Übung 03

Zentrenproduktion & Qualitätsmanagement

Einführung

Diese Übung behandelt zwei zentrale Konzepte der Produktionsorganisation: die Zentrenproduktion als flexible Alternative zur Werkstattfertigung und das Qualitätsmanagement mit statistischen Methoden.

Wichtige Konzepte:

- Zentrenproduktion: Gruppierung von Maschinen nach Erzeugnisfamilien
- Erzeugnisfamilien: Produkte mit ähnlichen Fertigungsverfahren
- FFS (Flexibles Fertigungssystem): Automatisierte Zentrenproduktion
- Engpassanalyse: Engpass $e = \arg\max_{m} \left\{ \frac{p_m \cdot b_m}{S_m} \right\}$

Aufgabe 1 - Zentrenproduktion und Erzeugnisfamilien

Die folgende Tabelle zeigt den Zusammenhang zwischen Erzeugnissen und den zu ihrer Erstellung notwendigen Maschinen:

Maschine	1	2	3	4	5	6
Erzeugnis A		Χ			Χ	
Erzeugnis B	Χ		Χ	Χ		Χ
Erzeugnis C				Χ		Χ
Erzeugnis D		Χ			Χ	Χ

- a) Identifizieren Sie geeignete Erzeugnisfamilien für Produktionsinseln durch systematische Umordnung der Matrix. Welche Maschinengruppen und Erzeugnisgruppen ergeben sich?
- b) Bewerten Sie die Qualität Ihrer Erzeugnisfamilienbildung. Ergeben sich Probleme und wie könnten diese gelöst werden?
- c) Vergleichen Sie die Zentrenproduktion mit der Werkstattfertigung hinsichtlich folgender Kriterien:
 - Transportwege und -zeiten
 - Durchlaufzeiten und Lagerbestände
 - Flexibilität bei Produktmix-Änderungen
 - Investitionsbedarf
- d) Ein Unternehmen plant die Umstellung von Werkstatt- auf Zentrenproduktion. Welche vier Planungsschritte sind dabei zu berücksichtigen?

Aufgabe 2 - Flexible Fertigungssysteme (FFS)

Gegeben sei ein geschlossenes Warteschlangennetzwerk (FFS) mit 3 Bearbeitungsstationen (je eine Maschine) und einem verbindenden Transportsystem. Die Daten sind:

Bearbeitungszeiten:

- Maschine 1: $b_1 = 50 \text{ min}$
- Maschine 2: $b_2 = 70 \text{ min}$
- Maschine 3: $b_3 = 30 \text{ min}$
- Transport: $b_4 = 12 \text{ min}$

Routing-Wahrscheinlichkeiten:

- $p_1 = 0, 4$ (Station 1)
- $p_2 = 0,25$ (Station 2)
- $p_3 = 0,35$ (Station 3)
- $p_4 = 1,0$ (Transport nach jeder Bearbeitung)
- a) Berechnen Sie die mittlere Arbeitsbelastung (Workload) $w_m=\frac{p_m\cdot b_m}{S_m}$ für alle Stationen.
- b) Bestimmen Sie den Engpass des Systems.
- c) Berechnen Sie unter der Annahme einer 100%-Engpassauslastung:
 - Die Produktionsraten ${\cal X}_m$ aller Stationen
 - ullet Die Auslastungen U_m aller Stationen
- d) Diskutieren Sie: Ist das Ergebnis realistisch, wenn die Anzahl der Paletten im System begrenzt ist? Welche praktischen Probleme könnten auftreten?

Aufgabe 3 - Statistische Qualitätskontrolle

Die Duisburger Spirituosenfabrik "Nordrhein Destille" produziert den Schnaps "Studentenglück" mit einem Soll-Alkoholgehalt von 40%. Die Stichproben der letzten 5 Jahre (Umfang n=5 Proben pro Stichprobe) ergaben folgende Werte:

Jahr	Probe 1	Probe 2	Probe 3	Probe 4	Probe 5
2019	39,9	40,5	39,2	40,3	40,6
2020	41,1	40,1	39,8	40,1	40,1
2021	39,3	40,4	39,7	40,5	39,9
2022	40,1	40,0	39,4	39,5	39,5
2023	39,8	40,2	40,4	39,9	40,1

- a) Berechnen Sie für jede Stichprobe den Stichprobenmittelwert x_t und die Stichprobenspannweite R_t .
- b) Bestimmen Sie den Mittelwert aller Stichprobenmittelwerte \bar{x} und die mittlere Spannweite \bar{R} .
- c) Berechnen Sie die Kontrollgrenzen für eine \bar{x} -Kontrollkarte mit dem Faktor A(n=5)=0,577.

- d) Die nächste Stichprobe (2024) liefert folgende Werte: [38,2; 40,5; 39,3; 39,9; 41,4]. Ist der Prozess noch unter statistischer Kontrolle?
- e) Interpretieren Sie das Ergebnis: Was bedeutet es für die Qualität des Produkts und welche Maßnahmen wären zu empfehlen?