```
In [4]:
         import pandas as pd
          import numpy as np
In [6]: UVDAT = pd.read_csv('U:/Documents/Gunn Notes/Data Analyst Training/CELL/modified_uv
         erse_data.txt', sep="|", header=None, low_memory=False, names=['PERSON_GENDER_CD','
         PERSON_AGE_NBR','HOUSEHOLD_INCOME_ID','DOG_WHISPERER','DOGS_101','CATS_101','BAD_DO
         G', 'PUPPIES_VS_BABIES', 'PUPPY_BOWL'])
In [7]: print(UVDAT.dtypes)
         PERSON_GENDER_CD
                                     object
         PERSON_AGE_NBR
                                    float64
         HOUSEHOLD_INCOME_ID
                                     object
         DOG_WHISPERER
                                      int64
         DOGS_101
                                      int64
         CATS_101
                                      int64
         BAD_DOG
                                      int64
         PUPPIES_VS_BABIES
                                      int64
         PUPPY_BOWL
                                      int64
         dtype: object
In [8]: UVDAT.describe()
Out[8]:
                                                                             BAD DOG PUPPIES_VS_BABIES
                PERSON AGE NBR DOG WHISPERER
                                                    DOGS 101
                                                                 CATS 101
          count
                     3.092875e+06
                                      4.041319e+06 4.041319e+06 4.041319e+06 4.041319e+06
                                                                                             4.041319e+06
                     5.265317e+01
                                      1.526425e-01
                                                  6.585498e-02
                                                              2.506409e-02
                                                                          3.206626e-03
                                                                                              1.709442e-02
          mean
            std
                     1.490502e+01
                                      3.596426e-01
                                                  2.480285e-01
                                                              1.563198e-01
                                                                           5.653622e-02
                                                                                              1.296233e-01
                     0.000000e+00
                                      0.000000e+00 0.000000e+00 0.000000e+00
                                                                          0.000000e+00
                                                                                             0.000000e+00
           min
           25%
                     4.100000e+01
                                      0.000000e+00 0.000000e+00
                                                             0.000000e+00
                                                                          0.000000e+00
                                                                                             0.000000e+00
                                                                                             0.000000e+00
           50%
                     5.200000e+01
                                      0.000000e+00 0.000000e+00
                                                             0.000000e+00
                                                                          0.000000e+00
           75%
                     6.300000e+01
                                      0.000000e+00 0.000000e+00
                                                             0.000000e+00
                                                                          0.000000e+00
                                                                                             0.000000e+00
                     1.050000e+02
                                      1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
                                                                                              1.000000e+00
           max
In [ ]:
         #UVDAT.sum(axis = 0, skipna = True)
In [9]: UVDAT.head()
Out [9]:
             PERSON_GENDER_CD PERSON_AGE_NBR HOUSEHOLD_INCOME_ID DOG_WHISPERER DOGS_101 CATS_
          0
                                             47.0
                                                                      С
                                                                                                0
                              1
                                             51.0
                                                                      D
                                                                                      0
                                                                                                0
          2
                                             26.0
                              1
                                                                      9
                                                                                      0
                                                                                                0
          3
                              2
                                             41.0
                                                                      9
                                                                                      0
                                                                                                0
          4
                              2
                                             48.0
                                                                      Α
                                                                                                0
                                                                                      0
```

FORMATTING THE DATA

```
In [10]: UVDAT.isnull().sum()
Out[10]: PERSON_GENDER_CD
                               800215
        PERSON_AGE_NBR
                               948444
        HOUSEHOLD_INCOME_ID 730856
        DOG_WHISPERER
                                    0
        DOGS_101
                                    0
        CATS_101
                                    0
        BAD_DOG
                                    0
         PUPPIES_VS_BABIES
                                    0
         PUPPY_BOWL
                                    0
         dtype: int64
In [11]: UVDAT = UVDAT.dropna()
In [12]: UVDAT.isnull().sum()
Out[12]: PERSON_GENDER_CD
                               0
        PERSON_AGE_NBR
                               0
        HOUSEHOLD_INCOME_ID
                               0
        DOG_WHISPERER
                               0
        DOGS 101
        CATS_101
                               0
        BAD_DOG
                               0
        PUPPIES_VS_BABIES
                               0
         PUPPY_BOWL
                               0
         dtype: int64
In [13]: UVDAT['PERSON_GENDER_CD'] = UVDAT['PERSON_GENDER_CD'].replace('1', 'Male')
         UVDAT['PERSON_GENDER_CD'] = UVDAT['PERSON_GENDER_CD'].replace('2', 'Female')
         UVDAT['PERSON_GENDER_CD'] = UVDAT['PERSON_GENDER_CD'].replace('3', 'Uknown')
         UVDAT['PERSON_GENDER_CD'] = UVDAT['PERSON_GENDER_CD'].replace('*', 'Uknown')
In [14]: UVDAT['PERSON_AGE_NBR'] = UVDAT['PERSON_AGE_NBR'].astype(np.int64)
In [15]: print(UVDAT.dtypes)
        PERSON_GENDER_CD
                               object
         PERSON_AGE_NBR
                               int64
         HOUSEHOLD_INCOME_ID
                               object
         DOG_WHISPERER
                               int64
         DOGS_101
                                int64
                               int64
        CATS_101
        BAD_DOG
                                int64
        PUPPIES_VS_BABIES
                               int64
        PUPPY_BOWL
                                int64
         dtype: object
```

```
In [16]: print (UVDAT.columns)
          UVDAT.head(5)
          Index(['PERSON_GENDER_CD', 'PERSON_AGE_NBR', 'HOUSEHOLD_INCOME_ID',
                   'DOG_WHISPERER', 'DOGS_101', 'CATS_101', 'BAD_DOG', 'PUPPIES_VS_BABIES',
                   'PUPPY_BOWL'],
                 dtype='object')
Out[16]:
              PERSON_GENDER_CD PERSON_AGE_NBR HOUSEHOLD_INCOME_ID DOG_WHISPERER DOGS_101 CATS_
           0
                                                47
                                                                       С
                                                                                                  0
                            Male
                                                                       D
           1
                            Male
                                                51
                                                                                       0
                                                                                                  0
           2
                            Male
                                                26
                                                                       9
                                                                                       0
                                                                                                  0
           3
                          Female
                                                41
                                                                       9
                                                                                       0
                                                                                                  0
                          Female
                                                48
                                                                       Α
                                                                                                  0
In [17]: UVDAT.describe()
Out[17]:
                 PERSON_AGE_NBR DOG_WHISPERER
                                                                              BAD_DOG PUPPIES_VS_BABIES
                                                     DOGS_101
                                                                  CATS_101
           count
                      3.055774e+06
                                       3.055774e+06 3.055774e+06 3.055774e+06 3.055774e+06
                                                                                               3.055774e+06
                      5.272658e+01
                                       1.667568e-01 7.156387e-02 2.708054e-02
                                                                            3.419428e-03
                                                                                               1.858809e-02
           mean
             std
                      1.488195e+01
                                       3.727586e-01
                                                   2.577644e-01
                                                               1.623182e-01
                                                                            5.837582e-02
                                                                                               1.350651e-01
                      0.000000e+00
                                       0.000000e+00 0.000000e+00 0.000000e+00
                                                                           0.000000e+00
                                                                                               0.000000e+00
            min
            25%
                      4.100000e+01
                                       0.000000e+00 0.000000e+00 0.000000e+00
                                                                                               0.000000e+00
                                                                           0.000000e+00
            50%
                      5.200000e+01
                                       0.000000e+00 0.000000e+00 0.000000e+00
                                                                           0.000000e+00
                                                                                               0.000000e+00
            75%
                      6.300000e+01
                                       0.000000e+00 0.000000e+00 0.000000e+00
                                                                           0.000000e+00
                                                                                               0.000000e+00
            max
                      1.050000e+02
                                       1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
                                                                                               1.000000e+00
In [18]: UVDAT.PERSON_GENDER_CD.unique()
Out[18]: array(['Male', 'Female', 'Uknown'], dtype=object)
In [19]: UVDAT.HOUSEHOLD_INCOME_ID.unique()
Out[19]: array(['C', 'D', '9', 'A', '7', 'B', '6', '3', '8', '5', '4', '1', '2'],
                 dtype=object)
In [20]: #Valid TV Shows:
           #
              1 = Positive Observation
                0 = Negative Observation
```

QUESTIONS

Question 1: How many viewers have the income code 4? Answer: 204,865 viewers

```
In [21]: print (len(UVDAT['HOUSEHOLD_INCOME_ID'] == '4']))
204865
```

```
In [22]: | UVDAT['HOUSEHOLD_INCOME_ID'].value_counts()
Out[22]: 6
            599827
         7
             512761
         8
            386581
         9
             291091
            257714
         Α
             256840
         4
            204865
            154941
         3
         В
            130628
             98269
         1
              81433
         2
              53919
         D
               26905
         Name: HOUSEHOLD_INCOME_ID, dtype: int64
```

Question 2: How many females are in the population? Answer: 1,481,375 females

Question 3: What is the median age? Answer: Median age is 52

```
In [25]: | UVDAT_filtered_AGE = UVDAT.PERSON_AGE_NBR[UVDAT['PERSON_AGE_NBR'] > 0]
In [26]: | UVDAT_filtered_AGE.describe()
Out[26]: count 3.055199e+06
                 5.273651e+01
         mean
         std
                  1.486576e+01
                 1.800000e+01
         min
         25%
                  4.100000e+01
                  5.200000e+01
         50%
         75%
                  6.300000e+01
                  1.050000e+02
         max
         Name: PERSON_AGE_NBR, dtype: float64
In [27]: | #UVDAT_filtered_AGE.sort_values(ascending = True)
```

Question 4: What is the mode of the income level code? Answer: Mode of income level code is 6

```
In [28]: UVDAT_filtered_INCOME = UVDAT['HOUSEHOLD_INCOME_ID']
```

```
In [29]: | UVDAT_filtered_INCOME.unique()
Out[29]: array(['C', 'D', '9', 'A', '7', 'B', '6', '3', '8', '5', '4', '1', '2'],
              dtype=object)
In [30]: UVDAT_filtered_INCOME.value_counts()
Out[30]: 6 599827
        7 512761
        8 386581
        9 291091
           257714
        Α
        5
           256840
        4 204865
           154941
        B 130628
             98269
        1
        С
             81433
        2
             53919
              26905
        Name: HOUSEHOLD_INCOME_ID, dtype: int64
```

Question 5: How many viewers are under the age of 18? Answer: There are no viewers under age 18

```
In [31]: UVDAT_filtered_UNDERAGE = UVDAT[(UVDAT.PERSON_AGE_NBR > 0) & (UVDAT.PERSON_AGE_NBR < 18)]</pre>
         UVDAT_filtered_UNDERAGE.count()
Out[31]: PERSON_GENDER_CD
         PERSON_AGE_NBR
         HOUSEHOLD_INCOME_ID 0
         DOG_WHISPERER
         DOGS_101
         CATS_101
         BAD_DOG
         PUPPIES_VS_BABIES 0
         PUPPY_BOWL
         dtype: int64
In [32]: | UVDAT_filtered_UNDERAGE.describe()
```

Out[32]:

	PERSON_AGE_NBR	DOG_WHISPERER	DOGS_101	CATS_101	BAD_DOG	PUPPIES_VS_BABIES	PUF
count	0.0	0.0	0.0	0.0	0.0	0.0	
mean	NaN	NaN	NaN	NaN	NaN	NaN	
std	NaN	NaN	NaN	NaN	NaN	NaN	
min	NaN	NaN	NaN	NaN	NaN	NaN	
25%	NaN	NaN	NaN	NaN	NaN	NaN	
50%	NaN	NaN	NaN	NaN	NaN	NaN	
75%	NaN	NaN	NaN	NaN	NaN	NaN	
max	NaN	NaN	NaN	NaN	NaN	NaN	

Predictive Models

Regression

1. Create a linear model showing the relationship between a viewer's age and the total number of TV shows watched.

```
In [33]: UVDAT['All_SHOWS'] = UVDAT['DOG_WHISPERER'] + UVDAT['DOGS_101'] + UVDAT['CATS_101'] + UVDAT
          T['BAD_DOG'] + UVDAT['PUPPIES_VS_BABIES'] + UVDAT['PUPPY_BOWL']
          print (UVDAT.columns)
          UVDAT.head(10)
          Index(['PERSON_GENDER_CD', 'PERSON_AGE_NBR', 'HOUSEHOLD_INCOME_ID',
                 'DOG_WHISPERER', 'DOGS_101', 'CATS_101', 'BAD_DOG', 'PUPPIES_VS_BABIES',
                 'PUPPY_BOWL', 'All_SHOWS'],
                dtype='object')
Out[33]:
             PERSON_GENDER_CD PERSON_AGE_NBR HOUSEHOLD_INCOME_ID DOG_WHISPERER DOGS_101 CA
          0
                                              47
                                                                    С
                                                                                              0
                           Male
          1
                           Male
                                              51
                                                                    D
                                                                                    0
                                                                                              0
                           Male
                                              26
                                                                    9
                                                                                    0
                                                                                              0
          2
          3
                         Female
                                              41
                                                                    9
                                                                                    0
                                                                                              0
                                                                                    0
                                                                                              0
                         Female
                                              48
                                                                    Α
```

7

В

7

D

6

1

1

0

0

1

1

0

0

42

60

57

44

54

Out[34]:

5

6

7

8

9

Male

Male

Male

Male

Female

	DOG_WHISPERER	DOGS_101	CATS_101	BAD_DOG	PUPPIES_VS_BABIES	PUPPY_BOWL	AII_SHOWS
1	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0
5	1	1	0	0	0	0	2
6	1	1	1	0	0	0	3
7	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0

```
In [35]: import matplotlib.pyplot as plt
%matplotlib inline

In [36]: plt.figure(figsize=(13,10))
    UVDAT.plot(x='All_SHOWS', y='PERSON_AGE_NBR', style='o')
    plt.title('All Shows vs Age')
    plt.xlabel('All SHOWS')
    plt.ylabel('AGE')
    plt.show()
```

<Figure size 936x720 with 0 Axes>

Classification / Clustering

Out[38]:

1. Create a cluster about each show (might be best to do a subset for each TV show) to show which age/age range is most likely to watch that show.

```
In [37]: #copy columns into new dataframe
    UVDAT_VIEWERS = UVDAT[['PERSON_AGE_NBR', 'DOG_WHISPERER', 'DOGS_101', 'CATS_101', 'BAD_DOG
    ', 'PUPPIES_VS_BABIES', 'PUPPY_BOWL']].copy()

In [38]: #review new dataframe columns and values
    UVDAT_VIEWERS.describe()
```

PERSON_AGE_NBR DOG_WHISPERER DOGS_101 **CATS_101** BAD_DOG PUPPIES_VS_BABI count 3.055774e+06 3.055774e+06 3.055774e+06 3.055774e+06 3.055774e+06 3.055774e+ 5.272658e+01 7.156387e-02 2.708054e-02 3.419428e-03 1.858809e mean 1.667568e-01 std 1.488195e+01 3.727586e-01 2.577644e-01 1.623182e-01 5.837582e-02 1.350651e 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+ min 25% 4.100000e+01 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+ 50% 5.200000e+01 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.00000e+ 75% 6.300000e+01 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.00000e+ 1.050000e+02 1.000000e+ max 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00

```
In [39]: # Get name of indexes for which person's age is equal 0
  indexNames = UVDAT_VIEWERS[ UVDAT_VIEWERS['PERSON_AGE_NBR'] == 0 ].index
  # Delete these row indexes from dataFrame
  UVDAT_VIEWERS.drop(indexNames , inplace=True)
  UVDAT_VIEWERS.describe()
```

Out[39]:

```
BAD_DOG PUPPIES_VS_BABI
      PERSON_AGE_NBR DOG_WHISPERER
                                              DOGS_101
                                                             CATS_101
            3.055199e+06
                              3.055199e+06 3.055199e+06 3.055199e+06 3.055199e+06
                                                                                             3.055199e-
count
mean
            5.273651e+01
                               1.667551e-01
                                           7.156588e-02 2.708072e-02 3.419417e-03
                                                                                              1.858864e
            1.486576e+01
 std
                               3.727571e-01 2.577678e-01 1.623187e-01 5.837573e-02
                                                                                              1.350671e
            1.800000e+01
                                                                                             0.00000e+
 min
                              0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
25%
            4.100000e+01
                              0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
                                                                                             0.000000e+
50%
            5.200000e+01
                              0.000000e+00 \quad 0.000000e+00 \quad 0.000000e+00 \quad 0.000000e+00
                                                                                             0.00000e+
            6.300000e+01
                              0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
                                                                                             0.000000e+
75%
            1.050000e+02
                              1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
                                                                                             1.000000e+
 max
```

```
In [40]: UVDAT_VIEWERS['DOG_WHISPERER'] = UVDAT_VIEWERS['DOG_WHISPERER'].replace(1, 'DOG_WHISPERER
')

UVDAT_VIEWERS['DOGS_101'] = UVDAT_VIEWERS['DOGS_101'].replace(1, 'DOGS_101')

UVDAT_VIEWERS['CATS_101'] = UVDAT_VIEWERS['CATS_101'].replace(1, 'CATS_101')

UVDAT_VIEWERS['BAD_DOG1'] = UVDAT_VIEWERS['BAD_DOG'].replace(1, 'BAD_DOG')

UVDAT_VIEWERS['PUPPIES_VS_BABIES'] = UVDAT_VIEWERS['PUPPIES_VS_BABIES'].replace(1, 'PUPPIES_VS_BABIES')

UVDAT_VIEWERS['PUPPY_BOWL'] = UVDAT_VIEWERS['PUPPY_BOWL'].replace(1, 'PUPPY_BOWL')
```

```
In [41]: # Create a function to assign age range
AgeRange = []
for row in UVDAT_VIEWERS['PERSON_AGE_NBR']:
    if row >= 90: AgeRange.append('90 and above')
    elif row >= 75: AgeRange.append('75-89')
    elif row >= 60: AgeRange.append('60-74')
    elif row >= 45: AgeRange.append('45-59')
    elif row >= 30: AgeRange.append('30-44')
    elif row >= 15: AgeRange.append('15-29')
    else: AgeRange.append('Failed')
```

Out[42]:

	PERSON_AGE_NBR	DOG_WHISPERER	DOGS_101	CATS_101	BAD_DOG	PUPPIES_VS_BABIES	PUPPY_
0	47	DOG_WHISPERER	0	0	0	0	
1	51	0	0	0	0	0	
2	26	0	0	0	0	0	
3	41	0	0	0	0	0	
4	48	0	0	0	0	0	
5	42	DOG_WHISPERER	DOGS_101	0	0	0	
6	60	DOG_WHISPERER	DOGS_101	CATS_101	0	0	
7	57	0	0	0	0	0	
8	44	0	0	0	0	0	
9	54	0	0	0	0	0	

```
In [43]: #test checking to see if correct number of shows has been assinged to DOG_WHISPERER column
    TEST = UVDAT_VIEWERS[UVDAT_VIEWERS.DOG_WHISPERER == 'DOG_WHISPERER']
    TEST.DOG_WHISPERER.value_counts()
```

Out[43]: DOG_WHISPERER 509470

Name: DOG_WHISPERER, dtype: int64

In [45]: | UVDAT_VIEWERS_PIVOT.head(10)

Out[45]:

	PERSON_AGE_NBR	AgeRange	Delete	Value
0	47	45-59	DOG_WHISPERER	DOG_WHISPERER
1	51	45-59	DOG_WHISPERER	0
2	26	15-29	DOG_WHISPERER	0
3	41	30-44	DOG_WHISPERER	0
4	48	45-59	DOG_WHISPERER	0
5	42	30-44	DOG_WHISPERER	DOG_WHISPERER
6	60	60-74	DOG_WHISPERER	DOG_WHISPERER
7	57	45-59	DOG_WHISPERER	0
8	44	30-44	DOG_WHISPERER	0
9	54	45-59	DOG_WHISPERER	0

```
In [46]: | #checking values in the Value column
         UVDAT_VIEWERS_PIVOT.Value.unique()
Out[46]: array(['DOG_WHISPERER', 0, 'DOGS_101', 'CATS_101', 1, 'PUPPIES_VS_BABIES',
                 'PUPPY_BOWL', 'BAD_DOG'], dtype=object)
In [47]: | #test checking to see if correct number of shows has been assinged to DOG_WHISPERER column
         TEST1 = UVDAT_VIEWERS_PIVOT[UVDAT_VIEWERS_PIVOT.Value == 'DOG_WHISPERER']
         TEST1.Value.value_counts()
Out[47]: DOG_WHISPERER
                         509470
         Name: Value, dtype: int64
In [48]: \mid #Delete "OL" values in Value column
         # Get name of indexes
         indexNames = UVDAT_VIEWERS_PIVOT[UVDAT_VIEWERS_PIVOT['Value'] == 0].index
         # Delete these row indexes from dataFrame
         UVDAT_VIEWERS_PIVOT.drop(indexNames , inplace=True)
         UVDAT_VIEWERS_PIVOT.Value.unique()
Out[48]: array(['DOG_WHISPERER', 'DOGS_101', 'CATS_101', 1, 'PUPPIES_VS_BABIES',
                 'PUPPY_BOWL', 'BAD_DOG'], dtype=object)
In [49]: | #Delete "1L" values in Value column
          # Get name of indexes
         indexNames = UVDAT_VIEWERS_PIVOT[UVDAT_VIEWERS_PIVOT['Value'] == 1].index
         # Delete these row indexes from dataFrame
         UVDAT_VIEWERS_PIVOT.drop(indexNames , inplace=True)
         UVDAT_VIEWERS_PIVOT.Value.unique()
Out[49]: array(['DOG_WHISPERER', 'DOGS_101', 'CATS_101', 'PUPPIES_VS_BABIES',
                 'PUPPY_BOWL', 'BAD_DOG'], dtype=object)
In [50]: | #delete column "Delete"
         del UVDAT_VIEWERS_PIVOT['Delete']
In [51]: | #delete column "PERSON_AGE_NBR"
         del UVDAT_VIEWERS_PIVOT['PERSON_AGE_NBR']
```

```
In [52]:
          UVDAT_VIEWERS_PIVOT.head(10)
Out[52]:
              AgeRange
                                   Value
                  45-59 DOG_WHISPERER
            0
           5
                  30-44 DOG_WHISPERER
            6
                  60-74 DOG_WHISPERER
           17
                  45-59 DOG_WHISPERER
                  60-74 DOG_WHISPERER
           24
                  60-74 DOG_WHISPERER
           26
                  45-59 DOG_WHISPERER
           30
                  60-74 DOG_WHISPERER
           36
           37
                  45-59 DOG_WHISPERER
           48
                  45-59 DOG_WHISPERER
In [53]:
          #group by and store totals in new dataframe
          UVDAT_VIEWERS_PIVOT1 = UVDAT_VIEWERS_PIVOT.groupby(['AgeRange','Value']).size().unstack('V
          alue', fill_value=0)
          UVDAT_VIEWERS_PIVOT1.head(15)
Out [53]:
                 Value BAD_DOG CATS_101 DOGS_101 DOG_WHISPERER PUPPIES_VS_BABIES PUPPY_BOWL
             AgeRange
                 15-29
                            321
                                     2762
                                               8786
                                                              17694
                                                                                  2160
                                                                                                 697
                 30-44
                           1968
                                    21153
                                              62866
                                                              129660
                                                                                  14924
                                                                                                3339
                 45-59
                           3992
                                    29868
                                              83430
                                                                                  20559
                                                                                                5752
                                                              195191
                 60-74
                           3219
                                    21803
                                              48649
                                                              129260
                                                                                  14114
                                                                                                3916
                 75-89
                            871
                                     6585
                                              13684
                                                              34655
                                                                                                1139
                                                                                   4616
           90 and above
                             76
                                      566
                                               1233
                                                               3010
                                                                                   419
                                                                                                 104
In [54]:
          #NOT REQUIRED TO RUN
          UVDAT_VIEWERS_PIVOT1 = UVDAT_VIEWERS_PIVOT1.reset_index()
```

```
In [55]:
         #NOT REQUIRED TO RUN
         UVDAT_VIEWERS_PIVOT1.head()
```

Out [55]:

Value	AgeRange	BAD_DOG	CATS_101	DOGS_101	DOG_WHISPERER	PUPPIES_VS_BABIES	PUPPY_BOW
0	15-29	321	2762	8786	17694	2160	69
1	30-44	1968	21153	62866	129660	14924	333
2	45-59	3992	29868	83430	195191	20559	575
3	60-74	3219	21803	48649	129260	14114	391
4	75-89	871	6585	13684	34655	4616	113

```
In [56]: UVDAT_VIEWERS_PIVOT1.head().plot(kind='bar', legend=True, title='AGE GROUP VS SHOWS')
    from matplotlib.pyplot import figure
    figure(num=None, figsize=(20, 4), dpi=50, facecolor='w', edgecolor='k', frameon=True, clea r=False);
```


<Figure size 1000x200 with 0 Axes>

TESTING TESTING

```
In [57]: \mid import seaborn as sns
         import matplotlib.pyplot as plt
In [59]: | #group by and store totals in new dataframeVa
         mmmm = UVDAT_VIEWERS_PIVOT.groupby(['AgeRange','Value']).size()
         mmmm.head(15)
Out[59]: AgeRange Value
         15-29
                   BAD_DOG
                                           321
                                          2762
                   CATS_101
                   DOGS_101
                                          8786
                   DOG_WHISPERER
                                         17694
                   PUPPIES_VS_BABIES
                                         2160
                   PUPPY_BOWL
                                           697
         30 - 44
                   BAD_DOG
                                          1968
                   CATS_101
                                         21153
                   DOGS_101
                                         62866
                   DOG_WHISPERER
                                       129660
                   PUPPIES_VS_BABIES
                                         14924
                   PUPPY_BOWL
                                          3339
         45-59
                   BAD_DOG
                                          3992
                   CATS_101
                                         29868
                   DOGS_101
                                         83430
         dtype: int64
In [60]: | mmmm = mmmm.reset_index()
```

```
In [61]: mmmm.head(10)
```

Out[61]:

	AgeRange	Value	0
0	15-29	BAD_DOG	321
1	15-29	CATS_101	2762
2	15-29	DOGS_101	8786
3	15-29	DOG_WHISPERER	17694
4	15-29	PUPPIES_VS_BABIES	2160
5	15-29	PUPPY_BOWL	697
6	30-44	BAD_DOG	1968
7	30-44	CATS_101	21153
8	30-44	DOGS_101	62866
9	30-44	DOG_WHISPERER	129660

```
In [62]: mmmm.rename(columns = {"Value":'Shows'}, inplace = True)
    mmmm.rename(columns = {0:'Value'}, inplace = True)
    mmmm.head()
```

Out[62]:

	AgeRange	Shows	Value
0	15-29	BAD_DOG	321
1	15-29	CATS_101	2762
2	15-29	DOGS_101	8786
3	15-29	DOG_WHISPERER	17694
4	15-29	PUPPIES VS BABIES	2160

```
In [63]: | #UVDAT_VIEWERS_PIVOT
         #UVDAT_VIEWERS_PIVOT1.head().plot(kind='bar')
         g = sns.FacetGrid(mmmm, col="Shows", size=3)
         g.map(plt.scatter, "AgeRange", "Value", cmap="viridis")
         ax = plt.gca()
         #plt.colorbar(label="Value")
         #g.map(sns.barplot, 'AgeRange')
         #g.map(sns.regplot, "AgeRange", "Value");
         g.add_legend(title="Shows")
         #g.set_xlabels("Age Range")
         g.set_titles("{col_name}");
         for pw in pws:
             plt.scatter([], [], s=(pw**2)*60, c="k", label=str(pw))
         h, l = plt.gca().get_legend_handles_labels()
         plt.legend(h[1:], l[1:], labelspacing=1.2, title="shows_watched", borderpad=1,
                      frameon=True, framealpha=0.6, edgecolor="k", facecolor="w")
         plt.show()
         P:\Anaconda\lib\site-packages\seaborn\axisgrid.py:230: UserWarning: The `size` paramt
```

P:\Anaconda\lib\site-packages\seaborn\axisgrid.py:230: UserWarning: The `size` paramt er has been renamed to `height`; please update your code.

warnings.warn(msg, UserWarning)

```
NameError: name 'pws' is not defined
```


2. Create a cluster showing which gender code is more likely to have a certain income level. Hint: you can take a similar approach to question 1 for the graphs or you can find a way to put all income codes in 1 graph.

```
In [64]: #copy columns with Income into new dataframe
    UVDAT_INCOME = UVDAT[['PERSON_GENDER_CD', 'HOUSEHOLD_INCOME_ID']].copy()
```

```
In [65]:
          UVDAT_INCOME.head(5)
Out[65]:
             PERSON_GENDER_CD HOUSEHOLD_INCOME_ID
                                                     С
           0
                            Male
           1
                                                     D
                            Male
           2
                            Male
                                                     9
           3
                          Female
                                                     9
                          Female
                                                     Α
In [66]: | #group by and store totals in new dataframe
          UVDAT_INCOME = UVDAT_INCOME.groupby(['PERSON_GENDER_CD','HOUSEHOLD_INCOME_ID']).size().uns
          tack('HOUSEHOLD_INCOME_ID', fill_value=0)
          UVDAT_INCOME.head(5)
Out[66]:
           HOUSEHOLD_INCOME_ID
             PERSON_GENDER_CD
                          Female 73716 37204 98806 127143 140908 316668 243602 169856 109787
                                                                                               94025 4
                                 24546 16715 56129
                                                    77717 115928 283144 269146
                                                                                216715 181303 163687 {
                         Uknown
                                           0
                                                        5
                                                                      15
                                                                             13
                                                                                    10
                                                                                            1
                                                                                                   2
In [67]: UVDAT_INCOME.head().plot(kind='bar', legend=True, title='GENDER VS INCOME LEVEL')
          from matplotlib.pyplot import figure
          figure(num=None, figsize=(20, 4), dpi=50, facecolor='w', edgecolor='k', frameon=True, clea
          r=False);
                             GENDER VS INCOME LEVEL
                                             HOUSEHOLD INCOME ID
           300000
           250000
           200000
           150000
           100000
            50000
               0
                                       Male
                                                       Uknown
                                 PERSON_GENDER_CD
          <Figure size 1000x200 with 0 Axes>
 In [ ]:
 In [ ]:
 In [ ]:
```

http://localhost:8888/nbconvert/html/Viewers_of_TV_Shows.ipynb?dow...

In []:	
In []:	