ГЛАВА Интегральное исчисление функций нескольких переменных

§ Двойной интеграл

Пусть функция f(x,y) определена в связной и простой (т.е. ограниченной простым, несамопересекающимся замкнутым контуром) области $D \subset R^2$.

Будем считать, что D — ограниченная область, и функция f(x,y) ограничена там.

Разобьем область D на n произвольных простых, связных, непересекающихся кусочков:

$$D = \bigcup_{i=1}^n D_i$$
 $(D_i \cap D_j = \emptyset$ при $i \neq j).$

Обозначим $d_i = \operatorname{diam} D_i, i = 1, \dots, n$. Величину $\omega = \max_{i=1,\dots,n} d_i$ назовем рангом дробления области D.

 Найдем ΔS_i — площадь области $D_i, \ i=1,\dots,n$. Выберем произвольные точки: $(\xi_i, \eta_i) \in D_i, i = 1, \dots, n.$

Построим сумму

$$\sigma = \sum_{i=1}^{n} f(\xi_i, \eta_i) \Delta S_i,$$

и назовем ее суммой Римана.

Определение. Если существует конечный предел: $\lim_{\omega \to 0} \sigma$, причем он не зависит от способа дробления области D и от выбора точек $(\xi_i,\eta_i),\ i=1,\dots,n,$ то он называется двойным (Римановым) интегралом от функции f(x,y) по области D. Обозначим его: $\iint f(x,y) dS$.

Замечание. Если двойной интеграл существует, то предел суммы Римана, согласно определению, не зависит от способа дробления области D. Тогда без потери общности можно выбрать самый простой способ дробления — с помощью прямых, параллельных осям координат. В этом случае область D разобьется на прямоугольники (на границе области данные прямоугольники могут быть обрезанными, но при ранге дробления, стремящимся к нулю, этим можно пренебречь). Тогда, если D_i — прямоугольник со сторонами Δx_i , Δy_i , то получим $\Delta S_i = \Delta x_i \Delta y_i$. Поэтому в двойном интеграле часто используют также следующее обозначение: dS = dxdy, и пишут: $\iint\limits_{D} f(x,y) \, dx dy.$

Рассмотрим свойства двойного интеграла:

- 1) пусть $\iint f(x,y) \, dx dy = I$, и $\tilde{f}(x,y) = f(x,y)$ в области D, за исключением точек, лежащих на некоторой кривой в D, причем $\tilde{f}(x,y)$ — ограничена в D. Тогда получаем, что $\iint\limits_{D} \tilde{f}(x,y) \, dx dy = I;$

 - 2) $\iint_{D} 0 \, dx dy = 0;$ 3) $\iint_{D} 1 \, dx dy = S(D)$, где S(D) площадь области D; 4) если S(D) = 0, то $\iint_{D} f(x,y) \, dx dy = 0;$

 - 5) если $f(x,y) \ge 0$ в области D, то $\iint_D f(x,y) \, dx dy \ge 0$;

6) если $D = D_1 \cup D_2 \ (D_1 \cap D_2 = \emptyset)$, то

$$\iint\limits_{D} f(x,y) \, dxdy = \iint\limits_{D_1} f(x,y) \, dxdy + \iint\limits_{D_2} f(x,y) \, dxdy;$$

7) если $f(x,y) = c_1 f_1(x,y) + c_2 f_2(x,y)$, где $c_1, c_2 = {
m const.}$ то

$$\iint\limits_{D} f(x,y) \, dxdy = c_1 \iint\limits_{D} f_1(x,y) \, dxdy + c_2 \iint\limits_{D} f_2(x,y) \, dxdy;$$

8) если $f(x,y) \ge g(x,y)$ в области D, то

$$\iint\limits_{D} f(x,y) \, dxdy \ge \iint\limits_{D} g(x,y) \, dxdy;$$

9)
$$\left| \iint\limits_D f(x,y) \, dx dy \right| \leq \iint\limits_D |f(x,y)| \, dx dy;$$

10) если $m \leq f(x,y) \leq M$ в области D, где $m,M = \mathrm{const},$ то

$$m S(D) \le \iint_D f(x, y) dxdy \le M S(D).$$

Во всех выписанных свойствах предполагается, что соответствующие интегралы существуют. Доказательство свойств вытекает непосредственно из определения двойного интеграла.

Теорема (о среднем). Пусть функция f(x,y) непрерывна в области D. Тогда найдется такая точка $(a,b) \in D$, что

$$\iint\limits_{D} f(x,y) \, dxdy = f(a,b) \, S(D).$$

Доказательство. В силу свойства 1), без потери общности можно считать, что область D замкнута (функцию f(x,y) можно доопределить на границе области D). Тогда по теореме Вейерштрасса, функция f(x,y) ограничена в области D и достигает там своих максимального и минимального значений. Пусть

$$m = \min_{D} f(x, y), \quad M = \max_{D} f(x, y).$$

Согласно свойству 10) имеем:

$$m S(D) \le \iint_D f(x, y) dxdy \le M S(D).$$

Если S(D) = 0, то доказательство очевидно. Предположим, что S(D) > 0. Тогда

$$m \le \frac{1}{S(D)} \iint_D f(x, y) \, dx dy \le M.$$

По теореме Коши — Больцано (о промежуточных значениях функции): $\exists (a,b) \in D$:

$$\frac{1}{S(D)} \iint_D f(x,y) \, dx dy = f(a,b).$$

Получили требуемое. Теорема доказана.

Пример физического приложения двойного интеграла. Пусть имеется плоская пластина D, и $\rho(x,y)$ — плотность пластины в точке $(x,y) \in D$. Требуется найти массу пластины. Приближенно массу пластины можно вычислить так:

$$M(D) \approx \sum_{i=1}^{n} \rho(\xi_i, \eta_i) \Delta S_i.$$

Здесь использованы те же обозначения, что и при введении суммы Римана. Тогда, устремляя ранг дробления к нулю, придем к точной формуле:

$$M(D) = \iint_D \rho(x, y) dxdy.$$

Аналогично можно вычислить значение электрического заряда, "размазанного" по плоской пластине, и т.д.

Рассмотрим условия существования двойного интеграла.

Снова дробим область D, как при построении суммы Римана. Положим

$$m_i = \inf_{D_i} f(x, y), \quad M_i = \sup_{D_i} f(x, y), \quad i = 1, \dots, n.$$

Построим суммы

$$s = \sum_{i=1}^{n} m_i \Delta S_i, \quad S = \sum_{i=1}^{n} M_i \Delta S_i,$$

и назовем их нижней и верхней суммами Дарбу, соответственно.

Суммы Дарбу обладают следующими свойствами:

1) На любом дроблении области D верно:

$$s < \sigma < S$$
.

2) Пусть дробление τ_2 области D мельче дробления τ_1 (т.е. τ_2 получено путем дальнейшего размельчения τ_1). Тогда если s_1, S_1 — суммы Дарбу, построенные для дробления τ_1, s_2, S_2 — суммы Дарбу, построенные для дробления τ_2 , то

$$s_2 \ge s_1, \quad S_2 \le S_1,$$

т.е. при ранге дробления, стремящимся к нулю, нижняя сумма растет, а верхняя — убывает.

3) Пусть τ_1 и τ_2 — произвольные дробления области D (не обязательно, что одно мельче другого), и пусть s_1, S_1 и s_2, S_2 — суммы Дарбу, построенные для этих двух дроблений. Тогда:

$$s_1 \leq S_2, \quad s_2 \leq S_1,$$

т.е. любая нижняя сумма Дарбу не превосходит любой верхней.

Из указанных свойств сумм Дарбу вытекает следующий критерий интегрируемости:

Теорема. Для существования интеграла $\iint_D f(x,y) dxdy$ необходимо и достаточно, чтобы выполнялось условие:

$$\lim_{\omega \to 0} (S - s) = 0.$$

KAKB agolomephoni arytone

Доказательство теоремы, также как и доказательство свойств сумм Дарбу, проводится аналогично одномерному случаю.

Можно сформулировать более простое достаточное условие существования интеграла:

Теорема. Если функция f(x,y) непрерывна в области D, то она там интегрируема, т.е. $\exists \iint_{D} f(x,y) \, dx dy$.

Доказательство. Как и ранее, без потери общности считаем, что D — замкнутая область. Тогда по теореме Кантора функция f(x,y) равномерно непрерывна в области D, т.е.

$$\forall \varepsilon > 0, \ \exists \delta > 0: \ \forall \omega: \ 0 < \omega < \delta \ \Rightarrow \ 0 < (M_i - m_i) < \varepsilon, \ i = 1, \dots, n.$$

Отсюда имеем:

$$0 \le S - s = \sum_{i=1}^{n} (M_i - m_i) \Delta S_i < \varepsilon \sum_{i=1}^{n} \Delta S_i = \varepsilon S(D).$$

Получили, что $\lim_{\omega \to 0} (S-s) = 0$. Теорема доказана.

Отметим, что непрерывность функции — это только достаточное условие интегрируемости, но не необходимое.

Установим теперь геометрический смысл двойного интеграла.

Пусть $f(x,y) \ge 0$ при $(x,y) \in D$. Зададим поверхность z = f(x,y). Тогда тело:

$$T = \{(x, y, z)^T \in \mathbb{R}^3 : 0 \le z \le f(x, y), (x, y) \in D\},\$$

расположенное под указанной поверхностью, называется криволинейным брусом.

Рис. 1.

Дроблению области $D = \bigcup_{i=1}^{n} D_i$ соответствует дробление тела $T = \bigcup_{i=1}^{n} T_i$, т.е.

$$T_i = \{(x, y, z)^T \in R^3 : 0 \le z \le f(x, y), (x, y) \in D_i\}$$

(см. рисунок 1).

Обозначим ΔV_i — объем тела $T_i, i=1,\ldots,n$. Имеем:

$$m_i \Delta S_i \le \Delta V_i \le M_i \Delta S_i, \quad i = 1, \dots, n.$$

Пусть V(T) — объем всего криволинейного бруса T. Тогда

$$\sum_{i=1}^{n} m_i \Delta S_i \le V(T) = \sum_{i=1}^{n} \Delta V_i \le \sum_{i=1}^{n} M_i \Delta S_i.$$

Устремляя ранг дробления области D к нулю, с учетом критерия интегрируемости функций, получим:

$$V(T) = \iint_D f(x, y) \, dx dy,$$

т.е. значение двойного интеграла равно объему соответствующего криволинейного бруса.

Пример. Рассмотрим интеграл $\iint_D (1-x-y) \, dx dy$, где область D изображена на рисунке 2 а.

Криволинейный брус в данном случае — это пирамида (см. рисунок 2 б). Вспоминая, чему равен объем пирамиды, получаем, что

$$\iint\limits_{D} (1 - x - y) \, dx dy = V(T) = \frac{1}{3} \cdot 1 \cdot \frac{1}{2} = \frac{1}{6}.$$

Аналогично можно установить более общие результаты. Пусть задано тело:

$$T = \{(x, y, z)^T : f_1(x, y) \le z \le f_2(x, y), (x, y) \in D\}.$$

Здесь знак функций $f_1(x,y)$ и $f_2(x,y)$ может быть произвольным. Тогда:

$$V(T) = \iint_{D} (f_2(x, y) - f_1(x, y)) dxdy.$$

Замечание. Если область D является неограниченной и/или функция f(x,y) не ограничена в D, то тогда интеграл $\iint\limits_D f(x,y)\,dxdy$ называется несобственным. Выберем произвольную ограниченную область $D'\subset D$, такую что функция f(x,y) ограничена в D'. Тогда положим

$$\iint\limits_{D} f(x,y) \, dxdy = \lim\limits_{D' \to D} \iint\limits_{D'} f(x,y) \, dxdy.$$

Если данный предел существует, конечен и не зависит от выбора области D' и от способа стремления D' к D, то говорят, что несобственный интеграл сходится (в противном случае, интеграл называется расходящимся).