

Observation 2

- Once we add a leaf for a suffix in T_i, that leaf remains in T_{i+1}, T_{i+2}...
- Proof:
 - We never remove a leaf.

From the above we can infer

Fact 1: If in Phase i we have used rule 1 or 2 to extend A[j..i], then path A[j..i+1] will be in T_{i+1} and end at a leaf, and consequently, in Phase i+1, the extension for A[j..i+1] will use rule 1.

10/5/2007

Algorithms @ CS, OUC

21

23

Remark

- In phase i, let j_i be the last extension involving a leaf.
- In other words, for extension due to k≤ j_i, we do not perform any rule 3 (I.e., all by rule 1 or 2).
- In phase i+1, when we perform an extension due to k≤ j_i,we always encounter a leaf at the end of S[k..i+1], thus, only rule 1 is applied (according to Fact 1 in Slide 19).

10/5/2007

Algorithms @ CS, OUC

Algorithm for phase i

- /* for j=1...j_i, extension of j is based on rule 1, so we do nothing */
- For j=j_i +1...i+1,
 - Find the endpoint of the path from the root labeled with S[j..i]
 - Extend the path with character S[i+1] based on rule 1, 2, or 3
 - If we extend the path with rule 3
 - /* extension j' for j'=j+1...i+1 are based on rule 3. So we need to do nothing */
 - Set j_{i+1}=j-1; Break

10/5/2007

Algorithms @ CS, OUC

Whole process

- Summary
 - Phase 1: compute extension 1..j₂+1.
 - Phase 2: compute extension j₂+1..j₃+1.
 - Phase i: compute extension j_i+1..j_{i+1}+1.
 - ...
 - Phase n-1: compute extension j_{n-1}+1..j_n+1.
- In total we will do at most 2n extensions.
- For an extension due to j, it takes O(n) time because we need to find the endpoint of S[j..i].
- The total time is O(n²).
- The process can be accelerated using suffix link.

10/5/2007

Algorithms @ CS, OUC

22

Suffix link

For an internal node v with path-label $x\alpha$, if there is another node s(v) with path-label α , then we create a suffix link from v to s(v)

10/5/2007

Algorithms @ CS, OUC

Is suffix link well defined?

- For a (implicit) suffix tree, every internal node (except the root) has a suffix link.
- Proof:
 - Consider any internal node v with path-label xα.
 - $x\alpha$ is the common prefix of S[i..n] and S[j..n]
 - The two leaves labeled i and j under v
 - α is the common prefix of S[i+1..n] and S[j+1..n]
 - Thus, there is an internal node u with path-label $\alpha. \label{eq:alpha}$
 - Suffix link of v=u.

10/5/2007

Algorithms @ CS, OUC

4

Time complexity

- Find the end of S[j+1..i]:
 - Step 1, 2, and 4 take O(1) time.
 - Step 3 takes amortized O(1) time. (?)
- So, each extension can be done in amortized O(1) time.
- As there are 2n extensions, the total time is O(n).

10/5/2007 Algorithms @ CS, OUC

Why Step 3 takes amortized O(1) time?

- Step 3 is to walk down from node s(v) along a path labeled γ.
- There surely must be such a γ path from s(v).
- Direct implemented, this walk takes $O(|\gamma|)$ time.
- A simple trick, called skip/count trick, will reduce the traversal time to O(# of edges on the path).
- So, define node-depth of u to be the # of edges on the path from the root to u. Our task is then to justify the above claim about skip/count and that
 - By amortization, each step 2 goes down O(1) edge.

10/5/2007

Algorithms @ CS, OUC

The skip/count trick

- Let $g = | \gamma |$, u = s(v)
- Repeat
 - Find the edge e=(u, u') whose first character= $\gamma[1]$.
 - Let l=|label(e)|
 - If *l*<*g* then
 - γ= γ[l+1,g]; g=g-l; u=u'
 - Else
 - Skip to label(e)[g]; exit

10/5/2007

Algorithms @ CS, OUC

4

Step 3 go down amortized O(1) edges

- Note that for each extension,
 - Step 1 reduces the node-depth by 1
 - Step 2 reduces the node-depth by at most 1
 - Step 3 increases the node-depth
- Since there are 2n extensions,
 - All steps 1 and 2 can reduce the node-depth by at most 4n
- Since the maximum node-depth is n-1,
 - All steps 3 can at most increase the node-depth by 5n-1
 - By amortization, each step 3 goes down O(1) nodes.

10/5/2007

Algorithms @ CS, OUC

Creating the true suffix tree

- Convert the implicit suffix tree T_n to true suffix tree in O(n) time
 - Append S with the terminal character \$
 - Independently perform phase n+1 on T_n with S\$.

implicit

10/5/2007

Algorithms @ CS, OUC

More applications

- Maximum unique match. O(n)
 - Given two strings S_1 and S_2
 - Find all substrings w such that
 - w appear exactly once in both strings, and
 - w is maximal (i.e., any substring x including w cannot appear exactly once in both strings)
- Longest common prefix. O(n)
 - Given a string S[1..n], for i,j, the problem is to find the length of the longest common prefix of S[i,..n] and S[j..n]
- Maximum palindrome (最大回文)
- Palindrome is a string X s.t. X=X^R. e.g., level
 - The problem is to find the longest substring of S that is a palindrome.

10/5/2007

Algorithms @ CS, OUC

4

Additional applications

- Ziv-Lempel data compression
- Minimum length encoding of DNA
- All-pairs suffix-prefix matching
 - For
 - Recover DNA
 - Data compression

• ...

...

10/5/2007

Algorithms @ CS, OUC