doluty" \rightarrow MITF = $\tilde{R}(0)$ failed states $\tilde{P}(0) = []$	failure $\sim E(0.01)$ repair $\sim E(0.02)$ λ repair $= 0.03$ λ repair $= 0.03$ λ chows. bers: $[f_1, f_2] \rightarrow f_2 \Rightarrow R_t = f_2$	$\frac{\widetilde{f}(s)}{s+a}$ $\frac{A}{s(s+a)}$ $\frac{A}{s(s+a)}$ $\frac{A}{s}$ $\frac{A}{s}$ $\frac{A}{s(s+a)}$ $\frac{A}{s}$ $\frac{A}{s(s+a)}$ $\frac{A}{s}$ $\frac{A}{s(s+a)}$ $\frac{A}{s}$ \frac
MAKKOV: (2) • "solve for the system reliability" \rightarrow HTTF = $\tilde{R}(0)$ • Reliability with repairs? • Reliability with repairs? • Consider only won-failed state; • $\tilde{P}(t) = P(t) \cdot A$, $P(0) = []$ • $\tilde{R}(0) = \Sigma \tilde{P}_{i}(0)$	Thomse care of the failure $\sim E(0.0)$ shoungs $= \sqrt{\text{tail.A}} + \sqrt{\text{vepenir.B}}$ $= \sqrt{\frac{1}{2}}$	$\frac{f(t)}{a}(a-e^{-at})$ $\frac{1}{a}(a-e^{-at})$ $\frac{1}{a}(a-e^{-at})$ $\frac{1}{a}(a-e^{-at})$ $\frac{1}{a}(a-e^{-at})$ $\frac{1}{a}(a-e^{-at})$ $\frac{1}{a}(a-e^{-at})$ $\frac{1}{a}(a-e^{-at})$ $\frac{1}{a}(a-e^{-at})$

RELIABILITY:

-revies : $R(+) = \Pi i Ri(+)$ - parodled : $R(+) = 4 - \Pi i (A - Ri(+))$ - rout of \mathbf{n} : $R(+) = 2 \cdot \mathbf{n} \cdot (R(+)) \cdot (R(+)) \cdot (R(+)) \cdot \mathbf{n} \cdot \mathbf{k}$

- cold staud-by: \mathbf{n} -1 substitutes with NO FAILURES $R(t) = 1 - \int_0^t f(x) dx$

MITTE = ([T] =) to to (t) dt

- but stand-by: second substitute which can tail

 $R(t) = R_1(t) + \int_0^{\pm} f_1(\tau) R_S(\tau) R_2(t-\tau) d\tau$ Shaved boad: F(t) when both work, G(t) when only 1 $R(t) = (1 - F(t))^2 + 2 \int_0^t f(t) (1 - F(t)) (1 - G(t - \tau)) d\tau$

AVAILABILITY

- validous failure $T\sim f_{\rm T}$ - askine mitaisus failure $\sim Q_{\rm 0}$ - maintenance disabiling component $\sim \chi_{\rm 0}$

$$U(t) = (P(T \le t) = \gamma_0 + (1-\lambda_0)Q_0 + (1-\lambda_0)(1-Q_0)F_T(t)$$

MARKOV- CONTINUOUS

T.A=Q, STi= 1

events, in 100 day? -> DEPARTURE FREGUENCIES

 $\rightarrow W_f(t) = \sum_{i \in V} P_i(t) \lambda_{i \rightarrow X}$

 $W_{r}(t) = \sum_{i \in \mathbf{x}} P_i(t) / \mu_{i \rightarrow \mathbf{v}}$ 1

system availability = & Pi(t) · R(S) = Ziev Pi(S) > R(t) System reliability no repours

• $P'(t) = P(t) \triangleq$ • $P(s) \rightarrow P(s) = P(s) \rightarrow R(t)$ · MTTF = \$(0)

· MTTF = R(0)

exclude failed states

repairs

B-FACTOR MODEL

no dependence

dependence

 $R_{\tilde{L}}(t) = e^{-\lambda t}$

$$R_{Tor}(t) = 1 - (1 - R_i(t))^n$$

Ret)=e-pat Ri(+)=e-(4-p) At RTOr (+)= (1- (1-Ri(+))") Rc(+) B= 1. Of the failure rate of a component perintalae to our external (common) event

· BINDMING FAILURE RATE

- M courponents

- common mode wits ~ E(x) - independent failure ~ E(X)

$$\lambda_{\perp} = m\lambda + \mu \left[\binom{m}{4} \rho (4-p)^{m-1} \right] = \lambda_{\perp} = \mu \left[\binom{m}{k} \rho^{k} (4-p)^{m-k} \right] = \lambda_{\perp}$$

for In vivits

foilure rate for 1 unit