

dr. ir. Wim Korevaar

Optical satcom researcher - Information & Communication Theory Lab - Signal Processing Systems Group - TU/e

Tech lead Optical Satcom Program - Dutch applied research institute TNO

20th of January, 2025 - c.w.korevaar@tue.nl

Launch Cost per Kilogram (medium and heavy)

Data source: United Nations Office for Outer Space Affairs (2024) - Learn more about this data

SPECTRUM

FM

5G LOW BAND

5G MID BAND

5G MMWAVE BAND

INFRARED C-BAND

FSO VERSUS RF – LINK BUDGET

Receive power:

$$P_R = \eta P_T \cdot \left(\frac{\pi D_T}{\lambda}\right)^2 \left(\frac{\pi D_R}{\lambda}\right)^2 \left(\frac{\lambda}{4\pi R}\right)^2$$

- which is proportional to $\frac{1}{\lambda^2}$ and f^2 .
- Example: Ka-band versus FSO
- with RF Ka-band (30 GHz) versus FSO C-band (193 THz)
- this gives about <u>75 dB gain</u> in receive power for FSO over RF
- assuming antenna sizes D_T and D_{R_I} transmit power P_{T_I} distance R all the same.

Example #3: 100 Mbps link from Mars to Earth

Parameter	RF Ka-band	FSO C-band	units
Wavelength λ	10^{7}	1550	nm
Frequency c/λ	30	193550	GHz
Transmit power P_T	500	50	W
Transmitter diameter D_T	5.6	0.5	\mathbf{m}
Receiver diameter D_R	4x 34	$6x \ 2.5$	\mathbf{m}

By NASA B. L. Edwards, D. Antsos, A. Biswas, and others, "An envisioned future for space optical communications," 2023 International Conference on Space Optical Systems and Applications (ICSOS), 2023.

FSO VERSUS RF - RISK OF DETECTION & INTERCEPTION

Thanks to the high transmitter gains and high directivity
the FSO beams have a low probability of detection (LPD) and interception (LPI)

Diffraction-limited spot size (in far field, assuming perfect optics and antennas):

$$w(R) = w_0 \sqrt{1 + \left(\frac{\lambda R}{\pi w_0^2}\right)^2} \approx \frac{\lambda R}{\pi w_0}$$

Example: Eavesdropping a LEO satellite on the ground

with RF Ka-band (30 GHz) versus FSO C-band (193 THz), distance of 500 km and a transmit beam waist radius w_0 of 10 cm gives +/- 15900 m for Ka-band versus 2.5 m for FSO link.

THE PROMISES OF FSO

-) High-throughput
-) High-security
-) Low-interference
-) Low energy-per-bit
-) License-free

THE KEY CHALLENGES

SOME KEY FACTORS

- **Availability** limited by weather conditions
- **Locations** direct line of sight
- **Eye safety** limit on transmit power

TECHNOLOGICAL CHALLENGES

- Acquisition, tracking & pointing
- Atmospheric turbulence & robustness
- Modem & DSP design for Gbps/Tbps links

DEFINE KEY PERFORMANCE GOALS

TYPICAL OBJECTIVES:

- 1. THROUGHPUT
- . 2. RELIABILITY
- 3. HIGH-AVAILABILITY
- . 4. LOW-LATENCY

WHILE MEETING/MINIMIZING THE REQUIRED:

- . COST-PER-BIT
- . BANDWIDTH / WAVELENGTH
- . POWER / EYE-SAFETY
- FORM FACTOR (SIZE & WEIGHT)
- . SYSTEM COMPLEXITY

.... Example visualization of performance of two different designs

RF & FSO FIGURES OF MERIT

USE CASES FOR FSO

Use case & USP	Typical datarate	Modulation
1. Low-cost	Gbps class	OOK
2. High-throughput	Tbps class	WDM-QPSK
3. Deep space – Photon-efficient	Mbps - Gbps	PPM
4. Ultra-secure - QKD	bps - kbps	CV-DV QKD

ACHIEVABLE RATE – A MOONSHOT

Assume you want to set up an FSO laser link from the Moon to the Earth.

- You dimension your system such that 0.01 nW of average power is received.
- You may assume that we use single photon detectors, lossless receiver and no background noise.
- We use the NIR wavelength of 1550 nm.

Now the question, given 256-PPM, what is the achievable rate and photon efficiency?

Example Moon link:

The photon energy is $h \cdot f$, such that we have $P_{TX}/(h \cdot f)$ photons / second.

With M-PPM, you need M timeslots per symbol, to send log₂ (M) bits per symbol.

If you only need one photon per symbol, and transmit \log_2 (M) bits per symbol, you'll need $1/\log_2$ (M) photons-per-bit.

With $P_{\rm TX}$ =0.01 nW, we have 7.8E7 photons / second, with M=256, we get to 623 Mbps and get down to 0.125 ppb.

CALCULATE THROUGHPUT

- A. Number of optical channels, e.g. 96 x 50 GHz channels
- B. Baudrate per channel, e.g. 25 Gbaud per channel
- C. Modulation format, e.g., QPSK, 2 bits per symbol
- D. FEC & coding rate, e.g., coding rate of 0.9 means 90% is used for actual data
- E. Polarizations, e.g., 2 for dual-polarization doubles the throughput
- F. Transmission success factor, e.g., 0.99, on average 1% of retransmissions
- G. Overhead, headers & protocols, e.g., 0.9 to account for 10% overhead

Estimated throughput is: A x B x C x D x E x F x G

(for the example values you get: 7.8 Tbps)

OPTICAL FEEDER LINK

- 1. Digital Processor
- Optical modulators
- . Booster amplifier
- 4. High power multiplexer
- 5. Telescope
- 6. Tip/tilt corrector
- 7. Deformable mirror
- 8. Wavefront sensor
- 9. Control system
- 10 De-multiplexer
- 11 Preamplifier
- Detectors, LIA, TIA & CDR
- 13 Digital processor

THE PROBLEM OF FADING & MITIGATION METHODS

Retransmissions

THE PROBLEM OF FADING & DIVERSITY METHODS

Temporal diversity

Wim Korevaar

c.w.korevaar@tue.nl