Algoritmi și structuri de date (I). Seminar 9: Aplicații ale tehnicii reducerii. Analiza complexității algoritmilor recursivi.

Problema 1 Căutare eficientă a poziției de inserare într-un tablou ordonat. Se consideră un tablou a[1..n] ordonat crescător și v o valoare. Să se determine, folosind un algoritm din $\mathcal{O}(\lg n)$, poziția unde poate fi inserată valoarea v în tabloul a astfel încât acesta să rămână ordonat crescător. Să se analizeze ce efect are utilizarea acestui algoritm de căutare a poziției de inserție în cazul în care este utilizat în cadrul algoritmului de sortare prin inserție.

Indicație. Se poate utiliza ideea de la căutarea binară.

Problema 2 Metoda bisecției. Fie $f:[a,b]\to R$ o funcție continuă având proprietățile: (i) f(a)f(b)<0; (ii) există un unic x^* cu proprietatea că $f(x^*)=0$. Să se aproximeze x^* cu precizia $\epsilon>0$. Stabiliți ordinul de complexitate al algoritmului propus.

Indicație. A determina pe x^* cu precizia ϵ înseamnă a identifica un interval de lungime ϵ care conține pe x^* sau chiar un interval de lungime 2ϵ dacă se consideră ca aproximare a lui x^* mijlocul intervalului. Se poate aplica exact aceeași strategie ca la căutarea binară ținându-se cont că x^* se află în intervalul pentru care funcția f are valori de semne opuse în extremități.

Complexitatea este determinată de dimensiunea intervalului [a,b] şi de precizia dorită a aproximării, ϵ , prin urmare se poate considera că dimensiunea problemei este $n=(b-a)/\epsilon$

Problema 3 *Căutare ternară*. Tehnica căutării binare poate fi extinsă prin divizarea unui subșir a[li..ls] în trei subșiruri a[li..m1], a[m1+1..m2], a[m2+1..ls], unde $m1=li+\lfloor (ls-li)/3\rfloor$ iar $m2=li+2\lfloor (ls-li)/3\rfloor$. Descrieți în pseudocod algoritmul de căutare ternară și stabiliți ordinul de complexitate.

Indicație. Se poate utiliza Teorema Master pentru a stabili ordinul de complexitate.

Probleme suplimentare

- 1. Se consideră un caroiaj de dimensiuni $2^k \times 2^k$ (pentru k=3 se obține o tablă de șah clasică) în care unul dintre pătrățele este marcat. Propuneți o strategie bazată pe tehnica divizării care acoperă întreaga tablă (cu excepția pătrățelului marcat) cu piese constând din 3 pătrățele aranjate în forma de L (indiferent de orientare).
- 2. Propuneți un algoritm de complexitate medie $\mathcal{O}(n \log n)$ pentru a verifica dacă elementele unui tablou sunt distincte sau nu.
- 3. Se consideră un tablou ordonat crescător a[1..n]. Presupunem că tabloul a a fost transformat printr-o deplasare circulară la dreapta cu k poziții. De exemplu, dacă a = [2, 3, 6, 8, 9, 11, 14] iar k = 3 tabloul transformat este a = [9, 11, 14, 2, 3, 6, 8].
 - a) In ipoteza că valoarea k este cunoscută propuneți un algoritm de complexitate $\mathcal{O}(1)$ care determină cea mai mare valoare din a.
 - b) In ipoteza că valoarea k este necunoscută propuneți un algoritm de complexitate $\mathcal{O}(\log n)$ care determină cea mai mare valoare din a.
- 4. Se consideră un tablou cu numere naturale distincte a[1..n] ordonat crescător. Propuneți un algoritm de complexitate $\mathcal{O}(\log n)$ care verifică dacă există $i \in \{1, ..., n\}$ cu proprietatea că a[i] = i.