### Abschlussklausur

#### Betriebssysteme

22. Juli 2019

| Name:                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vorname:                                                                                                                                                                                                                                                 |
| Matrikelnummer:                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |
| Mit meiner Unterschrift bestätige ich, dass ich die Klausur selbständig<br>bearbeite und das ich mich gesund und prüfungsfähig fühle.<br>Mir ist bekannt, dass mit dem Erhalt der Aufgabenstellung die Klausur als<br>angetreten gilt und bewertet wird. |
| Unterschrift:                                                                                                                                                                                                                                            |

- Schreiben Sie Ihre Lösungen auf die vorbereiteten Blätter. Eigenes Papier darf nicht verwendet werden.
- Als Hilfsmittel ist ein selbständig vorbereitetes und handschriftlich einseitig beschriebenes DIN-A4-Blatt zugelassen (keine Kopien!).
- Als Hilfsmittel ist ein Taschenrechner zugelassen.
- Verwenden Sie keinen Rotstift.
- Die Bearbeitungszeit beträgt 90 Minuten.
- Schalten Sie Ihre Mobiltelefone aus.

### Bewertung:

| Question:        | 1 | 2  | 3 | 4 | 5  | 6 | 7 | 8 | 9  | 10 | 11 | $\Sigma$ | Grade |
|------------------|---|----|---|---|----|---|---|---|----|----|----|----------|-------|
| Maximum points:  | 8 | 14 | 8 | 4 | 10 | 8 | 4 | 8 | 10 | 9  | 7  | 90       |       |
| Achieved points: |   |    |   |   |    |   |   |   |    |    |    |          |       |

**1.0**: 90.0-85.5, **1.3**: 85.0-81.0, **1.7**: 80.5-76.5, **2.0**: 76.0-72.0, **2.3**: 71.5-67.5,

**2.7**: 67.0-63.0, **3.0**: 62.5-58.5, **3.3**: 58.0-54.0, **3.7**: 53.5-49.5, **4.0**: 49.0-45.0, **5.0**: <45

| Name:    | Vorname                            | 2:                 | Matr.Nr.:                         |
|----------|------------------------------------|--------------------|-----------------------------------|
|          | <b>gabe 1)</b> Punkte: 1+1+2+2+2=8 |                    | Punkte:                           |
| a) Zu je |                                    |                    | mm laufen. Nennen Sie den passen- |
| b) Nem   | nen Sie den Fachbegriff der        | quasi-parallelen P | rogramm- bzw. Prozessausführung   |
| c) Besc  | hreiben Sie den Aufbau ei          | nes monolithischen | Kernels.                          |
| d) Besc  | hreiben Sie den Aufbau ei          | nes minimalen Ker  | ns (Mikrokernels).                |
| e) Besc  | hreiben Sie den Aufbau ei          | nes hybriden Kerne | els.                              |

| Name:                        | Vorname:                        | Matr.Nr.:                                  |
|------------------------------|---------------------------------|--------------------------------------------|
| Aufgab                       | e 2)                            | Punkte:                                    |
| Maximale Punkt               | e: 1+2+2+3+6=14                 |                                            |
| a) Welche zwe<br>Übertragur  |                                 | gabegeräten gibt es bezüglich der kleinste |
| b) Vergleicher               | Sie die Arbeitsweise der Gru    | ppen aus Teilaufgabe a).                   |
| c) Nennen Sie                | e für jede Gruppe aus Teilaufg  | abe a) zwei Beispiele.                     |
| d) Nennen Sie<br>lesen könne |                                 | zesse Daten von Ein- und Ausgabegeräte     |
| e) Nennen Sie<br>Nachteil.   | e für jede Möglichkeit aus Teil | aufgabe d) jeweils einen Vorteil und eine  |

| Name           | e:                                              | Vorname:                                           | Matr.Nr.:                                                                                                                                   |
|----------------|-------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{A}$ ι | ıfgab                                           | e 3)                                               | Punkte:                                                                                                                                     |
| Maxi           | male Punkt                                      | e: 2+2+2+2=8                                       |                                                                                                                                             |
| Auf e          | iner Festpla                                    | tte befinden sich folgend                          | e Informationen:                                                                                                                            |
| RATE<br>P/N:   | Travelstar<br>CD: 5V 500m<br>21L9510<br>22L0018 |                                                    | MODEL: DBCA-204860 E182115 T MADE IN THAILAND BY IBM STORAGE 16NOV99 (7944 CYL. 16 HEADS. 63 SEC/T)                                         |
| a)             | (Bei der Lö<br>Hinweis: D                       | sung muss der Rechenwe<br>ie Anzahl der Zylinder   | Oberfläche einer Scheibe der Festplatte. eg angegeben sein!) (CYL) ist identisch mit der Anzahl der Spuren der Sektoren (SEC) ist 512 Byte. |
| b)             |                                                 | Sie die Größe einer Spur<br>sung muss der Rechenwe |                                                                                                                                             |
| c)             |                                                 | Sie die Gesamtkapazität<br>sung muss der Rechenwe  |                                                                                                                                             |
| d)             |                                                 | cheiben hat die Festplatt<br>Sie ihre Antwort!)    | te? Hinweis: Jede Scheibe hat zwei Oberflächen.                                                                                             |

| Name:                | Vorname:                                      | Matr.Nr.:                                                |
|----------------------|-----------------------------------------------|----------------------------------------------------------|
| Aufga                | be 4)                                         | Punkte:                                                  |
| Maximale Pu          |                                               |                                                          |
| Kreuzen Sie b        | oei jeder Aussage an, ob die Au               | ssage wahr oder falsch ist.                              |
| a) Real Mo           | ode ist für Multitasking-System $\Box$ Falsch | e geeignet.                                              |
| ,                    | otteten Kopie des physischen A                | ess in seiner eigenen, von anderen Prozessen dressraums. |
| c) Bei stat          | ischer Partitionierung entsteht $\Box$ Falsch | interne Fragmentierung.                                  |
| d) Bei dyn<br>□ Wahr | _                                             | terne Fragmentierung unmöglich.                          |
| e) Beim Pa           | aging haben alle Seiten die gleic             | che Länge.                                               |
| f) Ein Vor           | _                                             | ist geringe interne Fragmentierung.                      |
| kann.                |                                               | g ist, das die Seitentabelle sehr groß werden            |
| ☐ Wahr               | Falsch                                        |                                                          |
| /                    | IU übersetzt beim Paging logische Adressen.   | che Speicheradressen mit der Seitentabelle in            |
| ☐ Wahr               | $\square$ Falsch                              |                                                          |

| Name:                  | Vorname:                                             | Matr.Nr.:                                     |
|------------------------|------------------------------------------------------|-----------------------------------------------|
| Aufgabe                | e <b>5</b> )                                         | Punkte:                                       |
| Maximale Punkte:       | 10                                                   |                                               |
| a) Geben Sie ar        | , welche Informationen ein                           | Inode speichert.                              |
| b) Nennen Sie <u>c</u> | <u>lrei</u> Beispiele für Metadater                  | n im Dateisystem.                             |
| c) Beschreiben         | Sie, was ein Cluster im Da                           | teisystem ist.                                |
|                        | Sie, wie ein UNIX-Dateisys<br>12 Cluster adressiert. | tem (z.B. ext2/3), das keine Extents verwen-  |
| e) Beschreiben         | Sie, wie Verzeichnisse bei L                         | inux-Dateisystemen technisch realisiert sind. |
| f) Die meisten I       | Betriebssystemen arbeiten k                          | nach dem Prinzip                              |
|                        | tzername>/Mail/inbox/i                               | ist ein<br>ver Pfadname                       |
| h) Nennen Sie d        | lie Information, die der Bo                          | otsektor eines Dateisystems speichert.        |
| i) Nennen Sie d        | lie Information, die der Sup                         | perblock eines Dateisystems speichert.        |
| j) Erklären Sie        | warum manche Dateisysten                             | ne (z.B. ext2/3) die Cluster des Dateisystems |

zu Blockgruppen zusammenfassen.

| Name:                         | Vorname:                                                    | Matr.Nr.:                                    |       |
|-------------------------------|-------------------------------------------------------------|----------------------------------------------|-------|
| Aufgab                        | e 6)                                                        | Punkte:                                      |       |
| Maximale Punkte               | : 2+1+1+3+1=8                                               |                                              |       |
| ,                             | Sie, was die Dateizuordnung<br>he Informationen diese enthä | gstabelle bzw. File Allocation Table (F. lt. | AT)   |
|                               |                                                             |                                              |       |
| b) Beschreiben                | Sie die Aufgabe des Journals                                | bei Journaling-Dateisystemen.                |       |
| c) Nennen Sie<br>ohne Journa  |                                                             | g-Dateisystemen gegenüber Dateisyster        | men   |
| d) Nennen Sie                 | die drei Werte, die zum Speid                               | chern eines Extents nötig sind.              |       |
| e) Beschreiben<br>rung der Cl |                                                             | s von Extents gegenüber direkter Adres       | ssie- |

| Name:                        | Vorname:                                      | Matr.Nr.:                                |
|------------------------------|-----------------------------------------------|------------------------------------------|
| <b>Aufga</b><br>Maximale Pun | ,                                             | Punkte:                                  |
| a) Beschreil                 | ben Sie, was das Defragmentiere               | n macht.                                 |
|                              |                                               |                                          |
| ,                            | ben Sie welche Art der Datenver<br>nigt wird. | rarbeitung durch Defragmentieren maximal |
| c) Beschrei                  | ben Sie in welchen Szenario das               | Defragmentieren sinnvoll ist.            |
| d) Ist das I                 | Defragmentieren bei SSDs sinnvo               | ll? (Begründen Sie ihre Antwort.)        |

| Name | e:                               | Vorname:             | Matr.Nr.:                                |
|------|----------------------------------|----------------------|------------------------------------------|
| Αι   | ufgabe 8)                        |                      | Punkte:                                  |
| Maxi | male Punkte: 8                   |                      |                                          |
| a)   | Beschreiben Sie, was             | der Systemaufruf fo  | ork() macht.                             |
| b)   | Beschreiben Sie, was             | der Systemaufruf ex  | xec() macht.                             |
| c)   | Erklären Sie, was in             | it ist.              |                                          |
| d)   | Nennen Sie den Unt<br>Erzeugung. | terschied eines Kind | lprozess vom Elternprozess kurz nach den |
| e)   | Beschreiben, Sie was wird.       | passiert, wenn ein E | Elternprozess vor dem Kindprozess beende |
| f)   | Nennen Sie den Inha              | lt des Textsegments. |                                          |
| g)   | Nennen Sie den Inha              | lt des Heap.         |                                          |

h) Nennen Sie den Inhalt des Stack.

c) Nennen Sie <u>vier</u> Schedulingverfahren, bei denen die CPU-Laufzeit (= Rechenzeit)

(Hinweis: Es sind also nur solche Schedulingverfahren gesucht, die unter realistischen

der Prozesse <u>nicht</u> bekannt sein muss.

Bedingungen eingesetzt werden können.)

# Aufgabe 10)

Punkte: .....

Maximale Punkte: 2+7=9

- a) Kreuzen Sie vier Bedingungen an, die gleichzeitig erfüllt sein müssen, damit ein Deadlock entstehen kann?
  - ☐ Rekursive Funktionsaufrufe
  - ☐ Wechselseitiger Ausschluss ☐ Häufige Funktionsaufrufe
  - ☐ Geschachtelte for-Schleifen
  - Ununterbrechbarkeit
- ☐ Anforderung weiterer Betriebsmittel
- □ > 128 Prozesse im Zustand blockiert
- ☐ Iterative Programmierung
- ☐ Zyklische Wartebedingung
- ☐ Warteschlangen
- b) Kommt es zum Deadlock?

Führen Sie die Deadlock-Erkennung mit Matrizen durch.

Ressourcenvektor = 
$$\begin{pmatrix} 4 & 8 & 6 & 6 & 5 \end{pmatrix}$$

Belegungsmatrix = 
$$\begin{bmatrix} 0 & 2 & 1 & 0 & 0 \\ 2 & 3 & 1 & 0 & 4 \\ 1 & 0 & 2 & 1 & 1 \end{bmatrix}$$

$$Belegungsmatrix = \begin{bmatrix} 0 & 2 & 1 & 0 & 0 \\ 2 & 3 & 1 & 0 & 4 \\ 1 & 0 & 2 & 1 & 1 \end{bmatrix} \qquad An forderungsmatrix = \begin{bmatrix} 3 & 3 & 2 & 4 & 5 \\ 0 & 3 & 1 & 4 & 0 \\ 0 & 2 & 3 & 5 & 4 \end{bmatrix}$$

| Name: | Vorname: | Matr.Nr.: |
|-------|----------|-----------|
|       |          |           |

## Aufgabe 11)

| Punkte: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|---------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
|---------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|

Maximale Punkte: 7

- Ein Erzeuger schreibt Daten in den Puffer und der Verbraucher entfernt diese.
- Gegenseitiger Ausschluss ist nötig, um Inkonsistenzen zu vermeiden.
- Ist der Puffer voll, muss der Erzeuger blockieren.
- Ist der Puffer leer, muss der Verbraucher blockieren.



Synchronisieren Sie die beiden Prozesse, indem Sie die nötigen Semaphoren erzeugen, diese mit Startwerten versehen und Semaphor-Operationen einfügen.