SMUO 2024

lista 8: systemy niezależnych cząstek

- 1. Niech $X=(X_t)_{t\geq 0}$ będzie nieprzywiedlnym, powracającym łańcuchem Markowa na (przeliczalnym) zbiorze S z rozkładem stacjonarnym π i q-macierzą q. Rozważmy łańcuch $Y=(Y_t)_{t\geq 0}$, w którym skończenie wiele nierozróżnialnych cząsteczek porusza się niezależnie po S zgodnie z łańcuchem X. Przestrzenią stanów dla Y jest zbiór S^* wszystkich skończonych konfiguracji η cząsteczek na S. Opisz q-macierz Q dla Y.
- 2. Niech $\Pi=\{\Pi(x),x\in S\}$ będzie zbiorem niezależnych zmiennych losowych, gdzie $\Pi(x)$ ma rozkład Poissona z parametrem $\lambda\pi(x)$. Udowodnij, że

$$\Pi^*(\eta \in S^* : \eta(x) = k_x \text{ dla } x \in T) = \prod_{x \in T} P(\Pi(x) = k_x)$$
 (1)

dla skończonego zbioru $T \subset S$ oraz liczb naturalnych k_x , $x \in T$, wyznacza miarę probabilistyczną na S^* .

- 3. Wykaż, że Π^* jest rozkładem stacjonarnym dla procesu Y(t).
- 4. Załóżmy, że na S porusza się dokładnie k_0 cząstek. Jaki jest rozkład stacjonarny dla Y(t)?
- 5. W procesie Y każda cząstka przebywająca w $x \in S$ zmienia położenie z intensywnością c(x) = -q(x,x). Rozważmy teraz inny proces $Z = (Z_t)$ na S^* , w którym z intensywnością c(x) pewna cząstka w x przemieszcza się. Opisz q-macierz Q_1 dla Z.
- 6. Niech $\{\Pi(x), x \in S\}$ będą niezależnymi zmiennymi losowymi o rozkładzie geometrycznym, gdzie $\Pi(x)$ ma parametr p(x) dla pewnej funkcji $p \colon S \to \mathbb{R}_+$. Znajdź warunki, dla których odpowiadający Π^* , zadany przez (1), jest rozkładem stacjonarnym dla tego łańcucha.