MATH 601 (DUE 10/9)

HIDENORI SHINOHARA

Contents

1

1

1. Modules

2. Rings of Fractions

1. Modules
Exercise. (Problem 1) For each of the \mathbb{Z} -modules listed in the handout, answer the questions in the handout.
Proof.
(a) $M = \mathbb{Z}^3 \times \mathbb{Z}/86\mathbb{Z}$.
Solve this problem!
(b) $M = \prod_{n \ge 1} \mathbb{Z}/n\mathbb{Z}$.
Solve this problem!
(c) $M = \mathbb{Z}[1/p] \subset \mathbb{Q}$.
Solve this problem!
(d) $M = \mathbb{Q}/\mathbb{Z}_{(p)}$.
Solve this problem!
2. Rings of Fractions
Exercise. (Problem 3) Let $T \subset R$ be the subset consisting of all nonzero divisors. • Show that T is a multiplicative set. • Let $s \in T$ and let $S = \{1, s, s^2, s^3, \cdots\} \subset T$. Show that the following rings are isomorphic: $S^{-1}R$, the subring $R[1/s] \subset T^{-1}R$, and the quotient ring $R[x]/(sx-1)$.
Proof.
Prove this!
Prove this!