Digit Guardian

The motivation for this problem comes from the similar puzzle:

The positive number X is divisible by 42, and is composed of only 1s and 0s when written in base 10.

What's the smallest number that X might be?

This problem is concerned with base 10 integers. We say that that base 10 numbers are constructed with the (standard) decimal digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

In this problem you will complete three methods in the <code>DigitGuardian</code> class. The <code>DigitGuardian</code> class has an <code>ArrayList<Integer></code> digits as an instance variable. The instance variable is initialized by the constructor. The precondition is all values in digits are single decimal digit.

The first method to complete is: boolean isAllowable (int num). isAllowable returns true if both:

- Every decimal digit in digits appears at least once in num Leading zeros cannot satisfy this condition.
- And num contains only decimal digits in digits.

The following code shows the results of the isAllowable method.

The following code	Returns
List <integer> digs = new ArrayList<integer>();</integer></integer>	
<pre>digs.add(new Integer(0));</pre>	
<pre>digs.add(new Integer(2));</pre>	
<pre>digs.add(new Integer(5));</pre>	
<pre>digs.add(new Integer(8));</pre>	
<pre>DigitGuardian dg = new DigitGuardian(digs);</pre>	
dg.isAllowable(5082);	true
dg.isAllowable(50852);	true
dg.isAllowable(582); // does not contain a 0	false
dg.isAllowable(12508); // contains a 1, not in digits	false

Digit Guardian

The second method to complete is: getDigits (int num). getDigits returns a List<Integer> containing every decimal digit in num in any order. Please note:

- Order of the digits in the List is not important.
- Duplicate decimal digits in num are not repeated in the returned List.
- The contents of the instance variable digits are NOT relevant in this problem.

The following code shows the results of the getDigits method.

The following code	Returns
<pre>List<integer> digs = new ArrayList<integer>(); /* code not shown */ DigitGuardian dg = new DigitGuardian(digs);</integer></integer></pre>	
List <integer> ans = dg.getDigits(1575);</integer>	
ans.size();	3
<pre>ans.contains(new Integer(1));</pre>	true
ans.contains(new Integer(5));	true
<pre>ans.contains(new Integer(7));</pre>	true
<pre>ans.contains(new Integer(0));</pre>	false

The third and final method to complete is: int getMinLCM(int divisor).

getMinLCM returns smallest number, ans, that is allowable (isAllowable(ans) == true) and divisible by divisor (ans % divisor == 0).

The following code shows the results of the <code>getMinLCM</code> method.

The fo	llowing code	Returns
List <integer> digs = ne digs.add(new Integer(0) digs.add(new Integer(2) digs.add(new Integer(5) digs.add(new Integer(8) DigitGuardian dg = new</integer>););););	
<pre>dg.getMinLCM(2); // //</pre>	isAllowable(2058) == true && 2058 % 2 == 0	2058
<pre>dg.getMinLCM(97); //</pre>	isAllowable(5820) == true && 5820 % 97 == 0	5820
<pre>dg.getMinLCM(117); //</pre>	isAllowable(2025855) == true && 2025855 % 117 == 0	2025855