

Program: PGPDS		Trimester:	I/II/III
Course:	Advance Machine Learning (ML2- AML)	Credits	3.00 / 2.00 / 1.50
		Hours	30
Faculty:	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `		Jan / July
	Prof. Subhasis Dasgupta (Kolkata)	Campus:	Kolkata; Bangalore

Teaching Scheme			Evaluation Se	cheme	
Weekly Class Discussions	Weekly Practical	Weekly Tutorials	Total Program	Internal Continuous Assessment (ICA)	Term End Examination
Discussions	Workshops	Sessions	Weeks	Marks = 70	(TEE)
					Marks = 30
				Marks Scaled to 70	Marks
					Scaled to 30

	Design Philosophy			
Course Rationale	The Course has been designed with the following Rationale:			
	To introduce the students to solving real-life problems of higher complexities.			
Course Objectives	The course has been offered by the Instructor to satisfy the following objectives:			
1	To make students understand the advanced machine learning algorithms			
2	To make students understand the model building processes using python			
3	To infer the outcomes from the machine learning models wherever possible.			
Learning Outcomes	At the end of the course, a student shall:			
1	Should be able apply Machine Learning in large-scale multidimensional data problems			
2	Get a clear understanding of how to evaluate machine learning models			
3				
Prerequisite(s):				
1	Working knowledge of Python programming			
2				
3				
Pedagogy:				
1	Classroom interactions covering theoretical & practical aspects of Data Mining and Machine Leaning			
2	Practical training using student's own systems			
3	Class tests and quizzes to reinforce student's learnings			

	Learning Compendium	
1	Textbook(s): Data Mining & Predictive Analytics by Larose & Larose	Publisher Wiley
	Reference Books:	Publisher
1	Data Mining Concepts and Techniques by Han, Kamber & Pei	Morgan Kaufman
2	Data Mining and Analysis – Fundamental Concepts and Algorithms by Zaki &	Cambridge
_	Meira	University Press
3	Elements of Statistical Learning	Springer
4		
	Journal Article & Research Papers	
1	-	
2		
3		
4		
5		
	Websites	Topics
1		•
2		
3		
4		
5		
	Videos:	Topics
1		- I:
2		

	Tentative Session Plan					
Session	Topic (including subtopics) Learning Outcomes		Pedagogy	Case Study / Readings / Group Assignment		
Beginning Module 1	Module 1: Ensembles & Dimension Reduction					
1	Ensemble Modeling (Bagging and Ada- Boosting)	 Bagging concepts Boosting concepts Python based modeling Model Deployment 	Class Discussion and Hands-On			

	Т	1		0.0001-0.100010.000071-0
2	Ensemble Modeling (Random Forest)	Basic conceptsWhy it worksModel building Model deployment	Class Discussion and Hands-On	
3	Ensemble Modeling (GBM)	Basic conceptsWhy it worksModel buildingModel deployment	Class Discussion & Hands-On	
4	Ensemble Modeling (Xgboost)	 Taylor expansion Working principles Python based modeling Model deployment 	Class Discussion and Hands-On	
5	Dimension Reduction (PCA)	EigenvalueEigenvectorsPython based modeling	Class Discussion and Hands-On	
6	Dimension Reduction (SVD)	EigenvalueEigenvectorsSingular valuesPython based modeling	Class Discussion and Hands-On	
Evaluation				
Module 1 No	otes:	·		
11000010 1110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Beginning Module 2	Module 2: Kernel bas	sed techniques		
7	Kernel and Kernel spaces	 Basic concept Simple calculations in Kernel Space Basic python based demo 	Class Discussion and Hands-On	
8	Support Vector Machines (SVM)	MarginObjective functionOptimizationPython based modeling	Class Discussion and Hands-On	
9	Manifold Learning (t-SNE)	 Dimension embedding K-L Divergence Python based modeling 	Class Discussion and Hands-On	
10	Evolutionary Search	 Genetic algorithm Use of GA in parameter tuning Python based example 	Class Discussion and Hands-On	
11	Hands-on exercise	Comprehensive revision	Lab Session	
Evaluation		1 CA121011		
Module 2 Notes:			<u> </u>	
Beginning Module 3:	Module 3: Advanced	Clustering		
12	Two stage clustering	Combining K- Means and Hierarchical clustering	Class Discussion and Hands-On	

		_		CC11184111 (00)
		• Python implementation		
13	DBSCAN	 Density chain Epsilon neighborhood Python based modeling 	Class Discussion and Hands-On	
14	Maximum Likelihood Estimation	 Likelihood function Maximization of likelihood function Use of MLE in simple regression Python implementation 	Class Discussion and Hands-On	
15	EM clustering	 Likelihood function Maximization of likelihood function Use of MLE in simple regression Python implementation 	Class Discussion and Hands-On	
16	Hands-On exercise	F	Lab Session	
Evaluation				
Module 3 Notes:				
Beginning Module 4:	Module 4: Recommen	ndation Systems		
17	Matrix Factorization	UV decomposition Usage in Recommendation system Python implementation	Class Discussion and Hands-On	
18	KNN Based Recommendation System	UBCF IBCF Python	Class Discussion and Hands-On	
		implementation		
19	Class Test		Hands-on	
	Class Test		Hands-on Discussion	
19 20 Evaluation	Class Test	implementation		

	Evaluation Scheme				
Sl No.	Component	Evaluation timeframe & Methodology	Weightage (%)		
1	Class Participation		10		

2	Class Participation / Quiz	30
3	Mid-Term Examination	30
4	End-Term Examination	30
TOTAL		100
Evaluation	1 INOTES:	
Signature (Prepared by Concerned Faculty/HOD)		Signature (Approved by Director)