7d. Preliminaries on Types

Martin Alfaro
PhD in Economics

INTRODUCTION

High performance in Julia depends critically on the notion of type stability. The definition of this concept is relatively straightforward: a function is type-stable when the types of its expressions can be inferred from the types of its arguments. When this property holds, Julia can specialize its computation method, resulting in significant performance gains.

Despite its simplicity, type stability is subject to various nuances. In fact, a careful consideration of the property requires a solid foundation in two key areas: **Julia's type system and the inner workings of functions**. The current section equips you with the necessary knowledge to grasp the former, deferring the internals of functions to the next section. **The explanations will focus on the case of scalars and vectors**, leaving more complex objects for subsequent sections.

Before you continue, I recommend reviewing the basics of types introduced here.

Warning!

The subject is covered only to the extent necessary for understanding type stability. Julia's type system is indeed quite vast, and a comprehensive exploration would warrant a dedicated chapter.

BASICS OF TYPES

Variables in Julia serve as mere labels for objects, where objects in turn hold values with certain types. The most common types for scalars are Float64 and Int64, whose vector counterparts are Vector{Float64} and Vector{Int64}. Recall that Vector is an alias for a one-dimensional array, so that a type like Vector{Float64} is equivalent to Array{Float, 1}.

Int As an Alternative to Int64

You'll notice that packages tend to use Int as the default type for integers. The type Int is an alias that adapts to your CPU's architecture. Since most modern computers are 64-bit systems, Int is equivalent to Int64. Nonetheless, Int becomes Int32 on 32-bit systems.

Julia's type system is organized in a hierarchical way. This feature allows for the definition of subsets and supersets of types, which in the context of types are referred to as **subtypes** and **supertypes**. ¹ For instance, the type Any is a supertype that includes all possible types in Julia, thus occupying the highest position in any type hierarchy. Another example of supertype is Number, which encompasses all numeric types (Float64), Float32, Int64, etc.).

Supertypes provide great flexibility for writing code. They enable the grouping of values to define operations in common. For instance, defining + for the abstract type Number ensures its applicability to all numeric types, regardless of whether they are integers, floats, or their numerical precision.

A special supertype known as Union will be instrumental for our examples. The construction is useful for variables that can potentially hold values with different types. It's syntax is Union{<type1>, <type2>, ...}, so that a variable with type Union{Int64, Float64} could be either an Int64 or Float64. Note that, by definition, union types are always supertypes of their arguments.

Union of Types to Account for Missing Values

Unions of types emerge naturally in data analysis workflows, especially when handling missing observations. In Julia, these values are represented by the type Missing. Thus, if we load a column that contains both integers and empty entries, this is usually stored with type Vector{Union{Missing, Int64}}.

ABSTRACT AND CONCRETE TYPES

The hierarchical nature of types makes it possible to represent subtypes and supertypes as trees. Such structure gives rise to the notions of abstract and concrete types.

An **abstract type** acts as a parent category, necessarily breaking down into subtypes. The type Any in Julia is a prime example. In contrast, a **concrete type** represents an irreducible unit that therefore lacks subtypes. Concrete types are considered final, in the sense that they can't be further specialized within the hierarchy.

The diagram below illustrates the difference between abstract and concrete types for scalars. In particular, we present the hierarchy of the type [Number], where the labels included match the corresponding type name in Julia. 2

HIERARCHY OF TYPE NUMBER

Note: Dashed red borders indicate abstract types, while solid blue borders indicate concrete types.

The distinction between abstract and concrete types for scalars is relatively straightforward. Instead, the same distinction becomes more nuanced when vectors are considered, as shown in the diagram below.

HIERARCHY OF TYPE VECTOR

The tree reveals that $Vector\{T\}$ for a given type T is a concrete type. This means that variables can be instances of $Vector\{T\}$, where $Vector\{T\}$ doesn't have subtypes. The consequence is that a vector like $Vector\{Int64\}$ isn't a subtype of $Vector\{Any\}$, even though Int64 is a subtype of Any.

This behavior stands in stark contrast to scalars, where Any is an abstract type. However, it aligns perfectly with the concept of vectors as collections of *homogeneous elements*, meaning that all elements share the same type.

ONLY CONCRETE TYPES CAN BE INSTANTIATED, ABSTRACT TYPES CAN'T

In Julia, **instantiation** refers to the process of creating an object with a specific type. A key principle of Julia's type system is that **only concrete types can be instantiated**, implying that values can never be represented by abstract types. This distinction helps clarify the meaning of some widespread expressions used in Julia. For example, stating that a variable has type Any shouldn't be interpreted literally. Rather, it means the variable can hold values of any concrete type, considering that all concrete types are subtypes of Any.

This distinction will become crucial for what follows, particularly for type-annotating variables. It implies that declaring a variable with an abstract type restricts the set of possible concrete types it can hold, even though the variable will ultimately adopt a concrete type.

RELEVANCE FOR TYPE STABILITY

At this point, you may be wondering how all these concepts relate to type stability. The connection becomes clear when you consider how Julia performs computations.

High performance in Julia relies heavily on specializing the computation method. We'll see that this specialization is unattainable in the global scope, as Julia treats global variables as potentially holding values of any type. In contrast, when code is wrapped in a function, the execution process begins by determining the concrete types of each function argument. This information is then used to infer the concrete types of all the expressions within the function body.

When this inference succeeds and all expressions have unambiguous concrete types, the function is considered **type stable**. Type stability enables Julia to specialize its computation method and generate optimized machine code. If, instead, expressions could potentially take on multiple concrete types, performance is substantially degraded, as Julia must consider a separate implementation for each possible type.

For scalars and vectors, type stability essentially requires that expressions ultimately operate on **primitive types**. Examples of numeric primitive types include integers and floating-point numbers, such as Int64, Float64, and Bool. Thus, applying functions like sum to a Vector{Int64} or Vector{Float64} allows for full specialization, whereas applying them to a Vector{Any} prevents it.

String Objects

For text representation, the character type Char serves as a primitive type. Since a String is internally represented as a collection of Char elements, operations on String objects can also achieve type stability.

The rest of this section is dedicated to operators and functions for working with types. Specifically, we'll introduce the operator <:], which checks whether one type is a subtype of another. Then, we'll examine strategies for constraining variables to specific types.

It's possible that you won't need to apply any of the techniques we present, as Julia automatically attempts to infer types when functions are called. Nonetheless, understanding these operators is essential for grasping upcoming material.

USE OF <:

The symbol :< tests whether a type \top is a subtype of another type \square . It can be used as an operator \top <: \square or as a function \square : For example, \square : Number and \square : (Int64, Number) verifiy whether \square : a subtype of \square thus returning \square : Below, we provide further examples.

```
# all the statements below are `true`
Float64 <: Any
Int64 <: Number
Int64 <: Int64</pre>
```

```
# all the statements below are `false`
Float64 <: Vector{Any}
Int64 <: Vector{Number}
Int64 <: Vector{Int64}</pre>
```

The fact that Int64 <: Int64 | evaluates to true illustrates a fundamental principle: every type is a subtype of itself. Moreover, in the case of concrete types, this is the only subtype.

THE KEYWORD WHERE

By combining <: with Union, you can also check whether a type belongs to a given set of types. For example, Int64 <: Union{Int64, Float64} assesses whether Int64 equals Int64 or Float64, thus returning true.

The approach can be made more widely applicable by using the where keyword with a type parameter T. The syntax is <type depending on T> where T <: <set of types>. This entails that T cover multiple possible types.

```
# all the statements below are `true`
Float64 <: Any
Int64 <: Union{Int64, Float64}
Int64 <: Union{T, String} where T <: Number # `String` represents text</pre>
```

Types relying on parameters like T are called **parametric types**. In the example above, these types allow us to distinguish between a concrete type like $Vector{Any}$ and a set of concrete types $Vector{T}$ where T <: Any, where the latter encompasses $Vector{Int64}$, $Vector{Float64}$, $Vector{String}$, etc.

Warning! - The Type Any

When we omit <: and simply write where T, Julia implicitly interprets the statement as where T <: Any. This is why the following equivalences hold.

TYPE-ANNOTATING VARIABLES

In the following, we present methods for **type-annotating variables**. The techniques introduced can be used either to assert a variable's type **during an assignment** or to restrict the types of **function arguments**.

Next, we illustrate both methods, separately considering type-annotations for both assignments and function arguments.

ASSIGNMENTS

Let's start illustrating the approaches based on scalar assignments. Each tab below declares an identical type for x and for y.

Warning! - Modifying Types

Once a type for \boxed{x} has been assigned, the type can't be changed. The only way to fix this is by starting a new session.

The fact that $\boxed{\times}$ holds the same type across all tabs follows because $\boxed{\texttt{T} <: \texttt{Float64}}$ can only represent $\boxed{\texttt{Float64}}$. More specifically, $\boxed{\texttt{Float64}}$ is a concrete type, which by definition has no subtypes other than itself. Considering this, scalar types are usually asserted using $\boxed{::}$ rather than $\boxed{<:}$.

While this behavior holds for scalars, it doesn't apply to vectors. Specifically, using :: in combination with $\overline{\text{Vector}\{\text{Number}\}}$ establishes that the object will have $\overline{\text{Vector}\{\text{Number}\}}$ as its concrete type. Instead, $\overline{\text{Vector}\{T\}}$ where $\overline{\text{T}}$ <: Number indicates that the elements of the vector will adopt a concrete subtype of $\overline{\text{Number}}$.

```
# 'x' will always be 'Vector{Any}'
x::Vector{Any} = [1,2,3]

# 'y' will always be 'Vector{Number}'
y::Vector{Number} = [1,2,3]

julia> typeof(x)
Vector{Any} (alias for Array{Any, 1})
julia> typeof(y)
Vector{Number} (alias for Array{Number, 1})
```

The principles outlined apply even when a variable isn't explicitly type-annotated. The reason is that an assignment without :: implicitly assigns the type [Any] to the variable, where [Any] is the supertype encompassing all possible types. For example, the statements [x = 2] and [x::Any = 2] are equivalent.

The same occurs when omitting <: from the expression where T, which implicitly takes T <: Any . Thus, for instance, x = 2 is equivalent to x::T where T = 2 or x::T where T <: Any = 2 . Considering this, all variables listed below have their types constrained in a similar manner.

```
# all are equivalent
a = 2
b::Any = 2
```

Once we recognize that variables default to the type $\boxed{\mbox{Any}}$, it becomes clear why they can be reassigned with values of different types. For instance, given $\boxed{\mbox{a} = 1}$, executing $\boxed{\mbox{a} = "hello"}$ afterwards is valid, since $\boxed{\mbox{a}}$ is implicitly type-annotated with $\boxed{\mbox{Any}}$.

Warning! - One-liner Statements Using `where`

Be careful with one-liner statements using where, especially when where T is shorthand for where T <: Any. These concise statements can easily lead to confusion, as demonstrated below.

```
a::T where T = 2  # this is not `T = 2`, it's
`a = 2`

a::T where {T} = 2  # slightly less confusing
notation
a::T where {T <: Any} = 2  # slightly less confusing
notation
```

```
foo(x::T) where T = 2  # this is not `T = 2`, it's
  'foo(x) = 2`

foo(x::T) where {T}  = 2  # slightly less confusing
  notation
foo(x::T) where {T <: Any} = 2  # slightly less confusing
  notation</pre>
```

FUNCTIONS

Function arguments can also be type-annotated. This is illustrated below, where functions are restricted to integer inputs exclusively.

```
function foo1(x::Int64, y::Int64)
    x + y
end

julia> foo1(1, 2)
3

julia> foo1(1.5, 2)

ERROR: MethodError: no method matching foo1(::Float64, ::Int64)
```

Note that when both function arguments are annotated with the same type parameter T, they're constrained to have exactly the same type. Also notice that types like Int64 preclude the use of Float64, even for numbers like 3.0. To allow greater flexibility, you should introduce separate type parameters and annotate them with a common abstract type like Number.

The greatest flexibility is achieved when we don't type-annotate function arguments at all, as they will implicitly default to Any. This can be observed below, where all tabs define identical functions. Ultimately, type-annotating function arguments is only needed to prevent invalid usage (e.g., to ensure that log isn't applied to a negative value).

```
function foo(x, y)
    x + y
end
```

```
function foo(x::Any, y::Any)
    x + y
end
```

```
function foo(x::T, y::S) where {T <: Any, S <: Any}
    x + y
end</pre>
```

```
function foo(x::T, y::S) where {T, S}
    x + y
end
```

CREATING VARIABLES WITH SOME TYPE

To conclude this section, we present an approach for converting values into a specific type. The approach makes use of the so-called **constructors**, which are functions that create new instances of a concrete type. They're useful for transforming a variable \boxed{x} into another type.

Constructors are implemented by functions of the form $\boxed{\text{Type}(x)}$, where $\boxed{\text{Type}}$ should be replaced with the literal name of the type (e.g., $\boxed{\text{Vector}\{\text{Float64}\}}$). Like any other function, $\boxed{\text{Type}}$ also supports broadcasting.

```
x = 1

y = Float64(x)
z = Bool(x)

julia> y
1.0
julia> Z
true
```

```
x = [1, 2, 3]
y = Vector{Any}(x)

julia> y
3-element Vector{Any}:
    1
    2
    3
```

```
x = [1, 2, 3]
y = Float64.(x)

julia> y
3-element Vector{Float64}:
1.0
2.0
3.0
```

Remark

Parametric types can be used as constructors. Moreover, although abstract types can't be instantiated, they may still serve as constructors. In such cases, Julia will attempt to convert the object to a specific concrete type, although not all abstract types can be used for this purpose.

```
x = 1
y = Number(x)

julia> typeof(y)
Int64

x = [1, 2]
y = (Vector{T} where T)(x)

julia> typeof(y)
Vector{Int64}

x = 1
z = Any(x)

ERROR: MethodError: no constructors have been defined for Any
```

An alternative to transform x's type into T is given by the function convert(T,x). Note this only works when a valid conversion exists, such as when all Float64 can be translated into an equivalent Int64 (e.g., Int64). Otherwise, it'll fail.

```
x = 1

y = convert(Float64, x)
z = convert(Bool, x)

julia> y

1.0
julia> Z
true
```

```
x = [1, 2, 3]
y = convert(Vector{Any}, x)

julia> y
3-element Vector{Any}:
    1
    2
    3
```

```
x = [1, 2, 3]
y = convert.(Float64, x)

julia> y
3-element Vector{Float64}:
    1.0
    2.0
    3.0
```

FOOTNOTES

- ^{1.} Types don't necessarily follow a subtype-supertype hierarchy. For example, Float64 and Vector{String} exist independently, without a hierarchical relationship. This fact will become clearer when the concepts of abstract and concrete types are defined.
- ^{2.} The Signed subtype of Integers allows for the representation of negative and positive integers. Julia also offers the type Unsigned, which only accepts positive integers and comprises subtypes such as UInt64 and UInt32.
- 3. T can be replaced by any other letter