Questions:

- 2. What are differences between oxidation number and valency?
- 3. Define oxidation number. What are the possible oxidation number of hydrogen?
- 4. Define oxidation and reduction on the basis of oxidation number concept.
- 5. What is redox reaction? Justify with example the oxidation and reduction occur simultaneously.
- 6. Write the formula of compound in which oxidation number of oxygen are -2, -1 and +2.
- 7. Define oxidizing agent (oxidant) and reducing agent (reductant) in terms of oxidation number concept.
- 8. Why KMnO₄ can only act as oxidizing agent and H₂S can only act as reducing agent?
- 9. Why SO₂, NO, I₂ can act as both oxidizing and reducing agents?
- 10. Give examples of compounds of nitrogen, sulphur, carbon and chlorine in which they are in maximum and minimum oxidation number.

Classwork

- 1. Calculate the oxidation number of the underline elements.
 - (m) $\underline{N}H_4NO_3$ (n) $\underline{N}H_4\underline{N}O_3$ (o) $(\underline{N}H_4)_2SO_4$ (p) $(\underline{N}H_4)_2SO_4$ (q) $\underline{N}i(CO)_4$ (r) $\underline{C}_2H_2O_4$ (s) $Fe_4[\underline{Fe}(CN)_6]_3$ (t) \underline{Na} . Hg (u) $[\underline{Ag}(NH_3)_2]Cl$ (v) $Na_4[\underline{Fe}(CN)_6]$ (w) $H\underline{Cl}O_3$ (x) $H_2\underline{P}O_2$ -
- 2. Balance the following redox reaction by oxidation number method or ion electron method.
- i) $Zn + HNO_3 \rightarrow Zn(NO_3)_2 + NO + H_2O$
- i) $Zn + HNO_3 \rightarrow Zn(NO_3)_2 + NH_4NO_3 + H_2O$
- k) $Cu + HNO_3 \rightarrow Cu(NO_3)_2 + NO_2 + H_2O$
- l) $Zn + NaNO_3 + NaOH \rightarrow Na_2ZnO_2 + NH_3 + H_2O$
- m) $KMnO_4 + HCl \rightarrow KCl + MnCl_2 + H_2O + Cl_2$
- n) $K_2Cr_2O_7 + HCl \rightarrow KCl + CrCl_3 + Cl_2 + H2O$
- 3. You are given the equation

 $Zn + HNO_3 \rightarrow Zn(NO_3)_2 + N_2O + H_2O$

- a) Identify oxidation, reduction, oxidant and reductant.
- b) Balance the equation by oxidation number method.
- c) Indicate the number of HNO₃ molecules acting as oxidizing agent and as an acidic agent.
- 4. Balance the following redox reactions by oxidation number method and ion electron method
- a) $Zn + H^+ + NO_3 \rightarrow Zn^{++} + NH_4 + H_2O$
- b) $MnO_4^- + H^+ + C_2O_4^- \rightarrow Mn^{++} + CO_2 + H_2O$
- c) $Zn + NO_{3}^{-} + OH^{-} \rightarrow ZnO_{2}^{--} + NH_{3} + H_{2}O$
- d) $MnO_4^- + H_2O_2 + H^+ \rightarrow MnO_2 + O_2 + H_2O$
- f) $Fe^{2+} + H^+ + NO_3^- \rightarrow Fe^{3+} + NO + H_2O$
- g) $P + OH^- + H_2O \rightarrow H_2PO_2^- + PH_3$
- h) $Cr_2O_7^{--}$ + Fe^{++} \rightarrow Cr^{+++} + Fe^{+++} (acidic medium)
- i) $Cl_2 \rightarrow Cl^- + ClO_3^-$ (basic medium)
- k) $Cr_2O_7^{--} + H^+ + I^- \rightarrow Cr^{3+} + I_2 + H_2O$
- 1) $Cr_2O_7^{--} + Fe^{2+} \rightarrow Cr^3 + Fe^{3+}$ (in acidic medium)
- m) MnO_{4} + S^{2-} + $H_{2}O \rightarrow MnO_{2}$ + S + OH^{-}