En la practica del 8 puzzle

Algoritmo	Tiempo	Nodos agregados a la queue (visitados)	Nodos sacados de la queue (expandidos)	Movimientos de la solución
Busqueda en anchura	47742 ms	177,159	169,741	26
Busqueda en profundidad	23813 ms	100,522	57,080	49,772
Costo uniforme	44933 ms	178,110	172,369	26
Profundidad Iterativa	35556 ms	10,053	10,053	30
Heuristica	15835 ms	141,806	119,357	26

Después de probar diferentes métodos para resolver el 8 puzzle, podemos ver que cada algoritmo tiene sus ventajas y desventajas. El algoritmo con heurística se destacó como el más equilibrado: encontró la solución más corta en un tiempo razonable probando la eficiencia de la heurística.

La búsqueda en profundidad iterativa fue la más eficiente en cuanto a memoria, usando muchos menos recursos que los demás métodos, y aunque encontró una solución un poco más larga lo hizo de manera muy eficiente.

Por otro lado, los métodos tradicionales (anchura y costo uniforme) aunque encontraron la solución óptima, fueron los más lentos y requirieron mucha más memoria y tiempo de procesamiento, como si estuvieran buscando en todas direcciones sin un rumbo definido.

En teoría:

Algoritmo	Complejidad en tiempo	Complejidad en espacio
Busqueda en anchura	O(b ^d)	O(b ^d)
Busqueda en profundidad	O(b ^m)	O(bm)
Costo uniforme	O(b ^[C / ∈])	O(b ^[C / \epsilon])
Profundidad Iterativa	O(b ^d)	O(b ^d)

Donde:

b: Factor de ramificación (número máximo de sucesores de un nodo).

d: Profundidad del nodo objetivo (la longitud del camino más corto).

m: Profundidad máxima del espacio de búsqueda. Puede ser infinita.

C: Costo de la ruta óptima.

ε: El costo de un solo paso del algoritmo.