

Sistema DINAMICO CONTINUO: $\{u_i v_j\} \mapsto \{v_i, x_j\} = \{v_j\} =$

Si f es invertible, entonces pod una des
si p es pto penádico de f, entonces el peciado
de p es el nímino KEN tal que f(p)=p

Uf (e) = i f (x): ne invertos

Del: La orbita positiva de x pon f

Si f es invertible, entonces pod una de
in orbita regulou de x on f

Uf (e) = i f (x): ne invertos

La orbita de x por f es:

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x): ne in pin

Up (x) = i f (x)

Si f es inventible, entonies podemes definir | Def: El offee interior de x par f x
la orbita regariue se x par f.

Of (x1 = 2 f⁻ⁿ(x1: nervojos)

Def: El offee interior de x par f x

denota pa legen y se define.

Of (x1 = 2 f⁻ⁿ(x1: nervojos)

Def: El offee de x par f x

denota pa legen y se define.

Of (x1 = 2 f⁻ⁿ(x1: nervojos)

Of (x1 = 2 f⁻

$\frac{\text{Eim}}{2} \cdot R \rightarrow R$	Prop:
a) $f: \mathbb{R} \to \mathbb{R}$ $\chi \mapsto f(x) = \frac{1}{2}x$ $\chi \mapsto g(x) = \frac{1}{2}x$	i)
explicitamente el homeomorfimo. b) $f: to_1 17 \rightarrow to_1 17$ $x \mapsto f(x) = 4x(1-x)$ $f(x) = x^2 + c$	'nii)
J: [-2;2] → [-2;2] Y → g(x) = x²-2	V)