Some Applied Mathematics: Series, Banking, and Loans

Matthew Zhang

 $March\ 2018$

Interest Bearing Accounts

 $\begin{array}{l} \text{(a)} \\ S_0 = 10000 \\ S_1 = S_0(1.05) \\ S_2 = S_1(1.05) \\ S_3 = S_2(1.05) \\ S_4 = S_3(1.05) \\ S_5 = S_4(1.05) \\ S_n = S_{n-1}(1.05) \end{array}$

(b) $S_n = S_{n-1}(1.05)$ $S_n = 10000(1.05)^n$ $S_n = 10000(1 + 0.05)^n$

Expand $(1+0.05)^n$ using Binomial Theorem

$$S_n = 10000 \sum_{k=0}^{n} \binom{n}{k} 1^{k-n} + 0.05^n$$

Remove 1^{k-n} term

$$S_n = 10000 \sum_{k=0}^{n} \binom{n}{k} 0.05^n$$

(c) From part (a) $S_n = S_{n-1}(1.05)$

Plugging in S_{n-1} $S_n = S_{n-2}(1.05)(1.05)$ $S_n = S_{n-2}(1.05)^2$

Continuing yields $S_n = S_{n-3}(1.05)^3$ $S_n = S_{n-4}(1.05)^4$ $S_n = S_{n-n}(1.05)^n$ $S_n = S_0(1.05)^n$ $S_n = 10000(1.05)^n$

Loans

Fractional Reserve Banking