

Enrolment No: F22 CSEVOS 27

Name of Student:

MADHAV GUATA

Department/ School: SCS ET

MID TERM EXAMINATION, EVEN SEMESTER MARCH2023

COURSE CODE: CSET206

MAX. DURATION:

1 HRS

COURSE NAME: Design and Analysis of Algorithm

PROGRAM: BTECH

TOTAL MARKS: 15

Mapping of Questions to Course and Program Outcomes											
Q.No.	Section A	Section B									
		B1	B2	В3	B4						
СО	2	1	1	2	1						
РО	1-5,9-12	1-5,9-12	1-5,9-12	1-5,9-12	1-5,9-12						
BTL	L3	L3	L2	L3	L3						

GENERAL INSTRUCTIONS: -

- 1. Do not write anything on the question paper except name, enrolment number and department/school.
- 2. Carrying mobile phone, smart watch and any other non-permissible materials in the examination hall is an act of UFM.

COURSE INSTRUCTIONS: -

- 1. Attempt any five questions from section A.
- 2. All questions of Section B are mandatory.
- 3. Section A carries 5 marks and Section B carries 10 marks.
- 4. Any data you feel missing suitably be assumed and stated clearly.

SECTION A

Max Marks: 5

A1) Answer any five questions

 $(1x5 = 5 M_{arl_{(g)}})$

- Explain and compare the worst- and best-case time complexity of Quick Sort.
- Explain 0/1 Knapsack problem with example. H.
- Solve the following recurrence relation using Master method: · III.

$$T(n) = 4T\left(\frac{n}{16}\right) + \sqrt{n}$$

Organize the following functions in increasing order of their growth W.

 $n\log_6 n$, $\log_2 n$, $\log_8 n$, $8n^2$, $n\log_2 n$, 64, 8^{2n}

- Identify an example of a problem where greedy algorithm fails, also give a suitable V. algorithm design technique which can solve your problem optimally.
- Identify the truthiness of following statement with justification:

"If
$$f(n) = O(g(n))$$
 then $2^{f(n)} = O(2^{g(n)})$ "

SECTION B

Max Marks: 10

- **B1)**Solve the recurrence relation: $T(n) = 2T(\frac{n}{2}) + 2$; T (2) =1 by using backward substitution method.
- B2) What is a loop invariant? Identify the loop invariant for the following code. Justify your answer. (1 + 1 Marks)

```
Fun(A, key):
for (i = 1 \text{ to A.length})
  key = A[i]
  j = i-1
  while (j \ge 0 \text{ and } A[j] \ge \text{key})
    A[j+1] = A[j]
   j = j-1
 A[j+1] = key
```


B3) Apply your expertise as a gardener strategizing for a day of tending to various plants using a specialized fertilizer mix carried in a basket. The basket has a weight constraint of 15 units, and there are seven distinct fertilizers, each with its weight and corresponding plant growth value as outlined in the table below:

Fertilizer	ODIOW,								
	A	В	C	D	E	F	G		
Weight	2	3	5	7	1	4	1		
Plant growth value	10	5	15	7	6	8	13		

With the objective of maximizing the overall plant growth value while adhering to the weight limit, accomplish the following (1 + 2 Marks)

- I. Calculate the maximum achievable plant growth value.
- II. Identify the specific combination of fertilizers to be carried
- B4) I. Explain Big O, Big Ω and θ notation with example

(1.5 Marks)

II. Solve the following recurrence relation $T(n) = 2T(\sqrt{n}) + \log_2 n$

(1.5 Marks)

-ALL THE BEST-