Stabilizing EM-Based Quantification under Label Shift

Pablo González, Olaya Pérez-Mon, Juan José del Coz

Artificial Intelligence Center University of Oviedo

LQ 2025 · September 15, 2025

Quantification and EMQ

- Quantification goal: estimate class prevalences in an unlabelled target sample.
- **Assumptions** for most quantification methods:
 - Prior probability shift: $P(X \mid Y) = Q(X \mid Y)$ while $P(Y) \neq Q(Y)$.
- Under these conditions, EMQ
 - coincides with the maximum-likelihood estimator.
 - is Fisher-consistent: perfect estimation as the sample size grows,
 - fast and a very strong baseline for quantification problems and for label shift adaptation.
- Yet, in practical problems, mild violations of the assumptions (e.g. mis-calibration of the underlying classifier) can lead to oscillations and degenerate estimates ⇒ motivation for stabilization.

2/15

Baseline: EMQ

EMQ is an iterative algorithm that uses Bayes' rule to estimate the target class distribution Q(c) by alternating between two steps:

- Q(c): Prevalence of class c in the target set.
- P(c): Prevalence of class c in the training set.
- $s_i(c)$: Score (e.g., soft prediction) assigned to class c by the classifier for instance i.
- $q_i^{(t)}(c)$: Estimated probability that instance i belongs to class c at iteration t.

E-step (Expectation)

Update instance-level posteriors:

$$q_i^{(t)}(c) = rac{rac{Q^{(t)}(c)}{P(c)} \, s_i(c)}{\sum_{j=1}^K rac{Q^{(t)}(j)}{P(j)} \, s_i(j)}$$

M-step (Maximization)

Update class prevalences:

$$Q^{(t+1)}(c) = rac{1}{N} \sum_{i=1}^{N} q_i^{(t)}(c)$$

3 / 15

Practical Limitations of EMQ

Although EMQ is a theoretically sound and widely adopted baseline, its practical performance is often mixed, especially in real-world settings:

- Highly sensitive to mis-calibrated posteriors.
- Tends to produce degenerate estimates when some classes are rare in the test distribution.
- In the multiclass setting, errors can propagate and compound across classes.
- Empirical studies in the literature report strong performance in some datasets, but also significant failures in others (even when a good calibrator is used).

Our Contributions

- Unified Framework: Decompose EMQ into two modular components:
 - ullet E-step: Reweighted posterior Transformation ${\mathcal C}$
 - M-step: Prevalence Update U
- Systematic taxonomy of existing & novel stabilisation heuristics (both for the E-step and the M-step).
- Exhaustive evaluation on 20+ UCI datasets.

Unified EMQ Framework

Algorithm 1: Unified EMQ Framework

Input: Unlabeled instances $\mathcal{D}_{\mathcal{T}} = \{x_1, \dots, x_n\}$, classifier posteriors $s_i(c)$, posterior transformation \mathcal{C} , update function \mathcal{U}

Output: Estimated target class prevalences Q(Y)

Initialize prevalence estimate $\mathit{Q}^{(0)} \in \Delta^{\mathit{K}}$

2 repeat

foreach instance $x_i \in \mathcal{D}_T$ do

Compute reweighted posterior:

$$q_i^{(t)}(c) \leftarrow \frac{\frac{Q^{(t)}(c)}{P(c)} \cdot s_i(c)}{\sum_{j=1}^K \frac{Q^{(t)}(j)}{P(j)} \cdot s_i(j)}$$

Apply reweighted posterior transformation:

$$ilde{q}_i^{(t)} \leftarrow {\color{red}\mathcal{C}}(q_i^{(t)})$$

end

Compute raw prevalence update:

$$\hat{Q}^{(t+1)}(c) \leftarrow \frac{1}{N} \sum_{i=1}^N \tilde{q}_i^{(t)}(c)$$

Update prevalence estimate:

$$Q^{(t+1)} \leftarrow oldsymbol{\mathcal{U}}\!\!\left(Q^{(t)},\ \hat{Q}^{(t+1)},\ \{ ilde{q}_i^{(t)}\}_{i=1}^{ extstyle N}
ight)$$

13 until convergence

14 return $Q^{(t+1)}$

LQ 2025 · September 15, 2025

E-Step Heuristics (C)

• Calibration (BCTS): Applies a post-processing transformation to classifier scores to improve reliability.

Used only once before EM begins and helps align $s_i(c)$ with true posteriors (not part of the framework).

- Posterior Smoothing: $\tilde{q}_i^{(t)}(c) \leftarrow (q_i^{(t)}(c) + \varepsilon)/(1 + K \cdot \varepsilon)$ Prevents zero probabilities and softens overconfident predictions, especially useful when some classes are rare or underrepresented.
- **Temperature Scaling**: $\tilde{q}_i^{(t)}(c) \leftarrow q_i^{(t)}(c)^{1/\tau}$ then renormalize Dynamically flattens (or sharpens) the score distribution during EMQ. Applies a power transformation to soften or sharpen posteriors during EMQ:
 - au > 1: flattens the distribution, reducing overconfidence.
 - au < 1: sharpens the distribution, making predictions more confident.

Helps mitigate overconfident predictions and stabilizes updates.

M-Step Heuristics (\mathcal{U})

- MAP / Dirichlet Prior: Add α -1 pseudo-counts to the prevalence update $Q^{(t+1)}(c) = \frac{\sum_{i=1}^N \tilde{q}_i^{(t)}(c) + \alpha 1}{N + K(\alpha 1)}.$ When $\alpha > 1$, the prevalence updates are pulled towards the uniform distribution.
- **Damping**: Blend the new estimate with the previous one $Q^{(t+1)} \leftarrow (1-\lambda)Q^{(t)} + \lambda \hat{Q}^{(t+1)}$ Slows down updates to avoid abrupt changes; effective for noisy or unstable posteriors.
- Confidence Selection: Use only the most confident instances to compute $Q^{(t+1)}$. Reduces the influence of uncertain predictions, filtering top- κ instances with highest max-score.
- Entropy Regularization: Encourages high-entropy (i.e., smoother) prevalence vectors:

$$rg \max_{Q} \sum_{c=1}^{K} \hat{Q}(c) \log Q(c) + \eta H(Q)$$

Acts as a regularizer to prevent overconfident or peaked estimates. η controls the strength of the penalty.

8 / 15

Experimental Setup

- Datasets: 24 multiclass UCI datasets, test bags = 1000 (per dataset), bag size = 500.
- Metric: Mean Absolute Error (MAE).
- **Hyper-parameters**: tuned on validation bags via *QuaPy* along with the classifier hyperparameters.

Heuristic	Hyperparameter range
Smooth	$\epsilon \in \{0, 10^{-6}, 10^{-5}, 10^{-4}\}$
Temp	$ au \in \{0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 2.0, 3.0, 5.0\}$
Damp	$\lambda \in \{0.1, 0.2, \ldots, 1.0\}$
Ent	$\eta \in \{0.0, 0.0001, 0.001\}$
MAP	$lpha \in \{1.0, 2.0, 5.0, 10.0\}$
Conf	$\kappa \in \{0.3, 0.5, 0.8, 1.0\}$

Overall Results

	Rase	eline	E-step mods		M-step mods			
	EMQ	Calib	Smooth	Temp	MAP	Damp	Conf	Ent
abalone	0.07050	0.07462	0.06753	0.05142	0.05077	0.05391	0.07050	0.05731
academic-success	0.03074	0.03184	0.03074	0.03074	0.04146	0.03074	0.03074	0.03074
chess	0.03563	0.03516	0.03441	0.03284	0.02903	0.03006	0.03563	0.03563
cmc	0.09456	0.11260	0.09403	0.09456	0.10482	0.08968	0.09456	0.09456
connect-4	0.03653	0.03489	0.03623	0.03653	0.03403	0.03327	0.03653	0.03653
digits	0.00271	0.00270	0.00271	0.00271	0.00271	0.00271	0.00271	0.00271
dry-bean	0.00425	0.00409	0.00423	0.00425	0.00425	0.00419	0.00425	0.00425
hand_digits	0.00286	0.00295	0.00286	0.00286	0.00286	0.00285	0.00286	0.00286
hcv	0.20780	0.30409	0.20619	0.16657	0.17029	0.19232	0.20780	0.16233
image_seg	0.00503	0.00529	0.00503	0.00547	0.00503	0.00499	0.00503	0.00503
isolet	0.00175	0.00163	0.00175	0.00174	0.00175	0.00168	0.00175	0.00175
letter	0.00545	0.00551	0.00539	0.00551	0.00519	0.00511	0.00545	0.00545
mhr	0.05940	0.06040	0.05873	0.05940	0.05383	0.05394	0.05940	0.05940
molecular	0.00847	0.00788	0.00846	0.00847	0.00832	0.00840	0.00847	0.00847
nursery	0.00579	0.00583	0.00578	0.00579	0.00579	0.00579	0.00579	0.00579
obesity	0.00619	0.00832	0.00617	0.00647	0.00614	0.00603	0.00619	0.00619
page_block	0.02440	0.02061	0.02431	0.02440	0.02313	0.02440	0.02440	0.02440
phishing	0.02902	0.02537	0.02878	0.02902	0.02340	0.02902	0.02902	0.02902
poker_hand	0.14458	0.17265	0.13097	0.08541	0.08284	0.15854	0.14458	0.08432
satellite	0.00954	0.00979	0.00949	0.00954	0.00930	0.00920	0.00954	0.00954
shuttle	0.06248	0.04674	0.06184	0.06248	0.06222	0.06248	0.06248	0.06248
waveform-v1	0.00970	0.01014	0.00970	0.01154	0.00985	0.00971	0.00970	0.00970
wine-quality	0.07639	0.07736	0.07043	0.07639	0.06082	0.06391	0.07639	0.07639
yeast	0.04386	0.04554	0.04363	0.04386	0.04386	0.04336	0.04386	0.04386
Mean	0.04073	0.04608	0.03956	0.03575	0.03507	0.03860	0.04073	0.03578

Bag-level: statistical analysis

Heuristic	Mean (MAE)	Std	% Wins	Wilcoxon p-value
Calib	0.00535	0.03005	0.45	1.0000
Smooth	-0.00118	0.00506	0.63	< 0.0001
Temp	-0.00499	0.02179	0.26	< 0.0001
MAP	-0.00566	0.02307	0.44	< 0.0001
Damp	-0.00214	0.01518	0.49	< 0.0001
Conf	0.00000	0.00000	0.0	_
Ent	-0.00496	0.02299	0.1	< 0.0001

Dataset level: Win-ties-losses charts

Combining heuristics

	EMQ	${\bf SmoothDamp}$	${\bf SmoothEnt}$	${\bf SmoothMAP}$	${\bf TempDamp}$	${\bf TempEnt}$	TempMAP
abalone	0.07050	0.05142	0.05142	0.05077	0.05362	0.05731	0.05078
academic-success	0.03074	0.03074	0.03074	0.04146	0.03074	0.03074	0.04129
chess	0.03563	0.03006	0.03284	0.02903	0.03065	0.03441	0.02898
cmc	0.09456	0.08968	0.09456	0.10482	0.08955	0.09403	0.10482
connect-4	0.03653	0.03327	0.03653	0.03403	0.03467	0.03623	0.03403
digits	0.00271	0.00270	0.00271	0.00271	0.00272	0.00271	0.00271
dry-bean	0.00425	0.00419	0.00425	0.00425	0.00423	0.00423	0.00423
hand_digits	0.00286	0.00285	0.00286	0.00286	0.00285	0.00286	0.00286
hcv	0.20780	0.19232	0.16657	0.17029	0.19104	0.16233	0.17029
image_seg	0.00503	0.00547	0.00547	0.00547	0.00499	0.00503	0.00503
isolet	0.00175	0.00162	0.00174	0.00174	0.00168	0.00175	0.00175
letter	0.00545	0.00511	0.00551	0.00519	0.00511	0.00539	0.00519
mhr	0.05940	0.05394	0.05940	0.05383	0.05382	0.05873	0.05375
molecular	0.00847	0.00840	0.00847	0.00908	0.00840	0.00846	0.00832
nursery	0.00579	0.00643	0.00579	0.00579	0.00578	0.00578	0.00578
obesity	0.00619	0.00603	0.00647	0.00614	0.00603	0.00617	0.00615
page_block	0.02440	0.02440	0.02440	0.02313	0.02431	0.02431	0.02308
phishing	0.02902	0.02902	0.02902	0.02340	0.02878	0.02878	0.02340
poker_hand	0.14458	0.08540	0.08382	0.08284	0.14292	0.08432	0.08284
satellite	0.00954	0.00920	0.00954	0.00930	0.00919	0.00949	0.00930
shuttle	0.06248	0.06248	0.06248	0.06222	0.06184	0.06184	0.06222
waveform-v1	0.00970	0.01122	0.01154	0.01076	0.00972	0.00970	0.00970
wine-quality	0.07639	0.06391	0.07639	0.06082	0.06352	0.07043	0.06069
yeast	0.04386	0.04336	0.04386	0.04386	0.04334	0.04363	0.04363
Mean	0.04073	0.03555	0.03568	0.03516	0.03790	0.03536	0.03503

Conclusions and Future work

- We presented a **unified framework** + extensive heuristic benchmarking.
- Simple heuristics can yield significant improvements over standard EMQ.
- Presented heuristics are lightweight, easy to implement and pretty safe to use, even though they should be considered based on the data.
- Future work
 - explore automatic selection of heuristics.
 - derive consistency guarantees (what properties should the functions C and U have so the resulting method is still Fisher consistent?).
 - explore heuristics for other types of shifts or situations where basic EMQ might fail.

Questions?

