Lab3 Report

- Block Diagram

- Describe operation

設計之 fir 主要由 FSM 的 4 個 state 控制訊號,包含 S_IDLE、S_TAP、 S_DATA 和 S_SUM。 Fir 起初經過 reset 後便會進入 S_IDLE,待 axi-lite 傳出寫入訊號即進入 S_TAP。

- S_TAP 主要進行接收 data_length、ap_start 和 tap_coefficient 之行為,針對 axi-lite 之寫入,fir 會等到 awvalid 和 wvalid 皆為 1 時同時接收 waddr 和 wdata,利用 waddr 判斷傳入訊號。若是 tap_coefficient,便將 waddr 和 wdata 分 別作為 tap_A 和 tap_Di 寫入 tap_RAM,另外,當寫入 tap_RAM 時,會對 data_RAM 的相同地址寫入 0,以便後續運算。而如果是 data_length、ap_start,直接存入 register 即可,此 state 在收到 ap_start 後進入 S_DATA。
- S_DATA 階段為接收 x , x 存入的 data_RAM 位置每次會 shift 1 , p 0 、 1 、 2 、 ... 、 10 、 0 、 ... ,詳細作法可參考以下說明之 t_mod11 。最後,當 ss_tvalid 和 ss_tready 皆為 1 時,進入 S_SUM。
- S_SUM 進行 $y[t] = \Sigma$ (h[i] * x[t-i])之運算,因僅使用乘法器和加法器各一,此 state 會花費超過 11 個 cycle 對 y 做累加。具體作法使用 2 個 counter,第一個是 i,每次皆會從 0 數到 10,第二個是 t_mod11 ,其在每次算完一個 y[t] 後累加 1,若超過 10 即歸 0,如此當 i 從 0 數到 10,便可得 tap_RAM 和 coefficient_RAM 各自對應之 addr。計算完畢後,從 sm_tdata 送出 y,並檢查 t 是否等於 $data_length$ 。若否,進入 sm_tdata 接收下一筆 sm_tdata 以 sm_tdata 以 sm

- Resource usage

LUT	FF	BRAM	URAM	DSP		
313	125	0	0	3		

- Timing Report

Name Waveform		Period (ns)	Frequency (MHz)			
axis_clk	{0.000 3.000}	6.000	166.667			

Setup			Н	Hold			Pulse Width						
Worst Negative Slack (WNS): 0.168 ns			0.168 ns	Worst Hold Slack (WHS):		0.14	0.140 ns Worst		t Pulse Width Slack (WPWS):			2.500 ns	
Total Negative Slack (TNS): 0.000 ns Number of Failing Endpoints: 0		0.000 ns	Total Hold Slack (THS): 0.000 ii Number of Failing Endpoints: 0		0.0	0.000 ns		Total Pulse Width Negative Slack (TPWS):					
		0				Number of Failing Endpoints:							
Total Number of Endpoints: 185			185	Total Number of Endpoints: 185		i	Total Number of Endpoints:				126		
Name	Slack	Levels	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock	Destination Clock	Exception	Clock Uncertainty
Path 1	0.168	11	-	data_length_reg[4]/C	ap_done_reg/D	5.696	3.195	2.501	6.000	axis_clk	axis_clk	Exception	0.035
Path 2	0.168	11		data_length_reg[4]/C	current_state_reg[1]/D	5.696	3.195	2.501	6.000	axis_clk	axis_clk		0.035
Path 3	0.168	11	3	data_length_reg[4]/C	ss_tready_reg/D	5.696	3.195	2.501	6.000	axis_clk	axis_clk		0.035
L Path 4	0.752	10	3	data_length_reg[4]/C	ap_idle_reg/D	5.112	3.071	2.041	6.000	axis_clk	axis_clk		0.035
∿ Path 5	1.679	11	168	current_state_reg[1]/C	temp_reg[29]/D	4.217	2.628	1.589	6.000	axis_clk	axis_clk		0.035
Դ Path 6	1.685	11	168	current_state_reg[1]/C	temp_reg[31]/D	4.211	2.622	1.589	6.000	axis_clk	axis_clk		0.035
Դ Path 7	1.760	11	168	current_state_reg[1]/C	temp_reg[30]/D	4.136	2.547	1.589	6.000	axis_clk	axis_clk		0.035
Դ Path 8	1.784	11	168	current_state_reg[1]/C	temp_reg[28]/D	4.112	2.523	1.589	6.000	axis_clk	axis_clk		0.035
L Path 9	1.796	10		.current_state_regi1VC_	.temp_real251/D	4.100	2.511	1.589	6,000	axis_clk	axis_clk		0.035

Critical path 在 data_length 到 ap_done,其應為判斷是否已計算到第 data_length 筆資料,以便結束 fir。

- Simulation Waveform

■ Coefficient program, and read back

■ Data-in stream-in

■ Data-out stream-out

■ Bram access control

■ FSM

