June 2006 6684 Statistics S2 Mark Scheme

Questi Numbe		Scheme	Marks	
1. ((a)	Saves time / cheaper / easier any one or A census/asking all members takes a long time or is expensive or difficult to carry out	B1	(1)
	(b)	<u>List, register or database</u> of <u>all club members/golfers</u> or <u>Full membership list</u>	B1	(1)
	(c)	Club member(s)	B1	(1)
			Total 3 mar	ks
2.	(a)	P(L < -2.6) = $1.4 \times \frac{1}{8} = \frac{7}{40}$ or 0.175 or equivalent	B1 ((1)
((b)	P (L < -3.0 or L > 3.0) = $2 \times \left(1 \times \frac{1}{8}\right) = \frac{1}{4}$ M1 for 1/8 seen	M1;A1 ((2)
ı	(c)	P (within 3mm) = $1 - \frac{1}{4} = 0.75$ B(20,0.75) recognises binomial	B1	
		Using B(20,p) Let X represent number of rods within 3mm	M1	
		$P(X \le 9/p = 0.25)$ or $1 - P(X \le 10/p = 0.75)$	M1	
		= 0.9861 awrt 0.9861	A1 (Total 7 mar	(4) •ks

Question Number	Scheme	Marks
3. (a)	Let X represent the number of properties sold in a week	
	$\therefore X \sim P_o(7)$ must be in part a	B1
	Sales occur independently/randomly, singly, at a constant rate context needed once	B1 B1 (3)
(b)	$P(X=5) = P(X \le 5) - P(X \le 4)$ or $\frac{7^5 e^{-7}}{5!}$	M1
	= 0.3007 - 0.1730 $= 0.1277$ awrt 0.128	A1 (2)
(c)	$P(X > 181) \approx P(Y \ge 181.5)$ where $Y \sim N(168, 168)$ $N(168, 168)$	B1
	$= P\left(z \ge \frac{181.5 - 168}{\sqrt{168}}\right) \qquad \qquad \frac{\pm 0.5}{\text{stand with } \mu \text{ and } \sigma}$	M1 M1
	Give A1 for 1.04 or correct expression = $P(z \ge 1.04)$	A1
	= 1 - 0.8508 attempt correct area 1-p where $p > 0.5$	M1
	= 0.1492 awrt 0.149	A1 (6)
		Total 11 marks

Question Number	Scheme	Marks
4. (a)	Let <i>X</i> represent the number of breakdowns in a week.	
	$X \sim P_0 (1.25)$ implied	B1
	$P(X < 3) = P(0) + P(1) + P(2)$ or $P(X \le 2)$	M1
	$= e^{-1.25} \left(1 + 1.25 + \frac{(1.25)^2}{2!} \right)$ $= 0.868467$ awrt 0.868 or 0.8685	A1 (4)
	- 0.808407 awit 0.808 01 0.8083	A1 (4)
(b)	$H_0: \lambda = 1.25; H_1: \lambda \neq 1.25$ (or $H_0: \lambda = 5; H_1: \lambda \neq 5$) λ or μ	B1 B1
	Let <i>Y</i> represent the number of breakdowns in 4 weeks	
	Under H_0 , $Y \sim P_0(5)$ may be implied	B1
	$P(Y \ge 11) = 1 - P(Y \le 10)$ or $P(X \ge 11) = 0.0137$	M1
	One needed for M $P(X \ge 10) = 0.0318$	
	$= 0.0137$ CR $X \ge 11$	A1
	$0.0137 < 0.025, 0.0274 < 0.05, 0.9863 > 0.975, 0.9726 > 0.95 \text{or} 11 \geq 11 \text{any}$.allow % $\sqrt{}$ from H_1	M1
	Evidence that the rate of breakdowns has changed /decreased context	B1√ (7)
	From their p	Total 11 marks

Question Number	Scheme		Marks
5. (a)	Binomial		B1 (1)
	Let <i>X</i> represent the number of green mugs in a sample		
(b)	$X \sim B (10, 0.06)$ may be i	implied or seen in part a	B1
	$P(X=3) = {}^{10}C_3(0.06)^3(0.94)^7$	${}^{10}\text{C}_3(p)^3(1-p)^7$	M1
	= 0.016808	awrt 0.0168	A1 (3)
(c) (i)	Let X represent number of green mugs in a sample of size	: 125	
	$X \sim P_0(125 \times 0.06 = 7.5)$	may be implied	B1
	$P(10 \le X \le 13) = P(X \le 13) - P(X \le 9)$		M1
	=0.9784-0.7764		
	= 0.2020	awrt 0.202	A1 (3)
(ii)	$P(10 \le X \le 13) \approx P(9.5 \le Y \le 13.5)$ where Y ~ N(7.5, 7)	7.05) 7.05	B1
		9.5, 13.5	B1
	$= P\left(\frac{9.5 - 7.5}{\sqrt{7.05}} \le z \le \frac{13.5 - 7.5}{\sqrt{7.05}}\right)$	± 0.5 stand.	M1 M1
		oth correct expressions.	
	$= P(0.75 \le z \le 2.26)$	awrt 0.75 and 2.26	A1
	= 0.2147	awrt 0.214or 0.215	A1 (6) Total 13 marks

Question Number	Scheme		Marks
6 (a)	$\int_{1}^{4} \frac{I+x}{k} dx = 1$	$\int f(x) = 1$ Area = 1	M1
	$\left[\frac{x}{k} + \frac{x^2}{2k}\right]_1^4 = 1$	correct integral/correct expression	A1
	$k = \frac{21}{2} *$	cso	A1 (3)
(b)	$P(X \le x_0) = \int_1^{x_0} \frac{2}{21} (1+x)$	$\int f(x)$ variable limit or +C	M1
	$= \left[\frac{2x}{21} + \frac{x^2}{21} \right]_1^{x_0}$	correct integral + limit of 1 May have k in	A1
	$= \frac{2x_0 + x_0^2 - 3}{21} \text{ or } \frac{(3+x)(x-1)}{21}$	1.1.ny 1.1.v v v 1.1.	A1
	$F(x) = \begin{cases} 0, & x < 1 \\ \frac{x^2 + 2x - 3}{21} & 1 \le x < 4 \\ 1 & x \ge 4 \end{cases}$	middle; ends	B1√; B1 (5)
(c)	$E(X) = \int_{1}^{4} \frac{2x}{21} (1+x) dx$	valid attempt $\int x f(x)$	M1
	$\begin{bmatrix} x^2 & 2x^3 \end{bmatrix}^4$	x^2 and x^3	A1
	$= \left[\frac{x^2}{21} + \frac{2x^3}{63}\right]_1^4$	correct integration	111
	$=\frac{171}{63}=2\frac{5}{7}=\frac{19}{7}=2.7142$	awrt 2.71	A1 (3)

Question Number	Scheme		Marks	
(d)	$F(m) = 0.5 \implies \frac{x^2 + 2x - 3}{21} = \frac{1}{2}$ putting their $F(x) = 0.5$	M1		
	$\therefore 2x^2 + 4x - 27 = 0 \text{or equiv}$			
	$\therefore x = \frac{-4 \pm \sqrt{16 - 4.2(-27)}}{4}$ attempt their 3 term quadratic $\therefore x = -1 \pm 3.8078$	M1		
	i.e. $x = 2.8078$ awrt 2.81	A1	(3)	
(e)	Mode = 4	B1	(1)	
(f)	$\frac{\text{Mean} < \text{median} < \text{mode}}{\text{Or}} (\Rightarrow \text{negative skew}) \qquad \text{allow numbers} \\ \text{in place of words} \\ \underline{\text{Mean} < \text{median}}$	B1	(1)	
	w diagram but line must not cross y axis			
		Total	16 marks	

Question Number	Scheme	Marks
7. (a)	Let X represent the number of bowls with minor defects.	
	$\therefore X \sim B; (25, 0.20)$ may be implied	B1; B1
	P $(X \le 1) = 0.0274$ or P($X = 0$) = 0.0038 need to see at least one. prob for $X \le \text{no For M1}$	M1A1
	$P(X \le 9) = 0.9827; \Rightarrow P(X \ge 10) = 0.0173$ either	A1
	$\therefore CR \text{ is } \{X \le 1 \cup X \ge 10\}$	A1 (6)
b)	Significance level = $0.0274 + 0.0173$	
	= 0.0447 or $4.477%$ awrt 0.0447	B1 (1)
c)	$H_0: p = 0.20; H_1: p < 0.20;$	B1 B1
	Let Y represent number of bowls with minor defects	
	Under H_0 $Y \sim B$ (20, 0.20) may be implied	B1
	P $(Y \le 2)$ or $P(Y \le 2) = 0.2061$ either $P(Y \le 1) = 0.0692$	M1
	$= 0.2061 CR Y \le 1$	A1
	0.2061 > 0.10 or $0.7939 < 0.9$ or $2>1$ their p	M1
	Insufficient evidence to suggest that the proportion of defective bowls has decreased.	B1√ (7)