Symbols!

The Greek Alphabet

Upper case	Lower case	Name	English equivalent
A	α	alpha	a
В	β	beta	b
Γ	γ	gamma	g
Δ	δ	delta	d
\mathbf{E}	$\epsilon,arepsilon$	epsilon	e
${f Z}$	ζ	zeta	${f z}$
Н	η	eta	ee
Θ	$ heta,\ artheta$	theta	h
I	ι	iota	i
K	κ	kappa	k
Λ	λ	lambda	l
M	μ	mu	m
N	ν	nu	n
Ξ	ξ	xi	X
O	0	omicron	O
Π	π	pi	p
P	ho	$_{ m rho}$	\mathbf{r}
Σ	σ, ς	sigma	\mathbf{S}
${ m T}$	au	tau	${f t}$
Υ	v	upsilon	u (or y)
Φ	$\phi,arphi$	phi	ph
X	χ	chi	ch (as in 'loch')
Ψ	ψ	psi	ps
Ω	ω	omega	(long) o

Some logic symbols

Symbol	Meaning	Usage
\neg , \sim	not	$\neg P$: it isn't the case that P
\wedge , &	and	$(P \wedge Q) : P \text{ and } Q$
\vee	(inclusive) or	$(P \vee Q) : P \text{ or } Q \text{ or both}$
\rightarrow	if	$(P \to Q)$: if P then Q
\supset	if	$(P \supset Q)$: if P then Q
	'material conditional'	where this is (contentiously) equated to $(\neg P \lor Q)$
\leftrightarrow , \equiv	if and only if	$(P \leftrightarrow Q) : P \text{ if and only if } Q$
,	v	'if and only if' is often abbreviated 'iff'
P, Q, R, \dots	propositions	stand in for whole assertions
a, b, c, \dots	names	standing in e.g. for 'Juliet', 'Romeo', 'Mercutio' etc.
		NB use lower case letters not too late in alphabet as names
F, G, L, \dots	predicates	standing in e.g. for 'is a girl', 'is tall', 'loves' etc.
		NB use upper case letters in middle of alphabet as predicates
Fa, Gb, Lab	simple sentences	So 'Fa' might mean that Juliet is a girl, 'Gb' that Romeo is tall,
		'Lab' that Juliet loves Romeo. NB predicate comes first!
x, y, z, \dots	variables	used for expressing generalizations, as in
\forall	for all	$\forall x F x : \text{ every thing } x \text{ is such that } x \text{ is } F$
3	there is / some	$\exists x Fx : \text{there is a thing } x \text{ such that } x \text{ is } F$
		or : something is such that it is F
=	is identical to	$\alpha = \beta$: α is one and the same thing as β
\neq	is not identical to	$\alpha \neq \beta$: α is a different thing from β
	necessarily	$\Box P$: it is necessarily true that P
\Diamond	possibly	$\Diamond P$: it is possibly true that P
\longrightarrow	(subjunctive) if	$(P \square \rightarrow Q)$: if P were the case, Q would be true too
\vdash	proves	$A, B \vdash C$: there's a proof from premisses A, B to conclusion C
⊨	logically entails	$A, B \vDash C$: the premisses A, B logically entail conclusion C
		(contrast proof in some formal system vs entailment)
⊬	doesn't prove	$A, B \nvDash C$: there's no proof from premisses A, B to conclusion C
⊭	doesn't entail	$A, B \nvDash C$: the premisses A, B don't entail conclusion C
\in	is member of	$\alpha \in \Gamma$: α is a member of the set Γ
∈ ∉	isn't member of	$\alpha \notin \Gamma$: α is not a member of the set Γ
\subseteq	is a subset of	$\Delta \subseteq \Gamma$: Δ is a subset of Γ
		i.e. every member of Δ is a member of Γ
\subset	is a (proper) subset of	$\Delta \subset \Gamma : \Delta \text{ is subset of } \Gamma, \text{ and } \Delta \neq \Gamma$
		(sometimes \subset is used just like \subseteq)
$\{\ldots\}$	set	$\{2,3,5\}$: the set whose members are 2, 3, 5
$\{\ldots \mid \ldots \}$	set	$\{x \mid x \text{ is even}\}$: the set of x that x is even
$\langle \; , \; \rangle$	ordered pair	$\langle \alpha, \beta \rangle$: the ordered pair whose first member
		is α and whose second member is β