策略学习

策略函数

- · 策略函数 $\pi(a|s)$ 的输入是状态 s
- · 输出是一个概率分布,给每一个动作附上一个概率值。

策略网络

用神经网络来近似策略函数

- · 用策略网络 $\pi(a|s;\theta)$ 来近似 $\pi(a|s)$
- θ 是神经网络的参数

超级玛丽设计:

状态画面经过卷积提取特征,特征经过全连接层再通过softmax层得到一个动作的概率分布,动作的概率集合全部加起来要等于1。

<mark>状态价值函数</mark>回顾与近似

折扣回报函数:

$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

动作价值函数:

$$Q_\pi(s_t,a_t) = \mathbb{E}[U_t|S_t=s_t,A_t=a_t]$$

状态价值函数(包含了动作价值函数)

- $V_{\pi}(s_t) = \mathbb{E}_A[Q_{\pi}(s_t,A)]$
- · 消掉了动作 A ,这样 V_π 只跟状态 S 与策略函数 π 有关了。可以评价当前状态的好坏

展开:

. $V_\pi(s_t)=\mathbb{E}_A[Q_\pi(s_t,A)]=\sum_a\pi(a|s_t)\cdot Q_\pi(s_t,a)$ 这里动作是离散的。

$$V_{\pi}(s_t) = \mathbb{E}_A[Q_{\pi}(s_t,A)] = \int \pi(a|s_t) \cdot Q_{\pi}(s_t,a) da$$
 这里动作是连续的。

策略学习

得到状态价值函数: $V_{\pi}(s_t) = \mathbb{E}_A[Q_{\pi}(s_t,A)] = \sum_s \pi(a|s_t) \cdot Q_{\pi}(s_t,a)$

近似状态价值函数:

· 用策略网络 $\pi(a|s;\theta)$ 来近似 $\pi(a|s)$

・把
$$\pi(a|s_t)$$
 函数替换成 $\pi(a|s_t;\theta)$: $V(s_t;\theta) = \sum_a \pi(a|s_t;\theta) \cdot Q_\pi(s_t,a)$

这样,状态价值函数就可以写成: $V(s;\theta)$, V 可以评价策略网络的好坏,给定状态 S ,策略网络越好那么 V 的值就越大。可以改进参数 θ ,让 $V(s;\theta)$ 变大。

基于上述想法,可以把目标函数定义为 $V(s;\theta)$ 的期望: $J(\theta)=\mathbb{E}_S[V(S;\theta)]$,期望是关于状态 S 求的。这样目标就是改进 θ ,使得 $J(\theta)$ 越大越好。

如何改进 heta ?用策略梯度算法($extstyle{Policy gradient}$ ascent)

- ·观测到状态s,这个s是从状态的概率分布中随机抽样出来的。
- · 把 $V(s;\theta)$ 关于 s 求导可以得到一个梯度,然后用梯度上升来更新 θ , β 是学习率。

$$heta \leftarrow heta + eta \cdot rac{\partial V(s; heta)}{\partial heta}$$

注意:我们这里算的是 V 关于 θ 的倒数,就是个随机梯度,随机性来源于状态 s 为什么要用梯度上升,因为我们想让目标函数 $J(\theta)$ 变得越来越大。

其中 $\frac{\partial V(s;\theta)}{\partial \theta}$ 被叫做 Policy gradient 策略梯度。

策略梯度

$$ightharpoonup^*$$
 如何计算 $\frac{\partial V(s;\theta)}{\partial \theta}$ 策略梯度?

$$egin{aligned} rac{\partial V(s; heta)}{\partial heta} &= rac{\partial \sum_{m{a}} \pi(m{a}|s; heta) \cdot Q_{\pi}(s,m{a})}{\partial heta} \ &= \sum_{m{a}} rac{\partial \pi(m{a}|s; heta) \cdot Q_{\pi}(s,m{a})}{\partial heta} \end{aligned}$$

可以把求导运算推到连加里面去,连加的导数等于导数的连加

$$=\sum_{m{a}}rac{\partial\pi(m{a}|s; heta)}{\partial heta}\cdot Q_\pi(s,m{a})$$
 把 $Q_\pi(s,m{a})$ 提取出来,因为假设它不依赖于 $heta$

得到策略梯度公式的一种形式:

$$rac{\partial V(s; heta)}{\partial heta} = \sum_{m{a}} rac{\partial \pi(m{a}|s; heta)}{\partial heta} \cdot Q_\pi(s,m{a})$$

★ 但实际中并不会用这个形式公式,一般是用其蒙特卡洛近似:

$$\frac{\partial V(s;\theta)}{\partial \theta} = \sum_{\mathbf{a}} \frac{\partial \pi(\mathbf{a}|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,\mathbf{a})$$

$$= \sum_{\mathbf{a}} \pi(\mathbf{a}|s;\theta) \cdot \frac{\partial \log \pi(\mathbf{a}|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,\mathbf{a})$$

上面转换可以链式法则:
$$\frac{\partial log[\pi(\theta)]}{\partial \theta} = \frac{1}{\pi(\theta)} \cdot \frac{\partial \pi(\theta)}{\partial \theta}$$
 反推
$$= \mathbb{E}_A[\frac{\partial log \pi(A|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,A)]$$

把 a 当作随机变量 A , $\pi(\mathbf{a}|\mathbf{s};\theta)$ 是 a 的概率密度函数。

上述推导不够严谨,但是可以使用。

综上,推导出了策略梯度两种形式

$$\begin{array}{l} \text{Form1: } \frac{\partial V(s;\theta)}{\partial \theta} = \sum_{\pmb{a}} \frac{\partial \pi(\pmb{a}|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,\pmb{a}) \\ \\ \text{Form2: } \frac{\partial V(s;\theta)}{\partial \theta} = \mathbb{E}_{A \sim \pi(\cdot|s;\theta)} [\frac{\partial \log \pi(\pmb{A}|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,\pmb{A})] \end{array}$$

计算随机梯度

📌 对于离散的动作,动作集是 $\mathcal{A} = \{"left", "right", "up"\}$

使用第一种形式的公式:
$$\frac{\partial V(s;\theta)}{\partial \theta} = \sum_{\mathbf{a}} \frac{\partial \pi(\mathbf{a}|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,\mathbf{a})$$

- ・对于每个动作 a,都把 $f(a,\theta)=rac{\partial \pi(m{a}|s; heta)}{\partial heta}\cdot Q_\pi(s,m{a})$ 计算出来
- ·根据上面公式,<mark>策略梯度就是把这些所有的动作</mark> f(a, heta) <mark>都加起来,</mark>

$$rac{\partial V(s; heta)}{\partial heta} = f("left", heta) + f("right", heta) + f("up", heta)$$
 (这是离散的情况)

🖈 对于连续的动作,如 $\mathcal{A}=[0,1]$

使用第二种形式的公式:
$$\frac{\partial V(s;\theta)}{\partial \theta} = \mathbb{E}_{A \sim \pi(\cdot|s;\theta)} [\frac{\partial \log \pi(\mathbf{A}|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,\mathbf{A})]$$

A 是连续变量,所以想要直接求期望需要做定积分。但是 π 函数是个神经网络,没法用数学公式求积分,可以用蒙特卡洛近似求取。

蒙特卡洛近似

蒙特卡洛就是抽一个或多个随机样本,用随机样本来近似期望。

- 1. 根据概率密度函数 $\pi(\cdot|s;\theta)$ 随机抽样一个动作 \hat{a} ,比如[0,1]这个集合,抽样得到0.2
- 2. 计算 $g(\hat{\mathbf{a}}, \theta) = \frac{\partial \log \pi(\hat{\mathbf{a}}|s; \theta)}{\partial \theta} \cdot Q_{\pi}(s, \hat{\mathbf{a}})$ (g就是gradient,计算策略梯度)
 - · 根据定义, $\mathbb{E}_{m{A}}[g(m{A}, heta)] = rac{\partial V(s; heta)}{\partial heta}$
- · 因为 \hat{a} 是概率密度函数 $\pi(\cdot|s;\theta)$ 随机抽样得来的,所以 $g(\hat{a},\theta)$ 是策略密度函数 $\frac{\partial V(s;\theta)}{\partial \theta}$ 的一个无偏估计
- ・由于是无偏估计,所以可以用 $g(\hat{\mathbf{a}},\theta)$ 来对 $\frac{\partial V(s;\theta)}{\partial \theta}$ 做一个近似,更新模型梯度的时候用 $g(\hat{\mathbf{a}},\theta)$ 来更新就行了。

这种方式对离散的动作也是可以使用的。

策略梯度算法过程

- 1. 观测到状态 s_t ,接下来用蒙特卡洛近似来计算策略梯度
- 2. 把策略网络 $\pi(\cdot|s;\theta)$ 作为概率密度函数随机采样动作 a_t 。
- 3. 计算<mark>价值函数</mark>的值,记作 $q_t pprox Q_\pi(s_t, a_t)$

4. 对策略网络求导,得到向量矩阵或者张量: $d_{ heta,t} = rac{\partial log \pi(a_t|s_t, heta)}{\partial heta} | heta = heta_t$

5. 近似计算策略梯度: $g(a_t, \theta_t) = q_t \cdot d_{\theta,t}$

6. 更新策略网络: $\theta_{t+1} = \theta_t + \beta \cdot g(a_t, \theta_t)$

问题: 第三步动作价值函数 $Q_{\pi}(s_t, a_t)$ 是啥,如何计算?

方法1: reinforce 算法

用策略网络 π 来控制 agent 运动,从一开始玩到游戏结束,把整个游戏轨迹都记录下来 $s_1,a_1,r_1,s_2,a_2,r_2,\cdots,s_t,a_t,r_t$

观测到所有奖励 \mathbf{r} ,就可以算出折扣回报 $u_t = \sum_{k=t}^T \gamma^{k-t} r_k$ 。

由于 $Q_{\pi}(s_t,a_t) = \mathbb{E}[U_t]$,所以可以使用 u_t 来近似 $Q_{\pi}(s_t,a_t)$

使用 $q_t = u_t$

就是用观测到的 u_t 来代替 $Q_{\pi}(s_t, a_t)$ 函数

方法2: 用一个神经网络来近似 Q_{π}

原本是拿神经网络来近似一个策略函数 π ,对于两个神经网络就涉及到了Actor-Critic。