Assignment 02 (Odd ID)

1. Histogram Equalization:

- a. Read the image 'cameraman.png'
- b. Compute no. of pixels for each gray level intensity (to generate histogram)
- c. Compute Probability Distribution Function (PDF) = no. of pixels for each level / total no of pixels
- d. Compute Cumulative Distribution Function (CDF) = Cumulative sum of PDF
- e. Multiply each CDF by L-1
- f. Round the value obtained in step e
- g. Display original image and Equalized image using subplot
- h. Display original histogram and equalized histogram using subplot
- i. **Bonus:** Perform Histogram Specification of the input image with your desired image (you can choose any of your image for performing the specification).

2. Bit Plane Slicing:

а	Take a RGB input image and convert it into grayscale image.	01
b	Extract the dimension of the grayscale image (say R).	01
С	For every column of bit depth of R, starting from the LSB, take the	02
	column number of the bit positions (say k) of R.	
	Example: If R is an 8-bit image, for the MSB bit position, k should be 7.	
d	For every k, calculate X, where X is 2 to the power of that column	02
	number.	
	$X=2^k$	
е	Calculate the bitwise and operation for every pixel of the image using	03
	the following function.	
	S= bitand(A,B)	
	***where A and B are unsigned integers or arrays of unsigned integers.	
	Let, A be the input image (R), and B be X.	
f	Show the output images (S) for every bit position.	01
	It is recommended to use subplot function for showing the output	
	images.	