

Fondamenti di Elettronica

02 Modelli degli amplificatori

Enrico Zanoni enrico.zanoni@unipd.it

Amplificatori : simboli e convenzioni

Segnale composto da una componente continua + una componente tempovariante

componente continua (DC) = lettera maiuscola, pedice maiuscolo componente ac (segnale), senza la componente DC = lettera minuscola, pedice minuscolo grandezza istantanea totale = lettera minuscola, pedice maiuscolo ampiezza del segnale = lettera maiuscola, pedice minuscolo

$$v_c(t) = v_c(t) + V_c; v_c(t) = V_c \sin(\omega t)$$

zanoni, adesso conto quante volte ti sbagli...

Modello «a doppio bipolo» di un amplificatore

- a partire da una descrizione del comportamento fisico dell'amplificatore
- definiamo un modello «circuitale», cioè un «circuito elettrico equivalente»
- vale a dire trasformiamo l'amplificatore in una rete elettrica equivalente che comprende resistori, condensatori, induttori e generatori pilotati in tensione o in corrente
- consideriamo solo i segnali (le componenti continue non ci interessano) quindi v_i , v_o , i_i i_o (tutto minuscolo: solo le *variazioni* di tensione e corrente)
- lasciamo da parte per il momento condensatori e induttori
- le relazioni tra le grandezze sono tutte lineari, non ci sono meccanismi intrinseci di retroazione o feedback : possiamo separare completamente l'ingresso dall'uscita
- sono tutti modelli UNILATERALI : il flusso del segnale è UNIDIREZIONALE, dall'ingresso verso l'uscita

Modello a doppio bipolo di un amplificatore di tensione

Modello dell'amplificatore come rete lineare a due porte

ingresso: modellato da una <mark>resistenza di ingresso R_i uscita: generatore di Thevenin pilotato dalla tensione di ingressso v_i</mark>

 A_{vo} = guadagno in tensione «a circuito aperto» = senza carico applicato all'uscita: $v_o = A_{vo} v_i$ R_o = resistenza di uscita dell'amplificatore

Modello a doppio bipolo di un amplificatore di tensione

 A_{vo} = guadagno in tensione «a circuito aperto» = senza carico applicato all'uscita:

$$V_0 = A_{VO} V_i$$

A circuito aperto su R_o non passa corrente = non c'è caduta di tensione, quindi v_o è uguale alla tensione del generatore

Amplificatore di tensione: effetto di R_i e R_o sul guadagno

- modelliamo la sorgente come un generatore di Thevenin
- applichiamo un carico resistivo R_L in uscita

$$v_i = v_s \frac{R_i}{R_i + R_s} \qquad v_o = A_{vo} v_i \frac{R_L}{R_o + R_L}$$

Guadagno dell'amplificatore di tensione con sorgente e carico

$$v_i = v_s \frac{R_i}{R_i + R_s} \qquad v_o = A_{vo} v_i \frac{R_L}{R_o + R_L}$$

quindi il guadagno complessivo è dato da:

$$A_{v} = \frac{v_{o}}{v_{s}} = A_{vo} \frac{R_{i}}{R_{i} + R_{s}} \frac{R_{L}}{R_{o} + R_{L}}$$

$$partitore di ingresso di uscita$$

$$\rightarrow 1 \text{ per R}_{s} << R_{i}$$

$$\rightarrow 1 \text{ per R}_{L} >> R_{o}$$

Per avere $A_v = A_{vo} = \max \text{ guadagno}$ è necessario che $R_i \rightarrow \infty$ e $R_o \rightarrow 0$

Modello a doppio bipolo dell'amplificatore di corrente

$$A_{is} = \frac{l_o}{l_i}$$
 con $v_o = 0$ «guadagno di corrente in cortocircuito»

Effetto della sorgente e del carico sul guadagno in corrente

 $A_{is} = \frac{i_o}{i_i}$ con $v_o = 0$ «guadagno di corrente in cortocircuito»

$$A_{i} = \frac{i_{L}}{i_{S}}$$
 $i_{i} = i_{S} \frac{R_{S}}{R_{S} + R_{i}};$ $i_{L} = A_{iS} i_{i} \frac{R_{O}}{R_{O} + R_{L}}$

perchè il guadagno A_i sia massimo e pari a A_{is} (s sta per «short-circuit», corto circuito) deve essere $R_i << R_s$ e $R_o >> R_L$; in pratica $R_i \rightarrow 0$ e $R_o \rightarrow \infty$

Modello a doppio bipolo dell'amplificatore di transconduttanza

$$G_{ms} = rac{\iota_o}{v_i}$$
 guadagno di transconduttanza in corto circuito

perchè sia
$$G_{ms} = \frac{i_o}{v_i} = G_m = \frac{i_L}{v_s}$$
 deve essere $R_i \rightarrow \infty$ e $R_o \rightarrow \infty$

Modello a doppio bipolo dell'amplificatore di transimpedenza

$$R_{mo} = rac{v_o}{i_i}$$
 guadagno di transimpedenza o transresistenza a circuito aperto

perchè sia
$$R_{mo} = \frac{v_o}{i_i} = R_m = \frac{v_L}{i_s}$$
 deve essere $R_i \rightarrow 0$ e $R_o \rightarrow 0$

Tabella riassuntiva sulla classificazione degli amplificatori

Simbolo	Guadagno	Guadagno max	R _i ideale	R _o ideale
$A_v = v_L/v_s$	Tensione	A _{vo} a circuito aperto	<u>&</u>	0
$A_i = i_L/i_s$	Corrente	A _{is} in corto circuito	0	∞
$G_m = i_L/v_s$	Transconduttanza	G _{ms} in corto circuito	<u>∞</u>	<u>∞</u>
$R_m = v_L/i_s$	Transresistenza	R _{mo} a circuito aperto	0	0

Con i valori di R_i e R_o ideali l'amplificazione diventa indipendente dai valori della resistenza della sorgente R_s e del carico R_L . Il guadagno diventa pari al valore massimo

I quattro tipi di amplificatori

Tipo	Modello circuitale	Parametro di guadagno	Caratteristiche ideali
Amplificatore di tensione	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Guadagno di tensione a circuito aperto $A_{vo} \equiv \frac{v_o}{v_i} \bigg _{i_o=0} (\text{V/V})$	$R_i = \infty$ $R_o = 0$
Amplificatore di corrente	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Guadagno di corrente in cortocircuito $A_{is} \equiv \frac{i_o}{i_i} \bigg _{v_o=0} (A/A)$	$R_i = 0$ $R_o = \infty$
Amplificatore in transconduttanza	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Transconduttanza di cortocircuito $G_m \equiv \frac{i_o}{v_i} \bigg _{v_o=0} (\text{A/V})$	$R_i = \infty$ $R_o = \infty$
Amplificatore in transresistenza	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Transresistenza di circuito aperto	$R_i = 0$ $R_o = 0$

 $R_m i_i$

Equivalenza tra i modelli

E' possibile trasformare un modello di amplificatore in un altro. Un guadagno in tensione pari a A_{is} corrisponde ad un guadagno in tensione $A_{vo} = A_{is} * (R_o/R_i)$.

Allo stesso modo $A_{vo} = G_m R_o$; oppure $A_{vo} = R_m / R_i$

 $A_{vo} = v_o/v_i = (R_{mo}i_i)/v_i$ (a circuito aperto); ma $i_iR_i = v_i$; $i_i/v_i = 1/R_i$ $A_{vo} = v_o/v_i = (R_{mo})i_i)/v_i = R_{mo}/R_i$

$$R_{mo} = rac{v_o}{i_i}$$
 guadagno di transimpedenza o transresistenza a circuito aperto

Calcolo della resistenza di ingresso di un amplificatore

- Si applica all'ingresso un generatore di tensione di test v_{in}
- si misura la corrente di ingresso i_{in}
- la resistenza di ingresso R_{in} è data da v_{in}/i_{in} = R_{in}

Calcolo della resistenza di uscita di un amplificatore

- Si annullano tutti i generatori indipendenti $(v_s = 0, i_s = 0) (cioè si cortocircuitano i generatori di tensione e si aprono i generatori di corrente)$
- Si applica un generatore di tensione di test v_x all'uscita.
- Si calcola la corrente entrante nell'uscita dell'amplificatore, ix
- La resistenza di uscita R_{out} è data da R_{out} = v_x/i_x

$$A_{\text{vtotale}} = 10 \times 100 \times 1 ??? = 1000 ???$$

 $A_{\text{itotale}} ? A_{\text{Ptotale}} ?$

- Calcoliamo il guadagno effettivo di ogni stadio tenendo conto dell'effetto di carico del successivo
- La resistenza di ingresso dello stadio n+1-esimo , R_{in+1}, rappresenta la resistenza di carico dello stadio n-esimo R_{Ln}

$$A_{v1} = \frac{v_{i2}}{v_s} = A_{vo1} \frac{R_{i1}}{R_{i1} + R_s} \frac{R_{i2}}{R_{o1} + R_{i2}} =$$
 per il primo stadio :
$$= 10 \frac{10^6}{10^6 + 10^5} \frac{10^5}{10^3 + 10^5} = 10 \times 0.909 \times 0.99 = 8.99$$

- Dal 2do stadio in poi il partitore di ingresso è già incluso
- Dobbiamo includere l'effetto di carico in uscita dovuto alla resistenza di ingresso dello stadio successivo

$$A_{v2} = \frac{v_{i3}}{v_{i2}} =$$
 per il secondo stadio :
$$= A_{vo2} \frac{R_{i3}}{R_{o2} + R_{i3}} = 100 \frac{10^4}{10^3 + 10^4} = 100 \times 0.909 = 90.9$$

 Per il 3o stadio obbiamo includere l'effetto in uscita dovuto alla resistenza di carico

$$A_{v3} = \frac{v_L}{v_{i3}} =$$
 per il terzo stadio :
$$= A_{vo3} \frac{R_L}{R_{o3} + R_L} = 1 \frac{10^2}{10 + 10^2} = 1 \times 0.909 = 0.909$$

guadagno totale dalla sorgente v_s alla tensione sul carico v_L

$$A_{v1}A_{v2}A_{v3} = \frac{v_L}{v_S} = 8.99 \times 90.9 \times 0.909 = 743 \frac{V}{V}$$

" A_{vsL} ", incluso l'effetto di carico di R_L

guadagno totale dalla tensione di ingresso v_{i1} a v_L

$$\frac{v_L}{v_{i1}} = \frac{v_L}{v_S} \frac{v_S}{v_{i1}} = A_{v1} A_{v2} A_{v3} \frac{R_{i1} + R_S}{R_{i1}} = 0.743 \times \frac{10^6 + 10^5}{10^6} \frac{V}{V} = 817$$

$$"A_{vii}"$$

Guadagno in corrente dell'amplificatore a tre stadi»

- Calcoliamo il guadagno effettivo di ogni stadio tenendo conto dell'effetto di carico del successivo
- La resistenza di ingresso dello stadio n+1-esimo , R_{in+1} , rappresenta la resistenza di carico dello stadio n-esimo R_{in}

$$A_{iL}(R_L = 100\Omega) = \frac{i_0}{i_i} = \frac{v_L}{R_L} \frac{R_{i1}}{v_{i1}} = 817 \times \frac{R_{i1}}{R_L} = 817 \times \frac{10^6}{10^2}$$

guadagno in corrente su 100 Ω : 8.17 x 10⁶ A/A

Guadagno in potenza dell'amplificatore a tre stadi

- Calcoliamo il guadagno effettivo di ogni stadio tenendo conto dell'effetto di carico del successivo
- La resistenza di ingresso dello stadio n+1-esimo , R_{in+1}, rappresenta la resistenza di carico dello stadio n-esimo R_{I n}

$$A_P(R_L = 100\Omega) = \frac{i_o v_L}{i_i v_{i1}} = A_{viL} A_{iL} = 8.17 \times 10^6 \times 817 = 66.8 \times 10^8 \text{ W/W}$$

guadagno in potenza su 100 Ω

Guadagni in dB

$$20 \log_{10} A_{vsl} = 20 \log_{10} 743 = 57.4 dB$$

$$20 \log_{10} A_{vil} = 20 \log_{10} 817 = 58.24 dB$$

$$20 \log_{10} A_{ii} = 20 \log_{10} 8.17 \times 10^6 = 138.2 \text{ dB}$$

 $10 \log_{10} A_{PL} = 10 \log_{10} 66.8 \times 10^8 = 98.25 \text{ dB}$