Geometria Analítica

Pedro H A Konzen

12 de maio de $2020\,$

Licença

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Prefácio

Nestas notas de aula são abordados tópicos sobre geometria analítica. Agradeço aos(às) estudantes e colegas que assiduamente ou esporadicamente contribuem com correções, sugestões e críticas em prol do desenvolvimento deste material didático.

Pedro H A Konzen

Sumário

Ca	apa		i		
Li	cenç	a	ii		
Pı	refác	io	iii		
Su	ımár	io	v		
1	Estudo de retas				
	1.1	Sistema de coordenadas no espaço	1		
	1.2	Equações da reta	4		
		1.2.1 Equação vetorial de uma reta	4		
		1.2.2 Equações paramétricas de uma reta	6		
		1.2.3 Equações da reta na forma simétrica	7		
		1.2.4 Exercícios resolvidos	8		
2	Estudo de planos				
	2.1	Equações do plano	12		
		2.1.1 Equação vetorial do plano	12		
			13		
			15		
			15		
3	Cônicas				
	3.1	Elipse	17		
			19		
	3.2		20		
		•	21		
	3.3		23		

	3.3.1	Equação reduzida de uma parábola	24
Respos	stas do	es Exercícios	25
Referê	ncias E	Bibliográficas	26

Capítulo 1

Estudo de retas

Observação 1.0.1. Neste capítulo, assumimos que os códigos Python têm o seguinte preambulo:

```
from sympy import *
from sympy.plotting import plot3d_parametric_line
```

1.1 Sistema de coordenadas no espaço

Um sistema de coordenadas no espaço é constituído de um ponto O e uma base de vetores $B = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$ no espaço. Dado um tal sistema, temos que cada ponto P determina de forma única um vetor $\overrightarrow{OP} = (x,y,z)$ e vice-versa. Assim sendo, definimos que o ponto P tem coordenadas (x,y,z).

O ponto O é chamado de **origem** (do sistema de coordenados) e tem coordenadas (0,0,0). Dado um ponto P=(x,y,z), chama-se x de sua **abscissa**, y de sua **ordenada** e z de sua **cota**. As retas que passam por O e têm, respectivamente, as mesmas direções de $\vec{e_1}$, $\vec{e_2}$ e $\vec{e_3}$ são chamadas de **eixo** das abscissas, eixo das ordenadas e eixo das cotas. Os planos que contém O e representantes de dois vetores da base B são chamados de **planos** coordenados.

Figura 1.1: Sistema de coordenadas ortonormal.

Salvo explicitado ao contrário, trabalharemos com sistemas de coordenadas ortogonais, i.e. sistema cuja base $B = (\vec{i}, \vec{j}, \vec{k})$ seja ortonormal. Mais ainda, estaremos assumindo que a base é positiva. Veja a Figura 1.1.

Observação 1.1.1. (Relação entre pontos e vetores) Seja dado um vetor \overrightarrow{AB} . Sabendo as coordenadas dos pontos $A = (x_A, y_A, z_A)$ e $B = (x_B, y_B, z_B)$, temos que as coordenadas do vetor \overrightarrow{AB} são:

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} \tag{1.1}$$

$$= -\overrightarrow{OA} + \overrightarrow{OB} \tag{1.2}$$

$$= -(x_A, y_A, z_A) + (x_B, y_B, z_B)$$
(1.3)

$$= (x_B - x_A, y_B - y_A, z_B - z_A). (1.4)$$

Exemplo 1.1.1. Dados os pontos A = (-1,1,2) e B = (3, -1,0), temos que o vetor \overrightarrow{AB} tem coordenadas:

$$\overrightarrow{AB} = (3 - (-1), -1 - 1, 0 - 2) = (4, -2, -2).$$
 (1.5)

Observação 1.1.2. (Ponto médio de um segmento) Dados os pontos $A = (x_A, y_A, z_A)$ e $B = (x_B, y_B, z_B)$, podemos calcular as coordenadas do ponto médio $M = (x_M, y_M, z_M)$ do segmento AB, do fato de que $\overrightarrow{AM} = \overrightarrow{MB}$. Portanto

$$(x_M - x_A, y_M - y_A, z_M - z_A) = (x_B - x_M, y_B - y_M, z_B - z_M), \tag{1.6}$$

donde

$$2x_M = x_A + x_B \tag{1.7}$$

$$2y_M = y_A + y_B \tag{1.8}$$

$$2z_M = z_A + z_B. (1.9)$$

Logo, temos $M = \left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}, \frac{z_A + z_B}{2}\right).$

Exemplo 1.1.2. Dados os pontos A = (-1,1,2) e B = (3, -1,0), temos que o ponto médio do segmento AB tem coordenadas:

$$M = \left(\frac{-1+3}{2}, \frac{1+(-1)}{2}, \frac{2+0}{2}\right) = (1,0,1). \tag{1.10}$$

Exercícios resolvidos

ER 1.1.1. Sejam A = (-1,2,1), B = (1, -2,0) e C = (x,2,2) vértices consecutivos de um triângulo isósceles, cujos lados AC e BC são congruentes. Determine o valor de x.

Solução. Sendo os lados AC e BC congruentes, temos $|\overrightarrow{AC}| = |\overrightarrow{BC}|$. As coordenadas de \overrightarrow{AC} são

$$\overrightarrow{AC} = (x - (-1), 2 - 2, 2 - 1) = (x + 1, 0, 1)$$
 (1.11)

e as coordenadas de \overrightarrow{BC} são

$$\overrightarrow{BC} = (x - 1, 2 - (-2), 2 - 0) = (x - 1, 4, 2).$$
 (1.12)

Então, temos

$$|\overrightarrow{AC}| = |\overrightarrow{BC}| \Rightarrow \sqrt{(x+1)^2 + 0^2 + 1^2} = \sqrt{(x-1)^2 + 4^2 + 2^2}$$
 (1.13)

$$\Rightarrow (x+1)^2 + 0^2 + 1^2 = (x-1)^2 + 4^2 + 2^2 \tag{1.14}$$

$$\Rightarrow x^2 + 2x + 1 + 1 = x^2 - 2x + 1 + 16 + 4 \tag{1.15}$$

$$\Rightarrow 4x = 19 \tag{1.16}$$

$$\Rightarrow x = \frac{19}{4}.\tag{1.17}$$

 \Diamond

ER 1.1.2. Sejam A = (-1,2,1), B = (1, -2,0) e M o ponto médio do intervalo AB. Determine as coordenadas do ponto P de forma que 2AP = AM.

Solução. As coordenadas do ponto médio são

$$M = \left(\frac{-1+1}{2}, \frac{2+(-2)}{2}, \frac{1+0}{2}\right) = \left(0, 0, \frac{1}{2}\right). \tag{1.18}$$

Agora, denotando $P = (x_P, y_P, z_P)$, temos

$$2AP = AM \Rightarrow 2(x_P - (-1), y_P - 2, z_P - 1) = \left(0 - (-1), 0 - 2, \frac{1}{2} - 1\right)$$
(1.19)

$$\Rightarrow (2x_p + 2, 2y_P - 4, 2z_P - 2) = \left(1, -2, -\frac{1}{2}\right). \tag{1.20}$$

Portanto

$$2x_P + 2 = 1 \Rightarrow x_P = -\frac{1}{2} \tag{1.21}$$

$$2y_P - 4 = -2 \Rightarrow y_P = 1 \tag{1.22}$$

$$2z_P - 2 = -\frac{1}{2} \Rightarrow z_P = \frac{3}{4}. (1.23)$$

Logo, P = (-1/2, 1, 3/4).

 \Diamond

Exercícios

Em construção ...

1.2 Equações da reta

1.2.1 Equação vetorial de uma reta

Seja r uma reta dada, \vec{v} um vetor paralelo a r e A um ponto de r (veja a Figura 1.2). Assim sendo, P é um ponto de r se, e somente se, existe $\lambda \in \mathbb{R}$ tal que

$$\overrightarrow{AP} = \lambda \overrightarrow{v}. \tag{1.24}$$

Esta é chamada equação vetorial da reta r.

Figura 1.2: Equação vetorial de uma reta.

Observe que para obtermos uma equação vetorial de uma dada reta, podemos escolher qualquer ponto $A \in r$ e qualquer vetor $\vec{v} \parallel r, \vec{v} \neq \vec{0}$. O vetor \vec{v} escolhido é chamado de **vetor diretor**.

Exemplo 1.2.1. Seja r a reta que passa pelos pontos A = (-1, -1, -2) e B = (2,1,3) (veja a Figura 1.3). O vetor

$$\vec{v} = \overrightarrow{AB} = (2 - (-1), 1 - (-1), 3 - (-2)) = (3, 2, 5)$$
 (1.25)

é um vetor diretor de r. Desta forma, uma equação vetorial da reta r é

$$\overrightarrow{AP} = \lambda \vec{v}. \tag{1.26}$$

Figura 1.3: Esboço da reta discutida no Exemplo 1.2.1.

1.2.2 Equações paramétricas de uma reta

Seja r uma reta que passa pelo ponto $A=(x_A,y_A,z_A)$ e tenha vetor diretor $\vec{v}=(v_1,v_2,v_3)$. Assim, $P=(x,y,z)\in r$ se, e somente se, existe $\lambda\in\mathbb{R}$ tal que

$$\overrightarrow{AP} = \lambda \overrightarrow{v}. \tag{1.27}$$

Equivalentemente,

$$(x - x_A, y - y_A, z - z_A) = \lambda(v_1, v_2, v_3). \tag{1.28}$$

Então,

$$x - x_A = \lambda v_1, \tag{1.29}$$

$$y - y_A = \lambda v_2, \tag{1.30}$$

$$z - z_A = \lambda v_3, \tag{1.31}$$

6

donde

$$x = x_A + \lambda v_1, \tag{1.32}$$

$$y = y_A + \lambda v_2, \tag{1.33}$$

$$z = z_A + \lambda v_3, \tag{1.34}$$

as quais são chamadas de equações paramétricas da reta r.

Exemplo 1.2.2. A reta r discutida no Exemplo 1.2.1 tem equações paramétricas

$$x = -1 + 3\lambda, \tag{1.35}$$

$$y = -1 + 2\lambda, \tag{1.36}$$

$$z = -2 + 5\lambda. \tag{1.37}$$

De fato, tomando $\lambda=0$, temos $(x,y,z)=(-1,-1,-2)=A\in r$. E, tomado $\lambda=1$, temos $(x,y,z)=(-1+3,-1+2,-2+5)=(2,1,3)=B\in r$. Ou seja, as equações paramétricas acima representam a reta que passa pelos pontos $A\in B$.

Com o Sympy, podemos plotar o gráfico de r usando o seguinte código¹:

var('lbda',real=True)
plot3d_parametric_line(-1+3*lbda,-1+2*lbda,-2+5*lbda,(lbda,-1,2))

1.2.3 Equações da reta na forma simétrica

Seja r uma reta que passa pelo ponto $A = (x_A, y_A, z_A)$ e tem $\vec{v} = (v_1, v_2, v_3)$ como vetor diretor. Então, r tem as equações paramétricas

$$x = x_A + v_1 \lambda, \tag{1.38}$$

$$y = y_A + v_2 \lambda, \tag{1.39}$$

$$z = z_A + v_3 \lambda. \tag{1.40}$$

Isolando λ em cada uma das equações, obtemos

$$\frac{x - x_A}{v_1} = \frac{y - y_A}{v_2} = \frac{z - z_A}{v_3},\tag{1.41}$$

as quais são as equações da reta na forma simétrica.

¹Veja a Observação 1.0.1.

Exemplo 1.2.3. No Exemplo 1.2.2, consideramos a reta r de equações paramétricas

$$x = -1 + 3\lambda, \tag{1.42}$$

$$y = -1 + 2\lambda,\tag{1.43}$$

$$z = -2 + 5\lambda. \tag{1.44}$$

Para obtermos as equações de r na forma simétrica, basta isolarmos λ em cada equação. Com isso, obtemos

$$\frac{x+1}{3} = \frac{y+1}{2} = \frac{z+2}{5}. (1.45)$$

1.2.4 Exercícios resolvidos

ER 1.2.1. Seja r a reta que passa pelo ponto A=(-1,-1,-2) e tem $\vec{v}=(3,2,5)$ como vetor diretor. Determine o valor de x de forma que P=(x,0,1/2) seja um ponto de r.

Solução. P=(x,0,1/2) é um ponto de r se, e somente se, existe $\lambda\in\mathbb{R}$ tal que

$$\overrightarrow{AP} = \lambda \vec{v}. \tag{1.46}$$

Ou seja,

$$\left(x - (-1), 0 - (-1), \frac{1}{2} - (-2)\right) = \lambda(3, 2, 5). \tag{1.47}$$

Ou, equivalentemente,

$$\left(x+1,1,\frac{5}{2}\right) = \lambda(3,2,5). \tag{1.48}$$

Usando a segunda coordenada destes vetores, temos

$$1 = \lambda \cdot 2 \Rightarrow \lambda = \frac{1}{2}.\tag{1.49}$$

Assim, da primeira coordenada dos vetores, temos

$$x + 1 = \lambda 3 \Rightarrow x + 1 = \frac{3}{2}$$
 (1.50)

$$\Rightarrow x = \frac{3}{2} - 1 = \frac{1}{2}.\tag{1.51}$$

8

ER 1.2.2. Seja r a reta de equações paramétricas

$$x = 1 - \lambda, \tag{1.52}$$

$$y = \lambda, \tag{1.53}$$

$$z = -3. (1.54)$$

Determine uma equação vetorial de r.

Solução. Nas equações paramétricas de uma reta, temos que os coeficientes constantes estão associados a um ponto da reta. Os coeficientes de λ estão associados a um vetor diretor. Assim sendo, das equações paramétricas da reta r, temos que $A=(1,0,-3)\in r$ e $\vec{v}=(-1,1,0)$ é um vetor diretor. Logo, temos que a reta r tem equação vetorial

$$\overrightarrow{AP} = \lambda \overrightarrow{v}, \tag{1.55}$$

com A = (1,0,3) e $\vec{v} = (-1,1,0)$.

 \Diamond

ER 1.2.3. Sabendo que r é uma reta que passa pelos pontos A=(2,-3,1) e B=(-1,1,0), determine o valor de t tal que

$$x = 2 + t\lambda, \tag{1.56}$$

$$y = -2 + 4\lambda, \tag{1.57}$$

$$z = 1 - \lambda, \tag{1.58}$$

sejam equação paramétricas de r.

Solução. Para que estas sejam equações paramétricas de r, é necessário que $\vec{v}=(t,4,-1)$ seja um vetor diretor de r. Em particular, $\vec{v}\parallel\overrightarrow{AB}$. Logo, existe $\beta\in\mathbb{R}$ tal que

$$(t,4,-1) = \beta(-1-2,1-(-3),0-1) = \beta(-3,4,-1). \tag{1.59}$$

Das segunda e terceira coordenadas, temos $\beta=1$. Daí, comparando pela primeira coordenada, temos

$$t = -3\beta \Rightarrow t = -3. \tag{1.60}$$

 \mathbf{ER} 1.2.4. Seja r uma reta, cujas equações na forma simétrica são

$$\frac{x+1}{2} = \frac{y-2}{3} = \frac{1-z}{2}. (1.61)$$

Determine equações paramétricas desta reta e faça um esboço de seu gráfico.

Solução. Podemos obter equações paramétricas desta reta a partir de suas equações na forma simétrica. Para tanto, basta tomar o parâmetro λ tal que

$$\lambda = \frac{x+1}{2},\tag{1.62}$$

$$\lambda = \frac{y-2}{3},\tag{1.63}$$

$$\lambda = \frac{1-z}{2}.\tag{1.64}$$

Daí, isolando $x, y \in z$ em cada uma destas equações, obtemos

$$x = -1 + 2\lambda,\tag{1.65}$$

$$y = 2 + 3\lambda, \tag{1.66}$$

$$z = 1 - 2\lambda. \tag{1.67}$$

Para fazermos um esboço do gráfico desta reta, basta traçarmos a reta que passa por dois de seus pontos. Por exemplo, tomando $\lambda = 0$, temos $A = (-1,2,1) \in r$. Agora, tomando $\lambda = 1$, temos $B = (1,5,-1) \in r$. Desta forma, obtemos o esboço dado na Figura 1.4.

Figura 1.4: Esboço do gráfico da reta r do Exercício Resolvido 1.2.4.

 \Diamond

Capítulo 2

Estudo de planos

Observação 2.0.1. Neste capítulo, assumimos que os códigos Python têm o seguinte preambulo:

```
from sympy import *
from sympy.plotting import plot3d_parametric_line
```

2.1 Equações do plano

Um plano π fica unicamente determinado por um ponto $A \in \pi$ e dois vetores linearmente independentes $\vec{u}, \vec{v} \in \pi^1$.

2.1.1 Equação vetorial do plano

Consideremos um plano π determinado pelo ponto A e os vetores \overrightarrow{u} e \overrightarrow{v} . Então, um ponto $P \in \pi$ se, e somente se, \overrightarrow{AP} é coplanar a \overrightarrow{u} e \overrightarrow{v} , i.e. \overrightarrow{AP} , \overrightarrow{u} e \overrightarrow{v} são linearmente dependentes. Ou seja,

$$P \in \pi \Leftrightarrow \overrightarrow{AP} = \lambda \overrightarrow{u} + \beta \overrightarrow{v}, \quad \lambda, \beta \in \mathbb{R},$$
 (2.1)

esta última é chamada de equação vetorial do plano.

Exemplo 2.1.1. Consideremos o plano π determinado pelo ponto A = (1, -1, 1) e pelos vetores $\vec{u} = (2, -1, 0)$ e $\vec{v} = (0, 1, 1)$ (Veja a Figura 2.1. Desta forma, uma equação vetorial para este plano é

$$\overrightarrow{AP} = \lambda \vec{u} + \beta \vec{v}, \tag{2.2}$$

 $^{^1 \}mathrm{No}$ sentido que \vec{u} e \vec{v} têm representantes no plano $\pi.$

para $\lambda, \beta \in \mathbb{R}$.

Figura 2.1: Esboço do plano π discutido no Exemplo 2.1.1.

Tomando, por exemplo, $\lambda = -1$ e $\beta = 1$, obtemos

$$\overrightarrow{AP} = \lambda \vec{u} + \beta \vec{v} \tag{2.3}$$

$$= -(2, -1,0) + (0,1,1) \tag{2.4}$$

$$= (-2,2,1). (2.5)$$

Observando que as coordenadas do ponto P são iguais as coordenadas do vetor \overrightarrow{OP} , temos

$$\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP} \tag{2.6}$$

$$= (1, -1, 1) + (-2, 2, 1) \tag{2.7}$$

$$= (-1,1,2). (2.8)$$

Ou seja, $P = (-1,1,2) \in \pi$.

2.1.2 Equações paramétricas do plano

Seja um plano π com $A=(x_A,y_A,z_A)\in\pi$ e os vetores $\vec{u}=(u_1,u_2,u_3)\in\pi$ e $\vec{v}=(v_1,v_2,v_3)\in\pi$ linearmente independentes. Então, todo o ponto P=

(x,y,z) do plano π satisfaz

$$\overrightarrow{AP} = \lambda \vec{u} + \beta \vec{v}, \tag{2.9}$$

para dados parâmetros $\lambda, \beta \in \mathbb{R}$. Assim, temos

$$(x - x_A, y - y_A, z - z_A) = \lambda(u_1, u_2, u_3) + \beta(v_1, v_2, v_3)$$
(2.10)

$$= (\lambda u_1 + \beta v_1, \lambda u_2 + \beta v_2, \lambda u_3 + \beta v_3). \tag{2.11}$$

Portanto, temos

$$x - x_A = \lambda u_1 + \beta v_1, \tag{2.12}$$

$$y - y_A = \lambda u_2 + \beta v_2, \tag{2.13}$$

$$z - z_A = \lambda u_3 + \beta v_3. \tag{2.14}$$

Ou, equivalentemente,

$$x = x_A + \lambda u_1 + \beta v_1, \tag{2.15}$$

$$y = y_A + \lambda u_2 + \beta v_2, \tag{2.16}$$

$$z = z_A + \lambda u_3 + \beta v_3, \tag{2.17}$$

as quais são chamadas de equações paramétricas do plano.

Exemplo 2.1.2. No Exemplo 2.1.1, discutimos sobre o plano π determinado pelo ponto A = (1, -1, 1) e os vetores $\vec{u} = (2, -1, 0)$ e $\vec{v} = (0, 1, 1)$. Do que vimos acima, temos que

$$x = 1 + 2\lambda, \tag{2.18}$$

$$y = -1 - \lambda + \beta, \tag{2.19}$$

$$z = 1 + \beta, \tag{2.20}$$

são equações paramétricas deste plano.

Podemos usar as equações paramétricas do plano para plotá-lo usando o Sympy. Para tanto, podemos usar os seguintes comandos:

2.1.3 Equação geral do plano

Seja π o plano determinado pelo ponto $A=(x_A,y_A,z_A)$ e pelos vetores $\vec{u}=(u_1,u_2,u_3)$ e $\vec{v}=(v_1,v_2,v_3)$. Sabemos que $P=(x,y,z)\in\pi$ se, e somente se, $\overrightarrow{AP},\ \vec{u}$ e \vec{v} são linearmente dependentes. Ou, equivalentemente, o produto misto $[\overrightarrow{AP},\vec{u},\vec{v}]=0$. Logo,

$$0 = [\overrightarrow{AP}, \vec{u}, \vec{v}] \tag{2.21}$$

$$= \begin{vmatrix} x - x_A & y - y_A & z - z_A \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$
 (2.22)

$$= -u_1 v_2 z_A + u_1 v_3 y_A + u_2 v_1 z_A (2.23)$$

$$-u_2v_3x_A - u_3v_1y_A + u_3v_2x_A \tag{2.24}$$

$$+x(u_2v_3-u_3v_2)+y(-u_1v_3+u_3v_1)+z(u_1v_2-u_2v_1). (2.25)$$

Observamos que a equação acima tem a forma geral

$$ax + by + cz + d = 0,$$
 (2.26)

com a,b,c,d não todos nulos ou, equivalentemente, $a^2 + b^2 + c^2 + d^2 \neq 0$. Esta última é chamada **equação geral do plano**.

Exemplo 2.1.3. No Exemplo 2.1.1, discutimos sobre o plano π determinado pelo ponto A=(1,-1,1) e os vetores $\vec{u}=(2,-1,0)$ e $\vec{v}=(0,1,1)$. Para encontrarmos a equação geral deste plano, tomamos P=(x,y,z) e calculamos

$$0 = [\overrightarrow{AP}, \overrightarrow{u}, \overrightarrow{v}] \tag{2.27}$$

$$= \begin{vmatrix} x-1 & y+1 & z-1 \\ 2 & -1 & 0 \\ 0 & 1 & 1 \end{vmatrix}$$
 (2.28)

$$= -x - 2y + 2z - 3. (2.29)$$

Ou seja, a equação geral deste plano é

$$-x - 2y + 2z - 3 = 0. (2.30)$$

2.1.4 Exercícios resolvidos

ER 2.1.1. Seja π um plano tal que $A=(2,0,-1)\in\pi$, $P=(0,1,-1)\in\pi$ e $\vec{u}=(1,0,1)\in\pi$. Determine uma equação vetorial para π .

Solução. Para obtermos uma equação vetorial do plano π , precisamos de um ponto e dois vetores l.i. em π . Do enunciado, temos o ponto $A=(2,0,-1)\in\pi$ e o vetor \vec{u} . Portanto, precisamos encontrar um vetor $\vec{v}\in\pi$ tal que \vec{u} e \vec{v} sejam l.i.. Por sorte, temos $P=(0,1,-1)\in\pi$ e, portanto $\overrightarrow{AP}\in\pi$. Podemos tomar

$$\vec{v} = \overrightarrow{AP} \tag{2.31}$$

$$= (-2,1,0), (2.32)$$

pois \vec{v} e \vec{u} são l.i.. Logo, uma equação vetorial do plano pi é

$$\overrightarrow{AP} = \lambda \vec{u} + \beta \vec{v}, \tag{2.33}$$

$$= \lambda(1,0,1) + \beta(-2,1,0), \tag{2.34}$$

 $com \lambda, \beta \in \mathbb{R}.$

 \Diamond

ER 2.1.2. Seja π o plano de equações paramétricas

$$x = -1 + \lambda, \tag{2.35}$$

$$y = \beta, \tag{2.36}$$

$$z = 1 - \lambda + \beta. \tag{2.37}$$

Determine o valor de z_P de forma que $P=(-1,2,z_P)\in\pi$.

Solução. Para que $P = (-1,2,z_P)$ pertença ao plano, devemos ter

$$-1 = -1 + \lambda,$$
 (2.38)

$$2 = \beta, \tag{2.39}$$

$$z_P = 1 - \lambda + \beta. \tag{2.40}$$

Das duas primeiras equações, obtemos $\lambda=0$ e $\beta=2$. Daí, da terceira equação, temos

$$z_P = 1 - 0 + 2 = 3. (2.41)$$

 \Diamond

Em construção ...

Capítulo 3

Cônicas

3.1 Elipse

Sejam F_1, F_2 pontos sobre um plano π , c a distância entre c_1 e c_2 e a > c. Chama-se **elipse** de **focos** F_1 e F_2 ao conjunto de pontos P tais que

$$|PF_1| + |PF_2| = 2a. (3.1)$$

Veja a Figura 3.1.

Figura 3.1: Ilustração de uma elipse de focos F_1 e F_2 .

Dada uma tal elipse, identificamos $2c = |F_1F_2|$ como a **distância focal**. Os pontos A_1 e A_2 de interseção da elipse com a reta que passa pelos focos são chamados de **vértices** da elipse. O segmento A_1A_2 é chamado de **eixo maior** da elipse. Observamos que

$$|A_1 A_2| = 2a. (3.2)$$

O ponto médio do segmento F_1F_2 é chamado de **centro** da elipse. Sejam B_1 e B_2 os pontos de interseção da elipse com a reta que passa pelo centro da elipse e é perpendicular ao segmento A_1A_2 . Assim sendo, o segmento B_1B_2 é chamado de **eixo menor** da elipse. Vamos denotar

$$2b = |B_1 B_2|. (3.3)$$

Chamamos de **excentricidade** da elipse o número

$$e = -\frac{c}{a}. (3.4)$$

Notemos que $0 \le e < 1$. Para e = 0, temos c = 0 e, portanto $F_1 = F_2$. Neste caso, a elipse é a circunferência de centro em F_1 (ou F_2) e diâmetro 2a. No que e tende a 1, a elipse tende ao segmento A_1A_2 .

Por fim, notemos que o triângulo B_1OF_2 é retângulo, $|OF_2|=c, |F_2B_1|=a$ e $|OB_1|=b$. Do teorema de Pitágoras segue

$$b^2 + c^2 = a^2. (3.5)$$

3.1.1 Equação reduzida da elipse

Consideremos o sistema de coordenadas cartesianas. Sejam $F_1 = (-c,0)$ e $F_2 = (c,0)$, $c \ge 0$, os focos de uma dada elipse (veja a Figura 3.1). Se P = (x,y) é um ponto da elipse, então

$$|PF_1| + |PF_2| = 2a. (3.6)$$

Como

$$|PF_1| = \sqrt{(x+c)^2 + y^2},$$
 (3.7)

$$|PF_2| = \sqrt{(x-c)^2 + y^2},$$
 (3.8)

temos

$$\sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a,$$
(3.9)

ou, equivalentemente.

$$\sqrt{(x+c)^2 + y^2} = 2a - \sqrt{(x-c)^2 + y^2}.$$
 (3.10)

Elevando ao quadrado, obtemos

$$(x+c)^{2} + y^{2} = 4a^{2} - 4a\sqrt{(x-c)^{2} + y^{2}} + (x-c)^{2} + y^{2}.$$
 (3.11)

Por cancelamento e rearranjo dos termos, obtemos

$$a\sqrt{(x-c)^2 + y^2} = a^2 - cx. (3.12)$$

Elevando novamente ao quadrado, temos

$$a^{2}(x-c)^{2} + a^{2}y^{2} = a^{4} - 2a^{2}cx + c^{2}x^{2},$$
(3.13)

donde

$$a^{2}x^{2} - 2a^{2}cx + a^{2}c^{2} + a^{2}y^{2} = a^{4} - 2a^{2}cx + c^{2}x^{2}.$$
 (3.14)

Por cancelamento e rearranjo dos termos, obtemos

$$x^{2}(a^{2}-c^{2}) + a^{2}y^{2} = a^{2}(a^{2}-c^{2}). {(3.15)}$$

Como a > c, dividimos por $a^2 - c^2$ e depois por a^2 para obtemos

$$\frac{x^2}{a^2} + \frac{y^2}{a^2 - c^2} = 1. (3.16)$$

Por fim, da equação (3.5), temos $a^2 - c^2 = b^2$, o que nos leva a **equação** reduzida da elipse

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. ag{3.17}$$

Exercícios resolvidos

Em construção ...

Exercícios

Em construção ...

3.2 Hipérbole

Sejam F_1 e F_2 pontos sobre um plano π e. Sejam, também, c tal que $|F_1F_2|=2c$ e a < c. O lugar geométrico dos pontos P tais que

$$||PF_1| - |PF_2|| = 2a, (3.18)$$

chama-se **hipérbole**. Veja Figura 3.2.

Figura 3.2: Ilustração de uma hipérbole de focos F_1 e F_2 .

Os pontos F_1 e F_2 são chamados de **focos** da hipérbole e $2c = |F_1F_2|$ é chamada de **distância focal**. O ponto médio entre os pontos F_1 e F_2 é chamado de centro da hipérbole. São chamados **vértices** da hipérbole os pontos A_1 e A_2 , sendo que o segmento A_1A_2 é chamado de **eixo real** (ou transverso) da hipérbole. O comprimento deste eixo é $|A_1A_2| = 2a$.

Sejam B_1 e B_2 pontos c distantes de A_1 e A_2 e pertencentes a reta que passa pelo centro da hipérbole e é perpendicular ao seu eixo real. O segmento B_1B_2 é chamado de **eixo imaginário** (transverso ou conjugado). Denotando $2b = |B_1B_2|$, temos do triângulo retângulo B_1OA_1 que

$$c^2 = a^2 + b^2. (3.19)$$

3.2.1 Equação reduzida da hipérbole

Assumimos um sistema de coordenadas cujo centro coincida com o centro de uma dada hipérbole e o eixo das abscissas seja coincidente com o eixo real da hipérbole. Desta forma, temos $F_1 = (-c,0)$ e $F_2 = (c,0)$. Então, P = (x,y) é um ponto da hipérbole quando

$$||PF_1| - |PF_2|| = 2a. (3.20)$$

Daí, segue que

$$|PF_1| - |PF_2| = \pm 2a \Rightarrow \sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2} = \pm 2a$$
 (3.21)

$$\Rightarrow \sqrt{(x+c)^2 + y^2} = \pm 2a + \sqrt{(x-c)^2 + y^2}.$$
 (3.22)

Elevando ao quadrado ambos os lados desta última equação, obtemos

$$(x+c)^2 + y^2 = 4a^2 \pm 4a\sqrt{(x-c)^2 + y^2} + (x-c)^2 + y^2$$
 (3.23)

ou, equivalentemente,

$$x^{2} + 2cx + c^{2} + y^{2} = 4a^{2} \pm 4a\sqrt{(x-c)^{2} + y^{2}} + x^{2} - 2cx + c^{2} + y^{2}.$$
 (3.24)

Simplificando e rearranjando os termos, temos

$$cx - a^2 = \pm a\sqrt{(x-c)^2 + y^2}$$
. (3.25)

Elevando novamente ao quadrado, obtemos

$$c^{2}x^{2} - 2a^{2}cx + a^{4} = a^{2}x^{2} - 2a^{2}cx + a^{2}c^{2} + a^{2}y^{2}.$$
 (3.26)

Simplificando e rearranjando os termos, obtemos

$$(c^2 - a^2)x^2 - a^2y^2 = a^2(c^2 - a^2). (3.27)$$

Lembrando que $c^2 = a^2 + b^2$, temos

$$b^2x^2 - a^2y^2 = a^2b^2. (3.28)$$

Dividindo por a^2b^2 , obtemos

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, (3.29)$$

a qual é chamada de **equação reduzida da hipérbole**.

Em construção ...

3.3 Parábola

Em um plano, consideramos uma reta d e um ponto F não pertencente a d. Chamamos de **parábola** o conjunto de pontos P do plano que são equidistantes de F e de d, i.e.

$$dist(P,F) = dist(P,d). \tag{3.30}$$

Veja a Figura 3.3.

Figura 3.3: Ilustração de uma parábola.

O ponto F é chamado de **foco** da parábola. A reta d é chamada de **diretriz** da parábola. A reta perpendicular a d e que passa pelo ponto F é chamada de **eixo** da parábola. O ponto V de interseção entre a parábola e seu eixo é chamado de **vértice** da parábola.

3.3.1 Equação reduzida de uma parábola

Tomamos o sistema cartesiano de coordenadas com origem no vértice da parábola e eixo das abscissas paralelo à diretriz. Seja p tal que

$$F = (0, p/2). (3.31)$$

Logo, a diretriz tem equação y=-p/2. Da definição de parábola, P=(x,y) pertence a parábola quando

$$dist(P,F) = dist(P,d). \tag{3.32}$$

Segue que

$$\sqrt{x^2 + \left(y - \frac{p}{2}\right)^2} = y + \frac{p}{2}.\tag{3.33}$$

Elevando ao quadrado e expandindo, obtemos

$$x^{2} + y^{2} - py + \frac{p^{2}}{4} = y^{2} + py + \frac{p^{2}}{4}.$$
 (3.34)

Cancelando e rearranjando termos, obtemos

$$x^2 = 2py, (3.35)$$

a chamada equação reduzida da parábola.

Observação 3.3.1. Uma parábola com vértice na origem do sistema cartesiano e foco F=(p/2,0), tem equação reduzida

$$y^2 = 2px. (3.36)$$

Exercícios resolvidos

Em construção ...

Exercícios

Em construção ...

Resposta dos Exercícios

Referências Bibliográficas

[1] D.A. de Mello and R.G. Watanabe. Vetores e uma iniciação à geometria analítica. Livraria da Física, 2. edition, 2011.