Chassis Design

2007 FIRST Rookie Workshop

Zan Hecht Manchester, NH Jan 5th, 2007

Outline (modified)

- Basic Robot Design Theory
- Building a Chassis
- Building a Driveline
- What's in the KOP?
- Moving from VEX to FRC
- Final Advice
- Questions?

Steering Suggestions

- Skid steering is easy
- Single-joystick controls are great for new drivers
- Two-joystick controls gives drivers more control

4 Wheels vs. 2 Wheels

4 Wheels vs. 2 Wheels

4 Wheels vs. 2 Wheels

Slicks vs. Grips

Slicks vs. Grips

Slicks vs. Grips

Wheel Suggestions

- It doesn't matter how many wheels you have, as long as they all are driven
- •If you plan to turn, you should only have two "grippy" tires
 - Incline Conveyor Belt (wedge-top, rough-top)
 - Pneumatic Tires
 - Soft Rubber Tires
- Remaining wheels should be slick
 - Hard rubber or plastic
 - Omni-wheel/Wonder-wheel
 - •Zip ties (in case of emergency only!)

Center of Gravity

Center of Gravity

Center of Gravity

Weight Distribution Suggestions

- Your center of gravity must be between your wheels
- Your center of gravity must be between your wheels even when your robot is at an angle
- The wheels closest to your center of gravity should be grippy

$$rpm_{output} = rpm_{input} *?$$

$$torque_{output} = torque_{input} *?$$

$$rpm_{output} = rpm_{input} * \frac{teeth_{input}}{teeth_{output}}$$

$$torque_{output} = torque_{input} *?$$

$$rpm_{output} = rpm_{input} * \frac{teeth_{input}}{teeth_{output}}$$

$$torque_{output} = torque_{input} * \frac{teeth_{output}}{teeth_{input}}$$

Robot Speed

$$speed_{robot} = ?$$

Robot Speed

$$speed_{robot} = \frac{rpm_{wheel}}{60} * Diameter_{wheel} * \pi$$

Motor Performance Data					
Speed (RPMs)	Torque (oz. in.)	Current (Amps)	Power Out (Watts)	Efficiency	Heat (Watts)
170	0.00	0.1	0.0	0%	1
159	4.68	0.3	0.5	26%	2
147	9.35	0.4	1.0	34%	2
136	14.03	0.5	1.4	36%	2
125	18.71	0.6	1.7	36%	3
113	23.38	0.7	2.0	34%	4
102	28.06	0.8	2.1	32%	4
91	32.73	0.9	2.2	29%	5
79	37.41	1.0	2.2	26%	6
68	42.09	1.1	2.1	23%	7
57	46.76	1.2	2.0	19%	8

Robot Speed

What size wheel should I use if I want my robot's maximum speed to be 3 feet per second?

Robot Speed

What size wheel should I use if I want my robot's maximum speed to be 3 feet per second?

$$3 = \frac{\sim 120}{60} * Diameter_{wheel} * \sim 3$$

Robot Speed

What size wheel should I use if I want my robot's maximum speed to be 3 feet per second?

$$Diameter_{wheel} \approx \frac{1}{2}$$
 (6 inches)

Robot Speed

If the 6" wheels are the largest I can fit onto my robot, how would I make my robot's maximum speed 6 feet per second?

Robot Speed

If the 6" wheels are the largest in the kit, how would I make my robot's maximum speed 6 feet per second (without damaging the motor or making custom wheels)?

Put a sprocket on the motor that is half the size of the sprocket on the wheel.

Sprockets vs. Gears

Sprocket

Gears

Sprockets vs. Gears

Sprockets vs. Gears

Maximum ratio 8:1

9-72 teeth

Infinite Ratio Possible

13 – ∞ teeth (<18 not recommended)

Sprockets vs. Gears

Face Alignment Critical

Spacing Critical

Gear and Sprocket Recommendations

- Sprockets are used with chains, gears mesh with each other
- Sprockets and gears are NOT interchangeable
- Sprocket and chain systems are easier to build than gear systems
- Gear systems can be smaller and lighter than chains and sprockets

Idler Gears

Idler Gears

Further Gear and Sprocket Recommendations

- Idler gears change direction of motion, but don't change gear ratio
- Properly designed gear or chain and sprocket systems are ~97% efficient at each gear/sprocket, so idlers don't effect much if you don't go overboard

Wheelbase

Wheelbase

Wheelbase

Wheelbase

Wheelbase Recommendations

- Short and wide robots turn easily and have lots of control, but will tend to not drive straight
- •Long and narrow robots will not turn easily and will have poor turning control, but will tend to drive very straight
- Depending on the task, you should balance the two

Building a Chassis

Building a Chassis Design Tradeoffs

- Stable vs. Maneuverable
- Accessible vs. Compact
- Strong & Rigid vs. Light
- Manufacturable & Affordable vs. Everything

Building a Chassis Kit Chassis

- Advantages: lightweight, quick to build, uses standard parts
- Disadvantages: may not fit your design, requires added structure (that will most likely be put on anyway)

Building a Chassis T-Slot Extrusion (80/20)

- Advantages: quick to build, standard parts, easy to create tension and to add fastening points
- Disadvantages: heavy, expensive

Building a Chassis Aluminum Tube and Plate

- Advantages: lightweight, strength, fits your design
- Disadvantages: takes time, requires skill, non standard parts

Building a Chassis

Miscellaneous

- Advantages: fits your design, unique
- Disadvantages: takes much time, requires skill, non standard parts

Building a Chassis Materials

- Aluminum Extrusion
 - 1/16" 1/8": usable but will dent and bend
 - T-slot: use 1" sized profiles or higher
- Aluminum Plate, Bar, and Angle
 - 3/16" 1/4" used often
- Plastic Sheet
 - Spans structures, provides bracing
 - Polycarbonate (LEXAN, etc.) NOT Acrylic (Plexiglas, etc.)
- Wood
 - Lightweight and easy to use
 - Will splinter and fail but can be fixed
- Steel Tube and Angle
 - Strong, but heavy, 1/16" wall thickness is plenty strong
- Misc
 - Extruded fiberglass, PVC tubing, etc. Use your imagination!

Building a Driveline Design Tradeoffs

- Speed vs. Power
- Traction vs. Maneuverability

6-Wheel Drive

Swerve Drive

Treads

Other Wheel Configurations

Building a DrivelineStandard 4-wheel Tank Drive

Building a Driveline Wheel Sources

• Kit of Parts Skyway wheels (more available at FIRST team discount from 800-332-3357)

 Colson Casters (available from many places, including http://www.robotmarketplace.com/)

- FIRST Specific wheels (high traction wheels, omniwheels, etc)
 - •http://andymark.biz/
 - http://ifirobotics.com/

Driveline Recommendations

- There are many types of drivelines, choose the one that best fits your specific game strategy.
- A well driven, reliable, "vanilla" driveline will beat a complex and unreliable driveline in competition.

Chain Wrap

Chain Wrap

Chain Wrap

Chain Tension

Further Gear and Sprocket Recommendations

- All sprockets must have >120° of chain wrap (180° is better)
- Chains "stretch" as they wear, have a way to adjust tension

Shaft Support Recommendations

- Never side-load your motors they're not designed for it. Always have at least one bearing on the output, and try to have two whenever possible.
- If your shaft is supporting weight, support it in two places.
- Try to avoid supporting a shaft in three or more places a misalignment will lead to a loss of power.

Questions?

