Nearest Neighbors

Nearest Neighbor

- Hypothesis space
 - Variable size
 - Deterministic
 - Continuous parameters
- Algorithm
 - Direct computation
 - Lazy

Nearest Neighbor Algorithm

- Our first lazy algorithm
 - The learning does not occur till the test example is presented
 - In contrast to the "eager" algorithms (those algorithms that carry out learning without seeing the test example and discard the training examples after learning)

Nearest Neighbor Algorithm

- Remember all training examples
- Given a new example x, find the its closest training example <xi, yi> and predict yi

Nearest Neighbor Algorithm

• Classify a new example \mathbf{x} , by finding the training example $\langle \mathbf{x}_i, \mathbf{y}_i \rangle$ that is nearest to \mathbf{x} according to Eucledian distance

$$\parallel \mathbf{x} - \mathbf{x}_i \parallel = \sqrt{\sum_i (x_j - x_{ij})^2}$$

and guess the class $\hat{y} = y_i$

 For efficiency, we could simply use the squared distance and get the same answer by avoiding the square root computation

$$\|\mathbf{x} - \mathbf{x}_i\|^2 = \sum_{i} (x_i - x_{ij})^2$$

Decision Boundaries: The Voronoi Diagram

- Voronoi Diagram: Given a set of points, it describes the areas that are nearest to any given point
- These areas can be viewed as zones of control
- This is also same as the post office problem

Decision Boundaries

- Decision boundaries are formed by the current subset of the examples considered
- Each line segment is equidistant between two points of opposite class
- If you consider more examples, the decision boundaries can become more complex
- Complexity of the boundary increases with the number of examples considered

Boundaries

 Noise and large number of examples can easily lead to over fitting (as we could start having these islands of neighborhoods)

NN depends critically on the distance metric

Normalize Feature Values

 All feature values must have the same range of values. Otherwise, features will larger range become more important

Sensitive to Irrelevant inputs

 Irrelevant or noisy features will add random perturbations to the distance measure and can easily hurt performance

Learn a distance metric:

- One approach: Weigh each feature based on its mutual information to the target class. Then use the weighted square distance as the distance metric $\sum_i w_i (x_j x_{ij})^2$
- Alternatively use the Mahalanobis distance

Smoothing:

 Find the k nearest neighbors and have them vote. This is one good way to reduce the effect of noise in the labels

K-Nearest Neighbor

Example:

Effect of K

Figures from Hastie, Tibshirani and Friedman (Elements of Statistical Learning)

Larger k produces smoother boundary effect and can reduce the impact of class label noise.

But when K = N, we always predict the majority class

Overfitting is easily possible

 Can we choose k to minimize the mistakes that we make on training examples (training error)?

Distance Weighted Nearest Neighbor

- It makes sense to weight the contribution of each example according to the distance to the new query example
 - Weight varies inversely with the distance, such that examples closer to the query points get higher weight
- Instead of only k examples, we could allow all training examples to contribute
 - Shepard's method (Shepard 1968)

Curse of Dimensionality

- kNN breaks down in high-dimensional space
 - "Neighborhood" becomes very large.
- Assume 5000 points uniformly distributed in the unit hypercube and we want to apply 5-nn. Suppose our query point is at the origin.
 - In 1-dimension, we must go a distance of 5/5000 = 0.001 on the average to capture 5 nearest neighbors
 - In 2 dimensions, we must go $\sqrt{0.001}$ to get a square that contains 0.001 of the volume.
 - In d dimensions, we must go (0.001)^{1/d}

Curse of Dimensionality (2)

 With 5000 points in 10 dimensions, we must go 0.501 distance along each dimension in order to find the 5 nearest neighbors

Curse of Noisy/Irrelevant Features

- NN also breaks down when data contains irrelevant/noisy features.
- Consider a 1-d problem where query x is at the origin, our nearest neighbor is x₁ at 0.1, and our second nearest neighbor is x₂ at 0.5.
- Now add a uniformly random noisy feature.
 - P($||x_2' x|| < ||x_1' x||$) ≈ 0.15.

Problems of k_NN

Nearest neighbor is easily misled by noisy/irrelevant features

- One approach: Learn a distance metric:
 - that weights each feature by its ability to minimize the prediction error, e.g., its mutual information with the class.
 - that weights each feature differently or only use a subset of features and use cross validation to select the weights or feature subsets
 - Learning distance function is an active research area

Sample Experimental Results

(see UCI archive for more)

Testbed	Testset Correctness						
	1-NN	D-Trees	Neural Nets				
Wisconsin Cancer	<u>98%</u>	95%	96%				
Heart Disease	<u>78%</u>	76%	?				
Tumor	37%	38%	?				
Appendicitis	83%	85%	86%				

Summary of Nearest Neighbor

Advantages

- Learning is extremely simple and intuitive,
- Very flexible decision boundaries
- Variable-sized hypothesis space

Disadvantages

- distance function must be carefully chosen or tuned
- irrelevant or correlated features have high impact and must be eliminated
- typically cannot handle high dimensionality
- computational costs: memory and classification-time computation
 - To reduce the cost of finding nearest neighbors, use data structure such as kd-tree

Criterion	Perceptron	Logistic	LDA	DT	K-NN
Mixed data	N	N	N	Υ	N
Missing values	N	N	Υ	Υ	Some what
Outliers	N	Υ	N	Υ	Υ
Monotone	N	N	N	Υ	N
Scalability	Υ	Υ	Υ	Υ	N
Irrelevant i/p	N	N	N	Some what	N
Interpretable	Υ	Υ	Υ	Υ	N
Accurate	Υ	Υ	Υ	N	N