

Métodos de Passo Múltiplo Métodos Preditor-corretor Modelo SIR

ANEDO

Annanda Dandi e Yuri Lopes

Professora Juliana Lindona Valério

1

Métodos de Passo Múltiplo

Em uma EDO, ao estimar o valor de um ponto não usar apenas o valor obtido do passo anterior, mas usar os valores de s passos anteriores e suas derivadas

- A ideia original de extender o método de Euler foi proposto por Bashforth and Adams (1883)
 - Esse é o metódos conhecido como Adams-Bashforth
- Moulton estudou detalhes do que ficou conhecido como o método Adams-Moulton (1926)

- A ideia do método preditor-corretor é associada ao nome de Milne (1926, 1953)
- A teoria moderna dos métodos de passo múltiplo foi desenvolvida por Dahlquist (1956) e amplamente disseminada por Henrici (1962, 1963)

♦ Seja o PVI da forma

$$y' = f(x, y),$$
 $a \le x,$ $y(a) = \hat{y}$

• Podemos integrar no intervalo $[x_k, x_{k+1}]$

$$y(x_{k+1}) - y(x_k) = \int_{x_k}^{x_{k+1}} y'(x) dx = \int_{x_k}^{x_{k+1}} f(x, y(x)) dx$$

Vamos aproximar por um polinômio

$$\int_{x_k}^{x_{k+1}} f(x, y(x)) dx \approx \int_{x_k}^{x_{k+1}} p(x) dx$$

Temos, então

$$y(x_{k+1}) = y(x_k) + \int_{x_k}^{x_{k+1}} p(x)dx$$

- Podemos obter a interpolação polinomial entre os pontos (x_{k-1}, f_{k-1}) e (x_k, f_k) .
 - Adams-Bashforth

$$y_n = y_{n-1} + h(\beta_1 f(x_{n-1}, y_{n-1}) + \beta_2 f(x_{n-2}, y_{n-2}) + \dots + \beta_k f(x_{n-k}, y_{n-k})),$$

- Podemos também fazer a interpolação usando um ponto que ainda estamos calculando, que é interpolar (x_k, f_k) e (x_{k+1}, f_{k+1}) .
 - Adams-Moulton

$$y_n = y_{n-1} + h(\beta_0 f(x_n, y_n) + \beta_1 f(x_{n-1}, y_{n-1}) + \beta_2 f(x_{n-2}, y_{n-2}) + \dots + \beta_k f(x_{n-k}, y_{n-k})),$$

Segunda ordem

$$y_{n+1} = y_n + h\left(\frac{3}{2}f(t_n, y_n) - \frac{1}{2}f(t_{n-1}, y_{n-1})\right)$$

Terceira ordem

$$y_{n+1} = y_n + h\left(\frac{23}{12}f(t_n, y_n) - \frac{4}{3}f(t_{n-1}, y_{n-1}) + \frac{5}{12}f(t_{n-2}, y_{n-2})\right)$$

Quarta ordem

$$y_{n+1} = y_n + h\left(\frac{55}{24}f(t_n, y_n) - \frac{59}{24}f(t_{n-1}, y_{n-1}) + \frac{37}{24}f(t_{n-2}, y_{n-2}) - \frac{3}{8}f(t_{n-3}, y_{n-3})\right)$$

	Table 2	244(I) Co	efficients	and error	r constants	for Adar	ns–Bash	forth met	thods
k	eta_1	eta_2	eta_3	eta_4	eta_5	eta_6	β_7	β_8	C
1 2 3 4 5 6 7 8	$\begin{array}{r} 1\\ \frac{3}{2}\\ \frac{23}{12}\\ \frac{55}{24}\\ \frac{1901}{720}\\ \frac{4277}{1440}\\ \frac{198721}{60480}\\ \frac{16083}{4480} \end{array}$	$-\frac{1}{2}$ $-\frac{4}{3}$ $-\frac{59}{24}$ $-\frac{1387}{360}$ $-\frac{2641}{480}$ $-\frac{18637}{2520}$ $-\frac{1152169}{120960}$	$\begin{array}{r} \frac{5}{12} \\ \frac{37}{24} \\ \frac{109}{30} \\ \frac{4991}{720} \\ \frac{235183}{20160} \\ \frac{242653}{13440} \end{array}$	$ \begin{array}{r} -\frac{3}{8} \\ -\frac{637}{360} \\ -\frac{3649}{720} \\ -\frac{10754}{945} \\ -\frac{296053}{13440} \end{array} $	$\begin{array}{r} \underline{251} \\ 720 \\ \underline{959} \\ 480 \\ \underline{135713} \\ 20160 \\ \underline{2102243} \\ 120960 \\ \end{array}$	$-\frac{95}{288} \\ -\frac{5603}{2520} \\ -\frac{115747}{13440}$	$ \begin{array}{r} $	$-\frac{5257}{17280}$	$-\frac{1}{2}$ $\frac{5}{12}$ $-\frac{3}{8}$ $\frac{251}{720}$ $-\frac{95}{288}$ $\frac{19087}{60480}$ $-\frac{5257}{17280}$ $\frac{1070017}{3628800}$

Adams-Bashforth de ordem 2

$$y(x_n) = y(x_{n-1}) + h\left(\frac{3}{2}y'(x_{n-1}) - \frac{1}{2}y'(x_{n-2})\right) + Ch^3y^{(3)}(x_n) + O(h^4)$$

Segunda ordem

$$y_{n+1} = y_n + h\left(\frac{1}{2}f(t_{n+1}, y_{n+1}) + \frac{1}{2}f(t_n, y_n)\right)$$

Terceira ordem

$$y_{n+1} = y_n + h\left(\frac{5}{12}f(t_{n+1}, y_{n+1}) + \frac{2}{3}f(t_n, y_n) - \frac{1}{12}f(t_{n-1}, y_{n-1})\right)$$

Quarta ordem

$$y_{n+1} = y_n + h\left(\frac{3}{8}f(t_{n+1}, y_{n+1}) + \frac{19}{24}f(t_n, y_n) - \frac{5}{24}f(t_{n-1}, y_{n-1}) + \frac{1}{24}f(t_{n-2}, y_{n-2})\right)$$

	Table 244(II)		Coefficients and error constants for Adams-Moulton method						
k	β_0	eta_1	eta_2	eta_3	eta_4	eta_5	eta_6	eta_7	C
0	1								$\frac{1}{2}$
1	$\frac{1}{2}$	$\frac{1}{2}$ $\frac{2}{3}$	1						$-\frac{1}{12}$
2	$\frac{5}{12}$		$-\frac{1}{12}$	1					$\frac{1}{24}$
3	$\frac{3}{8}$	$\frac{19}{24}$	$-\frac{5}{24}$	$\frac{1}{24}$	19				$-\frac{19}{720}$
4	251 720	$\frac{323}{360}$	$-\frac{11}{30}$	53 360	720	3			$\frac{3}{160}$ 863
5	$\frac{95}{288}$	$\frac{1427}{1440}$	$-\frac{133}{240}$	$\frac{241}{720}$	$-\frac{173}{1440}$	160			$-\frac{60480}{60480}$
6	$\frac{19087}{60480}$	$\frac{2713}{2520}$	$-\frac{15487}{20160}$	$\frac{586}{945}$	$-\frac{6737}{20160}$	$\frac{263}{2520}$	$-\frac{863}{60480}$		$\frac{275}{24192}$
7	$\frac{5257}{17280}$	$\frac{139849}{120960}$		$\frac{123133}{120960}$	$-\frac{88547}{120960}$	$\frac{1537}{4480}$	$-\frac{11351}{120960}$	$\frac{275}{24192}$	$-\frac{33953}{3628800}$
		111							

Significado da ordem dos métodos de Adam

$$y_n = y_{n-1} + h(\beta_1 f(x_{n-1}, y_{n-1}) + \beta_2 f(x_{n-2}, y_{n-2}) + \dots + \beta_k f(x_{n-k}, y_{n-k})),$$

- Suponho que até esse ponto não tenha nenhum erro sido introduzido
- Substituo os termos à direita pelos valores que eles aproximam

$$y(x_{n-1}), y'(x_{n-1}), y'(x_{n-2}), \dots, y'(x_{n-k})$$

Significado da ordem dos métodos de Adam

- A diferença da aproximação escrita dessa forma e o $y(x_{n-1})$ é o erro desse passo.
- Se o erro pode ser estimado como $O(h^{p+1})$ então o método tem ordem p

- Ao dar os primeiros passos é preciso conhecer os estados nos passos anteriores à condição inicial.
- Usar um método de passo único e, de mesma ordem para prever os estados anteriores.
 Ex: Runge-Kutta

2

Métodos Preditor-corretor

Combinar métodos explícitos e implícitos.

- Método explícito = Preditor
- Método implícito = Corretor

Métodos Preditor-corretor | Euler + Trapézio

Preditor - Método de Euler

$$\tilde{y}_{i+1} = y_i + hf(t_i, y_i)$$

Corretor - Método do Trapézio

$$y_{i+1} = y_i + \frac{1}{2}h\left(f(t_i, y_i) + f(t_{i+1}, \tilde{y}_{i+1})\right)$$

Métodos Preditor-corretor | Adams-Bashforth e Adams-Moulton

Preditor - Método Adams-Bashforth

$$\tilde{y}_{n+1} = y_n + h\left(\frac{23}{12}f(t_n, y_n) - \frac{4}{3}f(t_{n-1}, y_{n-1}) + \frac{5}{12}f(t_{n-2}, y_{n-2})\right)$$

Corretor - Método Adams-Moulton

$$y_{n+1} = y_n + h\left(\frac{5}{12}f(t_{n+1}, \tilde{y}_{n+1}) + \frac{2}{3}f(t_n, y_n) - \frac{1}{12}f(t_{n-1}, y_{n-1})\right)$$

Métodos Preditor-corretor | Reforçando a Correção

Repetindo a Regra do Trapézio

$$\tilde{y}_{i+1} = y_i + hf(t_i, y_i)$$

$$\hat{y}_{i+1} = y_i + \frac{1}{2}h\left(f\left(t_i, y_i\right) + f\left(t_{i+1}, \tilde{y}_{i+1}\right)\right)$$

$$y_{i+1} = y_i + \frac{1}{2}h\left(f\left(t_i, y_i\right) + f\left(t_{i+1}, \hat{y}_{i+1}\right)\right)$$

Análise: Passo múltiplo X Passo único

- Em geral, métodos de passo múltiplo são melhores que de passo único em termos de acurácia.
- Muito usados em computação científica.

$Análise: Preditor-corretor \ \mathcal{X}\ Passo \ único \mid Lotka-Volterra$

$An \'alise: Passo \ m\'ultiplo \ \emph{χ Preditor-corretor} \mid Lotka-Volterra$

Modelo SIR

- Modelo de epidemiologia.
- Indivíduo Suscetível
- Indivíduo Infectado
- Indivíduo Recuperado

Modelo SIR – EDOs

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dt} = \beta SI - \delta$$

$$\frac{dR}{dt} = \delta I$$

Modelo SIR – Solução com Adams-Bashforth

$$\beta = 0.035$$

 $\delta = 0.065$

- https://goo.gl/k2ftzg
- Modelo com nascimentos e mortes
- Modelo com discriminação de faixa etária
- Modelo com grupos de alto e baixo risco

Alguma pergunta?

Nós temos 2:

- 1. Por que o Runge-Kutta não é passo-múltiplo?
- 2. Vale a pena fazer muitos passos corretores? Quando?

- "Scientific computing and differential equations"; Gene H. Golub, James M. Ortega
- * "Numerical Methods for Ordinary Differential Equations", 3rd Edition. J. C. Butcher
- http://matlabgeeks.com/tips-tutorials/modeling-with-odes-in-matlab-part-3/
- https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology
- http://wiki.deductivethinking.com/wiki/Python Programs for Modelling Infectious
 Diseases_book