

Course > Week 3 > Proble... > Control...

Controllability and Stability

Stability and Controllability

0.0/18.0 points (graded)

For this problem, answer a series of questions related to some of the basic notions discussed in lecture.

Cubic Plant

Consider the one-dimensional system $\dot{x}=-x^3$. Using graphical analysis, is the trivial equilibrium stable or unstable?

Stable		
unstable		
o cannot tell		
What is the eigenva	alue of the linearized system?	
Does the linearizati	ion indicate stability?	
Does the linearizati	ion indicate stability?	

cannot tell

Controllability and Underactuation Select any true statement.

- A system that is controllable is fully-actuated.
- A system that is fully-actuated is controllable.

Linear Quadratic Regulators

Suppose we have a controllable system, where the linearization is $\dot{x}=Ax+Bu$. For $Q\succ 0$ and $R\succ 0$, we can find the LQR controller with feedback gain matrix K.

What can we say about the eigenvalues of A?

- All eigenvalues have negative real part
- Some eigenvalues have a positive real part
- It depends on the system

What can we say about the eigenvalues of A - BK?

- All eigenvalues have negative real part
- Some eigenvalues have a positive real part
- It depends on the system

Submit

You have used 0 of 1 attempt

© All Rights Reserved