METODY NUMERYCZNE – WYNIKI, LABORATORIUM NR 8, GRUPA 6

Interpolacja funkcjami sklejanymi poprzez wyznaczenie wartości drugich pochodnych w węzłach – $\mathbf{v2}$

Ad 2.4.

Rysunek 1: Wyniki interpolacji funkcji $f_1(x) = \frac{1}{1+x^2}$ kubicznymi funkcjami sklejanymi dla n węzłów.

Rysunek 2: Wyniki interpolacji funkcji $f_2(x) = \cos(2x)$ kubicznymi funkcjami sklejanymi dla n węzłów.

Rysunek 3: Wartości drugich pochodnych wyznaczone algorytmem interpolacji funkcji $f_1(x) = \frac{1}{1+x^2}$ kubicznymi funkcjami sklejanymi dla n=10 węzłów porównane z wartościami wynikającymi z ilorazu różnicowego oraz z pochodną wyprowadzoną analitycznie.

Wyniki pośrednie

• Położenia i wartości funkcji w węzłach (zaznaczone również czerwonymi punktami na wykresach z rys. 1(a), 2(a)) dla przypadku n = 5:

i	xm[i]	$ym[i] dla f_1(x)$	ym[i] dla $f_2(x)$
0	-5	0.0384615	-0.839072
1	-2.5	0.137931	0.283662
2	0	1	1
3	2.5	0.137931	0.283662
4	5	0.0384615	-0.839072

Tabela 1: Równoodległe węzły interpolacji dla n=5

- Przy tworzeniu macierzy $\bf A$ i wektora wyrazów wolnych $\vec d$ musimy najpierw obliczyć parametry według wzorów (3) (5). Kolejno:
 - Odległości międzywęzłowe: $h_i = x_i x_{i-1}$

...ale w naszym zadaniu odległości te są równe, bo tak zdefiniowaliśmy siatkę węzłów. Skoro tak, to dla każdego i parametr h_i jest stały i wynosi: $h_i = \Delta x = \frac{x_{\text{max}} - x_{\text{min}}}{n-1}$ z wzorów (11).

Np. dla n = 5: $h_i = 2.5$

- Z powyższych rozważań wynika, że parametr $\lambda_i=\frac{h_{i+1}}{h_i+h_{i+1}}$ również musi być stały i dodatkowo niezależny od n.
- Podobnie parametr: $\mu_i = 1 \lambda_i$ musi być stały i niezależny od n. Ile w takim razie wynoszą wartości λ i μ ? :)

Macierz A dla n = 5 powinna wynosić (niezależnie od funkcji f(x)):

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0.5 & 2 & 0.5 & 0 & 0 \\ 0 & 0.5 & 2 & 0.5 & 0 \\ 0 & 0 & 0.5 & 2 & 0.5 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

• Wektor wyrazów wolnych dla funkcji $f_1(x)$ przy n=5:

$$\vec{d} = \begin{pmatrix} 0\\ 0.366048\\ -0.827586\\ 0.366048\\ 0 \end{pmatrix}$$

...oraz dla funkcji $f_2(x)$ przy n = 5:

$$\vec{d} = \begin{pmatrix} 0\\ -0.19507\\ -0.687684\\ -0.19507\\ 0 \end{pmatrix}$$

• Rozwiązanie układu równań $\mathbf{A}\vec{m} = \vec{d}$, tj. wektor \vec{m} dla funkcji $f_1(x)$ przy n = 5:

$$\vec{m} = \begin{pmatrix} 4.96507e - 17\\ 0.327397\\ -0.577491\\ 0.327397\\ -0 \end{pmatrix}$$

...oraz dla funkcji $f_2(x)$ przy n = 5:

$$\vec{m} = \begin{pmatrix} -0\\ -0.013228\\ -0.337228\\ -0.013228\\ -0 \end{pmatrix}$$

Układ równań rozwiązano przy pomocy funkcji gsl_linalg_HH_svx. Wyniki uzyskane przy użyciu rozkładu LU (funkcje gsl_linalg_LU_decomp i gsl_linalg_LU_solve) mogą się nieznacznie różnić.

• Po rozwiązaniu układu równań dokonujemy już interpolacji. Jeśli wynikowa funkcja interpolująca nie jest ciągła i/lub gładka, to bardzo możliwe, że numer podprzedziału i (we wzorze (8) z treści) jest błędnie wyznaczony lub w samym wzorze jest błąd (trzeba sprawdzić również wzory na stałe całkowania: (9) i (10)).