Algorithms

Lecture 4
Recursive Time Complexity

Prantik Paul [PNP]

Lecturer

Department of Computer Science and Engineering

BRAC University

Solving Recurrences- Methods

- 1. Iteration Method
- Recursion Tree Method
- 3. Master Theorem

Merge Sort (Algorithm)

```
MERGE-SORT(A) \triangleright A[1..n]

1 if n = 1

2 then return

3 else \triangleright recursively sort the two subarrays

4 A_1 = \text{MERGE-SORT}(A[1..\lceil n/2\rceil])

5 A_2 = \text{MERGE-SORT}(A[\lceil n/2\rceil] + 1..n])

6 A = \text{MERGE}(A_1, A_2) \triangleright merge the sorted arrays
```

Merge (Algorithm)

```
MERGE(A, B)
   INPUT: Two sorted arrays A and B
   OUTPUT: Returns C as the merged array
   \triangleright n_1 = length[A], n_2 = length[B], n = n_1 + n_2
  Create C[1...n]
   Initialize two indices to point to A and B
   while A and B are not empty
         do Select the smaller of two and add to end of C
5
            Advance the index that points to the smaller one
   if A or B is not empty
      then Copy the rest of the non-empty array to the end of C
   return C
```

Merge Sort: Running Time

Merge Sort: Running Time

The recurrence for the worst-case running time T(n) is

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

equivalently

$$T(n) = \begin{cases} b & \text{if } n = 1 \\ 2T(n/2) + bn & \text{if } n > 1 \end{cases}$$

Solve this recurrence by
(1) iteratively expansion

Iterative Approach

$$\rightarrow T(n) = T(n-1) + 1$$

$$= (T(n-2) + 1) + 1$$

$$= ((T(n-3) + 1) + 1) + 1$$

Merge Sort: Running Time

$$T(n) = 2T(n/2) + bn$$

$$= 2(2T(n/2^{2})) + b(n/2)) + bn$$

$$= 2^{2}T(n/2^{2}) + 2bn$$

$$= 2^{3}T(n/2^{3}) + 3bn$$

$$= 2^{4}T(n/2^{4}) + 4bn$$

$$= ...$$

$$= 2^{i}T(n/2^{i}) + ibn$$

Refer to notes

- Note that base, T(n) = b, case occurs when $2^i = n$. That is, $i = \log n$.
- \bullet So, $T(n) = bn + bn \log n$
- Thus, T(n) is $O(n \log n)$.

Iteration Method

Try:

- 1. T(n) = 4T(n/2) + bn
- 2. T(n) = 3T(n/2) + bn

Recursion Tree Method

 Draw the recursion tree for the recurrence relation and look for a pattern:

$$T(n) = \begin{cases} b & \text{if } n = 1\\ 2T(n/2) + bn & \text{if } n \ge 2 \end{cases}$$

Total time = $bn + bn \log n$ (last level plus all previous levels)

Quick Sort (Algorithm)

Algorithm

```
QUICKSORT(A, p, r) \triangleright A[p ... r]

1 if p < r

2 then q \leftarrow \text{PARTITION}(A, p, r)

3 QUICKSORT(A, p, q - 1)

4 QUICKSORT(A, q + 1, r)
```

Partitioning (Algorithm)

Algorithm

```
PARTITION(A, p, q) \triangleright A[p ... q]
1 \quad x \leftarrow A[p] \qquad \qquad \triangleright \text{ pivot } = A[p]
2 \quad i \leftarrow p
   for j \leftarrow p + 1 to q
             do if A[j] \leq x
                       then i \leftarrow i + 1
5
6
                                 exchange A[i] \leftrightarrow A[j]
     exchange A[p] \leftrightarrow A[i]
     return i
```

Quick Sort: Running Time

$$T(n) = T(0) + T(n-1) + cn$$
$$T(n)$$

$$T(n) = T(0) + T(n-1) + cn$$

Quick Sort: Running Time (Best Case)

 Best-case happens when pivot is the median element, creating equal size partitions.

Quick Sort: Running Time (Almost Worst Case)

• What if the split is always $\frac{1}{10}$: $\frac{9}{10}$?

Refer to book

The Master Theorem is a tool used to solve recurrence relations that arise in the analysis of divide-and-conquer algorithms. The Master Theorem provides a systematic way of solving recurrence relations of the form:

$$T(n) = aT(n/b) + f(n)$$

where a, b, and f(n) are positive functions and n is the size of the problem. The Master Theorem provides conditions for the solution of the recurrence to be in the form of $O(n^k)$ for some constant k, and it gives a formula for determining the value of k.

The Master Theorem is a tool used to solve recurrence relations that arise in the analysis of divide-and-conquer algorithms. The Master Theorem provides a systematic way of solving recurrence relations of the form:

$$T(n) = aT(n/b) + f(n)$$

Not all recurrence relations can be solved with the use of the master theorem i.e. if

- T(n) is not monotone, ex: T(n) = sin n
- f(n) is not a polynomial, ex: T(n) = 2T(n/2) + 2ⁿ

This theorem is an advance version of master theorem that can be used to determine running time of divide and conquer algorithms if the recurrence is of the following form:-

$$T(n) = aT(n/b) + \theta(n^k \log^p n)$$

1. if
$$a > b^k$$
, then $T(n) = \theta(n^{\log_b a})$
$$T(n) = aT(n/b) + \theta(n^k \log^p n)$$
2. if $a = b^k$, then
$$(a) \text{ if } p > -1 \text{, then } T(n) = \theta(n^{\log_b a} \log^{p+1} n)$$

$$(b) \text{ if } p = -1 \text{, then } T(n) = \theta(n^{\log_b a} \log\log n)$$

$$(c) \text{ if } p < -1 \text{, then } T(n) = \theta(n^{\log_b a})$$

3. if $a < b^k$, then

(a) if p >= 0, then $T(n) = \theta(n^k \log^p n)$ (b) if p < 0, then $T(n) = \theta(n^k)$

 $T(n) = \theta(n \log n)$

Example-2: Merge Sort – T(n) = 2T(n/2) + O(n)
 a = 2, b = 2, k = 1, p = 0
 b^k = 2. So, a = b^k and p > -1 [Case 2.(a)]
 T(n) = θ(n^{log}_ba log^{p+1}n)

• Example-3: $T(n) = 3T(n/2) + n^2$ a = 3, b = 2, k = 2, p = 0 $b^k = 4$. So, $a < b^k$ and p = 0 [Case 3.(a)] $T(n) = \theta(n^k \log^p n)$ $T(n) = \theta(n^2)$

```
• Example-4: T(n) = 3T(n/2) + log^2n
   a = 3, b = 2, k = 0, p = 2
   b^{k} = 1. So, a > b^{k} [Case 1]
  T(n) = \theta(n^{\log_b a})
  T(n) = \theta(n^{\log_2 3})
```

• Example-5: $T(n) = 2T(n/2) + n\log^2 n$ a = 2, b = 2, k = 1, p = 2 $b^{k} = 2$. So, $a = b^{k}$ [Case 2.(a)] $T(n) = \theta(n^{\log_b a} \log^{p+1} n)$ $T(n) = \theta(n^{\log_2 2} \log^3 n)$ $T(n) = \theta(n\log^3 n)$

Example-6: T(n) = 2ⁿT(n/2) + nⁿ
 This recurrence can't be solved using above method since function is not of form T(n) = aT(n/b) + θ(n^k log^pn)

$$T(n) = 2T(n/2) + n \lg n$$

Not solvable by general theorem, but solvable by advanced version

Exercises

4.5-1

Use the master method to give tight asymptotic bounds for the following recurrences.

a.
$$T(n) = 2T(n/4) + 1$$
.

b.
$$T(n) = 2T(n/4) + \sqrt{n}$$
.

c.
$$T(n) = 2T(n/4) + n$$
.

d.
$$T(n) = 2T(n/4) + n^2$$
.

Resources

- CLRS Book:
 - Chapter 2.3.2 Merge Sort Analysis
 - Chapter 4.4 Recursion Tree Method
 - Chapter 4.5 Master Method
 - Chapter 7.4 Quicksort Analysis
- Recursive Time Complexity Notes
- Master Theorem Explanation