## **Communication**

MIAT-C3X FPGA Development Board

## ■浯陽科技有限公司





## **Outline**

- ☐ Part I
  - Design Consideration
  - Buadrate Generator
  - Transmitter
- ☐ Part II
  - Receiver
- Part III
  - Time for Questions
- Part IV
  - Project Architecture
  - QuartusII Setting



#### Part - I

# UART TRANSMITTER DESIGN



#### Transmitter - UART Communication Protocol

□ UART Transmitter Protocol - Waveform



- Transmit form the last bit of the byte
  - 0x55(01010101<sub>2</sub>)



## Transmitter - Design Consideration

☐ Timing Diagram



- ☐ Describe TX **behavior** 
  - Serially, shift 10 bits
  - Hold a bit during a period

| Buadrate <sub>*</sub> | One Packet+       | One Bit↓           |  |
|-----------------------|-------------------|--------------------|--|
|                       | Transmission Time | Transmission Time∘ |  |
| 1200 bps              | 8330 us#          | 833 us-            |  |
| 2400 bps₽             | 4160 us₽          | 416 us.            |  |
| 4800 bps₽             | 2080 us₽          | 208 us₽            |  |
| 9600 bps₽             | 1040 us₽          | 104 us₊            |  |
| 19200 bps₽            | 520 us₽           | 52 us₽             |  |
| 38400 bps₽            | 260 us₽           | 26 us₽             |  |
| 57600 bps₽            | 170 us∘           | 17 us₽             |  |
| 115200 bps₽           | 80 us₽            | 8 us&              |  |



## Transmitter – Design Entity

**Timing Diagram** 



- Output work signal
- Serial to Parallel Converter Module
  - Shift bit





## Buadrate Gen. – Design Entity





#### ☐ RTL Viewer





#### Exercise I – Buadrate Generator

- Design a Buadrate Generator Module
  - Generate a reference signal can be programmed period
- ☐ Simulate Result





## Exercise I – Buadrate Generator, Cont.

#### Counter Bit Width

**32-bit Timing analyzer report** 

| Timing Analyzer Summary |                              |       |               |             |                       |                         |                   |
|-------------------------|------------------------------|-------|---------------|-------------|-----------------------|-------------------------|-------------------|
|                         | Туре                         | Slack | Required Time | Actual Time | 9                     | From                    | То                |
| 1                       | Worst-case tsu               | N/A   | None          | 7.844 ns    |                       | tbr_i_buadrate_width[4] | r_cnt[0]          |
| 2                       | Worst-case tco               | N/A   | None          | 6.872 ns    |                       | r_btx                   | tbr_o_buadrate_tx |
| 3                       | Worst-case th                | N/A   | None          | 0.138 ns    |                       | tbr_i_enable            | r_btx             |
| 4                       | Clock Setup: 'tbr_i_clock'   | N/A   | None          | 147.51 MHz  | ( period = 6.779 ns ) | r_cnt[0]                | r_cnt[0]          |
| 5                       | Total number of failed paths |       |               |             |                       |                         |                   |

#### 8-bit Timing analyzer report

| Timing Analyzer Summary |                              |       |               |                  |                  |                         |                   |
|-------------------------|------------------------------|-------|---------------|------------------|------------------|-------------------------|-------------------|
|                         | Туре                         | Slack | Required Time | Actual Time      |                  | From                    | То                |
| 1                       | Worst-case tsu               | N/A   | None          | 5.188 ns         |                  | tbr_i_buadrate_width[2] | r_cnt[0]          |
| 2                       | Worst-case tco               | N/A   | None          | 7.959 ns         | <b>V</b>         | r_btx                   | tbr_o_buadrate_tx |
| 3                       | Worst-case th                | N/A   | None          | 0.559 ns         |                  | tbr_i_enable            | r_btx             |
| 4                       | Clock Setup: 'tbr_i_clock'   | N/A   | None          | 243.66 MHz ( per | iod = 4.104 ns ) | r_cnt[0]                | r_cnt[0]          |
| 5                       | Total number of failed paths |       |               |                  |                  |                         |                   |



#### PS Converter – Design Entity





## PS Converter – Synthesis Report

#### ☐ Timing Report

| Tir | Timing Analyzer Summary      |       |               |                                                |                   |              |
|-----|------------------------------|-------|---------------|------------------------------------------------|-------------------|--------------|
|     | Туре                         | Slack | Required Time | Actual Time                                    | From              | То           |
| 1   | Worst-case tsu               | N/A   | None          | 3.101 ns                                       | tx_i_writedata[2] | r_payload[3] |
| 2   | Worst-case tco               | N/A   | None          | 8.288 ns                                       | r_payload[0]      | tx_o_tx      |
| 3   | Worst-case th                | N/A   | None          | 0.969 ns                                       | tx_i_writedata[0] | r_payload[1] |
| 4   | Clock Setup: 'tx_i_clock'    | N/A   | None          | Restricted to 250.00 MHz ( period = 4.000 ns ) | m_state[0]        | r_payload[7] |
| 5   | Total number of failed paths |       |               |                                                |                   |              |

#### ☐ Synthesis Report

| · ·                                |                                           |
|------------------------------------|-------------------------------------------|
| Flow Summary                       |                                           |
| Flow Status                        | Successful - Fri Jul 16 20:28:04 2010     |
| Quartus II Version                 | 10.0 Build 218 06/27/2010 SJ Full Version |
| Revision Name                      | miatc3x                                   |
| Top-level Entity Name              | transmitter                               |
| Family                             | Cyclone III                               |
| Device                             | EP3C25F256C8                              |
| Timing Models                      | Final                                     |
| Met timing requirements            | Yes                                       |
| Total logic elements               | 18 / 24,624 ( < 1 % )                     |
| Total combinational functions      | 18 / 24,624 ( < 1 % )                     |
| Dedicated logic registers          | 16 / 24,624 ( < 1 % )                     |
| Total registers                    | 16                                        |
| Total pins                         | 13 / 157 ( 8 % )                          |
| Total virtual pins                 | 0                                         |
| Total memory bits                  | 0 / 608,256 ( 0 % )                       |
| Embedded Multiplier 9-bit elements | 0 / 132 ( 0 % )                           |
| Total PLLs                         | 0 / 4 ( 0 % )                             |
|                                    |                                           |



#### Exercise II – PS Converter

- Design a Parallel to Serial Converter
  - A shift controller
- ☐ Simulate





#### Exercise III - Serial Transmitter

- Integrate Modules
  - Buadrate Generator
  - Parallel to Serial Converter
  - Use the reference signal to trigger the PX Converter





#### Exercise III - Serial Transmitter

#### ☐ Simulate



#### ☐ Issue

Warning: Found 1 node(s) in clock paths which may be acting as ripple and/or gated clocks
-- node(s) analyzed as buffer(s) resulting in clock skew

Info: Detected ripple clock "tx\_buadrate:tbr\_0|r\_btx" as buffer



#### **Modified Serial Transmitter**





#### Exercise VI – Modified Serial Transmitter

- ☐ Modified ripple clock issue
  - Modified reference signal approach
- ☐ Simulate



#### ☐ RTL Viewer



[Project Name] /uart\_para1



## Exercise V – Porting Serial Transmitter

- Porting Serial Transmitter to MIATC3X Board
  - Reset synchronous issue
  - IO mapping
  - Top controller



#### PC Client



[Project Name] /uart\_para2



#### **MIATC3X Board PIN MAPPING**





#### Part - II

## **UART RECEIVER DESIGN**



#### **UART Communication Protocol – Receiver**

□ UART Receiver Protocol



- ☐ Rx Signal
  - Wait Start Bit
  - Fetch Data Bit
  - Detect Stop Bit



## Receiver - Design Consideration

□ UART Receiver Protocol



- ☐ Detect RX Bit
  - Signal phase shift
  - Error stop bit



## Receiver - Design Consideration, Cont.

☐ Timing Diagram



- Buadrate Generator
  - Over Sampling
  - Phase Shift
  - Programmable
- ☐ SP Converter
  - Fetch Data Bit





## Receiver – Design Entity

#### Behavior





#### Exercise VI – Serial Receiver

- Design Serial Receiver
  - Reuse Buadrate Generator
  - Implement Serial to Parallel Converter





## Exercise VI – Serial Receiver, Cont.

#### ☐ Simulate





#### Exercise VII – Receiver and Transmitter

- Receive and transmit
  - Receive a value
  - Return it +1





#### Exercise VII – Receiver and Transmitter, Cont.

- ☐ Monitor internal signal
  - SignalTapII



#### Client





Part - III

# TIME FOR QUESTION



## Note:



Part - IV

## **APPENDIX**



## **Project Architecture**





## **Quartus II Project Setting**





## Quartus II Project Setting, Cont.





## Quartus II Project Setting, Cont.

