Using Imagery to Simplify Perceptual Abstraction in Reinforcement Learning Agents

Sam Wintermute, University of Michigan

Perceptual Abstraction

- We are trying to build a task-independent cognitive architecture
- Different tasks require different abstract perceptual properties
 - For spatial properties, there does not seem to be a universal set
 - Related to the poverty conjecture (Forbus et al.)
- An architecture must use the same perception system in all tasks
- Some tasks are difficult to abstractly characterize
- Perceptual Abstraction Problem:
 - How can an agent construct appropriate abstract perceptual properties such that actions can be chosen?

Architecture

Imagery Architecture

Imagery Architecture

Imagery Example

Imagery and Perceptual Abstraction

- Imagery allows an agent to represent information at multiple levels of abstraction
- Predictions can be made at a concrete level, decisions at an abstract level

Hypothesis:

Imagery can increase the power of a high-level perception system to infer abstract states that are more useful across more problems

Motivating Example

Frogger II

Perceptual Abstraction in Frogger II

Abstract Symbolic Representation collision(false) nearObstacle(left) position(row5,middle) move(up)

10

Imagery in Frogger II

- Imagery can predict action consequences
- High-level perception can be applied to imagined states

Imagery allows an agent with a fixed perception system to derive more useful state information

Abstract Symbolic Representation right: collision(false) nearObstacle(above) position(row5,middle) collision(true) up: nearObstacle(above, right) position(row6, middle) left: collision(true) nearObstacle(left) position(row5,left) down: collision(false) nearObstacle(none) position(row4,middle) move(right)

Reinforcement Learning, Abstraction, and Imagery

- Imagery evaluation needs to be less ad-hoc
- RL can be used
 - Less human programming
 - Less arbitrary judgment of representation quality
- Perceptual abstraction is a means to a more compact learning problem
- The perceptual abstraction problem, manifested in RL:
 - How can an agent's perception system induce a compact representation that preserves the underlying problem?

Imagery in Frogger II

- Imagery can predict action consequences
- High-level perception can be applied to imagined states

Abstract Symbolic Representation

right: collision(false)

nearObstacle(above)
position(row5,middle)

up: collision(true)

nearObstacle(above, right)

position(row6,middle)

left: collision(true)

nearObstacle(left)
position(row5,left)

down: collision(false)

nearObstacle(none)

position(row4,middle)

Imagery for Soar-RL

```
sp {imagery-rl-production
  (state <s>
                                 collision(false)
nearObstacle(above)
                                 position(row5,middle)
                                              we.right)
                        lef
                                 JUSITION ( rows, ic.
                        dow
                                 position(row4, mis
  (<s> ^operator <o> +)
  (<o> ^name move
           ^direction right)
  (\langle s \rangle ^operator \langle o \rangle = 0)
```

Theoretical Aside

- ▶ To meet theoretical assumptions and guarantee convergence, table-based RL in Soar requires the same sets of RL rules always fire together (match against a common state)
- What if individual rules match different aspects of state?
 - Rules might fire in multiple states with different competing rules
- Convergence of Q-Learning is guaranteed when:
 - Only one RL rule per operator is matched
 - Immediate reward for the operator is always predictable based on the RL rule
 - RL rules that will match in the next state are predictable based on the RL rule for the current operator
- "Predictable": no relevant state information was abstracted away
- ▶ For details, see the paper

Algorithm

- Reinforcement Learning with Abstraction and Imagery (ReLAI) algorithm was developed
- Imagery is used to simulate next state, perceptual abstraction is applied, Q values are learned based on predicted next abstract state
- Convergence conditions can be translated to prediction case
- Result: next abstract state can depend on aspects of the concrete state not captured by the abstract state
 - ▶ This differs from standard state abstraction, where abstract state must completely summarize concrete state

Experiments

- Assumptions are still very hard to meet, but robustness to abstractions where next state depends on details not abstractly captured gives empirical benefits
- Experiments were run to compare ReLAI to standard Qlearning with the same abstraction
- Interface between SVS and an Atari emulator was built
- Three games were tested

Frogger II Perception and Imagery

Frogger II Results

- State information:
 - Does frog collide with an obstacle?
 - What row is it in?
 - What horizontal region?
 - Is there an obstacle immediately to the left/right/above/below?
 - What was the previous action?
- Rewards:
 - +10 /-10 for moving up/down a row
 - ▶ 1000/-1000 for reaching top/dying
 - ▶ -1 at each time step
- ▶ 30 trials of 6,000 games were run
 - binned to groups of 400
 - each point is 12,000 games
- Final performance (without exploration)
 - Imagery agent won 70%
 - No-imagery won 45%

Space Invaders Results

- State information:
 - discretized horizontal position [1-15]
 - is there an unblocked clear shot?
 - is there an unshielded bomb?
 - is there a missile (shot by the agent) in the air?
 - if so, is it aligned with an alien?
 - is there a falling bomb immediately to the left/right?
 - does the ship intersect a bomb?
- Rewards:
 - +50/-50 for killing an alien/dying
- ▶ 12 trials of 5,000 games were run
 - binned to groups of 500
 - each point is 6,000 games
- Final performance (without exploration)
 - ▶ Imagery agent killed 13-14 aliens on average
 - No-imagery killed 9-10 aliens on average

Fast Eddie Results

- State information:
 - Is Eddie near an obstacle?
 - Does Eddie intersect an obstacle?
 - Did the last action reduce the distance to the closest heart?
 - Was a heart collected in the last action?
- Rewards:
 - > 50/-100 for collecting a heart/dying
 - -1 at each time step
- ▶ 24 trials of 1,000 games were run
 - binned to groups of 100
 - each point is 2,400 games
- Final performance (without exploration)
 - Imagery agent won (collect 9 hearts) 35%
 - No-imagery agent never won

Conclusion

Nuggets

- Imagery can improve the ability for an agent with a fixed perception system to make relevant distinctions between states
 - ▶ Evidence that imagery mitigates the perceptual abstraction problem
- Only minimal changes to SVS were needed
- ▶ Theoretical work should aid other Soar-RL applications

Coal

- Theoretical assumptions are hard to match in real games
- Using imagery for every possible action is slow
- A few game-specific hacks for perception and imagery were necessary
- SVS still needs to be reimplemented and released

References

- ▶ Wintermute, S. (2010) "Using Imagery to Simplify Perceptual Abstraction in Reinforcement Learning Agents," to appear in *Proceedings of AAAI-10*.
- ▶ Wintermute, S. (2009) "An Overview of Spatial Processing in Soar/SVS," Technical Report CCA-TR-2009-01, University of Michigan Center for Cognitive Architecture.