Lower bounds on the Mertens function M(x) along infinite subsequences for large $x \gg \exp\left(1.1662794 \times 10^{703}\right)$

Maxie Dion Schmidt Georgia Institute of Technology School of Mathematics

<u>Last Revised:</u> Saturday $30^{\rm th}$ May, 2020 @ 01:06:29 – Compiled with LATEX2e

Abstract

The Mertens function, $M(x) = \sum_{n \leq x} \mu(n)$, is classically defined to be the summatory function of the Möbius function $\mu(n)$. The Mertens conjecture stating that $|M(x)| < C \cdot \sqrt{x}$ with C > 0 for all $x \geq 1$ has a well-known disproof due to Odlyzko and té Riele given in the early 1980's by computation of non-trivial zeta function zeros in conjunction with integral formulas expressing M(x). It is conjectured and widely believed that $M(x)/\sqrt{x}$ changes sign infinitely often and grows unbounded in the direction of both $\pm \infty$ along subsequences of integers $x \geq 1$. Our proof this property of $|M(x)|/\sqrt{x}$, e.g., showing that

$$\limsup_{x \to \infty} \frac{|M(x)|}{\sqrt{x}} = +\infty,$$

is not based on standard estimates of M(x) we find from Mellin inversion, which are intimately tied to the intricate distribution of the non-trivial zeros of the Riemann zeta function. There is a distinct stylistic flavor and new element of combinatorial analysis peppered in with the standard methods from analytic, additive and elementary number theory. This stylistic tendency distinguishes our methods from other proofs of established upper, rather than lower, bounds on M(x).

Keywords and Phrases: Möbius function; Mertens function; summatory function; Dirichlet inverse; Liouville lambda function; prime omega function; prime counting functions; Dirichlet generating function; asymptotic lower bounds; Mertens conjecture.

Primary Math Subject Classifications (2010): 11N37; 11A25; 11N60; and 11N64.

Reference on special notation and conventions

Symbol Definition

 $\mathbb{E}[f(x)]$ We use the expectation notation $\mathbb{E}[f(x)] = h(x)$ to denote that f has a so-called average order growth rate of h(x). What this means is that $\frac{1}{x}\sum_{n\leq x}f(n)\sim h(x)$, or equivalently that

$$\lim_{x \to \infty} \frac{\frac{1}{x} \sum_{n \le x} f(n)}{h(x)} = 1.$$

B The absolute constant $B \approx 0.2614972128476427837554$ from the statement of Mertens theorem.

 $o(f), O_{\alpha}(g)$ Using standard notation, we write that f = o(g) if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0.$$

We sometimes adapt the standard big-O notation, writing $f = O_{\alpha_1,\dots,\alpha_k}(g)$ for some parameters α_1,\dots,α_k that do not depend on x, if f(x) = O(g(x)) subject only to the upper bounds having an implicit dependence only on x (as usual) and the α_i .

 $C_k(n)$ Auxiliary component functions in obtaining asymptotic bounds on $g^{-1}(n)$. These functions are defined for $k \ge 0$ and $n \ge 1$ by the formula

$$C_k(n) := \begin{cases} \varepsilon(n), & \text{if } k = 0; \\ \sum_{d \mid n} \omega(d) C_{k-1}(n/d), & \text{if } k \geqslant 1. \end{cases}$$

 $[q^n]F(q)$ The coefficient of q^n in the power series expansion of F(q) about zero when F(q) is treated as the ordinary generating function of some sequence, $\{f_n\}_{n\geq 0}$.

DGF Dirichlet generating function. Given a sequence $\{f(n)\}_{n\geq 0}$, its DGF is given by $D_f(s) := \sum_{n\geq 1} f(n)/n^s$ subject to suitable constraints on the real part of the parameter $s \in \mathbb{C}$.

d(n) The divisor function, $d(n) := \sum_{d|n} 1$, for $n \ge 1$.

 $\varepsilon(n)$ The multiplicative identity with respect to Dirichlet convolution, $\varepsilon(n) = \delta_{n,1}$, defined such that for any arithmetic f we have that $f * \varepsilon = \varepsilon * f = f$ where * denotes Dirichlet convolution (defined below).

f * g The Dirichlet convolution of f and g, $(f * g)(n) := \sum_{d|n} f(d)g(n/d)$, where the sum is taken over the divisors d of n for $n \ge 1$.

The Dirichlet inverse of f with respect to convolution is defined recursively by $f^{-1}(n) = -\frac{1}{f(1)} \sum_{\substack{d \mid n \\ d > 1}} f(d) f^{-1}(n/d)$ for $n \ge 1$ with $f^{-1}(1) = 1/f(1)$ and exists if

and only if $f(1) \neq 0$. The inverse function, when it exists, is unique and satisfies the characteristic convolution relations providing that $f^{-1} * f = f * f^{-1} = \varepsilon$.

[x],[x] The floor function is defined as $[x] := x - \{x\}$ where $0 \le \{x\} < 1$ denotes the fractional part of $x \in \mathbb{R}$. The floor function is sometimes also written as $[x] \equiv [x]$. The corresponding ceiling function [x] denotes the smallest integer $m \ge x$.

Symbol Definition $g^{-1}(n), G^{-1}(x) \qquad \text{The Dirichlet inverse function, } g^{-1}(n) = (\omega + 1)^{-1}(n) \text{ with corresponding summatory function } G^{-1}(x) := \sum_{n \leq x} g^{-1}(n).$ We use the notation $\mathbb{1}, \chi : \mathbb{N} \to \{0, 1\}$ to denote indicator, or characteristic functions. In paticular, $\mathbb{1}_{\mathbb{S}}(n) = 1$ if and only if $n \in \mathbb{S}$, and $\chi_{\texttt{cond}}(n) = 1$ if and

 $[n=k]_{\delta}$, $[\operatorname{cond}]_{\delta}$ The notation $[n=k]_{\delta}$ is a synonym for $\delta_{n,k}$ which is one if and only if n=k, and is zero otherwise. For a boolean-valued conditions, cond , $[\operatorname{cond}]_{\delta}$ evaluates to one precisely when cond is true, and to zero otherwise. This notation is sometimes called *Iverson's convention*.

only if n satisfies the boolean-valued condition cond.

- $\lambda(n)$ The Liouville lambda function, $\lambda(n) := (-1)^{\Omega(n)}$, denotes the parity of $\Omega(n)$, the number of distinct prime factors of n counting their multiplicity. That is, $\lambda(n) \in \{\pm 1\}$ with $\lambda(n) = +1$ if and only if $\Omega(n) \equiv 0 \mod 2$.
- $\mu(n)$ The Möbius function defined such that $\mu^2(n)$ is the indicator function of the squarefree integers, and so that $\mu(n) = (-1)^{\omega(n)}$ whenever n is squarefree, i.e., has no prime power divisors with exponent greater than one.
- M(x) The Mertens function is the summatory function over $\mu(n)$ defined for all integers $x \ge 1$ by $M(x) := \sum_{n \le x} \mu(n)$.
- $\nu_p(n)$ The valuation function that extracts the maximal exponent of p in the prime factorization of n, e.g., $\nu_p(n) = 0$ if $p \nmid n$ and $\nu_p(n) = \alpha$ if $p^{\alpha}||n|(p^{\alpha})$ exactly divides n for p prime and $n \geq 2$.
- $\omega(n),\Omega(n) \qquad \text{We define these distinct prime factor counting functions as the strongly additive function } \omega(n):=\sum_{p\mid n}1 \text{ and the completely additive function } \Omega(n) \text{ by } \Omega(n):=\sum_{p^\alpha\mid\mid n}\alpha. \text{ Equivalently, if the factorization of } n\geqslant 2 \text{ is given by } n:=p_1^{\alpha_1}\cdots p_r^{\alpha_r}, \text{ then } \omega(n)=r \text{ and } \Omega(n)=\alpha_1+\cdots+\alpha_r. \text{ By convention, we require that } \omega(1)=\Omega(1)=0.$
- $\pi_k(x), \widehat{\pi}_k(x)$ The prime counting function variant $\pi_k(x)$ denotes the number of integers $1 \leq n \leq x$ for x > 1 with exactly k distinct prime factors: $\pi_k(x) := \#\{n \leq x : \omega(n) = k\}$. Similarly, the function $\widehat{\pi}_k(x) := \#\{n \leq x : \Omega(n) = k\}$ for $x \geq 2$. Montgomery and Vaughan use the alternate notation of $\sigma_k(x)$, which we intentionally avoid due to conflicting notation with other special arithmetic functions used in this article, in place of $\widehat{\pi}_k(x)$.
- $\sum_{p \leqslant x}, \prod_{p \leqslant x}$ Unless otherwise specified by context, we use the index variable p to denote that the summation (product) is to be taken only over prime values within the summation bounds.
- P(s) For complex s with Re(s) > 1, we define the prime zeta function to be the DGF $P(s) = \sum_{p \text{ prime}} p^{-s}$.
- The unsigned Stirling numbers of the first kind, $\binom{n}{k} = (-1)^{n-k} \cdot s(n,k)$.
- \sim, \approx, \gg, \ll See the first section of the introduction to the article for clarification of the asymptotic notation we employ in the article including precise definitions of our usage of these limiting asymptotic relation symbols.
- $\zeta(s)$ The Riemann zeta function, defined by $\zeta(s) := \sum_{n \geqslant 1} n^{-s}$ when Re(s) > 1, and by analytic continuation on the entire complex plane with the exception of a simple pole at s = 1.

1 Preface: Notation to express asymptotic relations

We exphasize that the next careful explanation of the subtle distinctions to our usage of what we consider to be traditional notation for asymptotic relations are key to understanding our choices of bounding expressions given throughout the article. Thus, to avoid any confusion that may linger as we begin to state our new results and bounds on the functions we work with in this article, we preface the article starting with this section detailing our precise definitions, meanings and assumptions on the uses of certain symbols, operators, and relations. The interpretation of this notation forms the core of how we choose to convey the growth rates of arithmetic functions on their domain of x within this article when x is taken to be very large as $x \to \infty$ [14, cf. §2] [3].

1.1 Average order, similarity and approximation of asymptotic growth rates

1.1.1 Similarity and average order (expectation)

We say that two arithmetic functions A(x), B(x) (with B>0) satisfy the relation $A \sim B$ if

$$\lim_{x \to \infty} \frac{A(x)}{B(x)} = 1.$$

It is sometimes standard to express the average order of an arithmetic function f as $f \sim h$, even when the values of f(n) may actually non-monotonically oscillate in magnitude infinitely often. What the notation $f \sim h$ means when using this notation to express the average order of f is that

$$\frac{1}{x} \cdot \sum_{n \le x} f(n) \sim h(x).$$

For example, in the acceptably classic language of [6] we would normally write that $\Omega(n) \sim \log \log n$, even though technically, $1 \leq \Omega(n) \leq \frac{\log n}{\log 2}$. To be absolutely clear about notation, we intentionally do not re-use the \sim relation by instead writing $\mathbb{E}[f(x)] = h(x)$ (as in expectation of f), or sometimes $\stackrel{\mathbb{E}}{\sim}$ for convenience, to denote that f has a limiting average order growing at the rate of h.

1.1.2 Abel summation

The formula we prefer for the Abel summation variant of summation by parts to express finite sums of a product of two functions is stated as follows $[1, cf. \S 4.3]$ ^A:

Proposition 1.1 (Abel Summation Integral Formula). Suppose that t > 0 is real-valued, and that $A(t) \sim \sum_{n \leq t} a(n)$ for some weighting arithmetic function a(n) with A(t) continuously differentiable on $(0, \infty)$. Furthermore, suppose that $b(n) \sim f(n)$ with f a differentiable function of $n \geq 0$ – that is, f'(t) exists and is smooth for all $t \in (0, \infty)$. Then for $0 \leq y < x$, where we typically assume that the bounds of summation satisfy $x, y \in \mathbb{Z}^+$, we have that

$$\sum_{y \le n \le x} a(n)b(n) \sim A(x)b(x) - A(y)b(y) - \int_y^x A(t)f'(t)dt.$$

1.1.3 Approximation

We choose to adopt the convention to write that $f(x) \approx g(x)$ if |f(x) - g(x)| = O(1) as $x \to \infty$. That is, we write $f(x) \approx g(x)$ to denote that f is approximately equal to g at x modulo at most a small constant difference between the functions when x is large.

$$\sum_{j=1}^{n-1} u_j \cdot v_j = U_{n-1} v_n + \sum_{j=1}^{n-1} U_j (v_j - v_{j+1}), n \ge 2.$$

^ACompare to the exact formula for summation by parts of any arithmetic functions, u_n, v_n , stated as in [14, §2.10(ii)] for $U_i := u_1 + u_2 + \cdots + u_j$ when $j \ge 1$:

1.1.4 Vinogradov's notation for asymptotics

We use the conventional relations $f(x) \gg g(x)$ and $h(x) \ll r(x)$ to symbolically express that we should expect f to be "substantially" larger than g, and respectively h to be "significantly" smaller than r, in asymptotic order (e.g., rate of growth when x is large). In practice, we adopt a somewhat looser definition of these symbols which allows $f \gg g$ and $h \ll r$ provided that there are constants $C, D \geqslant 1$ such that whenever x is sufficiently large we have that $C \cdot f(x) \geqslant g(x)$ and $h(x) \leqslant D \cdot r(x)$. This notation is sometimes called Vinogradov's asymptotic notation.

1.2 Asymptotic expansions and uniformity

Because a subset of the results we cite that are proved in the references provide statements of asymptotic bounds that hold *uniformly* for x large depending on parameters, we need to briefly make precise what our preconceptions are of this terminology. We introduce the notation for asymptotic expansions of a function $f : \mathbb{R} \to \mathbb{R}$ from [14, §2.1(iii)].

1.2.1 Ordinary asymptotic expansions of a function

Let $\sum_n a_n x^{-n}$ denote a formal power series expansion in x where we ignore any necessary conditions to guarantee convergence of the series. For each integer $n \ge 1$, suppose that

$$f(x) = \sum_{s=0}^{n-1} a_s x^{-s} + O(x^{-n}),$$

as $|x| \to \infty$ where this limiting bound holds for $x \in \mathbb{X}$ in some unbounded set $\mathbb{X} \subseteq \mathbb{R}$, \mathbb{C} . When such a bound holds, we say that $\sum_s a_s x^{-s}$ is a *Poincaré asymptotic expansion*, or just asymptotic series expansion, of f(x) as $x \to \infty$ along the fixed set \mathbb{X} . The condition in the previous equation is equivalent to writing

$$f(x) \sim a_0 + a_1 x^{-1} + a_2 x^{-2} + \dots; x \in \mathbb{X}, \text{ as } |x| \to \infty.$$

The prior two characterizations of an asymptotic expansion for f are also equivalent to the statement that

$$x^n \left(f(x) - \sum_{s=0}^{n-1} a_s x^{-s} \right) \xrightarrow{x \to \infty} a_n.$$

1.2.2 Uniform asymptotic expansions of a function

Let the set X from the definition in the last subsection correspond to a closed sector of the form

$$\mathbb{X} := \{ x \in \mathbb{C} : \alpha \leqslant \arg(x) \leqslant \beta \}.$$

Then we say that the asymptotic property

$$f(x) = \sum_{s=0}^{n-1} a_s x^{-s} + O(x^{-n}),$$

from before holds uniformly with respect to $\arg(x) \in [\alpha, \beta]$ as $|x| \to \infty$.

Another useful, important notion of uniform asymptotic bounds is taken with respect to some parameter u (or set of parameters, respectively) that ranges over the point set (point sets, respectively) $u \in \mathbb{U}$. In this case, if we have that the u-parameterized expressions

$$\left| x^n \left(f(u, x) - \sum_{s=0}^{n-1} a_s(u) x^{-s} \right) \right|,$$

are bounded for all integers $n \ge 1$ for $x \in \mathbb{X}$ as $|x| \to \infty$, then we say that the asymptotic expansion of f holds uniformly for $u \in \mathbb{U}$. Now the function $f \equiv f(u,x)$ and the asymptotic series coefficients $a_s(u)$ may have an implicit dependence on the parameter u. If the previous boundedness condition holds for all positive integers n, we write that

$$f(u,x) \sim \sum_{s=0}^{\infty} a_s(u) x^{-s}; x \in \mathbb{X}, \text{ as } |x| \to \infty,$$

and say that this asymptotic expansion, or bound, holds uniformly with respect to $u \in \mathbb{U}$. For u taken outside of \mathbb{U} , the stated bound may fail to be valid even for $x \in \mathbb{X}$ as $|x| \to \infty$.

1.3 Asymptotic densities of subsets of the integers

In the proofs given in Section 8 of the article, we will require a precise notion of the asymptotic density of an infinite set $S \subseteq \mathbb{Z}^+$. When this limit exists, we denote the asymptotic density of S by $\alpha_S \in [0,1]$, defined as follows:

$$\alpha_{\mathcal{S}} := \lim_{x \to \infty} \frac{1}{x} \cdot \# \{ n \leqslant x : n \in \mathcal{S} \}.$$

In other words, if the set S has asymptotic density α_S , then for all sufficiently large x

$$\alpha_{\mathcal{S}} + o(1) \leqslant \frac{1}{x} \cdot \# \{ n \leqslant x : n \in \mathcal{S} \} \leqslant \alpha_{\mathcal{S}} + o(1).$$

When the limit definition of $\alpha_{\mathcal{S}}$ does not exist, or if by some pathology of the way \mathcal{S} is defined, we cannot precisely pin down the limit, we are often interested in sets of bounded asymptotic density. We say that \mathcal{S} has bounded asymptotic density if for all large x there exist constants $0 \leq B \leq C \leq 1$ such that

$$B + o(1) \le \frac{1}{x} \cdot \# \{ n \le x : n \in \mathcal{S} \} \le C + o(1), \text{ as } x \to \infty.$$

Clearly, finite and bounded subsets of the positive integers have limiting asymptotic density of zero. If the asymptotic density of S is one, and some property P(n) holds for all $n \in S$, then we say that P(n) is true almost everywhere (on the integers), also abbreviated as holding "a.e." on the positive integers as $n \to \infty$.

2 An introduction to the Mertens function

2.1 Definitions

Suppose that $n \ge 2$ is a natural number with factorization into distinct primes given by $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$. We define the *Möebius function* to be the signed indicator function of the squarefree integers as follows:

$$\mu(n) = \begin{cases} 1, & \text{if } n = 1; \\ (-1)^k, & \text{if } \alpha_i = 1, \ \forall 1 \le i \le k; \\ 0, & \text{otherwise.} \end{cases}$$

There are many other known variants and special properties of the Möebius function and its generalizations [16, cf. §2]. A crucial role of the classical $\mu(n)$ forming an inversion relation for arithmetic functions convolved with one (e.g., Dirichlet convolutions of the form g = f * 1) is known as Möbius inversion:

$$g(n) = (f*1)(n) \iff f(n) = (g*\mu)(n), \forall n \geqslant 1.$$

The Mertens function, or summatory function of $\mu(n)$, is defined as

$$M(x) = \sum_{n \le x} \mu(n), x \ge 1.$$

The sequence of the oscillatory values of this summatory function begins as [17, A002321]

$$\{M(x)\}_{x\geqslant 1} = \{1, 0, -1, -1, -2, -1, -2, -2, -2, -1, -2, -2, -3, -2, -1, -1, -2, -2, -3, -3, -2, -1, -2, -2, \ldots\}$$

Clearly, a positive integer $n \ge 1$ is *squarefree*, or contains no (prime power) divisors which are squares, if and only if $\mu^2(n) = 0$. A related function which counts the number of *squarefree* integers $n \le x$ then satisfies [6, §18.6] [17, A013928]

$$Q(x) = \sum_{n \le x} \mu^2(n) \sim \frac{6x}{\pi^2} + O\left(\sqrt{x}\right).$$

It is known that the asymptotic density of the positively versus negatively weighted sets of squarefree numbers are in fact equal as $x \to \infty$:

$$\mu_{+}(x) = \frac{\#\{1 \leqslant n \leqslant x : \mu(n) = +1\}}{Q(x)} \stackrel{\mathbb{E}}{\sim} \mu_{-}(x) = \frac{\#\{1 \leqslant n \leqslant x : \mu(n) = -1\}}{Q(x)} \xrightarrow{x \to \infty} \frac{3}{\pi^{2}}.$$

The actual local oscillations between the approximate densities of the sets $\mu_{\pm}(x)$ lend an unpredictable nature to the function and characterize the oscillatory sawtooth shaped plot of M(x) over the positive integers.

2.2 Properties

2.2.1 Exact formulae

The conventional approach to evaluating the behavior of M(x) for large $x \to \infty$ results from a formulation of this summatory function as a predictable exact sum involving x and the non-trivial zeros of the Riemann zeta function for all real x > 0. This formula is expressed given the inverse Mellin transformation over the reciprocal zeta function. In particular, we notice that since

$$\frac{1}{\zeta(s)} = \int_{1}^{\infty} \frac{s \cdot M(x)}{x^{s+1}} dx,$$

we obtain that

$$M(x) = \lim_{T \to \infty} \frac{1}{2\pi i} \int_{T - i\infty}^{T + i\infty} \frac{x^s}{s \cdot \zeta(s)} ds.$$

This representation, along with the standard Euler product representation for the reciprocal zeta function, leads us to the exact expression for M(x) for any real x > 0 given by the next theorem due to Titchmarsh.

Theorem 2.1 (Analytic Formula for M(x)). Assuming the Riemann Hypothesis (RH), there exists an infinite sequence $\{T_k\}_{k\geqslant 1}$ satisfying $k\leqslant T_k\leqslant k+1$ for each k such that for any real x>0

$$M(x) = \lim_{k \to \infty} \sum_{\substack{\rho: \zeta(\rho) = 0 \\ |\operatorname{Im}(\rho)| < T_k}} \frac{x^{\rho}}{\rho \cdot \zeta'(\rho)} - 2 + \sum_{n \geqslant 1} \frac{(-1)^{n-1}}{n \cdot (2n)! \zeta(2n+1)} \left(\frac{2\pi}{x}\right)^{2n} + \frac{\mu(x)}{2} \left[x \in \mathbb{Z}^+\right]_{\delta}.$$

2.2.2 Upper bounds

A historical unconditional bound on the Mertens function due to Walfisz (1963) states that there is an absolute constant C > 0 such that

 $M(x) \ll x \cdot \exp\left(-C \cdot \log^{3/5}(x)(\log\log x)^{-3/5}\right).$

Under the assumption of the RH, Soundararajan proved new updated estimates in 2009 bounding M(x) for large x in the following forms [18]:

$$M(x) \ll \sqrt{x} \cdot \exp\left(\log^{1/2}(x)(\log\log x)^{14}\right),$$

$$M(x) = O\left(\sqrt{x} \cdot \exp\left(\log^{1/2}(x)(\log\log x)^{5/2+\epsilon}\right)\right), \ \forall \epsilon > 0.$$

To date, considerably less has been conjectured about explicit lower bounds on |M(x)| along subsequences.

2.3 Conjectures on boundedness and limiting behavior

The RH is equivalent to showing that $M(x) = O\left(x^{\frac{1}{2}+\varepsilon}\right)$ for any $0 < \varepsilon < \frac{1}{2}$. There is a rich history to the original statement of the *Mertens conjecture* which states that

$$|M(x)| < C \cdot \sqrt{x}$$
, some absolute constant $C > 0$.

Mertens conjecture was first verified by Mertens for C=1 and all x<10000. Since its beginnings in 1897, the conjecture has been disproven by computation of low-lying zeta function zeros in a famous paper by Odlyzko and té Riele from the early 1980's. Since the truth of the Mertens conjecture would have implied the RH, more recent attempts at bounding M(x) favor determining the rate at which the function $M(x)/\sqrt{x}$ grows without bound towards both $\pm \infty$ along infinite subsequences.

One of the most famous still unanswered questions about the Mertens function concerns whether $|M(x)|/\sqrt{x}$ is in actuality unbounded on the natural numbers. A precise statement of this problem is to produce an affirmative answer whether $\limsup_{x\to\infty} M(x)/\sqrt{x} = +\infty$ and $\liminf_{x\to\infty} M(x)/\sqrt{x} = -\infty$, or equivalently whether there is an infinite subsequence of natural numbers $\{x_1, x_2, x_3, \ldots\}$ such that the magnitude of $M(x_i)x_i^{-1/2}$ grows without bound towards either $\pm\infty$ along the subsequence. We cite that prior to this point it is only known by computation that $[15, cf. \S 4.1]$

$$\limsup_{x \to \infty} \frac{M(x)}{\sqrt{x}} > 1.060$$
 (now ≥ 1.826054),

and

$$\liminf_{x \to \infty} \frac{M(x)}{\sqrt{x}} < -1.009 \qquad \text{(now } \leqslant -1.837625\text{)}.$$

Based on work by Odlyzyko and té Riele, it seems probable that each of these limits should evaluate to $\pm \infty$, respectively [13, 9, 10, 7].

Extensive computational evidence has produced a conjecture due to Gonek (among attempts on limiting bounds by others) that in fact the limiting behavior of M(x) satisfies that [12]

$$\limsup_{x \to \infty} \frac{|M(x)|}{\sqrt{x} \cdot (\log \log x)^{5/4}} = O(1).$$

While it seems to be widely believed that $|M(x)|/\sqrt{x}$ tends to $+\infty$ at a logarithmic rate along subsequences, infinitely tending factors such as the $(\log\log x)^{\frac{5}{4}}$ in Gonek's conjecture do not appear to readily fall out of work on unconditional bounds for M(x) by existing methods.

3 A summary outline: The core logical steps and components to the proof

We offer an initial brief step-by-step summary overview of the critical components to our proof outlined in the next section of the introduction below that are proved piece-by-piece in the following sections of the article. As the proof methodology is new and relies on non-standard elements compared to more traditional methods of bounding M(x), we hope that this sketch of the logical components to our new argument makes the article easier to parse.

3.1 Step-by-step overview

The following outline is intended to help the reader see our logic and proof methodology as easily and quickly as possible:

- (1) We prove a matrix inversion formula relating the summatory functions of an arithmetic function f and its Dirichlet inverse f^{-1} (for $f(1) \neq 0$). See Theorem 4.1 in Section 5.
- (2) This crucial step provides us with an exact formula for M(x) in terms of $\pi(x)$, the seemingly unconnected prime counting function, and the Dirichlet inverse of the shifted additive function $g(n) := \omega(n) + 1$. This formula is stated in (1).
- (3) We tighten an updated result from [11, §7] providing uniform asymptotic formulas for the summatory functions, $\hat{\pi}_k(x)$, that indicate the parity of $\Omega(n)$ (sign of $\lambda(n)$) for $n \leq x$ using expansions of more combinatorially motivated Dirichlet series (see Theorem 4.7). We use this result to sum $\sum_{n \leq x} \lambda(n) f(n)$ for particular non-negative arithmetic functions f when x is large.
- (4) We then turn to the average order asymptotics of the quasi-periodic functions, $g^{-1}(n)$, by estimating this inverse function's limiting asymptotics for large $n \leq x$ as $x \to \infty$ in Section 7. We eventually use these estimates to prove a substantially unique new lower bound formula for the summatory function $G^{-1}(x) := \sum_{n \leq x} g^{-1}(n)$ along prescribed asymptotically large infinite subsequences (see Theorem 9.5).
- (5) We spend some interim time in Section 8 carefully working out a rigorous justification for why the limiting lower bounds we obtain from average order case analysis of certain arithmetic function approximations we define are sufficient to prove the limit supremum corollary below (our primary new significant result established the article).
- (6) When we return to step (2) with our new lower bounds at hand, and bootstrap, we find "magic" in the form of showing the unboundedness of $\frac{|M(x)|}{\sqrt{x}}$ along a very large increasing infinite subsequence of positive natural numbers. What we recover is a quick, and rigorous, proof of Corollary 4.11 given in Section 9.2.

3.2 Diagramatic flowchart of the proof logic with references to results

Flowchart schematic diagram of proof components:

The next flowchart diagramed below shows how the seemingly disparate components of the proof are organized. It also indicates how the separate "lands" of material and corresponding sets of requisite results forming the connected components to steps \mathcal{A} , \mathcal{B} and \mathcal{C} (as viewed below) combine to form the next core stages of the proof.

Key to the diagram stages:

- ▶ Step A: Citations and re-statements of existing theorems proved elsewhere.
 - **A.A:** Key results and constructions:
 - Theorem 4.6
 - Corollary 6.4
 - The results, lemmas, and facts cited in Section 5.3
 - **A.2:** Lower bounds on the Abel summation based formula for $G^{-1}(x)$:
 - Theorem 4.7 (on page 23)
 - Proposition 6.5
 - Theorem 9.5
- ▶ Step B: Constructions of an exact formula for M(x).
 - **B.B:** Key results and constructions:
 - Corollary 4.3 (follows from Theorem 4.1 proved on page 17)
 - Proposition 5.1
 - **B.2:** Asymptotics for the component functions $g^{-1}(n)$ and $G^{-1}(x)$:
 - Theorem 4.5 (on page 25)
 - Lemma 7.4
- ▶ Step C: A justification for why lower bounds obtained on average suffice.
 - Theorem 4.8 (proved on page 29)
 - The lemmas and necessary results we use to build up to a proof that the hypotheses needed to apply the conclusion of Theorem 4.8 are regularly attained for all large x given in Section 8.2.
- ▶ Step D: Interpreting the exact formula for M(x).
 - Proposition 9.1
 - Theorem 9.5
- ▶ Step E: The Holy Grail. Proving that $\frac{|M(x)|}{\sqrt{x}}$ grows without bound in the limit supremum sense.
 - Corollary 4.11 (on page 41)

4 An introduction to our new methodology: A concrete approach to bounding M(x) from below

4.1 Summatory functions over Dirichlet convolutions of arithmetic functions

Theorem 4.1 (Summatory functions of Dirichlet convolutions). Let $f, g: \mathbb{Z}^+ \to \mathbb{C}$ be any arithmetic functions such that $f(1) \neq 0$. Suppose that $F(x) := \sum_{n \leq x} f(n)$ and $H(x) := \sum_{n \leq x} h(n)$ denote the summatory functions of f, g, respectively, and that $F^{-1}(x)$ denotes the summatory function of the Dirichlet inverse $f^{-1}(n)$ of f. Then, letting the counting function $\pi_{f*h}(x)$ be defined as in the first equation below, we have the following equivalent expressions for the summatory function of f*h for integers $x \geq 1$:

$$\pi_{f*h}(x) = \sum_{n \leq x} \sum_{d|n} f(d)h(n/d)$$

$$= \sum_{d \leq x} f(d)H\left(\left\lfloor \frac{x}{d} \right\rfloor\right)$$

$$= \sum_{k=1}^{x} H(k) \left[F\left(\left\lfloor \frac{x}{k} \right\rfloor\right) - F\left(\left\lfloor \frac{x}{k+1} \right\rfloor\right)\right].$$

Moreover, we can invert the linear system determining the coefficients of H(k) for $1 \le k \le x$ naturally to express H(x) as a linear combination of the original left-hand-side summatory function as follows:

$$H(x) = \sum_{j=1}^{x} \pi_{f*h}(j) \left[F^{-1} \left(\left\lfloor \frac{x}{j} \right\rfloor \right) - F^{-1} \left(\left\lfloor \frac{x}{j+1} \right\rfloor \right) \right]$$
$$= \sum_{n=1}^{x} f^{-1}(n) \pi_{f*h} \left(\left\lfloor \frac{x}{n} \right\rfloor \right).$$

Corollary 4.2 (Convolutions Arising From Möbius Inversion). Suppose that g is an arithmetic function with $g(1) \neq 0$. Define the summatory function of the convolution of g with μ by $\widetilde{G}(x) := \sum_{n \leq x} (g * \mu)(n)$. Then the Mertens function equals

$$M(x) = \sum_{k=1}^{x} \left(\sum_{j=\left\lfloor \frac{x}{k+1} \right\rfloor + 1}^{\left\lfloor \frac{x}{k} \right\rfloor} g^{-1}(j) \right) \widetilde{G}(k), \forall x \geqslant 1.$$

Corollary 4.3 (A motivating special case). We have exactly that for all $x \ge 1$

$$M(x) = \sum_{k=1}^{x} (\omega + 1)^{-1}(k) \left[\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) + 1 \right]. \tag{1}$$

4.2 Fixing an exact expression for M(x) in terms of strongly additive functions

From this point on, we fix the notation for the Dirichlet invertible function $g(n) := \omega(n) + 1$ and denote its inverse with respect to Dirichlet convolution by $g^{-1}(n) = (\omega + 1)^{-1}(n)$. We can compute the first few terms for the Dirichlet inverse sequence of the arithmetic function $g(n) := \omega(n) + 1$ from Corollary 4.3 exactly for the first few sequence values as (see Table T.1 of the appendix section)

$${g^{-1}(n)}_{n\geqslant 1} = {1, -2, -2, 2, -2, 5, -2, -2, 2, 5, -2, -7, -2, 5, 5, 2, -2, -7, -2, -7, 5, 5, -2, 9, \dots}.$$

The sign of these terms is given by $\operatorname{sgn}(g^{-1}(n)) = \frac{g^{-1}(n)}{|g^{-1}(n)|} = \lambda(n)$ (see Proposition 5.1). This useful property is inherited from the distinctly additive nature of the component function $\omega(n)$.

Consider the following motivating conjecture:

Conjecture 4.4. We have the following properties characterizing the Dirichlet inverse function $g^{-1}(n)$:

- (A) $g^{-1}(1) = 1$;
- (B) For all $n \ge 1$, $\operatorname{sgn}(g^{-1}(n)) = \lambda(n)$;
- (C) For all squarefree integers $n \ge 1$, we have that

$$|g^{-1}(n)| = \sum_{m=0}^{\omega(n)} {\omega(n) \choose m} \cdot m!.$$

We illustrate parts (B)–(C) of the conjecture more clearly using Table T.1 given starting on page 44. The realization that the beautiful and remarkably simple combinatorial form of property (C) in Conjecture 4.4 holds for all squarefree $n \ge 1$ motivates our pursuit of formulas for the inverse functions $q^{-1}(n)$ A.

For natural numbers $n \ge 1, k \ge 0$, let

$$C_k(n) := \begin{cases} \varepsilon(n) = \delta_{n,1}, & \text{if } k = 0; \\ \sum_{d|n} \omega(d) C_{k-1}(n/d), & \text{if } k \geqslant 1. \end{cases}$$

We have limiting asymptotics on these functions in terms of n and k within a fixed range depending on n given by the following theorem:

Theorem 4.5 (Asymptotics for the functions $C_k(n)$). For k := 0, we have by definition that $C_0(n) = \delta_{n,1}$. For all sufficiently large n > 1 and any fixed $1 \le k \le \Omega(n)$ taken independently of n, we obtain that the dominant asymptotic term for $C_k(n)$ is given uniformly by

$$\mathbb{E}[C_k(n)] \gg (\log \log n)^{2k-1}$$
, as $n \to \infty$.

Since we have that

$$(g^{-1} * 1)(n) = \lambda(n) \cdot C_{\Omega(n)}(n), \forall n \geqslant 1, \tag{2}$$

Möbius inversion provides us with an exact divisor sum based expression for $g^{-1}(n)$ (see Lemma 7.4). In light of the fact that (see Proposition 9.1)

$$M(x) \sim G^{-1}(x) - \sum_{k=1}^{x/2} G^{-1}(k) \cdot \frac{x}{k^2 \log(x/k)},$$

the formula in (2) implies that we can establish new finite lower bounds on M(x) along large infinite subsequences by appropriate estimates of the summatory function $G^{-1}(x)$ (see Section 7).

4.3 Uniform asymptotics from enumerative counting DGFs in Mongomery and Vaughan

Our inspiration for the new bounds found in the last sections of this article allows us to sum non-negative arithmetic functions weighted by the Liouville lambda function, $\lambda(n) = (-1)^{\Omega(n)}$. We utilize a somewhat more general hybrid generating function and enumerative DGF method under which we are able to recover "good enough" asymptotics about the summatory functions that encapsulate the parity of $\lambda(n)$ through the summatory tally functions $\hat{\pi}_k(x)$. The precise statement of the theorem that we transform to state these new bounds is provided next in Theorem 4.6.

A proof of this property is not difficult to give using Lemma 7.4 stated on page 26.

Theorem 4.6 (Montgomery and Vaughan). Recall that we have defined

$$\widehat{\pi}_k(x) := \#\{n \leqslant x : \Omega(n) = k\}.$$

For R < 2 we have that

$$\widehat{\pi}_k(x) = \mathcal{G}\left(\frac{k-1}{\log\log x}\right) \frac{x}{\log x} \frac{(\log\log x)^{k-1}}{(k-1)!} \left(1 + O_R\left(\frac{k}{(\log\log x)^2}\right)\right),$$

uniformly for $1 \le k \le R \log \log x$ where

$$\mathcal{G}(z) := \frac{1}{\Gamma(z+1)} \times \prod_{p} \left(1 - \frac{z}{p}\right)^{-1} \left(1 - \frac{1}{p}\right)^{z}, z \geqslant 0.$$

The next theorem, proved carefully in Section 6, is the primary starting point for our new asymptotic lower bounds. The proof of this result is combinatorially motivated in so much as it interprets a key infinite product factor of $\mathcal{G}(z)$ defined in Theorem 4.6 as corresponding to an ordinary generating function of certain symmetric polynomials involving reciprocals of the primes.

Theorem 4.7. Suppose that $0 \le z < 1$ is real-valued. We obtain lower bounds of the following form on the function $\mathcal{G}(z)$ from Theorem 4.6 for $A_0 > 0$ an absolute constant and for $C_0(z)$ a strictly linear function only in z:

$$\mathcal{G}(z) \geqslant A_0 \cdot (1-z)^3 \cdot C_0(z)^z.$$

It suffices to take the components of the bound given in the previous equation as

$$A_0 = \frac{2^{9/16} \exp\left(-\frac{55}{4} \log^2(2)\right)}{(3e \log 2)^3 \cdot \Gamma\left(\frac{5}{2}\right)} \approx 3.81296 \times 10^{-6}$$

$$C_0(z) = \frac{4(1-z)}{3e \log 2}.$$

In particular, with $0 \le z < 1$ and $z \equiv z(k, x) = \frac{k-1}{\log \log x}$, or equivalently with $1 \le k \le \log \log x$ in Theorem 4.6, we have that

$$\widehat{\pi}_k(x) \gg \frac{A_0 \cdot x}{\log x \cdot (\log \log x)^4 \cdot (k-1)!} \cdot \left(\frac{4}{3e \log 2}\right)^{\frac{k}{\log \log x}}.$$

- 4.4 Rigorous proofs justifying that so-called average case lower bounds still recover meaningful asymptotics when viewed as bounds that hold more globally
- 4.4.1 An average-to-global phenomenon for the average case analysis of our new lower bounds

Theorem 4.8. Let the summatory function $G_E^{-1}(x)$ be defined for $x \ge 1$ by $^{\mathrm{B}}$

$$G_E^{-1}(x) := \sum_{\substack{n \leqslant \log x}} \lambda(n) \times \sum_{\substack{d \mid n \\ d > e}} (\log d)(\log \log d). \tag{3a}$$

Suppose that $B, C \in (0,1)$ denote some respectively minimally and maximally defined absolute constants such that for a bounded constant $Y \ge 0$, we have that as $x \to \infty$

$$B + o(1) \le \frac{1}{x} \cdot \# \left\{ n \le x : |G^{-1}(n)| - |G_E^{-1}(n)| \le Y \right\} \le C + o(1).$$
 (3b)

^BThe subscript of E on the function $G_E^{-1}(x)$ is purely for notation and does not correspond to a formal parameter or any implicit dependence on E in the function formula.

That is, if for a bounded constant $Y \ge 0$ we have that the set

$${n \leqslant x : |G^{-1}(n)| - |G_E^{-1}(n)| \leqslant Y},$$

has bounded asymptotic density in (0,1) such that the condition in (3b) holds for all large x, then we take

$$\begin{split} B := & \liminf_{x \to \infty} \frac{1}{x} \cdot \# \left\{ n \leqslant x : |G^{-1}(n)| - |G_E^{-1}(n)| \leqslant Y \right\} \in (0,1) \\ C := & \limsup_{x \to \infty} \frac{1}{x} \cdot \# \left\{ n \leqslant x : |G^{-1}(n)| - |G_E^{-1}(n)| \leqslant Y \right\} \in (0,1). \end{split}$$

If such constants $B, C \in (0,1)$ exist, then there is some $\varepsilon \in (0,1)$ (depending on B, C) with $0 < B - \varepsilon, C + \varepsilon < 1$ such that for all sufficiently large x we have at least one point $x_0 \in [(B - \varepsilon)x, (C + \varepsilon)x]$ such that

$$|G^{-1}(x_0)| \ge |G_E^{-1}(x_0)| + Y.$$

We prove Theorem 4.8, and rigorously justify that its hypotheses are in fact regularly attainable for all large x, in Section 8. This result combines to allow us to take lower bounds based on average case estimates of certain arithmetic functions we have defined to approximate $g^{-1}(n)$ and still recover an infinite subsequence along which we can witness the key unboundedness property of $|M(x)|/\sqrt{x}$ stated in Corollary 4.11 below.

4.4.2 Intuition for average case asymptotics leading to estimates near any large x

There does not appear to be an easy, nor subtle direct recursion between the distinct g^{-1} values, except through auxiliary function sequences. However, the distribution of distinct sets of prime exponents is fairly regular with $\omega(n)$ and $\Omega(n)$ playing a crucial role in the repitition of common values of $g^{-1}(n)$. The following observation is suggestive of the quasi-periodicity at play with the distinct values of $g^{-1}(n)$ distributed over $n \ge 2$:

Heuristic 4.9 (Symmetry in $g^{-1}(n)$ in the exponents in the prime factorization of n). Suppose that $n_1, n_2 \ge 2$ are such that their factorizations into distinct primes are given by $n_1 = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ and $n_2 = q_1^{\beta_1} \cdots q_r^{\beta_r}$. If $\{\alpha_1, \ldots, \alpha_r\} \equiv \{\beta_1, \ldots, \beta_r\}$ as multisets of prime exponents, then $g^{-1}(n_1) = g^{-1}(n_2)$. For example, g^{-1} has the same values on the squarefree integers with exactly two, three, and so on prime factors (see Table T.1 starting on page 44).

The next remark then makes clear what our intuiton ought suggest about the relation of the actual function values to the average case expectation of $g^{-1}(n)$ for $n \le x$ when x is large.

Remark 4.10 (Essential components of the proof). Given that we have chosen to work with a representation for M(x) that depends critically on the distribution of the values of the additive functions, $\omega(n)$ and $\Omega(n)$, there is substantial intuition involved á priori that suggests our sums over these functions ought behave regularly on average. Thus when it comes to recovering globally regular behavior from an average case analysis of bounds of our new arithmetic functions from below, the choice in stating (1) as it depends on the canonical additive function examples we have cited is absolutely essential to the success of our proof.

Stated precisely, when we define the function $\Phi(z) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2/2} dt$, for any real bounding parameter $z \in (-\infty, +\infty)$, we have that [8, §1.7]

$$\#\left\{n \leqslant x : \frac{\omega(n) - \log\log x}{\sqrt{\log\log x}} \leqslant z\right\} = \Phi(z) \cdot x + o(1),$$

and that uniformly for $-Z \le z \le Z$ with respect to any Z > 0 [11, §7.4] (cf. Theorem 6.1)

$$\#\left\{3\leqslant n\leqslant x:\frac{\Omega(n)-\log\log n}{\sqrt{\log\log n}}\leqslant z\right\}=\Phi(z)\cdot x+O_Z\left(\frac{x}{\sqrt{\log\log x}}\right).$$

That is, notably, since we have an Erdös-Kac like theorem for each of $\omega(n)$ and $\Omega(n)$ stated as in the above two equations, when the bounding parameter is set to z := 0, we provably should expect these sums involving these canonical additive functions and their "nice" properties to tend towards the asymptotic average case behavior infinitely often, and predictably near any large x as in Theorem 4.8.

4.5 Cracking the classical unboundedness barrier

In Section 9, we are able to state what forms the culmination of the results we carefully build up to in the proofs established in prior sections of the article. What we eventually obtain at the conclusion of the section is the following important summary corollary that resolves the classical question of the unboundedness of the scaled function Mertens function $|M(x)|/\sqrt{x}$ in the limit supremum sense:

Corollary 4.11 (Unboundedness of the Mertens function scaled by \sqrt{x}). Define the infinite increasing subsequence, $\{x_{0,n}\}_{n\geqslant 1}$, by $x_{0,n}:=e^{2e^{e^{2n}}}$. We have that for all sufficiently large $y\gg \lceil x_{0,1}\rceil+1$ the following bound holds:

$$\frac{|M(x_{0,y})|}{\sqrt{x_{0,y}}} \gg \frac{2 \cdot C_{\ell,1} \cdot (\log \log \sqrt{x_{0,y}})^4 \sqrt{\log \log \log \sqrt{x_{0,y}}}}{(\log \log \log \log \sqrt{x_{0,y}})^{\frac{5}{2}}}, \text{ as } y \to \infty.$$

The constant $C_{\ell,1} > 0$ in the previous equation can be taken to be

$$C_{\ell,1} := \frac{256 \cdot 2^{1/8}}{59049 \cdot \pi^2 e^8 \log^8(2)} \exp\left(-\frac{55}{2} \log^2(2)\right) \approx 5.51187 \times 10^{-12}.$$

This is all to say that in establishing the rigorous proof of Corollary 4.11 based on our new methods, we not only show that

$$\limsup_{x \to \infty} \frac{|M(x)|}{\sqrt{x}} = +\infty,$$

but also set a minimal rate (along a large infinite subsequence) at which this form of the scaled Mertens function grows without bound.

5 Preliminary proofs of lemmas and new results

The purpose of this section is to provide proofs and statements of elementary and otherwise well established facts and results. In particular, the proof of Theorem 4.1 allows us to easily justify the formula in (1). This formula is the crucial formulation that constitutes an exact expression for M(x). The indispensible property inherent to the arithmetic functions, $\omega(n)$ and $g^{-1}(n)$, that are used to state the formula are strong additivity, which leads to the sign of the inverse function $g^{-1}(n)$ being given by $\lambda(n)$. Hence the summatory function of $g^{-1}(n)$ is intimately tied to the exact limiting distribution of the values of $\Omega(n)$.

5.1 Establishing the summatory function properties and inversion identities

We will prove Theorem 4.1, a crucial component to our new more combinatorial formulations used to bound M(x) in later sections, using matrix methods before moving on. Related results on summations of Dirichlet convolutions appear in [1, §2.14; §3.10; §3.12; cf. §4.9, p. 95].

Proof of Theorem 4.1. Let h, g be arithmetic functions where $g(1) \neq 0$ necessarily has a Dirichlet inverse. Denote the summatory functions of h and g, respectively, by $H(x) = \sum_{n \leqslant x} h(n)$ and $G(x) = \sum_{n \leqslant x} g(n)$. We define $\pi_{g*h}(x)$ to be the summatory function of the Dirichlet convolution of g with h: g*h. Then we can easily see that the following expansions hold:

$$\pi_{g*h}(x) := \sum_{n=1}^{x} \sum_{d|n} g(n)h(n/d) = \sum_{d=1}^{x} g(d)H\left(\left\lfloor \frac{x}{d} \right\rfloor\right)$$
$$= \sum_{i=1}^{x} \left[G\left(\left\lfloor \frac{x}{i} \right\rfloor\right) - G\left(\left\lfloor \frac{x}{i+1} \right\rfloor\right) \right] H(i).$$

We form the matrix of coefficients associated with this system for H(x), and proceed to invert it to express an exact solution for this function over all $x \ge 1$. Let the ordinary (initial, non-inverse) matrix entries be denoted by

$$g_{x,j} := G\left(\left\lfloor \frac{x}{j} \right\rfloor\right) - G\left(\left\lfloor \frac{x}{j+1} \right\rfloor\right) \equiv G_{x,j} - G_{x,j+1}.$$

The matrix we must invert in this problem is lower triangular, with ones on its diagonals – and hence is invertible. Moreover, if we let $\hat{G} := (G_{x,i})$, then this matrix is expressable by an invertible shift operation as

$$(g_{x,j}) = \hat{G}(I - U^T);$$
 $U = (\delta_{i,j+1}), (I - U^T)^{-1} = ([j \le i]_{\delta}).$

Here, U is the $N \times N$ matrix whose $(i,j)^{th}$ entries are defined by $(U)_{i,j} = \delta_{i+1,j}$.

It is a useful fact that if we take successive differences of floor functions, we get non-zero behavior at divisors:

$$G\left(\left\lfloor \frac{x}{j}\right\rfloor\right) - G\left(\left\lfloor \frac{x-1}{j}\right\rfloor\right) = \begin{cases} g\left(\frac{x}{j}\right), & \text{if } j|x; \\ 0, & \text{otherwise.} \end{cases}$$

We use this property to shift the matrix \hat{G} , and then invert the result, to obtain a matrix involving the Dirichlet inverse of g:

$$\left[(I - U^T) \hat{G} \right]^{-1} = \left(g \left(\frac{x}{j} \right) [j|x]_{\delta} \right)^{-1} = \left(g^{-1} \left(\frac{x}{j} \right) [j|x]_{\delta} \right).$$

Now we can express the inverse of the target matrix $(g_{x,j})$ in terms of these Dirichlet inverse functions as follows:

$$(g_{x,j}) = (I - U^T)^{-1} \left(g\left(\frac{x}{j}\right) [j|x]_{\delta} \right) (I - U^T)$$

$$(g_{x,j})^{-1} = (I - U^T)^{-1} \left(g^{-1} \left(\frac{x}{j} \right) [j|x]_{\delta} \right) (I - U^T)$$

$$= \left(\sum_{k=1}^{\left\lfloor \frac{x}{j} \right\rfloor} g^{-1}(k) \right) (I - U^T)$$

$$= \left(\sum_{k=1}^{\left\lfloor \frac{x}{j} \right\rfloor} g^{-1}(k) - \sum_{k=1}^{\left\lfloor \frac{x}{j+1} \right\rfloor} g^{-1}(k) \right).$$

Thus the summatory function H is exactly expressed by the inverse vector product of the form

$$H(x) = \sum_{k=1}^{x} g_{x,k}^{-1} \cdot \pi_{g*h}(k)$$

$$= \sum_{k=1}^{x} \left(\sum_{j=\left\lfloor \frac{x}{k+1} \right\rfloor + 1}^{\left\lfloor \frac{x}{k} \right\rfloor} g^{-1}(j) \right) \cdot \pi_{g*h}(k).\square$$

5.2 Proving the crucial signedness property of $g^{-1}(n)$

Let $\chi_{\mathbb{P}}$ denote the characteristic function of the primes, $\varepsilon(n) = \delta_{n,1}$ be the multiplicative identity with respect to Dirichlet convolution, and denote by $\omega(n)$ the strongly additive function that counts the number of distinct prime factors of n. Then we can easily prove that

$$\chi_{\mathbb{P}} + \varepsilon = (\omega + 1) * \mu. \tag{4}$$

When combined with Corollary 4.2, an immediate consequence of Theorem 4.1, this convolution identity yields the necessary convolution identity that yields the exact formula for M(x) stated in (1) of Corollary 4.3.

The proof of the next proposition is essential to our argument given in later sections. We try to keep the argument brief while sketching all relevant details to rigorously justifying the key parts to the proof of our claim.

Proposition 5.1 (The key signedness property of $g^{-1}(n)$). For the Dirichlet invertible function, $g(n) := \omega(n) + 1$ defined such that g(1) = 1, at any $n \ge 1$, we have that $\operatorname{sgn}(g^{-1}(n)) = \lambda(n)$. The notation for the operation given by $\operatorname{sgn}(h(n)) = \frac{h(n)}{|h(n)| + [h(n) = 0]_{\delta}} \in \{0, \pm 1\}$ denotes the sign of the arithmetic function h at n.

Proof. Recall that $D_f(s) := \sum_{n \geqslant 1} f(n) n^{-s}$ denotes the Dirichlet generating function (DGF) of any arithmetic function f(n) which is convergent for all $s \in \mathbb{C}$ satisfying $\text{Re}(s) > \sigma_f$. In particular, recall that $D_1(s) = \zeta(s)$, $D_{\mu}(s) = 1/\zeta(s)$ and $D_{\omega}(s) = P(s)\zeta(s)$. Then by (4) and the known property that the DGF of $f^{-1}(n)$ is the reciprocal of the DGF of the original arithmetic function f, for all Re(s) > 1 we have

$$D_{(\omega+1)^{-1}}(s) = \frac{1}{(P(s)+1)\zeta(s)}. (5)$$

It follows that $(\omega + 1)^{-1}(n) = (h^{-1} * \mu)(n)$ when we take $h := \chi_{\mathbb{P}} + 1$. We show that $\operatorname{sgn}(h^{-1}) = \lambda$. From this fact, it follows by inspection that $\operatorname{sgn}(h^{-1} * \mu) = \lambda$. The remainder of the proof fills in the precise details needed to make this intuition precise.

By the standard recurrence relation we used to define the Dirichlet inverse function of any arithmetic function h such that $h(1) = 1 \neq 0$, we have that

$$h^{-1}(n) = \begin{cases} 1, & n = 1; \\ -\sum_{\substack{d \mid n \\ d > 1}} h(d)h^{-1}(n/d), & n \geqslant 2. \end{cases}$$
 (6)

For $n \ge 2$, the summands in (6) can be simply indexed over the primes p|n. This observation yields that we can inductively expand these sums into nested divisor sums provided the depth of the sums does not exceed the capacity to index summations over the primes dividing n. Namely, notice that for $n \ge 2$

$$\begin{split} h^{-1}(n) &= -\sum_{p|n} h^{-1}(n/p), & \text{if } \Omega(n) \geqslant 1 \\ &= \sum_{p_1|n} \sum_{p_2|\frac{n}{p_1}} h^{-1}\left(\frac{n}{p_1 p_2}\right), & \text{if } \Omega(n) \geqslant 2 \\ &= -\sum_{p_1|n} \sum_{p_2|\frac{n}{p_1}} \sum_{p_3|\frac{n}{p_1 p_2}} h^{-1}\left(\frac{n}{p_1 p_2 p_3}\right), & \text{if } \Omega(n) \geqslant 3. \end{split}$$

Then by induction, again with $h^{-1}(1) = 1$, we obtain by expanding the nested divisor sums as above to their maximal depth as

$$h^{-1}(n) = \lambda(n) \times \sum_{p_1|n} \sum_{p_2|\frac{n}{p_1}} \times \dots \times \sum_{p_{\Omega(n)}|\frac{n}{p_1p_2\dots p_{\omega(n)-1}}} 1, n \ge 2.$$

If for $n \ge 2$ we write the prime factorization of n as $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{\omega(n)}^{\alpha_{\omega(n)}}$ where the exponents $\alpha_i \ge 1$ are all non-zero for $1 \le i \le \omega(n)$, we can see that

$$h^{-1}(n) \ge \lambda(n) \times 1 \cdot 2 \cdot 3 \cdots \omega(n) = \lambda(n) \times (\omega(n))!, \qquad n \ge 2$$

$$h^{-1}(n) \le \lambda(n) \times (\omega(n))!^{\max(\alpha_1, \alpha_2, \dots, \alpha_{\omega(n)})}, \qquad n \ge 2.$$

In other words, what these bounds show is that for all $n \ge 1$ (with $\lambda(1) = 1$) the following property holds:

$$\operatorname{sgn}(h^{-1}(n)) = \lambda(n). \tag{7}$$

By (7), we immediately have bounding constants $1 \leq C_{1,n}, C_{2,n} < +\infty$ that exist for each $n \geq 1$ so that

$$C_{1,n} \cdot (\lambda * \mu)(n) \le (h^{-1} * \mu)(n) \le C_{2,n} \cdot (\lambda * \mu)(n).$$
 (8)

Since both λ, μ are multiplicative, the convolution $\lambda * \mu$ is multiplicative. We know that the values of any multiplicative function are uniquely determined by its action at prime powers. So we can compute that for any prime p and non-negative integer exponents $\alpha \geqslant 1$ that

$$(\lambda * \mu)(p^{\alpha}) = \sum_{i=0}^{\alpha} \lambda(p^{\alpha-i})\mu(p^{i})$$

= $\lambda(p^{\alpha}) - \lambda(p^{\alpha-1})$
= $(-1)^{\Omega(p^{\alpha})} - (-1)^{\Omega(p^{\alpha-1})} = (-1)^{\alpha} - (-1)^{\alpha-1} = 2\lambda(p^{\alpha}).$

Then by the multiplicativity of $\lambda(n)$, the previous inequalities derived in (8) are re-stated in the form of

$$2C_{1,n} \cdot \lambda(n) \leqslant h^{-1}(n) \leqslant 2C_{2,n} \cdot \lambda(n).$$

Since the absolute constants $C_{1,n}, C_{2,n}$ are always positive for all $n \ge 1$, we clearly recover the signedness of $g^{-1}(n)$ as $\lambda(n)$.

5.3 Statements of other facts and known limiting asymptotic results

Theorem 5.2 (Mertens theorem). For all $x \ge 2$ we have that

$$P_1(x) := \sum_{p \le x} \frac{1}{p} = \log \log x + B + o(1),$$

where $B \approx 0.2614972128476427837554$ is an explicitly defined absolute constant ^A.

Corollary 5.3 (Mertens theorem product form). We have that for all sufficiently large $x \gg 1$

$$\prod_{p \le x} \left(1 - \frac{1}{p} \right) = \frac{e^{-B}}{\log x} \left(1 + o(1) \right),$$

where the notation for the absolute constant 0 < B < 1 coincides with the definition of Mertens constant from Theorem 5.2. Hence, for any real $0 \le z < 2$ we obtain that

$$\prod_{p \le x} \left(1 - \frac{1}{p} \right)^z = \frac{e^{-Bz}}{(\log x)^z} \left(1 + o(1) \right)^z \sim \frac{e^{-Bz}}{(\log x)^z}, \text{ as } x \to \infty.$$

Proofs of Theorem 5.2 and Corollary 5.3 are found in [6, §22.7; §22.8].

Facts 5.4 (Asymptotics for exponential integrals and incomplete gamma functions). The following two variants of the *exponential integral function* are defined by [14, §8.19]

$$\operatorname{Ei}(x) := \int_{-x}^{\infty} \frac{e^{-t}}{t} dt,$$

$$E_1(z) := \int_{1}^{\infty} \frac{e^{-tz}}{t} dt, \operatorname{Re}(z) \ge 0,$$

where $\text{Ei}(-kz) = -E_1(kz)$ for real k, z > 0. We have the following inequalities providing quasi-polynomial upper and lower bounds on $E_1(z)$ ^B:

$$1 - \frac{3}{4}z \le E_1(z) - \gamma - \log z \le 1 - \frac{3}{4}z + \frac{11}{36}z^2.$$
(9a)

A related function is the (upper) incomplete gamma function defined by [14, §8.4]

$$\Gamma(s,x) = \int_{x}^{\infty} t^{s-1} e^{-t} dt, \operatorname{Re}(s) > 0.$$

We have the following properties of $\Gamma(s,x)$:

$$\Gamma(s,x) = (s-1)! \cdot e^{-x} \times \sum_{k=0}^{s-1} \frac{x^k}{k!}, s \in \mathbb{Z}^+,$$
(9b)

$$\Gamma(s,x) \sim x^{s-1} \cdot e^{-x}, |x| \to +\infty. \tag{9c}$$

$$B = \gamma + \sum_{m \ge 2} \frac{\mu(m)}{m} \log \left[\zeta(m) \right],$$

where $\gamma \approx 0.577215664902$ is Euler's gamma constant.

^AExactly, we have that the *Mertens constant* is defined by

^BIndeed, these inequalities are usually stated to provide bounds on Ei(z) when z > 0 is real-valued. That the bounds are also valid for $E_1(z)$ at all sufficiently large $z \gg e$ is a matter of convenience we state for reference in this way here to arrive at the nice formulas we see in Proposition 6.5 and in the proof of Theorem 4.7.

6 Components to the asymptotic analysis of lower bounds for sums of arithmetic functions weighted by $\lambda(n)$

In this section, we re-state a couple of key results proved in [11, §7.4] that we rely on to state and prove Corollary 6.4 stated below. This corollary is important as it shows that (signed) summatory functions over $\hat{\pi}(x)$ capture the dominant asymptotics of the full summatory function formed by taking $1 \le k \le \log_2(x)$ when we truncate and instead sum only up to the uniform bound of $1 \le k \le \log\log x$ guaranteed by applying Theorem 4.6.

We also prove Theorem 4.7 in this section. This key theorem allows us to establish a global minimum we can attain on the function $\mathcal{G}(z)$ from Theorem 4.6 by truncating the formerly stated infinite range of the primes p over which we take a component product in the definition of this function. This in turn implies the uniform lower bounds on $\hat{\pi}_k(x)$ guaranteed by that theorem by a straightforward manipulation of inequalities.

6.1 Key results proved in the reference by Montgomery and Vaughan

What the enumeratively-flavored result of Montgomery and Vaughan in Theorem 4.6 allows us to do is get a "good enough" lower bound on sums of positive and asymptotically bounded arithmetic functions weighted by the Liouville lambda function, $\lambda(n) = (-1)^{\Omega(n)}$. For comparison, we already have known, more classical bounds due to Erdös (and earlier) that we can tightly bound [2, 11]

$$\pi_k(x) = (1 + o(1)) \cdot \frac{x}{\log x} \frac{(\log \log x)^{k-1}}{(k-1)!}.$$

We seek to approximate the right-hand-side of $\mathcal{G}(z)$ by only taking the products of the primes $p \leq u$, e.g., indexing the component products only over those primes $p \in \{2, 3, 5, \dots, u\}$ for some minimal upper bound u (with respect to x) as $x \to \infty$.

We also state the following theorems reproduced from [11, §7.4] that handle the relative scarcity of the distribution of the $\Omega(n)$ for $n \leq x$ such that $\Omega(n) > \log \log x$.

Theorem 6.1 (Bounds on exceptional values of $\Omega(n)$ for large n). Let

$$\begin{split} A(x,r) &:= \# \left\{ n \leqslant x : \Omega(n) \leqslant r \cdot \log \log x \right\}, \\ B(x,r) &:= \# \left\{ n \leqslant x : \Omega(n) \geqslant r \cdot \log \log x \right\}. \end{split}$$

If $0 < r \le 1$ and $x \ge 2$, then

$$A(x,r) \ll x(\log x)^{r-1-r\log r}, \quad as \ x \to \infty.$$

If $1 \le r \le R < 2$ and $x \ge 2$, then

$$B(x,r) \ll_R x \cdot (\log x)^{r-1-r\log r}$$
, as $x \to \infty$.

Theorem 6.2 (Bounds on exceptional values of $\Omega(n)$ for large n, MV 7.21). We have that uniformly

$$\# \{3 \leqslant n \leqslant x : \Omega(n) - \log \log n \leqslant 0\} = \frac{x}{2} + O\left(\frac{x}{\sqrt{\log \log x}}\right).$$

Remark 6.3. The proofs of Theorem 6.1 and Theorem 6.2 are found in Chapter 7 of Montgomery and Vaughan. The key interpretation we need is the result stated in the next corollary. In the previous theorem, the dependence on R, and the necessity of using the conditional relation \ll_R , serves to denote this R as a bounding (maximally limiting) parameter on the input $r \in (1, R)$ to the functions B(x, r). The precise way in which the bound stated in this cited theorem depends on this bounded, indeterminate parameter R can be reviewed for reference in the proof algebra and relations cited in the reference [11, §7]. The role of the parameter R involved in stating the previous theorem is notably important as a scalar factor the upper bound on $k \leq R \log \log x$ in Theorem 4.6 up to which we obtain the valid uniform bounds in x on the asymptotics for $\widehat{\pi}_k(x)$.

We have a discrepancy to work out in so much as we can only form summatory functions over the $\widehat{\pi}_k(x)$ for $1 \le k \le R \log \log x$ using the desirable, or "nice", asymptotic formulas guaranteed by Theorem 4.6, even though we can actually have contributions from values distributed throughout the range $1 \le \Omega(n) \le \log_2(n)$. It is then crucial that we can show that the dominant growth of the asymptotic formulas we obtain for these summatory functions is captured by summing only over k in the truncated range where the uniform formulas hold. In particular, we will require a proof that we can discard the terms in the full summatory function asymptotic formulas as negligible (up to at most a constant) for large x when they happen to fall in the limiting exceptional range of $\Omega(n) > R \log \log x$ for $n \le x$.

Corollary 6.4. Using the notation for A(x,r) and B(x,r) from Theorem 6.1, we have that for $\delta > 0$,

$$o(1) \leqslant \left| \frac{B(x, 1+\delta)}{A(x, 1)} \right| \ll 2$$
, as $\delta \to 0^+, x \to \infty$.

Proof. The lower bound stated above should be clear. To show that the asymptotic upper bound is correct, we compute using Theorem 6.1 and Theorem 6.2 that

$$\left| \frac{B(x, 1+\delta)}{A(x, 1)} \right| \ll \left| \frac{x \cdot (\log x)^{\delta - \delta \log(1+\delta)}}{\widehat{\pi}_1(x) + \widehat{\pi}_2(x) + \frac{x}{2} + O\left(\frac{x}{\sqrt{\log \log x}}\right)} \right|$$

$$\sim \left| \frac{x \cdot (\log x)^{\delta - \delta \log(1+\delta)}}{\frac{x}{\log x} + \frac{x \cdot (\log \log x)}{\log x} + \frac{x}{2} + O\left(\frac{x}{\sqrt{\log \log x}}\right)} \right|$$

$$= \left| \frac{(\log x)^{1+\delta - \delta \log(1+\delta)}}{1 + \log \log x + \frac{\log x}{2} + o(1)} \right|$$

$$\xrightarrow{\delta \to 0^+} \left| \frac{(\log x)}{1 + \log \log x + \frac{\log x}{2} + o(1)} \right|$$

$$\sim 2,$$

as $x \to \infty$. Notice that since $\mathbb{E}[\Omega(n)] = \log \log n + B$ for 0 < B < 1, the absolute constant from Mertens theorem, when we apply this result, when we denote the range of $k > \log \log x$ as holding in the form of $k > (1+\delta) \log \log x$, we can assume that $\delta \to 0^+$ as $x \to \infty$.

We again emphasize that Corollary 6.4 implies that for sums involving $\hat{\pi}_k(x)$ indexed by k, we can capture the dominant asymptotic behavior of these sums by taking k in the truncated range $1 \le k \le \log \log x$, e.g., with $0 \le z < 1$ in Theorem 4.6. This fact will be important when we prove Theorem 9.5 in Section 9 using a sign-weighted summatory function in Abel summation that depends on these functions (see Lemma 9.3).

6.2 New results utilizing Theorem 4.6

We will require a handle on partial sums of integer powers of the reciprocal primes as functions of the integral exponent and the upper summation index x. The next corollary is not a triviality as it comes in handy when we take to the next task of proving the bound in Theorem 4.7. The statement of Proposition 6.5 effectively provides a coarse rate in x below which the reciprocal prime sums tend to absolute constants given by the prime zeta function, P(s). We also require the finite-degree polynomial dependence of these bounds on s to simplify the computations in the theorem below.

Proposition 6.5. For real $s \ge 1$, let

$$P_s(x) := \sum_{p \leqslant x} p^{-s}, x \geqslant 2.$$

When s := 1, we have the known bound in Mertens theorem (see Theorem 5.2). For all integers $s \ge 2$ there is an absolutely defined bounding function $\gamma_1(s,x)$ such that

$$P_s(x) \leq \gamma_1(s,x) + o(1)$$
, as $x \to \infty$.

It suffices to take the bounding function in the previous equation as

$$\gamma_1(s,x) := -s \log \left(\frac{\log x}{\log 2} \right) + \frac{3}{4} s(s-1) \log(x/2) + \frac{11}{36} s(s-1)^2 \log^2(2).$$

Proof. Let s > 1 be real-valued. By Abel summation with the summatory function $A(x) = \pi(x) \sim \frac{x}{\log x}$ and where our target function smooth function $f(t) = t^{-s}$ with $f'(t) = -s \cdot t^{-(s+1)}$ at each fixed s > 1, we obtain that

$$P_s(x) = \frac{1}{x^s \cdot \log x} + s \cdot \int_2^x \frac{dt}{t^s \log t}$$

= $E_1((s-1)\log 2) - E_1((s-1)\log x) + o(1), |x| \to \infty.$

Now using the inequalities in Facts 5.4, we obtain that the difference of the exponential integral functions is bounded above and below by

$$\frac{P_s(x)}{s} \ge -\log\left(\frac{\log x}{\log 2}\right) + \frac{3}{4}(s-1)\log(x/2) - \frac{11}{36}(s-1)^2\log^2(x)$$
$$\frac{P_s(x)}{s} \le -\log\left(\frac{\log x}{\log 2}\right) + \frac{3}{4}(s-1)\log(x/2) + \frac{11}{36}(s-1)^2\log^2(2).$$

This completes the proof of the bounds cited above in the statement of this lemma.

Proof of Theorem 4.7. We have for all integers $0 \le k \le m$, and any sequence $\{f(n)\}_{n \ge 1}$ with bounded partial sums, that

$$[z^k] \prod_{1 \le i \le m} (1 - f(i)z)^{-1} = [z^k] \exp\left(\sum_{j \ge 1} \left(\sum_{i=1}^m f(i)^j\right) \frac{z^j}{j}\right), |z| < 1.$$
 (10)

In our case we have that f(i) denotes the i^{th} prime in the generating function expansion of (10). Hence, summing over all $p \leq ux$ in place of $0 \leq k \leq m$ in the previous formula in tandem with Proposition 6.5, we obtain that the logarithm of the generating function in z obtained when we sum over all $p \leq ux$ for some minimal parameter u is given by

$$\log \left[\prod_{p \leqslant ux} \left(1 - \frac{z}{p} \right)^{-1} \right] \geqslant (B + \log \log(ux))z + \sum_{j \geqslant 2} \left[a(ux) + b(ux)(j-1) + c(ux)(j-1)^2 \right] z^j$$

$$= (B + \log \log(ux))z - a(ux) \left(1 + \frac{1}{z-1} + z \right)$$

$$+ b(ux) \left(1 + \frac{2}{z-1} + \frac{1}{(z-1)^2} \right)$$

$$- c(ux) \left(1 + \frac{4}{z-1} + \frac{5}{(z-1)^2} + \frac{2}{(z-1)^3} \right)$$

$$=: \widehat{\mathcal{B}}(u, x; z).$$

In the previous equations, the lower bounds formed by the functions (a, b, c) evaluated at ux are given by the corresponding upper bounds from Proposition 6.5 due to the leading sign on the previous expansions as

$$(a_{\ell}, b_{\ell}, c_{\ell}) := \left(-\log\left(\frac{\log(ux)}{\log 2}\right), \frac{3}{4}\log\left(\frac{ux}{2}\right), \frac{11}{36}\log^2 2\right).$$

Now we make a decision to set the uniform bound parameter to a middle ground value of 1 < R < 2 at $R := \frac{3}{2}$ (practically, to be truncated and taken as though $R \equiv 1$ in sums by the restriction that $0 \le z < 1$) so that

$$z \equiv z(k, x) = \frac{k - 1}{\log \log x} \in [0, R),$$

for $x \gg 1$ very large. Thus $(z-1)^{-m} \in [(-1)^m, 2^m]$ for integers $m \ge 1$, and so we can obtain the lower bound stated below. Namely, these bounds on the signed reciprocals of z-1 lead to an effective bound of the following form:

$$\widehat{\mathcal{B}}(u, x; z) \ge (B + \log \log(ux))z - a(ux)\left(1 + \frac{1}{z - 1} + z\right) + b(ux)\left(1 + \frac{2}{z - 1} + \frac{1}{(z - 1)^2}\right) - 45 \cdot c(ux).$$

Since the function c(ux) is constant, we then also obtain the next bounds.

$$\frac{e^{-Bz}}{(\log(ux))^{z}} \times \exp\left(\widehat{\mathcal{B}}(u,x;z)\right) \geqslant \exp\left(-\frac{55}{4}\log^{2}(2)\right) \times \left(\frac{\log(ux)}{\log 2}\right)^{1+\frac{1}{z-1}+z} \times \left(\frac{ux}{2}\right)^{\frac{3}{4}\left(1+\frac{2}{z-1}+\frac{1}{(z-1)^{2}}\right)} \\
=: \widehat{\mathcal{C}}(u,x;z) \tag{11}$$

Now we need to determine which values of u minimize the expression for the function defined in (11). For this we will use a somewhat limited elementary method from introdutory calculus to determine a global minimum for the products.

We can symbolically use *Mathematica* to see that

$$\left. \frac{\partial}{\partial u} \left[\widehat{\mathcal{C}}(u, x; z) \right] \right|_{u \mapsto u_0} = 0 \implies u_0 \in \left\{ \frac{1}{x}, \frac{1}{x} e^{-\frac{4}{3}(z-1)} \right\}.$$

When we substitute this outstanding parameter value of $u_0 =: \hat{u}_0 \mapsto \frac{1}{x} e^{-\frac{4}{3}(z-1)}$ into the next expression for the second derivative of the same function $\hat{\mathcal{C}}(u, x; z)$ we obtain

$$\frac{\hat{\sigma}^2}{\partial u^2} \left[\widehat{\mathcal{C}}(u, x; z) \right]_{u = \hat{u}_0} = \exp\left(-\frac{55}{4} \log^2(2) \right) x^2 2^{\frac{8z^3 - 27z^2 + 32z - 16}{4(z-1)^2}} 3^{-z + \frac{1}{1-z} + 1} e^{\frac{5z^2 - 16z + 8}{3(z-1)}} \times \left(1 - z \right)^{z + \frac{1}{z-1} - 2} z^2 \log(2)^{\frac{z^2}{1-z}} > 0,$$

provided that z < 1. The restriction to $0 \le z < 1$ is equivalent to requiring that $1 \le k \le \log \log x$ in Theorem 4.6. This restriction on k to note leads to a minimum value on the partial product, or lower bound, at this $u = \hat{u}_0$ since the second derivative is positive at this critical value for z within this range.

After substitution of $u = \frac{1}{x}e^{-\frac{4}{3}(z-1)}$ into the expression for $\widehat{\mathcal{C}}(u,x;z)$ defined above, we have that

$$\widehat{\mathcal{C}}(u,x;z) \geqslant \exp\left(-\frac{55}{4}\log^2(2)\right) \cdot 2^{\frac{9}{16}} \left(\frac{1-z}{3e\log 2}\right)^3 \times \left(\frac{4(1-z)}{3e\log 2}\right)^z.$$

Finally, since $z \equiv z(k,x) = \frac{k-1}{\log\log x}$ and $k \in [0, R\log\log x)$, we obtain for minimal k and large $x \gg 1$ that $\Gamma(z+1) \approx 1$, and for k towards the upper range of its interval that $\Gamma(z+1) \approx \Gamma(5/2) = \frac{3}{4}\sqrt{\pi}$. In total, what we get out of these formulas is stated up to accurate constant factor as in the theorem bounds.

7 Average case analysis of bounds on the Dirichlet inverse functions, $g^{-1}(n)$

It happens that the property in (C) suggested by Conjecture 4.4 along cases of squarefree $n \ge 1$ is not the most simple, nor only accurate way to express the limiting behavior of the Dirichlet inverse functions $g^{-1}(n)$ we can formulate, though it does capture an important characteristic that is true more globally than just at the squarefree integers $n \ge 1$. Namely, that these functions can be expressed via more simple formulas than inspection of the initial repetitive, quasi-periodic sequence properties in the table might otherwise suggest. The pages of tabular data given as Table T.1 given in the appendix section starting on page 44 are intended to provide clear insight into why we arrived at the convenient approximations to $g^{-1}(n)$ proved in this section. The table offers illustrative numerical data formed by examining the approximate behavior at work here for the asymptotically small order cases of $1 \le n \le 500$ with Mathematica.

7.1 Definitions and basic properties of key component function sequences

We define the following sequence for integers $n \ge 1, k \ge 0$:

$$C_k(n) := \begin{cases} \varepsilon(n), & \text{if } k = 0; \\ \sum_{d|n} \omega(d) C_{k-1}(n/d), & \text{if } k \geqslant 1. \end{cases}$$
 (12)

The sequence of important semi-diagonals of these functions begins as [17, A008480]

$$\{\lambda(n)\cdot C_{\Omega(n)}(n)\}_{n\geqslant 1}\mapsto \{1,-1,-1,1,-1,2,-1,-1,1,2,-1,-3,-1,2,2,1,-1,-3,-1,-3,2,2,-1,4,1,2,\ldots\}.$$

Remark 7.1 (An effective range of k depending on a fixed large n). Notice that by expanding the recursively-based definition in (12) out to its maximal depth by nested divisor sums, for fixed n, $C_k(n)$ is seen to only ever possibly be non-zero for $k \leq \Omega(n)$. This observation follows from the fact that a minimal condition on the forms of divisors d > 1 of n requires that d have at least a single prime factor. Thus, the effective range of k for fixed n is restricted by the conditions of $C_0(n) = \delta_{n,1}$ and that $C_k(n) = 0$, $\forall k > \Omega(n)$. That is, for all sufficiently large $n \geq 2$, the contributions from summations over $C_k(n)$ are only significant whenever $1 \leq k \leq \Omega(n)$.

Example 7.2 (Special cases of the functions $C_k(n)$ for small k). We cite the following special cases which should be easy enough to see on paper by explicit computation using (12):

$$C_0(n) = \delta_{n,1}$$

$$C_1(n) = \omega(n)$$

$$C_2(n) = d(n) \times \sum_{p|n} \frac{\nu_p(n)}{\nu_p(n) + 1} - \gcd(\Omega(n), \omega(n)).$$

7.2 Uniform asymptotics of $C_k(n)$ for large all n and fixed, bounded k

Theorem 4.5 from the introduction is proved next. The theorem makes precise what these formulas already suggest about the main terms of the growth rates of $C_k(n)$ as functions of k, n for limiting cases of n large for fixed k which is bounded in n, but taken as an independent parameter.

Proof of Theorem 4.5. We can see by Example 7.2 that $C_1(n)$ satsfies the formula we must establish when k := 1 since $\mathbb{E}[\omega(n)] = \log \log n$. We prove our bounds by induction on k. In particular, suppose that $k \ge 2$ and let the inductive assumption for all $1 \le m < k$ be that

$$\mathbb{E}[C_m(n)] \gg (\log \log n)^{2m-1}.$$

Now using the recursive formula we used to define the sequences of $C_k(n)$ in (12), we have that as $n \to \infty$

$$\mathbb{E}[C_k(n)] = \mathbb{E}\left[\sum_{d|n} \omega(n/d)C_{k-1}(d)\right]$$

$$= \frac{1}{n} \times \sum_{d \leq n} C_{k-1}(d) \times \sum_{r=1}^{\left\lfloor \frac{n}{d} \right\rfloor} \omega(r)$$

$$\sim \sum_{d \leq n} C_{k-1}(d) \left[\frac{\log\log(n/d)\left[d \leq \frac{n}{e}\right]_{\delta}}{d} + \frac{B}{d}\right]$$

$$\sim \sum_{d \leq \frac{n}{e}} \left[\sum_{m < d} \frac{\mathbb{E}[C_{k-1}(m)]}{m} \log\log\left(\frac{n}{m}\right) + B \cdot \mathbb{E}[C_{k-1}(d)] + B \cdot \sum_{m < d} \frac{\mathbb{E}[C_{k-1}(m)]}{m}\right]$$

$$\gg B \left[n \log n \cdot (\log\log n)^{2k-3} - \log n \cdot (\log\log n)^{2k-3}\right] \times \left(1 + \frac{\log n}{2}\right)$$

$$\gg (\log\log n)^{2k-1}.$$

In transitioning to the last equation from the previous step, we have used that $\frac{Bn}{2} \cdot (\log n)^2 \gg (\log \log n)^2$ as $n \to \infty$. We have also used that for large $n \to \infty$ and fixed m, we have by an approximation to the incomplete gamma function that

$$\int_{t}^{n} \frac{(\log \log t)^{m}}{t} \sim (\log n)(\log \log n)^{m}, \text{ as } n \to \infty.$$

Thus the claim holds by mathematical induction.

Remark 7.3. In Section 8 we show that when $k := \Omega(n)$ depends on n, then

$$\mathbb{E}[C_{\Omega(n)}(n)] \gg (\log n)(\log \log n)^{2\log \log n - 1} \gg \log n \cdot \log \log n.$$

Indeed, for any fixed integral powers $m \ge 1$, whenever $n \to \infty$ is taken large enough we have that

$$\mathbb{E}[C_{\Omega(n)}(n)] \gg (\log n)^m \cdot \log \log n.$$

The estimates above, especially the rightmost lower bound in the previous equation for m := 1, are much weaker than the sharpest possible estimate we could have obtained working through the arithmetic given in the proof of Theorem 4.5. However, it turns out that this statement is sufficient to prove the necessary hypotheses of Theorem 4.8 are attainable for all large x in Section 8.2.

7.3 Relating the auxiliary functions $C_k(n)$ to formulas approximating $g^{-1}(n)$

Lemma 7.4 (An exact formula for $g^{-1}(n)$). For all $n \ge 1$, we have that

$$g^{-1}(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) \lambda(d) C_{\Omega(d)}(d).$$

Proof. We first write out the standard recurrence relation for the Dirichlet inverse of $\omega + 1$ as

$$g^{-1}(n) = -\sum_{\substack{d|n\\d>1}} (\omega(d) + 1)g^{-1}(n/d) \implies (g^{-1} * 1)(n) = -(\omega * g^{-1})(n).$$

Now by repeatedly expanding the right-hand-side, and removing corner cases in the nested sums with $\omega(1) = 0$ by convention, we find inductively that

$$(g^{-1} * 1)(n) = (-1)^{\Omega(n)} C_{\Omega(n)}(n) = \lambda(n) C_{\Omega(n)}(n).$$

The statement follows by Möbius inversion applied to each side of the last equation.

Corollary 7.5. For all squarefree integers $n \ge 1$, we have that

$$g^{-1}(n) = \lambda(n) \times \sum_{d|n} C_{\Omega(d)}(d). \tag{13}$$

Proof. Since $g^{-1}(1) = 1$, clearly the claim is true for n = 1. Suppose that $n \ge 2$ and that n is squarefree. Then $n = p_1 p_2 \cdots p_{\omega(n)}$ where p_i is prime for all $1 \le i \le \omega(n)$. So we can transform the exact divisor sum guaranteed for all n in Lemma 7.4 into the following:

$$g^{-1}(n) = \sum_{i=1}^{\omega(n)} \sum_{\substack{d \mid n \\ \omega(d) = i}} (-1)^{\omega(n) - i} (-1)^{i} \cdot C_{\Omega(d)}(d) + \mu(1)\lambda(n)C_{1}(1)$$

$$= \lambda(n) \left[\sum_{i=1}^{\omega(n)} \sum_{\substack{d \mid n \\ \omega(d) = i}} C_{\Omega(d)}(d) + 1 \right]$$

$$= \lambda(n) \times \sum_{\substack{d \mid n \\ \omega(d) = i}} C_{\Omega(d)}(d).$$

The signed computations in the first of the previous equations is justified by noting that $\lambda(n) = (-1)^{\omega(n)}$ whenever n is squarefree, and that for d squarefree with $\omega(d) = i$, $\Omega(d) = i$.

Corollary 7.6. We have that

$$\frac{6}{\pi^2} \log x \ll \mathbb{E}|g^{-1}(n)| \leqslant \mathbb{E}\left[\sum_{d|n} C_{\Omega(d)}(d)\right].$$

Proof. To prove the lower bound, first notice that by Lemma 7.4, Proposition 5.1 and the complete multiplicativity of $\lambda(n)$, we easily obtain that

$$|g^{-1}(n)| = \sum_{d|n} \mu^2 \left(\frac{n}{d}\right) C_{\Omega(d)}(d). \tag{14}$$

In particular, since $\mu(n)$ is non-zero only at squarefree integers and at any squarefree $n \ge 1$ we have $\mu(n) = (-1)^{\omega(n)} = \lambda(n)$, Lemma 7.4 implies

$$|g^{-1}(n)| = \lambda(n) \times \sum_{d|n} \mu\left(\frac{n}{d}\right) \lambda(d) C_{\Omega(d)}(d)$$

$$= \sum_{d|n} \mu^2 \left(\frac{n}{d}\right) \lambda\left(\frac{n}{d}\right) \lambda(nd) C_{\Omega(d)}(d)$$

$$= \lambda(n^2) \times \sum_{d|n} \mu^2 \left(\frac{n}{d}\right) C_{\Omega(d)}(d).$$

Notice in the above equation that $\lambda(n^2) = +1$ for all $n \ge 1$ since the number of distinct prime factors (counting multiplicity) of a square integer is necessarily even.

Recall from the introduction that the summatory function of the squarefree integers is given by

$$Q(x) := \sum_{n \le x} \mu^2(n) = \frac{6}{\pi^2} x + O(\sqrt{x}).$$

Then since $C_{\Omega(d)}(d) \ge 1$ for all $d \ge 1$, we obtain by summing over (14) that as $x \to \infty$

$$\frac{1}{x} \times \sum_{n \le x} |g^{-1}(n)| = \frac{1}{x} \times \sum_{d \le x} C_{\Omega(d)}(d) Q\left(\left\lfloor \frac{x}{d} \right\rfloor\right)$$

$$\sim \sum_{d \leqslant x} C_{\Omega(d)}(d) \left[\frac{6}{d \cdot \pi^2} + O\left(\frac{1}{\sqrt{dx}}\right) \right]$$

$$\geqslant \sum_{d \leqslant x} \left[\frac{6}{d \cdot \pi^2} + O\left(\frac{1}{\sqrt{dx}}\right) \right]$$

$$\sim \frac{6}{\pi^2} \left(\log x + \gamma + O\left(\frac{1}{x}\right) \right) + O\left(\frac{1}{\sqrt{x}} \times \int_0^x t^{-1/2} dt \right)$$

$$= \frac{6}{\pi^2} \log x + O(1).$$

To prove the upper bound, notice that by Lemma 7.4 and Corollary 7.5,

$$|g^{-1}(n)| \leqslant \sum_{d|n} C_{\Omega(d)}(d).$$

Now since both of the above quantities are positive for all $n \ge 1$, we must obtain the upper bound on the average order of $|g^{-1}(n)|$ stated above.

8 A rigorous justification for applying Theorem 4.8

The point of proving the results in this section before moving onto the core results needed in the next section is to provide a rigorous justification for the intuition we sketched in Section 4.4 of the introduction. That is, we expect our arithmetic functions that are closely tied to the additive functions, $\omega(n)$ and $\Omega(n)$, to similarly behave regularly (and infinitely often) in accordance with their values being close to the average case for large x. What we have established so far, and will establish for $G^{-1}(x)$ in Section 9, are lower bound estimates that hold essentially only on average. This means that for all sufficiently large $x \to \infty$, we need to show that the expected value lower bounds are achieved in asymptotic order more globally within predictably some small window (interval) around x.

8.1 The proof of our central theorem

Proof of Theorem 4.8. The result is obtained simply by contradiction. Suppose that x is so large that the inequalities in the hypothesis hold given the fixed bounded $0 \le Y < +\infty$. We have assumed that the constants $B, C \in (0,1)$ are the tightest possible bounds on the next set as $x \to \infty$ according to their precise definitions given in the theorem statement. We need to show that such a concrete fixed $\varepsilon \in (0,1)$ satisfying the conditions in the theorem exists (depending only on B, C).

Let $x \ge 1$ be fixed and sufficiently large. Suppose that for all $\varepsilon \in (0,1)$ satisfying $0 < B - \varepsilon, C + \varepsilon < 1$, we have that

$$|G^{-1}(x_0)| < |G_E^{-1}(x_0)| + Y, \forall x_0 \in [(B - \varepsilon)x, (C + \varepsilon)x].$$
 (15)

For $n \ge 1$, we have the disjoint set decomposition of the positive integers $n \le x$ given by

$$\{1 \le n \le x\} = \{1 \le n < (B - \varepsilon)x\} \oplus \{(B - \varepsilon)x \le n \le (C + \varepsilon)x\} \oplus \{(C + \varepsilon)x < n \le x\},$$

where the three disjoint sets above are respectively denoted in increasing left-to-right order by $\mathcal{D}_i(x)$ for i = 1, 2, 3. The set decomposition in the previous equation yields that as $x \to \infty$, if (15) is true, then

$$\mathcal{G}_{1}(x) := \frac{1}{x} \cdot \# \left\{ n \in \mathcal{D}_{1}(x) : |G^{-1}(x_{0})| - |G_{E}^{-1}(x_{0})| \leqslant Y \right\} \in [(B - \varepsilon)^{2} + o(1), (B - \varepsilon)(C + \varepsilon) + o(1)] \tag{16}$$

$$\mathcal{G}_{2}(x) := \frac{1}{x} \cdot \# \left\{ n \in \mathcal{D}_{2}(x) : |G^{-1}(x_{0})| - |G_{E}^{-1}(x_{0})| \leqslant Y \right\} \in [B - \varepsilon, C + \varepsilon]$$

$$\mathcal{G}_{3}(x) := \frac{1}{x} \cdot \# \left\{ n \in \mathcal{D}_{3}(x) : |G^{-1}(x_{0})| - |G_{E}^{-1}(x_{0})| \leqslant Y \right\}$$

$$\in [(B - \varepsilon) - (B - \varepsilon)(C + \varepsilon) + o(1), (C + \varepsilon) - (C + \varepsilon)^{2} + o(1)].$$

For $x \ge 1$, let the density of our target set at x be denoted by

$$\mathcal{G}_0(x) := \frac{1}{x} \cdot \# \left\{ n \leqslant x : |G^{-1}(x_0)| - |G_E^{-1}(x_0)| \leqslant Y \right\}.$$

Then we obtain by summing the respective upper and lower bounds on the densities for the disjoint sets given in (16) above that

$$(B-\varepsilon)^2 + B - \varepsilon + (B-\varepsilon)(1-C-\varepsilon) + o(1) \leqslant \mathcal{G}_0(x) \leqslant (B-\varepsilon)(C+\varepsilon) + C + \varepsilon + (C+\varepsilon)(1-C-\varepsilon) + o(1).$$

We show that contrary to our assumption, we can in fact pick any $\varepsilon > 0$ that satisfies $B - 2\varepsilon < C, 0 < B - \varepsilon < 1, 0 < C + \varepsilon < 1$, e.g., choosing $\varepsilon := \frac{1}{2}\min(B, 1 - C)$ will satisfy our requirements. Indeed, given such a choice of this parameter, we have that

$$C + \varepsilon - \left[(B - \varepsilon)(C + \varepsilon) + C + \varepsilon + (C + \varepsilon)(1 - C - \varepsilon) \right] = -(C + \varepsilon)(1 + B - C - 2\varepsilon) < 0.$$

This implies a contradiction to the maximality in the limit supremum sense of our tight bound $C \in (0,1)$. Then we must have that our assumption on x_0 is invalid as $x \to \infty$. More to the point, must be such a fixed $\varepsilon > 0$ and such a $x_0 \in [(B - \varepsilon)x, (C + \varepsilon)x]$ so that $|G^{-1}(x_0)| \ge |G_E^{-1}(x_0)| + Y$ whenever x is sufficiently large. \square

8.2 Verifying the hypotheses in Theorem 4.8 are achieved for all large x

8.2.1 Building up to a proof of the necessary hypotheses: Preliminary facts and results

Lemma 8.1 (Asymptotic densities of exceptional values of positive arithmetic functions). Let $F \in C^1(0,\infty)$ be a monotone increasing function such that $F(x) \nrightarrow 0$ as $x \to \infty$. Suppose that f is an arithmetic function such that f(n) > 0 for all $n \ge 1$ that satisfies

$$\sum_{n \le x} f(n) \ge x \cdot F(x) + o(xF(x)), \text{ as } x \to \infty.$$

Let the set defined by

$$\mathcal{F}_{-} := \{ n \geqslant 1 : f(n) < F(n) \},$$

have corresponding limiting asymptotic density

$$\gamma_{-} := \lim_{x \to \infty} \frac{1}{x} \cdot \#\{n \leqslant x : n \in \mathcal{F}_{-}\}.$$

Then the limit γ_- exists and $\gamma_- = 0$. In other words, for almost every sufficiently large $n \to \infty$, $f(n) \ge F(n)$ and $-f(n) \le -F(n)$.

Proof. First, suppose that the limit we used to define γ_- exists with $\gamma_- \in [0,1)$. By the positivity of f(n), we know that F(x) is positive for all sufficiently large x. Thus we have that as $x \to \infty$

$$\sum_{n \leqslant x} f(n) \leqslant \sum_{\substack{n \leqslant x \\ n \notin \mathcal{F}_{-}}} f(n) + \sum_{\substack{n \leqslant x \\ n \in \mathcal{F}_{-}}} F(n)
< \sum_{n \leqslant (1 - \gamma_{-})x} f(n) + \sum_{(1 - \gamma_{-})x \leqslant n \leqslant x} F(n)
\sim xF(x) - \int_{(1 - \gamma_{-})x}^{x} tF'(t)dt
= (1 - \gamma_{-})x \cdot F((1 - \gamma_{-})x) + \gamma_{-}x \cdot F(c),$$
(17)

integrating by parts and for some $c \in [(1 - \gamma_{-})x, x]$ by the mean value theorem. So by (17), we have that

$$\sum_{n \le x} f(n) \ll x \cdot F((1 - \gamma_{-})x),$$

which unless $\gamma_{-}=0$ contradicts our hypothesis on the limiting behavior of the summatory function of f(n) by the monotonicity of F. Notice also that the limiting density cannot be one since if $\gamma_{-}=1$, then

$$\frac{1}{x} \times \sum_{n \leqslant x} f(n) < \frac{1}{x} \times \sum_{n \leqslant x} F(n)$$

$$\leq \max_{1 \leqslant j \leqslant x} F(j) + o(F(x)) = F(x) + o(F(x)),$$

since F is monotone increasing on $(0, \infty)$ by assumption. Hence, we conclude that $\gamma_{-} = 0$ provided that the limit exists.

If a limiting value for γ_{-} does not exist, then for infinitely many large $x \ge 1$, we have that

$$M_x := \frac{1}{x} \cdot \#\{n \leqslant x : n \in \mathcal{F}_-\},\$$

satisfies $M_x \in (0,1)$ (where M_x non-monotonically oscillates in value along a subsequence). Using a similar method to what we argued above, in this case for infinitely many x our assumption on the asymptotic lower bound on the summatory function of f(n) does not hold. This contradiction shows that the limit γ_- must in fact exist, and as we have shown above, is then necessarily zero.

We also require the following fact of our notation for average order:

Proposition 8.2. For sufficiently large $n \to \infty$, we have that

$$\mathbb{E}[C_{\Omega(n)}(n)] \gg (\log n) \cdot (\log \log n)^{2\log \log n - 1} \gg \log n \cdot \log \log n$$
, as $n \to \infty$.

Proof. We must first argue that the set of n > e on which $\Omega(n)$ differs substantially from its average order of $\mathbb{E}[\Omega(n)] = \log \log n$ has asymptotic density zero. For $\delta, \rho > 0$, let

$$\Omega_{+}(\delta, x) := \frac{1}{x} \cdot \#\{n \leqslant x : \Omega(n) \geqslant (1 + \delta) \log \log x\}$$

$$\Omega_{-}(\rho, x) := \frac{1}{x} \cdot \#\{n \leqslant x : \Omega(n) \leqslant (1 + \rho) \log \log x\}.$$

We utilize Theorem 6.1 to show each of the following as $x \to \infty$:

$$\Omega_{+}(\delta, x) \ll (\log x)^{\delta - (1+\delta)\log(1+\delta)}$$

$$\Omega_{-}(\rho, x) \ll (\log x)^{\rho - (1+\rho)\log(1+\rho)}.$$

Thus for all $\delta, \rho > 0$ where we take very small $\delta, \rho \approx 0^+$, we have that

$$\Omega_{+}(\delta, x) = o(1), \Omega_{-}(\rho, x) = o(1), \text{ as } x \to \infty.$$
 (18)

The results expanded in (18) show that we can expect the asymptotic density of the $n \le x$ where $\Omega(n) \not\approx \mathbb{E}[\Omega(n)]$ to be small, and tending to zero as $n \to \infty$.

Thus with our result for fixed $1 \le k \le \Omega(n)$ from Theorem 4.5, we can conclude that

$$\mathbb{E}[C_{\Omega(n)}(n)] \gg \frac{1}{n} \sum_{d \leq n} (\log \log d)^{2\Omega(d) - 1}$$

$$\sim (\log n) \cdot (\log \log n)^{2\log \log n - 1}, \text{ as } n \to \infty.$$
(19)

Hence, we also have that

$$\mathbb{E}[C_{\Omega(n)}(n)] \gg \log n \cdot \log \log n$$
, as $n \to \infty$.

To prove that (19) is correct, notice that for any fixed m we have integrating by parts and applying (9c) at large $n \to \infty$ that A

$$\frac{1}{n} \times \int_{e}^{n} (\log \log t)^{m} dt = \frac{1}{n} \left[n \cdot (\log n) (\log \log n)^{m} - (\log n) (\log \log n)^{m} \right]$$

$$\sim (\log n) (\log \log n)^{m}.$$
(20)

So the claimed two implications follow, one after the other, by a perturbed expansion of the binomial series where $[5, cf. \S 6]$

$$\frac{1}{n} \times \int_{e}^{n} (\log \log t)^{2\log \log t - 1} dt \approx \frac{1}{n} \times \int_{e}^{n} \frac{(1 + \log \log t)^{2\log \log t}}{\log \log t} dt
= \frac{1}{n} \times \int_{e}^{n} \sum_{s>0} \sum_{k=0}^{s} {s \brack k} (2 \log \log t)^{k} (-1)^{s-k} \times \frac{(\log \log t)^{s-1}}{s!} dt.$$

Namely, we can integrate the last equation termwise using the integral formula in (20) from above.

$$\int_{e}^{n} \frac{(\log \log t)^{m}}{t} dt = (-1)^{m} \cdot \Gamma(m+1, -\log \log n).$$

 $^{^{\}mathrm{A}}$ In particular, we obtain the following definite integral formula exactly for fixed m:

Proposition 8.3. For all sufficiently large n on a set of asymptotic density one, we have that

$$|g^{-1}(n)| \gg \frac{2}{\pi^2} (\log n)^3 (\log \log n) + O((\log n)^2 (\log \log n)).$$

Proof. An immediate consequence of Proposition 8.2 is that for all sufficiently large n we have that

$$\mathbb{E}\left[C_{\Omega(n)}(n)\right] \gg (\log n)^2(\log\log n).$$

Recall once again that the summatory function of the squarefree integers is denoted by

$$Q(x) := \sum_{n \le x} \mu^2(n) = \frac{6}{\pi^2} x + O(\sqrt{x}).$$

Then by Corollary 7.5 and since

$$|g^{-1}(n)| \leq \sum_{d|n} C_{\Omega(d)}(d), \forall n \geq 1,$$

we have that as $n \to \infty$

$$\mathbb{E}|g^{-1}(n)| \ge \frac{1}{n} \times \sum_{\substack{m \le n \\ \mu^{2}(m) = 1}} \sum_{\substack{d \mid m}} C_{\Omega(d)}(d)$$

$$\sim \frac{1}{n} \times \sum_{\substack{d \le n}} C_{\Omega(d)}(d)Q\left(\frac{n}{d}\right)$$

$$= \frac{1}{n} \times \sum_{\substack{d \le n}} \mathbb{E}[C_{\Omega(d)}(d)] \cdot d\left(\frac{6}{\pi^{2}} \frac{n}{d+1} - \frac{6}{\pi^{2}} \frac{n}{d} + O(1)\right)$$

$$\sim \sum_{\substack{d \le n}} \mathbb{E}[C_{\Omega(d)}(d)] \left[\frac{6}{\pi^{2} \cdot d} + O\left(\frac{1}{n}\right)\right]$$

$$\gg \frac{6}{\pi^{2}} \int_{e}^{n} \frac{(\log t)^{2} (\log \log t)}{t} dt + O\left(\frac{1}{n} \times \int_{e}^{n} (\log t)^{2} (\log \log t) dt\right)$$

$$= \frac{2}{\pi^{2}} \left((\log n)^{3} \log \log n - \frac{(\log n)^{3}}{3}\right) + O\left((\log n)^{2} \log \log n\right)$$

$$\gg \frac{2}{\pi^{2}} (\log n)^{3} \log \log n + O\left((\log n)^{2} \log \log n\right).$$

So using our observation in Lemma 8.1 with $\mathbb{E}|g^{-1}(n)| \gg \frac{6}{\pi^2} \cdot \log n \nrightarrow 0$ by Corollary 7.6, we have that our statement holds.

Corollary 8.4. For all sufficiently large n on a set of asymptotic density one, we have that

$$\sum_{\substack{d|n\\d>e}} (\log d)(\log \log d) - |g^{-1}(n)| \le 0.$$

Proof. First, we see that since $\mathbb{E}[d(n)] = \log n$ [14, §27.11], for all large enough n on a set of asymptotic density one we have

$$\mathbb{E}\left[\sum_{\substack{d|n\\d>e}} (\log d)(\log\log d)\right] = \frac{1}{n} \times \sum_{e< d \le n} (\log d)(\log\log d) \left\lfloor \frac{x}{d} \right\rfloor$$
$$\sim \int_{e}^{n} \frac{(\log t)(\log\log t)}{t} dt$$

$$= \frac{(\log n)^2}{2} (\log \log n) - \frac{(\log n)^2}{4}$$
$$\sim \frac{(\log n)^2}{2} (\log \log n).$$

Now on another set of asymptotic density one, we have that since $\mathbb{E}|g^{-1}(n)| \gg \frac{6}{\pi^2} \cdot \log n \nrightarrow 0$ by Corollary 7.6, Lemma 8.1 implies that

$$\mathbb{E}\left[\sum_{\substack{d|n\\d>e}} (\log d)(\log\log d) - |g^{-1}(n)|\right] = \mathbb{E}\left[\sum_{\substack{d|n\\d>e}} (\log d)(\log\log d)\right] - \mathbb{E}|g^{-1}(n)|$$

$$\ll \frac{(\log n)^2}{2} (\log\log n) - \mathbb{E}|g^{-1}(n)|.$$

So applying Lemma 8.1 and by Proposition 8.3, for all large enough n within a set of asymptotic density one on the integers, we have that

$$\sum_{\substack{d|n\\d>e}} (\log d)(\log\log d) - |g^{-1}(n)| \ll 0, \text{ as } n \to \infty.$$

We have implicitly used that the intersection of a finite number of subsets of the positive integers with asymptotic density one also has limiting density of one. \Box

Proposition 8.5. Let the set where $G^{-1}(x)$ is non-positive be defined as

$$\mathcal{G}_{-} := \{ n \leqslant x : G^{-1}(x) \leqslant 0 \}.$$

We claim that for all large $x \to \infty$, the density of this set is positive and less than one:

$$0 + o(1) < \frac{1}{x} \cdot \#\{n \leqslant x : n \in \mathcal{G}_{-}\} < 1 + o(1).$$

Moreover, if a limiting asymptotic density for \mathcal{G}_{-} exists, it does not tend to zero as $x \to \infty$:

$$\lim_{x \to \infty} \frac{1}{x} \cdot \#\{n \leqslant x : n \in \mathcal{G}_{-}\} \neq 0.$$

Note that the proposition above also implies that the corresponding set \mathcal{G}_+ over which $G^{-1}(x) > 0$ has positive density for all x sufficiently large, and that this density does not tend to zero as $x \to \infty$. We will prove Proposition 8.5 after we prove Proposition 9.1 in the next section.

8.2.2 The proof that the necessary hypotheses in Theorem 4.8 are attained for all large x

Proof of the hypotheses of Theorem 4.8. Let $G_E^{-1}(x)$ be defined as in (3a) of the theorem. We need to find some absolute tight limiting constants $B, C \in (0,1)$ such that as $x \to \infty$

$$B + o(1) \leqslant \frac{1}{x} \cdot \# \left\{ n \leqslant x : |G^{-1}(n)| - |G_E^{-1}(n)| \leqslant Y \right\} \leqslant C + o(1), \tag{21}$$

for some bounded constant $0 \le Y < +\infty$, By Corollary 8.4, for all n sufficiently large within a set \mathcal{S}_E of asymptotic density also one,

$$\sum_{\substack{d|n\\d>e}} (\log d)(\log \log d) - |g^{-1}(n)| \le 0, \forall n \in \mathcal{S}_E, \text{ as } n \to \infty.$$
(22)

Now we aim to sum the functions $G^{-1}(x)$ and $G_E^{-1}(x)$ weighted by the same signs on the terms at each large enough n that satisfy the condition in (22).

Since the sign of $g^{-1}(n)$ is $\lambda(n)$ as given by Proposition 5.1, for all large enough $n \to \infty$ on the set \mathcal{S}_E defined as in (22), we have that both

$$\sum_{\substack{e\leqslant n\leqslant x\\\lambda(n)=+1}}g^{-1}(n)\geqslant \sum_{\substack{e\leqslant n\leqslant x\\\lambda(n)=+1}}\sum_{\substack{d\mid n\\d>e}}(\log d)(\log\log d)$$
$$\sum_{\substack{e\leqslant n\leqslant x\\\lambda(n)=-1}}g^{-1}(n)\leqslant -\sum_{\substack{e\leqslant n\leqslant x\\\lambda(n)=-1}}\sum_{\substack{d\mid n\\d>e}}(\log d)(\log\log d).$$

Hence, we have that almost everywhere on \mathbb{Z}^+ as $x \to \infty$ the following equation is true for some constant offset $0 \le Y < +\infty$:

$$G^{-1}(x) \geqslant \sum_{n \leqslant x} \lambda(n) \sum_{\substack{d \mid n \\ d > e}} (\log d)(\log \log d) + Y.$$
(23)

Now we notice that the right-hand-side of (23) corresponds to the definition of the function $G_E^{-1}(x)$. Hence, we see that if $G^{-1}(x) \leq 0$ where (23) holds, then also $G_E^{-1}(x) \leq 0$, and so letting

$$\mathcal{A}_E(Y) := \left\{ x \geqslant 1 : G^{-1}(x) \geqslant G_E^{-1}(x) + Y \land G^{-1}(x) \leqslant 0 \right\},\,$$

we have that $|G^{-1}(x)| - |G_E^{-1}(x)| \le Y$, $\forall x \in \mathcal{A}_E(Y)$. We still need to show that the density of $\mathcal{A}_E(Y)$ in $\{n \le x\}$ can be bounded closely below and above by some respective constants $B, C \in (0, 1)$ for all large enough $x \to \infty$.

Using Proposition 8.5 and that (23) holds almost everywhere on the sufficiently large positive integers, we can see that there must be some limitingly tight constants $B, C \in (0,1)$ bounding the densities of the infinite set, $\mathcal{A}_E(Y)$, such that the condition $|G^{-1}(x)| - |G_E^{-1}(x)| \leq Y$ holds for all large x within this set in the following form:

$$B + o(1) \leqslant \frac{1}{x} \cdot \# \{ n \leqslant x : n \in \mathcal{A}_E(Y) \} \leqslant C + o(1), \text{ as } x \to \infty.$$

That is, for the constant Y taken as in (23), we have seen that we can select

$$B := \liminf_{x \to \infty} \frac{1}{x} \cdot \# \{ n \leqslant x : n \in \mathcal{A}_E(Y) \} \in (0,1)$$
$$C := \limsup_{x \to \infty} \frac{1}{x} \cdot \# \{ n \leqslant x : n \in \mathcal{A}_E(Y) \} \in (0,1).$$

Hence, we have shown that the necessary conditions in hypotheses of Theorem 4.8 can in fact be achieved for all sufficiently large $x \to \infty$.

9 Establishing lower bounds for M(x) along infinite subsequences

9.1 The culmination of what we have done so far

The summation methods to weight sums of our arithmetic functions according to the sign of $\lambda(n)$ (or parity of $\Omega(n)$) we prove within this section are reminiscent of the combinatorially motivated sieve methods in [4, §17].

Proposition 9.1. For all sufficiently large x, we have that

$$M(x) \approx G^{-1}(x) - x \cdot \int_{1}^{x/2} \frac{G^{-1}(t)}{t^2 \cdot \log(x/t)} dt,$$
 (24)

where $G^{-1}(x) := \sum_{n \leqslant x} g^{-1}(n)$ is the summatory function of $g^{-1}(n)$.

Proof. We know by applying Corollary 4.3 that

$$M(x) = \sum_{k=1}^{x} g^{-1}(k)(\pi(x/k) + 1)$$

$$= G^{-1}(x) + \sum_{k=1}^{x} g^{-1}(k)\pi(x/k),$$
(25)

where we can drop the asymptotically unnecessary floored integer-valued arguments to $\pi(x)$ in place of its approximation by the monotone non-decreasing $\pi(x) \sim \frac{x}{\log x}$. Moreover, we can always bound

$$\frac{Ax}{\log x} \leqslant \pi(x) \leqslant \frac{Bx}{\log x},$$

for suitably defined absolute constants, A, B > 0. Therefore the approximation obtained is valid for all x > 1 up to a small constant difference.

What we now require to sum and simplify the right-hand-side summation from (25) is an ordinary summation by parts argument. Namely, we obtain that for sufficiently large $x \ge 2^{A}$

$$\begin{split} \sum_{k=1}^{x} g^{-1}(k)\pi(x/k) &= G^{-1}(x)\pi(1) - \sum_{k=1}^{x-1} G^{-1}(k) \left[\pi\left(\frac{x}{k}\right) - \pi\left(\frac{x}{k+1}\right) \right] \\ &= -\sum_{k=1}^{x/2} G^{-1}(k) \left[\pi\left(\frac{x}{k}\right) - \pi\left(\frac{x}{k+1}\right) \right] \\ &\approx -\sum_{k=1}^{x/2} G^{-1}(k) \left[\frac{x}{k \cdot \log(x/k)} - \frac{x}{(k+1) \cdot \log(x/k)} \right] \\ &\approx -\sum_{k=1}^{x/2} G^{-1}(k) \frac{x}{k^2 \cdot \log(x/k)}. \end{split}$$

Since for x large enough the summand is monotonic as k ranges in order over $k \in [1, x/2]$, and since the summands in the last equation are smooth functions of k (and x), and also since $G^{-1}(x)$ is a summatory function with jumps at the positive integers, we can approximate M(x) for any finite $x \ge 2$ by

$$M(x) \approx G^{-1}(x) - x \cdot \int_{1}^{x/2} \frac{G^{-1}(t)}{t^2 \cdot \log(x/t)} dt.$$

We will later only use unsigned lower bound approximations to this function in the next theorems so that the signedness of the summatory function term in the integral formula above as $x \to \infty$ is a moot point entirely.

^ASince $\pi(1) = 0$, the actual range of summation corresponds to $k \in \left[1, \frac{x}{2}\right]$.

Proof of Proposition 8.5. Suppose to the contrary that

$$\lim_{x \to \infty} \frac{1}{x} \cdot \#\{n \leqslant x : n \in \mathcal{G}_{-}\} = 0,$$

i.e., that $G^{-1}(x) > 0$ almost everywhere for all integers x sufficiently large. We will utilize (25) from Proposition 9.1 to derive a contradiction under this assumption. In particular, assuming the above limiting density is zero, we have that

$$\frac{|M(x)|}{x} \sim \left| \int_{1}^{x/2} \frac{|G^{-1}(t)|}{t^2 \cdot \log(x/t)} dt - \frac{|G^{-1}(x)|}{x} \right|, \text{ a.e., as } x \to \infty.$$
 (26)

So for sufficiently large $x \to \infty$, for almost every x we have that

$$\frac{|M(x)|}{x} \gg \left| \int_{1}^{x/2} \frac{|\mathbb{E}[g^{-1}(t)]|}{t \cdot \log(x/t)} dt - \mathbb{E}[g^{-1}(x)] \right|. \tag{27}$$

For any constant u_0 , $\int_1^{u_0} \frac{dt}{t^2 \cdot \log(x/t)} = o(1)$ is of lower order growth than the primary integral contribution in (27) as $x \to \infty$.

We also have that

$$\int \frac{dt}{t \cdot \log(x/t)} = -\log\log(x/t) + C,$$

So since the sequence of $g^{-1}(n)$ is signed, we can bound $|\mathbb{E}[g^{-1}(n)]| \ge o(1) \to 0$ as $n \to \infty$. Combined, it follows that we can bound the right-hand-side of (27) from below by

$$\frac{|M(x)|}{x} \gg \left| \mathbb{E}[g^{-1}(x)] \right|. \tag{28}$$

Now since we have assumed that almost everywhere $G^{-1}(x) > 0$ when x is large, for infinitely many sufficiently large x, we have that

$$\left| \mathbb{E}[g^{-1}(x)] \right| = \frac{1}{x} \times \left[\sum_{\substack{n \leq x \\ \lambda(n) = +1}} |g^{-1}(n)| - \sum_{\substack{n \leq x \\ \lambda(n) = -1}} |g^{-1}(n)| \right]$$

$$\geqslant \frac{1}{x} \times \left[\sum_{n \leq \left(\frac{1}{2} + \delta_x\right)x} |g^{-1}(n)| \right] (1 + o(1))$$

$$\geqslant \left(\frac{1}{2} + \delta_x \right)^{-1} \cdot \mathbb{E} \left| g^{-1} \left(\left(\frac{1}{2} + \delta_x \right) x \right) \right| (1 + o(1)), \tag{29}$$

with $\delta_x \in \left(-\frac{1}{2}, \frac{1}{2}\right]$ for all x. The base factor term of $\frac{1}{2}$ in the upper limit of summation from the previous equation above corresponds to the known fact that

$$\lim_{x \to \infty} \frac{1}{x} \cdot \#\{n \leqslant x : \lambda(n) = +1\} = \frac{1}{2}.$$

When we apply Corollary 7.6 to (28) and (29), we obtain that for infinitely many sufficiently large x

$$\frac{|M(x)|}{x} \gg \frac{6}{\pi^2} \log(x) \left(1 + o(1)\right) \xrightarrow{x \to \infty} +\infty.$$

Then we recover a contradiction to the known property that $|M(x)| \le x$ for all $x \ge 1$. as $x \to \infty$ for infintely many x.

A similarly phrased argument shows the corresponding result is true for the set \mathcal{G}_+ on which $G^{-1}(x) > 0$. Thus, combined, these two consequences show that the limiting density of \mathcal{G}_- is positive, and in particular, that it cannot tend to zero along infinitely many limiting cases as $x \to \infty$.

9.1.1 From the routine: Proofs of a few cut-and-dry results

Corollary 9.2. We have that for sufficiently large x, as $x \to \infty$ that "on average" B

$$\left|G_E^{-1}(x)\right| \gg \left|\hat{L}_0\left(\log\log x\right) \times \sum_{e \leqslant n \leqslant \log x} \lambda(n) \cdot \log n \cdot \log\log n\right|,$$

where the function

$$\left| \widehat{L}_0(x) \right| \gg \sqrt{\frac{2}{\pi}} \cdot \frac{A_0}{3e \log 2} \cdot \frac{x}{(\log \log x)^{\frac{5}{2} + \log \log x}},$$

and such that $\operatorname{sgn}(\hat{L}_0(x)) = (-1)^{\lfloor \log \log x \rfloor}$ (as the function is defined inline below).

Proof. Using the definition in (3a), we obtain on average that ^C

$$\begin{aligned} \left| G_E^{-1}(x) \right| &= \left| \sum_{n \leqslant \log x} \lambda(n) \sum_{\substack{d \mid n \\ d > e}} (\log d) (\log \log d) \right| \\ &= \left| \sum_{\substack{e < d \leqslant \log x}} \log d \cdot \log \log d \times \sum_{n=1}^{\left\lfloor \frac{\log x}{d} \right\rfloor} \lambda(dn) \right|. \end{aligned}$$

Now we see that by complete additivity of $\Omega(n)$ (multiplicativity of $\lambda(n)$) that

$$\sum_{n=1}^{\left\lfloor \frac{x}{d} \right\rfloor} \lambda(dn) = \sum_{n=1}^{\left\lfloor \frac{x}{d} \right\rfloor} \lambda(d)\lambda(n) = \lambda(d) \sum_{n \leqslant \left\lfloor \frac{x}{d} \right\rfloor} \lambda(n).$$

Using the result proved in Section 6 as (see Theorem 4.7 and Corollary 6.4) we can establish that ^D

$$\left| \sum_{n \leqslant x} \lambda(n) \right| \gg \left| \sum_{k \leqslant \log \log x} (-1)^k \cdot \widehat{\pi}_k(x) \right| =: \left| \widehat{L}_0(x) \right|.$$

For large enough $x \to \infty$ and $e \le d \le \log x$, we can easily prove by bounding each function from above and below that

$$\log(x/d) \sim \log x, \log \log(x/d) \sim \log \log x.$$

Then we have that

$$\left| \hat{L}_0(\log x) \right| \sim \left| \hat{L}_0(\log \log(x/d)) \right|,$$

for all large $x \to \infty$ whenever $e \le d \le \log x$.

We note that the precise formula for the limiting lower bound stated above for $\hat{L}_0(x)$ is computed by symbolic summation in *Mathematica* using the new bounds on $\hat{\pi}_k(x)$ guaranteed by Theorem 4.7 (and by applying subsequent standard asymptotic estimates to the resulting formulas, e.g., in the form of (9c) and Stirling's

$$\sum_{n \leqslant x} h(n) \times \sum_{d|n} f(d) = \sum_{d \leqslant x} f(d) \times \sum_{n=1}^{\left\lfloor \frac{x}{d} \right\rfloor} h(dn).$$

^BThis distinction in the statement is necessary since our limiting lower bounds have so far depended on average order estimates of certain sums and arithmetic functions as $n \to \infty$.

^CFor any arithmetic functions f, h, we have that $[1, cf. \S 3.10; \S 3.12]$

^DSee the proof of Lemma 9.3 below for a justification of the » bound.

formula). We also have from this formula that $|\hat{L}_0(\log x)| \gg |\hat{L}_0(\log\log x)|$. The inner summation in the lower bound stated for $|G_E^{-1}(x)|$ is correctly indexed only for $n \leq \log x$ as the definition of this summatory function depends on bounds on $\mathbb{E}[C_{\Omega(n)}(n)]$ from below for $n \leq x$ where the functions $C_k(n)$ are only non-zero for large $n \geq 1$ when $k \leq \Omega(n) \ll \log x$ (e.g., the upper bound on $\Omega(n)$ is valid up to a constant factor).

Lemma 9.3. Suppose that $f_k(n)$ is a sequence of arithmetic functions such that $f_k(n) > 0$ for all $n > u_0$ and $1 \le k \le \Omega(n)$ where $f_{\Omega(n)}(n) \gg \hat{\tau}_{\ell}(n)$ as $n \to \infty$. We suppose that the bounding function $\hat{\tau}_{\ell}(t)$ is a continuously differentiable function of t for all large enough $t \gg u_0$. We define the λ -sign-scaled summatory function of f as follows:

$$F_{\lambda}(x) := \sum_{u_0 < n \leq \log x} \lambda(n) \cdot f_{\Omega(n)}(n).$$

Let

$$A_{\Omega}^{(\ell)}(t) := \sum_{k=1}^{\lfloor \log \log t \rfloor} (-1)^k \widehat{\pi}_k^{(\ell)}(t),$$

where $\hat{\pi}_k(x) \geqslant \hat{\pi}_k^{(\ell)}(x) \geqslant 0$ for $\hat{\pi}_k^{(\ell)}(t)$ some smooth monotone non-decreasing function of t whenever t sufficiently large. Then we have that on average

$$|F_{\lambda}(x)| \gg \left| A_{\Omega}^{(\ell)}(\log x) \widehat{\tau}_{\ell}(\log x) - \int_{u_0}^{\log x} A_{\Omega}^{(\ell)}(t) \widehat{\tau}_{\ell}'(t) dt \right|.$$

Proof. We can form an accurate $C^1(\mathbb{R})$ approximation by the smoothness of $\widehat{\pi}_k^{(\ell)}(x)$ that allows us to apply the Abel summation formula using the summatory function $A_{\Omega}^{(\ell)}(t)$ for t on any bounded connected subinterval of $[1,\infty)$. The second stated formula for $F_{\lambda}(x)$ above is valid by Abel summation whenever

$$0 \leqslant \left| \frac{\sum_{\substack{\log \log t < k \leqslant \frac{\log t}{\log 2}}} (-1)^k \widehat{\pi}_k(t)}{A_{\Omega}^{(\ell)}(t)} \right| \ll 2, \text{ as } t \to \infty.$$

What the last equation implies is that the asymptotically dominant terms indicating the parity of $\lambda(n)$ are captured up to a constant factor by the terms in the range over k summed by $A_{\Omega}^{(\ell)}(t)$ for sufficiently large $t \to \infty$. Using the arguments in Montgomery and Vaughan [11, §7; Thm. 7.20] used to prove Corollary 6.4, we can see that the assertion above holds in the limit as $t \to \infty$.

In other words, taking the sum over the summands that defines $A_{\Omega}(x)$ only over the truncated range of $k \in [1, \log \log x]$ does not non-trivially change the limiting asymptotically dominant terms in the lower bound obtained from using this form of the summatory function in conjunction with the Abel summation formula. This property holds even when we should technically index over all $k \in [1, \log_2(x)]$ to obtain an exact formula for the summatory weight function. The results in Corollary 9.2 and in Lemma 9.3 combine to provide a key formula used in the proof of Theorem 9.5 to bound $G^{-1}(x)$ from below in the average case sense.

We require one more sanity check to our approximations used in that proof explored in the next subsection stated in the form of the next lemma. Observe that we now use the superscript and subscript notation of (ℓ) not to denote a formal parameter to the functions we define below, but instead to denote that these functions form *lower bound* (rather than exact) approximations to other forms of the functions without the scripted (ℓ) .

^EWe will require that $\hat{\tau}_{\ell}(t) \in C^1(\mathbb{R})$ when we apply the Abel summation formula in the proof of Theorem 9.5. At this point, it is technically an unnecessary condition that is vacously satisfied by assumption (by requirement) and will importantly need to hold only when we specialize to the actual functions employed to form our new bounds in the theorem proof below.

Lemma 9.4. Suppose that $\widehat{\pi}_k(x) \ge \widehat{\pi}_k^{(\ell)}(x) \ge 0$ with $\widehat{\pi}_k^{(\ell)}(x)$ a monotone non-decreasing real-valued function for all sufficiently large x. Let

$$A_{\Omega}^{(\ell)}(x) := \sum_{k \leqslant \log \log x} (-1)^k \widehat{\pi}_k^{(\ell)}(x)$$
$$A_{\Omega}(x) := \sum_{k \leqslant \log \log x} (-1)^k \widehat{\pi}_k(x).$$

Then for all sufficiently large x, we have that

$$|A_{\Omega}(x)| \gg |A_{\Omega}^{(\ell)}(x)|.$$

Proof. Given an explicit smooth lower bounding function, $\hat{\pi}_k^{(\ell)}(x)$, we define the similarly smooth and monotone residual terms in approximating $\hat{\pi}_k(x)$ using the following notation:

$$\widehat{\pi}_k(x) = \widehat{\pi}_k^{(\ell)}(x) + \widehat{E}_k(x)$$

Then we can form the ordinary exact form of the summatory function A_{Ω} as

$$|A_{\Omega}(x)| = \left| \sum_{k \leq \frac{\log \log x}{2}} \left[\widehat{\pi}_{2k}(x) - \widehat{\pi}_{2k-1}(x) \right] \right|$$

$$\geqslant \left| A_{\Omega}^{(\ell)}(x) - \sum_{k \leq \frac{\log \log x}{2}} \widehat{E}_{2k-1}(x) \right|$$

$$\geqslant \left| A_{\Omega}^{(\ell)}(x) \right| - \left| \sum_{k \leq \frac{\log \log x}{2}} \widehat{E}_{2k-1}(x) \right|.$$

If the latter sum, denoted

$$ES(x) := \sum_{k \leq \frac{\log \log x}{2}} \hat{E}_{2k-1}(x) \to \infty,$$

as $x \to \infty$, then we can always find some absolute $C_0 > 0$ (by monotonicity) such that $\mathrm{ES}(x) \leq C_0 \cdot A_\Omega(x)$. If on the other hand this sum becomes constant as $x \to +\infty$, then we also clearly have another absolute $C_1 > 0$ such that $|A_{\Omega}(x)| \geq C_1 \cdot |A_{\Omega}^{(\ell)}(x)|$. In either case, the claimed result holds for all large enough x.

9.1.2 A proof of the key bound from below on $G^{-1}(x)$

The next central theorem is the last key barrier required to prove Corollary 4.11 in the next subsection. For the time being, we will keep track of extraneous positive constants that will be dropped when we prove the corollary.

Theorem 9.5 (Asymptotics and bounds for the summatory functions $G^{-1}(x)$). We define a lower summatory function, $G_{\ell}^{-1}(x)$, to provide bounds on the magnitude of $G_{E}^{-1}(x)$ such that

$$|G_{\ell}^{-1}(x)| \le |G_{E}^{-1}(x)|,$$

for all sufficiently large $x \ge e$. Let $C_{\ell,1} > 0$ be the absolute constant defined by

$$C_{\ell,1} = \frac{8A_0^2}{9\pi e^2 \log^2(2)} = \frac{256 \cdot 2^{1/8}}{59049 \cdot \pi^2 e^8 \log^8(2)} \exp\left(-\frac{55}{2} \log^2(2)\right) \approx 5.51187 \times 10^{-12}.$$

We obtain the following limiting estimate for the bounding function $G_{\ell}^{-1}(x)$ "on average" as $x \to \infty$:

$$\left|G_{\ell}^{-1}\left(x\right)\right| \gg \frac{C_{\ell,1} \cdot (\log x)(\log\log x)^4 \sqrt{\log\log\log\log x}}{(\log\log\log\log x)^{\frac{5}{2}}}.$$

Proof. Recall from our proof of Corollary 4.7 that a lower bound on the variant prime form counting function, $\hat{\pi}_k(x)$, is given by

$$\widehat{\pi}_k(x) \gg \frac{A_0 \cdot x}{\log x \cdot (\log \log x)^4 \cdot (k-1)!} \cdot \left(\frac{4}{3e \log 2}\right)^{\frac{k}{\log \log x}}, \text{ as } x \to \infty.$$

So we can then form a lower summatory function indicating the signed contributions over the distinct parity of $\Omega(n)$ for all $n \leq x$ as follows by applying (9b) and Stirling's approximation:

$$\left| A_{\Omega}^{(\ell)}(t) \right| = \left| \sum_{k \leq \log \log t} (-1)^k \widehat{\pi}_k(t) \right|$$

$$\gg \sqrt{\frac{2}{\pi}} \cdot \frac{A_0}{3e \log 2} \cdot \frac{t}{(\log \log t)^{\frac{5}{2} + \log \log t}}.$$
(30)

The actual sign on this function is given by $\operatorname{sgn}(A_{\Omega}^{(\ell)}(t)) = (-1)^{\lfloor \log \log t \rfloor}$ (see Lemma 9.4).

By Corollary 4.5 we recover from the bounded main term approximation to $\mathbb{E}[C_{\Omega(n)}(n)]$ proved in Section 8, denoted here by the smooth function $\hat{\tau}_0(t) = \log t \cdot \log \log t$, that

$$\hat{\tau}'_0(t) = \frac{d}{dt} \left[\log t \cdot \log \log t \right] \gg \frac{\log \log t}{t}.$$

As prescribed by Lemma 9.3 and Corollary 9.2, we apply Abel summation to imply that we have

$$G_{\ell}^{-1}(x) = \hat{L}_{0}(\log\log x) \left[\hat{\tau}_{0}(\log x) A_{\Omega}^{(\ell)}(\log x) - \int_{u_{0}}^{\log x} \hat{\tau}_{0}'(t) A_{\Omega}^{(\ell)}(t) dt \right]. \tag{31}$$

The inner integral term on the rightmost side of (31) is summed approximately in the form of

$$-\int_{u_0}^{\log x} \widehat{\tau}_0'(t) A_{\Omega}^{(\ell)}(t) dt \approx \sum_{k=u_0+1}^{\frac{1}{2}\log\log\log x} \left(I_{\ell} \left(e^{e^{2k+1}} \right) - I_{\ell} \left(e^{e^{2k}} \right) \right) e^{e^{2k}}$$

$$\approx C_0(u_0) + (-1)^{\left\lfloor \frac{\log\log\log x}{2} \right\rfloor} \times \int_{\frac{\log\log\log x}{2} - \frac{1}{2}}^{\frac{\log\log\log x}{2} - \frac{1}{2}} I_{\ell} \left(e^{e^{2k}} \right) e^{e^{2k}} dk.$$

$$(32)$$

We define the integrand function, $I_{\ell}(t) := \hat{\tau}'_0(t) A_{\Omega}^{(\ell)}(t)$, as in the previous equations with some limiting simplifications for the $k \in \left[\frac{\log \log \log x}{2} - 1, \frac{\log \log \log x}{2}\right]$ as

$$I_{\ell}\left(e^{e^{2k}}\right)e^{e^{2k}} \gg \frac{A_0}{3e\sqrt{\pi}\log 2} \cdot \frac{\exp\left(e^{2k}\right)}{2^{2k} \cdot k^{2k+3/2}} =: \hat{I}_{\ell}(k).$$
 (33)

So using the lower bound on the increasing integrand in (33), we find from the mean value theorem that F

$$\left| \hat{L}_0(\log \log x) \times \int_{\frac{\log \log \log x}{2} - \frac{1}{2}}^{\frac{\log \log \log x}{2}} I_{\ell} \left(e^{e^{2k}} \right) e^{e^{2k}} dk \right|$$

$$\gg \left| \frac{\hat{L}_0(\log \log x)}{2} \times \hat{I}_{\ell} \left(\frac{\log \log \log x}{2} - \frac{1}{2} \right) \right|$$

$$\exp\left(-\log\log\log x \cdot \log\log\log\log x\right) \gg \exp\left(-(\log\log\log x)^2\right) \gg (\log\log x)^2$$

and

$$\exp\left(-\log\log\log\log x \cdot \log\log\log\log\log\log x\right) \gg \exp\left(-(\log\log\log\log\log x)^2\right) \gg (\log\log\log\log x)^2$$
.

^FWe have invoked the simplifications that for sufficiently large x,

$$\frac{C_{\ell,1} \cdot (\log x)^{\frac{1}{e}} (\log \log x)}{2 \cdot (\log \log \log x)^{\frac{1}{2} + \log \log \log x} (\log \log \log \log x)^{\frac{5}{2} + \log \log \log \log x}}$$

$$\frac{C_{\ell,1} \cdot (\log x)^{\frac{1}{e}} (\log \log x)^{3} (\log \log \log x)^{\frac{3}{2}}}{2 \cdot (\log \log \log \log x)^{\frac{5}{2}}}.$$
(34)

Moreover, by evaluating $\hat{I}_{\ell}(t)$ at the upper bound on the integral above, we can similarly conclude that

$$\left| \widehat{L}_0(\log \log x) \times \int_{\frac{\log \log \log x}{2} - \frac{1}{2}}^{\frac{\log \log \log x}{2}} I_{\ell}\left(e^{e^{2k}}\right) e^{e^{2k}} dk \right| \ll \frac{C_{\ell,1} \cdot (\log x)^{\frac{1}{e}} (\log \log x)}{2 \cdot (\log \log \log x)^{\frac{1}{2} + \log \log \log \log \log \log \log \log x} (\log \log \log \log x)^{\frac{5}{2} + \log \log \log \log x}}.$$

It is then clear from our prior computations of the growth of $A_{\Omega}^{(\ell)}(x)$ and $\hat{\tau}_0(x)$ that the asymptotically dominant behavior of the bound for $|G_{\ell}^{-1}(x)|$ cannot correspond to the integral term calculated in (34).

To make this observation precise, consider the following expansion for the leading term in the Abel summation formula from (31) for comparison with (34):

$$\left| \hat{L}_{0}(\log \log x) \hat{\tau}_{0}(\log x) A_{\Omega}^{(\ell)}(\log x) \right| \gg \frac{C_{\ell,1} \cdot (\log x) (\log \log x)^{2}}{(\log \log \log x)^{\frac{3}{2} + \log \log \log x} (\log \log \log \log x)^{\frac{5}{2} + \log \log \log \log x}}$$

$$\gg \frac{C_{\ell,1} \cdot (\log x) (\log \log x)^{4} \sqrt{\log \log \log x}}{(\log \log \log \log x)^{\frac{5}{2}}}.$$

$$(35)$$

We have used the same simplifications noted in the footnote annotated as above in arriving at the limiting lower bound given in the previous equation. \Box

9.2 Proof of the unboundedness of the scaled Mertens function along infinite subsequences

What we will have shown in total concluding the proof of Corollary 4.11 below is the classically conjectured unboundedness property of M(x) in the form of

$$\limsup_{x \to \infty} \frac{|M(x)|}{\sqrt{x}} = +\infty.$$

This statement comprises a better than previously known rate of the minimal asymptotic tendencies of $|M(x)|/\sqrt{x}$ towards unboundedness along an infinite subsequence. Note that this result is still a much weaker condition than the RH as stated. Moreover, we must again take time to emphasize that its construction is entirely much differently motivated through the encouraging combinatorial structures and additive functions we have observed in our new formulas.

Now we finally address the main conclusion of our arguments given so far:

Proof of Corollary 4.11. We break up the integral term in Proposition 9.1 over $t \in [u_0, x/2]$ into two pieces: one that is easily bounded from $u_0 \le t \le \sqrt{x}$, and then another that will conveniently give us our slow-growing tendency towards infinity along the subsequence when evaluated using Theorem 9.5.

We can apply Proposition 9.1 to see that for some $x_0 \in [\sqrt{x}, x)$ such that

$$|G^{-1}(x_0)| := \min_{\sqrt{x} \le t \le \frac{x}{2}} |G^{-1}(t)|,$$

we can bound

$$\frac{|M(x)|}{\sqrt{x}} = \frac{1}{\sqrt{x}} \left| G^{-1}(x) - x \cdot \int_{1}^{x/2} \frac{G^{-1}(t)}{t^{2} \cdot \log(x/t)} dt \right|$$

$$\gg \left| \sqrt{x} \times \int_{\sqrt{x}}^{x/2} \frac{G^{-1}(t)}{t^{2} \cdot \log(x/t)} dt \right|$$

$$\left| \int_{\sqrt{x_0}}^{x} \frac{2\sqrt{x_0}}{t^2 \cdot \log(x_0)} dt \right| \times \left(\min_{\sqrt{x_0} \leqslant t \leqslant x} |G^{-1}(t)| \right)
\Rightarrow \frac{2 \left| G^{-1}(x_0) \right|}{\log(x_0)}.$$
(36)

When we assume that $x \mapsto x_y$ is taken along the subsequence defined within the intervals defined above, we can transform the bound in the last equation into a statement about a lower bound for $|M(x)|/\sqrt{x}$ along an infinitely tending subsequence. For sufficiently large y, this subsequence is guaranteed to exist by our proof of Theorem 4.8 using the methods we have developed to establish it and the necessary hypotheses in Section 8.

In particular, the existence of this infinite subsequence shows that there is some x_0 for each large enough $x \to \infty$ such that $|G^{-1}(x_0)| \gg |G_E^{-1}(x_0)| \gg |G_\ell^{-1}(x_0)|$ where $x_0 \to \infty$ as $x \to \infty$. So

$$\frac{|M(x)|}{\sqrt{x}} \gg \frac{2 |G_{\ell}^{-1}(x_0)|}{\log(x_0)}
= \frac{2C_{\ell,1} \cdot (\log\log x_0)^4 \sqrt{\log\log\log x_0}}{(\log\log\log\log x_0)^{\frac{5}{2}}}.$$
(37)

We want this sequence $\{x_y\}_{y\geqslant Y_0}$ for Y_0 sufficiently large to correspond to $x_y\equiv x_0$ for x_0 as in (36) above. This means that for $x\equiv x_{0,n}$, we require that both $x_0\in [\sqrt{x},x)$ and $x_0\in [(B-\varepsilon_0)x,(C+\varepsilon_0)x]$ with $\varepsilon_0:=\frac{1}{2}\min(B,1-C)$ for $B,C\in(0,1)$ as in the hypotheses of Theorem 4.8. Then we can take any x satisfying

$$\frac{\sqrt{x}}{(B-\varepsilon_0)} \leqslant x < \frac{x}{(C+\varepsilon_0)},$$

which can be seen to hold for x sufficiently large. Moreover, we have $x_0 \geqslant \frac{\sqrt{x}}{(B-\varepsilon_0)}$, so that if we take $x \mapsto x_{0,n}$ with $x_{0,n} := \exp\left(2e^{e^{2n}}\right)$, we recover from (37) that

$$\frac{|M(x_{0,n})|}{\sqrt{x_{0,n}}} \gg \frac{2C_{\ell,1} \cdot (\log\log\sqrt{x_{0,n}})^4 \sqrt{\log\log\log\sqrt{x_{0,n}}}}{(\log\log\log\log\sqrt{x_{0,n}})^{\frac{5}{2}}} \xrightarrow{n \to \infty} +\infty, \tag{38}$$

along this infinitely tending subsequence. Thus the scaled Mertens function is unbounded in the limit supremum sense, as we have claimed. \Box

References

- [1] T. M. Apostol. Introduction to Analytic Number Theory. Springer-Verlag, 1976.
- [2] P. Erdös. On the integers having exactly k prime factors. Annals of Mathematics, 40(1):53-66, 1946.
- [3] P. Flajolet and R. Sedgewick. *Analytic Combinatorics*. Cambridge University Press, 2009 (Third printing 2010).
- [4] J. Friendlander and H. Iwaniec. Opera de Cribero. American Mathematical Society, 2010.
- [5] R. L. Graham, D. E. Knuth, and O. Patashnik. *Concrete Mathematics: A Foundation for Computer Science*. Addison-Wesley, 1994.
- [6] G. H. Hardy and E. M. Wright, editors. An Introduction to the Theory of Numbers. Oxford University Press, 2008 (Sixth Edition).
- [7] G. Hurst. Computations of the Mertens function and improved bounds on the Mertens conjecture. https://arxiv.org/pdf/1610.08551/, 2017.
- [8] H. Iwaniec and E. Kowalski. Analytic Number Theory, volume 53. AMS Colloquium Publications, 2004.
- [9] T. Kotnik and H. té Riele. The Mertens conjecture revisited. Algorithmic Number Theory, 7th International Symposium, 2006.
- [10] T. Kotnik and J. van de Lune. On the order of the Mertens function. Exp. Math., 2004.
- [11] H. L. Montgomery and R. C. Vaughan. *Multiplicative Number Theory: I. Classical Theory*. Cambridge, 2006.
- [12] N. Ng. The distribution of the summatory function of the Móbius function. *Proc. London Math. Soc.*, 89(3):361–389, 2004.
- [13] A. M. Odlyzko and H. J. J. té Riele. Disproof of the Mertens conjecture. *J. REINE ANGEW. MATH*, 1985.
- [14] Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark, editors. *NIST Handbook of Mathematical Functions*. Cambridge University Press, 2010.
- [15] P. Ribenboim. The new book of prime number records. Springer, 1996.
- [16] J. Sándor and B. Crstici. Handbook of Number Theory II. Kluwer Academic Publishers, 2004.
- [17] N. J. A. Sloane. The Online Encyclopedia of Integer Sequences, 2020.
- [18] K. Soundararajan. Partial sums of the Möbius function. Annals of Mathematics, 2009.
- [19] E. C. Titchmarsh. The theory of the Riemann zeta function. Clarendon Press, 1951.

T.1 Table: The Dirichlet inverse function $g^{-1}(n)$ and its summatory function

1			1					1		F G (1)	1			
	. .				ā		-1,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , =1, ,	$\sum\limits_{d n} {C_{\Omega(d)}(d)}$		a=1()	~=1.	~=1
n	Primes		Sqfree	PPower	Ŝ		$g^{-1}(n)$	$\lambda(n)\operatorname{sgn}(g^{-1}(n))$	$\lambda(n)g^{-1}(n) - \hat{f}_1(n)$	$ g^{-1}(n) $		$G^{-1}(n)$	$G_{+}^{-1}(n)$	
1	1^1	-	Y	N	N	_	1	1	0	1.0000000	_	1	1	0
2	2^1	-	Y	Y	N	-	-2	1	0	1.0000000	-	-1	1	-2
3	3^1	-	Y	Y	N	-	-2	1	0	1.0000000	-	-3	1	-4
4	2^2	-	N	Y	N	_	2	1	0	1.5000000	_	-1	3	-4
5	5^1	-	Y	Y	N	_	-2	1	0	1.0000000	-	-3	3	-6
6	$2^{1}3^{1}$	-	Y	N	N	_	5	1	0	1.0000000	-	2	8	-6
7	7^1	-	Y	Y	N	_	-2	1	0	1.0000000	-	0	8	-8
8	2^{3}	-	N	Y	N	_	-2	1	0	2.0000000	-	-2	8	-10
9	3^2	-	N	Y	N	_	2	1	0	1.5000000	-	0	10	-10
10	$2^{1}5^{1}$	-	Y	N	N	_	5	1	0	1.0000000	-	5	15	-10
11	11^{1}	-	Y	Y	N	_	-2	1	0	1.0000000	-	3	15	-12
12	$2^{2}3^{1}$	-	N	N	Y	_	-7	1	2	1.2857143	-	-4	15	-19
13	13^{1}	-	Y	Y	N	_	-2	1	0	1.0000000	-	-6	15	-21
14	$2^{1}7^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	-1	20	-21
15	$3^{1}5^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	4	25	-21
16	2^{4}	_	N	Y	N	_	2	1	0	2.5000000	_	6	27	-21
17	17^1	_	Y	Y	N	_	-2	1	0	1.0000000	-	4	27	-23
18	$2^{1}3^{2}$	_	N	N	Y	_	-7	1	2	1.2857143	_	-3	27	-30
19	19^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	-5	27	-32
20	$2^{2}5^{1}$	_	N	N	Y	_	-7	1	2	1.2857143	_	-12	27	-39
21	$3^{1}7^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-7	32	-39
22	$2^{1}11^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-2	37	-39
23	23^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	-4	37	-41
24	$2^{3}3^{1}$	_	N	N	Y	_	9	1	4	1.5555556	_	5	46	-41
25	5^2	_	N	Y	N	_	2	1	0	1.5000000	_	7	48	-41
26	$2^{1}13^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	12	53	-41
27	33	_	N	Y	N	_	-2	1	0	2.0000000	_	10	53	-43
28	$2^{2}7^{1}$	_	N	N	Y	_	-7	1	2	1.2857143	_	3	53	-50
29	29^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	1	53	-52
30	$2^{1}3^{1}5^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	_	-15	53	-68
31	31^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	-17	53	-70
32	2^{5}	_	N	Y	N	_	-2	1	0	3.0000000	_	-19	53	-72
33	$3^{1}11^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-14	58	-72
34	$2^{1}17^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-9	63	-72
35	$5^{1}7^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-4	68	-72
36	$2^{2}3^{2}$	_	N	N	Y	_	14	1	9	1.3571429	_	10	82	-72
37	37^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	8	82	-74
38	$2^{1}19^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	13	87	-74
39	$3^{1}13^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	18	92	-74 -74
40	$2^{3}5^{1}$	_	N	N	Y	_	9	1	4	1.5555556	_	27	101	-74 -74
41	41^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	25	101	-74 -76
42	$2^{1}3^{1}7^{1}$	l _	Y	N	N	_	-16	1	0	1.0000000	_	9	101	-92
43	43 ¹	_	Y	Y	N	_	-2	1	0	1.0000000	_	7	101	-94
44	$2^{2}11^{1}$	_	N	N	Y	_	-2 -7	1	2	1.2857143	_	0	101	-101
45	$3^{2}5^{1}$	_	N	N	Y	_	-7	1	2	1.2857143		-7	101	-101 -108
46	$2^{1}23^{1}$	_	Y	N	N	_	5	1	0	1.0000000		-7 -2	106	-108 -108
47	47^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	-2 -4	106	-108 -110
48	$2^{4}3^{1}$	_	N N	N N	Y	_	-2 -11	1	6	1.8181818	_	-4 -15	106	-110 -121
1 40	۵ ۵	ı _	1	τ.ν.	1	1 _	-11	1	U	1.0101010	I	1 -10	100	-121

Table T.1: Computations of $g^{-1}(n) \equiv (\omega + 1)^{-1}(n)$ and related functions for $1 \le n \le 500$.

The column labeled Primes provides the prime factorization of each n so that the values of $\omega(n)$ and $\Omega(n)$ are easily extracted. The columns labeled, respectively, Sqfree, PPower and $\bar{\mathbb{S}}$ list inclusion of n in the sets of squarefree integers, prime powers, and the set $\bar{\mathbb{S}}$ that denotes the positive integers n which are neither squarefree nor prime powers.

The next two columns provide the explicit values of the inverse function $g^{-1}(n)$ and indicate that the sign of this function at n is given by $\lambda(n)$.

The next column shows the small order magnitude differences between the unsigned magnitude of $g^{-1}(n)$ and the summations $\hat{f}_1(n) := \sum_{k \geqslant 0} {\omega(n) \choose k} \cdot k!$. The following column in order shows the ratio of $\sum_{d|n} C_{\Omega(d)}(d)/|g^{-1}(n)|$ approximated numerically.

The last three columns show the summatory function of $g^{-1}(n)$, $G^{-1}(x) := \sum_{n \leq x} g^{-1}(n)$, decomposed into its respective positive and negative summatory function components: $G^{-1}(x) = G_+^{-1}(x) + G_-^{-1}(x)$ where $G_+^{-1}(x) > 0$ and $G_-^{-1}(x) < 0$.

Г			<u> </u>			1	1			Σ C(d)	ı	1		
n	Primes		Sqfree	PPower	Ī		$g^{-1}(n)$	$\lambda(n)\operatorname{sgn}(g^{-1}(n))$	$\lambda(n)g^{-1}(n) - \hat{f}_1(n)$	$\frac{\sum\limits_{d\mid n} C_{\Omega(d)}(d)}{\sum\limits_{d\mid n} -1}$		$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
49	7^{2}	_	N	Y	N	-	2	1	0	$ g^{-1}(n) $ 1.5000000	_	-13	108	-121
50	$2^{1}5^{2}$	_	N	N	Y	_	-7	1	2	1.2857143	_	-20	108	-128
51	$3^{1}17^{1}$	-	Y	N	N	-	5	1	0	1.0000000	-	-15	113	-128
52	$2^{2}13^{1}$	-	N	N	Y	-	-7	1	2	1.2857143	-	-22	113	-135
53	53 ¹	-	Y	Y	N	-	-2	1	0	1.0000000	-	-24	113	-137
54	$2^{1}3^{3}$ $5^{1}11^{1}$	-	N	N	Y	-	9	1	4	1.5555556	-	-15	122	-137
55	$2^{3}7^{1}$	_	Y N	N N	N Y	_	5 9	1 1	0 4	1.0000000 1.555556	-	-10 -1	127 136	-137 -137
56 57	$3^{1}19^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	4	141	-137 -137
58	$2^{1}29^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	9	146	-137
59	59 ¹	_	Y	Y	N	_	-2	1	0	1.0000000	_	7	146	-139
60	$2^23^15^1$	_	N	N	Y	_	30	1	14	1.1666667	_	37	176	-139
61	61^{1}	-	Y	Y	N	-	-2	1	0	1.0000000	-	35	176	-141
62	$2^{1}31^{1}$	-	Y	N	N	-	5	1	0	1.0000000	-	40	181	-141
63	$3^{2}7^{1}$ 2^{6}	-	N	N	Y	-	-7	1	2	1.2857143	-	33	181	-148
64 65	$5^{1}13^{1}$	_	N Y	Y N	N N	_	2 5	1 1	0	3.5000000 1.0000000	_	35 40	183 188	-148 -148
66	$2^{1}3^{1}11^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	_	24	188	-148 -164
67	67^{1}	_	Y	Y	N	_	-10 -2	1	0	1.0000000	_	22	188	-166
68	$2^{2}17^{1}$	_	N	N	Y	_	-7	1	2	1.2857143	_	15	188	-173
69	3^123^1	_	Y	N	N	-	5	1	0	1.0000000	_	20	193	-173
70	$2^{1}5^{1}7^{1}$	-	Y	N	N	-	-16	1	0	1.0000000	_	4	193	-189
71	71^{1}	-	Y	Y	N	-	-2	1	0	1.0000000	-	2	193	-191
72	$2^{3}3^{2}$	-	N	N	Y	-	-23	1	18	1.4782609	-	-21	193	-214
73	73^{1}	-	Y	Y	N	-	-2	1	0	1.0000000	_	-23	193	-216
74 75	$2^{1}37^{1}$ $3^{1}5^{2}$	- _	Y N	N N	N Y	_	5 -7	1 1	$0 \\ 2$	1.0000000 1.2857143	_	-18 -25	198 198	-216 -223
76	$2^{2}19^{1}$	_	N	N	Y	_	-7	1	2	1.2857143	_	-25 -32	198	-223 -230
77	$7^{1}11^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-27	203	-230
78	$2^{1}3^{1}13^{1}$	-	Y	N	N	_	-16	1	0	1.0000000	_	-43	203	-246
79	79^{1}	-	Y	Y	N	-	-2	1	0	1.0000000	_	-45	203	-248
80	$2^{4}5^{1}$	-	N	N	Y	-	-11	1	6	1.8181818	-	-56	203	-259
81	3^4	-	N	Y	N	-	2	1	0	2.5000000	-	-54	205	-259
82	$2^{1}41^{1}$	-	Y	N	N	-	5	1	0	1.0000000	-	-49	210	-259
83 84	83^{1} $2^{2}3^{1}7^{1}$	_	Y N	Y N	N Y	_	$-2 \\ 30$	1 1	0	1.0000000	_	-51 -21	$\frac{210}{240}$	-261 -261
85	$5^{1}17^{1}$	_	Y	N	N	_	5	1	14 0	1.1666667 1.0000000	_	-21 -16	245	-261 -261
86	$2^{1}43^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-11	250	-261
87	$3^{1}29^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-6	255	-261
88	2^311^1	_	N	N	Y	_	9	1	4	1.5555556	_	3	264	-261
89	89^{1}	-	Y	Y	N	-	-2	1	0	1.0000000	-	1	264	-263
90	$2^{1}3^{2}5^{1}$	-	N	N	Y	-	30	1	14	1.1666667	-	31	294	-263
91	$7^{1}13^{1}$	-	Y	N	N	-	5_	1	0	1.0000000	_	36	299	-263
92	$2^{2}23^{1}$ $3^{1}31^{1}$	_	N Y	N N	Y N	_	-7 5	1 1	2	1.2857143 1.0000000	_	29 34	299 304	$-270 \\ -270$
94	$2^{1}47^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	39	304	-270 -270
95	$5^{1}19^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	44	314	-270
96	$2^{5}3^{1}$	_	N	N	Y	_	13	1	8	2.0769231	_	57	327	-270
97	97^{1}	_	Y	Y	N	-	-2	1	0	1.0000000	_	55	327	-272
98	$2^{1}7^{2}$	-	N	N	Y	-	-7	1	2	1.2857143	_	48	327	-279
99	$3^{2}11^{1}$	-	N	N	Y	-	-7	1	2	1.2857143	-	41	327	-286
100	$2^{2}5^{2}$	-	N	N	Y	-	14	1	9	1.3571429	-	55	341	-286
101	101^{1} $2^{1}3^{1}17^{1}$	_	Y Y	Y N	N N	_	-2 -16	1 1	0	1.0000000 1.0000000	_	53 37	341 341	$-288 \\ -304$
102	103^{1}	_	Y	Y	N	_	-16 -2	1	0	1.0000000	_	35	341	-304 -306
103	$2^{3}13^{1}$	_	N	N	Y	_	9	1	4	1.5555556	_	44	350	-306 -306
105	$3^{1}5^{1}7^{1}$	-	Y	N	N	-	-16	1	0	1.0000000	_	28	350	-322
106	2^153^1	-	Y	N	N	-	5	1	0	1.0000000	-	33	355	-322
107	107^{1}	-	Y	Y	N	-	-2	1	0	1.0000000	-	31	355	-324
108	$2^{2}3^{3}$	-	N	N	Y	-	-23	1	18	1.4782609	-	8	355	-347
109	109 ¹	-	Y	Y	N	-	-2	1	0	1.0000000	-	6	355	-349
110	$2^{1}5^{1}11^{1}$ $3^{1}37^{1}$	-	Y Y	N N	N N	-	-16	1 1	0	1.0000000 1.0000000	-	-10 5	355	-365 -365
111	$2^{4}7^{1}$	_	Y N	N N	N Y	_	5 -11	1	6	1.8181818	_	-5 -16	360 360	-365 -376
113	113 ¹	_	Y	Y	N	_	-11 -2	1	0	1.0000000	_	-18	360	-378
114	$2^{1}3^{1}19^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	_	-34	360	-394
115	$5^{1}23^{1}$	-	Y	N	N	-	5	1	0	1.0000000	_	-29	365	-394
116	$2^{2}29^{1}$	-	N	N	Y	-	-7	1	2	1.2857143	_	-36	365	-401
117	$3^{2}13^{1}$	-	N	N	Y	-	-7	1	2	1.2857143	_	-43	365	-408
118	$2^{1}59^{1}$	-	Y	N	N	-	5	1	0	1.0000000	_	-38	370	-408
119	$7^{1}17^{1}$	-	Y	N	N	-	5	1	0	1.0000000	-	-33	375	-408
120	$2^{3}3^{1}5^{1}$ 11^{2}	-	N N	N	Y N	-	-48	1	32	1.3333333	_	-81 70	375	-456
121 122	$2^{1}61^{1}$	_	N Y	Y N	N N	_	2 5	1 1	0	1.5000000 1.0000000	_	-79 -74	377 382	$-456 \\ -456$
123	$3^{1}41^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-74 -69	387	-456
123	$2^{2}31^{1}$	_	N	N	Y	_	-7	1	2	1.2857143	_	-76	387	-463
L		1	1			1		· -	-		1			

No. Polithon Po	ı		1	1			1				$\nabla C_{\alpha + n}(d)$	i	1		
120	$ $ $ $ $ $ $ $ $ $ $ $ $ $	Primes		Sqfree	PPower	Ē		$g^{-1}(n)$	$\lambda(n)\operatorname{sgn}(g^{-1}(n))$	$\lambda(n)g^{-1}(n) - \hat{f}_1(n)$	$\frac{\sum\limits_{d\mid n} C_{\Omega(d)}(d)}{\sum\limits_{d\mid n} C_{\Omega(d)}(d)}$		$G^{-1}(n)$	$G_{\perp}^{-1}(n)$	$G_{-}^{-1}(n)$
1972 1974 1975	125	5^{3}	_	N	Y	N	-					_			
132		$2^{1}3^{2}7^{1}$	_							14		_			
190 2-1-1-1-1	127		-	Y	Y	N	-	-2	1	0	1.0000000		-50	417	-467
150 216 143 147 1			l				1	l					1		
131															
1312 27 27 1								l					1		
$ \begin{vmatrix} 130 & 2^{2} + 2^{4} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -30 & 457 & -487 \\ 130 & 2^{3} + 3^{3} & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & -16 & 471 & -487 \\ 130 & 2^{3} + 2^{4} & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & -16 & 471 & -487 \\ 130 & 2^{3} + 2^{4} & - & N & N & Y & - & 9 & 1 & 4 & 1.555556 & - & -16 & 471 & -487 \\ 130 & 2^{3} + 2^{4} & - & N & N & Y & - & 9 & 1 & 4 & 1.555556 & - & -16 & 471 & -487 \\ 130 & 12^{3} + 2^{4} & - & N & N & Y & - & 2 & 1 & 0 & 1.000000 & - & 25 & 480 & -487 \\ 130 & 12^{3} + 2^{4} & - & N & N & Y & - & 2 & 1 & 0 & 1.000000 & - & 25 & 480 & -507 \\ 140 & 2^{2} + 2^{4} & - & Y & N & N & - & 0 & 1 & 0 & 1.000000 & - & 3 & 50 & -507 \\ 141 & 3^{4} + 2^{4} & - & Y & N & N & - & 0 & 1 & 0 & 1.000000 & - & 3 & 50 & -507 \\ 141 & 3^{4} + 2^{4} & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 13 & 520 & -507 \\ 141 & 3^{4} + 2^{4} & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 13 & 520 & -507 \\ 142 & 2^{3} + 1^{2} & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 13 & 520 & -507 \\ 143 & 3^{2} + 2^{4} & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 57 & 504 & -507 \\ 144 & 2^{4} + 2^{4} & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 57 & 504 & -507 \\ 145 & 3^{2} + 2^{4} & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 57 & 504 & -507 \\ 145 & 3^{2} + 2^{4} & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 57 & 504 & -507 \\ 147 & 3^{3} + 7^{2} & - & N & N & Y & - & -7 & 1 & 2 & 1.257143 & - & 55 & -509 & -507 \\ 147 & 3^{3} + 7^{2} & - & N & N & Y & - & -7 & 1 & 2 & 1.257143 & - & 55 & -509 & -507 \\ 148 & 3^{2} + 2^{4} & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 57 & 504 & -507 \\ 148 & 3^{2} + 2^{4} & - & N & N & Y & - & -7 & 1 & 2 & 1.257143 & - & 55 & -509 & -507 \\ 147 & 3^{3} + 7^{2} & - & N & N & Y & - & -7 & 1 & 2 & 1.257143 & - & 55 & -509 & -507 \\ 147 & 3^{3} + 7^{2} & - & N & N & Y & - & -7 & 1 & 2 & 1.257143 & - & 55 & -509 & -507 \\ 148 & 3^{2} + 2^{4} + 2^{4} & - & N & N & Y & - & -7 & 1 & 2 & 1.257143 & - & 55 & -509 & -507 \\ 148 & 2^{2} + $								l							
$ \begin{vmatrix} 334 & 3^2 & 9^2 & - & V & N & N & V & - & 9 & 1 & 4 & 1.5555556 & - & -1.6 & 471 & -447 \\ 316 & 2^2 & 17^2 & - & N & N & V & - & 9 & 1 & 4 & 1.5555556 & - & -7. & 440 & -487 \\ 318 & 2^2 & 17^2 & - & V & N & N & - & -2 & 1 & 0 & 1.0000000 & - & - & -0.5 & 480 & -488 \\ 318 & 2^2 & 17^2 & - & V & N & N & - & -2 & 1 & 0 & 1.0000000 & - & - & -2.5 & 480 & -488 \\ 318 & 2^2 & 2^2 & - & N & N & V & - & -2 & 1 & 0 & 1.0000000 & - & - & -2.5 & 480 & -488 \\ 318 & 2^2 & 2^2 & - & N & N & V & - & -30 & 1 & 1 & 1.0000000 & - & - & -2.5 & 480 & -488 \\ 319 & 2^2 & 1^2 & - & N & N & N & - & -30 & 1 & 1 & 1.0000000 & - & - & -2.5 & 480 & -888 \\ 319 & 2^2 & 1^2 & - & V & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 8 & 515 & -507 \\ 314 & 3^2 & 1^2 & - & V & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 8 & 515 & -507 \\ 314 & 2^2 & 1^2 & - & V & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 8 & 515 & -507 \\ 314 & 2^2 & 1^2 & - & V & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 1.8 & 523 & -507 \\ 443 & 11^2 & 3^2 & - & N & N & V & - & 34 & 1 & 20 & 1.41111 & - & 2.5 & -508 & -507 \\ 444 & 2^2 & 3^3 & - & N & N & V & - & 34 & 1 & 20 & 1.41111 & - & 2.5 & -508 & -507 \\ 314 & 3^2 & - & N & N & V & - & -7 & 1 & 2 & 1.287143 & - & 5.5 & 569 & -514 \\ 316 & 340^2 & - & N & N & V & - & -7 & 1 & 2 & 1.287143 & - & 5.5 & 569 & -514 \\ 318 & 340^2 & - & N & N & V & - & -7 & 1 & 2 & 1.287143 & - & 5.5 & 569 & -514 \\ 319 & 340^2 & - & N & N & V & - & -7 & 1 & 2 & 1.287143 & - & 5.5 & 569 & -514 \\ 319 & 340^2 & - & N & N & V & - & -7 & 1 & 2 & 1.287143 & - & 5.5 & 569 & -514 \\ 319 & 340^2 & - & N & N & V & - & -7 & 1 & 2 & 1.287143 & - & 5.5 & 569 & -512 \\ 310 & 32^3 + 1 & N & N & N & N & - & -2 & 1 & 0 & 1.0000000 & - & 6.5 & 613 & -548 \\ 310 & 340^2 & - & N & N & N & - & -2 & 1 & 0 & 1.0000000 & - & 6.5 & 613 & -548 \\ 310 & 340^2 & - & N & N & N & - & -2 & 1 & 0 & 1.0000000 & - & 6.5 & 613 & -548 \\ 310 & 340^2 & - & N & N & N & - & -7 & 1 & 2 & 1.287143 & - & 5.5 & 69 & -523 \\ 310 & 32^3 + 1 & N & N & N & - & -7 & 1 & 2 & 1.287143 & - & 5.5 & 69 & -523 \\ 310 & 2$															
$ \begin{vmatrix} 33 & 2^{3} r^{3} & - & N & N & V & - & 9 & 1 & 4 & 1.555555 & - & - & -7 & 480 & -887 \\ 138 & 2^{3} r^{3} & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -25 & 480 & -888 \\ 138 & 2^{3} r^{3} & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -25 & 480 & -505 \\ 139 & 2^{3} r^{3} & - & Y & N & N & - & -2 & 1 & 0 & 1.0000000 & - & -25 & 480 & -505 \\ 140 & 13^{3} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -25 & 480 & -505 \\ 141 & 2^{3} r^{2} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 18 & 515 & -0.07 \\ 141 & 11^{3} r^{3} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 18 & 515 & -0.07 \\ 141 & 11^{3} r^{3} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 18 & 525 & -0.07 \\ 141 & 11^{3} r^{3} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 18 & 525 & -0.07 \\ 141 & 11^{3} r^{3} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 18 & 525 & -0.07 \\ 141 & 11^{3} r^{3} & - & Y & N & N & - & 6 & 1 & 0 & 1.0000000 & - & 18 & 525 & -0.07 \\ 141 & 11^{3} r^{3} & - & Y & N & N & - & 6 & 1 & 0 & 1.0000000 & - & 77 & 564 & -0.07 \\ 142 & 2^{3} r^{3} & - & Y & N & N & - & 6 & 1 & 0 & 1.0000000 & - & 77 & 564 & -0.07 \\ 143 & 12^{3} r^{3} & - & Y & N & N & - & 6 & 1 & 0 & 1.0000000 & - & 77 & 564 & -0.07 \\ 144 & 2^{3} r^{3} & - & N & N & V & - & -7 & 1 & 2 & 1.0000000 & - & 77 & 564 & -0.07 \\ 144 & 2^{3} r^{3} & - & N & N & V & - & -7 & 1 & 2 & 1.2000000 & - & 77 & 564 & -0.07 \\ 144 & 2^{3} r^{3} & - & N & N & V & - & -7 & 1 & 2 & 1.2000000 & - & 77 & 564 & -0.07 \\ 144 & 11^{4} r^{3} & - & Y & N & N & V & - & -7 & 1 & 2 & 1.2000000 & - & 77 & 564 & -0.07 \\ 145 & 2^{3} r^{3} r^{3} & - & N & N & V & - & -7 & 1 & 2 & 1.2000000 & - & 77 & 564 & -0.07 \\ 146 & 2^{3} r^{3} r^{3} & - & N & N & V & - & -7 & 1 & 2 & 1.2000000 & - & 77 & 564 & -0.07 \\ 146 & 2^{3} r^{3} r^{3} & - & N & N & V & - & -7 & 1 & 2 & 1.2000000 & - & 77 & 564 & -0.07 \\ 147 & 12^{3} r^{3} r^{3} & - & N & N & V & - & -7 & 1 & 2 & 1.2000000 & - & 77 & 564 & -0.07 \\ 148 & 12^{3} r^{3} r^{3} & - & N & N & V & - & -7 & 1 & 2 & 1.2000000 & - & 77 & $			_				_	l							
$ \begin{vmatrix} 137 & 137^2 \\ 138 & 2^4 & 2^4 \\ 1 & 1 & 1 \\ 138 & 2^4 & 2^4 \\ 1 & 1 & 1 \\ 138 & 2^4 & 2^4 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$	135		-	N	N	Y	-	9	1	4	1.5555556	_	-16	471	-487
$ \begin{vmatrix} 138 & 29^{\frac{1}{2}} & 39^{\frac{1}{2}} \\ 139 & 139^{\frac{1}{2}} & 19^{\frac{1}{2}} \\ 139 & 139^{\frac{1}{2}} & 19^{\frac{1}{2}} \\ 139 & 139^{\frac{1}{2}} & 19^{\frac{1}{2}} \\ 141 & 3^{\frac{1}{2}} & 1 & 19^{\frac{1}{2}} \\ 141 & 3^{\frac{1}{2}} & 1 & 19^{\frac{1}{2}} \\ 141 & 3^{\frac{1}{2}} & 1 & 19^{\frac{1}{2}} \\ 142 & 2^{\frac{1}{2}} & 1 & 19^{\frac{1}{2}} \\ 143 & 3^{\frac{1}{2}} & 1 & 19^{\frac{1}{2}} \\ 144 & 2^{\frac{1}{2}} & 1 & 19^{\frac{1}{2}} \\ 145 & 2^{\frac{1}{2}} & 1 & 19^{\frac{1}{2}} \\ 146 & 2^{\frac{1}{2}} & 19^{\frac{1}{2}} \\ 147 & 19^{\frac{1}{2}} & 19^{\frac{1}{2}} \\ 148 & 2^{\frac{1}{2}} & 19^{\frac{1}{2}} \\ 149 & 19^{\frac{1}{2}} \\ 149 & 19^{\frac{1}{2}} & 19^$			-				-	l				-		480	
139															
$ \begin{vmatrix} 140 & 2^2+7^2 \\ 141 & 3^4+7^4 \\ 141 & 3^4+7^4 \end{vmatrix} = \begin{vmatrix} N & N & N \\ N$							1	l							
$ \begin{vmatrix} 141 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & $			l				1						1		
$ \begin{vmatrix} 140 & 2^{1}71^{1} & - & Y & N & N & - & 5 \\ 144 & 11^{1}3^{1} & - & Y & N & N & - & 5 \\ 144 & 12^{1}3^{2} & - & N & N & Y & - & 34 \\ 146 & 12^{1}3^{2} & - & Y & N & N & - & 5 \\ 146 & 12^{1}3^{2} & - & Y & N & N & - & 5 \\ 146 & 12^{1}3^{2} & - & Y & N & N & - & 5 \\ 146 & 12^{1}3^{2} & - & Y & N & N & - & 5 \\ 146 & 12^{1}3^{2} & - & Y & N & N & - & 5 \\ 146 & 12^{1}3^{2} & - & Y & N & N & - & 5 \\ 146 & 12^{1}3^{2} & - & Y & N & N & - & 5 \\ 147 & 3^{1}7^{2} & - & N & N & Y & - & -7 \\ 149 & 12^{1}3^{2} & - & N & N & Y & - & -7 \\ 140 & 2^{1}73^{3} & - & N & N & Y & - & -7 \\ 140 & 2^{1}73^{3} & - & N & N & Y & - & -7 \\ 140 & 2^{1}13^{3} & - & Y & N & N & - & -7 \\ 140 & 2^{1}13^{3} & - & Y & N & N & - & -7 \\ 140 & 2^{1}13^{3} & - & Y & Y & N & - & -2 \\ 140 & 2^{1}13^{3} & - & Y & Y & N & - & -2 \\ 151 & 151^{1} & - & Y & Y & N & - & -2 \\ 152 & 2^{1}1^{3} & - & N & N & Y & - & -7 \\ 152 & 2^{1}1^{3} & - & N & N & Y & - & -7 \\ 153 & 3^{1}71^{1} & - & N & N & Y & - & -7 \\ 154 & 2^{1}7^{3} & - & N & N & Y & - & -7 \\ 155 & 5^{1}1^{3} & - & Y & N & N & - & -5 \\ 150 & 2^{1}3^{3}1^{3} & - & N & N & Y & - & -7 \\ 150 & 2^{1}3^{3}1^{3} & - & N & N & Y & - & -7 \\ 150 & 2^{1}3^{3}1^{3} & - & N & N & Y & - & -7 \\ 150 & 2^{1}3^{3}1^{3} & - & N & N & Y & - & -7 \\ 150 & 2^{1}3^{3}1^{3} & - & N & N & Y & - & -7 \\ 150 & 2^{1}3^{3}1^{3} & - & Y & N & N & - & 5 \\ 150 & 2^{1}3^{3}1^{3} & - & Y & N & N & - & 5 \\ 150 & 2^{1}3^{3}1^{3} & - & Y & N & N & - & 5 \\ 150 & 2^{1}3^{3}1^{3} & - & Y & N & N & - & 5 \\ 150 & 2^{1}3^{3}1^{3} & - & Y & N & N & - & 5 \\ 150 & 2^{1}3^{3}1^{3} & - & Y & N & N & - & 5 \\ 150 & 2^{1}3^{3}1^{3} & - & N & N & Y & - & -1 \\ 150 & 2^{1}3^{3}1^{3} & - & N & N & Y & - & -1 \\ 150 & 2^{1}3^{3}1^{3} & - & N & N & Y & - & -1 \\ 150 & 2^{1}3^{3}1^{3} & - & N & N & Y & - & -1 \\ 150 & 3^{1}3^{3}1^{3} & - & N & N & Y & - & -1 \\ 150 & 3^{1}3^{3}1^{3} & - & N & N & Y & - & -1 \\ 150 & 3^{1}3^{3}1^{3} & - & N & N & Y & - & -1 \\ 150 & 3^{1}3^{3}1^{3} & - & N & N & Y & - & -1 \\ 150 & 3^{1}3^{3}1^{3} & - & N & N & Y & - & -1 \\ 150 &$													1		
$ \begin{vmatrix} 144 & 2^49^2 & - & N & N & Y & - & 34 \\ 146 & 5^429^1 & - & Y & N & N & - & 5 \\ 146 & 2^473^1 & - & Y & N & N & - & 5 \\ 146 & 2^473^1 & - & Y & N & N & - & 5 \\ 146 & 2^473^1 & - & Y & N & N & - & 5 \\ 146 & 2^473^1 & - & N & N & Y & - & -7 \\ 147 & 3^47^2 & - & N & N & Y & - & -7 \\ 148 & 2^437^3 & - & N & N & Y & - & -7 \\ 149 & 140 & 140 & - & Y & N & N & Y & - & -7 \\ 150 & 2^437^3 & - & N & N & Y & - & -7 \\ 150 & 2^437^3 & - & N & N & Y & - & -7 \\ 150 & 2^437^3 & - & N & N & Y & - & -2 \\ 150 & 2^437^3 & - & N & N & Y & - & -2 \\ 150 & 2^437^3 & - & N & N & Y & - & -2 \\ 150 & 2^437^3 & - & N & N & Y & - & -2 \\ 150 & 2^437^3 & - & N & N & Y & - & -7 \\ 151 & 2 & 11.35.55.66 & - & 56.66 \\ 150 & 2^437^3 & - & N & N & Y & - & -7 \\ 151 & 2 & 11.35.55.66 & - & 60.66 \\ 150 & 2^437^3 & - & N & N & Y & - & -7 \\ 150 & 2^237^3 & - & N & N & Y & - & -7 \\ 150 & 2^237^3 & - & N & N & Y & - & -7 \\ 150 & 2^237^3 & - & N & N & Y & - & -7 \\ 150 & 2^237^3 & - & N & N & Y & - & -7 \\ 150 & 2^237^3 & - & N & N & Y & - & -7 \\ 151 & 2 & 11.35.55.66 & - & 60.66 \\ 150 & 2^437^3 & - & N & N & Y & - & -7 \\ 150 & 2^237^3 & - & N & N & Y & - & -7 \\ 150 & 2^237^3 & - & N & N & Y & - & -2 \\ 151 & 157^2 & - & Y & Y & N & - & -5 \\ 151 & 157^2 & - & Y & Y & N & - & 5 \\ 150 & 2^437^3 & - & N & N & Y & - & -7 \\ 150 & 2^237^3 & - & N & N & Y & - & -7 \\ 150 & 2^237^3 & - & N & N & - & 5 \\ 150 & 2^437^3 & - & N & N & - & 5 \\ 150 & 3^511^1 & - & Y & N & N & - & 5 \\ 150 & 2^52^3 & - & N & N & - & 5 \\ 150 & 2^52^3 & - & N & N & - & 5 \\ 150 & 2^52^3 & - & N & N & - & 5 \\ 150 & 2^52^3 & - & N & N & - & 5 \\ 150 & 2^52^3 & - & N & N & - & 5 \\ 160 & 2^23^3 & - & N & N & - & 5 \\ 161 & 2^21^3 & - & N & N & - & 5 \\ 162 & 2^21^4 & - & N & N & - & 5 \\ 162 & 2^21^4 & - & N & N & - & -2 \\ 1 & 0 & 1.0000000 & - & 93 & 643 \\ 164 & 2^51^1 & - & N & N & - & -2 \\ 1 & 0 & 1.0000000 & - & 93 & 643 \\ 165 & 3^51^{11} & - & N & N & - & -7 \\ 1 & 2 & 1.285743 & - & 101 \\ 167 & 2^21^3 & - & N & N & - & -7 \\ 1 & 2 & 1.285743 & - & 101 \\ 167 & 2^21^3 & - & N & N & - & -7 \\ 17 & $							_	l				_	1		
$ \begin{vmatrix} 146 & 27^{31} \\ 146 & 27^{31} \\ 174 & 2 \\ 3^{1}7^{2} \\ 1 & N & N & V & -5 \\ N & N & V & -7 \\ 1 & 2 & 1.285743 \\ 148 & 2^{2}37^{1} \\ 180 & N & V & -7 \\ 1 & 2 & 1.285743 \\ 1 & 2 & 1.285743 \\ 1 & 2 & 1.285743 \\ 1 & 3 & 55 \\ 560 & -614 \\ 1 & 48 & 560 \\ -621 \\ 1 & 49^{1} \\ 2 & V & V & N & -2 \\ 2 & 1 & 0 & 1.000000 \\ -7 & 500 & -623 \\ 150 & 2^{1}3^{1}7^{2} \\ -8 & N & N & V & -7 \\ -7 & 500 & -223 \\ 151 & 10^{1} & V & V & N & -2 \\ 2 & 1 & 0 & 1.000000 \\ -7 & 500 & -623 \\ 151 & 10^{1} & V & V & N & -2 \\ 1 & 0 & 1.000000 \\ -7 & 500 & -623 \\ 151 & 10^{1} & V & V & N & -2 \\ 1 & 0 & 1.000000 \\ -7 & 500 & -623 \\ 151 & 10^{1} & V & V & N & -2 \\ 1 & 0 & 1.000000 \\ -7 & 500 & -623 \\ 152 & 10^{1} & V & V & N & -2 \\ 1 & 0 & 1.000000 \\ -7 & 500 & -623 \\ 153 & 3^{1}2^{1} & V & N & N & -7 \\ 1 & 0 & 1.000000 \\ -7 & 500 & -623 \\ 153 & 3^{1}2^{1} & V & N & N & -7 \\ 1 & 0 & 1.000000 \\ -7 & 500 & -623 \\ 154 & 2^{2}7^{1}1^{1} & V & N & N & -16 \\ 155 & 5^{1}3^{1} & V & N & N & -16 \\ 155 & 5^{1}3^{1} & V & N & N & -2 \\ 1 & 0 & 1.000000 \\ -7 & 0 & 0.08 & -632 \\ 155 & 10^{1} & V & N & N & -5 \\ 1 & 0 & 1.000000 \\ -7 & 0 & 0.08 & -632 \\ -7 & 0 & 0.08 & -632 \\ -7 & 0 & 0.08 & -632 \\ -7 & 0 & 0.08 & -632 \\ -7 & 0 & 0.08 & -632 \\ -7 & 0 & 0.08 & -632 \\ -7 & 0 & 0.08 & -632 \\ -7 & 0.08 & -632 \\ -7 & 0.00000 \\ -7 & 0.00000 \\ -7 & 0.00000 \\ -7 & 0.000000 \\ -7 & 0.00000 \\ -7 & 0.00000 \\ -7 & 0.0000000 \\ -7 & 0.0000000 \\ -7 & 0.0000000 \\ -7 & 0.0000000 \\ -7 & 0.0000000 \\ -7 & 0.0000000 \\ -7 & 0.00000000 \\ -7 & 0.0$	143		-	Y	N	N	-	5	1	0	1.0000000	_	18	525	-507
$ \begin{vmatrix} 146 & 2^{1}73^{2} & - & & & & & & & & & & & & & & & & & $			-				-					-	1		
$ \begin{vmatrix} 147 & 3^{\dagger}7^2 \\ 148 & 2^{\dagger}3^{\dagger}7^2 \\ - & N & N & Y \\ - & -7 \\ 149 & 194^{\dagger} \\ - & Y & Y & N \\ - & -2 \\ 150 & 194^{\dagger}5^{\dagger} \\ - & Y & Y & N \\ - & -2 \\ 151 & 0 & 1.000000 \\ - & -2 \\ 151 & 151^{\dagger} \\ - & Y & Y & N \\ - & -2 \\ - & 1 & 0 & 1.000000 \\ - & -7 \\ - & 76 & 509 \\ - & -523 \\ - & 83 & 608 \\ - & -525 \\ - & 83 & 608 \\ - & -525 \\ - & 83 & 608 \\ - & -525 \\ - & 83 & 608 \\ - & -525 \\ - & 83 & 608 \\ - & -525 \\ - & 83 & 608 \\ - & -525 \\ - & 83 & 608 \\ - & -525 \\ - & 90 & -523 \\ - & 83 & 608 \\ - & -525 \\ - & 90 & -523 \\ - & 83 & 608 \\ - & -525 \\ - & 90 & -523 \\ - & 83 & 608 \\ - & -525 \\ - & 90 & -523 \\ - & 83 & 608 \\ - & -525 \\ - & 90 & -523 \\ - & 83 & 608 \\ - & -525 \\ - & 90 & -523 \\ - & 83 & 608 \\ - & -525 \\ - & 90 & -523 \\ - & 83 & 608 \\ - & -525 \\ - & 90 & -523 \\ - & 83 & 608 \\ - & -525 \\ - & 90 & -523 \\ - & 83 & 608 \\ - & -525 \\ - & 90 & -523 \\ - & 83 & 608 \\ - & -525 \\ - & 90 & -523 \\ - & 83 & 608 \\ - & -525 \\ - & 90 & -523 \\ - & 83 & 608 \\ - & -525 \\ - & 90 & -523 \\ - & 83 & 608 \\ - & -525 \\ - & 90 & -523 \\ - & 83 & 608 \\ - & -525 \\ - & 90 & -523 \\ - & 90 & -523 \\ - & 90 & -523 \\ - & 90 & -523 \\ - & 90 & -523 \\ - & 90 & -523 \\ - & 90 & -523 \\ - & 90 & -523 \\ - & 90 & -523 \\ - & 90 & -523 \\ - & 90 & -523 \\ - & 90 & -523 \\ - & 90 & -523 \\ - &$													1		
$ \begin{vmatrix} 148 & 2^237^1 & - & N & N & Y & - & -7 \\ 149 & 149^1 & - & Y & N & N & Y & - & -7 \\ 150 & 12^315^2 & - & N & N & Y & - & 30 \\ 1510 & 1511^1 & - & Y & N & N & Y & - & 9 \\ 152 & 2^219^1 & - & N & N & Y & - & 9 \\ 153 & 3^217^1 & - & N & N & Y & - & 9 \\ 153 & 3^217^1 & - & N & N & Y & - & -7 \\ 153 & 3^217^1 & - & N & N & Y & - & -7 \\ 154 & 2^27^111^1 & - & Y & N & N & - & -16 \\ 156 & 13^23^1 & - & N & N & Y & - & -7 \\ 156 & 5^23^{11} & - & Y & N & N & - & -16 \\ 156 & 5^23^{11} & - & N & N & Y & - & 30 \\ 156 & 15^2 & - & - & N & N & Y & - & 30 \\ 156 & 15^2 & - & - & N & N & Y & - & -7 \\ 157 & 157^1 & - & N & N & Y & - & 30 \\ 158 & 2^27^{11} & - & N & N & Y & - & 30 \\ 159 & 3^153^1 & - & Y & N & N & - & - & -2 \\ 1 & 10 & 1.000000 & - & 05 & 643 \\ 158 & 2^27^{11} & - & N & N & Y & - & 30 \\ 159 & 3^153^1 & - & Y & N & N & - & - & 2 \\ 1 & 10 & 1.000000 & - & 23 & 643 \\ 158 & 2^27^{11} & - & Y & N & N & - & 5 & 1 \\ 10 & 0 & 1.000000 & - & 23 & 643 \\ 158 & 2^27^{11} & - & Y & N & N & - & 5 \\ 10 & 0 & 2^23^1 & - & N & N & Y & - & 13 \\ 101 & 7^22^3 & - & N & N & Y & - & 13 \\ 101 & 7^22^3 & - & N & N & Y & - & 13 \\ 102 & 2^13^1 & - & N & N & Y & - & -1 \\ 101 & 7^22^3 & - & N & N & Y & - & -1 \\ 102 & 2^13^1 & - & N & N & Y & - & -1 \\ 103 & 163^1 & - & Y & N & N & - & 5 \\ 104 & 2^23^1 & - & N & N & Y & - & -1 \\ 105 & 3^15^{11} & - & N & N & Y & - & -1 \\ 106 & 15^23^1 & - & N & N & Y & - & -1 \\ 107 & 2^23^1 & - & N & N & Y & - & -1 \\ 108 & 163^1 & - & Y & N & N & - & 5 \\ 109 & 2^13^1 & - & N & N & Y & - & -1 \\ 109 & 13^2 & - & N & N & Y & - & -1 \\ 109 & 13^2 & - & N & N & Y & - & -1 \\ 109 & 13^2 & - & N & N & Y & - & -1 \\ 109 & 13^2 & - & N & N & Y & - & -1 \\ 109 & 13^2 & - & N & N & Y & - & -7 \\ 110 & 2 & 1.2857143 & - & 10 \\ 109 & 13^2 & - & N & N & Y & - & -7 \\ 111 & 2 & 1.2857143 & - & 10 \\ 117 & 2^21^3 & - & N & N & Y & - & -7 \\ 119 & 2 & 1.2857143 & - & -10 \\ 129 & 2^21 & - & N & N & Y & - & -7 \\ 110 & 2 & 1.2857143 & - & -10 \\ 129 & 0^21^3 & - & N & N & Y & - & -7 \\ 110 & 2 & 1.2857143 & - & -10 \\ 129 & 0^21^3 & - &$								l					1		
$ \begin{vmatrix} 149 \\ 150 \\ 2^2 \\ 3^2 \\ 5^2 \\ - \\ 0 \end{vmatrix} = \begin{vmatrix} y \\ y \\ y \\ N \\ - \end{vmatrix} - \begin{vmatrix} y \\ y \\ N \\ N \\ - \end{vmatrix} - \begin{vmatrix} y \\ y \\ N \\ N \\ - \end{vmatrix} - \begin{vmatrix} y \\ y \\ N \\ N \\ - \end{vmatrix} - \begin{vmatrix} y \\ y \\ N \\ N \\ - \end{vmatrix} - \begin{vmatrix} y \\ y \\ N \\ N \\ - \end{vmatrix} - \begin{vmatrix} y \\ y \\ N \\ N \\ - \end{vmatrix} - \begin{vmatrix} y \\ y \\ N \\ N \\ - \end{vmatrix} - \begin{vmatrix} y \\ y \\ N \\ N \\ - \end{vmatrix} - \begin{vmatrix} y \\ y \\ N \\ N \\ - \end{vmatrix} - \begin{vmatrix} y \\ y \\ N \\ N \\ - \end{vmatrix} - \begin{vmatrix} y \\ y \\ N \\ N \\ - \end{vmatrix} - \begin{vmatrix} y \\ y \\ N \\ N \\ - \end{vmatrix} - \begin{vmatrix} y \\ y \\ N \\ N \\ - \end{vmatrix} - \begin{vmatrix} y \\ y \\ N \\ N \\ - \end{vmatrix} - \begin{vmatrix} y \\ y \\ N \\ N \\ - \end{vmatrix} - \begin{vmatrix} y \\ y \\ N \\ N \\ - \end{vmatrix} - \begin{vmatrix} y \\ y \\ N \\ N \\ - \end{vmatrix} - \begin{vmatrix} y \\ y \\ N \\ N \\ - \\ - \end{vmatrix} - \begin{vmatrix} y \\ y \\ N \\ N \\ N \\ - \\ - \end{vmatrix} + \begin{vmatrix} y \\ y \\ N \\ N \\ - \\ - \\ - \\$													1		
$ \begin{vmatrix} 150 & 2^1 & 3^1 & 2^2 \\ 151 & 151^1 & -1 & Y & Y & N & -1 & -2 \\ 152 & 2^3 & 19^1 & -1 & N & N & Y & -1 & 9 \\ 153 & 3^2 & 17^1 & -1 & N & N & Y & -1 & 9 \\ 154 & 2^2 & 7^1 & 1^1 & -1 & Y & N & N & -1 & -16 \\ 155 & 5^3 & 1^2 & -1 & Y & N & N & -16 \\ 155 & 5^3 & 1^2 & -1 & Y & N & N & -16 \\ 156 & 2^2 & 3^1 & -1 & Y & N & N & -16 \\ 156 & 5^2 & 3^1 & -1 & Y & N & N & -16 \\ 156 & 5^2 & 3^1 & -1 & Y & N & N & -16 \\ 156 & 5^2 & 3^1 & -1 & Y & N & N & -16 \\ 156 & 15^2 & -1 & -1 & -1 & -16 \\ 157 & 157^2 & -1 & Y & N & N & -1 & -2 \\ 156 & 15^2 & -1 & -1 & -1 & -1 & -1 \\ 157 & 157^2 & -1 & Y & N & N & -1 & -2 \\ 158 & 3^2 & -1 & -1 & -1 & -1 & -1 \\ 159 & 3^1 & 3^3 & -1 & Y & N & N & -1 & -5 \\ 158 & 2^2 & 3^3 & -1 & Y & N & N & -1 & 5 \\ 159 & 3^1 & 3^3 & -1 & Y & N & N & -1 & 5 \\ 110 & 2^2 & 5^3 & -1 & -1 & -1 & -1 \\ 101 & 7^2 & 2^3 & -1 & -1 & -1 & -1 \\ 101 & 7^2 & 2^3 & -1 & -1 & -1 & -1 \\ 101 & 7^2 & 2^3 & -1 & -1 & -1 & -1 \\ 101 & 7^2 & 2^3 & -1 & -1 & -1 & -1 \\ 101 & 7^2 & 2^3 & -1 & -1 & -1 & -1 \\ 101 & 7^2 & 2^3 & -1 & -1 & -1 & -1 \\ 102 & 2^1 & 3^4 & -1 & -1 & -1 & -1 \\ 103 & 16^3 & -1 & -1 & -1 & -1 & -1 \\ 104 & 2^2 & 1^4 & -1 & -1 & -1 & -1 \\ 105 & 3^1 & 5^1 & -1 & -1 & -1 & -1 \\ 106 & 3^2 & 5^1 & -1 & -1 & -1 & -1 \\ 106 & 3^2 & 5^1 & -1 & -1 & -1 & -1 \\ 106 & 3^2 & 5^1 & -1 & -1 & -1 & -1 \\ 106 & 3^2 & 5^1 & -1 & -1 & -1 & -1 \\ 106 & 3^2 & 5^1 & -1 & -1 & -1 & -1 \\ 106 & 3^2 & 3^2 & -1 & -1 & -1 & -1 \\ 107 & 2^2 & 3^2 & -1 & -1 & -1 & -1 \\ 109 & 12^2 & -1 & -1 & -1 & -1 & -1 \\ 109 & 12^2 & -1 & -1 & -1 & -1 & -1 \\ 109 & 12^2 & -1 & -1 & -1 & -1 & -1 \\ 109 & 12^2 & -1 & -1 & -1 & -1 \\ 109 & 12^2 & -1 & -1 & -1 & -1 \\ 109 & 12^2 & -1 & -1 & -1 & -1 \\ 109 & 12^2 & -1 & -1 & -1 & -1 \\ 109 & 12^2 & -1 & -1 & -1 & -1 \\ 109 & 12^2 & -1 & -1 & -1 & -1 \\ 109 & 12^2 & -1 & -1 & -1 & -1 \\ 109 & 12^2 & -1 & -1 & -1 & -1 \\ 109 & 12^2 & -1 & -1 & -1 & -1 \\ 109 & 12^2 & -1 & -1 & -1 & -1 \\ 109 & 12^2 & -1 & -1 & -1 & -1 \\ 109 & 12^2 & -1 & -1 & -1 & -1 \\ 109 & 12^2 & -1 & -1 & -1 & -1 \\ 109 & 12^2 & -1 & -1 & -1 & -1 \\ 109 $							1						1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		151^{1}	l				1						1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							1				1.5555556		1	608	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3^217^1											1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			l										1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								l					1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	159	$3^{1}53^{1}$	_	Y	N	N	-	5	1	0	1.0000000	_	103	653	-550
$ \begin{vmatrix} 162 & 2^13^4 & - & N & N & Y & - & -11 \\ 163 & 163^1 & - & Y & Y & N & - & -2 \\ 164 & 2^241^1 & - & N & N & Y & - & -7 \\ 165 & 3^15^111 & - & Y & N & N & - & -16 \\ 166 & 2^283^1 & - & Y & N & N & - & -16 \\ 166 & 2^283^1 & - & Y & N & N & - & -16 \\ 167 & 167^1 & - & Y & N & N & - & -16 \\ 168 & 2^283^1 & - & Y & N & N & - & -2 \\ 168 & 2^387^1 & - & N & N & Y & - & -2 \\ 169 & 13^2 & - & Y & N & N & - & -2 \\ 170 & 2^15^117^1 & - & Y & N & N & - & -2 \\ 171 & 3^213^1 & - & N & N & Y & - & -16 \\ 172 & 2^15^117^1 & - & Y & N & N & - & -16 \\ 189 & 13^21^1 & - & N & N & Y & - & -16 \\ 199 & 13^2 & - & N & Y & N & - & 2 \\ 190 & 13^2 & - & N & Y & N & - & 2 \\ 191 & 3^213^1 & - & N & N & Y & - & -16 \\ 190 & 13^2 & - & N & N & Y & - & -16 \\ 190 & 13^2 & - & N & N & Y & - & -16 \\ 190 & 13^2 & - & N & N & Y & - & -7 \\ 190 & 13^2 & - & N & N & Y & - & -7 \\ 190 & 12^2 & 12^2 & 1 \\ 191 & 3^213^1 & - & N & N & Y & - & -7 \\ 191 & 2^1 & 2^2 & 1 \\ 191 & 3^213^1 & - & N & N & Y & - & -7 \\ 191 & 2^1 & 2^2 & 1 \\ 191 & 2^1 & 2^2 & 1 \\ 191 & 1^2 & 1 & 1 \\ 191 & 1 $	160				N	Y	-	13		8	2.0769231		116	666	-550
$ \begin{vmatrix} 163 & 163^1 & & & & & & & & & & & & & & & & & & &$			l												
$ \begin{vmatrix} 164 & 2^241^1 & - & N & N & Y & - & -7 \\ 165 & 3^{15}11^{11} & - & Y & N & N & - & -16 \\ 166 & 2^{1}83^{1} & - & Y & N & N & - & -5 \\ 167 & 167^{1} & - & Y & N & N & - & -2 \\ 168 & 2^{2}83^{1} & - & Y & N & N & - & -2 \\ 168 & 2^{2}3^{1}7^{1} & - & N & N & Y & - & -48 \\ 168 & 2^{2}3^{1}7^{1} & - & N & N & Y & - & -48 \\ 168 & 2^{2}3^{1}7^{1} & - & N & N & Y & - & -48 \\ 170 & 2^{1}5^{1}17^{1} & - & Y & N & N & - & 2 \\ 171 & 3^{2}10^{1} & - & N & N & Y & - & -16 \\ 172 & 2^{1}5^{1}17^{1} & - & Y & N & N & - & -16 \\ 173 & 173^{1} & - & N & N & Y & - & -7 \\ 174 & 2^{1}3^{2}19^{1} & - & N & N & Y & - & -7 \\ 175 & 2^{2}1^{1}3^{1} & - & N & N & Y & - & -7 \\ 176 & 2^{1}17^{1} & - & Y & N & N & - & -16 \\ 177 & 2^{1}5^{1}17^{1} & - & N & N & Y & - & -7 \\ 181 & 173 & 173^{1} & - & Y & Y & N & - & -16 \\ 176 & 2^{4}11^{1} & - & N & N & Y & - & -7 \\ 177 & 3^{1}59^{1} & - & N & N & Y & - & -7 \\ 181 & 2^{1}28^{1}3^{1} & - & N & N & Y & - & -7 \\ 181 & 2^{1}3^{1}3^{1} & - & Y & N & N & - & 5 \\ 191 & 2^{2}3^{2}5^{1} & - & N & N & Y & - & -7 \\ 191 & 2^{2}128^{1}13^{1} & - & -24 \\ 195 & 2^{2}3^{2}5^{1} & - & N & N & Y & - & -7 \\ 191 & 2^{2}128^{1}13^{1} & - & N & N & Y & - & -7 \\ 191 & 2^{2}128^{1}13^{1} & - & -24 \\ 177 & 3^{1}59^{1} & - & N & N & Y & - & -7 \\ 191 & 2^{2}128^{1}13^{1} & - & N & N & Y & - & -7 \\ 191 & 2^{2}17^{1}1 & - & N & N & - & 5 \\ 191 & 0 & 1.0000000 & - & -6 \\ 185 & 2^{3}2^{5}5^{1} & - & N & N & Y & - & -7 \\ 191 & 179^{1} & - & Y & N & N & - & 5 \\ 191 & 0 & 1.0000000 & - & -14 \\ 188 & 3^{3}6^{1} & - & Y & N & N & - & 5 \\ 191 & 0 & 1.0000000 & - & -14 \\ 188 & 3^{3}6^{1} & - & Y & N & N & - & -2 \\ 181 & 181^{1} & - & Y & N & N & - & -2 \\ 181 & 131^{1} & - & Y & N & N & - & -2 \\ 181 & 131^{1} & - & Y & N & N & - & -16 \\ 190 & 2^{1}2^{1}13^{1} & - & Y & N & N & - & -16 \\ 191 & 0 & 1.0000000 & - & -108 \\ 188 & 3^{3}6^{1} & - & Y & N & N & - & -16 \\ 191 & 0 & 1.0000000 & - & -108 \\ 188 & 2^{2}4^{7}1 & - & N & N & Y & - & -7 \\ 191 & 0 & 1.0000000 & - & -108 \\ 189 & 2^{3}3^{1}1^{1} & - & N & N & Y & - & -7 \\ 191 & 0$								l							
$ \begin{vmatrix} 166 & 2^183^1 & - & & Y & N & N & - & -16 \\ 166 & 2^183^1 & - & Y & N & N & - & 5 \\ 167 & 167^1 & - & Y & Y & N & - & -2 \\ 169 & 13^2 & - & N & Y & N & - & -2 \\ 169 & 13^2 & - & N & Y & N & - & -2 \\ 169 & 13^2 & - & N & Y & N & - & -2 \\ 170 & 2^15^17^1 & - & Y & N & N & - & -16 \\ 170 & 2^15^17^1 & - & Y & N & N & - & -16 \\ 170 & 2^15^17^1 & - & Y & N & N & - & -16 \\ 170 & 2^15^17^1 & - & Y & N & N & - & -16 \\ 171 & 3^29^1 & - & N & N & Y & - & -7 \\ 171 & 3^29^1 & - & N & N & Y & - & -7 \\ 172 & 2^243^1 & - & N & N & Y & - & -7 \\ 173 & 173^1 & - & Y & Y & N & - & -16 \\ 174 & 2^13^29^1 & - & Y & N & N & - & -16 \\ 175 & 5^27^1 & - & Y & N & N & - & -16 \\ 176 & 2^11^1 & - & Y & N & N & - & -16 \\ 1815^181^1 & - & Y & N & N & - & -16 \\ 1916 & 1 & 0 & 1.000000 & - & 26 \\ 177 & 2^13^19^1 & - & Y & N & N & - & -16 \\ 1 & 0 & 1.000000 & - & 10 \\ 177 & 2^13^19^1 & - & Y & N & N & - & -16 \\ 1 & 0 & 1.000000 & - & 10 \\ 177 & 2^13^19^1 & - & Y & N & N & - & -16 \\ 1 & 0 & 1.000000 & - & -6 \\ 1818181818 & - & -13 \\ 182 & 2^17^{113} & - & N & N & Y & - & -7 \\ 1 & 2 & 1.2857143 & - & 13 \\ 195 & - & -2 & 1 \\ 195 &$															
$ \begin{vmatrix} 166 & 2^183^1 & - & Y & N & N & - & 5 \\ 167 & 167^1 & - & Y & Y & N & - & -2 \\ 167 & 167^1 & - & Y & Y & N & - & -2 \\ 186 & 2^23^17^1 & - & N & N & Y & - & -48 \\ 169 & 13^2 & - & N & Y & N & - & 2 \\ 170 & 2^15^17^1 & - & Y & N & N & - & -16 \\ 170 & 2^15^17^1 & - & Y & N & N & - & -16 \\ 170 & 2^15^17^1 & - & Y & N & N & - & -16 \\ 170 & 2^15^17^1 & - & Y & N & N & - & -16 \\ 170 & 2^15^17^1 & - & Y & N & N & - & -16 \\ 170 & 2^15^17^1 & - & Y & N & N & - & -16 \\ 170 & 2^15^17^1 & - & Y & N & N & - & -16 \\ 170 & 2^15^17^1 & - & Y & N & N & - & -16 \\ 170 & 2^15^17^1 & - & Y & N & N & - & -16 \\ 170 & 2^15^17^1 & - & Y & N & N & - & -7 \\ 180 & 173 & 173^1 & - & Y & Y & N & - & -2 \\ 171 & 3^219^1 & - & N & N & Y & - & -7 \\ 172 & 2^243^1 & - & N & N & Y & - & -7 \\ 173 & 173^1 & - & Y & Y & N & - & -2 \\ 174 & 2^13^129^1 & - & N & N & Y & - & -7 \\ 175 & 5^27^1 & - & N & N & Y & - & -7 \\ 176 & 2^411^1 & - & N & N & Y & - & -11 \\ 176 & 2^411^1 & - & N & N & Y & - & -11 \\ 177 & 3^199^1 & - & Y & N & N & - & 5 \\ 1 & 0 & 1.000000 & - & -6 \\ 678 & -668 \\ 1778 & 2^189^1 & - & Y & N & N & - & 5 \\ 1 & 0 & 1.000000 & - & -14 \\ 180 & 2^32^51 & - & N & N & Y & - & -2 \\ 119 & 179^1 & - & Y & N & N & - & 5 \\ 181 & 181^1 & - & Y & Y & N & - & -2 \\ 181 & 181^1 & - & Y & Y & N & - & -2 \\ 181 & 181^1 & - & Y & Y & N & - & -2 \\ 181 & 181^1 & - & Y & N & N & - & -16 \\ 182 & 2^27^113^1 & - & Y & N & N & - & -16 \\ 183 & 3^161^1 & - & Y & N & N & - & 5 \\ 181 & 181^1 & - & Y & N & N & - & -16 \\ 184 & 2^33^3 & - & N & N & Y & - & -7 \\ 181 & 191^17^1 & - & Y & N & N & - & -16 \\ 182 & 2^24^7 & - & N & N & - & -16 \\ 190 & 2^15^19^1 & - & Y & N & N & - & -16 \\ 190 & 2^15^19^1 & - & Y & N & N & - & -16 \\ 191 & 0 & 1.000000 & - & -103 \\ 190 & 2^15^19^1 & - & Y & N & N & - & -16 \\ 191 & 0 & 1.000000 & - & -104 \\ 190 & 2^15^19^1 & - & Y & N & N & - & -2 \\ 190 & 193^1 & - & Y & N & N & - & -16 \\ 190 & 190^1 & - & Y & N & N & - & -2 \\ 190 & 190^1 & - & Y & N & N & - & -16 \\ 190 & 0 & 1.000000 & - & -104 \\ 190 & - & -104 & -102 \\ 190 & - & -104 & -102 \\$								l							
$ \begin{vmatrix} 168 & 2^3 a^1 r^1 & - & N & N & Y & - & -48 & 1 \\ 169 & 13^2 & - & N & Y & N & - & 2 \\ 170 & 2^3 b^1 r^1 & - & Y & N & N & - & -16 \\ 170 & 2^3 b^1 r^1 & - & Y & N & N & - & -16 \\ 171 & 3^2 19^1 & - & N & N & Y & - & -7 \\ 171 & 3^2 19^1 & - & N & N & Y & - & -7 \\ 172 & 2^2 3^1 & - & N & N & Y & - & -7 \\ 173 & 173^1 & - & Y & Y & N & - & -2 \\ 174 & 2^3 1^3 2^1 & - & Y & Y & N & - & -2 \\ 175 & 3^2 7^1 & - & N & N & Y & - & -7 \\ 181 & 177^1 & - & N & N & Y & - & -7 \\ 181 & 181^1 & - & Y & Y & N & - & -16 \\ 178 & 2^3 5^1 & - & N & N & Y & - & -11 \\ 181 & 181^1 & - & Y & N & N & - & -16 \\ 183 & 3^4 6^1 & - & N & N & Y & - & -11 \\ 185 & 2^3 2^3 1 & - & N & N & Y & - & -11 \\ 185 & 2^3 2^3 1 & - & N & N & Y & - & -11 \\ 185 & 2^3 2^3 1 & - & N & N & Y & - & -11 \\ 185 & 2^3 2^3 1 & - & N & N & Y & - & -74 \\ 181 & 181^1 & - & Y & Y & N & - & -2 \\ 185 & 2^3 2^3 1 & - & Y & N & N & - & 5 \\ 185 & 2^3 2^3 1 & - & Y & N & N & - & 5 \\ 185 & 2^3 2^3 1 & - & Y & N & N & - & -2 \\ 185 & 3^3 6^1 & - & Y & N & N & - & -2 \\ 185 & 3^3 6^1 & - & Y & N & N & - & -2 \\ 185 & 3^3 6^1 & - & Y & N & N & - & -2 \\ 185 & 2^3 2^3 1 & - & N & N & Y & - & -74 \\ 181 & 181^3 & - & Y & Y & N & - & -2 \\ 185 & 2^3 2^3 1 & - & N & N & Y & - & -74 \\ 185 & 2^3 2^3 1 & - & N & N & Y & - & -74 \\ 185 & 2^3 2^3 1 & - & N & N & - & -5 \\ 185 & 3^3 6^1 1 & - & Y & N & N & - & -5 \\ 185 & 5^3 3^1 & - & N & N & - & 5 \\ 195 & 10 & 0 & 1.0000000 & - & -103 \\ 186 & 2^3 2^3 1^1 & - & Y & N & N & - & -5 \\ 190 & 2^3 2^5 1^1 & - & N & N & - & -16 \\ 190 & 2^3 2^3 1 & - & N & N & - & -16 \\ 190 & 2^3 2^3 1 & - & N & N & - & -16 \\ 190 & 2^3 2^3 1 & - & N & N & - & -16 \\ 190 & 2^3 2^3 1 & - & N & N & - & -16 \\ 190 & 2^3 2^3 1 & - & N & N & - & -16 \\ 190 & 2^3 2^3 1 & - & N & N & - & -16 \\ 190 & 2^3 2^3 1 & - & N & N & - & -16 \\ 191 & 2^3 2^3 1 & - & N & N & - & -16 \\ 191 & 2^3 2^3 1 & - & N & N & - & -16 \\ 191 & 2^3 2^3 1 & - & N & N & - & -16 \\ 191 & 2^3 2^3 1 & - & N & N & - & -16 \\ 191 & 2^3 2^3 1 & - & N & N & - & -16 \\ 191 & 2^3 2^3 1 & - & N & N & - & -16 \\ 191 & 2^3 $													1		
$ \begin{vmatrix} 169 & 13^2 & - & N & Y & N & - & 2 \\ 170 & 2^15^17^1 & - & Y & N & N & - & -16 \\ 170 & 2^15^17^1 & - & Y & N & N & - & -16 \\ 171 & 3^219^1 & - & N & N & Y & - & -7 \\ 171 & 3^219^1 & - & N & N & Y & - & -7 \\ 172 & 2^243^1 & - & N & N & Y & - & -7 \\ 173 & 173^1 & - & Y & Y & N & - & -2 \\ 173 & 173^1 & - & Y & Y & N & - & -2 \\ 174 & 2^13^29^1 & - & Y & N & N & Y & - & -7 \\ 175 & 1 & 2 & 1.2857143 & - & 12 & 678 & -668 \\ 174 & 2^13^12^1 & - & Y & Y & N & - & -2 \\ 175 & 173^1 & - & Y & Y & N & - & -2 \\ 176 & 2^41^1 & - & N & N & Y & - & -7 \\ 176 & 2^41^1 & - & N & N & Y & - & -7 \\ 177 & 3^15^1 & - & Y & N & N & - & -16 \\ 176 & 2^41^1 & - & N & N & Y & - & -7 \\ 177 & 3^15^1 & - & Y & N & N & - & 5 \\ 178 & 2^189^1 & - & Y & N & N & - & 5 \\ 179 & 179^1 & - & Y & N & N & - & 5 \\ 180 & 2^23^25^1 & - & N & N & Y & - & -74 \\ 180 & 2^23^25^1 & - & N & N & Y & - & -74 \\ 181 & 181^1 & - & Y & Y & N & - & -2 \\ 181 & 181^1 & - & Y & Y & N & - & -2 \\ 182 & 2^17^13^1 & - & Y & N & N & - & -2 \\ 183 & 3^16^1 & - & Y & N & N & - & -16 \\ 184 & 2^223^1 & - & N & N & Y & - & -16 \\ 185 & 2^13^31^1 & - & Y & N & N & - & -16 \\ 185 & 2^13^31^1 & - & Y & N & N & - & -16 \\ 185 & 2^14^31^1 & - & Y & N & N & - & -16 \\ 185 & 2^14^31^1 & - & Y & N & N & - & -16 \\ 185 & 2^14^31^1 & - & Y & N & N & - & -16 \\ 185 & 2^14^31^1 & - & Y & N & N & - & -16 \\ 185 & 2^14^31^1 & - & Y & N & N & - & -16 \\ 185 & 2^14^31^1 & - & Y & N & N & - & -16 \\ 195 & 191^117^1 & - & Y & N & N & - & -16 \\ 195 & 191^117^1 & - & Y & N & N & - & -16 \\ 196 & 191^2 & - & Y & N & N & - & -16 \\ 197 & 197^1 & - & Y & N & N & - & -16 \\ 199 & 199^1 & - & Y & N & N & - & -16 \\ 199 & 199^1 & - & Y & N & N & - & -16 \\ 199 & 199^1 & - & Y & N & N & - & -16 \\ 199 & 199^1 & - & Y & N & N & - & -16 \\ 190 & 199^1 & - & Y & N & N & - & -16 \\ 190 & 199^1 & - & Y & N & N & - & -16 \\ 190 & 199^1 & - & Y & N & N & - & -16 \\ 190 & 199^1 & - & Y & N & N & - & -16 \\ 190 & 199^1 & - & Y & N & N & - & -16 \\ 190 & 199^1 & - & Y & N & N & - & -16 \\ 191 & 191^0 & - & Y & N & N & - & -16 \\ 191 & 19$	167	167^{1}	_	Y	Y	N	-	-2	1	0	1.0000000	_	88	676	-588
$ \begin{vmatrix} 170 & 2^1 5^1 17^1 & - & Y & N & N & - & -16 \\ 171 & 3^2 19^1 & - & N & N & Y & - & -7 \\ 172 & 2^2 43^1 & - & N & N & Y & - & -7 \\ 173 & 173^1 & - & Y & Y & N & N & - & -2 \\ 174 & 2^1 3^1 29^1 & - & N & N & Y & - & -7 \\ 175 & 1 & 2 & 1.2857143 & - & 12 & 678 & -666 \\ 173 & 173^1 & - & Y & Y & N & - & -2 & 1 \\ 174 & 2^1 3^1 29^1 & - & Y & N & N & - & -16 \\ 175 & 5^2 7^1 & - & N & N & Y & - & -7 \\ 176 & 2^4 11^1 & - & N & N & Y & - & -7 \\ 177 & 3^1 59^1 & - & Y & N & N & - & 5 \\ 177 & 3^1 59^1 & - & Y & N & N & - & 5 \\ 177 & 3^1 59^1 & - & Y & N & N & - & 5 \\ 177 & 3^1 59^1 & - & Y & N & N & - & 5 \\ 180 & 2^2 3^2 5^1 & - & N & N & Y & - & -7 \\ 181 & 181^1 & - & Y & Y & N & - & -2 \\ 182 & 2^1 2^3 13^1 & - & Y & Y & N & - & -2 \\ 183 & 3^1 60^1 & - & Y & N & N & - & -16 \\ 184 & 2^3 23^1 & - & N & N & Y & - & -16 \\ 184 & 2^3 23^1 & - & N & N & Y & - & -16 \\ 184 & 2^3 23^1 & - & N & N & Y & - & -16 \\ 184 & 2^3 23^1 & - & N & N & Y & - & -9 \\ 184 & 2^3 23^1 & - & N & N & Y & - & -9 \\ 184 & 2^3 23^1 & - & N & N & Y & - & 9 \\ 184 & 2^3 23^1 & - & N & N & Y & - & 9 \\ 184 & 2^3 23^1 & - & N & N & Y & - & 9 \\ 184 & 2^3 23^1 & - & N & N & Y & - & 9 \\ 186 & 2^1 3^1 3^1 & - & Y & N & N & - & 5 \\ 187 & 1 & 1 & 1 & 1 & 0 & 1.000000 & - & -103 & 693 & -796 \\ 185 & 5^1 3^1 & - & Y & N & N & - & 5 \\ 195 & 3^3 7^1 & - & N & N & Y & - & -76 & 1 & 0 & 1.000000 & - & -89 & 707 & -796 \\ 186 & 2^3 3^3 1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -89 & 707 & -796 \\ 186 & 2^3 3^3 1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -100 & 712 & -819 \\ 189 & 3^3 7^1 & - & N & N & Y & - & -77 & 1 & 2 & 1.28575556 & - & -98 & 721 & -819 \\ 199 & 191^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -107 & 712 & -819 \\ 199 & 199^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -107 & 712 & -819 \\ 199 & 199^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -107 & 712 & -885 \\ 195 & 3^1 5^1 13^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -114 & 721 & -885 \\ 195 & 3^1 5^1 13^1 & - & Y & N & N & - & -2 & 1 & 0 & 1.00000$	168		-	N		Y	-		1		1.3333333	-	40	676	-636
$ \begin{vmatrix} 171 & 3^3 & 19^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 19 & 678 & -659 \\ 172 & 2^2 & 43^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 12 & 678 & -669 \\ 173 & 173^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & 10 & 678 & -668 \\ 174 & 2^1 & 3^1 & 2^9 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -6 & 678 & -668 \\ 174 & 2^1 & 3^1 & 2^9 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -6 & 678 & -668 \\ 175 & 5^2 & 1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -13 & 678 & -691 \\ 176 & 2^4 & 11^1 & - & N & N & Y & - & -11 & 1 & 6 & 1.8181818 & - & -24 & 678 & -702 \\ 177 & 3^1 & 59^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -14 & 688 & -702 \\ 178 & 2^1 & 89^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -14 & 688 & -702 \\ 179 & 179^1 & - & Y & Y & N & N & - & -2 & 1 & 0 & 1.0000000 & - & -16 & 688 & -704 \\ 180 & 2^2 & 2^5 & - & N & N & Y & - & -74 & 1 & 58 & 1.2162162 & - & -90 & 688 & -778 \\ 181 & 181^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -92 & 688 & -780 \\ 182 & 2^1 & 7^1 & 13^2 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -92 & 688 & -780 \\ 183 & 3^1 & 61^1 & - & Y & N & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -103 & 693 & -796 \\ 184 & 2^3 & 2^3 & - & N & N & Y & - & 9 & 1 & 4 & 1.555556 & - & -94 & 702 & -796 \\ 185 & 5^1 & 3^7^1 & - & Y & N & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -103 & 693 & -796 \\ 186 & 2^1 & 3^1 & - & Y & N & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -100 & 712 & -812 \\ 187 & 11^1 & 17^1 & - & Y & N & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -100 & 712 & -812 \\ 188 & 2^2 & 47^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555566 & - & -98 & 721 & -819 \\ 199 & 2^1 & 5^1 & 19^1 & - & Y & N & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -116 & 721 & -885 \\ 195 & 3^1 & 5^1 & 13^1 & - & Y & N & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -114 & 721 & -885 \\ 195 & 3^1 & 5^1 & 13^1 & - & Y & N & N & N & - & -5 & 1 & 0 & 1.0000000 & - & -144 & 726 & -870 \\ 196 & 2^2 & 2^2 & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & -144 & 726 & -$													1		
$ \begin{vmatrix} 172 & 2^243^1 & - & N & N & Y & - & -7 \\ 173 & 173^1 & - & Y & Y & N & - & -2 \\ 173 & 173^1 & - & Y & Y & N & N & - & -16 \\ 174 & 2^13^129^1 & - & Y & N & N & N & - & -16 \\ 175 & 5^27^1 & - & N & N & Y & - & -7 \\ 176 & 2^411^1 & - & N & N & Y & - & -7 \\ 176 & 2^411^1 & - & N & N & Y & - & -11 \\ 176 & 2^411^1 & - & N & N & Y & - & -11 \\ 177 & 3^159^1 & - & Y & N & N & - & 5 \\ 177 & 3^159^1 & - & Y & N & N & - & 5 \\ 177 & 3^159^1 & - & Y & N & N & - & 5 \\ 177 & 1^259^1 & - & Y & N & N & - & 5 \\ 179 & 179^1 & - & Y & Y & N & N & - & 5 \\ 180 & 2^23^25^1 & - & N & N & Y & - & -74 \\ 181 & 181^1 & - & Y & Y & N & N & - & -2 \\ 182 & 2^17^13^1 & - & Y & N & N & - & -2 \\ 183 & 3^161^1 & - & Y & N & N & - & 5 \\ 185 & 3^13^1 & - & Y & N & N & - & 5 \\ 185 & 3^13^1 & - & Y & N & N & - & 5 \\ 186 & 2^14^13^1 & - & Y & N & N & - & -16 \\ 186 & 2^14^13^1 & - & Y & N & N & - & 5 \\ 187 & 181 & 181^1 & - & Y & N & N & - & 5 \\ 186 & 2^14^13^1 & - & Y & N & N & - & 5 \\ 186 & 2^14^13^1 & - & Y & N & N & - & 5 \\ 187 & 11^17^1 & - & Y & N & N & - & 5 \\ 188 & 2^24^2 & - & N & N & Y & - & -16 \\ 186 & 2^14^13^1 & - & Y & N & N & - & 5 \\ 187 & 11^17^1 & - & Y & N & N & - & 5 \\ 188 & 2^24^2 & - & N & N & - & 5 \\ 189 & 3^37^1 & - & N & N & Y & - & -16 \\ 189 & 3^3^2 & - & N & N & Y & - & -7 \\ 199 & 2^25^3 & - & N & N & Y & - & -7 \\ 199 & 2^25^3 & - & N & N & Y & - & -2 \\ 199 & 2^15^1 & - & Y & N & N & - & -16 \\ 199 & 199^1 & - & Y & N & N & - & -16 \\ 199 & 199^1 & - & Y & N & N & - & -16 \\ 199 & 199^1 & - & Y & N & N & - & -16 \\ 199 & 199^1 & - & Y & N & N & - & -16 \\ 199 & 199^1 & - & Y & N & N & - & -16 \\ 199 & 199^1 & - & Y & N & N & - & -16 \\ 199 & 199^1 & - & Y & N & N & - & -16 \\ 199 & 199^1 & - & Y & N & N & - & -16 \\ 199 & 199^1 & - & Y & N & N & - & -16 \\ 199 & 199^1 & - & Y & N & N & - & -16 \\ 199 & 199^1 & - & Y & N & N & - & -16 \\ 199 & 199^1 & - & Y & N & N & - & -16 \\ 199 & 199^1 & - & Y & N & N & - & -2 \\ 190 & 199^1 & - & Y & N & N & - & -2 \\ 190 & 199^1 & - & Y & N & N & - & -2 \\ 190 & 199^1 & - & Y & N & N & - & -2 \\ 190 $															
$ \begin{vmatrix} 173 & 173^1 & - & Y & Y & N & - & -2 \\ 174 & 2^1 3^1 29^1 & - & Y & N & N & - & -16 \\ 175 & 5^2 7^1 & - & N & N & Y & - & -7 \\ 176 & 2^4 11^1 & - & N & N & Y & - & -71 \\ 176 & 2^4 11^1 & - & N & N & Y & - & -111 \\ 176 & 2^4 11^1 & - & N & N & Y & - & -111 \\ 177 & 3^1 59^1 & - & Y & N & N & - & 5 \\ 177 & 3^1 59^1 & - & Y & N & N & - & 5 \\ 178 & 2^1 89^1 & - & Y & N & N & - & 5 \\ 179 & 179^1 & - & Y & N & N & - & -2 \\ 179 & 179^1 & - & Y & Y & N & - & -2 \\ 180 & 2^2 3^2 5^1 & - & N & N & Y & - & -74 \\ 181 & 181^1 & - & Y & Y & N & - & -2 \\ 181 & 181^1 & - & Y & Y & N & - & -2 \\ 182 & 183^1 3^1 - & Y & N & N & - & -16 \\ 183 & 3^1 61^1 & - & Y & N & N & - & 5 \\ 184 & 2^2 23^1 & - & N & N & Y & - & -16 \\ 184 & 2^2 23^1 & - & Y & N & N & - & 5 \\ 185 & 5^1 37^1 & - & Y & N & N & - & 5 \\ 186 & 2^1 3^1 3^1 & - & Y & N & N & - & 5 \\ 187 & 1 & 0 & 1.000000 & - & -108 \\ 188 & 2^2 47^1 & - & Y & N & N & - & 5 \\ 189 & 3^3 7^1 & - & Y & N & N & - & 5 \\ 190 & 2^1 5^1 9^1 & - & Y & N & N & - & 5 \\ 191 & 191^1 & - & Y & N & N & - & 5 \\ 191 & 191^1 & - & Y & N & N & - & -16 \\ 190 & 2^1 5^1 19^1 & - & Y & N & N & - & -16 \\ 191 & 0 & 1.000000 & - & -103 \\ 189 & 3^3 7^1 & - & N & N & Y & - & -7 \\ 199 & 2^1 3^1 1 & - & Y & N & N & - & -16 \\ 199 & 199^1 & - & Y & N & N & - & -16 \\ 199 & 199^1 & - & Y & N & N & - & -2 \\ 199 & 199^1 & - & Y & N & N & - & -2 \\ 199 & 199^1 & - & Y & N & N & - & -2 \\ 199 & 199^1 & - & Y & N & N & - & -2 \\ 199 & 199^1 & - & Y & N & N & - & -2 \\ 199 & 199^1 & - & Y & N & N & - & -2 \\ 199 & 199^1 & - & Y & N & N & - & -2 \\ 199 & 199^1 & - & Y & Y & N & - & -2 \\ 199 & 199^1 & - & Y & Y & N & - & -2 \\ 199 & 199^1 & - & Y & Y & N & - & -2 \\ 199 & 199^1 & - & Y & Y & N & - & -2 \\ 199 & 199^1 & - & Y & Y & N & - & -2 \\ 199 & 199^1 & - & Y & Y & N & - & -2 \\ 190 & 199^1 & - & Y & Y & N & - & -2 \\ 190 & 199^1 & - & Y & Y & N & - & -2 \\ 190 & 199^1 & - & Y & Y & N & - & -2 \\ 190 & 199^1 & - & Y & Y & N & - & -2 \\ 190 & 199^1 & - & Y & Y & N & - & -2 \\ 190 & 199^1 & - & Y & Y & N & - & -2 \\ 190 & 199^1 & - & Y & $		$\frac{3}{2}\frac{19}{42}$	l												
$ \begin{vmatrix} 174 & 2^13^129^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -6 & 678 & -684 \\ 175 & 5^27^1 & - & N & N & Y & - & -77 & 1 & 2 & 1.2857143 & - & -13 & 678 & -691 \\ 176 & 2^411^1 & - & N & N & Y & - & -11 & 1 & 6 & 1.81818 & -24 & 678 & -702 \\ 177 & 3^159^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -19 & 683 & -702 \\ 178 & 2^189^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -14 & 688 & -702 \\ 179 & 179^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -16 & 688 & -778 \\ 180 & 2^23^25^1 & - & N & N & Y & - & -74 & 1 & 58 & 1.2162162 & - & -90 & 688 & -778 \\ 181 & 181^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -16 & 688 & -778 \\ 182 & 2^17^113^1 & - & Y & N & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -108 & 688 & -778 \\ 183 & 3^161^1 & - & Y & N & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -108 & 688 & -796 \\ 183 & 3^161^1 & - & Y & N & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -103 & 693 & -796 \\ 184 & 2^33^3 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & -94 & 702 & -796 \\ 186 & 2^13^131^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -105 & 707 & -812 \\ 187 & 11^117^1 & - & Y & N & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -105 & 707 & -812 \\ 188 & 2^247^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -107 & 712 & -819 \\ 189 & 3^37^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -107 & 712 & -819 \\ 189 & 3^37^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -107 & 712 & -819 \\ 199 & 2^15^19^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -116 & 721 & -837 \\ 191 & 191^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -116 & 721 & -837 \\ 192 & 2^63^1 & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & -128 & 726 & -854 \\ 195 & 3^15^13^1 & - & Y & N & N & - & -2 & 1 & 0 & 1.0000000 & - & -128 & 726 & -854 \\ 195 & 3^15^13^1 & - & Y & N & N & - & -2 & 1 & 0 & 1.0000000 & - & -128 & 726 & -854 \\ 195 & 3^15^13^1 & - & Y & N & N & - & -2 & 1 & 0 & 1.0000000 & - & -124 & 726 & -870 \\ 197 & 197^1 & - & Y & N & N & - & -2 & 1 & 0 & 1.0000000 & - & -132 & 740 & -$										=					
$ \begin{vmatrix} 175 & 5^27^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -13 & 678 & -691 \\ 176 & 2^411^1 & - & N & N & Y & - & -11 & 1 & 6 & 1.8181818 & - & -24 & 678 & -702 \\ 178 & 2^189^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -19 & 683 & -702 \\ 178 & 2^189^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -14 & 688 & -702 \\ 179 & 179^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -16 & 688 & -778 \\ 180 & 2^23^25^1 & - & N & N & Y & - & -74 & 1 & 58 & 1.2162162 & - & -90 & 688 & -778 \\ 181 & 181^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -106 & 688 & -778 \\ 181 & 181^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -108 & 688 & -778 \\ 182 & 2^17^113^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -108 & 688 & -796 \\ 184 & 2^323^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & -94 & 702 & -796 \\ 185 & 5^137^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -89 & 707 & -796 \\ 185 & 5^137^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -105 & 707 & -812 \\ 187 & 11^117^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -105 & 707 & -812 \\ 188 & 2^247^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -107 & 712 & -819 \\ 189 & 3^37^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -107 & 712 & -819 \\ 190 & 2^15^19^1 & - & Y & N & N & - & -2 & 1 & 0 & 1.0000000 & - & -114 & 721 & -835 \\ 191 & 191^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -114 & 721 & -835 \\ 191 & 191^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -114 & 721 & -835 \\ 191 & 191^1 & - & Y & N & N & - & -5 & 1 & 0 & 1.0000000 & - & -128 & 726 & -854 \\ 194 & 2^197^1 & - & Y & N & N & - & -5 & 1 & 0 & 1.0000000 & - & -128 & 726 & -854 \\ 195 & 3^15^13^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -128 & 726 & -854 \\ 195 & 2^15^11^3 & - & Y & N & N & - & -6 & 1 & 0 & 1.0000000 & - & -133 & 721 & -852 \\ 198 & 2^13^211^1 & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & -132 & 740 & -872 \\ 198 & 2^13^211^1 & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & -132 & 740 & -872 \\ 199 &$	11	$2^1 3^1 29^1$											1		
$ \begin{vmatrix} 177 & 3^159^1 & - & & & & & & & & & & & & & & & & & $	175		-	N	N	Y	-	-7	1		1.2857143	-	-13	678	-691
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													1		
$ \begin{vmatrix} 179 & 179^1 & - & Y & Y & N & - & -2 \\ 180 & 2^2 3^2 5^1 & - & N & N & Y & - & -74 \\ 181 & 181^1 & - & Y & Y & N & - & -22 & 1 \\ 181 & 181^1 & - & Y & Y & N & - & -22 & 1 \\ 182 & 2^1 7^1 13^1 & - & Y & N & N & - & -16 \\ 183 & 3^1 61^1 & - & Y & N & N & - & -16 \\ 184 & 2^3 23^1 & - & N & N & N & - & 5 \\ 184 & 2^3 23^1 & - & N & N & N & - & 5 \\ 185 & 5^1 37^1 & - & Y & N & N & - & 5 \\ 186 & 2^1 3^3 1^1 & - & Y & N & N & - & -16 \\ 187 & 11^1 17^1 & - & Y & N & N & - & -16 \\ 188 & 2^4 4^7 & - & N & N & - & -16 \\ 188 & 2^2 47^1 & - & N & N & - & -16 \\ 189 & 3^3 7^1 & - & Y & N & N & - & 5 \\ 190 & 2^1 5^1 19^1 & - & Y & N & N & - & -16 \\ 191 & 191^1 & - & Y & N & N & - & -16 \\ 191 & 191^1 & - & Y & N & N & - & -2 \\ 193 & 193^1 & - & Y & N & N & - & -2 \\ 194 & 2^1 97^1 & - & Y & N & N & - & -2 \\ 195 & 2^1 5^1 13^1 & - & Y & N & N & - & -2 \\ 196 & 2^2 7^2 & - & N & N & Y & - & -2 \\ 197 & 197 & 197 & - & Y & N & N & - & -16 \\ 199 & 2^1 5^1 19^1 & - & Y & N & N & - & -2 \\ 199 & 199^1 & - & Y & Y & N & - & -2 \\ 199 & 199^1 & - & Y & Y & N & - & -2 \\ 199 & 199^1 & - & Y & Y & N & - & -2 \\ 199 & 199^1 & - & Y & N & N & - & -16 \\ 100 & 1.0000000 & - & -114 & 721 & -852 \\ 193 & 193^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -133 & 721 & -854 \\ 194 & 2^1 2^7^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -128 & 726 & -854 \\ 195 & 2^1 5^1 1^3 1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -128 & 726 & -854 \\ 199 & 199^1 & - & Y & N & N & - & -2 & 1 & 0 & 1.0000000 & - & -124 & 726 & -870 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -133 & 721 & -852 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -132 & 740 & -872 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y &$													1		
$ \begin{vmatrix} 180 & 2^2 & 3^2 & 5^1 & - & N & N & Y & - & -74 & 1 & 58 & 1.2162162 & - & -90 & 688 & -778 \\ 181 & 181^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -92 & 688 & -780 \\ 182 & 2^1 & 7^1 & 13^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -108 & 688 & -796 \\ 183 & 3^1 & 61^1 & - & Y & N & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -103 & 693 & -796 \\ 184 & 2^3 & 2^3 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & -94 & 702 & -796 \\ 185 & 5^1 & 3^7 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -89 & 707 & -796 \\ 186 & 2^1 & 3^1 & 1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -105 & 707 & -812 \\ 187 & 11^1 & 17^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -100 & 712 & -812 \\ 188 & 2^2 & 47^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -107 & 712 & -819 \\ 189 & 3^3 & 7^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & -98 & 721 & -819 \\ 189 & 3^3 & 7^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -107 & 712 & -819 \\ 190 & 2^1 & 5^1 & 19^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -114 & 721 & -835 \\ 191 & 191^1 & - & Y & Y & N & N & - & -2 & 1 & 0 & 1.0000000 & - & -114 & 721 & -835 \\ 192 & 2^6 & 3^1 & - & N & N & Y & - & -15 & 1 & 10 & 2.3333333 & - & -111 & 721 & -852 \\ 193 & 193^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -128 & 726 & -854 \\ 194 & 2^1 & 9^7 & - & Y & N & N & - & -5 & 1 & 0 & 1.0000000 & - & -128 & 726 & -854 \\ 194 & 2^1 & 9^7 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -144 & 726 & -870 \\ 196 & 2^2 & 7^2 & - & N & N & Y & - & 14 & 1 & 9 & 1.3571429 & - & -130 & 740 & -872 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -132 & 740 & -872 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -164 & 770 & -872 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -164 & 770 & -872 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -872 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -872 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1$								l							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11												1		
$ \begin{vmatrix} 182 & 2^17^113^1 & - & Y & N & N & - & -16 \\ 183 & 3^161^1 & - & Y & N & N & - & 5 \\ 184 & 2^323^1 & - & N & N & Y & - & 9 \\ 185 & 5^137^1 & - & Y & N & N & - & 5 \\ 186 & 2^13^131^1 & - & Y & N & N & - & -16 \\ 187 & 11^117^1 & - & Y & N & N & - & -16 \\ 188 & 2^247^1 & - & N & N & Y & - & 9 \\ 188 & 2^247^1 & - & N & N & Y & - & -7 \\ 189 & 3^37^1 & - & N & N & Y & - & -7 \\ 199 & 2^15^119^1 & - & Y & N & N & - & -16 \\ 190 & 2^27^2 & - & N & N & Y & - & -2 \\ 199 & 2^15^113^1 & - & Y & N & N & - & -16 \\ 199 & 2^13^211^1 & - & Y & N & N & - & -16 \\ 199 & 2^15^113^1 & - & Y & N & N & - & -2 \\ 199 & 2^15^113^1 & - & Y & N & N & - & -2 \\ 199 & 2^15^113^1 & - & Y & N & N & - & -2 \\ 199 & 2^15^113^1 & - & Y & N & N & - & -2 \\ 199 & 2^15^113^1 & - & Y & Y & N & - & -2 \\ 199 & 2^15^113^1 & - & Y & Y & N & - & -2 \\ 199 & 2^15^113^1 & - & Y & N & N & - & -2 \\ 199 & 2^15^113^1 & - & Y & N & N & - & -2 \\ 199 & 2^15^113^1 & - & Y & N & N & - & -2 \\ 199 & 2^15^113^1 & - & Y & N & N & - & -2 \\ 199 & 2^15^113^1 & - & Y & N & N & - & -2 \\ 199 & 2^15^113^1 & - & Y & N & N & - & -2 \\ 199 & 2^15^113^1 & - & Y & N & N & - & -16 \\ 199 & 2^27^2 & - & N & N & Y & - & -16 \\ 199 & 2^15^211^1 & - & Y & Y & N & - & -2 \\ 199 & 2^15^211^1 & - & Y & Y & N & - & -2 \\ 199 & 2^15^211^1 & - & Y & Y & N & - & -2 \\ 199 & 2^15^211^1 & - & Y & Y & N & - & -2 \\ 199 & 2^15^211^1 & - & Y & Y & N & - & -2 \\ 199 & 2^19^1 & - & Y & Y & N & - & -2 \\ 199 & 2^19^1 & - & Y & Y & N & - & -2 \\ 199 & 2^19^1 & - & Y & Y & N & - & -2 \\ 199 & 2^19^1 & - & Y & Y & N & - & -2 \\ 199 & 2^19^1 & - & Y & Y & N & - & -2 \\ 199 & 2^19^1 & - & Y & Y & N & - & -2 \\ 199 & 2^19^1 & - & Y & Y & N & - & -2 \\ 199 & 2^19^1 & - & Y & Y & N & - & -2 \\ 199 & 2^19^1 & - & Y & Y & N & - & -2 \\ 199 & 2^19^1 & - & Y & Y & N & - & -2 \\ 199 & 2^19^1 & - & Y & Y & N & - & -2 \\ 199 & 2^19^1 & - & Y & Y & N & - & -2 \\ 199 & 2^19^1 & - & Y & Y & N & - & -2 \\ 199 & 2^19^1 & - & Y & Y & N & - & -2 \\ 199 & 2^19^1 & - & Y & Y & N & - & -2 \\ 199 & 2^19^1 & - & Y & Y & N & - & -2 \\ 199 & 2^19^1 & - &$	11	181^{1}					1					_	1		
$ \begin{vmatrix} 184 & 2^323^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555566 & - & -94 & 702 & -796 \\ 185 & 5^137^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -89 & 707 & -796 \\ 186 & 2^13^131^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -105 & 707 & -812 \\ 187 & 11^117^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -100 & 712 & -812 \\ 188 & 2^247^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -107 & 712 & -819 \\ 189 & 3^37^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555566 & - & -98 & 721 & -819 \\ 190 & 2^15^19^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -114 & 721 & -835 \\ 191 & 191^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -114 & 721 & -837 \\ 192 & 2^63^1 & - & N & N & Y & - & -15 & 1 & 10 & 2.3333333 & - & -131 & 721 & -852 \\ 193 & 193^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -133 & 721 & -854 \\ 194 & 2^197^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -128 & 726 & -854 \\ 195 & 3^15^113^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -144 & 726 & -870 \\ 196 & 2^27^2 & - & N & N & Y & - & -14 & 1 & 9 & 1.3571429 & - & -130 & 740 & -870 \\ 197 & 197^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -132 & 740 & -870 \\ 198 & 2^13^211^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -102 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N &$	11	$2^17^113^1$	l										1		
$ \begin{vmatrix} 185 & 5^137^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -89 & 707 & -796 \\ 186 & 2^13^131^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -105 & 707 & -812 \\ 187 & 11^117^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -100 & 712 & -812 \\ 188 & 2^247^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -107 & 712 & -819 \\ 189 & 3^37^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & -98 & 721 & -819 \\ 190 & 2^15^119^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -114 & 721 & -835 \\ 191 & 191^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -116 & 721 & -837 \\ 192 & 2^63^1 & - & N & N & Y & - & -15 & 1 & 10 & 2.3333333 & - & -131 & 721 & -852 \\ 193 & 193^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -133 & 721 & -854 \\ 194 & 2^197^1 & - & Y & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -128 & 726 & -854 \\ 195 & 3^15^113^1 & - & Y & N & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -144 & 726 & -870 \\ 196 & 2^27^2 & - & N & N & Y & - & -16 & 1 & 0 & 1.0000000 & - & -144 & 726 & -870 \\ 196 & 2^27^2 & - & N & N & Y & - & 14 & 1 & 9 & 1.3571429 & - & -130 & 740 & -870 \\ 197 & 197^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -132 & 740 & -870 \\ 198 & 2^13^211^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -102 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^$													1		
$ \begin{vmatrix} 186 & 2^1 3^1 31^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -105 & 707 & -812 \\ 187 & 11^1 17^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -100 & 712 & -812 \\ 188 & 2^2 47^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -107 & 712 & -819 \\ 189 & 3^3 7^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & -98 & 721 & -819 \\ 190 & 2^1 5^1 19^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -114 & 721 & -835 \\ 191 & 191^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -116 & 721 & -837 \\ 192 & 2^0 3^1 & - & N & N & Y & - & -15 & 1 & 10 & 2.3333333 & - & -131 & 721 & -852 \\ 193 & 193^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -133 & 721 & -854 \\ 194 & 2^1 97^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -128 & 726 & -854 \\ 195 & 3^1 5^1 13^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -144 & 726 & -870 \\ 196 & 2^2 7^2 & - & N & N & Y & - & 14 & 1 & 9 & 1.3571429 & - & -130 & 740 & -870 \\ 197 & 197^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -132 & 740 & -870 \\ 198 & 2^1 3^2 11^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -102 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199$													1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													1		
$ \begin{vmatrix} 188 & 2^247^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -107 & 712 & -819 \\ 189 & 3^37^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & -98 & 721 & -819 \\ 190 & 2^15^119^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -114 & 721 & -835 \\ 191 & 191^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -116 & 721 & -837 \\ 192 & 2^63^1 & - & N & N & Y & - & -15 & 1 & 10 & 2.3333333 & - & -131 & 721 & -852 \\ 193 & 193^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -133 & 721 & -854 \\ 194 & 2^197^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -128 & 726 & -854 \\ 195 & 3^15^113^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -144 & 726 & -870 \\ 196 & 2^27^2 & - & N & N & Y & - & 14 & 1 & 9 & 1.3571429 & - & -130 & 740 & -870 \\ 197 & 197^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -132 & 740 & -870 \\ 198 & 2^13^211^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -102 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -144 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -132 & 740 & -872 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N $								l					1		
$ \begin{vmatrix} 189 & 3^37^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555566 & - & -98 & 721 & -819 \\ 190 & 2^15^119^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -114 & 721 & -835 \\ 191 & 191^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -116 & 721 & -837 \\ 192 & 2^63^1 & - & N & N & Y & - & -15 & 1 & 10 & 2.3333333 & - & -131 & 721 & -852 \\ 193 & 193^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -133 & 721 & -854 \\ 194 & 2^197^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -128 & 726 & -854 \\ 195 & 3^15^113^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -144 & 726 & -870 \\ 196 & 2^27^2 & - & N & N & Y & - & 14 & 1 & 9 & 1.3571429 & - & -130 & 740 & -870 \\ 197 & 197^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -132 & 740 & -870 \\ 198 & 2^13^211^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -102 & 770 & -872 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 $							1						1		
$ \begin{vmatrix} 190 & 2^15^119^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -114 & 721 & -835 \\ 191 & 191^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -116 & 721 & -837 \\ 192 & 2^63^1 & - & N & N & Y & - & -15 & 1 & 10 & 2.3333333 & - & -131 & 721 & -852 \\ 193 & 193^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -133 & 721 & -854 \\ 194 & 2^197^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -128 & 726 & -854 \\ 195 & 3^15^113^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -144 & 726 & -870 \\ 196 & 2^27^2 & - & N & N & Y & - & 14 & 1 & 9 & 1.3571429 & - & -130 & 740 & -870 \\ 197 & 197^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -132 & 740 & -870 \\ 198 & 2^13^211^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -102 & 770 & -872 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1$													1		
$ \begin{vmatrix} 192 & 2^6 3^1 & - & N & N & Y & - & -15 & 1 & 10 & 2.3333333 & - & -131 & 721 & -852 \\ 193 & 193^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -133 & 721 & -854 \\ 194 & 2^1 97^1 & - & Y & N & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -128 & 726 & -854 \\ 195 & 3^1 5^1 13^1 & - & Y & N & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -144 & 726 & -870 \\ 196 & 2^2 7^2 & - & N & N & Y & - & 14 & 1 & 9 & 1.3571429 & - & -130 & 740 & -870 \\ 197 & 197^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -132 & 740 & -870 \\ 198 & 2^1 3^2 11^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -102 & 770 & -872 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 190 & 190^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 190 & 190^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ 190 & 190^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 $							1						1		
$ \begin{vmatrix} 193 & 193^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -133 & 721 & -854 \\ 194 & 2^197^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -128 & 726 & -854 \\ 195 & 3^15^113^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -144 & 726 & -870 \\ 196 & 2^27^2 & - & N & N & Y & - & 14 & 1 & 9 & 1.3571429 & - & -130 & 740 & -870 \\ 197 & 197^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -132 & 740 & -872 \\ 198 & 2^13^211^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -102 & 770 & -872 \\ 199 & 199^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -104 & 770 & -874 \\ \end{vmatrix} $			l				1	-2					-116		
			l				1						1		
$ \begin{vmatrix} 195 & 3^{1}5^{1}13^{1} & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -144 & 726 & -870 \\ 196 & 2^{2}7^{2} & - & N & N & Y & - & 14 & 1 & 9 & 1.3571429 & - & -130 & 740 & -870 \\ 197 & 197^{1} & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -132 & 740 & -872 \\ 198 & 2^{1}3^{2}11^{1} & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -102 & 770 & -872 \\ 199 & 199^{1} & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -104 & 770 & -874 \\ \end{vmatrix} $													1		
								l							
													1		
													1		
													1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11						-								
	200	$2^{3}5^{2}$	-	N	N	Y	-	-23	1	18	1.4782609	-	-127	770	-897

	D :			DD.	ā			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)	$\sum_{d n}^{\sum} C_{\Omega(d)}(d)$	<u> </u>	 _{a=1()}	g=1,)	g=1()
n	Primes		Sqfree	PPower	Ŝ		$g^{-1}(n)$		$\lambda(n)g^{-1}(n) - \hat{f}_1(n)$	$ g^{-1}(n) $		$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
201	$3^{1}67^{1}$	-	Y	N	N	-	5	1	0	1.0000000	_	-122	775	-897
202	$2^{1}101^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	-117	780	-897
203	$7^{1}29^{1}$ $2^{2}3^{1}17^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	-112	785	-897
204	$5^{1}41^{1}$	-	N Y	N	Y	_	30	1 1	14 0	1.1666667 1.0000000	_	-82 77	815	-897 -897
205	$2^{1}103^{1}$	_	Y	N N	N N	_	5 5	1	0	1.0000000	_	$-77 \\ -72$	820 825	-897 -897
207	$3^{2}23^{1}$	_	N	N	Y	_		1	2	1.2857143		-72 -79	825	-904
208	$2^{4}13^{1}$	_	N	N	Y	_	-11	1	6	1.8181818	_	-90	825	-915
209	$11^{1}19^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-85	830	-915
210	$2^{1}3^{1}5^{1}7^{1}$	_	Y	N	N	_	65	1	0	1.0000000	_	-20	895	-915
211	211^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	-22	895	-917
212	2^253^1	_	N	N	Y	_	-7	1	2	1.2857143	_	-29	895	-924
213	$3^{1}71^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	-24	900	-924
214	2^1107^1	_	Y	N	N	_	5	1	0	1.0000000	_	-19	905	-924
215	$5^{1}43^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	-14	910	-924
216	$2^{3}3^{3}$	-	N	N	Y	-	46	1	41	1.5000000	-	32	956	-924
217	$7^{1}31^{1}$	-	Y	N	N	_	5	1	0	1.0000000	-	37	961	-924
218	$2^{1}109^{1}$	-	Y	N	N	_	5	1	0	1.0000000	-	42	966	-924
219	$3^{1}73^{1}$	-	Y	N	N	_	5	1	0	1.0000000	-	47	971	-924
220	$2^25^111^1$	-	N	N	Y	_	30	1	14	1.1666667	-	77	1001	-924
221	$13^{1}17^{1}$	-	Y	N	N	-	5	1	0	1.0000000	_	82	1006	-924
222	$2^{1}3^{1}37^{1}$	-	Y	N	N	-	-16	1	0	1.0000000	-	66	1006	-940
223	223^{1} $2^{5}7^{1}$	-	Y	Y	N	-	-2 12	1	0	1.0000000	_	64	1006	-942
224	$3^{2}5^{2}$	-	N	N	Y	-	13	1	8	2.0769231	-	77	1019	-942
225	$3^{2}5^{2}$ $2^{1}113^{1}$	_	N	N	Y	_	14	1	9	1.3571429	-	91	1033	-942
226 227	$2^{1}113^{1}$ 227^{1}	_	Y Y	N Y	N N	_	$\begin{array}{c c} 5 \\ -2 \end{array}$	1 1	0	1.0000000 1.0000000	_	96 94	1038 1038	-942 -944
228	$2^{2}3^{1}19^{1}$	_	N N	N	Y	_	30	1	14	1.1666667	_	124	1068	-944 -944
229	23^{13} 229^{1}	_	Y	Y	N	_	-2	1	0	1.000000	_	122	1068	-946
230	$2^{1}5^{1}23^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	_	106	1068	-962
231	$3^{1}7^{1}11^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	_	90	1068	-978
232	$2^{3}29^{1}$	_	N	N	Y	_	9	1	4	1.5555556	_	99	1077	-978
233	233^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	97	1077	-980
234	$2^{1}3^{2}13^{1}$	_	N	N	Y	_	30	1	14	1.1666667	_	127	1107	-980
235	$5^{1}47^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	132	1112	-980
236	2^259^1	-	N	N	Y	_	-7	1	2	1.2857143	_	125	1112	-987
237	3^179^1	_	Y	N	N	_	5	1	0	1.0000000	_	130	1117	-987
238	$2^17^117^1$	-	Y	N	N	_	-16	1	0	1.0000000	-	114	1117	-1003
239	239^{1}	-	Y	Y	N	_	-2	1	0	1.0000000	-	112	1117	-1005
240	$2^43^15^1$	-	N	N	Y	_	70	1	54	1.5000000	-	182	1187	-1005
241	241^{1}	-	Y	Y	N	_	-2	1	0	1.0000000	-	180	1187	-1007
242	$2^{1}11^{2}$	-	N	N	Y	_	-7	1	2	1.2857143	-	173	1187	-1014
243	3^{5}	-	N	Y	N	_	-2	1	0	3.0000000	-	171	1187	-1016
244	$2^{2}61^{1}$	-	N	N	Y	_	-7	1	2	1.2857143	-	164	1187	-1023
245	$5^{1}7^{2}$	_	N	N	Y	_	-7	1	2	1.2857143	-	157	1187	-1030
246	$2^{1}3^{1}41^{1}$	-	Y	N	N	-	-16	1	0	1.0000000	-	141	1187	-1046
247	$13^{1}19^{1}$ $2^{3}31^{1}$	-	Y N	N N	N Y	_	5 9	1 1	0	1.0000000	_	146	1192	-1046
248	$3^{1}83^{1}$	_	Y	N N	N	_	5	1	4 0	1.5555556 1.0000000	_	155 160	1201 1206	-1046 -1046
250	$2^{1}5^{3}$	_	N	N	Y	_	9	1	4	1.5555556	_	169	1215	-1046 -1046
250	$2^{-5^{\circ}}$ 251^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	167	1215	-1046 -1048
251	$2^{2}3^{2}7^{1}$	_	N	N	Y	_	-2 -74	1	58	1.2162162	_	93	1215	-1048 -1122
253	$11^{1}23^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	98	1220	-1122 -1122
254	$2^{1}127^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	103	1225	-1122
255	$3^15^117^1$	-	Y	N	N	_	-16	1	0	1.0000000	_	87	1225	-1138
256	2^{8}	_	N	Y	N	_	2	1	0	4.5000000	_	89	1227	-1138
257	257^{1}	-	Y	Y	N	_	-2	1	0	1.0000000	_	87	1227	-1140
258	$2^1 3^1 43^1$	-	Y	N	N	-	-16	1	0	1.0000000	_	71	1227	-1156
259	$7^{1}37^{1}$	-	Y	N	N	-	5	1	0	1.0000000	_	76	1232	-1156
260	$2^25^113^1$	-	N	N	Y	-	30	1	14	1.1666667	-	106	1262	-1156
261	3^229^1	-	N	N	Y	-	-7	1	2	1.2857143	-	99	1262	-1163
262	$2^{1}131^{1}$	-	Y	N	N	-	5	1	0	1.0000000	-	104	1267	-1163
263	263 ¹	-	Y	Y	N	-	-2	1	0	1.0000000	-	102	1267	-1165
264	$2^{3}3^{1}11^{1}$	-	N	N	Y	-	-48	1	32	1.3333333	-	54	1267	-1213
265	$5^{1}53^{1}$	-	Y	N	N	-	5	1	0	1.0000000	-	59	1272	-1213
266	$2^{1}7^{1}19^{1}$	-	Y	N	N	-	-16	1	0	1.0000000	_	43	1272	-1229
267	$3^{1}89^{1}$	-	Y	N	N	-	5_	1	0	1.0000000	_	48	1277	-1229
268	$2^{2}67^{1}$	-	N	N	Y	_	-7	1	2	1.2857143	_	41	1277	-1236
269	269^{1} $2^{1}3^{3}5^{1}$	-	Y	Y	N	-	-2	1	0	1.0000000	-	39	1277	-1238
270	$2^{1}3^{3}5^{1}$ 271^{1}	-	N	N	Y	_	-48	1	32	1.3333333	-	-9	1277	-1286
271	271^{4} $2^{4}17^{1}$	-	Y	Y	N	-	-2	1	0	1.0000000	-	-11	1277	-1288
272	$3^{1}7^{1}13^{1}$	_	N Y	N N	Y N	_	-11 -16	1 1	6 0	1.8181818 1.0000000	_	$-22 \\ -38$	1277 1277	-1299 -1315
273	$2^{1}137^{1}$	_	Y	N N	N	_	5 5	1	0	1.0000000	_	-38 -33	1277	-1315 -1315
274	$5^{2}11^{1}$	_	N N	N	Y	_	-7	1	2	1.2857143	_	-33 -40	1282	-1313 -1322
276	$2^{2}3^{1}23^{1}$	-	N N	N N	Y	_	30	1	14	1.1666667		-40 -10	1312	-1322 -1322
277	277^{1}	_	Y	Y	N	_	-2	1	0	1.0000007	_	-10 -12	1312	-1322 -1324
1 211	211	1	1 *	1	-11			±	3	1.0000000	l	1 12	1012	1024

		1								$\sum_{d n} C_{\Omega(d)}(d)$				
n	Primes		Sqfree	PPower	Ŝ		$g^{-1}(n)$	$\lambda(n)\operatorname{sgn}(g^{-1}(n))$	$\lambda(n)g^{-1}(n) - \hat{f}_1(n)$	$\frac{a n}{ g^{-1}(n) }$		$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
278	$2^{1}139^{1}$	-	Y	N	N	-	5	1	0	1.0000000	-	-7	1317	-1324
279	3^231^1	-	N	N	Y	-	-7	1	2	1.2857143	-	-14	1317	-1331
280	$2^{3}5^{1}7^{1}$	-	N	N	Y	_	-48	1	32	1.3333333	-	-62	1317	-1379
281	281^{1} $2^{1}3^{1}47^{1}$	_	Y	Y	N	-	-2	1	0	1.0000000	_	-64	1317	-1381
282	283 ¹	_	Y Y	N Y	N N	_	-16 -2	1 1	0	1.0000000 1.0000000	_	$-80 \\ -82$	1317 1317	-1397 -1399
284	$2^{2}71^{1}$	_	N	N	Y	_	-2 -7	1	2	1.2857143	_	-82 -89	1317	-1399 -1406
285	$3^{1}5^{1}19^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	_	-105	1317	-1400 -1422
286	$2^{1}11^{1}13^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	_	-121	1317	-1438
287	7^141^1	_	Y	N	N	_	5	1	0	1.0000000	_	-116	1322	-1438
288	$2^{5}3^{2}$	-	N	N	Y	_	-47	1	42	1.7659574	_	-163	1322	-1485
289	17^{2}	-	N	Y	N	_	2	1	0	1.5000000	-	-161	1324	-1485
290	$2^{1}5^{1}29^{1}$	-	Y	N	N	-	-16	1	0	1.0000000	-	-177	1324	-1501
291	$3^{1}97^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	-172	1329	-1501
292	$2^{2}73^{1}$	_	N	N	Y	-	-7	1	2	1.2857143	_	-179	1329	-1508
293 294	293^{1} $2^{1}3^{1}7^{2}$	_	Y N	Y N	N Y	_	$-2 \\ 30$	1 1	0 14	1.0000000 1.1666667	_	-181 -151	1329 1359	-1510 -1510
294	$5^{1}59^{1}$	_	Y	N	N	_	5	1	0	1.0000007	_	-131 -146	1364	-1510 -1510
296	$2^{3}37^{1}$	_	N	N	Y	_	9	1	4	1.5555556	_	-137	1373	-1510
297	$3^{3}11^{1}$	_	N	N	Y	_	9	1	4	1.5555556	_	-128	1382	-1510
298	$2^{1}149^{1}$	_	Y	N	N	_	5	1	0	1.0000000	-	-123	1387	-1510
299	13^123^1	_	Y	N	N	_	5	1	0	1.0000000	-	-118	1392	-1510
300	$2^23^15^2$	-	N	N	Y	_	-74	1	58	1.2162162	-	-192	1392	-1584
301	$7^{1}43^{1}$	-	Y	N	N	_	5	1	0	1.0000000	-	-187	1397	-1584
302	$2^{1}151^{1}$	-	Y	N	N	-	5	1	0	1.0000000	-	-182	1402	-1584
303	$3^{1}101^{1}$	_	Y	N	N	_	5	1	0	1.0000000	-	-177	1407	-1584
304	$2^4 19^1$ $5^1 61^1$	-	N	N N	Y	_	-11	1	6 0	1.8181818	_	-188	1407	-1595
305	$2^{1}3^{2}17^{1}$	_	Y N	N N	N Y	_	5 30	1 1	14	1.0000000 1.1666667	_	-183 -153	$1412 \\ 1442$	-1595 -1595
307	307^{1}	_	Y	Y	N	_	-2	1	0	1.0000007	_	-155	1442	-1595 -1597
308	$2^{2}7^{1}11^{1}$	_	N	N	Y	_	30	1	14	1.1666667	_	-125	1472	-1597
309	$3^{1}103^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-120	1477	-1597
310	$2^{1}5^{1}31^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	_	-136	1477	-1613
311	311^{1}	-	Y	Y	N	_	-2	1	0	1.0000000	-	-138	1477	-1615
312	$2^{3}3^{1}13^{1}$	-	N	N	Y	-	-48	1	32	1.3333333	-	-186	1477	-1663
313	313 ¹	-	Y	Y	N	_	-2	1	0	1.0000000	-	-188	1477	-1665
314	$2^{1}157^{1}$ $3^{2}5^{1}7^{1}$	_	Y	N	N	-	5	1	0	1.0000000	-	-183	1482	-1665
315 316	$2^{2}79^{1}$	_	N N	N N	Y Y	_	$\frac{30}{-7}$	1 1	$\frac{14}{2}$	1.1666667 1.2857143	_	-153 -160	1512 1512	-1665 -1672
317	317^{1}	_	Y	Y	N	_	-7 -2	1	0	1.0000000	_	-160 -162	1512	-1672 -1674
318	$2^{1}3^{1}53^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	_	-178	1512	-1690
319	$11^{1}29^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-173	1517	-1690
320	$2^{6}5^{1}$	_	N	N	Y	_	-15	1	10	2.3333333	_	-188	1517	-1705
321	3^1107^1	-	Y	N	N	_	5	1	0	1.0000000	-	-183	1522	-1705
322	$2^{1}7^{1}23^{1}$	-	Y	N	N	_	-16	1	0	1.0000000	-	-199	1522	-1721
323	$17^{1}19^{1}$	-	Y	N	N	_	5	1	0	1.0000000	-	-194	1527	-1721
324	$2^{2}3^{4}$ $5^{2}13^{1}$	_	N	N	Y	-	34	1	29	1.6176471	_	-160	1561	-1721
325 326	$2^{1}163^{1}$	_	N Y	N N	Y N	_	-7	1 1	2 0	1.2857143	_	-167 -162	1561	-1728
327	$3^{1}109^{1}$	_	Y	N	N	_	5 5	1	0	1.0000000 1.0000000	_	-162 -157	1566 1571	-1728 -1728
328	$2^{3}41^{1}$	_	N	N	Y	_	9	1	4	1.5555556	_	-148	1580	-1728 -1728
329	$7^{1}47^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	-143	1585	-1728
330	$2^{1}3^{1}5^{1}11^{1}$	_	Y	N	N	_	65	1	0	1.0000000	-	-78	1650	-1728
331	331 ¹	-	Y	Y	N	-	-2	1	0	1.0000000	-	-80	1650	-1730
332	$2^{2}83^{1}$	-	N	N	Y	_	-7	1	2	1.2857143	-	-87	1650	-1737
333	3^237^1	-	N	N	Y	-	-7	1	2	1.2857143	-	-94	1650	-1744
334	$2^{1}167^{1}$	-	Y	N	N	_	5	1	0	1.0000000	-	-89 84	1655	-1744
335	$5^{1}67^{1}$ $2^{4}3^{1}7^{1}$	_	Y N	N N	N Y	_	5 70	1 1	0 54	1.0000000	_	-84 -14	1660 1730	$-1744 \\ -1744$
337	337 ¹		Y	Y	N	_	-2	1	54 0	1.5000000 1.0000000	_	-14 -16	1730	-1744 -1746
338	$2^{1}13^{2}$	_	N N	N N	Y	_	-2 -7	1	2	1.2857143	_	-16 -23	1730	-1740 -1753
339	$3^{1}113^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-18	1735	-1753 -1753
340	$2^25^117^1$	_	N	N	Y	_	30	1	14	1.1666667	-	12	1765	-1753
341	$11^{1}31^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	17	1770	-1753
342	$2^{1}3^{2}19^{1}$	-	N	N	Y	-	30	1	14	1.1666667	-	47	1800	-1753
343	7^{3}	-	N	Y	N	_	-2	1	0	2.0000000	-	45	1800	-1755
344	$2^{3}43^{1}$	-	N	N	Y	_	9	1	4	1.5555556	-	54	1809	-1755
345	$3^{1}5^{1}23^{1}$	-	Y	N	N	-	-16	1	0	1.0000000	-	38	1809	-1771
346	$2^{1}173^{1}$	-	Y	N	N	_	5	1	0	1.0000000	-	43	1814	-1771
347	347^{1} $2^{2}3^{1}29^{1}$	_	Y N	Y N	N Y	_	$-2 \\ 30$	1 1	0 14	1.0000000 1.1666667	_	$\frac{41}{71}$	1814 1844	-1773 -1773
348	349^{1}		Y	Y	N	_	-2	1	0	1.0000000	_	69	1844	-1773 -1775
350	$2^{1}5^{2}7^{1}$	_	N N	N N	Y	_	30	1	14	1.1666667	_	99	1874	-1775 -1775
L'	- '	1	1			1		i 						

1972 1973 1974 1975						_		1		1. ^	$\sum_{d n} C_{\Omega(d)}(d)$		1	1	1
323 323 324 1					PPower	Ŝ		$g^{-1}(n)$			$ g^{-1}(n) $		$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
SSS SSS				1											
S55 S ² 1				1											
				1											
1305	355		-	Y	N	N	-	5	1	0	1.0000000	-	108	1901	-1793
			_	1			_	-7				-			
550 250 27				1											
1960 29 29 29 29 29 29 20 20				1			l								
362 2 19				1											
$ \begin{vmatrix} 369 & 2^{2}713^{1} & - & N & N & V & - & -7 & 1 & 2 & 1.2877143 & - & 233 & 20108 & -1825 \\ 365 & 2^{2}713^{1} & - & V & N & N & - & 5 & 1 & 0 & 1.000000 & - & 268 & 20103 & -1825 \\ 365 & 2^{2}3^{1}41^{1} & - & V & N & N & - & 5 & 1 & 0 & 1.000000 & - & 262 & 2013 & -1825 \\ 367 & 307^{1} & - & V & V & N & - & -2 & 1 & 1 & 0 & 1.000000 & - & 262 & 2013 & -1825 \\ 368 & 2^{2}3^{1}4^{1} & - & V & N & N & - & -2 & 1 & 1 & 0 & 1.000000 & - & 262 & 2013 & -1825 \\ 369 & 2^{2}3^{1}4^{1} & - & V & N & N & - & -7 & 1 & 0 & 1.000000 & - & 260 & 2010 & -1865 \\ 370 & 2^{2}3^{1}3^{1} & - & V & N & N & - & -7 & 1 & 0 & 1.000000 & - & 260 & 2010 & -1865 \\ 370 & 2^{2}3^{1}3^{1} & - & V & N & N & - & -16 & 1 & 0 & 1.000000 & - & 260 & 2010 & -1865 \\ 370 & 2^{2}3^{1}3^{1} & - & V & N & N & - & -16 & 1 & 0 & 1.000000 & - & 260 & 2010 & -1865 \\ 371 & 7^{1}3^{2}3^{3} & - & V & N & N & - & -5 & 1 & 0 & 1.000000 & - & 261 & 2010 & -1875 \\ 372 & 2^{2}3^{1}3^{1} & - & V & N & N & - & -6 & 1 & 0 & 1.000000 & - & 261 & 2010 & -1875 \\ 373 & 373^{1} & - & V & N & N & - & -6 & 1 & 0 & 1.000000 & - & 261 & 2010 & -1875 \\ 373 & 373^{1} & - & V & N & N & - & -6 & 1 & 0 & 1.000000 & - & 261 & 2010 & -1875 \\ 376 & 2^{1}3^{1}2^{1} & - & N & N & V & - & 0 & 1 & 0 & 1.000000 & - & 261 & 2010 & -1875 \\ 377 & 2^{1}1^{1}2^{1}2^{1} & - & V & N & N & - & -6 & 1 & 0 & 1.000000 & - & 261 & 2010 & -1875 \\ 378 & 2^{1}3^{1}2^{1} & - & V & N & N & - & -6 & 1 & 0 & 1.000000 & - & 261 & 2010 & -1875 \\ 378 & 2^{1}3^{1}2^{1} & - & V & N & N & - & 5 & 1 & 0 & 1.000000 & - & 261 & 2010 & -1875 \\ 378 & 2^{1}3^{1}2^{1} & - & V & N & N & - & 5 & 1 & 0 & 1.000000 & - & 261 & 2011 & -1875 \\ 379 & 3^{7}1^{1} & - & V & N & N & - & 5 & 1 & 0 & 1.000000 & - & 261 & 2011 & -1875 \\ 379 & 3^{7}1^{1} & - & V & N & N & - & 5 & 1 & 0 & 1.000000 & - & 261 & 2011 & -1875 \\ 379 & 3^{7}1^{1} & - & V & N & N & - & 5 & 1 & 0 & 1.000000 & - & 262 & 2011 & -1875 \\ 389 & 2^{1}2^{1}1^{1} & - & V & N & N & - & 5 & 1 & 0 & 1.000000 & - & 262 & 2011 & -1875 \\ 389 & 2^{1}2^{1}1^{1} & - & V $				1											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	362		_	Y	N	N	_	5	1	0	1.0000000	-	240	2058	-1818
366 23 d 61 73 74 75 75 75 75 75 75 75	363		_	1			_				1.2857143	-	233	2058	-1825
$ \begin{vmatrix} 366 & 2^{12}40^{12} & - & Y & N & N & - & -16 \\ 367 & 367^{1} & - & Y & N & N & - & -2 \\ 368 & 2^{1}23^{1} & - & N & N & Y & - & -11 \\ 368 & 2^{1}23^{1} & - & N & N & Y & - & -11 \\ 377 & 2^{1}3^{1}2^{1} & - & N & N & Y & - & -16 \\ 370 & 2^{1}3^{1}3^{1} & - & N & N & Y & - & -16 \\ 370 & 2^{1}3^{1}3^{1} & - & N & N & Y & - & -16 \\ 370 & 2^{1}3^{1}3^{1} & - & N & N & Y & - & -16 \\ 370 & 2^{1}3^{1}3^{1} & - & N & N & Y & - & -16 \\ 370 & 2^{1}3^{1}3^{1} & - & N & N & Y & - & -16 \\ 371 & 2^{1}3^{1}3^{1} & - & N & N & Y & - & -2 \\ 373 & 3^{1}3^{2} & - & Y & N & N & - & -2 \\ 373 & 2^{1}1^{1}1^{1} & - & Y & N & N & - & -2 \\ 373 & 2^{1}1^{1}1^{1} & - & Y & N & N & - & -2 \\ 373 & 2^{1}1^{1}1^{1} & - & Y & N & N & - & -16 \\ 375 & 2^{1}1^{1}1^{1} & - & Y & N & N & - & -16 \\ 376 & 2^{1}1^{1}1^{1}1^{1} & - & Y & N & N & - & -16 \\ 377 & 2^{1}2^{1}1^{1}1^{1} & - & Y & N & N & - & -16 \\ 378 & 2^{1}2^{1}1^{1}1^{1} & - & Y & N & N & - & -5 \\ 376 & 2^{1}2^{1}1^{1}1^{1} & - & Y & N & N & - & -5 \\ 376 & 2^{1}2^{1}1^{1} & - & Y & N & N & - & 5 \\ 377 & 2^{1}3^{1}3^{2} & - & N & N & Y & - & 9 \\ 378 & 2^{1}2^{1}1^{1} & - & Y & N & N & - & 5 \\ 379 & 2^{1}3^{1}3^{2} & - & N & N & Y & - & -48 \\ 389 & 2^{2}1^{1}3^{1} & - & Y & N & N & - & 5 \\ 381 & 3^{1}2^{1}2^{1} & - & N & N & Y & - & -48 \\ 381 & 3^{1}2^{1}2^{1} & - & N & N & Y & - & -48 \\ 381 & 3^{1}2^{1}2^{1} & - & N & N & Y & - & -2 \\ 1 & 0 & 1.0000000 & - & 266 & 2151 & -1650 \\ 382 & 2^{1}13^{1} & - & Y & N & N & - & 5 \\ 1 & 0 & 1.0000000 & - & 266 & 2151 & -1650 \\ 383 & 3^{2}3^{1}3^{1} & - & N & N & Y & - & -16 \\ 383 & 3^{1}3^{1}3^{1} & - & N & N & Y & - & -17 \\ 384 & 3^{1}2^{1}1^{1} & - & Y & N & N & - & 5 \\ 1 & 0 & 1.0000000 & - & 266 & 2161 & -2160 \\ 384 & 2^{1}13^{1} & - & Y & N & N & - & 5 \\ 1 & 0 & 1.0000000 & - & 266 & 2191 & -1640 \\ 383 & 3^{2}2^{1}1^{1} & - & Y & N & N & - & 5 \\ 1 & 0 & 1.0000000 & - & 266 & 2211 & -1640 \\ 384 & 3^{1}2^{1}1^{1} & - & Y & N & N & - & 5 \\ 1 & 0 & 1.0000000 & - & 266 & 2210 & -2161 \\ 385 & 3^{1}2^{1}1^{1} & - & Y & N & N & - & 5 \\ 1 & 0 & 1.$				1											
$ \begin{vmatrix} 367 & 367 \\ 368 & 2^{1}23^{3} \\ 369 & 2^{1}23^{3} \\ 370 & 2^{1}5^{1}3^{2} \\ 370 & 2^{1}5^{1}3^{2} \\ 371 & 7^{1}53^{1} \\ 371 & 7^{1}53^{1} \\ 372 & 7^{1}53^{1} \\ 373 & 2^{1}5^{1}3^{2} \\ 374 & 7^{1}53^{1} \\ 374 & 7^{1}53^{1} \\ 375 & 3^{1}5^{2} \\ 376 & 2^{1}5^{1}3^{2} \\ 377 & 2^{1}5^{1}3^{2} \\ 378 & 2^{1}1^{1}2^{2} \\ 379 & 2^{1}1^{1}2^{2} \\ 379 & 2^{1}1^{1}2^{2} \\ 379 & 2^{1}1^{1}2^{2} \\ 379 & 2^{1}1^{1}2^{2} \\ 379 & 2^{1}1^{1}2^{2} \\ 379 & 2^{1}1^{1}2^{2} \\ 379 & 2^{1}1^{1}2^{2} \\ 379 & 2^{1}1^{1}2^{2} \\ 379 & 2^{1}1^{1}2^{2} \\ 370 & 2^{1}1^{1}2^{2} \\ 370 & 2^{1}1^{1}2^{2} \\ 370 & 2^{1}1^{1}2^{2} \\ 370 & 2^{1}1^{1}2^{2} \\ 370 & 2^{1}1^{1}2^{2} \\ 370 & 2^{1}1^{1}2^{2} \\ 370 & 2^{1}1^{1}2^{2} \\ 370 & 2^{1}1^{1}2^{2} \\ 370 & 2^{1}1^{1}2^{2} \\ 370 & 2^{1}1^{1}2^{2} \\ 370 & 2^{1}1^{1}2^{2} \\ 370 & 2^{1}1^{1}2^{2} \\ 370 & 2^{1}1^{1}2^{2} \\ 370 & 3^{1}1^{1}2^{2} $				1											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1											
$ \begin{vmatrix} 370 & 2^{1} e^{1} 37^{1} & & & Y & N & N & - & -16 \\ 371 & 7^{1} s^{3} 1 & & & V & N & N & - & -5 \\ 372 & 2^{2} s^{3} 31^{3} & & & V & N & N & - & -5 \\ 373 & 37^{3} 3^{3} & & & & V & N & N & - & -16 \\ 374 & 2^{2} 1 1^{1} 2^{7} & & & N & N & V & - & 30 \\ 374 & 2^{2} 1 1^{1} 2^{7} & & & V & N & N & - & -16 \\ 374 & 2^{2} 1 1^{1} 2^{7} & & & V & N & N & - & -16 \\ 374 & 2^{2} 1 1^{1} 2^{7} & & & V & N & N & - & -16 \\ 375 & 3^{3} 3^{3} & & & N & N & V & - & 0 \\ 376 & 3^{3} 3^{3} & & & N & N & V & - & 0 \\ 377 & 3^{3} 3^{3} & & & N & N & V & - & 0 \\ 378 & 2^{3} 2^{3} 2^{3} & & N & N & V & - & 0 \\ 379 & 3^{3} 2^{3} 2^{3} & & N & N & V & - & 0 \\ 379 & 3^{3} 2^{3} 2^{3} & & N & N & V & - & 0 \\ 379 & 3^{3} 2^{3} 2^{3} & & N & N & V & - & 0 \\ 379 & 3^{2} 2^{3} 2^{3} & & N & N & V & - & 0 \\ 380 & 2^{3} 2^{3} 2^{3} 2^{3} & & N & N & V & - & -48 \\ 379 & 3^{2} 2^{3} 2^{3} & & N & N & V & - & -48 \\ 379 & 3^{2} 2^{3} 2^{3} & & N & N & V & - & -48 \\ 380 & 2^{2} 2^{3} 10^{3} & & N & N & V & - & -2 \\ 380 & 2^{2} 2^{3} 10^{3} & & - & N & N & V & - & -2 \\ 381 & 3^{3} 1^{2} 2^{3} & & N & N & N & - & -5 \\ 382 & 2^{3} 10^{3} & & - & V & N & N & - & 5 \\ 383 & 2^{3} 1^{2} 1^{2} & & N & N & N & - & -2 \\ 383 & 3^{3} 1^{2} 1^{2} & & V & N & N & - & 5 \\ 383 & 3^{3} 2^{3} 1^{2} & & V & N & N & - & 5 \\ 383 & 3^{3} 2^{3} & & - & V & N & N & - & 5 \\ 383 & 3^{3} 2^{3} & & - & V & N & N & - & -2 \\ 383 & 383^{3} & & - & V & V & N & - & -2 \\ 384 & 2^{3} 1^{3} & & N & N & V & - & -7 \\ 385 & 2^{2} 10^{3} & & - & N & N & V & - & -7 \\ 389 & 389^{3} & & - & V & N & N & - & -16 \\ 389 & 389^{3} & & - & V & N & N & - & -16 \\ 389 & 389^{3} & & - & V & N & N & - & -16 \\ 390 & 2^{3} 1^{3} 13^{3} & & - & V & N & N & - & -2 \\ 390 & 2^{3} 1^{3} 13^{3} & & - & V & N & N & - & -2 \\ 390 & 2^{3} 1^{3} 13^{3} & & - & V & N & N & - & -2 \\ 390 & 2^{3} 1^{3} 13^{3} & & - & V & N & N & - & -16 \\ 390 & 3^{3} 1^{3} 12^{3} & & N & N & V & - & -7 \\ 390 & 2^{3} 1^{3} 13^{3} & & - & V & N & N & - & -16 \\ 390 & 3^{3} 1^{3} 12^{3} & & N & N & V & - & -7 \\ 400 & 2^{3} 1^{3} 12^$				1											
$ \begin{vmatrix} 371 & 2^{7} & 3^{1} & 1 & N & N & N & V & -3 & 0 & 1 & 1 & 1 & 10000000 & -221 & 2098 & -1877 \\ 373 & 373^{1} & -1 & N & N & V & V & N & -2 & 1 & 0 & 1.0000000 & -249 & 2128 & -1879 \\ 375 & 373^{2} & 2^{1} & 1^{1} & 1^{7} & -1 & V & N & N & V & -9 & 1 & 4 & 1.5505566 & -221 & 2128 & -1879 \\ 375 & 3^{1} & 5^{2} & -1 & N & N & V & -9 & 1 & 4 & 1.5505566 & -221 & 2146 & -1896 \\ 375 & 3^{1} & 5^{2} & -1 & N & N & V & -9 & 1 & 4 & 1.5505566 & -221 & 2146 & -1896 \\ 377 & 13^{1} & 2^{1} & -1 & N & N & V & -9 & 1 & 4 & 1.5505566 & -221 & 2146 & -1896 \\ 377 & 13^{1} & 2^{1} & -1 & N & N & V & -9 & 1 & 4 & 1.5505566 & -221 & 2146 & -1896 \\ 377 & 13^{1} & 2^{1} & -1 & N & N & V & -9 & -488 & 1 & 32 & 1.3333333 & -288 & 2151 & -1848 \\ 378 & 2^{1} & 2^{1} & -1 & N & N & V & -9 & -488 & 1 & 32 & 1.3333333 & -288 & 2151 & -1848 \\ 389 & 39^{2} & 2^{1} & 1^{1} & -1 & V & N & N & -9 & -9 & 1 & 0 & 1.0000000 & -246 & 2161 & -1846 \\ 381 & 3^{1} & 2^{1} & -1 & N & N & V & -9 & -9 & 1 & 0 & 1.0000000 & -246 & 2161 & -1846 \\ 382 & 2^{1} & 19^{1} & -1 & V & N & N & -9 & -5 & 1 & 0 & 1.0000000 & -246 & 2191 & -1946 \\ 384 & 2^{3} & -1 & N & N & V & -17 & 1 & 12 & 2.888233 & -261 & 2208 & -1947 \\ 384 & 2^{3} & -1 & N & N & V & -17 & 1 & 12 & 2.888233 & -261 & 2208 & -1947 \\ 385 & 3^{2} & 3^{1} & -1 & N & N & V & -77 & 1 & 2 & 1.2857143 & -226 & 2213 & -1950 \\ 386 & 2^{1} & 3^{1} & -1 & N & N & V & -77 & 1 & 2 & 1.2857143 & -226 & 2213 & -1950 \\ 386 & 2^{2} & 3^{1} & -1 & N & N & V & -77 & 1 & 2 & 1.2857143 & -226 & 2213 & -1950 \\ 387 & 3^{2} & 3^{3} & -1 & N & N & N & -65 & 1 & 0 & 1.0000000 & -244 & 2208 & -1948 \\ 388 & 3^{2} & 3^{2} & -1 & N & N & V & -77 & 1 & 2 & 1.2857143 & -226 & 2213 & -1950 \\ 388 & 2^{2} & 3^{1} & -1 & N & N & N & -65 & 1 & 0 & 1.0000000 & -245 & 2208 & -1968 \\ 389 & 389 & 389^{1} & -1 & N & N & N & -65 & 1 & 0 & 1.0000000 & -244 & 2213 & -1977 \\ 380 & 2^{2} & 3^{1} & 3^{1} & -1 & N & N & N & -65 & 1 & 0 & 1.0000000 & -244 & 2213 & -1977 \\ 380 & 2^{2} & 3^{1} & -1 & N & N & N & -65 & 1 & 0 & 1.0000000 & -244$	369		_	N	N	Y	_	-7	1	2	1.2857143	-	232	2093	-1861
$ \begin{vmatrix} 372 & 2^2 + 3 + 3 \\ 373 & 3^{-3} & - & & & & & & & & & & & & & & & & & $	370		_	1			-	-16	1		1.0000000	-	216	2093	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1											
$ \begin{vmatrix} 374 & 2^{1} & 1^{1} & 7^{1} & - & Y & N & N & - & -16 \\ 376 & 3^{1} & 3^{2} & - & N & N & Y & - & 9 & 1 & 4 & 1.555556 & - & 242 & 2137 & -1898 \\ 376 & 3^{2} & 3^{2} & - & N & N & Y & - & 9 & 1 & 4 & 1.555556 & - & 242 & 2137 & -1898 \\ 377 & 13^{1} & 29^{1} & - & N & N & Y & - & 9 & 1 & 4 & 1.555556 & - & 242 & 2137 & -1898 \\ 378 & 2^{1} & 3^{2} & - & Y & N & N & Y & - & - & - & 48 & 1 & 32 & 1.333333 & - & 268 & 2151 & -1943 \\ 378 & 3^{2} & 3^{2} & - & N & N & Y & - & - & - & 48 & 1 & 32 & 1.333333 & - & 208 & 2151 & -1943 \\ 380 & 2^{2} & 5^{1} & 1^{1} & - & N & N & Y & - & 30 & 1 & 14 & 1.166667 & - & 236 & 2181 & -1945 \\ 380 & 2^{2} & 5^{1} & 1^{2} & - & N & N & Y & - & 30 & 1 & 14 & 1.166667 & - & 236 & 2181 & -1945 \\ 382 & 2^{1} & 191^{2} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 241 & 2186 & -1945 \\ 383 & 3^{2} & - & Y & N & N & N & - & - & - & 1 & 0 & 1.0000000 & - & 246 & 2191 & -1945 \\ 383 & 383^{1} & - & Y & N & N & N & - & - & - & 1 & 0 & 1.0000000 & - & 246 & 2191 & -1945 \\ 383 & 383^{1} & - & Y & N & N & - & - & - & 1 & 0 & 1.0000000 & - & 246 & 2191 & -1945 \\ 385 & 2^{2} & 1^{1} & 1 & N & N & N & - & - & - & 1 & 0 & 1.0000000 & - & 246 & 2191 & -1945 \\ 386 & 2^{2} & 1^{2} & 1^{1} & N & N & N & - & - & - & 1 & 0 & 1.0000000 & - & 246 & 2191 & -1945 \\ 387 & 2^{2} & 2^{1} & 1 & N & N & N & - & - & - & 1 & 0 & 1.0000000 & - & 246 & 2191 & -1945 \\ 388 & 2^{2} & 2^{1} & 1 & N & N & N & - & - & - & 1 & 0 & 1.0000000 & - & 246 & 2219 & -1945 \\ 389 & 2^{2} & 2^{1} & 1 & N & N & N & - & - & - & 1 & 2 & 1.2887143 & - & 248 & 2213 & -1979 \\ 389 & 2^{2} & 2^{1} & 1 & N & N & N & N & - & - & - & 1 & 2 & 1.2887143 & - & 248 & 2213 & -1979 \\ 390 & 2^{2} & 2^{1} & 2^{1} & N & N & N & - & - & 5 & 1 & 0 & 1.0000000 & - & 299 & 2278 & -1979 \\ 391 & 17^{1} & 2^{1} & 1 & N & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 299 & 2278 & -1979 \\ 393 & 2^{1} & 2^{1} & 2^{1} & N & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 299 & 2238 & -2002 \\ 390 & 2^{1} & 2^{1} & 2^{1} & N & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 299 &$				1											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1			l								
$ \begin{vmatrix} 376 & 2^347^1 & - & N & N & V & - & 9 & 1 \\ 377 & 13^123^1 & - & V & N & N & N & - & 5 \\ 378 & 2^13^27^1 & - & N & N & V & - & -48 \\ 399 & 2^29^119^1 & - & N & N & V & - & -2 \\ 319 & 1 & V & V & N & N & - & 5 \\ 318 & 3^112^1 & - & N & N & V & - & 30 \\ 318 & 3^112^1 & - & V & N & N & - & 5 \\ 319 & 1 & V & N & N & - & 5 \\ 321 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$				1			l								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	378	$2^{1}3^{3}7^{1}$	_	N	N	Y		-48	1	32	1.3333333	-	208	2151	-1943
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			_	1			-					-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1											
$ \begin{vmatrix} 384 & 2^73^1 & - & N & N & Y & - & 17 \\ 385 & 5^17^11^1 & - & Y & N & N & - & -16 \\ 386 & 2^1193^1 & - & Y & N & N & - & -5 \\ 387 & 3^243^1 & - & N & N & Y & - & -7 \\ 388 & 2^297^1 & - & N & N & Y & - & -7 \\ 389 & 2^297^1 & - & N & N & Y & - & -7 \\ 389 & 2^297^1 & - & N & N & Y & - & -7 \\ 389 & 2^297^1 & - & N & N & Y & - & -7 \\ 389 & 2^297^1 & - & N & N & Y & - & -7 \\ 389 & 1 & - & Y & N & N & - & -2 \\ 390 & 2^13^6 \cdot 1^3 \cdot 1^3 & - & Y & N & N & - & 65 \\ 390 & 2^13^6 \cdot 1^3 \cdot 1^3 & - & Y & N & N & - & 65 \\ 391 & 1^7 \cdot 2^3 \cdot 1^3 & - & Y & N & N & - & 55 \\ 391 & 1^7 \cdot 2^3 \cdot 1^3 & - & Y & N & N & - & 55 \\ 392 & 2^97^2 & - & N & N & Y & - & -2^3 & 1 \\ 393 & 1^2 \cdot 1^2 \cdot 3^3 & - & Y & N & N & - & 55 \\ 392 & 2^97^3 & - & N & N & Y & - & -2^3 & 1 \\ 393 & 1^2 \cdot 1^2 \cdot 3^3 & - & Y & N & N & - & 55 \\ 394 & 2^1 \cdot 1^9 \cdot 1^4 & - & Y & N & N & - & 55 \\ 394 & 2^1 \cdot 1^9 \cdot 1^4 & - & Y & N & N & - & 55 \\ 396 & 2^2 \cdot 3^2 \cdot 1^3 & - & Y & N & N & - & 55 \\ 396 & 2^2 \cdot 3^2 \cdot 1^3 & - & Y & N & N & - & 55 \\ 396 & 2^2 \cdot 3^2 \cdot 1^3 & - & Y & N & N & - & 55 \\ 396 & 2^2 \cdot 3^2 \cdot 1^3 & - & Y & N & N & - & 55 \\ 396 & 2^2 \cdot 3^2 \cdot 1^3 & - & Y & N & N & - & 55 \\ 396 & 2^2 \cdot 3^2 \cdot 1^3 & - & Y & N & N & - & 55 \\ 398 & 2^1 \cdot 1^9 \cdot 1 & - & Y & N & N & - & 55 \\ 398 & 2^1 \cdot 1^9 \cdot 1 & - & Y & N & N & - & 55 \\ 398 & 2^1 \cdot 1^9 \cdot 1 & - & Y & N & N & - & 55 \\ 398 & 2^1 \cdot 1^9 \cdot 1 & - & Y & N & N & - & 55 \\ 398 & 2^1 \cdot 1^9 \cdot 1 & - & Y & N & N & - & 55 \\ 398 & 2^1 \cdot 1^9 \cdot 1 & - & Y & N & N & - & 55 \\ 1 & 0 & 1.0000000 & - & 226 & 2298 & -2002 \\ 398 & 2^2 \cdot 1^9 \cdot 1^3 & - & Y & N & N & - & -2 \\ 1 & 0 & 1.0000000 & - & 226 & 2298 & -2002 \\ 398 & 2^3 \cdot 1^3 \cdot 1^3 & - & Y & N & N & - & -5 \\ 1 & 0 & 1.0000000 & - & 226 & 2298 & -2002 \\ 398 & 2^3 \cdot 1^3 \cdot 1^3 & - & Y & N & N & - & -7 \\ 1 & 0 & 1.0000000 & - & 226 & 2298 & -2002 \\ 398 & 2^3 \cdot 1^3 \cdot 1^3 & - & Y & N & N & - & -16 \\ 1 & 0 & 1.0000000 & - & 226 & 2298 & -2002 \\ 398 & 2^3 \cdot 1^3 \cdot 1^3 & - & Y & N & N & - & -16 \\ 1 & 0 & 1.0000000 & - & 226 & 2298 & -2002 \\ 398 & 2^3 \cdot 1^3 \cdot 1^3 & - & Y & N & N & - & -16 \\ 1$				1											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1			l								
$ \begin{vmatrix} 388 & 3^2 & 9^2 & 1 & & & & & & & & & & & & & & & & & $		$5^17^111^1$	_	1	N	N	_	-16	1			-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	386		_	Y	N	N	_	5	1	0	1.0000000	-	250	2213	-1963
$ \begin{vmatrix} 388 & 389^1 & - & Y & Y & N & - & -2 \\ 390 & 2^13^15^13^1 & - & Y & N & N & - & 65 \\ 391 & 17^123^1 & - & Y & N & N & - & 65 \\ 391 & 17^123^1 & - & Y & N & N & - & 55 \\ 392 & 2^27^2 & - & N & N & Y & - & -23 \\ 393 & 3^131^3 & - & Y & N & N & - & 5 \\ 393 & 3^131^3 & - & Y & N & N & - & 5 \\ 393 & 3^131^3 & - & Y & N & N & - & 5 \\ 393 & 3^131^3 & - & Y & N & N & - & 5 \\ 395 & 5^179^1 & - & Y & N & N & - & 5 \\ 396 & 2^23^211^1 & - & N & N & Y & - & -24 \\ 396 & 2^23^211^1 & - & N & N & Y & - & -74 \\ 397 & 397^1 & - & Y & N & N & - & 5 \\ 398 & 2^1199^1 & - & Y & N & N & - & 5 \\ 398 & 2^1199^1 & - & Y & N & N & - & -2 \\ 398 & 2^1199^1 & - & Y & N & N & - & -2 \\ 398 & 2^1199^1 & - & Y & N & N & - & -2 \\ 399 & 3^17^119^1 & - & Y & N & N & - & -2 \\ 399 & 3^17^119^1 & - & Y & N & N & - & -16 \\ 307 & 307^1 & - & Y & N & N & - & -5 \\ 309 & 3^17^119^1 & - & Y & N & N & - & -16 \\ 310 & 400 & 2^45^2 & - & N & N & Y & - & -16 \\ 400 & 2^45^2 & - & N & N & Y & - & -22 \\ 401 & 401^1 & - & Y & Y & N & N & - & -16 \\ 402 & 2^13^10^1 & - & Y & N & N & - & -16 \\ 404 & 2^2101^1 & - & Y & N & N & - & -5 \\ 51 & 0 & 1.0000000 & - & 225 \\ 2337 & -2012 \\ 403 & 3^13^31 & - & Y & N & N & - & -16 \\ 1 & 0 & 1.0000000 & - & 225 \\ 2337 & -2012 \\ 404 & 2^2101^1 & - & N & N & Y & - & -7 \\ 41 & 2 & 1 & 2 & 1.8857143 \\ 406 & 2^17^129^1 & - & Y & N & N & - & -16 \\ 408 & 2^33^17^1 & - & Y & N & N & - & -16 \\ 408 & 2^33^17^1 & - & Y & N & N & - & -16 \\ 409 & 409^1 & - & Y & N & N & - & -16 \\ 409 & 409^1 & - & Y & N & N & - & -16 \\ 410 & 2^15^141^1 & - & Y & N & N & - & -16 \\ 411 & 3^133^1 & - & Y & N & N & - & -16 \\ 412 & 2^2103^1 & - & N & N & Y & - & -2 \\ 411 & 3^133^1 & - & Y & N & N & - & -16 \\ 410 & 2^15^141^1 & - & Y & N & N & - & -16 \\ 410 & 2^15^141^1 & - & Y & N & N & - & -16 \\ 411 & 3^133^1 & - & Y & N & N & - & -16 \\ 412 & 2^2103^1 & - & N & N & Y & - & -2 \\ 411 & 3^133^1 & - & Y & N & N & - & -5 \\ 411 & 3^133^1 & - & Y & N & N & - & 5 \\ 411 & 3^133^1 & - & Y & N & N & - & 5 \\ 412 & 2^2103^1 & - & N & N & Y & - & -2 \\ 413 & 3^3^47^1 & - &$				1											
$ \begin{vmatrix} 390 & 2^13^15^12^1 & - & Y & N & N & - & 65 \\ 391 & 17^12^3^1 & - & Y & N & N & - & 5 \\ 392 & 2^37^2 & - & N & N & Y & - & -23 \\ 393 & 3^113^{11} & - & Y & N & N & - & 5 \\ 394 & 2^119^7 & - & Y & N & N & - & 5 \\ 395 & 1 & 0 & 1.0000000 & - & 286 & 2288 & -2002 \\ 393 & 3^113^{11} & - & Y & N & N & - & 5 \\ 394 & 2^119^7 & - & Y & N & N & - & 5 \\ 396 & 2^32^{11} & - & Y & N & N & - & 5 \\ 396 & 2^32^{11} & - & N & N & Y & - & -74 \\ 396 & 2^32^{11} & - & N & N & Y & - & -74 \\ 397 & 397^{1} & - & Y & N & N & - & 5 \\ 399 & 3^17^{19} & - & Y & N & N & - & 5 \\ 399 & 3^17^{19} & - & Y & N & N & - & 5 \\ 399 & 3^17^{19} & - & Y & N & N & - & 5 \\ 399 & 3^17^{19} & - & Y & N & N & - & -5 \\ 399 & 3^17^{19} & - & Y & N & N & - & -5 \\ 399 & 3^17^{19} & - & Y & N & N & - & -16 \\ 400 & 2^45^2 & - & N & N & Y & - & -16 \\ 410 & 401^4 & - & Y & Y & N & N & - & -16 \\ 402 & 2^13^167^1 & - & Y & N & N & - & -16 \\ 402 & 2^13^167^1 & - & Y & N & N & - & -16 \\ 402 & 2^13^167^1 & - & Y & N & N & - & -16 \\ 402 & 2^13^167^1 & - & Y & N & N & - & -16 \\ 402 & 2^13^167^1 & - & Y & N & N & - & -16 \\ 402 & 2^13^167^1 & - & Y & N & N & - & -16 \\ 402 & 2^13^167^1 & - & Y & N & N & - & -16 \\ 403 & 13^13^1 & - & Y & N & N & - & -16 \\ 404 & 2^2101^1 & - & N & N & Y & - & -7 \\ 405 & 3^45^1 & - & Y & N & N & - & 5 \\ 406 & 2^17^129^1 & - & Y & N & N & - & 5 \\ 407 & 11^37^1 & - & Y & N & N & - & 5 \\ 408 & 2^3^317^1 & - & Y & N & N & - & 5 \\ 409 & 409^1 & - & Y & N & N & - & 5 \\ 409 & 409^1 & - & Y & N & N & - & 5 \\ 409 & 409^1 & - & Y & N & N & - & 5 \\ 410 & 2^15^141 & - & Y & N & N & - & 5 \\ 400 & 2^15^141 & - & Y & N & N & - & 5 \\ 400 & 2^15^141 & - & Y & N & N & - & 5 \\ 410 & 2^15^141 & - & Y & N & N & - & 5 \\ 410 & 2^15^141 & - & Y & N & N & - & 5 \\ 410 & 2^15^141 & - & Y & N & N & - & 5 \\ 411 & 3^137^1 & - & Y & N & N & - & 5 \\ 411 & 3^137^1 & - & Y & N & N & - & 5 \\ 411 & 3^137^1 & - & Y & N & N & - & 5 \\ 411 & 2^15^241^3 & - & Y & N & N & - & 5 \\ 411 & 2^15^241^3 & - & Y & N & N & - & 5 \\ 411 & 2^15^341 & - & Y & N & N & - & 5 \\ 411 & 2^15^341$			_	1								-			
$ \begin{vmatrix} 391 & 17^123^1 & - & V & N & N & N & - & 5 \\ 392 & 2^37^2 & - & N & N & Y & - & -23 \\ 393 & 3^131^1 & - & Y & N & N & - & 5 \\ 394 & 2^1197^1 & - & Y & N & N & - & 5 \\ 395 & 3^579^1 & - & Y & N & N & - & 5 \\ 396 & 2^32^311^1 & - & Y & N & N & - & 5 \\ 396 & 2^32^311^1 & - & Y & N & N & - & 5 \\ 396 & 2^32^31^1 & - & N & N & Y & - & -74 \\ 397 & 397^1 & - & Y & N & N & - & 5 \\ 397 & 397^1 & - & Y & N & N & - & 5 \\ 398 & 2^1199^1 & - & Y & N & N & - & 5 \\ 398 & 2^1199^1 & - & Y & N & N & - & 5 \\ 398 & 2^1199^1 & - & Y & N & N & - & 5 \\ 399 & 3^17^1 & - & Y & N & N & - & 5 \\ 399 & 3^17^1 & - & Y & N & N & - & - & 1 \\ 400 & 2^45^2 & - & N & N & Y & - & -16 \\ 401 & 401^1 & - & Y & Y & N & - & -2 \\ 402 & 2^13^167^1 & - & Y & N & N & - & -16 \\ 402 & 2^13^167^1 & - & Y & N & N & - & 5 \\ 404 & 2^2101^1 & - & N & N & Y & - & -7 \\ 405 & 3^15^1 & - & Y & N & N & - & 5 \\ 406 & 2^17^229^1 & - & Y & N & N & - & -16 \\ 407 & 11^137^1 & - & Y & N & N & - & -16 \\ 408 & 2^33^17^1 & - & Y & N & N & - & -16 \\ 1 & 0 & 1.0000000 & - & 299 & 2303 & -2094 \\ 401 & 401^1 & - & Y & Y & N & - & -2 \\ 403 & 13^131^1 & - & Y & N & N & - & -16 \\ 404 & 2^2101^1 & - & N & N & Y & - & -7 \\ 405 & 3^15^1 & - & N & N & Y & - & -7 \\ 405 & 3^15^1 & - & N & N & Y & - & -7 \\ 405 & 3^15^1 & - & N & N & Y & - & -16 \\ 406 & 2^17^229^1 & - & Y & N & N & - & -16 \\ 407 & 11^137^1 & - & Y & N & N & - & -16 \\ 408 & 2^33^17^1 & - & N & N & Y & - & -16 \\ 409 & 409^1 & - & Y & N & N & - & -16 \\ 410 & 2^15^141^1 & - & Y & N & N & - & -16 \\ 411 & 3^137^1 & - & Y & N & N & - & -16 \\ 410 & 2^15^141^1 & - & Y & N & N & - & -16 \\ 411 & 3^137^1 & - & Y & N & N & - & 5 \\ 1 & 0 & 1.0000000 & - & 201 & 2347 & -2146 \\ 409 & 409^1 & - & Y & N & N & - & 5 \\ 1 & 0 & 1.0000000 & - & 135 & 2347 & -2214 \\ 411 & 3^137^1 & - & Y & N & N & - & 5 \\ 1 & 0 & 1.0000000 & - & 135 & 2347 & -2214 \\ 411 & 3^137^1 & - & Y & N & N & - & 5 \\ 1 & 0 & 1.0000000 & - & 135 & 2347 & -2214 \\ 411 & 3^137^1 & - & Y & N & N & - & 5 \\ 1 & 0 & 1.0000000 & - & 135 & 2347 & -2214 \\ 411 & 5^183^1 & - & Y & N$			_	1			l					_			
$ \begin{vmatrix} 392 & 2^3 & 2^2 & 2^3 & 2 \\ 393 & 3^1 & 131^1 & - & Y & N & N & N & - & 5 \\ 5 & 1 & 0 & 1.000000 & - & 286 & 2288 & -2002 \\ 395 & 2^1 & 197^1 & - & Y & N & N & - & 5 \\ 396 & 2^2 & 2^3 & 1^1 & - & Y & N & N & - & 5 \\ 396 & 2^2 & 2^3 & 1^1 & - & Y & N & N & - & 5 \\ 396 & 2^2 & 2^3 & 1^1 & - & Y & N & N & - & 5 \\ 396 & 2^2 & 2^3 & 1^1 & - & Y & N & N & - & 5 \\ 396 & 2^2 & 2^3 & 1^1 & - & Y & N & N & - & 5 \\ 396 & 2^2 & 2^3 & 1^1 & - & Y & N & N & - & 5 \\ 397 & 397^1 & - & Y & Y & N & - & -2 \\ 398 & 2^1 & 19^1 & - & Y & N & N & - & -2 \\ 398 & 2^1 & 19^1 & - & Y & N & N & - & -2 \\ 398 & 2^1 & 19^1 & - & Y & N & N & - & -5 \\ 399 & 3^1 & 7^1 & 19^1 & - & Y & N & N & - & -16 \\ 1 & 0 & 1.0000000 & - & 220 & 2298 & -2078 \\ 399 & 3^1 & 7^1 & 19^1 & - & Y & N & N & - & -16 \\ 1 & 0 & 1.0000000 & - & 225 & 2303 & -2078 \\ 400 & 2^4 & 5^2 & - & N & N & Y & - & 34 \\ 401 & 401^1 & - & Y & Y & N & - & -2 \\ 402 & 2^1 & 6^7 & - & Y & N & N & - & -16 \\ 402 & 2^1 & 6^7 & - & Y & N & N & - & -16 \\ 403 & 13^1 & 1 & - & Y & N & N & - & -16 \\ 404 & 2^2 & 101^1 & - & N & N & Y & - & -7 \\ 406 & 3^4 & 5^1 & - & N & N & Y & - & -71 \\ 406 & 3^4 & 5^1 & - & N & N & Y & - & -71 \\ 406 & 3^4 & 5^1 & - & N & N & Y & - & -11 \\ 407 & 11^1 & 3^7 & - & Y & N & N & - & -16 \\ 407 & 11^1 & 3^7 & - & Y & N & N & - & -16 \\ 408 & 2^3 & 3^1 & 7^1 & - & Y & N & N & - & -16 \\ 409 & 409^1 & - & Y & N & N & - & -16 \\ 410 & 2^1 & 5^1 & 1 & 0 & 1.0000000 & - & 201 & 2347 & -21146 \\ 407 & 11^1 & 3^1 & - & Y & N & N & - & -16 \\ 410 & 2^1 & 5^1 & 1 & 0 & 1.0000000 & - & 151 & 2347 & -2144 \\ 408 & 2^3 & 3^1 & 7^1 & - & Y & N & N & - & -5 \\ & 1 & 0 & 1.0000000 & - & 151 & 2347 & -2144 \\ 409 & 409^1 & - & Y & N & N & - & -5 \\ & 1 & 0 & 1.0000000 & - & 151 & 2347 & -2144 \\ 410 & 2^1 & 5^1 & 1 & - & Y & N & N & - & 5 \\ & 1 & 0 & 1.0000000 & - & 151 & 2347 & -2144 \\ 410 & 2^2 & 5^2 & 3^1 & - & N & N & Y & - & -7 \\ & 1 & 1 & 2 & 1.2857143 & - & 133 & 2352 & -2219 \\ 411 & 3^1 & 3^1 & - & Y & N & N & - & 5 \\ & 1 & 0 & 1.0000000 & - & 138 & 2357 & -2219 \\ 4116 & 2^2 & 13^$				1			l								
$ \begin{vmatrix} 394 & 2^1107^1 & - & Y & N & N & - & 5 \\ 395 & 5^179^1 & - & Y & N & N & N & - & 5 \\ 396 & 2^23^311^1 & - & N & N & Y & - & -74 \\ 397 & 397^1 & - & Y & Y & N & N & - & 5 \\ 398 & 2^1199^1 & - & Y & N & N & - & 5 \\ 399 & 3^17^19^1 & - & Y & N & N & - & -16 \\ 399 & 3^17^19^1 & - & Y & N & N & - & -16 \\ 400 & 2^45^2 & - & N & N & Y & - & -16 \\ 410 & 1 & 0 & 1.0000000 & - & 220 & 2298 & -2078 \\ 400 & 2^45^2 & - & N & N & Y & - & -16 \\ 410 & 1 & 0 & 1.0000000 & - & 225 & 2303 & -2094 \\ 401 & 401^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 \\ 402 & 2^13^16^7 & - & Y & N & N & - & -16 \\ 410 & 401^1 & - & Y & Y & N & N & - & -16 \\ 402 & 2^13^16^7 & - & Y & N & N & - & -16 \\ 403 & 13^13^1 & - & Y & N & N & - & -16 \\ 404 & 2^2101^1 & - & N & N & Y & - & -7 \\ 405 & 3^45^1 & - & N & N & Y & - & -7 \\ 406 & 3^45^1 & - & N & N & Y & - & -7 \\ 406 & 3^45^1 & - & N & N & Y & - & -11 \\ 406 & 3^45^1 & - & N & N & Y & - & -11 \\ 407 & 11^137^1 & - & Y & N & N & - & -16 \\ 407 & 11^137^1 & - & Y & N & N & - & -16 \\ 408 & 2^33^17^1 & - & Y & N & N & - & -16 \\ 408 & 2^33^17^1 & - & N & N & Y & - & -2 \\ 411 & 3^133^1 & - & Y & N & N & - & -16 \\ 409 & 409^1 & - & Y & N & N & - & -16 \\ 410 & 2^15^141^1 & - & Y & N & N & - & -16 \\ 410 & 2^15^141^1 & - & Y & N & N & - & -16 \\ 410 & 2^15^141^1 & - & Y & N & N & - & -16 \\ 410 & 2^15^141^1 & - & Y & N & N & - & -16 \\ 410 & 2^15^141^1 & - & Y & N & N & - & -16 \\ 410 & 2^15^141^1 & - & Y & N & N & - & -16 \\ 410 & 2^15^141^1 & - & Y & N & N & - & -5 \\ 410 & 3^13^37^1 & - & Y & N & N & - & -5 \\ 411 & 3^137^1 & - & Y & N & N & - & -5 \\ 412 & 2^2103^1 & - & N & N & Y & - & -7 \\ 413 & 7^15^1 & - & Y & N & N & - & 5 \\ 415 & 5^13^1 & - & Y & N & N & - & 5 \\ 416 & 2^33^1 & - & N & N & Y & - & -7 \\ 417 & 3^139^1 & - & Y & N & N & - & 5 \\ 410 & 1.0000000 & - & 135 & 2347 & -2219 \\ 415 & 5^23^3 & - & Y & N & N & - & 5 \\ 410 & 1.0000000 & - & 133 & 2352 & -2219 \\ 416 & 2^31^3 & - & N & N & Y & - & -7 \\ 410 & 1.0000000 & - & 173 & 2392 & -2219 \\ 417 & 3^139^1 & - & Y & N & N & - & 5 \\ 410 & 1.0000000 & $				1								_			-2002
$ \begin{vmatrix} 395 & 5^179^1 & - & Y & N & N & - & 5 \\ 396 & 2^32^{311} & - & N & N & Y & - & -74 \\ 397 & 397^1 & - & Y & N & N & - & -22 \\ 398 & 2^119^1 & - & Y & N & N & - & -22 \\ 399 & 3^17^{1}19^1 & - & Y & N & N & - & 55 \\ 399 & 3^17^{1}19^1 & - & Y & N & N & - & 55 \\ 399 & 3^17^{1}19^1 & - & Y & N & N & - & -16 \\ 400 & 2^45^2 & - & N & N & Y & - & 34 \\ 401 & 401^1 & - & Y & Y & N & - & -2 \\ 402 & 2^13^167^1 & - & Y & N & N & - & -55 \\ 402 & 2^13^167^1 & - & Y & N & N & - & -55 \\ 403 & 13^13^{11} & - & Y & N & N & - & -55 \\ 404 & 2^2101^1 & - & N & N & Y & - & -77 \\ 405 & 3^45^1 & - & N & N & Y & - & -77 \\ 406 & 2^17^{129^1} & - & Y & N & N & - & -166 \\ 407 & 11^13^7 & - & Y & N & N & - & -166 \\ 408 & 2^33^117^1 & - & Y & N & N & - & -166 \\ 409 & 409^1 & - & Y & N & N & - & -166 \\ 409 & 409^1 & - & Y & N & N & - & -166 \\ 400 & 2^15^141^1 & - & Y & N & N & - & -166 \\ 400 & 2^15^141^1 & - & Y & N & N & - & -166 \\ 401 & 401^1 & - & Y & N & N & - & -166 \\ 402 & 2^15^141^1 & - & Y & N & N & - & -166 \\ 403 & 13^13^1 & - & Y & N & N & - & -166 \\ 404 & 2^101^1 & - & N & N & Y & - & -11 \\ 404 & 2^2101^1 & - & N & N & Y & - & -166 \\ 407 & 11^13^1 & - & Y & N & N & - & -166 \\ 408 & 2^33^117^1 & - & Y & N & N & - & -166 \\ 409 & 409^1 & - & Y & Y & N & N & - & -55 \\ 410 & 2^15^141^1 & - & Y & N & N & - & -56 \\ 411 & 3^137^1 & - & Y & N & N & - & -55 \\ 411 & 3^137^1 & - & Y & N & N & - & -55 \\ 411 & 3^137^1 & - & Y & N & N & - & -55 \\ 412 & 2^2103^1 & - & N & N & Y & - & -77 \\ 412 & 2^2103^1 & - & N & N & Y & - & -77 \\ 413 & 2^159^1 & - & Y & N & N & - & -55 \\ 414 & 2^169^3 & - & N & N & Y & - & -77 \\ 415 & 5^18^3 & - & Y & N & N & - & 55 \\ 416 & 2^213^1 & - & N & N & Y & - & -75 \\ 417 & 3^139^1 & - & Y & N & N & - & 55 \\ 419 & 419^1 & - & Y & N & N & - & 55 \\ 410 & 2^23^35^17^1 & - & N & N & Y & - & -22 \\ 411 & 3^113^1 & - & Y & N & N & - & 55 \\ 411 & 3^113^1 & - & Y & N & N & - & 55 \\ 411 & 3^113^1 & - & Y & N & N & - & 55 \\ 411 & 3^1139^1 & - & Y & N & N & - & 55 \\ 412 & 2^121^1 & - & Y & N & N & - & 55 \\ 410 & 1.0000000 & - &$	393	3^1131^1	_	Y	N	N	_	5	1	0	1.0000000	_	286	2288	-2002
$ \begin{vmatrix} 396 & 2^2 3^2 11^1 & - & N & N & Y & - & -74 & 1 & 58 & 1.2162162 & - & 222 & 2298 & -2076 \\ 397 & 397^1 & - & Y & Y & N & N & - & -2 & 1 & 0 & 1.0000000 & - & 220 & 2298 & -2078 \\ 398 & 3^1 7^1 9^1 & - & Y & N & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 225 & 2303 & -2078 \\ 399 & 3^1 7^1 9^1 & - & Y & N & N & N & - & -16 & 1 & 0 & 1.0000000 & - & 229 & 2303 & -2094 \\ 400 & 2^4 5^2 & - & N & N & Y & - & 34 & 1 & 29 & 1.6176471 & - & 243 & 2337 & -2094 \\ 401 & 401^1 & - & Y & Y & N & - & -22 & 1 & 0 & 1.0000000 & - & 241 & 2337 & -2094 \\ 402 & 2^1 3^1 6^7 1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & 225 & 2337 & -2112 \\ 403 & 13^1 3^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & 225 & 2337 & -2112 \\ 404 & 2^2 101^1 & - & N & N & Y & - & -77 & 1 & 2 & 1.2857143 & - & 223 & 2342 & -2119 \\ 405 & 3^4 5^1 & - & N & N & Y & - & -11 & 1 & 6 & 1.8181818 & - & 212 & 2342 & -2119 \\ 406 & 2^1 7^1 2^0 1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & 196 & 2342 & -2146 \\ 407 & 11^1 3^7 1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 196 & 2342 & -2146 \\ 408 & 2^3 3^1 17^1 & - & N & N & Y & - & -48 & 1 & 32 & 1.3333333 & - & 153 & 2347 & -2194 \\ 409 & 409^4 & - & Y & N & N & - & -5 & 1 & 0 & 1.0000000 & - & 151 & 2347 & -2194 \\ 410 & 2^1 5^1 4^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & 151 & 2347 & -2194 \\ 410 & 2^1 5^1 4^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 151 & 2347 & -2194 \\ 411 & 3^1 13^7 1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 135 & 2347 & -2212 \\ 411 & 3^1 13^7 1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 138 & 2357 & -2219 \\ 414 & 2^1 2^1 20^3 1 & - & N & N & Y & - & -77 & 1 & 2 & 1.2857143 & - & 138 & 2357 & -2219 \\ 414 & 2^1 2^2 103^1 & - & N & N & Y & - & -75 & 1 & 2 & 1.2857143 & - & 186 & 2405 & -2219 \\ 415 & 5^1 8^3 1 & - & N & N & Y & - & -75 & 1 & 0 & 1.0000000 & - & 175 & 2410 & -2235 \\ 419 & 419^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 175 & 2410 & -2235 \\ 419 & 419^1 & - & Y & N & N & - & -6 & 1 & 0 & 1.0000000 & - & 175 & 2$			_	1			_					-			
$ \begin{vmatrix} 397 & 397^1 & - & & & & & & & & & & & & & & & & & $				1											
$ \begin{vmatrix} 398 & 2^1 190^1 & - & Y & N & N & - & 5 \\ 399 & 3^1 7^1 9^1 & - & Y & N & N & - & -16 \\ 400 & 2^4 5^2 & - & N & N & Y & - & 34 \\ 401 & 401^1 & - & Y & Y & N & - & -2 \\ 402 & 2^1 3^1 6^7 1 & - & Y & N & N & - & -22 \\ 403 & 13^1 31^1 & - & Y & N & N & - & -16 \\ 404 & 2^2 10^1 1 & - & N & N & Y & - & -16 \\ 405 & 3^4 5^1 & - & N & N & Y & - & -7 \\ 406 & 2^2 7^1 29^1 & - & N & N & Y & - & -7 \\ 407 & 11^1 37^1 & - & Y & N & N & - & -16 \\ 408 & 2^3 3^1 7^1 & - & N & N & Y & - & -11 \\ 408 & 3^4 5^1 & - & N & N & Y & - & -16 \\ 409 & 2^1 7^1 29^1 & - & N & N & Y & - & -16 \\ 409 & 2^1 7^1 29^1 & - & Y & N & N & - & -16 \\ 400 & 3^4 5^1 & - & N & N & Y & - & -16 \\ 400 & 11^1 37^1 & - & Y & N & N & - & -5 \\ 400 & 11^1 37^1 & - & Y & N & N & - & -5 \\ 400 & 11^1 37^1 & - & Y & N & N & - & -5 \\ 400 & 11^1 37^1 & - & Y & N & N & - & -5 \\ 400 & 11^1 37^1 & - & Y & N & N & - & -5 \\ 400 & 11^1 37^1 & - & Y & N & N & - & -5 \\ 400 & 10000000 & - & 196 & 2342 \\ 401 & 2^1 5^1 41^1 & - & Y & N & N & - & -5 \\ 400 & 10000000 & - & 10000000 \\ 400^2 & - & Y & Y & N & N & - & -5 \\ 400 & 409^1 & - & Y & Y & N & N & - & -5 \\ 410 & 2^1 5^1 41^1 & - & Y & N & N & - & -16 \\ 411 & 3^1 37^1 & - & Y & N & N & - & -16 \\ 412 & 2^2 103^1 & - & N & N & Y & - & -2 \\ 413 & 3^1 7^1 - & Y & N & N & - & -16 \\ 414 & 2^1 2^2 3^3 & - & N & N & Y & - & -7 \\ 412 & 2^2 103^1 & - & N & N & Y & - & -7 \\ 413 & 2^1 5^3 1^3 & - & Y & N & N & - & 5 \\ 414 & 2^1 3^2 2^3 1 & - & N & N & Y & - & -7 \\ 415 & 5^1 83^1 & - & Y & N & N & - & 5 \\ 416 & 2^5 13^1 & - & N & N & Y & - & 13 \\ 416 & 2^5 13^1 & - & N & N & Y & - & -16 \\ 417 & 3^1 139^1 & - & Y & N & N & - & 5 \\ 419 & 4419^1 & - & Y & N & N & - & 5 \\ 419 & 4419^1 & - & Y & N & N & - & 5 \\ 419 & 4419^1 & - & Y & N & N & - & -5 \\ 410 & 411^1 3^1 19^1 & - & Y & N & N & - & -5 \\ 411 & 411^1 9^1 & - & Y & N & N & - & -5 \\ 412 & 2^2 1^3 1^1 & - & N & N & Y & - & -155 \\ 419 & 4419^1 & - & Y & N & N & - & -5 \\ 419 & 4419^1 & - & Y & N & N & - & -5 \\ 420 & 2^2 3^2 1^2 1^1 & - & N & N & Y & - & -155 \\ 419 & 419^1 & - & Y & N $				1											
$ \begin{vmatrix} 399 & 3^{1}7^{1}19^{1} & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & 209 & 2303 & -2094 \\ 400 & 2^{4}5^{2} & - & N & N & Y & - & 34 & 1 & 29 & 1.6176471 & - & 243 & 2337 & -2094 \\ 401 & 401^{1} & - & Y & N & N & - & -2 & 1 & 0 & 1.000000 & - & 241 & 2337 & -2096 \\ 402 & 2^{1}3^{1}67^{1} & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & 225 & 2337 & -2012 \\ 403 & 13^{1}31^{1} & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 225 & 2337 & -2112 \\ 404 & 2^{2}101^{1} & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 223 & 2342 & -2112 \\ 405 & 3^{4}5^{1} & - & N & N & Y & - & -11 & 1 & 6 & 1.8181818 & - & 212 & 2342 & -2113 \\ 406 & 2^{1}7^{1}9^{1} & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & 196 & 2342 & -2146 \\ 407 & 11^{1}37^{1} & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & 196 & 2342 & -2146 \\ 408 & 2^{3}3^{1}17^{1} & - & N & N & Y & - & -48 & 1 & 32 & 1.3333333 & - & 153 & 2347 & -2194 \\ 409 & 409^{1} & - & Y & Y & N & N & - & -2 & 1 & 0 & 1.0000000 & - & 151 & 2347 & -2194 \\ 410 & 2^{1}5^{1}41^{1} & - & Y & N & N & - & -2 & 1 & 0 & 1.0000000 & - & 151 & 2347 & -2194 \\ 411 & 3^{1}137^{1} & - & Y & N & N & - & -5 & 1 & 0 & 1.0000000 & - & 151 & 2347 & -2194 \\ 412 & 2^{2}103^{1} & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 133 & 2352 & -2211 \\ 412 & 2^{2}103^{1} & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 133 & 2352 & -2214 \\ 412 & 2^{2}133^{1} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 135 & 2337 & -2214 \\ 413 & 7^{1}59^{1} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 138 & 2357 & -2219 \\ 414 & 2^{1}32^{3}^{1} & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 133 & 2352 & -2214 \\ 415 & 5^{1}83^{1} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 173 & 2392 & -2214 \\ 416 & 2^{5}13^{1} & - & N & N & Y & - & -7 & 1 & 0 & 1.0000000 & - & 175 & 2410 & -2235 \\ 419 & 419^{1} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 175 & 2410 & -2235 \\ 419 & 419^{1} & - & Y & N & N & - & -5 & 1 & 0 & 1.0000000 & - & 175 & 2410 & -2235 \\ 419 & 419^{1} & - & Y & N & N & - & -5 & 1$				1											
$ \begin{vmatrix} 400 & 2^45^2 & - & N & N & Y & - & 34 & 1 & 29 & 1.6176471 & - & 243 & 2337 & -2094 \\ 401 & 401^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & 241 & 2337 & -2096 \\ 402 & 2^13^16^71 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & 225 & 2337 & -2112 \\ 403 & 13^131^1 & - & Y & N & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 230 & 2342 & -2112 \\ 404 & 2^2101^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 223 & 2342 & -2113 \\ 405 & 3^45^1 & - & N & N & Y & - & -11 & 1 & 6 & 1.8181818 & - & 212 & 2342 & -2130 \\ 406 & 2^17^12^91 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & 196 & 2342 & -2146 \\ 407 & 11^13^71 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 196 & 2342 & -2146 \\ 407 & 11^13^71 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 201 & 2347 & -2146 \\ 408 & 2^33^11^71 & - & N & N & Y & - & -48 & 1 & 32 & 1.3333333 & - & 153 & 2347 & -2194 \\ 409 & 409^1 & - & Y & Y & N & N & - & -2 & 1 & 0 & 1.0000000 & - & 151 & 2347 & -2196 \\ 410 & 2^15^141^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & 151 & 2347 & -2196 \\ 410 & 2^15^341^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & 135 & 2347 & -2212 \\ 412 & 2^2103^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 133 & 2352 & -2212 \\ 413 & 3^137^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 138 & 2357 & -2219 \\ 413 & 3^139^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 173 & 2392 & -2219 \\ 414 & 2^15^22^{31} & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & 168 & 2387 & -2219 \\ 415 & 5^183^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 173 & 2392 & -2219 \\ 416 & 2^513^1 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & 186 & 2405 & -2219 \\ 417 & 3^1139^1 & - & Y & N & N & - & -5 & 1 & 0 & 1.0000000 & - & 175 & 2410 & -2235 \\ 419 & 419^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & 175 & 2410 & -2237 \\ 419 & 419^1 & - & Y & N & N & - & -2 & 1 & 0 & 1.0000000 & - & 175 & 2410 & -2237 \\ 420 & 2^2315^17^1 & - & N & N & Y & - & -155 & 1 & 0 & 1.0000000 & - & 16 & 2410 & -2394 \\ 422 & 2^1211^1 & - & Y & N & N$			_	1			_								
$ \begin{vmatrix} 402 & 2^1 3^1 67^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & 225 & 2337 & -2112 \\ 403 & 13^1 31^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 230 & 2342 & -2112 \\ 404 & 2^2 101^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 223 & 2342 & -2119 \\ 405 & 3^4 5^1 & - & N & N & Y & - & -11 & 1 & 6 & 1.818188 & - & 212 & 2342 & -2130 \\ 406 & 2^1 7^1 29^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & 196 & 2342 & -2146 \\ 407 & 11^1 37^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 201 & 2347 & -2146 \\ 408 & 2^3 3^1 17^1 & - & N & N & Y & - & -48 & 1 & 32 & 1.333333 & - & 153 & 2347 & -2194 \\ 409 & 409^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & 151 & 2347 & -2194 \\ 410 & 2^1 5^1 41^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & 151 & 2347 & -2194 \\ 411 & 3^1 137^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & 135 & 2347 & -2212 \\ 412 & 2^2 103^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 133 & 2352 & -2212 \\ 413 & 7^1 59^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 138 & 2357 & -2219 \\ 414 & 2^1 3^2 23^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & 168 & 2387 & -2219 \\ 415 & 5^1 83^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 173 & 2392 & -2214 \\ 416 & 2^5 13^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & 168 & 2387 & -2219 \\ 417 & 3^1 139^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 173 & 2392 & -2219 \\ 418 & 2^1 17^1 19^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 173 & 2392 & -2219 \\ 419 & 419^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 175 & 2410 & -2235 \\ 420 & 2^2 3^1 5^1 7^1 & - & N & N & Y & - & -155 & 1 & 0 & 1.000000 & - & 175 & 2410 & -2235 \\ 421 & 421^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & 16 & 2410 & -2394 \\ 422 & 2^1 211^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 16 & 2410 & -2394 \\ 422 & 2^2 11^1 & - & Y & N & N & - & -5 & 1 & 0 & 1.000000 & - & 21 & 2415 & -2394 \\ 422 & 2^3 53^1 & - & N & N & Y & - & -75 & 1 & 2 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^3 53^1 & - & N & $			_	1			_								-2094
$ \begin{vmatrix} 403 & 13^1 31^1 & - & Y & N & N & - & 5 \\ 404 & 2^2 101^1 & - & N & N & Y & - & -7 \\ 405 & 3^4 5^1 & - & N & N & Y & - & -71 \\ 406 & 2^1 7^1 29^1 & - & Y & N & N & - & -16 \\ 407 & 11^1 37^1 & - & Y & N & N & - & -5 \\ 408 & 2^3 3^1 7^1 & - & Y & N & N & - & -5 \\ 409 & 409^1 & - & Y & Y & N & N & - & -2 \\ 410 & 2^1 5^1 41^1 & - & Y & N & N & - & -16 \\ 411 & 3^1 37^1 & - & Y & N & N & - & -16 \\ 410 & 2^1 5^1 41^1 & - & Y & N & N & - & -16 \\ 411 & 3^1 37^1 & - & Y & N & N & - & -16 \\ 411 & 3^1 37^1 & - & Y & N & N & - & -5 \\ 412 & 2^2 103^1 & - & N & N & Y & - & -7 \\ 413 & 7^1 59^1 & - & Y & N & N & - & 5 \\ 414 & 2^1 3^2 23^1 & - & N & N & Y & - & -7 \\ 415 & 5^1 83^1 & - & Y & N & N & - & 5 \\ 416 & 2^1 5^1 41^1 & - & Y & N & N & - & 5 \\ 417 & 3^1 139^1 & - & Y & N & N & - & 5 \\ 418 & 2^1 1^1 19^1 & - & Y & N & N & - & 5 \\ 419 & 419 & - & Y & N & N & - & 5 \\ 410 & 2^1 5^1 41^1 & - & Y & N & N & - & 5 \\ 4113 & 7^1 59^1 & - & Y & N & N & - & 5 \\ 415 & 5^1 83^1 & - & Y & N & N & - & 5 \\ 416 & 2^2 513^1 & - & N & N & Y & - & 30 \\ 416 & 2^2 513^1 & - & N & N & Y & - & 13 \\ 416 & 2^2 513^1 & - & N & N & Y & - & 13 \\ 417 & 3^1 139^1 & - & Y & N & N & - & 5 \\ 419 & 419^1 & - & Y & N & N & - & 5 \\ 410 & 419^1 & - & Y & N & N & - & 5 \\ 410 & 419^1 & - & Y & N & N & - & 5 \\ 410 & 419^1 & - & Y & N & N & - & 5 \\ 410 & 419^1 & - & Y & N & N & - & -2 \\ 411 & 2^1 11^1 19^1 & - & Y & N & N & - & 5 \\ 410 & 419^1 & - & Y & N & N & - & -16 \\ 410 & 419^1 & - & Y & N & N & - & -16 \\ 410 & 419^1 & - & Y & N & N & - & -16 \\ 410 & 419^1 & - & Y & N & N & - & -16 \\ 410 & 419^1 & - & Y & N & N & - & -16 \\ 410 & 419^1 & - & Y & N & N & - & -16 \\ 410 & 419^1 & - & Y & N & N & - & -16 \\ 410 & 419^1 & - & Y & N & N & - & -16 \\ 410 & 419^1 & - & Y & N & N & - & -16 \\ 410 & 419^1 & - & Y & N & N & - & -16 \\ 410 & 419^1 & - & Y & N & N & - & -2 \\ 411 & 421^1 & - & Y & N & N & - & -2 \\ 411 & 421^1 & - & Y & N & N & - & -2 \\ 412 & 2^1 211^1 & - & Y & N & N & - & -2 \\ 412 & 2^1 211^1 & - & Y & N & N & - & -2 \\ 412 & 2^1 211^1 & - & Y & N & N & - $	401		_	Y	Y	N	_	-2	1	0	1.0000000	-	241	2337	-2096
$ \begin{vmatrix} 404 & 2^2101^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 223 & 2342 & -2119 \\ 405 & 3^45^1 & - & N & N & Y & - & -111 & 1 & 6 & 1.8181818 & - & 212 & 2342 & -2130 \\ 406 & 2^17^129^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & 196 & 2342 & -2146 \\ 407 & 11^137^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 201 & 2347 & -2146 \\ 408 & 2^33^117^1 & - & N & N & Y & - & -48 & 1 & 32 & 1.3333333 & - & 153 & 2347 & -2194 \\ 409 & 409^1 & - & Y & Y & N & N & - & -2 & 1 & 0 & 1.0000000 & - & 151 & 2347 & -2194 \\ 410 & 2^15^141^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & 151 & 2347 & -2194 \\ 411 & 2^15^341^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 135 & 2347 & -22194 \\ 412 & 2^2103^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 133 & 2352 & -2219 \\ 413 & 7^159^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 138 & 2357 & -2219 \\ 414 & 2^13^223^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & 168 & 2387 & -2219 \\ 416 & 2^513^1 & - & N & N & Y & - & 5 & 1 & 0 & 1.0000000 & - & 173 & 2392 & -2219 \\ 416 & 2^513^1 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & 186 & 2405 & -2219 \\ 417 & 3^1139^4 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 175 & 2410 & -2237 \\ 418 & 2^11^119^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 175 & 2410 & -2237 \\ 419 & 419^4 & - & Y & Y & N & N & - & -2 & 1 & 0 & 1.0000000 & - & 175 & 2410 & -2237 \\ 420 & 2^23^15^17^1 & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & 175 & 2410 & -2237 \\ 421 & 421^1 & - & Y & Y & N & N & - & -2 & 1 & 0 & 1.0000000 & - & 16 & 2410 & -2394 \\ 422 & 2^151^1 & - & N & N & Y & - & -75 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2394 \\ 422 & 2^353^1 & - & N & N & Y & - & -77 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -77 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -77 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -77 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y $				1											-2112
$ \begin{vmatrix} 405 & 3^45^1 & - & N & N & Y & - & -11 \\ 406 & 2^17^19^1 & - & Y & N & N & - & -16 \\ 407 & 11^137^1 & - & Y & N & N & - & -5 \\ 408 & 2^33^117^1 & - & N & N & Y & - & -48 \\ 409 & 409^1 & - & Y & Y & N & N & - & -2 \\ 410 & 2^15^141^1 & - & Y & N & N & - & -2 \\ 411 & 3^1137^1 & - & Y & N & N & - & -16 \\ 412 & 2^2103^1 & - & N & N & Y & - & -48 \\ 413 & 7^159^1 & - & Y & N & N & - & 5 \\ 414 & 2^13^223^1 & - & N & N & Y & - & -7 \\ 415 & 5^183^1 & - & Y & N & N & - & 5 \\ 416 & 2^53^1 & - & N & N & Y & - & -7 \\ 417 & 3^1139^1 & - & Y & N & N & - & 5 \\ 418 & 2^513^1 & - & Y & N & N & - & 5 \\ 419 & 419^1 & - & Y & N & N & - & 5 \\ 419 & 419^1 & - & Y & N & N & - & 5 \\ 419 & 419^1 & - & Y & N & N & - & 5 \\ 410 & 2^23^31^2 & - & N & N & Y & - & 13 \\ 411 & 3^1139^1 & - & Y & N & N & - & 5 \\ 412 & 2^2103^1 & - & N & N & Y & - & 30 \\ 413 & 7^159^1 & - & Y & N & N & - & 5 \\ 414 & 2^13^223^1 & - & N & N & Y & - & 30 \\ 415 & 5^183^1 & - & Y & N & N & - & 5 \\ 416 & 2^513^1 & - & Y & N & N & - & 5 \\ 417 & 3^1139^1 & - & Y & N & N & - & 5 \\ 418 & 2^111^193^1 & - & Y & N & N & - & 5 \\ 419 & 419^1 & - & Y & N & N & - & -16 \\ 419 & 419^1 & - & Y & N & N & - & -16 \\ 420 & 2^23^15^17^1 & - & N & N & Y & - & -22 \\ 421 & 421^1 & - & Y & N & N & - & -2 \\ 422 & 2^1211^1 & - & Y & N & N & - & 5 \\ 423 & 3^247^1 & - & N & N & Y & - & -22 \\ 422 & 2^1211^1 & - & Y & N & N & - & 5 \\ 423 & 3^247^1 & - & N & N & Y & - & -7 \\ 424 & 2^35^31 & - & N & N & Y & - & -7 \\ 424 & 2^35^31 & - & N & N & Y & - & -7 \\ 424 & 2^35^31 & - & N & N & Y & - & -7 \\ 424 & 2^35^31 & - & N & N & Y & - & -7 \\ 424 & 2^35^31 & - & N & N & Y & - & -7 \\ 424 & 2^35^31 & - & N & N & Y & - & -7 \\ 424 & 2^35^31 & - & N & N & Y & - & -7 \\ 424 & 2^35^31 & - & N & N & Y & - & -7 \\ 424 & 2^35^31 & - & N & N & Y & - & -7 \\ 424 & 2^35^31 & - & N & N & Y & - & -7 \\ 424 & 2^35^31 & - & N & N & Y & - & -7 \\ 424 & 2^35^31 & - & N & N & Y & - & -7 \\ 424 & 2^35^31 & - & N & N & Y & - & -7 \\ 424 & 2^35^31 & - & N & N & Y & - & -7 \\ 424 & 2^35^31 & - & N & N & Y & - & -7 \\ 424 & 2^35^31 & $			-	1											
$ \begin{vmatrix} 406 & 2^1 7^1 29^1 & - & Y & N & N & - & -16 \\ 407 & 11^1 37^1 & - & Y & N & N & - & 5 \\ 408 & 2^3 3^1 17^1 & - & N & N & Y & - & -48 \\ 409 & 409^1 & - & Y & Y & N & N & - & -2 \\ 410 & 2^1 5^1 41^1 & - & Y & N & N & - & -22 \\ 411 & 3^1 137^1 & - & Y & N & N & - & -16 \\ 412 & 2^2 103^1 & - & N & N & Y & - & -7 \\ 413 & 7^1 59^1 & - & Y & N & N & - & -7 \\ 414 & 2^3 2^3 3^1 & - & Y & N & N & - & -7 \\ 415 & 5^1 83^1 & - & Y & N & N & - & 5 \\ 416 & 2^5 13^1 & - & N & N & Y & - & -7 \\ 417 & 3^1 139^1 & - & Y & N & N & - & 5 \\ 418 & 2^1 11^1 19^1 & - & Y & N & N & - & 5 \\ 419 & 419^1 & - & Y & N & N & - & 5 \\ 410 & 2^3 53^1 & - & N & N & Y & - & -7 \\ 411 & 3^1 137^1 & - & Y & N & N & - & 5 \\ 412 & 2^2 103^1 & - & N & N & Y & - & -7 \\ 413 & 7^1 59^1 & - & Y & N & N & - & 5 \\ 414 & 2^3 2^3 3^1 & - & N & N & Y & - & 30 \\ 415 & 5^1 83^1 & - & Y & N & N & - & 5 \\ 416 & 2^5 13^1 & - & N & N & Y & - & 13 \\ 417 & 3^1 139^1 & - & Y & N & N & - & 5 \\ 418 & 2^1 11^1 19^1 & - & Y & N & N & - & 5 \\ 419 & 449^1 & - & Y & N & N & - & -16 \\ 419 & 449^1 & - & Y & Y & N & N & - & -2 \\ 420 & 2^2 3^1 5^1 7^1 & - & N & N & Y & - & -155 \\ 421 & 421^1 & - & Y & Y & N & - & -2 \\ 421 & 421^1 & - & Y & Y & N & N & - & 5 \\ 422 & 2^3 53^1 & - & N & N & Y & - & -7 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 \\ 424 & 2^3 53^1 & - & N & N & Y & - $			_	1											
$ \begin{vmatrix} 407 & 11^137^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 201 & 2347 & -2146 \\ 408 & 2^33^117^1 & - & N & N & Y & - & -48 & 1 & 32 & 1.3333333 & - & 153 & 2347 & -2194 \\ 409 & 409^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & 151 & 2347 & -2196 \\ 410 & 2^15^141^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & 135 & 2347 & -2212 \\ 411 & 3^1137^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 140 & 2352 & -2212 \\ 412 & 2^2103^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 133 & 2352 & -2219 \\ 413 & 7^159^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 138 & 2357 & -2219 \\ 414 & 2^13^223^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & 168 & 2387 & -2219 \\ 415 & 5^183^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 173 & 2392 & -2219 \\ 416 & 2^513^1 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & 186 & 2405 & -2219 \\ 418 & 2^111^119^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 173 & 2392 & -2219 \\ 418 & 2^111^119^1 & - & Y & N & N & - & -2 & 1 & 0 & 1.000000 & - & 175 & 2410 & -2235 \\ 419 & 419^1 & - & Y & Y & N & N & - & -2 & 1 & 0 & 1.000000 & - & 173 & 2410 & -2237 \\ 420 & 2^23^157^1 & - & N & N & Y & - & -155 & 1 & 90 & 1.1032258 & - & 18 & 2410 & -2237 \\ 421 & 421^1 & - & Y & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 16 & 2410 & -2392 \\ 421 & 421^1 & - & Y & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 16 & 2410 & -2394 \\ 422 & 2^1211^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 16 & 2410 & -2394 \\ 423 & 3^247^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2394 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143$			_	1			l								
$ \begin{vmatrix} 408 & 2^3 3^1 17^1 & - & N & N & Y & - & -48 & 1 & 32 & 1.3333333 & - & 153 & 2347 & -2194 \\ 409 & 409^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & 151 & 2347 & -2196 \\ 410 & 2^1 5^1 41^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & 135 & 2347 & -2212 \\ 411 & 3^1 137^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 140 & 2352 & -2212 \\ 412 & 2^2 103^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 133 & 2352 & -2219 \\ 413 & 7^1 59^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 138 & 2357 & -2219 \\ 414 & 2^1 3^2 23^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & 168 & 2387 & -2219 \\ 415 & 5^1 83^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 173 & 2392 & -2219 \\ 416 & 2^5 13^1 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & 186 & 2405 & -2219 \\ 418 & 2^1 11^1 19^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 191 & 2410 & -2219 \\ 418 & 2^1 11^1 19^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & 175 & 2410 & -2235 \\ 420 & 2^2 3^1 5^7 1^1 & - & N & N & Y & - & -155 & 1 & 90 & 1.1032258 & - & 18 & 2410 & -2392 \\ 421 & 421^1 & - & Y & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 173 & 2410 & -2237 \\ 422 & 2^1 211^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 175 & 2410 & -2235 \\ 423 & 3^2 47^1 & - & N & N & Y & - & -155 & 1 & 90 & 1.1032258 & - & 18 & 2410 & -2394 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2394 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2394 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 2 & 2 & 2424 & -2401 \\ 424 & 2^3 53^1 &$				1											-2146
$ \begin{vmatrix} 410 & 2^15^141^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & 135 & 2347 & -2212 \\ 411 & 3^1137^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 140 & 2352 & -2212 \\ 412 & 2^2103^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 133 & 2352 & -2219 \\ 413 & 7^159^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 138 & 2357 & -2219 \\ 414 & 2^13^223^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.166667 & - & 168 & 2387 & -2219 \\ 415 & 5^183^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 173 & 2392 & -2219 \\ 416 & 2^513^1 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & 186 & 2405 & -2219 \\ 417 & 3^1139^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 191 & 2410 & -2219 \\ 418 & 2^111^19^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & 175 & 2410 & -2235 \\ 419 & 419^1 & - & Y & Y & N & N & - & -2 & 1 & 0 & 1.000000 & - & 173 & 2410 & -2237 \\ 420 & 2^23^15^71 & - & N & N & Y & - & -155 & 1 & 90 & 1.1032258 & - & 18 & 2410 & -2392 \\ 421 & 421^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & 16 & 2410 & -2392 \\ 422 & 2^1211^1 & - & Y & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 21 & 2415 & -2394 \\ 423 & 3^247^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & $			-	1	N	Y	-					-			-2194
$ \begin{vmatrix} 411 & 3^1137^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 140 & 2352 & -2212 \\ 412 & 2^2103^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 133 & 2352 & -2219 \\ 413 & 7^159^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 138 & 2357 & -2219 \\ 414 & 2^13^223^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.166667 & - & 168 & 2387 & -2219 \\ 415 & 5^183^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 173 & 2392 & -2219 \\ 416 & 2^513^1 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & 186 & 2405 & -2219 \\ 417 & 3^1139^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 191 & 2410 & -2219 \\ 418 & 2^111^19^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & 175 & 2410 & -2235 \\ 419 & 419^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & 173 & 2410 & -2237 \\ 420 & 2^23^15^71 & - & N & N & Y & - & -155 & 1 & 90 & 1.1032258 & - & 18 & 2410 & -2239 \\ 421 & 421^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & 16 & 2410 & -2392 \\ 421 & 421^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & 16 & 2410 & -2392 \\ 422 & 2^1211^1 & - & Y & N & N & - & -5 & 1 & 0 & 1.000000 & - & 21 & 2415 & -2394 \\ 423 & 3^247^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 4424 & -2401 \\$			-	1											-2196
$ \begin{vmatrix} 412 & 2^2103^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 133 & 2352 & -2219 \\ 413 & 7^159^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 138 & 2357 & -2219 \\ 414 & 2^13^223^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.166667 & - & 168 & 2387 & -2219 \\ 415 & 5^183^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 173 & 2392 & -2219 \\ 416 & 2^513^1 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & 186 & 2405 & -2219 \\ 417 & 3^1139^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 191 & 2410 & -2219 \\ 418 & 2^111^19^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & 175 & 2410 & -2235 \\ 419 & 419^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & 173 & 2410 & -2235 \\ 420 & 2^23^15^17^1 & - & N & N & Y & - & -155 & 1 & 90 & 1.1032258 & - & 18 & 2410 & -2392 \\ 421 & 421^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & 16 & 2410 & -2394 \\ 422 & 2^1211^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 21 & 2415 & -2394 \\ 423 & 3^247^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 4 & 1.5555556 & - & 23 & 2424 & -2401 \\ 425 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 4 & 1.5555556 & - & 23 & 2424 & -2401 \\ 426 & 2^353^3 & - & - & - & - & - & - & - & - & - & $				1											-2212
$ \begin{vmatrix} 413 & 7^159^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 138 & 2357 & -2219 \\ 414 & 2^13^223^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & 168 & 2387 & -2219 \\ 415 & 5^183^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 173 & 2392 & -2219 \\ 416 & 2^513^1 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & 186 & 2405 & -2219 \\ 417 & 3^1139^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 191 & 2410 & -2219 \\ 418 & 2^111^19^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & 175 & 2410 & -2235 \\ 419 & 419^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & 173 & 2410 & -2239 \\ 420 & 2^23^15^7^1 & - & N & N & Y & - & -155 & 1 & 90 & 1.1032258 & - & 18 & 2410 & -2392 \\ 421 & 421^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & 16 & 2410 & -2394 \\ 422 & 2^1211^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 21 & 2415 & -2394 \\ 423 & 3^247^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 4 & 1.5555556 & - & 23 & 2424 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & -7 & 1 & 4 & 1.5555556 & - & 23 & 2424 & -2401 \\ 425 & 2^353^2 & - & 2^353^2 & - & 2^353^2 & - & 2^353^2 & - & 2^353^2 & - & 2^353^2 & - & 2^353^2 & - & 2^353^2 & - & 2^353^2 & - & 2^353^2 & - & 2^353^2 & - & 2^$	11			1											
$ \begin{vmatrix} 414 & 2^1 3^2 23^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & 168 & 2387 & -2219 \\ 415 & 5^1 83^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 173 & 2392 & -2219 \\ 416 & 2^5 13^1 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & 186 & 2405 & -2219 \\ 417 & 3^1 139^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 191 & 2410 & -2219 \\ 418 & 2^1 11^1 19^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & 175 & 2410 & -2235 \\ 419 & 419^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & 173 & 2410 & -2237 \\ 420 & 2^2 3^1 5^1 7^1 & - & N & N & Y & - & -155 & 1 & 90 & 1.1032258 & - & 18 & 2410 & -2392 \\ 421 & 421^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & 16 & 2410 & -2394 \\ 422 & 2^1 211^1 & - & Y & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 21 & 2415 & -2394 \\ 423 & 3^2 47^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^3 53^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^3 53^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & 23 & 2424 & -2401 \\ \end{bmatrix}$				1											
$ \begin{vmatrix} 415 & 5^183^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 173 & 2392 & -2219 \\ 416 & 2^513^1 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & 186 & 2405 & -2219 \\ 417 & 3^1139^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 191 & 2410 & -2219 \\ 418 & 2^111^19^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & 175 & 2410 & -2235 \\ 419 & 419^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & 173 & 2410 & -2237 \\ 420 & 2^23^15^17^1 & - & N & N & Y & - & -155 & 1 & 90 & 1.1032258 & - & 18 & 2410 & -2237 \\ 421 & 421^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & 16 & 2410 & -2394 \\ 422 & 2^1211^1 & - & Y & N & N & N & - & 5 & 1 & 0 & 1.000000 & - & 21 & 2415 & -2394 \\ 423 & 3^247^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.555556 & - & 23 & 2424 & -2401 \\ \hline \end{tabular} $				1											
$ \begin{vmatrix} 416 & 2^513^1 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & 186 & 2405 & -2219 \\ 417 & 3^1139^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 191 & 2410 & -2219 \\ 418 & 2^111^19^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & 175 & 2410 & -2235 \\ 419 & 419^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & 173 & 2410 & -2237 \\ 420 & 2^23^15^71 & - & N & N & Y & - & -155 & 1 & 90 & 1.1032258 & - & 18 & 2410 & -2237 \\ 421 & 421^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & 16 & 2410 & -2394 \\ 422 & 2^1211^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & 21 & 2415 & -2394 \\ 423 & 3^247^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & 23 & 2424 & -2401 \\ \hline \end{tabular} $															
$ \begin{vmatrix} 418 & 2^111^119^1 & - & Y & N & N & - & -16 \\ 419 & 419^1 & - & Y & Y & N & - & -2 \\ 420 & 2^23^15^17^1 & - & N & N & Y & - & -155 \\ 421 & 421^1 & - & Y & Y & N & - & -2 \\ 422 & 2^1211^1 & - & Y & N & N & - & 5 \\ 423 & 3^247^1 & - & N & N & Y & - & -7 \\ 424 & 2^353^1 & - & N & N & Y & - & 9 \\ 1 & 1 & 2 & 1.555556 \\ 1 & 20 & 1.000000 \\ 1 & 1.0000000 \\ 1 & 1.000000 \\ 1 & 1.00000000 \\ 1 & 1.0000000 \\ 1 & 1.0000000 \\ 1 & 1.0000000 \\ 1 & 1.0000000 \\ 1 & 1.0000000 \\ 1 $		$2^{5}13^{1}$	-	1			-					-			-2219
$ \begin{vmatrix} 419 & 419^1 & - & Y & Y & N & - & -2 \\ 420 & 2^23^15^17^1 & - & N & N & Y & - & -155 \\ 421 & 421^1 & - & Y & Y & N & - & -2 \\ 422 & 2^1211^1 & - & Y & N & N & - & -2 \\ 423 & 3^247^1 & - & N & N & Y & - & -7 \\ 424 & 2^353^1 & - & N & N & Y & - & 9 \\ 1 & 1 & 2 & 1.555556 & - & 23 & 2424 & -2401 \\ \hline \end{tabular} $	417		-	1		N	-	5	1			-	191	2410	-2219
$ \begin{vmatrix} 420 & 2^2 3^1 5^1 7^1 & - & N & N & Y & - & -155 & 1 & 90 & 1.1032258 & - & 18 & 2410 & -2392 \\ 421 & 421^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & 16 & 2410 & -2394 \\ 422 & 2^1 211^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 21 & 2415 & -2394 \\ 423 & 3^2 47^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^3 53^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & 23 & 2424 & -2401 \\ \end{vmatrix} $			-	1											-2235
$ \begin{vmatrix} 421 & 421^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & 16 & 2410 & -2394 \\ 422 & 2^1211^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & 21 & 2415 & -2394 \\ 423 & 3^247^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 14 & 2415 & -2401 \\ 424 & 2^353^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & 23 & 2424 & -2401 \\ \end{vmatrix} $			-	1											
			_	1											
			_	1											
424 2 ³ 53 ¹ - N N Y - 9 1 4 1.5555556 - 23 2424 -2401				1											
			-	1											
	425	5^217^1	-	1	N	Y	-		1			-		2424	-2408

A	a=1 :-	a=1::		$\sum_{d n} C_{\Omega(d)}(d)$	=1 2		-1:		=					
$ \begin{vmatrix} 427 & 2^{1}61^{1} & - & Y & N & N & - & 5 \\ 428 & 2^{2}100^{3} & - & N & N & V & - & -7 \\ 429 & 3^{1}11^{1}3^{1} & - & Y & N & N & - & -16 \\ 430 & 2^{1}5^{1}43^{1} & - & Y & N & N & - & -16 \\ 431 & 431^{1} & - & Y & N & N & - & -2 \\ 432 & 43^{2}^{3} & - & N & N & V & - & -2 \\ 433 & 433^{2} & - & N & N & V & - & -2 \\ 434 & 431^{2} & - & Y & N & N & - & -2 \\ 435 & 432^{2}^{3} & - & N & N & V & - & -2 \\ 436 & 2^{1}3^{1}1^{1}3^{1} & - & Y & N & N & - & -2 \\ 437 & 10^{1}23^{1} & - & Y & N & N & - & -2 \\ 438 & 2^{2}3^{1}3^{1} & - & Y & N & N & - & -6 \\ 449 & 49^{1}23^{1} & - & N & N & V & - & -7 \\ 440 & 2^{1}6^{1}3^{1} & - & Y & N & N & - & -16 \\ 440 & 2^{1}6^{1}3^{1} & - & N & N & V & - & -7 \\ 441 & 3^{1}2^{2} & - & N & N & V & - & -7 \\ 442 & 2^{1}3^{1}7^{1} & - & Y & N & N & - & -16 \\ 443 & 433^{2} & - & Y & N & N & - & -16 \\ 444 & 2^{1}6^{1}7^{2} & - & N & N & V & - & -2 \\ 444 & 2^{1}6^{1}7^{2} & - & N & N & V & - & -48 \\ 441 & 3^{2}7^{2} & - & N & N & V & - & -48 \\ 442 & 2^{1}3^{1}7^{1} & - & Y & N & N & - & -16 \\ 443 & 443^{3} & - & Y & N & N & - & -16 \\ 444 & 2^{2}5^{3}7^{1} & - & N & N & V & - & -48 \\ 444 & 2^{2}5^{3}7^{2} & - & N & N & V & - & -48 \\ 444 & 2^{2}5^{3}7^{2} & - & N & N & V & - & -48 \\ 446 & 2^{1}3^{2}7^{2} & - & N & N & V & - & -2 \\ 447 & 10^{1}23^{3} & - & - & -2 \\ 448 & 2^{2}5^{3}7^{2} & - & N & N & V & - & -2 \\ 449 & 2^{2}5^{3}7^{2} & - & N & N & V & - & -2 \\ 440 & 2^{1}3^{3}17^{1} & - & V & N & N & - & -16 \\ 441 & 3^{2}7^{2} & - & N & N & V & - & -2 \\ 442 & 2^{1}3^{3}17^{1} & - & N & N & V & - & -2 \\ 443 & 443^{3} & - & V & N & N & - & -16 \\ 444 & 2^{2}5^{3}7^{2} & - & N & N & V & - & -2 \\ 447 & 3^{1}40^{1} & - & N & N & V & - & -2 \\ 448 & 2^{2}5^{3}7^{2} & - & N & N & V & - & -2 \\ 449 & 2^{2}5^{3}7^{2} & - & N & N & V & - & -2 \\ 440 & 2^{1}3^{3}17^{1} & - & N & N & V & - & -2 \\ 440 & 2^{1}3^{3}17^{1} & - & N & N & N & - & -16 \\ 441 & 3^{2}4^{3} & - & V & N & N & - & -16 \\ 442 & 2^{1}3^{3}17^{1} & - & N & N & N & - & -16 \\ 443 & 2^{2}3^{3}7^{2} & - & N & N & N & - & -16 \\ 444 & 2^{1}3^{$	<u> </u>	$G^{-1}(n)$		$ g^{-1}(n) $										
$ \begin{vmatrix} 428 & 2^2 \cdot 19^{14} & 0 & N & N & V & - & -7 & 1 & 2 & 1.2857143 & - & - & -2 & - & - & - & - & - & - & $	2424 -2										1			11
$ \begin{vmatrix} 429 & 3^4 11^4 13^4 & - & Y & N & N & -16 & 1 & 0 & 1.0000000 & - & -18 \\ 430 & 2^5 14^3 43^4 & - & Y & Y & N & N & -16 & 1 & 0 & 1.0000000 & - & -34 \\ 431 & 431^4 & - & Y & Y & N & N & -22 & 1 & 0 & 1.0000000 & - & -34 \\ 433 & 433^3 & - & N & Y & N & N & -22 & 1 & 0 & 1.0000000 & - & -136 \\ 433 & 2^4 2^3 3^3 & - & N & N & N & -16 & 1 & 0 & 1.0000000 & - & -136 \\ 433 & 2^4 2^5 3^3 & - & Y & Y & N & N & -16 & 1 & 0 & 1.0000000 & - & -136 \\ 434 & 2^4 2^3 3^3 & - & Y & Y & N & N & -16 & 1 & 0 & 1.0000000 & - & -136 \\ 435 & 2^5 2^2 3^4 & - & Y & N & N & -16 & 1 & 0 & 1.0000000 & - & -136 \\ 436 & 2^5 12^3 1 & - & Y & N & N & -16 & 1 & 0 & 1.0000000 & - & -136 \\ 437 & 2^4 2^3 12^3 & - & Y & N & N & -16 & 1 & 0 & 1.0000000 & - & -170 \\ 448 & 2^4 3^3 1^2 & - & N & N & Y & -48 & 1 & 32 & 1.3333333 & - & -170 \\ 440 & 2^5 1^3 1^7 & - & N & N & Y & -48 & 1 & 32 & 1.3333333 & - & -204 \\ 441 & 3^2 7^2 & - & N & N & Y & -48 & 1 & 32 & 1.3333333 & - & -204 \\ 442 & 2^4 13^2 1^7 & - & Y & N & N & -16 & 1 & 0 & 1.0000000 & - & -222 \\ 444 & 2^4 3^3 2^2 & - & N & N & Y & -30 & 1 & 144 & 1.166667 & - & -204 \\ 444 & 3^4 3^3 & - & Y & N & N & -2 & 1 & 0 & 1.0000000 & - & -222 \\ 444 & 2^4 3^3 2^2 & - & N & N & Y & -30 & 1 & 144 & 1.166667 & - & -107 \\ 444 & 3^4 3^4 2^4 & - & Y & N & N & -5 & 1 & 0 & 1.0000000 & - & -222 \\ 444 & 2^4 3^3 2^2 & - & N & N & Y & -30 & 1 & 144 & 1.166667 & - & -107 \\ 444 & 3^4 2^3 2^2 & - & N & N & Y & -30 & 1 & 144 & 1.166667 & - & -107 \\ 444 & 3^4 2^4 2^3 2^2 & - & N & N & Y & -5 & 1 & 0 & 1.0000000 & - & -222 \\ 444 & 2^4 3^3 2^2 & - & N & N & Y & -5 & 1 & 0 & 1.0000000 & - & -222 \\ 444 & 2^4 3^3 2^2 & - & N & N & Y & -5 & 1 & 0 & 1.0000000 & - & -222 \\ 444 & 3^4 3^3 2^3 & - & Y & N & N & -5 & 1 & 0 & 1.0000000 & - & -222 \\ 444 & 3^4 3^3 2^3 & - & Y & N & N & -5 & 1 & 0 & 1.0000000 & - & -222 \\ 444 & 3^4 2^3 2^3 - & N & N & Y & -7 & 1 & 2 & 1.0000000 & - & -222 \\ 444 & 3^4 2^3 2^3 - & N & N & Y & -7 & 1 & 0 & 1.0000000 & - & -222 \\ 445 & 3^4 2^3 2^3 - & N & N & Y & -7 & 1 & 0 & 1.0000000 & - & -222 \\ $	$ \begin{array}{rrr} 2429 & -2 \\ 2429 & -2 \\ \end{array} $		1 1								1			
$ \begin{vmatrix} 430 & 2^1 5^4 43^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -34 \\ 431 & 441^1 & - & Y & N & N & Y & -80 & 1 & 75 & 1.6625000 & - & -118 \\ 432 & 2^1 3^2 & - & N & N & Y & -80 & 1 & 75 & 1.6625000 & - & -118 \\ 433 & 431^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -134 \\ 434 & 2^1 7^1 3^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -134 \\ 435 & 3^5 5^2 2^3 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -154 \\ 436 & 2^2 10^2 1 & - & N & N & Y & - & -7 & 1 & 2 & 1.1857143 & - & -157 \\ 436 & 2^2 10^2 1 & - & N & N & Y & - & -7 & 1 & 2 & 1.1857143 & - & -157 \\ 436 & 2^2 10^2 1 & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & -154 \\ 436 & 2^2 10^2 1 & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & -154 \\ 437 & 400 & 2^2 11^2 1 & - & N & N & Y & - & -48 & 1 & 22 & 1.1857143 & - & -157 \\ 448 & 2^2 11^2 1 & - & N & N & Y & - & -48 & 1 & 22 & 1.1857143 & - & -27 \\ 444 & 2^2 12^3 17^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -220 \\ 444 & 2^2 12^3 17^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -220 \\ 444 & 2^2 12^3 17^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -220 \\ 444 & 2^2 12^3 17^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -220 \\ 445 & 2^1 12^3 1 & - & N & N & Y & - & -3 & 1 & 0 & 1.0000000 & - & -220 \\ 446 & 2^4 22^2 1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -220 \\ 447 & 3^1 140^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -188 \\ 447 & 3^1 140^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -188 \\ 447 & - & N & N & Y & - & -48 & 1 & 0 & 1.0000000 & - & -188 \\ 447 & - & N & N & Y & - & -48 & 1 & 0 & 1.0000000 & - & -188 \\ 447 & - & N & N & N & - & -5 & 1 & 0 & 1.0000000 & - & -188 \\ 448 & 2^2 2^2 1 & - & N & N & Y & - & -48 & 1 & 0 & 1.0000000 & - & -188 \\ 453 & 3^1 12^3 & - & N & N & Y & - & -48 & 1 & 0 & 1.0000000 & - & -2000000 & - & -2000000 & - & -20000000 & - & -20000000 & - & -20000000 & - & -20000000 & - & -20000000 & - & -20000000 & - & -20000000 & - & -20000000 & - & -20000000 & - & -200000000 & - & -2000000$	2429 - 2							l			1			
$ \begin{vmatrix} 431 & 431^1 & 431^1 & & & & & & & & & & & & & & & & & & $	2429 - 2										1	_		
$ \begin{vmatrix} 434 & 2^{1} + 31^{1} & - & Y & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -134 \\ 434 & 2^{1} + 31^{1} & - & Y & N & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -134 \\ 436 & 2^{2} + 300^{1} & - & N & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -134 \\ 437 & 19^{1} + 23^{1} & - & Y & N & N & N & - & -5 & 1 & 0 & 1.0000000 & - & -134 \\ 438 & 2^{1} + 31^{2} - & - & Y & N & N & - & -5 & 1 & 0 & 1.0000000 & - & -136 \\ 439 & 430^{1} & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -136 \\ 440 & 2^{1} + 31^{1} & - & N & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -136 \\ 441 & 2^{1} + 31^{1} & - & N & N & Y & - & -148 & 1 & 32 & 1.333333 & - & -218 \\ 441 & 3^{1} + 2^{2} & - & N & N & Y & - & -148 & 1 & 32 & 1.333333 & - & -218 \\ 441 & 2^{1} + 31^{2} & - & N & N & Y & - & -148 & 1 & 3 & 2 & 1.333333 & - & -218 \\ 442 & 2^{1} + 31^{2} & - & N & N & Y & - & -30 & 1 & 144 & 1.1000000 & - & -220 \\ 443 & 2^{1} + 31^{2} & - & N & N & Y & - & -30 & 1 & 144 & 1.1000000 & - & -220 \\ 444 & 2^{2} + 31^{2} & - & N & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -188 \\ 446 & 2^{1} + 23^{2} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -188 \\ 446 & 2^{1} + 23^{2} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -188 \\ 446 & 2^{1} + 23^{2} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -188 \\ 446 & 2^{1} + 23^{2} & - & Y & N & N & - & -15 & 1 & 0 & 1.0000000 & - & -188 \\ 446 & 2^{1} + 23^{2} & - & N & N & Y & - & -15 & 1 & 0 & 1.0000000 & - & -188 \\ 446 & 2^{1} + 23^{2} & - & N & N & Y & - & -15 & 1 & 0 & 1.0000000 & - & -188 \\ 447 & 3^{1} + 10^{1} & - & Y & N & N & - & -5 & 1 & 0 & 1.0000000 & - & -188 \\ 448 & 2^{2} + 2^{2} & - & N & N & Y & - & -15 & 1 & 0 & 1.0000000 & - & -188 \\ 450 & 2^{1} + 2^{1} + 2^{1} & - & N & N & Y & - & -74 & 1 & 58 & 1.2162162 & - & -26 \\ 450 & 2^{1} + 3^{1} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -263 \\ 451 & 2^{1} + 2^{1} & - & Y & N & N & - & -5 & 1 & 0 & 1.0000000 & - & -263 \\ 451 & 2^{1} + 2^{1} & - & Y & N & N & - & -5 & 1 & 0 & 1.0000000 & - & -263 \\ 461 & 401^{1} & - & Y & N & N & - &$	2429 - 2										1	_		11
$ \begin{vmatrix} 434 & 2^{12}31^{3} & - & V & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -134 \\ 435 & 3^{12}329^{1} & - & V & N & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -136 \\ 436 & 2^{2}109^{3} & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -157 \\ 438 & 2^{13}73^{3} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -136 \\ 439 & 439^{1} & - & V & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -168 \\ 440 & 2^{25}11^{1} & - & N & N & Y & - & -48 & 1 & 32 & 1.3333333 & -218 \\ 441 & 3^{7}7^{2} & - & N & N & Y & - & -48 & 1 & 32 & 1.3333333 & -218 \\ 442 & 2^{13}17^{1} & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -220 \\ 444 & 3^{44}3 & 443^{1} & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -220 \\ 444 & 3^{24}3^{1} & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -220 \\ 444 & 2^{23}3^{1} & - & N & N & Y & - & 30 & 1 & 144 & 1.166667 & - & -80 \\ 447 & 3^{14}43^{1} & - & Y & N & N & - & 35 & 1 & 0 & 1.0000000 & - & -220 \\ 448 & 2^{23}3^{1} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -220 \\ 449 & 490^{2} & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & -240 \\ 448 & 2^{23}7^{1} & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & -240 \\ 448 & 2^{23}7^{2} & - & N & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -240 \\ 449 & 490^{2} & - & N & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -240 \\ 450 & 2^{12}3^{25} & - & N & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -240 \\ 451 & 11^{14}41^{1} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -260 \\ 451 & 11^{14}41^{1} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -260 \\ 452 & 2^{11}3^{13} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -260 \\ 455 & 2^{17}1^{13} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -260 \\ 455 & 2^{17}1^{13} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -260 \\ 456 & 2^{23}1^{13} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -260 \\ 456 & 2^{23}1^{13} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -260 \\ 456 & 2^{23}1^{13} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -260 \\ 456 & 2^{23}1^{13} & - & Y & N & N & - & 5 & 1 & 0 & 1.0$	2429 - 2	-116	_	1.5625000	75	1	-80	_	Y	N	N	_	$2^{4}3^{3}$	432
$ \begin{vmatrix} 436 & 3^1 5^1 29^1 \\ 436 & 2^1 209^1 \\ 1 & 0 & N & N & V \\ - & -7 \\ 1 & 1 & 2 & 1.2857143 \\ - & -157 \\ 437 & 19^1 23^1 \\ 1 & - & V & N & N \\ - & -16 \\ 438 & 2^1 2^1 3^1 \\ - & V & N & N \\ - & -16 \\ 439 & 2^3 1^{-11} \\ - & V & N & N \\ - & -16 \\ 439 & 2^3 1^{-11} \\ - & V & N & N \\ - & -16 \\ 439 & 2^3 1^{-11} \\ - & V & N & N \\ - & -16 \\ 440 & 2^2 3^1 1^1 \\ - & N & N & V \\ - & -48 \\ - & 1 & 32 & 1.333333 \\ - & -218 \\ 441 & 3^2 7^2 \\ - & N & N & V \\ - & 14 \\ - & 1 & 9 & 1.3571429 \\ - & 20 & 0 & 1.000000 \\ - & -22 \\ 443 & 443^1 \\ - & V & V & N \\ - & -2 \\ - & 1 & 0 & 1.000000 \\ - & -22 \\ 444 & 2^2 1^2 3^1 7^1 \\ - & V & N & N \\ - & -16 \\ - & 1 & 0 & 1.000000 \\ - & -22 \\ 444 & 2^2 1^2 3^1 7^1 \\ - & V & N & N \\ - & -16 \\ - & 1 & 0 & 1.000000 \\ - & -22 \\ 445 & 5^1 89^1 \\ - & V & N & N \\ - & 5 & 1 \\ - & 0 & 1.000000 \\ - & -22 \\ 446 & 2^1 22^2 3^1 \\ - & V & N & N \\ - & 5 & 1 \\ - & 0 & 1.000000 \\ - & -187 \\ 448 & 2^2^2 7^1 \\ - & N & N & V \\ - & -15 \\ - & 1 & 0 & 1.000000 \\ - & -187 \\ 448 & 2^2 7^2 \\ - & N & N & N \\ - & -5 & 1 \\ - & 0 & 1.000000 \\ - & -187 \\ 449 & 449^2 \\ - & V & V & N \\ - & -2 \\ 1 & 0 & 1.000000 \\ - & -187 \\ 449 & 429^2 \\ - & V & V & N \\ - & -2 \\ 1 & 0 & 1.000000 \\ - & -187 \\ 449 & 429^2 \\ - & V & N & N \\ - & -5 \\ 1 & 0 & 1.000000 \\ - & -187 \\ 449 & 429^2 \\ - & V & V & N \\ - & -2 \\ 1 & 0 & 1.000000 \\ - & -187 \\ 449 & 429^2 \\ - & V & V & N \\ - & -2 \\ 1 & 0 & 1.000000 \\ - & -187 \\ 449 & 429^2 \\ - & V & V & N \\ - & -2 \\ 1 & 0 & 1.000000 \\ - & -187 \\ 449 & 429^2 \\ - & V & V & N \\ - & -2 \\ 1 & 0 & 1.000000 \\ - & -187 \\ 449 & 429^2 \\ - & V & V & N \\ - & -2 \\ 1 & 0 & 1.000000 \\ - & -187 \\ 449 & 2^2 113^4 \\ - & V & N & N \\ - & -5 \\ 1 & 0 & 1.000000 \\ - & -187 \\ 449 & 2^2 113^4 \\ - & V & N & N \\ - & -5 \\ 1 & 0 & 1.000000 \\ - & -22 \\ 458 & 2^2 13^4 \\ - & V & N & N \\ - & -5 \\ 1 & 0 & 1.000000 \\ - & -286 \\ 451 & 1.2142 \\ - & V & V & N \\ - & -2 \\ 1 & 0 & 1.000000 \\ - & -286 \\ 451 & 1.2142 \\ - & V & V & N \\ - & -2 \\ 1 & 0 & 1.000000 \\ - & -286 \\ 451 & 1.2142 \\ - & V & V & N \\ - & -2 \\ 1 & 0 & 1.000000 \\ - & -286 \\ 451$	2429 -2	-118	-	1.0000000	0	1	-2	-	N	Y	Y	_		433
$ \begin{vmatrix} 436 & 2^2 100^1 & & N & N & Y & = & -7 \\ 437 & 10^2 23^1 & - Y & N & N & -5 \\ 438 & 49^3 1 & - Y & N & N & -16 \\ 439 & 439^1 & - Y & N & N & -16 \\ 430 & 439^1 & - Y & N & N & -16 \\ 440 & 2^2 5^1 11^3 & - N & N & Y & -48 \\ 441 & 3^2 7^2 & - N & N & Y & -48 \\ 441 & 3^2 7^2 & - N & N & Y & -16 \\ 442 & 2^2 13^3 17^2 & - Y & N & N & -16 \\ 443 & 443^3 & - Y & Y & N & N & -16 \\ 442 & 2^2 13^3 17^2 & - Y & N & N & -16 \\ 443 & 443^3 & - Y & Y & N & N & -16 \\ 444 & 3^4 34^3 & - Y & Y & N & N & -16 \\ 445 & 6^3 80^1 & - Y & N & N & Y & -30 \\ 444 & 2^2 13^3 7^3 & - N & N & Y & -30 \\ 444 & 5^3 80^1 & - Y & N & N & -5 \\ 446 & 2^1 223^1 & - Y & N & N & -5 \\ 446 & 2^1 223^1 & - Y & N & N & -5 \\ 446 & 2^1 223^1 & - Y & N & N & -5 \\ 447 & 3^1 449^1 & - Y & N & N & -5 \\ 449 & 449^1 & - Y & N & N & -5 \\ 51 & 1 & 0 & 1.000000 & -182 \\ 449 & 449^1 & - Y & N & N & -5 \\ 51 & 1 & 0 & 1.000000 & -182 \\ 450 & 2^1 2^3 2^2 & - N & N & Y & -74 \\ 41 & 1 & 5^3 2^2 - N & N & Y & -74 \\ 45 & 1 & 11^4 1^4 & - Y & N & N & -5 \\ 51 & 1 & 0 & 1.000000 & -182 \\ 450 & 2^2 13^3 15^1 & - N & N & Y & -74 \\ 450 & 1 & 1 & 10 \\ 450 & 2^2 3^2 3^2 & - N & N & Y & -74 \\ 450 & 1 & 1 & 10 \\ 450 & 2^2 3^3 15^1 & - N & N & Y & -74 \\ 450 & 3^3 151^1 & - Y & N & N & 5 \\ 51 & 0 & 1.000000 & -260 \\ 454 & 2^2 2^2 1^3 1 & - N & N & Y & -74 \\ 455 & 5^2 1^3 1^3 & - N & N & Y & -74 \\ 456 & 2^2 3^3 19^1 & - N & N & Y & -74 \\ 456 & 2^2 3^3 19^1 & - N & N & Y & -74 \\ 457 & 4^2 3^3 151^1 & - Y & N & N & -5 \\ 458 & 2^2 2^3 1^3 1 & - Y & N & N & -5 \\ 458 & 2^2 2^3 1^3 1 & - N & N & Y & -48 \\ 459 & 3^3 151^1 & - Y & N & N & -5 \\ 450 & 2^2 3^3 19^1 & - N & N & Y & -48 \\ 450 & 2^2 3^3 19^1 & - N & N & Y & -48 \\ 450 & 2^2 3^3 19^1 & - N & N & Y & -48 \\ 450 & 2^2 3^3 19^1 & - N & N & Y & -48 \\ 450 & 2^2 3^3 19^1 & - N & N & Y & -48 \\ 450 & 2^2 3^3 19^1 & - N & N & Y & -48 \\ 450 & 2^2 3^3 19^1 & - N & N & Y & -48 \\ 450 & 3^3 151^3 & - Y & N & N & -5 \\ 450 & 3^3 151^3 & - Y & N & N & -5 \\ 450 & 3^3 151^3 & - Y & N & N & -16 \\ 450 & 3^3 151^3 & - Y & N & N & -16 \\ 450 & 3^3 151^3 & -$	2429 - 2	-134	-	1.0000000	0	1	-16	-	N	N	Y	-		434
$ \begin{vmatrix} 438 & 2^{1}^{1} 3^{2} & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -152 \\ 438 & 2^{1}^{2} 3^{1} & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -163 \\ 439 & 439^{1} 1^{1} & - & N & N & Y & - & -48 & 1 & 32 & 1.333333 & - & -218 \\ 441 & 3^{2}^{2} 2^{1} & - & N & N & Y & - & -16 & 1 & 0 & 1.000000 & - & -222 \\ 443 & 443^{1} & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -222 \\ 443 & 443^{1} & - & Y & N & N & Y & - & -2 & 1 & 0 & 1.000000 & - & -222 \\ 444 & 2^{2}^{1} 2^{1} 3^{1} 7^{1} & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -222 \\ 445 & 5^{1} 80^{1} & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -187 \\ 446 & 2^{1} 2^{2} 3^{1} 7^{1} & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -187 \\ 447 & 3^{1} 40^{1} & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -187 \\ 448 & 2^{7}^{2} & - & N & N & Y & - & -15 & 1 & 0 & 1.000000 & - & -187 \\ 448 & 2^{7}^{2} & - & N & N & N & - & -15 & 1 & 0 & 1.000000 & - & -187 \\ 449 & 449^{2} & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -187 \\ 440 & 2^{1} 2^{2} 3^{2} 5^{2} & - & N & N & Y & - & -74 & 1 & 58 & 1.212162 & - & -268 \\ 451 & 11^{1} 41^{1} & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -263 \\ 451 & 3^{1} 157^{2} & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -263 \\ 451 & 3^{1} 157^{2} & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -263 \\ 452 & 2^{1} 13^{1} & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -263 \\ 453 & 3^{1} 157^{2} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -263 \\ 454 & 2^{2} 2^{1} 19^{1} & - & N & N & Y & - & -7 & 1 & 2 & 1.285743 & - & -77 \\ 456 & 2^{3} 2^{1} 19^{1} & - & N & N & Y & - & -7 & 1 & 2 & 1.285743 & - & -27 \\ 458 & 2^{2} 2^{2} 1^{1} 1^{1} & - & N & N & Y & - & -48 & 1 & 0 & 1.0000000 & - & -263 \\ 457 & 457^{2} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -263 \\ 458 & 2^{2} 2^{1} 19^{1} & - & N & N & Y & - & -48 & 1 & 0 & 1.0000000 & - & -264 \\ 469 & 2^{2} 2^{1} 19^{1} & - & N & N & Y & - & -7 & 1 & 0 & 1.0000000 & - & -264 \\ 460 & 2^{2} 2^{1} 19^{1} & - & N & N & Y & - & -7 & 1 & 0 & 1.0000000 &$	2429 -2	-150	1 1								1			l I
$ \begin{vmatrix} 438 & 2^13^1 & 3^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -7.00 \\ 440 & 2^2s^1 & 1^1 & - & N & N & Y & - & -48 & 1 & 32 & 1.3333333 & -218 \\ 441 & 3^27^2 & - & N & N & Y & - & -16 & 1 & 0 & 1.000000 & - & -2.00 \\ 442 & 2^2l^3 & 1^2l & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -2.00 \\ 442 & 2^2l^3 & 1^2l & - & Y & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -2.00 \\ 443 & 443^3 & - & Y & Y & N & N & - & -2 & 1 & 0 & 1.000000 & - & -2.00 \\ 444 & 2^2s^3 & 1^3l & - & N & N & Y & - & 30 & 1 & 14 & 1.166667 & - & -3.92 \\ 444 & 2^2s^3 & 1^3l & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -18.20 \\ 445 & 5^180^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -18.20 \\ 446 & 5^180^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -18.20 \\ 446 & 2^1223^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -18.20 \\ 447 & 3^140^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -18.20 \\ 449 & 440^1 & - & Y & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -19.20 \\ 450 & 2^13^25^2 & - & N & N & Y & - & -74 & 1 & 58 & 1.2162162 & - & -268 \\ 452 & 2^2113^1 & - & N & N & Y & - & -74 & 1 & 58 & 1.2162162 & - & -268 \\ 452 & 2^2113^1 & - & N & N & Y & - & -77 & 1 & 2 & 1.2857143 & - & -270 \\ 456 & 3^2151^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -266 \\ 454 & 2^1227^1 & - & N & N & N & - & 5 & 1 & 0 & 1.000000 & - & -266 \\ 454 & 2^1227^1 & - & N & N & N & - & 5 & 1 & 0 & 1.000000 & - & -266 \\ 454 & 2^1227^1 & - & N & N & N & - & 5 & 1 & 0 & 1.000000 & - & -266 \\ 456 & 3^25^19^1 & - & N & N & N & - & 5 & 1 & 0 & 1.000000 & - & -266 \\ 456 & 2^23^19^1 & - & N & N & N & - & 5 & 1 & 0 & 1.000000 & - & -266 \\ 456 & 2^23^219^1 & - & N & N & N & - & 5 & 1 & 0 & 1.000000 & - & -266 \\ 456 & 2^23^219^1 & - & N & N & N & - & 5 & 1 & 0 & 1.000000 & - & -266 \\ 456 & 2^23^219^1 & - & N & N & N & - & 5 & 1 & 0 & 1.000000 & - & -266 \\ 456 & 2^23^219^1 & - & N & N & N & - & 5 & 1 & 0 & 1.000000 & - & -266 \\ 456 & 2^23^219^1 & - & N & N & N & - & 5 & 1 & 0 & 1.000000 & - & -266 \\ 456 & 2^23^219^1 & - & N & N & N & - & 5 &$	2429 -2	-157						l			1			
$ \begin{vmatrix} 499 & 439^1 & - & & & & & & & & & & & & & & & & & $	2434 -2							l			1			
$ \begin{vmatrix} 440 & 2^3 s^3 + 11^1 & - & N & N & Y & - & -48 & 1 & 32 & 1.3333333 & - & -2.84 \\ 441 & 3^2 y^2 & - & N & N & Y & - & 14 & 1 & 9 & 1.337429 & - & -20 \\ 442 & 2^4 1^3 1^7 1^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -220 \\ 443 & 443^1 & - & Y & Y & N & N & - & -2 & 1 & 0 & 1.0000000 & - & -220 \\ 444 & 2^2 s^3 3 7^2 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -19 \\ 446 & 2^2 2 3^3 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -187 \\ 446 & 2^4 2 2 3^3 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -187 \\ 446 & 2^4 2 2 3^3 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -187 \\ 447 & 3^4 1 3^4 & - & Y & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -177 \\ 448 & 2^6 y^2 & - & N & N & Y & - & -15 & 1 & 10 & 2.3333333 & - & -192 \\ 450 & 2^3 2^5 2^5 & - & N & N & Y & - & -74 & 1 & 58 & 1.2102162 & - & -288 \\ 451 & 11^4 1^4 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -280 \\ 451 & 11^4 1^4 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -280 \\ 452 & 2^2 113^1 & - & N & N & Y & - & -74 & 1 & 58 & 1.2102162 & - & -288 \\ 453 & 3^4 151^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -200 \\ 454 & 2^3 27^4 13^4 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -200 \\ 455 & 5^4 7^4 13^5 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -200 \\ 456 & 2^3 2^3 19^1 & - & N & N & Y & - & -48 & 1 & 32 & 1.3333333 & - & -274 \\ 457 & 457^4 1 & - & Y & N & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -200 \\ 458 & 2^2 29^3 1 & - & N & N & Y & - & -48 & 1 & 32 & 1.3333333 & - & -274 \\ 459 & 3^3 17^4 & - & N & N & Y & - & -48 & 1 & 32 & 1.3333333 & - & -274 \\ 450 & 2^2 2^3 19^4 & - & N & N & Y & - & -48 & 1 & 32 & 1.3333333 & - & -274 \\ 450 & 2^2 2^3 19^4 & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & -200 \\ 450 & 2^3 2^3 19^4 & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & -200 \\ 450 & 2^3 2^3 19^4 & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & -200 \\ 450 & 2^3 2^3 19^4 & - & N & N & Y & - & -7 & 1 & 1 & 4 & 1.5555556 & - & -311 \\ 460 & 2^2 2^3 19^4 & - & N & N & N & - & -2 & 1 & 0 & 1.00000$	2434 -2		1 1								1			
$ \begin{vmatrix} 444 & 3^2 + 2^2 \\ 442 & 2^4 + 3^4 + 1^4 \\ 442 & 2^4 + 3^4 + 1^4 \\ 443 & 2^4 + 3^4 + 1^4 \\ 444 & 2^2 + 3^4 + 1^4 \\ 445 & 2^2 + 3^4 + 1^4 \\ 446 & 2^2 + 2^3 + 1^4 \\ 446 & 2^2 + 2^3 + 1^4 \\ 446 & 2^2 + 2^3 + 1^4 \\ 446 & 2^2 + 2^3 + 1^4 \\ 446 & 2^2 + 2^3 + 1^4 \\ 447 & 2^4 + 1^4 \\ 449 & 2^4 + 1^4 \\ 449 & 2^4 + 1^4 \\ 449 & 2^4 + 1^4 \\ 449 & 2^4 + 1^4 \\ 449 & 2^4 + 1^4 \\ 449 & 2^4 + 1^4 \\ 449 & 2^4 + 1^4 \\ 449 & 2^4 + 1^4 \\ 449 & 2^4 + 1^4 \\ 449 & 2^4 + 1^4 \\ 449 & 2^4 + 1^4 \\ 449 & 2^4 + 1^4 \\ 449 & 2^4 + 1^4 \\ 450 & 2^4 + 1^2 + 1^4 \\ 450 & 2^4 + 1^4 \\ 450 & 2$	$ \begin{array}{rrr} 2434 & -2 \\ 2434 & -2 \\ \end{array} $							l			1			
$ \begin{vmatrix} 442 & 2^1 & 3^1 & 1^7 & - & Y & N & N & - & -16 \\ 443 & 443^1 & - & Y & Y & N & - & -2 \\ 444 & 2^2 & 3^1 & 7^1 & - & N & N & Y & - & 30 \\ 446 & 2^2 & 3^2 & 7^1 & - & N & N & Y & - & 30 \\ 446 & 2^1 & 2^2 & 7^1 & - & N & N & N & - & 5 \\ 446 & 2^1 & 2^2 & 7^1 & - & N & N & N & - & 5 \\ 447 & 3^1 & 10^2 & - & Y & N & N & - & 5 \\ 448 & 2^9 & 1 & - & N & N & Y & - & -15 \\ 449 & 440^1 & - & Y & Y & N & N & - & 5 \\ 450 & 2^1 & 2^2 & 2^2 & - & N & N & Y & - & -74 \\ 451 & 11^1 & 1^1 & - & Y & N & N & - & 5 \\ 451 & 11^1 & 1^1 & - & Y & N & N & - & 5 \\ 452 & 2^2 & 113^1 & - & N & N & Y & - & -74 \\ 453 & 13^1 & 1^1 & - & Y & N & N & - & 5 \\ 454 & 2^2 & 2^2 & 1 & - & N & N & Y & - & -74 \\ 451 & 11^1 & 1^1 & - & Y & N & N & - & 5 \\ 452 & 2^2 & 113^1 & - & N & N & Y & - & -75 \\ 453 & 3^1 & 11^1 & - & Y & N & N & - & 5 \\ 454 & 2^2 & 2^2 & - & Y & N & N & - & 5 \\ 454 & 2^2 & 2^2 & - & Y & N & N & - & 5 \\ 454 & 2^2 & 2^2 & - & Y & N & N & - & 5 \\ 454 & 2^2 & 2^2 & - & Y & N & N & - & 5 \\ 454 & 2^2 & 2^2 & - & Y & N & N & - & 5 \\ 454 & 2^2 & 2^2 & - & Y & N & N & - & 5 \\ 456 & 2^2 & 2^2 & 1^3 & - & Y & N & N & - & 5 \\ 456 & 2^2 & 2^2 & 1^3 & - & Y & N & N & - & 5 \\ 457 & 457^1 & - & Y & N & N & - & 5 \\ 458 & 2^2 & 2^2 & - & Y & N & N & - & 5 \\ 459 & 3^2 & 1^2 & - & Y & N & N & - & 5 \\ 450 & 2^2 & 2^2 & - & Y & N & N & - & - & 1 \\ 450 & 2^2 & 2^2 & - & Y & N & N & - & - & 1 \\ 450 & 2^2 & 2^2 & - & Y & N & N & - & - & 1 \\ 450 & 2^2 & 2^2 & 1 & - & N & N & Y & - & - & 48 \\ 451 & 11^1 & 1 & - & Y & N & N & - & - & 5 \\ 451 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 452 & 2^2 & 2^2 & - & N & N & Y & - & - & 2 \\ 453 & 3^1 & 10^1 & - & Y & N & N & - & - & 5 \\ 454 & 2^2 & 2^2 & 1 & - & N & N & Y & - & - & 2 \\ 457 & 4^2 & 1 & - & N & N & Y & - & - & 2 \\ 459 & 3^2 & 1^2 & - & N & N & Y & - & - & 2 \\ 450 & 2^2 & 2^2 & 1 & - & N & N & Y & - & - & 2 \\ 450 & 2^2 & 2^2 & 1 & - & N & N & Y & - & - & 2 \\ 450 & 2^2 & 2^2 & 1 & - & N & N & Y & - & - & 2 \\ 450 & 3^2 & 1^2 & 1 & - & N & N & Y & - & - & 2 \\ 451 & 401 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 460$	2434 - 2 $2448 - 2$		1 1								1			l I
	2448 - 2		1 1								1	_		l I
$ \begin{vmatrix} 444 & 2^3 3 37^1 & - & N & N & Y & - & 30 & 1 \\ 445 & 5^4 89^1 & - & Y & N & N & - & 5 \\ 446 & 2^4 223^1 & - & Y & N & N & - & 5 \\ 447 & 3^4 140^3 & - & Y & N & N & - & 5 \\ 448 & 7^6 7^1 & - & N & N & V & - & -15 \\ 449 & 449^1 & - & Y & Y & N & V & - & -15 \\ 440 & 2^4 2^3 2^5 2^5 & - & N & N & Y & - & -74 \\ 451 & 1^4 1^4 1^4 & - & Y & N & N & - & 5 \\ 451 & 11^4 1^4 1^4 & - & Y & N & N & - & 5 \\ 451 & 11^4 1^4 1^4 & - & Y & N & N & - & 5 \\ 452 & 2^4 11^3 & - & N & N & Y & - & -74 \\ 453 & 3^4 151^1 & - & Y & N & N & - & 5 \\ 453 & 3^4 151^1 & - & Y & N & N & - & 5 \\ 454 & 2^2 2^{21} & - & Y & N & N & - & 5 \\ 455 & 5^4 7^1 3^3 & - & N & Y & - & -76 \\ 456 & 2^3 2^3 19^1 & - & N & N & Y & - & -16 \\ 457 & 457^2 & - & Y & N & N & - & -2 \\ 458 & 2^4 229^1 & - & Y & N & N & - & -2 \\ 459 & 3^3 17^1 & - & N & N & Y & - & -2 \\ 460 & 2^3 2^3 19^1 & - & N & N & Y & - & -48 \\ 461 & 40^3 2^3 1^3 1 & - & Y & N & N & - & -2 \\ 458 & 2^4 229^1 & - & Y & N & N & - & -2 \\ 469 & 3^3 17^1 & - & N & N & Y & - & -2 \\ 460 & 2^3 2^3 1^3 1 & - & N & N & Y & - & -2 \\ 460 & 2^3 2^3 1^3 1 & - & N & N & Y & - & -2 \\ 460 & 2^3 2^3 1^3 1 & - & N & N & Y & - & -2 \\ 461 & 401^3 & - & Y & N & N & - & 5 \\ 1 & 0 & 1.0000000 & - & -326 \\ 462 & 2^4 3^4 1^4 1 & - & Y & N & N & - & 5 \\ 1 & 0 & 1.0000000 & - & -324 \\ 463 & 463^3 & - & Y & N & N & - & 5 \\ 1 & 0 & 1.0000000 & - & -324 \\ 467 & 467^2 & - & Y & N & N & - & 5 \\ 1 & 0 & 1.0000000 & - & -324 \\ 468 & 2^2 2^3 1^3 1 & - & N & N & Y & - & -2 \\ 1 & 0 & 1.0000000 & - & -266 \\ 468 & 2^2 3^3 1^3 1 & - & Y & N & N & - & -2 \\ 1 & 0 & 1.0000000 & - & -264 \\ 468 & 2^2 3^3 1^3 1 & - & Y & N & N & - & -2 \\ 1 & 0 & 1.0000000 & - & -264 \\ 468 & 2^2 3^3 1^3 1 & - & Y & N & N & - & -2 \\ 1 & 0 & 1.0000000 & - & -264 \\ 468 & 2^2 3^3 1^3 1 & - & Y & N & N & - & -2 \\ 1 & 0 & 1.0000000 & - & -264 \\ 468 & 2^2 3^3 1^3 1 & - & Y & N & N & - & -2 \\ 1 & 0 & 1.0000000 & - & -264 \\ 468 & 2^2 3^3 1^3 1 & - & Y & N & N & - & -16 \\ 1 & 0 & 1 & 0 & 1.0000000 \\ - & -264 & - & -2 & -2 & -2 \\ 460 & 2^2 3^3 1^3 1 & - & Y & N & N $	2448 - 2										1	_		11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2478 -2		1 1					l			1			
$ \begin{vmatrix} 446 & 2^1223^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -1.82 \\ 447 & 3^140^1 & - & Y & N & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -1.72 \\ 448 & 2^97^1 & - & N & N & Y & - & -1.5 & 1 & 1.0 & 2.333333 & - & -1.92 \\ 449 & 449^1 & - & Y & Y & N & N & - & -2 & 1 & 0 & 1.0000000 & - & -1.94 \\ 450 & 2^13^25^2 & - & N & N & Y & - & -7.4 & 1 & 5.8 & 1.2162162 & - & -268 \\ 461 & 11^141^1 & - & Y & N & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -264 \\ 452 & 2^2113^1 & - & N & N & Y & - & -7 & 1 & 2 & 2.18257143 & - & -270 \\ 453 & 3^1151^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -266 \\ 455 & 5^17^131^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -266 \\ 456 & 2^23^119^1 & - & N & N & Y & - & -16 & 1 & 0 & 1.0000000 & - & -264 \\ 458 & 2^1229^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -264 \\ 459 & 3^317^1 & - & N & N & Y & - & -48 & 1 & 32 & 1.333333 & -324 \\ 460 & 2^25^12^3 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & 312 \\ 461 & 461^1^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -324 \\ 461 & 461^1^1 & - & Y & N & N & - & -2 & 1 & 0 & 1.0000000 & - & -284 \\ 462 & 2^19^17^11 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & 312 \\ 463 & 3^25^23^1 & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & -284 \\ 464 & 2^29^3 & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & -284 \\ 463 & 2^23^3 & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & -284 \\ 464 & 2^29^3 & - & N & N & N & - & -65 & 1 & 0 & 1.0000000 & - & -284 \\ 466 & 2^22^3 & - & N & N & Y & - & -16 & 1 & 0 & 1.0000000 & - & -284 \\ 467 & 467^3 & - & Y & N & N & - & -5 & 1 & 0 & 1.0000000 & - & -284 \\ 468 & 2^23^3 & - & N & N & Y & - & -74 & 1 & 5.8 & 1.2162162 & - & -314 \\ 469 & 7^3 & 7^3 & - & N & N & Y & - & -16 & 1 & 0 & 1.0000000 & - & -324 \\ 470 & 2^25^4 & - & N & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -324 \\ 471 & 3^15^7 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -324 \\ 486 & 2^23^3 & - & N & N & Y & - & -74 & 1 & 5.8 & 1.2162162 & - & -314 \\ 477 & 3^25^3 & - & N & N & Y & - & -74 & 1 & 5.8 & 1.2162162 & - & -$	2483 -2	-187									1			l I
$ \begin{vmatrix} 448 & 2^67^1 & - & N & N & Y & - & -15 \\ 449 & 49^1 & - & Y & Y & N & - & -2 \\ 450 & 2^13^25^2 & - & N & N & Y & - & -74 \\ 451 & 11^14^1 & - & Y & N & N & - & 5 \\ 451 & 11^14^1 & - & Y & N & N & - & 5 \\ 452 & 2^211^3 & - & N & N & Y & - & -74 \\ 453 & 3^15^1 & - & Y & N & N & - & 5 \\ 454 & 12^22^1 & - & Y & N & N & - & 5 \\ 455 & 1 & 0 & 1.000000 & - & -263 \\ 453 & 3^15^1 & - & Y & N & N & - & 5 \\ 454 & 2^22^1 & - & Y & N & N & - & 5 \\ 455 & 5^17^13^3 & - & Y & N & N & - & -16 \\ 455 & 5^17^13^3 & - & Y & N & N & - & -16 \\ 456 & 2^33^19^1 & - & N & N & Y & - & -48 \\ 456 & 2^33^19^1 & - & N & N & Y & - & -48 \\ 457 & 457^1 & - & Y & Y & N & N & - & 5 \\ 458 & 2^1229^1 & - & Y & N & N & - & 5 \\ 460 & 2^25^12^3 & - & N & N & Y & - & 9 \\ 460 & 2^25^12^3 & - & N & N & Y & - & 30 \\ 461 & 461 & - & Y & Y & N & - & -2 \\ 462 & 2^33^17^11^1 & - & Y & N & N & - & 65 \\ 463 & 463^1 & - & Y & Y & N & - & -2 \\ 464 & 42^22^1 & - & N & N & Y & - & 30 \\ 466 & 42^23^3 & - & N & N & Y & - & -2 \\ 477 & - & - & - & - & 1 \\ 486 & 2^23^3 & - & N & N & - & -2 \\ 497 & - & - & - & 1 & 0 & 1.000000 \\ - & - & - & - & - & - & - \\ 498 & 3^317^1 & - & N & N & Y & - & -2 \\ 499 & 3^317^1 & - & N & N & Y & - & -2 \\ 400 & 2^2^13^3^1 & - & Y & N & N & - & 65 \\ 401 & 401 & - & 1 & 0 & 1.000000 \\ - & - & - & - & - & - & - \\ 402 & 2^13^17^11^1 & - & Y & N & N & - & 65 \\ 403 & 463^3 & - & Y & Y & N & - & -2 \\ 404 & 2^22^9^1 & - & N & N & Y & - & -11 \\ 405 & 3^35^31^1 & - & Y & N & N & - & 5 \\ 407 & 407^1 & - & Y & N & N & - & 5 \\ 408 & 2^23^31^3 & - & Y & N & N & - & 5 \\ 409 & 7^16^7^1 & - & Y & N & N & - & 5 \\ 409 & 7^16^7^1 & - & Y & N & N & - & 5 \\ 409 & 7^16^7^1 & - & Y & N & N & - & 5 \\ 409 & 7^16^7^1 & - & Y & N & N & - & 5 \\ 409 & 7^16^7^1 & - & Y & N & N & - & 5 \\ 409 & 7^16^7^1 & - & Y & N & N & - & 5 \\ 409 & 7^16^7^1 & - & Y & N & N & - & 5 \\ 400 & 2^15^37^2 & - & N & N & Y & - & -7 \\ 400 & 47^17^2 & - & Y & N & N & - & 5 \\ 470 & 47^17^3 & - & N & N & Y & - & -7 \\ 41 & 1 & 2^125^14^2 & - & N & N & Y & - & -7 \\ 41 & 1 & 2^125^39^1 & - & N & N$	2488 -2	-182	_			1		_			1	_	$2^{1}223^{1}$	l I
$ \begin{vmatrix} 449 & 449^1 & - & Y & Y & N & - & -2 \\ 450 & 2^13^22^2 & - & N & N & Y & - & -74 \\ 451 & 11^141^1 & - & Y & N & N & - & 55 \\ 1451 & 11^141^1 & - & Y & N & N & - & 55 \\ 1452 & 2^2113^1 & - & N & N & Y & - & -77 \\ 1453 & 3^151^1 & - & Y & N & N & - & 55 \\ 1454 & 2^122^{21} & - & Y & N & N & - & 55 \\ 1455 & 5^17^{1}3^1 & - & Y & N & N & - & 55 \\ 1455 & 5^17^{1}3^1 & - & Y & N & N & - & 55 \\ 1456 & 2^33^119^1 & - & N & N & Y & - & -48 \\ 1457 & 457^1 & - & Y & N & N & - & -2 \\ 1466 & 2^33^119^1 & - & N & N & Y & - & -48 \\ 1457 & 457^1 & - & Y & Y & N & N & - & 55 \\ 1468 & 2^1229^1 & - & Y & N & N & - & 55 \\ 1499 & 3^317^1 & - & N & N & Y & - & -2 \\ 1499 & 3^317^1 & - & N & N & Y & - & 9 \\ 1400 & 2^35^123^1 & - & N & N & Y & - & 9 \\ 461 & 461^1 & - & Y & Y & N & - & -2 \\ 462 & 2^13^17^111^1 & - & Y & N & N & - & 65 \\ 463 & 463^1 & - & Y & Y & N & - & -2 \\ 464 & 2^122^3 & - & N & N & Y & - & -2 \\ 460 & 2^25^123^1 & - & N & N & Y & - & -2 \\ 410 & 401^1 & - & Y & Y & N & - & -2 \\ 422 & 2^13^17^111^1 & - & Y & N & N & - & 65 \\ 433 & 403^1 & - & Y & Y & N & - & -2 \\ 440 & 2^13^17^11^1 & - & Y & N & N & - & 65 \\ 440 & 2^12^23^1 & - & N & N & Y & - & -111 \\ 441 & 1.1666667 & - & -282 \\ 440 & 2^12^37^1 & - & N & N & Y & - & -111 \\ 441 & 1.0 & 0 & 1.0000000 & - & -248 \\ 440 & 2^12^23^1 & - & N & N & Y & - & -2 \\ 1 & 0 & 1.0000000 & - & -224 \\ 440 & 2^15^17^11^1 & - & Y & N & N & - & 65 \\ 1 & 0 & 1.0000000 & - & -248 \\ 440 & 2^15^17^11^1 & - & Y & N & N & - & -6 \\ 1 & 0 & 1.0000000 & - & -248 \\ 440 & 2^12^33^1 & - & N & N & Y & - & -71 \\ 440 & 2^12^33^1 & - & Y & N & N & - & 5 \\ 1 & 0 & 1.0000000 & - & -248 \\ 440 & 2^12^31^1 & - & Y & N & N & - & 5 \\ 1 & 0 & 1.0000000 & - & -248 \\ 440 & 2^12^31^3 & - & N & N & Y & - & -74 \\ 440 & 2^15^17^1 & - & Y & N & N & - & 5 \\ 1 & 0 & 1.0000000 & - & -248 \\ 4470 & 2^15^147^1 & - & Y & N & N & - & 5 \\ 1 & 0 & 1.0000000 & - & -323 \\ 4470 & 2^15^17^1 & - & N & N & Y & - & -77 \\ 1 & 1 & 2 & 1.2857143 & - & -811 \\ 4471 & 3^115^17^1 & - & N & N & Y & - & -77 \\ 1 & 1 & 0 & 1.0000000 & - & -$	2493 -2	-177	_	1.0000000	0	1	5	_	N	N	Y	_	3^1149^1	447
$ \begin{vmatrix} 450 & 2^13^25^2 & - & N & N & Y & - & -74 \\ 451 & 11^141^1 & - & Y & N & N & - & 5 \\ 452 & 2^2113^1 & - & N & N & Y & - & -77 \\ 1 & 2 & 1.2857143 & - & -270 \\ 453 & 3^1151^1 & - & Y & N & N & - & 5 \\ 1 & 0 & 1.0000000 & - & -265 \\ 4545 & 2^3227^1 & - & Y & N & N & - & 5 \\ 1 & 0 & 1.0000000 & - & -265 \\ 455 & 5^77^13^3 & - & Y & N & N & - & 5 \\ 1 & 0 & 1.0000000 & - & -265 \\ 455 & 5^77^13^3 & - & Y & N & N & - & -16 \\ 456 & 2^33^19^1 & - & N & N & Y & - & -48 \\ 456 & 2^33^19^1 & - & N & N & Y & - & -48 \\ 457 & 457^1 & - & Y & Y & N & N & - & -2 \\ 459 & 3^317^1 & - & Y & N & N & - & 5 \\ 460 & 2^25^13^1 & - & N & N & Y & - & 9 \\ 460 & 2^25^13^1 & - & N & N & Y & - & 9 \\ 460 & 2^25^13^1 & - & N & N & Y & - & 30 \\ 461 & 461^1 & - & Y & N & N & - & 65 \\ 462 & 2^317^11^1 & - & Y & N & N & - & 65 \\ 463 & 463^1 & - & Y & N & N & - & 65 \\ 464 & 462^2 & - & - & - & - \\ 466 & 2^429^1 & - & N & N & Y & - & -2 \\ 466 & 3^45^3 & - & Y & N & N & - & 65 \\ 466 & 3^45^3 & - & Y & N & N & - & 65 \\ 466 & 3^45^3 & - & Y & N & N & - & 65 \\ 466 & 3^45^3 & - & Y & N & N & - & 65 \\ 466 & 3^45^3 & - & Y & N & N & - & 65 \\ 466 & 3^45^3 & - & Y & N & N & - & -2 \\ 466 & 3^45^3 & - & Y & N & N & - & -2 \\ 466 & 3^45^3 & - & Y & N & N & - & -2 \\ 466 & 3^45^3 & - & Y & N & N & - & -2 \\ 466 & 3^45^3 & - & Y & N & N & - & -16 \\ 466 & 3^45^3 & - & Y & N & N & - & 5 \\ 473 & 11^443^1 & - & Y & N & N & - & 5 \\ 470 & 2^15^447^1 & - & Y & N & N & - & 5 \\ 471 & 3^4157^1 & - & Y & N & N & - & 5 \\ 472 & 2^59^1 & - & N & N & Y & - & -74 \\ 473 & 3^253^1 & - & N & N & Y & - & -74 \\ 474 & 2^35^3 & - & N & N & Y & - & -74 \\ 475 & 2^57^17^1 & - & N & N & N & - & 5 \\ 473 & 11^443^1 & - & Y & N & N & - & 5 \\ 470 & 2^57^417^1 & - & N & N & Y & - & -74 \\ 470 & 2^57^417^1 & - & N & N & Y & - & -74 \\ 470 & 2^57^417^1 & - & N & N & Y & - & -74 \\ 470 & 2^57^417^1 & - & N & N & Y & - & -74 \\ 470 & 2^57^417^1 & - & N & N & Y & - & -74 \\ 470 & 2^53^41^3 & - & N & N & Y & - & -74 \\ 480 & 2^53^51^5 & - & N & N & Y & - & -74 \\ 480 & 2^53^51^5 & - & N & N & Y & - & -96 \\ $	2493 -2	-192	-	2.3333333	10	1	-15	-	Y	N	N	-		448
$ \begin{vmatrix} 451 & 11^141^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -268 \\ 452 & 2^2113^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -270 \\ 453 & 3^1151^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -266 \\ 454 & 2^1227^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -266 \\ 455 & 5^1713^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -266 \\ 456 & 2^33^19^1 & - & N & N & Y & - & -48 & 1 & 32 & 1.333333 & - & -324 \\ 457 & 487^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -266 \\ 458 & 2^1229^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -324 \\ 458 & 3^12^1 & - & N & N & Y & - & -48 & 1 & 32 & 1.333333 & - & -324 \\ 459 & 3^317^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & -312 \\ 460 & 2^5^123^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & -312 \\ 461 & 461^1 & - & Y & Y & N & N & - & 2 & 1 & 0 & 1.0000000 & - & -284 \\ 462 & 2^137711^1 & - & Y & N & N & - & -2 & 1 & 0 & 1.0000000 & - & -284 \\ 463 & 463^1 & - & Y & Y & N & N & - & -2 & 1 & 0 & 1.0000000 & - & -284 \\ 464 & 4^229^1 & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & -224 \\ 465 & 3^15^131^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -224 \\ 466 & 2^123^3 & - & N & N & Y & - & -11 & 1 & 6 & 1.8181818 & -2 \\ 467 & 467^1 & - & Y & Y & N & N & - & -5 & 1 & 0 & 1.0000000 & - & -248 \\ 468 & 2^123^1 & - & N & N & Y & - & -74 & 1 & 588 & 1.2162162 & - & -319 \\ 470 & 2^5^147^1 & - & Y & N & N & - & -5 & 1 & 0 & 1.0000000 & - & -344 \\ 480 & 2^15^147^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -334 \\ 471 & 3^1157^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -334 \\ 472 & 2^3591 & - & N & N & Y & - & -74 & 1 & 588 & 1.2162162 & - & -319 \\ 473 & 11^143^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -334 \\ 474 & 2^12^17^0 & - & Y & N & N & - & -5 & 1 & 0 & 1.0000000 & - & -334 \\ 476 & 2^7^117^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -344 \\ 473 & 11^143^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -336 \\ 479 & 479^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -336 \\ 488 $	2493 -2	-194				1	-2	-			1	-		449
$ \begin{vmatrix} 452 & 2^2 113^1 & - & N & N & V & - & -7 & 1 & 2 & 1.2857143 & - & -270 \\ 453 & 3^1 151^1 & - & V & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -268 \\ 454 & 2^2 2271^3 & - & V & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -268 \\ 455 & 5^1 7^1 13^1 & - & V & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -268 \\ 456 & 2^3 3^1 9^1 & - & N & N & Y & - & -48 & 1 & 32 & 1.333333 & -324 \\ 457 & 457^1 & - & Y & Y & N & N & - & -2 & 1 & 0 & 1.0000000 & - & -268 \\ 458 & 2^1 229^1 & - & V & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & -312 \\ 459 & 3^3 17^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & -312 \\ 460 & 2^2 5^1 23^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & -312 \\ 461 & 461^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -284 \\ 462 & 2^1 3^1 7^1 11^1 & - & Y & N & N & - & 65 & 1 & 0 & 1.0000000 & - & -219 \\ 464 & 40^2 29^1 & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & -219 \\ 464 & 2^2 29^1 & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & -219 \\ 464 & 2^2 29^1 & - & N & N & Y & - & -111 & 1 & 6 & 1.8181818 & - & -232 \\ 465 & 3^1 5^1 31^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -248 \\ 466 & 2^2 233^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -248 \\ 466 & 2^2 23^2 3^1 & - & N & N & Y & - & -11 & 1 & 6 & 1.8181818 & - & -232 \\ 467 & 467^2 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -248 \\ 468 & 2^3 2^3 1^3 & - & N & N & Y & - & -74 & 1 & 58 & 1.216212 & - & 314 \\ 469 & 7^1 6^7 1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -243 \\ 470 & 2^1 5^1 47^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -314 \\ 471 & 3^1 157^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -314 \\ 472 & 2^3 59^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & -314 \\ 473 & 11^4 43^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -324 \\ 473 & 2^3 1^3 1^3 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -324 \\ 484 & 2^2 1^2 1^2 & - & N & N & Y & - & 9 & 1 & 4 & 1.1666667 & - & -364 \\ 481 & 13^3 3^7 1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -324 \\ 488 & 2^2 1^2 1 & - & N & N $	2493 -2	-268	-	1.2162162	58	1	-74	-	Y	N	N	-		450
$ \begin{vmatrix} 453 & 3^1 151^1 & - & V & N & N & N & - & 5 \\ 454 & 2^1 227^1 & - & V & N & N & - & 5 \\ 455 & 5^1 7^1 3^3 & - & V & N & N & - & 5 \\ 456 & 5^2 3^3 19^1 & - & N & N & V & - & -488 & 1 & 32 & 1.3333333 & - & -324 \\ 457 & 457^1 & - & V & V & N & - & -2 & 1 & 0 & 1.0000000 & - & -266 \\ 458 & 2^3 2^3 19^1 & - & N & N & V & - & -488 & 1 & 32 & 1.3333333 & - & -324 \\ 457 & 457^1 & - & V & V & N & - & -2 & 1 & 0 & 1.0000000 & - & -326 \\ 458 & 2^1 229^1 & - & V & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -324 \\ 459 & 3^3 17^1 & - & N & N & V & - & 9 & 1 & 4 & 1.5555556 & -312 \\ 460 & 2^2 5^1 23^4 & - & N & N & V & - & 30 & 1 & 14 & 1.166667 & - & -288 \\ 461 & 461^1 & - & V & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -224 \\ 462 & 2^3 1^7 111^1 & - & V & N & N & - & 65 & 1 & 0 & 1.0000000 & - & -224 \\ 463 & 463^1 & - & V & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -224 \\ 464 & 2^2 2^3 1 & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & -224 \\ 466 & 2^3 2^3 1^3 1 & - & V & N & N & - & -2 & 1 & 0 & 1.0000000 & - & -224 \\ 466 & 2^3 23^3 1 & - & V & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -224 \\ 466 & 2^3 23^3 1 & - & V & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -244 \\ 468 & 2^2 2^3 1^3 & - & N & N & V & - & -2 & 1 & 0 & 1.0000000 & - & -244 \\ 468 & 2^2 2^3 1^3 & - & V & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -244 \\ 468 & 2^2 2^3 1^3 & - & V & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -334 \\ 470 & 2^1 5^3 47^1 & - & V & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -334 \\ 471 & 3^1 157^1 & - & V & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -334 \\ 472 & 2^2 59^3 1 & - & N & N & V & - & 99 & 1 & 4 & 1.55555566 & -3316 \\ 473 & 11^1 13^3 & - & V & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -324 \\ 475 & 5^2 19^3 & - & N & N & V & - & 99 & 1 & 4 & 1.55555566 & -3314 \\ 476 & 2^2 7^1 7^1 & - & N & N & V & - & 7 & 1 & 2 & 1.2857143 & -331 \\ 476 & 2^2 7^1 7^1 & - & N & N & V & - & -7 & 1 & 2 & 1.2857143 & -331 \\ 476 & 2^2 7^3 17^1 & - & V & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -334 \\ 488 & 3^3 17^2 23^1 & - & V & N & N & - & 5 & 1 & 0 & 1.00$	2498 -2	-263									1			l I
$ \begin{vmatrix} 454 & 2^1227^1 & - & Y & N & N & - & -5 & 1 & 0 & 1.0000000 & - & -260 \\ 455 & 5^17^13^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -276 \\ 456 & 2^23^19^1 & - & N & N & Y & - & -48 & 1 & 32 & 1.333333 & - & -324 \\ 457 & 457^1 & - & Y & Y & N & N & - & -2 & 1 & 0 & 1.0000000 & - & -326 \\ 458 & 2^1229^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -326 \\ 459 & 3^317^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & -312 \\ 460 & 2^25^123^1 & - & N & N & Y & - & 99 & 1 & 4 & 1.1666667 & - & -288 \\ 461 & 461^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -224 \\ 462 & 2^13^7^111^1 & - & Y & N & N & - & 65 & 1 & 0 & 1.0000000 & - & -224 \\ 463 & 463^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -224 \\ 464 & 2^429^1 & - & N & N & Y & - & -11 & 1 & 6 & 1.8181818 & - & -232 \\ 466 & 3^15_41^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -248 \\ 466 & 2^1233^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -248 \\ 466 & 2^1233^1 & - & Y & N & N & - & -5 & 1 & 0 & 1.0000000 & - & -248 \\ 466 & 2^23^213^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -248 \\ 466 & 2^23^213^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -248 \\ 466 & 2^23^21^3 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -248 \\ 466 & 2^23^21^3 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -248 \\ 466 & 2^23^21^3 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -348 \\ 467 & 467^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -348 \\ 470 & 2^13^14^7 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -348 \\ 470 & 2^13^14^7 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -348 \\ 472 & 2^23_0^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -348 \\ 472 & 2^23_0^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -348 \\ 473 & 11^14_3^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -348 \\ 474 & 2^12^17^1 & - & N & N & Y & - & 7 & 1 & 2 & 1.2857143 & - & 34 \\ 476 & 2^27^17^1 & - & N & N & Y & - & 7 & 1 & 2 & 1.2857143 & - & 34 \\ 478 & 2^12^3 - & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 34 \\ 47$	2498 -2	-270	1 1								1			
$ \begin{vmatrix} 455 & 5^{1}7^{1}13^{1} & - & Y & N & N & - & -16 \\ 456 & 2^{3}3^{1}9^{1} & - & N & N & Y & - & -48 & 1 \\ 457 & 457^{1} & - & Y & Y & N & - & -2 \\ 458 & 2^{1}229^{1} & - & Y & N & N & - & 5 \\ 458 & 2^{1}229^{1} & - & Y & N & N & - & 5 \\ 459 & 3^{3}17^{1} & - & N & N & Y & - & 9 \\ 460 & 2^{2}5^{1}23^{1} & - & N & N & Y & - & 9 \\ 461 & 461^{1} & - & Y & Y & N & - & -2 \\ 461 & 461^{1} & - & Y & Y & N & - & -2 \\ 462 & 2^{1}3^{1}7^{1}11^{1} & - & Y & N & N & - & 65 \\ 463 & 463^{1} & - & Y & Y & N & - & -2 \\ 464 & 2^{2}2^{1}9^{1} & - & N & N & Y & - & -2 \\ 465 & 3^{1}5^{1}31^{1} & - & Y & N & N & - & 65 \\ 466 & 2^{1}233^{1} & - & Y & Y & N & - & -2 \\ 466 & 3^{1}5^{1}31^{1} & - & Y & N & N & - & -16 \\ 466 & 2^{1}233^{1} & - & Y & N & N & - & -16 \\ 467 & 467^{1} & - & Y & N & N & - & -2 \\ 468 & 2^{2}3^{2}13^{1} & - & Y & N & N & - & -2 \\ 468 & 2^{2}3^{2}13^{1} & - & Y & N & N & - & -2 \\ 469 & 2^{1}5^{1}47^{1} & - & Y & N & N & - & -2 \\ 469 & 2^{1}5^{1}47^{1} & - & Y & N & N & - & -2 \\ 41 & 0 & 1.0000000 & - & -248 \\ 420 & 2^{1}3^{1}3^{1} & - & Y & N & N & - & -16 \\ 41 & 0 & 1.0000000 & - & -248 \\ 420 & 2^{1}3^{1}3^{1} & - & Y & N & N & - & -16 \\ 41 & 0 & 1.0000000 & - & -248 \\ 421 & - & Y & N & N & - & -2 \\ 422 & - & 1 & 0 & 1.0000000 & - & -248 \\ 422 & 2^{1}3^{1} & - & Y & N & N & - & -2 \\ 423 & - & 1 & 0 & 1.0000000 & - & -248 \\ 424 & 2^{1}3^{1} & - & Y & N & N & - & 5 \\ 429 & 1 & 0 & 1.0000000 & - & -248 \\ 440 & 2^{1}3^{1}3^{1} & - & Y & N & N & - & 5 \\ 420 & 1 & 1 & 0 & 1.0000000 & - & -248 \\ 440 & 2^{1}3^{1}4^{1} & - & Y & N & N & - & 5 \\ 420 & 1 & 1 & 0 & 1.0000000 & - & -248 \\ 440 & 2^{1}3^{1}4^{1} & - & Y & N & N & - & 5 \\ 420 & 1 & 1 & 0 & 1.0000000 & - & -248 \\ 440 & 2^{1}3^{1}4^{1} & - & Y & N & N & - & 5 \\ 420 & 1 & 1 & 1 & 0 & 1.0000000 & - & -348 \\ 441 & 3^{1}15^{1} & - & Y & N & N & - & 5 \\ 421 & 1 & 3^{1}15^{1} & - & Y & N & N & - & 5 \\ 421 & 1 & 3^{1}15^{1} & - & Y & N & N & - & 5 \\ 421 & 1 & 3^{1}14^{1} & - & Y & N & N & - & 5 \\ 421 & 1 & 1 & 1 & 1.1666667 & - & -304 \\ 421 & 2^{1}2^{1} & - & N & N$	2503 -2							l			1			11
$ \begin{vmatrix} 456 & 2^3 3^1 9^1 & - & N & N & Y & - & -48 \\ 457 & 457^1 & - & Y & Y & N & - & -2 \\ 458 & 2^1 229^1 & - & Y & N & N & - & 5 \\ 459 & 3^3 17^1 & - & N & N & Y & - & 9 \\ 459 & 3^3 17^1 & - & N & N & Y & - & 9 \\ 460 & 2^2 5^1 23^1 & - & N & N & Y & - & -2 \\ 461 & 461^1 & - & Y & Y & N & - & -2 \\ 462 & 2^1 3^1 7^1 1^1 & - & Y & N & N & - & -2 \\ 463 & 463^1 & - & Y & Y & N & - & -2 \\ 464 & 2^1 3^1 7^1 1^1 & - & Y & N & N & Y & - & -2 \\ 464 & 2^2 1^3 1^2 1^1 1^1 & - & Y & N & N & - & -2 \\ 464 & 2^2 2^1 & - & N & N & Y & - & -11 \\ 464 & 2^2 29^1 & - & N & N & Y & - & -11 \\ 464 & 2^2 29^1 & - & N & N & Y & - & -11 \\ 466 & 2^2 23^3 1 & - & Y & Y & N & - & -16 \\ 466 & 2^1 233^1 & - & Y & N & N & - & -16 \\ 467 & 467^1 & - & Y & N & N & - & 5 \\ 468 & 2^2 3^3 13^1 & - & N & N & Y & - & -74 \\ 468 & 2^2 3^3 1^3 & - & N & N & Y & - & -74 \\ 469 & 7^1 6^7 & - & Y & N & N & - & 5 \\ 470 & 2^1 5^1 47^1 & - & Y & N & N & - & 5 \\ 470 & 2^1 5^1 47^1 & - & Y & N & N & - & 5 \\ 471 & 3^1 157^1 & - & Y & N & N & - & 5 \\ 472 & 2^3 5^9 & - & N & N & Y & - & -16 \\ 473 & 11^1 43^1 & - & Y & N & N & - & 5 \\ 473 & 11^1 43^1 & - & Y & N & N & - & 5 \\ 474 & 2^2 2^3 9^1 & - & N & N & Y & - & -16 \\ 475 & 3^1 5^3 1 & - & Y & N & N & - & 5 \\ 476 & 477 & 3^1 55^1 & - & Y & N & N & - & 5 \\ 472 & 2^3 59^1 & - & N & N & Y & - & -16 \\ 473 & 11^1 43^1 & - & Y & N & N & - & 5 \\ 474 & 2^3 1^3 9^1 & - & Y & N & N & - & 5 \\ 475 & 5^2 19^1 & - & N & N & Y & - & -7 \\ 475 & 5^2 19^1 & - & N & N & Y & - & -7 \\ 476 & 2^2 7^1 17^1 & - & N & N & Y & - & -7 \\ 477 & 3^2 5^3 & - & N & N & Y & - & -7 \\ 488 & 2^2 3^3 1^1 & - & Y & N & N & - & 5 \\ 479 & 479^1 & - & Y & N & N & - & 5 \\ 479 & 479^1 & - & Y & N & N & - & 5 \\ 480 & 2^2 3^3 5^1 & - & N & N & Y & - & -96 \\ 481 & 13^3 3^7 & - & Y & N & N & - & 5 \\ 482 & 2^2 2^3 1^1 & - & N & N & Y & - & -96 \\ 483 & 3^1 7^1 2^3 & - & Y & N & N & - & 5 \\ 486 & 2^1 3^5 & - & N & N & Y & - & -96 \\ 486 & 2^1 3^5 & - & N & N & Y & - & -96 \\ 486 & 2^1 3^5 & - & N & N & Y & - & -96 \\ 486 & 2^1 3^3 & - & N & N & Y & - & -96 \\ 486 & 2$	2508 -2										1			
$ \begin{vmatrix} 457 & 457^1 & - & Y & Y & N & N & - & -2 \\ 458 & 2^129^1 & - & Y & N & N & N & - & 5 \\ 459 & 3^317^1 & - & N & N & Y & - & 9 \\ 460 & 2^25^123^1 & - & N & N & Y & - & 30 \\ 461 & 461^1 & - & Y & Y & N & N & - & -2 \\ 462 & 2^13^17^11^1 & - & Y & N & N & - & -65 \\ 463 & 463^1 & - & Y & Y & N & - & -2 \\ 464 & 463^1 & - & Y & Y & N & - & -2 \\ 465 & 3^15^31^1 & - & Y & N & N & Y & - & -11 \\ 465 & 3^15^31^1 & - & Y & N & N & - & -2 \\ 466 & 2^13^3^1 & - & Y & Y & N & - & -2 \\ 466 & 3^15^31^1 & - & Y & N & N & - & -16 \\ 466 & 3^15^31^1 & - & Y & N & N & - & -16 \\ 466 & 3^15^31^1 & - & Y & N & N & - & -5 \\ 466 & 3^15^31^1 & - & Y & N & N & - & -16 \\ 466 & 2^23^3 & - & Y & N & N & - & -74 \\ 467 & 467^1 & - & Y & Y & N & N & - & -2 \\ 468 & 2^23^11^3 & - & N & N & Y & - & -74 \\ 469 & 1^26^7 & - & Y & Y & N & N & - & 5 \\ 409 & 1^35^4 & - & Y & Y & N & N & - & 5 \\ 409 & 1^35^4 & - & Y & Y & N & N & - & 5 \\ 409 & 1^35^4 & - & Y & N & N & - & 5 \\ 410 & 1^3157^1 & - & Y & N & N & - & 5 \\ 473 & 11^143^1 & - & Y & N & N & - & 5 \\ 473 & 11^143^1 & - & Y & N & N & - & 5 \\ 473 & 11^143^1 & - & Y & N & N & - & 5 \\ 475 & 5^219^1 & - & N & N & Y & - & -7 \\ 476 & 2^27^11^1 & - & N & N & Y & - & -7 \\ 476 & 2^27^11^1 & - & Y & N & N & - & 5 \\ 476 & 2^27^11^1 & - & N & N & Y & - & -7 \\ 476 & 2^27^11^1 & - & N & N & Y & - & -7 \\ 476 & 2^27^11^1 & - & N & N & Y & - & -7 \\ 476 & 2^27^11^1 & - & N & N & Y & - & -7 \\ 476 & 2^27^11^1 & - & N & N & Y & - & -7 \\ 476 & 2^27^11^1 & - & N & N & Y & - & -7 \\ 488 & 2^229^1 & - & Y & N & N & - & 5 \\ 489 & 2^23^15^1 & - & N & N & Y & - & -96 \\ 481 & 13^13^1 & - & Y & N & N & - & 5 \\ 480 & 2^23^15^1 & - & N & N & Y & - & -96 \\ 481 & 13^13^1 & - & Y & N & N & - & 5 \\ 482 & 2^241^1 & - & Y & N & N & - & 5 \\ 485 & 5^197^1 & - & Y & N & N & - & 5 \\ 486 & 2^13^5 & - & N & N & Y & - & -96 \\ 485 & 2^36^1 & - & N & N & Y & - & -96 \\ 486 & 2^13^5 & - & N & N & Y & - & -96 \\ 487 & 487^1 & - & Y & N & N & - & 5 \\ 489 & 3^163^4 & - & N & N & Y & - & -99 \\ 489 & 2^15^17^2 & - & N & N & Y & - & -96 \\ 490 & 2^15^17^2$	2508 -2							l			1			l I
$ \begin{vmatrix} 458 & 2^1229^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -321 \\ 459 & 3^317^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.555556 & - & -312 \\ 460 & 2^25^123^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & -228 \\ 461 & 461^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -284 \\ 462 & 2^13^17^111^1 & - & Y & N & N & - & -65 & 1 & 0 & 1.0000000 & - & -214 \\ 463 & 463^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -214 \\ 464 & 2^429^1 & - & N & N & Y & - & -11 & 1 & 6 & 1.81818 & - & -232 \\ 465 & 3^15^13^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -243 \\ 466 & 2^123^3 & - & Y & N & N & - & -5 & 1 & 0 & 1.0000000 & - & -243 \\ 467 & 467^1 & - & Y & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -243 \\ 468 & 2^23^313^1 & - & N & N & Y & - & -74 & 1 & 58 & 1.2162162 & - & -319 \\ 469 & 7^167^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -314 \\ 470 & 2^15^147^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -333 \\ 471 & 3^1157^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -333 \\ 472 & 2^259^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & 316 \\ 473 & 11^143^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -325 \\ 472 & 2^259^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & 316 \\ 473 & 11^143^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -327 \\ 475 & 5^219^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -334 \\ 476 & 2^27^17^1 & - & N & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -327 \\ 475 & 5^219^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -334 \\ 476 & 2^27^17^1 & - & N & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -327 \\ 477 & 3^253^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -334 \\ 486 & 2^23^15^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -334 \\ 487 & 487^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -308 \\ 488 & 2^36^1 & - & N & N & Y & - & -96 & 1 & 80 & 1.666667 & - & -308 \\ 488 & 2^36^1 & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & -394 \\ 488 & 2^36^1 & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & -394 \\ 488 & 2^36^1 & - &$	$ \begin{array}{rrr} 2508 & -2 \\ 2508 & -2 \end{array} $		1 1								1			l I
$ \begin{vmatrix} 459 & 3^317^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.555556 & - & -312 \\ 460 & 2^25^123^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.166667 & - & -282 \\ 461 & 461^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -228 \\ 462 & 2^13^17^111^1 & - & Y & N & N & N & - & 65 & 1 & 0 & 1.0000000 & - & -219 \\ 463 & 463^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -221 \\ 464 & 2^29^1 & - & N & N & Y & - & -11 & 1 & 6 & 1.8181818 & - & -232 \\ 465 & 3^15^13^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -248 \\ 466 & 2^123^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -248 \\ 467 & 467^1 & - & Y & Y & N & N & - & -2 & 1 & 0 & 1.0000000 & - & -248 \\ 468 & 2^23^13^1 & - & N & N & Y & - & -74 & 1 & 58 & 1.2162162 & - & -319 \\ 469 & 7^16^{11} & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -314 \\ 470 & 2^15^147^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -330 \\ 471 & 3^115^{71} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -325 \\ 472 & 2^399^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555565 & - & 310 \\ 473 & 11^143^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -325 \\ 472 & 2^399^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.555556 & - & 310 \\ 473 & 11^143^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -325 \\ 475 & 2^399^1 & - & N & N & Y & - & 7 & 1 & 2 & 1.2857143 & - & 334 \\ 476 & 2^27^17^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 334 \\ 476 & 2^27^17^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -311 \\ 478 & 2^223^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -311 \\ 488 & 2^23^1 & - & N & N & Y & - & -96 & 1 & 80 & 1.666667 & - & -404 \\ 481 & 13^33^7 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -398 \\ 482 & 2^24^{11} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -398 \\ 483 & 3^17^23^1 & - & N & N & Y & - & -16 & 1 & 0 & 1.0000000 & - & -394 \\ 485 & 5^197^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -394 \\ 485 & 5^197^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -394 \\ 486 & 2^13^2 & - & N & N & Y & - & -16 & 1 & 0 & 1.0000000 & - & -394 \\ 487 $	2508 - 2 $2513 - 2$										1			11
$ \begin{vmatrix} 460 & 2^2 5^1 23^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.166667 & - & -282 \\ 461 & 461^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -284 \\ 462 & 2^1 3^1 7^1 11^1 & - & Y & N & N & - & 65 & 1 & 0 & 1.000000 & - & -214 \\ 463 & 463^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -221 \\ 464 & 2^4 29^1 & - & N & N & Y & - & -11 & 1 & 6 & 1.81818 & - & -232 \\ 465 & 3^1 5^1 31^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -224 \\ 466 & 2^1 233^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -248 \\ 466 & 2^1 233^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -248 \\ 467 & 467^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -248 \\ 468 & 2^2 3^2 13^1 & - & N & N & Y & - & -74 & 1 & 58 & 1.2162162 & - & -319 \\ 469 & 7^1 67^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -344 \\ 470 & 2^1 5^1 47^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -344 \\ 471 & 3^1 157^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -325 \\ 472 & 2^3 59^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.555556 & - & -316 \\ 473 & 11^1 43^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -327 \\ 474 & 2^1 3^1 79^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -327 \\ 475 & 5^2 19^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 314 \\ 476 & 2^2 7^1 17^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 314 \\ 476 & 2^2 7^1 17^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 314 \\ 477 & 3^2 53^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & 314 \\ 478 & 2^1 239^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -308 \\ 480 & 2^5 3^1 5^1 & - & N & N & Y & - & -96 & 1 & 80 & 1.666667 & - & -304 \\ 481 & 13^1 37^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -308 \\ 482 & 2^1 241^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -308 \\ 483 & 3^1 7^1 2^3 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -308 \\ 485 & 5^1 97^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -308 \\ 485 & 5^1 97^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -308 \\ 486 & 2^1 5^1 & - & N & N & Y & - & -96 & 1 & 80 & 1.000000 $	2513 - 2 $2522 - 2$		1 1								1			
$ \begin{vmatrix} 461 & 461^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -284 \\ 462 & 2^13^17^111^1 & - & Y & N & N & - & 65 & 1 & 0 & 1.0000000 & - & -219 \\ 463 & 463^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -221 \\ 464 & 2^42^1 & - & N & N & Y & - & -111 & 1 & 6 & 1.8181818 & - & -232 \\ 465 & 3^15^13^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -248 \\ 466 & 2^123^3 & - & Y & N & N & - & -5 & 1 & 0 & 1.0000000 & - & -248 \\ 467 & 467^1 & - & Y & Y & N & N & - & -5 & 1 & 0 & 1.0000000 & - & -248 \\ 468 & 2^23^213^1 & - & N & N & Y & - & -74 & 1 & 58 & 1.2162162 & - & -319 \\ 469 & 2^16^{71} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -348 \\ 470 & 2^15^147^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -334 \\ 471 & 3^1157^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -334 \\ 472 & 2^359^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & -316 \\ 473 & 11^143^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -314 \\ 474 & 2^13^17^9 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -314 \\ 476 & 2^27^117^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -334 \\ 476 & 2^27^117^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -334 \\ 476 & 2^25^3^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -334 \\ 477 & 3^25^3 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -334 \\ 479 & 4^79 & 4^79 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -306 \\ 480 & 2^53^15^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -306 \\ 481 & 13^137^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -308 \\ 482 & 2^1241^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -308 \\ 483 & 3^1723^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -308 \\ 485 & 5^19^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -308 \\ 485 & 5^19^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -308 \\ 485 & 5^19^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -308 \\ 486 & 2^21^2 & - & N & N & Y & - & 9 & 1 & 4 & 1.555556 & - & -371 \\ 486 & 2^15^2 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & 384 \\ 487 & $	2552 -2										1			11
$ \begin{vmatrix} 462 & 2^{1}3^{1}7^{1}1^{1} & - & Y & N & N & - & 65 \\ 463 & 463^{1} & - & Y & Y & N & - & -2 \\ 464 & 463^{1} & - & Y & Y & N & - & -2 \\ 465 & 3^{1}5^{1}3^{1} & - & Y & N & N & Y & - & -11 \\ 466 & 2^{1}23^{1} & - & Y & N & N & Y & - & -11 \\ 466 & 2^{1}23^{1} & - & Y & N & N & - & -16 \\ 466 & 2^{1}23^{1} & - & Y & N & N & - & -16 \\ 466 & 2^{1}23^{1} & - & Y & N & N & - & -5 \\ 466 & 2^{1}23^{1} & - & Y & N & N & - & -5 \\ 468 & 2^{2}3^{1}3^{1} & - & Y & N & N & - & -2 \\ 469 & 7^{1}6^{1} & - & Y & N & N & - & -74 \\ 469 & 7^{1}6^{1} & - & Y & N & N & - & -5 \\ 470 & 2^{1}5^{1}47^{1} & - & Y & N & N & - & -5 \\ 471 & 3^{1}15^{1} & - & Y & N & N & - & -16 \\ 470 & 2^{1}5^{1}47^{1} & - & Y & N & N & - & -16 \\ 473 & 11^{1}43^{1} & - & Y & N & N & - & 5 \\ 472 & 2^{3}55^{1} & - & N & N & Y & - & 9 \\ 473 & 11^{1}43^{1} & - & Y & N & N & - & 5 \\ 474 & 2^{1}3^{1}79^{1} & - & Y & N & N & - & 5 \\ 476 & 2^{1}3^{1}79^{1} & - & Y & N & N & - & -16 \\ 473 & 11^{1}43^{1} & - & Y & N & N & - & -16 \\ 473 & 11^{1}43^{1} & - & Y & N & N & - & 5 \\ 476 & 2^{2}7^{1}1^{1} & - & Y & N & N & - & -16 \\ 476 & 11^{1}43^{1} & - & Y & N & N & - & -5 \\ 477 & 3^{2}55^{1} & - & N & N & Y & - & -7 \\ 477 & 3^{2}53^{1} & - & N & N & Y & - & -7 \\ 478 & 2^{1}239^{1} & - & Y & N & N & - & -16 \\ 479 & 479^{1} & - & Y & N & N & - & 5 \\ 480 & 2^{1}3^{1} & - & N & N & Y & - & -7 \\ 481 & 13^{1}3^{1} & - & Y & N & N & - & 5 \\ 482 & 2^{1}241^{1} & - & N & N & Y & - & -96 \\ 483 & 3^{1}7^{1}23^{1} & - & Y & N & N & - & 5 \\ 486 & 2^{1}241^{1} & - & Y & N & N & - & 5 \\ 487 & 487 & 487^{1} & - & Y & N & N & - & 5 \\ 488 & 2^{2}61^{1} & - & Y & N & N & - & 5 \\ 489 & 3^{1}163^{1} & - & Y & N & N & - & 5 \\ 489 & 2^{1}61^{2} & - & N & N & Y & - & -2 \\ 410 & - & N & N & Y & - & 13 \\ 489 & 2^{1}61^{3} & - & Y & N & N & - & 5 \\ 490 & 2^{1}5^{1}7^{2} & - & N & N & Y & - & -2 \\ 410 & - & N & N & Y & - & -2 \\ 411 & - & N & N & Y & - & -2 \\ 411 & - & N & N & Y & - & -2 \\ 411 & - & N & N & Y & - & -30 \\ 411 & - & 1.666667 & - & -3046 \\ 491 & 491^{1} & - & Y & N & N & - & -2 \\ 411$	2552 -2										1			l I
$ \begin{vmatrix} 464 & 2^4 29^1 & - & N & N & Y & - & -11 & 1 & 6 & 1.8181818 & - & -232 & 1.81818 & - & -232 & -2318 & - & -2318$	2617 -2	-219	_					_			1	_		l I
$ \begin{vmatrix} 465 & 3^15^13^{1} & - & Y & N & N & - & -16 \\ 466 & 2^123^{3} & - & Y & N & N & - & 5 \\ 467 & 467^{1} & - & Y & N & N & - & 5 \\ 468 & 2^23^{2}1^{3} & - & N & N & N & - & -2 \\ 468 & 2^23^{2}1^{3} & - & N & N & N & - & -2 \\ 469 & 7^167^{1} & - & Y & N & N & - & 5 \\ 470 & 2^15^{1}47^{1} & - & Y & N & N & - & 5 \\ 471 & 3^1157^{1} & - & Y & N & N & - & -16 \\ 471 & 3^1157^{1} & - & Y & N & N & - & -16 \\ 472 & 2^359^{1} & - & N & N & Y & - & -9 \\ 472 & 2^359^{1} & - & N & N & Y & - & 9 \\ 473 & 11^{1}43^{1} & - & Y & N & N & - & 5 \\ 474 & 2^13^{1}3^{1} & - & Y & N & N & - & 5 \\ 472 & 2^359^{1} & - & N & N & Y & - & 9 \\ 473 & 11^{1}43^{1} & - & Y & N & N & - & 5 \\ 474 & 2^13^{1}3^{1} & - & Y & N & N & - & 5 \\ 475 & 5^219^{1} & - & N & N & N & - & 5 \\ 476 & 2^27^{1}7^{1} & - & N & N & Y & - & -7 \\ 475 & 5^219^{1} & - & N & N & Y & - & -7 \\ 476 & 2^27^{1}7^{1} & - & N & N & Y & - & -7 \\ 477 & 3^253^{1} & - & N & N & Y & - & -7 \\ 479 & 479^{1} & - & Y & N & N & - & 5 \\ 479 & 479^{1} & - & Y & N & N & - & 5 \\ 481 & 13^{1}37^{1} & - & Y & N & N & - & 5 \\ 482 & 2^1241^{1} & - & Y & N & N & - & 5 \\ 483 & 3^17^{1}23^{1} & - & Y & N & N & - & -2 \\ 483 & 3^17^{1}23^{1} & - & Y & N & N & - & 5 \\ 484 & 2^21^{2} & - & N & N & Y & - & -96 \\ 484 & 2^21^{2} & - & N & N & Y & - & -96 \\ 485 & 5^197^{1} & - & Y & N & N & - & 5 \\ 486 & 2^13^{5} & - & N & N & Y & - & 14 \\ 487 & 487^{1} & - & Y & N & N & - & 5 \\ 488 & 2^361^{1} & - & Y & N & N & - & 5 \\ 489 & 3^163^{1} & - & Y & N & N & - & 5 \\ 489 & 3^163^{1} & - & Y & N & N & - & 5 \\ 489 & 3^163^{1} & - & Y & N & N & - & 5 \\ 489 & 3^163^{1} & - & Y & N & N & - & 5 \\ 489 & 2^1341^{1} & - & Y & N & N & - & 5 \\ 489 & 2^1341^{1} & - & Y & N & N & - & 5 \\ 489 & 3^163^{1} & - & Y & N & N & - & 5 \\ 489 & 3^163^{1} & - & Y & N & N & - & 5 \\ 489 & 3^1666^{1} & - & N & N & Y & - & 30 \\ 490 & 2^23^141^{1} & - & Y & N & N & - & 5 \\ 490 & 2^23^141^{1} & - & N & N & Y & - & 30 \\ 490 & 2^23^141^{1} & - & N & N & Y & - & 30 \\ 490 & 2^23^141^{1} & - & N & N & Y & - & 30 \\ 490 & 2^23^141^{1} & - & N & $	2617 -2	-221	_	1.0000000	0	1	-2	_	N	Y	Y	_	463^{1}	463
$ \begin{vmatrix} 466 & 2^1233^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -243 \\ 467 & 467^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -243 \\ 468 & 2^23^213^1 & - & N & N & Y & - & -74 & 1 & 58 & 1.2162162 & - & -319 \\ 469 & 7^167^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -344 \\ 470 & 2^15^147^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -334 \\ 471 & 3^1157^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -334 \\ 472 & 2^359^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.555556 & -316 \\ 473 & 11^143^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -314 \\ 474 & 2^13^179^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -314 \\ 476 & 2^27^117^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -334 \\ 476 & 2^27^117^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -334 \\ 476 & 2^27^117^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -314 \\ 478 & 2^1239^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -366 \\ 479 & 479^1 & - & Y & N & N & - & -5 & 1 & 0 & 1.000000 & - & -366 \\ 480 & 2^93^15^1 & - & N & N & Y & - & -96 & 1 & 80 & 1.666667 & - & -404 \\ 481 & 13^137^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -398 \\ 482 & 2^1241^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -398 \\ 483 & 3^17^123^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -398 \\ 485 & 2^13^5 & - & N & N & Y & - & -96 & 1 & 80 & 1.666667 & - & -404 \\ 484 & 2^211^2 & - & N & N & Y & - & -96 & 1 & 80 & 1.666667 & - & -404 \\ 485 & 2^13^5 & - & N & N & N & - & 5 & 1 & 0 & 1.000000 & - & -398 \\ 485 & 2^13^5 & - & N & N & Y & - & -16 & 1 & 0 & 1.000000 & - & -398 \\ 485 & 2^13^5 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & -378 \\ 487 & 487^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -366 \\ 490 & 2^15^17^2 & - & N & N & Y & - & 30 & 1 & 14 & 1.166667 & - & -368 \\ 490 & 2^15^17^2 & - & N & N & Y & - & 30 & 1 & 14 & 1.166667 & - & -368 \\ 490 & 2^23^141^1 & - & N & N & Y & - & 2 & 1 & 0 & 1.000000 & - & -366 \\ 490 & 2^23^141^1 & - & N & N & Y & - & 2 & 1 & 0 & 1.000000 & - & -366 \\ 490 & 2^23^141^1 & - & $	2617 -2	-232	-	1.8181818	6	1	-11	_	Y	N	N	_	2^429^1	464
$ \begin{vmatrix} 467 & 467^1 & - & Y & Y & N & - & -2 \\ 468 & 2^2 3^2 13^1 & - & N & N & Y & - & -74 \\ 469 & 7^1 67^1 & - & Y & N & N & Y & - & -74 \\ 469 & 7^1 67^1 & - & Y & N & N & - & 5 \\ 470 & 2^1 5^1 47^1 & - & Y & N & N & - & -16 \\ 470 & 2^1 5^1 47^1 & - & Y & N & N & - & -16 \\ 471 & 3^1 157^1 & - & Y & N & N & - & 5 \\ 472 & 2^3 59^1 & - & N & N & N & - & 5 \\ 472 & 2^3 59^1 & - & N & N & N & - & 5 \\ 473 & 11^1 43^1 & - & Y & N & N & - & 5 \\ 474 & 2^1 3^1 79^1 & - & Y & N & N & - & -16 \\ 473 & 11^1 43^1 & - & Y & N & N & - & -16 \\ 473 & 11^1 43^1 & - & Y & N & N & - & -16 \\ 473 & 11^1 43^1 & - & Y & N & N & - & -16 \\ 473 & 11^1 43^1 & - & Y & N & N & - & -7 \\ 475 & 5^2 19^1 & - & N & N & Y & - & -7 \\ 476 & 2^2 7^1 17^1 & - & N & N & Y & - & -7 \\ 477 & 3^2 53^1 & - & N & N & Y & - & -7 \\ 478 & 2^1 239^1 & - & Y & N & N & - & 5 \\ 480 & 2^5 3^1 5^1 & - & N & N & Y & - & -2 \\ 480 & 2^5 3^1 5^1 & - & N & N & Y & - & -2 \\ 481 & 13^1 37^1 & - & Y & N & N & - & 5 \\ 482 & 2^1 241^1 & - & Y & N & N & - & 5 \\ 483 & 3^1 7^2 23^1 & - & Y & N & N & - & 5 \\ 484 & 2^2 11^2 & - & N & N & Y & - & -96 \\ 485 & 5^1 97^1 & - & Y & N & N & - & 5 \\ 487 & 487^1 & - & Y & N & N & - & 5 \\ 488 & 2^3 61^1 & - & N & N & Y & - & -16 \\ 489 & 3^1 163^1 & - & Y & N & N & - & 5 \\ 489 & 3^1 163^1 & - & Y & N & N & - & 5 \\ 489 & 3^1 163^1 & - & Y & N & N & - & 5 \\ 489 & 3^1 163^1 & - & Y & N & N & - & 5 \\ 489 & 3^1 163^1 & - & Y & N & N & - & 5 \\ 490 & 2^1 5^1 7^2 & - & N & N & Y & - & -2 \\ 491 & 491^1 & - & Y & N & N & - & 5 \\ 490 & 2^1 5^1 7^2 & - & N & N & Y & - & -2 \\ 491 & 491^1 & - & Y & N & N & - & 5 \\ 490 & 2^2 3^1 41^1 & - & N & N & Y & - & -2 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 491 & 491^1 & - &$	2617 - 2	-248	-	1.0000000	0	1	-16	-	N	N	Y	-		465
$ \begin{vmatrix} 468 & 2^2 3^2 13^1 & - & N & N & Y & - & -74 \\ 469 & 7^1 67^1 & - & Y & N & N & - & 5 \\ 470 & 2^1 5^1 47^1 & - & Y & N & N & - & -16 \\ 471 & 3^1 157^1 & - & Y & N & N & - & 5 \\ 472 & 2^3 59^1 & - & N & N & Y & - & 9 \\ 473 & 11^1 43^1 & - & Y & N & N & - & 5 \\ 474 & 2^1 3^1 79^1 & - & Y & N & N & - & 5 \\ 474 & 2^1 3^1 79^1 & - & Y & N & N & - & 5 \\ 475 & 2^3 59^1 & - & N & N & Y & - & 9 \\ 474 & 2^1 3^1 79^1 & - & Y & N & N & - & 5 \\ 475 & 2^3 59^1 & - & N & N & Y & - & 9 \\ 476 & 2^2 7^1 17^1 & - & N & N & N & - & -16 \\ 477 & 11^1 43^1 & - & Y & N & N & - & -16 \\ 478 & 11^1 43^1 & - & Y & N & N & - & -16 \\ 479 & - & N & N & Y & - & -7 \\ 475 & 5^2 19^1 & - & N & N & Y & - & -7 \\ 475 & 5^2 19^1 & - & N & N & Y & - & -7 \\ 475 & 2^2 3^3 & - & N & N & Y & - & -7 \\ 476 & 2^2 7^1 17^1 & - & N & N & Y & - & -7 \\ 477 & 3^2 53^1 & - & N & N & Y & - & -7 \\ 478 & 2^1 239^1 & - & Y & N & N & - & 5 \\ 480 & 2^5 3^1 5^1 & - & N & N & Y & - & -2 \\ 481 & 13^1 37^1 & - & Y & Y & N & - & -2 \\ 482 & 2^1 241^1 & - & Y & N & N & - & 5 \\ 483 & 3^1 7^2 23^1 & - & Y & N & N & - & 5 \\ 484 & 2^2 11^2 & - & N & N & Y & - & -96 \\ 485 & 5^1 97^1 & - & Y & N & N & - & 5 \\ 486 & 2^1 3^5 & - & N & N & Y & - & 14 \\ 487 & 487^1 & - & Y & N & N & - & 5 \\ 488 & 2^3 61^1 & - & N & N & Y & - & 13 \\ 489 & 3^1 163^1 & - & Y & N & N & - & 5 \\ 489 & 2^1 2^1 7^2 & - & N & N & Y & - & 13 \\ 489 & 3^1 163^1 & - & Y & N & N & - & 5 \\ 490 & 2^1 5^1 7^2 & - & N & N & Y & - & 30 \\ 490 & 2^1 5^1 7^2 & - & N & N & Y & - & 2 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 492 & 2^3 4^1 1^1 & - & N & N & Y & - & 30 \\ 490 & 2^1 5^1 7^2 & - & N & N & Y & - & 30 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 491 & 491^1 & - & Y & Y & $	2622 -2	-243	-			1	5	_			1	_		466
$ \begin{vmatrix} 469 & 7^167^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -314 \\ 470 & 2^15^147^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -330 \\ 471 & 3^1157^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -325 \\ 472 & 2^359^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.555556 & - & -316 \\ 473 & 11^143^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -327 \\ 475 & 5^219^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -327 \\ 475 & 5^219^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -334 \\ 476 & 2^27^117^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -334 \\ 476 & 2^27^217^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -311 \\ 478 & 2^2239^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -311 \\ 478 & 2^2239^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -306 \\ 480 & 2^53^15^1 & - & N & N & Y & - & -96 & 1 & 80 & 1.6666667 & - & -404 \\ 481 & 13^137^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -399 \\ 482 & 2^1241^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -399 \\ 483 & 3^17^123^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -394 \\ 483 & 3^17^123^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -394 \\ 484 & 2^211^2 & - & N & N & Y & - & 14 & 1 & 9 & 1.3571429 & - & -966 \\ 485 & 5^197^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -394 \\ 486 & 2^13^5 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & -376 \\ 487 & 487^1 & - & Y & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -394 \\ 488 & 2^361^1 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & -378 \\ 489 & 3^1163^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -386 \\ 490 & 2^15^{17}^2 & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & -366 \\ 490 & 2^15^{17}^2 & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & -366 \\ 490 & 2^23^441^1 & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & -366 \\ 490 & 2^23^441^1 & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & -366 \\ 491 & 491^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -368 \\ 492 & 2^23^441^1 & - & N & N & Y & - & -2 & 1 & 0 & 1.0000000 & - & -368 \\$	2622 -2	-245									1	_		11
$ \begin{vmatrix} 470 & 2^15^147^1 & - & Y & N & N & - & -16 \\ 471 & 3^1157^1 & - & Y & N & N & - & 5 \\ 472 & 2^359^1 & - & N & N & Y & - & 9 \\ 473 & 11^143^1 & - & Y & N & N & - & 5 \\ 473 & 11^143^1 & - & Y & N & N & - & 5 \\ 474 & 2^13^179^1 & - & Y & N & N & - & -16 \\ 475 & 5^219^1 & - & N & N & Y & - & -76 \\ 475 & 5^219^1 & - & N & N & Y & - & -77 \\ 475 & 5^219^1 & - & N & N & Y & - & -77 \\ 476 & 2^27^117^1 & - & N & N & Y & - & 30 \\ 477 & 3^253^1 & - & N & N & Y & - & -77 \\ 477 & 3^253^1 & - & N & N & Y & - & -77 \\ 479 & 479^1 & - & Y & N & N & - & 5 \\ 480 & 2^53^15^1 & - & N & N & Y & - & -96 \\ 481 & 13^137^1 & - & Y & N & N & - & 5 \\ 482 & 2^1241^1 & - & Y & N & N & - & 5 \\ 483 & 3^17^123^1 & - & Y & N & N & - & 5 \\ 484 & 2^211^2 & - & N & N & Y & - & 14 \\ 485 & 2^133^1 & - & Y & N & N & - & 5 \\ 486 & 2^135^1 & - & N & N & Y & - & -96 \\ 487 & 487^1 & - & Y & N & N & - & 5 \\ 488 & 3^17^123^1 & - & Y & N & N & - & 5 \\ 488 & 3^17^123^1 & - & Y & N & N & - & 5 \\ 488 & 2^361^1 & - & N & N & Y & - & 14 \\ 488 & 2^361^1 & - & N & N & Y & - & 9 \\ 488 & 2^361^1 & - & N & N & Y & - & 9 \\ 489 & 2^15^17^2 & - & N & N & Y & - & 9 \\ 489 & 2^15^17^2 & - & N & N & Y & - & 5 \\ 490 & 2^15^17^2 & - & N & N & Y & - & 5 \\ 490 & 2^23^141^1 & - & Y & Y & N & - & -2 \\ 490 & 2^23^141^1 & - & Y & Y & N & - & -2 \\ 490 & 2^23^141^1 & - & Y & Y & N & - & -2 \\ 490 & 2^23^141^1 & - & Y & Y & N & - & -2 \\ 491 & 491 & - & Y & Y & N & - & -2 \\ 491 & 491^2 & - & Y & Y & N & - & -2 \\ 491 & 491^2 & - & Y & Y & N & - & -2 \\ 491 & 491^2 & - & Y & Y & N & - & -2 \\ 491 & 491^2 & - & Y & Y & N & - & -2 \\ 491 & 491^2 & - & Y & Y & N & - & -2 \\ 491 & 491^2 & - & Y & Y & N & - & -2 \\ 491 & 491^4 & - & Y & Y & N & - & -2 \\ 491 & 491^4 & - & Y & Y & N & - & -2 \\ 491 & 491^4 & - & Y & Y & N & - & -2 \\ 491 & 491^4 & - & Y & Y & N & - & -2 \\ 491 & 491^4 & - & Y & Y & N & - & -2 \\ 491 & 491^4 & - & Y & Y & N & - & -2 \\ 491 & 491^4 & - & Y & Y & N & - & -2 \\ 491 & 491^4 & - & Y & Y & N & - & -2 \\ 491 & 491^4 & - & Y & Y & N & - & -2 \\ 491 & 491^4 & - & Y & Y & N & - & -$	2622 -2										1			11
$ \begin{vmatrix} 471 & 3^1 157^1 & - & Y & N & N & - & 5 \\ 472 & 2^3 59^1 & - & N & N & Y & - & 9 \\ 473 & 11^1 43^1 & - & Y & N & N & - & 5 \\ 474 & 21^3 79^1 & - & Y & N & N & - & 5 \\ 475 & 5^2 19^1 & - & N & N & Y & - & -7 \\ 476 & 2^2 7^1 7^1 & - & N & N & Y & - & -7 \\ 477 & 3^2 53^1 & - & N & N & Y & - & -7 \\ 478 & 2^1 23^9 & - & Y & N & N & - & 5 \\ 479 & 479^1 & - & Y & N & N & Y & - & -7 \\ 470 & 2^2 17^1 & - & N & N & Y & - & -7 \\ 471 & 3^2 53^1 & - & N & N & Y & - & -7 \\ 471 & 3^2 53^1 & - & N & N & Y & - & -7 \\ 471 & 3^2 53^1 & - & N & N & Y & - & -7 \\ 472 & 2^3 23^3 & - & N & N & Y & - & -7 \\ 473 & 2^1 23^9 & - & Y & N & N & - & 5 \\ 479 & 479^1 & - & Y & Y & N & - & -2 \\ 480 & 2^5 3^1 5^1 & - & N & N & Y & - & -96 \\ 481 & 13^1 3^1 & - & Y & N & N & - & 5 \\ 482 & 2^1 241^1 & - & Y & N & N & - & 5 \\ 483 & 3^1 7^1 23^1 & - & Y & N & N & - & 5 \\ 484 & 2^2 11^2 & - & N & N & Y & - & -16 \\ 484 & 2^2 11^2 & - & N & N & Y & - & -16 \\ 485 & 5^1 97^1 & - & Y & N & N & - & 5 \\ 486 & 2^1 3^5 & - & N & N & Y & - & 14 \\ 487 & 487^1 & - & Y & N & N & - & 5 \\ 488 & 2^3 61^1 & - & N & N & Y & - & 13 \\ 488 & 2^3 61^1 & - & N & N & Y & - & 2 \\ 489 & 3^1 163^1 & - & Y & N & N & - & 5 \\ 489 & 3^1 163^1 & - & Y & N & N & - & 5 \\ 490 & 2^1 5^1 7^2 & - & N & N & Y & - & 30 \\ 490 & 2^1 5^1 7^2 & - & N & N & Y & - & 2 \\ 491 & 491^1 & - & Y & Y & N &2 \\ 491 & 491^1 & - & Y & Y & N & -2 \\ 491 & 491^1 & - & Y & Y & N & -2 \\ 491 & 491^1 & - & Y & Y & N & -2 \\ 491 & 491^1 & - & Y & Y & N & -2 \\ 491 & 491^1 & - & Y & Y & N & -2 \\ 491 & 491^1 & - & Y & Y & N & -2 \\ 491 & 491^1 & - & Y & Y & N & -2 \\ 491 & 491^1 & - & Y & Y & N & -2 \\ 492 & 2^3 4^4 1^1 & - & N & N & Y & -3 \\ 491 & 491^1 & - & Y & Y & N & -2 \\ 491 & 491^1 & - & Y & Y & N & -2 \\ 491 & 491^1 & - & Y & Y & N & -2 \\ 491 & 491^1 & - & Y & Y & N & -2 \\ 491 & 491^1 & - & Y & Y & N & -2 \\ 491 & 491^1 & - & Y & Y & N & -2 \\ 491 & 491^1 & - & Y & Y & N & -2 \\ 491 & 491^1 & - & Y & Y & N & -2 \\ 491 & 491^1 & - & Y & Y & N & -2 \\ 491 & 491^1 & - & Y & Y & N & -2 \\ 491 & 491^1 & - & Y & Y & N$	2627 -2		1 1								1			
$ \begin{vmatrix} 472 & 2^359^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555566 & - & -316 \\ 473 & 11^143^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -311 \\ 474 & 2^13^179^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -327 \\ 475 & 5^219^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -334 \\ 476 & 2^27^117^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -304 \\ 477 & 3^253^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -304 \\ 477 & 3^253^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -311 \\ 478 & 2^1239^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -306 \\ 479 & 479^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -308 \\ 480 & 2^53^15^1 & - & N & N & Y & - & -96 & 1 & 80 & 1.666667 & - & -404 \\ 481 & 13^137^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -399 \\ 482 & 2^1241^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -394 \\ 483 & 3^17^123^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -394 \\ 484 & 2^211^2 & - & N & N & Y & - & -16 & 1 & 0 & 1.000000 & - & -394 \\ 485 & 5^197^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -394 \\ 486 & 2^13^5 & - & N & N & Y & - & 13 & 1 & 9 & 1.3571429 & - & -396 \\ 487 & 487^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -394 \\ 488 & 2^361^1 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & -378 \\ 489 & 3^1163^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -380 \\ 490 & 2^15^17^2 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -306 \\ 491 & 491^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -366 \\ 491 & 491^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -366 \\ 491 & 491^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -366 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -308 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -308 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -308 \\ 491 & 491^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -388 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -308 \\ 491 & 491^1 & - & Y &$	$ \begin{array}{rrr} 2627 & -2 \\ 2632 & -2 \\ \end{array} $										1			
$ \begin{vmatrix} 473 & 11^143^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -311 \\ 474 & 2^13^179^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -327 \\ 475 & 5^219^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -334 \\ 476 & 2^27^117^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.166667 & - & -304 \\ 477 & 3^253^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -314 \\ 478 & 2^1239^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -366 \\ 479 & 479^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -308 \\ 480 & 2^53^15^1 & - & N & N & Y & - & -96 & 1 & 80 & 1.666667 & - & -404 \\ 481 & 13^137^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -399 \\ 482 & 2^1241^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -399 \\ 483 & 3^17^123^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -394 \\ 484 & 2^211^2 & - & N & N & Y & - & -16 & 1 & 0 & 1.000000 & - & -394 \\ 485 & 5^197^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -391 \\ 486 & 2^13^5 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & -378 \\ 487 & 487^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -380 \\ 488 & 2^361^1 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & -378 \\ 489 & 3^1163^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -380 \\ 490 & 2^15^17^2 & - & N & N & Y & - & 30 & 1 & 14 & 1.166667 & - & -336 \\ 491 & 491^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -338 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.166667 & - & -308 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 2 & 1 & 0 & 1.000000 & - & -338 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 2 & 1 & 0 & 1.000000 & - & -338 \\ 491 & 491^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -338 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.166667 & - & -308 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.166667 & - & -308 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.166667 & - & -308 \\ 491 & 491^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -338 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.166667 & - & -308 \\ 491 & 491^1 & - & Y$	$ \begin{array}{rrr} 2632 & -2 \\ 2641 & -2 \\ \end{array} $										1			
$ \begin{vmatrix} 474 & 2^{1}3^{1}79^{1} & - & Y & N & N & - & -16 \\ 475 & 5^{2}19^{1} & - & N & N & Y & - & -7 \\ 476 & 2^{2}7^{1}17^{1} & - & N & N & Y & - & 30 \\ 476 & 2^{2}7^{1}17^{1} & - & N & N & Y & - & 30 \\ 477 & 3^{2}53^{1} & - & N & N & Y & - & -7 \\ 478 & 2^{1}239^{1} & - & Y & N & N & Y & - & -7 \\ 479 & 479^{1} & - & Y & Y & N & N & - & 5 \\ 480 & 2^{5}3^{1}5^{1} & - & N & N & Y & - & -96 \\ 481 & 13^{1}37^{1} & - & Y & N & N & - & 5 \\ 482 & 2^{1}241^{1} & - & Y & N & N & - & 5 \\ 483 & 3^{1}7^{1}23^{1} & - & Y & N & N & - & 5 \\ 484 & 2^{2}11^{2} & - & N & N & Y & - & -16 \\ 485 & 5^{1}97^{1} & - & Y & N & N & - & 5 \\ 486 & 2^{1}3^{5} & - & N & N & Y & - & -16 \\ 487 & 487^{1} & - & Y & N & N & - & 5 \\ 488 & 2^{3}61^{1} & - & N & N & Y & - & 14 \\ 487 & 487^{1} & - & Y & N & N & - & 5 \\ 488 & 2^{3}61^{1} & - & N & N & Y & - & 13 \\ 488 & 2^{3}61^{1} & - & Y & N & N & - & -2 \\ 489 & 3^{1}163^{1} & - & Y & N & N & - & 5 \\ 491 & 491^{1} & - & Y & N & N & - & 5 \\ 492 & 2^{2}3^{1}41^{1} & - & N & N & Y & - & -2 \\ 1 & 0 & 1.0000000 & - & -336 \\ 492 & 2^{2}3^{1}41^{1} & - & N & N & Y & - & 2 \\ 1 & 0 & 1.0000000 & - & -336 \\ 492 & 2^{2}3^{1}41^{1} & - & N & N & Y & - & 2 \\ 1 & 0 & 1.0000000 & - & -336 \\ 492 & 2^{2}3^{1}41^{1} & - & N & N & Y & - & 2 \\ 1 & 0 & 1.0000000 & - & -336 \\ 491 & 491^{1} & - & Y & Y & N & - & -2 \\ 1 & 0 & 1.0000000 & - & -336 \\ 492 & 2^{2}3^{1}41^{1} & - & N & N & Y & - & 2 \\ 1 & 0 & 1.0000000 & - & -336 \\ 492 & 2^{2}3^{1}41^{1} & - & N & N & Y & - & 2 \\ 1 & 0 & 1.0000000 & - & -338 \\ 492 & 2^{2}3^{1}41^{1} & - & N & N & Y & - & 2 \\ 1 & 0 & 1.0000000 & - & -336 \\ 491 & 491^{1} & - & Y & Y & N & - & -2 \\ 1 & 0 & 1.0000000 & - & -336 \\ 491 & 491^{1} & - & Y & Y & N & - & -2 \\ 1 & 0 & 1.0000000 & - & -336 \\ 492 & 2^{2}3^{1}41^{1} & - & N & N & Y & - & 30 \\ 1 & 144 & 1.1666667 & - & -336 \\ 1 & 492 & 2^{2}3^{1}41^{1} & - & N & N & Y & - & 30 \\ 1 & 144 & 1.1666667 & - & -308 \\ 1 & 144 & 1.1666667 & - & -308 \\ 1 & 144 & 1.1666667 & - & -308 \\ 1 & 144 & 1.1666667 & - & -308 \\ 1 & 144 & 1.1666667 & - & -308 \\ 1 &$	2641 - 2 $2646 - 2$										1			
$ \begin{vmatrix} 475 & 5^219^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -334 \\ 476 & 2^27^117^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.166667 & - & -304 \\ 477 & 3^253^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -311 \\ 478 & 2^1239^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -306 \\ 479 & 479^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -308 \\ 480 & 2^53^15^1 & - & N & N & Y & - & -96 & 1 & 80 & 1.666667 & - & -404 \\ 481 & 13^137^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -399 \\ 482 & 2^1241^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -394 \\ 483 & 3^17^123^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -394 \\ 484 & 2^211^2 & - & N & N & Y & - & 14 & 1 & 9 & 1.3571429 & - & -396 \\ 485 & 5^197^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -391 \\ 486 & 2^13^5 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & -378 \\ 487 & 487^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -380 \\ 488 & 2^361^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.555556 & - & -371 \\ 489 & 3^1163^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -380 \\ 490 & 2^15^17^2 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -336 \\ 491 & 491^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -338 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -308 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 2 & 1 & 0 & 1.000000 & - & -338 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 2 & 1 & 0 & 1.000000 & - & -338 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 2 & 1 & 0 & 1.000000 & - & -338 \\ 491 & 491^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -338 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 2 & 1 & 0 & 1.000000 & - & -338 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 2 & 1 & 0 & 1.000000 & - & -338 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -308 \\ 491 & 491^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -338 \\ 491 & 491^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -338 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -308 \\ 491 & 491^2 & - & - & &$	2646 - 2							_			1	_		
$ \begin{vmatrix} 476 & 2^2 7^1 17^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.166667 & - & -304 \\ 477 & 3^2 53^1 & - & N & N & Y & - & -7 & 1 & 2 & 1.2857143 & - & -311 \\ 478 & 2^1 239^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -306 \\ 479 & 479^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -308 \\ 480 & 2^5 3^1 5^1 & - & N & N & Y & - & -96 & 1 & 80 & 1.666667 & - & -404 \\ 481 & 13^1 37^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -399 \\ 482 & 2^1 241^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -399 \\ 483 & 3^1 7^1 23^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -394 \\ 484 & 2^2 11^2 & - & N & N & Y & - & 14 & 1 & 9 & 1.3571429 & - & -396 \\ 485 & 5^1 97^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -391 \\ 486 & 2^1 3^5 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & -378 \\ 487 & 487^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -380 \\ 488 & 2^3 61^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.555556 & - & -371 \\ 489 & 2^1 5^1 7^2 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -336 \\ 490 & 2^1 5^1 7^2 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -336 \\ 491 & 491^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -3380 \\ 491 & 491^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -3360 \\ 492 & 2^2 3^1 41^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -336 \\ 492 & 2^2 3^1 41^1 & - & N & N & Y & - & 2 & 1 & 0 & 1.000000 & - & -3380 \\ 492 & 2^2 3^1 41^1 & - & N & N & Y & - & 2 & 1 & 0 & 1.000000 & - & -3380 \\ 492 & 2^2 3^1 41^1 & - & N & N & Y & - & 2 & 1 & 0 & 1.0000000 & - & -3380 \\ 491 & 491^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -3380 \\ 492 & 2^2 3^1 41^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -3360 \\ 492 & 2^2 3^1 41^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -3080 \\ 492 & 2^2 3^1 41^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -3080 \\ 493 & 2^2 3^1 41^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -3080 \\ 494 & 491 & 491^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -3080 \\ 494 & 491 & 491^1 & - & Y & Y & $	2646 -2							_			1	_		l I
$ \begin{vmatrix} 477 & 3^253^1 & - & N & N & Y & - & -7 \\ 478 & 2^1239^1 & - & Y & N & N & - & 5 \\ 479 & 479^1 & - & Y & Y & N & - & -2 \\ 480 & 2^53^15^1 & - & N & N & Y & - & -96 \\ 481 & 13^137^1 & - & Y & N & N & - & 5 \\ 482 & 2^1241^1 & - & Y & N & N & - & 5 \\ 483 & 3^17^123^1 & - & Y & N & N & - & -16 \\ 484 & 2^211^2 & - & N & N & Y & - & -16 \\ 485 & 5^197^1 & - & Y & N & N & - & 5 \\ 486 & 2^13^5 & - & N & N & Y & - & 14 \\ 487 & 487^1 & - & Y & N & N & - & 5 \\ 488 & 2^361^1 & - & Y & N & N & - & 5 \\ 488 & 2^361^1 & - & Y & N & N & - & -2 \\ 489 & 3^163^1 & - & Y & Y & N & N & - & -2 \\ 489 & 2^151^2 & - & N & N & Y & - & 13 \\ 489 & 2^163^1 & - & Y & Y & N & N & - & -2 \\ 489 & 2^163^1 & - & Y & Y & N & N & - & -2 \\ 489 & 2^163^1 & - & N & N & Y & - & 30 \\ 490 & 2^15^17^2 & - & N & N & Y & - & 30 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 30 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 30 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 30 \\ 1 & 144 & 1.1666667 & - & -308 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 2 \\ 1 & 0 & 1.0000000 & - & -338 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 2 \\ 1 & 0 & 1.0000000 & - & -338 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 1 & 0 & 1.0000000 & - & -338 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 30 \\ 1 & 144 & 1.1666667 & - & -338 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 2 \\ 1 & 0 & 1.0000000 & - & -338 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 2 \\ 1 & 0 & 1.0000000 & - & -338 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 30 \\ 1 & 144 & 1.1666667 & - & -308 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 1 & 0 & 1.0000000 & - & -338 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 1 & 0 & 1.0000000 & - & -338 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 30 \\ 1 & 144 & 1.1666667 & - & -308 \\ 491 & 491^1 & - & Y & Y & N & - & -2 \\ 1 & 0 & 1.0000000 & - & -338 \\ 491 & 491^1 & - & N & N & Y & - & 30 \\ 1 & 144 & 1.1666667 & - & -308 \\ 491 & 491^1 & - & N & N & Y & - & 30 \\ 1 & 144 & 1.1666667 & - & -308 \\ 491 & 491^1 & - & N & N & Y & - & 30 \\ 491 & 491^1 & - & N & N & Y & - & 30 \\ 491 & 491^1 & -$	2676 -2	-304									1	_		
$ \begin{vmatrix} 479 & 479^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -308 \\ 480 & 2^53^15^1 & - & N & N & Y & - & -96 & 1 & 80 & 1.6666667 & - & -404 \\ 481 & 13^137^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -399 \\ 482 & 2^1241^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -394 \\ 483 & 3^17^123^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -410 \\ 484 & 2^211^2 & - & N & N & Y & - & 14 & 1 & 9 & 1.3571429 & - & -396 \\ 485 & 5^197^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -391 \\ 486 & 2^13^5 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & -378 \\ 487 & 487^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -380 \\ 488 & 2^361^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.555556 & - & -371 \\ 489 & 3^1163^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -366 \\ 490 & 2^15^17^2 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -336 \\ 491 & 491^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -386 \\ 491 & 491^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -336 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -338 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -308 \\ \end{bmatrix}$	2676 -2	-311	1 1								1	-		l I
$ \begin{vmatrix} 480 & 2^5 3^1 5^1 & - & N & N & Y & - & -96 & 1 & 80 & 1.6666667 & - & -404 \\ 481 & 13^1 37^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -399 \\ 482 & 2^1 241^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -394 \\ 483 & 3^1 7^1 23^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -410 \\ 484 & 2^2 11^2 & - & N & N & Y & - & 14 & 1 & 9 & 1.3571429 & - & -396 \\ 485 & 5^1 97^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -391 \\ 486 & 2^1 3^5 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & -378 \\ 487 & 487^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -380 \\ 488 & 2^3 61^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & -371 \\ 489 & 3^1 163^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -366 \\ 490 & 2^1 5^1 7^2 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -336 \\ 491 & 491^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -3380 \\ 492 & 2^2 3^1 41^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -308 \\ \end{bmatrix}$	2681 -2	-306	-	1.0000000	0	1	5	-	N	N	Y	-		478
$ \begin{vmatrix} 481 & 13^{1}37^{1} & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -399 \\ 482 & 2^{1}241^{1} & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -394 \\ 483 & 3^{1}7^{1}23^{1} & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -410 \\ 484 & 2^{2}11^{2} & - & N & N & Y & - & 14 & 1 & 9 & 1.3571429 & - & -396 \\ 485 & 5^{1}97^{1} & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -391 \\ 486 & 2^{1}3^{5} & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & -378 \\ 487 & 487^{1} & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -380 \\ 488 & 2^{3}61^{1} & - & N & N & Y & - & 9 & 1 & 4 & 1.555556 & - & -371 \\ 489 & 3^{1}163^{1} & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -366 \\ 490 & 2^{1}5^{1}7^{2} & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -336 \\ 491 & 491^{1} & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -386 \\ 492 & 2^{2}3^{1}41^{1} & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -308 \\ \end{vmatrix} $	2681 -2	-308	-	1.0000000		1	-2	-		Y	1	-		479
$ \begin{vmatrix} 482 & 2^1241^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -394 \\ 483 & 3^17^123^1 & - & Y & N & N & - & -16 & 1 & 0 & 1.000000 & - & -410 \\ 484 & 2^211^2 & - & N & N & Y & - & 14 & 1 & 9 & 1.3571429 & - & -396 \\ 485 & 5^197^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -391 \\ 486 & 2^13^5 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & -378 \\ 487 & 487^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -380 \\ 488 & 2^361^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.555556 & - & -371 \\ 489 & 3^1163^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -386 \\ 490 & 2^15^17^2 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -336 \\ 491 & 491^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -3380 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -308 \\ \end{vmatrix} $	2681 -3	-404									1	-		
$ \begin{vmatrix} 483 & 3^{1}7^{1}23^{1} & - & Y & N & N & - & -16 & 1 & 0 & 1.0000000 & - & -410 \\ 484 & 2^{2}11^{2} & - & N & N & Y & - & 14 & 1 & 9 & 1.3571429 & - & -396 \\ 485 & 5^{1}97^{1} & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -391 \\ 486 & 2^{1}3^{5} & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & -378 \\ 487 & 487^{1} & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -380 \\ 488 & 2^{3}61^{1} & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & -371 \\ 489 & 3^{1}163^{1} & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -366 \\ 490 & 2^{1}5^{1}7^{2} & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -336 \\ 491 & 491^{1} & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -3380 \\ 492 & 2^{2}3^{1}41^{1} & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -308 \\ \end{vmatrix} $	2686 -3	-399									1			l I
$ \begin{vmatrix} 484 & 2^211^2 & - & N & N & Y & - & 14 & 1 & 9 & 1.3571429 & - & -396 \\ 485 & 5^197^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -391 \\ 486 & 2^13^5 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & -378 \\ 487 & 487^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -380 \\ 488 & 2^361^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & -371 \\ 489 & 3^1163^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -366 \\ 490 & 2^15^17^2 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -336 \\ 491 & 491^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -338 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -308 \\ \end{vmatrix} $	2691 -3	-394	1 1								1			l I
$ \begin{vmatrix} 485 & 5^197^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -391 \\ 486 & 2^13^5 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & -378 \\ 487 & 487^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -380 \\ 488 & 2^361^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & -371 \\ 489 & 3^1163^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -366 \\ 490 & 2^15^17^2 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -338 \\ 491 & 491^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -338 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -308 \\ \end{vmatrix} $	2691 -3										1			
$ \begin{vmatrix} 486 & 2^1 3^5 & - & N & N & Y & - & 13 & 1 & 8 & 2.0769231 & - & -378 \\ 487 & 487^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -380 \\ 488 & 2^3 61^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & -371 \\ 489 & 3^1 163^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.000000 & - & -366 \\ 490 & 2^1 5^1 7^2 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -336 \\ 491 & 491^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.000000 & - & -338 \\ 492 & 2^2 3^1 41^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -308 \\ \end{vmatrix} $	2705 -3										1			l I
$ \begin{vmatrix} 487 & 487^1 & - & Y & Y & N & - & -2 \\ 488 & 2^361^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & -371 \\ 489 & 3^1163^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -366 \\ 490 & 2^15^17^2 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -336 \\ 491 & 491^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -338 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -308 \\ \end{vmatrix} $	$ \begin{array}{rrr} 2710 & -3 \\ 2723 & -3 \\ \end{array} $		1 1								1			l I
$ \begin{vmatrix} 488 & 2^361^1 & - & N & N & Y & - & 9 & 1 & 4 & 1.5555556 & - & -371 \\ 489 & 3^1163^1 & - & Y & N & N & - & 5 & 1 & 0 & 1.0000000 & - & -366 \\ 490 & 2^15^17^2 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -336 \\ 491 & 491^1 & - & Y & Y & N & - & -2 & 1 & 0 & 1.0000000 & - & -338 \\ 492 & 2^23^141^1 & - & N & N & Y & - & 30 & 1 & 14 & 1.1666667 & - & -308 \\ \end{vmatrix} $	2723 -3 $2723 -3$		1 1								1			l I
	2723 -3 $2732 -3$										1			
	2732 -3 $2737 -3$	-366									1			l I
	2767 —3	-336									1	-		l I
	2767 -3	-338									1	-		
	2797 -3	-308	_				30	-		N	1	-	$2^23^141^1$	
	2802 -3	-303	-					-	N		1	-	17^129^1	l I
	2802 -3	-319	-	1.0000000	0	1	-16	-	N	N	Y	-		494
	2832 -3	-289	-	1.1666667			30	-			1	-		495
	2832 -3	-300	-					-			1	-		l I
	2837 -3	-295									1			l I
	2837 -3	-311	-								1	-		l I
	2837 -3	-313	-								1	-		
$\begin{bmatrix} 500 & 2^25^3 & - & N & N & Y & - & -23 & & 1 & & 18 & & 1.4782609 & - & -33688 & & & 1.4782609 & - & & -33688 & & & & & & & & & & & & & & & & & & $	2837 -3	-336	-	1.4782609	18	1	-23		Y	N	N		2-53	∐ ⁵⁰⁰