Cours 4 : Définition de types, types récursifs généraux et arbres

2019 - 2020

Introduction

Objectif

- Pour l'instant : que des types prédéfinis
- Objectif : définir ses propres types

Structure des types en OCAML

- Un type se définit comme un ensemble de "situations différentes" représentées chacune par un mot-clé spécial: un constructeur.
- Un filtrage par cas est alors possible (comme sur les listes).
- Les constructeurs peuvent avoir des paramètres (syntaxe similaire aux fonctions).
- Les types peuvent être récursifs.
- Les constructeurs sont appelés ainsi car ils permettent de construire une donnée plus grande à partir de données plus petites.

Définition de types

Alias de type

Si le type de données à définir ne comporte qu'un seul cas non récursif, alors l'usage des constructeurs peut être évité.

Exemple

```
type 'a file = 'a list * 'a list
```

Constructeurs constants

Un type peut être défini à l'aide de plusieurs constructeurs sans paramètre (similaire aux énumérations).

Exemple

```
type couleur = Bleu | Blanc | Vert
type jour = Lundi | Mardi | Mercredi | Jeudi | Vendredi | Samedi | Dimanche
```

- Attention : Bleu, Blanc, Vert, ... deviennent des mots clés.
- Les constructeurs commencent par une majuscule, alors que les identificateurs commencent par une minuscule.

Constructeurs constants

Le mécanisme de filtrage s'applique aux types définis.

Filtrage

Les constructeurs peuvent prendre des arguments (similaire aux fonctions).

Exemple

```
type num = Entier of int | Flottant of float
type complexe = Polaire of float * float | Cartesien of float * float
```

Définition d'expressions

```
# Entier 1;;
-: num = Entier 1

# Polaire (1.0, atan 1.);;
-: complexe = Polaire (1.0, 0.78...)

# Cartesien (sqrt 2., sqrt 2.);;
-: complexe = Cartesien (1.41..., 1.41...)
```

Le mécanisme de filtrage s'applique aux types définis.

Filtrage

Un type peut mélanger des constructeurs constants et avec arguments

Exemple du type option

- le type option est une structure de données servant à spécifier un choix. entre une situation normale et une situation exceptionnelle.
- On peut faire ce parallèle avec les autres structures de données:
 - une paire encode 2 valeurs.
 - un *n*-uplet encode *n* valeurs.
 - une liste encode de 0 à n valeurs.
 - une option encode 0 ou 1 valeur.

Définition du type option

type 'a option =

None Some **of** 'a

Types récursifs

Les types peuvent également être récursifs (similaire aux fonctions récursives).

Exemple

```
(* type pour pouvoir representer des arbres genealogiques *)
```

type personne = Inconnu | Enfant of string * personne * personne

Définition d'expressions

Le mécanisme de filtrage s'applique aux types récursifs.

Filtrage

Types récursifs paramétrés

Les paramètres ne sont même pas nécessairement homogènes.

Exemple

```
type 'a power_list = Nil | Cons of 'a * ('a * 'a) power_list
```

Définition d'expressions

```
# Cons (1,Cons((2,2),Cons (((3,3),(3,3)), Nil )));;
- : int power_list = Cons (1, Cons ((2, 2), Cons (((3, 3), (3, 3)), Nil )))
```

Spécification

Un arbre binaire contient:

- des nœuds
- des branches (au plus 2 par nœuds)
- des données
 - dans les nœuds
 - dans les branches
 - dans les feuilles

Tous les mélanges sont bien sûr possibles, avec des éléments de types différents.

Arbre binaire standard (données dans les nœuds)

```
type 'a standard_tree =
| Empty
| Node of 'a * 'a standard_tree * 'a standard_tree
```

Arbre binaire standard - Exemple

```
Node ("x1",
Node ("x2",
Node ("x3",Empty,Empty),
Node ("x4",Empty,Empty)
),
Node ("x5",
Node ("x6",Empty,Empty),
Empty
)
```


Arbre binaire avec données dans les feuilles

```
type 'a leaf_tree =
| Leaf of 'a
| Node of 'a leaf_tree * 'a leaf_tree
```

Arbre binaire avec données dans les feuilles - Exemple

```
Node (Node (Leaf "x1",
Leaf "x2"
),
Leaf "x3"
```


Arbre binaire avec données dans les branches

```
type 'a edge_tree =
| Empty
| Edges of ('a * 'a edge_tree) * ('a * 'a edge_tree)
```

Arbre binaire avec données dans les branches - Exemple

```
Edges (("x1",
	Edges(("x3",Empty),
		("x4",Empty))),
	("x2",
	Empty)
)
```


Exemple de fonction

- Nous souhaitons définir une fonction qui compte le nombre d'éléments d'un arbre.
- La structure récursive du type 'a standard_tree donne la structure récursive de la fonction.
- Analyse récursive : Si je sais calculer la taille des deux fils de la racine de l'arbre, comment est-ce que je calcule la taille de l'arbre ?
- Addition des deux tailles, et incrémentation (pour la racine).

```
(* cardinal : 'a standard_tree -> int *)
(* Renvoie le nombre d'elements d'un arbre *)

let rec cardinal arb =
match arb with
| Empty -> 0
| Node (_-, g, d) -> 1 + cardinal g + cardinal d
```

Itérateur tree_map


```
tree_map f
```


Itérateur tree_map - Code

Autre représentation de l'arbre

Itérateur tree_fold

Itérateur tree_fold - Code

Itérateur tree_fold - Utilisation

- Ré-écrire la fonction cardinal à l'aide d'un itérateur
- Code:

Itérateur tree_fold - Utilisation

- Ré-écrire la fonction cardinal à l'aide d'un itérateur
- · Code:

```
(* cardinal : 'a standard_tree -> int *)
(* Renvoie le nombre d'elements d'un arbre *)
let cardinal arb =
tree_fold (fun _ cardinal_g cardinal_d -> 1 + cardinal_g + cardinal_d) 0 arb
```

Type algébrique quelconque

Itérateur fold - Généralisation

- tree_fold peut être généralisé en fold pour tout type algébrique.
- fold "remplace" les constructeurs du type par des appels de fonctions de même arité.
- Le nombre et le type des paramètres de l'itérateur fold dépendent donc du nombre et du type des constructeurs de la structure de données sur laquelle l'itérateur s'applique.

Contrainte structurelle

- Mise en place d'invariants structurels :
- Propriétés locales à chaque nœud qui ne peuvent être exprimées par le type seul et qui garantissent globalement l'efficacité des opérations.
- Exemples :
 - des propriétés numériques portant sur la taille, la profondeur, etc.
 - des propriétés d'ordre entre éléments.
 - des propriétés portant sur des données auxiliaires ajoutées (arbres colorés Rouge-Noir par exemple).
- Aide à l'obtention d'une représentation canonique.
- Nécessité que les types soient abstraits/privés.

Arbres binaires à gauche - Spécification

Les arbres binaires à gauches respectent le schéma de type standard des arbres binaires :

```
type 'a abg = Vide | Noeud of 'a abg * 'a * 'a abg
```

et reposent sur ces deux principes :

- Invariant 1: Les éléments de l'arbre sont ordonnés en tas ("heap ordered"), i.e. pour tout sous-arbre non vide, l'élément à sa racine est toujours inférieur à chaque élément présent dans ses fils gauche et droit.
- Invariant 2: Les branches penchent à gauche, i.e. pour tout sous-arbre non vide, son fils gauche est au moins aussi profond que son fils droit.

Arbres binaires à gauche - Complexité

La complexité du pire cas des opérations suivantes est logarithmique:

- insertion
- union
- retrait de l'élément minimal

Arbres binaires à gauche - Union

L'union entre deux arbres binaires à gauches non vides (seul cas non trivial) peut se décomposer en deux phases :

- Décomposition : on insère l'arbre de racine la plus grande dans le fils droit de l'autre arbre, afin de respecter l'invariant 1.
- Recomposition : on échange les fils gauche et droit du résultat si besoin est, afin de respecter l'invariant 2.

```
type 'a abg = Vide | Noeud of 'a abg * 'a * 'a abg
(* profondeur 'a abg -> int *)
(* Calcule la profondeur maximale d'un arbre binaire a gauche *)
```

```
Arbres binaires à gauche - Implantation
type 'a abg = Vide | Noeud of 'a abg * 'a * 'a abg
(* profondeur 'a abg -> int *)
(* Calcule la profondeur maximale d'un arbre binaire a gauche *)
(* On s'interesse a la branche la plus a gauche, c'est par definition la plus profonde *)
let rec profondeur a = match a with
  Vide
               ->0
  |Noeud(g,r,d)| -> 1 + profondeur g
(* noeud : 'a abg -> 'a -> 'a abg -> 'a abg *)
(* Constructeur abstrait qui construit un noeud en permutant les 2 branches si necessaire *)
(* afin de respecter l'invariant 2 *)
let noeud a r d =
```

if profondeur g < profondeur d then Noeud (d, r, g) else Noeud (g, r, d)

```
Arbres binaires à gauche - Implantation
type 'a abg = Vide | Noeud of 'a abg * 'a * 'a abg
(* profondeur 'a abg -> int *)
(* Calcule la profondeur maximale d'un arbre binaire a gauche *)
(* On s'interesse a la branche la plus a gauche, c'est par definition la plus profonde *)
let rec profondeur a = match a with
  Vide
              ->0
  |Noeud(g,r,d)| -> 1 + profondeur g
(* noeud : 'a abg -> 'a -> 'a abg -> 'a abg *)
(* Constructeur abstrait qui construit un noeud en permutant les 2 branches si necessaire *)
(* afin de respecter l'invariant 2 *)
let noeud a r d =
  if profondeur g < profondeur d then Noeud (d, r, g) else Noeud (g, r, d)
```

(* union : 'a abg -> 'a abg -> 'a abg. Calcule l'union de deux arbres binaires a gauche *)

```
Arbres binaires à gauche - Implantation
```

```
type 'a abg = Vide | Noeud of 'a abg * 'a * 'a abg
(* profondeur 'a abg -> int *)
```

(* Calcule la profondeur maximale d'un arbre binaire a gauche *)

(* Constructeur abstrait qui construit un noeud en permutant les 2 branches si necessaire *)

(* afin de respecter l'invariant 2 *)

let noeud g r d =
 if profondeur g < profondeur d then Noeud (d, r, g) else Noeud (g, r, d)</pre>

if (r1 > r2) then noeud g2 r2 (union abr1 d2) else noeud g1 r1 (union abr2 d1)

25/72

- (* ajout : 'a -> 'a abg -> 'a abg *)
- (* Ajoute un element a un arbre binaire a gauche *)

Arbres binaires à gauche - Implantation

- (* ajout : 'a -> 'a abg -> 'a abg *)
- (* Ajoute un element a un arbre binaire a gauche *)

let ajout e arb =
 union (Noeud(Vide, e, Vide)) arb

Arbres binaires à gauche - Implantation

```
(* ajout : 'a -> 'a abg -> 'a abg *)
```

(* Ajoute un element a un arbre binaire a gauche *)

let ajout e arb = union (Noeud(Vide, e, Vide)) arb

(* minimum : 'a abg -> 'a *)

(* Renvoie le minimum d'un arbre binaire a gauche *)

(* Erreur si l'arbre est vide *)

Arbres binaires à gauche - Implantation (* ajout : 'a -> 'a abg -> 'a abg *) (* Ajoute un element a un arbre binaire a gauche *) let ajout e arb = union (Noeud(Vide, e, Vide)) arb (* minimum : 'a abg -> 'a *) (* Renvoie le minimum d'un arbre binaire a gauche *) (* Erreur si l'arbre est vide *)

let minimum abr = match abr with

|Noeud(g,r,d)| -> r

```
Arbres binaires à gauche - Implantation
(* ajout : 'a -> 'a abg -> 'a abg *)
(* Ajoute un element a un arbre binaire a gauche *)
let ajout e arb =
 union (Noeud(Vide, e, Vide)) arb
(* minimum : 'a abg -> 'a *)
(* Renvoie le minimum d'un arbre binaire a gauche *)
(* Erreur si l'arbre est vide *)
(* ie la racine *)
let minimum abr = match abr with
  Vide
               -> failwith "Arbre vide!"
  |Noeud(g,r,d)| -> r
(* retrait_min : 'a abg -> 'a abg *)
(* Retire son minimum a un arbre binaire a gauche *)
(* Erreur si l'arbre est vide *)
```

```
Arbres binaires à gauche - Implantation
(* ajout : 'a -> 'a abg -> 'a abg *)
(* Ajoute un element a un arbre binaire a gauche *)
let aiout e arb =
 union (Noeud(Vide, e, Vide)) arb
(* minimum : 'a abg -> 'a *)
(* Renvoie le minimum d'un arbre binaire a gauche *)
(* Erreur si l'arbre est vide *)
(* ie la racine *)
let minimum abr = match abr with
  Vide
          —> failwith "Arbre vide!"
  |Noeud(g,r,d)| -> r
(* retrait_min : 'a abg -> 'a abg *)
(* Retire son minimum a un arbre binaire a gauche *)
(* Erreur si l'arbre est vide *)
let retrait min abr = match abr with
           -> failwith "Arbre vide!"
  Vide
  |Noeud(g,r,d)| > union g d
```

Spécification

- Un parcours des éléments d'un arbre consiste à présenter ses éléments séquentiellement;
- en vue d'itérer un traitement particulier sur cette séquence.
- Contrairement aux listes, où un seul type de parcours existe,
- le cas des arbres donne lieu à de multiples possibilités.
- On envisagera néanmoins uniquement les parcours de gauche à droite.

Analyse fonctionnelle

- Construire la liste (séquence) des éléments, dans l'ordre où le traitement à itérer les trouverait.
- 2. Appliquer itérativement ce traitement sur la liste obtenue (avec un List. fold_left_par exemple).

On ne s'intéressera donc qu'à la construction de la dite liste.

Deux types de parcours

- 1. en profondeur
- 2. en largeur

Parcours en profondeur

Le parcours en profondeur consiste, pour un arbre non vide:

- à explorer la branche gauche complètement (depuis la racine jusqu'aux feuilles),
- puis à explorer la branche droite.
- Le traitement de l'élément à la racine de l'arbre donne lieu à trois possibilités selon que:
 - on traite la racine avant ses fils. Parcours préfixe.
 - on traite la racine après ses fils. Parcours postfixe.
 - on traite la racine entre son fils gauche et son fils droit. Parcours infixe.

Parcours en profondeur - Exemple

Préfixe:

[1; 2; 4; 5; 7; 3; 6; 8]

• Postfixe:

[4; 7; 5; 2; 8; 6; 3; 1]

Infixe:

[4; 2; 7; 5; 1; 3; 8; 6]

Parcours en profondeur - Implantation

```
let parcours_profondeur_prefixe a =
    tree_fold (fun racine prof_pre_g prof_pre_d -> racine::(prof_pre_g@prof_pre_d) [] a

let parcours_profondeur_postfixe a =
    tree_fold (fun racine prof_post_g prof_post_d -> prof_post_g@(prof_post_d@[racine]) [] a

let parcours_profondeur_infixe a =
    tree_fold (fun racine prof_inf_g prof_inf_d -> prof_inf_g@(racine::prof_inf_d) [] a
```

- Les appels récursifs utilisent implicitement la pile d'appels.
- Il est également possible d'utiliser une pile utilisateur plus simple pour réaliser un parcours en profondeur "à la main".

Parcours en profondeur - Pile explicite

Arbre :

• Linéarisation : [x₁; x₂; x₃; x₄; x₅; x₆]

Parcours en profondeur - Pile explicite

• Autre représentation de l'arbre :

Parcours en profondeur - Pile explicite

• Initialement dans la pile :

Parcours en profondeur - Pile explicite

- On dépile :
- x_1 ::(appel récursif avec dans la pile)

Parcours en profondeur - Pile explicite

- On dépile :
- $x_1::(x_2::(appel récursif avec dans la pile))$

N /|\ x₃ E E

•

Parcours en profondeur - Pile explicite

- On dépile :
- $x_1::(x_2::(x_3::(appel récursif avec dans la pile)))$
 - E
 - E
 - _

Parcours en profondeur - Pile explicite

- On dépile :
- $x_1::(x_2::(x_3::(appel récursif avec dans la pile)))$
 - E
 - •

Parcours en profondeur - Pile explicite

- On dépile :
- $x_1::(x_2::(x_3::(appel récursif avec dans la pile)))$

- On dépile :
- $x_1::(x_2::(x_3::(x_4::(appel récursif avec dans la pile))))$
 - E
 - E
 - •

- On dépile :
- $x_1::(x_2::(x_3::(x_4::(appel récursif avec dans la pile))))$
 - E
 - •

Parcours en profondeur - Pile explicite

- On dépile :
- $x_1::(x_2::(x_3::(x_4::(appel récursif avec dans la pile))))$

Parcours en profondeur - Pile explicite

- On dépile :
- $x_1::(x_2::(x_3::(x_4::(x_5::(appel récursif avec dans la pile)))))$

N / I \ x₆ E E

• E

- On dépile :
- $x_1::(x_2::(x_3::(x_4::(x_5::(x_6::(appel récursif avec dans la pile))))))$
 - E
 - E
 - E

- On dépile :
- $x_1::(x_2::(x_3::(x_4::(x_5::(x_6::(appel récursif avec dans la pile))))))$
 - E
 - E

- On dépile :
- $x_1::(x_2::(x_3::(x_5::(x_6::(appel récursif avec dans la pile)))))))$
 - E

- On dépile :
- $x_1::(x_2::(x_3::(x_5::(x_6::(appel récursif avec pile vide))))))$

- On dépile :
- $x_1::(x_2::(x_3::(x_5::(x_6::(appel récursif avec pile vide))))))$
- $X_1::(X_2::(X_3::(X_4::(X_5::(X_6::([]))))))$

- On dépile :
- $x_1::(x_2::(x_3::(x_5::(x_6::(appel récursif avec pile vide))))))$
- $X_1::(X_2::(X_3::(X_4::(X_5::(X_6::([]))))))$
- $[X_1; X_2; X_3; X_4; X_5; X_6]$

Parcours en largeur

- Le parcours en largeur consiste à parcourir les nœuds de l'arbre, "ligne" par "ligne".
- Cela ne correspond pas du tout à la récursivité naturelle.
- Utilisation d'une file au lieu d'une pile.

Parcours en largeur - File explicite

• Arbre :

• Linéarisation : [x₁; x₂; x₅; x₃; x₄; x₆]

Parcours en largeur - File explicite

• Initialement dans la file :

Parcours en largeur - File explicite

- On défile :
- x_1 ::(appel récursif avec dans la file)

Parcours en largeur - File explicite

- On défile :
- $x_1::(x_2::(appel récursif avec dans la file))$

•

•

Parcours en largeur - File explicite

- On défile :
- $x_1::(x_2::(x_5::(appel récursif avec dans la file)))$

N /|\ x₃ E E

•

•

E

Parcours en largeur - File explicite

- On défile :
- $x_1::(x_2::(x_5::(x_3::(appel récursif avec dans la file))))$

N / | \ x₄ E E

- _ _
- F
- E

- On défile :
- $x_1::(x_2::(x_5::(x_3::(x_4::(appel récursif avec dans la file))))))$

```
N
/ | \
x<sub>6</sub> E E
```

- E
- E
- E
- E
- E

- On défile :
- $x_1::(x_2::(x_5::(x_5::(x_4::(x_6::(appel récursif avec dans la file))))))$
 - E
 - E
 - E
 - E
 - E
 - E
 - E

- On défile :
- $x_1::(x_2::(x_5::(x_3::(x_4::(x_6::(appel récursif avec dans la file))))))$
 - E
 - E
 - E
 - E
 - E
 - E

- On défile :
- $x_1::(x_2::(x_5::(x_5::(x_6::(x_6::(appel récursif avec dans la file))))))$
 - E
 - E
 - E
 - E
 - E

- On défile :
- $x_1::(x_2::(x_5::(x_5::(x_4::(x_6::(appel récursif avec dans la file))))))$
 - E
 - E
 - E
 - E

- On défile :
- $x_1::(x_2::(x_5::(x_5::(x_6::(x_6::(appel récursif avec dans la file))))))$
 - E
 - E
 - E

- On défile :
- $x_1::(x_2::(x_5::(x_3::(x_4::(x_6::(appel récursif avec dans la file))))))$
 - E
 - E

- On défile :
- $x_1::(x_2::(x_5::(x_5::(x_4::(x_6::(appel récursif avec dans la file))))))$
 - E

- On défile :
- $x_1::(x_2::(x_5::(x_3::(x_4::(x_6::(appel récursif avec file vide))))))$

- On défile :
- $x_1::(x_2::(x_5::(x_3::(x_4::(x_6::(appel récursif avec file vide)))))))$
- $X_1::(X_2::(X_5::(X_3::(X_4::(X_6::([]))))))$

- On défile :
- $x_1::(x_2::(x_5::(x_3::(x_4::(x_6::(appel récursif avec file vide))))))$
- $X_1::(X_2::(X_5::(X_3::(X_4::(X_6::([]))))))$
- $[X_1; X_2; X_5; X_3; X_4; X_6]$

Parcours en largeur - File explicite

 On utilise ici une version naïve et inefficace de la file par concaténation à droite.

Arbre naire .mli (* un arbre dont le nombre de fils d'un noeud est quelconque : arbre n-aire *) type 'a arbre_naire (* constructeurs "abstraits" *) val cons: 'a -> 'a arbre_naire list -> 'a arbre_naire (* selecteurs *) val racine : 'a arbre_naire -> 'a val fils : 'a arbre_naire -> 'a arbre_naire list (* iterateurs *) val map : $('a -> 'b) -> 'a arbre_naire -> 'b arbre_naire$

val fold : $('a \rightarrow b') = 'a'$ arbre_naire -> b'

Implantation Arbre_naire.ml

```
type 'a arbre_naire =
 Noeud of 'a * 'a arbre_naire list
let cons racine fils = Noeud (racine, fils )
let racine (Noeud (racine, _)) = racine
let fils (Noeud (_, fils )) = fils
(* principe : une fonction / constante pour chaque constructeur: Noeud *)
let rec fold fNoeud (Noeud (racine, fils )) =
 fNoeud racine (List.map (fold fNoeud) fils)
let rec map f (Noeud (r, fils )) =
 Noeud (f r, List.map (map f) fils)
(* ou bien *)
let map f arb =
 fold (fun r liste_map_fils -> Noeud (f r, liste_map_fils )) arb
```

Utilisation

- Écrire la fonction cardinal, pour les arbres n-aires, à l'aide d'un itérateur
- Code:

Utilisation

- Écrire la fonction cardinal, pour les arbres n-aires, à l'aide d'un itérateur
- · Code:

```
(* cardinal : 'a arbre_naire -> int *)
(* Renvoie le nombre d'elements d'un arbre *)
let cardinal arb =
  fold (fun _ liste_cardinal_fils _ -> 1 + List. fold_right (+) liste_cardinal_fils _ 0) arb
```

Problème : écriture d'un évaluateur

d'expression

Description du problème

- La structure d'arbre générique vu précédemment peut ne pas correspondre au besoin.
- Un type ad hoc peut être utilisé pour représenter une structure arborescente avec plus de précision.
- Illustration : évaluateur d'une sous-partie des expressions OCAML.

Grammaire des expressions

- 1. $E \rightarrow let id = E in E$
- 2. $E \rightarrow (E)$
- 3. $E \rightarrow E + E$
- 4. $E \rightarrow E E$
- 5. $E \rightarrow -E$
- 6. $E \rightarrow id$
- 7. $E \rightarrow entier$

Représentation arborescente des expressions

- Les expressions se représentent naturellement sous forme d'arbre.
- Par exemple, l'expression :

let
$$x = 4+5$$
 in $-x$

• peut être représentée par l'arbre :

Type OCAML des expressions

```
type expression =
| Definition of string * expression * expression
| Addition of expression * expression
| Soustraction of expression * expression
| Inverse of expression
| Identifiant of string
| Entier of int
```

Evaluateur sans les définitions

```
(* evalue : expression -> int *)
let rec evalue exp =
match exp with
| Addition (e1,e2) -> (evalue e1)+(evalue e2)
| Soustraction (e1,e2) -> (evalue e1)-(evalue e2)
| Inverse e -> -(evalue e)
| Entier i -> i
```

Evaluateur avec les définitions

- Besoin de gérer un environnement.
- Le type de la fonction evalue ne doit pas être modifié.
- Besoin d'une fonction auxiliaire.

```
# evalue (Definition ("x",Addition ((Entier 4),(Entier 5)), Inverse (Identifiant "x"))) -: int = -9
```