CS420

Introduction to the Theory of Computation

Lecture 2: Pattern matching; reflexivity

Tiago Cogumbreiro

Today we will learn...

- Compound types
- Pattern matching
- Inductive types
- Recursive functions
- Proofs with forall

Chapter: Basics.v

On studying effectively for this content

Exercises structure

- 1. Open the chapter file with CoqIDE: that file is the chapter we are covering
- 2. Read the chapter and fill in any exercise
- 3. To complete an assignment ensure you have 0 occurrences of Admitted

(demo)

Back learning the basics

Your first proof

```
Example test_next_weekday:
    next_weekday (next_weekday saturday) = tuesday.
Proof.
    simpl. (* simplify left-hand side *)
    reflexivity. (* use reflexivity since we have tuesday = tuesday *)
Qed.
```


Your first proof

- Example prefixes the name of the proposition we want to prove.
- The return type (:) is a (logical) **proposition** stating that two values are equal (after evaluation).
- The body of function test_next_weekday uses the ltac proof language.
- The dot (.) after the type puts us in proof mode. (Read as "defined below".)
- This is essentially a unit test.

Ltac: Coq's proof language

```
Itac is imperative! You can step through the state with CoqIDE
Proof begins an Itac-scope, yielding
1 subgoal
______(1/1)
next_weekday (next_weekday saturday) = tuesday
Tactic simpl evaluates expressions in a goal (normalizes them)
```


Ltac: Coq's proof language

```
1 subgoal _____(1/1) tuesday = tuesday
```

reflexivity solves a goal with a pattern ?X = ?X

No more subgoals.

• Qed ends an ltac-scope and ensures nothing is left to prove

Function types

Use Check to print the type of an expression:

```
Check next_weekday.
```

which outputs

next_weekday

: day \rightarrow day

Function type day → day takes one value of type day and returns a value of type day.

Compound types

Enumerated types are very simple. You can think of them as a typed collection of constants. We call each enumerated value a **constructor**.

Compound types

Enumerated types are very simple. You can think of them as a typed collection of constants. We call each enumerated value a **constructor**.

A **compound type** builds on other existing types. Their constructors accept **multiple parameters**, like functions do.

```
Inductive color : Type :=
    | black : color
    | white : color
    | primary : rgb → color.
```


Manipulating compound values

```
Definition monochrome (c : color) : bool :=
   match c with
   | black ⇒ true
   | white ⇒ true
   | primary p ⇒ false
   end.
```


Manipulating compound values

```
Definition monochrome (c : color) : bool :=
  match c with
  | black ⇒ true
  | white ⇒ true
  | primary p ⇒ false
  end.
```

We can use the place-holder keyword _ to mean a variable we do not mean to use.

```
Definition monochrome (c : color) : bool :=
  match c with
  | black ⇒ true
  | white ⇒ true
  | primary _ ⇒ false
  end.
```


Compound types

Allows you to: type-tag, fixed-number of values

Inductive types

How do we describe arbitrarily large/composed values?

Inductive types

How do we describe arbitrarily large/composed values? Here's the definition of natural numbers, as found in the standard library:

- 0 is a constructor of type nat.

 Think of the numeral 0.
- If n is an expression of type nat, then S n is also an expression of type nat. Think of expression n + 1.

What's the difference between nat and uint32?

Recursive functions

Recursive functions are declared differently with Fixpoint, rather than Definition.

```
Fixpoint evenb (n:nat) : bool :=
  match n with
  | 0 ⇒ true
  | S 0 ⇒ false
  | S (S n') ⇒ evenb n'
  end.
```

Using Definition instead of Fixpoint will throw the following error:

The reference evenb was not found in the current environment.

Not all recursive functions can be described. Coq has to understand that one value is getting "smaller."

All functions must be total: all inputs must produce one output. **All functions must terminate.**

An example

```
Example plus_0_4 : 0 + 5 = 4. Proof.
```

How do we prove this?

An example

```
Example plus_0_4: 0 + 5 = 4. Proof.
```

How do we prove this?

- We cannot. This is unprovable.
- Because it is unprovable, there is no proof script that can satisfy this claim.

Instead, we can prove the following (later)

```
Example plus_0_5_not_4 : 0 + 5 <> 4.
```



```
Example plus_0_5: 0 + 5 = 5. Proof.
```

How do we prove this? We "know" it is true, but why do we know it is true?


```
Example plus_0_5 : 0 + 5 = 5. Proof.
```

How do we prove this? We "know" it is true, but why do we know it is true?

There are two ways:

- 1. We **understand** the definition of plus and use that to our advantage.
- 2. We brute-force and try the tactics we know (simpl, reflexivity)


```
Example plus_0_6: 0 + 6 = 6. Proof.
```

How do we prove this?


```
Example plus_0_6: 0 + 6 = 6. Proof.
```

How do we prove this?

The same as we proved plus_0_5. This result is true for any natural n!

Ranging over all elements of a set

```
Theorem plus_0_n : forall n : nat, 0 + n = n.
Proof.
  intros n.
  simpl.
  reflexivity.
Qed.
```

- Theorem is just an alias for Example and Definition.
- forall introduces a variable of a given type, eg nat; the logical statement must be true for all elements of the type of that variable.
- Tactic intros is the dual of forall in the tactics language

Forall example

Given

```
1 subgoal
_______(1/1)
forall n : nat, 0 + n = n

and applying intros n yields

1 subgoal
n : nat
_______(1/1)
0 + n = n
```

The n is a variable name of your choosing.

Try replacing intros n by intros m.

simpl and reflexivity work under forall

reflexivity also simplifies terms

```
1 subgoal
                                       -(1/1)
 forall n : nat, 0 + n = n
Applying reflexivity yields
```

No more subgoals.

Summary

- simpl and reflexivity work under forall binders
- simpl only unfolds definitions of the goal; does not conclude a proof
- reflexivity concludes proofs and simplifies

