3 Graph Query Language Semantics

Graph Query Languages: SPARQL, Cypher, and Gremlin.

Most widely used query languages in practice but offer significant differences:

- SPARQL operates over RDF graphs, i.e. edge-labelled graphs;
- Cypher is designed to operate over property graphs;
- Gremlin is more imperative in nature than the other two, geared more towards graph traversal than graph pattern matching.

Our interest: semantic issues of graph pattern matching and graph traversal

Given an ELG G and query Q:

Two matches:

$$h_1 = \{X \to 1, Y \to 2, Z \to 3, W \to A\}$$

$$h_2 = \{X \to 4, Y \to 2, Z \to 1, W \to B\}$$

ELG representation by relation edge(from, label, to)

Graph G as instance of ternary relation edge:

from	label	to
1	а	2
2	а	3
1	а	3
4	а	3
4	Ь	2
2	Ь	1
4	Ь	1

Query Q as boolean Conjunctive Query (CQ):

$$\forall X, Y, Z, W \ (\textit{true} \leftarrow \textit{edge}(X, W, Y) \land \textit{edge}(Y, W, Z) \land \textit{edge}(X, W, Z))$$

3.1 Conjunctive Queries

Definition

A conjunctive Query Q over a database schema R is given as

such that for $1 \le i \le n$

- R_i a relation name in R and
- \vec{U} and \vec{U}_i vectors of variables and constants;
- **a** any variable appearing in \vec{U} appears also in some \vec{U}_i .
- Left to ← is the head of the query, and to the right there is the body. The atoms in the body are also called subgoals.

Example 1 - quantifiers and connectives are explicitly given

$$\forall X,Y,Z,W \ (\ \textit{ans}(W) \leftarrow \textit{edge}(X,W,Y) \land \textit{edge}(Y,W,Z) \land \textit{edge}(X,W,Z) \)$$

Example 2 - quantifiers and connectives are implicitly given

Sales(Part, Supplier, Customer), Part(PName, Type), Cust(CName, CAddr), Supp(SName, SAddr).

$$Q: \qquad \textit{ans}(T) \leftarrow \boxed{\textit{Sales}(P, S, C), \textit{Part}(P, T), \textit{Cust}(C, A), \textit{Supp}(S, A)}$$

$$ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n}).$$

Answer

- The set of answers Q w.r.t. an instance T of the given relations is denoted
- If there is a <u>substitution (match, mapping)</u> σ from the variables in U_1, \ldots, U_n to the constants in (dom), such that $(R_1(\vec{U_1})), \ldots, (\sigma(R_n(\vec{U_n}))) \in \mathcal{I}$, then by applying the same substitution σ to \vec{U} we say that $\sigma(ans(\vec{U}))$ is an answer in
- Substitutions are functions a constant is mapped into itself.

Problemes

Let Q, Q_1 , Q_2 be conjunctive queries.

Containment: $Q_1 \sqsubseteq Q_2$, i.e., $Q_1(\mathcal{I}) \subseteq Q_2(\mathcal{I})$ for any instance \mathcal{I} ?

Equivalence: $Q_1 \equiv Q_2$, i.e., $Q_1 \sqsubseteq Q_2$ and $Q_2 \sqsubseteq Q_1$?

Minimization: Given (Q_1) construct an equivalent query (Q_2) , which has as most as many subgoals in its body as Q_1 and is minimal in the sense, that any query (Q_3) being equivalent to (Q_2) has at least as many subgoals

in the body as Q_2 .

 Q_2 is called minimal.

Relation edge:

from	label	to
1	а	2
2	а	3
1	а	3
4	а	3
4	Ь	2
2	Ь	1
4	b	1

Containment relationship?

$$Q: \qquad \textit{ans}(X,Z) \leftarrow \textit{edge}(X,W,Y), \textit{edge}(Y,W,Z), \textit{edge}(X,W,Z)$$

$$\begin{array}{ll} \textit{Q'}: & \textit{ans}(\textit{X}, \textit{Z}) \leftarrow \textit{edge}(\textit{X}, \textit{W}, \textit{Y}), \textit{edge}(\textit{Y}, \textit{W}, \textit{Z}), \textit{edge}(\textit{X}, \textit{W}, \textit{Z}), \\ & \textit{edge}(\textit{X'}, \textit{W'}, \textit{Y}), \textit{edge}(\textit{Y}, \textit{W'}, \textit{Z'}), \textit{edge}(\textit{X'}, \textit{W'}, \textit{Z'}) \end{array}$$

$$Q'': \qquad \textit{ans}(X,X') \leftarrow \textit{edge}(X,W,Y), \textit{edge}(Y,W,Z), \textit{edge}(X,W,Z), \\ \textit{edge}(X',W',Y), \textit{edge}(Y,W',Z'), \textit{edge}(X',W',Z')$$

Relation edge:

from	label	to
1	а	2
2	а	3
1	а	3
4	а	3
4	Ь	2
2	Ь	1
4	b	1

Containment relationship?

$$Q: \qquad \textit{ans}(X,X) \leftarrow \textit{edge}(X,W,Y), \textit{edge}(Y,W,Z), \textit{edge}(X,W,Z), \\ \textit{edge}(X',W',Y), \textit{edge}(Y,W',Z'), \textit{edge}(X',W',Z')$$

$$Q': \qquad \textit{ans}(X,X') \leftarrow \textit{edge}(X,W,Y), \textit{edge}(Y,W,Z), \textit{edge}(X,W,Z), \\ \textit{edge}(X',W',Y), \textit{edge}(Y,W',Z'), \textit{edge}(X',W',Z')$$

Containment relationship?

$$Q:$$
 ans $(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A)$

$$Q': ans(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A), Sales(P', S', C'), Part(P', T)$$

Lemma

Let

$$Q_1$$
: $ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n})$
 Q_2 : $ans(\vec{U}) \leftarrow S_1(\vec{V_1}), \dots, S_m(\vec{V_m})$

be conjunctive queries, where

$$\{R_1(\vec{U_1}), \dots, R_n(\vec{U_n})\} \supseteq \{S_1(\vec{V_1}), \dots, S_m(\vec{V_m})\}$$

Having more constraint, you will have less answers

Substitution

- A substitution θ over a set of variable \mathcal{D} is a mapping from \mathcal{D} to $\mathcal{U} \cup dom$ where domain a corresponding domain.
- We extend θ to constants $a \in dom$ and relation names $R \in \mathcal{R}$, where $\theta(a) = a$, resp. $\theta(R) = R$.

Note, differently to a *match*, variables may be renamed, i.e. mapped to variables.

Example

Consider

Q:
$$ans(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A)$$

$$Q': \qquad \textit{ans}(T) \leftarrow \textit{Sales}(P, S, C), \textit{Part}(P, T), \textit{Cust}(C, A), \textit{Supp}(S, A), \\ \textit{Sales}(P', S', C'), \textit{Part}(P', T)$$

and
$$\theta$$
:

Containment Mapping (Homomorphism)

Given conjunctive queries

$$Q_1:$$
 ans $(ec{U}) \leftarrow R_1(ec{U_1}), \ldots, R_n(ec{U_n})$ ans $(ec{V}) \leftarrow S_1(ec{V_1}), \ldots, S_m(ec{V_m})$

Substitution θ is called *containment mapping* from Q_2 to Q_1 , if Q_2 can be transformed by means of θ to become part of Q_1

- \bullet $\theta(ans(\vec{V})) = ans(\vec{\vec{U}}),$
- for $i=1,\ldots,m$ there exists a $j\in\{1,\ldots,n\}$, such that $\theta(S_i(\vec{V_i}))=R_i(\vec{U_i})$.

$$Q: ans(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A)$$

$$Q'$$
: $ans(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A), Sales(P', S', C'), Part(P', T)$

 θ :

 θ is a containment mapping.

Theorem

Let

$$Q_1$$
: $ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n})$
 Q_2 : $ans(\vec{V}) \leftarrow S_1(\vec{V_1}), \dots, S_m(\vec{V_m})$

be conjunctive queries.

 $Q_1 \sqsubseteq Q_2$ iff there exists a containment mapping θ from Q_2 to Q_1 .

$$Q_1:$$
 ans $(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n})$ $Q_2:$ ans $(\vec{V}) \leftarrow S_1(\vec{V_1}), \dots, S_m(\vec{V_m})$ $Q_1 \sqsubseteq Q_2$?

Proof " \Leftarrow ", i.e. there exists a containment mapping θ from Q_2 to Q_1 .

Let \mathcal{I} be a database instance and let $\mu \in Q_1(\mathcal{I})$.

There exists a substitution τ , such that $\tau(\vec{U_j}) \in \mathcal{I}(R_j)$, $j \in \{1, ..., n\}$ and $\mu = \tau(\vec{U})$.

Consider a substitution $au' = au \circ heta^1$ and further $au'(S_i(ec{V_i})), j \in \{1, \dots, m\}$.

There holds $\underline{\tau'(\vec{V}_i)} \in \mathcal{I}(S_i)$, $i \in \{1, ..., m\}$ and therefore also $\mu = \tau'(\vec{V})$. I.e., $\mu \in Q_2(\mathcal{I})$.

 $^{^{1}\}tau'(\cdot) = \tau(\theta(\cdot))$

Proof " \Rightarrow " is based on a canonical instance of a query Q

Let Q be a conjunctive query $ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n})$ over a database schema \mathcal{R} .

The canonical instance \mathcal{I}_Q to Q is an instance of $\mathcal{R} = \{R_1, \dots, R_n\}$ constructed as follows.

Let \mathcal{D} be a substitution, which assigns to any X in Q an unique constant (a_X) .

- For any subgoal $R(t_1, ..., t_n)$ in the body of Q insert a tupel of the form $(\tau(t_1),\ldots,\tau(t_n))$ into $\mathcal{I}_{\mathcal{O}}(R)$; thus $\tau(R(t_1,\ldots,t_n))\in\mathcal{I}_{\mathcal{O}}(R)$. No other tuples are inserted into $\mathcal{I}_{\mathcal{O}}(R)$.
- τ is called *canonical substitution*.

$$Q:$$
 ans $(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A)$
 $Q':$ ans $(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A),$

Sales(P', S', C'), Part(P', T)

$$I_Q:$$

$$Sales \qquad Part \qquad Cust \qquad Supp$$

$$Shtheta \Rightarrow ap \quad as \quad ac \qquad ap \quad aT \qquad ac \quad aA \qquad as \quad aA$$

$$Tax:$$

$$\begin{array}{ll} \textit{Q}_1: & \textit{ans}(\vec{\textit{U}}) \leftarrow \textit{R}_1(\vec{\textit{U}}_1), \ldots, \textit{R}_n(\vec{\textit{U}}_n) \\ \textit{Q}_2: & \textit{ans}(\vec{\textit{V}}) \leftarrow \textit{S}_1(\vec{\textit{V}}_1), \ldots, \textit{S}_m(\vec{\textit{V}}_m) \\ \\ \textit{Q}_1 \sqsubseteq \textit{Q}_2? & \end{array}$$

Proof " \Rightarrow ", i.e. we assume $Q_1 \sqsubseteq Q_2$.

Consider \mathcal{I}_{Q_1} and the corresponding canonical substitution τ .

Then $\tau(ans(\vec{U})) \in Q_1(\mathcal{I}_{Q_1})$.

Because of $\mathit{Q}_1 \sqsubseteq \mathit{Q}_2$ further $\tau(\mathit{ans}(\vec{\mathit{U}})) \in \mathit{Q}_2(\mathcal{I}_{\mathit{Q}_1}).$

Thus, there exists a substitution ρ , such that $\rho(S_i(\vec{V_i})) = \tau(R_j(\vec{U_j}))$, $1 \le i \le m$, $j \in \{1, ..., n\}$ und $\rho(ans(\vec{V})) = \tau(ans(\vec{U}))$.

 $au^{-1}\circ
ho$ is a containment mapping from Q_2 to Q_1

Corollary

Let

$$Q_1:$$
 ans $(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n})$
 $Q_2:$ ans $(\vec{V}) \leftarrow S_1(\vec{V_1}), \dots, S_m(\vec{V_m})$

be conjunctive queries, \mathcal{I}_{Q_1} the canonical instance to Q_1 with canonical substitution τ .

$$Q_1 \sqsubseteq Q_2, \text{ iff } au(extit{ans}(ec{U})) \in Q_2(\mathcal{I}_{Q_1}).$$

Proof: It remains to show, whenever $\tau(ans(\vec{U})) \in Q_2(\mathcal{I}_{Q_1})$, then $Q_1 \sqsubseteq Q_2$.

For any S_i there exists a nonempty R_i , such that $S_i = R_i$.

Further, there exists a substitution ρ , such that for $S_i(\vec{V_i})$ we have $\rho(V_i) \in \mathcal{I}_{Q_1}(R_i)$.

 $\tau^{-1} \circ \rho$ is a containment mapping from Q_2 to Q_1 .

$$ans(a_T) \in Q(\mathcal{I}_{Q'})$$

and

$$ans(a_T) \in Q'(\mathcal{I}_Q).$$

Theorem:

Query containment for conjunctive queries is NP-complete.

Query answering? Possible in polynomial time w.r.t. size of the database (ignoring size of the query).

Minimization of Conjunctive Queries 3.2

Problem

A query Q' is a subquery of a query Q, if the body of Q' is a subset of the body of Q.

Given Q_1 , construct an equivalent query Q_2 , which has as most as many subgoals in its body as Q_1 and is minimal in the sense, that any query Q_3 being equivalent to Q_2 has at least as many subgoals in the body as Q_2 .

Can minimization be done by deleting subgoals from Q_1 , i.e. the result Q_2 is a subguery of Q_1 ?

Example:

$$Q:$$
 ans $(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A)$

$$Q'$$
: $ans(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A), Sales(P', S', C'), Part(P', T)$

Q is minimal and equivalent to Q'.

Theorem

Let Q_1 : $ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n})$ be a conjunctive query.

Then there exists a minimal conjunctive query Q_2 equivalent to Q_1 ,

$$Q_2$$
: $ans(\vec{V}) \leftarrow S_1(\vec{V_1}), \dots, S_m(\vec{V_m}),$

such that $\{S_1(\vec{V_1}),\ldots,S_m(\vec{V_m})\}\subseteq \{R_1(\vec{U_1}),\ldots,R_n(\vec{U_n})\}.$

Proof

We can assume the existence of some conjunctive query Q_3 which is minimal and equivalent to Q_1 .

Because of equivalence, there exits containment mappings θ from Q_1 to Q_3 , and also λ from Q_3 to Q_1 .

Let w.o.l.g. $\{S_1(\vec{V_1}), \ldots, S_m(\vec{V_m})\}$ be that subset of subgoals from Q_1 , which are images with respect to λ and let Q_2 be a conjunctive query built out of these subgoals and no others.

- (i) We have $Q_1 \sqsubseteq Q_2$ as Q_1 may have additional subgoals to the subgoals also being subgoals of Q_2 .
- (ii) $Q_2 \sqsubseteq Q_1$ as $\lambda \circ \theta$ is a containment mapping, i.e. each subgoal of Q_1 is guaranteed to be mapped on one subgoal of Q_2 .
- (iii) Minimality follows as, because of λ , Q_2 cannot have more subgoals than Q_3 .

Query minimization is NP-hard.

We can compute all possible containment mappings over query Q and select one, whose image produces a minimal set of subgoals.

Algorithm Conjunctive Query Minimization

- Chose a subgoal from Q and remove it to obtain a new query Q'. We have $Q \sqsubseteq Q'$.
- Check if $Q' \sqsubseteq Q$; if so, then Q' is equivalent and we can continue the process of removing another subgoal.
- If not, try to remove another atom from Q.

Q:
$$ans(X, Z) \leftarrow R(X, 5, Z_1), R(X_1, 5, Z_2), R(X_1, 5, Z)$$

Q can be minimized to Q'

$$Q': ans(X, Z) \leftarrow R(X, 5, Z_1), R(X_1, 5, Z)$$

However, not to Q'': $ans(X,Z) \leftarrow R(X,5,Z)$, as Q'' and Q, respectively Q'' and Q' are not equivalent.