Exp No: 12 Date: 01/11/2020

Name: Swetha Saseendran

Reg No: 185001183

8-BIT ARITHMETIC OPERATIONS USING 8051

Aim:

To program and execute 8-bit arithmetic operations using 8051 microcontrollers using EDSim.

Programs:

(i) 8-BIT ADDITION

Algorithm:

- Move input 1 to A.
- Add the second input to A and store the result in A.
- Jump if no carry to label.
- Increment register 0.
- Label: mov the result to register 4 and carry to register 3.
- Here: short jump here.

Program	Comment
---------	---------

;Program to subtract 2 8 bit numbers using 8051 microcontroller

MOV RO, #00 MOV A, r1 ADD A, r2 JNC LABEL INC RO

LABEL: MOV r4, a MOV 03, R0 ;(mov r3, r0 is invalid)

HERE: SJMP HERE

Move value 00 to R0.

Move input1 to A

Add A and 2^{nd} input and store in A

Jump if no carry to label

Increment R0 Move result to R4 Move carry to R3

End

Snapshot of sample input and output:

(ii) 8-BIT SUBTRACTION

Algorithm:

- Move input1 to A.
- Add the second input to A and store the result in A.
- Jump if no carry to label.
- Increment register 0.
- Label: mov the result to register 4 and carry to register 3.
- Here: short jump here.

Program	Comment
;Program to subtract 2 8 bit	
numbers using 8051 microcontroller	
MOV RO, #00	Move value 00 to R0.
MOV A, r1	Move input1 to A
SUBB A, r2	Subtract A and 2 nd input and store in
JNC LABEL	A

CPL A
INC A
INC RO
I ABEL: MOV r4

LABEL: MOV r4, A MOV 03, R0

HERE: SJMP HERE

Jump if no carry to label
complement A
Increment A
Increment R0
Move result to R4
Move carry to R3
End

Snapshot of sample input and output:

(iii) 8-BIT MULTIPLICATION

Algorithm:

- Initialize RO with 00h
- Move the value in R1 to A.
- Move the value in R2 to B.
- Multiply A and B.
- Move B to R4 (MSB of product) and A to R5 (LSB of product)

PROGRAM COMMENTS

MOV RO, #00	RO has address of 0x00
MOV A, R1	0x01 has 1st 8-bit number
MOV B, R2	0x02 has 2nd 8-bit number
MUL AB	BA = A * B
MOV R5, A	Move lower byte to R5 from A
MOV R4, B	Move higher byte to R4 from B
HALT:	
SJMP HALT	Halt the program with a loop.

Snapshot of sample input and output:

(iv) 8-BIT DIVISION

Algorithm:

- Initialize R0 with 00h.
- Move the value in R1 to A.
- Move the value in R2 to B.
- Divide A by B.
- Move A to R4 (Quotient) and B to R5 (Remainder)

PROGRAM	COMMENTS
MOV RO, #00	RO has address of 0x00
MOV A, R1	0x01 has 1st 8-bit number
MOV B, R2	0x02 has 2nd 8-bit number
DIV AB	BA = A / B, A: Quotient, B: Remainder
MOV R5, A	Move quotient to R4 from A
MOV R4, B	Move remainder to R5 from B
HALT:	
SJMP HALT	Halt the program with a loop.

Snapshot of sample input and output

Result:

The assembly level programs were written to perform the above specified 8-bit arithmetic operations using an 8051 microcontroller and the outputs were verified.

Exp No: 13 **Date:** 01/11/2020

Name: Swetha Saseendran

Reg No: 185001183

CUBE OF A NUMBER

Aim:

To write an Assembly language program that converts BCDvalue to its corresponding ascii value using an 8051 micro controller.

Algorithm:

- Move the value in R1 to A.
- Get the lower byte at A by performing logical AND over A & OF.
- Add 30h to A.
- Move A to R4.
- Move the value in R1 to A.
- Get the higher byte at Aby performing logical AND over A & FO.
- Swap the lower and higher nibble in A.
- Add 30H to A.
- Move A to R3.

Program Comment

MOV RO, #00 MOV A, r1 ANL A, #0FH ADD A, #30H MOV r4, A

MOV A, R1 ANL A, #0F0H SWAP A ADD A, #30H MOV r3, A

HERE: SJMP HERE

R0 has addr of 0x00 transfer BCD value to A Taking lower byte value of A Add 30H to lower byte to convert it to ASCII Move lower ASCII byte to R4 from A

Moving BCD value again to A
Taking higher byte value of A
Swap the lower and higher nibble in A
Add 30H to higher byte to convert it to ASCII
Move higher ASCII byte to R3 from A

Snapshot of sample input and output:

Result:

An assembly level program was written to calculate the cube of a given 8-bit number using an 8051 micro controller and the output was verified.

Exp No: 14 **Date:** 01/11/2020

Name: Swetha Saseendran

Reg No: 185001183

COVERSION OF BCD TO ASCII

Aim:

To write an assembly language program to calculate the cube of an 8-bit number using an 8051 micro controller.

Algorithm:

• Initialize RO with 00h.

- Move the value in R1 to A.
- Move the value in R1 to B.
- Multiply A and B.
- Move the value in R1 to B.
- Multiply A and B.
- Move B to R4 (MSB of cube) and A to R5 (LSB of cube)

Program	Comment
I I OGI GIII	COITITICITE

MOV RO, #00	RO has address of 0x00
MOV A, R1	Transferring 8-bit number to reg A
MOV B, R1	Transferring 8-bit number to reg B
MUL AB	$BA = A \times B$
	B is empty since bit multiplication
MOV B, R1	Transfer 8-bit value to B
MUL AB	$BA = A \times B$
MOV R5, A	Moving lower byte to R5
MOV R4, B	Moving higher byte to R4
HERE: SJMP HALT	Halt the program with a loop.

Snapshot of sample input and output:

Result:

An assembly level program was written to convert a given BCD value to its corresponding ASCII value using an 8051 microcontroller and the output was verified.