About a nice inequality

Cezar Lupu, Cosmin Pohoaţa

In [1.](page 75), Gabriel Dospinescu, Mircea Lascu and Marian Tetiva gave two solutions to the following inequality:

Let a, b, c be three nonnegative real numbers. Show that:

$$a^{2} + b^{2} + c^{2} + 2abc + 3 \ge (1+a)(1+b)(1+c).$$
 (1)

On the Mathlinks Forum, Darij Grinberg proved a sharper inequality:

For any a, b, c positive real numbers, the following inequality holds:

$$a^{2} + b^{2} + c^{2} + 2abc + 1 \ge 2(ab + bc + ca).$$
 (2)

The solution given by Darij on the Mathlinks Forum is based on Schur's inequality written in the form:

$$2(ab + bc + ca) - (a^2 + b^2 + c^2) \le \frac{9abc}{a + b + c}$$
(3)

and AM-GM,

$$2abc + 1 = abc + abc + 1 \ge 3\sqrt[3]{a^2b^2c^2} \tag{4}$$

From (3) and (4), the inequality (2) reduces to:

$$3\sqrt[3]{a^2b^2c^2} \ge \frac{9abc}{a+b+c},\tag{5}$$

which is equivalent to $a + b + c \ge 3\sqrt[3]{abc}$, which is plain AM-GM.

Vasile Cârtoaje gave another solution to (2). (see [2], page 17).

In this paper, we shall give another solution to (2) via convex functions using Popoviciu's inequality.

Theorem 1. (Tiberiu Popoviciu, 1965)

Let I be an interval and $f: I \to \mathbb{R}$ a convex function. Then for any $x, y, z \in I$ the following inequality is valid:

$$f(x) + f(y) + f(z) + 3f\left(\frac{x+y+z}{3}\right) \ge 2\left[f\left(\frac{x+y}{2}\right) + f\left(\frac{y+z}{2}\right) + f\left(\frac{z+x}{2}\right)\right].$$

A nice proof of this result can be found in [3].

Now, let us consider the function $f: \mathbb{R} \to (0, \infty)$, $f(t) = \exp(2t)$. A simple calculation of derivatives shows that f is convex. By Popoviciu's inequality, we obtain:

$$\exp(2x) + \exp(2y) + \exp(2z) + 3\exp\left(\frac{2(x+y+z)}{3}\right)$$

$$\geq 2[\exp(x+y) + \exp(y+z) + \exp(z+x)].$$

which is equivalent to:

$$\exp^{2}(x) + \exp^{2}(y) + \exp^{2}(z) + 3\sqrt[3]{\exp^{2}(x) \cdot \exp^{2}(y) \cdot \exp^{2}(z)}$$
$$\geq 2[\exp(x) \cdot \exp(y) + \exp(y) \cdot \exp(z) + \exp(z) \cdot \exp(z)].$$

Now, denote $\exp(x) = a > 0$, $\exp(y) = b > 0$, $\exp(z) = c > 0$. We get the inequality:

$$a^{2} + b^{2} + c^{2} + 3\sqrt[3]{a^{2}b^{2}c^{2}} \ge 2(ab + bc + ca).$$
 (6)

Now, again from AM-GM,

$$2abc + 1 = abc + abc + 1 \ge 3\sqrt[3]{a^2b^2c^2}$$

and (6), the conclusin follows.

Now we give a few applications of (6). The first preoblem has been given at the first IMO Romanian test in 2001 (proposed by Mircea Becheanu).

A1. Let a, b, c three positive reals. Prove that

$$\sum_{cvc} (b+c-a)(c+a-b) \le \sqrt{abc}(\sqrt{a}+\sqrt{b}+\sqrt{c}). \tag{7}$$

Solution. One can verify by a simple calculation, that:

$$\sum_{cyc} (b+c-a)(c+a-b) = 2(ab+bc+ca) - (a^2+b^2+c^2).$$

Now, by (6), we only need to see that

$$3\sqrt[3]{a^2b^2c^2} \le \sqrt{abc}(\sqrt{a} + \sqrt{b} + \sqrt{c}) \tag{8}$$

which follows from AM-GM, $\sqrt{a} + \sqrt{b} + \sqrt{b} \ge \sqrt[3]{\sqrt{abc}} = 3\sqrt[6]{abc}$.

The next problem was one of the shortlisted problems of Romanian National Olympiad, 2004 (proposed by Valentin Vornicu).

A2. Let a, b, c three positive reals. Show that

$$\sqrt{abc}(\sqrt{a} + \sqrt{b} + \sqrt{c}) + (a+b+c)^2 \ge 4\sqrt{3abc(a+b+c)}.$$
 (9)

Solution. By A1, we get:

$$\sqrt{abc}(\sqrt{a} + \sqrt{b} + \sqrt{c}) \ge 2(ab + bc + ca) - (a^2 + b^2 + c^2). \tag{10}$$

Now, we only need to prove that:

$$ab + bc + ca \ge \sqrt{3abc(a+b+c)},\tag{11}$$

which is evident.

The next application is from the Romanian Junior Selection test for Balkan Olympiad 2005 and it was proposed by the first author of this paper.

A3. Let x, y, z three positive reals such that

$$(x+y)(y+z)(z+x) = 1.$$

Show that

$$xy + yz + zx \le \frac{3}{4}. (12)$$

Solution. We put x+y=c, z+x=b and y+z=a. It follows that $x=\frac{b+c-a}{2}, y=\frac{c+a-b}{2}$ and $z=\frac{a+b-c}{2}$. Now, we only need to prove that

$$\sum_{cuc} (b + c - a)(c + a - b) \le 3. \tag{13}$$

which is equivalent to

$$2(ab + bc + ca) \le a^2 + b^2 + c^2 + 3.$$

But, since abc = 1 this last inequality is a simple consequence of (6).

The following problem is quite hard. It was proposed by Hojoo Lee at the Asia-Pacific Olympiad in 2004.

A4. Let a, b, c three positive reals. Show that

$$(a^{2}+2)(b^{2}+2)(c^{2}+2) \ge 9(ab+bc+ca). \tag{14}$$

Solution. Expanding everything, the problem reduces to

$$(abc)^{2} + 2(a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2}) + 4(a^{2} + b^{2} + c^{2}) + 8 \ge 9(ab + bc + ca).$$
 (15)

From the evident inequalities $3(a^2 + b^2 + c^2) \ge 3(ab + bc + ca)$ and $2(a^2b^2 + b^2c^2 + c^2a^2) + 6 \ge 4(ab + bc + ca)$, we only need to prove that

$$(abc)^{2} + a^{2} + b^{2} + c^{2} \ge 2(ab + bc + ca).$$
(16)

Now, by (6), we only need to see that $(abc)^2 + 2 \ge \sqrt[3]{a^2b^2c^2}$, which is AM-GM.

The following problem was given by Titu Andreescu at the USA Selections test for IMO in 2000.

A5. Prove that for any positive real numbers a, b, c the following inequality holds

$$\frac{a+b+c}{3} - \sqrt[3]{abc} \le \max\{(\sqrt{a} - \sqrt{b})^2, (\sqrt{b} - \sqrt{c})^2, (\sqrt{c} - \sqrt{a})^2\}$$
 (17)

Solution. It is clear that

$$\frac{(\sqrt{a} - \sqrt{b})^2 + (\sqrt{b} - \sqrt{c})^2 + (\sqrt{b} - \sqrt{c})^2}{3}$$

$$\leq \max\{(\sqrt{a} - \sqrt{b})^2, (\sqrt{b} - \sqrt{c})^2, (\sqrt{c} - \sqrt{a})^2\}$$

So, we are left to prove that

$$a + b + c + 3\sqrt[3]{abc} \ge 2(\sqrt{ab} + \sqrt{bc} + \sqrt{ca}) \tag{18}$$

which is (13). Thus the problem is solved.

The next problem is a geometric inequality due to George Polya and Gabor Szego.

A6. Prove that if a, b, c are the sidelenghts of a triangle and S its area, then

$$abc \ge \left(\frac{4S}{\sqrt{3}}\right)^{3/2} \tag{19}$$

Solution. The given inequality is equivalent to

$$3\sqrt[3]{a^2b^2c^2} \ge 4S\sqrt{3}. (20)$$

Now, using (6) we only need to prove that

$$2(ab + bc + ca) - (a^2 + b^2 + c^2) \ge 4S\sqrt{3}.$$
 (21)

But, this inequality is equivalent to Hadwiger-Finsler inequality (see [4.])

$$a^{2} + b^{2} + c^{2} \ge 4S\sqrt{3} + (a-b)^{2} + (b-c)^{2} + (c-a)^{2}$$
 (22)

Acknowledgement. The authors would like to thank Diana Puţan, from the University of Bucharest, for typing almost the whole paper and providing some useful remarks.

References.

- [1.] G.Dospinescu, M.Lascu, M.Tetiva problem 74, Old & New Inequalities, GIL 2004.
- [2.] V.Cârtoaje Algebraic inequalities Old&New Methods, GIL, 2006;
- [3.] S.Savchev, Titu Andreescu Mathematical Miniatures, Mathematical Association of America, 2002;
- [4.] Arthur Engel- Problem-solving Strategies, Springer Verlag, 1998.

Cezar Lupu, student, University of Bucharest, Faculty of Mathematics, Bucharest, Romania

Cosmin Pohoaţa, highschool student, Tudor Vianu Highschool, Bucharest, Romania