CURVE FITTING

Distoributions

- 1. Binominal
- 2. Poisson
- 3. Exponential
- 4. Geometric
- 5. Hypergeometrie
- 6. Normal
- 7. Negative Binomial

STATISTICS - SEM =

BINOMIAL

Are:

Step1: Calculate E(x) from the data table

$$E(x) = 0x7 + 1x24 + 2x34 + 3x29 + 4x6 = 2.05$$

Step 2: Calculate Radioaloility of Success and trians

Given,

 $4p = E(x)$

we know,

 $E(x) = nP$

Now,

 $4p = 2.03$
 2.03
 2.03
 2.03
 2.03
 2.03
 2.03
 2.03
 2.03
 2.03
 2.03
 2.03
 2.03
 2.03
 2.03
 2.03
 2.03
 2.03
 2.03
 2.03
 2.03
 2.03
 2.03
 2.03
 2.03
 2.03
 2.03
 2.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.03
 3.0

1 Ithry S

Expected Frequency Step3: Calculating &(m) E6(-) 90 × 0.59 = 52 54 90 × 0.31 = 28 26 90×0.08 2 8 2 90000 = 2 3 89: 2 emected Frequency Let x~ enp(x): No of bolbn CA? Lifetime 2100 Σf = 300 100 - 200 f(n) = 1e-tu 200 - 300 58 300 8 EXPONENTIAL conventing the table Life time (X) No of bulso 50 121 150 78 250 43 350 58

Step 2: Calculate mean

$$E(x) = \frac{1}{1}$$
 $X = (50 \times 121) + (150 \times 78) + (43 \times 250) + (350 \times 58)$
 $= 163$
 $E(x) = \frac{1}{163}$
 $E(x) = \frac{1}{163}$
 $E(x) = \frac{1}{163}$

Calculating Probability frequency

 $E(x) = 0.006 e^{-0.006 u}$

Now $P[a < x < b] = 9.P(b) - F(a) = (1-e^{-1b}) - (1-e^{-1a})$
 $= e^{-0.006 a} - e^{-0.006 b}$

a and b are upper limit and lower limit

 $= e^{-0.006 a} - e^{-0.006 b}$
 $= e^{-0.006 a} - e^{-0.006 a}$
 $= e^{-0.006 a} - e^{-0.0$

Expected Frequency: 300.

$$\overline{X} = (30\times1) + (20\times2) + (3\times10) + (4\times6) + (5\times5) = \frac{114}{70} \approx 2.05$$

Step 2: Find probability of Success [value of P]

$$x = \frac{1}{p}$$
 or, $p : \frac{1}{x} = \frac{1}{2.05} \approx 0.48$

$$f(1) = (0.52)^{2} \times 0.48 = 0.48$$

 $f(2) = (0.52)^{2} \times 0.48 = 0.13$
 $f(3) = (0.52)^{2} \times 0.48 = 0.13$

Moorks of 100 Students NORMAL X~ N(4,0) Monks (X) 40-50 50-60 42 60 - 70 70 - 80 8 80-90 Find Step 1 Midpoint S.D an mean and (x-rem) MidPoint(nm) 8 of the sail 2000 45 40-50 225 5 400 1800 100 18 990 50-60 55 O 0 2730 65 60 - 70 2700 2025 100 27 75 20-80 3200 400 690 8 85 90-90 Z = 9700 Ifx= 6650 ZA=100 6650 - 66.5 = 197 ~ 9.85 Step-2: Convent into Z-Scones. For, Parge 40-50 Z1 = 39.5 - 66.5 L. Boundway = 39.5 V. Boundary , 50.5

Step4: Final table [Expected Frequeso]

Find the Z-Scores for all values of the table

and find Area between Zn an Z1

X	Z-range	Anea	Expected Frequery	
40-50	- 274 to-1.73	0.0381	8007 4	
50-60	-1.73 60 -0.71	0.1325	36	
50-70	-0.31 to 0.30	0.3602		
0-80	0.30 to 1.32	0.3021	30	
30-90	1.32 to 2:34	0.1545	15	
			Σ= 98.	

NEGATIVE BINOMIAL

X ~ NO(M,
$$\sigma$$
)

X (fuilure or σ 3 rue) σ

1 18 σ

2 24

2 20

3 10 σ

5

$$R = \frac{\sum x + \sum x}{N} = \frac{0x8 + 1x18 + 2x24 + 3x20 + 4x10 + 5x5}{85}$$

 $= \frac{217}{95} \approx 2.55$

$$u = \frac{3(1-p)}{p} \Rightarrow 2.55 = \frac{3(1-p)}{p}$$

$$P = \frac{3}{5.55} \approx 0.5405$$

itep 2: Calculate Expected Frequency

$$f(x) = {x + 3 - 1 \choose 3 - 1} (1 - 0.5405)^{3} (0.5405)^{3}$$

$$f(0) = 0.1581$$

$$f(1) = 0.2178$$

$$f(2) = 0.2001$$

$$f(3) = 0.1536$$

$$f(4) = 0.1061$$

$$f(5) = 0.0684$$

X	f	f(n) x N
0	8	0.1281 × 82 = 1.3
	18	0.2178×85 = 19
1	24	0.2001 ×85 = 17
2	20	0.1536×95 = 13
3	10	0.1061×85 = 9
4		0.0684×95 = 6
5	5	ENG(W) 277
	I+-85	

Variance < Mean

Negative Binomial

Mean = T(1-P)

P : Variance = T(1-P)

P = T(1-P)

Variance > Mean

Poisson Distribution

Mean = 1 Variance = 1

Mean a Variance

. Exponential Distribution

It's Continious distribution.

It will always have a range of X Lifetime data/auiting data

> Normal Distribution

Mean & Median & Mode.

grouped down.