

Álgebra Superior I Semestre 2020-2

Prof. Alejandro Dorantes Aldama Ayud. Elmer Enrique Tovar Acosta Ayud. Alejandro Ríos Herrejón Reposición examen I

Kevin Ariel Merino Peña²

4. Sean A,B conjuntos. Demuestre que las siguientes son equivalentes:

1. $A \subset B$ 2. $A \cap B = A$ 3. $A \cup B = B$ 4. $A \setminus B = \emptyset$

1) \Longrightarrow 2) Supongamos $A \subseteq B$, por demostrar: $A \cap B = A$.

Ć1

Supongamos que $a\in A\cap B$ Por definición de intersección $a\in A\wedge a\in B$ Particularmente a $\in A$

Entonces $A \cap B \subseteq A$

Entonee

⊇]

Supongamos $a \in A$ Por hipótesis $A \subseteq B$ Particularmente $a \in B$ Entonces $a \in B \land a \in A$ i.e. $a \in A \cap B$ Por lo tanto $A \subseteq A \cap B$

Como tenemos $A \subseteq A \cap B$ y $A \supseteq A \cap B$

 $A = A \cap B$

2) \Longrightarrow 3) Supongamos $A \cap B = A$, por demostrar: $A \cup B = B$.

 \subseteq

Supongamos que $a \in A \cup B$ Entonces $a \in A \lor a \in B$

Caso 2: $a \in B$

Entonces $A \cup B \subseteq B$

⊇]

Supongamos $a \in B$ Entonces $a \in A \cup B$ Y así $B \subseteq A \cup B$

Como $B \subseteq A \cup B$ y $A \cup B \subseteq B$

 $A \cup B = B$

 $^{^2}$ Número de cuenta: 317031326

3) \implies 4) Supongamos $A \cup B = B$, por demostrar: $A \setminus B = \emptyset$.

Supongamos $x \in A \setminus B$, esto es $a \in A \land a \notin B$, entonces, si $x \in A \cup B$ y $A \cup B = B$, entonces $x \in B!$ lo cual es una contradicción y vino de suponer que hay algún elemento en $A \setminus B$, por lo que $A \setminus B = \emptyset$.

4) \Longrightarrow 1) Supongamos $A \setminus B = \emptyset$, por demostrar: $A \subseteq B$.

Supongamos que $a \in A$ y que $a \notin B$, entonces $a \in A \backslash B$ pero $A \backslash B = \emptyset$! esta contradicción vino de suponer que $a \notin B$ por lo tanto $a \in B$ y así $A \subseteq B$

8. Sean $A = \{1, 2, 3\}$ y $B = \{1, 2, 3, 4\}$. Encuentre todas las parejas ordenadas de $A \times B$.

$$A \times B = \left\{ \begin{array}{l} (1,1), (1,2), (1,3), (1,4), \\ (2,1), (2,2), (2,3), (2,4), \\ (3,1), (3,2), (3,3), (3,4) \end{array} \right\}$$

9. Sean $A = \{1, 2, ..., n\}$ y $B = \{1, 2, ..., m\}$. Demuestre que el producto $A \times B$ tiene nm elementos. Sugerencia: ¿Cuántas parejas tienen como primera coordenada 1?, ¿y 2?

Para cada elemento en A, existirán tantas parejas como elementos de B i.e. si A tiene 3 elementos y B tiene sólo uno entonces las parejas lucirán de la sigueinte forma

Se podrán combinar tantas veces como elementos haya en B, por lo tanto la cardinalidad de $A \times B$ es nm pues por cada elemento en A se podrán formar tantas parejas como elementos haya en B, puede representarse como:

Elementos de B

Elementos de A
$$\begin{pmatrix} (x_0, y_0) & (x_0, y_1) & \dots m \\ \vdots & \ddots & \vdots \\ n & \dots & nm \end{pmatrix}$$

16. Encuentre la imagen de las siguientes funciones:

$$f: \mathbb{N} \to \mathbb{N}$$
 dada por $f(n) = n + 1$

$$Img(f) = \mathbb{N} \setminus \{1\}$$

 \subseteq

Supongamos	$f(a) \in Img(f)$
Entonces	$a \in \mathbb{N}$
i.e.	$a \ge 1$
Luego, por la regla de correspondencia de \boldsymbol{f}	f(a) = a + 1
Entonces	$f(a) \ge 2$
Así	$f(a) \in \mathbb{N} \backslash \{1\}$
Por lo que	$Img(f) \subseteq \mathbb{N} \backslash \{1\}$

⊇]

Supongamos
$$x \in \mathbb{N} \setminus \{1\}$$
 Sea
$$a = x - 1$$
 Entonces
$$f(a) = (x - 1) + 1$$
 Así,
$$f(a) = x$$
 Por lo que
$$\mathbb{N} \setminus \{1\} \subseteq Img(f)$$

$$\therefore \mathbb{N} \setminus \{1\} = Img(f)$$

$$f : \mathbb{N} \to \mathbb{N} \text{ dada por } f(n) = n^2 + 1$$

$$Img(f) = \mathbb{N} \setminus \{1\}$$

 \subseteq

 $f(a) \in Img(f)$ Supongamos $a \in \mathbb{N}$ Entonces $a \ge 1$ i.e. $a^2 \ge 1 \implies a^2 + 1 \ge 1 + 1$ También veamos que $f(a) = a^2 + 1$ Luego, por la regla de correspondencia de f $f(a) \ge 2$ Entonces Así $f(a) \in \mathbb{N} \backslash \{1\}$ Por lo que $Img(f) \subseteq \mathbb{N} \setminus \{1\}$ ⊇] $x \in \mathbb{N} \backslash \{1\}$ Supongamos $a = \sqrt{x-1}$ Sea $f(a) = (\sqrt{x-1})^2 + 1$ Entonces f(a) = xAsí, Por lo que $\mathbb{N}\setminus\{1\}\subseteq Img(f)$ $\therefore \mathbb{N} \setminus \{1\} = Img(f)$ $f: \mathbb{Z} \to \mathbb{N}$ dada por $f(n) = n^2 + 1$ $Img(f) = \mathbb{N}$ \subseteq $f(a) \in Img(f)$ Supongamos Entonces $a \in \mathbb{Z}$ $a^2 \ge 0 \implies a^2 + 1 \ge 1$ También veamos que $f(a) = a^2 + 1$ Luego, por la regla de correspondencia de fEntonces $f(a) \ge 1$ Así $f(a) \in \mathbb{N}$ Por lo que $Img(f) \subseteq \mathbb{N}$ ⊇] $x \in \mathbb{N}$ Supongamos Sea $a = \pm \sqrt{x-1}$ $f(a) = (\pm \sqrt{x-1})^2 + 1$ Entonces f(a) = xAsí, $\mathbb{N} \subseteq Img(f)$ Por lo que $\therefore \mathbb{N} = Img(f)$ 17. Sean $f,g:\mathbb{R}\to\mathbb{R}$ dadas por f(x)=x+1y $g(x)=x^2.$ Calcule $f\circ g$ y $g\circ f.$ a) $f \circ g$ $(f \circ g)(x) = f(g(x))$ $\forall x \in \mathbb{R}$

$$(f \circ g)(x) = f(g(x)) \qquad \forall x \in \mathbb{R}$$
$$= (x^2) + 1$$
$$= x^2 + 1$$

b) $g \circ f$

$$(g \circ f)(x) = g(f(x)) \qquad \forall x \in \mathbb{R}$$
$$= (x+1)^2$$
$$= x^2 + 2x + 1$$

21. Como siempre, los símbolos $\mathbb Z$ y $\mathbb Q$ denotarán al conjunto de número enteros y al conjunto de números racionales, respectivamente, ¿Es cierto que

$$R := \left\{ \left(\frac{m}{n}, \frac{1}{n} \right) : m, n \in \mathbb{Z} \right\}$$

es una función de \mathbb{Q} en \mathbb{Q} ?

Para probar que una realación binaria es una función, debe satisfacer los siguientes enunciados

- $D_R = \mathbb{Q}$
- Si $(x_0, y_1) \in R$ y $(x_0, y_2) \in R$, entonces $y_1 = y_2$

Primer requerimiento:

[⊇

Supongamos $x \in D_R$ por demostrar $x \in \mathbb{Q}$

Como
$$x\in D_R$$
 Tiene la forma
$$x=\frac{m}{n},\quad m,n\in\mathbb{Z}$$
 Así como los elementos de \mathbb{Q}
$$x\in\mathbb{Q}$$
 Por lo que
$$D_R\subseteq\mathbb{Q}$$

⊇]

Supongamos
$$x\in\mathbb{Q}$$
 Entonces tiene la siguiente forma
$$x=\frac{m}{n},\quad n,m\in\mathbb{Z}$$
 Al igual que D_R
$$x\in D_R$$
 Por lo que
$$D_R\supseteq\mathbb{Q}$$

Como tenemos
$$D_R \supseteq \mathbb{Q}$$
 y $D_R \subseteq \mathbb{Q}$

$$D_R = \mathbb{Q}$$

Y así hemos visto que cumple con la primera condición

Para la segunda condición, tomemos $\left(\frac{1}{2},\frac{1}{2}\right) \in R$ y $\left(\frac{2}{4},\frac{1}{4}\right) \in R$ observemos que $\frac{1}{2}=\frac{2}{4}$, pero $\frac{1}{2}\neq\frac{1}{4}$ \therefore R no es función