Ockham's Razor, Stability, and Truth Conduciveness

Kevin T. Kelly (CMU) Konstantin Genin (CMU) Hanti Lin (ANU)

> kk3n@andrew.cmu.edu kgenin@andrew.cmu.edu hanti lin@anu edu

Supported by a grant from the John Templeton Foundation.

Manuscript: http://www.andrew.cmu.edu/user/kk3n/simplicity/bulletin-12.pdf

2nd November 2014

Belief Revision Theory

Two Overlooked Constraints

- 1 Inductive belief revision in science is rational.
- 2 Rationality should be truth conducive.

Scientific Example (Morrison 2000)

Possible Conclusions

- 1 Ampere + Fresnel: no *EMR*.
- 2 Unified Maxwell: EMR exists; LR = EMR.
- 3 Maxwell + Fresnel: EMR exists; $LR \neq EMR$.

Possible Information States

- Hertz: can decide EMR existence.
- **2** Fizeau: can refute but not verify LR = EMR.

Scientific Example

Scientific Example

Stage 1

Scientific Example

Stage 2

Scientific example

Two Morals

- 1 The AGM postulates do not govern inductive rationality.
- 2 The right postulates depend on empirical simplicity.

Ockham's Razor

What it is

- A bias toward simpler theories compatible with experience.
- An essential principle of inductive inference.

Ockham's Razor

Three Questions for Inductive Belief Revision Theory

- I. What is empirical simplicity?
- II. Given simplicity, what is Ockham's razor?
- III. How does Ockham's razor help you find the truth better than alternative methods?

Standard Accounts

- uniformity of nature (expressed in grue/bleen?)
- entrenchment (Maxwell had past success with electromagnetic fields?)
- generation by a brief computer program (in Turing machines or Java?)

Our Account

■ Empirical simplicity reflects iterated problems of induction in an empirical problem context.

Empirical Problem Contexts

- Inquiry is guided by an empirical problem context $\mathfrak{P} = (W, \mathcal{I}, \mathcal{Q})$.
- W is the set of possible worlds.
- I is a set of possible information states such that:
 - \blacksquare the information states cover W;
 - every pair of true information states is entailed by a true information state.
- \mathbb{Q} is a question that partitions W into countably many answers.

Verifiability and Topology

- The closure \mathcal{I}^* of \mathcal{I} under union is a topology on W.
- The open sets are propositions verifiable by information.
- The closed sets are propositions refutable by information.
- The closure \overline{A} of A consists of the worlds in which A is never refuted.

Some Related Approaches

- Kelly (1996)
- Luo and Schulte (2006)
- deBrecht and Yamamoto (2008)
- Baltag, Smets, and Gierasimczuk (2014)

The Empirical Simplicity Order

- $A \leq B$ iff $A \subseteq \overline{B}$
- iff A entails that B will never be refuted
- iff the problem of induction obtains from A to B
- iff A is as falsifiable as B (Popper).

Two Wrinkles

- \mathbb{I} (\mathcal{Q}, \preceq) can have cycles.
- 2 (Q, \leq) can be unstable under restriction by new information.

Solution

- Substitute a better question S for the original question Q.
- Call $\mathcal S$ a simplicity concept for $\mathfrak P$ and call answers to $\mathcal S$ simplicity degrees.
- lacksquare $\mathcal S$ is related to $\mathfrak P$ by three axioms.

Axiom 1. Local Closure

- A is locally closed for \mathfrak{P} iff $A = B \setminus C$, where B, C are open (verifiable)
- iff A implies that A will be refutable.
- Then it is safe to infer A if B is verified until C is verified.
- Proposition. If each simplicity degree in S is locally closed, then (S, \preceq) is anti-symmetric.

Axiom 2. Homogeneity

lacksquare $\mathcal S$ is homogeneous for $\mathfrak P$ iff

$$\{w\} \leq C \Rightarrow S_w \leq C,$$

for all $w \in W$ and $C \in S$.

Proposition. The simplicity relation \leq is stable under restriction by information iff S is homogeneous for \mathfrak{P} .

Axiom 3. Decides the Original Problem

■ S decides \mathfrak{P} iff each answer to \mathcal{Q} is open (verifiable) in the information topology restricted to an arbitrary simplicity degree in S.

II. What is Ockham's Razor?

Ockham's Vertical Razor

■ Your belief state should be closed downward in ∠.

Ockham's Horizontal Razor

Your belief state should be co-initial in \prec .

Bayesian answer

- Simpler worlds are more probable, so Ockham's Razor is probably right.
- Converges to the truth in the long run, but so do infinitely many other methods.

Frequentist answer

- Estimates based on simpler models have lower variance.
- Doesn't converge to the true model at all (AIC).

Ancient Hint (Katha Upanishad, Müller Translation)

- Fools dwelling in darkness, wise in their own conceit, and puffed up with vain knowledge
 - go round and round
 - staggering to and fro,

like blind men led by the blind.

Staggering To and Fro = Doxastic Reversals

- 1 Believe *A*;
- **2** believe *B* inconsistent with *A*.

Going Round and Round = Doxastic Cycles

- **1** Believe *A*:
- 2 believe B inconsistent with A;
- 3 believe C that entails A.

Direct Comparison of Reversal and Cycle Sequences

■ $\sigma \leq \tau$ iff there exists sub-sequence τ' of τ such that $\sigma_i \subseteq \tau_i'$, for all $i \leq \text{length of } \sigma$.

Worst-case Comparisons over Simplicity Degrees

- Let $E \in \mathcal{I}$.
- $\lambda \leq_E^{\mathsf{rev}} \lambda'$ iff for each reversal sequence σ generated by λ , in world $w \in E$, there exists reversal sequence τ produced by λ' in world $v \in C \cap E$ such that $\sigma \leq \tau$.
- Similarly for cycles.

Optimality

- lacksquare λ is retraction optimal in $\mathfrak S$ iff
 - 1 λ solves \mathfrak{S} in the limit;
 - 2 $\lambda \leq_{E}^{\text{rev}} \lambda'$, for all $E \in \mathcal{I}$ and for all λ' that solve \mathfrak{S} in the limit.
- Similarly for cycle-optimality.

Optimality

- lacksquare λ is retraction optimal in $\mathfrak S$ iff
 - 1 λ solves \mathfrak{S} in the limit;
 - 2 $\lambda \leq_{E}^{\text{rev}} \lambda'$, for all $E \in \mathcal{I}$ and for all λ' that solve \mathfrak{S} in the limit.
- Similarly for cycle-optimality.

Sub-optimality

- lacksquare λ is retraction sub-optimal in $\mathfrak S$ iff
 - 1 λ does not solve \mathfrak{S} in the limit or
 - 2 $\lambda' < \text{rev}_E \lambda'$, for some $E \in \mathcal{I}$ and for some λ' that solves $\mathfrak S$ in the limit.
- Similarly for cycle-optimality.

- Necessary for cycle optimality.
- Necessary for avoidance of cycle sub-optimality.

- Necessary for cycle optimality.
- Necessary for avoidance of cycle sub-optimality.

- Necessary for cycle optimality.
- Necessary for avoidance of cycle sub-optimality.

- Necessary for cycle optimality.
- Necessary for avoidance of cycle sub-optimality.

Horizontal Razor

- Necessary and sufficient for reversal optimality.
- Necessary and sufficient for avoidance of reversal sub-optimality.

Horizontal Razor

- Necessary and sufficient for reversal optimality.
- Necessary and sufficient for avoidance of reversal sub-optimality.

Horizontal Razor

- Necessary and sufficient for reversal optimality.
- Necessary and sufficient for avoidance of reversal sub-optimality.

Horizontal Razor

- Necessary and sufficient for reversal optimality.
- Necessary and sufficient for avoidance of reversal sub-optimality.

Thank you!

Supported by a grant from the John Templeton Foundation.

Manuscript: http://www.andrew.cmu.edu/user/kk3n/simplicity/bulletin-12.pdf