Método Mestre para Resolver Recorrências

Prof. Juliano Foleis

Método Mestre

O método mestre serve para resolver recorrências da forma

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

tal que $a \geq 1, b > 1, a$ e b constantes, e f(n) é assintoticamente positiva.

Teorema Mestre

Sejam $a \geq 1$ e b > 1 constantes, f(n) uma função assintoticamente possitiva e T(n) definida para inteiros não-negativos a recorrência

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

é limitada assintoticamente por:

- 1. Se $f(n) = O(n^{\log_b(a) \epsilon})$ para $\epsilon > 0$ constante, então $T(n) = \Theta(n^{\log_b(a)})$;
- 2. Se $f(n) = \Theta(n^{\log_b(a)})$, então $T(n) = \Theta(n^{\log_b(a)} \cdot \lg(n))$; ou
- 3. Se $f(n)=\Omega(n^{\log_b(a)+\epsilon})$ para $\epsilon>0$ constante **E** se $af\left(\frac{n}{b}\right)\leq cf(n)$ para c<1 constante e n suficientemente grande, então $T(n)=\Theta(f(n))$.

Resolva a recorrência $T(n) = 9T\left(rac{n}{3}
ight) + n$ usando o método mestre.

Solução:

Passo 1: Identificar $a, b \in f(n)$.

$$a = 9$$

$$b = 3$$

$$f(n) = n$$

$$n^{\log_b a} = n^{\log_3 9} = n^2$$

Passo 3: Comparar f(n) e $n^{\log_b(a)}$.

$$f(n)=?(n^{\log_b(a)})$$
, substituindo $n=?(n^2)$ (O, Ω ou Θ ?)

$$n = O(n^2)$$

Parece que temos o Caso 1 do TM:

1. Se
$$f(n) = O(n^{\log_b(a) - \epsilon})$$
 para $\epsilon > 0$ constante, então $T(n) = \Theta(n^{\log_b(a)})$

Como $n=O(n^{2-\epsilon})$, p/ $\epsilon=1$, podemos aplicar o caso 1 do método mestre e concluir que $T(n)=\Theta(n^{\log_b(a)})=\Theta(n^2)$.

Resolva a recorrência $T(n) = T\left(rac{2n}{3}
ight) + 1$ usando o método mestre.

Solução:

Passo 1: Identificar $a, b \in f(n)$.

$$a = 1$$

$$b = \frac{3}{2}$$

$$f(n) = 1$$

$$n^{\log_b a} = n^{\log_{rac{3}{2}}1} = n^0 = 1$$

Passo 3: Comparar f(n) e $n^{\log_b(a)}$.

$$f(n)=?(n^{\log_b(a)})$$
, substituindo $1=?(1)$ (O, Ω ou Θ ?)

$$1 = \Theta(1)$$

Parece que temos o Caso 2 do TM:

2. Se
$$f(n) = \Theta(n^{\log_b(a)})$$
, então $T(n) = \Theta(n^{\log_b(a)} \cdot \lg(n))$

Como $1=\Theta(1)$, podemos aplicar o caso 2 do método mestre e concluir que $T(n)=\Theta(n^{\log_b(a)}\cdot\lg(n))=\Theta(1\cdot\lg(n))=\Theta(\lg(n)).$

Resolva a recorrência $T(n) = 3T\left(rac{n}{4}
ight) + n\lg n$ usando o método mestre.

Solução:

Passo 1: Identificar $a, b \in f(n)$.

$$a = 3$$

$$b=4$$

$$f(n) = n \lg n$$

$$n^{\log_b a} = n^{\log_4 3} pprox n^{0.793}$$

Passo 3: Comparar f(n) e $n^{\log_b(a)}$.

$$f(n)=?(n^{\log_b(a)})$$
, substituindo $n\lg n=?(n^{0,793})$ (O, Ω ou Θ ?)

$$n\lg n = \Omega(n^{0,793})$$

Parece que temos o Caso 3 do TM:

3. Se $f(n)=\Omega(n^{\log_b(a)+\epsilon})$ para $\epsilon>0$ constante **E** se $af\left(\frac{n}{b}\right)\leq cf(n)$ para c<1 constante e n suficientemente grande, então $T(n)=\Theta(f(n))$.

Como $f(n)=\Omega(n^{\log_4 3+\epsilon}), \epsilon\approx 0.2$, podemos aplicar o caso 3 do método mestre se a condição a seguir for verdadeira: $af\left(\frac{n}{b}\right)\leq cf(n)$.

$$af\left(rac{n}{b}
ight) \leq cf(n)$$
 $3\left(rac{n}{4}\lgrac{n}{4}
ight) \leq cn\lg n$
 $rac{3}{4}n\lg n - rac{3}{4}n\lg 4 \leq cn\lg n$
 $rac{3}{4}n\lg n - rac{3}{4}2n \leq cn\lg n$
 $rac{3}{4}n\lg n - rac{3}{2}n \leq cn\lg n$
 $n\lg n\left(rac{3}{4} - rac{3}{2\lg n}
ight) \leq cn\lg n$
 $rac{3}{4} - rac{3}{2\lg n} \leq c$

$$rac{3}{4} - rac{3}{2 \lg n} \leq c$$

Portanto, $c \geq \frac{3}{4}$ para n suficientemente grande. Assim, tomando $c = \frac{3}{4}$, $af\left(\frac{n}{b}\right) \leq cf(n)$ p/c < 1. Assim, é possível aplicar o caso 3 do método mestre, e podemos concluir que $T(n) = \Theta(f(n)) = \Theta(n \lg n)$.

Resolva a recorrência $T(n) = 2T\left(rac{n}{2}
ight) + n\lg n$ usando o método mestre.

Solução:

Passo 1: Identificar $a, b \in f(n)$.

$$a = 2$$

$$b=2$$

$$f(n) = n \lg n$$

$$n^{\log_b a} = n^{\log_2 2} = n^1 = n$$

Passo 3: Comparar f(n) e $n^{\log_b(a)}$.

$$f(n)=?(n^{\log_b(a)})$$
, substituindo $n \lg n=?(n)$ (O, Ω ou Θ ?)

$$n \lg n = \Omega(n)$$

Parece que temos o Caso 3 do TM:

3. Se
$$f(n)=\Omega(n^{\log_b(a)+\epsilon})$$
 para $\epsilon>0$ constante **E** se $af\left(\frac{n}{b}\right)\leq cf(n)$ para $c<1$ constante e n suficientemente grande, então $T(n)=\Theta(f(n))$.

 $n \lg n$ é limitada inferiormente por n, mas não é polinomialmente maior. Isto é, a razão $f(n)/n^{\log_b a} = n \lg n/n = \lg n$, que é assintoticamente menor que n^ϵ para qualquer constante positiva ϵ . Em outras palavras, não é possível mostrar que $n \lg n = \Omega(n^{1+\epsilon})$ p/ $\epsilon > 0$. Consequentemente a recorrência cai na lacuna dos casos 2 e 3 e não é resolvida pelo teorema mestre.

Resolva a recorrência $T(n)=2T\left(rac{n}{2}
ight)+\Theta(n)$ usando o método mestre.

Solução:

Passo 1: Identificar $a, b \in f(n)$.

$$a = 2$$

$$b=2$$

$$f(n) = n$$

$$n^{\log_b a} = n^{\log_2 2} = n^1 = n$$

Passo 3: Comparar f(n) e $n^{\log_b(a)}$.

$$f(n)=?(n^{\log_b(a)})$$
, substituindo $n=?(n)$ (O, Ω ou Θ ?)

$$n = \Theta(n)$$

Parece que temos o Caso 2 do TM:

2. Se
$$f(n) = \Theta(n^{\log_b(a)})$$
, então $T(n) = \Theta(n^{\log_b(a)} \cdot \lg(n))$

Como $n=\Theta(n)$, podemos aplicar o caso 2 do método mestre e concluir que $T(n)=\Theta(n^{\log_b(a)}\cdot\lg(n))=\Theta(n\cdot\lg(n))=\Theta(n\lg(n)).$

Resolva a recorrência $T(n) = 8T\left(rac{n}{2}
ight) + \Theta(n^2)$ usando o método mestre.

Solução:

Passo 1: Identificar $a, b \in f(n)$.

$$a = 8$$

$$b=2$$

$$f(n) = n^2$$

$$n^{\log_b a} = n^{\log_2 8} = n^3$$

Passo 3: Comparar f(n) e $n^{\log_b(a)}$.

$$f(n)=?(n^{\log_b(a)})$$
, substituindo $n^2=?(n^3)$ (O, Ω ou Θ ?)

$$n^2 = O(n^3)$$

Parece que temos o Caso 1 do TM:

1. Se
$$f(n) = O(n^{\log_b(a) - \epsilon})$$
 para $\epsilon > 0$ constante, então $T(n) = \Theta(n^{\log_b(a)})$

Como $n^2=O(n^{3-\epsilon})$, p/ $\epsilon=1$, podemos aplicar o caso 1 do método mestre e concluir que $T(n)=\Theta(n^{\log_b(a)})=\Theta(n^3)$.

Resolva a recorrência $T(n) = 7T\left(rac{n}{2}
ight) + \Theta(n^2)$ usando o método mestre.

Solução:

Passo 1: Identificar $a, b \in f(n)$.

$$a = 7$$

$$b=2$$

$$f(n) = n^2$$

$$n^{\log_b a} = n^{\log_2 7} = n^{\lg 7} pprox n^{2,8}$$

Passo 3: Comparar f(n) e $n^{\log_b(a)}$.

$$f(n)=?(n^{\log_b(a)})$$
, substituindo $n^2=?(n^{2,81})$ (O, Ω ou Θ ?)

$$n^2 = O(n^{2,81})$$

Parece que temos o Caso 1 do TM:

1. Se
$$f(n) = O(n^{\log_b(a) - \epsilon})$$
 para $\epsilon > 0$ constante, então $T(n) = \Theta(n^{\log_b(a)})$

Como $n^2=O(n^{\lg(7)-\epsilon})$, para $\epsilon=0.8$, podemos aplicar o caso 1 do método mestre e concluir que $T(n)=\Theta(n^{\log_b(a)})=\Theta(n^{\lg 7})=\Theta(n^{2,8}).$

Bibliografia

[CRLS] CORMEN, T. H. et al. Algoritmos: Teoria e Prática. Elsevier, 2012. 3a Ed. Capítulo 4 (Divisão e Conquista), Seção 4.5 (Método mestre para resolver recorrências)