KMML Homework 3

Mahdi Kallel

TOTAL POINTS

4/4

QUESTION 1

1 Question 11/1

- √ 0 pts Correct
 - 1 pts wrong or missing answer
 - **0.25 pts** missing absolute value
 - 0.5 pts missing final step

QUESTION 2

2 Question 2 3/3

- √ 0 pts Correct
 - **0.5 pts** Representer theorem not or wrongly

justified

- **0.5 pts** K_X and K_Y are not necessarily invertible.
- 1.5 pts Computation not finished: what is the

solution to this optimisation problem?

- 2 pts Wrong formula
- 1 pts Computation not finished: what is the solution

to this optimisation problem?

- 3 pts Problem not solved
- 0.5 pts Computation not finished: what is the

solution to this optimisation problem?

Kernel Methods DM#3:

Exercice 1:

The RKHS of the linear kernel is $\{f_w(x) = < w, x > \forall w \in \mathbb{R} \}$ and thus it is the scalar multiplication. By this definition $\exists f, g \in \mathbb{R} \ s. \ t$:

$$cov_n(f(X), g(Y)) = \frac{1}{n} \sum_i f. x_i * g. y_i - \frac{1}{n^2} \sum_i f. x_i * \sum_i g. y_i.$$

$$= \frac{fg}{n} \left(X^T Y - X^T O Y \right) = \frac{fg}{n} X^T (I_n - O) Y, \text{ where } O = \frac{\left(\mathbb{1} \mathbb{1}^T \right)}{n}$$

From the unit ball constraint we have that $|f|, |g| \le 1$. And thus we deduce that :

$$C_N^K(X,Y) = \max_{|f,g| \le 1} \frac{fg}{n} X^T(I_n - O) Y = \frac{|X^T(I_n - O) Y|}{n}$$

1 Question 11/1

- √ 0 pts Correct
 - 1 pts wrong or missing answer
 - **0.25 pts** missing absolute value
 - **0.5 pts** missing final step

Exercice 2:

We start by showing that we can restrict our f, g solutions to C_n^k to the form $f = \sum \alpha_i K_{x_i}$, $g = \sum \beta_i K_{y_i}$.

Let's
$$\mathcal{H}_x = \left\{ f \ s. \ t \ f = \sum \alpha_i K_{x_i} \left(\alpha_1 ... \alpha_n \right) \in \mathbb{R}^n \right\} \mathcal{H}_x$$
 is a finite dimensional vector space.

Therefore $\forall f \in \mathcal{H}, f = f_x + f_{\perp}$.

$$\forall_i f(x_i) = \langle f_x, K_{xi} \rangle$$
 and by orthogonality $||f_x||^2 = ||f||^2 - ||f_{\perp}||^2$ therefore $||f_x|| \leq ||f||$.

Thus for any solution f^* of C_n^k we can find a projection f_x^* that can be written as $\sum \alpha_i K_{x_i}$ and is also a solution of C_n^k .

$$cov_n(f(X), g(Y)) = \frac{1}{n} \sum_i f(u_i) * g(y_i) - \frac{1}{n^2} \sum_i f(x_i) * \sum_i g(y_i)$$

$$\frac{1}{n} \sum_{i} [K_{x}F]_{i} [K_{y}G]_{i} - \frac{1}{n} \sum_{i} [K_{x}F]_{i} \frac{1}{n} \sum_{i} [K_{y}G]_{i}$$

$$= \frac{1}{n} (K_x F)^T (K_y G) - \frac{1}{n} (K_x F)^T O K_y G = \frac{1}{n} (K_x F)^T (I_n - O) (K_y G)$$

Since the representer theorem applies our norm constraints translate to:

$$F^T K_x F$$
, $G^T K_y G \leq 1$.

And thus
$$C_n^k(X, Y) = \max_{F,G} \frac{1}{n} (K_x F)^T (I_n - O) (K_y G)$$

s.t: $F^T K_x F$, $G^T K_y G \le 1$

 K_x , K_y are positive semi definite and thus have a root $\sqrt{K_x}$, $\sqrt{K_y}$

$$C_{n}^{k}(X,Y) = \max_{F,G} \frac{1}{n} (F^{T}K_{x}) (I_{n} - O) (K_{y}G) st...$$

$$= \max_{F,G} \frac{1}{n} F^{T} \sqrt{K_{x}} \sqrt{K_{x}} (I_{n} - O) \sqrt{K_{y}} \sqrt{K_{y}}G$$

$$s.\ t\ ||F^T \sqrt{K_x}||^2,\ ||G^T \sqrt{K_y}||^2 \leq 1 \iff ||F^T \sqrt{K_x}||\ ,\ ||G^T \sqrt{K_y}|| \leq 1$$

We now want to show that this is equivalent to the following problem:

$$C_n^k(X,Y) = \max_{\widetilde{F},\widetilde{G}} \frac{1}{n} \widetilde{F}^T \sqrt{K_x} (I_n - O) \sqrt{K_y} \widetilde{G}$$

$$s. t ||\widetilde{F}||, ||\widetilde{G}|| \le 1$$

$$\rightarrow$$
 If F, G are solutions of the original problem, then we can define $\widetilde{F} = \sqrt{K_x F}$, $\widetilde{G} = \sqrt{K_y G}$ and we get $||\widetilde{F}||$, $||\widetilde{G}|| \leq 1$ and $\frac{1}{n} \widetilde{F}^T \sqrt{K_x} (I_n - O) \sqrt{K_y} \widetilde{G} = \frac{1}{n} (F^T K_x) (I_n - O) (K_y G)$.

 \leftarrow If \widetilde{F} , \widetilde{G} are solutions of the second problem, since K_x , K_y are p. d it's diagonalizable in an orthogonal

$$\implies E = Im(K_x) \bigoplus Ker(K_x) = Im(K_y) \bigoplus Ker(K_y)$$

$$\exists F \ , F_k \ st \ \widetilde{F} = \sqrt{K_x}F + F_k \ and \ \sqrt{K_x}F_k = 0.$$
 (and the same for \widetilde{G})

$$\frac{1}{n}\widetilde{F}^{T}\sqrt{K_{x}}\left(I_{n}-O\right)\sqrt{K_{y}}\widetilde{G} = \frac{1}{n}F^{T}\sqrt{K_{x}}\sqrt{K_{x}}\left(I_{n}-O\right)\sqrt{K_{y}}\sqrt{K_{y}}G$$

$$= \frac{1}{n} F^T K_x (I_n - O) K_y G.$$

By orthogonality : $||F||^2 = ||\widetilde{F}||^2 - ||F_k||^2 \le 1 - ||F_k||^2 \le 1$

Thus we've shown that our optimization problem can be rewritten as:

$$C_n^k(X,Y) = \max_{\widetilde{F},\widetilde{G}} \frac{1}{n} \widetilde{F}^T \sqrt{K_x} (I_n - O) \sqrt{K_y} \widetilde{G}$$

$$s. t ||\widetilde{F}||, ||\widetilde{G}|| \le 1$$

For a fixed F, we call $A_G = \sqrt{K_x} (I_n - O) \sqrt{K_y} \widetilde{G}$

The problem is then : $\max_{||\widetilde{F}|| \le 1} \widetilde{F}^T A_G = \max_{\widetilde{F}} \frac{\widetilde{F}^T A_G}{||\widetilde{F}||}$ which is solved for $\widetilde{F} = \frac{A_G}{||A_G||}$ (using cauchy schwarz).

And thus the problem can be rewritten as:

$$\max ||\widetilde{G}|| \le 1 \frac{A_G^T A_G}{||A_G||} = \max ||\widetilde{G}|| \le 1 ||A_G|| = \max ||\widetilde{G}|| \le 1 ||\sqrt{K_x} (I_n - O)\sqrt{K_y} \widetilde{G}||$$

One can show that
$$: \max_{||\widetilde{G}|| \le 1} || \sqrt{K_x} (I_n - O) \sqrt{K_y} \widetilde{G}|| = \max_{||\widetilde{G}|| = 1} || \sqrt{K_x} (I_n - O) \sqrt{K_y} \widetilde{G}||$$

(It suffices to multiply any solution
$$G^*$$
 by $\frac{1}{||G^*||}$ to get a better solution)

Thus we recognize the spectral norm problem and thus:

$$C_n^k(X,Y) = \frac{\lambda_{max}}{n}$$
 where λ_{max} is the maximum eigenvalue of $\sqrt{K_x} (I_n - O) \sqrt{K_y}$.

2 Question 2 3/3

√ - 0 pts Correct

- **0.5 pts** Representer theorem not or wrongly justified
- **0.5 pts** K_X and K_Y are not necessarily invertible.
- **1.5 pts** Computation not finished: what is the solution to this optimisation problem?
- 2 pts Wrong formula
- 1 pts Computation not finished: what is the solution to this optimisation problem?
- 3 pts Problem not solved
- **0.5 pts** Computation not finished: what is the solution to this optimisation problem?