13장 강화 학습



- 전통 Q-학습을 이해한다.
- 심층 Q-학습 신경망을 이해한다.
- 심층 Q-학습 신경망의 문제점, 타겟 신경망을 알아본다.
- 심층 Q-학습 신경망의 구현한다.





- 지금까지 우리가 살펴본 딥러닝에는 항상 훈련 데이터와 정답 레이블이 있었다.
- 만약 딥러닝을 탑재한 에이전트가, 환경에서 스스로 행동하여서 학 습할 수 있다면 어떨까?



그림 13-1 일반적인 딥러닝과 강화 학습의 차이점



- 스타크래프트는 불완전한 정보를 가지고 있고, 실시간으로 경기가 진행되며, 장기 계획이 필요한 어려운 게임이다.
- 하지만 스타크래프트에서도 강화 학습 인공지능이 인간을 5-0으로 물리친 바 있다.



그림 13-2 스타크래프트 게임을 수행하는 알파스타

# 강화학습의 기본 원리



### 강화 학습과 다른 학습 방법의 비교

|     | 지도 학습                        | 비지도 학습                   | 강화 학습                              |
|-----|------------------------------|--------------------------|------------------------------------|
| 데이터 | (x, y)<br>x는 데이터이고 y는 레이블이다. | (x)<br>x는 데이터이고 레이블은 없다. | (상태, 액션)의 짝                        |
| 목적  | x→y로 매핑하는 함수를 학습하<br>는 것이다.  | 데이터 안에 내재한 구조를 학습<br>한다. | 많은 시간 단계에서 미래 보상을<br>최대화한다.        |
| 예   | 이미지에서 과일과 강아지를 인식한다.         | 같은 과일끼리 구분한다.            | 과일을 먹으면 장기적으로 건강<br>에 좋다는 것을 깨우친다. |

# 강화 학습 프레임워크

- 에이전트(agent): 강화 학습의 중심이 되는 객체
- 환경(Environment): 에이전트가 작동하는 물리적 세계
- 상태(state): 에이전트의 현재 상황, 미로에서의 에이전트의 위치가 상태일 수 있다.
- 보상(reward): 환경으로부터의 피드백,
- 액션(action): 에이전트의 행동



### 게임에서의 강화학습

 강화 학습에서 에이전트는 환경 안에서 자신의 보상을 극대화하려고 한다. 보상은 성공 또는 실패에 대한 피드백이다. 에이전트가 행동할 때마다 보상을 받을 필요는 없지만, 보상이 지연될 수 있다. 즉 마지 막에 하나의 보상만을 받는 경우도 많다.





- 보상은 에이전트 액션이 성공했는지 실패했는지를 알려주는 중요한 피드백이다.
- 보상  $\mathbf{r}_t$  는 시간  $\mathbf{t}$ 에서 에이전트가 받는 보상이다.
- 에이전트가 받는 전체 보상을  $\mathbf{R}_t$  라고 하면  $\mathbf{R}_t$  는 다음과 같은 수식으로 나타 낼 수 있다.

$$R_t = \sum_{i=t}^{\infty} r_i = r_t + r_{t+1} + r_{t+2} + \cdots$$





• 에이전트가 미래에 받을 보상은 약간 할인해서 계산해야 한다.





 강화 학습에서도 "할인된 보상"이라는 개념을 사용한다. 미래의 보 상에는 할인 계수 람다를 곱하여 총 보상을 계산한다. 할인 계수 λ는 0에서 1 사이의 값이다.

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$



 Q 함수는 상태 s에 있는 에이전트가 어떤 액션 a를 실행하여서 얻을 수 있는 미래 총보상값의 기대값(확률적인 환경을 가정했을 경우)이다.



• 확률적인 환경이 아니라면 Q 함수는 상태 s에 있는 에이전트가 어떤 액션 a를 실행하여서 얻을 수 있는 총 보상값이다.



- 현재 상태 s에서 가장 좋은 액션을 추론하기 위해서는 어떤 정책 r(s)
   을 필요로 한다.
- 가장 상식적인 정책은 미래 보상을 최대화할 수 있는 액션을 선택하는 것이다.

$$\pi^*(s) = \operatorname{argmax}_a Q(s, a)$$

현재 상태에서 가능한 모든 액션 중에서 가장 Q 값이 높은 액션을 선택하면 된다.



 OpenAl 재단은 인공지능을 위한 여러 가지 프로젝트를 진행하는 비 영리 재단이다.

특히 강화 학습을 위한 Gym 라이브러리
 (https://gymnasium.farama.org/#)가 유명하다



(b) CartPole 게임

(a) 랜덤 보행 게임



(c) 스페이스 인베이더 게임



(d) 루나 랜더 게임

그림 13-5 Gym 라이브러리가 제공하는 다양한 게임들



```
import gym
env = gym.make("CartPole-v1", render_mode="human")
                                                                     # (1)
observation = env.reset()
                                       # (2)
for _ in range(1000):
                                                 # (3)
                                                 # (4)
 env.render()
 action = env.action_space.sample()
                                                 # (5)
 observation, reward, done, _, _ = env.step(action)
                                                          # (6)
 if done:
  observation = env.reset()
                                       # (7)
env.close()
```













- 얼음 호수 위를 에이전트가 걸어간다고 생각하자. 얼음 호수에는 홀 도 있고 목표도 있다.
- 홀에 빠지면 게임은 종료된다.
- 홀에 빠지지 않고 목표에 도착하면 게임에서 1점을 얻는다.
- 얼음 위에서 미끄러져서 의도하지 않은 위치로 갈 수도 있지만 일단 이 가정은 제외하자.

| *  | 얼음        | 얼음 | 얼음           |
|----|-----------|----|--------------|
| 얼음 | ioju<br>I | 얼음 | 형            |
| 얼음 | 얼음        | 얼음 | 望            |
| 호  | 얼음        | 얼음 | GOAL<br>(목표) |

```
import gym
env = gym.make('FrozenLake-v1', render_mode='human', is_slippery=False)
observation = env.reset()
for \_ in range(100):
 env.render()
 action = env.action_space.sample() # (1)
 observation, reward, done, _, _ = env.step(action) # (2)
 if done:
  observation = env.reset()
env.close()
```







- 전통적인 강화 학습 알고리즘 중의 하나인 Q-학습(Q-learning)을 먼저 살펴보자.
- 앞 절에서 설명한 얼음 호수(frozen lake) 문제를 가지고 Q-학습을 설명한다.
- 얼음 호수 위를 에이전트가 걸어간다고 생각하자. 얼음 호수에는 홀 도 있고 목표도 있다.
- 홀에 빠지면 게임은 종료된다.
- 홀에 빠지지 않고 목표에 도착하면 게임에서 1점을 얻는다.



- 이 게임은 아주 간단해 보이지만, 아무것도 모르는 에이전트 입장에서는 결코 만만한 문제가 아니다. 우리는 전체 게임 보드를 볼 수 있지만, 에이전트는 현재 있는 장소밖에는 알지 못한다.
- 에이전트가 상태 s1에서 오른쪽으로 이동하여서(이것이 액션이다) 상태 s2 로 갔다면 어떤 보상 r을 받게 된다. 보상은 대부분 0이고 에이전트가 목표 상태로 갔을 때만 1이 된다.
- 처음에는 보상이 거의 0이기 때문에 에이전트는 처음에는 판단하기가 어렵다. 에이전트가 목표에 도달한 경우에만 보상으로 1을 받는다.





- 전통적인 방법은 "동적 프로그래밍(dynamic programming)"이라고 불리는 방법으로, 기본적으로 복잡한 문제를 "약간씩 겹치는 서브 문제"들로 분해 하고 이들 서브 문제들의 결과를 테이블에 저장하는 방법이다.
- 에이전트가 어떤 상태에서 특정한 액션을 하고 보상을 받을 때마다 테이블
   에 기록한다. 에이전트가 시행착오를 거듭할수록 테이블은 점점 정확해진다.

## 동적 프로그래밍의 예

• 피보나치 수열 계산

```
int fib(int n)
{
    if (n <= 1)
        return n;
    return fib(n-1) + fib(n-2);
}
```

```
int fib(int n)
{
  int f[n+2]; int i;

  f[0] = 0; f[1] = 1;
  for (i = 2; i <= n; i++) {
        f[i] = f[i-1] + f[i-2];
  }
  return f[n];
}
```

### 교육 제작하는 배열을 생성한다.





- 어떤 상태에서 특정한 행동을 하여서 받은 총 보상값을 **Q** 함수라고 한다.
- Q 함수는 에이전트의 현재 상태와 에이전트가 실행하는 액션을 받아 서 총 보상값을 반환하는 함수이다.





예를 들어서 특정한 상태 s에서 다음과 같이 Q 값이 계산되었다고 하자.



• 가장 상식적인 정책은 Q 값 중에서 최대값을 찾고 최대값과 관련된 액션을 실행하는 것이다.

$$\pi(s) = \operatorname{argmax} Q(s, a)$$

# XQ 값순환 관계식

• 총 보상은 다음과 같이 순환적으로 계산할 수 있다.

$$R_t = r_t + r_{t+1} + \cdots + r_n$$

$$R_t = r_t + R_{t+1}$$

이것과 유사하게 상태 s에서의 Q 값은 다음과 같이 순환적으로 계산할 수 있다. 즉 상태 s에서 액션 a를 실행하였을 때 받는 보상 r에, 다음 상태에서의 Q 값 중에서 최대값을 더하게 된다.

$$Q(s, a) = r + \max_{a'} Q(s', a')$$

가장 중요한 수식이다. 전통적인 Q-학습에 서는 결국 이 순환 관계식을 사용하여 테이블 내의 Q 값들이 계속 업데이트된다

#### 얼음 호수 문제에서 실제로 Q 값을 계산해보자.

• 시작할 때는 모든 Q 값이 전부 0이다. 에이전트가 시작 상태 s1에서 오른쪽에 있는 상태 s2로 갔을 때의 Q 값을 계산해보자.



#### 계속 Q 값은 0이 되지만 반전이 있다.





 $Q(s15, RIGHT) = 1 + \max_{a'} Q(s16, a') = 1 + 0 = 1$ 

### 상태 s14에서의 Q 값계산





• 이런 식으로 계속 Q 값이 업데이트된다. 따라서 에피소드를 많이 진행하면 다음과 같이 Q 값이 설정될 수 있다.



#### 탑사(exploration)와 할음(exploit)

- 지금까지 우리가 살펴본 Q-학습은 에이전트가 항상 동일한 경로만을 탐색하는 문제가 있다.
- 이 경로는 물론 최적 경로는 아니다. 하지만 우리의 정책대로 한다면 이렇게 움직일 수밖에 없다.





#### 어떡게 하면 새로운 경로도 찾을 수 있을까?

- 처음에는 Q 값이 작은 액션이라고 하더라도 시도해볼 필요가 있다.
   이것을 탐사라고 한다.
- 강화 학습에서도 처음에는 모험을 할 필요가 있다. 이것은 ε-greedy 알고리즘으로 가능하다.





- ε-greedy 알고리즘에서는 epsilon 의 확률로 새로운 액션을 선택한다.
   (1- epsilon ) 확률로 기존의 Q 값을 선택한다.
- 여기서 epsilon 은 처음에는 크게, 반복이 진행되면 점점 작게 하는 것이 관행이다.

```
for i in range(10000):
    epsilon = 0.1/(i+1)
    if random.random() < epsilon:
        action = random
    else:
        action = argmax(Q(s, a))
```





가끔씩 모험을 하면 빨간색 경로를 발견할 수도 있습니다.



# 할인(discount)된 보상

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

$$Q(s, a) \leftarrow r + \gamma \max_{a'} Q(s', a')$$

## 할인된 보상이 필요한 이유

할인된 보상이 필요한 이유는 에이전트가 찾은 경로가 여러 개 있는 경우, 어떤 경로가 더 최단 경로인지를 판단해야 하기 때문이다











- 앞에서 살펴본 Q-학습은 환경이 결정된 환경에서는 잘 작동한다. 하지만 확률적인 환경에서는 전혀 학습이 되지 않는다.
- 확률적인 환경이란 액션을 실행하였을 때 에이전트가 의도한 대로 가지 않을 수도 있는 환경이다.



## 최종적인 Q 값 업데이트 방정식





$$Q(s, a) \leftarrow Q(s, a) + \alpha \left[ r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right]$$

## 얼음 호수 게임에서 Q-학습의 구현

```
import numpy as np
import gym
import random
import time
import os
# FrozenLake 환경 생성
env = gym.make('FrozenLake-v1', is_slippery=False)
# 하이퍼 파라미터를 설정한다.
num_episodes = 10000
max_steps_per_episode = 100
learning_rate = 0.1
discount_rate = 0.99
exploration_rate = 1
max_exploration_rate = 1
min_exploration_rate = 0.01
exploration_decay_rate = 0.001
```

#### 얼음 호수 게임에서 Q-학습의 구현

```
action_space_size = env.action_space.n
state_space_size = env.observation_space.n
q_table = np.zeros((state_space_size, action_space_size))
# 학습 과정
rewards_all_episodes = []
for episode in range(num_episodes):
  state, _ = env.reset()
  done = False
  rewards_current_episode = 0
  for step in range(max_steps_per_episode):
     # 탐험-홬용 트레이드오프
     exploration_rate_threshold = random.uniform(0, 1)
     if exploration_rate_threshold > exploration_rate:
       action = np.argmax(q_table[state,:])
     else:
       action = env.action_space.sample()
```

#### 어음 호수 게임에서 Q-학습의 구혁

```
#행동수행
     new_state, reward, done, _, _ = env.step(action)
     if isinstance(new_state, tuple): # new_state가 정수인지 확인
       new state = new state[0]
     # Q-table 업데이트
     q_table[state, action] = q_table[state, action] * (1 - learning_rate) + \
                     learning_rate * (reward + discount_rate *
np.max(q_table[new_state, :]))
     state = new state
     rewards_current_episode += reward
     if done == True:
       break
  # 탐험율 감소
  exploration_rate = min_exploration_rate + \
              (max_exploration_rate - min_exploration_rate) * np.exp(-
                            exploration_decay_rate*episode)
  rewards_all_episodes.append(rewards_current_episode)
```

#### 얼음 호수 게임에서 Q-학습의 구현

```
q_table[state, action] = q_table[state, action] * (1 - learning_rate) + \
             learning_rate * (reward + discount_rate * np.max(q_table[new_state, :]))
# 학습 완료 후 결과 출력
rewards_per_thousand_episodes = np.split(np.array(rewards_all_episodes),
num_episodes/1000)
count = 1000
print("*********천 에피소드당 평균 보상*******\n")
for r in rewards_per_thousand_episodes:
  print(count, ": ", str(sum(r/1000)))
  count += 1000
print("\n\n*******Q-table*******\n")
print(q_table)
```



| 액션<br>상태 | <b>←</b> | <b>→</b> | Ť | <b>↓</b> |
|----------|----------|----------|---|----------|
| 상태 s0    | 0        | 0        | 0 | 0        |
| 상태 s1    | 0        | 0        | 0 | 0        |
| 상태 s2    | 0        | 0        | 0 | 0        |
| 상태 s3    | 0        | 0        | 0 | 0        |
|          |          |          |   |          |
|          |          |          |   |          |



```
*******Average reward per thousand episodes*******
```

1000: 0.23100000000000018
2000: 0.7360000000000005
3000: 0.9150000000000007
4000: 0.9540000000000007
5000: 0.985000000000008
6000: 0.983000000000008
7000: 0.984000000000008
8000: 0.98600000000008
9000: 0.99000000000000

10000: 0.993000000000008

## 에 비이블을 출력해보자.

```
*******Q-table*****
[[0.94148015 0.95099005 0.93206534 0.94148015]
[0.94148015 0. 0.42181731 0.86360308]
[0.23652444 0.75587638 0.0182078 0.0623072 ]
[0.13117909 0. 0.00567002 0. ]
[0.95099005 0.96059601 0. 0.94148015]
[0.
      0. 0. 0.
[0. 0.98008937 0. 0.1000408 ]
[0. 0. 0. 0.
[0.96059601 0. 0.970299 0.95099005]
[0.96059601 0.98009999 0.9801 0. ]
[0.97029887 0.99 0. 0.97018323]
[0.
       0. 0.
                   0.
[0. 0. 0. 0.
[0. 0.94240115 0.99 0.9336506 ]
[0.98009987 0.98999953 1.
                         0.98009809]
[0. 0. 0. 0.
```

```
env = gym.make('FrozenLake-v1', is_slippery=False, render_mode="human")
# 에이전트 테스트
for episode in range(3):
  state, _ = env.reset()
  done = False
  print("*****에 피소드 ", episode+1, "*****")
  time.sleep(1)
  for step in range(max_steps_per_episode):
     env.render()
     time.sleep(0.3)
     action = np.argmax(q_table[state,:])
     new_state, reward, done, _, _ = env.step(action)
     env.render()
     if done:
       env.render()
       if reward == 1:
          print("****목표에 도달했습니다!****")
          time.sleep(2)
       else:
          print("****구멍에 빠졌습니다!****")
          time.sleep(2)
          os.system('clear')
       break
     state = new_state
env.close()
```



\*\*\*\*\*에피소드 1 \*\*\*\*\*

\*\*\*\*목표에 도달했습니다!\*\*\*

\*\*\*\*\*에피소드 2 \*\*\*\*\*

\*\*\*\*목표에 도달했습니다!\*\*\*\*

\*\*\*\*목표에 도달했습니다!\*\*\*\*





| 가치 학습(value learning)                             | 정책 학습(policy learning)      |  |
|---------------------------------------------------|-----------------------------|--|
| Q(s,a)를 계산한다.                                     | $\pi(s)$ 를 찾는다.             |  |
| $a = \underset{a}{\operatorname{argmax}} Q(s, a)$ | $\pi(s)$ 에서 액션 $a$ 를 샘플링한다. |  |

첫 번째 방법은 신경망이 Q 함수를 학습한다. 우리는 Q 함수로부터 액션을 결정할 수 있다.

두 번째 경우는 신경망이 직접적으로 정책을 학습한다. 정책에서 바로 액션을 결정한다. 두 번 째 방법에서는 중간 단계의 Q 함수가 없다.

# 왜 신경망을 사용하는가?

- 전통적인 Q-학습은 에이전트를 위한 치트 시트를 만드는 간단하지만 강력한 알고리즘이다.
- 하지만 이 치트 시트가 너무 길면 어떻게 될까?
- 10,000개의 상태와 상태당 1,000개의 액션이 있는 환경을 상상해보자. 천만 개의 셀을 가지는 Q-테이블이 필요하다. 해당 테이블을 저장하고 업데이트하는 데 필요한 메모리 양은 상태 수가 증가함에 따라 감당할 수 없을 만큼 증가한다.





- 예를 들어서 100×100 크기의 화면을 가지고 있는 비디오 게임의 경우, 한 픽셀이 8바이트라고 하면 상태의 수는 얼마나 될까?
- 하나의 픽셀이 가질 수 있는 상태의 값은 256개이고 이러한 픽셀이 100×100개나 있으므로 무려 256<sup>100X100</sup>이나 된다.
- 이렇게 탐색 공간이 무척 큰 경우가 바로 심층 신경망이 가장 필요한 경우이다.

## DQN(Deep Q Network)





## Q-학습 vs Deep Q-학습





- 선형 회귀 신경망을 통하여 생성된 출력값을 예측값을 Q(s, a)라고 하자.
- 정답은 무엇일까? 특정한 액션 a를 실행한 후라면 Q 값은 정의에 의하여 다음과 같이 변경되어야 한다. 이것이 정답이 된다.

$$(r+\gamma \max_{a'} \hat{Q}(s', a'))$$

• 위의 값을 신경망이 생성한 Q 값과 비교하면서 차이를 줄이는 방향으로 가중치를 변경하면 된다.

$$E(\theta) = \sum_{t=0}^{T} \left[ \hat{Q}(s_t, a_t \mid \theta) - \left( r_t + \gamma \max_{a'} \hat{Q}(s_{t+1}', a') \right) \right]^2$$
 예측값(predicted) 목표값(target)



```
Q(s, a) 값을 난수로 초기화한다.
```

초기 상태 s를 얻는다.

for t=1,T do

if 난수 < ε 액션  $a_t$ 를 랜덤하게 선택한다.

else

$$a_t = \operatorname{argmax} Q^*(s_t, a \mid \theta)$$

액션  $a_t$ 를 실행하고 상태가 변경되고 보상  $r_t$ 를 받는다.

$$y_t = r_t + \gamma \operatorname*{argmax}_{a'} Q(s_{t+1}, a' \mid \theta)$$

 $(y_t - Q(s_t, a_t \mid \theta))^2$ 을 줄이기 위하여 경사 하강법을 사용한다.

하나의 액션이 수행되고 보상과 다음 상태가 나왔기 때문에 보다 정확한 Q값을 얻을 수 있다. 이것이 타겟(정확한 Q값)이 된다.

타겟과 현재 Q값의 차이를 이용하여 학습시킨다.

## 실제 적용 예: 벽돌 깨기 게임







액션을 환경으로 보내고 다음 상태를 받는다.

## 강화 학습을 이용한 게임의 성능





- Deep Q-학습에서는 약간의 문제가 있다. 우리는 목표 Q 값을 사실 정확히 알지 못한다. 그저 현재의 Q 값을 이용하여 추정할 뿐이다.
- 따라서 위의 알고리즘에서 볼 수 있듯이 반복할 때마다 목표가 변경 된다.
- 이 문제를 해결하기 위하여 2개의 신경망을 사용하기도 한다.



## 시층 Q-학습의 단점

- 액션 공간이 비연속적이고 작을 때는 가능, 하지만 연속적인 액션 공 간은 처리가 불가능하다.
- 정책은 Q 함수로부터 결정적(determinsitic)으로 계산된다. 따라서 확률적(stochastic)인 정책을 학습할 수 없다.

#### 예제. 얼음 호수 게임에서 심층 Q-학습의 구현



#### 리플레이 버퍼(replay buffer)

- 리플레이 버퍼는 학습 효율성과 안정성을 향상시키기 위해 RL(강화 학습) 알고 리즘에서 일반적으로 사용되는 기술입니다. 환경에서 에이전트의 과거 경험 또 는 "전환"의 기록을 저장하는 메모리 구조입니다.
- 각 전환은 에이전트의 상태, 에이전트가 수행한 작업, 환경에서 받은 보상 및 결과로 나타나는 다음 상태로 구성됩니다. 이러한 전환은 에이전트가 교육 중에 환경과 상호 작용할 때 수집됩니다.
- 학습하는 동안 RL 알고리즘은 리플레이 버퍼에서 무작위로 전환을 샘플링하고 이를 사용하여 에이전트의 정책 및 가치 함수를 업데이트합니다. 리플레이 버퍼 에서 샘플링함으로써 에이전트는 다양한 경험 세트에서 학습하므로 지역 최적값 에 갇히는 것을 방지하고 보다 효율적으로 학습할 수 있습니다.
- 리플레이 버퍼는 DQN(Deep Q-Networks)과 같은 심층 RL 알고리즘에서 일반적으로 에이전트가 경험에서 학습하는 온라인 학습의 한계를 극복하기 위해 사용됩니다. 리플레이 버퍼를 사용하면 에이전트가 과거 경험 배치에서 학습할 수 있으므로 학습 프로세스의 분산을 줄이고 학습된 정책의 안정성을 개선하는 데 도움이 됩니다.

#### 예제: 얼음 호수 게임에서 심층 Q-학습의 구현

```
import gym
import numpy as np
import tensorflow as tf
from tensorflow.keras import models, layers, optimizers
import random
import os
```

os.environ['TF\_CPP\_MIN\_LOG\_LEVEL'] = '3' # 모든 로그 메시지를 제거 tf.get\_logger().setLevel('ERROR')

env = gym.make('FrozenLake-v1', is\_slippery=False)

#### 예제: 얼음 호수 게임에서 심층 Q-학습의 구현

```
num_episodes = 300<br/>learning_rate = 0.001<br/>discount_factor = 0.95<br/>epsilon = 1.0<br/>min_epsilon = 0.01<br/>batch_size = 64<br/>memory_size = 2000# 총 에피소드 수 (학습 반복 횟수)<br/># 학습률 (신경망 가중치 업데이트의 크기)<br/># 할인율 (미래 보상의 현재 가치)<br/># 초기 탐험률 (무작위 행동 선택 비율)<br/># 탐험률 감소 비율 (매 에피소드마다 탐험률 감소)<br/># 최소 탐험률 (탐험률의 하한선)<br/># 리플레이 메모리에서 샘플링되는 경험의 수)<br/># 리플레이 메모리<br/>memory = []
```

#### 예제. 얼음 호수 게임에서 심층 Q-학습의 구현

```
def build_model(input_shape, output_shape):
    model = models.Sequential()
    model.add(layers.Input(shape=(input_shape,)))
    model.add(layers.Dense(24, activation='relu'))
    model.add(layers.Dense(24, activation='relu'))
    model.add(layers.Dense(output_shape, activation='linear'))
    model.compile(optimizer=optimizers.Adam(learning_rate=learning_rate),
    loss='mse')
    return model
```

#### 예제: 얼음 호수 게임에서 심층 Q-학습의 구현

```
input_shape = env.observation_space.n # 입력 형태 (환경의 상태 공간 크기)
output_shape = env.action_space.n # 출력 형태 (환경의 행동 공간 크기)

model = build_model(input_shape, output_shape) # 신경망 모델 생성

# 상태를 원-핫 인코딩하는 함수
def one_hot_state(state):
    one_hot = np.zeros(input_shape)
    one_hot[state] = 1
    return one_hot
```

#### 예제: 얼음 호수 게임에서 심층 Q-학습의 구현

```
for episode in range(num_episodes): #총 에피소드 수 만큼 반복
  state, _ = env.reset() # 환경을 초기 상태로 리셋
 state = one_hot_state(state) # 상태를 원-핫 인코딩
 done = False # 에피소드 종료 여부 초기화
 total_reward = 0 # 총 보상 초기화
  print("에피소드", episode) # 현재 에피소드 번호 출력
  while not done: # 에피소드가 끝날 때까지 반복
    if np.random.rand() < epsilon: # 무작위 행동 선택 (탐험)
      action = env.action_space.sample()
                     #Q-네트워크를 통한 행동 선택 (활용)
    else:
      q_values = model.predict(state.reshape(1, -1))
      action = np.argmax(q_values[0])
    next_state, reward, done, _, _ = env.step(action) # 행동 수행 후 다음 상태, 보상
, 종료 여부 가져옴
    next_state = one_hot_state(next_state) # 다음 상태를 원-핫 인코딩
   total_reward += reward # 총 보상에 현재 보상 추가
```

#### CHAIR OF A PRINCIPLE VE OF INDIA

```
# 에피소드가 끝났다면
    if done:
      reward = -1 if reward == 0 else reward # 실패시 보상 조정
    memory.append((state, action, reward, next_state, done)) # 경험을 리플레이 메
모리에 저장
    if len(memory) > memory_size: # 메모리가 가득 찼다면
      memory.pop(0) # 가장 오래된 경험 제거
    if len(memory) >= batch_size: # ①메모리가 충분히 채워졌다면
      minibatch = random.sample(memory, batch_size) # 무작위로 미니배치 샘플링
      states, actions, rewards, next_states, dones = zip(*minibatch)#2
      states = np.vstack(states)
                                 #(3)
      next_states = np.vstack(next_states)
      targets = model.predict(states) #4
      next_q_values = model.predict(next_states)
      for i in range(batch_size): #5각 미니배치에 대해 타겟 계산
         target = rewards[i]
         if not dones[i]:
           target += discount_factor * np.max(next_q_values[i])
         targets[i][actions[i]] = target
      model.fit(states, targets, epochs=1, verbose=0) #6 모델 학습
                             #⑦ 상태 업데이트
    state = next state
```

#### 예제: 얼음 호수 게임에서 심층 Q-학습의 구현

```
epsilon = max(min_epsilon, epsilon * epsilon_decay) #8 탐험률 감소
```

if episode % 100 == 0: # 매 100 에피소드마다 출력

print(f"Episode: {episode}, Total reward: {total\_reward}, Epsilon: {epsilon}")



| 에피소드 1          |                               |
|-----------------|-------------------------------|
| 에피소드 2          |                               |
|                 |                               |
| [1m1/1[0m [32m- | [0m[37m[0m [1m0s[0m 16ms/step |
| [1m1/1[0m [32m- | [0m[37m[0m [1m0s[0m 19ms/step |
| [1m1/1[0m [32m- | [0m[37m[0m [1m0s[0m 16ms/step |
| [1m1/1[0m [32m- | [0m[37m[0m [1m0s[0m 23ms/step |
| 성공 횟수: 100/100  |                               |







- 강화 학습(Reinforcement Learning)에서는 에이전트가 어떤 행동을 취할 때마다 외부에서 처벌이나 보상이주어진다. 컴퓨터는 이 보상을 최대화하는 방향으로 학습을 진행시킨다.
- 상태(state) 는 에이전트의 현재 상황이다. 보상(reward) 은 환경으로부터의 피 드백이다. 액션(action) 는 에이전트의 행동이다.
- 강화 학습에서 보상은 "할인된 보상"이다. 미래의 보상에는 할인 계수 람다를 곱하여 총 보상을 계산한다.
- Q 함수는 상태 s에 있는 에이전트가 어떤 액션 a를 실행하여서 얻을 수 있는 미래 보상값의 기대값이다.
- 탐사는 가끔 모험을 하는 것이고 활용은 기존의 Q 값을 사용하는 것이다.
- 심층 Q-학습은 Q 값을 심층 신경망을 이용하여 학습한다. 우리는 신경망을 사용하여 이러한 Q 값을 근사할 수 있다. 이러한 신경망을 DQN(Deep Q Network)이라고 한다.



#### Q & A



