Machines thermiques

#chapitre27 #thermodynamique

Principe des machines cycliques

Tout dispositif permettant de réaliser une suite cyclique de transformations d'une fluide. Ce fluide échange du travail et de l'énergie avec son environnement.

Moteur thermique

Fournit un travail mécanique : W < 0

Machine frigorifique

Permet de transférer de la chaleur depuis une source froide vers une chaude.

Application des principes

Premier principe : W = -Q

Second principe : $\sum rac{Q_i}{T_i} \leq 0$ (inégalité de Clausius)

Machine monotherme

Ne peut que recevoir une travail et non pas en fournir.

•
$$Q \ge 0 \ W \ge 0$$

Machine dithermes

• Première principe : $W+Q_c+Q_f=0$

• Inégalité de Clausius : $rac{Q_c}{T_c} + rac{Q_f}{T_f} \leq 0$

Moteur thermique

Rendement

$$ho = rac{E ext{ ou } \mathcal{P}_{utile}}{E ext{ ou } \mathcal{P}_{couteuse}} = |rac{W}{Q_c}| = -rac{W}{Q_c}$$

• Théorème de Carnot : $ho_c = 1 - rac{T_f}{T_c}$

Machines frigorifiques (ici réfrigérateur)

$$\bullet \ \frac{Q_f}{T_f} \le -\frac{Q_c}{T_c}$$

Efficacité

Pompe à chaleur

$$ullet \ e_{pac} = |rac{Q_c}{W}| = -rac{Q_c}{W}$$

$$ullet \ e_{pac,c} = rac{T_c}{T_c - T_f}$$

Réfrigérateur

$$ullet \ e_{frigo} = |rac{Q_f}{W}| = rac{Q_f}{W}$$

$$ullet e_{frigo,c} = rac{T_f}{T_c - T_f}$$

Cycle de Carnot

Le rendement ou efficacité la plus élevé se trouve avec des cycles réversibles.

• Transformation isothermes, adiabatiques, isentropiques.

Moteur à explosion à 4 temps

- 1- Admission
- 2- Compression

- 3- Explosion et détente
- 4- Echappement