安徽大学 2021—2022 学年第二学期

《线性代数 A》考试试卷(A 卷)

参考答案与评分标准

<u> </u>	冼择题	(每小题2分,	共10分)
•	从山)干水	人 事 小 必 ム カ ,	77 10 11 1

二、填空题(每小题2分,共10分)

6. 5; 7.
$$(1,0,0)^T$$
; 8. 2; 9. 18; 10. 0

三、计算题(6小题,每小题12分,共72分)

11. 解

$$\begin{vmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{vmatrix} = 3 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{vmatrix} = (-3) \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = -3.$$

.....(12 分)

12. 解

$$(E-A)X = B$$
, $X = (E-A)^{-1}B$,

$$(E-A,B) = \begin{pmatrix} 1 & -1 & 0 & 1 & -1 \\ 1 & 0 & -1 & 2 & 0 \\ 1 & 0 & 2 & 5 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 1 & 1 \\ 0 & 1 & 2 & 4 & -2 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & -1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 1 & 1 \\ 0 & 0 & 3 & 3 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 1 & 1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & -1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 2 & 0 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 3 & -1 \\ 0 & 1 & 0 & 2 & 0 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}, \quad \text{MU} \quad X = \begin{pmatrix} 3 & -1 \\ 2 & 0 \\ 1 & -1 \end{pmatrix}.$$

13. 解

依题意,将向量组按列排成矩阵并作初等行变换

$$\begin{pmatrix} 2 & 3 & 1 & 4 \\ 1 & -1 & 3 & -3 \\ 3 & 2 & 4 & 1 \\ -1 & 0 & -2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 3 & -3 & 6 \\ 0 & -1 & 1 & -2 \\ 0 & 2 & -2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

所以秩为 2, α_1 , α_2 , 为其一极大线性无关组,

.....(12分)

14. 解:对增广矩阵进行初等行变换,

$$\overline{A} = \begin{pmatrix} 5 & -5 & -4 & 1 \\ 1 & -1 & a & 2 \\ 1 & -a & -2 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & a & 2 \\ 0 & 1-a & -2-a & -3 \\ 0 & -5+5a & 6 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & a & 2 \\ 0 & a-1 & a+2 & 3 \\ 0 & 0 & 4+5a & 9 \end{pmatrix},$$

当 a=1 时, $\overline{A} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$,有无穷多解,基础解系 $\xi_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$,特解

$$\xi_0 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix},$$

通解为 $x = \xi_0 + c\xi_1$, c 为任意常数。

.....(12分)

15. 解

A 的特征多项式

$$|\lambda E - A| = \begin{vmatrix} \lambda - 2 & -1 & -1 \\ 0 & \lambda - 2 & 0 \\ 0 & 1 & \lambda - 1 \end{vmatrix} = (\lambda - 2)^2 (\lambda - 1),$$

所以,A 的特征值为 $\lambda_1 = 1$, $\lambda_2 = \lambda_3 = 2$

.....(6分)

对于 $\lambda_1 = 1$,解齐次线性方程组(E - A)X = O,

$$(E-A) = \begin{pmatrix} -1 & -1 & -1 \\ 0 & -1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

得方程组的基础解系 $\alpha_1 = (-1, 0, 1)^T$.

于是A的对应于特征值 $\lambda_1 = 1$ 的全部特征向量为 $c_1\alpha_1(c_1 \neq 0)$,为任意常数);

$$(2E - A) = \begin{pmatrix} 0 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

可得方程组的基础解系 $\alpha_2 = (1, 0, 0)^T, \alpha_3 = (0, -1, 1)^T$

于是,A 的对应于 $\lambda_2 = \lambda_3 = 2$ 的全部特征向量为 $c_2\alpha_2 + c_3\alpha_3(c_2,c_3)$ 为不全为零的任意常数).

.....(12 分)

16. 解:

 $f(x_1,x_2,x_3)$ 的矩阵是

$$A = \begin{pmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{pmatrix}.$$

矩阵 A 的特征多项式为

$$|\lambda E - A| = \begin{vmatrix} \lambda - 2 & 2 & 0 \\ 2 & \lambda - 1 & 2 \\ 0 & 2 & \lambda \end{vmatrix} = \frac{c_1 + 2c_2 + 2c_3}{(\lambda - 1)(\lambda - 4)(\lambda + 2)},$$

所以 A 的特征值是 $\lambda_1 = 1$, $\lambda_2 = 4$, $\lambda_3 = -2$.

.....(4分)

分别求得相应特征向量为
$$\alpha_1 = \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$,

单位化得
$$\beta_1 = \frac{1}{3} \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \frac{1}{3} \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$, $\alpha_3 = \frac{1}{3} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$,

令
$$Q = \frac{1}{3} \begin{pmatrix} -2 & 2 & 1 \\ -1 & -2 & 2 \\ 2 & 1 & 2 \end{pmatrix}$$
, 则 Q 是正交矩阵, $Q^T A Q = \begin{pmatrix} 1 & 1 \\ & 1 & \\ & & 10 \end{pmatrix}$,

作正交变换 x = Qy, 即得标准形 $f = y_1^2 + 4y_2^2 - 2y_3^2$.

.....(12分)

四、证明题(共8分)

17. 证明:设 $k_1\eta_1 + k_2(\eta_1 - \eta_2) = \theta$,两边左乘 A,得 $k_1A\eta_1 + k_2(A\eta_1 - A\eta_2) = \theta$,即 $k_1b + k_2(b - b) = \theta$,即 $k_1b = \theta$,而 $b \neq \theta$,所以 $k_1 = 0$,

于是 $k_2(\eta_1 - \eta_2) = \theta$, 由于 $\eta_1 \neq \eta_2$, 可知 $k_2 = 0$, 从而证得 $\eta_1, \eta_1 - \eta_2$ 线性无关;(8分)