KINETICS OF AQUEOUS CORROSION

Electrodo Kinetics;

* M - ne -> Mn+

One mole of metal give out n Na electrons which is a change of n Nac

:. I = dQ = n NacfdM where N is Be moles of material

$$= n + \left(\frac{dV}{dt}\right)$$

* Current density i = I = nF (-dV) where A = electrode area

Polarisation;

- * For a half-all reaction at one electrode; Ox. Species + ne > Red. Specie
- * At equilibrium the rates of reaction formands and backwards are expeal in ia = ic = io (exchange current density). directly
- * is depends on surface chamistry so it is different for different metals, be cause $2H^+ + 2e^- -> H_2$ involves a transfer, Hatom different, and formation of Ha.
- * In the above condition the electrode potential is to which is the standard E adjusted according to the Newst equation.
- * Polarisation is difference between actual E and Eo;

M = E - Eo so M > O, E> Eo so this will course in > ic N < O, E < Eo which will come ic > ia

Activation Polarisation;

- * When chamical reaction is the slowest step in the comosion medianism, the activation every of the reaction is the most sign step (activation polarisation).
- Now DGe = NFELOW : DG = nFn

Metal Products (1-x) nFn Compain

Products

(1-x) nFn Compain

Products

Coordinate

* At low polarisations behaviour is linear.

EVANS DIAGRAM - ambine themodynamic and kinetic info

New AGe -- WEE . AG - WEY

Mixed Potential Theory (2 half-all reaction);

- * Due to differences in microstructure 2 half-cell reaction can occur on the same surface.
- * e.g. M-> Mat + de (anode) } Ignore back reactions
 2+++ 2e -> Ho (cathodic) }
- or The difference in E between the above reactions courses a flow of e. This will reduce the potential of the cuthode and increase that it the aroch.
- * Change conservation applies; I call = ia Aa = ic Ac where is, is deposed on the potential of the metal.
- * [FREE DIRROSION POTENTIAL; potential at which charge consumation is obayod, in the absence of an external current source.

- * Eo,c and Eo,a are standard electrode potentials adjusted by News t Equation.
- * Use above diagram and Tabel equation to find Econa.
- * LORR depends on electrode potentials
 - exchange current densities (which depend on surface chamity)
 - Tafel parameters 3 4 (and)]
 - external applied potentials.
- * Due to charge coverentian, corrosion will be forter if Aq < = Ac

Diffusional Limitations; (concentration polarisation)

* Diffusion of species to and from the electrode surface may be the rate determining step, not activation polarization, particularly for reactions involving transport of GASGO Be CATHODE.

BOCHDARY
LAYER

SO
$$\frac{1}{A}(-dN) = k_B(C_B - C_i)$$

Could

Could

Could

Ci

Passintion;

* This is the formation of a protective oscide layer at the surface.

EVANS DIAGRAM FOR ANODIC REACTION

- * Alloying cause On curve in On above diagram to shift left.
- * If older chamical species are present (e.g. Cl attacks passivation layers) then the transpassive line moves downwards.
- * Oracal comosion behaviour occurs is a combination of where the anodic line intersects the possible cathodic reaction.
- * Gracks in the passivating layer mean that As is very small and Ac is large so that composion is vapid.
- of But e.g. Cr in Fe reacts quicker than Fe so the possition layer of GO2 forms again. G 7 11% for Dis to occur.