Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 967 282 A2 (11)

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 29.12.1999 Bulletin 1999/52 (51) Int. Cl.6: C12N 15/53, C12N 9/02

(21) Application number: 99110980.2

(22) Date of filing: 09.06.1999

AL LT LV MK RO SI

(84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Designated Extension States:

(30) Priority: 11.06.1998 JP 16401998

(71) Applicant: Ajinomoto Co., Inc. Tokyo 104 (JP)

(72) Inventor: Sone, Nobuhito, c/oDptm.of Biochemical Engineering 680-4, Kawazu, lizuka-shi, Fukuoka-ken (JP)

(74) Representative: HOFFMANN - EITLE Patent- und Rechtsanwälte Arabellastrasse 4 81925 München (DE)

Remarks:

The applicant has subsequently filed a sequence listing and declared, that it includes no new matter.

Cytochrome bd type quinol oxidase gene of Brevibacterium lactofermentum (54)

Oligonucleotides are synthesized based on (57)amino acid sequences of the N-terminus of subunit I, and the N-terminus of subunit II of cytochrome bd type quinol oxidase of Brevibacterium flavum, PCR is performed by using the oligonucleotides as primers, and chromosome DNA of B. flavum as template, and a gene encoding cytochrome bd type quinol oxidase of B. flavum is obtained from a chromosome DNA library of Brevibacterium lactofermentum using the above obtained amplification fragment as a probe.

EP 0 967 282 A2

Description

Technical Field

5 [0001] The present invention relates to a cytochrome bd type quinol oxidase of <u>Brevibacterium</u> <u>lactofermentum</u> and a DNA encoding the same.

Background Art

[0002] Most of organisms acquire energy necessary for life activity by respiration. In higher organisms, carbohydrates, proteins, and aliphatic acids are degraded into acetyl-CoA by the glycolytic pathway and the β-oxidation in cytoplasm, and acetyl-CoA is degraded by the citric acid cycle in mitochondria. The resulting energy is saved as reducing power of NADH and FADH₂. Finally, NADH is completely oxidized to water by the subsequent electron transport system that is present on mitochondrial inner membranes, and a proton concentration gradient is formed in a coupled manner to the oxidation, and serves as driving force of the ATP synthesis.

[0003] Since the bacterial respiratory chain generally comprises various functional enzyme complexes depending on species and growing circumstance, the energy conservation efficiency may vary to a great extent. For example, Escherichia coli contains at least two kinds of quinol oxidases, bo type and bd type, which function as terminal oxidases in the respiratory chain. When a wild-type strain carrying the enzymes of the both types, a mutant strain carrying only the bd type are compared as for growth yield observed in aerobic culture, the growth yield is the lowest in the mutant carrying only the bd type enzyme, and depends on the kind of the terminal oxidases and their energy conservation efficiency (Lecture Abstract for The Conference of The Society for Bioscience and Bioengineering, Japan, 1995, Subject No. 357).

[0004] Coryneform bacteria such as <u>Brevibacterium lactofermentum</u> and <u>Brevibacterium flavum</u> are gram-positive and aerobic bacteria that are industrially utilized for amino acid producers. Although terminal oxidases of the respiratory chain have been well investigated as for those of Proteobacteria, which is phylogenetically quite far from the coryneform bacteria, and those of <u>Bacillus subtilis</u> and the thermophilic <u>Bacillus</u>, which are also gram-positive bacteria like the coryneform bacteria but phylogenetically somewhat different from them, the electron transport system of respiratory chain in coryneform bacteria has not been investigated in detail. It is considered that it is important to elucidate the electron transport system of the respiratory chain, which is the key of the energy metabolism, in coryneform bacteria in view of collecting fundamental data for improving productivity of useful substances. Further, if enzymes involved in the electron transport system of the respiratory chain in coryneform bacteria and genes therefor are identified, they may be useful for, for example, creating strains with higher energy efficiency.

[0005] To date, it has been reported that the respiration of <u>Brevibacterium lactofermentum</u> is coupled to the proton transport, and it involves cytochromes a, b, and c (Kawahara, Y., et al.(1988) <u>Agric. Biol. Chem., 52(8)</u>, 1979-1983). Cytochrome bd type quinol oxidase of <u>Brevibacterium flavum</u> has also been purified and characterized (Kusumoto, Sone and Sakamoto, "Respiratory Chain of Amino Acid Fermenting Bacterium, <u>Brevibacterium flavum</u>, and Characteristics of its Cytochrome bd Type Menaquinol Oxidase", Abstracts of the 23th Symposium of Bioenergy Study Group, 1997). However, there has not been any report concerning the genes encoding cytochrome bd type quinol oxidase of coryneform bacteria.

Description of the Invention

[0006] The present invention has been accomplished from the aforementioned point of view, and its object is to obtain a gene of cytochrome bd type quinol oxidase of coryneform bacteria, and elucidate its structure.

[0007] The present inventors synthesized oligonucleotides based on amino acid sequences of the N-terminus of subunit I, and the N-terminus of subunit II of cytochrome bd type quinol oxidase of Brevibacterium flavum, and preformed PCR by utilizing the oligonucleotides as primers, and a chromosomal DNA of Brevibacterium flavum as template to obtain an amplified fragment. Further, they screened a chromosomal DNA library of wild-type Brevibacterium lactofermentum. Thus, the present invention has been completed.

[0008] That is, the present invention provides:

- (1) a DNA fragment encoding a polypeptide defined in the following (A) or (B);
 - (A) a polypeptide which has an amino acid sequence shown in SEQ ID NO: 2 of Sequence Listing,
 - (B) a polypeptide which has an amino acid sequence shown in SEQ ID NO: 2 of Sequence Listing comprising substitution, deletion, insertion, addition or inversion of one or a plurality of amino acid residues in the amino

acid sequence, and can constitute a protein exhibiting cytochrome bd type quinol oxidase activity together with a subunit II of cytochrome bd type quinol oxidase having an amino acid sequence shown in SEQ ID NO: 4,

- (2) a DNA fragment encoding a polypeptide defined in the following (C) or (D);
 - (C) a polypeptide which has an amino acid sequence shown in SEQ ID NO: 4 of Sequence Listing,
 - (D) a polypeptide which has an amino acid sequence shown in SEQ ID NO: 4 of Sequence Listing comprising substitution, deletion, insertion, addition or inversion of one or a plurality of amino acid residues in the amino acid sequence, and can constitute a protein exhibiting cytochrome bd type quinol oxidase activity together with a subunit I of cytochrome bd type quinol oxidase having an amino acid sequence shown in SEQ ID NO: 2,
- (3) a DNA fragment encoding a polypeptide defined in the following (A) or (B), and a polypeptide defined in the following (C) or (D);
 - (A) a polypeptide which has an amino acid sequence shown in SEQ ID NO: 2 of Sequence Listing,
 - (B) a polypeptide which has an amino acid sequence shown in SEQ ID NO: 2 of Sequence Listing comprising substitution, deletion, insertion, addition or inversion of one or a plurality of amino acid residues in the amino acid sequence, and can constitute a protein exhibiting cytochrome bd type quinol oxidase activity together with a subunit II of cytochrome bd type quinol oxidase having an amino acid sequence shown in SEQ ID NO: 4,
 - (C) a polypeptide which has an amino acid sequence shown in SEQ ID NO: 4 of Sequence Listing,
 - (D) a polypeptide which has an amino acid sequence shown in SEQ ID NO: 4 of Sequence Listing comprising substitution, deletion, insertion, addition or inversion of one or a plurality of amino acid residues in the amino acid sequence, and can constitute a protein exhibiting cytochrome bd type quinol oxidase activity together with a subunit I of cytochrome bd type quinol oxidase having an amino acid sequence shown in SEQ ID NO: 2,
- (4) The DNA of above (1), which is a DNA defined in the following (a) or (b):
 - (a) a DNA having a nucleotide sequence corresponding to nucleotide numbers 933 to 2483 in the nucleotide sequence depicted in SEQ ID NO: 1 in Sequence Listing; or
 - (b) a DNA which is hybridizable with the nucleotide sequence of above (a) under a stringent condition, and which codes for a polypeptide which can constitute a protein exhibiting cytochrome bd type quinol oxidase activity together with a subunit II of cytochrome bd type quinol oxidase having an amino acid sequence shown in SEQ ID NO: 4.
- 35 (5) The DNA of above (2), which is a DNA defined in the following (c) or (d):
 - (C) a DNA having a nucleotide sequence corresponding to nucleotide numbers 2476 to 3498 in the nucleotide sequence depicted in SEQ ID NO: 3 in Sequence Listing; or
 - (d) a DNA which is hybridizable with the nucleotide sequence of above (c) under a stringent condition, and which codes for a polypeptide which can constitute a protein exhibiting cytochrome bd type quinol oxidase activity together with a subunit I of cytochrome bd type quinol oxidase having an amino acid sequence shown in SEQ ID NO: 2.
- (6) The DNA of above (3), which comprising a DNA defined in the following (a) or (b), and a DNA defined in the following (c) or (d):
 - (a) a DNA having a nucleotide sequence corresponding to nucleotide numbers 933 to 2483 in the nucleotide sequence depicted in SEQ ID NO: 1 in Sequence Listing; or
 - (b) a DNA which is hybridizable with the nucleotide sequence of above (a) under a stringent condition, and which codes for a polypeptide which can constitute a protein exhibiting cytochrome bd type quinol oxidase activity together with a subunit II of cytochrome bd type quinol oxidase having an amino acid sequence shown in SEQ ID NO: 4; and
 - (c) a DNA having a nucleotide sequence corresponding to nucleotide numbers 2476 to 3498 in the nucleotide sequence depicted in SEQ ID NO: 3 in Sequence Listing; or
 - (d) a DNA which is hybridizable with the nucleotide sequence of above (c) under a stringent condition, and which codes for a polypeptide which can constitute a protein exhibiting cytochrome bd type quinol oxidase activity together with a subunit I of cytochrome bd type quinol oxidase having an amino acid sequence shown in SEQ ID NO: 2.

5

10

15

20

25

30

40

50

- (7) a DNA fragment defined in the above (1) which has a nucleotide sequence comprising nucleotides of the nucleotide numbers 933 to 2483 in the nucleotide sequence shown in SEQ ID NO: 1,
- (8) a DNA fragment defined in the above (2) which has a nucleotide sequence comprising nucleotides of the nucleotide numbers 2476 to 3498 in the nucleotide sequence shown in SEQ ID NO: 1, and
- (9) a DNA fragment defined in the above (3) which has a nucleotide sequence comprising nucleotides of the nucleotide numbers 933 to 3498 in the nucleotide sequence shown in SEQ ID NO: 1.
- [0009] In the present description, the term cytochrome bd type quinol oxidase activity means activity exhibiting oxidoreduction differential absorption spectra of cytochrome b and cytochrome d, which is for oxidizing a reduced type quinone compounds (quinols) with consumption of oxygen. A DNA fragment that encodes cytochrome bd type quinol oxidase or a subunit thereof will be referred to as the "DNA of the present invention" as the case may be.

15 Brief Description of the Drawings

[0010]

20

25

5

Figure 1 represents the results of hydropathy analysis of subunits I of cytochrome bd type quinol oxidases of <u>Brevibacterium lactofermentum</u>, <u>Bacillus stearothermophilus</u> and <u>Escherichia coli</u>. The symbol*** indicates an amino acid residue shared by the three oxidases.

Figure 2 represents amino acid sequence alignment of subunits I of cytochrome bd type quinol oxidases of <u>Brevibacterium lactofermentum</u>. <u>Bacillus stearothermophilus</u> and <u>Escherichia coli</u>.

Figure 3 represents amino acid sequence alignment of subunits II of cytochrome bd type quinol oxidases of <u>Brevibacterium lactofermentum</u>, <u>Bacillus stearothermophilus</u> and <u>Escherichia coli</u>.

Detailed Description of the Invention

[0011] The present invention will be explained in more detail hereinafter.

[0012] The DNA of the present invention can be obtained from <u>B</u>. <u>lactofermentum</u> chromosomal DNA based on partial amino acid sequences of cytochrome bd type quinol oxidase of <u>B</u>. <u>flavum</u>. Specifically, PCR is performed by using oligonucleotides synthesized based on the amino acid sequences as primers, and chromosomal DNA of <u>B</u>. <u>flavum</u> as template to obtain a partial sequence of cytochrome bd type quinol oxidase gene of <u>B</u>. <u>flavum</u>. Then, by screening a chromosomal DNA library of <u>B</u>. <u>lactofermentum</u> using the obtained partial sequence as a probe, a gene encoding cytochrome bd type quinol oxidase of <u>B</u>. <u>lactofermentum</u> can be obtained.

[0013] Chromosomal DNA of <u>B. flavum</u> and <u>B. lactofermentum</u> can be prepared by, for example, the method of Saito and Miura (<u>Biochem. Biophys. Acta., 72</u>, 619, (1963)), and the method of K. S. Kirby (<u>Biochem. J., 64</u>, 405, (1956)). A chromosome DNA library can be obtained by partially digesting chromosomal DNA with a suitable restriction enzyme, ligating each of the obtained DNA fragments to a vector DNA autonomously replicable in <u>Escherichia coli</u> cell to prepare a recombinant DNA, and introducing the DNA into <u>E. coli</u>. The vector is not particularly limited, so long as it is a vector usually used for genetic cloning, and plasmid vectors such as pUC19, pUC18, pUC118, and puC119, phage vectors such as lambda phage DNA and the like can be used.

[0014] The primer used for the PCR may be, for example, an oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 7 or SEQ ID NO: 8. In order to confirm that an obtained PCR product has a desired sequence, it can be confirmed that it contains a sequence corresponding to the primer by nucleotide sequencing, or confirming that the amino acid sequence deduced from the nucleotide sequence contains a partial amino acid sequence of cytochrome bd type quinol oxidase of B. flavum.

[0015] The screening of a chromosome DNA library of <u>B</u>. <u>lactofermentum</u> utilizing the DNA fragment obtained in the PCR as a probe can be performed by colony hybridization when plasmid vectors are used for the preparation of the library, or plaque hybridization when phage vectors are used for the preparation of the library. A hybridization positive clone can be confirmed to contain a purpose cytochrome bd type quinol oxidase gene by nucleotide sequencing of DNA prepared from the clone. It is also possible to preliminarily perform Southern analysis for a hybridization positive clone by using the probe.

[0016] A nucleotide sequence of cytochrome bd type quinol oxidase gene of <u>B. lactofermentum</u> ATCC 13869 strain obtained in the working example in such a manner as described above is shown in SEQ ID NO: 1. Expected coding regions and amino acid sequences of proteins encoded thereby are shown in SEQ ID NOS: 1-4. Estimation of coding regions and operon structure and analysis of homology to cytochrome bd type quinol oxidases of Bacillus stearothermophilus K1041 and Escherichia coli were performed by using GENETYX. Homology Version 2.2.2 (Software Development)

opment Co., Ltd.).

[0017] The cytochrome bd type quinol oxidase gene contains two open reading frames (cydA and cydB reading from the 5' end), and they encode subunit I or cytochrome bd type quinol oxidase (also referred to as merely "subunit I" hereinafter) and subunit II of the same (also referred to as merely "subunit II" hereinafter), respectively. It was estimated that cydA and cydB comprised 1551 bp and 1023 bp respectively, the subunit I consisted of 517 amino acid residues, and the subunit II consisted of 341 amino acid residues. A promoter-like sequence was present upstream of cydA, an SDlike sequence was present upstream of each of cydA and cydB, and a terminator-like sequence was present downstream of cvdB. Therefore, it was considered that cvdA and cvdB formed a cvd operon.

[0018] While the codon of the N-terminal amino acid residue of the subunit I is indicated as GTG, and the corresponding amino acid as Val in Sequence Listing, it is actually Met. This is considered to be caused because GTG is recog-

nized as an initiation methionine. Such cases have been reported elsewhere. [0019] Figures 1 and 2 represent the results of hydropathy analysis performed for comparison of structures of the cytochrome bd type quinol oxidase of the present invention and subunits I of Bacillus stearothermophilus and E. coli, and alignment of the amino acid sequences. The indications I-VII represent transmembrane helix regions, and therefore it was confirmed that there were at least seven transmembrane helices. It can be understood from the patterns shown in the graphs that they resemble each other. Further, a region containing a quind binding site called Q loop was present between V and VI of the subunit I of E. coli, whereas there was no region exhibiting homology with the latter half portion of the Q loop in B. lactofermentum like B. stearothermophilus cydA, and hence the Q loop region was shortened. Considering this point, it is expected that cytochrome bd type quinol oxidase of B. lactofermentum has a structure more similar to that of cytochrome bd type quinol oxidase of B. stearothermophilus rather than that of E. coli. The comparison of amino acid sequences of the subunit I showed that B. lactofermentum had about 24.7% homology to B. stearothermophilus and, about 38.6% to E. coli, and it was considered that, as for the subunit I as a whole, cytochrome bd type quinol oxidase of B. lactofermentum has a structure more similar to cytochrome bd type quinol oxidase of E. coli rather

than that of B. stearothermophilus. [0020] There have been reported H19, H186, and M393 for E. coli cydA, and H21, H184, and M326 for B. stearothermophilus cvdA as functionally important residues in view of being a ligand of hem b558. These amino acids are conserved also in cydA of B. lactofermentum as H18, H185, and M350.

[0021] Figure 3 represents alignment of amino acid sequences of the three kinds of bacterial subunits II. As for the subunit II, B. lactofermentum showed about 25.9% homology to B. stearothermophilus, and about 34.8% to E. coli.

The DNA of the present invention is a DNA encoding the subunit I, which is encoded by the nucleotide sequence shown in SEQ ID NO: 2, the subunit II, which is encoded by the nucleotide sequence shown in SEQ ID NO: 4, or cytochrome bd type quinol oxidase protein containing these subunit I and subunit II. The subunit I, subunit II or cytochrome bd type quinol oxidase protein can be produced by introducing such a DNA into a suitable host cell, and culturing the obtained transformant so that the DNA should be expressed. A DNA having a nucleotide sequence comprising nucleotides of the nucleotide numbers 933-2483 in the nucleotide sequence shown in SEQ ID NO: 1 can be mentioned as a DNA encoding the subunit I, a DNA having a nucleotide sequence comprising nucleotides of the nucleotide numbers 2476-3498 as a DNA encoding the subunit II, and a DNA having a nucleotide sequence comprising nucleotides of the nucleotide numbers 933-3498 as a DNA encoding the both.

[0023] The produced cytochrome bd type quinol oxidase protein or a subunit thereof can be collected and purified from culture by a method commonly used for the purification of proteins such as salting out, solvent precipitation, gel filtration chromatography, and ion exchange chromatography.

[0024] The DNA of the present invention encoding the subunit I may be either one encoding a polypeptide having an amino acid sequence shown in SEQ ID NO: 2 comprising substitution, deletion, insertion, addition or inversion of one or a plurality of amino acid residues in the amino acid sequence, or a polypeptide that can constitute a protein exhibiting cytochrome bd type quinol oxidase activity together with the subunit II

[0025] The DNA of the present invention encoding the subunit II may be either one encoding a polypeptide having an amino acid sequence shown in SEQ ID NO: 4 comprising substitution, deletion, insertion, addition or inversion of one or a plurality of amino acid residues in the amino acid sequence, or a polypeptide that can constitute a protein exhibiting cytochrome bd type quinol oxidase activity together with the subunit 1.

[0026] Further, a DNA encoding a cytochrome bd type quinol oxidase which contains mutations in the subunit I, the subunit II or the both is also included in the DNA of the present invention.

[0027] The term "a plurality of amino acid residues" preferably means 1-40, more preferably 1-10 amino acid residues. [0028] DNA, which codes for the substantially same protein as subunit I and/of the subunit II as described above, is obtained, for example, by modifying the nucleotide sequence, for example, by means of the site-directed mutagenesis method so that one or more amino acid residues at a specified site involve substitution, deletion, insertion, addition, or inversion. DNA modified as described above may be obtained by the conventionally known mutation treatment. The mutation treatment includes a method for treating DNA coding for subunit I and/of the subunit II in vitro, for example, with hydroxylamine, and a method for treating a microorganism, for example, a bacterium belonging to the genus

Escherichia harboring DNA coding for subunit I and/of the subunit II with ultraviolet irradiation or a mutating agent such as N-methyl-N'-nitro-N-nitrosoguanidine (NTG) and nitrous acid usually used for the mutation treatment.

[0029] The substitution, deletion, insertion, addition, or inversion or nucleotide as described above also includes mutation (mutant or variant) which naturally occurs, for example, on the basis of the individual difference or the difference in species or genus or coryneform bacteria which harbors cytochrome bd type quinol oxidase.

[0030] The DNA, which codes for substantially the same protein as subunit I and/of the subunit II, is obtained by expressing DNA having mutation as described above in an appropriate cell, and investigating an activity of an expressed product. The DNA, which codes for substantially the same protein as subunit I and/of the subunit II, is also obtained by isolating DNA which is hybridizable with DNA having, for example, a nucleotide sequence corresponding to nucleotide numbers of 933 to 2483 of the nucleotide sequence depicted in SEQ ID NO: 1 and/or a nucleotide sequence corresponding to nucleotide numbers of 2476 to 3498 of the nucleotide sequence depicted in SEQ ID NO: 3 in Sequence Listing under a stringent condition, and which codes for a protein having the activity of subunit I and/or subunit II, from DNA coding for subunit I and/or subunit II having mutation or from a cell harboring it.

[0031] The "stringent condition" referred to herein is a condition under which so-called specific hybrid is formed, and non-specific hybrid is not formed. It is difficult to clearly express this condition by using any numerical value. However, for example, the stringent condition includes a condition under which DNA's having high homology, for example, DNA's having homology of not less than 50 % are hybridized with each other, and DNA's having homology lower than the above are not hybridized with each other. Alternatively, the stringent condition is exemplified by a condition under which DNA's are hybridized with each other at a salt concentration corresponding to an ordinary condition of washing in Southern hybridization, i.e., 60°C, 1 x SSC, 0.1 % SDS, preferably 0.1 x SSC, 0.1 % SDS.

[0032] The gene, which is hybridizable under the condition as described above, includes those having a stop codon generated within a coding region of the gene, and those having no activity due to mutation of active center. However, such inconveniences can be easily removed by ligating the gene with a commercially available activity expression vector, and investigating cytochrome bd type quinol oxidase activity.

[0033] The host for the expression of the DNA of the present invention include, for example, various kinds of bacteria including <u>E. coli</u>, coryneform bacteria such as <u>B. lactofermentum</u> and <u>B. flavum</u>, eucaryotic cells such as <u>Saccharomyces cerevisiae</u> and the like. In order to introduce the DNA of the present invention into a host such as those mentioned above, the host cell can be transformed with a recombinant vector which is obtained by inserting the DNA of the present invention into a vector selected depending on the kind of the host in which the expression is to be obtained. Those procedures can be performed by using methods of genetic recombination well known to those skilled in the art.

[0034] The DNA of the present invention and cytochrome bd type quinol oxidase or the subunits thereof encoded thereby are considered to be useful for elucidating the electron transport system of coryneform bacteria. The DNA of the present invention is also expected to be utilized for breeding of coryneform bacteria producing useful substances with high energy efficiency.

Best Mode for Carrying out the Invention

35

[0035] The present invention will be specifically explained with reference to the following examples.

(1) Purification of cytochrome bd type quinol oxidase of Brevibacterium flavum

[0036] Bacterial cells (about 120 g wet weight) of <u>B. flavum</u> ATCC 14067 strain that had been cultivated by the end of the stationary phase were suspended in 200 ml of a buffer (0.5% NaCl, 10 mM sodium phosphate, pH 7.4), and immediately disrupted by stirring at a high speed by means of a bead beater (Biospec) in the presence of 0.5 mM of glass particles. After this suspension of disrupted cells was centrifuged at 5,000 rpm for 10 minutes to remove undisrupted bacterial cells, the supernatant was subjected to centrifugation at 15,000 rpm for 10 minutes and the resulting supernatant was further subjected to centrifugation at 15,000 rpm for 30 minutes. The precipitates obtained in the both centrifugations were combined, and suspended in the same buffer as mentioned above to obtain a membrane preparation.

[0037] The above membrane preparation (5 mg/ml, 0.5% NaCl, 10 mM sodium phosphate, pH 7.4) was homogenized by a Teflon homogenizer, and centrifuged at 40,000 rpm for 20 minutes, and precipitates were collected. The precipitates were added with 1.5% sodium cholate, 0.5% sodium deoxycholate, 0.1% NaCl, and 10 mM sodium phosphate (pH 7.4), then homogenized and centrifuged at 40,000 rpm for 20 minutes to collect the precipitates. The precipitates were further added with 10 mM sodium phosphate (pH 7.4), homogenized, and centrifuged at 40,000 rpm for 20 minutes to collect the precipitates.

[0038] The membrane preparation washed with cholic acid as described above was suspended in a buffer containing surface active agents, n-nonanoyl-N-methylglucamide (MEGA-9) and decanoyl-N-methylglucamide (MEGA-10) each at 1%. This suspension was homogenized on ice, sonicated, and centrifuged at 40,000 rpm for 20 minutes to obtain a supernatant.

[0039] The above supernatant obtained by the centrifugation was adsorbed on a hydroxyapatite column equilibrated with 1% MEGA-9, 1% MEGA-10, 10% glycerol, and 10 mM sodium phosphate (pH 7.4), and fractionated by elution with a concentration of sodium phosphate increased stepwise (0, 50, 150, 250, and 400 mM). Cytochromes in the fractions were detected by reduced minus oxidized difference spectrum. As a result, cytochromes c and b were detected in the fraction eluted at 50 mM of sodium phosphate, cytochromes c, b and a in the fraction eluted at 150 mM, and cytochromes b and d in the fraction eluted at 250 mM.

[0040] The fraction eluted at a sodium phosphate concentration of 250 mM was dialyzed against 10% glycerol and 10 mM sodium phosphate (pH 7.4), then adsorbed on a DEAE-Toyopearl (Tohso) column equilibrated with the same buffer, and fractionated by elution with a concentration of NaCl increased stepwise (0, 80, 100, 120, 140, and 300 mM). Cytochromes in the fractions were detected by reduced minus oxidized difference spectrum. As a result, cytochromes b and d were detected in the fraction eluted at a NaCl concentration of 120 mM. This fraction was used as cytochrome bd type quinol oxidase enzyme preparation.

[0041] The above enzyme preparation was subjected to SDS-polyacrylamide gel electrophoresis using 13.5% gel, and blotted on a PVDF membrane. Portions of the membrane corresponding to the subunit I and the subunit II were subjected to amino acid sequence analysis to determine the N-terminal amino acid sequences. The amino acid sequences are shown in SEQ ID NO: 5 (subunit I) and SEQ ID NO: 6 (subunit II), respectively.

(2) Isolation of cytochrome bd type quinol oxidase gene of Brevibacterium lactofermentum

[0042] Screening of a chromosome DNA library of B. <u>lactofermentum</u> for clones containing cytochrome bd type quinol oxidase gene was performed by colony hybridization.

[0043] Two kinds of oligonucleotides were synthesized based on the above partial amino acid sequences of cytochrome bd type quinol oxidase of <u>B. flavum</u>. One was prepared based on the N-terminal amino acid sequence of the subunit I of cytochrome bd type quinol oxidase (bbd1: SEQ ID NO: 7), and the other was prepared based on the N-terminal amino acid sequence of the subunit II (bbd2: SEQ ID NO: 8).

[0044] PCR was performed by using the above primers bbd1 and bbd2 and chromosome DNA of the strain ATCC 14067 as template. As for the reaction condition, after denaturation at 94°C for one minute, a cycle comprising denaturation at 95°C for 45 seconds, annealing at 50°C for 60 seconds, and chain extension reaction at 62°C for 90 seconds was repeated for 35 cycles. As a result, fragments of about 1500 bp, 800 bp, and 100 bp were provided. Based on the molecular weight 56.4 kD of the subunit I estimated from the purified protein, and the reported molecular weights of subunits I of cytochrome bd type quinol oxidases of other bacteria, the fragment of about 1500 bp was considered to be the desired PCR product. Therefore, the PCR product was electrophoresed on 2% agarose gel, and a portion of about 1.5 kbp fragment was excised from the gel to extract the DNA.

[0045] This DNA fragment was blunt-ended by using DNA Blunting Kit (Takara Shuzo), and ligated to pUC118 vector digested with <u>Sma</u>l and treated with alkaline phosphatase by using DNA ligation Kit Ver. 2 (Takara Shuzo). <u>E. coli</u> XL-1 Blue strain was transformed with the obtained recombinant primer.

[0046] Plasmid was prepared from the obtained transformant, and the inserted nucleotide sequence was determined. The nucleotide sequencing was performed by using Fluorescein Labeled Primer M4 (Takara Shuzo, SEQ ID NO: 9) as the forward primer, and Fluorescein Labeled Primer RV-MF (Takara Shuzo, SEQ ID NO: 10) as the reverse primer according to the protocol of Thermo Sequence fluorescent labelled primer cycle sequencing kit (Amersham Life Science). As a result, it was confirmed that the cytochrome bd type quinol oxidase gene was contained in the plasmid based on the homology with the primer. This partial clone was designated BD1.

[0047] This BD1 was amplified by PCR using the aforementioned primers M4 and RV-M, and a probe labeled with DIG (digoxigenin) was prepared by using DIG DNA Labeling Kit (Boehringer Mannheim).

[0048] Chromosomal DNA library of <u>B. lactofermentum</u> was screened by using the aforementioned probe. The library was obtained by partially digesting chromosomal DNA of <u>B. lactofermentum</u> ATCC 13869 with <u>Sau</u>3A1, inserting the product into <u>Bam</u>HI site of pUC18, and transforming <u>E. coli</u> XL-1 Blue with the obtained recombinant plasmid. Colony hybridization was performed for the colonies of transformants by using the probe labeled with DIG mentioned above. The detection of the probe was performed by using DIG Detection Kit (Boehringer Mannheim) which utilized anti-DIG antibodies labeled with alkaline phosphatase.

[0049] Plasmid was prepared from hybridization positive colonies, digested with <u>Eco</u>Rl and <u>Pst</u>l, and subjected to Southern blotting using BD1 as a probe. As a result, two positive clones were obtained. Inserted fragments of these positive clones were designated BD21 and BD31, respectively. BD21 comprised about 3.8 kbp, and BD31 comprised about 9.0 kbp. These clones were subcloned, and their nucleotide sequences were determined. The results are shown in SEQ ID NO: 1. Expected coding regions and amino acid sequences of the proteins encoded thereby are shown in SEQ ID NOS: 1-4.

SEQUENCE LISTING

5	<110> Ajinomoto Co., Inc.
	<120> Cytochrome bd type quinol oxidase gene of
10	Brevibacterium lactofermentum
	<130> OP852
15	<140>
	<141>
20	<150> JP 10-164019
20	<151> 1998-06-11
	<160> 10
25	<170> PatentIn Ver. 2.0
30	<210> 1
30	<211> 3936
	<212> DNA
	<213> Brevibacterium lactofermentum
35	
	<220>
	<221> CDS
40 ·	<222> (933) . (2483)
	<400> 1
	ggatectete tgtteaaaac ageaectaet ettttaetee egagtteega egtgeeeteg 60
4 5	acgaaageet agaagtgaeg gacegagatg aggetgetea gaattttaag titeaegtee 120
50	aagacatcat cgaaactggg ttgtttatcg ccagaaataa tggattctgg caaggaaacc 180
	tegregitgg egaaagatar teeegaegag argretgeeg aattereaat tgggaaegaa 24

55

	acaatgagag cacgatttat ggttacaaag tggacagcta cacatcgacg tgcccaatct 300
5	tigigaccia tcacaagget gaigaigiai eegaagiaci egitaccagg aigaactegt 360
	cgatccgaat accettcatt ggtattcccg cggcaaccga aagatcacgt ctaatgagat 420
10	caageceate getgegaatg tgiggatett catgitiitg tgaagaagga egatgeegaa 480
15	ggccttgatt tettetacet tggtcaageg catteagaaa acagcaaaca gtcategatg 540
	cccggaaaca aaggagiigi gcaaccggig gicacaaigg atctacagii cgacacaccc 600
20	gregaacaaa geergritga gracergage acaaarereg eegraaegga graaceaeeg 560
	caaccaageg tegaaaagea aaatetttte gagtiittgg tgaettgica acaagggggg 720
25	agcaaaatca gtcattgaca gggaaaggtt gaccacaatc ggggttagcc tttctaaagt 780
	taagetgiga gegggaaett aggaataaae tteaaegaea aeetttaaga agetettatt 840
30	ggitetiegt titgtatega taaataeaat eggitteetg geteaataag getgiteetg 900
35	tcaatcigia aagaagagga aggggaccia gc gig gai gic gii gac aic gcg 953 Val Asp Val Val Asp Ile Ala l 5
	cgg tgg caa tto gga att acc acc gto tat cao tto att tit gto cca 1001
40	Arg Trp Gln Phe Gly Ile Thr Thr Val Tyr His Phe Ile Phe Val Pro
45	ctg acc att ggc tra gca ccg ctg gtc gcg atc atg caa acg ttt tgg 1049
	Leu Thr Ile Gly Leu Ala Pro Leu Val Ala Ile Met Gln Thr Phe Trp 25 30 35
50	caa gtt acc ggc aaa gag cac tgg tat cgg gct acg aga ttt ttt ggc 1097 Gln Val Thr Gly Lys Glu His Trp Tyr Arg Ala Thr Arg Phe Phe Gly

9

55

	40	45	50	55
5			gtt ggt gta gca acg	
	Thr Val Leu Leu	Ile Asn Phe Ala 60	Val Gly Val Ala Thr 65	Cly lie val
10	car gag IIC Cag	tre ggt atg aac	tgg tcg gaa tat tcg	cgt ttc gtc 1193
	Gln Glu Phe Gln	Phe Gly Met Asn	Trp Ser Glu Tyr Ser	
15	75			
	ggt gat git tio	ggc gga ccg ctg Gly Gly Pro Leu	g gct tig gag ggg cto g Ala Leu Glu Gly Leu	ille Ala Phe
20	90	95	5 100)
	Phe Leu Glu Ser		t ctg tgg att ttc gg; y Leu Trp Ile Phe Gl; 115	
25	105	. (1227
30			g too att tgg atc gt a Ser Ile Trp Ile Va 130	
35	acg aat att to Thr Asn Ile Se	et god tat tic at er Ala Tyr Phe Il 140	ic atc gtg gcc aac to le Ile Val Ala Asn Se 145	g ttt atg cag 1385 er Phe Met Gln 150
40	His Pro Val G	gt got gag tat as ly Ala Glu Tyr As 55	ac cct gag act ggt cg sn Pro Glu Thr Gly A: 160	gg gcg gag ctt 1433 rg Ala Glu Leu 155
4 5	act gat tic t Thr Asp Phe T 170	rp Ala Leu Leu T	ca aac tee ace geg c hr Asn Ser Thr Ala L 75	
50	ccg cat gct g Pro His Ala V 185	tt gcc ggt ggt t al Ala Gly Gly P 190	ttt tta aca gct gga a Phe Leu Thr Ala Gly 1 195	nct ttc gtc ctc 1529 Thr Phe Val Leu

	gga att tog ggt tgg tgg att att cgt gcg cac cgc cag gcg aag aag 157 Gly Ile Ser Gly Trp Trp Ile Ile Arg Ala His Arg Gln Ala Lys Lys	7
5	200 205 210 215	
	gct gag gcg gaa atc gag tcg aag cat tca atg cac agg ccg gcg ttg 162 Ala Glu Ala Glu Ile Glu Ser Lys His Ser Met His Arg Pro Ala Leu	:5
10	220 225 230	
15	tgg gtt ggt tgg tgg acc aca gtt gtc tct tcc gtg gca ctg ttc atc lo Trp Val Gly Trp Trp Thr Thr Val Val Ser Ser Val Ala Leu Phe Ile	73
	235 240 245	
20	act ggc gat aca cag gcg aag ctc atg ttc gtg cag cag ccg atg aag 17	21
	Thr Gly Asp Thr Gln Ala Lys Leu Met Phe Val Gln Gln Pro Met Lys 250 255 260	
25	atg gcg tcg gcg gaz tct ttg tgt gaa acc gcc aca gat con all	69
	Met Ala Ser Ala Glu Ser Leu Cys Glu Thr Ala Thr Asp Pro Asn Phe 265 270 275	
30		317
	Ser Ile Leu Thr Ile Gly Thr His Asn Asn Cys Asp Thr Val Thr His	
35	280 285 290 295	
	ctg atc gat git ccg itt gig cit tta tte tig get gad ggo our	865
40	Leu Ile Asp Val Pro Phe Val Leu Pro Phe Leu Ala Glu Gly Lys Phe 300 305 310	
	acc ggt gtg act ttg cag ggt gta aac tag tto tam got god god god	913
45 .	Thr Gly Val Thr Leu Gln Gly Val Asn Gln Leu Gln Ala Ala Glu 315 320 325	
	caa gca tac ggt cct ggc aac tac tee cct and ttg out got	1961
50	Gln Ala Tyr Gly Pro Gly Asn Tyr Ser Pro Asn Leu Phe Val Thr Tyr 330 335 340	

											cta										2009
	Trp	Se	r f	Phe	Arg	Ala	Меt	. 11	e G	ly !	Leu	Met	Leu	Gl	y S	er l	Leu	Ala	IJ	le	
5		34	5					35	0					353	5						
																					2057
	_										cgt										2057
10	Ala	Al	a	Ile	Ala	Trp	Lei	ı Le	u L	.eu	Arg	Lys			g l	hr	Pro	inr			
,,	360						36	5					370)					3	75	
					055	61.5		· ·	19 2	a t c	ggc	200	CTO	at	τ. α	rc.c	att	cca	t	ŧc	2105
	-										Gly										
15	Lys	. 1:	le	VIS	Arg	380		e 0,			01 ;	385			•			390			
						000															
	cca	t t	tc	ttg	gct	aa	tc	t g	ct :	ggt	tgg	ato	tt	c ac	c g	gag	atg	ggo	: c	gc	2153
20											Trp										
					39						400						405				
											cct										2201
25	Gli	n P	ro	Tr	Va	l Va	1 Hi	s P	го	Asn	Pro	Gli	ı Se	r A	la	Gly	λsp	Al.	a .	Arg	
				410)					415						420					
																			_		2240
30											gat										2249
	Th	r (lu	Me	t Il	e Ar	g M			۷al	Asp	Ме	t GI			Ser	· AS	ряі	S	ита	
		4	125					4	130					4	35						
						· C T (,a c	T 0 2	ac t	c t a	a at		c t	tc a	CZ	ati	. ct	c ta	ıt	ctc	2297
3 5											ı II.										
	44		ııμ	, 01	11 '0			45	• • • •		• • •			50				·		455	
	78.7						_														
40	ai	L C	tte	z tt	c g	tg g	tg t	gg :	ġtg	tg	gct	g at	τς	gc (cgc	gca	e gi	t c	τg	atc	2345
											p Le										
	_						60					46							70		
45	g	ga	cc	a c	ca g	ag g	aa (ggc	gct	. cc	a to	c g	tg g	ag	gca	ae	ga	ct g	ga	ccg	2393
																				Pro	
						75					48							85			
50																					
	8	ca	ac	c c	cg a	iti g	gt	tca	ga	tat	g c	cc a	tg a	aca	cce	g ct	g c	aa 1	. T T	acc	2441

12

Ala Thr Pro Ile	Gly Ser Asp Met Pr	o Met Thr Pro Leu Gin Phe inr
490	495	500

Val Pro Pro Gln Pro His Val Lys Arg Asn Asn His Gly Ser
505 510 515

2,483

taatacettt tggittatte teategeatt titgittgeg ggataettie teetegaagg 2543 attogactic ggigtoggaa tittagogoo gatcatoggi aaagattoog cogotaaaaa 2603 cacgaicate egeaceateg generateig gganggaaat gaagigigge igategigge 2663 aggiggeget tigitigetg cattecetga giggtacgea acgaigtet eeggaatgia 2723 tengengers treetegige rigigings garcangege grggingge treating 2783 caagaaagte gatgateete gitggeaaaa giggietgae egggeeatet italiggite 2843 tiggacicca cogolgaigi ggggatical citogocaal attitoaago tigoatgooc 2903 atcaaggogg atcacaccat cgatgotgca gtggctctgc tgtgcaatgt tcaacgtctt 2963 egecateeig ggigeaciig calicacige geigiteget elicalggee itgealical 3023 cogootgaaa actgotggto gggtgogcac ogatgoggog aaggoagoto cagtagtogo 3083 acticitizet geggizacig giggacetti egigtizigz getgecateg cataeggeez 3143 ttcctggtcc tggatcctcg cagtgctgat catcgcagcg gttctcggtg gagctttcgc 3203 actgatcaaa gaccgcgatg gattaagctt cctgtccact tccgtcgctg tcatcggtgt 3263 agitgcacig cigittagit coctations caacgicatg ccaacaacge tigoogatgg 3323 cgigacigga tattiggaac gcctccgcaa gccactacgc attgaccatc ctgactigga 3383

55

45

	cogocactgi gatogoaccg orggitgico totaccaagg orggacciae tgggtgitee 3443
5	gcaaacgact teaegeegag ceagtgietg ectaaaagti ggaaaaatig agtactaaat 3503
	ctgacgetee ggetagtege egeacaggee eegtegatee geggettitg egeetateee 3563
10	ctgctacccg ccgttgggtg ataatcgcag gtgttctcac cgcgttgaaa actctcgcga 3623
	cagicgeaat gggetigete ateggeeaga tggeageggg cateatigag gittegggaa 3683
15	gttettigee eegaatggaa eteategege tegecateae ggtggttgig egeggaette 3743
20	tigogiggge acaggatogg tioggagoge geatogicee aggigacigi ggatetiegg 3803
	gagaaaaccc tgcggcacct ggcacaaagc gatccccgca ccatcgatca agccttgtgg 3863
25	cgcacccgtt tgacctctgg ccttgatggt ttggggcctt acctcaccgg attittgccg 3923
	cactggccgc cac 3936
30	<210> 2
35	<211> 517 <212> PRT <213> Brevibacterium lactofermentum
40	<pre><400> 2 Val Asp Val Val Asp Ile Ala Arg Trp Gln Phe Gly Ile Thr Thr Val 1 5 10 15</pre>
4 5	Tyr His Phe Ile Phe Val Pro Leu Thr Ile Gly Leu Ala Pro Leu Val 20 25 30
50	Ala Ile Met Gln Thr Phe Trp Gln Val Thr Gly Lys Glu His Trp Tyr 35 40 45
	Arg Ala Thr Arg Phe Phe Gly Thr Val Leu Leu Ile Asn Phe Ala Val

	50	55	60	
5	Gly Val Ala Thr G	Gly Ile Val Gln C 70	Glu Phe Gln Phe Gly 3 75	det Asn Trp 80
10	Ser Glu Tyr Ser	Arg Phe Val Gly : 85	Asp Val Phe Gly Gly	Pro Leu Ala 95
15	Leu Glu Gly Leu 100		Leu Glu Ser Val Phe 105	Leu Gly Leu 110
20	115	120	Pro Gly Trp Leu His 125 Asn Ile Ser Ala Tyr	
25	130	135	Pro Val Gly Ala Glu 155	
30		Ala Glu Leu Thr 165	- Asp Phe Trp Ala Let 170	leu Thr Asn 175
35	Ser Thr Ala Lei		o His Ala Val Ala Gl 185	y Gly Phe Leu 190
40	195	20		:5
4 5	210	215	a Glu Ala Glu Ile Gl 220 rp Val Gly Trp Trp T	hr Thr Val Val
50	225	230 la Leu Phe Ile T	235 hr Gly Asp Thr Gln A 250	240
		245	200	

The first of the second second

_	Phe Val Gln Gln Pro Met Lys Met Ala Ser Ala Glu Ser Leu Cys Glu 260 265 270	
5	Thr Ala Thr Asp Pro Asn Phe Ser Ile Leu Thr Ile Gly Thr His Asn 275 280 285	II
10	Asn Cys Asp Thr Val Thr His Leu Ile Asp Val Pro Phe Val Leu Pro 290 295 300)
15	Phe Leu Ala Glu Gly Lys Phe Thr Gly Val Thr Leu Gln Gly Val Ass 305 310 315 32	
20	Gln Leu Gln Ala Ala Ala Glu Gln Ala Tyr Gly Pro Gly Asn Tyr Se 325 330 335	r
25	Pro Asn Leu Phe Val Thr Tyr Trp Ser Phe Arg Ala Met Ile Gly Le 340 345 350	u
30	Met Leu Gly Ser Leu Ala Ile Ala Ala Ile Ala Trp Leu Leu An 355 360 365	- Z
35	Lys Lys Arg Thr Pro Thr Gly Lys Ile Ala Arg Leu Phe Gln Ile G 370 375 380	ly
	Ser Leu Ile Ala Ile Pro Phe Pro Phe Leu Ala Asn Ser Ala Gly T 385 390 395 4	rp 00
40	Ile Phe Thr Glu Met Gly Arg Gln Pro Trp Val Val His Pro Asn F 405 410 415	'ro
4 5	Glu Ser Ala Gly Asp Ala Arg Thr Glu Met Ile Arg Met Thr Val : 420 425 430	₹sp
50	Met Gly Val Ser Asp His Ala Pro Trp Gln Val Trp Leu Thr Leu 435 440 445	Il€

5	Gly Phe Thr Ile Leu Tyr Leu Ile Leu Phe Val Val Trp Val Trp Leu 450 455 460
10	Ile Arg Arg Ala Val Leu Ile Gly Pro Pro Glu Glu Gly Ala Pro Ser 465 470 475 480
10	Val Glu Ala Lys Thr Gly Pro Ala Thr Pro Ile Gly Ser Asp Met Pro 485 490 495
15	Met Thr Pro Leu Gln Phe Thr Val Pro Pro Gln Pro His Val Lys Arg 500 505 510
20	Asr. Asn His Gly Ser 515
25	<210> 3 <211> 3936 <212> DNA
30	(213) Brevibacterium lactofermentum
30	<220>
	<221> CDS
	(222) (2476) (3498)
35	<400> 3
	ggatectete tgiteaaaac ageaectaet etittaetee egagtieega egigeeeteg 60
40	acgaaageet agaagtgaeg gacegagatg aggetgetea gaattitaag titeaegtee 120
	aagacatcat cgaaactggg tigittatog ccagaaataa tggattotgg caaggaaacc 180
45	tegregrigg egaaagatar teeegaegag argretgeeg aarreteaar tgggaaegaa 240
50	acaatgagag cacgatttat ggttacaaag tggacagcta cacatcgacg tgcccaatct 300
	tigigaccia icacaagget gaigaigiai eegaagiaci egitaecagg aigaactegi 360

gateegaat accetteatt ggtatteeeg eggeaacega aagateaegt etaatgagat 420
caageccate getgegaatg tgtggatett eatgittitg tgaagaagga egatgeegaa 480
ggccttgatt ictictacct tggicaageg catteagaaa acageaaaca gicategatg 540
cccggaaaca aaggagtigt gcaaccggig gicacaaigg aictacagii cgacacaccc 600
gicgaacaaa geeigitiga giaecigage acaaateieg eegiaaegga giaaecaeeg 660
caaccaageg tegaaaagea aaatettite gagittiigg tgaetigtea acaagggggg 720
agcaaaatca gicaiigaca gggaaaggii gaccacaatc ggggitagcc tiictaaagi 780
taagetgiga gegggaacti aggaataaae ticaaegaea aeetttaaga agetettati 840
ggitcitcgi tilgtatcga taaatacaat cggittccig gcicaataag gcigitccig 900
tcaatcigia aagaagagga aggggaccia gcgiggaigi cgiigacaic gcgcggiggc 960
aattoggaat taccacegie tateactica tittigieee acigaecati ggettageae 1020
egetggtege gateatgeaa aegittigge aagitaeegg caaagageae iggiateggg 1080
ctacgagatt titiggcact gigcigcica icaacticge ggiiggigia gcaacgggca 1140
tigtgcagga gttccagttc ggtatgaact ggtcggaata ttcgcgiltc gicggtgatg 1200
tttteggegg acegetgget ttggagggge teategegtt etteetigag tetgtgttet 1260
taggicigig gattitegga tggggggaaga ticetggatg getgeatact geglecatit 1320
ggalegitge tallgegaeg aatallietg ectallical calegiggee aactegitta 1380
tgcagcatcc ggtgggtgct gagtataacc ctgagactgg tcgggcggag cttactgatt 1440

5

telgggelet teleacaaac lecacegege lggelgegil ecegealgel gilgeeggig 1500
gttttttaac agctggaact ttcgtcctcg gaatttcggg ttggtggatt attcgtgcgc 1560
accgccagge gaagaagget gaggeggaaa tegagtegaa geatteaatg cacaggeegg 1620
cgrigigggi iggriggigg accacagilg teleticegi ggeaetgile alcaciggeg lo80
atacacagge gaageteatg tiegigeage ageegatgaa gatggegteg geggaateet 1740
tgtgtgaaac cgccacagat ccaaacttct ccattctgac aattggtacg cacaacaact 1800
gegataeggt aacceaeetg ategatgite egittgiget tecalietig getgaaggaa 1860
aatteaeegg tgtgaettig eagggigtaa aceageteea agetgeageg gageaageat 1920
acggiccigg caactacice ectaactigt tigicaccia ciggicatic egegeaatga 1980
teggeetaat gettggttet tiggetateg etgegatige giggetgitg etgegtaaga 2040
agegeacace aaciggaaag aitgelegte tellecaaal eggeageele aligeeatic 2100
catteceatt ettggetaae tetgetggti ggatetteae egagatggge egeeageett 2160
gggtggtaca occgaatect gaatetgeeg gegatgeeeg aacagagatg ateeggatga 2220
cigitgatat gggigtgict galcatgege egiggeaagt eiggeigaet etaaligget 2280
teacgatict ctateteate tigitegigg tgigggigtg getgatiege egegeagite 2340
tgateggace accagaggaa ggegeteeat eegtggagge aaagaetgga eeggeaacce 2400
egatiggite agatatgeed atgacacego igcaatitad egigeegeed caaceacaeg 2460
tgaaaaggaa taacc atg gat ctt aat acc ttt tgg ttt att ctc atc gca 2511 Met Asp Leu Asn Thr Phe Trp Phe Ile Leu Ile Ala
1 5 10

5	Phe Leu Phe Ala Gly Tyr Phe Leu Leu Glu Gly Phe Asp Phe Gly Val 20 25
10	gga att tta gcg ccg atc atc ggt aaa gat tcc gcc gct aaa aac acg 2607 Gly Ile Leu Ala Pro Ile Ile Gly Lys Asp Ser Ala Ala Lys Asn Thr 30 35 40
15	ate ate ege ace ate gge eet gte tgg gae gga aat gaa gtg tgg etg 2655 Ile Ile Arg Thr Ile Gly Pro Val Trp Asp Gly Asn Glu Val Trp Leu 45 50 55 60
20	atc gtg gca ggt ggc gct ttg ttt gct gca ttc cct gag tgg tac gca 2703 Ile Val Ala Gly Gly Ala Leu Phe Ala Ala Phe Pro Glu Trp Tyr Ala 65 70 75
25	acg atg ttc tcc gga atg tat ctg ccg ctg ttc ctc gtg ctt gtg tcg 2751 Thr Met Phe Ser Gly Met Tyr Leu Pro Leu Phe Leu Val Leu Val Ser 80 85 90
30	tig atc aig ege gig gig gge eit gaa igg ege aag aaa gie gat gat 2799 Leu Ile Met Arg Val Val Gly Leu Glu Trp Arg Lys Lys Val Asp Asp 95 100 105
35	cct cgt tgg caa aag tgg tct gac cgg gcc atc ttt att ggt tct tgg 2847 Pro Arg Trp Gln Lys Trp Ser Asp Arg Ala Ile Phe Ile Gly Ser Trp 110 115 120
4 5	act cca ccg ctg atg tgg gga ttc atc ttc gcc aat att ttc aag ctt 2895 Thr Pro Pro Leu Met Trp Gly Phe Ile Phe Ala Asn Ile Phe Lys Leu 125 130 135 140
50	gca tgc cca tca agg cgg atc aca cca tcg atg ctg cag tgg ctc tgc 2943 Ala Cys Pro Ser Arg Arg Ile Thr Pro Ser Met Leu Gln Trp Leu Cys 145 150 155

20

	tgt gca atg ttc aac gtc ttc gcc atc etg ggt gca ett gca ttc act 2991 Cys Ala Met Phe Asn Val Phe Ala Ile Leu Gly Ala Leu Ala Phe Thr
5	gcg ctg ttc gct ctt cat ggc ctt gca ttc atc cgc ctg aaa act gct 3039
10	Ala Leu Phe Ala Leu His Gly Leu Ala Phe Ile Arg Leu Lys Thr Ala 175 180 185
15	ggt cgg gtg cgc acc gat gcg gcg aag gca gct cca gta gtc gca ctt 3087 Gly Arg Val Arg Thr Asp Ala Ala Lys Ala Ala Pro Val Val Ala Leu 190 195 200
20	ctt gct gcg gtg act ggt gga cct ttc gtg ttg tgg gct gcc atc gca 3135 Leu Ala Ala Val Thr Gly Gly Pro Phe Val Leu Trp Ala Ala Ile Ala 205 210 215 220
25	tac ggc cgt tcc tgg tcc tgg atc ctc gca gtg ctg atc atc gca gcg 3183 Tyr Gly Arg Ser Trp Ser Trp Ile Leu Ala Val Leu Ile Ile Ala Ala 225 230 235
30	git cic ggi gga gci tic gca cig atc aaa gac cgc gai gga tia agc 3231 Val Leu Gly Gly Ala Phe Ala Leu Ile Lys Asp Arg Asp Gly Leu Ser 240 245 250
35	The Leu Ser Thr Ser Val Ala Val Ile Gly Val Val Ala Leu Leu Phe 255 260 265
40	agt too cta tto coc aac gto atg coa aca acg ctt gcc gat ggc gtg 3327 Ser Ser Leu Phe Pro Asn Val Met Pro Thr Thr Leu Ala Asp Gly Val 270 275 280
45	act gga tat tig gaa cgc ctc cgc aag cca cia cgc ati gac cat cct 3375 Thr Gly Tyr Leu Glu Arg Leu Arg Lys Pro Leu Arg Ile Asp His Pro 285 290 295 300
50	gac tig gac ege cac igi gai ege ace get ggi igi eel eta eea agg 3423

21

The second secon

5

	Asp Leu Asp Arg His Cys Asp Arg Thr Ala Gly Cys Pro Leu Pro Arg 305 310 315
5	ctg gac cta ctg ggt gtt ccg caa acg act tca cgc cga gcc agt gtc 3471 Leu Asp Leu Leu Gly Val Pro Gln Thr Thr Ser Arg Arg Ala Ser Val 320 325 330
10	
	tgc cta aaa gtt gga aaa att gag tac taaatctgac gctccggcta 3518 Cys Leu Lys Val Gly Lys Ile Glu Tyr 335 340
15	gtogoogcac aggooccgic gatoogoggo titigogoot atooccigot accogoogit 3578
20	gggtgataat egeaggtgit eteacegegt tgaaaaetet egegaeagte geaatggget 3638
	tgctcatcgg ccagatggca gcgggcatca ttgaggttic gggaagitct ttgccccgaa 3698
25	tggaactcat egegetegee atcaeggtgg ttgtgcgegg acttettgeg tgggcaeagg 3758
30	atoggttogg agogogoato gtoccaggtg actgtggato ttogggagaa aaccotgcgg 3818
-	cacciggeac anagegatec ecgeaceate gatenageet igiggegeac ecgitigace 3878
35	tetggeetig alggitiggg geetlacete aceggatitt igeegeacig geegeeae 3936
	<210> 4
40	<pre><211> 341 <212> PRT <213> Brevibacterium lactofermentum</pre>
	(213) Brevioacterium radioacterium
4 5	<pre><400> 4 Met Asp Leu Asn Thr Phe Trp Phe Ile Leu Ile Ala Phe Leu Phe Ala 1 5 10 15</pre>
50	Gly Tyr Phe Leu Leu Glu Gly Phe Asp Phe Gly Val Gly Ile Leu Ala 20 25 30

5	Pro Ile Ile Gly Lys Asp Ser Ala Ala Lys Asn Thr Ile Ile Arg Thr 35 40 45
	Ile Gly Pro Val Trp Asp Gly Asn Glu Val Trp Leu Ile Val Ala Gly 50 55 60
10	Gly Ala Leu Phe Ala Ala Phe Pro Glu Trp Tyr Ala Thr Met Phe Ser 65 70 75 80
15	Gly Met Tyr Leu Pro Leu Phe Leu Val Leu Val Ser Leu Ile Met Arg 85 90 95
20	Val Val Gly Leu Glu Trp Arg Lys Lys Val Asp Asp Pro Arg Trp Gln 100 105 110
25	Lys Trp Ser Asp Arg Ala Ile Phe Ile Gly Ser Trp Thr Pro Pro Leu 115 120 125
30	Met Trp Gly Phe Ile Phe Ala Asn Ile Phe Lys Leu Ala Cys Pro Ser 130 135 140
35	Arg Arg Ile Thr Pro Ser Met Leu Gln Trp Leu Cys Cys Ala Met Phe 145 150 155 160
40	Asn Val Phe Ala Ile Leu Gly Ala Leu Ala Phe Thr Ala Leu Phe Ala 165 170 175
	Leu His Gly Leu Ala Phe Ile Arg Leu Lys Thr Ala Gly Arg Val Arg 180 185 190
45	Thr Asp Ala Ala Lys Ala Ala Pro Val Val Ala Leu Leu Ala Ala Val 195 200 205
50	Thr Gly Gly Pro Phe Val Leu Trp Ala Ala Ile Ala Tyr Gly Arg Ser 210 215 220

Ala Phe Ala Leu Ile Lys Asp Arg Asp Gly Leu Ser Phe Leu Ser Thr 245 250 255 Ser Val Ala Val Ile Gly Val Val Ala Leu Leu Phe Ser Ser Leu Phe 260 265 270 15 Pro Asn Val Met Pro Thr Thr Leu Ala Asp Gly Val Thr Gly Tyr Leu 275 280 285 Glu Arg Leu Arg Lys Pro Leu Arg Ile Asp His Pro Asp Leu Asp Arg 290 295 300 His Cys Asp Arg Thr Ala Gly Cys Pro Leu Pro Arg Leu Asp Leu Leu 305 310 315 320 Gly Val Pro Gln Thr Thr Ser Arg Arg Ala Ser Val Cys Leu Lys Val 325 330 335 Gly Lys Ile Glu Tyr 34C 35 <210 5 <211 19 <212 PRT <213 Brevibacterium lactofermentum (220) 45 46 47 48 49 40 58 Het Asp Val Val Asp Ile Ala Arg Trp Gln Phe Gly Ile Thr Ala Va 1 5 10 15	5	Trp Ser Trp Ile Leu Ala Val Leu Ile Ile Ala Ala Val Leu GIV GIV 225 230 235 240	
Ser Val Ala Val IIe Gly Val Val Ala Leu Leu Phe Ser Ser Leu Phe 260		A = -	
275 280 285	10	222	
290 295 300 His Cys Asp Arg Thr Ala Gly Cys Pro Leu Pro Arg Leu Asp Leu Leu 305 310 315 320 Gly Val Pro Gln Thr Thr Ser Arg Arg Ala Ser Val Cys Leu Lys Val 325 330 335 Gly Lys Ile Glu Tyr 34C 35 (210) 5 (211) 19 (212) PRT (213) Brevibacterium lactofermentum (220) (221) UNSURE (222) (18) (400) 5 Met Asp Val Val Asp Ile Ala Arg Trp Cln Phe Gly Ile Thr Ala Value 355	15	200	
310 315 320 Gly Val Pro Gln Thr Thr Ser Arg Arg Ala Ser Val Cys Leu Lys Val 325 330 335 Gly Lys Ile Glu Tyr 340 (210) 5 (211) 19 (212) PRT (213) Brevibacterium lactofermentum (220) (221) UNSURE (222) (18) (400) 5 Met Asp Val Val Asp Ile Ala Arg Trp Gln Phc Gly Ile Thr Ala Val	20	222	
325 330 335 Gly Lys Ile Glu Tyr 34C 35 (210> 5 (211> 19 (212> PRT (213> Brevibacterium lactofermentum) (220> (221> UNSURE (222> (18)) (400> 5 Met Asp Val Val Asp Ile Ala Arg Trp Gln Phe Gly Ile Thr Ala Value (15) Met Asp Val Val Asp Ile Ala Arg Trp Gln Phe Gly Ile Thr Ala Value (15)	25	215 220	
Gly Lys Ile Glu Tyr 340 35 (210> 5 (211> 19 (212> PRT (213> Brevibacterium lactofermentum) (220> (221> UNSURE (222> (18)) (400> 5 Met Asp Val Val Asp Ile Ala Arg Trp Gln Phc Gly Ile Thr Ala Val		007	
<pre></pre>	30		
40	35		
45 <221> UNSURE <222> (18) <400> 5 Met Asp Val Val Asp Ile Ala Arg Trp Gln Phe Gly Ile Thr Ala Val	40	<212> PRT	
Met Asp Val Val Asp Ile Ala Arg Trp Gln Phe Gly Ile Thr Ala Va	45	<221> UNSURE	
	50	Met Asp Val Val Asp Ile Ala Arg Trp Gln Phe Gly Ile Thr Ala Va	al

	Tyr Xaa Phe	
5		
	<210> 6	
10	<211> 20	
	<212> PRT	
	(213) Brevibacterium lactofermentum	
15	<220>	
	<221> UNSURE	
	<222> (16, 17)	
20		
	<400> 6	
	Met Asp Leu Asn Thr Phe Trp Phe Ile Leu Ile Ala Phe Leu Phe Xaa	
	1 5 10 15	
25		
	Xaa Tyr Phe Leu	
	20	
30		
	·	
	<210> 7	
	<211> 20	
35	<212> DNA <212> Analificial Sequence	
	<213> Artificial Sequence	
	<220>	
40	<223> Description of Artificial Sequence: primer for PCR	
	<220>	
45	<221> misc_feature	
	<222> (9, 12)	
	(223) n=a or c or g or t	
50	<400> 7	
	atggayging ingayatyge	20
•	30	

	⟨210⟩ 8	
_	<211> 20	
5	<212> DNA	
	<213> Artificial Sequence	
10	<220>	
	(223) Description of Artificial Sequence: primer for PCR	
15	<400> 8	
	caraargiri tvarriccai	20
20	<210> 9	
	(211) 24	
	<212> DNA	
25	<213> Artificial Sequence	
	(220)	
20	(223) Description of Artificial Sequence: primer for PCR	
30	<400> 9	
	cgccagggit ticccagica cgac	24
35		
	<210> 10	
	(211> 24	
40	<212> DNA	
	(213) Artificial Sequence	
4 5	<220>	
	(223) Description of Artificial Sequence: primer for PCR	
50	<400> 10	•
	gagcggataa caatttcaca cagg	24

26

SEQUENCE LISTING

5	<110> Ajinomoto Co., Inc.
	<120> Cytochrome bd type quinol oxidase gene of
	Brevibacterium lactofermentum
10	
	<130> OP852
	<140>
15	<141>
	<150> JP 10-164019
20	<151> 1998-06-11
	<160> 10
25	<170> PatentIn Ver. 2.0
	<210> 1
30	<211> 3936
	<212> DNA
	<213> Brevibacterium lactofermentum
35	<220>
	<221> CDS
	<222> (933)(2483)
40	<400> 1
	ggatectete tgtteaaaae ageaeetaet ettttaetee egagtteega egtgeeeteg 60
4 5	acgaaagcct agaagtgacg gaccgagatg aggetgetca gaattttaag tttcacgtee 120
	aagacatcat cgaaactggg ttgtttatcg ccagaaataa tggattctgg caaggaaacc 180
50	togtogttgg cgaaagatat tocogacgag atgtotgoog aattotoaat tgggaacgaa 24

	acaatgaga	g cacga	cttat g	gctaca	aag t	ggacag	cta c	acatega	cg c	gccca	acct	300
5	ttgtgacct	a tcaca	aggct g	gatgatg	tat c	cgaagt	act c	gttacca	gg a	tgaad	ctegt	360
	cgatccgaa	it accct	tcatt g	gtattc	ccg c	ggcaac	cga a	agatcac	gt c	taat	gagat	420
10	caagcccat	c gctgc	gaatg t	gtggat	ctt c	atgttt	ttg t	gaagaag	ga c	gatg	ccgaa	480
	ggccttgal	t totto	tacct t	tggtcaa	gcg c	attcag	aaa a	acagcaaa	ıca g	tcat	cgatg	540
15	cccggaaa	ca aagga	gttgt g	gcaaccg	igtg g	tcacaa	tgg a	atctacag	jtt c	gaca	caccc	600
	gtcgaaca	aa gcctg	tttga 🤉	gtacctg	jagc a	caaatc	tcg o	ccgtaacg	ga g	rtaac	caccg	660
20 ·	caaccaag	cg tcgaa	aagca a	aaatctt	ttc g	agttt	tgg t	tgacttgt	ca a	caag	aaa aa	720
25	agcaaaat	ca gtcat	tgaca (gggaaag	ggtt g	jaccaca	atc g	ggggttag	gee t	ttct	aaagt	780
	taagctgt	ga geggg	gaactt :	aggaata	aac t	tcaacg	gaca a	acctttaa	aga a	igctc	ttatt	840
3 <i>0</i>	ggttcttc	gt tttgt	atcga	taaatao	caat c	ggtttc	ctg q	gctcaata	aag g	getgt	tcctg	900
	tcaatctg	ta aagaa	ngagga	aggggad	ccta g	gc gtg	gat (gtc gtt	gac	atc	gcg	953
35						Val	Asp '	Val Val	Asp 5	Ile	Ala	
	cgg tgg	caa ttc	gga at	t acc a	acc gi	c tat	cac	ttc att	ttt	gtc	cca	1001
40	Arg Trp	Gln Phe 10	Gly Il	e Thr	Thr Va	al Tyr	His	Phe Ile 20	Phe	Val	Pro	
	ctg acc	att ggc	tta go	a ccg (ctg gi	tc gcg	atc ·	atg caa	acg	ttt	tgg	1049
1 5	Leu Thr 25	Ile Gly	Leu Al	a Pro 1	Leu V	al Ala	Ile	Met Gln	Thr	Phe	Trp	
	caa gtt		*** ***		+ +	nt <i>aa</i> a	aat		***			1007
50	Gln Val		_	_			_					1097
	40	•	_	15	-		50	,			55	

29

	act	qtq	ctg	ctc	atc	aac	ttc	gcg	gtt	ggt	gta	gca	acg	ggc	att	gtg	1145
		_		Leu													
					60					65					70		
•																	
	cag	gag	ttc	cag	ttc	ggt	atg	aac	tgg	teg	gaa	tat	teg	cgt	ttc	gtc	1193
	Gln	Glu	Phe	Gln	Phe	Gly	Met	Asn	Trp	Ser	Glu	Tyr	Ser	Arg	Phe	Val	
10				75					80					85			
	ggt	gat	gtt	ttc	ggc	gga	ccg	ctg	gct	ttg	gag	999	ctc	atc	gcg	ttc	1241
15	Gly	Asp	Val	Phe	Gly	Gly	Pro	Leu	Ala	Leu	Glu	Gly	Leu	Ile	Ala	Phe	
13			90					95					100				
	ttc	CLL	gag	tct	gtg	ttc	tta	ggt	ctg	tgg	att	ttc	gga	tgg	9 99	aag	1289
20	Phe	Leu	Glu	Ser	Val	Phe	Leu	Gly	Leu	Trp	Ile	Phe	Cly	Trp	Gly	Lys	
		105					110					115					
_	att	cct	gga	tgg	ctg	cat	act	gcg	tcc	att	tgg	atc	gtt	gct	att	gcg	1337
25	Ile	Pro	Gly	Trp	Leu	His	Thr	Ala	Ser	Ile	Trp	Ile	Val	Ala	Ile	Ala	
	120					125					130					135	
*																	
30	acg	, aat	att	tct	gcc	tat	ttc	atc	atc	gtg	gcc	aac	tcg	ttt	atg	cag	1385
	Thr	Asn	Ile	Ser	Ala	Tyr	Phe	Ile	Ile	Val	Ala	Asn	Ser	Phe	Met	Gln	
					140					145					150		
												•					
35	cat	ccg	gtg	ggt	gct	gag	tat	aac	cct	gag	act	ggt	cgg	gcg	gag	ctt	1433
	His	Pro	Val	_		Glu	Туг	Asn	Pro	Glu	Thr	Gly	Arg			Leu	
				155	i				160)				165	i		
10																	
		_			-								_	_	-	ttc	1481
	Thi	ASI		-) Ala	Leu	Leu			ı Ser	Thi	Ala			Ala	Phe	
			170)				175	•				180)			
15	_																
																ctc	1529
	Pro			a Val	LAla	i Gl	_		e Let	ı Thi	r Ala			Phe	e Val	l Leu	
		18	>				190	ט				19!	>				

	gga	att	tcg	ggt	tgg	tgg	att	att	cgt	gcg	cac	cgc	cag	gcg	aag	aag	1577
	Gly	Ile	Ser	Gly	Trp	Trp	Ile	Ile	Arg	Ala	His	Arg	Gln	Ala	Lys	Lys	
5	200					205					210					215	
	_			-		_	_	_			_			_	aca	_	1625
10	Ala	Glu	Ala	Glu		Glu	Ser	Lys	His		Met	His	Arg	Pro	Ala	Leu	
					220					225					230		
															ttc		1673
15	Trp	Val	GIY		Trp	Inr	inr	vaı		ser	ser	vai	AIa		Phe	116	
				235					240					245			
	act	aac	gat	aca	CAG	aca	ааст	ctc	ata	ttc	ata	Can	cad	cca	atg	аад	1721
20			-		_		_		_			_			Met		2,22
		027	250				-,-	255					260			-1-	
	atg	gcg	tcg	gcg	gaa	tcc	ttg	tgt	gaa	acc	gcc	aca	gat	cca	aac	ttc	1769
25	Met	Ala	Ser	Ala	Glu	Ser	Leu	Cys	Glu	Thr	Ala	Thr	Asp	Pro	Asn	Phe	
		265	;		•		270					275					
30	tcc	att	ctg	aca	att	ggt	acg	cac	aac	aac	tgc	gat	acg	gta	acc	cac	1817
	Ser	Ile	Leu	Thr	Ile	Gly	Thr	His	Asn	Asn	Cys	Asp	Thr	Val	Thr	His	
	280					285					290	•				295	
35	ctg	ato	gat	gtt	ccg	ttt	gtg	ctt	cca	ttc	ttg	gct	gaa	gga	aaa	ttc	1865
	Leu	Ile	Asp	Va]	Pro	Phe	Va]	Leu	Pro	Phe	Leu	Ala	Glu	Gly	Lys	Phe	
					300	!				305	i				310	+	
40																	
		_				_		_		_			_	_		gag	1913
	Thi	GIZ	y va.			GIT	ı Gıy	/ val			ı Lei	ı GII	. Ala			Glu	
45				315	•				320					325	•		
45	Ca:	a orca	a f 2	- aa	r cct	- 00	, 22	· tar	· too		יפק י	- ++ <i>/</i>	7 ++1	- at	r err	: tac	1961
																r Tyr	
	U 21		33		,	- 34]	, ADI	335			انعد		34		_ 1111	,.	
50				-				,	-					-			
	ta	g tc	a tt	c ca	c ac	a ato	g at	c aa	c cta	a ato	ct	t qa	t tc	t tt	g gci	t ato	2009
	٠.			- 3													

	Trp		Phe	Arg	Ala	Met		Gly	Leu	Met	Leu	_	Ser	Leu	Ala	Ile	
5		345					350					355					
	gct	gcg	att	gcg	tgg	ctg	ttg	ctg	cgt	aag	aag	cgc	aca	cca	act	gga	2057
	Ala	Ala	Ile	Ala	Trp	Leu	Leu	Leu	Arg	Lys	Lys	Arg	Thr	Pro	Thr	Gly	
10	360					365					370					375	
	aag	att	gct	cgt	ctc	ttc	caa	atc	ggc	agc	CEC	att	gcc	att	cca	ttc	2105
	Lys	Ile	Ala	Arg	Leu	Phe	Gln	Ile	Gly	Ser	Leu	Ile	Ala	Ile	Pro	Phe	
15					380					385					390		
	cca	ttc	ttg	gct	aac	tct	gct	ggt	tgg	atc	ttc	acc	gag	atg	ggc	cgc	2153
	Pro	Phe	Leu	Ala	Asn	Ser	Ala	Gly	Trp	Ile	Phe	Thr	Glu	Met	Gly	Arg	
20				395					400					405			
	cag	cct	tgg	gtg	gta	cac	ccg	aat	cct	gaa	tct	gcc	ggc	gat	gcc	cga	2201
	Gln	Pro	Trp	Val	Val	His	Pro	Asn	Pro	Glu	Ser	Ala	Gly	Asp	Ala	Arg	
25			410	•				415					420				
	aca	gag	atg	atc	cgg	atg	act	gtt	gat	atg	ggt	gtg	tct	gat	cat	gcg	2249
30	Thr	Glu	Met	Ile	Arg	Met	Thr	Val	Asp	Met	Gly	Val	Ser	Asp	His	Ala	
		425					430					435					
	ccg	tgg	caa	gtc	tgg	ctg	act	cta	att	ggc	ttc	acg	att	ctc	tat	ctc	2297
35	Pro	Trp	Gln	Val	Trp	Leu	Thr	Leu	Ile	Gly	Phe	Thr	Ile	Leu	Tyr	Leu	
	440					445		•			450)				455	
40	ato	ttg	ttc	gtg	gtg	ı tgg	gtg	, tgg	ctg	att	cgc	ego	gca	gtt	ctg	atc	2345
40	Ile	Leu	Phe	. Val	Val	Trp	Val	Trp	Leu	Ile	Arg	Arg	Ala	va1	Leu	Ile	
					460	•				465	;				470		
45	gga	cca	CCE	gag	gaa	ggc	gct	: cca	tcc	gtg	g gag	g gca	aag	, act	. gga	ccg	2393
	Gly	Pro	Pro	Glu	Glu	Gly	Ala	Pro	Ser	- Val	Gli	ı Ala	Lys	Thi	Gly	/ Pro	
				475	5				480)				485	5		
50	gca	a acc	: ccc	, att	: gat	. tca	ı ga!	t ato	a cco	e ato	aca	a cco	cto	z caz	a tti	acc	2441
													-			Thr	
					_											-	

490 495 500

gtg ccg ccc caa cca cac gtg aaa agg aat aac cat gga tct
2483
Val Pro Pro Gln Pro His Val Lys Arg Asn Asn His Gly Ser
505 510 515

taatacettt tggtttatte teategeatt tttgtttgeg ggataettte teetegaagg 2543

attogactto ggtgtoggaa ttttagogoo gatcatoggt aaagattoog cogotaaaaa 2603 cacgateate egeaceateg gecetgtetg ggaeggaaat gaagtgtgge tgategtgge 2663 aggtggcgct ttgtttgctg cattccctga gtggtacgca acgatgttct ccggaatgta 2723 tergeegetg treetegige trigtigetegit gateatgege giggigggee trigaatggeg 2783 caaqaaagtc gatgateete gttggcaaaa gtggtetgae egggeeatet ttattggtte 2843 ttggactcca ccgctgatgt ggggattcat cttcgccaat attttcaagc ttgcatgccc 2903 atcaaggegg atcacaccat egatgetgea gtggetetge tgtgeaatgt teaaegtett 2963 egecateetg ggtgeacttg catteactge getgtteget etteatggee ttgeatteat 3023 ccgcctgaaa actgctggtc gggtgcgcac cgatgcggcg aaggcagctc cagtagtcgc 3083 acttettget geggtgactg gtggacettt cgtgttgtgg getgecateg cataeggeeg 3143 ttcctggtcc tggatcctcg cagtgctgat catcgcagcg gttctcggtg gagctttcgc 3203 actgatcaaa gaccgcgatg gattaagctt cctgtccact tccgtcgctg tcatcggtgt 3263 agttgcactg ctgtttagtt ccctattccc caacgtcatg ccaacaacgc ttgccgatgg 3323 cgtgactgga tatttggaac gcctccgcaa gccactacgc attgaccatc ctgacttgga 3383

55

15

20

25

30

35

40

45

50

cegecactgt gategeaceg etggttgtee tetaceaagg etggacetae tgggtgttee 3443

	gcaaacgact	tcacgccgag	ccagtgtctg	cctaaaagtt	ggaaaaattg	agtactaaat	3503
5	ctgacgctcc	ggctagtcgc	cgcacaggcc	ccgtcgatcc	gcggcttttg	cgcctatccc	3563
	ctgctacccg	ccgttgggtg	ataatcgcag	gtgttctcac	cgcgttgaaa	actctcgcga	3623
10	cagtcgcaat	gggettgete	atcggccaga	tggcagcggg	catcattgag	gtttcgggaa	3683
	gttctttgcc	ccgaatggaa	ctcatcgcgc	tcgccatcac	ggtggttgtg	cgcggacttc	3743
15	ttgcgtgggc	acaggatcgg	ttcggagcgo	gcatcgtccc	aggtgactgt	ggatettegg	3803
20	gagaaaaccc	: tgcggcacct	ggcacaaago	gateceegea	ccatcgatca	agccttgtgg	3863
.•	cgcacccgtt	tgacctctgg	g ccttgatggt	ttggggcctt	acctcaccgg	atttttgccg	3923
25	cactggccgd	cac					3936
	<210> 2						
30	<211> 517						
	<212> PRT		_		,	•	
	<213> Bre	vibacterium	lactoferme	ntum			
35	<400> 2						
			Ile Ala Arg		e Gly Ile T		
	1	5		10		15	
40	Tyr His P	he Ile Phe	Val Pro Leu	Thr Ile Gl	y Leu Ala P	ro Leu Val	
	-	20		25		30	
4 5	Ala Ile N		Phe Trp Gla			lis Trp Tyr	
		35	40	J	45		
	Arg Ala	Thr Arg Phe	Phe Gly Th	r Val Leu Le	eu Ile Asn I	he Ala Val	
50	50		55		60		

	Gly	Val	Ala	Thr	Gly	Ile	Val	Gln	Glu	Phe	Gln	Phe	Gly	Met	neA	Trp
	65					70					75					80
5																
	Ser	Glu	Tvr	Ser	Ara	Phe	Val	Glv	Asp	Val	Phe	Gly	Gly	Pro	Leu	Ala
	001		-,-		85			2		90		-	•		95	
					65					70					-	
10						_			_		_			•	~3	•
	Leu	Glu	Gly	Leu	Ile	Ala	Phe	Phe	Leu	Glu	Ser	Vai	Pne		GIA	ren
				100					105					110		
15	Trp	Ile	Phe	Gly	Trp	Gly	Lys	Ile	Pro	Gly	Trp	Leu	His	Thr	Ala	Ser
			115					120					125			
	Tle	Trn	Tle	Val	Ala	Ile	Ala	Thr	Asn	Ile	Ser	Ala	Tvr	Phe	Ile	Ile
20		130					135					140				
		130					133					110				
			_	_					_			-1-	63		•	
	Val	Ala	Asn	Ser	Phe		Gln	His	Pro	vai		Ala	GIU	lyr	ASN	
25	145					150					155					160
	Glu	Thr	Gly	Arg	Ala	Glu	Leu	Thr	Asp	Phe	Trp	Ala	Leu	Leu	Thr	Asn
					165					170					175	
30																
	Ser	Thr	Ala	Leu	Ala	Ala	Phe	Pro	His	Ala	Va1	Ala	Gly	Gly	Phe	Leu
				180					185					190		
35	The	- 11-	C).	. The	- Dhe	. Wal	T.ess	Gly	, Tla	Car	- Glv	Trr	Trr	T 1 a	Tle	Arg
	1112	. Alc			File	. 441	, peu			Jel	GLY	111				Æg
			195	•				200	,				205	•		
40	Ala	a His	s Arg	g Glr	ı Ala	Lys	Lys	Ala	Glu	Ala	Glu	lle	Glu	ı Ser	Lys	His
		210)				215	;				220)			
	Se:	r Mei	t His	s Arg	g Pro	Ala	Leu	Try	Va]	l Gly	Tr	Tr	Thi	Th:	val	Val
45	22	5				230	D				235	5				240
	Se	r Se	r Va	ו או	a Lei	ı Ph	e Il.	• Th	c Gly	y Ası	o Thi	c G1:	n Ala	a Lvs	a Lei	ı Met
	-	0			24				,	25					259	
50					24	_				23	•				٠ س	-

	Phe	Val	Gln	Gln 260	Pro	Met	Lys		Ala 265	Ser 2	Ala	Glu :		Leu (270	Cys (Glu
5	Thr	Ala	Thr 275	Asp	Pro	Asn	Phe	Ser 280	Ile	Leu	Thr		Gly 285	Thr 1	His .	Asn
10	Asn	Cys 290	Asp	Thr	Val	Thr	His 295	Leu	Ile	Asp	Val	Pro 300	Phe	Val :	Leu	Pro
15	Phe		Ala	Glu	Gly	Lys 310		Thr	Gly	Val	Thr 315	Leu	Gln	Gly	Val	Asn 320
20	Gln	Leu	Gln	Ala	Ala 325		Glu	Gln	Ala	Tyr 330	Gly	Pro	Gly	Asn	Tyr 335	Ser
25	Pro	Ası	Leu	340		Thr	Туг	тгр	Ser 345		Arg	Ala	Met	Ile 350	Gly	Leu
<i>30</i>	Met	. Let	355		Leu	ı Ala	lle	360		Ile	Ala	Trp	Leu 365	Leu	Leu	Arg
	Ly:	37		T hr	Pro	Th:	379		: Ile	Ala	Arg	Leu 380	Phe	Gln	Ile	Gly
35	Se:		u Il	e Ala	a Ile	39		e Pro	Phe	e Leu	395		Ser	Ala	Gly	100
40	11	e Ph	e Th	r Gl	1 Me		y Ar	g Glı	n Pro	410		. Val	His	Pro	Asn	
45	G1	u Se	r Al	a Gl		p Al	a Ar	g Th	r Gl:		: Ile	e Arg	j Met	430		Asp
50	Me	et G1	ly Va		r As	p Hi	s Al	a Pr 44		p Gl	n Va	l Trị) Le		. Lei	ı Ile
	G:	ly Pi	ne Tř	ır Il	e Le	eu Ty	rr ·Le	eu Il	e Le	u Ph	e Va	l Va	l Tr	p Vai	l Trj	p Leu

	450	455	460	
5	Ile Arg Arg Ala V 465	/al Leu Ile Gly Pr 470	o Pro Glu Glu Gly Ala 475	a Pro Ser 480
10		Thr Gly Pro Ala Th	ar Pro Ile Gly Ser Asp	Met Pro 495
15	Met Thr Pro Leu (Gln Phe Thr Val Pr 50	co Pro Gln Pro His Va 05 51	
20	Asn Asn His Gly : 515	Ser		
25	<210> 3 <211> 3936 <212> DNA <213> Brevibacte	erium lactoferment	·um	
30	<220> <221> CDS <222> (2476)(
35	<400> 3		cttttactcc cgagttccg	a egtgeeeteg 60
40			aggctgctca gaattttaa	
			ccagaaataa tggattctg	
4 5			g tggacagcta cacatcga	
50	ttgtgaccta tca	caagget gatgatgtat	ccgaagtact cgttacca	gg atgaactcgt 360

cgatccgaat a	cccttcatt	ggtattcccg	cggcaaccga	aagatcacgt	ctaatgagat	420
caageecate g	gctgcgaatg	tgtggatctt	catgtttttg	tgaagaagga	cgatgccgaa	480
ggccttgatt 1	cttctacct	tggtcaagcg	cattcagaaa	acagcaaaca	gtcatcgatg	540
cccggaaaca	aaggagttgt	gcaaccggtg	gtcacaatgg	atctacagtt	cgacacaccc	600
gtcgaacaaa	gcctgtttga	gtacctgagc	acaaatctcg	ccgtaacgga	gtaaccaccg	660
caaccaagcg	tcgaaaagca	aaatcttttc	gagttttgg	tgacttgtca	acaagggggg	720
agcaaaatca	gtcattgaca	gggaaaggtt	gaccacaatc	ggggttagcc	tttctaaagt	780
taagctgtga	gcgggaactt	aggaataaac	ttcaacgaca	acctttaaga	agctcttatt	840
ggttettegt	tttgtatcga	taaatacaat	cggtttcctg	gctcaataag	gctgttcctg	900
tcaatctgta	aagaagagga	aggggaccta	gcgtggatgt	cgttgacato	: gcgcggtggc	960
aattcggaat	taccaccgto	: tatcacttca	tttttgtcc	e actgaccatt	ggcttagcac	1020
cgctggtcgc	gatcatgca	acgttttggd	aagttaccg	g caaagagcad	tggtatcggg	1080
ctacgagatt	ttttggcac	gtgctgctca	a tcaacttcg	c ggttggtgta	a gcaacgggca	1140
ttgtgcagga	gttccagtt	c ggtatgaac	t ggtcggaat	a ttcgcgttt	c gtcggtgatg	1200
ttttcggcgg	accgctggc	t ttggaggg	c tcatcgcgt	t cttccttga	g tctgtgttct	1260
taggtetgtg	gattttcgg	a tgggggaag	a ttcctggat	g gctgcatac	t gcgtccatt	1320
ggatcgttgc	tattgcgac	g aatatttct	g cctatttca	it categtgge	c aactcgttt	a 1380
tgcagcatco	ggtgggtgc	t gagtataac	c ctgagactg	g tegggegga	g cttactgat	t 1440
tetgggetet	tctcacaa	ic tecacege <u>c</u>	ge tggetgegt	t ceegcatge	t gttgccggt	g 1500

gttttttaac	agctggaact	ttcgtcctcg	gaatttcggg	ttggtggatt	attegtgege	1260
accgccaggc	gaagaaggct	gaggcggaaa	tcgagtcgaa	gcattcaatg	cacaggccgg	1620
cgttgtgggt	tggttggtgg	accacagttg	tetetteegt	ggcactgttc	atcactggcg	1680
atacacaggc	gaageteatg	ttcgtgcago	: agccgatgaa	gatggcgtcg	gcggaatcct	1740
tgtgtgaaac	cgccacagat	ccaaacttct	: ccattctgac	: aattggtacg	cacaacaact	1800
gcgatacggt	aacccacctg	atcgatgtto	cgtttgtgct	tccattcttg:	gctgaaggaa	1860
aattcaccgg	tgtgactttg	g cagggtgta	a accagctcca	agctgcagcg	gagcaagcat	.1920
acggtcctgg	g caactactco	cctaacttg	t ttgtcacct	a ctggtcatto	: cgcgcaatga	1980
teggeetaat	gettggtte	t ttggctatc	g ctgcgattg	c gtggctgttg	g ctgcgtaaga	2040
agegcacac	c aactggaaa	g attgctcgt	c tcttccaaa	t cggcagcct	c attgccatte	2100
cattcccat	t cttggctaa	c tctgctggt	t ggatettea	c cgagatggg	c cgccagcct	t 2160
gggtggtac	a cccgaatcc	t gaatctgco	eg gegatgeed	g aacagagat	g atccggatg	a 2220
ctgttgata	t gggtgtgtc	t gatcatgc	ge egtggeaag	gt ctggctgac	t ctaattggc	t 2280
tcacgatto	t ctatctcat	c ttgttcgt	gg tgtgggtgt	g gctgattcg	c cgcgcagtt	C 2340
tgatcggac	cc accagagga	aa ggcgctcc	at ccgtggagg	gc aaagactgg	да ссддсаасс	:c 2400
cgattggtt	c agatatgo	cc atgacacc	gc tgcaattt	ac egtgeegee	cc caaccacac	g 2460
tgaaaagga				tgg ttt att Trp Phe Ile		
		1	5	-	10	

				gcg															2559
	Phe	Leu	Phe	Ala	Gly	Tyr	Phe	Le	ı L	eu (31u	Gly	Phe	Asp	Ph	e G	ly '	Val	
;			15					2	0					25					
							_							act				a.c.a	2607
				gcg															200,
10	Gly			Ala	Pro	He			ΥΥ	ys .	ASP	Ser	40		. Dy		1311	****	
		30)				35	•					40						
	200	ato	· car	acc	ato	ggc	. cc1	at	c t	aa	gac	qqa	aat	gaa	gt	.g 1	tgg	ctg	2655
				Thr															
15	45		, ,,,,,	,		50				;- - -		55						60	
	4.5					,						-							
	ato	ate	a ac	a ggt	gge	gct	tt	g ti	et ç	gct	gca	tto	cct	ga:	g t	gg	tac	gca	2703
20		_		a Gly															
					65						70						75		r
	ace	g at	g tt	c tc	c gga	ate	g ta	tc	tg (ccg	ctg	tto	ct	c gt	g c	tt	gtg	tcg	2751
25				e Se															
				8	0					85						90			
30	tt	g at	c at	g cg	c gt	g gt	g gg	jc c	tt	gaa	tgg	g cg	c aa	g aa	a g	itc	gat	gat	2799
	Le	u Il	e Me	t Ar	g Va	l Va	1 G1	ly L	eu	Glu	Tr) Ar	g Ly	s Ly	s V	/al	Asp	Asp	
			9	95				1	.00					10	5				
35																		tgg	
	Pr	o Aı	rg T	cb Cl	n Ly	s Tr	p S	er 2	qe	Arg	, Al	a Il	e Ph	ne I	le (Gly	Sex	Trp	
		1	10	•			1	15					12	20					
40																			
																		g ctt	
	Tì	ur P	ro P	ro L	eu Me	t Tı	rp G	ly i	Phe	Ile	e Ph	e Al	la As	sn I	le :	Phe	Ly	s Leu	
	12	25				13	30					13	35					140)
45																			- 0043
																		c tgo	
	A	la C	ys P	ro S			rg I	le	Thr	Pro			et L	eu G	in	Tr		u Cys	5
50					1	45					15	50					15	2	
50															 -	~-			t 2991
	t	gt g	gca a	itg t	tc a	ac g	tc t	tc	gco	: at	C C	cg g	gc 9	ca c		gc	a tt	c ac	L 2331

39

	Суз	Ala	Met	Phe	Asn	Val	Phe	Ala	Ile	Leu	Gly	Ala	Leu	Ala	Phe	Thr .	
			•	160					165					170			
5	aca	cta	ttc	act	CEE	cat	aac	ctt	gca	ttc	atc	cac	cta	aaa	act	get	3039
		_	Phe	_			-										
			175					180					185				
10																	
	ggt	cgg	gtg	cgc	acc	gat	gcg	gcg	aag	gca	gct	cca	gta	gtc	gca	ctt	3087
	Gly	Arg	Val	Arg	Thr	Asp	Ala	Ala	Lys	Ala	Ala	Pro	Val	Val	Ala	Leu	
15		190					195					200					
		_	gcg								_		_	-		_	3135
20	205	Ald	Ala	vai	Inr	210	GIY	PIO	Pne	vai	215		Ala	ATG	116	220	
	203															220	
	tac	ggc	cgt	tcc	tgg	tcc	tgg	atc	ctc	gca	gtg	ctg	atc	atc	gca	gcg	3183
	Tyr	Gly	Arg	Ser	Trp	Ser	Trp	Ile	Leu	Ala	Val	Leu	Ile	Ile	Ala	Ala	
25					225					230					235		
	gtt	ctc	ggt	gga	gct	ttc	gca	ctg	atc	aaa	gac	cgc	gat	gga	tta	agc	3231
30	Val	Leu	Gly	_		Phe	Ala	Leu		-	Asp	Arg	Asp	_		Ser	
				240					245					250	١		
	tto	cto	tcc	act	tro	ata	act	atc	ato	aat	ata	att	aca	cto	cto	ttt	3279
35		_				_	_	_			_	_	_		_	Phe	32.73
			255					260		,			265				
40	agt	tec	cta	tto	ccc	aac	gto	atg	сса	aca	acc	ctt	gcc	gat	ggc	gtg	3327
	Ser	Ser	Leu	Phe	Pro	Asn	Va)	Met	Pro	Thr	Thi	Leu	Ala	Asp	Gly	val	
		270)				275	5				280)				
									•								
45				_	_	_		_				-		_		cct	3375
	285	_	/ 1yı	. rer	ı Gil			ı Arg	Lys	Pro		-	3 116	e Ası) HIS	Pro	
	263	•				290	,				299	,				300	
50	gad	e tt	g gad	cgc	cae	tgi	t gai	t ege	aco	get	t gg	t tgi	t cci	t Cta	a cca	a agg	3423
	_			_		-	_	_		_		-				Arg	
						-						_				_	

		305			310		315	
5	ctg gac cta	ctg ggt	gtt ccg	caa acg	act tca	cgc cga gc	c agt gtc	3471
	Leu Asp Leu	Leu Gly	Val Pro	Gln Thr	Thr Ser	Arg Arg Al	a Ser Val	
		320		325	i	33	0	
10						_		
10	tgc cta aaa	_				gac gctccgg	jcta	3518
	Cys Leu Lys		Lys Ile		-			
	335			340				
15				ti	++	nt coost ool	* ********	3578
	gregeegeae	aggeceegt	e gatee	gegge c	cegegee	. acceeeige	accegeegtt	3378
	gggtgataat	cacacatat	t ctcac	cacat t	raaaact ct	cacaacaat	gcaatgggct	3638
20	gggcgacaac	cgcaggcg	ic cicac	egege e	Juauaccci	. egegaeage	, gcaaagggoo	2020
20	racteatega	ccagatgg	ca goggg	catca t	tgaggtttd	gggaagttc	ttgccccgaa	3698
	2500000033		3-333		333	333 3		
	tggaactcat	cgcgctcg	cc atcac	ggtgg t	tgtgcgcgg	g acttettge	g tgggcacagg	3758
25						•		
	atcggtt cgg	agcgcgca	te gteed	aggtg a	ctgtggat	c ttcgggaga	a aaccetgegg	3818
30	cacctggcac	aaagcgat	cc ccgca	ccatc g	atcaagcc	t tgtggcgca	c ccgtttgacc	3878
	tctggccttg	atggtttg	gg gcctt	acctc a	ccggattt	t tgccgcact	g gccgccac	3936
35								
	<210> 4			•				
	<211> 341							
40	<212> PRT	(book omis		fa				
	<213> Brev	ibacteriu	im lacto	rerment	LIN .			
	<400> 4							
45		u Asn Thi	. Phe Tr	o Phe II	le Leu Il	e Ala Phe I	eu Phe Ala	
4 5	1		5		10		15	
	-	•					_	
	Gly Tyr Ph	e Leu Lei	u Glu Gl	y Phe A	sp Phe Gl	ly Val Gly	Ile Leu Ala	
50		20		-	- 25	-	30	

41

	Pro	Ile	Ile 35	Gly	Lys	Asp	Ser	Ala 40	Ala	Lys	Asn	Thr	Ile 45	Ile	Arg	Thr
5	Ile	Gly 50	Pro	Val	Trp	Asp	Gly 55	Asn	Glu	Val	Trp	Leu 60	Ile	Val	Ala	Gly-
10	Gly 65	Ala	Leu	Phe	Ala	Ala 70	Phe	Pro	Glu	Trp	Tyr 75	Ala	Thr	Met	Phe	Ser 80
15	Gly	Met	Tyr	Leu	Pro 85	Leu	Phe	Leu	Val	Leu 90	Val	Ser	Leu	Ile	Met 95	Arg
20	Val	Val	Gly	Leu 100	Glu	Trp	Arg	Lys	Lys 105	Val	Asp	Asp	Pro	Arg 110	Trp	Gln
25	Lys	Trp	Ser 115	Asp	Arg	Ala	Ile	Phe 120	Ile	Gly	Ser	Trp	Thr 125	Pro	Pro	Leu
30	Met	Trp 130	Gly	Phe	Ile	Phe	Ala 135	Asn	Ile	Phe	Lys	Leu 140	Ala	Cys	Pro	Ser
	Arg 145		Ile	Thr	Pro	Ser 150		Leu	Gln	Trp	Leu 155	Cys	Cys	Ala	Met	Phe 160
35	Asn	Val	Phe	Ala	Ile 165		Gly	Ala	Leu	Ala 170		Thr	Ala	Leu	Phe 175	
40				180					185					190		Arg
4 5			195	i				200					205			Val
50		210)				215	•				220	ı			Ser
	Trp) Ser	Trp) Ile	Let	ı Ala	ı Val	Leu	Ile	: Ile	: Ala	Ala	Val	Leu	Gly	Gly

	225		2	30			235				:	240
5	Ala Phe	Ala Leu	Ile L 245	ys Asp	Arg		ly Leu :50	Ser	Phe		Ser '	Thr
10 .	Ser Val	Ala Val 260	Ile G	ly Val	Val	Ala L 265	eu Lev	Phe	Ser	Ser 270	Leu	Phe
15	Pro Asn	Val Met	Pro 1	Thr Thi	Leu 280	Ala A	Asp Gly	y Val	Thr 285	Gly	Tyr	Leu
	Glu Arg 290	Leu Arg	Lys :	Pro Let		Ile i	Asp Hi	300		Leu	Asp	Arg
20	His Cys	Asp Arg		Ala Gl	y Cys	Pro	Leu Pr 31		g Leu	Asp	Leu	Leu 320
25	Gly Val	l Pro Gli	325	Thr Se	r Arg	arg	Ala Se	er Va	l Cys	. Leu	Lys 335	
30	Gly Lys	s Ile Gl										
35	<210> <211> <212>	19										
40		Brevibac	cteriu	m lact	ofera	nentum	1					
45	<220> <221> <222>	UNSURE (18)	-									
50	<400> Met A	5 sp Val V		p Ile i	Ala A	rg Trị	p Gln 1	Phe G	ly I	le Tì		la Val 15

Tyr Xaa Phe

5 <210> 6 <211> 20 10 <212> PRT <213> Brevibacterium lactofermentum <220> 15 <221> UNSURE <222> (16,17) 20 <400> 6 Met Asp Leu Asn Thr Phe Trp Phe Ile Leu Ile Ala Phe Leu Phe Kaa 15 25 Xaa Tyr Phe Leu 20 30 <210> 7 <211> 20 <212> DNA 35 <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer for PCR 40 <220> <221> misc_feature <222> (9,12) <223> n=a or c or g or t <400> 7 50 atggaygtng tngayatygc 20

44

	<210> 8	
	<211> 20	
5	<212> DNA	
	<213> Artificial Sequence	
10	<220>	
10	<223> Description of Artificial Sequence: primer for PCR	
	<400> 8	20
15	caraargtrt tvarrtccat	20
	<210> 9	
20	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
25	<220>	
	<223> Description of Artificial Sequence: primer for PCR	
30	<400> 9	
	cgccagggtt ttcccagtca cgac	24
35	<210> 10	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
40		
	<220>	
	<223> Description of Artificial Sequence: primer for PCR	
45		
	<400> 10	
	gagcggataa caatttcaca cagg	24
50		

Claims

- 55 1. A DNA fragment encoding a polypeptide defined in the following (A) or (B);
 - (A) a polypeptide which has an amino acid sequence shown in SEQ ID NO: 2 of Sequence Listing,
 - (B) a polypeptide which has an amino acid sequence shown in SEQ ID NO: 2 of Sequence Listing comprising

substitution, deletion, insertion, addition or inversion of one or a plurality of amino acid residues in the amino acid sequence, and can constitute a protein exhibiting cytochrome bd type quinol oxidase activity together with a subunit II of cytochrome bd type quinol oxidase having an amino acid sequence shown in SEQ ID NO: 4.

- 5 2. A DNA fragment encoding a polypeptide defined in the following (C) or (D);
 - (C) a polypeptide which has an amino acid sequence shown in SEQ ID NO: 4 of Sequence Listing,
 - (D) a polypeptide which has an amino acid sequence shown in SEQ ID NO: 4 of Sequence Listing comprising substitution, deletion, insertion, addition or inversion of one or a plurality of amino acid residues in the amino acid sequence, and can constitute a protein exhibiting cytochrome bd type quinol oxidase activity together with a subunit I of cytochrome bd type quinol oxidase having an amino acid sequence shown in SEQ ID NO: 2.
 - 3. A DNA fragment encoding a polypeptide defined in the following (A) or (B), and a polypeptide defined in the following (C) or (D);
 - (A) a polypeptide which has an amino acid sequence shown in SEQ ID NO: 2 of Sequence Listing,
 - (B) a polypeptide which has an amino acid sequence shown in SEQ ID NO: 2 of Sequence Listing comprising substitution, deletion, insertion, addition or inversion or one or a plurality of amino acid residues in the amino acid sequence, and can constitute a protein exhibiting cytochrome bd type quinol oxidase activity together with a subunit II of cytochrome bd type quinol oxidase having an amino acid sequence shown in SEQ ID NO: 4,
 - (C) a polypeptide which has an amino acid sequence shown in SEQ ID NO: 4 of Sequence Listing,
 - (D) a polypeptide which has an amino acid sequence shown in SEQ ID NO: 4 of Sequence Listing comprising substitution, deletion, insertion, addition or inversion of one or a plurality of amino acid residues in the amino acid sequence, and can constitute a protein exhibiting cytochrome bd type quinol oxidase activity together with a subunit I of cytochrome bd type quinol oxidase having an amino acid sequence shown in SEQ ID NO: 2.
 - 4. The DNA according to claim 1, which is a DNA defined in the following (a) or (b):
 - (a) a DNA having a nucleotide sequence corresponding to nucleotide numbers 933 to 2483 in the nucleotide sequence depicted in SEQ ID NO: 1 in Sequence Listing; or
 - (b) a DNA which is hybridizable with the nucleotide sequence of above (a) under a stringent condition, and which codes for a polypeptide which can constitute a protein exhibiting cytochrome bd type quinol oxidase activity together with a subunit II of cytochrome bd type quinol oxidase having an amino acid sequence shown in SEQ ID NO: 4.
 - 5. The DNA according to claim 2, which is a DNA defined in the following (c) or (d):
 - (c) a DNA having a nucleotide sequence corresponding to nucleotide numbers 2476 to 3498 in the nucleotide sequence depicted in SEQ ID NO: 3 in Sequence Listing; or
 - (d) a DNA which is hybridizable with the nucleotide sequence of above (c) under a stringent condition, and which codes for a polypeptide which can constitute a protein exhibiting cytochrome bd type quinol oxidase activity together with a subunit I of cytochrome bd type quinol oxidase having an amino acid sequence shown in SEQ ID NO: 2.
- 45 6. The DNA according to claim 3, which comprising a DNA defined in the following (a) or (b), and a DNA defined in the following (c) or (d):
 - (a) a DNA having a nucleotide sequence corresponding to nucleotide numbers 933 to 2483 in the nucleotide sequence depicted in SEQ ID NO: 1 in Sequence Listing; or
 - (b) a DNA which is hybridizable with the nucleotide sequence of above (a) under a stringent condition, and which codes for a polypeptide which can constitute a protein exhibiting cytochrome bd type quinol oxidase activity together with a subunit II of cytochrome bd type quinol oxidase having an amino acid sequence shown in SEQ ID NO: 4; and
 - (c) a DNA having a nucleotide sequence corresponding to nucleotide numbers 2476 to 3498 in the nucleotide sequence depicted in SEQ ID NO: 3 in Sequence Listing; or
 - (d) a DNA which is hybridizable with the nucleotide sequence of above (c) under a stringent condition, and which codes for a polypeptide which can constitute a protein exhibiting cytochrome bd type quinol oxidase activity together with a subunit I of cytochrome bd type quinol oxidase having an amino acid sequence shown

10

15

20

25

30

35

40

50

in SEQ ID NO: 2.

5

15

20

25

30

35

40

45

50

55

- The DNA fragment of claim 1, which has a nucleotide sequence comprising nucleotides of the nucleotide numbers 933 to 2483 in the nucleotide sequence shown in SEQ ID NO: 1.
- The DNA fragment or claim 2, which has a nucleotide sequence comprising nucleotides of the nucleotide numbers 2476 to 3498 in the nucleotide sequence shown in SEQ ID NO: 1.
- The DNA fragment of claim 3, which has a nucleotide sequence comprising nucleotides of the nucleotide numbers
 933 to 3498 in the nucleotide sequence shown in SEQ ID NO: 1.
 - 10. An expression vector comprising a DNA molecule according to any one of claims 1 to 9.
 - 11. A procaryotic host cell comprising one or more expression vector(s) according to claim 10.
 - 12. A method for the production of a protein having cytochrome bd type quinol oxidase activity comprising culturing the procaryotic host cell according to claim 11 and isolating said protein from said host or culture.

48

	Br.1 cyda 1:MDVVDIARWQFGITTVMFIFVPLTIGLAPLVAIMQTFWQVTGKEHWYRATRFFG SS	
	R CT CHAR 1 MAIGYOPVILL SRTITEL TL TVHIIYATIGVGVPLMIAIAQWVGIRKNOMHYILLARRWT 58	
	E.CO CYDA 1:MLDIVELSRLQFALTAMYHFLFVPLTLGMAFLLAIMETVYVLSGKQIYKDMTKFWG S6	
	• • • • • • • • • • • • • • • • • • •	
	Br. l cyda S6: TVLLINFAVGVATGIVQEFQFGMNWSEYSRFVGDVFGGPLALEGLIAFFLESVFLGLWIF 115	
	TO THE PERSON OF	
	A A A A A A A A A A A A A A A A A A A	
	E.co cyda S7:KLFGINFALGVATGLTMEFQFGINBSTTSHTVGDIFVAPCATEGEPAPPCESTFVGCFFF 110	
	THE STATE OF THE S	
	8r.1 cyda 116:GWGKI-PGWLHTASIWIVAIATNISAYFIIVANSFMQHPVGAEYNPETGRAELTDFWALL 174	
	B.st cyda 118: TWDRFENQKKHLLLLIPVAIGSSASAHVYYDGERVYEYAARFELKNGELVNIDPIVAM 175	
	E. CO CYDA 117: GWDRL-GKVQHMCVTWLVALGSNLSALWILVANGWMQNPIASDFNFETMRMEMVSFSELV 175	
	22.4	
	Br. 1 cyda 175: TNSTALAAFPHAVAGGFLTAGTFVLGISGWWITRAHRQAKKAEAEIESKHSMHRPALWYG 234	
	B.st Cyda 174: FNPAMPTKVAHVLATSYMTSAFVLASIAAWHLWKGNRHIYHRKALHLTMKTAFIFSVASA 235	
	E.CO CYDA 176: LNPVAQVKFVHTVASGYVTGAMFILGISANYMLKGRDLAFAKRSFAIAASFGMAAVLSVI 235	
	· · · · · · · · · · · · · · · · · · ·	
	5558	
	Br.1 cyda 235: WWTTVVSSVALFITGDTQAKLMFVQQPMKMASAESLCETATDPNFSILTIGTHNNCDTV 293	
	B.st cyda 236:LVGDLSGKFLAEYQPEKLAAAEWHFETSSHAPLTLFGTLEEDNEV 280	
	E.co cyda 236:VLGDESGYEMGDVQKTKLAAIEAEWETQPAPAAFTLFGIPDQEEETN 282	
		2
	Br.l cyda 294:THLIDVPFVLPFLAEGKFTGVTLQGVNQLQAAAEQAYGPG3	٠.
	B.st Cyda 281:KYALEIPYALSILAH-NHPAAVVTGLNDIPEDERPPL	<u>.</u>
	E.CO CYMA 283:KFAIQIPYALGIIAT-RSVDTPVIGLKELMVQHEERIRNGMKAYSLLEQLRSGSTDQAVRDQFNS 3	-
	₩	
	Br.1 cyda 334:NYSPNLFVTYWSFRAIGLMLGSLAIAAI 362	
	R ST CVAL 317:YTHYL-FDWYTTGVFLMVVAAV 338	
	E.co cyda 347:MKKDLGYGLLLKRYTPNVADATEAQIQQATKDSIPRVAPLYFAFRIMVACG-FLLLAIIA 405	
	Br.l cyda 363:AWLLLRKKRTPTGKIARLFQIGSLIAIPFPFLANSAGWIFTEMGRQPWVVHPNPESA 419	
	B.st cyda 339:YWLGSIFRWKWTAKNWFFGLLVAGGPLAMIAIEAGWYLAEVGRQPWILRGYMKTA 393	
	E.CO CYDA 406: LSFWSVIRNR IGEKKWLLRAALYGIPLPWIAVEAGWFVAEYGRQPWAIGEVLPTA 460	
	E. CO CYDA 400. EST 1134-1144-1244-1444-1444-1444-1444-1444-	
	Br.1 cyda 420:GDARTEMIRMTVDMGVSDHAPWQVWLTLIGFTILYLILFVVWVWLIRRAVLIGPPEEGAP 479	
•	Br. L CYDA 420:GDARTEMIRMIVUMGVSUMAPMOVNETELGETIETETETETETETETETETETETETETETETETETET	
	6 SE SONY AGG. ECTIVAMADIME -AF-LEFF LACATVONIACTIVAL CONT.	
	E.CO CYDA 461:VANSSLTAGDLIFSMVLICGLYTLFLVAELFLMFKFARLGPSSLKTGRYHFEQSSTTTQP 520	
	VII	
	3r.l cyda 480:SVEAKTGPATPIGSDMPMTPLQFTVPPQPHVKRNNHGS 517	
	B.st cydA	
	E.co cydA 521:AR 522	

Fig. 2

t- 1	cydB	1:MDLNTFWFILIAFLFAGYFLLEGFDFGVG	ILAPIIGKDSAAKNTIIRTIGPV 52
	-	1:MTLEVIGISVLW_FLEGYIIVASIDEGAGEESV-	SHWANQQHILHR-IIQRYLSPV 55
	cydB	1:MIDYEVL-RFIWWLLVGVLLIGFAVTDGFDMGVG	ALTRELGRADTERRIMINSIAPH 56
. CO	cydB	I : MIDIEAC-KEIMUCTAGAETIG MAIDGE DIGAGE	•
		7	ELVINCETMONACI CHOVENDODONO 112
Br.l	cydB	53:WDGNEVWLIVAGGALFAAFPEWYATMFSGMYLPL	FLACASTIMAAACTEUWWAAAAA HAATTA
3.st	cydB	56:WEVTNVFLVFFFVGIVGFFPKTAYYYGSILLVPA	SIAIVLLAIKGSYTAPH-ITGETEK- 113
	cydB	57: WDGNQVWLITAGGALFAAWPMVYAAAFSGFYVAM	ILVLASLEERPVGEDYRSKIEEIKWK 116
	•	• • • II	• •
Rr 1	cvdR	113:KWSDRAIFIGSWTPPLMWGFIFANIFKLACPSRR	ITPSMLQWLCCAMFNVFAILGALAFTA173
0	d0	- 134- NWYLLAYGI TGI FTPASLSTVLTISE-GGFVEB	MAAGVALDYGKLFASPLSWSVVLLSVIII
5.3L	cyde	117:NMWDWGIFIGSFVPPLVIGVAFGNLLQ-GVPFNV	DEYLRLYYTGNFFQLLNPFGLLAGVVS176
E . CU	Cydd	III	IV

		174:LFALHGLAFIRLKTAGRVRTDAAKAAPVVALLAA	VTGGPFVLWAAIAYGRSW 225
BՐ.Լ -	cyas	174: LFALHULAF IREKTAGARAK BANGAN TALLING	COTMI SALL TTYOL RYHN 224
B.st	cyar	173:5VLT15AVFLTTTADAAGDEQAAACEAATAEEII3 177: <u>VGMII</u> TQGATYLQMRTVGELHLRTRATAQ <u>VAALV</u>	TI VCEAL ACCOMMYCTDGYVVKSTMD 236
E.co	cydB	177: VGMII I QGA I TLUMKI VGELHEK I KATAQVAALV	V
			•
			# TTAAN# CCACAL TYDDDC1 CEL C 755
Br.l	cydB	3 226:SWILA	VITARVEGGAPALIKUNDGESPES 250
B.st	cydB	3 ZZS:PEHYDNLWNVAY	IMENIAL SALES SALE
E.co	cydB	Z37:HYAASNPLNKEVVREAGAWLVNFNNTPILWAIPA	LGVVLPLLILLIARMUKAAWAFVF 294
		•	VI .
Br.l	cydB	3 256:TSVAVIGVVALLESSLEPNVMPTTLADGVTGYLE	ERLRKPLRIDHPDLDRHCDRTAGCPLP 315
0	- A - A - B	R 751 · AFTALL FOYAFAFYAYGTSHYPYLLYPYLTI'	YDGFTNETMAMALIVAFIAGLLLLIP- 317
F co	CVdB	B 295: SSLTLACIILTAGIAMEPFVMPSSTMMNASLTM	VDATSSQLTLNVMTWVAVVLVPIILLY 354
L . CC	Cyco	VII	VIII
		· • •	
0 - 1	مم	B 316:RLDLLGVPQTTSRRASVCLKVGKIEY 341	
שר.ו	cyas	B 316:KUULLGYPQTT3KKASVCLKVGKILT 341	
B.st	cydB	B 318:SLYLLMRLFLFNKAYVKGKWEGGKG 342 B 355:TAWCYWKMFGRITKEDIERNTHSLY 379	
E ~	Shung	R 355. AME AMKWERYTIKENTEKNIMPET 3/2	

F i g. 3