

algoritmo técmicas de amálise Revisão Algoritmos Introdução a análise de algoritmos Tipos de análise: empírica versus assintótica Modelo computacional RAM

Métrica: contagem de instruções primitivas

2

4

análise

algoritmo

Alguns princípios para análise de algoritmos

Tempo de execução de comandos de atribuição, leitura ou escrita, avaliação de expressão lógica podem ser considerados constante

Tempo de execução de uma sequência de comandos ⇒ maior tempo de execução de qualquer comando da sequência

Tempo de execução de uma **estrutura condicional** ⇒ tempo dos comandos dentro do corpo da estrutura mais o tempo para avaliar a condição

Tempo de execução de uma **estrutura de repetição** ⇒ tempo dos comandos dentro do corpo da estrutura mais o tempo para avaliar a condição, multiplicado pelo número de iterações

Tempo de execução de chamada a uma subrotina não recursiva deve ser computado separadamente e incluído no cálculo da subrotina chamadora

técnicas de análise

algoritmo

Análise assintótica

baseada em um modelo matemático

emprega um computador idealizado independente de hardware e software

pode ser aplicada em uma representação de alto nível de um algoritmo (pseudocódigo)

não é necessário implementar o algoritmo

técnicas de análise

algoritmo

Análise assintótica

associa uma função de complexidade f a um algoritmo f(n) é a medida do tempo necessário para executar um algoritmo para um problema de tamanho n

f(n) é a quantidade de memória necessária para executar um algoritmo para um problema de tamanho n

Exemplo

5

7

$$f(n) = c_1 n + c_2$$

6

algoritmo

Notação O (Big O)

Dizer que o tempo T(n) de execução de um programa é $O(n^2)$, ou seja, $T(n) = O(n^2)$ significa afirmar que:

existem constantes positivas c e m tais que para valores $n \ge m$, temos $T(n) \le cn^2$

Notação assintótica

algoritmo

Notação O (Big O)

Usamos as descrições a seguir para expressar que f(n) domina assintoticamente $\,g(n)\,$

$$g(n) \in O(f(n))$$

$$g(n) \notin O(f(n))$$

$$g(n) = O(f(n))$$

10

Notação assintótica

algoritmo

Notação O (Big O)

Como mostrar que $n \in O(n^2)$ é **verdadeiro**?

encontrando duas constantes positivas c e m tais que para valores $n \ge m$, temos $n \le cn^2$

$$n \le cn^2 \Rightarrow n \le n^2 \Rightarrow 1 \le 1^2 \Rightarrow 1 \le 1$$
 $c = 1 \quad m = 1$

Constantes: c = 1 e m = 1

Notação assintótica

algoritmo

Notação O (Big O)

Como mostrar que $n \in O(n^2)$ é **verdadeiro**?

encontrando duas constantes positivas c e m tais que para valores $n \ge m$, temos $n \le cn^2$

$$n \le cn^2 \Rightarrow \frac{n}{n^2} \le c \Rightarrow \frac{1}{n} \le c \Rightarrow 1 \le 1$$

$$m = 1$$

Constantes

c = 1 e m = 1

11

18

20 21

_

22

24 25

_

algoritmo

Operações com a notação O

$$f(n) = O(f(n))$$

$$c \times O(f(n)) = O(f(n))$$

$$O(f(n)) + O(f(n)) = O(f(n))$$

$$O(f(n)) + O(g(n)) = O(max(f(n), g(n)))$$

$$O(f(n)) \times O(g(n)) = O(f(n)g(n))$$

$$f(n) \times O(g(n)) = O(f(n)g(n))$$

Notação assintótica

algoritmo

Notação Ω (Big ômega)

Definição: uma função g(n) é $\Omega(f(n))$ se existem constantes positivas c e m tais que, para $n \ge m$, temos $g(n) \ge cf(n) \ge 0$

Limite assintótico inferior

26

Notação assintótica

algoritmo

Notação Ω (Big ômega)

O que significa dizer que $3n^3 + 2n \in \mathbb{Z}(n^3)$?

significa encontrar as constantes positivas c e m tais que para valores $n \ge m$, temos $3n^3 + 2n \ge \Omega(n^3)$

$$3n^3 + 2n \ge cn^3 \Rightarrow 3 + \frac{2}{n^2} \ge c$$

Constantes

N. 4 ~ 6

27

algoritmo

Notação ⊕

Notação assintótica

Definição: uma função g(n) é $\Theta(f(n))$ se existem constantes positivas c_1 , c_2 e m tais que, para $n \ge m$, temos $0 \le c_1 f(n) \le g(n) \le c_2 f(n)$

Limite assintótico firme (restrito)

28

algoritmo

Notação ⊕

O que significa dizer que $3n^3 + 2n \in \Theta(n^3)$

significa encontrar as constantes positivas c_1 , c_2 e m tais que para valores $n \ge m$, temos $c_1 n^3 \le 3n^3 + 2n \le c_2 n^3$

$$c_{1}n^{3} \leq 3n^{3} + 2n \Rightarrow c_{1} \leq 3 + \frac{2}{n^{2}}$$

$$3n^{3} + 2n \leq c_{2}n^{3} \Rightarrow 3 + \frac{2}{n^{2}} \leq c_{2}$$

$$c_{1}n^{3} \leq 3n^{3} + 2n \Rightarrow c_{1} \leq 3 + \frac{2}{n^{2}}$$

$$c_{2}n^{3} \Rightarrow 3 + \frac{2}{n^{2}} \leq c_{2}$$

$$c_{3}n^{3} + 2n \leq c_{2}n^{3} \Rightarrow 3 + \frac{2}{n^{2}} \leq c_{2}$$

$$c_{1}n^{3} \leq 3n^{3} + 2n \Rightarrow c_{1} \leq 3 + \frac{2}{n^{2}}$$

$$c_{2}n^{3} \Rightarrow 3 + \frac{2}{n^{2}} \leq c_{2}$$

$$c_{3}n^{3} + 2n \leq c_{2}n^{3} \Rightarrow 3 + \frac{2}{n^{2}} \leq c_{2}$$

$$c_{1}n^{3} \leq 3n^{3} + 2n \Rightarrow c_{1} \leq 3 + \frac{2}{n^{2}}$$

$$c_{2}n^{3} \Rightarrow 3 + \frac{2}{n^{2}} \leq c_{2}$$

$$c_{3}n^{3} + 2n \leq c_{2}n^{3} \Rightarrow 3 + \frac{2}{n^{2}} \leq c_{2}$$

$$c_{1}n^{3} = \frac{1}{n^{2}} \leq c_{2}$$

$$c_{2}n^{3} \Rightarrow 3 + \frac{2}{n^{2}} \leq c_{2}$$

$$c_{3}n^{3} \Rightarrow 3 + \frac{2}{n^{2}} \leq c_{2}$$

$$c_{4}n^{3} \Rightarrow 3 + \frac{2}{n^{2}} \leq c_{2}$$

$$c_{5}n^{3} \Rightarrow 3 + \frac{2}{n^{2}} \leq c_{2}$$

$$c_{7}n^{3} \Rightarrow 3 + \frac{2}{n^{2}} \leq c_{2}$$

$$c_{8}n^{3} \Rightarrow 3 + \frac{2}{n^{2}} \leq c_{2}$$

$$c_{8}n^{3} \Rightarrow 3 + \frac{2}{n^{2}} \leq c_{2}$$

$$c_{1}n^{3} \Rightarrow 3 + \frac{2}{n^{2}} \leq c_{2}$$

$$c_{2}n^{3} \Rightarrow 3 + \frac{2}{n^{2}} \leq c_{2}$$

$$c_{1}n^{3} \Rightarrow 3 + \frac{2}{n^{2}} \leq c_{2}$$

$$c_{2}n^{3} \Rightarrow 3 + \frac{2}{n^{2}} \leq c_{2}$$

$$c_{3}n^{3} \Rightarrow 3 + \frac{2}{n^{2}} \leq c_{2}$$

Constantes: $c_1 = 1$, $c_2 = 5$ e m = 1

30

31

Notação assintótica

algoritmo

Classes de comportamento assintótico

$$f(n) = O(1)$$

Complexidade constante

Independe do tamanho da entrada

Instruções do algoritmo são executas um número constante de vezes

algoritmo

Classes de comportamento assintótico

$$f(n) = O(\log n)$$

Complexidade logarítmica

Ocorre **tipicamente** em algoritmos que resolvem um problema transformando-o em problemas menores

Tempo de execução pode ser considerado **menor** do que uma constante **grande**

Notação assintótica

algoritmo

Classes de comportamento assintótico

$$f(n) = O(\log n)$$

Complexidade logarítmica

34

35

Notação assintótica

algoritmo

Classes de comportamento assintótico

$$f(n) = O(n)$$

Complexidade linear

Geralmente, algumas instruções são executadas sobre **cada** elemento da entrada

Melhor situação possível para algoritmos que **necessitam** processar *n* itens da entrada.

Notação assintótica

algoritmo

Classes de comportamento assintótico

$$f(n) = O(n)$$

Complexidade linear

36

_

algoritmo

Classes de comportamento assintótico

$$f(n) = O(n \log n)$$

Complexidade log-linear

Ocorre **tipicamente** em algoritmos que resolvem um problema **quebrando-o** em problemas menores, resolvendo cada um **independentemente** e depois **juntando-os**

Notação assintótica

algoritmo

Classes de comportamento assintótico

$$f(n) = O(n \log n)$$

Complexidade log-linear

```
int s = 0;
for(int i = 1; i <= n; i++)
  for(int j = n; j >= 1; j/=3)
    s++;
```

38

39

Notação assintótica

algoritmo

Classes de comportamento assintótico

$$f(n) = O(n^2)$$

Complexidade quadrática

```
int s = 0;
for(int i = 1; i <= n; i++)
  for(int j = 1; j <= n; j++)
    s++;</pre>
```

Notação assintótica

algoritmo

Classes de comportamento assintótico

$$f(n) = O(n^3)$$

Complexidade cúbica

Algoritmos dessa ordem de complexidade são **úteis** apenas para resolver problemas **pequenos**

Normalmente aparecem em **três** estruturas de repetição aninhadas.

40 41

4.0

algoritmo

Classes de comportamento assintótico

$$f(n) = O(n^3)$$

Complexidade cúbica

```
int s = 0;
for(int i = 1; i <= n; i++)
  for(int j = 1; j <= n; j++)
  for(int k = 1; k <= n; k++)
    s++;</pre>
```

Notação assintótica

algoritmo

Classes de comportamento assintótico

$$f(n) = O(a^n)$$

Complexidade exponencial

Algoritmos dessa ordem de complexidade normalmente **não** são úteis do ponto de vista prático

Geralmente ocorre quando se emprega força bruta

42

43

Notação assintótica

algoritmo

Classes de comportamento assintótico

$$O(1) \ll O(\log n) \ll O(n) \ll O(n \log n) \ll O(n^2) \ll O(n^3)$$

$$O(n^3) \ll O(n^a) \ll O(2^n) \ll O(a^n) \ll O(n!)$$

REFERÊNCIAS

análise: melhor e pior casos

ZIVIANI, Nivio. Projeto de Algoritmos com Implementação em Java e C++. São Paulo: Thomson Learning, 2007.

LEISERSON, C. E.; STEIN, C.; RIVEST, R. L., CORMEN, T.H. Algoritmos: Teoria e Prática. Tradução da 2ª edição americana. Rio de Janeiro: Campus, 2002.