Doing reproducible science: from your hard-won data to a publishable manuscript without going mad

Francisco Rodriguez-Sanchez (@frod_san)
November 2016

1. Prepare data (EXCEL)

4	Α	В
1	happiness index	sunshine h
2	10.5	
3	6.6	660.9
4	11.3	1093.5
5	9.6	978.9
6	10.9	
7	9.1	1135.5 907.0
	9.1	
8	20.0	990.4
9	12.4	1172.9
10	9.6	1025.6
11	10.1	1055.0
12	10.9	1093.7
13	8.9	863.8
14	12.5	1196.6
15	10.0	995.8
16	11.0	1120.2
17	10.3	988.0
18	9.7	987.0
19	9.3	970.4
20	10.9	1076.6
21	9.0	909.8
22	7.7	733.4
23	9.0	985.2
24	10.4	1084.0
25	10.0	1066.7
14 4		
Ready		
ready		

- 1. Prepare data (EXCEL)
- 2. Analyse data (R)

- 1. Prepare data (EXCEL)
- 2. Analyse data (R)
- 3. Write report/paper (WORD)

- 1. Prepare data (EXCEL)
- 2. Analyse data (R)
- 3. Write report/paper (WORD)
- 4. Start the email attachments nightmare...

This workflow is broken

Problems of a broken workflow

How did you do this? What analysis is behind this figure? Did you account for ...?

Problems of a broken workflow

- How did you do this? What analysis is behind this figure? Did you account for ...?
- What dataset was used? Which individuals were left out? Where is the clean dataset?

Problems of a broken workflow

- How did you do this? What analysis is behind this figure? Did you account for ...?
- What dataset was used? Which individuals were left out? Where is the clean dataset?
- Oops, there is an error in the data. Can you repeat the analysis? And update figures/tables in Word!

My rule of thumb: every analysis you do on a dataset will have to be redone 10–15 times before publication. Plan accordingly. #Rstats

Our everyday scary movie

https://youtu.be/s3JldKoA0zw

WHAT is Reproducible Science?

A scientific article is **reproducible** if there is computer **code** that can **regenerate** all results and figures from the original data.

- Transparent
- Traceable
- Comprehensive
- Useful

Most science is not reproducible

Even **you** will struggle to reproduce **your own results** from a few weeks/months ago.

You can't reproduce if you don't understand where a number came from. You can't reproduce what you don't remember. And trust me: you won't. You can't reproduce what you've lost. What if you need access to a file as it existed 1, 10, 100, or 1000 days ago?

Ben Bond-Lamberty

WHY Reproducible Science?

• Fundamental pillar of scientific method

- Fundamental pillar of scientific method
- Much less prone to errors

- Fundamental pillar of scientific method
- Much less prone to errors
- Automatically regenerate results

- Fundamental pillar of scientific method
- Much less prone to errors
- Automatically regenerate results
- Code reuse & sharing accelerates scientific progress

- Fundamental pillar of scientific method
- Much less prone to errors
- Automatically regenerate results
- Code reuse & sharing accelerates scientific progress
- Increasingly required by journals

- Fundamental pillar of scientific method
- Much less prone to errors
- Automatically regenerate results
- Code reuse & sharing accelerates scientific progress
- Increasingly required by journals
- Higher publication impact (citations, future collaborations, etc)

HOW TO DO Reproducible Science?

- 1. File organisation.
- 2. Data management. Spreadsheet good practices.
- 3. Code-based data analysis. Rmarkdown
- 4. Software dependencies.
- 5. Version control & collaborative writing.

• All files in same directory (Rstudio project).

- All files in same directory (Rstudio project).
- Raw data untouched in independent folder.

- All files in same directory (Rstudio project).
- Raw data untouched in independent folder.
- Derived, clean data in another folder.

- All files in same directory (Rstudio project).
- Raw data untouched in independent folder.
- Derived, clean data in another folder.
- Figures, code, etc also have their own folder.

File organisation example

```
myproject
- README
          # general info about the project
- data/
          # clean data (produced w/ script)
|- R/
          # functions definitions
- doc/
          # manuscript files
|- figs/
          # final figures
|- output/ # other code output
```

Data management

Data management

- 1. Planification (e.g. DMPTool)
- 2. Collection
- 3. Metadata description (EML, Morpho)
- 4. Quality control
- 5. Storage

Storage

Use the cloud: safe, persistent, easy to share

- Dropbox
- OSF
- Figshare, etc
- See all data repositories in www.re3data.org

• Put variables in columns (things you are measuring: height, weight, sex)

- Put variables in columns (things you are measuring: height, weight, sex)
- Each **observation** in one **row** (e.g. individuals).

- Put variables in columns (things you are measuring: height, weight, sex)
- Each **observation** in one **row** (e.g. individuals).
- Avoid spaces, numbers, and special characters in column names.

- Put variables in columns (things you are measuring: height, weight, sex)
- Each **observation** in one **row** (e.g. individuals).
- Avoid spaces, numbers, and special characters in column names.
- Always write zero values, to distinguish from blank/missing data.

- Put variables in columns (things you are measuring: height, weight, sex)
- Each **observation** in one **row** (e.g. individuals).
- Avoid spaces, numbers, and special characters in column names.
- Always write zero values, to distinguish from blank/missing data.
- Use blank/empty cells, or NA, for missing data.

- Put variables in columns (things you are measuring: height, weight, sex)
- Each **observation** in one **row** (e.g. individuals).
- Avoid spaces, numbers, and special characters in column names.
- Always write zero values, to distinguish from blank/missing data.
- Use blank/empty cells, or NA, for missing data.
- Input dates as year, month, day in separate columns. Or YYYY-MM-DD as text.

- Put variables in columns (things you are measuring: height, weight, sex)
- Each **observation** in one **row** (e.g. individuals).
- Avoid spaces, numbers, and special characters in column names.
- Always write zero values, to distinguish from blank/missing data.
- Use blank/empty cells, or NA, for missing data.
- Input dates as year, month, day in separate columns. Or YYYY-MM-DD as text.
- Use 'Data validation' in Excel to constrain data entry to accepted values.

- Put variables in columns (things you are measuring: height, weight, sex)
- Each **observation** in one **row** (e.g. individuals).
- Avoid spaces, numbers, and special characters in column names.
- Always write zero values, to distinguish from blank/missing data.
- Use blank/empty cells, or NA, for missing data.
- Input dates as year, month, day in separate columns. Or YYYY-MM-DD as text.
- Use 'Data validation' in Excel to constrain data entry to accepted values.
- Don't combine multiple pieces of information in one cell.

- Put variables in columns (things you are measuring: height, weight, sex)
- Each **observation** in one **row** (e.g. individuals).
- Avoid spaces, numbers, and special characters in column names.
- Always write zero values, to distinguish from blank/missing data.
- Use blank/empty cells, or NA, for missing data.
- Input dates as year, month, day in separate columns. Or YYYY-MM-DD as text.
- Use 'Data validation' in Excel to constrain data entry to accepted values.
- Don't combine multiple pieces of information in one cell.
- Don't touch raw data. Do all data manipulation with R code.

- Put variables in columns (things you are measuring: height, weight, sex)
- Each **observation** in one **row** (e.g. individuals).
- Avoid spaces, numbers, and special characters in column names.
- Always write zero values, to distinguish from blank/missing data.
- Use blank/empty cells, or NA, for missing data.
- Input dates as year, month, day in separate columns. Or YYYY-MM-DD as text.
- Use 'Data validation' in Excel to constrain data entry to accepted values.
- Don't combine multiple pieces of information in one cell.
- Don't touch raw data. Do all data manipulation with R code.
- Export data as plain text (txt, csv)

- Put variables in columns (things you are measuring: height, weight, sex)
- Each **observation** in one **row** (e.g. individuals).
- Avoid spaces, numbers, and special characters in column names.
- Always write zero values, to distinguish from blank/missing data.
- Use blank/empty cells, or NA, for missing data.
- Input dates as year, month, day in separate columns. Or YYYY-MM-DD as text.
- Use 'Data validation' in Excel to constrain data entry to accepted values.
- Don't combine multiple pieces of information in one cell.
- Don't touch raw data. Do all data manipulation with R code.
- Export data as plain text (txt, csv)
- http://www.datacarpentry.org/spreadsheet-ecology-lesson/

- Put variables in columns (things you are measuring: height, weight, sex)
- Each **observation** in one **row** (e.g. individuals).
- Avoid spaces, numbers, and special characters in column names.
- Always write zero values, to distinguish from blank/missing data.
- Use blank/empty cells, or NA, for missing data.
- Input dates as year, month, day in separate columns. Or YYYY-MM-DD as text.
- Use 'Data validation' in Excel to constrain data entry to accepted values.
- Don't combine multiple pieces of information in one cell.
- Don't touch raw data. Do all data manipulation with R code.
- Export data as plain text (txt, csv)
- http://www.datacarpentry.org/spreadsheet-ecology-lesson/
- http://kbroman.org/dataorg/

Common spreadsheet errors

More than one variable per column

Date collected	Plot	Species-Sex	Weight
1/9/78	1	DM-M	40
1/9/78	1	DM-F	36
1/9/78	1	DS-F	135
1/20/78	1	DM-F	39
1/20/78	2	DM-M	43
1/20/78	2	DS-F	144
3/13/78	2	DM-F	51
3/13/78	2	DM-F	44
3/13/78	2	DS-F	146

Date collected	Plot	Species	Sex	Weight
1/9/78	1	DM	M	40
1/9/78	1	DM	F	36
1/9/78	1	DS	F	135
1/20/78	1	DM	F	39
1/20/78	2	DM	M	43
1/20/78	2	DS	F	144
3/13/78	2	DM	F	51
3/13/78	2	DM	F	44
3/13/78	2	DS	F	146

Source: Data Carpentry

Multiple tables

Multiple tabs

Could you avoid new tab by adding a column to original spreadsheet?

Using formatting, comments, etc to convey information

Plot: 2				
Date collect	Species	Sex	Weight	
1/8/14	NA			
1/8/14	DM	M	44	
1/8/14	DM	M	38	
1/8/14	OL			
1/8/14	PE	M	22	
1/8/14	DM	M	38	
1/8/14	DM	M	48	
1/8/14	DM	M	43	
1/8/14	DM	F	35	
1/8/14	DM	M	43	
1/8/14		F	37	
1/8/14	PF		7	
1/8/14	DM	M	45	
1/8/14	OT			
1/8/14	DS	M	157	
1/8/14	OX			
2/18/14		М	218	
2/18/14	PF	F	7	
2/18/14	DM	M	52	

measurement	

Plot: 2				
Date collecte		Sex	Weight	Calibrated
1/8/14				
1/8/14		M	44	
1/8/14	DM	M	38	Υ
1/8/14	OL			
1/8/14		M	22	
1/8/14		M	38	
1/8/14	DM	M	48	
1/8/14		M	43	
1/8/14	DM	F	35	Υ
1/8/14		M	43	Υ
1/8/14	DM	F	37	
1/8/14	PF	F	7	Υ
1/8/14		M	45	Υ
1/8/14	OT			
1/8/14	DS	M	157	N
1/8/14				
2/18/14	NA	M	218	N
2/18/14	PF	F		Υ
2/18/14	DM	М	52	Υ

Your turn: tidy up this messy dataset

https://ndownloader.figshare.com/files/2252083

Data analysis

Always use code

- Reproducible
- Reusable

Dynamic reports

Rmarkdown documents

- Fully reproducible (trace all results inc. tables and plots)
- Dynamic (regenerate with 1 click)
- Suitable for
 - documents (Word, PDF, etc)
 - presentations
 - books
 - websites
 - ...

In Rstudio, create new Rmarkdown document and click on ${\tt Knit}\ {\tt HTML}.$

Example: Does sunshine influence happiness?

See myproject.Rmd

HTML output

Does sunshine make people happy?

F. Rodriguez-Sanchez Tuesday, November 25, 2014

Introduction

It is well known that individual well-being can be influenced by climatic conditions. However, ...

Estimate

Methods

We collected data on 100 individuals and fitted a linear model.

Results

We found that...

(Intercept)	-0.0651657	0.4264970	-0.1527928	0.8788758
sunshine	0.0100228	0.0004232	23.6833264	0.0000000

Std Error

fiveline

Printin

Discussion

These results confirm that sunshine is good for happiness (slope = 0.0100228).

Acknowledgements

Y. Xie, J. MacFarlane, Retudio...

Spotted error in the data? No problem!

Make changes in Rmarkdown document, click knit and report will update automatically!

Other formats: PDF, Word

Does sunshine make people happy?

Tuesday, November 25, 2014

Introduction

It is well known that individual well-being can be influenced by climatic conditions. However, . . .

Methods

We collected data on 100 individuals and fitted a linear model.

Results

We found that...

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-0.0651657	0.4264970	-0.1527928	0.8788768
sunshine	0.0100228	0.0004232	23.6833264	0.0000000

Does sunshine make people happy?

F. Rodriguez-Sanchez Tuesday, November 25, 2014

Introduction

It is well known that individual well-being can be influenced by climatic conditions. However, \dots

Methods

We collected data on 100 individuals and fitted a linear model.

Results

We found that...

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-0.0651657	0.4264970	-0.1527928	0.8788758
cunchine	0.0100228	0.0004232	23.6833264	0.0000000

Adding citations

```
bibliography: references.bib

""{r citations_setup, include=FALSE}

library(knitcitations)
cite_options(citation_format = "pandoc")

...

Introduction

It is well known that individual well-being can be influenced by climatic conditions 'r citep("10.1016/1.ecolecon.2004.06.015")', However....
```

See output

References

Rehdanz, Katrin, and David Maddison. 2005. "Climate and Happiness." *Ecological Economics* 52 (1). Elsevier BV: 111–25. doi:10.1016/j.ecolecon.2004.06.015.

Useful: rcrossref addin

Can write full thesis in Rmarkdown!

See thesis.Rmd.

See thesis.pdf.

Rmarkdown cheat sheet

Rmarkdown reference guide

Managing software dependencies

Managing package dependencies in R

- sessionInfo (or session_info)
- switchr
- rctrack
- checkpoint
- packrat
- docker

Version control

Dropbox

Dropbox keeps record of deleted/edited files for 30 days

Open Science Framework

Automatic version control, no time limit.

R. Fitzjohn (https://github.com/richfitz/reproducibility-2014)

Git & GitHub

- Sign up for GitHub
- Install Git
- Introduce yourself
- Create repo on GitHub
- Clone repo in Rstudio
- Make changes, push, pull
- Collaboration

Collaborative writing

Many alternatives

- Rmarkdown + GitHub
- lacktriangledown Word + Dropbox
- Google Docs
- Overleaf
- Authorea
- ...

Happy writing!

Slides and source code available at https://github.com/Pakillo/ReproducibleScience