Elementary Number Theory

November 2, 2022

Notations

$$\begin{split} \mathbb{Z} &= \{...-3, -2, -1, 0, 1, 2, 3...\} \\ \mathbb{Z}^+ &= \{1, 2, 3...\} \\ \mathbb{Z}^- &= \{...-3, -2, -1\} \\ \mathbb{Z}^{0+} &= \{0, 1, 2, 3...\} \\ \mathbb{Z}^{0-} &= \{...-2, -1, 0\} \end{split}$$

1 Introduction: Divisibility, Prime, GCD

Let $a, b \in \mathbb{Z}$ and a > 0 we say a divides b, a|b if b = ac for some $c \in \mathbb{Z}$. Here, a is the divisor or factor of b and b is the multiple of a.

Note:

- Sign has no effects: 6|12, -5|53, 9| 81
- Divisibility is a statement not an operator like divide /
- Divisibility is mostly deals with Positive Integers.

Properties of Divisibility

Let $a, b, c \in \mathbb{Z}$, then

- If a|b and a|c then a|b+c
- If a|b and b|c then a|c
- If a|b then a|mb for some integer m
- If a|b and a|c then a|bm+cn for some integer m,n

Definition 1 (Prime). Let p > 0 and $p \in \mathbb{Z}^+$, p is prime iff the divisor of p is 1 and p.

Definition 2 (Composite). Let M > 1 which is not prime is composite.

Remark 1. 0 and 1 are neither prime nor composite.

Theorem 1 (Fundamental Theorem of Arithmetic). Any integer greater than 1 can be written as a unique product of primes. Here, the primes ordering does not matter.

Definition 3 (Common Divisor). The integer c is the common divisor of a and b if a = cn and b = cm for some integer n, m or if c|a and c|b.

Definition 4 (GCD). gcd(a,b) is the largest common divisor of a and b, gcd(a,b) > 1 and by convention $a, b \neq 0$.

Definition 5 (Co-primes). If gcd(a,b) = 1 then a,b are relatively prime or coprime though a,b needs not be prime.

Lemma 1 (Bézout's Identity). If gcd(a,b) = d then $\exists x,y \in \mathbb{Z}$ s.t ax + by = d

Lemma 2. if a = bq + r then gcd(a, b) = gcd(b, r)

Lemma 3. if a|c and b|c and gcd(a,b) = 1 then ab|c

Theorem 2 (Division). Let $a, b \in \mathbb{Z}$, b > 0 then $\exists q, r \in \mathbb{Z}$ s.t a = bq + r where, $0 \le r < b$

Definition 6 (Linear Diophantine Eqn). Given $a, b, c \in \mathbb{N}$ the eqn. ax + by = c has a solution for $x, y \in \mathbb{Z}$ iff gcd(a, b)|c

Note: To solve Diophantine we can used Extended Euclid's Algorithm.

2 Congruences

Definition 7. Let n be fixed positive integer, $a, b \in Z$ are said to be congruent modulo $n, a \equiv b \pmod{n}$ if $n \mid (a - b)$ i.e, a - b = nk for some $k \in \mathbb{Z}$.

Example 1.
$$n = 7$$
, $3 \equiv 24 \pmod{7} \implies 7 | (3 - 24) \implies 7 | -21$

Example 2. $6 \not\equiv 1 \pmod{3} \implies 3 \not\mid (6-1)$

Note

- Any two integers are congruent modulo 1, $a \equiv b \pmod{1} \iff 1 | (a-b)$
- Two integers are congruent modulo 2 if either both even or both odd.

Definition 8 (Equivalence Class). For $x \in \mathbb{Z}$ define the equivalence class of x w.r.t $\equiv \pmod{n}$ by $[x] = \{a \in \mathbb{Z} | a \equiv x \pmod{n}\}$

Fact: There are exactly n equivalence classes modulo n i.e, $[0], [2], \ldots [n-1]$ that is, every integer is in one of those classes.

Lemma 4. If n > 1 and a be any integers and r be remainder when a/n then $a \equiv r \pmod{n}$ or $\forall a \in \mathbb{Z}$ a is congruent to exactly one of those least residue modulo n.

Proof.
$$a/n \implies a = qn + r$$
 where, $q, r \in \mathbb{Z}$ and $0 \le r < n$ $a - r = qn \implies a \equiv r \pmod{n}$

Corollary 1. If $a \equiv r \pmod{n}$ then $r = \{0, 1, 2, \dots n - 1\}$

Definition 9 (Complete System of Residue (CSR)). Given $a \in \mathbb{Z}$ let q and r be its quotient and remainder upon division by n i.e, $a = qn + r, 0 \ge r < n$. Then by definition of congruences $a \equiv r \pmod{n}$ and $r = \{0, 1, 2, \dots n - 1\}$ called the least non negative residue(remainder) modulo n.

In general a collection of $\{a_1, a_2, \ldots, a_n\}$ is a **Complete System of Residue** modulo n if each $a_i \equiv r_i \pmod{n}$ i.e, $\{a_1, a_2, \ldots, a_n\} \equiv \{0, 1, 2 \ldots n - 1\} \pmod{n}$ and $a_i \not\equiv a_j \pmod{n}$

Example 3. Consider n = 4 and $S = \{12, 11, 8, 3\}$ does S form CSR modulo 4.

Soln. $r = \{0, 1, 2, 3\}$ and $12 \equiv 0 \pmod{4}$ and $8 \equiv 0 \pmod{4}$ implies, $12 \equiv 8 \pmod{4}$. So, S does not form CSR.

Theorem 3. For arbitrary integers a and b, $a \equiv n \pmod{n}$ iff a and b leaves the same non-negative remainder when divided by n.

```
Proof. a \equiv b \pmod{n} \implies a-b=nk \implies a=b+nk for some k \in \mathbb{Z} n|b \implies b=nq+r \implies a=nq+r+nk \implies a=(nq+nk)+r Now, assume a=nq_1+r and b=nq_2+r then a-b=nq_1+r-nq_2-r \implies a-b=n(q_1-q_2) \implies a \equiv b \pmod{n}
```

Theorem 4. Let n > 1 and $a, b, c, d \in \mathbb{Z}$ then the following properties hold:

- 1. $a \equiv a \pmod{n}$
- 2. if $a \equiv b \pmod{n}$ then $b \equiv a \pmod{n}$
- 3. if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ then $a \equiv c \pmod{n}$
- 4. if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then $a + c \equiv b + d \pmod{n}$ and $ac \equiv bd \pmod{n}$
- 5. if $a \equiv b \pmod{n}$ then $a + c \equiv b + c \pmod{n}$ and $ac \equiv bc \pmod{n}$
- 6. if $a \equiv b \pmod{n}$ then $a^k \equiv b^k \pmod{n}$ for any $k \in \mathbb{Z}^+$

Proof. (*Prop5*) Using prop1 and prop4 $a \equiv b \pmod{n}$ and $c \equiv c \pmod{n}$ implies, $a+c \equiv b+c \pmod{n}$ and $ac \equiv bc \pmod{n}$ (*prop6*) Using prop4 we can established the prove.

Divisibility Test for an Integer

- An integer is divisible by 2 iff it's unit digits is 0, 2, 4, 6, 8
- For by 3 its digits sum should be divisible by 3
- For 4, the no. form by its last digits should be divisible by 4
- For 5, last digit should be 0 or 5.
- An integer N is divisible by 6 iff 6|M, where $M = a_0 + 4a_1 + \cdots + 4a_m$
- For 8, the no. formed by last three digits should be divisible by 8.
- For by 9 its digits sum should be divisible by 9
- For 10, the last digit should be 0
- For 11, 11|N iff the altering sum of its digit is divisible by 11. E.g, $N = 639162513 \implies 3 1 + 5 2 + 6 1 + 9 3 + 6 = 22$

3 Linear Congruences

Definition 10. An eqn, of the form $ax \equiv b \pmod{n}$ is called the Linear congruences.

Lemma 5. $ax \equiv b \pmod{n}$ has a solution iff d|b, where d = gcd(a, n). If d|b then it has d mutually incongruent solution modulo n.

Note:

- 1. if x_1 is a soln of $ax \equiv b \pmod{n}$ then any other $x_2 \equiv x_1 \pmod{n}$ is congruent solution.
- 2. if x_1 and x_2 are both soln and $x_1 \not\equiv x_2 \pmod{n}$ then it is called incongruent soln of $ax \equiv b \pmod{n}$.

Definition 11 (Inverse of Modulo n). Any value of x which is a solution of $ax \equiv 1 \pmod{n}$ is called the inverse of modulo n. Thus if a^{-1} is the inverse then $aa^{-1} \equiv 1 \pmod{n}$

Strategy for solving: $ax \equiv b \pmod{n}$

- 1. a is invertible modulo n iff gcd(a, n) = 1, ax + ny = 1 so, $ax \equiv 1 \pmod{n}$
- 2. Reduction: if $ca \equiv cb \pmod{n} \implies a \equiv b \pmod{\frac{n}{\gcd(c,n)}}$
- 3. $ax \equiv b \pmod{n}$ has a soln iff gcd(a, n)|b
- 4. if $ax \equiv b \pmod{n}$ has a soln then there are gcd(a,n) number of soln separated by $\frac{n}{gcd(a,n)}$

4 Fermat's Little Theorem

Theorem 5. Let p be prime and gcd(a,p) = 1 then $a^{p-1} \equiv 1 \pmod{p}$

Proof. Assume p is prime and $p \not| a$ i.e gcd(a,p) = 1, every integer on division by p is congruent to one of these $\{1, 2, \ldots p - 1\} \pmod{p}$. Now, multiply all the residues by a ie, $\{a, 2a, \ldots (p-1)a\}$.

claim: $\{a, 2a, \dots (p-1)a\}$ is just the rearragement of $\{1, 2, \dots p-1\}$

Case 1: None of $\{a, 2a, \dots (p-1)a\}$ is congruent to 0

suppose, $ra \equiv 0 \pmod{p}, 1 < r < p-1$ then, p|ra but it is impossible since, $p \not| a$ and r < p.

Case 2: These are distinct; no two are congruent to each other

Pick two values: ra and sa where $0 < r \neq s < p$

claim: $ra \equiv sa \pmod{p}$

so, ra - sa = a(r - s) by assumption $p \not | a \implies p \not | (r - s)$ since, r, s < p and $r \neq s$ which means,

$$\prod_{k=1}^{p-1} ka \equiv \prod_{k=1}^{p-1} \pmod{p}$$
$$(p-1)!a^{p-1} \equiv (p-1)! \pmod{p}$$
$$a^{p-1} \equiv 1 \pmod{p}$$

Corollary 2. If p is prime then $a^p \equiv a \pmod{p}$

Proof. From $a^{p-1} \equiv 1 \pmod{p}$ we multiply by a.

5 Wilson's Theorem

Theorem 6. If p is a prime then $(p-1)! \equiv -1 \pmod{p}$

Proof. Consider,

$$(p-1)! \equiv 1(2.3...(p-2))p - 1 \pmod{p}$$

 $\equiv 1(2.2^{-1}...(p-2)(p-2)^{-2})p - 1 \pmod{p}$
 $\equiv 1.1...(p-1) \pmod{p}$
 $\equiv p-1 \pmod{p}$ $(p \equiv 0 \pmod{p})$
 $\equiv -1 \pmod{p}$

Lemma 6. If $a^2 \equiv 1 \pmod{p}$ then $a \equiv 1 \pmod{p}$ or $a \equiv -1 \pmod{p}$

Proof. Suppose,
$$a^2 \equiv 1 \pmod{p} \implies p|a^2 - 1 \implies p|(a+1)(a-1) \implies a \equiv 1 \pmod{p}$$
 or $a \equiv -1 \pmod{p}$

(So, the only integer who are their own inverse \pmod{p} is $\pm 1 \pmod{p}$)

6 Chinese Remainder Theorem

Theorem 7. Given a pairwise coprime positive integers $n_1, n_2, \dots n_k$ and arbitrary integers $n_1, n_2, \dots n_k$ the system of simultaneous congruences

$$x \equiv a_1 \pmod{n_1}$$

 $x \equiv a_2 \pmod{n_2}$
 \vdots
 $x \equiv a_k \pmod{n_k}$

has a solution and the solution is unique modulo $N = n_1 n_2 \dots n_k$

Strategy to solve using CRT:

- 1. Compute $N = n_1 n_2 \dots n_k$
- 2. For i = 1, 2, ... k find $N_i = \frac{N}{n_i}$
- 3. Now solve the congruences $N_i x_i \equiv 1 \pmod{n_i}$
- 4. We get the all the solution as $x_i \equiv b \pmod{n_i}$ where $b \in \mathbb{Z}^+$
- 5. Calculate $X = \sum_{i=1}^{i=1} x_i a_i N_i \pmod{N}$ is a solution

7 Euler's Totient

Definition 12. Euler's Totient function (aslo called phi function) counts the number of positive integers less than n that are coprime to n. That is, $\phi(n)$ is the no. of $m \in \mathbb{Z}^+$ s.t $1 \le m < n$ and $\gcd(m,n) = 1$

Properties:

- For a prime p, $\phi(p) = p 1$
- If gcd(m, n) = 1 then $\phi(mn) = \phi(m)\phi(n)$
- If $n = p_1^{r_1} \dots p_k^{r_k}$ then $\phi(n) = n \left(1 \frac{1}{p_1}\right) \dots \left(1 \frac{1}{p_k}\right)$

Theorem 8 (Euler's Theorem or Euler's Generalization of Fermat's Little Theorem). For $n \in \mathbb{Z}^+$ and $a \in \mathbb{Z}$, gcd(a, n) = 1 we have,

$$a^{\phi(n)} \equiv 1 \pmod{n}$$