# HSE FCS SE Calculus-1 2023-2024

Lecturer: Ivan Erlikh

ver. 1.6.2

# Contents

| 1 | Используемые обозначения                                                | 4               |
|---|-------------------------------------------------------------------------|-----------------|
| 2 | Логические операции                                                     | 5               |
|   | 2.1 Высказывания, предикаты и кванторы                                  | 5               |
|   | 2.1.1 Определения                                                       | 5               |
|   | 2.1.2 Правило обращения кванторов                                       | 6               |
|   | 2.2 Метод математической индукции                                       | 6               |
|   | 2.3 Неравенство Бернулли                                                | 6               |
|   | 2.4 Перестановки, размещения, сочетания                                 | 7               |
|   | 2.5 Бином Ньютона                                                       | 8               |
| 3 | Определения и свойства числовых последовательностей                     | 9               |
|   | 3.1 Определения                                                         | ç               |
|   | 3.1.1 Числовая последовательность                                       | g               |
|   | 3.1.2 Определения монотонных числовых последовательностей               | 9               |
|   | 3.1.3 Ограниченная ч.п                                                  | ç               |
|   | 3.1.4 Неограниченная ч.п.                                               | 10              |
|   | 3.1.5 Отделимая от нуля ч.п.                                            | 10              |
|   | 3.1.6 Сходящаяся ч.п                                                    | 10              |
|   | 3.1.7 Эпсилон окрестность                                               | 11              |
|   | 3.1.8 Бесконечно большая ч.п.                                           | 11              |
|   |                                                                         | $\frac{11}{12}$ |
|   |                                                                         |                 |
|   | 3.2 Связи числовых последовательностей                                  | 12              |
|   | 3.3 Арифметика предела ч.п.                                             | $\frac{13}{10}$ |
|   | В.4 Теоремы                                                             | 13              |
|   |                                                                         | 13              |
|   | 3.4.2 Теорема о зажатой последовательности                              |                 |
|   | 3.4.3 Свойство предела б.м. ч.п.                                        | 14              |
| 4 | 1                                                                       | 15              |
|   | r r                                                                     | 15              |
|   | 4.2 Определения ограниченных множеств                                   | 15              |
|   | 4.3 Определения граней множества                                        | 15              |
|   | 4.4 Теорема о существовании точной грани множества                      | 16              |
| 5 | Георема Вейерштрасса и число е                                          | 17              |
|   | 5.1 Теорема Вейерштрасса                                                | 17              |
|   | 5.2 Число Эйлера                                                        | 18              |
| 6 | Определения и свойства подпоследовательности и частичного предела       | 19              |
|   | 3.1 Определение подпоследовательности                                   | 19              |
|   | 3.2 Частичные пределы и предельная точка                                | 19              |
|   | 6.2.1 Определения                                                       | 19              |
|   | 6.2.2 Теорема об эквивалентности определений                            | 20              |
|   | 6.2.3 Свойства частичных пределов ч.п.                                  | 20              |
|   | 3.3 Система вложенных отрезков                                          | 20              |
|   | 20 Outstand Stonionium of booton illininininininininininininininininini |                 |

|   | 6.4 | Теорем  | иа Больцано-Вейерштрасса                                  | 21              |
|---|-----|---------|-----------------------------------------------------------|-----------------|
|   | 6.5 | Дополі  | нительный материал (вне курса)                            | 21              |
|   |     | 6.5.1   | Принцип Больцано-Вейерштрасса                             | 21              |
|   |     | 6.5.2   | Стягивающая система вложенных отрезков                    | $^{22}$         |
|   |     | 6.5.3   | Принцип вложенных отрезков Коши-Кантора                   | 22              |
|   |     |         |                                                           |                 |
| 7 | Фун | ндамен  | тальная ч.п. Критерий сходимости ч.п. по Коши             | 23              |
|   | 7.1 | Опреде  | еление фундаментальной ч.п.                               | 23              |
|   | 7.2 | Критер  | рий сходимости ч.п. по Коши                               | 23              |
|   | 7.3 | Постоя  | инная Эйлера-Маскерони                                    | 25              |
|   |     |         |                                                           |                 |
| 8 | Аси | ІМПТОТІ |                                                           | 26              |
|   | 8.1 | _       | еления асимптот                                           |                 |
|   | 8.2 | Призна  | ак наклонной асимптоты                                    | 26              |
| • | 0   |         | U 1                                                       | • •             |
| 9 | _   |         |                                                           | $^{28}$         |
|   | 9.1 |         |                                                           | 28              |
|   | 9.2 | -       |                                                           | 29              |
|   |     |         |                                                           | 29              |
|   |     |         |                                                           | 29              |
|   |     |         |                                                           | 29              |
|   |     |         |                                                           | 30              |
|   |     |         |                                                           | 31              |
|   |     | 9.2.6   | Бесконечные пределы                                       | 31              |
|   | 9.3 | Теорем  | иа о зажатой функции                                      | 32              |
|   | 9.4 | Первы   | й и второй замечательные пределы                          | 33              |
|   | 9.5 | Теорем  | а о пределе сложной функции                               | 34              |
|   | 9.6 | О - сим | мволика                                                   | 35              |
|   | 9.7 |         |                                                           | 35              |
|   |     |         |                                                           | 35              |
|   |     |         |                                                           | 35              |
|   |     |         |                                                           | 35              |
|   |     |         |                                                           | $^{36}$         |
|   |     |         |                                                           | $^{36}$         |
|   |     |         |                                                           | 37              |
|   |     |         |                                                           | $\frac{31}{39}$ |
|   |     |         |                                                           | 39              |
|   |     |         |                                                           | 39              |
|   |     |         |                                                           | 40              |
|   |     |         |                                                           |                 |
|   |     |         |                                                           | 40              |
|   |     |         |                                                           | 42              |
|   |     |         |                                                           | 42              |
|   |     |         |                                                           | 42              |
|   |     |         |                                                           | 42              |
|   |     |         |                                                           | 43              |
|   | 9.8 | -       |                                                           | 43              |
|   |     |         |                                                           | 43              |
|   |     |         |                                                           | 44              |
|   |     |         |                                                           | 44              |
|   |     |         |                                                           | 45              |
|   |     | 9.8.5   | Теорема о непрерывности функции, дифференцируемой в точке | 45              |
|   |     | 9.8.6   | Теорема о дифференцируемости сложной функции              | 45              |
|   |     | 9.8.7   | Теорема о производной обратной функции                    | 46              |
|   |     | 9.8.8   | Пример 1                                                  | 46              |
|   |     | 9.8.9   | Пример 2                                                  | 46              |
|   |     |         | * *                                                       | 46              |
|   |     |         |                                                           | 46              |

|    |      | 9.8.12 | Определение точки локального экстремума                        |
|----|------|--------|----------------------------------------------------------------|
|    |      | 9.8.13 | Необходимое условие локального экстремума (теорема Ферма)      |
|    |      | 9.8.14 | Определения касательной к графику функции                      |
|    |      | 9.8.15 | Теорема Ролля                                                  |
|    |      | 9.8.16 | Теорема Лагранжа                                               |
|    |      | 9.8.17 | Теорема-следствие 1                                            |
|    |      | 9.8.18 | Теорема-следствие 2                                            |
|    |      | 9.8.19 | Теорема-следствие 3                                            |
|    |      |        | Теорема Коши                                                   |
|    |      |        | Теорема о монотонности непрерывно дифференцируемой функции     |
|    |      |        | Теорема-следствие                                              |
|    |      |        | Достаточное условие экстремума                                 |
|    |      |        | Выпуклость и вогнутость функции                                |
|    |      |        | Теорема о выпуклости и вогнутости функции на интервале         |
|    |      |        | Правило Лопиталя                                               |
|    | 9.9  |        | ла Тейлора                                                     |
|    | 0.0  | 9.9.1  | Многочлен Тейлора                                              |
|    |      | 9.9.2  | Свойство многочлена Тейлора                                    |
|    |      | 9.9.3  | Формула Тейлора с остаточным членом в форме Пеано              |
|    |      | 9.9.4  | Теорема о единственности локальной формулы Тейлора             |
|    |      | 9.9.5  | Формула Тейлора с остаточным членом в формуле Лагранжа         |
|    |      | 9.9.6  | Определение точки возрастания                                  |
|    |      | 9.9.7  | Определение точки убывания                                     |
|    |      | 9.9.8  | Теорема о функции, имеющей ровно п - 1 ненулевых производных   |
|    |      | 0.0.0  | reopena o функции, имеющей poblic ii i nenystebbix производных |
| 10 | Инт  | егрир  | ование функций                                                 |
|    | 10.1 | Опред  | еление первообразной                                           |
|    | 10.2 | Свойс  | гво первообразных                                              |
|    |      |        | еделённый интеграл                                             |
|    |      |        | Определение неопределённого интеграла                          |
|    |      |        | Свойства неопределённого интеграла                             |
|    |      |        | Теорема об интеграле сложной функции                           |
|    |      |        | Формула подстановки                                            |
|    |      |        | Формула замены переменных                                      |
|    |      |        | Интегрирование по частям                                       |
|    | 10.4 |        | елённый интеграл                                               |
|    |      |        | Разбиение, диаметр разбиения, разметка разбиения               |
|    |      |        | Интегральная сумма Римана                                      |
|    |      | 10.4.3 | Определение определённого интеграла по Коши                    |
|    |      |        | Определение определённого интеграла по Гейне                   |
|    |      |        | Определение функции, интегрируемой по Риману                   |
|    |      |        | Теорема об ограниченности функции, интегрируемой на отрезке    |
|    |      |        | Суммы Дарбу                                                    |
|    |      |        | Критерий Дарбу интегрируемости по Риману                       |
|    |      |        | Определение равномерной непрерывности                          |
|    |      |        | Реорема Кантора                                                |
|    |      |        | Теорема об интегрируемости непрерывной функции                 |
|    |      |        | В Теорема об интегрируемости монотонной функции                |
|    |      |        | З Элементы теории меры                                         |
|    |      |        | Свойства определённого интеграла                               |
|    | 10.5 |        | Своиства определенного интеграла                               |
|    | 10.0 |        |                                                                |
|    |      |        | Интеграл с переменным верхним пределом                         |
|    |      |        | Теорема 1 об интеграле с переменным верхним пределом           |
|    |      |        | Теорема 2 об интеграле с переменным верхним пределом           |
|    |      | 10.0.4 | Формула Ньютона-Лейбница                                       |

# Используемые обозначения

# 

# Логические операции

# 2.1 Высказывания, предикаты и кванторы

# 2.1.1 Определения

# Definition: Высказывания и n-местные предикаты

Высказывание - это упрощённая модель повествования предложения, такая что каждое высказывание либо истинно, либо ложно, но не одновременно

n-местные предикат (n-арный предикат) - это выражение, которое превращается в высказывание, если в нём заменить  $x_1, x_2, ..., x_n$  на подходящие имена, где  $x_1, x_2, ..., x_n$  - переменные в предикате

# Definition: Логические операции

Отрицание: •  $\neg A$  (также обозначают  $\overline{A}$ ) означает "не A"

Логическое и:  $\bullet A \land B$  означает "верно A и верно B"

Логическое или: •  $A \lor B$  означает "верно A, или верно B, или верны A и B вместе"

Исключающее или: •  $A \oplus B$  означает "верно ровно одно из высказываний A, B"

Импликация:  $\bullet A \Longrightarrow B$  означает "если верно A, то верно B"

 $\Theta$ квивалентность:  $\bullet A \iff B$  означает "A верно тогда и только тогда, когда верно B"

# Note

Пусть  $A \Longrightarrow B$ 

Если A верно, то B тоже верно, но если A ложно, то B может быть и истинным, и ложным

Пусть  $A \iff B$ 

Если A ложно, то ложно B. Если B верно, то верно A

# $\mathbf{Note}$

Логические операции можно выражать через другие логические операции, например,

 $(A \Longrightarrow B) \Longleftrightarrow (\neg A \lor B)$ 

# Definition: Кванторы

Квантор всеобщности обозначается как ∀ и означает "для любого"

Квантор существования обозначается как В и означает "существует"

Квантор едиственности обозначается как! и означает "едиственный, такой что ..."

#### Example

Всеобщность: •  $\forall x \in \mathbb{R} : \phi(x)$  означает

"Для любого х из  $\mathbb{R}$  выполняется предикат  $\phi(x)$ "

Существование: •  $\exists x (x \in \mathbb{Q} \implies \psi(x))$  означает

"Существует x, такой что если x из  $\mathbb{Q}$ , то выполняется предикат  $\psi(x)$ "

Единственность: •  $\forall n \in \mathbb{N} \exists ! k \in \mathbb{N} \cup \{0\} : 2^k \le n < 2^{k+1}$  означает

"Для любого натурального числа существует и едиственно такое

целое неотрицательное число k, что  $2^k \le n < 2^{k+1}$ "

### $\mathbf{Note}$

На практике квантор едиственности часто используется вместе с квантором существования т.е. часто используют связку ∃!, "существует и единственно"

Note |

Вместо "¬∃" пишут "∄"

# 2.1.2 Правило обращения кванторов

Claim Правило обращения кванторов

При обращении кванторов квантор существования меняется на квантор всеобщности, квантор всеобщности меняется на квантор существования, а утверждение под кванторами меняется на противоположное

# Example

Пусть дано высказывание:

$$\forall n \in \mathbb{N} \exists m_1 \in \mathbb{Z} \exists m_2 > m_1 \, \forall q \in \mathbb{Q} : |m_1| > n \land \neg \psi(q \cdot m_1 \cdot m_2 - n)$$

Тогда отрицание к этому высказыванию будет:

 $\exists n \in \mathbb{N} \ \forall m_1 \in \mathbb{Z} \ \forall m_2 > m_1 \ \exists q \in \mathbb{Q} : |m_1| \le n \lor \psi(q \cdot m_1 \cdot m_2 - n)$ 

# 2.2 Метод математической индукции

Claim Метод математической индукции

Пусть есть предикат  $\phi(n)$ , который выполняется или не выполняется при различных  $n \in \mathbb{N}$ 

Тогда, если  $\exists k \in \mathbb{N} : \phi(k)$  и  $\forall n \geq k : (\phi(n) \implies \phi(n+1))$ , то по методу математической индукции получаем  $\forall n \geq k : \phi(n)$ 

Этапы доказательства:

База индукции: ullet Проверка истинности  $\phi(k)$ 

Предположение индукции: • Пусть для некоторого  $n \in \mathbb{N} \land n \ge k$  верно  $\phi(n)$ 

Шаг индукции: • Докажем, что  $\phi(n+1)$ , используя предположение индукции

Вывод: •  $\forall n \geq k : \phi(n)$ 

# 2.3 Неравенство Бернулли

#### Theorem Неравенство Бернулли

Если  $n \in \mathbb{N}$  и  $x \ge -1$ , то  $(1+x)^n \ge 1+xn$ 

# Proof:

Докажем неравенство при помощи метода математической индукции

1. База индукции:

Пусть 
$$n = 1 \implies (1 + x)^n = 1 + x \ge 1 + x$$

2. Предположение индукции:

Пусть для некоторого  $n \ge 1$  верно, что  $(1+x)^n \ge 1 + xn$ 

3. Шаг индукции: Рассмотрим неравенство, подставив в него n+1:

$$(1+x)^{n+1} = (1+x)^n \cdot (1+x)$$

$$1 + x \ge 0 \implies (1 + x)^n \cdot (1 + x) \ge (1 + xn) \cdot (1 + x) = 1 + xn + x + n \cdot x^2 \ge 1 + nx + x = 1 + n(x + 1)$$

Следовательно,  $(1+x)^{n+1} \ge 1 + n(x+1)$ 

4. Обозначим доказываемое как предикат  $\phi(n)$ , тогда получаем:

$$\phi(1) \land \forall n \in \mathbb{N} : (\phi(n) \implies \phi(n+1))$$

Тогда по принципу математической индукции  $\forall n \in \mathbb{N} : \phi(n)$ 

# 2.4 Перестановки, размещения, сочетания

# Definition: Перестановки, размещения и сочетания

Пусть дано множество из *п* элементов

• Если все элементы попарно различны (т.е. при решении задачи мы считаем, что два любых элемента множества различны), то количество попарно различных перестановок этого множества обозначается как  $P_n$  и равно n!

Пусть зафиксировано  $k \in \mathbb{N} \cup \{0\}$ , такое что  $k \le n$ , тогда:

- Количество количество способов, которыми мы можем выбрать k-элементное подмножество данного множества, считая, что элементы попарно различны, обозначается как  $A_n^k$  и равно  $\frac{n!}{(n-k)!}$
- Количество количество способов, которыми мы можем выбрать k-элементное подмножество данного множества, считая, что все элементы попарно равны, обозначается как  $C_n^k$  и равно  $\frac{n!}{k!(n-k)!}$

#### $\mathbf{Note}$

Пусть есть конечная последовательность из n натуральных чисел от 1 до n (кортеж из n элементов от 1 до n)

Тогда количество различных перестановок элементов кортежа равно  $P_n = n!$ 

Количество способов выбрать k чисел из кортежа, считая их перестановки различными, равно  $A_n^k = \frac{n!}{(n-k)!}$  Количество способов выбрать k чисел из кортежа, считая, что все перестановки одного набора - это один способ, равно  $C_n^k = \frac{n!}{k!(n-k)!}$ 

Пусть  $\sigma = (1, 2, 3, 4)$  - данный кортеж, тогда есть  $P_4 = 24$  различных перестановок  $\sigma$ :

$$(1, 2, 3, 4), (1, 2, 4, 3), (1, 3, 2, 4), (1, 3, 4, 2), (1, 4, 2, 3), (1, 4, 3, 2)$$

$$(2,1,2,4),(2,1,4,2),(2,3,1,4),(2,3,4,1),(2,4,1,3),(2,4,3,1)$$

$$(3, 1, 2, 4), (3, 1, 4, 2), (3, 2, 1, 4), (3, 2, 4, 1), (3, 4, 1, 2), (3, 4, 2, 1)$$

$$(4,1,2,3), (4,1,3,2), (4,2,1,3), (4,2,3,1), (4,3,1,2), (4,3,2,1)$$

Для k=2 есть  $A_4^2=12$  способ выбрать кортеж из 2 элементов:

$$(3,1), (3,2), (3,4), (4,1), (4,2), (4,3)$$

Для k=2 есть  $C_4^2=6$  способ выбрать подмножество из 2 элементов (порядок элементов не важен):

# 2.5 Бином Ньютона

# Theorem Бином Ньютона

 $(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$  (формально, перед равенством необходимо написать  $\forall a,b \in \mathbb{R} \forall n \in \mathbb{N}$ )

# Proof:

Докажем это утверждение при помощи метода математической индукции

1. База индукции: 
$$n=1 \implies (a+b)^n = a+b = \sum_{k=0}^1 C_n^k a^k b^{n-k}$$

2. Предположение индукции: пусть для некоторого 
$$n \ge 1 : (a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$$

3. Рассмотрим равенство и докажем, что оно верно при подстановке n+1 :

$$(a+b)^{n+1} = (a+b)(a+b)^{n} = (a+b)\sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n-k} =$$

$$= a\sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n-k} + b\sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n-k} = \sum_{k=0}^{n} C_{n}^{k} a^{k+1} b^{n-k} + \sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n+1-k}$$

$$= \sum_{k=1}^{n+1} C_{n}^{k-1} a^{k} b^{n-(k-1)} + \sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n+1-k} = C_{n}^{n} a^{n+1} b^{0} + \sum_{k=1}^{n} C_{n}^{k-1} a^{k} b^{n+1-k} + C_{n}^{0} a^{0} b^{n+1} \sum_{k=1}^{n} C_{n}^{k} a^{k} b^{n+1-k} =$$

$$= a^{n+1} + b^{n+1} + \sum_{k=1}^{n} (C_{n}^{k-1} + C_{n}^{k}) a^{k} b^{n+1-k} = C_{n+1}^{n+1} a^{n+1} + C_{n+1}^{0} b^{n+1} + \sum_{k=1}^{n} C_{n+1}^{k} a^{k} b^{n+1-k} =$$

$$= \sum_{k=0}^{n+1} C_{n+1}^{k} a^{k} b^{n+1-k}$$

$$= \sum_{k=0}^{n+1} C_{n+1}^{k} a^{k} b^{n+1-k}$$

4. Получили:

Равенство верно при n=1, а из верности равенства для n следует верность равенства для n+1 (при  $n \ge 1$ ), тогда по методу математической индукции получим, что равенство верно  $\forall n \in \mathbb{N}$ 

# Определения и свойства числовых последовательностей

#### 3.1Определения

#### 3.1.1Числовая последовательность

#### Definition: Числовая последовательность

Числовая последовательность - это счётно бесконечный проиндексированный набор чисел

#### Clarification Уточнение

Формально, числовая последовательность (далее обозначается ч.п.) - это функция натурального аргумента

 $f: \mathbb{N} \to \mathbb{R}$ 

Способы задания:

- Формула. Например,  $a_n = \left(1 + \frac{1}{n}\right)^n$  Рекуррентно. Например,  $F_n = F_{n-1} + F_{n-2}$

#### 3.1.2Определения монотонных числовых последовательностей

#### Definition: Монотонность ч.п.

Ч.п.  $\{a_n\}$  называется строго возрастающей, если  $\forall n \in \mathbb{N}: a_{n+1} > a_n$ 

Ч.п.  $\{a_n\}$  называется строго убывающей, если  $\forall n \in \mathbb{N}: a_{n+1} < a_n$ 

Ч.п.  $\{a_n\}$  называется неубывающей, если  $\forall n \in \mathbb{N} : a_{n+1} \geq a_n$ 

Ч.п.  $\{a_n\}$  называется невозрастающей, если  $\forall n \in \mathbb{N} : a_{n+1} \leq a_n$ 

#### 3.1.3Ограниченная ч.п.

# Definition: Ограниченная сверху числовая последовательность

Числовая последовательность  $\{a_n\}$  называется ограниченной сверху, если  $\exists C \in \mathbb{R} \ \forall n \in \mathbb{N} : a_n < C$ 

# Definition: Ограниченная снизу числовая последовательность

Числовая последовательность  $\{a_n\}$  называется ограниченной снизу, если  $\exists C \in \mathbb{R} \, \forall n \in \mathbb{N} : \, a_n > -C$ 

#### Definition: Ограниченная числовая последовательность

Числовая последовательность  $\{a_n\}$  называется ограниченной, если  $\exists C > 0 \ \forall n \in \mathbb{N} : |a_n| < C$ 

# Example

Пример: 
$$a_n = 5 + \frac{1}{n}$$

Пример: 
$$a_n=5+\frac{1}{n}$$
  $\exists C=7>0 \ \forall n\in \mathbb{N}: \ |a_n|=\left|5+\frac{1}{n}\right|<7=C$ 

# Note

Числовая последовательность ограничена ⇔ она ограничена сверху и ограничена снизу

# 3.1.4 Неограниченная ч.п.

# Definition: Неограниченная числовая последовательность

Числовая последовательность  $\{a_n\}$  называется неограниченной, если она не является ограниченной,

$$\forall C > 0 \, \exists n \in \mathbb{N} : \, |a_n| \ge C$$

# Example

Пример: 
$$a_n = n$$

$$\forall C > 0 \,\exists n = \lceil C \rceil \in \mathbb{N} : |a_n| \ge C$$

#### 3.1.5Отделимая от нуля ч.п.

# Definition: Отделимая от нуля числовая последовательность

Числовая последовательность  $\{a_n\}$  называется отделимой от нуля, если

$$\exists \varepsilon > 0 \, \forall n \in \mathbb{N} : |a_n| > \varepsilon$$

#### Example

Пример: 
$$a_n = 2 - \frac{1}{n}$$

Пример: 
$$a_n=2-\frac{1}{n}$$
  $\exists \varepsilon=0.5>0 \ \forall n\in \mathbb{N}: \ |a_n|=\left|2-\frac{1}{n}\right|>0.5=\varepsilon$ 

#### 3.1.6 Сходящаяся ч.п.

#### Definition: Сходящаяся числовая последовательность

Числовая последовательность называется сходящейся, если она имеет конечный предел при  $n o + \infty$ , т.е. ч.п.  $\{a_n\}$  называется сходящейся, если:

$$\exists A \in \mathbb{R} \ \forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} \ \forall n > N : |a_n - A| < \varepsilon$$

Обозначение:

$$\lim_{n\to+\infty}a_n=A, A\in\mathbb{R}$$

# Example

Пример: 
$$a_n = \frac{4n^3 + 2n^2 + 1}{2n^3 + 1}$$

Докажем, что  $\lim_{n\to+\infty} a_n = 2 = A$ 

Пусть  $\varepsilon > 0$ , тогда:

$$|a_n - 2| < \varepsilon \iff \left| \frac{4n^3 + 2n^2 + 1}{2n^3 + 1} - 2 \right| < \varepsilon \iff \left| \frac{2n^2 - 1}{2n^3 + 1} \right| < \varepsilon \iff$$

$$\iff \frac{2n^2 - 1}{2n^3 + 1} < \varepsilon \iff \frac{2n^2}{2n^3 + 1} < \varepsilon \iff \frac{2n^2}{2n^3} < \varepsilon \iff \frac{1}{n} < \varepsilon \iff \frac{1}{\varepsilon} < n$$

Тогда:

$$\forall \varepsilon > 0 \, \exists N = N(\varepsilon) = \left\lceil \frac{1}{\varepsilon} \right\rceil \, \forall n > N \geq \frac{1}{\varepsilon} : |a_n - 2| < \varepsilon$$

Note

Сходящаяся ч.п. является ограниченной

# 3.1.7 Эпсилон окрестность

#### Definition: Эпсилон окрестность

Эпсилон окрестностью вещественного числа  $x_0$  (элемента поля вещественных чисел) называется множество  $(x_0 - \varepsilon; x_0 + \varepsilon)$  и обозначается  $U_{\varepsilon}(x_0)$ .

Обычно говорят "Эпсилон окрестность точки  $x_0$ "

#### Example

$$U_1(\pi)=(\pi-1;\pi+1)$$

 $U_e(e) = (0; 2e)$ 

#### Definition: Проколотая эпсилон окрестность

Проколотой эпсилон окрестностью вещественного числа  $x_0$  (элемента поля вещественных чисел) называется множество  $(x_0 - \varepsilon; x_0 + \varepsilon) \setminus \{x_0\}$  и обозначается  $\dot{U}_{\varepsilon}(x_0)$ .

Обычно говорят "Проколотая эпсилон окрестность точки  $x_0$ "

#### Example

$$\dot{U}_1(e) = (e-1; e+1) \setminus \{e\} = (e-1; e) \cup (e; e+1)$$

Note 🛉

Неравенство  $|a_n-A|<\varepsilon$  равносильно тому, что  $a_n\in U_\varepsilon(A)$ 

#### 3.1.8 Бесконечно большая ч.п.

# Definition: Бесконечно большая числовая последовательность

Числовая последовательность  $\{a_n\}$  называется бесконечно большой, если она стремится к  $+\infty$ , к  $-\infty$  или к  $\infty$  при  $n \to +\infty$ , т.е.

- $\lim_{n \to +\infty} a_n = +\infty \iff \forall M > 0 \,\exists N = N(M) \forall n > N : a_n > M$
- $\bullet \ \lim_{n \to +\infty} a_n = -\infty \iff \forall M > 0 \, \exists N = N(M) \forall n > N : a_n < -M$
- $\lim_{n \to +\infty} a_n = \infty \iff \forall M > 0 \,\exists N = N(M) \forall n > N : |a_n| > M$

### Example

```
Пример б.б. ч.п., стремящейся к +\infty: a_n = n
Пример б.б. ч.п., стремящейся к -\infty: a_n = -n
Пример б.б. ч.п., стремящейся к ∞: a_n = (-1)^n \cdot n
```

#### 3.1.9Бесконечно малая ч.п.

#### Definition: Бесконечно малая числовая последовательность

Числовая последовательность  $\{a_n\}$  называется бесконечно малой, если она стремится к 0 при n o $\forall \varepsilon > 0 \exists N = N(\varepsilon) \forall n > N : |a_n| < \varepsilon$ 

#### 3.2Связи числовых последовательностей

#### Note

Связи числовых последовательностей:

- $\frac{1}{6.6}$  = 6.M.
- $\frac{\frac{1}{6.\text{м.}}}{\frac{6.\text{м.}}{\text{ограниченная}}} = 6.6.$ = отделимая от нуля
- $\frac{1}{\text{отделимая от нуля}} = \text{ограниченная}$

# Note

Если ч.п. сходится или является б.б., то предел единственный

#### Proposition Докажите по определению, что

```
(ограниченная ч.п.) + (ограниченная ч.п.) = ограниченная ч.п.
6.M + 6.M. = 6.M.
б.м. \cdot (ограниченная ч.п.) = б.м.
отделимая от нуля ч.п. = ограничена ч.п.
  ограниченная ч.п.
```

#### Proposition Приведите пример, когда

```
(отделимая от нуля ч.п.) + (отделимая от нуля ч.п.) = отделимая от нуля ч.п.
(отделимая от нуля ч.п.) + (отделимая от нуля ч.п.) = б.м.
6.6 + 6.6 = 6.6.
6.6 + 6.6 = 6.м.
6.6 + 6.6 = (\text{ограниченная ч.п.})
6.6 + 6.6 = (отделимая от нуля ч.п.)
```

# 3.3 Арифметика предела ч.п.

#### Claim

Если  $a_n \xrightarrow[n \to +\infty]{} a, b_n \xrightarrow[n \to +\infty]{} b$ , то

- $\bullet \ a_n \pm b_n \xrightarrow[n \to +\infty]{} a \pm b$
- $\bullet \ a_n \cdot b_n \xrightarrow[n \to +\infty]{} a \cdot b$
- $b \neq 0 \land \forall n \in \mathbb{N} \implies b_n \neq 0 : \frac{a_n}{b_n} \underset{n \to +\infty}{\longrightarrow} \frac{a}{b}$
- $\forall n \in \mathbb{N} : a_n \ge 0 \implies \sqrt{a_n} \underset{n \to +\infty}{\longrightarrow} \sqrt{a}$

# 3.4 Теоремы

# 3.4.1 Теорема о предельном переходе в неравенствах

Theorem Теорема: свойство предельного перехода в неравенствах

$$(\exists N \in \mathbb{N} \, \forall n \geq N : c_n > A) \land (\lim_{n \to \infty} c_n = C) \implies C \geq A$$

То есть если начиная с некоторого номера все члены последовательности > A, и сама последовательность сходится к  $C \in \mathbb{R}$  при  $n \to +\infty$ , то  $C \ge A$ 

# Proof:

1. Распишем, что дано, по определению:

 $\forall \varepsilon > 0 \exists N_1(\varepsilon) \forall n > N_1(\varepsilon) : |c_n - C| < \varepsilon$ 

Это равносильно  $\forall \varepsilon > 0 \exists N_1(\varepsilon) \forall n > N_1(\varepsilon) : C - \varepsilon < c_n < C + \varepsilon$ 

 $\exists N \in \mathbb{N} \, \forall n \geq N : c_n > A$ 

2. Для любого  $\varepsilon$  рассмотрим  $M(\varepsilon) = \max(N_1(\varepsilon), N) + 1$ 

Тогда  $\forall \varepsilon > 0 \exists M(\varepsilon) = \max(N_1(\varepsilon), N) + 1 \, \forall n > M : (C - \varepsilon < c_n < C + \varepsilon \land c_n > A)$ 

Следовательно,  $\forall \varepsilon > 0 \exists M(\varepsilon) \forall n > M : C + \varepsilon > A$ 

Выражение под кванторами не зависит от M и  $n \implies \forall \varepsilon > 0 : C + \varepsilon > A$ 

3. Предположим от противного, что C < A

Положим 
$$\varepsilon := \frac{A-C}{2} > 0 \implies C+\varepsilon = C+\frac{A-C}{2} = \frac{A+C}{2} < A$$

Получили, что  $\exists \varepsilon > 0 : C + \varepsilon < A \implies (\mathbb{W}) \implies$  предположение, что C < A, неверно  $\implies C \ge A$ 

# 3.4.2 Теорема о зажатой последовательности

**Theorem** Теорема о зажатой последовательности (о 2 миллиционерах / 2 полицейских / гамбургерах)

$$a_n,b_n,c_n$$
 - числовые последовательности  $\lim_{n\to\infty}a_n=X$   $\lim_{n\to\infty}b_n=X$   $\exists N\in\mathbb{N}\ \forall n\geq N: a_n\leq c_n\leq b_n$   $\Longrightarrow\lim_{n\to\infty}c_n=X$ 

# Proof:

Докажем для случая, когда  $X \in \mathbb{R}$ . При  $X \in \overline{\mathbb{R}} \setminus \mathbb{R}$  доказательство проводится аналогично

1. Распишем по определению пределы.

$$\forall \varepsilon > 0 \,\exists N_1(\varepsilon) \,\forall n > N_1(\varepsilon) : X - \varepsilon < a_n < X + \varepsilon$$

$$\forall \varepsilon > 0 \,\exists N_2(\varepsilon) \,\forall n > N_2(\varepsilon) : X - \varepsilon < b_n < X + \varepsilon$$

Рассмотрим  $N_3(\varepsilon) = \max(N_1(\varepsilon), N_2(\varepsilon), N)$ , тогда

$$\forall \varepsilon > 0 \, \exists N_3(\varepsilon) \, \forall n > N_3(\varepsilon) : X - \varepsilon < a_n \le c_n \le b_n < X + \varepsilon$$

$$\implies \forall \varepsilon > 0 \, \exists N_3(\varepsilon) \, \forall n > N_3(\varepsilon) : X - \varepsilon < c_n < X + \varepsilon$$

# 3.4.3 Свойство предела б.м. ч.п.

# **Theorem** Свойство предела б.м. ч.п.

если  $a \in \mathbb{R}$ , то

$$\lim_{n\to\infty}a_n=a\iff a_n=a+\alpha_n$$
, где  $\alpha_n$  - б.м. ч.п.

# Proof:

" ==> "

Распишем по определению, что дано:

$$\lim_{n\to\infty}a_n=a\iff\forall\varepsilon>0\,\exists N(\varepsilon)\,\forall n>N(\varepsilon):|a_n-a|<\varepsilon$$

Обозначим ч.п.  $\alpha_n = a_n - a$ , тогда  $a_n = a + \alpha_n$ 

Тогда: 
$$\forall \varepsilon > 0 \exists N(\varepsilon) \forall n > N(\varepsilon) : |\alpha_n| < \varepsilon$$

Доказали, что  $a_n=a+\alpha_n$ , где  $\alpha_n$  - б.м. ч.п.

Распишем то, что  $\alpha_n$  - б.м., по определению:

$$\lim_{n\to\infty}a_n=a\iff\forall\varepsilon>0\,\exists N(\varepsilon)\,\forall n>N(\varepsilon):|\alpha_n|<\varepsilon$$

По условию  $a_n = a + \alpha_n$ , тогда  $a_n - a = \alpha_n$ , подставим в выражение под кванторами:

$$\forall \varepsilon > 0 \,\exists N(\varepsilon) \,\forall n > N(\varepsilon) : |a_n - a| < \varepsilon$$

Доказали по определению, что  $\lim_{n \to \infty} a_n = a$ 

# Элементы теории множеств

# 4.1 Аксиома непрерывности

Claim Аксиома непрерывности действительных чисел (принцип полноты)

$$\begin{array}{l} A \subseteq \mathbb{R} \\ A \neq \varnothing \\ B \subseteq \mathbb{R} \\ B \neq \varnothing \\ \forall a \in A \ \forall b \in B : a \leq b \end{array} \right\} \implies \exists c \in \mathbb{R} \ \forall a \in A \ \forall b \in B : a \leq c \leq b$$

# 4.2 Определения ограниченных множеств

#### Definition: Ограниченное сверху множество

Подможество  $A\subseteq\mathbb{R}$  называется ограниченным свеху, если  $\exists C\in\mathbb{R}\, \forall a\in A:\, a\leq C$ 

# Definition: Ограниченное снизу множество

Подможество  $A \subseteq \mathbb{R}$  называется ограниченным снизу, если  $\exists C \in \mathbb{R} \ \forall a \in A : a \geq C$ 

# Definition: Ограниченное множество

Подможество  $A \subseteq \mathbb{R}$  называется ограниченным, если  $\exists C > 0 \, \forall a \in A : |a| \leq C$ 

# 4.3 Определения граней множества

#### Definition: Определение верхней грани множества

Пусть дано множество  $A \subset \mathbb{R} \land A \neq \emptyset$ . Тогда верхней гранью множества A называют число  $c \in \mathbb{R}$ , такое что  $\forall a \in A : a \leq c$ 

# Definition: Определение нижней грани множества

Пусть дано множество  $A \subset \mathbb{R} \land A \neq \emptyset$ . Тогда нижней гранью множества A называют число  $c \in \mathbb{R}$ , такое что  $\forall a \in A : a \geq c$ 

# Definition: Определение точной верхней грани множества

Пусть дано множество  $A \subset \mathbb{R} \land A \neq \emptyset$ . Тогда точной верхней гранью множества A называют наименьший элемента множества всех верхних граней множества A и обозначают  $\sup A$ 

# Definition: Определение точной нижней грани множества

Пусть дано множество  $A \subset \mathbb{R} \land A \neq \emptyset$ . Тогда точной нижней гранью множества A называют наибольший элемента множества всех нижней граней множества A и обозначают inf A

#### $\mathbf{Note}$

Вообще говоря, наименьшый и наибольший элементы множества не всегда существуют. Например, у множества (0;1) нет ни наименьшего, ни наибольшего элементов, при этом  $\sup(0;1)=1 \notin (0;1)$ ,  $\inf(0;1)=0 \notin (0;1)$ 

# 4.4 Теорема о существовании точной грани множества

#### Theorem Теорема о существовании точной грани множества

Если множество  $A \subset \mathbb{R}$ ,  $A \neq \emptyset$  ограничено сверху, то  $\exists \sup A$  Если множество  $A \subset \mathbb{R}$ ,  $A \neq \emptyset$  ограничено снизу, то  $\exists \inf A$ 

Proof: Докажем для верхней грани, для нижней грани доказательство аналогично

$$A \subseteq \mathbb{R} \land A \neq \emptyset \land (\exists C > 0 \, \forall a \in A \implies a < C) \implies \exists \sup A$$

- 1. Обозначим  $S_A = \{c \in \mathbb{R} | \forall a \in A \implies a \leq c\} \neq \emptyset$  множество верхних граней Это множество не пусто, т.к. A ограничено по условию, т.е.  $\exists c > 0 \ \forall a \in A \implies a \leq c$
- 2. По построению множества A и  $S_A$  удовлетворяют аксиоме непрерывности действительных чисел, тогда  $\exists b \in \mathbb{R} \ \forall a \in A \forall c \in S_A \implies a \leq b \leq c$  Но из  $b \leq c \implies b \in S_A$ , при этом ( $\forall c \in S_A \implies b \leq c$ ), следовательно, b является наименьшим элементом множества верхних граней множества A, тогда по определению точной верхней грани  $b = \sup A$

# Теорема Вейерштрасса и число е

# 5.1 Теорема Вейерштрасса

```
Theorem Теорема Вейерштрасса (о существовании предела ч.п.)
Если ч.п. \{a_n\} неубывает и ограничена сверху, то она сходится
Если ч.п. \{a_n\} невозрастает и ограничена снизу, то она сходится
Proof: Докажем для неубывающей ч.п., для невозрастающей ч.п. доказательство аналогично
1. Обозначим множество значений ч.п. A = \{a_n\}
T.к. a_n - числовая последовательность, то множество A счётно или конечно
(т.е. существует инъекция между A и \mathbb{N}, A \lesssim \mathbb{N})
Также A \neq \emptyset и множество A ограничено сверху \implies по теореме о существовании
точной верхней грани \exists \sup A = a
2. Докажем, что \lim_{n\to+\infty} a_n = a, т.е. \forall \varepsilon \exists N = N(\varepsilon) \forall n > N(\varepsilon) : |a_n - a| < \varepsilon
a_n неубывает и ограничена сверху a \implies |a_n - a| = a - a_n, тогда
|a_n - a| < \varepsilon \iff a - a_n < \varepsilon \iff a_n > a - \varepsilon
{
m T. k.} последовательность a_n неубывает, то следующие 2 высказывания равносильны:
\forall \varepsilon \, \exists N = N(\varepsilon) \, \forall n > N(\varepsilon) : a_n > a - \varepsilon \, (\#)
\forall \varepsilon \exists N = N(\varepsilon) : a_N > a - \varepsilon  (*)
3. Докажем второе высказывание (*) методом от противного.
Предположим, что \exists \varepsilon_0 \forall n \in \mathbb{N} : a_n \leq a - \varepsilon_0
Тогда число a - \varepsilon_0 - верхняя грань множества A, но a само является точной
верхней гранью, но a - \varepsilon_0 < a \implies \bot \implies неверно предположение, что
высказывание (*) неверно \implies высказывание (#) верно
```

#### 5.2 Число Эйлера

#### Definition: Число е

Рассмотрим ч.п.  $a_n = (1 + \frac{1}{n})^n$  Докажем, что у ч.п. есть конечный предел и обозначим его e

**Proof:** 1. Докажем, что  $a_n$  ограничена сверху числом 3

$$a_{n} = \sum_{k=0}^{n} C_{n}^{k} \left(\frac{1}{n}\right)^{k} = 1 + C_{n}^{1} \cdot \frac{1}{n} + C_{n}^{2} \cdot \frac{1}{n^{2}} + \dots + C_{n}^{n} \frac{1}{n^{n}} =$$

$$= 1 + \frac{n}{1!} \frac{1}{n} + \frac{n(n-1)}{2!} \frac{1}{n^{2}} + \frac{n(n-1)(n-2)}{3!} \frac{1}{n^{3}} + \dots + \frac{n(n-1)(n-2) \cdot \dots \cdot 2 \cdot 1}{1 \cdot 2 \cdot \dots \cdot (n-1)n} \frac{1}{n^{n}} =$$

$$= 1 + \frac{1}{1!} + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdot \dots \cdot \left(1 - \frac{n-1}{n}\right) \le$$

$$\leq 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \le 1 + \frac{1}{1!} + \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1) \cdot n} =$$

$$= 2 + \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n-1} - \frac{1}{n} = 2 + \frac{1}{1} - \frac{1}{n} = 3 - \frac{1}{n} < 3$$

2. Докажем, что  $a_n$  - возрастающая ч.п.

Рассмотрим  $a_{n+1}$ 

$$\begin{aligned} a_{n+1} &= 1 + \frac{1}{1!} + \frac{1}{2!} \left( 1 - \frac{1}{n+1} \right) + \frac{1}{3!} \left( 1 - \frac{1}{n+1} \right) \left( 1 - \frac{2}{n+1} \right) + \dots \\ &+ \frac{1}{n!} \left( 1 - \frac{1}{n+1} \right) \left( 1 - \frac{2}{n+1} \right) \cdot \dots \cdot \left( 1 - \frac{n-1}{n+1} \right) + \\ &+ \frac{1}{(n+1)!} \left( 1 - \frac{1}{n+1} \right) \left( 1 - \frac{2}{n+1} \right) \cdot \dots \cdot \left( 1 - \frac{n-1}{n+1} \right) \cdot \left( 1 - \frac{n}{n+1} \right) \\ \text{T.K. } \forall m \in \{1, \dots, n\} \ 1 - \frac{m}{n} < 1 - \frac{m}{n+1}, \text{ To} \\ a_{n+1} \geq a_n + \frac{1}{(n+1)!} \left( 1 - \frac{1}{n+1} \right) \left( 1 - \frac{2}{n+1} \right) \cdot \dots \cdot \left( 1 - \frac{n-1}{n+1} \right) \cdot \left( 1 - \frac{n}{n+1} \right) > a_n \end{aligned}$$

3.  $\{a_n\}$  ограничена сверху и возрастает  $\implies \exists \lim_{n \to \infty} a_n \in \mathbb{R}$ 

# Определения и свойства подпоследовательности и частичного предела

# 6.1 Определение подпоследовательности

#### Definition: Подпоследовательность

Пусть дана ч.п.  $\{a_n\}$ , тогда подпоследовательностью называется ч.п., полученная последовательным выбором некоторых членов исходной ч.п. и обозначается  $\{a_{n_k}\}$ 

#### Note 🛉

Если  $\{a_{n_k}\}$  - подпоследовательность ч.п.  $\{a_n\}$ , то  $\forall k \in \mathbb{N}: n_k \geq k$ 

# 6.2 Частичные пределы и предельная точка

# 6.2.1 Определения

# Definition: Частичный предел

Частичный предел ч.п.  $\{a_n\}$  - число, являющееся пределом какой-либо сходящейся подпоследовательности данной последовательности  $\{a_n\}$ 

# Definition: Верхний предел ч.п.

Верхним пределом ч.п.  $\{a_n\}$  называется предел

$$\overline{\lim}_{n\to+\infty}a_n=\lim_{k\to+\infty}\sup\{a_n\}_{n\geq k}$$

#### Definition: Нижний предел ч.п.

Нижним пределом ч.п.  $\{a_n\}$  называется предел

$$\underline{\lim}_{n\to+\infty}a_n=\lim_{k\to+\infty}\inf\{a_n\}_{n\geq k}$$

# Definition: Предельная точка ч.п.

Предельной точкой ч.п.  $\{a_n\}$  называется число a, такое что в любой окрестности точки a находится бесконечно много членов ч.п.  $\{a_n\}$ 

# 6.2.2 Теорема об эквивалентности определений

**Theorem** Определение предельной точки ч.п. эквивалентно определению частичного предела ч.п.

#### Proof:

1. a - частичный предел  $\Longrightarrow a$  - предельная точка  $\{a_n\}$   $\forall \varepsilon > 0 \exists N = N(k) \forall k > N: |a_{n_k} - a| < \varepsilon$   $\longleftrightarrow$ 

 $\forall \varepsilon > 0 \exists N = N(k) \forall k > N : a_{n_k} \in U_\varepsilon(a)$ 

Следовательно,  $\forall \varepsilon$  в  $U_{\varepsilon}(a)$  попадает бесконечно много членов  $\{a_n\}$ 

2. a - предельная точка $\{a_n\} \implies a$  - ч.п.  $\{a_n\}$ 

По определению предельной точки  $\forall \varepsilon$  в  $U_{\varepsilon}(a)$  попадает бесконечно много членов  $\{a_n\}$ 

Предъявим ч.п.  $\{a_{n_k}\}\subseteq\{a_n\}$ , такую что  $\exists\lim_{k\to\infty}a_{n_k}=a$ 

Обозначим  $\varepsilon_k = \frac{1}{k}$ 

Рассмотрим  $\varepsilon_1$ , в  $U_{\varepsilon_1}(a)$  попадает бесконечно много членов  $\{a_n\}$ , выберем какой-то член  $a_{n_1}$ 

Рассмотрим  $\varepsilon_2$ , в  $U_{\varepsilon_2}(a)$  попадает бесконечно много членов  $\{a_n\}$ , поэтому  $\exists n_2 > n_1 : a_{n_2} \in U_{\varepsilon_2}(a)$ 

Рассмотрим  $\varepsilon_k$ , в  $U_{\varepsilon_k}(a)$  попадает бесконечно много членов  $\{a_n\}$ , поэтому  $\exists n_k > n_{k-1} : a_{n_k} \in U_{\varepsilon_k}(a)$ 

Таким образом, построена ч.п.  $\{a_{n_k}\}$ , такая что  $\forall k \in \mathbb{N}: a-\frac{1}{k} < a_{n_k} < a+\frac{1}{k} \implies$ 

 $\Longrightarrow$  по теореме о зажатой последовательности  $\lim_{k\to\infty}a_{n_k}=a_{n_k}$ 

# 6.2.3 Свойства частичных пределов ч.п.

# Note

Свойства частичных пределов ч.п.  $\underbrace{\{a_n\}}_{\text{сходится}} \iff \overline{\lim}_{n \to +\infty} a_n = \underline{\lim}_{n \to +\infty} a_n$   $\overline{\lim}_{n \to +\infty} a_n = \sup \{\text{множества предельных точек } \{a_n\}\}$   $\underline{\lim}_{n \to +\infty} a_n = \inf \{\text{множества предельных точек } \{a_n\}\}$ 

 $\lim_{n \to +\infty} a_n$  и  $\varliminf_{n \to +\infty} a_n$  - частичные пределы

# 6.3 Система вложенных отрезков

# Definition: Система вложенных отрезков

Системой вложенных отрезков называют счётно бесконечное множество отрезков, каждый из которых содержит следующий отрезок как подмножество

Обозначение:  $\{I_k\}_{k\in\mathbb{N}}$ , где  $\forall k\in\mathbb{N}:I_{k+1}=[a_{k+1};b_{k+1}]\subseteq I_k=[a_k;b_k]$ 

#### Example

Рассмотрим  $S=\{[1-\frac{1}{k};2+\frac{1}{k}]\}_{k\in\mathbb{N}},$  тогда  $S=\{[0;3],[0.5;2.5],[\frac{2}{3};2\frac{1}{3}],...\}$ 

Рассмотрим  $S = \{ [\pi; \pi - \frac{1}{k^k}] \}_{k \in \mathbb{N}},$  тогда

 $S = \{ [\pi; \pi - 1], [\pi; \pi - \frac{1}{4}], [\pi; \pi - \frac{1}{27}], \ldots \}$ 

# 6.4 Теорема Больцано-Вейерштрасса

### **Theorem** Теорема Больцано-Вейерштрасса

Из любой ограниченной ч.п. можно выделить сходящуюся подпоследовательность

#### Proof:

По определению ограниченной ч.п.  $\exists C > 0 \, \forall n \in \mathbb{N} : |a_n| < C$ 

Построим искому подпоследовательность при помощи системы вложенных отрезков

$$I_1=[-c;c], \forall n\in\mathbb{N}:\, a_n\in I_1$$
, выберем какой-то член ч.п.  $a_{n_1}\in I_1$ 

Т.к.  $\{a_n\}$  - ч.п., то в какой-то половине точно есть бесконечно много членов  $\{a_n\}$ 

Выберем эту половину и обозначим  $I_2$ , выберем в нём какой-то член ч.п.  $a_{n_2} \in I_2$ , такой что  $n_2 > n_1$  (если это нельзя сделать, т.е.  $\forall m \ (a_m \in I_2 \implies m \le n_1)$ , то в  $I_2$  лишь конечное число членов

ч.п. 
$$\{a_n\} \implies (\mathbb{W}) \implies \exists n_2 > n_1 : a_{n_2} \in I_2)$$

Пусть построен  $I_k$  и  $a_{n_k}$ . Делим  $I_k$  пополам и выбираем половину,

в которой бесконечно много членов  $\{a_n\}$ , обозначим эту половину как  $I_{k+1}$ 

и выберем  $a_{n_{k+1}}:n_{k+1}>n_k$  (если это нельзя сделать, т.е.  $\forall m\,(a_m\in I_{k+1}\implies m\le n_k),$ 

тогда в  $I_{k+1}$  лишь конечное число членов ч.п.  $\{a_n\} \implies (\mathbb{W}) \implies \exists n_{k+1} > n_k : a_{n_{k+1}} \in I_{k+1})$ 

Построили последовательность  $\{I_k\}_{k\in\mathbb{N}}$ , где  $I_k = [b_k; d_k]$ 

 $\forall k \in \mathbb{N} : I_{k+1} \subset I_k \implies \{b_k\}$  неубывает и ограничена сверху C

$$\implies \exists \lim_{n \to +\infty} b_k = b, b \ge b_k$$

 $\forall k \in \mathbb{N} : I_{k+1} \subset I_k \implies \{d_k\}$  невозрастает и ограничена снизу -C

$$\implies \exists \lim_{n \to +\infty} d_k = d, d \le d_k$$

При этом 
$$|d_k - b_k| = \frac{2 \cdot C}{2^{k-1}} \underset{k \to +\infty}{\longrightarrow} 0$$

 $\forall k \in \mathbb{N} : b_k \leq d_k \implies$  по теореме о предельном переходе в неравенствах:  $b \leq d$ 

$$d-b \le d_k - b_k \underset{k \to +\infty}{\longrightarrow} 0 \implies d \le b \implies d = b$$

Получили:  $\lim_{n \to +\infty} b_k = b = d = \lim_{n \to +\infty} d_k$ 

 $b_k$  и  $d_k$  - границы отрезка  $I_k \ \, \Longrightarrow \, \forall k \in \mathbb{N} : b_k \leq a_k \leq d_k \, \Longrightarrow$ 

 $\Longrightarrow$  по теореме о пределе зажатой последовательности  $\lim_{n \to +\infty} a_k = b = d$ 

# 6.5 Дополнительный материал (вне курса)

# 6.5.1 Принцип Больцано-Вейерштрасса

#### Note

В терминах множества теорема Больцано-Вейерштрасса формулируется так:

У любого бесконечного ограниченного множества существует хотя бы одна предельная точка

# 6.5.2 Стягивающая система вложенных отрезков

# Definition: Стягивающая система вложенных отрезков

Пусть I - система вложенных отрезков, тогда если

 $\forall \varepsilon > 0 \exists n \in \mathbb{N} : ([a_n; b_n] \in I \land b_n - a_n < \varepsilon)$ , то такая система вложенных отрезков называется стягивающейся системой вложенных отрезков

# 6.5.3 Принцип вложенных отрезков Коши-Кантора

### Theorem Принцип вложенных отрезков Коши-Кантора

Для любой системы вложенных отрезков существует хотя бы одна точка, принадлежащая всем отрезкам данной системы.

T.e.  $\exists c \in \mathbb{R} \ \forall k \in \mathbb{N} : c \in I_k = [a_k; b_k]$ 

Если система вложенных отрезков является стягивающейся, то такая точка единствена

# Proof:

1. Множество  $A=\{a_n\}_{n\in\mathbb{N}}\neq\varnothing$  ограничено сверху, например, числом  $b_1$ 

 $\implies \exists \sup A = \alpha$  по теореме о существовании точной грани множества

Аналогично  $\exists \sup B = \beta, B = \{a_n\}_{n \in \mathbb{N}}$ 

$$(\forall n \in \mathbb{N}: a_n < b_n) \implies (\alpha \leq \beta \wedge \forall n \in \mathbb{N}: [\alpha; \beta] \subseteq [a_n; b_n])$$

2. Тогда положим  $\gamma:=\frac{\alpha+\beta}{2} \implies \forall n\in\mathbb{N}: \gamma\in[a_n;b_n]$ 

3. Для стягивающейся системы вложенных отрезков:

Предположим от противного, что точка не одна, т.е.

$$\exists \gamma_1 < \gamma_2 : \forall n \in \mathbb{N} : (\gamma_1 \in [a_n; b_n] \land \gamma_2 \in [a_n; b_n])$$

$$a_1 \leq a_2 \leq \ldots \leq a_n \leq \ldots \leq \gamma_1 < \gamma_2 \leq \ldots \leq b_n \leq \ldots \leq b_2 \leq b_1$$

Положим 
$$\varepsilon:=\frac{\gamma_2-\gamma_1}{2},$$
 тогда  $\forall n\in\mathbb{N}:b_n-a_n\geq\varepsilon$   $\Longrightarrow$   $\textcircled{W}$ 

⇒ изначальное предположение неверно ⇒ точка не более, чем одна,

а существование хотя бы одной показано в пунктах 1, 2

#### $\mathbf{Note}$

Вообще говоря, утверждение неверно для интервалов, например для системы вложенных интервалов:

$$\{I_k\}_{k\in\mathbb{N}} = \left\{\left(0; \frac{1}{k}\right)\right\}_{k\in\mathbb{N}} : \bigcap_{k\in\mathbb{N}} I_k = \emptyset$$

# Фундаментальная ч.п. Критерий сходимости ч.п. по Коши

7.1 Определение фундаментальной ч.п.

# Definition: Фундаментальная ч.п.

Ч.п.  $\{a_n\}$  называется фундаментальной, если

$$\forall \varepsilon > 0 \, \exists N(\varepsilon) \forall n,m > N(\varepsilon) : |a_n - a_m| < \varepsilon$$

# 7.2 Критерий сходимости ч.п. по Коши

**Theorem** Критерий сходимости ч.п. по Коши

Ч.п.  $\{a_n\}$  сходится  $\iff$   $\{a_n\}$  - Фундаментальная ч.п.

# Proof:

роб:

" 
$$\Rightarrow$$
 "

Распишем, что дано:  $\exists A \in \mathbb{R} \ \forall \varepsilon > 0 \ \exists N_1(\varepsilon) \ \forall n > N_1 : |a_n - A| < \varepsilon$ 

Хотим доказать:  $\forall \varepsilon > 0 \ \exists N_2(\varepsilon) \ \forall n, m > N_2 : |a_n - a_m| < \varepsilon$ 
 $|a_n - a_m| < \varepsilon \iff |a_n - a + a - a_m| < \varepsilon \iff |a_n - a| + |a - a_m| < \varepsilon \iff |a_n - a| + |a_m - a| < \varepsilon$ 
Положим  $N_2(\varepsilon) := N_1\left(\frac{\varepsilon}{2}\right) \Longrightarrow$ 
 $\forall \varepsilon > 0 \ \exists N_2(\varepsilon) \ \forall n, m > N_2 : |a_n - a| + |a_m - a| < \varepsilon \Longrightarrow$ 
 $\forall \varepsilon > 0 \ \exists N_2(\varepsilon) \ \forall n, m > N_2 : |a_n - a_m| < \varepsilon$ 

"  $\leftarrow$  "

Pacification, что дано:  $\forall \varepsilon > 0 \ \exists N_2(\varepsilon) \ \forall n, m > N_2(\varepsilon) : |a_n - a_m| < \varepsilon$ 
Покажем, что  $\{a_n\}$  ограничена: положим  $\varepsilon = 1 \Longrightarrow$ 
 $\exists N_2(1) \ \forall n, m > N_2 : |a_n - a_m| < 1 \Longrightarrow$ 
 $\exists N_2(1) \ \forall n > N_2 : |a_n - a_m| < 1 \Longrightarrow$ 
 $\exists N_2(1) \ \forall n > N_2 : |a_n - a_{N_2(1) + 1} < 1 \Longrightarrow$ 
 $\exists N_2(1) \ \forall n > N_2 : |a_n - a_{N_2(1) + 1} < 1 \Longrightarrow$ 
 $\exists N_2(1) \ \forall n > N_2 : |a_n - a_{N_2(1) + 1} < 1 \Longrightarrow$ 
 $\exists N_2(1) \ \forall n > N_2 : |a_n - a_{N_2(1) + 1} < 1 \Longrightarrow$ 
 $\exists N_2(1) \ \forall n > N_2 : |a_n - a_{N_2(1) + 1} < 1 \Longrightarrow$ 
 $\exists N_2(1) \ \forall n > N_2 : |a_n - a_{N_2(1) + 1} < 1 \Longrightarrow$ 
 $\exists N_2(1) \ \forall n > N_2 : |a_n - a_{N_2(1) + 1} < 1 \Longrightarrow$ 
 $\exists N_2(1) \ \forall n > N_2 : |a_n - a_{N_2(1) + 1} < 1 \Longrightarrow$ 
 $\exists N_2(1) \ \forall n > N_2 : |a_n - a_{N_2(1) + 1} < 1 \Longrightarrow$ 
 $\exists N_2(1) \ \forall n > N_2 : |a_n - a_{N_2(1) + 1} < 1 \Longrightarrow$ 
 $\exists N_2(1) \ \forall n > N_2 : |a_n - a_{N_2(1) + 1} < 1 \Longrightarrow$ 
 $\exists N_2(1) \ \forall n > N_2 : |a_n - a_{N_2(1) + 1} < 1 \Longrightarrow$ 
 $\exists N_2(1) \ \forall n > N_2 : |a_n - a_{N_2(1) + 1} < 1 \Longrightarrow$ 
 $\exists N_2(1) \ \forall n > N_2 : |a_n - a_n| < \epsilon$ 
 $\exists n \in \mathbb{R} \ \exists |a_n| \le C$ 

Тогда по теореме Больцано-Вейерштрасса
 $\exists a \in \mathbb{R} \ \exists |a_n| \le C$ 

Положем, что  $\exists n = a$ 

Перепишем, что дано:

 $\forall \varepsilon > 0 \ \exists N_2(\varepsilon) \ \forall n, m > N_2(\varepsilon) : |a_n - a_m| < \epsilon$ 
 $\forall \varepsilon > 0 \ \exists N_2(\varepsilon) \ \forall n, m > N_2(\varepsilon) : |a_n - a_m| < \epsilon$ 

Распишем, что хотим доказать:

 $\forall \varepsilon > 0 \ \exists N_2(\varepsilon) \ \forall n, m > N_2(\varepsilon) : |a_n - a| < \varepsilon$ 
 $|a_n - a| < \varepsilon \iff |a_n - a_n| < \varepsilon \iff |a_n - a_n| < \varepsilon$ 

Положим  $N_1(\varepsilon) = \max(N_2(\frac{\varepsilon}{2}), N_3(\frac{\varepsilon}{2}))$ 

Положим  $N_1(\varepsilon) = \max(N_2(\frac{\varepsilon}{2}), N_3(\frac{\varepsilon}{2}))$ 

 $\forall \varepsilon > 0 \, \exists N_1(\varepsilon) \, \forall n > N_1(\varepsilon) : |a_n - a_{n_k}| + |a_{n_k} - a| < \varepsilon \implies$ 

 $\forall \varepsilon > 0 \,\exists N_1(\varepsilon) \,\forall n > N_1(\varepsilon) : |a_n - a| < \varepsilon$ 

# 7.3 Постоянная Эйлера-Маскерони

# Definition: Постоянная Эйлера-Маскерони

Рассмотрим ч.п.  $\gamma_n=1+\frac{1}{2}+\ldots+\frac{1}{n}-\ln n$  Докажем, что у ч.п. есть конечный предел и обозначим его  $\gamma$ 

# Proof:

$$\gamma_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n$$

$$\exists \lim_{n \to +\infty} \gamma_n = \gamma$$

$$\gamma_n \text{ убывает}$$

$$\gamma_{n+1} - \gamma_n = \frac{1}{n+1} - \ln(n+1) + \ln n = \frac{1}{n+1} - \ln\left(1 + \frac{1}{n}\right) = \frac{1}{n+1} \left(1 - (n+1)\ln\left(1 + \frac{1}{n}\right)\right) =$$

$$= \frac{1}{n+1} \left(1 - \ln\left(\left(1 + \frac{1}{n}\right)^{n+1}\right)\right)$$

$$b_n = \left(1 + \frac{1}{n}\right)^{n+1} \text{ сходится к } e \text{ и убывает. Докажем убывание}$$

$$\frac{b_n}{b_{n+1}} = \frac{\left(1 + \frac{1}{n}\right)^{n+1}}{\left(1 + \frac{1}{n+1}\right)^{n+2}} = \left(\frac{(n+1)^2}{n(n+2)}\right)^{n+1} \cdot \left(\frac{n+1}{n+2}\right) = \left(1 + \frac{1}{n^2 + 2n}\right)^{n+1} \left(\frac{n+1}{n+2}\right)$$

$$\ge \left(1 + \frac{n+1}{n^2 + 2n}\right) \left(\frac{n+1}{n+2}\right) = \frac{(n+1)(n^2 + 3n+1)}{n^3 + 4n^2 + 4n} = \frac{n^3 + 4n^2 + 4n + 1}{n^3 + 4n^2 + 4n} > 1$$

$$\gamma_{n+1} - \gamma_n = \frac{1}{n+1} (1 - \ln b_n)$$

$$b_n \text{ убывает к } e \Longrightarrow b_n > e \Longrightarrow \ln b_n > 1 \Longrightarrow \gamma_{n+1} - \gamma_n < 0$$

$$\exists \lim_{n \to \infty} \frac{1}{n} > \ln\left(1 + \frac{1}{n}\right) < 1 \Longrightarrow \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n} \Longrightarrow \frac{1}{n} > \ln\left(\frac{n+1}{n}\right)$$

$$\gamma_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n > \ln\frac{2}{1} + \ln\frac{3}{2} + \ln\frac{4}{3} + \dots + \ln\frac{n+1}{n} - \ln n =$$

$$= \ln 2 - \ln 1 + \ln 3 - \ln 2 + \ln 4 - \ln 3 + \dots + \ln(n+1) - \ln n - \ln n =$$

$$= -\ln 1 + \ln(n+1) - \ln n = \ln\frac{n+1}{n} > \ln 1 = 0$$

# Асимптоты

# 8.1 Определения асимптот

# Definition: Асимптоты

Вертикальная асимптота: • Прямая x=a называется вертикальной асимптотой

для графика функции y=f(x), если  $\lim_{x\to a-}f(x)=\pm\infty$   $\vee \lim_{x\to a+}f(x)=\pm\infty$ 

Горизонтальная асимптота: • Прямая y = b называется горизонтальной асимптотой для

графика функции y = f(x) на  $\pm \infty$ , если

 $\lim_{x \to \pm \infty} f(x) = b$ 

Вообще говоря, горизонтальные асимптоты на  $+\infty$  и  $-\infty$ 

могут быть разными

Наклонная асимптота: • Прямая y = kx + b называется наклонной асимптотой для

графика функции y = f(x) при  $x \to \pm \infty$ , если

 $\lim_{x \to \pm \infty} f(x) - (kx + b) = 0$ 

Вообще говоря, наклонные асимптоты на +∞ и −∞

могут быть разными

# 8.2 Признак наклонной асимптоты

# **Theorem** Признак наклонной асимптоты

Прямая y=kx+b - наклонная асимптота графика функции y=f(x) при  $x\to +\infty$ 

$$\begin{cases} \lim_{x \to +\infty} \frac{f(x)}{x} = k \\ \lim_{x \to +\infty} f(x) - kx = b \end{cases}$$

# Proof:

$$" \implies "$$

1. Распишем определение наклонной асимптоты:  $\lim_{x \to +\infty} (f(x) - (kx + b)) = 0$ 

Вынесем b из предела:  $\lim_{x \to +\infty} f(x) - kx = b$ 

$$f(x) - kx - b$$
 - б.м. при  $x \to +\infty$ 

Т.к.  $x \to +\infty$ , то можно поделить на x :

$$\frac{f(x)}{x} - k = \frac{b}{x} + \frac{6 \cdot M}{x}$$

$$\frac{\frac{b}{x}}{x \xrightarrow{\lambda \to +\infty}} 0$$

$$\frac{\frac{6 \cdot M}{x}}{x \xrightarrow{\lambda \to +\infty}} 0$$

$$\Longrightarrow \frac{f(x)}{x} - k \xrightarrow{\lambda \to +\infty} 0$$

T.K. 
$$\lim_{x\to +\infty} f(x) - kx = b$$
, to  $\lim_{x\to +\infty} (f(x) - (kx+b)) = 0$ 

# Определение и свойства функции

# 9.1 Определения

# Definition: Определение функции

Множество пар  $\{(x,y)\in\mathbb{R}^2|x\in D_f\wedge y\in E_f\}$  называется функцией f с областью определения  $D_f$  и областью значения  $E_f$ , если  $\forall x\in D_f$   $\exists !y\in E_f:(x,y)\in f$  (для удобства  $(x,y)\in f$  обозначают как f(x)=y)

Обозначение функции:  $f: X \to Y$ 

В данном обозначении подразумевают, что  $D_f = X, E_f \subseteq Y$ 

# Example

```
f: \mathbb{N} \cup \{0\} \to \mathbb{R} \forall n \in \mathbb{N} \cup \{0\}: f(n) = (-1)^{n+1} \cdot \left\lceil \frac{n}{2} \right\rceil, в данном случае D_f = \mathbb{N} \cup \{0\}, E_f = \mathbb{Z} \subset \mathbb{R} Т.к. несложно установить, что E_f = \mathbb{Z}, то можно написать f: \mathbb{N} \cup \{0\} \to \mathbb{Z}
```

# Definition: Определение инъективной функции

Функция f называется инъективной, если  $\forall y \in E_f \exists ! x \in D_f : f(x) = y$  Это эквивалентно тому, что  $\forall x_1, x_2 \in D_f : (x_1 \neq x_2 \implies f(x_1) \neq f(x_2))$  (говорят, что f - инъекция)

#### Example

```
\forall n \in \mathbb{N} функция f(x) = x^{2n-1} является инъективной \forall n \in \mathbb{N} функция f(x) = x^{2n} не является инъективной
```

#### Definition: Определение сюръективной функции

Функция  $f: X \to Y$  называется сюръективной для множества Y, если  $E_f = Y$  (говорят, что f - сюръекция)

Когда говорят, что f сюръективна, не уточняя множество, то подразумевают, что f сюръективна для Y

# Example

Функция  $\sin : \mathbb{R} \to \mathbb{R}$  не сюръективна для  $\mathbb{R}$ , но сюръективна для [-1;1]

# Definition: Определение биективной функции

Функция  $f: X \to Y$  называется биективной, если она инъективна и сюръективна (говорят, что f - биекция)

# Example

Функция  $f: \mathbb{N} \cup \{0\} \to \mathbb{Z}$ , такая что  $\forall n \in \mathbb{N} \cup \{0\}: f(n) = (-1)^{n+1} \cdot \left\lceil \frac{n}{2} \right\rceil$  - биекция между  $\mathbb{N} \cup \{0\}$  и  $\mathbb{Z}$  (как следствие, показали, что  $\mathbb{N} \cup \{0\} \sim \mathbb{Z}$ , т.е. множества равномощны)

# 9.2 Пределы

# 9.2.1 Определение предела функции по Коши

# Definition: Определение предела функции по Коши

$$\lim_{x\to x_0} f(x) = A \iff \forall \varepsilon > 0 \, \exists \delta = \delta(\varepsilon) \, \forall x \in \dot{U}_\delta(x_0) : f(x) \in U_\varepsilon(A)$$

# Note

При этом  $\dot{U}_{\delta}(+\infty) = (\delta; +\infty), \ \dot{U}_{\delta}(-\infty) = (-\infty; \delta), \ \dot{U}_{\delta}(\infty) = (-\infty; \delta) \cup (\delta; +\infty)$ 

# 9.2.2 Определение предела функции по Гейне

# Definition: Определение предела функции по Гейне

$$\lim_{x\to x_0} f(x) = A \iff \forall \{x_n\} : (x_n \neq x_0 \land \lim_{n\to +\infty} x_n = x_0 \implies \lim_{n\to +\infty} f(x_n) = A)$$

# 9.2.3 Теорема об эквивалентности определений по Коши и по Гейне

Theorem Теорема об эквивалентности определений по Коши и по Гейне

Определение предела функции по Коши эквивалентно определению предела функции по Гейне

# Proof:

$$" \implies$$

Распишем определение по Коши:  $\forall \xi > 0 \,\exists \delta = \delta(\xi) > 0 \,\forall x \in \dot{\mathcal{U}}_{\delta}(x_0) : |f(x) - A| < \xi \ (1)$ 

Пусть дана ч.п., удовлетворяющая условиям посылки импликации, т.е.

$$\{x_n\}: x_n \underset{n \to +\infty}{\longrightarrow} x_0 \land \forall n \in \mathbb{N}: x_n \neq x_0$$

По определению это означает, что

$$\forall \lambda > 0 \,\exists N(\lambda) \in \mathbb{N} \,\forall n > N(\lambda) : 0 < |x_n - x_0| < \lambda \ \ (2)$$

Хотим доказать:

$$\forall \varepsilon > 0 \,\exists N_1(\varepsilon) \in \mathbb{N} \,\forall n > N_1(\varepsilon) : |f(x_n) - A| < \varepsilon$$

Пусть дано  $\varepsilon > 0$ , тогда по (2):

$$\forall n > N(\delta(\varepsilon)) : 0 < |x_n - x_0| < \delta(\varepsilon)$$

Это равносильно тому, что  $\forall n > N(\delta(\varepsilon)) : x_n \in \dot{U}_{\delta(\varepsilon)}(x_0)$ 

Тогда по (1) получим:  $\forall n > N(\delta(\varepsilon)) : |f(x) - A| < \varepsilon$ 

T.е. мы доказали искомое высказывание, положив  $N_1(\varepsilon) := N(\delta(\varepsilon))$ 

" ← "

Предположим от противного, т.е. выполнено определение по Гейне, но по Коши не выполнено:

$$\forall \{x_n\}: x_n \xrightarrow[n \to +\infty]{} x_0 \land \forall n \in \mathbb{N}: x_n \neq x_0 \implies f(x_n) \xrightarrow[n \to +\infty]{} A (3)$$

$$\exists \varepsilon_0 > 0 \, \forall \delta > 0 \, \exists x \in \dot{U}_\delta(x_0) : |f(x) - A| \ge \varepsilon_0 \ \ (4)$$

Для любого  $n \in \mathbb{N}$  рассмотрим  $\delta_n = \frac{1}{n}$  и  $x \in \dot{U}_{\delta_n}(x_0)$  из (4) обозначим как  $x_n$ 

Тогда по (4):  $\forall n \in \mathbb{N} : |f(x_n) - A| \ge \varepsilon_0$ 

 $\forall n \in \mathbb{N}: x_0 - \frac{1}{n} < x_n < x_0 + \frac{1}{n} \implies x_n \underset{n \to +\infty}{\longrightarrow} x_0$  по теореме о пределе зажатой последовательности

Получили ч.п., такую что  $x_n \xrightarrow[n \to +\infty]{} x_0 \land \forall n \in \mathbb{N} : x_n \neq x_0$ 

Тогда по определению сходимости по Гейне (3):  $f(x_n) \underset{n \to +\infty}{\longrightarrow} A \implies$ 

$$\implies \exists N(\varepsilon_0) \, \forall n > N(\varepsilon_0) : |f(x_n) - A| < \varepsilon_0 \implies \widehat{\mathbb{W}}$$

# 9.2.4 Определение одностороннего предела функции

#### Definition: Односторонний предел функции

Левосторонним пределом функции называют предел функции по Коши f при  $x \to x_0$  слева, то есть

$$\lim_{x \to x_0 -} f(x) = A \iff \forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) \forall x \in (x_0 - \delta; x_0) : f(x) \in U_{\varepsilon}(A)$$

Правосторонним пределом функции называют предел функции по Коши f при  $x \to x_0$  справа, то есть

$$\lim_{x \to x_0 +} f(x) = A \iff \forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) \forall x \in (x_0; x_0 + \delta) : f(x) \in U_\varepsilon(A)$$

# 9.2.5 Свойство предела функции

**Theorem** Свойство предела функции при  $x o x_0, x_0 \in \mathbb{R}$ 

$$\lim_{x \to x_0} f(x) = A \iff \lim_{x \to x_0+} f(x) = \lim_{x \to x_0-} f(x) = A$$
, где  $A \in \overline{\mathbb{R}}$ 

**Proof:** 

" 
$$\Longrightarrow$$
 "
Дано:  $\forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) > 0 \,\forall x \in \dot{U}_{\delta}(x_0) : f(x) \in U_{\varepsilon}(A)$ 
Тогда:  $\forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) > 0 \,\forall x \in (x_0; x_0 + \delta) : f(x) \in U_{\varepsilon}(A)$ 
 $\forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) > 0 \,\forall x \in (x_0 - \delta; x_0) : f(x) \in U_{\varepsilon}(A)$ 
"  $\longleftarrow$  "
Дано:  $\forall \varepsilon > 0 \,\exists \delta_1 = \delta_1(\varepsilon) > 0 \,\forall x \in (x_0; x_0 + \delta_1) : f(x) \in U_{\varepsilon}(A)$ 
 $\forall \varepsilon > 0 \,\exists \delta_2 = \delta_2(\varepsilon) > 0 \,\forall x \in (x_0 - \delta_2; x_0) : f(x) \in U_{\varepsilon}(A)$ 
Положим  $\delta(\varepsilon) = \min(\delta_1(\varepsilon), \delta_2(\varepsilon))$ , тогда:  $\forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) > 0 \,\forall x \in \dot{U}_{\delta}(x_0) \subseteq (x_0 - \delta_2; x_0) \cup (x_0; x_0 + \delta_1) : f(x) \in U_{\varepsilon}(A)$ 

# 9.2.6 Бесконечные пределы

#### Definition: Бесконечные пределы

- $\lim_{x \to x_0} f(x) = +\infty \iff \forall M > 0 \exists \delta(M) > 0 \, \forall x \in \dot{U}_{\delta}(x_0) : f(x) > M$
- $\lim_{x\to x_0} f(x) = -\infty \iff \forall M > 0 \,\exists \delta(M) > 0 \,\forall x \in \dot{\mathcal{U}}_{\delta}(x_0) : f(x) < -M$
- $\lim_{x \to x_0} f(x) = \infty \iff \forall M > 0 \exists \delta(M) > 0 \forall x \in \dot{\mathcal{U}}_{\delta}(x_0) : |f(x)| > M$

#### Definition: Бесконечно малая функция

Функция называется б.м. при  $x \to x_0$ , если  $\lim_{x \to x_0} f(x) = 0$ , при этом  $x_0 \in \mathbb{R}$ 

Функция называется б.м. при  $x \to +\infty$ , если  $\lim_{x \to +\infty} f(x) = 0$ 

Функция называется б.м. при  $x \to -\infty$ , если  $\lim_{x \to -\infty} f(x) = 0$ 

# Definition: Бесконечно большая функция

Функция называется б.б. при  $x \to x_0$ , если  $\lim_{x \to x_0} f(x) = \infty$ , при этом  $x_0 \in \mathbb{R}$ 

Функция называется б.б. при  $x \to +\infty$ , если  $\lim_{x \to +\infty} f(x) = \infty$ 

Функция называется б.б. при  $x \to -\infty$ , если  $\lim_{x \to -\infty} f(x) = \infty$ 

# Definition: Ограниченная функция

Функция называется ограниченной при  $x \to x_0$ , если  $\exists \delta > 0 \,\exists C > 0 \,\forall x \in \dot{U}_{\delta}(x_0) : |f(x)| < C$ 

# Definition: Отделимая от нуля функция

Функция называется отделимой от нуля при  $x \to x_0$ , если  $\exists \delta > 0 \,\exists \varepsilon_0 > 0 \,\forall x \in \dot{U}_\delta(x_0) : |f(x)| > \varepsilon_0$ 

Note

Связь функций при  $x \to x_0$ , где x - аргумент обоих функций,  $x_0$  - число, к которому стремится аргумент обоих функций:

- $\frac{1}{\text{отделимая от нуля}}$  = ограниченная

#### 9.3Теорема о зажатой функции

Theorem Теорема о зажатой функции

$$\begin{array}{l} f(x): \mathbb{R} \to \mathbb{R}, g(x): \mathbb{R} \to \mathbb{R}, h(x): \mathbb{R} \to \mathbb{R} \\ \lim_{x \to x_0} f(x) = A \\ \lim_{x \to x_0} h(x) = A \\ \exists \delta > 0 \, \forall x \in \dot{\mathcal{U}}_\delta(x_0): f(x) \leq g(x) \leq h(x) \end{array} \right\} \quad \lim_{x \to x_0} g(x) = A$$

# 9.4 Первый и второй замечательные пределы

# Definition: Первый замечательный предел

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

# Proof:

Докажем неравенство  $x < \sin x < \tan x$  при  $x \in \left(0; \frac{\pi}{2}\right)$ 

Рассмотрим единичную окружность с центром в (0; 0):



 $AC = \tan x, BC' = \sin x$ , дуга  $BC = x \cdot OC$ 

Пусть  $S_{BOC}$ ,  $S_{AOC}$  - площади соответствующих треугольников,  $S_{B \check{O} C}$  - площаль сектора, тогда  $S_{B OC} < S_{B \check{O} C} < S_{AOC}$ 

$$\frac{BC'OC}{2} < \frac{xOC^2}{2} < \frac{ACOC}{2}$$

 $\sin x < x < \tan x$ 

$$\frac{\sin x}{x} < 1 < \frac{\sin x}{x \cos x}$$

$$\cos x < \frac{\sin x}{x} < 1$$

При  $x \in \left(-\frac{\pi}{2}; 0\right)$  воспользуемся нечётностью синуса и чётностью косинуса:

$$\frac{\sin x}{x} = \frac{\sin(-x)}{-x} \in (\cos(x);1)$$

Тогда 
$$\forall x \in \dot{U}_{\frac{\pi}{2}}(0) : \cos x < \frac{\sin x}{x} < 1$$

Распишем предел по определению сходимости по Коши:  $\forall \varepsilon > 0 \,\exists \delta(\varepsilon) > 0 \,\forall x \in \dot{U}_{\delta(\varepsilon)}(0) : \left| \frac{\sin x}{x} - 1 \right| < \varepsilon$ 

Будем выбирать только значения  $\delta(\varepsilon) \leq \frac{\pi}{2},$  тогда

$$\left|\frac{\sin x}{x} - 1\right| < \varepsilon \iff 1 - \frac{\sin x}{x} < \varepsilon \iff 1 - \cos x < \varepsilon \iff 1 - \cos^2 x < \varepsilon \iff \sin^2 x < \varepsilon$$

$$\longleftarrow \sin x < \varepsilon \longleftarrow x < \varepsilon$$

Показали, что если  $\forall \varepsilon > 0 : \delta(\varepsilon) := \min\left(\varepsilon; \frac{\pi}{2}\right)$ , то определение предела по Коши выполняется

# Definition: Второй замечательный предел

$$\lim_{x \to +\infty} \left( 1 + \frac{1}{x} \right)^x = e$$

# 9.5 Теорема о пределе сложной функции

# Theorem Теорема о пределе сложной функции

$$\lim_{x\to x_0} f(x) = y_0 \\ \lim_{y\to y_0} g(y) = g(y_0) \end{cases} \implies \lim_{x\to x_0} g(f(x)) = g(y_0)$$

# **Proof:**

Распишем, что дано, по определению:

$$\forall \varepsilon > 0 \,\exists \delta_1(\varepsilon) \,\forall x \in \dot{U}_{\delta_1(\varepsilon)}(x_0) : |f(x) - y_0| < \varepsilon \, (1)$$

$$\forall \lambda > 0 \,\exists \delta_2(\lambda) \,\forall y \in \dot{\mathcal{U}}_{\delta_2(\lambda)}(y_0) : |g(y) - g(y_0)| < \lambda \,(2)$$

Распишем, что хотим доказать:

$$\forall \eta > 0 \, \exists \delta_3 = \delta(\eta) \forall x \in \dot{U}_{\delta_3(\eta)}(x_0) : |g(f(x)) - g(y_0)| < \eta$$

Положим  $\delta_3(\eta) = \delta_1(\delta_2(\eta))$ , тогда :

$$x \in \dot{\mathcal{U}}_{\delta_3(\eta)}(x_0) \iff x \in \dot{\mathcal{U}}_{\delta_1(\delta_2(\eta))}(x_0) \implies \text{по } (1) |f(x) - y_0| < \delta_2(\eta)$$

$$|f(x) - y_0| < \delta_2(\eta) \iff f(x) \in U_{\delta_2(\eta)}(y_0)$$

По (2) знаем, что если 
$$f(x) \in \dot{U}_{\delta_2(\eta)}(y_0)$$
, то  $|g(f(x)) - g(y_0)| < \eta$ 

Если 
$$f(x) = y_0$$
, то  $|g(f(x)) - g(y_0)| = 0 < \eta$ 

Иначе, если 
$$f(x) \neq y_0 \iff f(x) \in \dot{U}_{\delta_2(\eta)}(y_0)$$
, то  $|g(f(x)) - g(y_0)| = 0 < \eta$ 

Получили: 
$$\forall \eta > 0 \,\exists \delta_3 = \delta_1(\delta_2(\eta)) \,\forall x \in \dot{\mathcal{U}}_{\delta_3(\eta)}(x_0) : |g(f(x)) - g(y_0)| < \eta$$

# 9.6 О - символика

# Definition: О - символика

о-малое:  $\bullet f(x) = \overline{o}(g(x))$  при  $x \to x_0 \in \overline{\mathbb{R}}$ , если  $\frac{f(x)}{g(x)}$  - б.м. при  $x \to x_0$  О-большое:  $\bullet f(x) = \underline{O}(g(x))$  при  $x \to x_0 \in \overline{\mathbb{R}}$ , если  $\frac{f(x)}{g(x)}$  - ограниченная при  $x \to x_0$ 

#### 9.7Непрерывность функции

#### 9.7.1Непрерывность функции в точке

# Definition: Непрерывность функции в точке

Функция называется непрерывной в точке  $x_0$ , если

$$\lim_{x \to x_0} f(x) = f(x_0)$$

#### Clarification Уточнение

Если  $x_0$  - граница области определения, то рассматривается односторонний предел

#### 9.7.2Свойства непрерывных функций

# Note

Свойства непрерывных функций:

- Сумма, произведение и частное непрерывных функций непрерывные функции (по арифметике пределов функции)
- Композиция непрерывных функций непрерывная функция (по теореме о пределе сложной функции)

$$\lim_{x \to x_0} g(x) = g(x_0) = y_0 \\ \lim_{y \to y_0} f(y) = f(y_0)$$
  $\implies \lim_{x \to x_0} f(g(x)) = f(g(x_0))$ 

#### 9.7.3Правило замены переменных в пределе сложной функции

**Claim** Правило замены переменных в пределе

Пусть дана сложная функция f(g(x)), тогда, если для некоторой точки  $x_0:\lim_{x\to x_0}g(x)=g(x_0)=y_0$ и  $\lim_{y\to y_0} f(y) = A \in \mathbb{R}$ , то  $\lim_{x\to x_0} f(g(x)) = f(g(x_0))$ 

**Example** (Пример использования правила замены переменной в пределе)

Пусть надо найти 
$$\lim_{x\to 0} \frac{\sin(\pi x)}{x}$$

Преобразуем выражение: 
$$\frac{\sin(\pi x)}{x} = \frac{\sin(\pi x)}{\pi x} \cdot \pi$$

В данном случае в обозначения из утверждения выше:

$$f(y) = \frac{\sin(y)}{y}$$

$$g(x) = \pi x$$

$$g(x)$$
 непрерывна в точке  $x_0=0, y_0=g(x_0)=0,\,$  и при этом  $\lim_{y o y_0} f(y)=1=A$ 

Тогда по правилу замены переменной в пределе:

$$\lim_{x\to 0}\frac{\sin(\pi x)}{\pi x}\cdot\pi=\lim_{x\to 0}A\cdot\pi=\lim_{x\to 0}1\cdot\pi=\pi$$

# 9.7.4 Непрерывность функции на множестве

### Definition: Непрерывность функции на множестве

 $\Phi$ ункция называется непрерывной на множестве E,если она непрерывна в каждой точке множества E

/\* Когда говорят, что функция непрерывна, имеют ввиду, что она непрерывна на  $D_f$  \*/

#### $\mathbf{Note}$

В частность, функция непрерывна на отрезке [a;b], если она непрерывна в каждой точке отрезка [a;b] При этом, в точках a и b рассматриваются односторонние пределы

# 9.7.5 Теорема 1 о функции, непрерывной на отрезке

**Theorem** Теорема о функции, непрерывной на отрезке (иногда называют теоремой Вейерштрасса)

Функция, непрерывная на отрезке, ограничена на этом отрезке и достигает наибольшее и наименьшее значения на этом отрезке

Докажем, что функция ограничена сверху и достигает наибольшее значение. Для второго случая доказательство проводится аналогично

1.  $E_f$  — мно-во значений f(x) на [a;b]

Обозначим 
$$M = \sup_{x \in [a;b]} f(x) \in \overline{\mathbb{R}}$$

Построим некоторую строго возрастающую ч.п.  $a_n \underset{n \to +\infty}{\longrightarrow} M$ 

2. Докажем, что  $\forall n \in \mathbb{N} \exists x_n \in [a;b] : a_n < f(x_n)$ 

Предположим от противного, то есть  $\exists n_0 \, \forall x \in [a;b] : a_{n_0} \geq f(x)$ 

Тогда  $a_{n_0}$  - верхняя грань множества  $E_f$ 

Однако, т.к.  $a_n$  - возрастающая ч.п. и  $\lim_{n \to +\infty} a_n = a$  , то  $\forall n \in \mathbb{N} : a_n < M$ 

В частности,  $a_{n_0} < M$ , т.е.  $a_{n_0}$  - верхняя грань, которая меньше точной верхней грани  $\implies$ 

$$\Longrightarrow (\mathbb{W}) \implies \forall n \in \mathbb{N} \, \exists x_n \in [a;b] : a_n < f(x_n)$$

3. По построению  $\forall x \in [a;b]: f(x) \leq M$ 

Тогда  $\forall n \in \mathbb{N} \exists x_n \in [a;b] : a_n < f(x_n) \leq M$ 

Следовательно, по теореме о зажатой последовательности  $\lim_{n\to +\infty} f(x_n) = M$ 

4. Докажем, что  $M = f(x_0)$ 

Т.к.  $x_n$  - ограниченная ч.п., то по теореме Больцано-Вейерштрасса из неё можно выделить сходящуюся подпоследовательность  $\{x_{n_k}\}$  такую, что  $x_{n_k} \underset{k \to +\infty}{\longrightarrow} x_0 \in [a;b]$ 

T.к. f непрерывна в на отрезке, то она непрерывна в  $x_0$ , следовательно

$$\lim_{k \to +\infty} f(x_{n_k}) = f(x_0)$$

$$\left(\lim_{n\to+\infty}f(x_n)=M\right)\wedge\left(\lim_{k\to+\infty}f(x_{n_k})=f(x_0)\right)\implies M=f(x_0)<\infty$$

Таким образом, на отрезке [a;b] функция f ограничена сверху числом  $M=f(x_0)$ 

# 9.7.6 Теорема 2 о функции, непрерывной на отрезке

**Theorem** Теорема (2) о функции, непрерывной на отрезке

Функция, непрерывная на отрезке [a;b], принимает все промежуточные значения Пусть f(x) непрерывна на [a;b],  $f(x_1)=A$ ,  $f(x_2)=B$ ,  $x_1< x_2$ , БОО A< B, тогда  $\forall c\in (A;B)\,\exists x_0\in (x_1;x_2): f(x_0)=c$ 

1. Построим последовательность вложенных отрезков:

/\* Если Вам так будет удобнее, то докажем существование  $x_0$  бинпоиском по ответу \*/

$$[a_1; b_1] := [x_1; x_2]$$

$$x_3 := \frac{a_1 + b_1}{2}$$
, рассмотрим  $f(x_3)$ 

$$1) f(x_3) = c \implies q.e.d.$$

$$(2) f(x_3) < c \implies [a_2; b_2] := [x_3; b_1]$$

$$3) f(x_3) > c \implies [a_2; b_2] := [a_1; x_3]$$

Применяя это правило, продолжим строить последовательность отрезков

Если ни на какой итерации не произойдёт случай 1), то получим счётно бесконечную последовательность отрезков $\{[a_n;b_n]\}_{n\in\mathbb{N}}$ 

По построению ч.п.  $\{a_n\}$  неубывает и ограничена сверху  $b \implies \exists \lim_{n \to +\infty} a_n \le b$ 

По построению ч.п.  $\{b_n\}$  невозрастает и ограничена снизу  $a \implies \exists \lim_{n \to +\infty} b_n \geq a$ 

$$b_n - a_n = \frac{b - a}{2^{n-1}} \longrightarrow_{n \to +\infty} 0 \implies \lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = x_0$$

$$x_0 \in [a;b] \implies f(x)$$
 непрерывна в  $x_0 \implies \lim_{x \to x_0} f(x) = f(x_0) \implies$ 

$$\implies$$
 по определению по Гейне  $\lim_{n \to +\infty} f(a_n) = \lim_{n \to +\infty} f(b_n) = f(x_0)$ 

По построению  $f(a_n) < c \land f(b_n) > c \implies c \le f(x_0) \le c \implies f(x_0) = c$ 

# Следствие 1

#### Corollary Следствие

$$f(x)$$
 непрерывна на  $[a;b] \implies E_f = [\inf E_f; \sup E_f]$ 

#### Следствие 2

# Corollary Следствие

$$f(x)=x^2$$
 непрерывна на  $D_f=[1;2] \implies E_f=[1;4] \implies \exists x_0 \in [1;2]: x_0^2=2$  То есть доказано существование числа  $\sqrt{2}$ 

#### Следствие 3

#### Corollary Следствие

$$f(x)$$
 непрерывна на  $[a;b] \wedge f(a) < 0 \wedge f(b) > 0 \implies \exists c \in (a;b): f(c) = 0$ 

# 9.7.7 Определение монотонности функции

# Definition: Определение монотонности функции

- f(x) называется строго возрастающей на  $E \subseteq \mathbb{R}$ , если  $\forall x_1, x_2 \in E: x_1 < x_2 \implies f(x_1) < f(x_2)$
- f(x) называется неубывающей на  $E \subseteq \mathbb{R}$ , если  $\forall x_1, x_2 \in E: x_1 < x_2 \implies f(x_1) \leq f(x_2)$
- f(x) называется строго убывающей на  $E \subseteq \mathbb{R}$ , если  $\forall x_1, x_2 \in E: x_1 < x_2 \implies f(x_1) > f(x_2)$
- f(x) называется невозрастающей на  $E \subseteq \mathbb{R}$ , если  $\forall x_1, x_2 \in E: x_1 < x_2 \implies f(x_1) \ge f(x_2)$

# 9.7.8 Определение обратной функции

# Definition: Определение обратной функции

Функция  $y = f^{-1}(x)$  называется обратной функцией к функции y = f(x), если множество пар фукнции  $f^{-1}$  является симметрией множества пар f

# Example

Пусть 
$$\forall x \in \mathbb{R} : f(x) = e^x$$
, т.е.  $f = \{(x, e^x) \in \mathbb{R}^2 | x \in \mathbb{R}\}$  Тогда  $f^{-1} = \{(e^x, x) \in \mathbb{R}^2 | x \in \mathbb{R}\} = \{(x, \ln x) \in \mathbb{R}^2 | x \in \mathbb{R}_{>0}\}$  То есть  $f^{-1}(x) = \ln x$ 

Note

Функция обратима 👄 она инъективна

# 9.7.9 Достаточное условие обратимости

#### Definition: Достаточное условие обратимости

Если функция f(x) строго монотонна на X, то f(x) обратима на X

**Proof:** 

Предположим от противного, что f(x) не инъективна, то есть

$$\exists x_1, x_2 \in X : x_1 \neq x_2 \land f(x_1) = f(x_2)$$

 $x_1 \neq x_2 \implies \min(x_1, x_2) < \max(x_1, x_2) \implies (\mathbb{W})$  с определением строгой монотонности

# 9.7.10 Критерий обратимости функции

### Definition: Критерий обратимости функции

Пусть функция f(x) непрерывна на [a;b]. Тогда f(x) обратима  $\iff f(x)$  строго монотонна

# Proof:

- " ⇐ "Смотри достаточное условие обратимости
- " "

Докажем для случая, когда f(x) строго монотонно возрастает, для убывания аналогично

Предположим от противного, тогда БОО

$$\exists x_1 < x_2 < x_3 \in [a;b]: f(x_1) < f(x_2) \ge f(x_3)$$

Если 
$$f(x_2) = f(x_3)$$
, то  $f$  не инъективна  $\implies f$  не обратима  $\implies (\mathbb{W})$ 

Иначе, положим 
$$c := \frac{\max(f(x_1), f(x_3)) + f(x_2)}{2} \implies f(x_1) < c < f(x_2) \land f(x_3) < c < f(x_2)$$

f непрерывна на  $[a;b] \implies f$  непрерывна на  $[x_1;x_2]$  и  $[x_2;x_3]$ 

f непрерывна на  $[x_1; x_2] \implies \exists x_0' \in (x_1; x_2) : f(x_0') = c$ 

f непрерывна на  $[x_2; x_3] \implies \exists x_0'' \in (x_2; x_3) : f(x_0'') = c$ 

Получили:  $\exists x_0' < x_0'' \in [a;b]: f(x_0') = f(x_0'') \implies f$  не инъективна  $\implies f$  не обратима  $\implies (\mathbb{W})$ 

# 9.7.11 Свойства обратимой функции

#### **Theorem**

Если функция f(x) непрерывна и строго монотонна на [a;b], то функция  $f^{-1}(y)$ :

- 1) определена на  $E_f = [\min(f(a), f(b)); \max(f(a), f(b))]$
- ullet 2) мотонотонна (и имеет ту же монотонность) на  $E_f$
- $\bullet$  3) непрерывна на  $E_f$

- 1. Доказано по критерию обратимости функции
- 2. БОО f возрастает на [a;b]

Предположим от противного

 $f^{-1}(y)$  не возрастает на  $[a;b] \implies \exists y_1 < y_2 \in [f(a);f(b)]: f^{-1}(y_1) \geq f^{-1}(y_2)$ 

По определению обратной функции  $f^{-1}(y_1), f^{-1}(y_2) \in [a;b]$ , обозначим  $x_1 = f^{-1}(y_1), x_2 = f^{-1}(y_2)$ 

 $x_1 \geq x_2 \implies f(x_1) \geq f(x_2)$ . При этом,  $f(x_1) = y_1 \land f(x_2) = y_2$ 

 $x_1 \ge x_2 \implies y_1 \ge y_2 \implies (\mathbb{W})$ 

3. Докажем непрерывность по определению

Дано:  $x = f^{-1}(y)$  - определённая монотонная на [a;b] функция

Докажем, что  $f^{-1}$  непрерывна в любой точке  $y_0 \in (f(a); f(b))$ 

Для  $y_0 \in \{f(a), f(b)\}$  доказательство аналогично (нужно рассмотреть односторонние пределы)

По определению непрерывности в точке  $\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall y \in \dot{\mathcal{U}}_{\delta}(y_0) : |f^{-1}(y) - f^{-1}(y_0)| < \varepsilon$ 

Обозначим  $f^{-1}(y_0) = x_0$ 

БОО докажем для таких  $\varepsilon$ , что  $U_{\varepsilon}(x_0) \subset (a;b)$ . Для бо́льших  $\varepsilon$  неравество также будет выполняться  $a < x_0 - \varepsilon < x_0 + \varepsilon < b$ 

Обозначим  $y_1 = f(x_0 - \varepsilon), y_2 = f(x_0 + \varepsilon)$ , тогда  $y_1 < y_0 < y_2$ 

Положим  $\delta := \min(y_2 - y_0, y_0 - y_1)$ , тогда  $U_{\delta}(y_0) \in (y_1; y_2)$ 

Докажем, что при выбранном  $\delta$  выполняется неравенство под знаками кванторов:

 $y \in U_{\delta}(y_0) \implies y \in (y_1; y_2) \implies f^{-1}(y_1) < f^{-1}(y) < f^{-1}(y_2) \implies x_0 - \varepsilon < f^{-1}(y) < x_0 + \varepsilon \implies$  $\implies |f^{-1}(y) - x_0| < \varepsilon \implies$  неравенство под кванторами верно и определение выполняется

#### Следствие 1

Corollary Следствие (без доказательства)

Если функция f(x) непрерывна и строго монотонна на (a;b),  $a,b\in\overline{\mathbb{R}}$ , то функция  $f^{-1}(y)$  :

- 1) определена на (m; M), где  $m = \min(f(a), f(b)), M = \max(f(a), f(b))$
- 2) мотонотонна (и имеет ту же монотонность) [m; M]
- 3) непрерывна на (*m*; *M*)

Идея доказательства: рассмотреть  $[c;d]\subset (a;b)$ , для него верна теорема выше, а далее перейти к пределу при границах, стремящихся к a и b

#### Следствие 2

Corollary

Т.к.  $f(x) = x^n$  непрерывна и строго монотонно возрастает на  $D_f = n \div 2?[0; +\infty)$  :  $\mathbb{R}$ , то

 $g(x)=\sqrt[n]{x}$  непрерывна и строго монотонно возрастает на  $D_g=E_f=n$   $\ \vdots \ 2\ ?\ [0;+\infty): \mathbb{R}$ 

# 9.7.12 Обратные тригонометрические функции

### Definition: Обратные тригонометрические функции

 $y=\sin x$  непрерывна и возрастает на  $D_f=\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\Longrightarrow$   $\Longrightarrow$   $\exists \arcsin:=\sin^{-1}:y=\arcsin x$  непрерывна и возрастает на  $E_f=\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$ , область значений -  $D_f=\left[-1;1\right]$ 

А́налогично

- $y = \arccos x$  непрерывна и убывает на  $E_f = [0; \pi]$ , область значений  $D_f = [-1; 1]$
- $y = \arctan x$  непрерывна и возрастает на  $E_f = (-\frac{\pi}{2}; \frac{\pi}{2})$ , область значений  $D_f = \mathbb{R}$
- $y = \operatorname{arcctg} x$  непрерывна и убывает на  $E_f = (0; \pi)$ , область значений  $D_f = \mathbb{R}$

# 9.7.13 Показательная функция

### Definition: Показательная функция

(теорема без доказательства) функция  $y = a^x$ , a > 0

- 1) определена на  $D_f = \mathbb{R}, E_f = (0; +\infty)$
- 2) возрастает при a > 1 и убывает при 0 < a < 1
- 3) непрерывна на  $\mathbb R$
- $\begin{array}{ll}
  \bullet & 4) \ a^x \cdot a^y = a^{x+y} \\
   & (a^x)^y = a^{xy}
  \end{array}$

/\* Следствие:  $\phi(x) = a^x$  является изоморфизмом (см. алгебра) между ( $\mathbb{R}$ , +) и ( $\mathbb{R}_{>0}$ , \*) \*/

# 9.7.14 Логарифмическая функция

# Definition: Логарифмическая функция

Функция, обратная к  $y = a^x$ ,  $a \in (0,1) \cup (1,+\infty)$  обозначается  $y = \log_a x$ 

- 1) определена на  $D_f = (0; +\infty), E_f = \mathbb{R}$
- 2) возрастает при a > 1 и убывает при 0 < a < 1
- 3) непрерывна на  $(0; +\infty)$
- 4)  $\log_a x + \log_a y = \log_a xy$  $\log_a x^{\alpha} = \alpha \log_a x$

/\* Следствие:  $\psi(x) = \log_a x$  является изоморфизмом (см. алгебра) между ( $\mathbb{R}_{>0}$ ,\*) и ( $\mathbb{R}_{+}$ ) \*/

## 9.7.15 Следствия из 2 замечательного предела

Corollary Следствия из 2 замечательного предела

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

**Proof:** 

$$\frac{\ln(x+1)}{x} = \frac{1}{x}\ln(x+1) = \ln(x+1)^{\frac{1}{x}}$$

 $\Phi$ ункция  $\ln x$  непрерывна, тогда по теореме о пределе сложной функции

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = \lim_{x \to 0} \ln(x+1)^{\frac{1}{x}} = 1$$

$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$

$$t = e^{x} - 1 \implies x = \ln(t+1)$$

$$x \to 0 \implies t \to \infty$$

$$\lim_{x \to 0} \frac{e^{x} - 1}{x} = \lim_{t \to 0} \frac{t}{\ln(t+1)} = 1$$

# 9.7.16 Показательная функция с вещественным показателем

Corollary Показательная функция с вещественным показателем

$$y = x^{\alpha}, \alpha \in \mathbb{R}, D_f = (0; +\infty)$$

 $y = e^{\alpha \ln x}$ 

 $\ln x$  непрерывна и возрастает на  $(0; +\infty)$ 

 $\alpha \ln x$ непрерывна и возрастает при  $\alpha > 0$  и убывает при  $\alpha < 0$ 

 $e^{\alpha \ln x}$  непрерывна и возрастает при  $\alpha > 0$  и убывает при  $\alpha < 0$ 

#### Следствие

#### Corollary

 $\lim_{x\to +\infty} a(x) = a \wedge \lim_{x\to +\infty} b(x) = b \implies \lim_{x\to +\infty} a(x)^{b(x)} = \lim_{x\to +\infty} e^{b(x)\ln a(x)} = e^{b\ln a} = a^b$  Для ч.п.  $\{a_n\}$  и  $\{b_n\}$  построим кусочно-линейные функции a(x) и b(x), такие что  $\forall n\in \mathbb{N}: a(n)=a_n\wedge b(n)=b_n$ 

Тогда  $\lim_{n\to +\infty} a_n = a \wedge \lim_{n\to +\infty} b_n = b \implies \lim_{n\to +\infty} a_n^{b_n} = a^b$ 

# 9.8 Производная функции

# 9.8.1 Определение производной

# Definition: Определение производной

Производная функции f в точке  $x_0$  - это предел

$$\lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

 ${f Note}$ 

 $\forall x \in \mathbb{R} : (\sin x)' = \cos x$ 

Proof:

$$\lim_{x\to x_0}\frac{\sin x-\sin x_0}{x-x_0}=\lim_{x\to x_0}\frac{2\sin\left(\frac{x-x_0}{2}\right)\cos\left(\frac{x+x_0}{2}\right)}{x-x_0}=\lim_{x\to x_0}\cos\left(\frac{x+x_0}{2}\right)=\cos x_0$$

Note

 $\forall x \in \mathbb{R} \ \forall n \in \mathbb{N} : (x^n)' = nx^{n-1}$ 

$$\lim_{x \to x_0} \frac{x^n - x_0^n}{x - x_0} = \lim_{x \to x_0} \frac{(x - x_0) \sum_{k=0}^{n-1} x^{n-1-k} x_0^k}{x - x_0} = \lim_{x \to x_0} \sum_{k=0}^{n-1} x^{n-1-k} x_0^k = n x_0^{n-1}$$

Note

$$(a^x)' = a^x \ln a$$

**Proof:** 

$$\lim_{x \to x_0} \frac{a^x - a^{x_0}}{x - x_0} = a^{x_0} \lim_{x \to x_0} \frac{a^{x - x_0} - 1}{x - x_0} = a^{x_0} \lim_{t \to 0} \frac{a^t - 1}{t} =$$

$$= a^{x_0} \lim_{t \to 0} \frac{e^{t \ln a} - 1}{t} = a^{x_0} \lim_{s \to 0} \frac{e^s - 1}{s} \cdot \ln a = a^{x_0} \ln a$$

Note

$$(e^x)' = e^x$$

Note

n-я производная обозначается как  $f^{(n)}(x)$  и определяется как  $f^{(n)}(x) = (f^{(n-1)}(x))'$ , где 0-я производная  $f^{(0)}(x) = f(x)$ 

Example

 $\forall n \in \mathbb{N} \cup \{0\} : \cos^{(n)}(x) = \cos\left(x + \frac{\pi n}{2}\right)$ 

 $\forall n \in \mathbb{N} \cup \{0\} : \sin^{(n)}(x) = \sin\left(x + \frac{\pi n}{2}\right)$ 

#### Правила подсчёта производных 9.8.2

Claim Правила подсчёта производных

Если  $\exists f'(x), \exists g'(x), \alpha \in \mathbb{R}, \beta \in \mathbb{R}$ , то

- $(\alpha f(x) + \beta g(x))' = \alpha f'(x) + \beta g'(x)$
- $(f(x) \cdot f(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$   $g(x) \neq 0 \implies \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) f(x)g'(x)}{g^2(x)}$

#### 9.8.3Определения дифференцируемости функции

#### Definition: Дифференцируемость функции в точке

Функция f(x) называется дифференцируемой в точке  $x_0$ , если

$$\exists A(x_0) \in \mathbb{R} : f(x) = f(x_0) + A(x_0) \cdot (x - x_0) + \overline{o}(x - x_0)$$

Где  $A(x_0)$  - некоторая величина, не зависящая от x (т.е. для каждой точки  $x_0$  это некоторое число)

Theorem Признак дифференцируемости функции в точке

Функция f(x) дифференцируема в точке  $x_0 \iff \exists f'(x_0) \in \mathbb{R}$ 

$$" \implies "$$

По определению дифференцируемости в точке

$$\exists A(x_0) \in \mathbb{R} : f(x) = f(x_0) + A(x_0) \cdot (x - x_0) + \overline{o}(x - x_0) \implies \frac{f(x) - f(x_0)}{x - x_0} = A(x_0) + \overline{o}(1) \implies f(x) = f(x_0) + A(x_0) \cdot (x - x_0) + \overline{o}(x - x_0) \implies \frac{f(x) - f(x_0)}{x - x_0} = A(x_0) + \overline{o}(1) \implies f(x) = f(x_0) + A(x_0) \cdot (x - x_0) + \overline{o}(x - x_0) \implies \frac{f(x) - f(x_0)}{x - x_0} = A(x_0) + \overline{o}(1)$$

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = A(x_0) \in \mathbb{R} \implies \exists f'(x_0) = A(x_0) \in \mathbb{R}$$
" \( = \text{"}

По определению производной:

$$\exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \in \mathbb{R} \implies \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) + \overline{o}(1) \implies$$

$$\implies f(x) - f(x_0) = f'(x_0) \cdot (x - x_0) + \overline{o}(x - x_0)$$

$$\implies f(x) = f(x_0) + A(x_0) \cdot (x - x_0) + \overline{o}(x - x_0), A(x_0) = f'(x_0) \in \mathbb{R}$$

# 9.8.4 Определение дифференциала

#### Definition: Определение дифференциала

Дифференциал функции f(x) в точке  $x_0$  - это линейная функция  $df(x_0) = A(x_0) \cdot (x - x_0)$  такая, что  $f(x) = f(x_0) + df(x_0) + \overline{o}(x - x_0)$ 

Обозначив  $x - x_0$  как dx (фиксированное приращение), получим:

 $df(x_0) = f'(x_0)dx$ 

# 9.8.5 Теорема о непрерывности функции, дифференцируемой в точке

#### **Theorem**

Дифференцируемая в точке  $x_0$  функция непрерывна в ней

**Proof:** 

По определению дифференцируемости в точке  $x_0$ :

$$f(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + \overline{o}(x - x_0) f'(x_0) \in \mathbb{R} \implies \lim_{x \to x_0} f'(x_0) \cdot (x - x_0) = 0 \lim_{x \to x_0} \overline{o}(x - x_0) = 0$$
 \implies \lim\_{x \to x\_0} f(x) = x\_0

# 9.8.6 Теорема о дифференцируемости сложной функции

#### Theorem

Если g(x) дифференцируема в точке  $x_0$  и функция f(y) дифференцируема в точке  $y_0 = g(x_0)$ , то f(g(x)) дифференцируема в точке  $x_0$  и  $(f(g(x)))'|_{x=x_0} = f'(g(x_0)) \cdot g'(x_0)$ 

$$g(x) = g(x_0) + g'(x_0)(x - x_0) + \overline{o}(x - x_0)$$

$$f(y) = f(y_0) + f'(y_0)(y - y_0) + \overline{o}(y - y_0) \Longrightarrow$$

$$f(g(x)) = f(g(x_0)) + f'(g(x_0))(g'(x_0)(x - x_0) + \overline{o}(x - x_0)) + \overline{o}(g'(x_0)(x - x_0) + \overline{o}(x - x_0))$$

$$f(g(x)) = f(g(x_0)) + f'(g(x_0))g'(x_0)(x - x_0) + f'(g(x_0)) \cdot \overline{o}(x - x_0) + \overline{o}(g'(x_0)(x - x_0) + \overline{o}(x - x_0)) =$$

$$= f(g(x_0)) + f'(g(x_0))g'(x_0)(x - x_0) + \overline{o}(x - x_0) + (x - x_0)\overline{o}(g'(x_0) + \overline{o}(x)(1)) =$$

$$= f(g(x_0)) + f'(g(x_0))g'(x_0)(x - x_0) + \overline{o}(x - x_0) \Longrightarrow (f(g(x)))'|_{x = x_0} = f'(g(x_0)) \cdot g'(x_0)$$

# 9.8.7 Теорема о производной обратной функции

#### Theorem

Если f(x) непрерывна и обратима на  $[a;b], x_0 \in (a;b), \exists f'(x_0) \neq 0$ , тогда  $\exists (f^{-1}(y))'|_{y=f(x_0)=y_0} = \frac{1}{f'(x_0)}$ 

Proof:

$$\lim_{y \to y_0} \frac{f'(y) - f'(y_0)}{y - y_0} = |\text{замена } y = f(x)| = \lim_{x \to x_0} \frac{f^{-1}(f(x)) - f^{-1}(f(x_0))}{f(x) - f(x_0)} = \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{f'(x_0)}$$

### 9.8.8 Пример 1

#### Example

Пример: 
$$f(x) = e^x$$
,  $f'(x) = e^x$ ,  $f^{-1}(y) = \ln y$   $(f^{-1}(y))'|_{y=y_0} = \frac{1}{f'(f^{-1}(y_0))} = \frac{1}{e^{f^{-1}(y_0)}} = \frac{1}{e^{\ln y_0}} = \frac{1}{y_0}$ 

#### 9.8.9 Пример 2

## Example

Пример: 
$$y = x^{\alpha}$$
,  $\alpha \in \mathbb{R}$ ,  $D_f = (0; +\infty)$   
 $y = e^{\alpha \ln x} \implies y' = e^{\alpha \ln x} (\alpha \ln x)' = e^{\alpha \ln x} \cdot \frac{\alpha}{x} = \alpha x^{\alpha - 1}$ 

## 9.8.10 Определение локального минимума

#### Definition: Определение локального минимума (точка минимума)

 $x_0$  - точка локального минимума функции f(x), если  $\exists \delta_0 > 0 \ \forall x \in U_{\delta_0}(x_0) : f(x_0) \le f(x)$  $x_0$  - точка строгого локального минимума функции f(x), если  $\exists \delta_0 > 0 \ \forall x \in \dot{U}_{\delta_0}(x_0) : f(x_0) < f(x)$ 

#### 9.8.11 Определение локального максимума

#### Definition: Определение локального максимума (точка максимума)

 $x_0$  - точка локального максимума функции f(x), если  $\exists \delta_0 > 0 \ \forall x \in U_{\delta_0}(x_0) : f(x_0) \ge f(x)$  $x_0$  - точка строгого локального максимума функции f(x), если  $\exists \delta_0 > 0 \ \forall x \in \dot{U}_{\delta_0}(x_0) : f(x_0) > f(x)$ 

## 9.8.12 Определение точки локального экстремума

#### Definition: Точка локального экстремума

Точками локального экстремума называются точки минимума и точки максимума

# 9.8.13 Необходимое условие локального экстремума (теорема Ферма)

# **Theorem** Необходимое условие локального экстремума (теорема Ферма)

Если  $x_0$  - точка локального экстремума, то  $\exists f'(x_0) \Longrightarrow f'(x_0) = 0$ 

# Proof:

Пусть  $\exists f'(x_0)$ 

Докажем для случая, когда  $x_0$  - локальный минимум, для локального максимума доказательство аналогично.

Предел при  $x \to x_0$  существует  $\implies$  существуют односторонние пределы и они совпадают с  $f'(x_0)$ 

В некоторой  $\delta$  окрестности  $f(x_0) \leq f(x)$ 

# 9.8.14 Определения касательной к графику функции

#### Definition: Касательная к графику функции

Касательной к графику функции f(x) называется прямая  $y = f'(x_0)(x - x_0) + f(x_0)$ 

# 9.8.15 Теорема Ролля

#### **Theorem** Теорема Ролля

Если функция f(x) удовлетворяет условиям:

- Непрерывна на [a; b]
- Дифференцируема на (a; b)
- f(a) = f(b)

To  $\exists \xi \in (a; b) : f'(\xi) = 0$ 

#### Proof:

- 1. Обозначим  $M:=\sup_{x\in[a;b]}f(x)$ ,  $m:=\inf_{x\in[a;b]}f(x)$  достигаются, т.к. функция непрерывна на отрезке
- 2. Если  $m = M \implies f(x) = const \implies \forall x \in (a; b) : f'(x) = 0$
- 3. Иначе, если m < M, тогда хотя бы одна из этих точек достигается в  $\xi \in (a;b)$  (т.к. f(a) = f(b)) БОО  $f(\xi) = M \implies \xi$  точка loc max

f дифференцируема на  $(a;b) \implies \exists f'(\xi) \implies f'(\xi) = 0$  (по теореме Ферма)

# 9.8.16 Теорема Лагранжа

#### **Theorem** Теорема Лагранжа

Если функция f(x) удовлетворяет условиям:

- Непрерывна на [a; b]
- Дифференцируема на (a; b)

To 
$$\exists \xi \in (a;b) : \frac{f(b)-f(a)}{b-a} = f'(\xi)$$

# Proof:

1. Рассмотрим  $F(x) = f(x) - \frac{f(b) - f(a)}{b - a}x$ , эта функция также, как и функция f, непрерывна на [a;b] и дифференцируема на (a;b)

 $F(a) = F(b) \implies$  для F выполняются требования теоремы Ролля  $\implies \exists \xi \in (a;b) : F'(\xi) = 0 \implies f(b) - f(a)$ 

$$\implies \exists \xi \in (a;b): f'(\xi) - \frac{f(b) - f(a)}{b - a} = 0 \implies \exists \xi \in (a;b): \frac{f(b) - f(a)}{b - a} = f'(\xi)$$

# 9.8.17 Теорема-следствие 1

#### Corollary Теорема-следствие 1

Если функция f(x) удовлетворяет условиям:

- $\bullet$  Непрерывна на [a;b]
- ullet Дифференцируема на (a;b)
- f'(x) = 0 на (a; b)

To f(x) = const Ha [a; b]

#### **Proof:**

 $\forall x_1, x_2 \in [a;b] f(x)$  удовлетворяет требованиям теоремы Лагранжа на  $[x_1;x_2] \Longrightarrow \exists \xi \in (x_1;x_1): f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1) = 0 \cdot (x_2 - x_1)$  Получили:  $\forall x_1, x_2 \in [a;b]: f(x_2) - f(x_1) = 0$ 

### 9.8.18 Теорема-следствие 2

#### Corollary Теорема-следствие 2

Если функции f(x) и g(x) удовлетворяют условиям:

- Непрерывность на [a;b]
- $\bullet$  Дифференцируемость на (a;b)
- $\bullet \ \forall x \in (a;b): f'(x) = g'(x)$

To 
$$\forall x \in [a;b]: f(x) - g(x) = const$$

#### **Proof:**

Рассмотрим 
$$h(x) = f(x) - g(x)$$

h(x) удовлетворяет требованиям предыдущей теоремы-следствия  $1 \implies$ 

$$\implies \forall x \in [a;b]: f(x) - g(x) = const$$

Если вы перешли на эту теорему по ссылке из свойста первообразных, то портал обратно: 10.2

## 9.8.19 Теорема-следствие 3

# Corollary Теорема-следствие 3

Если  $\phi(x)$  непрерывна на [a;b] и  $\phi'(x)$  определена везде на (a;b), кроме, быть может,  $x_0$ , и  $\exists \lim_{x\to x_0} \phi'(x) = A \in \mathbb{R}$ 

То  $\exists \phi'(x_0) = A$ , т.е. у производной непрерывной функции нет точек устранимого разрыва

### Proof:

По определению производной и по теореме Лагранжа:

$$\phi'(x_0) = \lim_{x \to x_0} \frac{\phi(x) - \phi(x_0)}{x - x_0} = \lim_{x \to x_0} \phi'(\xi(x)), \xi(x) \in (x_0; x), \text{ т.к. на } (x_0; x)$$

 $\phi(x)$  удовлетворяет требованиям т. Лагранжа

$$\lim_{x \to x_0} \xi(x) = x_0 \implies \phi'(x_0) = \lim_{x \to x_0} \phi'(\xi(x)) = A$$
 (по теореме о пределе сложной функции)

#### 9.8.20 Теорема Коши

## **Theorem** Теорема Коши

Если функции f(x) и g(x) удовлетворяют условиям:

- Непрерывность на [a;b]
- $\bullet$  Дифференцируемость на (a;b)

А также  $g'(x) \neq 0$  на (a;b) и  $g(a) \neq g(b)$ То  $\exists \xi \in (a;b): \frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)}$ 

# Proof:

1. Рассмотрим  $F(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)}g(x)$ , эта функция также

непрерывна на [a;b] и дифференцируема на (a;b)

 $F(a) = F(b) \implies$  для F выполняются требования теоремы Ролля  $\implies \exists \xi \in (a;b) : F'(\xi) = 0 \implies$ 

$$\implies \exists \xi \in (a;b): f'(\xi) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(\xi) = 0 \implies \exists \xi \in (a;b): \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

#### 9.8.21Теорема о монотонности непрерывно дифференцируемой функции

#### **Theorem**

Если функция f(x) удовлетворяет условиям:

- Непрерывна на [a; b]
- $\bullet$  Дифференцируема на (a;b)

 $\forall x \in (a;b): f'(x) \ge 0 \iff f(x)$  неубывает на [a;b]

 $\forall x \in (a;b): f'(x) > 0 \implies f(x)$  возрастает на [a;b]

(Для 2 высказывания импликация в обратную сторону не верна, например, для  $f(x) = x^3$  в т. x = 0)

#### Proof:

$$\forall x_0 \in (a;b): \, f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

f(x) - неубывающая функция  $\implies \forall x \neq x_0 : \frac{f(x) - f(x_0)}{x - x_0} \geq 0$ 

$$\implies \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

 $\forall x_1 < x_2 \in [a;b]: f(x)$  удовлетворяет т. Лагранжа на  $[x_1;x_2] \Longrightarrow$ 

$$\exists \xi \in (x_1; x_2) : f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1)$$

$$f'(\xi) \ge 0 \implies f(x_2) \ge f(x_1)$$

$$f'(\xi) > 0 \implies f(x_2) > f(x_1)$$

# 9.8.22 Теорема-следствие

# Corollary

Если f(x) непрерывна на [a;b] и дифференцируема на (a;b), кроме конечного числа точек (дифференцируемость), и  $f'(x) \ge 0$ , то f(x) неубывает на [a;b]

# 9.8.23 Достаточное условие экстремума

```
Theorem Достаточное условие экстремума Если \exists \delta > 0: (\forall x \in (x_0 - \delta; x_0) : f'(x) \geq 0) \land \land (\forall x \in (x_0; x_0 + \delta) : f'(x) \leq 0) \land \land (f(x)) непрерывна в точке x_0, \land column{c} f(x) = f(x) \land f(x) = f(x) \land
```

# 9.8.24 Выпуклость и вогнутость функции

## Definition: Выпуклость и вогнутость функций

```
Функция называется выпуклой вверх на отрезке [a;b], если \forall x_1 < x_2 \in [a;b] верно: график функции y = f(x) лежит выше хорды, соединяющей точки (x_1;f(x_1)) и (x_2;f(x_2)), т.е. l(x) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}x + \frac{x_2 f(x_1) - x_1 f(x_2)}{x_2 - x_1} - уравнение хорды l \forall x \in [x_1;x_2]: f(x) \geq l(x) - нестрогая выпуклость \forall x \in (x_1;x_2): f(x) > l(x) - строгая выпуклость В определении функции, выпуклой вниз, знаки неравенств f(x) \geq l(x) и f(x) > l(x) меняются на противоположные
```

#### 9.8.25 Теорема о выпуклости и вогнутости функции на интервале

#### **Theorem**

```
Если f(x) непрерывна на [a;b] и на (a;b)\exists f''(x), то \forall x \in (a;b): f''(x) \geq 0 \implies f(x) выпукла вниз \forall x \in (a;b): f''(x) \leq 0 \implies f(x) выпукла вверх
```

Докажем выпуклость вниз, выпуклость вверх доказывается аналогично Пусть  $x_1 < x_2 \in [a;b]$ , тогда для доказательства по определению необходимо доказать верность неравенства:

$$\forall x \in (x_1; x_2) : l(x) - f(x) \ge 0, \text{ где}$$

$$l(x) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} x + \frac{x_2 f(x_1) - x_1 f(x_2)}{x_2 - x_1} - \text{уравнение хорды } l$$

$$l(x) - f(x) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} x + \frac{x_2 f(x_1) - x_1 f(x_2)}{x_2 - x_1} - f(x) \frac{x_2 - x + x - x_1}{x_2 - x_1} =$$

$$= \frac{f(x_1)(x_2 - x) + f(x_2)(x - x_1)}{x_2 - x_1} - \frac{f(x)(x_2 - x) + f(x)(x - x_1)}{x_2 - x_1} =$$

$$= \frac{f(x_1)(x_2 - x) + f(x_2)(x - x_1) - f(x)(x_2 - x) - f(x)(x - x_1)}{x_2 - x_1} =$$

$$= \frac{(f(x_1) - f(x))(x_2 - x) + (f(x_2) - f(x))(x - x_1)}{x_2 - x_1} =$$

$$= \frac{(f(x_2) - f(x))(x - x_1) - (f(x_1) - f(x))(x_2 - x)}{x_2 - x_1} =$$

$$= \frac{(f(x_1) - f(x))(x - x_1) - (f(x_1) - f(x))(x_2 - x)}{x_2 - x_1} =$$

$$= \frac{(f(x_1) - f(x))(x - x_1) - (f(x_1) - f(x))(x_2 - x)}{x_2 - x_1} =$$

$$= \frac{(f(x_1) - f(x))(x - x_1) - (f(x_1) - f(x))(x_2 - x)}{x_2 - x_1} =$$

$$= \frac{(f(x_1) - f(x))(x - x_1) - (f(x_1) - f(x))(x_2 - x)}{x_2 - x_1} =$$

$$= \frac{(f(x_1) - f(x))(x - x_1) - (f(x_1) - f(x))(x_2 - x)}{x_2 - x_1} =$$

$$= \frac{(f(x_1) - f(x))(x - x_1) - (f(x_1) - f(x))(x_2 - x)}{x_2 - x_1} =$$

$$= \frac{(f(x_1) - f(x))(x - x_1) - (f(x_1) - f(x))(x_2 - x)}{x_2 - x_1} =$$

$$= \frac{(f(x_1) - f(x))(x - x_1) - (f(x_1) - f(x))(x_2 - x)}{x_2 - x_1} =$$

$$= \frac{(f(x_1) - f(x))(x - x_1) - (f(x_1) - f(x))(x_2 - x)}{x_2 - x_1} =$$

$$= \frac{(f(x_1) - f(x))(x - x_1) - (f(x_1) - f(x))(x_2 - x)}{x_2 - x_1} =$$

$$= \frac{(f(x_1) - f(x))(x - x_1) - (f(x_1) - f(x))(x_2 - x)}{x_2 - x_1} =$$

$$= \frac{(f(x_1) - f(x))(x - x_1) - (f(x_1) - f(x))(x_2 - x)}{x_2 - x_1} =$$

$$= \frac{(f(x_1) - f(x))(x - x_1) - (f(x_1) - f(x))(x_2 - x)}{x_2 - x_1} =$$

$$= \frac{(f(x_1) - f(x))(x - x_1) - (f(x_1) - f(x))(x_2 - x)}{x_2 - x_1} =$$

$$= \frac{(f(x_1) - f(x))(x - x_1) - (f(x_1) - f(x))(x_2 - x)}{x_2 - x_1} =$$

$$= \frac{(f(x_1) - f(x))(x - x_1) - (f(x_1) - f(x))(x_2 - x)}{x_2 - x_1} =$$

$$= \frac{(f(x_1) - f(x))(x - x_1) - (f(x_1) - f(x))(x_2 - x)}{x_2 - x_1} =$$

$$= \frac{(f(x_1) - f(x))(x - x_1) - (f(x_1) - f(x))(x_2 - x)}{x_2 - x_1} =$$

$$= \frac{(f(x_1) - f(x))(x - x_1) - (f(x_1) - f(x))(x_1 - x_1)}{x_2 - x_1} =$$

$$= \frac{(f(x_1) - f(x_1) - f(x_1)(x_1 - x_1)}{x_1 - x_1} =$$

$$= \frac{(f$$

#### 9.8.26Правило Лопиталя

# **Theorem** Правило Лопиталя (неопределённость вида $\frac{0}{0}$ )

Докажем теорему для случая, когда рассматривается левосторонний предел при  $a \in \mathbb{R}$ , т.е. предел

$$\lim_{x \to a-} \frac{f(x)}{g(x)}$$

для  $a \in \mathbb{R}$  и функций f(x) и g(x), таких что:

- $\exists \delta_1 > 0 : f$  и g дифференцируемы на  $(a \delta_1; a)$
- $\bullet \ \exists \lim_{x \to a^-} f(x) = \lim_{x \to a^-} g(x) = 0$
- $\forall x \in (a \delta_1; a) : g'(x) \neq 0$   $\exists \lim_{x \to a -} \frac{f'(x)}{g'(x)} = A \in \overline{\mathbb{R}}$

Тогда:  $\exists \lim_{x \to a^-} \frac{f(x)}{g(x)} = A \in \overline{\mathbb{R}}$ 

- 1. БОО рассмотрим случай, когда  $A \in \mathbb{R}$ . Иначе рассмотрим предел частного  $\frac{g(x)}{f(x)}$
- 2. Доопределим f(x) и g(x) в точке a: f(a) = g(a) = 0, чтобы функции были непрерывны в точке a. Это не влияет на искомый предел по определению предела функции при  $x \to a$

(т.к. в определении по Koши рассматриваются интервалы / проколотая окрестность точки a)

Тогда  $\forall x \in (a-\delta_1;a)$  на [x;a] выполнено условие т. Коши

Тогда по т. Коши 
$$\exists \xi \in (x;a): \frac{f(x)-f(a)}{g(x)-g(a)} = \frac{f'(\xi(x))}{g'(\xi(x))}$$

 $\xi$  зависит от x по построению  $\implies \xi(x) \underset{x \to a-}{\longrightarrow} a$ 

3. Обозначим  $F(x) = \frac{f'(x)}{g'(x)}$ 

Тогда  $\frac{f'(\xi(x))}{g'(\xi(x))} = F(\xi(x)) \underset{x \to a-}{\longrightarrow} A$  по теореме о пределе сложной функции  $F(\xi(x))$ 

Следовательно, 
$$\lim_{x\to a-} \frac{f'(\xi(x))}{g'(\xi(x))} = A \implies \lim_{x\to a-} \frac{f(x)-f(a)}{g(x)-g(a)} = A \implies \lim_{x\to a-} \frac{f(x)}{g(x)} = A$$

Для случая  $x \to a$ ,  $a \in \mathbb{R}$  и  $x \to a+$ ,  $a \in \mathbb{R}$  доказательство аналогично Докажем теорему для случая, когда рассматривается предел при  $a \in +\infty$ , т.е. предел

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)}$$

#### Proof:

1. БОО рассмотрим случай, когда  $A \in \mathbb{R}$ . Иначе рассмотрим предел частного  $\frac{g(x)}{f(x)}$ 

$$\lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = \left| x = \frac{1}{t} \right| = \lim_{t \to 0+} \frac{f'\left(\frac{1}{t}\right)}{g'\left(\frac{1}{t}\right)} = A$$

2. Рассмотрим функции:

$$a(t) = f(\frac{1}{t})$$

$$b(t) = g(\frac{1}{t})$$

Тогда:

$$a'(t) = f'\left(\frac{1}{t}\right)\left(\frac{-1}{t^2}\right)$$

$$b'(t) = g'\left(\frac{1}{t}\right)\left(\frac{-1}{t^2}\right)$$

$$\frac{f'\left(\frac{1}{t}\right)}{g'\left(\frac{1}{t}\right)} = \frac{a'(t)}{b'(t)} \implies \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = \lim_{t \to 0+} \frac{a'(t)}{b'(t)} = A$$

По построению a(t) и b(t) - композиция дифференцируемых функций, также для них выполнены пункты 2, 3, 4 теоремы, тогда

$$\lim_{t\to 0+}\frac{a(t)}{b(t)}=\lim_{t\to 0+}\frac{a'(t)}{b'(t)}=A\implies \lim_{x\to +\infty}\frac{f(x)}{g(x)}=A$$

# **Theorem** Правило Лопиталя (неопределённость вида $\frac{\infty}{\infty}$ )

Докажем теорему для случая, когда рассматривается левосторонний предел при  $a \in \mathbb{R}$ , т.е. предел

$$\lim_{x \to a-} \frac{f(x)}{g(x)}$$

для  $a \in \mathbb{R}$  и функций f(x) и g(x), таких что:

- $\exists \delta_1 > 0: f$  и g дифференцируемы на  $(a \delta_1; a)$

•  $\exists \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{-}} g(x) = \infty$ •  $\forall x \in (a - \delta_{1}; a) : g'(x) \neq 0$ •  $\exists \lim_{x \to a^{-}} \frac{f'(x)}{g'(x)} = A \in \overline{\mathbb{R}}$ Тогда:  $\exists \lim_{x \to a^{-}} \frac{f(x)}{g(x)} = A \in \overline{\mathbb{R}}$ 

1. БОО рассмотрим случай, когда  $A \in \mathbb{R}$ . Иначе рассмотрим предел частного  $\frac{f(x)}{g(x)}$ 

2. По определению предела:

$$\forall \varepsilon_1 > 0 \, \exists \delta_2 > 0 \, \forall x \in (a - \delta_2; a) : \left| \frac{f'(x)}{g'(x)} - A \right| < \varepsilon_1$$

Рассмотрим такие  $\varepsilon_1$ , что  $\varepsilon_1 < \frac{1}{2}$ 

Зафиксируем  $x_0 \in (a - \min\{\delta_1; \delta_2\}; a)$ 

T.K. 
$$f(x) \underset{x \to a^{-}}{\longrightarrow} \infty$$
, to  $\exists \delta_3 > 0 \ \forall x \in (a - \delta_3; a) : |f(x)| \ge \frac{|f(x_0)|}{\varepsilon_1}$ 

To есть 
$$\exists \delta_3 > 0 \, \forall x \in (a - \delta_3; a) : \epsilon_1 \ge \left| \frac{f(x_0)}{f(x)} \right|$$

Аналогично 
$$\exists \delta_4 : \forall x \in (a - \delta_4; a) : \varepsilon_1 \ge \left| \frac{g(x_0)}{g(x)} \right|$$

Обозначим  $x_0 = a - \min\{\delta_1; \delta_2; \delta_3; \delta_4\}$  и рассмотрим  $x \in (x_0; a)$ 

Тогда на  $[x_0;x]$  выполнены условия теоремы Коши для фунций f и  $g \implies$ 

$$\implies \left| \frac{f(x) - f(x_0)}{g(x) - g(x_0)} - A \right| = \left| \frac{f'(\xi(x))}{g'(\xi(x))} - A \right| < \varepsilon_1, \text{ T.K. } \xi(x) \in (x_0; x) \subset (a - \delta_2; a)$$

$$3. \left| \frac{f(x)}{g(x)} - A \right| \le \left| \frac{f(x)}{g(x)} - \frac{f(x) - f(x_0)}{g(x) - g(x_0)} \right| + \left| \frac{f(x) - f(x_0)}{g(x) - g(x_0)} - A \right| < \frac{f(x)}{g(x)} - \frac{f(x) - f(x_0)}{g(x)} + \varepsilon_1 = \frac{f(x)}{g(x)} - \frac{f(x) - f(x_0)}{g(x)} + \frac{f(x)}{g(x)} + \frac{f(x) - f(x_0)}{g(x)} + \frac{f(x) -$$

$$<\left|\frac{f(x)}{g(x)} - \frac{f(x) - f(x_0)}{g(x) - g(x_0)}\right| + \varepsilon_1 =$$

$$= \left| \frac{f(x) - f(x_0)}{g(x) - g(x_0)} \right| \left| \frac{1 - \frac{g(x_0)}{g(x)}}{1 - \frac{f(x_0)}{f(x)}} - 1 \right| + \varepsilon_1 <$$

$$<(|A| + \varepsilon_1) \left| \frac{1 - \frac{g(x_0)}{g(x)}}{1 - \frac{f(x_0)}{f(x)}} - 1 \right| + \varepsilon_1 =$$

$$=(|A|+\varepsilon_1)\left|\frac{\frac{f(x_0)}{f(x)}-\frac{g(x_0)}{g(x)}}{1-\frac{f(x_0)}{f(x)}}\right|+\varepsilon_1\leq$$

$$\leq (|A| + \varepsilon_1) \frac{\left| \frac{f(x_0)}{f(x)} \right| + \left| \frac{g(x_0)}{g(x)} \right|}{1 - \left| \frac{f(x_0)}{f(x)} \right|} + \varepsilon_1 \leq$$

$$\leq (|A| + \varepsilon_1) \frac{2\varepsilon_1}{1 - \varepsilon_1} + \varepsilon_1 < \left(|A| + \frac{1}{2}\right) \frac{2\varepsilon_1}{1 - \frac{1}{2}} + \varepsilon_1 = \varepsilon_1(3 + 4|A|)$$

4. Тогда:

$$\forall \varepsilon > 0 \ \text{построим} \ \varepsilon_1 = \min \left\{ \frac{\varepsilon}{3 + 4|A|}, \frac{1}{2} \right\}, \ \text{по} \ \varepsilon_1 \ \text{построим} \ \delta_1, \delta_2, \delta_3, \delta_4 \right\}$$

Положим 
$$\delta:=\min\{\delta_1;\delta_2;\delta_3;\delta_4\},$$
 тогда  $\left|\frac{f(x)}{g(x)}-A\right|<\varepsilon_1(3+4|A|)=\varepsilon$ 

## **Example** (Пример использования правила Лопиталя)

1.  
Пусть 
$$\alpha > 0, \beta > 0$$

$$\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{\alpha x^{\alpha - 1}} = \lim_{x \to +\infty} \frac{1}{\alpha x^{\alpha}} = 0 \implies$$

$$\implies \lim_{x \to +\infty} \frac{\ln^{\alpha} x}{x^{\beta}} = \lim_{x \to +\infty} \left(\frac{\ln x}{x^{\frac{\beta}{\alpha}}}\right)^{\alpha} = 0, \text{ т.к. } x^{\alpha} \text{ непрерывна на всей области определения}$$
2. Пусть  $\alpha > 0, a > 1$ 

$$\lim_{x \to +\infty} \frac{x}{a^{x}} = \lim_{x \to +\infty} \frac{1}{a^{x} \ln a} = 0 \implies$$

$$\implies \lim_{x \to +\infty} \frac{x^{\alpha}}{a^{x}} = \lim_{x \to +\infty} \left(\frac{x}{(\sqrt[4]a)^{x}}\right)^{\alpha} = 0$$

### 9.9 Формула Тейлора

# 9.9.1 Многочлен Тейлора

## Definition: Многочлен Тейлора

Пусть дана функция f, дифференцируемая n раз в точке  $x_0$ , тогда в точке  $x_0$  многочленом Тейлора называется многочлен:

называется многочлен: 
$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

#### Note

При  $x_0 = 0$   $T_n(x)$  называется рядом Маклорена

# 9.9.2 Свойство многочлена Тейлора

Claim Свойство многочлена Тейлора

$$\forall k \in \mathbb{N} : (0 \le k \le n \implies T_n^{(k)}(x_0) = f^{(k)}(x_0))$$

Proof:

$$T_{n}^{(m)}(x) = \left(\sum_{k=0}^{n} \frac{f^{(k)}(x_{0})}{k!}(x - x_{0})^{k}\right)^{(m)} =$$

$$= \left(\sum_{k=0}^{m-1} \frac{f^{(k)}(x_{0})}{k!}(x - x_{0})^{k}\right)^{(m)} + \left(\frac{f^{(m)}(x_{0})}{m!}(x - x_{0})^{m}\right)^{(m)} + \left(\sum_{k=m+1}^{n} \frac{f^{(k)}(x_{0})}{k!}(x - x_{0})^{k}\right)^{(m)} + \left(\frac{f^{(m)}(x_{0})}{m!}m!(x - x_{0})^{0}\right) + \left(\sum_{k=m+1}^{n} \frac{f^{(k)}(x_{0})}{k!}(x - x_{0})^{k}\right)^{(m)} =$$

$$= \left(\sum_{k=0}^{m-1} \frac{f^{(k)}(x_{0})}{k!}(x - x_{0})^{k}\right)^{(m)} + \left(f^{(m)}(x_{0})\right) + \left(\sum_{k=m+1}^{n} \frac{f^{(k)}(x_{0})}{k!}(x - x_{0})^{k}\right)^{(m)} \Longrightarrow$$

$$\implies T_{n}^{(m)}(x_{0}) = \left(\sum_{k=0}^{m-1} \frac{f^{(k)}(x_{0})}{k!}0\right) + \left(f^{(m)}(x_{0})\right) + \left(\sum_{k=m+1}^{n} \frac{f^{(k)}(x_{0})}{k!}0\right) = f^{(m)}(x_{0})$$

#### 9.9.3 Формула Тейлора с остаточным членом в форме Пеано

# **Theorem** Формула Тейлора с остаточным членом в форме Пеано (локальная формула Тейлора)

Если  $\exists f^{(n)}(x_0)$ , т.е. существует *n*-ая производная в точке  $x_0$ (следовательно, функция n-1 раз дифференцируема в некоторой окрестности точки  $x_0$ ), то  $R_n(x) = f(x) - T_n(x) = \overline{o}((x - x_0)^n)$ 

#### Proof:

1. По правилу Лопиталя:

$$\lim_{x \to x_0} \frac{R_n(x)}{(x - x_0)^n} = \lim_{x \to x_0} \frac{f(x) - T_n(x)}{(x - x_0)^n} = \lim_{x \to x_0} \frac{f'(x) - T'_n(x)}{n(x - x_0)^{n-1}} =$$

$$= \lim_{x \to x_0} \frac{f''(x) - T''_n(x)}{n(n-1)(x - x_0)^{n-2}} = \dots = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - T_n^{(n-1)}(x)}{n!(x - x_0)}$$

Для полученного выражения нельзя применить правило Лопиталя, т.к.  $f^{(n-1)}$ может быть не дифференцируема в некоторой окрестности точки  $x_0$ 

(из условия следует, только то, что  $f^{(n-1)}$  дифференцируема в точке  $x_0$ )

2. Для 
$$f^{(n-1)} - T_n^{(n-1)}$$
 существует производная в точке  $x_0 \implies$ 

$$f^{(n-1)}(x) = f^{(n-1)}(x_0) + f^{(n)}(x_0)(x - x_0) + \overline{o}(x - x_0)$$

$$T_n^{(n-1)}(x) = T_n^{(n-1)}(x_0) + T_n^{(n)}(x_0)(x - x_0) + \overline{o}(x - x_0)$$

3. По свойству многочлена Тейлора:  $f^{(n-1)}(x_0) = T_n^{(n-1)}(x_0) \wedge f^{(n)}(x_0) = T_n^{(n)}(x_0)$ 

Тогда 
$$f^{(n-1)}(x) - T_n^{(n-1)}(x) = \overline{o}(x-x_0) - \overline{o}(x-x_0) = \overline{o}(x-x_0) \implies$$

$$\implies \lim_{x \to x_0} \frac{f^{(n-1)}(x) - T_n^{(n-1)}(x)}{n!(x - x_0)} = \lim_{x \to x_0} \frac{\overline{o}(x - x_0)}{n!(x - x_0)} = \lim_{x \to x_0} \frac{\overline{o}(1)}{n!} = 0 \implies$$

$$\implies \lim_{x\to x_0}\frac{f(x)-T_n(x)}{(x-x_0)^n}=0 \implies f(x)-T_n(x)=\overline{o}((x-x_0)^n)$$
 при  $x\to x_0$  (по определению о-малого)

# **Example** (Локальная формула Тейлора для синуса)

$$\begin{split} f(x) &= \sin x, x_0 = 0, \text{ тогда } f^{(k)}(x) = \sin \left( x + \frac{\pi k}{2} \right) \\ f^{(k)}(0) &= \left\{ \begin{array}{l} 0, k \equiv 0 \mod 2 \\ (-1)^{\frac{k+1}{2}}, \text{ otherwise} \end{array} \right. \end{split}$$

$$f^{(k)}(0) = \begin{cases} 0, k \equiv 0 \mod 2\\ (-1)^{\frac{k+1}{2}}, \text{ otherwise} \end{cases}$$

$$\sin(x) = \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} x^{2k+1} + \overline{o}(x^{2n+1})$$

## **Example** (Локальная формула Тейлора для косинуса)

$$f(x) = \cos x$$
,  $x_0 = 0$ , тогда  $f^{(k)}(x) = \cos(x + \frac{\pi k}{2})$ 

$$f^{(k)}(0) = \begin{cases} 0, k \equiv 1 \mod 2\\ (-1)^{\frac{k}{2}}, \text{ otherwise} \end{cases}$$

$$\cos(x) = \sum_{k=0}^{n} \frac{(-1)^k}{(2k)!} x^{2k} + \overline{o}(x^{2n})$$

**Example** (Локальная формула Тейлора для экспоненциальной функции)

$$f(x) = e^x$$
,  $x_0 = 0$ , тогда  $f^{(k)}(0) = 1$ 

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + \overline{o}(x^{n})$$

**Example** (Пример использования локальной формулы Тейлора для подсчёта предела)

$$\lim_{x \to 0} \frac{x - \sin x}{e^x - 1 - x - \frac{x^2}{2}} = \lim_{x \to 0} \frac{x - (x - \frac{x^3}{6} + \overline{o}(x^3))}{1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \overline{o}(x^3) - 1 - x - \frac{x^2}{2}} = \lim_{x \to 0} \frac{\frac{x^3}{6} + \overline{o}(x^3)}{\frac{x^3}{6} + \overline{o}(x^3)} = 1$$
(9.2)

# 9.9.4 Теорема о единственности локальной формулы Тейлора

Theorem Теорема о единственности локальной формулы Тейлора

Если функция f(x) n раз дифференцируема в точке  $x_0$  и  $f(x) = P_n(x) + \overline{o}((x-x_0)^n)$  при  $x \to x_0$  ( $P_n(x)$  - многочлен от x,  $\deg P_n(x) \le n$ ) то  $P_n(x) = T_n(x)$ 

Proof:

- 1. Функция f(x) n раз дифференцируема в точке  $x_0 \implies f(x) = T_n(x) + \overline{o}((x-x_0)^n)$
- 2.  $P_n(x) T_n(x) = \overline{o}((x x_0)^n)$

$$\sum_{k=0}^{n} \left( a_k - \frac{f^{(k)}(x_0)}{k!} \right) (x - x_0)^k = \overline{o}((x - x_0)^n)$$

Перейдём к пределу:  $\implies a_0 - \frac{f(x_0)}{0!} = 0 \implies a_0 = \frac{f(x_0)}{0!}$ 

Разделим на  $x-x_0$  и снова перейдём к пределу и снова перейдём к пределу  $\implies a_1 = \frac{f'(x_0)}{1!}$ 

Повторив это ещё n-1 раз, получим, что  $\forall k: a_k = \frac{f^{(k)}(x_0)}{k!}$ 

# 9.9.5 Формула Тейлора с остаточным членом в формуле Лагранжа

**Theorem** Формула Тейлора с остаточным членом в формуле Лагранжа

Если функция f(x) n+1 раз дифференцируема на интервале (a;b),  $a\in \overline{\mathbb{R}}$ ,  $b\in \overline{\mathbb{R}}$  и  $a< x_0, x< b$ , то  $\exists c=c(x)\in (\min(x_0;x);\max(x_0;x))$ :

$$\exists c = c(x) \in (\min(x_0; x); \max(x_0; x)) : R_n(x) = f(x) - T_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

1. Рассмотрим функцию 
$$\gamma(t) = f(x) - T_n(t;x) - \frac{(x-t)^{n+1}R_n(x)}{(x-x_0)^{n+1}}$$
, где  $T_n(t;x) = \sum_{k=0}^n \frac{f^{(k)}(t)}{k!}(x-t)^k$ 

 $\gamma(t)$  дифференцируема по t на  $(\min(x_0; x); \max(x_0, x))$ , также

$$\gamma(x_0) = f(x) - T_n(x_0; x) - R_n(x) = f(x) - f(x) = 0$$

$$\gamma(x) = f(x) - T_n(x; x) = f(x) - f(x) = 0$$

Тогда по т. Ролля  $\exists c \in (\min(x_0; x); \max(x_0, x)) : \gamma'(c) = 0$ 

$$\gamma'(t) = -f'(t) - \sum_{k=1}^{n} \left( \frac{f^{(k+1)}(t)}{k!} (x-t)^k - \frac{f^{(k)}(t)}{(k-1)!} (x-t)^{k-1} \right) + \frac{(n+1)(x-t)^n R_n(x)}{(x-x_0)^{n+1}} =$$

$$= -f'(t) - \frac{f^{(n+1)}(t)}{n!} (x-t)^n + f'(t) + \frac{(n+1)(x-t)^n R_n(x)}{(x-x_0)^{n+1}} = \frac{(n+1)(x-t)^n R_n(x)}{(x-x_0)^{n+1}} - \frac{f^{(n+1)}(t)}{n!} (x-t)^n$$
2.  $\gamma'(c) = 0 \implies (n+1)(x-c)^n R_n(x) - f^{(n+1)}(c)$ 

$$\implies \frac{(n+1)(x-c)^n R_n(x)}{(x-x_0)^{n+1}} - \frac{f^{(n+1)}(c)}{n!} (x-c)^n = 0 \implies$$

$$\implies R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-x_0)^{n+1}$$

### Example (Пример для функции синус)

$$\forall x \in \mathbb{R}: \left|\sin x - \textstyle\sum_{k=0}^n \frac{(-1)^k}{(2k+1)!} x^{2k+1}\right| \leq \frac{1}{(2n+2)!} x^{2n+2} \underset{n \to +\infty}{\longrightarrow} 0$$

#### Example (Пример для экспоненты)

$$f(x) = e^x$$
,  $T_n(x) = \sum_{k=0}^{n} \frac{x^k}{k!}$ 

 $\forall x \in \mathbb{R}: |T_n(x) - e^x| = |R_n(x)| = \frac{e^c}{(n+1)!} |x|^{n+1} \le \frac{e^{|x|}}{(n+1)!} |x|^{n+1} \underset{n \to +\infty}{\longrightarrow} 0, \text{ t.k. } c = c(x; x_0) \in (x_0; x) = (0; x)$ 

#### 9.9.6 Определение точки возрастания

#### Definition: Точка возрастания

 $x_0$  - точка возрастания, если:

 $\exists \delta > 0 \, \forall x \in U_{\delta}(x_0)$ :

 $(x_0 < x \implies f(x_0) < f(x)) \land (x < x_0 \implies f(x) < f(x_0))$ 

#### 9.9.7 Определение точки убывания

#### Definition: Точка убывания

 $x_0$  - точка убывания, если:

 $\exists \delta > 0 \, \forall x \in U_{\delta}(x_0)$ :

$$(x_0 < x \implies f(x_0) > f(x)) \land (x < x_0 \implies f(x) > f(x_0))$$

# 9.9.8 Теорема о функции, имеющей ровно n - 1 ненулевых производных

#### **Theorem**

Если функция f(x) n раз дифференцируема в точке  $x_0$  и выполнено:

$$\forall i \in \{1, 2, ..., n-1\} : f^{(i)}(x_0) = 0$$

 $f^{(n)}(x_0) \neq 0$ , To

•n = 2k: Если  $f^{(2k)}(x_0) > 0$ , то  $x_0$  - точка min

Если  $f^{(2k)}(x_0) < 0$ , то  $x_0$  - точка max

ullet n = 2k+1: Если  $f^{(2k+1)}(x_0) > 0$ , то  $x_0$  - точка возрастания

Если  $f^{(2k+1)}(x_0) < 0$ , то  $x_0$  - точка убывания

### Proof:

1. По формуле Тейлора с остаточным членом в форме Пеано:

$$f(x) = f(x_0) + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \overline{o}((x - x_0)^n)$$

$$f(x) - f(x_0) = \left(\frac{f^{(n)}(x_0)}{n!} + \overline{o}(1)\right)(x - x_0)^n$$

2. Для случая, когда n=2k, докажем при  $f^{(n)}(x_0)>0$ , для второго случая аналогично:

Т.к.  $\overline{o}(1)$  - б.м. при  $x \to x_0$ , то

$$\exists \delta > 0 \, \forall x \in U_\delta(x_0) : \left(\frac{f^{(n)}(x_0)}{n!} + \overline{o}(1)\right) > 0$$

Тогда 
$$\forall x \in \dot{U}_{\delta}(x_0): f(x) - f(x_0) = \left(\frac{f^{(n)}(x_0)}{n!} + \overline{o}(1)\right)(x - x_0)^{2k} > 0$$

3. Для случая, когда n=2k+1, докажем при  $f^{(n)}(x_0)>0$ , для второго случая аналогично:

Аналогично пункту 2 
$$\exists \delta > 0 \ \forall x \in U_\delta(x_0) : \left(\frac{f^{(n)}(x_0)}{n!} + \overline{o}(1)\right) > 0$$

При 
$$x \in (x_0; x_0 + \delta) : (x - x_0)^{2k+1} > 0$$

При 
$$x \in (x_0 - \delta; x_0) : (x - x_0)^{2k+1} < 0$$

Тогда при 
$$x \in (x_0; x_0 + \delta) : f(x) - f(x_0) > 0$$

Тогда при 
$$x \in (x_0 - \delta; x_0) : f(x) - f(x_0) < 0$$

#### Chapter 10

# Интегрирование функций

# 10.1 Определение первообразной

#### Definition

Пусть f(x) определена на  $(a;b), a,b \in \mathbb{R}$ Первообразной к функции f(x) называется такая функция F(x), определённая на (a;b), что F'(x) = f(x)

# Example

Первообразной к  $\frac{1}{1+x^2}$  будет  $\arctan(x)$  Первообразной к  $\frac{1}{1+x^2}$  будет  $\arctan(x)+1$  Первообразной к  $\frac{1}{1+x^2}$  будет  $\arctan(x)+\pi$ 

# 10.2 Свойство первообразных

#### **Theorem** Свойство первообразных

Пусть f(x) определена на  $(a;b),a,b\in\overline{\mathbb{R}}$  Если  $F_1(x)$  и  $F_2(x)$  - первообразные к f(x) на (a;b), то  $F_1(x)-F_2(x)=const$ 

#### **Proof:**

 $F_1(x)$  и  $F_2(x)$  дифференцируемы на (a;b) и непрерывны на [a;b] Тогда по теореме  $9.8.18:F_1(x)-F_2(x)=const$  на [a;b]

## Example

Ехамирие  $\int \frac{1}{x} dx = \ln|x| + C, C \in \mathbb{R}, \text{ т.к.}$  При  $x > 0 : \ln'(x) = \frac{1}{x}$  При  $x < 0 : \ln'(-x) = \frac{1}{-x} \cdot (-1) = \frac{1}{x}$  При этом, т.к.  $D_{\ln} = (-\infty; 0) \cup (0; +\infty)$ , то можно привести пример, когда предыдущая теорема не выполняется на  $D_{\ln}$ :  $F_1(x) = \ln|x|$   $F_2(x) = \begin{cases} \ln x, x > 0 \\ \ln(-x) + 2, x < 0 \end{cases}$ 

#### 10.3 Неопределённый интеграл

#### 10.3.1 Определение неопределённого интеграла

# Definition: Неопределённый интеграл

Неопределённым интегралом для f(x) на (a;b) называется множество первообразных f(x)Обозначение:  $\int f(x)dx = \{F(x) + C\}_{C \in \mathbb{R}}$ 

На практике пишут  $\int f(x)dx = F(x) + C$  и используют интеграл как функцию

#### 10.3.2Свойства неопределённого интеграла

#### Note

Свойства неопределённого интеграла

- $\int 1 \cdot dF(x) = \int dF(x) = F(x) + C, C \in \mathbb{R}$
- $\left(\int f(x)dx\right)' = f(x)$
- $d\left(\int f(x)dx\right) = f(x)dx$   $\int f(x) + g(x)dx = \int f(x)dx + \int g(x)dx$

#### 10.3.3 Теорема об интеграле сложной функции

**Theorem** Теорема об интеграле сложной функции

Если F(x) - первообразная к f(x) на (a;b) и  $\phi(t)$  дифференцируема на (c;d), причём  $\phi((c;d))\subseteq (a;b)$ ,

$$\int f(\phi(t))\phi'(t)dt = F(\phi(t)) + C, C \in \mathbb{R}$$

Proof:

$$(F(\phi(t)))' = F'(\phi(t))\phi'(t) = f(\phi(t))\phi'(t)$$

#### 10.3.4 Формула подстановки

Claim Формула подстановки

$$\int f(\phi(t))\phi'(t)dt = \int f(x)dx|_{x=\phi(t)}$$

Проведём занесение функции под знак дифференциала:

$$\int f(\phi(t))\phi'(t)dt = \int f(\phi(t))d\phi(t) = \int f(x)dx|_{x=\phi(t)}$$

Example

$$\int \sin x^2 dx^2 = -\cos x^2 + C, C\mathbb{R}$$

#### Example

$$\int xe^{\frac{-x^2}{2}}dx = -\int e^{\frac{-x^2}{2}}d\left(\frac{-x^2}{2}\right) = -e^{\frac{-x^2}{2}} + C, C \in \mathbb{R}$$

# 10.3.5 Формула замены переменных

Claim Формула замены переменных

$$\int f(x)dx = \int f(\phi(t))\phi'(t)dt|_{t=\phi^{-1}(x)}, \text{ если } \phi \text{ обратима}$$

### Example

$$\begin{array}{l} x \in (-1;1): \\ \int \sqrt{1-x^2} dx = \left| x = \sin t, t \in (-\frac{\pi}{2}; \frac{\pi}{2}) \right| = \int \cos t d \sin t = \int \cos^2 t dt = \int \frac{\cos 2t+1}{2} dt = \frac{1}{2} \left( \int \cos 2t dt + \int 1 dt \right) = \frac{1}{2} \left( \frac{1}{2} \sin 2t + t + C \right) = \frac{1}{4} \sin 2t + \frac{1}{2} t + C = \frac{1}{4} \sin(2 \arcsin x) + \frac{1}{2} \arcsin x + C \end{array}$$

# 10.3.6 Интегрирование по частям

#### Theorem Формула интегрирования по частям

$$f(x)$$
 и  $g(x)$  - дифференцируемы на  $(a;b)$   $\int f(x)dg(x) = f(x)g(x) - \int g(x)df(x)$ 

Proof:

$$d(f(x)g(x)) = (f'(x)g(x) + f(x)g(x))dx = g(x)df(x) + f(x)dg(x)$$

$$\int d(f(x)g(x)) = \int g(x)df(x) + f(x)dg(x)$$

$$f(x)g(x) = \int (g(x)df(x) + f(x)dg(x))$$

$$f(x)g(x) - \int g(x)df(x) = \int f(x)dg(x)$$

# Example

$$\int xe^x dx = \int xde^x = xe^x - \int e^x dx = xe^x - e^x + C, c \in \mathbb{R}$$

#### Example

$$\int \ln x dx = x \ln x - \int x d \ln x = x \ln x - \int 1 dx = x \ln x - x + C, C \in \mathbb{R}$$

# 10.4 Определённый интеграл

# 10.4.1 Разбиение, диаметр разбиения, разметка разбиения

#### Definition: Разбиение отрезка

Разбиением отрезка [a;b] называется множество  $\tau = \{[x_{i-1};x_i]\}_{i=1}^n,$   $a=x_0 < x_1 < \ldots < x_n = b$ 

# Example (Пример разбиения)

$$[a;b] = [0;2]$$
  
 $n = 5, \tau = \{[0;0.5], [0.5,1], [1;1.5], [1.5;1.75], [1.75,2]\}$   
 $a = 0 = x_0 < x_1 = 0.5 < x_2 = 1 < x_3 = 1.5 < x_4 = 1.75 < x_5 = 2 = b$ 

#### Definition: Измельчение разбиения

Пусть даны 2 разбиения:  $\tau = \{[x_{i-1};x_i]\}_{i=1}^n$   $\tau' = \{[x'_{j-1};x'_j]\}_{j=1}^k$   $\tau'$  является измельчением  $\tau$ , если  $\forall i\,\exists j: x_i = x'_j$ 

#### Note

Обозначение:  $\tau' > \tau$ 

Если  $\tau' > \tau$ , то  $k \ge n$ , причём  $k = n \iff \tau' = \tau$ 

### Example (Пример измельчения разбиения)

$$[a;b] = [0;5]$$

$$n = 3, \tau = \{[0;1], [1;3], [3;5]\}$$

$$x_0 = 0, x_1 = 1, x_2 = 3, x_3 = 5$$

$$x_0 \quad x_1 \quad x_2 \quad x_3$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$

$$x'_0 \quad x'_1 \quad x'_2 \quad x'_3 \quad x'_4 \quad x'_5$$

$$k = 5, \tau' = \{[0;1], [1;2], [2;3], [3;4], [4;5]\}$$

$$x'_0 = 0, x'_1 = 1, x'_2 = 2, x'_3 = 3, x'_4 = 4, x'_5 = 5$$

#### Definition: Диаметр разбиения

Диаметр разбиения - это  $d(\tau) = \max_{1 \leq i \leq n} (x_i - x_{i-1}) = \max_{1 \leq i \leq n} \Delta x_i$ 

#### Definition: Разметка разбиения

Разметка разбиения - это множество  $\{\xi_i|\xi_i\in[x_{i-1};x_i]\}_{i=1}^n$  Разбиение, у которого есть разметка, называется размеченным разбиением

# 10.4.2 Интегральная сумма Римана

### Definition: Интегральная сумма Римана

Интегральная сумма (Римана) - это

$$\sigma_{\tau}(f) = \sum_{i=1}^{n} f(\xi_i) \Delta x_i$$

#### 10.4.3 Определение определённого интеграла по Коши

# Definition: Определение определённого интеграла по Коши

Число I называется определённым интегралом f(x) на [a;b], если  $\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall \tau : d(\tau) < \delta \,\forall$  разметки  $\{\xi_i\}_{i=1}^n : |\sigma_{\tau}(f) - I| < \varepsilon$ 

#### 10.4.4 Определение определённого интеграла по Гейне

### Definition: Определение определённого интеграла по Гейне

Число I называется определённым интегралом f(x) на [a;b], если  $\forall$  послед.  $\tau_k: d(\tau_k) \xrightarrow[k \to +\infty]{} 0 \,\forall \{\xi_i^k\}_{i=1}^n: \,\sigma_{\tau_k}(f) \xrightarrow[k \to +\infty]{} I$ 

#### 10.4.5 Определение функции, интегрируемой по Риману

# Definition: Определение интегрируемости по Риману

Функция f(x) интегрируема по Риману, если  $\exists I \in \mathbb{R}$ , т.ч. выполняется определение по Коши 10.4.3

 $f(x) \in R[a;b]$ , где R[a;b] - множество функций, интегрируемых по Риману на отрезке [a;b] $I = \int_a^b f(x) dx$ 

#### Example

Пример функции, не интегрируемой по Риману:

На отрезке [0;1] рассмотрим функция Дирихле:  $D(x) = \begin{cases} 1, x \in \mathbb{Q} \\ 0, x \notin \mathbb{Q} \end{cases}$ 

Выберем первую разметку такую, что  $\forall i \in \{1,...,n\}: \xi_i \in \mathbb{Q}$  Тогда  $\sigma_{\tau}(D) = \sum_{i=1}^n D(\xi_i) \Delta x_i = \sum_{i=1}^n \Delta x_i = b-a = 1-0 = 1$ 

Выберем вторую разметку такую, что  $\forall i \in \{1,...,n\}: \xi_i \in \mathbb{R} \setminus \mathbb{Q}$  Тогда  $\sigma_{\tau}(D) = \sum_{i=1}^n D(\xi_i) \Delta x_i = \sum_{i=1}^n 0 \cdot \Delta x_i = 0$ 

#### 10.4.6 Теорема об ограниченности функции, интегрируемой на отрезке

**Theorem** Теорема об ограниченности функции, интегрируемой на отрезке

Функция, f(x) интегрируемая на [a;b], ограничена на [a;b]

1. Предположим от противного, т.е. функция не ограничена на отрезке

По определению интегрируемости для  $\varepsilon = 1$ :

$$\exists \delta > 0 \, \forall \tau : d(\tau) < \delta \, \forall \{\xi_i\}_{i=1}^n : \, |\sigma_\tau(f) - I| < 1$$

Зафиксируем  $\tau$ . Хотя бы на 1 элементе  $\tau$  f(x) не ограничена. БОО это первый отрезок  $[x_0; x_1]$ 

Зафиксируем разметку везде кроме 1-ого отрезка:  $\xi_2, \xi_2, ... \xi_n$ 

$$|\sigma_{\tau}(f)| - |I| \le |\sigma_{\tau}(f) - I| \implies |\sigma_{\tau}(f)| < |I| + 1$$

$$|f(\xi_1)|\Delta x_1 - \sum_{i=2}^n |f(\xi_i)|\Delta x_i \le |\sigma_{\tau}(f)| \implies |f(\xi_1)|\Delta x_1 < |I| + 1 + \sum_{i=2}^n |f(\xi_i)|\Delta x_i$$

$$|f(\xi_1)| < \frac{|I| + 1 + \sum_{i=2}^{n} |f(\xi_i)| \Delta x_i}{\Delta x_1}$$

Обозначим 
$$C = \frac{|I| + 1 + \sum_{i=2}^{n} |f(\xi_i)| \Delta x_i}{\Delta x_1} > 0$$

Получили:  $\forall \xi_1 \in [x_0; x_1] : |f(\xi_1)| < C$ 

Ho на отрезке  $[x_0; x_1]$  функция не ограничена  $\implies$  (W)

#### 10.4.7Суммы Дарбу

## Нижняя сумма Дарбу

## Definition: Нижняя сумма Дарбу

Пусть f(x) ограничена на [a;b], дано разбиение  $\tau$ , тогда нижней суммой Дарбу называется  $s_{\tau} = \sum_{i=1}^{n} m_i \Delta x_i$ , где  $\forall i : m_i = \inf f(x)$ 

#### Верхняя сумма Дарбу

### Definition: Верхняя сумма Дарбу

Пусть f(x) ограничена на [a;b], дано разбиение  $\tau$ , тогда верхней суммой Дарбу называется  $S_{\tau} = \sum_{i=1}^{n} M_i \Delta x_i$ , где  $\forall i : M_i = \sup f(x)$ 

#### Свойства сумм Дарбу

Claim Свойства сумм Дарбу

- $s_{\tau}, S_{\tau}$  определены, если f(x) ограничена, т.е.  $s_{\tau} \in \mathbb{R} \wedge S_{\tau} \in \mathbb{R}$
- Если  $\tau' > \tau$ , то:

$$S_{\tau'} \leq S_{\tau}$$

$$S_{\tau'} \geq S_{\tau}$$

- $\forall \tau_1, \tau_2: s_{\tau_1} \leq S_{\tau_2}$   $s_{\tau} = \inf \sigma_{\tau}(f)$  инфинум по всем разметкам

 $S_{\tau} = \sup \sigma_{\tau}(f)$  - супремум по всем разметкам

Докажем 2-е свойство для нижних сумм Дарбу:

$$\begin{split} s_{\tau} &= \sum_{i=1}^{n} m_{i} \Delta x_{i} \\ s_{\tau'} &= \sum_{j=1}^{k} m'_{j} \Delta x'_{j} \\ \forall i \, \exists n_{i-1} < n_{i} : \sum_{j=n_{i-1}+1}^{n_{i}} \Delta x'_{j} = \Delta x_{i} \, \text{ if } \forall j \in \{n_{i-1}+1,...,n_{i}\} : [x_{j-1};x_{j}] \subseteq [x_{i-1};x_{i}] \end{split}$$

Т.к.  $m_i$  -  $\inf f(x)$  на всём отрезке  $[x_{i-1};x_i]$ , то  $\forall j \in \{n_{i-1}+1,...,n_i\}: m_j' \geq m_i$   $m_j' \Delta x_j' \geq m_i \Delta x_j'$ 

$$s'_{\tau} = \sum_{j=n_{i-1}+1}^{n_i} m'_j \Delta x'_j \ge \sum_{j=n_{i-1}+1}^{n_i} m_i \Delta x'_j = m_i \Delta x_i = s_{\tau}$$

Докажем 3-е свойство:

**Proof:** 

Рассмотрим  $\tau$ , состоящую из точек  $\tau_1$  и  $\tau_2$ , тогда  $\tau > \tau_1, \tau_2$   $s_{\tau_1} \le s_{\tau} \le S_{\tau} \le S_{\tau_2}$ 

Докажем 4-е свойство:

Proof:

$$s_{\tau} = \sum_{i=1}^{n} \inf_{\xi_{i} \in [x_{i-1}; x_{i}]} f(\xi_{i}) \Delta x_{i} = \inf_{\xi_{i} \in [x_{i-1}; x_{i}]} \sum_{\substack{i=1 \ \{\xi_{i}\}_{i=1}^{n}}}^{n} f(\xi_{i}) \Delta x_{i} = \inf_{\{\xi_{i}\}_{i=1}^{n}} \sigma_{\tau}(f)$$

## Интегралы Дарбу

# Definition: Верхний интеграл Дарбу

Верхним интегралом Дарбу называется  $I^* = \inf_{\tau} S_{\tau}$  - инфинум верхних сумм Дарбу по всем разбиениям

# Definition: Нижний интеграл Дарбу

Нижним интегралом Дарбу называется  $I_* = \sup_{\tau} s_{\tau}$  - супремум нижних сумм Дарбу по всем разбиениям

#### Clarification Уточнение

$$s_{\tau} \leq S_{\tau} \implies I_* \leq I^*$$

# 10.4.8 Критерий Дарбу интегрируемости по Риману

#### **Lemma** Лемма 1

Пусть  $\tau' > \tau$  и у  $\tau'$  на р точек (т.е. границ отрезков) больше, чем у  $\tau$  Тогда  $0 \le S_{\tau} - S_{\tau'} \le (M-m) \cdot p \cdot \delta$ , где  $\delta > d(\tau)$ ,  $m = \inf_{x \in [a;b]} f(x) \in \mathbb{R}$ ,  $M = \sup_{x \in [a;b]} f(x) \in \mathbb{R}$ 

# Proof:

- 1.  $S_{\tau} S_{\tau'} \ge 0$  по свойству 2 сумм Дарбу 10.4.7
- 2. Рассмотрим случай, когда p=1

Пусть граница отрезка, которая есть в  $\tau'$ , но которой нет в  $\tau$ , имеет индекс i

$$\begin{array}{c|cccc} x_{i-1} & x_i \\ \hline x'_{i-1} & x'_i & x'_{i+1} \end{array}$$

$$S_{ au} = \sum_{j=1}^n M_j \Delta x_j$$
, где  $M_j = \sup_{x \in [x_{j-1}; x_j]} f(x)$ 

$$S_{\tau'} = \sum_{j=1}^{n+1} M'_j \Delta x'_j$$
, где  $M'_j = \sup_{x \in [x'_{j-1}; x'_j]} f(x)$ 

Причём  $\forall j < i : x_j = x_j' \land M_j = M_j'$  и  $x_i = x_{i+1}'$  и  $\forall j > i : x_j = x_{j+1}' \land M_j = M_{j+1}'$  Тогда  $S_\tau - S_{\tau'} = M_i \triangle x_i - (M_i' \triangle x_i' + M_{i+1}' \triangle x_{i+1}') = M_i (\triangle x_i' + \triangle x_{i+1}') - (M_i' \triangle x_i' + M_{i+1}' \triangle x_{i+1}') = (M_i - M_i') \triangle x_i' + (M_i - M_{i+1}') \triangle x_{i+1}' \le \big|_{\text{Т.К.}} M_i \le M$  и  $M_i' \ge m \big| \le (M - m) \triangle x_i' + (M - m) \triangle x_{i+1}' = (M - m) \triangle x_i \le (M - m) \cdot d(\tau) < (M - m) \cdot \delta$ 

3. Для р > 1 доказывается итерационно, сводя для каждой из p точек измельчения  $\tau'$  к пункту 2.  $\blacksquare$ 

#### **Lemma** Лемма Дарбу

Пусть дан отрезок [a;b] и функция f(x), непрерывная на отрезке [a;b], тогда

$$I^* = \lim_{d \to 0} S_{\tau}$$

Это означает, что  $\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall \tau : d(\tau) < \delta : |S_\tau - I^*| < \varepsilon$ 

1. Если m=M, то функция - константа на отрезке [a;b], тогда все верхние суммы равны  $f(a)\cdot (b-a) \implies I^*=f(a)\cdot (b-a)$ , т.к.  $I^*$  - это инфинум верхних сумм по всем разбиениям

2. Иначе, если  $m \neq M$ , то m < M

Пусть дано  $\varepsilon > 0$ , тогда

$$I^* = \inf_{\tau} S_{\tau} \implies \exists \tau^* : |S_{\tau^*} - I^*| < \frac{\varepsilon}{2}$$

$$S_{\tau^*} \ge I^* \implies S_{\tau^*} - I^* < \frac{\varepsilon}{2}$$

Пусть в  $\tau^*$  р точек (границ отрезков внутри (a;b)), т.е.  $\tau^*$  состоит из p+1 отрезка

Положим 
$$\delta = \frac{\varepsilon}{2(M-n)p}$$

Построено  $\delta$ , тогда пусть дано разбиение  $\tau$  т.ч.  $d(\tau) < \delta$ 

Составим разбиение  $\tau'$  из границ отрезков разбиений  $\tau$  и  $\tau^*$ , тогда  $\tau' > \tau \wedge \tau' > \tau^*$ ,

и при этом в  $\tau'$  не более чем на p больше точек (границ отрезков), чем в  $\tau$ , тогда по Лемме 1

$$0 \le S_{\tau} - S_{\tau'} \le (M - m) \cdot p \cdot \delta = \frac{\varepsilon}{2}$$

(если в  $\tau'$  меньше, чем на р больше точек, чем в  $\tau$ , то неравенство также выполняется)  $\tau'$  - измельчение  $\tau^*$  по построению  $\implies S_{\tau'} \leq S_{\tau^*}$ 

$$S_{\tau'} \ge I^* \implies I^* \le S_{\tau'} \le S_{\tau^*}$$

$$S_{\tau^*} - I^* < \frac{\varepsilon}{2} \implies S_{\tau'} - I^* < \frac{\varepsilon}{2}$$

$$\begin{array}{c} 0 \leq S_{\tau} - S_{\tau'} < \frac{\varepsilon}{2} \\ 0 \leq S_{\tau'} - I^* < \frac{\varepsilon}{2} \end{array} \right\} \implies 0 \leq S_{\tau} - I^* < \varepsilon \implies |S_{\tau} - I^*| < \varepsilon$$

#### Note

Аналогичная лемма верна и для случая нижних сумм:

$$I_* = \lim_{d \to 0} s_{\tau}$$

# Theorem Критерий Дарбу интегрируемости по Риману

Ограниченная функция f(x) интегрируема на  $[a;b] \iff I^* = I_*$ 

Используя введённые обозначения,  $f(x) \in R[a;b] \iff f(x)$  ограничена и  $I^* = I_*$ 

$$" \implies "$$

Предположим от противного, т.е. функция интегрируема и  $I_* \neq I^* \implies I_* < I^*$ 

По определению интегрируемости:

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall \tau : d(\tau) < \delta \forall \{\xi_i\}_{i=1}^n : \, |\sigma_\tau(f) - I| < \varepsilon$$

$$|\sigma_{\tau}(f) - I| < \varepsilon \implies I - \varepsilon < \sigma_{\tau}(f) < I + \varepsilon \implies I - \varepsilon \le s_{\tau} \le S_{\tau} \le I + \varepsilon$$
 по сво-ву 4

$$s_{\tau} \leq I_* < I^* \leq S_{\tau} \implies S_{\tau} - s_{\tau} \geq I^* - I_* > 0$$
, но при этом  $\forall \varepsilon > 0 : S_{\tau} - s_{\tau} \leq 2\varepsilon \implies (W)$ 

Обозначим  $I = I_* = I^*$  и покажем, что выполняется определение, т.е.

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall \tau : d(\tau) < \delta \,\forall \{\xi_i\}_{i=1}^n : |\sigma_\tau(f) - I| < \varepsilon$$

$$|\sigma_{\tau}(f) - I| < \varepsilon \implies I - \varepsilon < \sigma_{\tau}(f) < I + \varepsilon$$

По определению сумм Дарбу  $s_{\tau} \leq \sigma_{\tau}(f) \leq S_{\tau}$ 

По лемме Дарбу  $\exists \delta_1 > d(\tau) : S_{\tau} < I^* + \varepsilon$ 

аналогично  $\exists \delta_2 > d(\tau) : s_{\tau} > I_* - \varepsilon$ 

Положим  $\delta = \min(\delta_1, \delta_2)$ , тогда  $I_* - \varepsilon < \sigma_\tau(f) < I^* + \varepsilon \implies I - \varepsilon < \sigma_\tau(f) < I^* + \varepsilon = I + \varepsilon$ 

# 10.4.9 Определение равномерной непрерывности

## Definition: Определение равномерной непрерывности

Функция f(x) называется равномерно непрерывной на  $E \subseteq \mathbb{R}$ , если  $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ \forall x_1, x_2 \in E : |x_1 - x_2| < \delta \implies |f(x_1) - f(x_2)| < \varepsilon$ 

#### Note

f(x) равномерно непрерывна на  $E \implies f(x)$  непрерывна на E, но обратное, вообще говоря, не верно

#### Example (Пример к замечанию)

$$E = (0; 1), f(x) = \frac{1}{x}$$

f(x) непрерывна на E, покажем, что равномерной непрерывности нет:

Рассмотрим последовательность аргументов:  $x_n = \frac{1}{n}$ , тогда  $x_{n+1} - x_n \to 0$ ,

но при этом  $f(x_{n+1}) - f(x_n) = 1$ 

Положим  $\varepsilon = 0.5$ , тогда т.к.  $x_{n+1} - x_n \underset{n \to +\infty}{\longrightarrow} 0$ , то можно выбрать  $x_i$  и  $x_j$ , т.ч.  $|x_i - x_j| < \delta(0.5)$ , но при этом  $|f(x_1) - f(x_2)| = 1 > 0.5 = \varepsilon$ 

# 10.4.10 Теорема Кантора

#### **Theorem** Теорема Кантора (для случая функции на отрезке)

Если f(x) непрерывна на [a;b], то f(x) равномерно непрерывна на [a;b]

Предположим от противного, тогда в отрицании определения выберем конкретные значения  $\delta$ :

$$\exists \varepsilon_0 \, \forall \delta = \frac{1}{n} \, \exists x_n', x_n'' \in [a; b] : |x_n' - x_n''| < \frac{1}{n} : \left| f(x_n') - f(x_n'') \right| > \varepsilon_0$$

Ч.п.  $\{x_n'\}$  и  $\{x_n''\}$  ограничены  $\Longrightarrow$  по теореме Больцано-Вейерштрасса из них можно выделить сходящиеся подпоследовательности:  $\exists x_{n_k}' \underset{k \to +\infty}{\to} x_0 \in [a;b]$ 

При этом по теореме о зажатой последовательности  $x_{n_k}'' \underset{k \to +\infty}{\longrightarrow} x_0$ 

f(x) непрерывна в точке  $x_0$ , тогда по определению непрерывности в точке по Гейне:

$$f\left(x_{n_k}'\right)\underset{k\to+\infty}{\longrightarrow} f(x_0)$$

$$f\left(x_{n_k}''\right) \underset{k \to +\infty}{\longrightarrow} f(x_0)$$

Но по предположению  $|f(x'_n) - f(x''_n)| > \varepsilon_0 \implies (\mathbb{W})$ 

# 10.4.11 Теорема об интегрируемости непрерывной функции

## Theorem Теорема об интегрируемости непрерывной функции

Если f(x) непрерывна на [a;b], то  $f(x) \in R[a;b]$ 

### Proof:

1.f(x) непрерывна на  $[a;b] \implies$  по теореме Кантора f(x) равномерно непрерывна на

[a;b], тогда по определению:  $\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall x_1,x_2 \in [a;b]: |x_1-x_2| < \delta \implies |f(x_1)-f(x_2)| < \varepsilon$ 

2. Для любого  $\varepsilon > 0$  рассмотрим разбиение  $\tau$  отрезка [a;b] с диаметром  $d(\tau) < \delta$ , тогда

$$0 \le I^* - I_* \le S_{\tau} - s_{\tau} = \sum_{i=1}^n (M_i - m_i) \Delta x_i = \sum_{i=1}^n (f(\xi_i) - f(\eta_i)) \Delta x_i$$
, т.к.  $f$  непрерывна на  $[a;b]$ 

 $\forall i: |\xi_i - \eta_i| \leq d(\tau) < \delta \implies |f(\xi_i) - f(\eta_i)| < \varepsilon \implies 0 \geq f(\xi_i) - f(\eta_i) < \varepsilon$ 

Тогда 
$$\sum_{i=1}^{n} (f(\xi_i) - f(\eta_i)) \Delta x_i \le \sum_{i=1}^{n} \varepsilon \Delta x_i = \varepsilon \cdot (b-a)$$

 $I^*-I_*$  - неотрицательное число, и при этом  $\forall \varepsilon>0: I^*-I_*<\varepsilon(b-a)\implies I^*-I_*=0$ 

# 10.4.12 Теорема об интегрируемости монотонной функции

Theorem Теорема об интегрируемости монотонной функции

Если f(x) определена и монотонна на [a;b], то  $f(x) \in R[a;b]$ 

БОО докажем для неубывающей функции

1. Для любого  $\delta > 0$  рассмотрим разбиение  $\tau$  отрезка [a;b] с диаметром  $d(\tau) < \delta$ , тогда

$$0 \le I^* - I_* \le S_\tau - s_\tau = \sum_{i=1}^n (M_i - m_i) \Delta x_i = \sum_{i=1}^n (f(x_i) - f(x_{i-1})) \Delta x_i < \sum_{i=1}^n (f(x_i) - f(x_{i-1})) \delta = \sum_{i=1}^n (f(x_i) - f(x_i)) \delta = \sum_{i=1}^n (f(x_i) - f($$

$$= \delta \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) = \delta (f(b) - f(a))$$

 $I^* - I_*$  - неотрицательное число, и при этом  $\forall \delta > 0 : I^* - I_* < \delta \left( f(b) - f(a) \right) \implies I^* - I_* = 0$ 

#### 10.4.13 Элементы теории меры

Критерий Лебега интегрируемости по Риману

#### **Theorem** Критерий Лебега интегрируемости по Риману (без док-ва)

Функция  $f(x) \in R[a;b] \iff$  функция f(x) ограничена и множество точек разрыва функции множество меры ноль по Лебегу

# Определение множества меры ноль по Лебегу

#### Definition: Определение множества меры ноль по Лебегу

Множество  $E \subseteq \mathbb{R}$  называется множеством нулевой меры Лебега, если

 $\forall \varepsilon > 0 \, \exists$  не более чем счётный набор интервалов  $\{(a_i;b_i)\}_{i=1}^{+\infty}$ , такой что

1.  $E \subseteq \bigcup_{i=1}^{+\infty} (a_i; b_i)$ , т.е. объединение всех интервалов покрывает множество E

2.  $\sum_{i=1}^{+\infty} b_i - a_i \le \varepsilon$ 

Обозначение:  $\mu(E) = 0$ 

#### **Example** (Пример множества меры ноль по Лебегу)

Покажем, что  $\mathbb{Q} \subseteq \mathbb{R}$  - множество нулевой меры Лебега

**Proof:** 

1. 
$$\mathbb{Q} \cong \mathbb{N} \implies \mathbb{Q} = \{q_i\}_{i=1}^{+\infty}$$

1. 
$$\mathbb{Q} \cong \mathbb{N} \implies \mathbb{Q} = \{q_i\}_{i=1}^{+\infty}$$
  
2.  $\forall i \in \mathbb{N} : (a_i; b_i) = U_{\frac{\varepsilon}{2^{i+1}}}(q_i) \implies \mathbb{Q} \subseteq \bigcup_{i=1}^{+\infty} (a_i; b_i)$ 

3. При этом 
$$\sum_{i=1}^{+\infty} b_i - a_i = \sum_{i=1}^{+\infty} 2 \cdot \frac{\varepsilon}{2^{i+1}} = \varepsilon \le \varepsilon$$

#### Свойства множеств меры ноль по Лебегу

#### Theorem Свойства множеств меры ноль по Лебегу

- Если  $A \subseteq \mathbb{R}$  нулевой меры Лебега и  $B \subseteq A$ , то B тоже множество нулевой меры Лебега (это свойство меры называется полнотой)
- Если множества X, Y нулевой меры Лебега, то  $X \cup Y$  нулевой меры Лебега Докажем 1-е свойство:

 $\forall \varepsilon > 0$  по определению множества меры ноль по Лебегу построим покрытие

множества 
$$A:\{(a_i;b_i)\}_{i=1}^{+\infty},$$
 т.ч.  $\sum_{i=1}^{+\infty}b_i-a_i\leq \varepsilon$   $B\subseteq A\implies B\subseteq \cup_{i=1}^{+\infty}(a_i;b_i)$ 

Докажем 2-е свойство:

# Proof:

Пусть дано  $\varepsilon > 0$ , тогда:

Для  $\frac{\varepsilon}{2}$  по определению множества нулевой меры Лебега построим покрытия

для множеств X и Y:  $\{(a_i;b_i)\}_{i=1}^{+\infty}$  и  $\{(c_i;d_i)\}_{i=1}^{+\infty}$  соответственно

Тогда для множества  $X \cup Y$  построим покрытие  $\{(e_i; f_i)\}_{i=1}^{+\infty}$  такое что

$$e_{i} = \begin{cases} a_{j}, i = 2j \\ c_{j}, i = 2j + 1 \end{cases}$$

$$f_{i} = \begin{cases} b_{j}, i = 2j \\ d_{j}, i = 2j + 1 \end{cases}$$

Тогда  $X \cup Y \subseteq \bigcup_{i=1}^{+\infty} (e_i; f_i)$  и:

$$\sum_{i=1}^{+\infty} \left| f_i - e_i \right| = \sum_{j=1}^{+\infty} \left| b_j - a_j \right| + \sum_{j=1}^{+\infty} \left| d_j - c_j \right| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

#### Note

Из 1 и 2 свойств следует, что разность, пересечение и симметрическая разность множеств нулевой меры Лебега - также множества нулевой меры Лебега

#### 10.4.14 Свойства определённого интеграла

#### Theorem Свойства определённого интеграла

Линейность:

 $\forall \alpha, \beta \in \mathbb{R} : \alpha f + \beta g \in R[a;b] \land \int_a^b \left(\alpha f(x) + \beta g(x)\right) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx$ 2. Если  $f, g \in R[a;b]$ , то  $f, g \in R[a;b] \land |f| \in R[a;b]$ 3. Аддетивность: если  $f \in R[a;c]$ , и  $b \in [a;c]$  то:

 $f \in R[a;b] \cup R[b;c]$  и  $\int_a^c f(x)dx = \int_a^b f(x)dx + \int_b^c f(x)dx$  4. Интегрируемось неравенств:  $f,g \in R[a;b]$  и  $\forall x \in [a;b]: f(x) \leq g(x)$ , то:  $\int_a^b f(x)dx \leq \int_a^b g(x)dx$  5. Теорема о среднем:

Если f(x) непрерывна на [a;b], то  $\exists \xi \in [a;b]: f(\xi) = \frac{1}{b-a} \int_a^b f(x) dx$ 

6. Оценка интеграла:

Если  $f(x) \in R[a;b]$ , то:

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} \left| f(x) \right| dx$$

Докажем 1-е свойство:

1. По критерию Лебега интегрируемости по Риману: f, g - ограниченные на [a;b] функции и

 $X_f$  - множество точек разрыва функции f и при этом  $\mu(X_f)=0$ 

 $X_g$  - множество точек разрыва функции g и при этом  $\mu(X_g)=0$ 

Пусть  $X_{\alpha f + \beta g}$  - множество точек разрыва непрерывной на [a;b] функции  $\alpha f + \beta g$ 

$$X_{\alpha f + \beta g} \subseteq X_f \cup X_g \implies \mu(X_{\alpha f + \beta g}) = 0$$

Тогда по критерию Лебега интегрируемости по Риману  $\alpha f + \beta g \in R[a;b]$ 

2. Рассмотрим последовательность разбиений  $\tau_k$ :  $\forall \tau_k \forall \{\xi_i\}_{i=1}^{+\infty} \sigma_\tau(\alpha f + \beta g) = \alpha \sigma_\tau(f) + \beta \sigma_\tau(g)$ , т.к.

$$\sigma_{\tau}(\alpha f + \beta g) = \sum_{i=1}^{n} \left( \alpha f(\xi_i) + \beta g(\xi_i) \right) \cdot \Delta x_i = \sum_{i=1}^{n} \alpha f(\xi_i) \cdot \Delta x_i + \sum_{i=1}^{n} \beta g(\xi_i) \cdot \Delta x_i = \alpha \sigma_{\tau}(f) + \beta \sigma_{\tau}(g)$$

По определению Гейне интегрируемости по Риману:

$$\sigma_{\tau}(\alpha f + \beta g) \underset{k \to +\infty}{\longrightarrow} \int_{a}^{b} (\alpha f(x) + \beta g(x)) dx$$

$$\alpha \sigma_{\tau}(f) \underset{k \to +\infty}{\longrightarrow} \alpha \int_{a}^{b} f(x) dx$$

$$\beta \sigma_{\tau}(g) \underset{k \to +\infty}{\longrightarrow} \beta \int_{a}^{b} g(x) dx$$

$$\Longrightarrow \int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

## 2-е свойство:

2-е свойство доказывается аналогично 1-ому доказательству, т.к. множества точек разрыва функций  $f \cdot g$  и |f| - множества меры ноль по Лебегу и эти функции непрерывны на [a;b]

Докажем 3-е свойство:

- 1.  $f \in R[a;c] \implies$  и на отрезках [a;b] и [b;c] она непрерывна и её множества точек разрыва на этих отрезках тоже множества меры ноль по Лебегу  $\implies f \in R[a;b] \land f \in R[b;c]$
- 2. По определению интегрируемости по Гейне:

 $\forall \tau_k$  разбиения отрезка [a;c] т.ч.  $d(\tau_k) \underset{k \to +\infty}{\longrightarrow} 0 \ \forall \{\xi_i^k\}_{i=1}^n : \sigma_{\tau_k}(f) = \sum_{i=1}^n f(\xi_i^k) \Delta x^k \underset{k \to +\infty}{\longrightarrow} \int_a^c f(x) dx$ 

Будем рассматривать последовательность  $\tau_k^0$ , такую что точка b является точкой данного разбиения, т.е. является границей одного из отрезков

(вообще говоря, если a < b < c, то 2-ых отрезков)

Тогда  $\tau_k^0 = \tau_k^1 \cup \tau_k^2$ , где  $\tau_k^1$  - разбиение  $[a;b],\, \tau_k^2$  - разбиение [b;c]

Следовательно,  $\sigma_{\tau^0_k}(f) = \sigma_{\tau^1_k}(f) + \sigma_{\tau^2_k}(f)$ 

По 1 пункту и интегрируемости по Гейне:

$$\sigma_{\tau_k^1}(f) \underset{k \to +\infty}{\to} \int_a^b f(x) dx$$
 
$$\sigma_{\tau_k^2}(f) \underset{k \to +\infty}{\to} \int_b^c f(x) dx$$
 Tогда 
$$\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx$$

Докажем 4-е свойство:

#### Proof:

Рассмотрим  $h(x) = g(x) - f(x) \in R[a;b]$ .  $\forall x \in [a;b] : h(x) \ge 0$ 

Тогда 
$$\forall \tau: \sigma_{\tau}(f) \geq 0 \implies \int_{a}^{b} h(x)dx \geq 0 \implies \int_{a}^{b} g(x)dx - \int_{a}^{b} f(x)dx \geq 0 \implies \int_{a}^{b} g(x)dx \geq \int_{a}^{b} f(x)dx$$

Докажем 5-е свойство (формально, теорему о среднем для интегралов)

#### Proof:

- 1. т.к. f непрерывна на [a;b], то  $\forall x \in [a;b]: m \leq f(x) \leq M$ , где  $m = \inf_{x \in [a;b]} f(x) \in \mathbb{R}$  и  $M = \sup_{x \in [a;b]} f(x) \in \mathbb{R}$
- 2. По 4-ому свойству определённых интегралов:

$$\int_{a}^{b} m \, dx \le \int_{a}^{b} f(x) dx \le \int_{a}^{b} M \, dx$$

$$m(b-a) \le \int_{a}^{b} f(x) dx \le M(b-a)$$

$$m \le \frac{1}{b-a} \int_{a}^{b} f(x) dx \le (b-a)$$

f - непрерывная функция на [a;b]  $\implies$   $E_f = [m;M]$   $\implies$   $\exists \xi \in [a;b]: f(\xi) = \frac{1}{b-a} \int_a^b f(x) dx$ 

Докажем 6-е свойство:

1. 
$$\forall x \in [a;b] : -|f(x)| \le f(x) \le |f(x)|$$

$$f \in R[a;b] \implies \int_a^b -|f(x)| \, dx \le \int_a^b |f(x)| \, dx \le \int_a^b |f(x)| \, dx \implies$$

$$\implies -\int_a^b |f(x)| \, dx \le \int_a^b |f(x)| \, dx \le \int_a^b |f(x)| \, dx \implies \left| \int_a^b |f(x)| \, dx \right| \le \int_a^b |f(x)| \, dx$$

#### 10.5 Обобщённое понятие интеграла

Claim Обобщённое понятие интеграла

 $\forall a,b \in \mathbb{R} \ (\text{если} \ f \in R[\min(a;b);\max(a;b)])$  доопределим:

$$\int_{a}^{a} f(x)dx = 0$$

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$$

Note  $\forall c_1, c_2, c_3 \in [a; b]$ :

$$\int_{c_1}^{c_3} f(x)dx = \int_{c_1}^{c_2} f(x)dx + \int_{c_2}^{c_3} f(x)dx$$

Уточним оценку интеграла (6-е свойство):

$$\forall c_1, c_2 \in [a; b] : \left| \int_{c_1}^{c_2} f(x) dx \right| \le \left| \int_{c_1}^{c_2} |f(x)| dx \right|$$

#### 10.5.1 Интеграл с переменным верхним пределом

Definition: Интеграл с переменным верхним пределом

Пусть  $f \in R[\alpha; \beta]$  и  $a, x \in [\alpha; \beta]$ , тогда введём функцию F, т.ч.:

$$F(x) = \int_{a}^{x} f(t)dt$$

Заметим, что F(a) = 0

#### 10.5.2Теорема 1 об интеграле с переменным верхним пределом

**Theorem** Теорема 1 об интеграле с переменным верхним пределом

F(x) непрерывна на  $[\alpha; \beta]$ 

1. Обозначим 
$$M = \left| \sup_{x \in [\alpha;\beta]} f(x) \right| \in \mathbb{R}$$

Тогда  $\forall x \in [\alpha; \beta] : f(x) \le |f(x)| \le M$ 

2. 
$$|F(x + \Delta x) - F(x)| = \left| \int_{a}^{x + \Delta x} f(t)dt - \int_{a}^{x} f(t)dt \right| = \left| \int_{x}^{x + \Delta x} f(t)dt \right| \le \left| \int_{x}^{x + \Delta x} |f(t)|dt \right| \le \left| \int_{x}^{x + \Delta x} Mdt \right| = |M\Delta x| = M|\Delta x|$$

$$(-M\Delta x \leq F(x+\Delta x) - F(x) \leq M\Delta x) \wedge \left(M\Delta x \underset{\Delta x \to 0}{\longrightarrow} 0\right) \implies F(x+\Delta x) - F(x) \underset{\Delta x \to 0}{\longrightarrow} 0$$
 Тогда 
$$\lim_{\Delta x \to 0} \left(F(x+\Delta x) - F(x)\right) = 0 \implies \lim_{\Delta x \to 0} F(x+\Delta x) = F(x)$$

# 10.5.3 Теорема 2 об интеграле с переменным верхним пределом

**Theorem** Теорема 2 об интеграле с переменным верхним пределом

 $f(x) \in R[a;b]$  и непрерывна на  $[\alpha;\beta]$ , то F(x) дифференцируема на  $(\alpha;\beta)$  и F'(x) = f(x)

Proof:

$$\frac{F(x + \Delta x) - F(x)}{\Delta x} = \frac{1}{\Delta x} \int_{x}^{x + \Delta x} f(t) dt =$$

= |по теореме о среднем  $\exists \xi = \xi(\Delta x) \in [\min(x; x + \Delta x); \max(x; x + \Delta x)]| = f(\xi) \underset{\Delta x \to 0}{\longrightarrow} f(x)$ 

То есть по определению производной  $\forall x \in [\alpha; \beta] : F'(x) = f(x)$ 

# 10.5.4 Формула Ньютона-Лейбница

Claim Формула Ньютона-Лейбница

Если  $\Phi(x)$  - первообразная функции f(x) на  $(\alpha; \beta)$  и f(x) непрерывна на  $[\alpha; \beta]$ , то  $\forall a, b \in [\alpha; \beta]$ :

$$\int_{a}^{b} f(x)dx = \Phi(b) - \Phi(a)$$

Proof:

$$F(b) = \int_{a}^{b} f(x)dx = F(b)$$

F(x) - первообразная функции f(x) на  $(\alpha;\beta) \implies \exists C \in \mathbb{R} \ \forall x \in (\alpha;\beta) : F(x) = \Phi(x) + C$ 

$$F(a) = \Phi(a) + C \wedge F(a) = 0 \implies C = -\Phi(a) \implies F(b) = \Phi(b) + C = \Phi(b) - \Phi(a)$$

Благодарность на нахождение неточностей/опечаток:

- Агузаров Руслан
- Котежов Семён
- Васюков Александр
- Лазаренко Александр

При нахождении опечаток, если Вам не сложно, Вы можете написать https://t.me/i8088\_t, на момент компиляции ник в тг: vova kormilitsyn