Assignment

Zhang Chi (201828001207022) zhangchi2018@itp.ac.cn

June 26, 2021

Exercise 1

Let X, Y be two connected Riemann surfaces and $f: X \to Y$ be a proper map, then f is a branched covering. In particular, for any $y, y' \in Y$ we have $\#f^{-1}(y) = \#f^{-1}(y')$ counting multiplicity.

Solution. Since f is a branched covering, for any $y \in Y$, we can find charts $U_x \subseteq X$ about each point $x \in f^{-1}(y)$ and a corresponding $V \subseteq Y$ about y, with respect to which f is expressed locally as $z \mapsto z^k$, also notice that there the number of U_x is finite since f is a branched covering. Using the properness of f, we can make sure that $f^{-1}(V)$ is contained in the union of the U_x . Now we can view $V \simeq \mathbb{C}$ and $U_x \simeq \mathbb{C}$, where f is just

$$f: \mathbb{C} \to \mathbb{C}$$
$$z \mapsto z^k.$$

In this case, any $y, y' \in \mathbb{C}$, we have $\#f^{-1}(y) = \#f^{-1}(y')$, which shows that $f^{-1}(y)$ is a locally constant function. Combining the fact that both X, Y are connected, we have shown that $\#f^{-1}(y)$ is a constant, completing the proof.

Exercise 2

Show that if *X* is a compact surface of genus *g*, then $\chi(X) = 2 - 2g$.

Solution. To show this, we need some preparations. First we need to compute the Euler characteristics of sphere, torus and disk. We may view S^2 obtained identifying B and B' and edges AB, AB' as well as BC, B'C along the illustrated directions. So we find a triangulation of S^2 as follows, with 3 vertices (B, B' identified), 3 edges and 2 faces.

Figure 1: a triangulation of S^2 .

By the characteristic formula

$$\chi = V - E + F$$

for polyhedra, we have

$$\chi(S^2) = 3 - 3 + 2 = 2.$$

Similarly, we could obtain the Euler characteristic of a torus T

$$\chi(\mathbb{T}) = 1 - 3 + 2 = 0$$

and of a disk D

$$\chi(D) = 4 - 6 + 3 = 1,$$

via the illustrated triangulations of \mathbb{T} and D. Next we claim that for the connected sum M#N

Figure 2: a triangulation of T.

Figure 3: a triangulation of *D*.

of two surfaces M and N, the Euler characteristic of M#N follows as

$$\chi(M#N) = \chi(M) + \chi(N) - 2. \tag{1}$$

This is because that we could find a triangulation T_M of M and a triangulation T_N of N, with sub-triangulations $T_{M'}$, T_{D_1} and $T_{N'}$, T_{D_2} when restricted to M', D_1 and N', D_2 , such that their edges and vertices on ∂D_1 and ∂D_2 coincide after identifying ∂D_1 and ∂D_2 , as in the following figure. But since ∂D_1 , ∂D_2 are closed circles, so the number of edges $E(\partial D_1)$ and the number

Figure 4: the connected sum M#N of M and N.

 $V(\partial D_1)$ of vertices must be equal on them, and similarly for $E(\partial D_2)$ and $V(\partial D_2)$. In this spirit,

$$\chi(M) = E(T_{M}) - V(T_{M}) + F(T_{M})
= (E(T_{M'}) + E(T_{D_{1}}) - E(\partial D_{1}))
- (V(T_{M'}) + V(T_{D_{1}}) - V(\partial D_{1})) + F(T_{M'}) + F(T_{D_{1}})
= (E(T_{M'}) - V(T_{M'}) + F(T_{M'}))
+ E(T_{D_{1}}) - V(T_{D_{1}}) + F(T_{D_{1}}))
= \chi(M') + \chi(D_{1})
= \chi(M') + 1.$$
(2)

In parallel,

$$\chi(N) = \chi(N') + 1 \tag{3}$$

and

$$\chi(M\#N) = (E(T_{M'}) - E(\partial D_1) + E(T_{N'}) - E(\partial D_2))
+ (V(T_{M'}) - V(\partial D_1) + V(T_{N'}) - V(\partial D_2))
+ (F(T_{M'} + F(T_{N'}))
= (E(T_{M'}) - V(T_{M'}) + F(T_{M'}))
+ (E(T_{N'}) - V(T_{N'}) + F(T_{N'}))
= \chi(M') + \chi(N').$$
(4)

Putting (2), (3) and (4) together, we have proved (1).

Now we can show our assertion using induction. When g(X) = 0, we have already showed that

$$\chi(X) = \chi(S^2) = 2.$$

Now suppose *X* is a surface of $g \ge 1$, *X* can be thus presented as

$$X = X' \# \mathbb{T}$$
,

where X' is a surface of genus g - 1. So we have

$$\chi(X) = \chi(X' \# \mathbb{T})$$

= $\chi(X') + \chi(\mathbb{T}) - 2$
= $2 - 2(g - 1) - 2$
= $2 - 2g$,

which completes the proof.

Let X be a m compact Riemann surface of genus g, and $f: X \to \mathbb{P}^1$ be a holomorphic map of degree 2, compute the number of branching points of f.

Solution. By the previous exercise, we know the Euler characteristics

$$\chi(X) = 2 - 2g,$$

$$\chi(\mathbb{P}^1) = 2 - 2 \cdot 0 = 2$$

of X and \mathbb{P}^1 . Then by plugging $\chi(X)$ and $\chi(\mathbb{P}^1)$ as well as $\deg f=2$ into the mighty Riemann-Hurwitz formula

$$\chi(X) = d\chi(\mathbb{P}^1) - b_f,$$

we finally get

$$b_f = 2 + 2g$$
.

So the total number of branching of f is 2 + 2g, counting multiplicity.

Exercise 4

Show that $\{\frac{\partial}{\partial x}|_p, \frac{\partial}{\partial y}|_p\}$ is a basis of T_pX over \mathbb{C} .

Solution. Suppose that X is a Riemann surface and $p \in X$. For any \mathbb{C} -valued smooth function $f \in C^{\infty}(X)$ on X, it is always possible to choose a neighborhood $U \simeq \mathbb{C} \simeq \mathbb{R}^2$ of p and endow U with a coordinate in which f(p) = 0. Without loss of generality, we may also set p = (0,0).

Thus at any $q \in U$ with q = (x, y), we may expand f(q) by Taylor's Theorem

$$f(q) = x \frac{\partial f}{\partial x}(p) + y \frac{\partial f}{\partial y}(p) + \int_{0}^{1} (1-t) \{x^{2} \frac{\partial^{2} f}{\partial x^{2}}(tq) + 2xy \frac{\partial^{2} f}{\partial x \partial y}(tq) + y^{2} \frac{\partial^{2} f}{\partial y^{2}}(tq)\} dt.$$
(5)

Taking any tangent vector $v \in T_p X$, we exert v on f and obtain that

$$(vf)(p) = \frac{\partial f}{\partial x}(p)v_x(p) + \frac{\partial f}{\partial y}(p)v_y(p)$$

with the help of (5). In the above equation we denote by

$$v_x := v(x), v_y := v(y),$$
 (6)

and the terms quadratic in x, y in (5) vanishes after exerted by v and evaluated at p = (0,0) since both x and y vanish at p. Thus (6) shows that $\{\frac{\partial}{\partial x}|_p, \frac{\partial}{\partial y}|_p\}$ spans any tangent vector $v \in T_p X$ over \mathbb{C} .

Now we need show that $\frac{\partial}{\partial x}|_p$ and $\frac{\partial}{\partial y}|_p$ are linear independent over $\mathbb C$. If they were not, we have some non-zero $a,b\in\mathbb C$ such that

$$0 = a \frac{\partial}{\partial x}|_p + \frac{\partial}{\partial y}|_p$$

in T_pX , *i.e.*, for any $f \in C^{\infty}(X)$, we have

$$a\frac{\partial f}{\partial x}(p) + b\frac{\partial f}{\partial y}(p) = 0.$$

In particular we first take f = x and then f = y, showing that a = b = 0, a contradiction. So they are indeed linearly independent, from which our assertion follows.

Compute the number of zeros of any holomorphic vector fields on \mathbb{P}^1 , counting multiplicity.

Solution. By the maneuvers mentioned in class, we have already been acquainted with the space L of holomorphic vector fields on \mathbb{P}^1 with

$$L = \{ (a + bz + cz^2) \partial_z \mid a, b, c \in \mathbb{C} \},$$

near a neighborhood of 0 homeomorphic to \mathbb{C} . So given an arbitrary holomorphic vector field v on \mathbb{P}^1 which can be locally expressed as $v=(a+bz+cz^2)\partial_z$, there are the following possiblities:

i a = b = c = 0, the vector field is just zero, so its zeros are the whole \mathbb{P}^1 .

ii $c=0, b \neq 0$. There is a zero z=-a/b near 0. However, after the coordinate change $w=\frac{1}{z}$, we have $v=-w^2(a+b/w)\partial_w=-(aw^2+bw)\partial_w$, showing that ∞ is also a zero of v. So in this case, v has two isolated zeros.

iii $c \neq 0$, there are two zeros of v near 0.

In summary, there are 2 isolated zeros of any holomorphic vector field on \mathbb{P}^1 .

Exercise 6

Give a description of all holomorphic vector fields on an elliptic curve \mathbb{C}/Γ .

Solution. Suppose that v is any holomorphic vector field on \mathbb{C}/Γ . In some neighborhood U with coordinate z, v must be presented as

$$v(z) = f(z)\partial_z,$$

with f(z) some holomorphic function in z. Since v is the vector field on \mathbb{C}/Γ , it is invariant under the action of Γ , that is

$$v(z) = v(z + \Gamma).$$

But as $\partial_{z+\Gamma} = \partial$, the above condition of translation invariance of v is equivalent to that

$$f(z)\partial_z = f(z+\Gamma)\partial_z$$

for all $z \in U \simeq \mathbb{C}$, which is furthermore equivalent to

$$f(z) = f(z + \Gamma). \tag{7}$$

We expand the right hand side of (7) as power series

$$f(z+\Gamma) = f(z) + \frac{\partial f}{\partial z}(z)\Gamma + \frac{1}{2!}\frac{\partial^2 f}{\partial z^2}(z)\Gamma^2 + \dots = f(z).$$

Since the above equation holds for all $z \in \mathbb{C}$, f must satisfy that

$$f^{(n)} = 0, n \ge 1.$$

So f(z) must be a constant function. Hence the space of all holomorphic functions on \mathbb{C}/Γ is isomorphic to \mathbb{C} as a complex vector space.

Let L be the space of the holomophic vector fields on \mathbb{P}^1 with the operation of Lie bracket of vector fields, then L is a Lie algebra over \mathbb{C} . Show that L and $\mathfrak{sl}(2,\mathbb{C})$ are isomorphic Lie algebras, where

$$\mathfrak{sl}(2,\mathbb{C})=\left\{\left. egin{pmatrix} a & b \\ c & d \end{matrix} \right| \ a,b,c,d\in\mathbb{C}, a+d=0 \ \right\}.$$

Solution. Consider the map

$$\phi: L \to \mathfrak{sl}(2, \mathbb{C}),$$
 $(a+bz+cz^2)\partial_z \mapsto \begin{pmatrix} rac{b}{2} & c \ -a & -rac{b}{2} \end{pmatrix},$

which is clearly an isomorphism between $\mathbb C$ -vector spaces. What need we show is that ϕ preserves the Lie brackets.

For any two holomorphic vector fields represented by $u = (a + bz + cz^2)\partial_z$ and $v = (d + ez + fz^2)\partial_z$, we have

$$\begin{aligned} [\phi(u),\phi(v)] &= \begin{pmatrix} \frac{b}{2} & c \\ -a & -\frac{b}{2} \end{pmatrix} \begin{pmatrix} \frac{e}{2} & f \\ -d & -\frac{e}{2} \end{pmatrix} - \begin{pmatrix} \frac{e}{2} & f \\ -d & -\frac{e}{2} \end{pmatrix} \begin{pmatrix} \frac{b}{2} & c \\ -a & -\frac{b}{2} \end{pmatrix} \\ &= \begin{pmatrix} af - cd & bf - ce \\ bd - ae & cd - af \end{pmatrix} \\ &= \phi(((ae - bd) + 2(af - cd)z + (bf - ce)z^2)\partial_z) \end{aligned}$$

and

$$\phi([u,v]) = \phi((a+bz+cz^{2})(e+2fz)\partial_{z}) - \phi((d+ez+fz^{2})(b+2cz)\partial_{z})$$

= $\phi(((ae-bd)+2(af-cd)z+(bf-ce)z^{2})\partial_{z})$

which shows that

$$\phi([u,v]) = [\phi(u),\phi(v)]$$

holds for any $u, v \in L$. Hence ϕ is an isomorphism of Lie algebras L and $\mathfrak{sl}(2, \mathbb{C})$.

Exercise 8

Show that there are no non-zero holomorphic 1-forms on \mathbb{P}^1 .

Solution. View \mathbb{P}^1 as $\mathbb{C} \cup \{\infty\}$, so we can cover \mathbb{P}^1 with two neighborhoods U, V such that U, V are all homeomorphic to \mathbb{C} with $0 \in U, \infty \in V$. Then we may take the coordinate near 0 as z meanwhile the coordinate near ∞ as w. Of course, for any point in $U \cap V$ we have $w = \frac{1}{z}$.

If there were a holomorphic 1-form ω on \mathbb{P}^1 , locally ω could be presented as

$$\omega = \begin{cases} f(z)dz, \text{ on } U, \\ g(w)dw, \text{ on } V, \end{cases}$$

where f(z) and g(w) are holomorphic functions of z and w, respectively. Since 1-forms are coordinate-free objects, for any any point $p \in U \cap V$ with coordinate z on U and coordinate w on V, the equation

$$\omega(z) = \omega(p) = \omega(w) \tag{8}$$

must hold. We may take the expansions

$$f(z) = a_0 + a_1 z + a_2 z^2 + \cdots,$$

 $g(w) = b_0 + b_1 w + b_2 w^2 + \cdots$

of f and g, under which (8) becomes

$$-(a_0 + a_1 z + a_2 z^2 + \cdots) = b_0/z^2 + b_1/z^3 + b_2/z^4 + \cdots$$

Since the above equation holds for all $z \neq 0$, we finally conclude that

$$a_i = b_i = 0, i \ge 0,$$

which in turn tells us that $\omega = 0$, a contradiction. So there must be no non-zero 1-forms on \mathbb{P}^1 .

Exercise 9

Assume that $\{e_1, \ldots, e_n\}$ is a basis of V, then

$$\{e_i \wedge e_j \mid 1 \leq i < j \leq n\}$$

is a basis of $V \wedge V$. In particular, dim $V \wedge V = \frac{n(n-1)}{2}$.

Solution. For any $u, v \in V$, we may expand them in basis $\{e_1, \dots, e_n\}$:

$$u = \sum_{i=1}^{n} a_i e_i,$$

$$v = \sum_{i=1}^{n} b_i e_i.$$

Hence

$$u \wedge v = (\sum_{i=1}^{n} a_i e_i) \wedge (v = \sum_{j=1}^{n} b_j e_j) = \sum_{1 \leq i < j \leq n} (a_i b_j - b_i a_j) e_i \wedge e_j,$$

which shows that $\{e_i \land e_j \mid 1 \le i < j \le n\}$ indeed spans $V \land V$.

Now we show that elements in $\{e_i \land e_j \mid 1 \le i < j \le n\}$ are linearly independent. If they were not, there must be coefficients $c_{ij} \in k$, $1 \le i < j \le n$ that are not all zero such that

$$\sum_{1 \le i < j \le n} c_{ij} e_i \wedge e_j = 0. \tag{9}$$

For expediency, we may assume that $c_{12} \neq 0$ in (9) and may view $V \wedge V$ as a subspace of $\wedge^n V$ in the natural way. By wedging $e_2 \wedge \cdots \wedge e_n$ to both sides of (9) in $\wedge^n V$, we have

$$c_1 2e_1 \wedge e_2 \wedge \cdots \wedge e_n = 0$$

which says that $c_1 = 0$, a contradiction.

So we have shown that $\{e_i \land e_j \mid 1 \le i < j \le n\}$ is a basis of $V \land V$. The dimension of $V \land V$ is obtained by simple counting.

Define $\sigma: V^* \wedge V^* \to L$ to be

$$\sigma(f \wedge g)(u, v) = f(u)g(v) - f(v)g(u),$$

where

$$L = \{ \text{ anti-symmetric forms on } V \}.$$

Show that σ is a well-defined linear isomorphism from $V^* \wedge V^*$ to L.

Solution. First of all, for any $f,g \in V^*$ and $u,v \in V$ we have

$$\sigma(f \wedge g)(u,v) = f(u)g(v) - f(v)g(u) = -(f(v)g(u) - f(u)g(v)) = -\sigma(f \wedge g)(v,u),$$

which shows that $\sigma(f \land g)$ is indeed an anti-symmetric form on V. And manifestly $\sigma : V^* \land V^*$ is a linear map. What we need to show is that σ is an isomorphism.

We first show the injectivity. To do so we pick a basis $\{e_1, \dots, e_n\}$ for V. If $\sigma(f \land g) = 0$ for some $0 \neq f \land g \in V^* \land V^*$, we must have

$$0 = \sigma(f \land g)(e_i, e_j) = f(e_i)g(e_j) - f(e_j)g(e_i) = f_ig_j - f_jg_i, \forall i, j,$$

which means either f or g equals 0 or that f parallels to g, all causing $f \land g = 0$, a contradiction. Since V is of finite dimension n, we have $V^* \simeq V$ (although not canonical), and by the previous exercise we have $\dim(V^* \land V^*) = \frac{n(n-1)}{2}$. Recall that any anti-symmetric form Q on V can be presented as a matrix

$$\begin{pmatrix} 0 & Q_{12} & \cdots & Q_{1n} \\ -Q_{12} & 0 & \cdots & Q_{2n} \\ \vdots & \vdots & & \vdots \\ -Q_{1n} & -Q_{2n} & \cdots & 0 \end{pmatrix}'$$

where $Q_{ij} = Q(e_i, e_j)$. So the vector space L consists of all anti-symmetric metrices, thus is also of dimension $\frac{n(n-1)}{2}$. Now that $\sigma: V^* \wedge V^* \to L$ is injective, it must be isomorphic.

Exercise 11

Show that all Riemann surfaces are orientable.

Solution. For any Riemann surface X and any point $p \in X$, we may choose two neighborhood U, V of p on which the coordinates of p are $z = x + \mathrm{i}y$, $w = u + \mathrm{i}v$, respectively. Since a Riemann surface is by definition a 1-dimensional complex manifold, the coordinates z, w must be related by some holomorphic coordinate transformation w = f(z).

To see the orientability of X, we must compute the Jacobian J(f)(p) of the transformation f near p, as well as its determinant. In terms of the real variables, we have

$$J(f)(p) = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} \\ \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} \end{pmatrix},$$

and

$$\det(J(f)(p)) = \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial v}{\partial x}.$$
 (10)

Now we need to rewrite (10) in terms of complex variables, to see things clearly. In light of the relations

$$z = x + iy,$$

$$\bar{z} = x - iy,$$

and

$$w = u + iv,$$

$$\bar{w} = u - iv,$$

we find

$$\frac{\partial}{\partial x} = \frac{\partial z}{\partial x} \frac{\partial}{\partial z} + \frac{\partial \bar{z}}{\partial x} \frac{\partial}{\partial \bar{z}} = \frac{\partial}{\partial z} + \frac{\partial}{\partial \bar{z}},$$
$$\frac{\partial}{\partial y} = \frac{\partial z}{\partial y} \frac{\partial}{\partial z} + \frac{\partial \bar{z}}{\partial y} \frac{\partial}{\partial \bar{z}} = i(\frac{\partial}{\partial z} - \frac{\partial}{\partial \bar{z}}).$$

Hence

$$\frac{\partial u}{\partial x} = \frac{1}{2} \left(\frac{\partial}{\partial z} + \frac{\partial}{\partial \bar{z}} \right) (w + \bar{w}) = \frac{1}{2} \left(\frac{\partial w}{\partial z} + \frac{\partial \bar{w}}{\partial \bar{z}} \right),$$

of which the last equality follows by the holomorphicity of w = f(z). Similarly,

$$\frac{\partial v}{\partial y} = \frac{1}{2} \left(\frac{\partial w}{\partial z} + \frac{\partial \bar{w}}{\partial \bar{z}} \right),$$

$$\frac{\partial u}{\partial y} = \frac{i}{2} \left(\frac{\partial w}{\partial z} - \frac{\partial \bar{w}}{\partial \bar{z}} \right),$$

$$\frac{\partial v}{\partial x} = -\frac{i}{2} \left(\frac{\partial w}{\partial z} - \frac{\partial \bar{w}}{\partial \bar{z}} \right).$$

Finally, by plugging all these pieces into (10), we have

$$\det(J(f)(p)) = \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial v}{\partial z} = \frac{1}{4} (\frac{\partial w}{\partial z} + \frac{\partial \bar{w}}{\partial \bar{z}})^2 - \frac{1}{4} (\frac{\partial w}{\partial z} - \frac{\partial \bar{w}}{\partial \bar{z}})^2 = \frac{\partial w}{\partial z} \frac{\partial \bar{w}}{\partial \bar{z}} = |\frac{\partial w}{\partial z}|^2 > 0.$$

Since *f* and *p* is arbitrary, the orientability of *X* has been proved.

Exercise 12

Let $I = \{(x,y) \in \mathbb{R}^2 | 0 < x,y < 1\}$ and $\mu \in \Omega^2(X)$, supp $\mu \subseteq cI$ for some $c \in \mathbb{C}$. Show that if $\int_I \mu = 0$, there exists some $\xi \in \Omega^1(I)$ with compact support, such that $\mu = d\xi$.

Proof. Since supp $\mu \in cI$, μ can be viewed as a compactly supported 2-form on \mathbb{R}^2 . Conversely, if we have found some ξ satisfying $\mu = d\xi$ in on I, then we can extend ξ to X by zero. Thus without loss of generality, we may take $X = \mathbb{R}^2$.

To prove the statement, suppose $\mu = R(x,y)dx \wedge dy$ such that

$$\int_X \mu = \int_{\mathbb{R}^2} R(x, y) dx \wedge dy = 0.$$

We can choose a function ψ on \mathbb{R} with support in cI and with

$$\int_{-\infty}^{\infty} \psi(t)dt = 1.$$

Let

$$r(x) := \int_{-\infty}^{\infty} R(x, y) dy$$

and

$$\tilde{R}(x,y) = R(x,y) - r(x)\psi(y).$$

Notice that for all x, we have

$$\int_{-\infty}^{\infty} \tilde{R}(x,y)dy = \int_{-\infty}^{\infty} R(x,y)dy - \int_{-\infty}^{\infty} R(x,t)dt \int_{-\infty}^{\infty} \psi(y)dy$$
$$= \int_{-\infty}^{\infty} R(x,y)dy - \int_{-\infty}^{\infty} R(x,t)dt$$
$$= 0$$

Define

$$P(x,y) = \int_{-\infty}^{y} R(x,t)dt.$$

Then P is has support in cI and

$$\frac{\partial P}{\partial y} = \tilde{R}(x, y).$$

Put

$$Q(x,y) = \psi(y) \int_{-\infty}^{x} r(t)dt.$$

Then *Q* has support in *cI* and

$$\frac{\partial Q}{\partial x} = r(x)\psi(y).$$

Thus by construction of R, P, Q,

$$R = \frac{\partial P}{\partial y} + \frac{\partial Q}{\partial x}.$$

Take

$$\xi = -Pdx + Qdy,$$

we have

$$d\xi = \frac{\partial P}{\partial y}dx \wedge dy + \frac{\partial Q}{\partial x}dx \wedge dy = Rdx \wedge dy = \mu,$$

completing the proof.

Exercise 13

Use the above exercise to show that

Theorem 1. If X is a connected Riemann surface (may be non-compact), then we have an isomorphism

$$\int_X: H_c^2(X,\mathbb{C}) \to \mathbb{C}$$

.

Proof. Firstly, we show that the map \int_X is surjective. Given any $k \in \mathbb{C}$, we can any local chart (U, z) of X, such that cI is contained in U. Then take

$$\eta = k\psi(x)\psi(y)dx \wedge dy,$$

where ψ is the function on \mathbb{R} with support in cI and

$$\int_{-\infty}^{\infty} \psi(x) dx = 1.$$

With extension to *X* by 0, we may view η as a 2-form on *X* with support in $cI \subseteq U$. And

$$\int_{X} [\eta] = \int_{X} \eta = \int_{\mathbb{C}} k \psi(x) \psi(y) dx \wedge dy = k$$

shows that \int_X is a surjection.

Next we prove that \int_X is an injection. More precisely, if there is a compactly supported 2-form μ with

$$\int_X \mu = 0,$$

we have to find a compactly supported 1-form ξ on X such that

$$u = d\xi$$
.

Since μ is compactly, supported, we can cover its support by finitely many open sets U_1, \ldots, U_n . Taking refinements if necessary, we may assume that $U_1 \cap U_2 \cap \cdots \cap U_n \simeq \mathbb{C}$ so as to choose a 2-form τ with support contained in $U_1 \cap \cdots \cup U_n$ and

$$\int_{\mathbf{Y}} \tau = 1$$

. Then

$$\mu = \rho_1 \mu + \rho_2 \mu + \cdots \rho_n \mu,$$

where $\{\rho_i\}_{i=1}^n$ is a partition of unity subordinate to U_1, \ldots, U_n . We may denote the integral of $\rho_1 \mu$ on X by I, and note that

$$I = \int_X \rho_1 \mu = -\int_X (\rho_2 + \cdots + \rho_n) \mu$$

since $\int_X \mu = 0$. Then $\rho_1 \mu - I\tau$ and $(\rho_2 + \cdots + \rho_n)\mu + I\tau$ are two forms with support in U_1 and $V = U_2 \cup \cdots \cup U_n$, and with integral 0.

Now we show the existence of ξ by induction on n. For U_1 , using the result of **Exercise** 1, there exists a 1-form α of compact support such that $\rho_1\mu - I\tau = d\alpha$. For $V = U_2 \cup \cdots \cup U_n$, by the inductive hypothesis, there is another 1-form β with compact support in V with $(\rho_2 + \cdots + \rho_n)\mu + I\tau = d\beta$. Then take $\xi = \alpha + \beta$, we have

$$\mu = d(\alpha + \beta) = d\xi,$$

completing the proof.

Exercise 14

Prove that

Theorem 2. Let X be a Riemann surface, and γ_1, γ_2 be two transversal smooth simply closed curves in X. Then

$$\gamma_1 \cdot \gamma_2 = \int_{\gamma_1} \eta_{\gamma_2}$$

where η_{γ_1} is the Poincaré dual of γ_1 .

Proof. Given any two transversal simply closed curves γ_1, γ_2 in X, for any $p \in L \cap S$, we can find a local chart (U_p, x, y) of containing p such that

$$U_p \cap \gamma_2 = \{(x, y) | y = 0\},\$$

 $U_v \cap \gamma_1 = \{(x, y) | x = 0\}$

by transversality. Moreover, the orientation of $U_p \cap \gamma_2$ is determined by dx while the orientation of $U_p \cap \gamma_1$ is determined by dy. Also from transversality we know that dim $\gamma_1 \cap \gamma_2 = 0$, and since X is compact, the cardinality of $\gamma_1 \cap \gamma_2$ is finite. So the intersection number $\gamma_1 \cdot \gamma_2$ is well-defined.

We may construct a tubular neighborhood N of γ_2 . For each point $p \in \gamma_1 \cap \gamma_2$, let

$$N_p := U_p \cap \gamma_1 \cap N.$$

With this notation, we have

$$\gamma_1 \cap N = \bigcup_{p \in \gamma_1 \cap \gamma_2} N_p$$
.

Also note that each N_p is endowed with an orientation induced by the orientation of N and γ_2 in X.

Then take η_{γ_1} and η_{γ_2} to be the Poincaré duals of γ_1 and γ_2 , respectively. Since η_{γ_2} is a 1-form with support in N and η_{γ_1} has its support in a tubular neighborhood of γ_1 , the 2-form $\eta_{\gamma_1} \wedge \eta_{\gamma_2}$ is supported only in $\gamma_1 \cap N = \bigcup_{p \in \gamma_1 \cap \gamma_2} N_p$. So we have

$$\int_X \eta_{\gamma_1} \wedge \eta_{\gamma_2} = \int_{\gamma_1} \eta_{\gamma_2} = \sum_{p \in \gamma_1 \cap \gamma_2} \epsilon(p) \int_{N_p} \eta_{\gamma_2},$$

where $\epsilon(p) \in \{\pm\}$ are numbers making the orientations of $\int_{N_p} \eta_{\gamma_2}$ and $\int_X \eta_{\gamma_1} \wedge \eta_{\gamma_2}$ compatible. With some proper normalization of η_{γ_2} , the above equation becomes

$$\int_{\gamma_1} \eta_{\gamma_2} = \sum_{p \in \gamma_1 \cap \gamma_2} \epsilon(p) = \gamma_1 \cdot \gamma_2,$$

completing the proof.

Exercise 15

Show that

Theorem 3. Assume $\{\alpha_i, \beta_i\}_{i=1}^g$ is a canonical basis of $H_1(X; \mathbb{Z})$ a. For any closed $\xi, \eta \in \Omega^1(X)$, we have

$$\int_{X} \xi \wedge \eta = \sum_{i=1}^{g} \left(\int_{\alpha_{i}} \xi \int_{\beta_{i}} \eta - \int_{\alpha_{i}} \eta \int_{\beta_{i}} \xi \right).$$

Proof. We have showed in **Exercise 3** that for any two transversal smooth simply closed curves γ_1 , γ_2 , their intersection number has the following relation with their Poincaré duals:

$$\omega(\gamma_1, \gamma_2) := \gamma_1 \cdot \gamma_2 = \int_{\gamma_2} \eta_{\gamma_1} = \int_X \eta_{\gamma_2} \wedge \eta_{\gamma_1}. \tag{11}$$

In other words, the symplectic form $\int_X () \wedge (-)$ on $H^1(X; \mathbb{C})$ induces a symplectic form ω on the symplectic vector space $H_1(X; \mathbb{C})$, via the Poincaré duality $H^1(X; \mathbb{C}) \simeq H_1(X; \mathbb{C})$. We will exploit (11) to compute the integral $\int_X \mathcal{E} \wedge n$.

exploit (11) to compute the integral $\int_X \xi \wedge \eta$. Since the integral $\int_X \xi \wedge \eta$ only depends on the cohomology classes $[\xi]$, $[\eta]$ of the 1-forms ξ and η , and denote the Poincaré duals of $[\xi]$, $[\eta]$ in $H_1(X;\mathbb{C})$ by $p^{-1}([\xi])$, $p^{-1}([\eta])$, we have

$$\int_{X} \xi \wedge \eta = \int_{X} [\xi] \wedge [\eta] = p^{-1}([\xi]) \cdot p^{-1}([\eta]).$$

Provided a canonical basis $\{\alpha_i, \beta_i\}_{i=1}^g$ of $H_1(X; \mathbb{C})$, we can expand $p^{-1}([\xi])$ and $p^{-1}([\eta])$ in terms of this basis

$$p^{-1}([\xi]) = \sum_{i=1}^{g} f^{i} \alpha_{i} + \sum_{i=1}^{g} g^{i} \beta_{i},$$

$$p^{-1}([\eta]) = \sum_{i=1}^{g} u^{i} \alpha_{j} + \sum_{i=1}^{g} v^{i} \beta_{j}.$$

Moreover, the coefficients f^i , g^i , u^j , v^j can be computed by means of the symplectic form under the canonical basis,

$$f^{i} = \omega(p^{-1}([\xi]), \beta_{i}) = p^{-1}([\xi]) \cdot \beta_{i} = \int_{\beta_{i}} [\xi] = \int_{\beta_{i}} \xi,$$

$$g^{i} = \omega(\alpha_{i}, p^{-1}([\xi])) = -\omega(p^{-1}([\xi]), \alpha_{i}) = -\int_{\alpha_{i}} [\xi] = -\int_{\alpha_{i}} \xi,$$

and similarly

$$u^{j} = \omega(p^{-1}([\eta]), \beta_{j}) = \int_{\beta_{j}} \eta,$$

$$v^{j} = \omega(\alpha_{j}, p^{-1}([\eta])) = -\int_{\alpha_{i}} \eta.$$

So we have

$$\begin{split} \int_{X} \xi \wedge \eta &= p^{-1}([\xi]) \cdot p^{-1}([\eta]) \\ &= \omega(\sum_{i=1}^{g} f^{i} \alpha_{i} + \sum_{i=1}^{g} g^{i} \beta_{i}, \sum_{i=1}^{g} u^{j} \alpha_{j} + \sum_{i=1}^{g} v^{j} \beta_{j}) \\ &= \sum_{i=1}^{g} \sum_{j=1}^{g} f^{i} v^{j} \delta_{ij} + \sum_{i=1}^{g} \sum_{j=1}^{g} g^{i} u^{j} (-\delta_{ij}) \\ &= \sum_{i=1}^{g} f^{i} v^{i} - \sum_{i=1}^{g} g^{i} u^{i} \\ &= \sum_{i=1}^{g} (\int_{\alpha_{i}} \xi \int_{\beta_{i}} \eta - \int_{\beta_{i}} \xi \int_{\alpha_{i}} \eta) \end{split}$$

Exercise 16

Assume that $f \in L^1_{loc}$ satisfies $\frac{\partial f}{\partial \bar{z}} = 0$, prove that $f \in C^{\infty}(\mathbb{C})$, hence $f \in \mathcal{O}(D)$.

Proof. Since $\partial f/\partial \bar{z} = 0$, we have

$$-\int_{\mathbb{C}} \frac{\partial f}{\partial \bar{z}} \frac{\partial g}{\partial z} = 0 \tag{12}$$

for any smooth function $g \in C^{\infty}(\mathbb{C})$. However, by definition, (12) says that

$$\frac{\partial^2 f}{\partial z \partial \bar{z}} = \frac{1}{2i} \Delta f = 0.$$

By Weyl's Lemma, f is smooth, and since $\partial f/\partial \bar{z} = 0$ it is holomorphic.

Exercise 17

Assume $f \in L^1_{loc}$ satisfies $\frac{df}{dx} = 0$, prove that f = c almost everywhere on \mathbb{R} , where c is a constant.

Proof. This exercise is optional for those who have little acquaintance with real analysis. Unfortunately, I had never taken any course covering stuffs like measure theory or distribution theory. So I omit this exercise. It's really a shame. \Box

Show that $\xi \in \Omega^1(X)$ iff locally ξ is the differential of a harmonic function.

Proof. \Leftarrow Suppose $\xi = df$ with f harmonic. We want to show that ξ is holomorphic, that is,

$$\bar{\partial}\xi = 0. \tag{13}$$

Applying $\bar{\partial}$ on ξ we have

$$\overline{\partial}\xi = \overline{\partial}df = \overline{\partial}(\partial + \overline{\partial})f = \overline{\partial}\partial f$$

but $\bar{\partial}\partial f = 0$ holds manifestly as f is harmonic. So we have shown that if ξ is the differential of a harmonic function f it is then holomorphic.

 \Rightarrow Suppose ξ is holomorphic, we need to find a harmonic function f such that $\xi = df$. In any local coordinate (U, z = x + iy), we have

$$\xi|_U = a(z)dz$$

with a(z) a holomorphic function on $U \simeq \mathbb{C}$. We may take

$$f(z) := \int_{\gamma} a(z) dz,$$

where γ is any smooth curve in $U \simeq \mathbb{C}$ connecting 0 and z. By the monodromy theorem f is independent of the choice of γ , and the construction of f assures that $df = \xi|_U$. Now left to us is to show that f is harmonic on U. Indeed,

$$2i\overline{\partial}\partial f = 2i\overline{\partial}a = 0$$

since *a* is holomorphic on *U*, which completes the proof.

Exercise 19

Assume that $f: D \to D'$ is a harmonic map between two domains in \mathbb{C} , and $u: D' \to \mathbb{C}$ is a harmonic function, then $u \circ f: D \to \mathbb{C}$ is a harmonic function.

Proof. Take the coordinates on D', D to be z' = x' + iy' and z = x + iy, respectively. Since the coordinate transformation relating z' and z is holomorphic, the Cauchy-Riemann relation

$$\begin{cases} \frac{\partial x'}{\partial x} = \frac{\partial y'}{\partial y}, \\ \frac{\partial x'}{\partial y} = -\frac{\partial y'}{\partial x}, \end{cases}$$
(14)

holds. By assumption, u is harmonic on D'

$$\frac{\partial^2 u}{\partial x'^2} + \frac{\partial^2 u}{\partial y'^2} = 0, (15)$$

we what to show that $u^* = u \circ f$ is harmonic on D, id est,

$$\frac{\partial^2 u^*}{\partial x^2} + \frac{\partial^2 u^*}{\partial y^2} = 0$$

holds.

The proof is rather direct. First note that

$$\frac{\partial u^*}{\partial x} = \frac{\partial u}{\partial x'} \frac{\partial x'}{\partial x} + \frac{\partial u}{\partial y'} \frac{\partial y'}{\partial x},$$
$$\frac{\partial u^*}{\partial y} = \frac{\partial u}{\partial x'} \frac{\partial x'}{\partial y} + \frac{\partial u}{\partial y'} \frac{\partial y'}{\partial y}.$$

Then by derivation again the applying the chain rules, we have

$$\frac{\partial^2 u^*}{\partial x^2} = \frac{\partial^2 u}{\partial x'^2} \left(\frac{\partial x'}{\partial x}\right)^2 + \frac{\partial^2 u}{\partial y'^2} \left(\frac{\partial y'}{\partial x}\right)^2 + 2\frac{\partial^2 u}{\partial x'\partial y'} \frac{\partial x'}{\partial x} \frac{\partial y'}{\partial x} + \frac{\partial u}{\partial x'} \frac{\partial^2 x'}{\partial x^2} + \frac{\partial u}{\partial y'} \frac{\partial^2 y'}{\partial x^2},\tag{16}$$

and

$$\frac{\partial^2 u^*}{\partial y^2} = \frac{\partial^2 u}{\partial x'^2} \left(\frac{\partial x'}{\partial y}\right)^2 + \frac{\partial^2 u}{\partial y'^2} \left(\frac{\partial y'}{\partial y}\right)^2 + 2\frac{\partial^2 u}{\partial x'\partial y'} \frac{\partial x'}{\partial y} \frac{\partial y'}{\partial y} + \frac{\partial u}{\partial x'} \frac{\partial^2 x'}{\partial y^2} + \frac{\partial u}{\partial y'} \frac{\partial^2 y'}{\partial y^2}.$$
 (17)

Plugging the Cauchy-Riemann relation (14) into (16) and (17), the equations become

$$\frac{\partial^2 u^*}{\partial x^2} = \frac{\partial^2 u}{\partial x'^2} \left(\frac{\partial x'}{\partial x}\right)^2 + \frac{\partial^2 u}{\partial y'^2} \left(\frac{\partial x'}{\partial y}\right)^2 - 2\frac{\partial^2 u}{\partial x'\partial y'} \frac{\partial x'}{\partial x} \frac{\partial x'}{\partial y} + \frac{\partial u}{\partial x'} \frac{\partial^2 y'}{\partial x\partial y} - \frac{\partial u}{\partial y'} \frac{\partial^2 x'}{\partial x\partial y'}$$

and

$$\frac{\partial^2 u^*}{\partial y^2} = \frac{\partial^2 u}{\partial x'^2} (\frac{\partial x'}{\partial y})^2 + \frac{\partial^2 u}{\partial y'^2} (\frac{\partial x'}{\partial x})^2 + 2 \frac{\partial^2 u}{\partial x' \partial y'} \frac{\partial x'}{\partial y} \frac{\partial x'}{\partial y} \frac{\partial x'}{\partial x} - \frac{\partial u}{\partial x'} \frac{\partial^2 y'}{\partial x \partial y} + \frac{\partial u}{\partial y'} \frac{\partial^2 x'}{\partial x \partial y}.$$

Summing up both sides of the above equations, we have

$$\frac{\partial^2 u^*}{\partial x^2} + \frac{\partial^2 u^*}{\partial y^2} = \left[\left(\frac{\partial x'}{\partial x} \right)^2 + \left(\frac{\partial x'}{\partial y} \right)^2 \right] \left(\frac{\partial^2 u}{\partial x'^2} + \frac{\partial^2 u}{\partial y'^2} \right) = 0,$$

completing the proof.

Exercise 20

Show that $(\eta, \xi) = \overline{(\xi, \eta)}$ and $(\star \xi, \star \eta) = (\xi, \eta)$.

Proof. We first show the second identity $(\star \xi, \star \eta) = (\xi, \eta)$, then use the second identity to prove the first identity.

Since (ξ, η) is a coordinate-free object, we prove $(\star \xi, \star \eta) = (\xi, \eta)$ with the help of coordinates. For any two measurable 1-forms ξ, η on X, we may find a local coordinate (U, z = x + iy), in which we can express

$$\xi|_{U} = adx + bdy,$$

$$\eta_{U} = fdx + gdy,$$

with a, b, f, g distribution-valued function on $U \simeq \mathbb{C}$. So locally we have

$$\begin{split} (\star \xi, \star \eta) &= \int_X (\star \xi) \wedge \overline{\star^2 \eta} = -\int_X (\star \xi) \wedge \overline{\eta} = \int_X \overline{\eta} \wedge (\star \xi) \\ &= \int_X (f dx - g dy) \wedge (a dy - b dx) \\ &= \int_X (af - bg) dx \wedge dy. \end{split}$$

On the other hand,

$$\begin{split} (\xi, \eta) &= \int_X \xi \wedge \overline{\star \eta} \\ &= \int_X (adx + bdy) \wedge (fdy + gdx) \\ &= \int_X (af - bg) dx \wedge dy. \end{split}$$

So the second identity

$$(\star \xi, \star \eta) = (\xi, \eta) \tag{18}$$

has been proved.

In order to prove the first identity, we notice that

$$\star \overline{\eta} = -\overline{\star \omega} \tag{19}$$

for any $\eta \in L_1^2(X)$. Indeed, locally we have

$$\star \overline{\eta} = \star (fdx - gdy) = -(fdy + gdx)$$

and

$$\overline{\star \eta} = \overline{fdy - gdx} = fdy + gdx,$$

thus (19) holds.

Finally, for any ξ , $\eta \in L_1^2(X)$, we have

$$\overline{(\xi,\eta)} = \overline{\int_X \xi \wedge \overline{\star \eta}}$$

$$= \int_X \overline{\xi} \wedge (\star \eta)$$

$$= -\int_X (\star \eta) \wedge \overline{\xi}$$

$$\star^2 = \int_X (\star \eta) \wedge \star^2 \overline{\xi}$$

$$\stackrel{(19)}{=} -\int_X (\star \eta) \wedge \star (\overline{\star \xi})$$

$$\stackrel{(19)}{=} \int (\star \eta) \wedge \overline{\star} (\star \xi)$$

$$= (\star \eta, \star \xi)$$

$$\stackrel{(18)}{=} (\eta, \xi),$$

proving the first identity.

Exercise 21

Show that *p* given in the proof of Theorem 2.4.1 is smooth.

Proof. Since smoothness is a local property, it is enough to show that p is smooth near $\forall z \in X$. Let (U, z = x + iy) be an arbitrary coordinate chart containing z, such that $\xi_U = pdx + qdy$ in this local coordinate. By the assumption that $d\xi = d \star \xi = 0$, for any distribution $\phi \in \mathcal{D}(U)$, we have

$$0 = \int_{X} \frac{\partial \phi}{\partial y} \wedge d\xi = -\int_{X} d(\frac{\partial \phi}{\partial y}) \wedge \xi,$$

$$0 = \int_{Y} \frac{\partial \phi}{\partial x} \wedge d \star \xi = -\int_{Y} d(\frac{\partial \phi}{\partial x}) \wedge \star \xi.$$
(20)

On the other hand, we can express the first equality in (20) in coordinates x, y as

$$0 = \int_{X} d(\frac{\partial \phi}{\partial y}) \wedge \xi$$

$$= \int_{X} (\frac{\partial^{2} \phi}{\partial x \partial y} dx + \frac{\partial^{2} \phi}{\partial y^{2}} dy) \wedge (p dx + q dy)$$

$$= \int_{X} (q \frac{\partial^{2} \phi}{\partial x \partial y} - p \frac{\partial^{2} \phi}{\partial y^{2}}) dx \wedge dy,$$
(21)

as well as the second equality

$$0 = \int_{X} d(\frac{\partial \phi}{\partial x}) \wedge \star \xi$$

$$= \int_{X} (\frac{\partial^{2} \phi}{\partial x^{2}} dx + \frac{\partial^{2} \phi}{\partial x \partial y} dy) \wedge (p dy - q dx)$$

$$= \int_{X} (p \frac{\partial^{2} \phi}{\partial x^{2}} + q \frac{\partial^{2} \phi}{\partial x \partial y}) dx \wedge dy.$$
(22)

Then we subtract (22) by (21) to get

$$0 = \int_X p(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2}) dx \wedge dy = p \Delta \phi dx \wedge dy,$$

which implies that

$$0 = \int_X \Delta p \phi dx \wedge dy$$

holds for any $\phi \in \mathcal{D}(U)$. Hence $\Delta p = 0$, by Weyl's Lemma, p is smooth. So the assertion follows.

Exercise 22

Let *X* be a compact Riemann surface, show that there is a natural linear isomorphism between $H^{1,1}(X)$ and $H^2(X;\mathbb{C})$

Proof. By definition, we have

$$H^{1,1}(X) := \operatorname{coker}(\bar{\partial} : \mathcal{E}^{1,0} \to \mathcal{E}^2)$$

and

$$H^2(X;\mathbb{C}) := \operatorname{coker}(d:\mathcal{E}^1 \to \mathcal{E}^{\in}).$$

Now we define a map

$$\phi: H^{1,1} \to H^2(X; \mathbb{C}),$$
$$[\xi]_D \mapsto [\xi]_{dR}$$

where $[\xi]_D$ is the equivalent class of $\xi \in \mathcal{E}^2$ in $H^{1,1}(X)$, and $[\xi]_{dR}$ is the equivalent class of ξ in $H^1(X;\mathbb{C})$. Now we show that this map is well defined. Indeed, taking a representative $\xi + \bar{\partial}\eta$ of $[\xi]_D$, we note that $\bar{\partial}\eta = d\eta$ as $\eta \in \mathcal{E}^{0,1}$, so we have $[\xi + \bar{\partial}\eta]_{dR} = [\xi + d\eta]_{dR} = [\xi]_{dR}$, showing that ϕ is independent of η .

Now we show that ϕ is surjective and injective. For surjectivity, choose any $[\sigma]_{dR}$, we want to show that $\phi([\sigma]_D) = [\sigma]_{dR}$. Indeed, we choose any boundary $d\alpha$. Observe that

$$\int_X d\alpha = 0,$$

so by the $\partial\bar{\partial}$ -Lemma, we have $d\alpha = \bar{\partial}\partial f$ for some smooth function f. Thus

$$[\sigma + d\alpha]_D = [\sigma + \bar{\partial}\partial f]_D = [\sigma]_D,$$

showing that $\phi([\sigma]_D) = [\sigma]_{dR}$. For injectivity, if there is some $[\beta]_D$ with

$$\phi([\beta]_D) = 0,$$

we have to show that $[\beta]_D=0$, that is, $\beta=\bar{\partial}\gamma$ for some $\gamma\in\mathcal{E}^{1,0}$. Note that

$$\int_X \beta = \int_X [\beta] = 0,$$

as exact forms don't contribute to the integral, so we can use the powerful $\partial\bar{\partial}$ -Lemma again to conclude that $\beta=\bar{\partial}\partial g$ for some smooth function g. Taking $\gamma=\partial g\in\mathcal{E}^{0,1}$, the proof is complete.

Exercise 23

Let X be a Riemann surface, $p_1, \ldots, p_r \in X$, $n_1, \ldots, n_r \ge 1$. If dim $H^{0,1}(X) < n_1 + \cdots + n_r$, then there exists non-constant $f \in \mathcal{O}(X \setminus \{p_1, \ldots, p_r\}) \cap (X)$, such that $\operatorname{ord}_f(p_i) \ge -n_i$, $i = 1, \ldots, r$.

Proof. The proof is essentially the same as that of Theorem 2.5.1. First we take (U_i, z_i) to be the local coordinates of p_i , with $z_i(p_i) = 0$ for i = 1, ..., r. For each i, we can take $\rho^{(i)} \in C^{\infty}(X)$ with supp $\rho^{(i)} \subseteq U_i$ and $\rho^{(i)} \equiv 1$ near p_i , further we define

$$\rho_j^{(i)} := \rho^{(i)} \frac{1}{(z_i)^j}, 1 \le j \le n_i.$$

and

$$\xi_i^{(i)} \coloneqq \bar{\partial} \phi_i^{(i)}.$$

Since dim $H^{0,1}(X) < n_1 + \dots + n_r$, the classes $[\xi_1^{(1)}], \dots, [\xi_{n_1}^{(1)}], [\xi_1^{(2)}], \dots, [\xi_{n_2}^{(2)}], \dots, [\xi_1^{(r)}], \dots, [\xi_{n_r}^{(r)}]$ are linearly independent in $H^{0,1}(X)$. So we can find constants $a_1^{(1)}, \dots, a_{n_1}^{(1)}, a_1^{(2)}, \dots, a_{n_2}^{(1)}, \dots, a_{n_r}^{(r)}, \dots, a_{n_r}^{(r)},$

$$\sum_{i=1}^{r} \sum_{j=1}^{n_i} a_j^{(i)} [\xi_j^{(i)}] = [\sum_{i=1}^{r} \sum_{j=1}^{n_i} a_j^{(i)} \xi_j^{(i)}] = 0 \in H^{0,1}(X).$$

Thus there is some holomorphic function *g* satisfying

$$\sum_{i=1}^{r} \sum_{j=1}^{n_i} a_j^{(i)} \bar{\partial} \phi_j^{(i)} = \sum_{i=1}^{r} \sum_{j=1}^{n_i} a_j^{(i)} \xi_j^{(i)} = \bar{\partial} g.$$

Finally we take

$$f \coloneqq \sum_{i=1}^r \sum_{j=1}^{n_i} a_j^{(i)} \phi_j^{(i)} - g,$$

which satisfies $\bar{\partial} f = 0$ on X except p_1, \ldots, p_n . Thus $f \in \mathcal{O}(X \setminus \{p_1, \ldots, p_r\})$, and the principal part of f at each p_i is by construction

$$\frac{a_{n_i}^{(i)}}{(z_i)^{n_i}} + \cdots \frac{a_1^{(i)}}{z_i},$$

completing the proof.

Prove Theorem 2.5.5.

Proof. We first let

$$\eta \coloneqq \xi_1 + \cdots + \xi_r$$
.

By assumption, we can see that ξ is a meromorphic 1-form so we have

$$d\eta = \bar{\partial}\eta$$
.

Then consider the integral of $\bar{\partial}\xi$ over X, we have

$$\int_X \bar{\partial} \eta = \int_X d\eta = \sum_{i=1}^r \int_X d\xi_i = \sum_{i=1}^r \int_{X \setminus D_i} d\xi_i = -\sum_{i=1}^r \int_{D_i} \xi_i = -\sum_{i=1}^r \operatorname{Res}_{\xi_i}(p_i) = 0,$$

by assumption and the definition of residue. Then by the $\partial\bar{\partial}$ -Lemma we have $\bar{\partial}\eta=\bar{\partial}\partial f$ for some $f\in C^\infty(X)$, namely,

$$\eta - \partial f = \xi$$

with ξ a meromorphic 1-form on X with poles at p_1, \ldots, p_r . On each D_i , $\xi - \xi_i$ is smooth by construction, completing the proof.

Exercise 25

Show that ker f is a sheaf on X, and $(\ker f)_x = \ker f_x$.

Proof. To show that $\ker f$ is a sheaf, we begin with the observation that there are restriction maps

$$res_V^U : (\ker f)(U) \to (\ker f)(V)$$

for all open subsets $V \subseteq U$. Indeed, for any $s \in (\ker f)(U)$, we have

$$f|_V(\text{res}_V^U(s)) = f|_V(s|_V) = f(s)|_V = 0|_V = 0,$$

showing that $U|_V(s)$ is an element of $(\ker f)(V)$. So $\operatorname{res}_V^U:(\ker f)(U)\to (\ker f)(V)$ are well-defined. Since the restriction maps are induced from the restriction maps of the sheaf \mathcal{F} , the relations

$$\operatorname{res}_W^V \circ \operatorname{res}_V^U = \operatorname{res}_W^U$$

hold automatically for all open sets $W \subseteq V \subseteq U$ of X.

Next we have to show that the presheaf $\ker f$ satisfies the gluing property, say, for any open set $U \subseteq X$ and any open cover $\{U_i\}$ of U, if there are $s_i \in (\ker f)(U_i)$ satisfying $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$, there is a unique $s \in (\ker f)(U)$ such that $s|_{U_i} = s_i$. By the gluing property of \mathcal{F} , there is a unique $s \in \mathcal{F}(U)$ satisfying $s|_{U_i} = s_i$, as $(\ker f)(U_i) := \ker f|_{\mathcal{F}(U_i)} \subseteq \mathcal{F}(U_i)$ by definition. What left to us is to show that $s \in (\ker f)(U)$, that is,

$$f(s) = 0.$$

Since f(s) is a section of $\mathcal{G}(U)$, we have

$$f(s)|_{U_i} = f|_{U_i}(s|_{U_i}) = f|_{U_i}(s_i) = 0.$$

By the gluing property of \mathcal{G} , f(s) = 0 in $\mathcal{G}(U)$, as desired.

Finally, we are asked to compute the stalk of the sheaf ker f at an arbitrary point $x \in X$. By definition, we have

$$(\ker f)_x = \underset{U \ni x}{\operatorname{colim}} (\ker f)(U) = \underset{U \ni x}{\operatorname{colim}} \ker f|_{\mathcal{F}(U)}.$$

Since $\{\mathcal{F}(U)\}_{x\in U}$ is a filtered direct system of abelian groups, by the fact that filtered colimits are exact, we have

$$\operatorname{colim}_{U\ni x} \ker f|_{\mathcal{F}(U)} = \ker \operatorname{colim}_{U\ni x} f|_{\mathcal{F}(U)} = \ker f_x,$$

which completes the proof.

Exercise 26

- (a) Show that for any $f \in C_c^{\infty}(\Delta)$, there exists $u \in C^{\infty}(\Delta)$ such that $\bar{\partial}u = f(z)d\bar{z}$, $id\ est$, $\frac{\partial u}{\partial \bar{z}} = f$.
- **(b)** Prove the exactness of the sequence

$$0 \to \mathcal{O} \to \mathcal{E}^{0,0} \stackrel{\bar{\partial}}{\to} \mathcal{E}^{0,1} \to 0, \tag{23}$$

and

$$0 \to \Omega \to \mathcal{E}^{0,1} \stackrel{\bar{\partial}}{\to} \mathcal{E}^{1,1} \to 0. \tag{24}$$

Proof. (a) Let

$$u(z) := \frac{1}{2\pi \mathrm{i}} \int_{\Delta} \frac{f(w)}{w - z} dw \wedge d\bar{w}.$$

We need to show that u(z) is smooth for all $z \in \Delta$, and $\partial u/\partial \bar{z} = f$. We show these by introducing the polar coordinates as follows

$$w = z + re^{i\theta}$$
.

Under the polar coordinates, we have

$$dw \wedge d\bar{w} = -2irdr \wedge d\theta$$
.

Thus

$$\begin{split} u(z) &= -\frac{1}{\pi} \int_{\Delta} \frac{f(z + re^{\mathrm{i}\theta})}{re^{\mathrm{i}\theta}} r dr \wedge d\theta \\ &= -\frac{1}{\pi} \int_{\Delta} f(z + re^{\mathrm{i}\theta}) e^{-\mathrm{i}\theta} dr \wedge d\theta. \end{split}$$

Since f has compact support in Δ , the above integral converges and depends smoothly on $z \in \Delta$. Hence u is a smooth function in x, y via $z = x + \mathrm{i} y$, so is the partial derivative $\partial u/\partial \bar{z}$. Now back to the w, \bar{w} coordinates, we have

$$\begin{split} (\frac{\partial u}{\partial \bar{z}})(z) &= \frac{1}{2\pi \mathrm{i}} \int_{\Delta} \frac{\partial}{\partial \bar{z}} (\frac{f(w)}{w-z}) dw \wedge d\bar{w} \\ &= \frac{1}{2\pi \mathrm{i}} \int_{\Delta} \frac{\partial}{\partial \bar{w}} (\frac{f(w)}{w-z}) dw \wedge d\bar{w} \\ &= \int_{\Delta} d\mu, \end{split}$$

where

$$\mu(w) = -\frac{1}{2\pi \mathrm{i}} \frac{f(w)}{w - z} dw.$$

By the previous argument, we already know that $\partial u/\partial \bar{z}(z)$ is a smooth function of z, so the limit

$$\lim_{\epsilon \to 0} \int_{\Delta - B_{\epsilon}(z)} d\mu$$

converges to it, with $B_{\epsilon}(z)$ the small open ball centered at z with radius ϵ . By the Stokes' Theorem,

$$\begin{split} &(\frac{\partial u}{\partial \bar{z}})(z) = \lim_{\epsilon \to 0} \int_{\Delta - B_{\epsilon}(z)} d\mu \\ &= -\lim_{\epsilon \to 0} \int_{\partial B_{\epsilon}(z)} \mu \\ &= \lim_{\epsilon \to 0} \frac{1}{2\pi i} \int_{|w-z| = \epsilon} \frac{f(w)}{w - z} dw \\ &= \lim_{\epsilon \to 0} \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(z + \epsilon e^{i\theta})}{\epsilon e^{i\theta}} \epsilon i e^{i\theta} d\theta \\ &= \lim_{\epsilon \to 0} \frac{1}{2\pi} \int_{0}^{2\pi} f(z + \epsilon e^{i\theta}) d\theta \\ &= f(z). \end{split}$$

The above analysis shows that the Cauchy-Riemann equation

$$\frac{\partial u}{\partial \bar{z}} = f$$

always has a local solution u on Δ .

(b) The sequences (23) and (24) are exact iff they are exact stalk-wise. It suffices to show that

$$0 \to \mathcal{O}_x \to \mathcal{E}_x^{0,0} \stackrel{\bar{\partial}}{\to} \mathcal{E}_x^{0,1} \to 0$$

and

$$0 \to \Omega_x \to \mathcal{E}_x^{0,1} \overset{\bar{\partial}}{\to} \mathcal{E}_x^{1,1} \to 0$$

are exact for all x. Equivalently, if we pick a small enough neighborhood U_x of x, we need to show that

$$0 \to \mathcal{O}(U_x) \to \mathcal{E}^{0,0}(U_x) \stackrel{\bar{\partial}}{\to} \mathcal{E}^{0,1}(U_x) \to 0$$
 (25)

and

$$0 \to \Omega(U_x) \to \mathcal{E}^{0,1}(U_x) \stackrel{\bar{\partial}}{\to} \mathcal{E}^{1,1}(U_x) \to 0$$
 (26)

are exact.

For (25), exactness at $\mathcal{E}^{0,0}(U_x)$ is obvious, since a function f is holomorphic at x iff $\bar{\partial} f(x) = 0$, by definition. (a) tells us that $\bar{\partial}: \mathcal{E}^{0,0}(U_x) \to \mathcal{E}^{0,1}(U_x)$ is surjective, since U_x is small enough, any element in $\mathcal{E}^{0,1}(U_x)$ is of the form $g(z)d\bar{z}$ with g(z) viewed as a compactly supported function on Δ . The exactness of (26) holds for the same reason.

Exercise 27

Let X be a Riemann surface and \mathbb{C}_p be the skyscraper sheaf on X based at $p \in X$, then $H^1(X;\mathbb{C}_p) = 0$.

Proof. Take any open cover $\mathfrak U$ of X, we claim that it has a refinement $\mathfrak U'$ such that there is exactly one open subset containing p in $\mathfrak U'$. Indeed, $p \in U_0$ for some U_0 in $\mathfrak U$. For any other $U_i \in \mathfrak U$, we let $U_i' = U_i - \{p\}$ and let $\mathfrak U' = \{U_0, U_i'\}$, as desired. So we may assume that any open cover $\mathfrak U$ has only one open subset U_0 containing p. Thus

$$\check{C}^0(\mathfrak{U},\mathbb{C}_p)=\prod_i\mathbb{C}_p(U_i)=\mathbb{C}_p(U_0)=\mathbb{C},$$

and

$$\check{C}^{1}(\mathfrak{U}, \mathbb{C}_{p}) = \prod_{i,j} \mathbb{C}_{p}(U_{i} \cap U_{j}) = \mathbb{C}_{p}(U_{0} \cap U_{0}) = \mathbb{C},$$

$$\check{C}^{2}(\mathfrak{U}, \mathbb{C}_{p}) = \prod_{i,j,k} \mathbb{C}_{p}(U_{i} \cap U_{j} \cap U_{k}) = \mathbb{C}_{p}(U_{0} \cap U_{0} \cap U_{0}) = \mathbb{C}.$$

And the differentials $\check{C}^0(\mathfrak{U},\mathbb{C}_p) \stackrel{d^0}{\to} \check{C}^1(\mathfrak{U},\mathbb{C}_p) \stackrel{d^1}{\to} \check{C}^2(\mathfrak{U},\mathbb{C}_p)$ are essentially induced by $\mathrm{id}_\mathbb{C}: \mathbb{C} \to \mathbb{C}$. So we have

$$H^1(\mathfrak{U}; \mathbb{C}_p) = \ker d^1/\operatorname{im} d^0 = \ker \operatorname{id}_{\mathbb{C}}/\operatorname{im} \operatorname{id}_{\mathbb{C}} = 0.$$

Thus

$$H^1(X; \mathbb{C}_p) = \operatorname*{colim}_{\mathfrak{U}} H^1(\mathfrak{U}; \mathbb{C}_p) = \operatorname*{colim}_{\mathfrak{U}} 0 = 0$$

Exercise 28

Show that $H^1(X; \mathbb{Z}_X) = 0$.

Proof. Let \mathfrak{U} be an open cover of X, and $(a_{ij}) \in Z^1(\mathfrak{U}; \mathbb{Z}_X)$ be a 1-cocycle. We want to show that (a_{ij}) is in fact a coboundary, that is, there is $(a_i) \in C^0(\mathfrak{U}; \mathbb{Z}_X)$ such that

$$a_{ij} = a_i - a_j$$

on each $U_i \cap U_j$. To find such (a_i) , we observe that \mathbb{Z}_X is a subsheaf of \mathbb{C}_X . Since $H^1(X; \mathbb{C}_X) = 0$, $(a_{ij}) \in Z^1(\mathfrak{U}; \mathbb{Z}_X) \subseteq Z^1(\mathfrak{U}; \mathbb{C}_X)$ is in fact a coboundary, thus there is some $(c_i) \in C^1(\mathfrak{U}; \mathbb{C}_X)$ with

$$a_{ij} = c_i - c_j$$

on each $U_i \cap U_j$. Note that a_{ij} are all integer-valued, then

$$\exp 2\pi i a_{ii} = 1$$
,

implying that

$$\exp 2\pi i c_i = \exp 2\pi i c_j$$

on each $U_i \cap U_j$. So all exp $2\pi i c_i$ determine a global section b such that

$$b|_{U_i} = \exp 2\pi i c_i$$

for all U_i . Since X is connected and \mathbb{C}_X is locally constant, the set of global sections $\Gamma(X,\mathbb{C}_X)$ is isomorphic to \mathbb{C} . Thus b a fortiori an element of \mathbb{C}^* . Take $c \in \mathbb{C}$ such that

$$\exp 2\pi i c = b$$
,

then we consider all

$$a_i := c_i - c$$
.

Since $\exp 2\pi i a_i = \exp 2\pi i c_i \exp -2\pi i c = bb^{-1} = 1$, (a_i) is an element of $C^0(\mathfrak{U}; \mathbb{Z}_X)$. Also note that

$$a_{ij} = c_i - c_j = (c_i - c) - (c_j - c) = a_i - a_j$$

showing that (a_i) is our desired 0-cocycle.

Prove that the cohomological sequence induced by the short exact sequence is exact.

Proof. Given a short exact sequence

$$0 \to \mathcal{F} \xrightarrow{\alpha} \mathcal{G} \xrightarrow{\beta} \mathcal{H} \to 0 \tag{27}$$

of sheaves, we are asked to show that the induced sequence

$$0 \to H^0(X; \mathcal{F}) \xrightarrow{\alpha} H^0(X; \mathcal{G}) \xrightarrow{\beta} H^0(X; \mathcal{H}) \xrightarrow{\sigma} H^1(X; \mathcal{F}) \xrightarrow{\alpha^1} H^1(X; \mathcal{G}) \xrightarrow{\beta^1} H^1(X; \mathcal{H})$$
 (28)

is exact. First of all, since we have

$$C^0(X; \mathcal{F}) = \Gamma(X; \mathcal{F})$$

by definition, and the functor $\Gamma(X; -)$ is left exact, we have that

$$0 \to H^0(X; \mathcal{F}) \xrightarrow{\alpha} H^0(X; \mathcal{G}) \xrightarrow{\beta} H^0(X; \mathcal{H})$$

is exact. What we need is to show the exactness of the rest of (28).

Before doing so, let us first reall the construction of the connecting morphism $\sigma: H^0(X; \mathcal{H}) \to H^1(X; \mathcal{F})$. Take any $h \in H^0(X; s\mathcal{H})$, if $\mathfrak U$ is fine enough, $\beta|_{U_i}: \mathcal{G}(U_i) \to \mathcal{H}(U_i)$ is surjective so there is a cochain $C^0(\mathfrak U; \mathcal{G})$ making

$$\beta(g_i) = h|_{U_i}. (29)$$

Hence $\beta(g_i - g_i) = 0$ on $U_i \cap U_j$. By the exactness of (27) there exists $(f_{ij}) \in C^1(\mathfrak{U}; \mathcal{F})$ such that

$$\alpha(f_{ij}) = g_i - g_j \tag{30}$$

On $U_i \cap U_i \cap U_k$ we have

$$\alpha(f_{ij} + f_{jk} - f_{ik}) = g_i - g_j + g_j - g_k - (g_i - g_k) = 0,$$

again by the exactness of (27) we have $f_{ij} + f_{jk} - f_{ik} = 0$, so $(f_{ij}) \in Z^1(\mathfrak{U}; \mathcal{F})$ is a cocycle. Now we take $\sigma(h)$ to be the cohomology class represented by (f_{ij}) . σ is well-defined, as was checked in class.

im $\beta \subseteq \ker \sigma$. If $g \in H^0(X; \mathcal{G})$ and $h = \beta(g)$. To construct $\sigma(h)$, we may choose the local lifts of h in (29) to be $g_i = g|_{U_i}$. Thus $\alpha(f_i j) = g|_{U_i} - g|_{U_j} = 0$ on $U_i \cap U_j$. Since $\alpha|_{U_i \cap U_j}$ is injective, we have $f_{ij} = 0$ and by definition $\sigma(h) = 0$, showing that $h \in \ker \sigma$.

 $\ker \sigma \subseteq \operatorname{im} \beta$. Suppose $h \in \ker \sigma$. Since $\sigma(h) = 0$, we assume that it is represented by a coboundary $(f_{ij}) \in Z^1(\mathfrak{U}; \mathcal{F})$, with $f_{ij} = f_i - f_j$, where $(f_i) \in C^0(\mathfrak{U}; \mathcal{F})$. Let $\tilde{g}_i := g_i - \alpha(f_i)$, we have $\tilde{g}_i = \tilde{g}_j$ on $U_i \cap U_j$. Thus \tilde{g}_i are restriction of some global section $g \in H^0(X; \mathcal{G})$. On each U_i we have $\beta(g)|_{U_i} = \beta(\tilde{g}_i) = \beta(g_i) - \beta(\alpha(f_i)) = h|_{U_i}$, showing that $h = \beta(g)$. Thus $h \in \operatorname{im} \beta$.

im $\sigma \subseteq \ker \alpha^1$ Since $\sigma(h)$ is represented by (f_{ij}) , $\alpha(\sigma(h))$ is represented by $(\alpha(f_{ij})) \in Z^1(\mathfrak{U}; \mathcal{G})$. But by (30), $(\alpha(f_{ij}))$ is exact, so $\alpha(\sigma(h)) = 0$.

 $\ker \alpha^1 \subseteq \operatorname{im} \sigma$. Suppose $\xi \in \ker \alpha^1$ is represented by the cocycle $(f_{ij}) \in Z^1(\mathfrak{U}; \mathcal{F})$. Since $\alpha^1(\xi) = 0 \in H^1(X; \mathcal{G})$, there exists a cochain $(g_i) \in C^0(\mathfrak{U}; \mathcal{G})$ such that $\alpha(f_{ij}) = g_i - g_j$ on $U_i \cap U_j$. This implies

$$0 = \beta(\alpha(f_{ij})) = \beta(g_i) - \beta(g_i).$$

Hence there exists $h \in H^0(X; \mathcal{H})$ such that $h|_{U_i} = \beta(g|_{U_i})$. By the construction of σ , we have $\sigma(h) = \xi$, showing that $\xi \in \operatorname{im} \sigma$.

im $\alpha^1 \subseteq \ker \beta^1$ Since α^1, β^1 are induced by $\alpha\beta$, their composition $\beta^1 \circ \alpha^1$ is induced by $\beta \circ \alpha = 0$, thus is also zero.

 $\ker \beta^1 \subseteq \operatorname{im} \alpha^1$. Suppose $\eta \in \ker \beta^1$ is resented by cocycle $(g_{ij}) \in Z^1(\mathfrak{U}; \mathcal{G})$. Since $\beta^1(\eta) = 0 \in H^1(X; \mathcal{H})$, there is a cochain $(h_i) \in C^0(\mathfrak{U}; \mathcal{H})$ such that $\beta(g_{ij}) = h_i - h_j$. Now suppose that the cover \mathfrak{U} is fine enough that $\beta|_{U_i} : \mathcal{G}(U_i) \to \mathcal{H}(U_i)$ is surjective for all $U_i \in \mathfrak{U}$. So we can find $(g_i) \in C^0(\mathfrak{U}; \mathcal{G})$ such that $\beta(g_i) = h_i$. Let $\tilde{g}_{ij} = g_{ij} - g_i + g_j$, we see that (\tilde{g}_{ij}) and (g_{ij}) represent the same element in $H^1(X; \mathcal{G})$, and $\beta(\tilde{g}_{ij}) = 0$. Then there exists $(f_{ij}) \in C^1(\mathfrak{U}; \mathcal{F})$ such that $\alpha(f_{ij}) = \tilde{g}_{ij}$. If we call the cohomology class of $(f_{ij}) \in H^1(X; \mathcal{F})$ to be ξ , we have $\alpha^1(\xi) = \eta$, completing the proof.

Exercise 30

Assume that *K* is a canonical divisor of *X*, then $\mathcal{O}_K \simeq \Omega$ and $\mathcal{O} \simeq \Omega_{-K}$ as sheaves over *X*.

Proof. Since K is canonical, so there is a meromorphic 1-form $\omega \in \mathcal{M}^1(X)$ making $K = (\omega)$. We claim that multiplying by ω induces the isomorphisms

$$\mathcal{O}_K \to \Omega,$$
 $f \mapsto f\omega,$
(31)

and

$$\begin{array}{l}
\mathcal{O} \to \Omega_K, \\
g \mapsto g\omega.
\end{array} \tag{32}$$

It's obvious to see that the two above maps are well-defined maps between sheaves. The proofs for (31) and (32) are identical, so we only show the first one. It suffices to prove (31) is isomorphic stalk-wise. To see this, we assume that U is a small enough open subset, and $\xi \in \Omega(U)$ is a holomorphic 1-form, so that we can expand ξ as

$$\xi(z) = p(z)dz$$

with p(z) a holomorphic function, and expand ω as

$$\omega = q(z)dz$$

with q(z) a meromorphic function satisfying (q) = K on U. Then we have

$$\xi = \frac{p}{q}\omega$$

on *U*, with

$$\frac{p(z)}{q(z)} \in \mathcal{O}_K(U).$$

This shows that (31) is surjective. For injectivity of (31), suppose if there is some $f \in \mathcal{O}_K(U)$ such that $f\omega = 0$ on U. In local coordinates, the last condition means that

$$f(z)q(z) = 0$$

for all $z \in U$. But this is ridiculous, since f is meromorphic and q is holomorphic by assumption, they have only discrete zeros hence so does fq. So we must have f=0 since $q \neq 0$ by assumption. This shows that (31) is injective, compeleting the proof.

Exercise 31

(a) Show that there exist non-zero meromorphic vector fields on *X*.

(b) Show that

$$\deg \theta = 2 - 2g$$

holds for any non-zero meromorphic vector field θ on X.

Proof. (a) We claim that there exist non-trivial meromorphic 1-forms on X. The easiest way to see this is by the previous Exercise, in which we have proved that there is a sheaf isomorphism $\Omega_{-K} \simeq \mathcal{O}$. Note that \mathcal{O} admits non-trivial sections, so does Ω_{-K} . Thus we can pick a non-trivial section $\omega \in \Omega_{-K}$, which is a meromorphic 1-form.

Let $P:=\{p_1,\ldots,p_r\}$ be the set of all poles and zeroes of ω . We claim that there exists a meromorphic vector field θ such that $\omega(\theta)=1$ identically on X. Indeed, for any $x\in X$, if $x\notin P$, ω is holomorphic (since x is not a pole) and non-vanishing (since x is not a zero) around any sufficiently small coordinate neighborhood (U,z) of x, with z(x)=0. Suppose that $\omega=f(z)dz$ on (U,z), where f(z) is a non-vanishing holomorphic function of z. Then locally we can choose $\theta=\frac{1}{t}\partial$ on U. Under local coordinate transformation $z\mapsto w$, we have

$$\frac{1}{f(z)}\frac{\partial}{\partial z} = \frac{1}{f(z(w))}\frac{\partial w}{\partial z}\frac{\partial}{\partial w} = \frac{1}{f(z(w))\frac{\partial z}{\partial w}}\frac{\partial}{\partial w} = \frac{1}{f(w)}\frac{\partial}{\partial w},$$

where the last equation holds since the transformation law of f under $z \mapsto w$ is

$$f(z)\frac{\partial z}{\partial w} = f(w),$$

by the fact that ω is a coordinate-free object. Thus θ is also a coordinate free object on $X \setminus P$.

When $x \in P$, then we assume that $x = p_i$. In sufficiently small coordinate neighborhoods (U_i, z_i) with $z_i(p_i) = 0$, ω has the form

$$\omega = z_i^{k_i} dz_i$$

with $k_i := \operatorname{ord}_{p_i} \omega \in \mathbb{Z}$. Then locally we may take $\theta = z_i^{-k_i} \partial_{z_i}$, by similar argument as above, θ is invariant under local coordinate trans form. Thus θ is a well-defined meromorphic field on X, with exactly poles and zeroes p_1, \ldots, p_r , among which p_i is a zero of θ iff it is a pole of ω and *vice versa*.

(b) Let $P = \{ p_1, \dots, p_r \}$ and (U_i, z_i) be as in **(a)**. If $\operatorname{ord}_{p_i} \omega = k_i$, then in (U_i, z_i) θ has the expression

$$\theta = z_i^{-k_i} \frac{\partial}{\partial z_i}.$$

Set

$$u(z_i) := \frac{\theta}{\|\theta\|} = z_i^{-k_i},$$

the index of θ at p_i is defined to be the mapping degree of $u: S^1 \to S^1$. So it's easy to see that

$$index_{n}\theta = -k_{i}$$
.

Let $\{p_1, \ldots, p_r\}$ to be the set of all zeroes or poles of θ , with each p_i of degree m_i , thus

$$\deg \theta := \sum_{i=1}^{r} \operatorname{index}_{p_i} \theta = -\sum_{i=1}^{r} k_i = -\deg(\omega)$$

But as (ω) is a cannonical divisor of X, $deg(\omega) = 2g - 2$. So

$$\deg \theta = -\deg(\omega) = 2 - 2g,$$

completing the proof.

Try to deduce the Gauss-Bonnet formula.

Proof. Since X is a compact Riemann surface, we can endow X a Riemannian metric g, and find isothermal coordinate charts $\{(U_i, z_i = x_i + iy_i)\}$ under which g has local expressions

$$g = \lambda_i (dx_i^2 + dy_i^2) = \lambda_i |dz_i|^2,$$

for each $z_i \in U_i$. Now let θ be a meromorphic vector field, and let p_1, \ldots, p_r be the poles of θ and q_1, \ldots, q_s be the zeros of θ . By taking refinements of the isothermal coordinates $\{(U_i, z_i = x_i + \mathrm{i} y_i)\}$, we may assume that each U_i contains at most one of the zeroes or poles of θ , in addition that

$$z_i(p_j)=0, j=1,\ldots,r,$$

or

$$z_i(q_k) = 0, k = 1, \ldots, s.$$

We are now going to calculate the Gauss curvature K of g. Recall that for a general surface parametrized by u, v with metric

$$h = Edu^2 + Gdv^2$$

the Gauss curvature K_h of h can be calculated by

$$K_h = -\frac{1}{2\sqrt{EG}}(\frac{\partial}{\partial u}\frac{G_u}{\sqrt{EG}} + \frac{\partial}{\partial v}\frac{E_v}{\sqrt{EG}}).$$

In our case, locally we take $E = G = \lambda_i$ on each U_i , to get

$$K = -\frac{1}{2\sqrt{\lambda_i^2}} \left(\frac{\partial}{\partial x_i} \left(\frac{(\lambda_i)_{x_i}}{\sqrt{\lambda_i^2}} \right) + \frac{\partial}{\partial y_i} \left(\frac{(\lambda_i)_{y_i}}{\sqrt{\lambda_i^2}} \right) \right)$$

$$= -\frac{1}{2\lambda_i} \left(\frac{\partial^2}{\partial x_i^2} (\log \lambda_i) + \frac{\partial^2}{\partial y_i^2} (\log \lambda_i) \right)$$

$$= -\frac{1}{2\lambda_i} \Delta \log \lambda_i$$

$$= \frac{i}{\lambda_i} \frac{\partial^2}{\partial z_i \partial z_i} \log \lambda_i.$$

Also, the volume from dVol locally looks like:

$$dVol = \sqrt{|\det g|} dx_i \wedge dy_i = \lambda_i dx_i \wedge dy_i = \frac{i\lambda_i}{2} dz_i \wedge d\bar{z}_i.$$

Thus

$$KdVol = -\frac{1}{2} \frac{\partial^{2}}{\partial \bar{z}_{i} \partial z_{i}} \log \lambda_{i} dz_{i} \wedge d\bar{z}_{i}$$

$$= -\frac{1}{2} \bar{\partial} \partial \log \lambda_{i}$$

$$= -\frac{1}{2} d(\partial \log \lambda_{i}).$$
(33)

Now define

$$\psi := g(\theta, \theta),$$

then ψ is a non-vanishing smooth function on $X \setminus \{p_1, \dots, p_r, q_1, \dots, q_s\}$. Moreover, if on each U_i

$$\theta = \theta_i \frac{\partial}{\partial z_i}$$

on each U_i , the local expression of ψ on U_i reads

$$\psi = \lambda_i |\theta_i|^2$$
.

Since $\log |\theta|$ is holomorphic on $X \setminus \{p_1, \dots, p_r, q_1, \dots, q_s\}$, we have the replacement

$$KdVol = -\frac{1}{2}d(\partial \log \lambda_i) = -\frac{1}{2}d(\partial \log \psi)$$
 (34)

of KdVol on $X\setminus\{p_1,\ldots,p_r,q_1,\ldots,q_s\}$. The final thing worth mentioning is that on each U_i , ψ can be written as

$$\psi = \rho_i z_i^{2m_i},\tag{35}$$

where ρ_i is a smooth function and m_i is the degree of θ at $z_i = 0$.

Denote by $D_{\epsilon}(x)$ the disk of radius ϵ centered at $x \in X$, and set

$$D_{\epsilon} := D_{\epsilon}(p_1) \cup \cdots \cup D_{\epsilon}(p_r) \cup D_{\epsilon}(q_1) \cup \cdots \cup D_{\epsilon}(q_s),$$

we are now at the heart of the proof. By (33), we have

$$\int_{X} K dVol = \lim_{\epsilon \to 0} \int_{X \setminus D_{\epsilon}} K dVol, \tag{36}$$

since *K*dVol is smooth on each $D_{\epsilon}(p_i)$ or $D_{\epsilon}(q_j)$. Plugging (34) into the right hand side of (36), we have

$$\begin{split} \int_X K \mathrm{dVol} &= \lim_{\epsilon \to 0} \int_{X \setminus D_\epsilon} K \mathrm{dVol} \\ &= -\frac{1}{2} \lim_{\epsilon \to 0} \int_{X \setminus D_\epsilon} d(\partial \log \psi) \\ &= \frac{1}{2} \lim_{\epsilon \to 0} \int_{\partial D_\epsilon} \partial \log \psi \qquad \text{(by Stokes' Theorem)} \\ &= \frac{1}{2} \lim_{\epsilon \to 0} \left(\sum_{i=1}^r \int_{\partial D_\epsilon(p_i)} \partial \log \psi + \sum_{j=1}^s \int_{\partial D_\epsilon(q_j)} \partial \log \psi \right) \\ &= \frac{1}{2} \lim_{\epsilon \to 0} \left(\sum_{i=1}^r \int_{\partial D_\epsilon(p_i)} \partial \log(\rho_i z_i^{2m_i}) + \sum_{j=1}^s \int_{\partial D_\epsilon(q_j)} \partial \log(\rho_j z_j^{2m_j}) \right) \qquad \text{(by (35))} \\ &= \lim_{\epsilon \to 0} \left(\sum_{i=1}^r m_i \int_{\partial D_\epsilon(p_i)} \frac{dz_i}{z_i} + \sum_{j=1}^s m_j \int_{\partial D_\epsilon(q_j)} \frac{dz_j}{z_j} \right) \\ &= \sum_i^r m_i + \sum_j^s m_j \qquad \text{(by the Residue Theorem)} \\ &= \deg \theta. \end{split}$$

By Exercise 4 we have

$$\deg \theta = 2 - 2g = \chi(X)$$

finally

$$\chi(X) = \int_X K dVol,$$

which is the very Gauss-Bonnet formula.

Let *X* be a compact Riemann surface of genus *g* and $D \in Div(X)$:

- (a) If deg D < 0, then $h^0(X, \mathcal{O}_D) = 0$.
- **(b)** If deg D = 0, then $h^0(X, \mathcal{O}_D) = 0$ or 1, and $h^0(X, \mathcal{O}_D) = 1$ if and only if D is a principal divisor.
- (c) If deg D > 2g 2, then $h^1(X, \mathcal{O}_D) = 0$.
- (d) If deg D = 2g 2, then $h^1(X, \mathcal{O}_D) = 0$ or 1 and $h^1(X, \mathcal{O}_D) = 1$ if and only if D is a canonical divisor.

Proof. (a) If $h^0(X, \mathcal{O}_D) := \dim H^0(X; \mathcal{O}_D) \neq 0$, there is some non-zero $f \in H^0(X; \mathcal{O}_D) = \Gamma(X; \mathcal{O}_D)$. By definition of \mathcal{O}_D ,

$$(f) + D \ge 0$$
,

hence

$$\deg f > -\deg D > 0.$$

But this is ridiculous, since f is meromorphic, $\deg f = 0$ is always true.

(b) If there are any non-zero $f \in H^0(X; \mathcal{O}_D)$, we have

$$(f) \ge -D = 0$$
,

hence

$$\deg f \ge 0$$
.

When deg f > 0, such f doesn't exist, so $H^0(X; \mathcal{O}_D) = 0$ hence $h^0(X, \mathcal{O}_D) = 0$.

When $\deg f=0$, we claim that (f)+D=0. Otherwise, (f)>-D and $\deg f>0$, a contradiction. Thus in this case, all $f\in H^0(X;\mathcal{O}_D)$ are equivalent to D, and $H^0(X;\mathcal{O}_D)$ is the \mathbb{C} -vector space spanned by D, implying

$$h^0(X, \mathcal{O}_D) = 1.$$

Conversely, if D is principal, there is some meromorhic function g making D = (g). Then all $f \in H^0(X; \mathcal{O}_D)$ are such f that

$$(f) + D = (f) + (g) = 0,$$

showing that $h^0(X, \mathcal{O}_D) = 1$.

(c) Let *K* be the canonical divisor of *X*. We know that there is an isomorphism

$$\mathcal{O}_{K-D} \simeq \Omega_{-D}$$

for any $D \in Div(X)$. Thus

$$H^0(X;\Omega_{-D})\simeq H^0(X;\mathcal{O}_{K-D}).$$

On the other hand, we have

$$H^1(X; \mathcal{O}_D)^* \simeq H^0(X; \Omega_{-D})$$

by Serre's duality. Thus

$$H^1(X; \mathcal{O}_D)^* \simeq H^0(X; \mathcal{O}_{K-D})$$

and

$$h^{1}(X, \mathcal{O}_{D}) = h^{0}(X, \mathcal{O}_{K-D}).$$
 (37)

Since $\deg K = 2g - 2$, $\deg(K - D) = \deg K - \deg D < 0$, by assumption. Applying (a) we have

$$h^{1}(X, \mathcal{O}_{D}) = h^{0}(X, \mathcal{O}_{K-D}) = 0.$$

(d) In this case, we have $\deg(K-D)=0$. Note (37) still holds, we can apply (b) to the sheaf \mathcal{O}_{K-D} , then the assertion follows.

Exercise 34

Let *X* be a compact Riemann surface of genus *g*, show that

- (a) Any two $\xi, \eta \in \mathcal{M}^n(X) \setminus \{0\}$ are linearly equivalent.
- **(b)** For any $\xi \in \mathcal{M}^n(X) \setminus \{0\}$, we have $\deg(\xi) = n(2g 2)$.

(c)

$$\dim \Omega^n(X) = \begin{cases} (2n-1)(g-1), & n \ge 2, g \ge 2, \\ 0, & g = 0, \\ 1, & g = 1. \end{cases}$$

Proof. (a) For any $\xi, \eta \in \mathcal{M}^n(X)$ and $p \in X$, suppose that they can be written as

$$\xi = f(z)dz^n,$$

$$\eta = g(z)dz^n,$$

with $f,g \in \mathcal{M}(U)$ in any coordinate neighborhood (U,z) of p. Clearly, $h(z) \coloneqq f(z)/g(z) \in \mathcal{M}(U)$. Suppose that (V,w) is another neighborhood coordinate of p, and the coordinates are related holomorphically by z = z(w). So on $U \cap V$, we have

$$\frac{f(w)}{g(w)} = \frac{\left(\frac{\partial z}{\partial w}\right)^n f(z(w))}{\left(\frac{\partial z}{\partial w}\right)^n g(z(w))} = \frac{f(z)}{g(z)}.$$

This shows that there exists a meromorphic h such that $\xi = h\eta$, by the gluing property of the sheaf \mathcal{M} . Thus $(\xi) = (\eta) + (h)$, as desired.

(b) Take $0 \neq \theta \in \mathcal{M}^1(X)$, then we define $\Theta \in \mathcal{M}^n(X)$ by

$$\Theta = \theta \otimes \cdots \otimes \theta$$
,

which is not identically zero. By (a), any $\xi \in \mathcal{M}^n(X)$ is linearly equivalent to Θ , so

$$(\xi) = (\Theta) + (f)$$

for some meromrphic function f. But since deg(f) = 0, we have

$$deg(\xi) = deg(\Theta) = n deg(\theta) = n(2g - 2),$$

- as (θ) is a canonical divisor.
 - (c) Via the isomorphism of sheaves

$$\Omega \simeq \mathcal{O}_K$$
,

we have

$$\Omega^n \simeq \mathcal{O}_K \otimes \cdots \otimes \mathcal{O}_K \simeq \mathcal{O}_{nK}$$
.

Then

$$\dim \Omega^n(X) = \dim H^0(X; \Omega^n) = \dim H^0(X; \mathcal{O}_{nK}) = h^0(X, \mathcal{O}_{nK}),$$

via which we may prove the assertion applying the Riemann-Roch Theorem. Note that deg(nK) = n deg K = n(2g - 2), thus there are three cases:

- (i) g = 0, $\deg(nK) = -2n < 0$, then by Exercise 1(a), $\dim \Omega^n(X) = h^0(X, \mathcal{O}_{nK}) = 0$.
- (ii) $g = 1, \deg(nK) = 0$. Since nK is principal, by **Exercise 1(b)** $\dim \Omega^n(X) = h^0(X, \mathcal{O}_{nK}) = 1$.
- (iii) $g \ge 2$, n > 1, deg(nK) > 2g 2. By Riemann-Roch,

$$h^0(X, \mathcal{O}_{nK}) - h^1(X, \mathcal{O}_{nK}) = \deg(nK) + 1 - g = n(2g - 2) + 1 - g = (2n - 1)(g - 1).$$

By the Vanishing Theorem, $h^1(X, \mathcal{O}_{nK}) = 0$, so dim $\Omega^n(X) = h^0(X, \mathcal{O}_{nK}) = (2n-1)(g-1)$.

In summary, we have

$$\dim \Omega^n(X) = \begin{cases} (2n-1)(g-1), & n \ge 2, g \ge 2, \\ 0, & g = 0, \\ 1, & g = 1, \end{cases}$$

completing the proof.

Exercise 35

Let Ω^{-1} be the sheaf of holomorphic vector fields on X and K be a canonical divisor of X. Show that Ω^{-1} and \mathcal{O}_{-K} are isomorphic as sheaves.

Proof. Since K is canonical, we have $K = (\omega)$ for some meromorphic 1-form ω . Then we have a morphism $\phi : \Omega^{-1} \to \mathcal{O}_K$, given by contraction with ω :

$$\phi(U): \Omega^{-1}(U) \to \mathcal{O}_K(U),$$
$$v \mapsto \omega(v).$$

To show that $\phi: \Omega^{-1} \to \mathcal{O}_K$ is an isomorphism of sheaves, it suffices to show that ϕ_x is an isomorphism of stalks for all x. Indeed, in any small enough open subset $U_x \simeq \mathbb{C}$ containing x, we can write v as $v = f(z) \frac{\partial}{\partial z}$ with f(z) holomorphic and $\omega = g(z)dz$ with $g(z) \in \mathcal{O}_K(U_x)$. Thus if $\omega(v) = f(z)g(z)$ is identically zero on U, there must be f(z) = 0 on U since $g(z) \neq 0$. This shows that ϕ_x is injective. For surjectivity, suppose that $h(z) \in \mathcal{O}_K(U)$, we take $v := \frac{h(z)}{g(z)} \frac{\partial}{\partial z}$, which is a holomorphic vector field on U_x and satisfies $\omega(v) = h(z)$. This shows that ϕ_x is surjective. So we are done.

Exercise 36

Show that on $U \cap V$ we have

$$\Phi(z)dz^{\frac{g(g+1)}{2}} = \Psi(w)dw^{\frac{g(g+1)}{2}},$$

or equivalently

$$\Phi(z) = \Psi(w) (\frac{\partial w}{\partial z})^{\frac{g(g+1)}{2}}.$$

Proof. First we write down how ϕ_i and ψ_i are related by the coordinate transformation:

$$\phi_i(z) = \frac{\partial w}{\partial z} \psi_i(w), 1 \le i \le g.$$

The relation between $\phi_i^{(j)}$ and $\psi_i^{(j)}$ needs more attention. For the first few j's, we have

$$\phi_i'(z) = \frac{\partial^2 w}{\partial z^2} \psi_i(w) + (\frac{\partial w}{\partial z})^2 \psi_i'(w),$$

$$\phi_i^{(2)}(z) = \frac{\partial^3 w}{\partial z^3} \psi_i(w) + 3 \frac{\partial w}{\partial z} \frac{\partial^2 w}{\partial z^2} \psi_i'(w) + (\frac{\partial w}{\partial z})^3 \psi_i^{(2)}(w),$$

$$\vdots$$

Taking derivatives inductively, we have

$$\phi_i^{(j)} = (\frac{\partial w}{\partial z})^{j+1} \psi_i^{(j)}(w) + \sum_{k=0}^{j-1} a_k \psi_i^{(k)}(w), \tag{38}$$

 a_k being polynomial of $\partial w/\partial z$, $\partial^2 w/\partial z^2$, ..., $\partial^{j-k+1} w/\partial z^{j-k+1}$. One should keep in mind that the terms in (38) lower than $\psi_i^{(j)}(w)$ have no contribution to $\Phi(z)$.

Now we are ready to calculate $\Phi(z)$

$$\begin{split} \Phi(z) &= \det \begin{pmatrix} \phi_1(z) & \phi_2(z) & \cdots & \phi_g(z) \\ \phi_1'(z) & \phi_2'(z) & \cdots & \phi_g'(z) \\ \vdots & \vdots & & \vdots \\ \phi_1^{(g-1)}(z) & \phi_2^{(g-1)}(z) & \cdots & \phi_g^{(g-1)}(z) \end{pmatrix} \\ &= \det \begin{pmatrix} \frac{\partial w}{\partial z} \psi_1(w) & \frac{\partial w}{\partial z} \psi_2(w) & \cdots & \frac{\partial w}{\partial z} \psi_g(w) \\ (\frac{\partial w}{\partial z})^2 \psi_1'(w) & (\frac{\partial w}{\partial z})^2 \psi_2'(w) & \cdots & (\frac{\partial w}{\partial z})^2 \psi_g'(w) \\ \vdots & & \vdots & & \vdots \\ (\frac{\partial w}{\partial z})^g \psi_1^{(g-1)}(w) & (\frac{\partial w}{\partial z})^g \psi_2^{(g-1)}(w) & \cdots & (\frac{\partial w}{\partial z})^g \psi_g^{(g-1)}(w) \end{pmatrix} \\ &= (\frac{\partial w}{\partial z})(\frac{\partial w}{\partial z})^2 \cdots (\frac{\partial w}{\partial z})^g \det \begin{pmatrix} \psi_1(w) & \psi_2(w) & \cdots & \psi_g(w) \\ \psi_1'(w) & \psi_2'(w) & \cdots & \psi_g'(w) \\ \vdots & & \vdots & & \vdots \\ \psi_1^{(g-1)}(w) & \psi_2^{(g-1)}(w) & \cdots & \psi_g^{(g-1)}(w) \end{pmatrix} \\ &= (\frac{\partial w}{\partial z})^{1+2+\cdots+g} \Psi(w) \\ &= (\frac{\partial w}{\partial z})^{\frac{g(g+1)}{2}} \Psi(w). \end{split}$$

Thus

$$\Phi(z)dz^{\frac{g(g+1)}{2}} = \Psi(w)(\frac{\partial w}{\partial z})^{\frac{g(g+1)}{2}}(\frac{\partial z}{\partial w})^{\frac{g(g+1)}{2}}dw = \Psi(w)dw^{\frac{g(g+1)}{2}}$$

Exercise 37

Let *N* be the number of Weierstrass points of *X*, without counting multiplicity, show that

$$2(g+1) \le N \le (g+1)g(g-1).$$

Moreover N = 2(g+1) if and only if the gaps of X at any Weierstrass point are $1, 2, \ldots, 2g-1$; and N = (g+1)g(g-1) if and only if the gaps of X at any Weierstrass point are $1, 2, \ldots, g-1, g+1$.

Proof. As each $Wt(p_i)$ is the multiplicity of the Weierstrass point p_i , and we have the equality

$$Wt(p_1) + Wt(p_2) + \dots + Wt(p_N) = (g-1)g(g+1),$$
 (39)

if we know the upper and lower bounds of each $Wt(p_i)$, then we can determine the upper and lower bounds of N from (39). By definition,

$$Wt(p_i) = \sum_{i=1}^{g} (n_j(p_i) - j).$$

Since p_i is Weierstrass, $n_g(p_i) \ge g + 1$. Other restrictions on the gaps $n_i(p_i)$ are that

$$n_1(p_i) < n_2(p_i) < \cdots < n_g(p_i),$$

and

$$n_i(p_i) \leq 2g - 1$$

for all j.

Hence if we let

$$n_1(p_i) = 1,$$

 $n_2(p_i) = 2,$
 \vdots
 $n_{g-1}(p_i) = g - 1,$
 $n_g(p_i) = g + 1,$

 $Wt(p_i)$ reaches its minimal value

$$Wt(p_i) = (1-1) + (2-2) + \cdots + (g-1-g+1) + (g+1-g) = 1.$$

If we take

$$n_1(p_i) = 1,$$

 $n_2(p_i) = 3,$
 $n_3(p_i) = 5$
 \vdots
 $n_{g-1}(p_i) = 2g - 3,$
 $n_g(p_i) = 2g - 1,$

 $Wt(p_i)$ reaches its maximal value

$$Wt(p_i) = (1-1) + (3-2) + (5-3) + \dots + (2g-3-g+1) + (2g-1-g)$$

= 0 + 1 + 2 + \dots + g - 1
= \frac{1}{2}g(g-1).

Thus we get an estimation of $Wt(p_i)$:

$$1 \le \operatorname{Wt}(p_i) \le \frac{g(g-1)}{2}. \tag{40}$$

Combining (39), there is

$$N \le (g+1)g(g-1) \le \frac{N}{2}g(g-1),$$

or equivalently

$$2(g+1) \le N \le (g+1)g(g-1),$$

completing the proof.

Let X be a compact Riemann surface of genus $g \geq 2$, and $f: X \to \mathbb{P}^1$ be a holomorphic map of degree 2. Show that

- (a) A point $p \in X$ is a Weierstrass point if and only if p is a branched point of f.
- **(b)** The number of branched points of f is 2(g+1).

Proof. (a) If p is a branched point of f and let q = f(p), then we claim that the q is the only point in $f^{-1}(q)$. Indeed, if there were other $p_1, \ldots, p_r inf^{-1}(q)$, we have

$$2 = \deg f = k_p + \sum_{i=1}^r k_{p_i} \ge 2 + \sum_{i=1}^r k_{p_i},$$

by the very definition of mapping degree of f. But this is ridiculous, since all k_{p_i} are positive integers. So our claim holds. Thus p is the unique pole of the meromorphic function $g = \frac{1}{f - f(p)}$, of order 2. We know that 2 is not a gap of X at p. Another important observation is that if m, n are not gaps of X at p, so is not m + n. Back to our case, we know that $2, 4, 6, \ldots, 2g$ are not gaps. Plus the fact that there are exactly g gaps at p and all of them are g = g = g = g, then g = g = g are exactly g = g, hence g = g is a Weierstrass point.

Conversely, if p is a Weierstrass point, then X admits a meromorphic function f with a unique pole p, of order $\leq g$. Assume that f can be expand as

$$f = \frac{1}{z^k}, k > 0.$$

Under a coordinate transformation $w = \frac{1}{z}$ we have

$$f = w^k$$

showing that *p* is indeed a branched point.

(b) By **(a)** we just need to count the number of Weierstrass points on *X*. The weight at each Weierstrass point is

$$Wt_X(p) = \sum_{i=1}^{g} (2i - 1 - i) = \frac{g(g-1)}{2}.$$

On the other hand,

$$\sum_{p\in X} \operatorname{Wt}_X(p) = (g-1)g(g+1),$$

thus N = 2(g+1) as desired.

Exercise 39

Let X be a compact Riemann surface of genus g and $D \in \text{Div}(X)$. If $\deg D \ge 2g + 1$, then $\phi_D : X \to \mathbb{P}_n$ is a holomorphic embedding, where $n = h^0(X, \mathcal{O}_D) - 1$.

Proof. To prove the theorem, we need to prove a couple of lemmas.

Lemma 4. In the same setting as in the statement of the theorem, given any point $p \in X$, there exists a meromorphic function $f \in \mathcal{O}_D(X)$ such that $f(p) \neq 0$.

Proof of Lemma 4. We just need to show that $\mathcal{O}_{D-p} \subseteq \mathcal{O}_D$. By Riemann-Roch, we have

$$h^{0}(X, \mathcal{O}_{D-p}) - h^{1}(X, \mathcal{O}_{D-p}) = \deg D - 1 + 1 - g = \deg D - g,$$

 $h^{0}(X, \mathcal{O}_{D}) - h^{1}(X, \mathcal{O}_{D}) = \deg D + 1 - g.$

Since $\deg D \geq 2g+1 > 2g-2$ and $\deg D-1 \geq 2g > 2g-2$, $h^1(X,\mathcal{O}_{D-p})=h^1(X,\mathcal{O}_D)=0$ by the vanishing theorem. Thus $h^0(X,\mathcal{O}_D)-h^0(X,\mathcal{O}_{D-p})=1$, showing that $\mathcal{O}_{D-p}\subsetneq \mathcal{O}_D$, as desired.

Lemma 5. In the same setting as in the statement of the theorem, given any two distinct points $p, q \in X$, there exists a meromorphic function $f \in \mathcal{O}_D(X)$ such that $f(p) \neq 0$ whilst f(q) = 0.

Proof of Lemma 5. It suffices to show that there is an f such that $f \in \mathcal{O}_{D-q}(X)$ but $f \notin \mathcal{O}_{D-p-q}(X)$. To see this, we need to show that $\mathcal{O}_{D-p-q} \subsetneq \mathcal{O}_{D-p}$. Again by Riemann-Roch,

$$h^{0}(X, \mathcal{O}_{D-p}) - h^{1}(X, \mathcal{O}_{D-p}) = \deg D - 1 + 1 - g = \deg D - g,$$

$$h^{0}(X, \mathcal{O}_{D-p-q}) - h^{1}(X, \mathcal{O}_{D-p-q}) = \deg D - 2 + 1 - g = \deg D - 1 - g.$$

Since $\deg(D-p) \ge 2g > 2g-2$ and $\deg(D-p-q) \ge 2g-1 > 2g-2$, $h^1(X,\mathcal{O}_{D-p}) = h^1(X,\mathcal{O}_{D-p-q}) = 0$ by the vanishing theorem. So $h^0(X,\mathcal{O}_{D-p}) - h^0(X,\mathcal{O}_{D-p-q}) = 1$, as desired.

Now we begin to prove the theorem. By assumption, $h^0(X, \mathcal{O}_D) = n + 1$. We can pick a basis $\phi_0, \phi_1, \dots, \phi_n$ for the \mathbb{C} -space $\mathcal{O}_D(X)$. Then we define $\phi_D : X \to \mathbb{P}^n$ by

$$\phi_D: X \to \mathbb{P}^n,$$

$$x \mapsto [\phi_0(x): \phi_1(x): \cdots : \phi_n(x)],$$

which is holomorphic by construction. Then we claim that

Claim 6. ϕ_D is injective.

Proof of Claim 6. We argue by contradiction. Suppose there are distinct $p,q \in X$ such that $\phi_D(p) = \phi_D(q)$. Then by definition we have

$$[\phi_0(p):\cdots:\phi_n(p)]=[\phi_0(q):\cdots:\phi_n(q)],$$

or equivalently there exists a non-zero constant $\lambda \in \mathbb{C}$ such that

$$\phi_i(p) = \lambda \phi_i(q) \tag{41}$$

for all $0 \le i \le n$. By Lemma 5, there exists $f \in \mathcal{O}_D(X)$ such that $f(p) \ne 0$ but f(q) = 0. Writing $f = c_0 \phi_0 + \cdots c_n \phi_n$ with $c_0, \ldots, c_n \in \mathbb{C}$, we have

$$f(p) = c_0\phi_0(p) + \cdots + c_n\phi_n(p) \neq 0$$

and

$$f(q) = c_0 \phi_0(q) + \cdots + c_n \phi_n(q) = 0.$$

But by (41), we have

$$f(p) = c_0 \phi_0(p) + \dots + c_n \phi_n(p)$$

$$= \lambda (c_0 \phi_0(q) + \dots + c_n \phi_n(q))$$

$$= \lambda \cdot 0$$

$$= 0$$

a contradiction. So ϕ_D must be injective, as desired.

Thus ϕ_D is a bijection from X to $\phi_D(X)$. We need to show that $\phi_D(X)$ is closed in \mathbb{P}^n . This is easy. Since $\phi_D: X \to \mathbb{P}^n$ is continuous and X is compact, $\phi_D(X)$ is a compact subset of \mathbb{P}^n . Since \mathbb{P}^n is Hausdorff, all its compact subsets are closed, so is $\phi_D(X)$.

Finally, we have to show that $d\phi_D$ is non vanishing on X. We again argue by contradiction. By Lemma 4, we can choose the basis ϕ_0, \ldots, ϕ_n such that $\phi_0(p) \neq 0$. Then in a coordinate neighborhood (U, z) of $p, \phi_D : X \to \mathbb{P}^n$ can be viewed locally as

$$\tilde{\phi}_D: U \to \mathbb{C}^n,$$

$$z \mapsto (\frac{\phi_1(z)}{\phi_0(z)}, \cdots, \frac{\phi_n(z)}{\phi_0(z)})$$

Suppose that $d\phi_D$ vanishes at $p \in X$, then

$$(d\phi_D)(p) = (d\tilde{\phi}_D)(p)$$

$$= (\frac{\phi'_1(0)\phi_0(0) - \phi_1(0)\phi'_0(0)}{(\phi_0(0))^2}, \cdots, \frac{\phi'_n(0)\phi_0(0) - \phi_n(0)\phi'_0(0)}{(\phi_0(0))^2})$$

$$= (0, \dots, 0),$$

implying that

$$\phi_i'(0) = \frac{\phi_i(0)\phi_0'(0)}{\phi_0(0)}$$

for all $1 \le i \le n$. By Lemma 5, we can find f such that $\operatorname{ord}_p f = 1$, which implies that $f'(p) \ne 0$. By the virtue of the expansion $f = c_0 \phi_0 + \cdots + \cdots + c_n \phi_n$ the coordinate neighborhood (U, z), we have

$$0 \neq f'(0) = c_0 \phi_0'(0) + \dots + c_n \phi_n'(0)$$

$$= c_0 \phi_0'(0) + \frac{\phi_0'(0)}{\phi_0(0)} c_1 \phi_1(0) + \dots + \frac{\phi_0'(0)}{\phi_0(0)} c_n \phi_n(0)$$

$$= \frac{\phi_0'(0)}{\phi_0(0)} (c_0 \phi_0(0) + c_1 \phi_1(0) + \dots + c_n \phi_n(0))$$

$$= 0.$$

a contradiction. So $d\phi_D$ must not vanish at p. That's how the theorem has been proved.