概率与数理统计练习 4 参考答案

一、填空题

1.
$$\underline{1/2}$$
; 2. $\underline{2/3}$; 3. $\underline{0}$; 4. $\underline{2}$; 5. $\underline{2m}$ 6. $\sqrt{2}$,4 7. $(\overline{x} \pm \frac{\sigma_0}{\sqrt{n}} z_{\frac{\alpha}{2}})$.

解:设 A 表示工人完成了定额,B 表示该工人参加了培训,则 \overline{B} 表示该工人没有参加培训. 依题意,已知 P(B)=0.8, $P(\overline{B})=0.2$, P(A|B)=0.86, $P(A|\overline{B})=0.35$

(1) 由全概率公式

$$P(A) = P(B)P(A|B) + P(\overline{B})P(A|\overline{B}) = 0.8 \times 0.86 + 0.2 \times 0.35 = 0.7580$$

(2) 由贝叶斯公式

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)} = \frac{0.86 \times 0.8}{0.7580} = 0.9077$$

三 1.
$$X$$
 的概率密度函数为 $f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, -\infty < x < +\infty$

易知 $y=e^x$ 为增函数. 且易知: 当 $-\infty < x < +\infty$ 时, y>0.

反函数为 x=lny, $\frac{dx}{dy} = \frac{1}{y}$, 所以 Y 的密度函数为:

$$f_{Y}(y) = \begin{cases} \frac{1}{y\sqrt{2\pi}} e^{-\frac{(\ln y)^{2}}{2}}, & y > 0\\ 0, & \sharp \dot{\Xi}. \end{cases}$$

2. (1)
$$ext{th} \int_{-\infty}^{+\infty} f(x)dx = 1$$
, $ext{th} \int_{-\pi/2}^{\pi/2} A\cos x dx = 2A$, $ext{th} A = \frac{1}{2}$.

(2) 因为
$$P(0 < X < \frac{\pi}{4}) = \int_{0}^{\pi/4} \frac{1}{2} \cos x dx = \frac{\sqrt{2}}{4}$$

所以Y的分布律为

$$\begin{array}{c|cccc} Y & 0 & 1 \\ \hline P & \sqrt{2}/4 & 1-\sqrt{2}/4 \end{array}$$

四

1. 解:根据题意, $X \sim Exp(1)$, $Y \sim U(0,1)$,则其概率密度函数分别为

$$f_{X}(x) = \begin{cases} e^{-x}, & x > 0, \\ 0, & \not\exists \, \Xi; \end{cases} \qquad f_{Y}(y) = \begin{cases} 1, & 0 < y < 1, \\ 0, & \not\exists \, \Xi; \end{cases}$$

因为X和Y相互独立,则(X,Y)的联合密度函数为:

$$f(x,y) = f_X(x)f_Y(y) = \begin{cases} e^{-x}, & x > 0, 0 < y < 1 \\ 0, & \sharp \ \ \ \ \ \ \end{cases}$$

2. 根据题意,所求概率为

$$P(X \le Y) = \iint_{x \le y} f(x, y) dx dy = \int_0^1 dx \int_x^1 e^{-x} dy = e^{-1},$$

3. Z=X+Y的概率密度函数为

$$f_{z}(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx = \begin{cases} \int_{0}^{z} e^{-x} dx, & 0 < z \le 1 \\ \int_{z-1}^{z} e^{-x} dx, & z > 1 \\ 0, & \text{#th} \end{cases} = \begin{cases} 1 - e^{-z}, & 0 < z \le 1 \\ e^{-z}(e - 1), & z > 1 \\ 0, & \text{#th} \end{cases}$$

五

1. 此命题不正确, *X* 和 *Y* 不相关, 说明没有线性关系, 可能有其他关系, 故可能不独立。如: 设 *X* 和 *Y* 服从圆域上的均匀分布,则两变量不相关,但也不独立。

2解:由于区域G的面积为 2,因此(X, Y)的联合密度函数为 $f(x, y) = \begin{cases} 1/2 & (x, y) \in G \\ 0 & (x, y) \notin G \end{cases}$

$$P(U=1) = P(X > Y) = \iint_{x > y} f(x, y) dx dy = \int_{0}^{1} dy \int_{y}^{2} \frac{1}{2} dx = \frac{3}{4}$$

$$P(U = 0) = 1 - P(U = 1) = \frac{1}{4}$$

$$P(V=1) = P(X \le 2Y) = \iint_{x > 2y} f(x, y) dx dy = \int_{0}^{1} dy \int_{0}^{2y} \frac{1}{2} dx = \frac{1}{2}$$

$$P(V = 0) = 1 - P(V = 1) = \frac{1}{2}$$

由 0-1 分布的性质知:
$$EU = \frac{3}{4}$$
, $DU = \frac{3}{16}$, $EV = \frac{1}{2}$, $DV = \frac{1}{4}$

$$P(UV = 1) = P(U = 1, V = 1) = P(X > Y, X \le 2Y) = P(Y < X \le 2Y) = \int_{0}^{1} dy \int_{V}^{2y} \frac{1}{2} dx = \frac{1}{4}$$

$$P(UV = 0) = 1 - P(UV = 1) = \frac{3}{4}$$

$$EUV = \frac{1}{4}$$

所以
$$cov(U,V) = EUV - EUEV = \frac{1}{4} - \frac{3}{4} \cdot \frac{1}{2} = -\frac{1}{8}$$

$$\rho_{UV} = \frac{\text{cov}(U, V)}{\sqrt{DU}\sqrt{DV}} = \frac{-\frac{1}{8}}{\sqrt{\frac{3}{16}\sqrt{\frac{1}{4}}}} = -\frac{\sqrt{3}}{3}.$$

因为 $\rho_{UV} = -\frac{\sqrt{3}}{3} \neq 0$,所以U和V相关,所以不独立。

六

解:设 X_i 表示组装第i件产品所需要的时间,i=1,2,...,100

则 X_i 服从指数分布, $EX_i = \frac{1}{6}$, $DX_i = \frac{1}{36}$

由中心极限定理得

$$\frac{\sum_{i=1}^{100} X_i - 100 \times \frac{1}{6}}{10 \times \frac{1}{6}}$$
 近似服从 $N(0,1)$

所以
$$P(15 \le \sum_{i=1}^{100} X_i \le 60) = P(\frac{15 - 100 \times \frac{1}{6}}{10 \times \frac{1}{6}} \le \frac{\sum_{i=1}^{100} X_i - 100 \times \frac{1}{6}}{10 \times \frac{1}{6}} \le \frac{20 - 100 \times \frac{1}{6}}{10 \times \frac{1}{6}})$$

$$= P(-1 \le \frac{\sum_{i=1}^{100} X_i - 100 \times \frac{1}{6}}{100 \times \frac{1}{36}} \le 2) \approx \Phi(2) - \Phi(-1) = \Phi(2) - \Phi(1) + 1$$

$$= 0.9772 + 0.8413 - 1 = 0.8185$$

七

解: 1、
$$\mu = EX = \int_0^1 x (\theta + 1) x^{\theta} dx = \int_0^1 (\theta + 1) x^{\theta + 1} dx = \frac{\theta + 1}{\theta + 2}$$
 , 解得
$$\theta = \frac{1}{1 - \mu} - 2 = \frac{2\mu - 1}{1 - \mu}$$

用样本均值 \bar{X} 代替总体均值 μ ,

得
$$\theta$$
的矩估计为
$$\hat{\theta} = \frac{1}{1-\overline{X}} - 2 = \frac{2\overline{X} - 1}{1-\overline{X}} + 6$$

2、似然函数为
$$L(\theta) = \prod_{i=1}^{n} (\theta+1) x_i^{\theta} = (\theta+1)^n \prod_{i=1}^{n} x_i^{\theta}$$

对数似然函数为
$$\ln L(\theta) = n \ln(\theta + 1) + \theta \sum_{i=1}^{n} \ln x_i$$

对
$$\theta$$
 求导并令其为零,得 $\frac{d \ln L(\theta)}{d \theta} = \frac{n}{\theta + 1} + \sum_{i=1}^{n} \ln x_i = 0$

解得
$$\theta$$
的最大似然估计值为
$$\hat{\theta} = \frac{-n}{\sum_{i=1}^{n} \ln x_i} - 1$$

最大似然估计量为
$$\hat{\theta} = \frac{-n}{\sum_{i=1}^{n} \ln X_i} - 1 + 6$$

解: 1、实际推断原理: 在一次试验中,小概率事件(即概率很小的事件) 实际上几乎是不发生的。

2.
$$H_0: \mu = \mu_0 = 1.40 \quad H_1: \mu \neq \mu_0 = 1.40$$

检验统计量
$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

拒绝域
$$|z| \ge z_{\frac{\alpha}{2}}$$

查表得
$$z_{0.025} = 1.96$$

本题中
$$n = 25$$
, $\alpha = 0.05$, $\bar{x} = 1.39$, $\sigma = 0.04$

计算得
$$|z| = \left| \frac{1.39 - 1.40}{0.04 / 5} \right| = 1.25 < 1.96$$

未落入拒绝域

接收 H_0 , 即在显著性水平 $\alpha = 0.05$ 下, 认为该纤维的强力符合要求。