# CMPT 419/983: Theoretical Foundations of Reinforcement Learning

Lecture 8

Sharan Vaswani

October 27, 2023

### Recap

- ullet Approximate policy iteration (API) aims to find an optimal policy without access to  $\mathcal{P}$ , r.
- $\bullet$  API alternates between policy evaluation and policy improvement: at iteration k,
  - **Policy Evaluation**: Compute the estimate  $\hat{q}^{\pi_k}$  (for example, using TD, Monte-Carlo).
  - Policy Improvement:  $\forall s, \ \pi_{k+1}(s) = \arg \max_a \hat{q}^{\pi_k}(s, a)$ .
- If the policy evaluation error at iteration k is controlled s.t.  $\hat{q}^{\pi_k} = q^{\pi_k} + \epsilon_k$ , then, API has the following convergence,  $\|v^{\pi_{K+1}} v^*\|_{\infty} \le \gamma^K \|v^{\pi_0} v^*\|_{\infty} + \frac{2\max_{k \in \{\mathbf{0}, \dots, K-1\}} \|\epsilon_k\|_{\infty}}{(1-\gamma)^2}$
- We have access to  $\Phi \in \mathbb{R}^{SA \times d}$  s.t. for every  $\pi$ , there exists a  $\theta^*$  such that,  $\max_{(s,a)} |q^{\pi}(s,a) \langle \theta^*, \phi(s,a) \rangle| \leq \varepsilon_{\mathbf{b}}$ .
- In order to control the policy evaluation error,
  - Choose  $\mathcal{C} \subset \mathcal{S} \times \mathcal{A}$ , and for each  $z := (s, a) \in \mathcal{C}$ , rollout m trajectories (truncated to horizon H) and calculate  $\hat{R}(z)$ . We can ensure that  $|\hat{R}(z) q^{\pi}(z)| \leq \varepsilon_{\bullet}$  w.p.  $1 \delta$  for all  $z \in \mathcal{C}$ .
  - Estimate  $\hat{\theta} := \arg\min_{\theta} \frac{1}{2} \sum_{z \in \mathcal{C}} \zeta(z) \left[ \langle \theta, \phi(z) \rangle \hat{R}(z) \right]^2$ .

1

**Claim**: Assuming  $V := \sum_{z \in \mathcal{C}} \zeta(z) \phi(z) \phi(z)^T \in \mathbb{R}^{d \times d}$  is invertible, for any  $z \in \mathcal{S} \times \mathcal{A}$ ,  $|q^{\pi}(z) - \langle \hat{\theta}, \phi(z) \rangle| \leq \varepsilon_{\mathbf{b}} + \|\phi(z)\|_{V^{-1}} \left[\varepsilon_{\mathbf{s}} + \varepsilon_{\mathbf{b}}\right]$ 

*Proof*: Since  $\hat{\theta}$  is computed by minimizing  $\frac{1}{2} \sum_{z \in \mathcal{C}} \zeta(z) \left[ \langle \theta, \phi(z) \rangle - \hat{R}(z) \right]^2$  and V is invertible,

$$\begin{split} \hat{\theta} &= V^{-1} \left[ \sum_{z' \in \mathcal{C}} \zeta(z') \, \hat{R}(z') \, \phi(z') \right] \\ |q^{\pi}(z) - \langle \hat{\theta}, \phi(z) \rangle| &= |q^{\pi}(z) - \langle \theta^*, \phi(z) \rangle + \langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| \\ &\qquad \qquad (\mathsf{Add/subtract} \, \langle \theta^*, \phi(z) \rangle) \\ &\leq |q^{\pi}(z) - \langle \theta^*, \phi(z) \rangle| + |\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| \\ &\qquad \qquad (\mathsf{Triangle inequality}) \\ \Longrightarrow |q^{\pi}(z) - \langle \hat{\theta}, \phi(z) \rangle| &\leq \varepsilon_{\mathsf{L}} + |\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| \end{split}$$

We will now bound  $|\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle|$ .

For  $z' \in \mathcal{C}$ , define  $\mathcal{E}(z') := \hat{R}(z') - \langle \theta^*, \phi(z') \rangle$ . Hence,

$$\begin{split} \hat{\theta} &= V^{-1} \left[ \sum_{z' \in \mathcal{C}} \zeta(z') \left[ \langle \theta^*, \phi(z') \rangle + \mathcal{E}(z') \right] \phi(z') \right] \\ &= V^{-1} \left[ \sum_{z' \in \mathcal{C}} \zeta(z') \phi(z') \phi(z')^T \right] \theta^* + V^{-1} \left[ \sum_{z' \in \mathcal{C}} \zeta(z') \mathcal{E}(z') \phi(z') \right] \\ \Longrightarrow \hat{\theta} - \theta^* &= V^{-1} \left[ \sum_{z' \in \mathcal{C}} \zeta(z') \mathcal{E}(z') \phi(z') \right] \end{split}$$

Hence, for an arbitrary  $z \in \mathcal{S} \times \mathcal{A}$ ,

$$\begin{aligned} |\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| &= \left| \left\langle V^{-1} \left[ \sum_{z' \in \mathcal{C}} \zeta(z') \, \mathcal{E}(z') \, \phi(z') \right], \phi(z) \right\rangle \right| \\ &= \left| \left\langle \sum_{z' \in \mathcal{C}} \zeta(z') \, \mathcal{E}(z') \, V^{-1} \phi(z'), \phi(z) \right\rangle \right| &= \left| \sum_{z' \in \mathcal{C}} \zeta(z') \, \mathcal{E}(z') \, \langle \phi(z), V^{-1} \phi(z') \rangle \right| \end{aligned}$$

Recall that 
$$|\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| = |\sum_{z' \in \mathcal{C}} \zeta(z') \mathcal{E}(z') \langle \phi(z), V^{-1} \phi(z') \rangle|.$$

$$|\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| \leq \sum_{z' \in \mathcal{C}} |\mathcal{E}(z')| |\zeta(z')| |\langle \phi(z), V^{-1} \phi(z') \rangle|.$$

$$\leq \left( \max_{z' \in \mathcal{C}} |\mathcal{E}(z')| \right) \sum_{z' \in \mathcal{C}} |\zeta(z')| |\langle \phi(z), V^{-1} \phi(z') \rangle|.$$

$$\sum_{z' \in \mathcal{C}} |\zeta(z')| |\langle \phi(z), V^{-1} \phi(z') \rangle| = \sqrt{\left( \mathbb{E}_{z' \sim \zeta} |\langle \phi(z), V^{-1} \phi(z') \rangle|\right)^2} \stackrel{\text{Jensen}}{\leq} \sqrt{\mathbb{E}_{z'} |\langle \phi(z), V^{-1} \phi(z') \rangle|^2}$$

$$= \sqrt{\mathbb{E}_{z'} \left[ \phi(z)^T V^{-1} \phi(z') \phi(z')^T V^{-1} \phi(z) \right]} = \sqrt{\phi(z)^T V^{-1} \left[ \sum_{z'} \zeta(z') \phi(z') \phi(z')^T \right] V^{-1} \phi(z)}$$

$$\implies \sum_{z' \in \mathcal{C}} |\zeta(z')| |\langle \phi(z), V^{-1} \phi(z') \rangle| = \sqrt{\phi(z)^T V^{-1} \phi(z)} = ||\phi(z)||_{V^{-1}}$$

$$\implies |\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| \leq \max_{z' \in \mathcal{C}} |\mathcal{E}(z')| ||\phi(z)||_{V^{-1}}$$

Recall that 
$$|\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| \le \max_{z' \in \mathcal{C}} |\mathcal{E}(z')| \ \|\phi(z)\|_{V^{-1}}$$
. Bounding  $\max_{z' \in \mathcal{C}} |\mathcal{E}(z')|$ , 
$$|\mathcal{E}(z')| = |\hat{R}(z) - \langle \theta^*, \phi(z) \rangle| = |\hat{R}(z) - q^\pi(z) + q^\pi(z) - \langle \theta^*, \phi(z) \rangle|$$
 (Add/subtract  $q^\pi(z)$ ) 
$$\le |\hat{R}(z) - q^\pi(z)| + |q^\pi(z) - \langle \theta^*, \phi(z) \rangle|$$
 (Triangle inequality) 
$$\le \varepsilon_* + \varepsilon_\mathbf{b}$$
 
$$\implies |\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| \le [\varepsilon_* + \varepsilon_\mathbf{b}] \ \|\phi(z)\|_{V^{-1}}$$

Putting everything together,

$$|q^{\pi}(z) - \langle \hat{\theta}, \phi(z) \rangle| \le \varepsilon_{\mathsf{b}} + [\varepsilon_{\mathsf{s}} + \varepsilon_{\mathsf{b}}] \|\phi(z)\|_{V^{-1}}$$

Hence, in order to control the generalization error, we have to control  $\|\phi(z)\|_{V^{-1}}$ , while controlling the size of  $\mathcal{C}$ .

**Kiefer-Wolfowitz Theorem**: There exists a  $\mathcal{C} \subset \mathcal{S} \times \mathcal{A}$  and a distribution  $\zeta \in \Delta_{|\mathcal{C}|}$  such that for  $V := \sum_{z \in \mathcal{C}} \zeta(z) \phi(z) \phi(z)^T \in \mathbb{R}^{d \times d}$ ,

$$\sup_{z \in \mathcal{S} \times \mathcal{A}} \left\| \phi(z) \right\|_{V^{-1}} \leq \sqrt{d} \quad ; \quad |\mathcal{C}| \leq \frac{d \left(d+1\right)}{2}$$

- Intuitively, this means that we can find a *coreset* of feature vectors that captures most of the information in Φ. Finding such a coreset is referred to as *G-optimal design* in statistics.
- C and  $\zeta$  can be approximately computed using a greedy algorithm that has access to  $\Phi$  (Need to do this in Assignment 3!)

Combining the Kiefer-Wolfowitz theorem with our previous result gives,

$$|q^{\pi}(z) - \hat{q}^{\pi}(z)| = |q^{\pi}(z) - \langle \hat{\theta}, \phi(z) \rangle| \leq \varepsilon_{\mathbf{b}} + \sqrt{d} \left[ \varepsilon_{\mathbf{s}} + \varepsilon_{\mathbf{b}} \right] = \varepsilon_{\mathbf{b}} \left( 1 + \sqrt{d} \right) + \varepsilon_{\mathbf{s}} \sqrt{d}$$

- Note that the  $\sqrt{d}$  amplification in the error is tight.
- Algorithmically, we need to run Monte-Carlo estimation from  $O(d^2)$  (s,a) pairs, and we can estimate  $q^{\pi}(s,a)$  upto an  $\varepsilon_{\mathbf{b}}$   $\left(1+\sqrt{d}\right)+\varepsilon_{\mathbf{s}}\sqrt{d}$  error for all (s,a) pairs.

# Convergence of Approximate Policy Iteration

We have seen the following results:

$$\begin{aligned} & \left\| \boldsymbol{v}^{\pi_{k+1}} - \boldsymbol{v}^* \right\|_{\infty} \leq \gamma^K \ \left\| \boldsymbol{v}^{\pi_0} - \boldsymbol{v}^* \right\|_{\infty} + \frac{2 \max_{k \in \{0, \dots, K-1\}} \left\| \boldsymbol{\epsilon}_k \right\|_{\infty}}{(1 - \gamma)^2} \\ & \left| \boldsymbol{q}^{\pi}(\boldsymbol{s}, \boldsymbol{a}) - \hat{\boldsymbol{q}}^{\pi}(\boldsymbol{s}, \boldsymbol{a}) \right| \leq \varepsilon_{\mathbf{b}} \left( 1 + \sqrt{d} \right) + \varepsilon_{\mathbf{s}} \sqrt{d} \qquad \qquad \text{(for all } \pi \text{ and } (\boldsymbol{s}, \boldsymbol{a}) \text{ pairs)} \\ & \Longrightarrow \left\| \boldsymbol{v}^{\pi_{k+1}} - \boldsymbol{v}^* \right\|_{\infty} \leq \gamma^K \left\| \boldsymbol{v}^{\pi_0} - \boldsymbol{v}^* \right\|_{\infty} + \frac{2\varepsilon_{\mathbf{b}} \left( 1 + \sqrt{d} \right) + 2\varepsilon_{\mathbf{s}} \sqrt{d}}{(1 - \gamma)^2} \end{aligned}$$

- If the q functions are exactly in the span of  $\Phi$ ,  $\varepsilon_b = 0$ . For example, in the *tabular* setting where d = S and the features are one hot vectors, the error depends on  $\sqrt{S} \varepsilon_{\bullet}$ .
- The algorithm for constructing C requires iterating through the states, and this can be inefficient. [YHAY<sup>+</sup>22] considers an online algorithm that does not require global access to the full  $\Phi$  matrix, but has similar theoretical guarantees.
- Next, we will see an alternative algorithm Politex that has slower convergence  $[O(1/\sqrt{K})]$ , but smaller error amplification  $[O(1/(1-\gamma))]$ .



#### **Politex**

- Like policy iteration, Politex alternates between evaluating the policy and updating it.
- Unlike policy iteration that uses a max over actions, Politex uses a softmax (multiplicative weights) to update the policy. This makes the resulting algorithm less aggressive.

#### **Algorithm** Politex

- 1: **Input**: MDP  $M = (S, A, \rho)$ ,  $\pi_0$ , step-size  $\eta$
- 2: **for**  $k = 0 \to K 1$  **do**
- 3: **Policy Evaluation**: Compute the estimate  $\hat{q}_k := \hat{q}^{\pi_k}$  (for example, using TD, Monte-Carlo) and define  $\bar{q}_k = \sum_{i=0}^k \hat{q}_i$
- 4: **Policy Update**:  $\forall (s, a), \ \pi_{k+1}(a|s) = \frac{\exp(\eta \ \bar{q}_k(s, a))}{\sum_{s'} \exp(\eta \ \bar{q}_k(s, a'))}$ .
- 5: end for
- 6: Return the *mixture policy*  $\bar{\pi}_K := \frac{\sum_{k=0}^{K-1} \pi_k}{K}$
- Politex returns the *mixture policy*  $\bar{\pi}_K$  which corresponds to choosing a policy in  $\{\pi_k\}_{k=0}^{K-1}$  uniformly at random.
- If  $\bar{q}_k = \hat{q}_k$ , Politex recovers policy iteration as  $\eta \to \infty$  (Prove in Assignment 3!)

**Claim**: If the policy evaluation error at iteration k is controlled s.t.  $\hat{q}^k = q^{\pi_k} + \epsilon_k$ , then Politex has the following convergence,

$$\left\| v^{\bar{\pi}_K} - v^* \right\|_{\infty} \leq \frac{\left\| \mathsf{Regret}(K) \right\|_{\infty}}{\left( 1 - \gamma \right) K} + \frac{2 \max_{k \in \{0, \dots, K - 1\}} \left\| \epsilon_k \right\|_{\infty}}{\left( 1 - \gamma \right)},$$

where  $\operatorname{Regret}(K) = \sum_{k=0}^{K-1} [\mathcal{M}_{\pi^*} \hat{q}_k - \mathcal{M}_{\pi_k} \hat{q}_k] \in \mathbb{R}^S$  is the regret incurred by Politex on an online linear optimization problem for each state  $s \in \mathcal{S}$ .

- The error amplification only depends on  $1/1-\gamma$ , and thus Politex has a better dependence on  $\epsilon$  compared to approximate policy iteration.
- Compared to policy iteration that has an  $\gamma^K$  convergence, the convergence for Politex depends on  $\frac{\mathrm{Regret}(K)}{K}$ . We will show that  $\mathrm{Regret}(K) = O(\sqrt{K})$ , and hence, the Politex achieves the slower  $O(1/\sqrt{K})$  convergence.
- The above claim does not depend on the specific update rule of Politex, and can be used to prove convergence for alternative algorithms that have sublinear regret.

*Proof*: 
$$v^{\pi^*} - v^{\pi_k} = (I - \gamma \mathbf{P}_{\pi^*})^{-1} [\mathcal{T}_{\pi^*} v^{\pi_k} - v^{\pi_k}]$$

(Value difference lemma)

Summing up from k = 0 to k = K - 1 and dividing by K,

$$v^{\pi^*} - \frac{\sum_{k=0}^{K-1} v^{\pi_k}}{K} = \frac{1}{K} (I - \gamma \mathbf{P}_{\pi^*})^{-1} \sum_{k=0}^{K-1} [\mathcal{T}_{\pi^*} v^{\pi_k} - v^{\pi_k}]$$

$$\implies v^{\pi^*} - v^{\bar{\pi}_K} = (I - \gamma \mathbf{P}_{\pi^*})^{-1} \sum_{k=0}^{K-1} [\mathcal{T}_{\pi^*} v^{\pi_k} - v^{\pi_k}] = \frac{1}{K} (I - \gamma \mathbf{P}_{\pi^*})^{-1} \sum_{k=0}^{K-1} [\mathcal{T}_{\pi^*} v^{\pi_k} - \mathcal{T}_{\pi_k} v^{\pi_k}]$$

(Since 
$$v^{\bar{\pi}_K} = \frac{\sum_{k=0}^{K-1} v^{\pi_k}}{K}$$
 (Prove in Assignment 3!) and  $v^{\pi} = \mathcal{T}_{\pi}v^{\pi}$ )

$$=\frac{1}{K}(I-\gamma\mathbf{P}_{\pi^*})^{-1}\sum_{k=0}^{K-1}[\mathcal{M}_{\pi^*}q^{\pi_k}-\mathcal{M}_{\pi_k}q^{\pi_k}] \qquad \qquad (\text{Since } \mathcal{T}_{\pi}v=\mathcal{M}_{\pi}[r+\gamma\mathbb{P}v]=\mathcal{M}_{\pi}q)$$

$$=\frac{1}{\mathcal{K}}\left(\mathbf{I}-\gamma\mathbf{P}_{\pi^*}\right)^{-1}\sum_{k=0}^{\mathcal{K}-1}\left[\mathcal{M}_{\pi^*}\,\hat{q}_k-\mathcal{M}_{\pi_k}\hat{q}_k\right]+\frac{1}{\mathcal{K}}\left(\mathbf{I}-\gamma\mathbf{P}_{\pi^*}\right)^{-1}\sum_{k=0}^{\mathcal{K}-1}\left[\left(\mathcal{M}_{\pi_k}-\mathcal{M}_{\pi^*}\right)\underbrace{\left(\hat{q}_k-q^{\pi_k}\right)}_{=\epsilon_k}\right]$$

$$v^{\pi^*} - v^{\bar{\pi}_K} = \frac{1}{K} (I - \gamma P_{\pi^*})^{-1} \sum_{k=0}^{K-1} [\mathcal{M}_{\pi^*} \, \hat{q}_k - \mathcal{M}_{\pi_k} \, \hat{q}_k] + \frac{1}{K} (I - \gamma P_{\pi^*})^{-1} \sum_{k=0}^{K-1} [(\mathcal{M}_{\pi_k} - \mathcal{M}_{\pi^*}) \, \epsilon_k]$$
Using the definition of Regret(K) and taking norms,

$$\left\| \mathbf{v}^{\pi^*} - \mathbf{v}^{\bar{\pi}_{K}} \right\|_{\infty} = \left\| \frac{1}{K} \left( I - \gamma \mathbf{P}_{\pi^*} \right)^{-1} \operatorname{Regret}(K) + \frac{1}{K} \left( I - \gamma \mathbf{P}_{\pi^*} \right)^{-1} \sum_{k=0}^{K-1} \left[ \left( \mathcal{M}_{\pi_k} - \mathcal{M}_{\pi^*} \right) \epsilon_k \right] \right\|_{\infty}$$

$$\leq \frac{1}{K} \left\| \left( I - \gamma \mathbf{P}_{\pi^*} \right)^{-1} \operatorname{Regret}(K) \right\|_{\infty} + \frac{1}{K} \left\| \left( I - \gamma \mathbf{P}_{\pi^*} \right)^{-1} \sum_{k=0}^{K-1} \left[ \left( \mathcal{M}_{\pi_k} - \mathcal{M}_{\pi^*} \right) \epsilon_k \right] \right\|_{\infty}$$
(Triangle inequality)

$$\leq \frac{\|\operatorname{Regret}(K)\|_{\infty}}{K(1-\gamma)} + \frac{1}{K(1-\gamma)} \left\| \sum_{k=0}^{K-1} \left[ \left( \mathcal{M}_{\pi_{k}} - \mathcal{M}_{\pi^{*}} \right) \epsilon_{k} \right] \right\|_{\infty}$$

$$\leq \frac{\|\operatorname{Regret}(K)\|_{\infty}}{K(1-\gamma)} + \frac{1}{K(1-\gamma)} \sum_{k=0}^{K-1} \left[ \|\mathcal{M}_{\pi_{k}} \epsilon_{k}\|_{\infty} + \|\mathcal{M}_{\pi^{*}} \epsilon_{k}\|_{\infty} \right]$$
(Triangle inequality)

$$\leq \frac{\|\mathsf{Regret}(K)\|_{\infty}}{K(1-\gamma)} + \frac{2\max_{k \in \{0,\dots,K-1\}} \|\epsilon_k\|_{\infty}}{(1-\gamma)} \qquad (\mathsf{M}_{\pi} \text{ is non-expansive})$$

Our aim now is to control  $\|\text{Regret}(K)\|_{\infty}$  where  $\text{Regret}(K) = \sum_{k=0}^{K-1} [\mathcal{M}_{\pi^*} \hat{q}_k - \mathcal{M}_{\pi_k} \hat{q}_k]$ . By definition, for an arbitrary vector  $u \in \mathbb{R}^{S \times A}$ ,  $(\mathcal{M}_{\pi} u)(s) = \sum_{a} \pi(a|s) u(s,a)$ . Hence,

$$\left\| \mathsf{Regret}(K) \right) \right\|_{\infty} = \max_{s} \left| \sum_{k=0}^{K-1} \left[ \sum_{a} \pi^*(a|s) \, \hat{q}_k(s,a) - \sum_{a} \pi_k(a|s) \, \hat{q}_k(s,a) \right] \right|$$

Define 
$$R_K(\pi^*, s) := \sum_{k=0}^{K-1} \langle \pi^*(\cdot|s), \hat{q}_k(s, \cdot) \rangle - \langle \pi_k(\cdot|s), \hat{q}_k(s, \cdot) \rangle$$

$$\implies \| \operatorname{Regret}(K)) \|_{\infty} = \max_{s} |R_{K}(\pi^{*}, s)|$$

To bound  $R_K(\pi^*, s)$ , we will cast Politex as an online linear optimization for each state  $s \in S$ :

- In each iteration  $k \in [K]$ , Politex chooses a distribution  $\pi_k(\cdot|s) \in \Delta_A$  for each state s.
- The "environment" chooses and reveals the vector  $\hat{q}_k(s,\cdot) \in \mathbb{R}^A$  and Politex receives a reward  $\langle \pi_k(\cdot|s), \hat{q}_k(s,\cdot) \rangle$ .
- The aim is to do as well as the optimal policy  $\pi^*$  that receives a reward  $\langle \pi^*(\cdot|s), \hat{q}_k(s,\cdot) \rangle$

#### Online Optimization

- 1: **Input**:  $w_0$ , Algorithm  $\mathcal{A}$ , Convex set  $\mathcal{W}$
- 2: **for** k = 0, ..., K 1 **do**
- 3: Algorithm  $\mathcal{A}$  chooses point (decision)  $w_k \in \mathcal{W}$
- 4: Environment chooses and reveals the (potentially adversarial) function  $f_k: \mathcal{W} \to \mathbb{R}$
- 5: Algorithm receives a reward  $f_k(w_k)$
- 6: end for

**Application**: Prediction from Expert Advice – Given n experts,

$$\mathcal{W}=\Delta_n=\{w_i|w_i\geq 0\;;\;\sum_{i=1}^n w_i=1\}$$
 and  $f_k(w_k)=\langle c_k,w_k
angle$  where  $c_k$  is the reward vector.

**Application**: Imitation Learning – Given access to an expert that knows what action  $a \in [A]$  to take in each state  $s \in \mathcal{S}$ , learn a policy  $\pi : \mathcal{S} \to \mathcal{A}$  that imitates the expert, i.e. we want that  $\pi(a|s) \approx \pi_{\text{expert}}(a|s)$ . Here,  $w = \pi$  and  $\mathcal{W} = \Delta_A \times \Delta_A \dots \Delta_A$  (simplex for each state) and  $f_k$  is a measure of the (negative) discrepancy between  $\pi_k$  and  $\pi_{\text{expert}}$ .

Q: What is w, W,  $f_k$  for Politex (for state s)?

Recall that the sequence of functions  $\{f_k\}_{k=0}^{K-1}$  is potentially adversarial and can depend on  $w_k$ .

**Objective**: Do well against the *best fixed decision in hindsight*, i.e. if we knew the entire sequence of functions beforehand, we would choose  $w^* := \arg\max_{w \in \mathcal{W}} \sum_{k=0}^{K-1} f_k(w)$ .

**Regret**: 
$$R_K(w^*) := \sum_{k=0}^{K-1} [f_k(w^*) - f_k(w_k)]$$

We want to design algorithms that achieve a *sublinear regret* (that grows as o(T)). A sublinear regret implies that the performance of our sequence of decisions is approaching that of  $w^*$ .

Q: What is "best" decision we want to compare against in Politex (for state s)?

Hence, bounding  $R_K(\pi^*, s)$  for Politex is equivalent to bounding the regret for a sequence of linear functions of the form:  $f_k(w) = \langle g_k, w \rangle$ .

The simplest algorithm that results in sublinear regret is Online Gradient Ascent.

**Online Gradient Ascent**: At iteration k, the algorithm chooses the point  $w_k$ . After the function  $f_k$  is revealed, the algorithm receives a reward  $f_k(w_k)$  and uses it to compute

$$w_{k+1} = \Pi_{\mathcal{W}}[w_k + \eta_k \nabla f_k(w_k)]$$

where  $\Pi_{\mathcal{W}}[x] = \arg\min_{y \in \mathcal{W}} \frac{1}{2} \|y - x\|_2^2$  is the Euclidean projection onto  $\mathcal{W}$ .

The Online Gradient Ascent update at iteration k can also be written as:

$$w_{k+1} = \underset{w \in \mathcal{W}}{\operatorname{arg max}} \left[ \left\langle \nabla f_k(w_k), w \right\rangle - \frac{1}{2\eta_k} \|w - w_k\|_2^2 \right]$$

In other words, gradient ascent moves in the direction of the gradient  $\nabla f_k(w_k)$ , while remaining "close" (in the Euclidean norm) to the previous iterate  $w_k$ .

Instead of using the Euclidean norm, we could measure the distance to  $w_k$  differently.

- Online Mirror Ascent generalizes gradient ascent by choosing a strictly convex, differentiable function  $\psi : \mathbb{R}^d \to \mathbb{R}$  to induce a distance measure.  $\psi$  is referred to as the *mirror map*.
- $\psi$  induces the Bregman divergence  $D_{\psi}(\cdot,\cdot)$ , a distance measure between points x,y,

$$D_{\psi}(y,x) := \psi(y) - \psi(x) - \langle \nabla \psi(x), y - x \rangle.$$

Geometrically,  $D_{\psi}(y, x)$  is the distance between the function  $\psi(y)$  and the line  $\psi(x) + \langle \nabla \psi(x), y - x \rangle$  which is tangent to the function at x.

Using this distance measure results in the mirror ascent update:

$$w_{k+1} = rg \max_{w \in \mathcal{W}} \left[ \langle 
abla f_k(w_k), w 
angle - rac{1}{\eta_k} D_{\psi}(w, w_k) 
ight]$$

• Setting  $\psi(x) = \frac{1}{2} \|x\|^2$  results in  $D_{\psi}(y, x) = \frac{1}{2} \|y - x\|^2$  and recovers gradient ascent.

The mirror ascent update can be equivalently written as:

$$w_{k+1/2} = (\nabla \psi)^{-1} (\nabla \psi(w_k) + \eta_k \nabla f_k(w_k))$$
;  $w_{k+1} = \underset{w \in \mathcal{W}}{\arg \min} D_{\psi}(w, w_{k+1/2})$ 



Prove in Assignment 3!

In order to analyze mirror ascent, we will make some assumptions on  $f_k$  and  $\psi$ .

• We will assume that  $\{f_k\}_{k=0}^{K-1}$  are linear i.e. for some vector  $g_k$ ,  $f_k(w) = \langle g_k, w \rangle$ . We will also assume that  $\{f_k\}_{k=0}^{K-1}$  are G-Lipschitz continuous.

**Lipschitz continuous functions**: f is *Lipschitz continuous* iff f can not change arbitrarily fast meaning that its gradient is bounded. Formally, for any  $w \in \mathcal{W}$ ,

$$\|\nabla f(w)\|_{\infty} \leq G$$

where G is the Lipschitz constant.

ullet We will assume that  $\psi$  is  $\nu$  strongly-convex.

**Strongly-convex functions**: If f is differentiable, it is  $\nu$ -strongly convex iff its domain  $\mathcal{D}$  is a convex set and for all  $x, y \in \mathcal{D}$  and  $\nu > 0$ ,

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\nu}{2} \|y - x\|_1^2$$

i.e. for all y, the function is lower-bounded by the quadratic defined in the RHS.

**Claim**: For *G*-Lipschitz linear functions  $\{f_k\}_{k=0}^{K-1}$  such that  $f_k(w) = \langle g_k, w \rangle$ , online mirror ascent with a  $\nu$  strongly-convex mirror map  $\psi$ ,  $\eta_k = \eta = \sqrt{\frac{2\nu}{K}} \frac{D}{G}$  where  $D^2 := \max_{u \in \mathcal{W}} D_{\psi}(u, w_0)$  has the following regret for all  $u \in \mathcal{W}$ ,

$$R_K(u) \leq \frac{\sqrt{2} DG}{\sqrt{\nu}} \sqrt{K}$$

*Proof*: Recall the mirror ascent update:  $\nabla \phi(w_{k+1/2}) = \nabla \phi(w_k) + \eta_k \nabla f_k(w_k)$ .

Setting  $\eta_k = \eta$  and using the definition of regret

$$R_K(u) = \sum_{k=0}^{K-1} [\langle g_k, u \rangle - \langle g_k, w_k \rangle] = \sum_{k=0}^{K-1} \frac{1}{\eta} \left\langle \nabla \psi(w_{k+1/2}) - \nabla \psi(w_k), u - w_k \right\rangle.$$

Using the three point Bregman property: for any 3 points x, y, z,

$$\langle \nabla \psi(z) - \nabla \psi(y), z - x \rangle = D_{\psi}(x, z) + D_{\psi}(z, y) - D_{\psi}(x, y),$$

$$\langle \nabla \psi(w_{k+1/2}) - \nabla \psi(w_k), u - w_k \rangle = D_{\psi}(u, w_k) + D_{\psi}(w_k, w_{k+1/2}) - D_{\psi}(u, w_{k+1/2})$$

$$\implies R_{K}(u) = \sum_{k=0}^{K-1} \frac{1}{\eta} \left[ D_{\psi}(u, w_k) + D_{\psi}(w_k, w_{k+1/2}) - D_{\psi}(u, w_{k+1/2}) \right]$$

$$R_K(u) = \sum_{k=0}^{K-1} \frac{1}{\eta} \left[ D_{\psi}(u, w_k) + D_{\psi}(w_k, w_{k+1/2}) - D_{\psi}(u, w_{k+1/2}) \right], \ w_{k+1} = \arg\min_{w \in \mathcal{W}} D_{\psi}(w, w_{k+1/2}).$$

Recall the optimality condition: if  $x^* = \arg\min_{x \in \mathcal{X}} f(x)$ , then  $\forall x \in \mathcal{X}$ ,  $\langle \nabla f(x^*), x^* - x \rangle \leq 0$ . Using the above condition for  $f = D_{\psi}(w, w_{k+1/2})$  and  $x^* = w_{k+1}$ , we infer that for any  $w \in \mathcal{W}$ ,

$$\begin{split} & \left\langle \nabla \psi(w_{k+1}) - \nabla \psi(w_{k+1/2}), w_{k+1} - w \right\rangle \leq 0 \\ \Longrightarrow & D_{\psi}(w, w_{k+1}) + D_{\psi}(w_{k+1}, w_{k+1/2}) - D_{\psi}(w, w_{k+1/2}) \leq 0 \\ \Longrightarrow & - D_{\psi}(u, w_{k+1/2}) \leq - D_{\psi}(u, w_{k+1}) - D_{\psi}(w_{k+1}, w_{k+1/2}) \end{split} \tag{Setting } w = u)$$

Putting everything together,

$$R_{K}(u) \leq \sum_{k=0}^{K-1} \frac{1}{\eta} \left[ D_{\psi}(u, w_{k}) - D_{\psi}(u, w_{k+1}) \right] + \left[ D_{\psi}(w_{k}, w_{k+1/2}) - D_{\psi}(w_{k+1}, w_{k+1/2}) \right]$$

$$\leq \frac{1}{\eta} D_{\psi}(u, w_{0}) + \frac{1}{\eta} \sum_{k=0}^{K-1} \left[ D_{\psi}(w_{k}, w_{k+1/2}) - D_{\psi}(w_{k+1}, w_{k+1/2}) \right]$$

Recall that 
$$R_K(u) \leq \frac{1}{\eta} D_{\psi}(u, w_0) + \frac{1}{\eta} \sum_{k=0}^{K-1} \left[ D_{\psi}(w_k, w_{k+1/2}) - D_{\psi}(w_{k+1}, w_{k+1/2}) \right]$$
. By def. of  $D_{\psi}$ ,  $D_{\psi}(w_k, w_{k+1/2}) - D_{\psi}(w_{k+1}, w_{k+1/2}) = \psi(w_k) - \psi(w_{k+1}) - \langle \nabla \psi(w_{k+1/2}), w_k - w_{k+1} \rangle$ 

$$\leq \langle \nabla \psi(w_k) - \nabla \psi(w_{k+1/2}), w_k - w_{k+1} \rangle - \frac{\nu}{2} \| w_k - w_{k+1} \|_1^2$$
(Using strong-convexity of  $\psi$  with  $y = w_{k+1}$  and  $x = w_k$ )
$$= -\eta \langle g_k, w_k - w_{k+1} \rangle - \frac{\nu}{2} \| w_k - w_{k+1} \|_1^2 \quad \text{(Using the mirror ascent update)}$$

$$\leq \eta G \| w_k - w_{k+1} \|_1 - \frac{\nu}{2} \| w_k - w_{k+1} \|_1^2 \quad \text{(Holder's inequality: } \langle x, y \rangle \leq \| x \|_{\infty} \| y \|_1 \text{ and since } f_k \text{ is } G\text{-Lipschitz)}$$

$$\leq \frac{\eta^2 G^2}{2\nu} \qquad \qquad \text{(For all } z, az - bz^2 \leq \frac{s^2}{4b} \text{)}$$

$$\Longrightarrow R_K(u) \leq \frac{1}{\eta} D_{\psi}(u, w_0) + \frac{\eta G^2 K}{2\nu} \leq \frac{D^2}{\eta} + \frac{\eta G^2 K}{2\nu} \qquad \text{(Since } D_{\psi}(u, w_0) \leq D^2 \text{)}$$

$$R_K(u) \leq \frac{\sqrt{2DG}}{\sqrt{\nu}} \sqrt{K} \quad \Box \qquad \qquad \text{(Setting } \eta = \sqrt{\frac{2\nu}{K}} \frac{D}{G} \text{)}$$

- We have proved that: For *G*-Lipschitz linear functions  $\{f_k\}_{k=0}^{K-1}$  such that  $f_k(w) = \langle g_k, w \rangle$ , online mirror ascent with a  $\nu$  strongly-convex mirror map  $\psi$ ,  $\eta_k = \eta = \sqrt{\frac{2\nu}{K}} \frac{D}{G}$  where  $D^2 := \max_{u \in \mathcal{W}} D_{\psi}(u, w_0)$  has the following regret for all  $u \in \mathcal{W}$ ,  $R_K(u) \leq \frac{\sqrt{2DG}}{\sqrt{\nu}} \sqrt{K}$ .
- ullet For Politex (for  $s\in\mathcal{S}$ ),  $w=\pi_s:=\pi(\cdot|s)$ ,  $\mathcal{W}=\Delta_{\mathcal{A}}$ ,  $g_k=\hat{q}_k(s,\cdot)$  and  $u=\pi_s^*:=\pi^*(\cdot|s)$ .

Claim 1: With the negative entropy mirror map:  $\psi(\pi_s) = \sum_{a \in \mathcal{A}} \pi(a|s) \log(\pi(a|s))$ , the corresponding Bregman divergence  $D_{\psi}(\pi_s, \tilde{\pi}_s)$  is equal to the KL divergence:  $\mathrm{KL}(\pi_s||\tilde{\pi}_s) = \sum_{a \in \mathcal{A}} \pi(a|s) \log(\pi(a|s)/\tilde{\pi}(a|s))$ .

Claim 2: Online mirror ascent with  $w = \pi_s$ , negative entropy mirror map,  $\eta_k = \eta$  on linear losses  $f_k(\pi_s) = \langle \pi(\cdot|s), \hat{q}_k(s, \cdot) \rangle$  is equivalent to the update for Politex (for state  $s \in \mathcal{S}$ ).

Prove in Assignment 3!

Hence, Politex (for state  $s \in \mathcal{S}$ ) has the following regret:  $R_K(\pi_s^*) \leq \frac{\sqrt{2}DG}{\sqrt{\nu}}\sqrt{K}$ . We now need to characterize the constants  $D, G, \nu$ .

Recall that Politex (for state  $s \in \mathcal{S}$ ) has the following regret:  $R_K(\pi_s^*) \leq \frac{\sqrt{2}DG}{\sqrt{\nu}} \sqrt{K}$ .

• Recall that  $D^2 = \max D_{\psi}(u, w_0) = \mathrm{KL}(\pi^*(\cdot|s)||\pi_0(\cdot|s))$ . For all  $a \in \mathcal{A}$ , choose  $\pi_0(a|s) = \frac{1}{A}$  i.e. for each state,  $\pi_0$  is a uniform distribution over actions. With this choice,

$$\mathsf{KL}(\pi^*(\cdot|s)||\pi_0(\cdot|s)) = \sum_{\mathsf{a}} \pi^*(\mathsf{a}|s) \, \log\left(A\,\pi^*(\mathsf{a}|s)\right) \leq \log\left(A\,\max_{\mathsf{a}} \pi^*(\mathsf{a}|s)\right) \, \sum_{\mathsf{a}} \pi^*(\mathsf{a}|s) \leq \log\left(A\right)$$

- Recall that  $\|\nabla f(x)\|_{\infty} \leq G$ . If the  $\hat{q}_k(s,a)$  functions are constrained to lie in the  $[0,1/1-\gamma]$  interval, then  $G = \frac{1}{1-\gamma}$ .
- Recall that  $\nu$  is the strong-convexity of  $\psi$ , i.e. the following inequality holds:  $\psi(y) \ge \psi(x) + \langle \nabla \psi(x), y x \rangle + \frac{\nu}{2} \|y x\|_1^2$ .

$$\psi(y) - \psi(x) - \langle \nabla \psi(x), y - x \rangle = D_{\psi}(y, x) = \mathsf{KL}(y||x) \ge \frac{1}{2} \|y - x\|_1^2$$
 (Pinsker's inequality)

Hence,  $\nu = 1$ .

Putting everything together, we can prove the following claim:

Claim: If  $\hat{q}(s, a) \in [0, 1/1 - \gamma]$  for all (s, a), Politex with  $\pi_0(a|s) = \frac{1}{A}$  for all (s, a) and  $\eta_k = \eta = \sqrt{\frac{2 \log(A)}{K}} (1 - \gamma)$  has the following regret,

$$R_{\mathcal{K}}(\pi^*, s) \leq \frac{\sqrt{2 \, \log(A)}}{1 - \gamma} \sqrt{\mathcal{K}} \implies \|\mathsf{Regret}(\mathcal{K})\|_{\infty} = \frac{\sqrt{2 \, \log(A)}}{1 - \gamma} \sqrt{\mathcal{K}}$$

Combining the above bound with the general result for Politex,

$$\left\|v^{\bar{\pi}_{K}}-v^{*}\right\|_{\infty} \leq \frac{\sqrt{2 \log(A)}}{(1-\gamma)^{2} \sqrt{K}} + \frac{2 \max_{k \in \{0,\dots,K-1\}} \|\epsilon_{k}\|_{\infty}}{(1-\gamma)}$$

Controlling the policy evaluation error using G experimental design and Monte-Carlo estimation ensures that  $\max_{k \in \{0, ..., K-1\}} \|\epsilon_k\|_{\infty} \leq \varepsilon_{\mathbf{b}} \left(1 + \sqrt{d}\right) + \varepsilon_{\mathbf{s}} \sqrt{d}$ .

$$\implies \left\| v^{\bar{\pi}_{K}} - v^{*} \right\|_{\infty} \leq \frac{\sqrt{2 \log(A)}}{(1 - \gamma)^{2} \sqrt{K}} + \frac{2\varepsilon_{\mathbf{b}} \left( 1 + \sqrt{d} \right) + 2\varepsilon_{\mathbf{s}} \sqrt{d}}{(1 - \gamma)}$$

#### References i



Dong Yin, Botao Hao, Yasin Abbasi-Yadkori, Nevena Lazić, and Csaba Szepesvári, *Efficient local planning with linear function approximation*, International Conference on Algorithmic Learning Theory, PMLR, 2022, pp. 1165–1192.