Databázové systémy a metody zpracování dat

Proces ETL (Extrakce, Transformace, Loading)

9.přednáška

Proces ETL (Extrakce, Transformace, Load)

Architektura

• Základní framework architektury (logický model)

High Level Warehouse Technical Architecture

ETL - datová pumpa

- Informace se do datových skladů ukládají pomocí datových pump z provozních databází (tím jsou myšleny relační databáze z podnikových informačních systémů–ERP, CRM atd.).
- Nástroje datové pumpy se také označují jako ETL nástroje(zkratka slov "Extraction", "Transformation" a "Loading").
- Příkladem nástroje ETL (datové pumpy) může být například DTS (Data Transformation Services) firmy Microsoft (je součástí instalace MS SQL Serveru) nebo Oracle Data Mart Builder.

- · Hlavní základní část dobře fungujícího DW
- V prvním kroku je třeba vytvořit plán ETL
 - Plán:
 - Konceptuální model zdroj-cíl proudění dat (na jednu stránku)
 - Testovat, implementovat nástroj pro ETL nebo využít SQL
 - Graficky zobrazit všechny komplexní transformace, generování umělých klíčů, SDC. Vytvořit prvotní plán sekvenčních kroků
 - Dimenze
 - Vytvoření a testování statického load dimensionální tabulky. Primárním cílem je otestovat infrastrukturu (připojení, přenos souborů, bezpečnost – práva)
 - Vytvoření a testování SCD procesu pro jednu dimenzi
 - Vytvoření load pro zbývající dimenze

Fakta a automatizace

- Vytvoření load historických dat do faktových tabulek (zahrnuje management umělých klíčů, a jejich substituci)
- Vytvoření a testování inkrementálního procesu
- Vytvoření a testování load agregací nebo load do OLAP vrstvy
- · Vytvoření a testování automatizace celého procesu

Vrstvy datového skladu

• Datový sklad se většinou staví ve vrstvách:

Vrstva	Popis	ETL náročnost
0. vrstva	V nulté vrstvě se uchovávají data z jednotlivých provozních databází. Jedná se většinou o kopie provozních dat 1:1. Data neslouží přímo pro analýzy, ale jako vstup pro další vrstvy.	Převod dat v zásadě 1:1, základní transformační kroky.
1. vrstva	Data jsou uložena v datovém modelu datového skladu (tabulky fakt a dimenzí). Na data jsou aplikována integritní omezení. Tato vrstva slouží pro analýzy. Data jsou očištěná a konzistentní.	Náročné transformace a čištění dat, mapování dat z 0. vrstvy na datový model datového skladu.
2. vrstva	Speciálně připravená data pro podporu speciálních aplikací. V podstatě se jedná o jednotlivá datová tržiště.	Náročné transformace z 0. a 1. vrstvy (speciální algoritmy).

- Obecně je nutné vyřešit dva základní problémy:
 - Transformace z různorodých zdrojů
 - Integrace data do datového skladu

- Je třeba zajistit dostupnost zdrojových systémů pro potřeby loadu
 - Přímé napojení
 - Extrakty s danou strukturou
- Vychází se z vytvořeného dokumentu mapující vazby zdroj cíl
- Je potřeba
 - Dodržovat standardy (jmenné, psaní kódu)
 - Psát srozumitelné komentáře
 - Hlavičky skriptů
 - Vytvořit knihovny obecně využívaných funkcí
 - Testovat funkčnost
 - Dokumentace

- Krok 1 konceptuální model ETL
 - Základní, na jednu stránku
 - Mapování zdroj cíl, poznámky k hlavním bodům
 - Je-li jeden hlavní systém zdroje logické seskupení zdrojových tabulek
 - Tři základní fáze ETL
 - Extrakce ze zdrojových dat
 - Transformace
 - Load do 1. vrstvy DW

- Krok 2 nástroj na ETL
 - · Možnosti řešení
 - Kód
 - T-SQL, PL/SQL, Delphi, ...(programováno v různých prostředích, mnohdy historických)
 - Nástroj
 - Grafické rozhraní, zrychlení procesů
 - Repositář dat, paralelismus
 - Dražší řešení (cenově, další náklady)
 - Zástupci: Informatika, DTS, warehouse Builder
 - Většinou na první fázi dělat manuálně ("ručně")
 - Nezvyšovat náklady na DW
 - · Záleží na podmínkách

- Krok 3 detailní plán
 - Detailně rozpracovat jednotlivé kroky
 - Rozhodnout se nad sekvencí kroků
 - · Nejprve dimenze
 - Pak fakta (plus look-up na umělé klíče)
 - Zde jedna (i více) stránka pro jednu tabulku v DW
 - Někdy smysl vycházet ze zdrojové tabulky
 - Doplnit pseudokódem pro transformaci
 - 0. vrstva = DSA data staging area
 - Místo, kde jsou načtená data čištěna, kombinována, archivována, transformována a přenášena do prezentačních vrstev (1. vrstva DW)

- Dimenze
 - Statická
 - SCD
 - Umělé nejsou v datech (Časová dimenze)
- Krok 4 naplnit jednoduchou statickou (ne SCD) dimenzionální tabulku
 - Load
 - Ze souboru výhoda, že soubory lze zálohovat a tak znovu použít při recovery, lze je při přenosu kryptovat, zapakovat
 - Přímé napojení stream

- Krok 4 pokračování
 - I jednoduchá tabulka potřebuje
 - Čištění dat
 - Přiřazení umělých klíčů
 - Je třeba uchovávat tabulku mapování přirozených klíčů na umělé
 - Využívá se později i pro faktové tabulky
 - Obvykle umělý klíč integer
 - Možno využít sekvencí
 - Hlavní transformace konverze datových typů, kódování čeština
 - Jsou-li zdrojová data pro dimenzi z více zdrojů (např. zákazník)
 - Potřeba namapovat na sebe
 - Někdy těžko lze fuzzy logika (jméno, adresa, ...)
 - Existují na to nástroje
 - Uložit do tabulky umělých klíčů přirozené klíče ze všech spojených záznamů (ze všech zdrojů)
 - Testovat zda vztahy mezi atributy dimenze jsou opravdu 1:1 nebo 1:N

- Krok 4 pokračování
 - · Pro load dat využít bulk funkci
 - I pro load do 1. vrstvy je možné
 - Insert into je pomalé a zapisuje se do log souboru problém při velkých loadech
 - Pro load dat do prezenční vrstvy doporučení
 - · Vypnout loggování
 - Pre-sort data dle primárního klíče (rychleji se načte při indexu na primární klíč)
 - Při full refresh tabulky smaž původní data pomocí truncate table
 - Nelogguje se
 - Přidává-li se více jak 10 procent dat do tabulky je smysluplné drop a recreate index (záleží na podmínkách, počtu indexů, ...)
 - I při ponechání indexů je dobré je časem přebudovat pro zamezení přílišné fragmentace (fillfactror na maximum)

FTI

- Krok 5 SCD
 - Hlavně se používá technika Typ 2
 - Přístup
 - Načíst všechna data a dívat se co se změnilo
 - Využít inkrementálního načítání (načíst jen změny od minulého loadu) viz dále u faktové tabulky
 - Hlavně u velkých tabulek
 - SCD typ 1 je vlastně inkrementální načtení dimenzionální tabulky (jako full ale inkrementálně)
 - Problém s položky smazanými v OLTP byly smazány tak nemohou být načteny – pro DW to ale potřebujeme vědět
 - Triggery
 - Změny v OLTP nemazat, deaktivovat
 - Výhodně je načítat jen změny
 - A ještě více pokud OLTP udržuje informaci o typu změny

- Krok 5 pokračování
 - · Identifikovat změny
 - Porovnat s stávající dimenzí
 - Neexistuje-li záznam vložit
 - Existuje-li SCD (dle typu SCD)
 - Jestliže v dimenzi některé položky mají SCD typ 1 a některé SDC typ 2 musím u položek s typem 1 každou změnu promítnout do všech záznamů pro daný objekt v dimenzionální tabulce
 - Velké dimenze se zpracovávají podobně jako faktové tabulky

- Krok 6 naplnit zbývající dimenze
 - Obdobně jako předchozí načíst i další tabulky
 - Vytvořit skript pro načtení Časové dimenze
 - Někdy se využívá tabulkový procesor

- Faktové tabulky
 - Výhodné načítat inkrementálně
 - Jen záznamy změněné od posledního loadu
 - · Podobně i velké dimenze
- Krok 7 načtení historických údajů
 - Vytvořit pumpy pro načtení historických dat
 - Interaktivní proces nebude pravděpodobně dobře na první pokus
 - V praxi řada výjimek (co započítat, co ne, ...) potřeba identifikovat tyto business pravidla
 - Potřeba auditovat součty, počty, ... a porovnat s výstupy z provozních systémů – zvyšuje důvěryhodnost DW

- Krok 7 pokračování
 - Nahrazení přirozených klíčů umělými
 - Vhodné je zjišťovat aktuální umělé klíče ze speciálních tabulek, ne přímo z dimenzí (může být pomalé)
 - Lze řešit v dimenze flagem aktuální záznam a bitmapovým indexem nad ním
 - Jestliže se načítají faktová tabulka historicky musí se i historicky přiřadit umělé klíče (platné v čase transakce zachycené v faktové tabulce), ne vzít aktuální umělý klíč!!!

- Krok 7 pokračování
 - Je-li null hodnota v klíči do dimenzionální tabulky nahradit klíčem k speciálnímu záznamu v dimenzionální tabulce ("Neuvedeno")
 - Odvozená fakta je možné uložit fyzicky (jsou-li často přistupována, chceme index nad nimi) nebo vypočítáme až ve view

- Krok 8 inkrementální načtení
 - Identifikovat, co se stalo nového
 - · Nová transakce
 - Přidat záznam do fakt tabulky
 - Update transakce
 - Změnit záznam ve fakt tabulce
 - Přidat změnový záznam
 - Smazání transakce
 - Smazat záznam ve fakt tabulce

- Technika pro zajištění maximální dostupnosti DW
- Vhodná pro menší DW
 - Budou existovat 3 kopie faktové tabulky

- Krok 9 Agregace a OLAP
 - Agregace někdy třeba rovněž vytvářet inkrementálně (full proces moc náročný časově)
 - Je-li agregován čas (z dnu např. na měsíce) volby:
 - Nezahrnovat dosud neskončený měsíc
 - Zahrnout hodnota month-to-day (každý den se přepočítává)
 - OLAP viz dále

- Krok 10 automatizace
 - · Načasovat jednotlivé kroky
 - Lze na sebe jednotlivé kroky navázat (např. zápis do tabulky metadat, že už jeden proces skončil a druhý může začít, existence souboru, ...)
 - · Získat potřebná metadata
 - Proces
 - Start
 - Konec
 - Doba běhu
 - Počet přesunutých řádků
 - Status dokončení (úspěšně/neúspěšně)
 - Diskové operace, CPU, ...
 - · Viz Auditní dimenze u faktové tabulky

- Krok 10 pokračování
 - Možný postup:
 - Extrakce dimenzí a zápis metadat
 - Extrakce faktů a zápis metadat
 - Procesování dimenzí

 - Umělé klíče/SCD/....Čištění dat, zápis metadata
 - Procesování fakt
 - Umělé klíče, zápis nevyhovujících záznamů
 - Zápis nevyhovujících záznamů
 - Transformace dat
 - · Load dimenze
 - Load fakta Agregace, OLAP
 - Validace loadu proti metadatům
 - Záměna serverů (pro 24 hod DW)
 - Načtení dat pro datové tržiště
 - Aktualizace metadat
 - Zápis metadat o loadu
 - Otestování správnosti a úplnosti loadu

- · Hlavním problémem je kvalita zdrojových dat
- Obsáhlý problém (Data quality and cleaning)
- · Kvalitní data
 - Přesnost
 - Kompletnost
 - Konzistence
 - Jedinečnost (stejné názvy pro atributy se stejnou informací)
 - Včasnost
- Kvalitní data "pravda, jenom pravda a nic než pravda"

- Problémy v datech
 - Nekonsistentní používání kódů (Ano, true, T, ...)
 - Jeden atribut uchovává více informací
 - Význam atributu záleží na hodnotě druhého atributu
 - Chybějící hodnoty
 - Duplicity
 - Chybné hodnoty
 - Přéklepy
- OLTP systémy pro podporu transakcí
 - Zcela jiná priorita především důraz na transakce
 Kvalita dat není na prvním místě

 - Validace dat by mohla neúměrně zdržet zápis transakce
 - Problémy při růčním vkládání
- DW přínos ukazuje na kvalitu dat
- Pro zvýšení kvality potřeba získat podporu managementu

FTI

- Nejběžnějším problémem je integrace zákazníků
 - Standardizace jmen a adres
 - Householding identifikace ekonomické jednotky
 - Na tento problém existují specializované nástroje
- Doporučení ke kvalitě dat
 - Je-li možnost (více potencionálních zdrojů dat) vybrat nejkvalitnější zdroj
 - Prozkoumat data hledat možné problémy
 - Sdělit problémy s kvalitou (nekvalitou) dat managementu velmi často existuje názor, že data jsou nekvalitní jen v DW
 - · Nezbytná spolupráce s OLTP správci na odstranění chyb
 - Nezbytná spolupráce s uživateli na definici pravidel pro čištění dat
 - Doporučeno využívat specializované nástroje na čištění dat
 - Odpovědnost za čištění dat je-li to možné přenést na provozovatele OLTP (čisté extrakty pro DW)

- Kontrola správnosti dat
 - Dotazy vůči provozním systémů
 - Porovnání s DW
 - Možnost automatizovat a ukládat do metadat
 - Manuální prohlídka
 - Nejde-li testovat vůči provozním (např. informace v DW z více zdrojů)
 - Hledat odchylky, možné chyby
 - Spolupracovat s uživateli (experty)
 - Výsledek není zaručen

- 0. vrstva
 - Často místo pro zálohy
 - Obsahuje detailní data
 - Je možné z nich rekonstruovat další vrstvy (?inkrementální load fakt a dimenzí?)
 - Není třeba je zálohovat (data jejich, modely ano)
 - Může sloužit pro nové transformace (např. pro data mining)
- Potřeba kontrolovat dostupné místo na disku
 - Např. i místo přidělené pro růst databáze, zda nedojde k jeho vyčerpání během ETL – problém
 - Někdy vhodné vytvořit speciální opravné pumpy

Praktický příklad

- Tvorba modelu a naplnění 1. vrstvy
 - Využití DTS
 - SQL skripty
 - Create
 - Naplnění