

Facultad de Ciencias

Universidad Autónoma de México Física Estadística Tarea 2 – 3.1.3

Profesores:

Dr. Ricardo Atahualpa Solórzano Kraemer

Alumno: Sebastián González Juárez

sebastian_gonzalezj@ciencias.unam.mx

3.1.3 Supón que tienes 2 conjuntos de eventos $\{e_m\}$ y $\{e'_{m'}\}$ y que seleccionas un evento de cada conjunto con probabilidad p_m y $p'_{m'}$. Si llamamos P y P' a las probabilidades de masa de los respectivos conjuntos de eventos, demuestra que $S(P \otimes P') \leq S(P) + S(P')$, donde $P \otimes P'$ representa la probabilidad de masa conjunta (es decir, el conjunto de probabilidades de que ocurra e_m y $e'_{m'}$) y la igualdad sólo se cumple si la elección de eventos es independiente; es decir, la entropía se maximiza cuando los eventos son independientes. **Hint:** primero demuestra que: $\sum_{m} \sum_{m'} p_{m,m'} \log \left(\frac{p_{m,m'}}{p_{m}p'_{m}} \right) \geq 0$.

Los conjuntos de los eventos son los siguientes:

 $\{e_m\}$ con probabilidades $P=\{p_m\}$ $\{e'_{m'}\}$ con probabilidades $P'=\{p'_{m'}\}$ De modo que la proba conjunta es: $(P \otimes P'=\{p_{m,m'}\})$

donde $p_{m,m'}$ es la probabilidad de que ocurran $\{e_m\}$ y $\{e'_{m'}\}$ simultáneamente.

Las entropías quedan como:

$$(S(P) = -\sum_{m} p_{m} \log p_{m})$$

$$(S(P') = -\sum_{m'} p'_{m'} \log p'_{m'})$$

$$(S(P \otimes P') = -\sum_{m,m'} p_{m,m'} \log p_{m,m'})$$

P. d. $S(P \otimes P') \leq S(P) + S(P')$ con igualdad si y solo si $p_{m,m'} = p_m p'_{m'}$ (independencia).

Empecemos demostrando el Hint:

$$\sum_{m,m'} p_{m,m'} \log \left(\frac{p_{m,m'}}{p_m p'_{m'}} \right) \ge 0$$

Véase que $f(x) = x \log x$ es convexa para x > 0, usando la desigualdad de Jensen para f(x):

$$\sum_{m,m'} p_m p'_{m'} \cdot \frac{p_{m,m'}}{p_m p'_{m'}} \log \left(\frac{p_{m,m'}}{p_m p'_{m'}} \right) \ge \left(\sum_{m,m'} p_m p'_{m'} \cdot \frac{p_{m,m'}}{p_m p'_{m'}} \right) \log \left(\sum_{m,m'} p_m p'_{m'} \cdot \frac{p_{m,m'}}{p_m p'_{m'}} \right)$$

$$\sum_{m,m'} p_{m,m'} \log \left(\frac{p_{m,m'}}{p_m p'_{m'}} \right) \ge \left(\sum_{m,m'} p_{m,m'} \right) \log(1) = 0$$

$$\sum_{m,m'} p_{m,m'} \log \left(\frac{p_{m,m'}}{p_m p'_{m'}} \right) \ge 0$$

Una vez demostrado ocupemos el Hint:

$$\sum_{m,m'} p_{m,m'} \log \left(\frac{p_{m,m'}}{p_m p'_{m'}} \right) = \sum_{m,m'} p_{m,m'} \log p_{m,m'} - \sum_{m,m'} p_{m,m'} \log p_m - \sum_{m,m'} p_{m,m'} \log p'_{m'} \ge 0$$

Observamos que: $\sum_{m'} p_{m,m'} = p_m$

$$\sum_{m,m'} p_{m,m'} \log p_m = \sum_{m} \log p_m \sum_{m'} p_{m,m'} = \sum_{m} p_m \log p_m \sum_{m'} p_{m,m'} = \sum_{m'} p_{m,m'} \log p'_{m'} = \sum_{m'} p'_{m'} \log p'_{m'}$$

Por lo tanto, la desigualdad se convierte en:

$$\sum_{m,m'} p_{m,m'} \log p_{m,m'} \ge \sum_{m} p_{m} \log p_{m} + \sum_{m'} p'_{m'} \log p'_{m'}$$

$$- \sum_{m,m'} p_{m,m'} \log p_{m,m'} \le - \sum_{m} p_{m} \log p_{m} - \sum_{m'} p'_{m'} \log p'_{m'}$$

$$S(P \otimes P') \le S(P) + S(P')$$

La igualdad se cumple si y solo si:

$$\frac{p_{m,m'}}{p_m p'_{m'}} = 1 \quad \forall m, m'$$

es decir, cuando $p_{m,m'}=p_mp'_{m'}$, lo que significa que los eventos son independientes.