Lógica y Computabilidad

Gianfranco Zambonni

2 de septiembre de $2019\,$

Índice

Ι	Co	mputabilidad	3
1.	Mác	quina de Turing	3
	1.1.	Tabla de instrucciones	3
	1.2.	Definición mátematica	3
	1.3.	Representación de números y tuplas	4
		1.3.1. Números naturales	4
		1.3.2. Tuplas	4
	1.4.	Funciones parciales	4
		1.4.1. Cómputo de funciones parciales en máquinas de Turing	5
		1.4.2. Poder de cómputo	5
2.	Fun	ciones primitivas recursivas y clases PRC	6
	2.1.	Funciones iniciales	6
	2.2.	Clases Primitive Recursive Closed (PRC)	6
	2.3.	Funciones primitivas recursivas básicas:	7
		2.3.1. Predicados primitivos recursivos	8
		2.3.2. Operadores lógicos	8
		2.3.3. Definición por casos	9
		2.3.4. Sumatorias, productorias	9
		2.3.5. Cuantificadores acotados	10
		2.3.6. Minimización acotada	11
		2.3.7. Codificación de tuplas	12
		2.3.8. Codificación de tuplas	12
3.	Fun	ciones S-Computables	13
4.	Fun	ciones no computables y conjuntos c.e.	13

II	Lógica	13
5.	Lógica Proposicional	13
6.	Sistemas deductivos para lógica propisicional	13
7.	Lógica de primer orden	13
8.	Completitud y compacidad para lógica de primer orden	13
Α.	Operaciones primitivas recursivas	13
	A.1. Igualdad	13
	A 2 Divisor	14

Parte I

Computabilidad

1. Máquina de Turing

Una máquina de Turing está compuesta por:

- Una cinta infinita dividida en celdas que contienen un símbolo de un alfabeto Σ . En esta materia, Σ siempre contiene al símbolo *, que representa el blanco, y nunca contiene a L ni a R, que son las etiquetas usadas para indicar al cabezal hacia que lado debe moverse.
- El cabezal lee un símbolo y, dependiendo del estado de la máquina, puede escribir uno nuevo o moverse una posición a la derecha o una a la izquierda. Cuando completa una acción, cambia el estado de la máquina.
- Una tabla finita de instrucciones que, dado un estado y el símbolo que lee el cabezal, indica que acción debe ser tomada y cual es el estado al que se tiene que pasar.

1.1. Tabla de instrucciones

Cada instrucción es una tupla $(q, s, a, q') \in Q \times \Sigma \times (\Sigma \cup \{L, R\}) \times Q$ tal que:

- $q, q' \in Q$ son estados de la máquina de turing. q es el estado necesario para ejecutar la instrucción y q' el estado en el que queda la máquina después de ejecutarla.
- $s \in \Sigma$ es el símbolo que se tiene que le
er cuando la máquina está en q para que la instrucción se
a ejecutada.
- $a \in \Sigma \cup \{L, R\}$ es la acción a realizar. Puede ser escribir un símbolo del álfabeto Σ o mover el cabezal hacia alguno de los lados.

Entonces, la tupla (q, s, a, q') se interpreta como "Si la máquina está en el estado q leyendo en la cinta el símbolo s, entonces realiza la acción a y pasa al estado q".

1.2. Definición mátematica

Una máquina de Turing \mathcal{M} es una tupla (Σ, Q, T, q_0, q_f) donde:

- Σ es un conjunto finito de símbolos $(L, R \in \Sigma \ y * \in \Sigma)$
- \blacksquare Q es un conjunto finito de **estados**, de los cuales dos son:
 - el estado inicial q_0
 - y el estado final q_f .
- $T \subseteq Q \times \Sigma \times \Sigma$ es la tabla de instrucciones.

Hay dos tipos de máquinas de turing:

■ **Deterministicas:** Es cuando no hay dos instrucciones que tengan el mismo estado inicial y necesiten leer el mismo símbolo, es decir:

$$\nexists (q_1, s_1, a_1, q_1'), (q_2, s_2, a_2, q_2') \in T \text{ tal que } q_1 = q_2 \land s_1 = s_2$$

■ No deterministicas: Cuando no es deterministica, osea que cabe la posibilidad que se ejecuten más de una instrucción en un paso y la máquina este en dos o más estados simultáneamente.

$$\exists (q_1, s_1, a_1, q_1'), (q_2, s_2, a_2, q_2') \in T \text{ tal que } q_1 = q_2 \land s_1 = s_2$$

1.3. Representación de números y tuplas

1.3.1. Números naturales

Sea $\sigma = \{*, 1\}$, representaremos a los números naturales en unario (como si usasemos palitos). La representación \bar{x} de $x \in \mathbb{N}$, consta de x + 1 palitos.

$$\bar{x} = \underbrace{1...1}_{x+1}$$

Ejemplo: El 0 es "1", el 1 es "11", el 2 es "111", etc.

1.3.2. Tuplas

Las tuplas (x_1, \ldots, x_n) las representamos como una lista de (representaciones de) x_i separados por un blanco (*).

$$*\bar{x_1}*\bar{x_2}*\cdots*\bar{x_n}*$$

Ejemplo: La tupla (1,2) sería *11 * 111*

1.4. Funciones parciales

Sea $f: \mathbb{N}^n \to \mathbb{N}$, f es una función parcial si está definida para algunos (tal vez ninguno; tal vez todos) sus argumentos.

Notación:

- $f(x_1,...,x_n)$ ↓: f está definida para la tupla $(x_1,...,x_n)$ y, en este caso, $f(x_1,...,x_n)$ es un natural.
- $f(x_1,\ldots,x_n) \uparrow : f$ se indefine para la tupla (x_1,\ldots,x_n) .

Dominio: Conjunto de argumentos para los que f está definida y se nota dom(f).

$$dom(f) = \{(x_1, \dots, x_n) : f(x_1, \dots, x_n) \downarrow \}$$

Función Total: f es total si está definida para todos sus posibles argumentos:

$$dom(f) = \mathbb{N}^n$$

1.4.1. Cómputo de funciones parciales en máquinas de Turing

Una función parcial $f: \mathbb{N}^n \to \mathbb{N}$ es **turing computable** si existe una máquina de Turing deterministica $\mathcal{M} = (\Sigma, Q, T, q_0, q_f)$ con $\Sigma = \{*, 1\}$ tal que cuando empieza en la configuración inicial, vale que:

- Si $f(x_1, \ldots, x_n) \downarrow$ entonces, siguiendo sus instrucciones en T, llega al estado q_f ,
- Si $f(x_1, ..., x_n) \uparrow$ nunca termina en el estado q_f

Figura 1: Estado inicial de la máquina de turring

Figura 2: Estado final de la máquina de turing

1.4.2. Poder de cómputo

Sea $f: \mathbb{N}^m \to \mathbb{N}$ una función parcial. Son equivalentes:

- 1. f es computable en Java
- 2. f es computable en C
- 3. f es computable en Haskell
- 4. f es Turing computable.

2. Funciones primitivas recursivas y clases PRC

2.1. Funciones iniciales

Función calculable de manera efectiva: Son funciones que podemos escribir combinando, de alguna manera, funciones más simples que sabemos que ya sabemos que son efectivas.

La idea es que, dado un **conjunto inicial** de funciones, podamos combinarlas de ciertas formas para conseguir nuevas funciones que permitan realizar cálculos más complejos.

Funciones iniciales:

- s(x) = x + 1
- n(x) = 0
- Proyectiones: $u_i^n(x_1, \ldots, x_n) = x_i$ para $i \in \{1, \ldots, n\}$

Composición: Sea $f: \mathbb{N}^k \to \mathbb{N}$ y $g_1, \dots, g_k: \mathbb{N}^n \to \mathbb{N}$, entonces $h: \mathbb{N}^n \to \mathbb{N}$ se obtiene a partir de composición de f y g_1, \dots, g_k por composición si:

$$h(x_1, \ldots, x_n) = f(g_1(x_1, \ldots, x_n), \ldots, g_k(x_1, \ldots, x_n))$$

En este contexto, una constante k puede ser definida como:

$$h(t) = s^{(k)}(n(t))$$

Recursión primitiva: $h: \mathbb{N}^{n+1} \to \mathbb{N}$ se obtiene a partir de $g\mathbb{N}^{n+2} \to \mathbb{N}$ y $f: \mathbb{N}^n \to \mathbb{N}$ por recursión primitiva si:

$$h(x_1, \dots, x_n, 0) = f(x_1, \dots, x_n)$$

$$h(x_1, \dots, x_n, t+1) = g(h(x_1, \dots, x_n, t), x_1, \dots, x_n, t)$$

2.2. Clases Primitive Recursive Closed (PRC)

Función primitiva recursiva: Función que se puede obtener a partir de las funciones iniciales por un número finito de aplicaciones de composición y recursión primitiva.

Clase PRC: Una clase C de funciones totales es PRC si

- lacktriangle Las funciones iniciales están en \mathcal{C} .
- Si una función f se obtiene a partir de otras pertenecientes a \mathcal{C} por medio de composición o recursión primitiva, entonces f también está en \mathcal{C} .

Corolario: La clase de funciones primitivas recursivas es una clase *PRC*.

Teorema: La clase de funciones totales Turing computables es una clase *PRC*.

Teorema: Una función es p.r. si y solo si pertenece a toda clase PRC.

DEMOSTRACION

- \Leftarrow) Si una función f pertenece a todas las clases PRC, en particular, pertenece a la clase de funciones primitiva recursivas. Por lo tanto f es primitiva recursiva.
- \Rightarrow) Sea f una función primitiva recursiva y sea $\mathcal C$ una clase PRC. Como f es p.r, hay una lista f_1, \ldots, f_n tal que
 - $f = f_n$
 - f_i es inicial (luego está en \mathcal{C}) o se obtiene por composición o recursión primitiva a partir de funciones f_j con j < i (luego tambien está en \mathcal{C})

Entonces todas las funciones de la lista están en \mathcal{C} . En particular $f_n \in \mathcal{C}$.

Corolario: La clase de funciones primitivas recursivas es la clase PRC más chica.

Corolario: Toda función p.r. es total y Turing computable

DEMOSTRACION

Sabemos que la clase de funciones totales Turing computables es PRC. Por el teorema, anterior, si f es p.r, entonces f pertence a todas las clases PRC, en particular a la clase de funciones totales Turing computables.

2.3. Funciones primitivas recursivas básicas:

lacktriangle Todas las constantes k están en todas las clases PRC.

DEMOSTRACION

$$k = k(t) = s^{(k)}(n(t))$$

 \bullet suma(x,y) = x + y

DEMOSTRACION

$$suma(x,0) = u_1^1(x)$$

$$suma(x,y+1) = g(suma(x,y),x,y) = s(u_1^3(suma(x,y),x,y))$$

- $\mathbf{x} \cdot y$
- x^y
- factorial(x) = x!

$$\bullet \ x \dot{-} y = \begin{cases} x - y & \text{si } x \ge y \\ 0 & \text{si no} \end{cases}$$

$$\bullet \ \alpha(x) = \begin{cases} 1 & \text{si } x = 0 \\ 0 & \text{si no} \end{cases}$$

Para las demostraciones faltantes ir a

2.3.1. Predicados primitivos recursivos

Los **predicados** son simplemente funciones que toman valores en $\{0,1\}$.

- 1 se interpreta como verdadero,
- 0 se interpreta como falso

Los predicados primitivos recursivos son aquellos representados por funciones primitivas recursivas en $\{0,1\}$.

2.3.2. Operadores lógicos

Teorema: Sea $\mathcal C$ una clase PRC. Si p y q son predicados en $\mathcal C$ entonces $\neg p,\ p \land q$ y $p \lor q$ están en $\mathcal C$

DEMOSTRACION

- $\quad \blacksquare \ p \wedge q = p \cdot q$
- $p \lor q = \neg (\neg p \land \neg q)$

Corolario: Si p y q son predicados primitivos recursivos también lo son los predicados $\neg p, p \lor q$ y $p \land q$.

Corolario: Si p y q son predicados totales Turing computables también lo son los predicados $\neg p$, $p \lor q$ y $p \land q$

2.3.3. Definición por casos

Teorema: Sea \mathcal{C} una clase PRC. Sean $g_1, \ldots, g_m, h : \mathbb{N}^n \to \mathbb{N}$ funciones en \mathcal{C} y sean $p_1, \ldots, p_m : \mathbb{N}^n \to \{0,1\}$ predicados mutuamente excluyentes en \mathcal{C} . La función:

$$f(x_1, ..., x_n) = \begin{cases} g_1(x_1, ..., x_n) & \text{si } p_1(x_1, ..., x_n) \\ \vdots & & \\ g_m(x_1, ..., x_n) & \text{si } p_m(x_1, ..., x_n) \\ h(x_1, ..., x_n) & \text{si no} \end{cases}$$

está en $\mathcal C$

DEMOSTRACION

$$f(x_1, ..., x_n) = g_1(x_1, ..., x_n) \cdot p_1(x_1, ..., x_n) + ...$$

$$+ g_m(x_1, ..., x_n) \cdot p_m(x_1, ..., x_n)$$

$$+ h(x_1, ..., x_n) \cdot (\neg p_1(x_1, ..., x_n) \wedge ... \wedge \neg p_m(x_1, ..., x_n))$$

Si algún p_i es verdadero, valdrá 1 y el resto 0 porque todos los predicados son mutuamente excluyentes. Al evaluar f, obtendremos

$$f(x_1,\ldots,x_n) = g_i(x_1,\ldots,x_n) * p_i(x_1,\ldots,x_n) = g_i(x_1,\ldots,x_n) \cdot 1 = g_i(x_1,\ldots,x_n)$$

v321v

Si todos los predicados son falsos, entonces todas las g_i se multiplican por cero y, además vale la condición si no que es la conjuncion de sus negaciones. Y h es multiplicado por 1.

2.3.4. Sumatorias, productorias

Teorema: Sea \mathcal{C} una clase PRC. Si $f: \mathbb{N}^{n+1} \to \mathbb{N}$ está en \mathcal{C} entonces también están las funciones:

$$g(y, x_1, \dots, x_n) = \sum_{t=0}^{y} f(t, x_1, \dots, x_n)$$
$$h(y, x_1, \dots, x_n) = \prod_{t=0}^{y} f(t, x_1, \dots, x_n)$$

DEMOSTRACION

$$g(0, x_1, \dots, x_n) = f(0, x_1, \dots, x_n)$$

$$g(t+1, x_1, \dots, x_n) = g(t, x_1, \dots, x_n) + f(t+1, x_1, \dots, x_n)$$

Para h hay que hacer lo mismo pero multiplicando en vez de sumar.

Teorema: Sea $\mathcal C$ una clase PRC. Si $f:\mathbb N^{n+1}\to\mathbb N$ está en $\mathcal C$ entonces también están las funciones:

$$g(y, x_1, \dots, x_n) = \sum_{\substack{t=1 \ y}}^{y} f(t, x_1, \dots, x_n)$$

$$h(y, x_1, \dots, x_n) = \prod_{t=1}^{y} f(t, x_1, \dots, x_n)$$

La demostración es la misma que la anterios, pero los resultados de los casos bases valen 0 y 1, respectivamente.

2.3.5. Cuantificadores acotados

Sean $p: \mathbb{N}^{n+1} \to \{0,1\}$ un predicado:

 $(\forall t)_{\leq y} p(t, x_1, \dots, x_n)$ es verdadero si y solo si:

- $p(0, x_1, \ldots, x_n)$ es verdadero **y**
 - :
- $p(y, x_1, \ldots, x_n)$ es verdadero

 $(\exists t)_{\leq y} p(t, x_1, \dots, x_n)$ es verdadero si y solo si:

• $p(0, x_1, \dots, x_n)$ es verdadero **o** : • $p(y, x_1, \ldots, x_n)$ es verdadero

De la misma manera se pueden definir el existencial y el para todo con < y en vez de $\le y$.

Teorema: Sean $p: \mathbb{N}^{n+1} \to \{0,1\}$ un predicado perteneciente a una clase PRC \mathcal{C} . Entonces los siguientes predicados también están en \mathcal{C} :

$$(\forall t)_{\leq y} p(t, x_1, \dots, x_n)$$

$$(\exists t)_{\leq y} p(t, x_1, \dots, x_n)$$

DEMOSTRACION

$$(\forall t) \leq y p(t, x_1, \dots, x_n)$$
 si y solo si $\prod_{t=1}^y f(t, x_1, \dots, x_n) = 1$

$$(\exists t)_{\leq y} p(t,x_1,\ldots,x_n)$$
si y solo si $\sum_{t=1}^y f(t,x_1,\ldots,x_n)) \neq 0$

Definimos los cuantificadores en función de la sumatoria, productoria y la comparación de igualdad que están en \mathcal{C} (Ver Seccion 2.3.4 y apéndice A.1). Entonces el para todo y el existencial acotados por \leq pertenece a \mathcal{C} .

Teorema: Sean $p: \mathbb{N}^{n+1} \to \{0,1\}$ un predicado perteneciente a una clase PRC \mathcal{C} . Entonces los siguientes predicados también están en \mathcal{C} :

$$(\forall t)_{\leq y} p(t, x_1, \dots, x_n)$$

$$(\exists t)_{\leq y} p(t, x_1, \dots, x_n)$$

DEMOSTRACION

$$(\forall t)_{\leq y} p(t, x_1, \dots, x_n)$$
 si y solo si $(\forall t)_{\leq y} (t = y \lor p(t, x_1, \dots, x_n))$

$$(\exists t)_{\leq y} p(t, x_1, \dots, x_n)$$
 si y solo si $(\forall t)_{\leq y} (t \neq y \land p(t, x_1, \dots, x_n))$

2.3.6. Minimización acotada

$$\min_{t \leq y} p(t, x_1, \dots, x_n) = \begin{cases} & \text{m\'inimo } t \leq y \text{ tal que } p(t, x_1, \dots, x_n) \text{ es verdadero} & \text{si existe tal } t \\ & 0 & \text{si no} \end{cases}$$

Teorema: Sean $p: \mathbb{N}^{n+1} \to \{0,1\}$ un predicado de una clase PRC \mathcal{C} . Entonces la función $\min_{t \leq y} p(t, x_1, \dots, x_n)$ también están en \mathcal{C}

DEMOSTRACION

$$\min_{t \le y} p(t, x_1, \dots, x_n) = \sum_{u=0}^{y} \prod_{t=0}^{u} \alpha(p(t, x_1, \dots, x_n))$$

2.3.7. Codificación de tuplas

Definimos la función primitiva recursiva

$$\langle x, y \rangle = 2^x (2 \cdot y + 1) - 1$$

Proposición: Hay una única solución (x, y) a la ecuación $\langle x, y \rangle = z$.

- x es el máximo número tal que $2^x|(z+1)$
- $y = (\frac{z+1}{2^x} 1)/2$

Observadores: Sea $z = \langle x, y \rangle$:

- l(z) = x
- r(z) = y

Proposición: Los observadores de pares son primitivas recursivas

DEMOSTRACION

Como x e y son menores a z+1 tenemos que:

$$\bullet \ l(z) = \min_{x \le z} \left((\exists y)_{\le z} \ z = \langle x, y \rangle \right)$$

$$\quad \blacksquare \ r(z) = \min_{y \leq z} \Big((\exists x)_{\leq z} \ z = \langle x, y \rangle \Big)$$

2.3.8. Codificación de tuplas

El **número de Gödel** de la secuencia a_1, \ldots, a_n es el número:

$$[a_1, \dots, a_n] = \prod_{i=1}^n p_i^{a_i}$$

donde p_i es el i-ésimo primo $(i \ge 1)$

Teorema: Si $a_1, \ldots, a_n = b_1, \ldots, b_n$ entonces $a_i = b_i$ para todo $i \in \{1, \ldots, n\}$.

Observación: $[a_1, \ldots, a_n] = [a_1, \ldots, a_n, 0] = [a_1, \ldots, a_n, 0, 0] = \ldots$

Observadores: Sea $x = [a_1, \ldots, a_n]$:

- $x[i] = a_i$
- |x| = longitud de x

Proposición: Los observadores de secuencias son primitivas recursivas

DEMOSTRACION

- $\bullet \ x[i] = \min_{t \le x} \left(\neg \left(p_i^{t+1} | x \right) \right)$
- $\bullet \ |x| = \min_{i \leq x} \Big(x[i] \neq 0 \land (\forall j)_{\leq x} \, (j \leq i \lor x[j] = 0) \Big)$

3. Funciones S-Computables

4. Funciones no computables y conjuntos c.e.

Parte II

Lógica

- 5. Lógica Proposicional
- 6. Sistemas deductivos para lógica propisicional
- 7. Lógica de primer orden
- 8. Completitud y compacidad para lógica de primer orden
- A. Operaciones primitivas recursivas
- A.1. Igualdad

$$x = y$$

DEMOSTRACION

$$igual(x,y) = \alpha(\dot{x-y})$$

A.2. Divisor

y|x si y solo y divide a x

DEMOSTRACION

$$y|x\iff (\exists t)_{\leq x}y\cdot t=x$$