Timing Analysis of LimeSDR

Saptarshi Hazra

Software Defined Radio

- Flexible Radio Communication System.
- Flexibility provided by implementing signal processing tasks on General Purpose Hardware.

Advantages:

- Possibility of future proof systems.
- Rapid evolvement of communication standards.

Motivation

- Possibility of technology agnostic radio-head.
- Design of Cognitive Radios.

Problem Area:

Challenges:

- Need for computational horsepower.
- Introduction of additional communication delays.
- Non-deterministic behaviour.

Impact:

- Unable to implement time-sensitive operations of modern MAC.
- TDMA MAC protocols difficult to implement.

Research Question:

Q: Feasibility study of TDMA protocols on LimeSDR.

Q.1: What are the communication bottlenecks in LimeSDR implementation?

- **Primary Measurement Metric:** Jitter.
- **Secondary Measurement Metric:** Latency.

Overview of the Presentation.

- Introduction to LimeSDR.
- Brief Introduction to GNURadio.
- Method Explanation.
- Results.
- Analysis.

LimeSDR Hardware Architecture:

LimeSDR Software Architecture:

LimeSDR- Transmit Loop (Data Packets)

LimeSDR- Control Packets

LMS64C Protocol Packet

LimeSDR-USB Configuration:

EndPoint	Function
0x01	Stream Data Out
0x81	Stream Data In
0x0F	Control data Output
0x8F	Control Data Input

GNURadio

- Software development toolkit used to design processing blocks for Software Defined Radio.
- These blocks can then be combined together in the form of flowgraphs.

Method: Quantitative Analysis

USBMon:

- Kernel utility to collect I/O traces on the USB Bus.
- Reports the requests made to and by the USB Host Controller.

USBMon Architecture

Measurement Setup

Dataflow

Timing Measurements Data Points:

USB Host Controller Data points:

Component Timing results:

RTT vs Batchsizes:

Closer look at buffering at the USB transaction:

Buffering Time = Buffer_Length/ Sampling Rate*2* Bytes per sample
Buffer_Length= Batchsize* FPGA_Packet_Length

Burst Time = Buffer_Length / Available Bandwidth (Max: 4Gbits/sec)

Timings, batchsize=1, samp_rate= 4MSPS

Buffering time(worst case) = $4096/4*10^6*2*2$ [1 sample=2 Bytes] = $256 \mu s$

Burst Time(Best case) = 4096/4 Gbits \approx 8.192 μ s

Timed Transmission

- Start transmission at particular time instant of SDR time.
- Challenge:

SDR time □ System Time.

