organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Ethyl 2-(4-bromophenyl)-1-[3-(1*H*-imidazol-1-yl)propyl]-1*H*-benzimidazole-5-carboxylate monohydrate

Yeong Keng Yoon,^a Mohamed Ashraf Ali,^a Tan Soo Choon,^a Madhukar Hemamalini^b and Hoong-Kun Fun^b*‡

^aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 18 October 2011; accepted 19 October 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean $\sigma(C-C) = 0.002 \text{ Å}$; R factor = 0.037; wR factor = 0.085; data-to-parameter ratio = 26.7.

In the title compound, $C_{22}H_{21}BrN_4O_2 \cdot H_2O$, the two pyrazole rings are essentially planar [maximum deviations 0.002 (1) and 0.002 (1) Å], and form a dihedral angle of 73.46 (9)°. The dihedral angle between the benzene rings is 29.33 (7)°. In the crystal, molecules are connected via $C-H\cdots O$ and $O-H\cdots N$ hydrogen bonds, forming layers in the ab plane.

Related literature

For applications of benzimidazole derivatives, see: Garuti *et al.* (2000); Rao *et al.* (2002); Thakurdesai *et al.* (2007); Yoon *et al.* (2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data

$$\begin{array}{lll} \text{C}_{22}\text{H}_{21}\text{BrN}_{4}\text{O}_{2}\cdot\text{H}_{2}\text{O} & V = 20 \\ M_{r} = 471.35 & Z = 4 \\ \text{Monoclinic, } P2_{1}/n & \text{Mo } Ko \\ a = 9.1854 \ (1) \ \text{Å} & \mu = 2.0 \\ b = 16.7389 \ (2) \ \text{Å} & T = 10 \\ c = 13.7379 \ (2) \ \text{Å} & 0.47 \times \\ \beta = 98.283 \ (1)^{\circ} & \end{array}$$

 $V = 2090.22 (5) \text{ Å}^3$

Mo $K\alpha$ radiation

 $\mu = 2.00 \text{ mm}^{-1}$ T = 100 K

 $0.47 \times 0.42 \times 0.41 \text{ mm}$

‡ Thomson Reuters ResearcherID: A-3561-2009.

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.452$, $T_{\max} = 0.494$

28847 measured reflections 7482 independent reflections 5514 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.032$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.085$ S = 1.037482 reflections 280 parameters H atoms treated by a mixture of independent and constrained refinement

 $\Delta \rho_{\text{max}} = 0.63 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.34 \text{ e Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

D $ H$ $\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$O1W-H2W1\cdots N4^{i}$	0.92 (3)	1.99 (3)	2.910 (2)	175 (3)
$O1W-H1W1\cdots N1^{ii}$	0.81(3)	2.16 (3)	2.891 (2)	151 (2)
$C17-H17B\cdots O1W^{iii}$	0.99	2.41	3.236 (2)	141
C19 $-$ H19 $B \cdot \cdot \cdot$ O1 W^{iii}	0.99	2.56	3.327 (2)	135
$C20-H20A\cdots O2^{iv}$	0.95	2.58	3.301 (2)	133
Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv) -2			$x + \frac{1}{2}, -y +$	$\frac{1}{2}$, $z - \frac{1}{2}$; (iii)

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

YKY, MAA and TSC thank the Department of Pharmacogenetic and Novel Therapeutic Research, Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang. This work was funded through a Research Grant (No. RUC 1001/PSK/8620012). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for a Research University grant (No. 1001/PFIZIK/811160). MH thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5002).

References

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

Garuti, L., Roberti, M., Malagoli, M., Rossi, T. & Castelli, M. (2000). *Bioorg. Med. Chem. Lett.* 10, 2193–2195.

Rao, A., Chimirri, A., Clercq, E. D., Monforte, A. M., Monforte, P., Pannecouque, C. & Zappala, M. (2002). *Il Farmaco*, **57**, 819–823.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Thakurdesai, P. A., Wadodkar, S. G. & Chopade, C. T. (2007). *Pharmacologyonline*, 1, 314–329.

Yoon, Y. K., Ali, M. A., Wei, A. C., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2405.

supplementary m	aterials	

Acta Cryst. (2011). E67, o3060 [doi:10.1107/S160053681104342X]

$\label{lem:constraint} \begin{tabular}{ll} Ethyl & 2-(4-bromophenyl)-1-[3-(1H-imidazol-1-yl)propyl]-1H-benzimidazole-5-carboxylate monohydrate \\ \end{tabular}$

Y. K. Yoon, M. A. Ali, T. S. Choon, M. Hemamalini and H.-K. Fun

Comment

Benzimidazole derivatives are of wide interest because of their diverse biological activities and various clinical applications. Benzimidazoles are a class of bioactive heterocyclic compounds which exhibit a wide range of activities such as anti-proliferative (Garuti *et al.*, 2000), anti-HIV (Rao *et al.*, 2002), anti-inflammatory and anthelmintic (Thakurdesai *et al.*, 2007) properties. As part of our on-going structural studies of benzimidazole derivatives (Yoon *et al.*, 2011), we now report the structure of the title compound.

In the title compound (Fig. 1), the two pyrazole (N1,N2/C7,C8/C13 and N3,N4/C20–C22) rings are essentially planar, with a maximum deviation of 0.002 (1) Å for atom C8 and 0.002 (1) Å for atom N3. The dihedral angle between the two pyrazole (N1,N2/C7,C8/C13: N3,N4/C20–C22) rings is 73.46 (9)° and between the two benzene (C8–C13: C1–C6) rings is 29.33 (7)°.

In the crystal structure, molecules are connected *via* intermolecular C—H···O and O—H···N (Table 1) hydrogen bonds, forming layers in the *ab* plane.

Experimental

Ethyl-4-(3-(1*H*-imidazol-1-yl-propylamino)-3-aminobenzoate (0.84 mmol) and sodium metabisulfite adduct of bromobenzaldehyde (1.68 mmol) were dissolved in DMF. The reaction mixture was refluxed at 130°C for 2 h. After completion, the reaction mixture was diluted in ethyl acetate (20 ml) and washed with water (20 ml). The organic layer was collected, dried over Na₂SO₄ and then evaporated *in vacuo* to yield the product. The product was recrystallised from its ethyl acetate solution.

Refinement

Atoms H2W1 and H1W1 were located from a difference Fourier maps and refined freely [O—H = 0.80 (3)–0.92 (3) Å]. The remaining H atoms were positioned geometrically [C—H = 0.95–0.99 Å] and were refined using a riding model, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. A rotating group model was applied to the methyl group.

Figures

Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.

Ethyl 2-(4-bromophenyl)-1-[3-(1*H*-imidazol-1-yl)propyl]- 1*H*-benzimidazole-5-carboxylate monohydrate

Crystal data

 $C_{22}H_{21}BrN_4O_2\cdot H_2O$ F(000) = 968

 $M_r = 471.35$ $D_{\rm x} = 1.498 \; {\rm Mg \; m}^{-3}$

Monoclinic, $P2_1/n$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 2yn Cell parameters from 9939 reflections

a = 9.1854(1) Å $\theta = 2.5 - 31.3^{\circ}$ b = 16.7389 (2) Å $\mu = 2.00 \text{ mm}^{-1}$ T = 100 Kc = 13.7379 (2) Å $\beta = 98.283 (1)^{\circ}$ Block, yellow

 $0.47\times0.42\times0.41~mm$ $V = 2090.22 (5) \text{ Å}^3$

Z = 4

Data collection

Bruker SMART APEXII CCD area-detector 7482 independent reflections

diffractometer

Radiation source: fine-focus sealed tube 5514 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.032$ graphite

 $\theta_{\text{max}} = 32.4^{\circ}, \, \theta_{\text{min}} = 1.9^{\circ}$ ϕ and ω scans

Absorption correction: multi-scan $h = -13 \rightarrow 13$ (SADABS; Bruker, 2009) $T_{\min} = 0.452, T_{\max} = 0.494$ $k = -25 \rightarrow 17$ 28847 measured reflections $l = -20 \rightarrow 19$

Refinement

Primary atom site location: structure-invariant direct Refinement on F^2

methods

Least-squares matrix: full Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring $R[F^2 > 2\sigma(F^2)] = 0.037$

sites

H atoms treated by a mixture of independent and $wR(F^2) = 0.085$

constrained refinement

 $w = 1/[\sigma^2(F_0^2) + (0.0386P)^2 + 0.518P]$ S = 1.03

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.001$ 7482 reflections $\Delta \rho_{\text{max}} = 0.63 \text{ e Å}^{-3}$ 280 parameters

 $\Delta \rho_{min} = -0.34 \text{ e Å}^{-3}$ 0 restraints

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	-		_
x	y	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
0.123446 (18)	0.050021 (9)	0.931417 (13)	0.02720(6)
0.40323 (12)	0.80153 (6)	0.87745 (9)	0.0247 (2)
0.17930 (13)	0.76409 (7)	0.90802 (9)	0.0260(2)
0.23105 (14)	0.45313 (7)	0.89922 (10)	0.0199(3)
0.46106 (14)	0.42561 (7)	0.87069 (9)	0.0174(2)
0.71289 (14)	0.23427 (8)	0.76584 (10)	0.0216(3)
0.61875 (16)	0.11193 (8)	0.75103 (11)	0.0265 (3)
0.18138 (17)	0.29413 (9)	0.95735 (11)	0.0207(3)
0.1411	0.3363	0.9913	0.025*
0.13384 (17)	0.21676 (9)	0.96832 (12)	0.0209(3)
0.0622	0.2056	1.0099	0.025*
0.19242 (17)	0.15558 (9)	0.91768 (11)	0.0197(3)
0.29838 (17)	0.17037 (9)	0.85769 (12)	0.0212 (3)
0.3385	0.1279	0.8242	0.025*
0.34509 (17)	0.24861 (9)	0.84737 (11)	0.0201(3)
0.4170	0.2595	0.8059	0.024*
0.28788 (16)	0.31134 (8)	0.89703 (11)	0.0174(3)
0.32652 (16)	0.39632 (9)	0.88789 (11)	0.0181(3)
0.44933 (16)	0.50829 (8)	0.87200 (11)	0.0175 (3)
0.54989 (17)	0.56882 (9)	0.86054 (12)	0.0207(3)
0.6473	0.5574	0.8490	0.025*
0.50014 (17)	0.64649 (9)	0.86687 (11)	0.0204(3)
0.5648	0.6895	0.8589	0.025*
0.35573 (17)	0.66335 (8)	0.88480 (11)	0.0188 (3)
0.25683 (17)	0.60237 (9)	0.89609 (11)	0.0201(3)
0.1595	0.6137	0.9078	0.024*
0.30541 (16)	0.52409 (9)	0.88960 (11)	0.0186(3)
0.30222 (17)	0.74678 (9)	0.89169 (11)	0.0209(3)
0.35706 (19)	0.88442 (9)	0.88439 (14)	0.0271 (4)
0.3201	0.8936	0.9477	0.033*
0.2771	0.8970	0.8302	0.033*
0.4876 (2)	0.93640 (10)	0.87762 (16)	0.0345 (4)
0.4609	0.9924	0.8859	0.052*
0.5196	0.9293	0.8131	0.052*
0.5679	0.9215	0.9294	0.052*
	0.123446 (18) 0.40323 (12) 0.17930 (13) 0.23105 (14) 0.46106 (14) 0.71289 (14) 0.61875 (16) 0.18138 (17) 0.1411 0.13384 (17) 0.0622 0.19242 (17) 0.29838 (17) 0.3385 0.34509 (17) 0.4170 0.28788 (16) 0.32652 (16) 0.44933 (16) 0.54989 (17) 0.6473 0.50014 (17) 0.5648 0.35573 (17) 0.25683 (17) 0.1595 0.30541 (16) 0.30222 (17) 0.35706 (19) 0.3201 0.2771 0.4876 (2) 0.4609 0.5196	0.123446 (18)	0.123446 (18)

C17	0.59623 (16)	0.38267 (9)	0.85909 (11)	0.0186(3)
H17A	0.5934	0.3290	0.8891	0.022*
H17B	0.6814	0.4118	0.8948	0.022*
C18	0.61756 (17)	0.37351 (9)	0.75149 (12)	0.0209(3)
H18A	0.5262	0.3523	0.7132	0.025*
H18B	0.6376	0.4265	0.7242	0.025*
C19	0.74492 (18)	0.31714 (9)	0.74141 (13)	0.0241 (3)
H19A	0.7669	0.3193	0.6730	0.029*
H19B	0.8335	0.3354	0.7854	0.029*
C20	0.62362 (17)	0.18286 (9)	0.70936 (12)	0.0223 (3)
H20A	0.5706	0.1962	0.6469	0.027*
C21	0.7101(2)	0.11857 (11)	0.83933 (14)	0.0318 (4)
H21A	0.7297	0.0769	0.8864	0.038*
C22	0.76797 (19)	0.19311 (11)	0.84941 (13)	0.0310(4)
H22A	0.8338	0.2130	0.9037	0.037*
O1W	0.41413 (16)	0.03202 (9)	0.36883 (13)	0.0409 (4)
H2W1	0.406 (4)	-0.015 (2)	0.334(2)	0.092 (10)*
H1W1	0.496 (3)	0.0391 (14)	0.3976 (19)	0.052 (8)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.02447 (9)	0.01647 (7)	0.04180 (11)	-0.00321 (6)	0.00871 (7)	0.00484 (6)
O1	0.0236 (6)	0.0141 (5)	0.0369 (7)	-0.0002 (4)	0.0064 (5)	0.0000 (4)
O2	0.0224 (6)	0.0207 (5)	0.0355 (7)	0.0011 (4)	0.0059 (5)	-0.0032 (5)
N1	0.0168 (6)	0.0168 (6)	0.0267 (7)	-0.0011 (5)	0.0054 (5)	0.0010(5)
N2	0.0152 (6)	0.0147 (5)	0.0232 (6)	-0.0008(4)	0.0056 (5)	0.0004 (5)
N3	0.0179 (6)	0.0207 (6)	0.0270 (7)	0.0007 (5)	0.0065 (5)	-0.0022 (5)
N4	0.0254 (7)	0.0227 (7)	0.0324 (8)	0.0012 (5)	0.0077 (6)	0.0011 (6)
C1	0.0190(7)	0.0200(7)	0.0239 (8)	-0.0014 (6)	0.0056 (6)	-0.0009 (6)
C2	0.0179 (7)	0.0215 (7)	0.0239 (8)	-0.0016 (6)	0.0054(6)	0.0029 (6)
C3	0.0187 (7)	0.0157 (6)	0.0245 (8)	-0.0022(5)	0.0025 (6)	0.0041 (6)
C4	0.0213 (8)	0.0178 (7)	0.0250(8)	0.0001 (6)	0.0051 (6)	0.0002 (6)
C5	0.0190(7)	0.0193 (7)	0.0232 (8)	-0.0012 (5)	0.0070(6)	0.0010(6)
C6	0.0158 (7)	0.0170(6)	0.0197 (7)	-0.0021 (5)	0.0032 (5)	0.0013 (5)
C7	0.0178 (7)	0.0172 (6)	0.0198 (7)	-0.0014 (5)	0.0039 (5)	0.0003 (5)
C8	0.0180(7)	0.0149 (6)	0.0199 (7)	-0.0001 (5)	0.0039 (5)	-0.0004 (5)
C9	0.0176 (7)	0.0197 (7)	0.0255 (8)	-0.0019 (5)	0.0056 (6)	0.0000 (6)
C10	0.0205 (7)	0.0174 (6)	0.0237 (8)	-0.0035 (6)	0.0042 (6)	0.0011 (6)
C11	0.0199 (7)	0.0164 (6)	0.0199 (7)	-0.0001 (5)	0.0023 (6)	-0.0006 (5)
C12	0.0169 (7)	0.0196 (7)	0.0238 (8)	0.0003 (5)	0.0031 (6)	0.0003 (6)
C13	0.0166 (7)	0.0172 (6)	0.0221 (7)	-0.0019 (5)	0.0035 (6)	0.0008 (5)
C14	0.0214(8)	0.0186 (7)	0.0221 (8)	-0.0010 (6)	0.0007 (6)	-0.0014 (6)
C15	0.0292 (9)	0.0142 (7)	0.0384 (10)	0.0025 (6)	0.0062 (7)	-0.0004 (6)
C16	0.0313 (10)	0.0184 (8)	0.0557 (12)	-0.0001 (6)	0.0127 (9)	-0.0008 (7)
C17	0.0162 (7)	0.0175 (6)	0.0229 (7)	0.0004 (5)	0.0055 (6)	0.0002 (5)
C18	0.0208 (7)	0.0183 (7)	0.0250(8)	-0.0012 (6)	0.0079 (6)	-0.0007 (6)
C19	0.0208 (8)	0.0213 (7)	0.0325 (9)	-0.0039 (6)	0.0113 (6)	-0.0039 (6)

C20	0.0211 (8)	0.0215 (7)	0.0250 (8)	-0.0002 (6)	0.0063 (6)	-0.0018 (6)
C21	0.0301 (9)	0.0293 (9)	0.0351 (10)	0.0053 (7)	0.0013 (8)	0.0065 (7)
C22	0.0259 (9)	0.0338 (9)	0.0313 (9)	0.0032 (7)	-0.0027 (7)	0.0001 (7)
O1W	0.0218 (7)	0.0354 (8)	0.0648 (10)	0.0047 (6)	0.0035 (7)	-0.0090 (7)
	()		,	,	,	()
Geometric para	ameters (Å, °)					
Br1—C3		1.8957 (14)	C9—	H9A	0.95	500
O1—C14		1.3384 (19)	C10-	-C11	1.41	2(2)
O1—C15		1.4579 (18)	C10-	-H10A	0.95	500
O2—C14		1.2174 (19)	C11—	-C12	1.39	00 (2)
N1—C7		1.3179 (19)	C11—	-C14	1.48	38 (2)
N1—C13		1.3860 (18)	C12-	-C13	1.39	01 (2)
N2—C7		1.3811 (19)	C12—	-H12A	0.95	500
N2—C8		1.3884 (18)	C15—	-C16	1.49	95 (2)
N2—C17		1.4630 (19)	C15—	-H15A	0.99	000
N3—C20		1.353 (2)	C15—	-H15B	0.99	900
N3—C22		1.372 (2)	C16-	-H16A	0.98	800
N3—C19		1.4668 (19)	C16-	-H16B	0.98	800
N4—C20		1.322 (2)	C16-	-H16C	0.98	800
N4—C21		1.376 (2)	C17—	-C18	1.52	27 (2)
C1—C2		1.382 (2)	C17—	-H17A	0.99	900
C1—C6		1.400(2)	C17—	-H17B	0.99	900
C1—H1A		0.9500	C18—	-C19	1.52	25 (2)
C2—C3		1.389 (2)	C18—	-H18A	0.99	000
C2—H2A		0.9500	C18—	-H18B	0.99	000
C3—C4		1.385 (2)	C19-	-H19A	0.99	000
C4—C5		1.392 (2)	C19-	-H19B	0.99	000
C4—H4A		0.9500	C20—	-H20A	0.95	500
C5—C6		1.396 (2)	C21-	-C22	1.35	55 (3)
C5—H5A		0.9500	C21—	-H21A	0.95	500
C6—C7		1.476 (2)	C22—	-H22A	0.95	500
C8—C9		1.395 (2)	O1W-	—H2W1	0.92	2 (3)
C8—C13		1.403 (2)	O1W-	—H1W1	0.80	0(3)
C9—C10		1.385 (2)				
C14—O1—C15		115.33 (12)	N1—	C13—C8	110	.14 (13)
C7—N1—C13		105.17 (13)	C12-	-C13—C8	120	.50 (14)
C7—N2—C8		106.18 (12)	O2—	C14—O1	123	.01 (14)
C7—N2—C17		129.68 (12)	O2—	C14—C11	123	.97 (14)
C8—N2—C17		124.04 (12)	01—	C14—C11	113	.02 (13)
C20—N3—C22		106.29 (14)	O1—	C15—C16	107	.83 (14)
C20—N3—C19		126.52 (14)	O1—	C15—H15A	110	.1
C22—N3—C19		127.19 (14)	C16-	-C15—H15A	110	.1
C20—N4—C21		104.76 (14)	O1—	C15—H15B	110	.1
C2—C1—C6		121.07 (15)	C16-	-C15—H15B	110	.1
C2—C1—H1A		119.5	H15A	—C15—H15В	108	.5
C6—C1—H1A		119.5	C15—	-C16—H16A	109	.5
C1—C2—C3		119.01 (15)	C15—	-C16—H16B	109	.5
C1—C2—H2A		120.5	H16A	—С16—Н16В	109	.5

C3—C2—H2A	120.5	C15—C16—H16C	109.5
C4—C3—C2	121.48 (14)	H16A—C16—H16C	109.5
C4—C3—Br1	119.95 (12)	H16B—C16—H16C	109.5
C2—C3—Br1	118.56 (12)	N2—C17—C18	112.59 (12)
C3—C4—C5	118.83 (14)	N2—C17—H17A	109.1
C3—C4—H4A	120.6	C18—C17—H17A	109.1
C5—C4—H4A	120.6	N2—C17—H17B	109.1
C4—C5—C6	120.99 (14)	C18—C17—H17B	109.1
C4—C5—H5A	119.5	H17A—C17—H17B	107.8
C6—C5—H5A	119.5	C19—C18—C17	110.93 (13)
C5—C6—C1	118.62 (13)	C19—C18—H18A	109.5
C5—C6—C7	124.85 (14)	C17—C18—H18A	109.5
C1—C6—C7	116.47 (13)	C19—C18—H18B	109.5
N1—C7—N2	113.02 (13)	C17—C18—H18B	109.5
N1—C7—C6	120.87 (13)	H18A—C18—H18B	108.0
N2—C7—C6	126.07 (13)	N3—C19—C18	112.50 (13)
N2—C8—C9	131.96 (14)	N3—C19—H19A	109.1
N2—C8—C13	105.48 (12)	C18—C19—H19A	109.1
C9—C8—C13	122.55 (13)	N3—C19—H19B	109.1
C10—C9—C8	116.42 (14)	C18—C19—H19B	109.1
C10—C9—H9A	121.8	H19A—C19—H19B	107.8
C8—C9—H9A	121.8	N4—C20—N3	112.23 (15)
C9—C10—C11	121.69 (14)	N4—C20—H20A	123.9
C9—C10—H10A	119.2	N3—C20—H20A	123.9
C11—C10—H10A	119.2	C22—C21—N4	110.16 (15)
C12—C11—C10	121.21 (14)	C22—C21—H21A	124.9
C12—C11—C14	117.06 (14)	N4—C21—H21A	124.9
C10—C11—C14	121.73 (13)	C21—C22—N3	106.55 (15)
C11—C12—C13	117.63 (14)	C21—C22—H22A	126.7
C11—C12—H12A	121.2	N3—C22—H22A	126.7
C13—C12—H12A	121.2	H2W1—O1W—H1W1	113 (3)
N1—C13—C12	129.35 (14)		. ,
C6—C1—C2—C3	-0.6 (2)	C14—C11—C12—C13	179.87 (13)
C1—C2—C3—C4	0.8 (2)	C7—N1—C13—C12	-179.26 (15)
C1—C2—C3—Br1	-178.80 (11)	C7—N1—C13—C8	0.03 (17)
C2—C3—C4—C5	-0.9 (2)	C11—C12—C13—N1	179.06 (15)
Br1—C3—C4—C5	178.77 (11)	C11—C12—C13—C8	-0.2 (2)
C3—C4—C5—C6	0.6 (2)	N2—C8—C13—N1	0.23 (16)
C4—C5—C6—C1	-0.4(2)	C9—C8—C13—N1	-179.16 (14)
C4—C5—C6—C7	-177.66 (14)	N2—C8—C13—C12	179.59 (13)
C2—C1—C6—C5	0.3 (2)	C9—C8—C13—C12	0.2 (2)
C2—C1—C6—C7	177.85 (13)	C15—O1—C14—O2	1.0(2)
C13—N1—C7—N2	-0.29 (17)	C15—O1—C14—C11	-179.41 (13)
C13—N1—C7—C6	177.75 (13)	C12—C11—C14—O2	1.2 (2)
C8—N2—C7—N1	0.43 (17)	C10—C11—C14—O2	-179.21 (15)
C17—N2—C7—N1	176.78 (14)	C12—C11—C14—O1	-178.39 (13)
C8—N2—C7—C6	-177.48 (14)	C10—C11—C14—O1	1.2 (2)
C17—N2—C7—C6	-1.1 (2)	C14—O1—C15—C16	173.90 (14)
C5—C6—C7—N1	150.20 (15)	C7—N2—C17—C18	100.34 (17)
	()		(1,)

C1—C6—C7—N1	-27.1 (2)	C8—N2—C17—C18	-83.90 (17)
C5—C6—C7—N2	-32.0 (2)	N2—C17—C18—C19	-170.67 (12)
C1—C6—C7—N2	150.63 (15)	C20—N3—C19—C18	75.0 (2)
C7—N2—C8—C9	178.93 (16)	C22—N3—C19—C18	-105.67 (18)
C17—N2—C8—C9	2.3 (2)	C17—C18—C19—N3	68.15 (17)
C7—N2—C8—C13	-0.38 (15)	C21—N4—C20—N3	0.10 (19)
C17—N2—C8—C13	-176.99 (13)	C22—N3—C20—N4	-0.28 (19)
N2—C8—C9—C10	-179.58 (15)	C19—N3—C20—N4	179.12 (14)
C13—C8—C9—C10	-0.4(2)	C20—N4—C21—C22	0.1(2)
C8—C9—C10—C11	0.5 (2)	N4—C21—C22—N3	-0.3 (2)
C9—C10—C11—C12	-0.5 (2)	C20—N3—C22—C21	0.35 (19)
C9—C10—C11—C14	179.95 (14)	C19—N3—C22—C21	-179.05 (15)
C10—C11—C12—C13	0.3(2)		

Hydrogen-bond geometry (Å, °)

D— H ··· A	<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A
O1W—H2W1···N4 ⁱ	0.92(3)	1.99 (3)	2.910(2)	175 (3)
O1W—H1W1···N1 ⁱⁱ	0.81 (3)	2.16 (3)	2.891 (2)	151 (2)
C17—H17B···O1W ⁱⁱⁱ	0.99	2.41	3.236 (2)	141.
C19—H19B···O1W ⁱⁱⁱ	0.99	2.56	3.327 (2)	135.
C20—H20A···O2 ^{iv}	0.95	2.58	3.301 (2)	133.

Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1/2, -y+1/2, z-1/2; (iii) x+1/2, -y+1/2, z+1/2; (iv) -x+1/2, y-1/2, -z+3/2.

Fig. 1

