Laboratorium 12 – 13 — symulacja choroby

Zadanie (20 pkt)

Twoim zadaniem będzie napisanie symulacji rozprzestrzeniania się choroby wśród populacji nosobników. Symulacja powinna trwać z góry określoną liczbę tur. Osobniki w kolejnych iteracjach przemieszczają się po planszy roznosząc w ten sposób chorobę. Dodatkowo w wyniku spotkania nowe osobniki moga się narodzić.

Parametry osobnika:

```
• położenie (x, y), gdzie x, y \in \{1, 2, ..., 100\},
```

- prędkość $\in \{1, 2, 3\},\$
- kierunek,
- stan ∈ {chory (C), zarażony (Z), zdrowiejący (ZD), zdrowy (ZZ)},
- wiek $\in < 0,100 >$
- odporność $\in <0, 10>$
 - niska: (0, 3 >,
 - średnia: (3,6)
 - wysoka (6, 10 >.

Inicjalizacja osobników:

- n = 100
- położenie, prędkość, kierunek, stan losowe,
- wiek $\in <0,60>$,
- odporność zależna jest od wieku osobnika:
 - < 0, 15) $\cup < 70, 100 >$ niska odporność,
 - < 40,70) średnia odporność, < 15,40) wysoka odporność

Ruch osobnika:

- kierunek osobnika zmienia się w wyniku odbicia od ściany;
- kierunek osobników zmienia się przy ich spotkaniu.

Starzenie:

- wiek osobnika powinien rosnąć o 1 jednostkę w każdej turze;
- po zmianie przedziału wiekowego odporność powinna zostać dostosowana do aktualnej grupy wiekowej o ile jest wyższa niż maksymalna dla aktualnego wieku.

Narodziny:

Narodziny zachodzą z pewnym prawdopodobieństwem przy spotkaniu się dwóch osobników, przy czym każdy z nich musi mieć wiek \leqslant 20,40 >. Narodzony osobnik jest zawsze zdrowy, niezależnie od stanu rodziców oraz posiada maksymalna odporność Rodzą się 1 lub 2 osobniki.

Śmierć:

Śmierć następuje, gdy:

- osobnik osiągnie maksymalny wiek,
- odporność osobnika wyniesie 0.

Kolory osobników

Kolor osobnika, zależy od jego stanu zdrowia:

- czerwony chory osobnik,
- żółty wstępnie chory, zarażony,
- pomarańczowy zdrowiejący,
- zielony zdrowy.

Rodzaj choroby:

Kontakt zachodzi jeśli odległość między osobnikami jest nie większa niż 2 jednostki (zgodnie z metryką maksimum / szachową, $d(p,q) = \max(p_x - q_x, p_y - q_y)$).

```
Z — zarażony
C — chory
ZD — zdrowiejący
ZZ — zdrowy
```

Długość trwania dla każdego stanu:

- $Z po 2 dniach \Rightarrow C$,
- C po 7 dniach \Rightarrow ZD
- ZD po 5 dniach $\Rightarrow ZZ$.

Wpływ na odporność:

- Z -0.10/dzień,
- C -0.50/dzień,
- ZD +0.10/dzień (nie przekraczając maksymalnej wartości dla danego wieku),
- ZZ +0.05/dzień (nie przekraczając maksymalnej wartości dla danego wieku).

Zależności

W przypadku kontaktu dwóch osobników zachodzą następujące relacje:

- ZZ z Z:
 - $-ZZ \Rightarrow Z$, w przypadku niskiej odporności;
 - Z bez zmian;
- ZZ z C:
 - ZZ \Rightarrow Z, dla niskiej/średniej odporności, -3 do odporności dla wysokiej; C bez zmian;
- ZZ z ZD:
 - ZD wzrost odporności o 1;
 ZZ bez zmian;
- ZZ z ZZ:
 - zrównanie odporności do wyższej lub maksymalnej dla danego wieku.
- C z Z:
 - Z \Rightarrow C, w przypadku niskiej lub średniej odporności; C wyzerowanie czasu trwania stanu;
- - ZD \Rightarrow Z, w przypadku niskiej lub średniej odporności; C bez zmian;
- C z C:
 - zrównanie odporności do niższej, wyzerowanie czasu trwania stanu;
- Z z ZD:
 - ZD obniżenie odporności o 1;
 Z bez zmian;
- Z z Z:
 - obniżenie odporności o 1 dla każdego;
- ZD z ZD:
 - bez zmian;