Chapter 5: Eigenvalues, Eigenvectors, and invariant subspaces

Zelong Kuang May 2, 2024

Contents

A: Invariant Subspaces

3

A: Invariant Subspaces

Problem: 1

Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V.

- (a) Prove that if $U \subset \text{null } T$, then U is invariant under T.
- (b) Prove that if range $T \subset U$, then U is invariant under T.

Proof. (a) Let $u \in U$. Then $T(u) \in \text{null } T$ because $u \in \text{null } T$. Therefore, $T(u) \in U$.

(b) Let $u \in U$. Then $T(u) \in U$ because $T(u) \in \text{range } T \subset U$.

Problem: 2

Suppose $S, T \in \mathcal{L}(V)$ are such that ST = TS. Prove that null S is invariant under T.

Proof. We have ST(null S) = T(S(null S)) = T(0) = 0. This implies that $T(\text{null }S) \subset \text{null }S$.

Problem: 3

Suppose $S,T\in\mathcal{L}(V)$ are such that ST=TS. Prove that range S is invariant under T.

Proof. TODO: 5.A.12 Pending.

Problem: 4

Suppose that $T \in \mathcal{L}(V)$ and $U_1, \dots U_m$ are subspaces of V invariant under T. Prove that $U_1 + \dots + U_m$ is invariant under T.

Proof.

$$T(U_1 + \dots + U_m) = T(U_1) + \dots + T(U_m)$$
$$T(U_1) \subset U_1 \subset U_1 + \dots + U_m$$
$$\dots$$

$$T(U_m) \subset U_m \subset U_1 + \cdots + U_m$$

Since $U_1 + \cdots + U_m$ is still a subspace, $T(U_1 + \cdots + U_m) \subset U_1 + \cdots + U_m$. \square

Problem: 5

Suppose $T \in \mathcal{L}(V)$. Prove that the intersection of every collection of subspaces of V that are invariant under T is invariant under T.

Proof. Every invariant subspace contains $\{0\}$, and also which is the smallest one. Hence, the intersection is $\{0\}$ and is trivially invariant under T.

Problem: 6

Prove or give a counterexample: if V is a finite-dimensional vector space and U is a subspace of V that is invariant under every operator on V, then $U = \{0\}$ or U = V.

Proof. Because every operator on V leaves $\{0\}$ invariant, the question turns to prove the existence of an operator under which only $\{0\}$ and V is invariant.

The case where $\dim V \leq 1$ is trivial. Suppose $\dim V \geq 2$. We could always construct such an operator U. Suppose there exists an invariant subspace U_1 of V under an operator T that is neither $\{0\}$ nor V for which $\dim U_1 < \dim V$. Define T which rotates U_1 to W, where $W \oplus U_1 = V$. $\forall u \in U_1, T(u)$ have some component in W, which is not in U_1 . Thus, U is not invariant under U, which is a contradiction. Therefore, $U = \{0\}$ or U = V.

Problem: 8

Define $Tin \mathcal{L}(\mathbb{F}^2)$ by

$$T(w,z) = (z,w).$$

Find all eigenvalues and eigenvectors of T.