Simulación de Sistemas de Colas en Restaurantes de Comida Rápida

Claudia Hernández Pérez 6 de abril de 2025

Índice

1.	Introducción			
	Introducción 1.1. Descripción del proyecto			
	1.2. Objetivos y metas			
	 Objetivos y metas Sistema a simular y variables de interés 			•
2.	Detalles de Implementación			
	2.1. Pasos de implementación			•
3.	Resultados y Experimentos			
	3.1. Hallazgos principales			
	3.2. Interpretación			
	3.3. Hipótesis validadas			•
4.	. Modelo Matemático			
	4.1. Modelos probabilísticos			
	4.2. Supuestos clave			
	4.3. Validación teórica			
5.	Conclusiones			

1. Introducción

1.1. Descripción del proyecto

Este proyecto analiza mediante simulación de eventos discretos dos configuraciones de atención en restaurantes de comida rápida: el sistema tradicional de múltiples colas independientes versus el sistema de cola única con múltiples servidores.

1.2. Objetivos y metas

- Comparar el tiempo medio de espera en ambos sistemas
- Validar teóricamente los resultados mediante teoría de colas
- Proponer la configuración óptima para minimizar tiempos de espera

1.3. Sistema a simular y variables de interés

El sistema simulado representa:

- Llegadas de clientes: Proceso Poisson con $\lambda = 60/\text{hora}$
- \blacksquare Tiempos de servicio: Distribución exponencial con $\mu=24/\mathrm{hora}$ por servidor
- Variables clave: Tiempo en sistema, longitud de cola, utilización de servidores

2. Detalles de Implementación

2.1. Pasos de implementación

- 1. Modelado conceptual del sistema
- 2. Implementación en Python con SimPy
- 3. Validación del modelo teórico (M/M/1 vs $\rm M/M/s)$
- 4. Diseño de experimentos con 1000 horas simuladas
- 5. Análisis estadístico de resultados

3. Resultados y Experimentos

3.1. Hallazgos principales

Figura 1: Comparación de tiempos medios en sistema

3.2. Interpretación

Como muestra la Figura 1, el sistema de cola única reduce el tiempo medio de espera en un $58\,\%$ respecto al sistema tradicional.

3.3. Hipótesis validadas

- La cola única provee menor varianza en tiempos de espera
- \blacksquare La utilización de servidores se mantiene constante en ambos casos ($\rho=83,\!33\,\%)$

4. Modelo Matemático

4.1. Modelos probabilísticos

Se aplicó teoría de colas Markovianas:

- ullet M/M/1 para colas independientes
- \blacksquare M/M/3 para cola única con 3 servidores

4.2. Supuestos clave

- Estado estable $(\lambda < s\mu)$
- Disciplina FIFO
- Población infinita

4.3. Validación teórica

Los resultados simulados mostraron menos del $2\,\%$ de desviación respecto a las predicciones teóricas:

Métrica	Teórico	Simulado
Tiempo M/M/1	15.00 min	15.23 min
Tiempo M/M/3	6.01 min	6.17 min

5. Conclusiones

La simulación demostró que el sistema de cola única ofrece:

- Menor tiempo medio de espera (6.17 vs 15.23 minutos)
- Mayor equidad en la atención
- \blacksquare Mejor experiencia para los clientes