Simple Linear Regression Assignment

Data Set: Salary_Data Building a Prediction Model for Salary Hike

1. Import Necessary libraries

```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
import statsmodels.formula.api as smf
from sklearn.metrics import mean_squared_error
from math import sqrt
import warnings
warnings.filterwarnings('ignore')
     Import Data
salary details = pd.read csv('/content/Salary Data (2).csv')
salary_details
    YearsExperience
                        Salary
0
                1.1
                       39343.0
                1.3
1
                       46205.0
2
                1.5
                       37731.0
3
                2.0
                       43525.0
4
                2.2
                      39891.0
5
                2.9
                      56642.0
6
                3.0
                       60150.0
7
                3.2
                      54445.0
8
                3.2
                      64445.0
9
                3.7
                      57189.0
10
                3.9
                       63218.0
11
                4.0
                       55794.0
12
                4.0
                       56957.0
13
                4.1
                       57081.0
14
                4.5
                      61111.0
15
                4.9
                      67938.0
16
                5.1
                       66029.0
17
                5.3
                       83088.0
                       81363.0
18
                5.9
19
                6.0
                       93940.0
20
                6.8
                       91738.0
21
                7.1
                      98273.0
22
                7.9
                     101302.0
23
                8.2
                     113812.0
24
                8.7
                     109431.0
```

```
25
                9.0
                      105582.0
26
                9.5
                     116969.0
                9.6
27
                     112635.0
28
               10.3
                      122391.0
               10.5
29
                     121872.0
     Data Understanding
a) Initial Analysis:
salary details.head()
   YearsExperience
                     Salary
0
               1.1
                    39343.0
1
               1.3 46205.0
2
               1.5 37731.0
3
               2.0 43525.0
4
               2.2 39891.0
salary details.shape
(30, 2)
salary_details.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30 entries, 0 to 29
Data columns (total 2 columns):
     Column
                       Non-Null Count
                                       Dtype
 0
     YearsExperience 30 non-null
                                        float64
                      30 non-null
                                        float64
 1
     Salary
dtypes: float64(2)
memory usage: 608.0 bytes
salary details.isna().sum()
YearsExperience
                    0
Salary
                    0
dtype: int64
b) Correlation Matrix:
corr_matrix = salary_details.corr()
corr_matrix
                 YearsExperience
                                     Salary
                                   0.978242
                         1.000000
YearsExperience
                         0.978242
Salary
                                   1.000000
sns.heatmap(data = corr matrix,annot = True)
plt.show()
```


1. Perform Assumption Check

a) Outlier Test Using Box Plot :

```
plt.figure(figsize = (12,5))
plt.subplot(1,2,1)
salary_details['YearsExperience'].hist()
plt.subplot(1,2,2)
salary_details.boxplot(column = ['YearsExperience'])
```

plt.show()


```
plt.figure(figsize = (12,5))
plt.subplot(1,2,1)
salary_details['Salary'].hist()
```

```
plt.subplot(1,2,2)
salary_details.boxplot(column = ['Salary'])

plt.show()

7
6
5
4
3
2
1
0
40000
40000
```

From the above histogrms and boxplots, we found that there is no outleirs present inside the YearsExperience and Salary data.

Salary

b) Normality / Distribution Test Using Distplot :

80000

40000

60000

sns.distplot(salary_details['YearsExperience'])
plt.show()

100000

120000

sns.distplot(salary_details['Salary'])
plt.show()

Normality Test Failed

7. Model Building | 8. Model Training

Now Try to fit Model for Salary Hike

Model 1: Without Applying any Transformation

```
Using Statsmodel
```

```
model_1 = smf.ols(formula = 'YearsExperience~Salary', data =
salary_details).fit()
model_1
```

<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x7fdcb5b4bdf0>

```
#coefficient
model_1.params

Intercept -2.383161
Salary 0.000101
dtype: float64
model_1.summary()
```

```
<class 'statsmodels.iolib.summary.Summary'>
```

OLS Regression Results

====== Dep. Variable:	YearsExperience	R-squared:
0.957 Model: 0.955	0LS	Adj. R-squared:
Method: 622.5	Least Squares	F-statistic:
Date: 1.14e-20	Fri, 20 Jan 2023	Prob (F-statistic):
Time: -26.168	17:28:01	Log-Likelihood:
No. Observations 56.34	: 30	AIC:
Df Residuals: 59.14	28	BIC:
Df Model:	1	
Covariance Type:	nonrobust	
=======================================		
0.975]	coef std err	t P> t [0.025

0.975]	coef	std err	t	P> t	[0.025
Intercept -1.713 Salary	-2.3832 0.0001	0.327 4.06e-06	-7.281 24.950	0.000	-3.054 9.3e-05
0.000 =================================			.=======		
Omnibus: 1.587		3.5	44 Durbin	-Watson:	
Prob(Omnibus 2.094):	0.1	•	-Bera (JB):	:
Skew: 0.351		-0.4	•	,	
Kurtosis: 2.41e+05		2.0	003 Cond.	INO.	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 2.41e+05. This might indicate that there are strong multicollinearity or other numerical problems.

From the Above OLS Regression Result the R-Squared value is 0.957 > 0.75 and we can say that this Model is good to Predict Salary hike and p-value < 0.05 and it is significant model

Model 2: Apply Log Transformation of Y

OLS Regression Results

```
Dep. Variable:
                               Salary
                                        R-squared:
0.854
Model:
                                   0LS
                                        Adj. R-squared:
0.849
Method:
                        Least Squares
                                        F-statistic:
163.6
Date:
                     Fri, 20 Jan 2023
                                        Prob (F-statistic):
3.25e-13
                             17:29:24
                                         Log-Likelihood:
Time:
-319.77
                                         AIC:
No. Observations:
                                    30
643.5
Df Residuals:
                                    28
                                         BIC:
```

646.3 Df Model: 1

Covariance Type: nonrobust

[0.025	0.975]			td err	t	P> t	
Intercept		1.493e+04	51	56.226	2.895	0.007	
4365.921 np.log(Year 3.41e+04	sExperience)	4.058e+04	31	72.453	12.792	0.000	
====== Omnibus:		1.0	 994	 Durbin-W	 /atson:		
0.512 Prob(Omnibu	ıs):	0.5	579	Jarque-Bera (JB):			
0.908 Skew:		0.3	156	Prob(JB)	:		
0.635 Kurtosis: 5.76		2.2	207	Cond. No).		
=======	:========	:=======	====	=======	:=======		
Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. """							
Model 3: App	ly Log Transfor	mation of X					
<pre>model_3 = smf.ols(formula = 'np.log(Salary)~YearsExperience',data = salary_details).fit() model_3</pre>							
<pre><statsmodels.regression.linear_model.regressionresultswrapper 0x7fdccef66940="" at=""></statsmodels.regression.linear_model.regressionresultswrapper></pre>							
model_3.par	ams						
Intercept 10.507402 YearsExperience 0.125453 dtype: float64							
<pre>model_3.summary()</pre>							
<pre><class 'statsmodels.iolib.summary.summary'=""></class></pre>							
OLS Regression Results							
====== Dep. Variab 0.932	ole: r	np.log(Sala	ry)	R-square	ed:		

```
Model:
                                  OLS Adj. R-squared:
0.930
Method:
                        Least Squares F-statistic:
383.6
                     Fri, 20 Jan 2023 Prob (F-statistic):
Date:
7.03e-18
Time:
                             17:30:10
                                        Log-Likelihood:
28.183
No. Observations:
                                   30
                                        AIC:
-52.37
Df Residuals:
                                   28
                                        BIC:
-49.56
Df Model:
                                    1
```

Covariance Type: nonrobust

______ coef std err t P>|t| $[0.025 \quad 0.975]$ ------Intercept 10.429 10.586 10.5074 0.038 273.327 0.000 YearsExperience 0.1255 0.006 19.585 0.000 0.112 0.139 ______ ====== Omnibus: 0.826 Durbin-Watson: 1.438 Prob(Omnibus): 0.661 Jarque-Bera (JB): 0.812 Skew: 0.187 Prob(JB): 0.666 2.286 Cond. No. Kurtosis:

Notes:

13.2

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Model 4: Apply Log Transformation of X and Y

```
model_4 = smf.ols(formula =
'np.log(Salary)~np.log(YearsExperience)',data = salary_details).fit()
model_4
```

```
<statsmodels.regression.linear model.RegressionResultsWrapper at</pre>
0x7fdcb5b6b9a0>
```

model 4.params

10.328043 Intercept np.log(YearsExperience) 0.562089

dtype: float64

model 4.summary()

<class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable: np.log(Salary) R-squared:

0.905

Model: OLS Adj. R-squared:

0.902

Method: Least Squares F-statistic:

267.4

Fri, 20 Jan 2023 Prob (F-statistic): Date:

7.40e-16

Time: 17:30:56 Log-Likelihood:

23,209

No. Observations: AIC: 30

-42.42

Df Residuals: 28 BIC:

-39.61

Df Model: 1

Covariance Type: nonrobust

[0.025	====== 0.975]	coef	std err	t	P> t
Intercept 10.214	10.442	10.3280	0.056	184.868	0.000
np.log(Year 0.492 ======	sExperience) 0.632 =======	0.5621	0.034	16.353 =======	0.000

======

0.102 Durbin-Watson: Omnibus:

0.988

Prob(Omnibus): 0.950 Jarque-Bera (JB):

0.297

```
Skew:
                            0.093 Prob(JB):
0.862
                                   Cond. No.
Kurtosis:
                            2.549
5.76
______
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is
correctly specified.
Model 5: Apply Square Root Transformation
model 5 = smf.ols(formula = 'Salary~np.sgrt(YearsExperience)',data =
salary_details).fit()
model \overline{5}
<statsmodels.regression.linear model.RegressionResultsWrapper at</pre>
0x7fdcb5aef4f0>
model 5.params
Intercept
                        -16055.769117
np.sqrt(YearsExperience) 41500.680583
dtype: float64
model 5.summary()
<class 'statsmodels.iolib.summary.Summary'>
                         OLS Regression Results
______
======
Dep. Variable:
                            Salary
                                   R-squared:
0.931
Model:
                              0LS
                                  Adi. R-squared:
0.929
                     Least Squares F-statistic:
Method:
377.8
                  Fri, 20 Jan 2023 Prob (F-statistic):
Date:
8.57e-18
Time:
                          17:33:21
                                   Log-Likelihood:
-308.52
No. Observations:
                               30
                                   AIC:
621.0
Df Residuals:
                               28
                                   BIC:
623.8
Df Model:
                                1
```

[0.025	 ======= 0.975]	coef	std err	 t	P> t
Intercept -2.61e+04 np.sqrt(Yea	-5974.331 rsExperience)		4921.599	-3.262	0.003
3.71e+04 ======== Omnibus:	4.59e+04 ========	0.588	Durbin-W	======= atson:	:=======
1.031 Prob(Omnibus): 0.638		0.745 Jarque-Bera (JB):			
Skew: 0.727 Kurtosis: 9.97		0.011 2.286	,		

nonrobust

Notes:

=======

Covariance Type:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

CONCLUSION = Comparing between all Models we got to know that without applying any transformation for the Model_1 we got the Higher R-squared Value i.e. 0.957 as comapare to all Model.

Hence the Model_1 is better model to predict Salary_hike