第三章 导数、微分、边际与弹性

1. 设 Q = f(p) 为需求函数,其中 p 为价格 (单位:元/吨), Q 为需求量 (单位:吨).

	若价格为 100 元 / 吨时的需求弹性为 $\eta(100) = -\frac{100}{f(100)} \cdot f'(100) = 0.25$, 则当价格			
	调整为 101 元 / 吨时, 需求量将约 ().			
	(A) 增加 25%	(B) 增加 0.25%	(C) 减少 25%	(D) 减少 0.25%
2.	函数 $y = \sin x $ 在 z	x=0处是().		
	(A) 无定义		(B) 有定义,但不是	生 续
	(C) 连续但不可导		(D) 连续且可导	
3.	设 $y = x + \sin x$, dy 是 y 在 $x = 0$ 点的微分,则当 $\Delta x \to 0$ 时,有().			
	(A) $dy 与 \Delta x$ 相比是等价无穷小			
	(B) $dy 与 \Delta x$ 相比是同阶 (非等价) 无穷小			
	(C) d y 是比 Δx 高阶的无穷小			
	(D) d y 是比 Δx 低阶的无穷小			
4.	设函数 $y = (1 + \cos x)^{\arcsin x}$, 则微分 $dy\big _{x=0} = ($).			
		(B) $-\ln 2 \mathrm{d} x$		(D) $\ln 2 \mathrm{d} x$
	$(\mathbf{A}) - 2 \mathbf{u} \mathbf{x}$	$(\mathbf{B}) = \prod_{i \in \mathcal{A}} \mathbf{u}_{i}$	(C) 2 u x	$(\mathbf{D}) \text{ III 2 } \mathbf{u} \mathbf{x}$
5 .	设需求函数 $Q = 3000e^{-0.125p}$, 则当价格 $p = 10$, 且上涨 1% 时,需求量 Q 约 (
	•		•	-
	(A) 减少 1.25%	(B) 增加 1.25%	(C) 减少 125%	(D) 增加 125%
	() , , , , ,	, , ,	(=,,,,,,	() []
6.	设函数 $f(x) = \sin 2x + 3^x$,则导数值 $f'(0) = ($).			
	(A) $\ln 3 - 2$	(B) $\ln 3 + 2$	(C) 1	(D) $\ln 3 + 1$
7 .	设 $f(x) = 3^x + x^2 + \ln 3$, 则 $f'(1)$ 等于 ().			
	(A) 3ln3	(B) $\frac{1}{3}$	(C) $\frac{3}{\ln 3} + 2$	(D) $3 \ln 3 + 2$
		3	ln3	

- 8. 设 f(x) 在 x = 1 处可导,则 $\lim_{x \to 0} \frac{f(x+1) f(1-x)}{x} = ($). **(A)** f'(1)**(B)** 2f'(1)**(D)** f'(2)
- 9. 某需求函数为 Q = -100P + 3000,那么当 P = 20 时需求的价格弹性 $E_d = ($).
 - **(A)** 2
- **(B)** 1000
- **(C)** -100
- **(D)** -2

- **10**. 设 $f(x) = 2^x + \ln 2$, 则 f'(1) 等于 ().

- (A) $2 \ln 2$; (B) $2 \ln 2 + \frac{1}{2}$; (C) $\frac{2}{\ln 2}$; (D) $\frac{2}{2 \ln 2} + \frac{1}{2}$.
- **11.** 设函数 $f(x) = (1 + \cos x)^{\frac{1}{x}}$, $dy|_{x=\frac{\pi}{2}} = _____.$
- **12.** 设 $\begin{cases} x = f'(t) \\ y = t f'(t) f(t) \end{cases}$,其中 f(t) 具有二阶导数,且 $f''(t) \neq 0$,则 $\frac{d^2 y}{dx^2} =$ ______.
- **13.** 设函数 $f(x) = x(\sin x)^{\cos x}$, 则 $f'(\frac{\pi}{2}) =$ ______.
- **14.** 设商品的需求函数为 Q = 100 5P, 其中 Q, P 分别表示需求量和价格. 如果商 品需求弹性的绝对值大于1,则商品的价格的取值范围是
- **15.** 设曲线 $f(x) = x^n, n \in \mathbb{N}$ 在点(1,1)处的切线与 x 轴相交于(ξ_n ,0),则极限 $\lim_{n \to \infty} f(\xi_n)$
- **16.** 由参数方程 $\begin{cases} x = 2\cos t \\ v = 2\sin^3 t \end{cases}$ 所确定的曲线在 $t = \frac{\pi}{4}$ 处的切线方程是______.
- **17**. 设 $y = f(\sqrt{x})f^2(x) + f(e)$, 其中 f(x) 在 R 上可导,则 y' = x
- **18.** 设函数 $y = xe^x$, 对正整数 n, n 阶导数 $y^{(n)} =$ _____.
- 19. $\lim_{x \to 0} \frac{x^2 \cos \frac{2}{x}}{\arcsin x} =$ _____.
- **20**. 某商品的需求函数为 Q = 400 100P,则 P = 2 时的需求弹性为
- **21.** 为使函数 $f(x) = (1-x)^{\frac{2}{x}}$ 在点 x = 0 处连续, 应定义 f(0) =

- **22.** 设函数 $y = \frac{x}{\ln x}$, 则导数 y' =______.
- 23. 曲线 $\begin{cases} x = \ln(1+t^2) \\ y = \arctan t \end{cases}$ 在 t = 1 的对应点处的切线方程是______.
- **24.** 设 $y = (1 + \sin x)^x$, 则 $y'|_{x=\pi} =$ ______.
- **25.** 已知某商品的需求函数为 $Q = 16 \frac{P}{3}(P)$ 为价格, Q 为需求量), 当价格 P = 8 时, 若价格上涨 1%,则需求量将下降约
- **26.** 曲线 $y + xe^y = 1$ 在点 P(0,1) 处的切线方程是
- **27**. 已知某商品的需求函数为 Q = 3000 100P,(P 为价格,Q 为需求量),当价格 P = 20 时,若价格上涨 1%,则需求量将下降_______.
- **28.** 设函数 $f(x) = xe^x$,对正整数 n,则 $f^{(n)}(0) = ______$.
- **29**. 设函数 $y = \frac{x \sin x}{1+x}$, 则微分 dy =______.
- **30**. 曲线 $y = xe^x$ 在点 (0,0) 处切线的方程是 ______.
- **31.** 设某种商品的总收益 R 关于销售量 Q 的函数为 $R(Q) = 104Q 0.4Q^2$,则销售量 Q 为 50 个单位时总收益的边际收入是 ______.
- **32.** 设生产某产品 Q 单位的总成本为 $C(Q) = 1100 + \frac{Q^2}{1200}$,则生产 1800 个单位产品时的边际成本是______.
- **34.** 设某种商品的总收益 R 关于销售量 Q 的函数为 $R(Q) = 104Q 0.4Q^2$, 则销售量 Q 为 50 个单位时总收益的边际收入是_____.
- **35.** 设 f(x) 是可导函数, 求函数 $y = f(\tan x) \cdot \arcsin[f(x)] + e^2$ 的导数.
- **36.** 求由方程 $y^5 + 2y = x + 3x^7$ 所确定的隐函数 y(x) 在点 (0,0) 处的切线方程并求 $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$ •

37. 设函数
$$f(x) = \begin{cases} \frac{\varphi(x) - \cos x}{x}, & x \neq 0 \\ a, & x = 0 \end{cases}$$
, 其中 $\varphi(t)$ 具有连续的二阶导数, 且 $\varphi(0) = x = 0$

- (1) 确定 a 的值, 使 f(x) 在点 x = 0 处可导, 并求 f'(x);
- (2) 讨论 f'(x) 在点 x = 0 处的连续性.

- (1) k 为何值时, f(x) 有极限;
- (2) k 为何值时, f(x) 连续;
- (3) k 为何值时, f(x) 可导.
- 39. 求由参数方程 $\begin{cases} x = \ln \sqrt{1+t^2} \\ y = \arctan t \end{cases}$,所确定的函数的一阶导数 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 及二阶导数 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.
- **40.** 求由方程 $\sin(xy) + \ln(y-x) = x$ 所确定的隐函数 y 在 x = 0 处的导数 y'(0).
- **41**. 已知 $y = x \ln x$, 求 $y^{(n)}$.

42. 设函数
$$f(x) = \begin{cases} \sin(x^2), & x \le 0 \\ \frac{\ln(1+x)}{1+x}, & x > 0 \end{cases}$$

43. 设
$$f(x) = \begin{cases} b(1+\sin x) + a + 2, & x > 0 \\ e^{ax} - 1, & x \le 0 \end{cases}$$
 在 $(-\infty, +\infty)$ 上可导, 求 a, b 及 $f'(x)$.

44. 已知函数
$$\begin{cases} x = \sin t \\ y = \cos 2t \end{cases}$$
,求 $\frac{d^2 y}{dx^2} \Big|_{t=\frac{\pi}{6}}$.

45. 设
$$y = \cos(f^2(x)) + f(\sin 1)$$
, 其中 $f(x)$ 可微, 求 dy.

46. 求曲线
$$y^3 = (x^2 + 1)^{\sin x}$$
 上 $x = 0$ 处的切线方程.

- 47. 设函数 $y = f\left(\arcsin\frac{1}{x}\right) + \left(f(\sin x)\right)^3$, 其中 f(x) 在 $(-\infty, +\infty)$ 上具有一阶导数, 求 dy.
- **48.** 设函数 y = y(x) 由方程 $e^y + xy e^x = 0$ 确定, 试求 $\frac{dy}{dx}$ 与 y''(0).
- **49.** 设函数 $y = f(\sin x) + \cos(f(x))$, 其中 f(x) 在 $(-\infty, +\infty)$ 上具有一阶导数与二阶导数,求 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 与 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.
- **50**. 设函数 y = f(x) 由参数方程 $\begin{cases} x = t \arctan t \\ y = \ln(1 + t^2) \end{cases}$ 所确定, 试求 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$.
- **51.** 设 $f(x) = \begin{cases} ax + b, & x < 0 \\ e^x, & x \ge 0 \end{cases}$, 确定 a, b 的值使 f(x) 在 x = 0 处可导.
- **52**. 已知函数 $y = x [\sin(\ln x) + \cos(\ln x)]$, 试求 dy.
- 53. 设函数 y = y(x) 由方程 $x^2y e^{2x} = \sin y$ 所确定, 试求 $\frac{dy}{dx}$ 与 $\frac{d^2y}{dx^2}$.
- 54. 设函数 y = f(x) 由参数方程 $\begin{cases} x = 1 t^2 \\ y = t t^3 \end{cases}$ 所确定,试求 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 与 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.
- **55**. 设函数 $y = (x^2 + 1)^3(x + 2)^2x^6$, 试求 y'.
- **56**. 已知函数 $y = \arctan e^{\sqrt{x}}$, 试求 dy.
- 57. 设函数 y = y(x) 由方程 $\cos(x+y) = y$ 所确定,试求 $\frac{d^2y}{dx^2}$.
- 58. 设函数 y = f(x) 由参数方程 $\begin{cases} x = t \ln(1+t) \\ y = t^3 + t^2 \end{cases}$ 所确定,试求 $\frac{dy}{dx}$.
- **59.** 确定 a, b 的值,使得函数 $f(x) = \begin{cases} 2^x, & x \ge 0 \\ ax + b, & x < 0 \end{cases}$ 在 x = 0 处可导.

- **60**. 已知函数 $y = \ln(x + \sqrt{x^2 + 1})$, 试求 dy.
- **61.** 设函数 y = f(x) 由方程 $x y + \frac{1}{2}\sin y = 0$ 所确定, 计求 $\frac{d^2 y}{dx^2}$.
- **62.** 设函数 y = f(x) 由参数方程 $\begin{cases} x = \ln(1+t^2), \\ y = t \arctan t, \end{cases}$ 所确定, 试求 $\frac{d^2 y}{dx^2}$.
- **63**. 设函数 $y = \frac{(2x+1)^2\sqrt[3]{3x-2}}{\sqrt[3]{(x-3)^2}}$, 试求 $\frac{\mathrm{d}y}{\mathrm{d}x}$.
- 64. 已知函数 f(x) 在 $(-\infty, +\infty)$ 上有定义, 对任意的实数 x_1, x_2 , 有 $f(x_1 + x_2) = f(x_1) f(x_2),$ 且 $f(0) \neq 0$, f'(0) = 1, 证明: f'(x) = f(x).