Machine Learning Scientist

PREDICT \$0CEAN PRICE WITH TWEET SENTIMENTS

OCEAN DATA CHALLENGE: OCEAN TOKEN SENTIMENT ANALYSIS

CONTENTS

- Context
- The question and its interpretation
- Data exploration
- Data reduction with auto encoder
- LSTM model to predict
- Conclusions
- Axes of improvement

CONTEXT

- Ocean Data Challenge
 - predict \$OCEAN price with twitter sentiment
- Data used:
 - OCEAN token price dataset
 - OCEAN tweets dataset
 - not other data!

THE QUESTION AND ITS INTERPRETATION

- Find correlation with price and:
 - number of tweets
 - number of likes
 - number of retweets
 - number of individuals
 - number of influential tweets
- Model of twitter sentiment
 - Extract sentiment from tweet with a model to classify tweets
- Find correlation with price evolution

EXPLORATION: THE DATA: TWEETS

keep columns with NaN less than 90%

DATE UTC+3 != DATE PRICES => NEED TO SYNCHRONISE

EXPLORATION: THE DATA: PRICES

NB PRICES = 1024 DAYS

- Open / High / Low / Close / Volume : classical data
- Date reference : UTC (checked on Tradingview)
- Date range synchronise with tweets
- Add some simple insights
 - Use price variation: (Close Open) / Open
 - Classifification rules

```
Levels of price variation : level_stat_price :
- neutral : var mean - 1 std < var price < var mean + 1 std
- bearish : var price < var mean - std
- bullish : var price > var mean + std
```

EXPLORATION: MERGE METHOD PRICES & TWEETS

- Choose to synchronize date for exploration
 - (no for last part : model prediction)
- Merge with daily prices :
 - Aggregate each day
 - with sum
 - number of tweets / likes / retweets / influential
 - with nunique
 - number of individuals
 - For influential, select tweets with more the 100 likes

CORRELATION BETWEEN THE PRICE OF \$0CEAN AND THE NUMBER OF TWEETS

CORRELATION BETWEEN THE PRICE OF \$0CEAN AND THE NUMBER OF LIKES

Corr coef nb likes vs Close: 0.59 Corr coef nb likes vs pc_var: 0.21

=> LOW CORRELATION
BUT MORE THAN SIMPLE NB TWWETSMAYBE DURING SURGE

CORRELATION BETWEEN THE PRICE OF \$OCEAN

Lower correlation with Nb influential tweets & nb

individual

	Close	pc_var	Low	High
nb_influ	0.560370	0.201397	0.537332	0.559453
nb_indiv	0.499816	0.145142	0.476117	0.507835
retweets_count	0.491611	0.180578	0.473187	0.494742
likes_count	0.598143	0.211415	0.573586	0.599180
nb_tweets	0.446507	0.170824	0.421602	0.454216

=> NB LIKES = THE BEST INSIGHT BUT STILL LOW

MODEL SENTIMENT: SIMPLE TEXTBLOB

- Use Textblob to extract sentiment in tweets
 - Desynchronise dates between Tweets and Prices
 - Tweets = 3 hours before

MODEL SENTIMENT: RESULTS

- Good to detect neutral
- Still bad for perish or bullish
 - predict neutral instead

CONFUSION MATRIX

MODEL SENTIMENT: RESULTS

Sorry no time to finish !!!