Project Proposal

-Drug Sensitivity in Cancer Cell Lines-

Ovarian Cancer

Data Statistics SS 21

Supervisor: Dr. Herrmann

Tutor: Stefan Holderbach

Carolin Bayan, Savannah Cattarius, Laura Diekmann, Rositsa Todorovska

Cancer Hallmarks

Yousef Ahmed Fouad and Carmen Aanei, 2017

Ovarian cancer

https://en.wikipedia.org/wiki/Ovarian_cancer

- Most lethal gynecological malignant tumor in the developed world
- Significant genetic heterogeneity
- Concerning female patients mainly over the age of 50
- Molecular defects: TP53, KRAS, BRCA1 or BRCA2 mutations

Drug repurposing

- New usage for existing drugs outside of traditional medical indication
- Signature matching
- Clinical data analysis
- Phenotypic screen

Pushpakom et al., Nature Reviews 2018

Nature Reviews | Drug Discovery

Methods - PRISM

- DNA barcoding
 - → screening drugs against cell lines in pools
- DMS0 = negative control
- Incubation period of 5 days
- Amplification of barcode sequences
- Luminex detection
- Establish a ratio between the quantity of treated cell lines and the negative control cell lines

Data Sets

- Data frame *prism*:
 - \rightarrow effect of medical treatments on cell growth of different cell lines
- Additional data sets:
 - \rightarrow prism.treat (drugs)
 - → prism.cl (cell lines)

DepMap_IDs of cell lines

drug name::dosage::assay name

^	BRD-A00077618- 236-07- 6::0.00061034::HTS002	BRD-A00077618- 236-07- 6::0.0024414::HTS002	BRD-A00077618- 236-07- 6::0.00976562::HTS002	
ACH-000007	0.155930785	0.019270857	-0.325728482	
ACH-000008	0.184595649	0.225428031	0.514571347	
ACH-000011	-0.129951554	0.082021548	-0.465501527	
ACH-000012	0.264334776	0.343490487	-0.156107708	
ACH-000013	0.284201840	0.717880776	0.098727706	

Data Sets

- Data frame *prism.achilles*:
 - → gene knockdown scores
 - → smaller values:
 - = gene has a higher essentiality

- Additional data sets:
 - → *prism.exp* (TPM values)
 - \rightarrow prism.cnv (CN values)
 - → *prism.snv* (observed mutations)

gene names

*	A1BG [‡]	A1CF	A2M [‡]	A2ML1 [‡]	A3GALT2	A4GALT [‡]
ACH-000007	0.066211918	0.073849767	-0.065866962	0.156037564	0.100957813	0.1409968606
ACH-000011	0.270231724	0.072104660	0.014604614	0.433243290	-0.030273403	-0.2390799522
ACH-000012	0.015445134	0.173129613	0.104252319	0.305781945	0.058204201	-0.1900014664
ACH-000013	0.062819955	0.038241805	-0.030842945	0.210707395	-0.065721722	-0.0796803284
ACH-000014	0.137092353	-0.054472837	0.012998483	0.187520545	-0.018819321	-0.1307547147
ACH-000015	-0.068873122	-0.005479247	-0.167313092	0.144660178	-0.022596340	-0.1073700152

Distribution of mean sensitivity across all cell lines

```
```{r Distribution of mean sensitivity across all cell lines} 
hist(apply(prism, 1, function(x){mean(x,na.rm=TRUE)}), breaks = 50, main = "Cell lines",
xlab = "Mean log fold-change in cell growth")
```



#### General Methods

- 1. Data Filtering and Reorganization
- 2. Descriptive Statistics
- 3. Dimension Reduction
  - a. PCA
  - b. Clustering (k-means)
- 4. Statistical Test
  - a. T-test
- 5. Linear Regression Analysis



1. How do different drugs influence ovary cancer cell lines and which are particularly noticeable? How do these specific drugs affect the other cell lines?

2. Is the sensitivity of different drugs on ovary cancer cell lines connected to specific cancer-related genes or gene knock-outs?

1.1 Do certain drugs have a specific positive or negative influence on the proliferation of the ovary cancer cell lines?

1.3 How does the dosage of the medical treatment affect the treatment results?

1.2 Are the medical effects on cell lines independent of the cancer cell line types?

1. How do different drugs influence our ovary cancer cell lines and which are particularly noticeable? How do these specific drugs affect the other cell lines?

2. Is the sensitivity of different drugs on ovary cancer cell lines connected to specific cancer-related genes or gene knockdowns?

2.1 Do the ovarian cancer cell lines show a different response to similar drugs according to their specific mutations (KRAS, BRCA1/2,...)?

2.3 How well can we predict the drug efficiency from certain gene mutations or expressions?

2.2 Does the drug response depend on the gene expression patterns/knockdown scores in ovary cancer cell lines?

### Timeline



# References

- Corsello, S. M., Nagari, R. T., Spangler, R. D., Rossen, J., Kocak, M., Bryan, J. G., ... Golub, T. R. (2020). Discovering the anticancer potential of non-oncology drugs by systematic viability profiling. Nature Cancer, 1(2), 235–248.
- https://depmap.org/repurposing/
- Hollis, R.L, Gourley, C. (2016) Genetic and molecular changes in ovarian cancer. Cancer Biol Med 2016
- Yu, C., Mannan, A. M., Yvone, G. M., Ross, K. N., Zhang, Y.-L., Marton, M. A., ... Golub, T. R. (2016). High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines. Nature Biotechnology, 34(4), 419–423.
- Pushpakom, S., Iorio, F., Eyers, P. A., Escott, K. J., Hopper, S., Wells, A., ... Pirmohamed, M. (2019). Drug repurposing: progress, challenges and recommendations. Nature Reviews Drug Discovery, 18(1), 41–58.
- Naidoo J, Page DB, Wolchok JD. Immune modulation for cancer therapy. *Br J Cancer*. 2014;111(12):2214-2219.
- Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. *Genes Dev.* 2018;32(19-20):1267-1284.
- Eleanor C. Fiedler and Michael T. Hemann Aiding and Abetting: How the Tumor Microenvironment Protects Cancer from Chemotherapy. Annual Review of Cancer Biology 2019 3:1, 409-428
- https://www.theprismlab.org/the-prism-assay
- <a href="https://www.thermofisher.com/de/de/home/life-science/antibodies/immunoassays/procartaplex-assays-luminex.html">https://www.thermofisher.com/de/de/home/life-science/antibodies/immunoassays/procartaplex-assays-luminex.html</a>