2030 이차전지 산업(K-Battery) 발전 전략

2021. 7.

관계부처 합동

목 차

Ι.	주신	배경	•••••••••••••••••••••••••••••••••••••••	

Π .	이차전지	산업	현황		3	}
---------	------	----	----	--	---	---

Ⅲ. 시사점		6
--------	--	---

Ⅳ. 비전 및 추진전략 ------ 7

♡. 세부 추진 과제 ------8

Ⅰ. 추진 배경

◇ 이차전지는 디지털 전환과 친환경화 등 미래 산업을 움직이는 핵심 동력

- □ 미래 산업의 변화는 전동화(Electrification)·무선화(Cordless)가 핵심, 모든 사물이 이차전지(Battery)로 움직이는 시대 개막
 - * 무선가전, 로봇, 드론, 에너지저장장치, 전기차, 전기선박 등 이차전지 적용영역 지속 확장
- □ 이차전지는 **친환경화**라는 글로벌 트렌드 속에서 **지속 가능한 성장의** 핵심수단, 각국 수요 증가로 글로벌 시장 급속 성장 전망
 - * '25년에는 이차전지가 메모리반도체보다 더 큰 시장으로 성장할 전망(IHS Markit)

◇ 대한민국 이차전지, 앞선 기술력을 기초로 글로벌 주도권 강화 필요

- □ 현행 리튬이온 이차전지는 '91년 일본이 최초 상용화하며 시장을 형성
 - '00년대 중반 이후, 모바일 산업 성장과 함께 **소형 이차전지**는 우리나라가 글로벌 시장을 주도
 - '10년대 들어 전기차 산업이 성장하면서 중·대형 이차전지는 넓은 내수 시장의 중국과 글로벌 시장을 공략한 우리나라·일본이 경쟁
 - * (中) 전기차 내수 시장 공급, (韓) 유럽·미국 등 다양한 수요 공략, (日) 테슬라 납품
- □ 우리나라는 '97년부터 민관 공동 기술개발 결과 현재의 위상 확보, 향후 글로벌 주도권 강화를 위한 지속적인 대응노력 필요
 - * ('97~'09년) 중기거점 → ('10~'19년) 녹색산업 선도형WPM → (~'21년) 차세대 이차전지 등 총 3,700억원 < 리튬이온 이차전지 글로벌 시장흐름>

1991, 日 리튬이온 이차전지 최초 양산 日 소니·산요·파나소닉 중심	스마트폰 보급확대 韓·中 이차전지 기업 성장	(韓) 유럽·미·중 글로벌 수요 (中) 내수확대로 급성장 (日) 테슬라向 공급	韓中日 + 美 / EU
소형 이차	전지 중심	전기차 시	시대 도래
1990년대	2000년대	2010년대	2020년~

◇ 미래 산업 육성, 이차전지 강국 입지 강화, 세계시장 선도를 위해 기업과 정부가 함께하는 "2030 이차전지 산업 발전 전략" 추진

참 고 이 이차전지 산업 특성

◇ [기술집약] 기술 주도·선점을 위해 지속적인 R&D 투자 필요

- ◈ (소재) 성능 차별화 요소로 장기 지속 개발 필요 (비중 조절, 균일화, 안정화 등)
- ♠ (설계) 수요자 요구조건 만족을 위한 축적된 설계기술 ('배터리 레시피')
- ◈ (공정) 생산성, 신뢰성 향상을 위한 공정관리 고도화

◇ (공급망 관리) 소재의 원가 비중이 높고. 안정적 조달관리 필요

- ♠ (소재·부품) 생산원가 중 70% 이상 → 이차전지 가격 인하에 따라 **비중 상승전망**
- ◈ (원재료) 주요 원자재 특정국가 편중 → 안정적 조달 및 가격 변동 관리 중요

◇ [수요자 중심] 수요자 요구조건 최적화 설계

- ♠ (맞춤형) 전기차, 모바일 등 수요자의 다양한 요구(형태, 성능, 품질, 가격 등) 대응 필요
- ◆ (다양한 수요) 전기차, 모바일, 드론, 로봇, 우주, 방위산업 등 적용제품의 범위가 확대되고 있어 제품 맞춤형 설계 필요

Ⅱ. 이차전지 산업 현황

1 글로벌 시장 동향

- □ (시장 전망) 글로벌 이차전지 시장규모는 전기차 보급 확대에 힘입어 향후 10년간 8배 성장 전망('20년 461억불 → '30년 3,517억불, SNE리서치)
 - * 용도별 시장규모('20년): (소형) 11억불/73GWh, (EVB) 304억불/194GWh, (ESS) 45억불/21GWh
 - * 전체 이차전지 시장 중 전기차용 비중 : ('20년) 65.9% → ('30년) 86.6%
 - 특히, 전기차용 이차전지(EVB)는 향후 10년간 10배 성장 전망 ('20년 304억불 → '25년 1,507억불 → '30년 3,047억불)
- □ [현황] 한국·중국·일본이 글로벌 이차전지 시장의 95% 점유('20년)
 - * 국가별 이차전지 글로벌 시장 점유율('20년, B3) : (한국) 44.1% (중국) 33.2% (일본) 17.4%
 - 에너지밀도 등 전지 제조기술 수준은 3국이 유사(250~300Wh/kg)하나, 생산성(품질관리수준)은 한국, 가격(생산단가)은 중국이 다소 우위
- □ [경쟁 심화] 이차전지 수요 확대에 따라 [●]시장 확대, [●]시장참여자 증가, [●]차세대 이차전지 기술경쟁 등 경쟁 구도 확대·심화
 - 전기차 보급 확대가 본격화 되면서 이차전지 기업들의 **시장확보** 경쟁 확대, 각국 정부는 역내 공급망 확보를 위한 유치 경쟁 강화
 - 유럽 중심으로 **신규기업**(노스볼트 등) **진입**이 활발하며, EV 모델별 독점공급 중심에서 EV기업의 내재화·공급기업 다변화 추진
 - **선도기술 확보를 위한 경쟁 가속화**와 함께 이차전지 생산에서 폐기까지 全 **주기에 걸친 탄소배출 저감** 요구 강화
 - * EU는 배터리규정 제정 추진을 통해 생산과정에서 탄소배출이 많은 배터리 사용 규제 움직임 < 전기차용 이차전지 성능개선 예시 >

	高성능			低가격	高안전
	에너지밀도	주행거리	충전속도		同じ건
현재	250~300Wh/kg	300~400km	30~40분	137\$/KWh ('20)	외부감지, 발화지연
↓ 향후	↓ 350Wh/kg 이상	↓ 600km 이상	↓ 15분 이내	♣ 60\$/KWh이하('30)	자가 진단 및 치유

국내 이차전지 산업 현황 및 진단

◇ [성과] 소형 이차전지 10년 연속 세계 1위, 중·대형도 선두 다툼

- □ [점유율] IT기기용 소형 이차전지는 '11년부터 세계 1위를 유지, 전기차용 중·대형 이차전지도 중국을 바짝 추격중
 - < 리튬이온전지 세계시장 점유율(%)> < 전기차용 이차전지 시장점유율(%)>

구분	'19년	'20년	'21년(E)
IT	46.7 (1위)	45.0 (1위)	44.5 (1위)
EV	22.1 (3위)	39.8 (1위)	38.7 (2위)
ESS	66.5 (1위)	70.5 (1위)	72.7 (1위)
종합	34.3 (2위)	44.1 (1위)	43.6 (1위)

*출처 : B3 ('21.4월)

*출처: B3 ('21.4월)

- □ (생산·수출) 국내외 생산능력(Capa) 5년간 4배 수준 확대(16년 58GWh →'20년 217GWh, 기업설문), 수출*도 5년 연속 증가
 - * (리튬이온) '16년 23.3억불 → '20년 48.8억불, (리튬이온+납축전지) '16년 49.7억불 → '20년 74.6억불
 - < 리튬이온전지 수출(백만불) >

< 리튬이온전지 수입(백만불)>

◇ (강점) 축적된 기술력 및 신시장 선도

- □ [기술력] 소형에서 중대형 이차전지로 이어지는 **이차전지 산업 성장** 과정에서 축적한 기술력을 바탕으로 세계적인 기업군을 보유
 - **글로벌 전기차 기업**들에게 **이차전지를 공급**하는 기술력을 확보
 - * '20년 전기차용 배터리 세계시장 점유율(B3): (LGES) 29%, 1위 (삼성SDI) 6.5%, 4위, (SKI) 4.2%, 6위

< 한·중·일 이차전지 경쟁력 비교('20년, 전지협회) >

구분	한국	중국	일본
에너지밀도			
가격	100	95	100
생산성	100	90	95

- * (가격·생산성) 한국=100 기준 비교 분석
- □ [시장선도] 기업간 협력을 기반으로 전기차 시장에 선제적으로 대응, 내수에 집중한 중국 기업 대비 유럽, 미국 등 주요 시장 선점중
 - * '10년 LG에너지솔루션-GM 공급, '11년 삼성SDI-BMW 공급 등 초기부터 해외시장 진출
 - < 전기차용 이차전지 주요시장 시장점유율('20년, SNE리서치) >

* 미국 시장도 LGES 오하이오, SKI 조지아 공장 등 건설 중이며, '23년경 시장점유율 1위 달성 예상

◇ [한계] 소재·부품·원재료의 높은 해외 의존

- □ [소부장] 이차전지 장비 부문의 국내 경쟁력은 높아지고 있으나*, 소재·부품은 여전히 해외의존도가 높고, 시장점유율도 낮은 상황
 - * 4대소재 시장점유율 ('19→'20년, B3, %) : (양극재) 17→19.5, (음극재) 6→8.3, (분리막) 16→19.7, (전해액) 9→12.1
 - ** 4대 소재 해외의존도('19년, B3) : (양극) 47.2%, (음극) 80.8%, (분리막) 69.5%, (전해액) 66.2%
 - < 핵심소재·부품 글로벌 시장점유율('20년, 출처 : B3, 후지경제) >

- □ [원재료] 이차전지 수요 확대로 원자재 및 1차 가공원료 수요도 급증할 것으로 전망되나, 공급망 다변화 및 국내생산기반 확충 필요
 - * 이차전지용 리튬수요 '17년 9.7만톤 → '27년 743만톤으로 증가 전망(지질연구원)

Ⅲ. 시사점

◇ 이차전지 산업의 급성장이 예상됨에 따라 글로벌 경쟁 본격화

- 전기차 지속 확대와 함께 전동화, 무선화, 친환경화 등의 글로벌 트렌드는 이차전지 성장률 증가세를 더욱 가속화 할 전망
- 현재 한국·중국·일본이 유사한 수준으로 세계 선두 경쟁을 벌이고 있으나, 유럽 등 신규 기업들의 시장 진입도 본격화
- 우리 기업들도 우수한 경쟁력을 바탕으로 해외 시장 선점에 주력, 다만, 국내 소재·부품 등의 경쟁력과 생태계는 다소 취약

◇ 우리 이차전지 산업의 한계를 극복하고, 위상을 굳건히 할 필요

- 전고체전지 등 차세대 이차전지 개발을 통한 도약을 위해 세계 각국 정부와 기업이 함께 노력하고 있어 향후 10년이 매우 중요한 시점
- 선제적 현지 진출을 통한 시장 확대와 함께 이를 지속적으로 뒷받침하는 안정적 공급망과 핵심역량을 국내에 확보할 필요
- 대한민국을 글로벌 이차전지 R&D의 중심이자 선도 제조기지 (Mother Factory)로 구축, 이를 위한 핵심 소부장 공급기지 조성 필요
- 민관이 합심하여 이차전지 산업이 직면한 한계를 극복하고,이차전지 1등 국가로 도약하기 위한 전략 마련 필요
 - ① 글로벌 초격차 확보를 위한 전폭적인 기술개발 지원 추진
 - ② 안정적 공급망을 갖춘 튼튼한 생태계 조성
 - ③ 다양한 수요산업 및 비즈니스 모델 발굴

Ⅳ. 비전 및 추진전략

[비전]

2030 차세대 이차전지 1등 국가 대한민국

【추진전략】

- ① 독보적 1등 기술력 확보 ⇒ 민관 협력 대규모 R&D 추진
- ② 글로벌 선도기지 구축 ⇒ 연대와 협력의 생태계 조성
- ③ 이차전지 시장 확대 ⇒ 공공·민간 수요시장 창출

【세부 추진과제】-

- □ 민관 대규모 R&D 추진
- ① 차세대 이차전지 기술 조기 확보
- ② 차세대 이차전지용 소부장 요소기술 확보
- ③ 리튬이온전지 초격차 기술경쟁력 확보
- ② **안정적 공급망을 갖춘** 튼튼한 생태계 조성
- ① 안정적인 이차전지 공급망 구축
- ② 소부장 핵심기업 육성
- ③ 이차전지 전문인력 양성 확대
- ④ 글로벌 트렌드에 대응한 제도기반 마련
- ③ 공공·민간 수요시장 창출
- ① 사용후 이차전지 시장 활성화
- ② 이차전지 수요기반 확대
- ③ 이차전지 서비스 신산업 여건 조성

[기대 효과]

이차전지 매출액 소부장 매출액 이차전지 수출액

2020년	2030년	
22.7조원	→ 166조원 (세계시장 40%)	
4.3조원	→ 60조원 (세계시장 20%)	
75억불	→ 200억불	

♡. 세부 추진 과제

[전략1] 차세대 이차전지 1등 기술력 확보를 위한 대규모 R&D 추진

- ◇ 이차전지 글로벌 경쟁 본격 시작으로, 향후에도 시장주도를 위해서는 초격차 기술력 확보가 핵심 선결과제
 - ⇒ 성능과 안전성을 획기적으로 높인 차세대 이차전지 상용화, 기존 리튬이온전지의 고성능·고안전·생산성 제고를 통해 시장 선점
 - ⇒ '30년까지 <mark>민간은 40.6조원을 투자</mark>, 정부도 대규모 R&D예타 등 기술선점 지원 확대
- ① (<mark>차세대전지</mark>) 차세대전지 제조기술 및 핵심 소·부·장 요소기술 개발을 위한 대규모 R&D 지원 추진
 - **전고체('27년)·리튬황('25년)·리튬금속('28년)** 등 차세대 이차전지 조기 상용화를 위한 기술개발 추진('23~'28년, 예타 추진)

	전고체전지	리튬황전지	리튬금속전지
특성	(전해질) 액체→고체	(양극재) 니켈계→황탄소	(음극재) 흑연→금속
장점	안전성 극대화	가벼운 무게, 플렉서블	에너지밀도 향상

- ② (<mark>차세대 요소기술</mark>) 수요-공급기업 연계 및 산학연 협력을 토대로 요소 기술 개발을 추진, '30년 이후 대비 차차세대 핵심원천기술 지원 확대
 - 차세대전지 연구, 성능·안전성평가 등을 종합 지원하는 '차세대 배터리 파크' 구축
 - * ①신규 소재·부품을 적용한 차세대전지 제조용 드라이룸 구축, ②셀 성능·안전성 평가 지원, ③전문기업 기술사업화 및 인력양성 지원 등
- ③ (<mark>리튬이온전지</mark>) 현재 사용 중인 리튬이온전지의 고성능·고안전· 생산성 제고를 위한 초격차 기술력 확보
 - ^①하이니켈 양극재, 실리콘 음극재 등 소재 개발, ^②지능형 이차전지 (위험의 자가 감지·억제·치유)개발 예타 추진, ^③친환경·스마트 공정 혁신

□ 미래시장을 주도하는 차세대 이차전지 제조기술 조기 확보

- ◈ 차세대전지 제조기술 개발을 위한 대규모 R&D 추진
- □ [차세대전지 제조] 조기 상용화를 목표로 전고체('27년), 리튬황('25년), 리튬금속('28년) 등 차세대 전지군의 기술개발에 민관 역량 결집
 - (민간) '30년까지 차세대 이차전지 R&D 투자 (20.1조원)
 - (정부) 핵심 타겟제품 대상으로 시장맞춤형 대규모 R&D 지원
 - * '고성능 차세대 이차전지 기술개발' 신규예타 추진('23~'28년, 산업부) 등
 - * '탄소중립혁신기술개발' 신규예타 내 '한계돌파형 이차전지 미래원천기술연구'('23~'30년, 과기부)

< 차세대전지 대표 품목 및 개발방향 >

- (전고체) 무게가 가벼운 황화물계 전고체전지(EV,軍,우주), 고온 안전성이 높은 산화물계 전고체전지(ESS) 등 다양한 시장맞춤형 기술개발
- ② (리튬황) 소형화·경량화 가능한 리튬황전지 개발 통해 항공·드론용 경량 이차전지, 섬유·전자기기용 플렉서블 이차전지 등 신규 시장 창출
- ③ (리튬금속) 전고체전지에 리튬금속 음극재를 적용하여 에너지밀도와 안전성을 동시에 극대화하는 전기차용 이차전지 개발

< 이차전지 기술개발·실증 로드맵(안) >

구분	'20년	'25~'28년	'30년
전고체	전고체 ·300Wh/kg급 파일롯셀 ·400Wh		·차량 실증
리튬황	·400Wh/kg급 파일롯셀 ·무인기(하이브리드) 실증	·소형·플렉서블 전지개발 ·무인기용 상용화기술	·비행체 적용
리튬금속	·음극소재 개발	·400Wh/kg급 상용화기술	·차량 실증

② 차세대 이차전지에 사용되는 핵심 소부장 요소기술 확보 병행

- ◈ 차세대전지 소부장 기술 선행 개발, 차차세대 원천기술 개발도 착수
- ◆ 차세대전지 연구·실증을 종합 지원하는 '차세대 배터리 파크' 구축
- □ [**차세대 소부장**] 전극소재, 고체 전해질, 제조장비 등 차세대전지 상용화를 위한 분야별 요소 기술개발
 - ◆ 수요·공급기업 연계를 바탕으로 기술적 문제 해결(이온전도도, 수명, 안전성) 및 핵심기술 확보를 위한 기술개발 추진(30여개 산학연 참여)
 - * 리튬기반 차세대전지 기술개발 ('20~'24년, 산업부)
 - * 전기자동차용 차세대 리튬금속 이차전지 핵심원천기술 개발 ('18~'23년, 과기정통부)
 - ② 리튬금속-공기전지, 다가이온 전지 등 차차세대 원천기술 개발, 유기물 기반 신개념 이차전지 등 혁신기술 개발 추진
 - * 혁신도전 프로젝트를 통한 도전적 연구지원 추진 검토 ('21년, 과기정통부)
 - ③ 4대 핵심소재(양극재, 음극재, 전해질, 분리막) 외 7대 차세대소재*를 선정, 미래선도품목에 단계적으로 포함하여 원천기술 개발 지원 확대
 - * ①고체전해질, ②리튬금속 음극재, ③리튬황 양극재, ④리튬공기양극재, ⑤듀얼·다가이온 전지소재, ⑥레독스 커플, ⑦나트륨이온전지 양극재
- □ (R&D 인프라) 차세대 이차전지 연구·실증평가를 종합 지원하는 '차세대 배터리 파크' 구축을 통해 미래 경쟁력 확보 집중 지원
 - * 차세대전지 상용화 지원센터 구축 추진 ('22~'26년, 산업부)
 - ① (시험제조) 신규 소재·부품을 적용한 차세대전지 완제품 시험제조를 위한 드라이룸 생산라인 구축
 - ② (실증평가) 셀 성능·신뢰성 평가 및 방폭시험 등 안전성 평가를 종합 지원, 국내 중소·중견기업 대상 실증테스트 비용도 지원 추진
 - 3 (기업지원) 이차전지 소부장기업의 애로기술 해소, 사업화 지원

③ 리튬이온 이차전지 초격차 기술경쟁력 확보

- ◆ 현재 사용 중인 리튬이온 이차전지의 고성능·고안전·생산성 제고
- □ 【고성능】 주행거리(450→600km이상), 수명(충방전 횟수 500회→1,000회 이상),
 고온신뢰성(45℃이상) 등 성능고도화 소재, 생산성 확보 장비 개발 병행
 - ① 코발트 저감형 하이니켈 양극소재 개발(Ni 90%, Co 3% 이하), 고온신뢰성 제고를 위한 표면처리 기술·장비 개발
 - * 고신뢰성 차세대 니켈계 양극소재 개발 ('21~'23년, 산업부)
 - 2 실리콘 음극소재(Si 10% 이상), 대량합성·연속공정 장비개발
 - * 고성능 이차전지 실리콘계 음극소재 및 제조장비 개발 ('21~'23년, 산업부)
 - ③ 단일벽 탄소나노튜브 대량생산 및 균일 분산 공정 기술 개발 추진 (전국 도전성·내구성 제고)
- □ (고안전) 고안전성 이차전지 모듈, 지능형 제어기술 확보를 통해 발화 지연을 넘어 자가진단·치유 가능한 이차전지 제조기술 개발
 - \circ (1단계) 발화지연·확산방지를 위한 **모듈 내 소화패치 탑재** \rightarrow (2단계) 내부 온도·가스 등 **이상상황 감지** \rightarrow (3단계) **자가억제·자가치유** 기술개발
 - * 모듈내 소화패치를 탑재하는 '고안전성 모듈소재 및 적용기술개발'('21~'24년, 산업부)
 - ** 자가감지·자가억제·자가치유 등 '지능형 배터리 기술개발' 예타 추진 ('24~'28년, 산업부)
- □ [고생산성] 저탄소 공정, 디지털·스마트화 등 제조공정의 생산성 제고
 - 에너지 다소비^{*} 공정인 건조공정을 효율화하는 장비개발, 건조공정이 필요 없는 **건식공정^{**} 개발로 친환경성 및 생산성 제고** 동시 달성
 - * 전지 제조공정 中 건조공정의 에너지 소비량이 82% 차지(Swedish Energy Agency, '19년)
 - ** 탄소저감형 중대형이차전지 혁신제조기술개발 ('22~'25년, 산업부)
 - AI·디지털 트윈 등 첨단기술을 활용한 혁신적 제조공정 도입
 - * 가상 이차전지 양극재 Pilot 제조설비를 구축하고, 원격으로 현장설비 운영 지원 및 데이터 시뮬레이션을 통해 최적 공정 개발

[전략2] 글로벌 선도기지 구축을 위한 연대와 협력의 생태계 조성

- ◇ 세계시장 진출을 뒷받침하는 첨단기술 개발과 최초 제품화의 글로벌 선도기지를 국내에 구축하기 위해 흔들림 없는 생태계 조성
 - ⇒ 연대와 협력의 이차전지 생태계를 위한 ^①이차전지 공급망 구축, ^②소부장 핵심기업 육성, ^③전문인력 양성, ^④제도기반 마련 추진
- ① (<mark>공급망</mark>) 안정적 공급망을 위해 원재료 확보와 소재 생산능력 강화
 - **정부간 협력 강화**, 민관 협력 **활성화**를 통한 원재료 광물 확보 강화
 - 국내 수요를 충당할 수 있는 **재활용 소재를 국내에서 확보**
 - * 재활용 소재 ('20년) 전기차 6만대 → ('25년) 30만대 → ('30년) 60만대 규모 Capa확보
 - 이를 위한 재활용원료 확보체제 강화 및 기술·공정개발 추진
- ② (소부장 핵심기업) 이차전지 핵심요소인 소재·부품·장비 기업의 성장과 기술력 확보를 위한 지원을 대폭 강화
 - 국내 최초 **이차전지 소부장 특화단지**를 핵심 성장거점으로 조성
 - 수요기업 연계형 기술개발 등 소부장 기업 핵심기술 확보 지원, 민관 공동 R&D 혁신펀드(800억원) 조성으로 중소·스타트업 R&D 지원
 - ^①이차전지를 **국가전략기술***로 지정하여 세제지원 확대, ^②개정 유턴법상 인센티브 지원, ^③K-배터리우대지원 프로그램 신설(수은 1.5조원) 등 금융지원 강화
 - * 조세특례제한법 상 신설될 항목으로 국가안보, 미래경쟁력을 확보하기 위한 분야 등의 기술
- ③ (전문인력) (석박사)설계·고도분석 인력양성 확대, (학부)기초·응용+특화, (재직자)기술애로 해결 교육 등 이차전지 인력 연간 1,100명+a 양성
- ④ (<mark>제도기반</mark>) ^①국가핵심기술^{*} 관리 효율화, ^②이차전지 사양표시 확대 검토, ^③전주기 탄소배출기준 마련 등 제도적 기반 강화
 - * 산업기술보호법 상 해외 유출 시 국가안전 국민경제에 악영향을 줄 우려가 있는 산업기술

① 안정적인 이차전지 소재 공급망 구축

- 민·관 협력을 통한 해외광물자원 확보 강화 및 비축시스템 개선
- □ (원재료 확보) 민관 협력을 통한 해외 광물자원 확보 강화 및 비축 확대
 - 1 (기업지원) 민간 기업의 해외 소재광물 개발 프로젝트 적극 지원
 - 해외자원개발의 사업성, 기술적 타당성, 법률·제도 등 기초조사 지워과 융자, 컨소시엄 구축 등 자금지워 확대 추진
 - * 민간 개발 프로젝트의 사업성 평가 정보제공, 법률·제도검토 지원 및 융자비율 확대 검토
 - * 수요기업 중심「이차전지 공급망 협의회」신설을 통해 원자재의 안정적인 조달 추진
 - ② (정부간 협력강화) 국가간 협력채널(산업·자원협력위 등) 확대, 자원수요국과의 네트워크 활동을 통해 민간 해외진출 기반 조성
 - 민간기업의 광물 부존국 **광산개발 프로젝트 참여 지원**, 채광·분리· 정련 등 **원료·기초소재기술 공동 R&D** 모색
 - * 연간 생산량 및 시장점유율 예시 : (호주) 리튬 4.2만톤·54%, (인니) 니켈 80만톤·29.6%
 - 미국·EU 등 수요산업 기반을 갖춘 국가들과 다자·양자 교류채널을 통해 정보·기술협력 강화, 산학연 공동 프로젝트 발굴
 - ③ (비축시스템 개선) 수급우려 품목인 코발트의 비축량을 2~3배 확대 하는 등 희소금속 비축 확대 검토, 수급상황에 따른 활용전략 고도화*
 - * 현행 60일 이상 소요되는 방출기간 단축 및 광종별 수급상황 실시간 모니터링 강화

- □ [재활용 소재] 이차전지 제조에 투입 가능한 원소재의 국내조달 확대
 - ① (설비구축) 사용후 이차전지 재활용을 통한 핵심소재(니켈·코발트 등) 공급을 위해 설비 구축 확대 (민간)
 - * '20년 전기차용 배터리(NCM811) 6만대 → '25년 30만대 → '30년 60만대 규모 공급
 - < 국내 이차전지 재활용 설비 구축 전망(전지협회) >

구분	'20년	'25년	'30년
황산코발트	8,400 톤/년	22,000 톤/년	32,300 톤/년
황산니켈	13,200 톤/년	62,500 톤/년	122,500 톤/년
황산망간	2,400 톤/년	7,100 톤/년	10,800 톤/년
수산화리튬	0 톤/년	17,400 톤/년	26,800 톤/년

- ② (기술·공정 개발) 친환경 재활용 기술개발 실증센터 구축과 기술개발 지원 등을 통해 리튬 등의 재활용률 지속 제고*
 - * 친환경 리튬이차전지 재활용 기술개발 실증센터 구축('21~'24년, 산업부)
 - 경제성·안전성 확보를 위한 **공정 자동화*, 에너지 소비 저감**, 저탄소 재제조 기술 등 **친환경 공정**** 개발 지속 추진
 - * 재활용기술 고도화 및 이차전지 원료화 기술개발 지원 ('20~'24년, 산업부)
 - ** 저탄소·고부가 전극 재제조 혁신 기술개발 추진 ('22~'26년, 산업부)
- ③ (이차전지 재활용) 주요 광물 물질흐름 분석 후 재활용 자원 데이터 축적, 광종별 재활용률 산정·관리(국가청정생산지원센터, '22년)
 - **중고 전기차 수출 시 배터리 인증**절차를 신설하여 고성능배터리 유출 방지, 보조금 수혜차량에 적용되는 **의무조건도 강화***(운행기간 등)
 - 친환경기술 희소금속 재활용 기업의 ^①온실가스 감축 외부사업 방법론 개발 지원, ^②금융 혜택 제공방안 검토
- ④ (기업육성) '희소금속 100대 핵심기업 지원제도'('21.下 신설)를 통해 이차전지 광물 재활용기업 발굴, 금융·인력·R&D 등 종합 지원

② 이차전지 소부장 핵심기업 육성

- ◆ 이차전지 핵심 소재·부품·장비 기업 성장지원을 위한 특화단지 조성
- ◆ 국가전략기술 지정, 유턴 인센티브 제공 등을 통해 민간 투자에 세제 등 지원
- □ (소부장 특화단지) 旣지정된 소부장 특화단지를 중심으로 수요-공급기업 간 협력을 통한 이차전지 산업 생태계 구축 집중 지원
 - * 이차전지 소부장 특화단지 지정('21.2.23)

입지 환경

- (**공급망**) LGES 및 40여개 협력사 (257社 입주 예정) 등 양극재·전해질·분리막 및 모듈·팩 기업 다수
- (**생태계)** 기초연구(테크노폴리스), 실증(오창과학산단), 생산(제2산단) 등 리튬이온전지 생태계 구축
- (실증기반) 이차전지 소재부품 시험평가센터('21.4월 선정), 고도 분석장비 구축을 통해 안정·신뢰성 확보, 핵심소재 개발 지원
 - * (시험평가센터) 파일럿셀 제조 및 성능·안정성 평가 지원 ('21~'23년, 산업부)
 - * (고도분석장비) 미세구조 분석 등을 위한 SEM, TEM 등 고도분석장비 지원
- ② (협력R&D) 앵커기업과 단지 내 소재부품기업 및 응용산업용 모듈·팩 제조업체 간 협력 R&D 추진시 지원 강화
 - * 이차전지 산업 협력모델화 지원방안 마련 ('21.下)
- □ [기술 자립] 대외의존도 높은 소부장 핵심품목의 자체 기술확보를 적극 지원하여 핵심 소부장 기업 육성을 통한 공급망 안정성 확보
 - 1 수입 의존도가 높은 핵심 소재·부품* 기술개발 및 혁신 장비** 개발
 - * 파우치(日), 바인더(中,日), 전해액(中,日) 등 수입의존 高
 - ** 이차전지 패키징 소재 제조장비, 이차전지 분리막 연신장비·코팅장비 등
 - **② 수요기업 연계형** 소부장 기술 개발 지원 확대 추진
 - * 고체전해질 원료, 리튬잉곳 및 금속전극, 고체전해질 제조장비 등

□ (R&D 펀드) 정부·금융·산업계가 최소 800억원 규모의 R&D 혁신펀드를 조성하여 이차전지 소부장 중소·스타트업 기업들의 R&D 지원

- □ [투자지원] 국내기업의 설비·R&D 투자에 대한 자금 지원 확대
 - 이차전지 핵심기술을 국가전략기술*로 선정하여 세제지원 강화
 → R&D 최대 40~50%, 시설투자 최대 20% 세액공제
 - * (現) 일반 R&D·시설투자^(1단계)와 신성장·원천기술 R&D·시설투자^(2단계)의 2단계 구조 → (改) 국가전략기술^(3단계)을 신설하여 신성장·원천기술 투자시보다 공제율 확대
 - * 현재 상용 배터리 성능 고도화, 차세대 이차전지 기술 선점, 소재·부품 국산화 지원 초점, 구체적 세부기술(안)은 「2021년 세법개정안」을 통해 발표('21.7월)

<국가전략기술 R&D 및 시설투자 세액공제율(%)>

R&D 비용		대	중견	중소
현행	일 반	2	8	25
28	신성장·원천기술	20-	-30	30~40
신설	국가전략기술	30-	~40	40~50

시설투자		당기분			증가분
		대	중견	중소	이기판
현행	일 반	1	3	10	2
	신성장사업화시설	3	5	12	3
신설	국가전략기술	6	8	16	4

- ② 첨단산업* 또는 국가핵심기술** 관련 설비 투자시 해외사업장 청산· 축소 요건을 면제하여 유턴기업에 해당하는 투자 인센티브 지원 (최대 수도권 150억원, 비수도권 300억원, 6.23일 개정 유턴법 시행)
 - * 산업발전법에 따른 첨단기술 활용 제품 또는 첨단제품(이차전지분야 등)을 생산하는 사업장
 - ** 국가핵심기술 지정 등에 관한 고시에 따라 확인받은 기술을 활용한 제품(예 니켈 함량 80% 이상의 양극재)
- ③ 첨단투자지구 지정 검토, K-배터리 우대지원 프로그램 신설(수은 1.5조원), 산업구조고도화 프로그램 운용(산은) 등으로 투자 전폭 지원

③ 이차전지 전문인력 양성

- ◆ 산업계 수요에 맞는 **수준별 인력양성** (매년 1,100명+a 규모)
- ◈ 이차전지 제조·공정 인력 양성센터, 인적자원개발협의체 등 신설
- □ [수준별 인력양성] 이차전지 분야 수준별 인력양성 규모 확대
 - * 이차전지 인력 부족 현황('20년, 전지협회) : (석박시급 연구설계인력) 1,013명, (학시급 공정인력) 1,810명
 - (핵심인력) 수준 높은 연구·설계인력에 대한 산업계 수요 증가 → 대학이 참여하는 석박사급 인력 양성 3배 확대(50→150명)
 - * 전지설계·소재·고도분석 등 분야별 인력 양성 프로그램('21년 50명→ '22년 150명) 참여대학 현재 5개(한양대, 성균관대, 충남대, 전남대, UNIST)에서 추가 확대 추진
 - 사용후 이차전지(재활용·재사용) 전문인력 양성사업 신규 추진(50명)
 - ② (공정인력) 품질관리·공정운영 등 제조현장인력 및 학부수준 인력양성
 - 국립대·지역거점대학 내 에너지·전기·전자 등 유관 전공학과에 이차전지 트랙을 구축, 기초·응용 교육 과정 신설 검토
 - * 전지 3사, 소부장기업 참여로 교육과정 마련, 기업연계 실습·인턴십 제공('22~'26년)
 - 혁신공유대학 운영* 등을 통해 기존 전공에 관계없이 **희망하는** 학생이 이차전지 분야 특화교육을 이수할 수 있도록 지원(450명)
 - * 교육부 '디지털 신기술 인재양성 혁신공유대학' 중 에너지신산업 분야 컨소시엄(7교)
 - ③ (현장인력) 소부장 특화단지 내 전지 제조기업-소부장 기업 간 연계 과정에서 발생되는 기술애로 해결 중심의 재직자 교육 실시(160명)
 - * 소부장시험평가센터 등 기반시설을 적극 활용하여 중소·중견기업 재직자 대상 교육
- □ (인프라) 수준별 인력양성을 뒷받침하는 지원 인프라 구축
 - ① (인력 양성 플랫폼) 현장전문인력 부족 해소를 위해 현장경험을 제공하는 '이차전지 제조·공정 인력 양성 플랫폼' 구축 추진('23년~)
 - * 예시) 바이오공정인력양성센터('20년~), 반도체설계교육센터('95년~) 등
 - ② (협의체) 이차전지 산업 인력수급 현황파악, 교육훈련 수요발굴을 위해 이차전지 인적자원개발협의체(SC, Sector Council) 신설('21년)
 - * 산학연이 참여, 인력 수급현황을 파악하고 중장기 인력 양성계획 수립 등

④ 글로벌 트렌드에 대응한 제도기반 마련

- ◈ 해외진출 확대, 친환경 트렌드에 대응한 선제적인 제도적 기반 마련
- □ (국가핵심기술 관리) 해외생산거점 확대 및 기술수준 상향을 고려한국가핵심기술 수출 관리 → 국내산업경쟁력 유지
 - ① (국가핵심기술 지정·변경) 기술 향상 수준, 중요품목 관련 기술 관리 필요성 등을 고려한 국가핵심기술 조정
 - ② (기술수출 관리) 해외진출 필요성과 국내산업 경쟁력 유지에 미치는 영향 등을 종합 고려하여 산업기술보호위원회 심의가이드라인 마련
 - ③ (인력관리) 국가핵심기술 보유 대상기관의 기술인력 이직관리 등 인력관리 실태조사* → 미흡기관에 대해 개선조치 실시
 - * [®]비밀유지·경업금지의무계약 체결, [®]경업금지 보상, [®]퇴직인력 출입국 관리 등
- □ **[관리 체계 정비]** 전기차 탑재 이차전지 사양 확대 표시* 방안 검토
 - * (현행) 정격전압/용량, 1회 충전시 주행거리 등 표시 \rightarrow (개선) 저온시 주행거리, 생산지 등 추가 검토
 - 現 내연기관 중심으로 마련된 자동차 관리체계를 중장기적으로 전기차를 포함한 친환경차 특성을 고려하여 합리화
 - 이차전지 전주기 **탄소배출량** 기준 마련, 전기차 보조금 지급기준 차등화, 정부·공공 구매사업 가점 적용 등 인센티브 마련 검토
 - * 연구용역('21년) \rightarrow 의견수렴 \rightarrow 인증관련 단체표준 마련 \rightarrow 인센티브 적용(가점 등)
- □ (통계 신설) 이차전지 산업 동향조사(분기, 협회)를 통해 생산·무역 통계 확보, 중장기적으로 표준산업분류·무역분류 內 이차전지 분류체계 신설 검토
- □ [기념행사] 이차전지 산업의 중요성을 알리고, 업계 위상 강화, 산업 진흥을 촉진하는 '이차전지의 날(11.1일)' 지정 및 기념행사 추진(민간 주도)
 - * 기념 행사, 유공자 포상, 이차전지 산업계 종사자 격려 등 진행

[전략3] 이차전지 시장 확대를 위한 다양한 분야의 수요시장 창출

- ◇ IT·EV·ESS 외에도 이차전지의 사용 영역이 확대, 사물배터리(BoT: Battery of Things) 시대의 도래
 - ⇒ 신규 수요시장 창출로 이차전지 산업의 영역을 확대하고, 게임의 장을 구축하여 산업의 흐름을 선도
- ① (사용후 이차전지 시장 활성화) 사용후 이차전지 회수 →
 수집·운반 → 보관 → 매각 → 성능평가 → 활용 및 제품화 등
 全과정에 걸친 산업 육성
 - o 회수체계 마련, 성능·안전성 검증 등 관련 제도 구축
 - 수거센터·산업화센터 등 산업화 거점 조성
 - ESS·전동카트 등 사용후 이차전지를 적용한 **응용제품 개발**
- ② (수요기반 확대) 공공수요 확대 및 민간 신시장 창출 지원
 - 2.2GWh 규모의 공공ESS 시장 창출, 관공선 친환경선박 전환 등
 - 항공·선박·기계 등 이차전지 적용이 가능한 신규 민간시장 창출을 위해 제도개선 및 기술개발 지원
- ③ (배터리 신산업) 이차전지 관련 서비스산업 발굴·육성
 - ^①'전기차 부품 데이터 플랫폼' 구축 및 데이터 활용 신산업 창출, ^②이차전지 대여·교체 서비스 도입, ^③이차전지 표준화 추진

□ 사용후 이차전지 시장 활성화

◈ 회수체계 등 제도를 마련하고, 산업화 센터 등을 통해 제품화도 지원

< 사용후 이차전지 2nd life 절차 >

- □ (**회수체계 마련**) 전국 4개 권역*에 거점수거센터를 구축하고, 사용후 이차전지 운송, 보관 등에 관한 기준 마련('21년, 환경부)
 - * 수도권(시흥), 영남권(대구), 호남권(정읍), 충청권(홍성)
 - 전기차 폐차시 발생하는 **사용후 이차전지 지자체 반납의무가 폐지**('21년) 됨에 따라 민간에서 **재사용·산업화 할 수 있도록 제도 마련 검토**
 - * 예시) 사용후 배터리 성능 평가·재사용 의무 등 규정 마련 검토 등
- □ (활용기반) 기업의 이차전지 선별(성능·안전성평가 등)을 지원하기 위해 제주· 나주·울산·포항 '사용후 이차전지 산업화 센터' 확대 구축 (산업·중기부)

< 사용후 이차전지 산업화 센터 >

지역	제주	전남 나주	울산	경북 포항	충북 진천
구축	′19.10월	'21.12월	'21.12월	′20.9월	'20.5월
연간 처리용량	(팩) 750대 (모듈) 6,000대	(팩) 1,250대 (모듈) 17,000대	(팩) 600 (모듈) 1,400	(팩) 2,400대 (모듈) 6,400대	(팩) 14,400대 (모듈) 14,400대

- * 선제적으로 구축한 제주 산업화 센터('19년)의 구축·운영 사례를 타 센터에 확산
- 「전안법」개정^{*}을 통해 재활용 사업자 스스로 또는 제3자가 **사용후** 이차전지의 안전성을 평가할 수 있는 검사제도 마련(~'22년, 국표원)
 - * 재활용 사업자 및 검사기관의 등록요건, 검사결과의 표시 등을 규정

- **한·미·일·EU** 유관단체 간 **'사용후 이차전지 성능평가 협의체'를 구성** ('21.3월 제안)하여 성능·안전 평가 **국제표준 마련**을 위한 협력 추진
- □ 【제품화】ESS, 전동카트 등 사용후 이차전지를 활용한 응용제품 개발 및 제품 성능·안전성 평가 기술, 배터리 관리기술(BMS) 등 기술 이전 * EV·ESS 사용후 이차전지 응용제품 기술개발 및 실증사업 ('21~'24년, 산업부)
 - 산업화 센터 중심으로 응용제품별 적정 이차전지 선택, 제품 디자인, 제품 성능·안정성 개선 등 기업의 제품화 기술지원
 - ESS 등 사용후 이차전지를 활용한 제품의 안전성·사업성 검증을 위해 실증특례를 적용하는 규제샌드박스 사업('20~'22년) 5건 추진
 - 산업화 센터-기업-대학간 네트워크 구축을 통해 **인력양성*** 과정 마련 및 **기업지원 생태계 구축**
 - * 산업화센터 중심으로 '19~'20년간 기초교육(131명), 전문과정(52명) 인력양성

< 사용후 이차전지 활용 어플리케이션 예시 >

ESS	가로등	캠핑용 파워뱅크
ESS		

- □ (종합정보시스템) 사용후 이차전지 '회수 → 수집·운반 → 보관 → 성능평가
 → 민간매각' 全과정 관리를 위해 '종합정보관리시스템' 구축('22~'24년)
 - * 사용후 이차전지 관련 全 생애 IT시스템 연구용역('20~'21년) → IT시스템 구축('22~'25년)

시스템 통합 연계 국토부 차량등록말소정보, 사고이력정보 환경부 전기차 보조금, 폐배터리 회수 산업부·중기부 성능평가검사정보

② 이차전지 수요기반 확대

- ◈ 공공ESS, 관공선 등 공공시장을 활용한 수요기반 확대
- ◈ 항공·선박·기계·철도 등 이차전지 적용 시장 확대 지원
- □ [공공 보급] 공공시장을 활용한 이차전지 수요 확대
 - (ESS) 계통안정화, 도서 마이크로그리드, 공공기관 설치의무 등 향후 5년('21~'25년)간 2.2GWh 규모의 공공ESS 시장 창출
 - * ('21년) 제주 및 육지지역 공공 ESS 구축(30.3MWh) → ('22년) 대규모 예타 추진
 - ㅇ 재생에너지 발전량 예측제도 또는 재생에너지 입찰제도에 참여 하는 재생에너지 연계형 ESS 계통안정화 편익 지원
 - 2 (선박) 관공선(총 388척)을 '30년까지 크기, 운항특성 등을 고려하여 전기, 하이브리드* 등 친환경 선박으로 전환**
 - * 저속운항시 이차전지 사용, 고속운항시 이차전지+발전기(LNG 또는 디젤) 사용
 - **「환경친화적 선박의 기술개발 및 보급 촉진에 관한 법률」('20.1.1일 시행)
- □ [민간시장 창출 지원] 신규 수요산업에 적합한 이차전지 개발·실증 확대
 - 1 (항공) 항공용 차세대 이차전지 개발로 이차전지 시장수요 확대
 - 플라잉카(UAM·PAV) '25년 상용화를 목표로 기체용 이차전지 (셀·패키징 등) 등 핵심부품 개발 지원
 - * 230Wh/kg급 배터리팩(패키징, 설계 및 시험평가 등) 개발('20~'23년, 산업부)
 - * LG에너지솔루션, 리튬황 전지를 탑재한 무인항공기 성층권 13시간 비행 성공('20.9월)
 - 2 (선박) 차도선, 고래관광선 등 연안선박용 전기추진선박 개발 및 실증사업 추진(산업부·해수부)

(산업부, '19~'22년)

전기추진 고래관광선(최대 360명) 개발・실증 │ 전기추진 차도선차량 20대 승객 100명 이상 개발·실증 (해수부, '20~'24년)

- 국제운항 선박용 엔진-전동기-ESS 결합 하이브리드 추진시스템 및 고안전성 ESS 패키징 기술 개발
 - * 하이브리드 발전시스템 개발 ('20-'22년), 선박용 ESS 패키징 개발 ('21~'23년) 등

- 3 (기계) 건설기계용 이차전지 개발 및 보급사업으로 수요 확대
 - 전기 굴착기, 전기 지게차 등 국산화를 위해 고출력이 필요한 특성을 고려한 건설기계용 배터리팩 개발 지원
 - * 전기동력식 소형 건설·산업장비용 50V/360V급 전기동력공급장치개발('21~'24년, 산업부)
 - **전기 굴착기** 보급 확대를 위해 **보조금**(대당 1,200만원~2,000만원) **지원**
 - * 전기 굴착기 보급사업 (환경부)
- 4 (철도) 도시철도차량 주행용 이차전지 개발·실증을 통해 수요 창출
 - 철도차량 주행용 급속충전 하이브리드 배터리팩 개발 지원 및 대전도시철도 운영을 통해 실증
 - * 철도차량 주행용 1500Vdc 메가와트급 급속충전 하이브리드 배터리팩 개발('18~'22년, 산업부)
 - 무가선 트램 국가R&D 부산 오륙도선 실증
 - * 무가선트램 실증 R&D('17~'22년, 국토부) → 이차전지 탑재 무가선 트램 '23년 개통예정
- (PM) 1인용 이동수단(Personal Mobility)에 장착되는 배터리의 안전성· 신뢰성 확보를 통한 시장 활성화
 - **전동보드**(킥보드, 스케이트, 세그웨이 등) **배터리**를 별도 안전확인 신고대상 전기용품으로 분류·관리(전동보드·리튬이차전지 안전기준 개정, '21.8월 시행)
 - * (기존) 생활용품인 전동보드의 안전성 평가 시 전지를 포함하여 시험
 - PM용 중형 배터리의 **안전신뢰성 평가 인프라** 구축
 - * 마이크로 비클(Micro Vehicle) 및 응용제품 안전성 평가기반 구축('22~'25년)

기계	철도	항공

③ 이차전지 서비스 신산업 여건 조성

- 이차전지 데이터 활용 신산업, 이차전지 대여·교체 서비스 등 이차전지 관련 서비스산업 발굴·육성
- □ [데이터 플랫폼] 전기차 운행·관리 全과정 빅데이터 수집·활용을 위한 '전기차 부품 데이터 플랫폼' 구축
 - * 전기차 부품 데이터 플랫폼 구축 및 실증 ('20~'23년)
 - 주행·관리 데이터 기반으로 ^①이차전지 성능개선, ^②전기차 부품전환 지원*, ③이차전지 관리, 맞춤형 보험·금융상품 등 신산업 창출 지원
 - * 예시) 온도에 따른 이차전지 주행·관리 데이터 기반으로 이차전지 열관리 부품 개발
- □ [0]차전지 신산업] 이차전지 '구매'가 아닌 '구독' 서비스산업 창출을 위해 시범사업 결과를 바탕으로 관련 제도 정비 추진('22년~)
 - 1 (이차전지 대여) 이차전지를 차량과 구분하여 '빌려쓰는 서비스' 도입
 - 차량가격에서 이차전지(전기차 가격의 40% 수준) 가격을 제외하여 판매, 이차전지는 소비자에게 리스하는 **이차전지 대여 시범사업** 추진(~'22년)
 - * 보조금 수령후 구매 가격을 현재 대비 절반 수준인 2천만원 이하로 대폭 인하 가능
 - 택시·버스 대상 전기차 이차전지 대여모델의 사업성 집중 검증
 - * 택시, 버스는 승용차 대비 긴 주행거리(약 7만km/年) 2~3년 내 이차전지 교체가 필요
 - ② (이차전지 교체) 충전 대기시간 없이 '교체하는 서비스' 도입
 - 전기 이륜차, 퍼스널 모빌리티 등의 이차전지를 충전할 필요 없이 스테이션에서 완충된 이차전지로 교환하는 시범사업 추진
 - * 전기이륜차 배터리 교환형 충전인프라 구축사업(환경부, '20~'21년 시범사업 이후 본격화)
- □ [0]차전지 표준화] 교체형 이차전지 시장 활성화를 위해 교체형 배터리팩 크기·형태·전압, 전원 커넥터 형태 등 표준화(산업부·국표원)
 - * (표준화) 개인이동수단용 전기차 이차전지 및 충전용 전력분배 표준화 기반 조성('20~'22년, 국표원)
 - * (기술개발) 퍼스널 모빌리티 플랫폼 핵심기술 개발·실증사업 ('21~'25년) 내 세부과제