

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO

I ETAP SZKOLNY

26 października 2017 r.

Uczennico/Uczniu:

- 1. Na rozwiązanie wszystkich zadań masz 90 minut.
- 2. Pisz długopisem/piórem dozwolony czarny lub niebieski kolor tuszu.
- 3. Nie używaj ołówka ani korektora. Jeżeli się pomylisz, przekreśl błąd i zaznacz/napisz inną odpowiedź.
- 4. Pisz czytelnie i zamieszczaj odpowiedzi w miejscu do tego przeznaczonym.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.

Życzymy powodzenia!

Maksymalna liczba punktów	40	100%
Uzyskana liczba punktów		%
Podpis Przewodniczącej/-ego		

Zadanie 1. (1 pkt)

Powietrze atmosferyczne pozbawione zanieczyszczeń jest bezbarwną i bezwonną mieszaniną gazów. "Czyste powietrze" to wzorzec mieszaniny o stałym składzie, w stosunku do którego określane są zanieczyszczenia powietrza atmosferycznego.

Uzupełnij tabelę dotyczącą składu czystego powietrza wpisując w puste miejsce nazwę odpowiedniego składnika.

Nazwa składnika	Zawartość procentowa (% obj.)
Azot	78,08
Tlen	20,95
	0,93
Inne	0,04

Na podstawie: Gary W. van Loon, Stephen J. Duffy, Environmental Chemistry: A Global Perspective 2/e, Oxford University Press, 2007

Zadanie 2. (1 pkt)

Woda jest substancją, która występuje w trzech stanach skupienia: stałym, ciekłym i gazowym.

Porównano gęstość próbki wody o masie 1 g w różnych temperaturach. Z zamieszczonych informacji wybierz temperaturę (A-D), w której woda miała największą gęstość oraz poprawne uzasadnienie swojego wyboru (I – IV):

A.	0°C		I.	woda będzie miała największą objętość
B.	4°C	nonimua÷	II.	woda nie zmieni swojej objętości
C.	20°C	ponieważ	III.	woda będzie miała najmniejszą objętość
D.	100°C		IV.	woda występuje w stałym stanie skupienia

Zadanie 3. (1 pkt)

Do określania temperatury stosowane są różne skale. Temperaturę w kelwinach, w przybliżeniu, oblicza się dodając do temperatury wyrażonej w °C stałą 273.

W tabeli podano wartość temperatury topnienia i wrzenia pierwiastków 13 grupy układu okresowego.

Symbol pierwiastka	В	Al	Ga	In	Tl
Temperatura topnienia [K]	2570	933	303	430	577
Temperatura wrzenia [K]	ok. 2820	ok. 2600	ok. 2500	ok. 2340	ok. 1740

Na podstawie: Adam Bielański, *Podstawy chemii nieorganicznej*, PWN, Warszawa 2013

Termometry kwarcowe stosuje się w celu dokładnego pomiaru temperatury. Wypełnia się je pierwiastkiem, który jest cieczą w badanym zakresie temperatur.

Który z niżej wymienionych pierwiastków zastosujesz jako wypełnienie termometru przeznaczonego do pomiaru temperatury z zakresu od 40°C do 1500°C .

- A. Glin
- B. Gal
- C. Ind
- D. Tal

Zadanie 4. (1 pkt)

Miano (wymiar wielkości fizycznej) – oznaczenie rodzaju jednostek miary, jakie można zastosować do danej wielkości fizycznej.

Liczba mianowana – liczba, przy której jest podana nazwa jednostki.

Na podstawie: Słownik Języka Polskiego, sjp.pwn.pl

Spośród podanych niżej wielkości fizycznych opisujących atom lub cząsteczkę wybierz tę, którą wyraża się za pomocą liczby mianowanej:

- A. Liczba atomowa
- B. Liczba masowa
- C. Masa atomowa
- D. Liczba elektronów walencyjnych

Zadanie 5. (1 pkt)

Promień jonów Na⁺, N³⁻, F⁻, O²⁻ maleje w szeregu:

- A. $N^{3-} > O^{2-} > F^{-} > Na^{+}$
- B. $Na^+ > N^{3-} > O^{2-} > F^-$
- C. $Na^+ > F^- > O^{2-} > N^{3-}$
- D. $F^- > O^{2-} > N^{3-} > Na^+$

Zadanie 6. (1 pkt)

Aktywność izotopu promieniotwórczego opisuje ilościowo jego czas połowicznego rozpadu $(t_{1/2})$.

Przyjmując, że skutek promieniowania zależy tylko od aktywności, najgroźniejszym dla organizmu człowieka jest kontakt z:

Odpowiedź	Symbol nuklidu	t _{1/2}
A	¹⁵ C	2,4s
В	238 U	4.5×10^{9} lat
С	¹³¹ I	8,05 dnia
D	³ H	12,3 lat

Na podstawie: L. Jones, P. Atkins, *Chemia ogólna, cząsteczki, materia, reakcje*, Wydawnictwo Naukowe PWN, Warszawa 2004

Zadanie 7. (1 pkt)

Czas połowicznego rozpadu plutonu-242 (²⁴²Pu) wynosi 373,3 tys. lat. Izotop ten ulega rozpadowi α według równania: $^{242}_{94}Pu \rightarrow ^{4}_{2}He + ^{238}_{92}U$ Na podstawie: Periodic Table of Elements, Pu – Plutonium, environmentalchemistry.com

Szybkość rozpadu promieniotwórczego α izotopu plutonu-242 (²⁴²Pu)

- Można zwiększyć, jeśli nuklid ten podgrzeje się A.
- Można zmniejszyć, jeśli nuklid ten ochłodzi się np. zanurzając go w ciekłym azocie В.
- Można zmniejszyć stosując osłony wykonane z grubego ołowiu C.
- Nie zależy od temperatury D.

Zadanie 8. (1 pkt)

Ile neutronów znajduje się w anionie ⁵⁴Cr₂¹⁸O₇²⁻?

Liczba neutronów w anionie ⁵⁴Cr₂ ¹⁸O₇ ²⁻: _____

Zadanie 9. (1 pkt)

Elektrony walencyjne uczestniczą w tworzeniu wiązań chemicznych.

Po cztery elektrony walencyjne zawierają atomy:

- Wyłącznie wegla A.
- Wyłacznie wegla i krzemu В.
- C. Wyłącznie pierwiastków 14 grupy układu okresowego
- D. Pierwiastków 4 i 14 grupy układu okresowego

Zadanie 10. (1 pkt)

Przeprowadzono doświadczenie opisane poniższym schematem:

Jedną z obserwacji po całkowitym zakończeniu reakcji przebiegającej w probówce II jest:

- A. Zmiana barwy osadu z pomarańczowej na czarną
- B. Zmiana barwy osadu z czarnej na pomarańczową
- C. Zmiana barwy osadu z czarnej na miedzianą
- D. Zmiana barwy osadu z pomarańczowej na miedzianą

Zadanie 11. (1 pkt)

Oprócz niektórych odmian alotropowych węgla powszechnie używanymi przewodnikami prądu elektrycznego, w stanie stałym, są substancje utworzone z atomów połączonych wiązaniami:

- A. Kowalencyjnymi (atomowymi)
- B. Jonowymi
- C. Metalicznymi
- D. Wodorowymi

Zadanie 12. (1 pkt)

Wiązania typu sigma (σ) to pojedyncze wiązania kowalencyjne między dwoma atomami. Wiązania typu pi (π) występują w wiązaniach wielokrotnych między atomami tworzącymi daną cząsteczkę. W wiązaniu wielokrotnym zawsze występuje jedno wiązanie typu sigma (σ), pozostałe to wiązania typu pi (π .). Na przykład cząsteczka CO_2 posiada 2 wiązania typu sigma (σ) i dwa wiązania typu pi (π).

Liczba wiązań kowalencyjnych sigma (σ) i liczba wiązań kowalencyjnych pi (π) w jednym jonie HCO_3^- wynosi:

	Liczba wiązań sigma (σ)	Liczba wiązań $pi(\pi)$
A.	6	0
B.	4	2
C.	5	0
D.	4	1

Zadanie 13. (1 pkt)

Elektroujemność to zdolność atomu do przyciągania elektronów tworzących wiązanie kowalencyjne z atomami innego pierwiastka w związku chemicznym. Elektroujemność jest wielkością niemianowaną.

Elektroujemność wg skali Pauling	
Atom	Wartość
Н	2,1
О	3,5
F	4,0

Na podstawie: A. Bielański: Podstawy chemii nieorganicznej. PWN, 2002.

W cząsteczkach fluorowodoru występują wiązania:

- A. Jonowe
- B. Kowalencyjne spolaryzowane
- C. Metaliczne
- D. Wodorowe

Zadanie 14. (1 pkt)

W temperaturze 25°C i pod ciśnieniem 1013 hPa bezbarwnym gazem o gęstości większej od gęstości powietrza jest:

- A. Wodór
- B. Amoniak
- C. Metan
- D. Tlenek węgla(IV)

Zadanie 15. (1 pkt)

Wśród głównych produktów spalania magnezu w suchym powietrzu znajduje się:

- A. Wodorek magnezu (MgH_2)
- B. Azotan(V) magnezu $(Mg(NO_3)_2)$
- C. Azotek magnezu (Mg_3N_2)
- D. Azotan(III) magnezu ($Mg(NO_2)_2$)

Zadanie 16. (1 pkt)

W wyniku spalania żelaza w powietrzu otrzymuje się m.in. tlenek żelaza(III).

$$_$$
 Fe + $_$ O₂ \rightarrow $_$ Fe₂O₃

Jeśli równanie opisanej reakcji zostanie zbilansowane możliwie najmniejszymi liczbami naturalnymi to współczynnik stechiometryczny przed wzorem oznaczającym tlen będzie miał wartość:

- A. 2
- B. 3
- C. 4
- D. 9

Zadanie 17. (1 pkt)

Tlen stanowi produkt rozkładu wielu związków chemicznych. Najwięcej tlenu można otrzymać wskutek całkowitego rozkładu 10 gramów:

- A. Tlenku wodoru (wody)
- B. Tlenku rtęci(II)
- C. Nadtlenku wodoru pod wpływem ciepła ($2 H_2O_2 \rightarrow O_2 + 2H_2O$)
- D. Chloranu(V) potasu $(2 \text{ KClO}_3 \rightarrow 2 \text{ KCl} + 3\text{O}_2)$

Zadanie 18. (1 pkt)

Hematyt to ruda żelaza w której skład wchodzi głównie Fe_2O_3 . W wyniku redukcji hematytu węglem otrzymuje się żelazo oraz tlenek węgla(IV) według poniższej reakcji:

$$2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$$

Korzystając z informacji wstępnej i podanego równania reakcji określ maksymalną liczbę cząsteczek CO_2 , jaką można otrzymać w reakcji 3 cząsteczek Fe_2O_3 z 5 atomami węgla.

- A. 4
- B. 3
- C. 6
- D. 9

Zadanie 19. (1 pkt)

Pewien pierwiastek tworzy kwas tlenowy o masie cząsteczkowej 98 u. Zawartość wodoru w tym kwasie jest równa 3,06 % mas., tlenu 65,3% mas., a nieznanego pierwiastka 31,6 % mas.

Miejsce na pomocnicze obliczenia:

Podaj nazwę szukanego pierwiastka lub symbol chemiczny.

Odpowiedź: Szukanym pierwiastkiem jest:

Zadanie 20. (1 pkt)

Przemianę egzoenergetyczną przedstawia równanie reakcji:

A.
$$NH_4NO_{3(s)} \xrightarrow{H_2O_{(c)}} NH_{4(aq)}^+ + NO_{3(aq)}^-$$

B.
$$CaO_{(s)} + H_2O_{(c)} \rightarrow Ca_{(aq)}^{2+} + 2OH_{(aq)}^{-}$$

C.
$$2 \text{ HgO}_{(s)} \stackrel{\text{T}}{\rightarrow} 2 \text{ Hg}_{(c)} + O_{2(g)}$$

D.
$$CaCO_{3(s)} \stackrel{T}{\rightarrow} CaO_{(s)} + CO_{2(g)}$$

Zadanie 21. (1 pkt)

Bezbarwny roztwór powstaje wskutek:

- A. Termicznego rozkładu wapienia
- B. Reakcja chlorku baru z siarczanem(VI) żelaza(III)
- C. Rozpuszczania kryształów siarczanu(VI) miedzi(II) w wodzie
- D. Reakcji azotanu(V) cynku z octanem magnezu

Zadanie 22. (2 pkt)

Do przeprowadzenia czteroetapowego doświadczenia uczeń otrzymał mieszaninę, w której znajdowały się dwie spośród następujących substancji: $Al(OH)_3$; $Mg(NO_3)_2$; $Cu(NO_3)_2$; $CaCO_3$; NH_4Cl i $BaSO_4$;

Poniżej w etapach I-IV opisał czynności jakie wykonał oraz zauważone obserwacje.

Etap I

Do próbki badanej mieszaniny dodał nadmiar wody i zawartość wymieszał. Zauważył, że tylko część próbki się rozpuściła. Otrzymaną mieszaninę przesączył. Odrobinę przesączu wprowadził na druciku platynowym do płomienia palnika i zauważył, że roztwór ten nie spowodował zmiany zabarwienia płomienia.

Etap II

Do pozostałego z etapu I przesączu dodał zasadę sodową i zaobserwował wytrącanie się białego, galaretowatego osadu.

Etap III

Do osadu, który uzyskał w etapie I dodał kwas solny i zauważył, że osad roztworzył się i wydzielił się bezbarwny gaz, który powodował mętnienie wody wapiennej. Otrzymany roztwór poddał próbie płomieniowej – płomień palnika zabarwił się na kolor ceglastoczerwony.

Etap IV

Do roztworu uzyskanego z etapu III dodał roztwór siarczanu(VI) sodu i otrzymał biały osad.

Zaznacz <u>otaczając kołem</u> wzory dwóch soli wchodzących w skład badanej mieszaniny, które można zidentyfikować wykonując doświadczenia opisane w etapach I-IV.

$Mg(NO_3)_2$	BaSO_4	$CaCO_3$		
$Cu(NO_3)_2$	NH ₄ Cl	Al(OH) ₃		

Zadanie 23. (2 pkt)

Spinele to grupa minerałów obejmująca tlenki zapisywane ogólnym wzorem M_3O_4 (M-metal, O-tlen) tworzące regularne struktury krystaliczne. Nazwa ta obejmuję również syntetycznie otrzymywane tlenki o wzorze sumarycznym AB_2O_4 , gdzie A i B to różne metale, a O - tlen. Przykładem spinelu jest magnesiochromit - krystaliczny związek, zbudowany z chromu, magnezu i tlenu.

Na podstawie: Dereń J., Haber J., Pampuch R., Chemia ciała stalego, PWN, Warszawa 1977

Zakładając, że magnesiochromit powstaje w wyniku reakcji $A + 2 B + 2 O_2 \rightarrow AB_2O_4$ i wiedząc, że stosunek masowy atomów wchodzących w jego skład wynosi odpowiednio 3:13:8, oblicz ile gramów magnezu należy użyć w reakcji, aby powstało 2 g tego minerału.

UWAGA:

 M_{Mg} : 24 u; M_{Cr} : 52 u; M_O : 16 u; Reakcja przebiega stechiometrycznie z wydajnością równą 100%.

Miejsce na obliczenia:	

Odpowiedź: Do reakcji należy użyć grama/ów magnezu.

Zadanie 24. (3 pkt)

Oceń prawdziwość podanych informacji. Wpisz literę P, jeśli zdanie jest prawdziwe, lub literę F, jeśli zdanie jest fałszywe.

Zdanie	P/F
1. Niektóre pierwiastki występują w przyrodzie w postaci jednego	
nuklidu.	
2. Pierwiastek węgiel zbudowany jest z identycznych atomów.	
3. Kobalt jest metalem, ponieważ jon Co ²⁺ jest większy od atomu Co	
4. Topnienie lodu jest procesem endotermicznym.	

Zadanie 25. (1 pkt)

Związek chemiczny węgla z wodorem zawierający 85,71 % mas. węgla, który w warunkach normalnych jest gazem o gęstości 1,25 g/dm³ ma wzór sumaryczny:

- A. CH₄
- B. C_2H_2
- C. C_2H_4
- D. C_2H_6

Zadanie 26. (2 pkt)

Metanol (CH_3OH) jest substancją palną. Produktami spalania metanolu są dwutlenek węgla i woda.

$$2CH_3OH + 3O_2 \rightarrow 2CO_2 + 4H_2O$$

 6.02×10^{23} cząsteczek dowolnej substancji, ma masę liczbowo równą masie cząsteczkowej wyrażonej w gramach.

Oblicz masę metanolu z jakiej można otrzymać $1,204 \times 10^{23}$ cząsteczek tlenku węgla(IV), a następnie wskaż jedną poprawną odpowiedź spośród A-D.

	Miejsce na obliczenia:
A. 3,2 g	
B. 6,4 g	
C. 32 g	
D. 64 g	

Zadanie 27. (1 pkt)

W jakim stosunku masowym należy zmieszać 10 % (% mas.) roztwór kwasu octowego z wodą, aby otrzymać roztwór 6% (% mas.)?

- A. 1:1
- B. 2:3
- C. 3:1
- D. 3:2

Zadanie 28. (1 pkt)

Poniżej przedstawiono wybrane właściwości metali.

- I. Metale wywołują metaliczny smak w ustach.
- II. Niektóre metale wypierają inne metale z roztworów ich soli.
- III. Dwa różne metale połączone ze sobą i zanurzone w roztworze soli spowodują przepływ pradu.
- IV. Metale mogą reagować z kwasami tworząc pęcherzyki gazu.
- V. Metale rozszerzają się ze wzrostem temperatury.

Mając amalgamatowe (*stop rtęci z innymi metalami*) wypełnienie zęba czujemy ostry ból, kiedy kawałek folii aluminiowej zetknie się z plombą. Spowodowane jest to tym, że:

- A. Zarówno III i II
- B. Zarówno V i IV
- C. Wyłącznie III
- D. Wyłącznie I

Zadanie 29. (1 pkt)

Około 96% masy ciała człowieka tworzą związki, w których skład wchodzą:

- A. Cztery niemetale
- B. Cztery metale
- C. Dwa metale i dwa niemetale
- D. Trzy metale i jeden niemetal

Zadanie 30. (2 pkt)

Spośród wymienionych substancji wybierz tę, która w wyniku jednoetapowego doświadczenia z metaliczną miedzią pozwoli otrzymać chlorek miedzi(II). Zapisz odpowiednie równanie reakcji w formie cząsteczkowej.

FeCl₂, HCl, Cl₂, HClO

.....

Zadanie 31. (2 pkt)

Przeprowadzono reakcję kwasu z pewnym metalem. Masę metalu, która na początku wynosiła 12 g sprawdzano po określonym czasie trwania reakcji. Wyniki przedstawiono w tabeli. Oszacuj (*z dokładnością do 0,1 g*) ile gramów metalu przereagowało po 90 sekundach? Przedstaw metodę lub obliczenia prowadzące do poprawnej odpowiedzi.

Pozostała masa metalu (g)	12	9,5	9,0	8,0	6,0	6,0	6,0
Czas (s)	0	15	30	60	120	180	240

Odpowiedź: Po 90 sekundach przereagowało grama/-ów metalu.

Zadanie 32. (2 pkt)

Przeczytaj poniższy tekst, a następnie na jego podstawie wykonaj polecenia

Badając skład mieszaniny metodą chromatografii bibułowej otrzymano następujący chromatogram:

Linia ciągła górna to czoło rozpuszczalnika, linia dolna, to linia startu. Wartością charakteryzującą położenie plamki na chromatogramie jest współczynnik Rf. Oblicza się go z chromatogramu mierząc odległości plamki i rozpuszczalnika od linii startu oraz korzystając ze wzoru:

$$Rf = \frac{droga\ przebyta\ przez\ substancję}{droga\ przebyta\ przez\ rozpuszczalnik}$$

Uzupełnij zdania, wybierając właściwe oznaczenia plamek: A, B, C.

Najsilniej z bibułą oddziałuje substancja zawarta w plamce____

Substancja zawarta w plamce_____ posiada największą wartość współczynnika R_f.

Brudnopis

UKŁAD OKRESOWY PIERWIASTKÓW CHEMICZNYCH

masy atomowe pierwiastków podano w atomowych jednostkach masy [u] (dolna liczba, wydrukowana większą czcionką pod symbolem w krateczce pierwiastka)

₁ H 1																		₂ He 4
₃ Li 7	₄ Be 9												₅ B 11	6C 12	₇ N 14	₈ O 16	₉ F 19	10Ne 20
11Na 23	12Mg 24												13Al 27	14Si 28	15P 31	16S 32	₁₇ Cl 35,5	18Ar 40
19K 39	20Ca 40	21Sc 45	22Ti 48	23V 51	52	25N 5		Fe 56	27Co 59	₂₈ Ni 59	₂₉ Cu 64	₃₀ Zn 65	31Ga 70	32Ge 73	33As 75	₃₄ Se 79	35Br 80	36Kr 84
37Rb 85	₃₈ Sr 88	₃₉ Y 89	₄₀ Zr 91	41Nb	42M 96	9		Ru 01	45Rh 103	46Pd 106	₄₇ Ag 108	48Cd 112	49In 115	₅₀ Sn 119	51Sb 122	₅₂ Te 128	₅₃ I 127	54Xe 131
55Cs 133	56Ba 137	57La 139 (*)	₇₂ Hf 178	₇₃ Ta 181	74W 184			Os 90	77Ir 192	78Pt 195	₇₉ Au 197	₈₀ Hg 201	81Tl 204	82Pb 207	₈₃ Bi 209	84Po 209	85At 210	86Rn 222
87Fr 223	88Ra 226	89Ac 227 (**)	104Rf 261	₁₀₅ Dł 262	106S 266			₈ Hs 77	₁₀₉ Mt 276	110Ds 281	111Rg 280	112Cn 285	113 284	114 289	115 288	116 292		118 294
	(*) lantanowce		Ce 592			1Pm 145	₆₂ Sm 150		₆₃ Eu 152	64Gd 157	₆₅ Tb 159	₆₆ Dy 163	₆₇ Ho 165	₆₈ Er 167	₆₉ Tn			Lu 75
(**) aktynowce		e 90T				₃ Np 237	₉₄ Pu 244		243	₉₆ Cm 251	₉₇ Bk 247	₉₈ Cf 251	₉₉ Es 252	₁₀₀ Fm 257	101M 258			₃ Lr 262

ROZPUSZCZALNOŚĆ SOLI I WODOROTLENKÓW W WODZIE W TEMPERATURZE 25°C

	CT-	Br-	г	N03	CH ₃ COO ⁻	S^{2-}	SO32-	SO ₄ ²⁻	CO32-	SiO ₃ ²⁻	CrO ₄ ²⁻	PO ₄ 3-	ОН
Na ⁺	R	R	R	R	R	R	R	R	R	R	R	R	R
K*	R	R	R	R	R	R	R	R	R	R	R	R	R
NH ₄ ⁺	R	R	R	R	R	R	R	R	R	_	R	R	R
Cu ²⁺	R	R	-	R	R	N	N	R	1,-	N	N	N	N
Ag ⁺	N	Ŋ	N	·R	R	N	N	T	N	N	N	N	
Mg^{2+}	R	R	R	-R	R	R	R	R	N	N.	R	N	N
Co2*	R	R	R	R	R	T	N	T	N	N	T	N	T
Ba ²⁺	R	R	R	R	R	R	N	N	N	N	N	N	R
Zn ² *	R	R	R	R	R	N	Т	R	N	N	T	N	N
A13+	R	R	R	R	R	-		R	-	N	N	N	N
Sn ²⁺	R	R	R	R	R	N	-	R	r	N.	N	N	N
Pb ²⁺	T	T	N	R	R	N	N	N	N	N	N	N	N
Mn ²⁺	R	R	R	R	R	N	N	R	N	N	N	N	N
Fe ²⁺	R	R	R	R	R	N	N	R	N	N	-	N	'N
Fe ³⁺	R	R	_	R	R	N		R		N	N	N	N

R- substancja rozpuszczalna; T- substancja trudno rozpuszczalna (strąca się ze stęż. roztworów); N- substancja nierozpuszczalna; – oznacza, ze dana substancja albo rozkłada się w wodzie, albo nie została otrzymana

Żródło: W. Mizerski, Tablice Chemiczne, Adamantan, 2004