

16-bit Serial-In/Parallel-Out Constant-Current LED Driver

Product Description

The SCT2026 serial-interfaced LED driver sinks 16 LED clusters with constant current to keep the uniform intensity of LED displays. In applications, an external resistor is used to set the full-scale constant output current from 5mA up to 90mA. The SCT2026 guarantees each output can endure maximum 17V DC voltage stress. The built-in shift registers and data latches making the SCT2026 effective solution in driving LED display. The output enable function gates all 16 outputs on and off, and is fast enough to be used as PWM input for LED intensity control. Since the serial data input rate can be reached up to 25MHz, the SCT2026 will satisfy system which needs high volume data transmission to control the LED display.

Features

- 16 constant-current outputs rate at 17V
- Constant output current range: 5 90mA
- Excellent current regulation to load, supply voltage and temperature
- ±3% Current matching between outputs
- ±6% Current matching between ICs
- Fast output current control: Minimum PWM pulse width = 120ns
- All output current are programmed together using a single external resistor
- CMOS Schmitt triggered inputs
- High serial data transfer rate: 25MHz
- Operating supply voltage range of 4.5V to 5.5V
- Built-in power on reset and thermal protection function
- Package: SOP24, SSOP24 and SDIP24
- Applications: LED Displays, Variable Message Signs, LED Traffic Signs

1 2

3

7

9

10

11

□ 12

23 22

21

19

18 17

16

15

 \Box OUT8

□ OUT6

□ OUT4 14 🗀 OUT3

13 D OUT2

5 SCT2026 20 **CSAG**

Pin Configurations

GND □ 1	•	24	□ VDD	OUT14
- · I -	•			OUT15
SDI 🖂 2		23	□ REXT	00115
CLK 🖂 3		22	⊐ SDO	OE/
LA/ 🗖 4		21	□ OE/	SDO
OUT0 □ 5	SCT2026	20	□ OUT15	REXT
OUT1 □ 6	CSOG	19	□ OUT14	VDD
OUT2 🗖 7	CSSG	18	□ OUT13	GND
OUT3 🗖 8	CSTG	17	□ OUT12	SDI
OUT4 □ 9	CSDG	16	□ OUT11	CLK
OUT5 □ 10)	15	□ OUT10	LA/
OUT6 □ 11		14	□ OUT9	OUT0
OUT7 □ 12		13	□ OUT8	OUT1

Terminal Description

Pin	Name	Function
1	GND	Ground terminal.
2	SDI	Serial input of data shift register.
3	CLK	Clock input of shift register, data is sampled at the rising edge of CLK.
4	LA/	Input terminal of data strobe. Data is latched when LA/ is low. And data on shift register goes through when LA/ is high.
5 -20	OUT[0:15]	Open-drain, constant-current outputs.
21	OE/	Output enable signal. Output is enabled when OE/ is forced to low.
22	SDO	Output terminal of serial-data output to the SDI of next SCT2026.
23	REXT	Used to connect an external resistor for setting up all output current.
24	VDD	Supply voltage terminal.

Block Diagram

Ordering Information

Part	Package
SCT2026CSOG	Pb free SOP24
SCT2026CSSG	Pb free SSOP24
SCT2026CSAG	Pb free SSOP24
SCT2026CSTG	Pb free SSOP24-1.0
SCT2026CSDG	Pb free SDIP24

StarChips Technology, Inc.

4F, No.5, Technology Rd., Science-Based Industrial Park, Hsin-Chu, Taiwan, R.O.C.

Tel: +886-3-577-5767 # 555 Fax: +886-3-577-6575 service@starchips.com.tw

Truth Table

CLK	LA/	OE/	SDI	OUT0 ~ OUT15	SDO
	Н	L	Dn	Dn Dn-1 Dn-14 Dn-15	Dn-15
	L	L	Dn+1	No change	Dn-14
	Н	L	Dn+2	Dn+2 Dn+1 Dn-12 Dn-13	Dn-13
7	X	L	Dn+3	Dn+2 Dn+1 Dn-12 Dn-13	Dn-13
7_	Х	Н	Dn+3	Off	Dn-13

Timing Diagram

Equivalent Circuits of Inputs (1)

Equivalent Circuits of Inputs (2)

Equivalent Circuits of Output

Maximum Ratings (TA = 25°C)

Character	istic	Symbol	Rating	Unit	
Supply Voltage	Supply Voltage		V _{DD} 7.0		
Input Voltage		V _{IN} -0.2 ~ V _{DD} +0.2			
Output Current		I _{OUT}	90	mA/Channel	
Output Voltage		V_{OUT}	-0.2 ~ 17.0	V	
Total GND Terminals	Current	I _{GND}	1200	mA	
	SOP24		2.05		
Power Dissipation	SSOP24	P_D	1.49	W	
r ower Dissipation	SSOP24-1.0	гр	1.84	VV	
	SDIP24		2.08		
	SOP24		61		
Thermal Resistance	SSOP24	D	84	°C/W	
Thermal nesistance	SSOP24-1.0	$R_{TH(j-a)}$	68	C/ VV	
	SDIP24		60		
Operating Temperatur	Operating Temperature		-40~+85	$^{\circ}\!\mathbb{C}$	
Storage Temperature		T _{STG}	-55~+150	$^{\circ}\!\mathbb{C}$	

Stresses beyond those listed under "Maximum Ratings" may cause permanent damage to the device. Exposure to the maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions (TA= -40 to 85°C unless otherwise noted)

Characteristic	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply Voltage	V_{DD}	-	4.5	_	5.5	V
Output Voltage	V_{OUT1}	Output OFF	-	_	17	V
Output Voltage	V_{OUT2}	Output ON	1	_	4	V
Output Current	I _{OUT}	$V_{DD}=5V$	5	-	60	mA
Input Voltage	V_{IH}	Input Signals	0.7V _{DD}	-	V_{DD}	V
input voltage	V_{IL}	Input Signals	0	-	0.3V _{DD}	V
OE/ Pulse Width	t _W	$V_{DD}=5V$	120	_	-	ns

Selector Guide

Part	Number of Outputs	Max Output Current (mA)	Min PWM Pulse Width (ns)	Supply Voltage (V)
SCT2110	8	180	100	5
SCT2167	8	60	180	3.3/5
SCT2210	16	120	50	5
SCT2026	16	90	120	5
SCT2024	16	60	180	3.3/5

Electrical Characteristics (V_{DD}=5V, TA=25°C unless otherwise noted)

Cha	racteristic	Symbol	Condition	Min.	Тур.	Max.	Unit
Input Volts	Input Voltage		-	$0.7V_{\text{DD}}$	-	V_{DD}	V
input voite	ige	V_{IL}	-	0	-	$0.3V_{\text{DD}}$	V
SDO Outo	ut Voltage	V_{OH}	$V_{DD}=5V$, $I_{OH}=-1mA$	4.6	0.7V _{DD} - 0 - 4.6 21 - ±1 - ±3 650 - 650 - 170 - 130	-	٧
3DO Outp	ut voitage	V_{OL}	$V_{DD}=5V$, $I_{OL}=+1mA$	-	-	0.4	٧
Output Lea	akage Current	l _{OL}	$V_{OUT} = 17V$	-	-	0.5	μΑ
Output Cu	rrent	I _{OUT}	$V_{OUT}=1V$, $R_{EXT}=900\Omega$	-	21	-	mΑ
Current Bi	t Skew(Note 1)	dl _{OUT1}	$V_{OUT}=1V$, $R_{EXT}=900\Omega$	-	±1	±3	%
Current Ch	nip Skew	dI_{OUT2}	$V_{OUT}=1V$, $R_{EXT}=900\Omega$	-	±3	±6	%
I _{OUT} vs. V _D	D Regulation	%/dV _{DD}	$\begin{array}{l} 4.5V < V_{DD} < 5.5V, \\ V_{OUT} > 1V, R_{EXT} = 900\Omega \end{array} \label{eq:power_power}$	-	-	<u>±</u> 2	%/V
I _{OUT} vs. Vo	рит Regulation	%/ dV оит	$1V < V_{OUT} < 4V$ $I_{OUT} = 21 mA, \ R_{EXT} = 900 \Omega$	-	±1		%/V
Pull-up Re	sistor	R_{up}	OE/	-	650	-	ΚΩ
Pull-down	Resistor	R _{down}	LA/	-	650	-	ΚΩ
Thermal S	hutdown	T _H	li matia a Tanananati ma	-	170	-	$^{\circ}\!\mathbb{C}$
THEITHALS	Hutaowii	T_L	Junction Temperature	-	130	-	$^{\circ}\!\mathbb{C}$
	OFF		R_{EXT} = Open, V_{DD} = 5V OUT [0:15]=Off	-	7	9	
Supply Current	OFF	I _{DD} (off)2	$R_{EXT} = 900\Omega$, $V_{DD} = 5V$ OUT [0:15]=Off	-	9	11	mA
Note 4 Div	ON	I _{DD} (on)	$R_{EXT} = 900 \Omega, V_{DD} = 5V$ OUT [0:15]=On	-	10	12	

Note 1: Bit Skew= $(I_{OUT}-I_{AVG})/I_{AVG}$, where $I_{AVG}=(I_{max}+I_{min})/2$

Switching Characteristics (TA=25°C unless otherwise noted)(Note 2)

Charac	cteristic	Symbol	Condition	Min.	Тур.	Max.	Unit
Propagation	CLK - OUTn	t _{PLH1}		ı	30	60	ns
Delay Time	LA/ - OUTn	t _{PLH2}		-	100	150	ns
("L" to "H")	OE/ - OUTn	t _{PLH3}		-	50	100	ns
(2 to 11)	CLK - SDO	t _{PLH}		-	15	20	ns
Dropogation	CLK - OUTn	t _{PHL1}	$V_{DD} = 5V$	-	40	60	ns
Propagation Delay Time	LA/ - OUTn	t _{PHL2}	$V_{LED} = 5V$	-	100	150	ns
("H" to "L")	OE/ - OUTn	t _{PHL3}	$V_{IH} = V_{DD}$	-	30	60	ns
(11 to 2)	CLK - SDO	t _{PHL}	V_{IL} = GND R_{EXT} = 900 Ω R_{L} = 180 Ω	ı	15	20	ns
	CLK	t _{W(CLK)}		20	-	-	ns
Pulse Width	LA/	$t_{W(L)}$	$C_L = 10 \text{ pF}$	20	-	-	ns
	OE/	$t_{W(OE)}$	- '	120			ns
Hold Time fo	r LA/	$t_{H(L)}$		5	-	-	ns
Setup Time f	or LA/	t _{S(L)}		5	-	ı	ns
Output Rise	Time of Iout	t _{OR}		-	20	30	ns
Output Fall T	ime of louт	t _{OF}		-	20	30	ns
	Slow CLK rise time		Cascade	-	-	500	ns
Slow CLK fal	I time	t _F	Cascade	-	-	500	ns

Note 2:

All parameter tested at TA=25°C. Specifications over temperature are guaranteed by design.

Test Circuit for Switching Characteristics

Timing Waveform

Adjusting Output Current

All SCT2026's output current (I_{OUT}) are set by one external resistor at pin REXT. The relationship between I_{OUT} and resistance R_{EXT} is shown as the following figure.

Also, when SCT2026's output voltage is set between 1V and 4V, the output current I_{OUT} can be set by the formula: $I_{OUT} = 30(630 / R_{EXT})$ mA. Thus the output currents are all set to 21mA (±6%) by set the reference value $R_{EXT} = 900\Omega$.

Load Supply Voltage (Vim)

The SCT2026 can be operated very well when VOUT ranging from 1V to 4V. It is recommended to use the lowest possible supply voltage VLED or set a voltage reducer to reduce the VOUT voltage and then reduce the power dissipation of SCT2026. A voltage reducer lets VOUT = VLED-VDROP-VF, Resistors or Zener diode can be used in the applications as shown in the following figures.

Output Characteristics

The current characteristic of output stage is flat. The output current IOUT which less than 90mA can be kept constant regardless of the variations of LED forward voltage when VOUT > 1.2V. The relationship between IOUT and VOUT is shown as below:

Power Dissipation

The power dissipation (P_D) of a semiconductor chip is limited by its package and ambient temperature. The maximum allowable power dissipation $P_{D(max)}$ is determined by $P_{D(max)}=(T_{j(max)}-T_a)/R_{th(j-a)}$ where $T_{j(max)}$: maximum chip junction temperature, usually considered as 150 °C , T_a : ambient temperature, $R_{th(j-a)}$: thermal resistance of the package. The relationship between $P_{D(max)}$ and T_a is shown as the below figure:

Limitation on Maximum Output Current

The maximum output current vs. duty cycle is estimated by: $I_{OUT(max)} = (((T_{i(max)} - T_a)/R_{th(i-a)}) - (V_{DD} * I_{DD}))/V_{OUT}/Duty/N \text{ Where } T_{i(max)} = 150 ^{\circ}\text{C}, \text{ N} = 16(\text{all ON})$

Over Temperature Shutdown

The SCT2026 contains thermal shutdown scheme to prevent damage from over heat.

The internal thermal sensor turns off all outputs when the die temperature exceeds approximately $+170^{\circ}$ C. The outputs are enabled again when the die temperature drops below approximately $+130^{\circ}$ C.

Typical Application Circuits

PCB Design Considerations

Use the following general guide-line when designing printed circuit boards (PCB):

Decoupling Capacitor

Place a decoupling capacitor e.g. 0.1uF between VDD and GND pins of SCT2026. Locate the capacitor as close to the SCT2026 as possible. This is normally adequate for static LED driving. For dynamic scan or PWM applications, it is necessary to add an additional capacitor of 4.7uF or more to each supply for every SCT2026. The necessary capacitance depends on the LED load current, PWM switching frequency, and serial-in data speed. Inadequate VDD decoupling can cause timing problems, and very noisy LED supplies can affect LED current regulation.

External Resistor (REXT)

Locate the external resistor as close to the REXT pin as possible to avoid the noise influence.

Power and Ground

Maximizing the width and minimizing the length of VDD and GND trace improve efficiency and ground bouncing by effect of reducing both power and ground parasitic resistance and inductance. A small value of resistor e.g. 22Ω series in power input pin VDD of SCT2026 in conjunction with decoupling capacitor shunting the ICs is recommended. Separating and feeding the LED power from another supply terminal VLED is strongly recommended as well to get stable supply voltage at pins of VDD.

Package Dimension

SOP24

SYMBOL	D	DIMENSION (mm)			DIMENSION (mil)		
	MIN	NOM	MAX	MIN	NOM	MAX	
Α	2.36	2.54	2.64	93	100	104	
A1	0.10	0.20	0.30	4	8	12	
b	0.35	0.406	0.48	14	16	19	
b1	0.35		0.46	14		18	
С	0.23	0.254	0.31	9	10	12	
c1	0.23		0.29	9		11	
D	15.20	15.29	15.60	598	602	614	
Е	7.40	7.50	7.60	291	295	299	
е		1.27 BSC			50 BSC		
Н	10.00	10.31	10.65	394	406	419	
h	0.25	0.66	0.75	10	26	30	
L	0.51	0.76	1.02	20	30	40	
Υ			0.075			3	
θ	0°		8°	0°		8°	

SSOP24

SYMBOL	DIMENSION (mm)			DIMENSION (mil)		
01111202	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.35	1.60	1.75	53	63	69
A1	0.10	0.15	0.25	4	6	10
A2			1.50			59
b	0.20		0.30	8		12
b1	0.20	0.254	0.28	8	10	11
С	0.18		0.25	7		10
c1	0.18	0.203	0.23	7	8	9
D	8.56	8.66	8.74	337	341	344
E	5.80	6.00	6.20	228	236	244
E1	3.80	3.90	4.00	150	154	157
е		0.635 BSC			25 BSC	
h	0.25	0.42	0.50	10	17	20
L	0.40	0.635	1.27	16	25	50
L1	1.00	1.05	1.10	39	41	43
ZD		0.838 REF			33 REF	
Υ			0.10			4
θ	0°		8°	0°		8°

SSOP24-1.0

SYMBOL	D	DIMENSION (mm)			DIMENSION (mil)		
	MIN	NOM	MAX	MIN	NOM	MAX	
Α	-	-	2.20	-	-	87	
A1	0.10	0.20	0.30	4	8	12	
A2	1.60	1.80	2.00	63	71	79	
A3	0.62	0.82	0.92	24	32	36	
b	0.39	-	0.47	15	-	19	
b1	0.38	0.40	0.43	15	16	17	
С	0.15	-	0.20	6	-	8	
c1	0.14	0.15	0.16	5.5	6	6.5	
D	12.80	13.00	13.20	504	512	520	
Е	7.70	7.90	8.10	303	311	319	
E1	5.80	6.00	6.20	228	236	244	
е		1.00 BSC			39 BSC		
Ĺ	0.35	0.45	0.55	14	18	22	
L1	0.95 BSC			37 BSC			
θ	0°	-	8°	0°	-	8°	

SDIP24

SYMBOL	DIMENSION (mm)			DIMENSION (mil)		
	MIN	NOM	MAX	MIN	NOM	MAX
Α	3.60	3.80	4.00	142	150	157
A1	0.30	-	-	12	-	-
A2	3.10	3.30	3.50	122	130	138
A3	1.42	1.52	1.62	56	60	64
b	0.44	-	0.53	17	-	21
b1	0.43	0.46	0.48	17	18	19
B1	1.00 BSC			39 BSC		
С	0.25	-	0.31	10	-	12
c1	0.24	0.25	0.26	9	10	11
D	22.70	22.90	23.10	894	902	909
E1	6.40	6.60	6.80	252	260	268
е	1.778 BSC			70 BSC		
eA	7.62 BSC			300 BSC		
eB	7.62	-	9.50	300	-	374
eC	0	-	0.94	0	-	37
	3.00	_	-	118	-	_

Revision History

Data Sheet Version	Remark
V02_01	Upgrade spec.

Information provided by StarChips Technology is believed to be accurate and reliable. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Starchips can not assume responsibility and any problem raising out of the use of the circuits. Starchips reserves the right to change product specification without prior notice.

StarChips Technology, Inc. _____www.starchips.com.tw 4F, No.5, Technology Rd., Science-Based Industrial Park, Hsin-Chu, Taiwan, R.O.C. Tel: +886-3-577-5767 # 555