

Test Report

INTENTIONAL RADIATOR TESTS ACCORDING TO FCC PART 15 C AND ISED CANADA REQUIREMENTS

Equipment Under Test: Random Orbital Sander with Bluetooth Low Energy technology

Model:

LEROS 950X

Trade Mark:

Mirka

Manufacturer:

Mirka Ltd

Pensalantie 210 FI-66850, JEPUA

FINLAND

Customer:

Mirka Ltd

Pensalantie 210 FI-66850, JEPUA

FINLAND

FCC Rule Part:

IC Rule Part:

15.247: 2017

RSS-247, Issue 2, 2017

KDB:

RSS-GEN Issue 5, 2018

Guidance for Performing Compliance Measurements on Digital

Transmission Systems (DTS) Operating Under §15.247 (August

24,2018)

Date:

16 May 2019

Date:

16 May 2019

Issued by:

Rauno Repo

Senior RF/EMC Specialist

Checked by:

Pekka Kälviäinen **Testing Engineer**

RELEASE HISTORY	3
PRODUCT DESCRIPTION Equipment Under Test (EUT) Description of the EUT Ratings and declarations Power Supply Samples	4 4 4
GENERAL REMARKSDisclaimer	5 5
SUMMARY OF TESTINGEUT Test Conditions during Testing	
TEST RESULTS Conducted Emissions In The Frequency Range 150 kHz - 30 MHz Maximum Peak Conducted Output Power Transmitter Radiated Spurious Emissions 9 kHz - 26500 MHz Transmitter Band Edge Measurement and Conducted Spurious Emissions 6 dB Bandwidth of the Channel Power Spectral Density 99% Occupied Bandwidth	
TEST EQUIPMENT	35

RELEASE HISTORY

Version	Changes	Issued
1.0	Initial release	3 January 2018
1.1	EUT model name and HW revision corrected	10 January 2019
1.2	Editional corrections, radiated emission low and high channel	22 February 2019
	results 9 kHz – 1000 MHz added, test setup block diagram added	
1.3	Radiated upper band edge updated	16 May 2019

Equipment Under Test (EUT)

Type: Random Orbital Sander with Bluetooth Low Energy technology

Trade mark: Mirka

Model: LEROS 950X

Serial no:

Software version: v2.14
Hardware version: LC2.0
FCC ID: 2AK2S-LCX
ISED ID: 22379-LCX

Description of the EUT

The equipment under test (EUT) is a Random Orbital Sander with Bluetooth Low Energy 4.0.

Classification of the device

Fixed device	
Mobile Device (Human body distance > 20cm)	
Portable Device (Human body distance < 20cm)	\boxtimes

Modifications Incorporated in the EUT

EUT No.	Name	Description
1	Conducted	Temporary USB control cable for controlling radio module. Temporary antenna connector was soldered to replace original antenna.
2	Radiated	Temporary USB control cable for controlling radio module.

Ratings and declarations

Operating Frequency Range (OFR): 2402 - 2480 MHz

Channels: 40 Channel separation: 2 MHz

Effective conducted power: 0.19 dBm (Peak)

Modulation: GFSK Antenna gain: 0 dBi

Antenna type: Internal antenna

Antenna count: 1

Power Supply

Operating voltage range: 115 VAC / 60 Hz

Samples

Two samples were used in tests, samples are listed in table below.

EUT No.	Name	Description
1	Conducted	Temporary USB control cable for controlling radio module. Temporary antenna connector was soldered to replace original antenna.
2	Radiated	Temporary USB control cable for controlling radio module.

Disclaimer

This document is issued by the Company under its General Conditions of service accessible at http://www.sgs.com/terms_and_conditions.htm. attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. This document cannot be reproduced except in full, without prior approval of the Company.

Page 6 of 35

SUMMARY OF TESTING

Test Specification	Description of Test	Result
§15.207(a) / RSS-GEN 8.8	Conducted Emissions on Power Supply Lines	PASS
§15.247(b)(3) / RSS-247 5.4(d)	Maximum Peak Conducted Output Power	PASS
§15.247(a)(2) / RSS-247 5.2(a)	6 dB Bandwidth	PASS
§15.247(e) / RSS-247 5.2(b)	Power Spectral Density	PASS
RSS-GEN 6.6	99% Occupied Bandwidth	PASS
§15.247(d) / RSS-247 5.5 100 kHz Bandwidth of Frequency Band Edges Conducted Spurious Emissions		PASS
§15.209(a), §15.247(d) / RSS-247 5.5	Radiated Emissions Within the Restricted Bands	

EUT Test Conditions during Testing

The EUT was in continuous transmit mode during all the tests. The hopping was stopped and the EUT was configured into the wanted channel using software provided by the manufacturer. Normal modulation and maximum transmit power was used in all tests.

Following channels were used during the tests when the hopping was stopped:

Channel Low: 2402 MHz Channel Mid: 2440 MHz Channel High: 2480 MHz

Antenna port measurements were performed with the sample no. 1 using 30 VDC supply voltage. Radiated measurements were performed with the sample no. 2 using 115 VAC and 60 Hz supply voltage. Conducted emission measurement was also repeated with a plastic molded circuit board without transmitting. During the radiated and conducted emission measurements the sander was rotating.

Figure 1. The EUT setup block diagram

Test Facility

Testing Laboratory / address: FCC registration number: 904175	SGS Fimko Ltd Särkiniementie 3 FI-00210, HELSINKI FINLAND
Test Site:	 □ Kara 10, ISED Canada registration number: 8708A-1 ⋈ Kara 5, ISED Canada registration number: 8708A-2 □ Laru 3 □ Kallio 10

TEST RESULTS

Conducted Emissions In The Frequency Range 150 kHz - 30 MHz.

Standard: ANSI C63.10 (2013)

Tested by: PKA

Date: 3 January 2019

Temperature: 21 °C **Humidity:** 31 % RH

Measurement uncertainty: $\pm 2.9 \text{ dB}$ Level of confidence 95 % (k = 2)

FCC Rule: 15.207 (a) IC Rule: RSS-GEN

Conducted disturbance voltage was measured with an artificial main network from 150 kHz to 30 MHz with 4.5 kHz steps and a resolution bandwidth of 9 kHz. Measurements were carried out with peak and average detectors.

	Conducted limit (dBµV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

Test results

Figure 2. The measured curves with peak- and average detector

Table 1. Final results

Frequency	QuasiPeak	Average	Limit	Margin	Meas. Time	Bandwidth	Lina	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(ms)	(kHz)	Line	(dB)
0.158000	56.57		65.57	9.00	1000.0	9.000	L1	10.1
0.162000		49.81	55.36	5.55	1000.0	9.000	N	10.1
0.162000	56.95		65.36	8.41	1000.0	9.000	L1	10.2
0.193500	56.99		63.89	6.90	1000.0	9.000	L1	10.1
0.447750	44.13		56.92	12.79	1000.0	9.000	L1	10.1
0.947750	42.93		56.00	13.07	1000.0	9.000	N	10.3
1.077750		30.78	46.00	15.22	1000.0	9.000	N	10.3
16.295500		44.44	50.00	5.56	1000.0	9.000	L1	10.4
16.622750	53.48		60.00	6.52	1000.0	9.000	L1	10.5

Page 9 of 35

Figure 3. The measured curves with peak- and average detector (plastic molded board)

Table 2. Final results

	Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)
Ī	0.150000	54.69		66.00	11.31	1000.0	9.000	N	10.1
	0.491000		38.80	46.15	7.35	1000.0	9.000	L1	10.1
	0.552250	47.95		56.00	8.05	1000.0	9.000	L1	10.1
	0.934750	47.47		56.00	8.53	1000.0	9.000	N	10.3
	1.033250		36.44	46.00	9.56	1000.0	9.000	N	10.3
	1.132250	46.78		56.00	9.22	1000.0	9.000	N	10.3
	4.900500	36.15		56.00	19.85	1000.0	9.000	N	10.4
	16.675500		44.86	50.00	5.14	1000.0	9.000	L1	10.5
	16.802500	54.26		60.00	5.74	1000.0	9.000	L1	10.5

Maximum Peak Conducted Output Power

Standard: ANSI C63.10 (2013)

Tested by: RRE

Date: 17 December 2018

Temperature: 23 ± 3 °CHumidity:20 - 60 % RH

Measurement uncertainty: $\pm 2.87 dB$ Level of confidence 95 % (k = 2)

FCC Rule: 15.247(b)(3)

RSS-247 5.4(d)

For systems using digital modulation in the 2400-2483.5 MHz bands the limit is 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power.

Measured values are peak values.

Results:

Table 3. Maximum conducted output power

Channel	Conducted Power [dBm]	Limit [dBm]	Margin [dBm]	Result
Low	-0.73	30	30.73	PASS
Mid	-0.15	30	30.15	PASS
High	0.19	30	29.81	PASS

Figure 4. Conducted power, Channel low

Figure 5. Conducted power, Channel mid

Figure 6. Conducted power, Channel high

Reference number: 294936-1 Page 12 of 35

Transmitter Radiated Spurious Emissions 9 kHz - 26500 MHz

Standard: ANSI C63.10 (2013)

Tested by: RRE, PKA

Date: 20 – 21 December 2018, 3 January 2019, 21-22 February 2019

Temperature: 23 ± 3 °C Humidity: 20 - 60 % RH

Measurement uncertainty: $\pm 4.51 \text{ dB}$ Level of confidence 95 % (k = 2)

FCC Rule: 15.247(d), 15.209(a)

RSS-247 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

The correction factor in the final result table contains the sum of the transducers (antenna + amplifier + cables). Peak values of emissions below 1000 MHz measured for reference as well as transmitter fundamental.

Transmitter radiated spurious emissions were tested the EUT being in three different orthogonal positions. The highest results were reported.

Frequency range [MHz]	Limit [µV/m]	Limit [dBµV/m]	Detector	Measurement distance [m]
0.009 - 0.09	2400/F(kHz)	20*log(2400/F(kHz))	Average	300
0.09 – 0.110	2400/F(kHz)	20*log(2400/F(kHz))	Quasi-peak	300
0.110 - 0.490	2400/F(kHz)	20*log(2400/F(kHz))	Average	300
0.490 - 1.705	25000/F(kHz)	20*log(24000/F(kHz))	Quasi-peak	30
1.705 – 30	30	29.5	Quasi-peak	30
30 - 80	100	40.0	Quasi-peak	3
88 - 216	150	43.5	Quasi-peak	3
216 - 960	200	46.0	Quasi-peak	3
960 - 1000	500	53.9	Quasi-peak	3
Above 1000	500	53.9	Average	3
Above 1000	5000	73.9	Peak	3

Low channel

Figure 7. Low channel 9 kHz - 30 MHz

Full Spectrum

Preview Result 1H-PK+
Preview Result 1V-PK+
FCC Part 15 Class B Electric Field Strength 3 m QP
Final_Result QPK

Figure 8. Low channel 30 MHz - 1000 MHz

Preview Result 2-AVG
Preview Result 1-PK+

FCC Part 15 Class B Electric Field Strength 3 m PK

FCC Part 15 Class B Electric Field Strength 3 m AV

Final_Result PK+

Final_Result AVG

Figure 9. Low channel 1 GHz - 4 GHz

Full Spectrum

Preview Result 2-AVG
Preview Result 1-PK+

FCC Part 15 Class B Electric Field Strength 3 m PK
FCC Part 15 Class B Electric Field Strength 3 m AV
Final_Result PK+
Final_Result AVG

Figure 10. Low channel 4 GHz - 18 GHz

Preview Result 2-AVG
Preview Result 1-PK+

FCC Part 15 Class B Electric Field Strength 3 m PK
FCC Part 15 Class B Electric Field Strength 3 m AV
Final_Result PK+

♦ Final_Result AVG

Figure 11. Low channel 18 GHz - 26.5 GHz

Table 4. Low channel results

Frequency	MaxPeak	Average	QuasiPeak	Limit	Margin	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/	(dB)	(kHz)	(cm)		(deg)	(dB/m)
0.032060		-20.52		37.47	57.99	0.200	100.0	٧	287.0	-60.1
0.032060			-18.49	37.47	55.96	0.200	100.0	٧	287.0	-60.1
20.821250		-10.74		29.50	40.24	9.000	100.0	٧	97.0	-19.7
20.821250			-3.04	29.50	32.54	9.000	100.0	٧	97.0	-19.7
33.518000			32.06	40.00	7.94	120.000	103.0	٧	318.0	17.2
59.254000			36.47	40.00	3.53	120.000	365.0	Н	0.0	18.0
129.017000			32.14	43.50	11.36	120.000	239.0	Н	19.0	17.2
445.928000			26.02	46.00	19.98	120.000	112.0	Н	201.0	23.0
446.772000			27.38	46.00	18.62	120.000	103.0	Н	204.0	23.0
458.215000			30.72	46.00	15.28	120.000	100.0	Н	203.0	23.2
4803.500000	53.05			73.90	20.85	1000.000	171.0	Н	211.0	7.2
4804.000000		45.45		53.90	8.45	1000.000	195.0	Н	212.0	7.2
7205.200000	59.02			73.90	14.88	1000.000	148.0	Н	140.0	10.4
7205.400000		49.25		53.90	4.65	1000.000	165.0	Н	141.0	10.4
9606.900000	51.87			73.90	22.03	1000.000	150.0	٧	321.0	13.7
9607.200000		43.54		53.90	10.36	1000.000	189.0	٧	0.0	13.7

Middle channel

Figure 12. Mid channel 9 kHz - 30 MHz

Full Spectrum

Figure 13. Mid channel 30 MHz - 1000 MHz

FCC Part 15 Class B Electric Field Strength 3 m QP

Final_Result QPK

Preview Result 2-AVG
Preview Result 1-PK+
FCC Part 15 Class B Electric Field Strength 3 m PK
FCC Part 15 Class B Electric Field Strength 3 m AV
Final_Result PK+
Final_Result AVG

Figure 14. Mid channel 1 GHz - 4 GHz

Figure 15. Mid channel 4 GHz - 18 GHz

Preview Result 2-AVG
Preview Result 1-PK+

FCC Part 15 Class B Electric Field Strength 3 m PK

FCC Part 15 Class B Electric Field Strength 3 m AV

Final_Result PK+

Final_Result AVG

Figure 16. Mid channel 18 GHz - 26.5 GHz

Table 5. Mid channel results

Frequency	MaxPeak	Average	QuasiPeak	Limit	Margin	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(kHz)	(cm)	FOI	(deg)	(dB/m
24.121750			-1.41	29.50	30.91	9.000	190.0	٧	86.0	-19.5
24.121750		-10.49		29.50	39.99	9.000	190.0	٧	86.0	-19.5
30.040000			35.44	40.00	4.56	120.000	100.0	٧	12.0	16.9
55.645000			25.31	40.00	14.69	120.000	223.0	٧	270.0	18.4
74.805000			25.05	40.00	14.95	120.000	197.0	Н	345.0	15.3
322.565000			26.78	46.00	19.22	120.000	100.0	Н	229.0	19.9
418.875000			29.41	46.00	16.59	120.000	102.0	Н	133.0	22.2
924.135000			24.51	46.00	21.49	120.000	387.0	Н	154.0	31.0
4879.500000	52.88			73.90	21.02	1000.000	196.0	Н	189.0	7.2
4879.900000		44.88		53.90	9.02	1000.000	202.0	Н	185.0	7.2
7319.400000		47.59		53.90	6.31	1000.000	158.0	Н	216.0	10.3
7320.800000	57.67			73.90	16.23	1000.000	158.0	Н	216.0	10.3
9759.200000		38.95		53.90	14.95	1000.000	159.0	٧	181.0	14.0
9761.000000	51.68			73.90	22.22	1000.000	173.0	٧	183.0	14.0

High channel

Figure 17. High channel (9 kHz – 30 MHz)

Full Spectrum

Preview Result 1H-PK+
Preview Result 1V-PK+
FCC Part 15 Class B Electric Field Strength 3 m QP
Final_Result QPK

Figure 18. High channel (30 MHz – 1000 MHz)

Preview Result 2-AVG
Preview Result 1-PK+

FCC Part 15 Class B Electric Field Strength 3 m PK

FCC Part 15 Class B Electric Field Strength 3 m AV

Final_Result PK+

Final_Result AVG

Figure 19. High channel 1 GHz - 4 GHz

Full Spectrum

Preview Result 2-AVG
Preview Result 1-PK+
FCC Part 15 Class B Electric Field Strength 3 m PK
FCC Part 15 Class B Electric Field Strength 3 m AV

Final_Result PK+Final_Result AVG

Figure 20. High channel 4 GHz – 18 GHz

Preview Result 1-PK+ FCC Part 15 Class B Electric Field Strength 3 m PK

Preview Result 2-AVG

FCC Part 15 Class B Electric Field Strength 3 m AV

Final_Result PK+ $Final_Result\,AVG$

Figure 21. High channel 18 GHz – 26.5 GHz

Table 6. High channel results

Frequency	MaxPeak	Average	QuasiPeak	Limit	Margin	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(kHz)	(cm)		(deg)	(dB/m)
0.032010		-20.75		37.49	58.24	0.200	100.0	٧	277.0	-60.1
0.032010			-18.73	37.49	56.22	0.200	100.0	٧	277.0	-60.1
20.608250		-9.48		29.50	38.98	9.000	100.0	٧	73.0	-19.7
20.608250			-1.49	29.50	30.99	9.000	100.0	٧	73.0	-19.7
33.215000			30.74	40.00	9.26	120.000	146.0	٧	296.0	17.2
59.602000			37.68	40.00	2.32	120.000	400.0	Η	9.0	17.9
257.802000			29.02	46.00	16.98	120.000	134.0	Н	238.0	17.7
430.781000			27.56	46.00	18.44	120.000	109.0	Н	203.0	22.6
455.685000			31.08	46.00	14.92	120.000	100.0	Н	203.0	23.1
4959.900000		44.62		53.90	9.28	1000.000	165.0	Н	187.0	7.1
4960.500000	52.23			73.90	21.67	1000.000	186.0	Н	183.0	7.1
7439.300000	55.55			73.90	18.35	1000.000	142.0	Н	134.0	10.3
7439.600000		45.14		53.90	8.76	1000.000	143.0	Н	134.0	10.3
9918.900000	48.94			73.90	24.96	1000.000	221.0	Н	133.0	14.1
9919.100000		35.28		53.90	18.62	1000.000	208.0	Н	136.0	14.1

Radiated Band Edge results

Figure 22. Radiated Band Edge measurement graph, low channel

Table 7. Low channel band edge results

 $Final_Result\,AVG$

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2399.640000		31.25	53.90	22.65	100.000	202.0	٧	297.0	14.0
2400.000000	66.86		73.90	7.04	100.000	175.0	Η	249.0	14.0

Figure 23. Radiated Band Edge measurement graph, high channel

Table 8. High channel band edge results

Final_Result PK+ Final_Result AVG

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2483.500000		28.7	54.0	25.3	100.000	124.0	Н	21.0	14.1
2483.500000	41.6		74.0	32.4	100.000	174.0	Н	0.0	14.1

FCC Part 15 Class B Electric Field Strength 3 m AV

Transmitter Band Edge Measurement and Conducted Spurious Emissions

Transmitter Band Edge Measurement and Conducted Spurious Emissions

Standard: ANSI C63.10 (2013)

Tested by: RRE

Date: 17 December 2018

Temperature: 23 ± 3 °CHumidity:20 - 60 % RH

Measurement uncertainty: $\pm 2.87 \text{ dB}$ Level of confidence 95 % (k = 2)

FCC Rule: 15.247(d), 15.209(a)

RSS-247 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.205(c)).

Table 9. Band edge attenuation

Band Edge Attenuation						
Lower Band Edge (ch 0) Upper Band Edge (ch 39)						
-37.50 dBc	-37.69 dBc					
Limit:	Limit: -20 dBc					

Transmitter Band Edge Measurement and Conducted Spurious Emissions

Table 10. Conducted spurious emissions, low channel

Frequency [MHz]	Level [dBm]	Limit [dBm]	Margin [dB]	Result
937.82	-63.02	-20.70	-42.31	PASS
1201.00	-45.94	-20.70	-25.24	PASS
3849.61	-65.12	-20.70	-44.42	PASS
4804.02	-47.35	-20.70	-26.64	PASS
9859.90	-60.19	-20.70	-39.48	PASS
12537.78	-58.32	-20.70	-37.62	PASS
15505.06	-56.14	-20.70	-35.43	PASS
16126.51	-55.24	-20.70	-34.54	PASS
19158.48	-56.94	-20.70	-36.23	PASS
24473.56	-55.38	-20.70	-34.67	PASS
26235.66	-55.15	-20.70	-34.44	PASS

Table 11. Conducted spurious emissions, mid channel

Frequency [MHz]	Level [dBm]	Limit [dBm]	Margin [dB]	Result
937.85	-63.60	-20.26	-43.34	PASS
1220.03	-45.83	-20.26	-25.58	PASS
3761.75	-64.80	-20.26	-44.54	PASS
4880.05	-48.21	-20.26	-27.96	PASS
9835.90	-60.70	-20.26	-40.44	PASS
12530.75	-58.52	-20.26	-38.26	PASS
15491.19	-56.09	-20.26	-35.83	PASS
16136.17	-54.12	-20.26	-33.86	PASS
21624.68	-56.84	-20.26	-36.58	PASS
24446.94	-56.21	-20.26	-35.95	PASS
26257.88	-55.71	-20.26	-35.46	PASS

Table 12. Conducted spurious emissions, high channel

Frequency [MHz]	Level [dBm]	Limit [dBm]	Margin [dB]	Result
937.79	-66.27	-19.81	-46.46	PASS
1240.03	-45.99	-19.81	-26.17	PASS
2483.71	-43.77	-19.81	-23.95	PASS
4960.02	-49.82	-19.81	-30.00	PASS
7440.00	-56.34	-19.81	-36.53	PASS
12477.03	-58.59	-19.81	-38.78	PASS
15844.33	-56.30	-19.81	-36.49	PASS
16151.92	-54.76	-19.81	-34.95	PASS
21815.37	-56.40	-19.81	-36.59	PASS
24217.82	-55.97	-19.81	-36.16	PASS
26255.11	-55.79	-19.81	-35.97	PASS

Transmitter Band Edge Measurement and Conducted Spurious Emissions

Figure 24. Lower Band Edge, low channel

Figure 25. Upper Band Edge, high channel

Figure 26. Conducted spurious emissions 30 - 26500 MHz, low channel

Figure 27. Conducted spurious emissions 30 - 26500 MHz, mid channel

Figure 28. Conducted spurious emissions 30 - 26500 MHz, high channel

Reference number: 294936-1 Page 28 of 35

6 dB Bandwidth of the Channel

Standard: ANSI C63.10 (2013)

Tested by: RRE

Date: 17 December 2018

Temperature: 23 ± 3 °CHumidity:20 - 60 % RH

FCC Rule: 15.247(a)(2)

RSS-247 5.2(a)

Results:

Table 13. 6 dB bandwidth test results

Channel	6 dB BW [kHz]	Minimum limit [kHz]
Low	1041.875	
Mid	1078.250	500
High	1114.750	

Figure 29. 6 dB bandwidth, low channel

Figure 30. 6 dB bandwidth, mid channel

Figure 31. 6 dB bandwidth, high channel

Power Spectral Density

Power Spectral Density

Standard: ANSI C63.10 (2013)

Tested by: RRE

Date: 17 December 2018

Temperature: 23 ± 3 °C Humidity: 20 - 60 % RH

FCC Rule: 15.247(e) RSS-247 5.2(b)

Results:

Table 14. Power spectral density test results

Channel	PSD dBm/3 kHz	Maximum limit [dBm/3kHz]
Low	-13.36	
Mid	-13.65	+8.00
High	-12.78	

Figure 32. Power spectral density, low channel

Figure 33. Power spectral density, mid channel

Figure 34. Power spectral density, high channel

99 % Occupied Bandwidth

99% Occupied Bandwidth

Standard: RSS-GEN (2014)

Tested by: RRE

Date: 17 December 2018

Temperature: 23 ± 3 °C Humidity: 20 - 60 % RH

RSS-GEN 6.6

Results:

Table 15. 99% occupied bandwidth test results

Channel	Limit	99 % BW [MHz]	Result
Low	-	1.022343052	PASS
Mid	-	1.163338646	PASS
High	-	1.672197744	PASS

Figure 35. 99% OBW, low channel

Figure 36. 99% OBW, mid channel

Figure 37. 99% OBW, high channel

Reference number: 294936-1 Page 35 of 35

TEST EQUIPMENT

RF-Test Equipment

Equipment	Manufacturer	Туре	Inv or serial	Prev Calib	Next Calib
ANTENNA	A.H. SYSTEMS	SAS-200/518	inv:7873	-	-
SPECTRUM ANALYZER	AGILENT	E7405A	inv:9746	2018-01-08	2020-01-08
RF PREAMPLIFIER	AMC MICROWAVE	ALS1826-41-12	sn:11	2017-11-16	-
RF PREAMPLIFIER	CIAO	CA118-3123	inv:10278	2018-11-26	2019-11-26
TEMPERATURE/ HUMIDITY METER	DAVIS	VantagePro	inv:5296	2018-09-18	2019-09-18
ANTENNA	EMCO	3117, 1-18GHz	inv:7293	2018-03-14	2020-03-14
ANTENNA	EMCO	3160-09	inv:7294	2018-03-19	2019-03-19
ATTENUATOR	INMET	10 dB, DC-40 GHz	inv:10347	2017-11-16	2019-11-16
TURNTABLE	MATURO	DS430 UPGRADED	inv:10182	-	-
MAST & TURNTABLE CONTROLLER	MATURO	NCD	inv:10183	-	-
ANTENNA MAST	MATURO	TAM 4.0E	inv:10181	-	-
TEST SOFTWARE	ROHDE & SCHWARZ	EMC-32	-	-	-
EMI TEST RECEIVER	ROHDE & SCHWARZ	ESW26	inv:10679	2018-06-26	2019-06-26
SIGNAL ANALYZER	ROHDE & SCHWARZ	FSV40	inv:9093	2018-06-28	2019-06-28
ANTENNA	ROHDE & SCHWARZ	HFH2-Z2, 335.4711.52	inv:8013	2018-10-30	2020-10-30
SWITCH UNIT	ROHDE & SCHWARZ	OSP 120	inv:9289	2016-03-14	2019-03-14
ANTENNA	SCHWARZBECK	VULB 9168, 30-2000MHz	inv:8911	2018-10-25	2020-10-25
POWER SUPPLY	THANDAR	PL330TP	inv:9787	-	-
TEMPERATURE/ HUMIDITY METER	VAISALA	HMT 333	inv:8638	2018-04-05	2019-04-05
FILTER	WAINWRIGHT	HP, WHKX4.0/18G-10SS	inv:10403	2017-03-01	2019-03-01
MULTIMETER	FLUKE	21	inv:8253	2018-10-29	2019-10-29
COAXIAL CABLE	MEGAPHASE	PN:EM40-3131-59	sn:11153209 001 (733)	-	-
POWER SUPPLY	CALIFORNIA INSTR.	5001i-400	inv:9487	-	-
LISN	ROHDE & SCHWARZ	ENV216	inv:9611	2018-03-01	2019-03-01