

BITS-Pilani, Hyderabad Campus FIRST SEMESTER 20172019-20182020: **Course Handout Part II**

Date: 20 July 2018201901-08-2019

In addition to Part-I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No. : INSTR F312

: TRANSDUCERS AND MEASUREMENT SYSTEMS **Course Title**

Credits

Instructor-in-charge: R. N. Ponnalagu

: Mon, Wed, Fri 3.00 to 3.50 pm Schedule ----

Tutorial : Mon 8.00 to 8.50 am

Classroom : I 114

COURSE DESCRIPTION:

This course deals with importance and types of transducers used in instrumentation and measurement. Different types of passive and active transducers. Generalized measurement system, functional elements, static & dynamic performance characteristics and error analysis. Measurement techniques for Velocity, Temperature, Pressure, Flow, Motion, Seismic, Level, Humidity, pH, Viscosity etc. Interfacing transducers with instrumentation systems.

SCOPE AND OBJECTIVE OF THE COURSE:

The objective of the course is to impart knowledge on the various types of sensors and transducers, their measurement techniques and applications instrumentation systems. The course also introduces basics of LabVIEW programming.

COURSE OUTCOMES

After learning the course, students will be able to

- Use the concepts in common methods for converting a physical parameter into an electrical quantity
- Select a suitable sensor/transducer for a given application/specification.
- Set up testing strategies to evaluate performance characteristics of different types of sensors and transducers
- Design a real-life instrumentation system.

1. COURSE DESCRIPTION:

Importance and types of transducers used in instrumentation and measurement. Different types of passive and active transducers. Generalized measurement system, functional elements, static and dynamic performance characteristics and error analysis. Measurement techniques for Temperature, Pressure, Flow, Force, Torque, Level, Motion, Velocity, Humidity, pH, Viscosity etc. Interfacing transducers with instrumentation systems.

[1.] SCOPE AND OBJECTIVE:

To understand the concept and importance of various sensors and transducers in measurement and instrumentation systems. The end result of this course is to make the student capable of select suitable transducer, design and develop instrumentation systems.

[2.] TEXT BOOK (T):

Title	Author		Edition	Publisher	Library #	ISBN
Introduction to Measurements and Instrumentation	Arun Ghosh	N	4 th 2012	PHI	620.0028 GHO-A (3 rd Edition)	9788120346253

2.[3.] REFERENCE BOOKS:

Title	Author	Edition	Publisher	Library #	ISBN
R1: Transducers and Instrumentation	DVS Murthy	2 nd 2013	PHI	530.7 MUR- D	9788120335691
R2: Instrumentation Measurement and Analysis	Nakra and Chaudhry	4 th 2017	McGraw Hill		9789385880629
R3: A Course in Electronic Measurements and Instrumentation	A K Sawhney	2015	Dhanpat Rai & Co	621.37 SAW- A	9788177001006
R4: Theory and Design for Mechanical Measurements	RS Figliola	3 rd 2005	John Wiley & Sons	530.8 FIG-R	9788126516391
R5: Doebelin's Measurement Systems	E O Doeblin	6 th	Tata McGraw Hill	681.2 DOE-E	9780070699687

COURSE PLAN

Lectur e#	Topics to be covered	Brief Learning Objectives	Chapter in the Text BookReference
1-3 2	Introduction to Transducers and measurement system	Definition, classification of transducers and generalized measurement system	T1 (5.1 ₇₂ 5.3, 1.2) Class notes
4 <u>3</u> - 6	Study of performance characteristics and error analysis.	Calibration, Precision, Accuracy, Threshold, Resolution, Hysteresis, Linearity, Sensitivity, Drift, Span, Range, Mean, Deviation, Normal distribution curve, Probable errors.	
7-8 <u>10</u>	Resistance type Transducers	Use of resistance type transducers for temperature, pressure, displacement, moisture and other measurements.	T1 (6.2, 10.3) R1 (6.1.1-6.1.6)
9 <u>11</u> - 10 12	Inductive type Transducers	Different types of inductive type transducers and their use in thickness and displacement measurements.	
1 <u>1</u> <u>3</u> - 1 <u>5</u> <u>2</u>	Capacitive type Transducers		T1 (6.2) R1 (6.3)
1 <u>6</u> 3- 14 <u>18</u>	Thermoelectric and piezo electric transducers	Thermocouple for temperature measurement and Piezo electric transducers for mechanical measurements:	T1 (10.±4) R1 (7.1, 7.2)), R2 (12.5.2, 4.5)
15-16	Piezoelectric transducers	Use of Piezoelectric transducers for mechanical measurements.	
17 <u>19</u> - 18 <u>21</u>	Magentostrictive <u>and</u> hall effect transducers	Use of Magentostrictive transducers for force and torque measurements and applications of hall effect transducers	T1 (6.5) R1 (7.3 <u>, 7.4</u>)
19-20	Hall effect transducers	Use of Hall effect transducers for voltage and current measurements.	` ′
2 1+222	Electro-mechanical transducers	Study of various types of Electro-mechanical transducers and their use.	T1 (9.5) R1 (7.5 <u>.1, -</u> 7.5.2)
23 -2 <u>5</u> 4	Photoelectric _ transducers	Study of various types of Photoelectric transducers and their use.	, ,
25 <u>26</u> - 26 <u>27</u>	Digital transducers _ and Proximity sensors	Study of encoders <u>and proximity sensors</u> and their use.	T1 (6.6 <u>-</u> 6.7) R1 (7.8) R2 (4.9)
2 <u>8</u> 7- 29 28	Motion-Acceleration measurement	Study of absolute and relative displacement, velocity and acceleration.	6.2.2, 6.3.2) R2 (7)
29 <u>30</u> - 30 <u>31</u>	Force <u>and</u> ,torque- and measurement shaft power-	Elastic elements (Bourdon tube, Bellows, Diaphragm), Strain gages, load cell, Torsion bar, Dynamometer and sInverse transducers, Force,	R1 (5.3, 5.4)

		measurement	Torque, Current, Temperature balance systems.	
31 .	32-	Pressure	Fundamentals of pressure measurement and	T1 (8)
32	<u>34</u>	measurement	calibration. To learn techniques of high and low	R1 (5.2)
			pressure measurement. Elastic elements (Bourdon	
			tube, Bellows, Diaphragm), Dead weight gages,	
			manometers, elastic elements. Bridgman,	
			McLeod, Thermal conductivity, Ionization Gauge.	
33	<u>35</u> -	Flow measurement	Obstruction meters, Rota meters, Pitot static	T1 (11)
34	<u> 36</u>		tube meters, Turbine meters, electromagnetic	R1 (5.8)
			flow meters, ultrasonic flow meters, vortex	
			shedding, laser Doppler velocity meter. Hot wire	
			anemometer, mass flow meter, positive	
			displacement meter.	
35	-36	Temperature	Temperature measurement using conventional,	
		measurement	Radiation methods, Thermal expansion methods.	10.5, 10.6,
				10.8)
				R1 (5.1)
37	-38	Level measuremen	Direct and indirect methods, ultrasonic, radar,	
			microwave	R1 (5.6)
39	-40	Viscosity, density,	Hydrometer, air bubbler, weighing system,	
		pH, humidity	electrode element hygrometers, wet and dry	
		measurement	psychrometers.	R1 (5.5, 5.7,
				6.1.6, 6.3.3,
				7.9.4)
41	-42	Interfacing	Discussing various methods with examples.	Class notes
		transducers with		
		instrumentation		
		systems.		
			Basics of LabVIEW programming	

3.[4.] EVALUATIONSCHEME:

		Weightage			
Component	Durati	%	Marks	Date & Time	<u>Nature</u>
	on				<u>of</u>
					<u>Compon</u>
					<u>ent</u>
					Remarks
Midsem	1h 30m	25	75	28/9, 11.00 12.30	CB
				PMTo be	
				announced10.10.2018	
				3.30 to 5.00 pm	
Comprehensive Exam	3 hours	40	120	0702.12.20182019 AN	CB
				2.00 to 5.00 pm	
Quiz (Announced/ surprise)	-	15	45	During Lecture / Tutorial	СВ
Project	-	20	60	To be announced	OB
Total		100	300		

- 4.[5.] **CHAMBER CONSULTATION HOUR:** To be announced in classWednesday, 4 5 pm
- 5.[6.] **Makeup Policy:** Make-up only to those who apply before start of test Make-up will be given on **genuine** grounds only. Prior application should be made for seeking the make- up examination. No make-up will be given for the surprise quiz.
- 6.[7.] **NOTICES & OTHER INFORMATION:** Please refer course CMS page regularly.
- 7.[8.] Academic Honesty and Integrity Policy:

Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

> R. N. Ponnalagu Instructor-in-charge- INSTR F312