Заняття 10. Комутатори операторів фізичних величин x_i , p_i , L_i , L^2 . Співвідношення невизначеностей. *Аудиторне заняття*

- 1. Знайти комутатори операторів компонентів імпульсу та радіус вектора.
- 2. Побудувати оператор моменту імпульсу $\stackrel{\hat{}}{L}$ у прямокутній декартовій системі координат.
- 3. Знайти комутатор операторів компонент моменту імпульсу $[\hat{L_v},\hat{L_z}]$.
- 4. Знайти комутатор оператора квадрату моменту імпульсу $\hat{L}^2 = \hat{L_x}^2 + \hat{L_y}^2 + \hat{L_z}^2$ з оператором $\hat{L_x}$.
- 5. Відомо, що власна функція одномірної системи у певному стані має вигляд $\psi(x) = C \exp \left(-\frac{x^2}{a^2} + ik_0 x\right), \text{ де } a \text{ та } k_0 \text{відомі константи. Знайти: a) величину константи } C;$ б) середнє значення координати < x > y цьому стані;

Домашнє завдання

1. Знайти комутатори наступних компонент моменту імпульсу:

a)
$$[\hat{L_x}, \hat{L_z}]$$
; б) $[\hat{L_z}, \hat{L_z}]$.

- 2. Знайти комутатор оператора квадрату моменту імпульсу $\hat{L}^2 = \hat{L_x}^2 + \hat{L_y}^2 + \hat{L_z}^2$ з оператором $\hat{L_z}$
- 3. Знайти правила комутації наступних операторів: a) $\hat{L_x}$ та $\hat{p_x}$; б) $\hat{L_x}$ та $\hat{p_y}$; в) $\hat{L_x}$ та $\hat{p_z}$.
- 4. Відомо, що власна функція одномірної системи у певному стані має вигляд $\psi(x) = C \exp \left(-\frac{x^2}{a^2} + ik_0 x\right), \text{ де } a \text{ та } k_0 \text{відомі константи. Знайти середнє значення імпульсу }$ у цьому стані.
- 5. Визначити середнє значення фізичної величини, що описується оператором $\hat{L_z}^2$ в стані, який описується функцією $\psi(\phi) = C \sin^2 \phi \ (C \text{невідома константа}).$