Raport 2

Realizacja zadań przy pomocy języka Python.

PROBLEM: Klasyfikacja obserwacji ze względu na wartość zmiennej *heart_disease*.

MODEL 1 – metoda drzewo CART

Najpierw zbadamy korelację między zmiennymi. Jest to nam potrzebne do wybrania predyktorów, które będą kluczowe dla naszego modelu. One będą decydowały o klasyfikacji obserwacji naszej zmiennej celu tj. 'heart_disease'. Przyjmuje ona wartość 0, oznaczająca brak choroby oraz 1, gdy choroba serca występuje.

W następnym kroku dokonujemy podziału na zbiór uczący (30% wszystkich obserwacji) i testowy (70% wszystkich obserwacji). Ziarno generatora liczb losowych jest równe 308272.

Macierz korelacji zmiennych wygląda następująco:

0.0346356

0.0626934

0.201647

0.0944007 1

0.0969198

0.273053

0.220056

w celu uproszczenia modelu.

chest_pain_type

serum_cholestoral

resting_blood_pressure

0.0944007 0.0969198 0.273053

0.0346356

-0.0431961 1

0.0904652

-0.0626934

-0.0431961

lasting_blood_sugar	0.125450	0.0421337	-0.0303300	0.133001	0.0231033	1	0.0334900	0.0224342	0.00410710	-0.0233373	0.044070	0.123774	0.0492373	-0.0103100
resting_elect	0.128171	0.0392535	0.0743252	0.116157	0.167652	0.0534988	1	-0.0746275	0.0950984	0.120034	0.160614	0.114368	0.00733721	0.182091
max_heart_rate	-0.402215	-0.0761015	-0.317682	-0.0391357	-0.0187392	0.0224942	-0.0746275	1	-0.380719	-0.349045	-0.386847	-0.265333	-0.253397	-0.418514
angina	0.0982965	0.180022	0.35316	0.0827926	0.0782425	-0.00410716	0.0950984	-0.380719	1	0.274672	0.255908	0.153347	0.321449	0.419303
oldpeak	0.194234	0.0974119	0.167244	0.2228	0.0277092	-0.0255379	0.120034	-0.349045	0.274672	1	0.609712	0.255005	0.324333	0.417967
slope	0.159774	0.0505448	0.1369	0.142472	-0.00575528	0.044076	0.160614	-0.386847	0.255908	0.609712	1	0.109498	0.283678	0.337616
vessel	0.356081	0.0868299	0.22589	0.0856974	0.126541	0.123774	0.114368	-0.265333	0.153347	0.255005	0.109498	1	0.255648	0.455336
thalassemia	0.1061	0.391046	0.262659	0.132045	0.0288361	0.0492375	0.00733721	-0.253397	0.321449	0.324333	0.283678	0.255648	1	0.52502
heart_disease	0.212322	0.297721	0.417436	0.155383	0.118021	-0.0163188	0.182091	-0.418514	0.419303	0.417967	0.337616	0.455336	0.52502	1
Jako predyktory wybieramy zmienne, których współczynnik korelacji ze zmienną "heart_disease" jest możliwie największy.														

Kandydaci na predykory to zmienne: "chest_pain_type", "angina", "slope", "oldpeak", "max_heart_rate", "vessel", "thalassemia". Można dostrzec, że zmienne "slope" oraz "oldpeak" są w korelacji, więc możemy wybrać jedną z nich

Ostatecznie nasze predyktory to: "chest_pain_type", "angina", "slope", "max_heart_rate", "vessel", "thalassemia".

0.123458

0.0421397

-0.0985368

0.155681

-0.201647

0.0904652

0 0251859

0.128171

0.0392535

0.0743252

0.167652

0.402215 0.0982965

-0.0761015 0.180022

-0.0391357 0.0827926

-0.0187392 0.0782425

-0.317682

oldneak

0.0974119

0.0277092

0.159774

-0.00575528 0.126541

heart disease

0.1061

0.262659

0.0868299 0.391046

0.0856974 0.132045

MODEL 1.1, czyli podejście pierwsze

Zbiór testowy zawiera 189 obserwacji, zbiór uczący zaś 81 obserwacje. W tym podejściu współczynniki prezentują się następująco:

zbiór testowy	zbiór uczący				
Trafność: 0.84	Trafność: 0.857				
Czułość: 0.806	Czułość: 0.857				
Specyficzność: 0.867	Specyficzność: 0.857				

Zbiór testowy wypada gorzej (o najwięcej 5%) niż uczący, co wskazuje na lekkie przeuczenie się modelu.

Na następnej stronie przedstawiony jest wykres drzewa CART.

Model 1.1 Drzewo CART

Spójrzmy na ważność predyktorów według modelu 1.1:

Najważniejsze predyktory to zmienne "chest_pain_type", "vessel", "thalassemia". Aby nasz model był lepszy zmienimy parametr alpha, mówiący o przycinaniu minimalnego kosztu i złożoności.

W wyniku tych działań powstanie model 1.2, czyli podejście drugie.

MODEL 1.2, czyli podejście drugie

Predyktory zostają te same jak w modelu 1.1.

Podział na zbiór uczący i testowy także jest ten sam jak wcześniej.

Współczynniki dla modelu 1.2 wynoszą:

zbiór testowy	zbiór uczący				
Trafność: 0.889	Trafność: 0.862				
Czułość: 0.806	Czułość: 0.833				
Specyficzność: 0.956	Specyficzność: 0.886				

Widzimy, że dla zbioru testowego otrzymaliśmy lepsze wyniki dla trafności i specyficzności. Z tego wynika, że udało nam się polepszyć nasz model. Krzywe ROC wyglądają tak samo, jak w modelu 1.1.

Model 1.2 Drzewo CART

Na wykresie słupkowym widzimy ważność zmiennych dla Modelu 1.2

W metodzie klasyfikacji drzewa CART lepszy okazał się model 1.2.

MODEL 2 – metoda MPL

Założenia modelu:

- > Dane numeryczne muszą być poddane skorygowanej normalizacji $x_i^S = 2 \cdot \frac{x_i min}{max min} 1$
- > Dane kategoryczne należy zamienić na wartości liczbowe, jeśli są łańcuchami

By móc porównać dwa modele, wykorzystujemy te same predyktory. Są to "chest_pain_type", "angina", "slope", "max_heart_rate", "vessel", "thalassemia".

Dokonujemy podziału na zbiór uczący (30% wszystkich obserwacji) i testowy (70% wszystkich obserwacji). Ziarno generatora liczb losowych jest równe 308272. Następnie dzielimy predyktory na zmienne numeryczne i kategoryczne. Dane numeryczne poddajemy skorygowanej normalizacji. W naszym wyjściowym pliku nie trzeba zamieniać danych kategorycznych, ponieważ są liczbami.

MODEL 2.1

Zbiór testowy zawiera 189 obserwacji, zbiór uczący zaś 81 obserwacje.

Parametr kary wynosił 0,0001 oraz warstwa ukryta (1,).

W tym podejściu współczynniki prezentują się następująco:

zbiór testowy	zbiór uczący			
Trafność: 0.864	Trafność: 0.847			
Czułość: 0.722	Czułość: 0.798			
Specyficzność: 0.978	Specyficzność: 0.886			

Zbiór testowy wypada gorzej (o najwięcej 7%) niż uczący, co wskazuje na lekkie przeuczenie się modelu. Spróbujmy polepszyć nasz model.

Krzywa ROC dla modelu 2.1

Model 2.2

Zbiór testowy zawiera 189 obserwacji, zbiór uczący zaś 81 obserwacje.

W tym podejściu został zmieniony parametr kary na (1,2)

W tym podejściu współczynniki prezentują się następująco:

zbiór testowy	zbiór uczący			
Trafność: 0.889	Trafność: 0.862			
Czułość: 0.75	Czułość: 0.798			
Specyficzność: 1.0	Specyficzność: 0.914			

Widzimy, że dla zbioru testowego polepszyły się wszystkie współczynniki. Z tego wynika, że udało nam się polepszyć nasz model.

Krzywa ROC dla modelu 2.2

W metodzie klasyfikacji za pomocą sieci neuronowych lepszy okazał się model 2.2.

PODSUMOWANIE:

- 1) Zarówno model 1.2, jak i 2.2 są dobre.
- 2) Ciężko stwierdzić jednoznacznie, który z tych modeli jest lepszy.
- 3) Pojawiły się problemy z ulepszaniem modeli, ale dzięki konsultacjom zostały rozwiązane.
- 4) Inne problemy były, ale jakoś poszło...

Raport wykonały:

Aleksandra Grzegórska, Anna Cabaj