

Acoustic Data-Driven Subword Modeling for End-to-End Speech Recognition

Wei Zhou, Mohammad Zeineldeen, Zuoyun Zheng, Ralf Schlüter, Hermann Ney zhou@cs.rwth-aachen.de Interspeech 2021

Overview

- 1. Introduction
- 2. Acoustic Data-Driven Subword Modeling (ADSM)
- 3. Experiments
- 4. Conclusion

Introduction

End-to-end automatic speech recognition (ASR)

- great simplicity and state-of-the-art performance
- **subwords**: most common label units

Text-based subword modeling approaches

- byte pair encoding (BPE) [Sennrich & Haddow⁺ 16]: deterministic segmentation of words
 - split all words in the text corpus into single characters
 - merge pairs of units based on frequency
- WordPieceModel (WPM) [Schuster & Nakajima 12]: similar as BPE
 - subword merging based on the likelihood of the text data
- unigram language model (ULM) [Kudo 18]: probabilistic segmentation
 - EM training: marginal likelihood over all within-vocabulary segmentations of the text data
 - iterative vocabulary refinement and model training
 - subword regularization: draw samples of segmentation variants based on the trained ULM

No consideration of the underlying acoustic signal: key of ASR

Introduction

Automatic label learning from an acoustic perspective

- well studied for classical ASR systems [Bacchiani 99]
- but not fully addressed in end-to-end ASR

Acoustic-based subword methods

- pronunciation-assisted subword modeling (PASM) [Xu & Ding⁺ 19]
 - pronunciation lexicon: acoustic structure of subword units
 - text corpus: post-processing for final labels (no acoustic data involved)
- GramCTC [Liu & Zhu⁺ 17] and latent sequence decompositions (LSD) [Chan & Zhang⁺ 17]
 - expose the ASR model to various segmentations in training
 - jointly learn an acoustic-based sequence decomposition within a fixed vocabulary
 - vocabulary: most frequent n-gram characters in the transcription
 - not aim at acoustic-oriented subword modeling

Introduction

Propose: Acoustic Data-Driven Subword Modeling (ADSM)

- fully acoustic-oriented label design and learning process
- combine most advantages of the aforementioned methods
- acoustic-structured subword units
- acoustic-matched target sequence for further ASR training

Notation

- \vec{a} : sequence of subwords a from vocabulary V
- $S(w) = \{\vec{a} : w\}$: set of allowed segmentations of word w using $a \in V$.

ADSM Initialization

- pronunciation lexicon: grapheme-to-phoneme (G2P) pairs
- V: all subword units from those G2P pairs
 - acoustic structure: graphemic representation of phonemes
- S(w): all possible segmentation of w using $a \in V$
 - largely relaxed quality requirement of G2P alignment
- further discriminate subwords at word end: a_ vs. a, e.g. "a b I e_"
 - different acoustic property [Le & Zhang⁺ 19]
 - reconstruction of word
 - $\rightarrow V$ and S(w)

ADSM Repeatable Iteration:

Step 1. vocabulary refinement

- given S(w) and V
 - training utterance (X, W): acoustic feature sequence and corresponding word sequence
 - -S(W): the set allowed subword sequences A for the full utterance W
- model θ training
 - extended marginal likelihood in ULM + further dependency on the acoustic input

$$\mathcal{L}(\theta) = -\log \sum_{A \in S(W)} p(A \mid X; \theta)$$

Step 1. vocabulary refinement (continue)

- extended connectionist temporal classification (CTC) training as GramCTC
 - marginalize over all CTC alignments of all allowed subword decomposition of W

$$\mathcal{L}(\theta) = -\log \sum_{A \in S(W)} p(A \mid X; \theta) = -\log \sum_{A \in S(W)} \sum_{y_1^T : A} p'(y_1^T \mid h_1^T; \theta) = -\log \sum_{A \in S(W)} \sum_{y_1^T : A} \prod_{t=1}^{r} p'(y_t \mid h_1^T; \theta)$$

- $-h_1^T = f_{\theta}^{\text{enc}}(X)$: encoding (optional subsampling) $-\mathsf{CTC}$ collapsing function $B(y_1^T) = A$
- $-y_1^T$: blank ϵ -augmented CTC alignment sequence -p': defined over $V \cup \{\epsilon\}$
- learn most probable segmentation of each utterance in an acoustic data-driven manner

Step 1. vocabulary refinement (continue)

ullet Viterbi aligning with trained model heta

$$ilde{A} = B(rg \max_{y_1^T: A \in S(W)} rac{p'(y_1^T \mid h_1^T; heta)}{q^{\lambda}(y_1^T)}) = B(rg \max_{y_1^T: A \in S(W)} \prod_{t=1}^I rac{p'(y_t \mid h_1^T; heta)}{q^{\lambda}(y_t)})$$

- -q: prior distribution (marginalize p' over the training data)
- $-\lambda \in [0,1]$: smoothness of the overall model
 - increasing λ : more segmentation variants of each word in the alignment
- forced alignment + weight-filtering o refined $ilde{S}(w)$ and $ilde{V}$
 - for each w: gather all subword decomposition variants \vec{a} in alignment with counts
 - normalize counts to weights w.r.t. occurrence of w
 - filter out \vec{a} with weight less than threshold μ : remaining $\vec{a} \to \tilde{S}(w) \to \tilde{V}$

Step 2. subword merging

- major idea of BPE and WPM: merge subword units based on certain criterion
 - avoid too long sequence with many small units
 - spelling and context dependency modeling
- enhance $\tilde{S}(w)$ and \tilde{V} with subword merging
 - for each $\vec{a} \in \tilde{S}(w)$: merge any two neighboring units \rightarrow all possible new sequences e.g. $\vec{a} = (a_1, a_2, a_3, a_4) \rightarrow (a_1a_2, a_3, a_4), (a_1, a_2a_3, a_4), (a_1, a_2, a_3a_4)$
 - new labels in \tilde{V} and new sequences in $\tilde{S}(w)$: original \vec{a} always kept
 - merged units: retain acoustic structure

Repeat iteration with enhanced $\tilde{S}(w)$ and \tilde{V}

• vocabulary refinement: increase subsampling in f_{θ}^{enc} by 2

ADSM Finalization

- vocabulary refinement + word-count-filtering $\rightarrow S_{\text{final}}(w)$ and V_{final}
 - w occurs less than k times: only take single best \vec{a} based on weights
 - vocabulary size $|V_{\text{final}}|$: controlled by prior scale λ , weight-filtering μ and k jointly
- V_{final}: acoustic-structured ADSM labels
- final forced alignment: acoustic-matched target sequence for further ASR training
 - acoustically most probable decomposition of each utterance

Word	Initialization	Vocab-	Subword-	Finalization	
VVOIG	IIIILIAIIZALIOII	refinement	merging	I IIIaiiZatiOii	
able	able_able_	a ble_	a ble_	a ble_	
able	a ble_	a DIE_	$able_{\scriptscriptstyle{-}}$		
word	$w o rd_{-} w or d_{-}$	w or d_	w or d_ w ord_	w or d_	
	wo r d_ wo rd_	W OI U_	wor d_	$w \; ord_{-}$	

Text segmentation without audio

- needed for training subword LM on extra text data
- words in $S_{\text{final}}(w)$: draw samples of \vec{a} based on weights
- words not in $S_{\text{final}}(w)$
 - train a simple n-gram LM on $S_{\text{final}}(w)$
 - best-score segmentation among all possible variants (V_{final}): acoustic preference

Experiments

- 960h LibriSpeech corpus [Panayotov & Chen⁺ 15]
- ADSM setup
 - initialization: official Librispeech lexicon
 - -6×512 BLSTM + max-pooling layers for subsampling (initial factor 2)
 - vocabulary refinement: 25 full epochs (about 1 week on a single GTX-1080-Ti-GPU)
 - prior scale $\lambda=0.3$, weight-filtering $\mu=0.05$, word-count-filtering k=20
- 1 iteration + finalization: **5k ADSM labels**
- clear reduction of |V| and |S(w)|
 - specific acoustic probable decomposition
- decreasing $len(\vec{a})$: **learn larger units**
 - 5k BPE: $len(\vec{a}) = 3.2$
 - $-5k \text{ PASM: len}(\vec{a}) = 5.7$
 - phoneme: len(pronunciation) = 6.5

Step			Average		
			S(w)	$len(\vec{a})$	
Initialization		2k	51.7	8.1	
1 Iteration	vocab-refinement	1k	1.2	5.4	
	subword merging	21k	6.4	5.2	
Finalization		5k	1.1	4.7	

|S(w)|: average number of segmentation variants per word $len(\vec{a})$: average length of all subword sequences in complete S(w)

Experiments

Model	Subword	dev v	VER[%]	test WER[%]	
IVIOGEI		clean	other	clean	other
	PASM	9.0	21.2	8.9	21.5
CTC	BPE	9.5	20.0	9.5	20.9
	ADSM	8.7	20.0	8.7	20.6
	PASM	5.3	13.2	5.4	13.6
RNN-T	BPE	5.6	13.2	5.9	14.0
	ADSM	5.0	12.6	5.2	12.8
	PASM	4.9	13.5	5.2	14.5
Attention	BPE	4.9	13.0	5.1	13.6
	ADSM	4.8	12.8	5.0	13.5

Subword	"bachelor"	"password"	"together"
PASM	b a ch elor_	$password_{-}$	togethe r_
BPE	bac hel or_	pas sword_	together_
ADSM	b a chel or_	p a ss w ord_	to g e ther_

- further end-to-end ASR
 - CTC [Graves & Fernández⁺ 06]
 - monotonic RNN-T [Tripathi & Lu⁺ 19]
 - LSTM-based attention model [Zeyer & Bahar⁺ 19]
- word error rate (WER) without external language model
- ADSM clearly outperforms both BPE and PASM in all cases
- ADSM suitable for both time-sync. and label-sync. models
 - acoustically more logical segmentation
 - acoustically more balanced sequence length (label size):
 spelling and context modeling

Experiments

Analysis: subword CTC + 4-gram word-LM

Importance of both acoustic structure and label size

Model	Subword	dev v	VER[%]	test WER[%]	
Model		clean	other	clean	other
	PASM	9.0	21.2	8.9	21.5
CTC	BPE	9.5	20.0	9.5	20.9
	ADSM	8.7	20.0	8.7	20.6
	PASM	4.1	10.4	4.3	10.9
+ word-LM	BPE	4.7	11.2	4.8	11.9
	ADSM	4.1	10.2	4.6	11.0

- idealized context modeling
 - spelling: perfectly defined in dictionary
 - cross-word context: word-LM
- both acoustic-based subwords (ADSM and PASM): similarly good and outperform BPE
- PASM: most degradation without LM
 - longest sequence (smaller label units): no merging
 - disadvantage of too long sequence length for end-to-end ASR

Conclusion

- ADSM: a fully acoustic-oriented subword modeling approach
 - acoustic-based label design and learning: more consistent with ASR
 - combine advantages of several subword methods into one pipeline
 - acoustic-structured subword units
 - acoustic-matched target sequence for further ASR training
- ADSM labels: evaluated for different end-to-end ASR approaches on Librispeech corpus
 - CTC, RNN-T and attention models
 - clearly outperform both BPE and PASM in all cases
- ADSM is suitable for both time-sync. and label-sync. models
 - acoustically more logical segmentation
 - acoustically more balanced sequence length (label size)

Thank you for your attention

Any questions?

References

[Bacchiani 99] M. A. U. Bacchiani.

Speech Recognition System Design Based on Automatically Derived Units.

Ph.D. thesis, USA, 1999.

[Chan & Zhang⁺ 17] W. Chan, Y. Zhang, Q. V. Le, N. Jaitly.

Latent Sequence Decompositions.

In Int. Conf. on Learning Representations (ICLR), 2017.

[Graves & Fernández⁺ 06] A. Graves, S. Fernández, F. J. Gomez, J. Schmidhuber.

Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks.

In Proc. Int. Conf. on Machine Learning (ICML), pp. 369-376, 2006.

[Kudo 18] T. Kudo.

Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates.

References

In Proc. Annual Meeting of the Association for Computational Linguistics (ACL), pp. 66–75, 2018.

[Le & Zhang⁺ 19] D. Le, X. Zhang, W. Zheng, C. Fügen, G. Zweig, M. L. Seltzer. From Senones to Chenones: Tied Context-Dependent Graphemes for Hybrid Speech Recognition. In *IEEE ASRU*, pp. 457–464, 2019.

[Liu & Zhu⁺ 17] H. Liu, Z. Zhu, X. Li, S. Satheesh. Gram-CTC: Automatic Unit Selection and Target Decomposition for Sequence Labelling. In *Proc. Int. Conf. on Machine Learning (ICML)*, Vol. 70, pp. 2188–2197, 2017.

[Panayotov & Chen⁺ 15] V. Panayotov, G. Chen, D. Povey, S. Khudanpur. Librispeech: An ASR corpus based on public domain audio books. In *Proc. ICASSP*, pp. 5206–5210, 2015.

[Schuster & Nakajima 12] M. Schuster, K. Nakajima. Japanese and korean voice search. In *Proc. ICASSP*, pp. 5149–5152, 2012.

References

[Sennrich & Haddow⁺ 16] R. Sennrich, B. Haddow, A. Birch. Neural Machine Translation of Rare Words with Subword Units. In *Proc. Annual Meeting of the Association for Computational Linguistics (ACL)*, 2016.

[Tripathi & Lu⁺ 19] A. Tripathi, H. Lu, H. Sak, H. Soltau. Monotonic Recurrent Neural Network Transducer and Decoding Strategies. In *IEEE ASRU*, pp. 944–948, 2019.

[Xu & Ding⁺ 19] H. Xu, S. Ding, S. Watanabe. Improving End-to-end Speech Recognition with Pronunciation-assisted Sub-word Modeling. In *Proc. ICASSP*, pp. 7110–7114, May 2019.

[Zeyer & Bahar⁺ 19] A. Zeyer, P. Bahar, K. Irie, R. Schlüter, H. Ney. A Comparison of Transformer and LSTM Encoder Decoder Models for ASR. In *IEEE ASRU*, pp. 8–15, 2019.

