MATH 2135 Linear Algebra

3.C Matrices

Alyssa Motas

March 21, 2021

Contents

$\mathbf{Re}_{\mathbf{I}}$	presenting a Linear Map by a Matrix	3
1.1	Definition of a matrix	3
1.2	Definition of the matrix of a linear map	3
1.3	Example	3
\mathbf{Add}	dition and Scalar Multiplication of Matrices	4
2.1	Definition of matrix addition	4
2.2	The matrix of the sum of linear maps	4
2.3	Definition of scalar multiplication of a matrix	4
2.4	-	4
2.5		4
2.6	$\dim \mathbf{F}^{m,n} = mn \dots $	5
Ma	trix Multiplication	5
3.1		5
3.2	The matrix of the product of linear maps	5
Isoı	norphism	5
4.1	•	5
4.2	-	5
4.3		
4.4	Finite-dimensional vector spaces are isomorphic	6
	1.1 1.2 1.3 Add 2.1 2.2 2.3 2.4 2.5 2.6 Ma 3.1 3.2 Ison 4.1 4.2 4.3	1.2 Definition of the matrix of a linear map 1.3 Example

1 Representing a Linear Map by a Matrix

1.1 Definition of a matrix

Let m and n denote positive integers. An m-by-n matrix is a rectangular array of elements of \mathbf{F} with m rows and n columns:

$$A = \begin{bmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{bmatrix}$$

The notation $A_{j,k}$ denotes the entry in row j, column k of A.

1.2 Definition of the matrix of a linear map

Suppose $T \in \mathcal{L}(V, W)$ and v_1, \ldots, v_n is a basis of V and w_1, \ldots, w_m is a basis of W. The *matrix* of T with respect to these bases is the m-by-n matrix $\mathcal{M}(T)$ whose entries $A_{j,k}$ are defined by

$$Tv_k = A_{1,k}w_1 + \dots + A_{m,k}w_m.$$

If the bases are not clear from the context, then the notation $\mathcal{M}(T,(v_1,\ldots,v_n),(w_1,\ldots,w_n))$ is used.

$$\mathcal{M}(T) = A = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ \vdots & \vdots & & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{bmatrix}$$

1.3 Example

Suppose $T \in \mathcal{L}(\mathbf{F}^2, \mathbf{F}^3)$ is defined by T(x, y) = (x + 3y, 2x + 5y, 7x + 9y). Find the matrix of T with respect to the standard bases of \mathbf{F}^2 and \mathbf{F}^3 .

Since T(1,0) = (1,2,7) and T(0,1) = (3,5,9), then

$$\mathcal{M}(T) = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ 7 & 9 \end{bmatrix}.$$

Suppose $D \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{P}_2(\mathbb{R}))$ is the differentiation map defined by Dp = p'. Find the matrix of D with respect to the standard bases of $\mathcal{P}_3(\mathbb{R})$ and $\mathcal{P}_2(\mathbb{R})$.

Since $(x^n)' = nx^{n-1}$, then we have

$$\mathcal{M}(D) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

2 Addition and Scalar Multiplication of Matrices

2.1 Definition of matrix addition

The sum of two matrices of the same size is the matrix obtained by adding corresponding entries in the matrices:

$$\begin{bmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{bmatrix} + \begin{bmatrix} C_{1,1} & \dots & C_{1,n} \\ \vdots & & \vdots \\ C_{m,1} & \dots & C_{m,n} \end{bmatrix} = \begin{bmatrix} A_{1,1} + C_{1,1} & \dots & A_{1,n} + C_{1,n} \\ \vdots & & \vdots \\ A_{m,1} + C_{m,1} & \dots & A_{m,n} + C_{m,n} \end{bmatrix}$$

In other words, $(A+C)_{j,k} = A_{j,k} + C_{j,k}$.

2.2 The matrix of the sum of linear maps

Suppose $S, T \in \mathcal{L}(V, W)$. Then $\mathcal{M}(S + T) = \mathcal{M}(S) + \mathcal{M}(T)$.

2.3 Definition of scalar multiplication of a matrix

The product of a scalar and a matrix is the matrix obtained by mutliplying each entry in the matrix by the scalar:

$$\lambda \begin{bmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{bmatrix} = \begin{bmatrix} \lambda A_{1,1} & \dots & \lambda A_{1,n} \\ \vdots & & \vdots \\ \lambda A_{m,1} & \dots & \lambda A_{m,n} \end{bmatrix}$$

In other words, $(\lambda A)_{j,k} = \lambda A_{j,k}$

2.4 The matrix of a scalar times a linear map

Suppose $\lambda \in \mathbf{F}$ and $T \in \mathcal{L}(V, W)$. Then $\mathcal{M}(\lambda T) = \lambda \mathcal{M}(T)$.

2.5 Notation of $F^{m,n}$

For m and n positive integers, the set of all m-by n matrices with entries in \mathbf{F} is denoted by $\mathbf{F}^{m,n}$.

$2.6 \quad \dim \mathbf{F}^{m,n} = mn$

Suppose m and n are positive integers. With addition and scalar multiplication defined as above, $\mathbf{F}^{m,n}$ is a vector space with dimension mn.

3 Matrix Multiplication

3.1 Definition of matrix multiplication

Suppose A is an m-by-n matrix and C is an n-by-p matrix. Then AC is defined to be the m-by-p matrix whose entry in row j, column k, is given by the following equation:

$$(AC)_{j,k} = \sum_{r=1}^{n} A_{j,r} C_{r,k}.$$

In other words, the entry in row j, column k, of AC is computed by taking row j of A and column k of C, multiplying together corresponding entries, and then summing. Matrix multiplication is not commutative, but it is associative and distributive.

3.2 The matrix of the product of linear maps

If $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$, then $\mathcal{M}(ST) = \mathcal{M}(S)\mathcal{M}(T)$.

4 Isomorphism

4.1 Definition of isomorphism

Let V, W be vector spaces over \mathbf{F} and let $T \in \mathcal{L}(V, W)$. We say that T is an isomorphism if T is bijective (i.e. injective and surjective.

4.2 Inverse function

If $T \in \mathcal{L}(V, W)$ is an isomorphism, then the inverse function $T^{-1} \in \mathcal{L}(W, V)$ exists and is linear.

Example. Let $V = \mathbb{R}^4$ and let $W = \mathcal{P}_3(\mathbb{R})$. A basis of V is $v_1 = (1,0,0,0), v_2 = (0,1,0,0), v_3 = (0,0,1,0), v_4 = (0,0,0,1),$ and a basis of $\mathcal{P}_3(\mathbb{R})$ is $w_1 = 1, w_2 = x, w_3 = x^2, w_4 = x^3$. Define an isomorphism $T \in \mathcal{L}(\mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R}))$, namely the unique linear map such that

$$T(v_1) = w_1, \dots, T(v_4) = w_4.$$

The inverse $T^{-1} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}) \to \mathbb{R}^4)$ is the unique linear map such that

$$T^{-1}w_1 = v_1, \dots, T^{-1}w_4 = v_4.$$

More concretely, we can describe T and T^{-1} like this:

$$T \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = a + bx + cx^2 + dx^3$$

and

$$T^{-1}(a+bx+cx^2+dx^3) = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

4.3 Definition of isomorphic

Vector spaces V,W are isomorphic if there exists an isomorphism between them.

4.4 Finite-dimensional vector spaces are isomorphic

Finite-dimensional vector spaces are isomorphic if and only if they have the same dimension.