Johns Hopkins Engineering for Professionals 605.767 Applied Computer Graphics

Brian Russin

Module 11F GPU Architecture

Graphics System Architecture

- Graphics systems architecture is a specialized branch of computer architecture
 - Many of the same efficiency techniques can be used
 - Pipelining and parallelism
 - Combinations of these are often used
 - Tradeoff between memory and computation
- Graphics computations required generally exceed capacity of single CPU
 - Even for modest complexity graphical scenes and frame rates
 - Note that some CPUs have support for geometry acceleration
 - Single-instruction Multiple Data (SIMD) allows efficient matrix and vector operations
- **Driver** is the interface between the application (in CPU) and graphics hardware
 - Example: OpenGL drivers for NVIDIA graphics card
 - OpenGL drivers must conform to OpenGL specification

History

- Evolution of PC graphics hardware has started from the end of the pipeline
 - Early graphics accelerators supported fast rasterization/span drawing
 - Draw interpolated or textured spans
 - Most performance to gain was realizable in the rasterization stage
 - Triangle setup added in 1996 3Dfx Voodoo 1
 - Geometry stage placed in hardware later
 - NVidia GeForce256 (1999) introduced hardware Transform and Lighting (T&L)
 - Note: many workstations already had advanced graphics hardware support
 - Silicon Graphics, HP, Evans and Sutherland
- Early 2000s, vertex and pixel shaders introduced the ability to program functionality within graphics hardware
 - Rather than a fixed-function pipeline
 - Modern graphics accelerator is often called a Graphics Processing Unit or GPU

Peripheral Display Processors

- Early trend in computer graphics was a separate graphics computer
 - Mainframe would send data to the graphics device
 - Ramtek, Evans and Sutherland were two of the more capable devices
 - Last Starfighter -nearly half the movie was computer graphics generated with a Ramtek driven by a Cray supercomputer
- Many early systems were called graphics terminals
 - Limited graphics capabilities by today's standards
 - Useful for plotting data
- Most of these were display list systems
- Display commands were loaded and stored in graphics device
 - Slowness of downloading commands and data to the graphics device
 - Scan conversion (polygon fill and line generation) supported
 - 3D effects generally in CPU

Scan Assist Architecture

- Common architecture in 2D workstations and basic PCs of 1990s
- General purpose CPU and a special purpose display processor
 - Pixel engine
- Pixel engine supports rasterization and scan conversion tasks
 - Bresenham line drawing
 - Shaded line support (for Gouraud shading acceleration)
 - Depth test logic and z-buffer
 - Scissoring (prevent pixel writes outside region)
 - Direct memory access for pixel transfers
 - Wide pixel bus

