Deep High-Resolution Representation Learning for Human Pose Estimation

Ke Sun, Bin Xiao, Dong Liu, Jingdong Wang (CVPR 2019)

09.06.2022 전북대학교 학부생 김세희

Background

• What is Human Pose Estimation?

: a way of identifying and classifying the joints in the human body.

Regression vs Heatmap

• Regression: (x, y) e.g. COCO Dataset

[Image] Image

[Annotation] Key points

	코	눈(좌)	 발목(우)
х	367	374	 396
у	81	73	 341
z	2	2	 2

• x, y: (x, y), 2D image 좌표

z : visibility flag

• 0 : 이미지 내 존재하지 않는 키 포인트(not labeled)

• 1: 이미지 내 존재하지만, 겉으론 보이지 않는 키 포인트

• 2: 이미지 내 존재하고, 겉으로도 보이는 키 포인트

Regression vs Heatmap

• Heatmap [loc = (x, y)]

Human Pose Estimation Task

- 1. Train Global + Local Feature
- 2. Recover High-Resolution

✓ Trade off: Global information vs High resolution

High global information

Low resolution

When up-sampling, lose information

Increase receptive field size

Negative effect for Pixel-wise prediction

HR-Net Record

- · Leader Board: Pose Estimation on COCO test-dev
 - : It maintained SOTA for about two years.

Introduction

Previous Approach

• Existing networks for pose estimation are built by connecting high-to-low resolution subnetworks in series. e.g. Simple baseline(2018)

Lose small object or detailed spatial information

Negative effect for Pixel-wise prediction

Method

Architecture of the proposed HRNet

• It consists of parallel high-to-low resolution subnetworks with repeated information exchange across multi-resolution subnetworks (multi-scale fusion)

Method

Architecture of the proposed HRNet

• The resolutions for the parallel subnetworks of a later stage consists of the resolutions from the previous stage, and an extra lower one.

Method

Architecture of the proposed HRNet

• The resolutions for the parallel subnetworks of a later stage consists of the resolutions from the previous stage, and an extra lower one.

Dataset (COCO Dataset)

- Train dataset: 57,000 images (150K person instances)
- Evaluation: 5,000 images(val), 20,000 images(test-dev)
- · Key-points: 17

Evaluation metric

- OKS (= Object Keypoint Similarity)
- AP (=Average Precision)

Evaluation metric

* Object Detection task에서의 'IOU(Intersection over Union)' 개념

1. 키 포인트 유사성 측정 지표 : OKS (=Object Keypoint Similarity)

$$\frac{\sum_{i} \exp(-d_i^2/2s^2 k_i^2) \delta(v_i > 0)}{\sum_{i} \delta(v_i > 0)}$$

- d_i Euclidean 거리(Ground-Truth 관절(key-point), 예측 관절)
- v_i Visibility flag ($v_i > 0$: 이미지 내 존재하는 모든 키 포인트)
- S 객체 Bounding box 대각선 길이
- k_i 관절 종류마다 사전 설정되어 있는 상수
- ✓ OKS는 1(Best)과 0(Worst)사이의 값을 가짐
 - 완벽한 예측의 경우, d_i 는 0이 되어 OKS값이 0이 됨
 - 반대의 경우, d_i 값이 매우 커져 $\exp(-x)$ 값이 0에 점근하며 OKS가 0이 됨

• $s^2 k_i^2$ 역할 : 각 Image, 관절 마다 일종의 '정규화'

Evaluation metric

2. 평가 Metric: AP (= Average Precision)

[Average Precision]

- 1) OKS Threshold에 따른 'Precision', 'Recall' 값 계산
- 2) Recall에 따른 Precision 값을 도식화 해 'Precision-Recall' curve
- 3) 'Precision-Recall' curve 의 면적을 'Average Precision' 으로 정의

```
AP The mean of AP at 10 positions (OKS = [0.5, 0.05, 0.95])

AP^{50} AP at OKS = 0.5

AP^{75} AP at OKS = 0.75

AP^{M} AP for medium object (32^{2} < segmentation area < 96^{2})

AP^{L} AP for Large object (segmentation area > 96^{2})

AR Average Recall
```

Training

- 1. Extension of Human detection box image
 - Fixed Human detection box image (height: width = 4:3) 예시) 256×192 or 384×288

- 2. Data Augmentation
 - 1) Random Rotation(-45°, 45°)
 - 2) Random scale (0.56, 1.35)
 - 3) flipping
 - 4) half body data augmentation

COCO validation set

Table 1. Comparisons on the COCO validation set. Pretrain = pretrain the backbone on the ImageNet classification task. OHKM = online hard keypoints mining [11].

Method	Backbone	Pretrain	Input size	#Params	GFLOPs	AP	$\mathrm{AP^{50}}$	$\mathrm{AP^{75}}$	AP^M	AP^L	AR
8-stage Hourglass [40]	8-stage Hourglass	N	256×192	25.1M	14.3	66.9	_			_	_
CPN [11]	ResNet-50	Y	256×192	27.0M	6.20	68.6	_	_	_	_	_
CPN + OHKM [11]	ResNet-50	Y	256×192	27.0M	6.20	69.4	_	_	_	_	_
SimpleBaseline [72]	ResNet-50	Y	256×192	34.0M	8.90	70.4	88.6	78.3	67.1	77.2	76.3
SimpleBaseline [72]	ResNet-101	Y	256×192	53.0M	12.4	71.4	89.3	79.3	68.1	78.1	77.1
SimpleBaseline [72]	ResNet-152	Y	256×192	68.6M	15.7	72.0	89.3	79.8	68.7	78.9	77.8
HRNet-W32	HRNet-W32	N	256×192	28.5M	7.10	73.4	89.5	80.7	70.2	80.1	78.9
HRNet-W32	HRNet-W32	Y	256×192	28.5M	7.10	74.4	90.5	81.9	70.8	81.0	79.8
HRNet-W48	HRNet-W48	Y	256×192	63.6M	14.6	75.1	90.6	82.2	71.5	81.8	80.4
SimpleBaseline [72]	ResNet-152	Y	384×288	68.6M	35.6	74.3	89.6	81.1	70.5	79.7	79.7
HRNet-W32	HRNet-W32	Y	384×288	28.5M	16.0	75.8	90.6	82.7	71.9	82.8	81.0
HRNet-W48	HRNet-W48	Y	384×288	63.6M	32.9	76.3	90.8	82.9	72.3	83.4	81.2

COCO validation set

Table 2. Comparisons on the COCO test-dev set. #Params and FLOPs are calculated for the pose estimation network, and those for human detection and keypoint grouping are not included.

Method	Backbone	Input size	#Params	GFLOPs	AP	$\mathrm{AP^{50}}$	$\mathrm{AP^{75}}$	AP^M	AP^L	AR
Bottom-up: keypoint detection and grouping										
OpenPose [6]	_	_	_	_	61.8	84.9	67.5	57.1	68.2	66.5
Associative Embedding [39]	_	_	_	_	65.5	86.8	72.3	60.6	72.6	70.2
PersonLab [46]	_	_	_	-	68.7	89.0	75.4	64.1	75.5	75.4
MultiPoseNet [33]	_	_	_	_	69.6	86.3	76.6	65.0	76.3	73.5
Top-down: human detection and single-person keypoint detection										
Mask-RCNN [21]	ResNet-50-FPN	_	_	_	63.1	87.3	68.7	57.8	71.4	_
G-RMI [47]	ResNet-101	353×257	42.6M	57.0	64.9	85.5	71.3	62.3	70.0	69.7
Integral Pose Regression [60]	ResNet-101	256×256	45.0M	11.0	67.8	88.2	74.8	63.9	74.0	_
G-RMI + extra data [47]	ResNet-101	353×257	42.6M	57.0	68.5	87.1	75.5	65.8	73.3	73.3
CPN [11]	ResNet-Inception	384×288	_	_	72.1	91.4	80.0	68.7	77.2	78.5
RMPE [17]	PyraNet [77]	320×256	28.1M	26.7	72.3	89.2	79.1	68.0	78.6	_
CFN [25]	_	_	_	_	72.6	86.1	69.7	78.3	64.1	_
CPN (ensemble) [11]	ResNet-Inception	384×288	_	_	73.0	91.7	80.9	69.5	78.1	79.0
SimpleBaseline [72]	ResNet-152	384×288	68.6M	35.6	73.7	91.9	81.1	70.3	80.0	79.0
HRNet-W32	HRNet-W32	384×288	28.5M	16.0	74.9	92.5	82.8	71.3	80.9	80.1
HRNet-W48	HRNet-W48	384×288	63.6M	32.9	75.5	92.5	83.3	71.9	81.5	80.5
HRNet-W48 + extra data	HRNet-W48	384×288	63.6M	32.9	77.0	92.7	84.5	73.4	83.1	82.0

Ablation Study

Table 6. Ablation study of exchange units that are used in repeated multi-scale fusion. Int. exchange across = intermediate exchange across stages, Int. exchange within = intermediate exchange within stages.

Method	Final exchange	Int. exchange across	Int. exchange within	AP
(a)	✓			70.8
(b)	✓	✓		71.9
(c)	✓	✓	✓	73.4

Ablation Study

Figure 5. Ablation study of high and low representations. $1 \times, 2 \times, 4 \times$ correspond to the representations of the high, medium, low resolutions, respectively.

Ablation Study

Figure 6. Illustrating how the performances of our HRNet and SimpleBaseline [72] are affected by the input size.

Thank you

Self Tensorflow CUDA Driving Python OpenCV Speed/Steering Control **ROS Packages** LIDAR Camera Ultrasonic **:::**ROS Open Source Robot OS Linux

NVIDIA.