- Complete tag loss in capture-recapture studies
- affect abundance estimates: an elephant seal
 - case study.
- Emily Malcolm-White¹, Clive R. McMahon², Laura L.E. Cowen^{3*},
 - 1 Mathematics and Statistics, Middlebury College, Middlebury, VT, USA
 - ² Sydney Institute for Marine Science, Mosman, NSW, Australia
 - 3 Mathematics and Statistics, University of Victoria, Victoria, BC, Canada
- ⁷ *Corresponding author: Mathematics and Statistics, University of Victoria, PO Box 1700
- 8 STN CSC, Victoria, BC, Canada, V3W 2Y2; lcowen@uvic.ca

ABSTRACT:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

- 1. In capture-recapture studies, recycled individuals occur when individuals lose all of their tags and are recaptured as though they were new individuals.

 Typically, the effect of these recycled individuals is assumed negligible.
- 2. Through a simulation-based study of double tagging experiments, we examined the effect of recycled individuals on parameter estimates in the Jolly-Seber model with tag loss (Cowen & Schwarz, 2006). We validated the simulation framework using long-term census data of elephant seals.
- 3. Including recycled individuals did not affect estimates of capture, survival, and tag-retention probabilities. However, with low tag-retention rates, high capture rates, and high survival rates, recycled individuals produced overestimates of population size. For the elephant seal case study, we found population size estimates to be between 8 and 53% larger when recycled individuals were ignored.
- 4. Ignoring the effects of recycled individuals can cause large biases in population size estimates. These results are particularly noticeable in longer studies.

KEY WORDS: Abundance; Capture-mark-recapture; Complete tag loss;

Demography; Double-tagging; Elephant seal; Jolly-Seber; Recycled individual.

₇ Introduction

- Mark-recapture studies utilize statistical techniques to estimate population parameters. Over
- k sample times, individuals are captured, tagged with unique tags, released and potentially
- recaptured at subsequent sampling times. The Jolly-Seber model (Jolly, 1965; Seber, 1965) is
- used to model open populations since it can estimate parameters of interest such as population

size and survival rates (Pollock et al., 1990). An important assumption of this model is that individuals never lose their tags. However, when this assumption is violated, serious bias can 33 occur in the parameter and variance estimates (Arnason & Mills, 1981). Double-tagging, the 34 placement of two tags on an individual, can be used to estimate tag retention rates. Double 35 tagging studies have been used for a wide variety of species (for example cod: Björnsson et al. 2011, lobsters: Xu et al. 2014:, sea turtles: Bjorndal et al. 1996, elephant seals: Pistorius 37 et al. 2000, black bears: Diefenbach & Alt 1998) to investigate probabilities of tag loss or tag shedding rates. Often a mixture of single- and double-tagged individuals is used for practical purposes. Cowen & Schwarz (2006) incorporated tag-loss by developing the Jolly-Seber tag-loss (JSTL) model for experiments where some fraction of individuals are double tagged. This model was further extended to account for heterogeneity in capture 42 between groups (Xu et al., 2014). In the simplest form of the JSTL model, it is assumed that every individual present in the population at sample time k has capture, survival, and tag retention probabilities that are homogeneous for all individuals in the population across all sampling occasions. However, these assumptions are rarely met and can induce significant bias in the parameter estimates (Schwarz et al., 2012). Occasionally in mark-recapture experiments, previously captured individuals lose all of their 48 tags (complete tag loss). These individuals are either recognized upon recapture (for example, through scarring or fin clipping), and not re-tagged, or if unrecognized, these individuals would be tagged again and treated as "new" individuals. Individuals who lose both tags and 51 are recaptured and re-tagged are known as recycled individuals. For example, an individual with the following tag history over three sampling occasions {11 01 00} was double tagged at sample time 1, lost a tag between times 1 and 2, and may have lost its last tag between sample times 2 and 3 and then have been recaptured at sample time 3 resulting in a new individual with capture history {00 00 11}. If the rate of tag loss is small, bias in the population estimate will also be small for the Peterson estimators (Seber & Felton, 1965). Typically in the Jolly-Seber and JSTL models, the effect of recycled individuals is assumed

- to be negligible. However, in situations where tag retention is low and survival and recapture probabilities are high it is suspected that recycled individuals will bias population size estimates upwards. The motivation for this study was to investigate the effect of recycled individuals on parameter estimates in the JSTL model through a simulation study and determine under which conditions researchers need to be concerned. This study is important as the assumption that the effect is negligible has not been fully tested and quantified, and most studies that rely on marking individuals typically experience tag loss. Thus, there is a need to account for recycled individuals given the desire for accurate and robust estimates for management and conservation purposes.
- In order to determine whether the simulation framework provided a reasonable approximation to the real world, we analyzed the effects of recycled individuals in long-term census data of elephant seals (*Mirounga leonina*) shown in Figure XXX.

Materials and Methods

$_{72}$ The Jolly-Seber Model with Tag Loss (JSTL)

- Full development of the JSTL model is given by (Cowen & Schwarz, 2006) and summarized in the Online Supplement including a table of notation.
- Many different models can be specified for the JSTL model where parameters are homogeneous or heterogeneous with respect to time or group. We consider the case of the JSTL model where capture, survival, and tag retention probabilities are constant over time (Cowen & Schwarz, 2006).
- Assumptions of the JSTL model with constant survival, capture, and tag retention probabilities and time-varying entry probabilities are as follows:
 - The effect of recycled individuals is negligible

- All individuals (marked and unmarked) are equally catchable, and that capture probabilities for all individuals are the same for all individuals at all sample times
- All individuals (marked and unmarked) have equal survival probabilities between all sample times
- All individuals have equal entry (birth or immigration) probabilities, but entry probabilities can vary between sample times
- All marked individuals have equal tag retention probabilities between all sample times
- For double-tagged individuals, tag loss is independent between tags
- There is independence across all individuals
- The sampling period is relatively short compared to the interval between sampling times

93 Likelihood and Estimation

The JSTL model is developed under the idea of a superpopulation (the number of individuals that will enter population at some point during the study) (Schwarz & Arnason, 1996) and this allows the likelihood to be formulated into three parts: 1) a model for the observed number of unique tag histories given the superpopulation size (L_1^A) , 2) a model for the recaptures given the observed number of unique tag histories (L_1^B) , and 3) a model for the number of individuals lost on capture (L_3) . The third component L_3 , is typically used for harvest or fisheries data when known deaths occur. In this study and in the elephant seal application, we assume there is no possibility of loss on capture, thus the third component of the likelihood simplifies to 1. The full likelihood is given by the product of the components of the likelihood $(L = L_1^A \times L_1^B)$ and can be found in the Online Supplement.

Maximum likelihood parameter estimates are found using a Newton-Raphson type method.

Estimated standard errors are computed using the delta theorem. Models were implemented

using R software (R Core Team, 2014). Code from this study are included in this published

of article (and its supplementary information files).

108 Experimental Design

To study the effect of recycled individuals on parameter estimates of this model, we conducted 109 a simulation study. Data sets varied both in super-population size, parameter values, and 110 percent double tagged. We generated data for the JSTL model with constant survival, 111 capture, and tag retention probabilities for a double-tagging experiment. Super-population 112 sizes of 1000 and 100 000 were considered in order to study the effect of population size. For 113 the super-population size of 100 000, experiments with ten sample times were considered. For 114 the super-population size of 1000 we considered experiments with five, seven and ten sample 115 times in order to determine the effect of the length of the study. For each population size, 116 we tested different proportions of double-tagged versus single-tagged individuals (0.5 and 1). 117 Survival, capture, and tag retention probability parameters were varied in a 3³ experimental 118 design with low (0.2), medium (0.5) and high (0.9) values for all parameters. The entry rates 119 were fixed to be 1/k at each of the sampling times. No individuals were lost on capture. We considered the set of parameter values to be reasonable values that might be encountered 121 in practice and also produce informative capture-recapture scenarios. Tag retention rates 122 can vary by species, age of the tag, tag type, tag location, behaviour, season, and individual 123 quality (size of an animal for example in seals). For example, tag retention rates have ranged 124 from 13% (Fogarty et al., 1980) to 95% (Gonzalez-Vicente et al., 2012) in lobsters. Other 125 studies report tag retention rates of 65% in male elephant seals (Pistorius et al., 2000) and 126 88% in Adelie penguins (Ainley & DeMaster, 1980). Mean retention of visible implant tags 127 has been recorded as 32% in small rockpool fish (Griffiths, 2002). Turtles in particular 128 experience high tag loss rates. For example Bellini et al. (2001) reports the probability of tag 129 loss in hawksbill turtles as 0.57 and Bjorndal et al. (1996) observed the probability of tag 130 loss in green nesting turtles to be as high as 0.38. Thus, we chose a wide range of tag loss 131

parameter values to try to capture the diversity among published tag loss rates.

133 Simulation of Data

139

144

145

146

147

148

149

For all of the parameter combinations of super-population size $(N = 1000, 100\ 000)$, fraction double-tagged (0.5, 1), survival probability $(\phi = 0.2, 0.5, 0.9)$, capture probability (p = 0.2, 0.5, 0.9) and tag retention probability $(\lambda = 0.2, 0.5, 0.9)$, we generated 100 data sets where the simulated data met all the assumptions of the model.

For each individual, we simulated a capture history using the following algorithm:

- 1. Determine when the individual enters the population utilizing the entry probabilities.
- 2. For each sample time after entry (until death or first capture) determine if the individual survives to that sample time (with probability ϕ). If they are still alive, determine if they are first captured (with probability p). If they are captured, determine whether they are single or double-tagged.
 - 3. For each sample time after first capture (until death, loss of all tags or the end of the study) determine if the individual survives to that sample time (with probability ϕ). Then if they are still alive, determine if they lose any of their tags (with probability $1-\lambda$). If they still have at least one of their tags, determine if they are recaptured (with probability p). If they have lost all of their tags, consider them as a new individual entering the population at this sample time.

By keeping track of all the recycled individuals, this algorithm provides us with two data sets: one that includes the recycled individuals (assumes individuals, who have complete tag loss, are tagged again upon recapture and treated as new individuals) and one that excludes recycled individuals (assumes that individuals, who have complete tag loss, can be recognized upon recapture and are not re-tagged). The JSTL model was fit to the 100 simulated data

sets twice (once including and once excluding recycled individuals). We assumed that any 155 difference between the two analyses was due entirely to the recycled individuals. All data 156 generated during this study are included in this published article (and its supplementary 157 information files). 158

Evaluation Criteria

167

169

To evaluate the resulting parameter estimates from each of the simulations, we looked at 160 several criteria including: average parameter estimate, relative bias of the estimates, the 161 average standard error of the parameter estimates, the standard deviation of the parameter 162 estimates, and root mean squared error (RMSE) of the parameter estimates. 163

Given that the $\hat{\theta}_i$'s are the parameter estimates from each of the 100 simulations and θ the 164 value of the parameter, we calculated:

- the mean parameter estimate as $\hat{\bar{\theta}} = \frac{1}{100} \sum_{i=1}^{100} \hat{\theta}_i$ 166
- average standard error of the parameter estimate as $SE(\hat{\theta}) = \frac{1}{100} \sum_{i=1}^{100} SE(\hat{\theta}_i)$. the standard deviation of the parameter estimates as $SD(\hat{\theta}) = \sqrt{\frac{1}{99} \sum_{i=1}^{100} (\hat{\theta}_i \hat{\bar{\theta}})^2}$. 168
 - the RMSE of the parameter estimates as RMSE = $\sqrt{\frac{1}{100}\sum_{i=1}^{100}(\hat{\theta}_i \bar{\hat{\theta}})^2}$.

We compared the average parameter estimates to the true parameter values using relative bias. We calculated the relative bias of the estimators as $(\bar{\theta} - \theta)/\theta$. We also compared the 171 relative bias from the analysis with the recycled individuals to the relative bias from the 172 analysis without the recycled individuals. We calculated the difference in the two relative 173 biases and consider this to be the relative bias that was contributed entirely by the recycled 174 individuals being tagged as "new" individuals. 175

₇₆ Simulation Results

The survival estimates are biased for some parameter combinations of survival, capture, and tag retention probabilities. As an example, box plots of survival estimates for data with 178 super-population size N=1000 and 100% double tagging are provided (Fig. 1). Box plots of 179 survival estimates for other super-population sizes and double-tagging rates are provided in 180 the Online Supplement (Figs A1-A4). Although there is bias in the survival estimates for 181 several of the parameter combinations, the bias is similar between the analysis including and 182 the analysis excluding the recycled individuals for both super-population sizes (N=1000 and 183 100 000) and for both double-tagging rates $(T_2 = 0.5, 1)$. In fact, the differences in relative 184 bias due to recycled individuals for the parameters ϕ , p and λ is small (<0.01) for all 108 185 parameter combinations considered. In general, the SE, SD and RMSE of the estimates of 186 ϕ , p and λ are similar for both the analysis including and excluding recycled individuals for 187 the parameter combinations considered. It seems that the treatment of recycled individuals 188 has little effect, if any, on the accuracy of the JSTL estimators for survival, capture, and 189 tag-retention probabilities. Box plots of capture and tag retention estimates for all models 190 can also be found in the Online Supplement (Figs A5-A12). 191 There is slightly more bias due to recycled individuals for parameter combinations where the 192 probability of double tagging (T_2) was only 0.5, compared to the parameter combinations 193 where all individuals were double tagged. As an example, relative bias of the parameters are 194 presented for the parameter combination where $\phi = 0.9, p = 0.9$ and $\lambda = 0.2$ for both the 195 analysis with and without recycled individuals for varying population size and double-tagging 196 probabilities (Table 1). 197

FIGURE 1: Survival probability estimates for simulated data with superpopulation size N=1000 with 100% double-tagging for different tag retention probabilities ($\lambda=0.2,0.5,0.9$), survival probabilities ($\phi=0.2,0.5,0.9$), and different capture probabilities (p=0.2,0.5,0.9) using the JSTL model from a ten-sample-time study. Box plots of the estimates of ϕ for the model analyzed including and excluding the recycled individuals are provided. The black line indicates the true value of ϕ used to simulate the data for each model.

207

208

209

210

199

200

201

202

203

204

205

Table 1: The mean relative bias of the parameters from the model analyzed including (R) and excluding (R') the recycled individuals for data with high survival probability $(\phi = 0.9)$, high capture probability (p = 0.9), and low tag retention $(\lambda = 0.2)$ for different super-populations sizes (N = 1000, 100, 000) and

different proportion double tagged ($T_2 = 0.5, 1$) using the JSTL model from a ten-sample-time study.

	N=1000				N=100 000			
	$T_2 = 1$		$T_2 = 0.5$		$T_2 = 1$		$T_2 = 0.5$	
	R	R'	R	R'	R	R'	R	R'
$\overline{\phi}$	0.00	0.00	0.06	0.05	0.00	0.00	0.11	0.10
p	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
λ	0.00	0.00	0.00	0.00	0.00	0.00	-0.09	-0.08
N	1.98	0.00	2.13	0.00	1.98	0.00	2.12	0.00

211

212

The estimate of super-population size (\hat{N}) is computed as $\hat{N} = n_{\text{obs}}/(1-\hat{P}_0)$, where \hat{P}_0 is the 214 estimated probability of never being seen. In the scenarios where many recycled individuals 215 were recaptured and considered as "new" individuals (included), the number of observed 216 individuals, $n_{\rm obs}$, is larger than it should be and thus, \hat{N} is biased upwards. By recognizing 217 recycled individuals upon recapture, this bias can be corrected. The relative bias in the 218 super-population size (\hat{N}) due to recycled individuals is highest in the scenario with high 219 survival rates ($\phi = 0.9$), high capture rates (p = 0.9) and low tag retention rates ($\lambda = 0.2$), as 220 predicted (Fig. 2, Table 1). The relative bias is small for all scenarios where tag retention was 221 high, but relative bias increases as tag retention decreases. The relative bias in \hat{N} decreases 222 as capture probability decreases, but recycled individuals appear to still have some effect on 223 the estimates even when capture probabilities are low (p = 0.2). The relative bias in \hat{N} is 224 high for scenarios where survival probability is high, and decreases as survival probability 225 decreases. In all scenarios where survival probability is low ($\phi = 0.2$) individuals are unlikely 226 to survive long enough to be able to be tagged, lose tag(s) and be recaptured as "new" 227 individuals. When survival probability is low, the relative bias due to the recycled individuals 228 is small (less than 0.15) and hence not shown in Fig. 2. SE, SD, and RMSE of \hat{N} varies, but 229 remains similar between the analyses with and without recycled individuals included, across 230 all scenarios. 231

FIGURE 2: The difference in mean relative bias of the super-population estimate (\hat{N}) between the model analyzed including and excluding the recycled individuals for data with super-population size N=100~000 with 100% double-tagging for different tag retention probabilities ($\lambda=0.2,0.5,0.9$), survival probabilities ($\phi=0.2,0.5,0.9$), and capture probabilities (p=0.2,0.5,0.9) using the JSTL model from a ten-sample-time study.

FIGURE 3: Box plots of the estimates of N for the model analyzed including and excluding the recycled individuals for data with super-population size N = 1000 with 100% double-tagging for different capture probabilities (p = 0.2, 0.5, 0.9), and constant survival ($\phi = 0.9$) and tag retention ($\lambda = 0.2$) probabilities using the JSTL model from experiments with k = 10, 7, and 5 sample-times.

There is more bias in \hat{N} due to recycled individuals in longer experiments (Fig. 3). With a larger number of sampling occasions, there is more time for individuals to be captured and

tagged, lose their tags, and survive to be recaptured (be recycled). In shorter studies, there are fewer numbers of recycled individuals and thus the bias in \hat{N} due to recycled individuals is lower although not unnoticeable in the worst case scenarios (low tag retention, high survival and high capture probabilities). Box plots of super-population size (N) for all scenarios are available in the Online Supplement (Figs A19-A24).

FIGURE 4: The difference in mean relative bias of the abundance estimates at each sample time (\hat{N}_j) between the model analyzed including and excluding the recycled individuals for data with super-population size N=100 000 with 100% double-tagging for different tag retention probabilities ($\lambda = 0.2, 0.5, 0.9$), survival probabilities ($\phi = 0.5$ and 0.9), and different capture probabilities (p = 0.2, 0.5, 0.9) using the JSTL model from a ten-sample-time study. Note that lines are added between the points to emphasize the difference in values; no models were fit to generate these lines.

In general, the bias due to recycled individuals in the \hat{N}_j 's follows a similar pattern to the bias due to recycled individuals in \hat{N} , with relative bias in the \hat{N}_j 's increasing as tag retention decreases, survival increases, and capture probability increases (Fig. 4). For all scenarios, the relative bias in the estimates of abundance at each sample time j is smaller for

earlier sampling occasions and larger for later sampling occasions. Since the estimates of the 265 population sizes at each time j are computed iteratively as $\hat{N}_{j+1} = \hat{\phi}(\hat{N}_j) + \hat{b}_j(\hat{N})$, any bias 266 in the earlier abundance estimates is magnified in the later sampling occasions abundance 267 estimates. The scenario with $\phi = 0.5$, p = 0.9, and $\lambda = 0.2$ appears to have very high relative 268 bias in the abundance estimates in later sampling occasions (>3 for \hat{N}_{10}), which is caused by 269 a combination of more upward bias in the survival probability estimates for the analysis with 270 recycled individuals than without (Fig. A14) as well as upward bias in the super-population 271 size estimates. Plots of the mean abundance estimates for all scenarios are available in the 272 Online Supplement (Figs A17-A28). 273

²⁷⁴ Case Study: Elephant Seals

To validate the simulation framework, we analyzed data from a long-term mark-recapture study of elephant seals on Macquarie Island. The data used for the case study consists of 7 years between 1993 and 2000. Elephant seal pups were marked with two tags in the inter-digital webbing of their hind flippers and were given a permanent hot-iron branding with a unique identifier on their flank (McMahon *et al.*, 2009). This permanent branding allowed for individual elephant seals to be identified even if they lost both tags. Thus, recycled individuals could be easily identified.

²⁸² We considered two analyses of the data:

- 1. We assumed that recycled individuals could not be recognized upon recapture (ignoring branding) and were re-tagged as if they were new individuals. Recycled individuals are included. This scenario simulates analysis ignoring the effects of recycled individuals.
- 286 2. Recycled individuals were recognized upon recapture (by branding) and were re-tagged with new tags identical to their lost tags. Thus, recycled individuals are excluded.

For the elephant seal data, there were several differences in parameter estimates of the JSTL

model when recycled individuals were included compared to when recycled individuals were
excluded. For this analysis, we used the same model as the simulation study where capture,
survival and tag retention rates were held constant.

As expected, the super-population size estimate for the analysis which included the recycled individuals ($\hat{N}=8985$) is 30% larger than the estimate in the analysis which excluded recycled individuals ($\hat{N}=6949$) who were recognized upon recapture. This relationship also holds true for the abundance estimates at each sample time (Table 2). The difference in the abundance estimates increases as time goes on, again validating the results of our simulation study.

Similar to the simulations, there is not much difference in the estimates of survival, capture, and tag-retention probabilities between the analysis including and excluding recycled individuals. For comparison to the previous simulations, we note that tag retention probability for the elephant seals was estimated to be ≈ 0.8 (high). Standard error estimates are also higher when recycled individuals are included in the analysis. The same pattern is seen in the simulation studies (see Web Appendix A).

Table 2 Estimates of survival probability (ϕ) , capture probability (p), tagretention probability (λ) , and annual population size (N_j) for the elephant seal data analyzed with and without the recycled individuals. Estimated standard errors (SE) are also presented.

304

305

306

307

Including Recycled Excluding Recycled Parameter Estimate SEEstimate SE ϕ 0.7590.006 0.7440.0060.6820.006 0.7410.006 pλ 0.7920.0050.7990.005 N_{1994} 1740 48 1601 36 N_{1995} 1717 40 1859 41 N_{1996} 42 2515 46 2264 N_{1997} 3179 50 2727 43 N_{1998} 3793 54 2965 48 N_{1999} 4300 59 3229 46 N_{2000} 4973 65 3238 50 N8985 6949

Discussion

308

Through both a simulation study and an elephant seal case study, we examined the effect of 310 recycled individuals on parameter estimates from the Jolly-Seber tag loss model. In an attempt 311 to emulate the many different real life scenarios researchers may face, we simulated over 312 many different values of survival probability, capture probability, tag-retention probability, 313 population size, study length, and proportion double tagged. While these scenarios do not 314 cover all possible realistic mark-recapture experiments, our simulations are sufficient to show 315 that the JSTL abundance estimates can be substantially biased by recycled individuals, 316 especially when tag-retention is low combined with high survival, high capture rates, or both. 317 This effect is especially noticeable in longer experiments. These results brings context to 318 the assumption that the effect of recycled individuals is negligible in mark-recapture models. 319 However, we show that in general, recycled individuals have little effect on the accuracy of

the survival, capture, and tag-retention probability estimates and that for short-term studies, the effects are reduced.

For longer term studies when survival and capture probabilities are low, the bias in abundance estimates associated with recycled individuals is smaller. These are characteristics that might be associated with small, endangered, or decreasing populations.

It is not surprising that survival estimates are not biased upwards when recycled individuals 326 are ignored. Survival estimates are essentially a relative measure of how many individuals 327 are around now versus the previous time step. Thus the bias in the numerator and the 328 denominator essentially cancels out (i.e. $\hat{\phi}_j \approx \hat{N}_j/\hat{N}_{j-1}$). Although the case study of elephant 329 seals validated some of the results from the simulation study (recycled individuals bias 330 abundance estimates upwards), some caution must be taken when comparing simulation 331 studies to the real world. There are many parameters that may differ or be uncertain, such 332 as entry probabilities, that may influence the results. Simplifications of the individuals in the 333 simulation studies may not take into account the complexities that arise in real life scenarios. 334 Although our study provides some evidence that recycled individuals have an effect on 335 estimators of the JSTL model in particular situations, there is room for improvement in our approach and questions remain for future work. We only examined three levels of survival, capture, and tag-retention probabilities (Low=0.2, Medium=0.5 and High=0.9) which was intended to simulate across a variety of scenarios that may exist in real life. Future work could 339 examine levels of survival, capture, or tag retention for scenarios of interest for particular 340 populations or could simulate across more levels to try to get a better sense of the relationship 341 between the parameters and the effect of recycled individuals. Additionally, future work 342 could examine the effect of recycled individuals in situations where survival, capture or 343 tag-retention probabilities are thought to be time- or group-varying. 344

Developing a model to incorporate recycled individuals is a similar problem to that of incorporating misidentification of individuals. Schwarz & Stobo (1999) developed a model

to deal with tag-misreads in an open population capture-recapture setting. However most 347 of the misidentification literature focusses on genetic or photographic identification errors. 348 Here multiple identities can be assigned to the same individual leading to overestimates in 349 population size if misidentification is ignored (Yoshizaki et al., 2011). This is the same result 350 that we see when recycled individuals are ignored. Link et al. (2010) introduced the notion of 351 using a latent multinomial to model the latent capture histories for a closed population model. 352 Others have extended Link et al.'s model to deal with multiple non-invasive marks (Bonner 353 & Holmberg, 2013; McClintock et al., 2013), heterogeneity in parameters (McClintock et al., 354 2014) and open populations (Bonner & Holmberg, 2013). These latent multinomial models 355 could be extended to include misidentification produced by complete tag loss. 356 Finally, the JSTL model we used did not include a component for loss on capture (when 357 for example a fishery harvest occurs). It would be interesting for future work to include 358 loss on capture to determine if recycled individuals are still problematic under this scenario. 350 There remains a great deal more to study including testing some of the many assumptions 360 that capture-mark-recapture analyses rely on. Increasing computation power and a larger 361 community applying themselves to these problems has the potential to inform researchers 362 and managers in a meaningful way, especially in terms of how we use imperfect observations 363 to estimate vital rates (survival and fecundity). Having more robust estimates of vital rates 364 is especially important if we are to effectively manage populations on an ever increasing list 365 of endangered species. 366 For researchers interested in conducting and analyzing mark-recapture studies to determine 367 abundance estimates, we stress the importance of using tags with high retention rates, especially in situations where survival and capture rates are suspected to be high. As long as tag-retention is high, the JSTL estimator of population size is only weakly affected 370 by recycled individuals. Longer studies should be particularly concerned about recycled individuals biasing abudance estimates. In situations where it is possible, recognizing if an 372 individual has been captured previously (by scarring, marking, etc) can improve accuracy of

the abundance estimates. Permanent marking should be used where possible. If researchers

are only interested in the survival rates, they do not need to be concerned with the effect of

recycled individuals regardless of the study's tag-retention rates.

$_{77}$ Acknowledgements

Simulation studies and analyses were run on WestGrid/Compute Canada with assistance

from Dr. Belaid Moa. LC was supported by NSERC Discovery Grant 327025-2013.

380 Authors' Contributions

EMW and LC conceived the ideas, designed methodology, and analysed the data; CM

collected the data. All authors led the writing of the manuscript. All authors contributed

critically to the drafts and gave final approval for publication.

384 Data Accessibility

Data Accessibility:

- Elephant seal data: Dryad doi: To be determined upon acceptance of paper. - Generated

data and scripts: Dryad doi: To be determined upon acceptance of paper.

References

Ainley, D.G. & DeMaster, D.P. (1980) Survival and mortality in a population of Adelie

penguins. *Ecology*, **61**, 522–530. Doi:10.2307/1937418.

- Arnason, A. & Mills, K.H. (1981) Bias and loss of precision due to tag loss in Jolly-Seber
- estimates for mark-recapture experiments. Canadian Journal of Fisheries and Aquatic
- 393 Science, **38**, 1077–1095. Doi: 10.1139/f81-148.
- Bellini, C., Godfrey, M.H. & Sanches, T.M. (2001) Metal tag loss in wild juvenile Hawksbill
- sea turtles (Eretmochelys imbricata). Herpetological Review, **32**, 172–174.
- Bjorndal, K., Bolten, A.B., Lagueux, C.J. & Chaves, A. (1996) Probability of tag loss in
- green turtles nesting at Tortuguero, Costa Rica. Journal of Herpetology, 30, 566–571. Doi:
- 10.2307/1565709.
- Björnsson, B., Karlsson, H., Thorsteinsson, V. & Solmundsson, J. (2011) Should all
- fish in mark-recapture experiments be double-tagged? Lessons learned from tagging
- coastal cod (Gadus morhua). ICES Journal of Marine Science, 68, 603–610. Doi:
- 402 10.1093/icesjms/fsq187.
- Bonner, S.J. & Holmberg, J. (2013) Mark-recapture with multiple, non-invasive marks.
- 404 Biometrics, **69**, 766–775. Doi: 10.1111/biom.12045.
- Cowen, L. & Schwarz, C.J. (2006) The Jolly-Seber model with tag loss. *Biometrics*, **62**,
- 406 699–705. Doi: 10.1111/j.1541-0420.2006.00523.x.
- 407 Diefenbach, D.R. & Alt, G.L. (1998) Modeling and evaluation of ear tag loss in black bears.
- The Journal of Wildlife Management, **62**, 1292–1300. Doi: 10.2307/3801993.
- Fogarty, M.J., Borden, D.V.D. & Russell, H.J. (1980) Movements of tagged American
- lobster, Homarus americanus, off Rhode Island. Fishery Bulletin, 78, 771–780. Doi:
- 411 10.1139/f85-030.
- Gonzalez-Vicente, L., Diaz, D., Mallol, S. & Goni, R. (2012) Tag loss in the lobster *Palinurus*
- elephas (Fabricius, 1787) and implications for population assessment with capture-mark-
- recapture methods. Fisheries Research, 129, 1–7. Doi: 10.1016/j.fishres.2012.05.014.

- Griffiths, S.P. (2002) Retention of visible implant tags in small rockpool fishes. *Marine*
- Ecology Progress Series, **236**, 307–309. Doi: 10.3354/meps236307.
- Jolly, G.M. (1965) Explicit estimates from capture-recapture data with both death and
- immigration—stochastic model. *Biometrika*, **52**, 225–247. Doi: 10.2307/2333826.
- Link, W.A., Yoshizaki, J., Bailey, L.L. & Pollock, K.H. (2010) Uncovering a latent multinomial:
- Analysis of mark-recapture data with misidentification. *Biometrics*, **66**, 178–185. Doi:
- 10.1111/j.1541-0420.2009.01244.x.
- McClintock, B.T., Bailey, L.L., Dreher, B.P. & Link, W.A. (2014) Probit models for capture-
- recapture data subject to imperfect detection, individual heterogeneity and misidentification.
- The Annals of Applied Statistics, 8, 2461–2484. Doi:10.1214/14-AOAS783.
- McClintock, B.T., Conn, P.B., Alonso, R.S. & Crooks, K.R. (2013) Integrated modeling of
- bilateral photo-identification data in mark-recapture analyses. *Ecology*, **94**, 1464–1471.
- 427 Doi:10.1890/12-1613.1.
- 428 McMahon, C.R., Burton, H., van den Hoff, J., Woods, R. & Bradshaw, C.J.A.
- (2009) Assessing hot-iron and cyro-branding for permanently marking southern ele-
- phant seals. Journal of Wildlife Management, **70**, 1484–1489. Doi: 10.2193/0022-
- 431 541X(2006)70[1484:AHACFP]2.0.CO;2.
- Pistorius, P.A., Bester, M.N., Kirkman, S.P. & Boveng, P.L. (2000) Evaluation of age-
- and sex-dependent rates of tag loss in southern elephant seals. The Journal of Wildlife
- Management, **64**, 373–380. Doi: 10.2307/3803235.
- ⁴³⁵ Pollock, K.H., Nichols, J.D., Brownie, C. & Hines, J.E. (1990) Statistical inference for
- capture-recapture experiments. Wildlife Monographs, 107, 3–97.
- R Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation
- for Statistical Computing, Vienna, Austria.

- Schwarz, C.J. & Arnason, A.N. (1996) A general methodology for the analysis of capture-
- recapture experiments in open populations. *Biometrics*, **52**, 860–873. Doi: 10.2307/2533048.
- Schwarz, C.J. & Stobo, W.T. (1999) Estimation and effects of tag-misread rates in capture-
- recapture studies. Canadian Journal of Fisheries and Aquatic Sciences, **56**, 551–559. Doi:
- 443 10.1139/f98-196.
- Schwarz, L., Hindell, M., McMahon, C. & Costa, D. (2012) The implications of assuming
- independent tag loss in southern elephant seals. Ecosphere, 3, 81. Doi: 10.1890/ES1812-
- 446 00132.1.
- Seber, G.A.F. (1965) A note on the multiple recapture census. *Biometrika*, **52**, 249–259. Doi:
- 10.2307/2333827.
- Seber, G.A.F. & Felton, R. (1965) Tag loss and the Peterson mark-recapture experiment.
- 450 Biometrika, **68**, 211–219. Doi: 10.1093/biomet/68.1.211.
- ⁴⁵¹ Xu, Y., Cowen, L.L.E. & Gardner, C. (2014) Group heterogeneity in the Jolly-Seber-tag-loss
- model. Statistical Methodology, 17, 3–16. Doi: 10.1016/j.stamet.2013.01.002.
- 453 Yoshizaki, J., Brownie, C., Pollock, K.H. & Link, W.A. (2011) Modeling misidentification
- errors that result from use of genetic tags in capture-recapture studies. Environmental and
- Ecological Statistics, **18**, 27–55. Doi: 10.1007/s10651-009-0116-1.