MATH 4332 Homework 9 solutions

Q1. Let E be a subset of the metric space X. Show that $E' = (\overline{E})'$. Using the result that the closure of a connected set is connected, deduce that if E is connected, then E' is connected.

Since $E \subset \overline{E}$, we have $E' \subset (\overline{E})'$. Suppose $x \in (\overline{E})'$. Since $(\overline{E})' \subset \overline{E}$ (by the general result that $A' \subset \overline{A}$), $x \in \overline{E}$ and x is not an isolated point of \overline{E} . It suffices to show that for every open neighborhood N of x, $N \cap E \supseteq \{x\}$. Suppose the contrary. Then there exists an open neighborhood N of x such that $N \cap E = \{x\}$. This implies that x is an isolated point of E and therefore of \overline{E} . Contradiction.

Here is an alternative (easier) proof that uses the result $(A \cup B)' = A' \cup B'$. We have $\overline{E} = E \cup E'$ (coursework) and so $\overline{E}' = E' \cup (E')' = E'$, since $(E')' \subset E'$.

Suppose that E is connected. Then \overline{E} is connected (course result). Suppose that E contains more than one point (else $E' = \emptyset$). By the first part of the question, it suffices to prove that $(\overline{E})' = \overline{E}$. Since $(\overline{E})' \subset \overline{E}$, equality fails only if \overline{E} contains an isolated point. Since we assume that E connected and contains more than one point, E and \overline{E} contain no isolated points and so $(\overline{E})' = \overline{E}$.

Q2. Find a contraction map $f: X \to X$, where $X = \mathbb{R} \setminus \{0\}$, which does not have a fixed point.

Take $f(x) = \frac{x}{2}$. Since |f(x) - f(y)| = |x - y|/2, f is a contraction mapping with contraction constant k = 1/2. Obviously f has no fixed point in $\mathbb{R} \setminus \{0\}$.

Q3. Consider the ODE x' = x. Fix $x \in \mathbb{R}$. Taking $\phi_0 : [-a, a] \to \mathbb{R}$ to be the constant map $\phi_0(t) = x$, compute the first three iterates ϕ_1, ϕ_2, ϕ_3 of $T\phi(t) = x + \int_0^t f(\phi(s)) ds$, starting with $\phi = \phi_0$. Compare with the actual solution $x(\sum_{n=0}^{\infty} t^n/n!)$.

Define the iteration by $T\phi_n(t) = \phi_{n+1}(t) = x + \int_0^t f(\phi_n(s)) ds$. If we take $\phi_0 \equiv x$, then

$$\phi_1(t) = x + \int_0^t f(\phi_0(s)) \, ds = x + \int_0^t f(x) \, ds = x + \int_0^t x \, ds = x + |sx|_0^t = x + tx.$$

(Note that f(x) = x — the ODE is x' = f(x) = x). Since $\phi_1(t) = x + tx$ we have

$$\phi_2(t) = x + \int_0^t x + sx \, ds = x + \left| sx + s^2 x/2 \right|_0^t = x + tx + t^2 x/2.$$

Finally,

$$\phi_3(t) = x + \int_0^t x + sx + s^2 x/2 \, ds = x + tx + t^2 x/2! + t^3 x/3!.$$

The actual solution of x' = x with initial condition x is $xe^t = x(1 + t + t^2/2! + t^3/3! + \cdots)$.

Q4. Let (X,d) be a metric space. A map $f: X \to X$ is an expansion if there exists k > 1 such that $d(f(x), f(y)) \ge kd(x, y)$ for all $x, y \in X$. Show (1) If $f: X \to X$ is an expansion and f has a fixed point,

then the fixed point is unique. (2) If X is compact, then there are no expansions of X.

Note: we assume (or should have) that X has at least two points.

(1) Suppose x^*, y^* are fixed points of f. Then

$$d(x^*, y^*) = d(f(x^*), f(y^*)) \ge kd(x^*, y^*).$$

Since k > 1, the only way this inequality can hold is if $x^* = y^*$. Therefore, if a fixed point exists it is unique.

(2) METHOD 1: Let $x, y \in X$, $x \neq y$. Then $d(f^n(x), f^n(y)) \geq k^n d(x, y)$, for all $n \geq 0$. Since k > 1, $(d(f^n(x), f^n(y)))$ is unbounded. But X is assumed compact and so X is bounded. In particular, there exists $C \geq 0$, such that $d(u, v) \leq C$ for all $u, v \in X$. Now choose n so that $k^n d(x, y) > C$.

METHOD 2: Let $D(X) = \sup_{x,y \in X} d(x,y)$. Since X is compact $D < \infty$. Choose $x^*, y^* \in X$ such that $d(x^*, y^*) = D(X)$ (use the compactness of X). Now $d(f(x^*), f(y^*)) \ge kd(x^*, y^*) > D(X)$. Contradiction.

Q5. Suppose that the metric space (X,d) is connected. Show that if $f: X \to \mathbb{R}$ is continuous and $a,b \in f(X)$, then f takes every value between a and b. Using this result, show that if X is countable then X is connected if and only if X consists of a single point.

Since f is continuous and X is assumed connected, $f(X) \subset \mathbb{R}$ is connected. Therefore, f(X) is an interval. In particular, if $u, v \in f(X)$ then $[u, v] \subset f(X)$ (since f(X) is an interval).

METHOD 1: Not using the suggestion (and much easier). Fix $x_0 \in X$ and define $f(x) = d(x, x_0)$. The map $f: X \to \mathbb{R}$ is continuous and, since X contains at least two points, f is not constant. Therefore by the first part, if X is connected, f must take non-countably many different values. Hence if X is connected and not a single point, X cannot be countable.

METHOD II: Following the suggestion. Suppose X is countable. Let $X = \{x_n \mid n \in \mathbb{N}\}$. For a > 1, define $f: X \to \mathbb{R}$ by $f(x) = \sum_{n=1}^{\infty} a^{-n} d(x, x_n)/(1 + d(x, x_n))$. Observe that $d(x, x_n)/(1 + d(x, x_n)) < 1$ for all $n \in \mathbb{N}$ and so, since a > 1, the series is uniformly convergent (M-test) and so $f: X \to \mathbb{R}$ is continuous. For all $x \in X$, $f(x) = a^{-1} d(x, x_1)/(1 + d(x, x_1)) + \sum_{n=2}^{\infty} a^{-n} d(x, x_n)/(1 + d(x, x_n))$. It follows that $f(x) \ge a^{-1} d(x, x_1)/(1 + d(x, x_1))$. We also have the estimate $\sum_{n=2}^{\infty} a^{-n} d(x, x_n)/(1 + d(x, x_n)) \le \sum_{n=2}^{\infty} a^{-n} = 1/a(a-1)$. Fix $z \in X$, $z \ne x_1$. Then $f(z) \ge a^{-1} d(z, x_1)/(1 + d(z, x_1)) = a^{-1} C > 0$. On the other hand, $f(x_1) \le 1/a(a-1)$. Hence if we choose a sufficiently large $f(z) \ge a^{-1} C > 1/a(a-1) \ge f(x_1)$ and so f is not constant. Now if X is connected then f(X) is connected. If f is not constant, then f(X) contains an interval [u, v], u < v. Hence f takes non-countably many values. Contradiction — X is countable and so any function on X takes at most countably many distinct values.

This result is not true for general topological spaces. For example, every set X has a topology consisting of X and \emptyset . With this topology, X is connected.