

§ 4 连续函数

1. 函数的连续性

几何意义: 函数图像是否连绵不断.

定义1 设f(x) 在 $U(x_0;h)$ 内有定义, 若

$$\lim_{x \to x_0} f(x) = f(x_0),$$

则称 f(x) 在点 x_0 处连续, 并称点 x_0 为 f(x) 的连续点.

例 1 多项式 $P(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$,

正弦函数 $\sin x$, 余弦函数 $\cos x$

在任意 x_0 处连续.

连续函数的等价定义

函数在 x_0 处连续的 $\varepsilon - \delta$ 定义:

设函数 f(x) 在 $U(x_0,h)$ 内有定义,

若对任意给定的正数 \mathcal{E} , 存在数 $\delta > 0$,使得当 $|x - x_0| < \delta$ 时有 $|f(x) - f(x_0)| < \mathcal{E}$.

 $\Delta x = x - x_0$ 称为自变量 X 在 x_0 处的增量,

 $\Delta y = f(x) - f(x_0)$ 称为函数 f(x) 在 x_0 处的增量.

若 $\lim_{\Delta x \to 0} \Delta y = 0$, 则 f(x) 在点 x_0 处连续.

连续定义可写成 $\lim_{x\to x_0} f(x) = f(\lim_{x\to x_0} x) = f(x_0)$.

左右连续

定义2 设
$$f(x)$$
 在 $\left[x_0, x_0 + h\right]$ (或 $\left(x_0 - h, x_0\right]$)内有定义,若 $\lim_{x \to x_0^+} f(x) = f(x_0)$ (或 $\lim_{x \to x_0^-} f(x) = f(x_0)$),

则称 f(x) 在点 x_0 处右连续 (或左连续).

定理1 f(x) 在点 x_0 处连续 $\iff f(x)$ 在点 x_0 处左右连续.

(适用分段点)

例2 讨论
$$f(x) = |x|$$
 在点 $x_0 = 0$ 处的连续性.

解
$$\lim_{x \to 0^{+}} |x| = \lim_{x \to 0} x = 0 = f(0),$$

$$\lim_{x \to 0^{-}} |x| = \lim_{x \to 0} (-x) = 0 = f(0),$$
 所以
$$f(x) = |x| \text{ 在点 } x_{0} = 0 \text{ 处连续.}$$

连续函数

若函数 f(x) 在开区间 (a,b) 内每一点处连续, 则称函数 f(x) 在开区间 (a,b) 内连续, 也称函数 f(x) 是 (a,b) 内的连续函数.

若函数 f(x) 在开区间(a,b) 内连续,且在左端点 a 处右连续,右端点 b 处左连续,则称 f(x) 在闭区间[a,b] 上连续,并称函数 f(x) 是闭区间[a,b] 上的连续函数。

若函数 f(x) 函数的定义域由区间组成,它在这些区间上连续,则称函数 f(x) 在其定义域上连续。

2. 间断点,及其分类

设函数 f(x) 在 $U^{\circ}(x_0,h)$ 内有定义,若 f(x) 在 x_0 处不连续,则称 x_0 是 f(x) 的一个间断点。

间断点的类型:

- (1) 若 $f(x_0+0)$, $f(x_0-0)$ 都存在,则称 x_0 是 f(x) 第一类间断点.
 - (a) 若 $f(x_0+0) = f(x_0-0)$, 则称 x_0 是 f(x) 可去间断点.
 - (b) 若 $f(x_0 + 0) \neq f(x_0 0)$, 则称 x_0 是 f(x) 跳跃间断点.
- (2) 若 $f(x_0+0)$, $f(x_0-0)$ 中至少有一个不存在,则称 x_0 是 f(x) 第二类间断点.

对可去间断点,只要重新定义 $f(x_0) = f(x_0 - 0)$, 能使 x_0 为连续点.

间断点例子

$$y = \frac{\sin x}{x}$$

$$y = \frac{\sin x}{\cos x}$$
, $x = 0$ 是可去间断点.

延拓成
$$y = \begin{cases} \frac{\sin x}{x}, & x \neq 0, \\ 1, & x = 0 \end{cases}$$
 这是 $(-\infty, +\infty)$ 上的连续函数.

$$y = \text{sgn}(x)$$
, $x = 0$ 是跳跃间断点.

$$y = \frac{1}{x}$$
, $x = 0$ 是第二类间断点.

3. 连续函数性质

定理2 (连续函数的局部有界性)

若f(x) 在 x_0 处连续,则 $\exists \delta > 0$,使得f(x)在 $U(x_0;\delta)$ 内有界。

定理3 (连续函数的局部保号性)

若f(x) 在 x_0 处连续,且 $f(x_0) > 0$ (或 $f(x_0) < 0$),

则 $\exists \delta > 0$, 使得当 $x \in U(x_0; \delta)$ 时, 有

$$f(x) > \frac{f(x_0)}{2} > 0$$
 ($\mathbb{R} f(x) < \frac{f(x_0)}{2} < 0$).

连续函数性质

定理4 (连续函数的四则运算)

若 f(x),g(x) 都在 x_0 处连续,

则
$$f(x) \pm g(x), f(x)g(x), \frac{f(x)}{g(x)}(g(x_0) \neq 0)$$
 在 x_0 处也连续.

因为 $\sin x$, $\cos x$ 在 $(-\infty, +\infty)$ 上连续, 故

$$\tan x = \frac{\sin x}{\cos x}$$
, $\cot x = \frac{\cos x}{\sin x}$, $\sec x = \frac{1}{\cos x}$, $\csc x = \frac{1}{\sin x}$

在其定义域上连续。

指数函数的连续性

例 4 求证 $\lim_{x\to x_0} a^x = a^{x_0}$,

证 已知 $\lim_{n\to\infty} a^{\overline{n}} = 1$,下面证 $\lim_{x\to 0} a^x = 1$. 则 $\lim_{x\to x_0} a^x = \lim_{x\to x_0} a^{x-x_0} a^{x_0} = a^{x_0}$.

不妨设 a > 1, 先证 $\lim_{x \to a} a^x = 1$.

由 a^x 严格递增得 $1 < a^x \le a^n$, $\lim_{x \to 0^+} a^n = \lim_{n \to \infty} a^n = 1$.

所以 $\lim_{x\to 0} a^x = 1$.

当0 < a < 1 时, $\lim_{x \to 0} a^x = \frac{1}{\lim_{x \to 0} (\frac{1}{a})^x} = 1$

反函数的连续性

定理5 若 y = f(x) 是区间 I 上的严格递增(减)连续函数,

则 $y = f^{-1}(x)$ 也是区间 J = f(I)上的严格递增(减)连续函数,

因此

 $\arcsin x$, $\arccos x$, $\arctan x$, $\operatorname{arc} \cot x$,

 $\log_a x$

都是(相应定义域上)连续函数.

复合函数的连续性

定理6 设 u = g(x) 在 x_0 处连续,而 y = f(u) 在 $u_0 = g(x_0)$ 处连续,则 y = f(g(x)) 在 x_0 处连续.证 由 y = f(u) 在 u_0 处连续,

则对 $\forall \varepsilon > 0$, $\exists \eta > 0$, 使得当 $|u - u_0| < \eta$ 时, 有 $|f(u) - f(u_0)| < \varepsilon$.

另由u = g(x) 在 x_0 处连续,对上述 $\eta > 0$, $\exists \delta > 0$, 使得当 $|x - x_0| < \delta$ 时,有 $|g(x) - g(x_0)| = |u - u_0| < \eta$.

所以对 $\forall \varepsilon > 0$, $\exists \delta > 0$, 使得当 $|x - x_0| < \delta$ 时, 有 $|f(g(x)) - f(g(x_0))| = |f(u) - f(u_0)| < \varepsilon$ 因此 y = f(g(x)) 在 x_0 处连续.

初等函数的连续性

幂函数可以写成
$$y = x^{\alpha} = (e^{\ln x})^{\alpha} = e^{\alpha \ln x}$$
 所以 $y = x^{\alpha}$ 是连续函数.

因此基本初等函数在其定义域上连续。

初等函数在其定义域上连续。

所以一般只要讨论分段函数的分段点处的连续性。

举例

例 5 计算
$$\lim_{x\to e} \frac{\arctan \sqrt{\ln x}}{\sin \frac{\pi x}{2e}}$$
.

$$\underset{x \to e}{\text{fin}} \frac{\arctan \sqrt{\ln x}}{\sin \frac{\pi x}{2e}} = \frac{\arctan \sqrt{\ln e}}{\sin \frac{\pi e}{2e}} = \frac{\arctan 1}{\sin \frac{\pi}{2}} = \frac{\pi}{4}$$

例 6 计算
$$\lim_{x \to \frac{\pi}{2}} \frac{e^{\frac{x}{2}} - \ln(2 - \sin x)}{\sin x}$$

$$\lim_{x \to \frac{\pi}{2}} \frac{e^{\frac{x}{2}} - \ln(2 - \sin x)}{\sin x} = \frac{e^{\frac{\pi}{4}} - \ln(2 - \sin \frac{\pi}{2})}{\sin \frac{\pi}{2}} = e^{\frac{\pi}{4}}.$$

举例

例 7 证明
$$\ln(1+x) \sim x$$
 $(x \to 0)$.

证明
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}} = \ln e = 1.$$
所以
$$\ln(1+x) \sim x \quad (x \to 0).$$

例 8 证明
$$e^x - 1 \sim x$$
 $(x \to 0)$.

证明
$$\lim_{x\to 0} \frac{e^x - 1}{x} = \lim_{t\to 0} \frac{t}{\ln(1+t)} = \lim_{t\to 0} \frac{1}{\ln(1+t)^{1/t}} = \frac{1}{\ln e} = 1.$$

所以
$$e^x - 1 \sim x \quad (x \to 0).$$

例9 连续复利

设存款计息1次/年时,年率为r,本金为A,则n年后的本息为

$$S = A(1+r)^n,$$

再设, 计息 t 次/年, 则 每次利率 $\frac{r}{t}$, 从而

$$S = A \left[(1 + \frac{r}{t})^t \right]^n.$$

 $\Leftrightarrow t \to \infty$

$$S = A \lim_{t \to \infty} \left[(1 + \frac{r}{t})^t \right]^n = A \lim_{t \to \infty} \left[(1 + \frac{r}{t})^{\frac{t}{r}} \right]^{rn} = A e^{rn}.$$

例10 细菌繁殖

设初始细菌数 A_0 , 求经过一段时刻 t 后的细菌总数 S.

一般若 t_i 时刻的细菌数为 $A(t_i)$,增速为 $V(t_i)$,则有 $V(t_i) = k \cdot A(t_i)$,

k 为常数,n 等分 [0,t],则

在
$$[0, \frac{t}{n}]$$
 末,细菌数 $S_1 = A_0 + V(0) \cdot \frac{t}{n} = A_0 + (kA_0) \cdot \frac{t}{n} = A_0(1 + k\frac{t}{n}),$

在
$$\left[\frac{1}{n}t, \frac{2}{n}t\right]$$
 末,细菌数 $S_2 = A_0(1+k\frac{t}{n})^2$,

在
$$\left[\frac{n-1}{n}t, \frac{n}{n}t\right]$$
 末,细菌数 $S_n = A_0(1+k\frac{t}{n})^n$,

 $y = Ae^{kt}$ 称为(细菌的)生长函数.

4. 闭区间上连续函数的性质

定理7(最大最小值定理)

若 f(x) 在 [a,b] 上连续,则在 [a,b] 上至少 $\exists \xi, \eta$,使得当 $x \in [a,b]$ 时,有 $f(\xi) \leq f(x) \leq f(\eta)$,

 $f(\xi), f(\eta)$ 分别称为 f(x) 在 [a,b] 上的最小值和最大值.

此定理在开区间上不成立,例 $f(x) = \frac{1}{x}$ 在 (0,1) 上连续, 但无最值.

推论(有界性定理)

若 f(x) 在 [a,b] 上连续,则 f(x) 在 [a,b] 上有界。

介值定理

定理8(介值定理)

若 f(x) 在 [a,b] 上连续,且 $f(a) \neq f(b)$,则对 f(a) 与 f(b) 之间的数 μ ,在 (a,b) 内至少存在一点 ξ , 使得 $f(\xi) = \mu$.

推论 (根的存在定理)

若 f(x) 在 [a,b] 上连续,且 f(a)f(b)<0 则在 (a,b) 内至少存在一点 ξ ,使得 $f(\xi)=0$.

根的存在定理的应用例子

例11 证明 $x^3 + x^2 + x - 1 = 0$ 在 (0,1) 内至少有一实根.

证设
$$f(x) = x^3 + x^2 + x - 1$$
,

则 f(x) 在 [0,1] 上连续,且 f(0) = -1 < 0, f(1) = 2 > 0,

故在 (0,1) 内至少存在一点 ξ , 使得

$$f(\xi) = 0.$$

即 ξ 是 $x^3 + x^2 + x - 1 = 0$ 在 (0,1) 内的一个根.