Seleção de modelos para previsão do ipca mensal

Daniel Alvarez

#Pacotes

Serão utilizados os seguintes pacotes.

Introdução

A teoria econômica estabelece uma forte relação entre a inflação, no Brasil medida pelo IPCA, desemprego e a taxa basica de júros. Isto posto, propõe-se aqui selecionar um modelo capaz de predizer a variação mensal do IPCA e assim construir alguns cenários baseados na taxa de juros e no desemprego da economia brasileira nos proximos 12 meses.

IPCA

O primeiro passo é a coleta e o tratamento dos dados, as três variáveis utilizadas aqui seram coletadas através dos pacotes rbcb, criado pelo Banco Central do Brasil e do Ipeadatar, criado pelo IPEA. Inicia-se então, coletando a série do IPCA.

```
ipca <- get_series(433, start_date = as.Date('01/03/2012',format = "%d/%m/%Y"))%>%
mutate(date = yearmonth(date)) %>%
   dplyr::rename(ipca = `433`) %>%
as_tsibble(index=date)
```

O primeiro passo é tratar os dados para que sejam transformados em série temporal.

```
inflacao_mensal = ts(ipca$ipca, start=c(2012,03), freq=12)
```

A primeira análise consiste na detecção de sazonalidade no IPCA. Mediante análise do gráfico nota-se um padrão sazonal bastante pronunciado. E isso será tratado através de dummies sazonais.

```
ggmonthplot(inflacao_mensal)
```



```
dummies <- seasonaldummy(inflacao_mensal)</pre>
```

SELIC

Coleta dos dados da Selic

```
selic <- BETS::BETSget(4189, from ='2012-03-01', frequency = 12)</pre>
```

Desemprego Para o desemprego, será usado a taxa de desocupação aferida pela PNAD contínua.

```
#População desocupada (PNAD-C)
des <- ipeadata("PAN12_TDESOC12")%>%
  select(date, value)%>%
  dplyr::rename(desemprego = value)
```

```
desemprego <- ts(des, start=c(2012,03), freq = 12)</pre>
```

```
desemprego_seas <- seas(desemprego[,2])
desemprego <- desemprego_seas$data[,3]</pre>
```

Diferente das outras variáveis apresentadas até aqui, precisamos tratar o desemprego de forma especial. A série é mais curta que as outras duas. Portanto, ao inves de descartar observações no IPCA e na SELIC, optou-se por fazer uma previsão do desemprego para julho/2021.

```
desemprego.forecast <- forecast(auto.arima(desemprego,lambda = 0.5862068 ), h=1, level=95)$mean
x <- data.frame(date = c("2021-07-01"), desemprego_seas= desemprego.forecast)
desemprego.forecast <-as.xts(desemprego)
desemprego2 <- as.xts(desemprego)
des <- c(desemprego2, desemprego.forecast)</pre>
```

Breve exploração das séries

```
g1<-autoplot(desemprego)+
  geom_smooth()+
  xlab("Ano")+ylab('Tx.Desocupação')+
  ggtitle("Taxa de desocupação (%)")+
  theme_bw()
g2<-autoplot(inflacao_mensal)+
  geom_smooth()+
  xlab("Ano")+ylab('IPCA')+
  ggtitle("IPCA mensal")+
  theme_bw()
g3<-autoplot(selic)+
  geom_smooth()+
  xlab("Ano")+ylab('SELIC')+
  ggtitle("SELIC mensal")+
  theme_bw()
grid.arrange(g1, g2, g3)
```


Nota-se um comportamento errático na série do ipca, aparentemente sem um componente de tendencia forte. No entanto, para ser possível observar um padrão de tendencia, seria necessário visualizar a séria acumulada nos ultimos 12 meses. Fica pra próxima rs.

Aqui juntamos as três séries em uma uníca base de dados.

```
data <- ts.intersect(inflacao_mensal,des,selic, dummies)</pre>
```

Estimação

Agora iniciamos a parte mais interessante. Não usaremos modelos univariados de séries temporais na presente análise. Vamos deixar as coisas mais interessantes ao incluir nos modelos variáveis exogenas (taxa de juros e desemprego). Mas, devemos começar pelo começo, e para isso devemos começar pela regressão linear.

```
lin1 <- tslm(ipca ~ data[,2:13], data = data)
r1<-summary(lin1)
print(xtable(r1), comment=FALSE)</pre>
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.8116	0.2091	3.88	0.0002
data[, 2:13] des	-0.0233	0.0135	-1.73	0.0867
data[, 2:13]selic	0.0061	0.0096	0.64	0.5266
data[, 2:13]dummies.Jan	-0.0203	0.1381	-0.15	0.8834
$\mathrm{data}[,2{:}13]\mathrm{dummies.Feb}$	0.0068	0.1382	0.05	0.9611
$\mathrm{data}[,2{:}13]\mathrm{dummies.Mar}$	-0.0786	0.1335	-0.59	0.5573
$\mathrm{data}[,2{:}13]\mathrm{dummies.Apr}$	-0.2103	0.1335	-1.58	0.1183
data[, 2:13]dummies.May	-0.2202	0.1335	-1.65	0.1020
data[, 2:13]dummies.Jun	-0.2481	0.1335	-1.86	0.0660
data[, 2:13]dummies.Jul	-0.2491	0.1335	-1.87	0.0649
data[, 2:13]dummies.Aug	-0.4034	0.1382	-2.92	0.0043
$\mathrm{data}[,2{:}13]\mathrm{dummies.Sep}$	-0.2522	0.1382	-1.83	0.0709
$\mathrm{data}[,2{:}13]\mathrm{dummies.Oct}$	-0.1235	0.1381	-0.89	0.3734

Diferente do que era esperado, a selic não se mostrou estatisticamente significativa para determinar o ipca. Quando o resultado de um refressão segue o lado oposto ao da teoria, é sinal de que algo não está certo. Aqui, no caso, é porque não estamos usando a modelagem correta. Mas vamos dar proseguimento ao processo de forecast por razões didáticas.

Comparação entre o IPCA e o modelo estimado

```
autoplot(ts(fitted(lin1), start=c(2012,03), freq=12))+
geom_line(size=1, aes(colour='LM'))+
geom_line(aes(y=inflacao_mensal, colour='IPCA'), size=.7)+
xlab('')+ylab('% a.m.')+
labs(title='Inflação mensal vs. Modelo de Regressão Múltipla',
caption='Fonte: Elaborado pelo autor',
colour='')+
theme(legend.position="bottom")
```


Fonte: Elaborado pelo autor

Além de não estarmos utilizando o framework metodologico adequado, o com as variáveis que temos em mãos mal mal conseguimos simular as variações do ipca. Quem dirá prevê-las. Para tanto, adicionaremos o úmero índice da produção industrial e o cambio

Novamente nos deparamos com o problema de missing value. Desta vez, na série da industria. Para tanto, vamos adotar o mesmo procedimento adotado na construção da série do desemprego.

Juntanto no mesmo objeto.

```
data2 <- ts.intersect(inflacao_mensal,des,selic, cambio, industria, dummies)
```

```
lin2 <- tslm(ipca ~ data2[,2:16], data2 = data)
r2<-summary(lin2)
print(xtable(r2), comment=FALSE)</pre>
```

Vamos examinar novamente o modelo vs. a série original.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-2.5400	0.7331	-3.46	0.0008
data2[, 2:16]des	-0.0432	0.0194	-2.22	0.0285
data2[, 2:16]selic	0.0268	0.0088	3.06	0.0028
data2[, 2:16] cambio	0.3214	0.0542	5.93	0.0000
data2[, 2:16]industria	0.0279	0.0059	4.72	0.0000
data2[,2:16]dummies.Jan	-0.2004	0.1348	-1.49	0.1403
data2[,2:16]dummies.Feb	-0.1607	0.1346	-1.19	0.2354
data2[, 2:16]dummies.Mar	-0.2628	0.1314	-2.00	0.0482
data2[, 2:16]dummies.Apr	-0.3639	0.1311	-2.78	0.0066
data2[, 2:16]dummies.May	-0.3870	0.1311	-2.95	0.0040
data2[,2:16]dummies.Jun	-0.4269	0.1313	-3.25	0.0016
data2[, 2:16]dummies.Jul	-0.4423	0.1315	-3.36	0.0011
data2[, 2:16]dummies.Aug	-0.5771	0.1347	-4.29	0.0000
data2[, 2.16]dummies.Sep	-0.4388	0.1347	-3.26	0.0016
data2[, 2:16]dummies.Oct	-0.3047	0.1347	-2.26	0.0259
data2[, 2:16]dummies.Nov	-0.3204	0.1347	-2.38	0.0193

```
autoplot(ts(fitted(lin2), start=c(2012,03), freq=12))+
geom_line(size=1, aes(colour='LM2'))+
geom_line(aes(y=inflacao_mensal, colour='IPCA'), size=.7)+
xlab('')+ylab('% a.m.')+
labs(title='Inflação mensal vs. Modelo de Regressão Múltipla',
caption='Fonte: Elaborado pelo autor',
colour='')+
theme(legend.position="bottom")
```

Inflação mensal vs. Modelo de Regressão Múltipla

Fonte: Elaborado pelo autor

Embora seja possível notar mais aderencia do modelo ajustado à serie original do ipca, percebe-se que é possível melhora muito. Para tanto, adotaremos o framework correto. Começaremos agora a

estimar modelos dentro do escopo de séries temporais. Mas antes vamos interpretar os coeficientes: O desemprego, claramente contribui para a desaceleração do ipca. Tal como, um dolar mais caro contribui para o seu aumento. Chamam atenção o sinal positivo da selic, que deveria impactar negativamente na aceleração da inflação. Mas, devemos considerar o seguinte: estamos analisando a selic e o ipca no mesmo periodo de tempo t1. E, a taxa selic funciona como mecanismo de contenção para a inflação. Ou seja, é aumentada após a detecção de aceleração do ipca. Portanto, o aumento da selic em t1 só causará impacto negativo no ipca futuramente. Quanto ao sinal da produção industrial temos a seguinte hipótese: Estamos produzindo a custos crescentes, o que não é dificil de se eperar no Brasil.

Modelo Arima.

O primeiro modelo, estimado, será o mais simples possível. Contaremos com a ajuda da função autorima para estimar um modelo univariado. Assim, não precisaremos análisar as funções de autocorrelação e autocorrelação parcial para definir a ordem do modelo. Vamos comparar o modelo estimado com a série original novamente.

```
arima1<-auto.arima(inflacao_mensal)

comparacao_ts <- cbind(inflacao_mensal, fitted(arima1))
autoplot(comparacao_ts)</pre>
```


Nota-se uma aderencia muito maior, mas vamos selecionar o modelo sob o qual criaremos cenários usando métricas objetivas a seguir. Antes, vamos brincar mais um pouco e estimar mais alguns modelos. Agora que estamos chegando ao caminho certo, vamos introduzir variáveis exogenas. Aqui vamos, basicamente, combinar o modelo arima com o modelo de regressão linear multípla.

arima2 <- auto.arima(data2[,1], xreg = data2[,2:16])</pre>

```
autoplot(ts(fitted(arima2), start=c(2012,03), freq=12))+
geom_line(size=1, aes(colour='Arima'))+
geom_line(aes(y=inflacao_mensal, colour='IPCA'), size=.7)+
xlab('')+ylab('% a.m.')+
labs(title='Inflação mensal vs. Modelo de Regressão Múltipla',
caption='Fonte: Elaborado pelo autor',
colour='')+
theme(legend.position="bottom")
```

Inflação mensal vs. Modelo de Regressão Múltipla

Fonte: Elaborado pelo autor

Series: inflacao_mensal

Baseado nas funções de ACF e PACF vamos ambandonar o modelo automatizado e vamos modelar do jeito roots! rs.

Diagnóstico dos erros.

Vamos aproveitar e examinar os residuos do nosso modelo.

checkresiduals(arima3)

Residuals from Regression with ARIMA(1,0,0) errors

Ljung-Box test

data: Residuals from Regression with ARIMA(1,0,0) errors $Q^* = 21.955$, df = 6, p-value = 0.001234 Model df: 17. Total lags used: 23

```
autoplot(ts(fitted(arima3), start=c(2012,03), freq=12))+
geom_line(size=1, aes(colour='Arima'))+
geom_line(aes(y=inflacao_mensal, colour='IPCA'), size=.7)+
xlab('')+ylab('% a.m.')+
labs(title='Inflação mensal vs. Modelo de Regressão Múltipla',
caption='Fonte: Elaborado pelo autor',
colour='')+
theme(legend.position="bottom")
```

Inflação mensal vs. Modelo de Regressão Múltipla

Fonte: Elaborado pelo autor

Podemos ver muito mais aderencia a série original. No entanto, o teste Ljung-Box test sugere que nosso erros são correlacionados. Por isso vamos tentar uma abordagem diferente e modelar a sazonalidade.

```
data2 <- ts.intersect(inflacao_mensal,des,selic, cambio,industria)
arima4 <- Arima(data2[,1], xreg = data2[,2:5], order = c(1,0,0), seasonal = c(1,0,0))</pre>
```


Ljung-Box test

data: Residuals from Regression with ARIMA(1,0,0)(1,0,0)[12] errors $Q^* = 23.031$, df = 16, p-value = 0.1129 Model df: 7. Total lags used: 23

Bom, conseguimos enxergar que os erros seguem uma distribuição normal e se assemelham a um ruído branco e aceitamos a hiótese nula de que os erros não são correlacionados. Acredito que tenhamos um forte candidato em mãos.

```
autoplot(ts(fitted(arima4), start=c(2012,03), freq=12))+
geom_line(size=1, aes(colour='Arima'))+
geom_line(aes(y=inflacao_mensal, colour='IPCA'), size=.7)+
xlab('')+ylab('% a.m.')+
labs(title='Inflação mensal vs. Modelo de Regressão Múltipla',
caption='Fonte: Elaborado pelo autor',
colour='')+
theme(legend.position="bottom")
```


Fonte: Elaborado pelo autor

Vamos tentar um modelo menos parcimonioso agora

Ljung-Box test

data: Residuals from Regression with ARIMA(3,1,1)(1,0,0)[12] errors $Q^* = 20.924$, df = 14, p-value = 0.1036 Model df: 9. Total lags used: 23

```
autoplot(ts(fitted(arima5), start=c(2012,03), freq=12))+
geom_line(size=1, aes(colour='Arima'))+
geom_line(aes(y=inflacao_mensal, colour='IPCA'), size=.7)+
xlab('')+ylab('% a.m.')+
labs(title='Inflação mensal vs. Modelo de Regressão Múltipla',
caption='Fonte: Elaborado pelo autor',
colour='')+
theme(legend.position="bottom")
```

Inflação mensal vs. Modelo de Regressão Múltipla

Fonte: Elaborado pelo autor

```
arima6 <- Arima(data2[,1], xreg = data2[,2:5], order = c(12,1,1), seasonal = c(1,0,0) )
checkresiduals(arima6)</pre>
```

Residuals from Regression with ARIMA(12,1,1)(1,0,0)[12] errors

Ljung-Box test

data: Residuals from Regression with ARIMA(12,1,1)(1,0,0)[12] errors $Q^* = 11.472$, df = 5, p-value = 0.04279

Model df: 18. Total lags used: 23

```
autoplot(ts(fitted(arima6), start=c(2012,03), freq=12))+
geom_line(size=1, aes(colour='Arima'))+
geom_line(aes(y=inflacao_mensal, colour='IPCA'), size=.7)+
xlab('')+ylab('% a.m.')+
labs(title='Inflação mensal vs. Modelo de Regressão Múltipla',
caption='Fonte: Elaborado pelo autor',
colour='')+
theme(legend.position="bottom")
```

Inflação mensal vs. Modelo de Regressão Múltipla

Fonte: Elaborado pelo autor

Selecionar o melhor modelo

```
acc1 = accuracy(arima1,    test = inflacao_mensal)
acc2 = accuracy(arima2,    test = inflacao_mensal)
acc3 = accuracy(arima3,    test = inflacao_mensal)
acc4 = accuracy(arima4,    test = inflacao_mensal)
acc5 = accuracy(arima5,    test = inflacao_mensal)
acc6 = accuracy(arima6,    test = inflacao_mensal)
print(xtable(acc1), comment=FALSE, type = "latex")
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
Training set	-0.22	0.22	0.22	-104.40	104.40		

print(xtable(acc2), comment=FALSE, type = "latex")

-	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
Training set	-0.23	0.23	0.23	-107.29	107.29		

print(xtable(acc4), comment=FALSE, type = "latex")

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
Training set	-0.18	0.18	0.18	-83.69	83.69		

print(xtable(acc5), comment=FALSE, type = "latex")

```
print(xtable(acc6), comment=FALSE, type = "latex")
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
Training set	-0.00	0.00	0.00	-1.22	1.22		
	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
Training set	-0.00	0.00	0.00	-1.38	1.38		

Fazendo a projeção do IPCA

Vamos selecionar o modelo base no RMSE. Para ser mais exato vamos escolher o modelo com o menor RMSE. A grande questão aqui é que os modelos arima5 e arima6 possuem um RMSE muito pequeno. Dessa forma, vamos selecionar o modelo mais parcimonioso. Ou seja, vamos construir cenários com base no modelo arima5.

Como se trata da criação de um cenário, precisamos, obviamente, criar um cenário. Aqui é onde colocamos a imaginação para funcionar.

Por se tratar de um exercício informal, podemos adotar as premissas que quisermos. No entanto, no ambiente profissional, esse processo é de grande importância. Para tanto, um bom método de definição de premissas é o método delfi. Para mais informações dá um google aí.

Assim, a seguir criamos a matriz de cenários com base nas seguites premissas: 1 - Queda na taxa de desemprego 2 - Selic chegando a 7,5 pp 3 - Cambio a 5,20 4 - Indice de produção industrial mantendo-se em cerca de 90 pontos;

```
f_arima <- forecast(arima5, xreg = c1, h = 12)
```

```
autoplot(f_arima)+
  xlab("Período") + ylab("IPCA")+
  labs(title='Inflação mensal vs. Modelo de Regressão Múltipla',
  caption='Fonte: Elaborado pelo autor',
colour='')
```


Fonte: Elaborado pelo autor

theme(legend.position="bottom")

```
## List of 1
## $ legend.position: chr "bottom"
## - attr(*, "class")= chr [1:2] "theme" "gg"
## - attr(*, "complete")= logi FALSE
## - attr(*, "validate")= logi TRUE
```

f_arima\$mean

```
Mar
##
              Jan
                        Feb
                                             Apr
                                                       May
                                                                  Jun
                                                                            Jul
## 2021
## 2022 0.9375720 1.0323410 1.0861160 1.0558177 1.0372872 1.0577435 1.0879000
##
                                   Oct
                                             Nov
                                                       Dec
              Aug
                        Sep
## 2021 0.9072292 0.9068081 0.9289647 0.9951340 1.0880282
## 2022
```