Tarefa 5 - Regressão Linear e logística

Nesta tarefa, você deve carregar um dataset sobre as vendas de cadeirinhas infantis, construir modelo de Regressão com os algoritmos vistos em aula e predizer o valor das vendas.

Dica: Para toda a tarefa, além da biblioteca pandas e numpy, você pode querer explorar funções da biblioteca sklearn.linear_model (em particular os pacotes LinearRegression e LogisticRegression). Além disso, você vai precisar usar funções de pré-processamento e de pósprocesamento (das bibliotecas sklearn.preprocessing, sklearn.model_selection e sklearn.metrics)

Importe os pacotes e carregue o arquivo com os dados

O dataset a ser utilizado encontra-se no arquivo casseats.csv, disponível no EAD.

Este dataset contém dados sobre as vendas de cadeirinhas infantis em 400 lojas diferentes, descritas pelos seguintes atributos/variáveis:

- Sales Vendas unitárias (em milhares) em cada local
- CompPrice Preço cobrado pelo concorrente em cada local
- Income Nível de renda da comunidade (em milhares de dólares)
- Advertising Orçamento de publicidade local para a empresa em cada local (em milhares de dólares)
- Population Tamanho da população na região (em milhares)
- Price Preço que a empresa cobra por assentos de carro em cada local
- ShelveLoc Um fator com níveis Ruim, Bom e Médio que indica a qualidade da localização das estantes para as cadeirinhas em cada
- Age Idade média da população local
- · Education Nível de escolaridade em cada localidade
- Urban Um fator com níveis Não e Sim para indicar se a loja está localizada em área urbana ou rural
- US Um fator com níveis Não e Sim para indicar se a loja é nos EUA ou não
- High Um fator com níveis Não e Sim para indicar se a compra é alta ou não

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.preprocessing import MinMaxScaler, LabelEncoder, OrdinalEncoder
from sklearn.metrics import mean_squared_error, r2_score, accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
from sklearn.metrics import confusion_matrix, roc_curve, auc
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Carregar a base de dados
df = pd.read_csv('Carseats.csv', sep=';', index_col=0)
df.head()
```

₹		Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urban	US	High
	1	9,5	138	73	11	276	120	Bad	42	17	Yes	Yes	Yes
	2	11,22	111	48	16	260	83	Good	65	10	Yes	Yes	Yes
	3	10,06	113	35	10	269	80	Medium	59	12	Yes	Yes	Yes
	4	7,4	117	100	4	466	97	Medium	55	14	Yes	Yes	No
	5	4,15	141	64	3	340	128	Bad	38	13	Yes	No	No

df.describe()

Pré-processe a base de dados

Dica: avalie a necessidade de converter os tipos das variáveis, normalizar os dados, ...

```
le_urban = LabelEncoder()
le_us = LabelEncoder()
le_high = LabelEncoder()
oe_shelve_loc = OrdinalEncoder(categories=[['Bad', 'Medium', 'Good']])
scaler = MinMaxScaler()
def preprocessing(df: pd.DataFrame):
   if not hasattr(le_urban, 'classes_'):
       df['Urban'] = le_urban.fit_transform(df['Urban'])
   else:
        df['Urban'] = le_urban.transform(df['Urban'])
   if not hasattr(le us, 'classes '):
       df['US'] = le_us.fit_transform(df['US'])
   else:
        df['US'] = le_us.transform(df['US'])
   if not hasattr(le_high, 'classes_'):
       df['High'] = le_high.fit_transform(df['High'])
   else:
       df['High'] = le_high.transform(df['High'])
   if not hasattr(oe_shelve_loc, 'categories_'):
       df['ShelveLoc'] = oe_shelve_loc.fit_transform(df[['ShelveLoc']])
   else:
        df['ShelveLoc'] = oe_shelve_loc.transform(df[['ShelveLoc']])
   df['Sales'] = df['Sales'].apply(lambda x: x.replace(',', '.'))
   if not hasattr(scaler, 'mean_'):
       df[df.columns] = scaler.fit_transform(df[df.columns])
    else:
       df[df.columns] = scaler.transform(df[df.columns])
   return df
df = preprocessing(df)
df.head()
```

₹		Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urban	US	High
	1	0.583897	0.622449	0.525253	0.379310	0.533066	0.574850	0.0	0.309091	0.875	1.0	1.0	1.0
	2	0.689613	0.346939	0.272727	0.551724	0.501002	0.353293	1.0	0.727273	0.000	1.0	1.0	1.0
	3	0.618316	0.367347	0.141414	0.344828	0.519038	0.335329	0.5	0.618182	0.250	1.0	1.0	1.0
	4	0.454825	0.408163	0.797980	0.137931	0.913828	0.437126	0.5	0.545455	0.500	1.0	1.0	0.0
	5	0.255071	0.653061	0.434343	0.103448	0.661323	0.622754	0.0	0.236364	0.375	1.0	0.0	0.0

Crie os conjuntos de treinamento e de teste

Atenção: Selecione aleatoriamente e sem reposição (para que não se repitam) 320 registros para o conjunto de treinamento. As 80 observações restantes serão usadas para o conjunto de teste. Fixe a semente de geração de dados aleatórios em 456.

```
# Dividir os dados em conjunto de treino e teste
df_linear = df.drop('High', axis=1)

X = df_linear.drop('Sales', axis=1)
y = df_linear['Sales']

np.random.seed(456)
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.80)

# visualizar os dados

plt.figure(figsize=(8, 6))
sns.histplot(df['Sales'], kde=True, bins=20, color='blue')
plt.title('Distribuição das Vendas (Sales)', fontsize=16)
plt.xlabel('Vendas (em milhares)', fontsize=14)
plt.ylabel('Frequência', fontsize=14)
plt.show()
```



```
plt.figure(figsize=(8, 6))
sns.scatterplot(x='Price', y='Sales', data=df, color='green')
plt.title('Relação entre Preço da Empresa e Vendas', fontsize=16)
plt.xlabel('Preço da Empresa (em milhares)', fontsize=14)
plt.ylabel('Vendas (em milhares)', fontsize=14)
plt.show()
```

Relação entre Preço da Empresa e Vendas


```
plt.figure(figsize=(8, 6))
sns.boxplot(x='ShelveLoc', y='Sales', data=df, hue='ShelveLoc', palette='Set2')
plt.title('Vendas por Qualidade da Localização das Estantes', fontsize=16)
plt.xlabel('Qualidade da Estante', fontsize=14)
plt.ylabel('Vendas (em milhares)', fontsize=14)
plt.show()
```


Vendas por Qualidade da Localização das Estantes


```
plt.figure(figsize=(8, 6))
sns.scatterplot(x='Income', y='Sales', data=df, hue='Urban', palette='coolwarm')
plt.title('Relação entre Renda da Comunidade e Vendas', fontsize=16)
plt.xlabel('Renda', fontsize=14)
plt.ylabel('Vendas', fontsize=14)
plt.legend(title='Área Urbana')
plt.show()
```


plt.figure(figsize=(10, 8))
corr_matrix = df.corr()
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', linewidths=0.5)
plt.title('Matriz de Correlação entre Variáveis Numéricas', fontsize=16)
plt.show()


```
plt.figure(figsize=(8, 6))
sns.boxplot(x='Urban', y='Sales', data=df, hue='Urban', palette='pastel')
plt.title('Vendas por Localização Urbana ou Rural', fontsize=16)
plt.xlabel('Localização Urbana', fontsize=14)
plt.ylabel('Vendas', fontsize=14)
plt.show()
```



```
plt.figure(figsize=(8, 6))
sns.barplot(x='US', y='Sales', data=df, hue='US', palette='muted')
plt.title('Vendas entre Lojas nos EUA e Fora', fontsize=16)
plt.xlabel('Loja nos EUA', fontsize=14)
plt.ylabel('Vendas', fontsize=14)
plt.show()
```


Vendas entre Lojas nos EUA e Fora

Construa um modelo de Regressão Linear Múltipla.

Utilizando o modelo, faça a predição do atributo Sales no conjunto teste

Atenção: o atributo High deve ser eliminado para este processo

```
regressao_linear = LinearRegression()
regressao_linear.fit(X_train, y_train)
y_pred = regressao_linear.predict(X_test)
```

Pós-processamento: Avalie cada modelo de regressão

Calcule as medidas de desempenho vistas em aula (erro quadrático médio, R2)

```
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print("Performance on the Test Set:")
print(f"MSE: {mse:.4%}")
print(f"R2 Score: {r2:.4%}")

Performance on the Test Set:
    MSE: 0.4532%
    R2 Score: 84.7939%
```

Test Accuracy: 81.2500%

Agora, construa um modelo de Regressão Logística

Faça a predição do atributo High no conjunto teste, e avalie utilizando métricas adequadas

Atenção: o atributo Sales deve ser eliminado para este processo

```
# Didivir dados de treino e teste
df_linear = df.drop('Sales', axis=1)
X = df_linear.drop('High', axis=1)
y = df_linear['High']
np.random.seed(456)
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.80)
# Treinar o modelo de Regressão Logística
regressao_logistica = LogisticRegression()
regressao_logistica.fit(X_train, y_train)
# Fazer predições com o conjunto de teste
y_pred = regressao_logistica.predict(X_test)
y_prob = regressao_logistica.predict_proba(X_test)[:, 1]
# Calcular métricas de desempenho
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
roc_auc = roc_auc_score(y_test, y_prob)
print("Performance on the Test Set:")
print(f"Test Accuracy: {accuracy:.4%}")
print(f"Test Precision: {precision:.4%}")
print(f"Test Recall: {recall:.4%}")
print(f"Test F1 Score: {f1:.4%}")
print(f"Test ROC AUC Score: {roc_auc:.4%}")
    Performance on the Test Set:
```

Test Precision: 80.7692% Test Recall: 67.7419% Test F1 Score: 73.6842% Test ROC AUC Score: 88.9401%

Start coding or generate with AI.