Welcome

Statistical Decisions & Hypothesis: Critical Region and Best Critical Region

Presented by: MD Sazzad Hossain Shakkhor

Roll: 220625

What is Statistical Decision?

Process of making decisions using data and statistical methods

Two types of decisions in hypothesis testing:

Reject the null hypothesis (H₀)
Do not reject the null hypothesis
Based on probability, sample data,
and test statistics

Hypothesis: A claim or assumption about a population

Null Hypothesis (H₀): Assumes no

effect or no difference

Alternative Hypothesis (H₁):

Represents a new claim or effect

Goal: Use sample data to test whether

H₀ can be rejected

Errors in Decision Making

Type I Error (\alpha): Rejecting H₀ when it is true

Type II Error (\beta): Failing to reject H_0 when it is false

Good test minimizes both errors, especially Type I

Critical Region (Rejection Region)

Region of test statistic values that leads to rejection of H_0 Based on significance level (α), e.g., 0.05 or 0.01
If test statistic falls in this region \rightarrow reject H_0 Determined from sampling distribution of test statistic

Choosing the Critical RegionOne-tailed vs Two-tailed tests:

One-tailed: critical region in one end

Two-tailed: split across both ends

Depends on the nature of H₁

Example: H_1 : $\mu > \mu_0 \rightarrow \text{right-tailed test}$

Best Critical Region A best or most powerful critical region:

Maximizes the probability of detecting false H_0 (i.e., minimizes β)

Follows Neyman-Pearson Lemma:

For simple H₀ and H₁, the most powerful test uses likelihood ratio Ensures the best chance to detect true effects

Summary & Conclusion

Statistical decisions involve accepting/rejecting hypotheses Critical region helps decide when to reject H₀ Best critical region gives the highest test power Balancing Type I and Type II errors is key in good testing

Thanks

