Clase práctica 8

May 25, 2025

- 1. En conferencia se estudio un resultado que garantiza que: en un digrafo D existe un camino de longitud $\chi(D)-1$, pero este no dice nada de que puedan haber caminos más largos. Demuestre que dicho resultado no se puede mejorar, dado un grafo G se puede encontrar una orientación donde la longitud del camino más largo es exactamente $\chi(G)-1$.
- 2. Sea D un digrafo, D es fuertemente conexo si y solo sí para toda partición de los nodos de D en dos conjuntos no vacíos, propios, S y T, existe un arco desde S hacia T.
- 3. Un digrafo D (sin lazos) tiene un conjunto independiente S tal que para todo nodo de D que no está en S, es alcanzable por un nodo de S por un camino de longitud a lo sumo 2.
- 4. Todo torneo tiene al menos un camino de Hamilton. Realice esta demostración de tres formas diferentes a las vistas en conferencia. Hints:
 - Inducción fuerte.
 - Utilizando el teorema: en un digrafo D existe un camino de longitud $\chi(D)-1$.
 - ullet Considerando una permutación de los nodos con cierta propiedad P.
- 5. En un torneo existe un camino de Hamilton donde el primer nodo es el que más gana (mayor *outdeg*).
- 6. El ejercicio 3 se puede mejorar para torneos, sea T un torneo, se puede encontrar un solo nodo $v \in T$ que cumple para todo $w \in T : w \neq v, v$ le gana a w o v le gana a un $z \in T : z \neq w \land z \neq v$ tal que z le gana a w. A este nodo se le llama rey.
- 7. Sea T un torneo tal que $\forall v \in T : indeq(v) > 0$. Demuestre que:
 - Si x es un rey en T, entonces T tiene otro rey en $N^-(x)$
 - T tiene al menos 3 reyes.