Week 5: Support Vector Machine

Confusion Matrix for Binary Classifier

	Predicted class	
True class	Predicted Negative	Predicted Positive
True Negative (#N)	#TN	#FP
True Positive (#P)	#FN	#TP

Reduce the 4 numbers to two performance metrics

true positive rate (recall):

TP = #TP/#P = #TP/(#TP + #FN)

false positive rate:

FP = #FP / #N = #FP / (#FP + #TN)

Using three different threshold values

	Predicted	
True	pos	neg
pos	40	60
neg	30	70

	Predicted	
True	pos	neg
pos	70	30
neg	50	50

	Predicted	
True	pos	neg
pos	60	40
neg	20	80

<u>Classifier 1</u> TP = 0.4 FP = 0.3

Classifier 2	
TP = 0.7	
FP = 0.5	

ROC (Receiver operating characteristic) plot for the 3 Classifiers

ROC & AUC

Logistic Regression Review

Adaline model uses the identify function f(x) = x as the activation function. But there are limitations...

Image source: https://towardsdatascience.com/introduction-to-logistic-regression-66248243c148

Cost Function for Logistic Regression

Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= -\frac{1}{m} [\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))]$$

$$P(y=1 | x; \theta) = h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Taken from Prof. Andrew Ng.'s Coursera MI, course

The goal is to maximize the likelihood of predicting the expected output.

Cost Function for Logistic Regression

Cost Function for Logistic Regression

Use Regularization to Reduce Overfitting

Add a term to the cost function to penalize large weight values of model

$$\begin{split} J\left(\boldsymbol{w}\right) &= -\sum_{i=1}^{n} y^{(i)} \log \left(\phi\left(z^{(i)}\right)\right) + \left(1 - y^{(i)}\right) \log \left(1 - \phi\left(z^{(i)}\right)\right) \\ J\left(\boldsymbol{w}\right) &= \sum_{i=1}^{n} \left[-y^{(i)} \log \left(\phi\left(z^{(i)}\right)\right) - \left(1 - y^{(i)}\right) \log \left(1 - \phi\left(z^{(i)}\right)\right)\right] + \frac{\lambda}{2} \left\|\boldsymbol{w}\right\|^{2} \end{split}$$

The hyper-parameter C in logistic regression model is the inverse-regularization parameter:

Smaller C values specify stronger regularization and thus smaller the weight coefficients, and reduces the variance of model.

Support Vector Machine

LARGE MARGIN CLASSIFIERS

- Find a classifier (hyperplane)
- An infinite number of such hyperplanes exist.
- Find the hyperplane that maximizes the gap between data points on the boundaries (so-called "support vectors").

12

Linear SVM Mathematically

What we know:

• \mathbf{w}^{T} . $\mathbf{x}^{pos} + \mathbf{w}_{0} = +1$

• \mathbf{w}^{T} . $\mathbf{x}^{neg} + \mathbf{w}_{0} = -1$

then \mathbf{w}^T . (\mathbf{x}^{pos} - \mathbf{x}^{neg}) = 2

And we normalize by the length of vector **w**.

Margin Width: The distance between the positive and negative hyperplane.

$$M = \frac{w^{T}(x^{+} - x^{-})}{\|w\|} = \frac{2}{\|w\|}$$

Minimize the reciprocal term:

Soft Margin Classification

Allow slack variables to handle non-linearly separable data under appropriate cost penalization. (Valadimir Vapnik 1995)

Cost function: $\frac{1}{2} \| \boldsymbol{w} \|^2 + C \left(\sum_i \xi^{(i)} \right)$

C parameter

Small values for C lower the variance of the model and thus reducing overfitting.

Kernel Trick

• Linear Inseparable data

- project all points up to a two dimensional space using the mapping $\,x \to (x,x^2)\,$
- We can now find a hyper plane to separate data with SVM.

The mapping $x \to (x, x^2)$ is called **KERNEL FUNCTION**

Example of Kernel Trick

Kernels

Examples:

$$\begin{split} \overline{K(\vec{x}_t, \vec{x}_j)} &= \vec{x}_t \cdot \vec{x}_j \\ K(\vec{x}_t, \vec{x}_j) &= \exp(-\gamma \|\vec{x}_t - \vec{x}_j\|^2) \\ K(\vec{x}_t, \vec{x}_j) &= \exp(-\gamma \|\vec{x}_t - \vec{x}_j\|^2) \\ K(\vec{x}_t, \vec{x}_j) &= (p + \vec{x}_t \cdot \vec{x}_j)^q \\ K(\vec{x}_t, \vec{x}_j) &= (p + \vec{x}_t \cdot \vec{x}_j)^q \exp(-\gamma \|\vec{x}_t - \vec{x}_j\|^2) \\ K(\vec{x}_t, \vec{x}_j) &= \tanh(k\vec{x}_t \cdot \vec{x}_j - \delta) \end{split}$$

Linear kernel
Gaussian kernel
Exponential kernel
Polynomial kernel
Hybrid kernel
Sigmoidal

SVM disadvantages

- If the points on the boundaries are not informative (e.g., due to noise), SVMs will not do well.
- Can be computationally expensive

"However, from a practical point of view perhaps the most serious problem with SVMs is the high algorithmic complexity and extensive memory requirements.." Horváth (2003) in Suykens et al. p 392

"Besides the advantages of SVMs - from a practical point of view - they have some drawbacks. An important practical question that is not entirely solved, is the selection of the kernel function parameters..."

Horváth (2003) in Suykens et al.

20