Engenharia Electrotécnica

Exame Normal de Álgebra Linear (1º ano/1º sem.)

23 de janeiro de 2017 Duração: 2h30

1. Sejam α e β parâmetros reais. Considere o sistema linear AX = B, com

$$A = \begin{bmatrix} 1 & -1 & \beta \\ 0 & -3 & 0 \\ 1 & -1 & \alpha + \beta \end{bmatrix} \quad \mathbf{e} \quad B = \begin{bmatrix} -\beta + 1 \\ 1 \\ -2\beta \end{bmatrix}.$$

- [2.0] (a) Discuta o sistema em função dos parâmetros α e β .
 - (b) Faça $\alpha = -2$ e $\beta = 0$.
- [1.0] i. Resolva o sistema linear AX = B.
- [1.5] ii. Calcule A^{-1} usando o algoritmo de Gauss-Jordan.
- [1.5] iii. Confirme a resposta dada em i. usando a matriz inversa calculada em ii..
- [1.5] 2. Sabendo que A, B e X sao matrizes invertíveis de ordem n, resolva em ordem a X a equação matricial $(AXB^{-1})^T = I_n$.
 - 3. Considere os vectores u = (1, -1, 0), v = (1, 0, 1) e w = (1, -3, -2) de \mathbb{R}^3 .
- [2.0] (a) Determine o subespaço vectorial $S = \langle u, v, w \rangle$.
- [1.0] (b) Determine uma base de S e indique a respectiva dimensão.
- [1.0] (c) Determine as coordenadas do vector a = (2, 3, 5) relativamente à base que indicou na alínea anterior.
- [1.0] (d) Os vectores $u, v \in w$ constituem uma base de \mathbb{R}^3 ? Justifique.
- [1.0] (e) Indique uma base de \mathbb{R}^3 que contenha os vectores u e v.
 - 4. Considere a matriz $A = \begin{bmatrix} 1 & -2 & 0 \\ 0 & -1 & 0 \\ 1 & -3 & 0 \end{bmatrix}$.
- [1.5] (a) Determine os valores próprios da matriz A.
- [1.0] (b) Confirme o resultado obtido na alínea anterior de dois modos distintos.
- [2.0] (c) Diga, justificando, se a matriz A é diagonalizável. Em caso afirmativo, indique uma matriz diagonalizadora, P, e uma matriz diagonal, D, tais que $A = PDP^{-1}$.
- [1.0] (d) Determine o polinómio característico da matriz A.
- [1.0] (e) Use o teorema de Cayley-Hamilton para calcular a matriz $-A^{18} + A^{16} + 3I_3$.