N_{CA} . Después demuestre que $\rho(AC)=\rho(A)$ probando que $R_A=R_{AC}$. Concluya que $\rho(AC)=\rho(CA)=\rho(A)$. Por último, use el hecho de que C^{-1} es invertible para demostrar que $\rho(C^{-1}AC)=\rho(A)$.]

25. Sea
$$D = \begin{pmatrix} -1 & 0 \\ 0 & \sqrt[10]{2} \end{pmatrix}$$
. Calcule D^{20} .

- **26.** Si A es semejante a B, demuestre que det $A = \det B$.
- 27. Suponga que $C^{-1}AC = D$. Demuestre que para cualquier entero n, $A^n = CD^nC^{-1}$. Esto proporciona una forma sencilla para calcular las potencias de una matriz diagonalizable.
- **28.** Sea $A = \begin{pmatrix} 3 & -4 \\ 2 & -3 \end{pmatrix}$. Calcule A^{20} . [Sugerencia: Encuentre C tal que $A = CDC^{-1}$.]
- *29. Sea A una matriz de $n \times n$ cuya ecuación característica es $(\lambda c)^n = 0$. Demuestre que A es diagonalizable si y sólo si A = cI.
- **30.** Use el resultado del problema 27 y el ejemplo 8.3.6 para calcular A^{10} , si $A = \begin{pmatrix} 1 & 6 & 6 \\ 0 & 3 & 2 \\ 0 & -4 & -3 \end{pmatrix}$.
- *31. Sean $A ext{ y } B$ dos matrices reales de $n ext{ x } n$ con valores característicos distintos. Demuestre que AB = BA si y sólo si $A ext{ y } B$ tienen los mismos vectores característicos.
- 32. Si A es diagonalizable, demuestre que det $A = \lambda_1, \lambda_2, \dots, \lambda_n$, donde $\lambda_1, \lambda_2, \dots, \lambda_n$ son los valores característicos de A.

EJERCICIOS CON MATLAB 8.3

- 1. Vuelva a trabajar en el problema 8 de MATLAB 8.1.
- 2. Genere tres matrices aleatorias de 4 × 4 y tres matrices aleatorias de 5 × 5. Encuentre los valores y vectores característicos de cada una usando [V,D] = eig (A).
 - a) ¿Con qué frecuencia son distintos los valores característicos? ¿Por qué piensa que esto es cierto?
 - **b)** Para las matrices para las que V es invertible, verifique que $A = VDV^{-1}$.
- 3. a) Para la matriz en el problema 1 de MATLAB 8.1, utilizando la información que da el problema (no use eig), verifique que los vectores característicos forman una base para \mathbb{R}^3 y encuentre matrices C y D, con D diagonal, tales que $A = CDC^{-1}$. Confirme su respuesta verificando que $A = CDC^{-1}$.
 - b) Siga las instrucciones del inciso a), pero utilice la matriz y la información del problema 2 de MATLAB 8.1 [en este caso los vectores característicos formarán una base para \mathbb{C}^4].
- **4.** a) Considere la matriz A dada en seguida: $A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$.

Forme d = eig(A) y $dd = d \cdot ^20$ (observe el punto antes de "^", es importante). Forme E = diag(dd). Encuentre [V,D] = eig(A). Verifique que $E = D^{20}$. Explique por qué se cumple esto. Demuestre que $A^{20} = VEV^{-1}$.