A6 Inequalities and Modulus Answers P3

1	EITHER:	State or imply non-modular inequality $(2x+1)^2 < x^2$ or corresponding quadratic	В			
		equation or pair of linear equations $(2x + 1) = \pm x$				
		Expand and make a reasonable solution attempt at a 3-term quadratic, or solve				
		linear equations		M1		
		Obtain critical values $x = -1$ and $x = -\frac{1}{3}$ only	P	41		
		State answer $-1 < x < -\frac{1}{3}$		41		
	OR:	Obtain the critical value $x = -1$ from a graphical method, or by inspection, or by				
		solving a linear inequality or equation	В	i 1		
		Obtain the critical value $x = -\frac{1}{3}$ (deduct B1 from B3 if extra values are obtained)	В	32		
		State answer $-1 < x < -\frac{1}{3}$	В	31	4	
		[Condone \leq for \leq ; accept -0.33 for $-\frac{1}{3}$.]				
			970	09/03/M/	/J/04	
2	FITUED.	State or imply non-modular inequality $(x-3a)^2 > (x-a)^2$, or corresponding equation	В	R1		
2	EIITEK.	Expand and solve the inequality, or equivalent		Л 1		
		Obtain critical value 2a		11		
		State correct answer $x < 2a$ only	A	1		
	OR:	State a correct linear equation for the critical value, e.g. $x - 3a = -(x - a)$, or corresponding		\ 1		
		inequality Solve the linear equation for <i>x</i> , or equivalent	B M	м 1		
		Obtain critical value 2a		1		
		State correct answer $x < 2a$ only	A	. l		
	OR:	Make recognizable sketches of both $y = x - 3a $ and $y = x - a $ on a single diagram	В			
		Obtain a critical value from the intersection of the graphs Obtain critical value 2a	N A	И1 \1		
		Obtain correct answer $x < 2a$ only	A		[4]	
		© UCLES 2005	970	09/03/	O/N/05	
.	EITHER:	State or imply non-modular inequality $(2x)^2 > (x-1)^2$, or corresponding equation B1				
		Expand and make a reasonable solution attempt at a 2- or 3-term quadratic Mi Obtain critical value $x = \frac{1}{3}$				
		State answer $x > \frac{1}{3}$ only All				
	OR:	State the relevant critical linear equation, i.e. $2x = 1 - x$				
		Obtain critical value $x = \frac{1}{3}$	į.			
		State answer $x > \frac{1}{3}$				
	or.	State or imply by omission that no other answer exists B	Ė			
	OR:	Obtain the critical value $x = \frac{1}{3}$ from a graphical method, or by inspection, or by solving a linear inequality				
		State answer $x > \frac{1}{3}$				
		State or imply by omission that no other answer exists B				

3

© UCLES 2006 9709/03/M/J/06

© UCLES 2006 9709/03/O/N/06

EITHER State or imply non-modular inequality $(x-2)^2 > (3(2x+1))^2$, or 5 corresponding quadratic equation, or pair of linear equations $(x-2) = \pm 3(2x+1)$ **B**1 Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations M1 Obtain critical values x = -1 and $x = -\frac{1}{7}$ **A**1 State answer $-1 < x < -\frac{1}{7}$ A1 OR Obtain the critical value x = -1 from a graphical method, or by inspection, or B1 by solving a linear equation or inequality Obtain the critical value $x = -\frac{1}{7}$ similarly B2 State answer $-1 < x < -\frac{1}{7}$ B1 [4] [Do not condone \leq for \leq ; accept $-\frac{5}{35}$ and -0.14 for $-\frac{1}{7}$.]

© UCLES 2008 9709/03/M/J/08

6	EITHER:	State or imply non-modular inequality $(x + 3a)^2 > (2(x - 2a))^2$, or corresponding			
		quadratic equation, or pair of linear equations $(x+3a) = \pm 2(x-2a)$	B1		
		Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations			
		Obtain critical values $x = \frac{1}{3}a$ and $x = 7a$			
		State answer $\frac{1}{3}a < x < 7a$	A 1		
	OR:	Obtain the critical value $x = 7a$ from a graphical method, or by inspection, or by solving a linear equation or inequality Obtain the critical value $x = \frac{1}{3}a$ similarly	B1 B2		
		State answer $\frac{1}{3}a < x < 7a$	B1	[4]	
		[Do not condone \leq for \leq ; accept 0.33 for $\frac{1}{3}$.]			

© UCLES 2010 9709/31/M/J/10

7	EITHER: OR:	EITHER: State or imply non-modular inequality $(2(x-3))^2 > (3x+1)^2$, or corresponding quadratic equation, or pair of linear equations $2(x-3) = \pm (3x+1)$ Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations Obtain critical values $x = -7$ and $x = 1$ State answer $-7 < x < 1$ OR: Obtain critical value $x = -7$ or $x = 1$ from a graphical method, or by inspection, or by solving a linear equation or inequality Obtain critical values $x = -7$ and $x = 1$		
		State answer $-7 < x < 1$	B1	[4]
		[Do not condone: < for <.]		
		© UCLES 2010	9709/31/	O/N/10
8	EITHER:	State or imply non-modular inequality $x^2 < (5+2x)^2$, or corresponding equation, or pair of linear equations $x = \pm (5+2x)$	M1	
		Obtain critical values -5 and $-\frac{5}{3}$ only	A1	
	O.P.	Obtain final answer $x < -5, x > -\frac{5}{3}$	A1	
	OR:	State one critical value e.g. –5, by solving a linear equation or inequality, or from a graphical method, or by inspection	B1	
		State the other critical value, e.g. $-\frac{5}{3}$, and no other	B1	
		Obtain final answer $x < -5, x > -\frac{5}{3}$	B1	[3]

© UCLES 2011 9709/32/M/J/11

State or imply non-modular inequality
$$(3(x-1))^2 < (2x+1)^2$$
or corresponding quadratic equation, or pair of linear equations $3(x-1) = \pm (2x+1)$ B1
Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations

M1

Obtain critical values $x = \frac{2}{5}$ and $x = 4$

State answer $\frac{2}{5} < x < 4$

A1

OR
Obtain critical value $x = \frac{2}{5}$ or $x = 4$ from a graphical method, or by inspection, or by

Solving a linear equation or inequality

Obtain critical values $x = \frac{2}{5}$ and $x = 4$

B2

State answer $\frac{2}{5} < x < 4$

B1

Obtain critical values $x = \frac{2}{5}$ and $x = 4$

B2

State answer $\frac{2}{5} < x < 4$

B1

[4]

[Do not condone \leq or \geq .]

© UCLES 2012 9709/31/O/N/12 10 *EITHER*: State or imply non-modular equation $(x-2)^2 = \left(\frac{1}{3}x\right)^2$,

or pair of equations
$$x-2=\pm\frac{1}{3}x$$
 M1

Obtain answer
$$x = 3$$

Obtain answer
$$x = \frac{3}{2}$$
, or equivalent

OR: Obtain answer
$$x = 3$$
 by solving an equation or by inspection B1

State or imply the equation
$$x - 2 = -\frac{1}{3}$$
, or equivalent M1

Obtain answer
$$x = \frac{3}{2}$$
, or equivalent A1 [3]

© UCLES 2013 9709/32/M/J/13

11 EITHER: State or imply non-modular inequality $(4x + 3)^2 > x^2$, or corresponding equation

or pair of equations
$$4x + 3 = \pm x$$
 M1
Obtain a critical value, e.g. -1

Obtain a second critical value, e.g.
$$-\frac{3}{5}$$

State final answer
$$x < -1$$
, $x > -\frac{3}{5}$

OR: Obtain critical value x = -1, by solving a linear equation or inequality, or from a graphical method or by inspection

Obtain the critical value
$$-\frac{3}{5}$$
 similarly B2

State final answer
$$x < -1$$
, $x > -\frac{3}{5}$

[Do not condone \leq or \geq .]

© UCLES 2013 9709/33/M/J/13

12 EITHER: State or imply non-modular inequality $(x+2a)^2 > (3(x-a))^2$, or corresponding

quadratic equation, or pair of linear equations
$$(x + 2a) = \pm 3(x - a)$$
 B1

Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations for *x*

for x M1
Obtain critical values
$$x = \frac{1}{4}a$$
 and $x = \frac{5}{2}a$ A1

State answer
$$\frac{1}{4}a < x < \frac{5}{2}a$$
 A1

OR: Obtain critical value $x = \frac{5}{2}a$ from a graphical method, or by inspection, or by solving

Obtain critical value
$$x = \frac{1}{4}a$$
 similarly B2

State answer
$$\frac{1}{4}a < x < \frac{5}{2}a$$
 B1 4

[Do not condone \leq for \leq .]

© UCLES 2014 9709/32/M/J/14

3	<u>Either</u>	State or imply non-modular inequality $(3x-1)^2 < (2x+5)^2$ or corresponding		
		quadratic equation or pair of linear equations $3x - 1 = \pm(2x + 5)$	B1	
		Solve a three-term quadratic or two linear equations $5x^2 - 26x - 24 < 0$	M1	
		Obtain $-\frac{4}{5}$ and 6	A1	
		State $-\frac{4}{5} < x < 6$	A1	
	<u>Or</u>	Obtain value 6 from graph, inspection or solving linear equation	B1	
		Obtain value $-\frac{4}{5}$ similarly	B2	
		State $-\frac{4}{5} < x < 6$	B1	[4]
		© UCLES 2014	9709/33	B/O/N/1

14 *EITHER*: State or imply non-modular inequality
$$(x-2)^2 > (2x-3)^2$$
, or corresponding equation B1 Solve a 3-term quadratic, as in Q1.

Obtain critical value
$$x = \frac{5}{3}$$

State final answer
$$x < \frac{5}{3}$$
 only A1

OR1: State the relevant critical linear inequality
$$(2-x) > (2x-3)$$
, or corresponding equation

Solve inequality or equation for
$$x$$
 M1

Obtain critical value
$$x = \frac{5}{3}$$
 A1

State final answer
$$x < \frac{5}{3}$$
 only

OR2: Make recognisable sketches of
$$y = 2x - 3$$
 and $y = |x - 2|$ on a single diagram B1

Obtain
$$x = \frac{5}{3}$$

State final answer
$$x < \frac{5}{3}$$
 only A1 4

© UCLES 2015 9709/33/M/J/15

Question		
17	EITHER: State or imply non-modular inequality $(2x+1)^2 < (3(x-2))^2$, or corresponding quadratic equation, or pair of linear equations $(2x+1) = \pm 3(x-2)$	(B1
	Make reasonable solution attempt at a 3-term quadratic e.g. $5x^2 - 40x + 35 = 0$ or solve two linear equations for x	M1
	Obtain critical values $x = 1$ and $x = 7$	A1
	State final answer $x < 1$ and $x > 7$	A1)
	OR: Obtain critical value $x = 7$ from a graphical method, or by inspection, or by solving a linear equation or inequality	(B1
	Obtain critical value $x = 1$ similarly	В2
	State final answer $x < 1$ and $x > 7$	B1)
	Total:	4

18	© UCLES 2017 EITHER:	9709/3 <mark>1</mark> /M/J/17 (B1
10	State or imply non-modular inequality $(x-3)^2 < (3x-4)^2$, or corresponding equation	
	Make reasonable attempt at solving a three term quadratic	M1
	Obtain critical value $x = \frac{7}{4}$	A1
	State final answer $x > \frac{7}{4}$ only	A1)
	OR1: State the relevant critical inequality $3-x < 3x-4$, or corresponding equation	(B1
	Solve for <i>x</i>	M1
	Obtain critical value $x = \frac{7}{4}$	A1
	State final answer $x > \frac{7}{4}$ only	A1)
	OR2: Make recognizable sketches of $y = x-3 $ and $y = 3x-4$ on a single diagram	(B1
	Find <i>x</i> -coordinate of the intersection	M1
	Obtain $x = \frac{7}{4}$	A1
	State final answer $x > \frac{7}{4}$ only	A1)

Question		
19	EITHER: State or imply non-modular inequality $2^2(2x-a)^2 < (x+3a)^2$, or corresponding quadratic equation, or pair of linear equations $2(2x-a) = \pm (x+3a)$	
	Make reasonable attempt at solving a 3-term quadratic, or solve two linear equations for x	
	Obtain critical values $x = \frac{5}{3}a$ and $x = -\frac{1}{5}a$	
	State final answer $-\frac{1}{5}a < x < \frac{5}{3}a$	A1
	OR: Obtain critical value $x = \frac{5}{3}a$ from a graphical method, or by inspection, or by solving a linear equation or an inequality	
	Obtain critical value $x = -\frac{1}{5}a$ similarly	B2
	State final answer $-\frac{1}{5}a < x < \frac{5}{3}a$ [Do not condone \leq for \leq in the final answer.]	
		4

© UCLES 2018

9709/31/O/N/18

Question	Answer	Marks	Guidance	2018	
20	State or imply non-modular inequality $3^2(2x-1)^2 > (x+4)^2$, or corresponding quadratic equation, or pair of linear equations/inequalities $3(2x-1)=\pm(x+4)$	Ві	$35x^2 - 44x - 7 = 0$		
	Make reasonable attempt at solving a 3-term quadratic, or solve two linear equations for x	M1	Allow for reasonable attempt at factorising e.g. $(5x - 7)(7x + 1)$		
	Obtain critical values $x = \frac{7}{5}$ and $x = -\frac{1}{7}$	A1	A1 Accept 1.4 and -0.143 or better for penultimate A mark		
	State final answer $x > \frac{7}{5}$, $x < -\frac{1}{7}$	A1	'and' is A0, $\frac{7}{5} < x < -\frac{1}{7}$ is A0. Must be exact values. Must be strict inequalities in final answer		
	Alternative				
	Obtain critical value $x = \frac{7}{5}$ from a graphical method	B1	or by inspection, or by solving a linear equation	on or an inequality	
	Obtain critical value $x = -\frac{1}{7}$ similarly	В2			
	State final answer $x > \frac{7}{5}$ or $x < -\frac{1}{7}$ or equivalent	B1	[Do not condone \geqslant for $>$, or \leqslant for $<$.]		
		4			

© UCLES 2018 9709/32/O/N/18

Question	Answer	Marks	Guidance
21	State or imply non-modular inequality $(2x-3)^2 > 4^2(x+1)^2$, or corresponding quadratic equation, or pair of linear equations $(2x-3)=\pm 4(x+1)$	В1	$12x^2 + 44x + 7 < 0$
	Make reasonable attempt at solving a 3-term quadratic, or solve two linear equations for x	M1	Correct method seen, or implied by correct answers
	Obtain critical values $x = -\frac{7}{2}$ and $x = -\frac{1}{6}$	A1	
	State final answer $-\frac{7}{2} < x < -\frac{1}{6}$	A1	
	Alternative method for question 2		,
	Obtain critical value $x = -\frac{7}{2}$ from a graphical method, or by inspection, or by solving a linear equation or an inequality	B1	
	Obtain critical value $x = -\frac{1}{6}$ similarly	B2	
	State final answer $-\frac{7}{2} < x < -\frac{1}{6}$	B1	
		4	

© UCLES 2019 9709/31/O/N/19

Question			
22	State or imply non-modular inequality $(x 2)^2 > (3x-1)^2$, or corresponding quadratic equation, or pair of linear equations $2(x+2) = \pm (3x-1)$	B1	
	Make reasonable attempt at solving a 3-term quadratic, or solve two linear equations for x	M1	
	Obtain critical values $x = -\frac{3}{5}$ and $x = 5$	A1	
	State final answer $-\frac{3}{5}$ < <5	A1	
	Alternative method for question 1		
	Obtain critical value $x = 5$ from a graphical method, or by inspection, or by solving a linear equation or an inequality	B1	
	Obtain critical value $x = -\frac{3}{5}$ similarly	B2	
	State final answer $-\frac{3}{5} < x < 5$	B1	
		4	

© UCLES 2019 9709/33/O/N/19