u} \quad p \quad \epsilon_v \quad \vec{v} \quad P_{dot} \quad E_{dot})^T$$

$$\nabla \cdot \boldsymbol{\sigma}(\vec{u},p) = \vec{0}$$

$$\frac{\partial \zeta(\vec{u},p)}{\partial t} + \nabla \cdot \vec{q}(p) = 0$$

$$\nabla \cdot \vec{u} - \epsilon_v = 0$$

$$\dot{\vec{u}} - \vec{0} = \vec{0}$$

$$\dot{p} - P_{dot} = 0$$

$$\dot{\epsilon}_v - E_{dot} = 0$$

$$u_x = 0 \text{ on boundary_xneg}$$

$$u_x = 0 \text{ on boundary_yneg}$$

$$u_y = 0 \text{ on boundary_yneg}$$

$$p = 0 \text{ on boundary_yneg}$$

```
[pylithapp.problem]
ic = [domain]
ic.domain = pylith.problems.InitialConditionDomain

[pylithapp.problem.ic.domain]
db = spatialdata.spatialdb.UniformDB
db.description = Initial conditions for domain
db.values = [displacement_x, displacement_y, pressure, trace_strain]
db.data = [0.0*m, 0.0*m, 5.0*MPa, 0.0]
```

