Interpretable Machine Learning

CE: Optimization Problem and Objectives

Learning goals

- Formulate CEs as optimization problem
- Identify key objectives (proximity, sparsity)
- Understand trade-offs in CE generation

magentaDaxberger et al. 2020

Interpretable Machine Learning

Learning goals

- Understand the aspects that undermine users' trust in an explanation
- Learn diagnostic tools that could increase trust

MATHEMATICAL PERSPECTIVE

Terminology:

- x: original/factual datapoint whose prediction we want to explain
- $y' \subset \mathbb{R}^g$: desired prediction (y' = "grant credit") or interval ($y' = [1000, \infty[)$

MOTIVATION & IMPORTANT PROPERTIES

 Local explanations should not only make a model interpretable but also reveal if the model is trustworthy

MATHEMATICAL PERSPECTIVE

Terminology:

- x: original/factual datapoint whose prediction we want to explain
- $y' \subset \mathbb{R}^g$: desired prediction (y' = "grant credit") or interval ($y' = [1000, \infty[)$

- **Prediction validity:** CE's prediction $\hat{f}(\mathbf{x}')$ is equal to the desired prediction \mathbf{y}'
- **Proximity:** CE \mathbf{x}' is as close as possible to the original input \mathbf{x}

MOTIVATION & IMPORTANT PROPERTIES

- Local explanations should not only make a model interpretable but also reveal if the model is trustworthy
- Interpretable: "Why did the model come up with this decision?"

Interpretable Machine Learning - 1 / 7

Interpretable Machine Learning - 1 / 7

MATHEMATICAL PERSPECTIVE

Terminology:

- x: original/factual datapoint whose prediction we want to explain
- $y' \subset \mathbb{R}^g$: desired prediction (y' = "grant credit") or interval ($y' = [1000, \infty[)]$

A **valid** counterfactual \mathbf{x}' satisfies two criteria:

- Prediction validity: CE's prediction $\hat{f}(\mathbf{x}')$ is equal to the desired prediction y'
- **Proximity:** CE \mathbf{x}' is as close as possible to the original input \mathbf{x}

Reformulate these two objectives as optimization problem:

$$rg \min_{m{\lambda}_1 o_{target}}(\hat{f}(\mathbf{x}'), y') + \lambda_2 o_{proximity}(\mathbf{x}', \mathbf{x})$$

- λ_1 and λ_2 balance the two objectives
- o_{target}: distance in target space
- oproximity: distance in feature space

MOTIVATION & IMPORTANT PROPERTIES

- Local explanations should not only make a model interpretable but also reveal if the model is trustworthy
- Interpretable: "Why did the model come up with this decision?"
- Trustworthy: "How certain is this explanation?"
 - accurate insights into the inner workings of our model
 - Failure case: generation is based on inputs in areas where the model was trained with little or no training data (extrapolation)

Interpretable Machine Learning - 1 / 7

Interpretable Machine Learning - 1 / 7

OBJECTIVE FUNCTIONS Dandl et al. (2020)

Distance in target space o_{target} :

- Regression: L₁ distance $o_{target}(\hat{f}(\mathbf{x}'), y') = |\hat{f}(\mathbf{x}') y'|$
- Classification:
 - For predicted probabilities: $o_{target} = |\hat{f}(\mathbf{x}') y'|$
 - For predicted hard labels: $o_{target} = \mathbb{I}\{\hat{f}(\mathbf{x}') \neq y'\}$

MOTIVATION & IMPORTANT PROPERTIES

- Local explanations should not only make a model interpretable but also reveal if the model is trustworthy
- Interpretable: "Why did the model come up with this decision?"
- Trustworthy: "How certain is this explanation?"
 - accurate insights into the inner workings of our model
 - Failure case: generation is based on inputs in areas where the model was trained with little or no training data (extrapolation)
 - 2 robust (i.e. low variance)
 - Expectation: similar explanations for similar data points with similar predictions
 - However, multiple sources of uncertainty exist
 - measure how robust an IML method is to small changes in the input data or parameters
 - → Is an observation out-of-distribution?

OBJECTIVE FUNCTIONS Dandl et al. (2020)

Distance in target space o_{target} :

- Regression: L₁ distance $o_{target}(\hat{f}(\mathbf{x}'), y') = |\hat{f}(\mathbf{x}') y'|$
- Classification:
 - For predicted probabilities: $o_{target} = |\hat{f}(\mathbf{x}') y'|$
 - For predicted hard labels: $o_{target} = \mathbb{I}\{\hat{f}(\mathbf{x}') \neq y'\}$

Distance in input space $o_{proximity}$: Gower distance (mixed feature types)

$$o_{ extit{proximity}}(\mathbf{x}',\mathbf{x}) = d_G(\mathbf{x}',\mathbf{x}) = rac{1}{
ho} \sum_{j=1}^
ho \delta_G(x_j',x_j) \in [0,1], ext{ where}$$

- $\delta_G(x_i', x_i) = \mathbb{I}\{x_i' \neq x_i\}$ if x_i is categorical
- $\delta_G(x_j', x_j) = \frac{1}{\widehat{B}_i} |x_j' x_j|$ if x_j is numerical
 - $\rightsquigarrow \widehat{R}_i$ is the range of feature j in the training set to ensure $\delta_G(x_i', x_i) \in [0, 1]$

MOTIVATION & IMPORTANT PROPERTIES

- Local explanations should not only make a model interpretable but also reveal if the model is trustworthy
- Interpretable: "Why did the model come up with this decision?"
- Trustworthy: "How certain is this explanation?"
 - accurate insights into the inner workings of our model
 - Failure case: generation is based on inputs in areas where the model was trained with little or no training data (extrapolation)
 - 2 robust (i.e. low variance)
 - Expectation: similar explanations for similar data points with similar predictions
 - However, multiple sources of uncertainty exist
 - → measure how robust an IML method is to small changes in the input data or parameters
 - → Is an observation out-of-distribution?
- Failing in one of these → undermining users' trust in the explanations
 → undermining trust in the model

Interpretable Machine Learning - 2 / 7

Interpretable Machine Learning - 1 / 7

FURTHER OBJECTIVES: SPARSITY

Additional constraints can improve the explanation quality of the corresponding CEs
→ popular constraints include **sparsity** and **plausibility**

Sparsity Favor explanations that change few features

• End-users often prefer short over long explanations

OUT-OF-DISTRIBUTION (OOD) DETECTION

Models are unreliable in areas with little data support
 → explanations from local explanation methods are unreliable

FURTHER OBJECTIVES: SPARSITY

Additional constraints can improve the explanation quality of the corresponding CEs \leadsto popular constraints include **sparsity** and **plausibility**

Sparsity Favor explanations that change few features

- End-users often prefer short over long explanations
- Sparsity could be integrated into o_{proximity}
 e.g., using L₀-norm (number of changed features) or L₁-norm (LASSO)

OUT-OF-DISTRIBUTION (OOD) DETECTION

- For local explanation methods, the following components could be out-of-distribution (OOD):
 - The data for LIME's surrogate model
 - Counterfactuals themselves
 - Shapley value's permuted obs. to calculate the marginal contribs
 - ICE curves grid data points

FURTHER OBJECTIVES: SPARSITY

Additional constraints can improve the explanation quality of the corresponding CEs \leadsto popular constraints include **sparsity** and **plausibility**

- End-users often prefer short over long explanations
- Sparsity could be integrated into o_{proximity}
 e.g., using L₀-norm (number of changed features) or L₁-norm (LASSO)
- Alternative: Include separate objective measuring sparsity, e.g., via L₀-norm

$$o_{sparse}(\mathbf{x}',\mathbf{x}) = \sum_{i=1}^{
ho} \mathcal{I}_{\{x_i'
eq x_j\}}$$

OUT-OF-DISTRIBUTION (OOD) DETECTION

- Models are unreliable in areas with little data support
 explanations from local explanation methods are unreliable
- For local explanation methods, the following components could be out-of-distribution (OOD):
 - The data for LIME's surrogate model
 - Counterfactuals themselves
 - Shapley value's permuted obs. to calculate the marginal contribs
 - ICE curves grid data points
- Two very simple and intuitive approaches
 - Classifier for out-of-distribution
 - Clustering
- More complicated also possible, e.g., variational autoencoders
 - Daxberger 2020

Interpretable Machine Learning - 3 / 7 © Interpretable Machine Learning - 2 / 7

Plausibility:

◆ CEs should suggest realistic (i.e., plausible) alternatives
 → Implausible: increase income and become unemployed

OOD DETECTION: OOD-CLASSIFIER

- Problem: we have only in-distribution data
- Idea: Hallucinate new (ood) data by randomly sampling data points
- Learn a binary classifier to distinguish between the origins of the data

Plausibility:

- CEs should suggest realistic (i.e., plausible) alternatives
 Implausible: increase income and become unemployed
- CEs should adhere to data manifold or originate from distribution of X
 → Avoid unrealistic combinations of feature values

OOD DETECTION: OOD-CLASSIFIER

- Problem: we have only in-distribution data
- Idea: Hallucinate new (ood) data by randomly sampling data points
- Learn a binary classifier to distinguish between the origins of the data
- Study whether an explanation approach can be fooled Slack 2020
 - Hide bias in the true (deployed) model, but use an unbiased model for all out-of-distribution samples
- → Important way to diagnose an explanation approach

Plausibility:

- CEs should suggest realistic (i.e., plausible) alternatives
 Implausible: increase income and become unemployed
- CEs should adhere to data manifold or originate from distribution of X
 → Avoid unrealistic combinations of feature values

OOD DETECTION: CLUSTERING VIA DBSCAN

Plausibility:

- ◆ CEs should suggest realistic (i.e., plausible) alternatives
 → Implausible: increase income and become unemployed
- CEs should adhere to data manifold or originate from distribution of X
 → Avoid unrealistic combinations of feature values

Example from Verma et al. (2020)

- Input x originally classified as ⊝
- Two valid CEs in class ⊕: CF1 and CF2
- Path A (CF1) is shorter (but unrealistic)
- Path B (CF2) is longer but in data manifold

OOD DETECTION: CLUSTERING VIA DBSCAN

- For this method, we define an ϵ -neighborhood: Given a dataset $X = \{\mathbf{x}^{(i)}\}_{i=1}^n$, an ϵ -neighborhood for $\mathbf{x} \in \mathcal{X}$ is defined as

$$\mathcal{N}_{\epsilon}(\mathbf{x}) = \{\mathbf{x}^{(i)} \in \mathcal{X} | d(\mathbf{x}, \mathbf{x}^{(i)}) \leq \epsilon\}.$$

 $d(\cdot)$ is a distance measure (e.g., Euclidean or Gower distance)

Interpretable Machine Learning - 4/7 © Interpretable Machine Learning - 4/7

FURTHER OBJECTIVES

Plausibility term: Encourage counterfactuals close to observed data.

- Define $\mathbf{x}^{[1]}$ as the nearest neighbor of \mathbf{x}' in the training set \mathbf{X}
- Use Gower distance between \mathbf{x}' and $\mathbf{x}^{[1]}$ to define plausibility objective:

$$o_{ extit{plausibe}}(\mathbf{x}',\mathbf{X}) = d_G(\mathbf{x}',\mathbf{x}^{[1]}) = rac{1}{
ho} \sum_{j=1}^{
ho} \delta_G(x_j',x_j^{[1]})$$

OOD DETECTION: CLUSTERING VIA DBSCAN

- For this method, we define an ϵ -neighborhood: Given a dataset $X = \{\mathbf{x}^{(i)}\}_{i=1}^n$, an ϵ -neighborhood for $\mathbf{x} \in \mathcal{X}$ is defined as

$$\mathcal{N}_{\epsilon}(\mathbf{x}) = \{\mathbf{x}^{(i)} \in \mathcal{X} | d(\mathbf{x}, \mathbf{x}^{(i)}) \le \epsilon\}.$$

 $d(\cdot)$ is a distance measure (e.g., Euclidean or Gower distance)

- Core observations x
 - Have at least m data points within $\mathcal{N}_{\epsilon}(\mathbf{x})$
 - Forms an own cluster with all its neighborhood points

Interpretable Machine Learning - 5/7 © Interpretable Machine Learning - 4/7

FURTHER OBJECTIVES

Plausibility term: Encourage counterfactuals close to observed data.

- Define $\mathbf{x}^{[1]}$ as the nearest neighbor of \mathbf{x}' in the training set \mathbf{X}
- Use Gower distance between \mathbf{x}' and $\mathbf{x}^{[1]}$ to define plausibility objective:

$$o_{ extit{plausibe}}(\mathbf{x}',\mathbf{X}) = d_G(\mathbf{x}',\mathbf{x}^{[1]}) = rac{1}{
ho} \sum_{j=1}^{
ho} \delta_G(x_j',x_j^{[1]})$$

Extended optimization: Add sparsity and plausibility terms to the objective

$$\arg\min_{\mathbf{x}'} \lambda_1 o_{\text{target}}(\hat{f}(\mathbf{x}'), y') + \lambda_2 o_{\text{proximity}}(\mathbf{x}', \mathbf{x}) + \lambda_3 o_{\text{sparse}}(\mathbf{x}', \mathbf{x}) + \lambda_4 o_{\text{plausible}}(\mathbf{x}', \mathbf{X})$$

OOD DETECTION: CLUSTERING VIA DBSCAN

- For this method, we define an ϵ -neighborhood: Given a dataset $X = \{\mathbf{x}^{(i)}\}_{i=1}^n$, an ϵ -neighborhood for $\mathbf{x} \in \mathcal{X}$ is defined as

$$\mathcal{N}_{\epsilon}(\mathbf{x}) = \{\mathbf{x}^{(i)} \in \mathcal{X} | d(\mathbf{x}, \mathbf{x}^{(i)}) \leq \epsilon\}.$$

- Core observations x
 - Have at least m data points within $\mathcal{N}_{\epsilon}(\mathbf{x})$
 - Forms an own cluster with all its neighborhood points
- Border points
 - Within $\mathcal{N}_{\epsilon}(\mathbf{x})$
 - Part of a cluster defined by a core point

Interpretable Machine Learning - 4 / 7

REMARKS: THE RASHOMON EFFECT

Issue (Rashomon effect):

- Solution to the optimization problem might not be unique
- Many equally close CE might exist that obtain the desired prediction
 - \Rightarrow Many different equally good explanations for the same decision exist

OOD DETECTION: CLUSTERING VIA DBSCAN

- DBSCAN is a data clustering algorithm ► Ester 1996
 (Density-Based Spatial Clustering of Applications with Noise)
- For this method, we define an ϵ -neighborhood: Given a dataset $X = \{\mathbf{x}^{(i)}\}_{i=1}^n$, an ϵ -neighborhood for $\mathbf{x} \in \mathcal{X}$ is defined as

$$\mathcal{N}_{\epsilon}(\mathbf{x}) = \{\mathbf{x}^{(i)} \in \mathcal{X} | d(\mathbf{x}, \mathbf{x}^{(i)}) \leq \epsilon\}.$$

- Core observations x
 - Have at least m data points within $\mathcal{N}_{\epsilon}(\mathbf{x})$
 - Forms an own cluster with all its neighborhood points
- Border points
 - Within $\mathcal{N}_{\epsilon}(\mathbf{x})$
 - Part of a cluster defined by a core point
- Noise points
 - Are not within $\mathcal{N}_{\epsilon}(\mathbf{x})$
 - Not part of any cluster

Interpretable Machine Learning - 4 / 7

REMARKS: THE RASHOMON EFFECT

Issue (Rashomon effect):

- Solution to the optimization problem might not be unique
- Many equally close CE might exist that obtain the desired prediction
 Many different equally good explanations for the same decision exist
- Many different equally good explanations for the same decis

Possible solutions:

- Present all CEs for **x** (but: time and human processing capacity is limited)
- Focus on one or few CEs (but: by which criterion should guide this choice?)

OUT-OF-DISTRIBUTION DETECTION

 Green points A and B are core points and form one cluster since they lie in each others neighborhood, all yellow points are border points of this cluster

REMARKS: THE RASHOMON EFFECT

Issue (Rashomon effect):

- Solution to the optimization problem might not be unique
- Many equally close CE might exist that obtain the desired prediction
 Many different equally good explanations for the same decision exist

- Present all CEs for **x** (but: time and human processing capacity is limited)
- Focus on one or few CEs (but: by which criterion should guide this choice?)

Note:

- Nonlinear models can produce diverse and inconsistent CEs
 suggest both increasing and decreasing credit duration (confusing for users)
- Handling this Rashomon effect remains an open problem in interpretable ML

OUT-OF-DISTRIBUTION DETECTION

- Example for DBSCAN, circles display ϵ -neighborhoods, m=4
- Green points A and B are core points and form one cluster since they lie in each others neighborhood, all yellow points are border points of this cluster
- Since D is not part of the neighborhood of core points, it is a noise point

REMARKS: MODEL OR REAL-WORLD

- ◆ CEs explain model predictions, but may appear to explain the real-world users
 → Transfer of model explanations to explain real-world is generally not permitted
- **Example:** CE suggests increasing age by 5 to receive a loan
- → The applicant waits 5 years and reapplies

OUT-OF-DISTRIBUTION DETECTION

points and form one cluster since they lie in each others neighborhood, all yellow points are border points of this cluster

Green points A and B are core

- Since D is not part of the neighborhood of core points, it is a noise point
- In-distribution: new point lies within a cluster

REMARKS: MODEL OR REAL-WORLD

- CEs explain model predictions, but may appear to explain the real-world users → Transfer of model explanations to explain real-world is generally not permitted
- **Problem:** Other features may change in the meantime (e.g., job status, income)

 A Karimi et al. (2020) propose CEs that respect causal structure
- Model drift: Bank's algorithm itself may change over time
 → Past CEs may become invalid

OUT-OF-DISTRIBUTION DETECTION

- Example for DBSCAN, circles display ϵ -neighborhoods, m=4
- Green points A and B are core points and form one cluster since they lie in each others neighborhood, all yellow points are border points of this cluster
- Since D is not part of the neighborhood of core points, it is a noise point
- In-distribution: new point lies within a cluster
- Out-of-distribution: new point lies outside the clusters

Interpretable Machine Learning - 7 / 7

Interpretable Machine Learning - 5 / 7