Where does computing lead?

COMP10001 Foundations of Computing
Week 12 Lecture 1

Careers in computing

Four major career directions

- Computer science
- Software engineering
- Information systems
- Data science

Computer Science

- How to solve problems using computing
- Types of work would you might do:
 - Devising better ways to store, index and search in databases
 - Developing techniques to manage and optimise complex systems
 - New solutions in fields such as computer vision, natural language, cybersecurity
- Programmer, analyst, researcher

Software Engineering

- How to design, build, test and deploy large, complex software systems
- Types of work would you might do:
 - Understanding user requirements
 - Designing the architecture of software systems
 - Implementing, testing, documenting software
 - Building distributed and mobile applications
- Software engineer, interface design, systems integration, database analysts, operations managers

Information Systems

- How do organisations or individuals use computer systems
- Types of work would you might do:
 - Designing management information systems
 - Usability analysis
 - Security analysis
- Usability analysts, business analysts, project managers

Data Science

- How to manage large volumes of data and extract useful insights
- Types of work would you might do:
 - Data analysis
 - Large scale analytics
 - Information visualisation
- Bioinformaticians, market analysts, computational physicists, data miners

Introduction to Data Mining

Styles of Decision Making

Overview

Data mining aims to find useful patterns in large databases For example:

- Market segmentation studies
 - Find categories of customers with similar buying behaviour
 - Example of "unsupervised learning"
- Predictive modelling
 - Find customers who are likely to commit fraud based on their transaction history
 - Example of "supervised learning"

The Common Theme – Big Data

Automating the Data Analysis Pipeline

Part of the field of data analytics / machine learning

Clustering to Learn Categories (Unsupervised Learning)

What are the natural categories in a database?

Consider a database of animals.

How many different types of animals are there here?

Learning a Classifier (Supervised Learning)

Training a classifier

cat

cat

dog

dog

cat

Classifier

Classifying new examples

dog

Learning Unusual Patterns (Anomaly Detection)

- Learn a model of "normal" database records
- Use this model to test new records for anomalies
- Any anomalies can be either interesting or errors

Modelling Normal Behaviour

System

Summary

Data mining aims to find useful patterns in large databases

Useful in marketing, operations, security ...

Many patterns discovered using data mining are interesting, but which ones are useful?

Want more?

Computing and Software Systems major (BSc)

- The next stop is ...
 COMP10002 Foundations of Algorithms
- Maybe also ...
 INFO20003 Database Systems

Informatics major (BSc) or Diploma in Informatics

- The next stop is ...
 INFO20002 Foundations of Informatics
- Maybe also ...
 INFO20003 Database Systems

Breadth options (all)

ISYS20006 Shaping the Enterprise with ICT