This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (51) International Patent Classification 6: (11) International Publication Number: **WO 99/07223** A1 A01N 43/16, A61K 31/715, C07H 3/06, (43) International Publication Date: 18 February 1999 (18.02.99) C12P 19/26, C12N 5/04, A01H 4/00 (74) Agents: SMITH, Timothy, L. et al.; Townsend and Townsend PCT/US98/16261 (21) International Application Number: and Crew LLP, 8th floor, Two Embarcadero Center, San Francisco, CA 94111-3834 (US). 5 August 1998 (05.08.98) (22) International Filing Date: (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, (30) Priority Data: BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, 6 August 1997 (06.08.97) US 08/907,226 GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK. SL. (63) Related by Continuation (CON) or Continuation-in-Part TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian (CIP) to Earlier Application 08/907,226 (CIP) US patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European 6 August 1997 (06.08.97) Filed on patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, (71) Applicant (for all designated States except US): CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). REGENTS OF THE UNIVERSITY OF CALIFORNIA [US/US]; 12th floor, 1111 Franklin Street, Oakland, CA **Published** 94607-5200 (US). With international search report. (72) Inventors; and (75) Inventors/Applicants (for US only): ETZLER, Marilynn, E. [US/US]; 1514 Sycamore Lane, Davis, CA 95616 (US). MURPHY, Judith, B. [US/US]; 725 North Campus Way, Davis, CA 95616 (US). (54) Title: A NOD FACTOR BINDING PROTEIN FROM LEGUME ROOTS (57) Abstract The present invention provides NBP46 polynucleotides that are useful in modulating Nod factor binding and other plant functions.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	us	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

A NOD FACTOR BINDING PROTEIN FROM LEGUME ROOTS

CROSS REFERENCE TO RELATED APPLICATIONS

This is a continuation in part of USSN 08/907,226, filed August 6, 1997, which is incorporated herein by reference.

10

15

5

1 2 - (2)

FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with Government support under Grant No. GM21882, awarded by the National Institutes of Health and under Grant No. DCB 9004967, awarded by the National Science Foundation. The Government has certain rights in this invention.

BACKGROUND OF THE INVENTION

Usable nitrogen is the major limiting nutrient in crop plant growth. Plants derive most of their nutrients including nitrogen from the soil through uptake in the root system. Although most of the nitrogen in the soil is in the form of ammonium ions which is rapidly converted to usable nitrates by bacteria in the soil, the harvesting of plants results in a steady decrease of nitrogen from the soil. Unless the soil is augmented with nitrogencontaining compounds, the soil becomes depleted of usable nitrogen and only atmospheric nitrogen remains.

25

30

20

Legumes, unlike other higher plants, are able through a symbiotic relationship with bacteria to utilize atmospheric nitrogen in the soil. The bacteria, *Rhizobia*, infect leguminous seedlings and induce nodulation, the end result being the presence within the root system of nodules which contain the rhizobial bacteroids. Once within the root system, the bacteroids are able to "fix" atmospheric nitrogen into organic compounds the legumes can use. In exchange for the conversion of atmospheric nitrogen, the plants provide the bacteroids with carbon-containing compounds, other nutrients, and a protective environment.

1 2 - 12 1

5

10

15

20

25

30

Although the "fixed" nitrogen is used throughout the plant in the growth and development of its organs and tissues, much of the usable nitrogen remains within the nodules of the roots. This empirical finding has led to the practice of crop rotation wherein a non-leguminous plant, i.e., corn, is grown and harvested and then the field is sown with a legume, such as alfalfa. After harvest of the legume, the remaining roots are plowed under and thus, usable nitrogen is returned to the soil for the sowing of the non-leguminous crop.

The legumes recognize the rhizobial bacteria through a lectin-carbohydrate interaction. Within the root system, the plants contain lectins that bind to specific carbohydrates found on the *Rhizobium* cell wall. This interaction is very specific; with each plant recognizing and being infected by one rhizobial strain.

In addition to their involvement in recognition of rhizobial bacteria, oligosaccharide signaling events play important roles in the regulation of plant development, defense, and other interactions of plants with the environment (Ryan, C.A. and Farmer, E.E. Annu. Rev. Plant Physiol. Plant Mol. Bio. 42:651-674 (1991); Cote, F. and Hahn, M.G. Plant Mol. Biol 26:1379-1411 (1994); Denarie, I. et al. Annu. Rev. Biochem. 65:503-535 (1996)). Although the structures of some of these oligosaccharides have been characterized, little is known about the plant receptors for these signals, nor the mechanism(s) by which these signals are transduced.

Previously, a root lectin, NBP46 (formerly called DB46), was isolated from young *Dolichos biflorus* root extracts. NBP46 is a 46 kDa protein that was isolated by affinity chromatography on hog gastric mucin blood group A + H substance conjugated to Sepharose (Quinn, J.M. and Etzler, M.E. *Arch. Biochem. Biophys.* 258:535-544 (1987)).

Identification and characterization of protein and the genes that encode them is important to modulation of oligosaccharide signaling in plants. For instance, a transgenic non-leguminous plant containing a factor that allows rhizobial bacteria to infect the plant and fix nitrogen would lessen the need for the addition of nitrogen-containing fertilizer to soil and preclude the necessity of crop rotation in nitrogen-depleted fields. This would lead to higher yields of crop plants in areas of the world where the soil has been overplanted and replenishment of the depleted soil with usable nitrogen. The present invention addresses these and other needs.

5

10

15

SUMMARY OF THE INVENTION

This invention provides for the isolation and cloning of the cDNA of NBP46 (SEQ ID NO:1), which encodes NBP46, a Nod factor binding lectin. Nod factors are carbohydrates on the surface of Rhizobium which bind to lectins on the surface of leguminous plant organs and can initiate nodulation of the root system by the plants. The NBP46 gene encodes a polypeptide of between 50 and 560 amino acids, more preferably 462 amino acids (SEQ ID NO:2).

In a preferred embodiment, the *NBP46* coding sequence is operably linked to a plant specific promoter, more preferably a root specific promoter, such as the *NBP46* promoter (SEQ ID NO:3).

In another embodiment, an expression cassette comprising the NBP46 gene is introduced into a transgenic plant. In a preferred embodiment, the expression of NBP46 by the transgenic plant confers to the plant the ability to bind to rhizobial bacteria and utilize atmospheric nitrogen. In a particularly preferred embodiment, the expression of NBP46 confers to the plant the ability to catalyze the hydrolysis of the phosphoanhydride bonds of di- and tri-phosphates, leading to greater availability of nutrients to the plant.

In a further embodiment of the instant invention, methods of modulating the rhizobial interactions and in the phosphatase activity in plants by the introduction of an expression cassette comprising NBP46 are disclosed.

20

25

30

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 indicates the inhibition of binding of ¹²⁵l-NBP46 to HBG A + H-Sepharose®.

In Figure 1 A, the legend is as follows: HBG A + H (\blacksquare); human ovarian cyst blood group A substance (\blacklozenge); human ovarian cyst blood group H substance (\blacktriangledown); de-N-acetylated HBG A + H (\blacksquare).

In Figure 1 B, the legend is as follows: Bradyrhizobium japonicum USDA 110 Nod factor (\blacksquare); β -O-methyl galactose β (1-3) N-acetyl-D-glucosamine (\bigcirc); methyl α -N-acetyl-D-glucosamine (\bigcirc); methyl β -N-acetyl-D-glucosamine (\bigcirc); dimer (\triangle), trimer (\square), and tetramer (\bigcirc) of β (1-4) N-acetyl-D-glucosamine.

Figure 2 shows the effect of carbohydrate ligands on phosphatase activity of NBP46, NBP46 (201 ng/ml) was preincubated for 1 hour in the presence of various

concentrations of *B. japonicum* USDA110 Nod factor (\blacksquare), *R* sp. NGP,234(Ac) Nod factor (\blacktriangledown), *R* sp. NGR234(S) Nod factor (\blacktriangle), *R. meliloti* Nod factor (\blacksquare), or *cis*-vaccenic acid (\spadesuit) and then assayed for phosphatase activity using a final concentration of 3 mM Mg-ADP.

Figure 3 shows inhibition of binding of ¹²⁵I-NBP46 to chitin. Various concentrations of mono- and oligosaccharides were combined with 109 ng ¹²⁵I-NBP46 and 250 µg of chitin in a total volume of 100 µl. *B. japonicum* USDA110 Nod factor (\blacksquare); *R.* sp. NGR234(NGR_A) Nod factor (\blacktriangle); *R.* sp. NGR234(NGR_B) Nod factor (\triangledown); *R. meliloti* Nod factor (\P), *N*-acetylglucosamine (\square), chitin disaccharide (\P); chitin tetrasaccharide (\P); chitin pentasaccharide (\P), chitin hexasaccharide (\P).

10

15

20

25

30

5

DETAILED DESCRIPTION OF THE INVENTION

I. Definitions

The phrase "isolated nucleic acid molecule" or "isolated protein" refers to a nucleic acid or protein which is essentially free of other cellular components with which it is associated in the natural state. It is preferably in a homogeneous state although it can be in either a dry or aqueous solution. Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography. A protein which is the predominant species present in a preparation is substantially purified. In particular, an isolated *NBP46* gene is separated from open reading frames which flank the gene and encode a protein other than NBP46. The term "purified" denotes that a nucleic acid or protein gives rise to essentially one band in an electrophoretic gel. Particularly, it means that the nucleic acid or protein is at least 85% pure, more preferably at least 95% pure, and most preferably at least 99% pure.

A "promoter" is defined as an array of nucleic acid control sequences that direct transcription of an operably linked nucleic acid. As used herein, a "plant promoter" is a promoter that functions in plants. Promoters include necessary nucleic acid sequences near the start site of transcription, such as, in the case of a polymerase II type promoter, a TATA element. A promoter also optionally includes distal enhancer or repressor elements, which can be located as much as several thousand base pairs from the start site of transcription. A "constitutive" promoter is a promoter that is active under most

10

15

20

25

30

PCT/US98/16261

5

environmental and developmental conditions. An "inducible" promoter is a promoter that is active under environmental or developmental regulation. The term "operably linked" refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter, or array of transcription factor binding sites) and a second nucleic acid sequence, wherein the expression control sequence directs transcription of the nucleic acid corresponding to the second sequence.

The term "plant" includes whole plants, plant organs (e.g., leaves, stems, flowers, roots, etc.), seeds and plant cells and progeny of same. The class of plants which can be used in the method of the invention is generally as broad as the class of higher plants amenable to transformation techniques, including angiosperms (monocotyledonous and dicotyledonous plants), as well as gymnosperms. It includes plants of a variety of ploidy levels, including polyploid, diploid, haploid and hemizygous.

A polynucleotide sequence is "heterologous to" an organism or a second polynucleotide sequence if it originates from a foreign species, or, if from the same species, is modified from its original form. For example, a promoter operably linked to a heterologous coding sequence refers to a coding sequence from a species different from that from which the promoter was derived, or, if from the same species, a coding sequence which is different from any naturally occurring allelic variants.

A polynucleotide "exogenous to" an individual plant is a polynucleotide which is introduced into the plant by any means other than by a sexual cross. Examples of means by which this can be accomplished are described below, and include Agrobacterium-mediated transformation, biolistic methods, electroporation, and the like. Such a plant containing the exogenous nucleic acid is referred to here as an R₁ generation transgenic plant. Transgenic plants which arise from sexual cross or by selfing are descendants of such a plant.

The phrase "rhizobial binding" refers to the binding between rhizobial bacteria and plant cells. Typically, enhanced binding leads to infection by rhizobial bacteria of the roots of plants. This in turn leads to nodule formation in the roots. For example, a non-leguminous transgenic plant comprising a polynucleotide of this invention and expressing its corresponding polypeptide in the roots of the plant would bind to Nod factors of rhizobial bacteria allowing the plant to become infected by the rhizobial bacteria

10

15

20

25

30

and allowing the plant to reduce the atmospheric nitrogen contained in the soil and using it as a nutrient.

The phrase "operably linked" refers to a functional linkage between a promoter and a second sequence, wherein the promoter sequence initiates transcription of RNA corresponding to the second sequence.

The term "polynucleotide," "polynucleotide sequence" or "nucleic acid sequence" refers to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double-stranded form. Unless specifically limited, the term encompasses nucleic acids containing known analogs of natural nucleotides which have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Unless otherwise indicated, a particular *NBP46* nucleic acid sequence of this invention also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions) and complementary sequences and as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al., Nucleic Acid Res. 19:5081 (1991); Ohtsuka et al., J. Biol. Chem. 260:2605-2608 (1985); and Cassol et al., 1992; Rossolini et al., Mol. Cell. Probes 8:91-98 (1994)). The term nucleic acid is used interchangeably with gene, cDNA, and mRNA encoded by a gene.

A "NBP46 polynucleotide" is a nucleic acid sequence comprising (or consisting of) a coding region of about 100 to about 2000 nucleotides, sometimes from about 1400 to about 1500 nucleotides, which hybridizes to SEQ ID NO:1 under stringent conditions (as defined below), or which encodes a NBP46 polypeptide.

The term "sexual reproduction" refers to the fusion of gametes to produce seed by pollination. A "sexual cross" is pollination of one plant by another. "Selfing" is the production of seed by self-pollinization, i.e., pollen and ovule are from the same plant.

In the case of both expression of transgenes and inhibition of endogenous genes (e.g., by antisense, or sense suppression) one of skill will recognize that the inserted polynucleotide sequence need not be identical, but may be only "substantially identical" to a sequence of the gene from which it was derived. As explained below, these substantially identical variants are specifically covered by the term NBP46 nucleic acid.

10

15

20

25

30

In the case where the inserted polynucleotide sequence is transcribed and translated to produce a functional polypeptide, one of skill will recognize that because of codon degeneracy a number of polynucleotide sequences will encode the same polypeptide. These variants are specifically covered by the terms "NBP46 nucleic acid". In addition, the term specifically includes those sequences substantially identical (determined as described below) with an NBP46 polynucleotide sequence disclosed here and that encode polypeptides that are either mutants of wild type NBP46 polypeptides or retain the function of the NBP46 polypeptide (e.g., resulting from conservative substitutions of amino acids in the NBP46 polypeptide). In addition, variants can be those that encode dominant negative mutants as described below.

Two nucleic acid sequences or polypeptides are said to be "identical" if the sequence of nucleotides or amino acid residues, respectively, in the two sequences is the same when aligned for maximum correspondence as described below. The terms "identical" or percent "identity," in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence over a comparison window, as measured using one of the following sequence comparison algorithms or by manual alignment and visual inspection. When percentage of sequence identity is used in reference to proteins or peptides, it is recognized that residue positions that are not identical often differ by conservative amino acid substitutions, where amino acids residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. Where sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated according to, e.g., the algorithm of Meyers & Miller, Computer

PCT/US98/16261

Applic. Biol. Sci. 4:11-17 (1988) e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, California, USA)..

5

10

15

20

25

30

The phrase "substantially identical," in the context of two nucleic acids or polypeptides, refers to sequences or subsequences that have at least 60%, preferably 80%, most preferably 90-95% nucleotide or amino acid residue identity when aligned for maximum correspondence over a comparison window as measured using one of the following sequence comparison algorithms or by manual alignment and visual inspection. This definition also refers to the complement of a test sequence, which has substantial sequence or subsequence complementarity when the test sequence has substantial identity to a reference sequence.

For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.

A "comparison window", as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by manual alignment and visual inspection.

5

10

15

20

25

30

One example of a useful algorithm is PILEUP. PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pairwise alignments to show relationship and percent sequence identity. It also plots a tree or dendogram showing the clustering relationships used to create the alignment. PILEUP uses a simplification of the progressive alignment method of Feng & Doolittle, J. Mol. Evol. 35:351-360 (1987). The method used is similar to the method described by Higgins & Sharp, CABIOS 5:151-153 (1989). The program can align up to 300 sequences, each of a maximum length of 5,000 nucleotides or amino acids. The multiple alignment procedure begins with the pairwise alignment of the two most similar sequences, producing a cluster of two aligned sequences. This cluster is then aligned to the next most related sequence or cluster of aligned sequences. Two clusters of sequences are aligned by a simple extension of the pairwise alignment of two individual sequences. The final alignment is achieved by a series of progressive, pairwise alignments. The program is run by designating specific sequences and their amino acid or nucleotide coordinates for regions of sequence comparison and by designating the program parameters. For example, a reference sequence can be compared to other test sequences to determine the percent sequence identity relationship using the following parameters: default gap weight (3.00), default gap length weight (0.10), and weighted end gaps.

Another example of algorithm that is suitable for determining percent sequence identity and sequence similarity is the BLAST algorithm, which is described in Altschul et al., J. Mol. Biol. 215:403-410 (1990). Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al, supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-

10

15

20

25

30

10

scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLAST program uses as defaults a wordlength (W) of 11, the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 89:10915 (1989)) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.

The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, Proc. Nat'l. Acad. Sci. USA 90:5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01, and most preferably less than about 0.001.

"Conservatively modified variants" applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given protein. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to any of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are "silent variations," which are one species of conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes every possible silent variation of the nucleic acid. One of skill will recognize that each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine) can be modified to yield a functionally identical molecule. Accordingly, each silent variation of a nucleic acid which encodes a polypeptide is implicit in each described sequence.

As to amino acid sequences, one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino

15

20

25

30

acids in the encoded sequence is a "conservatively modified variant" where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art.

The following six groups each contain amino acids that are conservative substitutions for one another:

- 1) Alanine (A), Serine (S), Threonine (T);
- 2) Aspartic acid (D), Glutamic acid (E);
- 3) Asparagine (N), Glutamine (Q);
- 10 4) Arginine (R), Lysine (K);
 - 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); and
 - 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W). (see, e.g., Creighton, Proteins (1984)).

An indication that two nucleic acid sequences or polypeptides are substantially identical is that the polypeptide encoded by the first nucleic acid is immunologically cross reactive with the antibodies raised against the polypeptide encoded by the second nucleic acid. Thus, a polypeptide is typically substantially identical to a second polypeptide, for example, where the two peptides differ only by conservative substitutions. Another indication that two nucleic acid sequences are substantially identical is that the two molecules or their complements hybridize to each other under stringent conditions, as described below.

The phrase "selectively (or specifically) hybridizes to" refers to the binding, duplexing, or hybridizing of a molecule only to a particular nucleotide sequence under stringent hybridization conditions when that sequence is present in a complex mixture (e.g., total cellular or library DNA or RNA).

The phrase "stringent hybridization conditions" refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acid, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in Tijssen, Techniques in Biochemistry and Molecular Biology—Hybridization with Nucleic

5

10

15

20

25

30

Probes, "Overview of principles of hybridization and the strategy of nucleic acid assays" (1993). Generally, highly stringent conditions are selected to be about 5-10°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength pH. Low stringency conditions are generally selected to be about 15-30 °C below the T_m . The T_m is the temperature (under defined ionic strength, pH, and nucleic concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at T_m , 50% of the probes are occupied at equilibrium). Stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 60°C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal is at least two times background, preferably 10 time background hybridization.

Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides which they encode are substantially identical. This occurs, for example, when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. In such cased, the nucleic acids typically hybridize under moderately stringent hybridization conditions.

In the present invention, genomic DNA or cDNA comprising NBP46 nucleic acids of the invention can be identified in standard Southern blots under stringent conditions using the nucleic acid sequences disclosed here. For the purposes of this disclosure, suitable stringent conditions for such hybridizations are those which include a hybridization in a buffer of 40% formamide, 1 M NaCl, 1% SDS at 37°C, and at least one wash in 0.2X SSC at a temperature of at least about 50°C, usually about 55°C to about 60°C, for 20 minutes, or equivalent conditions. A positive hybridization is at least twice background. Those of ordinary skill will readily recognize that alternative hybridization and wash conditions can be utilized to provide conditions of similar stringency.

A further indication that two polynucleotides are substantially identical is if the reference sequence, amplified by a pair of oligonucleotide primers, can then be used as

PCT/US98/16261

a probe under stringent hybridization conditions to isolate the test sequence from a cDNA or genomic library, or to identify the test sequence in, e.g., a northern or Southern blot.

The phrase "transgenic plant" refers to a plant into which heterologous polynucleotides have been introduced by any means other than sexual cross or selfing. Examples of means by which this can be accomplished are described below, and include Agrobacterium-mediated transformation, biolistic methods, electroporation, in planta techniques, and the like. Such a plant containing the heterologous polynucleotides is referred to here as an R₁ generation transgenic plant. Transgenic plants may also arise from sexual cross or by selfing of transgenic plants into which heterologous polynucleotides have been introduced.

II. Introduction

5

10

15

20

25

30

The present invention provides polynucleotides referred to here as NBP46 polynucleotides, as exemplified by SEQ ID NO:1. Polypeptides encoded by the genes of the invention are lectins involved in binding a variety of carbohydrates. In addition, polypeptides function as an enzyme, catalyzing the dephosphorylation of nucleotide diand triphosphates. As explained below, the nucleic acid sequences of the invention code for a Nod factor binding lectin naturally expressed in the root tissue of leguminous plants.

The polypeptides of the invention are also involved oligosaccharide signaling events that play important roles in the regulation of plant development, defense, and other interactions of plants with the environment. Although the structures of some of these oligosaccharides have been characterized in the prior art, little is known about the plant receptors for these signals, nor the mechanism(s) by which these signals are transduced. The results presented below show that polyepetides of the invention serve as receptors in oligosaccharide signaling.

Generally, the nomenclature and the laboratory procedures in recombinant DNA technology described below are those well known and commonly employed in the art. Standard techniques are used for cloning, DNA and RNA isolation, amplification and purification. Generally enzymatic reactions involving DNA ligase, DNA polymerase, restriction endonucleases and the like are performed according to the manufacturer's specifications. These techniques and various other techniques are generally performed according to Sambrook, *et al.*

10

15

20

25

30

III. Isolation Of Nucleic Acid Sequences From Plants

The isolation of sequences from the genes of the invention may be accomplished by a number of techniques. For instance, oligonucleotide probes based on the nucleic acid and peptide sequences disclosed herein can be used to identify the desired gene in a cDNA or genomic DNA library from a desired leguminous plant species. To construct genomic libraries, large segments of genomic DNA are generated by random fragmentation, e.g., using restriction endonucleases, and are ligated with vector DNA to form concatemers that can be packaged into the appropriate vector. To prepare a library of tissue-specific cDNAs, mRNA is isolated from tissues and a cDNA library which contains the gene transcripts is prepared from the mRNA.

14

The cDNA or genomic library can then be screened using a probe based upon the sequence of a cloned gene such as the polynucleotides disclosed here. Probes may be used to hybridize with genomic DNA or cDNA sequences to isolate homologous genes in the same or different plant species.

Alternatively, the nucleic acids of interest can be amplified from nucleic acid samples using amplification techniques. For instance, polymerase chain reaction (PCR) technology can be used to amplify the sequences of the genes directly from mRNA, from cDNA, from genomic libraries or cDNA libraries. PCR and other *in vitro* amplification methods may also be useful, for example, to clone nucleic acid sequences that code for proteins to be expressed, to make nucleic acids to use as probes for detecting the presence of the desired mRNA in samples, for nucleic acid sequencing, or for other purposes known to those of skill.

Appropriate primers and probes for identifying *NBP46* genes from *Dolichos biflorus* or transgenic plant tissues are generated from comparisons of the sequences provided herein. For a general overview of PCR see PCR PROTOCOLS: A GUIDE TO METHODS AND APPLICATIONS, (Innis, M, Gelfand, D., Sninsky, J. and White, T., eds.), Academic Press, San Diego (1990). Appropriate degenerate primers for this invention include, for instance: a 5' PCR primer [5'-TA(T/C)GCNGTNAT(T/C)TT(T/C)GATGC-3'] (SEQ ID NO:4) and a 3' PCR primer [5'-AT(A/G)TT(A/G)TA(T/A/G)AT(G/A)CCNGG-3'] (SEQ ID NO:5) where N denotes all nucleotides. The amplification conditions are typically as follows. Reaction components: 10 mM Tris-HCl, pH 8.3, 50 mM potassium chloride, 1.5 mM magnesium chloride, 0.001% gelatin, 200 µM dATP, 200 µM dCTP,

200 μM dGTP, 200 μM dTTP, 0.4 μM primers, and 100 units per mL Taq polymerase. Program: 96°C for 3 min., 30 cycles of 96°C for 45 sec., 50°C for 60 sec., 72°C for 60 sec., followed by 72°C for 5 min.

Using the above primers, a partial coding sequence will be obtained. There are many techniques known to those of skill to determine and isolate the complete coding sequence. These methods include using the PCR amplified subsequence to probe a cDNA library for longer sequences.

5

10

15

20

25

30

A preferred method is RACE (Frohman, et. al., Proc. Nat'l. Acad. Sci. USA 85:8998 (1988)). Briefly, this technique involves using PCR to amplify a DNA sequence using a random 5' primer and a defined 3' primer, e.g., (SEQ ID NO:6) (5' RACE) or a random 3' primer and a defined 5' primer, e.g., (SEO ID NO:7) (3' RACE). The amplified sequence is then subcloned into a vector where it is then sequenced using standard techniques. Kits to perform RACE are commercially available (e.g. 5' RACE System, GIBCO BRL, Grand Island, New York, USA). In this manner, the entire NBP46 coding sequence of about 1600 bp can be obtained (SEQ ID NO:1). The invention also provides genomic sequence of the NBP46 (SEQ ID NO:3).

Alternatively, primers can be selected and synthesized by those of skill from the cDNA sequence disclosed in SEQ ID NOs:1 and 3.

Polynucleotides may also be synthesized by well-known techniques as described in the technical literature. See, e.g., Carruthers, et al., Cold Spring Harbor Symp. Quant. Biol. 47:411-418 (1982), and Adams, et al., J. Am. Chem. Soc. 105:661 (1983). Double stranded DNA fragments may then be obtained either by synthesizing the complementary strand and annealing the strands together under appropriate conditions, or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.

IV. Use Of Nucleic Acids Of The Invention To Modulate Gene Expression

The polynucleotides of the invention can be used to enhance expression (i.e., increase expression of an endogenous gene or provide NBP46 expression in a plant that does not normally express NBP46) of genes of the invention and thereby enhance infection of transgenic plants by rhizobial bacteria, increase the level of nutrients taken up by the plants, and affect the growth and development of transgenic plants. Alternatively,

10

15

20

25

30

enhanced expression can be used to modulate oligosaccharide signaling in the plant. This can be accomplished by the overexpression of NBP46 polypeptides in the tissues of transgenic plants.

The heterologous NBP46 polynucleotides do not have to code for exact copies of the NBP46 proteins exemplified herein. Modified NBP46 polypeptide chains can also be readily designed utilizing various recombinant DNA techniques well known to those skilled in the art and described for instance, in Sambrook et al., supra. Hydroxylamine can also be used to introduce single base mutations into the coding region of the gene (Sikorski, et al., Meth. Enzymol. 194: 302-318 (1991)). For example, the chains can vary from the naturally occurring sequence at the primary structure level by amino acid substitutions, additions, deletions, and the like. These modifications can be used in a number of combinations to produce the final modified protein chain.

Alternatively, the nucleic acid sequences of the invention can be used to inhibit expression of an endogenous gene. One of skill will recognize that a number of methods can be used to inactivate or suppress NBP46 activity or gene expression. The control of the expression can be achieved by introducing mutations into the gene or using recombinant DNA techniques. These techniques are generally well known to one of skill and are discussed briefly below.

Methods for introducing a genetic mutations into a plant genes are well known. For instance, seeds or other plant material can be treated with a mutagenic chemical substance, according to standard techniques. Such chemical substances include, but are not limited to, the following: diethyl sulfate, ethylene imine, ethyl methanesulfonate and N-nitroso-N-ethylurea. Alternatively, ionizing radiation from sources such as, for example, X-rays or gamma rays can be used. Desired mutants are selected by assaying for increased seed mass, oil content and other properties.

Gene expression can be inactivated using recombinant DNA techniques by transforming plant cells with constructs comprising transposons or T-DNA sequences. NBP46 mutants prepared by these methods are identified according to standard techniques. For instance, mutants can be detected by PCR or by detecting the presence or absence of NBP46 mRNA, e.g., by Northern blots. Mutants can also be selected by assaying for increased seed mass, oil content and other properties.

10

15

20

25

30

The isolated sequences prepared as described herein, can also be used in a number of techniques to suppress endogenous *NBP46* gene expression. A number of methods can be used to inhibit gene expression in plants. For instance, antisense technology can be conveniently used. To accomplish this, a nucleic acid segment from the desired gene is cloned and operably linked to a promoter such that the antisense strand of RNA will be transcribed. The construct is then transformed into plants and the antisense strand of RNA is produced. In plant cells, it has been suggested that antisense RNA inhibits gene expression by preventing the accumulation of mRNA which encodes the enzyme of interest, see, e.g., Sheehy et al., *Proc. Nat. Acad. Sci. USA*, 85:8805-8809 (1988), and Hiatt et al., U.S. Patent No. 4,801,340.

The nucleic acid segment to be introduced generally will be substantially identical to at least a portion of the endogenous *NBP46* gene or genes to be repressed. The sequence, however, need not be perfectly identical to inhibit expression. The vectors of the present invention can be designed such that the inhibitory effect applies to other genes within a family of genes exhibiting homology or substantial homology to the target gene.

For antisense suppression, the introduced sequence also need not be full length relative to either the primary transcription product or fully processed mRNA. Generally, higher homology can be used to compensate for the use of a shorter sequence. Furthermore, the introduced sequence need not have the same intron or exon pattern, and homology of non-coding segments may be equally effective. Normally, a sequence of between about 30 or 40 nucleotides and about full length nucleotides should be used, though a sequence of at least about 100 nucleotides is preferred, a sequence of at least about 200 nucleotides is more preferred, and a sequence of about 500 to about 1700 nucleotides is especially preferred.

Catalytic RNA molecules or ribozymes can also be used to inhibit expression of NBP46 genes. It is possible to design ribozymes that specifically pair with virtually any target RNA and cleave the phosphodiester backbone at a specific location, thereby functionally inactivating the target RNA. In carrying out this cleavage, the ribozyme is not itself altered, and is thus capable of recycling and cleaving other molecules, making it a true enzyme. The inclusion of ribozyme sequences within antisense RNAs confers RNA-cleaving activity upon them, thereby increasing the activity of the constructs.

10

15

20

25

30

A number of classes of ribozymes have been identified. One class of ribozymes is derived from a number of small circular RNAs which are capable of self-cleavage and replication in plants. The RNAs replicate either alone (viroid RNAs) or with a helper virus (satellite RNAs). Examples include RNAs from avocado sunblotch viroid and the satellite RNAs from tobacco ringspot virus, lucerne transient streak virus, velvet tobacco mottle virus, solanum nodiflorum mottle virus and subterranean clover mottle virus. The design and use of target RNA-specific ribozymes is described in Haseloff et al. *Nature*, 334:585-591 (1988).

Another method of suppression is sense cosuppression. Introduction of nucleic acid configured in the sense orientation has been recently shown to be an effective means by which to block the transcription of target genes. For an example of the use of this method to modulate expression of endogenous genes see, Napoli et al., *The Plant Cell* 2:279-289 (1990), and U.S. Patents Nos. 5,034,323, 5,231,020, and 5,283,184.

The suppressive effect may occur where the introduced sequence contains no coding sequence per se, but only intron or untranslated sequences homologous to sequences present in the primary transcript of the endogenous sequence. The introduced sequence generally will be substantially identical to the endogenous sequence intended to be repressed. This minimal identity will typically be greater than about 65%, but a higher identity might exert a more effective repression of expression of the endogenous sequences. Substantially greater identity of more than about 80% is preferred, though about 95% to absolute identity would be most preferred. As with antisense regulation, the effect should apply to any other proteins within a similar family of genes exhibiting homology or substantial homology.

For sense suppression, the introduced sequence, needing less than absolute identity, also need not be full length, relative to either the primary transcription product or fully processed mRNA. This may be preferred to avoid concurrent production of some plants which are overexpressers. A higher identity in a shorter than full length sequence compensates for a longer, less identical sequence. Furthermore, the introduced sequence need not have the same intron or exon pattern, and identity of non-coding segments will be equally effective. Normally, a sequence of the size ranges noted above for antisense regulation is used.

A. Preparation of Recombinant Vectors

5

10

15

20

25

30

To use isolated sequences in the above techniques, recombinant DNA vectors suitable for transformation of plant cells are prepared. Techniques for transforming a wide variety of higher plant species are well known and described in the technical and scientific literature. See, for example, Weising, et al., Ann. Rev. Genet.

22:421-477 (1988). A DNA sequence coding for the desired polypeptide, for example a cDNA sequence encoding the full length NBP46 protein, will preferably be combined with transcriptional and translational initiation regulatory sequences which will direct the transcription of the sequence from the gene in the intended tissues of the transgenic plant, i.e., a root-specific promoter.

Promoters can be identified by analyzing the 5' sequences of a genomic clone in which naturally occurring Nod factor binding protein-specific genes, *i.e.*, *NBP46*, can be found. At the 5' end of the coding sequence, nucleotide sequences characteristic of promoter sequences can be used to identify the promoter. Sequences controlling eukaryotic gene expression have been extensively studied. For instance, promoter sequence elements include the TATA box consensus sequence (TATAAT), which is usually 20 to 30 base pairs upstream of the transcription start site. In most instances the TATA box is required for accurate transcription initiation. In plants, further upstream from the TATA box, at positions -80 to -100, there is typically a promoter element with a series of adenines surrounding the trinucleotide G (or T) N G. J. Messing, *et al.*, in GENETIC ENGINEERING IN PLANTS, pp. 221-227 (Kosage, Meredith and Hollaender, eds. (1983)).

A number of methods are known to those of skill in the art for identifying and characterizing promoter regions in plant genomic DNA (see, e.g., Jordano, et al., Plant Cell 1:855-866 (1989); Bustos, et al., Plant Cell 1:839-854 (1989); Green, et al., EMBO J. 7:4035-4044 (1988); Meier, et al., Plant Cell 3:309-316 (1991); and Zhang, et al., Plant Physiology 110:1069-1079 (1996)).

In construction of recombinant expression cassettes of the invention, a plant promoter fragment may be employed which will direct expression of the gene in all tissues of a regenerated plant. Such promoters are referred to herein as "constitutive" promoters and are active under most environmental conditions and states of development or cell differentiation. Examples of constitutive promoters include the cauliflower mosaic virus

(CaMV) 35S transcription initiation region, the 1'- or 2'- promoter derived from T-DNA of *Agrobacterium tumafaciens*, and other transcription initiation regions from various plant genes known to those of skill.

20

Alternatively, the plant promoter may direct expression of the polynucleotide of the instant invention in a specific tissue (tissue-specific promoters) or may be otherwise under more precise environmental control (inducible promoters). Examples of tissue-specific promoters under developmental control include promoters that initiate transcription only in certain tissues, such as roots, fruit, seeds, or flowers. Examples of environmental conditions that may affect transcription by inducible promoters include anaerobic conditions, elevated temperature, or the presence of light.

If proper polypeptide expression is desired, a polyadenylation region at the 3'-end of the coding region should be included. The polyadenylation region can be derived from the natural gene, from a variety of other plant genes, or from T-DNA.

The vector comprising the sequences (e.g., promoters or coding regions) from genes of the invention will typically comprise a marker gene which confers a selectable phenotype on plant cells. For example, the marker may encode biocide resistance, particularly antibiotic resistance, such as resistance to kanamycin, G418, bleomycin, hygromycin, or herbicide resistance, such as resistance to chlorosluforon or Basta.

20

25

30

5

10

15

B. Production of Transgenic Plants

DNA constructs of the invention may be introduced into the genome of a desired plant host by a variety of conventional techniques. For example, the DNA construct may be introduced directly into the genomic DNA of a plant cell using techniques such as electroporation and microinjection of plant cell protoplasts, or the DNA constructs can be introduced directly into plant tissue using ballistic methods, such as DNA particle bombardment. Alternatively, the DNA constructs may be combined with suitable T-DNA flanking regions and introduced into a conventional Agrobacterium tumefaciens host will direct the insertion of the construct and adjacent marker into the plant cell DNA when the cell is infected by the bacteria.

10

15

20

25

30

Microinjection techniques are known in the art and well described in the scientific and patent literature. The introduction of DNA constructs using polyethylene glycol precipitation is described in Paszkowski, et al., EMBO J. 3:2717-2722 (1984). Electroporation techniques are described in Fromm, et al., Proc. Nat'l. Acad. Sci. USA 82:5824 (1985). Ballistic transformation techniques are described in Klein, et al., Nature 327:70-73 (1987).

Agrobacterium tumefaciens-mediated transformation techniques, including disarming and use of binary vectors, are well described in the scientific literature. See, for example Horsch, et al., Science 233:496-498 (1984), and Fraley, et al., Proc. Nat'l. Acad. Sci. USA 80:4803 (1983).

Transformed plant cells which are derived by any of the above transformation techniques can be cultured to regenerate a whole plant which possesses the transformed genotype and thus the desired phenotype. Such regeneration techniques rely on manipulation of certain phytohormones in a tissue culture growth medium, typically relying on a biocide and/or herbicide marker which has been introduced together with the desired nucleotide sequences. Plant regeneration from cultured protoplasts is described in Evans, et al., Protoplasts Isolation and Culture, Handbook of Plant Cell Culture, pp. 124-176, Macmillian Publishing Company, New York (1983); and Binding, Regeneration of Plants, Plant Protoplasts, pp. 21-73, CRC Press, Boca Raton (1985). Regeneration can also be obtained from plant callus, explants, organs, or parts thereof. Such regeneration techniques are described generally in Klee, et al., Ann. Rev. of Plant Phys. 38:467-486 (1987).

To determine the presence of a reduction or increase of NBP46 activity, a variety of assays can be used including enzymatic, immunochemical, electrophoretic detection assays (either with staining or western blotting), or complex carbohydrate binding assays.

In a preferred embodiment, a competitive solid phase assay is used to measure NBP46 activity (Etzler, M.E., Glycoconj. J. 11:395 (1994)). This assay measures the ability of various ligands to inhibit the binding of labeled NBP46 protein to pronase-digested hog gastric mucin blood group A + H substance (HBG A + H) conjugated to Sepharose® (Quinn, J.M. & Etzler, M.E., Arch. Biochem. Biophys. 258:535 (1987)).

22

The nucleic acids of the invention can be used to confer desired traits on essentially any plant. Thus, the invention has use over a broad range of plants, including species from the genera Asparagus, Avena, Brassica, Citrus, Citrullus, Capsicum, Cucurbita, Daucus, Glycine, Hordeum, Lactuca, Lycopersicon, Malus, Manihot, Nicotiana, Oryza, Persea, Pisum, Pyrus, Prunus, Raphanus, Secale, Solanum, Sorghum, Triticum, Vitis, Vigna, and Zea.

One of skill will recognize that after the expression cassette is stably incorporated in transgenic plants and confirmed to be operable, it can be introduced into other plants by sexual crossing. Any of a number of standard breeding techniques can be used, depending upon the species to be crossed.

Effects of gene manipulation can be observed by northern blots of the mRNA isolated from the tissues of interest. Typically, if the amount of mRNA has increased, it can be assumed that the gene is being expressed at a greater rate than before. Other methods of measuring NBP46 expression would be by measuring the rhizobial infection of the transgenic plants. Alternatively, the ability of the plant to reduce atmospheric nitrogen could be assessed. In addition, levels of NBP46 could be measured immunochemically, *i.e.*, ELISA, RIA, EIA and other antibody based assays well known to those of skill in the art.

20 V. Examples

5

10

15

25

30

The following examples are offered to illustrate, but not to limit the claimed invention.

Example 1: Characterization and cloning of NBP46

Carbohydrate binding and characterization of NBP46

It has been previously demonstrated that NBP46 is a 46 kDa protein that can be isolated from young *Dolichos biflorus* root extracts by affinity chromatography on hog gastric mucin blood group A + H substance (HBG A + H) conjugated to Sepharose® (Quinn, J.M. & Etzler, M.E., *Arch. Biochem. Biophys.* 258:535 (1987)). The monomeric nature of NBP46 in solution precluded the use of conventional precipitin or agglutination assays in determining the carbohydrate binding specificity of this lectin. Therefore a

complex carbohydrate binding assay was employed (Etzler, M.E., *Glycoconj. J.* 11:395 (1994)).

5

10

15

20

25

30

As shown in Figure 1, various concentrations of blood group substances (A) and oligosaccharides (B) were combined with 109 ng 125 I-NBP46 (isolated as described in Quinn, J.M. & Etzler, M.E., Arch. Biochem. Biophys. 258:535 (1987)) and a pronase digest of HBG A + H-Sepharose® (final concentration 1%) in a volume of 100 µL of 5 mM MOPS, pH 7.2, containing 0.025% Tween-20® and 0.01% NaN₃. Hog blood group A + H substance was isolated from hog gastric mucin (Etzler, M.E., Glyconi, J. 11:395 (1994)) and de-N-acetylated as described in Etzler, M.E., et al., Arch. Biochem. Biophys. 141:588 (1970). After incubation at room temperature overnight, binding was measured as previously described (Etzler, M.E., Glyconj. J. 11:395 (1994)). Although the binding of the NBP46 to this resin was inhibited by free HBG A + H (Figure 1A), no significant inhibition was obtained with up to 50 mM concentrations of any of the monosaccharides present in the blood group substance, including N-acetyl-D-galactosamine and L-fucose, the immunodominant sugars of the blood type A and H determinants, respectively (Watkins, W.M., Science 152:172 (1966); and Lloyd, K.O., et al., Proc. Nat'l. Acad. Sci. USA 61:1470 (1968)). Individual human ovarian cyst blood group A and H substances (provided by Elvin A. Kabat, Columbia University) were equal to one another in inhibitory capacity but much weaker than HBG A+H (Figure 1A). De-N-acetylation of the blood type A determinant did not alter the ability of the HBG A + H to inhibit the binding of NBP46 (Figure 1A).

These results indicated that the binding of NBP46 to the above blood group substances was due to its recognition of some portion of the oligosaccharide chains other than the blood type A and H determinants and that its carbohydrate binding site accommodated more than a simple sugar. The carbohydrate specificity of NBP46 thus differs from the blood type A specific seed lectin from *Dolichos biflorus*, which recognizes the α *N*-acetyl-D-galactosamine residues which are at the nonreducing ends of the oligosaccharide chains of blood group A substance (Etzler, M.E., et al., Biochemistry 9:869 (1970)).

A variety of oligosaccharides were tested in an attempt to obtain more information on the carbohydrate specificity of NBP46 (Figure 1B). The strongest inhibition was obtained with the purified Nod factor from *Bradyrhizobium japonicum*

PCT/US98/16261

5

10

15

20

25

30

USDA 110, a bacterial rhizobial strain that nodulates soybean and can also nodulate Dolichos biflorus. The Nod factor was isolated as described in Sanjuan, J., et al., Proc. Nat'l Acad. Sci. USA 89:8789 (1992). The Nod factor from Bradyrhizobium japonicum USDA 110 is composed of a β1-4 N-acetyl-D-glucosamine pentasaccharide backbone, modified by a 2-O-methyl α-L-fucose on C-6 of the sugar at the reducing end and the substitution of the acetyl group on the sugar at the nonreducing end with a C_{18:1} fatty acyl chain (Sanjuan, J., et al., Proc. Nat'l. Acad. Sci. USA 89:8789 (1992)). Thus, NBP46 can be characterized as a Nod factor binding lectin.

Phosphohydrolase Activity of NBP46

A search of protein and nucleotide data bases using the NCB1 BLASTP and BLASTN programs (Altschul, S.F., et al., J. Mol. Biol. 215:403 (1990)) showed no significant similarities between NBP46 to the amino acid or cDNA sequences of any other plant or animal lectin yet described. It did, however, show 65.6 and 47.6% amino acid identity and 70.7 and 58.7% nucleotide identity with the sequences of a pea nucleotide triphosphatase (Hsieh, H.-L., et al., Plant Mol. Biol. 30:135 (1996), GenBank Accession No. Z32743) and an apyrase isolated from potato tubers (Handa, M., et al., Biochem. Biophys. Res. Comm. 218:916 (1996)). Thus, the pea triphosphatase gene could also be used in the methods of the invention. Considerably less, but significant, similarity was found with the sequences of several other animal and yeast phosphohydrolases. Of particular interest in this comparison was the presence in all of these sequences of four motifs (designated by the bold letters in SEQ ID NO: 2) identified as conserved regions among a variety of plant and animal apyrases (Handa, M., et al., Biochem. Biophys. Res. Comm. 218:916 (1996)).

The sequence similarities found between NBP46 and the above enzymes prompted the testing of NBP46 for phosphohydrolase activity. The reactions were conducted in 300 μL of 60 mM MOPS, pH 6.8, containing 1 mM MgCl₂ in a microtiter plate using a multichannel pipette. At various time points up to 4 minutes, 30 or 60 μL aliquots were removed and assayed for inorganic phosphate by a photometric microtiter assay (Drueckes, P., et al., Anal. Biochem. 230:173 (1995)). Conditions were chosen so that less than 10% of the total substrate was converted to product, and the initial velocity (v) was determined from the above rate measurements. The K_m of NBP46 for Mg-ADP was found to be 615 μM.

NBP46 catalyzed the hydrolysis of phosphate from both ATP and ADP (Figure 2) but showed no activity with AMP, pyrophosphate or glucose-6-phosphate. It also had a broad specificity for nucleotide triphosphates, including GTP, CTP and UTP. This substrate specificity has been found to be characteristic of the apyrase category of phosphohydrolases (EC 3.6.1.5). Preincubation of NBP46 with 10 μg/mL of HBG A + H (which results in 46% inhibition of carbohydrate binding activity) resulted in an increase in the V_{max} of NBP46. No increase in phosphatase activity was observed upon preincubation of NBP46 with human blood group H substance at a concentration that shows no inhibition in the carbohydrate binding assay described above (Figure 2). The V_{max} of NBP46 was also increased in the presence of low concentrations (1 to 5 micromolar) of Nod factors, with lower concentrations required for the Nod factors produced by rhizobia that nodulate the plant than for the *R. meliloti* Nod factor. These results suggest that there is interaction between the carbohydrate binding and phosphatase sites of NBP46.

Isolation and Characterization of NBP46 cDNA and Encoded Protein

5

10

15

20

25

30

Two consensus N-glycosylation sites are present in the sequence of the mature protein at residues 111 and 276. Work in progress in our laboratory has established that NBP46 is indeed glycosylated at at least one of these sites. It should be noted, however, that we do not yet know whether other posttranslational modifications of this protein may occur, such as the COOH-terminal proteolysis that modifies two other lectins from this plant (Etzler, M.E. Biochemistry 33:9778-9783 (1994); Schnell, D.T. et al. Arch. Biochem. Biophys. 310:229-235 (1994)). A search of protein and nucleotide data bases using the NCB1 TBLASTN and BLASTN programs (Altschul, S.F. et al. J. Mol. Biol. 215:403-410 (1990)) showed no significant similarities of NBP46 to the amino acid or cDNA sequences of any other plant or animal lectin yet described. It did, however, show 65.6 and 47.6% amino acid identity and 70.7 and 58.7% nucleotide identity with the sequences of a pea nucleotide triphosphatase (Hsieh, H-L. et al. Plant Mol. Biol. 30:135-147 (1996)) and an apyrase isolated from potato tubers (Handa, M. and Guidotti, G. Biochem. Biphys. Res. Comm. 218: 916-923 (1996)), respectively. Considerably less, but significant, similarity was also found with the sequences of several other animal and yeast phosphohydrolases. Of particular interest in this comparison is the presence in all of these sequences of four motifs (designated by the boxes in SEO ID NO: 2) identified as

conserved regions among a variety of plant and animal apyrases (Handa, M. and Guidotti, G. Biochem. Biphys. Res. Comm. 218: 916-923 (1996)).

26

The sequence similarities found among NBP46 and the above enzymes prompted us to test NBP46 for phosphohydrolase activity. NBP46 catalyzes the hydrolysis of phosphate from both ATP and ADP but showed no activity with AMP, pyrophosphate or glucose-6-phosphate. The K_m of NBP46 for Mg⁺⁺-ADP is 615 μM. The lectin has a broad specificity for nucleotide triphosphates, including GTP, CTP and UTP (data not shown). This substrate specificity is characteristic of the apyrase category of phosphohydrolases (EC 3.6.1.5). Preincubation of NBP46 with ligands that are recognized by its carbohydrate binding site results in an increase in the V_{max} of this enzyme. Low micromolar concentrations of the above Nod factors stimulate this increase in activity, with lower concentrations required for the Nod factors produced by rhizobia that modulate the plant than for the R. meliloti Nod factor (Figure 2). Such an increase in enzyme activity is also obtained with low millimolar concentrations of the chitin oligosaccharides and Nacetylglucosamine, but not with N-acetylgalactosamine (data not shown). These results suggest that there is interaction between the carbohydrate binding and phosphatase sites of NBP46. Whether this interaction represents a direct stimulation of the enzyme activity or perhaps a stabilization of the enzyme under the assay conditions remains to be determined.

NBP46 binds to chitin and other carbohydrates

5

10

15

20

25

30

NBP46 also binds to chitin, a polymer of $\beta(1-4)$ linked N-acetyl-D-glucone residues; this binding is saturable with a B_{max} of 28 nmoles of NBP46/gram of chitin and a K_d of 48 nM. Using chitin as a solid phase, a competitive binding assay was utilized to examine the carbohydrate specificity of this protein (Figure 3). Inhibition of binding was obtained with high concentrations of N-acetyl-D-glocosamine but not with similar concentrations of N-acetyl-D-galactosamine, the C4 epimer of this sugar, nor with other common monosaccharides. The chitin disaccharide gave approximately ten-fold better inhibition than the monosaccharide, whereas the chitin penta- and hexasaccharides were slightly better inhibitors than the disaccharide. No inhibition was obtained with the de-N-acetylated chitin oligosaccharides; however, when tested in the millimolar range of concentrations, several of these oligosaccharides precipitated the lectin even under highly buffered conditions. Whether this precipitation is specific or nonspecific is under investigation.

Of all the oligosaccharides tested, the best inhibition was obtained with the Nod factor isolated from *Bradyrhizobium japonicum* USDA110 (Figure 3), a rhizobial strain that nodulates *Dolichos biflorus*. The chitolipo-saccharidic Nod factors have been identified as the signals produced by rhizobia that initiate the nodulation of legumes (Denarie, I. *et al. Annu. Rev. Biochem.* 65:503-535 (1996)). The *B. japonicum* USDA110 Nod factor consists of a chitin pentasaccharide backbone, modified by a 2-*O*-methyl α-L-fucose on C-6 of the sugar at the reducing end and the substitution of the acetyl group on the sugar at the nonreducing end with *cis*-vaccenic acid (Sanjuan, J. *et al. Proc. Natl. Acad. Sci. USA*, 89:8789-8793 (1992); Carlson, R.W. *et al. J. Biol. Chem.* 268:18372-18-81 (1993)). The higher relative affinity of NBP46 for the intact Nod factor than for the chitin pentasaccharide backbone alone indicates that the modifications of this backbone contribute to the recognition of the Nod factor by the lectin. No significant inhibition of NBP46 binding to chitin was obtained with *cis*-vaccenic acid when tested at concentrations up to 1.2 mM nor with L-fucose at concentrations up to 50 mM.

Two Nod factors from *Rhizobium* sp. NGR234, another strain that nodulates *Dolichos biflorus*, were also able to inhibit the binding of NBP46 to chitin. These Nod factors differ from the USDA110 10 Nod factor in that they have a sulfate on C-3 (NodNGR_A) or an acetate on C-4 (NodNGR_B) of the 2-O-methylfucose; they are also methylated on the amino group and partially carbamoylated at C-3, C-4 or C-6 of the sugar at the nonreducing end (Price, N.P.J. *et al. Carbohyd. Res.* 289:115-136 (1993)). The Nod factor from *Rhizobium meliloti*, a strain that does not modulate *Dolichos biflorus*, gave the weakest inhibition when tested at equivalent concentrations (Figure 3). This Nod factor differs from the USDA110 Nod factor in that it has a chitin tetrasaccharide backbone, contains a sulfate instead of a fucose at the reducing end and is acetylated at C-6 of the sugar at the nonreducing end (Lerouge, P. *Nature* 344:781-784 (1990)).

Although the differences in relative affinity of NBP46 for the above Nod factors indicate a small preference of the lectin for Nod factors produced by rhizobia that modulate the plant, it must be pointed out that both the *B. japonicum* USDA110 and R. sp. NGR234 strains are only weak nodulators of *Dolichos fiblorus*, and the nodules formed with the former strain do not fix nitrogen. Nod factors from rhizobial strains that are strong nodulators of this plant have not yet been purified or characterized.

10

15

20

Antiserum raised against NBP46 inhibits nodulation

Confocal immunofluorescence microscopy of whole mounts of 7-day old Dolichos biflorus roots that had been fixed prior to staining showed that NBP46 is present on the surfaces of the newly emerging and young root hairs. Treatment of young roots of this plant with antiserum to the lectin inhibited the ability of these roots to be nodulated by rhizobia (Table 1). Although it is possible that such inhibition could be due to stearic hindrance of adjacent sites, these results, coupled with the above finding that NBP46 is a Nod factor binding protein, suggest that this root lectin may play a role in rhizobium-legume symbiosis either as a host/strain specific receptor or perhaps as a second, less stringent receptor postulated for this process (Ardourel, M. et al. Plant Cell 6:1357-1374 (1994)). Previous attempts to implicate lectins in this symbiosis have been focused on the legume seed lectins (Diaz, C.L. et al. Nature 338:579-581 (1989); Hirsch, A.M. et al. Symbiosis 19:155-173 (1995)), which have not been reported to bind Nod factors. It is also possible that NBP46 may function in the recognition of endogenous Nod-factor like signals that have been proposed to play a role in the regulation of plant growth and organogenesis (Etzler, M.E. Biochemistry 33:9778-9783 (1994)).

Table 1. Effect of anti-NBP46-serum on nodulation of *D. biflorus* roots

	Average number of nodules (± S.E.)				
Treatment	Treated region of root	Region of root emerged after treatment			
Untreated	3.6±0.5	2.2±0.2			
Preimmunization serum	3.4±0.5	1.6±0.2			
Anti-NBP46-serum	0.6±0.2	1.4±0.2			

25

30

The roots of 2 sets of 10 3-day old *Dolichos biflorus* plants were immersed for 1 hour in 1/100 dilutions of preimmunization serum or anti-NBP46-serum, washed and transferred to growth pouches. A third set of 10 pts was put directly in growth pouches. Half of each set of plants was inoculated with *Bradyrhizobium* sp. 24A10. After 3 weeks the number of nodules in the treated region as well as in the region of root that emerged after treatment were recorded. No nodules were observed on the roots that had not been inoculated with rhizobia.

PCT/US98/16261

DISCUSSION

5

10

15

20

25

30

The low concentrations (10⁻¹² of Nod factor that have been found to induce physiological responses in legumes (Denarie, I. et al. Annu. Rev. Biochem. 65:503-535 (1996)) predict that Nod factor receptors have high affinity for their ligands. Indeed, high affinity binding sites for Nod factors have been found on particulate fractions from roots of the legume, Medicago truncatula (Niebel, A. Mol. Plant-Microbe Interact. 10:132-134 (1997)). Although the inhibition data show the relative affinities of NBP46 for its ligands, they do not enable the determination of the absolute affinities of this lectin for the Nod factors. The concentrations of Nod factors required for the stimulation of increased phosphatase activity suggest that the K_d's may be in the high nanomolar to low micromolar range. It should be noted, however, that NBP46 is primarily a monomer in solution (Quinn, J.M. and Etzler, M.E. Arch. Biochem. Biophys. 258:535-544 (1987)); as established with antibodies (Hornick, C.L. and Karush, F. Immunochem. 9:325-340 (1972)), the multivalence that would occur when this lectin is associated with the cell surface would increase its apparent affinity for multivalent ligands such as Nod factor micelles or Nod factor on the surface of rhizobia by several orders of magnitude.

The presence of both carbohydrate binding activity and apyrase activity on NBP46 and the apparent interaction of these sites suggest that, upon binding its carbohydrate ligand, NBP46 may play a role in activating downstream events either directly by signal transduction or indirectly, perhaps by serving as a motor for transport of the carbohydrate. In this context, it is of interest that the human CD39 lymphoid cell activation antigen, one of the apyrases found to have some sequence similarity to NBP46, is thought to be involved in the regulation of B cell adhesion (Kansas, G.S. et al. J. Immunol. 146:2235-2244 (1991)). Although these other apyrases have not been tested for lectin activity, it is possible that such dual activities of these proteins may have been conserved throughout evolution.

The unique amino acid sequence, carbohydrate specificity and apyrase activity of NBP46 distinguish this lectin from the conventional lectins found in abundance in the seeds of legumes (Sharon, N. and Lis, H. FASEB J. 4:3198-3208 (1990)). The possibility that other such plant lectin/enzymes exist is suggested by the recent finding of a CDNA from Arabidopsis thaliana that encodes a receptor-like serine/threonine kinase as well as a legume seed lectin-like domain (Herve, C. et al. J. Mol. Biol 258:778-788

(1996)). NBP46 may thus be on one of many multifunctional carbohydrate binding proteins that may function in plant oligosaccharide signaling events. A variety of transgenic experiments are underway to elaborate its role in such processes.

5 **METHODS**

10

15

20

25

30

Preparation of NBP46. NBP46 was extracted from the roots of 7-day old Dolichos biflorus plants and isolated by affinity chromatography on hog blood group A + H -Sepharose as previously described (Ouinn, J.M. and Etzler, M.E. Arch, Biochem. Biophys. 258:535-544 (1987)), followed by ion exchange chromatography. It was iodinated using the iodine monochloride procedure as previously described (Etzler, M.E. Glycoconj. J. 11:395-399 (1994)), which gave a specific activity of approximately 500 x 10⁶ cpm/mg protein.

Carbohydrate binding assays. Solid phase binding assays were conducted using iodinated NBP46 and purified shrimp chitin powder (Sigma Chemical Company, St. Louis, MO), which was N-acetylated prior to use with 15 mM acetic anhydride in 0.5 M NaHCO₃ for one hour at room temperature. The assays were conducted in a final volume of 100 μl of 10 mM MOPS buffer, pH 7.2, containing 0.02% Tween-20 and 0.01% NaN₃. After incubation at room temperature for two hours, binding was measured as previously described (Etzler, M.E. Glycoconj. J. 11:395-399 (1994)).

Bradyrhizobium japonicum USDA110 Nod factor was isolated as previously described (Sanjuan, J. et al. Proc. Natl. Acad. Sci. USA, 89:8789-8793 (1992)). The Nod factors from Rhizobium meliloti and Rhizobium sp. NGR234 were graciously provided by Dr. Jean Denarie, CNRS-INRA, Toulouse, France. Monosaccharides and the chitin disaccharide were purchased from Sigma Chemical Co., St. Louis, MO, the other chitin oligosaccharides were obtained from Seikagaku Corp., Tokyo, Japan. Cloning of NBP46 cDNA. Total RNA was isolated (Taylor, B. and Powell, A. Focus 4:4-6 (1982)) from the roots of 1-day-old D. biflorus plants and reverse transcribed using M-NMV reverse transcriptase and random hexanucleotide primers (Tabor S. RNA-dependent DNA polymerases. In Current Protocols in Molecular Biology, F.M. Ausubel, F.M., et al., Eds., John Wiley & Sons, Inc., Vol. 1, pp. 3.7.1-3.7.3 (1987)). This cDNA was used as a template in a PCR reaction employing Tag polymerase and

degenerate sense and antisense primers corresponding to amino acids 6-12 and 244-249 in

SEQ ID NO:2. The PCR was performed in an automated thermal cycler for 35 cycles of 94°C for 2 min, 37°C for 2 min, and 72°C for 2 min. The predominant 727 bp fragment was isolated on a 1.2% agarose gel, cloned into the pCRII vector (InVitrogen) and sequenced (Sanger, F. et al. Proc. Natl. Acad. Sci. USA 74:5463-5467 (1977)). Gene specific primers were used in 5' and 3' RACE reactions (Frohman, M.A. Proc. Natl. Acad. Sci USA 85:8998-9002 (1988)); the products were cloned into the pCRII vector and sequenced. The full length (1527 bp) cDNA was assembled by ligating the two RACE products together using an int Sac1 site. The sequences of the overlapping regions of the 5' and 3' RACE products and the original PCR fragment were identical.

5

10

15

20

25

30

Phosphatase assays. N-BP46 (201 ng/ml) was incubated at 25°C in the presence of various concentrations of substrate in a final volume of 100 µl of 60 mM MOPS, pH 6.8, containing 1 mM MgCl₂. The reactions were conducted in a microtiter plate using a multichannel pipette. At various time points, 30 µl aliquots were removed and assayed for inorganic phosphate by a photometric microtiter assay (Drueckes, P. et al. Anal. Biochem. 230:173 (1995)), modified by using four parts ammonium molybdate reagent to one part 10% ascorbate for the reagent mixture. Conditions were chosen so that less than 10% of the total substrate was converted to product.

Immunofluorescence microscopy. Roots from 7-day old *Dolichos biflorus* plants were fixed for 45 minutes at 4°C in 0.01 M phosphate buffer, pH 7.2, containing 0, 15 M NaCl and 0.3% paraformaldehyde. After washing, the roots were treated for 20 minutes with a 1/250 dilution of preimmunization serum or antiserum prepared against recombinant NBP46. After washing, the roots were treated for 20 minutes with fluorescein-labeled goat anti-rabbit IgG (Sigma Chemical Co., St. Louis, MO), washed and examined with a Leica TCS NT confocal microscope using a 488 nm laser excitation line and a 560 barrier filter. Confocal images were reconstructed with Imagespace software.

Nodulation. Dolichos biflorus seeds were sterilized by shaking for 15 minutes in 70% ethanol, followed by 15 minutes in 3% hydrogen peroxide. After extensive washing with sterile H_2O , the seeds were germinated and grown in sterile growth pouches. At 3 days, the roots were inoculated with 100 μ l of B. sp. 24A10 (1 x 10⁷ cells/ml). The number of nodules per root was determined after 3 weeks. Antiserum and preimmunization serum used to treat the roots were sterilized by filtration through a 0.45 μ m filter.

10

15

20

Example 2: Isolation of NBP46 from other species

NBP46 nucleic acids have also been isolated from *Medicago sativa* (SEQ ID NO:8 and 9) and *Lotus japonicus* (SEQ ID NO:10 and 11). These nucleic acids were obtained by RT-PCR as follows. Messenger RNA was obtained form the roots of both species and reverse transcribed using oligo-dT primers. Degenerate PCR primers were designed to conserved sequences of the *D. biflorus* NBP46 disclosed here and the *Pisum sativa* nucleotide triphosphatase gene described by Hsieh, H.-L., et al., Plant Mol. Biol. 30:135(1996). These were used to generate internal 850 bp fragments from both *Medicago sativa* and *Lotus japonicus*. cDNA species-specific primers then designed for both 5' and 3' RACE. Full length clones were obtained using primers designed to the 5' and 3' ends of the RACE products. Duplicate clones from each species were obtained in separate PCR reactions and sequenced in their entirety in both directions.

Example 3: Isolation of DBX from D. biflorus

A second gene also involved in oligosaccharide signaling has been isolated from *D. Biflorus* (SEQ ID NO:12 and 13).

It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference for all purposes.

WHAT IS CLAIMED IS:

1	· I.	An isolated nucleic acid molecule comprising a NBF40						
2	polynucleotide seq	polynucleotide sequence, which polynucleotide sequence specifically hybridizes to SEQ						
3	ID NO:1 under stri	ID NO:1 under stringent conditions.						
1	2.	The isolated nucleic acid molecule of claim 1, wherein the NBP46						
2	polynucleotide is between about 100 nucleotides and about 1600 nucleotides in length.							
1	3.	The isolated nucleic acid molecule of claim 1, wherein the NBP46						
2	polynucleotide is SEQ ID NO: 1.							
1	4.	The isolated nucleic acid molecule of claim 1, further comprising a						
2	plant promoter operably linked to the NBP46 polynucleotide.							
1	5.	The isolated nucleic acid molecule of claim 4, wherein the plant						
2	promoter is a root s	promoter is a root specific promoter.						
1	6.	The isolated nucleic acid molecule of claim 1, wherein the NBP46						
2	polynucleotide enc	polynucleotide encodes a NBP46 polypeptide of between about 50 and about 460 amino						
3	acids.							
1	7.	The isolated nucleic acid molecule of claim 6, wherein the NBP46						
2	polypeptide has an	polypeptide has an amino acid sequence as shown in SEQ ID NO:2.						
1	8.	An isolated nucleic acid molecule comprising a NBP46						
2	polynucleotide sequ	polynucleotide sequence, which polynucleotide sequence encodes a NBP46 polypeptide of						
3	between about 50 a	between about 50 and about 210 amino acids.						
1	9.	The isolated nucleic acid molecule of claim 8, wherein the NBP46						
2	polypeptide has an	polypeptide has an amino acid sequence as shown in SEQ ID NO:2.						

1	10.	A transgenic plant comprising an expression cassette containing a
2	plant promoter opera	ably linked to a heterologous NBP46 polynucleotide that specifically
3	hybridizes to SEQ II	D NO:1 under stringent conditions.
1	11	The transcenie wheat of alains 10 sub-scients also when the sales are secured from
	11.	The transgenic plant of claim 10, wherein the plant promoter is from
2	a NBP46 gene.	
1	12.	The transgenic plant of claim 11, wherein the NBP46 gene is as
2	shown in SEQ ID N	O:3.
1	13.	The transgenic plant of claim 10, wherein the heterologous NBP46
2		des a NBP46 polypeptide.
_	,,	
1	14.	The transgenic plant of claim 13, wherein the NBP46 polypeptide is
2	SEQ ID NO:2.	
		•
1	15.	The transgenic plant of claim 10, which is not a legume.
1	16.	A method of modulating rhizobial interaction in a plant, the method
2		ing into the plant an expression cassette containing a plant promoter
3		heterologous <i>NBP46</i> polynucleotide that specifically hybridizes to
4	-	stringent conditions.
•	DEQ ED TYOU MINUS	Simpon conditions.
l	17.	The method of claim 16, wherein the heterologous NBP46
2	polynucleotide is SE	Q ID NO:1.
1	18.	The method of claim 16, wherein the plant promoter is from a
		The method of claim 10, wherein the plant promoter is from a
-	NBP46 gene.	
1	19.	The method of claim 16, wherein the heterologous NBP46
2	polynucleotide encod	les a NBP46 polypeptide.

35

1	20.	The method of claim 19, wherein the NBP46 polypeptide has an
2	amino acid sequence	e as shown in SEQ ID NO:2.
1	21.	The method of claim 16, wherein the plant is not a legume.
1	22.	The method of claim 16, wherein the expression cassette is
2	introduced into the p	plant through a sexual cross.
1	23.	A method of modulating phosphohydrolase activity in a plant, the
2	method comprising	introducing into the plant an expression cassette containing a plant
3	promoter operably la	inked to a heterologous NBP46 polynucleotide that specifically
4		D NO:1 under stringent conditions.
1	24.	The method of claim 23, wherein the heterologous NBP46
2	polynucleotide is SI	EQ ID NO:1.
1	25.	The method of claim 23, wherein the plant promoter is from a
2	NBP46 gene.	
1	26.	The method of claim 23, wherein the heterologous NBP46
2	polynucleotide enco	des a NBP46 polypeptide.
1	27.	The method of claim 26, wherein the NBP46 polypeptide has an
2	amino acid sequence	e as shown in SEQ ID NO:2.
1	28.	The method of claim 23, wherein the plant is not a legume.
1	29.	The method of claim 23, wherein the expression cassette is
2	introduced into the	plant through a sexual cross.

4/4

SEQ ID NO: 1 Complete cDNA sequence of DB46

_	A			_	т	_	7 .	h	A	_	c	A	G	T	Δ	c	т	c	T	T	т	С	A	G	T	G	G	T	G	A	G	G	T	T	35
G	T	A	A	~	1	~	7	~	~	~	,	~	7	<u> </u>	a	~	Ĉ	<u> </u>	<u> </u>	Ţ	T	G	G	G	T	G	T	G	G	С	С	A	A	A	70
C	T A	G	A	-	A	9	^	+	_		л П	~	~	~	2	_	~	~	~	Ť	A	_	т	~	c	T	c	A	т	С	A	С	T	T	105
	A	С	A	A	A	-	A	-	-	A	T	6	^	-	_	_	_	~	»	, ,	A	<u> </u>	÷	T	~	<u>-</u>	c	т	Ť	c	T	T	С	G	140
T	T A	С	T	A	<u> </u>	T	<u>.</u>	T	T	-	T	2	. A	_	7	ċ	~	×	л Т	_	T	T	<u> </u>	÷	Ť	<u> </u>	A	Ā	т	c	Ā	Ť	C	G	175
C	A	A	T	A	T	G	T	T	-	6	-	A .	~		^	6	T	~	_	ν Σ	n	_	m	~	÷	T	T	<u> </u>	c	c	T	c	T	T	210
	A		G	A T	T	A	C	T	T	C	-	-	A.	A		_	A .	6	~	~	~	-	7	~	~	T	÷	т	6	6	_	-	_		245
	С	G	C	T	G	T	C	A	T	<u> </u>	T	T	T	6	A	T	-	_	_	-	~	, N	~	9	, n	ċ	<u> </u>	A	~	7	т	A	G	A	280
_		T	G	T	C	C	A	T	G	T	C	T	T	6	A	A	1	1	_	7	6	~	-	_	6	2	G	T	T	Ť	À		_		315
T	С	T	С	C	T	G	C	A	C	A	T	T	6	6	-	~	~	-	6	^	-	~	T	~	2	7	A	ĉ	Ġ	Ĉ.	т	G	A	T	350
A	A	A	A	G	A	T	C	A	A	A	C	C	-	-	6	1	1	1		A	-	<u>د</u>		_	7	÷	7	T	T	~	ċ	_	c		385
A.	A	G	С		T	G	A	A	A	A	A	G	<u>c</u>	T	6	C	A	<u>.</u>	A -	A		_	7	_	÷	_	T	-	7	6	G	A.			420
T	T	T	G	G	A	G	G	A	A	G	C	T	G	A	A	G	A	T		T	T	6	<u>_</u>	-	T	2	-	G	G	9	7	A	C	A	455
T	Ğ	С	A	С	C	C	C	A	A	G	A	c	A	C	C	<u> </u>	C	T	T	A	A -	6	_	-	, n	7	-	6	T	G	_	ጥ	G	n.	490
G	С	A	G	G	T	T	T	G	A	G	G	C	T	C	T	T	G	G	A	T	6	6	2	7	y .	~	G	7	T	~	A	Ġ			525
A	A	A	G	A	T	A	T	I	G	_ _	A	A	G	C	G	G	T	T	A	6			~	~	A	÷	, n	Ť	-	_	<u> </u>	G	T	Δ	560
A		A	G	A	A	G	T	T	C	C	C	T	G	A	G	C	6	T	T	-	A.	, n	2	~	_	7	7	ċ	~	т	h	-		T	595
T		T	G	T	I	A	T	T	G	A	T	G	G	A	A	C	C	-	A	л Т	6	7	л Т	7	G	ċ	<u> </u>	Δ	<u> </u>	ċ	Т	T		Ġ.	630
A	T	G	G	G	T	T	A	C	A	G	T	T	A	A		T	A	T														_			665
G	A	A	A	G	A	A	G	Ţ	T	T	A	C	A	A	A	A	A	_	, r	3	7	T	-	G	_	Т	Ť	A	T	ċ	c	T	G	T	700
С	T	T	G	G A	A	G	G	T	G	C	T	1	-	A	-	1	J.		7	^	Т	_	-	~	~	÷	A	7.	2	A	c		A		735
С		C	A	A	G	A	A	A	T	A	C	A	-	0	T	A	A	A .	~	7	T	G	<u> </u>	<u> </u>	6	<u> </u>	Α	G	C	T	т	G	T		770
	A	C	A	A	G	G	A		A		6	A.	1		_ _	A	7	~	~	~	÷	7	T	T	A	т	G	T	T	c	A	_	_		805
C	T	C	A	A T	G	6	G	A	A	A	2	A	A	~	T	A .	7	~	6	D .	_	Ġ	÷	<u> </u>	G	ċ	A	ċ	Ġ	Т	G	T	T	A	840
T	T	A	<u> </u>	T	T	-	ر ت	2	7	_	A	_	6	D	Ļ	T	6	, A	T	G	6	Ŧ	6	C	T	G	c	T	A	G	T	_	c	T	875
A		A	T	T	1	T.	T .	~	~	9	~	_	_	_	T	70	7	G	A	<u> </u>	6	A	T	A	Ŧ	A	т	Ā	c	A	G	A	T	A	910
T	G	T	6	G	~	7	_	2	7	~	_	6	T	<u> </u>	Ċ	7	n	T	A	ጥ	c	т	Ā	т	G	G	T	c	c	C	A	c	T	T	945
T	T	-	_	T	6	~	-	A	7	ċ	T	~	Ť	A	<u> </u>	T	G	À		Ŧ	G	c	<u> </u>	G	T	G	A	c	c	T	A	G	С	T	980
C	T	-	6	A	6	<u>~</u>	~	7	~	T	ċ	<u> </u>	Ġ	Α	т	Ť	6	A	A	T	G	A	G	c	c	A	T	G	T	T	C	С	С	A	1015
C	Ţ	T	2	A	מ	~	Ť	-	_	7	_	~	T	T	т	Ġ	G	T	G	G	G	A	T	A	T	G	G	G	A	T	G		T	G	1050
T	A	A A	A .	A		6	A	D	6	т	6	G	Ā	ċ	A	G	A	A	A	A	A	c	c	T	T	G	T	T	G	T	T	A	С	Ť	1085
G	C			~	7	T	T	Ĉ	7	Ā	c	т	A	T	A	G	G	т	c	T	T	c	T	G	A	G	G	T	T	G	G	T	T	T	1120
_	G	7	-	A	÷	T	÷	~	Ť	C	c	c	A	A	т	T	c	c	A	A	Ā	А	A	T	С	G	С	С	С	T	С	T	G	G	1155
A	T		T	T	G	Ā	A	A	ċ	т	G	c	A	G	c	T	A	A	A	С	A	A	G	С	T	T	G	T	A	G	T	T	T	A	1190
Α.	c	A	T	Ť	c	G	A	G	G	A	A	G	c	G	A	A	A	T	С	С	Α	С	T	T	Т	T	С	С	A	A	A	T	G	T	1225
Т	G	'n	Ġ	<u> </u>	A	A	G	A	т	A	A	A	c	T	Ť	d	c	A	T	T	T	G	T	A	T	G	С	G	T	G	G	A	T	T	1260
*	c	A	-	A	T	Α.	c	C	A	G	т	A	T	A	c	A	T	T	G	С	T	T	G	T	T	G	A	T	G	G	·A	T	T	T	1295
à	G	<u>ر</u>	~	T	A	6	A	т	c	c	Ā	G	A	G	c	A	A	G	A	G	A	T	T	A	С	A	G	T	G	G	С	A	G	A	1330
A	9	~	<u> </u>	A	т	T	6	A	A	Т	A	T	c	A	A	G	A	T	G	С	С	A	T	T	G	T	G	G	A	A	A	C.	A	G	1365
C	3	T		G	ĉ	ċ	T		т	A	G	G	A	A	c	T	G	c	С	A	T	A	G	À	A	G	С	С	A	T	A	Ŧ	С	A	1400
T	C	÷	7	T	G	_	ĉ	т	Ā	A	A	т	T	T	A	A	T	c	G	T	c	T	A	А	T	G	T	A	T	T	T	T	A	T	1435
	T	7	7	Ġ	~	_	<u> </u>	T	6	т	C	c	т	c	c	A	c	T	T	A	T	G	A	С	С	Α	С	T	T	T	A	A	T	T	1470
2	A	7	7	Ŧ	<u> </u>	<u> </u>	7	<u> </u>	_	~	-	<u> </u>	-	c	c	т	T	T	T	C	A	c	T	А	A	A	A	A	A	A	A	A	A	A	1505
_	n n	A A	A	A	A A	Α	Α	c	Ψ.	ċ	c	T	T	T	T	T	T	Ā	T	T	С	c	Ā	T	T	G	A	G	T	A	T	C	A	Α	1540
A	7	~	7	T	A	Α	T	Ŧ	Ť	٥	T	Ť	T	c	T	G	A	c	A	A	À	T	G	G	Ä	G	Ģ	T	G	T	A	A	A	λ	1575
٠	T	6	у Т	A	Α	ر د	7	<u> </u>	A	G	Ť	A	T	G	T	Ť	T	T	T	G	T	c	A	G	A	T	A	С	G	A	A	T	G	G	1610
G	T A	6	7	л Д	-	6	C.	T	T	<u>A</u>	T	٠.	A	Ţ	G	A	A	A	A	A	A	Ā	A	Ā	A	A	A	A	A	Α	A	A			1643
A	A	G	T	Λ	3	3	•	*	-	_	_	•	••	•	_	••																			

SEQ ID NO: 2

ر ا	32	72	112	152	192	232	272	312	352	392	
z	×	7	æ	E	>	O	∵ວ	CL ₄	.>	3	
_ 	ā	>	.z	×	بد	æ	p,	E 4	ρ ₄	~	
- -	i i	a	×	E	×	7	×	>	д	E	
- Н	Ω	ω	Œ	í=	×	ı	z	P4	H	M	
ល	ā	A	×	×	$\mathbf{\Sigma}$	ပ	H	U	×	>	
z.	z	122	ы	×	>-	p.	æ	>	Ω	H	
~ ප	a		pc,	9	ρ,	ຜ	A	ធ	×	×	
>		I B	>	12	Ω	4	H	ល	M	Ω	
>	24	ᆆ	4	×	囟	«	ø	S	>	α	
α	Z	Q.	a	U	O	G	H	~	Z	>	
ຽ	Gu		IJ		ø	Ω	⋖	>	욘	拉	
Ŋ	>	I I	н	그	ρ.	Ħ	1	×	p.	H	
ຽງ	×	က	×	>	PH	H	Q	تعو	H	Ö	
ū	>	22	ध्य	2	×	×	×	A	W .	M	
×	c		A	>	p.	ţz4	ပ	လ	×	A	
۵,	တ	AA	×	E	Æ	н	स्य	E	~	>	414
н	ט	×		>	×	×	z	>	Þ	. E +	4
Ŋ	တ	M	U	3	×	>	~	>	24	Н	
Ē4,	S	م		니니	⋖	¤	7	7	124	Ø	,н
7	ט	×	니니	>	H	AA	4	Z	E	ø	ţe,
Ţ		D K P	니니	S	7	4	ပ	×	Н	덜	7
54 ,		4	~	ט	œ	۵	တ	ø	co.	ρ.	Ξ
E	0-1	>	리	H	တ	Z	터	Ö	Ü	Ω	1
H		တ	ט	0	>	ပ	٩	ເນ	. «	<u>, , , , , , , , , , , , , , , , , , , </u>	~
7	>	လ	4	E	4	>	ပ	U	ø	9	×
7		그	E	ပ	>	Œ	7	×	×	Ez.	<u> </u>
Ţ		ಲ	<		4	H	H	.	«	છ	×
Ē,	ဟ	ᇜ	ا تا	Н	=	>-	Z	U	4	Q /	r N
လ	터	×	리	>	0	S	7	<u>α</u> ~	E+ ⊠	L V	S
Σ	ㅋ	Н	×	S	>	H	t)	≆	Gr.	1	S
S	긕	×	니니	>	8	>	22		Ω	- E	н
×	નહાં	×	24	K	A	Χ,	ပ	ပ ဗ	7	× .	
E	α	₽	[4	۵	ט	7	S	E.	н Д	a	per
×	Z	ċ	×	ρ,	U	a .		E.	4) >₁	H
C4	д	Þ	۵,	a	1	X	~		*	ۥ	
3	h	J	×	>	Q	×	>-	ပ ~	×	G.	E
>	H	0	1	Ø	H	×	Н	E Z	ß	۵	c.
3	×	Z	63	H	>	U	Ω Α			>	
Z	æ	ບ	×	Ŋ	U	×	≻	Ξ.	z		<u>.</u>
~	*	H	ᆈ	S	>	1	>+	S	ρ.	Ö	1

SEQ ID NO: 3

Genomic DNA sequence of Dolichos biflorus NBP46 (Bold, underlined segments indicate exons)

CTAGATGTGA	AGTGATTTTA	ATCTTGCAAC	TGGTGTAAAT	AAATCATAAT	ACAATATCTT	60
ATCTTAAAAA	TAAAATCTTC	ATAAAAAATA	AATATAATGA	TTAAATTATC	ATAAATAAAT	120
AAGTAATTAT	TTCCTTACCT	AACATGATGG	CCAGCTCATA	TAATAACATC	GCTTCTTGGA	180
GCATATCAAT	GACGAAAACG	TGGACGCAAA	TTATTGGCCT	CGGGGATCTG	CTTTCTGCAA	240
ATACTTGTTT	CTCCCGAGAA	CCGGATTCTC	ATTAATTTCT	AGTTGTTCTC	GTAAATTGCT	300
CACTTTATTT	TCATTGTAAA	GTAAAAATAA	TTTTCTACTA	AAAACGATAT	TCACCATGTT	360
AGTCACATAC	ACATTCAATA	ATATTTAAAA	TGTTATTTAT	TTAATGGGAA	GAAGATTTAA	420
TAATTGGGGT	TAGTTCTTAC	AATAATACAT	ACTCAACAAA	ATTTTTCCTC	AAATATCACA	480
CGATAGTAAT	ATATTAATCT	AATATAATCT	CACAAAATCA	TCTCCATATT	TATATATTTC	540
ATATAGATGA	TGTTATCATG	GACGTGGATC	TCTGCGACCA	TAGCATTTTA	CATCTATATA	600
TAGTGGCAAG	AGTGACGATT	AGTGCAAACT	GA <u>AACGAGTA</u>	CTCTTTCAGT	GGTGAGGTTC	660
TGAGAGATTC	AGAAATGAAT	TGGGTGTGGC	CAAAGACAAA	GAGCATGAGC	TTCCTACTCC	720
TCATCACTTT	TCTACTCTTC	TCATTGCCAA	AACTTTCTTC	TTCGCAATAT	GTTGGGAACA	780
GTATCTTACT	AAATCATCGT	AAGATACTTC	CCAACCAGGA	ACTCCTTACC	TCTTACGCTG	840
TCATCTTTGA	TGCTGGTAGC		GTGTCCATGT			900
		TCTGGGAGTC	-	CTTCAATTTT	GACCAGAACT	900 960
TAGATCTCCT	TGCTGGTAGC	TCTGGGAGTC AATGACCTCG	AGTTTACAAA	CTTCAATTTT AAAGGTCAAA	GACCAGAACT CTGAAACCTT	
TAGATCTCCT AAATTATTCA	TGCTGGTAGC GCACATTGGC	TCTGGGAGTC AATGACCTCG CTTCATCTTA	AGTTTACAAA CTCTTACATT	CTTCAATTTT AAAGGTCAAA CTTCTTCATT	GACCAGAACT CTGAAACCTT ATTCTGGTGC	960
TAGATCTCCT AAATTATTCA AGATCAAACC	TGCTGGTAGC GCACATTGGC TTATTATTTT	TCTGGGAGTC AATGACCTCG CTTCATCTTA TCATACGCTG	AGTTTACAAA CTCTTACATT ATAAGCCTGA	CTTCAATTTT AAAGGTCAAA CTTCTTCATT AAAAGCTGCA	GACCAGAACT CTGAAACCTT ATTCTGGTGC GAATCTCTCA	960 1020
TAGATCTCCT AAATTATTCA AGATCAAACC TTCCACTTTT	TGCTGGTAGC GCACATTGGC TTATTATTTT CGGTTTGAGC	TCTGGGAGTC AATGACCTCG CTTCATCTTA TCATACGCTG GAAGATGTTG	AGTTTACAAA CTCTTACATT ATAAGCCTGA TCCCTGAGGA	CTTCAATTTT AAAGGTCAAA CTTCTTCATT AAAAGCTGCA ACTGCACCCC	GACCAGAACT CTGAAACCTT ATTCTGGTGC GAATCTCTCA AAGACACCCC	960 1020 1080
TAGATCTCCT AAATTATTCA AGATCAAACC TTCCACTTTT TTAAGCTTGG	TGCTGGTAGC GCACATTGGC TTATTATTTT CGGTTTGAGC GGAGGAAGCT	TCTGGGAGTC AATGACCTCG CTTCATCTTA TCATACGCTG GAAGATGTTG TCTCATCTCT	AGTTTACAAA CTCTTACATT ATAAGCCTGA TCCCTGAGGA ACTTTTGCCA	CTTCAATTTT AAAGGTCAAA CTTCTTCATT AAAAGCTGCA ACTGCACCCC CAGATTAATA	GACCAGAACT CTGAAACCTT ATTCTGGTGC GAATCTCTCA AAGACACCCC TGTCACACTT	960 1020 1080 1140
TAGATCTCCT AAATTATTCA AGATCAAACC TTCCACTTTT TTAAGCTTGG TTACATGAAA	TGCTGGTAGC GCACATTGGC TTATTATTTT CGGTTTGAGC GGAGGAAGCT GGTGAGTATT	TCTGGGAGTC AATGACCTCG CTTCATCTTA TCATACGCTG GAAGATGTTG TCTCATCTCT TTCTTTAAAC	AGTTTACAAA CTCTTACATT ATAAGCCTGA TCCCTGAGGA ACTTTTGCCA ATGTTGATTA	CTTCAATTTT AAAGGTCAAA CTTCTTCATT AAAAGCTGCA ACTGCACCCC CAGATTAATA AAGGGTGACA	GACCAGAACT CTGAAACCTT ATTCTGGTGC GAATCTCTCA AAGACACCCC TGTCACACTT GTTTGTATTT	960 1020 1080 1140 1200
TAGATCTCCT AAATTATTCA AGATCAAACC TTCCACTTTT TTAAGCTTGG TTACATGAAA TTTAATCAAG	TGCTGGTAGC GCACATTGGC TTATTATTTT CGGTTTGAGC GGAGGAAGCT GGTGAGTATT CATGATTAAG	TCTGGGAGTC AATGACCTCG CTTCATCTTA TCATACGCTG GAAGATGTTG TCTCATCTCT TTCTTTAAAC CTTAAACTAT	AGTTTACAAA CTCTTACATT ATAAGCCTGA TCCCTGAGGA ACTTTTGCCA ATGTTGATTA GGTAATAATA	CTTCAATTTT AAAGGTCAAA CTTCTTCATT AAAAGCTGCA ACTGCACCCC CAGATTAATA AAGGGTGACA TAAAATGAAT	GACCAGAACT CTGAAACCTT ATTCTGGTGC GAATCTCTCA AAGACACCCC TGTCACACTT GTTTGTATTT ATGAAACTAA	960 1020 1080 1140 1200 1260
TAGATCTCCT AAATTATTCA AGATCAAACC TTCCACTTTT TTAAGCTTGG TTACATGAAA TTTAATCAAG TATATTCTGA	TGCTGGTAGC GCACATTGGC TTATTATTT CGGTTTGAGC GGAGGAAGCT GGTGAGTATT CATGATTAAG TAATCTAGAA	TCTGGGAGTC AATGACCTCG CTTCATCTTA TCATACGCTG GAAGATGTTG TCTCATCTCT TTCTTTAAAC CTTAAACTAT GAAAGCAATA	AGTTTACAAA CTCTTACATT ATAAGCCTGA TCCCTGAGGA ACTTTTGCCA ATGTTGATTA GGTAATAATA TCAAGAGAGA	AAAGGTCAAA CTTCTTCATT AAAAGCTGCA ACTGCACCCC CAGATTAATA AAGGGTGACA TAAAATGAAT CAAAACACAC	GACCAGAACT CTGAAACCTT ATTCTGGTGC GAATCTCTCA AAGACACCCC TGTCACACTT GTTTGTATTT ATGAAACTAA ACTTTGATGA	960 1020 1080 1140 1200 1260 1320
TAGATCTCCT AAATTATTCA AGATCAAACC TTCCACTTTT TTAAGCTTGG TTACATGAAA TTTAATCAAG TATATTCTGA GCTCTATCTT	TGCTGGTAGC GCACATTGGC TTATTATTTT CGGTTTGAGC GGAGGAAGCT GGTGAGTATT CATGATTAAG TAATCTAGAA TGGAACAGAA	TCTGGGAGTC AATGACCTCG CTTCATCTTA TCATACGCTG GAAGATGTTG TCTCATCTCT TTCTTTAAAC CTTAAACTAT GAAAGCAATA AATGGAATTG	AGTTTACAAA CTCTTACATT ATAAGCCTGA TCCCTGAGGA ACTTTTGCCA ATGTTGATTA GGTAATAATA TCAAGAGAGA AAAGACCAAA	CTTCAATTTT AAAGGTCAAA CTTCTTCATT AAAAGCTGCA ACTGCACCCC CAGATTAATA AAGGGTGACA TAAAATGAAT CAAAACACAC TAAAATAGGC	GACCAGAACT CTGAAACCTT ATTCTGGTGC GAATCTCTCA AAGACACCCC TGTCACACTT GTTTGTATTT ATGAAACTAA ACTTTGATGA ATTAGCCCAT	960 1020 1080 1140 1200 1260 1320 1380
TAGATCTCCT AAATTATTCA AGATCAAACC TTCCACTTTT TTAAGCTTGG TTACATGAAA TTTAATCAAG TATATTCTGA GCTCTATCTT ATCATAAAAT	TGCTGGTAGC GCACATTGGC TTATTATTT CGGTTTGAGC GGAGGAAGCT GGTGAGTATT CATGATTAAG TAATCTAGAA TGGAACAGAA TTAAACAAAA	ATGAGAGTC AATGACCTCG CTTCATCTTA TCATACGCTG GAAGATGTTG TCTCATCTCT TTCTTTAAAC CTTAAACTAT GAAAGCAATA AATGGAATTG ATATTAATAG	AGTTTACAAA CTCTTACATT ATAAGCCTGA TCCCTGAGGA ACTTTTGCCA ATGTTGATTA GGTAATAATA TCAAGAGAGA AAAGACCAAA AAAGTAAATG	CTTCAATTTT AAAGGTCAAA CTTCTTCATT AAAAGCTGCA ACTGCACCCC CAGATTAATA AAGGGTGACA TAAAATGAAT CAAAACACAC TAAAATAGGC AACACTATAT	GACCAGAACT CTGAAACCTT ATTCTGGTGC GAATCTCTCA AAGACACCCC TGTCACACTT GTTTGTATTT ATGAAACTAA ACTTTGATGA ATTAGCCCAT ATGATGCATA	960 1020 1080 1140 1200 1260 1320 1380 1440
TAGATCTCCT AAATTATTCA AGATCAAACC TTCCACTTT TTAAGCTTGG TTACATGAAA TTTAATCAAG TATATTCTGA GCTCTATCTT ATCATAAAAT CGTAGAAAAT	TGCTGGTAGC GCACATTGGC TTATTATTT CGGTTTGAGC GGAGGAAGCT GGTGAGTATT CATGATTAAG TAATCTAGAA TGGAACAGAA TTAAACAAAA CTTTTGTAAA	TCTGGGAGTC AATGACCTCG CTTCATCTTA TCATACGCTG GAAGATGTTG TCTCATCTCT TTCTTTAAAC CTTAAACTAT GAAAGCAATA AATGGAATTG ATATTAATAG TTTTGAGATA	AGTTTACAAA CTCTTACATT ATAAGCCTGA TCCCTGAGGA ACTTTTGCCA ATGTTGATTA GGTAATAATA TCAAGAGAGA AAAGACCAAA AAAGTAAATG ATATCTTTTG	AAAGGTCAAA CTTCTTCATT AAAAGCTGCA ACTGCACCCC CAGATTAATA AAGGGTGACA TAAAATGAAT CAAAACACAC TAAAATAGGC AACACTATAT ATGTTGAATG	GACCAGAACT CTGAAACCTT ATTCTGGTGC GAATCTCTCA AAGACACCCC TGTCACACTT GTTTGTATTT ATGAAACTAA ACTTTGATGA ATTAGCCCAT ATGATGCATA TGAATGCAGG	960 1020 1080 1140 1200 1260 1320 1380 1440

TTTCTCTCAT	GTTGAAG <u>GTT</u>	AGGGAAATGT	TCAGGAACAG	AAGTTCCCTG	AGCGTTCAAC	1740
CTGATGCAGT	ATCTGTTATT	GATGGAACCC	AAGAAGGTTC	TTACTTATGG	GTATGACTTA	1800
CTTAAAGTTT	ATTTTTATCA	GAATTCATTC	TAATTTTTTT	ACTTAAGAAG	ATGGAAGAAA	1860
GTGTGATCAC	ATTACCTAGG	ACATTCATCT	TATTTAAAAT	AATTTATTGC	AAAATAATAC	1920
TATTTTTTAA	TTAGAATTGA	TATTTGCGTA	TATTGTGAAA	AAGAAAAGTA	GATTGATTTT	1980
TCATTATGGT	AAAGTATTTT	AATAAATTTT	TATTAACTCT	TTTTTAACTT	TAAAAAATAT	2040
AGGATCACTT	TATGTGTGTG	GTGACATGCC	ATACCCCATA	TGGACAATTA	CTGACATGCC	2100
ATACCCGATA	TATTAATATT	TTATCAATTG	TCAATTTATT	TATTGTAACT	ACTTTAAAAA	2160
ATACTTTTAA	TTAAATCATT	GAGGTATCGC	TTTAGTTTTT	TTTTAAATTC	GAAAAAATAA	2220
TTAATAATTA	TTAGATATAC	TGGAAGAATT	TCCGAAGGAT	ATTCATATCC	ATATATATCT	2280
TGTAAGATAA	CATTTTTTAT	TGAACAAATG	CAACACTATC	TCTAAATATG	ATTTTTTTAT	2340
TTATGTCGAA	TGAATCACGA	CGATATAATT	TTGTATAAGT	AATTAAATTC	ACTATTCATT	2400
TTTATTTGTT	GTGTTTCTTT	TAGGGTCCGC	CAATTAGCTA	AATCTTACCT	AAAAAGA T TG	2460
CAAACAAAGA	AAAAAGAAAG	AAGCAATGAT	GAAATTAAAA	GTGGATCAAA	CCATGAGGAT	2520
ATGTTTCAAA	AAGAAGAATT	AGGTTCTTTG	TTATGTTTTC	AAAAACTAGT	AGTTGGAATT	2580
TCTTAAATTC	AATTATAATT	ATTTAATAAA	ATTGTCTGCT	TAATTGATAA	TATAAAATAG	2640
CATAACTGAT	ACATTTATAA	ATTATATTTT	ATATTAAAAT	TTATTTTTAT	TTTATAGATA	2700
AAATGTATTT	GGTAATATTT	ATAATATAGT	TTTAAATTAA	TTTCAAACTT	GTTGTGATCT	2760
TACTTATAAA	TTAATTATTT	TTTTCAGTTT	TCAATTATTG	CATTTTTCTT	ATAATATTCA	2820
CTATATTAAT	ATTTGACAAT	ATTTCAAAAC	ATTTTCAATA	аааааааааа	AAAAAGAAGT	2880
TCAGTAAACT	TCATATCTGC	ATTATGTTTA	TTTGAATAGT	AAAACACTAT	AAAATATATC	2940
TAATGTAAAG	GATAAACATG	CAGAGTAGTA	AAAAACTTAT	TTAGAATATA	GTCATTTAAT	3000
TTTTCTTATG	ATATATCTTG	GGAATTTTGT	GTAG <u>GTTACA</u>	GTTAACTATC	TGTTAGGAAA	3060
GTTGGGAAAG	AAGTTTACAA	AAACTGTGGG	AGTGATAGAT	CTTGGAGGTG	CTTCAGTTCA	3120
AATGGCTTAT	GCTGTCTCAA	GAAATACAGC	TAAAAATGCC	CCAAAACCAC	CACAAGGAGA	3180
GGATCCATAC	ATGAAGAAGC	TTGTACTCAA	GGGAAAGAAA	TATGACCTTT	ATGTTCACAG	3240
GTTACTTTCT	GTTATCATTC	ATATAGCAAA	GGAACAATTA	TCATTTCAAT	TTCTAAAATA	3300
TATTTATAAT	CTCTAAAATC	AAATAACATA	AAAAAATGGT	AATATAATGT	TGCGTTTTGG	33é0
GATTGTTTGG	ATTAAAGGGT	AAATTTGAAG	AAGAAAAAA	ATAATAAATA	AAGAAAAAGA	3420

ATTITIANTA TATITITANTA ATTIATTAT ATGAAAATAA AATATTATT TITAAATTTA 3540 TATITITATTA TATITITATA ATTITATTAT TATAAAAATA TAAATATTAT TAATAAATTAA 3600 TATITITATTA TATITITATA ATATAATAA ATAATAAA AAATATTAAT ATTITATTAT 3660 ATATTAATA ATATTTAATT ATACATATGA ATTITITTTC TGCAAATTTT TACCTTTTAA 3720 GCGGAGAAGA TGAAGGCAT AAATTGTTCT CGAAATTAGT TATATTTTGT TCAATTTTAA 3780 CAAAATCATC TCAAATCAGT CTTCATAAAT AGTATTATG TAGATCCAAA TAGAGGCTTA 3840 ACGTGGTCTA GTGTACAAA CCTAAAAGGT GTTCTTTTT TCTTTAATT TGAAGAGCATA 3900 GAAATTGTT TTCAATTTG AAAGACGAG GCAAACTTAA CCAAATTTAG AAAAGACTAA 3900 AACTTGGTTA ACTTTATAAC GAATGCCAA AAAATGGTA GATACTACAT TATACACTA 4000 AACTTGGTTA ACTTTATAAC GAATGTCAGA AAAATGGTA GATACTACAT TATTTCTCACC 4080 TTAATCTGAA ATAAATAAAA TCCAAGATT TATAGATAC TATAAACCAT TATTACACTA 4140 TGAAGTTCAG TGAAGATAC CTTACTTTTT TTAAGAAAC CTATACACTG AGTACAGATC 4200 CATGTGTAGT TACTTTTTA TGGTTTAACT GATAAATATG CATGAGTCA TACATGGCTA 4200 ACGTACAGGT CTAAACACA TCCTTTGTTG CAGTACATG CATTACACTG AGTACAGATC 4380 TGAAGGTAAA TAAAGTATAC TTTTTGTCAA ACCCTAATGT TACTTCTTA TCCTGCATT 440 CAGAATAGTG CAAAGGACTG AAACTAGAAA GGATTCCAAT TCACTACAGA AAGAAAAAAA 450 CTGTTGCAG ATATTTTAAA TACATATTAA GTGTTTTTTGC AGTACACTG ATTCTTTTA	GAAAAAAAAT	AAGATTGTTT	GGATTATTAG	AAAGAGAAAA	AGTTGAATAA	TTATTTTTAT	3480
TATTTTAATT TTATTTATTA ATATAATATA ATAATAA	ATTTTAATAT	TATTTTAATT	ATTTATTATT	ATGAAAATAA	AATATTTATT	TTTAAATTTA	3540
ATATTATATA ATATTTAATT ATACATATGT ATTTTTTTC TGCAAATTTT TACCTTTTAA 3720 GCGGAGAAGA TGAAGGGCAT AAATTGTTCT CGAAATTATGT TATATTTTTTTTTT	TATTTTATTA	TTATTTTTA	ATTTTATTAT	TATAAAAATA	TAAATATTAT	TAATAATTAT	3600
CCGGAGAAGA TGAAGGGCAT AAATTGTTCT CGAAATTAGT TATATTTTGT TCAATTTTAA 3780 CCAAAATCATC TCAAATCAGT CTTCATAAAT AGTATTTAG TAGATCCAAA TAGAGGCTTA 3840 ACGTGGTCTA GTTGTACAAA CCTAAAAGGT GTTTCTTTT TTCTTTAATT TGAAGAACTA 3900 GAATATTGTT TTTCAATTTG AAAGACGAAG GCAAACTTAA CCAAAATTTAG AAAAAGTAAA 3960 AACTTGGTTA ACTTTATAAC GAATGTCAGA AAAAATGGTA GGTATGTTAT AAATACTTCT 4020 GATATCAAAA TGGCAAAAAC TCCAGAGTCT CACTTCCAAG AATCATCACT TTTTCTCACC 4080 TTAATCTGAA ATAATGAATG CTTACTTTTT TTAAGATATT TATAGATATC TATAATCCAT 4140 TGAAGTTCAG TGTAGTGTAA ATAAATTATA ATGTAAAAAC CTATACACCT GTCATGGCTA 4260 ACGTGCTAGT TACTTTTTA TGGTTTAACT GATAAAATATG CATGAGTCAT GTCATGGCTA 4260 ACGTGCTAGT TACTTTTTA TGGTTTAACT GATAAAATATG CATGAGTCAT GTCATGGCTA 4380 ACGTGCTAAG ATTATCAAC TTCTTTGTG CAGTTACTTG CGTTATGGTA ACGACGCAGC 4320 ACGTGTTAAG ATTTTTAAGA CCACTGATGG TGCTGCTAGT TGGCAGGCTA 4440 CAGAATAGTG CAAAGGACTG AAACTAGAAA GCCTAATGT TACTTCTTA TTCCTGCATT 4440 AGTAGTGATT TAGTGACCAA AGTTACTTT TCCTCACTG GTTCTATTGA AAAGAAAAAA 4500 AGTAGTGATT TAGTGACCAA AGTTACTTT TCCTCACTG GTTCTATTGA AATGCAGAAA 4560 CTTGTTGCAG ATATTTTAAA TACATATTAA GTGTTTTGTC AGTACTACAT TTGTTTTTAG 4620 TGATTTCAAG TCGAGTTTTT TCTTGAAGCA TTAAAGCTG AAATAACATG TGGGTCTTTT 4680 TTCTATCTTT AAAGATATTA ACAGATATC CGGAGAATCG TACAATATCT TTGTTTTTAG 4620 TTCTATCTTT AAAGATATTA ACAGATATTC CGGAGAATCG TACAATATCT ATGGTCCCAC 4740 TTCTGGTGCC AACTTAATG AGTCCCGTGA CCTAGCTCTT CAGATTCTCA GATTGAATGA 4800 GCCATGTTCC CATGAAAACT GCACCTTTG TGGGATATTG GATTGTATCA ATGGTCCCAC 4740 TTCTGGTGCC AACTTAATG AGTCCCGTGA CCTAGCTCTT CAGATTCTCA GATTGAATGA 4800 GCCATGTTCC CATGAAAACT GCACCTTTG TGGGATATTG GATTCTCA GATTCACAT TTGTTTTTAG 4800 GCCATGTTCC CATGAAAACT GCACCTTTG TCACTATAGG TACAATATC ATGGCTCCAC 4740 TCTGGTGCC AACTTTAATG AGTCCCGTGA CCTAGCTCT CAGATTCTCA GATTGAATGA 4800 GCCATGTTCC CATGAAAACT GCACCTTTG TCACTATAGG TCTCTCTAGG TACCACTTCT 4920 CTGTTAATTT CTTGTTACT TTGATTACTT TTTAGGTTTT ATACCAATAA ATTTTACATT 4980	TATTTTAATT	TTATTTATTA	ATATAATATA	ATAATAAATA	AAATATTAAT	ATTTTATGTT	3660
CAAAATCATC TCAAAATCAGT CTTCATAAAT AGTATTTATG TAGATCCAAA TAGAGGCTTA 3840 ACGTGGTCTA GTTGTACAAA CCTAAAAGGT GTTTCTTTTT TTCTTTAATT TGAAGAACTA 3900 GAATATTGTT TTTCAATTTG AAAGACGAAG GCAAACTTAA CCAAATTTAG AAAAAGTAAA 3960 AACTTGGTTA ACTTTATAAC GAATGCAGA AAAAATGGTA GGTATGTTAT AAATACTTCT 4020 GATATCAAAA TGGCAAAAAC TCCAGAGTCT CACTTCCAAG AATCATCACT TTTTCTCACC 4080 TTAATCTGAA ATAATGAATG CTTACTTTTT TTAAGATATT TATAGATATC TATAATCCAT 4140 TGAAGTTCAG TGTAGTGTAA ATAAAATTATA ATGTAAAAAC CTATACACTG AGTACAGATC 4200 CATGTGTAGT TACTTTTTTA TGGTTTAACT GATAAATATG CATGAGTCAT GTCATGGCTA 4260 ACGTACAGGT CTTAATCAAC TTCTTTGTTG CAGTTACTTG CGTTATGGTA ACGACGCAGC 4320 ACGTGTTAAG ATTTTTAAGA CCACTGATGG TGCTGCTAT TGGCAGGCTA 4380 TGAAGGTAAA TAAAGTATTC TTTTGTACAA ACCCTAATGT TACTTTCTTA TTCCTGCATT 4440 CAGAATAGTG CAAAGGACTG AAACTAGAAA GGATTCCAAT TCACTACAAG AAGAAAAAA 4500 AGTAGTGATT TAGTGACCAA AGTTACTTTT TCCTCACTG GTTCTTTTA TTCCTGCATT 4440 CTGTTTGCAG ATATTTTAAA TACATATTAA GTGTTTTGTC AGTACTCAT TTGTTTTTAG 4620 TGATTTCAAG TCGAGTTTTT TCTTGAAGCA TTAAAGCTG AAATAACATG TGGTCTTTT 4680 TTCTTTCTACTT AAAGATATAT ACAGATATTC CGGAGATCG AAATAACATG TGGTCTTTT 4680 TTCTTGTTGCA ACCTTTTT TCTTGAAGCA TTAAAGCTG AAATAACATG TGGTCTTTT 4680 TTCTTTCTTT AAAGATATAT ACAGATATTC CGGAGAATCG TACAATATCT ATGGTCCCAC 4740 TTCTGGTGCC AACTTTAAT ACAGATATTC CGGAGAATCG TACAATATCT ATGGTCCCAC 4740 TTCTGGTGCC AACTTTAAT ACAGATATTC CGGAGAATAGG TACAATATCT ATGGTCCCAC 4740 TTCTGGTGCC AACTTTAATG AGTGCCGTGA CCTAGCTCTT CAGATTCTCA GATTGAATGA 4800 GCCATGTTCC CATGAAAACT GCACCTTTGG TGGGATATGG GATGGTGGAA AAGGAAGTGG ACAGAAAAAC CTTGTTTTA CTTCAGCTTT CTACTATAGG TCTCTCAGAG TACCATTCT 4920 CTGTTAATTT CTTGTTTACT TTGATTACTT ATTTGTTTTT ATACCAATAA ATTTTACATT 4980 ACAGAAAAAC CTTGTTTACT TTGATTACTT ATTTGTTTTT ATACCAATAA ATTTTACATT 4980	ATATTATATA	ATATTTAATT	ATACATATGT	ATTTTTTTC	TGCAAATTTT	TACCTTTTAA	3720
ACGTGGTCTA GTTGTACAAA CCTAAAAGGT GTTTCTTTT TTCTTTAATT TGAAGAACTA 3900 GAATATTGTT TTTCAATTTG AAAGACGAAG GCAAACTTAA CCAAATTTAG AAAAAAGTAAA 3960 AACTTGGTTA ACTTTATAAC GAATGTCAGA AAAAATGGTA GGTATGTTAT AAATACTTCT 4020 GATATCAAAA TGGCAAAAAC TCCAGAGTCT CACTTCCAAG AATCATCACT TTTTCTCACC 4080 TTAATCTGAA ATAATGAATG CTTACTTTTT TTAAGATATT TATAGATATC TATAAATCCAT 4140 TGAAGTTCAG TGTAGTGTAA ATAAATTATA ATGTAAAAAC CTATACACTG AGTACAGATC 4200 CATGTGTAGT TACTTTTTA TGGTTTAACT GATAAATATG CATGAGTCAT GTCATGGCTA 4260 ACGTACAGGT CTTAATCAAC TTCTTTGTTG CAGTTACTTG CGTTATGGTA ACGACGCAGC 4320 ACGTGTTAAG ATTTTTAAGA CCACTGATGG TGCTGCTATG CCTTTCTTTA TGCCAGGCTA 4440 CAGAATAGTG CAAAGGACTG AAACTAGAAA GGATTCCAAT TCACTACAAG AAGAAAAAA 4500 AGTAGTGATT TAGTGACCAA AGTTACTTTT TCCTCACTGA GTTCTTTTA AAAGAAAAAA 4560 CTTGTTGCAG ATATTTTAAA TACATATTAA GTGTTTTGTC AGTACTCCAT TTGTTTTTAG 4620 TGATTCAAG TCGAGTTTTT TCTTGAAGCA TTAAAGCTG AAATAACATG TGGGTCTTTT 4680 TTCTTGTCAG TCGAGTTTTT TCTTGAAGCA TTAAAGCTG AAATAACATG TGGGTCTTTT 4680 TTCTTGTTCTA AAAGATATAT ACAGATATTC CGGAGAATCG TACAATATCT TTGTTTTTAG 4620 TTCTTGTTCC AACTTTAATG AGTGCCGTGA CCTAGCTCTT CAGAATAACCT TGGGTCTTTT 4680 GCCATGTTCC CATGAAAACT GCACCTTTG TGGGAGAATACG TACAATATCT ATGGTCCCAC 4740 TCTGGTGCC AACTTTAATG AGTGCCGTGA CCTAGCTCTT CAGAATATCT ATGGTCCCAC 4740 CCTGTTACTC CATGAAAACT GCACCTTTG TGGGATATTG AAAGAAAAA AAGAAAAAAA 4800 GCCATGTTCC CATGAAAACT GCACCTTTG TGGGATATTG AAAGAATACATG TACATGAATGA 4800 GCCATGTTCC CATGAAAACT GCACCTTTG TGGGATATTG AAAGAAAAAA AAGAAAAAAA AAAAAAAA	GCGGAGAAGA	TGAAGGGCAT	AAATTGTTCT	CGAAATTAGT	TATATTTTGT	TCAATTTTAA	3780
GAATATTGTT TITCAATTTG AAAGACGAAG GCAAACTTAA CCAAATTTAG AAAAAGTAAA 3960 AACTTGGTTA ACTTTATAAC GAATGTCAGA AAAAATGGTA GGTATGTTAT AAATACTTCT 4020 GATATCAAAA TGGCAAAAAC TCCAGAGTCT CACTTCCAAG AATCATCACT TITTCTCACC 4080 TTAATCTGAA ATAATGAATG CTTACTTTTT TTAAGATATT TATAGATATC TATAATCCAT 4140 TGAAGTTCAG TGTAGTGTAA ATAAATTATA ATGTAAAAAC CTATACACTG AGTACAGATC 4200 CATGTGTAGT TACTTTTTTA TGGTTTAACT GATAAATATG CATGAGTCAT GTCATGGCTA 4260 ACGTACAGGT CTTAATCAAC TTCTTTGTTG CAGTTACTTG CGTTATGGTA ACGACGCAGC 4320 ACGTGTAAG ATTTTTAAGA CCACTGATGG TGCTGCTAGT CCTTGCCTAT TGGCAGGCTA 4380 TGAAGGTAAA TAAAGTATTC TTTTGTACAA ACCCTAATGT TACTTTCTTA TTCCTGCATT 4440 CAGAATAGTG CAAAGGACTG AAACTAGAAA GGATTCCAAT TCACTACAAG AAGAAAAAAA 4500 AGTAGTGATT TAGTGACCAA AGTTACTTTT TCCTCACTGA GTTCTATTGA AATGCAGAAA 4560 CTTGTTGCAG ATATTTTAAA TACATATTAA GTGTTTTGTC AGTACTACAAG TGGGTCTTTT 4680 TTCTATCTTT AAAGATATAT ACAGATATTC CGGAGAAATCG TACAATACTT TGGTTCTTTT 4680 TTCTATCTTT AAAGATATAT ACAGATATTC CGGAGAAATCG TACAATACTT TGGTCCCAC 4740 TTCTGGTGCC AACTTTAATG AGTGCCGTGA CCTAGCTCTT CAGATTCTCA GATTGAATGA 4800 GCCATGTTCC CATGAAAACT GCACCTTTGG TGGGATATGG GATGGTGGAA AAGGAAGTGG 4860 ACAGAAAAAC CTTGTTGTTA CTTCAGCTTT CTACTATAGG TCTCTCAGAG TACCCATCT 4920 CTGTTAATTT CTTGTTTACT TTGATTACTT ATTTGTTTTT ATACCAATAA ATTTTACATT 4980	CAAAATCATC	TCAAATCAGT	CTTCATAAAT	AGTATTTATG	TAGATCCAAA	TAGAGGCTTA	3840
AACTTGGTTA ACTTTATAAC GAATGTCAGA AAAAATGGTA GGTATGTTAT AAATACTTCT 4020 GATATCAAAA TGGCAAAAAC TCCAGAGTCT CACTTCCAAG AATCATCACT TTTTCTCACC 4080 TTAATCTGAA ATAATGAATG CTTACTTTTT TTAAGATATT TATAGATATC TATAATCCAT 4140 TGAAGTTCAG TGTAGTGTAA ATAAATTATA ATGTAAAAAC CTATACACTG AGTACAGATC 4200 CATGTGTAGT TACTTTTTA TGGTTTAACT GATAAATATG CATGAGTCAT GTCATGGCTA 4260 ACGTACAGGT CTTAATCAAC TTCTTTGTTG CAGTTACTTG CGTTATGGTA ACGACGCAGC 4320 ACGTGTAAG ATTTTAAGA CCACTGATGG TGCTGCTAGT TGGCAGGCTA 4380 TGAAGGTAAA TAAAGTATTC TTTTGTACAA ACCCTAATGT TACTTTCTTA TTCCTGCATT 4440 CAGAATAGTG CAAAGGACTG AAACTAGAAA GGATTCCAAT TCACTACAAG AAGAAAAAAA 4500 AGTAGTGATT TAGTGACCAA AGTTACTTT TCCTCACTGA GTTCTATTGA AATGCAGAAA 4560 CTTGTTGCAG ATATTTTAAA TACATATTAA GTGTTTTGTC AGTACTGCAT TTGTTTTTAG 4620 TGATTTCAAG TCGAGTTTT TCTTGAAGCA TAAAGCTGC AAATAACATG TGGGTCTTTT 4680 TTCTATCTTT AAAGATATAT ACAGATATTC CGGAGAATCG TACAATACTT ATGGTCCCAC 4740 TTCTGGTGCC AACTTTAATG AGTGCCGTGA CCTAGCTCTT CAGATTCTCA GATTGAATGA 4800 GCCATGTTCC CATGAAAACT GCACCTTTGG TGGGATATGG GATGGTGGAA AAGGAAGTGG ACAGAAAAAC CTTGTTTTA CTTCAGCTTT CTACTATAGG TCTTCTGAGG TATCCATCT 4920 CTGTTAATTT CTTGTTTACT TTGATTACTT ATTTGTTTTT ATACCAATAA ATTTTACATT 4980 ATAGTTTATA CTGTGTTAAT TTTGTTGTTT TTAGGTTGGT TTTTTTCACTC CTCCCAATTC 5040	ACGTGGTCTA	GTTGTACAAA	CCTAAAAGGT	GTTTCTTTTT	TTCTTTAATT	TGAAGAACTA	3900
GATATCAAAA TGGCAAAAAC TCCAGAGTCT CACTTCCAAG AATCATCACT TTTTCTCACC 4080 TTAATCTGAA ATAATGAATG CTTACTTTT TTAAGATATT TATAGATATC TATAAATCCAT 4140 TGAAGTTCAG TGTAGTGTAA ATAAATTATA ATGTAAAAAC CTATACACTG AGTACAGATC 4200 CATGTGTAGT TACTTTTTA TGGTTTAACT GATAAATATG CATGAGTCAT GTCATGGCTA 4260 ACGTACAGGT CTTAATCAAC TTCTTTGTTG CAGTTACTTG CGTTATGGTA ACGACGCAGC 4320 ACGTGTTAAG ATTTTTAAGA CCACTGATGG TGCTGCTAGT CCTTGCCTAT TGGCAGGCTA 4380 TGAAGGTAAA TAAAGTATTC TTTTGTACAA ACCCTAATGT TACTTCTTA TTCCTGCATT 4440 CAGAATAGTG CAAAGGACTG AAACTAGAAA GGATTCCAAT TCACTACAAG AAGAAAAAAA 4500 AGTAGTGATT TAGTGACCAA AGTTACTTTT TCCTCACTGA GTTCTATTGA AATGCAGAAA 4560 CTTGTTGCAG ATATTTTAAA TACATATTAA GTGTTTTTGTC AGTACTGCAT TTGTTTTTAG 4620 TGATTTCAAG TCGAGTTTT TCTTGAAGCA TTAAAGCTGC AAATAACATG TGGGTCTTTT 4680 TTCTATCTTT AAAGATATAT ACAGATATTC CGGAGAATCG TACAATATCT ATGGTCCCAC 4740 TTCTGGTGCC AACTTTAATG AGTGCCGTGA CCTAGCTCTT CAGATTCTCA GATTGAATGA 4800 GCCATGTTCC CATGAAAACT GCACCTTTGG TGGGATATGG GATGGTGGAA AAGGAAGTGG ACAGAAAAAC CTTGTTGTTA CTTCAGCTTT CTACTATAGG TCTCTCTAGGG TATCCATTCT 4920 CTGTTAATTT CTTGTTTACT TTGATTACTT ATTGTTTTT ATACCAATAA ATTTTACATT 4980 ATAGTTTATA CTGTGCTAAT TTTGTTGTTT TTAGGTTGGT TTTGTCACTC CTCCCAATTC	GAATATTGTT	TTTCAATTTG	AAAGACGAAG	GCAAACTTAA	CCAAATTTAG	AAAAAGTAAA	3960
TTAATCTGAA ATAATGAATG CTTACTTTT TTAAGATATT TATAGATATC TATAATCCAT 4140 TGAAGTTCAG TGTAGTGTAA ATAAATTATA ATGTAAAAAC CTATACACTG AGTACAGATC 4200 CATGTGTAGT TACTTTTTA TGGTTTAACT GATAAATATG CATGAGTCAT GTCATGGCTA 4260 ACGTACAGGT CTTAATCAAC TTCTTTGTTG CAGTTACTTG CGTTATGGTA ACGACGCAGC 4320 ACGTGTTAAG ATTTTAAGA CCACTGATGG TGCTGCTAT TGGCAGGCTA 4380 TGAAGGTAAA TAAAGTATTC TTTTGTACAA ACCCTAATGT TACTTTCTTA TTCCTGCATT 4440 CAGAATAGTG CAAAGGACTG AAACTAGAAA GGATTCCAAT TCACTACAAG AAGAAAAAAA 4500 AGTAGTGATT TAGTGACCAA AGTTACTTT TCCTCACTGA GTTCTATTGA AATGCAGAAA 4560 CTTGTTGCAG ATATTTTAAA TACATATTAA GTGTTTTGTC AGTACTGCAT TTGTTTTTAG 4620 TGATTTCAAG TCGAGTTTT TCTTGAAGCA TTAAAGCTGC AAATAACATG TGGGTCTTT 4680 TTCTATCTTT AAAGATATAT ACAGATATTC CGGAGAATCG TACAATATCT ATGGTCCCAC 4740 TTCTGGTGCC AACTTTAATG AGTGCCGTGA CCTAGCTCTT CAGATTCTCA GATTGAATGAA ACAGAAAAAC CTTGTTGTTA CTTCAGCTTT CTACTATAGG TCTCCTGAGG TATCCATTCT 4920 CTGTTAATTT CTTGTTTACT TTGATTACTT ATTTGTTTTT ATACCAATAA ATTTTACATT 4980 ATAGTTTATA CTGTGCTAAT TTTGTTGTTT TTAGGTTGGT TTTGTCACTC CTCCCAATTC 5040	AACTTGGTTA	ACTTTATAAC	GAATGTCAGA	AAAAATGGTA	GGTATGTTAT	AAATACTTCT	4020
TGAAGTTCAG TGTAGTGTAA ATAAATTATA ATGTAAAAAC CTATACACTG AGTACAGATC 4200 CATGTGTAGT TACTTTTTA TGGTTTAACT GATAAATATG CATGAGTCAT GTCATGGCTA 4260 ACGTACAGGT CTTAATCAAC TTCTTTGTTG CAGTTACTTG CGTTATGGTA ACGACGCAGC 4320 ACGTGTAAG ATTTTAAGA CCACTGATGG TGCTGCTAGT CCTTGCCTAT TGGCAGGCTA 4380 TGAAGGTAAA TAAAGTATTC TTTTGTACAA ACCCTAATGT TACTTTCTTA TTCCTGCATT 4440 CAGAATAGTG CAAAGGACTG AAACTAGAAA GGATTCCAAT TCACTACAAG AAGAAAAAAA 4500 AGTAGTGATT TAGTGACCAA AGTTACTTTT TCCTCACTGA GTTCTATTGA AATGCAGAAA 4560 CTTGTTGCAG ATATTTTAAA TACATATTAA GTGTTTTTGTC AGTACTGCAT TTGTTTTTAG 4620 TGATTTCAAG TCGAGTTTTT TCTTGAAGCA TTAAAGCTGC AAATAACATG TGGGTCTTTT 4680 TTCTATCTTT AAAGATATAT ACAGATATTC CGGAGAATCG TACAATATCT ATGGTCCCAC 4740 TCTGTGGCC AACTTTAATG AGTGCCGTGA CCTAGCTCTT CAGATTCTCA GATTGAATGA 4800 GCCATGTTCC CATGAAAACT GCACCTTTTGG TGGGATATGT CAGATATCT AAGGAAATAC 4800 ACAGAAAAAC CTTGTTGTAC TTCAGCTTT CTACTATAGG TCTCTGAGG TATCCATTCT 4920 CTGTTAATTT CTTGTTTTACT TTGATTACTT ATTGTTTTTA ATACCAATAA ATTTTACATT 4980 ATAGTTTATA CTGTGTAAT TTTGTTGTTT TTAGGTTGGT TTTTGTCACTC CTCCCAATTC 5040	GATATCAAAA	TGGCAAAAAC	TCCAGAGTCT	CACTTCCAAG	AATCATCACT	TTTTCTCACC	4080
CATGTGTAGT TACTTTTTA TGGTTTAACT GATAATATG CATGAGTCAT GTCATGGCTA 4260 ACGTACAGGT CTTAATCAAC TTCTTTGTTG CAGTTACTTG CGTTATGGTA ACGACGCAGC 4320 ACGTGTTAAG ATTTTTAAGA CCACTGATGG TGCTGCTAGT CCTTGCCTAT TGGCAGGCTA 4380 TGAAGGTAAA TAAAGTATTC TTTTGTACAA ACCCTAATGT TACTTTCTTA TTCCTGCATT 4440 CAGAATAGTG CAAAGGACTG AAACTAGAAA GGATTCCAAT TCACTACAAG AAGAAAAAAA 4500 AGTAGTGATT TAGTGACCAA AGTTACTTTT TCCTCACTGA GTTCTATTGA AATGCAGAAA 4560 CTTGTTGCAG ATATTTTAAA TACATATTAA GTGTTTTGTC AGTACTGCAT TTGTTTTTAG 4620 TGATTTCAAG TCGAGTTTTT TCTTGAAGCA TTAAAGCTGC AAATAACATG TGGGTCTTTT 4680 TTCTATCTTT AAAGATATAT ACAGATATTC CGGAGAATCG TACAATATCT ATGGTCCCAC 4740 TTCTGGTGCC AACTTTAATG AGTGCCGTGA CCTAGCTCTT CAGATTCTCA GATTGAATGA 4800 GCCATGTTCC CATGAAAACT GCACCTTTGG TGGGATATGG GATGGTGGAA AAGGAAAGTG 4860 ACAGAAAAAC CTTGTTGTTA CTTCAGCTTT CTACTATAGG TCTTCTGAGG TATCCATTCT 4920 CTGTTAATTT CTTGTTTACT TTGATTACTT ATTTGTTTTTT ATACCCAATAA ATTTTACATT 4980 ATAGTTTATA CTGTGCTAAT TTTGTTGTTT TTAGGTTGGT TTTGTCACTC CTCCCAATTC 5040	TTAATCTGAA	ATAATGAATG	CTTACTTTTT	TTAAGATATT	TATAGATATC	TATAATCCAT	4140
ACGTACAGGT CTTAATCAAC TTCTTTGTTG CAGTTACTTG CGTTATGGTA ACGACGCAGC 4320 ACGTGTTAAG ATTTTTAAGA CCACTGATGG TGCTGCTAGT CCTTGCCTAT TGGCAGGCTA 4380 TGAAGGTAAA TAAAGTATTC TTTTGTACAA ACCCTAATGT TACTTTCTTA TTCCTGCATT 4440 CAGAATAGTG CAAAGGACTG AAACTAGAAA GGATTCCAAT TCACTACAAG AAGAAAAAA 4500 AGTAGTGATT TAGTGACCAA AGTTACTTTT TCCTCACTGA GTTCTATTGA AATGCAGAAA 4560 CTTGTTGCAG ATATTTTAAA TACATATTAA GTGTTTTGTC AGTACTGCAT TTGTTTTTAG 4620 TGATTTCAAG TCGAGTTTTT TCTTGAAGCA TTAAAGCTGC AAATAACATG TGGGTCTTTT 4680 TTCTATCTTT AAAGATATAT ACAGATATTC CGGAGAATCG TACAATATCT ATGGTCCCAC 4740 TTCTGGTGCC AACTTTAATG AGTGCCGTGA CCTAGCTCTT CAGATTCTCA GATTGAATGA 4800 GCCATGTTCC CATGAAAACT GCACCTTTGG TGGGATATGG GATGGTGGA AAGGAAGTGG 4860 ACAGAAAAAC CTTGTTGTTA CTTCAGCTTT CTACTATAGG TCTTCTGAGG TATCCATTCT 4920 CTGTTAATTT CTTGTTTACT TTGATTACTT ATTTGTTTTT ATACCAATAA ATTTTACATT 4980 ATAGTTTATA CTGTGCTAAT TTTGTTGTTT TTAGGTTGGT TTTGTCACC CTCCCAATTCC 5040	TGAAGTTCAG	TGTAGTGTAA	ATAAATTATA	ATGTAAAAAC	CTATACACTG	AGTACAGATC	4200
ACGTGTTAAG ATTTTAAGA CCACTGATGG TGCTGCTAGT CCTTGCCTAT TGGCAGGCTA 4380 TGAAGGTAAA TAAAGTATTC TTTTGTACAA ACCCTAATGT TACTTTCTTA TTCCTGCATT 4440 CAGAATAGTG CAAAGGACTG AAACTAGAAA GGATTCCAAT TCACTACAAG AAGAAAAAA 4500 AGTAGTGATT TAGTGACCAA AGTTACTTTT TCCTCACTGA GTTCTATTGA AATGCAGAAA 4560 CTTGTTGCAG ATATTTTAAA TACATATTAA GTGTTTTGTC AGTACTGCAT TTGTTTTTAG 4620 TGATTTCAAG TCGAGTTTTT TCTTGAAGCA TTAAAGCTGC AAATAACATG TGGGTCTTTT 4680 TTCTATCTTT AAAGATATAT ACAGATATTC CGGAGAATCG TACAATATCT ATGGTCCCAC 4740 TTCTGGTGCC AACTTTAATG AGTGCCGTGA CCTAGCTCTT CAGATTCTCA GATTGAATGA 4800 GCCATGTTCC CATGAAAACT GCACCTTTGG TGGGATATGG GATGGTGGAA AAGGAAGTGG 4860 ACAGAAAAAC CTTGTTGTTA CTTCAGCTTT CTACTATAGG TCTTCTGAGG TATCCATTCT 4920 CTGTTAATTT CTTGTTTACT TTGATTACTT ATTTGTTTTT ATACCAATAA ATTTTACATT 4980 ATAGTTTATA CTGTGCTAAT TTTGTTGTTT TTAGGTTGGT TTTGTCACTC CTCCCAATTC 5040	CATGTGTAGT	TACTTTTTTA	TGGTTTAACT	GATAAATATG	CATGAGTCAT	GTCATGGCTA	4260
TGAAGGTAAA TAAAGTATTC TTTTGTACAA ACCCTAATGT TACTTTCTTA TTCCTGCATT 4440 CAGAATAGTG CAAAGGACTG AAACTAGAAA GGATTCCAAT TCACTACAAG AAGAAAAAAA 4500 AGTAGTGATT TAGTGACCAA AGTTACTTTT TCCTCACTGA GTTCTATTGA AATGCAGAAA 4560 CTTGTTGCAG ATATTTTAAA TACATATTAA GTGTTTTGTC AGTACTGCAT TTGTTTTTAG 4620 TGATTTCAAG TCGAGTTTTT TCTTGAAGCA TTAAAGCTGC AAATAACATG TGGGTCTTTT 4680 TTCTATCTTT AAAGATATAT ACAGATATTC CGGAGAATCG TACAATATCT ATGGTCCCAC 4740 TTCTGGTGCC AACTTTAATG AGTGCCGTGA CCTAGCTCTT CAGATTCTCA GATTGAATGA 4800 GCCATGTTCC CATGAAAACT GCACCTTTGG TGGGATATGG GATGGTGGAA AAGGAAGTGG 4860 ACAGAAAAAC CTTGTTGTTA CTTCAGCTTT CTACTATAGG TCTTCTGAGG TATCCATTCT 4920 CTGTTAATTT CTTGTTTACT TTGATTACTT ATTTGTTTTT ATACCAATAA ATTTTACATT 4980 ATAGTTTATA CTGTGCTAAT TTTGTTGTTT TTAGGTTGGT TTTGTCACTC CTCCCAATTC 5040	ACGTACAGGT	CTTAATCAAC	TTCTTTGTTG	CAG <u>TTACTTG</u>	CGTTATGGTA	ACGACGCAGC	4320
CAGAATAGTG CAAAGGACTG AAACTAGAAA GGATTCCAAT TCACTACAAG AAGAAAAAAA 4500 AGTAGTGATT TAGTGACCAA AGTTACTTTT TCCTCACTGA GTTCTATTGA AATGCAGAAA 4560 CTTGTTGCAG ATATTTTAAA TACATATTAA GTGTTTTGTC AGTACTGCAT TTGTTTTTAG 4620 TGATTTCAAG TCGAGTTTTT TCTTGAAGCA TTAAAGCTGC AAATAACATG TGGGTCTTTT 4680 TTCTATCTTT AAAGATATAT ACAGATATTC CGGAGAATCG TACAATATCT ATGGTCCCAC 4740 TTCTGGTGCC AACTTTAATG AGTGCCGTGA CCTAGCTCTT CAGATTCTCA GATTGAATGA 4800 GCCATGTTCC CATGAAAACT GCACCTTTGG TGGGATATGG GATGGTGGAA AAGGAAGTGG 4860 ACAGAAAAAC CTTGTTGTTA CTTCAGCTTT CTACTATAGG TCTTCTGAGG TATCCATTCT 4920 CTGTTAATTT CTTGTTTACT TTGATTACTT ATTTGTTTTT ATACCAATAA ATTTTACATT 4980 ATAGTTTATA CTGTGCTAAT TTTGTTGTTT TTAGGTTGGT TTTGTCACTC CTCCCAATTC 5040	ACGTGTTAAG	ATTTTTAAGA	CCACTGATGG	TGCTGCTAGT	CCTTGCCTAT	TGGCAGGCTA	4380
AGTAGTGATT TAGTGACCAA AGTTACTTT TCCTCACTGA GTTCTATTGA AATGCAGAAA 4560 CTTGTTGCAG ATATTTTAAA TACATATTAA GTGTTTTGTC AGTACTGCAT TTGTTTTTAG 4620 TGATTTCAAG TCGAGTTTTT TCTTGAAGCA TTAAAGCTGC AAATAACATG TGGGTCTTTT 4680 TTCTATCTTT AAAGATATAT ACAGATATTC CGGAGAATCG TACAATATCT ATGGTCCCAC 4740 TTCTGGTGCC AACTTTAATG AGTGCCGTGA CCTAGCTCTT CAGATTCTCA GATTGAATGA 4800 GCCATGTTCC CATGAAAACT GCACCTTTGG TGGGATATGG GATGGTGGAA AAGGAAGTGG 4860 ACAGAAAAAC CTTGTTGTTA CTTCAGCTTT CTACTATAGG TCTTCTGAGG TATCCATTCT 4920 CTGTTAATTT CTTGTTTACT TTGATTACTT ATTTGTTTTT ATACCAATAA ATTTTACATT 4980 ATAGTTTATA CTGTGCTAAT TTTGTTGTTT TTAGGTTGGT TTTGTCACTC CTCCCAATTC 5040	<u>TGAAG</u> GTAAA	TAAAGTATTC	TTTTGTACAA	ACCCTAATGT	TACTTTCTTA	TTCCTGCATT	4440
CTTGTTGCAG ATATTTAAA TACATATTAA GTGTTTTGTC AGTACTGCAT TTGTTTTAG 4620 TGATTTCAAG TCGAGTTTTT TCTTGAAGCA TTAAAGCTGC AAATAACATG TGGGTCTTTT 4680 TTCTATCTTT AAAGATATAT ACAGATATTC CGGAGAATCG TACAATATCT ATGGTCCCAC 4740 TTCTGGTGCC AACTTTAATG AGTGCCGTGA CCTAGCTCTT CAGATTCTCA GATTGAATGA 4800 GCCATGTTCC CATGAAAACT GCACCTTTGG TGGGATATGG GATGGTGGAA AAGGAAGTGG 4860 ACAGAAAAAC CTTGTTGTTA CTTCAGCTTT CTACTATAGG TCTTCTGAGG TATCCATTCT 4920 CTGTTAATTT CTTGTTTACT TTGATTACTT ATTTGTTTTT ATACCAATAA ATTTTACATT 4980 ATAGTTTATA CTGTGCTAAT TTTGTTGTTT TTAGGTTGGT TTTGTCACTC CTCCCAATTC 5040	CAGAATAGTG	CAAAGGACTG	AAACTAGAAA	GGATTCCAAT	TCACTACAAG	AAGAAAAAA	4500
TGATTTCAAG TCGAGTTTTT TCTTGAAGCA TTAAAGCTGC AAATAACATG TGGGTCTTTT 4680 TTCTATCTTT AAAGATATAT ACAGATATTC CGGAGAATCG TACAATATCT ATGGTCCCAC 4740 TTCTGGTGCC AACTTTAATG AGTGCCGTGA CCTAGCTCTT CAGATTCTCA GATTGAATGA 4800 GCCATGTTCC CATGAAAACT GCACCTTTGG TGGGATATGG GATGGTGGAA AAGGAAGTGG 4860 ACAGAAAAAC CTTGTTGTTA CTTCAGCTTT CTACTATAGG TCTTCTGAGG TATCCATTCT 4920 CTGTTAATTT CTTGTTTACT TTGATTACTT ATTTGTTTTT ATACCAATAA ATTTTACATT 4980 ATAGTTTATA CTGTGCTAAT TTTGTTGTTT TTAGGTTGGT TTTGTCACTC CTCCCAATTC 5040	AGTAGTGATT	TAGTGACCAA	AGTTACTTTT	TCCTCACTGA	GTTCTATTGA	AATGCAGAAA	4560
TTCTATCTTT AAAGATATAT ACAGATATTC CGGAGAATCG TACAATATCT ATGGTCCCAC 4740 TTCTGGTGCC AACTTTAATG AGTGCCGTGA CCTAGCTCTT CAGATTCTCA GATTGAATGA 4800 GCCATGTTCC CATGAAAACT GCACCTTTGG TGGGATATGG GATGGTGGAA AAGGAAGTGG 4860 ACAGAAAAAC CTTGTTGTTA CTTCAGCTTT CTACTATAGG TCTTCTGAGG TATCCATTCT 4920 CTGTTAATTT CTTGTTTACT TTGATTACTT ATTTGTTTTT ATACCAATAA ATTTTACATT 4980 ATAGTTTATA CTGTGCTAAT TTTGTTGTTT TTAGGTTGGT TTTGTCACTC CTCCCAATTC 5040	${\tt CTTGTTGCAG}$	ATATTTTAAA	TACATATTAA	GTGTTTTGTC	AGTACTGCAT	TTGTTTTTAG	4620
TTCTGGTGCC AACTTTAATG AGTGCCGTGA CCTAGCTCTT CAGATTCTCA GATTGAATGA 4800 GCCATGTTCC CATGAAAACT GCACCTTTGG TGGGATATGG GATGGTGGAA AAGGAAGTGG 4860 ACAGAAAAAC CTTGTTGTTA CTTCAGCTTT CTACTATAGG TCTTCTGAGG TATCCATTCT 4920 CTGTTAATTT CTTGTTTACT TTGATTACTT ATTTGTTTTT ATACCAATAA ATTTTACATT 4980 ATAGTTTATA CTGTGCTAAT TTTGTTGTTT TTAGGTTGGT TTTGTCACTC CTCCCAATTC 5040	TGATTTCAAG	TCGAGTTTTT	TCTTGAAGCA	TTAAAGCTGC	AAATAACATG	TGGGTCTTTT	4680
GCCATGTTCC CATGAAAACT GCACCTTTGG TGGGATATGG GATGGTGGAA AAGGAAGTGG ACAGAAAAAC CTTGTTGTTA CTTCAGCTTT CTACTATAGG TCTTCTGAGG TATCCATTCT 4920 CTGTTAATTT CTTGTTTACT TTGATTACTT ATTTGTTTT ATACCAATAA ATTTTACATT 4980 ATAGTTTATA CTGTGCTAAT TTTGTTGTTT TTAGGTTGGT TTTGTCACTC CTCCCAATTC 5040	TTCTATCTTT	AAAG <u>ATATAT</u>	ACAGATATTC	CGGAGAATCG	TACAATATCT	ATGGTCCCAC	4740
ACAGAAAAAC CTTGTTGTTA CTTCAGCTTT CTACTATAGG TCTTCTGAGG TATCCATTCT 4920 CTGTTAATTT CTTGTTTACT TTGATTACTT ATTTGTTTTT ATACCAATAA ATTTTACATT 4980 ATAGTTTATA CTGTGCTAAT TTTGTTGTTT TTAGGTTGGT TTTGTCACTC CTCCCAATTC 5040	TTCTGGTGCC	AACTTTAATG	AGTGCCGTGA	CCTAGCTCTT	CAGATTCTCA	GATTGAATGA	4800
CTGTTAATTT CTTGTTTACT TTGATTACTT ATTTGTTTTT ATACCAATAA ATTTTACATT 4980 ATAGTTTATA CTGTGCTAAT TTTGTTGTTT TTAGGTTGGT TTTGTCACTC CTCCCAATTC 5040	GCCATGTTCC	CATGAAAACT	GCACCTTTGG	TGGGATATGG	GATGGTGGAA	AAGGAAGTGG	4860
ATAGTTTATA CTGTGCTAAT TTTGTTGTTT TTAGGTTGGT TTTGTCACTC CTCCCAATTC 5040	ACAGAAAAAC	CTTGTTGTTA	CTTCAGCTTT	CTACTATAGG	TCTTCTGAGG	TATCCATTCT	4920
	CTGTTAATTT	CTTGTTTACT	TTGATTACTT	ATTTGTTTTT	ATACCAATAA	ATTTTACATT	4980
CAAAAATCGC CCTCTGGATT TTGAAACTGC AGCTAAACAA GCTTGTAGTT TAACATTCGA 5100	ATAGTTTATA	CTGTGCTAAT	TTTGTTGTTT	TTAGGTTGGT	TTTGTCACTC	CTCCCAATTC	5040
	CAAAAATCGC	CCTCTGGATT	TTGAAACTGC	AGCTAAACAA	GCTTGTAGTT	TAACATTCGA	5100

<u>GGAAGCGAAA</u>	TCCACTTTTC	CAAATGTTGA	GAAAGATAAA	CTTCCATTTG	TATGCGTGGA	5160
TTTCACATAC	CAGTATACAT	TGCTTGTTGA	TGGATTTGGT	ATGTTTTCAT	AATTAATTAC	5220
CAAGTTGATA	TTTAACTTCT	TCCAAAAAAC	TATGTTTTCT	TTTGTCTTCC	AACACTGACT	5280
CCTAATTCAA	CTTTTGGCAG	GCCTAGATCC	AGAGCAAGAG	ATTACAGTGG	CAGAAGGAAT	5340
TGAATATCAA	GATGCCATTG	TGGAAACAGC	ATGGCCTCTA	GGAACTGCCA	TAGAAGCCAT	5400
ATCATCTTTG	CCTAAATTTA	ATCGTCTAAT	GTATTTTATC	TAAGCCATGT	CCTCCACTTA	5460
TGACCACTTT	AATTAAAATA	AAACTCACCC	TTTTCACTAG	TCCTTTTTTA	TTCCATTGAG	5520
TATCAAGTGT	TAATTTGTTT	CTGACAAATG	GAGGTGTAAA	AGTGAAACAA	AGTATGTTTT	5580
TGTCAGATAC	GAATGGAAGT	AGGGTTATGA	TGACCTGCCA	ATTAACTAAT	ACTCTGACTT	5640
CTTTCATCCT	CTTATTTTAA	TTTTGAAAAA	AAAAATCATA	TATGTAATCG	GGAAAATTTG	5700
ATTTGCAACT	TAAAAAAATG	ACCAAATAAA	TTTTCCTAAA	TTCCTCTGCA	ACATATACAA	5760
GGACCACAAA	ATTGAATCTG	TTTCTTTAAT	GGAATAAGTA	CTTTTTGAAA	AACTATCATA	5820
TTAGTAAACT	TATCTTTTTC	ATCTAACAGG	CAGCAAAATT	AATTGCATGA	ACGGATCCAA	5880
TTAATTCTCT	CGTACAGCTC	CAGATAAGAA	GCGTTTAATG	AGATAAATTG	TTGGATAATA	5940
TATGTTGGGT	GTGGGTGGAT	TATGATACTA	TCGATAATAA	ATTTGGAATC	TAATTAAATT	6000
TTATAAAATT	AATTTATCAA	TATATATAT	TTTATATATA	TTAATTTGAT	AATATTTTTA	6060
TATTTTAT	ATTTTTAATA	TTTAATTTTA	ATTTAAGGAA	ATTTTTAAGA	TAATTAATTT	6120
PTTATTTTTA	TTTTTTTTTA	TAGTACTCAG	GACATAATAA	TGTTATTAAT	TTAAATAAGA	6180
CTTAAATATA	TATTTTTCTT	ATAATGCTTA	AATCTCAGTC	TTATTATTGC	TATCACATAA	6240
TCACACCAAC	ጥልልሮሞልሮሮሞሞ	CACTC				6200

SEQ ID NO:4 5' Degenerate primer sequence TA(T/C)GCNGTNAT(T/C)TT(T/C)GATCG

SEQ ID NO:5 3' Degenerate primer sequence AT(A/G)TT(A/G)TA(T/A/G)AT(G/A)CCNGG

SEQ ID NO:6 3' RACE primer CGTCCGATACTTCTATA

SEQ ID NO:7 5' RACE primer AACTTAGATCTCCTGCAC

SEQ ID NOS: 8-9

5 '	CAA	ATT	11 AAG		ATG	20 GAG										TTA		
	Q	ī	K	и	M	E	F	L	ī		L	 I	 А	т		L	L	L
	TTA	ATG	65 CCT	GCA	ATC	74 ACT	TCC	TCC	83 CAA	TAT	TTA	92 GGA	AAC	AAC	101 CTA	CTC	ACT	110 AAT
				 A													т	
	L	PI		A			3	3			_					-	•	_
	CGA	AAG	119 ATT	TIC	CAA	128 AAA	CAA	GA A	137 ACC		ACC	146 TCT		GCT	155 GTC	ATA	TTT	164 GAT
	 R		 I	 F	Q		Q			L	T	5	· ¥	A	v	ī	F	D
			173			182			191			200			209			218
	GCT	GGT		ACT	GGT		CGI	GTC					TTT	GAT	CAG	AAC	TTA	GAT
	·A	G	S	T	G	T	R	v	Ħ	V	Y	·H	F	D	Q	N	L	D
			227			236			245								ccm	272
	CIA	CTT	CAC													CCA		
	Ŀ	L	H	Ι.	G	N	D	I								. P	G	L
	AGT	GCA	281 TAT	GGG	GAT	290 AAT		GAA		GCA			TCT			CCA	CTT	326 TTG
		 A														 P		
	_	••	335		٠.	344		_	353						371	•		380
	ದ್ಯಾದ	GAA.		GAA	GAT										_	CCC	CTT	
	E	Ē	A	E	D	v	v	P	E	D	L	н	P	ĸ	T	P	L	R
			389			398			407			416			425			434
	CII	GGG	GCA	ACC	GCA	GGT	TTG	,AGG	CTT	TIG	TAA	GGG	GAT	GCT	GCT	GAA	AAG	ATA
	L	G	A	T	λ	G	L	R	L	L	N	G	D	A	A	E	K	I
	TTG	CAA	443 GCG	ACA	AGG	452 AAT	ATG	TTC	461 AGC	AAC	AGA	470 AGT		CTC	479 AAC	GIT	CAA	488 CGT
		Q			 R	 N	 M	 F	 s	 N	 R	 S		 L			 Q	 R
	_	×		•				_							533			542
	GAT	GCA														TGG		
	D	A	v	s	I	I	D	G	T	Q	E	G	s	Y	M	W	V	T
			551			560						578			587			596
																GIG		
	V	N	Y	V	L	G	N	L	G	K	S					V		V;
) TT	GAC	605 CII	GGA	GGT	614 GGT	TCA	GTT		ATG						aag		650 ACA
	 I	D	L	- <u>-</u> -	G	G	s	v	Q	М	T	Y	A	v	S	ĸ	ĸ	T

GCA	AAA	659 AAT				GIT										AAG	704 CTT
		N N			ж			D			D						
			GGA G			TAT			TAT			AGT			CGT		758 GGC G
			ACT			CAG	GTT	TIG	AAT	GCA		AAT	GGA		GCT		812 CCT
K	E		T												A	N	P
TGC			CCT		TTT		GGG	ACC	TTT	ACA	TAT	TCA	GGA			TAT	866 AAG
С	I	L	P	G	F	N	G	T	F	T	Ā	S	G	V	E	Ā	K
GCT	TTT	875 TCC	CCT	TCT		GGC								911 GAA		ATT	920 CTT
A	F	s	₽	s	S	G	s	N	F	D	D	С	ĸ	E	I	Ī	L
			AAA						CCC		CCG		TGC				
K	V		K	V											ŗ	G	
			GGT			GGG 	AGT 	GGA	CAA	AAA 		CTT		GTT 	ACT		.028 GCT
I	W	N	G	G	G				Q	K	K	Ļ	F	V	T.	S	A
	GCT		CTG L	GCT 			GTT	GGT 		GTT 					CCT P		
•		- 1091			100						L118			L127	F		.136
ATA			CCA												GCA		
I	L	H	P	v	D	F	E	I	E	A	K	R	A	С	A	L	N
	GAG	GAT D	oic	AAA	TCC	ACT	TAT	CCT	CGA	CIT	ACG	GAT	GCA	181 AAA K	CGT	CCA P	
GTA		-	GAT											.235 GGA			244 TTA
V	C	M	D	L	L	Y	Q	н	v	L	L	v	Н	G	F	G	L
	CCA		AAA K	GAG 		ACA		GGT		GGA	ATT		TAT			TCT	
GTG			GCA		316 CCT	CTA	GGT	325 ACT	GCC	ere 	.334 GAA	GCC	1 ATA	.343 TCA		1 TTA	352 CCT
v	E	A	A	W	P	L	G	T	A	v.	E	A	I	s	A	L	P
							9	9			4					1	

	1361 1370 AG TTT AAG CGA TTA ATG							1379		1	1388		:	L397		:	L406	
AAG	TIT	AAG	CGA	TTA	ATG	TAT	TTT	ATT	TAA	GCT	TIT	ሃርአ	GAT	GTC	AAG	ATA	TIT	
ĸ	F	K	R·	· L	M	Ā	F	I	*	A	F	R	D	V	K	I	F	
			•															
	-	1415		:	1424]	L433		1	L442		1	L451		1	L460	
CAG	TAA	CAG	CTA	ACT	TTA	TCA	AAA	ATT	AAA.	TAA	AAC	TGG	CGC	ATT	TTG	TCT	TTC	3'
0	*	0	T.	T	r.	S	ĸ	I	ĸ	*	N	W	R	I	L	s	F	

SEQ ID-NOS: 10-11

5'	АAG	TGC	9 TCT		CIC				27 TTG								TTC	
				 S						 н					 M		 F	L L
	•		63			72			81		-	90			99			108
	ATT	agt					GTG	TTC		TTA	ATG		GCT	ATC	-	TCC	TCC	
	ī	s	L	м	T	F	v	F	м	L	M	P	A	I	s	5	s	Q
			117			126			135			144		~~~	153		מתנ	162 CDC
	TAT	CTC	GGA	AAC	AAC	ATT		AIG	AAT								AAT	
	Y	L	G	N	Ŋ	I	L	M	N	R	K	I	L	L	P	K	N	Q
	GAA	CCA	171 GTT	ACA	TCA	180 TAC	GCT	GTT	189 ATA	TTT	GAT	198 GCT		AGC	207 ACT	GGA	AGC	216 AGA
	 E	 P		- - -	 S			v	ī	F	D	Ā	G	 s	T	G	S	R
			225			234			243			252			261			270
																	AAC	
	V	Н	V	Y.	N	F	D	Q	N	L	D	L	L	P	V	E	N	Ε
	4بئ	GAG	279 TTT	TAT	GAT	288 TCG	GTT	AAA	297 CCC	CCT	TTG	306 AGT	TCA	TAC	315 GCT	GCT	AAT	324 CCT
																	 N	 P
	ם	Ŀ	333	•		342	v	••	351	J	_	360	_	-	369			378
	GAA	GAA	GCT	GCA	gaa	TCT	CTG	ATT		CTT	CTA.		GAA	GCA		AAT	GTG	
	E	E	A	A	E	s	L	I	P	L	L	K	E	A	E	N	v	v
			387	G1.G	<i>6</i> 333	396		363	405	سعيت	200	414	GGG	CCZ	423 ACT	GC A	GGT	432 TTA
	Ď	V	S	Q	Q		N	т,		V	K		G	A		A	G	L
	AGG	CIT	441 TTG	GAG	GGG	450 AAT	GCT	CCT	459 GAA	AAT	ATA	468 TTG	CAA	GCG	477 GTC	AGG	GAT	ATG
	R	L	L	E	G	N	A	A	E	N	I	L	Q	A	v	R	D	M
			495			504			513			522			531) (TYT)	بلملت	540
	CIC	AGC	AAC	AGA													CIT	
	L	S	N	R	S	A	L	N	V	Q	S	D	λ	V			L	D
	GGA	ACC	549 CAA	GAA	GGT	558 TCT	TAT	CII	567 TGG	GIG	ACA	576 ATT		TAT	585 CTC		GGG	594 AAG
	 G	T	Q	Ξ	G	s:	Y	L	W :	v	T	I	N	Y	L	L	G	ĸ
	TTG	GGA	603 AAA	; AGA	TTT	612 ACA	AAG	ACA	621 GTG		GTA	630 GIT		CTA	639 GGA		GGG	648 TCA
					 F							v				 G		 s

		657			666	CTT-0		675	•••		684			693	ccs	222	
															CCA		
v	Q	M	T	Y	A	V	S	R	N	T	A	K	N	A	P	ĸ	
CCT	Gλλ														 226	AAA	
P	E	G	E	D	P	Y	I	K	K	L	٧	L	Q	G,	x	K	
GAC						TAC		CGC	TAT	GCY	AGA 	G7.2 		TIT	CCI		-
D	L	·Ā	V	H	\$							E	A	F	R	A	1
		AAG		GCT	<u></u>	GGT		GCT	AAT	CCT	TGC		TTA		GGC		
I	F	K	V	A	G	G	S	A	N	P	C	I	L	λ	G	F	ם
		TAT		TAT	TCC	GGA	GCA	GYC.	TAT	AAG 	GIC	TCG	<u></u>	CCA	GCT		
G	A														A		
		TTG	AAT	CAA	TGC	AGA	AAG	ATA	GCT	CTT	λλG 	GCT	CTT	AAA	GIG	AAT	<u></u> -
S	И	L	N	Q	С										V		Ä
			TAT			TGC		TTT	GGT	GGG	ATA	TGG	AAT	GGT	GGA	GGT 	
P	C	P	Y	Q	N	C	T	F	G	G	ľ	W	N	G	·G	G	G
	ccr		AAA	AAT		TTC	CIT	ACT		TCT	TIC	TAT	TAC		TCT	Gaa 	
S	G	Q	ĸ	N	L	F	L	T	s	s	F	Y	Y	L	S	Ξ	D
	GGG		TTT	GIG			CCC	TAA		<u> </u>		CGT	CCA	·	GAT	TIG	
v															D		
	GCA	GCT	AAA	CTA	GCT	TGT	AAA 	ACA	AAT	CTT	GAG	GAT	GCA	AAA 	TCC	<u> </u>	TAC
T	A	λ	x												5		
	GAT		TAT	GAG	AAA	CXC	AGT	GTT	GAA	TAT	GIG	TGC	TTG	GAT	CTT	GIC	TAC
P	ם	L	Y	E	K	D	S	V	E	Y	V	C	L	ם	L	V	Y
	TAC		TIG	CTT		GAT	GGA	TIT		CTT	GAT	CCA	TTT	CAA	GAG	GTT	ACA
ν															E		
	GCG	, AAT		ATT	GAA.	TAT	CAG	GAT	GCT	CIT	GIG	GAA	GCC	GCA	7GG	CCT	CIA
v	٨	Ŋ	E	I	Ξ	Y	Q	ם	A 12	L	v	E	A	A	W	ā	L

GGC G		1359 GCC A	ATA 			ATA I	TCA		TTG	CCT	:-		GAG E	1395 AGA R	TTA L	ATG 	1404 TAT Y
																	_
	_	1413			1422			1431		1	L440			1449		1	1458
TIT	ATT	TAA	ACT	ACT	AGT	ACC	TGC	TTA	AGC	CTG	GAT	TAC	CTG	AAG	AAA	TAA	AAT
															~		
F	I	*	T	T	S	T	С	L	s	L	D	Y	L	K	ĸ	•	N
	_	L467		_	L 4 76			1485									
GAA	AΤλ	AAA	GCC	GCA	TCT	TTC	TIC	CTT	GCT	T 3'							
										_							
E	I	K	A	A	S	F	F	L	Α								

SEQ ID NOS: 12-13

DBXXxxx I H S H D F L I I L F S L L L M T L V A T A T A T A S S 27 81 CTTTTCCCTCCATGGGAAGGGCTTCAAGCATCGCAAGTTTTCCTCCTCCGGATAATAATTATTCGATTGAACAAACCATTA 160 27 FSLHGKGFKHRKFSSSDHNYSIEETI 161 ATGANTETTATECAGTTATETTEGATGCTGGTAGCACAGGAAGCCCTGTACACGTTTACCGTTTCAACCAGCAACTAGAT 240 SANTSTAVIFORGSTCSRVRVYRFN QQLO 80 DBX7-forfrev DBXX 241 CITICITECCATTGGCCATGACCTTGAGCTGTTCGTCAAGACCAAGCCAGGTTTAAGTGCATACGCTGAGAATCCAGAAGA 322 ELL RIGHOLE LEVETERGLS AYA ENPEE 107 321 AGCCGCAGAATCTCTTGTGCCAGTTTTTGGAGGAACCAGAAGCTGTTATTCCTCAAGAGTTCCATCCCAGAACACCCGGTTA 400 107 AAII L V P L L E E X I A V I P Q E L H P R T P V 134 40: AAGTTGGAGCRACCGCAGGTTTAAGGCAATTGGAAGGTGATGCTTCCAACAGAATCTTGCAAGCGGTAAGTGATATGCTG 480 134 K V G A T A G L R Q L E G D A S N R I I. Q A V S D M L 481 ANCANGANGCACATTGANGGTTGAGGGGCGATGCAGTTCAGTGCAAACCAAGAACCAAGAAGGAGCTTATCAATGGGT 560 161 K K Z Z L L K A Z C D Y A Z A T Z C H G S C Y A O M A 561 GACTATTAACTATTTACTGGGAAACTTGGGAAAGCATTATTCAAAGAGGGTGGTGGTAGTTGACCTAGGTGGTGGATGTG 640 187 TINYLLGHLGKHISKTVAVVDLGGGS 214 DBXZ-forfrev DBX1-forfrev 720 214 V Q N A Y A I S E E D A A K A P Q V P D G V E S Y I T Z40 DBX10 72: GAGATGTTCCTCACCCGAAAGAAATATTACCTCTATGTACACAGTTACTTCCGTTATGGTTTGCTAGCAGCTCCTCCACA ROC 241 EMFLRGKKYYLYVHSYLRYGLL A A R A E OBX6 101 GGT.TTANAGGTT.TCTCGTGATTCAGANAACCCTTGTATT.TGTCTGGTT.TGATCTGTATTACACATACGGAGGAGTCC 880 267 V L X V S R D S E N P C I L S G Y D G Y Y Y G G Y DBXS BEL ACTATANAGECACAGCTCCCCCTTELAGGCTCLAGCTTCLAGCANATGCCANAATGTTGTTCTTGAAGCTCTCCATGTCAAT 26C 294 Q Y K A T A P P S C S S F S K C Q H V V L E A L H V H 320 DBX4 96: GCALCATGCTCTTATAAGGATTCCACTTTCGGAGGCATATGGAATTGCGGTGGTGGTAGGCTGGGGGAAACAACTTTTTTGT 1040 321 A T C S Y K D C T F G G, I W N G G G G A G E N N F F V 347 DBX11 1011 TOCATCATITITCTTTGAAGTGCCCGATGAGTGGTTTTGTTGATCCAAACGATGCCAATGCCAATAGTTCGTCCTGTGG 1120 347 ASPFEZVADE AGEVDENDANAIVRPV **DBX9-lor/rev** 1121 ATTITGLACATOCAGCAAAGGTTGCTTGTAGCACAGLATTALACCATCTCLAGTCCGTTTTCCCTCGTGTTAAGGATGGAL. 1200 J74 O F E E À À K V A C S T E L K D L K S V F P R V K D G DBX12 1281 CATGITCCTTACATATGTTTGGATCTAGTATACCAATATACATTGCTCGTTGATGGATTTGGCATTGATCCCCAGCAAGA 1280 401 O V P Y I.C L D L · V Y Q Y T L L V D G F G I D F Q Q E 427 28: GATTACATTGCTGAGGCAAATTCAGTATCAGGATTCTCTCGTGGAAGCTGCATGGCCACTAGGAAGTGCCATAGAAGCCA 427 ITLVRQIQYQDSLVEXXHPLGSAIEX 454 DBXbottom 1434 454 T S S L P K P E K L H Y F L 468

Figure 5 - DBX cDNA and deduced artino acid sequences. DBX primers are denoted by arrows. The predicted signal sequence is undertined. I - splice site. A - predicted signal sequence cleavage site. *- potential N-glycosylation site.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/16261

A. CLASSIFICATION OF SUBJECT MATTER											
	• •										
	US CL :536/24.32; 800/295 According to International Patent Classification (IPC) or to both national classification and IPC										
B. FIELDS SEARCHED											
Minimum d	ocumentation searched (classification system follow	ed by classification symbols)									
U.S. :	U.S. : 536/24.32; 800/295										
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched											
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)											
	, MEDLINE, BIOSIS, AGRICOLA	name of that base and, where practicable,	scarcii icims uscu)								
CAI LOS,	, WEDLINE, DIOSIS, ACIDOCUS										
C. DOC	UMENTS CONSIDERED TO BE RELEVANT										
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.								
Y	RELIC et al. Nod Factors of Rhizob	ium are a Key to the Legume	1-29								
	Door. Mol Microbiol. July 1994, Vo	ol. 13, No. 1, pages 171-178,									
	see entire documentation.										
Y	BAUER et al. Alfalfa Enod12 Gene	s are Differentially Regulated	1-29								
•	During Nodule Development by N	• • •	1-27								
	Invasion. Plant Physiol. June 1994,										
	592, see entire documentation.	, ,,									
			4.00								
Y											
	Roots of Dolichos Biflorus. Arch Big 1987, Vol. 258, No. 2, pages 535-5-										
	1987, Vol. 258, 140. 2, pages 555-5	44, see entire documentation.									
		İ									
Furth	er documents are listed in the continuation of Box (C. See patent family annex.									
=	ocial categories of cited documents:	"T" later document published after the inte- date and not in conflict with the appli									
	nument defining the general state of the art which is not considered be of particular relevance	the principle or theory underlying the	invention								
	tier document published on or after the international filing date	"X" document of particular relevance; the considered novel or earnot be considered.									
cite	ament which may throw doubts on priority claim(s) or which is d to establish the publication date of another citation or other	when the document is taken alone "Y" document of particular relevance, the	alaimed importion counct be								
-	oial reason (as specified) ument referring to an oral disclosure, use, exhibition or other	considered to involve an inventive	step when the document is								
mea	nns	being obvious to a person skilled in th	e art								
the	ument published prior to the international filing date but later than priority data claimed	"&" document member of the same patent family									
Date of the a	actual completion of the international search	Date of mailing of the international search report									
26 OCTOR	BER 1998	12 NOV 1998									
Name and m	ailing address of the ISA/US er of Patents and Trademarks	Authorized officer									
Box PCT		OUSAMA M-FAIZ ZAGHMOUT	a								
,washington Facsimile No	, D.C. 20231 b. (703) 305-3230	Telephone No. (703) 308-0196									

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/16261

A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):	
A01N 43/16; A61K 31/715; C07H 3/06; C12P 19/26; C12N 5/04; A01H 4/00	
	l