Group ID: 3

PREDICTING HOTSPOT INTENSITIES

Say Yueyang, Symus | He Zeqing | Kwek Yan Qing

TABLE OF CONTENTS

INTRODUCTION

Haze

MOTIVATION

Prevent fires from escalating

Deploy firefighting teams

Can we predict **how intense a fire will be** based on **where it starts** and **how bright the fire burns**?

To predict **Fire Radiative Power (FRP)** from location and brightness data.

Data Acquisition

Data extracted from NASA's Fire Information for Resource Management System (FIRMS).

- Dynamic data; near real-time (3h delay)
- Dataset available: 24h/48h/7 days

Data Visualisation

Seaborn

Correlation Matrix, Scatter Plot

Plotly

Time-Series

Matplotlib

Time-Series (Hourly)

Data Visualisation

Correlation Matrix

- Observed correlation between Brightness and FRP
- Observed correlation between scan and track (related to satellite movement)

Data Visualisation

Time-Series Plot

- Plot of FRP values for every satellite recording
- Observed repeated/segmented data

Data Visualisation

Time-Series Plot

- Plot of FRP values animated over every day
- Observed concentration of fire data in same region

Data Visualisation

Time-Series Plot

- Plot of FRP values for every hour, animated over every day
- Observed peaks at certain times of day

Reformatting Features & Processing The Dataset

Reformatting Features & Processing The Dataset

Dataset #1 – Conversion of Location to Binary Values

name	continent		
Papua New Guinea	Oceania		
Papua New Guinea	Oceania		
Papua New Guinea	Oceania		
Philippines	Asia		
Philippines	Asia		

	 name_Indonesia	name_Laos	name_Malaysia	name_Myanmar	name_Nepal	name_Papua New Guinea	name_Philippines	name_Taiwan	name_Thailand	name_Vietnam
	 0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
	 0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
	 0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
	 0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0
	 0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0

Dataset #2 – Conversion of Continuous Values to Binary Values

bright_ti4	scan	track	acq_time	bright_ti5
330.7	0.43	0.38	33000.0	293.1
328.9	0.53	0.50	33000.0	289.9
326.2	0.52	0.50	33000.0	287.4
335.1	0.41	0.37	51200.0	298.4
336.0	0.41	0.37	51200.0	298.0
000.1	0.11	0.01	0.1200.0	

bright_u4_bright_u4_100p	bright_u4_bright_u4_20p	bright_u4_bright_u4_4vp	bright_u4_bright_u4_60p	bright_u4_bright_u4_80p	scan_scan_100p	scan_scan
0.0	1.0	0.0	0.0	0.0	0.0	
0.0	1.0	0.0	0.0	0.0	1.0	
0.0	1.0	0.0	0.0	0.0	0.0	
0.0	0.0	1.0	0.0	0.0	0.0	
0.0	0.0	0.0	1.0	0.0	0.0	

Feature Selection

Correlation Matrix + Heatmap

from sklearn.preprocessing import StandardScaler def standardize(df): # create a scaler object std_scaler = StandardScaler() # fit and transform the data return pd.DataFrame(std_scaler.fit_transform(df), columns=df.columns)

Continuous + Binary Values

Binary Values

Feature Selection

Random Forest Feature Selection Model

The top 3 factors correlating to the Fire Radiative Power are bright_ti5_bright_ti5_40p, bright_ti5_bright_ti4_bright_ti4_20p

The top 3 factors correlating to the Fire Radiative Power are bright_ti5, bright_ti4, scan

PREDICTIVE MODELLING

Types of Models

Linear Regression

$$FRP = \sum w_n x_n + w_0$$
$$= \mathbf{X}\mathbf{w}$$

Poly Regression

$$FRP = \sum (\sum w_{n,m..} x_n x_m..)_d + \sum w_n x_n + w_0$$

Random Forest

FRP = mean of n (20) decision trees outputs

PREDICTIVE MODELLING

Train-Val-Test Split

Linear Model

Random Forest Model

Train Set

Test Set

Model parameters trained using **Train Set**

Evaluate Accuracy using **Test Set**

RESULTS AND ANALYSIS

Accuracy =
$$1 - \frac{1}{n} \sum \frac{|Error|}{|Actual|}$$

Random Forest Model captures the non-linear trends in the data (Best Accuracy: **33%)**

Conclusion: There is not much trend between location or brightness and FRP

FUTURE IMPROVEMENTS

Find dataset with **better** features

Use more data over **longer** periods

Reduce the problem into classifying high FRP values versus low FRP values

Identify locations of interest and analyse location characteristics **over a smaller area**

THANK YOU!

This project is available on GitHub!

Click on the logo to view it!

CONTRIBUTIONS

Symus

Data Exploration
Data Visualization
Data Cleaning
One Hot Encoding

Atticus

Data Cleaning
One Hot Encoding
Feature Selection
Contextual Knowledge
and Analysis
Formatting

Zeqing

Creating Models
Cross Validation
Evaluating Model
Accuracy