	1
Process and Performance Capability	
Green Belt - Six Sigma MOOC Course 3 Module 3	
Course 3 Module 3	
KENNESW SWIFT, INVESTOR	
Designing a Process Capability Study	
Designing a Frocess Capability Study	
Video 2	
KENNEAW SHATE UNIVERSITY	
	1
Designing a Process Capability Study	
Steps for a Process Capability Study	
 Perform a Measurement System Analysis. This helps remove variability due to part measuring 	
Identify an appropriate subgroup size from 4-10. This is the sample size you will be measuring. Most between 3-5.	
Identify the time sequence for drawing these samples. Every hour? Every shift? Every day?	
STATE UNIVERSITY	

Designing a Process Capability Study

Steps for Process Capability Studies

- 4. For each subgroup of 3-5 sample parts, take measurements, average, and plot the average number on the X-bar chart.
- 5. Do this for 20 group readings
- 6. Analyze for statistical stability and process capability

In-Video Quiz 1

How many samples should there be in a subgroup?

- 1 to 2
 - Incorrect. Between 3 and 5 is typical
- 3 to 5
 - Correct! No less than 2 and rarely more than 5 is typical
- 10 to 15
 - Incorrect. Between 3 and 5 is typical
- 34 to 43
 - Incorrect. Between 3 and 5 is typical

Designing a Process Capability Study

Construct an $\,\overline{\!X\!}\,$ (X-bar) and R chart

- 1. Determine the sample subset size (n = 3, 4, or 5)
- 2. Collect 20-25 sets of time-sequenced samples (60-90 data points)
- 3. Calculate the average for each subset of samples to equal X-
- 4. Calculate the Range for each set of samples to equal R

Designing a Process Capability Study

Construct an \overline{X} (X-bar) and R chart

- 5. Calculate $\overline{\overline{X}}$ (X-double bar) or the average of all the X-bars
- 6. Calculate $\,\overline{R}\,$ (R-bar) or the average of all the R's

Designing a Process Capability Study

Construct an \overline{X} (X-bar) and R chart Chart of statistical constants

7. Calculate the control limits:

X-bar Chart:

 $UCL_{\overline{X}} = \overline{\overline{X}} + A_2 * \overline{R}$

 $LCL_{\overline{X}}=\overline{\overline{X}}-A_{2}*\overline{R}$

R Chart: $\label{eq:UCL_R} UCL_{\scriptscriptstyle R} = D_4 * \overline{R}$

CCL_R - D₄ R

 $LCL_R = D_3 * \overline{R}$

Kennesaw State University

0 2.57 1.69

n A₂ D₃ D₄ d₂

2 1.88 0 3.27 1.13

4 0.73 0 2.28 2.06

5 0.58 0 2.11 2.33

6 0.48 0 2.00 2.53

3 1.02

Designing a Process Capability Study

Construct an $\,\overline{\!X}\,$ (X-bar) and R chart

- 8. Draw X-bar and R charts with UCL and LCL for each
- 9. Plot the data and interpret the chart for special or assignable causes

es

KENNESAW STATE UNIVERSITY

X-bar and R Chart Example

Suppose we have a subgroup of 5 parts and we recorded the measurements of 20 sample groups on a timed interval of

After some averaging we get $\overline{\overline{X}}$ = 45 and \overline{R} of 20. Using the formulas we get:

For the X-bar chart: $UCL_{x-bar} = 45 + 0.58*20 = 56.6$ $LCL_{x-bar} = 45 - 0.58*20 = 33.4$ For the R chart: $UCL_R = 2.11*20 = 42.2$ $LCL_R = 0*20 = 0$

In-Video Quiz 1

What is the correct formula for UCL_R?

- $\bullet \quad \ \, \overline{\overline{X}}-A_{2}*\overline{R}$
 - Incorrect. The correct formula is $UCL_R = D_4 * \overline{R}$
- D₄ * \(\overline{R} \)
 - Correct! This is the correct formula for UCL_R
- Incorrect. The correct formula is $UCL_R = D_4 * \overline{R}$
- - Incorrect. The correct formula is $UCL_p = D_A * \overline{R}$

KENNESAW STATE UNIVERSITY

