QF Group Theory CC2022 By Zaiku Group

Lecture 11

Delivered by Bambordé Baldé

Friday, 29/7/2022

Learning Journey Timeline

quantumformalism.com

Measure Theory & Functional Analysis

$$\int_S f \,\mathrm{d}\mu.$$

Starts on August 29, 2022.

Course Lecturer

Postdoctoral Assistant Professor at University of Michigan who specialises in Several Complex Variables/Pluripotential Theory

Course Structure

k-cycles and disjoint cycles

Definition 1.0

Let $X = \{1, 2, 3, \dots, n\}$. A permutation $\tilde{\sigma} \in S_n$ is called a k- cycle if there exists a subset $\{a_1, a_2, a_3, \dots, a_k\}$ of X with exactly k- elements such that $\tilde{\sigma}$ behaves in the following way:

- $\tilde{\sigma}(a_k) = a_1.$
- The subset $\{a_1, a_2, a_3, \dots, a_k\}$ is called the support of $\tilde{\sigma}$ and we write $Supp(\tilde{\sigma})$ to denote it.
- When k = 2 then a 2- cycle is also known as 'transposition'!

Definition 1.1

Let $\tilde{\sigma_1}$ be a k_1- cycle and $\tilde{\sigma_2}$ be a k_2 -cycle. Then we say the cycles $\tilde{\sigma_1}$ and $\tilde{\sigma_2}$ are disjoint if $Supp(\tilde{\sigma_1}) \cap Supp(\tilde{\sigma_2}) = \emptyset$.

Concrete Examples (2- cycles in S_4)

Let $X = \{1, 2, 3, 4\}$ and $Sym(X) = S_4$ be its symmetric group of 4! = 24 permutations on the set X.

• Consider the following permutation given by the 2-line notation and an intuitive diagrammatic picture:

Then $\tilde{\sigma_1}$ is a 2 - cycle with $Supp(\tilde{\sigma_1}) = \{1, 2\}$ right?

2 Consider now the permutation $\tilde{\sigma_2}$

Is $\tilde{\sigma_2}$ also a 2 – cycle and $Supp(\tilde{\sigma_2}) = \{3,4\}$?

Challenge 1

Are there other 2 - cycles on S_4 other than the examples above? If yes, you're encouraged to:

- Identify all the 2 cycles of S_4 .
- ② How many disjoint 2 cycles are in S_4 ?

Concrete Examples (3- cycles in S_4)

Let $X = \{1, 2, 3, 4\}$ and $Sym(X) = S_4$ be its symmetric group of 4! = 24 permutations on the set X.

• Consider the following permutation given by the 2-line notation and an intuitive diagrammatic picture:

Then $\tilde{\sigma_1}$ is a 3 - cycle with $Supp(\tilde{\sigma_1}) = \{1, 2, 3\}$ right?

2 Consider now the permutation $\tilde{\sigma_2}$

Is $\tilde{\sigma}_2$ also a 3- cycle and $Supp(\tilde{\sigma}_2)=\{1,2,4\}$?

Challenge 2

Are there other 3 - cycles on S_4 other than the examples above? If yes, you're encouraged to:

- Identify all the 3 cycles of S_4 .
- ② How many disjoint 3 cycles are in S_4 ?
- 1 Identify all the 4 cycles in S_4 . Also, how many are disjoint?
- Are there 5— cycles in S_4 ?

Cycle Notation Convention

Definition 1.2

Let $\tilde{\sigma} \in S_n$ be a k- cycle with support $\{a_1, a_2, a_3, \dots, a_k\}$. It is a standard convention to use the so-called cycle notation as follows:

- We write $(a_1 a_2 a_3 \dots a_k)$ to denote the permutation $\tilde{\sigma}!$
- ② Consequently, the support is denoted $Supp(a_1a_2a_3...a_k)$.

Concrete Examples:

1 Consider the following S_4 2 – *cycle* encountered previously:

In cycle notation we'll rewrite it as (12).

② Similarly, consider the following S_4 3 – cycle encountered previously:

In cycle notation we'll rewrite it as (123).

Challenge 3

Identify all the cycles of S_2 and S_3 . Then identify all the disjoint cycles of S_2 and S_3 .

GitHub: github.com/quantumformalism

YouTube: youtube.com/ZaikuGroup

Discord: discord.gg/SPcmcsXMD2

Twitter: twitter.com/ZaikuGroup

LinkedIn: linkedin.com/company/zaikugroup