1 SOLUBLE GROUPS II

1 Soluble Groups II

Theorem 1.1. Let G be a group. Then the following are equivalent:

- 1. G is a soluble group;
- 2. $\exists n \in \mathbb{Z}^+ \text{ such that } G^{(n)} = \{e\};$
- 3. $\exists dnormal\ series$

$$\{Id.\} = G_n \leqslant G_{n-1} \leqslant \cdots \leqslant G_1 \leqslant G_0 = G$$

1

such that $G_i \triangleleft G$ and all quotients G_{i-1}/G_i are abelian;

4. \exists subnormal series such that quotients G_{j-1}/G_j are abelian.

Remark 1. Recall that $G' = \langle [x,y] : x,y \in G \rangle$ where $[x,y] = xyx^{-1}y^{-1}$. Equivalently,

Exercise 1. G' is a minimal normal subgroup of G such that G/G' is abelian.

Finally, $G^{(n)} = (G^{(n-1)})'$ and $\{\text{Id.}\} = G^{(n)} \triangleleft G^{(n-1)} \triangleleft \cdots \triangleleft G' \triangleleft G$ is the <u>derived series</u> (not to be confused with $G_{n+1} = [G_n, G]$, the <u>lower central series</u>).

Remark 2. ?? don't understand this one

Lemma 1.2. Let $\varphi: G \mapsto H$ be an epimorphism. Then $\varphi(G') = H'$.

Definition 1 (Composition series). Let G be a group. Then a <u>composition series</u> of G is a subnormal series of finite length

$$\{Id.\} = G_0 \lhd G_1 \lhd \cdots \lhd G_{\ell-1} \lhd G_{\ell} = G$$

such that G_j/G_{j-1} is a simple group for all j.

Theorem 1.3 (Jordan-Hölder). Any 2 composition series of some group G are equivalent up to permutation and isomorphism.

Theorem 1.4. Let K be a field with char $K \neq 2$ and let $f \in K[t]$ be a separable polynomial with splitting field L. Then f = 0 is solvable by quadratic radicals $\iff [L : K] = 2^t$.