Visual Analytics—Visualization 101

Dr. Ab Mosca (they/them)

Plan for Today

- · Visualization overview
- Graphical primitives
- · Visual dimensions
- · Common visualization techniques
- Time permitting: Tableau demo

Reminder

- hwo1 is released today!
 (https://amoscao1.github.io/SDS-CS235/ >
 Homework > hwo1)
- Due next Thursday (09/19) at midnight
 - You have extensions if you need them, but you MUST tell me if you're taking one
 - Revise and resubmit also exists!
- Work with a small group (3-4) I recommend finding people with complementary skillsets to work with

**I won't always remind you there is a homework released/due, make sure you stay up to date with the course schedule! **

Visual Analytics

Visualization \(\cappa\) Analysis

What is visualization?

What is visualization?

Perhaps a more helpful question:

What are some ways a "visualization" can be **useful**?

Does it help you spot trends?

Does it help you explore?

https://informationisbeautiful.net/visualizations/global-foodsupply-where-does-all-the-worlds-food-go/ Does it tell a story?

Visualization (def.)

Visual
representations
of data that
reinforce human
cognition

Wait... what is "data"?

Data: a definition

Data is a set of *variables* that capture various aspects of the world:

Tuition rates, enrollment numbers, public vs. private, etc.

Data: a definition

A dataset also contains a set of *observations* (also called *records*) over these variables. For example:

tuition = \$46,288, enrollment = 2,563, private, etc.

Data: a definition

A dataset also contains a set of *observations* (also called *records*) over these variables. For example:

tuition = \$16,115, *enrollment* = 28,635, *public*, *etc*.

One way to think about this:

OBSERVATIONS ___

VARIABLES

	Tuition	Enrollment	Public vs. Private	
Smith College	\$46 , 288	2,563	private	
UMass Amherst	\$16,115	28,635	public	
Hampshire College	\$48,065	1,400	private	
Mount Holyoke College	\$43 , 886	2,189	private	
Amherst College	\$50,562	1,792	private	
•				

Data

• Remember...

Data -> Visuals

Remember...

Big idea behind visualization

- Data have dimensions
- Visualizations have dimensions, too
- To build good visualizations, we need to map data dimensions to visual dimensions in a principled way

Data \rightarrow Visuals

Remember...

Big idea behind visualization

- Data have dimensions
- Visualizations have dimensions, too
- To build good visualizations, we need to map data dimensions to visual dimensions in a principled way

Data → Visuals

Data

Visuals

- Marks
 - The "ink"

Data \rightarrow Visuals

Data

Visuals

- Marks
 - The "ink"

- Channels or dimensions
 - How the marks show up on the page

Position

- Encode information using where mark is drawn
- Ex.

Size

- Encode information using *how big* mark is drawn
- Ex.

Value

- Encode information using *how dark* mark is drawn
- Ex.

Color

- Encode information using *hue* of mark
- Ex.

Benefits

About 1 out of 10 women improved their symptoms using this medicine.

Side Effects

About 2 out of 10 women had dry mouth using this medicine.

About 1 out of 10 women had constipation using this medicine.

Less than 1 out of 10 women had an upset stomach using this medicine.

Orientation

- Encode information using how mark is *rotated*
- Ex.

Shape

- Encode information using how mark is *shaped*
- Ex.

Data -> Visuals

- Remember... Big idea behind visualization
 - Map data dimensions to visual dimensions in a principled way

Data \rightarrow Visuals

- Remember... Big idea behind visualization
 - Map data dimensions to visual dimensions in a principled way

Data -> Visuals

- Remember... Big idea behind visualization
 - Map data dimensions to visual dimensions in a principled way
 - Not all visual dimensions can represent all data types

Jacques Bertin, Semiologie Graphique (Semiology of Graphics), 1967.

Key question for this course

Which data dimension should be mapped

to which visual dimension?

Answer: it depends

Average Height for Youth Sports Participants

A sampling of visualization techniques

Barchart

Histogram

- Used f
- Looks size ra
- What is the data visual mapping in this chart?
- Y-axis
- Highlights distribution
- Note: bin size makes a big difference!

Boxplot

- Used f
- Also us What is the data visual mapping in
- Calls o
 - med
 - 1st &
 - "fences"
 - outliers

this chart?

Boxplot

- Use "jitter" to show actual values
- Reference lines can help provide context
- Can use annotations to show statistical significance

Distribution of horsepower by # Cylinders

Scatterplot

10

3

Weight (1000 lbs)

Can usequanti

- This hid
- Someti

variable X one

What is the data visual mapping in this chart?

Scatterplot

Scatterplot matrix (SPLOM)

- Can use to show many combinations of one quantitative variable X one quantitative variable
- Combines multiple scatterplots into a matrix to show additional relationships

Shows t time What is the data visual mapping in this chart?

Line chart

Line chart

- Multiple lines allow comparison of trends
- Can show one quantitative variable across groups, or multiple quantitative variables (if they have the same scale)
- Highlights "position switches"

Multiple variables: line chart matrix?

Parallel Coordinates Plot

- Supports (pairwise) comparison of a collection of quantitative variables
- Each axis represents one variable
 - They may have different scales, typically you normalize them
- Each line represents one observation (connecting the associated values along each axis)
- Axis order matters!

https://vis flow.org/n ode/visual ization/pa rallelcoordinat es.html

ta-toparallel.html

Network

- Shows
- Useful
- Can us

What is the data visual mapping in ities this chart? hation

s for Caveat

Shows Useful What is the data visual mapping in Filled r this chart? Remer Oil Prod. (bbl/day) Map

pnent

humans

Map

Remember to map the correct data to your visual channels

Your turn

- Work with 1-2 classmates
- Download nyc_trees.csv from the course website.
 - Data is a subset of the dataset available here:
 https://data.cityofnewyork.us/Environment/2015-Street-Tree-Census-Tree-Data/uvpi-qqnh/about_data
- Using R or Python (you pick!) and nyc_trees.csv generate a:
 - Bar chart
 - Histogram
 - Scatterplot
 - If you have time, try a Boxplot and Linechart

R Plotting Resources:

https://r4ds.hadley.nz/layers

https://r-graphics.org/

https://r-graph-gallery.com/ggplot2-package.html

Python Plotting Resources:

https://matplotlib.org/

https://plot.ly/python/

https://seaborn.pydata.org/tutorial.html