INTELIGÊNCIA COMPUTACIONAL

MEDIDAS DE SIMILARIDADE

FELIPE TORRES

SIMILARIDADE

Quanto a maçã amarela e vermelha são diferentes da verde ?

SIMILARIDADE

Essas maçãs são diferentes ? Quanto ?

MEDIDAS DE SIMILARIDADE

- Para comparar dois conjuntos de valores, os algoritmos utilizam as medidas de similaridade.
- Tabela de contigência para dados binários:
- Medida de distância para variáveis binárias simétricas:
- Medida de distância para variáveis binárias assimétricas :
- Coeficiente de Jaccard (similaridade): similaridade entre conjuntos

DADOS BINÁRIOS - JACCARD

- Para comparar dois conjuntos de valores, os algoritmos utilizam as medidas de similaridade.
- Tabela de contigência para dados binários:

		Insta	ancia j	
-		1	0	sum
2	1	q	r	q + r
li stalicia	0	8	t	s+t
=	sum	q + s	r+t	p

 Medida de distância para variáveis binárias simétricas:

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

 Medida de distância para variáveis binárias assimétricas :

$$d(i,j) = \frac{r+s}{q+r+s}$$

 Coeficiente de Jaccard (similaridade): similaridade entre conjuntos

de Jaccard
$$sim_{Jaccard}(i,j) = \frac{q}{q+r+s}$$

JACCARD - EXEMPLOS

- Atributos binários assimétricos
- Y e P são I, N é 0

Name	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	Y	N	P	N	N	N
Mary	Y	N	P	N	P	N
Jim	Y	P	N	N	N	N

$$d (jack , mary) = \frac{0+1}{2+0+1} = 0.33$$

$$d (jack , jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d (jim , mary) = \frac{1+2}{1+1+2} = 0.75$$

JACCARD- EXEMPLOS

$$Grupo \ 1 = \{A, B, C, D\}$$

 $Grupo \ 2 = \{E, F, G, A, C\}$

|Grupo I| = 4 e |Grupo 2| = 5

União Grupo I U Grupo 2 = {A,B,C,D,E,F,G} Interjeição Grupo I e Grupo 2 = {A,C}

Jaccard Similarity J (A,B) = | Intersection (A,B) | / | Union (A,B) |

= 0.286

MINKOWSKI

Distância de Minkowski:

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

onde i = (xi1, xi2, ..., xip) e j = (xj1, xj2, ..., xjp) são duas instâncias de dados de p dimensões, e h é a ordem (definindo a distância chamada norma L-h)

MANHATTAN

- Casos especiais da distância de Minkowski
 - h = I: Manhattan (city block, LI norm)

$$D(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

• Já a Distância Manhattan tem uma definição mais simples na qual é apenas a soma das diferenças entre x e y em cada dimensão.

EUCLIDIANA

- Casos especiais da distância de Minkowski
 - h = 2: (L2 norm) Euclidiana

$$D(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i1} - x_{j1}|^2 + \dots + |x_{ip} - x_{jp}|^2)}$$

 A Distância Euclidiana é definida como a soma da raiz quadrada da diferença entre x e y em suas respectivas dimensões.

COMPARAÇÃO DE DISTÂNCIAS

Euclidean

DISTÂNCIAS - EXEMPLOS

Para datasets com grande dimensão o Manhattan trabalha melhor que a distância Euclidiana.

DISTÂNCIAS - EXEMPLOS

Euclidean distance =
$$(5-1)^2 + (4-1)^2 = 5$$

Manhattan distance =
$$|5-1| + |4-1| = 7$$

MATRIZ DE SIMILARIDADE - BLOSUM62

```
Ala
Arg
Asn
     - 2
Asp
     - 2
         - 2
Cys
        -3 -3 -3
Gln
             0
Glu
Gly
His
lle
Leu
Lys
                                  -2 -1 -3
Met
Phe
Pro
                              -1 -2 -2 -3
Ser
Thr
Trp
Tyr
                      - 2
                                  - 3
                                              -1 -2
              - 2
                              - 2
Val
                             -2 -3 -3 3
                                              1 - 2
              -3 -3 -1 -2
    Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val
```

Você usava medidas de similaridade e não sabia...

INTELIGÊNCIA COMPUTACIONAL

MEDIDAS DE SIMILARIDADE

FELIPE TORRES