3.2.4 Резонанс токов в электрическом контуре

Ивакин Кирилл Б01-907

Цель работы: исследование резонанса токов в параллельном колебательном контуре с изменяемой емкостью, получение амплитудно-частотных и фазово-частотных характеристик, определение основных параметров контура.

В работе используется: генератор сигналов, источник напряжения, нагрузкой которого является параллельный колебательный контур с переменной емкостью, двухканальный осциллограф, цифровые вольтметры.

1 Теория

1.1 Метод комплексных аплитуд

Рис. 1: Колебательный контур

Рассмотрим процессы, проистекающие в контуре при переменном напряжении $\varepsilon = \varepsilon_0 \cos(\omega t + \varphi_0)$. Пренебрегая потерями получим уравнение напряжения на конденсаторе:

$$\ddot{U}_c + 2\gamma \dot{U}_c + \omega_0^2 U_c = \omega_0^2 \varepsilon_0 \cos(\omega t + \varphi_0) \tag{1}$$

Для решения данного уравнения, воспользуемся методом комплексных амплитуд:

$$U_{c} = U_{c0}e^{i\omega t}$$

$$\varepsilon = \varepsilon_{0}e^{i(\omega t + \varphi_{0})}$$
(2)

Подставив U_c и ε в (1), найдем решение дифференцильного уравнения в комплексной плоскости.

$$U_{c} = \frac{\varepsilon}{i\omega CZ}, Z = R + i\left(\omega L - \frac{1}{\omega C}\right)$$
(3)

1.2 Экпериментальная установка

В данной работе изучаются резонансне явления в параллельном колебательном контуре (резонанс токов). Блок-схема экспериментального стенда показана на рис. 1. Синусоидальный сигнал от генератора поступает на вход управляемого напряжением источника тока, собранного на операционном усилителе с полевым транзистором, питание которого осуществляется встроенным блоком-выпрямителем от сети ≈ 220 В. Внутреннее сопротивление источника тока, бесконечно большое в идеальном случае, в нашей схеме составляет несколько ГОм. Это обеспечивает постоянство амплитуды тока I на меняющейся нагрузке - параллельном контуре, изображенном на рис. 1 в виде эквивалентной схемы.

Напряжение $\mathcal{E} = \mathcal{E}_0 cos(\omega t + \phi t)$ от генератора поступает на вход источника тока. Это же напряжение через разъемы U_1 подается на канал 1 осциллографа и на вход вольтметра 1. Переменное напряжение на сопротивлении R_1 в используемой схеме равно напряжению \mathcal{E} на выходе генератора и совпадает с ним по фазе. Следовательно, ток во внешней цепи параллельного контура определяется:

$$I = \frac{\mathcal{E}}{R_1} = I_0 cos(\omega t + \phi_0), I_0 = \frac{\mathcal{E}_0}{R_1}$$

$$\tag{4}$$

Рис. 2: установка

Выражение для импедансов емкостей Z_C и индуктивной Z_L ветвей параллельного колебательного контура:

$$Z_C = R_S - \frac{i}{\omega C}, Z_L = R + R_L + i\omega L \tag{5}$$

, где $R_S = \frac{tg\delta}{\omega C}$ и R_L - активные части импедансов конденсатора и катушки индуктивности, а R - величина постоянного активного сопротивления, добавленного в индуктивную ветвь колебательного контура для снижения его добротности с целью упрощения процедур получения и обработки резонансных кривых. Конденсаторы C_n имеют малые потери $(tg\delta < 10^{-3})$ Добротность контура довольно высока, поэтому:

$$R_{\sum} = R + R_L + R_S, Q = \frac{\rho}{R_{\sum}} = \frac{1}{\omega_0 C R_{\sum}} \gg 1$$
 (6)

Комплексные амплитуды можно представить в виде

$$I_C = I \frac{Z_{LR}}{Z_C + Z_L R} = iQ I_0 \frac{\frac{\omega}{\omega_0} - i \frac{R + R_L}{\rho}}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})}$$
(7)

$$I_L = I \frac{Z_C}{Z_C + Z_L R} = -iQ I_0 \frac{\frac{\omega}{\omega_0} (1 + tg\delta)}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})}$$
(8)

$$U = I \frac{Z_L Z_C R}{Z_C + Z_L R} = \rho_0 Q I_0 \frac{\left[1 - i \frac{\omega_0}{\omega} \frac{R + R_L}{\rho}\right] \left(1 + i t g \delta\right)}{1 + i Q \left(\frac{\omega}{\omega} - \frac{\omega_0}{\omega}\right)}$$
(9)

Наибольший практический интерес для контуров с высокой добротностью представляет случай, когда отклонение $\Delta \omega = \omega - \omega_0$ частоты внешней ЭДС от собственной частоты контура удовлетворяет сильному неравенству:

$$|\Delta\omega| \ll \omega_0 \tag{10}$$

Тогда выражения (4-6) можно упростить:

$$I_C(t) = QI_0 \frac{\omega}{\omega_0} \frac{\cos(\omega t - \Phi_C)}{R\sqrt{1 + (\tau \Delta \omega)^2}}, \quad \Phi_C = \arctan(\tau \omega) - \frac{\pi}{2} + \frac{R + R_L}{\rho}$$
(11)

$$I_L(t) = QI_0 \frac{\omega}{\omega_0} \frac{\cos(\omega t - \Phi_L)}{R\sqrt{1 + (\tau \Delta \omega)^2}}, \quad \Phi_L = arctg(\tau \omega) + \frac{\pi}{2} - \delta$$
 (12)

$$U(t) = \rho Q I_0 \frac{\omega}{\omega_0} \frac{\cos(\omega t - \Phi_U)}{R_{\Lambda} \sqrt{1 + (\tau \Delta \omega)^2}}, \quad \Phi_U = \arctan(\tau \omega) + \frac{\omega_0}{\omega} \frac{R + R_L}{\rho} - \delta$$
 (13)

, где $\tau=\frac{2L}{R_{\sum}}=\frac{2Q}{\omega_0}$ - время затухания колебательного контура. Как видно из этих выражений, вблихи частоты ω_0 зависимости амплитуд токови напряжения на контуре от частоты ω несколько различаются, что надо иметь в виду при экспериментальном исследовании резонанса токов по напряжению на контуре U.

В резонансе ($\omega = \omega_0$):

$$I_C(\omega_0) = QI_0, \quad \Psi_C(\omega_0) = -\frac{\pi}{2} + Q^{-1} - tg\delta,$$
 (14)

$$I_L(\omega_0) = QI_0, \quad \Psi(\omega_0) = \frac{\pi}{2} - \delta, \tag{15}$$

$$U(\omega_0) = Q\rho I_0, \quad \Psi(\omega_0) = Q^{-1} - tg\delta - \delta \tag{16}$$

Отсюда следует, что на частоте ω_0 токи I_C и I_L в емкостной и индуктивной ветвях контура в Q раз превышают по амплитуде ток I во внешней цепи. При этом ток I_C опережает внешний ток I по фазе почти на $\frac{\pi}{2}$, а ток I_L отстает от I почти на $\frac{\pi}{2}$. Можно сказать, что токи I_C и I_L образуют контурный ток, последовательно обтекающий элементы контура, и в Q раз превышающий внешний ток I. Поэтому резонанс в параллельном контуре называется "резонансом токов".

2 Параметры оборудования

Классы точности амперметров соответственно 0.5, 0.5, 0.5. Ёмкость конденсатора 120 ± 5 мкФ. Класс точности автогенератора 1.5.

3 Ход работы

1) Построим зависимость значёния токов через степень погружения сердечника.

1, см	I, мА	I_l , мА	I_c , мА
9.5	160.0	670	410
9.0	150.0	620	405
8.5	110.0	570	410
8.0	75	520	410
7.5	50.0	470	405
7.1	25.0	425	420
6.5	45.0	385	40.5
6.0	50.0	360	405
5.5	75.0	340	405
5.2	100.0	320	410
4.5	130.0	280	405
4.0	150.0	260	410
3.5	167.5	230	410
3.0	185.0	215	400
2.5	200.0	200	400
2.0	212.0	170	390
1.5	230.0	135	400
1.0	255.0	100	410
0.5	275.0	75	410
0.0	290	50	400

Таблица 1: зависимость токов от положения сердечника

Построим графики получившейся зависимости.

Погрешность длины посчитаем как половину цены деления линейки. Погрешность токов определим с помощью класса точности амперметров.

2) Расчитаем добротность контура Q, и резонансное сопротивление $R_{\rm pes}$ по формулам

$$Q = \frac{I_{Lpes}}{I_{pes}}, R_{pes} = \frac{U_0}{I_{pes}}$$

Получаем

$$Q = 17.0 \pm 1.9,\, R_{
m pes} = 400.0 \pm 40.2 \,\,{
m Om}$$

3) Расчитаем $L_{\text{рез}}$ и r_l по формулам

$$\omega_0 L = \frac{1}{\omega_0 C}, \ Q = \frac{1}{r_l \omega_0 C}$$

Получаем

$$L_{
m pes} = 84.5 \pm 4.9 \; {
m M}$$
Гн, $r_l = 1.56 \pm 0.19 \; {
m O}{
m M}$

4) Расчитаем $L_{\text{peз}}$ через U и I_l

Рис. 3: Зависимость периода колебаний от числа магнитов

$$L_{\mathrm{pes}} = \frac{U_0}{\omega_0 I_{l_{\mathrm{pes}}}}$$

Получаем

$$L_{
m pes}=74.9\pm3.6~{
m m}\Gamma{
m H}$$

5) Построим векторную диаграмму при резонансе:

Рис. 4: Векторная диаграмма

С помощью векторной диаграммы посчитаем L_{pes} и r_l

$$L_{\rm pes}=74.8\pm5.7$$
 мГн, $r_l=24.1\pm1.8$ мОм

7) Измерим сопротивление катушки с помощью мультиметра.

$$r_l=1.38\pm0.01$$
Ом

Измерим сопротивление катушки и индуктивность с помощью моста Е7-8. Измерения проводились для частот 1 к Γ ц и 50 Γ ц.

Рис. 5: Измерение сопротивления катушки с помощью мультиметра

Рис. 6: Измерение сопротивления катушки с помощью моста Е7-8

При частоте 1 к Γ ц.

$$L_{
m pes} = 68.9 \pm 0.1 \ {
m M}$$
 н, $r_{
m pes} = 33.1 \pm 0.1 \ {
m Om}$

При частоте 50 Гц.

$$L_{\rm pes} = 6.2 \pm 0.1 \; {\rm M}\Gamma {\rm H}, \, r_{\rm pes} = -0.5 \pm 0.1 \; {\rm Om}$$

4 Вывод

Запишем полученные результаты в таблицу.

	MOCT	мультиметр	$f(U_{\text{pes}}, I_{l\text{pes}})$	f(Q)	векторная диаграмма
$L_{ m pes}$, м Γ н	6.2 ± 0.1	-	74.9 ± 3.6	84.5 ± 4.9	74.8 ± 5.7
$r_{\rm pes}$, Ом	-0.5 ± 0.1	1.38 ± 0.01	-	400 ± 40.2	24.1 ± 1.8

Таблица 2: Результаты работы