# Biología de Sistemas

Ricardo Aguilar Garay

Diciembre 2020

### 1. Modelo

$$\dot{x} = \alpha_1 (1 - x) - \frac{\beta_1 x (\nu y)^{\gamma_1}}{K_1 + (\nu y)^{\gamma_1}},\tag{1}$$

$$\dot{y} = \alpha_2 (1 - y) - \frac{\beta_2 y x^{\gamma_2}}{K_2 + x^{\gamma_2}},\tag{2}$$

## 2. Puntos de equilibrio

Para el cálculo de los puntos de equilibrio del sistema (1)-(2) se hará  $\dot{x} = \dot{y} = 0$ , se obtiene

$$\alpha_{1} (1 - x) - \frac{\beta_{1} x (\nu y)^{\gamma_{1}}}{K_{1} + (\nu y)^{\gamma_{1}}} = 0,$$
  
$$\alpha_{2} (1 - y) - \frac{\beta_{2} y x^{\gamma_{2}}}{K_{2} + x^{\gamma_{2}}} = 0.$$

Se consideran 3 casos

## **2.1.** Caso 1 $x_* = 1, y \neq 0$

En este caso se considera la carga máxima para  $x_*$ , sustituyendo en (2) se obtiene

$$\alpha_2 (1 - y_*) - \frac{\beta_2 y_*}{K_2 + 1} = 0, \tag{3}$$

donde  $(x_*, y_*)$  es punto de equilibrio. Despejando  $y_*$  de (3) se obtiene

$$\alpha_2 (1 - y_*) (K_2 + 1) = \beta_2 y_*$$

$$\alpha_2 (K_2 + 1) - \alpha_2 (K_2 + 1) y_* = \beta_2 y_*$$

$$\alpha_2 (K_2 + 1) = (\beta_2 + (K_2 + 1) \alpha_2) y_*$$

por lo tanto

$$y_* = \frac{\alpha_2 (K_2 + 1)}{\beta_2 + (K_2 + 1) \alpha_2}.$$
 (4)

Por lo tanto el punto de equilibrio es

$$E_0 = \left(x_*, \frac{\alpha_2 (K_2 + 1)}{\beta_2 + (K_2 + 1) \alpha_2}\right). \tag{5}$$

### **2.2.** Caso 2 $x \neq 0$ , $y_{**} = 1$

En este caso se considerá la carga máxima para  $y_{**}$ , sustituyendo en (1) se obtiene

$$\alpha_1 \left( 1 - x_{**} \right) - \frac{\beta_1 x_{**} \nu^{\gamma_1}}{K_1 + \nu^{\gamma_1}} = 0, \tag{6}$$

donde  $(x_{**}, y_{**})$  es punto de equilibrio. Despejando  $x_{**}$  de (6) se obtiene

$$\alpha_{1} (1 - x_{**}) = \frac{\beta_{1} x_{**} \nu^{\gamma_{1}}}{K_{1} + \nu^{\gamma_{1}}}$$

$$\alpha_{1} (1 - x_{**}) (K_{1} + \nu^{\gamma_{1}}) = \beta_{1} x_{**} \nu^{\gamma_{1}}$$

$$\alpha_{1} (K_{1} + \nu^{\gamma_{1}}) - \alpha_{1} x_{**} (K_{1} + \nu^{\gamma_{1}}) = \beta_{1} x_{**} \nu^{\gamma_{1}}$$

$$x_{**} (\beta_{1} \nu^{\gamma_{1}} + \alpha_{1} x_{**} (K_{1} + \nu^{\gamma_{1}})) = \alpha_{1} (K_{1} + \nu^{\gamma_{1}})$$

por lo tanto

$$x_{**} = \frac{\alpha_1 (K_1 + \nu^{\gamma_1})}{\beta_1 \nu^{\gamma_1} + \alpha_1 (K_1 + \nu^{\gamma_1})}.$$
 (7)

Por lo tanto el punto de equilibrio es

$$E_{1} = \left(\frac{\alpha_{1} \left(K_{1} + \nu^{\gamma_{1}}\right)}{\beta_{1} \nu^{\gamma_{1}} + \alpha_{1} \left(K_{1} + \nu^{\gamma_{1}}\right)}, y_{**}\right). \tag{8}$$

### **2.3.** Caso 3 $x \neq 0, y \neq 0$

En este caso para el cálculo de los puntos de equilibrio, se obtendrá un polinomio  $\Psi$  de grado  $\gamma_1\gamma_2 + 1$  con raíces r, por lo que los puntos de equilibrio se basarán en las raíces del polinomio  $\Psi$ , se considerarían tres casos en los que se pueden enumerar

- 1. Caso 1: Si  $\gamma_1\gamma_2 + 1 \in 2\mathbb{Z}_+$ , entonces se tendrían al menos cero raíces reales y máximo  $\gamma_1\gamma_2 + 1$  raíces reales.
- 2. Caso 2: Si  $\gamma_1 \gamma_2 + 1 \in 2\mathbb{Z}_+ + 1$ , entonces se tendrían al menos una raíz real y máximo  $\gamma_1 \gamma_2 + 1$  raíces reales.

En este caso de (1)-(2) se obtiene

$$\alpha_1 - \alpha_1 x - \frac{\beta_1 x (\nu y)^{\gamma_1}}{K_1 + (\nu y)^{\gamma_1}} = 0$$
$$\alpha_2 - \alpha_2 y - \frac{\beta_2 y x^{\gamma_2}}{K_2 + x^{\gamma_2}} = 0.$$

entonces

$$\alpha_1 \left( K_1 + (\nu y)^{\gamma_1} \right) - \alpha_1 x \left( K_1 + (\nu y)^{\gamma_1} \right) - \beta_1 x (\nu y)^{\gamma_1} = 0$$

$$\alpha_2 \left( K_2 + x^{\gamma_2} \right) - \alpha_2 y \left( K_2 + x^{\gamma_2} \right) - \beta_2 y x^{\gamma_2} = 0$$

por lo tanto

$$-x\left[\alpha_{1}K_{1} + (\alpha_{1} + \beta_{1})(\nu y)^{\gamma_{1}}\right] + \alpha_{1}\left((\nu y)^{\gamma_{1}} + K_{1}\right) = 0$$

$$-y\left[\alpha_{2}K_{2} + (\alpha_{2} + \beta_{2})x^{\gamma_{2}}\right] + \alpha_{2}\left(x^{\gamma_{2}} + K_{2}\right) = 0$$
(10)

Despejando x de (10) se obtiene

$$x^{\gamma_2} \left[ \alpha_2 - (\alpha_2 + \beta_2) y \right] + \alpha_2 K_2 (1 - y) = 0$$
$$x^{\gamma_2} \left[ \alpha_2 - (\alpha_2 + \beta_2) y \right] = \alpha_2 K_2 (y - 1)$$
$$x^{\gamma_2} = \frac{\alpha_2 K_2 (y - 1)}{\alpha_2 - (\alpha_2 + \beta_2) y}$$

con lo que se obtiene

$$x = \sqrt[\gamma_2]{\frac{\alpha_2 K_2 (y - 1)}{\alpha_2 - (\alpha_2 + \beta_2) y}}$$

$$\tag{11}$$

se sustituye (11) se sustituye en (9) se obtiene

$$\alpha_{1}\left((\nu y)^{\gamma_{1}}+K_{1}\right)-\frac{\gamma_{2}}{\sqrt{\frac{\alpha_{2}K_{2}(y-1)}{\alpha_{2}-(\alpha_{2}+\beta_{2})y}}}\left[\alpha_{1}K_{1}+(\alpha_{1}+\beta_{1})(\nu y)^{\gamma_{1}}\right]=0$$

$$\frac{\alpha_{1}\left((\nu y)^{\gamma_{1}}+K_{1}\right)}{\alpha_{1}K_{1}+(\alpha_{1}+\beta_{1})(\nu y)^{\gamma_{1}}}=\frac{\gamma_{2}}{\sqrt{\frac{\alpha_{2}K_{2}(y-1)}{\alpha_{2}-(\alpha_{2}+\beta_{2})y}}}$$

$$\left(\frac{\alpha_{1}\left((\nu y)^{\gamma_{1}}+K_{1}\right)}{\alpha_{1}K_{1}+(\alpha_{1}+\beta_{1})(\nu y)^{\gamma_{1}}}\right)^{\gamma_{2}}=\frac{\alpha_{2}K_{2}(y-1)}{\alpha_{2}-(\alpha_{2}+\beta_{2})y}$$

$$\alpha_{1}^{\gamma_{2}}\left((\nu y)^{\gamma_{1}}+K_{1}\right)^{\gamma_{2}}\left(\alpha_{2}-(\alpha_{2}+\beta_{2})y\right)=\alpha_{2}K_{2}(y-1)\left(\alpha_{1}K_{1}+(\alpha_{1}+\beta_{1})(\nu y)^{\gamma_{1}}\right)^{\gamma_{2}}$$

por lo que podemos definir

$$\Psi(y) := \left[\alpha_1^{\gamma_2} \alpha_2 (M_1(y))^{\gamma_2} + \alpha_2 K_2 (M_2(y))^{\gamma_2}\right] - \left[\alpha_1^{\gamma_2} (\alpha_2 + \beta_2) (M_1(y))^{\gamma_2} + \alpha_2 K_2 (M_2(y))^{\gamma_2}\right] y. \tag{12}$$

donde

$$M_1(y) := (\nu y)^{\gamma_1} + K_1 \qquad ; \qquad M_2(y) := \alpha_1 K_1 + (\alpha_1 + \beta_1) (\nu y)^{\gamma_1}.$$
 (13)

El interés se centra en aquellas raíces  $r_*$  que cumplan

$$y = r_* \in \text{Re}_+ | \Psi(r_*) = 0$$
 (14)

### 3. Análisis de estabilidad

Para esta sección se estudiará la estabilidad local del sistema (1)-(2), linealizando el sistema alrededor de los puntos de equilibrio (19) - (21), por lo que primero hay que calcular su matriz Jacobiana, la cual es

$$J = \begin{bmatrix} -\left[\alpha_{1} + \frac{\beta_{1} (\nu y_{*})^{\gamma_{1}}}{K_{1} + (\nu y_{*})^{\gamma_{1}}}\right] & \frac{\beta_{1} \gamma_{1} x_{*} (\nu y_{*})^{2\gamma_{1} - 1}}{\left(K_{1} + (\nu y_{*})^{\gamma_{1}}\right)^{2}} \left[\left(\nu - 1\right) - K_{1} (\nu y_{*})^{-\gamma_{1}}\right] \\ & \frac{-\beta_{2} \gamma_{2} K_{2} y_{*} x_{*}^{\gamma_{2} - 1}}{\left(K_{2} + x_{*}^{\gamma_{2}}\right)^{2}} & -\left[\alpha_{2} + \frac{\beta_{2} x_{*}^{\gamma_{2}}}{K_{2} + x_{*}^{\gamma_{2}}}\right] \end{cases}$$
(15)

cuyos valores propios se calculan mediante  $|\lambda I - J|$  por lo que obtenemos lo siguiente

$$|\lambda I - J| = \begin{bmatrix} \lambda + \left[ \alpha_1 + \frac{\beta_1 \left( \nu y_* \right)^{\gamma_1}}{K_1 + \left( \nu y_* \right)^{\gamma_1}} \right] & \frac{\beta_1 \gamma_1 x_* \left( \nu y_* \right)^{2\gamma_1 - 1}}{\left( K_1 + \left( \nu y_* \right)^{\gamma_1} \right)^2} \left[ K_1 \left( \nu y_* \right)^{-\gamma_1} - \left( \nu - 1 \right) \right] \\ & \frac{\beta_2 \gamma_2 K_2 y_* x_*^{\gamma_2 - 1}}{\left( K_2 + x_*^{\gamma_2} \right)^2} & \lambda + \left[ \alpha_2 + \frac{\beta_2 x_*^{\gamma_2}}{K_2 + x_*^{\gamma_2}} \right] \end{bmatrix}$$

y el polinomio característico es

$$\lambda^2 + A_1 \lambda + A_2 \tag{16}$$

donde

$$A_{1} = \alpha_{1} + \alpha_{2} + \frac{\beta_{2}x_{*}^{\gamma_{2}}}{K_{2} + x_{*}^{\gamma_{2}}} + \frac{\beta_{1}(\nu y_{*})^{\gamma_{1}}}{K_{1} + (\nu y_{*})^{\gamma_{1}}},$$

$$A_{2} = \frac{\beta_{1}\beta_{2}\gamma_{1}\gamma_{2}K_{2}\nu^{2\gamma_{1}-1}x_{*}^{\gamma_{2}}y_{*}^{2\gamma_{1}}}{\left(K_{1} + (\nu y_{*})^{\gamma_{1}}\right)^{2}\left(K_{2} + x_{*}^{\gamma_{2}}\right)^{2}}\left[\left(\nu - 1\right) - K_{1}(\nu y_{*})^{-\gamma_{1}}\right] + \left[\alpha_{1} + \frac{\beta_{1}(\nu y_{*})^{\gamma_{1}}}{K_{1} + (\nu y_{*})^{\gamma_{1}}}\right]\left[\alpha_{2} + \frac{\beta_{2}x_{*}^{\gamma_{2}}}{K_{2} + x_{*}^{\gamma_{2}}}\right]$$

tiene eigenvalores reales si  $A_1^2 - 4A_2 > 0$ .

### 3.1. Estabilidad en sistemas cooperativos y competitivos

Un sistema dinámico autónomo  $\dot{x} = f(x)$  donde f es una función continua  $C^{\infty}$  y donde  $x \in \mathbb{R}^n$  es el vector de estados, se denomina cooperativo o competitivo si cumplen con alguna de las siguientes definiciones [1].

**Definición 3.1 (Sistema cooperativo)** Dado un sistema  $\dot{x} = f(x)$  se denomina cooperativo si todos los elementos de su matriz Jacobiana, excepto los de su diagonal principal, son no negativos, es decir

$$\frac{\partial f_i(x)}{\partial x_i} \ge 0 \ \forall i \ne j.$$

**Definición 3.2 (Sistema competitivo)** Dado un sistema  $\dot{x} = f(x)$  se denomina competitivo si todos los elementos de su matriz Jacobiana, excepto los de su diagonal principal, son no positivos, es decir

$$\frac{\partial f_i(x)}{\partial x_i} \le 0 \ \forall i \ne j.$$

El corolario (3.1) permite establecer convergencia para las trayectorias de sus soluciones sean sistemas cooperativos o competitivos.

Corolario 3.1 Sea  $\{\phi(t)\}$  la solución en  $\mathbb{R}^2$  de un sistema cooperativo o competitivo para el cual el cuadrante  $\mathbb{R}^2_{0,+}$  es positivamente invariante, entonces cualquier trayectoria cerrada  $[0,\infty) \to \mathbb{R}^2_{0,+}$  converge.

## 4. Análisis Numérico

En esta sección se utilizarán los valores de la tabla (1)

| Parámetro  | Valor |  |
|------------|-------|--|
| $\alpha_1$ | 1     |  |
| $lpha_2$   | 1     |  |
| $eta_1$    | 200   |  |
| $eta_2$    | 10    |  |
| $\gamma_1$ | 4     |  |
| $\gamma_2$ | 4     |  |
| $K_1$      | 30    |  |
| $K_2$      | 1     |  |
| $\nu$      | 1     |  |

Cuadro 1: Parámetros del modelo

### 4.1. Puntos de equilibrio

Substituyendo los valores de la tabla (1) en los anteriores casos se tiene

#### 4.1.1. Caso 1

Para este caso se encuentra dada la ecuación (5)

$$E_0 = \left(1, \frac{1}{6}\right) = (1, 0.1667). \tag{17}$$

#### 4.1.2. Caso 2

Para este caso se encuentra dada la ecuación (8)

$$E_1 = \left(\frac{31}{231}, 1\right) = (0.1342, 1). \tag{18}$$

#### 4.1.3. Caso 3

A partir de la ecuación (12) y (13) se obtiene

$$M_1(y) = y^4 + 30$$
 ;  $M_2(y) := 201y^4 + 30$ 

por lo tanto el polinomio resulta

$$\Psi(y) = \left[ M_1^4(y) + M_2^4(y) \right] - \left[ 11M_1^4(y) + M_2^4(y) \right] y,$$
  
=  $\left[ \left( y^4 + 30 \right)^4 + \left( 201y^4 + 30 \right)^4 \right] - \left[ 11 \left( y^4 + 30 \right)^4 + \left( 201y^4 + 30 \right)^4 \right] y,$ 

entonces

$$(y^4 + 30)^4 = y^{16} + 120y^{12} + 5400y^8 + 108000y^4 + 810000,$$

por otro lado se tiene

$$\left(201y^4 + 30\right)^4 = 1.632240801 \times 10^9 y^{16} + 974.47212 \times 10^6 y^{12} + 218.1572 \times 10^6 y^8 + 21.708 \times 10^6 y^4 + 810000.$$

ademas

$$11\left(y^4 + 30\right)^4 = 11y^{16} + 1320y^{12} + 59400y^8 + 1188000y^4 + 8910000,$$

se obtiene

$$M_1^4(y) + M_2^4(y) = 1.632240802 \times 10^9 y^{16} + 974.4724 \times 10^6 y^{12} + 218.1626 \times 10^6 y^8 + 21.816 \times 10^6 y^4 + 1.62 \times 10^6.$$

mientras que

$$\[11M_1^4(y) + M_2^4(y)\]y = 1.632240812 \times 10^9 y^{17} + 974.47344 \times 10^6 y^{13} + 218.2166 \times 10^6 y^9 + 22.896 \times 10^6 y^5 + 9.72 \times 10^6 y.$$

finalmente el polinomio (12) resulta en

$$\begin{split} \Psi(y) &= -1.632240812 \times 10^9 y^{17} + 1.632240802 \times 10^9 y^{16} - 974.47344 \times 10^6 y^{13} + 974.4724 \times 10^6 y^{12} \\ &- 218.2166 \times 10^6 y^9 + 218.1626 \times 10^6 y^8 - 22.896 \times 10^6 y^5 + 21.816 \times 10^6 y^4 - 9.72 \times 10^6 y^6 \\ &+ 1.62 \times 10^6. \end{split}$$

De las cuales las raíces se muestran en la tabla (2) y por lo tanto solo tomamos a  $r_9,\,r_{16}$  y  $r_{17}$  por

|           | ***                                        |
|-----------|--------------------------------------------|
| Parámetro | Valor                                      |
| $r_1$     | -0.4626712664735543 + 0.6094148345216142j  |
| $r_2$     | -0.4626712664735543 - 0.6094148345216142j  |
| $r_3$     | -0.6002942812276788 + 0.48442058163123397j |
| $r_4$     | -0.6002942812276788 - 0.48442058163123397j |
| $r_5$     | -0.5891518491568397 + 0.2446004725378369j  |
| $r_6$     | -0.5891518491568397 - 0.2446004725378369j  |
| $r_7$     | -0.19639034227563829 + 0.576255243736233j  |
| $r_8$     | -0.19639034227563829 - 0.576255243736233j  |
| $r_9$     | 0.9966187208957835                         |
| $r_{10}$  | 0.28594877709256417 + 0.6230645463132196j  |
| $r_{11}$  | 0.28594877709256417 - 0.6230645463132196j  |
| $r_{12}$  | 0.5209704823918695 + 0.6041070299623663j   |
| $r_{13}$  | 0.5209704823918695 - 0.6041070299623663j   |
| $r_{14}$  | 0.649446149116828 + 0.43197103941221665j   |
| $r_{15}$  | 0.649446149116828 - 0.43197103941221665j   |
| $r_{16}$  | 0.6195094156157372                         |
| $r_{17}$  | 0.16815651842683876                        |

Cuadro 2: Raíces del polinomio  $\Psi(y)$ 

ser las que cumplen la condición (14). Sustituyendo en (11) se obtiene

$$x_{1*} = \sqrt[4]{\frac{r_9 - 1}{1 - 11r_9}}, \qquad x_{2*} = \sqrt[4]{\frac{r_{16} - 1}{1 - 11r_{16}}}, \qquad x_{3*} = \sqrt[4]{\frac{r_{17} - 1}{1 - 11r_{17}}}$$

entonces

$$x_{1*} = \sqrt[4]{\frac{0.9966187208957835 - 1}{1 - 11(0.9966187208957835)}} = \sqrt[4]{\frac{-0.0033812791042164836}{-9.96280592985362}} = \sqrt[4]{0.00033939024086421845},$$

$$x_{2*} = \sqrt[4]{\frac{0.6195094156157372 - 1}{1 - 11(0.6195094156157372)}} = \sqrt[4]{\frac{-0.38049058438426275}{-5.81460357177311}} = \sqrt[4]{0.06543706371167719},$$

$$x_{3*} = \sqrt[4]{\frac{0.16815651842683876 - 1}{1 - 11(0.16815651842683876)}} = \sqrt[4]{\frac{-0.8318434815731612}{-0.8497217026952264}} = \sqrt[4]{0.9789599099736332}.$$

lo que nos resulta en

$$x_{1*} = 0.13572968385223158, \qquad x_{2*} = 0.5057733603874235, \qquad x_{3*} = 0.9946979588849345$$

finalmente los puntos de equilibrio para el Caso 3 son

$$E_2 = (0.13572968385223158, 0.9966187208957835),$$

$$E_3 = (0.5057733603874235, 0.6195094156157372),$$

$$E_4 = (0.9946979588849345, 0.16815651842683876)$$

#### 4.2. Resumen

En resumen los puntos de equilibrio son

$$E_0 = (1, 0.16667),$$
  $E_1 = (0.13420, 1),$  (19)

$$E_2 = (0.13573, 0.99662),$$
  $E_3 = (0.50577, 0.61951),$  (20)

$$E_4 = (0.99470, 0.16816) \tag{21}$$

### 4.3. Estabilidad local

Sustituyendo los valores de la tabla (1) en el polinomio característico (16) junto con los puntos de equilibrio (19)-(21) se obtiene De la tabla (4) notamos que  $E_0 \approx E_4$  y que  $E_1 \approx E_2$ , por lo que

| Puntos de                             | Polinomio                          | Eigenvalores |             | Estabilidad |
|---------------------------------------|------------------------------------|--------------|-------------|-------------|
| equilibrio                            | característico                     | $\lambda_1$  | $\lambda_2$ | local       |
| $E_0 = (1, 0.16667)$                  | $\lambda^2 + 7.005\lambda + 5.825$ | -6.0408583   | -0.9642856  | estable     |
| $E_1 = (0.13420, 1)$                  | $\lambda^2 + 8.455\lambda + 7.152$ | -7.50144074  | -0.9534145  | estable     |
| $E_2 = \left(0.13573, 0.99662\right)$ | $\lambda^2 + 8.371\lambda + 7.058$ | -7.41969849  | -0.95125399 | estable     |
| $E_3 = \left(0.50577, 0.61951\right)$ | $\lambda^2 + 3.591\lambda - 5.777$ | -4.79596905  | 1.2046115   | no estable  |
| $E_4 = (0.99470, 0.16816)$            | $\lambda^2 + 6.952\lambda + 5.765$ | -5.98961147  | -0.96255937 | estable     |

Cuadro 3: Resultados principales.

condensamos esos resultados en solo tres puntos de equilibrio

| Puntos de                    | Polinomio                          | Eigenvalores |             | Estabilidad |
|------------------------------|------------------------------------|--------------|-------------|-------------|
| equilibrio                   | característico                     | $\lambda_1$  | $\lambda_2$ | local       |
| $E_0^* = (0.50577, 0.61951)$ | $\lambda^2 + 3.591\lambda - 5.777$ | -4.79596905  | 1.2046115   | no estable  |
| $E_1^* = (0.99470, 0.16816)$ | $\lambda^2 + 6.952\lambda + 5.765$ | -5.98961147  | -0.96255937 | estable     |
| $E_2^* = (0.13573, 0.99662)$ | $\lambda^2 + 8.371\lambda + 7.058$ | -7.41969849  | -0.95125399 | estable     |

Cuadro 4: Resultados principales.

## 5. Sistema Competitivo

De acuerdo con la definición (3.2) y de acuerdo con la matriz Jacobiana (15) se tiene los elementos fuera de la diagonal

$$\frac{\beta_1 \gamma_1 x_* (\nu y_*)^{2\gamma_1 - 1}}{\left(K_1 + (\nu y_*)^{\gamma_1}\right)^2} \left[ (\nu - 1) - K_1 (\nu y_*)^{-\gamma_1} \right] \le 0, \tag{22}$$

$$\frac{-\beta_2 \gamma_2 K_2 y_* x_*^{\gamma_2 - 1}}{\left(K_2 + x_*^{\gamma_2}\right)^2} \le 0, \tag{23}$$

de (23) es claro que se cumple para toda  $\alpha_i > 0$ ,  $\beta_i > 0$  y  $K_2 > 0$ , con i = 1, 2. Por otro lado de (22), si  $0 \le \nu \le 2$  entonces se cumple

$$(\nu - 1) - K_1 (\nu y_*)^{-\gamma_1} \le 0,$$

$$(\nu - 1) \nu^{\gamma_1} \le \frac{K_1}{y_*^{\gamma_1}}$$

$$0 \le \nu^{\gamma_1 + 1} - \nu^{\gamma_1} \le \frac{K_1}{y_*^{\gamma_1}}$$

lo cual es claro que se cumple para  $K_1 > 0$  y  $y_* \le \frac{\sqrt[n]{K_1}}{2}$ . Sin embargo si  $\nu > 2$ , entonces se cumple la siguiente condición para que el sistema sea competitivo

$$2 < \nu \le \max\left\{\frac{\sqrt[n]{K_1}}{y_*}\right\}.$$

## 6. Simulaciones in silico



Figura 1: Plano de fase

### Referencias

[1] Morris Hirsch. "Systems of Differential Equations that are Competitive or Cooperative II: Convergence Almost Everywhere". En: SIAM Journal on Mathematical Analysis 16 (mayo de 1985). DOI: 10.1137/0516030.