11. ვექტორები სიბრტყესა და სივრცეში

ვექტორული სიდიდე - სიდიდე, რომელიც განსაზღვრულია არა მხოლოდ რიცხვითი სიდიდით, არამედ მიმართულებითაც.

წულოვანი ვექტორი - ვექტორი რომელსაც არც საწყისი აქვს და არც ზოლო. **ვექტორი** -მონაკვეთი, რომელსაც გააჩნია სიგრმე და მიმართულება.

ვექტორის სიგრმე – აღინიშნება შემდეგნაირად; $|\vec{a}|$; $|\vec{b}|$; $|\vec{c}|$ ერთნაირად მიმართული ვექტორები

საწინააღმდეგოდ მიმართული ვექტორები

ვექტორის კოორდინატები

ჩაიწერება შემდეგნაირად;

- $\vec{a}(x;y)$ –სიბრტყეში
- \vec{a} (x;y;z) –სივრცეში

ვექტორების ჩაწერა კოორდინატების მეშვეობით

1. სიბრტყეზე

• ვექტორის ჩაწერა

- $\overrightarrow{AB}(x_2 x_1; y_2 y_1)$
- ვექტორის სიგრძის ჩაწერა

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

2. სივრცეში

პრინციპი უცვლელია, კოორდინატებს დაემატება აპლიკატთა ღერძის ${\bf Z}$ კოორდინატები.

$$egin{array}{ll} egin{array}{ll} egin{array} egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{a$$

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

მოქმედებები ვექტორებზე

ორი ვექტორის ჯამი/სხვაობა

ვთქვათ მოცემული გვაქვს \vec{a} (x1;y1;z1) და \vec{b} (x2;y2;z2)

აღნიშნული ვექტორთა შეკრება/გამოკლება შესაძლებელია ორნაირად;

$$\vec{a} \pm \vec{b} = (x_2 + x_1; y_2 + y_1; z_2 + z_1)$$

$$\vec{a}(x_1; y_1; z_1) \pm \vec{b}(x_2; y_2; z_2) = (x_2 + x_1; y_2 + y_1; z_2 + z_1)$$

_____გეომეტრიული _ილუსტრაცია_

ორი a $\dot{}$ და b $\dot{}$ ვექტორი რომ შევკრიზოთ, a $\dot{}$ ვექტორის ზოლო უნდა მოვდოთ b ვექტორის საწყის წერტილს, χ ამი იქნეზა c $\dot{}$ ვექტორი რომლის საწყისი ემთხვევა a $\dot{}$ ვექტორის საწყისს,ხოლო ზოლო b $\dot{}$ ვექტორის ზოლოს.

ა) ვექტორთა შეკრების სამკუთხედის წესი

ვექტორის რიცხვზე ნამრავლი

 \mathbf{a} ვექტორის რაიმე $\lambda \neq 0$ რიცხვზე წამრავლი აღინიშნება ასე: $\lambda \mathbf{a}$ და ეწოდება ისეთ \mathbf{b} ვექტორს,რომლის სიგრძეა: $|\mathbf{b}$ $|=|\lambda \cdot \mathbf{a}$ $|=|\lambda| \cdot |\mathbf{a}$ $|=|\lambda|$

 \cdot თუ λ >0,b ვექტორის მიმართულება ემთხვევა a პექტორის მიმართულებას

• თუ λ <0,b ვექტორის მიმართულება არ ემთხვევა a ვექტორის მიმართულებას.

ორი ვექტორის სკალარული ნამრავლი

ორი a ്და b ് ვექტორის სკალარული ნამრავლი აღინიშნება ასე: a ் . b ' ან (a ';b ')

და უდრის ამ ვექტორების სიგრმეების ნამრავლს მათ შორის მდებარე კუთხის კოსინუსზე.

___იმ შემთხვევაში თუ ვექტორები მოცემულია კოორდინატებში...._____

 $\vec{a}(x1;y1;)$ go $\vec{b}(x2;y2;)$

იმ შემთხვევაში თუ ვექტორები მოცემულია კოორდინატებში, მაშინ სკალარული ნამრავლი ტოლია ერთსახელა კოორდინატების ნამრავლის ჯამის.

$$\overrightarrow{a} \cdot \overrightarrow{b} = x_1 \cdot x_2 + y_1 \cdot y_2$$

სკალარული ნამრავლის თვისებები

- 1. ორი ვექტორის სკალარული ნამრავლი ნულის ტოლია როდესაც:
- ერთ-ერთი ვექტორი ნულის ტოლია
- თუ a და b ვექტორები მართობულია.
- 2. თუ $a \cdot b = |a| \cdot |b|$ ვექტორები თანამიმართულია და მათ შორის კუთხე 0-ის ტოლია.
- ა მართლაც: $a \vec{\cdot} b = |a| \cdot |b| \cdot \cos 0^\circ = |a| \cdot |b|$
- 3. თუ a $\vec{\cdot}$ b $\vec{\cdot}$ = |a $|\cdot|$ |b | ვექტორები საწინააღმდეგოდ არიან მიმართულნი.
- ა მართლაც: $a \cdot b = |a| \cdot |b| \cdot cos180 = |a| \cdot |b|$

4.
$$\overrightarrow{a} \cdot \overrightarrow{a} = \overrightarrow{a}^2 = |\overrightarrow{a}| \cdot |\overrightarrow{a}| \cdot \cos 0^\circ = |\overrightarrow{a}^2|$$
 $g.o \quad \overrightarrow{a}^2 = |\overrightarrow{a}^2| \Rightarrow \quad \overrightarrow{a} = \sqrt{|\overrightarrow{a}^2|}$

зб

$$|\overrightarrow{a}| = \sqrt{\overrightarrow{a}^2}$$

ორი ვექტორის მართობულობის პირობა

$$\overrightarrow{a} \cdot \overrightarrow{b} = 0 \implies x_1 \cdot x_2 + y_1 \cdot y_2 = 0$$

ორი ვექტორის პარალელურობის პირობა

ორი ვექტორი რომ პარალელური იყოს, აუცილებელია ერთი წარმოადგენდეს მეორის რიცხვზე ნამრავლს.

$$\overrightarrow{a}||\overrightarrow{b} \implies \overrightarrow{b} = \lambda \overrightarrow{a}$$

ან თუ ვექტორები მოცემულია კოორდინატებში, პარალელურობის პირობა ჩაიწერება შემდეგნაირად:

$$\frac{x_2}{x_1} = \frac{y_2}{y_1} = \lambda$$

მიმართულების კოსინუსები

$$sin\alpha = \frac{x}{|\vec{a}|}$$

$$cos\beta = \frac{y}{|\vec{a}|}$$