

$$\min_{\omega,b} \frac{1}{2} \|\omega\|_2^2$$

S.t.
$$y:(\omega_{3};+b) \geq 1$$
 $i=1,...,n$

$$L(\omega,b,\lambda)$$

$$\nabla_{\omega}L = 0 \Rightarrow \sum_{i=1}^{n} \lambda_{i}y_{i}^{*}x_{i}^{*}$$

$$\nabla_{b}L = 0 \Rightarrow \sum_{i=1}^{n} \lambda_{i}y_{i}^{*} = 0$$

Quadratic

~

$$\sum_{i=1}^{n} \lambda_i y_i = 0, \quad 0 \leq \lambda_i \leq C$$

$$(\lambda)$$

$$(\lambda', \lambda') = \Phi(\lambda')^{\top} \Phi(\lambda')$$

$$\omega = \sum_{i=1}^{n} \lambda_i y_i \, \phi(\alpha_i)$$

$$\omega^{T} \phi(\alpha) + b$$

$$g(n) = \sum_{i \ge 1}^{n} \lambda_i y_i \Phi(n_i)^T \Phi(n) + b \geq 0$$

$$K(n_i, n)$$

Kernel Trick

$$K(x_i, x_j) = \left(\phi(x_i)^T \phi(x_j) \right)$$

$$k(x_i, x_j) = x_i x_j + cos(x_i + x_j)$$

Mercer's Theorem:

Transforming the Data

 Computation in the feature space can be costly because it is high dimensional

 The kernel trick comes to rescue

kernel trick

Suppose φ(.) is given as follows

$$\phi(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

An inner product in the feature space is

$$\langle \phi(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}), \phi(\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}) \rangle = (1 + x_1y_1 + x_2y_2)^2$$

 So, if we define the kernel function as follows, there is no need to carry out φ(.) explicitly

$$K(\mathbf{x}, \mathbf{y}) = (1 + x_1y_1 + x_2y_2)^2$$

This use of kernel function to avoid carrying out φ(.)
 explicitly is known as the kernel trick

Examples of Kernel Functions

Polynomial kernel with degree d

$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y} + 1)^d$$

Gaussian kernel with width σ

$$K(\mathbf{x}, \mathbf{y}) = \exp(-||\mathbf{x} - \mathbf{y}||^2/(2\sigma^2))$$

RBF

- Closely related to radial basis function neural networks
- The feature space is **infinite-dimensional** (it still be written as a dot product in a new feature space $k(\mathbf{x}, \mathbf{x}_0) = \Phi(\mathbf{x}) * \Phi(\mathbf{x}_0)$, only with an **infinite number of dimensions**)
- Sigmoid with parameter κ and θ

$$K(\mathbf{x}, \mathbf{y}) = \tanh(\kappa \mathbf{x}^T \mathbf{y} + \theta)$$

It does not satisfy the Mercer condition on all κ and θ

$$K(x,y) = e^{-||x-y||^2}$$
 $= e^{-(x-y)^T(x-y)} = e^{-x^Tx} -y^Ty +2x^Ty$
 $= e^{-(x-y)^T(x-y)} = e^{-x^Tx} = e^{-y^Ty}$

$$(\psi(x)^T \phi(y)$$

Mercer Theorem

Techniques for Constructing New Kernels.

Given valid kernels $k_1(\mathbf{x}, \mathbf{x}')$ and $k_2(\mathbf{x}, \mathbf{x}')$, the following new kernels will also be valid: (70

$$k(\mathbf{x}, \mathbf{x}') = ck_1(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = q(k_1(\mathbf{x}, \mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = \exp(k_1(\mathbf{x}, \mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = \exp(k_1(\mathbf{x}, \mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_3(\phi(\mathbf{x}), \phi(\mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = k_3(\phi(\mathbf{x}), \phi(\mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = k_3(\mathbf{x}_a, \mathbf{x}'_a) + k_b(\mathbf{x}_b, \mathbf{x}'_b)$$

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a)k_b(\mathbf{x}_b, \mathbf{x}'_b)$$

where c>0 is a constant, $f(\cdot)$ is any function, $q(\cdot)$ is a polynomial with nonnegative coefficients, $\phi(\mathbf{x})$ is a function from \mathbf{x} to \mathbb{R}^M , $k_3(\cdot, \cdot)$ is a valid kernel in \mathbb{R}^M , **A** is a symmetric positive semidefinite matrix, \mathbf{x}_a and \mathbf{x}_b are variables (not necessarily disjoint) with $\mathbf{x} = (\mathbf{x}_a, \mathbf{x}_b)$, and k_a and k_b are valid kernel functions over their respective spaces.

Chopter 6
Bishop

K(x, y)

$$K(x,y) = x^{T}Ay = x^{T}B^{T}By = (Bx)^{T}(By)$$

$$A = B^{T}B$$

$$\phi(x)^{T} \Phi(y)$$

What about multiple classes?

- One against all
 - Learn 3 classifiers separately:
 - Class k vs. rest
 - $(\mathbf{w}_k, \mathbf{b}_k)_{k=1,2,3}$
 - y = arg max **w**_kx + b_k k
 - Disadvantages: ambiguous area
- In each step, remove one class:
 - Problem: sensitive to order

Majority voting

Support Vector Regression (SVR)

Minimize:

 $MIN \frac{1}{2} ||\mathbf{w}||^2$

Constraints:

$$|y_i - w_i x_i| \le \varepsilon$$

Ordinary Least Squers (OLS):

$$MIN \sum_{i=1}^{n} (y_i - w_i x_i)^2$$

Using Slack Variables

Minimize:

$$MIN \frac{1}{2} ||w||^2 + C \sum_{i=1}^{n} |\xi_i|$$

Constraints:

$$|y_i - w_i x_i| \leq \varepsilon + |\xi_i|$$