21	1	1	0	_	
21		1/	10	Σ	0
-	/				

Dimostra che se in un triangolo ABC l'altezza AH relativa a BC è anche mediana relativa a BC, allora il triange è isoscele.

DIMOSTRAZIONE

Consider i triangli AHB e AHC. Emi hams:

- · CH = HB per ipoteni (2)
- · AĤC ≅ AĤB perche entrambi relli (ipotesi (1))
- · AH in comme

Quindi AHB e AHC sons congruents per il 1º criteris di congruensa dei trionegli.

Bu particolare AC = AB pulie loti comispondenti in triangli consprienti Due triangoli ABC e A'B'C' sono tali che $AB \cong A'B'$, uno degli angoli esterni di vertice A è congruente a uno degli angoli esterni di vertice A' e uno degli angoli esterni di vertice B è congruente a uno degli angoli esterni di vertice B'. Dimostra che i due triangoli sono congruenti.

- AB ≅ A'B'
- (2) CÂD esterns di BÂC, C'Â'D' esterns di B'Â'C'
 EBC esterns di CBA, E'B'C' esterns di C'B'A'
- 3 DÂC \ D'Â'C'
- 4) EBC \(\varepsilon \varepsilon' \varepsi

TS. ABC & A'B'C'

DIMOSTRAZIONE

Considerans i trangle ABC e A'B'C' Essi hams:

- · AB ≅ A'B' per ipteri (1)
- · BÂC = B'Â'C' ferdie nefferentari di angoli congruenti
- · ABC ≅ A'B'C' jerche suffementsin di angoli angruent

Allora ABC = A'B'C' for il 2° criteris di conegnensa dei trianedi.