

复变函数与积分变换

张神星 (合肥工业大学)

办公室: 翡翠科教楼 B1810 东

Email: zhangshenxing@hfut.edu.cn

课件地址: https://zhangshenxing.gitee.io

第一章 复数与复变函数

1 复数及其代数运算

第一节 复数及其代数运算

- 复数的概念
- 复数的代数运算
- 共轭复数

现在我们来正式介绍复数的概念。

现在我们来正式介绍复数的概念. 因此引入一个记号 i 来表示 $x^2 = -1$ 的一个根.

现在我们来正式介绍复数的概念. 因此引入一个记号 i 来表示 $x^2 = -1$ 的一个根.

定义

固定一个记号 i, 复数就是形如 z = x + yi 的元素, 其中 x, y 均是 实数, 且不同的 (x, y) 对应不同的复数.

现在我们来正式介绍复数的概念. 因此引入一个记号 i 来表示 $x^2 = -1$ 的一个根.

定义

固定一个记号 i, 复数就是形如 z = x + yi 的元素, 其中 x, y 均是 实数, 且不同的 (x, y) 对应不同的复数.

换言之, 每一个复数可以唯一地表达成 x + yi 这样的形式.

现在我们来正式介绍复数的概念. 因此引入一个记号 i 来表示 $x^2 = -1$ 的一个根.

定义

固定一个记号 i, 复数就是形如 z = x + yi 的元素, 其中 x, y 均是 实数, 且不同的 (x, y) 对应不同的复数.

换言之, 每一个复数可以唯一地表达成 x+yi 这样的形式. 也就是说, 复数全体构成一个二维实线性空间, 且 $\{1,i\}$ 是一组基.

现在我们来正式介绍复数的概念. 因此引入一个记号 i 来表示 $x^2 = -1$ 的一个根.

定义

固定一个记号 i, 复数就是形如 z = x + yi 的元素, 其中 x, y 均是 实数, 且不同的 (x, y) 对应不同的复数.

换言之,每一个复数可以唯一地表达成 x+yi 这样的形式. 也就是说,复数全体构成一个二维实线性空间,且 $\{1,i\}$ 是一组基. 我们将全体复数记作 \mathbb{C} ,全体实数记作 \mathbb{R} ,则 $\mathbb{C} = \mathbb{R} + \mathbb{R}i$.

由于 \mathbb{C} 是一个二维实向量空间, 1 和 i 构成一组基,

复平面

由于 \mathbb{C} 是一个二维实向量空间, 1 和 i 构成一组基, 因此它和平面上的点可以建立——对应.

由于 $\mathbb C$ 是一个二维实向量空间, 1 和 i 构成一组基, 因此它和平面上的点可以建立——对应.

由于 $\mathbb C$ 是一个二维实向量空间, 1 和 i 构成一组基, 因此它和平面上的点可以建立——对应.

由于 $\mathbb C$ 是一个二维实向量空间, 1 和 i 构成一组基, 因此它和平面上的点可以建立——对应.

当 y=0 时, z=x 就是一个实数.

当 y = 0 时, z = x 就是一个实数. 它对应复平面上的点就是直角坐标系的 x 轴上的点.

当 y = 0 时, z = x 就是一个实数. 它对应复平面上的点就是直角坐标系的 x 轴上的点. 因此我们将直线 y = 0 称为实轴.

当 y = 0 时, z = x 就是一个实数. 它对应复平面上的点就是直角坐标系的 x 轴上的点. 因此我们将直线 y = 0 称为实轴. 相应地, 直线 x = 0 被称为虚轴.

当 y=0 时, z=x 就是一个实数. 它对应复平面上的点就是直角坐标系的 x 轴上的点. 因此我们将直线 y=0 称为实轴. 相应地,直线 x=0 被称为虚轴. 我们称 z=x+yi 在实轴和虚轴的投影为它的实部 $\operatorname{Re} z=x$ 和虚部 $\operatorname{Im} z=y$.

当 y=0 时, z=x 就是一个实数. 它对应复平面上的点就是直角坐标系的 x 轴上的点. 因此我们将直线 y=0 称为实轴. 相应地,直线 x=0 被称为虚轴. 我们称 z=x+yi 在实轴和虚轴的投影为它的实部 $\operatorname{Re} z=x$ 和虚部 $\operatorname{Im} z=y$.

当 Im z = 0 时, z 是实数.

当 y=0 时, z=x 就是一个实数. 它对应复平面上的点就是直角坐标系的 x 轴上的点. 因此我们将直线 y=0 称为实轴. 相应地,直线 x=0 被称为虚轴. 我们称 z=x+yi 在实轴和虚轴的投影为它的实部 $\operatorname{Re} z=x$ 和虚部 $\operatorname{Im} z=y$.

当 Im z = 0 时, z 是实数. 不是实数的复数是虚数.

当 y=0 时, z=x 就是一个实数. 它对应复平面上的点就是直角坐标系的 x 轴上的点. 因此我们将直线 y=0 称为实轴. 相应地,直线 x=0 被称为虚轴. 我们称 z=x+yi 在实轴和虚轴的投影为它的实部 $\operatorname{Re} z=x$ 和虚部 $\operatorname{Im} z=y$.

当 Im z = 0 时, z 是实数. 不是实数的复数是虚数. 当 Re z = 0 且 $z \neq 0$ 时, 称 z 是纯虚数.

例

实数 x 取何值时, $z = (x^2 - 3x - 4) + (x^2 - 5x - 6)i$ 是: (1) 实数; (2) 纯虚数.

例

实数 x 取何值时, $z = (x^2 - 3x - 4) + (x^2 - 5x - 6)i$ 是: (1) 实数; (2) 纯虚数.

解

(1) Im $z = x^2 - 5x - 6 = 0$, $\mathbb{P} x = -1 \neq 6$.

例

实数 x 取何值时, $z = (x^2 - 3x - 4) + (x^2 - 5x - 6)i$ 是: (1) 实数; (2) 纯虚数.

解

- (1) Im $z = x^2 5x 6 = 0$, $\mathbb{P} x = -1 \neq 6$.
- (2) Re $z = x^2 3x 4 = 0$, $\mathbb{D} x = -1 \neq 4$.

例

实数 x 取何值时, $z = (x^2 - 3x - 4) + (x^2 - 5x - 6)i$ 是: (1) 实数; (2) 纯虚数.

解

- (1) Im $z = x^2 5x 6 = 0$, $\mathbb{P} x = -1 \neq 6$.
- (2) Re $z = x^2 3x 4 = 0$, $\mathbb{D} x = -1 \neq 4$.
- 但同时要求 $\text{Im } z = x^2 5x 6 \neq 0$, 因此 $x \neq -1$, x = 4.

例

实数 x 取何值时, $z = (x^2 - 3x - 4) + (x^2 - 5x - 6)i$ 是: (1) 实数; (2) 纯虚数.

解

- (1) Im $z = x^2 5x 6 = 0$, $\mathbb{P} x = -1 \neq 6$.
- (2) Re $z = x^2 3x 4 = 0$, $\mathbb{P} x = -1 \neq 4$.

但同时要求 $\text{Im } z = x^2 - 5x - 6 \neq 0$, 因此 $x \neq -1$, x = 4.

练习

若 $x^2(1+i) + x(5+4i) + 4 + 3i$ 是纯虚数, 则实数 x =____.

例

实数 x 取何值时, $z = (x^2 - 3x - 4) + (x^2 - 5x - 6)i$ 是: (1) 实数; (2) 纯虚数.

解

- (1) Im $z = x^2 5x 6 = 0$, $\mathbb{D} x = -1 \neq 6$.
- (2) Re $z = x^2 3x 4 = 0$, $\mathbb{P} x = -1 \neq 4$.
- 但同时要求 $\text{Im } z = x^2 5x 6 \neq 0$, 因此 $x \neq -1$, x = 4.

佐 コ

若 $x^2(1+i) + x(5+4i) + 4 + 3i$ 是纯虚数, 则实数 x = -4.

设 $z_1 = x_1 + y_1 i, z_2 = x_2 + y_2 i.$

设 $z_1=x_1+y_1i, z_2=x_2+y_2i$. 由 $\mathbb C$ 是二维实线性空间可得复数的加法和减法:

设 $z_1=x_1+y_1i, z_2=x_2+y_2i$. 由 $\mathbb C$ 是二维实线性空间可得复数的加法和减法:

$$z_1 + z_2 = (x_1 + x_2) + (y_1 + y_2)i,$$

设 $z_1=x_1+y_1i, z_2=x_2+y_2i$. 由 $\mathbb C$ 是二维实线性空间可得复数的加法和减法:

$$z_1 + z_2 = (x_1 + x_2) + (y_1 + y_2)i,$$

 $z_1 - z_2 = (x_1 - x_2) + (y_1 - y_2)i.$

设 $z_1 = x_1 + y_1 i, z_2 = x_2 + y_2 i$. 由 \mathbb{C} 是二维实线性空间可得复数的加法和减法:

$$z_1 + z_2 = (x_1 + x_2) + (y_1 + y_2)i,$$

 $z_1 - z_2 = (x_1 - x_2) + (y_1 - y_2)i.$

复数的加减法与其对应的向量 \overrightarrow{OZ} 的加减法是一致的.

设 $z_1 = x_1 + y_1 i, z_2 = x_2 + y_2 i$. 由 \mathbb{C} 是二维实线性空间可得复数的加法和减法:

$$z_1 + z_2 = (x_1 + x_2) + (y_1 + y_2)i,$$

 $z_1 - z_2 = (x_1 - x_2) + (y_1 - y_2)i.$

复数的加减法与其对应的向量 \overrightarrow{OZ} 的加减法是一致的.

复数的乘除法

规定 $i \cdot i = -1$.

规定 $i \cdot i = -1$. 由线性空间的数乘和乘法分配律可得:

$$z_1 \cdot z_2 = x_1 \cdot x_2 + x_1 \cdot y_2 i + y_1 i \cdot x_2 + y_1 i \cdot y_2 i$$

= $(x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1) i$,

,

$$z_1 \cdot z_2 = x_1 \cdot x_2 + x_1 \cdot y_2 i + y_1 i \cdot x_2 + y_1 i \cdot y_2 i$$

= $(x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1) i$,

$$\frac{1}{z} = \frac{x - yi}{x^2 + y^2},$$

$$z_1 \cdot z_2 = x_1 \cdot x_2 + x_1 \cdot y_2 i + y_1 i \cdot x_2 + y_1 i \cdot y_2 i$$

$$= (x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1) i,$$

$$\frac{1}{z} = \frac{x - y i}{x^2 + y^2}, \quad \frac{z_1}{z_2} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2} i.$$

$$z_1 \cdot z_2 = x_1 \cdot x_2 + x_1 \cdot y_2 i + y_1 i \cdot x_2 + y_1 i \cdot y_2 i$$

$$= (x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1) i,$$

$$\frac{1}{z} = \frac{x - y i}{x^2 + y^2}, \quad \frac{z_1}{z_2} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2} i.$$

对于正整数 n, 定义 z 的 n 次幂为 n 个 z 相乘.

$$z_1 \cdot z_2 = x_1 \cdot x_2 + x_1 \cdot y_2 i + y_1 i \cdot x_2 + y_1 i \cdot y_2 i$$

$$= (x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1) i,$$

$$\frac{1}{z} = \frac{x - y i}{x^2 + y^2}, \quad \frac{z_1}{z_2} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2} i.$$

对于正整数 n, 定义 z 的 n 次幂为 n 个 z 相乘.

当
$$z \neq 0$$
 时, 还可以定义 $z^0 = 1, z^{-n} = \frac{1}{z^n}$.

$$\overline{(1)} \ i^2 = -1, i^3 = -i, i^4 = 1.$$

$$\overline{(1)} i^2 = -1, i^3 = -i, i^4 = 1.$$
 一般地, 对于整数 n ,

$$i^{4n} = 1$$
, $i^{4n+1} = i$, $i^{4n+2} = -1$, $i^{4n+3} = -i$.

$$\overline{(1)} \ i^2 = -1, i^3 = -i, i^4 = 1.$$
 一般地, 对于整数 n ,

$$i^{4n} = 1$$
, $i^{4n+1} = i$, $i^{4n+2} = -1$, $i^{4n+3} = -i$.

(2)
$$\Leftrightarrow \omega = \frac{-1 + \sqrt{3}i}{2}$$
, $\mathbb{M} \omega^2 = \frac{-1 - \sqrt{3}i}{2}$, $\omega^3 = 1$.

$$\overline{(1)} \ i^2 = -1, i^3 = -i, i^4 = 1.$$
 一般地, 对于整数 n ,

$$i^{4n} = 1$$
, $i^{4n+1} = i$, $i^{4n+2} = -1$, $i^{4n+3} = -i$.

(2)
$$\Leftrightarrow \omega = \frac{-1+\sqrt{3}i}{2}$$
, $\text{ M} \ \omega^2 = \frac{-1-\sqrt{3}i}{2}, \omega^3 = 1.$ (3) $\Leftrightarrow z = 1+i$,

(3)
$$\Rightarrow z = 1 + i$$
,

$$\overline{(1)} \ i^2 = -1, i^3 = -i, i^4 = 1.$$
 一般地, 对于整数 n ,

$$i^{4n} = 1$$
, $i^{4n+1} = i$, $i^{4n+2} = -1$, $i^{4n+3} = -i$.

(2)
$$\Leftrightarrow \omega = \frac{-1+\sqrt{3}i}{2}$$
, $\text{ M} \ \omega^2 = \frac{-1-\sqrt{3}i}{2}, \omega^3 = 1.$

$$z^2 = 2i$$
, $z^3 = -2 + 2i$, $z^4 = -4$, $z^8 = 16 = 2^4$.

例

(1)
$$i^2=-1, i^3=-i, i^4=1$$
. 一般地, 对于整数 n ,
$$i^{4n}=1, \quad i^{4n+1}=i, \quad i^{4n+2}=-1, \quad i^{4n+3}=-i.$$

(2)
$$\Leftrightarrow \omega = \frac{-1+\sqrt{3}i}{2}$$
, \mathbb{M} $\omega^2 = \frac{-1-\sqrt{3}i}{2}$, $\omega^3 = 1$.

$$z^2 = 2i$$
, $z^3 = -2 + 2i$, $z^4 = -4$, $z^8 = 16 = 2^4$.

我们把满足 $z^n = 1$ 的复数 z 称为 n 次单位根.

例

(1)
$$i^2 = -1$$
, $i^3 = -i$, $i^4 = 1$. 一般地, 对于整数 n , $i^{4n} = 1$. $i^{4n+1} = i$. $i^{4n+2} = -1$. $i^{4n+3} = -i$.

(2)
$$\Leftrightarrow \omega = \frac{-1 + \sqrt{3}i}{2}$$
, $\mathbb{M} \ \omega^2 = \frac{-1 - \sqrt{3}i}{2}$, $\omega^3 = 1$.

$$z^2 = 2i$$
, $z^3 = -2 + 2i$, $z^4 = -4$, $z^8 = 16 = 2^4$.

我们把满足 $z^n=1$ 的复数 z 称为 n 次单位根. 那么 1,i,-1,-i 是 4 次单位根, $1,\omega,\omega^2$ 是 3 次单位根.

例

化简 $1 + i + i^2 + i^3 + i^4 =$ _____

1列

化简 $1 + i + i^2 + i^3 + i^4 =$ _____

解

根据等比数列求和公式,

$$1 + i + i^2 + i^3 + i^4 = \frac{i^5 - 1}{i - 1}$$

例

化简 $1 + i + i^2 + i^3 + i^4 = 1$.

解

根据等比数列求和公式,

$$1 + i + i^2 + i^3 + i^4 = \frac{i^5 - 1}{i - 1} = \frac{i - 1}{i - 1} = 1.$$

化简 $1 + i + i^2 + i^3 + i^4 = 1$.

根据等比数列求和公式,

$$1 + i + i^2 + i^3 + i^4 = \frac{i^5 - 1}{i - 1} = \frac{i - 1}{i - 1} = 1.$$

练习 (2020 年 A 卷)

化简
$$\left(\frac{1-i}{1+i}\right)^{2020} =$$
_____.

— 例 — 化简 $1 + i + i^2 + i^3 + i^4 = 1$.

根据等比数列求和公式,

$$1 + i + i^2 + i^3 + i^4 = \frac{i^5 - 1}{i - 1} = \frac{i - 1}{i - 1} = 1.$$

练习 (2020 年 A 卷)

化简
$$\left(\frac{1-i}{1+i}\right)^{2020} = 1$$
.

复数集合全体构成一个域.

• 包含 0,1,且在它之内有四则运算;

- 包含 0,1,且在它之内有四则运算;
- 满足加法结合/交换律, 乘法结合/交换/分配律;

- 包含 0,1,且在它之内有四则运算;
- 满足加法结合/交换律, 乘法结合/交换/分配律;
- 对任意 a, $a + 0 = a \times 1 = a$.

- 包含 0,1,且在它之内有四则运算;
- 满足加法结合/交换律, 乘法结合/交换/分配律;
- 对任意 $a, a + 0 = a \times 1 = a$.

有理数全体 ②, 实数全体 ℝ 也构成域, 它们是 ℂ 的子域.

- 包含 0,1,且在它之内有四则运算;
- 满足加法结合/交换律, 乘法结合/交换/分配律;
- 对任意 $a, a + 0 = a \times 1 = a$.

有理数全体 \mathbb{Q} , 实数全体 \mathbb{R} 也构成域, 它们是 \mathbb{C} 的子域. 与有理数域和实数域有着本质不同的是, 复数域是代数闭域.

- 包含 0,1,且在它之内有四则运算;
- 满足加法结合/交换律, 乘法结合/交换/分配律;
- 对任意 $a, a + 0 = a \times 1 = a$.

有理数全体 ℚ, 实数全体 ℝ 也构成域, 它们是 ℂ 的子域. 与有理数域和实数域有着本质不同的是, 复数域是代数闭域. 也就是说, 对于任何一个非常数的复系数多项式,

$$p(z) = z^n + c_{n-1}z^{n-1} + \dots + c_1z + c_0, \quad n \geqslant 1,$$

- 包含 0,1,且在它之内有四则运算;
- 满足加法结合/交换律, 乘法结合/交换/分配律;
- 对任意 $a, a + 0 = a \times 1 = a$.

有理数全体 ℚ, 实数全体 ℝ 也构成域, 它们是 ℂ 的子域. 与有理数域和实数域有着本质不同的是, 复数域是代数闭域. 也就是说, 对于任何一个非常数的复系数多项式,

$$p(z) = z^n + c_{n-1}z^{n-1} + \dots + c_1z + c_0, \quad n \geqslant 1,$$

都存在复数 z_0 使得 $p(z_0) = 0$.

- 包含 0,1,且在它之内有四则运算;
- 满足加法结合/交换律, 乘法结合/交换/分配律;
- 对任意 $a, a + 0 = a \times 1 = a$.

有理数全体 ℚ, 实数全体 ℝ 也构成域, 它们是 ℂ 的子域. 与有理数域和实数域有着本质不同的是, 复数域是代数闭域. 也就是说, 对于任何一个非常数的复系数多项式,

$$p(z) = z^n + c_{n-1}z^{n-1} + \dots + c_1z + c_0, \quad n \geqslant 1,$$

都存在复数 z_0 使得 $p(z_0) = 0$. 我们会在第五章证明该结论.

在 \mathbb{Q} , \mathbb{R} 上可以定义出一个好的大小关系,

复数域不是有序域*

在 \mathbb{Q} , \mathbb{R} 上可以定义出一个好的大小关系, 换言之它们是有序域, 即存在一个满足下述性质的 >:

在 \mathbb{Q} , \mathbb{R} 上可以定义出一个好的大小关系, 换言之它们是有序域, 即存在一个满足下述性质的 >:

• 若 $a \neq b$, 则 a > b 或 b > a;

复数域不是有序域*

在 \mathbb{Q} , \mathbb{R} 上可以定义出一个好的大小关系, 换言之它们是有序域。即存在一个满足下述性质的 >:

- 若 $a \neq b$, 则 a > b 或 b > a;
- 若 a > b, 则对于任意 c, a + c > b + c;

复数域不是有序域 *

在 \mathbb{Q} , \mathbb{R} 上可以定义出一个好的大小关系, 换言之它们是有序域。即存在一个满足下述性质的 >:

- 若 $a \neq b$, 则 a > b 或 b > a;
- 若 a > b, 则对于任意 c, a + c > b + c;

复数域不是有序域 *

在 \mathbb{Q} , \mathbb{R} 上可以定义出一个好的大小关系, 换言之它们是有序域。即存在一个满足下述性质的 >:

- 若 $a \neq b$, 则 a > b 或 b > a;
- 若 a > b, 则对于任意 c, a + c > b + c;
- <math><math><math><math>a > b, c > 0, <math><math><math><math><math><math>a c > bc.

而 ℂ 却不是有序域.

在 \mathbb{Q} , \mathbb{R} 上可以定义出一个好的大小关系, 换言之它们是有序域, 即存在一个满足下述性质的 >:

- 若 $a \neq b$, 则 a > b 或 b > a;
- 若 a > b, 则对于任意 c, a + c > b + c;
- 若 a > b, c > 0, 则 ac > bc.

而 \mathbb{C} 却不是有序域. 如果 i > 0, 则

$$-1 = i \cdot i > 0, \quad -i = -1 \cdot i > 0.$$

在 \mathbb{Q} , \mathbb{R} 上可以定义出一个好的大小关系, 换言之它们是有序域。即存在一个满足下述性质的 >:

- 若 $a \neq b$, 则 a > b 或 b > a;
- 若 a > b, 则对于任意 c, a + c > b + c;

而 \mathbb{C} 却不是有序域. 如果 i > 0, 则

$$-1 = i \cdot i > 0, \quad -i = -1 \cdot i > 0.$$

于是 0 > i, 矛盾! 同理 i < 0 也不可能.

复数也有其它的构造方式,

$$\left\{ \begin{pmatrix} x & y \\ -y & x \end{pmatrix} : x, y \in \mathbb{R} \right\} = \left\{ xE + yJ : x, y \in \mathbb{R} \right\} \subseteq M_2(\mathbb{R}),$$

$$\left\{ \begin{pmatrix} x & y \\ -y & x \end{pmatrix} : x, y \in \mathbb{R} \right\} = \left\{ xE + yJ : x, y \in \mathbb{R} \right\} \subseteq M_2(\mathbb{R}),$$

其中
$$E = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $J = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

$$\left\{ \begin{pmatrix} x & y \\ -y & x \end{pmatrix} : x, y \in \mathbb{R} \right\} = \left\{ xE + yJ : x, y \in \mathbb{R} \right\} \subseteq M_2(\mathbb{R}),$$

其中
$$E = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $J = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

此时自然地有加法、乘法 (满足交换律)、取逆等运算, 从而这个集合构成一个域。

$$\left\{ \begin{pmatrix} x & y \\ -y & x \end{pmatrix} : x, y \in \mathbb{R} \right\} = \left\{ xE + yJ : x, y \in \mathbb{R} \right\} \subseteq M_2(\mathbb{R}),$$

其中
$$E = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $J = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

此时自然地有加法、乘法 (满足交换律)、取逆等运算, 从而这个集合构成一个域. 由于 $J^2 = -E$, 所以 J 实际上就相当于虚数单位. 这个域就是我们前面定义的复数域 \mathbb{C} .

共轭复数

定义

称 z 在复平面关于实轴的对称点为它的共轭复数 \overline{z} . 换言之, $\overline{z}=x-yi$.

称 z 在复平面关于实轴的对称点为它的共轭复数 \overline{z} . 换言之, $\overline{z}=x-yi$.

从定义出发,不难验证共轭复数满足如下性质:

称 z 在复平面关于实轴的对称点为它的共轭复数 \overline{z} . 换言之, $\overline{z} = x - yi$.

从定义出发,不难验证共轭复数满足如下性质:

称 z 在复平面关于实轴的对称点为它的共轭复数 \overline{z} . 换言之, $\overline{z} = x - yi$.

从定义出发,不难验证共轭复数满足如下性质:

共轭复数性质汇总

• $z \in \overline{z}$ 的共轭复数.

称 z 在复平面关于实轴的对称点为它的共轭复数 \overline{z} . 换言之, $\overline{z}=x-yi$.

从定义出发,不难验证共轭复数满足如下性质:

- $z \in \overline{z}$ 的共轭复数.
- $\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}, \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}, \ \left(\frac{z_1}{z_2}\right) = \frac{\overline{z_1}}{\overline{z_2}}.$

称 z 在复平面关于实轴的对称点为它的共轭复数 \overline{z} . 换言之, $\overline{z}=x-yi$.

从定义出发,不难验证共轭复数满足如下性质:

- $z \in \overline{z}$ 的共轭复数.
- $\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}, \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}, \ \left(\frac{z_1}{z_2}\right) = \frac{\overline{z_1}}{\overline{z_2}}.$
- $z\overline{z} = (\operatorname{Re} z)^2 + (\operatorname{Im} z)^2$.

称 z 在复平面关于实轴的对称点为它的共轭复数 \overline{z} . 换言之, $\overline{z}=x-yi$.

从定义出发,不难验证共轭复数满足如下性质:

- $z \in \overline{z}$ 的共轭复数.
- $\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}, \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}, \ \left(\frac{z_1}{z_2}\right) = \frac{\overline{z_1}}{\overline{z_2}}.$
- $z\overline{z} = (\operatorname{Re} z)^2 + (\operatorname{Im} z)^2$.
- $z + \overline{z} = 2 \operatorname{Re} z$, $z \overline{z} = 2i \operatorname{Im} z$.

例

设 z = x + yi 且 $y \neq 0, \pm 1$. 证明: $x^2 + y^2 = 1$ 当且仅当 $\frac{z}{1 + z^2}$ 是实数.

例

设 z=x+yi 且 $y\neq 0,\pm 1.$ 证明: $x^2+y^2=1$ 当且仅当 $\frac{z}{1+z^2}$ 是实数.

证明

 $\frac{z}{1-z^2}$ 是实数当且仅当

$$\frac{z}{1+z^2} = \overline{\left(\frac{z}{1+z^2}\right)} = \frac{\overline{z}}{1+\overline{z}^2},$$

例

设 z=x+yi 且 $y\neq 0,\pm 1.$ 证明: $x^2+y^2=1$ 当且仅当 $\frac{z}{1+z^2}$ 是实数.

证明

 $\frac{z}{1+z^2}$ 是实数当且仅当

$$\frac{z}{1+z^2} = \overline{\left(\frac{z}{1+z^2}\right)} = \frac{\overline{z}}{1+\overline{z}^2},$$

即

$$z(1+\overline{z}^2) = \overline{z}(1+z^2), \quad (z-\overline{z})(z\overline{z}-1) = 0.$$

例

设
$$z=x+yi$$
 且 $y\neq 0,\pm 1.$ 证明: $x^2+y^2=1$ 当且仅当 $\frac{z}{1+z^2}$ 是实数.

证明

$$\frac{z}{1+z^2}$$
 是实数当且仅当

$$\frac{z}{1+z^2} = \overline{\left(\frac{z}{1+z^2}\right)} = \frac{\overline{z}}{1+\overline{z}^2},$$

即

$$z(1+\overline{z}^2)=\overline{z}(1+z^2), \quad (z-\overline{z})(z\overline{z}-1)=0.$$

由 $y \neq 0$ 可知 $z \neq \overline{z}$.

例

设
$$z=x+yi$$
 且 $y\neq 0,\pm 1.$ 证明: $x^2+y^2=1$ 当且仅当 $\frac{z}{1+z^2}$ 是实数.

证明

 $\frac{z}{1+z^2}$ 是实数当且仅当

$$\frac{z}{1+z^2} = \overline{\left(\frac{z}{1+z^2}\right)} = \frac{\overline{z}}{1+\overline{z}^2},$$

即

$$z(1+\overline{z}^2)=\overline{z}(1+z^2), \quad (z-\overline{z})(z\overline{z}-1)=0.$$

由 $y \neq 0$ 可知 $z \neq \overline{z}$. 故上述等式等价于 $z\overline{z} = 1$, 即 $x^2 + y^2 = 1$.

证明 $\overline{z_1} \cdot \overline{z_2} + \overline{z_1} \cdot z_2 = 2 \operatorname{Re}(z_1 \cdot \overline{z_2}).$

例

证明 $z_1 \cdot \overline{z_2} + \overline{z_1} \cdot z_2 = 2 \operatorname{Re}(z_1 \cdot \overline{z_2}).$

证明

我们可以设 $z_1 = x_1 + y_1 i, z_2 = x_2 + y_2 i$, 然后代入等式两边化简并比较实部和虚部得到.

例

证明 $z_1 \cdot \overline{z_2} + \overline{z_1} \cdot z_2 = 2 \operatorname{Re}(z_1 \cdot \overline{z_2}).$

证明

我们可以设 $z_1 = x_1 + y_1 i, z_2 = x_2 + y_2 i$, 然后代入等式两边化简并比较实部和虚部得到. 但我们利用共轭复数可以更简单地证明它.

例

证明 $z_1 \cdot \overline{z_2} + \overline{z_1} \cdot z_2 = 2 \operatorname{Re}(z_1 \cdot \overline{z_2}).$

证明

我们可以设 $z_1 = x_1 + y_1 i, z_2 = x_2 + y_2 i$,然后代入等式两边化简并比较实部和虚部得到. 但我们利用共轭复数可以更简单地证明它.由于 $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2} = \overline{z_1} \cdot z_2$,

例

证明 $z_1 \cdot \overline{z_2} + \overline{z_1} \cdot z_2 = 2 \operatorname{Re}(z_1 \cdot \overline{z_2}).$

证明

我们可以设 $z_1 = x_1 + y_1 i, z_2 = x_2 + y_2 i$,然后代入等式两边化简并比较实部和虚部得到. 但我们利用共轭复数可以更简单地证明它. 由于 $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2} = \overline{z_1} \cdot \overline{z_2}$,因此

$$z_1 \cdot \overline{z_2} + \overline{z_1} \cdot z_2 = z_1 \cdot \overline{z_2} + \overline{z_1 \cdot \overline{z_2}} = 2 \operatorname{Re}(z_1 \cdot \overline{z_2}).$$

由于 zz 是一个实数,

由于 *z̄z̄* 是一个实数, 因此在做复数的除法运算时, 可以利用下式将其转化为乘法:

$$\frac{z_1}{z_2} = \frac{z_1 \overline{z_2}}{z_2 \overline{z_2}} = \frac{z_1 \overline{z_2}}{x_2^2 + y_2^2}.$$

由于 *z̄z̄* 是一个实数, 因此在做复数的除法运算时, 可以利用下式将其转化为乘法:

$$\frac{z_1}{z_2} = \frac{z_1\overline{z_2}}{z_2\overline{z_2}} = \frac{z_1\overline{z_2}}{x_2^2 + y_2^2}.$$

$$\overline{z} = -\frac{1}{i} - \frac{3i}{1-i}$$
, 求 Re z , Im z 以及 $z\overline{z}$.

由于 $z\overline{z}$ 是一个实数,因此在做复数的除法运算时,可以利用下式将其转化为乘法:

$$\frac{z_1}{z_2} = \frac{z_1\overline{z_2}}{z_2\overline{z_2}} = \frac{z_1\overline{z_2}}{x_2^2 + y_2^2}.$$

____例

$$\overline{z} = -\frac{1}{i} - \frac{3i}{1-i}$$
, 求 Re z , Im z 以及 $z\overline{z}$.

解

$$z = -\frac{1}{i} - \frac{3i}{1-i}$$

由于 z̄z̄ 是一个实数, 因此在做复数的除法运算时, 可以利用下式将其转化为乘法:

$$\frac{z_1}{z_2} = \frac{z_1 \overline{z_2}}{z_2 \overline{z_2}} = \frac{z_1 \overline{z_2}}{x_2^2 + y_2^2}.$$

$$\overline{z=-rac{1}{i}}-rac{3i}{1-i}$$
, 求 Re z , Im z 以及 $z\overline{z}$.

$$z = -\frac{1}{i} - \frac{3i}{1-i} = i - \frac{3i-3}{2} = \frac{3}{2} - \frac{1}{2}i,$$

由于 $z\overline{z}$ 是一个实数,因此在做复数的除法运算时,可以利用下式将其转化为乘法:

$$\frac{z_1}{z_2} = \frac{z_1\overline{z_2}}{z_2\overline{z_2}} = \frac{z_1\overline{z_2}}{x_2^2 + y_2^2}.$$

___例

$$z = -\frac{1}{i} - \frac{3i}{1-i}$$
,求 Re z , Im z 以及 $z\overline{z}$.

解

$$z = -\frac{1}{i} - \frac{3i}{1-i} = i - \frac{3i-3}{2} = \frac{3}{2} - \frac{1}{2}i,$$

因此 Re $z = \frac{3}{2}$, Im $z = -\frac{1}{2}$, $z\overline{z} = \left(\frac{3}{2}\right)^2 + \left(-\frac{1}{2}\right)^2 = \frac{5}{2}$.

例

设
$$z_1 = 5 - 5i, z_2 = -3 + 4i,$$
 求 $\overline{\left(\frac{z_1}{z_2}\right)}$.

例

设
$$z_1 = 5 - 5i, z_2 = -3 + 4i, 求 \left(\frac{z_1}{z_2}\right).$$

解

$$\frac{z_1}{z_2} = \frac{5 - 5i}{-3 + 4i}$$

例

设
$$z_1 = 5 - 5i, z_2 = -3 + 4i, 求 \left(\frac{z_1}{z_2}\right).$$

$$\frac{z_1}{z_2} = \frac{5 - 5i}{-3 + 4i} = \frac{(5 - 5i)(-3 - 4i)}{(-3)^2 + 4^2}$$

例

设
$$z_1 = 5 - 5i, z_2 = -3 + 4i, 求 \left(\frac{z_1}{z_2}\right).$$

解

$$\frac{z_1}{z_2} = \frac{5 - 5i}{-3 + 4i} = \frac{(5 - 5i)(-3 - 4i)}{(-3)^2 + 4^2}$$
$$= \frac{(-15 - 20) + (-20 + 15)i}{25}$$

例

设
$$z_1 = 5 - 5i, z_2 = -3 + 4i, 求 \left(\frac{z_1}{z_2}\right).$$

解

$$\frac{z_1}{z_2} = \frac{5 - 5i}{-3 + 4i} = \frac{(5 - 5i)(-3 - 4i)}{(-3)^2 + 4^2}$$
$$= \frac{(-15 - 20) + (-20 + 15)i}{25} = -\frac{7}{5} - \frac{1}{5}i,$$

例

设
$$z_1 = 5 - 5i, z_2 = -3 + 4i,$$
 求 $\overline{\left(\frac{z_1}{z_2}\right)}$.

$$\frac{z_1}{z_2} = \frac{5 - 5i}{-3 + 4i} = \frac{(5 - 5i)(-3 - 4i)}{(-3)^2 + 4^2}$$
$$= \frac{(-15 - 20) + (-20 + 15)i}{25} = -\frac{7}{5} - \frac{1}{5}i,$$

因此
$$\left(\frac{z_1}{z_2}\right) = -\frac{7}{5} + \frac{1}{5}i$$
.