Алгебра. КТ. Осенний семестр

VIII. Векторные пространства. Базисы

- 1. Является ли \mathbb{Z}_n свободным \mathbb{Z} -модулем?
- 2. Найдите все гомоморфизмы из \mathbb{Z}_n в \mathbb{Z} .
- 3. Пусть в колце R нет делителей нуля. Элемент x из R-модуля M называется элементом кручения, если $\lambda x=0$ для некоторого ненулевого $\lambda \in R$. Докажите, что элементы кручения образуют подмодуль. Он называется подмодулем кручения.
- 4. Если подмодуль кручения нулевой, то сам модуль называется модулем без кручения. Докажите, что любой гомоморфизм $M \to N$ в модуль без кручения N переводит подмодуль кручения модуля M в нуль.
- 5. В каких из следующих случаев указанные операции на множестве X задают структуру векторного пространства над полем F?
 - а) $F=\mathbb{R},\, X$ полуплоскость $\{(x,y)^{\mathrm{T}}\in\mathbb{R}^2\,|\,x\geqslant0\}$, операции сложения и умножения на числа стандартные (покоординатные);
 - б) $F = \mathbb{R}$, X множество геометрических векторов в трёхмерном пространстве, выходящих из начала координат, концы которых лежат на заданной плоскости, операции стандартные;
 - в) $F = \mathbb{R}, X = (0, +\infty)$, операции сложения \oplus и умножения на числа \odot заданы формулами $u \oplus v = uv, \ \lambda \odot u = u^{\lambda};$
 - г) $F = \mathbb{R}$, X множество многочленов f с вещественными коэффициентами, удовлетворяющих условию f(0) = 0, операции стандартные;
 - д) $F = \mathbb{R}$, X множество симметрических квадратных матриц порядка n со стандартными операциями. Если да, то какова размерность этого пространства?
 - e^*) $F=\mathbb{Q}$, X множество бесконечных последовательностей (a_n) вещественных чисел, удовлетворяющих условию $a_n=a_{n-1}+a_{n-2}$, операции стандартные. Если да, то какова размерность этого пространства?
- 6. Исследуйте на линейную зависимость следующие системы функций (n>0) над $\mathbb R$:
 - a) 1, x, x^2 , ..., x^n ; 6*) 1, e^x , e^{2x} , ..., e^{nx} ; B) 1, $\ln x$, $\ln 2x$, ..., $\ln nx$;
 - Γ) $1, \sin x, \cos x, \sin^2 x, \cos^2 x, \dots, \sin^n x, \cos^n x;$ Δ^*) $1, \cos x, \cos 2x, \dots, \cos nx$.
- 7.* Докажите линейную независимость всех геометрических прогрессий, начинающихся с единицы, в векторном пространстве бесконечных последовательностей.

8. Проверьте, что система векторов e_1, e_2, \ldots, e_n образует базис пространства \mathbb{R}^n и найдите координаты вектора x в этом базисе:

a)
$$e_1 = (1, 5, 3)^{\mathrm{T}}, e_2 = (2, 7, 3)^{\mathrm{T}}, e_3 = (3, 9, 4)^{\mathrm{T}}, x = (2, 1, 1)^{\mathrm{T}};$$

6)
$$e_1 = (1, 2, -1, 2)^{\mathrm{T}}, e_2 = (2, 3, 0, -1)^{\mathrm{T}}, e_3 = (1, 2, 1, 4)^{\mathrm{T}}, e_4 = (1, 3, -1, 0)^{\mathrm{T}},$$

 $x = (7, 14, -1, 2)^{\mathrm{T}}.$

- 9. Докажите, что многочлены 1, t-1, $(t-1)^2$, $(t-1)^3$, $(t-1)^4$, $(t-1)^5$ образуют базис в пространстве $\mathbb{R}[t]_5$. Найдите координаты многочлена $t^5-t^4+t^3-t^2+t-1$ в этом базисе.
- 10. Докажите, что матрицы $\begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}$, $\begin{pmatrix} 8 & -2 \\ 3 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 4 \\ -1 & 2 \end{pmatrix}$, $\begin{pmatrix} 7 & 1 \\ 5 & 0 \end{pmatrix}$ образуют базис в пространстве $M_2(\mathbb{R})$ и найдите координаты матрицы $\begin{pmatrix} 1 & 5 \\ 0 & 2 \end{pmatrix}$ в этом базисе.
- 11. Докажите, что последовательности $u=(2,3,5,8,13,\ldots)$ и $v=(1,2,3,5,8,\ldots)$ образуют базис в пространстве последовательностей (a_n) , удовлетворяющих условию $a_n=a_{n-1}+a_{n-2}$, и разложите последовательность $w=(1,1,2,3,5,8,\ldots)$ по этому базису.
- 12. В пространстве $\mathbb{Q}[x]_2$ перешли от базиса $x^2,x,1$ к новому базису с помощью матрицы перехода $\begin{pmatrix} 3 & 1 & 2 \\ 1 & 0 & -1 \\ 3 & -5 & 1 \end{pmatrix}$. Найдите новый базис.
- 13. Найдите матрицу перехода от базиса $e_1=(2,3,-2)^{\mathrm{T}},\ e_2=(5,0,-1)^{\mathrm{T}},\ e_3=(2,1,-1)^{\mathrm{T}}$ к базису $\tilde{e}_1=(1,1,-1)^{\mathrm{T}},\ \tilde{e}_2=(1,-1,0)^{\mathrm{T}},\ \tilde{e}_3=(1,1,1)^{\mathrm{T}}.$
- 14. В пространстве $\mathbb{R}[t]_3$ найдите матрицу перехода от базиса 1, 1+t, $1+t^2$, $1+t^3$ к базису $1+t^3$, t^2+t^3 , t^3 .
- 15.* V-n-мерное векторное пространство над полем F, состоящим из q элементов. Найдите:
 - а) число векторов в пространстве V;
 - б) число базисов пространства V;
 - в) число невырожденных матриц порядка n над полем F;
 - Γ) число вырожденных матриц порядка n над полем F.