Diode Circuits Analysis

Problem-solving technique (using piecewise linear model):

- (1) Express the diode voltage in terms of bias and input voltages.
- (2) Determine the input voltage condition such that a diode is on. Proceed analysis under this condition.
- (3) Determine the input voltage condition such that a diode is off. Proceed analysis under this condition.

Rectifier Circuits

A rectifier circuit converts an ac voltage into one that has only one polarity.

Half-Wave Rectification

Full-Wave Rectification

Rectified output voltage appears during both positive and negative cycles.

Full-Wave Bridge Rectifier

Filtering and Ripple Voltage

A capacitor low-pass filter can filter out most of ac components in the rectified signal

When diode is on, capacitor charging,

$$v_o(t) = v_s(t) - V_{\gamma}$$
$$v_o(max) = V_M - V_{\gamma}$$

When diode is off, capacitor discharging,

$$\begin{aligned} v_o(t) &= v_o(max)e^{-t/RC} \\ v_o(min) &= v_o(max)e^{-\frac{\Delta t_2}{RC}} \\ &\approx v_o(max) \left(1 - \frac{\Delta t_2}{RC}\right) \end{aligned}$$

If $RC \gg T_p$ (period), discharging is very slow. \rightarrow Output voltage is smoothed.

$$V_{ripple} = v_o(max) - v_o(min) \cong v_o(max) \frac{\Delta t_2}{RC} \approx v_o(max) \frac{T_p}{RC}$$

Steady-state waveform

Charging battery

Zener Diode Circuits

Zener diode is useful in a voltage regulator, or a constantvoltage reference circuit.

ullet Ideal Zener Voltage Reference Circuit ($r_Z=0$)

$$V_L = V_Z = V_{Z0}$$

• Non-Ideal Zener Voltage Regulation Circuit ($r_Z \neq 0$)

$$V_Z = V_{z0} + r_Z I_Z$$

Percent Regulation

Variations of V_{PS} and load $(R_L \text{ or } I_L)$ lead to variation of V_L .

• Source regulation (load fixed)

$$Source\ regulation = \frac{\Delta v_L}{\Delta v_{PS}} \times 100\%$$

• Load regulation (V_{PS} fixed)

$$Load\ regulation = \frac{v_{L,no\ load} - v_{L,full\ load}}{v_{L,full\ load}} \times 100\%$$

Clipper and Clamper Circuits

Clipper Circuits

Clipper circuits, also called limiter circuits, are used to eliminate the upper and/or lower portions of a signal.

General transfer characteristics

Clipper Example

Clipper Example

Clamper Circuits

Diode on, capacitor charging. Diode off, capacitor cannot discharge. $v_C(t) \cong v_{C,\max}$

 $v_0(t)$ is shifted

- Capacitor is charged to and maintains at $v_{\mathcal{C}}(t) \cong v_{\mathcal{C},\max}$
- $v_O(t)$ has the same waveform as $v_I(t)$, but is shifted by a constant level.

Clamper Example

Clamper Example

Other Diode Circuit

Photo-diode Detector Circuit

LED Circuit

Diode Logic Circuits

Multiple-Diode Circuits

In multiple-diode circuits, each diode may be either "on" or "off". Do a best-guessing of each diode state first, and see if the results are consistent with the assumptions. If not, do it second round.

Example 1

Example 2

