Thinking Big:

Determinacy and Large-Scale Solutions in the Sequence Space

Adrien Auclert Evan Majic Matt Rognlie

Ludwig Straub

Stanford

Northwestern

Northwestern

Harvard

Solving het-agent models to first order

- * Two key considerations:
 - * Size of idiosyncratic state space S
 - * Number of endogenous aggregate variables N
- * State-space approach: costly when S large. Has determinacy criterion.

[Reiter, Ahn-Kaplan-Moll-Winberry-Wolf, Bayer-Luetticke, ...]

* Sequence-space approach: fast when S large, costly when N large.

[Boppart-Krusell-Mitman, Auclert-Bardoczy-Rognlie-Straub, ...]

* How do we solve models when both S and N are large?

Introducing... SSJ 2.0!

- * Obtain a structure theorem for sequence-space Jacobians
- * When het-agent model is stationary, Jacobians are quasi-Toeplitz:

$$\mathbf{J} = \mathbf{T}(\mathbf{j}) + \mathbf{E}$$

i.e. sum of a Toeplitz operator T(j) and a compact operator E

(When represented as matrix, "Toeplitz" means "each diagonal is constant.)

- * Exploit this structure (generalizing to N > 1 case) in many ways:
 - * Winding number criterion on j for determinacy & existence
 - * More accurate computations working directly with j and E
 - * Using $T(j^{-1})$ as guess for J^{-1} gives rapid iterative solution, even when N large

Structure theorem

Building block: the fake news matrix

- * Recall that Jacobian is cumulative diagonal sum of fake news matrix, i.e. $J_{2,3} = F_{0,1} + F_{1,2} + F_{2,3}$
- * If $F_{t,s} \to 0$ fast enough as $t, s \to \infty$, then each diagonal of \mathbf{J} will converge to a constant j_{t-s}
- * Interpretation: if shock anticipated far enough in advance, only position t s vs. shock matters

```
egin{pmatrix} F_{00} & F_{01} & F_{02} & \cdots \ F_{10} & F_{11} & F_{12} & \cdots \ F_{20} & F_{21} & F_{22} & \cdots \ dots & dots & \ddots \end{pmatrix}
```


Why would fake news entries converge to zero?

- * $F_{t,s}$ is the effect at date t of having thought at date 0 that there would be shock at date s
- * Plausible that:
 - * Effect on date-0 policy decays as horizon *s* increases
 - * Persistent effect from date-0 policy decays as *t* increases
- $egin{pmatrix} F_{00} & F_{01} & F_{02} & \cdots \ F_{10} & F_{11} & F_{12} & \cdots \ F_{20} & F_{21} & F_{22} & \cdots \ dots & dots & dots & \ddots \ \end{pmatrix}$

* If both, we say model is stationary

Fake news matrix of stationary het-agent models

* For t > 0, SSJ paper shows that $F_{t,s}$ takes the form:

$$F_{t,s} = \mathcal{E}'_{t-1} \mathcal{D}_s$$

- * \mathcal{D}_s is effect of anticipating date-s shock at date 0 on the date-1 distribution
- * \mathcal{E}_{t-1} is the *expectation function*, giving expected quantity of interest (e.g. consumption, assets) in t-1 periods, if steady-state policy followed
- * Eventual decay at rate of at least $\mathcal{D}_s \sim \beta^s$ from discounting as $s \to \infty$ since distribution mass preserved.)
- * If Λ_{ss} ergodic, \mathcal{E}_t approaches multiple of 1 at rate γ^t , with γ largest eigenvalue < 1
- * If both: $|F_{t,s}| \le K\beta^s \gamma^t \le K\Delta^{s+t}$, for $\Delta \equiv \max(\beta, \gamma) < 1$, we call model "stationary"

Using this to characterize Jacobian

* If $|F_{t,s}| \leq K\Delta^{s+t}$, then we can define and guarantee convergence for:

$$j_u = F_{u,0} + F_{u+1,1} + F_{u+2,2} + \dots$$

i.e. the sum of all entries in \mathbf{F} on the *u*th lower diagonal (analogous for u < 0)

- * We then have $J_{t+i,s+i} \to j_{t-s}$ as $i \to \infty$ for any t,s ["asymptotically Toeplitz"]
- * j_{t-s} is response t-s periods after shock, if shock infinitely well-anticipated
- * We also have $J_{t,s} j_{t-s} \equiv E_{t,s} = -(F_{t+1,s+1} + F_{t+2,s+2} + \dots) \le \frac{K}{1 \Delta^2} \Delta^{t+s}$

[E is "correction" vs. exact Toeplitz, with terms on diagonal not yet summed]

Quasi-Toeplitz form

- * Summing up: for any Jacobian **J** of a stationary het-agent model, we have $J_{t,s} j_{t-s} = E_{t,s'}$ where $|E_{t,s}|$ bounded by multiple of Δ^{t+s}
- * Can write as sum of Toeplitz operator $T(\mathbf{j})$ and **compact** "correction" operator \mathbf{E} :

$$\mathbf{J} = \begin{pmatrix} j_0 & j_{-1} & j_{-2} \\ j_1 & j_0 & j_{-1} \\ j_2 & j_1 & j_0 \\ \vdots & \vdots & \ddots \end{pmatrix} + \mathbf{E}$$

$$= T(\mathbf{i})$$

("Compact" on ℓ^2 means limit of finite-rank operators, behaves similarly to a finite-dimensional matrix. $|E_{t,s}| \leq K' \Delta^{t+s} \text{ readily implies this.})$

* This is called a quasi-Toeplitz operator, and has many nice properties!

Why might this representation be useful?

- * Quasi-Toeplitz operators are **closed** under addition, multiplication, etc., and even inversion, assuming an inverse exists [e.g. Bini, Massei, Robol 2019]
 - * so we can chain along DAG, solve for unknowns, and stay quasi-Toeplitz!
 - * (simple aggregate equations already have Toeplitz Jacobians)
- * Toeplitz has nice theory for **existence & uniqueness** of solutions; this mostly extends to quasi-Toeplitz
- * In practice, E often very well-approximated by low-rank matrix
 - * So can represent and work with **J** a lot more efficiently than ordinary $T \times T$

Existence and uniqueness of solutions

The winding number

- * Recall: j_k is the entry on the kth lower diagonal of Toeplitz $T(\mathbf{j})$
- * $\{j_k\}_{k=-\infty}^{\infty}$ is a two-sided sequence, and we say its **symbol** is the Laurent series

$$j(z) \equiv \sum_{k=-\infty}^{\infty} j_k z^k$$

- * The winding number wind(j) is # of times j(z) rotates counterclockwise around 0 as z goes counterclockwise around the unit circle
- * Standard result: $T(\mathbf{j})$ is invertible iff its winding number is zero!
 - * If wind(j) < 0, then surjective but not injective; vice versa if wind(j) < 0

Simple examples of winding number

- * Lag operator $\mathbf{L}:(x_0,x_1,\ldots)\mapsto (0,x_0,x_1,\ldots)$ is injective but not surjective
 - * symbol j(z) = z, with winding number 1 (j goes counterclockwise once)
- * Lead operator $\mathbf{F}:(x_0,x_1,\ldots)\mapsto(x_1,x_2,\ldots)$ is surjective but not injective
 - * symbol $j(z) = z^{-1}$, with winding number -1 (j goes clockwise instead)

- * More general result: winding number n > 0 implies n dimensions missing from range, n < 0 implies null-space of dimension -n [consider examples \mathbf{L}^n and \mathbf{F}^n]
 - * loosely, winding number of *n* says "this Toeplitz similar to taking *n* lags"

Extending to quasi-Toeplitz

- * Same result doesn't always hold for quasi-Toeplitz, but holds "generically" on an open and dense set of $\bf E$ (i.e. almost all $\bf E$):
 - * If wind(j) = 0, then **J** is generically invertible
 - * If wind(j) < 0, then **J** is not injective, but generically surjective
 - * If wind(j) > 0, then **J** is not surjective, but generically injective

* Solving asset market IKC $\mathbf{A}(d\mathbf{Y} - d\mathbf{T}) = d\mathbf{B}$, then (generically) exists unique solution if wind(a) = 0, indeterminacy if wind(a) < 0, nonexistence if > 0

Winding number plot for A with standard calibration

Compare to case with countercyclical risk

Can find shape of multiplicity in sequence space

How does winding number vary with ζ in general?

Block quasi-Toeplitz case

- * Say we have N^2 quasi-Toeplitz matrices from N unknowns to one of N targets
- * Can think of this as being one **block quasi-Toeplitz operator**, like a quasi-Toeplitz but where entries are each $N \times N$ blocks
- * Then $\{j_k\}_{k=-\infty}^{\infty}$ is two-sided sequence of $N \times N$ matrices, so matrix-valued j(z):

$$j(z) \equiv \sum_{k=-\infty}^{\infty} j_k z^k$$

- * Winding number test still holds generically, now for wind(det *j*)
- * Important case in practice, we're still working out details [see also Onatski 2006]

Operations with quasi-Toeplitz operators: No more truncation!

Directly use quasi-Toeplitz form

- * We have quasi-Toeplitz representation $\mathbf{J} = T(\mathbf{j}) + \mathbf{E}$ of Jacobians
- * So far, we've used the winding number of j to assess determinacy
- * Another benefit: use this special form directly to do computations!
 - * key supporting fact: in practice E well-approximated by low rank
 - * more efficient, no longer fully truncating at $T(T(\mathbf{j}))$ in principle infinite)

* Our inspiration: Bini, Massei, Robol (2019), "Quasi-Toeplitz matrix arithmetic: a MATLAB toolbox", paper from applied math literature

Why is this math so nice?

- * Suppose we can write J = T(j) + UV', where U, V are $n \times k$ matrices
 - * if k low, we have a low-rank approximation of $\mathbf{E} \approx \mathbf{U}\mathbf{V}'$
 - * represents J in a more concise way

- * Can define algebra of operations on j, U, V
 - * e.g. multiplying \mathbf{J}_1 and \mathbf{J}_2 involves multiplying $T(\mathbf{j}_1)$ and $T(\mathbf{j}_2)$, which produces quasi-Toeplitz of form $T(\mathbf{j}_1\mathbf{j}_2) + \mathbf{U}\mathbf{V}'$; and also $T(\mathbf{j}_1)$ times \mathbf{U}_2 , etc.
 - * similar, though a bit more complicated, for inversion

How well can we approximate A?

Big easier to visualize with a log scale...

Low-rank approximation to A^{-1} also close!

How "compressed" is this?

- * Suppose that T = 1000, so that **A** is 1000×1000 , with 1 million entries!
- * Can store corresponding a of length only ~ 2000
- * Then U, V in a rank-five approximation to E each size 5000
- * So, can store near-exact approximation with only 12,000 numbers!
 - * Compression of more than 80x
 - * Actually can do far better, since many entries in a, U, V near zero
 - * Doing math with this will be more accurate than with truncated \mathbf{A} , since no error from artificial T [implementation details too much for today, though!]

Alternative: use structure for iterative solutions (and solve giant models in the process!)

First point: easy to get Toeplitz part of inverse

- * Suppose we want to solve AdZ = dB
- * A^{-1} is quasi-Toeplitz of form $T(a^{-1}) + E$, with E low-rank like we saw
- * Key point: \mathbf{a}^{-1} is **really** easy to calculate!
 - * Get a(z) at many z using FFT, then go from $a(z)^{-1}$ to \mathbf{a}^{-1} with inverse FFT
 - * Cost is only $O(T \log T)$, way cheaper than $O(T^3)$ matrix inversion
 - * What can we do with just $T(\mathbf{a}^{-1})$?
 - * [conceptually, \mathbf{a}^{-1} is inverse for infinitely-well-anticipated shocks]

What can we do with a⁻¹?

* Start with $(T(\mathbf{a}) + \mathbf{E})d\mathbf{Z} = d\mathbf{B}$, multiply both sides by $T(\mathbf{a}^{-1})$:

$$T(\mathbf{a}^{-1})(T(\mathbf{a}) + \mathbf{E})d\mathbf{Z} = T(\mathbf{a}^{-1})d\mathbf{B}$$

* Both $T(\mathbf{a}^{-1})T(\mathbf{a}) - \mathbf{I}$ and $T(\mathbf{a}^{-1})\mathbf{E}$ compact, well-approximated by low rank, so can be written in form

$$(\mathbf{I} + \mathbf{C})d\mathbf{Z} = d\mathbf{y}$$

- * Iterative method (GMRES) very good at solving ($\mathbf{I} + \mathbf{C}$)⁻¹ dy if \mathbf{C} low-rank [Multiplying by $T(\mathbf{a}^{-1})$ is called "preconditioning".]
- * Cheap, doesn't require explicitly forming new matrices like C

We expand this to HUGE model

- * *N*-country extension of IKC model, constant *r* in each country *n*
- * Fiscal policy in n chooses $\{B_t^n, T_t^n\}$ consistent with budget constraint
- * n spends share $\Pi_{n,n'}$ on output from others n', take from data for 177 countries
- * Assume same HA model in each n, for simplicity assume all share A, M
- * Solve for GDP $\{Y_{nt}\}$ in all N countries, in response to US deficit-financed tax cut, need long horizon T=1000
- * Usual sequence-space approach: Jacobian size (177,000)²: can't even store!
- * With iterative approach, solves in a few seconds on laptop!

Peek at solution: selected countries over time

Peek at solution: on impact across countries

Peek at solution: after 20 quarters across countries

How fast is this?

How fast is this? Compare to state space

Conclusion

- * Quasi-Toeplitz structure of Jacobians delivers:
 - * winding number test for determinacy
 - * already ready to use!
 - * faster, truncation-free computations:
 - * still in development, bypasses major issue with sequence space
 - * extremely fast iterative computations, even in huge models
 - * also still in development, but solves 177-country HANK in 3 seconds!!