

Selbstorganisierende adaptive Systeme

Übungsblatt 04 Aufgabe 2

18.11.2016 Gruppe 10

Bestimmen Sie eine strikt dominante Strategie eines der beiden Spieler im folgenden Spiel:

		S	Spieler 2		
		X	у	Z	
	a	1,2	2,2	5,1	
Spieler 1	b	4,1	3,5	3,3	
	С	5,2	4,4	7,0	
	d	2,3	0,4	3,0	

Strikt dominante Strategie für Spieler 1:

		S	Spieler 2		
		X	у	Z	
	a	1,2	2,2	5,1	
Spieler 1	b	4,1	3,5	3,3	
	С	52	4 4	70	
	d	2,3	0,4	3,0	

→ Strikt dominante Strategie: c

Strikt dominante Strategie für Spieler 2:

		Spieler 2		
		X	у	Z
	a	12	2.2	5,1
Spieler 1	b	4,1	35	3,3
	С	5,2	4.4	7,0
	d	2,3	0,4	3,0

→ keine strikt dominante Strategie

Angenommen Spieler 1 würde d wählen, was ist die beste Antwort von Spieler 2?

		S	Spieler 2		
		X	у	Z	
	a	1,2	2,2	5,1	
Spieler 1	b	4,1	3,5	3,3	
	С	5,2	4,4	7,0	
	d	2,3	0,4	3,0	

Angenommen Spieler 1 würde d wählen, was ist die beste Antwort von Spieler 2?

		S	Spieler 2		
		X	у	Z	
	a	1,2	2,2	5,1	
Spieler 1	b	4,1	3,5	3,3	
	С	5,2	4,4	7,0	
	d	2,3	0,4	3,0	

→ Beste Antwort von Spieler 2: y

		S	Spieler 2		
		X	у	Z	
	a	1,2	2,2	5,1	
Spieler 1	b	4,1	3,5	3,3	
	С	5,2	4,4	7,0	
	d	2,3	0,4	3,0	

		Spieler 2		
		X	у	Z
	a	12	2,2	5,1
Spieler 1	b	4,1	3,5	3,3
	С	52	44	70
	d	2,3	0.4	3,0

→ Nash-Gleichgewicht bei <c,y>

- Hat das Spiel eine dominante Strategie?
- Bestimmen Sie das oder die Nash-Equilibria.
 Welche Methode haben Sie angewandt?

		Spieler 2		2
		L	M	R
	U	1,3	4,2	2,2
Spieler 1	C	4,0	0,3	4,1
	D	2,5	3,4	5,6

Hat das Spiel eine dominante Strategie?

Spieler 1:

		Spieler 2		2
		L	M	R
	U	1,3	4,2	2,2
Spieler 1	C	4,0	0,3	4,1
	D	2,5	3,4	56

→ keine dominante Strategie

Hat das Spiel eine dominante Strategie?

Spieler 2:

		Spieler 2		2
		L	Μ	R
	U	13	4,2	2,2
Spieler 1	С	4,0	0 3	4,1
	D	2,5	3,4	5,6

→ keine dominante Strategie

Bestimmen Sie das oder die Nash-Equilibria.
 Welche Methode haben Sie angewandt?

		Spieler 2		
		L	Μ	R
	U	13	4.2	2,2
Spieler 1	С	4,0	03	4,1
	D	2,5	3,4	56

→ Nash-Equilibrium bei <D,R>

Gewinnaufteilung zwischen 2 Spielern

- Gleichzeitige Angabe des gewünschten Anteils $s_1, s_2 \in [0,1]$
- Falls $s_1 + s_2 \le 1$, dann bekommt jeder den gewünschten Anteil
- Falls $s_1 + s_2 > 1$, bekommen beide 0

- (0.3, 0.7)
- (0.5, 0.5)
- (1.0, 1.0)

· (0.3, 0.7)

Spieler 1: aktueller Gewinn: 0.3

- Geringeren Anteil angeben → bekommt weniger
- Höheren Anteil angeben → bekommt 0
- → Spieler 1 kann seinen Gewinn nicht erhöhen

· (0.3, 0.7)

Spieler 2: aktueller Gewinn: 0.7

- Geringeren Anteil angeben → bekommt weniger
- Höheren Anteil angeben → bekommt 0
- → Spieler 2 kann seinen Gewinn nicht erhöhen

· (0.3, 0.7)

Kein Spieler kann seinen eigenen Gewinn erhöhen

→ Nash-Equilibrium

· (0.5, 0.5)

Kein Spieler kann seinen eigenen Gewinn erhöhen

→ Nash-Equilibrium

· (1.0, 1.0)

Spieler 1: aktueller Gewinn: 0

- Geringeren Anteil angeben → bekommt 0
- Anteil von 0 angeben → bekommt 0
- → Spieler 1 kann seinen Gewinn nicht erhöhen

· (1.0, 1.0)

Spieler 2: aktueller Gewinn: 0

- Geringeren Anteil angeben → bekommt 0
- Anteil von 0 angeben → bekommt 0
- → Spieler 1 kann seinen Gewinn nicht erhöhen

· (1.0, 1.0)

Kein Spieler kann seinen **eigenen** Gewinn erhöhen

→ Nash-Equilibrium

Bertrand-Duopol

- Produktionskosten pro Einheit c > 0
- Nachfrage an Gütern D > 0
- Preise für Güter $p_1, p_2 \ge 0$

• Gewinn
$$u_i\coloneqq \begin{cases} 0, & falls\ p_i>p_j \\ \frac{D}{2}(p_i-c), & falls\ p_i=p_j \\ D(p_i-c), & falls\ p_i< p_j \end{cases}$$

- (0, 0)
- (c, 0)
- (0, c)
- (c, c)

•
$$p_1 = 0$$
, $p_2 = 0$

Firma 1: aktueller "Gewinn": $\frac{-Dc}{2}$

- Preis anheben → Gewinn steigt auf 0
- → Firma 1 wird ihren Preis anheben

•
$$p_1 = 0$$
, $p_2 = 0$

→ Kein Nash-Gleichgewicht

•
$$p_1 = c$$
, $p_2 = 0$

Firma 1: aktueller Gewinn: 0

- Preis senken (nicht 0) → Gewinn bleibt bei 0
- Preis auf 0 senken \rightarrow Gewinn sinkt auf $\frac{-Dc}{2}$
- Preis anheben → Gewinn bleibt bei 0

•
$$p_1 = c$$
, $p_2 = 0$

Firma 2: aktueller "Gewinn": -Dc

- Preis anheben (unter c) → Gewinn steigt
- Preis auf/über c anheben → Gewinn 0
- → Firma 2 wird ihren Preis anheben

•
$$p_1 = c$$
, $p_2 = 0$

→ Kein Nash-Gleichgewicht

•
$$p_1 = 0$$
, $p_2 = c$

Analog zu eben:

→ Kein Nash-Gleichgewicht

• $p_1 = c$, $p_2 = c$

Firma 1: aktueller Gewinn: 0

- Preis anheben → Gewinn 0
- Preis senken \rightarrow Gewinn sinkt auf $D(p_1 c) < 0$

•
$$p_1 = c$$
, $p_2 = c$

Keine Firma kann ihren Gewinn erhöhen

→ Nash-Equilibrium