			Complete case analyses		Analyses after multiple imputations		
Outcome	Method	log mÔR [95%CI] AUC			C log mÔR [95%CI] A	AUC	
Acute rejection	- Unadjusted	0.81 [0.11;1.48]	_ -		0.76 [0.10;1.47]		
	- Elasticnet	0.82 [0.11;1.47]	O.	62	2 0.76 [0.11;1.45]	0.62	
	- Lasso	0.82 [0.12;1.46]	- O.	61	1 0.75 [0.09;1.46]	0.61	
	- Neural network	0.78 [-0.06;1.76]	- 0.	60	0 0.88 [0.05;1.87]	0.59	
	- Support vector machine	0.62 [0.13;1.14]	0.	56	6 0.60 [0.09;1.22]	0.56	
	- Super learner	0.67 [0.11;1.35]	0.	56	6 0.70 [0.11;1.39]	0.56	
		0.0	0.0 0.5 1.0 1.5		0.0 0.5 1.0 1.5		
Delayed graft function	- Unadjusted	0.60 [0.05;1.18]			0.56 [0.01;1.13]		
	- Elasticnet	0.47 [-0.13;1.14]	• • • • • • • • • • • • • • • • • • •	62	2 0.48 [-0.12;1.09] - 0	0.63	
	- Lasso	0.50 [-0.06;1.06]	- 0.	61	1 0.47 [-0.13;1.08]	0.63	
	- Neural network	0.42 [-0.28;1.23]	■ 0.	59	9 0.53 [-0.20;1.29] - 0	0.59	
	- Support vector machine	0.55 [0.06;1.08]	· • • • • • • • • • • • • • • • • • • •	65	5 0.56 [0.07;1.09] - 0	0.66	
	- Super learner	0.54 [-0.05;1.15]	• • • • • • • • • • • • • • • • • • •	65		0.66	
			0.0 0.5 1.0		0.0 0.5 1.0		
Graft loss	- Unadjusted	-0.21 [-0.99;0.57]	-		-0.28 [-1.04;0.44]		
	- Elasticnet	-0.21 [-0.97;0.55]	0.5	59	9 -0.28 [-1.04;0.44]	0.59	
	- Lasso	-0.20 [-0.97;0.53]	0.9	59	9 -0.28 [-1.04;0.45] - 0	0.59	
	- Neural network	-0.16 [-1.10;0.70]	■ 0.9	57	7 -0.22 [-1.17;0.60] - 0	0.57	
	- Support vector machine	-0.07 [-0.60;0.38]	0.5	55	5 -0.16 [-0.70;0.33]	0.55	
	- Super learner	-0.11 [-0.73;0.42]	0.5	55	5 -0.19 [-0.80;0.35]	0.55	
		-1	-1.0 -0.5 0.0 0.5		-1.0 -0.5 0.0 0.5		