- a)
 - i) po, pr & FCP pois são variabreis proposicionais (ngra (FZ));
 - ii) I E FCP (reaps (F1));
 - iii) Por i) a pole reages (F6), (po -pr) & FCP;
 - iv) Por i) 1 polo regra (F3), (7pm) E F(P;
 - v) Por ii), iv) , pulo regra (F5), LV (7p1) E FIP;
 - mi) Por N) 1 pole Najis (∓3), (¬(IV(¬p1))) ∈ ₹(P;
 - vii) Por iii), vi), pule mars (FS), ((po > po) v (7(1vt7po)))) E FLP.

Assim, a afirmação é verdadeira.

b)

h -	b	Y: po >> p1	Po -> Pn	pon (po → pi)	P: 7 (pon(po → p1))
1	1	1	1		6
	0	0	0	0	1
- 0	1	0	1	0	A service and the service of the ser
0	0	1	1	0	7

A afirmação é faloa: como poderno, von na viltima linha da tabela de verdade, y tem valor lógico verdadeiro mas y má tem valor légio falor quando ambas as variáveis proposicioneis por pa são folsos

c) Terros dois casos fossíveis: (1) to a tim relor lógico 1 (2) 6 1 0 tim valor légico 0.

No caso (1), 10 tem valor logino 0, ploque (6V8) 170 tem tombim valor logico O.

No coro (2), (640) tem valor lógico 0, donde (640) 170 tom valor lógico O.

Assim, (6v0) 170 tem sempre vador logico o 1, portanto, e uma contradició. A afinanació i vardodira.

p:
$$\forall_{x \in A} ((\exists_{y \in A} x = 5y) \rightarrow (y = 2 \vee y^2 = 9))$$

(a)
$$i)$$
 $A = \{2,3,10,15\}$

· x=2 Noo existe y ∈ A tal que x=5y. Logo, JyEA X=5y i folsa

e (JyEA 2=5y) > (y=2 vy2=9) é verdedirs.

Not exist y EA tol guy x = 5y.

Assim, Zyen x=Sy i falsa

(ZyEA x=5y) -> (y=2 v y²=a) i vadodiia.

x=5.2 . 2EA. · x=10

Logo, JyEA X=Sy é rendedino.

Tens que 10=5y es y=2. Assim,

y=2 v y2=9 &, também, rudodire.

(JyEA 21=5y) -> (y=2 vy2=9) = randodiis.

x=5×3 & 3 € A · x=15

Portanto, ZyEA X=5y é rendediis

Alim dins, 10=5y (=) y=3. On, 32=9.

Assim, y2=9 i verdednir, pelo que y=2vy=9

é, tambim, verdoduis.

Logo, (JyEA N=5y) > (y=2vy=9) i rudodirs.

Portanto, p : verdodisa para A = {2,3,10,15}.

Consideranos x=25 Terros que FyEA 2 = 5y. De fects, x=5y (=> 25=5y (=) y=5 No entante, y + 2 1 y = 9. Portante, pare 2005, $(\exists y \in A \quad x = 5y) \rightarrow (y = 2 \vee y^2 = 9)$

é falsa.

Assign, p. i false para A = {3,5,15,25}.

The Jaca (Fyen nesy 1 (y + 2 1 y 2 + 9))

3. a) A afirmoló i falsa. Se q i verdediira e p falsa, (PVq) -> n só seré verdadirs se a for rendadirs.

[Por exemplo, pare m, m EIN, m pigen são as requientes afirmações:

p: mépu

9: M & por

temos que para m=3 e m=2, (pvq) > 2 é false, afesai de 72 ser false i p ser false.]

4) Sijs m EIN. Patendernos mostrar que p-3q é vordediis, p: (m+1)2 mas is divisional for 7

e q: 3 m2 + 6m-18 ms à divisited pr 21.

Considerenses a contrarrections 79 > 7p:

Se 3m2+6n-18 of divisivel for 21, entiss (m+1)2 of divisivel for 7.

Mostremos que 79 > 7p i verdedires.

Para tal, admitantes que 3m²+6m-18 i divisível por 21.

Entas, existe K E IN tal que

3m2+6m-18 = 21 K.

Assim,

$$3(m^2+2m-6)=3\times7K$$

donde

Logo, (M2+2M+1)-6-1=7K,

ou sejs

$$(M+1)^2 = 7K+7 = 7(K+1)$$
.

Como KATEIN, (M+1)2 e' divissard por 7.

Provamos que 79 > 7p et verdadira, Portanto, p>9 também à verdadura.

4. (a) B = {xEIR: x2 ∈ A}

 $x^{2} \in A$ G, $x^{2} = -5 \vee x^{2} = 5 \vee x^{2} = \{4\} \vee x^{2} = 9$ $(x) \vee x = \pm 5 \vee i(x) \vee x = \pm 3$

Anim, B= {-3, -15, 15, 3}.

(b) C tim 3 dimentos, Logo, P(c) tim 23 = 8 elementos. Os elementos de P(c) A 545 0, elementos de P(c) que más estas em A.

O réviso elements de A que à um conjunte e {4} que, 1005 de facto, fertence a 8(0). Portanto, P(0)(A tun 7 elementos

Os elementos de (xD país pares ordenados (c,d) ond ceCideD.

Logo, Ø € C~D ~ {4,2} € C~D, pois mas são fores ordenidos.

Como 1 € C, (1,4) € CxD.

Dodo que €5,93 € C 1 1 € D, signe-se que ({5,9},1) € C×D.

> (C+D) (14), {4,2}, (25,93,1)} = {({5,93,1)}, Amim,

(a) A afirmação à falsa. Consideremos

D = {4}.

Temos que (AUB) ND = = (AUC) ND, mas B + C.

(b) A afirmosos i falsa. Sijom A=11,2), C= {4,5}, B={2,3} e D= {5,6}.

(A \B) x (C\D) = \{13 x \{4\} = \{(1,4)\} (AxC) \ (BxD) = { (1,4), (1,5), (2,4), (2,5)} \ {(2,5), (2,6), (3,5), (3,6)} =

Logo, $(A(B) \times (C(D)) \neq (A \times C) \setminus (B \times D)$

(c) A afirmment i verdadiin.

Como $A \in \mathcal{P}(A) \times \mathcal{P}(A) \subseteq \mathcal{P}(B)$, temos que $A \in \mathcal{P}(B)$. Pertanto, $A \subseteq B$.

6. Para todo o objeto x,

XE (AUB) \ (BOC) \Rightarrow XE AUB A \Rightarrow \Rightarrow BOC

\(\text{REA NXEB} \) \Lambda \text{X \rightarrow BOC} \\
\(\text{REA NXEB} \) \Lambda \text{NEBANABOC} \\
\(\text{REA NXEB} \) \Lambda \left(\text{NEBANABOC} \)
\(\text{REAN(BOC)} \Lambda \left(\text{NEBANABOC} \)
\(\text{NEBANABOC} \)
\(\text{NEBANABOC} \)
\(\text{NEBANABOC} \)

(5) DIE AN (BOC) V RE BNC
(F) NE (AN (BOC)) U (BNC)

Arriam, (AUB) (Bnc) = (A(Bnc)) U(B(C).