CFA Lv.1 Derivatives Final Review Summary

Topic #1 – Derivatives Markets and Instruments

1. 파생상품의 종류

- 1) Forward Contract
- 2) Future Contract
- 3) Swap Contract
- ▶ 계약의 양 당사자는 반드시 계약을 이행해야 할 의무를 가짐
 - → 쌍방의무(Bilateral Obligation)
- 4) Option Contract
- ▶ 옵션을 매수한 사람은 권리를 가지고 있고, 옵션을 매도한 사람은 의무만 가지고 있음
 - → 조건부청구권(Contingent Claim), 일방의무(Unilateral Obligation)
 - Cf) CDS: 신용사건 발생 시 보상을 받는 파생상품으로, 조건부 청구권의 성격을 가짐

2. 파생상품이 거래되는 시장에 따른 분류

구분	장내파생상품	장외파생상품	
TE	(Exchange-trade Derivatives)	(OTC Derivatives)	
기메사프	서무(Futures) 이브 오션(Options)	선도(Forwards), 스왑(Swaps),	
거래상품	선물(Futures), 일부 옵션(Options)	일부 옵션(Options)	
	Standardized, Organized, Regulated	Customizing	
특징	Clearing House		
	No Counterparty Risk	Counterparty Risk	

3. 파생상품의 Benefits vs. Criticisms

파생상품의 Benefits	파생상품의 Criticisms	
위험관리(Risk Management)	리스크가 큰 금융상품(High risk)	
거래비용 절감(Reducing transaction costs)	레버리지가 큼(High leverage)	
파생상품을 통한 차익거래로 시장효율성↑	상품의 구조가 복잡함(Complex structure)	
Price discovery: 미래 균형가격 계산 가능		

4. 차익거래(Arbitrage)

: 동일한 상품이 서로 다른 두 개의 시장에서 거래되는 가격이 다른 경우, 가격이 저렴한 시장에서 그 상품을 매입하고 동시에 가격이 비싼 시장에서는 그 상품을 매도하여 무위험의 차익을 얻고자 하는 거래(Buy low and Sell high)

1) 일물일가의 법칙(The law of one price)

- ▶ 두 개의 자산이 동일한 위험과 현금흐름을 가지고 있다면, 가격이 동일해야 함
- ▶ 일물일가의 법칙이 성립하지 않으면 이론적으로 차익거래가 가능

2) 무위험 결합포트폴리오

- ▶ 2개의 위험자산을 결합하여 무위험 결합포트폴리오의 구성이 가능
 - ¬) "기초자산 매입 + 선도계약 매도" → 선도계약 만료일까지 기초가격의 변동에 영향 받지 않는 무위험 결합포트폴리오 구성 가능
 - ∟) "Credit Bond + CDS"
 - □) "Put-Call Parity"
- ▶ 무위험 포트폴리오에 기대하는 수익률은 무위험 수익률
 - → 무위험 수익률과 다를 경우 차익거래 가능

Topic #2 – Forward Markets and Contracts

1. 선도계약(Forward Contracts)

: 미래의 특정시점에 특정 기초자산을 미리 정한 가격으로 매매하기로 약정하는 계약

2. 선도계약의 특성

- 1) 계약 당사자 간의 사적 계약(Private contract)
 - ▶ 거래상대방위험(Counterparty Risk or Default Risk)이 존재
 - ▶ 선도계약의 내용에 대하여 계약 당사자 간에 커스터마이징(Customizing)이 가능
- 2) 선도계약의 체결일(Contract Date; t=0)
 - ▶ 선도가격(Forward Price)은 보유비용모델(Cost of Carry Model)의 결정
 - ▶ 선도계약 체결을 위한 별도의 비용은 발생하지 않음(Initial cost = 0) → 양 당사자가 서로 Fair 한 가격으로 사고, 팔기로 약정했기 때문.
 - ▶ 선도계약 체결일의 선도계약의 가치(V₀(T)) = 0

3. 선도계약의 페이오프(Payoff)

: 선도계약 만기시점의 가치(Value at Expiration)

- 1) Payoff_{Long Position} = $S_T F_0(T)$
- 2) Payoff_{Short Position} = $[S_T F_0(T)]$

4. 선도계약의 결제방법(Settlement): At expiration

- 1) 실물인·수도(Physical Delivery): 현물자산을 인수도하고 거래를 종결하는 방식
- 2) 현금정산(Cash Settlement): 만기시점의 현물가격과 선도가격의 차액을 현금으로 정산 하는 방식 = Non-Deliverable Forward(NDF)

5. 선도가격(F₀(T))의 결정: "t=0시점에서의 Pricing"

- 1) 보유비용모형(Cost of Carry Model): 선도가격 결정모형
 - ▶ ①현물가격과 ②현물을 만기까지 보유하는데 필요한 비용을 합한 금액으로 결정
 - $ightharpoonup F_0(T) = S_0 * (1 + R_f)^{^T}$

- 2) Cost of Carry Model 확장 I: 기초자산이 ①금융자산(Financial Asset)인 경우
 - ▶ 보유비용뿐 아니라 보유편익도 발생 가능(Dividends, Interests)
 - ► $F_0(T) = [S_0 PV(Benefit)] * (1 + R_f)^T$
- 3) Cost of Carry Model 확장 II: 기초자산이 ②원자재(Commodity)인 경우
 - ▶ 추가적인 비용과 편익이 발생 가능
 - 추가적인 비용 : 보관비용(Storage Costs)
 - 추가적인 편익 : 현물 보유자에게 주어지는 비금전적인 혜택(Convenience Yield)
 - ► $F_0(T) = [S_0 + PV(Cost) PV(Benefit)] * (1+R_f)^T$

6. 선도계약 Valuation

: 파생상품의 가치는 미래에 발생하는 Payoff의 현재가치

1) 중간에 추가적인 Cost/Benefit이 없는 경우

- ▶ t = T 시점 : 선도계약의 가치는 계약 만기시점의 페이오프(Payoff)
 - $: V_T(T) = S_T F_0(T)$
- ▶ t = 0 시점 : 선도계약의 가치 = 0
- ▶ t = t' 시점 : 선도계약의 가치는 계약 만기시점 페이오프(Payoff)의 현재가치
 - $: V_t(T) = S_t F_0(T) / (1 + R_t)^{(T-t)}$
- 2) 중간에 추가적인 Cost/Benefit이 발생하는 경우
 - ▶ t = T 시점 : 선도계약의 가치는 계약 만기시점의 페이오프(Payoff)
 - : $V_T(T) = S_T F_0(T)$ 단, $F_0(T) = [S_t + PV(Cost) PV(Benefit)] * (1 + R_f)^T$
 - ▶ t = 0 시점 : 선도계약의 가치 = 0
 - ▶ t = t' 시점 : 선도계약의 가치는 계약 만기시점 페이오프(Payoff)의 현재가치
 - : $V_t(T) = [S_t + PV(Cost) PV(Benefit)] F_0(T) / (1 + R_t)^{(T-t)}$

7. Forward Rate Agreements

1) 기초자산: (선도)금리. 일반적으로 LIBOR

▶ FRA Long Position: 선도금리를 미리 사는 계약: 금리상승위험 헤지 목적

→ 미래시점에 미리 약정한 금리로 Borrowing

▶ FRA Short Position: 선도금리를 미리 파는 계약: 금리하락위험 헤지 목적

→ 미래시점에 미리 약정한 금리로 Lending

2) Synthetic FRA Long Position: Borrowing for 120-days Loan + Lending for 30 days Loan

Topic #3 – Futures Markets and Contracts

1. 선물계약(Futures Contracts)

: 미래의 특정시점에 특정 기초자산을 미리 정한 가격으로 매매하기로 약정하는 계약

2. 선물계약과 선도계약의 비교

구분	선도계약(Forwards)	선물계약(Futures)	
(1) 고투저	정산방법(Settlement) : Physical Delivery, Cash Settlement 모두 가능		
(1) 공통점	계약시점의 파생상품 가치 = 0 ▶ V ₀ (T) = 0, Initial cost = 0		
(2) 차이점			
- 거래조건	거래방법, 계약단위, 만기일 등에	거래방법, 계약단위, 만기일 등이	
	제한이 없음	표준화 되어 있음	
- 거래장소	당사가 간에 직접 거래(장외거래)	거래소 에서 거래가 이루어 짐	
- 이행보증	거래당사자 간의 신용	청산소 에서 이행보증	
- 증거금	규정된 증거금은 없음	증거금제도 가 있음	
- 정산방법	일반적으로 선도계약 종료일에 정산	일일정산	
- 신용위험	거래상대방위험이 존재함	거래상대방위험 없음	

3. 증거금제도(Margin Account)

- 1) 개시증거금(Initial Margin): 선물거래를 시작하기 위해 납부해야 하는 증거금
- 2) 유지증거금(Maintenance Margin): 거래를 지속하기 위해, 유지해야 하는 증거금
- 3) 추가(변동)증거금(Variation Margin): 거래자의 증거금이 유지증거금 이하로 감소하였을 경우, 증거금을 개시증거금 수준으로 올리도록 추가적인 증거금의 적립을 요구(Margin Call)가 들어옴
 - ▶ 추가증거금 = 개시증거금(Initial Margin) 증거금계좌 잔고(Ending Balance)

4. 일일정산(Daily Settlement)

: 선물가격 변화에 의한 손익을 매일매일 정산하여 증거금계좌에 반영하는 것

5. 선물가격과 선도가격의 비교

: 선물가격과 금리와의 상관관계에 따라 차이 발생: Corr(Futures Price, Interest Rate)

 선물가격 상승, 금리하락: Negative Correlation ▶ 선물가격 상승 시, 낮은 금리로 재투자 ▶ Futures Price < Forward Price 	 선물가격 상승, 금리상승: Positive Correlation ▶ 선물가격 상승 시, 높은 금리로 재투자 ▶ Futures Price > Forward Price
 선물가격 하락, 금리하락: Positive Correlation ▶ 선물가격 하락 시, 낮은 금리로 자금 조달 ▶ Futures Price > Forward Price 	 선물가격 하락, 금리상승: Negative Correlation ▶ 선물가격 하락 시, 높은 금리로 자금 조달 ▶ Futures Price < Forward Price

Topic #4 – Swap Markets and Contracts

1. 스왑계약(Swap Contracts)

- : 미래의 일정기간 동안 서로 다른 현금흐름을 주기적으로 교환하기로 약정하는 계약
- → 주기적인 정산(Period Settlement)

2. 금리스왑(Interest Rate Swaps; IRS)

- (1) 정의: 일정기간 동안 서로 다른 금리의 이자를 교환하기로 약정하는 계약
- (2) 특징
 - ▶ 동일한 통화를 기초로 하므로, 원금 자체가 실제적으로 교환될 필요가 없음
 - ▶ 매 시점마다 Net interest(고정금리와 변동금리의 차액)만 정산하면 됨
 - \rightarrow (Net interest)_t = (Swap fixed rate LIBOR_{t-1}) * NP * (# of days/360)

3. 금리스왑과 선도계약

- : 스왑계약은 FRA의 Series로 복제 가능
- 1) 계약시점의 가치: $V_{0,S} = 0 \rightarrow \text{"}\sum PV(Pay) = \sum PV(Receive)\text{"} 되도록 Swap Rate 결정$

Contracts	Tenor	Pay Fixed	Receive Floating	
Swap	1Q	Swap Fixed Rate	90-day Libo ₀	
	2Q	Swap Fixed Rate	90-day Libor _{1Q}	
	3Q	Swap Fixed Rate	90-day Libor _{2Q}	
	4Q	Swap Fixed Rate	90-day Libor _{3Q}	

2) FRA Replication: $\sum V_{0, F} = 0$ 다만, 각각의 FRA 가치는 $V_{0, F}$ 는 0이 아닐 수 있음 \rightarrow Off-market forward

Contracts	Expiration Date	Underlying Asset	F ₀ (T)
	T = 1Q	90-day Libor ₀	Swap Fixed Rate
Famuund	T = 2Q	90-day Libor _{1Q}	Swap Fixed Rate
Forward	T = 3Q	90-day Libor _{2Q}	Swap Fixed Rate
	T = 4Q	90-day Libor _{3Q}	Swap Fixed Rate

4. 금리스왑의 가치 변동

- 1) Pay Fixed, Receive Floating
 - ▶ 계약 시점: V₀(T) = 0
 - ▶ 현재 시점
 - 시장금리(LIBOR)가 상승하는 경우: 스왑계약 가치 상승
 - 시장금리(LIBOR)가 하락하는 경우: 스왑계약 가치 하락
- 2) Pay Floating, Receive Fixed
 - ▶ 계약 시점: V₀(T) = 0
 - ▶ 현재 시점
 - 시장금리(LIBOR)가 상승하는 경우: 스왑계약 가치 하락
 - 시장금리(LIBOR)가 하락하는 경우: 스왑계약 가치 상승

Topic #5 – Option Markets and Contracts

1. 옵션계약(Options)

: 특정 자산을 미래의 특정 시점 또는 그 이전에, 미리 약정된 가격으로 살 수 있는 권리 or 팔 수 있는 권리

2. 옵션계약과 선도계약의 비교

구분	Option Contracts	Forward Contracts	
계약의 성격	Long Position: 권리만 보유	Long Position: 이행의무를 가짐	
계약의 경역	Short Position: 의무만 가짐	Short Position: 이행의무를 가짐	
초기비용	초기비용(Initial cost) ≠ 0	* 71H1 8 (In: it in co.et) 0	
조기미용	Option premium: 권리 취득 비용	초기비용(Initial cost) = 0	

3. 행사방법에 따른 분류

- 1) 유러피언옵션(European options): 옵션의 만기(At expiration)에 한 번만 행사 가능
- 2) 아메리칸옵션(American options): 언제든지(At any time) 행사 가능 : V(American option value) ≥ V(European option value)

4. 옵션의 페이오프(Payoff): 만기시점의 가치(Value at Expiration)

1) Call Option Long Position: $C_T = Max [0, S_T - X]$

2) Call Option Short Position: $C_T = - Max [0, S_T - X]$

3) Put Option Long Position: $P_T = Max [0, X - S_T]$

4) Put Option Short Position: $P_T = - Max [0, X - S_T]$

5. 옵션의 손익(Profit/Loss) = 페이오프(Payoff) - 옵션프리미엄(Premium)

6. Moneyness

Moneyness	Call Option	Put Option	
In-the-money(ITM)	S > X	S < X	
At-the-money(ATM)	S = X	S = X	
Out-of-the-money(OTM)	S < X	S > X	

7. 옵션의 현재시점에서의 가치

- 1) 옵션의 가치(C_t, P_t) = 내재가치(Intrinsic value) + 시간가치(Time value)
- 2) 내재가치(Intrinsic value)
 - ▶ 현재 시점에서 옵션이 행사된다고 가정했을 때 얻게 되는 가치
 - ① 콜옵션(Call option)의 내재가치 = Max(0, S_t X)
 - ② 풋옵션(Put Option)의 내재가치 = Max(0, X- S_t)
- 3) 시간가치(Time value)
 - ▶ 옵션 만기까지 기초자산 가격변화에 따라 이익을 얻을 수 있는 가능성에 대한 가치

8. 옵션가격과 변수와의 관계

78	콜옵션(Ct)		풋옵션(Pt)	
구분	European	American	European	American
기초자산(S _t)	+	+	-	-
행사가격(X)	-	-	+	+
무위험수익률(R)	+	+	-	-
잔존만기(T-t)	?	+	?	+
변동성(σ)	+	+	+	+
보유편익(Benefits)	-	-	+	+
보유비용(Costs)	+	+	-	-

1) 옵션과 잔존만기(T-t)와의 관계

▶ 콜옵션(Ct)

- ① 일반적으로는 잔존만기가 길수록 콜옵션의 가치가 커짐(In general, Positive)
- ② 배당이 지급되는 주식이 기초자산인 유러피언 콜옵션의 경우, 예외일 수 있음

▶ 풋옵션(Pt)

- ① 일반적으로는 잔존만기가 길수록, 풋옵션의 가치가 커짐(In general, Positive)
- ② Deep ITM 유러피언 풋옵션의 경우에는 예외일 수 있음

9. 풋-콜 패러티(Put-Call Parity)

1) 풋-콜 패러티(Put-Call Parity)

▶ 기초자산(S), 만기(T), 행사가격(X)이 동일한 유러피언 콜옵션과 풋옵션의 가격 사이에 성립하는 일정한 등가식

► Protective Put = Fiduciary Call

ightharpoonup S + P = C + X/(1+R)^T

2) 합성포지션(Synthetic position)

► Synthetic Stock: $S = C - P + X/(1+R)^T$

► Synthetic Put: $P = C - S + X/(1+R)^T$

► Synthetic Call: $C = S + P - X/(1+R)^T$

 \blacktriangleright Synthetic Bond: $X/(1+R)^T = S + P - C$

3) Put-Call-Forward Parity

▶ 기초자산(S) 대신 F₀(T) / (1 + R_f)^T 대입

10. 옵션의 가치평가: 이항모형(Binomial Tree Model)

1) U: 주가 상승률 = (1 + R_f - D) / (U - D)

2) D: 주가 하락률 = 1/U

3) π_U : Risk Neutral probability of an up-move \rightarrow 위험중립가정 상승확률

4) π_D = 1 - π_U : Risk Neutral probability of an down-move \rightarrow 위험중립가정 하락확률

 $C_0 = (C_U * \pi_U + C_D * \pi_D) / (1+R_F) \rightarrow Put Option도 계산할 수 있어야 함!!$