At a Glance.

- three main components of machine learning (ML): data, model and loss
- data consists of data points, each characterized by
 - features: properties that can be measured easily
 - labels: properties that cannot be measured easily
- model consists of hypothesis maps
- loss measures the quality of a hypothesis map

Data point = An Image z

Features:

- \triangleright x_1, \ldots, x_d : Colour intensities of all image pixels.
- \triangleright x_{d+1} : Time-stamp of the image capture.
- \triangleright x_{d+2} : Spatial location of the image capture.

Labels:

- \triangleright y_1 : Number of cows depicted.
- \triangleright y_2 : Number of wolves depicted.
- \triangleright y_3 : Condition of the pasture (e.g., healthy, overgrazed).

Data point = An Audio Recording z

Figure: An audio signal (blue waveform) \mathbf{z} and its discretized signal samples (red dots) which can be used as its features x_1, \ldots, x_d .

Feature space

- ▶ often we use a fixed number $d \in \mathbb{N}$ of features
- ightharpoonup stack them into a feature vector $\mathbf{x} = (x_1, \dots, x_d)$
- lacktriangle feature vectors belong to some feature space ${\mathcal X}$
- lacktriangle most widely-used (by far) choice is $\mathcal{X}=\mathbb{R}^d$

Label space

Figure: Examples of label spaces and corresponding ML flavours.

Goal of ML: Predict Label from Features

Figure: A hypothesis $h: \mathcal{X} \to \mathcal{Y}$ maps the features $\mathbf{x} \in \mathcal{X}$ of a data point to a prediction $h(\mathbf{x}) \in \mathcal{Y}$ of the label. For example, the ML application https://freddiemeter.withyoutube.com/ uses the samples of an audio recording as features predict how closely a person's singing resembles that of Freddie Mercury.

Model = A Set of Hypothesis Maps

Figure: A hypothesis space $\mathcal{H} = \{h^{(1)}, h^{(2)}, h^{(3)}\}$ consisting of three linear maps.

Which one of the hypothesis maps is the best?

Loss function

A loss function $L((\mathbf{x}, y), h)$ measures the error (or "loss"), incurred by predicting the label y of a data point with feature vector \mathbf{x} .

Which Loss function should we use?

The shape of the loss function influences

- computational complexity,
- predictive accuracy,
- interpretability

of resulting ML methods.

Contact

Instructor: Alexander Jung