

Make Your Publications Visible.

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

Wystup, Uwe

Working Paper
Vanna-volga pricing

CPQF Working Paper Series, No. 11

Provided in Cooperation with:

Frankfurt School of Finance and Management

Suggested Citation: Wystup, Uwe (2008): Vanna-volga pricing, CPQF Working Paper Series, No. 11, Frankfurt School of Finance & Management, Centre for Practical Quantitative Finance (CPQF), Frankfurt a. M.

This Version is available at: https://hdl.handle.net/10419/40192

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Centre for Practical Quantitative Finance

No. 11

Vanna-Volga Pricing

Uwe Wystup

July 2008

Author: Prof. Dr. Uwe Wystup

Frankfurt School of Finance & Management Frankfurt/Main

u.wystup@frankfurt-school.de

Publisher: Frankfurt School of Finance & Management

Phone: +49 (0) 69 154 008-0 • Fax: +49 (0) 69 154 008-728 Sonnemannstr. 9-11 ■ D-60314 Frankfurt/M. ■ Germany

Abstract

The vanna-volga method, also called the *traders'* rule of thumb is an empirical procedure that can be used to infer an implied-volatility smile from three available quotes for a given maturity. It is based on the construction of locally replicating portfolios whose associated hedging costs are added to corresponding Black-Scholes prices to produce smile-consistent values. Besides being intuitive and easy to implement, this procedure has a clear financial interpretation, which further supports its use in practice.

Contents

1	Introduction	3
2	Cost of Vanna and Volga	4
3	Observations	7
4	Consistency Check	9
5	Abbreviations for First Generation Exotics	10
6	Adjustment Factor	10
7	Volatility for Risk Reversals, Butterflies and Theoretical Value	12
8	Pricing Barrier Options	12
9	Pricing Double Barrier Options	13
10	Pricing Double-No-Touch Options	13
11	Pricing European Style Options 11.1 Digital Options	13 13 13
12	No-Touch Probability	14
13	The Cost of Trading and its Implication on the Market Price of One- touch Options	14
14	Example	16
15	Further Applications	16

1 Introduction

The vanna-volga (VV) method, also called the *Traders' Rule of Thumb* is commonly used in foreign exchange options markets, where three main volatility quotes are typically available for a given market maturity: the delta-neutral straddle, referred to as at-themoney (ATM); the risk reversal for 25 delta call and put; and the (vega-weighted) butterfly with 25 delta wings. The application of vanna-volga pricing allows us to derive implied volatilities for any options delta, in particular for those outside the basic range set by the 25 delta put and call quotes. The notion of risk reversals and butterflies is explained in [6].

In the financial literature, the vanna-volga approach was introduced by Lipton and McGhee (2002) in [2], who compare different approaches to the pricing of double-no-touch options, and by Wystup (2003) in [5], who describes its application to the valuation of one-touch options. The vanna-volga procedure is reviewed in more detail and some important results concerning the tractability of the method and its robustness are derived by Castagna and Mercurio (2007) in [1].

The traders' rule of thumb is a method of traders to determine the cost of risk managing the volatility risk of exotic options with vanilla options. This cost is then added to the theoretical value in the Black-Scholes model and is called the *overhedge*. In fact, SuperDerivatives² has implemented a type of this method in their pricing platform, as one can read in the patent that SuperDerivatives has filed.

We explain the rule and then consider an example of a one-touch.

Delta and vega are the most relevant sensitivity parameters for foreign exchange options maturing within one year. A delta-neutral position can be achieved by trading the spot. Changes in the spot are explicitly allowed in the Black-Scholes model. Therefore, model and practical trading have very good control over spot change risk. The more sensitive part is the vega position. This is not taken care of in the Black-Scholes model. Market participants need to trade other options to obtain a vega-neutral position. However, even a vega-neutral position is subject to changes of spot and volatility. For this reason, the sensitivity parameters vanna (change of vega due to change of spot) and volga (change of vega due to change of volatility) are of special interest. Vanna is also called d vega /d spot, volga is also called d vega /d vol. The plots for vanna and volga for a vanilla are displayed in Figures 1 and 2. In this section we outline how the cost of such a vanna-and volga- exposure can be used to obtain prices for options that are closer to the market than their theoretical Black-Scholes value.

²SuperDerivatives is an internet-based pricing tool for exotic options, see www.superderivatives.com

Figure 1: Vanna of a vanilla option as a function of spot and time to expiration, showing the skew symmetry about the at-the-money line

2 Cost of Vanna and Volga

We fix the rates r_d and r_f , the time to maturity T and the spot x and define

cost of vanna
$$\stackrel{\Delta}{=}$$
 Exotic Vanna Ratio × value of RR, (1)

cost of volga
$$\stackrel{\Delta}{=}$$
 Exotic Volga Ratio × value of BF, (2)

Exotic Vanna Ratio
$$\stackrel{\Delta}{=} B_{\sigma x}/RR_{\sigma x}$$
, (3)

Exotic Volga Ratio
$$\stackrel{\Delta}{=} B_{\sigma\sigma}/\mathrm{BF}_{\sigma\sigma},$$
 (4)

value of RR
$$\stackrel{\Delta}{=}$$
 [RR(σ_{Δ}) - RR(σ_{0})], (5)

value of BF
$$\stackrel{\Delta}{=}$$
 [BF(σ_{Δ}) – BF(σ_{0})], (6)

where σ_0 denotes the at-the-money (forward) volatility and σ_{Δ} denotes the wing volatility at the delta pillar Δ , B denotes the value function of a given exotic option. The values

Figure 2: Volga of a vanilla option as a function of spot and time to expiration, showing the symmetry about the at-the-money line

of risk reversals and butterflies are defined by

$$RR(\sigma) \stackrel{\Delta}{=} call(x, \Delta, \sigma, r_d, r_f, T) - put(x, \Delta, \sigma, r_d, r_f, T),$$

$$BF(\sigma) \stackrel{\Delta}{=} \frac{call(x, \Delta, \sigma, r_d, r_f, T) + put(x, \Delta, \sigma, r_d, r_f, T)}{2}$$

$$- \frac{call(x, \Delta_0, \sigma_0, r_d, r_f, T) + put(x, \Delta_0, \sigma_0, r_d, r_f, T)}{2},$$

$$(8)$$

where vanilla $(x, \Delta, \sigma, r_d, r_f, T)$ means vanilla $(x, K, \sigma, r_d, r_f, T)$ for a strike K chosen to imply |vanilla $_x(x, K, \sigma, r_d, r_f, T)| = \Delta$ and Δ_0 is the delta that produces the at-the-money strike. To summarize we abbreviate

$$c(\sigma_{\Delta}^{+}) \stackrel{\Delta}{=} call(x, \Delta^{+}, \sigma_{\Delta}^{+}, r_{d}, r_{f}, T), \tag{9}$$

$$p(\sigma_{\Delta}^{-}) \stackrel{\Delta}{=} put(x, \Delta^{-}, \sigma_{\Delta}^{-}, r_d, r_f, T), \tag{10}$$

and obtain

cost of vanna =
$$\frac{B_{\sigma x}}{c_{\sigma x}(\sigma_{\Delta}^{+}) - p_{\sigma x}(\sigma_{\Delta}^{-})} \left[c(\sigma_{\Delta}^{+}) - c(\sigma_{0}) - p(\sigma_{\Delta}^{-}) + p(\sigma_{0}) \right],$$
cost of volga =
$$\frac{2B_{\sigma \sigma}}{c_{\sigma \sigma}(\sigma_{\Delta}^{+}) + p_{\sigma \sigma}(\sigma_{\Delta}^{-})} \left[\frac{c(\sigma_{\Delta}^{+}) - c(\sigma_{0}) + p(\sigma_{\Delta}^{-}) - p(\sigma_{0})}{2} \right],$$
(11)

where we note that volga of the butterfly should actually be

$$\frac{1}{2} \left[c_{\sigma\sigma}(\sigma_{\Delta}^{+}) + p_{\sigma\sigma}(\sigma_{\Delta}^{-}) - c_{\sigma\sigma}(\sigma_{0}) - p_{\sigma\sigma}(\sigma_{0}) \right], \tag{13}$$

but the last two summands are close to zero. The vanna-volga adjusted value of the exotic is then

$$B(\sigma_0) + p \times [\text{cost of vanna} + \text{cost of volga}].$$
 (14)

A division by the spot x converts everything into the usual quotation of the price in % of the underlying currency. The cost of vanna and volga is often adjusted by a number $p \in [0,1]$, which is often taken to be the risk-neutral no-touch probability. The reason is that in the case of options that can knock out, the hedge is not needed anymore once the option has knocked out. The exact choice of p depends on the product to be priced; see Table 2. Taking p = 1 as a default value would lead to overestimated overhedges for double-no-touch options as pointed out in [2].

The values of risk reversals and butterflies in Equations (11) and (12) can be approximated by a first order expansion as follows. For a risk reversal we take the difference of the call with correct implied volatility and the call with at-the-money volatility minus the difference of the put with correct implied volatility and the put with at-the-money volatility. It is easy to see that this can be well approximated by the vega of the at-the-money vanilla times the risk reversal in terms of volatility. Similarly the cost of the butterfly can be approximated by the vega of the at-the-money volatility times the butterfly in terms of volatility. In formulae this is

$$c(\sigma_{\Delta}^{+}) - c(\sigma_{0}) - p(\sigma_{\Delta}^{-}) + p(\sigma_{0})$$

$$\approx c_{\sigma}(\sigma_{0})(\sigma_{\Delta}^{+} - \sigma_{0}) - p_{\sigma}(\sigma_{0})(\sigma_{\Delta}^{-} - \sigma_{0})$$

$$= \sigma_{0}[p_{\sigma}(\sigma_{0}) - c_{\sigma}(\sigma_{0})] + c_{\sigma}(\sigma_{0})[\sigma_{\Delta}^{+} - \sigma_{\Delta}^{-}]$$

$$= c_{\sigma}(\sigma_{0})RR$$
(15)

and similarly

$$\frac{c(\sigma_{\Delta}^{+}) - c(\sigma_{0}) + p(\sigma_{\Delta}^{-}) - p(\sigma_{0})}{2}$$

$$\approx c_{\sigma}(\sigma_{0})BF.$$
(16)

With these approximations we obtain the formulae

cost of vanna
$$\approx \frac{B_{\sigma x}}{c_{\sigma x}(\sigma_{\Delta}^{+}) - p_{\sigma x}(\sigma_{\Delta}^{-})}c_{\sigma}(\sigma_{0})RR,$$
 (17)
cost of volga $\approx \frac{2B_{\sigma\sigma}}{c_{\sigma\sigma}(\sigma_{\Delta}^{+}) + p_{\sigma\sigma}(\sigma_{\Delta}^{-})}c_{\sigma}(\sigma_{0})BF.$ (18)

cost of volga
$$\approx \frac{2B_{\sigma\sigma}}{c_{\sigma\sigma}(\sigma_{\Delta}^{+}) + p_{\sigma\sigma}(\sigma_{\Delta}^{-})} c_{\sigma}(\sigma_{0}) BF.$$
 (18)

3 Observations

- 1. The price supplements are linear in butterflies and risk reversals. In particular, there is no cost of vanna supplement if the risk reversal is zero and no cost of volga supplement if the butterfly is zero.
- 2. The price supplements are linear in the at-the-money vanilla vega. This means supplements grow with growing volatility change risk of the hedge instruments.
- 3. The price supplements are linear in vanna and volga of the given exotic option.
- 4. We have not observed any relevant difference between the exact method and its first order approximation. Since the computation time for the approximation is shorter, we recommend using the approximation.
- 5. It is not clear up front which target delta to use for the butterflies and risk reversals. We take a delta of 25% merely on the basis of its liquidity.
- 6. The prices for vanilla options are consistent with the input volatilities as shown in Figures 3, 4 and 5.
- 7. The method assumes a zero volga of risk reversals and a zero vanna of butterflies. This way the two sources of risk can be decomposed and hedged with risk reversals and butterflies. However, the assumption is actually not exact. For this reason, the method should be used with a lot of care. It causes traders and financial engineers to keep adding exceptions to the standard method.

Figure 3: Consistency check of vanna-volga-pricing. Vanilla option smile for a one month maturity EUR/USD call, spot = 0.9060, r_d = 5.07%, r_f = 4.70%, σ_0 = 13.35%, σ_{Δ}^+ = 13.475%, σ_{Δ}^- = 13.825%

Figure 4: Consistency check of vanna-volga-pricing. Vanilla option smile for a one year maturity EUR/USD call, spot = 0.9060, r_d = 5.07%, r_f = 4.70%, σ_0 = 13.20%, σ_{Δ}^+ = 13.425%, σ_{Δ}^- = 13.575%

Figure 5: Consistency check of vanna-volga-pricing. Vanilla option smile for a one year maturity EUR/USD call, spot = 0.9060, r_d = 5.07%, r_f = 4.70%, σ_0 = 13.20%, σ_{Δ}^+ = 13.425%, σ_{Δ}^- = 13.00%

4 Consistency Check

A minimum requirement for the vanna-volga pricing to be correct is the consistency of the method with vanilla options. We show in Figure 3, Figure 4 and Figure 5 that the method does in fact yield a typical foreign exchange smile shape and produces the correct input volatilities at-the-money and at the delta pillars. We will now prove the consistency in the following way. Since the input consists only of three volatilities (at-the-money and two delta pillars), it would be too much to expect that the method produces correct representation of the entire volatility matrix. We can only check if the values for at-the-money and target- Δ puts and calls are reproduced correctly. In order to verify this, we check if the values for an at-the-money call, a risk reversal and a butterfly are priced correctly. Of course, we only expect approximately correct results. Note that the number p is taken to be one, which agrees with the risk-neutral no-touch probability for vanilla options.

For an at-the-money call vanna and volga are approximately zero, whence there are no supplements due to vanna cost or volga cost.

For a target- Δ risk reversal

$$c(\sigma_{\Lambda}^{+}) - p(\sigma_{\Lambda}^{-}) \tag{19}$$

we obtain

$$cost of vanna = \frac{c_{\sigma x}(\sigma_{\Delta}^{+}) - p_{\sigma x}(\sigma_{\Delta}^{-})}{c_{\sigma x}(\sigma_{\Delta}^{+}) - p_{\sigma x}(\sigma_{\Delta}^{-})} \left[c(\sigma_{\Delta}^{+}) - c(\sigma_{0}) - p(\sigma_{\Delta}^{-}) + p(\sigma_{0}) \right]
= c(\sigma_{\Delta}^{+}) - c(\sigma_{0}) - p(\sigma_{\Delta}^{-}) + p(\sigma_{0}),$$

$$cost of volga = \frac{2[c_{\sigma\sigma}(\sigma_{\Delta}^{+}) - p_{\sigma\sigma}(\sigma_{\Delta}^{-})]}{c_{\sigma\sigma}(\sigma_{\Delta}^{+}) + p_{\sigma\sigma}(\sigma_{\Delta}^{-})}
\left[\frac{c(\sigma_{\Delta}^{+}) - c(\sigma_{0}) + p(\sigma_{\Delta}^{-}) - p(\sigma_{0})}{2} \right],$$
(21)

and observe that the cost of vanna yields a perfect fit and the cost of volga is small, because in the first fraction we divide the difference of two quantities by the sum of the quantities, which are all of the same order.

For a target- Δ butterfly

$$\frac{c(\sigma_{\Delta}^{+}) + p(\sigma_{\Delta}^{-})}{2} - \frac{c(\sigma_{0}) + p(\sigma_{0})}{2}$$
(22)

we analogously obtain a perfect fit for the cost of volga and

cost of vanna
$$= \frac{c_{\sigma x}(\sigma_{\Delta}^{+}) - p_{\sigma x}(\sigma_{0}) - [c_{\sigma x}(\sigma_{0}) - p_{\sigma x}(\sigma_{\Delta}^{-})]}{c_{\sigma x}(\sigma_{\Delta}^{+}) - p_{\sigma x}(\sigma_{0}) + [c_{\sigma x}(\sigma_{0}) - p_{\sigma x}(\sigma_{\Delta}^{-})]}$$
$$\left[c(\sigma_{\Delta}^{+}) - c(\sigma_{0}) - p(\sigma_{\Delta}^{-}) + p(\sigma_{0})\right], \tag{23}$$

which is again small.

The consistency can actually fail for certain parameter scenarios. This is one of the reasons, why the traders' rule of thumb has been criticized repeatedly by a number of traders and researchers.

5 Abbreviations for First Generation Exotics

We introduce the abbreviations for first generation exotics listed in Table 1.

6 Adjustment Factor

The factor p has to be chosen in a suitable fashion. Since there is no mathematical justification or indication, there is a lot of dispute in the market about this choice. Moreover,

KO	knock-out
KI	knock-in
RKO	reverse knock-out
RKI	reverse knock-in
DKO	double knock-out
OT	one-touch
NT	no-touch
DOT	double one-touch
DNT	double no-touch

Table 1: Abbreviations for first generation exotics

product	p
КО	no-touch probability
RKO	no-touch probability
DKO	no-touch probability
OT	0.9 * no-touch probability - 0.5 * bid-offer-spread *(TV - 33%) / 66%
DNT	0.5

Table 2: Adjustment factors for the overhedge for first generation exotics

the choices may also vary over time. An example for one of many possible choices of p is presented in Table 2.

For options with strike K, barrier B and type $\phi = 1$ for a call and $\phi = -1$ for a put, we use the following pricing rules which are based on no-arbitrage conditions.

KI is priced via KI = vanilla - KO.

RKI is priced via RKI = vanilla - RKO.

RKO is priced via

$$RKO(\phi, K, B) = KO(-\phi, K, B) - KO(-\phi, B, B) + \phi(B - K)NT(B).$$

DOT is priced via DNT.

NT is priced via OT.

7 Volatility for Risk Reversals, Butterflies and Theoretical Value

To determine the volatility and the vanna and volga for the risk—reversal and butterfly, the convention is the same as for the building of the smile curve. Hence the 25% delta risk—reversal retrieves the strike for 25% delta call and put with the spot delta and premium included [left-hand-side in *Fenics*] and calculates the vanna and volga of these options using the corresponding volatilities from the smile.

The theoretical value (TV) of the exotics is calculated using the ATM-volatility retrieving it with the same convention that was used to built the smile, i.e. delta-parity with premium included [left-hand-side in *Fenics*].

8 Pricing Barrier Options

Ideally one would be in a situation to hedge all barrier contracts with portfolio of vanilla options or simple barrier building blocks. In the Black-Scholes model there are exact rules how to statically hedge many barrier contracts. A state of the art reference is given by Poulsen (2006) in [3]. However, in practice most of these hedges fail, because volatility is not constant.

For regular knock-out options one can refine the method to incorporate more information about the global shape of the vega surface through time.

We chose M future points in time as $0 < a_1\% < a_2\% < \ldots < a_M\%$ of the time to expiration. Using the same cost of vanna and volga we calculate the overhedge for the regular knock-out with a reduced time to expiration. The factor for the cost is the no-touch probability to touch the barrier within the remaining times to expiration $1 > 1 - a_1\% > 1 - a_2\% > \ldots > 1 - a_M\%$ of the total time to expiration. Some desks believe that for at-the-money strikes the long time should be weighted higher and for low delta strikes the short time to maturity should be weighted higher. The weighting can be chosen (rather arbitrarily) as

$$w = \tanh[\gamma(|\delta - 50\%| - 25\%)] \tag{24}$$

with a suitable positive γ . For M=3 the total overhedge is given by

$$OH = \frac{OH(1 - a_1\%) * w + OH(1 - a_2\%) + OH(1 - a_3\%) * (1 - w)}{3}.$$
 (25)

Which values to use for M, γ and the a_i , whether to apply a weighting and what kind varies for different trading desks.

An additional term can be used for single barrier options to account for glitches in the stop—loss of the barrier. The theoretical value of the barrier option is determined with a barrier that is moved by 4 basis points and 50% of that adjustment is added to the price if it is positive. If it is negative it is omitted altogether. The theoretical foundation for such a method is explained in [4].

9 Pricing Double Barrier Options

Double barrier options behave similar to vanilla options for a spot far away from the barrier and more like one-touch options for a spot close to the barrier. Therefore, it appears reasonable to use the traders' rule of thumb for the corresponding regular knock-out to determine the overhedge for a spot closer to the strike and for the corresponding one-touch for a spot closer to the barrier. This adjustment is the intrinsic value of the reverse knock-out times the overhedge of the corresponding one-touch. The border is the arithmetic mean between strike and the in-the-money barrier.

10 Pricing Double-No-Touch Options

For double-no-touch options with lower barrier L and higher barrier H at spot S one can use the overhedge

OH =
$$\max{\text{Vanna-Volga-OH}; \delta(S - L) - \text{TV} - 0.5\%; \delta(H - S) - \text{TV} - 0.5\%},$$
 (26)

where δ denotes the delta of the double-no-touch.

11 Pricing European Style Options

11.1 Digital Options

Digital options are priced using the overhedge of the call— or put—spread with the corresponding volatilities.

11.2 European Barrier Options

European barrier options (EKO) are priced using the prices of European and digital options and the relationship

$$EKO(\phi, K, B) = vanilla(\phi, K) - vanilla(\phi, B) - digital(B)\phi(B - K).$$
 (27)

12 No-Touch Probability

The no-touch probability is obviously equal to the non-discounted value of the corresponding no-touch option paying at maturity (under the risk neutral measure). Note that the price of the one-touch is calculated using an iteration for the touch probability. This means that the price of the one-touch used to compute the no-touch probability is itself based on the traders' rule of thumb. This is an iterative process which requires an abortion criterion. One can use a standard approach that ends either after 100 iterations or as soon as the difference of two successive iteration results is less than 10^{-6} . However, the method is so crude that it actually does not make much sense to use such precision at just this point. So in order to speed up the computation we suggest to omit this procedure and take zero iterations, which is the TV of the no-touch.

13 The Cost of Trading and its Implication on the Market Price of One-touch Options

Now let us take a look at an example of the traders' rule of thumb in its simple version. We consider one-touch options, which hardly ever trade at TV. The tradable price is the sum of the TV and the overhedge. Typical examples are shown in Figure 6, one for an upper touch level in EUR-USD, one for a lower touch level.

Figure 6: Overhedge of a one-touch in EUR-USD for both an upper touch level and a lower touch level, based on the traders' rule of thumb

Clearly there is no overhedge for one-touch options with a TV of 0% or 100%, but it is worth noting that low-TV one-touch options can be twice as expensive as their TV,

sometimes even more. SuperDerivatives ³ has become one of the standard references of pricing exotic FX options up to the market. The overhedge arises from the cost of risk managing the one-touch. In the Black-Scholes model, the only source of risk is the underlying exchange rate, whereas the volatility and interest rates are assumed constant. However, volatility and rates are themselves changing, whence the trader of options is exposed to instable vega and rho (change of the value with respect to volatility and rates). For short dated options, the interest rate risk is negligible compared to the volatility risk as shown in Figure 7. Hence the overhedge of a one-touch is a reflection of a trader's cost occurring due to the risk management of his vega exposure.

Comparison of Vega and Rho

Figure 7: Comparison of interest rate and volatility risk for a vanilla option. The volatility risk behaves like a square root function, whereas the interest rate risk is close to linear. Therefore, short-dated FX options have higher volatility risk than interest rate risk.

 $^{^3}$ http://www.superderivatives.com

14 Example

We consider a one-year one-touch in USD/JPY with payoff in USD. As market parameters we assume a spot of 117.00 JPY per USD, JPY interest rate 0.10%, USD interest rate 2.10%, volatility 8.80%, 25-delta risk reversal $-0.45\%^4$, 25-delta butterfly $0.37\%^5$.

The touch level is 127.00, and the TV is at 28.8%. If we now only hedge the vega exposure, then we need to consider two main risk factors, namely,

- 1. the change of vega as the spot changes, often called vanna,
- 2. the change of vega as the volatility changes, often called volga or volgamma or vomma.

To hedge this exposure we treat the two effects separately. The vanna of the one-touch is 0.16%, the vanna of the risk reversal is 0.04%. So we need to buy $4 \ (=0.16/0.04)$ risk reversals, and for each of them we need to pay 0.14% of the USD amount, which causes an overhedge of -0.6%. The volga of the one-touch is -0.53%, the volga of the butterfly is 0.03%. So we need to sell $18 \ (=-0.53/0.03)$ butterflies, each of which pays us 0.23% of the USD amount, which causes an overhedge of -4.1%. Therefore, the overhedge is -4.7%. However, we will get to the touch level with a risk-neutral probability of 28.8%, in which case we would have to pay to unwind the hedge. Therefore the total overhedge is -71.2%*4.7%=-3.4%. This leads to a mid market price of 25.4%. Bid and offer could be 24.25%-36.75%. There are different beliefs among market participants about the unwinding cost. Other observed prices for one-touch options can be due to different existing vega profiles of the trader's portfolio, a marketing campaign, a hidden additional sales margin or even the overall condition of the trader in charge.

15 Further Applications

The method illustrated above shows how important the current smile of the vanilla options market is for the pricing of simple exotics. Similar types of approaches are commonly used to price other exotic options. For long-dated options the interest rate risk will take over the lead in comparison to short dated options where the volatility risk is dominant.

 $^{^4}$ This means that a 25-delta USD call is 0.45% cheaper than a 25-delta USD put in terms of implied volatility.

 $^{^5}$ This means that a 25-delta USD call and 25-delta USD put is on average 0.37% more expensive than an at-the-money option in terms of volatility

References

- [1] Castagna, A. and Mercurio, F. (2007). The Vanna-Volga Method for Implied Volatilities. *Risk*, Jan 2007, pp. 106-111.
- [2] LIPTON, A. and McGhee, W. (2002). Universal Barriers. Risk, May 2002.
- [3] POULSEN, R. (2006). Barrier Options and Their Static Hedges: Simple Derivations and Extensions. *Quantitative Finance*, to appear.
- [4] SCHMOCK, U., SHREVE, S.E. and WYSTUP, U. (2002). Dealing with Dangerous Digitals. In *Foreign Exchange Risk*. Risk Publications. London.
- [5] WYSTUP, U. (2003). The Market Price of One-touch Options in Foreign Exchange Markets. *Derivatives Week* Vol. XII, no. 13, London.
- [6] Wystup, U. (2006). FX Options and Structured Products. Wiley Finance Series.

Index

```
butterfly, 5
double barrier options, 13
European style options, 13
no-touch probability, 14
one-touch, 14
overhedge, 3
risk reversal, 5
SuperDerivatives, 15
traders' rule of thumb, 2
vanna, 3
vanna-volga pricing, 2
volga, 3
```

FRANKFURT SCHOOL / HFB - WORKING PAPER SERIES

No.	Author/Title	Year
97.	Heidorn, Thomas / Hölscher, Luise / Werner, Matthias Ralf Access to Finance and Venture Capital for Industrial SMEs	2008
96.	Böttger, Marc / Guthoff, Anja / Heidorn, Thomas Loss Given Default Modelle zur Schätzung von Recovery Rates	2008
95.	Almer, Thomas / Heidorn, Thomas / Schmaltz, Christian The Dynamics of Short- and Long-Term CDS-spreads of Banks	2008
94.	Barthel, Erich / Wollersheim, Jutta Kulturunterschiede bei Mergers & Acquisitions: Entwicklung eines Konzeptes zur Durchführung einer Cultural Due Diligence	2008
93.	Heidorn, Thomas / Kunze, Wolfgang / Schmaltz, Christian Liquiditätsmodellierung von Kreditzusagen (Term Facilities and Revolver)	2008
92.	Burger, Andreas Produktivität und Effizienz in Banken – Terminologie, Methoden und Status quo	2008
91.	Löchel, Horst / Pecher, Florian The Strategic Value of Investments in Chinese Banks by Foreign Financial Institutions	2008
90.	Schalast, Christoph / Morgenschweis, Bernd / Sprengetter, Hans Otto / Ockens, Klaas / Stachuletz, Rainer / Safran, Robert Der deutsche NPL Markt 2007: Aktuelle Entwicklungen, Verkauf und Bewertung – Berichte und Referate des NPL Forums 2007	2008
89.	Schalast, Christoph / Stralkowski, Ingo 10 Jahre deutsche Buyouts	2008
88.	Bannier, Christina / Hirsch, Christian The Economics of Rating Watchlists: Evidence from Rating Changes	2007
87.	Demidova-Menzel, Nadeshda / Heidorn, Thomas Gold in the Investment Portfolio	2007
86.	Hölscher, Luise / Rosenthal, Johannes Leistungsmessung der Internen Revision	2007
85.	Bannier, Christina / Hänsel, Dennis Determinants of banks' engagement in loan securitization	2007
84.	Bannier, Christina "Smoothing" versus "Timeliness" - Wann sind stabile Ratings optimal und welche Anforderungen sind an optimale Berichtsregeln zu stellen?	2007
83.	Bannier, Christina Heterogeneous Multiple Bank Financing: Does it Reduce Ine±cient Credit-Renegotiation Incidences?	2007
82.	Cremers, Heinz / Löhr, Andreas Deskription und Bewertung strukturierter Produkte unter besonderer Berücksichtigung verschiedener Marktszenarien	2007
81.	Demidova-Menzel, Nadeshda / Heidorn, Thomas Commodities in Asset Management	2007
80.	Cremers, Heinz / Walzner, Jens Risikosteuerung mit Kreditderivaten unter besonderer Berücksichtigung von Credit Default Swaps	2007
79.	Cremers, Heinz / Traughber, Patrick Handlungsalternativen einer Genossenschaftsbank im Investmentprozess unter Berücksichtigung der Risikotragfähigkeit	2007
78.	Gerdesmeier, Dieter / Roffia, Barbara Monetary Analysis: A VAR Perspective	2007
77.	Heidorn, Thomas / Kaiser, Dieter G. / Muschiol, Andrea Portfoliooptimierung mit Hedgefonds unter Berücksichtigung höherer Momente der Verteilung	2007
76.	Jobe, Clemens J. / Ockens, Klaas / Safran, Robert / Schalast, Christoph Work-Out und Servicing von notleidenden Krediten – Berichte und Referate des HfB-NPL Servicing Forums 2006	2006
75.	Abrar, Kamyar Fusionskontrolle in dynamischen Netzsektoren am Beispiel des Breitbandkabelsektors	2006
74.	Schalast, Christoph / Schanz, Kai-Michael Wertpapierprospekte: Markteinführungspublizität nach EU-Prospektverordnung und Wertpapierprospektgesetz 2005	2006

73.	Dickler, Robert A. / Schalast, Christoph Distressed Debt in Germany: What's Next? Possible Innovative Exit Strategies	2006
72.	Belke, Ansgar / Polleit, Thorsten How the ECB and the US Fed set interest rates	2006
71.	Heidorn, Thomas / Hoppe, Christian / Kaiser, Dieter G. Heterogenität von Hedgefondsindizes	2006
70.	Baumann, Stefan / Löchel, Horst The Endogeneity Approach of the Theory of Optimum Currency Areas - What does it mean for ASEAN + 3?	2006
69.	Heidorn, Thomas / Trautmann, Alexandra Niederschlagsderivate	2005
68.	Heidorn, Thomas / Hoppe, Christian / Kaiser, Dieter G. Möglichkeiten der Strukturierung von Hedgefondsportfolios	2005
67.	Belke, Ansgar / Polleit, Thorsten (How) Do Stock Market Returns React to Monetary Policy? An ARDL Cointegration Analysis for Germany	2005
66.	Daynes, Christian / Schalast, Christoph Aktuelle Rechtsfragen des Bank- und Kapitalmarktsrechts II: Distressed Debt - Investing in Deutschland	2005
65.	Gerdesmeier, Dieter / Polleit, Thorsten Measures of excess liquidity	2005
64.	Becker, Gernot M. / Harding, Perham / Hölscher, Luise Financing the Embedded Value of Life Insurance Portfolios	2005
63	Schalast, Christoph Modernisierung der Wasserwirtschaft im Spannungsfeld von Umweltschutz und Wettbewerb – Braucht Deutschland eine Rechtsgrundlage für die Vergabe von Wasserversorgungskonzessionen? –	2005
62.	Bayer, Marcus / Cremers, Heinz / Kluß, Norbert Wertsicherungsstrategien für das Asset Management	2005
61.	Löchel, Horst / Polleit, Thorsten A case for money in the ECB monetary policy strategy	2005
60.	Richard, Jörg / Schalast, Christoph / Schanz, Kay-Michael Unternehmen im Prime Standard - "Staying Public" oder "Going Private"? - Nutzenanalyse der Börsennotiz -	2004
59.	Heun, Michael / Schlink, Torsten Early Warning Systems of Financial Crises - Implementation of a currency crisis model for Uganda	2004
58.	Heimer, Thomas / Köhler, Thomas Auswirkungen des Basel II Akkords auf österreichische KMU	2004
57.	Heidorn, Thomas / Meyer, Bernd / Pietrowiak, Alexander Performanceeffekte nach Directors Dealings in Deutschland, Italien und den Niederlanden	2004
56.	Gerdesmeier, Dieter / Roffia, Barbara The Relevance of real-time data in estimating reaction functions for the euro area	2004
55.	Barthel, Erich / Gierig, Rauno / Kühn, Ilmhart-Wolfram Unterschiedliche Ansätze zur Messung des Humankapitals	2004
54.	Anders, Dietmar / Binder, Andreas / Hesdahl, Ralf / Schalast, Christoph / Thöne, Thomas Aktuelle Rechtsfragen des Bank- und Kapitalmarktrechts I: Non-Performing-Loans / Faule Kredite - Handel, Work-Out, Outsourcing und Securitisation	2004
53.	Polleit, Thorsten The Slowdown in German Bank Lending – Revisited	2004
52.	Heidorn, Thomas / Siragusano, Tindaro Die Anwendbarkeit der Behavioral Finance im Devisenmarkt	2004
51.	Schütze, Daniel / Schalast, Christoph (Hrsg.) Wider die Verschleuderung von Unternehmen durch Pfandversteigerung	2004
50.	Gerhold, Mirko / Heidorn, Thomas Investitionen und Emissionen von Convertible Bonds (Wandelanleihen)	2004
49.	Chevalier, Pierre / Heidorn, Thomas / Krieger, Christian Temperaturderivate zur strategischen Absicherung von Beschaffungs- und Absatzrisiken	2003
48.	Becker, Gernot M. / Seeger, Norbert Internationale Cash Flow-Rechnungen aus Eigner- und Gläubigersicht	2003
47.	Boenkost, Wolfram / Schmidt, Wolfgang M. Notes on convexity and quanto adjustments for interest rates and related options	2003

46.	Hess, Dieter Determinants of the relative price impact of unanticipated Information in U.S. macroeconomic releases	2003
45.	Cremers, Heinz / Kluß, Norbert / König, Markus Incentive Fees. Erfolgsabhängige Vergütungsmodelle deutscher Publikumsfonds	2003
44.	Heidorn, Thomas / König, Lars Investitionen in Collateralized Debt Obligations	2003
43.	Kahlert, Holger / Seeger, Norbert Bilanzierung von Unternehmenszusammenschlüssen nach US-GAAP	2003
42.	Beiträge von Studierenden des Studiengangs BBA 012 unter Begleitung von Prof. Dr. Norbert Seeger Rechnungslegung im Umbruch - HGB-Bilanzierung im Wettbewerb mit den internationalen Standards nach IAS und US-GAAP	2003
41.	Overbeck, Ludger / Schmidt, Wolfgang Modeling Default Dependence with Threshold Models	2003
40.	Balthasar, Daniel / Cremers, Heinz / Schmidt, Michael Portfoliooptimierung mit Hedge Fonds unter besonderer Berücksichtigung der Risikokomponente	2002
39.	Heidorn, Thomas / Kantwill, Jens Eine empirische Analyse der Spreadunterschiede von Festsatzanleihen zu Floatern im Euroraum und deren Zusammenhang zum Preis eines Credit Default Swaps	2002
38.	Böttcher, Henner / Seeger, Norbert Bilanzierung von Finanzderivaten nach HGB, EstG, IAS und US-GAAP	2003
37.	Moormann, Jürgen Terminologie und Glossar der Bankinformatik	2002
36.	Heidorn, Thomas Bewertung von Kreditprodukten und Credit Default Swaps	2001
35.	Heidorn, Thomas / Weier, Sven Einführung in die fundamentale Aktienanalyse	2001
34.	Seeger, Norbert International Accounting Standards (IAS)	2001
33.	Moormann, Jürgen / Stehling, Frank Strategic Positioning of E-Commerce Business Models in the Portfolio of Corporate Banking	2001
32.	Sokolovsky, Zbynek / Strohhecker, Jürgen Fit für den Euro, Simulationsbasierte Euro-Maßnahmenplanung für Dresdner-Bank-Geschäftsstellen	2001
31.	Roßbach, Peter Behavioral Finance - Eine Alternative zur vorherrschenden Kapitalmarkttheorie?	2001
30.	Heidorn, Thomas / Jaster, Oliver / Willeitner, Ulrich Event Risk Covenants	2001
29.	Biswas, Rita / Löchel, Horst Recent Trends in U.S. and German Banking: Convergence or Divergence?	2001
28.	Eberle, Günter Georg / Löchel, Horst Die Auswirkungen des Übergangs zum Kapitaldeckungsverfahren in der Rentenversicherung auf die Kapitalmärkte	2001
27.	Heidorn, Thomas / Klein, Hans-Dieter / Siebrecht, Frank Economic Value Added zur Prognose der Performance europäischer Aktien	2000
26.	Cremers, Heinz Konvergenz der binomialen Optionspreismodelle gegen das Modell von Black/Scholes/Merton	2000
25.	Löchel, Horst Die ökonomischen Dimensionen der ,New Economy'	2000
24.	Frank, Axel / Moormann, Jürgen Grenzen des Outsourcing: Eine Exploration am Beispiel von Direktbanken	2000
23.	Heidorn, Thomas / Schmidt, Peter / Seiler, Stefan Neue Möglichkeiten durch die Namensaktie	2000
22.	Böger, Andreas / Heidorn, Thomas / Graf Waldstein, Philipp Hybrides Kernkapital für Kreditinstitute	2000
21.	Heidorn, Thomas Entscheidungsorientierte Mindestmargenkalkulation	2000
20.	Wolf, Birgit Die Eigenmittelkonzeption des § 10 KWG	2000

19.	Cremers, Heinz / Robe, Sopnie / Thiele, Dirk Beta als Risikomaß - Eine Untersuchung am europäischen Aktienmarkt	2000
18.	Cremers, Heinz Optionspreisbestimmung	1999
17.	Cremers, Heinz Value at Risk-Konzepte für Marktrisiken	1999
16.	Chevalier, Pierre / Heidorn, Thomas / Rütze, Merle Gründung einer deutschen Strombörse für Elektrizitätsderivate	1999
15.	Deister, Daniel / Ehrlicher, Sven / Heidorn, Thomas CatBonds	1999
14.	Jochum, Eduard Hoshin Kanri / Management by Policy (MbP)	1999
13.	Heidorn, Thomas Kreditderivate	1999
12.	Heidorn, Thomas Kreditrisiko (CreditMetrics)	1999
11.	Moormann, Jürgen Terminologie und Glossar der Bankinformatik	1999
10.	Löchel, Horst The EMU and the Theory of Optimum Currency Areas	1998
09.	Löchel, Horst Die Geldpolitik im Währungsraum des Euro	1998
08.	Heidorn, Thomas / Hund, Jürgen Die Umstellung auf die Stückaktie für deutsche Aktiengesellschaften	1998
07.	Moormann, Jürgen Stand und Perspektiven der Informationsverarbeitung in Banken	1998
06.	Heidorn, Thomas / Schmidt, Wolfgang LIBOR in Arrears	1998
05.	Jahresbericht 1997	1998
04.	Ecker, Thomas / Moormann, Jürgen Die Bank als Betreiberin einer elektronischen Shopping-Mall	1997
03.	Jahresbericht 1996	1997
02.	Cremers, Heinz / Schwarz, Willi Interpolation of Discount Factors	1996
01.	Moormann, Jürgen Lean Reporting und Führungsinformationssysteme bei deutschen Finanzdienstleistern	1995

FRANKFURT SCHOOL / HFB – WORKING PAPER SERIES CENTRE FOR PRACTICAL QUANTITATIVE FINANCE

No.	Author/Title	Year
10.	Wystup, Uwe Foreign Exchange Quanto Options	2008
09.	Wystup, Uwe Foreign Exchange Symmetries	2008
08.	Becker, Christoph / Wystup, Uwe Was kostet eine Garantie? Ein statistischer Vergleich der Rendite von langfristigen Anlagen	2008
07.	Schmidt, Wolfgang Default Swaps and Hedging Credit Baskets	2007
06.	Kilin, Fiodor Accelerating the Calibration of Stochastic Volatility Models	2007
05.	Griebsch, Susanne/ Kühn, Christoph / Wystup, Uwe Instalment Options: A Closed-Form Solution and the Limiting Case	2007

04.	Interest Rate Convexity and the Volatility Smile	2006
03.	Becker, Christoph/ Wystup, Uwe On the Cost of Delayed Currency Fixing	2005
02.	Boenkost, Wolfram / Schmidt, Wolfgang M. Cross currency swap valuation	2004
01.	Wallner, Christian / Wystup, Uwe Efficient Computation of Option Price Sensitivities for Options of American Style	2004

HFB - SONDERARBEITSBERICHTE DER HFB - BUSINESS SCHOOL OF FINANCE & MANAGEMENT

No.	Author/Title	Year
01.	Nicole Kahmer / Jürgen Moormann	
	Studie zur Ausrichtung von Banken an Kundenprozessen am Beispiel des Internet	
	(Preis: € 120,)	2003

Printed edition: € 25.00 + € 2.50 shipping

 $Download: \ http://www.frankfurt-school.de/content/de/research/Publications/list_of_publication$

Order address / contact

Frankfurt School of Finance & Management
Sonnemannstr. 9–11 ■ D–60314 Frankfurt/M. ■ Germany
Phone: +49(0)69154008−734 ■ Fax: +49(0)69154008−728

eMail: m.biemer@frankfurt-school.de Further information about Frankfurt School of Finance & Management may be obtained at: http://www.frankfurt-school.de