

Weather Frog

- Abschlusspräsentation am 01. März 2021
- Institut: Statistik
- Veranstaltung: Statistisches Praktikum
- Projektpartner: M.Sc. Maximilian Weigert und
 - M.Sc. Magdalena Mittermeier
- Betreuer: Prof. Dr. Helmut Küchenhoff

Statistisches Praktikum

Gliederung

1. Einführung

- i. Vorstellen des Projekts
- ii. Datensätze
- iii. Einführung in Clusteranalyse

2. Analyse

- i. Methodik
- ii. Ergebnisse
- iii. Deskriptive Analyse
- 3. Ausblick
- 4. Fazit

Statistisches Praktikum

1. Einführung

i. Vorstellen des Projekts

Vorstellen des Projekts

Übergeordnete Fragestellung:

Wie verändert sich das Auftreten verschiedener Großwetterlagen (GWL) unter dem Einfluss des Klimawandels?

Unsere Fragestellung:

Lassen sich Tage anhand von ihren Wettermesswerten sinnvoll clustern?

Wie unterscheiden sich die entstandenen Cluster voneinander?

Vorstellen des Projekts

Definition Großwetterlage

- Atmosphärischer Zustand, definiert durch Strömungsanordnungen
- Definiert über ganz Europa
- Dauer: > = 3 Tage
- Kategorisierung nach dem Katalog von Hess & Brezowsky
- 29 GWL nach Hess & Brezowsky

Statistisches Praktikum

Großwetterlagen Beispiele

	Abkürzung	Großwetterlage
1	WA	Westlage, antizyklonal
2	WZ	Westlage, zyklonal
3	WS	Südliche Westlage
4	ww	Winkelförmige Westlage
5	SWA	Südwestlage, antizyklonal
6	SWZ	Südwestlage, zyklonal
•••		
29	TRW	Trog Westeuropa
	U	Übergang/Unbestimmt

Statistisches Praktikum

Vorstellen des Projekts

Motivation

- -untersuchen der Veränderung
- -lang anhaltende/gefährliche Wetterlagen herausfinden

- begründung

Ziele des Projekts

Clustereinteilung der beobachteten Wetterdaten

- Anzahl Cluster < Anzahl GWLs
- Berücksichtigung der räumlichen Datenstruktur
- Tage als Beobachtungseinheit
- Ohne Vorinformation der herrschenden GWL

Mit welchem Modell ist dies sinnvoll möglich?

Statistisches Praktikum

Ziele des Projekts

Vergleich der Cluster

- Verteilung von GWL in den Clustern
- Vergleich der Zusammensetzung der einzelnen Cluster:
 Wie scheinen sie sich auffällig zu unterscheiden?

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

1. Einführung

- i. Vorstellen des Projekts
- ii. Datensätze

Statistisches Praktikum

Historischer GWL Datensatz

- Zuteilung einer GWL für jeden Tag
- Für die Jahre 1900 bis 2010

Reanalyse Datensatz

LUDWIG-

- Pro Tag Messungen an 160 Standorten zu 4 Zeitpunkten
 - Luftdruck in Pa auf Meeresspiegelhöhe (mslp)
 - Geopotential auf 500 hPa in $\frac{m^2}{s^2} = \frac{1}{9.80665} gpm$ (geopot)
- Für die Jahre 1900 bis 2010
 - Beschränkung auf eine Klimaperiode: Jahre 1971 bis 2000
- Ohne Information zur herrschenden GWL am Tag
- Standorte im 8x20 Grid über Europa und dem Nordatlantik

Messpunkte auf einer Weltkarte

Longitude

Statistisches Praktikum

Mslp am 01-01-2006 um 0 Uhr

Statistisches Praktikum

Geopot am 01-01-2006 um 0 Uhr

Statistisches Praktikum

Auszug aus dem Reanalyse Datensatz

^	time	longitude [‡]	latitude [‡]	mslp [‡]	geopotential [‡]		
1	1900-01-01 00:00:00	-63.56287	73.85311	100428.99	48268.86		
2	1900-01-01 00:00:00	-63.56287	68.23695	100553.77	48770.82		
3	1900-01-01 00:00:00	-63.56287	62.62077	99920.18	49171.14		
4	1900-01-01 00:00:00	-63.56287	57.00457	100049.80	49487.83		
• • •							
640	1900-01-01 18:00:00	43.31280	34.53973	102281.97	55097.32		
641	1900-01-02 00:00:00	-63.56287	73.85311	99886.71	47843.04		
• • •							
25946239	2010-12-31 18:00:00	43.31280	40.15595	101758.62	54154.39		
25946240	2010-12-31 18:00:00	43.31280	34.53973	101400.51	54491.94		

Auszug aus dem Reanalyse Datensatz

^	time	longitude [‡]	latitude [‡]	mslp [‡]	geopotential [‡]
1	1900-01-01 00:00:00	-63.56287	73.85311	100428.99	48268.86
2	1900-01-01 00:00:00	-63.56287	68.23695	100553.77	48770.82
3	1900-01-01 00:00:00	-63.56287	62.62077	99920.18	49171.14
4	1900-01-01 00:00:00	-63.56287	57.00457	100049.80	49487.83
• • •					
640	1900-01-01 18:00:00	43.31280	34.53973	102281.97	55097.32
641	1900-01-02 00:00:00	-63.56287	73.85311	99886.71	47843.04
• • •					
25946239	2010-12-31 18:00:00	43.31280	40.15595	101758.62	54154.39
25946240	2010-12-31 18:00:00	43.31280	34.53973	101400.51	54491.94

Daten pro Tag

Der Tag ist die Beobachtungseinheit

2 Parameter * 4 Zeitpunkte * 160 Messpunkte = 1280 Dimensionen

8 Bilder pro Tag

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

Daten pro Tag

Der Tag ist die Beobachtungseinheit

2 Parameter * 4 Zeitpunkte * 160 Messpunkte = 1280 Dimensionen

8 Bilder pro Tag

Reduzierung der Dimensionen

Mittelwert über 4 Messzeiten pro Messpunkt

Statistisches Praktikum

Mittelwerte am 01.01.2006

Daten pro Tag

Der Tag ist die Beobachtungseinheit

2 Parameter * 4 Zeitpunkte * 160 Messpunkte = 1280 Dimensionen

8 Bilder pro Tag

Reduzierung der Dimensionen

Mittelwert über 4 Messzeiten pro Messpunkt

10958 Tage mit jeweils 320 Dimensionen

Statistisches Praktikum

Visualisierung der Daten mit PCA

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

1. Einführung

- i. Vorstellen des Projekts
- ii. Datensätze
- iii. Einführung in Clusteranalyse

Clusteranalyse

- Grundidee: Bildung von möglichst homogenen Gruppen, Cluster untereinander möglichst heterogen
- Betrachten von n Objekten a_1, \dots, a_n mit zugehörigen Merkmalsvektoren x_1, \dots, x_n
 - Suchen einer Partition C_1, \dots, C_g mit $\bigcup_{k=1}^g C_k = \{a_1, \dots, a_n\}$ wobei $C_k \cap C_l = \emptyset \ \forall \ k \neq l$
- Clusteranalyse ist Verfahren des "unsupervised learning"
- Verschiedene Ansätze für Clustering
 - \Longrightarrow Optimale Partitionen: Messen der Qualität einer Partition C anhand eines Gütekriteriums

Clusteranalyse

Grundlage für die Clusterbildung ist ein Ähnlichkeits- bzw. Distanzmaß

Manhattan-Metrik, bei der die Distanz d zwischen zwei Punkten a und b definiert ist als

$$d(a,b) = \sum_{i=1}^{n} |a_i - b_i|$$

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

2. Analyse

i. Methodik

Statistisches Praktikum

Bewertungskriterien für Clustering

- Durchschnittliche Silhouettenweite
 - Maßzahl für die Qualität eines Clusterings
 - Unabhängig von der Anzahl der Cluster

Bewertungskriterien für Clustering

Durchschnittliche Silhouettenweite

LUDWIG-

- Gehört das Objekt x zum Cluster A, so ist die Silhouette von x definiert als

$$S(x) = \begin{cases} 0 & \text{Wenn } x \text{ einziges Element von } A, \text{ ist} \\ \frac{dist(B, x) - dist(A, x)}{\max\{dist(A, x), dist(B, x)\}} & \text{sonst,} \end{cases}$$

wobei dist(A, x) die Distanz eines Objektes x zum Cluster A und dist(B, x) die Distanz eines Objektes x zum nächstgelegenen Cluster B

Bewertungskriterien für Clustering

- Durchschnittliche Silhouettenweite
 - Sei C die Anzahl an Cluster, dann ist der Silhouettenkoeffizient definiert durch

$$s_C = \frac{1}{n_C} \sum_{x \in C} S(x)$$

LUDWIG-

wobei
$$S(x) = \begin{cases} 0 & \text{Wenn } x \text{ einziges Element von } A, \text{ ist} \\ \frac{dist(B, x) - dist(A, x)}{\max\{dist(A, x), dist(B, x)\}} & \text{sonst,} \end{cases}$$

Statistisches Praktikum

Silhouettenplot

Silhouettenkoeffizient: 0.141

Bewertungskriterien für Clustering

- Durchschnittliche Silhouettenweite
- Verteilung der aufeinanderfolgenden Tage, die im selben Cluster sind (Timeline)

Statistisches Praktikum

Länge der aufeinaderfolgenden, gleichen GWL

Datensatz Mutation

- Idee: Erstellen eines neuen Datensatzes durch Extrahieren gezielter Information
- Gezielte Informationen
 - Verteilung der Parameter (im Vergleich zu anderen Tagen)
 - Örtliche Lage und Form der "Hoch-" und "Tiefgebiete"
 - "Bildmuster" des Tages
 - Veränderung über den Tag

Datensatz Mutation

- Idee: Erstellen eines neuen Datensatzes durch Extrahieren gezielter Information
- Gezielte Informationen
 - Verteilung der Parameter (im Vergleich zu anderen Tagen)
 - Örtliche Lage und Form der "Hoch-" und "Tiefgebiete"
 - "Bildmuster" des Tages
 - Veränderung über den Tag
- Erhoffte Wirkung
 - Dimensionen reduzieren
 - Spezifische Gewichtung wichtiger Größen

Vorgehen

- Ausgangslage: Datensatz mit 320 Dimensionen roher Messdaten
- Transformation zu Variablen, die jeweils eine interessierende Größe über alle Standorte zusammengefasst verkörpern
 - Beispiel: Mittelwert des Luftdrucks über alle Standorte am Tag
- ⇒ Beobachtungseinheit bleibt der Tag
- Ziel: Erkennen, welche Tage ähnliche Merkmale aufweisen

Variable	Erklärung		
Datum			
Minimum/Maximum	Minimaler/Maximaler Wert am Tag		
Mittelwert/ Median/Quartile	Mittelwert/Median und Quartile für beide Variablen pro Tag		
Intensität	Anzahl der Messpunkte von beiden Variablen pr Tag die über/unter den Quartilen liegen		
Differenz am Tag	Summierte Differenzen von 4 Messzeitpunkten am Tag an allen Standorten		

Variable	Erklärung		
Datum			
Minimum/Maximum	Minimaler/Maximaler Wert am Tag		
Mittelwert/ Median/Quartile	Mittelwert/Median und Quartile für beide Variablen pro Tag		
Intensität	Anzahl der Messpunkte von beiden Variablen pro Tag die über/unter den Quartilen liegen		
Differenz am Tag	Summierte Differenzen von 4 Messzeitpunkten am Tag an allen Standorten		

Verteilung der Parameter

Variable	Erklärung		
Distanz von Maximum und Minimum	Euklidische Distanz		
Distanz der beiden Minima und Maxima	Euklidischer Abstand vom Minimum/Maximum der Parameter Geopotential zu Mslp		
Spalte vom Minimum/Maximum	In welchem Bereich liegt das Minimum/ Maximum? Karte aufgeteilt in 3 Spalten		
Zeile vom Minimum/Maximum	In welchem Bereich liegt das Minimum/ Maximum? Karte aufgeteilt in 3 Zeilen		
Mittelwerte in den Quadranten	Mittelwerte in allen 9 Quadranten von beiden Variablen		

Variable	Erklärung		
Distanz von Maximum und Minimum	Euklidische Distanz		
Distanz der beiden Minima und Maxima	Euklidischer Abstand vom Minimum/Maximum der Parameter Geopotential zu Mslp		
Spalte vom Minimum/Maximum	In welchem Bereich liegt das Minimum/ Maximum? Karte aufgeteilt in 3 Spalten		
Zeile vom Minimum/Maximum	In welchem Bereich liegt das Minimum/ Maximum? Karte aufgeteilt in 3 Zeilen		
Mittelwerte in den Quadranten	Mittelwerte in allen 9 Quadranten von beiden Variablen		

Räumliche Ebene

Zusammenhang der räumlichen Ebene und der Verteilung

Skalierung und Gewichtung

Datensatz wird standardisiert, da die Skalen der einzelnen Variablen unterschiedlich sind

$$x_{neu} = \frac{x-\mu}{\sigma}$$

Variablen werden zudem gewichtet, unterteilt nach Kategorien

LUDWIG-

Gewichte einer Kategorie summieren sich auf 1

Skalierung und Gewichtung

Variable	Gewichte	Variable	Gewichte
Datum		Distanz von Maximum und Minimum	$\frac{1}{6}$
Minimum/Maximum	$\frac{1}{3}$	Distanz der beiden Minima und Maxima	$\frac{1}{6}$
Mittelwert/ Median/Quartile	$\frac{1}{3}$ bzw. $\frac{1}{6}$	Spalte vom Minimum/Maximum	$\frac{1}{6}$
Intensität	$\frac{1}{6}$	Zeile vom Minimum/Maximum	$\frac{1}{6}$
Differenz am Tag	$\frac{1}{6}$	Mittelwerte in den Quadranten	$\frac{1}{9}$

Clusteralgorithmus PAM

- PAM steht f
 ür Partitioning Around Medoids
- Gehört zu den Partitionierenden Verfahren
- Vorgehen: 1. Anzahl k an Cluster festlegen
 - 2. Wahl von k repräsentativen Objekten (Medoids) aus allen Beobachtungen
 - 3. Für jeden Medoid m und jeden restlichen Datenpunkt o:
 - i. Entscheiden, ob ein Datenpunkt o einen Medoid m ersetzen soll anhand der Summe S der Distanzen von allen Datenpunkten zu deren jeweiligen Medoid
 - ii. Durchführen für alle Datenpunkte
 - iii. Auswahl der Datenpunkte als Medoids, die die Summe S am stärksten minimieren
 - 4. Datenpunkte dem Cluster zuteilen, dessen Medoid am nächsten zu o liegt

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

2. Analyse

i. Methodik

ii. Ergebnisse

Statistisches Praktikum

Silhouettenplot

Silhouettenkoeffizient: 0.141

Statistisches Praktikum

Länge der aufeinaderfolgenden, gleichen Cluster

Statistisches Praktikum

Länge der aufeinaderfolgenden, gleichen Cluster

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

Mosaikplot für Cluster ~ GWL

Statistisches Praktikum

2. Analyse

i. Methodik

ii. Ergebnisse

iii. Deskriptive Analyse der Cluster

Statistisches Praktikum

Mslp im Mittel über Messpunkte

Longitude

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

Geopot im Mittel über Messpunkte

Longitude

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

3. Ausblick

Statistisches Praktikum

Nicht benutzen der zeitlichen struktur -> video statt bilder für zeitliche komponente

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

Ansatz mit filtern

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

4. Fazit

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

Fazit

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

Quellen

https://arxiv.org/ftp/arxiv/papers/1302/1302.6602.pdf

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

Anhang

Statistisches Praktikum

Versuchte Algorithmen/Metriken

- Cluster Algorithmen:
 - PAM
 - K-means
 - Fuzzy
 - GMM
 - DBSCAN
- Metriken
 - Euklidisch
 - Manhattan
 - Mahalanobis

Statistisches Praktikum

Timeline (Länge * Anzahl)

Statistisches Praktikum

Länge der aufeinaderfolgenden, gleichen GWL

