Задача Капицы о толщине стены

И. И. Кравченко, 13 декабря, 2024.

Попробуем сделать оценку для такой задачи П. Л. Капицы.

Оцените толщину стен из данного материала, при которой в помещении колебания температуры от средней годичной ее не превышали бы 3°С.

В течение года снаружи помещения температура колеблется (пусть по синусоидальному закону), проникая в стену за счет теплопроводности (тепловая волна), так что и внутри стены на заданной глубине происходят колебания температуры, но с меньшей амплитудой. Амплитуда T температурной волны в стене затухает по мере удаления от внешней поверхности стены по экспоненциальному закону [1]:

$$T = T_0 e^{-\alpha x},\tag{1}$$

где T_0 — амплитуда колебаний температуры на внешней поверхности стены, α — коэффициент затухания, x — расстояние от внешней поверхности стены.

Коэффициент α можно оценить из теории размерностей. Из формулы (1) видно, что размерность этого коэффициента есть 1/м, значит — α можно собрать из значимых в задаче величин [2]:

$$\alpha \sim \sqrt{\frac{\rho c}{\lambda \tau}},$$

где ρ , c и λ — плотность, удельная теплоемкость и теплопроводность материала стены, τ — период колебаний температуры.

Можно также записать:

$$\alpha \sim \sqrt{\frac{1}{a\tau}},$$
 (2)

где $a=\frac{\lambda}{\rho c}$ — температуропроводность материала стены.

С учетом (2) выразим из (1) расстояние x:

$$x \sim \sqrt{a\tau} \ln \frac{T_0}{T}$$
.

Из полученного соотношения можно найти расстояние вглубь стены, на котором амплитуда колебаний температуры уменьшается в $\frac{T_0}{T}$ раз по сравнению с амплитудой на внешней поверхности стены.

Пусть

$$T_0 \approx 30\,^{\circ}\text{C},$$

 $a \sim 10^{-7} \text{ M}^2/\text{c [2]},$
 $\tau = 1 \text{ гол} \approx 3 \cdot 10^{-7} \text{ c.}$

По условию имеем $T=3\,^{\circ}\mathrm{C}$. Тогда на глубине

$$x \sim \sqrt{10^{-7} \cdot 3 \cdot 10^7} \ln \frac{30}{3}$$
 м ~ 4 м

колебания температуры не превысят допустимые значения по условию задачи. Расстояние 4 м можно считать также толщиной стены.

В заключение интересно отметить, что годовые колебания земной поверхности, связанные с нагреванием ее летом и охлаждением зимой, перестают наблюдаться на глубине ~20 м. Глубже температура Земли совершенно не зависит от температурных колебаний ее поверхности [1].

Литература

[1] Д. В. Сивухин. Общий курс физики. Том ІІ. Термодинамика и молекулярная физика. Наука, 1975.

[2] А. Стасенко. «Где найти прошлогоднюю зиму?» В: Keahm 5 (2000).