Deep Learning Technology and Application

Ge Li

Peking University

1 / 1

关于激活函数

Sigmoid

$$\delta(z) = \frac{1}{1 + exp(-z)} \in (0,1)$$

$$\delta'(z) = \frac{-exp(-z)}{(1 + exp(-z))^2}$$
$$= \delta(z)(1 - \delta(z))$$

Tanh

$$tanh(z) = \frac{exp(z) - exp(-z)}{exp(z) + exp(-x)}$$
$$= 2\delta(2z) - 1$$

$$tanh(z) \in (-1,1)$$

$$tanh'(z) = 1 - (\frac{exp(z) - exp(-z)}{exp(z) + exp(-z)})^{2}$$

= 1 - tanh²(z)

Softsign

$$softsign(z) = \frac{z}{1 + |z|}$$

$$softsign'(z) = \frac{sgn(z)}{(1+z)^2}$$

Hard Tanh

$$hardtanh(z) = \begin{cases} -1 & : z < -1 \\ z & : otherwise \\ 1 & : z > 1 \end{cases}$$

$$hardtanh'(z) = \begin{cases} 1 : -1 \ge z \le 1 \\ 0 : otherwise \end{cases}$$

ReLU - Rectified Linear Unit

$$relu(z) = \begin{cases} 0 : z < 0 \\ z : z \ge 0 \end{cases}$$

$$relu'(z) = \begin{cases} 1 : z > 0 \\ 0 : otherwise \end{cases}$$

PReLU - Parametric ReLU

$$prelu(z) = \begin{cases} \alpha z & : z < 0 \\ z & : z \ge 0 \end{cases}$$

where $0 < \alpha < 1$

$$prelu'(z) = \begin{cases} 1 : z > 0 \\ \alpha : otherwise \end{cases}$$

ELU - Exponential Linear Unit

$$elu(z) = \begin{cases} \alpha(e^z - 1) & : z < 0 \\ z & : z \ge 0 \end{cases}$$

where $0 < \alpha < 1$

$$elu'(z) = \left\{ \begin{array}{cc} elu(z) + \alpha & : z < 0 \\ 1 & : z >= 0 \end{array} \right.$$

SoftPlus

$$softplus(z) = \log_e(1 + e^z)$$

$$softplus'(z) = \frac{1}{1 + e^{(-z)}}$$

Thanks.

