3.1 Investigation- RADIANS

PART A: TERMINOLOGY

Fill in each blank with one of the following terms: arc length, radius, sector

PART B: Investigate Angle Measure Materials

- protractor
- ruler
- string
- calculator
- 1. Use a protractor to confirm that in each of the 3 circles below the sector drawn has an angle measuring 90° .
- 2. Use a ruler to measure the radius of each circle and record in the chart on the next page.
- 3. Use a string to measure the arc length of each sector and record in the chart.
- 4. Complete the 5th column using a calculator. Provide an answer to 1 decimal place.

Size of Angle	Size of Circle	arc length (a)	radius (r)	$\frac{a}{r}$
90°	small			
	medium			
	large			
120°	small			
	medium			
	large			
57°	small			
	medium			
	large			

- 5. In the following circles, use a protractor to construct sectors that have a sector angle of 120° . Measure the arc length and radius for each angle you constructed and record in the chart.
- 6. Repeat #5 but this time construct angles of 57° . Use the same circles.

PART C: SUMMARY Answer the following questions on a separate sheet of paper.

- 1. What do you notice about the chart?
- 2. How does the size of the circle affect the ratio, $\frac{a}{r}$?
- 3. How does the size of the angle affect the ratio, $\frac{a}{r}$?

4. Use your answers to questions 2 and 3 to describe another way to give an angle's size other than by using degrees.

Part E: Definition of a Radian

Radians are an alternative way to measure angles, other than using degrees. The number of radians contained in an angle is equal to the ratio $\frac{a}{r}$, where a is the arc length of the sector containing the angle and r is the radius of that circle.

One radian is defined to be the measure of the angle where $\frac{a}{r} = 1$. In other words, one radian is the size an angle that has an arc length equal to the radius, which makes the angle about 57°. (See the last column in the chart of the investigation.)

Converting Between Degrees and Radians

Question:

How many radians are in a circle? (i.e. How many radians equal 360°?)

Solution:

Step 1: To find the number of radians, we need to know the arc length and radius. Since the size of a circle does not matter, consider a circle with a radius of 1 unit.

Radius equals _____.

Step 2: Now we need to find the arc length. Hmmmm...what is another name for the arc length of a sector whose angle measures 360° ? ______ Find the arc length. Do not use decimals. Leave your answer in terms of π .

Arc length equals .

Step 3: Remember that: # of radians $=\frac{a}{r}$

= _____

=

Step 4: Therefore, $360^{\circ} =$ _____ # of radians.

OR:

$$180^{\circ} =$$
 # of radians

Rules for conversion between DEGREES RADIANS

Since $180^{\circ} = \pi \text{ radians...}$

- ➤ Dividing both sides by 180 gives that 1° = ____radians.

These deductions give us the following nice conversion shortcuts:

DEGREES= RADIANS

RADIANS = _____DEGREES

Example 1: Convert from degrees to radians.

a) 90°

b) 270°

c) 138°

Example 2: Convert from radians to degrees.

a) 3π

b) $\frac{3}{4}\pi$

c) 1.45 rads.

Example 3 : Use the information in each diagram to determine the value of the variable. Give your answers to the nearest hundredth of a unit.

a)

b)

c)

Exit Card!

1. Change each degree to radian measure in terms of $\boldsymbol{\pi}$ and vice versa.

Degree	Radian	Radian	Degree	
(a) - 315°		(c) $\frac{\pi}{12}$		
(b) 135°		(d) 6 rad		

2. Sara is taking a course in industrial engineering. For an assignment, she is designing the interface of a DVD player. In her plan, she includes a decorative arc below the on/off button. The arc has central angle 130° in a circle with radius 6.7 mm. Determine the length of the arc, to the nearest tenth of a millimeter.

3.1 Practice

- 1. Find the exact number of degrees in the angles with the following radian measures.

- a) $\frac{\pi}{3}$ b) $\frac{\pi}{4}$ c) 2π d) $\frac{\pi}{2}$ e) $\frac{3}{4}\pi$ f) $\frac{3}{2}\pi$

- g) 4π h) $\frac{5}{6}\pi$ i) $\frac{\pi}{18}$ j) $\frac{11}{3}\pi$ k) $\frac{7}{6}\pi$ l) 5π
- 2. Find the exact radian measure in terms of π for each of the following angles.
 - a) 40°
- b) 75°
- c) 10°
- d) 120°
- e) 225°

- f) 315°
- g) 330° h) 240° i) 540°

- i) 1080°
- 3. Find the approximate number of degrees, to the nearest tenth, in the angles with the following radian measures.
 - a) 2.5

- b) 1.75 c) 0.35 d) $\frac{17}{13}\pi$ e) $\frac{5}{7}\pi$
- 4. Find the approximate number of radians (nearest hundredth), in the angles with the following degree measures.
 - a) 60°
- b) 150°
- c) 310.5°
- d) 145°
- e) 230°
- 5. Determine the length of each arc, *a* , to the nearest tenth.

6. Determine the approximate measure of $\angle \theta$, (nearest hundredth) of a radian and to the tenth of a degree.

7. Determine the length of each radius, r, to the nearest tenth.

Warm up

1. Determine the missing value in each diagram

a)

2. State two co-terminal angles for each of the following. Your answers must include $\,\pi.\,$

a)
$$\frac{2\pi}{3}$$

b)
$$-\frac{3\pi}{4}$$

3. Change each degree to radian measure in terms of $\boldsymbol{\pi}$ and vise versa.

Degree	Radian	Radian	Degree
(c) - 315°		(d) $\frac{20\pi}{3}$	
(d) 135°		(e) 6 rad	
(e) 540°		(f) $\frac{3\pi}{4}$	