

L Number	Hits	Search Text	DB	Time stamp
	1	DmGPCR	USPAT; US-PGPUB; EPO; JPO; DERWENT	2002/07/24 09:38
	75	drosophila same receptor same coupled	USPAT; US-PGPUB; EPO; JPO; DERWENT	2002/07/24 09:38
	11	drosophila same receptor same coupled same bind	USPAT; US-PGPUB; EPO; JPO; DERWENT	2002/07/24 09:41

09693746 Results

RESULT 1
AAU03346
ID AAU03346 standard; Peptide; 9 AA.
XX
AC AAU03346;
XX
DT 12-SEP-2001 (first entry)
XX
DE Fruit fly G protein coupled receptors, DmGPCR6aL/bL ligand #94.
XX
KW Fruit fly; G protein coupled receptor; DmGPCR6aL/bL;
KW human immunodeficiency virus; HIV; cancer; Parkinson's disease;
KW diabetes; obesity; atherosclerosis; thrombosis; stroke; renal
failure;
KW inflammation; rheumatoid arthritis; autoimmune disorder;
KW neurological disorder; schizophrenia; manic depression; dementia;
KW severe mental retardation; dyskinesia; Huntington's disease;
KW Tourette's syndrome; ligand.
XX
OS Drosophila melanogaster.
XX
FH Key Location/Qualifiers
FT Modified-site 4
FT /note= "Optionally, Tyr has an attached SO3H
moiety"
FT Modified-site 9
FT /note= "C-terminus is amidated"
XX
PN WO200131005-A2.
XX
PD 03-MAY-2001.
XX
PF 20-OCT-2000; 2000WO-US29002.
XX
PR 22-OCT-1999; 99US-0425676.
XX
PA (PHAA) PHARMACIA & UPJOHN CO.
XX
PI Lowery DE, Smith VG, Kubiak TA, Larsen MJ;
XX
DR WPI; 2001-316333/33.
XX
PT New Drosophila melanogaster GPCR nucleic acids and polypeptide
useful
PT for inducing an immune response, for identifying homologs and for
PT treating e.g. diabetes, obesity and manic depression -
XX
PS Example 9; Page 101; 110pp; English.
XX
CC The sequence is a fruit fly G protein coupled receptors,
DmGPCR6aL/bL,
CC peptide ligand. The proteins are useful for inducing an immune
response

CC against itself in a mammal. The nucleic acids are useful for identifying
CC an animal homolog of DmGPCR, by screening databases or libraries.
The
CC compounds identified as binding partners or modulators of GPCR
binding
CC are useful for treating diseases in animals, and for control
insects that
CC are harmful or cause injury to plants or animals. Diseases treated
CC include infections (e.g. viral and human immunodeficiency virus,
HIV),
CC cancer, pain, Parkinson's disease, hypotension, hypertension,
diabetes,
CC obesity, atherosclerosis, thrombosis, stroke, renal failure,
CC inflammation, rheumatoid arthritis, autoimmune disorders, and
psychotic
CC and neurological disorders (anxiety, schizophrenia, manic
depression,
CC delirium, dementia, severe mental retardation, dyskinesias,
Huntington's
CC disease or Tourette's syndrome). The nucleic acids can be used for
CC genetic mapping, and producing the GPCRs. Anti-GPCR antibodies can
be
CC used in therapy, diagnostic assays and for modulating GPCR
activity.

XX

SQ Sequence 9 AA;

Query Match 100.0%; Score 54; DB 22; Length 9;
Best Local Similarity 100.0%; Pred. No. 6.4e+05;
Matches 9; Conservative 0; Mismatches 0; Indels 0;
Gaps 0;

Qy 1 FDDYGHRLF 9
||| ||| |||
Db 1 fddyghlrf 9

RESULT 2
AAU03347
ID AAU03347 standard; Peptide; 9 AA.
XX
AC AAU03347;
XX
DT 12-SEP-2001 (first entry)
XX
DE Fruit fly G protein coupled receptors, DmGPCR6aL/bL ligand #95.
XX
KW Fruit fly; G protein coupled receptor; DmGPCR6aL/bL;
KW human immunodeficiency virus; HIV; cancer; Parkinson's disease;
KW diabetes; obesity; atherosclerosis; thrombosis; stroke; renal
failure;
KW inflammation; rheumatoid arthritis; autoimmune disorder;
KW neurological disorder; schizophrenia; manic depression; dementia;
KW severe mental retardation; dyskinesia; Huntington's disease;
KW Tourette's syndrome; ligand.

XX
OS Drosophila melanogaster.
XX
FH Key Location/Qualifiers
FT Modified-site 9
FT /note= "C-terminus is amidated"
XX
PN WO200131005-A2.
XX
PD 03-MAY-2001.
XX
PF 20-OCT-2000; 2000WO-US29002.
XX
PR 22-OCT-1999; 99US-0425676.
XX
PA (PHAA) PHARMACIA & UPJOHN CO.
XX
PI Lowery DE, Smith VG, Kubiak TA, Larsen MJ;
XX
DR WPI; 2001-316333/33.
XX
PT New Drosophila melanogaster GPCR nucleic acids and polypeptide useful
PT for inducing an immune response, for identifying homologs and for
PT treating e.g. diabetes, obesity and manic depression -
XX
PS Example 9; Page 101; 110pp; English.
XX
CC The sequence is a fruit fly G protein coupled receptors,
DmGPCR6aL/bL,
CC peptide ligand. The proteins are useful for inducing an immune response
against itself in a mammal. The nucleic acids are useful for identifying
an animal homolog of DmGPCR, by screening databases or libraries.
The
CC compounds identified as binding partners or modulators of GPCR binding
are useful for treating diseases in animals, and for control insects that
CC are harmful or cause injury to plants or animals. Diseases treated
CC include infections (e.g. viral and human immunodeficiency virus, HIV),
CC cancer, pain, Parkinson's disease, hypotension, hypertension, diabetes,
CC obesity, atherosclerosis, thrombosis, stroke, renal failure,
CC inflammation, rheumatoid arthritis, autoimmune disorders, and psychotic
CC and neurological disorders (anxiety, schizophrenia, manic depression,
CC delirium, dementia, severe mental retardation, dyskinesias, Huntington's
CC disease or Tourette's syndrome). The nucleic acids can be used for
CC genetic mapping, and producing the GPCRs. Anti-GPCR antibodies can be
CC used in therapy, diagnostic assays and for modulating GPCR activity.

XX
SQ Sequence 9 AA;

Query Match 100.0%; Score 54; DB 22; Length 9;
Best Local Similarity 100.0%; Pred. No. 6.4e+05;
Matches 9; Conservative 0; Mismatches 0; Indels 0;
Gaps 0;

QY 1 FDDYGHRLF 9
||| | | | | | |
Db 1 fddyghlrf 9

RESULT 3
AAU03351
ID AAU03351 standard; Peptide; 9 AA.
XX
AC AAU03351;
XX
DT 12-SEP-2001 (first entry)
XX
DE Fruit fly G protein coupled receptor ligand, drosulfakinin-1.
XX
KW Fruit fly; G protein coupled receptor; drosulfakinin-1;
KW human immunodeficiency virus; HIV; cancer; Parkinson's disease;
KW diabetes; obesity; atherosclerosis; thrombosis; stroke; renal
failure;
KW inflammation; rheumatoid arthritis; autoimmune disorder;
KW neurological disorder; schizophrenia; manic depression; dementia;
KW severe mental retardation; dyskinesia; Huntington's disease;
KW Tourette's syndrome; ligand.
XX
OS Drosophila melanogaster.
XX
FH Key Location/Qualifiers
FT Modified-site 4
FT /note= "Tyr has an attached SO3H moiety"
FT Modified-site 9
FT /note= "C-terminus is amidated"
XX
PN WO200131005-A2.
XX
PD 03-MAY-2001.
XX
PF 20-OCT-2000; 2000WO-US29002.
XX
PR 22-OCT-1999; 99US-0425676.
XX
PA (PHAA) PHARMACIA & UPJOHN CO.
XX
PI Lowery DE, Smith VG, Kubiak TA, Larsen MJ;
XX
DR WPI; 2001-316333/33.
XX
PT New Drosophila melanogaster GPCR nucleic acids and polypeptide
useful

PT for inducing an immune response, for identifying homologs and for
PT treating e.g. diabetes, obesity and manic depression -
XX
PS Example 9; Page 98; 110pp; English.
XX
CC The sequence is a fruit fly G protein coupled receptor ligand,
CC drosulfakinin-1. The proteins are useful for inducing an immune
response
CC against itself in a mammal. The nucleic acids are useful for
identifying
CC an animal homolog of DmGPCR, by screening databases or libraries.
The
CC compounds identified as binding partners or modulators of GPCR
binding
CC are useful for treating diseases in animals, and for control
insects that
CC are harmful or cause injury to plants or animals. Diseases treated
CC include infections (e.g. viral and human immunodeficiency virus,
HIV),
CC cancer, pain, Parkinson's disease, hypotension, hypertension,
diabetes,
CC obesity, atherosclerosis, thrombosis, stroke, renal failure,
CC inflammation, rheumatoid arthritis, autoimmune disorders, and
psychotic
CC and neurological disorders (anxiety, schizophrenia, manic
depression,
CC delirium, dementia, severe mental retardation, dyskinesias,
Huntington's
CC disease or Tourette's syndrome). The nucleic acids can be used for
CC genetic mapping, and producing the GPCRs. Anti-GPCR antibodies can
be
CC used in therapy, diagnostic assays and for modulating GPCR
activity.

XX

SQ Sequence 9 AA;

Query Match 100.0%; Score 54; DB 22; Length 9;
Best Local Similarity 100.0%; Pred. No. 6.4e+05;
Matches 9; Conservative 0; Mismatches 0; Indels 0;
Gaps 0;

Qy 1 FDDYGHRLF 9
| | | | | | | |
Db 1 fddyghlrf 9

RESULT 4
AAU03353
ID AAU03353 standard; Peptide; 14 AA.
XX
AC AAU03353;
XX
DT 12-SEP-2001 (first entry)
XX
DE Fruit fly G protein coupled receptor ligand, drosulfakinin-2.
XX

KW Fruit fly; G protein coupled receptor; drosulfakinin-2;
KW human immunodeficiency virus; HIV; cancer; Parkinson's disease;
KW diabetes; obesity; atherosclerosis; thrombosis; stroke; renal
failure;
KW inflammation; rheumatoid arthritis; autoimmune disorder;
KW neurological disorder; schizophrenia; manic depression; dementia;
KW severe mental retardation; dyskinesia; Huntington's disease;
KW Tourette's syndrome; ligand.
XX
OS Drosophila melanogaster.
XX
FH Key Location/Qualifiers
FT Modified-site 9
FT /note= "Tyr has an attached SO3H moiety"
FT Modified-site 14
FT /note= "C-terminus is amidated"
XX
PN WO200131005-A2.
XX
PD 03-MAY-2001.
XX
PF 20-OCT-2000; 2000WO-US29002.
XX
PR 22-OCT-1999; 99US-0425676.
XX
PA (PHAA) PHARMACIA & UPJOHN CO.
XX
PI Lowery DE, Smith VG, Kubiak TA, Larsen MJ;
XX
DR WPI; 2001-316333/33.
XX
PT New Drosophila melanogaster GPCR nucleic acids and polypeptide
useful
PT for inducing an immune response, for identifying homologs and for
PT treating e.g. diabetes, obesity and manic depression -
XX
PS Disclosure; Page 4; 110pp; English.
XX
CC The sequence is a fruit fly G protein coupled receptor ligand,
CC drosulfakinin-2. The proteins are useful for inducing an immune
response
CC against itself in a mammal. The nucleic acids are useful for
identifying
CC an animal homolog of DmGPCR, by screening databases or libraries.
The
CC compounds identified as binding partners or modulators of GPCR
binding
CC are useful for treating diseases in animals, and for control
insects that
CC are harmful or cause injury to plants or animals. Diseases treated
CC include infections (e.g. viral and human immunodeficiency virus,
HIV),
CC cancer, pain, Parkinson's disease, hypotension, hypertension,
diabetes,
CC obesity, atherosclerosis, thrombosis, stroke, renal failure,
CC inflammation, rheumatoid arthritis, autoimmune disorders, and
psychotic

CC and neurological disorders (anxiety, schizophrenia, manic depression,
CC delirium, dementia, severe mental retardation, dyskinesias,
Huntington's
CC disease or Tourette's syndrome). The nucleic acids can be used for
CC genetic mapping, and producing the GPCRs. Anti-GPCR antibodies can
be
CC used in therapy, diagnostic assays and for modulating GPCR
activity.

XX

SQ Sequence 14 AA;

Query Match 96.3%; Score 52; DB 22; Length 14;
Best Local Similarity 88.9%; Pred. No. 0.00088;
Matches 8; Conservative 1; Mismatches 0; Indels 0;
Gaps 0;

Qy 1 FDDYGHRLF 9
||| ||| : ||
Db 6 fddyghmrf 14

SEQ ID NO: 22

RESULT 1
AAU03215
ID AAU03215 standard; Protein; 584 AA.
XX
AC AAU03215;
XX
DT 12-SEP-2001 (first entry)
XX
DE Fruit fly G protein coupled receptor, DmGPCR9.
XX
KW Fruit fly; G protein coupled receptor; DmGPCR9;
KW human immunodeficiency virus; HIV; cancer; Parkinson's disease;
KW diabetes; obesity; atherosclerosis; thrombosis; stroke; renal
failure;
KW inflammation; rheumatoid arthritis; autoimmune disorder;
KW neurological disorder; schizophrenia; manic depression; dementia;
KW severe mental retardation; dyskinesia; Huntington's disease;
KW Tourette's syndrome.
XX
OS Drosophila melanogaster.
XX
PN WO200131005-A2.
XX
PD 03-MAY-2001.
XX
PF 20-OCT-2000; 2000WO-US29002.
XX
PR 22-OCT-1999; 99US-0425676.
XX
PA (PHAA) PHARMACIA & UPJOHN CO.
XX

PI Lowery DE, Smith VG, Kubiak TA, Larsen MJ;
XX
DR WPI; 2001-316333/33.
DR N-PSDB; AAS05894.
XX
PT New Drosophila melanogaster GPCR nucleic acids and polypeptide useful
PT for inducing an immune response, for identifying homologs and for
PT treating e.g. diabetes, obesity and manic depression -
XX
PS Claim 29; Page 65; 110pp; English.
XX
CC The sequence is a fruit fly G protein coupled receptor, DmGPCR9.
CC The proteins are useful for inducing an immune response against
itself in
CC a mammal. The nucleic acids are useful for identifying an animal
homolog
CC of DmGPCR, by screening databases or libraries. The compounds
identified
CC as binding partners or modulators of GPCR binding are useful for
treating
CC diseases in animals, and for control insects that are harmful or
cause
CC injury to plants or animals. Diseases treated include infections
(e.g.
CC viral and human immunodeficiency virus, HIV), cancer, pain,
Parkinson's
CC disease, hypotension, hypertension, diabetes, obesity,
atherosclerosis,
CC thrombosis, stroke, renal failure, inflammation, rheumatoid
arthritis,
CC autoimmune disorders, and psychotic and neurological disorders
(anxiety,
CC schizophrenia, manic depression, delirium, dementia, severe mental
CC retardation, dyskinesias, Huntington's disease or Tourette's
syndrome).
CC The nucleic acids can be used for genetic mapping, and producing
CC the GPCRs. Anti-GPCR antibodies can be used in therapy, diagnostic
assays
CC and for modulating GPCR activity.
XX
SQ Sequence 584 AA;

Query Match 100.0%; Score 3000; DB 22; Length 584;
Best Local Similarity 100.0%; Pred. No. 1.8e-251;
Matches 584; Conservative 0; Mismatches 0; Indels 0;
Gaps 0;

Qy 1 MFNYEEGDADQAAMAAAAYRALLDYYANAPSAAGHIVSLNVAPYNGTGNGGTVSLAGNA
60 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
Db 1 mfnyeegdadqaamaaaayralldyyanapsaaghivslnvapyngtgnggtvslagna
60

Qy 61 TSSYGDDDRDGMDTEPSDLVTELAFSLGTSSSPSPSSTPASSSSTSTGMPVWLIPSYSM
120

Db 61 tssygdddrgymdtepsdlvtelafslgtssspssstpasssststgmpvwli psym
120

Qy 121 ILLFAVLGNLLVISTLVQNRRMRTITNVFLLNLAISDMLLGVLCMPVTLVGTLLRNFIFG
180

Db 121 illfavlgnllvistlvqnrrmrtitnvfllnlaisdmllgvlcmpvtlvgtllrnfifg
180

Qy 181 EFLCKLFQFSQAASAVSSWTLVAISCERYYAICHPLRSRSWQTISHAYKIIIGFIWLGGI
240

Db 181 eflcklfqfsqaasavsswtlvaisceryyaichplrsrsrwqtishaykiiigfiwlaggi
240

Qy 241 LCMTPIAVFSQLIPTSRPGYCKCREFWPDQGYELFYNILLDFLLLVLPLLVLCVAYILIT
300

Db 241 lcmtpiavfsqliptsrpgyckcrefpwdqgyelfynilldflllvpplvlcvayilit
300

Qy 301 RTLYVGMAKDSGRILQQSLPVSATTAGGSAPNPGBTSSSNCILVLTATAVYNENSNNNNG
360

Db 301 rtlyvgmakdsgrilqqslpvsattaggsapnpgtssssncilvltatavynensnnnng
360

Qy 361 NSEGSAGGGSTNMATTTTTRPTAPTVITTTTTVTLAKTSSPSIRVHDAALRRSNEAK
420

Db 361 nsegsagggstnmatttttrptaptvitttttvtlaktsspsirvhdaalrrsneak
420

Qy 421 TLESKKRVVKMLFVLVLEFFICWTPLYVINTMVMLIGPVVYEVYDYTEAISFLQLLAYSSS
480

Db 421 tleskkrvvkmlfvlvlefficwtplyvintmvmligpvvyeyvdtytaisflqllaysss
480

Qy 481 CCNPITYCFMNASFRRAFVDTFKGLPWRRGAGASGGVGGAAAGGGLSASQAGAGPGAYASA
540

Db 481 ccnpitycfmnasfrrafvdtfkglpwrrgagasggvgaaggglasasqagagpgayasa
540

Qy 541 NTNISLNPGlamGMGTWRSRSRHEFLNAVVTNSAAAavNSPQL 584
Db 541 ntnislnpglamgmgtwrsrsrheflnavvttnsaaaavnsql 584

9693744

PYRB_LACLA

ID PYRB_LACLA STANDARD; PRT; 310 AA.
AC Q9CF79;
DT 16-OCT-2001 (Rel. 40, Created)
DT 16-OCT-2001 (Rel. 40, Last sequence update)
DT 01-MAR-2002 (Rel. 41, Last annotation update)
DE Aspartate carbamoyltransferase (EC 2.1.3.2) (Aspartate
DE transcarbamylase) (ATCase).
GN PYRB OR LL1602.
OS Lactococcus lactis (subsp. lactis) (Streptococcus lactis).
OC Bacteria; Firmicutes; Bacillus/Clostridium group; Streptococcaceae;
OC Lactococcus.
OX NCBI_TaxID=1360;
RN [1]
RP SEQUENCE FROM N.A.
RC STRAIN=IL1403;
RX MEDLINE=21235186; PubMed=11337471;
RA Bolotin A., Wincker P., Mauger S., Jaillon O., Malarme K.,
RA Weissenbach J., Ehrlich S.D., Sorokin A.;
RT "The complete genome sequence of the lactic acid bacterium Lactococcus
RT lactis ssp. lactis IL1403.";
RL Genome Res. 11:731-753(2001).
CC -!- CATALYTIC ACTIVITY: Carbamoyl phosphate + L-aspartate = phosphate
CC + N-carbamoyl-L-aspartate.
CC -!- PATHWAY: SECOND STEP IN PYRIMIDINE BIOSYNTHESIS.
CC -!- SIMILARITY: BELONGS TO THE ATCASES/OTCASES FAMILY.
CC -----
CC This SWISS-PROT entry is copyright. It is produced through a collaboration
CC between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC the European Bioinformatics Institute. There are no restrictions on its
CC use by non-profit institutions as long as its content is in no way
CC modified and this statement is not removed. Usage by and for commercial
CC entities requires a license agreement (See <http://www.isb-sib.ch/announce/>
CC or send an email to license@isb-sib.ch).
CC -----
DR EMBL; AE006390; AAK05700.1; -.
DR InterPro; IPR002029; Carbamyltransf_asor.
DR Pfam; PF00185; OTCace; 1.
DR Pfam; PF02729; OTCace_N; 1.
DR PRINTS; PR00100; AOTCASE.
DR PROSITE; PS00097; CARBAMOYLTRANSFERASE; 1.
KW Pyrimidine biosynthesis; Transferase; Complete proteome.
SQ SEQUENCE 310 AA; 34558 MW; EEDE6B8EC6F00B94 CRC64;

Query Match 72.2%; Score 39; DB 1; Length 310;
Best Local Similarity 100.0%; Pred. No. 5;
Matches 6; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 FDDYGH 6
| | | | |
Db 201 FDDYGH 206

RESULT 12

RL5_SULSO

ID RL5_SULSO STANDARD; PRT; 182 AA.

AC Q9UX93;
DT 16-OCT-2001 (Rel. 40, Created)
DT 16-OCT-2001 (Rel. 40, Last sequence update)
DT 01-MAR-2002 (Rel. 41, Last annotation update)
DE 50S ribosomal protein L5P.
GN RPL5P OR RPL5AB OR SSO0704 OR C10_026.
OS Sulfolobus solfataricus.
OC Archaea; Crenarchaeota; Sulfolobales; Sulfolobaceae; Sulfolobus.
OX NCBI_TaxID=2287;
RN [1]
RP SEQUENCE FROM N.A.
RC STRAIN=ATCC 35092 / DSM 1617 / P2;
RX MEDLINE=20165948; PubMed=10701121;
RA Charlebois R.L., Singh R.K., Chan-Weiher C.C.-Y., Allard G., Chow C.,
RA Confalonieri F., Curtis B., Duguet M., Erauso G., Faguy D.,
RA Gaasterland T., Garrett R.A., Gordon P., Jeffries A.C., Kozera C.,
RA Kushwaha N., Lafleur E., Medina N., Peng X., Penny S.L., She Q.,
RA St Jean A., van der Oost J., Young F., Zivanovic Y., Doolittle W.F.,
RA Ragan M.A., Sensen C.W.;
RT "Gene content and organization of a 281-kbp contig from the genome of
RT the extremely thermophilic archaeon, Sulfolobus solfataricus P2.";
RL Genome 43:116-136(2000).
RN [2]
RP SEQUENCE FROM N.A.
RC STRAIN=ATCC 35092 / DSM 1617 / P2;
RX MEDLINE=21332296; PubMed=11427726;
RA She Q., Singh R.K., Confalonieri F., Zivanovic Y., Allard G.,
RA Awayez M.J., Chan-Weiher C.C.-Y., Clausen I.G., Curtis B.A.,
RA De Moors A., Erauso G., Fletcher C., Gordon P.M.K.,
RA Heikamp-de Jong I., Jeffries A.C., Kozera C.J., Medina N., Peng X.,
RA Thi-Ngoc H.P., Redder P., Schenk M.E., Theriault C., Tolstrup N.,
RA Charlebois R.L., Doolittle W.F., Duguet M., Gaasterland T.,
RA Garrett R.A., Ragan M.A., Sensen C.W., Van der Oost J.;
RT "The complete genome of the crenarchaeon Sulfolobus solfataricus P2.";
RL Proc. Natl. Acad. Sci. U.S.A. 98:7835-7840(2001).
CC -!- SIMILARITY: BELONGS TO THE L5P FAMILY OF RIBOSOMAL PROTEINS.
CC -----
CC This SWISS-PROT entry is copyright. It is produced through a collaboration
CC between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC the European Bioinformatics Institute. There are no restrictions on its
CC use by non-profit institutions as long as its content is in no way
CC modified and this statement is not removed. Usage by and for commercial
CC entities requires a license agreement (See <http://www.isb-sib.ch/announce/>
CC or send an email to license@isb-sib.ch).
CC -----
DR EMBL; Y18930; CAB57599.1; -.
DR EMBL; AE006696; AAK41006.1; -.
DR InterPro; IPR002132; Ribosomal_L5.
DR Pfam; PF00281; Ribosomal_L5; 1.
DR Pfam; PF00673; Ribosomal_L5_C; 1.
DR ProDom; PD001076; Ribosomal_L5; 1.
DR PROSITE; PS00358; RIBOSOMAL_L5; FALSE_NEG.
KW Ribosomal protein; Complete proteome.
SQ SEQUENCE 182 AA; 20652 MW; 3070C4B01860D448 CRC64;

Query Match

70.4%; Score 38; DB 1; Length 182;

Best Local Similarity 66.7%; Pred. No. 4.4;
Matches 6; Conservative 2; Mismatc

09693746 Results

SEQ ID NO: 22

SUMMARIES

Result No	Score	Query				Description
		Match	Length	DB	ID	
1	3000	100	0	584	22	AAU03215
2	1708	56	9	415	22	ABB62762
3	1708	56	9	415	22	AAU38944
4	1704	56	8	407	22	AAB86963
5	1242	41	4	749	22	ABB62718
6	1242	41	4	749	22	AAU38943
7	970	32	3	201	22	AAB86962
8	964	32	1	205	22	ABB62772
9	655.5	21	9	451	14	AAR40771
10	655.5	21	9	452	22	AAB66619
11	654.5	21	8	430	14	AAR40772
12	654.5	21	8	430	22	AAB66625
13	654.5	21	8	450	22	AAB66626
14	652.5	21	8	450	15	AAR53263
15	652.5	21	8	450	15	AAR59290
16	647.5	21	6	428	18	AAW29102
17	647.5	21	6	428	22	AAB66630
18	642	21	4	444	14	AAR38890

RESULT 9
AAR40771
ID AAR40771 standard; protein, 451 AA.
XX
AC AAR40771;
XX
DT 07-FEB-1994 (first entry)
XX
DE Sequence encoded by the rat brain cholecystokinin (CCK) B
DE receptor cDNA clone.
XX
KW Cholecystokinin receptor protein; CCK; gastrointestinal receptor.
XX
OS Balaenoptera acutorostrata.
XX
FH Key Location/Qualifiers
FT Modified-site 6
FT /label= glycosylation site
FT /note= "see also AAs 30,36,255"
FT Domain 57..80
FT /label= transmembrane 1
FT Domain 93..116
FT /label= transmembrane II
FT Domain 131..150
FT /label= transmembrane III
FT Domain 173..192
FT /label= transmembrane IV
FT Domain 219..242
FT /label= transmembrane V
FT Domain 339..359
FT /label= transmembrane VI
FT Domain 374..381
FT /label= transmembrane VII
XX
FN WO9316182-A.
XX
PD 19-AUG-1993.
XX
PF 28-JAN-1993; 93WO-US00466.
XX

PR 07-FEB-1992; 92US-0831248.
 PR 01-APR-1992; 92US-0861769.
 PR 11-AUG-1992; 92US-0928033.
 PR 02-SEP-1992; 92US-0937609.
 XX
 PA (USSH) US DEPT HEALTH & HUMAN SERVICE.
 XX
 PI Wank SA;
 XX
 DR WPI; 1993-272886/34.
 DR N-PSDB; AAQ47668.
 XX
 PT Isolated DNA molecule encoding cholecystokinin receptor protein -
 PT are purified to isolate cholecystokinin receptor clones and
 PT produce anti-cholecystokinin receptor antibodies
 XX
 PS Claim 19; Figure 2; 110pp; English.
 XX
 CC The rat brain CCK B receptor cDNA clone encodes a protein with
 CC 7 transmembrane domains, and homology with CCK A type receptor and
 CC other G-protein receptor superfamily members. There are 4 potential
 CC sites of N-linked glycosylation, for serine phosphorylation
 CC (82,154,441), for disulphide bridges (127,205) and palmitoylation
 CC (413).
 XX
 SQ Sequence 451 AA;

Query Match 21.9%; Score 655.5; DB 14; Length 451;
 Best Local Similarity 38.6%; Pred. No. 2.6e-48;
 Matches 164; Conservative 62; Mismatches 144; Indels 55; Gaps 11;

Qy	88	LGTSSSPSPSSTPASSSSTST--GMPVWLIPYSMILLFAVLGNLLVISTLVQNRRMRT	144
Db	29	lnssssagnlscdpprirtgttrelemai-ritlyaviflmsvggnvliivvvlgsrrlrt	87
Qy	145	ITNVFLNLALISDMLLGVLCMPVTLVGTLRLRNFIFGEFLCKLFQFSQAASVAVSSWTLVA	204
Db	88	vtnafllslavsdlllavacmpftl1pn1mgtfifgtvickaisylmgvs vsstlnlva	147
Qy	205	ISCERYYAICHPLRSRSWQTISHAYKIIGFIWLGILCMTPIAVFSQLIPTSRPGYCKCR	264
Db	148	ialerysaicrpqlqarvwqtrshaarvilitwllsgllmvpypvytmvqpvq-prvlqcm	206
Qy	265	EFPWDQGYELFYNIILDFLLLVLPLLVLCVAYILIRTLVYGMAKD-----SGRILQ	316
Db	207	hrwpssarvqqtwsvl1llllffipgsviavayglisrelylg1hfdgendsetqsrarnq	266
Qy	317	QSLPVSATTAGGSAPNPGTSSSSNCILVLTATAVYNENSNNNNGNSEGSAGGGSTNMATT	376
Db	267	gglp-----ggaapgp-vhqnggcrpv---tsvagedsd-----gccvqlprs	305
Qy	377	TLTTRPTAPTVTTTTTTVTLAKTSSPSIRVHDAALRRSNEAKTLESKKRVRVKMLFVLV	436
Db	306	rl-----emttltpgpgvpgp-----rpnqakll-akkrrvvrmllliv	344
Qy	437	LEFFICWTPLYVINTMVMLIGPVVYEYVDYTAISFLQLLAYSSCCNPITYCFMNASFRR	496
Db	345	1lfflclwpvysvntwrafdgpgaqralsgapisfihllsyvsacvnplvycfmhrrfrq	404
Qy	497	AFVDT 501	
Db	405	acldt 409	

Issued:

Result	Query					
No.	Score	Match	Length	DB	ID	Description

1	664.5	22 1	453	1	US-08-570-157-7	Sequence 7, Appli
2	656	21 9	451	1	US-08-570-157-2	Sequence 2, Appli
3	655 5	21 9	452	1	US-07-937-609-16	Sequence 16, Appl
4	655 .5	21 9	452	4	US-08-029-170-16	Sequence 16, Appl
5	654 5	21 8	430	1	US-07-937-609-23	Sequence 23, Appl
6	654 5	21 8	430	2	US-08-919-624-3	Sequence 3, Appli
7	654 5	21 8	430	4	US-08-029-170-23	Sequence 23, Appl
8	654 .5	21 .8	450	1	US-07-937-609-24	Sequence 24, Appl
9	654 .5	21 .8	450	4	US-08-029-170-24	Sequence 24, Appl
10	648 5	21 .6	449	1	US-08-570-157-1	Sequence 1, Appli
11	647 .5	21 .6	428	1	US-08-570-157-5	Sequence 5, Appli
12	647 5	21 .6	428	4	US-08-029-170-31	Sequence 31, Appl
13	642	21 .4	444	1	US-07-937-609-14	Sequence 14, Appl
14	642	21 .4	444	4	US-08-029-170-14	Sequence 14, Appl
15	632 5	21 1	443	1	US-08-570-157-6	Sequence 6, Appli
16	626 .5	20 9	453	1	US-07-937-609-16	Sequence 26, Appl
17	626 5	20 9	453	4	US-08-029-170-26	Sequence 26, Appl
18	624	20 8	448	1	US-08-570-157-3	Sequence 3, Appli
19	619 .5	20 6	447	1	US-07-937-609-19	Sequence 29, Appl
20	619 5	20 6	447	4	US-08-029-170-29	Sequence 29, Appl
21	619 5	20 6	453	1	US-07-937-609-27	Sequence 27, Appl
22	619 .5	20 6	453	1	US-07-978-892A 5	Sequence 5, Appli
23	619 .5	20 6	453	1	US-08-570-157-4	Sequence 4, Appli
24	619 .5	20 6	453	4	US-08-029-170-27	Sequence 27, Appl
25	617 .5	20 6	447	1	US-07-978-892A 6	Sequence 6, Appli
26	442	14 .7	432	4	US-09-255-368-2	Sequence 2, Appli
27	420 .5	14 .0	430	4	US-09-255-368-8	Sequence 8, Appli
28	415 .5	13 .8	444	4	US-09-119-788-2	Sequence 2, Appli
29	401	13 .4	425	4	US-09-479-128-2	Sequence 2, Appli
30	400	13 .3	402	3	US-08-846-704-4	Sequence 4, Appli
31	399	13 .3	420	4	US-09-255-368-6	Sequence 6, Appli

RESULT 1
 US-08-570-157-7
; Sequence 7, Application US/08570157
; Patent No. 5750353
; GENERAL INFORMATION:
; APPLICANT: Kopin, Alan S.
; APPLICANT: Beinborn, Martin
; TITLE OF INVENTION: ASSAY FOR NON-PEPTIDE AGONISTS TO
; TITLE OF INVENTION: PEPTIDE HORMONE RECEPTORS
; NUMBER OF SEQUENCES: 23
; CORRESPONDENCE ADDRESS:
; ADDRESSEE: Fish & Richardson P.C.
; STREET: 225 Franklin Street
; CITY: Boston
; STATE: MA
; COUNTRY: USA
; ZIP: 02110-2804
; COMPUTER READABLE FORM:
; MEDIUM TYPE: Floppy disk
; COMPUTER: IBM PC compatible
; OPERATING SYSTEM: PC-DOS/MS-DOS
; SOFTWARE: PatentIn Release #1.0, Version #1.30
; CURRENT APPLICATION DATA:
; APPLICATION NUMBER: US/08/570,157
; FILING DATE: 11-DEC-1995
; CLASSIFICATION: 435
; ATTORNEY/AGENT INFORMATION:
; NAME: Clark, Paul T.
; REGISTRATION NUMBER: 30,162
; REFERENCE/DOCKET NUMBER: 00398/109001
; TELECOMMUNICATION INFORMATION:
; TELEPHONE: 617/542-5070
; TELEFAX: 617/542-8906
; TELEX: 200154
; INFORMATION FOR SEQ ID NO: 7:
; SEQUENCE CHARACTERISTICS:

LENGTH: 453 amino acids
 TYPE: amino acid
 STRANDEDNESS not relevant
 TOPOLOGY: linear
 MOLECULE TYPE: protein
 US-08-570-157-7

Query Match 22 1%; Score 664.5; DB 1; Length 453;
 Best Local Similarity 33 5%; Pred No. 2.9e-45;
 Matches 176; Conservative 77; Mismatches 170; Indels 103; Gaps 16;

Q:	13	AMAAAAYRALLDYYANAPSAAAGHIVSLNVAPYNGTGNGGTVSLAG---NATSSYGDDDR	69
	:::: : : : : : : : : : : : : : : : : :		
Db	6	SLSNISALHELLCRYSNLSGT---LTWNLSSTNGTHNLTTANWPPWNLNCTPIL---DR	58
Q:	70	DGYMDTEPSDLVTELAFSLGTSSSPSPSSTPASSSTSTGMPVWL-IPSYSMILLFAVLG	128
	: : : : : : : : : : : : : : : : :		
Db	59	-----KKPSPSD-----LNLWVRIVMYSVIFLLSVFG	85
Q:	129	NLLVISTLVQNRRMRITNVFLNLAIAMDMLLGVLCLMPVTLVGTLRLRNFIGEFLCKLFQ	188
	: : : : : : : : : : : : : : : : : :		
Db	86	NTLIIIVLVMNKRLRTITNSFLSALSNDLVAVLCLMPFTLIPNLMENFIGEVICRAAA	145
Q:	189	FSQAASAVSSWTLVAISCERYAICHPLRSRSWQTISHAYKIIGFIWLGILCMTPIAV	248
	: : : : : : : : : : : : : : : : : : : :		
Db	146	YFMGLSVSVTFNLVAISIERYSAICNPLXSRVWQTRSHAYRVAATWVLSSIIMIPYLV	205
Q:	249	FSQLI---PTSRPGYCKCREFWPDQGYELFYNNILLDFLLLVLPLLVLCVAYILITRTLY	304
	:: : : : : : : : : : : : : : : : : : : :		
Db	206	YNKTVTFPMKDERRVGH-QCRLVWPSKQVQQAWYVLLTILFFIPGVVMIVAYGLISRELY	264
Q:	305	VGMKDGSRILQQSLPVSATAGGSAPN--PGTSSSNCLILVLTATAVYNENSNNNNGNS	362
	: : : : : : : : : : : : : : : : : : :		
Db	265	RGIQFE---MDLNKEAKAHKGVSTPTTIPSGDEGDGCYIQVTKR-----	306
Q:	363	EKSAGGGSTNMATTTLTTRPTAPTIVTTTTTTVTLAKTSSPSIRVHDAALRRSNEAKTL	422
	: : : : : : : : : : : : : : : : : : : :		
Db	307	-----RNTMEMSTLT----PSVCTKM-----DRARINNSEAK-L	335
Q:	423	ESKKRKKVVKMLFVLVLEFFICWTPLYVINTMVMLIGPVVYEVDYTAISFLQLLAYSSCC	482
	: : : : : : : : : : : : : : : : : : : :		
Db	336	MAKKRKRVIRMLLIVIVAMFFICWMPFIVANTWKAFDELASFNTLTGAPISFIHLLSYTSACV	395
Q:	483	NPITYCFMNASFRRAVFDTFKGL--PWRRGAGASGGVGGAAAGGGLS	526
	: : : : : : : : : : : : : : : : : : : :		
Db	396	NPLIYCFMNKRFRKAFLGTFSSCIKPCRNFRDTDEDI-AATGASLS	440

SUMMARIES

*

Result No.	Query Score	Match	Length	DB ID	Description
<hr/>					
1	655.5	21 9	452	2 A46195	cholecystokinin B
2	654.5	21.8	430	2 I51898	cholecystokinin A
3	652.5	21 8	450	2 JQ1614	gastrin receptor -
4	647.5	21 6	428	2 JN0692	cholecystokinin ty
5	644.5	21.5	436	2 JC5599	cholecystokinin-A
6	642	21.4	444	2 A42685	cholecystokinin re
7	629.5	21.0	427	2 S50150	gastric CCK-A rece
8	625	20.8	452	2 JC2459	gastrin/cholecysto
9	619.5	20 6	453	2 S32817	gastrin receptor -
10	617.5	20 6	447	2 A47430	gastrin/cholecysto
11	459.5	15 3	381	2 S48049	cholecystokinin B
12	427.5	14 2	397	2 T25910	hypothetical prote
13	420.5	14 0	449	2 A41738	neuropeptide Y rec
14	382.5	12 8	465	1 JQ1517	neurokinin 3 recep
15	372.5	12 4	452	2 A34916	neurokinin 3 recep
16	370.5	12 3	407	2 S23510	neurokinin 1 recep
17	367.5	12.2	440	2 A44081	kappa-type opioid

18 366 12.2 385 2 S55524

neurokinin 3 recep

RESULT 1
A46195
cholecystokinin B receptor subtype - rat
C;Species: Rattus norvegicus (Norway rat)
C.Date: 21-Sep-1993 #sequence_revision 18-Nov-1994 #text_change 20-Apr-2000
C.Accession: A46195
R.Wank, S.A.; Pisegna, J.R.; de Weerth, A.
Proc. Natl. Acad. Sci. U.S.A. 89, 8691-8695, 1992
A.Title: Brain and gastrointestinal cholecystokinin receptor family structure and functional expression
A.Reference number: A46195; MUID:92409582
A.Accession: A46195
A.Status: preliminary
A.Molecule type: nucleic acid
A.Residues: 1-452 <WAN>
A.Cross-references: GB:M99418; NID:g203459; PIDN:AAA40925.1; PID:g203460
A.Experimental source: brain
A.Note: sequence extracted from NCBI backbone (NCBIN:114083, NCBIP:114084)
C.Superfamily: neuropeptide receptor
C.Keywords: G protein-coupled receptor; transmembrane protein

Query Match 21.9%; Score 655.5; DB 2; Length 452;
Best Local Similarity 38.6%; Pred. No. 2.5e-38;
Matches 164; Conservative 62; Mismatches 144; Indels 55; Gaps 11;

Q:	88	LGTSSSPSNSTPASSSTST---GMPVWLIPSYSMILLFAVLGNLLVISTLVQNRRMRT	144
Db	29	LNSSSAGNLSCDPPIRGTTRELEMAI-RITLYAVIFLMSVGGNVLIIVVGLSRRLLRT	87
Q:	145	ITNVFLNLNAISDMLLGVLCPVILVGTLRLRNFFGEFLCKLFQFSQAASVAVSSWTLVA	204
Db	88	:!: : : : : : : : : : : : : : : : : : :	147
Q:	205	ITNAFLLSLAVIDLLAVACMPFTLLPNLMGTFIGTVICKAISYLMGVSVSSTLNVA	147
Db	148	IALERYSAICRPLQARVWQTRSHAARVILATWLLSGLLMVPYPVYTMVQPVG-PRVLQCM	206
Q:	265	EFPWDQGYELFYNIILDFLLLVLPLLVLCVAYILIRTLVYGMAKD-----SGRILQ	316
Db	207	. : : : : : : : : : : : : : : : : : :	266
Q:	317	QSLPVSATTAGGSAPNPGTSSSSNCILVLTATAVYNENSNNNNNGNSEGSAGGGSTNMATT	376
Db	267	: : : : : : : : : : : : : : : : : : :	305
Q:	377	GGLP-----GGAAPGP-VHQNGGCRPV---TSVAGEDSD-----GCCVQLPRS	436
Db	306	- - - - - EMTLTTPTPGPVPGP-----RPNQAKLL-AKKRVRMMLLVIV	344
Q:	437	LEFFICWTPLVINTMVMLIGPVVYBVDYTAISFLQLLAYSSCCNPITYCFMNASFR	496
Db	345	- : : : : : : : : : : : : : : : : : : :	404
Q:	497	AFVDT 501	
Db	405	:	
Q:	405	ACLDT 409	

RESULT 2
I51898
cholecystokinin A receptor - guinea pig
C.Species Cavia porcellus (guinea pig)
C.Date: 04-Sep-1997 #sequence_revision 04-Sep-1997 #text_change 20-Apr-2000
C.Accession: I51898
R.De Weerth, A.; Pisegna, J.R.; Wank, S.A.
Am. J. Physiol. 265, G1116-G1121, 1993

A;Title: Guinea pig gallbladder and pancreas possess identical CCK-A receptor subtypes:
receptor cloning and expression.
A;Reference number: I51898, MUID:94106629
A;Accession: I51898
A;Status: preliminary; translated from GB/EMBL/DDBJ
A;Molecule type: mRNA
A;Residues: 1-430 <RES>
A;Cross-references: GB:S68242; NID:g544723; PIDN:AAB29504.1, PID g544724
C;Superfamily: neurokinin 1 receptor

Query Match	Score	DB	Length
Best Local Similarity	35.0%	Pred. No.	2.7e-38;
Matches	165;	Conservative	72;
Mismatches	168;	Indels	67,
Gaps	10;		
Qy 83	ELAF --- SLGTSSSPSSTP ASSS STGMPVWLIPSYSMILLFAVLGNLLVISTLVQN	139	
Db 19	ELGFENETLFC LDRPRPS----- KEWQPAVQILLYSLIFL LSVLGNTLVITVLIRN	69	
Qy 140	RRMRTITNVFLLNLAI SDMLLGVL CMPVTLVGTLRLRN FIFGEFLKLFQFSQAAS VAVSS	199	
Db 70	KRMRTVTNIFL LSLA VSDLMLCLFC MPFN LIPSLLKDFIFGS AVCKTTYFMGTSV SVST	129	
Qy 200	WT LVAIS CERYYAICHPLRSRSWQTISHAYKIIGFIWLGGILCMTPIAVFSQLIPTSRPG	259	
Db 130	FNLVAIS LERYGAICKPLQS RVS WQT KSHALKVIAATWCLSFTIMTPYPIYSNL VPFTKNN	189	
Qy 260	Y---CKCREFWPDQGYELFYNI LLDFLLVLPLLVLCVAYILITR TLYVGMAKDSGRILQ	316	
Db 190	NQTGNMCRFL LPNDVMQQTWHTFL LFLIPGIVMMVAYGLISLELYQGIKFDA -IQK	247	
Qy 317	QSLPV SATTAGGSAPNPGTSSS NCILVLTATA VYNENSNNNNNGNSEGSAGGGSTNMATT	376	
Db 248	KSAKERKTSTGSSGP---MEDSDGC-----YLQKS RH----- PR	278	
Qy 377	TLTTRPTAPTVITTTTTTVLAKTSSPSIRVHDAALRRSNEAKTLESKKR VVKMLFV LV	436	
Db 279	KLELRQLSP-----SSSGSNRIN--RIRSSSTANLMKA KRVIRMLIVIV	321	
Qy 437	LEFFICWTPLVINTMVMLIGP VVYEYVDYTAISFLQLLAYSSCCN PITYCFMN ASFR	496	
Db 322	VLFFLCWMPIFSANAWPAYDTVSAERHLSGTPISFILL SYTSSCVNP IIYCFMN KRF RL	381	
Qy 497	AFVDTFKGLPWRRGAGASGGVGGAGGG L SASQAGAGPGA YASANTN ISLNP	548	
Db 382	GFMATFPCCP----NP GTPGVRGEM GEEEEEGR TTGASL SRYSY SHM STSAPP	429	

SUMMARIES

Result No.	Score	Query					Description
		Match	Length	DB	ID		
1	667.5	22	2	453	1	CCKR_XENLA	P70031 xenopus lae
2	655.5	21	9	452	1	GASR_RAT	P30553 rattus norv
3	654.5	21	8	430	1	CCKR_CAVPO	Q63931 cavia porce
4	652.5	21	8	450	1	GASR_PRANA	P30796 praeomys nat
5	647.5	21	6	428	1	CCKR_HUMAN	P32238 homo sapien
6	646.5	21	6	453	1	GASR_MOUSE	P56481 mus musculu
7	644.5	21	5	436	1	CCKR_MOUSE	O08786 mus musculu
8	642	21	4	444	1	CCKR_RAT	P30551 rattus norv
9	632.5	21	1	427	1	CCKR_RABIT	O97772 oryctolagus
10	625	20	8	452	1	GASR_RABIT	P46627 oryctolagus
11	619.5	20	6	453	1	GASR_CANFA	P30552 canis famil
12	617.5	20	6	447	1	GASR_HUMAN	P32239 homo sapien
13	612	20	4	454	1	GASR_BOVIN	P79266 bos taurus
14	442	14	7	432	1	NFF1_RAT	Q9ep86 rattus norv

RESULT 1
 CCKR_XENLA
 ID CCKR_XENLA STANDARD; PRT; 453 AA.
 AC P70031;
 DT 01-NOV-1997 (Rel. 35, Created)
 DT 01-NOV-1997 (Rel. 35, Last sequence update)
 DT 15-JUL-1998 (Rel. 36, Last annotation update)
 DE Cholecystokinin receptor (CCK-XLR).
 CS Xenopus laevis (African clawed frog).
 OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 OC Amphibia; Batrachia; Anura; Mesobatrachia; Pipoidea; Pipidae;
 OC Xenopodinae; Xenopus.
 OX NCBI_TaxID=8355;
 RN [1]
 RP SEQUENCE FROM N.A.
 RC ISSUE=Brain;
 RX MEDLINE=96319796; PubMed=8700154;
 FA Schmitz F., Pratt D S., Wu M.-J., Kolakowski L F. Jr., Beinborn M.,
 PA Kopin A.S.;
 PT "Identification of cholecystokinin-B/gastrin receptor domains that
 confer high gastrin affinity: utilization of a novel Xenopus laevis
 cholecystokinin receptor.";
 PL Mol. Pharmacol. 50:436-441(1996).
 CC -!- FUNCTION: RECEPTOR FOR CHOLECYSTOKININ THIS RECEPTOR MEDIATES ITS
 CC ACTION BY ASSOCIATION WITH G PROTEINS THAT ACTIVATE A
 CC PHOSPHATIDYLINOSITOL-CALCIUM SECOND MESSENGER SYSTEM. HAS HIGH
 CC AFFINITY FOR CCK-8 AND LOW AFFINITIES FOR GASTRIN-17-I, CCK-4, AND
 CC UNSULFATED CCK-8.
 CC -!- SUBCELLULAR LOCATION: Integral membrane protein.
 CC -!- TISSUE SPECIFICITY: BRAIN AND STOMACH.
 CC -!- SIMILARITY: BELONGS TO FAMILY 1 OF G-PROTEIN COUPLED RECEPTORS.
 CC HAS EQUAL SIMILARITY TO TYPE A AND B CHOLECYSTOKININ MAMMALIAN
 CC RECEPTORS.
 CC -----
 CC This SWISS-PROT entry is copyright. It is produced through a collaboration
 CC between the Swiss Institute of Bioinformatics and the EMBL outstation -
 CC the European Bioinformatics Institute. There are no restrictions on its
 CC use by non-profit institutions as long as its content is in no way
 CC modified and this statement is not removed. Usage by and for commercial
 CC entities requires a license agreement (See <http://www.isb-sib.ch/announce/>
 CC or send an email to license@isb-sib.ch).
 CC -----
 DR EMBL; U49258; AAB09052.1; -.
 DR GCRDb; GCR_0930; -.
 DR GCRDb; GCR_1953; -.
 DR InterPro; IPR000276; GPCR_Rhodopsn.
 DR Pfam; PF00001; 7tm_1; 1.
 DR PRINTS; PR00237; GPCRRHODOPSN
 DR PROSITE; PS00237; G_PROTEIN_RECEP_F1_1; 1.
 DR PROSITE; PS50262; G_PROTEIN_RECEP_F1_2; 1.
 KW G-protein coupled receptor; Transmembrane; Glycoprotein;
 KW Lipoprotein; Palmitate.
 FT DOMAIN 1 64 EXTRACELLULAR (POTENTIAL).
 FT TRANSMEM 65 94 1 (POTENTIAL).
 FT DOMAIN 95 104 CYTOPLASMIC (POTENTIAL).
 FT TRANSMEM 105 131 2 (POTENTIAL)
 FT DOMAIN 132 142 EXTRACELLULAR (POTENTIAL).
 FT TRANSMEM 143 164 3 (POTENTIAL).
 FT DOMAIN 165 184 CYTOPLASMIC (POTENTIAL).
 FT TRANSMEM 185 205 4 (POTENTIAL).
 FT DOMAIN 206 237 EXTRACELLULAR (POTENTIAL).
 FT TRANSMEM 238 261 5 (POTENTIAL).
 FT DOMAIN 262 343 CYTOPLASMIC (POTENTIAL).
 FT TRANSMEM 344 364 6 (POTENTIAL).
 FT DOMAIN 365 379 EXTRACELLULAR (POTENTIAL).
 FT TRANSMEM 380 403 7 (POTENTIAL).
 FT DOMAIN 404 453 CYTOPLASMIC (POTENTIAL).
 FT DISULFID 141 223 BY SIMILARITY
 FT LIPID 401 401 PALMITATE (BY SIMILARITY).
 FT CARBOHYD 9 9 N-LINKED (GLCNAC . .) (POTENTIAL).
 FT CARBOHYD 22 22 N-LINKED (GLCNAC . .) (POTENTIAL).

FT CARBOHYD 30 30 N-LINKED (GLCNAC. .) (POTENTIAL).
 FT CARBOHYD 35 35 N-LINKED (GLCNAC. .) (POTENTIAL).
 FT CARBOHYD 39 39 N-LINKED (GLCNAC. .) (POTENTIAL).
 SQ SEQUENCE 453 AA; 51157 MW; 06217927B7482678 CRC64;

Query Match 22 2%, Score 667.5; DB 1, Length 453;
 Best Local Similarity 33 5%. Pred No. 6.4e-34;
 Matches 176; Conservative 78. Mismatches 169. Indels 103; Gaps 16;

QY 13 AMAAAAAYRALLDYANAPSAAGHIVSLNVAPYNGTGNGGTSLAG--NATSSYGGDDDR 69
 Pb 6 CLSMNSALHELLGRVGNLSGT LTENILSSTNTCTHNLTTANWRPRWNLNCTRLU--DP 58

QY 70 DGYMDTEPSDLVTELAFSLGTSSSPSPSSTPASSSSTSTGMPVWL-IPSYSMILLFAVLG 128
; ; | ; . : ; | ; | ; . : ; |

QY 129 NLLVISTLVQNRRMRTITNVFLLNIAISDMLLGVLCMPVTLVGTLLRNFIFGEFLCKLFQ 188

Db 86 NTLIIIVLVMNJKRLRTITNSFLLSIALSDLMVAVLCMPFTLIPNLMEFNIFGEVICPAAA 145
 Ov 189 FSOAASVAVSSWTLVAISCRYYAICHPLPSRSWOTISHAYKIIIGFIWLGGILCMTPIAV 248

Db 146 YFMGLSVSVSTFNLAISIERYSAICNPLKSRVWQTRSHAYRVIATWVLSSIIMIPYLV 205

Db 206 YNKTVTFPMKDRRGH-QCRLVWPSKQVQQAWYVLLTILFFIPGVUMIVAYGLISRELY 264

```

Qy   305  VGMAPDSGRILQQSLPVSATAGGSAPN--PGTSSSNCLVLATAVYNENSNNNNNGS 362
     : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
Db   265  RGIQFE---MDLNKEAKAHKNGVSTPTTIPSGLDEGDGCYIQTAKR----- 306

```

Qy 423 ESKKPVVKMLFVLVLEFFICWTPLYVINTMVMLI-GPVVYEVVDYTAISFLQLLAYSSCC 482

Qy 483 NPITYCFMNASFRRAFVDTFKGL-- PWRRGAGASGGVGAAGGLS 526

Db 396 NPLIYCFMNKFRKAFLGTSSCIKPCRNFRDDEDI-AATGASLS 440

SEQ ID NO: 15

Result No.	Score	Query					Description
		Match	Length	DB	ID		
1	54	100.0	9	22	AAU03346	Fruit fly G protein	
2	54	100.0	9	22	AAU03347	Fruit fly G protein	
3	54	100.0	9	22	AAU03351	Fruit fly G protein	
4	52	96.3	14	22	AAU03353	Fruit fly G protein	
5	52	96.3	128	22	ABB66665	Drosophila melanogaster	
6	48	88.9	9	22	AAU03897	G protein-coupled	
7	40	74.1	7	22	AAU03354	G protein coupled	
8	40	74.1	590	22	AAB84261	Amino acid sequence	
9	40	74.1	640	22	ABG16509	Novel human diagnosis	
10	40	74.1	836	19	AAW85017	Grk5-green fluorescence	
11	40	74.1	842	19	AAW85008	Grk5-green fluorescence	
12	39	72.2	227	22	AAU31534	Novel human secreted protein	
13	39	72.2	255	22	ABB71872	Drosophila melanogaster	
14	39	72.2	345	22	AAU33607	Pseudomonas aeruginosa	
15	38	70.4	281	22	ABB59929	Drosophila melanogaster	
16	37	68.5	89	22	AAM16451	Peptide #2885 encoded	

17	37	68.5	145	22	AAM25650	Human protein sequ
18	37	68.5	431	20	AAY59728	Human normal ovari
19	37	68.5	855	21	AAB54359	Human pancreatic c
20	37	68.5	1090	22	AAB94737	Human protein sequ
21	37	68.5	1144	21	AAB02007	Type III adenylyl
22	36	66.7	149	22	AAM79774	Human protein SEQ
23	36	66.7	244	21	AAG07361	Arabidopsis thalia
24	36	66.7	244	21	AAG61263	Arabidopsis thalia
25	36	66.7	251	21	AAG07360	Arabidopsis thalia
26	36	66.7	251	21	AAG61262	Arabidopsis thalia
27	36	66.7	253	22	AAB86351	A. thaliana allene
28	36	66.7	254	22	AAB86350	A. thaliana allene
29	36	66.7	258	21	AAG07359	Arabidopsis thalia
30	36	66.7	258	21	AAG61261	Arabidopsis thalia
31	36	66.7	301	22	AAM78790	Human protein SEQ

SUMMARIES

Result	Query					Description
	No	Score	Match	Length	DB	ID
1	40	74.1	590	1	US-08-221-817-14	Sequence 14, Appl
2	40	74.1	590	1	US-08-454-439-14	Sequence 14, Appl
3	40	74.1	590	4	US-08-454-954A-5	Sequence 5, Appl
4	40	74.1	590	5	PCT-US94-10487-14	Sequence 14, Appl
5	37	68.5	1144	3	US-08-726-214-6	Sequence 6, Appl
6	35	64.8	576	1	US-08-221-817-13	Sequence 13, Appl
7	35	64.8	576	1	US-08-221-817-22	Sequence 22, Appl
8	35	64.8	576	1	US-08-454-439-13	Sequence 13, Appl
9	35	64.8	576	1	US-08-454-439-22	Sequence 22, Appl
10	35	64.8	576	4	US-08-454-954A-6	Sequence 6, Appl
11	35	64.8	576	5	PCT-US94-10487-13	Sequence 13, Appl
12	35	64.8	576	5	PCT-US94-10487-22	Sequence 22, Appl
13	35	64.8	632	1	US-08-221-817-11	Sequence 11, Appl
14	35	64.8	632	1	US-08-454-439-11	Sequence 11, Appl
15	35	64.8	632	5	PCT-US94-10487-11	Sequence 11, Appl
16	35	64.8	688	1	US-08-221-817-19	Sequence 19, Appl
17	35	64.8	688	1	US-08-454-439-19	Sequence 19,

RESULT 1
US-08-221-817-14
; Sequence 14, Application US/08221817
; Patent No. 5532151
; GENERAL INFORMATION:
; APPLICANT: Chantry, David
; APPLICANT: Gray, Patrick W.
; APPLICANT: Hoekstra, Merle F.
; TITLE OF INVENTION: A No. 5532151el G Protein-Coupled Receptor
; TITLE OF INVENTION: Kinase GRK6
; NUMBER OF SEQUENCES: 24
; CORRESPONDENCE ADDRESS:
; ADDRESSEE: Marshall, O'Toole, Gerstein, Murray &
; ADDRESSEE: Borun
; STREET: 6300 Sears Tower, 233 South Wacker Drive
; CITY: Chicago
; STATE: Illinois
; COUNTRY: USA
; ZIP: 60606
; COMPUTER READABLE FORM:
; MEDIUM TYPE: Floppy disk
; COMPUTER: IBM PC compatible
; OPERATING SYSTEM: PC-DOS/MS-DOS
; SOFTWARE: PatentIn Release #1.0, Version #1.25
; CURRENT APPLICATION DATA:
; APPLICATION NUMBER US/08/221,817
; FILING DATE
; CLASSIFICATION: 435
; PRIOR APPLICATION DATA:
; APPLICATION NUMBER 08/123,932

FILING DATE: 17 SEP 1993
ATTORNEY/AGENT INFORMATION:
NAME: No. 5532151and, Greta E.
REGISTRATION NUMBER: 35,302
REFERENCE/DOCKET NUMBER: 31981
TELECOMMUNICATION INFORMATION
TELEPHONE (312) 474-6300
TELEFAX (312) 474-0448
TELEX: 25-3856
INFORMATION FOR SEQ ID NO: 14:
SEQUENCE CHARACTERISTICS:
LENGTH: 590 amino acids
TYPE: amino acid
TOPOLOGY: linear
MOLECULE TYPE: protein
US-08-221-817-14

Query Match 74.1%; Score 40; DB 1; Length 590;
Best Local Similarity 85.7%; Pred. No. 10;
Matches 6, Conservative 1; Mismatches 0; Indels 0; Gaps 0;

Qy 2 DDYGHRL 8
| :| :|
Db 320 DDYGHIR 326

RESULT 2
US-08-454-439-14
Sequence 14, Application US/08454439
Patent No. 5591618
GENERAL INFORMATION:
APPLICANT: Chantry, David
APPLICANT: Gray, Patrick W.
APPLICANT: Hoekstra, Merle F.
TITLE OF INVENTION: A No. 5591618el G Protein-Coupled Receptor
TITLE OF INVENTION Kinase GRK6
NUMBER OF SEQUENCES: 24
CORRESPONDENCE ADDRESS
ADDRESSEE: Marshall, O'Toole, Gerstein, Murray &
ADDRESSEE: Borun
STREET: 6300 Sears Tower, 233 South Wacker Drive
CITY: Chicago
STATE: Illinois
COUNTRY: USA
ZIP: 60606
COMPUTER READABLE FORM:
MEDIUM TYPE: Floppy disk
COMPUTER: IBM PC compatible
OPERATING SYSTEM: PC-DOS/MS-DOS
SOFTWARE: PatentIn Release #1.0, Version #1.25
CURRENT APPLICATION DATA:
APPLICATION NUMBER: US/08/454,439
FILING DATE: 30-MAY-1995
CLASSIFICATION: 435
PRIOR APPLICATION DATA:
APPLICATION NUMBER: US 08/221,817
FILING DATE: 31-MAR-1994
APPLICATION NUMBER: 08/123,932
FILING DATE: 17 SEP 1993
CLASSIFICATION: 435
ATTORNEY/AGENT INFORMATION:
NAME: No. 5591618and, Greta E.
REGISTRATION NUMBER: 35,302
REFERENCE/DOCKET NUMBER: 31981
TELECOMMUNICATION INFORMATION
TELEPHONE: (312) 474-6300
TELEFAX: (312) 474-0448
TELEX: 25-3856
INFORMATION FOR SEQ ID NO: 14:
SEQUENCE CHARACTERISTICS:

; LENGTH 590 amino acids
; TYPE: amino acid
; TOPOLOGY: linear
; MOLECULE TYPE: protein
US-08-454-439-14

Query Match 74.1%; Score 40; DB 1; Length 590;
Best Local Similarity 85.7%; Pred. No. 10;
Matches 6; Conservative 1; Mismatches 0; Indels 0; Gaps 0;

Qy 2 DDYGHLR 8
|| :|
Db 320 DDYGHIR 326

Result No.	Score	Query Match	Length	DB ID	Description
1	52	96.3	11	2 A60656	perisulfakinin - A
2	52	96.3	14	2 A56632	neosulfakinin-II -
3	52	96.3	128	2 A31101	drosulfakinin prec
4	52	96.3	140	2 S66610	sulfakinin - blueb
5	48	88.9	11	1 GMROL	leucosulfakinin -
6	46	85.2	10	1 GMROL2	leucosulfakinin-II
7	46	85.2	10	2 B60656	leucosulfakinin II
8	40	74.1	35	2 B48682	G protein-coupled
9	40	74.1	590	1 A54372	G protein-coupled
10	40	74.1	590	2 A48277	G protein-coupled
11	39	72.2	310	2 B86825	aspartate carbamoy
12	39	72.2	345	2 B83371	conserved hypothet
13	39	72.2	419	2 S72325	glucan 1,3-beta-gl
14	39	72.2	471	2 B97611	UDP-N-acetyl murama
15	39	72.2	471	2 AF2833	UDP-N-acetyl murama

RESULT 1
A60656
perisulfakinin - American cockroach
C;Species: Periplaneta americana (American cockroach)
C;Date: 14-May-1993 #sequence_revision 14-May-1993 #text_change 11-Jul-1997
C;Accession: A60656
R;Veenstra, J.A.
Neuropeptides 14, 145-149, 1989
A;Title: Isolation and structure of two gastrin/CCK-like neuropeptides from the American cockroach homologous to the leucosulfakinins.
A;Reference number: A60656; MUID:90137190
A;Accession: A60656
A;Molecule type: protein
A;Residues: 1-11 <VEEE>
C;Comment: This neuropeptide stimulates hindgut contractions.
C;Keywords: amidated carboxyl end; neuropeptide; sulfoprotein
F,6/Binding site: sulfate (Tyr) (covalent) #status experimental
F,11/Modified site: amidated carboxyl end (Phe) #status experimental

Query Match 96.3%; Score 52; DB 2; Length 11;
Best Local Similarity 88.9%; Pred. No. 0.0013;
Matches 8; Conservative 1; Mismatches 0; Indels 0; Gaps 0;

Qy 1 FDDYGHRLF 9
|||||:|||
Db 3 FDDYGHMRF 11

RESULT 2
A56632
neosulfakinin-II - flesh fly (*Sarcophaga bullata*)
N;Alternate names: Neb-SK-II

N.Contains: neosulfakinin-I (Neb-SK-I)
 C.Species: Sarcophaga bullata
 C;Date: 21-Jul-1995 #sequence_revision 21-Jul-1995 #text_change 20-Jun-2000
 C;Accession: A56632
 R,Fonagy, A.; Schoofs, L.; Proost, P.; Van Damme, J.; De Loof, A
 Comp. Biochem Physiol. C 103, 135-142, 1992
 A>Title: Isolation and primary structure of two sulfakinin-like peptides from the
 fleshfly, Neobellieria bullata.
 A,Reference number: A56632; MUID:93083101
 A,Accession: A56632
 A,Molecule type: protein
 A,Residues: 1-14 <FON>
 A,Experimental source: heads
 A,Note: sequence extracted from NCBI backbone (NCBIP:120391)
 C,Keywords: amidated carboxyl end; neuropeptide; sulfoprotein
 F,1-14/Product: neosulfakinin-II #status experimental <NSK2>
 F,6-14/Product: neosulfakinin-I #status experimental <NSK1>
 F,9/Binding site: sulfate (Tyr) (covalent) #status predicted
 F,14/Modified site: amidated carboxyl end (Phe) #status experimental

```

Query Match          95.3%;  Score 52;  DB 2;  Length 14;
Best Local Similarity   88.9%;  Pred. No. 0.0016;
Matches      8;  Conservative     1;  Mismatches     0;  Indels     0;  Gaps      0;

Qy      1 FDDYGHILRF 9
       ||| ||:|.
Db      6 FDDYGHMRF 14
  
```

SUMMARIES

Result	Query				Description
No.	Score	Match	Length	DB	ID
1	52	96.3	9	1	NSK1_SARBU
2	52	96.3	11	1	LSKP_PERAM
3	52	96.3	14	1	NSK2_SARBU
4	52	96.3	128	1	DSK_DROME
5	48	88.9	11	1	LSK1_LEUMA
6	46	85.2	10	1	LSK2_LEUMA
7	46	85.2	12	1	LOSK_LOCMI
8	40	74.1	590	1	GRK5_BOVIN
9	40	74.1	590	1	GRK5_HUMAN
10	40	74.1	590	1	GRK5_RAT
11	39	72.2	310	1	PYRB_LACLA
12	38	70.4	182	1	RL5_SULSO
13	38	70.4	463	1	FLGE_TREPH
14	37	68.5	190	1	RL5_METJA
15	37	68.5	1144	1	CYA3_HUMAN
16	37	68.5	1144	1	CYA3_RAT
17	36	66.7	200	1	YCLP_XANCP
18	36	66.7	214	1	VC01_VARV
19	36	66.7	224	1	VC01_VACCC
20	36	66.7	229	1	VC01_VACCV
21	36	66.7	454	1	MURC_AQUAE
22	35	64.8	576	1	GRK6_HUMAN
23	35	64.8	576	1	GRK6_MOUSE
24	35	64.8	576	1	GRK6_RAT
25	35	64.8	642	1	YQR1_CAEEL

```

RESULT      1
NSK1_SARBU
ID  NSK1_SARBU      STANDARD;      PRT;      9 AA.
AC  P41492;
DT  01-NOV-1995 (Rel. 32, Created)
DT  01-NOV-1995 (Rel. 32, Last sequence update)
  
```

DT 01-FEB-1996 (Rel. 33, Last annotation update)
 DE Neosulfakinin-I (NEB-SK-I).
 CS Sarcophaga bullata (Grey flesh fly) (Neobellieria bullata).
 CC Eukaryota; Metazoa; Arthropoda; Tracheata; Hexapoda; Insecta;
 CC Pterygota; Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha;
 CC Oestroidea; Sarcophagidae; Sarcophaga
 CX NCBI_TaxID=7385;
 FN [1]
 FP SEQUENCE.
 FC TISSUE=Head;
 RX MEDLINE=93083101; PubMed=1360367,
 PA Fonagy A., Schoofs L., Proost P., van Damme J., de Loof A.;
 PT "Isolation and primary structure of two sulfakinin-like peptides from
 the fleshfly, Neobellieria bullata.";
 FL Comp. Biochem. Physiol. 103C:135-142(1992).
 CC -!- FUNCTION: MYOTROPIC PEPTIDE.
 CC -!- SIMILARITY: BELONGS TO THE GASTRIN/CHOLECYSTOKININ FAMILY.
 DR InterPro; IPR001651; Gastrin.
 DR PROSITE; PS00259; GASTRIN; 1.
 FW Neuropeptide; Amidation; Sulfation.
 FT MOD_RES 4 4 SULFATION (POTENTIAL).
 FT MOD_RES 9 9 AMIDATION (POTENTIAL).
 SQ SEQUENCE 9 AA: 1187 MW: 8B0A0691E86B5AAA CRC64;

Query Match 96.3%; Score 52, DB 1, Length 9;
 Best Local Similarity 88.9%; Pred. No. 1e+05;
 Matches 8; Conservative 1; Mismatches 0; Indels 0; Gaps 0;

QY 1 FDDYGHRLF 9
 |||||:|||
 Db 1 FDDYGHMRF 9

SUMMARIES

Result	Query					Description
No	Score	Match	Length	DB	ID	
1	40	74.1	590	11	070292	O70292 mus musculu
2	40	74.1	590	11	070297	O70297 mus musculu
3	39	72.2	255	5	Q9VITO	Q9vit0 drosophila
4	39	72.2	310	2	Q9L4N6	Q914n6 lactococcus
5	39	72.2	345	16	Q9I1S0	Q9i1s0 pseudomonas
6	39	72.2	419	3	Q12539	Q12539 agaricus bi
7	39	72.2	420	3	Q9C1A8	Q9c1a8 gibberella
8	39	72.2	420	3	Q9C1B5	Q9c1b5 fusarium sp
9	39	72.2	420	3	Q96V36	Q96v36 gibberella
10	39	72.2	466	16	Q98FB4	Q98kb4 rhizobium l
11	39	72.2	471	16	Q92NM0	Q92nm0 rhizobium m
12	39	72.2	477	5	P91348	P91348 caenorhabdi
13	38	70.4	174	16	Q92JL8	Q92jl8 rickettsia
14	38	70.4	281	5	Q9V3A9	Q9v3a9 drosophila
15	38	70.4	1186	3	Q12466	Q12466 saccharomyce
16	37	68.5	323	5	Q9GUN9	Q9gun9 caenorhabdi

RESULT 1
 C70292
 ID 070292 PRELIMINARY; PRT; 590 AA.
 AC 070292;
 DT 01-AUG-1998 (TrEMBLrel. 07, Created)
 DT 01-AUG-1998 (TrEMBLrel. 07, Last sequence update)
 DT 01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
 DE G PROTEIN-COUPLED RECEPTOR KINASE 5.
 GN GPRK5 OR GRK5.
 OS Mus musculus (Mouse)
 OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 OC Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
 OX NCBI_TaxID=10090;

RN [1]
FP SEQUENCE FROM N.A.
FX MEDLINE=99436149; PubMed=10506199;
FA Premont R.T., Macrae A.D., Aparicio S.A., Kendall H.E., Welch J.E.,
PA Lefkowitz R.J.
RT "The GRK4 subfamily of G protein-coupled receptor kinases. Alternative
FT splicing, gene organization, and sequence conservation."
RL J. Biol. Chem. 274 29381-29389(1999).
CC -!- SIMILARITY BELONGS TO THE SER/THR FAMILY OF PROTEIN KINASES. GPRK
CC SUBFAMILY.
CC -!- SIMILARITY CONTAINS 1 RGS DOMAIN.
DR EMBL; AF040746; AAC09267 1; -.
DP HSSP; Q63450; 1A06.
DR MGD; MGI 109161; Gprk5
DR InterPro; IPR000719; Euk_pk kinase.
DR InterPro; IPR000239; GPCR_kinase.
DR InterPro; IPR000961; Pkinase_C.
DR InterPro; IPR000342; RGS.
DR InterPro; IPR002290; Ser_thr_pk kinase.
DR Pfam; PF00069; pk kinase; 1
DR Pfam; PF00615; RGS; 1
DR PRINTS; PR00717; GPCR_KINASE.
DR SMART; SM00315; RGS; 1
DR SMART; SM00220; S_TK_C; 1
DR SMART; SM00133; S_TK_X; 1
DR PROSITE; PS00107; PROTEIN_KINASE_ATP; 1.
DR PROSITE; PS50011; PROTEIN_KINASE_DOM; 1.
DR PROSITE; PS50132; RGS; 1
KW ATP-binding, Kinase, Receptor; Transferase.
SQ SEQUENCE 590 AA; 67732 MW; F47D87397B1A2399 CRC64;

Query Match 74.1%; Score 40; DB 11; Length 590;
Best Local Similarity 85.7%; Pred. No. 40;
Matches 6; Conservative 1; Mismatches 0; Indels 0; Gaps 0;

QY 2 DDYGHLR 8
|| |:
Db 320 DDYGHIR 326

RESULT 2
070297
ID 070297 PRELIMINARY; PRT; 590 AA.
AC 070297;
DT 01-AUG-1998 (TrEMBLrel. 07, Created)
DT 01-AUG-1998 (TrEMBLrel. 07, Last sequence update)
DT 01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DE G PROTEIN-COUPLED RECEPTOR KINASE 5.
GN GPRK5 OR GRK5
OS Mus musculus (Mouse).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
OX NCBI_TaxID=10090;
FN [1]
FP SEQUENCE FROM N.A.
RC STRAIN=129SVJ,
RX MEDLINE=99436149; PubMed=10506199;
FA Premont R.T., Macrae A.D., Aparicio S.A., Kendall H.E., Welch J.E.,
RA Lefkowitz R.J.,
RT "The GRK4 subfamily of G protein-coupled receptor kinases. Alternative
FT splicing, gene organization, and sequence conservation."
RL J. Biol. Chem. 274 29381-29389(1999).
CC -!- SIMILARITY BELONGS TO THE SER/THR FAMILY OF PROTEIN KINASES. GPRK
CC SUBFAMILY.
CC -!- SIMILARITY: CONTAINS 1 RGS DOMAIN.
DR EMBL; AF040759; AAC09271 1; -.
DR EMBL; AF040755; AAC09271 1; JOINED.
DR EMBL; AF040756; AAC09271 1; JOINED.
DR EMBL; AF040757; AAC09271 1; JOINED.
DR EMBL; AF040758; AAC09271 1; JOINED.

DR HSSP; Q63450; 1A06.
DR MGD; MGI:109161; Gprk5.
DR InterPro; IPR000719; Euk_pkinase.
DR InterPro; IPR000239; GPCR_kinase.
DR InterPro; IPR000961; Pkinase_C.
DR InterPro; IPR000342; RGS.
DR InterPro; IPR002290; Ser_thr_pkinase.
DR Pfam; PF00069; pkinase; 1.
DR Pfam; PF00615; RGS; 1.
DR PRINTS; PR00717; GPCRKINASE.
DR SMART; SM00315; RGS; 1.
DR SMART; SM00220; S_TKC; 1.
DR SMART; SM00133; S_TK_X; 1.
DR PROSITE; PS00107; PROTEIN_KINASE_ATP; 1.
DR PROSITE; PS50011; PROTEIN_KINASE_DOM; 1.
DR PROSITE; PS50132; RGS; 1.
KW ATP-binding; Kinase; Receptor; Transferase.
SQ SEQUENCE 590 AA; 67796 MW; 22253281964DEF64 CRC64;

Query Match 74.1%; Score 40; DB 11; Length 590;
Best Local Similarity 85.7%; Pred. No. 40;
Matches 6; Conservative 1; Mismatches 0; Indels 0; Gaps 0;

Qy 2 DDYGHLR 8
|||:|
Db 320 DDYGHIR 326

09693746

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID: SSSPTA1649JXM

PASSWORD :

TERMINAL (ENTER 1, 2, 3, OR ?):2

* * * * * * * * * * * * * * * * Welcome to STN International * * * * * * * * * * * * * * *

NEWS 1 Web Page URLs for STN Seminar Schedule - N. America
NEWS 2 Jan 25 BLAST(R) searching in REGISTRY available in STN on the Web
NEWS 3 Jan 29 FSTA has been reloaded and moves to weekly updates
NEWS 4 Feb 01 DKILIT now produced by FIZ Karlsruhe and has a new update frequency
NEWS 5 Feb 19 Access via Tymnet and SprintNet Eliminated Effective 3/31/02
NEWS 6 Mar 08 Gene Names now available in BIOSIS
NEWS 7 Mar 22 TOXLIT no longer available
NEWS 8 Mar 22 TRCTHERMO no longer available
NEWS 9 Mar 28 US Provisional Priorities searched with P in CA/CAplus and USPATFULL
NEWS 10 Mar 28 LIPINSKI/CALC added for property searching in REGISTRY
NEWS 11 Apr 02 PAPERCHEM no longer available on STN. Use PAPERCHEM2 instead.
NEWS 12 Apr 08 "Ask CAS" for self-help around the clock
NEWS 13 Apr 09 BEILSTEIN: Reload and Implementation of a New Subject Area
NEWS 14 Apr 09 ZDB will be removed from STN
NEWS 15 Apr 19 US Patent Applications available in IFICDB, IFIPAT, and
IFIUDB
NEWS 16 Apr 22 Records from IP.com available in CAPLUS, HCAPLUS, and
ZCAPLUS
NEWS 17 Apr 22 BIOSIS Gene Names now available in TOXCENTER
NEWS 18 Apr 22 Federal Research in Progress (FEDRIP) now available
NEWS 19 Jun 03 New e-mail delivery for search results now available
NEWS 20 Jun 10 MEDLINE Reload
NEWS 21 Jun 10 PCTFULL has been reloaded
NEWS 22 Jul 02 FOREGE no longer contains STANDARDS file segment
NEWS 23 Jul 19 NTIS to be reloaded July 28, 2002
NEWS 24 Jul 22 USAN to be reloaded July 28, 2002;
 saved answer sets no longer valid

NEWS EXPRESS February 1 CURRENT WINDOWS VERSION IS V6.0d,
 CURRENT MACINTOSH VERSION IS V6.0a(ENG) AND V6.0Ja(JP),
 AND CURRENT DISCOVER FILE IS DATED 05 FEBRUARY 2002

NEWS HOURS STN Operating Hours Plus Help Desk Availability
NEWS INTER General Internet Information
NEWS LOGIN Welcome Banner and News Items
NEWS PHONE Direct Dial and Telecommunication Network Access to STN
NEWS WWW CAS World Wide Web Site (general information)

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific

research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 10:00:34 ON 24 JUL 2002

=> file medline biosis embase caplus

| COST IN U.S. DOLLARS | SINCE FILE
ENTRY | TOTAL
SESSION |
|----------------------|---------------------|------------------|
| FULL ESTIMATED COST | 0.21 | 0.21 |

FILE 'MEDLINE' ENTERED AT 10:00:47 ON 24 JUL 2002

FILE 'BIOSIS' ENTERED AT 10:00:47 ON 24 JUL 2002
COPYRIGHT (C) 2002 BIOLOGICAL ABSTRACTS INC. (R)

FILE 'EMBASE' ENTERED AT 10:00:47 ON 24 JUL 2002
COPYRIGHT (C) 2002 Elsevier Science B.V. All rights reserved.

FILE 'CAPLUS' ENTERED AT 10:00:47 ON 24 JUL 2002
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2002 AMERICAN CHEMICAL SOCIETY (ACS)

=> s dmgpcr

L1 1 DMGPCR

=> s drosophila (p) receptor (p) coupled (p) bind

L2 51 DROSOPHILA (P) RECEPTOR (P) COUPLED (P) BIND

=> dup rem 12

PROCESSING COMPLETED FOR L2
L3 18 DUP REM L2 (33 DUPLICATES REMOVED)

=> d 13 total ibib kwic

L3 ANSWER 1 OF 18 MEDLINE DUPLICATE 1
ACCESSION NUMBER: 2002045994 IN-PROCESS
DOCUMENT NUMBER: 21630175 PubMed ID: 11754840
TITLE: Regulation of the Rhodopsin Protein Phosphatase, RDGC,
through Interaction with Calmodulin.
AUTHOR: Lee S J; Montell C
CORPORATE SOURCE: Department of Biological Chemistry and, Department of
Neuroscience, The Johns Hopkins University School of
Medicine, 21205, Baltimore, MD, USA.
SOURCE: NEURON, (2001 Dec 20) 32 (6) 1097-106.
Journal code: 8809320. ISSN: 0896-6273.
PUB. COUNTRY: United States
LANGUAGE: English
FILE SEGMENT: IN-PROCESS; NONINDEXED; Priority Journals
ENTRY DATE: Entered STN: 20020124
Last Updated on STN: 20020124
AB Hundreds of G protein-coupled receptors (GPCRs) and at
least six GPCR kinases have been identified, but the only GPCR
phosphatase

that has been definitively demonstrated is the rhodopsin phosphatase encoded by the rdgC locus of *Drosophila*. Mutations in rdgC result in defects in termination of the light response and cause severe retinal degeneration. In the current work, we demonstrate that RDGC binds to calmodulin, and a mutation in an IQ motif that eliminates the calmodulin/RDGC interaction prevents dephosphorylation of rhodopsin in vivo.

L3 ANSWER 2 OF 18 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.
ACCESSION NUMBER: 2001:244124 BIOSIS
DOCUMENT NUMBER: PREV200100244124
TITLE: The 1.8ANG crystal structure of InaD PDZ1 complexed with its peptide target reveals a novel mode of PDZ domain binding.
AUTHOR(S): Pliske, Michelle (1); Sondek, John (1)
CORPORATE SOURCE: (1) Biochemistry and Biophysics, UNC-Chapel Hill, Mary Ellen Jones Bldg., Chapel Hill, NC, 27599 USA
SOURCE: FASEB Journal, (March 8, 2001) Vol. 15, No. 5, pp. A723. print.
Meeting Info.: Annual Meeting of the Federation of American Societies for Experimental Biology on Experimental Biology 2001 Orlando, Florida, USA March 31-April 04, 2001
ISSN: 0892-6638.
DOCUMENT TYPE: Conference
LANGUAGE: English
SUMMARY LANGUAGE: English
AB *Drosophila* phototransduction is a model system for the study of G-protein coupled phospholipase-C (PLC) signaling pathways in complex organisms. In this cascade light activates the seven-transmembrane receptor rhodopsin, which in turn activates Gq, allowing its dissociation into signaling-competent alpha and betagamma subunits. Gqalpha induces the PLC-beta4 homolog no receptor potential A (norpA) to cleave phosphatidylinositol-4,5-bisphosphate (PIP2) to the second messengers inositol tri-phosphate (IP3) and diacylglycerol (DAG), leading to the . . . multi-domain scaffolding protein inactivation no after-potential D (inaD). InaD contains five tandem PDZ protein interaction domains, each of which can bind one or multiple phototransduction proteins. PDZ domains bind to the extreme carboxy-terminal (C-terminal) three amino acids of their targets, including the free carboxyl group. InaD PDZ1 binds to norpA, whose C-terminal sequence is FCA. The X-ray crystal structure of PDZ1 bound to a norpA C-terminal heptapeptide was. . .

L3 ANSWER 3 OF 18 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.
ACCESSION NUMBER: 2001:492061 BIOSIS
DOCUMENT NUMBER: PREV200100492061
TITLE: Comparison of adenylyl cyclase stimulation by 5-HT4(b) and 5-HT7(a) receptors using the Ecdysone-Inducible Mammalian Expression System.
AUTHOR(S): Bruheim, S. (1); Andressen, K. W. (1); Krobert, K. A. (1); Levy, F. O. (1)
CORPORATE SOURCE: (1) MSD Cardiovascular Res. Ctr. and Dept. of Pharmacol., Univ. of Oslo, Oslo Norway
SOURCE: Society for Neuroscience Abstracts, (2001) Vol. 27, No. 1, pp. 690. print.
Meeting Info.: 31st Annual Meeting of the Society for Neuroscience San Diego, California, USA November 10-15, 2001
ISSN: 0190-5295.
DOCUMENT TYPE: Conference
LANGUAGE: English
SUMMARY LANGUAGE: English
AB The serotonin (5-HT) receptors 5-HT4 and 5-HT7 are G-protein

coupled receptors that activate adenylyl cyclase (AC) and exist in several splice variants differing only in their intracellular carboxyl terminal tails. We wanted to determine if activation of AC differed between the 5-HT4(b) and 5-HT7(a) **receptors**. Comparison of **receptor** function using constitutive expression systems can be confounded by different **receptor** expression levels and clonal cell line differences. By using the Ecdysone-Inducible Mammalian Expression System we could reproducibly express varying levels of **receptor** in the same clonal cell line. This system utilizes a heterodimer (VgRxR) of the modified ecdysone **receptor** (VgEcR) from *Drosophila* and the retinoid X **receptor** (RXR). This **receptor binds** a hybrid ecdysone response element (E/GRE) in the presence of the synthetic analog of ecdysone, ponasterone A. HEK293 cells stably expressing the heterodimer VgRxR **receptor** were stably transfected with a vector containing the coding regions for 5-HT4(b) and 5-HT7(a) **receptors** downstream of the E/GRE. Radioligand binding revealed low constitutive expression of both **receptors**, which could be titrated up to 3.7 pmol/mg protein with ponasterone A. Preliminary data indicate that constitutive AC activity and potency (EC50) of 5-HT are **receptor** level dependent at the 5-HT4(b) **receptor** but not at the 5-HT7(a) **receptor**. Additionally, the 5-HT7(a) **receptor** activated AC more efficiently than the 5-HT4(b) **receptor** over a wide range of expression levels. Comparative studies on inverse agonism are ongoing.

L3 ANSWER 4 OF 18 MEDLINE DUPLICATE 2
ACCESSION NUMBER: 2001271685 MEDLINE
DOCUMENT NUMBER: 21261850 PubMed ID: 11369206
TITLE: Mutations in the sterol-sensing domain of Patched suggest a role for vesicular trafficking in Smoothened regulation.
COMMENT: Erratum in: Curr Biol 2001 Jul 24;11(14):1153
AUTHOR: Strutt H; Thomas C; Nakano Y; Stark D; Neave B; Taylor A M;
CORPORATE SOURCE: Ingham P W
MRC Intercellular Signalling Group, Centre for Developmental Genetics, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.
SOURCE: CURRENT BIOLOGY, (2001 Apr 17) 11 (8) 608-13.
Journal code: 9107782. ISSN: 0960-9822.
PUB. COUNTRY: England: United Kingdom
Journal; Article; (JOURNAL ARTICLE)
LANGUAGE: English
FILE SEGMENT: Priority Journals
ENTRY MONTH: 200108
ENTRY DATE: Entered STN: 20010813
Last Updated on STN: 20010813
Entered Medline: 20010809
AB The tumor suppressor gene patched (ptc) encodes an approximately 140 kDa polytopic transmembrane protein [1-3] [corrected] that **binds** members of the Hedgehog (Hh) family of signaling proteins [4-6] [corrected] and regulates the activity of Smoothened (Smo), a G protein-coupled receptor-like protein essential for Hh signal transduction [7-9] [corrected]. Ptc contains a sterol-sensing domain (SSD) [10, 11] [corrected], a motif found. . . (Hh) signaling by facilitating the regulated secretion and sequestration of the Hh protein [16] [corrected], to which it is covalently **coupled**. In addition, cholesterol synthesis inhibitors block the ability of cells to respond to Hh [18, 19] [corrected], and this finding. . . has so far been lacking. Here we describe the identification and characterization of two missense mutations in the SSD of *Drosophila* Ptc; strikingly, while both

mutations abolish Smo repression, neither affects the ability of Ptc to interact with Shh. We speculate. . .

L3 ANSWER 5 OF 18 MEDLINE DUPLICATE 3
ACCESSION NUMBER: 2002053834 MEDLINE
DOCUMENT NUMBER: 21638057 PubMed ID: 11779634
TITLE: The transcription factors Sp1 and Sp3 are required for human angiotensin II type 1 receptor gene expression in H295-R cells.
AUTHOR: Zhao X; Martin M M; Elton T S
CORPORATE SOURCE: Department of Chemistry and Biochemistry, Brigham Young University, C206 Benson Building, P.O. Box 25700, Provo,
UT 84602-5700, USA.
CONTRACT NUMBER: HL48848 (NHLBI)
SOURCE: BIOCHIMICA ET BIOPHYSICA ACTA, (2001 Dec 30) 1522 (3) 195-206.
JOURNAL code: 0217513. ISSN: 0006-3002.
PUB. COUNTRY: Netherlands
LANGUAGE: English
FILE SEGMENT: Priority Journals
ENTRY MONTH: 200202
ENTRY DATE: Entered STN: 20020125
Last Updated on STN: 20020222
Entered Medline: 20020221
AB . . . peptide hormone angiotensin II regulates a variety of physiological responses which are mediated by its interaction with high affinity G protein-coupled receptors localized on the surface of target cells. Our previous studies have demonstrated that a 145 bp sequence within the promoter region was required for basal level expression of the human angiotensin II type 1 receptor (hAT(1)R) gene. In the present study, deletional analysis of the hAT(1)R promoter localized the major regulatory sequence to two overlapping. . .
binding site for Sp1 prevented the formation of the DNA-protein complexes. Supershift EMSAs also demonstrated that Sp1 and Sp3 could bind to the GC boxes present within the -105 to -85 bp region of the hAT(1)R promoter. Transactivation experiments utilizing *Drosophila* SL2 cells, which lack endogenous Sp family transcription factors, demonstrated that Sp1 and Sp3 activated the hAT(1)R promoter and that. . .

L3 ANSWER 6 OF 18 MEDLINE DUPLICATE 4
ACCESSION NUMBER: 2001688270 MEDLINE
DOCUMENT NUMBER: 21592298 PubMed ID: 11734218
TITLE: Identification of mouse trp homologs and lipid rafts from spermatogenic cells and sperm.
AUTHOR: Trevino C L; Serrano C J; Beltran C; Felix R; Darszon A
CORPORATE SOURCE: Department of Genetics and Molecular Physiology, Institute of Biotechnology, UNAM, Cuernavaca, Mexico.
SOURCE: FEBS LETTERS, (2001 Nov 30) 509 (1) 119-25.
JOURNAL code: 0155157. ISSN: 0014-5793.
PUB. COUNTRY: Netherlands
LANGUAGE: English
FILE SEGMENT: Priority Journals
ENTRY MONTH: 200201
ENTRY DATE: Entered STN: 20011206
Last Updated on STN: 20020125
Entered Medline: 20020122
AB . . . of the membrane systems that regulate Ca(2+) in sperm. In this report, we provide evidence for the expression of seven *Drosophila* transient receptor potential homolog genes (trp1-7) and three of their protein products (Trp1, Trp3 and Trp6) in mouse sperm. Allegedly

some trps. . . major component of caveolae, a subset of lipid rafts potentially important for signaling events and Ca(2+) flux. Furthermore, by using fluorescein-coupled cholera toxin B subunit, which specifically binds to the raft component ganglioside GM1, we identified caveolin- and Trp-independent lipid rafts residing in the plasma membrane of mature. . .

L3 ANSWER 7 OF 18 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 1999:297449 CAPLUS
DOCUMENT NUMBER: 130:321591
TITLE: Cloning and cDNA sequence of an invertebrate octopamine receptor
INVENTOR(S): Davis, Ronald L.; Han, Kyung-an; Millar, Neil S.
PATENT ASSIGNEE(S): Baylor College of Medicine, USA
SOURCE: PCT Int. Appl., 58 pp.
CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|---|------|---|-----------------|------------|
| WO 9921891 | A1 | 19990506 | WO 1998-US22808 | 19981027 |
| W: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE,
ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS,
LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,
SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, AM, AZ, BY,
KG, KZ, MD, RU, TJ, TM | | | | |
| RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES,
FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI,
CM, GA, GN, GW, ML, MR, NE, SN, TD, TG | | | | |
| AU 9919008 | A1 | 19990517 | AU 1999-19008 | 19981027 |
| PRIORITY APPLN. INFO.: | | | US 1997-63391P | P 19971027 |
| | | | WO 1998-US22808 | W 19981027 |
| REFERENCE COUNT: | 3 | THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE | | |

FORMAT

AB The present invention provides a novel octopamine receptor comprised of an invertebrate receptor which binds octopamine and is coupled to adenylyl cyclase system. The invention also includes methods of using the octopamine receptor to screen for agonists, antagonists and pesticides. In this method the octopamine receptor is inserted into invertebrate or vertebrate cells, test compd. is added and the activity of the octopamine receptor coupled to the adenylyl cyclase system or the internal Ca²⁺ system is measured. Also included is an expression system for prodn. of the octopamine receptor. The octopamine receptor cDNA was cloned from *Drosophila melanogaster* using PCR and single-strand conformation polymorphism.

L3 ANSWER 8 OF 18 MEDLINE DUPLICATE 5
ACCESSION NUMBER: 1999147062 MEDLINE
DOCUMENT NUMBER: 99147062 PubMed ID: 10022914
TITLE: Identification of a novel family of targets of PYK2 related
to Drosophila retinal degeneration B (rdgB) protein.
AUTHOR: Lev S; Hernandez J; Martinez R; Chen A; Plowman G;
Schlessinger J
CORPORATE SOURCE: Sugen, Inc., South San Francisco, California 94080, USA.
SOURCE: MOLECULAR AND CELLULAR BIOLOGY, (1999 Mar) 19 (3) 2278-88.
Journal code: 8109087. ISSN: 0270-7306.
PUB. COUNTRY: United States
LANGUAGE: Journal; Article; (JOURNAL ARTICLE)
FILE SEGMENT: English
Priority Journals

ENTRY MONTH:

199903

ENTRY DATE:

Entered STN: 19990402

Last Updated on STN: 19990402

Entered Medline: 19990325

AB The protein tyrosine kinase PYK2 has been implicated in signaling pathways

activated by G-protein-coupled receptors, intracellular calcium, and stress signals. Here we describe the molecular cloning and characterization of a novel family of PYK2-binding proteins designated Nirs (PYK2 N-terminal domain-interacting receptors).

The three Nir proteins (Nir1, Nir2, and Nir3) bind to the amino-terminal domain of PYK2 via a conserved sequence motif located in the carboxy terminus. The primary structures of . . . region homologous to phosphatidylinositol (PI) transfer protein, and an acidic domain. The Nir proteins are the human homologues of the *Drosophila* retinal degeneration B protein (rdgB), a protein implicated in the visual transduction pathway in flies. We demonstrate that Nirs are. . .

family

of evolutionarily conserved PYK2-binding proteins that play a role in the control of calcium and phosphoinositide metabolism downstream of G-protein-coupled receptors.

L3 ANSWER 9 OF 18 MEDLINE

DUPLICATE 6

ACCESSION NUMBER: 1998227978 MEDLINE

DOCUMENT NUMBER: 98227978 PubMed ID: 9569023

TITLE: Disabled-2 (Dab2) is an SH3 domain-binding partner of Grb2.

AUTHOR: Xu X X; Yi T; Tang B; Lambeth J D

CORPORATE SOURCE: Department of Biochemistry, and Winship Cancer Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

CONTRACT NUMBER: R 01 CA75389-01 (NCI)
R01CA46508 (NCI)

SOURCE: ONCOGENE, (1998 Mar 26) 16 (12) 1561-9.
Journal code: 8711562. ISSN: 0950-9232.

PUB. COUNTRY: ENGLAND: United Kingdom
Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 199805

ENTRY DATE: Entered STN: 19980520
Last Updated on STN: 20000303
Entered Medline: 19980513

AB Disabled-2 (Dab2), a mammalian structural homolog of *Drosophila* Disabled (Dab), is a mitogen-responsive phosphoprotein. It has been speculated to be a negative regulator of growth since its expression. . . exchange factor for Ras. The proline-rich sequences of Sos mediate the interaction of Sos with Grb2, an adaptor protein which coupled tyrosine kinase receptors to Sos. Herein, we have investigated the possibility that Dab2 interacts with Grb2. In experiments of co-immunoprecipitation from BAC1.2F5 macrophage. . . disrupting the Grb2-Sos complex. The expressed proline-rich domain of Dab2 (#600-730) bound Grb2, but other regions of Dab2 failed to bind Grb2. Both of the individual SH3 domains of Grb2 bound to Sos (N-terminal SH3 domain >> C-terminal SH3 domain), but. . . to Dab2 required the intact Grb2, suggesting cooperative binding using both SH3 domains of Grb2. These data indicate that Dab2 binds to the SH3 domains of Grb2 via its C-terminal proline-rich sequences. Dab2 may modulate growth factor/Ras pathways by competing with. . .

L3 ANSWER 10 OF 18 MEDLINE

DUPLICATE 7

ACCESSION NUMBER: 1998340528 MEDLINE

DOCUMENT NUMBER: 98340528 PubMed ID: 9675877

TITLE: The c-Cbl oncprotein.

AUTHOR: Lupher M L Jr; Andoniou C E; Bonita D; Miyake S; Band H
CORPORATE SOURCE: Department of Medicine, Brigham and Women's Hospital,

SOURCE: Harvard Medical School, Boston, MA 02115, USA.
INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND CELL BIOLOGY,
(1998 Apr) 30 (4) 439-44. Ref: 16

PUB. COUNTRY: Journal code: 9508482. ISSN: 1357-2725.

ENGLAND: United Kingdom
Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 199808

ENTRY DATE: Entered STN: 19980820

Last Updated on STN: 19980820

Entered Medline: 19980813

AB Cbl has emerged as a novel signal transducing protein downstream of a number of cell surface **receptors coupled** to tyrosine kinases. Identified as the protein product of the c-cbl proto-oncogene, the cellular homolog to the transforming gene of. . . finger render

Cbl oncogenic, whereas wild type Cbl is non-transforming, even if overexpressed. Cbl serves as a substrate of both **receptor** and **non-receptor** tyrosine kinases, and **binds** to adaptor proteins Grb2, Crk and the p85 subunit of PI-3-kinase. Additionally, both *Caenorhabditis elegans* and **Drosophila** Cbl homologs, SLI-1 and D-Cbl, respectively, have been identified as negative regulators of the LET-23/DER **receptor** tyrosine kinases. Finally, oncogenic mutants of Cbl, when expressed in fibroblasts, upregulate the signaling cascade downstream of the platelet-derived growth factor **receptor** alpha in a Cbl-PTB domain-dependent manner. Together, these findings position Cbl as a central player in the regulation of tyrosine. . .

L3 ANSWER 11 OF 18 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER: 1999:340756 BIOSIS

DOCUMENT NUMBER: PREV199900340756

TITLE: First Annual Jorge Chevesich Memorial Lecture: A supramolecular signaling complex required for *Drosophila* visual transduction.

AUTHOR(S): Montell, Craig (1)

CORPORATE SOURCE: (1) Departments of Biological Chemistry and Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD, 21205 USA

SOURCE: Einstein Quarterly Journal of Biology and Medicine, (1998) Vol. 15, No. 4, pp. 198-211.
ISSN: 0724-6706.

DOCUMENT TYPE: General Review

LANGUAGE: English

SUMMARY LANGUAGE: English

AB **Drosophila** phototransduction represents one of the fastest known G-protein **coupled** signaling cascades. Exposure of the photoreceptor cells to light leads to activation of the light-induced cation influx channels, TRP and. . . in phototransduction are linked into a supramolecular signaling complex (signalplex) has led to a reevaluation of the mechanisms underlying the **Drosophila** photoresponse. The central player is INAD, a protein with five protein interaction motifs referred to as PDZ domains. At least seven signaling molecules **bind** to INAD. These include rhodopsin, phospholipase C-beta, protein kinase C, TRP, TRPL, calmodulin and an unconventional myosin, NINAC. Some of the. . . Since more than five proteins interact with INAD, it would appear that a single INAD monomer lacks the capacity to **bind** to each of its targets simultaneously. The finding that INAD is capable of forming homo-multimers in vitro raises the possibility that the entire phototransduction cascade may be physically **coupled** in the signalplex. Nearly all of the proteins that function in the signalplex have known vertebrate homologs. These include a. . . neurons of the central nervous system around the time of birth. TRPC3 appears to be activated through stimulation of the **receptor**

tyrosine kinase, TrkB, and phospholipase C-gamma. Thus, a variety of pathways leading to the stimulation of phospholipase C appear to. . .

L3 ANSWER 12 OF 18 MEDLINE DUPLICATE 8
ACCESSION NUMBER: 1998024192 MEDLINE
DOCUMENT NUMBER: 98024192 PubMed ID: 9356510
TITLE: Association of INAD with NORPA is essential for controlled activation and deactivation of Drosophila phototransduction in vivo.
AUTHOR: Shieh B H; Zhu M Y; Lee J K; Kelly I M; Bahiraei F
CORPORATE SOURCE: Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-6600, USA.. shiehb@ctrvax.vanderbilt.edu
CONTRACT NUMBER: EY09743 (NEI)
SOURCE: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, (1997 Nov 11) 94 (23) 12682-7. Journal code: 7505876. ISSN: 0027-8424.
PUB. COUNTRY: United States
Journal; Article; (JOURNAL ARTICLE)
LANGUAGE: English
FILE SEGMENT: Priority Journals
ENTRY MONTH: 199712
ENTRY DATE: Entered STN: 19980109
Last Updated on STN: 19980109
Entered Medline: 19971216
AB Visual transduction in *Drosophila* is a G protein-coupled phospholipase C-mediated process that leads to depolarization via activation of the transient receptor potential (TRP) calcium channel. Inactivation-no-afterpotential D (INAD) is an adaptor protein containing PDZ domains known to interact with TRP. Immunoprecipitation studies indicate that INAD also binds to eye-specific protein kinase C and the phospholipase C, no-receptor-potential A (NORPA). By overlay assay and site-directed mutagenesis we have defined the essential elements of the NORPA-INAD association and identified.

L3 ANSWER 13 OF 18 MEDLINE DUPLICATE 9
ACCESSION NUMBER: 97197784 MEDLINE
DOCUMENT NUMBER: 97197784 PubMed ID: 9045634
TITLE: Cloning and expression of a complementary DNA encoding a molluscan octopamine receptor that couples to chloride channels in HEK293 cells.
AUTHOR: Gerhardt C C; Lodder H C; Vincent M; Bakker R A; Planta R J; Vreugdenhil E; Kits K S; van Heerikhuizen H
CORPORATE SOURCE: Department of Biochemistry and Molecular Biology, Research Institute Neurosciences, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
SOURCE: JOURNAL OF BIOLOGICAL CHEMISTRY, (1997 Mar 7) 272 (10) 6201-7.
Journal code: 2985121R. ISSN: 0021-9258.
PUB. COUNTRY: United States
Journal; Article; (JOURNAL ARTICLE)
LANGUAGE: English
FILE SEGMENT: Priority Journals
OTHER SOURCE: GENBANK-U62770
ENTRY MONTH: 199704
ENTRY DATE: Entered STN: 19970424
Last Updated on STN: 20000303
Entered Medline: 19970414
AB A cDNA encoding a G-protein-coupled receptor was cloned from the central nervous system of the pond snail Lymnaea stagnalis. The predicted amino acid sequence of this cDNA most closely resembles the *Drosophila* tyramine/octopamine receptor, the *Locusta* tyramine receptor, and an octopamine receptor (Lym oal) that we recently cloned from Lymnaea. After

stable expression of the cDNA in HEK293 cells, we found that [3H]rauwolscine binds with high affinity to the receptor ($K_D = 6.2 \cdot 10^{-9}$ M). Octopamine appears to be the most potent naturally occurring agonist to displace the [3H]rauwolscine binding ($K_i = 3.0 \cdot 10^{-7}$ M). Therefore, the receptor is considered to be an octopamine receptor and is consequently designated Lym oa2. The novel receptor shares little pharmacological resemblance with Lym oa1, indicating that the two receptors represent different octopamine receptor subfamilies. Octopaminergic stimulation of Lym oa2 does not induce changes in intracellular concentrations of cAMP or inositol phosphates. However, electrophysiological. . .

L3 ANSWER 14 OF 18 MEDLINE DUPLICATE 10
ACCESSION NUMBER: 97472416 MEDLINE
DOCUMENT NUMBER: 97472416 PubMed ID: 9333241
TITLE: Prolonged photoresponses in transgenic mouse rods lacking arrestin.
AUTHOR: Xu J; Dodd R L; Makino C L; Simon M I; Baylor D A; Chen J
CORPORATE SOURCE: Division of Biology, California Institute of Technology, Pasadena 91125, USA.
SOURCE: NATURE, (1997 Oct 2) 389 (6650) 505-9.
Journal code: 0410462. ISSN: 0028-0836.
PUB. COUNTRY: ENGLAND: United Kingdom
Journal; Article; (JOURNAL ARTICLE)
LANGUAGE: English
FILE SEGMENT: Priority Journals
ENTRY MONTH: 199710
ENTRY DATE: Entered STN: 19971105
Last Updated on STN: 19971105
Entered Medline: 19971022
AB Arrestins are soluble cytoplasmic proteins that bind to G-protein-coupled receptors, thus switching off activation of the G protein and terminating the signalling pathway that triggers the cellular response. Although visual. . . was halved, indicating that arrestin binding is not rate limiting for recovery of the rod photoresponse, as it is in *Drosophila*. With arrestin absent, the flash response displayed a rapid partial recovery followed by a prolonged final phase. This behaviour indicates. . .

L3 ANSWER 15 OF 18 MEDLINE DUPLICATE 11
ACCESSION NUMBER: 97347296 MEDLINE
DOCUMENT NUMBER: 97347296 PubMed ID: 9203635
TITLE: Molecular cloning and pharmacological characterization of a
molluscan octopamine receptor.
AUTHOR: Gerhardt C C; Bakker R A; Piek G J; Planta R J;
Vreugdenhil E; Leysen J E; Van Heerikhuizen H
CORPORATE SOURCE: Department of Biochemistry and Molecular Biology, Research Institute Neurosciences, Vrije Universiteit, Amsterdam, The Netherlands.
SOURCE: MOLECULAR PHARMACOLOGY, (1997 Feb) 51 (2) 293-300.
Journal code: 0035623. ISSN: 0026-895X.
PUB. COUNTRY: United States
Journal; Article; (JOURNAL ARTICLE)
LANGUAGE: English
FILE SEGMENT: Priority Journals
ENTRY MONTH: 199707
ENTRY DATE: Entered STN: 19970805
Last Updated on STN: 19970805
Entered Medline: 19970723
AB We describe the cloning and functional expression of a cDNA encoding a novel G protein-coupled receptor, which was isolated from the central nervous system of the pond snail *Lymnaea stagnalis*. The

amino acid sequence predicted by this cDNA shows highest similarity with the sequence of the *Locusta* tyramine receptor, the *Drosophila* tyramine/octopamine receptor, and the mammalian alpha-adrenergic receptors. On expression in mammalian cells, [³H]rauwolscine, an alpha₂-adrenergic receptor antagonist, binds with high affinity ($K(D) = 2.9 \times 10(-9)$ M) to the receptor. Of several tested neurotransmitters, octopamine (which is considered to be the invertebrate counterpart of norepinephrine)

showed the highest affinity ($1.9 \times 10(-6)$ M) for the receptor. Therefore, we consider this receptor to be the first true octopamine receptor to be cloned. The ligand binding properties of the novel receptor, designated Lym oal, seem to be distinct from any of the binding profiles described for octopamine receptors in tissue preparations. Although the pharmacological profile of Lym oal shows some similarity with that of Tyr/Oct-Dro and Tyr-Loc, there . . . also clear differences. In particular, phentolamine, chlorpromazine, and mianserine display markedly higher affinities for Lym oal than for the insect receptors. As far as the vertebrate adrenergic receptors are concerned, the ligand binding properties of Lym oal resemble alpha₂-adrenergic receptors more than they do alpha- or beta-adrenergic receptors.

Octopaminergic stimulation of Lym oal induces an increase in both inositol

phosphates and cAMP ($EC_{50} = 9.1 \times 10(-7)$ M . . . $\times 10(-6)$ M, respectively). This is in contrast to the signal transduction pathways described for the related tyramine- and alpha₂-adrenergic receptors, which couple in an inhibitory way to adenylyl cyclase.

L3 ANSWER 16 OF 18 MEDLINE DUPLICATE 12
ACCESSION NUMBER: 91198639 MEDLINE
DOCUMENT NUMBER: 91198639 PubMed ID: 1849770
TITLE: Very high affinity interaction of DPI 201-106 and BDF 8784 enantiomers with the phenylalkylamine-sensitive Ca₂(+)-channel in *Drosophila* head membranes.
AUTHOR: Glossmann H; Zech C; Striessnig J; Staudinger R; Hall L; Greenberg R; Armah B I
CORPORATE SOURCE: Institut fur Biochemische Pharmakologie, Innsbruck, Austria.
SOURCE: BRITISH JOURNAL OF PHARMACOLOGY, (1991 Feb) 102 (2)
446-52.
PUB. COUNTRY: Journal code: 7502536. ISSN: 0007-1188.
ENGLAND: United Kingdom
Journal; Article; (JOURNAL ARTICLE)
LANGUAGE: English
FILE SEGMENT: Priority Journals
ENTRY MONTH: 199105
ENTRY DATE: Entered STN: 19910607
Last Updated on STN: 19970203
Entered Medline: 19910523
AB 1. Piperazinylindoles (DPI 201-106, BDF 8784), drugs known to act on voltage-dependent Na(+) -channels, bind with very high affinity to a Ca₂(+)-channel-associated phenylalkylamine receptor in *Drosophila melanogaster* head membranes. These compounds and (+)-tetrandrine, a naturally occurring Ca₂(+)-antagonist, were the most selective inhibitors for phenylalkylamine-labelled *Drosophila* Ca₂(+)-channels compared to mammalian L-type Ca₂(+)-channels. 2. Replacement of the cyano group by a methyl group in (+)-DPI 201-106 ((+)-BDF 8784) increases the IC₅₀ value for inhibition of phenylalkylamine labelling of *Drosophila* Ca₂(+)-channels from 0.29 to 2.1 nM but decreases the IC₅₀ value for inhibition of phenylalkylamine labelling of mammalian skeletal muscle. . . to 49 nM. 3. DPI 201-106 enantiomers completely block (at 0.1 microM) phenylalkylamine photolabelling of a 136 K polypeptide in *Drosophila* head membranes whereas 10 microM aconitine or lidocaine are without effect. 4. Assessment of the

Ca₂(+)-antagonist effects of the substituted . . . and chemical selectivity related to local anaesthetic activity. 6. It is proposed that a very high affinity piperazinylindole-selective site is coupled to the phenylalkylamine receptor of *Drosophila* Ca₂(+)-channels. These sites are still present on mammalian L-type Ca₂(+)-channels but have lower affinity and/or are less tightly coupled to phenylalkylamine receptors on the alpha 1-subunit.

L3 ANSWER 17 OF 18 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.
ACCESSION NUMBER: 1989:224365 BIOSIS
DOCUMENT NUMBER: BA87:115982
TITLE: STRUCTURE-MEMBRANE MECHANISM OF DISTANT REGULATION OF INTERCELLULAR GAP JUNCTION PERMEABILITY.
AUTHOR(S): MAZHUL' V M; KONEV S V; YANCHEVSKAYA T G; FININ V S
CORPORATE SOURCE: INST. PHOTOBIOLOG., ACAD. SCI. B. SSR, MINSK, USSR.
SOURCE: BIOFIZIKA, (1989) 33 (6), 1023-1028.
CODEN: BIOFAI. ISSN: 0006-3029.
FILE SEGMENT: BA; OLD
LANGUAGE: Russian
AB. . . shown by ESR and tryptophane fluorescence at room temperature that concanavalin A (Con A) at a concentration of 10 mg/ml binds with glycoprotein receptors on the surface of salivary gland cells of *Drosophila* virilis larva beyond gap junction regions initiating generalized structural reorganization of plasmic membranes. The reorganization is coupled with a decrease in permeability of intercellular channels to small inorganic ions and molecules of the organic dye fluorescein. Treatment. . . structural and functional effects were reversible and nullified by substituting 4 mM .alpha.-D-glucopyranoside for lecitin in cell surface receptors. The obtained results suggest the existence of a structural membrane mechanism of distant regulation of intercellular communications according to the following pattern: . . .

L3 ANSWER 18 OF 18 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 1989:92520 CAPLUS
DOCUMENT NUMBER: 110:92520
TITLE: Structure-membrane mechanism of distant regulation of intercellular gap junction permeability
AUTHOR(S): Mazhul, V. M.; Konev, S. V.; Yanchevskaya, T. G.; Phinin, V. S.
CORPORATE SOURCE: Inst. Photobiol., Minsk, USSR
SOURCE: Biofizika (1988), 33(6), 1023-8
CODEN: BIOFAI; ISSN: 0006-3029
DOCUMENT TYPE: Journal
LANGUAGE: Russian
AB It was shown by ESR and tryptophan phosphorescence at room temp. that Con A at 10 mg/mL binds with glycoprotein receptors on the surface of salivary gland cells of *Drosophila* virilis larva beyond gap junction regions initiating generalized structural reorganization of plasma membranes. The reorganization is coupled with a decrease in permeability of intercellular channels to small inorg. ions and fluorescein. Treatment of cells with dimethylsuberimidate-HCl,

a reagent producing intra- and interprotein links which stabilize the network of plasma membranes, blocked the capacity of Con A to initiate structural reorganization of the membranes and disrupt intercellular communications. Con A-induced structural and functional effects were abolished by addn. of 4 mM .alpha.-D-glucopyranoside, which displaced the lectin on the cell surface receptors. The obtained results suggest the existence of a structural membrane mechanism of distal regulation of intercellular communications according to the following pattern: local structural reorganizations initiated beyond gap junction regions, generalization of the structural reorganization over the protein network of plasma membranes, involvement of high-permeability contact membranes in the reorganization, change in the structural organization and

joining of protein half-channels of gap junctions, and modification of intercellular channel permeability of small inorganic ions and low-mol.-wt. org. compds.

=> log y

| COST IN U.S. DOLLARS | SINCE FILE ENTRY | TOTAL SESSION |
|--|------------------|---------------|
| FULL ESTIMATED COST | 25.83 | 26.04 |
| DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) | SINCE FILE ENTRY | TOTAL SESSION |
| CA SUBSCRIBER PRICE | -1.24 | -1.24 |

STN INTERNATIONAL LOGOFF AT 10:02:08 ON 24 JUL 2002