CS 464

Introduction to Machine Learning

Homework #1

Kerem Ayöz 21501569 / Section:2

1 The Chess Game

Question 1.1

$$(0.6) * (0.6) * (0.6) * (0.4) * (0.6) * (0.6) * (0.6) * (0.6) = 0.648$$

(Wins first two) + (Draw after 2 games and wins final game)

Question 1.2

If he plays bold always in sudden death

mode:

(0.65) * (0.65) * (0.6) =**0.2535**

(Draw + Draw + Win)

If he plays timid in all three games:

0

(Cannot win in that situation)

Question 1.3

$$(0.4) / (0.35 + 0.4) = 0.53$$

(Played bold and lost) / (Played bold and lost + Played timid and lost)

Question 1.4

$$(0.75) * (0.85) + (0.25) * (0.35 + 0.4) = 0.825$$

(Correct prediction and won) + (Wrong prediction and lost)

2 Medical Diagnosis

Question 2.1

P (S = disease) = **0.005**

P(S = healthy) = 0.995

P(T = positive | S = disease) = 0.97

P(T = negative | S = disease) = 0.03

P(T = positive | S = healthy) = 0.02

P(T = negative | S = healthy) = 0.98

Question 2.2

P (S=disease | T=positive) =
$$\frac{P(T=positive \mid S=disease) * P(S=disease)}{P(T=positive)}$$

P (S=disease | T=positive) =
$$\frac{(0.97)*(0.005)}{(0.97)*(0.005)+(0.02)*(0.995)} = 0.196$$

3 MLE and MAP

Question 3.1

$$P(D \mid \theta) = \prod_{i=1}^{n} P(y_i \mid x_i, \theta) = \prod_{i=1}^{n} \frac{\lambda^{x_i} e^{-\lambda}}{x_i!}$$

$$L(\theta) = \sum_{i=1}^{n} (x_i \ln \lambda - \lambda - \ln(x_i!))$$

$$L'(\theta) = \sum_{i=1}^{n} \left(\frac{x_i}{\lambda} - 1\right) = 0$$

$$\hat{\lambda}_{\mathsf{MLE}} = \overline{x}$$

Question 3.2

$$P(\theta \mid D) \sim P(D \mid \theta) P(\theta) = (\prod_{i=1}^{n} \frac{\lambda^{x_i} e^{-\lambda}}{x_i!}) \frac{\beta^{\alpha} \lambda^{\alpha-1} e^{-\beta \lambda}}{\Gamma(\alpha)}$$

$$L(\theta) = \left[\sum_{i=1}^{n} (x_i \ln \lambda - \lambda - \ln(x_i!))\right] + \alpha \ln \beta + (\alpha - 1) \ln \lambda - \beta \lambda - \ln \Gamma(\alpha)$$

L'
$$(\theta) = \left[\sum_{i=1}^{n} \left(\frac{x_i}{\lambda} - 1\right)\right] + \frac{(\alpha - 1)}{\lambda} - \beta = 0$$

$$\frac{\bar{x}n}{\lambda} - n = \beta - \frac{(\alpha - 1)}{\lambda}, \qquad \bar{x}n - n\lambda = \beta\lambda - \alpha + 1, \qquad \bar{x}n + \alpha - 1 = \lambda(n + \beta)$$

$$\hat{\lambda}_{MAP} = \frac{\overline{x}n + \alpha - 1}{\beta + n}$$

Question 3.3

$$P(\theta \mid D) \sim P(D \mid \theta) P(\theta) = \prod_{i=1}^{n} \frac{\lambda^{x_i} e^{-\lambda}}{x_i!} \frac{1}{b-a}$$

$$L(\theta) = \sum_{i=1}^{n} (x_i \ln \lambda - \lambda - \ln(x_i!) - \ln(b-a))$$

$$L'(\theta) = \sum_{i=1}^{n} \left(\frac{x_i}{\lambda} - 1\right) = 0$$

 $\hat{\lambda}_{MAP} = \overline{x}$ (same with MLE estimator)

4 Sentiment Analysis on Tweets

Question 4.1

It can be ignored since it is constant, it depends only on the distribution of the input features which is constant in terms of estimated label.

Question 4.2

Negative = 0.60544740437158, Neutral = 0.22344603825136, Positive = 0.17110655737704

Training set is skewed towards negative tweets, so it is unbalanced. This affects the MLE estimat ion since we also add $P(Y = y_k)$ to each term. One solution might be applying a k-fold cross valid ation which might give better results when algorithm left out a combination of k negative tweet. Also removing some of the negative labeled data points might be a solution however we need to be careful while doing that since we might have lost data points that explains high variance in the dataset.

Question 4.3

We need (# of words) * (# of classes-1) + (# of labels -1) parameters to estimate which is 5722 * 2 = 11444 + 2 parameters in our example.

Question 4.4

My test set accuracy is 0.6280737704918032. MLE is bad since some of the words in test sample s are not contained in training samples, algorithm is not be able to classify such results since we multiplied the probabilities of these words ($P(X_j \mid Y = y_k)$) as 0. This makes the probability as minus infinite therefore the tweet is not classified as class k even it is a labeled as class k in reality.

Question 4.5

My test set accuracy is 0.7530737704918032. Smoothing the probabilities will enable algorithm to be hallucinated, it behaves like it saw each word in example of each class of tweets at least o nce. Therefore, the probabilities in summation will never be minus infinite, just small numbers c ompared to the MLE case.

Question 4.6

My test set accuracy is 0.6431010928961749. Bernoulli model accuracy is close to Multinomial Model MLE estimation. The main reason is the occurrences of the words are maximum 2-3 on a verage in single tweet. Therefore, using Multinomial and Bernoulli models give close results. Mo del with Dirichlet prior is better than these two models since it also captures the non-existing w ords in tweets.

Question 4.7

Following words are the most common 20 words in the dataset;

@united

@usairways

@americanair

@southwestair

@jetblue

cancelled

service

help

time

customer

hours

flights

hold

plane

delayed

gate

@virginamerica

call

flightled

Many of these words are expected words, since we used a dataset which contains Tweets about an airplane company.

Code

```
import numpy as np
import pandas as pd
np.warnings.filterwarnings('ignore')
# Load the dataset
test feature = pd.read csv("question-4-test-features.csv", header=None)
test_label = pd.read_csv("question-4-test-labels.csv", header=None)
train feature = pd.read csv("question-4-train-features.csv", header=None)
train label = pd.read csv("question-4-train-labels.csv", header=None)
labels = ["negative", "neutral", "positive"]
# Concatinated training data for multinomial and bernoulli
train multinomial = pd.concat((train feature, train label[0].rename("label")), axis=1)
train bernoulli = train feature.copy()
train bernoulli[train bernoulli != 0] = 1
train bernoulli = pd.concat((train bernoulli, train label[0].rename("label")), axis=1)
# Vocab is read
with open('question-4-vocab.txt', 'r', encoding="utf-8") as f:
  lines = f.readlines()
words = [word.split("\t")[0] for word in lines]
counts = [int(word.split("\t")[1][:-1]) for word in lines]
# Safe divide
def div(x, y):
  if y == 0:
    return 0
  return x / y
# Calculate the P(Y = yk) for each class
prior = [0, 0, 0]
label counts = train label[0].value counts()
prior[0] = np.log(div(label counts[0], len(train feature))) # negative
prior[1] = np.log(div(label counts[1], len(train feature))) # neutral
prior[2] = np.log(div(label counts[2], len(train feature))) # positive
# Total word counts in each class of documents
negative words = train multinomial.groupby("label").sum().sum(axis=1)[0]
neutral words = train multinomial.groupby("label").sum().sum(axis=1)[1]
positive words = train multinomial.groupby("label").sum().sum(axis=1)[2]
```

```
\# P(Xj \mid Y = yk) for each word Xj and each class yk, log is taken
pr_words_mle = np.full((len(words), 3), 0, dtype=float)
for i in range(len(words)):
 occurences = train multinomial.iloc[:, [i, len(words)]].groupby("label").sum()[i]
 pr words mle[i][0] = np.log(div(occurences[0], negative words)) # negative
 pr words mle[i][1] = np.log(div(occurences[1], neutral words)) # neutral
 pr_words_mle[i][2] = np.log(div(occurences[2], positive_words)) # positive
# Calculate prediction values
pr words mle = np.nan to num(pr words mle)
results mle = np.dot(test feature, pr words mle) + np.array(prior)
# Fix the too big/small values
results mle[results mle > 1e100] = np.inf
results mle[results mle < -1e100] = -np.inf
# Predict
prediction_values = np.amax(results_mle, axis=1)
candidates = []
for i in range(len(prediction values)):
 candidates.append(np.where(results mle[i] == prediction values[i])[0])
candidates = np.array(candidates)
predicted mle = np.ones(np.shape(candidates), dtype=object)
for i in range(len(candidates)):
 if len(candidates[i]) > 1: # tie
   predicted_mle[i] = labels[1]
 else:
   predicted mle[i] = labels[candidates[i][0]]
# Accuracy
accuracy_mle = np.sum(predicted_mle == test_label[0].values) / len(test_label)
print("MLE accuracy: " + str(accuracy_mle))
```

 $\# P(Xj \mid Y = yk)$ for each word Xj and each class yk, log is taken, alpha=1

```
pr words map = np.full((len(words), 3), 0, dtype=float)
for i in range(len(words)):
  occurences = train_multinomial.iloc[:, [i, len(words)]].groupby("label").sum()[i]
  pr words map[i][0] = np.log(div(occurences[0] + 1, negative words + len(words))) # negative
  pr_words_map[i][1] = np.log(div(occurences[1] + 1, neutral_words + len(words))) # neutral
  pr words map[i][2] = np.log(div(occurences[2] + 1, positive words + len(words))) # positive
# Calculate prediction values
pr_words_map = np.nan_to_num(pr_words_map)
results map = np.dot(test feature, pr words map) + np.array(prior)
# Fix the too big/small values
results_map[results_map > 1e100] = np.inf
results map[results map < -1e100] = -np.inf
# Predict
prediction_values = np.amax(results_map, axis=1)
candidates = []
for i in range(len(prediction_values)):
  candidates.append(np.where(results_map[i] == prediction_values[i])[0])
candidates = np.array(candidates)
predicted_map = np.ones(len(candidates), dtype=object)
for i in range(len(candidates)):
  if len(candidates[i]) > 1: # tie
   predicted_map[i] = labels[1]
  else:
   predicted_map[i] = labels[candidates[i][0]]
# Accuracy
accuracy_map = np.sum(predicted_map == test_label[0].values) / len(test_label)
print("MAP accuracy: " + str(accuracy_map))
\# P(Xj \mid Y = yk) for each word Xj and each class yk, log is taken, alpha=1
pr_words = np.full((len(words), 3), 0, dtype=float)
for i in range(len(words)):
  occurences = train bernoulli.iloc[:, [i, len(words)]].groupby("label").sum()[i]
  pr_words[i][0] = div(occurences[0], label_counts[0]) # negative
```

```
pr words[i][1] = div(occurences[1], label counts[1]) # neutral
  pr words[i][2] = div(occurences[2], label counts[2]) # positive
# Calculate prediction values
pr words comp = np.array(1) - pr words
test feature comp = np.array(1) - test feature
neg = test feature * np.transpose(pr words)[0] + test feature comp *
np.transpose(pr words comp)[0]
neu = test feature * np.transpose(pr words)[1] + test feature comp *
np.transpose(pr words comp)[1]
pos = test_feature * np.transpose(pr_words)[2] + test_feature_comp *
np.transpose(pr words comp)[2]
results_ber = np.transpose([np.sum(np.log(neg), axis=1), np.sum(np.log(neu), axis=1),
np.sum(np.log(pos), axis=1)]) + np.array(prior)
# Predict
prediction values = np.amax(results ber, axis=1)
candidates = []
for i in range(len(prediction values)):
  candidates.append(np.where(results_ber[i] == prediction_values[i])[0])
candidates = np.array(candidates)
predicted ber = np.ones(np.shape(candidates), dtype=object)
for i in range(len(candidates)):
  if len(candidates[i]) > 1: # tie
    predicted ber[i] = labels[1]
  else:
    predicted ber[i] = labels[candidates[i][0]]
# Accuracy
accuracy ber = np.sum(predicted ber == test label[0].values) / len(test label)
print("Bernoulli accuracy: " + str(accuracy_ber))
# Find most common words
words = np.array([word.split("\t")[0] for word in lines])
counts = np.array([int(word.split("\t")[1][:-1]) for word in lines])
dataset = pd.DataFrame({'word': words, 'count': list(counts)}, columns=['word', 'count'])
common ones = list(dataset.sort values("count", ascending=False)[0:20]["word"])
print("Most common 20 words:")
for i in common ones:
  print(i)
```