Grundbegriffe der Informatik Übung

Simon Wacker

Karlsruher Institut für Technologie

Wintersemester 2015/2016

 $A = \{a, b\}$

Frage: Anzahl Regex-Bäume über A der Höhe 0?

$$A = \{\mathbf{a}, \mathbf{b}\}$$

Frage: Anzahl Regex-Bäume über A der Höhe 0?

Antwort: 3

(a)

b

Ø

 $A = \{a, b\}$

Frage: Anzahl Regex-Bäume über A der Höhe 1?

$$A = \{a, b\}$$

Frage: Anzahl Regex-Bäume über A der Höhe 1?

Antwort: $3 + 3 \cdot 3 + 3 \cdot 3 = 21$

 $A = \{a, b\}$

Frage: Anzahl Regex-Bäume über A der Höhe 2?

$$A = \{\mathbf{a}, \mathbf{b}\}$$

Frage: Anzahl Regex-Bäume über A der Höhe 2?

$$21 + (21 \cdot 21 + 3 \cdot 21 + 21 \cdot 3) + (21 \cdot 21 + 3 \cdot 21 + 21 \cdot 3) = 1155$$

Regex-Bäume - Kleinste Anzahl Knoten

$$A = \{a, b\}$$

Frage: Kleinste Anzahl Knoten von Regex-Bäumen der Höhe *n*?

Regex-Bäume - Kleinste Anzahl Knoten

$$A = \{\mathbf{a}, \mathbf{b}\}$$

Frage: Kleinste Anzahl Knoten von Regex-Bäumen der Höhe *n*?

Antwort: n + 1

Regex-Bäume — Größte Anzahl Knoten

$$A = \{\mathbf{a}, \mathbf{b}\}$$

Frage: Größte Anzahl Knoten von Regex-Bäumen der Höhe *n*?

Regex-Bäume — Größte Anzahl Knoten

$$A = \{\mathbf{a}, \mathbf{b}\}$$

Frage: Größte Anzahl Knoten von Regex-Bäumen der Höhe *n*?

$$\sum_{i=0}^{n} 2^{i} = \text{Num}_{2}(1^{n+1})$$

$$= \text{Num}_{2}(10^{n+1}) - 1$$

$$= 2^{n+1} - 1$$

Distributivgesetz

A Alphabet

 R_1, R_2, R_3 reguläre Ausdrücke über A

Behauptung:
$$\langle (R_1 | R_2) R_3 \rangle = \langle R_1 R_3 | R_2 R_3 \rangle$$

Beweis: Es gilt

$$\langle (R_1 | R_2) R_3 \rangle = \langle (R_1 | R_2) \rangle \cdot \langle R_3 \rangle$$

$$= (\langle R_1 \rangle \cup \langle R_2 \rangle) \cdot \langle R_3 \rangle$$

$$= (\langle R_1 \rangle \cdot \langle R_3 \rangle) \cup (\langle R_2 \rangle \cdot \langle R_3 \rangle)$$

$$= \langle R_1 R_3 \rangle \cup \langle R_2 R_3 \rangle$$

$$= \langle R_1 R_3 | R_2 R_3 \rangle.$$

Konstruiere endlichen Akzeptor A so, dass

$$L(A) = \langle (a(ab)*(b|aa)|b(ba)*(a|bb))* \rangle$$

Konstruiere endlichen Akzeptor A so, dass

$$L(A) = \langle (a(ab)*(b|aa)|b(ba)*(a|bb))* \rangle$$

(...) * → Akzeptierender Anfangszustand

Konstruiere endlichen Akzeptor A so, dass

$$L(A) = \langle (a(ab)*(b|aa)|b(ba)*(a|bb))* \rangle$$

... \ ... \ \times Zwei Teile

Konstruiere endlichen Akzeptor A so, dass

$$L(A) = \langle (a(ab)*(b|aa)|b(ba)*(a|bb))* \rangle$$

a... whit a in neuen Zustand

Konstruiere endlichen Akzeptor A so, dass

$$L(A) = \langle (a(ab)*(b|aa)|b(ba)*(a|bb))* \rangle$$

... (ab)*... w Mit a in neuen Zustand, mit b zurück

Konstruiere endlichen Akzeptor A so, dass

$$L(A) = \langle (a(ab)*(b|aa)|b(ba)*(a|bb))* \rangle$$

... (b|aa) w Mit b oder aa zurück zu 0

Konstruiere endlichen Akzeptor A so, dass

$$L(A) = \langle (a(ab)*(b|aa)|b(ba)*(a|bb))* \rangle$$

b... whit b in neuen Zustand

Konstruiere endlichen Akzeptor A so, dass

$$L(A) = \langle (a(ab)*(b|aa)|b(ba)*(a|bb))* \rangle$$

... (ba)*... w Mit b in neuen Zustand, mit a zurück

Konstruiere endlichen Akzeptor A so, dass

$$L(A) = \langle (a(ab)*(b|aa)|b(ba)*(a|bb))* \rangle$$

... (a|bb) \improx Mit a oder bb zurück zu 0

Endlicher Akzeptor → Rechtslineare Grammatik

Gegeben: Endlicher Akzeptor $A = (Z, z_0, X, f, F)$ Gesucht: Rechtslineare Grammatik G mit L(G) = L(A)

Idee:
$$G = (Z, X, z_0, P)$$
 so, dass

$$z_0 \Rightarrow^* x_0 x_1 \dots x_n z$$
 gdw. $f^*(z_0, x_0 x_1 \dots x_n) = z$
 $z_0 \Rightarrow^* x_0 x_1 \dots x_n$ gdw. $f^*(z_0, x_0 x_1 \dots x_n) \in F$

also

$$(z_1 \to x z_2) \in P$$
 gdw. $f(z_1, x) = z_2$
 $(z \to \epsilon) \in P$ gdw. $z \in F$

Konkret:
$$P = \{z \to x f(z, x) \mid z \in Z, x \in X\}$$

 $\cup \{z \to \epsilon \mid z \in F\}$

Endlicher Akzeptor → Rechtslineare Grammatik

Gegeben: Endlicher Akzeptor $A = (Z, z_0, X, f, F)$ Gesucht: Rechtslineare Grammatik G mit L(G) = L(A)

Konkret:
$$P = \{z \to x f(z, x) \mid z \in Z, x \in X\}$$

 $\cup \{z \to \epsilon \mid z \in F\}$

Beispiel:

$$G = (\{0, 1, 2\}, \{a, b\}, 0, P) \text{ mit}$$

$$P = \{0 \rightarrow a1 \mid b2 \mid \epsilon$$

$$1 \rightarrow a2 \mid b0$$

$$2 \rightarrow a0 \mid b1\}$$

Zahl in Binärdarstellung um 1 inkrementieren

Eingabe: $w \in \{0, 1\}^*$

Ausgabe: $u \in \{0, 1\}^*$ so, dass $Num_2(w) + 1 = Num_2(u)$

Beispiel: $Num_2(100111) + 1 = Num_2(101000)$

Lösungsidee: Niederwertige Bits bis zur ersten 0 kippen

Turingmaschine

- In z_k außer bei \square Kopf nach rechts
- In z_0 bei **a** schreibe **b**, gehe in z_1
- In z_1 bei a gehe in z_0
- k in z_k ist Anzahl gelesener a mod 2
- In z_k bei \square schreibe k, gehe in l
- In *l* Kopf nach links bis zum ersten a, dann nach w, und halt bei □
- In w zum Wortanfang, dann in z_0

Turingmaschine

- Kopf läuft von links nach rechts
- Beginnend mit dem ersten a wird jedes zweite durch b ersetzt
- Bei gerader Anzahl von a wird 0 ans Wortende geschrieben
- Bei ungerader Anzahl 1
- Falls kein a mehr auf dem Band, Ende!
- Ansonsten zurück zum Wortanfang und alles noch einmal

Turingmaschine

Eingabe $w \in \{a, b\}$

Anzahl der a halbiert sich bei jedem Durchlauf

Ans Wortende wird geschrieben

- 1. $N_a(w) \mod 2$
- 2. $\lfloor \frac{Na(w)}{2} \rfloor \mod 2$
- 3. $\lfloor \frac{N_{\mathbf{a}}(w)}{4} \rfloor \mod 2$
- 4. usw.

Binärdarstellung von $N_a(w)$ wird gespiegelt ans Wortende geschrieben

Am Ende steht auf dem Band: $b^{|w|}R(Repr_2(N_a(w))).$