Licht aus!

Weihnachtsvorlesung zur Linearen Algebra A

Be<mark>njami</mark>n Sambale

Leibniz Universität Hannover

18.12.2020

programmiert mit LATEX + TikZ + BEAMER

• Sie bewohnen ein Schloss mit 25 Zimmern.

- Sie bewohnen ein Schloss mit 25 Zimmern.
- Beim Zubettgehen stellen Sie fest, dass in der Küche und im Bad noch Licht brennt.

- Sie bewohnen ein Schloss mit 25 Zimmern.
- Beim Zubettgehen stellen Sie fest, dass in der Küche und im Bad noch Licht brennt.
- Der Hausmeister hat Ihnen einen Streich gespielt: alle Lichtschalter sind gekoppelt!

- Sie bewohnen ein Schloss mit 25 Zimmern.
- Beim Zubettgehen stellen Sie fest, dass in der Küche und im Bad noch Licht brennt.
- Der Hausmeister hat Ihnen einen Streich gespielt: alle Lichtschalter sind gekoppelt!
- Beim Betätigen eines Lichtschalters werden auch die Lichter der benachbarten Räume an/aus geschaltet.

Ausprobieren: https://www.xarg.org/project/lightsout/

7 / 25

Mann man alle Lichter ausschalten?

- Mann man alle Lichter ausschalten?
- 2 Wenn ja, welche Schalter muss man dafür betätigen?

- Mann man alle Lichter ausschalten?
- Wenn ja, welche Schalter muss man dafür betätigen?
- Ist die Lösung eindeutig?

- Mann man alle Lichter ausschalten?
- Wenn ja, welche Schalter muss man dafür betätigen?
- Ist die Lösung eindeutig?
- Wenn nein, welche Lösung benötigt am wenigstens Schaltungen?

- Mann man alle Lichter ausschalten?
- Wenn ja, welche Schalter muss man dafür betätigen?
- 3 Ist die Lösung eindeutig?
- Wenn nein, welche Lösung benötigt am wenigstens Schaltungen?

Lösung

Lineare Algebra über \mathbb{F}_2 !

• Es spielt keine Rolle in welcher Reihenfolge die Schalter betätigt werden.

- Es spielt keine Rolle in welcher Reihenfolge die Schalter betätigt werden.
- Jeder Schalter braucht höchstens einmal betätigt werden.

- Es spielt keine Rolle in welcher Reihenfolge die Schalter betätigt werden.
- Jeder Schalter braucht höchstens einmal betätigt werden.
- Zwei Möglichkeiten für jeden Schalter. Insgesamt

 2^{25}

- Es spielt keine Rolle in welcher Reihenfolge die Schalter betätigt werden.
- Jeder Schalter braucht höchstens einmal betätigt werden.
- Zwei Möglichkeiten für jeden Schalter. Insgesamt

$$2^{25} = 2^5 \cdot 2^{10} \cdot 2^{10}$$

- Es spielt keine Rolle in welcher Reihenfolge die Schalter betätigt werden.
- Jeder Schalter braucht höchstens einmal betätigt werden.
- Zwei Möglichkeiten für jeden Schalter. Insgesamt

$$2^{25} = 2^5 \cdot 2^{10} \cdot 2^{10} > 32 \cdot 10^3 \cdot 10^3 = 32 \, \text{Mio}.$$

Möglichkeiten.

- Es spielt keine Rolle in welcher Reihenfolge die Schalter betätigt werden.
- Jeder Schalter braucht höchstens einmal betätigt werden.
- Zwei Möglichkeiten für jeden Schalter. Insgesamt

$$2^{25} = 2^5 \cdot 2^{10} \cdot 2^{10} > 32 \cdot 10^3 \cdot 10^3 = 32 \, \text{Mio}.$$

Möglichkeiten. Raten zwecklos! 😊

Gleichungssystem

Gegeben: Zustandsvektor
$$b=(b_1,\dots,b_{25})^{\mathrm{t}}\in\mathbb{F}_2^{25\times 1}$$
 mit
$$b_i=1\iff \mathsf{Licht\ brennt\ in\ Zimmer\ }i.$$

Gleichungssystem

Gegeben: Zustandsvektor
$$b=(b_1,\dots,b_{25})^{\mathrm{t}}\in\mathbb{F}_2^{25\times 1}$$
 mit
$$b_i=1\iff \text{Licht brennt in Zimmer }i.$$
 Matrix $A=(a_{ij})\in\mathbb{F}_2^{25\times 25}$ mit
$$a_{ij}=1\iff \text{Schalter }j\text{ schaltet Zimmer }i.$$

Gleichungssystem

Gegeben: Zustandsvektor
$$b=(b_1,\dots,b_{25})^{\mathrm{t}}\in\mathbb{F}_2^{25\times 1}$$
 mit
$$b_i=1\iff \text{Licht brennt in Zimmer }i.$$
 Matrix $A=(a_{ij})\in\mathbb{F}_2^{25\times 25}$ mit
$$a_{ij}=1\iff \text{Schalter }j\text{ schaltet Zimmer }i.$$

Gesucht: Lösungsvektor $x=(x_1,\ldots,x_{25})^{\mathrm{t}}\in\mathbb{F}_2^{25\times 1}$ mit Ax=b.

• Die Gleichung Ax = b besagt

$$\sum_{j=1}^{25} a_{ij} x_j = b_i \qquad (i = 1, \dots, 25).$$

• Die Gleichung Ax = b besagt

$$\sum_{j=1}^{25} a_{ij} x_j = b_i \qquad (i = 1, \dots, 25).$$

Dabei gilt

$$a_{ij}x_j = 1 \iff a_{ij} = 1 = x_j.$$

• Die Gleichung Ax = b besagt

$$\sum_{j=1}^{25} a_{ij} x_j = b_i \qquad (i = 1, \dots, 25).$$

Dabei gilt

$$a_{ij}x_j = 1 \iff a_{ij} = 1 = x_j.$$

• Die Summe $\sum a_{ij}x_j$ beschreibt also den Effekt, wenn die Schalter j mit $x_j=1$ betätigt werden:

$$\sum_{j=1}^{25} a_{ij} x_j = 1 \iff \text{Licht in Zimmer } i \text{ wird ein/aus geschaltet}.$$

• Addition mit b_i ergibt

$$b_i + \sum_{j=1}^{25} a_{ij} x_j = b_i + b_i = 0$$
 $(i = 1, \dots, 25).$

Addition mit b_i ergibt

$$b_i + \sum_{j=1}^{25} a_{ij} x_j = b_i + b_i = 0$$
 $(i = 1, \dots, 25).$

• Das Schalten der $x_j=1$ überführt daher den Zustand b in den "Aus"-Zustand $(0,\dots,0)^{\rm t}$ wie gewünscht!

• Betrachten wir zunächst nur vier Zimmer:

• Betrachten wir zunächst nur vier Zimmer:

• Schalter 1 schaltet Zimmer 1, 2, 3. Schalter 2 schaltet Zimmer 1, 2, 4 usw. Daher:

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

• Die Schalter 1 + 3 bewirken:

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$

• Die Schalter 1 + 3 bewirken:

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$

• Kontrolle:

$$\begin{array}{c|c} \times & 2 \\ \times & 4 \end{array} \longrightarrow \begin{array}{c|c} 1 & 2 \\ \hline 3 & 4 \end{array}$$

Jetzt 25 Zimmer

Jetzt 25 Zimmer

Computer sagt: Rang(A) = 23

Jetzt 25 Zimmer

Computer sagt: Rang(A) = 23 < 25.

• Gleichungssystem Ax = b nicht immer lösbar!

- Gleichungssystem Ax = b nicht immer lösbar!
- Falls lösbar, hat die Lösungsmenge die Form

$$L = \widetilde{x} + L_0$$
 (Satz 6.6),

wobei \widetilde{x} eine spezielle Lösung ist und L_0 die Lösungsmenge des homogenen Gleichungssystems Ax = 0.

- Gleichungssystem Ax = b nicht immer lösbar!
- Falls lösbar, hat die Lösungsmenge die Form

$$L = \widetilde{x} + L_0$$
 (Satz 6.6),

wobei \widetilde{x} eine spezielle Lösung ist und L_0 die Lösungsmenge des homogenen Gleichungssystems Ax = 0.

• Dabei gilt $\dim(L_0) = n - \text{Rang}(A) = 25 - 23 = 2$.

- Gleichungssystem Ax = b nicht immer lösbar!
- Falls lösbar, hat die Lösungsmenge die Form

$$L = \widetilde{x} + L_0$$
 (Satz 6.6),

wobei \tilde{x} eine spezielle Lösung ist und L_0 die Lösungsmenge des homogenen Gleichungssystems Ax = 0.

- Dabei gilt $\dim(L_0) = n \text{Rang}(A) = 25 23 = 2$.
- Ein 2-dimensionaler Vektorraum über \mathbb{F}_2 besitzt genau 4 Vektoren (Koordinatendarstellung eines Vektors hat zwei freie Parameter).

- Gleichungssystem Ax = b nicht immer lösbar!
- Falls lösbar, hat die Lösungsmenge die Form

$$L = \widetilde{x} + L_0$$
 (Satz 6.6),

wobei \widetilde{x} eine spezielle Lösung ist und L_0 die Lösungsmenge des homogenen Gleichungssystems Ax = 0.

- Dabei gilt $\dim(L_0) = n \text{Rang}(A) = 25 23 = 2$.
- Ein 2-dimensionaler Vektorraum über \mathbb{F}_2 besitzt genau 4 Vektoren (Koordinatendarstellung eines Vektors hat zwei freie Parameter).
- Also $|L| \in \{0, 4\}.$

- Gleichungssystem Ax = b nicht immer lösbar!
- Falls lösbar, hat die Lösungsmenge die Form

$$L=\widetilde{x}+L_0 \qquad \text{(Satz 6.6)},$$

wobei \widetilde{x} eine spezielle Lösung ist und L_0 die Lösungsmenge des homogenen Gleichungssystems Ax = 0.

- Dabei gilt $\dim(L_0) = n \text{Rang}(A) = 25 23 = 2$.
- Ein 2-dimensionaler Vektorraum über \mathbb{F}_2 besitzt genau 4 Vektoren (Koordinatendarstellung eines Vektors hat zwei freie Parameter).
- Also $|L| \in \{0, 4\}$.
- Daraus folgt

$$|\{Ax : x \in \mathbb{F}_2^{25}\}| = \frac{|\mathbb{F}_2^{25}|}{4} = 2^{23},$$

das heißt, nur ein Viertel aller Zustände ist lösbar.

- 4 □ ト 4 圖 ト 4 필 ト 4 夏 ト 9 Q @

Lösungsmenge

• Der Raum L_0 wird von folgenden Schaltungen aufgespannt:

(diese bewirken nichts).

Lösungsmenge

• Der Raum L_0 wird von folgenden Schaltungen aufgespannt:

(diese bewirken nichts).

• Für eine Lösung \widetilde{x} von Ax = b gilt daher

$$L=\{\widetilde{x},\ \widetilde{x}+v,\ \widetilde{x}+w,\ \widetilde{x}+v+w\}.$$

ullet Die Schaltungen v und w benötigen jeweils 12 Schalter und überschneiden sich an den vier Ecken.

- ullet Die Schaltungen v und w benötigen jeweils 12 Schalter und überschneiden sich an den vier Ecken.
- Daher benötigt v + w genau 12 + 12 4 = 20 Schalter.

- ullet Die Schaltungen v und w benötigen jeweils 12 Schalter und überschneiden sich an den vier Ecken.
- Daher benötigt v+w genau 12+12-4=20 Schalter.
- Benötigt \widetilde{x} genau s Schalter, so überschneiden sich \widetilde{x} und v+w an mindestens s-5 Schaltern.

- Die Schaltungen v und w benötigen jeweils 12 Schalter und überschneiden sich an den vier Ecken.
- Daher benötigt v+w genau 12+12-4=20 Schalter.
- Benötigt \widetilde{x} genau s Schalter, so überschneiden sich \widetilde{x} und v+w an mindestens s-5 Schaltern.
- Also benötigt $\tilde{x} + v + w$ höchstens 25 (s 5) = 30 s Schalter.

- Die Schaltungen v und w benötigen jeweils 12 Schalter und überschneiden sich an den vier Ecken.
- Daher benötigt v+w genau 12+12-4=20 Schalter.
- Benötigt \widetilde{x} genau s Schalter, so überschneiden sich \widetilde{x} und v+w an mindestens s-5 Schaltern.
- Also benötigt $\widetilde{x} + v + w$ höchstens 25 (s 5) = 30 s Schalter.
- Eine der beiden Lösungen \widetilde{x} oder $\widetilde{x} + v + w$ benötigt daher höchstens 15 Schalter.

- Die Schaltungen v und w benötigen jeweils 12 Schalter und überschneiden sich an den vier Ecken.
- Daher benötigt v+w genau 12+12-4=20 Schalter.
- Benötigt \widetilde{x} genau s Schalter, so überschneiden sich \widetilde{x} und v+w an mindestens s-5 Schaltern.
- Also benötigt $\widetilde{x} + v + w$ höchstens 25 (s 5) = 30 s Schalter.
- Eine der beiden Lösungen \widetilde{x} oder $\widetilde{x}+v+w$ benötigt daher höchstens 15 Schalter.
- Umgekehrt gibt es Zustände, die tatsächlich 15 Schalter benötigen:

• Wie findet man \widetilde{x} ?

• Wie findet man \widetilde{x} ? Gauß-Algorithmus??

• Wie findet man \tilde{x} ? Gauß-Algorithmus?? Och, nöö!

- Wie findet man \tilde{x} ? Gauß-Algorithmus?? Och, nöö!
- Einfacher: Betätige Schalter in der zweiten Zeile, sodass alle Lichter in der ersten Zeile gelöscht werden.

- Wie findet man \tilde{x} ? Gauß-Algorithmus?? Och, nöö!
- Einfacher: Betätige Schalter in der zweiten Zeile, sodass alle Lichter in der ersten Zeile gelöscht werden.
- Betätige Schalter in der dritten Zeile, sodass alle Lichter in der zweiten Zeile gelöscht werden usw.

- Wie findet man \tilde{x} ? Gauß-Algorithmus?? Och, nöö!
- Einfacher: Betätige Schalter in der zweiten Zeile, sodass alle Lichter in der ersten Zeile gelöscht werden.
- Betätige Schalter in der dritten Zeile, sodass alle Lichter in der zweiten Zeile gelöscht werden usw.
- Am Ende brennen nur noch Lichter in der letzten Zeile.

- Wie findet man \widetilde{x} ? Gauß-Algorithmus?? Och, nöö!
- Einfacher: Betätige Schalter in der zweiten Zeile, sodass alle Lichter in der ersten Zeile gelöscht werden.
- Betätige Schalter in der dritten Zeile, sodass alle Lichter in der zweiten Zeile gelöscht werden usw.
- Am Ende brennen nur noch Lichter in der letzten Zeile.
- Dafür gibt es $2^5=32$ Möglichkeiten, von denen nur $\frac{1}{4}32=8$ lösbar sind.

Merkregel

Merkregel

Anschließend betätige man wieder die Schalter in Zeile 2, 3, 4 und 5. Am Ende sind alle Lichter aus oder der Zustand ist nicht lösbar.

Lösbarkeit

Wie erkennt man, ob ein Zustand lösbar ist?

Lösbarkeit

Wie erkennt man, ob ein Zustand lösbar ist?

Satz

Ein Zustand b ist genau dann lösbar, wenn $v^{t}b = 0 = w^{t}b$.

Lösbarkeit

Wie erkennt man, ob ein Zustand lösbar ist?

Satz

Ein Zustand b ist genau dann lösbar, wenn $v^{t}b = 0 = w^{t}b$.

Beweis.

Die lösbaren Zustände bilden den Raum $U:=\{Ax:x\in\mathbb{F}_2^{25\times 1}\}$ der Dimension 23.

Lösbarkeit

Wie erkennt man, ob ein Zustand lösbar ist?

Satz

Ein Zustand b ist genau dann lösbar, wenn $v^{t}b = 0 = w^{t}b$.

Beweis.

Die lösbaren Zustände bilden den Raum $U:=\{Ax:x\in\mathbb{F}_2^{25\times 1}\}$ der Dimension 23. Wegen $A^{\mathrm{t}}=A$ gilt dabei

$$v^{t}Ax = v^{t}A^{t}x = (Av)^{t}x = 0 = (Aw)^{t}x = w^{t}Ax.$$

Lösbarkeit.

Wie erkennt man, ob ein Zustand lösbar ist?

Satz

Ein Zustand b ist genau dann lösbar, wenn $v^{t}b = 0 = w^{t}b$.

Beweis.

Die lösbaren Zustände bilden den Raum $U:=\{Ax:x\in\mathbb{F}_2^{25\times 1}\}$ der Dimension 23. Wegen $A^{\mathrm{t}}=A$ gilt dabei

$$v^{t}Ax = v^{t}A^{t}x = (Av)^{t}x = 0 = (Aw)^{t}x = w^{t}Ax.$$

Dies zeigt
$$U\subseteq\left\{c\in\mathbb{F}_2^{25 imes1}:\left(\begin{smallmatrix}v^{\mathrm{t}}\\w^{\mathrm{t}}\end{smallmatrix}\right)c=0\right\}=:W.$$

Lösbarkeit

Wie erkennt man, ob ein Zustand lösbar ist?

Satz

Ein Zustand b ist genau dann lösbar, wenn $v^{t}b = 0 = w^{t}b$.

Beweis.

Die lösbaren Zustände bilden den Raum $U:=\{Ax:x\in\mathbb{F}_2^{25\times 1}\}$ der Dimension 23. Wegen $A^{\mathrm{t}}=A$ gilt dabei

$$v^{t}Ax = v^{t}A^{t}x = (Av)^{t}x = 0 = (Aw)^{t}x = w^{t}Ax.$$

Dies zeigt $U\subseteq \left\{c\in \mathbb{F}_2^{25\times 1}: {v^{\mathrm{t}}\choose w^{\mathrm{t}}}c=0\right\}=:W.$ Nach Satz 6.6 gilt

$$\dim W = 25 - \operatorname{rk}\left(\begin{smallmatrix} v^{t} \\ w^{t} \end{smallmatrix}\right) = 23 = \dim U,$$

also U=W.

Ende

Übungsaufgabe

Welche Zustände mit nur einem brennenden Licht sind lösbar?

Ende

Übungsaufgabe

Welche Zustände mit nur einem brennenden Licht sind lösbar?

Frohe Weihnachten!