

# THE UNIVERSITY OF TEXAS AT AUSTIN Department of Statistics and Data Sciences

Purnamrita Sarkar\*, Deepayan Chakrabarti\* and Peter J. Bickel

Consistency of common neighbors for link prediction

U T Austin\*, U C Berkeley

email: purna.sarkar@austin.utexas.edu, deepay@utexas.edu,bickel@stat.berkeley.edu

College of Natural Sciences

#### **Questions:**

- 1. (Link prediction/recommendation). Given node i, identify at least a constant number of nodes from i's cluster.
  - Recommending a few friends on Facebook
  - Recommending next few movies to watch on Netflix
  - In these applications, its not necessary to find all nodes in  $C_i$
- 2. (Local Clustering). For *i*, identify all nodes in *i*'s cluster.
  - Clearly harder than the first problem.

# Setup of our stochastic blockmodel



- $\bullet$  Fixed number of equal-sized blocks k.
- Assortative clusters  $\alpha > \gamma$ .
- $\bullet \alpha, \gamma = \Theta(\rho)$  where  $\rho \to 0$ .  $\rho$  controls sparsity.

#### **Speed vs. Accuracy**

- 1. Spectral clustering yields strongly consistent results if:
  - $\bullet \frac{\alpha \gamma}{\sqrt{\alpha}} > C\sqrt{\log n/n}$
  - $\bullet$  Average degree grows faster than poly-logarithmic powers of n.
  - Relatively slow for very large graphs.
- 2. A popular alternative is counting **common neighbors**.



- 3. Counting common neighbors is fast:
  - Only requires database join operations.
  - Works pretty well empirically—here we investigate this formally.

## Theory: basic setup

- 1. Sanity Check:
  - Fix the query node q. Let  $X_i$  denote the number of common neighbors between q and any other node i.
  - $E[X_i|C_i = C_q] E[X_i|C_i \neq C_q] = n\pi(\alpha \gamma)^2 > 0.$
- 2. Difficulties:
  - $X_i$  and  $X_j$  are dependent quantities use a conditioning argument.
  - $X_i$  only concentrates when average degree grows faster than  $\sqrt{n \log n}$ . This is a fairly dense regime. We show that a further preprocessing (*cleaning*) step can recover the entire cluster w.h.p.

#### Semi-dense case



- Degree grows faster than  $\sqrt{n \log n}$ .
- The separation is of a larger order than the standard deviation.
- There exists a threshold  $t_n$ , s.t.  $S := \{i : X_i > t_n\} = C_q$  w.h.p.
- $\bullet$  Practical implication: clustering the  $X_i$ 's works.

**Theorem 1.** When average degree is growing faster than  $\sqrt{n \log n}$ , if  $\frac{\alpha - \gamma}{\alpha} > \frac{2}{\sqrt{\pi}} \left(\frac{\log n}{n\alpha^2}\right)^{1/4}$  then  $\exists t_n \ P(|S \cap C_q| = n\pi) \to 1$  and  $P(|S \setminus C_q| = 0) \to 1$ . Here  $\pi = 1/k$ .

## Semi-sparse case



- Degree grows faster than  $(n \log n)^{1/3}$ .
- The separation is of a **smaller** order than the standard deviation.
- Even one common neighbor is rare.
- Let  $S = \{i : X_i \ge 1\}, n_w := |S \cap C_q| \text{ (good) and } n_o := |S \setminus C_q| \text{ (bad)}.$
- We can show that  $n_w$  and  $n_o$  concentrate and  $E[n_w] > E[n_o]$ .
- So S has more "good" nodes than "bad" nodes.

#### Semi-sparse: stronger results

- $\bullet$  Use S as a filter.
- For node i, count the number of edges to  $S(Y_i)$ .
- $\bullet$   $Y_i$  concentrates around their expectations.
- These expectations are well separated:  $\exists s_n$  such that

$$E[Y_i] > s_n > E[Y_j] \quad \forall i \in C_q, \ j \notin C_q.$$

 $\bullet$  Practical implication: clustering the  $Y_i$ 's works.

**Theorem 2.** Let  $S_1 = \{i : Y_i > s_n\}$ . When average degree is growing slower than  $\sqrt{n \log n}$  but faster than  $(n \log n)^{1/3}$ , if  $(\pi \alpha - (1 - \pi)\gamma)/(1 - \pi)\gamma > 2$ , then for  $t_n = 1$ ,  $P(|S_1 \cap C_a| = n\pi) \to 1$  and  $P(|S_1 \setminus C_a| = 0) \to 1$ .