# Zastosowanie łańcuchów ograniczających do poprawnego kolorowania grafu

Antoni Szustakowski

### Poprawne kolorowanie grafu

Dany jest graf G=(V,E) (V - zbiór wierzchołków, E - zbiór krawędzi). Niech n oznacza liczbę wierzchołków. **Poprawnym k-kolorowaniem grafu G** nazwiemy:

$$x: V \to \{1, ..., k\}^n, \forall e \in E, \forall v, w \in e: x(v) \neq x(w)$$

Do późniejszych rozważań wprowadźmy również zbiór kolorów C, na którym będziemy operować.

Czyli jeśli dwa wierzchołki są połączone krawędzią - nie mogą mieć tego samego koloru.

### Liczba chromatyczna

**Liczbą chromatyczną** grafu G, nazwiemy minimalną liczbę kolorów k, dla której istnieje poprawne k-kolorowanie grafu G.

Twierdzenie (ograniczenie górne na liczbę chromatyczną):

G - dowolny graf,  $\chi(G)$  - liczba chromatyczna grafu G,  $\Delta(G)$  - maksymalny stopień grafu G, wtedy:

$$\chi(G) \leq \Delta(G) + 1$$

### Cel i standardowe metody

Celem projektu jest próbkowanie z rozkładu jednostajnego określonego na poprawnych kolorowaniach danego grafu. Standardowym podejściem w takim problemie jest skorzystanie z Próbnika Gibbsa oraz algorytmu Coupling From the Past (CFTP).

### Algorytm Proppa-Wilsona

Algorytm Proppa-Wilsona pozwala na dokładne próbkowanie z zadanego rozkładu stacjonarnego. Jego standardowa wersja przebiega następująco. Niech t=1,2,4,...

- wystartuj Łańcuch Markowa z każdego możliwego stanu
- łańcuchy przechodzą do kolejnego stanu zgodnie z przekształceniem losowym opartym na zmiennych z rozkładu jednostajnego na [0,1]
- jeżeli po czasie t wszystkie łańcuchy zatrzymają się w tym samym stanie: zakończ
- w przeciwnym wypadku: zwiększ t dwukrotnie

Skuteczność algorytmu potwierdza poniższe twierdzenie.

### Twierdzenie o wyniku algorytmu Proppa-Wilsona

#### Twierdzenie(o wyniku algorytmu Proppa-Wilsona):

Niech P będzie macierzą przejścia nieprzywiedlnego i nieokresowego łańcucha Markowa z przestrzenią stanów  $S=\{s_1,s_2,...,s_n\}$  i rozkładem stacjonarnym  $\pi=(\pi_1,...,\pi_n)$ . Niech  $\Phi$  będzie przekształceniem dla macierzy P z algorytmu Proppa-Wilsona. Rozważmy algorytm Proppa-Wilsona z  $(N_1,N_2,...)=(1,2,4,8,...)$ . Przypuśćmy, że algorytm zbiega z prawdopodobieństwem 1 i niech Y będzie wynikiem tego algorytmu. Wtedy dla każdego  $i\in 1,...,n$  zachodzi:

$$P(Y = s_i) = \pi_i$$

#### Próbnik Gibbsa

Za przejścia pomiędzy kolejnymi stanami w algorytmie CFTP będzie odpowiadał Próbnik Gibbsa.

Przypuśćmy, że możemy bardzo łatwo uzyskać prawdopodobieństwa warunkowe  $\pi(X(v)=i|X(V\setminus\{v\})=\xi)$  dla wszystkich kombinacji  $v\in V,\ i\in C$  oraz  $\xi\in C^{V\setminus\{v\}}$ . Schemat postępowania w t+1 iteracji wygląda następująco:

- Wylosuj jednostajnie wierzchołek  $v \in V$
- Dla pozostałych wierzchołków:

$$X_{t+1}(w) = X_t(w), \forall w \in V \setminus \{v\}$$

Dla wierzchołka v:

$$X_{t+1}(v) \stackrel{d}{=} \pi(\cdot|X_t(V\setminus\{v\}))$$

### Prawdopodobieństwa przejścia

Na zajęciach (kartka 8) pokazaliśmy, jakie prawdopodobieństwa przejścia ma tak skonstruowany łańcuch:

$$\begin{split} & p(\mathbf{x},\mathbf{y}) = \frac{\pi(\mathbf{x}_u^{'}|\mathbf{x}_1,\mathbf{x}_2,\dots,\mathbf{x}_{u-1},\mathbf{x}_{u+1},\dots,\mathbf{x}_{|V|})}{|V|}, \text{ gdy } \mathbf{x}_u^{'} \neq \mathbf{x}_u \text{ i na pozostałych} \\ & \text{współrzędnych } \mathbf{x} = \mathbf{y} \\ & p(\mathbf{x},\mathbf{y}) = \frac{\sum_{u=1}^{|V|} \pi(\mathbf{x}_u|\mathbf{x}_1,\mathbf{x}_2,\dots,\mathbf{x}_{u-1},\mathbf{x}_{u+1},\dots,\mathbf{x}_{|V|})}{|V|}, \text{ gdy } \mathbf{x} = \mathbf{y} \\ & p(\mathbf{x},\mathbf{y}) = 0, \text{ w przeciwnym wypadku} \end{split}$$

### Ergodyczność łańcucha

#### Otrzymany w ten sposób łańcuch jest:

- nieprzywiedlny każdy stan możemy uzyskać z niezerowym prawdopodobieństwem
- nieokresowy z niezerowym prawdopodobieństwem możemy zostać w tym samym stanie
- o skończonej przestrzeń stanów

Ostatecznie  $\{X_t\}$  jest ergodyczny, zatem ma rozkład stacjonarny  $\pi$ , z uwagi na dobrane prawdopodobieństwa przejścia i zbiega do niego przy  $t \to \infty$ . Zatem warunek z twierdzenia o wyniku algorytmu Proppa-Wilsona jest spełniony i jesteśmy w stanie próbkować z rozkładu  $\pi$ .

#### Problem z CFTP

W klasycznej wersji algorytm CFTP jest niezmiernie złożony obliczeniowo i pamięciowo. Jest to szczególnie widoczne dla tak złożonego problemu jakim jest kolorowanie grafu, sama liczność przestrzeni stanów to  $|C^V|$ , niemożliwym jest przeprowadzenie CFTP w sensownym czasie, jak sobie poradzić z tym problemem?

### Inny sposób na zapisanie warunku stopu CFTP

W algorytmie CFTP warunkiem stopu jest zatrzymanie się wszystkich łańcuchów w danym stanie. CFTP wykorzystuje przekształcenie losowe  $\Phi: C^V \times [0,1] \to C^V$ , zatem, aby warunek stopu był spełniony wystarczy, by od pewnego miejsca w czasie -t:

$$\Phi(X_{-t}(s), U_{-t}) = const., \forall s \in C^V$$

Czyli wystarczy, aby przekształcenie losowe od pewnego miejsca było stałe.

### Łańcuchy ograniczające

Wprowadźmy 2 łańcuchy: X i Y. X będzie zawierał informację o kolorze danego wierzchołka, natomiast Y o wszystkich możliwych kolorach dla danego wierzchołka.

#### Przestrzenie stanów

Dane są 2 zbiory: C i V. Zbiór C odpowiada możliwym wartościom, natomiast zbiór V - wymiarom. Bazową przestrzenią stanóW dla X będzie  $\Omega \subseteq C^V$ . Natomiast dla Y -  $(2^C)^V$ .

#### Definicja

#### Definicja 1:

Powiemy, że Y jest łańcuchem ograniczającym dla X, jeśli:

$$X_t(v) \in Y_t(v) \forall v \in V \Rightarrow X_{t+1}(v) \in Y_{t+1}(v) \forall v \in V$$

### Zastosowanie łańcuchów ograniczających

Główne operacje będą wykonywane na łańcuchu Y:

- sprawdzamy wszystkie możliwe kolorowania dla losowo wybranego wierzchołka
- jeden z wybranych kolorów dla Y będzie pokolorowaniem wierzchołka odpowiadającego w X
- powtarzamy, dopóki dla wszystkich wierzchołków liczba możliwych pokolorowań będzie 1

#### Startowanie łańcuchów

Chcemy spełnić definicję 1. łańcucha ograniczającego w każdym obrocie pętli. Zatem:

- $Y_0(v) = C, \forall v \in V$ , wtedy mamy pewność (dzięki konstrukcji algorytmu), że łańcuch Y zawsze będzie ograniczał łańcuch X
- $X_0(v) = 1, \forall v \in V$ .

### Algorytm

Niech n oznacza liczbę wierzchołków w grafie G=(V,E),  $\Delta$  - maksymalny stopień G,  $t\in\mathbb{N}$  - aktualną iterację, it - maksymalną liczbę iteracji, a k - maksymalną liczbę kolorów. Głównym algorytmem dla zadanego problemu będzie:

### Algorytm

- Ola t=1,2,...,it:
- ② Jeżeli  $\forall v \in V : |Y_{t-1}(v)| = 1$ :
  - Przerwij i zwróć  $X_{t-1}(v)$ .
  - W przeciwnym wypadku przejdź do punktu 3.
- **3** Niech  $Y_t = Y_{t-1}$  oraz  $X_t = X_{t-1}$ .
- **4 Wylosuj jednostajnie**  $v \in [n]$ , niech  $N_v$  oznacza zbiór sąsiadów v.
- **3** Jeżeli  $|Y_t(v)| = 1$ :
  - Wróć do punktu 3.
  - W przeciwnym przypadku przejdź do punktu 5.
- **o** Niech  $Y_t(v)$  ←  $\emptyset$ .

### Algorytm

- **Opóki**  $c \notin \bigcup_{w \in N_V} Y_t(w)$  lub  $|Y_t(v)| > \Delta$ :
- **3** Wylosuj jednostajnie  $c \in [k]$
- **9** Jeżeli  $\forall w \in Nv : Y_{t+1}(w) \neq \{c\}$ :
  - $Y_t(v) \leftarrow Y_t(v) \cup \{c\}$
- Jeżeli warunek z punktu 2. dla iteracji o numerze it nie jest spełniony:
  - it  $\leftarrow 2 * it$
  - Powtórz algorytm od samego początku

#### Uzasadnienie formalne

W swojej pracy [2] Haggstrom i Nelander podają twierdzenie wraz z dowodem, kiedy powyższy algorytm będzie zbiegał oraz co będzie zwracał.

#### Twierdzenie

Dla dowolnego  $a \in (2^C)^V$  oznaczmy card(a) jako liczbę elementów  $s \in C$ , takich, że  $s \in a$ . Jeżeli istnieje  $n < \infty$ , takie, że:

$$P(\forall v \in V : card(Y_n(v)) = 1 | \forall v \in V : Y_0(v) = C) > 0$$

To powyższy algorym P-prawie na pewno zbiega i zwraca nieobciążoną próbkę z rozkładu  $\pi$ .

#### Liczba kolorów

Dobranie odpowiedniej liczby kolorów jest kluczowe, aby łańcuchy przechodziły z jednego stanu do istotnie różnego kolejnego stanu. Jeśli dobierzemy ich zbyt mało, kolorowanie będzie niemożliwe lub algorytm będzie wyłącznie losowo dobierał kolory. Natomiast jeśli dobierzemy ich zbyt dużo - z dużym prawdopodobieństwem każdy wierzchołek zostanie pokolorowany na inny kolor. Dlatego na podstawie pracy Hubera [1] zastosowałem 2 liczby:

- $k > \frac{11\Delta}{6}$
- $k \geq \Delta(\Delta + 2)$

### Działanie algorytmu na konkretnych grafach

Zobaczmy, jak działa algorytm dla konkretnych grafów:

# Niewielki graf pełny



# Pokolorowany niewielki graf pełny



# Duży graf pełny



# Pokolorowany duży graf pełny

```
## [1] "Liczba różnych kolorów:"
## [1] 17
```



# Graf z niewielką liczbą krawędzi



### Pokolorowany graf z niewielką liczbą krawędzi



# Graf z dużą liczbą krawędzi



# Pokolorwany graf z dużą liczbą krawędzi















### Uzyskanie rozkładu stacjonarnego

Rozkład stacjonarny poprawnych kolorowań dla konkretnego grafu możemy uzyskać poprzez wykonanie dużą liczbę razy algorytmu i zliczenie częstości występowania każdego ze zwracanych stanów.

#### Podsumowanie

Powyżej zaprezentowany algorytm, bazujący na łańcuchach ograniczających, zwraca poprawne kolorowanie dla różnych typów grafów i dzięki niemu możemy uzyskać rozkład stacjonarny poprawnych kolorowań. Wyniki algorytmu empirycznie pokazują poprawność wcześniejszych rozważań teoretycznych.

### Bibliografia

- Perfect Sampling Using Bounding Chains, HUBER, 2004
- On Exact Simulation of Markov Random Fields Using Coupling from the Past, HAGGSTROM, NELANDER, 1999

### Koniec

Dziękuję za uwagę!