

1 / 41

Using CVA for the Estimation of Approximate Dynamic Factor Models

Berlin Müggelheim, 20.3.2025

Dank an die DFG für die Finanzierung des Projekts GLASS No. 469278259.

Dietmar Bauer

D. Bauer | Ökonometrie March 20, 2025

Introduction

3 / 41

- Often in the analysis of, for example, macro-data or financial data one models a large number of variables jointly.
- Examples include the vectorization of matrix valued time series (MaTS),
 wherein a number of variables is observed in a number of regions.
- The number of variables typically is smaller but similar to the number of time points.
- To mention just one example, Bai and Ng (2019) use an example with N = 128 variables and T = 676 (monthly) observations from the FRED-MD data base.
- Joint models for such number of series necessarily contain many parameters and pose problems for specification and estimation.
- In order to cope with the high dimensionality, factor models and generalisations thereof are considered to reduce the dimensionality.

Motivation

- Estimation of such models often involves dynamic modelling of the principal components (PC), see the recent survey of Barigozzi et al. (2024).
- VAR modelling for PCs is straightforward, if the factor process is non-singular (see Stock and Watson, 2011, e.g.).
- This includes integrated settings (e.g., Bai and Ng, 2004).
- State space models have also been used: Doz et al. (2011) discuss a two step approach for estimation using an EM type algorithm.
- Subspace methods have been applied to model combined dynamics of factors and idiosyncratics (Kapetanios and Marcellino, 2009).
- Empirically part of the literature argues for singularity of the factor processes (fewer shocks than components), which complicates estimation.
- Manfred Deistler and others developed structure theory and first ideas on estimation in the singular situation (see Lippi, Deistler, Anderson, 2023).

Question investigated in this paper: How robust are estimates obtained using the CVA type subspace method with respect to singularity and (co-)integration?

5 / 41

Outline

- Factor models (FM) reduce the dimensionality by focusing on *common* features that appear in many time series first.
- **Dynamics** of the factors can be modelled using state space models.
- State space models can be estimated using different methods.
- **Subspace** procedures like CVA are one alternative.
- Consistency results confirm that they provide useful information in the aDFM situation: stationary and I(1) case.
- Appendix: (Simulations: specification of integer valued parameters.)

This is a methodological talk, I will not show real world data or modelling!

Disclaimer: This talk is based on a talk given at the CFE in Dec. 2023 and reuses many of the slides.

6 / 41

Specification of Factor Models

Approximate Dynamic Factor Models: aDFMs

$$y_{it} = \chi_{it} + \xi_{it} = \underbrace{\lambda_i' F_t} + \underbrace{\xi_{it}}, i = 1, ..., N.$$

factor component idiosyncratic component

$$Y_t^N = \Lambda_N F_t + \Xi_t^N \in \mathbb{R}^N$$

- $Y_t^N = [y_{1t}, ..., y_{Nt}] \in \mathbb{R}^N, t = 1, ..., T$
- $F_t \in \mathbb{R}^r$... static factors, where $r \ll N$.

Assumption (Independence)

The factors F_t and the idiosyncratic component ξ_{is} are independent for all variables i and all times t, s.

Assumption (Factor Loadings)

The factor loadings λ_i are assumed deterministic such that $N^{-1} \sum_{i=1}^N \lambda_i \lambda_i' = N^{-1} \Lambda_N' \Lambda_N \to M_\Lambda > 0$. $\sup_N \max_i \|\lambda_i\| < M_\lambda$.

Stationarity

- In this talk we first restrict attention to stationary processes.
- This may involve the need to transform some variables for example via taking temporal differences. Integrated processes dealt with at the end.

Assumption (Stationarity)

The processes $(F_t)_{t\in\mathbb{Z}}, (\Xi_t^N)_{t\in\mathbb{Z}}$ are jointly wide sense stationary with zero expected value for all N and possess spectral densities. For each of the processes F_t, Ξ_t^N, y_t^N we have

$$\max_{0 \le k \le H_T} \max_{i,j} \|T^{-1} \sum_{t=1+k}^T x_{t,i} x_{t-k,j} - \mathbb{E} x_{t,i} x_{t-k,j}\| = O(Q_T)$$

where $Q_T := \sqrt{(\log \log T/T)}$ and $H_T = (\log T)^a$ for some integer a > 1.

These high level assumptions differ from the literature. Often assumptions on the underlying processes are stated such that the covariance estimates fulfill similar assumptions.

Covariance of observations:

$$\Gamma_{y,N} = \mathbb{E}\,y_t^N(y_t^N)' = \Lambda_N(\mathbb{E}\,F_tF_t')\Lambda_N' + \Gamma_{\Xi,N}.$$

Two issues for identification:

- (I) separate common and idiosyncratic parts
- (II) identify common factors and loadings from the product $\Lambda_N F_t$.

Assumption (Identification)

- $\Gamma_{\Xi,N} = \mathbb{E} \Xi_t^N(\Xi_t^N)'$: $\sup_N \lambda_{max}(\Gamma_{\Xi,N}) \leq M_\Xi$ ('weak correlation').
- $\blacksquare \Gamma_F = \mathbb{E} F_t F_t' = I_r.$
- Λ_N is positive lower triangular (for example, its heading $r \times r$ submatrix is lower triangular matrix with positive diagonal entries).

Other conditions are possible, such as a submatrix of Λ_N being the identity matrix.

REMARK: Normalizations using $\Lambda'_N \Lambda_N / N = I_r$ or diagonal do not share the 'nesting' property that Λ_{N_0} is a submatrix of Λ_N for $N_0 < N$.

It follows that

$$\blacksquare \mathbb{E} \chi_t^N (\chi_t^N)' = \Lambda_N (\mathbb{E} F_t F_t') \Lambda_N' = \Lambda_N \Lambda_N'$$

- $\Lambda'_N \Lambda_N / N \to M_{\Lambda} > 0$: all eigenvalues of $\Lambda_N \Lambda'_N$ grow essentially linearly as a function of N.
- In $\Gamma_{y,N} = \Lambda_N \Lambda'_N + \Gamma_{\Xi,N}$ the first r eigenvalues are asymptotically (in N) proportional to N.
- The remaining N r ones remain bounded.
- This suggest to estimate F_t using PCA.

Consequence: idiosyncratics can be 'averaged out':

$$\operatorname{Var}(\Lambda_N^{\dagger}\Xi_t^N) = (\Lambda_N'\Lambda_N)^{-1}\Lambda_N'\Gamma_{\Xi,N}\Lambda_N(\Lambda_N'\Lambda_N)^{-1} \leq M_{\Xi}(\Lambda_N'\Lambda_N)^{-1} = \frac{M_{\Xi}}{N}(\Lambda_N'\Lambda_N/N)^{-1},$$

$$\operatorname{Var}(\Lambda_N^{\dagger}\Lambda_N F_t) = (\Lambda_N'\Lambda_N)^{-1}\Lambda_N'\Lambda_N\Lambda_N'\Lambda_N(\Lambda_N'\Lambda_N)^{-1} = I_t.$$

Asymptotic identification in the sense of Chamberlain and Rothschild (1983) \Rightarrow approximate DFM (aDFM).

3. State Space Modelling

State Space Modelling

3. State Space Modelling

Modelling Dynamics

- Factors typically are not uncorrelated in time.
- In the literature often autoregressive processes are used:

$$F_t = A_1 F_{t-1} + A_2 F_{t-2} + \dots + A_p F_{t-p} + v_t,$$

$$a(z) F_t = v_t, \qquad a(z) = I - A_1 z - A_2 z^2 - \dots - A_p z^p.$$

More general: state space system in innovation form:

$$y_t = Cx_t + v_t$$
$$x_{t+1} = Ax_t + B_{v}v_t$$

■ If the matrix A is stable, stationary solutions are given by

$$F_t = v_t + \sum_{j=0}^{\infty} CA^j B_v v_{t-j-1} = k(L)v_t.$$

3. State Space Modelling

Assumption (Rationality; cf. Lippi, Deistler, Anderson (2023))

The static factor process $(F_t)_{t\in\mathbb{Z}}, F_t\in\mathbb{R}^r$, does not depend on N and has a minimal state space representation as

$$F_t = Cx_t + Du_t, \quad x_{t+1} = Ax_t + Bu_t, \quad u_t \in \mathbb{R}^q.$$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times q}$, $C \in \mathbb{R}^{r \times n}$, $D \in \mathbb{R}^{r \times q}$ and where $(u_t)_{t \in \mathbb{Z}}$ is a stationary, ergodic martingale difference sequence and has expectation zero and variance matrix $\Omega = I_q$.

The transfer function $k(z) = D + zC(I_n - zA)^{-1}B$ has no zeros* or poles inside the unit circle.

- $(u_t)_{t \in \mathbb{Z}}$: white noise process of *dynamic factors*.
- If *q* < *r* we get a 'tall' transfer function. In that case the zeros are defined differently from the square case. See Anderson and Deistler (2008).*
- Lippi, Deistler, Anderson (2023) use different (but related) state space representation.

Wirtschaftswissenschaften

3. State Space Modelling

Assumption (factor dynamics)

$$k(z) = D + zC(I_n - zA)^{-1}B$$
 where

- The matrix $D = k(0) \in \mathbb{R}^{r \times q}$ has full column rank q such that the heading $q \times q$ submatrix is lower triangular with positive entries on the diagonal.
- There exists a pseudo inverse D^{\dagger} such that $\underline{A} = A BD^{\dagger}C$ is stable. Then the transfer function $c(z) = \sum_{j=0}^{\infty} c_j z^j \in \mathbb{R}^{q \times r}, c_j = C\underline{A}^{j-1}BD^{\dagger}$ is a pseudo left-inverse such that $c(z)k(z) = I_q$.
- There exists a real value $\rho_0 < 1$ such that $||c_j|| \le \rho_0' \mu, \forall j \in \mathbb{N}$ for $0 < \mu < \infty$.
- If c(z) is a polynomial $\rho_0 = 0$. The degree of c(z) then is denoted as p_0 .
- We only assume the existence, not the uniqueness.
- Du_t are the innovations for the process $(F_t)_{t \in \mathbb{Z}}$.
- Identification uses recursive definition: $[I_q, 0]D$ is the lower triangular Cholesky factor of the innovations in the first q static factors, which in turn multiply the loadings Λ_N whose heading submatrix also is assumed to be lower triangular. This aids interpretation, but requires knowledge.

4. Estimation of State Space Models

Estimation of State Space Models

4. Estimation of State Space Models

Autoregressive Static Factor Processes F_t

Estimation based on $\hat{F}_t = \hat{\Lambda}_N^{\dagger} y_t^N$:

- In the stationary non-singular case q = r: OLS is consistent (under our assumptions below).
- For fast enough growing cross section $(T/N^2 \rightarrow 0)$ inference remains the same (same asymptotic distribution of coefficient estimators) as if the true factors would be known.
- Similar results hold for the (co-)integrated case for q = r.
- For q < r: OLS has problems due to near multi-collinearity of regressors.

- Regularization helps, but different forms of regularization produce different limits.
- Deistler et al. (2010) provide structure theory to select the relevant regressors. This requires the estimation of integer valued structural parameters.

4. Estimation of State Space Models

17 / 41

State Space Processes

- Parameterization of state space systems is more complex than for VARs: identifiability issues due to latency of states.
- Different parameterization is needed for stationary, cointegrated as well as singular (q < r) cases.
- Once parameterization is obtained: Gaussian likelihood can be formulated as a function of parameters, when modelling the idiosyncratics as white noise with known variance matrix (misspecification).
- Jungbacker and Koopman (2015) show that Kalman filter only is required for 'small' dimensional factor process F_t , not y_t^N
- Doz et al. (2011) propose to use an EM algorithm instead of Gauss-Newton type procedures.
- Asymptotic properties of the misspecified qMLE are not known in all cases. Most results focus on q = r and VAR models.

Irrespective of usage of EM or gMLE, a good initialization algorithm is needed!

Canonical Variate Analysis (CVA)

D. Bauer | Ökonometrie March 20, 2025 18 / 41

$$F_t = Cx_t + Du_t, \qquad x_{t+1} = Ax_t + Bu_t.$$

⇒ estimation would be simple, if the state was known!

CVA is based on two facts:

1. The state x_t can be approximated by past observations:

$$x_t(p) = \sum_{i=1}^{p} \mathcal{K}_j(p) F_{t-j} = \mathcal{K}_p F_t^{-} \stackrel{p \to \infty}{\to} x_t$$

2. Predictions of F_{t+h} , $h \ge 0$, based on the past of F_t are a function of the state:

$$F_{t+h} = \underbrace{CA^{h}x_{t}}_{F_{t+h|t-1}} + \underbrace{Du_{t+h} + \sum_{j=0}^{h-1} CA^{j}Bu_{t+h-j-1}}_{v_{t+h|t-1}}$$

This holds for h = 0, 1, ..., f - 1 and can be seen as a multi-step long VAR approximation.

Jointly this implies using $x_t \approx x_t(p) = \mathcal{K}_p F_t^-$

$$\underbrace{\begin{pmatrix} F_{t} \\ \vdots \\ F_{t+f-1} \end{pmatrix}}_{F_{t}^{+}} = \mathcal{O}_{f} \mathcal{K}_{p} \underbrace{\begin{pmatrix} F_{t-1} \\ \vdots \\ F_{t-p} \end{pmatrix}}_{F_{t}^{-}} + V_{t}(p), \qquad (*)$$

$$\mathcal{O}_{f} = \begin{pmatrix} C \\ CA \\ \vdots \\ CA^{f-1} \end{pmatrix}, \mathcal{K}_{p} = \begin{pmatrix} \mathcal{K}_{1}(p) & \mathcal{K}_{2}(p) & \dots & \mathcal{K}_{p}(p) \end{pmatrix},$$

$$V_{t}(p) = \begin{pmatrix} V_{t|t-1} \\ \vdots \\ V_{t+f-1|t-1} \end{pmatrix} + \mathcal{O}_{f}(x_{t} - x_{t}(p)).$$

(*) is a regression equation, where the matrix $\mathcal{O}_t \mathcal{K}_p$ has low rank $n \ll fr$.

CVA algorithm in the potentially singular (tall TF) case

- 1. Choose f, p.
- 2. Perform a rank restricted regression (RRR) of F_t^+ onto F_t^- . In this step the order n needs to be specified.
- 3. Use the estimate $\hat{\mathcal{K}}_p$ from the last step to estimate the state $\hat{x}_t(p) = \hat{\mathcal{K}}_p F_t^-$.
- 4. Estimate *C* by regressing F_t onto $\hat{x}_t(p)$. This step provides $\hat{v}_t = F_t \hat{C}\hat{x}_t(p)$.
- 5. Obtain \hat{D} from a truncated SVD of

$$\hat{\Sigma}_T = \langle \hat{v}_t, \hat{v}_t \rangle = \hat{D}\hat{D}' + \hat{R}_q, \quad (\langle a_t, b_t \rangle = T^{-1} \sum_{T=p+1}^T a_t b_t')$$

using the q largest singular values, where \hat{D} is p.l.t.

- 6. Regress $\hat{x}_{t+1}(p)$ onto $\hat{x}_t(p)$ and $\hat{u}_t = \hat{D}^{\dagger} \hat{v}_t$ to obtain the estimates \hat{A} and \hat{B} .
- 7. Convert $(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ to an overlapping form, for example echelon forms.

CVA has been proposed by W. Larimore (1983).

RRR

$$F_t^+ = \mathcal{H}_{f,p}F_t^- + V_t(p)$$

- Unrestricted estimate: $\hat{\mathcal{H}}_{f,p} = \langle F_t^+, F_t^- \rangle \langle F_t^-, F_t^- \rangle^{-1}$.
- To obtain a rank *n* estimator we can use the SVD of:

$$W_t \langle F_t^+, F_t^- \rangle \langle F_t^-, F_t^- \rangle^{-1} \langle F_t^-, F_t^+ \rangle W_t' = \hat{U} \hat{S} \hat{U}' = \hat{U}_n \hat{S}_n \hat{U}_n' + \hat{R}_n.$$

- Different weights correspond to different estimators:
 - OLS: $W_f = I_{rf}$
 - qMLE: $W_f = \langle F_t^+, F_t^+ \rangle^{-1/2}$.
- \blacksquare Consistency for the estimator typically holds as long as W_t is non-singular.
- The rank of $\mathcal{H}_{f,p}$ is seen in the singular values estimated as the diagonal entries of \hat{S} .

Issues

- F_t is not known \Rightarrow use the largest r principal components \hat{F}_t such that $\langle \hat{F}_t, \hat{F}_t \rangle = I_r$ and $\hat{\Lambda}_N$ is p.l.t. (or other normalization).
- Classical CVA uses $W_t = \langle \hat{F}_t^+, \hat{F}_t^+ \rangle^{-1/2}$ to achieve optimal variance (see Bauer, 2005).

Special features for q < r (singular case) and p large:

■ variance of F_t^- has rank $n + pq < rp \Rightarrow$ regularisation is needed:

$$\begin{split} \hat{U}\hat{S}\hat{U}' &= W_{t}\langle \hat{F}_{t}^{+}, \hat{F}_{t}^{-}\rangle\langle \hat{F}_{t}^{-}, \hat{F}_{t}^{-}\rangle^{\dagger}\langle \hat{F}_{t}^{-}, \hat{F}_{t}^{+}\rangle W_{t}' \\ &= \hat{U}_{n}\hat{S}_{n}\hat{U}_{n}' + \hat{R}_{n} \Rightarrow \hat{\mathcal{K}}_{p} = \hat{U}_{n}'W_{t}^{+}\langle \hat{F}_{t}^{+}, \hat{F}_{t}^{-}\rangle\langle \hat{F}_{t}^{-}, \hat{F}_{t}^{-}\rangle^{\dagger} \end{split}$$

- lacksquare $\langle \hat{F}_{t}^{-}, \hat{F}_{t}^{-} \rangle^{\dagger}$: eigenvalues smaller than $\epsilon > 0$ are replaced by ϵ .
- Typical values: $\epsilon = 10^{-6}$.
- Projection $\hat{x}_t(p) = \hat{\mathcal{K}}_p \hat{\mathcal{F}}_t^-$: exists and can be calculated (unbiasedly) also for (near) singular $\hat{\mathcal{F}}_t^-$.

Issues

Case q < r:

Canonical correlations do not depend on scaling. Hence the canonical correlations between these two pairs of r.v.s are identical:

$$(\textit{A}) \quad \binom{\textit{y}_t}{\textit{w}_t/\sqrt{\textit{N}}} \text{ and } \binom{\textit{x}_t}{\textit{z}_t/\sqrt{\textit{N}}} \quad , \quad (\textit{B}) \quad \binom{\textit{y}_t}{\textit{w}_t} \text{ and } \binom{\textit{x}_t}{\textit{z}_t}$$

- Typical CVA weighting W_t will be asymptotically singular: If $L'_{t,+}F_t^+=0$ then $L'_{t-1}\hat{F}^+_t$ contains terms $\hat{\Lambda}^{\dagger}_N \equiv^N_t$ of variance O(1/N).
- CVA weighting amplifies for q < r asymptotically singular directions of \hat{F}_t^+ and $\hat{F}_t^- \Rightarrow$ may be problematic.

Deciding on the order of the system

- Singular values include information on order *n*.
- Differences between q = r and q < r.
- For q = r: use SVC.
- For q < r: count singular values close to 1 (unclear, how exactly)!

Asymptotic Results in the Stationary Case

March 20, 2025 26 / 41

6. Asymptotic Results in the Stationary Case \in ~

Extraction of the static factors F_t

■ First step: static PCA on $Y_t^N \in \mathbb{R}^N$ using $\hat{\Sigma}_{N,T} = (NT)^{-1} \sum_{t=1}^T Y_t^N (Y_t^N)'$.

$$\hat{\Sigma}_{N,T} = \frac{\Lambda_N}{\sqrt{N}} \hat{\Gamma}_F \frac{\Lambda_N}{\sqrt{N}}' + \frac{\hat{\Gamma}_{\Xi}}{N} + \text{cross terms} = \hat{U}_{N,r} \hat{S}_{N,r} \hat{U}'_{N,r} + \hat{R}_N$$

- We get $\hat{\Lambda}_N = \hat{U}_{N,r} \hat{S}_{N,r}^{1/2} \hat{L}_N$ (\hat{L}_N is introduced to fulfill the identification restrictions)
- Then use $(\hat{\Lambda}_N^{\dagger} = (\hat{\Lambda}_N'\hat{\Lambda}_N)^{-1}\hat{\Lambda}_N')$

$$\hat{F}_t = \hat{\Lambda}_N^{\dagger} y_t^N = \underbrace{(\hat{\Lambda}_N^{\dagger} \Lambda_N)}_{\Delta_T} F_t + \hat{\Lambda}_N^{\dagger} \Xi_t^N.$$

We obtain

$$T^{-1}\sum_{t=1}^{T}(\hat{F}_t\hat{F}_t'-F_tF_t')=O(Q_T+1/N).$$

■ Furthermore $\|\hat{\Lambda}_N/\sqrt{N} - \Lambda_N/\sqrt{N}\| = O(Q_T + 1/N)$, $\Delta_T - I_T = O(Q_T + 1/N)$.

Under the assumption $T/N^2 \to 0$ we have $O(Q_T + 1/N) = O(Q_T)$.

Theorem (Consistency)

- Let the data be generated according to the before mentioned Assumptions.
- Assume that $T/N^2 \to 0, T \to \infty$.
- Let $p(T) \le H_T$, $f \ge n$, $p = p(T) \ge -\frac{e \log T}{2 \log \rho_0}$, e > 1, for $\rho_0 > 0$ and $p \ge p_0$ for $\rho_0 = 0$.
- Further let $(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ denote the CVA estimators based on the PCA estimates \hat{F}_t for given order n using $W_t = I_{rt}$ and appropriate regularization converted to an appropriate overlapping form.

Then

$$\max\{\|\hat{A} - A\|, \|\hat{B} - B\|, \|\hat{C} - C\|, \|\hat{D} - D\|\} = O(Q_T).$$

Hence the transfer function is estimated consistently.

For q=r the same result holds using the CVA weighting $W_f=\langle \hat{F}_t^+, \hat{F}_t^+ \rangle^{-1/2}$.

The I(1) case

7. The I(1) case

Co-integrated state space processes

- In state space processes, integration occurs for unit eigenvalues of *A*.
- A canonical form that stresses this has the form (Bauer and Wagner, 2012):

$$F_{t} = \begin{pmatrix} C_{1} & C_{\bullet} \end{pmatrix} x_{t} + Du_{t},$$

$$\begin{pmatrix} x_{t+1,1} \\ x_{t+1,\bullet} \end{pmatrix} = \begin{pmatrix} I_{c} & 0 \\ 0 & A_{\bullet} \end{pmatrix} x_{t} + \begin{pmatrix} B_{1} \\ B_{\bullet} \end{pmatrix} u_{t}.$$

- This generates c common trends $(x_{t,1})_{t\in\mathbb{Z}}, x_{t,1} = \sum_{j=1}^{t-1} B_1 u_j + x_{0,1}$.
- The idiosyncratic terms are kept stationary (this is a restriction, that can be dealt with by letting the cross sectional dimension increase faster).

Assumption (Identification, I(1) case)

- There exists a selector matrix $\tilde{I}_r \in \mathbb{R}^{N_0 \times r}$ such that $[\tilde{I}_r', 0]\Lambda_N = I_r$ for $N \geq N_0$.
- D is p.l.t.

7. The I(1) case

31 / 41

Assumptions on the common factors

Assumption (factor dynamics, I(1))

$$F_t = \underbrace{\begin{pmatrix} C_1 & C_{\bullet} \end{pmatrix}}_{C} x_t + Du_t, x_{t+1} = \underbrace{\begin{pmatrix} I_c & 0 \\ 0 & A_{\bullet} \end{pmatrix}}_{A} x_t + \underbrace{\begin{pmatrix} B_1 \\ B_{\bullet} \end{pmatrix}}_{B} u_t$$

where

- $(u_t)_{t \in \mathbb{Z}}$ fulfills the noise assumptions in (rationality),
- $W_t = F_t C_1 C_1' F_{t-1}$ fulfills the assumptions (Stationarity),
- A_{\bullet} is stable, $(A_{\bullet}, B_{\bullet}, C_{\bullet})$ is in echelon overlapping form,
- there exists a stable left pseudo-inverse to $k(z) = D + zC(I_n zA)^{-1}B$,
- finally

$$\sup_{N \subseteq \mathbb{N}} \max_{i=1,\dots,N} \|\langle C_1' F_t, \xi_{it} \rangle\| = O(\log T). \tag{1}$$

PCA with integrated variables

Wirtschaftswissenschaften

- Consider a bivariate process $F_{t,1} = F_{t-1,1} + u_{t,1}, F_{t,2} = u_{t,2}$.
- Scaled empirical covariance matrix:

$$\frac{1}{\textbf{T}^2} \sum_{t=1}^T F_t F_t' \overset{d}{\to} \begin{pmatrix} Z & 0 \\ 0 & 0 \end{pmatrix}.$$

- First PC: proportional to $F_{t,1}$, but with $\langle \hat{F}_{t,1}, \hat{F}_{t,1} \rangle = 1$.
- Achieved by $\hat{F}_{t,1} \approx F_{t,1}/\sqrt{\langle F_{t,1}, F_{t,1} \rangle}$.
- Randomly weighted common trend. Weights are of order $O_P(1/\sqrt{T})$.
- Second PC: approx. F_{t,2}

Wirtschaftswissenschaften

PCA with integrated variables in aDFM

Principal components are obtain from the sample covariance matrix:

$$\frac{1}{NT} \sum_{t=1}^{T} y_t^N (y_t^N)' = \frac{\Lambda_N}{\sqrt{N}} \left(\frac{1}{T} \sum_{t=1}^{T} F_t F_t' \right) \frac{\Lambda_N'}{\sqrt{N}} + \underbrace{\frac{1}{NT} \sum_{t=1}^{T} \Xi_t^N (\Xi_t^N)'}_{O(1/N)} + \text{cross terms}$$

- For co-integrated process F_t in $\frac{1}{T}\sum_{t=1}^{T}F_tF_t'$ the c common trends lead to c eigenvalues tending to infinity as $O_P(T)$. r-c tend to their finite limits.
- The first *c* principal components then essentially are due to the common trends.
- Typically one uses a normalisation such that $\langle \hat{F}_t, \hat{F}_t \rangle = I_t$.
- For common trends this implies a weighting with dominant term $\langle F_{t,1}, F_{t,1} \rangle^{-1/2}$ which is of order $O_P(1/\sqrt{T})$.

Applying CVA then uses regression $\hat{F}_t^+ = \mathcal{O}_f \mathcal{K}_p \hat{F}_t^- + V_t(p)$.

Sidestep: Asymptotics in a bivariate setting

- Consider a univariate stationary process z_t and an I(1) process $y_t = y_{t-1} + \alpha z_t + \varepsilon_t$.
- Estimating the regression $y_t = \rho y_{t-1} + \alpha z_{t-1} + \varepsilon_t$ we can consistently estimate ρ and α .
- Replacing y_t with $\tilde{y}_t = y_t / \sqrt{T}$ we get the equation: $\tilde{\mathbf{y}}_t = \rho \tilde{\mathbf{y}}_{t-1} + \frac{\alpha}{\sqrt{T}} \mathbf{z}_{t-1} + \varepsilon_t / \sqrt{T}$.
- This leaves the OLS estimator for ρ consistent, but $\langle \tilde{y}_t, z_{t-1} \rangle \langle z_{t-1}, z_{t-1} \rangle^{-1} \to 0.$
- Thus in the rescaled equation the information on α diminishes.

wirtschaftswissenschaften CVA for I(1) processes

$$\begin{pmatrix} F_{t,c} \\ F_{t,\bullet} \end{pmatrix} = \begin{pmatrix} I_c & C_{1,\bullet} \\ 0 & C_{\bullet} \end{pmatrix} \begin{pmatrix} x_{t,c} \\ x_{t,\bullet} \end{pmatrix} + \begin{pmatrix} D_1 \\ D_{\bullet} \end{pmatrix} u_t,$$

$$\begin{pmatrix} x_{t+1,c} \\ x_{t,\bullet} \end{pmatrix} = \begin{pmatrix} I_c & 0 \\ 0 & A_{\bullet} \end{pmatrix} \begin{pmatrix} x_{t,c} \\ x_{t,\bullet} \end{pmatrix} + \begin{pmatrix} B_1 \\ B_{\bullet} \end{pmatrix} u_t,$$

$$\begin{pmatrix} F_{t,1} \\ F_{t,\bullet} \\ \Delta F_{t+1,1} \\ \vdots \\ \vdots \\ \Delta F_{t+f-1,1} \\ F_{t+f-1,\bullet} \end{pmatrix} = \begin{pmatrix} I_c & C_{1,\bullet} \\ 0 & C_{\bullet} \\ 0 & C_{1,\bullet} (A_{\bullet} - I) \\ 0 & C_{\bullet} A_{\bullet} \\ \vdots & \vdots \\ 0 & C_{1,\bullet} (A_{\bullet} - I) A_{\bullet}^{f-2} \\ 0 & C_{\bullet} A_{\bullet}^{f-1} \end{pmatrix} \begin{pmatrix} x_{t,c} \\ x_{t,\bullet} \end{pmatrix} + \tilde{N}_t^{H}$$

- Thus $x_{t,\bullet}$ may be identified from the second block rows.
- But the information may be treatly reduced.

CVA for I(1) processes

$$\begin{pmatrix} F_{t,c}/\sqrt{T} \\ F_{t,\bullet} \end{pmatrix} = \begin{pmatrix} I_c & C_{1,\bullet}/\sqrt{T} \\ 0 & C_{\bullet} \end{pmatrix} \begin{pmatrix} x_{t,c}/\sqrt{T} \\ x_{t,\bullet} \end{pmatrix} + \begin{pmatrix} D_1/\sqrt{T} \\ D_{\bullet} \end{pmatrix} u_t,$$

$$\begin{pmatrix} x_{t+1,c}/\sqrt{T} \\ x_{t,\bullet} \end{pmatrix} = \begin{pmatrix} I_c & 0 \\ 0 & A_{\bullet} \end{pmatrix} \begin{pmatrix} x_{t,c}/\sqrt{T} \\ x_{t,\bullet} \end{pmatrix} + \begin{pmatrix} B_1/\sqrt{T} \\ B_{\bullet} \end{pmatrix} u_t,$$

$$\begin{pmatrix} F_{t,1}/\sqrt{T} \\ F_{t,\bullet} \\ \hline \Delta F_{t+1,1}/\sqrt{T} \\ F_{t+1,\bullet} \\ \vdots \\ \hline C F_{t+f-1,1}/\sqrt{T} \\ F_{t+f-1,\bullet} \end{pmatrix} = \begin{pmatrix} I_c & C_{1,\bullet}/\sqrt{T} \\ 0 & C_{\bullet} \\ \hline 0 & C_{1,\bullet}(A_{\bullet} - I)/\sqrt{T} \\ \hline 0 & C_{\bullet}A_{\bullet} \\ \vdots \\ \hline 0 & C_{1,\bullet}(A_{\bullet} - I)A_{\bullet}^{f-2}/\sqrt{T} \\ \hline 0 & C_{\bullet}A_{\bullet}^{f-1} \end{pmatrix} \begin{pmatrix} x_{t,c}/\sqrt{T} \\ x_{t,\bullet} \end{pmatrix} + \tilde{N}_t^{h}$$

- Thus $x_{t,\bullet}$ may be identified from the second block rows.
- But the information may be treatly reduced.

How to avoid dropping $C_{1,\bullet}$?

- 1. Use the CVA weights $\langle \hat{F}_t^+, \hat{F}_t^+ \rangle^{-1/2}$: works for q = r, does not work for a < r.
- 2. Use a different normalization that allows $\langle \hat{F}_t, \hat{F}_t \rangle$ to grow with $T: \tilde{I}'_N \hat{\Lambda}_N = I_r$ for the calculation of the static factors.
- 3. Define a weight that counteracts the $\langle F_{t,1}, F_{t,1} \rangle^{-1/2}$ term:

$$\begin{split} \hat{F}_t &= \hat{\Lambda}_N^{\dagger} y_t^N = \hat{\Lambda}_N^{\dagger} \Lambda_N F_t + \delta F_t, \\ I_r &= \langle \hat{F}_t, \hat{F}_t \rangle \approx \hat{\Lambda}_N^{\dagger} \Lambda_N \langle F_t, F_t \rangle (\hat{\Lambda}_N^{\dagger} \Lambda_N)' \Rightarrow \hat{\Lambda}_N^{\dagger} \Lambda_N \approx \langle F_t, F_t \rangle^{-1/2}, \\ \hat{F}_t &= \hat{\Lambda}_N^{\dagger} \Lambda_N \Delta F_t + \Delta \delta F_t \\ &\Rightarrow \langle \Delta \hat{F}_t, \Delta, \hat{F}_t \rangle^{1/2} \approx \hat{\Lambda}_N^{\dagger} \Lambda_N \langle \Delta F_t, \Delta F_t \rangle^{1/2}. \end{split}$$

Theorem (Consistency, I(1) case)

Let the data be generated according to the Assumptions above. Let $(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ be calculated using CVA with

- $f \ge n_O$, the observability index,
- $p = p(T) \ge -(1 + \delta) \log T/(\log \rho_{\circ}) \to \infty, p = O(H_{T})$ where $\delta > 0, H_{T} = (\log T)^{a}$ for $\rho_{\circ} > 0$ and $p > p_{\circ}$ else (where p_{\circ} denotes the lag length of an autoregressive pseudo left-inverse of b_{red}),
- $\qquad \qquad \textbf{W}_f = (\textbf{I}_f \otimes \langle \Delta \hat{F}_t, \Delta \hat{F}_t \rangle^{-1/2}) \text{ or for } r = q \text{ alternatively } \textbf{W}_f = \langle \hat{F}_t^+, \hat{F}_t^+ \rangle^{-1/2}.$

Then for all 0.5 $< \gamma < 1$ for $T \to \infty$, $T/N^2 \to 0$

$$\max\{\|\hat{A}-A\|,\|\hat{B}-B\|,\|\hat{C}-C\|,\|\hat{D}-D\|\} = O(T^{1/2-\gamma}).$$

D. Bauer | Ökonometrie March 20, 2025 37 / 41

8. Conclusions

Conclusions

8. Conclusions

- CVA can be used to obtain consistent estimates in the aDFM setting.
- The main assumption beside the aDFM model structure is that $T/N^2 \to 0$ such that the cross-sectional dimension grows fast enough compared to the time dimension.
- The procedure is simple being based on static PCA and regression methods.
- The method is robust with respect to the relation between *q* and *r* (provided appropriate regularization is used) and with respect to integration in the static factors (for appropriate choice of the weights).
- The weighting matrix W_f^+ should be adapted compared to the classical case, if q < r is possible.
- The method provides information on all required integer parameters, which in all cases considered leads to consistent estimation.

8. Conclusions

Current research

- CVA does not directly lead to inference, as no asymptotic distributions are available in all cases (hypothesis tests).
- Misspecified qMLE based on Gaussian likelihood modelling the idiosyncratic terms as white noise terms may help in this respect.
- Similar to above for r = q the Gaussian likelihood for known $\hat{\Lambda}_N$ leads to the lower dimensional likelihood for modelling $(\hat{F}_t)_{t \in \mathbb{Z}}$.
- This may lead to inferential procedures in the stationary and in the I(1) case.

9. Literature

- Anderson, B.D.O., Deistler, M. (2008). Properties of Zero-Free Transfer Function Matrices. SICE Journal of Control, Measurement, and System Integration 1 (4). 284–292.726
- Bai, J.; Ng, S. (2002): Determining the Number of Factors in Approximate Factor Models. In: Econometrica 70 (1), S. 191–221.
- Bai, J.; Ng, S. (2019): Rank regularized estimation of approximate factor models. In: Journal of Econometrics 212 (1), S. 78–96.
- Barigozzi, M, Hallin M., Luciani, M., Zaffaroni, P. (2024). Inferential theory for generalized dynamic factor models, Journal of Econometrics. 239. 2. 105422.
- Bauer, D. (2005): Estimating linear dynamical systems using subspace methods. In: Econ. Theory 21 (01). DOI: 10.1017/S0266466605050127.
- Bauer, D., & Wagner, M. (2012). A state space canonical form for unit root processes. Econometric Theory, 28(6), 1313-1349.
- Breitung, J.; Pigorsch, U. (2013). A canonical correlation approach for selecting the number of dynamic factors. Oxford Bulletin of Economics and Statistics, 75(1), 23-36.
- Chamberlain, G., Rothschild, M. (1983). Arbitrage, factor structure, and mean-variance analysis on large asset markets. Econometrica 51 (5), 1281–1304.
- Deistler, M.; Anderson, B. D.O.; Filler, A.; Zinner, Ch.; Chen, W. (2010): Generalized Linear Dynamic Factor Models: An Approach via Singular Autoregressions. In: European Journal of Control 16 (3), S. 211–224. DOI: 10.3166/ejc.16.211-224.
- Doz, C., Giannone, D., Reichlin, L. (2011) A two-step estimator for large approximate dynamic factor models based on Kalman filtering, Journal of Econometrics. 164. 1. 188–205.
- Jungbacker, B., Koopman, S. J. (2015). Likelihood-based dynamic factor analysis for measurement and forecasting. The Econometrics Journal, C1-C21.
- Kapetanios, G.; Marcellino, M. (2009). A parametric estimation method for dynamic factor models of large dimensions. Journal of Time Series Analysis. 30(2), 208-238.
- Larimore, W. E. (1983). System identification, reduced-order filtering and modeling via canonical variate analysis. In 1983 American Control Conference (pp. 445-451). IEEE.
- Lippi, M.; Deistler, M.; Anderson, B.D.O. (2023): High-Dimensional Dynamic Factor Models: A Selective Survey and Lines of Future Research. In: Econometrics and Statistics 26. S. 3–16. DOI: 10.1016/j.ecosta.2022.03.008.
- Stock, J. H., Watson, M. W. (2011) Dynamic Factor Models. In M. Clements, and D. F. Hendry (eds), The Oxford Handbook of Economic Forecasting, Oxford Handbooks.

Thank you for your attention!

D. Bauer | Ökonometrie

A. Tall transfer functions

Tall transfer functions

$$k(z) = D + zC(I_n - zA)^{-1}B \in \mathbb{C}^{r \times q}$$
 where $q < r$ typically: 'tall'.

- Dimension reduction: $Y_t^N \in \mathbb{R}^N \to F_t \in \mathbb{R}^r \to u_t \in \mathbb{R}^q$.
- Deistler et al. (2010): generically (in a specific sense) there exists polynomial left pseudo-inverses $k^{\dagger}(z)$ to k(z).
- In these cases we obtain a *singular* autoregressive representation $k^{\dagger}(L)F_t = v_t = \begin{pmatrix} I \\ 0 \end{pmatrix} u_t$.
- From this we see that u_t can be written as a linear combination of a finite number of past F_t's.
- The pseudo-inverse $k^{\dagger}(z)$ is not unique. Not even the lag order. Not even the system for smallest lag order. This complicates estimation.

Definition of zeros of tall transfer functions (Anderson, Deistler, 2008):

The rank of the matrix
$$M(z) := \begin{pmatrix} zI - A & -B \\ C & D \end{pmatrix}$$
 falls below its usual rank at z_0 .

I

A. Tall transfer functions

Consequences of singularity

From state space system we get:

$$\begin{pmatrix}
F_t \\
F_{t+1} \\
\vdots \\
F_{t+f-1}
\end{pmatrix} = \begin{pmatrix}
C \\
CA \\
\vdots \\
CA^{f-1}
\end{pmatrix} x_t + \begin{pmatrix}
D & 0 & \dots & 0 \\
CB & D & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
CA^{f-2}B & \dots & CB & D
\end{pmatrix} \begin{pmatrix}
u_t \\
u_{t+1} \\
\vdots \\
u_{t+f-1}
\end{pmatrix},$$

$$F_t^+ = \mathcal{O}_f x_t + \mathcal{U}_f \mathcal{U}_t^+ = \underbrace{\left(\mathcal{O}_f \quad \mathcal{U}_f\right)}_{L_f} \begin{pmatrix} x_t \\
\mathcal{U}_t^+ \end{pmatrix} \quad (L_f \in \mathbb{R}^{fr \times (n+fq)})$$

$$= \mathcal{O}_f \mathcal{K}_p F_t^- + N_{t,f,p}$$

- Rank of variance of F_t^+ is at most min(fr, n + fq).
- $ightharpoonup F_t^+$ is singular for q < r and so is F_t^- for f, p large enough.

VAR

II

A. Tall transfer functions

Consequences of singularity (II)

■ If L_f has full column rank, there exists a (non-unique) left pseudo-inverse L_f^{\dagger} :

$$L_f^{\dagger} F_t^+ = L_f^{\dagger} L_f \begin{pmatrix} x_t \\ U_t^+ \end{pmatrix} = \begin{pmatrix} x_t \\ U_t^+ \end{pmatrix}.$$

- Then (I): $[I_n, 0]L_t^{\dagger}F_t^+ = x_t$.
- Also (II)

$$X_{t+f} = A^f X_t + (A^{f-1}B \quad A^{f-2}B \quad \dots \quad B) U_t^+ = \tilde{\mathcal{K}}_f F_t^+.$$

- Hence from (I) and (II): $x_t = \check{\mathcal{K}}_t F_t^- = \mathcal{C}_t F_t^+$.
- In this case we obtain n canonical correlations between F_t^+ and F_t^- that are equal to 1, cf. Breitung and Pigorsch (2013).

B. State Space Representations

Two different state space representations

$$F_{t} = Cx_{t} + Du_{t}, x_{t+1} = Ax_{t} + Bu_{t},$$

$$\tilde{x}_{t} = \begin{pmatrix} x_{t} \\ u_{t} \end{pmatrix} : \quad \tilde{x}_{t+1} = \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix} \tilde{x}_{t} + \begin{pmatrix} 0 \\ I \end{pmatrix} u_{t+1}$$

$$F_{t} = \underbrace{[C, D]}_{\tilde{C}} \tilde{x}_{t} + \mathbf{0}, \tilde{x}_{t+1} = \tilde{A}\tilde{x}_{t} + \tilde{B}u_{t+1}.$$

IV

C. Kalman filter for aDFM

Gaussian likelihood in aDFM case

$$Y_t^N = \Lambda_N F_t + \Xi_t^N = U_N \sqrt{N} F_t + \Xi_t^N = \sqrt{N} (U_N F_t + \Xi_t^N / \sqrt{N})$$

- where Ξ_t^N is modelled as white noise with variance $\sigma^2 I_N$. Normalization $\Lambda_N = U_N \sqrt{N}$ is used where $U_N' U_N = I_r$.
- $\blacksquare \mathbb{E} Y_t^N = 0, \operatorname{Var}(Y_t^N) = \Lambda_N \operatorname{Var}(F_t) \Lambda_N' + \sigma^2 I_N.$
- Let $U = [U_N, U_{\perp}]$ be an orthonormal matrix:

$$\operatorname{Var}(U'Y_t^N/\sqrt{N}) = \begin{pmatrix} \operatorname{Var}(F_t) + \frac{\sigma^2}{N}I_r & 0 \\ 0 & \frac{\sigma^2}{N}I_{N-r} \end{pmatrix}.$$

- Thus the Gaussian likelihood for $Y_{T,N} = [(y_1^N)', ..., (y_T^N)']'/\sqrt{N}$ can be decomposed into two separate components:
 - the Gaussian likelihood for the process $(F_t)_{t\in\mathbb{Z}}$ of dimension r plus white noise with variance $\frac{\sigma^2}{M}$.
 - the Gaussian likelihood for the process $U'_{\perp} \equiv_t^N / \sqrt{N}$ of variance $U'_{\perp} U_{\perp} \frac{\sigma^2}{N}$.
- The second component can be written as $U_{\perp}U'_{\perp}\Xi^N_t = (I U_NU'_N)\Xi^N_t = (I U_NU'_N)y^N_t$. Hence U_{\perp} does not need to be calculated.

E. Effect of regularization

Regularization in regression with noise

$$y_t + \tilde{w}_t = \beta_x x_t + \beta_z \tilde{z}_t + u_t, \tilde{w}_t = \frac{1}{N} w_t, \tilde{z}_t = \frac{1}{N} z_t.$$

- Assume that X'Z = 0.
- Without regularization:

$$\begin{split} (\hat{\beta}_{x} & \hat{\beta}_{z}) = \left((Y'X + W'X/N)(X'X)^{-1} \quad (Y'Z * N + W'Z)(Z'Z)^{-1} \right) \\ \hat{Y} &= (Y'X + W'X/N)(X'X)^{-1}X' + (Y'Z * N + W'Z)(Z'Z)^{-1}Z'/N \\ &= Y'X(X'X)^{-1}X' + Y'Z(Z'Z)^{-1}Z' + \frac{1}{N}(W'X(X'X)^{-1}X' + W'Z(Z'Z)^{-1}Z'). \end{split}$$

■ With regularization: replace $Z'Z/N^2$ by Z'Z/m:

$$\begin{split} (\tilde{\beta}_{x} & \quad \tilde{\beta}_{z}) = \left((Y'X + W'X/N)(X'X)^{-1} \quad (Y'Z\frac{m}{N} + W'Z\frac{m}{N^{2}})(Z'Z)^{-1} \right) \\ \tilde{Y} &= (Y'X + W'X/N)(X'X)^{-1}X' + (Y'Z\frac{m}{N} + W'Z\frac{m}{N^{2}})(Z'Z)^{-1}Z'/N \\ &= Y'X(X'X)^{-1}X' + Y'Z(Z'Z)^{-1}Z'\frac{m}{N^{2}} \\ &+ \frac{1}{N}(W'X(X'X)^{-1}X' + \frac{m}{N^{2}}W'Z(Z'Z)^{-1}Z'). \end{split}$$

VI

Specification of Integers

Illustration

Simulation system:

- N = 200, T = 800
- r = 5, q = 2, n = 3.
- Factor dynamics: A = diag(0.8, -0.8, 0.4), all other matrices chosen randomly.
- Idiosyncratic terms: each individual series follows an AR(1) with randomly chosen $|\rho_i| \le 0.7$, i = 1, ..., N and noise with variance $\sigma^2 = 0.25$.
- M = 1000 replications.

Dimension of the static factor *r*

- There are many methods to choose r.
- To mention just one example, Bai and Ng (2002) suggest to use an information type criterion to select the number of static factors:

$$\widehat{IC_2}(k) = \log SSR_k + k \frac{N+T}{NT} \log(NT/(N+T)), \quad SSR_k = \|Y - \hat{\Lambda}_{N,k} \hat{F}_k'\|_{Fr}^2$$

- This penalizes the fit (in terms of variation not explained by the common component) against complexity (modelled as linear in number of factors).
- \hat{r} minimizes the criterion.

f, p

- If needs to be large enough such that the observability matrix \mathcal{O}_f is of full rank.
- In the aDFM case, a small value typically is sufficient, as $r \ge n$ is reasonable, where hence f = 1 would suffice.
- p should be chosen such that the approximation of x_t by $x_t(p)$ is accurate.
- This is related to the lag selection in a long VAR representation for \hat{F}_t .
- F_t for q < r is a singular process, the information criterion needs to be adapted.
- A simple fix is: $\hat{\Sigma}_T(p)$ denoting the innovation variance estimate for a lag p AR approximation of F_t :

$$IC(p; C_T) = \underbrace{\operatorname{tr}}_{\text{log-det}} \left[\hat{\Sigma}_T(p) \right] + \frac{2r^2pC_T}{T}.$$

T	200	400	800	1600
stat.	1.00	1.00	1.00	1.00
overdiff.	1.27	2.00	2.58	4.16
integr.	1.00	1.00	1.00	1.00

System order n

- Within CVA: singular values in the RRR step used for estimation.
- Selection can be done using

$$SVC(n) = \sum_{j=1}^{n} \log \hat{\sigma}_{j}^{2} + \frac{2rnC_{T}}{T}$$

- C_T sufficiently large: consistent estimation of n for r = q based on F_t .
- If $N^2/T \to \infty$: sampling error $O(Q_T)$ dominates. Thus for $C_T/T \to 0$, $C_T/(fp \log \log T) \to \infty$ sufficient for consistency for r = q.
- q < r: Breitung and Pigorsch (2013) show, the canonical correlations are close to one.

N = 50, percent $\hat{n} = n$

T	200	400	800	1600
stat.	1.00	1.00	1.00	0.95
overdiff.	0.00	0.00	0.05	0.84
integr.	0.00	0.05	0.45	0.99

Dynamic factor dimension q

- Typically this would be determined based on dynamic PCA.
- An alternative is to use the estimated innovation variance $\hat{\Sigma}_{\tau} \in \mathbb{R}^{r \times r}$.
- The largest q eigenvalues will tend to their non-zero limits, the remaining ones tending to zero.
- Consequently also here information criteria can be used:

$$IC(q; C_T) = \sum_{j=1}^q \mu_j(\hat{\Sigma}_T) + \frac{rqC_T}{T}.$$

where $\mu_j(\hat{\Omega}_T)$ denotes the *j*-th largest eigenvalue.

diff.,	percent	$\hat{q} =$	q
--------	---------	-------------	---

T	200	400	800	1600
N = 50	0.00	0.02	0.18	1.00
N = 100	0.00	0.00	0.46	1.00
N = 150	0.00	0.01	0.56	1.00
N = 200	0.00	0.00	0.59	1.00

Estimation Accuracy

Accuracy measured as

$$\|\hat{D}\hat{D}' - DD'\| + \sum_{j=0}^{10} \|\hat{C}\hat{\mathcal{A}}^j\hat{K}(\hat{C}\hat{\mathcal{A}}^j\hat{K})' - CA^jK(CA^jK)'\|$$

- Averaged over 1000 replications for N = 50.
- Convergence is clearly visible.
- Overdifferenced case leads to worst results.

