ST 516: Foundations of Data Analytics

Simulation Case Study

Let's work through a coding example from scratch.

Similar, but different, to your project assignment:

Examine the spread of the sampling distribution for the sample mean for samples of size 10, 100 and 1000 from a Normal distribution. Does the standard deviation of the sampling distribution agree with the theoretical form, $\sigma/\sqrt(n)$?

ST516: Module 9 Lecture 5 2/ 12

Break the problem down, start simple

Let's start with one sample size, n = 10. For this sample size, we need to:

Repeat many times:

- Take a sample of size 10 from a Normal distribution
- Find the sample mean of the sample

Find the standard deviation of the many sample means and compare to σ/\sqrt{n} .

In R code:

```
means <- replicate(1000, sd(rnorm(10, sd = 2)))
sd(means)
2/sqrt(10) # true_se</pre>
```

Now repeat for other sample sizes...

What's wrong with this?

```
means <- replicate(1000, mean(rnorm(10, sd = 2)))
sd(means)
2/sqrt(10) # true_se

means <- replicate(1000, mean(rnorm(100, sd = 2)))
sd(means)
2/sqrt(100) # true_se

means <- replicate(1000, mean(rnorm(1000, sd = 2)))
sd(means)
2/sqrt(1000) # true_se</pre>
```

What's wrong with this?

No comments

Lot's of repetition

Hard to change number of simulations or population standard deviations

means keeps getting over written

Remove hard coded numbers, add better names

Remove hard coded numbers, add better names

Perhaps even clearer

Rearrange

```
n_sim <- 1000
pop_sd <- 2

means_10 <- replicate(n_sim, mean(rnorm(10, sd = pop_sd)))
means_100 <- replicate(n_sim, mean(rnorm(100, sd = pop_sd)))
means_1000 <- replicate(n_sim, mean(rnorm(1000, sd = pop_sd)))

c(sd(means_10), sd(means_100), sd(means_1000))
pop_sd/c(sqrt(10), sqrt(100), sqrt(1000))</pre>
```

For the writeup

Add set.seed and get R to round results.

```
set.seed(101910)
n_sim <- 1000
pop_sd <- 2
means_10 <- replicate(n_sim, mean(rnorm(10, sd = pop_sd)))</pre>
means_100 <- replicate(n_sim, mean(rnorm(100, sd = pop_sd)))</pre>
means_1000 <- replicate(n_sim, mean(rnorm(1000, sd = pop_sd)))</pre>
spread_sampdist <- c(sd(means_10), sd(means_100), sd(means_1000))
true_se <- pop_sd/c(sqrt(10), sqrt(100), sqrt(1000))</pre>
rbind(round(spread_sampdist, 3),
  round(true se, 3))
```

```
## [,1] [,2] [,3]
## [1,] 0.625 0.202 0.063
## [2,] 0.632 0.200 0.063
```

DRY principle

Don't Repeat Yourself

Captures the idea that each unique peice of information should be only represented once in your code.

Saves time in the long run:

- less silly copy & paste mistakes
- changes only need to made in one place
- more understandable/expandable structure

ST516: Module 9 Lecture 5 9/ 12

Functionalize

Still lots of repetition, e.g.

```
means_10 <- replicate(n_sim, mean(rnorm(10, sd = pop_sd)))
means_100 <- replicate(n_sim, mean(rnorm(100, sd = pop_sd)))
means_1000 <- replicate(n_sim, mean(rnorm(1000, sd = pop_sd)))
spread_sampdist <- c(sd(means_10), sd(means_100), sd(means_1000))</pre>
```

You might imagine wrapping up the simulation of sample means into a function

```
get_means <- function(n, n_sim = 1000, pop_sd = 2) {
  replicate(n_sim, mean(rnorm(n, sd = pop_sd)))
}</pre>
```

So, you could do

```
means_10 <- get_means(n = 10)
means_100 <- get_means(n = 100)
means_1000 <- get_means(n = 1000)
ST516: Module 9 Lecture 5</pre>
10/12
```

Lists and lapply

This is such a common structure, that there are a whole family of functions to help out:

```
means <- lapply(c(10, 100, 1000), get_means)
str(means)</pre>
```

lapply takes each element of the first argument, in this case each sample size, and passes it to the function in the second argument, in this case get_means.

Each result is stored in a separate element of the returned list.

```
means[[1]] # the 1000 simluated sample means for n=10 sd(means[[1]]) # the sd of the 1000 simluated sample means for n=10 lapply(means, sd) # the sd of the mean for each sample size
```

Putting it together

```
set.seed(101910)
n_sim <- 1000
pop_sd <- 2
get_means <- function(n, n_sim, pop_sd) {</pre>
  replicate(n_sim, mean(rnorm(n, sd = pop_sd)))
ns \leftarrow c(10, 100, 1000)
means <- lapply(ns, get_means, n_sim = n_sim, pop_sd = pop_sd)
spread_sampdist <- sapply(means, sd)</pre>
true_se <- pop_sd/ns
rbind(round(spread_sampdist, 3),
  round(true se, 3))
```

If we want to change the number of simulations, set of sample sizes, population, or the statistic, we only have to make the change in one