

MC 613

IC/Unicamp

Prof Guido Araújo Prof Mario Côrtes Prof Sandro Rigo

Conceitos: Via de Dados e Processadores

m1ps: meu primeiro proc simples (minúsculo MIPS)

Tópicos

- Objetivos e especificações
- Diagrama de bloco
- Módulos e componentes
- ISA Instruction Set Architecture Conjunto de Instruções
- Execução das instruções: ciclo a ciclo
- Unidade de controle e FSM
- Montador
- HW de suporte para depuração (telas)
- Extensões no ISA

Objetivos do m1ps

- Primeira exposição à organização de processadores
- Conceitos principais, sem ser exaustivo
- Simples, mas n\u00e3o m\u00eanimo (pouca complexidade)
- Modular, intelegível, intuitivo, apreensível
- (quase)Completo: possível de implementar códigos básicos
- Extensível
- Uso de algumas estruturas iguais ou próximas ao MIPS

Specs de implementação

- Dados e instruções de 32 bits
- Endereço de dados e instruções: palavras
- Banco de registradores = MIPS
- ALU: quase igual à do MIPS
- Registrador de status/condição (Z, C, N, V)
- Desvio condicional (status) e incondicional com endereço imediato completo (simplicidade)
- Formatos de instrução iguais ao MIPS

Módulos: banco de registradores

- Parte da via de dados
- 32 registradores de 32 bits
 - ATENÇÃO: R0 =0
 - permite pseudo instruções move e clear

- Entrada: Barramento Dbus (32 bits)
- Saídas: Barramentos A e B (32 bits)

Controle

- Rs1 e Rs2 (5bits): selecionam registradores → saídas
 A e B
- Rd (5bits): seleciona registrador a ser escrito
- Reg_Wr (1b): controle de escrita

Módulos: ALU

- Parte da via de dados
- Operações lógicas e aritméticas de operandos de 32 bits: add, sub, and, or
- Dados
 - Entradas: Barramentos A e B (32 bits)
 - Saídas: ALU_out (32 bits)
- Controle
 - AluOp: define operação da ALU (ver conj de instruções)
 - Z,C,V,N: bits de status da operação

Módulos: sistema de memória de instruções (IM)

- IM (somente leitura): 2²⁶ linhas de 32b de largura
 - Dados: leitura da instrução (32 bits) → IR
 - Endereço: PC (26 bits)
 - Controle: leitura sempre
- PC
 - Dados: incremento ou carga paralela
 - Controle:
 - PC-Inc: PC ← PC + 1
 - PC-Ld: PC ← Target Address
 - carga paralela de endereço de desvio (26 bits)
- Observações:
 - cuidado com a temporização
 - limitar tamanho na implementação DE1 (< 2²⁶ linhas)

Módulos: sistema de

memória de dados (DM)

- DM: 2³² linhas de 32b de largura
 - sem Regs dedicados para dados e endereço
- Dados:
 - saída Dout (32b) é um dos sinais a acionar o DBus
 - entrada Din (32b): saída A do banco de registradores (definido por Rs2)
- Endereço: vem de Rs1
 - entrada Addr (32b): saída B do banco de registradores (definido por Rs1)
- Controles (1b): DM_Wre DM_Rd
- Observações:
 - cuidado com a temporização
 - limitar tamanho na implementação DE1 (< 2³² linhas)

Módulos: Unidade de controle

Interfaces

– Entradas: IR e Status

 Saídas: 15 sinais de controle

Estrutura

Principal: FSM

- Apoio:
 - lógica para controle de desvio
 - lógica para controle da ALU

Módulos: DBus e I/O

- I/O
 - In: I/O → Reg, via DBus
 - Out: Reg → I/O
- DBus
 - 32 bits
 - Acionam o barramento:
 - DM, saída da ALU, I/O in
 - Leem do barramento
 - Banco d registradores

ISA: código de máquina

Instruções Formato R, lógicas e aritméticas

				Op(3126)	Rd(2521)	Rs1(2016)	Rs2(1511)	Unused(100)
add	Rd,	Rs1,	Rs2	001 000				-
sub	Rd,	Rs1,	Rs3	001 001				-
and	Rd,	Rs1,	Rs4	001 010				-
or	Rd,	Rs1,	Rs5	001 011				-
				6	5	5	5	5

Obs						
Rd	\leftarrow	Rs1	+ Rs2			
Rd	\leftarrow	Rs1	- Rs2			
Rd	\leftarrow	Rs1	And Rs2			
Rd	\leftarrow	Rs1	Or Rs2			

Instruções Formato R, transf de dados

lw	Rd, Rs1
SW	Rs1, Rs2
in	Rd
out	Rs1

Op(3126)	Rd(2521)	Rs1(2016)	Rs2(1511)	Unused(100)
000 111			-	-
010 111	-			-
100 000		-	-	-
110 000	-		-	-
6	5	5	5	5

Obs							
Rd ← DM(Rs1)							
DM(Rs1) ← Rs2							
Rd ← IO data in							
IO_data_out ← Rs1							

Instruções Formato J, desvio

J	addr		
Вэ	cZ		
Вэ	ſN		
Вз	CV		
Вз	cC		
Вз	cnZ		
Вз	cnN		
Вз	rnV		

Op(3126)	Addr(250)
111 111	
111 000	
111 001	
111 010	
111 011	
111 100	
111 101	
111 110	

Obs							
Pc ←	addr						
11	if Z=1						
11	if N=1						
11	if V=1						
11	if C=1						
11	if Z=0						
**	if N=0						
11	if V=0						

Ciclos de execução: Fetch e Decode

- Ciclo 1: Fetch (busca de instrução)
 - IR_Ld: saída da IM escrita em IR
 - saída de IM mostra continuamente conteúdo da posição apontada por PC
 - PC_Inc: atualiza PC
 - a ser usado na próxima instrução
 - pode ser sobre-escrito se instrução = desvio

 Um ciclo para a unidade de controle decodificar a instrução e gerar os sinais de controle

Ciclo 3 de execução: arit/lógicas

- Configura ALU
 - função: ALU_OP
 - operandos de entrada: Rs1, Rs2
 - registrador de destino: Rd

- Aciona saída do barramento ALU_2_DBus
 - ALU_2_DBus
- Ao final do ciclo (borda do próx. clock), escrita
 - No registrador de destino: Reg_Wr
 - No registrador de status: Stat_Wr
- Pode ser realizada em um ciclo ou 2
 - caminho crítico: seleciona operandos, envia p ALU, realiza operação (32bits), aciona barramento, escreve em Rd

Ciclo 3 de execução: lw e sw

- DM no ciclo 2, definidos
 - Endereço: Rs1
 - Dados para escrita: Rs2
 - Registrador destino: Rd
- SW
 - DM (Rs1) ← Rs2
 - ao final do ciclo: DM_Wr
- lw
 - $Rd \leftarrow DM (Rs1)$
 - DM_2_DBus = 1
 - ao final do ciclo: Reg_Wr
- Pode ser realizada em um ciclo ou 2
 - caminho crítico: seleciona dados e endereço, envia para DM,
 operação de leitura ou escrita, aciona barramento, escreve em Rd

Ciclo 3 de execução: desvio

- Uma única ação da UC
 - ver
- sinalizar momento da
 carga de PC → Pc_Ld_En
- Desvio condicional
 - opcode comparado com condição em STAT (última operação aritmética)

- Desvio incondicional
 - decodifica OpCode e gera condição, independente de STAT

Ciclo 3 de execução: I/O

- In Rd
 - Rd ← I/O
 - controles: IO_2_Reg
 - ao final do clock: Reg_Wr
- Out Rs1
 - I/O ← Rs1
 - controles: Reg_2_IO

- Pode ser realizada em um ciclo ou 2
 - caminho crítico: seleciona Rd, ativa leitura do barramento, escreve em Rd

Controle de Desvio: Possibilidades

- Um estado para cada instrução de desvio
 - Teste é específico para o estado
 - Haverá tantos estados específicos quanto instruções de desvio
 - Complica a máquina de estados desnecessáriamente

Alternativa

- Um único estado na FSM de controle sinaliza instrução de desvio
- Hardware especializado para controlar desvios (Target Address Controller – TrgtAdrCtl)
- Situado entre a FSM, PC e Stat
- Menos HW e mais flexibilidade

Controle de Desvio: Target Address Ctl

Possível fluxo de controle

Detalhes da UC

FSM + controladores especializados: ALU e PC

Convenções de timing

- Controles:
 - síncronos com clock (mudança na borda de subida + Δ)
- Escrita em registradores:
 - na próxima borda de subida (sensível à borda)
- Escrita na Data Memory
 - depende da implementação da memória

Monitoramento da execução na DE1

m1ps Monitor (mM)

Telas geradas pelo mM: passo a passo

- Saídas de dados e controle do m1ps
- Atualizada a cada clock: scroll automatico
- Valores dos regs: devem ser derivados pelo mM

```
    Shadow Register Bank

##### mlps Monitor #####
--> Geral
Pc:
       0 \times 76543210
                     Rs1: 0 \times 76543210
Tr:
       0 \times 76543210
                     Rs2: 0x76543210
DBus: 0x76543210
                     Stat: 0x3210
--> Sinais de controle
Pc Ld: 1b
                      Stat Wr:
                                               Alu 2 DBus: 1b
Pc Inc: 1b
                      DM Wr:
                                               Reg 2 IO:
                                                             1b
Ir Wr: 1b
                      DM Rd:
                                               IO 2 Reg:
                                                             1b
                     DM 2 DBus: 1b
Alu Op: 1b
                                               Reg Wr:
                                                             1<sub>b</sub>
--> Registradores
R0: 0x76543210
                      R8: 0x76543210
                                            R16: 0x76543210
                                                                   R24: 0x76543210
R1: 0x76543210
                      R9: 0x76543210
                                            R17: 0x76543210
                                                                   R25: 0x76543210
R2: 0x76543210
                      R10: 0 \times 76543210
                                            R18: 0x76543210
                                                                   R26: 0x76543210
R3: 0x76543210
                                                                   R27: 0x76543210
                      R11: 0 \times 76543210
                                            R19: 0x76543210
R4: 0x76543210
                      R12: 0 \times 76543210
                                            R20: 0x76543210
                                                                   R28: 0x76543210
R5: 0x76543210
                      R13: 0x76543210
                                            R21: 0x76543210
                                                                   R29: 0x76543210
R6: 0x76543210
                      R14: 0 \times 76543210
                                            R22: 0x76543210
                                                                   R30: 0x76543210
R7: 0x76543210
                     R15: 0x76543210
                                            R23: 0x76543210
                                                                   R31: 0x76543210
```

Tela principal: SW(0) = 0; Memoria: SW(0) = 1;

Telas geradas pelo mM: final

- Conteúdo da memória de dados (total)
- Deve ser derivado pelo mM: Shadow DM
 - Exemplo da tela no próximo slide.

--> Memoria

ı	00	01	02	03	04	05	06	07
00	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
01	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
02	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
03	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
04	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
05	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
06	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
07	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
08	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
09	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
0 A	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
0B	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
0C	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
0D	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
0E	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
0F	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
10	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
11	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
12	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
13	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
14	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
15	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
16	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
17	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
18	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
19	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
1A	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
1B	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210
1C	76543210	76543210		76543210	76543210	76543210	76543210	76543210
1E	76543210					76543210		
1F	76543210	76543210	76543210	76543210	76543210	76543210	76543210	76543210

Tela principal: SW(0) = 0; Memoria: SW(0) = 1;

Extensões do ISA: addi

- addi Rd, Rs1, imediato
- Alterações
 - Via de dados: caminho de IR(15..0) até a entrada da ALU, com extensão de sinal
 - UC: inclusão de novo ramo na fase de execução da máquina de estado
- Necessidade de novo formato I
 - campo para imediato

Instruções Formato I, contendo campo imediato: addi Rd, Rs1, Imed Op(31..26) Rd(25..21) Rs1(20..16) Imediato(15..0) Obs

001 100 Rd \leftarrow Rs1 + Imed
6 5 5 16