

- Az előző dián egy egyszerű 4 bites mikroszámítógép elvi felépítése látható. A processzor 4 bites adatokkal tud műveleteket végezni. Az ALU az A és B regiszterek adatain végzi el a kijelölt aritmetikai műveleteket amik eredményét az A vagy B regiszterbe írja vissza. A két regiszter egy muliplexer segítségével kaphat 5 forrásból adatokat. A műveletek eredményétől függően az F regiszter egyes bitjei jelzik a műveletvégrehajtás státuszát (eredmény nulla (Z), vagy túlcsordulás (C) esetleg alulcsordulás (B) történt).
- A mikroszámítógép tartalmaz egy 256*4 bites adatmemóriát és egy 256*21 bites programmemóriát.
 Ez a felépítés a Harvard architektúrának felel meg, mivel az adatok és az utasítások egymástól eltérő helyen és fel nem cserélhető módon tárolódnak.
- A programmemóriában az utasítások dekódolt módon tárolódnak. Ez nem hatékony, ezért a processzorok tartalmaznak egy utasítás dekódoló egységet is, amit jelen esetben lehagytunk.
- A programmemóriának a címzését egy 8 bites bináris, programozható számláló állítja elő (ez valósítja meg az utasítás mutatót (IP)). Normális működés esetében minden végrehajtott utasítást követően a számláló értéke eggyel növekszik. A programozható számláló értékének átírásával az ugrások (Jump) valósíthatók meg.

 A processzor működésének megértéséhez elengedhetetlen az egyes részegységek vezérlőjeleinek meghatározása, ismerete.

Вє	emer	et	Kimenet
S2	S1	So	A kimeneten megjelenő adat
0	0	0	Regiszter A
0	0	1	Regiszter B
0	1	0	ALU
0	1	1	RAM
1	0	0	Adat
1	0	1	-
1	1	0	-
1	1	1	-

Ве	emen	et	Kimenet
M2	M1	Мо	A kimeneten megjelenő adat
0	0	0	A plusz B
0	0	1	A mínusz B
0	1	0	A and B
0	1	1	A or B
1	0	0	A xor B
1	0	1	A jobbra eltolás
1	1	0	A balra eltolás
1	1	1	not A

Ве	emen	et	Kimenet
J2	J1	Jo	A kimeneten megjelenő adat
0	0	0	o (nincs ugrás)
0	0	1	1 (ugrás)
0	1	0	Z (ugrás, ha Z)
0	1	1	C (ugrás, ha C)
1	0	0	B (ugrás, ha B)
1	0	1	!Z (ugrás, ha nem Z)
1	1	0	!C (ugrás, ha nem C)
1	1	1	!B (ugrás, ha nem B)

	engedélyezése
Az egy bit engedélye igazságtá	

Bemenet

Enable

0

Kimenet

A kimeneten

megjelenő adat

Egység tiltása

Egység

Az ALU igazságtáblázata.

A programszámláló multiplexer igazságtáblázata.

Az adatokat választó multiplexer igazságtáblázata.

A 4 bites processzor utasításának felépítése.

20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	O
					V	'ezérlé	.S								Cím	vagy	operai	ndus		
Flag	RAM	ALU	J művele	etek	Forrás	adat vál	asztás		nka-	Vez	érlésáta				U	ltasítás d	cím (8 b	it)		
írás	írás								szter élyezés		(ugrás)					RAM cír	n (8 bit)		
F. en.	Store	M2	M1	Мо	S2	S1	So	R. en.	A/B				(4 bit)							
	111								1						// 100 Hotels					
20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
F. en.	Store	M2	M1	Мо	S ₂	S1	So	R. en.	A/B	J2	J1	Jo	X	X	X	X	D3	D2	D1	Do
0	0	Х	X	X	1	0	0	1	0	0	0	0	X	X	X	X	1	1	1	1

Példa az "A regiszter értéke legyen 15" azaz MOV A,15 utasításra. Az "X"-el jelölt bitek értéke nem releváns, azaz bármi lehet. Ahhoz, hogy az utasításkód kiszámítható legyen meg kell határozni egy szabályt. Legyen minden nem releváns bit értéke "o". A fentiek szerint a MOV A,15 bináris kódja: 00 000 100 10 000 0000 1111

20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
F. en.	Store	M2	M1	Мо	S ₂	S1	So	R. en.	A/B	J2	J1	Jo	X	X	X	X	D3	D2	D1	Do
0	0	X	X	X	1	0	0	1	1	0	0	0	X	X	X	X	0	0	1	1

Példa a "B regiszter értéke legyen 3" azaz MOV B,3 utasításra. A fentiek szerint a MOV A,3 bináris kódja: 00 000 100 11 000 0000 0011

20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
F. en.	Store	M2	M1	Мо	S ₂	S1	So	R. en.	A/B	J2	J1	Jo	X	X	X	X	D3	D2	D1	Do
1	0	0	0	0	0	0	0	1	0	0	0	0	X	X	X	X	X	X	Х	X

Példa az "A regiszter értéke legyen A plusz B" azaz ADD A,B utasításra. Az eredmény (amennyiben az előző két példa alapján A értéke 15 és B értéke 3) túlcsordulással jár, amit az "F" regiszter tárol, mivel az utasítás "F. en." bitje 1, azaz a Flag regiszter írását engedélyezi. A fentiek szerint az ADD A,B bináris kódja: 10 000 000 10 000 0000

20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
F. en.	Store	M2	M1	Мо	S ₂	S1	So	R. en.	A/B	J2	J1	Jo	A7	A6	A5	A4	А3	A2	A1	Ao
0	1	X	X	X	X	X	X	0	X	0	0	0	0	0	0	0	0	0	0	0

Példa az "A regiszter értékének a 0-ás című memória rekeszbe történő írására" azaz STO 0,A utasításra. A fentiek szerint a STO 0,A bináris kódja: 01 000 000 000 0000 0000

A példákban szereplő négy művelet egymást követő végrehajtásához a program az alábbi módon írható le:

Minemonic	Binaris Kod	Mukodes (pszeudokod)
MOV A,15 MOV B,3 ADD A,B STO 0,A	00 000 100 10 000 0000 1111 00 000 100 1	A regiszter értéke 15 B regiszter értéke 3 A regiszter értéke A és B összege A regiszter értéke a 0-ás memóriacímre mentve

20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	O
F. en.	Store	M2	M1	Мо	S ₂	S1	So	R. en.	A/B	J2	J1	Jo	A7	A6	A5	A4	А3	A2	A1	Ao
0	0	X	X	Χ	X	X	X	0	X	0	0	1	0	0	0	1	0	0	0	0

Példa a "feltétel nélküli ugrásra a 16-os programcímre" azaz JMP 16 utasításra. A fentiek szerint a JMP 16 bináris kódja: 00 000 000 00 001 0001 0000

20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
F. en.	Store	M2	M1	Мо	S ₂	S1	So	R. en.	A/B	J2	J1	Jo	A7	A6	A5	A4	А3	A2	A1	Ao
0	0	X	X	X	X	X	X	0	X	1	0	1	0	0	0	1	0	1	0	0

Példa a "feltételes ugrásra a 20-as programcímre". Az ugrás akkor hajtódik végre, ha a Zero (Z) flag értéke nulla, azaz az előző művelet végrehajtása során az eredmény nem nulla lett. A fentiek szerint a JNZ 20 bináris kódja: 00 000 000 001 0100

A példa az elágazásokra:

Program cím	Mnemon	ic	Biı	náris kód	Működés (pszeudokód)
018	MOV 2	A,2 0	00 000 100 1	10 000 0000 1111	A regiszter értéke 16
019	MOV I	B, 4 0	00 000 100 3		B regiszter értéke 3
020	ADD 2				A regiszter értéke A és B összege
021	SUB I				B regiszter értéke B mínusz 1 lesz
022	JNZ 2	20 0	00 000 000 0		Ha a kivonás eredménye nem nulla, akkor ugrás a 20-as programcímre
023	STO	0,A 0	01 000 000 0	00 000 0000 0000	A regiszter értéke a 0-ás memóriacímre mentve