Advanced Bayesian GLMs: Quantifying Uncertainty & Model Checking

Data 102 Fall 2022

Lecture 11

Weekly Outline

• So far: regression, GLMs, Bayesian vs frequentist

- Today: Advanced modeling (Bayesian perspective)
 - Quantifying uncertainty
 - Model checking

Next time: Frequentist perspective on uncertainty & model checking

Recap: Generalized Linear Models (GLMs)

- Model that describes the relationship between predictors (x) and targets (y)
- How the model makes predictions:
 - Take each predictor (x), multiply it by a coefficient (beta), and add them all up
 - Apply the (inverse) link function to get the average prediction
 - Assume the targets (y) have a particular likelihood model centered around that average

Examples:

0	Your problem here	<choose one=""></choose>	<choose one=""></choose>
0	Molecule concentration (HW3)	???	???
0	Neg. binomial regression:	exponential (inverse) link,	negative binomial likelihood
0	Poisson regression:	exponential (inverse) link,	Poisson likelihood
0	Logistic regression:	sigmoid (inverse) link,	Bernoulli likelihood
0	Linear regression:	identity (inverse) link,	Gaussian likelihood
0	Model	Link function	Likelihood model

GLMs, step-by-step

- 1. Formulate your prediction problem (define what x, y mean)
 - a. Could involve feature engineering: more on this next week
- 2. Gather training data (x, y pairs)
- 3. Choose an inverse link function and likelihood that make sense for your data
- 4. Fit the model using training data (in this class, using PyMC3 or statsmodels)
- 5. Check that the model is actually a good fit for the data
- 6. Generate predictions for new x where y is unknown
- 7. Report uncertainty for the new predictions

Model Checking: Is my model a good fit for my data?

- Question
- Step 1: Is the model a good fit for my training data?
 - Focus of today & next time
- Step 2: Is the model going to be a good fit when I see new data?
 - Use held-out test set to answer
 - More on this next week

Bayesian Model Checking: Posterior Predictive Checks

Regression:

- Consider training set x₁, ..., x_n, y₁, ..., y_n
- For each x_i, draw PPC samples from the posterior predictive distribution for y_i

Non-regression

- Consider training set x₁, ..., x_n
- \circ Draw PPC samples from the posterior predictive distribution for x_{n+1} , ...
- Check whether those new PPC samples are "reasonable" given the data
 - If they do, our model is a good fit for the training data
 - If they don't, our model is not a good fit for the training data