Московский государственный университет имени М. В. Ломоносова Mеханико-математический факультет

Задачи на делимость (для 7 и 8 классов)

Составила студентка 4 курса Ирина Сергеевна Грунина

1 Задача

Условие:

Существует ли прямоугольный треугольник с одним из катетов равным 101?

Решение:

Обозначим гипотенузу как a, а катеты как b и c. Тогда по теореме Пифагора:

$$a^2 = b^2 + c^2$$

пусть катет c = 101, тогда

$$a^2 = b^2 + 101^2 \implies a^2 - b^2 = 101^2$$

Теперь воспользуемся формулой разности квадратов:

$$a^{2} - b^{2} = (a - b) \cdot (a + b) = 1 \cdot 101 \cdot 101$$

Из последнего равенства следует следующая система уравнений:

$$\begin{cases}
 a - b = 1 \\
 a + b = 101^{2}
\end{cases}$$

$$\begin{cases}
 a - b = 101^{2} \\
 a + b = 1
\end{cases}$$

$$\begin{cases}
 a = b + 1 \\
 b = \frac{101^{2} - 1}{2} = 5100
\end{cases}$$

$$\begin{cases}
 a = 1 - b \\
 b = \frac{1 - 101^{2}}{2} < 0
\end{cases}$$

$$\begin{cases}
 a = b + 1 \\
 b = \frac{101^{2} - 1}{2} = 5100
\end{cases}$$

$$\begin{cases}
 a = 1 - b \\
 b = \frac{1 - 101^{2}}{2} < 0
\end{cases}$$

$$\begin{cases}
 a = 101 - b \\
 b = 0
\end{cases}$$

Случаи 2 и 3 не подходят, потому что стороны треугольника должны быть положительными. Из системы 1 получается окончательное решение:

$$\begin{cases} a = 5101 \\ b = 5100 \end{cases}$$

Ответ:

Прямоугольный треугольник с одним из катетов равным 101 существует. Второй его катет равен 5100, а гипотенуза — 5101.

2 Задача

Условие:

Может ли сумма 1+2+3+...+(n-1)+n при каком-нибудь натуральном n оканчиваться цифрой 7?

Решение:

 $1+2+3+\ldots+(n-1)+n=rac{n\cdot(n+1)}{2}.$ Чтобы это число оканчивалось на цифру 7, нужно, чтобы число $rac{n\cdot(n+1)}{2}-2=rac{n\cdot(n+1)-4}{2}$ делилось на 5, следовательно, число $n\cdot(n+1)-4=n^2+n+1-5$ должно делиться на 5. Но это не так, потому что $n^2+n+1\equiv(n-2)^2-3\not\equiv 0\pmod 5$, так как квадраты не дают остатка 3 при делении на 5.

Ответ:

Не может.

3 Задача

Условие:

В клетках квадратной таблицы 10×10 расставлены числа от 1 до 100. Пусть $S_1, S_2, ..., S_{10}$ — суммы чисел, стоящих в столбцах таблицы. Могло ли оказаться так, что среди чисел $S_1, S_2, ..., S_{10}$ каждые два соседних различаются на 1?

Решение:

Если S_i и S_{i+1} различаются на 1, то эти два числа имеют разную чётность, то есть в последовательности $S_1, S_2, ..., S_{10}$ чётные и нечётные числа строго чередуются. Значит, среди чисел $S_1, S_2, ..., S_{10}$ ровно пять чётных и пять нечётных. Отсюда следует, что сумма $S_1 + S_2 + ... + S_{10}$ нечётна. С другой стороны, $S_1 + S_2 + ... + S_{10} = 1 + 2 + ... + 100$, а в этой сумме 50 нечётных слагаемых, поэтому она чётна. Возникает противоречие.

Ответ:

Не могло.

4 Задача

Условие:

Есть 2017 ящиков с шариками, в первом ящике 1 шарик, во втором 2 шарика, в 2017-ом ящике — 2017 шариков. Иногда из какого-нибудь ящика берут два шарика и перекладывают их по одному в два других. Может ли в какой-то момент оказаться, что каждый шарик побывал в каждом ящике ровно один раз, а в конце вернулся в свой начальный ящик?

Решение:

Во всех ящиках находится

$$N = \frac{(1+2017) \cdot 2017}{2} = 1009 \cdot 2017$$

шариков. Каждый шарик нужно переложить K=2017 раз, чтобы он побывал в каждом ящике ровно один раз, и в итоге мог оказаться в своём первоначальном ящике.

Отсюда легко понять, что для ситуации, описанной в условии, надо совершить $M=N\cdot K=1009\cdot 2017^2$ вытаскиваний.

По условию всегда вытаскивают по 2 шарика, поэтому можно наблюдать противоречие: с одной стороны, количество вытаскиваний должно быть чётным числом, с другой стороны, мы вычислили, что число вытаскиваний будет нечётным.

Ответ:

Не может.

5 Задача

Условие:

Из натурального числа N_1 вычли сумму его цифр S_{N_1} , из полученного числа $N_2=N_1-S_{N_1}$ вновь вычли сумму уже его цифр S_{N_2} и т. д. После 11 таких итераций получился ноль. Какое число N_1 было в начале?

Подсказка: Разность между числом и суммой его цифр делится на 9.

Решение:

Разность между числом и суммой его цифр делится на 9, поэтому все числа, которые мы получали, делились на 9 (кроме, может быть, исходного). Пойдём с конца: ноль мог получиться из любого однозначного

натурального числа после вычитания из него суммы цифр. Но из них на 9 делится только 9. Поэтому на предпоследнем шаге у нас было число 9. Но 9 можно получить только из одного числа, делящегося на 9, — из 18. И так далее пока не дойдём до числа 81. Тут путь раздваивается: 81 можно получить и из 90, и из 99. Сделаем последний шаг назад (теперь делимость на 9 нам уже не важна!) — 90 ни из какого числа получить нельзя, а для 99 есть целых 10 возможных предшественников: 100, 101, 102, ..., 109.

Ответ:

Любое натуральное число от 100 до 109.

6 Задача

Условие:

В обращении есть монеты достоинством в 1,2,5,10,20,50 копеек и 1 рубль. Известно, что k монетами можно набрать m копеек. Докажите, что m монетами можно набрать k рублей.

Подсказка: Для каждой монеты достоинством в n копеек есть монета достоинством в $\frac{100}{n}$ копеек.

Доказательство:

Пусть среди k монет, дающих в сумме m копеек, есть a_1 монет по 1 копейке, a_2 — по 2 копейки, a_3 — по 5, a_4 — по 10, a_5 — по 20, a_6 — по 50 копеек и a_7 — по 1 рублю. Тогда

$$\begin{cases} a_1 + 2 \cdot a_2 + 5 \cdot a_3 + 10 \cdot a_4 + 20 \cdot a_5 + 50 \cdot a_6 + 100 \cdot a_7 = m \\ a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 = k \end{cases}$$

Умножим второе равенство на 100 и запишем его в виде:

 $100 \cdot a_1 + 50 \cdot 2 \cdot a_2 + 20 \cdot 5 \cdot a_3 + 10 \cdot 10 \cdot a_4 + 5 \cdot 20 \cdot a_5 + 2 \cdot 50 \cdot a_6 + 100 \cdot a_7 = 100 \cdot k$ отсюда следует, что если взять $100 \cdot a_7$ монет по 1 копейке, $50 \cdot a_6 -$ по $2, \ 20 \cdot a_5 -$ по $5, \ 10 \cdot a_4 -$ по $10, \ 5 \cdot a_3 -$ по $20, \ 2 \cdot a_2 -$ по 50 копеек и a_1 монет по 1 рублю, то в сумме они дадут $100 \cdot k$ копеек, то есть k рублей. А согласно первому равенству монет будет m.

7 Задача

Условие:

Докажите следующий признак делимости на 37: «Для того, чтобы узнать, делится ли число на 37, надо разбить его справа налево на группы

по три цифры. Если сумма полученных трёхзначных чисел делится на 37, то и данное число делится на 37».

Пояснение: Слово «трёхзначные» употреблено условно: некоторые из групп могут начинаться с нулей и быть на самом деле двузначными или меньше; не трёхзначной будет и самая левая группа, если количество цифр нашего числа не кратно 3.

Доказательство:

Докажем, что полученная в условии сумма S_N даёт тот же остаток при делении на 37, что и исходное число N. Так как число 999 делится на 37, достаточно доказать, что числа N и S_N дают одинаковый остаток при делении на 999. Дальнейшее доказательство аналогично доказательству признака делимости на 9:

$$N - S_N = \dots + \overline{a_{3r+2}a_{3r+1}a_{3r}} \cdot 10^{3r} + \dots + \overline{a_2a_1a_0} - S_N$$

= \dots + \overline{a_{3r+2}a_{3r+1}a_{3r}} \cdot (10^{3r} - 1) + \dots + \overline{a_5a_4a_3} \cdot 999 + \overline{a_2a_1a_0} \cdot 0

каждое слагаемое в этой сумме делится на 999, а значит, вся сумма делится на 999. Следовательно, числа N и S дают одинаковый остаток при делении на 999.

8 Задача

Условие:

Число $\overline{f0f0...f070202...02}$, где f — некоторая цифра, делится на 37. Группы $\overline{f0}$ и $\overline{02}$ повторены 2018 раз. Найдите все возможные значения f.

Решение:

Разобьём числа на группы по три цифры справа налево. Так как в числе всего $2\cdot 2018+1+2\cdot 2018=8073$ цифр, что кратно 3, то в каждой группе будет ровно по 3 цифры.

Рассмотрим группы с конца числа: $\overline{020}$ и $\overline{202}$. Так как $111 \div 37$, то и $\overline{020} + \overline{202} = 222 \div 37$. Значит можно убирать группы вида $\overline{020202}$ с конца числа.

Теперь рассмотрим группы $\overline{f0f}$ и $\overline{0f0}$ в начале числа. Видно, что их сумма равна $\overline{f0f}+\overline{0f0}=\overline{fff}$ и кратна 37. Значит в начале числа группы $\overline{f0f0f0}$ можно тоже убирать.

Попробуем отбросить максимальное количество групп $\overline{f0f0f0}$ от начала и $\overline{020202}$ от конца числа. Так как $2 \cdot 2018 \equiv 4 \pmod{6}$, то получится

число $\overline{f0f070202}$.

Чтобы оно делилось на 37, нужно найти такую цифру f, что $\overline{f0f}+\overline{070}+\overline{202}=\overline{f0f}+70+202=\overline{f0f}+272$ \vdots 37, упрощая, получим конечное уравнение $\overline{f0f}+13$ \vdots 37.

Проверяя все цифры от 1 до 9, получаем, что подходит только f=5.

Ответ:

Число $\overline{f0f0...f070202...02}$ кратно 37 только при f=5.