DS Complexité et Calculabilité : proposition de correction

REMI.MORVAN@U-BORDEAUX.FR

Année 2021–2022

Modifications du sujet :

- − Dans le problème, au lieu de « un graphe orienté G », lire « un graphe non-orienté G ».
- En question 4, au lieu de « s'il existe (v, w) ∈ E tel que $d(w, D) \le l 1$, alors $d(v, D) \le l$ » lire « il existe $(v, w) \in E$ tel que $d(w, D) \le l - 1$ si et seulement si $d(v, D) \le l$ ».
- En question 7, au lieu de « $\varphi_1 \land \varphi_2 \land \varphi_3$ » lire « $\varphi_1 \land \varphi_2 \land \varphi_3 \land \varphi_4$, où φ_4 est une formule exprimant la propriété "tout sommet de V est à distance au plus d de D" ».

Remarque: Cette correction contient plus de détails que ce qu'il était nécessaire d'écrire pour obtenir la note maximale (21/20).

Question 1

Points attendus: certificat; vérificateur; complexité.

Un certificat d'une instance positive (G, k, d) du problème Proxy est un ensemble de sommets *D* de taille au plus *k* tel que tout sommet de *G* est à distance au plus *d* de *D*.

On peut prendre comme vérificateur du problème Proxy l'algorithme dont l'entrée est une instance (G, k, d) du problème Proxy ainsi qu'un ensemble de sommets $D \subseteq V$, et vérifiant que D est bien un ensemble de taille au plus k et que tout sommet de G est à distance au plus d de D, par exemple en effectuant un parcours en profondeur depuis chaque sommet de D.

Le certificat est de taille au plus n, et le temps de calcul du vérificateur est un $\mathcal{O}(n + nm) =$ $\mathcal{O}(nm)$ —en effet, la vérification de $|D| \leq k$ est linéaire en n, et chaque parcours en largeur se fait en temps $\mathcal{O}(m)$.

Un certificat d'une instance positive n'est pas n'importe quel sous-ensemble D de sommets : c'est un sous-ensemble $D \subseteq V$ de taille au plus k tel que tout sommet de V est à distance au plus d de D.

OUESTION 2

Le certificat est de taille polynomiale et le vérificateur a un temps de calcul polynomial, donc Proxy est dans NP.

QUESTION 3

Pour que les $x_{u,i}$ décrivent un ensemble de taille au plus k, il faut et il suffit que chaque indice $i \in [1, k]$ ne soit associé qu'à au plus un sommet. On pose donc :

$$\varphi_1 = \bigwedge_{1 \le i \le k} \bigwedge_{u \ne v \in V} \neg x_{u,i} \lor \neg x_{v,i}.$$

Dans la deuxième conjonction, il est important de seulement quantifier sur les paires de sommets $(u,v) \in V^2$ telles que $u \neq v$ pour exprimer le fait que « deux sommets **distincts** ne peuvent pas avoir le même indice ». Si on quantifiait sur toutes les paires $(u,v) \in V^2$, la formule φ_1 demanderait que toutes les variables $x_{u,i}$ (avec $u \in V$ et $i \in [\![1,k]\!]$) soient fausses.

Question 4

On pose:

$$\varphi_2 = \bigwedge_{v \in V} \bigwedge_{1 \le l \le d} \left(\bigvee_{\substack{w \in V \text{ tq} \\ (v,w) \in E}} y_{w,l-1} \right) \leftrightarrow y_{v,l}.$$

Question 5

La propriété « tout sommet $v \in V$ est à distance au plus 0 de D si et seulement si $v \in D$ » s'exprime par la formule

$$\bigwedge_{v \in V} y_{v,0} \leftrightarrow \left(\bigvee_{1 \le i \le k} x_{v,i}\right)$$

qui n'est pas en CNF, mais qui est équivalente à

$$\bigwedge_{v \in V} \left(y_{v,0} \to \bigvee_{1 \le i \le k} x_{v,i} \right) \land \left(\left[\bigvee_{1 \le i \le k} x_{v,i} \right] \to y_{v,0} \right) \equiv \bigwedge_{v \in V} \left(\neg y_{v,0} \lor \bigvee_{1 \le i \le k} x_{v,i} \right) \land \left(\left[\bigwedge_{1 \le i \le k} \neg x_{v,i} \right] \lor y_{v,0} \right) \\
\equiv \bigwedge_{v \in V} \left(\neg y_{v,0} \lor \bigvee_{1 \le i \le k} x_{v,i} \right) \land \bigwedge_{1 \le i \le k} \left(\neg x_{v,i} \lor y_{v,0} \right).$$

Cette dernière formule étant en CNF, on pose donc :

$$\varphi_3 = \bigwedge_{v \in V} \left(\neg y_{v,0} \lor \bigvee_{1 < i < k} x_{v,i} \right) \land \bigwedge_{1 < i < k} \left(\neg x_{v,i} \lor y_{v,0} \right).$$

QUESTION 6

On a:

$$\begin{split} \varphi_2 & \equiv \bigwedge_{v \in V} \bigwedge_{1 \leq l \leq d} \left[\left(\bigvee_{\substack{w \in V \text{ tq} \\ (v,w) \in E}} y_{w,l-1} \right) \to y_{v,l} \right] \land \left[y_{v,l} \to \left(\bigvee_{\substack{w \in V \text{ tq} \\ (v,w) \in E}} y_{w,l-1} \right) \right] \\ & \equiv \bigwedge_{v \in V} \bigwedge_{1 \leq l \leq d} \left[\bigwedge_{\substack{w \in V \text{ tq} \\ (v,w) \in E}} \left(\neg y_{w,l-1} \lor y_{v,l} \right) \right] \land \left[\neg y_{v,l} \lor \left(\bigvee_{\substack{w \in V \text{ tq} \\ (v,w) \in E}} y_{w,l-1} \right) \right]. \end{split}$$

Par construction, cette dernière formule est CNF et équivalente à φ_2 .

Points attendus: structure de la preuve (instance positive de Proxy ssi formule satisfaisable); construction (et justification) d'une valuation à partir d'un certificat; construction (et justification) d'un certificat à partir d'une valuation; calcul en temps polynomial.

Posons

$$\varphi_4 = \bigwedge_{u \in V} y_{u,d},$$

et montrons que (G, k, d) est une instance positive de Proxy si et seulement si $\varphi_1 \land \varphi_2 \land \varphi_3 \land \varphi_4$ est satisfaisable.

Si $\varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge \varphi_4$ est satisfaisable, soit v une valuation satisfaisant cette formule. Posons $D = \{u \in V \mid \exists i \in \llbracket 1, k \rrbracket, v(x_{u,i}) = \mathtt{vrai} \}$, et montrons que D est un ensemble d'au plus k sommets tel que tout sommet de V est à distance au plus d de D. Puisque v satisfait φ_1 , pour tout indice $i \in \llbracket 1, k \rrbracket$, il y a au plus un sommet u tel que $v(x_{u,i}) = \mathtt{vrai}$, donc D est sous-ensemble de V de taille au plus k. Montrons désormais par récurrence sur $l \in \llbracket 0, d \rrbracket$ que

 (H_l) : pour tout sommet $v \in V$, $d(v,D) \le l$ si et seulement si $v(y_{v,l}) = vrai$.

Si l=0, $d(v,D) \leq 0$ si et seulement si $v \in D$ càd, puisque v satisfait φ_3 , $v(y_{v,0}) = \text{vrai}$, donc (H_0) . Si $l \in [\![0,d-1]\!]$ est tel que (H_l) , montrons que la propriété est vraie au rang l+1. Soit $v \in V$: on a $d(v,D) \leq l+1$ si et seulement s'il existe un sommet $u \in V$, voisin de v, tel que $d(u,D) \leq l$, càd, en appliquant (H_l) à u, $v(y_{u,l}) = \text{vrai}$ i.e., puisque v satisfait φ_2 , $v(y_{v,l+1}) = \text{vrai}$. Donc (H_l) , ce qui achève la récurrence.

Résumé de la récurrence : grâce aux contraintes φ_2 et φ_3 , les variables $y_{v,l}$ peuvent effectivement être interprétées comme « v est à distance au plus l de D ». La récurrence n'était pas attendue—mais aurait été appréciée.

Puisque ν satisfait φ_4 , pour tout $v \in V$, $\nu(y_{v,d}) = \text{vrai}$ et donc, puisque (H_d) , $d(v,D) \leq d$. Ainsi, tout sommet de V est à distance au plus d de D.

Réciproquement, si D est un ensemble d'au plus k sommets tel que tout sommet de V est à distance au plus d de D, considérons une énumération $(u_1, \dots, u_{|D|})$ des sommets de D (avec $|D| \le k$) et posons pour tout $v \in V$, $i \in \llbracket 1, k \rrbracket$:

$$\nu(x_{v,i}) = \begin{cases} \text{vrai} & \text{si } i \leq |D| \text{ et } v = u_i, \\ \text{faux} & \text{sinon,} \end{cases}$$

et, pour tout $v \in V$ et $l \in \llbracket 1, d \rrbracket$, posons $v(y_{v,l}) = vrai$ si et seulement si v est à distance au plus l de D. Par construction de v, cette valuation satisfait φ_1 . Elle satisfait φ_2 et φ_3 car la fonction d(-,-) est une distance. Finalement, elle satisfait φ_4 car tout sommet de v est à distance au plus d de D. Ainsi, v satisfait $\varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge \varphi_4$, donc cette dernière formule est satisfaisable.

Ainsi, (G, k, d) est une instance positive de Proxy si et seulement si $\varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge \varphi_4$, qui est une formule CNF, est satisfaisable, càd $\varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge \varphi_4$ est une instance positive de SAT.

De plus, la formule $\varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge \varphi_4$ contient $\mathcal{O}(k|V|^2 + d|E| + k|V| + |V|) = \mathcal{O}(|V|^3)$ littéraux (sous l'hypothèse $d \leq |V|$), ce qui est polynomial en la taille de l'entrée. Puisque chaque étape élementaire pour construire cette formule (énumérer les sommets $v \in V$, tester si $(v, w) \in E$, etc.) se fait en temps polynomial en la taille de l'entrée, donc la fonction $(G, k, d) \mapsto \varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge \varphi_4$ est calculable en temps polynomial.

Ainsi, $(G, k, d) \mapsto \varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge \varphi_4$ est une réduction polynomiale de Proxy vers Sat.

Souvent, la justification du fait que la fonction $(G, k, d) \mapsto \varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge \varphi_4$ est calculable en temps polynomial a été oubliée.

QUESTION 8

Puisque Sat est NP et puisque Proxy se réduit polynomialement à Sat, on en déduit que Proxy est NP.

Annexe : écrire des formules

Comment traduire une phrase en une formule? C'est presque algorithmique :

- « pour tout x ∈ X, P(x) » devient $\bigwedge_{x \in X} P(x)$,
- « il existe x ∈ X tel que P(x) » devient $\bigvee_{x \in X} P(x)$,
- « si P alors Q » devient P → Q ou encore ¬P ∨ Q,
- « P ssi Q » devient $P \leftrightarrow Q$, ou encore $(P \to Q) \land (Q \to P)$, ou, en CNF : $(\neg P \lor Q) \land (\neg Q \lor P)$. Par exemple, « pour tout sommet $v \in V$, pour tout $l \in \llbracket 1, d \rrbracket$, il existe $w \in V$ tel que $(v, w) \in E$ et w est à distance au plus l −1 de D si et seulement si v est à distance au plus l de D » s'exprime par :

$$\varphi_2 = \bigwedge_{v \in V} \bigwedge_{1 \le l \le d} \left(\bigvee_{\substack{w \in V \text{ tq} \\ (v,w) \in E}} y_{w,l-1} \right) \longleftrightarrow y_{v,l}$$

sous l'hypothèse que les variables $y_{v,l}$ $(v \in V, l \in [0,d])$ s'interprètent comme « v est à distance au plus l de D ».