Course Name:Linear Algebra (MT 104)

Topic: Vector Equation (Exercise 1.3)

Instructor: Dr. Sara Aziz

saraazizpk@gmail.com

September 8, 2020

Practice Question

Discuss Exercise 1.2

1.3 Vector Equations

- Vector in R²
 - Geometric Description of R²
 - Parallelogram Rule
- Vectors in Rⁿ
- Linear Combinations
 - Example: Linear Combinations of Vectors in R²
- Vector Equation
- Span of a Set of Vectors: Definition
- Spanning Sets in R³
 - Geometric Description of Span{v}
 - Geometric Description of Span $\{u, v\}$

Recall: Vectors

Key Concepts to Master

linear combinations of vectors and a spanning set.

Vectors in Rⁿ

vectors with n entries: $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$, a matrix with one column.

Geometric Description of R²

Vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is the point (x_1, x_2) in the plane.

 \mathbb{R}^2 is the set of all points in the plane.

Parallelogram Rule

Parallelogram Rule for Addition of Two Vectors

If ${\bf u}$ and ${\bf v}$ in ${\bf R}^2$ are represented as points in the plane, then ${\bf u}+{\bf v}$ corresponds to the fourth vertex of the parallelogram whose other vertices are ${\bf 0}$, ${\bf u}$ and ${\bf v}$. (Note that ${\bf 0}=\left[egin{array}{c} 0 \\ 0 \end{array} \right]$.)

Example

Let
$$\mathbf{u} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.
Graphs of \mathbf{u}, \mathbf{v} and $\mathbf{u} + \mathbf{v}$ are:

Vectors in \mathbb{R}^2 : Example

Linear Combination of Vectors

Linear Combinations of Vectors

Given vectors ${\bf v}_1,{\bf v}_2,\ldots,{\bf v}_p$ in ${\bf R}^n$ and given scalars c_1,c_2,\ldots,c_p , the vector ${\bf y}$ defined by

$$\mathbf{y} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p$$

is called a **linear combination** of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ using weights c_1, c_2, \dots, c_p .

Examples (Linear Combinations of v_1 and v_2)

$$3v_1 + 2v_2, \qquad \frac{1}{3}v_1, \qquad v_1 - 2v_2, \qquad 0$$

Linear Combination of Vectors: Example

Example

Let $\mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$. Express each of the following as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 :

$$\mathbf{a} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} -4 \\ 1 \end{bmatrix}, \ \mathbf{c} = \begin{bmatrix} 6 \\ 6 \end{bmatrix}, \ \mathbf{d} = \begin{bmatrix} 7 \\ -4 \end{bmatrix}$$

Linear Combination of Vectors: Example

Example

Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 4 \\ 2 \\ 14 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} 3 \\ 6 \\ 10 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -1 \\ 8 \\ -5 \end{bmatrix}$. Determine if \mathbf{b} is a linear combination of \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 .

Solution: Vector **b** is a linear combination of \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 if can we find weights x_1, x_2, x_3 such that

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \mathbf{b}.$$

Vector Equation (fill-in):

$$x_1 \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 4 \\ 2 \\ 14 \end{bmatrix} + x_3 \begin{bmatrix} 3 \\ 6 \\ 10 \end{bmatrix} = \begin{bmatrix} -1 \\ 8 \\ -5 \end{bmatrix}$$

Linear Combination of Vectors: Example(cont.)

Corresponding System:

Corresponding Augmented Matrix:

$$\begin{bmatrix} 1 & 4 & 3 & -1 \\ 0 & 2 & 6 & 8 \\ 3 & 14 & 10 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 2 \end{bmatrix} \qquad \Longrightarrow \begin{cases} x_1 = \dots \\ x_2 = \dots \\ x_3 = \dots \end{cases}$$

Linear Combination of Vectors: Example(Review)

Review of the last example: a_1 , a_2 , a_3 and b are columns of the augmented matrix

$$\begin{bmatrix} 1 & 4 & 3 & -1 \\ 0 & 2 & 6 & 8 \\ 3 & 14 & 10 & -5 \end{bmatrix}$$

$$\uparrow \quad \uparrow \quad \uparrow \quad \uparrow$$

$$\mathbf{a}_1 \quad \mathbf{a}_2 \quad \mathbf{a}_3 \quad \mathbf{b}$$

Solution to

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \mathbf{b}$$

is found by solving the linear system whose augmented matrix is

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{b} \end{bmatrix}$$
.

Linear Combination & Vectors Equation

Vector Equation

A vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$$

has the same solution set as the linear system whose augmented matrix is

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n \ \mathbf{b}].$$

In particular, **b** can be generated by a linear combination of $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ if and only if there is a solution to the linear system corresponding to the augmented matrix.

Span of a Set of Vectors: Example

v, 2v and 1.5v all lie on the same line.

Span $\{v\}$ is the set of all vectors of the form cv. Here, **Span** $\{v\}$ = a line through the origin.

Span of a Set of Vectors: Example (cont.)

Example Label $\mathbf{u}, \mathbf{v}, \mathbf{u} + \mathbf{v} \text{ and } 3\mathbf{u} + 4\mathbf{v}$ on the graph.

 \mathbf{u} , \mathbf{v} , $\mathbf{u} + \mathbf{v}$ and $3\mathbf{u} + 4\mathbf{v}$ all lie in the same plane.

Span $\{u, v\}$ is the set of all vectors of the form $x_1u + x_2v$. Here, **Span** $\{u, v\} = a$ plane through the origin.

Span of a Set of Vectors: Definition

Span of a Set of Vectors

Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ are in \mathbf{R}^n ; then

 $\begin{aligned} \mathbf{Span}\{\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_{\rho}\} &= \mathsf{set} \mathsf{ of all linear combinations of} \\ \mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_{\rho}. \end{aligned}$

Span of a Set of Vectors (Stated another way)

 $\mathbf{Span}\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_p\}$ is the collection of all vectors that can be written as

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_p\mathbf{v}_p$$

where x_1, x_2, \ldots, x_p are scalars.

Span of a Set of Vectors: Example

Example

Let
$$\mathbf{v}_1 = \left[\begin{array}{c} 2 \\ 1 \end{array} \right]$$
 and $\mathbf{v}_2 = \left[\begin{array}{c} 4 \\ 2 \end{array} \right]$.

- (a) Find a vector in **Span** $\{\mathbf{v}_1, \mathbf{v}_2\}$.
- (b) Describe $Span\{v_1, v_2\}$ geometrically.

Spanning Sets in $\ensuremath{\mathbb{R}}^3$

Spanning Sets in \mathbb{R}^3 (cont.)

Spanning Sets

Example

Let
$$A=\begin{bmatrix}1&2\\3&1\\0&5\end{bmatrix}$$
 and $\mathbf{b}=\begin{bmatrix}8\\3\\17\end{bmatrix}$. Is \mathbf{b} in the plane spanned by the columns of A ?

Solution: ? Do x_1 and x_2 exist so that

$$x_1 \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 8 \\ 3 \\ 17 \end{bmatrix}$$

Corresponding augmented matrix:

$$\begin{bmatrix} 1 & 2 & 8 \\ 3 & 1 & 3 \\ 0 & 5 & 17 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 8 \\ 0 & -5 & -21 \\ 0 & 5 & 17 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 8 \\ 0 & -5 & -21 \\ 0 & 0 & -4 \end{bmatrix}$$

So **b** is not in the plane spanned by the columns of A