restart : with(plots) :

$$f := t \rightarrow \frac{t}{\text{Pi}}$$
:

$$\rightarrow plot(f(t), t = -Pi..Pi)$$

> # Odd function! So $a_n = 0$

$$b := n \rightarrow simplify \left(\frac{1}{Pi} \cdot int(f(t) \cdot sin(n \cdot t), t = -Pi..Pi) \right)$$
:

>
$$N := 3$$
: # Number of terms
 $f_approx := eval(add(b(n)*sin(n*t), n = 1..N))$:

 $\rightarrow plot([f(t), f_approx], t = -Pi..Pi)$

- > N := 9: # Number of terms $f_approx := eval(add(b(n)*sin(n*t), n = 1..N))$:
- > $plot([f(t), f_approx], t = -Pi..Pi)$

- > N := 27: # Number of terms $f_approx := eval(add(b(n)*sin(n*t), n = 1..N))$:
- $\rightarrow plot([f(t), f_approx], t = -Pi..Pi)$

> # We see that the higher N, the better the approximation, but on the edge points Pi and -Pi we diverge, this is the law of Gibbs