

IIC2213 — Lógica para ciencia de la computación — 1' 2023

## TAREA 7

Publicación: Martes 20 de junio.

Entrega: Viernes 30 de junio hasta las 23:59 horas.

## **Indicaciones**

- Cada pregunta tiene 6 puntos (+1 base) y la nota de la tarea es el promedio de las preguntas.
- La solución debe estar escrita en LATEX. No se aceptarán tareas escritas de otra forma.
- La tarea es individual, pudiendo discutirla con sus pares. Toda referencia externa debe citarse.

# Objetivos

- Aplicar el concepto de consecuencia lógica en lógica proposicional.
- Modelar problemas usando lógica proposicional.
- Aplicar el concepto de NP-completitud a problemas generales.
- Construir y demostrar correctitud de reducciones.

## Pregunta 1: Lógica proposicional

(a) Sea P un conjunto de variables proposicionales. Dado  $\Sigma \subseteq \mathcal{L}(P)$  y fórmulas  $\alpha, \beta \in \mathcal{L}(P)$  demuestre que

$$\Sigma \models (\alpha \rightarrow \beta)$$
 si y solo si  $\Sigma \cup \{\alpha\} \models \beta$ 

(b) Sea  $\mathcal{L} = \{R\}$  vocabulario con R símbolo de relación n-aria y sea  $\mathfrak{A}$  una  $\mathcal{L}$ -estructura con dominio finito. Construya una fórmula proposicional  $\varphi$  tal que  $\varphi$  sea satisfacible si y solo si existe un automorfismo no trivial en  $\mathfrak{A}$ . Demuestre la correctitud de su construcción. *Aclaración*: un automorfismo no trivial es un isomorfismo de  $\mathfrak{A}$  en  $\mathfrak{A}$ , tal que es distinto de la función f(a) = a.

#### Solución P1.

Aquí va mi solución

# Pregunta 2: Complejidad

- (a) Sean  $L_1, L_2$  dos lenguajes NP-completos. ¿Es  $L_1 \cap L_2$  NP-completo? Demuestre su respuesta.
- (b) Sea  $\mathcal{L} = \{E\}$  el vocabulario usual para grafos, i.e. E es símbolo de relación binaria. Una  $\mathcal{L}$ -oración  $\varphi$  se dice existencial si es de la forma  $\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \psi(x_1, x_2, \ldots, x_k)$ , donce  $\psi$  es una  $\mathcal{L}$ -fórmula sin cuantificadores y k un entero positivo. Demuestre que el siguiente lenguaje es NP-hard

$$L = \{(\mathfrak{A}, \varphi) \mid \varphi \text{ es } \mathcal{L}\text{-oración existencial y } \mathfrak{A} \text{ es } \mathcal{L}\text{-estructura finita tal que } \mathfrak{A} \models \varphi\}$$

Sugerencia: reduzca desde 3-COL. Sugerencia 2: dado un grafo, construya  $\mathfrak{A}=\langle A,E^{\mathfrak{A}}\rangle$  para codificar la asignación de colores a pares de nodos vecinos, de forma que A es el conjunto de colores y  $E^{\mathfrak{A}}$  son pares de colores legales. ¿Cuántos elementos tiene A? ¿Qué pares de colores son ilegales en una 3-coloración y no están dentro de  $E^{\mathfrak{A}}$ ? La oración existencial debe intentar hacer match con pares de colores para cada arista del grafo original.

### Solución P2.

Aquí va mi solución