$\label{eq:woordenboek:} Woordenboek: \\ lineaire afbeeldingen \leftrightarrow matrices$

Vincent Van Schependom

9 januari 2025

lineaire afbeeldingen	matrices
$L:V \to W$	$L_{\beta_V}^{\beta_W} = A \in \mathbb{R}^{m \times n}$
$(L_1 + L_2): V \to W$	$(A_1 + A_2) \text{ (met } A_1, A_2 \in \mathbb{R}^{m \times n})$
$(\lambda L):V o W$	$\lambda A \text{ (met } A \in \mathbb{R}^{m \times n} \text{ en } \lambda \in \mathbb{R})$
$U \xrightarrow{K} V \xrightarrow{L} W$	$C = (L \circ K)_{\beta_U}^{\beta_W} = B \cdot A = L_{\beta_V}^{\beta_W} \cdot K_{\beta_U}^{\beta_V}$
$\dim_{\mathbb{R}} U = p, \dim_{\mathbb{R}} V = n, \dim_{\mathbb{R}} W = m$	$A \in \mathbb{R}^{n \times p}, B \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{m \times p}$
inverteerbare lineaire afbeelding	inverteerbare (vierkante!) matrix

Opmerking:

$$\mathrm{Id}_{\beta_V}^{\beta_V} = \mathbb{I}_n \neq \mathrm{Id}_{\beta_V'}^{\beta_V} = P$$