Combinação de Modelos (Ensembles)

Prof. André Gustavo Hochuli

gustavo.hochuli@pucpr.br aghochuli@ppgia.pucpr.br github.com/andrehochuli/teaching

Plano de Aula

- Discussões Iniciais
- Combinação
 - Bagging
 - Random Subspaces
 - Boosting
 - Stacking
- Exercícios

Discussões Iniciais

- Classificador Único
- Conjunto de Classificadores

- Em problemas complexos, um único classificador pode não generalizar adequadamente o problema
- E se combinarmos classificadores?

 De maneira geral, a técnica consiste em treinar classificadores e então combinar a saída destes

Porém, apenas treinar N classificadores, pode não gerar generalizações distintas

• Pergunta: Como gerar generalizações diferentes ?

Pergunta: Como gerar generalizações diferentes ?

- A. Combination level: Design different combiners.
- **B.** Classifier level: Use different base classifiers.
- C. Feature level: Use different feature subsets.
- D. Data level: Use different data subsets.

Bagging

- Nível de Dados: (Boostrap Aggregating)
 - K subsets em nível de instâncias
 - K classificadores
- Diversidade é gerada a partir das distintas instâncias

Random SubSpaces

- Nível de Atributos:
 - K subsets em nível de atributos
 - K classificadores
- Diversidade: Distintos atributos

Random Patches

- Tudo Junto!
- Sklearn: BaggingClassifier()

Let's Code!

• No tutorial abaixo, exploraremos os conceitos abordados até o momento:

LINK: Tópico 02 - Aprendizado-Supervisionado - Ensembles.ipynb