

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE MATEMÁTICA PRINCÍPIOS DE CONTAGEM - 2023.1

PROFESSOR: WILLIKAT BEZERRA DE MELO

TURMA: 2Z

MONITOR: JARDEL FELIPE CABRAL DOS SANTOS

RESOLUÇÃO DA LISTA 1

1. Sendo $A = \{1, 2\}$, $B = \{2, 3\}$, $C = \{1, 3, 4\}$ e $D = \{1, 2, 3, 4\}$, classifique em verdadeiro ou falso cada sentença abaixo e justifique:

(a) $A \subset D$

Verdadeiro, pois todo elemento de A também é elemento de D.

(b) $A \subset B$

Falso, pois $1 \in A$ porém $1 \notin B$. Ou seja, existe um elemento de A que não é elemento de B.

(c) $B \subset C$

Falso, pois $2 \in B$ porém $2 \notin C$.

(d) $D \supset B$

Recorde que $D \supset B$ é o mesmo que $B \subset B$. Assim, a sentença é verdadeira, pois todo elemento de B também é elemento de D.

(e) C = D

Dois conjuntos são iguais se, e somente se, eles possuem os mesmos elementos, ou seja, se $C \subset D$ e $D \subset C$. Portanto, a sentença é falsa, pois é falso que $D \subset C$ já que $2 \in D$ porém $2 \notin C$.

(f) $A \not\subset C$

Verdadeiro, pois $2 \in A$ porém $2 \notin C$.

2. Diga se é verdadeira ou falsa cada uma das setenças abaixo.

(a)
$$0 \in \{0, 1, 2, 3, 4\}$$

A sentença é verdadeira.

(b)
$$\{a\} \in \{a, b\}$$

A sentença é falsa, pois $\{a\} \notin \{a,b\}$. Por outro lado, é correto afirmar que $\{a\} \subset \{a,b\}$. Se a sentença fosse $\{a\} \in \{\{a\},b\}$, então ela seria verdadeira. Nesse caso, $\{a\} \not\subset \{\{a\},b\}$ pois $a \in \{a\}$, porém $a \notin \{\{a\},b\}$

(c)
$$\varnothing \subset \{0\}$$

A sentença é verdadeira. Para todo conjunto A, temos que $\varnothing \subset A$. Caso contrário, se $\varnothing \not\subset A$, então existiria $x \in \varnothing$ tal que $x \in \varnothing$ porém $x \notin A$. Como \varnothing não possui elementos, então ele necessariamente não satisfaz a condição de NÃO ser subconjunto de A. Assim, concluí-se que ele é subconjunto de A.

(d)
$$0 \in \emptyset$$

A sentença é falsa, pois \varnothing não possui elementos.

(e)
$$\{a\} \subset \emptyset$$

A sentença é falsa, $a \in \{a\}$ porém $a \notin \emptyset$. Assim, $\{a\} \not\subset \emptyset$.

(f)
$$a \in \{a, \{a\}\}$$

A sentença é verdadeira.

(g)
$$\{a\} \subset \{a, \{a\}\}$$

A sentença é verdadeira. Estamos diante de um caso em que $\{a\} \in \{a, \{a\}\}$ e também $\{a\} \subset \{a, \{a\}\}$. Este último se deve ao fato de que todo elemento do conjunto $\{a\}$ também é elemento do conjunto $\{a, \{a\}\}$.

(h)
$$\varnothing \subset \{\varnothing, \{a\}\}$$

A sentença é verdadeira. A justificativa é a mesma do item (c).

(i)
$$\varnothing \in \{\varnothing, \{a\}\}$$

A sentença é verdadeira.

(j)
$$\{a,b\} \in \{a,b,c,d\}$$

A sentença é falsa, pois $\{a,b\} \notin \{a,b,c,d\}$. Se a sentença fosse $\{a,b\} \in \{\{a,b\},c,d\}$, então ela estaria correta.

3. Vamos determinar cada um dos conjuntos a seguir, onde

$$U = \{0, 1, 2, 3, \dots, 10\}$$

$$A = \{0, 1, 2, 3, 4, 5\}$$

$$B = \{0, 2, 4, 6, 8, 10\}$$

$$C = \{2, 3, 5, 7\}$$

(a) $A \cup B$

$$A \cup B = \{x : x \in A \text{ ou } x \in B\} = \{0, 1, 2, 3, 4, 5, 6, 8, 10\}$$

(b) $A \cap C$

$$A \cap C = \{x : x \in A \text{ e } x \in C\} = \{2, 3, 5\}$$

(c) $A^c \cup B$

$$A^c = U - A = \{x : x \in U \text{ e } x \notin A\} = \{6, 7, 8, 9, 10\}$$

$$A^c \cup B = \{x : x \in A^c \text{ ou } x \in B\} = \{0, 2, 4, 6, 7, 8, 9, 10\}$$

(d) $A \cap B \cap C$

$$A\cap B\cap C=(A\cap B)\cap C=A\cap (B\cap C)$$

$$B \cap C = \{x : x \in B \in x \in C\} = \{2\}$$

$$A\cap (B\cap C)=\{x:x\in A\ \mathrm{e}\ x\in B\cap C\}=\{2\}$$

(e) $A^c \cap B \cap C$

$$A^c \cap B \cap C = (A^c \cap B) \cap C = A^c \cap (B \cap C) = \{x : x \in A^c \text{ e } x \in B \cap C\} = \varnothing$$

(f) $A \cup (B \cap C)$

$$A \cup (B \cap C) = \{x : x \in A \text{ ou } x \in B \cap C\} = \{0, 1, 2, 3, 4, 5\}$$

(g)
$$A \cap (B \cup C)$$

$$B \cup C = \{x : x \in B \text{ ou } x \in C\} = \{0, 2, 3, 4, 5, 6, 7, 8, 10\}$$
$$A \cap (B \cup C) = \{x : x \in A \text{ e } x \in B \cup C\} = \{0, 2, 3, 4, 5\}$$

(h)
$$(A \cup B^c)^c$$

$$B^c = U - B = \{x : x \in U \text{ e } x \notin B\} = \{1, 3, 5, 7, 9\}$$

$$A \cup B^c = \{x : x \in A \text{ ou } x \in B^c\} = \{0, 1, 2, 3, 4, 5, 7, 9\}$$

$$(A \cup B^c)^c = U - (A \cup B^c) = \{x : x \in U \text{ e } x \notin A \cup B^c\} = \{6, 8, 10\}$$

(i) A - B

$$A - B = \{x : x \in A \in x \notin B\} = \{1, 3, 5\}$$

(j) B-A

$$B - A = \{x : x \in B \text{ e } x \notin A\} = \{6, 8, 10\}$$

(k)
$$A - (B - C)$$

$$B-C = \{x: x \in B \text{ e } x \notin C\} = \{0,4,6,8,10\}$$

$$A-(B-C) = \{x: x \in A \text{ e } x \notin B-C\} = \{1,2,3,5\}$$

(1)
$$C - (B - A)$$

$$C - (B - A) = \{x : x \in C \text{ e } x \notin B - A\} = \{2, 3, 5, 7\}$$

(m)
$$(A - B) \cap (C - B)$$

$$C - B = \{x : x \in C \text{ e } x \notin B\} = \{3, 5, 7\}$$

$$(A - B) \cap (C - B) = \{x : x \in A - B \text{ e } x \in C - B\} = \{3, 5\}$$

(n)
$$(A - B) \cap (A - C)$$

$$A - C = \{x : x \in A \text{ e } x \notin C\} = \{0, 1, 4\}$$

$$(A - B) \cap (A - C) = \{x : x \in A - B \text{ e } x \in A - C\} = \{1\}$$

4. Escreva o conjunto das partes, $\mathcal{P}(A)$, para cada conjunto A.

(a)
$$A = \{a\}$$

Subconjuntos de A: \emptyset e $\{a\} = A$

$$\mathscr{P}(A) = \{\varnothing, A\}$$

(b)
$$A = \{0, 1\}$$

Subconjuntos de A: \varnothing , $\{0\}$, $\{1\}$ e $\{0,1\} = A$

$$\mathscr{P}(A) = \{\varnothing, \{0\}, \{1\}, A\}$$

(c)
$$A = \{a, b, c\}$$

Subconjuntos de A: \emptyset , $\{a\}$, $\{b\}$, $\{c\}$, $\{a,b\}$, $\{a,c\}$, $\{b,c\}$ e $\{a,b,c\} = A$

$$\mathscr{P}(A) = \{\varnothing, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, A\}$$

(d)
$$A = \{1, 2, 3, 4\}$$

Subconjuntos de A: \varnothing , $\{1\}$, $\{2\}$, $\{3\}$, $\{4\}$, $\{1,2\}$, $\{1,3\}$, $\{1,4\}$, $\{2,3\}$, $\{2,4\}$, $\{3,4\}$, $\{1,2,3\}$, $\{1,2,4\}$, $\{1,3,4\}$, $\{2,3,4\}$ e $\{1,2,3,4\}$ = A

Sejam X e Y os conjuntos:

$$X = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}\}$$

$$Y = \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, A\}$$

Então, $\mathscr{P}(A) = X \cup Y$

(e)
$$A = \{1, \{1\}\}$$

Subconjuntos de $A: \emptyset, \{1\}, \{\{1\}\} \in \{1, \{1\}\} = A$

$$\mathscr{P}(A) = \{\varnothing, \{1\}, \{\{1\}\}, A\}$$

(f)
$$A = \{\{1\}\}$$

Subconjuntos de A: \emptyset e $\{\{1\}\}=A$

$$\mathscr{P}(A) = \{\varnothing, A\}$$

(g)
$$A = \{\emptyset\}$$

Subconjuntos de $A{:}\ \varnothing$ e $\{\varnothing\}=A$

$$\mathscr{P}(A) = \{\varnothing, A\}$$

(h)
$$A = \{\varnothing, \{\varnothing\}\}$$

Subconjuntos de $A{:}~\varnothing,~\{\varnothing\},~\{\{\varnothing\}\}~\mathrm{e}~\{\varnothing,\{\varnothing\}\}=A$

$$\mathscr{P}(A) = \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}, A\}$$

5. Para os conjuntos dados, forme o produto cartesiano indicado.

(a)
$$A \times B$$
; $A = \{a, b\}, B = \{0, 1\}$

$$A \times B = \{(x, y) : x \in A \in y \in B\} = \{(a, 0), (a, 1), (b, 0), (b, 1)\}$$

(b)
$$B \times A$$
; $A = \{a, b\}$, $B = \{0, 1\}$

$$B \times A = \{(x, y) : x \in B \in y \in A\} = \{(0, a), (0, b), (0, a), (0, b)\}$$

(c)
$$A \times B$$
; $A = \{2, 4, 6, 8\}, B = \{2\}$

$$A \times B = \{(x, y) : x \in A \in y \in B\} = \{(2, 2), (4, 2), (6, 2), (8, 2)\}$$

(d)
$$B \times A$$
; $A = \{1, 5, 9\}$, $B = \{-1, 1\}$

$$B \times A = \{(x, y) : x \in B \text{ e } y \in A\} = \{(-1, 1), (-1, 5), (-1, 9), (1, 1), (1, 5), (1, 9)\}$$

(e)
$$B \times A$$
; $A = B = \{1, 2, 3\}$

$$B \times A = \{(x,y) : x \in B \text{ e } y \in A\} = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$

- 6. Para cada uma das seguintes funções $f: \mathbb{Z} \to \mathbb{Z}$, determine se a função é sobrejetiva e se é injetiva. Justifique todas as respostas.
- (a) f(x) = 2x

(Injetividade de f):

Tome $x_1, x_2 \in D(f) = \mathbb{Z}$ tais que $f(x_1) = f(x_2)$. Daí, temos que $2x_1 = 2x_2$. Ou seja, $x_1 = x_2$. Assim, f é injetiva.

(Sobrejetividade de f):

f é sobrejetiva se, e somente se, $\operatorname{Im}(f) = \operatorname{CD}(f)$, onde $\operatorname{CD}(f) = \mathbb{Z}$. Porém, é falso que $\operatorname{Im}(f) = \operatorname{CD}(f)$, pois $3 \in \operatorname{CD}(f)$, mas $3 \notin \operatorname{Im}(f)$ já que não existe $x \in \operatorname{D}(f) = \mathbb{Z}$ tal que f(x) = 3. Assim, f não é sobrejetiva.

(b) f(x) = 3x

(Injetividade de f):

Tome $x_1, x_2 \in D(f) = \mathbb{Z}$ tais que $f(x_1) = f(x_2)$. Daí, temos que $3x_1 = 3x_2$. Ou seja, $x_1 = x_2$. Assim, f é injetiva.

(Sobrejetividade de f):

f é sobrejetiva se, e somente se, $\operatorname{Im}(f) = \operatorname{CD}(f)$, onde $\operatorname{CD}(f) = \mathbb{Z}$. Porém, é falso que $\operatorname{Im}(f) = \operatorname{CD}(f)$, pois $2 \in \operatorname{CD}(f)$, mas $2 \notin \operatorname{Im}(f)$ já que não existe $x \in \operatorname{D}(f) = \mathbb{Z}$ tal que f(x) = 2. Assim, f não é sobrejetiva.

(c) f(x) = x + 3

(Injetividade de f):

Tome $x_1, x_2 \in D(f) = \mathbb{Z}$ tais que $f(x_1) = f(x_2)$. Daí, temos que $x_1 + 3 = x_2 + 3$. Ou seja, $x_1 = x_2$. Assim, f é injetiva.

(Sobrejetividade de f):

f é sobrejetiva se, e somente se, $\operatorname{Im}(f) = \operatorname{CD}(f)$, onde $\operatorname{CD}(f) = \mathbb{Z}$. Para mostrar que os dois conjuntos são iguais, basta mostrar que eles são subconjuntos um do outro. Sabemos que, por definição de função, $\operatorname{Im}(f) \subset \operatorname{CD}(f)$. Resta mostrar que $\operatorname{CD}(f) \subset \operatorname{Im}(f)$.

Para isso, vamos mostrar que se $y \in CD(f)$, então $y \in Im(f)$. Considere $y \in CD(f) = \mathbb{Z}$. Temos que $y \in Im(f)$ se, e somente se, existe $x \in D(f) = \mathbb{Z}$ tal que f(x) = y.

Se x = y - 3, então f(x) = (y - 3) + 3 = y. Como $y \in \mathbb{Z}$, então $y - 3 = x \in \mathbb{Z}$. Portanto, existe $x \in D(f) = \mathbb{Z}$ tal que f(x) = y. Desse modo, $y \in Im(f)$.

Daí, concluí-se que se $y \in CD(f)$, então $y \in Im(f)$. Logo, $CD(f) \subset Im(f)$, o que significa que os conjuntos são iguais. Assim, f é sobrejetiva.

(d) $f(x) = x^3$

(Injetividade de f):

Tome $x_1, x_2 \in D(f) = \mathbb{Z}$ tais que $f(x_1) = f(x_2)$. Daí, temos que $x_1^3 = x_2^3$. Ou seja, $x_1^3 - x_2^3 = 0$. Porém, $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$. Assim, $x_1^3 - x_2^3 = (x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2)$. Com isso teremos,

$$(x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2) = 0 \iff x_1 - x_2 = 0 \text{ ou } x_1^2 + x_1x_2 + x_2^2 = 0$$

Se $x_1 - x_2 = 0$, então $x_1 = x_2$. Resta mostrar que para $x_1, x_2 \in \mathbb{Z}$, não podemos ter $x_1^2 + x_1x_2 + x_2^2 = 0$ sem que $x_1 = x_2 = 0$.

De fato, suponha que $x_1 \neq 0$ e $x_2 \neq 0$. Logo, $x_1^2 > 0$ e $x_2^2 > 0$. Temos duas possibilidades:

- (i) ou $x_1 x_2 > 0$
- (ii) ou $x_1 x_2 < 0$

Note que (i) não pode acontecer, pois a igualdade não seria satisfeita (estamos somando três números positivos e obtendo zero). Assim, o caso (ii) deve acontecer.

Se (ii) acontece, então

- (a) ou $x_1 < 0$ e $x_2 > 0$
- (b) ou $x_1 > 0$ e $x_2 < 0$

Sem perda de generalidade, suponha que o item (a) acontece. Da equação,

$$x_1^2 + x_1 x_2 + x_2^2 = 0$$

Ao somar x_1x_2 em ambos os lados, teremos que

$$x_1^2 + x_1x_2 + x_2^2 + (x_1x_2) = 0 + (x_1x_2) \iff x_1^2 + 2x_1x_2 + x_2^2 = x_1x_2 \iff (x_1 + x_2)^2 = x_1x_2$$

Essa equação não possui solução nos números reais, pois $(x_1 + x_2)^2 \ge 0$ e $x_1x_2 < 0$. Logo, não poderemos ter $x_1^2 + x_1x_2 + x_2^2 = 0$ sem que $x_1 \ne 0$ e $x_2 \ne 0$.

Concluí-se então que para $x_1, x_2 \in \mathbb{Z}$, teremos que $x_1^3 = x_2^3 \iff x_1 = x_2$. Portanto, f é injetiva.

(Sobrejetividade de f):

f é sobrejetiva se, e somente se, $\operatorname{Im}(f) = \operatorname{CD}(f)$, onde $\operatorname{CD}(f) = \mathbb{Z}$. Porém, é falso que $\operatorname{Im}(f) = \operatorname{CD}(f)$, pois $4 \in \operatorname{CD}(f)$, mas $4 \notin \operatorname{Im}(f)$ já que não existe $x \in \operatorname{D}(f) = \mathbb{Z}$ tal que f(x) = 4. Assim, f não é sobrejetiva.

(e)
$$f(x) = |x|$$

(Injetividade de f):

Note que f(2) = |2| = 2, mas que f(-2) = |-2| = 2. Assim, temos f(2) = f(-2) com $2 \neq -2$. Portanto, f não é injetiva.

(Sobrejetividade de f):

f é sobrejetiva se, e somente se, $\operatorname{Im}(f) = \operatorname{CD}(f)$, onde $\operatorname{CD}(f) = \mathbb{Z}$. Porém, é falso que $\operatorname{Im}(f) = \operatorname{CD}(f)$, pois $-1 \in \operatorname{CD}(f)$, mas $-1 \notin \operatorname{Im}(f)$ já que não existe $x \in \operatorname{D}(f) = \mathbb{Z}$ tal

que f(x) = -1. Assim, f não é sobrejetiva.

(f)
$$f(x) = x - |x|$$

(Injetividade de f):

Note que f(16) = 16 - |16| = 16 - 16 = 0, mas que f(3) = 3 - |3| = 3 - 3 = 0. Assim, temos f(16) = f(3) com $16 \neq 3$. Portanto, f não é injetiva.

(Sobrejetividade de f):

f é sobrejetiva se, e somente se, $\operatorname{Im}(f) = \operatorname{CD}(f)$, onde $\operatorname{CD}(f) = \mathbb{Z}$. Porém, é falso que $\operatorname{Im}(f) = \operatorname{CD}(f)$, pois $-3 \in \operatorname{CD}(f)$, mas $-3 \notin \operatorname{Im}(f)$ já que não existe $x \in \operatorname{D}(f) = \mathbb{Z}$ tal que f(x) = -3.

De fato, $f(x) = -3 \iff x - |x| = -3 \iff x + 3 = |x|$. Se $x \ge 0$, então |x| = x. Daí, x + 3 = x. Essa equação não tem solução. Em particular, não existe $x \in \mathbb{Z}$ que satisfaça a equação.

Por outro lado, se x<0, então |x|=-x. Daí, $x+3=-x \Longleftrightarrow 2x=-3$. Essa equação não tem solução em \mathbb{Z} . Logo, não existe $x\in\mathbb{Z}$ tal que f(x)=-3. Assim, f não é sobrejetiva.