

ABSCHLUSSVERANSTALTUNG METEOROLOGIE HAUTNAH

19. Oktober 2022 meteorologie.hautnah@uni-leipzig.de

DER HOCHSCHULWETTBEWERB

Im Wissenschaftsjahr 2022 – Nachgefragt!

Mitforschen erwänscht!

Eine Initiative des Bundesministeriums für Bildung und Forschung

Wissenschaftsjahr 2022
Nachgefragt!

ABLAUFPLAN

- 17:00 Willkommen und Vorstellung des Projektes
- 17:15 Fragerunde
- 17:30 Datensatzvorstellung
- 17:45 Erste Wissenschaftliche Auswertung
- 18:15 Übergabe Datensatz an Stadt
- 18:30 Ausblick und CityClim

WER SIND WIR

- Jakob, Johannes und Oscar
- Masterstudenten und Doktorand am Leipziger Institut für Meteorologie
- Link zur Webseite:
 <a href="https://meteorologiehautnah.github.io/Meteorologiehautnah.github.github.io/Meteorologiehautnah.github.io/Meteorologiehautnah.github.io/Meteorologiehautnah.github.io/Meteorologiehautnah.github.io/Meteorologiehautnah.github.io/Meteorologiehautnah.github.io/Meteorologiehautnah.github.io/Meteorologiehautnah.github.io/Meteorologiehautnah.github.io/Meteorologiehautnah.github.io/Meteorologiehautnah.github.io/Meteorologiehautnah.github.io/Meteorologiehautnah.github.githu
- Studentische Hilfskraft: Janosch

WARUM METEOROLOGIE HAUTNAH?

Wissenschaftliche Begeisterung + finanzielle Möglichkeit = Meteorologie hautnah

- Themen:
 - Städte als Lebensraum mit eigenem Klima
 - Hitzebelastung von Bürger:innen in zunehmend wärmeren Sommern
- Meteorologie als gesellschaftlich relevante Wissenschaft in die Öffentlichkeit tragen

PROJEKTZIEL

Weitergabe der Faszination am wissenschaftlichen Arbeiten

Sammlung von Daten zum Leipziger Stadtklima

PROJEKTÜBERSICHT

- Teilnehmer Gesamt: 67
- Dauer: Mai Oktober (geplant: Mai Juli)
- Anzahl Messfahrten: 4087
- Längste Messfahrt: 3 Stunden
- Mittlere Dauer einer Messfahrt: ~18 Minuten

ALLE MESSFAHRTEN MAI - OKTOBER

 1,204,135 Messpunkte nach Geschwindigkeitsfilter (>10 km/h)

ALLE MESSFAHRTEN MAI - OKTOBER

VERGLEICH MAI, JUNI UND JULI

VERGLEICH AUGUST, SEPTEMBER UND OKTOBER

FRAGERUNDE

partici.fi/45087423

GEMEINSAME MESSFAHRT – 23. JUNI

Ziel: Auswirkungen des Auwalds auf das umgebende Stadtklima messen

Fahrtmuster: Querschnitte des Auwalds und angrenzender Stadtteile in Ost-

West-Richtung

رن 26ء

Femperatur

GEMEINSAME MESSFAHRT – 23. JUNI

GEMEINSAME MESSFAHRT – 28. JULI

- Ziel: Temperaturunterschied zwischen Parks und angrenzender Stadt messen
- Fahrtmuster: Zeitgleich in, am und außerhalb des Parks entlang fahren

GEMEINSAME MESSFAHRT – 28. JULI

GEMEINSAME MESSFAHRT – 28. JULI

ABENDFAHRT: 15. JUNI

- Ziel: nächtliches Einfließen der Kaltluft in die Stadt messen
- Fahrtmuster: Nord-Süd Transekt aus der Stadt heraus und in die Stadt hinein

ABENDFAHRT: 15. JUNI

- Ziel: nächtliches Einfließen der Kaltluft in die Stadt messen
- Fahrtmuster: Nord-Süd
 Transekt aus der Stadt heraus und in die Stadt hinein

BISHERIGE AUSWERTUNGEN ZUM LEIPZIGER STADTKLIMA

DWD-Bericht (2016): https://www.dwd.de/DE/klimaumwelt/klimaforschung/klimawirk/stadtpl/stadtklimaprojekte/projekt_leipzig/externe_links/ergebnisse.pdf? blob=publicationFile&v=2
Stadtklimaanalyse Leipzig (2019): https://static.leipzig.de/fileadmin/mediendatenbank/leipzig-de/Stadt/02.3 Dez3 Umwelt_Ordnung_Sport/36 Amt_fuer_Umweltschutz/Energie_und_Klima/Stadtklima/Methodikbericht-mit-Karten-Stadtklimaanalyse-Leipzig.pdf

BISHERIGE AUSWERTUNGEN ZUM LEIPZIGER STADTKLIMA

DWD-Bericht (2016): https://www.dwd.de/DE/klimaumwelt/klimaforschung/klimawirk/stadtpl/stadtklimaprojekte/projekt_leipzig/externe_links/ergebnisse.pdf?_blob=publicationFile&v=2
Stadtklimaanalyse Leipzig (2019): https://static.leipzig.de/fileadmin/mediendatenbank/leipzig-de/Stadt/02.3 Dez3 Umwelt_Ordnung_Sport/36_Amt_fuer_Umweltschutz/Energie_und_Klima/Stadtklima/Methodikbericht-mit-Karten-Stadtklimaanalyse-Leipzig.pdf

BISHERIGE AUSWERTUNGEN ZUM LEIPZIGER STADTKLIMA

DWD-Bericht (2016): https://www.dwd.de/DE/klimaumwelt/klimaforschung/klimawirk/stadtpl/stadtklimaprojekte/projekt_leipzig/externe_links/ergebnisse.pdf? blob=publicationFile&v=2

Stadtklimaanalyse Leipzig (2019): https://static.leipzig.de/fileadmin/mediendatenbank/leipzig-de/Stadt/02.3 Dez3 Umwelt Ordnung Sport/36 Amt fuer Umweltschutz/Energie und Klima/Stadtklima/Methodikbericht-mit-Karten-Stadtklimaanalyse-Leipzig.pdf

ISHERIGE AUSWERTUNGEN ZUM LEIPZIGER STADTKLIMA

DWD-Bericht (2016): https://www.dwd.de/DE/klimaumwelt/klimaforschung/klimawirk/stadtpl/stadtklimaprojekte/projekt_leipzig/externe_links/ergebnisse.pdf? blob=publicationFile&v=2

Stadtklimaanalyse Leipzig (2019): https://static.leipzig.de/fileadmin/mediendatenbank/leipzig-de/Stadt/02.3 Dez3 Umwelt Ordnung Sport/36 Amt fuer Umweltschutz/Energie und Klima/Stadtklima/Methodikbericht-mit-Karten-Stadtklimaanalyse-Leipzig.pdf

UNSER MÖGLICHER BEITRAG

Idee der Profilmessungen

Großer Datenschatz

UNSER MÖGLICHER BEITRAG

Idee der Profilmessungen (Stadt / DWD)

Großer Datenschatz (Meteorologie hautnah!)

Evaluierung von Modellergebnissen? Temperatur 04Uhr

- Lässt sich die modellierte Idealsituation mit den Messungen repräsentieren?
- Wie stark schwanken die Ergebnisse in Abhängigkeit vom Wetter?

MODELLIERTE IDEALSITUATION - STRAHLUNGSTAG

Großräumige Bedingungen im Modell:

Lufttemperatur: 22 Grad über Freiland um 21Uhr (ein Tag im Sommer)

EIGENE AUSWERTUNGEN – AUSWAHL VON STRAHLUNGSTAGEN

Beispiel Abendsituation

Klassifizierungsmethode: subjektive Einschätzung

1	Solare Strahlungstage	Temperaturkontrast 20UTC	Wind 19-20UTC (Schkeuditz) (m/s)	Bewölkung 20UTC
2	02. Mai	6,4K	2,1	-
3	03. Mai	5,7K	1,5	-
4	09. Mai	5,K	2,1	Ci (einzelne)
5	15. Mai	5,8K	2,1	Cs
6	18. Mai	4,1K	3,6	Ac (einzelne)
7	02. Jun	4,5K	1	Сс
8	14. Jun	5,1K	2,6	Ci (einzelne)
9	15. Jun	6,3K	2,6	-
10	18. Jun	5,K	3,1	-
11	22. Jun	5,4K	2,1	-
12	23. Jun	5,5K	1,5	-
13	26. Jun	4,8K	1,5	Ac/Cb
14	28. Jun	5,7K	1,5	Cs
15	17. Jul	6,5K	1	Cs
16	19. Jul	6,3K	2,6	Ac (einzelne)
17	24. Jul	5,2K	2,6	-
18	27. Jul	5,3K	2,1	-
19	03. Aug	6,5K	2,6	Ac (einzelne)
20	06. Aug	5,7K	1	-

Beispiele Wetterlage

EIGENE AUSWERTUNGEN – ERSTE ERGEBNISSE

Messfahrt DWD (2016), 15:26Uhr-17:31Uhr

Meteorologie hautnah Messungen (14:30Uhr-17:30Uhr)

Nachmittagssituation

(Temperaturdifferenz Plots: 6K)

EIGENE AUSWERTUNGEN – ERSTE ERGEBNISSE

Messfahrt DWD (2016), 21:08Uhr-23:19Uhr

Meteorologie hautnah Messungen (21:00Uhr-23:30Uhr)

Abendsituation

(Temperaturdifferenz Plots: 12K)

EIGENE AUSWERTUNGEN – ERSTE ERGEBNISSE

Messfahrt DWD (2016), 03:03Uhr-05:08Uhr

Meteorologie hautnah Messungen (02:00Uhr-05:30Uhr)

Morgensituation

(Temperaturdifferenz Plots: 12K)

Problem: wenige Daten verfügbar

EIGENE AUSWERTUNGEN – FAZIT

- Erhebliche Verbesserung der Datendichte für die Nachmittags- und Abendsituation
- ✓ Muster vorheriger Messfahrten können bestätigt werden
- Nur wenige Daten aus den Morgenstunden verfügbar
- Einige überlappende Messfahrten führen zu unterschiedlichen Ergebnissen

Outlook:

- Objektivierung der Strahlungstagsauswahl
- Einbau eines Temperaturmittels mehrerer Umgebungsstationen als "Referenz"
- Interpolation der Messungen auf Modellgitter
- Weitere Messungen in den Morgenstunden für Modellvergleich notwendig!

AMT FÜR UMWELTSCHUTZ LEIPZIG

- Johannes Dohmen, Sachgebiet Stadtökologie
- Miriam Posselt, Sachgebiet Stadtökologie

VIELEN DANK FÜR EURE UNTERSTÜTZUNG!

meteorologie.hautnah@uni-leipzig.de

DER HOCHSCHULWETTBEWERB

Im Wissenschaftsjahr 2022 – Nachgefragt!

Mitforschen erwünscht!

Eine Initiative des Bundesministeriums für Bildung und Forschung

Wissenschaftsjahr 2022
Nachgefragt!

ABSCHLUSSVERANSTALTUNG METEOROLOGIE HAUTNAH

19. Oktober 2022

meteorologie.hautnah@uni-leipzig.de

DER HOCHSCHULWETTBEWERB

Im Wissenschaftsjahr 2022 – Nachgefragt!

Mitforschen erwünscht!

Eine Initiative des Bundesministeriums für Bildung und Forschung

Wissenschaftsjahr 2022
Nachgefragt!

