Virus And Related Threats

Viruses and Other Malicious Content

- > computer viruses have got a lot of publicity
- > one of a family of malicious software
- effects usually obvious
- have figured in news reports, fiction, movies (often exaggerated)
- > getting more attention than deserve
- > are a concern though

Malicious Software

Backdoor or Trapdoor

- secret entry point into a program
- allows those who know access bypassing usual security procedures
- have been commonly used by developers
- a threat when left in production programs allowing exploited by attackers
- very hard to block in O/S

Logic Bomb

- > one of oldest types of malicious software
- code embedded in legitimate program
- activated when specified conditions met
 - eg presence/absence of some file
 - particular date/time
 - particular user
- when triggered typically damage system
 - modify/delete files/disks, halt machine, etc

Trojan Horse

- program with hidden side-effects
- which is usually superficially attractive
 - eg game, s/w upgrade etc
- when run performs some additional tasks
 - allows attacker to indirectly gain access they do not have directly
- often used to propagate a virus/worm or install a backdoor
- or simply to destroy data

Mobile Code

- program/script/macro that runs unchanged
 - on heterogeneous collection of platforms
 - on large homogeneous collection (Windows)
- transmitted from remote system to local system & then executed on local system
- > often to inject virus, worm, or Trojan horse
- > or to perform own exploits
 - unauthorized data access, root compromise

Multiple-Threat Malware

- malware may operate in multiple ways
- multipartite virus infects in multiple ways
 - eg. multiple file types
- blended attack uses multiple methods of infection or transmission
 - to maximize speed of contagion and severity
 - may include multiple types of malware
 - eg. Nimda has worm, virus, mobile code
 - can also use IM & P2P

Viruses

- piece of software that infects programs
 - modifying them to include a copy of the virus
 - so it executes secretly when host program is run
- specific to operating system and hardware
 - taking advantage of their details and weaknesses
- a typical virus goes through phases of:
 - dormant
 - propagation
 - triggering
 - execution

Virus Structure

- > components:
 - infection mechanism enables replication
 - trigger event that makes payload activate
 - payload what it does, malicious or benign
- prepended / postpended / embedded
- when infected program invoked, executes virus code then original program code
- can block initial infection (difficult)
- or propogation (with access controls)

Virus Structure

```
program V :=
{goto main;
   1234567;
   subroutine infect-executable :=
       {loop:
       file := get-random-executable-file;
       if (first-line-of-file = 1234567)
          then goto loop
          else prepend V to file; }
   subroutine do-damage :=
       {whatever damage is to be done}
   subroutine trigger-pulled :=
       {return true if some condition holds}
main:
       main-program :=
       {infect-executable;
       if trigger-pulled then do-damage;
       qoto next;}
next:
```


Compression Virus

```
program CV :=
{goto main;
   01234567;
    subroutine infect-executable :=
          {loop:
               file := get-random-executable-file;
          if (first-line-of-file = 01234567) then goto loop;
               compress file;
        (1)
               prepend CV to file;
        (2)
main:
       main-program :=
          (if ask-permission then infect-executable;
        (3)
               uncompress rest-of-file;
        (4)
               run uncompressed file;}
```


Virus Classification

- boot sector
- > file infector
- macro virus
- encrypted virus
- > stealth virus
- polymorphic virus
- metamorphic virus

Macro Virus

- became very common in mid-1990s since
 - platform independent
 - infect documents
 - easily spread
- exploit macro capability of office apps
 - executable program embedded in office doc
 - often a form of Basic
- more recent releases include protection
- recognized by many anti-virus programs

E-Mail Viruses

- more recent development
- > e.g. Melissa
 - exploits MS Word macro in attached doc
 - if attachment opened, macro activates
 - sends email to all on users address list
 - and does local damage
- > then saw versions triggered reading email
- hence much faster propagation

Virus Countermeasures

- prevention ideal solution but difficult
- realistically need:
 - detection
 - identification
 - removal
- if detect but can't identify or remove, must discard and replace infected program

Anti-Virus Evolution

- virus & antivirus tech have both evolved
- > early viruses simple code, easily removed
- as become more complex, so must the countermeasures
- generations
 - first signature scanners
 - second heuristics
 - third identify actions
 - fourth combination packages

Generic Decryption

- > runs executable files through GD scanner:
 - CPU emulator to interpret instructions
 - virus scanner to check known virus signatures
 - emulation control module to manage process
- lets virus decrypt itself in interpreter
- periodically scan for virus signatures
- > issue is long to interpret and scan
 - tradeoff chance of detection vs time delay

Digital Immune System

Behavior-Blocking Software

Worms

- replicating program that propagates over net
 - using email, remote exec, remote login
- has phases like a virus:
 - dormant, propagation, triggering, execution
 - propagation phase: searches for other systems, connects to it, copies self to it and runs
- may disguise itself as a system process
- concept seen in Brunner's "Shockwave Rider"
- implemented by Xerox Palo Alto labs in 1980's

Morris Worm

- one of best know worms
- released by Robert Morris in 1988
- various attacks on UNIX systems
 - cracking password file to use login/password to logon to other systems
 - exploiting a bug in the finger protocol
 - exploiting a bug in sendmail
- > if succeed have remote shell access
 - sent bootstrap program to copy worm over

Worm Propagation Model

Recent Worm Attacks

- Code Red
 - July 2001 exploiting MS IIS bug
 - probes random IP address, does DDoS attack
- Code Red II variant includes backdoor
- SQL Slammer
 - early 2003, attacks MS SQL Server
- Mydoom
 - mass-mailing e-mail worm that appeared in 2004
 - installed remote access backdoor in infected systems
- Warezov family of worms
 - scan for e-mail addresses, send in attachment

Worm Technology

- multiplatform
- multi-exploit
- ultrafast spreading
- polymorphic
- metamorphic
- transport vehicles
- zero-day exploit

Mobile Phone Worms

- > first appeared on mobile phones in 2004
 - target smartphone which can install s/w
- they communicate via Bluetooth or MMS
- > to disable phone, delete data on phone, or send premium-priced messages
- CommWarrior, launched in 2005
 - replicates using Bluetooth to nearby phones
 - and via MMS using address-book numbers

Worm Countermeasures

- > overlaps with anti-virus techniques
- once worm on system A/V can detect
- worms also cause significant net activity
- worm defense approaches include:
 - signature-based worm scan filtering
 - filter-based worm containment
 - payload-classification-based worm containment
 - threshold random walk scan detection
 - rate limiting and rate halting

Proactive Worm Containment

Network Based Worm Defense

Distributed Denial of Service Attacks (DDoS)

- Distributed Denial of Service (DDoS) attacks form a significant security threat
- > making networked systems unavailable
- by flooding with useless traffic
- using large numbers of "zombies"
- growing sophistication of attacks
- > defense technologies struggling to cope

Distributed Denial of Service Attacks (DDoS)

(a) Distributed SYN flood attack

DDoS Flood Types

(a) Direct DDoS Attack

Constructing an Attack Network

- must infect large number of zombies
- needs:
- 1. software to implement the DDoS attack
- 2. an unpatched vulnerability on many systems
- scanning strategy to find vulnerable systems
 - random, hit-list, topological, local subnet

DDoS Countermeasures

- three broad lines of defense:
 - attack prevention & preemption (before)
 - attack detection & filtering (during)
 - attack source traceback & ident (after)
- huge range of attack possibilities
- hence evolving countermeasures

Summary

- have considered:
 - various malicious programs
 - trapdoor, logic bomb, trojan horse, zombie
 - viruses
 - worms
 - distributed denial of service attacks

