Section 5.2: Characteritic Equation

Last time: Given a $n \times n$ matrix A we can...

- Determine if a vector \vec{x} is an eigenvector of A. [See if you can find λ such that $A\vec{x} = \lambda \vec{x}$.]
- Determine if λ is an eigenvalue of A. [See if $A \lambda I$ has a free variable.]
- Find the eigenspace corresponding to λ . [Find the Null space of $(A \lambda I)$.]

Today, we wish to answer the following question: Given A, find all of its eigenvalues.

Recall
$$\lambda$$
 is an eigenvalue of A \iff $A - \lambda I$ as a free variable \iff $A - \lambda I$ is not invertible \iff $\det(A - \lambda I) = 0$.

So we can find all eigenvalues of A if we are able to determine when $\det(A - \lambda I) = 0$.

Example 1. Let $A = \begin{bmatrix} -4 & -1 \\ 6 & 1 \end{bmatrix}$. Find all the eigenvalues of A.

$$A - \lambda I = \begin{bmatrix} -4 & -1 \\ 6 & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} -4 - \lambda & -1 \\ 6 & 1 - \lambda \end{bmatrix}$$

$$\det(A - \lambda I) = \det\left(\begin{bmatrix} -4 - \lambda & -1 \\ 6 & 1 - \lambda \end{bmatrix}\right) = (-4 - \lambda)(1 - \lambda) - (-1)(6)$$
$$= \lambda^2 + 3\lambda - 4 + 6$$
$$= \lambda^2 + 3\lambda + 2$$
$$= (\lambda + 1)(\lambda + 2)$$

So $det(A - \lambda I) = 0$ if and only if $(\lambda + 1)(\lambda + 2) = 0$, that is when $\lambda = -1$ and $\lambda = -2$.

Definition: The equation $det(A - \lambda I) = 0$ is the **characteristic equation** of A. The **characteristic polynomial** is just the polynomial you get when you find $det(A - \lambda I)$.

Remark: A scalar λ is an eigenvalue of A if and only if λ is a solution to the characteristic equation $\det(A - \lambda I) = 0$.

Example 2. Find all eigenvalues of $A = \begin{bmatrix} 8 & 2 \\ 3 & 3 \end{bmatrix}$.

$$A - \lambda I = \begin{bmatrix} 8 & 2 \\ 3 & 3 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} 8 - \lambda & 2 \\ 3 & 3 - \lambda \end{bmatrix}$$

$$\det(A - \lambda I) = \det\left(\begin{bmatrix} 8 - \lambda & 2 \\ 3 & 3 - \lambda \end{bmatrix}\right) = (8 - \lambda)(3 - \lambda) - 6 = 24 - 11\lambda + \lambda^2 - 6 = \lambda^2 - 11\lambda + 18 = (\lambda - 9)(\lambda - 2)$$

$$\det(A - \lambda I) = 0 \implies (\lambda - 9)(\lambda - 2) = 0$$
$$\implies \lambda = 9, 2 \text{ are the eigenvalues}.$$

Example 3. Let $A = \begin{bmatrix} 9 & -2 \\ 2 & 5 \end{bmatrix}$. Find the eigenvalues of A.

$$\det(A - \lambda I) = \det\left(\begin{bmatrix} 9 - \lambda & -2 \\ 2 & 5 - \lambda \end{bmatrix}\right) = (9 - \lambda)(5 - \lambda) + 4 = \lambda^2 - 14\lambda + 49 = (\lambda - 7)^2$$

So the eigenvalue of A is $\lambda = 7$ with multiplicity 2.

Facts/Comments: Let A be an $n \times n$ matrix. Then

- \bullet A has at most n eigenvalues
- \bullet A has exactly n eigenvalues, counting multiplicity.
- If n is odd, then A must have at least one real eigenvalue.
- If A is even, then A may not any real eigenvalues.

Our next example illustrates that we can have 1 real eigenvalue, and 2 complex eigenvalues.

Example 4. Let
$$A = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 5 & 0 \\ -7 & 0 & 7 \end{bmatrix}$$
. Find all the real eigenvalues of A .

$$\det(A - \lambda I) = \det \begin{pmatrix} \begin{bmatrix} 3 - \lambda & 1 & 1 \\ 0 & 5 - \lambda & 0 \\ -7 & 0 & 7 - \lambda \end{bmatrix} \end{pmatrix} = (5 - \lambda) \det \begin{pmatrix} \begin{bmatrix} 3 - \lambda & 1 \\ -7 & 7 - \lambda \end{bmatrix} \end{pmatrix}$$
$$= (5 - \lambda) [(3 - \lambda)(7 - \lambda) + 7]$$
$$= (5 - \lambda) (\lambda^2 - 10\lambda + 28)$$

Since the discriminant $b^2 - 4ac = (-10)^2 - 4(1)(28) = 100 - 112 = -12 < 0$, we know $\lambda^2 - 10\lambda + 28$ has two complex roots. So our real eigenvalue is $\lambda = 5$ and, using the quadratic formula, our complex eigenvalues are

$$\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{10 \pm \sqrt{-12}}{2} = \frac{10 \pm 2\sqrt{3}i}{2} = 5 \pm \sqrt{3}i \implies \lambda = 5 + \sqrt{3}i \quad \text{and } \lambda = 5 - \sqrt{3}i.$$

Definition: Let A and B be $n \times n$ matrices. Then A and B are **similar** if there is an invertible matrix S such that $A = SBS^{-1}$.

Theorem: If A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicity).

WARNINGS:

- Matrices can have the same eigenvalues without being similar.
 - (a) Observe, $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ have the same eigenvalues $\lambda = 0$ with multiplicity 2, but are not similar.
- Similarity is NOT the same as row equivalent. In general, row operations will change the eigenvalues.
 - (a) Observe, for $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ we have $A \sim B$ by scaling row 2, but A has eigenvalues $\lambda = 1, 2$ and B has eigenvalues $\lambda = 1$ with multiplicity 2.

Textbook Practice Problems: Section 5.2 (page 281-282) # 2, 4, 9, 11, 12, 15, 17, 18.

END OF SECTION 5.2