1

Complex Numbers

AI24BTECH11034 - Tanush Sri Sai Petla*

Section-A (a) n = 8(c) n = 12(*b*) n = 16(d) None of these Fill in the blanks 1. If the expression $\left[\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right) + i\tan\left(x\right)\right]$ 3. The complex number z = x + iy which satisfy (1987 - 2Marks) $1+2i\sin\left(\frac{x}{2}\right)$ $(1981 - 2Marks) \left| \frac{z-5i}{z+5i} \right| = 1$ lie on the equation is real, then the set of all possible values of x is..... 2. For any two complex numbers z_1, z_2 and any real_(a) the x-axis the origin (b) the straight line y = 5 $|az_1 - bz_2|^2 + |bz_1 + az_2|^2 = \dots$ (1988 – 2*Marks*)(c) a circle passing through(d) None of these 3. If a,b,c are the numbers between 0 and 1 such 4. If $z = (\frac{\sqrt{3}}{2} + \frac{i}{2})^5 + (\frac{\sqrt{3}}{2} - \frac{i}{2})^5$, then that the points $z_1 = a + i$, $z_2 = 1 + bi$ and $z_3 = 0$ form an equilateral triangle, then $a = \dots$ and $b = \dots$ (1989 - 2Marks)4. ABCD is a rhombus. Its diagonals AC and BD(a)Re(z) = 0(c) Re(z) > 0, Im(z) > 0intersect at the point M and satisfy BD = 2AC. If (b) Im(z) = 0(d) Re(z) > 0, Im(z) < 0the points D and M represent the complex numbers 5. The inequality |z-4| < |z-2| represents the 1 + i and 2 - i respectively, then A represents the (1993 - 2Marks)(1982 - 2Marks)complex number.... or..... region given by 5. Suppose Z_1, Z_2, Z_3 are the vertices of an equilateral triangle inscribed in the circle |z| = 2. If $Z_1 = 1 + i\sqrt{3}(a) \operatorname{Re}(z) \ge 0$ (c) Re(z) > 0(1994 - 2Marks)(b) Re(z) < 0(d) Noneo f the se then $Z_2 =, Z_3 =$ B True/False 1. For complex number $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, we write $z_1 \cap z_2$, if $x_1 \le x_2$ and $y_1 \le y_2$ then for all complex numbers z with $1 \cap z$, we have $\frac{1-z}{1+z} \cap 0$ (1981 - 2Marks)2. If the complex numbers z_1 , z_2 and z_3 represent the vertices of an equilateral triangle such that $|z_1| = |z_2| = |z_3|$ then $z_1 + z_2 + z_3 = 0$ brak 1984 - 1 Mark 3. If three complex numbers are in A.P. then they lie on a circle on the complex plane. (1985 - 1Mark)4. The cube roots of unity when represented on Argand diagram form the vertices of an equilateral (1988 - 1Mark)triangle. C MCQs with One Correct Answer 1. If the cube roots of unity are $1, \omega, \omega^2$, then the roots of the equation $(x + 1)^8 = 0$ are $(a) -1, i + 2\omega, 1 + 2\omega^2$ (c) -1, -1, -1 $(b) -1, 1 - 2\omega, 1 - 2\omega^2$ d None of these

2. The smallest positive integer for which $\left(\frac{1+i}{1-i}\right)^n =$

1 is