ÁLGEBRA II (61.08 - 81.02)

Mantecol Duración: 4 horas.

Segundo cuatrimestre -202329/XI/23 - 7:00 hs.

Apellido y Nombres:

Legajo:

Curso:

1. En \mathbb{R}^3 con el producto interno canónico se considera la matriz $A \in \mathbb{R}^{3 \times 4}$ definida por

$$A = \begin{bmatrix} 3 & 5 & 3 & 1 \\ 3 & -3 & -6 & 0 \\ 8 & 8 & 2 & 2 \end{bmatrix}.$$

Calcular la distancia del vector $\begin{bmatrix} -1 & -1 & 1 \end{bmatrix}^T$ al subespacio $\operatorname{col}(A)$.

2. Hallar, si existe, una matriz $A \in \mathbb{R}^{2 \times 2}$ tal que traza(A) = -6 y

$$A^2 + 3A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}.$$

3. Hallar la matriz simétrica $A \in \mathbb{R}^{3\times 3}$ tal que $\left\{\begin{bmatrix}1 & 1 & 0\end{bmatrix}^T, \begin{bmatrix}2 & 1 & 2\end{bmatrix}^T\right\} \subset \text{nul}(A-I)$ y traza(A)=1.

4. Sea $A \in \mathbb{R}^{3 \times 3}$ la matriz definida por

$$A = \frac{2}{9} \begin{bmatrix} -1\\8\\4 \end{bmatrix} \begin{bmatrix} 2 & -6 & 3 \end{bmatrix} + \frac{1}{9} \begin{bmatrix} 4\\4\\-7 \end{bmatrix} \begin{bmatrix} 6 & 3 & 2 \end{bmatrix}.$$

Hallar todas las soluciones por cuadrados mínimos de la ecuación $Ax = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}^T$ y determinar la de norma mínima.

5. Sea $\Pi : \mathbb{R}^3 \to \mathbb{R}^3$ la proyección sobre el plano $\{x \in \mathbb{R}^3 : x_1 = 0\}$ en la dirección de la recta gen $\{\begin{bmatrix} 1 & 1 & 1\end{bmatrix}^T\}$. Hallar y graficar la imagen por Π de la esfera unitaria de \mathbb{R}^3 .