

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07D 471/04

WO 97/03074

(43) International Publication Date:

(11) International Publication Number:

30 January 1997 (30.01.97)

(21) International Application Number:

PCT/KR96/00080

A1

(22) International Filing Date:

1 June 1996 (01.06.96)

(30) Priority Data:

4

1995/20514

12 July 1995 (12.07.95)

KR

(71) Applicant (for all designated States except US): YUNGJIN PHARMACEUTICAL CO., LTD. [KR/KR]; 277-58, Sungsu-dong 2-ka, Sungdong-ku, Seoul 133-111 (KR).

(72) Inventors; and

(75) Inventors/Applicants (for US only): YOO, Han, Yong [KR/KR]; 208-701, Family Apartment, 150, Moonjungdong, Songpa-ku, Seoul 138-200 (KR). CHUNG, Kae, Jong [KR/KR]; 107-1404, Hanbo Mido Apartment, Daechi-dong, Kangnam-ku, Seoul 135-280 (KR). CHANG, Man, Sik [KR/KR]; 1303-205, Mokdong Apartment, Sinjung-dong, Yangchun-ku, Seoul 158-070 (KR). KIM, Sung, Gyu [KR/KR]; 149-6, Sunhwa-3-dong, Jung-ku, Taejeon 301-053 (KR). CHOI, Wahn, Soo [KR/KR]; 144-7, Sadang-2-dong, Kongjak-ku, Seoul 152-090 (KR). KANG, Dae, Pil [KR/KR]; 531-3, Seojeong-dong, Pyungtack-city, Kyunggi-do 459-010 (KR). KIM, Young, Hun [KR/KR]; B01, Wooseong Art Villa, 869-6, Seojeongdong, Pyungtack-city, Kyunggi-do 459-010 (KR). PAEK,

Jang, Hoon [KR/KR]; 1664-16, Shilim-8-dong, Kwanak-ku, Seoul 151-018 (KR), SOHN, Sang, Kwon [KR/KR]; 410-1, Rulgeon-dong, Jangan-ku, Suwon-city, Kyunggi-do 440-320 (KR). KANG, Bog, Goo [KR/KR]; 37-35, Younghwa-dong, Jangan-ku, Suwon-city, Kyunggi-do 440-050 (KR). KIM, Young, Heui [KR/KR]; 451, Sekyo-dong, Pyungtack-city, Kyunggi-do 450-100 (KR). SEO, Kwi, Hyon [KR/KR]; 392-27, Songjuk-dong, Jangan-ku, Suwon-city, Kyunggi-do 440-210 (KR).

- (74) Agents: YOON, Dong, Yol et al.; Yoon & Lee International Patent & Law Firm, 648-23, Yoksam-dong, Kangnam-ku, Seoul 135-081 (KR).
- (81) Designated States: CA, CN, JP, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

(54) Title: 4-AMINO-3-ACYLNAPHTHYRIDINE DERIVATIVES

$$(Rs)_{n} \xrightarrow{R_{4}} (CH)_{m}$$

$$Rs \xrightarrow{NH} 0$$

$$R_{2} \xrightarrow{R_{1}}$$

$$R_{2}$$

$$R_{3} \xrightarrow{R_{1}}$$

$$R_{4} \xrightarrow{R_{1}}$$

$$R_{5} \xrightarrow{R_{1}}$$

$$R_{5} \xrightarrow{R_{1}}$$

(57) Abstract

A novel 4-amino-3-acylnaphthyridine derivatives represented by general formula (I), wherein R_I is hydrogen atom, a C_I-C₆ lower alkyl group, a C1-C6 lower alkoxy group, a C1-C6 lower alkoxyalkyl group, a C3-C6 cycloalkyl group, a C3-C6 cycloalkyl C1-C6 alkyl group, a substituted or unsubstituted phenyl, or a phenyl C1-C6 alkyl group of which phenyl group may be substituted; R2 is hydrogen atom, a C1-C6 lower alkyl group, a C1-C6 alkoxy group, a C1-C6 alkylthio group, or a group of a formula: NR6R7 wherein R6 and R7, identical to or different from each other, are independently hydrogen atom or a C1-C6 lower alkyl group, or R6 and R7 may form together 5-membered or 6-membered cycloalkyl group; R3 is hydrogen atom, a C1-C6 lower alkyl group, a C1-C6 alkoxy group, a C1-C6 alkylthio group, an amino group substituted with one or two C₁-C₆ alkyl groups, a halogen atom, a cyano group, a C₁-C₆ alkanoyl group, or trifluoromethyl group; R₄ is hydrogen atom or a substituted or unsubstituted C₁-C₆ alkyl group; R₅ is hydrogen atom, a C₁-C₆ lower alkyl group, a C₁-C₆ alkoxy group, an amino group substituted with one or two C1-C6 alkyl groups, a C1-C6 alkylthio group, a halogen atom, a cyano group, a hydroxycarbamoyl group, a carboxy group, a C1-C6 alkanoyl group, or trifluoromethyl group, or an alkyl group which forms together with R4 a 5-membered or 6-membered cycloalkyl group; m is an integer from 0 to 4, inclusive; and n is an integer from 1 to 3, inclusive; with proviso that all alkyl and alkoxy groups may be linear or branched, and said halogen atom means fluorine, chlorine or bromine atom, or its pharmaceutically acceptable salts are disclosed. These compounds show excellent anti-ulcer activity.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
ΑT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
ВJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ.	
GA	Gabon	MR	Mauritania	VN	Uzbekistan Viet Nam

WO 97/03074 PCT/KR96/00080

4-AMINO-3-ACYLNAPHTHYRIDINE DERIVATIVES

FIELD OF THE INVENTION

The Present invention is related to new 4-amino-3-acylnaphthyridine derivatives or their pharmaceutically acceptable salts, which are useful as anti-ulcer or gastric juice-secretion suppressor, to a method for producing them and intermediates for the method.

10

BACKGROUND OF THE INVENTION

It has been reported that the gastrointestinal ulcers 15 may be caused by a excessive secretion of acids such as hydrochloric acid or pepsin as well as by an action of anti-inflammatory agents such as indomethacin, toxic chemicals, pathogenic virus or toxic microorganisms. In particular, it had been reported that H⁺/K⁺ ATPase, a proton 20 carrying enzyme which occurs in gastric mucosa, is involved in the formation of ulcer caused by a secretion of excess gastric juices.

EP 339768A, EP 0334491A and USP 4343804 disclose 4-aminoquinoline derivatives having an effective 25 anti-gastric juice secretion activity.

The present inventors suprisingly found out that if quinoline nucleus of 4-aminoquinoline derivatives of the prior arts is replaced with naphthyridine parent-nucleus, the resulting new compounds showed potent anti-ulcer, anti-gastric juice secretion and anti-H*/K* ATPase activities.

SUMMARY OF THE INVENTION

Therefore, an object of the present invention is to provide new 4-amino-3-acylnaphyridine derivatives 5 represented by the following general formula (I):

$$(R5)_{n}$$

$$R3$$

$$R3$$

$$R3$$

$$R1$$

$$R2$$

$$R1$$

wherein

10

- 15 R_1 is hydrogen atom, a C_1 C_6 lower alkyl group, a C_1 C_6 lower alkoxy group, C_1 C_6 lower alkoxyalkyl group, a C_3 C_6 cycloalkyl group, a C_3 C_6 cycloalkyl C_1 C_6 alkyl group, a substituted or unsubstituted phenyl, or a phenyl C_1 C_6 alkyl group of which phenyl group may be substituted;
- 20 R_2 is hydrogen atom, a C_1 C_6 lower alkyl group, a C_1 C_6 alkoxy group, a C_1 C_6 alkylthio group, or a group of a formula : NR_6R_7 wherein R_6 and R_7 , identical to or different from each other, are independently hydrogen atom or a C_1 C_6 lower alkyl group, or R_6 and R_7 may form together 5-membered or 6-membered cycloalkyl group;
- R_3 is hydrogen atom, a C_1 C_6 lower alkyl group, a C_1 C_6 alkoxy group, a C_1 C_6 alkylthio group, an amino group substituted with one or two C_1 C_6 alkyl groups, a halogen atom, a cyano group, a C_1 C_6 alkanoyl group, or trifluoromethyl group;

 R_4 is hydrogen atom or a substituted or unsubstituted C_1 - C_6 alkyl group;

 R_5 is hydrogen atom, a C_1 - C_6 lower alkyl group, a C_1 - C_6 alkoxy group, an amino group substituted with one or two C_1 - C_6 alkyl groups, a C_1 - C_6 alkylthio group, a halogen atom, a cyano group, a hydroxycarbamoyl group, a carboxy group, a C_1 - C_6 alkanoyl group, or trifluoromethyl group, or an alkyl group which forms together with R_4 a 5-membered or 6-membered cycloalkyl group;

10 m is an integer from 0 to 4, inclusive; and n is an integer from 1 to 3, inclusive;

with proviso that all alkyl and alkoxy groups may be linear or branched, and said halogen atom means fluorine, chlorine or bromine atom,

15 or their pharmaceutically acceptable salts.

For the present invention, if a carbon atom to which R₄ other than hydrogen atom is bonded is asymmetric, the compounds (I) may have optically active isomers such as enantiomers, racemic mixtures, or mixtures thereof, all of them are embraced within scope of the present invention,

According to the present invention, a method for producing the compounds is also provided.

The above and other objects and features of the present invention will be apparent to the skilled in the art from the 25 following detailed description.

DETAILED DESCRIPTION OF THE INVENTION

The pharmaceutically acceptable salts of the compound

(I) of the present invention include acid-addition salts of

the compound (I) with pharmaceutically acceptable organic and inorganic acids, for example hydrochloric, sulfuric, phosphoric, citric, formic, acetic, fumaric, maleic, malonic, tartaric, methanesulfonic, or p-toluene sulfonic acid.

The compound represented by the general formula (I) may 10 be prepared by reacting the compound represented by the general formula (II)

$$R_3$$
 R_1
 R_2
 R_1
 R_2
 R_1

15

wherein, R_1 , R_2 , and R_3 have the same meanings as defined above; and X is a leaving group which may be substituted with an amine group, and may be exemplified by a halogen atom, $OS(O)_2R_8$ or $OP(O)(OR_9)_2$ in which R_8 is methyl, ethyl, trifluoromethyl, phenyl, or p-toluenyl group, and R_9 is methyl, ethyl, propyl, or phenyl group which may be substituted, with the compound represented by the general formula (III):

25

$$(R5)_n \xrightarrow{R4} (CH)_m - NH_2$$
(III)

wherein, R_4 , R_6 , m and n have the same meanings as defined above.

The reaction of the compound (II) with the compound (III) can be carried out in a solvent, for example, not 5 limited thereto, dichloromethane, chloroform, tetrahydrofuran, dioxan. anisole. acetonitrile, propionitrile, or dimethylformamide, dimethylsulfoxide at the temperature in the range of room temperature to boiling point of the solvent employed. The compound (III) may be 10 used in an amount of equivalent to the compound (II) or more. A base may be added to facilitate the reaction. The base, which may be employed for this purpose, may include, not limited thereto, an inorganic base such as sodium carbonate, potassium carbonate, or sodium bicarbonate, or an organic 15 base such triethylamine, as diisopropylethylamine, dimethylaniline, pyridine, or quinoline. If no base is the reaction system, the compound (III) is preferably used in an amount of more than 2 equivalents.

The compound (II) of the present invention can be 20 prepared by following the reactions shown in the following Reaction Scheme 1.

[Reaction Scheme 1]

$$\begin{array}{c|c}
A & R_3 \\
\hline
 & R_1 \\
\hline
 & R_2 & H
\end{array}$$
(VII)

$$R_{3} \qquad R_{1} \qquad (11)$$

wherein, R_1 , R_2 , R_3 , and X have the same meanings as defined 15 above.

The compound (IV) is reacted with the compound (V) in absence of solvent at a temperature of 100°C to 150°C, or in the presence of solvent selected from toluen, chlorobenzene or xylene at a temperature of the boiling point of the solvent 20 employed to give the compound (VI). The compound (VI) is then subjected to cyclization in diphenyl ether by heating to a temperature of 200°C to the boiling point of the solvent employed to prepare the naththylidine nucleus of the formula The compound (II) in which the group X is a halogen 25 atom, preferably chlorine, can be prepared by reacting the compound (VII) with phosphoryl chloride, phosphorous trichloride, or phosphorous pentachloride under the reaction conditions known to those of skill in the art. The compound (II) in which the group X is sulfonate or phosphonate group can 30 be prepared by reacting the compound (VII) with

chloride or phosphoryl chloride in dichloromethane, chloroform, or 1,2-dichloroethane in the presence of a base such as triethylamine, diisopropylethylamine, dimethylaniline, pyridine or quinoline at a temperature of -10℃ to room temperature to give the compound (II).

novel 4-amino-3-acylnaphthyridine derivatives by represented the general formula (I) or pharmaceutically acceptable salts effectively inhibit H^{+}/K^{+} a proton carrying enzyme, SO that thev 10 advantageously used for inhibiting the secretion of gastric juices or treating gastrointestinal ulcers.

The methods and results of pharmacological experiments and acute toxicity experiments carried out using the representative compounds (I) of the present invention are described below.

1. Inhibition of H'/K' ATPase

Inhibition of H^*/K^* ATPase, a proton carrying enzyme, was measured by following the procedure of Saccomani et al. 20 [Biochim. Biophy. Acta., 465, 311-330 (1977)]. Thus, a homogenate of the gastric mucose membrane of rabbit was used to prepare vesicles containing H⁺/K⁺ ATPase by differential centrifugation and discontinuous density gradient centrifugation in Ficoll. The vesicles containing the enzyme 25 were preincubated in a solution (0.5ml) containing 1 \times 10⁻⁴M, 1 \times 10⁻⁵M, 1 \times 10⁻⁶M, or 1 \times 10⁻⁷M of the inventive compounds shown in Table 1 and 5 mM of imidazole buffer (pH 7.4) at a temperature of about 37°C for about 30 minutes. was used as a control. A solution containing 2 mM of 30 magnesium chloride, 40 mM of imidazole buffer (pH 7.4), 10 mM

of potassium chloride and 10 mM of ATP was added to the mixture. The resulting mixture was incubated at 37°C for 15 minutes and the reaction was terminated by adding 1 ml of ice-cold 22% solution of trichloroacetic acid. Enzyme activity was calculated by measuring the separated inorganic phosphate by following the method of Fiske and Subbarow [J. Biol. Chem., 66, 375-440 (1925)]. The concentrations (IC50) of the test compounds which inhibit the enzyme activity by 50% are shown in Table 1.

10 '

Table 1

	Test Compound	H ⁺ /K ⁺ ATPase Inhibition (IC ₅₀ , 10 ⁻⁵ M)
	Example 11	3.16
	Example 13	2.51
15	Example 21	4.57
	Example 29	2.69
	Example 31	1.49
	Example 32	7.50
1	Example 34	2.34
	Example 35	2.05
20	Example 37	2.80
	Example 41	1.26
ĺ	Example 42	1.47
:	Example 43	1.82
ļ	Example 44	1.14
	Example 45	3.93
25	Example 55	1.68
	Omeprazole	5.75 × 10 ⁻⁵ M

2. Inhibition of Gastric Secretion

Inhibition of gastric secretion was measured by 30 following the procedure of Shay ligation (Gastroenterology,

1954, 26, 903). Thus, male Sprague Dawley rats weighing 180 - 200g were starved for 24 hours and their pylorus were ligated. Then, the inventive compounds shown in Table 2 or omeprazole as a positive control was administered into duodenum. Four hours later, the stomach was removed, and the acidity and amount of gastric juice were measured. By comparing the measured values with the acidity and amount of the gastric juice of the stomach of the reference group to which no test compound was administered, the inhibition of gastric secretion 10 was calculated. The effective dose (ED50) of the test compounds which inhibit the gastric secretion by 50% are shown in Table 2.

Table 2

15	Test Compound	Gastric juice Secretion Inhibition (ED50, mg/kg)
	Example 13	42.1% (12.5 mg/kg)
:	Example 15	30.0
	Example 21	11.7
	Example 32	36.6
20	Example 34	30.0
	Example 37	13.3
	Example 49	35.8% (12.5 mg/kg)

25 3. Ulcer Inhibition

1) Inhibition of ethanol-induced lesions

Inhibition activity of the inventive compound on the ethanol-induced lesions was measured by using male Sprague-Dawley rats weighing 180 - 200g. Thus, rats were 30 starved for 24 hours, and the inventive compounds shown in

Table 3 or omeprazole as a positive control was orally administered. Thirty minutes later, absolute ethanol (5 ml/kg) was orally administered. 1.5 hours later, the stomach was removed, and the degree of the wound of the stomach was measured. By comparing the measured values with the degree of the wound of the stomach the reference group to which no test compound was administered, the concentrations (IC50) of the test compounds which inhibit the ulcer by 50% were calculated and are shown in Table 3.

10 2) Inhibition of mepirizole-induced ulcer.

Inhibition activity of the inventive compound on the mepirizole-induced ulcer was measured by using Spraque-Dawley rats weighing 200 - 230g. Thus, rats were not starved, and the inventive compounds shown in Table 3 or 15 omeprazole as a positive control was orally administered. Thirty minutes later, mepirizole suspended in 1% CMC (250 mg/ Before administration, the kg) was orally administered. rats were starved for 24 hours, the duodena were removed. The degree of the ulcer thereof was measured. By comparing 20 the measured values with the degree of the ulcer of the duodena of the reference group to which no test compound was administered, the effective deses (ED50) of the test compounds which inhibit the ulcer by 50% were calculated and are shown in Table 3.

25 3) Inhibition of indomethacin-induced lesions

Inhibition activities of the inventive compounds on the indome]thacin-induced lesions was measured by using male Sprague-Dawley rats. Thus, rats were starved for 48 hours and prohibited from being supplied with water for 2 hours, 30 and 35 mg/kg of indomethacin (Sigma Co.) as a causative of

gastric lesions was subcutaneously administered. Before Indomethacine treatment, the inventive compounds shown in Table 3 or omeprazole as a positive control was orally administered, and the inhibitions of lesions by the action of the test compounds were observed. The effective doses (ED₅₀) of the test compounds which inhibit the lesions by 50% were measured and are shown in Table 3.

4) Inhibition of stress-induced ulcer

Inhibition activity of the inventive compound on the 10 stress-induced ulcer was evaluated by using male Spraque-Dawley rats. Thus, rats were starved for 24 hours prior to carrying out the experiment.

Stress is an important factor for causing gastric ulcer, and was applied to rats by immersing them in water. 15 Then, the inventive compounds shown in Table 3 or omefrazole as a control was orally administered, and the inhibitions of ulcer by the action of the test compounds were observed. The concentrations (ED_{50}) of the test compounds which inhibit the ulcer by 50% were measured and are shown in Table 3.

20 5) Inhibition of acetic acid-induced ulcer

Inhibition activity of the inventive compound on the acetic acid-induced ulcer was evaluated by using male Sprague-Dawley rats. Thus, rats were starved for 5 hours prior to carrying out the experiment.

20 Microliter of 30% acetic acid was injected into the submucosal layer of the stomach using a microsyringe to induce a circular ulcer on the stomach. Various doses of the inventive compounds or omeprazole as a positive control were orally administered for 10 days, and the healing of ulcer by 30 the action of the test compounds were observed. The

percentages of the healing of the ulcer were calculated by comparing them with that of reference group.

Table 3

5

10

Test		Anti-ulce	r activity (EDs	., mg/kg)	
Compound	Ethanol	Mepirizole	Indomethacin	Stress	Acetic acid
Control (Omeprazole)	17.5	2.8	1.2	4.4	27.1
Ex. 21 Ex. 15 Ex. 34	11.2 12.8 30.6	64.1	2.1 2.1 4.9	13.0	22.0

* : Percentage of healing in 30 mg/kg

4. Acute Toxicity

ICR mice (male and female) were orally administered with high doses (maximum dose : 5 g/kg) of inventive compound (Example 21) and were observed for their sudden death or a lasting of morbid conditions for 14 days. A median lethal dose (LD₅₀), an index of acute toxicity was measured and is shown in Table 4.

Table 4

	Compound	Sexuality	Dose (mg/kg)	No. of animals	No. of Death	Lethality (%)	LD ₅₀ (mg/kg)
25	Ex. 21	Male	0 40 200 1000 5000	6 6 6 6	0 0 0 0 6	0 0 0 0 100	2336
30	EA. 21	Female	0 40 200 1000 5000	6 6 6	0 0 0 1 6	0 0 0 17 100	1133

As can be seen from the results of Tables 1 to 4, it was confirmed that 4-amino-3-acylnaphthyridine derivatives show excellent inhibition activity against H^{+}/K^{+} ATPase and effectively suppress the secretion of gastric juices so that they can advantageously be used as an anti-ulcer agent.

The present invention will be described in more detail by way of Examples.

Example 1

- 10 Preparation of ethyl 4-(2-methylphenylamino)-8-methoxy-1,7-naphthyridine-3-carboxylate.
 - (A) Ethyl 2-ethoxycarbonyl-3-(2-methoxypyridine-3-yl) aminoacrylate
- 3-amino-2-methoxypyridine (12.0g) was reacted with diethyl ethoxymethylene malonate (23.0g) at a temperature of 120°C to 130°C for 30 minutes while distilling ethanol produced during the reaction. After completion of the reaction, the reaction mixture was cooled to 60°C, and poured into petroleum ether (200 ml) and cooled to 0°C. The resulting precipitates were filtered to give 23.5g (82%) of the titled compound.

m.p. : 65℃

25

1
H-NMR (CDCl₃) : δ 1.35(t, 3H), 1.40(t, 3H), 4.19(s, 3H), 4.27(g, 2H), 4.32(g, 2H), 6.95(dd, 1H), 7.49(d, 1H), 7.94(d, 1H), 8.51(d, 1H)

(B) Ethyl 8-methoxy-1,7-naphthyridi-4(1H)-one-3-carboxylate
28.5 g of ethyl 2-ethoxycarbonyl-3-(2-methoxypyridin
-3-yl)aminoacrylate prepared in the above (A) was dissolved
in 150 ml of diphenyl ether, and the resulting solution was
30 heated to reflux for 1.5 hours and cooled to about 60℃.

Petroleum ether was added to give precipitates, which were filtered to give 14.1g (59%) of the titled compound as brown crystals.

m.p. : 230 - 233℃

- 5 1 H-NMR (CDCl₃/DMSO-d₆) : δ 1.40(t, 3H), 4.18(s, 3H), 4.37(g, 2H), 7.69(d, 1H), 8.03(d, 1H), 8.51(s, 1H), 12.05(br.s, 1H)
 - (C) Ethyl 4-methanesulfonyl-8-methoxy-1,7-naphthyridin-3-carboxylate
- 4.96g of ethyl 2-methoxy-1,7-naphthyridi-4(1H)-one-3-carboxylate and 4.2 ml of triethylamine were dissolved into 70ml of dichloromethane, and a solution of methanesulfonyl chloride (1.85 ml) in dichloromethane (10 ml) was added dropwise at a temperature of 0°C to 5°C. The resulting mixture was stirred for 1 hour at the same temperature. Water was added, and the resulting mixture was extracted with dichloromethane three times, and the organic phase was washed with water and then brine, dried over magnesium sulfate and distilled under reduced pressure. Ether was 20 added to the residue to give 4.4g (67%) of the titled compound as yellow crystals.
 - $^{1}\text{H-NMR}$ (CDCl₃) : δ 1.48(t, 3H), 3.56(s, 3H), 4.25(s, 3H), 4.50(g, 2H), 7.71(d, 1H), 8.31(d, 1H), 9.40(s, 1H)
- 25 (D) Ethyl 4-(2-Methylphenylamino)-8-methoxy-1,7-naphthyridine
 -3-carboxylate
- Ethyl 4-methanesulfonyl-8-methoxy-1,7-naphthyridine
 -3-carboxylate (261 mg and o-toluidine (0.17 nl) were
 dissolved into 7 ml of acetonitrile and the solution was
 30 heated to reflux for 30 minutes. After cooling the mixture,

the solvent was evaporated under reduced pressure and the residue was dissolved into chloroform. The solution was washed with water and then saturated sodium bicarbonate, dried, and concentrated under reduced pressure. The residue was subjected to silica gel column chromatography using a mixture of hexane: ethyl acetate (2:1) as an eluant to give yellow titled compound (180 mg, 67%).

m.p. 158℃

¹H-NMR (CDCl₃): δ 1.47(t, 3H), 2.39(s, 3H), 4.19(s, 3H), 4.48(g, 2H), 6.69(d, 1H), 6.89-7.37(m, 4H), 7.68(d, 1H), 9.29(s, 1H), 10.47(br.s, 1H)

Examples 2 - 17

By following the procedure described in Example 1 (D)

15 by employing ethyl

4-methanesulfonyl-8-methoxy-1,7-naphthyridine -3-carboxylate

prepared in Example 1 (C) and various amines under, there were

obtained inventive compounds of Examples 2-17. These

compounds and their physical properties are shown in Table 5.

20

Example 18

Preparation of 3-butyryl-4-(2-methylphenylamino)-8-methoxy-1,7-naphthyridine

(A) Ethyl 2-butyryl-3-(2-methoxypyridine-3-yl)aminoacrylate
25 2-methoxy-3-aminopyridine (5.25g) and ethyl
2-butyryl-3-ethoxy acrylate (9.44g) were reacted at a
temperature of 120℃ to 130℃ under heating for 30 minutes
while distilling ethanol produced during the reaction.
After completion of the reaction, the reaction mixture was
30 cooled to 60℃, and poured into petrolium ether (100 ml) and

cooled to 0° C. The resulting precipitates were filtered to give 11.24g (90%) of the titled compound.

 1 H-NMR (CDCl₃) : δ 0.99(t, 3H), 1.38(t, 3H), 1.85(m, 2H), 2.97(t, 2H), 4.12(s, 3H), 4.30(g, 2H), 6.97(dd, 1H), 7.55(d, 1H), 7.99(d, 1H), 8.51(d, 1H), 12.68(br.s, 1H)

- (B) 3-Butyryl-8-methoxy-1,7-naphthyridi-4(1H)-one
- 11.23 g of ethyl 2-butyryl-3-(2-methoxypyridine -3-yl)aminoacrylate prepared in the above (A) was dissolved 10 in 60 ml of diphenyl ether, and the resulting solution was heated to reflux for 2 hours and cooled to about 50°C. Petroleum ether (200 ml) was added to give precipitates, which were filtered to give 6.3g (76%) of the titled compound as brown crystals.
- 15 m.p. : 206 207℃

 1 H-NMR (CDCl₃/DMSO-d₆) : δ 0.98(t, 3H), 1.69(m, 2H), 3.17(t, 2H), 4.15(s, 3H), 7.69(d, 1H), 8.04(d, 1H), 8.45(s, 1H), 12.23(br.s, 1H)

- (C) 3-Butyryl-4-methanesulfonyl-8-methoxy-1,7-naphthyridine
- 4.93g of 3-butyryl 8-methoxy-1,7-naphthyridi-4(1H)-one and 4.2 ml of triethylamine were dissolved into 70 ml of dichloromethane, and a solution of methanesulfonyl chloride (1.85 ml) in dichloromethane (10 ml) was added dropwise at a temperature of 0°C to 5°C. The resulting mixture was stirred 25 for 1 hour at the same temperature. Water was added, and the resulting mixture was extracted with dichloromethan three times, and the organic phase was washed with water and then brine, dried over magnesium sulfate and distilled under reduced pressure. Ether was added to the residue to give 30 4.61g (71%) of the titled compound as yellow crystals.

m.p. : 184-185℃

 1 H-NMR (CDCl₃) : δ 1.05(t, 3H), 1.81(m, 2H), 3.05(t, 2H), 3.49(s, 3H), 4.28(s, 2H), 7.67(s, 3H), 8.25(d, 1H), 9.17(s, 1H)

5 (D) 3-Butyryl-4-(2-methylphenylamino)-8-methoxy-1,7-naphthyridine

3-Butyryl-4-methanesulfonyl-8-methoxy-1,7-naphthyridine (259 mg) and o-toluidine (0.17 ml) were dissolved into 7 ml of acetonitrile, and the solution was extracted with 10 chloroform, and the organic phase was washed with water and then saturated sodium bicarbonate. After drying, and concentration under reduced pressure, the resulting residue was subjected to silica gel column chromatography using a mixture of hexane: ethyl acetate (1:1) as an eluant to give yellow titled compound (150 mg, 56%).

m.p. 144℃

¹H-NMR (CDCl₃): δ 1.08(t, 3H), 1.85(m, 2H), 2.35(s, 3H),
3.15(t, 2H), 4.19(s, 3H), 6.67(d, 1H),
6.95-7.38(m, 4H), 7.65(d, 1H), 8.22(s, 1H),
11.85(br.s, 1H)

Examples 19 - 32

By following the procedure described in Example 18 (D) by employing 3-butyryl-4-methanesulfonyl-8-methoxy-1,7-25 naphthyridine prepared in Example 18 (C) and various amines under, there were obtained inventive compounds of Examples 19-32. These compounds and their physical properties are shown in Table 5.

Example 33

preparation of 3-butyryl-8-ethoxy-4-(2-methylphenylamino)
-1,7-naphthyridine

- (A) 3-butyryl-8-ethoxy-4-(2-methylphenylamino)-1,7-
- 5 naphthyridine

Ethyl 2-butyryl-3-(2-ethoxypyridin-3-yl)aminoacrylate (93%) was prepared from 3-amino-2-ethoxypyridine and ethyl 2-butyryl-3-ethoxyacrylate by following the procedure similar to that of Example 18 (A), and then the product was subjected to cyclization in a similar manner to that of Example 18 (B) tl give 3-butyryl-8-ethoxy-1,7-naphthyridi-4(1H)-one (86%), which is then subjected to methanesulfonylation in a similar manner to that of Example 18 (C) to give 3-butyryl-8-methoxy -4-methanesulfonyl-1,7-naphthyridine (67%).

15 m.p. 115-116℃

 1 H-NMR (CDCl₃) : δ 1.04(t, 3H), 1.50(t, 3H), 1.80(m, 2H), 3.00(t, 2H), 3.41(s, 3H), 4.32(s, 3H), 7.62(d, 1H), 8.23(d, 1H), 9.25(s, 1H)

(B) 3-Butyryl-8-ethoxy-4-(2-methylphenylamino)-1,7-naphthyridine
3-Butyryl-8-ethoxy-4-methanesulfonyl-1,7-naphthyridine
(338 mg) and o-toluidine (214 mg) were dissolved into 7 ml of acetonitrile, and the solution was heated to reflux for 30 minutes and concentrated to evaporate solvent under reduced pressure. Water was added to the residue, and the mixture
25 was extracted with chloroform, and the organic phase was washed with water and then saturated sodium bicarbonate. After drying, and concentration under reduced pressure, the resulting residue was subjected to silica gel column chromatography using a mixture of hexane: ethyl acetate (2:1)
30 as an eluant to give yellow titled compound (300 mg, 86%).

m.p. 112℃

 1 H-NMR (CDCl₃) : δ 1.05(t, 3H), 1.55(t, 3H), 1.83(m, 2H), 2.36(s, 3H), 3.10(t, 2H), 4.61(g, 2H), 6.65(d, 1H), 6.91-7.38(m, 4H), 7.82(d, 1H), 9.25(d, 1H), 11.81(s, 1H)

Examples 34 - 42

By following the procedure described in Example 33 (B) by employing 3-butyryl-8-ethoxy-4-(2-methylphenylamino)-1,7-10 naphthyridine prepared in Example 33 (A) and various amines under, there were obtained inventive compounds of Examples 34-42. These compounds and their physical properties are shown in Table 5.

15 Example 43

Preparation of 3-Butyryl-8-isopropoxy-4-(2-methylphenylamino)
-1,7-naphthyridine

- (A) 3-Butyryl-8-isopropoxy-4-methanesulfonyl-1,7-naphthyridine
- 3-Amino-2-isopropoxypyridine was reacted in a similar manner to that of Example 33 (A) to give the titled compound. $^{1}\text{H-NMR}$ (CDCl₃): δ 1.05(t, 3H), 1.51(d, 6H), 1.80(m, 2H), 3.02(t, 2H), 3.45(s, 3H), 5.69(s, 3H), 7.61(d, 1H), 8.23(d, 1H), 9.19(s, 1H)
- 25 (B) 3-Butyryl-8-isopropyl-4-(2-methylphenylamino)-1,7-naphthyridine

By following a similar procedure described in Example 33 (B) using 3-Butyryl-8-isopropyl-4-methanesulfonyl-1,7-naphthyridine (282 mg) and o-toluidine (0.17 ml) to give the 30 titled compound (168 mg, 58%).

 1 H-NMR (CDCl₃) : δ 1.03(t, 3H), 1.52(d, 6H), 1.82(s, 3H), 2.38(s, 3H), 3.10(q, 2H), 5.59(m, 1H), 6.62(d, 1H), 6.90-7.35(m, 4H), 7.85(d, 1H), 9.30(s, 1H), 11.80(s, 1H)

5

Examples 44 - 45

By following the procedure described in Example 43 (B) by employing 3-butyryl-8-isopropoxy-4-methanesulfonyl-1,7-naphthyridine prepared in Example 43 (A) and various amines, 10 there were obtained inventive compounds of Examples 44-45. These compounds and their physical properties are shown in Table 5.

Example 46

- 15 Preparation of Ethyl -4-(2-methylphenylamino)-8-(4-morpholino)-1,7-naphthyridine-3-carboxylate
 - (A) Ethyl 4-methanesulfonyl-8-(4-morpholino)-1,7naphthyridine-3-carboxylate
- 3-Amino-2-(4-morpholino)pyridine was reacted in 20 similar manners to those of Example 1 (A) (C) to give the titled compound.
 - $^{1}\text{H-NMR}$ (CDCl₃) : δ 1.45(t, 3H), 3.51(s, 3H), 3.80-4.05(m, 8H), 4.49(q, 2H), 7.50(d, 1H), 8.29(d, 1H), 9.27(s, 1H)
- 25 (B) Ethyl 4-(2-methylphenylamino)-8-(4-morpholino)-1,7-naphthyridine-3-carboxylate

By following a similar procedure described in Example 1
(D) using ethyl 4-methanesulfonyl-8-(4-morpholino)-1,7naphthyridine-3-carboxylate (305 mg) and o-toluidine (0.17
30 ml) to give the titled compound (203 mg, 65%).

 1 H-NMR (CDCl₃) : δ 1.46(t, 3H), 2.40(s, 3H), 3.75-4.01(m, 8H), 4.45(q, 2H), 6.65(d, 1H), 6.80-7.35(m, 4H), 7.75(d, 1H), 9.19(s, 1H)

5 Examples 47 - 57

By following the procedure described in Example 46 (B) by employing ethyl 4-methanesulfonyl-8-(4-morpholino)-1,7-naphthyridine-3-carboxylate prepared in Example 46 (A), there were obtained inventive compounds of Examples 47-57.

10 These compounds and their physical properties are shown in Table 5.

Example 58

Preparation of Ethyl 4-(2-methylphenylamino)-8-(1-15 piperidino)-1,7-naphthyridine-3-carboxylate

Ethyl 4-methanesulfonyl-8-(1-piperidino)-1,7naphthyridine-3-carboxylate (303 mg) prepared by reacting
3-amino-2-(1-piperidino)pyridine in same manners as those of
Example 1 (A) - (C) was reacted with o-toluidine (0.17 ml) in
the same manner as that of Example 1 (D) to give the titled
compound (187 mg, 60%).

 1 H-NMR (CDCl₃) : δ 1.25(t, 3H), 1.60-1.90(m, 6H), 2.25(s, 3H), 3.81(m, 4H), 4.45(q, 2H), 6.59(d, 1H), 6.80-7.38(m, 4H), 7.78(d, 1H), 9.20(s, 1H), 10.25(br.s, 1H)

Example 59

25

Preparation of Ethyl 4-(1-indanylamino)-8-(1-piperidino)-1,7-naphthyridine-3-carboxylate

30 Ethyl 4-methanesulfonyl-8-(1-piperidino)-1,7-

naphthyridine-3-carboxylate (303 mg) prepared in Example 58 was reacted with 1-aminoindane in the same manner as that of Example 58 to give the titled compound (60%).

```
^{1}H-NMR (CDCl<sub>3</sub>) : \delta 1.39(t, 3H), 1.62-1.88(m, 6H), 2.00-2.23(m, 1H), 2.65-3.15(m, 3H), 3.80(m, 4H), 4.45(q, 2H), 5.64(q, 1H), 7.20-7.50(m, 5H), 8.04(d, 1H), 9.05(d, 1H), 9.08(s, 1H)
```

10

15

20

25

Table 5

Compound	Rı	R2	Ar Yie	Yield(%) m·p(C)		1H-NMR(CDCI3)
Example 2	Ethoxy	Methoxy	Phenyl	62 127	1.45(t,3H), 4.20(s,3H), 4.48(q,2H), 7.75(d,1H), 9.30(s,1H), 10.50(br.s,1H).	_{1,} 211), 6.85(d,111), 7.05-7.40(m,511), 111).
Example 3	Ethoxy	Methoxy	2-Methoxyphenyl	67 194	1.45(t,3H), 3.84(s,3H), 4.21(s,3H), 9.29(s,1H), 10.30(s,1H).	1.45(t,3H), 3.84(s,3H), 4.21(s,3H), 4.48(q,2H) 6.80-7.25(m,5H), 6.78(d,HH), 9.29(s,HH), 10.30(s,HH).
Example 4	Ethoxy	Methoxy	2-Trifluoromethyl phenyl	35 146	1.44(t,3H), 4.20(s,3H), 4.50(q,2H), 7.79(d,1H), 9.39(s,1H), 10.55(s,1H).	1.44(t,3H), 4.20(s,3H), 4.50(q,2H), 6.70(d,1H), 6.82(d,1H), 7.35(m,3H), 7.79(d,1H), 9.39(s,1H), 10.55(s,1H).
Example 5 Ethoxy	Ethoxy	Methoxy	2-Chlorophenyl	58 160	1.45(t,3H), 4.21(s,3H), 4.49(g,2H), 6.82(d,HH) 7.53(m,HH), 7.80(d,HH) 9.38(s,HH), 10.39((s,HH)).	1.45(t,3H), 4.21(s,3H), 4.49(g,2H), 6.82(d,1H), 6.83(m,HH),7.15(m,2H),7.53(m,HH), 7.80(d,HH) 9.38(s,HH), 10.39((s,HH).
Example 6 Ethoxy	Ethoxy	Methoxy	2-Fluorophenyl	60 146	1.49(t,3H), 4.22(s,3H), 4.50(g,2H), 7.79(d,1H), 9.33(s,1H), 10.39(s,1H).	5,21D), 6.88(d,111), 7.00-7.25(m,41D),
Example 7 Ethoxy	Ethoxy	Methoxy	4-Methylphenyl	61 151	1.45(t,3H), 2.39(s,3H), 4.20(s,3H), 4.47(q,2H), 7.18(d,2H), 7.72(d,1H), 9.28(s,1H), 10.49(s,1H).	1.45(t,3H), 2.39(s,3H), 4.20(s,3H), 4.47(q,2H), 6.85(d,1H), 6.99(d,2H), 7.12(d,1H), 9.28(s,1H), 10.49(s,1H).
Example 8	Ethoxy	Methoxy	3-Methoxyphenyl	64 . 174	1.47(t,3H), 3.78(s,3H), 4.20(s,3H), 4.49(q,2H), 6.7.21(d,1H), 7.79(d,1H), 9.29(s,1H), 10.45(s,1H).	1.47(t,3H), 3.78(s,3H), 4.20(s,3H), 4.49(q,2H), 6.60-6.81(m,3H), 6.95(d,HD), 7.21(d,1H), 7.79(d,HD), 9.29(s,HD), 10.45(s,HD).
Example 9	Ethoxy	Methoxy	4-Methoxyphenyl	60 139	1.46(t,3H), 3.85(s,3H), 4.19(s,3H), 4.45(q,2H), 7.05(d,2H), 7.70(d,1H), 9.25(s,1H), 10.55(s,1H).	1.46(t,3H), 3.85(s,3H), 4.19(s,3H), 4.45(q,2H), 6.81(d,HH), 6.90(d,2H), 7.05(d,2H), 7.70(d,HH), 9.25(s,HH), 10.55(s,HH).

Example 10 Ethoxy	Methoxy	3-Fluorophenyl	57 152	2 1.49(t,3H), 4.22(s,3H), 4.50(q,2H), 6.72-6.98(m,3H), 7.30(,m,HH), 7.81(d,HH), 9.35(s,HH), 10.40(s,HH).,
Example 11 Ethoxy	Methoxy	4-I ⁷ luorophenyl	59 161	1 1.47(t,3H), 4.19(s,3H), 4.48(q,2H), 6.79(d,HH), 7.05(d,HH), 7.75(d,HH), 9.30(s,HH), 10.45(s,HH).
Example 12 Ethoxy	Methoxy	4-n-Butoxyphenyl	44 105	
Example 13 Ethoxy	Methoxy	4-n-13utylphenyl	37 108	10.55(s,1H). 8 0.97(t,3H), 1.25-1.70(m,4H), 1.45(t,3H), 2.63(t,2H), 4.20(s,3H), 4.47(q,2H), 6.85(d,1H), 7.00(d,2H), 7.17(d,2H), 7.71(d,1H), 9.27(s,1H), 10.48(s,1H).
Example 14 Ethoxy	Methoxy	(R)-1-Phenylethyl	69	1.45(t,311), 1.69(d,3H), 4.15(s,1H), 4.44(q,2H), 5.30(m,1H), 7.35(m,6H), 7.80(d,1H), 9.18(s,1H), 9.55(d,1H).
Example 15 Ethoxy	Methoxy	(S)-1-Phgnylethyl	00 110	1.45(t,311), 1.69(d,311), 4.14(s,1H), 4.45(q,211), 5.30(m,1H), 7.35(m,6H), 7.80(d,1H), 9.19(s,1H), 9.55(d,1H).
Example 16 Ethoxy	Methoxy	Benzyl	85 148	3 1.42(t,311), 4.20(s,311), 4.40(q,211), 5.00(d,211), 7.40(m,511), 7.55(d,111), 7.91(d,111), 9.19(s,111), 9.55(br.s,111)
Example 17 Ethoxy	Methoxy	2-Methylthiophenyl	71 174	1.45(t,3H), 2.53(s,3H), 4.20(s,3H), 4.45(q,2H), 6.76(d,1H), 6.77-7.40(m,4H), 7.75(d,HH), 9.30(s,HH), 10.40(s,HH).
Example 19n-Propyl	Methoxy	4-Methylphenyl	62 145	1.05(t,3H), 1.82(m,2H), 2.39(s,3H), 3.13(t,2H), 4.19((s,3H), 6.83(d,1H), 7.01(d,2H), 7.18(d,2H), 7.70(d,1H), 9.21(s,1H), 11.82(s,1H)
Example 20n-Propyl	Methoxy	Phenyl	64 119	1.05(t.3H), 1./81(m,2H), 3.12(t,2H), 4.20(s,3H), 6.82(d,1H), 7.09-7.40(m,5H), 7.71(d,1H), 9.22(s,1H), 11.81(s,1H).
Example 21n-fropyl	Methoxy	(R)-1-Phenylethyl	57 111	1.07(t,311), 1.73(d,311), 1.82(m,211), 3.08(t,211), 4.18(s,311), 5.37(m,111), 7.25-7.49(m,611), 7.80(d,111), 9.15(s,111), 11.31(d,111).

Example 22 n-Propyl	Methoxy	(S)-1-Phenylethyl	54 110		1.05(t,311), 1.73(d,314), 1.81(m,211), 3.08(t,211), 4.18(s,311), 7.24-7.46(m,611), 7.79(d,111), 9.13(s,114), 11.13(d,111).	5.38(m,111),
Example 23 n-Propyl	Methoxy	2-Methoxyphenyl	63 135		1.03(t,3H), 1.81(m,2H), 3.12(t,2H), 3.79(s,3H), 6.83-7.27(m,5H), 7.70(d,1H), 9.21(s,1H), 11.67(s,1H).	4.20(s,311),
Example 24 n-Propyl	Methoxy	3-Methoxyphenyl	60 144	1.07(t,311), 1.8 6.65-6.85(m,411),	1.83(m,211), 3.18(t,211), 3.80(s,311),), 6.95(d,111), 7.30(d,111), 7.78(d,111),	4.20(s,311), 9.25(s,111),
Example 25 n-Propyl	Methoxy	4-Methoxyphenyl	50 125	1.05(t,311), 6.91(d,211),	1.05(t,3H), 1.82(m,2H), 3.16(t,2H), 3.82(s,3H), 4.19(s,3H), 6.91(d,2H), 7.08(d,2H), 7.69(d,1H), 9.20(s,1H), 11.90(s,1H).	, 6.80(d,111),
Example 26 n-Propyl	Methoxy	2-Methylthiophenyl	73 107		1.08(t,3H), 1.85(m,2H), 2.52(s,3H), 3.15(t,2H), 4.20(s,3H), 6.88-7.40(m,4H), 7.71(d,HH), 9.24(s,HH), 11.76(s,HH).	, 6.75(d,111),
Example 27 n-Propyl	Methoxy	Benzyl	75 129		1.01(t,311), 1.79(m,211), 3.01(t,211), 4.19(s,311), 5.00(d,211), 7.55(d,111), 7.90(d,111), 9.12(s,111), 11.05(br.s,111).	5.00(d,211), 7.40(m,511),
Example 28 n-Propyl	Methoxy	2-Phenylethyl	64 98	•	1.03(t,3H), 1.79(m,2H), 3.05(m,4H), 4.12(m,2H), 4.20(s,3H), 7.30(m,5H), 7.60(d,1H), 7.97(d,1H), 9.05(s,HH), 10.85(s,HH).	, 7.30(m,511),
Example 29 n-Propyl	Methoxy	4-Phenyl-n-butyl	50 90		1.05(t,3H), 1.80-2.05(m,6H), 2.71(m,2H),3.03(t,2H), 3.85(m,2H), 4.21(s,1H), 7.28(m,5H), 7.60(d,1H), 7.98(d,1H), 9.05(s,1H),10.82(s,1H).	I), 4.21(s,111),
Example 30 n-Propyl	Methoxy	4-n-Butylphenyl	94		0.91(t,3H), 1.04(t,3H), 1.21-1.90(m,6H), 2.62(t,2H), 3.07(t,2H), 4.18(s,3H), 6.81(d,1H), 7.02(d,2H), 7.18(d,2H), 7.65(d,1H), 8.22(s,1H), 11.80(s,1H).), 4.18(s,3H), .80(s,1H).
Example 31 n-Propyl	Methoxy	3-Indanyi	34 156		1.05(t,3H), 1.81(m.2H), 2.15(m,2H), 2.90(m,4H), 3.12(t,2H), 4.20(s,3H), 6.85-7.03(m,3H), 7.20(d,1H), 7.70(d,1H), 9.20(s,1H), 11.86(s,1H).), 4.20(s,3H), H).
Example 32 n-Propyl	Methoxy	1,2,3,4-Tetrahydro -1-naphtyl	31 119	1.02(t,311), 5.40(m,1H), 10.75(d,1H).	1.60-2.30(m,6H), 2.87(m,2H), 3.00(t,2H), 7.10-7.35(m,4H), 7.59(d,1H), 7.99(d,1H),	4.20(s,3H), 9.15(s,1H),

E.Yample 34 n-Propyl	Ethoxy	2-Methylthiophenyl	7.9 13	136 1.05(t,3	1.05(t,3H), 1.58(t,3H), 1.85(m,2H), 2.52(s,3H), 3.11(t,2H), 4.62(q,2H), 6.70(d,HH), 6.85-7.38(m,4H), 7.69(d,1H), 9.25(s,HH), 11.70(s,HH).
Example 35 n-Propyl	Ethoxy	4-n-Butylphenyl	86 121		0.96(t,3H), 1.03(t,3H), 1.25-1.90(m,6H), 1.59(t,3H), 2.6H(t,2H), 3.17(t,2H), 4.6H(q,2H), 6.80(d,HP), 7.0H(d,2H), 7.18(d,2H), 7.65(d,HP), 9.2H(s,HP),
Example 36 n-Propyl	Ethoxy	(S)-1-Phenylethyl	69 75		1.03(t,311), 1.56(t,311), 1.70(d,311), 1.82(m,211), 3.05(t,211), 4.60(q,211), 5.35(m,111), 7.21~7.50(m,611), 7.79(d,111), 9.17(s,111) 11.07(d,111).
Example 37 n-Propyl	Ethoxy	(R)-1-Phenylethyl	92 69		1.03(t,3H), 1.57(t,3H), 1.69(d,3H), 1.81(m,2H), 3.05(t,2H), 4.60(q,2H), 5.36(m,1H), 7.20~7.50(m,6H), 7.78(d,1H), 9.17(s,1H), 10.05(d,1H).
Example 38 n-Propyl	Ethoxy	4-Methylphenyl	86 137		1.05(t,3H), 1.58(t,3H), 1.83(m,2H), 2.39(s,HH), 3.16(t,2H), 4.62(q,2H), 6.82(d,1H), 6.96-7.23(q,4H), 7.70(d,HH), 9.25(s,HH), 11.82(s,HH).
Example 39 n-Propyl	Ethoxy	4-Fluorophenyl	74 157		1.05(t,3H), 1.57(t,3H), 1.82(m,2H), 3.12(t,2H), 4.62(q,2H), 6.75(d,HH), 7.10(m,4H), 7.70(d,HH), 9.28(s,HH), 11.79(s,HH).
Example 40 n-Propyl	Ethoxy	2-Trifluoromethyl- phenyl	57 160		1.06(t,3H), 1.60(t,3H), 1.89(m,2H), 3.14(t,2H), 4.68(q,2H), 6.67(d,1H), 6.90(d,1H), 7.38(m,2H), 7.73(d,1H), 7.78(d,1H), 9.32(s,1H), 11.81(s,1H).
Example 41 n-Propyl	Ethoxy	4-Phenyl-n-butyl	57 73		H), 1.58(t,3H), 1.58-1.90(m,6H), 2.67(m,2H), 3.00(t,2H), 2H), 4.62(q,2H), 7.12-7.37(m,5H), 7.58(d,1H), 7.95(d,1H),
Example 42 n-Propyl	Ethoxy	1,2,3,4.Tetrahydro -1-naphtyl	59 136		5.08(s,114), 10.80(s,114). 1.02(t,314), 1.61(t,314), 1.68-2.30(m,614),2.90(m,214), 3.00(t,214), 4.67(q,214), 5.42(m,114), 7.12-7.35(m,417), 7.60(d,114), 7.98(d,114), 9.18(s,114),
Example 44n-Propyl	i-Propoxy	2-Methylthiophenyl	70 144		.105(t,3H), 1.52(d,6H), 1.85(m,2H), 2.51(s,3H), 3.10(t,2H), 5.60(m,1H), 6.68(d,1H), 6.82-7.40(m,4H), 7.69(d,1H), 9.30(s,HH), 10.65(s,1H).
Example 45 n-Propyl	i-Propoxy	2-Tritluoromethyl- phenyl	36 127	-	1.04(t.3H), 1.53(d,6H), 1.84(m,2H), 3.12(t,2H), 5.61(m,1H), 6.63(d,1H), 6.92(d,1H), 7.39(m,2H), 7.73(d,1H), 7.79(d,1H), 9.37(s,1H), 11.80(d,1H).

EXample 47 Ethoxy	4-Morpho- linyt	Phenyl	73	1.45(t,1H), 3.95(m,8H), 4.45(q,2H), 6.80(d,1H), 7.00-7. 7.80(d,1H), 9.18(s.1H), 10.40(s,1H).	7.00-7.58(m,511),
Example 48 Edway	4-Morpho- linyl	4-Nethylphenyl	89	1.44(t,3H), 2.38(s,3H), 3.90(m,8H), 4.45(q,2H)6.81(d,HH), 6.96(d,2H), 7.15(d,2H), 7.79(d.HH), 9.19(s,HH), 10.38(s,HH).	6.96(d,211),
Example 49 Ethoxy	4-Morpho- linyl	2-Methoxyphenyl	77	1.43(4,3H), 3.70-4.20(m,11H), 4.42(q,2H), 6.75-7.22(m,5H), 7.81(d,1H), 9.19(s,1H), 10.21(s,1H).	7.81(d,111),
Example 50 Ethoxy	4-Morpho- linyl	3-Methoxyphenyl	72	1.45(4,311), 3.78(s,311), 3.92(m,811), 4.45(q,211)6.60-7.30(m,511), 7.82(d,111), 9.20(s,114), 10.34(s,111).	7.82(d,1H),
Example 51 Rhoxy	4-Morpho- linyl	4-Methoxyphenyl	(%)	1.42(t,3H), 3.75-4.03(m,1HH), 4.42(q,2H), 6.71-7.10(m,5H), 7.78(d,1H), 9.17(s,1H), 10.42(s,HH).	7.78(d,111),
Example 52 Rhoxy	4-Morpho- linyl	2-Methylthiophenyl	20	1.46((t,3H), 2.55(s,3H), 3.91(m,8H), 4.46(q,2H), 6.67-7.7.80(d,1H), 9.20(s,1H).	6.67-7.40(m,5H),
Example 53 Ethoxy	4-Morpho- linyl	3-Methylthiophenyl	63	1.47(t,311), 2.45(s,311), 3.95(m,811), 4.45(q,211), 6.72-7 7.83(d,111), 9.20(s,111), 10.18(s,111).	6.72-7.29(m,5H),
Example 54 Ethoxy	4-Morpho- linyl	2-Pluoraphenyl	22	1.47(t,311), 3.96(m,8H), 4.45(q,2H), 6.80(d,1H), 6.90-7.2 7.82(d,1H), 9.20(s,1H), 10.22(s,1H).	6.90-7.20(m,411),
Example 55 Ethoxy	4-Morpho- linyl	3-Tritkoromethyl- phenyl	70	1.44(t,3H), 3.97(br.s,8H), 4.45(q,2H), 6.71(d,1H), 7.10-77.85(d,HH), 9.21(s,HH), 10.39(s,HH).	7.10-7.47(m,4[I),
Example 56 Ethoxy	-4-Morpho- linyl	4-n-Butoxypheny{	29	1.00(t,3), 1.47(t,311), 1.42-1.85(m,411), 3.80-4.15(m,811), 4.44(q,211), 6.72-7.10(m,511), 7.79(d,111), 9.18(s,111), 10.40(s,111).	4.44(q,2H),
Example 57 Ethoxy	4-Morpho- linyl	I-Indanyl	65	I.42(t,3H), 2.15(m,1H), 2.60-3.15(m,3H), 3.80-4.15(m,8H), 4.46(q,2H), 5.65(q,1H), 7.20-7.45(m,4H), 7.57(d,1H), 8.05(d,1H), 9.10(s,1H),9.15(d,1H).	4.46(q,211),).15(d,111).

WO 97/03074 PCT/KR96/00080

It is understood that the foregoing detailed description is given merely by way of illustration and that modifications and variations may be made therein without departing from the spirit and scope of the invention.

CLAIMS

1. A compound represented by the following general formula (I):

$$\begin{array}{c|c}
R_4 \\
(CH)_m \\
R_3 \\
R_2
\end{array}$$
(I)

wherein

10

15

5

 R_1 is hydrogen atom, a C_1 - C_6 lower alkyl group, a C_1 - C_6 lower alkoxy group, C_1 - C_6 lower alkoxyalkyl group, a C_3 - C_6 cycloalkyl group, a C_3 - C_6 cycloalkyl C_1 - C_6 alkyl group, a substituted or unsubstituted phenyl, or a phenyl C_1 - C_5 alkyl group of which phenyl group may be substituted;

 R_2 is hydrogen atom, a C_1 - C_6 lower alkyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, or a group of a formula : NR_5R_7 wherein R_6 and R_7 , identical to or different from each other, are independently hydrogen atom or a C_1 - C_6 lower alkyl group, or R_6 and R_7 may form together 5-membered or 6-membered cycloalkyl group;

 R_3 is hydrogen atom, a C_1 - C_6 lower alkyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, an amino group substituted with one or two C_1 - C_6 alkyl groups, a halogen atom, a cyano group, a C_1 - C_6 alkanoyl group, or trifluoromethyl group;

 R_4 is hydrogen atom or a substituted or unsubstituted C_1 - C_6 alkyl group;

 R_5 is hydrogen atom, a C_1 - C_6 lower alkyl group, a C_1 - C_6 alkoxy group, an amino group substituted with one or two C_1 - C_6 alkyl groups, a C_1 - C_6 alkylthio group, a halogen atom, a cyano group, a hydroxycarbamoyl group, a carboxy group, a C_1 - C_6 alkanoyl group, or trifluoromethyl group, or an alkyl group which forms together with R_4 a 5-membered or 6-membered cycloalkyl group;

m is an integer from 0 to 4, inclusive; and
n is an integer from 1 to 3, inclusive;

10 with proviso that all alkyl and alkoxy groups may be linear or branched, and said halogen atom means fluorine, chlorine or bromine atom,

or its pharmaceutically acceptable salts.

- 15 2. The compound (I) according to claim 1, wherein R_1 is ethoxy or propyl group; R_s is methoxy, ethoxy, propyl, isopropyl, hydroxyethoxy, piperidino or morpholino group; R_3 is hydrogen atom; R_4 is hydrogen atom, or methyl or ethyl group; R_5 is hydrogen atom, or methyl, ethyl. vinyl.
- trifluoromethyl, methoxy, or ethoxy group, or chlorine or fluorine atom, or an allyl or butyl group, or an alkyl group forming together with R_4 a 5-membered or 6-membered cycloalkyl group; m is an integer of 0 to 4; and n is an integer of 1 or 2, or its pharmaceutically acceptable salts.

25

3. The compound (I) according to claim 2, wherein R_1 is ethoxy or propyl group; R_s is methoxy, ethoxy, or isopropyl group; R_3 is hydrogen atom; R_4 is methyl or ethyl group; R_5 is hydrogen atom; m is an integer of 1; and n is an integer of 1, or its pharmaceutically acceptable salts.

The compound (I) according to claim 2, wherein R_1 is 4. ethoxy or propyl group; R_s is methoxy, ethoxy, isopropyl, hydroxyethoxy, piperidino or morpholino group; hydrogen atom; R_5 is hydrogen atom, or methyl, ethyl. vinyl. trifluoromethyl, methoxy, or ethoxy group, or chlorine or fluorine atom, or an allyl or butyl group, or an alkyl group forming together with R_4 a 5-membered or 6-membered cycloalkyl group; m is cypher; and n is an integer of 1 or 2, or its pharmaceutically acceptable salts.

10

- The compound (I) according to claim 1, which 3-Butyryl-4-(1,2,3,4-tetrahydro-1-naphthylamino)-8-methoxy-1, 7-naphthyridine, or its pharmaceutically acceptable salts.
- The compound according to claim 1, (I) which 3-Butyryl-4-(5-(R)-(+)-methylbenzylamino)-8-ethoxy-1,7-napht hyridine, or its pharmaceutically acceptable salts.
- A process for producing a compound represented by the 20 following general formula (I):

$$(R5)_{n} \qquad (CH)_{m} \qquad (I)$$

$$R3 \qquad NH \qquad O$$

$$R_{1} \qquad R_{2}$$

wherein

30 R_{1} is hydrogen atom, a C_{1} - C_{6} lower alkyl group, a C_{1} - C_{6}

10

lower alkoxy group, C_1 - C_6 lower alkoxyalkyl group, a C_3 - C_6 cycloalkyl group, a C_3 - C_6 cycloalkyl C_1 - C_6 alkyl group, a substituted or unsubstituted phenyl, or a phenyl C_1 - C_6 alkyl group of which phenyl group may be substituted;

- R_2 is hydrogen atom, a C_1 C_6 lower alkyl group, a C_1 C_6 alkoxy group, a C_1 C_6 alkylthio group, or a group of a formula : NR_6R_7 wherein R_6 and R_7 , identical to or different from each other, are independently hydrogen atom or a C_1 C_6 lower alkyl group, or R_6 and R_7 may form together 5-membered or 6-membered cycloalkyl group;
- R_3 is hydrogen atom, a C_1 C_6 lower alkyl group, a C_1 C_6 alkoxy group, a C_1 C_6 alkylthio group, an amino group substituted with one or two C_1 C_6 alkyl groups, a halogen atom, a cyano group, a C_1 C_6 alkanoyl group, or trifluoromethyl group;
 - R_4 is hydrogen atom or a substituted or unsubstituted C_1 C_6 alkyl group;
- R_5 is hydrogen atom, a C_1 C_6 lower alkyl group, a C_1 C_6 alkoxy group, an amino group substituted with one or two C_1 C_6 alkyl groups, a C_1 C_6 alkylthio group, a halogen atom, a cyano group, a hydroxycarbamoyl group, a carboxy group, a C_1 C_6 alkanoyl group, or trifluoromethyl group, or an alkyl group which forms together with R_4 a 5-membered or 6-membered cycloalkyl group;
 - m is an integer from 0 to 4, inclusive; and n is an integer from 1 to 3, inclusive;
- with proviso that all alkyl and alkoxy groups may be linear or branched, and said halogen atom means fluorine, chlorine or bromine atom,

or its pharmaceutically acceptable salts, which comprises a step of reacting a compound represented by a general formula (II):

$$R_3 \qquad \qquad R_1 \qquad \qquad (II)$$

10

20

wherein, R_1 , R_2 , and R_3 have the same meanings as defined above; and X is chlorine atom, $OS(O)_2R_8$ or $OP(O)(OR_9)_2$ in which R_8 is methyl, ethyl, trifluoromethyl, phenyl, or p-toluenyl group, and R_9 is methyl, ethyl, propyl, or pheyl group which may be substituted,

or its pharmaceutically acceptable salts with a compound represented by a general formula (III)

$$(R_5)_{m} = (R_7)_{m} - NH_2$$

- 25 wherein R_4 , R_5 , m and n have the same meaning as defined above.
- 8. The process according to claim 7, wherein the compound (II) or its pharmaceutically acceptable salts are prepared 30 by reacting a compound represented by a general formula (IV):

$$R_3$$
 N
 NH_2
 R_2
 NH_2

wherein, R_{s} and R_{3} have the same meanings as defined in claim 7, with a compound represented by a general formula (V):

10

wherein, R_1 has the same meaning as defined in claim 7, to give a compound represented by a general formula (VI):

15

$$\begin{array}{c|c}
R_3 & EtO_2C \\
N & R_1
\end{array}$$

$$\begin{array}{c}
R_1 \\
R_2 & H
\end{array}$$
(VI)

20

wherein, R_1 , R_2 , and R_3 have the same meanings as defined in claim 7;

subjecting the compound (VI) to a cyclization to give a 25 compound represented by a general formula (VII):

$$\begin{array}{c|c}
R_3 & & \\
N & & \\
R_2 & H
\end{array}$$
(VII)

30

wherein, R_1 , R_2 , and R_3 have the same meanings as defined in claim 7;

subjecting the compound (VII) to a halogenation, sulfonation or phosphonation to give the comound (II).

10

15

20

25

INTERNATIONAL SEARCH REPORT

International application No.

		PCT/KF	96/00080
	SSIFICATION OF SUBJECT MATTER		
IPC ⁶ :	C 07 D 471/04		
According	to International Patent Classification (IPC) or to both	national classification and IPC	
B. FIEI	LDS SEARCHED		
Minimum d	ocumentation searched (classification system followed by	y classification symbols)	
IPC ⁶ :	C 07 D 471/00		
Documentat	ion searched other than minimum documentation to the	extent that such documents are included	in the fields searched
AT, C	hem.Abstr.		
Electronic d	ata base consulted during the international search (name	of data base and, where practicable, sea	rch terms used)
I -	el: DARC, WPIL	. ,	,
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.
А	EP 0 346 208 A1 (SANOFI) 13 Dec claims 1,21.	ember 1989 (13.12.89),	1-8
А	EP 0 346 207 Al (SANOFI) 13 Dec claims 1,4.	ember 1989 (13.12.89),	1-8
А	EP 0 115 469 A1 (CIBA GEIGY) 08 examples 8,11a-11g.	August 1984 (08.08.84)	, 1-8
А	Chemical Abstracts, Vol.69, No.		1-8
	(Columbus, Ohio, USA), page 179 No.19051p, CHIEN, Ping-Lu et al antimalarial evaluation of some and 2,9-diazaanthracenes", J.Med.Chem. 1968, 11(1), 164-7	.:"Synthesis and 1,7-naphthyridines	
А	EP 0 339 769 A1 (SMITHKLINE BEC 02 November 1989 (02.11.89), cl the application).	KMAN INTERCREDIT B.V.)	1-8
Furthe	er documents are listed in the continuation of Box C.	X See patent family annex.	
"A" docume	categories of cited documents: int defining the general state of the art which is not considered particular relevance	"T" later document published after the date and not in conflict with the the principle or theory underlyin	international filing date or priority application but cited to understand g the invention
"L" docume cited to	locument but published on or after the international filing date on which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other	considered novel or cannot be o	; the claimed invention cannot be onsidered to involve an inventive alone
special	reason (as specified) and referring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance considered to involve an inver	the claimed invention cannot be tive step when the document is
meanz	nt published prior to the international filing date but later than	Compliant with one of more office	such documents, such combination
the prio	rity date claimed	"&" document member of the same p	atent family
Date of the a	actual completion of the international search	Date of mailing of the international	search report
	ugust 1996 (07.08.96)	27 August 1996 (27	7.08.96)
AUST	Pailing address of the ISA/AT CRIAN PATENT OFFICE	Authorized officer	
Kohl	.markt 8-10 D14 Vienna	Hammer	
Facsimile N	o. 1/53424/535	Telephone No. 1/5337058/44	

INTERNATIONAL SEARCH REPORT

International application No.

PCT/KR 96/00080

4-Substituted amino-quinoline or 1,7-naphthyridine-3-carboxylic acid derivatives in racemic or enantiomeric form, and their pharmaceutically acceptable acid or base addition salts are claimed in the EP-346208. These compounds bind to peripheral, but not central, benzediazepine receptors. They are pheripheral vasodilators for increasing coronary blood flow; immunomodulators and anxiety modifiers and are useful e.g. for preventing or treating cardiovascular diseases; as antiallergic agents, and for treatment of infections and anxiety conditions.

In the EP-346207 4-amino-3-carboxy 1,7- naphthyridine derivatives their N-oxides on heterocyclic nitrogen, and addn. salts with pharmaceutically-acceptable acids and bases, are described. These 4-amino-3-carboxy-naphthyridines have anxiolytic, anticonvulsant, sedative and hypnotic activity.

2-Substituted tricyclic pyrazolo-pyridinone derivatives are claimed in the EP-115469, which are modulators of benzodiazepine receptors, so have anxiolytic and anticonvulsant activities and antagonise the effects of benzodiazepine drugs and have also adenosine-antagonising activity. As preproducts 1,7-naphtyridines e.g. 4-methoxyamino- N-phenyl-1,7-naphtyridine-3-carboxamide or -3-bronio are metioned.

Chemical Abstracts 69:19051p describes the synthesis of some 1,7-naphtyridines e.g. Phenol, 2-[(diethylamino)methyl]-4-(1,7-naphthyridin-4-ylamino)-, 1,3-Propanediamine, N,N-diethyl-N'-1,7-naphthyridin-4-yl- and 1,4-Pentanediamine, N1,N1-diethyl-N4-1,7-naphthyridin-4-yl-, which have antimalarial activity.

New 4-amino-3-acyl quinolin derivatives are claimed in the EP-339768. These compounds inhibit exogeneously and endogeneously stimulated gastric acid secretion and are useful in the treatment of gastrointestinal diseases including gastric and duodenal ulcers, aspiration pneumorutis and Zollinger-Ellison Syndrome and can also be used in the treatment of other disorders where an anti-secretory effect is desirable, e.g. in patients with gastritis, NSAID induced gastritis, acute upper intestinal bleeding, in patients with a history of chronic and excessive alcohol consumption, and in patients with gastro-oesphageal reflux disease.

INTERNATIONAL SEARCH REPORT Information on patent family members

International application No.
PCT/KR 96/00080

angeführt: Patent in se Document	herchenbericht es Patentdokument document cited arch report de brevet cité apport de recherche	Datum der Veröffentlichung Publication date Date de publication	Mitglied(er) der Patentfamilie Patent family member(s) Membre(s) de la famille de brevets	Datum der Veröffentlichung Publication date Date de publication
EF A1	346208	13-12-89	29555559998311983885510 4547444665546251440015 27805577118805566251440015 27805577216884047775372 1065997775046 02 6609 666 2 222 2 222 67520 2 2258111 2 466 2 225811175467467367299935720 666 2 225811175467467367299935720 667 668 2 225811175467467367299935720 668 2 225811175467467367299935720 668 2 2258111754674674777575720 668 2 22581117546746747777577777777777777777777777	157-5-4499-459-5-0-0-9-49-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
EF A1	346207	13-12-89	1914334657 991443346667 991443346667 991443346667 991443346667 991443346667 991443346667 9914467 9914467 9914467 9914467 9914467 99147 991467 991467 991467 991467 991467 991467 991467 991467 991467 99147	15-03-94 07-04-94 11-08-94 02-03-94 15-12-89 05-10-90 01-02-91
EP A1	115469	○B-○B-B4	710499994499003435852864549 771049846554855555860299916 71049815886440900468099916 710488122004447734777900 71137481555558528622558 7115765886444090077900 7120488122004447734777900 7120488122004447734777900 7120488122004447734777900 71204881220044886999916 7120488151100046880999916 71204881555555852864549 712048815555555852864549 712048815555555852864549 7120488155555555852864549 712048815555555852864549 712048815555555852864549 712048815555555852864549 712048815555555852864549 712048815555555852864549 71204881555555585286452999999999999999999999999999999999999	120 120 120 120 120 120 120 120 120 120
F A1	339769	02-11-89	US A 4895706 JP A2 21449321 US A 4948564 US A 5084246 US A 5110556	23-01-90 07-06-90 14-08-90 28-01-92 05-05-92