

2/1/0

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Docket No. AT9-97-308B

Prior Application No.: 08/907,298

First Named Inventor: Ronald Roscoe Bush

Examiner: S. Kabakoff Art Unit: 2767

ASSISTANT COMMISSIONER FOR PATENTS									
ASSISTANT COMMISSIONER FOR PATENTS WASHINGTON, D.C. 20231									
Sir:	This is	a request for filing a continuation continuation-in-part X divisional	jc511 U.S						
<u>1997,</u> f		ler 37 CFR 1.53(b) , of pending prior application serial no. <u>08/907,298</u> , filed on <u>August 6</u> , <u>JRE ENCRYPTION OF DATA PACKETS FOR TRANSMISSION OVER UNSECURED</u>							
1	X	Enclosed is a complete copy of the prior application including the oath or declaration as originally filed and an affidavit or declaration verifying it as a true copy. (See No. 14 for declaration.)							
2		_New formal drawings are enclosed.							
3		_A preliminary amendment is enclosed. (Claims added by this amendment have been properly numbered consecutively beginning with the number next following the highest numbered original claim in the prior application.)							
4	X	_Also enclosed: Return Postcard							
5		_A verified statement to establish small entity status under 37 CFR 1.9 and 1.27 is enclosed was filed in the prior application and such status is still proper and desired (37 CFR 1.28(a).							
3	Χ	Cancel in this application original claims <u>1-14</u> and <u>21-20</u> of the prior application before calculating the filing fee. (At least one original independent claim must be retained for filing purposes.)	;						
7	X	_Amend the specification by inserting the following sentence before the first line: "This isContinuation,Continuation-in-Part orX Division of application serial 08/907,298, filed August 6, 1997, currently pending."							
3		_Priority of application serial No, filed on, in is claimed under 35 U.S.C. 119. The certified copy has been filed in prior application serial no, file	∍d ₋						

Express Mail No. EL497382663US

Lhereby certify that this paper or fee is being deposited with the United States Postal Service as "Express Mail Post Office to Addressee" service under 37 C.F.R. § 1.10 on the date indicated below and is addressed to the Commissioner of Patents and Trademarks, Washington, D.C. 20231, on February 4, 2000

By: Dette Control

9	Х	_The filing fee is calculated below	v :					
		CLAIMS AS FILED IN THE PRIOR APPLICATION LESS ANY CLAIMS CANCELLED BY AMENDMENT NOW						
		Basic Fee Extra Total Claims (x \$18.00 Extra Independent Claims (x Total Filing Fee:		= = =	\$ 690.00 0.00 0.00 \$ 690.00			
10	X	_The Commissioner is hereby aut be required, or credit any overp duplicate of this sheet is enclose	payment to IBM Corpora					
11		_A check in the amount of \$ <u>.00</u> i	s enclosed.					
12	Х	_The prior application is assigned	of record to Internationa	al Business I	Machines Corporation.			
13	Х	_The power of attorney in the prior application is to David A. Mims, Jr. and Andrew J. Dillon.						
 a. X The power of attorney appears in the original papers in the prior application. b. A new power of attorney is enclosed (adding prosecution attorneys). c. Since the power of attorney does not appear in the original papers, a copy of the power in the prior application is enclosed. d. X Address all future communication to: Andrew J. DillonVenvlarik, Esq., Felsman, Bradley, Vaden, Gunter & Dillon, LLP, Suite 350, Lakewood on the Park, 7600B North Capital of Texas Highway, Austin, Texas 78731. 								
14. X I hereby verify that the attached papers are a true copy of prior application serial no. 08/907,298, as originally filed on August 6, 1997.								
The undersigned declares further that all statements made herein of his or her own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under § 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application of any patent issuing thereon.								
Date	Februa	ry 4, 2000	Dan Venglarik Reg. No. 39,409, for	leg Ge				
FELSM GUNT 201 Ma	TER & Dain Stree	natory: ADLEY, VADEN, ILLON, LLP t, Suite 1600 kas 76102	Inventor(s) Assignee of co Attorney or age X Filed under §1	ent of record				

Fort Worth, Texas 76102 817/332-8143

SECURE ENCRYPTION OF DATA PACKETS FOR TRANSMISSION OVER UNSECURED NETWORKS

BACKGROUND OF THE INVENTION

1. Technical Field:

The present invention relates in general to data encryption and in particular to securing data transfers over unsecured channels of communications. Still more particularly, the present invention relates to practical implementation of unbreakable data encryption through one-time use of pure random numbers.

2. Description of the Related Art:

Sensitive data transfers are increasingly occurring over networks which are unsecured, such as the Internet or cellular telephone networks. By their nature, the medium by which data transfers are made in such networks must be openly accessible and/or shared, leaving transactions susceptible to interception. The only available alternative for securing data transfers over such networks thus becomes data encryption.

A variety of data encryption schemes have been developed and are implemented for data transfers over networks of the type described. For example, many data encoding schemes employ a reversible encryption algorithm modeled after the Data Encryption Standard (DES). Other data encoding schemes, used alone or in conjunction with DES, employ a combination of public and private keys to encrypt data, such as the Rivest-Shamir-Aldeman (RSA) encryption system used in many commercial software packages. These encoding schemes utilize pseudo-

2.5

30

10

25

30

random numbers, or number sequences having a high degree of randomness.

The only encryption system currently recognized as being unconditionally secure is the "one-time pad," also known as a Vernam cipher, developed by Gilbert S. Vernam while working for AT&T in 1917. When properly implemented, the one-time pad encryption mechanism is generally recognized by cryptographic experts to be the only known unbreakable encoding scheme. Other encryption systems are considered cryptographically secure, meaning that the costs associated with breaking the code by pure mathematical methods and extensive computation are very high, although the code can theoretically be broken if enough computing power could be brought to bear. One-time pads are unconditionally secure, meaning that any amount of analysis and computing power is insufficient because there is no pattern in the data.

The two key characteristics of the one-time pad concept which must be adhered to for encryption with a one-time pad to be unconditionally secure are pure randomness and one-time use. Pure randomness is thought to occur in the timing of radioactive decay and in the arrival of cosmic background radiation. The present invention employs one or both of the above sources passed through a cryptographically strong one-way function as the source of random values. Furthermore, the present invention requires that the random sequences thus generated are never intentionally used in more than one embodiment.

Although recognized as being mathematically unbreakable, the one time pad is conventionally considered not to be

5

10

commercially practical. The reason is principally convenience, since the security of the system requires that the contents of the one-time pad be known only to the proper encrypting and decrypting entities. This requires secure distribution of the one-time pads. Furthermore, the one-time pad, when properly employed, requires large amounts of pure random data for the encryption/decryption values which, by definition, may be used only once. Additionally, since the one-time pad contains only a finite number of random numbers for encryption, replacement of the one-time pad is inevitably required. Finally, the one-time pad encryption method is less ideally suited for encryption of long, variable length messages than alternative, less secure encryption schemes. For these reasons, one-time pads have not been employed up to this time in actual encryption systems for commercial applications, such as banking, cellular telephony, etc.

There do exist classes of problems, however, for which the one-time pad could provide unconditionally secure encryption on a commercial basis. It would be desirable, therefore, to provide a method and apparatus for employing one-time pads in commercial applications requiring encryption of data for transfer over unsecured networks. It would further be advantageous to provide an implementation of one-time pads which could be readily adapted to a variety of commercial data encryption requirements.

10

25

30

SUMMARY OF THE INVENTION

It is therefore one object of the present invention to provide an improved method and apparatus for data encryption.

It is another object of the present invention to provide an improved method and apparatus for securing data transfers over unsecured channels of communications.

It is yet another object of the present invention to provide practical implementation of unbreakable data encryption through one-time use of pure random numbers.

The foregoing objects are achieved as is now described. Pure random numbers from a sheet within a one-time pad are employed to encrypt the bytes of a source data packet and to order the encrypted bytes in a random order within the encrypted data packet. Pure random numbers fill remaining positions within the encrypted data packet. The resulting encrypted data packet is unconditionally secure unbreakable). Sheets within the one-time pad are utilized only once, and the one-time pad is replaced when exhausted. For electronic checking applications, the one-time pad is distributed to the user stored in an electronic checkbook, with a copy retained by the bank. For cellular telephone applications, the one-time pad is stored in a replaceable memory chip within the mobile unit with a copy retained at a single, secured central computer. For client-server applications or applications involving sales over the Internet, the one-time pad may be provided to the user on a floppy disk or CD-ROM, with a copy retained by the vendor.

The above as well as additional objects, features, and advantages of the present invention will become apparent in the following detailed written description.

- 6 -AT9-97-308

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself however, as well as a preferred mode of use, further objects and advantages thereof, will best be understood by reference to the following detailed description of illustrative embodiment when read in conjunction with the accompanying drawings, wherein:

10

5

Figure 1 depicts a block diagram of a one-time pad in accordance with a preferred embodiment of the present invention;

Figure 2 is a diagram of the contents of a sheet within a one-time pad in accordance with a preferred embodiment of the present invention;

Figure 3 depicts an example of data encryption utilizing a one-time pad in accordance with a preferred embodiment of the present invention;

25

Figure 4 is a high level flowchart for a process of encrypting data in accordance with a preferred embodiment of the present invention;

Figure 5 depicts a high level flowchart for a process of decoding data in accordance with a preferred embodiment of the present invention;

30

an electronic checking is a diagram of environment in which secure encryption in accordance with a

10

preferred embodiment of the present invention may be implemented;

Figure 7 depicts a data flow diagram for a process of utilizing electronic checks in accordance with a preferred embodiment of the present invention;

Figure 8 is a block diagram of a cellular communications global transponder in which a preferred embodiment of the present invention may be implemented; and

Figure 9 depicts an Internet sales environment in which a preferred embodiment of the present invention may be implemented.

10

25

30

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

With reference now to the figures, and in particular with reference to Figure 1, a block diagram of a one-time pad in accordance with a preferred embodiment of the present invention is depicted. One-time pad 102 is maintained in a memory, such as a read only memory (ROM) or a hard disk drive, and includes a plurality of sheets 104. Each sheet 104 contains a plurality of pure random numbers sufficient for encryption of a known, fixed length (N) data packet. Each sheet 104 is not intentionally used in the implementation of any other one-time pads such as one-time pad 102.

Referring to Figure 2, a diagram of the contents of a sheet within a one-time pad in accordance with a preferred embodiment of the present invention is illustrated. sheet 104 contains a string 202 of N pure randomly-ordered numbers in the range of 1 to N. Each sheet 104 also contains a plurality of corresponding arrays 204. Number string 202 is a non-repeating sequence of numbers within the predetermined range N corresponding to the number of characters or positions in the encrypted data packet. For example, if the encrypted data packet will have five hundred positions, the numerals 1 through 500 will be randomly ordered and placed in string 202. Individual numbers within string 202 are employed to identify the position for a corresponding byte of data in the encrypted data packet. For example, the first number 206 within string 202 designates the position within the encrypted data packet in which the first byte of source data will be placed after encryption.

Each individual number within string 202 has an

10

associated array within array set 204. Each array 208 contains a non-repeating sequence of random numbers comprising a character map to be employed for the character in the respective position. For the sake of simplicity and clarity of explanation, the exemplary embodiment depicts only the mapping for numeric characters 0-9 and a delimiter ("*"). However, the mapping may easily be extended to include alphabetic or text characters merely by increasing the size of arrays 204. The arrays 204 essentially comprise encryption instructions for data packets not exceeding the length of position string 202.

The characters or values within a character map array 208 for a given position are randomly generated subject only to the constraint that the same value may not appear twice in a given array. However, the same value may appear many times within different arrays in array set 204. In fact, 128 different characters can be encoded in each byte comprising map array 208. While the exemplary embodiment depicts only numerals less than 100 in arrays 204, any set of 128 unique characters may be employed to form the character maps, including alphanumeric characters and special characters (colons, hyphens, dashes, quotation marks, punctuation, etc.).

25

30

The fact that only 128 different characters can be represented within any one byte of array 208 creates a limitation on the encryption of double byte based text that occurs in Asian languages. However, the present invention is likely to find its widest commercial use in short, fixed length, numeric related applications such as electronic checking, position reporting, and client-server authentication and verification. Since the present invention is not intended

10

for widespread use in text encryption, the exemplary embodiment illustrates a single byte approach. However, those skilled in the art will quickly understand that the present invention can be extended to include double byte encoding.

5

As described, the character map values within each array 208 in array set 204 are random numbers, and the sequence of numbers in string 202 is randomly ordered. Two sources of "randomness" are thought to exist: the time period associated with electronic emission/decay for a single radioactive particle and the level of background radiation originating from space. Methods for generating pure random numbers are well-known in the art, and include measuring the random time intervals associated with radioactive decay or cosmic background radiation and passing these measurements through a one-way hash function. These methods may be employed in known manners for generating values for the character maps in arrays 204, for randomly ordering numbers within string 202, and for filling the unused bytes of the encrypted data packet.

25

30

random numbers be employed in sheets 104 within one-time pad 102 cannot be circumvented for convenience. Pseudo-random numbers, which are usually generated from a seed value using a hash function, are not acceptable substitutes since an estimate of the seed value may be employed to derive the hash function required to duplicate the resulting pattern. With a fairly accurate estimate of the seed value, the number of mathematical operations required to crack the encryption mechanism becomes workable. The vulnerability of pseudorandom numbers, even those believed to be cryptographically secure, has been demonstrated where the time and process id

Referring again to Figure 1, the requirement that true

30

5

10

have been used in the key of popular software security features.

One-time pad 102 may also include counter 106 identifying the next sheet 104 which may be utilized for encryption or decryption. Both the encrypting and decrypting entities are provided with identical copies of one-time pad 102 through a secure medium such as hand-delivery. As sheets 104 within one-time pad 102 are utilized, counter 106 is advanced to point to the next available sheet. When counter 106 contains a value exceeding the number of sheets 104 within one-time pad 102, one-time pad 102 is depleted and must be replaced.

The requirement that a given sheet 104 within one-time pad 102 be used only once and never be reused is critical. Reuse of sheets 104 within one-time pad 102 compromises the security of the resulting encrypted data packet. It is intended that data packets encrypted by the method provided in the present invention could be accompanied by the plain text of the source packet, and still be invulnerable to cryptographic attack. Reuse of sheets 104 would prohibit this level of unconditionally secure encryption.

With reference now to Figure 3, an example of data encryption utilizing a one-time pad in accordance with a preferred embodiment of the present invention is depicted. Source data packet 302 contains a string of characters comprising the message to be encrypted for transmission. Again, while the exemplary embodiment depicts only numeric characters and a delimiter, the process described may be readily applied to expanded character sets.

10

25

30

Furthermore, the order in which the pure random numbers are used from sheet 104 within a specific one-time pad 102 can be varied depending on a particular customer or implementation. The same encoding/decoding software is simply placed in the one-time pad device and the decoding computer. This allows for further security through the ability to physically secure the one-time pad and the encoding/decoding software separately. The ability to separate responsibilities is one key method used in the prevention of theft by inside employees. In the exemplary embodiment, one particular pattern is followed for illustrative purposes.

The encrypted data packet 304 contains positions for the encrypted bytes of source data packet 302, with five hundred positions depicted in the exemplary embodiment. The value of the first numeral in the position string of a sheet in the one-time pad is utilized to determine the position of the Utilizing the example depicted in first encrypted byte. Figure 2, the first encrypted byte of source data packet is to be placed in position 3. The value of the first byte within source data packet is looked up in the associated character map for position 3, and the encrypted value "92" is entered in encrypted data packet 304 at position 3. Similarly, the value "67" is entered in position 14 and the value "38" is entered in the ninth position of encrypted data packet 304 to encode the second and third bytes of source data packet 302, respectively. This encryption process continues until all bytes of source data packet 302 have been encrypted.

When all bytes of source data packet 302 have been processed and an encryption value placed in the appropriate position of encrypted data packet 304, the remaining positions

25

30

5

10

are filled. The remaining positions may be filled with pure random numbers from the sheet of the one-time pad being employed. The positions within the encrypted data packet 304 which do not contain values from the source data packet 302 are used for authentication, verification, and disinformation.

When expanded to include the full character set, the secure encryption mechanism of the present invention possesses the ability to randomly encode each byte of a source data packet in at least 128 different ways. Furthermore, any character of data may be placed in any of the positions within the encrypted data packet. Thus, each character of data may be encrypted in hundreds of thousands of different ways, depending on the length of the encrypted data packet, with each character entirely independent of any other character. There exists no pattern in either the encoding of a character or its position within an encrypted data packet, nor is there any pattern between distinct encrypted data packets. encoding and position mappings are known only to entities possessing a copy of the one-time pad and knowing which sheet was employed for encryption. No human intervention is required for either the random number generation, encoding, or decoding processes. Once a sheet within the one-time pad has been used, that sheet is never intentionally used again, although theoretically the same sheet may be randomly generated again within another one-time pad.

The feature of randomly ordering encrypted byte within the encrypted data packet is not found in conventional onetime pads, which are simple look-up tables for each character or word placed in order in the encrypted message. Thus, the present invention provides greater security than conventional

0116AD-27624/44949.1

10

one-time pads. Furthermore, the starting location for the position string and arrays may be varied from one-time pad to one-time pad. For example, one one-time pad may begin with the fifth numeral in the position string, while another begins with the fifty-third numeral.

It should be noted that the "arrays" described above are simple constructs used for convenience in describing the invention. Other methods of employing random numbers to encrypt the source data may be employed instead of or in addition to character maps, including XORing the bits of a random number with the bits of the character or word being encrypted.

Referring to Figure 4, a high level flowchart for a process of encrypting data in accordance with a preferred embodiment of the present invention is illustrated. The process begins at step 402, which depicts initiation of the encryption process by a transmitting entity preparing to transmit a source data packet over an unsecured network. The process then passes to step 404, which illustrates reading a sheet from the one-time pad and, if the one-time pad is equipped with a counter, incrementing the counter.

25

30

The process next passes to step 406, which depicts reading a position indicator from the positions string, and then to step 408, which illustrates reading the next character to be encrypted from the source data packet. The process passes next to step 410, which depicts looking up the character to be encrypted in the character map associated with the position identified by the position indicator. The process then passes to step 412, which illustrates placing the

30

encrypted character associated in the character map with the character read from the source data packet in the position designated by the position indicator read from the position string.

5

10

The process then passes to step 414, which depicts a determination of whether the entire source data packet has been encrypted. If not, the process returns to step 406 for encryption of additional characters from the source data packet as described above. If so, however, the process proceeds to step 414, which illustrates filling the remaining positions in the encrypted data packet. As described above, the remaining positions may be filled with information encrypted with pure random numbers for authentication, verification, or disinformation purposes.

Once the entire encrypted data packet is filled, the process passes to step 416, which depicts the process becoming idle until another data packet requires encryption. The data packet encrypted by the process described may be securely transmitted over unsecured networks without danger of being compromised.

With reference now to Figure 5, a high level flowchart for a process of decoding data in accordance with a preferred embodiment of the present invention is illustrated. The process begins at step 502, which depicts initiation of the decryption process in response, for example, to receipt of an encrypted data packet. The process then passes to step 504, which illustrates reading the next available sheet from the one-time pad and, if the optional counter is present, incrementing the counter.

30

5

10

The process next passes to step 506, which depicts reading the first (or next) position in the position string within the one-time pad sheet, and then to step 508, which illustrates reading the encrypted character at the position within the encrypted data packet designated by the position indicator read. The process passes next to step 510, which depicts looking up the encrypted character in the character map associated with the designated position to determine the decoded character. The process then passes to step 512, which illustrates placing the decoded character in the next available position within the decoded data packet.

The process then passes to step 514, which depicts a determination of whether the encrypted data packet has been completely decoded. This determination may be made, for example, based on whether an expected number of characters have been decoded from the encrypted data packet, or on whether a stop character and expected fill characters have been encountered. If further decoding is required, the process returns to step 506 for decryption of additional characters within the encrypted data packet.

A determination of whether the decode was successful may simply involve checking the decoded data packet for a stop character, checking for a known number of characters to be decoded, or may involve looking for an expected authentication or verification character sequence ("watermark" or "signature") within the decoded data packet. When the message has been decoded, the fill characters are checked for authentication and verification purposes.

If the decode was not successful, the process may

10

25

30

optionally proceed to step 518, which illustrates adjusting the one-time pad employed in the decryption process in an attempt to resynchronize the one-time pads employed by the transmitting and receiving entities. This may be achieved, for example, by adjusting the counter value to compensate for the receiving entity being behind the transmitting entity, the most likely source of error in synchronization. If the counter was incremented in the last decryption attempt, the decrypting process may simply be attempted again.

To avoid the potential for synchronization errors in utilizing sheets within the one-time pad, an alternative procedure is to have the decryption process check the fill characters in adjacent sheets for authentication and verification purposes prior to decoding.

Referring again to step 516, if the data packet was successfully decoded, the process proceeds instead to step 520, which depicts the process becoming idle until decryption of a received data packet is once again required.

Referring to Figure 6, an electronic checking environment in which secure encryption in accordance with a preferred embodiment of the present invention may be implemented is depicted. The electronic checking environment depicted includes a receiving device 602 located at the merchant's place of business which is connected to a server 604 located at the customer's bank. Receiving device 602 may be connected via communications link 606 to the Internet 608, which is in turn connected via communications link 610 to server 604, such that electronic checks are processed via the Internet. Alternatively, receiving device 602 may be directly connected

10

to server 604 via communications link 612, which may provide dial-up access or the like.

An electronic checkbook **614** is capable of being selectively attached to receiving device **602**. The term "electronic checkbook" is used herein to refer to a collection of fixed length randomly encoded data packets, regardless of the medium in which such packets are held, together with the instructions for encrypting. Similarly, the term "electronic check" is used herein to refer to a single fixed length randomly encoded data packet encrypted utilizing the corresponding sheet from a one-time pad. Each electronic check within an electronic checkbook is utilized only once.

The electronic checks generated by electronic checkbook 614 would contain, in an encrypted data packet, information such as the amount, the payee's account number, and the customer's signature. The signature may comprise a simple password, or may be a fingerprint, retina scan, or any other positive means of identification. The number of bytes required to encode a check's confidential information should be on the order of 100 bytes, although each electronic check may be on the order of a few hundred bytes with the unused bytes filled with additional characters as described above.

25

30

When an individual first becomes a customer of a bank, or reorders checks, the bank supplies the customer with electronic checkbook 614, with bank routing and account identification associated with the electronic checks. Electronic checkbook 614 may include a reorder form for automatic reorder when the number of remaining checks falls below a certain number. The customer may select a password or

personal identification number (PIN), i.e., signature, to be associated with the electronic checks as is currently done for automated teller machine (ATM) access.

5

10

The collection of data packets comprising electronic checkbook 614 are contained within a suitable form of electronic memory encased in a hard case or other suitable durable means of protecting the memory. The electronic checkbook 614 may be a simple memory device such as a type of Personal Computer Memory Card International Association (PCMCIA) card capable of being inserted into receiving device Receiving device 602 may thus be equipped with a keyboard and display (not shown) for user interaction and the capability of reading electronic checks from electronic checkbook 614, encrypting transaction information utilizing the associated sheet from a one time pad, and transmitting the encrypted data packet for the transaction while deleting the one-time pad sheet from any local or internal memory in receiving device 602. For additional security, the encryption could occur only within the PCMCIA card. However, this method allows for the possibility of the checkbook owner's password being compromised, which is not the preferred embodiment of the present invention.

25

invention, electronic checkbook 614 could be a relatively simple device allowing for write-only transmission of encrypted data packets. That is, no capability to read its contents would exist. A small keyboard, a small display, and a single port would be required, with electronic checkbook 614 inserted into receiving device 602 when preparing to write an electronic check. Receiving device 602 may be located at the

Alternatively, in the preferred embodiment of the present

30

10

25

30

merchant's place of business or be connected to a customer's computer for transactions over the Internet. The payee and the amount could be automatically provided by receiving device 602, with the customer entering a password and pressing a write button when the correct payee and amount are displayed. The electronic check would then be written to receiving device 602, which would transmit the electronic check to server 604 for processing.

As still another alternative, electronic checkbook 614 may be downloaded into a device possessed by the customer, such as a personal digital assistant (PDA). Electronic checkbook 614 could be downloaded to the customer's PDA at the time the account is opened, with checks replenished without human interaction at ATM's modified to include a port for this purpose. Therefore, check replenishment would be readily available 24 hours a day.

Server 604 located at the customer's bank is connected to a storage device 616 containing the other copy of the one-time pad utilized to encrypt the confidential information within the electronic check and an authorized check list associating electronic checks with sheets of the one-time pad. electronic checking environment may also include a second server 618 located at the payee's bank connected to Internet 608 by communications link 620, and a third server 622 located Internet to connected clearinghouse In this manner, the electronic communications link 624. checks may be passed among all entities concerned via Internet 608 without generating any paper.

By encrypting the electronic checks using a one-time pad

10

25

30

in accordance with the present invention, the plain text of at least a portion of the encrypted message -- such as the amount, the payee, etc. -- may accompany the encrypted electronic check and the encrypted data would still be invulnerable to cryptographic attack. Knowledge of a portion of the message encrypted, even if accompanied by knowledge of the ordering of these portions within the source message, is of no benefit in attempting to break the encrypted message. Thus, authentication and verification codes required to validate the electronic check would remain encrypted in an unbreakable manner.

An additional level of security may be introduced by varying the starting location used for the position string between electronic checkbooks (i.e, starting with the seventh random number in the string in one electronic checkbook while starting with the thirty first random number in a different electronic checkbook). The responsiblity for generating the random numbers for the one-time pad may thus be separated from the responsibility for selecting a starting location within the position string and arrays to be employed by a particular one-time pad, increasing the difficulty of employee theft of the information. An electronic checkbook may be manufactured and filled with one-time sheets by one entity, and programmed with a randomly selected starting location within the position string by a different entity.

With reference now to Figure 7, a data flow diagram for a process of utilizing electronic checks in accordance with a preferred embodiment of the present invention is depicted. The merchant or payee supplies the merchant's account identification and an amount to the payor through a receiving

10

25

30

device. The electronic check, an encrypted data packet such as described above, is generated by the customer or payor 702 and transmitted to the merchant or payee 704. Merchant 704 appends the merchant's bank routing and account identification numbers to the electronic check, then routes the electronic check to both the payor's bank 706 and the merchant's or payee's own bank 708.

Payor's bank 706 is the only place where the electronic check can be decoded. When payor's bank 706 receives the electronic check, payor's bank 706 decodes the electronic check, verifies and authenticates the check, checks the balance of the payor's account, freezes the amount indicated in the electronic check within the payor's account, and electronically forwards the electronic check, with the appended payee account information, to clearinghouse 710 together with a coded authorization for payment of the indicated amount to the payee.

At the same time, when payee's bank 708 receives the check, payee's bank 708 marks the payee's account as pending receipt of a deposit and forwards the check to clearinghouse 710. Clearinghouse 710 compares the two (encrypted) electronic checks received from payor's bank 706 and payee's bank 708. If they match, clearinghouse subtracts the indicated amount from the clearing account of payor's bank 706, adds the indicated amount to the clearing account of payee's bank 708, notifies payor's bank 706 that the electronic check has been settled, and notifies payee's bank 708 that the electronic check has been settled with the indicated amount placed in the clearing account of payee's bank 708.

10

25

30

On receipt of the notice from clearinghouse 710, payor's bank 706 subtracts the indicated amount from the payor's account, removes the electronic check from the payor's authorized check list, and notifies the payor 702 that the check has been settled. The payor's electronic checkbook may then remove the used electronic check from the set of available electronic checks. Meanwhile, on receipt of the notice from clearinghouse 710, payee's bank 708 adjusts the payee's account by the indicated amount and notifies payee 704 that the check has been settled.

At this point, the transaction is complete. The elapsed time for the transaction could be very short. Bottlenecks will occur primarily from limited bandwidth at the retail counter and within the Internet. Bandwidth problems at the retail counter may be alleviated by using parallel receiving devices.

Use of electronic checks over the Internet, directly from a customer's home, would operate in a similar fashion. However, the customer must send a copy of the electronic check to the merchant. Moreover, a number of additional features could be added to the electronic checking system, such as the ability to directly deposit electronic checks to and/or through the customer's electronic checkbook.

The electronic checking environment of the present invention would allow the current, paper-based checking system to be electronically emulated, while providing greater security than that available in the current paper process. The ease of understanding and heightened security will facilitate earlier and faster adoption of electronic checking.

30

5

10

The current clearinghouse function will persist in an electronic form, and current banking laws, regulations, and procedures may be applied. The present invention also allows paper checks and electronic checks to coexist during a transition period to pure (or majority) electronic banking.

Referring to Figure 8, a block diagram of a cellular communications global transponder in which a preferred embodiment of the present invention may be implemented is illustrated. Global transponder 802 is a device which automatically returns a data packet containing the latitude and longitude of the location of global transponder 802 in response to receiving a cellular telephone call. The data packets may be transmitted over non-secure, commercial cellular phone circuits such as those provided by the Iridium Project, which provides global cellular communications to and from any spot on earth.

Global transponder 802 includes processor 804 connected to memory 806. The connection may be in the form of a system bus 808, which is also connected to an external port 810 for programming or communication with other devices. Processor 804 is also connected to cellular modem 812, which is connected in turn to antenna 814. Processor 804 and antenna 814 are also both connected to global positioning system (GPS) chip set 816. Such GPS chip sets are available from a number of commercial sources. GPS chip set 816 preferably returns GPS fix data in the NMEA-0183 ASCII RS232 format. Sensors 818 and switches 820 connected to processor 804 provide sources of data and control, respectively, for global transponder 802.

Global transponder 802 automatically returns a data

packet in response to a cellular phone call from a central computer (not shown). The content of the data packet that is returned varies depending on the content of the request packet originating from the central computer. In general, the data packet returned will include GPS latitude and longitude information, and may also include sensor data and/or information regarding the object to which global transponder 802 is attached.

10

5

When a cellular phone call is received, modem 812 automatically answers and receives the request packet, transmitting the request packet to processor 804. Processor 804 examines the request packet and determines what response packet should be sent. GPS fix data from GPS chip set 816 is stored in memory 806, as is data from sensors 818. Processor 804 extracts the appropriate information from memory 806 for the response packet, forwarding the response packet to modem 812 for transmission. Although the latitude and longitude may be transmitted in approximately 20 digits, the data packets returned may be any fixed length. The data packets could easily be a few hundred bytes long and still be transmitted, in burst mode, in a very short time interval (on the order of one second).

25

30

There are times when the data packets returned by global transponder 802 must be protected, as in the case of a downed military pilot. Therefore, the one-time pad of the present invention may be employed to encrypt the data packet. A portion of memory 806 may be a microchip containing the one-time pad. When the latitude/longitude of global transponder 802 is required, the central computer dials cellular phone number of global transponder 802 and transmits a request

10

packet comprised of a previously determined pattern of random characters. Processor 804 compares the pattern in the request packet to patterns associated with valid sheets of the one-time pad, copies of which are only in global transponder 802 and the central computer.

If processor 804 fails to identify a match with patterns associated with the one-time pad, then global transponder 802 simply terminates the cellular telephone connection without returning a data packet. Global transponder 802 may also record the date and time of the attempted contact. On the other hand, if a match to the pattern in the request packet is determined, processor 804 generates a data packet containing the latitude and longitude encrypted using the sheet of the one-time pad which is associated with the pattern from the request packet. This data packet is then returned to the requesting entity (i.e., the central computer).

Upon receiving the encrypted data packet, the central computer validates the packet by comparing bytes not containing latitude/longitude information with bytes expected to be returned in response to the request packet. If the packet is valid, the central computer extracts and decodes the encrypted latitude and longitude information.

25

30

In order to prevent jamming by repeatedly calling the phone number utilized by global transponder 802, it may be desirable to associate a unique phone number with each sheet in the one-time pad. Thus, global transponder 802 would respond to any of the phone numbers associated with sheets in its one-time pad. In addition, for military applications, buttons may be added to allow a downed pilot to indicate

10

25

30

his/her physical condition, the state of enemy activity, and whether his/her capture is imminent. The sensors might be used to transmit the pilot's vital signs, such as heart rate. Additionally, functionality may be added to allow the pilot to transmit the information without waiting for an incoming cellular phone call, or to indicate whether the device had fallen into enemy hands.

Since the one-time pad and the cellular phone numbers are hard-coded into memory 806 of global transponder 802, this information cannot be leaked and reverse engineering would not yield any substantive information. The use of commercial connections reduces the cost while providing, with encryption, the same or a better level of security. Fly-overs would not be required since the pilots exact location could be identified, reducing the potential for conflict or compromise of the pilot's location.

With reference now to Figure 9, an Internet sales environment in which a preferred embodiment of the present invention may be implemented is depicted. The Internet sales environment includes a user unit 902 connected to the Internet 904 by communications link 906, which may for example be access through an Internet service provider (ISP). A server 908, which may be a HyperText Transmission Protocol (HTTP) server, is located at the vendor's facilities and is also connected to Internet 904 via communications link 910. User unit 902 may include a browser, an application designed to submit HTTP requests and display information formatted in the HyperText Markup Language (HTML). Thus, transactions in the Internet sales environment depicted may be conducted over the World Wide Web (WWW).

10

25

30

The vendor may provide a one-time pad to potential customers. For example, a company selling software may provide a one-time pad to a customer setting up an account to order upgrades or new products over the Internet. Alternatively, the user's credit card company may provide a one-time pad for use in conducting transactions over the Internet. Sales orders transmitted over the Internet 904, or at least confidential information within sales orders, are encrypted by user unit 902, and are either decoded by the vendor, if the one-time pad originated from the vendor, or forwarded by the vendor to the credit card company for decoding and payment authorization.

Alternatively, the one-time pad may be employed in client-server environments for authentication and verification purposes. In this alternative, a vendor might be able to deliver software customized for a particular environment after receipt of a data packet encrypted using a one-time pad previously sold to the customer.

It is important to note that while the present invention has been described in the context of fully functional systems, those skilled in the art will appreciate that the mechanism of the present invention is capable of being distributed in the form of a computer readable medium of instructions in a variety of forms, and that the present invention applies equally regardless of the particular type of signal bearing media used to actually carry out the distribution. Examples of computer readable media include: recordable type media such as floppy disks and CD-ROMs and transmission type media such as digital and analog communication links.

While the invention has been particularly shown and described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention.

3

4

1

2

3

4

5

1

2

3

4

5

6

7

8

CLAIMS:

What is claimed is:

1. A method of encrypting data packets, comprising: selecting a byte within a source data packet;

randomly selecting an available position within an encrypted data packet in which to place an encrypted byte corresponding to said selected byte of said source data packet;

encrypting said selected byte using a random number to generate said encrypted byte; and

placing said encrypted byte in said selected position within said encrypted data packet, wherein said selected byte of said source data packet is encrypted in an unconditionally secure manner.

2. The method of claim 1, further comprising:

repeating said steps of selecting a byte, randomly selecting an available position, encrypting said selected byte, and placing said encrypted byte in said selected position for each byte within said source data packet.

3. The method of claim 2, further comprising:

after encrypting all bytes of said source data packet, filling remaining positions within said encrypted data packet with random numbers.

The method of claim 2, further comprising:

after encrypting all bytes of said source data packet, encrypting authentication data; and

placing bytes of said encrypted authentication data in remaining positions within said encrypted data packet.

7

8

9

10

11

12

13

1

2

3

4

5

6

7

1

2

- 5. A one-time pad, comprising:
 - a memory device;
- a nonrepeating, randomly ordered sequence of N numbers within the range of 1 to N within the memory device; and
- a plurality of arrays of random numbers within said memory device, each array within said plurality of arrays associated with a number within said sequence of numbers.
- 6. The one-time pad of claim 5, wherein each array within the plurality of arrays comprises a character map.
 - 7. The one-time pad of claim 5, wherein said sequence and said plurality of arrays comprise a sheet.
 - 8. The one-time pad of claim 5, further comprising:
 - a counter within said memory device, said counter pointing to a sheet within a plurality of sheets within said one-time pad.
 - 9. An electronic checkbook, comprising:
 - a memory containing a plurality of encryption sheets, each encryption sheet within the plurality of encryption sheets including:
 - a string of N numbers within the range of 1 to N arranged in a nonrepeating, randomly ordered sequence; and
 - a plurality of random number arrays, each array within said plurality of arrays associated with a different number within said string of numbers; and
 - a plurality of identifiers associating each encryption sheet within the plurality of encryption sheets with an electronic check.

3

4

1

2

1

2

- 1 10. The electronic checkbook of claim 9, wherein each 2 encryption sheet and said associated identifier comprises an 3 unused electronic check.
- 1 11. The electronic checkbook of claim 9, wherein said 2 electronic check comprises information encrypted using an 3 encryption sheet within said plurality of encryption sheets.
 - 12. The electronic checkbook of claim 11, wherein said electronic check further comprises:

a plurality of encrypted bytes generated from a plurality of source bytes,

wherein each encrypted byte is placed in a position within said plurality of encrypted bytes identified by a position number located within said string at a location corresponding to a location within said plurality of source bytes containing a source byte utilized to generate said encrypted byte, and

wherein each encrypted byte comprises a random number corresponding, within an array associated with said position number, to said source byte.

13. The electronic checkbook of claim 12, wherein said electronic check further comprises:

authentication data encrypted with said plurality of encrypted bytes.

- 14. The electronic checkbook of claim 9, wherein said electronic checkbook further comprises:
- a port for connection to a receiving device.
- 1 15. A method of processing an electronic check, comprising:

2

3

4

5

6

7

8

9

2

3

4

5

7

8

1

2

receiving an electronic check encrypted using a one-time pad at a business;

transmitting a first copy of said electronic check to a payor's bank and a second copy of said electronic check to a payee's bank; and

decoding said first copy of said electronic check at said payor's bank using a copy of said one-time pad.

- 16. The method of claim 15, further comprising: authenticating said electronic check; and transmitting said first copy of said electronic check to a clearinghouse with a payment authorization.
- 17. The method of claim 16, further comprising:
 transmitting said second copy of said electronic check to
 said clearinghouse;

comparing said first copy of said electronic check to said second copy of said electronic check; and

responsive to determining that said first copy of said electronic check matches said second copy of said electronic check, processing a transaction transferring funds from said payor's bank to said payee's bank.

18. A method of securing transmission of a global transponder location, comprising:

receiving a request packet via a cellular communications link to said global transponder;

encrypting a data packet containing a latitude and a longitude for a location of said global transponder using a one-time pad containing within said global transponder; and

transmitting said encrypted data packet to a central computer over said cellular communications link.

9

10

11

1

2

3

1

2

19. The method of claim 18, wherein said step of encrypting a data packet further comprises:

locating an identifier within said request packet;

comparing said identifier to a plurality of identifiers in said global transponder, wherein identifier within said plurality of identifiers is associated with a sheet within said one-time pad;

responsive to determining that said identifier within said request packet does not match any identifier within said plurality of identifiers, terminating said cellular communications link; and

responsive to determining that said identifier within said request packet matches an identifier within said plurality of identifiers, encrypting said data packet using a sheet within said one-time pad associated with said matching identifier.

- 20. A global transponder, comprising:
- a processor connected to a memory containing a one-time pad;
- a cellular modem connected to said processor and an antenna;
- a GPS chip set connected to said processor and said antenna, said GPS chip set providing GPS fix data to said processor,

wherein said processor, responsive to receiving a call through said cellular modem, encrypts said GPS fix data using said one-time pad for transmission via said cellular modem.

- 21. A method of encrypting data packets using a one-time pad, comprising:
 - selecting a character within a source data packet;

2

3

4 5

4

5

6

7

8

9

10

11

reading a position number within a randomly ordered, nonrepeating sequence of N numbers within the range of 1 to N, wherein said position number is at a location within said sequence corresponding to a location of said selected character within said source data packet;

reading a random number within a nonrepeating array of random numbers associated with said position number, wherein said random number corresponds within said array to said selected character; and

placing said random number in a position within an encrypted data packet corresponding to said position number.

22. The method of claim 21, further comprising:

repeating said steps of selecting a character, reading a position number, reading a random number corresponding to said selected character, and placing said random number in a position corresponding to said position number for each character within said source data packet to encrypt said source data packet.

23. The method of claim 22, further comprising:

after encrypting said source data packet, encrypting an authentication code; and

placing the encrypted authentication code within said encrypted data packet.

24. The method of claim 22, further comprising:

after encrypting said source data packet, encrypting a stop code; and

placing the encrypted stop code within said encrypted data packet.

3

4

5

1 2

3

4

5

6

7

8

9

25. A method of decoding data packets encrypted using a onetime pad, comprising:

reading a position number within a randomly ordered, nonrepeating sequence of N numbers within the range of 1 to N;

reading a random number located within an encrypted data packet at a position corresponding to said position number;

determining a character corresponding to said random number within a nonrepeating array of random numbers associated with said position number; and

placing said character in a next available position within a decoded data packet.

26. The method of claim 25, further comprising:

repeating said steps of reading a position number, reading a random number, determining a character corresponding to said random number, and placing said character in a next available position for each character in said decoded data packet.

27. The method of claim 26, further comprising:

detecting a stop code encrypted in said encrypted data packet.

- 28. The method of claim 26, further comprising:
- decoding an authentication code encrypted in said encrypted data packet.
- 29. A computer program product for use with a data processing
 system, comprising:
 - a computer usable medium;

first instructions on said computer usable medium for selecting a character within a source data packet;

second instructions on said computer usable medium for reading a position number within a randomly ordered, nonrepeating sequence of N numbers within the range of 1 to N, wherein said position number is at a location within said sequence corresponding to a location of said selected character within said source data packet;

third instructions on said computer usable medium for reading a random number within a nonrepeating array of random numbers associated with said position number, wherein said random number corresponds within said array to said selected character; and

fourth instructions on said computer usable medium for placing said random number in a position within an encrypted data packet corresponding to said position number.

30. A computer program product for use with a data processing system, comprising:

a computer usable medium;

first instructions on said computer usable medium for reading a position number within a randomly ordered, nonrepeating sequence of N numbers within the range of 1 to N;

second instructions on said computer usable medium for reading a random number located within an encrypted data packet at a position corresponding to said position number;

third instructions on said computer usable medium for determining a character corresponding to said random number within a nonrepeating array of random numbers associated with said position number; and

fourth instructions on said computer usable medium for placing said character in a next available position within a decoded data packet.

ABSTRACT OF THE DISCLOSURE SECURE ENCRYPTION OF DATA PACKETS FOR TRANSMISSION OVER UNSECURE NETWORKS

Pure random numbers from a sheet within a one-time pad are employed to encrypt the bytes of a source data packet and to order the encrypted bytes in a random order within the encrypted data packet. Pure random numbers fill remaining positions within the encrypted data packet. The resulting encrypted data packet is unconditionally secure (i.e., Sheets within the one-time pad are utilized unbreakable). only once, and the one-time pad is replaced when exhausted. For electronic checking applications, the one-time pad is distributed to the user stored in an electronic checkbook, with a copy retained by the bank. For cellular telephone applications, the one-time pad is stored in a replaceable memory chip within the mobile unit with a copy retained at a single, secured central computer. For client-server applications or applications involving sales over the Internet, the one-time pad may be provided to the user on a floppy disk or CD-ROM, with a copy retained by the vendor.

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

DECLARATION AND POWER OF ATTORNEY FOR

PATENT APPLICATION

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated next to my name:

I believe I am an original, first and sole inventor (if only one name is listed below) or and original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

SECURE ENCRYPTION OF	DATA PACKETS FO	R TRANSMISSIO	N OVER UNSECURED NETWORKS
	No	(if applicable)	
I hereby state that I have revi claims, as amended by any a	ewed and understand the mendment referred to a	ne contents of the above.	bove-identified specification, including the
I acknowledge the duty to disc with Title 37, Code of Feder	close information which al Regulations, § 1.56.	is material to the pa	tentability of this application in accordance
I hereby claim foreign priorit patent or inventor's certificat inventor's certificate having	te listed below and hav	e also identified b	de, § 119 of any foreign application(s) for elow any foreign application for patent or on which priority is claimed:
Prior Foreign Application(s):			Priority Claimed
			Yes No
(Number)	(Country)	(Day/Mor	
and, insofar as the subject ma application in the manner pro- the duty to disclose informa	atter of each of the clair ovided by the first para tion material to the pata which occurred between	ns of this application graph of Title 35, tentability of this a	ny United States application(s) listed below n is not disclosed in the prior United States United States Code, § 112, I acknowledge pplication as defined in Title 37, Code of the prior application and the national or PCT
(Application Serial No.)	(Filing I	Date)	(Status)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorneys and/or agents to prosecute this application and transact all business in the Patent and Trademark Office connected therewith.

John W. Henderson, Jr., Reg. No. 26,907; James H. Barksdale, Reg. No. 24,091; Thomas E. Tyson, Reg. No. 28,543; Robert M. Carwell, Reg. No. 28,499; Mark E. McBurney, Reg. No. 33,114; Jeffrey S. LaBaw, Reg. No. 31,633; Douglas H. Lefeve, Reg. No. 26,193; Mark S. Walker, Reg. No. 30,699; Casimer K. Salys, Reg. No. 28,900; Michael A. Davis, Jr., Reg. No. 35,488; David A. Mims, Jr., Reg. No. 32,708; Richard A. Henkler, Reg. No. 39,220; Anthony V. England, Reg. No. 35,129; Volel Emile, Reg. No. 39,969; Christopher A. Hughes, Reg. No. 26,914; Edward A. Pennington, Reg. No. 32,588; John E. Hoel, Reg. No. 26,279; Joseph C. Redmond Jr., Reg. No. 18,753; Andrew J. Dillon, Reg. No. 29,634; Kenneth C. Hill, Reg. No. 29,650; Melvin A. Hunn, Reg. No. 32,574; Duke W. Yee, Reg. No. 34,285; Max A. Ciccarelli, Reg. No. 39,454; Jack V. Musgrove, Reg. No. 31,986; Brian F. Russell, Reg. No. 40,796; Daniel E. Venglarik, Reg. No. 39,409; and Alan L. Carlson. Reg. No. 40,939.

Send Correspondence to:

Andrew J. Dillon

FELSMAN, BRADLEY, GUNTER & DILLON, L.L.P.

Suite 350 Arboretum Point 9505 Arboretum Blvd. Austin, Texas 78759

FULL NAME OF FIRST INVENTOR: Ronald Roscoe Bush
INVENTORS SIGNATURE: Jour & Cosco Bush DATE: Macjust 5, 1997
RESIDENCE: 8645 Piney Creek Bend Austin, TX 78745
CITIZENSHIP: U.S.
POST OFFICE ADDRESS: Same