

Topología del orden

Topología - 4

Georgy Nuzhdin 2022-202...

Orden lineal

- Definición. Dado un conjunto X se dice que existe una relación de orden lineal si para cada pareja a, b ∈ X sabemos que o a > b o que a = b o bien que a < b
- Además, tiene que cumplirse:
 - 1) a ≤ a
 - 2) $a \le b$, $b \le a \Rightarrow a = b$
 - 3) $a \le b$, $b \le c \Rightarrow a \le c$

Topología del orden

• | Definición. Dado un conjunto X se llama la topología del orden la generada por la base que es la colección de conjuntos (a, b) (todos los elementos mayores de a y menores de b) más los conjuntos [min X, b) y (a, max X] si el conjunto original tiene un mínimo o máximo

Consideremos A = [0; 2]

- ¿Coincide la topología del orden en A con la heredada de la canónica?
- En este caso, SÍ
- Además de los abiertos (a; b) en la topología del orden hay dos tipos de abiertos especiales: [0; b) y (a; 2] porque 0 y 2 son el mínimo y el máximo absolutos
- Pero estos intervalos los podemos obtener como intersecciones de A con abiertos de la canónica:
 - $[0; b) = A \cap (-1; b)$
 - $(a; 2] = A \cap (a; 3)$

Topología heredada vs. natural

- En la topología natural en A = [0; 2] solamente encontramos abiertos habituales (a, b)
- Si consideramos la topología heredada de la canónica en A = [0; 2] vemos que aparecen abiertos "raros", como [0; 1). La topología heredada, por tanto, tiene más abiertos y es más fina

Topología del orden en conjuntos finitos

- Crea una topología del orden en X = {♠, ♠, ♦, ♥}
- Para esto, habrá que crear una relación de orden, por ejemplo,
- **♦<♦<∀**

Topología del orden en conjuntos finitos

Demuestra que la topología discreta coincide con la del orden

Topología del orden en conjuntos no finitos

- Consideremos $X = (-2, 0) \cup [1, 3)$
- ¿Es abierto [1, 2) en la topología del orden?
- ¿Es abierto [1, 2) en la topología heredada de la canónica?
- [1, 2) no es un abierto en la topología del orden porque no se pueden encontrar a, b ∈ X tales que

$$1 \in \{a < x < b : x \in X\} \subset [1, 2).$$

Sin embargo [1, 2) = (0, 2) ∩ X, de modo que sí es abierto en la topología heredada por la canónica.

Topología del orden en conjuntos no finitos

- Ahora bien, en X = (-2, 0) ∪ [1, 3)
 ¿es abierto (-1; 0) ∪ [1; 2) en la topología del orden?
- Sí.

$$1 \in \{-1 < x < 2, x \in X\}$$

Topología del orden en \mathbb{Z}^+

- Indica cuáles de estos conjuntos son abiertos
 - **•** [1; 2)
 - (2;4)U(6;8)
 - **•** [1; 7]
- Conclusión: como los puntos son abiertos, esta topología coincide con la discreta

Relación de orden en \mathbb{R}^2

- Inventa una relación de orden en el plano
- ¿Qué tal esta?
- (a,b) < (c,d) si a < c o a = c y b < d
- Podemos ahora crear intervalos ¡entre dos puntos del plano!

Topologías del orden en \mathbb{R}^2

- Vamos a considerar dos topologías generadas por las siguientes bases:
- $B = \{((a,b),(c,d)): (a,b) < (c,d)\}$
- $B' = \{((a, b), (a, d)): b < d\}$
- ¿Cuál es más fina?
- ¿Son equivalentes?

Topologías del orden en \mathbb{R}^2

- Sí, son equivalentes
- $B = \{ ((a,b),(c,d)) : (a,b) < (c,d) \}$
- $B' = \{((a,b), (a,d)): b < d\}$
- Todos los abiertos de la base B' están en $B, B' \subset B$, por lo que B es igual o más fina.
- Por otro lado, dentro de cada abierto de B hay un abierto de B', por lo que B' es igual o más fina
- Otra forma de verlo: cubrir el intervalo izquierdo con intervalos de la derecha

Topología del orden en \mathbb{R}^2

- ¿Qué representa en realidad esta topología?
- $B = \{ ((a,b),(c,d)) : (a,b) < (c,d) \}$
- ¿Se parece a la canónica?
- ¿Cómo son las bolas abiertas?
- Como siempre, hay que comprobar si dentro de las bolas canónicas caben las del orden y viceversa
- La primera es evidente. Basta coger las bolas del tipo ((a,b); (a,c))
- Sin embargo, la segunda NO se cumple
- No hay ninguna bola canónica que esté dentro del intervalo ((a, b); (a, c))

¿Es un abierto en la topología del orden en \mathbb{R}^2 ? Dibújalo

• $\{(a,b)|b=1, 1 < a < 3\}$

Topología del orden en $X = [0; 1] \times [0; 1]$

- $B_{lex} = \{((a,b),(c,d)): (a,b) < (c,d), donde(a,b), (c,d) \in [0;1]\}$
- ¿Cómo son las bolas abiertas aquí?
- ¿Son abiertos?
 - $(\left(\frac{1}{2},\frac{1}{2}\right),\left(\frac{2}{3},0\right))$
 - $\left(\left(\frac{1}{2}, \frac{1}{2}\right), \left(\frac{1}{2}, 1\right)\right)$
 - $\left(\left(\frac{1}{2},\frac{1}{2}\right),\left(\frac{1}{2},1\right)\right]$
- Considera el punto $P = (\frac{1}{2}; 1)$. Indica un entorno suyo. ¿Está en alguno de los intervalos anteriores?
- ¿Para qué podemos necesitar esta topología?
- Piensa en algo que ocurra cíclicamente... ¿El tiempo?

Topología del orden en $X = [0; 1] \times [0; 1]$ HEREDADA DE LA CANÓNICA

- $B_{HER} = \{((a,b),(c,d)) \cap [0;1]^2 : (a,b) < (c,d), donde(a,b), (c,d) \in \mathbb{R}^2\}$
- Son abiertos?

$$(\left(\frac{1}{2},\frac{1}{2}\right),\left(\frac{2}{3},0\right))$$

•
$$\left(\left(\frac{1}{2},\frac{1}{2}\right),\left(\frac{1}{2},1\right)\right)$$

$$\bullet \left(\left(\frac{1}{2}, \frac{1}{2} \right), \left(\frac{1}{2}, 1 \right) \right]$$

• Considera el punto $B = \left((1/2, 1/2), (1/2, 2)\right) \cap X$ $P = \left(\frac{1}{2}; 1\right)$. Indica un entorno suyo

$$P \in ((x_1, y_1), (x_2, y_2))$$

Comparación de abiertos

	Orden en \mathbb{R}^2	Orden en [0; 1] ²	Orden en $[0;1]^2$ heredada de \mathbb{R}^2	Heredada de la canónica en [0; 1] ²
((0,0),(0,1))				
[(0,0),(0,1))				
((0.5,0), (0.5,1)]				
[(0.4,0),(0.5,1)]				

Comparación de abiertos

	Orden en \mathbb{R}^2	Orden en [0 ; 1] ²	Orden en $[0;1]^2$ heredada de \mathbb{R}^2	Heredada de la canónica en [0; 1] ²
((0,0),(0,1))	Abierto	Abierto	Abierto	No abierto
[(0,0),(0,1))	No abierto	Abierto porque (0,0) es el mínimo	Abierto porque $[(0,0),(0,1)) = [0;1]^2 \cap ((0,-1),(0,1))$	No abierto
((0.5,0), (0.5,1)]	No abierto	No abierto	Abierto porque $((0.5,0), (0.5,1)] = [0; 1]^2 \cap ((0.5,0), (0.5,2))$	No abierto
[(0.4,0),(0.5,1)]	No abierto	No abierto	Abierto	Abierto

Conclusión. Topología heredada vs. natural

- $B_{lex} = \{((a,b),(c,d)): (a,b) < (c,d), donde(a,b), (c,d) \in [0;1]\}$
- $B'_{HER} = \{((a,b),(c,d)) \cap X : (a,b) < (c,d), donde(a,b), (c,d) \in \mathbb{R}^2\}$
- La topología heredada tiene MÁS abiertos que la natural, por lo que es más fina

Topología del orden en $\{1,2\} \times \mathbb{Z}^+$

- ¿Qué es más grande
 - (2,3) o (1,4) ?
 - (1,7) o (2,8) ?

Topología producto $X \times Y$

Los abiertos de la base son productos de abiertos

Topología producto $X \times Y$

- Demuestra que la topología producto $\mathbb{R} \times \mathbb{R}$ es equivalente a la topología canónica \mathbb{R}^2
- Piensa en cómo son las bolas abiertas en $\mathbb{R} \times \mathbb{R}$ y en \mathbb{R}^2 . ¿Caben unas en otras?

¿Cómo son las bolas abiertas en la topología producto $\mathbb{R}^2 \times \mathbb{R}$ (ambas con la topología canónica)

- ¡Pues claro!
- ¡Son cilindros!

¡Comparemos topologías! ¿Cómo? ¡Dibujando!

- Dibuja las bolas abiertas en la topología producto discreta en $\mathbb{R} \times canónica$ en \mathbb{R} . Recuerda que en la discreta ¡los puntos son abiertos!
- ¿Coincide con la topología del orden en R²?
- La respuesta es SÍ
- La base de la discreta son puntos. Un abierto de la base en discreta \times canónica es $\{x\} \times (a,b)$
- Como base de la topología del orden podemos elegir ((x, a), (x, b))
- ¡Pero si es exactamente lo mismo!

¡Ojo!

- Dibuja las bolas abiertas en la topología producto canónica en $\mathbb{R} \times discreta$ en \mathbb{R} .
- ¿Coincide con la topología del orden en \mathbb{R}^2 ?
- La respuesta es NO
- Los segmentos horizontales no son abiertos en la del orden

¿Qué pasa con el cuadrado 1x1?

- Dibuja las bolas abiertas en la topología producto discreta en $[0;1] \times heredada de la canónica en <math>[0;1]$.
- ¿Coincide
 - con la topología del orden interna en $[0; 1] \times [0; 1]$?
 - con la topología del orden heredada de \mathbb{R}^2 en $[0; 1] \times [0; 1]$?

¿Qué pasa con el cuadrado 1x1?

- Dibuja las bolas abiertas en la topología producto discreta en $[0;1] \times heredada de la canónica en <math>[0;1]$.
- ¿Coincide
 - con la topología del orden interna en $[0;1] \times [0;1]$? NO. El problema son los intervalos ((x,a),(x,1)] que son abiertos en discreta \times heredada de la canónica y NO lo son en la del orden
 - con la topología del orden heredada de \mathbb{R}^2 en $[0;1] \times [0;1]$? SÍ. Aquí son abiertos en ambos

Proyecciones desde $X \times Y$

- Los abiertos de la base son proyecciones de abiertos a cada uno de los conjuntos (piensa en coordenadas)
- Las funciones $\pi_{\chi}: X \times Y \to X$, $\pi_{\chi}: X \times Y \to Y$ se llaman "proyecciones".
- Pasan abiertos a abiertos (demuéstralo)