funções

definições básicas

Definição. Sejam A e B conjuntos e R uma relação binária de A em B. Diz-se que R é um função ou aplicação de A em B se

- 1. $D_R = A$;
- 2. Para cada $a \in A$, se $b_1, b_2 \in B$ são tais que $(a, b_1), (a, b_2) \in R$, então, $b_1 = b_2$.

ou seja, R é uma função de A em B se para cada $a \in A$ existe **um e um** só $b \in B$ tal que $(a, b) \in R$.

Em geral, representa-se uma função por uma letra minúscula: f, g, etc. Escreve-se $f:A\to B$ para indicar que f é uma função de A em B.

A cada elemento $a \in A$ chama-se *objeto* e, para cada $a \in A$, o único elemento $b \in B$ para o qual $(a, b) \in R$ diz-se *a imagem de a por f* e representa-se por f(a).

O conjunto de todas as funções de A em B representa-se por B^A .

Se f é uma função de A em B, escreve-se

$$f: A \to B$$

 $a \mapsto f(a)$

.

Exemplos:

- 1. A relação identidade em A, $id_A = \{(a, a) : a \in A\}$ é uma função de A em A.
- 2. A relação universal em A, ω_A , não é uma aplicação de A em A se e só se A tem pelo menos dois elementos.
- 3. Seja $A = \{1, 2, 3\}$. Então:

$$f = \{(1,2),(2,1),(3,1)\}$$
 é uma função de A em A ;

$$g = \{(1,1),(2,1),(2,2),(3,1)\}$$
 não é uma função de A em A ;

$$h = \{(2,1),(3,1)\}$$
 não é uma função de A em A ;

a aplicação vazia

Definição. Seja A um conjunto. Chama-se aplicação vazia, e representa-se por \emptyset , à função de \emptyset em A:

$$\emptyset:\emptyset\to A$$

Temos

$$A \neq \emptyset \Rightarrow A^{\emptyset} = \{\emptyset\} \land \emptyset^{A} = \emptyset$$
$$\emptyset^{\emptyset} = \{\emptyset\}.$$

igualdade de funções

Definição. Sejam A, B, A' e B' conjuntos e $f:A\to B$ e $g:A'\to B'$ aplicações. Diz-se que f é igual a g, e escreve-se f=g, se

- 1. A = A':
- 2. B = B';
- 3. (x, f(x)) = (x, g(x)) (i.e., f(x) = g(x)), para todo $x \in A$.

Exemplo. Sejam $A = \{1, 2, 3\}$ e $B = \{2, 4, 6, 8\}$. Então, $f = \{(1, 2), (2, 4), (3, 6)\} \subseteq A \times B$

е

$$g: A \to B$$

 $x \mapsto 2x$

são duas aplicações iguais.

propriedades das funções

Sejam A e B conjuntos e $f:A\to B$ uma aplicação. Diz-se que f é

1. injetiva se

$$\forall x, y \in A, \qquad f(x) = f(y) \Rightarrow x = y.$$

2. **sobrejetiva** se

$$\forall b \in B \exists a \in A : f(a) = b.$$

3. **bijetiva** se é simultaneamente injetiva e sobrejetiva.

Exemplos.

- 1. Sejam $A=\{1,2,3\},\ B=\{3,4,5,6\}$ e $f:A\to B$ a aplicação definida por $f=\{(1,3),(2,5),(3,6)\}$. Então, a aplicação f é injetiva pois não existem dois objetos distintos com imagem igual. A aplicação f não é sobrejetiva pois $4\in B$ não é imagem por f de nenhum elemento de A.
- 2. Sejam $A=\{1,2,3,4\}$, $B=\{3,4,5\}$ e $g:A\to B$ a aplicação definida por $g=\{(1,3),(2,4),(3,5),(4,3)\}$. Então, a aplicação f não é injetiva pois $1,4\in A$ são tais que $1\neq 4$ e g(1)=3=g(4). A aplicação f é sobrejetiva pois qualquer elemento de B é imagem por g de algum elemento de A.

3. Seja $h: \mathbb{Z} \to \mathbb{Z}$ a aplicação definida por h(x) = 2x + 1, para todo $x \in \mathbb{Z}$. A aplicação h é injetiva pois, dados $x, y \in \mathbb{Z}$, temos que

$$h(x) = h(y) \Rightarrow 2x + 1 = 2y + 1 \Rightarrow x = y.$$

A aplicação h não é sobrejetiva pois, por exemplo, $4 \in \mathbb{Z}$ e não existe $a \in \mathbb{Z}$ tal que 4 = 2a + 1.

4. Sejam A e B conjuntos tais que $A \neq \emptyset$ e $A \subseteq B$. A aplicação

$$i_{A,B}: A \to B$$

 $x \mapsto x$

é injetiva e designa-se por função inclusão ou mergulho de A em B. Em particular, $i_{A,A}=\mathrm{id}_A$.

restrição de funções

Definição. Sejam $f: A \to B$ uma aplicação e $X \subseteq A$. Chama-se restrição de f a X à aplicação $f|_X: X \to B$ definida por

$$f|_X(a) = f(a), \quad \forall a \in X.$$

Exemplo. Seja $f: \mathbb{Z} \to \mathbb{Z}$ uma aplicação definida por f(x) = 2x, para todo $x \in \mathbb{Z}$. Então,

$$f|_{2\mathbb{Z}}: 2\mathbb{Z} \to \mathbb{Z}$$

 $2x \mapsto 4x$

função composta

Teorema. Sejam A, B e C conjuntos, $f:A\to B$ e $g:B\to C$. Então, a relação binária $g\circ f$ é uma função de A em C

Demonstração. Começamos por observar que

$$g \circ f = \{(x,y) \in A \times C : (\exists z \in B)(x,z) \in f \in (z,y) \in g\}.$$

Para provar que $g \circ f$ é função temos de provar que:

- 1. $\forall a \in A \exists c \in C : (a, c) \in g \circ f$;
- 2. $(a, c_1), (a, c_2) \in g \circ f \Rightarrow c_1 = c_2$.

Provemos então cada uma das afirmações:

- 1. Seja $a \in A$. Então, existe $b \in B$ tal que $(a, b) \in f$. Como $b \in B$ e g é aplicação, existe $c \in C$ tal que $(b, c) \in g$. Logo, por definição da relação binária $g \circ f$, podemos concluir que $(a, c) \in g \circ f$.
- 2. Suponhamos que $(a, c_1), (a, c_2) \in g \circ f$. De $(a, c_1) \in g \circ f$ podemos concluir que

$$\exists b_1 \in B : (a, b_1) \in f \ e \ (b_1, c_1) \in g$$

e de $(a, c_2) \in g \circ f$ podemos concluir que

$$\exists b_2 \in B : (a, b_2) \in f \ e \ (b_2, c_2) \in g.$$

De $(a,b_1),(a,b_2)\in f$, como f é uma função, concluímos que $b_1=b_2$. Assim, temos que $(b_1,c_1),(b_1,c_2)\in g$ e, como g é aplicação, concluímos que $c_1=c_2$.

Definição. Dadas as aplicações $f:A\to B$ e $g:B\to C$, chamamos aplicação (ou função) composta de f com g à aplicação $g\circ f$ e escrevemos

$$g \circ f: A \to C$$

 $x \mapsto g(f(x))$.

Propriedades. Sejam A, B, C e D conjuntos e $f: A \rightarrow B, g: B \rightarrow C$ e $h: C \rightarrow D$. Então,

- 1. $h \circ (g \circ f) = (h \circ g) \circ f$;
- 2. $f \circ id_A = f = id_B \circ f$;
- 3. Se f e g são injetivas, então, $g \circ f$ é injetiva;
- 4. Se f e g são sobrejetivas, então, $g \circ f$ é sobrejetiva;
- 5. Se f e g são bijetivas, então, $g \circ f$ é bijetiva;

Demonstração.

- 1. Resulta do facto da composição de relações binárias ser associativa;
- 2. Sejam $x \in A$ and $y \in B$. Então,

$$(x,y) \in f \circ id_A \Leftrightarrow \exists z \in A : (x,z) \in id_A \land (z,y) \in f$$

 $\Leftrightarrow \exists z \in A : x = z \land (z,y) \in f$
 $\Leftrightarrow (x,y) \in f$

е

$$(x,y) \in id_B \circ f \Leftrightarrow \exists w \in B : (x,w) \in f \land (w,y) \in id_B$$

 $\Leftrightarrow \exists w \in B : (x,w) \in f \land w = y$
 $\Leftrightarrow (x,y) \in f.$

- 3. Sejam $x_1, x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$. Então, $g(f(x_1)) = g(f(x_2))$. Como g é injetiva, temos que $f(x_1) = f(x_2)$. Como f é injetiva, concluímos que $x_1 = x_2$. Logo, $g \circ f$ é uma aplicação injetiva.
- 4. Seja y ∈ C. Porque g é sobrejetiva, existe z ∈ B tal que g(z) = y. Mas, se z ∈ B, como f é sobrejetiva, existe x ∈ A tal que f(x) = z. Temos então que g(f(x)) = y, ou seja, dado, y ∈ C, existe x ∈ A tal que (g ∘ f)(x) = y. Logo, g ∘ f é sobrejetiva.
- 5. Consequência imediata de 3 e 4.

função inversa

Dados conjuntos A e B, a relação binária inversa de uma aplicação de A em B pode não ser uma aplicação de B em A.

Exemplo. Sejam $A = \{1, 2, 3\}$, $B = \{2, 4\}$ e $F = \{(1, 2), (2, 2), (3, 4)\}$ uma relação binária de A em B.

A relação binária F é uma aplicação e a relação binária $F^{-1}=\{(2,1),(2,2),(4,3)\}$ não é uma aplicação. Porquê?

Levanta-se então a seguinte questão:

Em que condições é que F^{-1} é uma aplicação?

Teorema. Sejam A e B conjuntos e $f:A\to B$ uma aplicação. A relação binária f^{-1} é aplicação de B em A se e só se f é bijetiva. Neste caso, f^{-1} é também bijetiva.

Definição. Seja $f:A\to B$ uma aplicação bijetiva. Chama-se aplicação (ou função) inversa de f, e representa-se por $f^{-1}:B\to A$ à aplicação definida por

$$f^{-1}(b) = a \Leftrightarrow b = f(a),$$
 para $a \in A$ e $b \in B$.

Teorema. A aplicação $f:A\to B$ é bijetiva se e só se existe uma aplicação $g:B\to A$ tal que

$$g \circ f = \mathrm{id}_A$$
 e $f \circ g = \mathrm{id}_B$.

Mais ainda, a aplicação g é única nestas condições.

Demonstração. Basta ver que $g = f^{-1}$.

Teorema. Sejam $f:A\to B$ e $g:B\to C$ funções bijetivas. Então,

- 1. $(f^{-1})^{-1} = f$;
- 2. $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

Demonstração.

- 1. Segue de imediato do facto de $f^{-1} \circ f = id_A$ e $f \circ f^{-1} = id_B$ e do teorema anterior.
- 2. Basta observar que

$$(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ (f \circ f^{-1}) \circ g^{-1}$$
$$= g \circ \mathrm{id}_{B} \circ g^{-1} = g \circ g^{-1} = \mathrm{id}_{C}$$
e
$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f$$
$$= f^{-1} \circ \mathrm{id}_{B} \circ f = f^{-1} \circ f = \mathrm{id}_{A}$$

e aplicar os teoremas anteriores.

imagens de conjuntos

Imagem de um conjunto por uma função.

Definição. Sejam $f: A \rightarrow B$ uma função e $X \subseteq A$.

Ao conjunto

$$f^{\rightarrow}(X) = \{b \in B : \exists a \in X : b = f(a)\}$$
$$= \{f(a) \in B : a \in X\}$$

chamamos imagem de X por f.

Observação. Esta definição corresponde à definição de imagem de X pela relação binária f, pelo que também escrevemos f(X).

Exemplos:

1. Sejam $f: \mathbb{Z} \to \mathbb{Z}$ a aplicação definida por

$$f(x) = \begin{cases} 2x+3 & \text{se } x \ge 0\\ 3-x & \text{se } x < 0 \end{cases}$$

e $X = \{-4, 0, 1, 2\}$. Então,

$$f^{\rightarrow}(X) = \{f(-4), f(0), f(1), f(2)\} = \{3, 5, 7\}.$$

- 2. Sejam A e B conjuntos e $f:A\to B$ uma aplicação. Então, $f^\to(\emptyset)=\emptyset$ e $f^\to(A)=D_f'$.
- 3. Seja $f: \mathbb{Z} \to \mathbb{Z}$ uma aplicação definida por f(x) = 2x, para todo $x \in \mathbb{Z}$. Então, $f^{\to}(2\mathbb{Z}) = 4\mathbb{Z}$ e $f^{\to}(\{2n+1:n\in\mathbb{Z}\}) = \{4n+2:n\in\mathbb{Z}\}.$

Imagem inversa de um conjunto por uma função.

Definição. Sejam $f: A \rightarrow B$ uma função e $Y \subseteq B$.

Ao conjunto

$$f^{\leftarrow}(Y) = \{ a \in A : \exists b \in Y : b = f(a) \}$$
$$= \{ a \in A : f(a) \in Y \}$$

chamamos imagem inversa de Y por f.

Observação. A imagem completa inversa de Y por f é exactamente a imagem de Y pela relação binária f^{-1} (que não é necessariamente uma função), pelo que também escrevemos $f^{-1}(Y)$.

Exemplos:

1. Sejam $f:\mathbb{Z} \to \mathbb{Z}$ a aplicação definida por

$$f(x) = \begin{cases} 2x+3 & \text{se } x \ge 0\\ 3-x & \text{se } x < 0 \end{cases}$$

e
$$Y = \{-5, 0, 5\}$$
. Então, $f^{\leftarrow}(Y) = \{-2, 1\}$ pois $f(-2) = 5$, $f(1) = 5$ e não existe $x \in \mathbb{Z}$ tal que $f(x) = -5$ ou $f(x) = 0$.

- 2. Sejam A e B conjuntos e $f:A\to B$ uma aplicação. Então, $f^\leftarrow(\emptyset)=\emptyset$ e $f^\leftarrow(B)=D_f=A$.
- 3. Seja $f: \mathbb{Z} \to \mathbb{Z}$ uma aplicação definida por f(x) = 2x, para todo $x \in \mathbb{Z}$. Então, $f^{\leftarrow}(2\mathbb{Z}) = \mathbb{Z}$ e $f^{\leftarrow}(\{2n+1 : n \in \mathbb{Z}\}) = \emptyset$.

Teorema. Sejam A e B conjuntos, f uma função de A em B, $X \subseteq A$ e $Y \subseteq B$. Então,

- 1. $X \subseteq f^{\leftarrow}(f(X))$;
- 2. $X = f^{\leftarrow}(f(X))$, se f é injetiva.
- 3. $f(f^{\leftarrow}(Y)) \subseteq Y$;
- 4. $f(f^{\leftarrow}(Y)) = Y$, se f é sobrejetiva.

Demonstração.

1. Temos $x \in A$, temos

$$x \in X \Rightarrow f(x) \in f(X) \Leftrightarrow x \in f^{\leftarrow}(f(X)).$$

Logo, $X \subseteq f^{\leftarrow}(f(X))$.

2. Suponhamos que f é injetiva. Então,

$$x \in f^{\leftarrow}(f(X)) \Leftrightarrow f(x) \in f(X)$$

 $\Leftrightarrow (\exists a \in X) \ f(x) = f(a)$
 $\Rightarrow (\exists a \in X) \ x = a$
 $\Leftrightarrow x \in X$,

pelo que $f^{\leftarrow}(f(X)) \subseteq X$. Por 1., obtemos a igualdade.

3. Para $y \in B$, temos

$$y \in f(f^{\leftarrow}(Y)) \Leftrightarrow (\exists x \in f^{\leftarrow}(Y)) \ y = f(x)$$

$$\Rightarrow (\exists x \in A) \ f(x) \in Y \land y = f(x)$$

$$\Leftrightarrow y \in Y.$$

Logo, $f(f^{\leftarrow}(Y) \subseteq Y$.

4. Suponhamos que f é sobrejetiva. Então,

$$y \in Y \Leftrightarrow y \in B \cap Y$$

$$\Leftrightarrow (\exists a \in A) \ f(a) = y \in Y$$

$$\Leftrightarrow (\exists a \in A) \ a \in f^{\leftarrow}(Y)$$

$$\Rightarrow y = f(a) \in f(f^{\leftarrow}(Y),$$

pelo que $Y \subseteq f(f^{\leftarrow}(Y))$. A igualdade resulta do ponto 3.

Teorema. Sejam A e B conjuntos quaisquer e $f:A\to B$. Então,

- 1. f é injetiva se e só se $f(X \cap Y) = f(X) \cap f(Y)$, para todos $X, Y \subseteq A$;
- 2. f é sobrejetiva se e só se $B \setminus f(X) \subseteq f(A \setminus X)$, para todo $X \subseteq A$;
- 3. f é bijetiva se e só se $B \setminus f(X) = f(A \setminus X)$, para todo $X \subseteq A$.

Demonstração.

1. $[\Rightarrow]$ Sejam $X, Y \subseteq A$. Então,

$$b \in f(X \cap Y) \quad \Leftrightarrow (\exists a \in X \cap Y)f(a) = b$$

$$\Rightarrow (\exists a \in X)f(a) = b \land (\exists a \in Y)f(a) = b$$

$$\Leftrightarrow b \in f(X) \land b \in f(Y) \Leftrightarrow b \in f(X) \cap f(y).$$

Assim, $f(X \cap Y) \subseteq f(X) \cap f(Y)$. Mais ainda, se f é injetiva, temos que

$$b \in f(X) \cap f(Y) \Leftrightarrow b \in f(X) \land b \in f(Y)$$

$$\Leftrightarrow (\exists x \in X)(\exists y \in Y)f(x) = b = f(y)$$

$$\Rightarrow (\exists x \in X)(\exists y \in Y)x = y \land b = f(x)$$

$$\Leftrightarrow (\exists x \in X \cap Y)b = f(x) \Leftrightarrow b \in f(X \cap Y).$$

e, por isso, $f(X) \cap f(Y) \subseteq f(X \cap Y)$.

[\Leftarrow] Suponhamos que $f(X \cap Y) = f(X) \cap f(Y)$, para todos $X, Y \subseteq A$. Sejam $x, y \in A$ tais que f(x) = f(y). Então, $b = f(x) \in f(\{x\})$ e $b = f(y) \in f(\{y\})$, pelo que

$$b \in f(\{x\}) \cap f(\{y\}) = f(\{x\} \cap \{y\}).$$

Logo, $\{x\} \cap \{y\} \neq \emptyset$, o que só acontece se x = y. Estamos em condições de concluir que f é injetiva.

2. $[\Rightarrow]$ Suponhamos que f é sobrejetiva. Seja $X\subseteq A$. Então,

$$b \in B \setminus f(X) \Leftrightarrow b \in B \land b \notin f(X)$$

$$\Leftrightarrow (\exists a \in A)b = f(a) \land f(a) \notin f(X)$$

$$\Rightarrow (\exists a \in A)b = f(a) \land a \notin X$$

$$\Leftrightarrow (\exists a \in A \setminus X)b = f(a) \Leftrightarrow b \in f(A \setminus X).$$

Assim, $B \setminus f(X) \subseteq f(A \setminus X)$.

- [\Leftarrow] Suponhamos que $B \setminus f(X) \subseteq f(A \setminus X)$ para todo $X \subseteq A$. Então, considerando $X = \emptyset$, obtemos B = f(A), pelo que f é sobrejetiva.
- [⇒] Suponhamos que f é bijetiva. Seja X ⊆ A. Como f é sobrejetiva, temos, por 2., que B \ f(X) ⊆ f(A \ X). Para concluirmos a igualdade, falta apenas provar a outra inclusão. Se b ∈ f(A \ X), então, existe a ∈ A \ X tal que f(a) = b. Vamos provar que b ∉ f(X). Se existisse x ∈ X tal que f(x) = b, teríamos f(x) = f(a). Mas, como f é injetiva, teríamos x = a ∈ X ∩ A \ X = ∅, o que é uma contradição. Logo. b ∈ B \ f(X).
 - [\Leftarrow] Suponhamos que $B \setminus f(X) = f(A \setminus X)$ para todo $X \subseteq A$. Então, por 2., f é sobrejetiva. A injetividade de f resulta de, para todo $a \in A$, $B \setminus f(\{a\}) = f(A \setminus \{a\})$. De facto, se $a_1 \neq a_2$, temos que $f(a_1) \neq f(a_2)$.