Planche nº 14. Séries entières

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Exercice no 1 (**)

Déterminer le rayon de convergence de la série entière proposée dans chacun des cas suivants :

$$1) \sum_{n=0}^{+\infty} \frac{n}{4^n + 1} z^n$$

2)
$$\sum_{n=0}^{+\infty} \frac{n}{4^n + 1} z^{4n}$$

3)
$$\sum_{n=0}^{+\infty} \frac{z^{2n+1}}{n+1}$$

4)
$$\sum_{n=1}^{+\infty} (\ln n)^n z^n$$

5)
$$\sum_{n=0}^{+\infty} (\ln(n!))^2 z^n$$

Determiner le rayon de convergence de la serie entière proposée dans chacun des cas suivants :

1)
$$\sum_{n=0}^{+\infty} \frac{n}{4^n + 1} z^n$$
2) $\sum_{n=0}^{+\infty} \frac{n}{4^n + 1} z^{4n}$
3) $\sum_{n=0}^{+\infty} \frac{z^{2n+1}}{n+1}$
4) $\sum_{n=1}^{+\infty} (\ln n)^n z^n$
5) $\sum_{n=0}^{+\infty} (\ln(n!))^2 z^n$
6) $\sum_{n=1}^{+\infty} \left(\frac{1}{2} \left(\cosh \frac{1}{n} + \cos \frac{1}{n} \right) \right)^{n^4} z^n$
7) $\sum_{n=1}^{+\infty} \frac{(2^n)}{n^n} z^n$
8) $\sum_{n=1}^{+\infty} \frac{(\ln(n!))^{\alpha}}{n!^{\beta}} z^n$, $\alpha > 0$
9) $\sum_{n=0}^{+\infty} \frac{a^n}{1 + b^n} z^n$, $(a, b) \in (\mathbb{R}_+)^2$

7)
$$\sum_{n=0}^{+\infty} \frac{\binom{2n}{n}}{n^n} z^n$$

8)
$$\sum_{n=1}^{+\infty} \frac{(\ln(n!))^{\alpha}}{n!^{\beta}} z^{n}, \ \alpha > 0$$

Exercice nº 2 (**)

Déterminer R_{α} quand :

- $\textbf{1)} \ \mathrm{Pour} \ \mathrm{tout} \ n \in \mathbb{N}, \ \alpha_n = \left\{ \begin{array}{l} 1 \ \mathrm{si} \ n \ \mathrm{rest \ premier} \\ 0 \ \mathrm{sinon} \end{array} \right. \qquad \textbf{2)} \ \alpha_0 = 0 \ \mathrm{et \ pour \ tout} \ n \in \mathbb{N}^*, \ \alpha_n = n^{(-1)^n}.$
- 3) Pour tout $p \in \mathbb{N}$, $a_{2p} = 2^p$ et $a_{2p+1} = 3^p$. 4) Pour tout $p \in \mathbb{N}$, $a_n = \cos\left(\frac{2n\pi}{3}\right)$.

Exercice nº 3

Calculer les sommes suivantes dans leur intervalle ouvert de convergence après avoir déterminé le rayon de convergence de la série proposée.

1) (**)
$$\sum_{n=2}^{+\infty} \frac{1}{n(n-1)} x^n$$

2) (**)
$$\sum_{n=0}^{+\infty} \frac{3n}{n+2} x^n$$

3) (*** I)
$$\sum_{n=0}^{+\infty} \frac{x^n}{2n+1}$$

4) (** I)
$$\sum_{n=0}^{+\infty} \frac{x^n}{(2n)!}$$

5) (**)
$$\sum_{n=0}^{+\infty} \frac{n}{(2n+1)!} x^{n}$$

6) (*)
$$\sum_{n=0}^{+\infty} \frac{x^{4n}}{(4n)!}$$

7) (**)
$$\sum_{n=0}^{+\infty} (\operatorname{ch} n) x^n$$

8) (** I)
$$\sum_{n=1}^{+\infty} \left(\sum_{k=1}^{n} \frac{1}{k} \right) x^{n}$$

9) (***)
$$\sum_{n=0}^{+\infty} \frac{n^2 + 4n - 1}{n!(n+2)} x^n$$

10) (** I)
$$\sum_{n=1}^{+\infty} n^{(-1)^n} x^n$$

11) (*)
$$\sum_{n=1}^{n=0} (-1)^n \frac{x^{4n-1}}{4n}$$

1)
$$(**)$$
 $\sum_{n=2}^{+\infty} \frac{1}{n(n-1)} x^n$ 2) $(**)$ $\sum_{n=0}^{+\infty} \frac{3n}{n+2} x^n$ 3) $(***I)$ $\sum_{n=0}^{+\infty} \frac{x^n}{2n+1}$ 4) $(**I)$ $\sum_{n=0}^{+\infty} \frac{x^n}{(2n)!}$ 5) $(**)$ $\sum_{n=0}^{+\infty} \frac{n}{(2n+1)!} x^n$ 6) $(*)$ $\sum_{n=0}^{+\infty} \frac{x^{4n}}{(4n)!}$ 7) $(**)$ $\sum_{n=0}^{+\infty} (\cosh n) x^n$ 8) $(**I)$ $\sum_{n=1}^{+\infty} \left(\sum_{k=1}^{n} \frac{1}{k}\right) x^n$ 9) $(***)$ $\sum_{n=0}^{+\infty} \frac{n^2 + 4n - 1}{n!(n+2)} x^n$ 10) $(**I)$ $\sum_{n=1}^{+\infty} n^{(-1)^n} x^n$ 11) $(*)$ $\sum_{n=1}^{+\infty} (-1)^n \frac{x^{4n-1}}{4n}$ 12) $(**)$ $\sum_{n=0}^{+\infty} (n^2 + 1) 2^{n+1} x^n$

13) (**)
$$\sum_{n=0}^{+\infty} (-1)^{n+1} n x^{2n+1}$$

14) (***)
$$\sum_{n=0}^{+\infty} a_n x^n$$
 où $a_0 = a_1 = 1$ et $\forall n \in \mathbb{N}, \ a_{n+2} = a_{n+1} + a_n$

15) (**)
$$\sum_{n=0}^{+\infty} a_n x^n$$
 où a_n est le nombre de couples (x,y) d'entiers naturels tels que $x+5y=n$.

Exercice nº 4

Développer en série entière les fonctions suivantes :

1) (*)
$$\frac{1}{(x-1)(x-2)}$$

2) (*** I)
$$\frac{1}{x^2-2tx+1}$$
, $t \in]-1,1[$

3) (**)
$$\ln(x^2 - 5x + 6)$$

1) (*)
$$\frac{1}{(x-1)(x-2)}$$
 2) (*** I) $\frac{1}{x^2-2tx+1}$, $t \in]-1,1[$ 3) (**) $\ln(x^2-5x+6)$
4) (**) $\arctan\left(\frac{x\sin\alpha}{1-x\cos\alpha}\right)$, $\alpha \in]0,\pi[$ 5) (***) $\frac{1}{(x-1)(x-2)\dots(x-p)}$ 6) (*** I) $(Arcsin x)^2$
7) (*) $\int_0^x \cos(t^2) dt$ 8) (*** I) $\int_{-\infty}^x \frac{dt}{t^4+t^2+1}$ 9) (**) $\cos x \operatorname{ch} x$.

5) (***)
$$\frac{1}{(x-1)(x-2)...(x-p)}$$

6) (*** I)
$$(Arcsin x)^2$$

7) (*)
$$\int_0^x \cos(t^2) dt$$

8) (*** I)
$$\int_{-\infty}^{x} \frac{dt}{t^4 + t^2 + 1}$$

1

Exercice nº 5 (* I)

Pour x réel, on pose $f(x) = \begin{cases} \frac{\sin x}{x} & \text{si } x \neq 0 \\ \frac{1}{x} & \text{si } x \neq 0 \end{cases}$. Montrer que f est ce classe C^{∞} sur \mathbb{R} .

Exercice nº 6 (*** I)

Soient $P_n = \sum_{k=0}^n \frac{X^k}{k!}$ et R > 0 donné. Montrer que pour n suffisamment grand, P_n n'a pas de racine dans le disque fermé de centre 0 et de rayon R.

Exercice nº 7 (**** I) (Inverse d'une série entière)

Soit $\sum_{n=0}^{+\infty} \alpha_n z^n$ une série entière de rayon R>0 et telle que $\alpha_0=1$ (ou plus généralement $\alpha_0\neq 0$).

- $\textbf{1)} \ \mathrm{Montrer} \ \mathrm{qu'il} \ \mathrm{existe} \ \mathrm{une} \ \mathrm{et} \ \mathrm{une} \ \mathrm{suite} \ (b_n)_{n \in \mathbb{N}} \ \mathrm{telle} \ \mathrm{que} \ \forall n \in \mathbb{N}, \ \sum_{k=0}^n \alpha_k b_{n-k} = \delta_{0,n}.$
- 2) Montrer que la série entière $\sum_{n=0}^{+\infty} b_n z^n$ a un rayon strictement positif.

Exercice nº 8 (*** I)

Pour $n \in \mathbb{N}$, on pose $W_n = \int_0^{\pi/2} \cos^n t \, dt$. Rayon de convergence et somme de la série entière associée à la suite $(W_n)_{n \in \mathbb{N}}$.

Exercice nº 9 (***):

Calculer
$$\sum_{n=1}^{+\infty} \frac{1}{n} \cos \left(\frac{2n\pi}{3} \right) x^n$$
 pour x dans $]-1,1[$.

Exercice nº 10 (*** I)

$$\operatorname{Calculer} \sum_{n=0}^{+\infty} \frac{x^n}{4n^2-1} \text{ pour } x \text{ dans }] -1, 1[\text{ et en déduire les sommes } \sum_{n=0}^{+\infty} \frac{1}{4n^2-1} \text{ et } \sum_{n=0}^{+\infty} \frac{(-1)^n}{4n^2-1} \text{ .}$$

Exercice nº 11 (****)

Pour n entier naturel, on pose $u_n = \frac{(-1)^n}{2n+1} \sum_{k=0}^n \frac{1}{4k+1}$. Convergence et somme de la série (numérique) de terme général u_n .

Exercice nº 12 (***)

Soit A une matrice carrée complexe de format $\mathfrak{p}\in\mathbb{N}^*$. Rayon de convergence et somme en fonction de χ_A de la série entière $\sum_{n=0}^{+\infty} \operatorname{Tr}(A^n) z^n$.

Exercice no 13 (***)

Pour x réel, on pose $F(x) = e^{-x^2} \int_0^x e^{t^2} dt$. En développant F en série entière par deux méthodes différentes, montrer que pour tout entier naturel n,

$$\sum_{k=0}^{n} (-1)^{n-k} \frac{1}{(2k+1)k!(n-k)!} = (-1)^{n} \frac{2^{2n}n!}{(2n+1)!}.$$

Exercice nº 14 (**)

On pose $a_0=1$ et $b_0=0$ puis pour tout entier naturel n, $\begin{cases} a_{n+1}=-a_n-2b_n\\ b_{n+1}=3a_n+4b_n \end{cases}$. Rayons et sommes de $\sum_{n=0}^{+\infty}\frac{a_n}{n!}x^n$ et $\sum_{n=0}^{+\infty}\frac{b_n}{n!}x^n.$

Exercice nº 15 (*** I)

Rayon de convergence et somme de $\sum_{n=1}^{+\infty} \frac{1}{n \binom{2n}{n}} x^n$ pour $x \in [0, 4[$.

Exercice no 16 (*** I)

Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites de réels strictement positifs telles que la suite $\left(\frac{a_n}{b_n}\right)_{n\in\mathbb{N}}$ ait une limite réelle k. (En particulier $a_n = 0$ o (b_n) si k = 0 et $a_n = 0$ b $_n$ si k = 1). On suppose de plus que la série entière associée à la suite $(a_n)_{n\in\mathbb{N}}$ a un rayon de convergence égal à 1 et que la série de terme général a_n diverge.

1) Montrer que
$$\lim_{x \to 1} \frac{\displaystyle\sum_{n=0}^{+\infty} a_n x^n}{\displaystyle\sum_{n=0}^{+\infty} b_n x^n} = k.$$

- 2) Applications.
 - a) Equivalent simple quand x tend vers 1 de $\sum_{n=1}^{+\infty} (\ln n) x^n$.
 - b) Déterminer $\lim_{x\to 1} (1-x)^p \sum_{n=0}^{+\infty} n^{p-1} x^n$ où p est un entier naturel non nul donné.

Exercice nº 17 (***)

Soit $(a_n)_{n\in\mathbb{N}}$ une suite à valeurs dans $\{-1,1\}$. Pour x réel, on pose $f(x)=\sum_{n=0}^{+\infty}\frac{a_n}{n!}x^n$.

On suppose que pour tout entier naturel p et tout réel positif x, $|f^{(p)}(x)| \leq 1$. Déterminer f.

Exercice n° 18 (**** I) (Développement en série entière de la fonction $x \mapsto \tan x$)

$$\mathrm{Pour}\; x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \, \mathrm{on \; pose} \; f(x) = \tan x.$$

- 1) Montrer qu'il existe une suite de polynômes $(P_n)_{n\in\mathbb{N}}$ telle que pour tout entier naturel n, $f^{(n)} = P_n \circ f$ et que les P_n sont à coefficients entiers naturels. (Utiliser $\tan' = 1 + \tan^2$).
- 2) En utilisant la formule de TAYLOR-LAPLACE, montrer que la série de TAYLOR à l'origine de f a un rayon de convergence R supérieur ou égal à $\frac{\pi}{2}$.
- 3) On note a_n les coefficients du développement précédent et g la somme de la série entière associée à la suite $(a_n)_{n\in\mathbb{N}}$. Montrer que pour tout entier naturel non nul n, $(n+1)a_{n+1}=\sum_{k=0}^n a_ka_{n-k}$. En déduire que pour tout x de $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$, f(x)=g(x) et que $R=\frac{\pi}{2}$.
- 4) Calculer a_0 , a_1 , a_2 ,..., a_7 .
- 5) Vérifier que la fonction $x \mapsto \operatorname{th} x$ est développable en série entière. Préciser le rayon et la valeur des coefficients en fonction des \mathfrak{a}_n .

Exercice nº 19 (*** I)

Développer en série entière $F(x) = \int_0^{+\infty} e^{-t^2} \sin(tx) \ dt$ et en déduire que pour tout réel x, $F(x) = \frac{e^{-x^2/4}}{2} \int_0^x e^{t^2/4} \ dt$.

Exercice nº 20 (***)

Soit I_n le nombre d'involutions de [1,n]. Rayon de convergence et somme de la série entière associée à la suite $\left(\frac{I_n}{n!}\right)_{n\in\mathbb{N}^*}$.

Exercice nº 21 (*** I) (Dénombrement de parenthésages)

- 1) Soit E un ensemble non vide muni d'une loi interne et a_n le nombre de parenthésages possibles d'un produit de n éléménts de E (($a_1 = 1$ conventionnellement), $a_2 = 1$, $a_3 = 2$, $a_4 = 5$, ...). Montrer que pour tout $n \ge 2$, $a_n = \sum_{k=1}^{n-1} a_k a_{n-k}$.
- 2) Soit f la série entière associée à la suite (a_n) . On suppose momentanément le rayon R de cette série strictement positif. Montrer que pour tout x de $]-R,R[,(f(x))^2-f(x)+x=0.$
- 3) Calculer R et f.
- 4) En déduire a_n .