DIGITOS DE CONTROL

DC1	220
DC2	220

Actividad 1-

PARTE a: Calcular su correspondiente a decimal de los 4 siguientes octetos de la dirección IP representada en binario.

1.
$$10000100 = (1*128) + (0*64) + (0*32) + (0*16) + (0*8) + (1*4) + (0*2) + (0*1) = 132$$

2.
$$01010110 = (0*128) + (1*64) + (0*32) + (1*16) + (0*8) + (1*4) + (1*2) + (0*1) = 86$$

3.
$$11101110 = (1*128) + (1*64) + (1*32) + (0*16) + (1*8) + (1*4) + (1*2) + (0*1) = 238$$

4.
$$10101100 = (1*128) + (0*64) + (1*32) + (0*16) + (1*8) + (1*4) + (0*2) + (0*1) = 172$$

Dirección Binaria	Dirección Decimal
10000100	132
01010110	86
11101110	238
10101100	172

Parte b: Indica los rangos de direcciones UPS que corresponden a

CLASES DE REDES	RANGOS IP'S DE LAS CLASES
CLASE A:	0.0.0.0 - 127.255.255.255
CLASE B:	128.0.0.0 - 191.255.255.255
CLASE C:	192.0.0.0 - 223.255.255.255

PARTE C.

126.21.56.76		CLASE A
10.DC1.3.0	10.220.3.0	CLASE A
210.89.55.9		CLASE C
192.254.5.0		CLASE C
126.25. DC2.1	126.25.220.1	CLASE A
201.35.2.1		CLASE C

Parte D: Indícame las máscaras de red de las siguientes clases:

CLASE A: 255.0.0.0

CLASE B: 255.255.0.0

CLASE C: 255.255.255.0

Parte E: Dime que parte corresponde al host y que parte corresponde a la red de las siguientes direcciones:

1. 180.101.28.5= RED	180.101. HC	ST 28.5.
-----------------------------	-------------	----------

PARTE f: Indica de forma reducida las siguientes ip's

10.0.0.5 (tiene máscara de 255.0.0.0). = 10.0.0.5/8

192.168.4.5 (tiene máscara de 255.255.255.0)= 192.168.4.5/24

PARTE g: Indica de forma extendida las siguientes ip's:

201.200.30.5/24= 201.200.30.5 (mascara de red 255.255.255.0)

10.6.7.3/8= 10.6.7.3 (mascara de red 255.0.0.0)

Actividad 2.

PARTE a:

Hacer esquema físico/Hacer esquema lógico

Hacer tabla de enrutado

Router 1

Regla	Interfaz	Origen	Destino	Puerto	Acción
1	Eth0	0.0.0.0/0	-	20, 21	R: 192.168.0.3
2	Eth1	192.168.0.3/32	0.0.0.0/0	-	Permitir
3	Eth1	192.168.1.0/24	0.0.0.0/0	-	Permitir
4	Eth1	192.168.2.0/24	0.0.0.0/0	-	Permitir
5	-	-	-	-	Bloquear

Router 2

Regla	Interfaz	Origen	Destino	Puerto	Acción
1	Eth1	192.168.1.0/24	0.0.0.0/0	-	Permitir
2	Eth2	192.168.2.0/24	0.0.0.0/0	-	Permitir
3	-	-	-	-	Bloquear

PARTE B

Dividir la dirección de red 143.150.2.0/24 en las siguientes subredes:

1. Divide la red en 3 redes.

Como necesitamos 3 redes tomaremos 2 bits "prestados" (2ⁿ≥ nº subredes), quedando la siguiente mascara 11111111. 111111111. 111111111. 11000000 que transformada a decimal seria 255.255.255. 192

Aunque solo necesitaremos 3 redes, hemos creado 4 subredes, por tanto tendremos incrementos de 64 en cada red. Para calcularlo tenemos que elevar 2 al número de bits disponibles que quedan (2^6=64).

Nos quedarían 4 subredes de la siguiente forma:

RED	BROADCAST	RANGO
143.150.2.0/26	143.150.2.63/26	143.150.2.1/26143.150.2.62/26
143.150.2.64/26	143.150.2.127/26	143.150.2.65/26143.150.2.126/26
143.150.2.128/26	143.150.2.191/26	143.150.2.129/26143.150.2.190/26
143.150.2.192/26	143.150.2.255/26	143.150.2.193/26143.150.2.254/26

2. ¿Cuántas redes se pierden?

Se pierde 1 red.

3. ¿Cuántos equipos se pueden conectar a cada red?

En cada subred tenemos 64 posibles conexiones, pero debemos reservar la primera y la ultima de cada rango para referirnos a la dirección de red (la primera de cada rango) y la dirección de broadcast (la última de cada rango), por lo tanto podremos conectar 62 equipos por cada red, para un total de 248 (62*4) equipos.

Como en este caso solo vamos a utilizar 3 redes entonces podremos conectar 186 (62*3) equipos.

PARTE C.

El jefe, estaba pensando incluir una subred más para aislar los pc´s de recepción. Por tanto, divide en 4 redes la dirección 143.150.2.0/24:

1. Divide la red en 4 redes.

Como necesitamos 4 redes tomaremos 2 bits "prestados" (**2**ⁿ≥ **nº subredes**), quedando la siguiente mascara 11111111. 111111111. 111000000 que transformada a decimal seria 255.255.255. 192

Como hemos creado 4 subredes tendremos incrementos de 64 en cada red. Para calcularlo tenemos que elevar 2 al número de bits disponibles que quedan (2^6=64).

Nos quedarían 4 subredes de la siguiente forma:

RED	BROADCAST	RANGO
143.150.2.0/26	143.150.2.63/26	143.150.2.1/26143.150.2.62/26
143.150.2.64/26	143.150.2.127/26	143.150.2.65/26143.150.2.126/26
143.150.2.128/26	143.150.2.191/26	143.150.2.129/26143.150.2.190/26
143.150.2.192/26	143.150.2.255/26	143.150.2.193/26143.150.2.254/26

2. ¿Cuántas redes se pierden?

No se pierde ninguna red.

3. ¿Cuántos equipos se pueden conectar a cada red?

En cada subred tenemos 64 posibles conexiones, pero debemos reservar la primera y la ultima de cada rango para referirnos a la dirección de red (la primera de cada rango) y la dirección de broadcast (la última de cada rango), por lo tanto podremos conectar 62 equipos por cada red, para un total de 248 (62*4) equipos.

ACTIVIDAD 3:

• Enrutamiento.

Es el proceso de selección de una ruta a través de una o más redes.

• Servidor DHCP.

Se encarga de gestionar la asignación de direcciones Ip de la información de configuración de la red en general.

Servidor DNS.

Es un servicio que traduce los nombres de los dominios en direcciones IP y viceversa.

Servidor FTP.

Protocolo más antiguo de la capa de aplicación TCP/IP que permite la transferencia de ficheros.

• Servidor Web.

Se encarga del almacenaje y la difusión de información mediante la distribución de páginas HTML.

Servidor de correo electrónico.

Es un sistema de transferencia de mensajes ideado bajo la arquitectura cliente-servidor típica de internet.

Servidor SSH.

Es un protocolo que facilita las comunicaciones seguras entre dos sistemas usando una arquitectura cliente/servidor y que permite a los usuarios conectarse a un host remotamente.

Servidor VNC.

Es un sistema de conexión remota que permite ver el escritorio de un sistema a través de la red en otro equipo.