Principal Components & Multiple Correspondence Analyses with resampling approaches for stability assessments

Derek Beaton

RRI RTC

May 03, 2019

Where to find everything

► Generally: https://github.com/derekbeaton/workshops

Where to find everything

- ► Generally: https://github.com/derekbeaton/workshops
- ➤ Today: https://github.com/derekbeaton/Workshops/tree/ma ster/RTC/PCA_MCA_Resampling

Use RStudio (makes it easy)

- ► Use RStudio (makes it easy)
- ► You can pull from the Git repo

- ► Use RStudio (makes it easy)
- ► You can pull from the Git repo
 - Or copy individual files

- ► Use RStudio (makes it easy)
- ► You can pull from the Git repo
 - Or copy individual files
- ► Make .Renviron file

- Use RStudio (makes it easy)
- ► You can pull from the Git repo
 - Or copy individual files
- ► Make .Renviron file
 - Points to locations outside the repo

- ► Use RStudio (makes it easy)
- You can pull from the Git repo
 - Or copy individual files
- Make .Renviron file
 - Points to locations outside the repo
- Run "/R/0_Create_ADNI_Dataset.R" first

- Use RStudio (makes it easy)
- You can pull from the Git repo
 - Or copy individual files
- ► Make .Renviron file
 - Points to locations outside the repo
- Run "/R/0_Create_ADNI_Dataset.R" first
 - ► Then either run this .Rmd or

- Use RStudio (makes it easy)
- You can pull from the Git repo
 - Or copy individual files
- ► Make .Renviron file
 - Points to locations outside the repo
- Run "/R/0_Create_ADNI_Dataset.R" first
 - ▶ Then either run this .Rmd or
 - Run scripts in order

- Use RStudio (makes it easy)
- You can pull from the Git repo
 - Or copy individual files
- Make .Renviron file
 - Points to locations outside the repo
- ► Run "/R/0_Create_ADNI_Dataset.R" first
 - Then either run this .Rmd or
 - Run scripts in order
- Use of the ADNI data

- Use RStudio (makes it easy)
- You can pull from the Git repo
 - Or copy individual files
- ► Make .Renviron file
 - Points to locations outside the repo
- Run "/R/0_Create_ADNI_Dataset.R" first
 - Then either run this .Rmd or
 - Run scripts in order
- Use of the ADNI data
 - ► Via the 'ADNIMERGE' package

► Lots of really cool R & RStudio stuff

- ► Lots of really cool R & RStudio stuff
- ▶ This presentation is 90% reproducible

- ► Lots of really cool R & RStudio stuff
- ▶ This presentation is 90% reproducible
 - Resampling is painful

- Lots of really cool R & RStudio stuff
- ► This presentation is 90% reproducible
 - Resampling is painful
- R & RStudio "Magic" BrainHackTO tutorial

- Lots of really cool R & RStudio stuff
- ► This presentation is 90% reproducible
 - Resampling is painful
- ▶ R & RStudio "Magic" BrainHackTO tutorial
 - ► Jenny Rieck & I

- Lots of really cool R & RStudio stuff
- ► This presentation is 90% reproducible
 - Resampling is painful
- R & RStudio "Magic" BrainHackTO tutorial
 - Jenny Rieck & I
 - ► May 21 or 22

- Lots of really cool R & RStudio stuff
- ▶ This presentation is 90% reproducible
 - Resampling is painful
- R & RStudio "Magic" BrainHackTO tutorial
 - Jenny Rieck & I
 - May 21 or 22
 - Possibly sold out?

- Lots of really cool R & RStudio stuff
- ▶ This presentation is 90% reproducible
 - Resampling is painful
- ▶ R & RStudio "Magic" BrainHackTO tutorial
 - ► Jenny Rieck & I
 - May 21 or 22
 - Possibly sold out?
 - We'll make stuff available

Motivation for today

► Not everything is a number

Motivation for today

- ► Not everything is a number
- ▶ But with care, it can be turned into one

► Introduction

- ► Introduction
- ► PCA

- ► Introduction
- ► PCA
- ► CA

- ► Introduction
- ► PCA
- ► CA
- ► Resampling

- ► Introduction
- ► PCA
- ► CA
- ► Resampling
- ► Final notes

► Basis:

- ► Basis:
 - ► Hotelling (1933)

- ► Basis:
 - ► Hotelling (1933)
 - ► Eckart & Yong (1936)

- ► Basis:
 - ► Hotelling (1933)
 - ► Eckart & Yong (1936)
- ► Traces back to

- ► Basis:
 - ► Hotelling (1933)
 - Eckart & Yong (1936)
- ► Traces back to
 - Cauchy (1829)

- ► Basis:
 - ► Hotelling (1933)
 - ► Eckart & Yong (1936)
- ► Traces back to
 - ► Cauchy (1829)
 - ► Galton (1859)

- Basis:
 - ► Hotelling (1933)
 - Eckart & Yong (1936)
- ► Traces back to
 - ► Cauchy (1829)
 - ► Galton (1859)
 - ► K. Pearson (1901)

Prehistory

- ► Basis:
 - ► Hotelling (1933)
 - Eckart & Yong (1936)
- Traces back to
 - ► Cauchy (1829)
 - ► Galton (1859)
 - ► K. Pearson (1901)
 - ► Spearman (1904)

▶ "Modern form" of PCA & factor analyses

- ▶ "Modern form" of PCA & factor analyses
 - ► Thurstone (1934)

- ▶ "Modern form" of PCA & factor analyses
 - ► Thurstone (1934)
 - Fisher (1940)

- "Modern form" of PCA & factor analyses
 - ► Thurstone (1934)
 - Fisher (1940)
 - ► Tucker (too many to list)

- "Modern form" of PCA & factor analyses
 - ► Thurstone (1934)
 - Fisher (1940)
 - Tucker (too many to list)
 - ► Many others in 1940s-1960s

- "Modern form" of PCA & factor analyses
 - ► Thurstone (1934)
 - Fisher (1940)
 - Tucker (too many to list)
 - ► Many others in 1940s-1960s
- ► CA

- "Modern form" of PCA & factor analyses
 - ► Thurstone (1934)
 - Fisher (1940)
 - Tucker (too many to list)
 - ► Many others in 1940s-1960s
- ► CA
 - Hirschfeld (1935)

- "Modern form" of PCA & factor analyses
 - ► Thurstone (1934)
 - Fisher (1940)
 - Tucker (too many to list)
 - ► Many others in 1940s-1960s
- CA
 - ► Hirschfeld (1935)
 - ► Guttman (1941)

- "Modern form" of PCA & factor analyses
 - ► Thurstone (1934)
 - Fisher (1940)
 - Tucker (too many to list)
 - ► Many others in 1940s-1960s
- CA
 - ► Hirschfeld (1935)
 - ► Guttman (1941)
 - ▶ Burt (1950)

- "Modern form" of PCA & factor analyses
 - ► Thurstone (1934)
 - Fisher (1940)
 - Tucker (too many to list)
 - ► Many others in 1940s-1960s
- CA
 - ► Hirschfeld (1935)
 - ► Guttman (1941)
 - ▶ Burt (1950)
 - ► Benzecri (1964)

- "Modern form" of PCA & factor analyses
 - ► Thurstone (1934)
 - Fisher (1940)
 - Tucker (too many to list)
 - ► Many others in 1940s-1960s
- CA
 - ► Hirschfeld (1935)
 - Guttman (1941)
 - ▶ Burt (1950)
 - ► Benzecri (1964)
 - **Escofier** (1965)

- "Modern form" of PCA & factor analyses
 - ► Thurstone (1934)
 - Fisher (1940)
 - Tucker (too many to list)
 - ► Many others in 1940s-1960s
- ► CA
 - Hirschfeld (1935)
 - Guttman (1941)
 - ▶ Burt (1950)
 - ► Benzecri (1964)
 - Escofier (1965)
- ► See Lebart's History & Prehistory of CA: http:

 $//www.dtmvic.com/doc/About_the_History_of_CA.pdf$

▶ PCA is always cool.

- PCA is always cool.
- ► See the final slides for related methods

- PCA is always cool.
- ► See the final slides for related methods
 - ▶ PCA makes you familiar with all of them

- PCA is always cool.
- ► See the final slides for related methods
 - PCA makes you familiar with all of them
 - CA makes you an expert with all of them

► Visualize multiple/high dimensions

- ► Visualize multiple/high dimensions
- ► Dimensionality reduction

- ► Visualize multiple/high dimensions
- ► Dimensionality reduction
- ► Matrix factorization

- ► Visualize multiple/high dimensions
- Dimensionality reduction
- ► Matrix factorization
- Unsupervised learning

► Find "components"

- ► Find "components"
 - Components are new variables that are combinations of the original variables

- ► Find "components"
 - Components are new variables that are combinations of the original variables
- ► Components explain maximal variance

- ► Find "components"
 - Components are new variables that are combinations of the original variables
- ► Components explain maximal variance
 - Conditional to orthogonality

- ► Find "components"
 - Components are new variables that are combinations of the original variables
- ► Components explain maximal variance
 - Conditional to orthogonality
- So what's the difference?

PCA vs CA

▶ PCA: For generally continuous (interval scale) data

PCA vs CA

- ▶ PCA: For generally continuous (interval scale) data
- ► CA: For (almost) everything else

PCA vs CA

- ▶ PCA: For generally continuous (interval scale) data
- ► CA: For (almost) everything else
 - ► And also for continuous data!

► The eigenvalue decomposition (EVD)

- ► The eigenvalue decomposition (EVD)
 - ▶ Requires squares, symmetric, and positive semi definite

- ► The eigenvalue decomposition (EVD)
 - ▶ Requires squares, symmetric, and positive semi definite
 - Generally correlation or covariance

- ► The eigenvalue decomposition (EVD)
 - ▶ Requires squares, symmetric, and positive semi definite
 - ► Generally correlation or covariance
- ► The singular value decomposition (SVD)

- ► The eigenvalue decomposition (EVD)
 - ▶ Requires squares, symmetric, and positive semi definite
 - ► Generally correlation or covariance
- ► The singular value decomposition (SVD)
 - Works with rectangular tables

- ► The eigenvalue decomposition (EVD)
 - ▶ Requires squares, symmetric, and positive semi definite
 - ► Generally correlation or covariance
- ► The singular value decomposition (SVD)
 - Works with rectangular tables
- A generalized SVD

- ► The eigenvalue decomposition (EVD)
 - ▶ Requires squares, symmetric, and positive semi definite
 - ► Generally correlation or covariance
- The singular value decomposition (SVD)
 - Works with rectangular tables
- A generalized SVD
 - Apply constraints (weights) to rows & columns of rectangular table

Under the hood

- ► The eigenvalue decomposition (EVD)
 - Requires squares, symmetric, and positive semi definite
 - Generally correlation or covariance
- ► The singular value decomposition (SVD)
 - Works with rectangular tables
- A generalized SVD
 - Apply constraints (weights) to rows & columns of rectangular table
 - ▶ Required for CA and fancier PCA-like techniques & extensions

Component scores

- Component scores
 - Values assigned to rows (PCA & CA) or columns (CA) scaled by variance

- Component scores
 - Values assigned to rows (PCA & CA) or columns (CA) scaled by variance
- ► Correlation loadings (PCA)

- Component scores
 - ► Values assigned to rows (PCA & CA) or columns (CA) scaled by variance
- Correlation loadings (PCA)
 - Correlation of original data with row component scores (observations)

- Component scores
 - ▶ Values assigned to rows (PCA & CA) or columns (CA) scaled by variance
- Correlation loadings (PCA)
 - Correlation of original data with row component scores (observations)
- Explained variance

- Component scores
 - Values assigned to rows (PCA & CA) or columns (CA) scaled by variance
- Correlation loadings (PCA)
 - Correlation of original data with row component scores (observations)
- Explained variance
 - Eigenvalues

- Component scores
 - ▶ Values assigned to rows (PCA & CA) or columns (CA) scaled by variance
- Correlation loadings (PCA)
 - Correlation of original data with row component scores (observations)
- Explained variance
 - Eigenvalues
 - How much of the total variance per component

- Component scores
 - Values assigned to rows (PCA & CA) or columns (CA) scaled by variance
- Correlation loadings (PCA)
 - Correlation of original data with row component scores (observations)
- Explained variance
 - Eigenvalues
 - How much of the total variance per component
 - ► Variance = Sums of squares

- Component scores
 - Values assigned to rows (PCA & CA) or columns (CA) scaled by variance
- Correlation loadings (PCA)
 - Correlation of original data with row component scores (observations)
- Explained variance
 - Eigenvalues
 - How much of the total variance per component
 - Variance = Sums of squares
- Magic

ExPosition

- ExPosition
 - ► Family of packages

- ExPosition
 - ► Family of packages
 - ► Includes resampling

- ExPosition
 - Family of packages
 - ► Includes resampling
 - ► Lots of PCA & CA techniques

- ExPosition
 - Family of packages
 - ► Includes resampling
 - ► Lots of PCA & CA techniques
- factoextra

- ExPosition
 - ► Family of packages
 - Includes resampling
 - ► Lots of PCA & CA techniques
- factoextra
 - Awesome ggplot2 visualizers for ExPosition

- ExPosition
 - Family of packages
 - Includes resampling
 - Lots of PCA & CA techniques
- factoextra
 - Awesome ggplot2 visualizers for ExPosition
 - http://www.alboukadel.com/ & http://www.sthda.com/english/

- ExPosition
 - Family of packages
 - Includes resampling
 - Lots of PCA & CA techniques
- factoextra
 - Awesome ggplot2 visualizers for ExPosition
 - http://www.alboukadel.com/ & http://www.sthda.com/english/
- ggplot2 & tidyverse

- ExPosition
 - ► Family of packages
 - Includes resampling
 - ► Lots of PCA & CA techniques
- factoextra
 - Awesome ggplot2 visualizers for ExPosition
 - http://www.alboukadel.com/ & http://www.sthda.com/english/
- ggplot2 & tidyverse
- ours

- ExPosition
 - ► Family of packages
 - Includes resampling
 - Lots of PCA & CA techniques
- factoextra
 - Awesome ggplot2 visualizers for ExPosition
 - http://www.alboukadel.com/ & http://www.sthda.com/english/
- ggplot2 & tidyverse
- ours
 - Developed here within ONDRI

- ExPosition
 - Family of packages
 - Includes resampling
 - Lots of PCA & CA techniques
- factoextra
 - Awesome ggplot2 visualizers for ExPosition
 - http://www.alboukadel.com/ & http://www.sthda.com/english/
- ggplot2 & tidyverse
- ours
 - Developed here within ONDRI
 - New package for outliers

- ExPosition
 - ► Family of packages
 - Includes resampling
 - Lots of PCA & CA techniques
- factoextra
 - Awesome ggplot2 visualizers for ExPosition
 - http://www.alboukadel.com/ & http://www.sthda.com/english/
- ggplot2 & tidyverse
- ours
 - Developed here within ONDRI
 - New package for outliers
 - Has some important bells-and-whistles

- ExPosition
 - ► Family of packages
 - Includes resampling
 - Lots of PCA & CA techniques
- factoextra
 - Awesome ggplot2 visualizers for ExPosition
 - http://www.alboukadel.com/ & http://www.sthda.com/english/
- ggplot2 & tidyverse
- ours
 - Developed here within ONDRI
 - New package for outliers
 - Has some important bells-and-whistles
- Making things look fancy:

- ExPosition
 - Family of packages
 - Includes resampling
 - Lots of PCA & CA techniques
- factoextra
 - Awesome ggplot2 visualizers for ExPosition
 - http://www.alboukadel.com/ & http://www.sthda.com/english/
- ggplot2 & tidyverse
- ours
 - Developed here within ONDRI
 - New package for outliers
 - Has some important bells-and-whistles
- Making things look fancy:
 - kable, kableExtra, gridExtra, ggcorrplot

► FactoMineR

- ► FactoMineR
- ► ade4

- ► FactoMineR
- ► ade4
- ▶ ca

- ► FactoMineR
- ► ade4
- ▶ ca
- MASS

- ► FactoMineR
- ► ade4
- ▶ ca
- MASS
- psych

- ► FactoMineR
- ► ade4
- ▶ ca
- MASS
- psych
- ► So many others

► SS Stevens

- ► SS Stevens
 - ► Not a boat!

- ► SS Stevens
 - ► Not a boat!
- ► Levels of measurement

- ► SS Stevens
 - ► Not a boat!
- ► Levels of measurement
 - Nominal (categorical)

- SS Stevens
 - ► Not a boat!
- Levels of measurement
 - Nominal (categorical)
 - Ordinal (ranked, discrete categories)

- SS Stevens
 - ► Not a boat!
- Levels of measurement
 - ► Nominal (categorical)
 - Ordinal (ranked, discrete categories)
 - ► Interval (continuous, arbitrary 0)

Typology

- SS Stevens
 - ► Not a boat!
- Levels of measurement
 - ► Nominal (categorical)
 - Ordinal (ranked, discrete categories)
 - ► Interval (continuous, arbitrary 0)
 - ► Ratio (continuous, non-arbitrary 0)

Typology

- SS Stevens
 - ► Not a boat!
- Levels of measurement
 - ► Nominal (categorical)
 - Ordinal (ranked, discrete categories)
 - ► Interval (continuous, arbitrary 0)
 - Ratio (continuous, non-arbitrary 0)
- Excellent examples:

https://en.wikipedia.org/wiki/Level_of_measurement

► Alzheimer's Disease Neuroimaging Initiative (ADNI)

- ► Alzheimer's Disease Neuroimaging Initiative (ADNI)
- ► Data set:

- ► Alzheimer's Disease Neuroimaging Initiative (ADNI)
- Data set:
 - ▶ 665 observations

- ► Alzheimer's Disease Neuroimaging Initiative (ADNI)
- Data set:
 - ▶ 665 observations
 - ▶ 17 variables

- Alzheimer's Disease Neuroimaging Initiative (ADNI)
- Data set:
 - ▶ 665 observations
 - ▶ 17 variables
- ► Walk through this set to tell a whole story

	Continuous	Categorical	Ordinal
DX		YES	
AGE	YES		
PTGENDER		YES	
PTEDUCAT			YES
PTETHCAT		YES	
PTRACCAT		YES	
APOE4		YES	YES
FDG	YES		
AV45	YES		
CDRSB			YES
ADAS13			YES
MOCA			YES
WholeBrain	YES		
Hippocampus	YES		
MidTemp	YES		
mPACCtrailsB	YES		
HMSCORE		YES	YES

Principal Components Analysis

► We'll start with just two variables:

- ► We'll start with just two variables:
- ► Trails

- ► We'll start with just two variables:
- ► Trails
 - Neuropsych test

- ► We'll start with just two variables:
- ► Trails
 - Neuropsych test
 - Executive function

- ► We'll start with just two variables:
- ► Trails
 - ► Neuropsych test
 - Executive function
- ► FDG

- ► We'll start with just two variables:
- ▶ Trails
 - ► Neuropsych test
 - Executive function
- ► FDG
 - ▶ PET imaging; brain function

- ► We'll start with just two variables:
- ► Trails
 - Neuropsych test
 - Executive function
- ► FDG
 - ▶ PET imaging; brain function
 - Average of several brain regions

TRAILS

PCA of Trails & FDG: Participants' Component Scores

Component 1. Explained variance: 77.98%

Component 1. Explained variance: 77.98%

Component 1. Explained variance: 77.98%

Component 1. Explained variance: 77.98%

Scaling up

► Scale up: MORE DATA!

Scaling up

- ► Scale up: MORE DATA!
- ► All of the continuous variables

Scaling up

	AGE	FDG	AV45	WholeBrain	Hippocampus	MidTemp	mPACCtrailsB
5023	63.9	1.29	1.03	1057350.97	7904	21306	1.81
5026	70.5	1.08	1.44	1023057.28	8051	16501	-1.45
5027	75.5	1.06	1.44	986723.65	6534	17437	-17.27
5028	61.9	1.13	1.38	1182704.57	7481	20797	-11.5
5031	80.2	1.14	1.52	908133.86	5040	19032	-8.21
5037	67.3	0.98	1.21	1161499.61	5831	21428	-12.8
5040	75.9	1.24	1.01	943160.57	7994	16634	0.94
5047	68.8	1.7	1.48	1070406.07	7920	22043	-4.9
5054	74	1.12	1.43	1138040.06	6580	20836	-7.63
5058	61.8	0.97	1.54	1195549.29	7318	22757	-9.18
5063	71.5	0.92	1.61	817421.23	5364	12542	-15.03

A new plot

► Scree (Cattell)

A new plot

- ► Scree (Cattell)
- ▶ Junk at the bottom of a slope

A new plot

- ► Scree (Cattell)
- ▶ Junk at the bottom of a slope
- ► Shows us explained variance (%) per component

Component 1. Explained variance: 42.96%

► Like PCA in many ways

- ► Like PCA in many ways
- ► Slightly different interpretations

- ► Like PCA in many ways
- ► Slightly different interpretations
- ► So much cooler

- ► Like PCA in many ways
- ► Slightly different interpretations
- ▶ So much cooler
 - Handles all types of data

Illustrative data

	DX	PTRACCAT
5023	CN	Asian
5026	MCI	White
5027	Dementia	White
5028	Dementia	White
5031	MCI	White
5037	Dementia	Black
5040	CN	Black
5047	MCI	Black
5054	Dementia	White
5058	Dementia	Asian
5063	Dementia	White

	DX.MCI	DX.CN	DX.Dementia	PTRACCAT.White	PTRACCAT.Other	PTRACCAT.Black	PTRACCAT.Asian
5023	0	1	0	0	0	0	1
5026	1	0	0	1	0	0	0
5027	0	0	1	1	0	0	0
5028	0	0	1	1	0	0	0
5031	1	0	0	1	0	0	0
5037	0	0	1	0	0	1	0
5040	0	1	0	0	0	1	0
5047	1	0	0	0	0	1	0
5054	0	0	1	1	0	0	0
5058	0	0	1	0	0	0	1
5063	0	0	1	1	0	0	0

	DX.MCI	DX.CN	DX.Dementia	PTRACCAT.White	PTRACCAT.Other	PTRACCAT.Black	PTRACCAT.Asian
5023	0	1	0	0	0	0	1
5026	1	0	0	1	0	0	0
5027	0	0	1	1	0	0	0
5028	0	0	1	1	0	0	0
5031	1	0	0	1	0	0	0
5037	0	0	1	0	0	1	0
5040	0	1	0	0	0	1	0
5047	1	0	0	0	0	1	0
5054	0	0	1	1	0	0	0
5058	0	0	1	0	0	0	1
5063	0	0	1	1	0	0	0

▶ Row sums are total number of *original* variables

	DX.MCI	DX.CN	DX.Dementia	PTRACCAT.White	PTRACCAT.Other	PTRACCAT.Black	PTRACCAT.Asian
5023	0	1	0	0	0	0	1
5026	1	0	0	1	0	0	0
5027	0	0	1	1	0	0	0
5028	0	0	1	1	0	0	0
5031	1	0	0	1	0	0	0
5037	0	0	1	0	0	1	0
5040	0	1	0	0	0	1	0
5047	1	0	0	0	0	1	0
5054	0	0	1	1	0	0	0
5058	0	0	1	0	0	0	1
5063	0	0	1	1	0	0	0

- ▶ Row sums are total number of *original* variables
- ▶ Sum within a variable (e.g. DX) is total number of rows

	DX.MCI	DX.CN	DX.Dementia	PTRACCAT.White	PTRACCAT.Other	PTRACCAT.Black	PTRACCAT.Asian
5023	0	1	0	0	0	0	1
5026	1	0	0	1	0	0	0
5027	0	0	1	1	0	0	0
5028	0	0	1	1	0	0	0
5031	1	0	0	1	0	0	0
5037	0	0	1	0	0	1	0
5040	0	1	0	0	0	1	0
5047	1	0	0	0	0	1	0
5054	0	0	1	1	0	0	0
5058	0	0	1	0	0	0	1
5063	0	0	1	1	0	0	0

- ▶ Row sums are total number of *original* variables
- ▶ Sum within a variable (e.g. DX) is total number of rows
- Sum of the table is rows × columns

A bad idea: PCA

"coding categorical variables with the indicator matrix of dummy variables and considering them as Gaussian, for instance, is almost a crime."

A bad idea: PCA

- "coding categorical variables with the indicator matrix of dummy variables and considering them as Gaussian, for instance, is almost a crime."
 - "Jan de Leeuw and the French School of Data Analysis" (Husson, Josse, Saporta)

Why is that a bad idea?

	DX.MCI	DX.CN	DX.Dementia	PTRACCAT.White	PTRACCAT.Other	PTRACCAT.Black	PTRACCAT.Asian
DX.MCI	1	-0.815	-0.363	0.045	0.032	-0.043	-0.072
DX.CN	-0.815	1	-0.243	-0.047	0	0.067	0.003
DX.Dementia	-0.363	-0.243	1	0	-0.053	-0.035	0.116
PTRACCAT.White	0.045	-0.047	0	1	-0.562	-0.657	-0.45
PTRACCAT. Other	0.032	0	-0.053	-0.562	1	-0.031	-0.021
PTRACCAT.Black	-0.043	0.067	-0.035	-0.657	-0.031	1	-0.025
PTRACCAT.Asian	-0.072	0.003	0.116	-0.45	-0.021	-0.025	1

	DX.MCI	DX.CN	DX.Dementia	PTRACCAT.White	PTRACCAT.Other	PTRACCAT.Black	PTRACCAT.Asian
DX.MCI	365	0	0	341	11	10	3
DX.CN	0	235	0	213	6	12	4
DX.Dementia	0	0	65	60	0	1	4
PTRACCAT.White	341	213	60	614	0	0	0
PTRACCAT.Other	11	6	0	0	17	0	0
PTRACCAT.Black	10	12	1	0	0	23	0
PTRACCAT.Asian	3	4	4	0	0	0	11

► Correspondence analysis (CA)

- ► Correspondence analysis (CA)
 - Think of it as a χ^2 PCA

- ► Correspondence analysis (CA)
 - ► Think of it as a χ^2 PCA
- ▶ Designed to handle things that look like counts

- ► Correspondence analysis (CA)
 - ► Think of it as a χ^2 PCA
- ▶ Designed to handle things that look like counts
 - ► That includes categories

- Correspondence analysis (CA)
 - ► Think of it as a χ^2 PCA
- ▶ Designed to handle things that look like counts
 - ► That includes categories
 - And some other things

- ► Correspondence analysis (CA)
 - ▶ Think of it as a χ^2 PCA
- Designed to handle things that look like counts
 - ► That includes categories
 - And some other things
- Row and column component scores exist on same scale

- Correspondence analysis (CA)
 - ▶ Think of it as a χ^2 PCA
- Designed to handle things that look like counts
 - ► That includes categories
 - And some other things
- Row and column component scores exist on same scale
 - CA is a bivariate technique

	DX	PTRACCAT
5023	CN	Asian
5026	MCI	White
5027	Dementia	White
5028	Dementia	White
5031	MCI	White
5037	Dementia	Black
5040	CN	Black
5047	MCI	Black
5054	Dementia	White
5058	Dementia	Asian
5063	Dementia	White

	DX.MCI	DX.CN	DX.Dementia	PTRACCAT.White	PTRACCAT.Other	PTRACCAT.Black	PTRACCAT.Asian
5023	0	1	0	0	0	0	1
5026	1	0	0	1	0	0	0
5027	0	0	1	1	0	0	0
5028	0	0	1	1	0	0	0
5031	1	0	0	1	0	0	0
5037	0	0	1	0	0	1	0
5040	0	1	0	0	0	1	0
5047	1	0	0	0	0	1	0
5054	0	0	1	1	0	0	0
5058	0	0	1	0	0	0	1
5063	0	0	1	1	0	0	0

► An extension of CA

- An extension of CA
- ► Accomodates multiple categorical variables (CA only does 2)

- An extension of CA
- ► Accomodates multiple categorical variables (CA only does 2)
- Corrects the dimensionality

- An extension of CA
- Accomodates multiple categorical variables (CA only does 2)
- Corrects the dimensionality
- ► Has nearly magical properties (we'll see later)

New interpretations

DX.MCI	DX.CN	DX.Dementia	PTRACCAT.White	PTRACCAT.Other	PTRACCAT.Black	PTRACCAT.Asian
1	0	0	1	0	0	0
1	0	0	0	1	0	0
1	0	0	0	0	1	0
0	1	0	0	1	0	0
1	0	0	0	0	0	1
0	1	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	0	0	0
0	1	0	0	0	0	1
0	0	1	0	0	0	1
0	0	1	0	0	1	0

These are all the possible combinations from all 665

	PCA Comp. 1	PCA Comp. 2	PCA Comp. 3	PCA Comp. 4	PCA Comp. 5
MCA Comp. 1	0.17	-0.25	0.92	0.06	-0.26
MCA Comp. 2	-0.78	0.36	0.28	-0.42	0.03

► CA & MCA produce identical results, except MCA:

	PCA Comp. 1	PCA Comp. 2	PCA Comp. 3	PCA Comp. 4	PCA Comp. 5
MCA Comp. 1	0.17	-0.25	0.92	0.06	-0.26
MCA Comp. 2	-0.78	0.36	0.28	-0.42	0.03

- ► CA & MCA produce identical results, except MCA:
 - Drops components

	PCA Comp. 1	PCA Comp. 2	PCA Comp. 3	PCA Comp. 4	PCA Comp. 5
MCA Comp. 1	0.17	-0.25	0.92	0.06	-0.26
MCA Comp. 2	-0.78	0.36	0.28	-0.42	0.03

- ► CA & MCA produce identical results, except MCA:
 - Drops components
 - Corrects explained variance

Scaling up

	DX	PTGENDER	PTETHCAT	PTRACCAT	APOE4	HMSCORE
5023	CN	Female	Not Hisp/Latino	Asian	0	0
5026	MCI	Female	Not Hisp/Latino	White	1	1
5027	Dementia	Male	Not Hisp/Latino	White	0	1
5028	Dementia	Male	Not Hisp/Latino	White	2	1
5031	MCI	Female	Hisp/Latino	White	0	1
5037	Dementia	Male	Not Hisp/Latino	Black	1	1
5040	CN	Female	Not Hisp/Latino	Black	0	1
5047	MCI	Female	Not Hisp/Latino	Black	2	1
5054	Dementia	Female	Not Hisp/Latino	White	1	0
5058	Dementia	Male	Not Hisp/Latino	Asian	0	0
5063	Dementia	Female	Not Hisp/Latino	White	1	1

MCA: Participants Component Scores

Component 1. Explained variance: 62.2%

Component 1. Explained variance: 62.2%

	PTGENDER	PTETHCAT
5023	Female	Not Hisp/Latino
5026	Female	Not Hisp/Latino
5027	Male	Not Hisp/Latino
5028	Male	Not Hisp/Latino
5031	Female	Hisp/Latino
5037	Male	Not Hisp/Latino
5040	Female	Not Hisp/Latino
5047	Female	Not Hisp/Latino
5054	Female	Not Hisp/Latino
5058	Male	Not Hisp/Latino
5063	Female	Not Hisp/Latino

Two variables with strictly two levels (i.e., binary data)

	PTGENDER.Male	PTGENDER.Female	${\sf PTETHCAT.Not\ Hisp/Latino}$	${\sf PTETHCAT.Hisp}/{\sf Latino}$
5023	0	1	1	0
5026	0	1	1	0
5027	1	0	1	0
5028	1	0	1	0
5031	0	1	0	1
5037	1	0	1	0
5040	0	1	1	0
5047	0	1	1	0
5054	0	1	1	0
5058	1	0	1	0
5063	0	1	1	0

Disjunctive coding of two variables with strictly two levels (i.e., binary data) into four columns

	PTGENDER	PTETHCAT
5023	Female	Not Hisp/Latino
5026	Female	Not Hisp/Latino
5027	Male	Not Hisp/Latino
5028	Male	Not Hisp/Latino
5031	Female	Hisp/Latino
5037	Male	Not Hisp/Latino
5040	Female	Not Hisp/Latino
5047	Female	Not Hisp/Latino
5054	Female	Not Hisp/Latino
5058	Male	Not Hisp/Latino
5063	Female	Not Hisp/Latino

Two variables with strictly two levels (i.e., binary data)

	PTGENDER	PTETHCAT
5023	1	0
5026	1	0
5027	0	0
5028	0	0
5031	1	1
5037	0	0
5040	1	0
5047	1	0
5054	1	0
5058	0	0
5063	1	0

Binary coding of two variables with strictly two levels (i.e., binary data) in two columns

	PTGENDER	PTETHCAT
5023	0	1
5026	0	1
5027	1	1
5028	1	1
5031	0	0
5037	1	1
5040	0	1
5047	0	1
5054	0	1
5058	1	1
5063	0	1

Alternate but equivalent binary coding of two variables with strictly two levels (i.e., binary data) in two columns

Always a bad idea?

► MCA on the disjunctive coded data

Always a bad idea?

- ► MCA on the disjunctive coded data
- ▶ PCA on the binary coded data

Oh, weird!

Component 2 is "flipped"
We will revisit this

MCA Comp. 1 1 MCA Comp. 2 0 -			. e, t eep. =
MCA Comp. 2 0 -	MCA Comp. 1	1	0
•	MCA Comp. 2	0	-1

Oh, double weird!

PCA Comp. 1 PCA Comp. 2

	PTGENDER	PTETHCAT
PTGENDER	1.00	0.06
PTETHCAT	0.06	1.00

	PTGENDER	PTETHCAT	
PTGENDER	1.00	0.06	
PTETHCAT	0.06	1.00	

 $[\]phi = 0.06$

	PTGENDER	PTETHCAT	
PTGENDER	1.00	0.06	
PTETHCAT	0.06	1.00	

- $ightharpoonup \phi = 0.06$
- ightharpoonup Deep connections between χ^2 , Normal, binomial (and others)

	PTGENDER	PTETHCAT
PTGENDER	1.00	0.06
PTETHCAT	0.06	1.00

- $\phi = 0.06$
- ightharpoonup Deep connections between χ^2 , Normal, binomial (and others)
- ▶ We can expand the idea of "binary" or "binomial"

An old friend

	mPACCtrailsB	FDG
5023	1.12	0.13
5026	0.46	-1.31
5027	-2.77	-1.48
5028	-1.59	-0.97
5031	-0.92	-0.87
5037	-1.86	-2.00
5040	0.94	-0.21
5047	-0.25	3.05
5054	-0.80	-1.05
5058	-1.12	-2.13
5063	-2.31	-2.49

We perform(ed) PCA on these data

▶ One of the "fuzzy" or "bipolar" coding schemes

- ▶ One of the "fuzzy" or "bipolar" coding schemes
- ► Take each Z-scored continuous variable

- ▶ One of the "fuzzy" or "bipolar" coding schemes
- Take each Z-scored continuous variable
- ▶ Duplicate it as $\left[\frac{1-Z}{2}\frac{1+Z}{2}\right]$

	${\sf mPACCtrailsB-}$	mPACCtrailsB +	FDG-	FDG+
5023	-0.06	1.06	0.43	0.57
5026	0.27	0.73	1.16	-0.16
5027	1.88	-0.88	1.24	-0.24
5028	1.30	-0.30	0.98	0.02
5031	0.96	0.04	0.93	0.07
5037	1.43	-0.43	1.50	-0.50
5037	1.43	-0.43	1.50	-0.50
5040	0.03	0.97	0.60	0.40
5047	0.62	0.38	-1.03	2.03
5054	0.90	0.10	1.03	-0.03
5058	1.06	-0.06	1.57	-0.57
5063	1.66	-0.66	1.74	-0.74

	${\sf mPACCtrailsB-}$	${\sf mPACCtrailsB} +$	FDG-	FDG+
5023	-0.06	1.06	0.43	0.57
5026	0.27	0.73	1.16	-0.16
5027	1.88	-0.88	1.24	-0.24
5028	1.30	-0.30	0.98	0.02
5031	0.96	0.04	0.93	0.07
5037	1.43	-0.43	1.50	-0.50
5040	0.03	0.97	0.60	0.40
5047	0.62	0.38	-1.03	2.03
5054	0.90	0.10	1.03	-0.03
5058	1.06	-0.06	1.57	-0.57
5063	1.66	-0.66	1.74	-0.74

▶ Row sums are total number of *original* variables

Escofier's Geometric Magic

	${\sf mPACCtrailsB-}$	${\sf mPACCtrailsB} +$	FDG-	FDG+
5023	-0.06	1.06	0.43	0.57
5026	0.27	0.73	1.16	-0.16
5027	1.88	-0.88	1.24	-0.24
5028	1.30	-0.30	0.98	0.02
5031	0.96	0.04	0.93	0.07
5037	1.43	-0.43	1.50	-0.50
5040	0.03	0.97	0.60	0.40
5047	0.62	0.38	-1.03	2.03
5054	0.90	0.10	1.03	-0.03
5058	1.06	-0.06	1.57	-0.57
5063	1.66	-0.66	1.74	-0.74

- ▶ Row sums are total number of *original* variables
- ▶ Sum within a variable (e.g., FDG) is total number of rows

Escofier's Geometric Magic

	${\sf mPACCtrailsB-}$	mPACCtrailsB +	FDG-	FDG+
5023	-0.06	1.06	0.43	0.57
5026	0.27	0.73	1.16	-0.16
5027	1.88	-0.88	1.24	-0.24
5028	1.30	-0.30	0.98	0.02
5031	0.96	0.04	0.93	0.07
5037	1.43	-0.43	1.50	-0.50
5040	0.03	0.97	0.60	0.40
5047	0.62	0.38	-1.03	2.03
5054	0.90	0.10	1.03	-0.03
5058	1.06	-0.06	1.57	-0.57
5063	1.66	-0.66	1.74	-0.74

- ▶ Row sums are total number of *original* variables
- ▶ Sum within a variable (e.g., FDG) is total number of rows
- ► Sum of the table is rows × columns

Escofier's Geometric Magic

	mPACCtrailsB-	${\sf mPACCtrailsB} +$	FDG-	FDG+
5023	-0.06	1.06	0.43	0.57
5026	0.27	0.73	1.16	-0.16
5027	1.88	-0.88	1.24	-0.24
5028	1.30	-0.30	0.98	0.02
5031	0.96	0.04	0.93	0.07
5037	1.43	-0.43	1.50	-0.50
5040 5047	0.03 0.62	0.97 0.38	0.60 -1.03	0.40 2.03
5054	0.90	0.10	1.03	-0.03
5058	1.06	-0.06	1.57	-0.57
5063	1.66	-0.66	1.74	-0.74

- ▶ Row sums are total number of *original* variables
- ▶ Sum within a variable (e.g., FDG) is total number of rows
- ▶ Sum of the table is rows × columns
- These behave like disjunctive data!

Oh, interesting!

Take note: each variable has two "poles"

Oh, weird!

Oh, double weird!

Flips: They don't matter.

	PCA Comp. 1	PCA Comp. 2
CA Comp. 1	1	0
CA Comp. 2	0	-1
·	- lips: They don't matte	er.

Escofier's Geometric Trick

► Apply PCA to continuous data or

Escofier's Geometric Trick

- Apply PCA to continuous data or
- ► Apply CA to "Escofier transformed" data

► For ordinal data

- For ordinal data
- ► Another "fuzzy" or "bipolar" coding

- ► For ordinal data
- ► Another "fuzzy" or "bipolar" coding
- ► More Escofier Geometric Magic

- For ordinal data
- Another "fuzzy" or "bipolar" coding
- ► More Escofier Geometric Magic
 - ► Subtract the maximum (minimum is now 0)

- For ordinal data
- ► Another "fuzzy" or "bipolar" coding
- ► More Escofier Geometric Magic
 - ► Subtract the maximum (minimum is now 0)
 - $\left[\frac{\max(x) x}{\max} \frac{x \min(x)}{\max} \right]$

- For ordinal data
- ► Another "fuzzy" or "bipolar" coding
- ► More Escofier Geometric Magic
 - ► Subtract the maximum (minimum is now 0)
- Apply CA

5023 5026 5027 5028	18 18 18	0.0 1.5	ADAS13 6 8	MOCA 30
5026 5027	18	1.5	-	
5027			8	24
	18			24
5028		4.0	27	19
3020	16	3.5	20	19
5031	14	2.0	16	20
5037 5040 5047 5054 5058 5063	16 18 16 18 20 14	5.0 0.0 1.0 3.5 3.0 2.5	35 8 17 22 17 38	17 20 24 21 21

5023	ΓEDUCAT+ 0.75	PTEDUCAT-	CDRSB+	CDRSB-	ADAS13 +	ADAS13-	MOCA+	MOCA-
5023	0.75	0.25						
3023		0.25	0.00	1.00	0.13	0.87	1.00	0.00
5026	0.75	0.25	0.27	0.73	0.17	0.83	0.57	0.43
5027	0.75	0.25	0.73	0.27	0.59	0.41	0.21	0.79
5028	0.50	0.50	0.64	0.36	0.43	0.57	0.21	0.79
5031	0.25	0.75	0.36	0.64	0.35	0.65	0.29	0.71
5037	0.50	0.50	0.91	0.09	0.76	0.24	0.07	0.93
5040	0.75	0.25	0.00	1.00	0.17	0.83	0.29	0.71
5047	0.50	0.50	0.18	0.82	0.37	0.63	0.57	0.43
5054	0.75	0.25	0.64	0.36	0.48	0.52	0.36	0.64
5058	1.00	0.00	0.55	0.45	0.37	0.63	0.36	0.64
5063	0.25	0.75	0.45	0.55	0.83	0.17	0.00	1.00

	PTEDUCAT +	PTEDUCAT-	CDRSB +	CDRSB-	ADAS13+	ADAS13-	MOCA +	MOCA-
5023	0.75	0.25	0.00	1.00	0.13	0.87	1.00	0.00
5026	0.75	0.25	0.27	0.73	0.17	0.83	0.57	0.43
5027	0.75	0.25	0.73	0.27	0.59	0.41	0.21	0.79
5028	0.50	0.50	0.64	0.36	0.43	0.57	0.21	0.79
5031	0.25	0.75	0.36	0.64	0.35	0.65	0.29	0.71
5037	0.50	0.50	0.91	0.09	0.76	0.24	0.07	0.93
5040	0.75	0.25	0.00	1.00	0.17	0.83	0.29	0.71
5047	0.50	0.50	0.18	0.82	0.37	0.63	0.57	0.43
5054	0.75	0.25	0.64	0.36	0.48	0.52	0.36	0.64
5058	1.00	0.00	0.55	0.45	0.37	0.63	0.36	0.64
5063	0.25	0.75	0.45	0.55	0.83	0.17	0.00	1.00

▶ Row sums are total number of *original* variables

	PTEDUCAT +	PTEDUCAT-	CDRSB +	CDRSB-	ADAS13+	ADAS13-	MOCA +	MOCA-
5023	0.75	0.25	0.00	1.00	0.13	0.87	1.00	0.00
5026	0.75	0.25	0.27	0.73	0.17	0.83	0.57	0.43
5027	0.75	0.25	0.73	0.27	0.59	0.41	0.21	0.79
5028	0.50	0.50	0.64	0.36	0.43	0.57	0.21	0.79
5031	0.25	0.75	0.36	0.64	0.35	0.65	0.29	0.71
5037	0.50	0.50	0.91	0.09	0.76	0.24	0.07	0.93
5040	0.75	0.25	0.00	1.00	0.17	0.83	0.29	0.71
5047	0.50	0.50	0.18	0.82	0.37	0.63	0.57	0.43
5054	0.75	0.25	0.64	0.36	0.48	0.52	0.36	0.64
5058	1.00	0.00	0.55	0.45	0.37	0.63	0.36	0.64
5063	0.25	0.75	0.45	0.55	0.83	0.17	0.00	1.00

- ▶ Row sums are total number of *original* variables
- ▶ Sum within a variable (e.g. EDU) is total number of rows

	PTEDUCAT +	PTEDUCAT-	CDRSB +	CDRSB-	ADAS13+	ADAS13-	MOCA +	MOCA-
5023	0.75	0.25	0.00	1.00	0.13	0.87	1.00	0.00
5026	0.75	0.25	0.27	0.73	0.17	0.83	0.57	0.43
5027	0.75	0.25	0.73	0.27	0.59	0.41	0.21	0.79
5028	0.50	0.50	0.64	0.36	0.43	0.57	0.21	0.79
5031	0.25	0.75	0.36	0.64	0.35	0.65	0.29	0.71
5037	0.50	0.50	0.91	0.09	0.76	0.24	0.07	0.93
5040	0.75	0.25	0.00	1.00	0.17	0.83	0.29	0.71
5047	0.50	0.50	0.18	0.82	0.37	0.63	0.57	0.43
5054	0.75	0.25	0.64	0.36	0.48	0.52	0.36	0.64
5058	1.00	0.00	0.55	0.45	0.37	0.63	0.36	0.64
5063	0.25	0.75	0.45	0.55	0.83	0.17	0.00	1.00

- ▶ Row sums are total number of *original* variables
- ▶ Sum within a variable (e.g. EDU) is total number of rows
- ▶ Sum of the table is rows × columns

	PTEDUCAT +	PTEDUCAT-	CDRSB +	CDRSB-	ADAS13 +	ADAS13-	MOCA +	MOCA-
5023	0.75	0.25	0.00	1.00	0.13	0.87	1.00	0.00
5026	0.75	0.25	0.27	0.73	0.17	0.83	0.57	0.43
5027	0.75	0.25	0.73	0.27	0.59	0.41	0.21	0.79
5028	0.50	0.50	0.64	0.36	0.43	0.57	0.21	0.79
5031	0.25	0.75	0.36	0.64	0.35	0.65	0.29	0.71
5037	0.50	0.50	0.91	0.09	0.76	0.24	0.07	0.93
5040	0.75	0.25	0.00	1.00	0.17	0.83	0.29	0.71
5047	0.50	0.50	0.18	0.82	0.37	0.63	0.57	0.43
5054	0.75	0.25	0.64	0.36	0.48	0.52	0.36	0.64
5058	1.00	0.00	0.55	0.45	0.37	0.63	0.36	0.64
5063	0.25	0.75	0.45	0.55	0.83	0.17	0.00	1.00

- Row sums are total number of original variables
- ▶ Sum within a variable (e.g. EDU) is total number of rows
- ► Sum of the table is rows × columns
- ► These behave like disjunctive data!

Special properties: Biploar coding passes through 0.

Component 1. Explained variance: 50.61%

► Sometimes data could be either

- Sometimes data could be either
- Let's analyze it both ways

	APOE4	HMSCORE
5023	0	0
5026	1	1
5027	0	1
5028	2	1
5031	0	1
5037	1	1
5040	0	1
5047	2	1
5054	1	0
5058	0	0
5063	1	1

► For a small (reasonable) number of levels: disjunctive

- ► For a small (reasonable) number of levels: disjunctive
- ► Otherwise: thermometer

Thermometer vs. Disjunctive

- ► For a small (reasonable) number of levels: disjunctive
- Otherwise: thermometer
- ► Interpretation:

Thermometer vs. Disjunctive

- ► For a small (reasonable) number of levels: disjunctive
- Otherwise: thermometer
- Interpretation:
 - ► Thermometer is "easier"

Thermometer vs. Disjunctive

- For a small (reasonable) number of levels: disjunctive
- Otherwise: thermometer
- Interpretation:
 - ► Thermometer is "easier"
 - Disjunctive is more informative

All of the data

	DX	AGE	PTGENDER	PTEDUCAT	PTETHCAT	PTRACCAT	APOE4	FDG	AV45	CDRSB	ADAS13	MOCA	WholeBrain	Hippocampus	MidTemp	mPACCtrailsB	HMSCORE
5023	CN	63.9	Female	18	Not Hisp/Latino	Asian	0	1.29	1.03	0.0	6	30	1057351.0	7904	21306	1.81	0
5026	MCI	70.5	Female	18	Not Hisp/Latino	White	1	1.08	1.44	1.5	8	24	1023057.3	8051	16501	-1.45	1
5027	Dementia	75.5	Male	18	Not Hisp/Latino	White	0	1.06	1.44	4.0	27	19	986723.7	6534	17437	-17.27	1
5028	Dementia	61.9	Male	16	Not Hisp/Latino	White	2	1.13	1.38	3.5	20	19	1182704.6	7481	20797	-11.50	1
5031	MCI	80.2	Female	14	Hisp/Latino	White	0	1.14	1.52	2.0	16	20	908133.9	5040	19032	-8.21	1
5037	Dementia	67.3	Male	16	Not Hisp/Latino	Black	1	0.98	1.21	5.0	35	17	1161499.6	5831	21428	-12.80	1
5040	CN	75.9	Female	18	Not Hisp/Latino	Black	0	1.24	1.01	0.0	8	20	943160.6	7994	16634	0.94	1
5047	MCI	68.8	Female	16	Not Hisp/Latino	Black	2	1.70	1.48	1.0	17	24	1070406.1	7920	22043	-4.90	1
5054	Dementia	74.0	Female	18	Not Hisp/Latino	White	1	1.12	1.43	3.5	22	21	1138040.1	6580	20836	-7.63	0
5058	Dementia	61.8	Male	20	Not Hisp/Latino	Asian	0	0.97	1.54	3.0	17	21	1195549.3	7318	22757	-9.18	0
5063	Dementia	71.5	Female	14	Not Hisp/Latino	White	1	0.92	1.61	2.5	38	16	817421.2	5364	12542	-15.03	1

CA: Everything!

Component 1. Explained variance: 19.15%

Resampling

► Generally the Gifi or Benzecri principles

- ► Generally the Gifi or Benzecri principles
- ▶ Benzecri

- Generally the Gifi or Benzecri principles
- Benzecri
 - "statistics was built a pompous discipline based on theoretical assumptions that are rarely met in practice"

- Generally the Gifi or Benzecri principles
- Benzecri
 - "statistics was built a pompous discipline based on theoretical assumptions that are rarely met in practice"
 - "the models should follow the data, not vice versa"

- Generally the Gifi or Benzecri principles
- Benzecri
 - "statistics was built a pompous discipline based on theoretical assumptions that are rarely met in practice"
 - "the models should follow the data, not vice versa"
 - "use the computer implies the abandonment of all the techniques designed before of computing"

- Generally the Gifi or Benzecri principles
- Benzecri
 - "statistics was built a pompous discipline based on theoretical assumptions that are rarely met in practice"
 - "the models should follow the data, not vice versa"
 - "use the computer implies the abandonment of all the techniques designed before of computing"
- Gifi

- Generally the Gifi or Benzecri principles
- Benzecri
 - "statistics was built a pompous discipline based on theoretical assumptions that are rarely met in practice"
 - "the models should follow the data, not vice versa"
 - "use the computer implies the abandonment of all the techniques designed before of computing"
- ▶ Gifi
 - Replication stability: new data, same techniques

- ► Generally the Gifi or Benzecri principles
- Benzecri
 - "statistics was built a pompous discipline based on theoretical assumptions that are rarely met in practice"
 - "the models should follow the data, not vice versa"
 - "use the computer implies the abandonment of all the techniques designed before of computing"
- ▶ Gifi
 - Replication stability: new data, same techniques
 - Selection stability: Data variations

- Generally the Gifi or Benzecri principles
- Benzecri
 - "statistics was built a pompous discipline based on theoretical assumptions that are rarely met in practice"
 - "the models should follow the data, not vice versa"
 - "use the computer implies the abandonment of all the techniques designed before of computing"
- ▶ Gifi
 - Replication stability: new data, same techniques
 - Selection stability: Data variations
 - ► Technique stability: Different technique, same data

- Generally the Gifi or Benzecri principles
- Benzecri
 - "statistics was built a pompous discipline based on theoretical assumptions that are rarely met in practice"
 - "the models should follow the data, not vice versa"
 - "use the computer implies the abandonment of all the techniques designed before of computing"
- ▶ Gifi
 - ▶ Replication stability: new data, same techniques
 - Selection stability: Data variations
 - ► Technique stability: Different technique, same data
- Pause!

► Might give you inference/generalizability

- ► Might give you inference/generalizability
 - Depending on data, design, etc. . .

- ► Might give you inference/generalizability
 - Depending on data, design, etc. . .
- Practically

- ► Might give you inference/generalizability
 - Depending on data, design, etc. . .
- Practically
 - Assessing stability of your data

- ► Might give you inference/generalizability
 - ▶ Depending on data, design, etc. . .
- Practically
 - Assessing stability of your data
 - Provides critical diagnostics

Definitions

▶ Permutation: break relationships in the data

Definitions

- ▶ Permutation: break relationships in the data
- ► Split-half: mutually exclusive sets

Definitions

- ▶ Permutation: break relationships in the data
- ► Split-half: mutually exclusive sets
- ▶ Bootstrap: resample with reselection

Base data

	VARIABLE 1	VARIABLE 2	VARIABLE 3
OBS. 1	а	b	С
OBS. 2	d	е	f
OBS. N-1	u	V	w
OBS. N	х	у	z

Tiny illustrative data

Permutation

	VARIABLE 1	VARIABLE 2	VARIABLE 3
OBS. 1	х	е	С
OBS. 2	u	b	f
OBS. N-1	а	V	z
OBS. N	d	у	w

Tiny permuted illustrative data

Split-half

	VARIABLE 1	VARIABLE 2	VARIABLE 3
OBS. 1	а	b	С
OBS. 3	g	h	i
	VARIABLE 1	VARIABLE 2	VARIABLE 3
OBS. 42	α	π	ω
OBS. 2	d	е	f

Tiny split half illustrative data

Bootstrap

	VARIABLE 1	VARIABLE 2	VARIABLE 3
OBS. 42	α	π	ω
OBS. 42	α	π	ω
OBS. 1	а	b	С
OBS. N-1	u	٧	w

Tiny bootstrap illustrative data

Uses in PCA & CA

▶ Permutation: Effect size tests of components

Uses in PCA & CA

- ▶ Permutation: Effect size tests of components
- ► Split-half: Replication of components

Uses in PCA & CA

- ▶ Permutation: Effect size tests of components
- ► Split-half: Replication of components
- ► Bootstrap: Stability of variables

Permutation diagram

First Component Permutation Distribution

Permutation: First component

Second Component Permutation Distribution

Permutation: Second component

Third Component Permutation Distribution

Permutation: Third component

Fifth Component Permutation Distribution

Permutation: Fifth component

Iterations: 1000

Comp.1	Comp.2	Comp.3	Comp.4	Comp.5	Comp.6	Comp.7
0.001	0.001	0.001	0.001	0.236	0.255	1

Comp.8	Comp.9	Comp.10	Comp.11	Comp.12	Comp.13	Comp.14
0.999	0.998	1	1	1	1	1

Comp.15	Comp.16	Comp.17	Comp.18	Comp.19	Comp.20	Comp.21
1	1	1	1	1	1	1

Permutation: p-values

p-values should (inversely) follow the scree

- p-values should (inversely) follow the scree
- Diagnostic tests:

- p-values should (inversely) follow the scree
- ▶ Diagnostic tests:
 - Large or erratic jumps

- p-values should (inversely) follow the scree
- ▶ Diagnostic tests:
 - Large or erratic jumps
 - First or first few $ps \ge .5$

▶ First few components have larger than expected effect sizes

- ▶ First few components have larger than expected effect sizes
 - ► More variance than null

- ▶ First few components have larger than expected effect sizes
 - ► More variance than null
- ▶ We do not know if these generalize

Split half diagram

First Component Split Correlations Distribution

Split-half correlations: First component

Second Component Split Correlations Distribution

Split-half correlations: Second component

Third Component Split Correlations Distribution

Split-half correlations: Third component

Split-half correlations: All components

▶ We do *sort of* know if these generalize

- ▶ We do *sort of* know if these generalize
- First two really do

- ▶ We do *sort of* know if these generalize
- First two really do
- ► Next few: Maybe

- ▶ We do *sort of* know if these generalize
- First two really do
- ► Next few: Maybe
- ► Key observation:

- ▶ We do *sort of* know if these generalize
- First two really do
- ► Next few: Maybe
- ► Key observation:
 - Components flip order!

- We do sort of know if these generalize
- First two really do
- ► Next few: Maybe
- Key observation:
 - Components flip order!
 - We need to question the meaning of order of components in our data

▶ You need to know the number of components to interpret

- ▶ You need to know the number of components to interpret
- ► We have 2

- ▶ You need to know the number of components to interpret
- ▶ We have 2
- ▶ Now you can interpret variables *per* component

- You need to know the number of components to interpret
- ► We have 2
- Now you can interpret variables per component
 - Find the ones that are stable

Bootstrap diagram

Component 1. Explained variance: 19:15%

Component 1. Explained variance: 19.15%

Component 1. Explained variance: 19.15%

Component 1. Explained variance: 19.15%

Component 1. Explained variance: 19.15%

Component 1. Explained variance: 19.15%

▶ Just a snapshot (there are more variables)

- ▶ Just a snapshot (there are more variables)
- ► APOE4 contributes to both

- ▶ Just a snapshot (there are more variables)
- ► APOE4 contributes to both
- ▶ The others generally contribute to one or the other

Final stretch

Corrections

- Corrections
- ► Alternate preprocessing

- Corrections
- ► Alternate preprocessing
 - ► There's a lazy way (rank)

- Corrections
- ► Alternate preprocessing
 - There's a lazy way (rank)
- ▶ Other resampling & Cross-validation loops.

- Corrections
- ► Alternate preprocessing
 - ► There's a lazy way (rank)
- Other resampling & Cross-validation loops.
 - Start at the "beginning"

- Corrections
- Alternate preprocessing
 - There's a lazy way (rank)
- Other resampling & Cross-validation loops.
 - Start at the "beginning"
- What about other data types?

- Corrections
- ► Alternate preprocessing
 - There's a lazy way (rank)
- Other resampling & Cross-validation loops.
 - Start at the "beginning"
- What about other data types?
 - ► I've actually misled you a bit

- Corrections
- Alternate preprocessing
 - ► There's a lazy way (rank)
- ▶ Other resampling & Cross-validation loops.
 - Start at the "beginning"
- What about other data types?
 - I've actually misled you a bit
 - Structural data

- Corrections
- ► Alternate preprocessing
 - ► There's a lazy way (rank)
- Other resampling & Cross-validation loops.
 - Start at the "beginning"
- What about other data types?
 - I've actually misled you a bit
 - Structural data
- Rotations

- Corrections
- ► Alternate preprocessing
 - There's a lazy way (rank)
- Other resampling & Cross-validation loops.
 - Start at the "beginning"
- ► What about other data types?
 - l've actually misled you a bit
 - Structural data
- Rotations
 - ▶ I don't rotate

- Corrections
- ► Alternate preprocessing
 - There's a lazy way (rank)
- ▶ Other resampling & Cross-validation loops.
 - Start at the "beginning"
- ► What about other data types?
 - l've actually misled you a bit
 - Structural data
- Rotations
 - ▶ I don't rotate
 - But I won't stop you from it

- Corrections
- ► Alternate preprocessing
 - There's a lazy way (rank)
- ▶ Other resampling & Cross-validation loops.
 - Start at the "beginning"
- ► What about other data types?
 - l've actually misled you a bit
 - Structural data
- Rotations
 - ► I don't rotate
 - ▶ But I won't stop you from it
 - Report both

► Two compelling examples rotation

- ► Two compelling examples rotation
 - ► That weren't rotated

- ► Two compelling examples rotation
 - ► That weren't rotated
 - ► Why?

- Two compelling examples rotation
 - ► That weren't rotated
 - ► Why?
- ► CA of Mueller report

- ► Two compelling examples rotation
 - ► That weren't rotated
 - ► Why?
- CA of Mueller report
 - see http://github.com/derekbeaton/muellerreport_ca

- Two compelling examples rotation
 - ► That weren't rotated
 - ► Why?
- CA of Mueller report
 - see http://github.com/derekbeaton/muellerreport_ca
- ► CA of NeuroSynth (Alhazmi et al., 2018)

- Two compelling examples rotation
 - ► That weren't rotated
 - ► Why?
- CA of Mueller report
 - see http://github.com/derekbeaton/muellerreport_ca
- CA of NeuroSynth (Alhazmi et al., 2018)
 - see http://github.com/fahd09/neurosynth_semantic_map

► Independent Components Analysis

- ► Independent Components Analysis
 - ► Effectively a rotation

- ► Independent Components Analysis
 - ► Effectively a rotation
- ► Factor analyses, mostly

- ► Independent Components Analysis
 - Effectively a rotation
- ► Factor analyses, mostly
 - ▶ Different error terms + rotation

- ► Independent Components Analysis
 - Effectively a rotation
- ► Factor analyses, mostly
 - ▶ Different error terms + rotation
- ► Non-negative matrix factorization

- Independent Components Analysis
 - Effectively a rotation
- ► Factor analyses, mostly
 - ▶ Different error terms + rotation
- Non-negative matrix factorization
- ► Non-symmetric CA

- Independent Components Analysis
 - Effectively a rotation
- Factor analyses, mostly
 - ▶ Different error terms + rotation
- ► Non-negative matrix factorization
- ► Non-symmetric CA
- Hellinger CA

- Independent Components Analysis
 - Effectively a rotation
- Factor analyses, mostly
 - ▶ Different error terms + rotation
- Non-negative matrix factorization
- Non-symmetric CA
- Hellinger CA
- Compositional CA

- Independent Components Analysis
 - Effectively a rotation
- Factor analyses, mostly
 - Different error terms + rotation
- Non-negative matrix factorization
- Non-symmetric CA
- Hellinger CA
- Compositional CA
- Multidimensional scaling (MDS)

► Partial least squares (correlation)

- ► Partial least squares (correlation)
- ► Partial least squares (regression)

- Partial least squares (correlation)
- Partial least squares (regression)
- Partial least squares (path modelling)

► Canonical Correlation Analysis

- ► Canonical Correlation Analysis
- ► Discriminant analyses

- ► Canonical Correlation Analysis
- Discriminant analyses
- ► Reduced rank regression/redundancy analysis

Two tables: Part 2

- Canonical Correlation Analysis
- Discriminant analyses
- Reduced rank regression/redundancy analysis
- ► Generalized PLS regression

Two tables: Part 2

- ► Canonical Correlation Analysis
- Discriminant analyses
- Reduced rank regression/redundancy analysis
- Generalized PLS regression
 - ► Beaton, Saporta, Abdi (2019)

Two tables: Part 2

- Canonical Correlation Analysis
- Discriminant analyses
- Reduced rank regression/redundancy analysis
- Generalized PLS regression
 - ▶ Beaton, Saporta, Abdi (2019)
 - Mixed data, most two table techniques

More than two tables

► STATIS

More than two tables

- ► STATIS
- Multiple factor analysis

► tSNE

- ► tSNE
- ► UMAP

- ► tSNE
- ► UMAP
- ▶ More akin to non-metric multidimensional scaling

- ► tSNE
- ► UMAP
- ▶ More akin to non-metric multidimensional scaling
 - ► Not always a fair comparison

For all types of data

▶ Distances (MDS, DiSTATIS, CovSTATIS)

For all types of data

- ▶ Distances (MDS, DiSTATIS, CovSTATIS)
- ► Networks (CA)

For all types of data

- ▶ Distances (MDS, DiSTATIS, CovSTATIS)
- ► Networks (CA)
 - ► More magic!

(Some) References

See the reference sections of these

▶ Beaton, D., Saporta, G., Abdi, H., & Alzheimer's Disease Neuroimaging Initiative. (2019). A generalization of partial least squares regression and correspondence analysis for categorical and mixed data: An application with the ADNI data. bioRxiv, 598888.

See the reference sections of these

- ▶ Beaton, D., Saporta, G., Abdi, H., & Alzheimer's Disease Neuroimaging Initiative. (2019). A generalization of partial least squares regression and correspondence analysis for categorical and mixed data: An application with the ADNI data. bioRxiv, 598888.
- Beaton, D., Sunderland, K. M., Levine, B., Mandzia, J., Masellis, M., Swartz, R. H., ... & Strother, S. C. (2019). Generalization of the minimum covariance determinant algorithm for categorical and mixed data types. bioRxiv, 333005.

And these

Abdi, H., Guillemot, V., Eslami, A., & Beaton, D. (2017). Canonical correlation analysis. Encyclopedia of Social Network Analysis and Mining, 1-16.

And these

- Abdi, H., Guillemot, V., Eslami, A., & Beaton, D. (2017). Canonical correlation analysis. Encyclopedia of Social Network Analysis and Mining, 1-16.
- Beaton, D., Dunlop, J., & Abdi, H. (2016). Partial least squares correspondence analysis: A framework to simultaneously analyze behavioral and genetic data. Psychological methods, 21(4), 621.

► Greenacre, M. (2017). Correspondence analysis in practice. CRC press.

- Greenacre, M. (2017). Correspondence analysis in practice. CRC press.
- Greenacre, M. J. (1984). Theory and Applications of Correspondence Analysis. Retrieved from http://books.google.com/books?id=LsPaAAAAMAAJ

▶ Greenacre, M. J. (2010). Correspondence analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(5), 613–619. https://doi.org/10.1002/wics.114

- ► Greenacre, M. J. (2010). Correspondence analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(5), 613–619. https://doi.org/10.1002/wics.114
- Lebart, L., Morineau, A., & Warwick, K. M. (1984). Multivariate descriptive statistical analysis: correspondence analysis and related techniques for large matrices. Wiley.

Berry, K. J., Johnston, J. E., & Mielke, P. W. (2011). Permutation methods. Wiley Interdisciplinary Reviews: Computational Statistics, 3, 527–542. https://doi.org/10.1002/wics.177

- Berry, K. J., Johnston, J. E., & Mielke, P. W. (2011). Permutation methods. Wiley Interdisciplinary Reviews: Computational Statistics, 3, 527–542. https://doi.org/10.1002/wics.177
- ➤ Strother, S. C., Anderson, J., Hansen, L. K., Kjems, U., Kustra, R., Sidtis, J., . . . Rottenberg, D. (2002). The Quantitative Evaluation of Functional Neuroimaging Experiments: The NPAIRS Data Analysis Framework. NeuroImage, 15(4), 747–771. https://doi.org/10.1006/nimg.2001.1034

- Berry, K. J., Johnston, J. E., & Mielke, P. W. (2011). Permutation methods. Wiley Interdisciplinary Reviews: Computational Statistics, 3, 527–542. https://doi.org/10.1002/wics.177
- ➤ Strother, S. C., Anderson, J., Hansen, L. K., Kjems, U., Kustra, R., Sidtis, J., . . . Rottenberg, D. (2002). The Quantitative Evaluation of Functional Neuroimaging Experiments: The NPAIRS Data Analysis Framework. NeuroImage, 15(4), 747–771. https://doi.org/10.1006/nimg.2001.1034
- ► Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics, 7(1), 1–26.

► Chernick, M. R. (2008). Bootstrap methods: A guide for practitioners and researchers (Vol. 619). Wiley-Interscience.

- Chernick, M. R. (2008). Bootstrap methods: A guide for practitioners and researchers (Vol. 619). Wiley-Interscience.
- Hesterberg, T. (2011). Bootstrap. Wiley Interdisciplinary Reviews: Computational Statistics, 3, 497–526. https://doi.org/10.1002/wics.182

- Chernick, M. R. (2008). Bootstrap methods: A guide for practitioners and researchers (Vol. 619). Wiley-Interscience.
- Hesterberg, T. (2011). Bootstrap. Wiley Interdisciplinary Reviews: Computational Statistics, 3, 497–526. https://doi.org/10.1002/wics.182
- McIntosh, A. R., & Lobaugh, N. J. (2004). Partial least squares analysis of neuroimaging data: applications and advances. Neuroimage, 23, S250–S263.

Data

► Escofier, B. (1978). Analyse factorielle et distances répondant au principe d'équivalence distributionnelle. Revue de Statistique Appliquée, 26(4), 29–37.

Data

- Escofier, B. (1978). Analyse factorielle et distances répondant au principe d'équivalence distributionnelle. Revue de Statistique Appliquée, 26(4), 29–37.
- Escofier, B. (1979). Traitement simultané de variables qualitatives et quantitatives en analyse factorielle. Cahiers de l'Analyse Des Données, 4(2), 137–146.

Data

- Escofier, B. (1978). Analyse factorielle et distances répondant au principe d'équivalence distributionnelle. Revue de Statistique Appliquée, 26(4), 29–37.
- Escofier, B. (1979). Traitement simultané de variables qualitatives et quantitatives en analyse factorielle. Cahiers de l'Analyse Des Données, 4(2), 137–146.
- Greenacre, M. (2014). Data Doubling and Fuzzy Coding. In J. Blasius & M. Greenacre (Eds.), Visualization and Verbalization of Data (pp. 239–253). Philadelphia, PA, USA: CRC Press.