

MAR 29, 2024

OPEN BACCESS

DOI:

dx.doi.org/10.17504/protocols.io. 261gedqn7v47/v1

Protocol Citation: Katerina Rademacher, Ken Nakamura 2024. Ex vivo electrophysiology. **protocols.io**

https://dx.doi.org/10.17504/protoc ols.io.261gedqn7v47/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original

Protocol status: Working We use this protocol and it's working

author and source are credited

Created: Mar 07, 2024

Ex vivo electrophysiology

Katerina Rademacher¹, Ken Nakamura¹

¹Gladstone Institute of Neurological Disease

ASAP Collaborative Research Network

Haru Yamamoto

ABSTRACT

This protocol describes steps for ex vivo electrophysiology in mouse brain slices. This protocol also includes instructions for clozapine N-oxide (CNO) testing in DREADD-expressing neurons.

MATERIALS

- Isoflurane
- Rodent guillotine
- Vibratome (Campden Instruments, 7000smz-2)
- aCSF solution containing (in mM): 119 NaCl, 2.5 KCl, 1.3 MgSO₄, 1.0 NaH₂PO₄, 2.5 CaCl₂, 26.2 NaHCO₃, and 11 glucose saturated with 95% O₂−5% CO₂
- 3 5 MOhm pipettes containing (in mM): 123 K-gluconate, 10 HEPES, 0.2 EGTA, 8
 NaCl, 2 MgATP, and 0.3 Na3GTP, pH 7.2, osmolarity adjusted to 275. Biocytin (0.1%,
 Sigma) is included in the internal solution to identify neurons after recordings where
 desired.
- Axio Examiner A1 equipped with Dodt and IR optics
- Zeiss Axiocam 506 mono
- Neurolucida 2023 software
- Sutter IPA and SutterPatch v2.3.1 software (Sutter Instruments)
- Clozapine N-oxide (for DREADD-expressing neurons; Tocris)
- 4% formaldehyde in PBS

Last Modified: Mar 29, 2024

PROTOCOL integer ID: 96306

Keywords: ASAPCRN

Funders Acknowledgement:

ASAP

Grant ID: 020529

Tissue Preparation

- 1 Deeply anesthetize the mouse with isofluorane, decapitate, and remove the brain.
- 2 Using a vibratome, cut 150mm horizontal slices containing the region of interest in ice-cold aCSF solution and allow to recover at 33° C in aCSF for at least one hour.

Recording

- For fluorescent imaging, visualize slices under an Axio Examiner A1 equipped with Dodt and IR optics using a Zeiss Axiocam 506 mono and Neruolucida 2023 software.
- Whole-cell patch-clamp recordings are made at 33° C using 3 5 M0hm pipettes. Recordings are made using Sutter IPA and SutterPatch v2.3.1 software (Sutter Instruments), filtered at 5 kHz and collected at 10 kHz.
 - **4.1** For I_h : voltage clamp cells at -60mV and step to -40, -50, -70, -80, -90, -100, -110, and -120 mV. I_h magnitude is quantified as the difference between the initial steady-state response to the -120mV step and the asymptote of the slow current sag.

- 4.2 For spontaneous firing rates: record in current-clamp mode (/= 0 pA). Spontaneous firing rate is measured as the mean firing rate during the first 2 min of whole-cell recording.
- 4.3 Action potential (AP) waveform measurements are made from averages across at least 8 APs from the first 2 min of recording.
- **4.4** For input resistance: Apply a brief hyperpolarizing pulse once every 10 sec and average across the measurements made during the first 2 min of recording.
- **4.5** For CNO testing in DREADD-expressing neurons: spontaneous firing rate or resting membrane potential are monitored until a stable baseline is observed for at least 5 min. Then switch the perfusion solution to 1mM CNO for 5 min.
- 5 When recordings are complete, drop fix slices in 4% formaldehyde in PBS for at least 2 hr.
- **6** Complete statistical analyses in R, first testing whether data meet the criteria for parametric statistical evaluation.

Mar 29 2024