MATH 1336: Calculus III

Section 2.5, Part 1: Lines

Equations of Lines:

In \mathbb{R}^2 (the coordinate plane), we know that a point and a slope can be used to determine an equation for a line, using the point-slope formula:

$$y - y_1 = m(x - x_1)$$

We build on that idea to determine equations of lines in in \mathbb{R}^3 : a point, $P_0=(x_0,y_0,z_0)$ and a direction, $\vec{v}=\langle a,b,c\rangle$, can be used to determine an equation of a line.

Let $\vec{r}_0 = \langle x_0, y_0, z_0 \rangle$ be the position vector for the point P_0 , $\vec{r} = \langle x, y, z \rangle$ be the position vector for any general point P = (x, y, z) on the line L, and let $\vec{v} = \langle a, b, c \rangle$ be any vector parallel to the line. Then the line can be described by any of the following types of equations:

Figure 1: Diagram illustrating equations of lines in three dimensions.

Vector Equation:

$$\vec{\boldsymbol{r}} = \vec{\boldsymbol{r}}_0 + t\vec{\boldsymbol{v}}$$

Parametric Equations:

$$x = x_0 + at$$
, $y = y_0 + bt$, $z = z_0 + ct$

Symmetric Equations:

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

Note that a, b, c are sometimes called the **direction numbers** of the line.

Example 1:

Find vector, parametric, and symmetric equations for the line that passes through the points A = (0,0,4), and B = (12,8,8).

In order to build our line equations, we need to find an initial vector \vec{r}_0 , and a vector \vec{v} parallel the the line. We can pick *either* one of the given points for \vec{r}_0 , so I decided to choose $\vec{r}_0 = \langle 0, 0, 4 \rangle$.

To find \vec{v} , we can calculate the vector that points from A to B:

$$\vec{v} = \overrightarrow{AB} = \langle 12 - 0, 8 - 0, 8 - 4 \rangle = \langle 12, 8, 4 \rangle$$

Vector Equation: $\vec{r} = \vec{r}_0 + t\vec{v} = \langle 0, 0, 4 \rangle + t\langle 12, 8, 4 \rangle = \langle 12t, 8t, 4 + 4t \rangle$

Parametric Equations: x = 12t, y = 8t, z = 4 + 4t

Symmetric Equations: $\frac{x}{12} = \frac{y}{8} = \frac{z-4}{4}$

Example 2:

Show that the lines below are skew lines: they are not parallel and do not intersect one another.

$$L_1: x-1=\frac{y+2}{3}=4-z, L_2: \frac{x}{2}=y-3=\frac{z+3}{4}$$

$$L_2: \qquad \frac{x}{2} = y - 3 = \frac{z + 4}{4}$$

Lines Practice Problems:

Problem 1: Find parametric equations for the line that passes through P = (3, 1, 4) and is parallel to the vector $\vec{v} = -\hat{\mathbf{i}} + \hat{\mathbf{j}} - 2\hat{\mathbf{k}}$. Then find the points where the line passes through the coordinate planes and use the information to sketch the line.

Problem 2: Find the vector equation for the line that passes through the points (-1,3,7) and (4,2,-1).

Problem 3: Show that the lines

$$L_3:$$
 $\frac{x-1}{2} = \frac{y+1}{1} = \frac{z-2}{4},$ $L_4:$ $\frac{x+2}{4} = \frac{y}{-3} = \frac{z-\frac{1}{2}}{-1}$

intersect, and find the point of intersection.