1 הרצאה

הקדמה

חיפוש בגרפים, BFS ו-DFS

הקדמה

אלגוריתם הוא דרך שיטתית (כלומר כזו שצעדיה מוגדרים היטב) לביצוע של משימה מסוימת, במספר סופי של צעדים.

ויקיפדיה —

המושג אלגוריתם אינו חדש עבורנו, ראינו ומימשנו כבר אלגוריתמים בקורס מבוא למדעי המחשב, מבוא לתכנות מערכות ומבני נתונים.

חשיבות הקורס

בתעשייה - בעיות שמצריכות פתרון אלגוריתמי צצות במגוון תחומים. על פי glassdoor, מפתח אלגוריתמים מרוויח 20 אחוז יותר מאשר מהנדס תוכנה.

במחקר האקדמי - חלק עיקרי של המחקר האקדמי הוא בפיתוח וניתוח אלגוריתמים.

חומר הקורס

בקורס נלמד מגוון אלגוריתמים שעל פי רוב נחשבים לבסיס בתחום האלגוריתמים. הרוב המוחלט של האלגוריתמים שנלמד בקורס הם אלגוריתמים על גרפים וזאת מכיוון שגרפים הוכיחו את עצמם ככלי מאוד חזק בייצוג מגוון רחב של בעיות. לחלק מהאלגוריתמים שימושים ברורים (מסלול קצר ביותר, עצי הופמן), חלק מהאלגוריתמים מהווים פתרון למגוון גדול של בעיות שניתנות לייצוג בצורה מסוימת (זרימה), וחלק מהאלגוריתמים מהווים בסיס לפיתוח אלגוריתמים מורכבים יותר (DFS ,BFS) עץ פורש). מעבר לזה נלמד טכניקות (פשוטות יחסית) כלליות לפיתוח אלגוריתמים.

אלגוריתמי חיפוש בגרפים

דוגמה 1 (קבצים). רוצים לפצוא (ולהדפים) את כל קכצי התפונות ששפורות על הכונן הקשיח.

למשל עבור:

דוגמה 2 (מבוך). נתון פבוד, נקודת התחלה ונקודת סוף ורוצים למצוא מסלול מנקודת ההתחלה לנקודת הסיום.

דוגמה 3 (פאזל הזזה). נתון לוח משחק בגודל $n \times m$ על הלוח 1-m חלקים ממוספרים מ-1 עד 1-m ומשבצת ריקה. נתון סידור ראשוני של החלקים ואנו רוצים לסדר את החלקים לפי הסדר כך שבכל שלב מותר לנו להזיז את אחד החלקים ששכנים למשבצת הריקה אל המשבצת הריקה.

m=m=3 למשל עבור

1	3	6
8	4	
5	2	7

נראה בהמשך שאפשר לייצג כל אחת מהבעיות הנ"ל באמצעות גרף, ומציאת הפתרון לכל אחת מהבעיות מבוסס על סריקה של הגרף המתאים. כיצד עלינו לסרוק כל אחד מהגרפים המתאימים?

ייצוג גרפים

קיימים שני ייצוגים סטנדרטים של גרפים (מכוונים או לא):

- 1. על ידי מטריצת שכנויות
- 2. על ידי רשימת שכנויות

אם לא מצוין אחרת, נניח שהגרף מיוצג על ידי רשימת שכנויות. למשל את הגרף:

ניתן לייצג על ידי המטריצה

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

וגם על ידי רשימת שכנויות:

אלגוריתם כללי

.s מקור מקור (מכוון או לא) G=(V,E) קלט: גרף

למשל:

הגדרה 1 (חתך). חתך בגרף, $uv\in E$ חוצה של צמתים. $S\subseteq V$ הוא תת קבוצה של את החתך G=(V,E) חוצה את החתך אם הגדרה 1 $|\{u,v\}\cap S|=1$

- $p(v) \leftarrow \text{nil}$ מציבים $v \in V$ ולכל ולכל $U \leftarrow \{s\}$, $T \leftarrow \emptyset$.1
 - $(u \in U)$ עוד יש קשת uv שחוצה את 2.

$$p(v) \leftarrow u$$
 , $T \leftarrow T \cup \{uv\}$, $U \leftarrow U \cup \{v\}$ (N)

s-טענה 1. בסיום ריצת האלגוריתם U מכילה את כל הצמתים הישיגים מ

 \square שלא נכנס. v שלא נכנס הראשון במסלול מ-s לצומת שלא נכנס ל-U ומסתכלים על הצומת הראשון במסלול שלא נכנס.

טענה 2. בכל שלב בריצת האלגוריתם T עץ קשיר. בנוסף המסלול מצומת u ל-s הוא שרשור של הקשת (u,p(u)) והמסלול מרוב בריצת האלגוריתם r קשיר. בנוסף המסלול מצומת r ל-r

הוכחה. באינדוקציה על צעד האלגוריתם.

Breadth First Search (BFS) - חיפוש לרוחב

.dist(u,v) בסימון מדובר נסתפק איזה גרף איזה ברור על הערה: כאשר ברור על היזה איזה גרף הערה:

.s מקור מקור (מכוון או לא) מקור G

s- בנוסף, לכל צומת u- בנוסף, לכל צומת u- בנוסף, לכל צומת u- בנוסף, לכל צומת אין עם שורש u- בנוסף, לכל צומת u- בנוסף, לכל צומת u- בנוסף, לכל צומת u- בנוסף, לכל צומת מתקיים u- בנוסף, לכל צומת u- בנוסף, לכל צומת משל:

- $d(s) \leftarrow 0$, $p(v) \leftarrow nil, d(v) \leftarrow \infty$ מציבים $v \in V$ לכל לכל , $U \leftarrow \{s\}, F \leftarrow \emptyset$.1
 - מינימלי d(u) בחר קשת עם ($u\in U$) מינימלי שחוצה את שחוצה את עם מינימלי 2.

$$U \leftarrow U \cup \{v\}, F \leftarrow F \cup \{uv\}$$
 (N)

$$p(v) = u$$
 (1)

$$d(v) = d(u) + 1$$
 (x)

. הוא מקרה פרטי של האלגוריתם הכללי. BFS

 $d(v) \geq dist_G(s,v)$ טענה 3. לכל $v \in V$ טענה 3.

הוכחה. באינדוקציה על צעד האלגוריתם

 $d(v) \leq dist_G(s,v)$ טענה 4. לכל $v \in V$ טענה

הוכחה. באינדוקציה על צעד האלגוריתם

 $d(v)=dist_T(s,v)$ טענה 5. לכל $v\in V$ טענה

הוכחה. באינדוקציה על צעד האלגוריתם

 $d(v)=dist_T(s,v)=dist_G(s,v)$ פאפט 1. לכל $v\in V$ מתקיים

מהו זמן הריצה של BFS ? קשה להגיד כי לא הגדרנו כיצד מתבצעת הבדיקה בשלב 2 של האלגוריתם.

חיפוש לרוחב - מימוש באמצעות תור

ניתן לממש BFS על ידי תור באופן הבא:

$$d(s) \leftarrow 0, Q \leftarrow (s)$$
 , $p(v) \leftarrow nil, d(v) \leftarrow \infty$ מציבים $v \in V$ לכל לכל , $U \leftarrow \{s\}, F \leftarrow \emptyset$.1

2. כל עוד התור לא ריק

$$u \leftarrow Q.pop()$$
 (x)

 $(u \in U) \; U$ את שחוצה את uv קשת (ב)

$$U \leftarrow U \cup \{v\}, F \leftarrow F \cup \{uv\} \ \text{i.}$$

$$p(v) = u \ \text{ii.}$$

$$d(v) \leftarrow d(u) + 1 \ \text{iii.}$$

Q.push(v) iv.

נשים לב שבמימוש הנ"ל כל צומת נכנסת ויוצאת מהתור לכל היותר פעם אחת ובנוסף כל קשת נבדקת לכל היותר פעם אחת נשים לב שבמימוש לכן אומר פעם מימוש לכן זמן הריצה הוא O(|V|+|E|) נשאר להוכיח שזהו אכן מימוש של

uv שחוצה אם קייפת קפות אבולי). בהינתן גרף $U\subseteq U$ וחתך אורך $U\subseteq U$ צומת עuv שחוצה אח קייפת פות שחוצה את U

טענה 6. בכל שלב בריצת האלגוריתם התור שכיל את כל הצשתים הגבוליים

הוכחה. באינדוקציה על צעד האלגוריתם

d טענה 7. התור פונוטוני לא יורד בהתייחס לערכי

הוכחה. נוכיח טענה חזקה יותר באינדוקציה על צעד האלגוריתם: התור מונוטוני לא יורד וגם $|d(u)-d(v)|\leq 1$ לכל שני צמתים שבתור

מסקנה 1. זהו אכן מימוש של BFS

Depth First Search (DFS) - חיפוש לעומק

 $\mathrm{dfs}(U,T,u)$ נגדיר

אז U אם קיימת קשת uv אחוצה את 1.

$$U \leftarrow U \cup \{v\}, T \leftarrow T \cup \{uv\}, p(v) \leftarrow u$$
 (א)

dfs(U,T,v) (2)

סיכום

דוגמה 4 (פאזל הזזה). נתון לוח משחק בגודל $n \times m$ על הלוח 1-m חלקים מטוספרים מ-1 עד 1-m ומשבצת ריקה. נתון סידור ראשוני של החלקים ואנו רוצים לסדר את החלקים לפי הסדר כך שבכל שלב מותר לנו להזיז את אחד החלקים ששכנים למשבצת הריקה אל המשבצת הריקה.

:n=m=3 למשל עבור

1	3	6
8	4	
5	2	7

הציעו אלגוריתם לפתרון הבעיה.