

ELECTROTECNIA Y ELECTRÓNICA

ELECTROTECNIA Y ELECTRÓNICA

(Mecánica - Electromecánica - Computación)

TRABAJO DE APLICACIÓN Nº 01

Preparado por: Ing. Pablo Morcelle del Valle, Ing. Augusto Cassino, Ing. Guillermo Renzi.

Actualizado por: Ing. Fabián Blassetti, Ing. Gustavo Adgi Romano, Ing. Mónica González

INTRODUCCIÓN. COMPONENTES DE CIRCUITOS ELÉCTRICOS. LEYES.

Modelo circuital. Características y rango de aplicación. Excitación y Respuesta. Análisis y Síntesis. Elementos de circuito: Activos y Pasivos. Leyes de Ohm y Kirchhoff. Convenciones de Referencia. Energía y potencia.

REPASAR: Leyes de Ohm y Kirchhoff. Circuitos de corriente continua.

PARA TENER EN CUENTA ANTES DE EMPEZAR

Respetar lo que sigue contribuirá al aprendizaje y al éxito en las evaluaciones.

- 1. **Reconocer** los elementos que componen el circuito: activos y pasivos. Sus características y comportamiento y la transformación energética en cada uno de ellos.
- 2. Indicar en el circuito las corrientes, con su sentido y las tensiones, con su polaridad.
- 3. Identificar nodos y mallas para la correcta referencia en el planteo de la Ley de Ohm y las Leyes de Kirchhoff
- 4. Recordar:
 - a) La corriente **no circula**, lo que circulan son las cargas eléctricas: $i = \frac{dq}{dt}$
 - b) La tensión no cae, cae el potencial eléctrico y es lo único que puede suceder teniendo como referencia el sentido de la corriente. Dicho sentido va del potencial eléctrico más alto (+) al potencial más bajo (-). Así, siempre la tensión es u = V₊ V₋.
 - c) La potencia no se consume ni se transfiere. Representa cuánta energía se transfiere por unidad de tiempo y en qué sentido se realiza dicha transferencia.

$$p = \frac{dw}{dt}$$

- d) Tampoco se consume la energía, sino que se transforma reversiblemente en los elementos reactivos y se transforma irreversiblemente en los elementos no reactivos y en los elementos activos.
- e) El inductor **no es un cortocircuito**, sino que su *tensión vale cero* si a través de él se establece una corriente constante: $u_L = L \frac{di_L}{dt}$.
- f) El capacitor **no es un circuito abierto**, sino que su *corriente es nula* cuando tiene aplicada una tensión constante entre sus bornes: $i_C = C \frac{du_C}{dt}$.
- 5. Respetar la **nomenclatura** y **simbología**, y poner las **unidades** de las magnitudes calculadas al lado de los resultados
- 6. Explicar y justificar explícitamente las decisiones tomadas durante la resolución de los ejercicios.
- 7. No olvidar **leer las sugerencias** que se muestran en cada ejercicio.

EJERCICIO Nº 01:

El circuito de la figura consiste en un divisor de tensión. U_f = 12V, R_1 = 10 Ω y R_2 = 30 Ω conectados según el esquema mostrado.

a) Calcular la tensión sobre el resistor \mathbf{R}_2 . ¿Qué relación tiene con la tensión de la fuente? Justificar la respuesta.

RESPUESTA: $U_2 = \frac{3}{4}$. $U_f = 9V$

b) Conectar una fuente de corriente $I_f = 2A$ en lugar de la fuente de tensión y calcular todas las tensiones y corrientes del circuito. En este caso, ¿Se dividen las corrientes?

ELECTROTECNIA Y ELECTRÓNICA

RESPUESTA: $U_1 = 20V$, $U_2 = 60V$, $U_f = 80V$.

c) Proponer un circuito en el cual se divida la corriente de una fuente de corriente y resolverlo.

EJERCICIO Nº 02:

El circuito de la figura contiene una fuente de tensión $U_f = 12V$, una fuente de corriente $I_f = 1$ A y un resistor $R = 6\Omega$ conectados según el esquema mostrado.

- a) Plantear las ecuaciones de las leyes de Kirchhoff y de Ohm que permiten resolver el circuito sin reemplazar los coeficientes por valores.
- b) Reemplazar por los datos numéricos. Calcular la corriente y la tensión en cada uno de los tres elementos del circuito.

RESPUESTA: La tensión de los tres elementos es U_f porque la fuente de tensión lo impone (los 3 están en paralelo) $I_R = 2A$ (hacia abajo); $I_U = 1A$ (saliendo del positivo de la fuente de tensión).

c) Explicar la diferencia entre *excitación* y *respuesta*. Repetir el inciso a) suponiendo que $\mathbf{R} = 12\Omega$. Explicar qué sucede con respecto a las fuentes analizando sus corrientes y tensiones.

RESPUESTA: $I_R = 1A$, $I_U = 0$.

EJERCICIO Nº 03:

En base a los resultados del EJERCICIO Nº 02:

- a) Explicar la relación que hay entre la polaridad de una tensión definida (por ejemplo, en la fuente de corriente o en el resistor) y el signo del valor obtenido o entre la dirección de la corriente definida (por ejemplo, en la fuente de tensión o en el resistor) y el signo del valor obtenido.
- b) ¿Cómo debería ser la polaridad de la tensión en una fuente de corriente? ¿Hay una única posibilidad? Explicar con detalle y justificando adecuadamente la respuesta. Ídem para una fuente de tensión y su corriente y para un resistor.
- c) Para el caso de la fuente de tensión ¿la corriente debe salir siempre por el terminal positivo? Justificar la respuesta. Resolver el ejercicio anterior suponiendo que $\mathbf{R} = 24\Omega$ y analizar qué sucede.

RESPUESTA: No necesariamente, en este caso: $I_R = 0.5A$ (hacia abajo) $I_U = -0.5A$ (saliendo del positivo de la fuente de tensión).

EJERCICIO Nº 04

En el circuito de la figura. $U_f = 10V$; $I_f = 7A$; $R_1 = 40\Omega$, $R_2 = 20\Omega$ y $R_3 = 10\Omega$.

a) Dibujar el circuito indicando los sentidos supuestos de las corrientes y las polaridades de las correspondientes tensiones en cada elemento. Efectuar comentarios respecto de los sentidos de las corrientes y polaridades de las tensiones resultantes en cada elemento del circuito.

b) Calcular las corrientes del circuito y la tensión U_{AB} explicando paso a paso.

RESPUESTA: Todas las corrientes de arriba hacia abajo o de izquierda a derecha: $I_{Uf} = -1,75A$; $I_1 = 0,25A$; $I_3 = 5A$; $I_2 = -2A$; $U_{AB} = -40V$.

c) ¿Qué sucede si I_f = 1A? Repetir el punto a) en esta nueva condición y efectuar comentarios.

RESPUESTA: Todas las I de arriba hacia abajo o de izquierda a derecha: $I_{Uf} = 0,25A$; $I_1 = 0,25A$; $I_2 = 1A$; $I_2 = 0$; $U_{AB} = 0$.

EJERCICIO Nº 05:

- a) Explicar cómo se determina si un elemento entrega o recibe energía en función de las convenciones de tensión o corriente elegidas.
- b) Para los circuitos de los EJERCICIOS (a y b), 02 (b y c), 03 (c) y 04 (b y c), calcular la potencia en todos y cada uno de sus elementos (fuentes y resistores). Indicar cuáles entregan energía y cuáles reciben, justificando la respuesta.

RESPUESTA:

 $\underline{\text{Ej 01}}$: a) $\mathbf{P_U} = 3.6 \text{W}$; $\mathbf{P_1} = 0.9 \text{W}$; $\mathbf{P_2} = 2.7 \text{W}$; La fuente entrega, los resistores reciben energía.

b) $P_U = 160W$; $P_1 = 40W$; $P_2 = 120W$; La fuente entrega, los resistores reciben energía.

Ej 02: b) $P_U = 12W$; $P_I = 12W$; $P_R = 24W$; Las fuentes entregan, el resistor recibe energía

c) $P_U = 0$; $P_I = 12W$; $P_R = 12W$; La fte. de corriente entrega, la de tensión no entrega ni recibe, el resistor recibe.

 \underline{E} ; 03: c) $P_U = -6W$; $P_I = 12W$; $P_R = 6W$; La fuente de corriente entrega, la de tensión recibe, el resistor recibe energía.

Ej 04: b) $P_U = -17.5W$; $P_1 = 350W$; $P_1 = 2.5W$; $P_2 = 80W$; $P_3 = 250W$; La fte. de corriente entrega, el resto recibe energía.

c) $P_U = 2.5W$; $P_1 = 10W$; $P_1 = 2.5W$; $P_2 = 0$; $P_3 = 10W$; La fte. de corriente y la de tensión entregan, el resto recibe.

 c) Realizar el balance de potencias para cada circuito y explicar qué sucede y como proceder cuando una fuente activa recibe energía.

ELECTROTECNIA Y ELECTRÓNICA

EJERCICIO Nº 06:

En el circuito de la figura. $U_f = 6V$, $I_c = 10[S]$. U_2 , $R_1 = R_2 = R_3 = 2\Omega$.

a) Clasificar las fuentes presentes (de tensión, de corriente, reales o ideales, independientes o controladas). Repetir si se supone que **R**₁ es parte de la fuente de tensión y **R**₂ parte de la fuente de corriente.

b) Resolver el circuito y determinar todas las tensiones y corrientes.

RESPUESTA: Todas las corrientes de arriba hacia abajo o de izquierda a derecha y las tensiones con el positivo arriba o a la izquierda. $I_{Uf} = 2,86A$; $I_2 = 0,14A$; $I_c = 2,73A$; $U_1 = 5,73V$; $U_2 = 0,27V$; $U_c = -5,19V$; $U_3 = 5,46V$;

c) Realizar el balance de potencias del circuito.

RESPUESTA: $P_U = 17,16W$; $P_{1c} = 14,17W$; $P_1 = 16,36W$; $P_2 = 0,04W$; $P_3 = 14,9W$. De acuerdo a las polaridades se puede observar que la fuente de corriente y la de tensión entregan, el resto recibe energía. El balance de potencias lo confirma.

EJERCICIO Nº 07:

En el circuito de la figura. $U_{f1} = 130V$, $U_{f2} = 80V$, $I_{f} = 1,3A$, $R_{1} = 150\Omega$, $R_{2} = 60\Omega$, $R_{3} = 5\Omega$.

a) Calcular la tensión entre A y B.

RESPUESTA: $U_{AB} = 150V$

b) Determinar si las fuentes entregan o reciben energía.

RESPUESTA: Se calculan las corrientes en las fuentes de tensión (de arriba hacia abajo) y la tensión en la fuente de corriente (positivo arriba): $U_1 = 156,5V$, $I_1 = 0,13A$, $I_2 = 1,16A$

c) Indicar qué valor debería tener el resistor R₂ para que las corrientes de las fuentes de tensión tengan el mismo valor. ¿Cuánto vale esa corriente?

RESPUESTA: $\mathbf{R}_2 = 227\Omega$; $\mathbf{I}_1 = \mathbf{I}_2 = 0.64 \mathrm{A}$.

EJERCICIO Nº 08:

El circuito de la figura representa un dispositivo amplificador muy utilizado para acondicionar señales eléctricas de pequeña amplitud. U_e es la tensión de entrada, U_s la tensión de salida y A es la ganancia del amplificador.

- a) Calcular la tensión de salida U_s en función de la tensión de entrada.
- b) Calcular U_s si $U_e = 1 \text{mV}$, $R_d = 20 \text{M}\Omega$, $R_1 = 1 \text{k}\Omega$, $R_2 = 47 \text{k}\Omega$ y A = 100.000.

RESPUESTA: $U_s = -47 \text{mV}$.

c) Calcular la corriente que entrega la fuente de entrada.

RESPUESTA: $I_e = -1 \mu A$; desde arriba hacia abajo.

EJERCICIOS ADICIONALES

<u>Sugerencia</u>: Resolver todos los ejercicios siguiendo las pautas establecidas para los ejercicios anteriores: No dar por hechos u obvios suposiciones o afirmaciones, nada debe darse por implícito. Plantear, explicar, justificar, respetar la nomenclatura y simbología.

EJERCICIO Nº 09:

El circuito de la figura representa la conexión de una fuente de tensión U_f = 28V que se conecta con un conjunto de calefactores eléctricos (que se conectan en paralelo y que se modelan mediante resistores \mathbf{R}_n = 16 Ω) con cables de resistencia \mathbf{R}_c = 1 Ω .

- a) Suponer que se conecta un solo calefactor. Calcular la tensión con la que opera y la tensión que cae en los cables. RESPUESTA: $U_1 = 24,9V$; $U_c = 1,55V$; positivo arriba o a la izquierda.
- b) La operación del circuito es adecuada si la tensión de cada calefactor se mantiene por encima del **60%** de U_f. Calcular el número máximo de calefactores que se pueden conectar a la fuente para asegurar esta condición.

RESPUESTA: Cantidad = 5.

ELECTROTECNIA Y ELECTRÓNICA

EJERCICIO Nº 10:

En el circuito de la figura, la fuente de tensión es variable y su valor se puede modificar. $I_f = 6A$, $R_1 = 10\Omega$, $R_2 = 8\Omega$, $R_3 = R_4 = 4\Omega$.

a) Calcular la tensión que la fuente debería tener para lograr una corriente por I_3 de 4A. RESPUESTA: $U_f = 48V$.

b) Calcular la potencia de las fuentes con el valor de U_f calculado en el inciso a)

RESPUESTA: $P_U = 192W$, $P_I = 336W$. Ambas entregan energía.

c) Si U_f es de 100V. ¿Qué valor debería tomar R₂ para que la I_f no entregue energía?

RESPUESTA: $\mathbf{R_2} = 6.4\Omega$.

Sugerencia: Determinar qué variable debe ser nula para que una fuente de corriente no entregue energía.

EJERCICIO Nº 11:

En el circuito de la figura: $U_f = 10V$, $R_1 = R_2 = R_3 = 100\Omega$, $U_c = \alpha$. I_{AB} , $\alpha = 25\Omega$.

a) Calcular la corriente entre A y B.

RESPUESTA: $I_{AB} = 66,67$ mA. hacia la derecha.

b) Calcular la potencia en la fuente controlada.

RESPUESTA: $P_{Uc} = 0.25$ W. recibe energía.

c) Si R_1 se cortocircuita. ¿Cuánto vale la corriente en la fuente controlada?

RESPUESTA: $I_c = 400 \text{mA}$. hacia la abajo.

EJERCICIOS RESUELTOS

Aclaración: Debe observarse que en la resolución de estos ejercicios se efectúan planteos, explicaciones, justificaciones, y nada se da por sobreentendido.

EJERCICIO Nº 12:

En el circuito de la figura. $U_f = 5V$; $R_1 = R_3 = 1\Omega$, $R_2 = R_4 = 2\Omega$.

- a) Resolver el siguiente circuito (calcular las tensiones y corrientes en todos sus elementos).
- b) Repetir los cálculos si R₃ es nula.

RESOLUCIÓN:

a) Observando los dos ítems solicitados vemos que nos conviene resolver el circuito sin reemplazar los valores de los componentes y finalmente realizar el reemplazo.

Marcamos los nodos y las corrientes en cada rama, asignamos un sentido a las corrientes.

La primera ley de Kirchhoff en el nodo A: $I_1 = I_2 + I_3$ (Ec 1)

Luego, a partir de las tensiones en los extremos de cada resistor se puede plantear las expresiones de las corrientes 1, 2 y 3. Nota: Observar que el sentido de la corriente 1 es de izquierda a derecha; entonces el extremo izquierdo de R_1 debe estar a mayor tensión que el extremo derecho. Luego, la tensión del extremo izquierdo está impuesta por la fuente U_f , mientras que la tensión del extremo derecho es igual a la tensión del nodo A, que a su vez es la tensión en R_2 y es incógnita. Por lo tanto, la diferencia entre U_f y U_{R2} = U_A es la tensión sobre R_1 .

Aplicando ley de Ohm:
$$I_1 = \frac{U_{f_1} - U_{R_2}}{R_2}$$
 (Ec 2)

El mismo razonamiento se puede aplicar a I2 e I3: $I_2 = \frac{U_{R_2}}{R_2}$ (Ec 3) ; $I_3 = \frac{U_{R_2}}{R_2 + R_3}$ (Ec 4)

Reemplazando Ec 2, 3 y 4 en Ec 1:
$$\frac{U_{f_1} - U_{R_2}}{R_2} = \frac{U_{R_2}}{R_2} + \frac{U_{R_2}}{R_3 + R_4} \text{(Ec 5)}$$

ELECTROTECNIA Y ELECTRÓNICA

Despejando
$$U_{R_2}$$
 queda: $U_{R_2} = \frac{U_{f_1}}{R_1} \cdot \frac{1}{R_2} + \frac{1}{R_3 + R_4} + \frac{1}{R_1}$ (Ec 6)

Con U_{R_2} tenemos el circuito resuelto pues de Ec 2 3 y 4 sacamos $I_1 I_2$ e I_3

$$U_{R_3} = I_3 \cdot \mathsf{R}_3 \,, \, U_{R_4} = I_3 \cdot \mathsf{R}_4 \,, \, I_{f_1} = I_1 \,, \, U_{R_1} = I_1 \cdot \mathsf{R}_1$$

Con esto conocemos todas las tensiones y corrientes en el circuito.

Resolviendo numéricamente con los datos de a): $U_{R_2} = \frac{30}{11} \text{ V}$ $I_1 = \frac{25}{11} = I_{f_1} \text{ A}$, $I_2 = \frac{15}{11} \text{ A}$, $I_3 = \frac{10}{11} \text{ A}$,

$$U_{R_3} = \frac{10}{11} \text{ V}, \quad U_{R_4} = \frac{20}{11} \text{ V}, \quad U_{R_1} = \frac{25}{11} \text{ V}$$

Resolviendo numéricamente con los datos de b): $U_{R_2}=\frac{5}{2}$ V $I_1=\frac{5}{2}=I_{f_1}$ A , $I_2=\frac{5}{4}$ A , $I_3=\frac{5}{4}$ A, $U_{R_3}=0$ V,

$$U_{R_4} = \frac{5}{4} V, U_{R_1} = \frac{5}{2} V.$$

b) Se puede observar que reemplazando por $\mathbf{R_3} = 0$ se obtienen los nuevos valores de tensión y corriente del circuito. Como un buen ingeniero siempre verifica sus resultados, podemos observar que la tensión en r2 y r4 deberían ser iguales. Otra forma de verificar los resultados es obteniendo un circuito equivalente asociando elementos en serie y paralelo y calculando tensiones y corrientes.

EJERCICIO Nº 13:

En el circuito de la figura, $\mathbf{R_1} = 10\Omega$, $\mathbf{R_2} = 30\Omega$, $\mathbf{R_3} = 5\Omega$, $\mathbf{R_4} = 2\Omega$, $\mathbf{U_{f2}} = 15\mathrm{V}$, $\mathbf{I_2} = 1\mathrm{A}$.

- a) Calcular el valor de tensión de la fuente Uf1.
- b) Determinar si las fuentes están entregando energía o no. Justificar.
- c) Repetir los incisos suponiendo que se cortocircuita la resistencia \mathbf{R}_1

RESOLUCIÓN

a) Si se conoce la corriente en \mathbb{R}_2 , aplicando la Ley de Ohm: $U_{R_2} = I_2 \cdot R_2 = 1A \cdot 30\Omega = 30V$

Aplicando la segunda Ley de Kirchhoff a la malla de R_2 , U_{R_2} y U_{R_2} : $U_{R_3} = U_{f_2} - U_{R_2} = 15V - 30V = -15V$

Aplicando ley de Ohm en R₃:
$$I_3 = \frac{U_{R_3}}{R_3} = \frac{-15V}{5\Omega} = -3A$$

Aplicando primera ley de Kirchhoff en el nodo central:

$$I_1 = I_2 - I_3 = 1A - (-3A) = 4A$$

Aplicando la ley de Ohm en R1: $U_{R_{\rm l}} = I_{\rm l} \cdot R_{\rm l} = 4A \cdot 10\Omega = 40V$

Aplicando la 2da ley de Kirchhoff a la malla U_{fl}, R₁, R₃ y U_{f2} se puede determinar la tensión de U_{fl}:

$$U_{f_1} - U_{R_1} + U_{R_3} - U_{f_2} = 0$$

$$U_{f_1} = U_{R_1} - U_{R_3} + U_{f_2} = 40V - (-15V) + 15V = 70V$$

b) Para verificar si una fuente de tensión está entregando energía o no hay que calcular la corriente por ella habiendo elegido previamente un sentido de circulación arbitrario de acuerdo a la convención pasiva o activa elegida.

Para $U_{\rm fl}$ se supone la corriente que se ve en el circuito: $I_{f_1} = I_4 + I_1 = \frac{U_{f_1} - U_{f_2}}{R_4} + I_1 = \frac{70V - 15V}{2\Omega} + 4A = 31,5A$

El valor es distinto de 0 y positivo (sale por el borne positivo de la fuente), con lo cual se concluye que la fuente 1 está entregando energía.

ELECTROTECNIA Y ELECTRÓNICA

Para U₁₂:
$$I_{f_2} = I_3 - I_4 = -3A - 27, 5A = -30, 5A$$

El signo negativo de la corriente indica que el sentido de la misma es opuesto al supuesto. El valor es distinto de 0 y negativo (la corriente entra al borne positivo de la fuente), con lo cual se concluye que la fuente 2 está recibiendo energía.

c) El circuito resultante es el siguiente:

Observar la utilidad de redibujar el circuito en las nuevas condiciones. Uno puede estar tentado de volver a resolver todo pero se puede observar que simplemente aplicando la ley de Ohm se determina el valor de la fuente 1:

$$U_{f_1} = I_2 \cdot R_2 = 1A \cdot 30\Omega = 30V$$

Siendo la fuente 2 de 15V, si recalculamos I_{f_1} e I_{f_2} con la nueva situación del circuito, verificaremos que la situación con respecto a la energía no ha cambiado.

COMENTARIOS FINALES Y CONCLUSIONES

En el desarrollo de este TAP han resultado importantes los siguientes aspectos:

- 1. Observar el circuito, reconocer sus componentes y topología (formato de conexión de los mismos, nodos, mallas).
- 2. Tener claros los conceptos de fuente de tensión y fuente de corriente.
- 3. Respetar la nomenclatura y simbología en el análisis de los circuitos y la asignación de las unidades correctas a los resultados.
- Indicar en el circuito todas las corrientes, con sus sentidos supuestos, y todas las tensiones, con sus polaridades supuestas, y determinar cuáles son datos y cuáles incógnitas.
- Verificar que los resultados de corrientes y tensiones pueden ser negativos indicando que en ese caso los sentidos y las polaridades reales son inversos u opuestos a los supuestos.
- 6. A partir de las **Leyes de Kirchhoff** y **de Ohm** plantear el **sistema de ecuaciones** que vinculan **datos** e **incógnitas.** Resolviendo este sistema se obtienen todas las incógnitas del circuito.
- 7. Verificar el **principio de conservación de la energía**, verificando que los elementos pasivos nunca entregan energía en estado permanente, y que los elementos activos pueden entregar o recibir la misma.
- 8. Tener en cuenta siempre que como consecuencia del principio de conservación de la energía, la suma de energías entregadas debe ser igual a la suma de energías recibidas.