Introduction to Nuclear Magnetic Resonance Spectroscopy

Dr Alexey Potapov

University of Nottingham, School of Physics and Astronomy

Jule 13, 2017

1.1. Introduction to Magnetic Resonance

- Magnetic resonance (MR) is a phenomenon of resonant energy absorption by a system of nuclei (and electrons).
- Nuclear magnetic resonance (NMR) results from the intrinsic magnetic moment of the nuclei of some atoms. Magnetic moments of electrons are exploited in electron spin resonance.
- Magnetic resonance (MR) generally involves placing a sample in a strong magnetic field (to generate polarisation at a fixed resonant frequency) and detecting signals produced following application of pulsed radio-frequency electromagnetic fields (RF pulses).
- MR is a very powerful method for studying the structure of materials: used in physics, chemistry, biology, medicine etc.

1.2. Applications of NMR

 NMR spectroscopy is used for chemical analysis and for molecular structure determination

Fig.1: ¹H NMR spectrum of a sample of Spanish wine (http://www.unirioja.es/gsoe/NMR.htm)

Fig.2: NMR-derived structure of a prion http://www.pnas.org/content/94/14/7281.full

1.2. Applications of NMR

 NMR relaxometry can be used to monitor molecular environment

Fig.3: (a) NMR-logging probe, (b) Schematic positioning of the probe in a well, (c) T_2 -relaxation profile along the bore. Sources: 1) Allenet al. Oilfield review, Autumn 2000; 2) Coates, Xiao NMR Logging Principles and Applications, Hulliburton

1.2. Applications of NMR

NMR forms the basis for magnetic resonance imaging (MRI)

Fig.4: Example magnetic resonance images of blood vessel (in legs), fetus in utero, spine, heart, abdomen, head, blood vessels (in brain), knee, brain (courtesy of Prof. Richard Bowtell)

1.3. Magnetic moments in magnetic field.

• Consider charges moving in a limited volume. The position of a charge e_n will be given by a vector r_n and its velocity by v_n . The overall magnetic moment of such a system is defined as:

$$\mathbf{M} = \frac{1}{2} \sum_{\mathbf{n}} e_{\mathbf{n}} \mathbf{r}_{\mathbf{n}} \times \mathbf{v}_{\mathbf{n}} \tag{1}$$

 If all the charges and masses are the same, then M can be rewritten as:

$$\mathbf{M} = \frac{e}{2m} \sum_{\mathbf{n}} m \mathbf{r_n} \times \mathbf{v_n} = \gamma \mathbf{L}, \tag{2}$$

where

$$L = \sum_{n} p_n \times r_n \tag{3}$$

is the mechanical angular momentum.

• Gyromagnetic ratio(or magnetogyric):

$$\gamma = \frac{e}{2m} \tag{4}$$

1.3. Magnetic moments in magnetic field.

 When a magnetic moment M is placed into an external uniform permanent magnetic field B, its energy is given by:

$$E = -\mathbf{M} \cdot \mathbf{B} \tag{5}$$

• The torque acting on the system:

$$\frac{d\mathbf{L}}{dt} = \mathbf{M} \times \mathbf{B} \tag{6}$$

• Now using equation 2 we can obtain the equation describing the motion of vector **M**:

$$\frac{d\mathbf{M}}{dt} = \gamma \mathbf{M} \times \mathbf{B} \tag{7}$$

1.3. Magnetic moments in magnetic field.

• In a uniform magnetic field directed along z-axis $\mathbf{B} = (0, 0, B_0)$, the equation for individual components of \mathbf{M} follow the equations:

$$rac{dM_x}{dt} = \omega_L M_y$$
 $rac{dM_y}{dt} = -\omega_L M_x$ (8) $rac{dM_z}{dt} = 0,$ where $\omega_L = \gamma B_0$ - Larmor frequency.

• A solution to this system of differential equations with initial values of $M_x(0), M_y(0), M_z(0)$ has the following form:

$$M_{X}(t) = M_{X}(0)\cos(\omega_{L}t) + M_{Y}(0)\sin(\omega_{L}t)$$

$$M_{Y}(t) = -M_{Y}(0)\sin(\omega_{L}t) + M_{Y}(0)\cos(\omega_{L}t)$$

$$M_{Z}(t) = M_{Z}(0)$$
(9)

1.4. Orbital angular momentum operator

• In quantum mechanics physical quantities A are represented by their operators \hat{A} . The mechanical angular momentum is replaced by its corresponding operator:

$$\mathbf{L} = \sum_{n} \mathbf{p_n} \times \mathbf{r_n} \longleftrightarrow \hat{\mathbf{L}} = \frac{1}{\hbar} \sum_{n} \hat{\mathbf{r}_n} \times \hat{\mathbf{p}_n} = -i \sum_{n} \hat{\mathbf{r}_n} \times \nabla_{\mathbf{n}}$$
(10)

Angular momentum operator properties. Commutation:

$$[\hat{\mathcal{L}}_y, \hat{\mathcal{L}}_z] = i\hat{\mathcal{L}}_x, [\hat{\mathcal{L}}_z, \hat{\mathcal{L}}_x] = i\hat{\mathcal{L}}_y, [\hat{\mathcal{L}}_x, \hat{\mathcal{L}}_y] = i\hat{\mathcal{L}}_z$$
 (11)

Angular momentum squared, and its commutation properties:

$$\hat{L}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2 \tag{12}$$

$$[\hat{L}^2, \hat{L}_x^2] = [\hat{L}^2, \hat{L}_y^2] = [\hat{L}^2, \hat{L}_z^2] = 0$$
 (13)

1.4. Orbital angular momentum operator

• Eigenfunctions of both \hat{L}^2 and \hat{L}_z operators can be characterized by integer quantum numbers I and m respectively. These eigen functions will be denoted as $|Im\rangle$. Their eigenvalues are:

$$\hat{L}_z|\mathit{Im}\rangle = m|\mathit{Im}\rangle \tag{14}$$

$$\hat{L}^2|\mathit{Im}\rangle = I(I+1)|\mathit{Im}\rangle \tag{15}$$

• Another useful operator are raising and lowering operators:

$$\hat{L}_{+} = \hat{L}_{x} + i\hat{L}_{y}, \hat{L}_{-} = \hat{L}_{x} - i\hat{L}_{y}$$

$$\langle Im|\hat{L}_{+}|I(m-1)\rangle = \langle I(m-1)|\hat{L}_{-}|Im\rangle = \sqrt{(I+m)(I-m+1)}$$
(17)

1.4. Orbital angular momentum operator

 Classical magnetic moment will have its own quantum analogue, the operator of angular momentum:

$$\mathbf{M} = \gamma \mathbf{L} \longleftrightarrow \hat{\boldsymbol{\mu}} = \gamma \hbar \hat{\mathbf{L}} \tag{18}$$

• Given the electron charge $e = 1.6 \cdot 10^{-19}$ C, and mass $m = 9.1 \cdot 10^{-31}$ kg Bohr magneton:

$$\beta_{e} = \gamma \hbar = \frac{e\hbar}{2m} \approx 9.27 \cdot 10^{-24} \,\text{J} \cdot \text{T}^{-1} \tag{19}$$

 Similarly a nuclear magneton could be calculated for a proton (¹H nucleus):

$$\beta = \gamma_N \hbar = \frac{e\hbar}{2m_p} \approx 5.05 \cdot 10^{-27} \text{J} \cdot \text{T}^{-1} \tag{20}$$

1.5. Spin angular momentum operator

However, real nuclei and electrons have spins (intrinsic magnetic moment). Their z-axis projection m takes integer and half-integer values: $m=\frac{1}{2},1,\frac{3}{2},2$ etc. Similar to the equation for the orbital angular momentum Eq.18. For nuclei spins we get its magnetic moment as:

$$\hat{\boldsymbol{\mu}}_{\mathsf{N}} = \gamma_{\mathsf{N}} \hbar \hat{\mathbf{I}},\tag{21}$$

where $\hat{\bf l}$ stands for the nuclear spin operator. All the properties of angular momentum operators listed in Eqs.11-17 will be true for $\hat{\bf l}$.

1.5. Spin angular momentum operator

• Many nuclei in the periodic table are magnetic, i.e. have spin $I \neq 0$. Their magnetic moments could be measured in units of β_N :

$$\hat{\boldsymbol{\mu}}_{N} = \gamma_{N} \hbar \hat{\mathbf{I}} = g_{N} \beta_{N} \hat{\mathbf{I}}, \tag{22}$$

where g_N - dimensionless g-factor.

		•		
	Natural	Nuclear		γ_N , Gyromagnetic
Nucleus	abundance	spin	g_N , g-factor	ratio (10 ⁷
	%	(1)		rad/T*s)
^{1}H	99.98	$\frac{1}{2}$	5.585	26.7519
^{2}H	1.5*10 ⁻²	ī	0.857	4.1066
¹³ C	1.108	$\frac{1}{2}$	1.405	6.7283
^{14}N	99.635	1	0.403	1.9338
^{15}N	0.365	$\frac{1}{2}$	-0.567	-2.712

• Electron magnetic moments can be measured in units of Bohr magnetons: $\hat{\mu}_{\mathbf{S}} = -\gamma_e \hbar \hat{\mathbf{S}} = -g_e \beta_e \hat{\mathbf{S}}$, and for a free electron spin $g_e \approx 2.0023$.

Summary of Lecture 1

- Applications of NMR: chemistry, biology, medicine, industry ...
- Magnetic moment in magnetic field: Classical description
- Recap of angular momentum operator properties: commutation properties.
- Nuclei have their own nuclear magnetic moment. Described using spin angular momentum operator.

1.6. Spin in a magnetic field

 Let's quantum mechanically describe the system of spins in the magnetic field. Eq. 5 can be rewritten in a form of Hamiltonian:

$$E = -\mathbf{M} \cdot \mathbf{B} \longleftrightarrow \mathcal{H} = -\hat{\boldsymbol{\mu}}_{\mathbf{N}} \cdot \mathbf{B} \tag{23}$$

• when the magnetic field is directed along z-axis $\mathbf{B} = (0, 0, B_0)$:

$$\mathcal{H} = -\hat{\boldsymbol{\mu}}_{\mathbf{N}} \cdot \mathbf{B} = -\gamma_{N} \hbar B_{0} \hat{\boldsymbol{I}}_{z} \tag{24}$$

• For spin $I=\frac{1}{2}$ such Hamiltonian produces a two-level system. Its energy levels corresponding to eigenfunctions $|\alpha\rangle$ and $|\beta\rangle$:

1.6. Spin in a magnetic field

 The transition between the two states requires an energy quantum¹:

$$h\nu_L = \gamma \hbar B_0, \omega_L = \gamma B_0, \nu_L = \frac{\gamma B_0}{2\pi}$$
 (25)

 ω_L and ν_L is the Larmor frequency (anglular and cyclic respectively)

		•		
Nucleus	Natural abundance %	Nuclear spin (I)	Larmor	γ_N , Gyro-
			frequency at	magnetic
			11.744T,	ratio (10 ⁷
			MHz	rad/T*s)
¹ H	99.98	$\frac{1}{2}$	500	26.7519
^{2}H	1.5*10 ⁻²	$\overline{1}$	76.753	4.1066
¹³ C	1.108	$\frac{1}{2}$	125.721	6.7283
^{14}N	99.635	$ar{1}$	36.118	1.9338
¹⁵ N	0.365	$\frac{1}{2}$	50.664	-2.712

1.7. Equilibrium magnetization

NMR measurements are generally made on bulk samples which contain very large numbers of nuclear spins (e.g. $1~{\rm cm}^3$ contains $N\approx 6.7\cdot 10^{22}~^1{\rm H}$ atoms) The measured signals therefore result from the collective effect of a large number of magnetic moments that can be described using a bulk magnetization. At thermal equilibrium, the numbers of nuclei in the $|\alpha\rangle$ state N_{α} and $|\beta\rangle$ state N_{beta} follow Boltzmann distribution:

$$\frac{N_{\alpha}}{N_{\beta}} = e^{-\frac{\gamma B_0}{kT}} \approx (1 - \frac{\gamma B_0}{kT}), \tag{26}$$

when $\gamma B_0 \ll kT$. Overall magnetization then can be calculated as:

$$M_z = N_\alpha(-\frac{1}{2}\gamma\hbar) + N_\beta(\frac{1}{2}\gamma\hbar) = N\frac{\gamma^2\hbar^2B_0}{4kT}$$
 (27)

1.8. Resonant energy absoption.

 Let's apply oscillating magnetic field to our system. A spin system Hamiltonian becomes time-dependent and for an oscillation along the x-axis we obtain:

$$\mathcal{H}(t) = -\hat{\boldsymbol{\mu}}(\mathbf{B_0} + \mathbf{B(t)}) =$$

$$= -\gamma \hbar \hat{l_z}(B_0 + B_1(t)) =$$

$$= -\gamma \hbar \hat{l_z}B_0 - \gamma \hbar \hat{l_x}B_1 \cos(\omega t),$$
(28)

where H_1 and ω are the amplitude and the frequency of the oscillating magnetic field.

• According to perturbation theory the transition probability between the initial state $|a\rangle$ and the final state $|b\rangle$ with a time dependent Hamiltonian $\hat{V}(t)=2\hat{F}\cos(\omega t)$ is (Fermi's golden rule):

$$P_{ab} = \frac{2\pi}{\hbar} |\langle a|\hat{F}|\rangle b|^2 \delta(E_{ab} - \hbar\omega), \tag{29}$$

where $E_{ab} = E_a - E_b$ is an energy difference between the energies of levels a and b.

• For a two level system described before, the matrix element $\langle \alpha | \hat{I}_x | \beta \rangle = \frac{1}{2}$. The transition probability then becomes:

$$P_{\alpha\beta} = \frac{\pi}{2\hbar} (\gamma H_1)^2 \delta(E_{\alpha\beta} - \hbar\omega), \tag{30}$$

 The effect of resonant absorption (and emission) of electromagnetic irradiation at the frequency matching the energy difference in a nuclear system is called Nuclear Magnetic Resonance (NMR).

 In a two-level system the transition will take place due to the action of external irradiation, but also due to interaction with the environment.

P - the rate of transitions driven by external field, $W_{\alpha\beta}, W_{\beta\alpha}$ - rates of spontaneous spin flips due to interaction with

environment.

In thermal equilibrium:

$$N^0_{\alpha}W_{\alpha\beta}=N^0_{\beta}W_{\beta\alpha},$$
 i.e. (31)

$$N_{\alpha}^{0}W_{\alpha\beta} = N_{\beta}^{0}W_{\beta\alpha}, \text{i.e.}$$
 (31)
$$\frac{W_{\beta\alpha}}{W_{\alpha\beta}} = \exp^{-\frac{\gamma\hbar B_{0}}{kT}} \approx 1 - \frac{\gamma\beta B_{0}}{kT}$$
 (32)

Equation for populations of levels:

$$\frac{dN_{\alpha}}{dt} = -N_{\alpha}(P + W_{\alpha\beta}) + N_{\beta}(P + W_{\beta\alpha})
\frac{dN_{\beta}}{dt} = N_{\alpha}(P + W_{\alpha\beta}) - N_{\beta}(P + W_{\beta\alpha})$$
(33)

• If we introduce the average rate of spontaneous transitions $W=\frac{1}{2}(W_{\alpha\beta}-W_{\beta\alpha})$, then $W_{\alpha\beta}=W(1+\frac{\gamma\hbar B_0}{2kT})$ and $W_{\beta\alpha}=W(1-\frac{\gamma\hbar B_0}{2kT})$, the equations can be rewritten:

$$\frac{dN_{\alpha}}{dt} = (N_{\beta} - N_{\alpha})P + (N_{\beta} - N_{\alpha})W - W\frac{\gamma\beta B_{0}}{2kT}N
\frac{dN_{\beta}}{dt} = -(N_{\beta} - N_{\alpha})P - (N_{\beta} - N_{\alpha})W + W\frac{\gamma\beta B_{0}}{2kT}N
(34)$$

• Denote the population difference as $n=N_{\beta}-N_{\alpha}$ and thermal equilibrium population difference $n_0=N_{\beta}^0-N_{\alpha}^0\approx N\frac{\gamma\hbar B_0}{2kT}$ the equations can be rewritten as:

$$\frac{dn}{dt} = -2nP - 2nW + 2Wn_0, \tag{35}$$

(36)

or

$$\frac{dn}{dt} = -2nP - \frac{(n-n_0)}{T_1},$$
 where $T_1 = \frac{1}{W}$ is called spin-lattice relaxation time determines how quickly a spin system reaches a thermal

equilibrium with environment. • In equilibrium, when $\frac{dn}{dt} = 0$:

$$dt = \frac{n_0}{1 + 2PT_s} \tag{37}$$

when the power is very large $PT_1 \gg 1$, $n \to 0$, i.e. the system is saturated and no signal can be observed.

Summary of Lecture 2

- Spin $I = \frac{1}{2}$ in a magnetic field. Two-level system.
- System of spins in a magnetic field is capable of absorbing radiation at a resonant frequency.
- Population dynamics in a two-level system. Signal as function of radiation power and saturation.