LABSHEET 3: ASSEMBLY LANGUAGE PROGRAMMING OF 8085 MICROPROCESSORS

1. Write the assembly program for the given object code where the starting address of the program is 4200H and the functionality of the ALP program.

Roll Number: AM.EN.U4CSE21161

& Data	& Stack	KeyPad	Memory	I/O Ports
Start 4200	Dh			OK
Address (Hex) Addres	s Data		
4200	16896	6		
4201	16897	0		
4202	16898	14		
4203	16899	8		
4204	16900	58		
4205	16901	0		
4206	16902	48		
4207	16903	31		
4208	16904	210		
4209	16905	12		
420A	16906	66		
& Data	⊗ Stack €	₩ KeyPad	Memory	I/O Ports

⊗ Data ⊗	Stack 👺	KeyPad	Memory	I/O Ports
Start 4200h				OK
Address (He	ex) Address	Data		
420B	16907	4		
420C	16908	13		· ·
420D	16909	194		
420E	16910	7		
420F	16911	66		
4210	16912	120		
4211	16913	50		
4212	16914	1		
4213	16915	48		
4214	16916	118		

a)

Name: Vinayak V Thayil

Assembly	Instruction	Memory	Object Code in Hex	Flags or Register	
	Size	Address		change details	
MVI B,00	2bytes	4200	06 00	PC 4202	

MVI C,08	2bytes	4202	0E	C 08,PC 4204
LDA 3000H	3bytes	4204	3A	A FF,PC 4204
RAR	1bytes	4207	1F	A 7F,C 1,PC 4208
JNC 420CH	3bytes	4208	D2	PC 420B
INR B	1bytes	420B	04	B 01,PC 420C
DCR C	1bytes	420C	0D	C 07,PC 420D
JNZ 4207H	3bytes	420D	C2	PC 4207
MOV A,B	1bytes	4210	78	Z1 P1,C 1,A 08
				,PC4211
STA 3001H	3bytes	4211	32	PC 4214
HLT	1bytes	4214	76	PC 4215

Note: Input data and the result of the program is in the following locations

Show the usages of address bus, data bus, control bus and also the status of PC and relevant registers in the execution of each of the instruction.

MVI B,00H:

Address Bus: 4200 4201
Data Bus: 06H 00
Control Bus: Opcode Fetch Memory Read MemR= 0 Me
PC: 4200+1 4201+1

Registers: B = 00H, C = 08H, A= X (content in the mem location)

MVI C, 08H:

 Address Bus: 4202
 4203

 Data Bus: 0E
 08

Control Bus: Write to Register C

PC: 4202+1 4203+1

Register B = 00H, C= 08H, A= X(content in the mem location)

LDA 3000H:

Address Bus: 4204 4205 4206 Data Bus: 3A 00 30

Control Bus: Memory Read

PC: 4204+1 4206+1 4206+1

Registers: B = X, C = 08H, A = X (content in the mem location)

RAR:

Address Bus: 4207

Data Bus: 1F

Control Bus: Rotate Accumulator Right

PC: 4207+1 = 4208

Registers: B = X, C = 08H, A = (CY)X (CY is the least significant bit of original A)

JNC 420CH:

Address Bus: 4208 | 4209 | 420A

Data Bus: D2 OC 42 (Not involved)

Control Bus: Jump if no carry

PC: 4208H 4209H+1 4210+1

Register: B = X, C = 08H, A = (CY)X

INR B:

Address Bus: 420B 420B
Data Bus: (no mess access) 04

Control Bus: increment by 1

PC: 420C | 420B+1

Registers: B = X+1, C = 07H, A = (CY)X

JNZ 4207H:

Address Bus: 420D | 420E | 420F

Data Bus: C2 07 42 (Not involved)

Control Bus: 4200H 420E+1 420F+1

PC: 4210 if jump not taken, updated to 4207h if jump taken

Registers: B = X+1, C = 07H, A = (CY)X

MOV A, B:

Adress Bus: 4210 Data Bus: 78

Control Bus: Move B to A

PC: 4211 4210+1

Registers: B = X+1, C= 07H, A = X+1

STA 3001H:

Address Bus: 3001H 4211 4212 4213

Data Bus: have value 32 01 30

Control Bus: Memory Write

PC: 4211+1 4212+1 4213+1

Registers: B = X+1, C= 07H, A = X+1

HLT:

Address Bus: 4214

Data Bus: 76 (unchanged)

Control Bus: stop PC: 4214

Registers: B = X+1, C = 07H, A = X+1

2. Fill the table for each of the assembly programs by selecting suitable instructions from 8085 Instruction Set. Show the output in 8085 simulators for the following programs and trace the program for 2 or 3 iterations. Explain each instruction and finally say what the program does.

Assembly	Instruction	Memory	Object Code in Hex	Flags or Register
	Size	Address		change details
MVI A,12H	2 bytes	4200	3E	A 12,PC 4202
MOV B,A	1 byte	4202	47	B 12,PC 4203
MVI C,03H	2 bytes	4203	0E	C 03,PC 4205
MVI A,00H	2 bytes	4205	3E	A 00,PC4207
Label1:ADD B	1 byte	4207	80	A 12-A 24-A 36
				P 1,PC 4208
DCR C	1 byte	4208	0D	C 02-C 01 -C 00
				PC 4209
JNZ Label1	3 bytes	4209	C2	PC 4207
STA 2001H	3 bytes	420C	32	PC 420F
HLT	1 byte	420F	76	PC 4210

a) Mention the significance of Branch instruction JNZ. You can take the screenshot of register status in each iteration and copy it in the form of table.

MVI A, 12H

MOV B, A

MVI C, 03H

MVI A, 00H

Label1: ADD B

DCR C

JNZ Label1

STA 2001H

HLT

Iteration1					1	Iteration2				
Registers	5		Flag	J		Registers	5		Flag	J
Α	1	2	5	0		А		24	5	0
BC	12	02				BC	12	01		
DE	00	00	Z	0		DE	00	00	Z	0
HL	00	00	AC	0		HL	00	00	100	
PSW	00	00	AC	U		PSW	00	00	AC	0
PC	42	09	P	0		PC	42	09	P	0
SP	FF	FF				SP	FF	FF		
Int-Reg	0	0	C	0		Int-Reg	(00	С	0

3. Write an assembly language program using loops to add the numbers starting from 1 to 50. B=1+2+3+...+49+50

