

Bacteria, ants, birds and fish in computing

Olle Gällmo

Swarm Intelligence

- Intelligence (artificial and natural) is often considered a property of individuals
- Most intelligent animal species are social
- Are we social because we are intelligent or is it the other way around?
 - Both, of course (they are co-evolving), but one direction has been studied longer than the other

Swarm Intelligence

- Intelligence can emerge from social interaction
- Emergent behaviour when a group behaves in ways that were not "programmed" into its members
- Swarm intelligence
 - simulated social interaction
 - emergent collective intelligence in groups of simple agents

Observations

- Bird flocks and fish schools move in a coordinated way, but there is no coordinator (leader)
 - So, what decides the behaviour of a leader-less flock?
- Ants and termites quickly find a short path between the nest and a food source
 - ... and solve many other advanced problems as well
 - keeping cattle, building (ventilated) housing, coordinated heavy transports, tactical warfare, cleaning house, etc.
 - A single ant is essentially a blind, memory-less, random walker!
- Distributed systems without central control
- Useful not only to simulate but also to solve optimization problems

Bird flocks and fish schools

- Local interaction
- No leader
- Simple local rules a weighted combination of several goals
 - match velocity of neighbours
 - avoid collisions with neighbours
 - avoid getting too far from neighbours
 - or strive for centre of the flock (fish)
- Sufficient to make very realistic simulations
 - used in movies and computer graphics
 - remove the match-velocity rule: insect swarm
 - remove collision rule: cultural interaction

Stampede in "Lion King"

What about the ants?

- How do they search for the shortest route?
 - Individual ants don't
 - The colony does
- Ant colonies are much more intelligent than ants
 - Ant colonies adapt, ants don't (much)
 - Ants have almost no memory and can not build cognitive maps. Ant colonies can (and do)
 - Mammals build cognitive maps in their brains
 - Ant colonies build them in their environment, through <u>pheromone trails</u>
- Ants are better thought of as cells in a greater organism – the colony
 - Also without leader the queen is not a controller

Ants find shortest paths

At first, the ants select at random

After a while, pheromones become more concentrated on the shortest route

Drawings by Marco Dorigo

Stigmergy

Indirect communication and coordination, by local modification and sensing of the environment

Institutionen för informationsteknologi | www.it.uu.se

Walls, tunnels and bridges

Computational tools

- Cellular automata
 - * 1940's (von Neumann et al)
 - an alternative computer architecture
- Ant Colony Optimization
 - 1991 (Dorigo)
 - mostly for combinatorial optimization
- Particle Swarm Optimization
 - * 1995 (Kennedy & Eberhart)
 - more general optimization technique

Computational tools

- Cellular automata
 - * 1940's (von Neumann et al)
 - an alternative computer architecture
- Ant Colony Optimization
 - * 1991 (Dorigo)
 - mostly for combinatorial optimization
- Particle Swarm Optimization
 - 1995 (Kennedy & Eberhart)
 - more general optimization technique

Cellular automata

- Massively parallel system of identical communicating state machines (cells)
- A cell's state (e.g. on/off) is a function of the states of the cells it communicates with (its neighbours)
 - The neighbourhood is usually topolocial
- Used to model/animate fluids (e.g. the water in *Find Nemo*), gases, bacterial growth, swaying grass, social interaction, epidemics, in ecological simulations etc.

Conway's Game of Life

- World: a 2D grid. Each square represents a cell
- States: Living or dead
- Neighbourhood: The eight surrounding cells
- Initialize with a random number of living cells
- State transition rules:
 - A living cell with <2 living neighbours dies (loneliness)
 - A living cell with >3 living neighbours dies (overcrowded)
 - A dead cell with exactly 3 living neighbours comes alive
 - All other cells keep their current state

Conway's Game of Life

- State transition rules:
 - A living cell with <2 living neighbours dies (loneliness)
 - A living cell with >3 living neighbours dies (overcrowded)
 - A dead cell with exactly 3 living neighbours comes alive
 - All other cells keep their current state

Conway's Game of Life

- State transition rules:
 - A living cell with <2 living neighbours dies (loneliness)
 - A living cell with >3 living neighbours dies (overcrowded)
 - A dead cell with exactly 3 living neighbours comes alive
 - All other cells keep their current state

Life demo

Observations

- Simple (and deterministic!) rules complex emergent behaviour
- Few rule sets have this property
 - Why?
- GA/GP to find new rules?
- Fixed set of rules (e.g. Conways)
 - still universal
 - depends on initial cell configuration
- One-way function (cryptography)
- Natural Computation, but is it ML?

CA and maze problems

- World: 2D grid which overlays the maze
- States: Corridor or wall
- Neighbourhood: The four surrounding cells (n, e, s, w)
- Initialize cells according to the maze
- State transition rules:
 - A corridor cell with 3 or 4 neighbouring wall cells becomes a wall cell
 - A wall cell remains a wall cell
- Terminates after n generations, where n is the length of the longest blind alley
- Only cells on a route between start and goal remain corridor cells
- Can extend to include several goals, finding the shortest route, etc.

Construction and repair

Other applications

- Collaborating simple robots
 - Locomotion
 - Space probes
- Modelling
 - Water, avalanches, traffic flows, ...

Map/level generators for games

Computational tools

- Cellular automata
 - * 1940's (von Neumann et al)
 - an alternative computer architecture
- Ant Colony Optimization
 - 1991 (Dorigo)
 - mostly for combinatorial optimization
- Particle Swarm Optimization
 - 1995 (Kennedy & Eberhart)
 - more general optimization technique

Ant Colony Optimization

- Family of combinatorial optimization algorithms, based on ant behaviour
- Common benchmark: the Travelling Salesman Problem (TSP)
- Common 'real' applications
 - Scheduling and
 - Network routing (AntNet)
- Members: ACS, Ant-Q, MMAS, AS_{rank}, ...
 - most of which are extensions to Dorigo's Ant System (AS)

Traveling Salesman Problems (TSP)

- Find the shourtest tour through N cities, and then back to the starting point, such that
 - each city is visited once and only once
- NP-hard
 - (N-1)!/2 possible tours
 - exhaustive search intractable
- Specialized algorithms exist
 - and are hard to beat

Ant System for TSP

Each ant (k)

- is placed in a randomly selected city
- remembers the partial solution found so far (initially, the start city only)
- moves stochastically from city (i) to city (j), by some transition probability

$$p_{ij}^k(t)$$

which depends on

- lacktriangle pheromone intensity, au_{ij}
- local information, η_{ij} (distance)
- whether j is feasible (not already visited)

Transition probabilities

Local information: In TSP $\eta_{ij}=1/d_{ij}$, where d_{ij} is the distance between city i and j

$$p_{ij}^{k}(t) = \frac{\left[\tau_{ij}(t)\right]^{\alpha} * \left[\eta_{ij}\right]^{\beta}}{\sum_{c \in C_{i}^{k}} \left[\tau_{ic}(t)\right]^{\alpha} * \left[\eta_{ic}\right]^{\beta}}, j \in C_{i}^{k}$$

Probability, at time *t*, of ant *k* traveling from city *i* to city *j*

Set of feasible destination cities (directly reachable from city *i*, and not yet visited by ant *k*)

Effects of α and β

$$p_{ij}^{k}(t) = \frac{\left[\tau_{ij}(t)\right]^{\alpha} * \left[\eta_{ij}\right]^{\beta}}{\sum_{c \in C_{i}^{k}} \left[\tau_{ic}(t)\right]^{\alpha} * \left[\eta_{ic}\right]^{\beta}}, j \in C_{i}^{k}$$

- If α =0, β >0
 - Pheromone information discarded, only local info used
 - Stochastic greedy search with multiple starting points
- If $\alpha > 0$, $\beta = 0$
 - No local information used, only pheromones
 - more like real ants (?)
 - May lead to premature convergence
 - all ants tend to follow the same (suboptimal) route
 - difficult to discover new shortcuts (as for real ants)

Pheromone update

When all ants have completed a tour, let each ant deposit pheromones on the paths it followed

$$\Delta \tau_{ij}^{k}(t) = \begin{cases} 1/L_{k}(t) & \text{if path } ij \text{ was used by ant } k \\ 0 & \text{otherwise} \end{cases}$$

 $L_k(t) = \text{length of ant } k' \text{s tour}$

Trivial example (4 cities)

Two ants

 $\Delta \tau_{ii}^{k}(t) = 1/L_{k}(t) = 1/4 = 0.25$

$$L_2 = 2 + 2 * \sqrt{2} \approx 4.8$$

$$\Delta \tau_{ij}^{k}(t) = 1/L_{k}(t) = 1/4.8 \approx 0.21$$

.25

Ant System TSP Demo

- 20 cities $(19!/2 = 6.1*10^{16} \text{ possible tours})$
- 20 ants (one in each city)
- $\alpha = \beta = 1$
- Evaporation rate, ρ =0.9

Notes on Ant Colony Opt.

- Not really a swarm?
 - These ants are not aware of each other, only of pheromones and other local info
- No direct communication ⇒ very scalable!
- The TSP solution demonstrated here works, but is not state-of-the-art
 - Best ACO algorithms exploit available global information
- ACO is most promising for non-stationary problems (e.g. network routing)
 - fewer competitors

What is "optimal"?

- Specialized algorithms v.s. general "black-box" ones
- Problem oriented def. of "optimal"
 - Specialized algorithms usually wins
- In practice (in industry), 'optimality' involves other concerns as well
 - time and cost to setup and maintain
 - amount of knowledge required
 - good enough is good enough

Pragmatic advice

It is often better to use an algorithm/method you know well, than to search for (and tune) the "best" one!

But, of course, if you happen to know the best one ...

Computational tools

- Cellular automata
 - * 1940's (von Neumann et al)
 - an alternative computer architecture
- Ant Colony Optimization
 - * 1991 (Dorigo)
 - mostly for combinatorial optimization
- Particle Swarm Optimization
 - Kennedy & Eberhart
 - Swarm Intelligence, Morgan Kaufmann, 1995

a more general optimization technique

Particle Swarm Optimization

- Originally intended to simulate bird flocks and to model social interaction
 - but stands on its own as an optimization tool
- A population of particles
 - Population sizes, typically 10-50 (smaller than in EC)
- lacksquare A particle, i, has a position, x_i , and a velocity, v_i
 - Both vectors in n-dimensional space
- Each particle's position, x_i , represents one solution to the problem
- Each particle remembers the best position it has found, so far, p_i

The flying particle

■ The particles "fly" through *n*-dimensional space, in search for the best solution

$$x_{i,d}(t) = x_{i,d}(t-1) + v_{i,d}(t)$$

- The velocities, v, depend on previous experience of this particle and that of its neighbours
 - Discrete time \Rightarrow velocity = step length
- Neighbourhood definition varies
 - Extreme cases: pbest (personal) and gbest (global)
 - General case: Ibest (local best)
 - pbest and gbest are special cases

Personal best (pbest)

No interaction between particles

For all particles, *i*, and all dimensions, *d*:

number

$$v_{i,d}(t) = v_{i,d}(t-1) + U(0,\varphi)*(p_{i,d} - x_{i,d}(t-1))$$
Uniformly best position found so far by particle i

acceleration constant (typically ≈ 2)

Neighbourhood structure

No interaction? That's not really a swarm, is it?

A pbest particle in action

$$v_d(t) = v_d(t-1) + U(0,\varphi) * (p_d - x_d(t-1)) \qquad \forall d$$

$$x_d(t) = x_d(t-1) + v_d(t)$$

Global best (gbest)

Global interaction

For all particles, i, and all dimensions, d:

 $v_{i,d}(t) = v_{i,d}(t-1) +$ $U(0,\varphi_1)*(p_{i,d}-x_{i,d}(t-1))+U(0,\varphi_2)*(p_{g,d}-x_{i,d}(t-1))$

> Cognitive component

Best solution found so far by any particle

Social component

Star neighbourhood structure

To (immediately) know the global best is not very realistic, is it? (Yes, I know the Borg do)

A gbest particle in action

$$v_{i,d}(t) = v_{i,d}(t-1) +$$

$$U(0,\varphi_1)*(p_{i,d}-x_{i,d}(t-1))+U(0,\varphi_2)*(p_{g,d}-x_{i,d}(t-1))$$

possibility

of x(t), if $\varphi_1 = \varphi_2 = 2$ and random

numbers are drawn per element

possibility if random numbers are drawn per vector

Local best (lbest)

Local interaction

For all particles, i, and all dimensions, d:

$$V_{i,d}(t) = V_{i,d}(t-1) + U(0,\varphi_1) * (p_{i,d} - x_{i,d}(t-1)) + U(0,\varphi_2) * (p_{i,d} - x_{i,d}(t-1))$$

Ring neighbourhood structure Best solution found so far by any particle *among i's neighbours* (in some structure)

Nice, local, realistic, slower than gbest. Less risk of premature convergence

Simulation in 2D

Lbest with $\varphi_1 = 1.8$, $\varphi_2 = 2.3$

- Nhood: the 2 immediate neighbours
- $V_{max} = range/25$

Observations

- Usually requires a speed limit (V_{max})
- Actual velocity (v) usually close to V_{max}
- Discrete time → velocity = step length
- Low accuracy close to global optimum
- Decaying V_{max} ?
 - Imposes a time limit to reach the goal
- Inertia (meta-inertia, really)
- Constriction

Constriction

- Constrict swarm with a factor K
 - to avoid divergence ("explosion")
 - no longer need a speed limit
 - lowers speed around global optimum

$$v_{i,d}(t) = K * (v_{i,d}(t-1) + U(0, \varphi_1) * (p_{i,d} - x_{i,d}(t-1)) + U(0, \varphi_2) * (p_{i,d} - x_{i,d}(t-1)))$$

$$K = \frac{2}{\varphi - 2 + \sqrt{\varphi^2 - 4\varphi}}, \text{ where } \varphi = \varphi_1 + \varphi_2 > 4$$

- K is a function of φ_1 and φ_2 only $\Rightarrow K$ is constant
 - ullet yet it gives the swarm a converging behaviour, as if K was a decaying variable

Simulation with *K*

Lbest with φ_1 =1.8, φ_2 =2.3 $\Rightarrow K$ =0.7298

- Nhood: the 2 immediate neighbours
- \blacksquare No V_{max}

Binary particle swarms

- Velocities updated as before
- The positions:

$$x_{i,d} = \begin{cases} 1, & \text{if } U(0,1) < \text{logistic}(v_{i,d}) \\ 0, & \text{if } U(0,1) \ge \text{logistic}(v_{i,d}) \end{cases} \qquad \text{logistic}(v_{id}) = \frac{1}{1 + e^{-v_{i,d}}}$$

- $V_{max} = \pm 4$
 - in order not to saturate the sigmoid
 - so that there is at least some probability (0.018) of a bit flipping

What makes PSO special?

- Its simplicity
- Adaptation operates on velocities
 - Most other methods operate on positions
 - Effect: PSO has a builtin momentum
 - Particles tend to hurdle past optima an advantage, since the best positions are remembered anyway
- Few parameters to set, stable defaults
- Relatively easy to adapt swarm size
- Not very good for fine-tuning, though constriction helps

Notes on PSO

- Many publications are misleading on one important point:
 - The random numbers should be drawn per element (not per vector)
- Not really a swarm (though it behaves as one if V_{max} is small)
 - Particles don't know other particles positions or velocities, only their personal bests
- The neighbourhood in *lbest* is structural (social)
 - Could it be topological (geographical)?

PSO and neural networks

- PSO can be used to train neural networks
- Each particle represents one network
 - * x = a vector of all networks weights
 - also node type can be parameterized
- Hypothesis: This works better than EC
 - Crossover in EC may not be sound (for this)
 - Two individuals selected for crossover may have very little in common
 - Mutation in EC corresponds to moving the individual, but it is not directed, as in PSO
 - Both are random, but distribution depends on the situation in PSO, not so (usually) in EC
 - PSO population typically smaller than in EC
 - Speed advantage, since evaluation is a bottle-neck

MLP+PSO+XOR

Institutionen för informationsteknologi | www.it.uu.se

Olle Gällmo | olle.gallmo@it.uu.se

Grammatical Swarm

Grammatical Evolution (GE) ...

... where the integer string is trained by PSO instead of a genetic algorithm (GA)

Room for thought ...

- High-dimensional spaces
- Bias along coordinate system axis
- Multiplying by vector instead of by element – effects in practice
- "PSO on Ice" (PSO-GD)
- Dynamic neighbourhood, like GNG
- Parameter free PSO (Tribes)
- Multiple swarms and multiple goals

"Once again, nature has provided us with a technique for processing information that is at once elegant and versatile"

/ Kennedy & Eberhart -95