# Codification et Représentation de l'Information (CRI)

MI – USTHB – TD

abada.lyes@gmail.com

1- Etablir les tables de vérité des fonctions suivantes :

$$F1 = (X + Y)(\overline{X} + Y + Z)$$

 $V \perp V7 - (V \perp V)(V \perp 7)$ 

$$F2 = (\overline{X}Y + X\overline{Y}) \overline{Z} + (\overline{X} \overline{Y} + XY)Z$$

2- Démontrer à l'aide de tables de vérité les équivalences suivantes :

| $\lambda + 12 - (\lambda + 1)(\lambda + 2)$ |                        |                |
|---------------------------------------------|------------------------|----------------|
| $(\bar{X} + Y)(X + Z)(Y)$                   | $(Z' + Z) = (\bar{X})$ | $+Y)(X \dashv$ |

| X | Υ | Z | $\bar{X}$ | X+Y | $ar{X}$ +Y+Z | F1 |
|---|---|---|-----------|-----|--------------|----|
| 0 | 0 | 0 | 1         | 0   | 1            | 0  |
| 0 | 0 | 1 | 1         | 0   | 1            | 0  |
| 0 | 1 | 0 | 1         | 1   | 1            | 1  |
| 0 | 1 | 1 | 1         | 1   | 1            | 1  |
| 1 | 0 | 0 | 0         | 1   | 0            | 0  |
| 1 | 0 | 1 | 0         | 1   | 1            | 1  |
| 1 | 1 | 0 | 0         | 1   | 1            | 1  |
| 1 | 1 | 1 | 0         | 1   | 1            | 1  |

1- Etablir les tables de vérité des fonctions suivantes :

$$F1 = (X + Y)(\overline{X} + Y + Z)$$

$$F2 = (\overline{X}Y + X\overline{Y}) \overline{Z} + (\overline{X} \overline{Y} + XY)Z$$

| X | Υ | Z | $\overline{X}$ | ¥ | Z | $\overline{X}Y$ | ΧŸ | $\overline{X}Y+X\overline{Y}$ | $(\overline{X}Y+X\overline{Y})\overline{Z}$ | $\overline{X}\overline{Y}$ | XY | $\overline{X}\overline{Y}$ +XY | $(\overline{X}\overline{Y}+XY)Z$ | F2 |
|---|---|---|----------------|---|---|-----------------|----|-------------------------------|---------------------------------------------|----------------------------|----|--------------------------------|----------------------------------|----|
| 0 | 0 | 0 | 1              | 1 | 1 | 0               | 0  | 0                             | 0                                           | 1                          | 0  | 1                              | 0                                | 0  |
| 0 | 0 | 1 | 1              | 1 | 0 | 0               | 0  | 0                             | 0                                           | 1                          | 0  | 1                              | 1                                | 1  |
| 0 | 1 | 0 | 1              | 0 | 1 | 1               | 0  | 1                             | 1                                           | 0                          | 0  | 0                              | 0                                | 1  |
| 0 | 1 | 1 | 1              | 0 | 0 | 1               | 0  | 1                             | 0                                           | 0                          | 0  | 0                              | 0                                | 0  |
| 1 | 0 | 0 | 0              | 1 | 1 | 0               | 1  | 1                             | 1                                           | 0                          | 0  | 0                              | 0                                | 1  |
| 1 | 0 | 1 | 0              | 1 | 0 | 0               | 1  | 1                             | 0                                           | 0                          | 0  | 0                              | 0                                | 0  |
| 1 | 1 | 0 | 0              | 0 | 1 | 0               | 0  | 0                             | 0                                           | 0                          | 1  | 1                              | 0                                | 0  |
| 1 | 1 | 1 | 0              | 0 | 0 | 0               | 0  | 0                             | 0                                           | 0                          | 1  | 1                              | 1                                | 1  |

2- Démontrer à l'aide de tables de vérité les équivalences suivantes :

$$X + YZ = (X+Y)(X+Z)$$

$$(\overline{X} + Y)(X + Z)(Y + Z) = (\overline{X} + Y)(X + Z)$$

| Х | Υ | Z | YZ | X + YZ | X + Y | X + Z | (X+Y)(X+Z) |  |
|---|---|---|----|--------|-------|-------|------------|--|
| 0 | 0 | 0 | 0  | 0      | 0     | 0     | 0          |  |
| 0 | 0 | 1 | 0  | 0      | 0     | 1     | 0          |  |
| 0 | 1 | 0 | 0  | 0      | 1     | 0     | 0          |  |
| 0 | 1 | 1 | 1  | 1      | 1     | 1     | 1          |  |
| 1 | 0 | 0 | 0  | 1      | 1     | 1     | 1          |  |
| 1 | 0 | 1 | 0  | 1      | 1     | 1     | 1          |  |
| 1 | 1 | 0 | 0  | 1      | 1     | 1     | 1          |  |
| 1 | 1 | 1 | 1  | 1      | 1     | 1     | 1          |  |

2- Démontrer à l'aide de tables de vérité les équivalences suivantes :

$$X + YZ = (X+Y)(X+Z)$$
  
 $(\bar{X} + Y)(X + Z)(Y + Z) = (\bar{X} + Y)(X + Z)$ 

$$PG = (\overline{X} + Y)(X + Z)(Y + Z) \qquad PD = (\overline{X} + Y)(X + Z)$$

| X | Υ | Z | $\overline{X}$ | $\overline{X} + Y$ | X+Z | Y + Z | PG | $(\overline{X} + Y)$ | PD |
|---|---|---|----------------|--------------------|-----|-------|----|----------------------|----|
| 0 | 0 | 0 | 1              | 1                  | 0   | 0     | 0  | 1                    | 0  |
| 0 | 0 | 1 | 1              | 1                  | 1   | 1     | 1  | 1                    | 1  |
| 0 | 1 | 0 | 1              | 1                  | 0   | 1     | 0  | 1                    | 0  |
| 0 | 1 | 1 | 1              | 1                  | 1   | 1     | 1  | 1                    | 1  |
| 1 | 0 | 0 | 0              | 0                  | 1   | 0     | 0  | 0                    | 0  |
| 1 | 0 | 1 | 0              | 0                  | 1   | 1     | 0  | 0                    | 0  |
| 1 | 1 | 0 | 0              | 1                  | 1   | 1     | 1  | 1                    | 1  |
| 1 | 1 | 1 | 0              | 1                  | 1   | 1     | 1  | 1                    | 1  |

Simplifier algébriquement les expressions suivantes :

$$(x+y+xy)(xy+xz+yz)$$
  
 $(x+y+z)(\bar{x}+y+z)+xy+yz$   
 $abcd+abchg+\bar{d}hg+abcdefh.$   
 $a\bar{c}de+\bar{d}+\bar{e}+c$ 

 $AB + \overline{B}C = (A + \overline{B})(B + C)$ 

Démontrer algébriquement les égalités suivantes :

A 
$$\overline{B}$$
 +  $\overline{A}$   $\overline{C}$   $\overline{D}$  +  $\overline{A}$   $\overline{B}D$  +  $\overline{A}$   $\overline{B}C$   $\overline{D}$  =  $\overline{A}$   $\overline{C}$   $\overline{D}$  +  $\overline{B}$  A.B+ $\overline{A}$ .C +B.C=A.B+ $\overline{A}$ .C AB + ACD +  $\overline{B}D$  = AB+  $\overline{B}D$ 

### Simplifier algébriquement les expressions suivantes :

1- 
$$(x+ \bar{y} + x \bar{y})(xy + \bar{x}z + yz)$$
 ///  $yz = yz(x+/x)$   
//  $xy + \bar{x}z + yz = xy+\bar{x}z + xyz + yz\bar{x} = xy+\bar{x}z$ 

= 
$$(x(1+\bar{y})+\bar{y})(xy+\bar{y})z$$
  
=  $xxy + x\bar{x}z + xy\bar{y} + \bar{x}\bar{y}z$   
=  $xy + x\bar{x}z + xy\bar{y} + \bar{x}\bar{y}z$   
=  $xy + x\bar{x}z + xy\bar{y} + \bar{x}\bar{y}z$   
=  $xy + \bar{x}\bar{y}z$ 

= y + z

### Simplifier algébriquement les expressions suivantes :

2- 
$$(x + y + z)(\bar{x} + y + z) + xy + yz$$
 //(a+b)(a+c) = a+(b.c)  
=  $((y+z)+\frac{(x\bar{x})}{(x\bar{x})}+xy+yz$   
=  $y+z+xy+yz$   
=  $y(1+x+z)+z$ 

```
Simplifier algébriquement les expressions suivantes : abcd + abchg + \bar{d}hg + abcdefh. = abcd(1+efh) + abchg + \bar{d}hg = abcd + abchg + \bar{d}hg /// abchg(d+/d) = abcd + abchgd + abchgd + abchgd + abchgd
```

- = abcd(1+hg) + hg $\bar{d}(1+abc)$
- = abcd + dhg

Simplifier algébriquement les expressions suivantes : // a +  $\bar{a}$  b = a + b

Démontrer algébriquement les égalités suivantes :

$$A \overline{B} + \overline{A} \overline{C} \overline{D} + \overline{A} \overline{B}D + \overline{A} \overline{B}C \overline{D} = \overline{A} \overline{C} \overline{D} + \overline{B}$$

$$A.B+\bar{A}.C +B.C=A.B+\bar{A}.C$$

$$AB + ACD + \overline{B}D = AB + \overline{B}D$$

$$AB + \overline{B}C = (A + \overline{B})(B + C)$$

Démontrer algébriquement les égalités suivantes : A B + A C D+ A BD + A BC D = A C D + B

= 
$$A B + A C D (B+B) + A BD + A BC D$$
  
=  $A B + A C D B + A C DB + A BD + A BC D$   
=  $B (A + A C D + AD + AC D) + A C D B$   
=  $B (A + A C D + AD + AC D) + A C D B$   
=  $B (A + C D + D + C D) + A C D B$   
=  $B (A + C + D + C) + A C D B$   
=  $B (A + D + 1) + A C D B$   
=  $B + A C D B$   
=  $B + A C D B$ 

# Démontrer algébriquement les égalités suivantes : $A.B+\bar{A}.C+B.C=A.B+\bar{A}.C$

= 
$$AB+\bar{A}C +BC (A+\bar{A})$$
  
=  $AB+\bar{A}C +ABC+\bar{A}CB$   
=  $AB (1+C) + \bar{A}C(1+B)$   
=  $AB+\bar{A}.C$ 

$$//$$
 a+ ab = a

## Démontrer algébriquement les égalités suivantes :

AB + ACD + 
$$\bar{B}$$
D = AB+  $\bar{B}$ D  
= AB + ACD(B+ $\bar{B}$ ) +  $\bar{B}$ D  
= AB + ACDB+ACD $\bar{B}$  +  $\bar{B}$ D // a+ ab = a

$$=AB+\bar{B}D$$

Démontrer algébriquement les égalités suivantes :  $AB + \overline{B}C = (A + \overline{B})(B + C)$ 

$$(A + \bar{B})(B + C) = AB + AC + B\bar{B} + \bar{B}C$$
  
=  $AB + AC(B + \bar{B}) + \bar{B}C$   
=  $AB + ACB + AC\bar{B} + \bar{B}C$   
=  $AB + \bar{B}C + \bar{B$ 





| Α | В | С | T1 | T2 | Т3 | S |
|---|---|---|----|----|----|---|
| 0 | 0 | 0 | 0  | 1  | 0  | 0 |
| 0 | 0 | 1 | 0  | 0  | 0  | 0 |
| 0 | 1 | 0 | 1  | 1  | 0  | 0 |
| 0 | 1 | 1 | 1  | 1  | 1  | 1 |
| 1 | 0 | 0 | 1  | 1  | 0  | 0 |
| 1 | 0 | 1 | 1  | 1  | 1  | 1 |
| 1 | 1 | 0 | 0  | 1  | 0  | 0 |
| 1 | 1 | 1 | 0  | 0  | 0  | 0 |

T3= 
$$((A \oplus B) + \overline{C}) \oplus C$$

$$F(a,b,c) = /abc + a/bc$$

$$F(a,b,c) = /a/b/c + /a/bc +....$$

Exo 5 - 1

| ab<br>cd , | 00  | 01 | 11  | 10    |
|------------|-----|----|-----|-------|
| 00         | 1   | 1. | 1   |       |
| 01         |     | 1  | 1   |       |
| 11         |     | 1  | 1   |       |
| 10         | 1 . | 11 | 1 / | _ 1 j |

$$F(a,b,c,d) = \overline{a}\overline{d} + b + c\overline{d}$$
 La forme disjonctive

$$F(a,b,c,d) = \overline{a}\overline{d} + b + c\overline{d}$$

$$F(a,b,c,d) = \overline{\overline{a}} \overline{\overline{d}} + b + c\overline{\overline{d}}$$

$$F(a,b,c,d) = \overline{a}\overline{d} \cdot \overline{b} \cdot \overline{c}\overline{d}$$

# $F(a,b,c,d) = \overline{a}\overline{d} \cdot \overline{b} \cdot \overline{c}\overline{d}$



Exo 5 - 1

| ab   | 00     | 01 | 11 | 10    |
|------|--------|----|----|-------|
| cd , |        |    |    |       |
| 00   | 1      | 1  | 1  | 0     |
| 01   | 0      | 1  | 1  | , o _ |
| 11   | _ 0, . | 1  | 1  | , lo  |
| 10   | 1      | 1  | 1  | 1     |

$$\overline{F(a,b,c,d)} = \overline{b}d + a\overline{b}\overline{c}$$

$$F(a,b,c,d) = (b+\overline{d})(\overline{a}+b+c)$$

La forme conjonctive

$$F(a,b,c,d) = (b+\overline{d})(\overline{a}+b+c)$$

$$F(a,b,c,d) = \overline{(b+\overline{d})(\overline{a}+b+c)}$$

$$F(a,b,c,d) = (b+\overline{d}) + (\overline{a}+b+c)$$



Exo 5 - 2

| ab<br>cd , | 00   | 01  | 11  | 10       |
|------------|------|-----|-----|----------|
| 00         | .1.7 |     |     | (1,      |
| 01         |      | (i  | 1   |          |
| 11         |      | 11. | _1; | .~.      |
| 10         | 1    |     |     | <b>1</b> |

$$F(a,b,c,d) = bd + \overline{b}\overline{d}$$

La forme disjonctive

$$F(a,b,c,d) = bd + \overline{bd}$$

$$F(a,b,c,d) = bd + \overline{b}\overline{d}$$

$$F(a,b,c,d) = \overline{bd} \cdot \overline{\overline{bd}}$$



Exo 5 - 2

| ab<br>cd , | 00  | 01  | 11               | 10 |
|------------|-----|-----|------------------|----|
| 00         | 1   | 0.1 | ٥ <sup>^</sup> . | 1  |
| 01         | 0 \ | 1   | 1                | 0  |
| 11 .       | .0  | 1   | . 1              | 0  |
| 10         | 1   | 0   | 0 .              | 1  |

$$\overline{F(a,b,c,d)} = \overline{b}d + b\overline{d}$$

$$F(a,b,c,d) = (\mathbf{b} + \overline{d})(\overline{b} + d)$$

La forme conjonctive

$$F(a,b,c,d) = (\mathbf{b} + \overline{d})(\overline{b} + d)$$

$$F(a,b,c,d) = \overline{(b+\overline{d})(\overline{b}+d)} = \overline{(b+\overline{d})} + \overline{(\overline{b}+d)}$$





$$F(a,b,c,d) = /b/c + /b/d + /abd + abc$$

$$F(a,b,c,d) = \overline{b}\overline{c} + \overline{b}\overline{d} + \overline{a}bd + abc$$

$$F(a,b,c,d) = \overline{b}\overline{c} + \overline{b}\overline{d} + \overline{a}bd + abc$$

$$F(a,b,c,d) = \overline{b}\overline{c} \cdot \overline{b}\overline{d} \cdot \overline{a}bd \cdot \overline{a}bc$$

Exercice 5







$$F(a,b,c,d) = (/a+/b+c)(a+/b+d)(b+/c+/d)$$

$$\overline{F(a,b,c,d)} = \overline{bcd} + \overline{abd} + ab\overline{c}$$

### La forme conjonctive

$$F(a,b,c,d) = (b + \overline{c} + \overline{d})(a + \overline{b} + d)(\overline{a} + \overline{b} + c)$$

$$F(a,b,c,d) = \overline{(b+\overline{c}+\overline{d})(a+\overline{b}+d)(\overline{a}+\overline{b}+c)}$$

$$F(a,b,c,d) = \overline{\left(b+\overline{c}+\overline{d}\right)} + \overline{\left(a+\overline{b}+d\right)} + \overline{\left(\overline{a}+\overline{b}+c\right)}$$

Exo 5 - 3

$$F(a,b,c,d) = \overline{\left(b+\overline{c}+\overline{d}\right)} + \overline{\left(a+\overline{b}+d\right)} + \overline{\left(\overline{a}+\overline{b}+c\right)}$$





$$F(a,b,c,d) = b + a/c$$

$$F(a,b,c,d) = b + a\overline{c}$$

$$F(a,b,c,d) = \overline{b + a\overline{c}}$$

$$F(a,b,c,d) = \overline{\overline{b}} \cdot \overline{a}\overline{\overline{c}}$$

Exo 5 - 4

# $F(a,b,c,d) = \overline{b} \cdot \overline{a}\overline{c}$





$$/F(a,b,c,d) = /a/b + /bc$$

$$/F(a,b,c,d) = (a+b) (b+/c)$$

$$F(a,b,c,d) = (a+b)(b+\overline{c})$$

$$F(a,b,c,d) = \overline{(a+b)(b+\overline{c})}$$

$$F(a,b,c,d) = \overline{(a+b)} + \overline{(b+\overline{c})}$$

## $F(a,b,c,d) = \overline{(a+b)} + \overline{(b+\overline{c})}$



Exercice 5



$$F(a,b,c,d) = d + /b/c$$

Exo 5 - 5

$$F(a,b,c,d) = d + \overline{b}\overline{c}$$

$$F(a,b,c,d) = \overline{d + \overline{b}\overline{c}}$$

$$F(a,b,c,d) = \overline{\overline{d} \cdot \overline{b}\overline{c}}$$

Exo 5 - 5

## $F(a,b,c,d) = \overline{\overline{d} \cdot \overline{b}\overline{c}}$





$$\overline{F(a,b,c,d)} = c\overline{d} + b\overline{d}$$

F(a,b,c,d) = 
$$(\overline{c} + d)(\overline{b} + d)$$
 La forme conjonction

$$F(a,b,c,d) = \overline{(\overline{c}+d)(\overline{b}+d)}$$

$$F(a,b,c,d) = \overline{(\overline{c}+d)} + \overline{(\overline{b}+d)}$$

## $F(a,b,c,d) = \overline{(\overline{c}+d)} + \overline{(\overline{b}+d)}$



Exercice 5 cd



$$F(a,b,c,d) = /a + /b/c + /bd$$

Exo 5 - 6

$$F(a,b,c,d) = \overline{a} + \overline{b}\overline{c} + \overline{b}d$$

$$F(a,b,c,d) = \overline{\overline{a} + \overline{b}\overline{c} + \overline{b}d}$$

$$F(a,b,c,d) = \overline{\overline{a}} \cdot \overline{\overline{b}\overline{c}} \cdot \overline{\overline{b}d}$$

Exo 5 - 6

## $F(a,b,c,d) = \overline{\overline{a}} \cdot \overline{\overline{b}}\overline{c} \cdot \overline{\overline{b}}\overline{d}$





Exo 5 - 6

$$F(a,b,c,d) = (\overline{a} + \overline{b})(\overline{c} + d)$$

$$F(a,b,c,d) = (\overline{a} + \overline{b})(\overline{c} + d)$$

$$F(a,b,c,d) = \overline{(\overline{a} + \overline{b})} + \overline{(\overline{c} + d)}$$

$$F(a,b,c,d) = \overline{(\overline{a} + \overline{b})} + \overline{(\overline{c} + d)}$$



Simplifier à l'aide du Tableau de Karnaugh les fonctions suivantes

puis réaliser les circuits correspondants à l'aide de portes NOR ou NAND.

F(a, b, c)= 
$$\pi(0, 1, 2, 3, 4, 7)$$
  
G(a, b, c, d)= $\Sigma(2, 6, 7, 10, 11, 12, 14)$ 

F(a, b, c)= 
$$\pi(0, 1, 2, 3, 4, 7)$$
  
//positions de 0  
G(a, b, c, d)= $\Sigma(2, 6, 7, 10, 11, 12, 14)$   
// positions de 1

|          | а | b | С | F |
|----------|---|---|---|---|
| <u>0</u> | 0 | 0 | 0 | 0 |
| 1        | 0 | 0 | 1 | 0 |
| <u>2</u> | 0 | 1 | 0 | 0 |
| <u>3</u> | 0 | 1 | 1 | 0 |
| <u>4</u> | 1 | 0 | 0 | 0 |
| <u>5</u> | 1 | 0 | 1 | 1 |
| <u>6</u> | 1 | 1 | 0 | 1 |
| <u>7</u> | 1 | 1 | 1 | 0 |

|           | a | b | С | d | G |
|-----------|---|---|---|---|---|
| <u>0</u>  | 0 | 0 | 0 | 0 | 0 |
| <u>1</u>  | 0 | 0 | 0 | 1 | 1 |
| <u>2</u>  | 0 | 0 | 1 | 0 | 0 |
| <u>3</u>  | 0 | 0 | 1 | 1 | 0 |
| <u>4</u>  | 0 | 1 | 0 | 0 | 0 |
| <u>5</u>  | 0 | 1 | 0 | 1 | 0 |
| <u>6</u>  | 0 | 1 | 1 | 0 | 1 |
| <u>7</u>  | 0 | 1 | 1 | 1 | 1 |
| <u>8</u>  | 1 | 0 | 0 | 0 | 0 |
| <u>9</u>  | 1 | 0 | 0 | 1 | 0 |
| <u>10</u> | 1 | 0 | 1 | 0 | 1 |
| <u>11</u> | 1 | 0 | 1 | 1 | 1 |
| <u>12</u> | 1 | 1 | 0 | 0 | 1 |
| <u>13</u> | 1 | 1 | 0 | 1 | 0 |
| <u>14</u> | 1 | 1 | 1 | 0 | 1 |
| <u>15</u> | 1 | 1 | 1 | 1 | 0 |
|           |   |   |   |   |   |

 $F(a, b, c) = \pi(0, 1, 2, 3, 4, 7)$ 

|          | a | b | С | F |
|----------|---|---|---|---|
| <u>0</u> | 0 | 0 | 0 | 0 |
| 1        | 0 | 0 | 1 | 0 |
| <u>2</u> | 0 | 1 | 0 | 0 |
| <u>3</u> | 0 | 1 | 1 | 0 |
| <u>4</u> | 1 | 0 | 0 | 0 |
| <u>5</u> | 1 | 0 | 1 | 1 |
| <u>6</u> | 1 | 1 | 0 | 1 |
| <u>7</u> | 1 | 1 | 1 | 0 |



$$F(a,b,c) = ab/c + a/bc$$

$$/F(a,b,c) = /a + /b/c + bc$$

$$F(a,b,c) = a (b+c) (/b+/c)$$

$$F(a, b, c) = \pi(0, 1, 2, 3, 4, 7)$$

$$F(a,b,c) = \overline{ab\overline{c} + a\overline{b}c}$$

$$F(a,b,c) = \overline{ab\overline{c}} \cdot \overline{a\overline{b}c}$$

$$\overline{F(a,b,c)} = \overline{a} + bc + \overline{b}\overline{c}$$
  $F(a,b,c) = a(b+c)(\overline{b} + \overline{c})$ 

$$F(a, b, c) = \pi(0, 1, 2, 3, 4, 7)$$

$$F(a,b,c) = \overline{a(b+c)(\overline{b}+\overline{c})}$$

$$F(a,b,c) = \overline{a} + \overline{(b+c)} + \overline{(b+\overline{c})}$$

 $G(a, b, c, d) = \sum (2, 6, 7, 10, 11, 12, 14)$ 

| ab | 00  | 01  | 11  | 10 |
|----|-----|-----|-----|----|
| cd |     |     |     |    |
| 00 | 0   | 0   | 1,  | 0  |
| 01 | 0   | 0   | 0   | 0  |
| 11 | o_  | (1) | 0_  | 1. |
| 10 | . 1 | 1   | 11: | 1  |

| // 5/ 5/ 2/2 | , , , , , , , , , , , , , , , , , , , , | ,,   |          |           |            |   |   |   |
|--------------|-----------------------------------------|------|----------|-----------|------------|---|---|---|
|              |                                         |      |          |           | а          | b | С | d |
| 00           | 01 11                                   | 10   |          | <u>0</u>  | 0          | 0 | 0 | 0 |
|              | 01 11                                   | 10   |          | <u>1</u>  | 0          | 0 | 0 | 1 |
|              |                                         |      |          | <u>2</u>  | 0          | 0 | 1 | 0 |
|              |                                         |      |          | <u>3</u>  | 0          | 0 | 1 | 1 |
| 0            | 0 1                                     | 0    |          | <u>4</u>  | 0          | 1 | 0 | 0 |
|              |                                         |      |          | <u>5</u>  | 0          | 1 | 0 | 1 |
| 0            | 0 0                                     | 0    |          | <u>6</u>  | 0          | 1 | 1 | 0 |
| 0            | 1 0 1                                   | 1    |          | <u>7</u>  | 0          | 1 | 1 | 1 |
| Ÿ _ !        | <u> </u>                                |      |          | <u>8</u>  | 1          | 0 | 0 | 0 |
| 1            | 1 1                                     | 1 1  |          | <u>9</u>  | 1          | 0 | 0 | 1 |
|              | • • • • • • • • • • • • • • • • • • • • | -    |          | <u>10</u> | 1          | 0 | 1 | 0 |
|              |                                         |      |          | 11        | 1          | 0 | 1 | 1 |
| b.c.d)       | = c/d + ab                              | /d + | labc + a | a/Ł       | <b>)</b> C | 1 | 0 | 0 |
|              |                                         |      |          |           |            | 1 | 0 | 1 |
|              |                                         |      |          | 14        | 1          | 1 | 1 | 0 |



$$G(a,b,c,d) = c\overline{d} + \overline{a}bc + ab\overline{d} + a\overline{b}c$$

 $G(a,b,c,d) = \overline{c}\overline{d} \cdot \overline{a}bc \cdot ab\overline{d} \cdot \overline{a}\overline{b}c$ 



Exo 6 
$$\overline{G(a,b,c,d)} = \overline{a}\overline{c} + \overline{a}\overline{b}d + abd + \overline{b}\overline{c}$$

G(a,b,c,d)= 
$$(a+c)(a+b+\overline{d})(\overline{a}+\overline{b}+\overline{d})(b+c)$$

G(a,b,c,d)=
$$\overline{(a+c)}+\overline{(a+b+d)}+\overline{(a+b+d)}+\overline{(b+c)}$$



Exo 7  $F = \overline{(x + y + z)} + (\overline{x + y + \overline{z}}) + \overline{\overline{x} + y + z}$   $F = \overline{(x + y + z)} \overline{(\overline{x + y + \overline{z}})} \overline{\overline{x} + y + z}$   $F = (x + y + z)(x + y + \overline{z})(\overline{x} + y + z)$ 

| X | У | Z | x + y + z | $x + y + \bar{z}$ | $\bar{x} + y + z$ | F |
|---|---|---|-----------|-------------------|-------------------|---|
| 0 | 0 | 0 |           |                   |                   |   |
| 0 | 0 | 1 |           |                   |                   |   |
| 0 | 1 | 0 |           |                   |                   |   |
| 0 | 1 | 1 |           |                   |                   |   |
| 1 | 0 | 0 |           |                   |                   |   |
| 1 | 0 | 1 |           |                   |                   |   |
| 1 | 1 | 0 |           |                   |                   |   |
| 1 | 1 | 1 |           |                   |                   |   |



| ab | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| С, |    |    |    |    |
| 0  |    |    |    |    |
|    |    |    |    |    |
| 1  |    |    |    |    |
|    |    |    |    |    |

| F = |
|-----|
|-----|

| F = |  |
|-----|--|
|-----|--|

| X | У | Z | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

Soit la fonction F(A,B,C) définie comme suit:

 $F(A,B,C) = 1 \text{ si } (ABC)_2 \text{ comporte un nombre impair de 1};$ 

F(A,B,C) = 0 sinon.

Etablir la table de vérité de F

| A | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 |   |
| 0 | 0 | 1 |   |
| 0 | 1 | 0 |   |
| 0 | 1 | 1 |   |
| 1 | 0 | 0 |   |
| 1 | 0 | 1 |   |
| 1 | 1 | 0 |   |
| 1 | 1 | 1 |   |