Music Generation using WaveNet Architecture

Karthik Nagarajan Sundar

CHALMERS
UNIVERSITY OF TECHNOLOGY

Chalmers University of Technology Electrical Engineering Department

Introduction

Main objective: Prediction of subsequent note/chord for a certain period of time to generate a track of music using Deep learning.

Figure 1: Music generation - basic idea

Contents:

- ► Music dataset(midi format)
 - ► Reading a midi file
 - ► Visualizing midi file in terms of Piano rolls.
- ➤ WaveNet architecture
 - ▶ What is Wavenet
 - ► Model summary
- ► Results and Evaluation

Music Data set

- ➤ Self-compiled famous metal genre music (Total:65)
- ➤ Format used for processing: Musical Instrument Digital Interface (MIDI)
- ► Split ratio: 80/20 Training and Validation data-sets
- ► Reading a midi file
 - ► Notes: sound produced by a single key
 - ► Chord: sound produced by 2 or more keys simultaneously

Figure 2: Visualizing midi in terms of piano rolls

WaveNet

- Deep Learning-based generative model developed by DeepMind(Google)
- ► Input: a sequence of nodes and chords
- ➤ Output: new predicted samples from the sequence
- uses Dilated Convolution layer instead of Causal Convolution layers
- ► Major difference: all the previous inputs can have significant contribution on predicted notes

► Better than RNNs because

- ► better long term memory
- No vanishing gradients problem
- ► Hardware friendly
- ► Better than LSTMs because
 - ► longer memory for sequences over 10k samples.

Model Summary

- ► 3 1-dimensional Convolution layers
- ► Dropout layers: avoid over fitting
- ► Max-pooling layers: Down sample

Model: "sequential"			
Layer (type)	Output	Shape	Param #
embedding (Embedding)	(None,	32, 100)	23300
conv1d (Conv1D)	(None,	32, 512)	154112
dropout (Dropout)	(None,	32, 512)	0
max_pooling1d (MaxPooling1D)	(None,	16, 512)	0
conv1d_1 (Conv1D)	(None,	16, 128)	196736
dropout_1 (Dropout)	(None,	16, 128)	0
max_pooling1d_1 (MaxPooling1	(None,	8, 128)	0
conv1d_2 (Conv1D)	(None,	8, 16)	6160
dropout_2 (Dropout)	(None,	8, 16)	0
max_pooling1d_2 (MaxPooling1	(None,	4, 16)	0
global_max_pooling1d (Global	(None,	16)	0
dense (Dense)	(None,	256)	4352
dense_1 (Dense)	(None,	235)	60395
Total params: 445,055 Trainable params: 445,055 Non-trainable params: 0			

Results and Evaluation

Figure 4: Model Summary

- ► Parameters: 75 epochs run and batch size of 128
- ► Number of unique and random notes generated: 17 for a sequence length of 30 notes/chords
- ► User feedback: 5 out of 7 volunteers liked the track

References

- [1] Aravind Pai, "Automatic music generation", 2020, https://www.analyticsvidhya.com/blog/2020/01/how-to-perform-automatic-music-generation/
- [2] J. Berntsson and A. Tonderski, "Simple adversarial music generation", https://github.com/jcberntsson/musicgeneration-project, 2018.