Tabela de Fluxo de Estados

Oscilação: Quando o circuito permanece numa sequência infinita de estados instáveis

Obs: A oscilação não depende de como as variáveis de estado mudam (qualquer ordem)

Corrida: quando o estado final do circuito não depende da ordem na qual as variáveis de estado mudam.

Corrida crítica: quando o estado estável final depende da ordem em que as variáveis de estado mudam

Tabela de Fluxo de estados

Análise:

A→D: corrida não crítica

A B: corrida crítica (se X chavear primeiro a máquina para no estado E)

B→ (columa 10)

 $01 \rightarrow 00 \rightarrow 11 \rightarrow 10$ (para no estado F), ou

 $01 \rightarrow 00 \rightarrow 11 \rightarrow 01 \rightarrow 00$

(oscilação)

Tabela de Fluxo de Estados

Este método somente se preocupa em solucionar o problema de corrida crítica

Análise de Adjacências

2→1 (coluna 10 (estado 3))

3→1 (coluna 11 (estado 2))

Assinalamento livre de corrida crítica

Estado 3 (Y₀ Y₁=00)

Estado 2 (Y₀ Y₁=11)

Estado 1 (Y₀ Y₁=01)

Tabela de Fluxo de Estados Codificada

Tabela de Fluxo

Livre de Corrida Crítica

	to+					
	$Y_0 Y_1$	00	01	11	10	Z
(3)	00	00	11	01	00	0
(1)	01	00	11	01	01	1
(2)	11	00	(11)	11	01	0
(X)	10	00	11			0

to					
Estados	00	01	11	10	Z
1	3	2	$\left(\begin{array}{c} \\ \\ \end{array} \right)$	$\left(\begin{array}{c} \end{array}\right)$	1
2	3	2	(2)	1	0
3	3	2	1	3	0

Obs: hazard funcional na saída Z está sendo ignorado

Tabela de Fluxo de Estados -> Método do estado ponte

Adjacências: $A \rightarrow D A \rightarrow C$; $B \rightarrow D$; $B \rightarrow C$; $C \rightarrow D$; $D \rightarrow C$

Y ₀	0	1
0	А	D
1	С	В

Y ₂	; 00	01	11	10
0	Α	D	В	С
1	W ₂	W ₁		Wз

Insuficiente: 2 variáveis

Suficiente: 3 variáveis

Este método somente se preocupa em solucionar o problema de corrida crítica

Tabela de Fluxo de estados codificada livre de corrida

	t.				
Y 0 Y 1	Y2 5	00	01	11	10
(A)	000	100	110	010	000
(W ₂)	001		011		101
(W1)	011		010		001
(D)	010	010	010	010	011
(B)	110	010	110	100	000
()	111				
(W3)	101		001		100
(C)	100	100	101	100	100

Tabela de Fluxo codificada livre de corrida crítica: Método grafo de Adjacências

Grafo de Adjacências

Este método somente se preocupa em solucionar o problema de corrida crítica

	1, to				
Y0 Y1	Y ₂	00	01	11	10
X	000	100	010	010	100
Α	001	100		010	001
X	011	010		010	
D	010	010	010	010	100
X	110	010	010	100	100
В	111	010	111	100	
X	101	100		100	
С	100	100	010	100	100