Title: Mamba (deep learning architecture)

URL: https://en.wikipedia.org/wiki/Mamba_(deep_learning_architecture)

PageID: 75795581

Categories: Category:2023 in artificial intelligence, Category:Language modeling, Category:Neural

network architectures

Source: Wikipedia (CC BY-SA 4.0).

Supervised learning

Unsupervised learning

Semi-supervised learning

Self-supervised learning

Reinforcement learning

Meta-learning

Online learning

Batch learning

Curriculum learning

Rule-based learning

Neuro-symbolic Al

Neuromorphic engineering

Quantum machine learning

Classification

Generative modeling

Regression

Clustering

Dimensionality reduction

Density estimation

Anomaly detection

Data cleaning

AutoML

Association rules

Semantic analysis

Structured prediction

Feature engineering

Feature learning

Learning to rank

Grammar induction

Ontology learning

Multimodal learning

Apprenticeship learning
Decision trees
Ensembles Bagging Boosting Random forest
Bagging
Boosting
Random forest
k -NN
Linear regression
Naive Bayes
Artificial neural networks
Logistic regression
Perceptron
Relevance vector machine (RVM)
Support vector machine (SVM)
BIRCH
CURE
Hierarchical
k -means
Fuzzy
Expectation-maximization (EM)
DBSCAN
OPTICS
Mean shift
Factor analysis
CCA
ICA
LDA
NMF
PCA
PGD
t-SNE
SDL
Graphical models Bayes net Conditional random field Hidden Markov
Bayes net
Conditional random field
Hidden Markov
RANSAC
k -NN

Local outlier factor
Isolation forest
Autoencoder
Deep learning
Feedforward neural network
Recurrent neural network LSTM GRU ESN reservoir computing
LSTM
GRU
ESN
reservoir computing
Boltzmann machine Restricted
Restricted
GAN
Diffusion model
SOM
Convolutional neural network U-Net LeNet AlexNet DeepDream
U-Net
LeNet
AlexNet
DeepDream
Neural field Neural radiance field Physics-informed neural networks
Neural radiance field
Physics-informed neural networks
Transformer Vision
Vision
Mamba
Spiking neural network
Memtransistor
Electrochemical RAM (ECRAM)
Q-learning
Policy gradient
SARSA
Temporal difference (TD)
Multi-agent Self-play
Self-play
Active learning
Crowdsourcing
Human-in-the-loop

Mechanistic interpretability **RLHF** Coefficient of determination Confusion matrix Learning curve **ROC** curve Kernel machines Bias-variance tradeoff Computational learning theory Empirical risk minimization Occam learning **PAC** learning Statistical learning VC theory Topological deep learning **AAAI ECML PKDD NeurIPS ICML ICLR IJCAI** ML**JMLR** Glossary of artificial intelligence List of datasets for machine-learning research List of datasets in computer vision and image processing List of datasets in computer vision and image processing Outline of machine learning V t Mamba [a] is a deep learning architecture focused on sequence modeling. It was developed by researchers from Carnegie Mellon University and Princeton University to address some limitations of transformer models, especially in processing long sequences. It is based on the Structured State Space sequence (S4) model. [2][3][4] Architecture

To enable handling long data sequences, Mamba incorporates the Structured State Space Sequence model (S4). [2] S4 can effectively and efficiently model long dependencies by combining continuous-time, recurrent, and convolutional models. These enable it to handle irregularly sampled data, unbounded context, and remain computationally efficient during training

and inferencing. [5]

Mamba introduces significant enhancements to S4, particularly in its treatment of time-variant operations. It adopts a unique selection mechanism that adapts structured state space model (SSM) parameters based on the input. [6][2] This enables Mamba to selectively focus on relevant information within sequences, effectively filtering out less pertinent data. The model transitions from a time-invariant to a time-varying framework, which impacts both computation and efficiency. [2][7]

Mamba employs a hardware-aware algorithm that exploits GPUs, by using kernel fusion, parallel scan, and recomputation. [2] The implementation avoids materializing expanded states in memory-intensive layers, thereby improving performance and memory usage. The result is significantly more efficient in processing long sequences compared to transformers. [2][7]

Additionally, Mamba simplifies its architecture by integrating the SSM design with MLP blocks, resulting in a homogeneous and streamlined structure, furthering the model's capability for general sequence modeling across data types that include language, audio, and genomics, while maintaining efficiency in both training and inference. [2]

Key components

Selective-State-Spaces (SSM): The core of Mamba, SSMs are recurrent models that selectively process information based on the current input. This allows them to focus on relevant information and discard irrelevant data. [2]

Simplified Architecture: Mamba replaces the complex attention and MLP blocks of Transformers with a single, unified SSM block. This aims to reduce computational complexity and improve inference speed. [2]

Hardware-Aware Parallelism: Mamba utilizes a recurrent mode with a parallel algorithm specifically designed for hardware efficiency, potentially further enhancing its performance. [2]

Variants

Token-free language models: MambaByte

Operating on byte-sized tokens, transformers scale poorly as every token must "attend" to every other token leading to $O(n\ 2)$ scaling laws, as a result, Transformers opt to use subword tokenization to reduce the number of tokens in text, however, this leads to very large vocabulary tables and word embeddings .

This research investigates a novel approach to language modeling, MambaByte, which departs from the standard token-based methods. Unlike traditional models that rely on breaking text into discrete units, MambaByte directly processes raw byte sequences. This eliminates the need for tokenization, potentially offering several advantages: [8]

Language Independence: Tokenization often relies on language-specific rules and vocabulary, limiting applicability across diverse languages. MambaByte's byte-level representation allows it to handle different languages without language-specific adaptations.

Removes the bias of subword tokenisation: where common subwords are overrepresented and rare or new words are underrepresented or split into less meaningful units. This can affect the model's understanding and generation capabilities, particularly for languages with rich morphology or tokens not well-represented in the training data.

Simplicity in Preprocessing: It simplifies the preprocessing pipeline by eliminating the need for complex tokenization and vocabulary management, reducing the preprocessing steps and potential errors

Subword tokenisation introduces a number of quirks in LLMs, such as failure modes where LLMs can't spell words, reverse certain words, handle rare tokens, which are not present in byte-level tokenisation. [9]

Mamba Mixture of Experts (MOE)

MoE Mamba represents a pioneering integration of the Mixture of Experts (MoE) technique with the Mamba architecture, enhancing the efficiency and scalability of State Space Models (SSMs) in language modeling. This model leverages the strengths of both MoE and SSMs, achieving significant gains in training efficiency—requiring 2.2 times fewer training steps than its predecessor, Mamba, while maintaining competitive performance. MoE Mamba showcases improved efficiency and effectiveness by combining selective state space modeling with expert-based processing, offering a promising avenue for future research in scaling SSMs to handle tens of billions of parameters. The model's design involves alternating Mamba and MoE layers, allowing it to efficiently integrate the entire sequence context and apply the most relevant expert for each token. [10] [11]

Vision Mamba

Vision Mamba (Vim) integrates SSMs with visual data processing, employing bidirectional Mamba blocks for visual sequence encoding. This method reduces the computational demands typically associated with self-attention in visual tasks. Tested on ImageNet classification, COCO object detection, and ADE20k semantic segmentation, Vim showcases enhanced performance and efficiency and is capable of handling high-resolution images with lower computational resources. This positions Vim as a scalable model for future advancements in visual representation learning. [12]

Jamba

Jamba is a novel architecture built on a hybrid transformer and mamba SSM architecture developed by Al21 Labs with 52 billion parameters, making it the largest Mamba-variant created so far. It has a context window of 256k tokens. [13]

Impact and Future Directions

Mamba LLM represents a significant potential shift in large language model architecture, offering faster, more efficient, and scalable models [citation needed] .

Applications include language translation, content generation, long-form text analysis, audio, and speech processing [citation needed] .

See also

Language modeling

Transformer (machine learning model)

State-space model

Recurrent neural network

Notes

References

٧

ι

е

History timeline

timeline

Companies

Projects

Parameter Hyperparameter

Hyperparameter

Loss functions

Regression Bias-variance tradeoff Double descent Overfitting
Bias-variance tradeoff
Double descent
Overfitting
Clustering
Gradient descent SGD Quasi-Newton method Conjugate gradient method
SGD
Quasi-Newton method
Conjugate gradient method
Backpropagation
Attention
Convolution
Normalization Batchnorm
Batchnorm
Activation Softmax Sigmoid Rectifier
Softmax
Sigmoid
Rectifier
Gating
Weight initialization
Regularization
Datasets Augmentation
Augmentation
Prompt engineering
Reinforcement learning Q-learning SARSA Imitation Policy gradient
Q-learning
SARSA
Imitation
Policy gradient
Diffusion
Latent diffusion model
Autoregression
Adversary
RAG
Uncanny valley
RLHF
Self-supervised learning
Reflection

Recursive self-improvement
Hallucination
Word embedding
Vibe coding
Machine learning In-context learning
In-context learning
Artificial neural network Deep learning
Deep learning
Language model Large language model NMT
Large language model
NMT
Reasoning language model
Model Context Protocol
Intelligent agent
Artificial human companion
Humanity's Last Exam
Artificial general intelligence (AGI)
AlexNet
WaveNet
Human image synthesis
HWR
OCR
Computer vision
Speech synthesis 15.ai ElevenLabs
15.ai
ElevenLabs
Speech recognition Whisper
Whisper
Facial recognition
AlphaFold
Text-to-image models Aurora DALL-E Firefly Flux Ideogram Imagen Midjourney Recraft Stable Diffusion
Aurora
DALL-E
Firefly
Flux
Ideogram
Imagen

Midjourney
Recraft
Stable Diffusion
Text-to-video models Dream Machine Runway Gen Hailuo Al Kling Sora Veo
Dream Machine
Runway Gen
Hailuo Al
Kling
Sora
Veo
Music generation Riffusion Suno Al Udio
Riffusion
Suno Al
Udio
Word2vec
Seq2seq
GloVe
BERT
T5
Llama
Chinchilla Al
PaLM
GPT 1 2 3 J ChatGPT 4 4o o1 o3 4.5 4.1 o4-mini 5
1
2
3
J
ChatGPT
4
40
01
03
4.5
4.1
o4-mini
5
Claude

Gemini (language model) Gemma

Gemma
Grok
LaMDA
BLOOM
DBRX
Project Debater
IBM Watson
IBM Watsonx
Granite
PanGu-Σ
DeepSeek
Qwen
AlphaGo
AlphaZero
OpenAl Five
Self-driving car
MuZero
Action selection AutoGPT
AutoGPT
Robot control
Alan Turing
Warren Sturgis McCulloch
Walter Pitts
John von Neumann
Claude Shannon
Shun'ichi Amari
Kunihiko Fukushima
Takeo Kanade
Marvin Minsky
John McCarthy
Nathaniel Rochester
Allen Newell
Cliff Shaw
Herbert A. Simon
Oliver Selfridge
Frank Rosenblatt
Bernard Widrow

Gemini (language model)

Joseph Weizenbaum

Seymour Papert

Seppo Linnainmaa

Paul Werbos

Geoffrey Hinton

John Hopfield

Jürgen Schmidhuber

Yann LeCun

Yoshua Bengio

Lotfi A. Zadeh

Stephen Grossberg

Alex Graves

James Goodnight

Andrew Ng

Fei-Fei Li

Alex Krizhevsky

Ilya Sutskever

Oriol Vinyals

Quoc V. Le

Ian Goodfellow

Demis Hassabis

David Silver

Andrej Karpathy

Ashish Vaswani

Noam Shazeer

Aidan Gomez

John Schulman

Mustafa Suleyman

Jan Leike

Daniel Kokotajlo

François Chollet

Neural Turing machine

Differentiable neural computer

Transformer Vision transformer (ViT)

Vision transformer (ViT)

Recurrent neural network (RNN)

Long short-term memory (LSTM)

Gated recurrent unit (GRU)

Echo state network

Multilayer perceptron (MLP)

Convolutional neural network (CNN)

Residual neural network (RNN)

Highway network

Mamba

Autoencoder

Variational autoencoder (VAE)

Generative adversarial network (GAN)

Graph neural network (GNN)

Category