Data Science & Al

Probability & Statistics

Introduction to Sampling Distribution

DPP Discussion Notes

- 500-220-170-90
- #Q. A sample analysis of examination results of 500 students, it was found that 220 students have failed, 170 have secured a third class, 90 have secured a second class and the rest, a first class. Do these figures support the general belief that above categories are in the ratio 4:3:2:1 respectively? (The tabular value of χ^2 for d.f. 3 at 5% level of
 - significance is 7.81).

$$\chi^2 \text{ calculate} = \frac{5(0-(-1)^2)}{5}$$

Expected X

X car X X witical

X - test

X witical

X witical m sample __ doorf [n-1] Value - datai

Value - datai

Value - datai

Value - datai

O.057.

O.01/.

Table

face volue	fail	3 -1	•	2 -4	132
Observed	220	170		90	20
Expersed	200	150		(w	
	1/2 +/3 n +/2 n + /n =	500	Ho:-	0 -> 6	Lame
	10n = 60 n = 50	ט	H;;-	wiff.	

$$\mathcal{L}\left(\frac{0-67}{\epsilon}\right)^2 = 23.67$$

#Q. What is χ^2 – test?

A die is thrown 90 times what the following results:

Face:	1	2	3	4	5	6	Total
Frequency	10	12	16	14	18	20	90

Use χ^2 -test to test whether these data are consistent with the hypothesis that die is unbiased.

Given $\chi^2 0.05 \equiv 11.07$ for 5 degrees of freedom.

Observed 10 18 11 13 20 18

Experted 15 15 15 15 15 15

0-6

0-6

$$(0-6)^{2} = 1.667$$

$$(0-6)^{2} = 1.667$$

$$(0-6)^{2} = 1.667$$

$$(0-6)^{2} = 1.667$$

$$(0-6)^{2} = 1.667$$

$$(0-6)^{2} = 1.667$$

$$(9) = 6$$

$$d \cdot \delta = 9 - 1 = 4 = 1$$

~ X (d. of)

(11.07) X2 = 5.878 × 11.07 feephed

Ho:- die is combiased.

H!:- die is biased.

#Q. A survey of 320 families with 5 children shows the following distribution:

No. of boys & girls	5 boys & 0 girl	4boys & 1 girl	3 boys & 2 girl	2 boys & 3 girl	1 boys& 4 girl	0 boys & 4 girl	Total
No. of Families	18	56	110	88	40	8	320

Given that values of χ^2 for 5 degrees of freedom are 11.1 and 15.1at 0.05 and 0.01 significance level respectively, test the hypothesis that male and female birth are equally probable.

320 families ace value 1 -> B 0 -3 13 18

Experted observed

Calculation for expected -

#Q. A chemical extraction plant processes sea water to collect sodium chloride and magnesium. It is known that sea water contains sodium chloride, magnesium and other elements in the ratio 62:4: 34. A sample of 200 tonnes of sea water has resulted in 130 tonnes of sodium chloride and 6 tonnes of magnesium. Are these data consistent with the known composition of sea water at 5% level of significance? (Given that the tabular value of χ^2 is 5.991 for 2 degree of freedom).

Cofered -10 0 = 200

M > 27

65 124 Experted 64 130 Observed - 4 -2 0-6 6 (0-4) (0-F7 0.29) 0.5 0.835 X2= 1.021

Pw

~ Noutical (d.o.f) = (n=2)

5. 89/

Jerepted

#Q. 4 coins were tossed at a time and this operation is repeated 160 times. It is found that 4 heads occur 6 times, 3 heads occur 43 times, 2 heads occur 69 times, one head occur 34 times. Discuss whether the coin may be regarded as unbiased?

ليني 4

160 Hivel

v . 7

1.35

$$\frac{(0-t)^2}{\varepsilon} = 1.6 \qquad 0.225$$

$$\frac{5(0-\epsilon)^2}{\varepsilon} = 4-0.75$$

 $\frac{\chi^2}{\chi^2} \sim \chi = 2 - 1 = 3 (d \cdot 0 \cdot f)$ 7095 Xcalurated X X witical Jarepred.

equal on4

#Q. 200 digits are chosen at random from a set of tables. The frequencies of the digits were:

Digits	8	1	2	3/	4	15	6	1	8	9
Frequency	18	19	23	21	16	25	22	20	21	15

Use χ^2 -test to assess the correctness of the hypothesis that the digits were distributed in equal numbers in the table, given that the value of χ^2 are respectively 16.9, 18.3 and 19.7 for 9, 10 and 11 degrees of freedom at 5% level of significance.

200 -> 9=10-> 200 = 20 Production of the second of the sec thered 18 19 23 24 16 25 22 20 24 15 0-6 -2 -1 3 1 -4 5 2 0 1-5 (0-6) 4 1 9 1 16 2 4 0 12

0·05

$$(0-\overline{F})^2 \quad 0.2 \quad 0.95 \quad 0.95 \quad 0.8 \quad 1.75 \quad 0.2 \quad 0$$

$$\overline{E}$$

$$2\frac{(0-\epsilon)^2}{\epsilon} = 4\cdot3$$

$$(91-1) = d \cdot of = (9)$$
 $\chi^2 \text{ with eat} = 16.919$
 $\frac{16.919}{40516}$

4-3 <16. 919

Jeephed

#Q. A genetical law says that children having one parent of blood group M and the other parent of blood group N will always be one of the three blood groups M, MN, N and that the average no. of children in these groups will be in the ratio 1:2:1. The report on an experiment states as follows: "Of 162 children having one M parent and one N parent, 28.4% were found to be of group M. 42% of group MN and the rest of the group N." Do the data in the report conform to the expected genetic ratio 12:1?

[1:2:1]

0 (N)

MAN

(25.4-42)./

MN N 19 MN face value 19 2~

60 feeted ~ 40.5

Yx = 162

ns 90.5

87

90.5

4 2- 952 W 68.04 96.00R Objened 29.62 7/62 12 x162 28.4× 162 ア・ダレ -12.96 0- € 5.108 55.53 16 2-961 (0-47) 30.33

0.798

(0-F7)

2.0735

1. 3 071

$$\frac{5(0-1)^{2}}{6}$$
= 4.192

$$\frac{1:2:7}{1:2:7}$$

Ho: Acepted

#Q. Every clinical thermometer is classified into one of the four categories A, B. C and D on the basis of inspection and test. From past experience, it is known that thermometers produced by a certain manufacturer are distributed among the four categories in the following proportions:

Category	A	В	Ć	D
Proportion	0.87	0.09	(0.03)	0.01

A new lot of 1336 thermometers is submitted by the manufacturer for inspection and test and the following distribution into four categories results:

11.2876

$$\frac{(0-t)^2}{E}$$
 0.37 7.11 1.1947 0.41

 $\frac{5(0-t)^2}{E} = 9.41 = 2$

Musika for table 2 diff = 27-12?

Maiska for table 2 diff = 27-12? 7.075 9.71 > 7875 -, Ho!- Rejected

Category	A	В	С	D	
No of the thermometers	1188	91	47	_10	

Does this new lot of thermometers differ from the previous experience with regards to proportion of thermometers in each category?

Ho! - differ or alli trift

THANK - YOU

Topics to be Covered