Zadania z Analizy Matematycznej I.1 - seria III

Zadanie 1. Korzystając z definicji granicy udowodnić, że:

- a) $\lim_{n\to\infty} \frac{2n+1}{n+1} = 2;$
- b) $\lim_{n\to\infty} \frac{2n}{n^3+1} = 0;$
- c) $\lim_{n\to\infty} \log(\log n) = \infty$.

Zadanie 2. Sprawdź czy następujące ciągi są ograniczone i monotoniczne:

- a) $a_n = \frac{n}{2^n};$
- b) $b_n = \frac{2^n}{n!}$.

Zadanie 3. Znaleźć granicę ciągu: a) $a_n = \frac{3n-11n^2}{5n^2-1};$ b) $b_n = \frac{n+11n^2}{5n^6-2};$ c) $c_n = \frac{1^2+2^2+...+n^2}{6n^3-n^2+2n+1};$ d) $d_n = \frac{1+2+...+n}{n+2} - \frac{n}{2};$ e) $e_n = \sqrt{n^2+n} - \sqrt{n^2-n};$ f) $f_n = \frac{\sqrt{n^2+5}-n}{\sqrt{n^2+2}-n}.$

Zadanie 4. Zbadaj zbieżność ciągu i znajdź jego granicę, jeśli istnieje:

- a) $a_1 = 1$, $a_{n+1} = 1 + \frac{1}{1+a_n}$;
- b) $a_1 = \sqrt{2}, \ a_{n+1} = \sqrt{2 + a_n};$
- c) $a_1 = \sqrt{2}, \ a_{n+1} = \sqrt{2a_n}.$

Zadanie 5. Pokazać, że jeśli $\{a_n\}$ jest ciągiem ograniczonym, zaś $\{b_n\}$ ciągiem zbieżnym do zera, to

Zadanie 6. Zbadać zbieżność ciągu $a_n = a^n$ dla $a \in \mathbb{R}$.