

# Migrating South, Slowly



# Nearby Fun



Backpacking in the Sierras



Canoeing on the Russian River

# **Undergrad Projects**



Nanoplasmonics



Senior Project: Mobile Fire Obliterator



Metal Foam

### Making a Better Force Probe

- Tools to study the molecular basis of touch and hearing
- MEMS probe vs. conventional probe

 Specs: pN force resolution, microsecond time resolution, closed loop force feedback, operation in

salt water



### The Device

- Combine piezoresistive force sensing with piezoelectric actuation on a single very small cantilever beam
- Issues: design optimization, materials, feedback





## Where Things Stand

| Design<br># | f <sub>0</sub> (kHz) | f <sub>max</sub><br>(kHz) | R<br>( kΩ) | F <sub>min</sub> Theory (pN) | F <sub>min</sub> Exp. (pN) |
|-------------|----------------------|---------------------------|------------|------------------------------|----------------------------|
| 1           | 22                   | 5                         | 4.2        | 7.8                          | 5.2                        |
| 2           | 66.4                 | 10                        | 2.5        | 17.1                         | 51.7                       |
| 3           | 187.3                | 50                        | 8.4        | 28.8                         | 298                        |
| 4           | 419.5                | 100                       | 3.5        | 35.9                         | 678                        |



#### The piezoresistor works



The feedback works



The piezoelectric works

Next steps: test entire system, bio experiments, graduate

### Tools of the Trade

- Microfabrication
- X-ray diffraction
- Atomic force microscopy
- Auger electron spectroscopy
- Experiments of all kinds
- Printed circuit boards
- Doesn't get boring





## Finding a Project is Iterative

- Worked on a different aspect of the same project when I first got here
- Research meltdowns aren't fun but happen
- Summer internship @ Google
- Switched project focus from bio to engineering



# The Importance of Being Scrappy

- I didn't get into Stanford, twice!
  - There's always another department...
- First year funding woes
  - Talk with a prof early and often
  - Fellowship applications are an art
- Getting your research to work
  - A thin line between your device working and not
  - Always have "duct tape" handy
  - Examples: piezoelectrics, fab





## **Travel Opportunities Abound**

- Did research at ETH Zurich for 3 months in 2008
- Funded by extension to NSF CAREER award
- Led to lots of fun and a conference paper





### Misc. Stuff

- Quals: Practice at the board!
- Classes: 0 or 2 per quarter works well
- Funding: Find a professor, go to group meetings, be persistent, find a class to CA, fellowship applications
- SNF: Plan on things not working and have backups for your backups

Thanks!

