Сравнение методов адаптации шага по времени в модели типа диффузной границы, включающей уравнение Аллена–Кана

Зипунова Е. В. 1 , Пономарев А. С. 1,2 , Савенков Е. Б. 1

¹ИПМ им. М. В. Келдыша РАН ²МФТИ (НИУ)

Новые горизонты прикладной математики 18.04.2025

- Введение
- Постановка задачи
- Методы адаптации
- Вычислительный эксперимент
- Заключение

- Введение
- Постановка задачи
- Методы адаптации
- Вычислительный эксперимент
- 3аключение

Физическое явление

Электрический пробой

Явление резкого возрастания тока в диэлектрике при приложении электрического напряжения выше критического.

- Рассматриваем твердый диэлектрик
- Деградация диэлектрических свойств материала
- Процесс развивается в ограниченной зоне канале пробоя
- Сложная физическая природа

Математическая модель

Модель типа диффузной границы

Вещество находится в разных фазах. Состояние вещества описывается гладкой функцией $\phi(\mathbf{x},t)$ — фазовым полем.

- ullet $\phi=1$ неповрежденная среда
- ullet $\phi=0$ полностью разрушенная среда
- ullet Зона $\phi \in (0,1)$ диффузная граница
- На разрушение среды тратится энергия

- Введение
- Постановка задачи
- Методы адаптации
- Вычислительный эксперимент
- 3аключение

Математическая модель

Уравнения динамики системы

• Уравнение электрического потенциала Ф:

$$\mathsf{div}(\epsilon[\phi]\nabla\Phi)=0$$

• Уравнение фазового поля ϕ (типа Аллена–Кана):

$$\frac{1}{m}\frac{\partial \phi}{\partial t} = \frac{1}{2}\epsilon'(\phi)(\nabla \Phi, \nabla \Phi) + \frac{\Gamma}{l^2}f'(\phi) + \frac{1}{2}\Gamma \Delta \phi$$

• Плотность свободной энергии

Подробнее: [1], [2]

$$\pi = -rac{1}{2}\epsilon[\phi](
abla\Phi,
abla\Phi) + \Gammarac{1-f(\phi)}{l^2} + rac{\Gamma}{4}(
abla\phi,
abla\phi)$$

$$f(\phi) = 4\phi^3 - 3\phi^4$$

$$\epsilon(\mathbf{x}, t) = \frac{\epsilon_0(\mathbf{x})}{f(\phi(\mathbf{x}, t)) + \delta}$$

Математическая модель

Уравнения динамики системы

• Уравнение электрического потенциала Ф:

$$\operatorname{\mathsf{div}}(\epsilon[\phi]
abla\Phi)=0$$

ullet Уравнение фазового поля ϕ (типа Аллена–Кана):

$$\frac{1}{m}\frac{\partial\phi}{\partial t} = -F'(\phi; |\nabla\Phi|) + \frac{1}{2}\Gamma\Delta\phi$$

• Плотность свободной энергии

$$\pi = F(\phi; |\nabla \Phi|) + \frac{\Gamma}{4}(\nabla \phi, \nabla \phi)$$

• m, Γ – параметры модели, константы

Разностная схема

$$\frac{1}{m}\frac{\partial \phi}{\partial t} = -F'(\phi; |\nabla \Phi|) + \frac{1}{2}\Gamma \frac{\partial^2 \phi}{\partial x^2}$$

• $|\nabla \Phi|$ – параметр

Разностная задача

$$\frac{1}{m} \frac{\phi_i^{j+1} - \phi_i^j}{\tau} = -F'(\phi_i^j; |\nabla \Phi|) + \frac{\Gamma}{2} \frac{\phi_{i+1}^j - 2\phi_i^j + \phi_{i-1}^j}{h^2}$$
$$\phi_i^0 = \phi_0(ih); \quad \phi_0^j = \phi_I(j\tau); \quad \phi_n^j = \phi_r(j\tau)$$

Сетка регулярная; τ — шаг по времени, h — шаг по пространству.

Явная разностная схема первого порядка по времени, второго по пространству.

Типичное решение,

Из работы [1]. Узлов по измерениям: $N_{\rm x}=10^3$, $N_t=10^5$

Цель работы

• Типичное поведение модели: долгий период медленных изменений, затем стремительное развитие пробоя.

Цель работы

Исследовать несколько подходов к адаптации расчетного шага по времени.

- Введение
- Постановка задачи
- Методы адаптации
- Вычислительный эксперимент
- 3аключение

Общий вид схемы с адаптивным шагом

• Вводится переменный шаг τ^k :

$$\phi_j^{k+1} = \phi_j^k + m \tau^k \left(-F'(\phi_j^k) + \frac{\Gamma}{2} \frac{\phi_{j+1}^k - 2\phi_j^k + \phi_{j-1}^k}{h^2} \right)$$

ullet Значение au^k ограничено заранее выбранными $au_{ extit{min}}$ и $au_{ extit{max}}$:

$$\tau^k = \max\left[\tau_{\textit{min}}, \min(\tau_{\textit{max}}, \widetilde{\tau}^k)\right]$$

Методы адаптации

Методы адаптации

• По фазовому полю:

$$\widetilde{ au}_1^k = rac{ au_1}{\left\|rac{\partial_h \phi}{\partial t}
ight\|_{C,h}}$$

• По полной энергии:

$$\widetilde{\tau}_2^k = \frac{tol_2}{\left|\frac{d_h \Pi}{dt}\right|}$$

Предложены в статьях [3] и [4].

Методы адаптации

• Условие устойчивости схемы [1]:

$$\tau \leqslant \frac{1}{4m} \min \left(\frac{\delta^{5/3}}{|\nabla \Phi|^2 \epsilon_0}, \frac{h^2}{\Gamma} \right)$$

• Неравенство с первым аргументом min можно переписать в виде

$$m au\max_{\phi\in[0,1]}|F''(\phi)|\leqslant 1$$

Адаптация по устойчивости

$$\widetilde{\tau}_3^k = \frac{tol_3}{m \cdot \max_{j=0}^N G(\phi_j^k)},$$

где $G(\phi)$ мажорирует $|F''(\phi)|$

- Введение
- Постановка задачи
- Методы адаптации
- Вычислительный эксперимент
- 3аключение

Параметры модели

• Параметры, отражающие реальный физический эксперимент:

Название	Переменная	Значение	
электрическое напряжение	$ \nabla \Phi $	5.625 · 10 ⁶ В/м	
энергия роста ед. длины канала	Г	$8.118 \cdot 10^{-10}$ Дж/м	
диэлектрическая проницаемость	ϵ_0	$2.301 \cdot 10^{-11} \; K{}_{J}^{2}/(Д{}_{W} \cdot M)$	
подвижность	m	12 м ³ /(Дж·с)	
характерная толщина границы	1	$1.5 \cdot 10^{-6}$ м	
регуляризующий параметр	δ	10^{-3}	
размер образца	L	$3.2 \cdot 10^{-5}$ м	
продолжительность	\mid T	$2 \cdot 10^{-3}$ c	
шаг по пространству	h	$5\cdot 10^{-7}$ м	
минимальный шаг по времени	$ au_{min}$	10^{-10} c	
максимальный шаг по времени	$ au_{max}$	$\leqslant 6.42 \cdot 10^{-6}$ c	

Поведение системы

Результаты расчетов

Тип адаптации	Ускорение (раз)	Отклонение по ϕ	Запаздывание
по фазовому полю	800	$3.64 \cdot 10^{-4}$	0.3%
по энергии	107	$5.38 \cdot 10^{-4}$	0.36%
по устойчивости	1474	$1.54 \cdot 10^{-2}$	0.71%
по фазовому полю	101	$1.23 \cdot 10^{-5}$	0.004%
по энергии	101	$3.27 \cdot 10^{-4}$	0.19%
по устойчивости	100	$2.23 \cdot 10^{-5}$	0.0046%

- Введение
- Постановка задачи
- Методы адаптации
- Вычислительный эксперимент
- Заключение

Заключение

Основные результаты работы.

- Исследовано три метода адаптации расчетного шага по времени
- Проведены вычислительные эксперименты
- Рассмотренные методы универсальны для моделей типа диффузной границы с уравнением Аллена-Кана

Литература

- [1] А. С. Пономарев, Е. В. Зипунова и Е. Б. Савенков. "Устойчивость стационарных решений в модели развития канала электрического пробоя типа «диффузной границы»". Препринты ИПМ им. М.В.Келдыша (2024).
- [2] Е. В. Зипунова и Е. Б. Савенков. "О моделях диффузной границы для описания динамики объектов высшей коразмерности". Препринты ИПМ им. М. В. Келдыша (2020).
- [3] Y. Li, Y. Choi и J. Kim. "Computationally efficient adaptive time step method for the Cahn-Hilliard equation". Computers & Mathematics with Applications (2017).
- [4] Zh. Zhang и Zh. Qiao. "An Adaptive Time-Stepping Strategy for the Cahn-Hilliard Equation". Communications in Computational Physics (2012).

Спасибо за внимание!

