Е. А. СИДОРОВА, А. В. ДОЛГОВА, С. П. ЖЕЛЕЗНЯК

ПРОГРАММИРОВАНИЕ АРИФМЕТИЧЕСКИХ ЦИКЛОВ НА VBA

Министерство транспорта Российской Федерации Федеральное агентство железнодорожного транспорта Омский государственный университет путей сообщения

Е. А. Сидорова, А. В. Долгова, С. П. Железняк

ПРОГРАММИРОВАНИЕ АРИФМЕТИЧЕСКИХ ЦИКЛОВ НА VBA

Утверждено методическим советом университета в качестве учебно-методического пособия к выполнению самостоятельной и лабораторных работ

УДК 004.42 (075.8) ББК 32.973-018.2я73 С34

Программирование арифметических циклов на VBA: Учебнометодическое пособие к выполнению самостоятельной и лабораторных работ / Е. А. Сидорова, А. В. Долгова, С. П. Железняк; Омский гос. ун-т путей сообщения. Омск, 2021. 30 с.

Учебно-методическое пособие разработано в соответствии с рабочими программами дисциплин информационного профиля с учетом требований ФГОС ВО последнего поколения.

Приведены краткие теоретические сведения по программированию арифметических циклов на VBA. Рассмотрены основные этапы выполнения заданий, приведены примеры графических схем алгоритмов и листинги программ решения поставленных задач. Представлены контрольные и тестовые вопросы.

Предназначено для самостоятельной и лабораторных работ студентов всех направлений подготовки (специальностей) очной и заочной форм обучения по дисциплинам, изучающим основы программирования.

Библиогр.: 3 назв. Табл. 6. Рис. 13.

Рецензенты: доктор техн. наук, профессор В. Н. Горюнов; доктор техн. наук, профессор А. А. Кузнецов.

© Омский гос. университет путей сообщения, 2021

ОГЛАВЛЕНИЕ

Введение	5
1. Общие требования к выполнению заданий	6
2. Арифметический цикл	8
3. Цикл со счетчиком	11
4. Вычисление максимума и минимума	13
5. Цикл с разветвлением на три ветви	16
6. Задания	22
7. Контрольные вопросы	27
8. Примеры тестовых вопросов	28
Библиографический список	29

ВВЕДЕНИЕ

В настоящее время программирование на языке Visual Basic for Applications (VBA) при работе с приложениями Microsoft Office широко применяется в различных областях человеческой деятельности. Редактор VBA представляет собой полноценную среду разработки приложений, интегрированную в Microsoft Office. Отличительными особенностями указанного редактора является удобный интерфейс, наличие всех необходимых средств управления программным кодом и большое количество встроенных готовых объектов, к которым может обращаться разработчик проекта.

В настоящем учебно-методическом пособии приведены краткие теоретические сведения по алгоритмизации и программированию арифметических циклов на VBA. Рассмотрены основные этапы выполнения заданий, приведены примеры графических схем алгоритмов и листинги программ решения поставленых задач. Представлены контрольные и тестовые вопросы, приведено большое количество индивидуальных вариантов заданий.

Библиографический список, приведенный в конце пособия, содержит литературу для углубленного изучения материала по рассматриваемой тематике.

1. ОБЩИЕ ТРЕБОВАНИЯ К ВЫПОЛНЕНИЮ ЗАДАНИЙ

В каждой лабораторной или самостоятельной работе необходимо выполнить следующие действия.

- 1. Создать рабочую книгу Excel. В свойствах файла в поле *Название* указать свои фамилию и группу, например, Иванов_40a. Сохранить рабочую книгу с поддержкой макросов с именем, указанным в табл. 1.1.
- 2. Создать в книге Excel в редакторе VBA стандартный модуль Module1 (переименовывать его не нужно). В разделе общих объявлений (в начале) модуля ввести оператор Option Explicit для запрета использования необъявленных переменных. Далее в этом модуле записывать программы всех заданий текущей работы.
 - 3. Каждое задание выполнить в следующем порядке.
 - 3.1. Записать в тетрадь условие задачи индивидуального варианта (ИВ).
- 3.2. Вручную изобразить в тетради графическую схему алгоритма (ГСА) решения задачи ИВ.
 - 3.3. В Excel-файле создать рабочий лист с именем, указанным в табл. 1.1.
- 3.4. Скопировать из соответствующей таблицы заданий строку с условием задачи ИВ и вставить ее в виде рисунка на лист Excel.
- 3.5. Составить и набрать в модуле Module1 программу решения задачи ИВ, оформив ее отдельной процедурой с именем, указанным в табл. 1.1. В программе:
 - а) выбрать рабочий лист, указанный в п. 3.3;
 - б) очистить содержимое необходимого диапазона ячеек;
- в) значения исходных данных, которые не изменяются в процессе работы программы, задать константами;
 - г) вывод на лист Excel начать в строке с номером ИВ + 10;
- д) исходные данные и полученные результаты вывести с соответствующими текстовыми пояснениями;
- е) числовые результаты вывести в формате контрольных значений, указанных в условии задачи ИВ;
- ж) для каждого оператора предусмотреть комментарии, поясняющие выполняемые действия.
- 3.6. Запустить программу на исполнение, получить результаты и сверить их с заданными контрольными значениями. При необходимости доработать и отладить программу.
 - 3.7. Записать отлаженную программу в тетрадь.

	Объект	Структура имени	Пояснения	Примеры
	Файл (рабочая книга	Фамилия_NN_Вид работы N.xlsm	Фамилия – фамилия студента; NN – порядковый номер занятия в семестре;	Иванов_08_лаб 6.xlsm Иванов_10_КСР 3.xlsm
	Excel)		Вид работы — лабораторная работа (лаб) или контроль самостоятельной работы (КСР);	
			N – номер занятия по виду работы	
1	Рабочий лист Excel	Фамилия_Тема_зN_вN	<i>Тема</i> – краткое обозначение темы задания;	Иванов_Цпр_31_в5
			3N – номер задания в работе;	
			eN — номер варианта выполняемого задания	
	Процедура	Фамилия_Тема_зN_вN	Аналогично рабочему листу Excel	Иванов_Цпр_31_в5
		Фамилия_Тема_зN_вN_способN	Выполнение задания <i>способом N</i> (при наличии нескольких способов решения задачи)	Иванов_Цпр_31_в5_способ1

7

 Π р и м е ч а н и е . Номера заданий (3N) должны строго соответствовать их порядковым номерам в перечне заданий на текущую работу.

2. АРИФМЕТИЧЕСКИЙ ЦИКЛ

В различных математических задачах часто приходится многократно выполнять вычисления по одним и тем же формулам с разными исходными данными. Примером такого расчета является *табулирование* функции — определение значений функции при изменении ее аргумента от начального до конечного значения с определенным шагом (приращением). Для решения подобных задач применяется циклический алгоритм, реализуемый на языке VBA с помощью оператора арифметического цикла For ... Next, который имеет следующий формат записи:

For
$$x = x_{\text{нач}}$$
 To $x_{\text{кон}}$ Step Δx 'Заголовок (начало) цикла с параметром x 'Операторы (тело цикла)

Next x 'Возврат к началу цикла

Заголовок цикла задает перебор значений параметра цикла x от начального значения $x_{\text{нач}}$ до конечного значения $x_{\text{кон}}$ с шагом Δx . Значения $x_{\text{нач}}$, $x_{\text{кон}}$, Δx могут быть константами, переменными или арифметическими выражениями. В теле цикла записывается перечень действий, которые повторяются для каждого значения параметра цикла. Этот перечень может включать в себя фрагменты линейной структуры, разветвления и вложенные циклы.

При обработке дробных чисел может накапливаться погрешность вычислений, которая приводит к тому, что цикл завершится до достижения последнего значения параметра цикла. Для исключения такой ситуации рекомендуется увеличить конечное значение параметра цикла, например, на десятую долю шага, т. е. вместо $x_{\text{кон}}$ принимать значение $x_{\text{кон}} + \Delta x/10$.

Пример 1. Составить ГСА и программу табулирования функции с использованием оператора арифметического цикла по заданию из табл. 2.1. По результатам расчета построить график функции.

Таблица 2.1 Задание для примера 1

Ва- ри- ант	Функция	Исходные данные	Диапазон и шаг изменения аргумента	Контрольные значения
вN	$y = x^2 + \sin(x+a)$	a = 1,7		При $x = -2.0$ $y = 3.70$; при $x = -0.2$ $y = 1.04$; при $x = 1.0$ $y = 1.43$

ГСА решения примера 1 с описанием выполняемых действий приведена на рис. 2.1. Параметром цикла является аргумент функции x. Заголовок цикла определяет перебор значений этой переменной в заданном диапазоне (от -2 до 1) с шагом 0,3.

Рис. 2.1. ГСА решения примера 1

В соответствии с ГСА составим программу расчета, в которой организуем вывод значений аргумента x и соответствующих им значений функции y на лист Excel в два столбца, например, начиная со строки 10. Для наглядного представления и контроля полученных результатов выделим последнее значение x заливкой зеленым цветом RGB(0, 200 + ИВ, 0), последнее значение y — шрифтом красного цвета RGB(200 + ИВ, 0, 0). Листинг программы решения примера 1 с подробными комментариями приведен на рис. 2.2, результат ее работы — на рис. 2.3. Сравнение полученных результатов с указанными в задании контрольными значениями позволяет сделать вывод о том, что задача решена верно.

По результатам расчета на свободном месте листа построим средствами Excel точечную диаграмму (график) функции (см. рис. 2.3). В заголовке диаграммы следует указать свои фамилию, инициалы и группу.

```
Sub Фамилия_Цпр_зN_вN()
                                                   'Начало процедуры
  Dim x As Single, y As Single, nstr As Byte
                                                   'Объявление переменных
  Const a As Single = 1.7
                                                   'Объявление константы а
  Worksheets("Фамилия Цпр зN вN").Select
                                                   'Выбор рабочего листа
  Range("A:B").Clear
                                                   'Очистка столбцов А и В
  nstr = 10
                                                   'Номер начальной строки для вывода
  Cells(nstr, 1) = "x" : Cells(nstr, 2) = "y"
                                                   Вывод заголовков столбцов таблицы
  For x = -2 To 1.03 Step 0.3
                                                   'Заголовок (начало) цикла
    y = x ^2 + Sin(x + a)
                                                   Расчет функции у для текущего значения х
    nstr = nstr + 1
                                                   'Наращивание номера строки
     Cells(nstr, 1) = x : Cells(nstr, 2) = y
                                                   'Вывод текущих значений х и у
     Cells(nstr, 1).NumberFormat = "0.0"
                                                   Установка числового формата в ячейке
     Cells(nstr, 2).NumberFormat = "0.00"
  Next x
                                                   'Возврат к началу цикла
     Cells(nstr, 1).Interior.Color = RGB(0, 200, 0)
                                                   'Заливка ячейки зеленым цветом
     Cells(nstr, 2).Font.Color = RGB(200, 0, 0)
                                                   'Красный цвет шрифта в ячейке
End Sub
                                                   'Конец процедуры
```

Рис. 2.2. Листинг программы решения примера 1

Рис. 2.3. Результат решения примера 1

3. ЦИКЛ СО СЧЕТЧИКОМ

Если в повторяющихся вычислениях аргумент функции изменяется не с постоянным шагом, а произвольным образом, но количество расчетов заранее известно, то организуют цикл со счетчиком. В этом случае в алгоритм вычислений вводят дополнительную переменную, которая хранит порядковый номер расчета, выполняя роль счетчика повторений цикла.

Пример 2. Составить ГСА и программу циклического расчета значений функции y, указанной в примере 1 (см. табл. 2.1), для трех произвольных значений аргумента x.

ГСА решения примера 2 с описанием выполняемых действий приведена на рис. 3.1. Указанная ГСА отличается от ГСА решения примера 1 (см. рис. 2.1) тем, что параметром цикла в данном случае является счетчик повторений цикла k (его значения изменяются от 1 до 3 с шагом 1), а в тело цикла дополнительно введен блок 4 для ввода значения переменной x.

Рис. 3.1. ГСА решения примера 2

В соответствии с ГСА составим программу расчета, в которой ввод значения x организуем с клавиатуры, вывод значений счетчика повторений цикла k, аргумента x и соответствующих им значений функции y — на лист Excel в три столбца, например, начиная со строки 10. Листинг программы решения примера 2 с подробными комментариями приведен на рис. 3.2, результат работы этой программы — на рис. 3.3. Сравнение полученных результатов с указанными в задании контрольными значениями позволяет сделать вывод о том, что задача решена верно.

Рис. 3.2. Листинг программы решения примера 2

10	№ п/п	Х	У						
11	1	-2,0	3,70				$-2 \le x \le 1$	При $x = -2$,	0 y = 3,70;
12	2	-0,2	1,04	вN	$y = x^2 + \sin(x + a)$	a = 1,7	$\Delta x = 0.3$	При $x = -2$, при $x = -0$, при $x = 1,0$	y = 1,04;
13	3	1,0	1,43				$\Delta x = 0.5$	при $x = 1,0$	y = 1,43
14 - 4	▶ Ы Фами	пия_Цсч_зN	_BN 💝			[] ∢ [IIII	•

Рис. 3.3. Результат решения примера 2

4. ВЫЧИСЛЕНИЕ МАКСИМУМА И МИНИМУМА

Среди разных типов вычислительных задач особое место занимает определение экстремума — максимального и (или) минимального значения функции на рассматриваемом интервале изменения ее аргумента. Решение такой задачи основано на последовательном сравнении каждого значения функции с текущим значением экстремума, которое при выполнении соответствующего условия становится равным проверяемому значению функции. В программировании для осуществления таких действий организуют цикл, в который вложена разветвляющаяся структура, реализующая вычисление экстремума.

Пример 3. Составить ГСА и программу вычисления экстремума функции y в диапазоне изменения аргумента x в соответствии с заданием примера 1 (см. табл. 2.1).

Визуальный анализ графика функции в примере 1 (см. рис. 2.3) показал, что в заданном диапазоне изменения аргумента она имеет экстремум – минимум, который необходимо вычислить согласно условию поставленной задачи.

ГСА решения примера 3 с описанием выполняемых действий приведена на рис. 4.1. По сравнению с ГСА решения примера 1 в ней добавлены блоки 3, 7, 8 и 9, содержащие операции с переменной *ymin*, предусмотренной для хранения минимального значения функции.

В соответствии с ГСА составим программу расчета, в которой организуем вывод таблицы значений функции аналогично примеру 1 и через одну строку после нее выведем значение минимума функции. Листинг программы решения примера 3 с подробными комментариями приведен на рис. 4.2, результат ее работы — на рис. 4.3. Аналогично примеру 1 построим на листе Excel график функции.

Для проверки правильности расчета искомого значения экстремума через одну строку от него вычислим минимальное значение функции с помощью встроенной функции Excel *MUH*. Сравнение полученных разными способами результатов и анализ данных таблицы и графика функции (см. рис. 4.3) позволяют сделать вывод о том, что задача решена верно.

Рис. 4.1. ГСА решения примера 3

```
Sub Фамилия_Цэкстр_зN_вN()
                                                  'Начало процедуры
  Dim x As Single, y As Single
                                                  'Объявление переменных
  Dim nstr As Byte, ymin As Single
  Const a As Single = 1.7
                                                  'Объявление константы а
  vmin = 1E+25
                                                  'Присвоение значения переменной утіп
  Worksheets("Фамилия_Цэкстр_зN_вN").Select
                                                  'Выбор рабочего листа
  Range("A:B").Clear
                                                  'Очистка столбцов А и В
  nstr = 10
                                                  'Номер начальной строки для вывода
  Cells(nstr, 1) = x
                                                  'Вывод заголовков столбцов таблицы
  Cells(nstr, 2) = "y"
  For x = -2 To 1.03 Step 0.3
                                                  'Заголовок (начало) цикла
    y = x^2 + Sin(x + a)
                                                  Расчет значения функции у
                                                  'для текущего значения х
    nstr = nstr + 1
                                                  'Наращивание номера строки
     Cells(nstr, 1) = x
                                                  'Вывод текущего значения х
    Cells(nstr, 2) = y
                                                  'Вывод текущего значения у
    Cells(nstr, 1).NumberFormat = "0.0"
                                                  'Установка числового формата в ячейке
     Cells(nstr, 2).NumberFormat = "0.00"
   If y < ymin Then ymin = y
                                                  'Определение минимального значения у
  Next x
                                                  'Возврат к началу цикла
  Cells(nstr + 2, 1) = "ymin ="
                                                  'Вывод заголовка ymin
  Cells(nstr + 2, 2) = ymin
                                                  Вывод значения утіп
  Cells(nstr + 2, 2).NumberFormat = "0.00"
                                                  Установка числового формата в ячейке
End Sub
                                                  'Конец процедуры
```

Рис. 4.2. Листинг программы решения примера 3

Рис. 4.3. Результат решения примера 3

5. ЦИКЛ С РАЗВЕТВЛЕНИЕМ НА ТРИ ВЕТВИ

При решении практических задач имеются случаи, когда на рассматриваемом интервале изменения аргумента функции в зависимости от выполнения накладываемых на него ограничений значения функции требуется определять по разным формулам, т. е. выполнять табулирование разрывной функции. В программировании решение подобных задач осуществляется с помощью организации цикла, в который вложена разветвляющаяся структура.

Пример 4. Составить ГСА и программу табулирования разрывной функции с использованием оператора арифметического цикла по заданию из табл. 5.1. По результатам расчета построить график функции.

Таблица 5.1 Задание для примера 4

Ва- ри- ант	Функция	Исходные данные	Шаг <i>Δх</i>	Контрольные значения
вN	$y = \begin{cases} \sin(a \cdot x) & x < 1,3 \\ e^x & 1,3 \le x \le 2,3 \\ \cos^2(2 \cdot x - a) & x > 2,3 \end{cases}$	a = 2,3	0,2	При $x = 0.3$ $y = 0.64$; при $x = 2.3$ $y = 9.97$; при $x = 3.3$ $y = 0.16$

Заданная функция y состоит из трех частей и рассчитывается по разным формулам в зависимости от диапазона изменения аргумента x. Поскольку общий интервал изменения x в задании не указан, определим его исходя из равенства длин всех трех диапазонов.

Введем следующие обозначения:

xn — начальное значение общего интервала изменения аргумента x;

xk – конечное значение общего интервала изменения аргумента x;

xns — начальное значение среднего диапазона изменения аргумента x;

xks – конечное значение среднего диапазона изменения аргумента x;

dlina — длина каждого диапазона изменения аргумента x.

По условию задания значения xns и xks известны (xns = 1,3, xks = 2,3), что позволяет определить длину среднего диапазона, а затем с ее помощью – границы общего интервала изменения x:

$$dlina = xks - xns; (1)$$

$$xn = xns - dlina;$$
 (2)

$$xk = xks + dlina. (3)$$

Для вычисления всех значений функции y на полученном интервале от xn до xk с шагом 0,2 организуем арифметический цикл.

ГСА решения примера 4 с описанием выполняемых действий приведена на рис. 5.1. По сравнению с ГСА решения примера 1 в ней добавлены блоки 3 и 4, содержащие операции для вычисления значений xn и xk, а также блоки 6-10, организующие разветвление на три ветви с целью выбора формулы для расчета значения функции y.

Рис. 5.1. ГСА решения примера 4

В соответствии с ГСА составим программу расчета, в которой организуем вывод номера ветви, значений аргумента x и соответствующих им значений функции y на лист Excel в три столбца, например, начиная со строки 10.

Для наглядного представления и контроля результатов все значения в первой ветви выделим шрифтом красного цвета RGB(200 + ИВ, 0, 0), во второй – шрифтом синего цвета RGB(0, 0, 200 + ИВ). Листинг программы решения примера 1 с подробными комментариями приведен на рис. 5.2, результат работы данной программы – на рис. 5.3. В данной задаче обязательно нужно проверить не только полноту вывода результатов от xn = 0,3 до xk = 3,3 включительно (эти значения определены по формулам (1) – (3)), но и правильность выбора ветвей для расчета значений функции y. При наличии каких-либо отклонений необходимо скорректировать программу.

Программа на рис. 5.2 приведена уже с учетом корректировки. В строке For x = xn To xk + 0.02 Step 0.2 конечное значение параметра цикла увеличено на десятую долю шага (0,02) для учета погрешности, возникающей при обработке дробных чисел (см. разд. 2). Аналогичный прием реализован в строке Elself $x \le xks + 0.02$ Then. Если не выполнять такие действия, то расчет при x = 3,3 (конечное значение общего интервала изменения аргумента) не осуществляется, а при x = 2,3 (правая граница среднего диапазона изменения аргумента) вычисление функции y производится по формуле (3) (в ответе будет y = 0,44) вместо второй ветви (правильное значение y = 9,97).

Иногда в случаях строгого неравенства в зависимости от конкретных значений xns, xks и Δx требуется не увеличивать проверяемое значение на долю шага, а, наоборот, уменьшать (например, записать $x < xns - \Delta x/10$).

По заданию примера 1 значение x = 0.3 должно быть в ветви 1, значения x = 1.3 и x = 2.3 – в ветви 2, значение x = 3.3 – в ветви 3. Анализ данных, полученных после исполнения программы, приведенной на рис. 5.2, показал, что все перечисленные условия выполнены (см. рис. 5.3). Сравнение полученных результатов с указанными в задании контрольными значениями позволяет сделать вывод о том, что задача решена верно.

По результатам расчета построим график разрывной функции средствами Excel. Для этого на свободном месте листа вставим точечную диаграмму (пустая область), вызовем для нее контекстное меню и выберем опцию «Выбрать данные ...». В открывшемся окне «Выбор источника данных» в поле «Элементы легенды (ряды)» нажмем кнопку «Добавить». В открывшемся окне «Изменение ряда» (рис. 5.4) введем данные для первой ветви (при этом к диапазону ячеек автоматически добавляется имя рабочего листа). Аналогично по очереди задаем параметры для второй и третьей ветвей. Диаграмму для каждой ветви оформим линиями разного цвета с маркерами точек разного типа. В заголовке диаграммы следует указать свои фамилию, инициалы и группу.

```
Sub Фамилия_Цветвл_зN_вN()
                                                   'Начало процедуры
  Dim x As Single, y As Single
                                                   'Объявление переменных
  Dim xn As Single, xk As Single, xns As Single, xks As Single
  Dim nstr As Byte, nv As Byte, dlina As Single
  Const a As Single = 2.3
                                                   'Объявление константы а
  Worksheets("Фамилия_Цветвл_зN_вN"). Select
                                                   'Выбор рабочего листа
                                                   'Очистка столбцов с А по С
  Range("A:C").Clear
  nstr = 10
                                                   'Номер начальной строки для вывода
  Cells(nstr, 1) = "Ветвь"
                                                   'Вывод заголовков столбцов таблицы
  Cells(nstr. 2) = "x"
  Cells(nstr, 3) = "y"
  xns = Val(InputBox("Введите xns"))
                                                   'Ввод границ среднего диапазона
  xks = Val(InputBox("Введите xks"))
                                                   'изменения х
  dlina = xks - xns
                                                   'Расчет длины среднего диапазона
  xn = xns - dlina
                                                   'Расчет начального и конечного
  xk = xks + dlina
                                                   значений общего интервала изменения х
  For x = xn To xk + 0.02 Step 0.2
                                                   'Заголовок (начало) цикла
     nstr = nstr + 1
                                                   'Наращивание номера строки
     if x < xns Then
      nv = 1 : v = Sin(a * x)
                                                   'Расчет значения функции у и номера ветви nv
      Cells(nstr, 1).Font.Color = RGB(200, 0, 0)
                                                   'Красный цвет шрифта в ячейке
      Cells(nstr, 2).Font.Color = RGB(200, 0, 0)
      Cells(nstr, 3).Font.Color = RGB(200, 0, 0)
     Elself x <= xks + 0.02 Then
      nv = 2 : v = Exp(x)
      Cells(nstr, 1).Font.Color = RGB(0, 0, 200)
                                                   'Синий цвет шрифта в ячейке
      Cells(nstr, 2).Font.Color = RGB(0, 0, 200)
      Cells(nstr, 3).Font.Color = RGB(0, 0, 200)
      nv = 3 : v = Cos(2 * x - a) ^ 2
   End If
     Cells(nstr, 1) = nv
                                                   'Вывод номера ветви nv
     Cells(nstr, 2) = x
                                                   'Вывод текущего значения х
     Cells(nstr, 3) = v
                                                   'Вывод текущего значения у
     Cells(nstr, 2).NumberFormat = "0.0"
                                                   'Установка числового формата в ячейке
     Cells(nstr, 3).NumberFormat = "0.00"
  Next x
                                                   'Возврат к началу цикла
End Sub
                                                   'Конец процедуры
```

Рис. 5.2. Листинг программы решения примера 4

Рис. 5.3. Результат решения примера 4

Рис. 5.4. Выбор источника данных для построения графика разрывной функции

6. ЗАДАНИЯ

Задание 1. В соответствии с общими требованиями к выполнению заданий (см. разд. 1) и индивидуальным вариантом (табл. 6.1) составить ГСА и программу табулирования функции с использованием оператора арифметического цикла, по результатам расчета построить график функции. Работу выполнить и оформить по образцу примера 1. Краткое обозначение темы задания 1 в именах объектов – Цпр.

Таблица 6.1 Индивидуальные варианты заданий 1 и 2

		T	_	
Ва- ри- ант	Функция	Исходные данные	Диапазон и шаг изменения аргумента	Контрольные значения
1	2	3	4	5
0	$y = \sin^2 x^3 + \sqrt{ x+a }$	a = 0.13	$-2.5 \le x \le 2.5$ $\Delta x = 0.2$	При $x = -2.5$ $y = 1.55$; при $x = -0.1$ $y = 0.17$; при $x = 2.5$ $y = 1.63$
1	$y = \sin^2(x+m) + \frac{\ln x^2}{mx}$	m = 3,2	$11,2 \le x \le 26,2$ $\Delta x = 0,6$	При $x = 11,2$ $y = 1,07;$ при $x = 18,4$ $y = 0,24;$ при $x = 26,2$ $y = 0,89$
2	$y = \frac{a}{\sqrt{x+b}} + \cos x^2$	a = 1,1; b = 0,02	$2 \le x \le 8$ $\Delta x = 0,3$	При $x = 2.0$ $y = 0.12$; при $x = 5.0$ $y = 1.48$; при $x = 8.0$ $y = 0.78$
3	$y = \frac{\sqrt{x} \cdot \sin(dx^2)}{d + x}$	d = 1,79	$0.5 \le x \le 3.8$ $\Delta x = 0.15$	При $x = 0.50$ $y = 0.13$; при $x = 2.00$ $y = 0.29$; при $x = 3.80$ $y = 0.23$
4	$y = \frac{k \ln x^2 - a}{e^{ax}}$	a = 0.17; k = 1.15	$-1 \le x \le 9$ $\Delta x = 0,4$	При $x = -1,0$ $y = -0,20;$ при $x = 4,2$ $y = 1,53;$ при $x = 9,0$ $y = 1,06$
5	$y = m\cos(bx) + \sin^2 x$	b = 3.7; m = 0.5	$2 \le x \le 13$ $\Delta x = 0,55$	При $x = 2,00$ $y = 1,05$; при $x = 7,50$ $y = 0,45$; при $x = 13,00$ $y = -0,10$
6	$y = \frac{\sin 3x - a}{b\ln(b + x^2)}\cos x$	a = 0.8; b = 3.5	$0.1 \le x \le 2.9$ $\Delta x = 0.14$	При $x = 0.10$ $y = -0.11$; при $x = 1.50$ $y = -0.02$; при $x = 2.90$ $y = 0.02$

Окончание табл. 6.1

1	2	3	4	5
7	$y = \sin x^3 - \frac{b}{a \ln x^2}$	a = -5,2; b = 3	$ \begin{array}{c} 1,45 \le x \le 5,44 \\ \Delta x = 0,19 \end{array} $	При $x = 1,45$ $y = 0,87$; при $x = 3,35$ $y = 0,14$; при $x = 5,44$ $y = -0,52$
8	$y = \sin^3 kx^2 - \frac{\sqrt[5]{x^2}}{q\sin x}$	k = -15; $q = 2,2$	$0.1 \le x \le 1.1$ $\Delta x = 0.04$	При $x = 0.10$ $y = -1.82$; при $x = 0.58$ $y = 0.18$; при $x = 1.10$ $y = -0.26$
9	$y = \frac{x \sin x^4 - 5}{e^x + b}$	<i>b</i> = 1,4	$-3.4 \le x \le 0.2$ $\Delta x = 0.18$	При $x = -3,40$ $y = -5,84$; при $x = -1,60$ $y = -3,39$; при $x = 0,20$ $y = -1,91$
10	$\sqrt[3]{qx}$	q = 0.5	$7 \le x \le 37$ $\Delta x = 1,2$	При $x = 7.0$ $y = 1.04$; при $x = 22.6$ $y = 1.24$; при $x = 37.0$ $y = 1.85$
11	$y = ae^{\sin x} + \frac{\sqrt[5]{x+b}}{ax^2}$	a = 3,6; b = 5	$5,4 \le x \le 22,2$ $\Delta x = 0,7$	При $x = 5,4$ $y = 1,68;$ при $x = 13,8$ $y = 9,25;$ при $x = 22,2$ $y = 2,93$
12	$y = \ln \sqrt{x} + \cos e^{x-b}$	b = 7,2	$1,7 \le x \le 18,5$ $\Delta x = 0,8$	При $x = 1,7$ $y = 1,27$; при $x = 9,7$ $y = 2,06$; при $x = 18,5$ $y = 1,96$
13	$y = \sin^2 x^4 + a\sqrt{ x-a }$	a = 5,3	$ \begin{array}{c} -7.1 \le x \le -6.5 \\ \Delta x = 0.03 \end{array} $	При $x = -7,10$ $y = 18,80$; при $x = -6,80$ $y = 19,36$; при $x = -6,50$ $y = 18,56$
14	$y = \frac{\cos^2 x + \sin kx}{\sqrt{b - \arctan x}}$	b = 2.9; k = 1.4	$6,2 \le x \le 15,4$ $\Delta x = 0,46$	При $x = 6,20$ $y = 1,37$; при $x = 10,80$ $y = 0,50$; при $x = 15,40$ $y = 1,12$
15	$y = \cos^2 bx^3 + \sqrt{e^{a-x}}$	a = 4,2; b = 0,3	$4.7 \le x \le 6.9$ $\Delta x = 0.11$	При $x = 4,70$ $y = 1,71$; при $x = 5,80$ $y = 0,61$; при $x = 6,90$ $y = 0,42$
16	$y = \sin^2 x^3 - \frac{\sqrt{ b - x }}{a}$	a = 3,4; b = 5,7	$-2 \le x \le 0$ $\Delta x = 0,1$	При $x = -2.0$ $y = 0.16$; при $x = -1.0$ $y = -0.05$; при $x = 0.0$ $y = -0.70$
17	$y = \sqrt[3]{ x+a } + \frac{\cos bx^3}{\ln^2 x}$	a = -11; $b = 22$	$3.7 \le x \le 7.9$ $\Delta x = 0.21$	При $x = 3,70$ $y = 1,58$; при $x = 5,80$ $y = 1,89$; при $x = 7,90$ $y = 1,34$
18	$y = \frac{\cos x^2 - a}{\ln x} + \sqrt[5]{bx}$	a = 8; b = 4,2	$ 25,3 \le x \le 48,3 \\ \Delta x = 1,15 $	При $x = 25,30$ $y = 0,28$; при $x = 36,80$ $y = 0,25$; при $x = 48,30$ $y = 0,76$

Задание 2. В соответствии с общими требованиями к выполнению заданий (см. разд. 1) и индивидуальным вариантом составить ГСА и программу циклического расчета значений функции, указанной в табл. 6.1, для трех произвольных значений аргумента x. Работу выполнить и оформить по образцу примера 2. Краткое обозначение темы задания 2 в именах объектов — Цсч.

Задание 3. В соответствии с общими требованиями к выполнению заданий (см. разд. 1) и индивидуальным вариантом (табл. 6.2) составить ГСА и программу расчета экстремума функции, заданной в табл. 6.1, в указанном диапазоне изменения аргумента *х*. Работу выполнить и оформить по образцу примера 3. Краткое обозначение темы задания 3 в именах объектов – Цэкстр.

Таблица 6.2 Индивидуальные варианты задания 3

Ba-			Ba-		
ри-	Вид экстремума	Результат	ри-	Вид экстремума	Результат
ант			ант		
0	Максимум	ymax = 2,31	10	Максимум	ymax = 1,93
1	Минимум	ymin = 0,09	11	Минимум	ymin = 1,33
2	Минимум	ymin = -0,53	12	Максимум	ymax = 2,39
3	Минимум	ymin = -0.36	13	Минимум	ymin = 18,52
4	Максимум	ymax = 1,53	14	Максимум	ymax = 1,47
5	Максимум	ymax = 1,14	15	Минимум	ymin = 0,30
6	Максимум	ymax = 0.06	16	Минимум	ymin = -0.74
7	Минимум	ymin = -0,69	17	Максимум	ymax = 2,24
8	Максимум	ymax = 0,42	18	Максимум	ymax = 0,96
9	Максимум	ymax = -1,86			

Задание 4. В соответствии с общими требованиями к выполнению заданий (см. разд. 1) и индивидуальным вариантом (табл. 6.3) составить ГСА и программу табулирования разрывной функции. По результатам расчета построить график функции. Работу выполнить и оформить по образцу примера 4. Краткое обозначение темы задания 4 в именах объектов – Цветвл.

Таблица 6.3 Индивидуальные варианты задания 4

Ba-			TI.	III.	
ри- ант	Функция	Исходные данные	Шаг Δx	Контрольные значения	
1	2		3	4	5
0	$y = \begin{cases} \ln ax^2 + b - 0.5 \\ e^{ax} - ab \\ \sin^2(x+a) \end{cases}$	x < 0.2; $0.2 \le x \le 2.2;$ x > 2.2	a = 0.12; b = -4.4		При $x = -1.8$ $y = 0.89$; при $x = 2.2$ $y = 1.83$; при $x = 4.2$ $y = 0.85$
1	$y = \begin{cases} \lg xk \\ \cos(x+k)^3 \\ \sqrt[3]{x} + e^{kx} \end{cases}$	$x < -1;$ $-1 \le x \le 0;$ $x > 0$	k = 0.04		При $x = -2.0$ $y = -1.10$; при $x = 0.0$ $y = 1.00$; при $x = 1.0$ $y = 2.04$
2		$x < 0;$ $0 \le x \le 1;$ $x > 1$	<i>d</i> = 6,2	0,1	При $x = -1,0$ $y = 2,43$; при $x = 1,0$ $y = 6,24$; при $x = 2,0$ $y = 1,26$
3	$y = \begin{cases} x + \lg(a+b) \\ \sin \sqrt{7x+b} \\ x^2 + \frac{e^x}{b+x} \end{cases}$		a = 98,3; b = 4,5		При $x = -0.10$ $y = 1.91$; при $x = 0.70$ $y = 0.08$; при $x = 1.10$ $y = 1.75$
4	$y = \begin{cases} 0.3w - e^{x-k} \\ \cos^3(wx + k) \\ \ln(x - 0.3) \end{cases}$	$x < 2;$ $2 \le x \le 5;$ $x > 5$	w = 2.81; k = 0.95	0,3	При $x = -1,0$ $y = 0,70;$ при $x = 5,0$ $y = -0,44;$ при $x = 8,0$ $y = 2,04$
5	$y = \begin{cases} e^{2x} - \sqrt[3]{d^4} \\ \lg(0.5d + x^2) \\ \sin(x + d^2) \end{cases}$	$x < 1;$ $1 \le x \le 4;$ $x > 4$	<i>d</i> = 4,4	0,3	При $x = -2.0$ $y = -7.19$; при $x = 1.0$ $y = 0.51$; при $x = 7.0$ $y = 0.94$

Продолжение табл. 6.3

1	2		3	4	5
6	$y = \begin{cases} \ln x+k & \text{if } x+k \\ k+0.65e^{x-k} & -2 \le x \\ \sqrt[3]{kx} + \cos^2 kx & \text{if } x \end{cases}$		<i>k</i> = 2,1		При $x = -6.0$ $y = 1.36$; при $x = 2.0$ $y = 2.69$; при $x = 6.0$ $y = 3.33$
7	$y = \begin{cases} a + \sin^2 x & \text{if } \\ \sqrt{\lg(a - x)} & \text{if } \\ e^{\sqrt{x - b}} & \text{if } \end{cases}$		a = 7,13; b = 0,91		При $x = -6.0$ $y = 7.21$; при $x = 0.0$ $y = 0.92$; при $x = 12.0$ $y = 27.94$
8	$y = \left\{ \sin\left(x^2 - \frac{\pi}{2}\right) \right\} 1.3 \le x$	<1,3; ≤4,3; ⇒4,3	w = 1,57		При $x = -1,7$ $y = 1,32;$ при $x = 1,3$ $y = 0,12;$ при $x = 7,3$ $y = 3,03$
9	$y = \begin{cases} e^{0.2d\sqrt{x}} & 0.3 \le 0.3 \end{cases}$	x < 0.3; $x \le 3.3;$ x > 3.3	<i>d</i> = 2,5		При $x = -2.7$ $y = 0.46$; при $x = 0.3$ $y = 1.32$; при $x = 6.3$ $y = 0.34$
	$y = \begin{cases} \ln^2 x - e^{-bx} & 1.5 \le x \\ \cos \sqrt{(x+b)^3} & x \end{cases}$	x < 1.5; $x \le 9.5;$ x > 9.5	b = 0,91		При $x = -6.5$ $y = -0.20$; при $x = 9.5$ $y = 5.07$; при $x = 17.5$ $y = -0.90$
11	$y = \begin{cases} e^{\cos x } & \text{if } x \\ \lg \sqrt{(x+a)^3} & \text{if } x \end{cases}$ $1 \le x$	$x < 1;$ $x \le 4;$ $x > 4$	<i>a</i> = 3,8	0,3	При $x = -2.0$ $y = 0.66$; при $x = 1.0$ $y = 1.02$; при $x = 7.0$ $y = 3.08$
12	$y = \begin{cases} 2\cos\left(x^2 - \frac{\pi}{2}\right) & x \\ 2x - 3\ln x - 3 & 0.5 \le x \\ e^{-kx} - \frac{x^2}{3 + 0.2x^2} & x \end{cases}$	c < 0.5; $c \le 1.3;$ c > 1.3	k = 0,1	0,08	При $x = -0.30$ $y = 0.18$; при $x = 1.30$ $y = -1.19$; при $x = 2.10$ $y = -0.33$

Окончание табл. 6.3

1	2		3	4	5
13		x < 4.2; $4.2 \le x \le 8.4;$ x > 8.4	b = 0.7	0,42	При $x = 0.00$ $y = 1.00$; при $x = 8.40$ $y = -4.75$; при $x = 12.60$ $y = 0.03$
14	$y = \begin{cases} \cos(x^2 + a) \\ \ln^2(1+x) - 1.5 \\ e^{-ax} + 0.5 \end{cases}$	$x < 0;$ $0 \le x \le 1;$ $x > 1$	<i>a</i> = 2	0,1	При $x = -1,0$ $y = -0,99$; при $x = 1,0$ $y = -1,02$; при $x = 2,0$ $y = 0,52$
15	$y = \begin{cases} e^{-1.57x} - 7 \\ x + \sqrt[3]{\sin\left(\frac{1}{x}\right)} \\ d + \lg\sqrt{x + 7} \end{cases}$	x < 1,2; $1,2 \le x \le 2,7;$ x > 2,7	d = 4,7	0,15	При $x = -0.30$ $y = -5.40$; при $x = 2.70$ $y = 3.41$; при $x = 4.20$ $y = 5.22$
16	$y = \begin{cases} \ln^2 \sqrt{x^2 - 0.5} \\ \cos\left(\frac{x+a}{x-b}\right) \\ e^{ax-b} + 0.7 \end{cases}$	x < 2.9; $2.9 \le x \le 4.4;$ x > 4.4	a = 0.5; b = 1	0,15	При $x = 1,40$ $y = 0,04$; при $x = 4,40$ $y = 0,13$; при $x = 5,90$ $y = 7,73$
17	$y = \begin{cases} e^{x+k} - 2\\ \sin^3(x + \sqrt{k})\\ \lg(x + 7\sqrt{x}) - x \end{cases}$	$x < 0;$ $0 \le x \le 1;$ $x > 1$	k = 0,5	0,1	При $x = -1,0$ $y = -1,39$; при $x = 1,0$ $y = 0,97$; при $x = 2,0$ $y = -0,92$
18	$y = \begin{cases} \ln^2 ax - 2\\ 5 - e^{-x + \sqrt{a}}\\ a + \cos\sqrt{x + a^2} \end{cases}$	$x < 5;$ $5 \le x \le 6.5;$ $x > 6.5$	<i>a</i> = 3,4	0,15	При $x = 3,50$ $y = 4,13$; при $x = 6,50$ $y = 4,99$; при $x = 8,00$ $y = 3,11$

7. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1) В каких случаях применяется арифметический цикл?
- 2) Что называется табулированием функции?
- 3) Что такое параметр арифметического цикла?
- 4) Опишите формат записи оператора For ... Next.

- 5) В чем заключается особенность цикла со счетчиком?
- 6) Какая алгоритмическая конструкция применяется для вычисления экстремума функции?
 - 7) Опишите порядок вычисления максимума функции.
 - 8) Опишите порядок вычисления минимума функции.

8. ПРИМЕРЫ ТЕСТОВЫХ ВОПРОСОВ

Вопрос № 1 (один верный ответ)

Циклы бывают ...

Варианты ответов:

- 1) быстрый, медленный, средний;
- 2) структурный, блочный, информационный;
- 3) с известным числом повторений, с постусловием, с предусловием;
- 4) линейный, разветвленный, условный.

Вопрос № 2 (один верный ответ)

Количество повторений арифметического цикла ...

Варианты ответов:

- 1) заранее неизвестно и определяется условием задачи;
- 2) имеет конкретное значение, определяемое шагом изменения параметра;
- 3) является неопределяемой величиной;
- 4) бесконечно;
- 5) определяется с помощью генератора случайных чисел.

Вопрос № 3 (один верный ответ)

Последовательность команд, выполняемая в цикле, представляет собой ... Варианты ответов:

- 1) тело цикла;
- 2) шаг изменения параметра цикла;
- 3) параметр цикла;
- 4) счетчик цикла.

Вопрос № 4 (один верный ответ)

Для реализации арифметического цикла служит оператор ...

Варианты ответов:

- 1) Do ... Loop;
- 2) For ... Next;
- 3) While ... Wend.

Вопрос № 5 (один верный ответ)

Определите результирующее значение переменной p при x = 5:

```
For k = 11 To 4 Step -1

If k Mod 2 = 0 Then

p = x ^ 2

Elself k Mod 3 = 0 Then

p = x ^ 3

Else

p = x

End If

Next k

Debug.Print "p = "; p
```

Варианты ответов:

- 1) p = 25;
- 2) p = 16;
- 3) программа записана с ошибкой и не может быть выполнена.

Библиографический список

- 1. Лебедев, В. М. Программирование на VBA в MS Excel: учебное пособие / В. М. Лебедев. Москва: Юрайт, 2020. 306 с. Текст: непосредственный.
- 2. Казанский, А. А. Прикладное программирование на Excel 2019: учебное пособие / А. А. Казанский. Москва: Юрайт, 2020. 171 с. Текст: непосредственный.
- 3. ГОСТ 19.701-90 (ИСО 5807-85). Единая система программной документации. Схемы алгоритмов, программ, данных и систем. Обозначения условные и правила выполнения. Москва: Изд-во стандартов, 1990. 36 с. Текст: непосредственный.

Учебное издание

СИДОРОВА Елена Анатольевна, ДОЛГОВА Анна Владимировна, ЖЕЛЕЗНЯК Светлана Петровна

ПРОГРАММИРОВАНИЕ АРИФМЕТИЧЕСКИХ ЦИКЛОВ НА VBA

Учебно-методическое пособие

Редактор Н. А. Майорова

Подписано в печать 18.02.2021. Формат $60 \times 84^{-1}/_{16}$. Офсетная печать. Бумага офсетная. Усл. печ. л. 1,9. Уч.-изд. л. 2,1. Тираж 80 экз. Заказ

**

Редакционно-издательский отдел ОмГУПСа Типография ОмГУПСа

*

644046, г. Омск, пр. Маркса, 35