Задачи для защиты лабораторной работы N_21

Плюхин Дмитрий группа Р
3117 $\label{eq:Mapt} \mbox{Mapt 2016}$

1 Задача 4

Задание

Упорядочить функции по возрастанию скорости роста

$$\log_5 n$$
 $n^{0.3}$ \sqrt{n} $n \log_2 n$ $n (\log_2 n)^3$ n^3 4^n

Решение

Известно, что экспонента растет быстрее, чем любой полином, а любой полином растет быстрее, чем любой логарифм поэтому из предложенных функций наибольшая скорость роста у 4^n .

Перед ней будут идти полиномы $n^{0.3}$, \sqrt{n} , n^3 , сравним их скорости роста, для этого запишем \sqrt{n} как $n^{0.5}$. Становится видно, что n^3 растет быстрее, чем $n^{0.5}$, а, в свою очередь, $n^{0.5}$ - быстрее чем $n^{0.3}$, что следует из порядка возрастания их степеней.

Наконец, сравним скорости роста логарифмов $\log_5 n, n \log_2 n, n (\log_2 n)^3$. Приведем $\log_5 n$ к основанию 2: $\log_5 n = \frac{1}{\log_2 5} \log_2 n$, где $\frac{1}{\log_2 5}$ - константа, не влияющая на скорость роста. Поскольку все логарифмы кроме $\frac{1}{\log_2 5} \log_2 n$ домножаются на полином первой степени, у логарфма $\log_5 n$ наименьшая скорость роста. Относительно двух оставшихся, $n \log_2 n, n (\log_2 n)^3$, второй растет быстрее, поскольку возводится в большую степень.

Таким образом, имеем последовательность:

$$\log_5 n - n \log_2 n - n (\log 2n)^3 - n^{0.3} - \sqrt{n} - n^3 - 4^n$$

2 Задача 5

Задание

Отметить все верные утверждения:

- $100n \log_2 n = \Theta(n + (\log_2 n)^2)$
- $\bullet \ 2^n = \Theta(2^{n+1})$
- $\bullet \ \frac{n^2}{\log_3 n} = O(n(\log_2 n)^2)$
- $n! = \Omega(2^n)$
- $nlog_2n = \Theta(n)$
- $n! = O(2^n)$
- $\frac{n^2}{\log_4 n} = \Theta(n(\log_3 n)^2)$

Решение

Рассмотрим первое утверждение, произведем асимптотическую оценку функции, расположенной в левой части:

 $100n\log_2 n = \Theta(n\log_2 n) = \Theta(nlog n)$

Для правой части:

$$\Theta(n + (\log_2 n)^2) = \Theta(n + (\log n)^2)$$

Начиная с некоторых n (в частности, уже при n > 100) функция nlogn растет гораздо быстрее, чем $n + (logn)^2$, значит, первое утверждение не верно.

Рассмотрим второе утверждение. Оно верно, поскольку $\Theta(2^{n+1}) = \Theta(2 \times 2^n) = \Theta(2^n)$, и функция не может расти быстрее или медленнее самой себя.

Рассмотрим третье утверждение. Оно неверно, поскольку выражение $\frac{n}{\log_3 n(\log_2 n)^2} = \frac{n}{\ln(3)(\ln(2))^2(\ln(n))^3}$ не ограничено сверху какой-либо константой, потому что полином растет быстрее логарифма. Пятое утверждение не верно, поскольку, очевидно, функция $nlog_2 n$ отличается от n не на константу.

Шестое утверждение не верно, так как, прежде всего, факториал числа растет гораздо быстрее 2^n уже при n>4

Последнее утверждение аналогично третьему с разницей лишь в основаниях логарифмов. Это различие может быть сведено к различию в константах, которые не влияют на скорость роста функций Так, имеем всего 2 верных утверждения:

- $2^n = \Theta(2^{n+1})$
- $n! = \Omega(2^n)$

3 Задача 6

Задание

Доказать, что

$$\log(n!) = \Omega(nlogn)$$

Решение

$$\log(n!) = \log(\prod_{i=1}^n i) = \sum_{i=1}^n \log i = \sum_{i=1}^{\frac{n}{2}} \log i + \sum_{i=\frac{n}{2}+1}^n \log i \ge \frac{n}{2} \log \frac{n}{2} \Rightarrow \log(n!) = \Omega(n\log n)$$

Что и требовалось доказать