Data Mining & Machine Learning

CS37300 Purdue University

Nov 8, 2023

Lagrange multipliers

Constrained optimization:

$$\min_{x} f(x)$$
 subject to $g(x) = 0$

Build the Lagrange equation

$$l(x,\lambda) = f(x) + \lambda g(x)$$

• Loose statement: Stationary points of l(.) are optima for the original constrained problem

Lagrange multipliers -- example

•
$$f(x) = x$$
 s.t. $x^2 = 1$

More generally:

•
$$f(x) = 1^{T}x$$
 s.t. $||x||^{2} = 1$

•
$$f(x) = \sum_{i=1}^{n} \log x_i$$
. s.t. $1^T x = 1$

Hierarchical methods

- Construct a hierarchy of nested clusters rather than picking k beforehand
- Approaches:
- Agglomerative: merge clusters successively
 Divisive: divided clusters successively
 Dendrogram depicts sequences of merges or splits
 Universities
 Universities
 Public
 Private
 Notre Dame
 Rose-Hulman
 Ball State
 Indiana State
 - Can use height to indicate distance

Clustering Represented with Dendrogram

Agglomerative

- For i = 1 to n:
 - Let $C_i = \{x_i\}$. $C = \{C_i\}$
- While target granularity is not reached:
 - Let C_i and C_j be the pair of clusters with min D(C_i,C_j)
 - $C_i = C_i \cup C_i$
 - Output C_i
 - Remove C_i from C

Divisive

- Let $C_0 = \{x_i\}$
- Divisive(C):
 - Output C as a cluster
 - If |C|>1
 - Divide C into C₁, C₂ with max D(C₁,C₂)
 - Divisive(C₁)
 - Divisive(C₂)

Distance measures between clusters

- Single-link/nearest neighbor:
 - Dist(C_i,C_j) = $min\{ d(x,y) \mid x \in C_i, y \in C_j \}$
 - Can produce long thin clusters
- Complete-link/furthest neighbor:
 - Dist(C_i,C_j) = $\max\{ d(x,y) \mid x \in C_i, y \in C_j \}$
 - Particularly sensitive to outliers
- Average link:
 - Dist(C_i,C_j) = avg{ $d(x,y) \mid x \in C_i, y \in C_j$ }

Agglomerative/Divisive: How to compute?

Agglomerative

- Exhaustive?
 - n² possibilities at first step
 - Shrinks as we go
 - But computing distance becomes more complex

Divisive

- Exhaustive?
 - Exponential possibilities at the start (O(2ⁿ))
- Heuristic solutions: Greedy
 - Choose a "high distance" point as start of new cluster
 - Move remaining points to what maximizes the distance

Hierarchical Summary

Agglomerative

- Knowledge representation?
 - Sequence of cluster merges
- Score function?
 - min/max/avg of distance/similarity
- · Search?
 - Exhaustive possible

Divisive

- Knowledge representation?
 - Sequence of cluster divisions
- Score function?
 - min/max/avg of distance/similarity
- · Search?
 - Greedy heuristic

Hierarchical Summary

Advantages

- Can discover odd-shaped clusters
- No need to set number of clusters
- Natural, informative visualization

Disadvantages

- Sensitive to outliers
- Non-obvious choice of parameters
- Unclear when to terminate
- May give hard-to-interpret results

Pattern discovery

Pattern discovery

- Models describe entire dataset (or large part of it)
- Pattern characterize local aspects of data
- Pattern: predicate that returns "true" for the instances in the data where the pattern occurs and "false" otherwise
- Task: find descriptive associations between variables

Examples

- Supermarket transaction database
 - 10% of the customers buy wine and cheese
- Telecommunications alarms database
 - If alarms A and B occur within 30 seconds of each other then alarm C occurs within 60 seconds with p=0.5
- Web log dataset
 - If a person visits the CNN website, there is a 60% chance the person will visit the ABC News website in the same month

Pattern in tabular data

- Primitive pattern: subset of all possible observations over variables X1,...,Xd
 - If X_k is categorical then $X_k = c$ is a primitive pattern
 - If X_k is ordinal then $X_k \le c$ is a primitive pattern
- Start from primitive patterns and combine using logical connectives such as AND and OR
 - age<40 AND income<100,000
 - chips=1 AND (beer=1 OR soda=1)

Pattern space

- Set of legal patterns; defined through set of primitive patterns and operators to combine primitives
 - Example: If variable X₁,...,X_d are all binary we can define the space of patterns to be all conjunctions of the form
 (X_{i1}=1) AND (X_{i2}=1) AND ... AND (X_{ik}=1)
- Typically there is a generalization/specialization relationship between patterns
 - Pattern α is more general than pattern β , if whenever β occurs, α occurs as well. This also means that pattern β is more specific than pattern α
 - Examples:
 age<40 AND income<100,000 is more specific than age<40
 chips=1 is more general than chips=1 AND (beer=1 OR soda=1)
 - This property is used during search

Pattern discovery task

- Find all "interesting" patterns in the data
- Approach: find all patterns that satisfy certain conditions
- Challenge: find the right balance between
 - Pattern complexity
 - Pattern accuracy
 - Computational complexity