CONTENTS

CONTENTS		Page No
Abstract List of Figures List of Tables		i ii ii
CHAPTER 1	INTRODUCTION	1-7
1.1	Background	1
1.2	Overview	1-2
1.2.1	Working Principle	2-3
1.2.2	System Components	3-4
1.2.3	Advantages of the System	4
1.2.4	Applications	4
1.3	Motivation	5
1.4	Problem Statement	5
1.5	Aim	5-6
1.6	Objectives	6-7
CHAPTER 2	LITERATURE REVIEW	8-11
2.1	Literatures	8-11
CHAPTER 3	EXISTING SYSTEM	12
3.1	Existing System	12
CHAPTER 4	PROPOSED SYSTEM	13-21
4.1	Working	13
4.2	Key Components And Functionalities	19-20
4.3	Advantages	20-21
CHAPTER 5	EMBEDDED SYSTEMS	22-32
5.1	Embedded systems	22-23
5.1.1	History	23-24
5.1.2	Tools	24
5.1.3	Resources	24-25

		APPENDIX	86-103
		REFERENCES	84-85
C	HAPTER 8	CONCLUSION	83
C	HAPTER 7	RESULTS	71-82
6.	12	Wi-Fi Module	70
6.	11	CPU, Memory and Interfaces	67-70
6.	10	Current Consumption	66-67
6.	9	Iot Esp8266 Module	63-66
6.	8	Buzzer	62-63
6.	7	Lcd Display	56-61
6.	6	Voltage Divider Network	54-56
6.	5	DHT11- Humidity and Temperature Sensor	51-54
6.	4	LED	49-50
6.	3	Regulated Power Supply	38-48
6.	2	Pin Diagram	33-38
6.	1	Raspberry Pi Pico	32-33
C	HAPTER 6	HARDWARE DESCRIPTION	32-77
5.	4	Applications of embedded systems	32
	5.3.5	Different types of processing units	31-32
	5.3.4	Network communication embedded system	30-31
	5.3.3	Real time embedded systems	30
	5.3.2	Stand Alone Embedded System	30
	5.3.1	Software Architecture	29-30
5.3		Explanation of Embedded Systems	28-29
	5.2.2	Reliability	27-28
	5.2.1	Debugging	26
5.2		Need for embedded systems	25
	5.1.4	Real time issues	25

ABSTRACT

The IoT Integrated Real-Time Transformer Health Monitoring and Protection System is an innovative solution designed to address the critical challenges associated with transformer failures in power distribution networks. Transformers are indispensable components in electrical grids, and their failure can lead to significant power outages, economic losses, and safety hazards. Traditional monitoring methods are often manual, periodic, and reactive, making them inadequate for modern power systems. This project leverages Internet of Things (IoT) technology to enable real-time monitoring of key transformer parameters, including temperature, humidity, voltage, current, frequency, and oil quality. By integrating advanced sensors, microcontrollers, and cloud-based platforms, the system provides continuous data visualization, real-time alerts, and automated protection mechanisms. The proposed solution not only enhances the reliability and efficiency of transformers but also reduces maintenance costs and downtime. This project demonstrates the transformative potential of IoT in modernizing power systems and aligns with the global shift toward smart grids and Industry 4.0.