$$\mathcal{P}(t_1, t_2; z) = \int_{A_1} d\rho_1 \int_{A_2} d\rho_2 \langle \mathcal{Q} | \hat{\psi}^{\dagger}(\rho_2, t_2) \hat{\psi}^{\dagger}(\rho_1, t_1) \hat{\psi}(\rho_1, t_1) \hat{\psi}(\rho_2, t_2) | \mathcal{Q} \rangle, \tag{50}$$

where A_1 and A_2 are two areas in the transverse (x, y)plane surrounding waveguides W_1 and S, respectively. The correlation function $\mathcal{P}(t_1, t_2)$ is proportional to the joint probability of detecting one photon in waveguide W_1 at time t_1 , and one photon in waveguide S at time t_2 , after a propagation distance z from the input plane. In fact, $\langle \mathcal{Q} | \hat{\psi}^{\dagger}(\rho_2, t_2) \hat{\psi}^{\dagger}(\rho_1, t_1) \hat{\psi}(\rho_1, t_1) \hat{\psi}(\rho_2, t_2) | \mathcal{Q} \rangle$ is proportional to the joint probability of detecting one photon at point ρ_1 and time t_1 , and one photon at point ρ_2 and time t_2 at the same propagation distance z. The integral over the areas A_1 and A_2 thus gives the joint probability of detecting one photon in waveguide W_1 at time t_1 , and one photon in waveguide S at time t_2 . For photons generated by spontaneous parametric down conversion in type-I nonlinear crystal using a monochromatic pump beam at frequency $\omega_p = 2\omega$, the two-photon spectrum $C(\Omega_1,\Omega_2)$ of a pair of signal and idler photons can be expressed as [18, 34]

$$C(\Omega_1, \Omega_2) = \delta(\Omega_1 + \Omega_2)G(\Omega_1, \Omega_2) \exp\left[i\frac{\delta(\Omega_1 - \Omega_2)}{2}\right]$$
(51)

where $G(\Omega_1,\Omega_2)$ is the phase matching function. The last exponential term on the right hand side in Eq.(51) has been introduced to account for a possible time delay δ between signal and idler wave packets introduced by different optical paths from the crystal to waveguides W_1 and W_2 . The phase matching function $G(\Omega_1,\Omega_2)$ is assumed to be a real-valued and symmetric function [i.e. $G(\Omega_1,\Omega_2)=G(\Omega_2,\Omega_1)$], peaked at around $\Omega_1=\Omega_2=0$, with e.g. a Gaussian profile [18]. Taking into account that $\hat{\psi}(\rho,t)=(2\pi)^{-1/2}\int d\Omega \hat{\phi}(\rho,\Omega) \exp(-i\Omega t)$, substitution of Eqs.(48) and (51) into Eq.(50), using the commutaion relations $[\hat{\phi}(\rho,\Omega),\hat{a}_{1,2}^{\dagger}(\Omega')]=u_{1,2}(\rho)\delta(\Omega-\Omega')$, $[\hat{\phi}(\rho,\Omega),\hat{a}_{3}^{\dagger}(\Omega')]=\theta(\rho,z)\delta(\Omega-\Omega')$ and the relations $\int_{A_1}d\rho|u_1(\rho)|^2=1$, $\int_{A_2}d\rho|\theta(\rho,z)|^2=1$, $\int_{A_{1,2}}d\rho|u_2(\rho)|^2=0$, after some lengthy but straightforward calculations one obtains

$$\mathcal{P}(t_1, t_2; z) = |r(\tau + \delta)S_{11}(z)S_{23}(z) + r(\tau - \delta)S_{13}(z)S_{21}(z)|^2$$
(52)

where $\tau = t_2 - t_1$ and where we introduced the real-valued correlation function $r(\tau)$ defined by

$$r(\tau) = \frac{1}{2\pi} \int d\Omega G(\Omega, -\Omega) \exp(-i\Omega\tau).$$
 (53)

In practice, coincidence measurements correspond to an integration of $\mathcal{P}(t_1, t_2; z)$ with respect to the time dif-

ference $\tau=t_2-t_1$ over the resolving coincidence time, which is typically much longer than the correlation time τ_c of $g(\tau)$. Integrating Eq.(52) with respect to τ from $-\infty$ to ∞ and taking into account that $S_{21}=S_{12}$ and $|S_{23}|^2=|S_{13}|^2=1-|S_{11}|^2-|S_{12}|^2$, the following expression for the correlation function $\mathcal P$ versus time delay δ is finally obtained

$$\mathcal{P}(\delta;z) = \alpha \left[1 - |S_{11}(z)|^2 - |S_{12}(z)|^2 \right] \left[|S_{11}(z)|^2 + |S_{21}(z)|^2 + 2\text{Re} \left[S_{11}(z) S_{21}^*(z) \right] \frac{\int_{-\infty}^{\infty} d\tau r(\tau - \delta) r(\tau + \delta)}{\int_{-\infty}^{\infty} d\tau r^2(\tau)} \right]$$
(54)

where $\alpha = \int_{-\infty}^{\infty} d\tau r^2(\tau)$ and the expression of the coefficients $S_{11}(z)$ and $S_{12}(z)$ are given by Eqs.(12) and (13). The behavior of $\mathcal{P}(\delta;z)$ versus δ shows a charac-

teristic dip at $\delta = 0$ of width $\sim \tau_c$, which is analogous to the Hong-Ou-Mandel dip observed in two-photon interference from a beam splitter [18]. Far from the dip, $\mathcal{P}(\delta)$