Indian Institute of Information Technology Guwahati Department of Science and Mathematics MA 204: Mathematics IV

Practice Problem 1: Complex Analysis

In addition to the problems mentioned in the lecture slides, try to solve the following problems.

- 1. Find argument and modulus of the following function:
 - (a) $\tan \alpha i$
 - (b) $1 \cos \alpha + i \sin \alpha$
 - (c) $1 + \sin \alpha i \cos \alpha$
- 2. Find locus of z if it satisfy the the following equation:
 - (a) $z^{\frac{1}{3}} = a$ for some $a \in \mathbb{C}$.
 - (b) $\left| \frac{z-a}{z-b} \right| = k = \text{constant for some } a, b \in \mathbb{C}.$
 - (c) |z a| + |z b| = 2|a b| for some $a, b \in \mathbb{R} \{0\}$
- 3. If $|z_1 + z_2| = |z_1| + |z_2|$, then find a relation between two non-zero complex numbers z_1 and z_2 .
- 4. If $|z_1| = 1$ or $|z_2| = 1$, but not both, then show that $\left| \frac{z_1 z_2}{1 z_1 \bar{z_2}} \right| = 1$. What would happen if $|z_1| = |z_2| = 1$?
- 5. If z and w are in $\mathbb C$ such that ${\rm Im}(z)>0$ and ${\rm Im}(w)>0$, show that $|\frac{z-w}{z-\bar w}|<1$.
- 6. If z lies on a unite circle centered at the origin. Show that $|\text{Re}(2+\bar{z}+z^2)| \le 4$.
- 7. If $x_r = \cos(\frac{\pi}{2^r}) + i\sin(\frac{\pi}{2^r})$, then find the value of $\lim_{n \to \infty} x_1 x_2 x_3 \cdots x_n$.
- 8. Express the following equations in terms of z:
 - (a) the hyperbola $x^2 y^2 = 1$.
 - (b) $x^2 y^2 2y + i(2x 2xy)$
- 9. For each of the following subsets of \mathbb{C} , determine whether it is open, closed or neither. Justify your answers.
 - (a) $A_1 = \{ z \in \mathbb{C} : \text{Re}(z) = 1 \text{ and } \text{Im}(z) \neq 4 \}$
 - (b) $A_2 = B_1(1) \cup B_{\frac{1}{2}}(2) \cup B_{\frac{1}{2}}(3)$
 - (c) $A_3 = \{z \in \mathbb{C} : |\frac{z-1}{z+1}| = 2\}$
- 10. For each of the following subsets of \mathbb{C} , determine their interior, exterior and boundary:
 - (a) $S_1 = \{z \in \mathbb{C} : |z| < 1 \text{ and } \operatorname{Im}(z) \neq 0\} \cup \{z \in \mathbb{C} : |z| > 1 \text{ and } \operatorname{Im}(z) = 0\}$

- (b) $S_2=\{r(\cos(1/n)+\sin(1/n))\in\mathbb{C}:r>0,n\in\mathbb{N}\}\cup\{z\in\mathbb{C}:\mathrm{Re}(z)<0\}$
- 11. Examine if the $\lim_{z\to 0} (\frac{\bar{z}}{z})^2$ exists.
- 12. Check differentiability of the function $f(z) = x^3 + i(1-y)^3$ in the complex plan. Find the corresponding derivative.
- 13. Show that real and imarginary parts of the function $f(z) = \sqrt{|\text{Re}(z)\text{Im}(z)|}$ satisfy the C-R equation. Is the function differentiable at z = 0? Is the function analytic at 0?
- 14. Let $f(z)=z^3$. For $z_1=1$ and $z_2=i$, show that there do not exist any point c on the line joining z_1 and z_2 such that $\frac{f(z_1)-f(z_2)}{z_1-z_2}=f'(c)$.
- 15. If f(z) is a real valued function in a domain $D \subseteq \mathbb{C}$, then show that either f'(z) = 0 or f'(z) does not exist in D.
- 16. Let $f: D \to \mathbb{C}$ be a differentiable function such that, for all $z, w \in \mathbb{C}$, f(z) = f(w) whenever |z| = |w|. Prove that f is a constant function.
- 17. Let f=u+iv be an analytic function defined on the whole of \mathbb{C} . If $u(x,y)=\phi(x)$ and $v(x,y)=\chi(y)$. Prove that, for all $z\in\mathbb{C}$, f(z)=az+b for some $a,b\in\mathbb{C}$.
- 18. Find a function $u(r,\theta)$ such that $f(z) = u(r,\theta) + i(r^2 \cos 2\theta r \cos \theta + 2)$ is analytic.
- 19. Find values of the constants a, b, c, and d such that the function $f(z) = x^2 + axy + by^2 + i(cx^2 + dxy + y^2)$ is analytic.
- 20. Find harmonic conjugate of the following functions, and then express f(z) in terms of z:
 - (a) $\log(x^2 + y^2) + x 2y$
 - (b) $e^{-2xy}\sin(x^2 u^2)$
- 21. Show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)|f(z)|^2 = 4|f'(z)|^2$.
- 22. Find all values of z which satisfy the following:
 - (a) $\sin z = 1 + i$
 - (b) $e^{2iz} = -2$
 - (c) $\sin z = \cosh z$
- 23. Evaluate the following values:
 - (a) $8^{\frac{1}{3}}$
 - (b) $\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{\frac{3}{4}}$
 - (c) $\sin^{-1}(z)$ in terms of z
 - (d) $\log(\operatorname{Log}((1+i)^i))$
 - (e) $e^{(5+3i)^2}$
 - (f) $\frac{(1+i)^{1-i}}{(1-i)^{1+i}}$