Solutions 5 4 1

Exercise or

- Solution: (a) and (b) are only two quadratic equations. On simplifying (b) gives a liner equation and (c) is a cubic 1.
- 2. Solution:

On substituting x = 3, we get

$$3(3)^2 + 5(3) + 2 = 44 \neq 0$$

Therefore x = 3 is not a solution of the given equation.

Again, substitute x = -1, we get

$$3(-1)^2 + 5(-1) + 2 = 0$$

Therefore x = -1 is the solution (i.e., root) of the given equation.

3.
$$6x^{2} - x - 2 = 0$$

$$\Rightarrow 6x^{2} - 4x + 3x - 2 = 0$$

$$\Rightarrow 2x(3x - 2) + 1(3x - 2) = 0$$

$$\Rightarrow (3x - 2)(2x + 1) = 0$$
Either $(2x + 1) = 0$ or $(3x - 2) = 0$

$$\Rightarrow x = -\frac{1}{2}$$
 or $x = \frac{2}{3}$

$$x = -\frac{1}{2}, \frac{2}{3}$$

If x = 2 is a root of the given equation, then x = 2 must satisfy it.

$$3(2)^2 - 2K(2) + 5 = 0$$

$$\Rightarrow 12 - 4K + 5 = 0$$

$$\Rightarrow$$
 $-4K = -17 \Rightarrow K = \frac{17}{4}$

5.
$$8x - 2x^2 = 4 \Rightarrow 2x^2 - 8x + 5 = 0$$

Here,
$$a = 2, b = -8$$
 and $c = 5$

Substituting the values of a, b and c in the formula

$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \quad \text{and} \quad \beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$\alpha = \frac{8 + \sqrt{64 - 40}}{4}$$
 and $\beta = \frac{8 - \sqrt{64 - 40}}{4}$

$$\alpha = \frac{8 + \sqrt{64 - 40}}{4} \quad \text{and} \quad \beta = \frac{8 - \sqrt{64 - 40}}{4}$$

$$\alpha = \frac{8 + 2\sqrt{6}}{4} \quad \text{and} \quad \beta = \frac{8 - 2\sqrt{6}}{4}$$

$$\alpha = \frac{4 + \sqrt{6}}{2} \quad \text{and} \quad \beta = \frac{4 - \sqrt{6}}{2}$$

 $9y^4 - 29y^2 + 20 = 0$

Put
$$y^2 = x$$

$$9x^2 - 29x + 20 = 0$$

$$\Rightarrow 9x^2 - 20x - 9x + 20 = 0$$

$$\Rightarrow (x-1)(9x-20) = 0$$

$$\Rightarrow x = 1 \text{ or } x = \frac{20}{9}$$

$$\Rightarrow y^2 = 1 \text{ or } y^2 = \frac{20}{9}$$

$$\Rightarrow y = \pm 1 \text{ and } y = \pm \frac{2\sqrt{5}}{3}$$

7.
$$x^6 - 26x^3 - 27 = 0$$

Let
$$x^3 = y$$

Then,
$$y^2 - 26y - 27 = 0$$

$$y^{2} - 27y + y - 27 = 0$$

$$(y+1)(y-27) = 0$$

$$\Rightarrow \qquad \qquad y = -1 \text{ or } y = 27$$

$$\Rightarrow x^3 = -1 \text{ or } x^3 = 27$$

$$\Rightarrow x = -1 \text{ or } x = 3$$

8.
$$2x - \frac{3}{x} = 5$$

$$\Rightarrow 2x^2 - 3 = 5x$$

$$\Rightarrow (2x + 1)(x - 3) = 0$$

$$\Rightarrow x = -\frac{1}{2} \text{ or } x = 3.$$

9.
$$\sqrt{2x+9} + x = 13$$

$$\Rightarrow \sqrt{2x+9} = 13 - x$$
Squaring both sides
$$2x+9 = (13-x)^2$$

$$\Rightarrow x^2 - 28x + 160 = 0$$

$$\Rightarrow (x-8)(x-20) = 0$$

$$\Rightarrow x = 8, x = 20$$

10.
$$\sqrt{2x+9} - \sqrt{x-4} = 3$$

 $\Rightarrow \sqrt{2x+9} = 3 + \sqrt{x-4}$
Squaring both sides and simplifying, we get

 $x + 4 = 6\sqrt{x - 4}$

Again squaring both sides,

$$(x+4)^2 = 36(x-4)$$

$$\Rightarrow x^2 - 28x + 160 = 0$$

$$\Rightarrow (x-8)(x-20) = 0$$

$$\Rightarrow x = 8, x = 20$$

Verification: $2x + 9 \ge 0$ and $x - 4 \ge 0$ $\Rightarrow x \ge \frac{9}{2}$ and $x \ge 4$

Since the values x = 8 and 20 satisfy both these conditions

$$x = 8, x = 20$$

11. Put
$$x^2 + \frac{1}{x^2} = \left(x + \frac{1}{x}\right)^2 - 2$$

$$\therefore 2\left(x^2 + \frac{1}{x^2}\right) - 9\left(x + \frac{1}{x}\right) + 14 = 0$$

$$\Rightarrow 2\left[\left(x + \frac{1}{x}\right)^2 - 2\right] - 9\left(x + \frac{1}{x}\right) + 14 = 0$$

Substitute; $x + \frac{1}{x} = y$

$$∴ 2(y^2 - 2) - 9y + 14 = 0
⇒ 2y^2 - 4 - 9y + 14 = 0
⇒ (y - 2)(2y - 5) = 0
⇒ y = 2 or y = $\frac{5}{2}$$$

Since
$$x + \frac{1}{x} = 2 \Rightarrow x^2 - 2x + 1 = 0$$

$$\Rightarrow (x - 1)^2 = 0 \Rightarrow x = 1$$
Also,
$$y = \frac{5}{2} \Rightarrow x + \frac{1}{x} = \frac{5}{2}$$

$$\Rightarrow 2x^2 - 5x + 2 = 0$$

$$\Rightarrow x = 2 \text{ or } x = \frac{1}{2}$$

$$\therefore x = \frac{1}{2}, 1, 2$$

12. Put
$$x^{2} + \frac{1}{x^{2}} = (x - \frac{1}{x})^{2} + 2$$

$$\therefore \qquad 6\left[\left(x - \frac{1}{x}\right)^{2} + 2\right] - 25\left(x - \frac{1}{x}\right) + 12 = 0$$
Let
$$x - \frac{1}{x} = y$$

$$\Rightarrow \qquad 6(y^{2} + 2) - 25y + 12 = 0$$

$$y = \frac{3}{2}, y = \frac{8}{3}$$
Since
$$y = x - \frac{1}{x} \text{ and } x - \frac{1}{x} = \frac{8}{3}$$

$$x - \frac{1}{x} = \frac{3}{2} \text{ and } x = -\frac{1}{3}, x = 3$$

$$x = -\frac{1}{2} \text{ and } x = 2$$

$$x = -\frac{1}{3}, -\frac{1}{2}, 2, 3$$

13.
$$\sqrt{x^2 + x - 6} - x + 2 = \sqrt{x^2 - 7x + 10}$$

$$\sqrt{(x+3)(x-2)} - (x-2) = \sqrt{(x-5)(x-2)}$$

$$\Rightarrow \sqrt{(x-2)} [\sqrt{(x+3)} - \sqrt{(x-2)} - \sqrt{(x-5)} = 0]$$
Either; $\sqrt{(x-2)} = 0 \Rightarrow x = 2$

$$Or \sqrt{(x+3)} - \sqrt{(x-2)} - \sqrt{(x-5)} = 0$$

$$\Rightarrow \sqrt{(x+3)} - \sqrt{(x-2)} = \sqrt{x-5}$$
Squaring both sides
$$x^2 + 12x + 36 = 4(x^2 + x - 6)$$

$$\Rightarrow x = 6, x = -\frac{10}{3}$$

Since the equation involves radical therefore substitution r=2,6 and $-\frac{10}{2}$ in the original equation, we find that $x = -\frac{10}{3}$ does not satisfy the equation. x = 2,6

14.
$$3^{x+2} + 3^{-x} - 10 = 0$$

 $\Rightarrow 3^x \cdot 3^2 + \frac{1}{3^x} - 10 = 0$
Let, $3^x = y \Rightarrow 9y + \frac{1}{y} - 10 = 0$
 $\Rightarrow 9y^2 - 10y + 1 = 0$
 $\Rightarrow (9y - 1)(y - 1) = 0 \Rightarrow y = \frac{1}{9} \text{ or } y = 1$
When $y = \frac{1}{9} \Rightarrow 3^x = 1/3^2$
 $\Rightarrow x = -2$
When $y = 1 \Rightarrow 3^x = 1$
 $\Rightarrow x = 0$

15.
$$(x+1)(x+2)(x+3)(x+4) = 24$$

 $\Rightarrow [(x+1)(x+4)][(x+2)(x+3)] = 24$
 $\Rightarrow (x^2 + 5x + 4)(x^2 + 5x + 6) = 24$
Let $x^2 + 5x = y$
 $\therefore (y+4)(y+6) = 24$
 $\Rightarrow y^2 + 10y = 0$
 $\Rightarrow y = 0 \text{ and } y = -10$

Now,
$$y = x^2 + 5x$$

When $y = 0, x^2 + 5x = 0 \Rightarrow x = 0, x = -5$

Again when $y = -10, x^2 + 5x = -10$

$$\Rightarrow x^2 + 5x + 10 = 0$$

Since LHS expression cannot be factorized, therefore we should use the formula for finding the value of x.

Here,.
$$D = b^2 - 4ac$$
$$= 25 - 4 \times 1 \times 10 = -15$$

Since D < 0, the equation $x^2 + 5x + 10 = 0$ has no real solution.

$$\therefore \quad x = 0, -5$$

x = -2,0

16. Let α , β be the two roots of the equation then,

$$\alpha + \beta = -\frac{b}{a} = -\frac{2}{3}$$
 and $\alpha\beta = \frac{c}{a} = -\frac{1}{3}$

17. Method (I)

$$\alpha + \beta = -3 + 5 = 2$$

And
$$a\beta = -3 \times 5 = -15$$

.. The required quadratic equation

$$x^2 - (\alpha + \beta)x + (\alpha\beta) = 0$$

$$\Rightarrow x^2 - (2)x + (-15) = 0$$

$$\Rightarrow x^2 - 2x - 15 = 0$$

Method (II): Let a = -3 and $\beta = 5$, then the required equation

$$(x-a)(x-\beta)=0$$

$$\Rightarrow (x+3)(x-5) = 0$$

$$\Rightarrow x^2 - 2x - 15 = 0$$

18. $2x^2 - 3x + 2 = 0$, and $\alpha, \beta = 1$

$$\therefore a + \beta = \frac{3}{2}, \alpha\beta = 1$$

For the new equation, roots are a^2 and β^2

: Sum of the roots

$$a^{2} + \beta^{2} = (a + \beta)^{2} - 2a\beta = \left(\frac{3}{2}\right)^{2} - 2(1)$$

$$=\frac{9}{4}-2=\frac{1}{4}$$

And product of the roots = $a^2\beta^2 = (a\beta)^2 = (1)^2 = 1$

: the required equation is

$$x^2 - (sum \ of \ roots)x + product \ of \ roots = 0$$

$$\Rightarrow x^2 - \frac{1}{4}x + 1 = 0$$

$$\Rightarrow 4x^2 - x + 4 = 0$$

19. Let the roots be a and a

$$\therefore$$
 Sum of roots = $a + a = 2a = -\frac{2k}{9}$

$$\Rightarrow a = -\frac{k}{9}$$

And

product of the roots = $a^2 = \frac{4}{9}$

$$(-\frac{k}{9})^2 = \frac{4}{9} \Rightarrow \frac{k^2}{81} = \frac{4}{9}$$

$$\Rightarrow k^2 = 36 \Rightarrow k = \pm 6.$$

Alternatively: In order that roots of a quadratic equation are equal, its discriminant must be zero.

$$b^2 - 4ac = 0$$

$$\therefore (2k)^2 - 4 \times 9 \times 4 = 0$$

$$\Rightarrow$$

$$k = \pm 6$$
.

20. For any quadratic polynomial to have real linear factors, we must have $D \ge 0$

$$b^2 - 4ac \ge 0$$

$$p^2 - 4 \times 9 \times 4 \ge 0$$

$$\Rightarrow p^2 - 144 \ge 0$$

$$\Rightarrow p^2 \ge 144$$

$$\Rightarrow p \ge \pm 12$$

Either $p \le -12$ or $p \ge 12$.

21. Let width of the rectangle = x

 \therefore Length of rectangle = (x + 7)cm.

 \therefore Area of rectangle = $(x + 7) \times x$

$$\Rightarrow$$
 $(x+7)(x)=60$

$$\Rightarrow x^2 + 7x - 60 = 0$$

$$\Rightarrow$$
 $(x+12)(x-5)=0$

$$\Rightarrow x = -12$$
 and $x = 5$

Since width can never be negative, therefore x = 5cm and x + 7 = 12 cm are the required values.

i.e., Length = 12 cm and width = 5 cm.

22. Let the common root be a, then,

$$a^2 - ka - 21 = 0$$
 ...(i)

$$a^2 - 3ka + 35 = 0$$
 ...(ii)

Solving by the rules of cross multiplication,

$$\frac{a^{2}}{-34k-63k} = \frac{a}{-21-36} = \frac{1}{-3k+k}$$

$$\therefore \quad a = \frac{-98k}{-56} = \frac{7k}{4}$$
And
$$\therefore \frac{7k}{4} = \frac{28}{k} \Rightarrow 7k^{2} = 28 \times 4 \Rightarrow k = \pm 4$$

$$\therefore \quad a = \frac{-98k}{-56} = \frac{7k}{4}$$

And
$$\frac{7k}{4} = \frac{28}{k} \Rightarrow 7k^2 = 28 \times 4 \Rightarrow k = \pm 4$$

23.

When a < 0, we get maxima otherwise if a > 0 we get minima.

As we know, at $x = \frac{-b}{2a}$, we get the maxima,

$$y = \frac{4\alpha c - b^2}{4\alpha} = \frac{4 \times (-5) \times 7 - (10)^2}{4 \times (-5)}$$
$$= \frac{-140 - 100}{-20} = \frac{-240}{-20} = 12$$

Thus the maximum value of the given quadratic equation is 12.

24. Let,
$$y = \frac{x+2}{2x^2+3x+6}$$

Then, $2x^2y + (3y-1)x + 6y - 2 = 0$

For x to be real,
$$(3y-1)^2 - 8y(6y-2) \ge 0$$

Or
$$(1+13y)(1-3y) \ge 0$$

Or
$$(13y+1)(3y-1) \le 0$$

Putting each factor equal to zero, we get $y = -\frac{1}{13}, \frac{1}{3}$

$$y = -\frac{1}{13}, \frac{1}{3}$$

If
$$y < -\frac{1}{12}$$
, $(1+13y)(1-3y) < 0$

If
$$y < -\frac{1}{13}$$
, $(1+13y)(1-3y) < 0$
If $-\frac{1}{13} < y < \frac{1}{3}$, $(1+13y)(1-3y) > 0$

If
$$y > \frac{1}{3}$$
, $(1+13y)(1-3y) < 0$

Thus, y will lie between
$$-\frac{1}{13}$$
 and $\frac{1}{3}$.

Hence the maximum value of y is $\frac{1}{3}$ and minimum value is $-\frac{1}{13}$.

 $x^2 - 5x + 4 = (x - 1)(x - 4)$ 25.

$$f(x) = x^2 - 5x + 4 > 0$$

therefore the required range is x < 1 and x > 4.

 $-x^2 + 6x - 8 > 0$ 26.

$$\Rightarrow x^2 - 6x + 8 < 0$$

⇒ Now
$$x^2 - 6x + 8 = (x - 2)(x - 4)$$

$$f(x) = x^2 - 6x + 8 < 0.$$

Therefore the required range is 2 < x < 4.

27.

SOLUTION The range of the variable x in this inequality $con_{\overline{k}|_{\mathbb{R}^k_+}}$ of all values of x except x = -2 and x = 1/4. Hence we cannot $con_{\overline{k}|_{\mathbb{R}^k_+}}$ multiply. So we adopted another method

or
$$\frac{x-2}{x+2} - \frac{2x-3}{4x-1} > 0$$
or
$$\frac{(x-2)(4x-1) - (x+2)(2x-3)}{(x+2)(4x-1)} > 0$$
or
$$\frac{2(x^2-5x+4)}{(x+2)(4x-1)} > 0$$
or
$$\frac{(x-1)(x-4)}{(x+2)(x-1/4)} > 0$$

Now multiply both sides of (ii) by the expression $(x+2)^2 \left(x-\frac{1}{4}\right)^2$, which is positive for the x under consideration.

$$\frac{(x-1)(x-4)(x+2)^2\left(x-\frac{1}{4}\right)^2}{(x+2)\left(x-\frac{1}{4}\right)} > 0$$
or
$$\frac{(x-1)(x-4)(x+2)(x-1/4) > 0}{+} \qquad \dots \text{(ii)}$$

Thus, the range is x < -2 or $\frac{1}{4} < x < 1$ or x > 4

28.

29. Ans: a

$$2\left(x^2 + \frac{1}{x^2}\right) - 3\left(x + \frac{1}{x}\right) - 1 = 0$$

$$\Rightarrow 2\left[x^2 + \frac{1}{x^2} + 2 - 2\right] - 3\left(x + \frac{1}{x}\right) - 1 = 0$$

$$\Rightarrow 2\left[\left(x + \frac{1}{x}\right)^2 - 2\right] - 3\left(x + \frac{1}{x}\right) - 1 = 0$$

$$\Rightarrow 2\left(x + \frac{1}{x}\right)^2 - 3\left(x + \frac{1}{x}\right) - 5 = 0$$

$$\Rightarrow 2t^2 - 3t - 5 = 0 \quad \text{(Substituting } x + \frac{1}{3} = t\text{)}$$

Now solve it and you will get

$$t = -1 \text{ and } t = \frac{5}{2}$$
Now if $t = -1$, then $x + \frac{1}{x} = -1$.
$$\Rightarrow \qquad x^2 + 1 + x = 0$$

$$\Rightarrow \qquad x^2 + x + 1 = 0$$

$$x = \frac{\sqrt{2}}{2}$$
and if $t = \frac{5}{2}$ then $x + \frac{1}{x} = \frac{5}{2}$

$$\Rightarrow 2x^2 - 5x + 2 = 0$$

$$\Rightarrow x = \frac{1}{2}, 2$$

30. $\sqrt{2x^2 - 2x + 1} = 2x - 3$ Square on both sides and simplify

Exercise 02 (MCQs)

- Ans: d
 Has no maximum
- 2. Ans: c
 The product of the roots is given by: $(a^2 + 18a + 81)/1$ Since product is unity we get: $a^2 + 18a + 81 = 1$ Thus, $a^2 + 18a + 80 = 0$ Solving, we get: a = -10 and a = -8.
- 3. Ans: d
 To solve this take any expression whose roots differ by 2.

 Thus, (x-3)(x-5) = 0 $\Rightarrow x^2 8x + 15 = 0$ In this case, a = 1, b = -8 and c = 15.

 We can see that $b^2 = 4(c+1)$.
- 4. Ans: b $y = \sqrt{x + \sqrt{x + \sqrt{x + \cdots}}}$ $\Rightarrow y = \sqrt{x + y}$ $\Rightarrow y^2 = x + y$ $y^2 y x = 0$ Solving quadratically, we have option (b) as the root of this equation.
- 5. Ans: a $mn = \frac{r}{p}$ $(mk)(nk) = mnk^2 = \frac{c}{a}$ (i)
 Equation (ii) ÷ equation (i) $k^2 = \frac{c}{a} \times \frac{p}{r}$ $k = \sqrt{\frac{cp}{ar}}$
- 6. Ans: c
 From (i) we have sum of roots = 14
 And from (ii) we have product of roots = 48.
 Option (c) is correct
- 7. Ans: b $x^2 3x + 2 = 0$ gives its roots as x = 1, 2.
 Put these values in the equation and then use the options
- 8. Ans: b
- 9. Ans: a
- 10. p(p-1)/3 < 0 (Product of roots should be negative). $\Rightarrow p(p-1) < 0$

$$p^2 - p < 0$$
.
This happens for $0 .
Option (b) is correct.$

11.
$$\Rightarrow \gamma + \delta = -n \text{ and } \gamma \delta = 1$$

 $(\alpha - \gamma)(\beta - \gamma)(\alpha + \delta)(\beta + \delta) = (\alpha - \gamma)(\beta - \delta)(\beta - \delta)(\beta - \gamma)(\alpha + \delta)$
 $= [\alpha\beta + \alpha\delta - \gamma\beta - \gamma\delta][\alpha\beta + \beta\delta - \alpha\gamma - \gamma\delta]$
 $= [1 + \alpha\delta - \gamma\beta - 1][1 + \beta\delta - \gamma\alpha - 1]$
 $= (\alpha\delta - \gamma\beta)(\beta\delta - \gamma\alpha)$
 $= 1.\delta^2 - \alpha^2.1 - \beta^2.1 + \gamma^2.1 = (\delta^2 + \gamma^2) - (\alpha^2 + \beta^2)$
 $= [(\delta + \gamma)^2 - 2\delta\gamma] - [(\alpha + \beta)^2 - 2\alpha\beta]$
 $= [(-n)^2 - 2.1] - [(-m)^2 - 2.1] = n^2 - m^2$
Option (a) is correct

12. Roots of the given equation
$$= \frac{2a \pm \sqrt{4a^2 - 4ab}}{2b}$$
$$= \frac{a \pm \sqrt{a^2 - ab}}{b}$$
$$= \frac{\sqrt{a}(\sqrt{a} \pm \sqrt{a - b})}{b} \times \frac{\sqrt{a} \mp \sqrt{a - b}}{\sqrt{a} \mp \sqrt{a - b}} = \frac{\sqrt{a}}{\sqrt{a} \mp \sqrt{a - b}}$$

13. Ans: b
$$K + 6 = 2K - 1$$
 $K = 7$

14. Ans:b
Let roots =
$$a$$
, β
Therefore, $a^2 + \beta^2 = (a + \beta)^2 - 2a\beta = (P - 2)^2 + 2(p + 1)$
= $p^2 - 4p + 4 + 2p + 2 = (P - 1)^2 + 5$
Hence, value of p for the least value = 1

15. Ans: d
$$a - \beta = -2(p+1); \quad \alpha\beta = 9p - 5$$

$$\therefore \quad a > 0 \text{ and } \beta > 0$$

$$\therefore \quad \alpha + \beta > 0 \Rightarrow -2(p-1) > 0 \Rightarrow p < -1$$

$$\therefore \quad \alpha\beta > 0 \Rightarrow 9p - 5 > 0 \Rightarrow p > 5/9$$
Hence, option (d) is the answer.

16. Ans: c
Let common root =
$$\alpha$$
 $\therefore \alpha^2 - a \alpha - 21 = 0$
 $\alpha^2 - 3a \alpha + 35 = 0$
Solving the two equations, we get a =4

17. Ans: d
Sum roots =
$$-2/3(-b/a)$$

22. Ans: b
Take a quadratic equation:
$$x^2 + 3x + 2 = 0$$
Therefore; Sum of roots = -3
Product of roots = 2

Roots = -1, -2

Now, new quadratic equation: $2x^2 + 3x + 1 = 0$

Therefore; Sum of roots: $-\frac{3}{2}$

Product of roots: $\frac{1}{2}$

Roots = -1, $-\frac{1}{2}$

Therefore, sum, product, and roots will change. Hence option (d) is the answer.

23. Ans: b

$$x^4 + x^2 = 0$$
 can be written as $\Rightarrow x^2(x^2 + 1) = 0$

Therefore, either $x^2 = 0$ or $(x^2 + 1) = 0$

Case I: If $x^2 = 0$, then x = 0, 0 (two solutions)

Case II: $(x^2 + 1) = 0 \Rightarrow x^2 = -1$

Minimum value of $x^2 = 0$, and $x^2 = -1$ is not possible.

Hence, a total of two real solutions are possible.

24. Ans: c

$$as^4 + bs^3 + cs^2 + ds + e = 0$$

$$\Rightarrow a(s-s_1)(s-s_2)(s-s_3)(s-s_4) = 0 (because S_1, S_2, S_3 \text{ and } S_4 \text{ are roots})$$

Now, putting s = 1 in LHS

$$\Rightarrow P(1) = a(1 - s_1)(1 - s_2)(1 - s_3)(1 - s_4)$$

$$\Rightarrow (1-s_1)(1-s_2)(1-s_3)(1-s_4) = (a+b+c+d+e)/a$$

25. Ans: c

$$x^2 - 5x + 6 = 0 \Rightarrow Roots = 2,3$$

When 2 is the common root, then
$$p(2) = 0 \Rightarrow 2^2 + 2m + 3 = 0$$

$$\Rightarrow m = -7/2$$

When 3 is the common root, then
$$P(3) = 0 \Rightarrow 3^2 + 3m + 3 = 0$$

$$\Rightarrow m = -4$$

Exercise 03 (MCQs)

- 1. Ans: c
- Ans: d
- Ans: b
- 4. Ans: c
- 5. Ans: a
- Ans: d
- 7. Ans: d
- 8. Ans: d

$$x^3 + x^2 + 2x - 17 = 0$$

Let roots be α , β , and γ

Therefore; $\alpha \beta \gamma = 17$

Now, 17 is having only two factors 1 and 17, so the only possible integral roots = 1 and 17. Checking for these two values we find no integral root possible.

9. Ans: a

$$x - \frac{1}{x^2 - 4} = 2 - \frac{1}{x^2 - 4}$$

 $\Rightarrow x = 2$. Although we can see that for x = 2, $1/(x^2 - 4)$ will not hold. Hence, no value of x is possible.

Product of roots =1

$$\Rightarrow \frac{4k}{k^2+1} = 1 \Rightarrow k = -2 \pm \sqrt{3}$$

$$(x-a)(x-b) = x$$

$$\Rightarrow x^2 - (a+b)x + ab - c = 0; roots = \alpha, \beta$$

$$(x-a)(x-\beta) + c = 0$$

$$\Rightarrow x^2 - (a+\beta)x + a\beta + c = 0$$

$$\Rightarrow x^2 - (a+b) + ab - c + c = 0$$

(putting values of $(a + \beta)$ and $\alpha \beta$ from previous equation)

Hence, new equation = $x^2 - (a + b) + ab = 0$. Therefore, the roots are a and b.

12. Ans: c

$$x^2 + px + q = 0$$

Given roots are (a, b)
Then, $a + b = -p$ and $ab = q$
And $x^2 + px - r = 0$ and the roots are (g, d)
Then, $g + d = -p$ and $gd = -r$
But, in first equation, $-p = a + b$

Then,
$$a + b = g + d$$

Then,
$$(a - g)(a - d) = a^2 - a[g + d] + gd$$

 $= a^2 - a[a + b] + gd[\because a + b = g + d]$
 $= a^2 - a^2 - ab + gd = -q - r = (q + r)$
Hence, option (c) is the answer.

13. Ans: c

As $(x-1)^3$ is a factor of the polynomial, 1 is a repeated root (3 times) to the given equation. Let the fourth root be x, Therefore, 1.1.1. x = -1 $\Rightarrow x = -1 \Rightarrow -1$ is another root Hence, (x + 1) is a factor.

$$a^{3} + \beta^{3} = (a + \beta)^{3} - 3a\beta(a + \beta)$$
$$\left(\frac{3}{2}\right)^{2} + 3 \times 1 \times \frac{3}{2} = \frac{63}{8}$$

16.

Alternatively: Go through options.

17. Ans: c

For equal roots
$$D = 0$$

i.e., $b^2 - 4ac = 0$
 $\Rightarrow [-2(1+3k)]^2 - 4 \times 1 \times 7 \times (3+2k) = 0$
Solve it and get the value of k.

$$D = b^2 - 4ac$$

= $4 - 4 \times (-3)x(-8) = -92$

$$D = b^2 - 4ac = 25 - 4 \times 1 \times 7 = -3$$

Since D < 0, therefore roots are not real, i.e., roots will be imaginary.

$$a + \beta = a\beta$$

$$\Rightarrow -\frac{b}{a} = \frac{c}{a} \Rightarrow -b = c$$

$$\therefore -2k = 4$$

$$\Rightarrow k = -2$$

21. Ans: b

Let
$$x = \sqrt{6 + \sqrt{6 + 4} + ... \infty} \implies x^2 = x + 6 \implies x^2 - x - 6 = 0 \implies x = 3, -2, but x > 0.$$

22. Ans: b

$$k = \frac{x^2 - x + 1}{x^2 + x + 1}$$

$$\Rightarrow kx^2 + kx + k = x^2 - x + 1$$

$$\Rightarrow$$
 $(k-1)x^2 + (k+1)x + k - 1 = 0$

Since x is real, the discriminant

$$D = (k+1)^2 - 4(k-1)^2 \ge 0$$

$$\Rightarrow \qquad (3k-1)(-k+3) \ge 0$$

$$\Rightarrow \qquad \left(k-\frac{1}{3}\right)(k-3) \le 0$$

$$\Rightarrow \frac{1}{3} \le k \le 3$$

23.

Let a be a common root of the two given equations, then $a^2 - 3aa + 35 = 0$ and $a^2 - aa - 21 = 0$. On subtracting we get -2aa + 56 = 0 or $a = \frac{28}{3}$.

As a is a root of x^2 - ax - 21 = 0.

$$\therefore \left(\frac{28}{a}\right)^2 - a\left(\frac{28}{a}\right) - 21 = 0$$
or $a^2 = 4^2$ or $a = \pm 4$

or
$$a^2 = 4^2$$
 or $a = \pm 4$

$$\alpha > 0$$
, we get $\alpha = 4$

24. Ans: c

$$2^{3x^2 - 7x + 4} = 1 = 2^{\circ}$$

$$\Rightarrow 3x^2 - 7x + 4 = 0$$

$$\Rightarrow 3x^2 - 3x - 4x + 4 = 0$$

$$\Rightarrow 3x(x-1)-4(x-1)=0$$

$$\Rightarrow x = 1 \text{ or } x = \frac{4}{3}$$

$$\therefore x = 1, \frac{4}{3}$$

25. Ans: a

$$(x-1)^2 + (x-2)^2 + (x-3)^2 = 0$$
(i)

It is possible only when x = 1, x = 2, x = 3.

But x = 1, 2, 3 do not satisfy eq. (i)

Exercise 04 (MCQs)

Ans: d

Assume that roots of the equation $3ax^2 +$

Assume that roots of the equation $3ax^2 + 2bx + c = 0$ are

$$\alpha, \beta$$
.
 $\alpha + \beta = -\frac{2b}{3a}, \alpha\beta = \frac{c}{3a} \text{ and } \frac{\alpha}{\beta} = \frac{2}{3} \text{ (given)}$

$$\therefore \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{2}{3} + \frac{3}{2}$$

$$\frac{\alpha^2 + \beta^2}{\alpha \beta} = \frac{13}{6} \Rightarrow \frac{(\alpha + \beta)^2 - 2\alpha \beta}{\alpha \beta} = \frac{13}{6}$$

Now putting the values of $(\alpha + \beta)$ and $\alpha\beta$ and then solving.

We get, $8b^2 = 25ac$.

2. Ans: b

Let the number of chairs bought initially = n.

$$\therefore \frac{2400}{n} - \frac{2400}{n+10} = 20$$

$$\Rightarrow 120 \left[\frac{10}{n(n+10)} \right] = 1$$

- $n(n+10) = 1200 \Rightarrow n = 30$
- 3. Ans: c
- 4. Ans: b

$$x^4 \frac{1}{x^4} = 47$$

$$\Rightarrow \left(x^2 + \frac{1}{x^2}\right)^2 = 47 \Rightarrow x^2 + \frac{1}{x^2} = 7$$

$$\Rightarrow \left(x^2 + \frac{1}{x^2}\right)^2 - 2 = 7$$

$$\Rightarrow \left(x^2 + \frac{1}{x^2}\right)^2 = 9$$

$$\Rightarrow x - \frac{1}{x} - 3 \Rightarrow \left(x + \frac{1}{x}\right)^3 = 27$$

$$\Rightarrow x^3 - \frac{1}{x^3} - 3\left(x + \frac{1}{x}\right) = 27$$

$$\Rightarrow x^3 + \frac{1}{x^3} + 3 \times 3 = 27 \Rightarrow x^3 + \frac{1}{x^3} = 18$$

Ans: c

Let the roots be 3, α , and β .

$$\therefore 3 \alpha \beta = 6 \Rightarrow \alpha \beta = 2$$

and
$$3x + 3\beta + \alpha\beta = 11$$

$$\Rightarrow 3(\alpha + \beta) + 2 = 11$$

$$\alpha + \beta = 3$$

$$\alpha = 1, \beta = 2$$

6. Ans: c

$$(m+n)^{100} = m^{100} + {}^{100}c_1 m^{04} \cdot n + {}^{100}c_2 m^{08} \cdot n + \dots + n^{100}$$
$$= m^{100} + n^{100} + k$$

[where $k = {}^{100}C_1 m^{99}n + {}^{100}C_2 m^{98}$, $n + + {}^{100}C_{99} mn^{99}$]

- \therefore k > 0 for m and n belonging to natural number
- $mmode (m+n)^{100} > m^{100} + n^{100}$
- 7. Ans: a

$$x^2 + 5 |x| + 6 = 0$$

: All the terms in LHS are positive.

Hence, no real root is possible.

8. Ans: d

Given that x_1, x_2 , and x_3 are in AP.

Then,
$$2x_2 = x_1 + x_3$$

It is also given that sum of the roots

$$x_1 + x_2 = 4$$

(ii)

(i)

Here, with both equations, we can find neither x_1 nor x_2 .

Then, answer is (d)

9. Ans: c

Let the roots be α , 2α . Where $\alpha > 0$

$$\therefore \alpha + 2\alpha = -m \Rightarrow m = -3\alpha$$

and,
$$2\alpha^2 = C$$

Now, since $m + c = 2 \Rightarrow 2\alpha^2 - 3\alpha = 2$

$$\alpha = -1/2, 2$$

$$\alpha > 0$$

$$\therefore \alpha = 2 : m = -3\alpha = -6$$

10.

$$(ax^2 + bx + c)(ax^2 - dx - c) = 0$$

- \therefore Either $ax^2 + bx + c = 0$ or, $ax^2 dx + c = 0$ or both
- \therefore Roots of $ax^2 + bx + c = 0$ will be real, if

$$b^2 - 4ac > 0$$

Similarly, for $ax^2 - dx - c$, roots will be real, if

$$d^2 + 4ac > 0$$

Now, at least one of the two conditions will hold true since either 4ac will be greater than zero or less than zero or equal to zero.

- .. At least 2 real zeroes will be there.
- 11. Ans: b

$$(x+y)\left(\frac{x}{y}\right) = \frac{1}{2} \text{ and } (x+y)\frac{x}{y} = \frac{-1}{2}$$

Solving these two equations, the values of

$$(x+y)$$
 and $\left(\frac{x}{y}\right)$ will be $(1,-1/2)$

When
$$x + y = 1$$
 and $\frac{x}{y} = -1/2$

$$(x, y) = (2, -1)$$

When x + y = -1/2 and $\frac{x}{y} = 1$

$$(x,y) = \left(\frac{-1}{4}, -\frac{1}{4}\right)$$

- .. Number of possible pairs = 2
- 12. Ans: a

Alis. a
$$\sqrt{x+1} - \sqrt{x-1} = \sqrt{4x-1}$$

$$\Rightarrow (x+1) + (x-1) - 2\sqrt{x^2 - 1} = 4x - 1$$

$$\Rightarrow -2\sqrt{x^2-1} = 2x-1$$

$$\Rightarrow 4(x^2-1) = 4x^2 + 1 - 4x$$

 $\Rightarrow x = \frac{5}{4}$ which when put in the main equation does not

satisfy it.

Hence, no solution is possible.

13. Ans: c

Let
$$\frac{x^2 - x + 1}{x^2 + x + 1} = y$$

$$x^2 - x + 1 = y[x^2 + x + 1]$$

$$x^2 - x + 1 = yx^2 + yx + y$$

$$x^2-x+1=yx^2+yx+y$$

$$yx^2 - x^2 + yx + x + y - 1 = 0$$

$$x^{2}[y-1] + x[y+1] + y - 1 = 0$$

For real values of
$$D^2 \ge 0$$

Then,
$$b^2 - 4ac \ge 0 \rightarrow$$

$$(y+1)^2 - 4(y-1)^2 \ge 0$$
 $(y^2 + 2y + 1) - 4(y^2 - 2y + 1) \ge 0$

Or,
$$y^2 + 2y + 1 - 4y^2 + 8y - 4 \ge 0 - 3y^2 + 10y - 3 \ge 0$$

Or,
$$3y^2 - 10y + 3 \le 0$$

Or,
$$3y^2 - 9y - y + 3 \le 0$$

Or,
$$3y[y-3]-1[y-3] \le 0 (3y-1)(y-3) \le 0$$

Hence,
$$3y-1 \le 0$$
 and $y-3 \le 0$

$$y \le \frac{1}{3}$$
 and $y \le 3$

Hence, maximum value of y is 3 and minimum value of y is 1/3.

14. Ans: a

$$2\left[a^{1/3} + \frac{1}{a^{1/3}}\right] = 5$$

$$\Rightarrow 2a^{13} - 5a^{13} + 2 = 0$$

$$\Rightarrow (a^{23}-2)(2a^{13}-1)=0$$

$$a^{1/3} = 2, a^{1/3} = 1/2$$

$$\Rightarrow a = 8, a = 1/8$$

15. Ans: a

If roots are real and equal, then D = 0

$$D = [\sqrt{2}(p+q)]^2 - 4(p^2 + q^2) \times 1$$

$$= 2(p^2 + q^2 + 2pq) - 4(p^2 + q^2) = -2(p^2 + q^2 - 2pq)$$

$$=-2[(p-q)^2]=0$$

Hence, p = q

16. Ans: c

Due to symmetry, we can say that the maximum value of

xy + yz + zx will be at x = y = x

Now,
$$x^2 + y^2 + z^2 = 1$$

$$\Rightarrow x = y = z = 1/\sqrt{3}$$

 $\therefore xy + yz + zx \le 1$ which is present only in one option.

17. Ans: a

Let the roots of the given equation be a and B.

Now, for roots $(\alpha - \beta)$, $(\beta - 2)$, the equation $c_{\alpha\beta}$ is deduced by replacing x with (x + 2).

:. The deduced equation would be

$$\Rightarrow$$
 $(x+2)^2 - (p+1)(x+2) + p^2 + p - 8 = 0$

$$\Rightarrow x^2 + (3-p)x + p^2 - p - 6 = 0$$

$$\Rightarrow x^2 + (p-3)x + (p+2)(p-3) = 0$$

Now, $\alpha > 2$ and $\beta < 2$

$$(\alpha-2) > 0$$
 and $(\beta-2) < 0$

∴
$$(\alpha - 2)(\beta - 2) < 0 \Rightarrow (p + 2)(p - 3) < 0$$

$$\therefore (\alpha-2)(\beta-2)<0 \Rightarrow (p+2)(p-3)<0$$

18. Ans: b

$$\alpha + \beta = \frac{3}{8}, \quad \alpha\beta = \frac{27}{8}$$

$$\therefore \quad \left(\frac{\alpha^2}{\beta}\right)^{1/3} + \left(\frac{\beta^2}{\alpha}\right)^{1/3} = \left(\frac{\alpha^3}{\alpha\beta}\right)^{1/3} + \left(\frac{\beta^3}{\alpha\beta}\right)^{1/3}$$

$$= \frac{\alpha + \beta}{(\alpha\beta)^{1/3}} = \frac{3/8}{(27/8)^{1/3}}$$

$$= \frac{3/8}{3/2} = \frac{1}{4}$$

19. Ans: b

It is very obvious that at x = 3 the given expression satisfies. Now, $y = 3^{x-1}$ and $y = 5^{x-1}$ are both increasing function of x (exponential functions with base greater than 1). Therefore their sum $y = 3^{x-1} + 5^{x-1}$ is also an increasing function of x. It means for x < 3, $y = 3^{x-1} + 5^{x-1} < 34$ and for x > 3, $y = 3^{x-1} + 5^{x-1} > 34$.

Thus, the equation has no other solution.

20. Ans: b

Let
$$f(x) = ax^2 + bx + c$$
. Since 1 lies outside the roots of $f(x) = 0$, So, $af(1) > 0 \Rightarrow f(1) > 0$ $(\because a > 0)$ $\Rightarrow a + b + c > 0$

Exercise 05 (TITA or Short Answers)

1 Δng: σ

The minimum value of (p + 1/p) is at p = 1. The value is 2.

2. Ans: 2

$$|x|^{2} - 2|x| - 3 = 0$$

$$\Rightarrow (|x| - 3)(|x| + 1) = 0$$

$$\Rightarrow |x| = 3, -1$$

$$|x| = -1 \text{ is not possible}$$

$$\Rightarrow |x| = 3$$

$$\Rightarrow x = \pm 3$$

Therefore for the given equation only two real roots are possible.

3. Ans: c

Taking the values of A, B and C as 1, 2 and -1. We get $A^4 + B^4 + C^4 = 18$.

4. Ans: (b)

$$x^2 + |x| - 6 = 0 \Rightarrow x^2 + x - 6 = 0$$
 where ≥ 0 , Therefore root $= 2$ Else $x^2 - x - 6 = 0$ if $x < 0$, Therefore $= -2$ Hence, sum of roots $= 0$

5. Ans: a
$$a + \beta = \frac{1}{a^2} + 1/\beta^2$$

$$\Rightarrow \frac{-b}{a} = \frac{a^2 + \beta^2}{a^2 \beta^2} \Rightarrow -\frac{b}{a} = \frac{(a+\beta)^2 - 2\alpha\beta}{a^2 \beta^2}$$

$$\Rightarrow -\frac{b}{a} = \frac{\left(\frac{b^2}{a^2}\right) - \frac{2c}{a}}{\frac{c^2}{a^2}}$$

$$\Rightarrow \frac{b^2}{ac} + \frac{bc}{a^2} = 2$$

$$p(x) = x^{3} - ax^{2} + bx + 10; \text{ since it is divisible by } (x + 5)$$
∴ $p(-5) = 0$

$$\Rightarrow (-5)^{3} - 25a - 5b + 10 = 0$$

$$\Rightarrow 5a + b = -23$$

$$\Rightarrow Q(x) = x^{4} + x^{3} + bx^{2} - ax + 42 = 0$$
∴ $Q(3) = 0$

$$\Rightarrow 81 + 27 + 9b - 3a + 42 = 0$$

$$\Rightarrow a - 3b = 50$$

$$x^{2} + x + 2 = 0$$

$$\therefore \alpha + \beta = -1$$

$$\alpha\beta = 2$$
Now,
$$\frac{\alpha^{10} + \beta^{10}}{\alpha^{-10} + \beta^{-10}} = \frac{\alpha^{10} + \beta^{10}}{\alpha^{10} + \beta^{10}} = (\alpha\beta)^{10} = 2^{10} = 1024$$

8. Ans: b

$$S-2=2\frac{1}{3}+2^{2/3} \Rightarrow (S-2)^2=2^{2/3}+2.2^{1/3}+2.2$$
Now, required = $2^{2/3}-2.2^{1/3}+2.2-(2.2^{1/3}+2.2^{2/3})$

9. Ans: b
$$Log_4(x-1) = log_2(x-3)$$

$$\Rightarrow \frac{1}{2}log_2(x-1) = log_2(x-3)$$

$$\Rightarrow (x-1) = (x-3)^2$$

$$\therefore x = 5, 2$$
The second of the property of

.. x = 3, 2 Now, x = 2 is not possible as $\log (x - 3) = \log(-1)$ is not possible.

$$P(x) = x^4 + 2x^3 + mx^2 + nx + 3$$

Now, $P(2) = 0$
 $\Rightarrow 16 + 16 + 4m + 2n + 3 = 0$ (i)
 $\Rightarrow 4m + 2n + 35 = 0$
and, $P(4) = 0$
 $\Rightarrow 256 + 128 + 16m + 4n + 3 = 0$
 $\Rightarrow 16m + 4n + 387 = 0$ (ii)
Multiplying 5 in equation (i) and then subtracting from equation (ii)
 $4m + 6n - 212 = 0$
 $\therefore 2m + 3n = 106$

For the equations to have same pair of roots

$$\frac{2p-1}{q+1} = \frac{2p+1}{4q+1} = \frac{c}{3c}$$

$$\therefore 3(2p-1) = q+1 \Rightarrow 6p-q=4$$
and, $3(2p+1) = 4q+1 \Rightarrow 6p-4q=-1$
Solving two equations $q=2$ and $p=1$

$$x + \frac{1}{x} = 1 \Rightarrow x^2 - x + 1 = 0$$

Now, as
$$x \neq -1 \Rightarrow (x+1)(x^2 - x + 1) = 0$$

$$\Rightarrow x^3 + 1 = 0$$

(p+q)=3

$$\therefore x^3 = -1 \Rightarrow x^{4000} = (x^3)^{1333}, x = -x$$

$$\therefore P = x^{4000} + \frac{1}{x^{4000}}$$

$$=-x-\frac{1}{x}=-1 \Rightarrow P=-1$$

Now, let n=2

$$\therefore p = \text{unit digit of 17, that is, 7. So, } p + q = 7 - 1 = 6$$

13. Ans: c

Let α , β be the roots of the equation, then

$$\alpha + \beta = \frac{1}{2} \alpha \beta$$

$$-\frac{b}{a} = \frac{1}{2} \cdot \frac{c}{a}$$

$$\Rightarrow \qquad -b = \frac{c}{2}$$

$$\Rightarrow \qquad (k+6) = \frac{2(2k-1)}{2}$$

$$\Rightarrow \qquad k = 7$$

14. Ans: b

Let
$$x = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots \infty}}}}$$

$$x = \sqrt{2 + x}$$

$$x = \sqrt{2 + x}$$

$$x^2 = 2 + x$$

$$x^3 - x - 2 = 0$$

$$x = \frac{1 \pm \sqrt{9}}{2} = \frac{1 \pm 3}{2} = 2 - 1$$

x>0, $\therefore x=2$

$$2|x|^{2} - 5|x| + 2 = 0$$

$$\Rightarrow (2|x| - 1)(|x| - 2) = 0$$

$$\therefore |x| = \frac{1}{2}, 2$$

$$\therefore x = \pm \frac{1}{2}, \pm 2$$

16. Ans: a

$$xy = 2(x+y) \Rightarrow y(x-2) = 2x$$

$$xy = 2(x + y) \Rightarrow y(x - 2) = 2x$$

$$\therefore y = \frac{2x}{x - 2} \text{ but } x, y \in N \text{ by trial, we get } x = 3, 4, 6$$

$$y = 6, 4, 3$$

but
$$x \le y$$

$$x = 3, 4 \text{ and } y = 6, 4$$

Thus two solutions are possible

17. Ans: d

$$x = 7 + 4\sqrt{3}$$

$$y = \frac{1}{7 + 4\sqrt{3}} = 7 - 4\sqrt{3}$$

$$\frac{1}{x^2} + \frac{1}{y^2} = \frac{x^2 + y^2}{(xy)^2}$$

$$= \frac{(7 + 4\sqrt{3})^2 + (7 - 4\sqrt{3})^2}{[(7 + 4\sqrt{3})(7 - 4\sqrt{3})]^2}$$

$$= \frac{2(49 + 48)}{1} = 194$$

18. Ans: c

Putting
$$x = \frac{1}{y}$$
, we get
 $27y^3 + 54y^3 + cy - 10 = 0$

This above eq. (i) must be in AP.

Let the roots of equation in y be

$$a - \beta, a, a + \beta \qquad (\because roots \ are \ in \ AP)$$

$$\therefore \sum a = a - \beta + a + a + \beta = 3a$$

$$\Rightarrow 3a = \frac{-54}{27} \Rightarrow a = \frac{-2}{3}$$
Now $a = \frac{-2}{3}$ will satisfy the eq. (i)we get
$$27 \times \frac{-8}{27} + 54 \times \frac{4}{9} - \frac{2c}{3} - 10 = 0$$

$$\Rightarrow c = 9$$

19. Ans: c

$$\log_{100} |x + y| = \frac{1}{2} \implies (100)^{1/2} = |x + y|$$

$$\Rightarrow |x + y| = 10 \qquad ...(1)$$
Again,
$$\log_{10} y - \log_{10} |x| = \log_{100} 4$$

$$\log_{10} y - \log_{10} |x| = \log_{10} 2$$

$$\Rightarrow \log_{10} \frac{y}{|x|} = \log_{10} 2$$

$$\Rightarrow y = 2|x| \qquad ...(2)$$

From eq. (2) we can conclude that y is always positive.

Now, when x > 0 and y > 0 (always)

$$|x + y| = 10 \implies |x + 2|x|| = 10$$

$$\Rightarrow x + 2|x| = 10 \qquad (\because x > 0)$$

$$\Rightarrow x + 2x = 10$$

$$\Rightarrow x = \frac{10}{3}$$

$$\therefore y = \frac{20}{3}$$

Again, x < 0 and y > 0 (always positive)

$$|-x + 2| - x|| = 10$$

$$\Rightarrow |-x + 2x| = 10$$

$$\Rightarrow |x| = 10$$

$$\Rightarrow x = -10 \qquad (\because x < 0)$$

$$y = 20$$

Hence, x = -10, y = 20 and $x = \frac{10}{3}$ and $y = \frac{20}{3}$.

20. Ans: c

The given equation is $|x - 2|^2 + |x - 2| - 2 = 0$.

Let us assume |x-2|=m

Then

$$m^2 + m - 2 = 0$$

 $(m-1)(m+2) = 0$

Only admissible value is

$$m = 1$$

$$(\because m \neq -2as \ m \geq 0)$$

$$|x-2|=1$$

$$\Rightarrow x-2=1 \Rightarrow x=3$$

Or
$$-(x-2) = 1 \Rightarrow x = 1$$

Hence,

$$x = 1, 3$$

- \therefore Sum of the roots of equation = 1 + 3 = 4.
- 21. Ans: b

Best way is to go through options.

Consider option (b)

$$|3^4 - 1|^{\log_3^{(3^4)^2} - 2\log_{81}^9} = (3^4 - 1)^7$$

$$|80|^{\log_3^{3^8 - \log_{81}81}} = (80)^7$$

$$\Rightarrow log_33^8 - log_{81}81 = 7$$

$$\Rightarrow$$
 8 - 1 = 7

$$7 = 7$$

Hence option (b) is correct.

- 22. Ans: b
- 23. Ans: d
- 24. Ans: d
- 25. Ans: b