Definição

Um grafo G é dito **planar** se é possível representá-lo graficamente no plano de forma tal que não haja cruzamento de arestas. Se G não é planar, dizemos que G é **não-planar**.

Exemplos

Temos 6 cidades que queremos conectar com rodovias de forma tal que não haja cruzamento entre elas e tal haja rodovias diretas das cidades c_1 , c_2 e c_3 até as cidades c_4 , c_5 e c_6 .

- K_3 , K_4 são planares
- K_5 não é planar

Fórmula de Euler para grafos Planares

Dado G=(V,E), um grafo planar e convexo, a sua representação gráfica no plano determina "regiões" que chamamos de Faces.

$$V - E + F = 2$$
.

$$|E| = 9 = e$$

$$|V| = 6 = v$$

f = quantidade de faces = 5

Observemos que vale a igualdade

$$f = e - v + 2$$

Euler provou que a fórmula vale pra todo grafo planar convexo.

Teorema K_5 e $K_{3,3}$

 $K_{3,3}$ e $K_{5,5}$ não são planar.

K₅ não é planar.

K_{3,3} não é planar.

Prova

Supomos por absurdo que $k_{3,3}$ é planar. Cada face está delimitada por um ciclo. No $k_{3,3}$, qualquer ciclo maior que 3. (ou igual/maior que 4). Cada aresta pertence a dois ciclos delimitantes.

$$e \geq rac{4f}{2} \Rightarrow 2e \geq 4f = 4(e-v+2)$$

Logo dado que v=6, $e=3\times 3=9$

$$2\times 9 \geq 4(9-6+2)$$

$$18 \geq 20$$

Absurdo!

Concluímos que $k_{3 imes 3}$ não é planar.

- De forma similar é possível provar que k_5 é não-planar.
- Se um grafo contém um Homeomorfismo a $k_{3,3}$ ou k_{5} , então ele não é planar.

Vamos ver que vale uma propriedade recíproca "similar" que utiliza o conceito de **Homeomorfismo de grafos**.