实验 5-2 利用聚类发现同级红酒

建议课时: 20 分钟

一、 实验目的

- 了解 pandas 的常用函数
- 了解聚类方法的处理流程

二、实验环境

Python3 开发环境,第三方包有 pandas, sklearn

三、 实验步骤

本节处理的内容有:

在之前观察数据时,可以发现很多离散数据都含有 6-8 个不同数据取值,所以此处我们将选择聚类中的 k 值为 6,查看聚类效果。

1. 读取之前为微博数据分析准备的数据

```
import pandas as pd
winedf = pd.read_csv("./prepare_for_weibo.csv")
```

2. one-hot 编码

查看 winedf 的 dtypes:

```
winedf.dtypes
keyword
                         object
price
                        float64
产区
                           object
原产地
                           object
口感
                           object
国产/进口
                            object
特性
                           object
甜度
                           object
颜色
                           object
冰酒/贵腐/甜酒
                               int64
白葡萄酒
                             int64
果味葡萄酒
                              int64
桃红葡萄酒
                              int64
```

由于 kmeans 接受数值型数据,所以需要采用 one-hot 编码对 object 类别的数据 进行转换

```
resdf = pd.get_dummies(winedf) #非数值型都转化为one-hot
```

3. 聚类

```
from sklearn.cluster import KMeans

kmodel = KMeans(n_clusters = 6,n_jobs=5)

kmodel.fit(resdf) # 湖線模型

rs = kmodel.predict(resdf) # 獎別索引

winedf['label'] = rs
```

代码使用很简单,定好聚类数目即可,其他参数可见官方文档,也可在 jupyter 编辑器中利用?来查询源码和用法。

4. 同级红酒发现

看一下每个类别中数目较多的红酒类别:

```
winedf.groupby("label").agg({'price':['min','max','count']})
```

			price
	min	max	count
label			
0	3.32	23040.0	3114
1	9.83	3399.0	3206
2	4.83	50000.0	4264
3	16.00	8800.0	206
4	78000.00	79560.0	2
5	3499.00	29800.0	163

每个类中的价格最小值和最大值,可见分类界限没那么明确,造成这样的原因主要是两部分:一是聚类数目没有选择好,二是数据的准确度,之前的红酒价格是根据数据规范算出来的,但有可能提取的瓶数是错的,导致数据是不正确的,所以聚类上对品牌会造成影响。

但我们可以查看一下每个类中数目占比就多的红酒品牌:

```
classA = winedf[winedf.label==0].groupby(["keyword"]).size().sort_values(ascending=False).reset_index()
classA.columns=["keyword","A"]
classB = winedf[winedf.label==1].groupby(["keyword"]).size().sort_values(ascending=False).reset_index()
classB.columns=["keyword","B"]
classC = winedf[winedf.label==2].groupby(["keyword"]).size().sort_values(ascending=False).reset_index()
classC.columns=["keyword","C"]
classD = winedf[winedf.label==3].groupby(["keyword"]).size().sort_values(ascending=False).reset_index()
classD.columns=["keyword","D"]
classE = winedf[winedf.label==4].groupby(["keyword"]).size().sort_values(ascending=False).reset_index()
classE.columns=["keyword","E"]
classF = winedf[winedf.label==5].groupby(["keyword"]).size().sort_values(ascending=False).reset_index()
classF.columns=["keyword","F"]
```

classA[:10]			cl	classB[:10]			classC[:10]			
	keyword	Α		keyword	В		keyword	C		
0	长城/greatwall	606	0	长城/greatwall	345	0	罗曼尼康帝庄园	468		
1	张裕/changyu	219	1	拉菲/lafite	333	1	通化/tonghua	368		
2	通化/tonghua	180	2	奔富/penfolds	272	2	波尔多	334		
3	王朝/dynasty	102	3	黄尾袋鼠/yellow tail	158	3	长城/greatwall	179		
4	拉菲/lafite	98	4	纷赋/wolfblass	158	4	黄尾袋鼠/yellow tail	155		
5	黄尾袋鼠/yellow tail	97	5	干露/concha y toro	158	5	蒙特斯/montes	150		
6	杰卡斯/jacob's creek	97	6	蒙特斯/montes	150	6	路易拉菲/louis lafon	144		
7	罗曼尼康帝庄园	96	7	通化/tonghua	143	7	张裕/changyu	143		
8	高斯达	89	8	贝灵哲/beringer	102	8	贺兰山	123		
9	奔富/penfolds	88	9	杰卡斯/jacob's creek	101	9	名庄靓年	87		

从结果上看,同样的红酒品牌会在多个类中出现,可以由数量上判断该品牌属于哪个类别,由此整理得到:

A	'长城/greatwall ', '张裕/changyu ', '王朝/dynasty ', '高斯达', '莫高
	/mogao ', '智象/chilephant', '拉梦堡/lamengbao', '芙华/la fiole', '玛茜
	/rochemazet', '尼雅/niya ', '天鹅庄', '华东/huadong', '嘉伦多', '罗莎庄园',
	'蒙大菲/robert mondavi' 等等
В	'拉菲/lafite', '奔富/penfolds', '纷赋/wolfblass', '黄尾袋鼠/yellow tail',
	'干露/concha y toro ', '蒙特斯/montes ', '贝灵哲/beringer', '杰卡斯/jacob's
	creek', '圣丽塔', '威赛帝斯', '卡思黛乐/castel', '璞立/beaulieu vineyard', '
	也买酒/yesmywine', '麦格根/mcguigan', '玛歌酒庄/chateau margaux', '加
	州乐事', '音符/awjs' 等等
С	'罗曼尼康帝庄园', '通化/tonghua', '波尔多', '路易拉菲/louis lafon ', '
	贺兰山', '名庄靓年', '拉蒙', '香奈/j.p.chenet ', '木桐', '丰收' 等等
D	'罗马假日', '君顶', '优尼特/riunite', '阿维娃/aviva', '蓝海之鲸
	/mr.sparkling'
F	'木桐古堡/ch. mouton rothschild', '拉图酒庄', '作品一号/opus one'

代码如下:

```
level = pd.DataFrame(list(set(winedf['keyword'])),columns=["keyword"])
level = pd.merge(level,classA,how='left',on=["keyword"])
level = pd.merge(level,classB,how='left',on=["keyword"])
level = pd.merge(level,classC,how='left',on=["keyword"])
level = pd.merge(level,classD,how='left',on=["keyword"])
level = pd.merge(level,classF,how='left',on=["keyword"])
level = level.fillna(0)
level['max value']=level.max(axis=1)
level=level[level.max value>0]
print(level.shape)
def appendlevel(sr):
   levels=list('ABCDF')
   for i in levels:
       if sr[i] == sr['max_value']:
            return i
level['level'] = level.apply(lambda x:appendlevel(x),axis=1)#年前apply
```

level	[level level	'C'1 so	et values	("may s	valua"	ascending=False)
TEACT	TEACT TEACT	L . 501	r varues	(IIIOA 1	value ,	ascenariig-raise)

	keyword	Α	В	C	D	F	max_value	level
140	罗曼尼康帝庄园	96.0	75.0	468.0	14.0	44.0	468.0	С
20	通化/tonghua	180.0	143.0	368.0	29.0	0.0	368.0	С
142	波尔多	46.0	73.0	334.0	13.0	3.0	334.0	С
128	路易拉菲/louis lafon	63.0	32.0	144.0	0.0	0.0	144.0	С
134	贺兰山	1.0	0.0	123.0	7.0	0.0	123.0	С
78	名庄靓年	0.0	3.0	87.0	1.0	0.0	87.0	С
167	拉蒙	0.0	0.0	71.0	0.0	0.0	71.0	С
0	香奈/j.p.chenet	31.0	57.0	65.0	1.0	0.0	65.0	С
153	木桐	5.0	1.0	54.0	0.0	0.0	54.0	С
161	丰收	4.0	10.0	50.0	5.0	0.0	50.0	С

可以用同样的方法查看其他级别的红酒品牌类目。

5. 给微博数据加标签

把清洗微博数据的结果和同级红酒的处理结果做合并

```
result = pd.merge(df,level[["keyword","level"]],how="left",on="keyword")
```

结果如下:

	keyword	gender	age	country	region	level
0	卓林/zonin	m	9999	其他	其他	А
1	怡园酒庄/grace vineyard	f	9999	香港	其他	В
2	莱茵黑森	f	9999	广东	广州	В
3	长城/greatwall	m	34	上海	浦东新区	А
4	奥兰	f	9999	北京	其他	В
5	华东/huadong	f	9999	山东	青岛	А
6	黄尾袋鼠/yellow tail	m	9999	辽宁	大连	С
7	黄尾袋鼠/yellow tail	m	9999	上海	其他	С
8	奥兰	f	9999	广东	深圳	В
9	安徒生	m	9999	其他	其他	Α
10	安徒生	m	9999	湖南	长沙	Α
11	木桐嘉棣/mouton cadet	f	9999	北京	朝阳区	С
12	加州乐事	m	9999	其他	其他	С

保存为 level.csv 文件,下一节采用 pandaBI 的大屏展示显示相关数据