Control systems and Computer Networks

Dr Alun Moon

Lecture 1.3

What is a digital signal?

A Digital Signal is:

Dr Alun Moon Digital Signals Lecture 1.3 2/1

What is a digital signal?

A Digital Signal is:

True

What is a digital signal?

A Digital Signal is:

True False

What is a digital signal?

A Digital Signal is:

True False 1

What is a digital signal?

A Digital Signal is:

True False 1 0

What is a digital signal?

True	False
1	0
on	

What is a digital signal?

True	False
1	0
on	off

What is a digital signal?

A Digital Signal is:

What is a digital signal?

A Digital Signal is:

Т....

True	raise
1	0
on	off
Pressed	Not-pressed

What is a digital signal?

A Digital Signal is:

True False
1 0
on off
Pressed Not-pressed
High

What is a digital signal?

True	False
1	0
on	off
Pressed	Not-pressed
High	Low

What is a digital signal?

```
True False
1 0
on off
Pressed Not-pressed
High Low
5 V
```

What is a digital signal?

True	False
1	0
on	off
Pressed	Not-pressed
High	Low
5 V	0 V

What is a digital signal?

True	False
1	0
on	off
Pressed	Not-pressed
High	Low
5 V	0 V
3.3 V	

What is a digital signal?

True	False
1	0
on	off
Pressed	Not-pressed
High	Low
5 V	0 V
3.3 V	0 V

What is a digital signal?

A Digital Signal is:

True	False
1	0
on	off
Pressed	Not-pressed
High	Low
5 V	0 V
3.3 V	0 V

▶ from a software perspective anything convenient for us to use

What is a digital signal?

True	False
1	0
on	off
Pressed	Not-pressed
High	Low
5 V	0 V
3.3 V	0 V

- ▶ from a software perspective anything convenient for us to use
- there are external limitations and constraints.

What is a digital signal?

True	False
1	0
on	off
Pressed	Not-pressed
High	Low
5 V	0 V
3.3 V	0 V

- ▶ from a software perspective anything convenient for us to use
- there are external limitations and constraints,
 - Physics

What is a digital signal?

True	False
1	0
on	off
Pressed	Not-pressed
High	Low
5 V	0 V
3.3 V	0 V

- ▶ from a software perspective anything convenient for us to use
- there are external limitations and constraints,
 - Physics
 - Standards

Electrical Characteristics

Generally:
positive voltage logical 1
negative voltage logical 0

Electrical Characteristics

```
Generally:
```

positive voltage logical 1 negative voltage logical 0

Specific technologies have specific voltages for on

TTL Transistor Transistor Logic 5 V

CMOS Complementary Metal Oxide Semiconductor 3.3 V

Digital signals exist in sequences. . .

Digital signals exist in sequences...

► Traffic Lights

Digital signals exist in sequences...

- ► Traffic Lights
 - $\bullet \; \mathsf{Red} \to \mathsf{Red}, \mathsf{Amber} \to \mathsf{Green} \to \mathsf{Amber} \to \mathsf{Red} \; \dots$

Dr Alun Moon Digital Signals Lecture 1.3 4 / 1

Digital signals exist in sequences...

- ► Traffic Lights
 - $\bullet \; \mathsf{Red} \to \mathsf{Red}, \mathsf{Amber} \to \mathsf{Green} \to \mathsf{Amber} \to \mathsf{Red} \; \dots$
 - $\langle \{r\}, \{r, a\}, \{g\}, \{a\} \rangle$

Dr Alun Moon Digital Signals

Digital signals exist in sequences...

- ► Traffic Lights
 - $\bullet \; \mathsf{Red} \to \mathsf{Red}, \mathsf{Amber} \to \mathsf{Green} \to \mathsf{Amber} \to \mathsf{Red} \; \dots$
 - $\langle \{r\}, \{r, a\}, \{g\}, \{a\} \rangle$
 - Can be written as a Timing Diagram

Red Amber

Green _____

Digital signals exist in sequences...

- ► Traffic Lights
 - $\bullet \; \mathsf{Red} \to \mathsf{Red}, \mathsf{Amber} \to \mathsf{Green} \to \mathsf{Amber} \to \mathsf{Red} \; \dots$
 - $\langle \{r\}, \{r, a\}, \{g\}, \{a\} \rangle$
 - Can be written as a Timing Diagram

Red Amber

Green _____

Flashing

Digital signals exist in sequences...

- ► Traffic Lights
 - Red \rightarrow Red,Amber \rightarrow Green \rightarrow Amber \rightarrow Red ...
 - $\langle \{r\}, \{r, a\}, \{g\}, \{a\} \rangle$
 - Can be written as a Timing Diagram
 Red

Amber _____

Green _____

- Flashing
 - $\bullet \ \mathsf{On} \to \mathsf{Off} \to \mathsf{On} \ \dots$

Digital signals exist in sequences...

- ► Traffic Lights
 - Red \rightarrow Red,Amber \rightarrow Green \rightarrow Amber \rightarrow Red . . .
 - $\langle \{r\}, \{r, a\}, \{g\}, \{a\} \rangle$
 - Can be written as a Timing Diagram
 Red

Amber _____

Green _____

- Flashing
 - $\bullet \ \mathsf{On} \to \mathsf{Off} \to \mathsf{On} \ \dots$

Digital IO from the μ C

Microcontrollers (μ C) have dedicated hardware for digital IO.

- ► The K64F has 5 ports with 32 IO pins which can be used as GPIO pins (General Purpose Input Output)
- ► The IO circuit has a number of configureable options for each pin, accessed through several registers
- ▶ **ALL** the appropriate bits need to be set or it doesn't work.

GPIO Hardware Registers

Sequence and purpose of bits to set

There are several bits to set to configure the pin

- System Clock Gating Control Register SCGC Enables the clock signal for the port, making it function
- 2. Pin Control Register PORTx_PCRn
 - a 32bit register for each pin setting several options
 - IRQC Interrupt configuration (what causes an interrupt to occur)
 - MUX Pins have multiple functions, this selects the function to use.
 - DSE Drive Strength, the electrical characteristics of the output
 - ODE Open Drain, elctrical connections of the Output
 - PFE Passive Filter for inputs (debounce and glitch rejection)
 - SLE Slew Rate, how fast the output switches between high and Low
 - PE enable pull up or down resistor for inputs
 - PS selects the pull-up or pull-down resistor.

GPIO Hardware Registers

Port Registers

Each Port has several registers to use for the actual IO operations. Each bit in the register corresponds to an external pin.

- GPIOx_PDOR Port Data Output Register
 - 0. Set the output to logic 0
 - 1. Set the output to logic 1
- GPIOx_PSOR Port Set Output Register
 - 0. output does not change
 - 1. Set the output to logic 1
- GPIOx_PCOR Port Clear Output Register
 - 0. output does not change
 - 1. Set the output to logic 0
- GPIOx_PTOR Port Toggle Output Register
 - 0. Output does not change
 - 1. Change the logic state of the output

GPIO Hardware Registers

Port Registers

- GPIOx_PDIR Port Data Input Register
 - 0. Pin is set to input logic 0 (or is not configured)
 - 1. Pin is set ti input logic 1
- GPIOx_PDDR Port Data Direction Register
 - 0. GPIO pin set as input
 - 1. GPIO pin set as output

- The μC pin is set to 0 or 1
- ▶ in the case of the K64F $1 \equiv 3.3 \, \text{V}$
- ▶ But what does that do?
- ▶ It depends on the external circuit.

- The μC pin is set to 0 or 1
- ▶ in the case of the K64F $1 \equiv 3.3 \, \text{V}$
- ▶ But what does that do?
- ▶ It depends on the external circuit.

- The μC pin is set to 0 or 1
- ▶ in the case of the K64F $1 \equiv 3.3 \, \text{V}$
- But what does that do?
- ▶ It depends on the external circuit.

- The μC pin is set to 0 or 1
- ▶ in the case of the K64F $1 \equiv 3.3 \, \text{V}$
- ▶ But what does that do?
- ▶ It depends on the external circuit.

- The μC pin is set to 0 or 1
- ▶ in the case of the K64F $1 \equiv 3.3 \,\text{V}$
- But what does that do?
- ▶ It depends on the external circuit.

10 Circuits

Input

- The μC pin is set to 0 or 1 by the external circuit
- But what does that mean?
- ▶ It depends on the external circuit.

