## NFA ed $\varepsilon$ -NFA

- 1. (a) Considera l'alfabeto  $\Sigma = \{a, b, c\}$  e costruisci un automa non deterministico che riconosce il linguaggio di tutte le parole tali che uno dei simboli dell'alfabeto non compare mai:
  - tutte le parole che non contengono a;
  - $\bullet$  + tutte le parole che non contengono b;
  - $\bullet$  + tutte le parole che non contengono c.
  - (b) Trasforma l'NFA in DFA usando la costruzione per sottoinsiemi.

2. Dato il seguente  $\varepsilon$ -NFA:



- (a) costruisci la  $\varepsilon$ -chiusura di tutti gli stati dell'automa
- (b) trasforma l'automa in DFA usando la costruzione per sottoinsiemi

## NFA ed $\varepsilon$ -NFA

- 1. (a) Considera l'alfabeto  $\Sigma = \{a, b, c\}$  e costruisci un automa non deterministico che riconosce il linguaggio di tutte le parole tali che uno dei simboli dell'alfabeto non compare mai:
  - tutte le parole che non contengono a;
  - $\bullet$  + tutte le parole che non contengono b;
  - $\bullet$  + tutte le parole che non contengono c.
  - (b) Trasforma l'NFA in DFA usando la costruzione per sottoinsiemi.

2. Dato il seguente  $\varepsilon$ -NFA:



- (a) costruisci la  $\varepsilon$ -chiusura di tutti gli stati dell'automa
- (b) trasforma l'automa in DFA usando la costruzione per sottoinsiemi