

Typically, $\pi_i(B)$ acts trivially on $H^*(F,R)$ and either $H^*(B,R)$ or $H^*(F,R)$ will be free /R then $E_s^{F,Q} = H^{\dagger}(B;R) \otimes H^{Q}(F;R)$ as graded rings. n=2 \mathbb{CP}^2 is simply-connected $\mathbb{E}_2^{h,\gamma} = H^b(\mathbb{CP}^2, \mathbb{Z}) \otimes H^q(\mathbb{S}, \mathbb{Z}) \implies H^{p+q}(\mathbb{S}^5, \mathbb{Z})$ g(:)) $S \longrightarrow S^{2n+1}$ 2(6) 1²(706) = d2(x).6 +(-1) x. d26 2(n) 2(n²) = 0+ 2 => H'(CP2) = 2[2]/23 Q. Calculate for Rgh. Example: H*(253, Z) $E_{2}^{k,q} = H^{k}(S^{3}, Z) \otimes H^{q}(\Omega S^{3}; Z)$ → H*(PS3; Z) = Z Only possible differential is D_3 $E_2=E_3$ $E_4=E_{\infty}$ Z (1/2 Z (2/2) We get $E_3^{0,2n} = \mathbb{Z}\langle Y_n \rangle$, $dY_1 = \sigma$, $dY_n = \sigma Y_{n-1}$ Claim: $n! Y_n = Y_n^n$ in $H^{2n}(\Omega S^3, \mathbb{Z})$ Follows from the fact that is is an isomorphism. $H^{*}(\Omega S^{3}; Z) = Z \langle Y_{i} | \{ Y_{i} | = 2i, Y_{i}Y_{j} = \begin{pmatrix} i+j \\ i \end{pmatrix} Y_{i}Y_{j} \rangle$ Conclusion: divided power algebra $H^{*}(QS^{2k+1};Z) = Z < \kappa_{i} \mid |\kappa_{i}| = 2ki, \kappa_{i}\kappa_{j} = \binom{i+j}{i}\kappa_{i+j} > 1$ Q. Calculate H*(DS2n, Z).

Existence and Koperties of SS: Assume $F o E \longrightarrow B$ fiber bundle, B is a CW complex, fath connected Case 1: co-efficients are untwisted in TIGB) each trivially on HT(F,R) Fix a basepoint be at center of every cell e in the CW complex Let $F = \pi^{-1}(b_0)$ then using Gleation property we may identify $\pi^{-1}(b_0)$ by diffing any path connecting be to be Note that because TI, (B) ack trivially on H*(F,R) this identification is well defined on the homologies. Follows that $H^*(\pi^{-1}(\beta_n), \pi^{-1}(\beta_{n-1}); R) \cong \bigoplus H^*(\mathcal{D} \times F, S \times F; R)$ canonically be B_h – nth skeleton ≅ ⊕ H"(D",S"-1;R) ⊗ H*-1(F;R) ≅ Hⁿ(B_n, B_{n-1}; R) ⊗ H^{*-n} (F; R) $= C_{cdl}^{n}(B_{j}R) \otimes H^{*n}(F_{j}R)$ Filhration of Bw Bn - nt skeleton Fibration of for En = TT (Bn) \Rightarrow $S_*(E,R)$ is a fillered chain complex with n^{th} filledion $S_*(\pi^!(B_n);R)$ gives rise to a Spectral Sequence: $E_{1} = H_{*}(F_{p}, F_{p-1}) \stackrel{\sim}{=} H_{*}(\overline{\pi}'(\beta_{n}), \overline{\pi}^{-1}(\beta_{n-1}))$ $= C_{*}^{\mathcal{U}}(B) \otimes H_{*-n}(F)$ $d_i: H_{+}(F_{n_1}, F_{n-1}) \longrightarrow H_{+}(F_{n-1}, F_{n-2})$ d, = 2 call (B) & Id n. (F) using the fact that identification was commical $E_{k,y}^2 = H_k(B, H_q(F;R))$ Cosc 2: T, (B) action non-trivial B = universal cover of B

