In [2]: from mpl_toolkits import mplot3d import matplotlib.pyplot as plt import numpy as np import plotly.express as px In [7]: # visualize a line in 3d space # y = 3*x + 7 $x_{line} = np.linspace(0, 10, 100)$ y_line = 3 * x_line + 7 z_line = np.zeros_like(x_line) # set up the figure and 3d axis fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111, projection='3d') # plot the line $ax.plot(x_line, y_line, z_line, color='red', label='3*x + 7', linewidth=3)$ ax.set_xlabel('X axis') ax.set_ylabel('Y axis') ax.legend() plt.show() 3*x + 70.04 0.02 0.00 -0.02 -0.04 35 30 25 0 20 15 X axis In [9]: # z = f(x, y) = 2*x + y + 5def f(x, y): **return** 2*x + y + 5 # x and y axis x = np.linspace(-1, 5, 10)y = np.linspace(-1, 5, 10)a, d = np.meshgrid(x, y)z = f(a, d)fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111, projection='3d') ax.plot_wireframe(a, d, Z) plt.show() 20 18 16 14 12 10 8 6 5 -1 0 1 2 3 In [12]: # z = f(x, y) = 3*x*x + 2*y*ydef f(x, y):**return** 3*x*x + 2*y*y x = np.linspace(-1, 5, 10)y = np.linspace(-1, 5, 10)X, Y = np.meshgrid(x, y)Z = f(X, Y)fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111, projection='3d') ax.plot_surface(X, Y, Z) plt.show() 120 100 80 60 40 20 -1 0 1 2 3 In [16]: **def** f(x, y): return np.cos(np.sqrt(x**2 + y**2)) x = np.linspace(-1, 5, 10)y = np.linspace(-1, 5, 10)X, Y = np.meshgrid(x, y)Z = f(X, Y)fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111, projection='3d') ax.plot_surface(X, Y, Z, color='skyblue') plt.show() 0.75 0.50 0.25 0.00 -0.25 -0.50 -0.75 -1 0 1 2 In [19]: def f(x, y): return np.sin(np.sqrt(x**2 + y**2)) x = np.linspace(-1, 5, 10)y = np.linspace(-1, 5, 10)X, Y = np.meshgrid(x, y)Z = f(X, Y)fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111, projection='3d') ax.plot_surface(X, Y, Z, cmap='PRGn') plt.show() 0.75 0.50 0.25 -0.25 -0.50 -0.75 -1 1 2 In [22]: def f(x, y): return np.sin(np.sqrt(x**2 + y**2)) x = np.linspace(-10, 10, 50)y = np.linspace(-10, 10, 50)X, Y = np.meshgrid(x, y)Z = f(X, Y)fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111, projection='3d') ax.plot_surface(X, Y, Z, cmap='PiYG') plt.show() 0.75 0.50 0.25 0.00 -0.25 -0.50 -0.75 10.0 7.5 5.0 2.5 -10.0_{7.5}_{-5.0}_{-2.5}_{0.0} 2.5 5.0 7.5 10.0 -7.5 -10.0 In [25]: # generate data t = np.linspace(0, 30, 100)x = np.sin(t)y = np.cos(t)z = tfig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111, projection='3d') ax.plot(x, y, z, label='3D spiral line') plt.show() 30 25 20 15 10 5 1.00 0.75 0.50 -1.00_{0.75}_{-0.50}_{0.25}_{0.00}_{0.25}_{0.50}_{0.75}_{1.00} 0.25 0.00 -0.25-0.50-0.75In [26]: **def** f(x, y): **return** np.log(x**2 + y**2)x = np.linspace(-0.1, 10, 100)y = np.linspace(-0.1, 10, 100)X, Y = np.meshgrid(x, y)Z = f(X, Y)fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111, projection='3d') ax.plot_surface(X, Y, Z, cmap='hsv') plt.show() -6 -8 -1010 8 10 In [42]: # generate some data x = np.random.rand(50)y = np.random.rand(50) z = np.random.rand(50)fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111, projection='3d') ax.scatter(x, y, z, c='r', marker='*', s=80) plt.show() 1.0 0.8 0.6 0.4 0.2 0.0 1.0 0.8 0.6 0.0 0.2 0.4 0.4 0.2 0.6 0.8 0.0 1.0 In [43]: x = np.random.rand(50)y = np.random.rand(50)z = np.random.rand(50)fig = $px.scatter_3d(x=x, y=y, z=z)$ fig.show() In [55]: # visualize barchart in 3d space # data sales = [10, 20, 15, 24] quarters = ['Q1', 'Q2', 'Q3', 'Q4'] fig = plt.figure(figsize=(8, 8)) ax = fig.add_subplot(111, projection='3d') # create an array with the position of each bar along the x-axis $x_{pos} = np.arange(4)$ # plot ax.bar(x_pos, sales, zdir='y', alpha=0.6) ax.set_xticks(x_pos) ax.set_xticklabels(quarters) ax.set_ylabel('Quarters') ax.set_zlabel('Sales') plt.show() 20 15 10 5 0 0.04 Q1 Q2 Q3 -0.04 Q4