- -, 1. \emptyset , {1}, {3}.
 - 2. 4n + 2, $(2n + 1)^2$, $2n^2 + 1$.
 - $3.2^n, \varnothing, X.$
 - 4. $v_4v_2v_1v_3v_5v_2v_3v_4v_5$.
 - 5. 2, 3, 2.
- 二、1—5: CBABB; 6—10 CCCBA.
- \equiv , $1(\times)$; $2(\times)$; $3(\times)$; $4(\sqrt{})$; $5(\sqrt{})$.

四、解 令 p: 小张去看电影, q: 小王去看电影, r: 小李去看电影, s: 小赵去看电影.

$$p \land q \to r, \neg s \lor p, q \Longrightarrow s \to r \tag{5 \%}$$

- (1) *s* P(附加)
- (2) $\neg s \lor p$ P
- (3) p T(1)(2)I
- (4) q P
- (5) $p \wedge q$ T(3)(4)I
- (6) $p \land q \rightarrow r$ P

(7)
$$r$$
 T(5)(6) (10 分)

五、证 因为 R 传递,所以 $R \circ R \subseteq R$. (5 分)

对于任意 $(x,y) \in R$,由于R自反,于是 $(y,y) \in R$,进而 $(x,y) \in R \circ R$,因此

 $R \subseteq R \circ R$. (5 分)

故 $R \circ R = R$.

六、解 (1)
$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \quad \mathbf{P} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}.$$
 (5 分)

(2)
$$\mathbf{A}^2 = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
, $\mathbf{A}^3 = \begin{pmatrix} 0 & 2 & 1 & 2 \\ 0 & 1 & 2 & 2 \\ 0 & 2 & 1 & 2 \\ 0 & 1 & 0 & 0 \end{pmatrix}$, $\mathbf{A}^4 = \begin{pmatrix} 0 & 3 & 2 & 3 \\ 0 & 4 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$. (5 $\%$)

七、解 $A \cup B = \{\{\emptyset\}, \{\emptyset, 1\}, \{1\}\}.$

$$A \oplus B = (A - B) \cup (B - A) = \{\{\emptyset\}\} \cup \{\{1\}\} = \{\{\emptyset\}, \{1\}\}\}.$$

$$P(A) = \{\emptyset, \{\{\emptyset\}\}, \{\{\emptyset, 1\}\}, A\}.$$

$$(5 \%)$$

八、**证** 用一个节点代表一个人,若两个人是朋友,则对应的两个节点邻接,于是得到一个 n 阶简单无向图 G = (V, E).

对于 G 的任意两个不相邻的节点 u 和 v,考虑 $w \in V - \{u, v\}$,根据已知条件知,u 与 w 或 v 与 w 必相邻. 由于节点 u 和 v 不相邻,于是 u 与 w 且 v 与 w 必相邻. 根据 w 的任意性知, $\deg(u) \ge n - 2$ 且 $\deg(u) \ge n - 2$,因而有 $\deg(u) + \deg(u) \ge 2(n - 2)$. (5 分)

(1) 当 $n \ge 3$ 时, $\deg(u) + \deg(u) \ge 2(n-2) \ge n-1$, 因而 G 中存在 H 路.

(2) 当 $n \ge 4$ 时, $\deg(u) + \deg(u) \ge 2(n-2) \ge n$, 因而G中存在H回路. (5分)