UNIVERSITY OF PATRAS - SCHOOL OF ENGINEERING DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

DIVISION: SYSTEMS AND AUTOMATIC CONTROL

THESIS

of the student of the Department of Electrical and Computer Engineering of the School of Engineering of the University of Patras

KARADIMOS ALEXIOS OF LOUKAS

STUDENT NUMBER: 1046820

Subject

Robotic surgical tool manipulator - Recognition, control and manipulation of laparoscopic tools

Supervisor

Associate Professor Dr. Evangelos Dermatas

Thesis Number: 1046820/2020

ΠΙΣΤΟΠΟΙΗΣΗ

Πιστοποιείται ότι η διπλωματική εργασία με θέμα

Robotic surgical tool manipulator - Recognition, control and manipulation of laparoscopic tools

του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Karadimos Alexios of Loukas

(A.M.: 1046820)

παρουσιάτηκε δημόσια και εξετάστηκε στο τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών στις

__/__/___

Ο Επιβλέπων

Ο Διευθυντής του Τομέα

Evangelos Dermatas Associate Professor Dr.

Kazakos Demosthenes Assistant Professor Dr.

Contents

1	Kinematic Analysis 1.1 Forward Kinematics & DH parameters 1.2 Inverse Kinematics 1.2.1 Decoupling Technique 1.2.2 Workspace constraints & Singularity points 1.2.3 Numerical Solution 1.2.4 Quaternion Solution 1.2.5 Redundancy & Optimization Conditions 1.2.6 Comparison of Inverse Kinematics Techniques	3 3 3 3 3 3 3 3
2	Dynamic Analysis	3
3	Control3.1 Robotic Arm Controller3.2 Gripper Controller	3 3
4	Laparoscopic tool recognition with Computer Vision	3
5	Path Planning	3
6	Trajectory Planning 6.1 Trajectory planning in cartesian coordinates	3 3
6 7	6.1 Trajectory planning in cartesian coordinates	3
7	6.1 Trajectory planning in cartesian coordinates	3
7 No	6.1 Trajectory planning in cartesian coordinates	3 3 3
7 No Lis	6.1 Trajectory planning in cartesian coordinates	3 3 3

1 Kinematic Analysis

- 1.1 Forward Kinematics & DH parameters
- 1.2 Inverse Kinematics
- 1.2.1 Decoupling Technique
- 1.2.2 Workspace constraints & Singularity points
- 1.2.3 Numerical Solution
- 1.2.4 Quaternion Solution
- 1.2.5 Redundancy & Optimization Conditions
- 1.2.6 Comparison of Inverse Kinematics Techniques
- 2 Dynamic Analysis
- 3 Control
- 3.1 Robotic Arm Controller
- 3.2 Gripper Controller
- 4 Laparoscopic tool recognition with Computer Vision
- 5 Path Planning
- 6 Trajectory Planning
- 6.1 Trajectory planning in cartesian coordinates
- 6.2 Trajectory planning in joint angles space
- 7 Simulation with the ROS framework

Nomenclature

- $^{i-1}\mathbf{p}_{iO}$ Position vector from the origin of the coordinate frame $\{i\}$ to the origin of the coordinate frame $\{i-1\}$
- $^{i-1}M_i$ Transformation matrix from coordinate frame $\{i\}$ to coordinate frame $\{i-1\}$
- $^{i-1}R_i$ Rotation matrix from coordinate frame $\{i\}$ to coordinate frame $\{i-1\}$
- c_i Shorthand notation for $cos\theta_i$
- s_i Shorthand notation for $sin\theta_i$

List of Figures

List of programs

Bibliography

- [1] Carlos Faria et al. "Position-based kinematics for 7-DoF serial manipulators with global configuration control, joint limit and singularity avoidance". In: *Mechanism and Machine Theory* 121 (2018), pp. 317–334. ISSN: 0094-114X. DOI: https://doi.org/10.1016/j.mechmachtheory.2017.10.025. URL: http://www.sciencedirect.com/science/article/pii/S0094114X17306559.
- [2] Carlos Faria et al. "Position-based kinematics for 7-DoF serial manipulators with global configuration control, joint limit and singularity avoidance". In: *Mechanism and Machine Theory* 121 (Mar. 2018), pp. 317–334. DOI: 10.1016/j.mechmachtheory.2017.10.025.
- [3] M. R. Hasan et al. "Modelling and Control of the Barrett Hand for Grasping". In: 2013 UKSim 15th International Conference on Computer Modelling and Simulation. Apr. 2013, pp. 230–235. DOI: 10.1109/UKSim.2013. 142.
- [4] Reza N. Jazar. Theory of Applied Robotics, Kinematics, Dynamics, and Control (2nd Edition). Springer, Boston, MA, 2010. ISBN: 978-1-4419-1750-8. DOI: 10.1007/978-1-4419-1750-8.
- [5] I. Kuhlemann et al. "Robust inverse kinematics by configuration control for redundant manipulators with seven DoF". In: 2016 2nd International Conference on Control, Automation and Robotics (ICCAR). Apr. 2016, pp. 49–55. DOI: 10.1109/ICCAR.2016.7486697.