Financial Sentiment Analysis using Various NLP Techniques

Faculty of Mathematics and Computer Science Babeş-Bolyai University

Stud. Petec Răzvan-Gabriel

Applied Computational Intelligence, 246/2

Content

- 1. Introduction
- 2. Dataset Brief Analysis
- 3. Recurrent Neural Networks
- 4. Long Short-Term Memory
- 5. Transformer
- 6. Comparing Results
- 7. Conclusions

Introduction - Financial Sentiment Analysis

 Loughran-McDonald states that simple sentiment analysis cannot be applied in financial sentiment analysis (e.g. liability often is a neutral word, but in finance it's a negative one)

- It allows:
 - Predicting market movement
 - Managing risk
 - Support decision making
 - o Etc.
- Dataset: Financial Phrase Bank

Dataset Brief Analysis

Dataset size: 5842

Tokenizer: BertTokenizer

Vocab size: 30522

Max seq: 150

	Sentence	Sentiment
0	The GeoSolutions technology will leverage Bene	positive
1	\$ESI on lows, down \$1.50 to \$2.50 BK a real po	negative
2	For the last quarter of 2010 , Componenta 's n	positive
3	According to the Finnish-Russian Chamber of Co	neutral
4	The Swedish buyout firm has sold its remaining	neutral
5	\$SPY wouldn't be surprised to see a green close	positive
6	Shell's \$70 Billion BG Deal Meets Shareholder	negative
7	SSH COMMUNICATIONS SECURITY CORP STOCK EXCHANG	negative
8	Kone 's net sales rose by some 14 % year-on-ye	positive
9	The Stockmann department store will have a tot	neutral

Dataset Brief Analysis

Dataset Brief Analysis

Recurrent Neural Networks

Recurrent Neural Networks - Results

Long Short-Term Memory

Long Short-Term Memory - Results

Transformer

Output Probabilities

Transformer - Results

Comparing Results

Model	Sentiment	Precision	Recall	F1-Score	Accuracy
	Positive	0.58	0.6	0.59	0.61
RNN	Negative	0.26	0.24	0.25	
	Neutral	0.72	0.75	0.73	
	Positive	0.62	0.63	0.62	0.6
LSTM	Negative	0.3	0.28	0.29	
	Neutral	0.74	0.77	0.75	
	Positive	0.64	0.65	0.64	0.64
Transformer	Negative	0.32	0.31	0.31	
	Neutral	0.76	0.78	0.77	

Conclusions

Model Performance

- **Transformers** demonstrated superior performance with the highest accuracy and consistently strong results across sentiment classes.
- LSTMs offered balanced results with good generalization.
- RNNs struggled with capturing complex dependencies, showing limited generalization.

Key Challenges

- All models faced difficulties with the negative sentiment class due to data imbalance.
- The complexity of financial language, including nuanced terms and directional expressions, posed challenges for sentiment classification.

Implications

- Transformers are well-suited for financial sentiment analysis and highlight the potential of advanced architectures for handling domainspecific NLP tasks.
- Addressing data imbalance remains critical for improving model performance.

Thanks for your attention!

Bibliography

- [1] Malo, Pekka, et al. "Good debt or bad debt: Detecting semantic orientations in economic texts." Journal of the Association for Information Science and Technology 65.4 (2014): 782-796.
- [2] Loughran, Tim, and Bill McDonald. "When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks." The Journal of finance 66.1 (2011): 35-65.
- [3] Devlin, Jacob. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).
- [4] Tetlock, Paul C. "Giving content to investor sentiment: The role of media in the stock market." The Journal of finance 62.3 (2007): 1139-1168.
- [5] Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio. "On the difficulty of training Recurrent Neural Networks (2013)." arXiv preprint arXiv:1211.5063.
- [6] Schmidt, Robin M. "Recurrent neural networks (rnns): A gentle introduction and overview." arXiv preprint arXiv:1912.05911 (2019).
- [7] Hochreiter, S. "Long Short-term Memory." Neural Computation MIT-Press (1997).
- [8] Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).