#### Online Cryptography Course



#### Using block ciphers

# Modes of operation: many time key (CBC)

#### **Example applications:**

- 1. File systems: Same AES key used to encrypt many files.
- 2. IPsec: Same AES key used to encrypt many packets.

#### Construction 1: CBC with random IV

Let (E,D) be a PRP.

 $E_{CBC}(k,m)$ : choose <u>random</u> IV  $\subseteq$  X and do:

E: 24 × [0,1] > [0,1]

IVELOIS



## Decryption circuit

In symbols:  $c[0] = E(k, IV \oplus m[0]) \Rightarrow m[0] =$ 



## CBC: CPA Analysis

<u>CBC Theorem</u>: For any L>0,

If E is a secure PRP over (K,X) then

 $E_{CBC}$  is a sem. sec. under CPA over (K,  $X^L$ ,  $X^{L+1}$ ).

In particular, for a q-query adversary A attacking  $E_{CBC}$  there exists a PRP adversary B s.t.:

$$Adv_{CPA}[A, E_{CRC}] \le 2 \cdot Adv_{PRP}[B, E] + 2 q^2 L^2 / |X|$$

Note: CBC is only secure as long as q<sup>2</sup>L<sup>2</sup> << |X|

#### An example

$$Adv_{CPA}[A, E_{CBC}] \le 2 \cdot PRP Adv[B, E] + 2 q^2 L^2 / |X|$$

q = # messages encrypted with k, L = length of max message

Suppose we want  $Adv_{CPA}$  [A,  $E_{CBC}$ ]  $\leq 1/2^{32} \Leftrightarrow q^2 L^2/|X| < 1/2^{32}$ 

- AES:  $|X| = 2^{128} \implies q L < 2^{48}$ So, after  $2^{48}$  AES blocks, must change key
- 3DES:  $|X| = 2^{64} \implies q L < 2^{16}$

#### Warning: an attack on CBC with rand. IV

CBC where attacker can <u>predict</u> the IV is not CPA-secure!!

Suppose given  $c \leftarrow E_{CBC}(k,m)$  can predict IV for next message



Bug in SSL/TLS 1.0: IV for record #i is last CT block of record #(i-1)

Dan Boneh

#### Construction 1': nonce-based CBC

• Cipher block chaining with <u>unique</u> nonce:  $key = (k,k_1)$ unique nonce means: (key, n) pair is used for only one message



## An example Crypto API (OpenSSL)

```
void AES_cbc_encrypt(
const unsigned char *in,
unsigned char *out,
size_t length,
const AES_KEY *key,
unsigned char *ivec,
AES_ENCRYPT or AES_DECRYPT);
```

When nonce is non random need to encrypt it before use

## A CBC technicality: padding



TLS: for n>0, n byte pad is n n n m m lock

removed during decryption

Dan Boneh

## **End of Segment**