Al Agents Tutorial

From next token prediction to digital automation

Xiao Yu, Zhou Yu Columbia University & Articulate Al

Interacting with the Digital World using VLMs

VQA Tasks

Q: What is he doing?

He is performing a skateboard trick...

Computer Tasks

Can you help me clear my shopping cart?

click button [shopping cart]

Interacting with the Digital World using VLMs

Agent

Environment

(V)LM Chatbots

Interact with human / answer questions

Robotics Agents

Interact with a physical world

Visual Language Agents

Interact with digital devices (e.g., your phone)

Building "Agents" in other domains

Challenge 1: need accessible methods to build general agents

Takes millions of lines of rules (by domain experts)

Takes millions of training iterations (by RL experts)

Intensive to build

(Even for experts)

Building "Agents" in other domains

Challenge 2: need scalable benchmarks for practical tasks

(But not practical)

(But not scalable)

Interacting with the Digital World using VLMs

Interacting with the Digital World using VLMs

Language agents

Large language models

Language models

Text generation

Translation, QA, summarization...

Web interaction, SWE, robotics, scientific discovery...

Today's Lecture

Part 1. Benchmarking VLM's performance on digital tasks

Part 2: Building (visual) language agents for device control

1

Benchmarking VLM's performance on digital tasks

Realistic environments based on computer/web/android devices

Related benchmarks prior to 2020

MiniWoB (Shi et al., 2017)

TextWorld (Côté et al., 2019)

BabyAl (Chevalier-Boisvert et al., 2019)

- Simulation environment
- Synthetic text (if any)

- Small action space
- Short-horizon tasks

Recent benchmarks (non-exhaustive)

WebArena/VisualWebArena

OSWorld

SWE-Bench

Android in the Wild

WebArena/VisualWebArena

Goal: Evaluate VLM's ability to navigate on the web

Environment: Locally hosted websites cloned from real services (e.g., reddit)

Task Input: instruction + initial web screenshot

Original Webpage

Evaluation: pre-defined scripts to check final state of the website

WebArena/VisualWebArena

Baselines: convert clickable buttons to IDs, and prompt an VLM to output which ID to click next

Zhou, Shuyan, et al. "Webarena: A realistic web environment for building autonomous agents." arXiv preprint arXiv:2307.13854 (2023). Koh, Jing Yu, et al. "Visualwebarena: Evaluating multimodal agents on realistic visual web tasks." arXiv preprint arXiv:2401.13649 (2024).

WebArena/VisualWebArena

Results: current state-of-the-art VLMs significantly lag behind human

Model Type	LLM Backbone	Visual Backbone	Inputs	Success Rate (†)			
		Visual Dackbone	inputs	Classifieds	Reddit	Shopping	Overall
Text-only	LLaMA-2-70B			0.43%	1.43%	1.29%	1.10%
	Mixtral-8x7B			1.71%	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.76%	
	Gemini-Pro	-	Acc. Tree	0.85%	0.95%	3.43%	2.20%
	GPT-3.5			0.43%	0.95%	3.65%	2.20%
	GPT-4			5.56%	4.76%	9.23%	7.25%
	LLaMA-2-70B	BLIP-2-T5XL		0.00%	0.95%	0.86%	0.66%
	Mixtral-8x7B	BLIP-2-T5XL	Acc. Tree + Caps	1.28%	0.48%	2.79%	1.87%
C .:	GPT-3.5	LLaVA-7B		1.28%	1.43%	4.08%	2.75%
Caption-augmented	GPT-3.5	BLIP-2-T5XL		0.85%	1.43%	4.72%	2.97%
	Gemini-Pro	BLIP-2-T5XL		1.71%	1.43%	6.01%	3.85%
	GPT-4	BLIP-2-T5XL		8.55%	8.57%	16.74%	12.75%
	IDEFICS-	80B-Instruct		0.43%	0.95%	0.86%	0.77%
M 12 11	Cog	VLM	I C A . T	0.00%	0.00% 0.48% 0.43%	0.43%	0.33%
Multimodal	Gem	ini-Pro	Image + Caps + Acc. Tree	3.42%		8.15%	6.04%
	GP	T-4V		8.12%	12.38%	19.74%	15.05%
Multimodal (SoM)	IDEFICS-	80B-Instruct		0.85%	0.95%	1.07%	0.99%
	Cog	VLM	I C C 24	0.00%	0.48%	0.43%	0.33%
	Gemini-Pro		Image + Caps + SoM	3.42%	% 1.43% 1.29% 1. % 2.86% 1.29% 1. % 2.86% 1.29% 1. % 0.95% 3.43% 2. % 0.95% 3.65% 2. % 4.76% 9.23% 7. % 0.48% 2.79% 1. % 0.48% 2.79% 1. % 1.43% 4.08% 2. % 1.43% 4.01% 3. % 8.57% 16.74% 12 % 0.95% 0.86% 0. % 0.43% 0. % 4.29% 8.15% 6. % 12.38% 19,74% 15 % 0.95% 1.07% 0. % 0.48% 0.43% 0. % 0.48% 0.43% 0. % 1.21 1.07% 0. % 0.48% 0.43% 0.<		
	GP	T-4V		9.83%	17.14%	19.31%	16.37%
Human Performance	-	-	Webpage	91.07%	87.10%	88.39%	88.70%

Table 3: Success rates of baseline LLM and VLM agents on VisualWebArena.

Zhou, Shuyan, et al. "Webarena: A realistic web environment for building autonomous agents." arXiv preprint arXiv:2307.13854 (2023). Koh, Jing Yu, et al. "Visualwebarena: Evaluating multimodal agents on realistic visual web tasks." arXiv preprint arXiv:2401.13649 (2024).

SWE-Bench

Goal: Evaluate VLM's ability to resolve github codebase issues

Environment: Clones of popular github repos and their resolved issues

Task Input: full repo code base + one issue

Evaluation: unit tests from pull request in that repo

SWE-Bench

Baselines: use retrieval models (e.g., BM25) to select relevant files, and prompt an LLM to generate the required code changes (i.e., code patch)

SWE-Bench

Results: current state-of-the-art VLMs significantly lag behind human

	SWE-b	ench	SWE-bench Lite		
Model	% Resolved	% Apply	% Resolved	% Apply	
Claude 3 Opus	3.79	46.56	4.33	51.67	
Claude 2	1.97	43.07	3.00	33.00	
ChatGPT-3.5	0.17	26.33	0.33	10.00	
GPT-4-turbo	1.31	26.90	2.67	29.67	
SWE-Llama 7b	0.70	51.74	1.33	38.00	
SWE-Llama 13b	0.70	53.62	1.00	38.00	

OSWorld

Goal: Evaluate VLM's ability to control a computer (e.g., ubuntu)

Environment: Ubuntu hosted in a docker container/VMWare

Task Input: instruction + initial computer screenshot

Initial State

Task Instruction

Can you help me clean up my computer by getting rid of all the cookies that Amazon might have saved?

Evaluation: pre-defined scripts to check final state of the computer

OSWorld

Baselines: convert clickable buttons to their 2D coordinate on the screen, and prompt an VLM to output the coordinate to click next

Home

document-web

static îª'

heading NO FOLDER OPENED

static NO FOLDER OPENED

(1833, 1037)

position (top-left x&y) size (w&h)

(448, 279)

(516, 314)

(516, 319)

(48, 48)

(1024, 743)

(112, 22)

(112, 12)

(40, 17)

(16, 16)

(448, 279)

class description

Welcome - Visual Studio Code

screenshot

(Simplified) Accessibility tree

(498, 317)

(498, 317)

NO FOLDER OPENED

NO FOLDER OPENED

OSWorld

Results: current state-of-the-art VLMs significantly lag behind human

Toursto	Model	Success Rate (↑)					
Inputs	Model	OS	Office	Daily	Profess.	Workflow	Overal
Ally tree	Mixtral-8x7B	12.50%	1.01%	4.79%	6.12%	0.09%	2.98%
	Llama-3-70B	4.17%	1.87%	2.71%	0.00%	0.93%	1.61%
	GPT-3.5	4.17%	4.43%	2.71%	0.00%	1.62%	2.69%
	GPT-4	20.83%	3.58%	25.64%	26.53%	2.97%	12.24%
	Gemini-Pro	4.17%	1.71%	3.99%	4.08%	0.63%	2.37%
	Gemini-Pro-1.5	12.50%	2.56%	7.83%	4.08%	3.60%	4.81%
	Qwen-Max	29.17%	3.58%	8.36%	10.20%	2.61%	6.87%
	GPT-40	20.83%	6.99%	16.81%	16.33%	7.56%	11.36%
Screenshot	CogAgent	4.17%	0.85%	2.71%	0.00%	0.00%	1.11%
	GPT-4V	12.50%	1.86%	7.58%	4.08%	6.04%	5.26%
	Gemini-ProV	8.33%	3.58%	6.55%	16.33%	2.08%	5.80%
	Gemini-Pro-1.5	12.50%	6.99%	2.71%	6.12%	3.60%	5.40%
	Claude-3-Opus	4.17%	1.87%	2.71%	2.04%	2.61%	2.42%
	GPT-40	8.33%	3.58%	6.07%	4.08%	5.58%	5.03%
Screenshot	CogAgent	4.17%	0.85%	2.71%	0.62%	0.09%	1.32%
+ Ally tree	GPT-4V	16.66%	6.99%	24.50%	18.37%	4.64%	12.17%
	Gemini-ProV	4.17%	4.43%	6.55%	0.00%	1.52%	3.48%
	Gemini-Pro-1.5	12.50%	3.58%	7.83%	8.16%	1.52%	5.10%
	Claude-3-Opus	12.50%	3.57%	5.27%	8.16%	1.00%	4.41%
	GPT-40	41.67%	6.16%	12.33%	14.29%	7.46%	11.21%
Set-of-Mark	CogAgent	4.17%	0.00%	2.71%	0.00%	0.53%	0.99%
	GPT-4V	8.33%	8.55%	22.84%	14.28%	6.57%	11.77%
	Gemini-ProV	4.17%	1.01%	1.42%	0.00%	0.63%	1.06%
	Gemini-Pro-1.5	16.67%	5.13%	12.96%	10.20%	3.60%	7.79%
	Claude-3-Opus	12.50%	2.72%	14.24%	6.12%	4.49%	6.72%
	GPT-40	20.83%	3.58%	3.99%	2.04%	3.60%	4.59%
Human H	Performance	75.00%	71.79%	70.51%	73.47%	73.27%	72.36%

Android in the Wild

Goal: Evaluate VLM's ability to resolve control apps in mobile phones

Environment: Android device emulator

Task Input: instruction + initial phone screenshot

Turn on bluetooth scan

Evaluation: checks if VLM's generated actions match ground-truth actions

Android in the Wild

Baselines: combine multiple models trained to output actions such as click, swipe, etc; and also prompt an VLM to solve the task

Figure 4: Example episode from the dataset.

Android in the Wild

Results: can reach 70%+ performance when trained, but existing LLMs can only reach 40% without training

Model		Out-of-domain generalization					
	Standard	Version	Subject	Verb	Domain		
BC-single	68.7	59.2	64.2	66.4	52.2		
BC-history	73.1	63.2	68.5	70.4	59.7		
LLM-0 [43]	30.9 [25.6, 36.6]	31.6 [26.3, 37.3]	33.7 [28.2, 39.5]	32.6 [27.3, 38.4]	25.3 [20.4, 30.8]		
LLM-hist-5-CoT	39.6 [33.9, 45.5]	29.5 [24.3, 35.1]	44.4 [38.6, 50.4]	41.7 [35.9, 47.6]	35.8 [30.2, 41.6]		

Summary

- Visual Language Agents for device control
 - Tremendous practical values
 - Scalable environment

Challenges

- Difficult to scale automatic evaluation
- VLMs or RL agents cannot (yet) solve it

Building (visual) language agents for device control

Inference/training methods to improve agent performance

Recent inference-time methods (non-exhaustive)

Prompting VLMs to Reason

Augmenting with Search Algorithms

Prompting VLMs to Decompose tasks

Augmenting with Tools

Recent inference-time methods (non-exhaustive)

Prompting VLMs to Reason

Augmenting with Search Algorithms

Prompting VLMs to Decompose tasks

Augmenting with Tools

Prompting VLMs to Reason

Prompting VLMs to Reason

Prompting VLMs to Reason

Prompting VLMs to Reason

Prompting VLMs to Reason

Main Results:

- combined with methods such as self-consistency (SC), ReACT can significantly improve performance
- performance improves when **more compute (SC trials) is allocated**

Prompt Method ^a	HotpotQA (EM)	Fever (Acc)	
Standard	28.7	57.1	
CoT (Wei et al., 2022)	29.4	56.3	
CoT-SC (Wang et al., 2022a)	33.4	60.4	
Act	25.7	58.9	
ReAct	27.4	60.9	
$CoT-SC \rightarrow ReAct$	34.2	64.6	
$ReAct \rightarrow CoT-SC$	35.1	62.0	
Supervised SoTA ^b	67.5	89.5	

Table 1: PaLM-540B prompting results on HotpotQA and Fever.

Figure 2: PaLM-540B prompting results with respect to number of CoT-SC samples used.

Augmenting Agent with Search Algorithms

Main Idea: "force" a (V)LM to make informed decisions **after** interacting/exploring the environment

Augmenting Agent with Search Algorithms

Main Results:

- Search methods such as R-MCTS can significantly **improve performance**
- Scales when more search budget/tokens is allocated

Figure 1: Our work yields compute scaling of GPT-40 with R-MCTS (left) and fine-tuned GPT-40 (right), for both training and testing, respectively. Left is evaluated on all 234 tasks from Classifieds in VisualWebArena, and right is evaluated on 169 unseen tasks from Classifieds.

Augmenting Agent with Search Algorithms

Demos: you can find more info/examples at https://agent-e3.github.io/ExACT/

Recent training methods (non-exhaustive)

Supervised Learning with Human/Synthetic Data

Reinforcement Learning with Simulated Evaluation

Recent training methods (non-exhaustive)

Supervised Learning with Human/Synthetic Data

Reinforcement Learning with Simulated Evaluation

Recent training methods (non-exhaustive)

Challenge 1: hard to gather labeled human demonstrations in large scale **Challenge 2**: hard to accurately evaluate/estimate whether a task is solved

Summary

- Inference/training methods to improve agent performance
 - Search-based inference methods are scalable
 - Many methods to improve performance

Challenges

- Difficult to scale data collection (for training)
- Difficult to scale automatic evaluation (for training + inference)

Final Remarks from Shunyu Yao's PhD Thesis Defense

The most powerful neural networks ever built shouldn't just answer questions or draft emails.

They should be used to automate every aspect of our life, society, and science.

Attendance Question

Which of the following benchmarks have we **NOT** talked about in this lecture:

OSWorld

WebArena

AppWorld

Android in the Wild