

Analytical and Computer Cartography

Lecture 8: Algorithms, mosaicing, and conflation

Cartographic Transformations

- Attribute Data (e.g. classification)
- Locational properties (e.g. projection)
- •Graphics (e.g. symbolization)
- •Information content of maps (e.g. data structure conversion)

Basic Transformation Questions

- Is a transformation quantifiable?
- Can the transformation process be automated? (Alan Turing: Turing Machine and the halting problem, Alonzo Church: Lambda calculus)
- Is a transformation invertible?
- Is a transformation stable?

Types of Transformations

- Map scale
- Dimension
- Symbolic content
- Data structures

Why do we need to transform?

- •We may wish to compare maps collected at different scales.
- •We may wish to convert the geometry of the map base.
- •We may wish or need to change the map data structure.
- Almost ALL mapping stages involve transformations!

The mapping process The Cartographic Process The Cartographic Process Physical Reality Map User) Map User

State Changes and Transformations

- Cartographers are interested in the full set of state transformations
- Each map may have an optimal path through the set
- Design cartography primarily concentrates on the last, or symbolization transformation, and now uses human subjects testing and cognitive engineering
- Four types of transformations shape the mapping process:
 - Geocoding (transforming entities to objects: levels, dimension, data structure)
 - Map Scale
 - Locational Attributes or Map Base
 - Symbolization

Levels of Measurement

- Robinson's Classification was based on dimension and level of measurement
- Level of measurement idea is from Stevens (1946)
- Nominal data assume only existence and type. An example is a text label on a map
- Ordinal data assume only ranking. Relations are like "greater than"
- Interval data have an arbitrary numerical value, with relative value Example: Elevation.
- Ratio data have an absolute zero and scale

Transformations of Object Dimension

- The four dimension levels of data can be represented at only one level in each state, though a map can contain multiple layer symbols
- Transformations can move data between states
- Full set of state zero to state one transformations is then 16 possible transformations
- Lab exercises fall into several of these.
- Dimensional transformations are only one type
- When dimension collapses to "none" result is a measurement

Di	imens	iona	al Transf	formatio	ns	
		STATE AT TIME ONE				
			•	4	A	0
	_		Point	Line	Area	Volume
BO	Point	•	• • •	• -	• → 🖾	•+0
STATE AT TIME ZERO	Line	4	4→•	<>>	4n=1	<->O
	Area	4	△→ •	△→	4	A+0
	Volume	e 🔘	O - •	0-4	O+A	0+0

Algorithm

- In mathematics and computer science, an algorithm is an effective method expressed as a finite list of well-defined instructions for calculating a function
- Algorithms are used for calculation, data processing, and automated reasoning
- Usually has inputs, result and loops
- Importance of termination
- Divide and conquer

Transformations and Algorithms

- In mathematics, transformations are expressed as equations
- Solutions, inversion and so forth are by algebra, calculus etc.
- In computer science, a set of transformations defining a process is called an algorithm
- Any process that can be reduced to a set of steps can be automated by an algorithm (Church/Turing hypothesis)
- data structures + transformational algorithms = maps

Types of Algorithms in mapping

- mathematical
- sorting
- searching
- string processing
- geometrical algorithms (computational geometry)
- graph algorithms
- complex , e.g. decomposition
- In CS, an algorithms is implemented as a function *output* = *f* (*inputs*)
- Inputs can be { data, parameters, objects }

Graphic algorithms

- Algorithm: method for solving problems, suited for computer implementation (Sedgewick, 1984)
- "Most algorithms of interest involve complicated methods of organizing the data involved in the computation. Objects created this way are called data structures."
- Recursion
- Task decomposition
- Divide and conquer
- Special case vs. Generic solution e.g. vertical lines
- Partitioning: Sequential vs. Parallel (Data and Process)
- Big-O notation and complexity theory
- · Solution/Halting problem: Tractability

Problems needing complex algorithms

Mosaicing

- Forward: Given a large map, divide into regular or uneven tiles in an optimal way
- Inverse: Given a tiled map, assemble it back into a single network
 - Detect and eliminate errors
 - Adjust geometry
 - Join divided features

Conflation

- Given two maps merge their features
 - Geometric error
 - Attribute error
 - Errors of omission and comission

CONFLATION

- •Given two input objects with different (contrary) geometry, generate a single output that conflates the objects
- •Six-parameter affine (TRS) Local affine
- Issues:
 - Point selection
 - Random vs. systematic error
 - "truth"

Summary

- Transformations can impact dimension, data level, scale, symbols
- Transformations are chained, and include map reading and interpretation
- Algorithms can make a transformation computable
- data structures + transformational algorithms = maps
- Algorithm computability covered by computational complexity theory
- Examples of hard problems include tiling and conflation
- Methods exist for quantifying and analyzing map error