Tarea 1: Redes Neuronales

Jose Irribarra Bastías-Mauricio Ramírez Igor today

Problema 1

Problema 1.1

a) Suponer que la función $f: \{-1,1\}^4 \to \{-1,1\}$, definida por $f(w,x,y,z) = 1 \iff w-x-y+z = 0$ puede ser aprendida por un perceptrón, es decir $\exists w_1, w_2, w_3, w_4, \theta \in \mathbb{R}$ tal que

$$f(w, x, y, z) = sign(w_1w + w_2x + w_3y + w_4z - \theta), \quad \forall (w, x, y, z) \in \{-1, 1\}^4$$

Considerar las siguientes evaluaciones de f:

$$f(1,-1,-1,1) = sign(w_1 - w_2 - w_3 + w_4 - \theta) = -1 \implies w_1 - w_2 - w_3 + w_4 < \theta$$

$$f(-1,1,1,-1) = sign(-w_1 + w_2 + w_3 - w_4 - \theta) = -1 \implies -w_1 + w_2 + w_3 - w_4 < \theta$$

$$f(1,-1,1,-1) = sign(w_1 - w_2 + w_3 - w_4 - \theta) = 1 \implies w_1 - w_2 + w_3 - w_4 \ge \theta$$

$$f(-1,1,-1,1) = sign(-w_1 + w_2 - w_3 + w_4 - \theta) = 1 \implies -w_1 + w_2 - w_3 + w_4 \ge \theta$$

Sumando las primeras 2 desigualdades se tiene que $\theta > 0$, mientras que al sumar las 2 ultimas resulta $\theta \le 0$, obteniéndose una contradicción, por ende f no puede ser aprendida por un perceptrón. Se define la red multicapas:

Figura 1: red de 2 capas que aprende f.

La función f vale 1 al evaluar en los puntos (1,1,1,1),(1,1,-1,-1),(1,-1,1,-1),(-1,1,-1,1),(-1,-1,1,1),(-1,-1,-1,-1). Esto motiva a definir las funciones:

$$\begin{array}{l} y_1(w,x,y,z) = AND(w,x,y,z) = H(w+x+y+z-4) \\ y_2(w,x,y,z) = AND(w,x,\overline{y},\overline{z}) = H(w+x-y-z-4) \\ y_3(w,x,y,z) = AND(w,\overline{x},y,\overline{z}) = H(w-x+y-z-4) \\ y_4(w,x,y,z) = AND(\overline{w},x,\overline{y},z) = H(-w+x-y+z-4) \\ y_5(w,x,y,z) = AND(\overline{w},\overline{x},y,z) = H(-w-x+y+z-4) \\ y_6(w,x,y,z) = AND(\overline{w},\overline{x},\overline{y},\overline{z}) = H(-w-x-y-z-4) \end{array}$$

Para todo $i \in \{1, ..., 6\}$ el umbral de la función y_i es 4, mientras que los pesos de cada y_i son los coeficientes que acopañan a las variables w, x, y, z en el argumento de H. La función h presenta salida igual a la de f, donde los pesos para todas sus variables de entrada $(y_1$ hasta $y_6)$ son -1 y el umbral es 6. Así, la red de la Figura 1 aprende f.

b) Sea $f: \{-1,1\}^3 \to \{-1,1\}$, definida por $f(x,y,z) = 1 \iff (x=-1) \land (y=z)$. f no puede ser aprendida por un perceptrón. Basta analizar el caso en que x=1, observando que f(1,1,1)=1, f(1,-1,-1)=1, f(1,1,-1)=-1, f(1,1,-1)=-1. Cada uno de los puntos evaluados son una extensión de x=1 en los puntos (1,1),(1,-1),(-1,1),(-1,-1), los cuales (de imagen 1,-1,-1,1) no son linealmente separables (visto en clases), por eso tampoco lo serán al extenderlos con x=1 en la primera componente.

Se propone la siguiente red multicapas:

Figura 2: red de 2 capas que aprende f.

En este caso, $y_1(x, y, z) = AND(\overline{x}, y, z) = H(x+y+z-3)$, $y_2(x, y, z) = AND(\overline{x}, \overline{y}, \overline{z}) = H(-x-y-z-3)$ y $h(y_1, y_2) = OR(y_1, y_2) = H(-y_1 - y_2 - 2) = f(x, y, z)$, por lo tanto la red aprende f.

c) La función $f: \{-1,1\}^3 \to \{-1,1\}$, definida por $f(x,y,z) = 1 \iff (x,y,z) = (1,-1,1)$ puede ser aprendida por un perceptrón, ya que f(x,y,z) = sign(x-y+z-3).

Problema 1.2

a) Sea $h: \{0,1\}^n \to \{0,1\}$ definida por $h(x) = f(x) \lor g(v)$. Esta función **no** necesariamente es función umbral. Se pueden usar las funciones umbrales, $f,g: \{0,1\}^2 \to \{0,1\}$, definidas por:

$$f(x_1, x_2) = AND(x_1, \overline{x_2}) = H(x_1 - x_2 - 1)$$

$$g(x_1, x_2) = AND(\overline{x_1}, x_2) = H(-x_1 + x_2 - 1)$$

Luego $XOR(x_1, x_2) = (x_1 \wedge \overline{x_2}) \vee (\overline{x_1} \wedge x_2) = f(x_1, x_2) \vee g(x_1, x_2)$, es decir $h(x_1, x_2) = XOR(x_1, x_2)$ no es función umbral (visto en clases).

b) Sea $h:\{0,1\}^n \to \{0,1\}$ definida por $h(x)=1 \iff f(x)=g(x)$. Considerar las funciones umbrales $f(x_1,x_2)=\overline{x_1}\vee\overline{x_2}=H(-x_1-x_2+1)$ y $g(x_1,x_2)=x_1\vee x_2=H(x_1+x_2-1)$. Notar que:

x_1	x_2	$\overline{x_1} \vee \overline{x_2}$	$x_1 \vee x_2$	h
0	0	1	0	0
0	1	1	1	1
1	0	1	1	1
1	1	0	1	0

Entonces, $h(x) = 1 \iff f(x) = g(x)$ resulta ser $h(x_1, x_2) = XOR(x_1, x_2)$, por consiguiente h **no** es función umbral.

c) Sea $h(x) = f(x) \land \neg f(x)$ con $f : \{0,1\}^n \to \{0,1\}^n$ función umbral. Es fácil ver que $\forall x \in \{0,1\}^n : h(x) = 0$. Se puede escribir $h(x) = 0 = H(\sum_{i=1}^n 0 * x_i - 1)$, es decir $\theta = 0$ y los pesos $w_1, ..., w_n$ son iguales a 0. En resumen h(x) es función umbral.

Problema 2

Problema 2.1

a) Sean $X := \{x^j\}_{j=1}^m$ e $Y := \{y^j\}_{j=1}^m$ subconjuntos de \mathbb{R}^n . Por contradicción, asumir $Co(X) \cap Co(Y) \neq \emptyset$. X e Y son linealmente separables si solo si:

$$\forall x^j \in X, \forall y^j \in Y, \quad \exists w \in \mathbb{R}^n, w_0 \in \mathbb{R}: \ f(x) = w \cdot x^j + w_0 > 0 \quad \land \quad f(y) = w \cdot y^j + w_0 < 0 \tag{*}$$

Sea
$$z \in Co(X) \cap Co(Y)$$
, ie $z = \sum_j \alpha_j x^j = \sum_j \beta_j y^j$ $(\alpha_j, \beta_j \ge 0 \land \sum \alpha_j = 1 = \sum \beta_j)$.
Se sigue que $f(z) = w \cdot \left(\sum_j \alpha_j x_j\right) + w_0 = w \cdot \left(\sum_j \beta_j y_j\right) + w_0$. Por linealidad del producto entre vectores, equivale escribir $f(z) = \sum_j \alpha_j (w \cdot x^j + w_0) = \sum_j \beta_j (w \cdot y^j + w_0)$. En virtud de (\star) , la igualdad anterior se cumple si $\forall j : \alpha_j = \beta_j = 0 \iff \sum_j \alpha_j = \sum_j \beta_j = 0$, con $\alpha_j \ge 0, \beta_j \ge 0 \iff 0$.

b) Se redefine la indexación de Y como $\{y^j\}_{j=m+1}^{2m}$. Para determinar si $Co(X)\cap Co(Y)=\emptyset$, se define:

$$Z = \{z^j\}_{j=1}^{2m} := X \cup Y, \quad t_X := 1_{1 \times n}, \quad t_Y := -1_{1 \times n}, \quad t := \underbrace{(1, \dots, 1, -1, \dots, -1)}_{2n}$$

Puesto que $w \cdot x^j > 0$ y $w \cdot y^j < 0$, los vectores t_X, t_Y indican si $z \in Z$ esta en X o Y. Gracias a la equivalencia mostrada en a), basta encontrar \tilde{w} , que separe los elementos de $\{z^j\}_{j=1}^{2m}$ según sus targets para concluir que $Co(X) \cap Co(Y) = \emptyset$, en caso contrario se tendrá que $Co(X) \cap Co(Y) \neq \emptyset$. Para esto se usa la regla del perceptrón de la siguiente forma:

- (i) Inicializar k=0 y tomar $\tilde{w}^{(k)}=(w_1,\ldots,w_n,-w_0)$ al azar y $\tilde{z}^j=(z^j,1)$
- (ii) Para cada \tilde{z}^j , verificar la condición: si $<\tilde{z}^j, \tilde{w}^{(k)}>\cdot t^j<0$ hacer:

$$\tilde{w}^{(k+1)} = \tilde{w}^{(k)} + t^j \tilde{z}^j \; ; \; k = k+1$$

(iii) Si para todo $j=1,\ldots,2m$ se cumple $<\tilde{z}^j,\tilde{w}^{(k)}>\cdot t^j>0$ terminar el proceso retornando $\tilde{w}^{(k)}$, en caso contrario volver a ii).

Problema 2.2

Sea la función $h: \mathbb{R}^2 \to \{0,1\}$, y los conjuntos:

$$T(h) = \{(x,y) \in \mathbb{R}^2 : h(x,y) = 1\} \quad \land \quad F(h) = \{(x,y) \in \mathbb{R}^2 : h(x,y) = 0\}$$

a) Para que T(h) este formado por zonas acotadas disjuntas se escoge $T(h) = \{(x,y) \in \mathbb{R}^2 : (1 \le x \le 3) \lor (5 \le x \le 7), 2 \le y \le 8\}$. En otras palabras:

$$h(x,y) = 1 \iff (x,y) \in (\underbrace{[1,3] \times [2,8]}_{A}) \cup \underbrace{(\underbrace{[5,7] \times [2,8]}_{B})}_{A}$$
. Con A y B disjuntos, A acotado entre 1 y 3 (en x) y B entre 5 y 7 (en x). En y ambos estan acotados entre 2 y 8.

Figura 3: T(h) zona azul, F(h) zona roja.

Se define la red multicapas feedforward:

Figura 4: red de 3 capas.

Donde las funciones de la primera capa son $y_1(x,y) = H(x-1)$, $y_2(x,y) = H(-x+3)$, $y_3(x,y) = H(y-2)$, $y_4(x,y) = H(-y+8)$, $y_5(x,y) = H(x-5)$, $y_6(x,y) = H(-x+7)$. Las funciones de la segunda capa son $z_1 = H(y_1 + y_2 + y_3 + y_4 - 4)$, $z_2 = H(y_3 + y_4 + y_5 + y_6 - 4)$, las cuales representan intersecciones de zonas, formando los conjuntos A y B. Por último, la función que une A y B es $z_3 = H(-z_1 - z_2 - 2)$ de igual salida a h(x,y).

b) F(h) es zona no convexa, si se considera $T(h) := \{(x,y) \in \mathbb{R}^2 : x \ge 0 \land y \ge 0\}$, $F(h) = \mathbb{R}^2 - T(h)$.

T(h) es no acotado (uno de sus extremos es infinito), F(h) es no convexa porque se puede considerar un punto del cuadrante 2 y otro del cuadrante 4 tal que no es posible crear un segmento contenido en F(h).

En otras palabras $h(x,y)=1 \iff x \ge 0 \land y \ge 0$.

Figura 5: T(h) zona azul no acotada, F(h) zona roja no convexa.

Se define la red multicapas feedforward:

Figura 6: red de 2 capas.

con $y_1(x,y)=1 \iff x \geq 0$. De la misma forma, se define $y_2(x,y)=1 \iff y \geq 0$ y $z(y_1,y_2)=1 \iff y_1=1 \land y_2=1$. Equivalentemente $y_1(x,y)=H(x),\ y_2(x,y)=H(y)$ por lo cual $z(y_1,y_2)=H(y_1+y_2-2)$. Obviamente la red verifica que $h(x,y)=z(y_1,y_2)$ y la condición de no convexidad de F(h).

c) T(h) y F(h) son dos zonas convexas no acotadas si se escoge $T(h) = \{(x,y) \in \mathbb{R}^2 : y - x \ge 0\}$ $F(h) = \{(x,y) \in \mathbb{R}^2 : y - x < 0\}.$

$$h(x,y) = 1 \iff y - x \ge 0$$

 $\implies h(x,y) = H(y - x)$

Figura 7: T(h) zona azul, F(h) zona roja (separadas por y=x).

La red asociada es:

Figura 8: red de una capa.

Donde z(x,y) = h(x,y) = H(y-x). Obviamente T(h) y F(h) con conjuntos convexos no acotados (ver figura).

Problema 3

- 1. Para resolver este problema se creo un código python (p31.py), obteniéndose un porcentaje de aciertos del 89% aprox. La predicción se hizo considerarndo todas las varibables (columnas) de la tabla Sydney.csv (sin usar MaxTemp y data).
- 2. Para la resolución de este problema se creó una matriz de 1754 filas y 4 columnas con los datos de la variable WindGustSpeed, donde la cuarta columna es aquella a predecir (t), y las 3 primeras columnas son las entradas a la red. Los predicciones no fueron buenas. Creemos que pueden haber variables no consideradas en el entrenamiento que influyen en la calidad de predicciones. (Código p32.py).
- 3. Para resolver este apartado se definió una nueva variable a predecir (t_binario), que vale 1 en su componente i-ésima si solo si Humidity9am en i es mayor a 60 %. La predicción de t_binario se hizo considerando todas las variables restantes de la tabla Sydney.csv (sin usar Humidity9am), obteniéndose un porcentaje de aciertos del 78% aprox. (Ver código p33.py).