Corso di Algebra Lineare; Corso di Laurea in Informatica

Foglio di Esercizi 4 - Basi e dimensione di sottospazi vettoriali

Esercizio 1. Siano U e W due sottospazi vettoriali di \mathbb{R}^3 tali che

$$U = \operatorname{Span}\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\1\\3 \end{pmatrix} \right\} \quad e \quad W = \operatorname{Span}\left\{ \begin{pmatrix} 2\\1\\0 \end{pmatrix}, \begin{pmatrix} -4\\-2\\0 \end{pmatrix} \right\}$$

Si determinino una base di U , W e $U \cap W$.

Esercizio 2. In \mathbb{R}^3 sono dati:

- a) Il sottospazio $\,E\,$ delle soluzioni dell'equazione $\,x+y-z=0\,$.
- b) Il sottospazio F generato dai vettori $\begin{pmatrix} 2\\4\\3 \end{pmatrix}$, $\begin{pmatrix} 1\\3\\1 \end{pmatrix}$.
- 2.1 Determinare una base e la dimensione di $\,E\,$.
- 2.2 Trovare una base e la dimensione di $E \cap F$.
- 2.3 Trovare una base e la dimensione di E+F .

Esercizio 3. Si considerino i seguenti vettori di \mathbb{R}^4 :

$$v_1 = (0, 1, -2, 1), \quad v_2 = (1, 0, 2, -1), \quad v_3 = (3, 2, 2, -1), \quad v_4 = (0, 0, 1, 0), \quad e \quad v_5 = (0, 0, 0, 1).$$

- 3.1 Trovare una base e la dimensione di $U = \operatorname{Span}\{v_1, v_2\} \cap \operatorname{Span}\{v_2, v_3, v_4\}$
- 3.2 Lo spazio $W = \operatorname{Span}\{v_1, v_2\} + \operatorname{Span}\{v_2, v_3, v_4\}$ può coincidere con \mathbb{R}^4 ?
- 3.3 Calcolare una base e la dimensione di $\,W\,$.

Esercizio 4. Calcolare somma e intersezione dei seguenti sottospazi di \mathbb{R}^4

a)
$$V = \mathrm{Span}\,\{(1,0,0,1),(0,1,0,0)\} \qquad e \qquad W = \mathrm{Span}\,\{(0,1,0,1),(1,0,0,0)\}$$

b)
$$V = \text{Span}\{(1,1,1,0), (1,0,0,1)\} \qquad e \qquad W = \text{Span}\{(1,1,1,1), (0,0,1,1)\}$$

Esercizio 5. Considerati in \mathbb{R}^4 i sottoinsiemi

$$S=\{(x,y,z,w)\,:\, x+z=0, 3y-w=0\} \qquad \text{e} \qquad T=\{(x,y,z,w)\,:\, x+z=0, y+2w=0\},$$
 verificare che sono sottospazi e determinare una base di $S\cap T$ e $S+T$.

Esercizio 6. Si considerino i seguenti sottoinsiemi di \mathbb{R}^3 :

$$S = \{(x, y, z) : 2x + 3y - z = 0\}$$
 e $T = \{(x, y, z) : x + 2y - z = 0\}.$

- 6.1 Mostrare che S e T sono sottospazi vettoriali, trovare una loro base e la dimensione.
- 6.2 Mostrare che $S \cap T$ ha dimensione 1 e trovare una sua base.
- 6.3 Trovare una base e la dimensione di T+S .

Esercizio 7. Determinare una base e la dimensione dei sottospazi di \mathbb{R}^4 dati da W_1 , W_2 , $W_1\cap W_2$ e W_1+W_2 per le seguenti scelte di W_1 e W_2 .

7.1
$$W_1 = \{(x, y, z, w) : 2x + y + z = 0, y - z = 0\}$$
 e $W_2 = \{(x, y, z, w) : 2x + y = 0, y = 0\}$;

7.2
$$W_1 = \{(x,y,z,w): x+y=0, z+w=0\}$$
 e $W_2 = \{(x,y,z,w): x+z=0, y=0\}$;

7.3
$$W_1 = \{(x, y, z, w) : 2x + y + z = 0, y - z = 0\}$$
 e $W_2 = \text{Span}\{(1, 1, 1, 1)\}$;

7.4
$$W_1 = \{(x, y, z, w) : 2x + y + z = 0, y - z = 0\}$$
 e $W_2 = \text{Span}\{(1, 1, 0, 0), (1, 0, 0, 0)\}$;

7.5
$$W_1 = \{(x, y, z, w) : x+2y+z-w=0\}$$
 e $W_2 = \text{Span}\{(1, 0, 0, 0), (1, 0, 1, 2), (1, 0, 1, 0)\}$;

7.6
$$W_1 = \text{Span}\{(1,0,1,0), (1,2,1,2),\}$$
 e $W_2 = \text{Span}\{(2,0,0,0), (0,0,1,0)\}$;