Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_tehnologic*BAREM DE EVALUARE ȘI DE NOTARE

Test 9

Test 9

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_1 + a_2 + a_3 + a_4 = \frac{(a_1 + a_4) \cdot 4}{2} =$	3 p
	$=\frac{(2+11)\cdot 4}{2}=26$	2p
2.	$f(x) = g(x) \Leftrightarrow x^2 - 2x = 2x - 4 \Leftrightarrow (x - 2)^2 = 0$	3 p
	Coordonatele punctului de intersecție sunt $x = 2$, $y = 0$	2p
3.	$\sqrt[3]{x+2} = 2 \Leftrightarrow x+2 = 8$	3p
	x = 6	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre sunt $4 \cdot 5 = 20$ de numere care au cifrele pare, deci sunt 20 de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{20}{90} = \frac{2}{9}$	1p
5.	B este mijlocul segmentului AC , unde $C(a,b)$ este simetricul punctului A față de punctul B , deci $3 = \frac{-1+a}{2} \Rightarrow a = 7$	3p
	$1 = \frac{5+b}{2} \Longrightarrow b = -3$	2p
6.	$BC^2 = AB^2 + AC^2$, deci $\triangle ABC$ este dreptunghic	2p
	$\cos B = \frac{AB}{BC} = \frac{4}{5}$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A + I_3 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 1 & 1 & 2 \end{pmatrix} \Rightarrow \det(A + I_3) = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 1 & 1 & 2 \end{vmatrix} =$	3p
	=4+0+0-0-0-0=4	2 p
b)	$A \cdot A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 3 & 1 \end{pmatrix}, \ A \cdot A \cdot A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 5 & 1 \end{pmatrix}$	2p
	$A \cdot A \cdot A + A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 5 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 2 & 0 \\ 2 & 6 & 2 \end{pmatrix} = 2 \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 3 & 1 \end{pmatrix} = 2A \cdot A$	3 p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

c)	$B(x) = A + xI_3 = \begin{pmatrix} x & 1 & 0 \\ 0 & 1+x & 0 \\ 1 & 1 & 1+x \end{pmatrix} \Rightarrow \det(B(x)) = x(1+x)^2, \text{ pentru orice număr real } x$	2p
	$B(x)$ este inversabilă $\Leftrightarrow \det(B(x)) \neq 0 \Leftrightarrow x(1+x)^2 \neq 0$, de unde obținem $x \in \mathbb{R} \setminus \{-1,0\}$	3 p
2.a)	$2020 * 0 = 2020 + a \cdot 0 + 1 =$	3 p
	=2020+1=2021, pentru orice număr real a	2p
b)	(x*y)*z=(x+ay+1)*z=x+ay+1+az+1=x+ay+az+2, pentru orice numere reale x , y şi z	2 p
	$x*(y*z)=x*(y+az+1)=x+a(y+az+1)+1=x+ay+a^2z+a+1$, pentru orice numere reale x , y și z și, cum, legea de compoziție "*" este asociativă, obținem $a=1$	3 p
c)	$x * y = x - y + 1$, deci $4^{x} - 2^{x} + 1 = 1$	3 p
	$2^{x}(2^{x}-1)=0$, de unde obținem $x=0$	2p

SUBIECTUL al III-lea

(30 de puncte)

	(ov de par	
1.a)	$f'(x) = \frac{2(x-1)(x-2) - (x-1)^2}{(x-2)^2} =$	3p
	$= \frac{(x-1)(2x-4-x+1)}{(x-2)^2} = \frac{(x-1)(x-3)}{(x-2)^2}, \ x \in (2,+\infty)$	2 p
b)	f'(3) = 0, $f(3) = 4$	2 p
	Ecuația tangentei este $y - f(3) = f'(3)(x-3)$, deci $y = 4$	3 p
c)	$f''(x) = \frac{2}{(x-2)^3}, x \in (2, +\infty)$	2p
	$f''(x) > 0$, pentru orice $x \in (2, +\infty)$, deci funcția f' este crescătoare pe $(2, +\infty)$	3 p
2.a)	$\int_{1}^{e} \frac{\sqrt{x^{2} + 1}}{f(x)} dx = \int_{1}^{e} \frac{1}{x} dx = \ln x \Big _{1}^{e} =$	3p
	$= \ln e - \ln 1 = 1$	2p
	$\int_{1}^{2} f^{2}(x)dx = \int_{1}^{2} x^{2}(x^{2} + 1)dx = \left(\frac{x^{5}}{5} + \frac{x^{3}}{3}\right)\Big _{1}^{2} =$	3 p
	$= \frac{32}{5} + \frac{8}{3} - \left(\frac{1}{5} + \frac{1}{3}\right) = \frac{128}{15}$	2 p
c)	$= \frac{32}{5} + \frac{8}{3} - \left(\frac{1}{5} + \frac{1}{3}\right) = \frac{128}{15}$ $\int_{0}^{a} f(x)dx - \int_{0}^{2020} f(x)dx = \int_{0}^{2020} f(x)dx + \int_{2020}^{a} f(x)dx - \int_{0}^{2020} f(x)dx = \int_{2020}^{a} f(x)dx, \text{ pentru orice } a \in [2020, +\infty)$	3 p
	a C[2020, 150)	
	Pentru orice $x \in [0, +\infty)$, $f(x) \ge 0$, deci, pentru orice $a \in [2020, +\infty)$, $\int_{2020}^{a} f(x) dx \ge 0$, de	2 p
	unde obținem $\int_{0}^{2020} f(x)dx \le \int_{0}^{a} f(x)dx$	