

15.2 Boolean Algebra and Logic Circuits

Candidates should be able to:

Produce truth tables for logic circuits including half

adders and full adders

Show understanding of a flip-flop (SR, JK)

Show understanding of Boolean algebra

Show understanding of Karnaugh maps (K-map)

Notes and guidance

May include logic gates with more than two inputs.

Draw a logic circuit and derive a truth table for a flip-

flop

Understand of the role of flip-flops as data storage

elements

Understand De Morgan's laws.

Perform Boolean algebra using De Morgan's laws. Simplify a logic circuit/expression using Boolean

algebra

Understand of the benefits of using Karnaugh maps

Solve logic problems using Karnaugh maps

Half adder

Carries out binary addition on 2 bits generating two outputs

- The sum bit s
- The carry bit c

Input		Output	
Α	В	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Full adder

The half adder is unable to deal with the addition of several binary bits (e.g. an 8-bit byte). To enable this, we have considered the full adder circuit

Inputs			Outputs	
Α	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Figure 15.12

