Contents Price of Anarchy/Stability Load Balancing game Congestion games and variants Affine Congestion games

Efficiency of Nash Equilibria

Fall 2020

- Price of Anarchy/Stability
- 2 Load Balancing game
- 3 Congestion games and variants
- 4 Affine Congestion games

- We have analyzed the existence of PNE and NE
- The players' goals can be different from those of the society.
- Fixing a social goal an optimal situation can be defined.
- How good/bad are NE with respect to this goal?

- We have analyzed the existence of PNE and NE
- The players' goals can be different from those of the society.
- Fixing a social goal an optimal situation can be defined.
- How good/bad are NE with respect to this goal?
- How far are NE from the optimal social goal?

- We have analyzed the existence of PNE and NE
- The players' goals can be different from those of the society.
- Fixing a social goal an optimal situation can be defined.
- How good/bad are NE with respect to this goal?
- How far are NE from the optimal social goal?
- To perform such an analysis for strategic games we have first to define a global function to optimize, this function is usually called the social cost or social utility.

- We have analyzed the existence of PNE and NE
- The players' goals can be different from those of the society.
- Fixing a social goal an optimal situation can be defined.
- How good/bad are NE with respect to this goal?
- How far are NE from the optimal social goal?
- To perform such an analysis for strategic games we have first to define a global function to optimize, this function is usually called the social cost or social utility.
- Society is interested in minimizing the social cost or maximizing the social utility.

Social cost

Consider a *n*-player game $\Gamma = (A_1, \ldots, A_n, c_1, \ldots, c_n)$. Let

- $A = A_1 \times \cdots \times A_n$
- $PNE(\Gamma)$ be the set of PNE of Γ ,
- $NE(\Gamma)$ be the set of NE of Γ ,

Social cost

Consider a *n*-player game $\Gamma = (A_1, \ldots, A_n, c_1, \ldots, c_n)$. Let

- $A = A_1 \times \cdots \times A_n$,
- $PNE(\Gamma)$ be the set of PNE of Γ ,
- $NE(\Gamma)$ be the set of NE of Γ ,
- $C: A \to \mathbb{R}$ be a social cost function.

 ${\cal C}$ can be extended to mixed strategy profiles by computing the average under the joint product distribution.

• Utilitarian social cost : $C(s) = \sum_{i \in N} c_i(s)$.

- Utilitarian social cost : $C(s) = \sum_{i \in N} c_i(s)$.
- Egalitarian social cost: $C(s) = \max_{i \in N} c_i(s)$.

- Utilitarian social cost : $C(s) = \sum_{i \in N} c_i(s)$.
- Egalitarian social cost: $C(s) = \max_{i \in N} c_i(s)$.
- Game specific cost/utility defined by the model motivating the game.

The Price of anarchy of Γ is defined as

$$PoA(\Gamma) = \frac{\max_{\sigma \in NE(\Gamma)} C(\sigma)}{\min_{s \in A} C(s)}.$$

The Price of anarchy of Γ is defined as

$$PoA(\Gamma) = \frac{\max_{\sigma \in NE(\Gamma)} C(\sigma)}{\min_{s \in A} C(s)}.$$

The Price of stability of Γ is defined as

$$PoS(\Gamma) = \frac{\min_{\sigma \in NE(\Gamma)} C(\sigma)}{\min_{s \in A} C(s)}.$$

The Price of anarchy of Γ is defined as

$$PoA(\Gamma) = \frac{\max_{\sigma \in NE(\Gamma)} C(\sigma)}{\min_{s \in A} C(s)}.$$

The Price of stability of Γ is defined as

$$PoS(\Gamma) = \frac{\min_{\sigma \in NE(\Gamma)} C(\sigma)}{\min_{s \in A} C(s)}.$$

For social utility functions the terms are inverted in the definition.

• For games having a PNE, we might be interested in those values over $PNE(\Gamma)$ instead of $NE(\Gamma)$.

- For games having a PNE, we might be interested in those values over $PNE(\Gamma)$ instead of $NE(\Gamma)$.
- For families of games, we might be interested in analyzing PoA and PoS as a function of some parameter. For example the number of players.

- For games having a PNE, we might be interested in those values over $PNE(\Gamma)$ instead of $NE(\Gamma)$.
- For families of games, we might be interested in analyzing PoA and PoS as a function of some parameter. For example the number of players.
- PoA measures the worst decentralized equilibrium scenario giving the maximum system degradation.

- For games having a PNE, we might be interested in those values over $PNE(\Gamma)$ instead of $NE(\Gamma)$.
- For families of games, we might be interested in analyzing PoA and PoS as a function of some parameter. For example the number of players.
- PoA measures the worst decentralized equilibrium scenario giving the maximum system degradation.
- PoS measures the best decentralized equilibrium scenario giving the best possible degradation.

• 4000 drivers drive from A to B on

• Set the social cost to be the maximum travel time.

- Set the social cost to be the maximum travel time.
- Optimal social cost is reached when half of the drivers take A U B and the other half A R B with social cost 65.

- Set the social cost to be the maximum travel time.
- Optimal social cost is reached when half of the drivers take A U B and the other half A R B with social cost 65.
- In the NE

- Set the social cost to be the maximum travel time.
- Optimal social cost is reached when half of the drivers take A U B and the other half A R B with social cost 65.
- In the NE half of the drivers take A U B and the other half A R B.

4000 drivers drive from A to B on

- Set the social cost to be the maximum travel time.
- Optimal social cost is reached when half of the drivers take A U B and the other half A R B with social cost 65.
- In the NE half of the drivers take A U B and the other half A R B.
- PoA = PoS = 65/65 = 1

• 4000 drivers drive from A to B on

• Set the social cost to be the maximum travel time.

- Set the social cost to be the maximum travel time.
- Optimal social cost is reached when half of the drivers take A U B and the other half A R B with social cost 65.

- Set the social cost to be the maximum travel time.
- Optimal social cost is reached when half of the drivers take A U B and the other half A R B with social cost 65.
- In the NE

- Set the social cost to be the maximum travel time.
- Optimal social cost is reached when half of the drivers take A U B and the other half A R B with social cost 65.
- In the NE all drivers take A U R B with social cost 80.

4000 drivers drive from A to B on

- Set the social cost to be the maximum travel time.
- Optimal social cost is reached when half of the drivers take A U B and the other half A R B with social cost 65.
- In the NE all drivers take A U R B with social cost 80.
- PoA = PoS = 80/65 = 16/13

- Price of Anarchy/Stability
- 2 Load Balancing game
- 3 Congestion games and variants
- 4 Affine Congestion games

Load Balancing game

- There are m servers and n jobs. Job i has load p_i .
- The game has n players, corresponding to the n jobs.
- Each player has to decide the server that will process its job. $A_i = \{1, ..., m\}$
- The response time of server j is proportional to its load

$$L_j(s) = \sum_{i|s_i=j} p_i.$$

 Each job wants to be assigned to the server that minimizes its response time:

$$c_i(s) = L_{s_i}(s).$$

Load Balancing game: PNE?

Consider the best response dynamic

- Start with an arbitrary state.
- A node (or several) chooses a best strategy, one that maximizes its own payoff, given the current choices of the others

Consider the best response dynamic

- Start with an arbitrary state.
- A node (or several) chooses a best strategy, one that maximizes its own payoff, given the current choices of the others
- How to prove that such a process converges to a PNE?

Consider the best response dynamic

- Start with an arbitrary state.
- A node (or several) chooses a best strategy, one that maximizes its own payoff, given the current choices of the others
- How to prove that such a process converges to a PNE?
- Seek for an adequate kind of potential function.

BR-inspired-algorithm

 Order the servers with decreasing load (i.e., the decreasing response time):

$$L_1 \geq L_2 \geq \cdots \geq L_m.$$

- Job *i* moves from server *j* to k, $L_k + p_i < L_j$.
- We must have $L_1 \geq \cdots \geq L_j \geq \cdots \geq L_k \geq \cdots \geq L_m$.
- Thus, $L_j p_i < L_j$ and $L_k + p_i < L_j$.

BR-inspired-algorithm

 Order the servers with decreasing load (i.e., the decreasing response time):

$$L_1 \geq L_2 \geq \cdots \geq L_m$$
.

- Job *i* moves from server *j* to k, $L_k + p_i < L_j$.
- We must have $L_1 \ge \cdots \ge L_j \ge \cdots \ge L_k \ge \cdots \ge L_m$.
- Thus, $L_j p_i < L_j$ and $L_k + p_i < L_j$.
- Reorder the servers by decreasing load and repeat the process until no job can move.

Does the algorithm converge?

- Does the algorithm converge?
- There are a finite number of (possibly exponential) assignments of jobs to servers.

- Does the algorithm converge?
- There are a finite number of (possibly exponential) assignments of jobs to servers.
- At each step the sorted load sequence decreases!

- Does the algorithm converge?
- There are a finite number of (possibly exponential) assignments of jobs to servers.
- At each step the sorted load sequence decreases!
- So BR-inspired-algorithm terminates (although it can be rather slow).

- Does the algorithm converge?
- There are a finite number of (possibly exponential) assignments of jobs to servers.
- At each step the sorted load sequence decreases!
- So BR-inspired-algorithm terminates (although it can be rather slow).
- The load balancing game has a PNE.

Load Balancing game: Social cost

 The natural social cost is the total finish time i.e., the maximum of the server's loads

$$c(s) = \max_{j=1}^{m} L_j.$$

• How bad/good is a PNE?

- Let s be an assignment with optimal cost.
- Is s a PNE?

- Let s be an assignment with optimal cost.
- Is s a PNE?
- not necessarily, no player in the worst server can improve, however other players can get a better benefit.

- Let s be an assignment with optimal cost.
- Is s a PNE?
- not necessarily, no player in the worst server can improve, however other players can get a better benefit.
- However, starting from an optimal solution the BR-inspired-algorithm terminates on a PNE with the same maximum load.

- Let s be an assignment with optimal cost.
- Is s a PNE?
- not necessarily, no player in the worst server can improve, however other players can get a better benefit.
- However, starting from an optimal solution the BR-inspired-algorithm terminates on a PNE with the same maximum load.
- Therefore, $PoS(\Gamma) = 1$.

Theorem

The max load of a Nash equilibrium s is within twice the max load of an optimum assignment, i.e.,.

$$C(s) \leq 2 \min_{s'} C(s').$$

Which will give $PoA(\Gamma) \leq 2$.

- Let s be a PNE
- Let *i* be a job assigned to the max loaded server *j*.

- Let s be a PNE
- Let *i* be a job assigned to the max loaded server *j*.
 - $L_j \leq L_k + p_i$, for all other server k.

- Let s be a PNE
- Let *i* be a job assigned to the max loaded server *j*.
 - $L_i \leq L_k + p_i$, for all other server k.
 - Summing over all servers, we get

- Let s be a PNE
- Let *i* be a job assigned to the max loaded server *j*.
 - $L_i \leq L_k + p_i$, for all other server k.
 - Summing over all servers, we get $L_j \leq (\sum_k L_k)/m + p_i$.

- Let s be a PNE
- Let i be a job assigned to the max loaded server j.
 - $L_i \leq L_k + p_i$, for all other server k.
 - Summing over all servers, we get $L_j \leq (\sum_k L_k)/m + p_i$.
- In an opt solution, i is assigned to some server,

- Let s be a PNE
- Let i be a job assigned to the max loaded server j.
 - $L_i \leq L_k + p_i$, for all other server k.
 - Summing over all servers, we get $L_j \leq (\sum_k L_k)/m + p_i$.
- In an opt solution, i is assigned to some server, so $C(s') \ge p_i$.

- Let s be a PNE
- Let i be a job assigned to the max loaded server j.
 - $L_i \leq L_k + p_i$, for all other server k.
 - Summing over all servers, we get $L_j \leq (\sum_k L_k)/m + p_i$.
- In an opt solution, i is assigned to some server, so $C(s') \ge p_i$.
- $\sum_{k} L_{k}$ is the total processing time for an assignment.

- Let s be a PNE
- Let i be a job assigned to the max loaded server j.
 - $L_i \leq L_k + p_i$, for all other server k.
 - Summing over all servers, we get $L_j \leq (\sum_k L_k)/m + p_i$.
- In an opt solution, i is assigned to some server, so $C(s') \ge p_i$.
- $\sum_k L_k$ is the total processing time for an assignment. The best possible algorithm is to evenly partition them among m servers (if possible), thus

- Let s be a PNE
- Let i be a job assigned to the max loaded server j.
 - $L_i \leq L_k + p_i$, for all other server k.
 - Summing over all servers, we get $L_j \leq (\sum_k L_k)/m + p_i$.
- In an opt solution, i is assigned to some server, so $C(s') \ge p_i$.
- $\sum_k L_k$ is the total processing time for an assignment. The best possible algorithm is to evenly partition them among m servers (if possible), thus $\sum_k L_k/m \leq (\sum_\ell p_\ell)/m$.

- Let s be a PNE
- Let *i* be a job assigned to the max loaded server *j*.
 - $L_i \leq L_k + p_i$, for all other server k.
 - Summing over all servers, we get $L_j \leq (\sum_k L_k)/m + p_i$.
- In an opt solution, i is assigned to some server, so $C(s') \ge p_i$.
- $\sum_k L_k$ is the total processing time for an assignment. The best possible algorithm is to evenly partition them among m servers (if possible), thus $\sum_k L_k/m \leq (\sum_\ell p_\ell)/m$.
- We get $C(s) = L_i \le (\sum_k L_k)/m + p_i$

- Let s be a PNE
- Let i be a job assigned to the max loaded server j.
 - $L_i \leq L_k + p_i$, for all other server k.
 - Summing over all servers, we get $L_j \leq (\sum_k L_k)/m + p_i$.
- In an opt solution, i is assigned to some server, so $C(s') \ge p_i$.
- $\sum_k L_k$ is the total processing time for an assignment. The best possible algorithm is to evenly partition them among m servers (if possible), thus $\sum_k L_k/m \leq (\sum_\ell p_\ell)/m$.
- We get $C(s) = L_j \le (\sum_k L_k)/m + p_i \le (\sum_\ell p_\ell)/m + p_i$

- Let s be a PNE
- Let i be a job assigned to the max loaded server j.
 - $L_i \leq L_k + p_i$, for all other server k.
 - Summing over all servers, we get $L_j \leq (\sum_k L_k)/m + p_i$.
- In an opt solution, i is assigned to some server, so $C(s') \ge p_i$.
- $\sum_k L_k$ is the total processing time for an assignment. The best possible algorithm is to evenly partition them among m servers (if possible), thus $\sum_k L_k/m \leq (\sum_\ell p_\ell)/m$.
- We get

$$C(s) = L_j \leq (\sum_k L_k)/m + p_i \leq (\sum_{\ell} p_{\ell})/m + p_i \leq C(s') + C(s').$$

- Price of Anarchy/Stability
- 2 Load Balancing game
- 3 Congestion games and variants
- 4 Affine Congestion games

Congestion games

Congestion games

A congestion game $(E, N, (d_e)_{e \in E})$

- is defined on a finite set E of resources and
- has n players and,
- for each resource e, a delay function d_e mapping $\mathbb N$ to the integers.
- The actions for each player are subsets of E.
- The cost functions are the following:

$$c_i(a_1,\ldots,a_n) = \left(\sum_{e\in a_i} d(e,f(a_1,\ldots,a_n,e))\right)$$

being
$$f_e(a_1, ..., a_n, e) = |\{i \mid e \in a_i\}|$$
.

Weighted congestion games

Weighted congestion games

A weighted congestion game $(E, N, (d_e)_{e \in E}, (w_i)_{i \in N})$

- is defined on a finite set E of resources and
- has n players. Player i has an associated positive integer weight w_i.
- Each resource e has a delay function d_e mapping $\mathbb N$ to the integers.
- The actions for each player are subsets of E.
- The cost functions are the following:

$$c_i(a_1,\ldots,a_n) = \left(\sum_{e\in a_i} d(e,f(a_1,\ldots,a_n,e))\right)$$

being
$$f_e(a_1, \ldots, a_n, e) = \sum_{i|e \in a_i} w_i$$
.

Network weighted congestion games

Network weighted congestion games

A network weighted congestion game

$$(N, G = (V, E), (d_e)_{e \in E}, (w_i)_{i \in N}, (s_i)_{i \in N}, (t_i)_{i \in N})$$

- Is defined on a directed graph G = (V, E), the resources are the arcs (E)
- The game has n players, player i has an associated positive integer weight w_i and two vertices s_i , $t_i \in V$.
- For each arc e a delay function d_e mapping $\mathbb N$ to the integers.
- The action set for player i is the set of $(s_i t_i)$ -paths in G.
- The cost functions are the following:

$$c_i(a_1,\ldots,a_n)=\left(\sum_{e\in a_i}d(e,f(a_1,\ldots,a_n,e))\right)$$

being
$$f(a_1, \ldots, a_n, e) = \sum_{i \mid e \in a_i} w_i$$
.

PNE in weighted congestion games

There are weighted network congestion games without PNE

PNE in weighted congestion games

- There are weighted network congestion games without PNE
- Consider the following network with 2 players having weights $w_1 = 1$ and $w_2 = 2$.

Not always PNE in weighted congestion games

Not always PNE in weighted congestion games

<i>S_i</i>	BR_1	BR_2
$P_1: s \rightarrow t$	P_4	P_2
$P_2: s \rightarrow v \rightarrow t$	P_4	P_4
$P_3: s \rightarrow w \rightarrow t$	P_1	P_2
$P_3: s \to v \to w \to t$	P_1	P_3

Not always PNE in weighted congestion games

S_i	BR_1	BR_2
$P_1: s \rightarrow t$	P_4	P_2
$P_2: s \rightarrow v \rightarrow t$	P_4	P_4
$P_3: s \rightarrow w \rightarrow t$	P_1	P_2
$P_3: s \to v \to w \to t$	P_1	P_3

Therefore the game has no PNE

- Price of Anarchy/Stability
- 2 Load Balancing game
- 3 Congestion games and variants
- 4 Affine Congestion games

PoA for affine congestion games

Consider unweighted congestion games such that the delay functions are affine functions, i.e., for each resource *e*,

$$d_e(x) = a_e x + b_e,$$

for some $a_e, b_e > 0$.

PoA for affine congestion games

Consider unweighted congestion games such that the delay functions are affine functions, i.e., for each resource *e*,

$$d_e(x) = a_e x + b_e,$$

for some $a_e, b_e > 0$.

Let C be the usual social cost:

$$C(s) = \sum_{e \in E} d_e(f_e(s))$$

Smoothness

A game is called (λ, μ) -smooth, for $\lambda > 0$ and $\mu \leq 1$ if, for every pair of strategy profiles s and s', we have

$$\sum_{i\in\mathcal{N}}c_i(s_{-i},s_i')\leq \lambda C(s')+\mu C(s).$$

Smoothness

A game is called (λ, μ) -smooth, for $\lambda > 0$ and $\mu \leq 1$ if, for every pair of strategy profiles s and s', we have

$$\sum_{i\in\mathcal{N}}c_i(s_{-i},s_i')\leq \lambda C(s')+\mu C(s).$$

Smoothness directly gives a bound for the PoA:

Smoothness

A game is called (λ, μ) -smooth, for $\lambda > 0$ and $\mu \leq 1$ if, for every pair of strategy profiles s and s', we have

$$\sum_{i\in\mathcal{N}}c_i(s_{-i},s_i')\leq \lambda C(s')+\mu C(s).$$

Smoothness directly gives a bound for the PoA:

Theorem

In a (λ, μ) -smooth game, the PoA for PNE is at most $\frac{\lambda}{1-\mu}$.

Proof of smoothness bound on PoA

Let s be the worst PNE and s^* be an optimum solution.

$$C(s) = \sum_{i \in N} c_i(s) \le \sum_{i \in N} c_i(s_{-i}, s_i^*)$$

$$\le \lambda C(s^*) + \mu C(s)$$

Substracting $\mu C(s)$ on both sides gives

$$(1-\mu)C(s) \leq \lambda C(s^*).$$

Contents
Price of Anarchy/Stability
Load Balancing game
Congestion games and variants
Affine Congestion games

Theorem

Every congestion game with affine delay functions is (5/3, 1/3)-smooth. Thus, $PoA \le 5/2$.

Theorem

Every congestion game with affine delay functions is (5/3, 1/3)-smooth. Thus, $PoA \le 5/2$.

The proof uses a technical lemma:

Lemma (Christodoulou, Koutsoupias, 2005)

For all integers y, z we have

$$y(z+1) \le \frac{5}{3}y^2 + \frac{1}{3}z^2.$$

Recall that $d_e(x) = a_e x + b_e$. Note that using the Lemma

$$a_e y(z+1) + b_e y \le a_e (\frac{5}{3}y^2 + \frac{1}{3}z^2) + b_e y = \frac{5}{3}(a_e y^2 + b_e y) + \frac{1}{3}(a_e z^2 + b_e z).$$

Recall that $d_e(x) = a_e x + b_e$. Note that using the Lemma

$$a_e y(z+1) + b_e y \le a_e (\frac{5}{3}y^2 + \frac{1}{3}z^2) + b_e y = \frac{5}{3}(a_e y^2 + b_e y) + \frac{1}{3}(a_e z^2 + b_e z).$$

Taking $y = f_e(s^*)$ and $z = f_e(s)$ we get

$$(a_e(f_e(s)+1)+b_e)f_e(s^*) \leq \frac{5}{3}(a_ef_e(s^*)+b_e)f_e(s^*)) + \frac{1}{3}(a_ef_e(s)+b_e)f_e(s)).$$

Recall that $d_e(x) = a_e x + b_e$. Note that using the Lemma

$$a_e y(z+1) + b_e y \le a_e (\frac{5}{3}y^2 + \frac{1}{3}z^2) + b_e y = \frac{5}{3}(a_e y^2 + b_e y) + \frac{1}{3}(a_e z^2 + b_e z).$$

Taking $y = f_e(s^*)$ and $z = f_e(s)$ we get

$$(a_e(f_e(s)+1)+b_e)f_e(s^*) \leq \frac{5}{3}(a_ef_e(s^*)+b_e)f_e(s^*)) + \frac{1}{3}(a_ef_e(s)+b_e)f_e(s)).$$

Summing up all the inequalities

$$\sum_{e \in F} (a_e(f_e(s) + 1) + b_e) f_e(s^*) \leq \frac{5}{3} C(s^*) + \frac{1}{3} C(s).$$

$$\sum_{e \in E} (a_e(f_e(s)+1)+b_e)f_e(s^*) \leq \frac{5}{3}C(s^*)+\frac{1}{3}C(s).$$

$$\sum_{e \in E} (a_e(f_e(s)+1)+b_e)f_e(s^*) \leq \frac{5}{3}C(s^*)+\frac{1}{3}C(s).$$

But,

$$\sum_{i \in N} c_i(s_{-i}, s_i^*) \leq \sum_{e \in E} (a_e(f_e(s) + 1) + b_e) f_e(s^*)$$

as there are at most $f_e(s^*)$ players that might move to resource r. Each of them by unilaterally deviating incur a delay of $(a_e(f_e(s)+1)+b_e)$.

$$\sum_{e \in E} (a_e(f_e(s)+1)+b_e)f_e(s^*) \leq \frac{5}{3}C(s^*)+\frac{1}{3}C(s).$$

But,

$$\sum_{i \in N} c_i(s_{-i}, s_i^*) \leq \sum_{e \in E} (a_e(f_e(s) + 1) + b_e) f_e(s^*)$$

as there are at most $f_e(s^*)$ players that might move to resource r. Each of them by unilaterally deviating incur a delay of $(a_e(f_e(s)+1)+b_e)$.

This gives the (5/3, 1/3)-smoothness.

- Price of Anarchy/Stability
- 2 Load Balancing game
- 3 Congestion games and variants
- 4 Affine Congestion games

References

- Chapters 18 and 19.3 in the AGT book. (PoA and PoS bounds).
- B. Awerbuch, Y. Azar, A. Epstein. The Price of Routing Unsplittable Flow. STOC 2005. (PoA for pure NE in congestion games).
- G. Christodoulou, E. Koutsoupias. The Price of Anarchy of finite Congestion Games. STOC 2005. (PoA for pure NE in congestion games)
- T. Roughgarden. Intrinsic Robustness of the Price of Anarchy. STOC 2009. (Smoothness Framework and Unification of Previous Results)
- D. Fotakis. A Selective Tour Through Congestion Games, LNCS 2015.