Shape Analysis of Elastic Curves in Euclidean Spaces

Rayane Mouhli, Gabriel Watkinson

MVA - ENS Paris Saclay

January 30, 2023

Introduction

000

- How can we represent and analyze shapes in 2D, 3D ?
- Shape spaces have a Riemannian structure : how to build a metric
- **Invariant** to scaling, translation, rotation and re-parametrization.
- We need such metrics for statistical analysis on shapes: clustering, classification, hypothesis testing, probability models, ...
- Shape Analysis of Elastic Curves in Euclidean Spaces by Srivastava et al. (2010)

Introduction

Introduction

The goal of shape analysis is to **define a mathematical framework** describing shapes.

• Transformation invariant :

Introduction

Introduction

The goal of shape analysis is to **define a mathematical framework** describing shapes.

• What is the distance to other shapes :

Tables of contents

Introduction

Introduction

- 2 Goals and Motivation
- 3 Framework for Shape Analysis
- 4 Numerical Experiments
- 5 Limits and Discussion
- 6 Conclusion

Fields of application

• Biology : cells, organs, ...

Figure: Microscopic image of a cancerous cell

Figure: Stages of a heartbeat in time

Fields of application

• Medical : Proteins, RNA structure analysis

Figure: Examples of proteins structures

Fields of application

• Agriculture : Leaves analysis, ...

Figure: Pictures and contouring of leaves

Goals

Shape analysis is a **set of theoretical and computational tools**, that can be used for :

- Shape space : With desirable proprieties and tools
- **Shape Metric**: Quantify the difference between two given shapes regardless of rotation or parametrization
- Geodesics: Finding the optimal deformation from one shape to another
- Shape statistics : Calculate mean shape, covariance, PCA
- Clustering and classification

Table of Contents

- 1 Introduction
- Goals and Motivation
- 3 Framework for Shape Analysis
- 4 Numerical Experiments
- 6 Limits and Discussion
- 6 Conclusion

Mathematical framework for Shape Analysis

- The objective of the paper is to construct a space of shapes with a Riemannian structure
- To do so, there are two main steps :
 - 1 Pre-shape space : Define a representation of the curves with appropriate constraints
 - **2 Shape preserving transformation :** remove duplicates w.r.t. translation, scaling, rotation and re-parametrization

Square-Root Velocity

Parametrized Euclidean curves : A curve is a map of the form :

$$\gamma \colon D \to \mathbb{R}^n$$

- SRV: One of the main contribution of this paper is the introduction of **Square-Root Velocity** to represent the curves
- We define the SRV of a curve $\gamma \colon D \to \mathbb{R}^n$ as

$$q \colon egin{cases} D & o \mathbb{R}^n \ t & \mapsto F(\dot{\gamma}(t)) = rac{\dot{\gamma}}{\sqrt{\|\dot{\gamma}\|}} \end{cases}$$

Example of curves

Example of an open curve

(a) The original curve

(b) The associated SRV

Figure: An open curve in \mathbb{R}^2 : $\gamma_1(t) = \frac{1}{1+e^{-t}}$

Example of a closed curve

(b) The associated SRV

Figure: A closed curve in \mathbb{R}^2 : $\gamma_2(t) = \begin{pmatrix} \cos(t)(0.5 + \cos(t)) \\ \sin(t)(0.5 + \cos(t)) \end{pmatrix}$

Pre-shape spaces

- Before building the shape space, we introduce pre-shape spaces :
- Open curves :

$$\mathcal{C}^o = \left\{q \in \mathbb{L}^2(D,\mathbb{R}^n) \mid \int_{[0,1]} \|q(t)\|^2 dt = 1
ight\}$$

Closed curves :

$$\mathcal{C}^c = \left\{q \in \mathbb{L}^2(D,\mathbb{R}^n) \mid \int_{\mathbb{S}^1} \|q(t)\|^2 \,\mathrm{d}t = 1, \int_{\mathbb{S}^1} q(t)\|q(t)\| \,\mathrm{d}t = 0
ight\}$$

- We define Riemannian structures on those spaces
- On those spaces, the **geodesic between** q_0 and q_1 is:

$$d_c(q_0,q_1) = \inf_{\substack{lpha:[0,1] o \mathcal{C} \ lpha(0)=q_0,\,lpha(1)=q_1}} \int_0^1 \sqrt{\langle \dot{lpha}(t),\dot{lpha}(t)
angle} \mathrm{d}t$$

Construction of the shape space

- To build a shape space S, we have to remove shape preserving transformations from its pre-shape space C
- The shape space S is the quotient $C/(\Gamma \times SO(n))$
- The geodesic distance between two points of ${\mathcal S}$ is :

$$d_{s}([q_{0}],[q_{1}]) = \inf_{(\gamma,O) \in \Gamma \times \mathcal{SO}(n)} d_{c}(q_{0},O(q_{1} \circ \gamma)\sqrt{\dot{\gamma}})$$

Computation of geodesics

• For open curves : Since C^o is a sphere, we have an explicit expression for the geodesics

$$lpha \colon egin{cases} \left[[0,1] &
ightarrow \mathcal{C}^o \ t & \mapsto rac{1}{\sin\left(heta
ight)} \left(\sin\left(heta\left(1-t
ight)
ight) q_0 + \sin\left(heta t
ight) q_1
ight) \end{cases}$$

with
$$\theta = \cos^{-1}(\langle q_0, q_1 \rangle)$$

Computation of geodesics

- Srivastava et al. (2010) proposed a gradient based method to numerically compute the **geodesics for closed curves** in \mathbb{R}^n
- Path-Straightening Method for closed curves
- Energy of a path $\alpha \in \mathcal{H}_0$ (connecting two points q_0 and q_1 of \mathcal{C}^c):

$$E(\alpha) = \frac{1}{2} \int_0^1 \langle \frac{d\alpha}{dt}(t), \frac{d\alpha}{dt}(t) \rangle dt$$

• A critical point of E is a geodesic between q_0 and q_1 :

$$\alpha^* = \arg\min_{\alpha \in \mathcal{H}_0} E(\alpha)$$

Table of Contents

- Introduction
- 2 Goals and Motivation
- Framework for Shape Analysis
- **4** Numerical Experiments
- 6 Limits and Discussion
- Conclusion

Application to cell analysis

Figure: Geodesic between two types of cells

Figure: KDE plot of the distance to the mean cells by treatment

Application to leaf classification

Figure: Subset of leaves to analyze

Results

Figure: Frechet mean of each class

Frechet Mean

Figure: Geodesic between leaves

Table of Contents

- Introduction
- Goals and Motivation
- Framework for Shape Analysis
- 4 Numerical Experiments
- 5 Limits and Discussion
- **6** Conclusion

19 / 25

Limits and discussion

- Generalization to surfaces : $f:[0,1]^2 \to \mathbb{R}^3$
- Normal Vector Fields : For $s = (u, v) \in \mathbb{S}^2$, $\tilde{n}(s) = \frac{\partial f}{\partial u} \times \frac{\partial f}{\partial u}$ $n(s) = \frac{\tilde{n}(s)}{\|\tilde{n}(s)\|}$
- Tensor field : $g(s) = \nabla f(s)^T \nabla f(s)$.
- Area element $r(s) = \|\tilde{n}(s)\| = \sqrt{\det(g(s))}$
- Square root normal field : $q = \sqrt{rn}$
- New Riemannian metric :

$$\langle \langle (\delta g_1, \delta n_1), (\delta g_2, \delta n_2) \rangle \rangle_{(g,n)} = a \int_{\mathbb{S}^2} \operatorname{Tr}((g^{-1} \delta g_1)_0 (g^{-1} \delta g_2)_0) r(s) ds$$

$$+ b \int_{\mathbb{S}^2} \operatorname{Tr}(g^{-1} \delta g_1) \operatorname{Tr}(g^{-1} \delta g_2) r(s) ds$$

$$+ c \int_{\mathbb{S}^2} \langle \delta n_1, \delta n_2 \rangle r(s) ds$$

Limits and discussion

- Hypothesis of **absolute continuity** of β
- Discontinuous shapes
- Unicity of the geodesic

Table of Contents

- Introduction
- Goals and Motivation
- Framework for Shape Analysis
- 4 Numerical Experiments
- 6 Limits and Discussion
- 6 Conclusion

Conclusion

- Using **SRV representation** for shapes
- Build shape spaces for open and closed curves
- Numerical method to find geodesics for closed curves
- Numerical applications with two examples

Motivation Mathematical Framework Experiments Discussion Conclusion References

References

Srivastava, A., Klassen, E., Joshi, S. H., and Jermyn, I. H. (2010). Shape analysis of elastic curves in euclidean spaces. *IEEE transactions on pattern analysis and machine intelligence*, 33(7):1415–1428.

Thanks for your attention!