

convert 42.75 in b inary and how it works for decimal explain

Let's break down how to represent 42.75 in binary, and how fractional (decimal) parts are converted to binary.

1. Convert the Integer Part (42) to Binary

- Divide by 2, write the remainder, continue with the quotient until 0.
- 42 divided by 2:

Step	Quotient	Remainder
1	21	0
2	10	1
3	5	0
4	2	1
5	1	0
6	0	1

Write remainders bottom to top:

 $42 = 101010_2$

2. Convert the Fractional Part (0.75) to Binary

Algorithm (for base 2 fractions):

- Multiply the fraction by 2.
- The result's integer part is the next binary digit.
- Continue with the new fractional part until it becomes 0 or until desired precision.

Steps for 0.75:

1. $0.75 \times 2 = 1.5 \rightarrow \text{integer part: } 1; \text{ new fraction: } 0.5$

2. $0.5 \times 2 = 1.0 \rightarrow \text{integer part: 1; new fraction: 0.0}$

When the fraction reaches 0, we stop.

So, $0.75_{10} = .11_{2}$

3. Combine Integer and Fractional Parts

- 42 = 101010
- 0.75 = .11

Thus,

4. How Binary Fractions Work (How Decimals Convert)

- Place values after the point are powers of 2, just like before the point, but negative:
 - Binary point places:

1st: $1/2 (2^{-1})$, 2nd: $1/4 (2^{-2})$, 3rd: $1/8 (2^{-3})$, etc.

- So, 101010.112 equals:
 - o 101010 = 32 + 8 + 2 = 42
 - .1 (first bit after point): $1 \times 1/2 = 0.5$
 - \circ .1 (second bit): 1 × 1/4 = 0.25
 - o .11 = 0.5 + 0.25 = 0.75

So, total = **42 + 0.75 = 42.75**

5. Summary Table

Decimal	Binary
42	101010
0.75	.11
42.75	101010.11

In Short:

- Convert the integer part to binary as usual.
- For the fractional part, repeatedly multiply by 2, writing down the integer portion each time.
- Combine both for the binary result.

Let me know if you want more examples, or the IEEE 754 binary (machine-level) form!