Financial Analysis

Historical Data Analysis

Market Asset Selection

Identified some major market assets to complete this project. Selected assets are -

- Infosys Limited (INFY.NS)
- 2. Indian Railway Catering & Tourism Corporation Limited (IRCTC.NS)
- 3. Tata Elxsi Limited (TATAELXSI.NS)

Asset Return Analysis

Calculated the return for selected asset over the historical data available for the period of 3 years.

(Available at Finance Yahoo!)

Data Cleaning was performed on the Google Spreadsheets and initial Analysis was conducted on Spreadsheets. After initial analysis on Spreadsheets and understanding of Data, worked on analysis on Python to optimize the weighted average selection.

- <u>Financial Analytics Asset</u><u>Analysis</u>
- <u>Financial Analytics Asset</u>
 <u>Analysis.ipynb</u>

Descriptive Statistics Analysis

Pescriptive Statistics	Return - INFY	Return - IRCTC	Return - TATAELXSI
Mean	0.000129464	0.001613052	0.001094179
Median	0.000157213	0.000766000	-0.000060657
Data Range	0.089527239	0.182562494	0.071277635
Variance	0.0002327671851	0.000560170123	0.0004519098257
Standard Deviation	0.01525670951	0.02366791336	0.0212581708
Skewness	-0.4089107378	-0.2717655074	0.755987861

Return - INFY vs. Date

Return - INFY vs. Date

Date

Return - IRCTC vs. Date

Return - IRCTC vs. Date

Return - TATAELXSI vs. Date

Return - TATAELXSI vs. Date

Correlation Matrix

Combined Index - Weighted Average

After Observations from the Correlation Matrix, assigned the below weights to the returns of each asset to observe the output of the combined index.

Return - INFY	30%
Return - IRCTC	30%
Return - TATAELXSI	40%

Descriptive Statistics Analysis (Inclusive of Combined)

Descriptive Statistics	Return - INFY	Return - IRCTC	Return - TATAELXSI	Combined Index
Mean	0.000129464	0.001613052	0.001094179	0.000960426493
Median	0.000157213	0.000766000	-0.000060657	0.001094389533
Data Range	0.089527239	0.182562494	0.071277635	0.06481239612
Variance	0.0002327671851	0.000560170123	0.0004519098257	0.0002092804294
Standard Deviation	0.01525670951	0.02366791336	0.0212581708	0.0144665279
Skewness	-0.4089107378	-0.2717655074	0.755987861	-0.2229418361

Return - Combined Index vs. Date

Return - Combined Index Vs. Date

Descriptive Statistics Observations

Descriptive Statistics	Max	Min
Mean	Return - IRCTC	Return - INFY
Median	Combined Index	Return - TATAELXSI
Data Range	Return - IRCTC	Combined Index
Variance	Return - IRCTC	Combined Index
Standard Deviation	Return - IRCTC	Combined Index
Skewness	Return - TATAELXSI	Return - INFY

Descriptive Statistics Observations

After looking at the descriptive statistics for the Combined Index, it is observed that the dispersion parameters like Data Range, Variance & Standard deviation show the minimum of the combined index.

To approach the highest return, we can think of creating more optimum functions and or trying out new algorithms.

Thank You