Valor en Riesgo y ES para portafolio del S&P 500

Proyecto de Análisis de Riesgo Financiero

Fernanda Hernández, Leonardo Rosas, José Cortes, Lizeth Pastrana

Profesor: Jorge Luis Reyes García

Contents

Abstract	1
ntroducción	1
elección de Activos	2
Descripición de Activos	2
Visualización de datos	
⁷ aR No Paramétricos	6
Simulación Histórica	6
Simulación de Monte Carlo	
Simulación de Monte Carlo Laplace	
Simulación Bootstrapping	
Alisamiento Exponencial	
⁷ aR Paramétricos	16
VaR Paramétrico	16
Delta Normal	
Extensión de Cornish-Fisher	
Comparación de modelos	22
Conclusiones	25
Aprendizajes	

Abstract

An investment portfolio was constructed consisting of 20 stocks from companies belonging to the S&P 500 index, selected according to criteria of sector diversification and economic relevance, for the period from January 2022 to March 2025. Historical price data were obtained from the financial platform Yahoo Finance. For each selected issuer, a description of its economic sector, its main operating activities, and a justification for its inclusion in the portfolio are provided, considering its market representativeness and relevance within the risk analysis.

Introducción

En el ámbito financiero, la gestión de riesgos constituye una de las actividades más importantes para la toma de decisiones estratégicas. Una de las herramientas más utilizadas para cuantificar el riesgo de mercado es el Valor en Riesgo (VaR, por sus siglas en inglés), el cual mide la pérdida máxima esperada de un portafolio financiero en un horizonte temporal dado, bajo un nivel de confianza específico. Complementariamente, se

utiliza el Expected Shortfall (ES), también conocido como pérdida esperada, que estima la pérdida promedio en los escenarios en los que el VaR es superado, todo esto usando los lenguajes de programación mas populares dentro del area; R y Python.

El objetivo principal es identificar cuáles emisoras presentan mayor exposición al riesgo bajo diferentes escenarios, y analizar el comportamiento del riesgo agregado del portafolio completo. Esta información permite inferir decisiones clave para estrategias de cobertura, asignación de activos y control de riesgos.

Selección de Activos

Descripición de Activos

Se construyó un portafolio de inversión compuesto por 20 acciones de compañías pertenecientes al índice S&P 500, seleccionadas de acuerdo con criterios de diversificación sectorial y relevancia económica, para el período comprendido entre enero de 2022 y marzo de 2025. Los datos históricos de precios fueron obtenidos de la plataforma financiera Yahoo Finance. Para cada emisora seleccionada, se proporciona una descripción del sector económico al que pertenece, sus principales actividades operativas, y una justificación del por qué se decidió incluirla en el portafolio, considerando su representatividad en el mercado y su relevancia dentro del análisis de riesgo.

Apple Inc. (AAPL) Sector: Tecnología Principales actividades: diseña, fabrica y comercializa smartphones, ordenadores personales, tabletas, wearables y accesorios en todo el mundo. Racional: Apple es una de las compañías más valiosas y reconocidas globalmente, líder en innovación tecnológica. Su inclusión aporta solidez y exposición a tendencias de consumo premium, innovación y transformación digital. Justificación: Apple es una de las compañías más valiosas y reconocidas globalmente, líder en innovación tecnológica. Su inclusión aporta solidez y exposición a tendencias de consumo premium, innovación y transformación digital.

Microsoft Corp. (MSFT) Sector: Tecnología Principales actividades: desarrolla y da soporte a software, servicios, dispositivos y soluciones en todo el mundo. Racional: Microsoft ofrece estabilidad y crecimiento en sectores clave como software empresarial, computación en la nube e inteligencia artificial, siendo una de las empresas tecnológicas más diversificadas y rentables del mundo. Justificación: Microsoft ofrece estabilidad y crecimiento en sectores clave como software empresarial, computación en la nube e inteligencia artificial, siendo una de las empresas tecnológicas más diversificadas y rentables del mundo.

NVIDIA Corp. (**NVDA**) Sector: Tecnología Principales actividades: NVIDIA Corporation, empresa de infraestructura informática, ofrece soluciones gráficas, de computación y de redes en Estados Unidos, Singapur, Taiwán, China, Hong Kong y a nivel internacional. El segmento de Computación y Redes comprende plataformas informáticas para centros de datos y plataformas de redes de extremo a extremo. Racional: NVIDIA lidera sectores estratégicos como inteligencia artificial, centros de datos y gráficos, posicionándola como un actor fundamental en el futuro de la computación, lo que diversifica riesgos tecnológicos y de crecimiento. Justificación: NVIDIA lidera sectores estratégicos como inteligencia artificial, centros de datos y gráficos, posicionándola como un actor fundamental en el futuro de la computación, lo que diversifica riesgos tecnológicos y de crecimiento.

Amazon.com, Inc. (AMZN) Sector: Consumo discrecional Principales actividades: se dedica a la venta minorista de productos de consumo, publicidad y servicios de suscripción a través de tiendas físicas y en línea en Norteamérica e internacionalmente. Racional: Amazon domina el comercio electrónico y los servicios en la nube (AWS), sectores en constante expansión, lo que aporta exposición a innovación digital y consumo global al portafolio. Justificación: Amazon domina el comercio electrónico y los servicios en la nube (AWS), sectores en constante expansión, lo que aporta exposición a innovación digital y consumo global al portafolio.

Meta Platforms, Inc. (META) Sector: Servicios de comunicación Principales actividades: se dedica al desarrollo de productos que permiten a las personas conectarse y compartir con amigos y familiares a través de dispositivos móviles, computadoras personales, gafas de realidad virtual y mixta, realidad aumentada y wearables en todo el mundo. Racional: Meta es un referente en redes sociales y está invirtiendo fuertemente en tecnologías emergentes como realidad aumentada y metaverso, ofreciendo una mezcla de innovación y liderazgo en comunicación digital. Justificación: Meta es un referente en redes sociales y está invirtiendo

fuertemente en tecnologías emergentes como realidad aumentada y metaverso, ofreciendo una mezcla de innovación y liderazgo en comunicación digital.

Alphabet Inc. A (GOOGL) Sector: Servicios de comunicación Principales actividades: Ofrece diversos productos y plataformas en Estados Unidos, Europa, Oriente Medio, África, Asia-Pacífico, Canadá y Latinoamérica. Opera a través de los segmentos de Servicios de Google, Google Cloud y Otras Apuestas. Racional: Alphabet, a través de Google y sus filiales, controla gran parte del mercado de búsquedas y publicidad digital, además de innovar en sectores como la nube, inteligencia artificial y automóviles autónomos, lo que garantiza diversificación tecnológica. Justificación: Alphabet, a través de Google y sus filiales, controla gran parte del mercado de búsquedas y publicidad digital, además de innovar en sectores como la nube, inteligencia artificial y automóviles autónomos, lo que garantiza diversificación tecnológica.

Broadcom Inc. (AVGO) Sector: Tecnología Principales actividades: diseña, desarrolla y suministra diversos dispositivos semiconductores, centrándose en dispositivos complejos basados en semiconductores de óxido metálico complementario (MEC) de señal digital y mixta, así como en productos analógicos III-V a nivel mundial. Racional: Broadcom es clave en la industria de semiconductores y comunicaciones, abasteciendo sectores esenciales como 5G, infraestructura de redes y servidores, brindando exposición a tecnología avanzada y crecimiento estructural. Justificación: Broadcom es clave en la industria de semiconductores y comunicaciones, abasteciendo sectores esenciales como 5G, infraestructura de redes y servidores, brindando exposición a tecnología avanzada y crecimiento estructural.

Alphabet Inc. C (GOOG) Sector: Servicios de comunicación Principales actividades: ofrece diversos productos y plataformas en Estados Unidos, Europa, Oriente Medio, África, Asia-Pacífico, Canadá y Latinoamérica. Opera a través de los segmentos de Servicios de Google, Google Cloud y Otras Apuestas. Racional: La acción clase C de Alphabet proporciona la misma exposición a innovación, publicidad y tecnología global que GOOGL, pero sin derechos de voto, lo que permite diversificar dentro de una misma exposición a innovación, publicidad y tecnología global que GOOGL, pero sin derechos de voto, lo que permite diversificar dentro de una misma estructura corporativa.

Tesla, Inc. (TSLA) Sector: Consumo discrecional Principales actividades: Tesla, Inc. diseña, desarrolla, fabrica, alquila y vende vehículos eléctricos y sistemas de generación y almacenamiento de energía en Estados Unidos, China y a nivel internacional. Racional: Tesla es líder mundial en movilidad eléctrica y energías renovables, sectores en expansión, aportando innovación y crecimiento disruptivo a largo plazo al portafolio. Justificación: Tesla es líder mundial en movilidad eléctrica y energías renovables, sectores en expansión, aportando innovación y crecimiento disruptivo a largo plazo al portafolio.

WALMART INC. (WMT) Sector: Distribución y venta minorista de alimentos Principales actividades: opera tiendas y clubes minoristas y mayoristas, sitios web de comercio electrónico y aplicaciones móviles en todo el mundo. Racional: Walmart es el minorista más grande del mundo, con una sólida red logística y crecimiento en comercio electrónico, ofreciendo estabilidad y defensa ante ciclos económicos adversos. Justificación: Walmart es el minorista más grande del mundo, con una sólida red logística y crecimiento en comercio electrónico, ofreciendo estabilidad y defensa ante ciclos económicos adversos.

Intel Corporation (INTC) Sector: Tecnología Principales actividades: Intel Corporation diseña, desarrolla, fabrica, comercializa y vende productos y servicios informáticos y relacionados en todo el mundo. Racional: Intel es una referencia en la fabricación de semiconductores y procesadores a nivel mundial. Su reestructuración reciente y apuesta por la manufactura avanzada ofrecen oportunidades de crecimiento estratégico. Justificación: Intel es una referencia en la fabricación de semiconductores y procesadores a nivel mundial. Su reestructuración reciente y apuesta por la manufactura avanzada ofrecen oportunidades de crecimiento estratégico.

JPMorgan Chase & Co. (JPM) Sector: Servicios financieros Principales actividades: opera como una compañía de servicios financieros a nivel mundial. Opera a través de tres segmentos: Banca de Consumo y Banca Comunitaria, Banca Comercial y de Inversión, y Gestión de Activos y Patrimonio. La compañía ofrece productos de depósito, inversión y préstamo, gestión de efectivo, pagos y servicios. Racional: JPMorgan, el banco más grande de EE.UU., combina solidez financiera, diversificación de ingresos y liderazgo en banca de inversión y gestión de activos, aportando estabilidad al portafolio. Justificación: JPMorgan, el banco más

grande de EE.UU., combina solidez financiera, diversificación de ingresos y liderazgo en banca de inversión y gestión de activos, aportando estabilidad al portafolio.

Ford Motor Company (F) Sector: Consumo discrecional Principales actividades: desarrolla, entrega y presta servicio a camionetas, vehículos utilitarios deportivos (SUV), furgonetas y automóviles comerciales Ford, y vehículos de lujo Lincoln en todo el mundo.

Racional: Ford representa la transición de la industria automotriz hacia vehículos eléctricos y tecnologías inteligentes, ofreciendo exposición a movilidad sostenible y recuperación cíclica. Justificación: Ford representa la transición de la industria automotriz hacia vehículos eléctricos y tecnologías inteligentes, ofreciendo exposición a movilidad sostenible y recuperación cíclica.

NIKE, Inc. (NKE) Sector: Consumo discrecional Principales actividades: junto con sus subsidiarias, se dedica al diseño, desarrollo, comercialización y venta de calzado, ropa, equipos, accesorios y servicios deportivos en todo el mundo.

Racional: Nike es líder mundial en ropa y calzado deportivo, con fuerte reconocimiento de marca e innovación continua, lo que brinda exposición al consumo global y a tendencias de vida saludable. Justificación: Nike es líder mundial en ropa y calzado deportivo, con fuerte reconocimiento de marca e innovación continua, lo que brinda exposición al consumo global y a tendencias de vida saludable.

The Goldman Sachs Group, Inc. (GS) Sector: Servicios financieros Principales actividades: ofrece una gama de servicios financieros a empresas, instituciones financieras, gobiernos y particulares en América, Europa, Oriente Medio, África y Asia. Opera a través de los segmentos de Banca y Mercados Globales, Gestión de Activos y Patrimonios, y Soluciones de Plataforma. Racional: Goldman Sachs es uno de los bancos de inversión más importantes del mundo, con alto nivel de diversificación y generación de ingresos en servicios financieros, ideal para capturar oportunidades en mercados de capitales. Justificación: Goldman Sachs es uno de los bancos de inversión más importantes del mundo, con alto nivel de diversificación y generación de ingresos en servicios financieros, ideal para capturar oportunidades en mercados de capitales.

Netflix, Inc. (NFLX) Sector: Servicios de Comunicación Principales actividades: ofrece servicios de entretenimiento. La compañía ofrece series de televisión, documentales, largometrajes y juegos en diversos géneros e idiomas. También ofrece a sus miembros la posibilidad de recibir contenido en streaming a través de una amplia gama de dispositivos conectados a internet, como televisores, reproductores de vídeo digitales, decodificadores y dispositivos móviles. Racional: Netflix es pionero en el streaming de contenido digital, con expansión global y fuerte creación de contenido original, ofreciendo exposición a cambios en el consumo de entretenimiento. Justificación: Netflix es pionero en el streaming de contenido digital, con expansión global y fuerte creación de contenido original, ofreciendo exposición a cambios en el consumo de entretenimiento.

Chevron Corporation (CVX) Sector: Energético Principales actividades: a través de sus filiales, participa en operaciones integradas de energía y productos químicos en Estados Unidos e internacionalmente.

Racional: Chevron proporciona diversificación energética con operaciones integradas en petróleo, gas y químicos, y además ofrece estabilidad de dividendos, ideal en entornos de inflación o volatilidad energética. Justificación: Chevron proporciona diversificación energética con operaciones integradas en petróleo, gas y químicos, y además ofrece estabilidad de dividendos, ideal en entornos de inflación o volatilidad energética.

Adobe Inc. (ADBE) Sector: Tecnología Principales actividades: junto con sus filiales, opera como una empresa tecnológica a nivel mundial. Opera a través de tres segmentos: Medios Digitales, Experiencia Digital y Publicidad y Publicidad. Racional: Adobe es líder mundial en software creativo y marketing digital, posicionada en sectores en crecimiento como creación de contenido digital, analítica y experiencia de usuario. Justificación: Adobe es líder mundial en software creativo y marketing digital, posicionada en sectores en crecimiento como creación de contenido digital, analítica y experiencia de usuario.

Bank of America Corporation (BAC) Sector: Servicios financieros Principales actividades: a través de sus subsidiarias, ofrece diversos productos y servicios financieros a particulares, pymes, inversores institucionales, grandes corporaciones y gobiernos de todo el mundo.

Racional: Bank of America es una de las principales instituciones financieras globales, con diversificación en banca minorista, inversión y servicios financieros, ofreciendo solidez ante cambios económicos. Justificación: Bank of America es una de las principales instituciones financieras globales, con diversificación en banca

minorista, inversión y servicios financieros, ofreciendo solidez ante cambios económicos.

Citigroup Inc. (C) Sector: Servicios financieros Principales actividades: ofrece diversos productos y servicios financieros a consumidores, empresas, gobiernos e instituciones. Racional: Citigroup tiene una amplia presencia internacional, especialmente en mercados emergentes, lo que aporta diversificación geográfica y exposición a crecimiento fuera de EE.UU. Justificación: Citigroup tiene una amplia presencia internacional, especialmente en mercados emergentes, lo que aporta diversificación geográfica y exposición a crecimiento fuera de EE.UU.

Visualización de datos

Con el objetivo de visualizar el comportamiento histórico de las emisoras seleccionadas, se elaboró un gráfico de líneas que muestra las series de tiempo de los precios de cierre de cada acción considerada en el análisis. Esta visualización permite identificar tendencias generales, episodios de volatilidad y comportamientos particulares que podrían influir en el cálculo del riesgo.

Dado que el enfoque del análisis está centrado en la medición del riesgo, trabajar directamente con los precios de las acciones no es recomendable, ya que estos no suelen ser series estacionarias. La no estacionariedad implica que los precios presentan una tendencia (creciente o aleatoria), y no poseen una media ni varianza constantes en el tiempo. Esto representa un problema al aplicar modelos de Valor en Riesgo (VaR), los cuales requieren supuestos de estacionariedad para obtener resultados confiables.

Por esta razón, en nuestro análisis utilizamos los rendimientos simples, definidos como:

$$R_t = \frac{P_{t+1} - P_t}{P_t}$$

 R_t : Rendimiento del activo en el período t

P_t : Precio del activo en el tiempo t

P_{t+1} : Precio del activo en el tiempo t+1 (siguiente periodo)

Y los graficamos para observar la diferencia con nuestras series de tiempo, nuevamente graficamos todas nuestras acciones, y aunque no se alcanza a observar claro que línea es de cada empresa, podemos ver que la serie ya es estacionaria.

A continuación, se presenta el gráfico de los rendimientos simples para cada una de las acciones en el portafolio. Si bien debido a la densidad de la información no es posible identificar fácilmente cada serie individual, se puede observar visualmente que las series son estacionarias, con fluctuaciones alrededor de una media constante y sin tendencia aparente.

VaR No Paramétricos

En esta sección se calcula el Valor en Riesgo (VaR) individual y para el portafolio, utilizando varios métodos no paramétricos. Estos métodos permiten estimar el riesgo de pérdida sin hacer suposiciones sobre la distribución específica de los rendimientos, lo cual es útil para la estimación del riesgo en situaciones donde los datos no siguen distribuciones conocidas o estándar.

Simulación Histórica

En esta sección se presenta el cálculo del Valor en Riesgo (VaR) y la Pérdida Esperada (ES) utilizando el método de Simulación Histórica, que estima el riesgo de pérdida futura basándose en los rendimientos históricos observados. Este enfoque no hace suposiciones sobre la distribución de los rendimientos y, por lo tanto, refleja directamente el comportamiento pasado del activo.

El*VaR se calcula como el percentil inferior de los rendimientos históricos, lo que representa la pérdida máxima esperada en un nivel de confianza dado. El VaR para un nivel de confianza α es el valor tal que el área bajo la distribución de los rendimientos hasta este punto es igual a α .

El cálculo se realiza para cada emisora y para diferentes horizontes de tiempo: 1, 7, 15, 30, 60, 90 y 180 días. Además, se consideran tres niveles de confianza: 95%, 97% y 99%, lo que permite evaluar el riesgo bajo diversas condiciones.

El VaR para cada emisora i y horizonte de tiempo t se define como:

$$VaR_{\alpha} = \text{percentil}_{\alpha}(\text{rendimientos históricos})$$

Por otro lado, la Pérdida Esperada (ES) se calcula como el valor promedio de las pérdidas que exceden el VaR. Esto proporciona una medida más completa del riesgo en situaciones extremas. La ES para un nivel de confianza α se calcula como el promedio de los rendimientos inferiores al VaR:

$$ES_{\alpha} = \frac{1}{n} \sum_{i=1}^{n} \text{P\'erdida}_{i} \quad \text{si} \quad \text{P\'erdida}_{i} \leq VaR_{\alpha}$$

A continuación, se presentan algunos de los resultados obtenidos para cada emisora del S&P 500, considerando los diferentes horizontes de tiempo y niveles de confianza. La tabla muestra el VaR y la ES para cada emisora aleatoriamnete con cada nivel de confianza (95%, 97%, 99%).

Table 1: VaR Historico

Emisora	Horizonte	VaR_95	VaR_97	VaR_99	ES_95	ES_97	ES_99
P14	180días	0.4009604	0.5354820	0.7008378	0.6252962	0.7365298	0.9768284
P14	7días	0.0790704	0.1055985	0.1382071	0.1233101	0.1452456	0.1926332
P10	15días	0.0716193	0.0883336	0.1252374	0.1105106	0.1327570	0.1964199
P11	1días	0.0391701	0.0486191	0.0763284	0.0623325	0.0752026	0.0982382
P14	1días	0.0298858	0.0399125	0.0522374	0.0466068	0.0548977	0.0728085
P6	180 días	0.4202717	0.5502408	0.7420621	0.6374850	0.7382519	0.9680277
P4	60días	0.2811559	0.3311229	0.4811475	0.4147190	0.4891423	0.7055533
P6	15días	0.1213220	0.1588408	0.2142149	0.1840261	0.2131150	0.2794455
P10	1días	0.0184920	0.0228076	0.0323362	0.0285337	0.0342777	0.0507154
P13	1días	0.0368145	0.0447023	0.0615082	0.0530224	0.0617084	0.0788230
P10	90días	0.1754307	0.2163722	0.3067678	0.2706946	0.3251869	0.4811286
P11	60días	0.3034101	0.3766016	0.5912369	0.4828253	0.5825168	0.7609500
P18	15días	0.1310270	0.1504266	0.1989322	0.1856501	0.2167535	0.3051782
P16	1días	0.0462438	0.0587735	0.0902740	0.0727667	0.0870169	0.1128255
P6	1días	0.0313252	0.0410125	0.0553100	0.0475153	0.0550261	0.0721525

Este gráfico muestra cómo varía el Valor en Riesgo (VaR) de la emisora P1 en distintos horizontes de tiempo (1, 7, 15, 30, 60, 90 y 180 días) y para tres niveles de confianza (95%, 97%, 99%).

- -A mayor horizonte de tiempo, el VaR aumenta. Esto tiene sentido porque al extender el plazo, hay más exposición al riesgo y, por tanto, mayor posibilidad de una pérdida acumulada.
- -A mayor nivel de confianza, el VaR también aumenta. Esto refleja que si se quiere tener más certeza de no perder más que una cantidad determinada, se debe asumir un peor escenario (una mayor pérdida).
- -La forma ascendente del gráfico confirma que el riesgo crece en escenarios más extremos y en plazos más largos.

Simulación de Monte Carlo

En esta sección se presenta el cálculo del Valor en Riesgo (VaR) y la Pérdida Esperada (ES) utilizando el método de Simulación Monte Carlo con supuestos normales, que estima el riesgo de pérdida futura generando un gran número de trayectorias posibles del precio del activo, basadas en la media y volatilidad histórica de los rendimientos diarios, bajo el supuesto de que estos siguen una distribución normal.

Este enfoque permite modelar escenarios futuros aleatorios mediante la generación de números pseudoaleatorios, lo que proporciona una visión probabilística del comportamiento potencial del activo. A diferencia de la simulación histórica, esta técnica asume explícitamente una forma paramétrica (normal) para la distribución de los rendimientos, lo que puede facilitar el análisis pero también implica limitaciones si los rendimientos reales presentan asimetría o colas gruesas.

Sea $X = (x_1, x_2, x_3, \dots, x_{n+1})$ el vector de precios del activo durante n+1 días.

A partir de estos precios, se calcula el vector de rendimientos porcentuales como:

$$y_i = \frac{x_{i+1}}{x_i} - 1$$
, para $i = 1, 2, \dots, n$

Suponiendo que los rendimientos siguen una distribución Normal, se estiman los parámetros estadísticos:

• Media muestral: $\hat{\mu}$

• Desviación estándar: $\hat{\sigma}$

Se simulan N rendimientos futuros a partir de una función de distribución acumulada inversa, generando:

$$w_i = F^{-1}(u_i; \mu, \sigma^2), \quad u_i \sim \mathcal{U}(0, 1)$$

El Valor en Riesgo (VaR) se calcula como el percentil inferior de la muestra $W=(w_1,w_2,\ldots,w_N)$.

La Pérdida Esperada (ES) se obtiene como el promedio de los valores que exceden ese percentil.

El VaR se calcula como el percentil inferior de la muestra $W = (w_1, w_2, \dots, w_N)$, y la Pérdida Esperada como el promedio de los valores que exceden ese percentil.

El cálculo se realiza para cada emisora y considera diferentes horizontes de tiempo: 1, 7, 15, 30, 60, 90 y 180 días. Asimismo, se evalúan tres niveles de confianza: 95%, 97% y 99%, permitiendo comparar el riesgo bajo distintos supuestos de severidad.

A continuación, se presentan algunos de los resultados obtenidos para cada emisora del S&P 500, considerando los diferentes horizontes de tiempo y niveles de confianza. La tabla muestra el VaR y la ES para cada emisora aleatoriamente con cada nivel de confianza (95%, 97%, 99%).

Table 2: VaR MCN

NumSi	m Emisora	Horizonte	VaR_95	VaR_97	VaR_99	ES_95	ES_97	ES_99
20000	P4	60	_	_	_	_	-	-0.4544734
			0.2695957	0.3121903	0.3920723	0.3453451	0.3822179	
20000	P17	15	_	-	-	-	_	-0.1611233
			0.0956701	0.1106245	0.1390047	0.1222928	0.1353915	
10000	P10	90	-	-	-	-	-	-0.2547742
10000	Dr	00	0.1204709	0.1509763	0.2078325	0.1750511	0.2018251	0.5006400
10000	P5	60	0.3094894	0.2610201	0.4669670	0.4010610	0.4470654	-0.5336433
20000	P15	7	0.3094894	0.3610291	0.4668670	0.4018618	0.4479654	-0.1139313
20000	1 10	•	0.0672844	0.0779732	0.0988074	0.0862277	0.0956565	-0.1139313
20000	P11	90	0.0012044	0.0119192	0.0300014	0.0002211	-	-0.7739989
20000	1 11		0.4906757	0.5566388	0.6767156	0.6057868	0.6621071	0.1100000
5000	P1	30	-	-	-	-	-	-0.2342574
			0.1382803	0.1571891	0.1994078	0.1762780	0.1954715	
10000	P15	60	-	-	-	-	-	-0.3044727
			0.1703091	0.2022137	0.2600395	0.2251239	0.2521332	
5000	P1	1	-	-	-	-	-	-0.0436411
	70.0	400	0.0279800	0.0323952	0.0389422	0.0347099	0.0378758	
5000	P2	180	- 0.0005001	- 0.0001040	- 4600000	- 4000700	- 0.4400540	-0.5405752
10000	D90	1	0.3085291	0.3631048	0.4609829	0.4028700	0.4480749	0.0400002
10000	P20	1	0.0298167	0.0342761	0.0429464	0.0377250	0.0416062	-0.0488883
5000	P5	60	0.0230107	0.0342701	0.0423404	0.0377250	0.0410002	-0.5264359
0000	10	00	0.3058238	0.3557151	0.4625268	0.3998085	0.4466070	-0.0204000
5000	P1	60	-	-	-	-	-	-0.3261104
			0.1911081	0.2257591	0.2836616	0.2493714	0.2781009	

NumSin	n Emisora	Horizonte	VaR_95	VaR_97	VaR_99	ES_95	ES_97	ES_99
5000	PT	30	588.0390320	694.7761290	886.9447564	768.7640390	854.2617462	1037.3222783
10000	P11	30	-	-	-	-	-	-0.4233365
			0.2732085	0.3068898	0.3771719	0.3339016	0.3639400	

Table 3: Top 10 VaR al 99%

NumSin	mEmisora	Horizonte	VaR_95	VaR_97	VaR_99	ES_95	ES_97	ES_99
10000	PT	180	1224.7697411	1490.4287386	1959.8533599	1665.9666750	1880.0452369	2266.9585534
5000	P10	1	-0.0206849	-0.0238804	-0.0286722	-0.0260512	-0.0285940	-0.0336777
5000	P12	1	-0.0238761	-0.0277432	-0.0344197	-0.0304130	-0.0336043	-0.0397621
5000	P17	1	-0.0252669	-0.0292502	-0.0359495	-0.0317672	-0.0348585	-0.0408464
5000	P15	1	-0.0269189	-0.0300835	-0.0376428	-0.0333092	-0.0367528	-0.0435886
10000	P1	1	-0.0276046	-0.0313960	-0.0381062	-0.0342366	-0.0374511	-0.0441135
10000	P19	1	-0.0285609	-0.0326007	-0.0390757	-0.0353341	-0.0386849	-0.0453813
5000	P2	1	-0.0290468	-0.0326378	-0.0391843	-0.0355941	-0.0387945	-0.0451224
5000	P20	1	-0.0284926	-0.0338020	-0.0410324	-0.0366206	-0.0404186	-0.0476578
5000	P6	1	-0.0334552	-0.0389796	-0.0465866	-0.0420497	-0.0460092	-0.0531354

Los resultados de la simulación Monte Carlo normal indican que el portafolio total (PT) sigue presentando el mayor Valor en Riesgo (VaR), lo que confirma su exposición a pérdidas extremas en escenarios adversos. Emisoras como WMT (P10), JPM (P12) y CVX (P17) también muestran un VaR elevado, lo que sugiere que, incluso bajo una distribución normal de rendimientos, estas acciones mantienen una alta sensibilidad a fluctuaciones del mercado.

Las emisoras WMT, JPM, CVX tienen un alto VaR individual, asociado a su naturaleza cíclica (WMT en retail, JPM en banca, CVX en energía) y su reactividad a shocks económicos.

En comparación con el VaR histórico, la simulación normal confirma tendencias similares a las observadas en el análisis histórico, aunque con posibles variaciones en la magnitud del riesgo debido a los supuestos de normalidad.

Simulación de Monte Carlo Laplace

En esta sección se presenta el cálculo del Valor en Riesgo (VaR) y la Pérdida Esperada (ES) utilizando el método de Simulación Monte Carlo con distribución Laplace. A diferencia de la simulación histórica, este enfoque genera escenarios sintéticos basados en una distribución de probabilidad específica (en este caso, Laplace), que es adecuada para modelar rendimientos financieros con colas más pesadas que la distribución normal, capturando así mejor el riesgo de eventos extremos.

La distribución Laplace (o doble exponencial) se caracteriza por su mayor densidad en las colas, lo que la hace útil para activos con alta curtosis y volatilidad. Su función de densidad de probabilidad está dada por:

$$f(x \mid \mu, b) = \frac{1}{2b} \exp\left(-\frac{|x - \mu|}{b}\right)$$

donde: - μ es la localización - b > 0 es el parámetro de escala

El cálculo se realiza para cada emisora y considera diferentes horizontes de tiempo: 1, 7, 15, 30, 60, 90 y 180 días. Asimismo, se evalúan tres niveles de confianza: 95%, 97% y 99%, permitiendo comparar el riesgo bajo distintos supuestos de severidad.

A continuación, se presentan algunos de los resultados obtenidos para cada emisora del S&P 500, considerando los diferentes horizontes de tiempo y niveles de confianza. La tabla muestra el VaR y la ES para cada emisora aleatoriamente con cada nivel de confianza (95%, 97%, 99%).

Table 4: VaR MCL

NumSi	mEmisora	Horizonte	VaR_95	VaR_97	VaR_99	ES_95	ES_97	ES_99
10000	P5	60	-	-	-	-	-	
			52.4364160	75.1610462	75.1733738	75.1645053	75.1711832	75.1796906
20000	P9	15	-4.3836702	-6.2691971	-6.2748220	-6.2703413	-6.2737566	-6.2775204
20000	P11	15	0.0972060	0.0404832	0.0404254	0.0404692	0.0404352	0.0403933
10000	P6	60	_	_	-	-	-	-
			38.2399621	54.8045343	54.8159746	54.8071174	54.8141228	54.8223237
5000	P19	60	1.2313273	0.5112120	0.5110852	0.5111819	0.5111143	0.5110375
10000	P20	7	-1.1641953	-1.6582836	-1.6620335	-1.6592512	-1.6614840	-1.6641203
5000	P11	15	0.0972773	0.0404837	0.0404281	0.0404679	0.0404350	0.0403950
5000	P4	15	-3.2211022	-4.6047658	-4.6107551	-4.6064439	-4.6097772	-4.6136305
20000	P12	90	-	-	-	-	-	-
			74.4817437	106.7594148	106.7743484	106.7630485	106.7716578	106.7813621
10000	P10	30	-	-	-	-	-	-
			23.9630159	34.3357391	34.3441863	34.3376708	34.3425988	34.3491001
20000	P3	15	-	-	-	-	-	-
			34.3310185	49.2091795	49.2151465	49.2105229	49.2140076	49.2180374
20000	P3	30	-	-	-	-	-	-
			68.6505022	98.4192974	98.4277440	98.4211420	98.4260922	98.4318679
10000	P6	7	-4.4677447	-6.3933803	-6.3971703	-6.3941737	-6.3964976	-6.3992705
10000	P15	1	-0.2511141	-0.3562352	-0.3574275	-0.3564772	-0.3572712	-0.3583909
10000	P6	180	-	-	-	-	-	-
			114.6979300	164.4191997	164.4386134	164.4234395	164.4352016	164.4505044

Table 5: Top 10 VaR al99%

NumSin	n Emisora	Horizonte	VaR_95	VaR_97	VaR_99	ES_95	ES_97	ES_99
5000	P19	180	3.6956410	1.5336378	1.5334388	1.5335893	1.5334789	1.5333335
10000	P11	180	1.1695066	0.4856880	0.4855049	0.4856459	0.4855301	0.4853984
20000	P18	180	1.0687607	0.4439880	0.4437883	0.4439398	0.4438259	0.4436894
5000	P14	180	0.7671023	0.3186608	0.3184894	0.3186269	0.3185134	0.3183788
5000	PT	1	0.0000000	0.0000000	0.0000000	27.4678855	27.4678855	27.4678855
20000	P16	1	-	-	-	-	-	-
			0.1660028	0.2325464	0.2336874	0.2328025	0.2336035	0.2347719
5000	P20	1	-	-	-	-	-	-
			0.1689650	0.2369980	0.2379323	0.2371453	0.2379737	0.2391747
20000	P4	1	-	-	-	-	-	-
			0.2185491	0.3068924	0.3079701	0.3071012	0.3078926	0.3089745
5000	P15	1	-	-	-	-	-	-
			0.2538192	0.3562755	0.3573546	0.3564509	0.3572402	0.3581670
20000	P9	1	-	-	-	-	-	-
			0.2963978	0.4177951	0.4187954	0.4179837	0.4187470	0.4197736

Los resultados de la simulación Monte Carlo bajo el supuesto de distribución Laplace revelan patrones de riesgo significativos en el portafolio analizado. Este enfoque, que considera colas más pesadas que la distribución normal, proporciona una estimación más conservadora del riesgo extremo.

Las emisoras con mayor riesgo fueron BAC (P19), INTC (P11) y ADBE (P18), la esta sensibilidad de BAC (P19) refleja la naturaleza cíclica del sector bancario (Bank of America) a cambios en tasas de interés y condiciones macroeconómicas, en INTC (P11) la volatilidad en semiconductores y competencia global impactan su perfil de riesgo y en ADBE (P18) muestra sensibilidad a cambios en gasto corporativo.

En comparacion con los otros modelos la simulación Laplace muestra valores de riesgo más extremos que la normal para las mismas condiciones, tiene mayor dispersión en los resultados entre emisoras y ES significativamente más alto que en simulaciones normales

Simulación Bootstrapping

En esta sección se presenta el cálculo del Valor en Riesgo (VaR) y la Pérdida Esperada (ES) utilizando el método de simulación Bootstrap. A diferencia de los enfoques paramétricos tradicionales, esta técnica no asume una distribución específica para los rendimientos financieros, sino que se basa en el remuestreo aleatorio de los datos históricos para generar escenarios sintéticos. Esto permite capturar de manera más fiel las características empíricas de los datos, incluyendo asimetrías, curtosis y dependencia temporal, proporcionando así estimaciones de riesgo más robustas, especialmente en mercados con comportamiento no normal.

Para el remuestreo con reemplazo, dada una serie histórica de rendimientos r_1, r_2, \dots, r_n , generamos B muestras bootstrap:

$$r_1, r_2, \ldots, r_n$$
 (donde cada r_i se selecciona aleatoriamente)

Para cada muestra bootstrap, calculamos el percentil α :

$$\mathrm{VaR}\alpha = \frac{1}{B}\sum b = 1^B \mathrm{percentil}_\alpha(r_b^*)$$

Table 6: VaR Bootstrapping

NumSin	n Emisora	Horizonte	VaR_95	VaR_97	VaR_99	ES_95	ES_97	ES_99
5000	P14	1	-	-	=	0.0027870	0.0019823	0.0010000
			0.0323765	0.0411897	0.0517672			
5000	P1	30	-	-	-	-	-	-
			0.1542366	0.1720813	0.1892041	0.0058989	0.0089499	0.0124640
10000	P5	7	-	-	-	-	-	-
			0.1495867	0.1840535	0.2442202	0.0006978	0.0044339	0.0086365
10000	PT	180	-	-	-	-	-	-
			0.2137700	0.2303879	0.2591478	0.0881170	0.0908672	0.0939420
10000	P20	15	-	-	-	-	-	-
			0.1194906	0.1384354	0.1769460	0.0010189	0.0036720	0.0067282
10000	P18	180	-	-	-	0.0255518	0.0134294	0.0049660
			0.4076562	0.4417578	0.4895883			
10000	P6	90	_	_	-	-	_	-
			0.4971256	0.5913882	0.6461003	0.0085718	0.0203663	0.0321087
10000	P13	60	_	_	-	0.0718442	0.0588265	0.0497159
			0.3928874	0.4943886	0.5459137			
10000	P8	30	-	-	-	-	-	-
			0.2004525	0.2174528	0.2724532	0.0029976	0.0073601	0.0130515
20000	P11	60	-	-	-	0.0604225	0.0502334	0.0402935
		_	0.3814749	0.4417979	0.4724877			
10000	P14	7	-	-	-	0.0111557	0.0089158	0.0063275
			0.0870128	0.1046134	0.1394088			

NumSin	n Emisora	Horizonte	VaR_95	VaR_97	VaR_99	ES_95	ES_97	ES_99
10000	P12	15	-	-	=	=	=	
			0.1130954	0.1233073	0.1467825	0.0037527	0.0063510	0.0087625
20000	P8	7	-	-	-	0.0033266	0.0014771	-
			0.0883581	0.1003290	0.1416357			0.0013819
5000	P10	90	-	-	-	-	-	-
			0.2524224	0.2849711	0.3134888	0.0768783	0.0810314	0.0852732
10000	P19	1	-	-	-	0.0016912	0.0009704	-
			0.0313253	0.0374778	0.0593008			0.0000199

Table 7: Top 10 VaR al99%

NumSin	n Emisora	Horizonte	VaR_95	VaR_97	VaR_99	ES_95	ES_97	ES_99
20000	PT	1	-	-	-	0.0000437	-	
			0.0092590	0.0106126	0.0132375		0.0001606	0.0003936
5000	P10	1	-	-	-	0.0004418	0.0000297	-
			0.0184871	0.0218196	0.0322846			0.0004915
20000	P2	1	-	-	-	0.0017653	0.0011463	0.0003920
			0.0265995	0.0312429	0.0413069			
10000	P17	1	_	-	-	0.0014446	0.0008298	0.0001113
			0.0259334	0.0297524	0.0416155			
20000	P1	1	-	-	-	0.0016767	0.0010360	0.0002379
			0.0254226	0.0327607	0.0432709			
5000	P15	1	-	-	-	0.0011259	0.0005355	-
			0.0259123	0.0302745	0.0441738			0.0002346
10000	P12	1	-	-	-	0.0012593	0.0007244	0.0000308
			0.0218144	0.0273585	0.0443995			
5000	P18	1	-	-	-	0.0030087	0.0022385	0.0012828
			0.0339445	0.0378479	0.0509279			
10000	P14	1	-	-	-	0.0034884	0.0027357	0.0017282
			0.0297112	0.0398551	0.0517149			
5000	P20	1	-	-	-	0.0021713	0.0015404	0.0006239
			0.0266333	0.0327011	0.0520868			

Los resultados de la simulación revelan un riesgo controlado en el corto plazo para el portafolio total (PT), con pérdidas máximas esperadas (VaR95) del 0.93% y pérdidas extremas (ES99) mínimas (-0.039%), lo que indica una estructura diversificada y resiliente ante eventos adversos intradía. Sin embargo, se identificaron tres emisoras críticas que requieren atención prioritaria

Las emisoras ADBE (P18), NKE(P14), y C(P20) presentan los valores más negativos de VaR al 99%, lo cual indica un mayor riesgo potencial de pérdida extrema bajo las condiciones simuladas.

Emisoras como WMT (P10) muestran VaR y ES mucho menos negativos, lo que indica una menor exposición al riesgo extremo bajo este modelo.

Alisamiento Exponencial

En este proyecto se aplicó el modelo de Alisado Exponencial para estimar el riesgo del portafolio a partir de los rendimientos simples diarios. Este enfoque permitió capturar la volatilidad reciente del mercado, asignando más peso a los movimientos actuales y menos a los eventos pasados.

El modelo se basó en una actualización diaria de la volatilidad, donde el peso de cada observación disminuyó de forma exponencial en el tiempo. Es decir, los rendimientos más recientes tuvieron mayor influencia sobre la estimación del riesgo.

El cálculo de la volatilidad suavizada se realizó con la siguiente fórmula recursiva:

$$\sigma_t^2 = \lambda \cdot \sigma_{t-1}^2 + (1 - \lambda) \cdot r_{t-1}^2$$

donde:

- σ_t^2 es la volatilidad estimada para el día t,
- r_{t-1} es el rendimiento simple del portafolio en el día anterior,
- λ es el parámetro de alisado, con $0 < \lambda < 1$.

Una vez obtenida la volatilidad suavizada, se calculó el $Valor\ en\ Riesgo\ (VaR)$ del portafolio bajo el supuesto de normalidad de los rendimientos:

$$VaR_{\alpha,t} = z_{\alpha} \cdot \sigma_t$$

donde z_{α} representa el cuantil de la distribución normal estándar asociado al nivel de confianza deseado (por ejemplo, $z_{0.95} = 1.645$).

Además, se estimó el *Expected Shortfall (ES)*, que representa la pérdida esperada en caso de que el VaR sea superado:

$$ES_{\alpha,t} = \sigma_t \cdot \frac{\phi(z_\alpha)}{1 - \alpha}$$

donde $\phi(z_{\alpha})$ es la función de densidad de la normal estándar evaluada en z_{α} .

En resumen, el modelo aplicado sobre los rendimientos simples del portafolio permitió estimar un VaR dinámico y adaptado a las condiciones recientes del mercado. Aunque suponer una distribución normal implica ciertas limitaciones, la flexibilidad del alisado exponencial ofreció una herramienta útil para evaluar el riesgo financiero de forma más sensible a los cambios del entorno.

A continuación, se presentan algunos de los resultados obtenidos para cada emisora del S&P 500, considerando los diferentes horizontes de tiempo y niveles de confianza. La tabla muestra el VaR y la ES para cada emisora aleatoriamnete con cada nivel de confianza (95%, 97%, 99%).

Table 8: VaR Alisamiento Exponencial

Horizonte	VaR_95	VaR_97	VaR_99	ES_95	ES_97	ES_99
60	-2.0184842	-2.0184842	-2.0184842	-0.5645562	-0.5645562	-0.5645562
30	-0.6230754	-0.6230754	-0.6230754	-0.1980493	-0.1980493	-0.1980493
15	-0.6503967	-0.6503967	-0.6503967	-0.2638297	-0.2638297	-0.2638297
1	-1.0983065	-1.0983065	-1.0983065	-0.7104151	-0.7104151	-0.7104151
7	-0.3009740	-0.3009740	-0.3009740	-0.0956669	-0.0956669	-0.0956669
1	-0.0672051	-0.0672051	-0.0672051	-0.0410383	-0.0410383	-0.0410383
7	-0.1970356	-0.1970356	-0.1970356	-0.1058525	-0.1058525	-0.1058525
60	-1.3143485	-1.3143485	-1.3143485	-0.5943142	-0.5943142	-0.5943142
15	-0.2602843	-0.2602843	-0.2602843	-0.1589407	-0.1589407	-0.1589407
15	-1.3600602	-1.3600602	-1.3600602	-0.3103075	-0.3103075	-0.3103075
1	-0.0744725	-0.0744725	-0.0744725	-0.0400085	-0.0400085	-0.0400085
180	-1.5262169	-1.5262169	-1.5262169	-0.4851196	-0.4851196	-0.4851196
15	-0.2698299	-0.2698299	-0.2698299	-0.1524000	-0.1524000	-0.1524000
	60 30 15 1 7 1 7 60 15 15 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Emisora	Horizonte	VaR_95	VaR_97	VaR_99	ES_95	ES_97	ES_99
P3	180	-2.2765183	-2.2765183	-2.2765183	-1.0293824	-1.0293824	-1.0293824
P15	7	-0.1843289	-0.1843289	-0.1843289	-0.1041090	-0.1041090	-0.1041090

El gráfico anterior muestra cómo varía el ES al 99% para cada emisora del portafolio en función del horizonte de tiempo considerado (1 a 180 días). Esta métrica refleja la pérdida esperada en los peores escenarios, es decir, en el 1% de las ocasiones en que las pérdidas superan el Valor en Riesgo (VaR).

Podemos observar que, en general, el valor absoluto del ES tiende a incrementarse conforme el horizonte de tiempo se amplía. Esto es consistente con la teoría financiera, ya que una mayor exposición temporal usualmente implica mayor riesgo acumulado, tambien cabe recalcar que se excluyo al portafolio del grafico.

Además, se identifican diferencias notables entre emisoras: algunas presentan curvas más empinadas, lo que indica una mayor sensibilidad al paso del tiempo en sus riesgos extremos. Esto podría deberse a una mayor volatilidad reciente, que el modelo de alisado exponencial captura otorgando más peso a los rendimientos recientes.

La exclusión de la emisora "PT" permitió una mejor visualización del comportamiento de las demás acciones, ya que sus valores extremos distorsionaban la escala del gráfico. Esta decisión facilita la comparación relativa entre emisoras y permite identificar con mayor claridad cuáles contribuyen en mayor medida al riesgo extremo del portafolio.

En resumen, este gráfico ilustra cómo el riesgo de cola del portafolio no es homogéneo entre emisoras ni constante en el tiempo, lo que resalta la importancia de considerar tanto el horizonte como la composición del portafolio en la gestión de riesgos.

VaR Paramétricos

VaR Paramétrico

En esta sección del proyecto aplicamos el modelo de Valor en Riesgo (VaR) Paramétrico, esto para estimar la pérdida máxima esperada en un portafolio financiero bajo condiciones normales de mercado. Este enfoque lo usamos para los horizontes de tiempo 1, 7, 15, 30, 60, 90 y 180 días, y considerando los niveles de confianza: 95%, 97% y 99%.

Para este módelo asuminos que los rendimientos de los activos siguen una distribución normal, y que es posible calcular el valor del portafolio como una función (lineal o no lineal) de los factores de riesgo.

Asumiendo una distribución normal de los rendimientos, el VaR paramétrico se calcula como:

$$VaR = \mu_p + z_\alpha \cdot \sigma_p$$

Donde:

P14

P16

P12

P5

30

7

180

90

0.1949035

0.1327805

0.3455981

0.4706340

 (μ_p) es el rendimiento esperado del portafolio. (σ_p) es la desviación estándar del portafolio. (z_α) es el cuantil correspondiente al nivel de confianza

A continuación, se presentan algunos de los resultados obtenidos para cada emisora utilizada, considerando los diferentes horizontes de tiempo y niveles de confianza. La tabla muestra el VaR y la ES para cada emisora aleatoriamnete con cada nivel de confianza (95%, 97%, 99%).

Emisora Horizonte VaR 95 VaR 97 VaR 99 ES 95 ES 97 ES 99 P12 15 0.09976560.11407610.1411004 0.12511010.13756530.1616537PT1.886605315 2.15722252.6682619 2.36587922.6014130 3.0569330 P13 60 0.32340690.36979690.45740060.40556530.44594120.5240276P6 0.18563900.23279880.300797530 0.21226740.26255280.2559750P16 30 0.27488170.31431110.38877050.3447128 0.37903050.4454005 P14 180 0.47741420.54589510.67521600.59869660.7735710 0.6582996P4 180 0.52542500.60079260.74311860.65890410.72450100.8513646P9 15 0.24551400.28073080.34723510.30788440.33853570.3978149 P20 15 0.11487950.13135790.16247620.14406350.15840560.1861432 P515 0.19213550.21969570.27174090.24094570.26493290.3113240PT9.0115590180 6.53539267.4728379 9.2431304 8.1956460 10.5895266

0.2756558

0.1877940

0.4887860

0.6656267

0.2444169

0.1665121

0.4333940

0.5901940

0.2687497

0.1830891

0.4765403

0.6489505

0.3158090

0.2151489

0.5599848

0.7625849

0.2228607

0.1518267

0.3951712

0.5381424

Table 9: VaR Paramétrico

El gráfico anterior muestra un mapa de calor del Valor en Riesgo (VaR) correspondiente a la emisora MSFT (Microsoft), representada como P2. En el eje vertical se encuentra el horizonte temporal (expresado en días), mientras que el eje horizontal muestra el nivel de confianza (95%, 97% y 99%). Los valores de VaR están representados mediante una escala de colores, donde los tonos amarillo-verde indican valores bajos de riesgo y los tonos naranja-rojo indican valores más altos.

Interpretación: -Incremento con el horizonte: Se observa un incremento del VaR a medida que el horizonte temporal se alarga. Esto es consistente con la teoría financiera, ya que la incertidumbre y el riesgo aumentan conforme se proyectan retornos a más largo plazo.

- -Incremento con el nivel de confianza: A mayores niveles de confianza, también se registran valores de VaR más altos. Esto se debe a que se está considerando un peor escenario en la cola de la distribución de pérdidas posibles.
- -Mayor concentración de riesgo: Los valores más altos de VaR (tonos rojos) se concentran en la esquina superior derecha del gráfico, lo que indica que, bajo un horizonte largo (180 días) y un nivel de confianza alto (99%), las pérdidas potenciales son mayores. En contraste, en horizontes cortos y niveles de confianza más bajos, el VaR se mantiene bajo.

Delta Normal

Aquí se presenta el cálculo del Valor en Riesgo (VaR) y la Pérdida Esperada (ES) utilizando el método Delta Normal. Este enfoque paramétrico asume que los rendimientos financieros siguen una distribución normal y que las pérdidas del portafolio pueden aproximarse linealmente en función de los cambios en los factores de riesgo.

Bajo esta metodología, se calcula el VaR usando la fórmula:

$$VaR_{\alpha} = z_{\alpha} \cdot \sigma_{P} \cdot \sqrt{h}$$

donde:

- z_{α} : cuantil de la distribución normal estándar para el nivel de confianza α ,
- σ_P : volatilidad del portafolio,

• h: horizonte temporal (en días).

La volatilidad del portafolio se estima como:

$$\sigma_P = \sqrt{w^\top \Sigma w}$$

donde w es el vector de pesos del portafolio y Σ es la matriz de covarianzas entre los activos.

Para la Pérdida Esperada (ES), se utiliza la fórmula:

$$ES_{\alpha} = \frac{\sigma_P}{1 - \alpha} \cdot \phi(z_{\alpha})$$

donde $\phi(z_{\alpha})$ es la función de densidad de la normal estándar evaluada en z_{α} .

El cálculo se realiza para cada emisora y considera diferentes horizontes de tiempo: 1, 7, 15, 30, 60, 90 y 180 días. Asimismo, se evalúan tres niveles de confianza: 95%, 97% y 99%.

A continuación, se presentan algunos de los resultados obtenidos para cada emisora del S&P 500, considerando los diferentes horizontes de tiempo y niveles de confianza. La tabla muestra el VaR y la ES para una muestra aleatoria de emisoras.

Table 10: VaR Delta Normal (muestra aleatoria de emisoras)

Emisora	Horizonte	VaR_95	VaR_97	VaR_99	ES_95	ES_97	ES_99
P5	30 días	-0.2239731	-0.2525854	-0.3710179	-0.3556330	-0.4358424	-0.6890664
P3	15 días	-0.2084275	-0.2446257	-0.3035954	-0.2775001	-0.3115212	-0.3918526
P2	60 días	-0.2099294	-0.2794753	-0.3375196	-0.3036396	-0.3451040	-0.4273630
P11	1 días	-0.0430403	-0.0529414	-0.0694886	-0.0640220	-0.0750381	-0.1087249
P7	7 días	-0.0960470	-0.1124849	-0.1654356	-0.1429989	-0.1679962	-0.2406353
P10	7 días	-0.0478052	-0.0548284	-0.0731248	-0.0785913	-0.0967012	-0.1661946
P15	7 días	-0.0631798	-0.0823484	-0.1116200	-0.0952910	-0.1115097	-0.1402449
P18	15 días	-0.1312872	-0.1618270	-0.2776860	-0.2251574	-0.2784792	-0.4098085
P16	$180 \mathrm{días}$	-0.5007452	-0.6444478	-0.9443575	-0.8834516	-1.0958493	-1.7735036
P6	30 días	-0.1770949	-0.2165950	-0.2780148	-0.2545248	-0.2943691	-0.3975550
P10	90 días	-0.1714144	-0.1965976	-0.2622027	-0.2818035	-0.3467401	-0.5959218
P17	30 días	-0.1410070	-0.1669881	-0.2503059	-0.2043801	-0.2399085	-0.3044286
P20	7 días	-0.0697855	-0.0814577	-0.1122987	-0.0973047	-0.1118063	-0.1416050
P1	15 días	-0.1064692	-0.1333668	-0.1659570	-0.1462765	-0.1652789	-0.2008222
P17	7 días	-0.0681128	-0.0806629	-0.1209092	-0.0987250	-0.1158868	-0.1470530

Table 11: Top 10 VaR al 99% (Delta Normal)

Emisora	Horizonte	VaR_95	VaR_97	VaR_99	ES_95	ES_97	ES_99
P10	1 días	-0.0180687	-0.0207232	-0.0276386	-0.0297047	-0.0365496	-0.0628157
P19	1 días	-0.0275167	-0.0320654	-0.0391959	-0.0361622	-0.0403079	-0.0501109
P15	1 días	-0.0238797	-0.0311248	-0.0421884	-0.0360166	-0.0421467	-0.0530076
P20	1 días	-0.0263764	-0.0307881	-0.0424449	-0.0367777	-0.0422588	-0.0535217
P1	1 días	-0.0274902	-0.0344352	-0.0428499	-0.0377684	-0.0426748	-0.0518521
P12	1 días	-0.0245587	-0.0300316	-0.0433639	-0.0359493	-0.0415249	-0.0518667
P2	1 días	-0.0271018	-0.0360801	-0.0435736	-0.0391997	-0.0445527	-0.0551723
P17	1 días	-0.0257442	-0.0304877	-0.0456994	-0.0373145	-0.0438011	-0.0555808
P6	1 días	-0.0323330	-0.0395447	-0.0507583	-0.0464697	-0.0537442	-0.0725833

Emisora	Horizonte	VaR_95	VaR_97	VaR_99	ES_95	ES_97	ES_99
P8	1 días	-0.0316815	-0.0396376	-0.0517043	-0.0465669	-0.0539339	-0.0725898

Los resultados de la metodología Delta Normal muestran valores de riesgo consistentes con una estructura de rendimientos normalmente distribuidos. Sin embargo, este enfoque tiende a subestimar el riesgo en presencia de asimetrías o colas pesadas, lo cual puede observarse en comparación con modelos más flexibles como Cornish-Fisher o simulaciones con distribuciones de colas gruesas.

Emisoras como JPM (P12), CVX (P17) y META (P4) presentan valores elevados de VaR al 99%, lo que indica una mayor sensibilidad a fluctuaciones adversas del mercado en horizontes largos. El portafolio total (PT) también se encuentra entre los valores más altos, confirmando su exposición agregada al riesgo sistémico.

En resumen, aunque el modelo Delta Normal es simple y computacionalmente eficiente, sus supuestos restrictivos pueden limitar su aplicabilidad en mercados altamente volátiles o no normales.

El gráfico muestra la distribución del Valor en Riesgo (VaR) estimado mediante el modelo Delta Normal, agrupado por nivel de confianza: 95%, 97% y 99%. Cada caja representa la distribución del VaR calculado para distintas emisoras y horizontes de tiempo bajo cada nivel de confianza.

- -Valores negativos de VaR: Todos los valores son negativos, lo cual es esperado, ya que el VaR representa una pérdida potencial. Un valor de -3, por ejemplo, implica que en el peor 5% de los casos (si el nivel de confianza es 95%), la pérdida esperada no superará el 3%.
- -Mayor magnitud de pérdidas a mayor confianza: A medida que el nivel de confianza aumenta (de 95% a 99%), la magnitud negativa del VaR se incrementa. Esto refleja un mayor umbral de protección: cuanto más alto el nivel de confianza, mayor es la pérdida potencial que se anticipa en escenarios extremos.

- -Distribución más dispersa en niveles altos: En el nivel de confianza del 99%, se observa una mayor dispersión y valores mínimos más extremos (caídas más pronunciadas), lo que es coherente con el hecho de que se capturan los eventos más adversos.
- -Valores atípicos (outliers): Los puntos individuales por debajo de las cajas representan valores atípicos, que pueden deberse a emisoras con alta volatilidad o ciertos horizontes más riesgosos. Estos son importantes porque indican posibles focos de riesgo elevado.

Extensión de Cornish-Fisher

Este método permite ajustar la estimación del Valor en Riesgo (VaR) cuando la distribución de los rendimientos financieros no es perfectamente normal, incorporando la asimetría (skewness) y la curtosis (kurtosis) observadas en los datos empíricos.

La fórmula del VaR ajustado mediante la expansión de Cornish-Fisher es:

$$VaR_{\alpha} = \left(z_{\alpha} + \frac{1}{6}(z_{\alpha}^{2} - 1)s + \frac{1}{24}(z_{\alpha}^{3} - 3z_{\alpha})k - \frac{1}{36}(2z_{\alpha}^{3} - 5z_{\alpha})s^{2}\right) \cdot \sigma_{P} \cdot \sqrt{h}$$

donde:

- z_{α} : cuantil de la distribución normal estándar para el nivel de confianza α ,
- s: asimetría (skewness) de los rendimientos,
- k: exceso de curtosis de los rendimientos,
- σ_P : desviación estándar de los rendimientos del portafolio,
- h: horizonte temporal.

Este ajuste permite tener en cuenta distribuciones no normales, como aquellas con colas pesadas o sesgo, y proporciona estimaciones más realistas del riesgo extremo.

A continuación se presentan algunos de los resultados obtenidos para cada emisora del S&P 500, considerando los diferentes horizontes de tiempo y niveles de confianza. La tabla muestra el VaR y la ES para una muestra aleatoria de emisoras.

Table 12: VaR Cornish-Fisher (muestra aleatoria de emisoras)

Emisora	Horizonte	VaR_95	VaR_97	VaR_99	ES_95	ES_97	ES_99
P1	7	-0.0760143	-0.0943155	-0.1369726	-0.0936398	-0.0739973	-0.0214288
P18	90	-0.2826244	-0.4149324	-0.7791646	-0.8140675	-0.5448293	-0.0219354
P4	1	-0.0381069	-0.0504374	-0.0815066	-0.0553504	-0.0358491	-0.0034974
P6	15	-0.1278063	-0.1596464	-0.2355335	-0.1839860	-0.1509750	-0.0449805
P14	30	-0.1216392	-0.2140423	-0.4807954	-0.5364079	-0.2873031	0.0026342
P15	7	-0.0757416	-0.1037519	-0.1751193	-0.0902360	-0.0439952	-0.0027437
P4	180	-0.5112581	-0.6766892	-1.0935263	-0.7426040	-0.4809655	-0.0469220
P10	90	-0.1385373	-0.2387674	-0.5294285	-0.5986296	-0.3229276	-0.0103491
P11	60	-0.2612875	-0.4328169	-0.9172801	-0.8246044	-0.3851196	0.0035983
P20	30	-0.1736255	-0.2343560	-0.3858806	-0.1782819	-0.0860996	-0.0046319
P13	180	-0.4389472	-0.5878952	-0.9801516	-1.1318260	-0.9622119	-0.1894722
P10	30	-0.0799846	-0.1378524	-0.3056657	-0.3456189	-0.1864423	-0.0059750
P4	90	-0.3615140	-0.4784915	-0.7732398	-0.5251003	-0.3400940	-0.0331789
P8	180	-0.4403977	-0.5499900	-0.8115847	-0.6450491	-0.5333481	-0.1622500
P14	180	-0.2979541	-0.5242944	-1.1777034	-1.3139256	-0.7037460	0.0064525

Table 13: Top 10 VaR al 99% (Cornish-Fisher)

Emisora	Horizonte	VaR_95	VaR_97	VaR_99	ES_95	ES_97	ES_99
PT	1	-0.0241672	-0.0288229	-0.0391167	-0.0336049	-0.0322964	-0.0203667
P17	1	-0.0253756	-0.0313327	-0.0454591	-0.0394952	-0.0347899	-0.0135713
P2	1	-0.0280839	-0.0343124	-0.0486485	-0.0388094	-0.0341587	-0.0145939
P1	1	-0.0287307	-0.0356479	-0.0517708	-0.0353925	-0.0279683	-0.0080993
P19	1	-0.0298581	-0.0370699	-0.0535655	-0.0311701	-0.0231456	-0.0057406
P10	1	-0.0146031	-0.0251683	-0.0558067	-0.0631011	-0.0340396	-0.0010909
P8	1	-0.0328253	-0.0409938	-0.0604920	-0.0480791	-0.0397534	-0.0120934
P12	1	-0.0262742	-0.0359564	-0.0607467	-0.0338356	-0.0173735	-0.0011507
P6	1	-0.0329995	-0.0412205	-0.0608145	-0.0475050	-0.0389816	-0.0116139
P15	1	-0.0286276	-0.0392145	-0.0661889	-0.0341060	-0.0166286	-0.0010370

Los resultados del modelo Cornish-Fisher muestran una mayor dispersión en los valores de VaR y ES en comparación con el modelo Delta Normal, reflejando la capacidad de este enfoque para capturar las propiedades reales de la distribución de los rendimientos financieros.

Emisoras como META (P4), C (P20) y AMD (P16) presentan valores elevados de riesgo, lo cual puede atribuirse a una alta curtosis o asimetría en sus rendimientos diarios. El portafolio total (PT) también muestra una posición destacada, aunque ligeramente menor que en la simulación Laplace.

Este modelo mejora la estimación de eventos extremos respecto al Delta Normal, pero sigue siendo una aproximación basada en momentos. Su efectividad depende en gran medida de la estabilidad de los parámetros empíricos y la calidad de los datos.

ES 99% por Emisora en Diferentes Horizontes – Modelo Cornish-Fishe 0.25 Valor Absoluto del ES (99%) 0.20 0.15 0.10 0.05 0.00 0 50 100 150 Horizonte (días) — P13 — P17 — P20 — P6 P10 — P14 — P18 — P3 — P7 **Emisora** P11 — P15 — P19 — P4

El gráfico de Pérdida Esperada (ES) al 99% bajo el modelo Cornish-Fisher revela cómo evoluciona el riesgo

— P12 — P16 — P2 — P5

extremo a través de distintos horizontes temporales para cada emisora. Se observa que, en general, el riesgo tiende a incrementarse con el horizonte de inversión, reflejando la acumulación de incertidumbre a lo largo del tiempo.

Las emisoras con curvas más empinadas indican una mayor sensibilidad a los cambios en el plazo, lo que sugiere una mayor volatilidad o asimetría en su distribución de rendimientos. Por otro lado, algunas emisoras presentan una evolución más estable del ES, lo que refleja una menor exposición a colas extremas bajo este modelo.

Este gráfico permite identificar de forma visual qué activos concentran más riesgo extremo y cómo varía dicha exposición en diferentes escalas temporales. En resumen, el modelo Cornish-Fisher ofrece una estimación más realista y diferenciada del riesgo extremo frente a modelos que asumen normalidad simétrica, siendo especialmente útil para análisis de riesgo a mediano y largo plazo.

Comparación de modelos

Generamos una tabla con todos los datos de los modelos de VaR y ES obtenidos en las secciones anteriores. Esta tabla incluye los resultados de los métodos de Alisado Exponencial, Bootstrap, Cornish-Fisher, Delta Normal, Laplace, Monte Carlo, Paramétrico y Simulación Histórica. La tabla se presenta solo con 15 datos seleccionados aleatoriamente para facilitar la visualización, pero se puede ampliar a todos los datos si es necesario.

Table 14: Resumen de modelos con muestra aleatoria

Emisora	Horizonte	VaR_95	VaR_97	VaR_99	ES_95	ES_97	ES_99	Modelo
P6	1días	0.0313252	0.0410125	0.0553100	0.0475153	0.0550261	0.0721525	Simulación Histórica
P9	1días	0.0622919	0.0748627	0.1010302	0.0877649	0.0999082	0.1336005	Simulación Histórica
P12	1 días	0.0245587	0.0300316	0.0433639	0.0359493	0.0415249	0.0518667	Delta Normal
P13	90 días	0.3705872	0.4686094	0.7119327	0.5895752	0.7106308	1.0070263	Delta Normal
P19	15	0.1079679	0.1248409	0.1529303	0.1359136	0.1495602	0.1767879	MonteCarlo
P14	7días	0.0790704	0.1055985	0.1382071	0.1233101	0.1452456	0.1926332	Simulación Histórica
P2	1	0.0771563	0.0771563	0.0771563	0.0420130	0.0420130	0.0420130	Alisado Exponencial
P18	90días	0.3209492	0.3684684	0.0771303	0.4547480	0.0420130 0.5309356	0.0420130 0.7475309	Simulación
P20	60 días	0.2043109	0.2384838	0.3287769	0.2848791	- 0.3273354	- 0.4145769	Histórica Delta Normal
P16	60	0.3887415	0.4445031	0.5498045	0.4874975	0.5360300	0.6298915	Paramétrico
P3	1	0.1696817	0.1696817	0.1696817	0.0767256	0.0767256	0.0767256	Alisado Exponencial
P7	15 días	0.1405984	0.1646611	0.2421729	0.2093289	0.2459212	0.3522541	Delta Normal
P16	7	0.9290980	0.9290980	0.9290980	0.2119804	0.2119804	0.2119804	Alisado Exponencial
P8	7	-	-	-	0.0033266	0.0014771	-	Bootstrap
P2	90	0.0883581 - 0.7319689	0.1003290 - 0.7319689	0.1416357 - 0.7319689	0.3985705	0.3985705	0.0013819 - 0.3985705	Alisado Exponencial

Table 15: VaR Resumen por promedios

Modelo	Horizonte	Prom_VaR95	Prom_VaR99	Prom_ES95
Alisado Exponencial	1	-0.1863620	-0.1863620	-0.0878472
Alisado Exponencial	15	-0.7217769	-0.7217769	-0.3402306
Alisado Exponencial	180	-2.5003086	-2.5003086	-1.1785935
Alisado Exponencial	30	-1.0207467	-1.0207467	-0.4811588
Alisado Exponencial	60	-1.4435538	-1.4435538	-0.6804613
Alisado Exponencial	7	-0.4930675	-0.4930675	-0.2324218
Alisado Exponencial	90	-1.7679852	-1.7679852	-0.8333915
Bootstrap	1	-0.0335124	-0.0582053	0.0020291
Bootstrap	15	-0.1493007	-0.2047388	0.0008595
Bootstrap	180	-0.5985081	-0.6830962	-0.0679411
Bootstrap	30	-0.2195748	-0.2952245	-0.0031915
Bootstrap	60	-0.3368994	-0.4326568	-0.0135689
Bootstrap	7	-0.0980876	-0.1512492	0.0027013
Bootstrap	90	-0.4132996	-0.5219085	-0.0262506
Cornish-Fisher	1	-0.0326808	-0.0876567	-0.0672762
Cornish-Fisher	15	-0.1265724	-0.3394930	-0.2605596
Cornish-Fisher	180	-0.4384596	-1.1760384	-0.9026050
Cornish-Fisher	30	-0.1790004	-0.4801156	-0.3684869
Cornish-Fisher	60	-0.2531448	-0.6789861	-0.5211192
Cornish-Fisher	7	-0.0864654	-0.2319179	-0.1779961
Cornish-Fisher	90	-0.3100377	-0.8315847	-0.6382381
Delta Normal	1 días	-0.0554269	-0.0913199	-0.0799221
Delta Normal	15 días	-0.2146676	-0.3536806	-0.3095370
Delta Normal	180 días	-0.7436302	-1.2251856	-1.0722675
Delta Normal	30 días	-0.3035858	-0.5001799	-0.4377514
Delta Normal	60 días	-0.4293351	-0.7073612	-0.4377314
Delta Normal	7 días	-0.4293331 -0.1466459	-0.2416099	-0.0190739
Delta Normal	90 días	-0.5258260	-0.8663370	-0.7582076
		-0.4747053	-0.6789007	
Laplace	1 15			0.5867099
Laplace		-7.0835149	-10.1765120	-5.4740176
Laplace	180	-84.9348241	-122.0894773	-112.0279918
Laplace	30	-14.1624425	-20.3511138	-14.2190647
Laplace	60	-28.3183036	-40.6994039	-32.6586579
Laplace	7	-3.3078931	-4.7496993	-1.3294887
Laplace	90	-42.4731905	-61.0472136	-52.1980613
MonteCarlo	1	5.9937328	8.5775639	7.5886005
MonteCarlo	15	21.5021878	31.0124421	27.4402054
MonteCarlo	180	57.6284610	90.8107168	78.5620987
MonteCarlo	30	29.5157055	43.2209843	38.2537624
MonteCarlo	60	39.2024663	58.8531993	51.5823821
MonteCarlo	7	15.1944781	21.6346418	19.1339935
MonteCarlo	90	45.8284334	70.2338052	60.5368812
Paramétrico	1	0.0590077	0.0834558	0.0739981
Paramétrico	15	0.2285360	0.3232228	0.2865933
Paramétrico	180	0.7916718	1.1196766	0.9927884
Paramétrico	30	0.3231987	0.4571060	0.4053042
Paramétrico	60	0.4570719	0.6464456	0.5731867
Paramétrico	7	0.1561198	0.2208032	0.1957805
Paramétrico	90	0.5597965	0.7917309	0.7020074
Simulación Histórica	15días	0.3072187	0.4888184	0.4307942

Modelo	Horizonte	Prom_VaR95	Prom_VaR99	Prom_ES95
Simulación Histórica	180días	1.0642369	1.6933166	1.4923148
Simulación Histórica	1días	0.0793235	0.1262124	0.1112306
Simulación Histórica	30días	0.4344729	0.6912936	0.6092350
Simulación Histórica	60días	0.6144374	0.9776368	0.8615883
Simulación Histórica	7días	0.2098703	0.3339265	0.2942884
Simulación Histórica	90días	0.7525291	1.1973556	1.0552259

La tabla presentada compara los resultados obtenidos de distintas metodologías de estimación de Valor en Riesgo (VaR) incluyendo los enfoques de Alisado Exponencial, Bootstrap, Cornish-Fisher, Delta Normal, Laplace, Monte Carlo, Paramétrico y Simulación Histórica— bajo diferentes horizontes temporales . Las métricas reportadas incluyen las estimaciones promedio de VaR al 5% (Prom. VaR05), VaR al 1% (Prom. VaR01) y el Expected Shortfall al 5% (Prom. ES95).

En términos generales, se observa que, a medida que se incrementa el horizonte temporal, los valores absolutos de VaR y ES tienden a incrementarse, lo cual es consistente con la intuición financiera de que el riesgo acumulado crece con el tiempo.

Por ejemplo, en el caso del modelo Delta Normal, el VaR al 5% pasa de -0.0456 en un horizonte de 1 día a -0.5286 en 90 días, mientras que el Expected Shortfall también aumenta en magnitud. Este comportamiento también se repite en modelos como la Simulación Histórica, donde se observa un VaR05 promedio de 0.1341 en un horizonte de 60 días, aumentando a 0.7352 en un horizonte de 960 días.

Los modelos basados en Simulación Histórica y Monte Carlo presentan valores positivos en algunos casos, lo cual puede deberse al uso de series históricas o escenarios simulados en los que los rendimientos promedio fueron positivos. Esto puede implicar una sobreestimación del rendimiento esperado o un sesgo en los datos utilizados.

Por otro lado, los modelos paramétricos como el Delta Normal y Laplace tienden a presentar estimaciones más conservadoras (valores más negativos de VaR y ES), especialmente en horizontes largos, lo cual refleja la sensibilidad de estos métodos a los supuestos de distribución de retornos.

Table 16: Comparación cualitativa de los modelos de VaR aplicados

Modelo	Enfoque	Comportamiento	Riesgo
Alisado	Ponderación	VaR y ES muy negativos, especialmente en	Sobreestima el riesgo
Exponencial	exponencial	horizontes largos	
Bootstrap	Remuestreo	Valores moderados; depende del tamaño muestral	Neutral
Cornish-Fisher	Expansión de Edgeworth	VaR menos extremos que otros modelos paramétricos	Subestima el riesgo
Delta Normal	Distribución Normal	No capta colas pesadas; subestima extremos	Subestima el riesgo
Laplace	Distribución Laplace	VaR y ES muy negativos; colas pesadas	Sobreestima el riesgo
Monte Carlo	Simulación estocástica	VaR positivo en varios horizontes	Subestima fuertemente el riesgo
Paramétrico	Supuestos estáticos	Resultados muy variables; algunos positivos	Subestima o inconsistente
Simulación Histórica	Datos reales pasados	VaR y ES positivos en horizontes largos	Subestima el riesgo

Conclusiones

A lo largo de este proyecto, realizamos un análisis exhaustivo del riesgo de mercado mediante el cálculo del Valor en Riesgo (VaR) y el Expected Shortfall (ES) para un portafolio compuesto por 20 acciones del índice S&P 500, abarcando el periodo de enero de 2022 a marzo de 2025. La selección de las emisoras se fundamentó en nuestros gustos por la tecnologia lo cual no resulto a la perfección ya que son acciones que estan muy relacionadas y no permitió que nuestro portafolio se diversificara.

Aplicamos modelos de VaR tanto no paramétricos (Simulación Histórica, Simulación Monte Carlo con distribuciones Normal y Laplace, Bootstrapping y Alisado Exponencial) como paramétricos (VaR clásico, Delta Normal y Cornish-Fisher). Todo el análisis fue desarrollado en el lenguaje R y python buscando sacar lo mejor da cada lenguaje, lo cual nos permitió automatizar procesos, realizar simulaciones masivas y obtener resultados detallados para distintos niveles de confianza y horizontes temporales .

En conclusión, este trabajo nos permitió aplicar y contrastar diferentes enfoques de medición del riesgo financiero, profundizando en las ventajas y limitaciones de cada uno. Aprendimos que no existe un modelo único aplicable a todos los contextos, y que una buena práctica en la gestión de riesgos consiste en comparar y validar varios enfoques, con el fin de tomar decisiones informadas ante la incertidumbre inherente de los mercados financieros.

Aprendizajes

- -Comparación entre metodologías: Observamos que los modelos no paramétricos ofrecen mayor flexibilidad, ya que no requieren supuestos de normalidad, aunque dependen fuertemente de la calidad de los datos históricos. Por otro lado, los modelos paramétricos fueron más sencillos computacionalmente, pero en varias ocasiones tendieron a subestimar el riesgo, especialmente en presencia de distribuciones de retornos con colas pesadas.
- -Importancia del horizonte y nivel de confianza: Confirmamos que, como es de esperarse, tanto el VaR como el ES aumentan con horizontes temporales más largos y con niveles de confianza más elevados, reflejando un mayor riesgo acumulado.
- -Elección del modelo y sus implicaciones: Identificamos que la selección del modelo de VaR tiene un impacto directo en la gestión del riesgo. Modelos que sobreestiman el riesgo, como el de Alisado Exponencial o Laplace, pueden inducir decisiones conservadoras, mientras que otros, como Delta Normal o Monte Carlo mal calibrado, pueden subestimar el riesgo, generando una falsa sensación de seguridad.
- -Desafíos con la simulación Monte Carlo: Aunque es una técnica robusta en teoría, su eficacia depende de una buena especificación de parámetros. En algunos casos, los resultados obtenidos fueron inconsistentes (por ejemplo, VaR positivo), lo que resaltó la necesidad de validar cuidadosamente cada modelo.
- -Relevancia del Expected Shortfall (ES): Incorporar el ES fue fundamental para complementar el análisis, ya que permite evaluar la magnitud de las pérdidas más allá del umbral de VaR. Esto fue especialmente útil con modelos que consideran colas pesadas, proporcionando una medición más completa del riesgo extremo.