Capacités attendues:

- ☐ Estimer graphiquement ou encadrer une intégrale, une valeur moyenne.
- ☐ Calculer une intégrale, une valeur moyenne
- ☐ Calculer l'aire sous une courbe ou entre deux courbes.
- ☐ Interpréter une intégrale, une valeur moyenne dans un contexte issu d'une autre discipline.

Intégrale comme aire sous une courbe

Exercice 1

Sur le graphique ci-contre sont données la droite représentant une fonction f ainsi qu'une surface colorée.

Déterminer par lecture graphique la valeur de l'intégrale $\int_{-2}^{1} f(x) dx$.

Exercice 2

Calculer la valeur de l'intégrale $\int_0^4 (-x+4) dx$.

Exercice 3

Sur le graphique ci-contre sont représentées la courbe représentative d'une fonction f définie sur [-2; 4] ainsi qu'une surface colorée.

- 1. Déterminer par lecture graphique l'expression de f(x).
- 2. Déterminer la valeur de l'intégrale $\int_{-2}^{2} f(x) dx$.

Exercice 4

Calculer chaque intégrale :

1.
$$\int_0^2 3 \, dx$$

2.
$$\int_{-1}^{4} 2 \, dx$$

$$3. \int_0^1 x \, dx$$

4.
$$\int_0^5 (t+1) dt$$

1.
$$\int_0^2 3 \, dx$$
 2. $\int_0^4 2 \, dx$ 3. $\int_0^1 x \, dx$ 4. $\int_0^5 (t+1) \, dt$ 5. $\int_1^1 (1-u) \, du$

Estimer une intégrale par la méthode des rectangles

Exercice 5

Voici la courbe représentative d'une fonction f dans un repère orthonormal (O; I; J).

On note

$$I = \int_{-1}^{2} f(x) \mathrm{d}x$$

Encadrer I par 2 entiers.

Exercice 6

Voici la courbe représentative d'une fonction g dans un repère orthonormal (O ; I ; J).

On note

$$J = \int_0^3 g(x) \mathrm{d}x$$

- 1. Encadrer J par 2 entiers.
- 2. Encadrer J par 2 multiples de 0,25 (compter les petits carreaux).

Exercice 7

La fonction f définie sur $[0 ; +\infty[$ par $f(x)=\sqrt{x}$ est représentée dans le repère ci-contre.

Utiliser les rectangles représentés pour estimer la valeur de l'intégrale $\int_0^4 f(x)\,dx.$

Exercice 8

f est la fonction définie sur l'intervalle $[0\ ;\ 1]$ par $f(x)=e^x.$

- 1. Utiliser les rectangles de même largeur largeur représentés ci-contre pour déterminer un encadrement de l'intégrale $I=\int_0^1 e^x\,dx$.
- 2. En quel nombre n d'intervalles de même longueur doiton subdiviser $[0\;;\;1]$ pour obtenir un encadrement de I d'amplitude 0,1?

Intégrale d'une fonction de signe quelconque

Exercice 9

Sur le graphique ci-contre est tracé la courbe représentative d'une fonction f définie sur \mathbf{R} .

3. En déduire la valeur de l'intégrale
$$\int_{-2}^{4} f(x) dx$$
.

Exercice 10

1. Représenter dans un repère orthogonal la fonction f définie sur \mathbf{R} par : f(x) = x - 1.

2. Déterminer la valeur de l'intégrale
$$\int_{-2}^{3} f(x) dx$$
.

Calculs d'intégrales

Exercice 11 VRALOU FAUX?

1. Soit f une fonction continue sur [-3; 4] et F une primitive de f sur cet intervalle.

a.
$$\int_{-3}^{4} f(x) dx = F(-3) - F(4)$$

b.
$$\int_{-3}^{4} f(x) dx = f(4) - f(-3)$$

☐ VRAI

☐ FAUX

☐ VRAI

☐ FAUX

$$2. \int_{-1}^{1} x \, dx = 0$$

☐ VRAI

☐ FAUX

$$3. \int_{-2}^{-1} x^2 \, dx < 0$$

☐ VRAI

☐ FAUX

Exercice 12

Soit f la fonction définie sur \mathbf{R} par $f(x) = 3x^2 + 2x$.

1. Vérifier que la fonction F définie sur \mathbf{R} par $F(x)=x^3+x^2+1$ est une primitive de f sur \mathbf{R} .

3

2. Calculer
$$\int_0^3 f(x) dx$$
.

Exercice 13

Soit f la fonction définie sur \mathbf{R} par $f(x) = 8x^3 - 6x^2 + 1$.

1. Vérifier que la fonction F définie sur \mathbf{R} par $F(x)=2x^4-2x^3+x-2$ est une primitive de f sur \mathbf{R} .

2. Calculer $\int_{-2}^{1} f(x) dx$.

Exercice 14

Calculer les intégrales suivantes :

1.
$$I = \int_{-3}^{1} x^3 dx$$

2.
$$J = \int_{-1}^{2} (-3x + 5) dx$$

2.
$$J = \int_{-1}^{2} (-3x+5) dx$$
 3. $K = \int_{0}^{1} (3x^2 - 2x + 1) dx$

Exercice 15

Calculer les intégrales suivantes :

1.
$$I = \int_{1}^{2} \left(1 - \frac{1}{x}\right) dx$$

2.
$$J = \int_{-1}^{0} (x^3 - 5x) dx$$

1.
$$I = \int_{1}^{2} \left(1 - \frac{1}{x}\right) dx$$
 2. $J = \int_{-1}^{0} (x^3 - 5x) dx$ **3.** $K = \int_{-1}^{1} 14x(7x^2 + 5) dx$

Exercice 16

Soient f et F les fonctions définies sur \mathbf{R} par :

$$f(x) = (3x+1)e^{3x}$$
 et $F(x) = xe^{3x}$.

1. Montrer que F est une primitive de f sur R.

2. Vérifier que $\int_{-1}^{1} f(x) dx = e^3 + \frac{1}{e^3}$.

Application au calcul d'aires

Exercice 17

Soient f et g les fonctions définies sur \mathbf{R} par :

$$f(x) = x^2$$
 et $g(x) = x$

dont on donne les courbes représentatives \mathcal{C}_f et \mathcal{C}_g ci-contre.

1. Justifier que l'aire de la surface colorée est égale, en unités d'aire, à $\int_0^1 (x-x^2) dx$.

