Unsupervised Learning

Jiachun Jin jinjch@shanghaitech.edu.cn

Overview of unsupervised learning

From supervised, weakly supervised to unsupervised

Self-supervised learning

Clustering

Matrix completion

Dimension reduction???

Spectral Clustering

Problem formulation

Graph Laplacian

The null space of L

Assign points to clusters

More on PCA

The view of subspace projection

The view of rank minimization

Robust PCA

Probabilistic PCA

Generalized PCA(subspace clustering)

Appendix 1

References

Overview of unsupervised learning

"Machine Learning is far from fitting something."

--- 鲁迅

From supervised, weakly supervised to unsupervised

- Supervised learning: easy, just fit some functions, take the generalization into consideration
 - Regression
 - Classification
- Weakly supervised learning: label is expensive, a modern research topic in the ML community, a lot new learning settings, nice for your course projects

- Incomplete supervision (不完全监督): 一个数据集,有的样本有标注,有的没有
 - Semi-supervised learning
 - Inductive
 - Transductive
 - Active learning: 算法可以挑一些没有标注的样本让标注员去标一下(有限的标注预算)
- Inexact supervision (不确切监督): 标注比较粗糙,不精细
 - Multi-instance learning: 视频标注
 - Partial label learning, the label of x_i is a set $S_i \subseteq \{y_1, \dots, y_k\}$
 - Confused multi-task learning(ICML 2020) ¹:样本点来源于不同的回归任务,但是不知道每一个点 具体属于哪一个任务
- ∘ Inaccurate supervision (不精确监督)
 - Learning with noise label: 有标签标错了
- 。 还有一些别的弱监督学习的设定
 - Positive unlabeled learning: 只有正标签,用户只告诉你他喜欢什么
 - One-bit supervision learning(NIPS 2020) ²:
 - $m{\mathcal{D}}=\mathcal{D}^S\cup\mathcal{D}^O\cup\mathcal{D}^U$, where \mathcal{D}^S denote common supervised dataset, \mathcal{D}^U denote the unsupervised dataset, while \mathcal{D}^O denote a fixed set(here different from active learning) for one-bit supervision
 - One-bit supervision: labeler tell whether the image belongs to the specific label, only allowed once(once labeled y_n^- , no further supervision can be obtained)
 - etc
- Unsupervised learning: difficult
 - Goal of unsupervised learning: to discover "interesting structure" in the data, knowledge discovery
 - In probabilistic view, supervised learning we build models of the form $p(y_i|\mathbf{x}_i,\theta)$, while in unsupervised learning, we build models of form $p(\mathbf{x}_i|\theta)$, known as "**density estimation**"
 - Gaussian Mixture Model

$$p(\mathbf{x} \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{k=1}^{K} \pi_k \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\right)$$

Probabilistic PCA

$$p(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}\left(\mathbf{x} \mid \mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \sigma^2 \mathbf{I}\right)$$

Self-supervised learning

- · Create proxy supervised tasks from unlabeled data
 - · 把一段文字中间扣掉几个词, 让语言模型去预测扣掉的词是什么(BERT)
 - 。 把一些没有标注的图片随机旋转一下, 让模型去预测旋转的角度

Clustering

- ullet First goal, estimate the distribution over the number of clusters K, $p(K|\mathcal{D})$, $\hat{K} = rg \max_K p(K|\mathcal{D})$
- Second goal, estimate which cluster each point belongs to, z_i : latent varible(never observed) denotes which cluster point x_i belongs to, $\hat{z_i} = \arg\max_k p(z_i = k|\mathbf{x_i}, \mathcal{D})$

Matrix completion

Image inpainting

- The Netflix competition
 - 1 million USD prize
 - 18,000 movies, 500,000 users, sparse ratings from 1 to 5
- Low-rankness assumption
- Active matrix completion

Dimension reduction???

- We often take this as unsupervised learning, but there are also supervised dimension reduction algorithms,
 e.g. LDA
- Difference between LDA and PCA

- Data from 2 classes
- · Red line: PCA choose the direction of maximum variance
- Green line: LDA takes account of the data labels, it choose the green line to give a good class separation

Spectral Clustering 3

Problem formulation

- ullet $X = [x_1, x_2, \ldots, x_N] \in \mathbb{R}^{D imes N}$: data matrix
- - KNN graph
 - ϵ -neighbourhood graph
 - ullet fully connected graph: $s_i(x_i,x_j)=\exp(-\|x_i-x_j\|_2^2/(2\sigma^2))$
- Construct a graph for all the data points: G = (V, E, W)
 - \circ V: vertices, in this case each data point is a vertex
 - E: edges between 2 vertices
 - W: weighted adjacency matrix, w_{ij} denotes the weight of the vertex between v_i and v_j
 - nonnegative
 - symmetric
 - Take the clustering problem as a graph cut problem

Graph Laplacian

- ullet D: degree matrix, diagonal, $D_{ii} = \sum_{j=1}^N w_{ij}$
- Graph Laplacian matrix: L=D-W

Properties of graph Laplacian matrix

1.
$$orall f \in \mathbb{R}^N$$
 , $f^ op L f = rac{1}{2} \sum_{i,j=1}^N w_{ij} (f_i - f_j)^2$

Proof:

$$egin{aligned} f^ op Lf &= f^ op Df - f^ op Wf \ &= \sum_{i=1}^N D_{ii} f_i^2 - \sum_{i,j=1}^N w_{ij} f_i f_j \ &= rac{1}{2} igg[\sum_{i=1}^N D_{ii} f_i^2 - 2 \sum_{i,j=1}^N w_{ij} f_i f_j + \sum_{j=1}^N D_{jj} f_j^2 igg] \ &= rac{1}{2} igg[\sum_{i=1}^N (\sum_{j=1}^N w_{ij}) f_i^2 - 2 \sum_{i,j=1}^N w_{ij} f_i f_j + \sum_{j=1}^N (\sum_{i=1}^N w_{ji}) f_j^2 igg] \ &= rac{1}{2} \sum_{i,j=1}^N w_{ij} (f_i - f_j)^2 \end{aligned}$$

2. $\,L$ is symmetric and positive semi-definite

Obvious by property 1.

3. L's smallest eigenvalue is 0, the eigenvector is the all one vector ${f 1}$. Obvious by property 2.

The null space of ${\cal L}$

G: an undirected graph, with non-negative weights

- A_1, \ldots, A_k : the connected components of G
- $\mathbf{1}_{A_1}, \mathbf{1}_{A_2}, \dots, \mathbf{1}_{A_k}$: indicator vector of A_1, \dots, A_k

Proposition

The null space of L has dimension k(the same as the number of connected conponents of G), and is spanned by $\{\mathbf{1}_{A_1}, \mathbf{1}_{A_2}, \dots, \mathbf{1}_{A_k}\}$.

Proof:

We first prove $f^ op Lf = 0 \Rightarrow f \in \mathcal{N}(L)$:

Since L is positive semi-definite, then we can write $L=BB^{\top}$, $f^{\top}Lf=f^{\top}BB^{\top}f=\|B^{\top}f\|_2^2\geq 0$, $x^{\top}Lx=0\Rightarrow f\in\mathcal{N}(B^{\top})\Rightarrow f\in\mathcal{N}(L)$.

This gives us that $f \in \mathcal{N}(L) \Leftrightarrow f^{\top}Lf = 0 \Leftrightarrow \sum_{i,j=1}^n w_{ij}(f_i - f_j)^2 = 0 \Leftrightarrow f_i = f_j, \forall x_i, x_j \text{ stays in the same connected component } A_s, \forall s = 1, 2, \dots, k.$

说人话:找一根N维的向量 f_{A_1} ,每一个元素代表一个样本点(图G上的一个顶点), f_{A_1} 中如果点 x_i 属于 A_1 这个connected component,那么 f_{A_1} 的第i个元素为1,不然为0。 注意到,只有 $f_{A_1},f_{A_2},\ldots,f_{A_k}$ 能使得 $f^\top Lf=0\Leftrightarrow \sum_{i,j=1}^n w_{ij}(f_i-f_j)^2=0$ 。因此得证。

所以我们只要:

- 1. 根据数据矩阵X构造出他的graph Laplacian L
- 2. 找出 $\mathcal{N}(L)$ 的一组basis(eigen decomposition)

就能知道:

- 1. 数据中的cluster个数($\dim \mathcal{N}(L)$)
- 2. 每个数据点所属的cluster
 - o naive!

Assign points to clusters

Compute the basis of $\mathcal{N}(L)$ with not produce $[\mathbf{1}_{A_1},\mathbf{1}_{A_2},\ldots,\mathbf{1}_{A_k}]$, denote the computed bases as $B=[b_1,b_2,\ldots,b_k]$, then $B=[{f 1}_{A_1},{f 1}_{A_2},\ldots,{f 1}_{A_k}]$ Θ , where Θ is an invertible k imes k matrix.

Let's transpose it: $Y = B^\top = \Theta^\top \begin{bmatrix} \mathbf{1}_{A_1}^\top \\ \vdots \\ \mathbf{1}_{A_n} \end{bmatrix} \in \mathbb{R}^{k \times N}$, and now each column of Y denotes a point, and x_i, x_j lies in the same cluster if and only if $Y_i = Y_i$

- We call Y_i as an embedding of x_i
- The same embedding, stay in the same cluster

Proof:

1. x_i, x_j stay in the same cluster $\Rightarrow Y_i = Y_j$:

$$x_i, x_j$$
 stay in the same cluster $\Rightarrow Y_i = Y_j$:
$$Y = \Theta^{\top} \begin{bmatrix} \mathbf{1}_{A_1}^{\top} \\ \vdots \\ \mathbf{1}_{A_k} \end{bmatrix}$$
, so $Y_i = \Theta^{\top} i^{th}$ column of $\begin{bmatrix} \mathbf{1}_{A_1}^{\top} \\ \vdots \\ \mathbf{1}_{A_k} \end{bmatrix}$, and i^{th} column of $\begin{bmatrix} \mathbf{1}_{A_1}^{\top} \\ \vdots \\ \mathbf{1}_{A_k} \end{bmatrix}$ is the same as the j^{th} column of $\begin{bmatrix} \mathbf{1}_{A_1}^{\top} \\ \vdots \\ \mathbf{1}_{A_k} \end{bmatrix}$ denote $E = \begin{bmatrix} \mathbf{1}_{A_1}^{\top} \\ \vdots \\ \mathbf{1}_{A_k} \end{bmatrix}$, x_i, x_j stay in the same cluster $\Rightarrow E_i = E_j$ (E 的每一列都只有一个元素是1,其余都是 0) $\Rightarrow Y_i = Y_j$

2. $Y_i = Y_j \Rightarrow x_i, x_j$ stay in the same cluster:

Suppose $Y_i = Y_j$ but x_i, x_j stay in different clusters, then we have $\Theta^\top E_i = \Theta^\top E_j$ and $E_i, E_j \neq 0$, so $\Theta^\top \neq 0$, contradiction.

In practice, all the embeddings may not be exactly the same, we run K-means to figure out the clusters.

More on PCA

The view of subspace projection

Prerequisites

There is a d-dimensional subspace S stay in \mathbb{R}^D , Use $U=[u_1,u_2,\ldots,u_d]$ to denote a set of basis of S, then the project matrix onto S is: $U(U^\top U)^{-1}U^\top$

- This means $\forall x \in \mathbb{R}^D, U(U^\top U)^{-1}U^\top x$ lies in the subspace S, note that once U is orthogonal, the project matrix becomes UU^\top since $U^\top U = I_d$
- If you are not familiar with this, read the Appendix 1 for a more detailed explanation.
- AA^\dagger projects a vector onto $\mathcal{R}(A)$, $A^\dagger A$ projects a vector onto $\mathcal{R}(A^\top)$.

 $X = [x_1, \dots, x_n] \in \mathbb{R}^{D imes n}$, suppose it has been centerized

We want to find a d-dimensional subspace in \mathbb{R}^D (a set of its orthogonal basis) such that the projection of the data onto this subspace is most close to the original data X:

$$\min_{U \in \mathbb{R}^{D \times d}, U^{\top}U = I_d} \|X - UU^{\top}X\|_F^2 \tag{1}$$

Let's do some derivation:

 $\label{eq:tace} \text{note that } Trace(ABC) = Trace(CAB) = Trace(BCA)$

$$\begin{split} \|X - UU^\top X\|_F^2 &= Trace((X - UU^\top X)(X - UU^\top X)^\top) \\ &= Trace(XX^\top - XX^\top UU^\top - UU^\top XX^\top + UU^\top XX^\top UU^\top) \\ &= Trace(XX^\top - XX^\top UU^\top - UU^\top XX^\top + UU^\top XX^\top UU^\top) \\ &= \|X\|_F^2 - 2Trace(XX^\top UU^\top) + Trace(UU^\top UU^\top XX^\top) \\ &= \|X\|_F^2 - 2Trace(XX^\top UU^\top) + Trace(UU^\top XX^\top) \\ &= \|X\|_F^2 - Trace(XX^\top UU^\top) \end{split}$$

So the original optimization problem becomes:

$$\max_{U \in \mathbb{R}^{D \times d}, U^{\top}U = I_d} Trace(U^{\top}XX^{\top}U) \tag{2}$$

Note that

$$Trace(U^{ op}XX^{ op}U) = Trace(XX^{ op}UU^{ op}) \underbrace{\leq}_{ ext{Von-Neumann inequality}} \sum_{i=1}^D \lambda_i(XX^{ op})\lambda_i(UU^{ op}) = \sum_{i=1}^d \lambda_i(XX^{ op})$$

So it is sufficient to show that take \hat{U} to be the top d eigenvectors of XX^{\top} maximizes the objective function.

Von-Neumann inequality

For the details and proof of Von-Neumann inequality, read 7.4.1 and 8.7.6 of this book 4 .

The view of rank minimization

We now want to seek a low rank matrix, which can approximate the data matrix X best:

$$\min_{\substack{A \in \mathbb{R}^{D \times n} \\ rank(A) \le d}} \|X - A\|_F^2 \tag{3}$$

$$\begin{split} \|X-A\|_F^2 &= Trace((X-A)(X-A)^\top) \\ &= Trace(XX^\top - XA^\top - AX^\top + AA^\top) \\ &= \|X\|_F^2 - 2Trace(XA^\top) + \|A\|_F^2 \end{split}$$

write $X = U_X \Sigma_X V_X^{ op}$, $A = U_A \Sigma_A V_A^{ op}$, then we further have:

$$egin{aligned} \|X\|_F^2 - 2Trace(XA^ op) + \|A\|_F^2 &= \sum_{i=1}^D \sigma_i^2(X) + \sum_{i=1}^D \sigma_i^2(A) - 2Trace(XA^ op) \ &\geq \sum_{i=1}^D \sigma_i^2(X) + \sum_{i=1}^D \sigma_i^2(A) - \sum_{i=1}^D 2\sigma_i(X)\sigma_i(A) \ &= \sum_{i=1}^D (\sigma_i(X) - \sigma_i(A))^2 \ &= \sum_{i=1}^d (\sigma_i(X) - \sigma_i(A))^2 + \sum_{i=d+1}^D \sigma_i(X)^2 \ &\geq \sum_{i=d+1}^D \sigma_i(X)^2 \end{aligned}$$

the first inequality comes again from Von Neumann inequality, and equality holds when we make $U_A=U_X, V_A=V_X$, and the last inequality holds once we make the first d singular values of A be the corresponding ones of X. So the finally optimal low rank matrix \hat{A} is:

$$\hat{A} = U_X \begin{bmatrix} \sigma_1(X) & & & \\ & \ddots & & \\ & & \sigma_d(X) & \\ & & & 0 \end{bmatrix} V_X^{\top}$$

$$(4)$$

Robust PCA

- ullet Noise in X
- Missing entries in X
- ullet Outliers in X

Probabilistic PCA

- Introduce an explicit latent variable z corresponding to the subspace
- $x = Wz + \mu + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$
- Prior over z: $p(z) = \mathcal{N}(z|0,I)$
- Conditional distribution of the observed variable(data point) x: $p(x|z) = \mathcal{N}(x|Wz + \mu, \sigma^2 I)$
- Learn W, μ, σ with MLE or EM
- Use Bayes Theorem to do dimension reduction: $p(z|x)=\mathcal{N}(z|M^{-1}W^{\top}(x-\mu),\sigma^{-2}M)$, where $M=W^{\top}W+\sigma^2I$

Read PRML 12.2 for more details.

Generalized PCA(subspace clustering)

- In PCA, we assume that all the data points come from one low-dimensional subspace.
- Subspace clustering deals with the problem that the data points comes from a union of subspace
 - With unknown number of subspaces
 - With unknown dimensions of each subspace

Appendix 1

How to project a vector b onto a line with direction a?

The key point

p is b's projection onto a, and we know $p=\hat{x}a$, \hat{x} is an unknown number. Note that b-p is perpendicular to a:

$$a^{\top}(b-p) = 0$$

$$a^{\top}b = a^{\top}\hat{x}a$$

$$a^{\top}b = \hat{x}a^{\top}a$$

$$\Rightarrow \quad \hat{x} = \frac{a^{\top}b}{a^{\top}a}$$

$$\Rightarrow \quad p = \frac{a^{\top}b}{a^{\top}a}a$$

How to project a vector b onto a subspace with dimension n, which's basis is in the columns of $A=[a_1,\ldots,a_n]$?

Problem: find
$$\hat{x}_1,\ldots,\hat{x}_n$$
, such that $p=\hat{x}_1a_1+\ldots+\hat{x}_na_n=[a_1,a_2,\ldots,a_n]$ $\begin{bmatrix} \hat{x}_1\\ \hat{x}_2\\ \vdots\\ \hat{x}_n \end{bmatrix}=A\hat{\boldsymbol{x}}$, and $b-p$ is perpendicular to the subspace spanned by A , in other words, $b-p$ is perpendicular to a_1,\ldots,a_n .

The key point again

$$egin{aligned} oldsymbol{a}_1^{\mathrm{T}}(b-A\widehat{oldsymbol{x}}) &= 0 \ &dots \ oldsymbol{a}_n^{\mathrm{T}}(b-A\widehat{oldsymbol{x}}) &= 0 \end{aligned}$$

Write in matrix form: $\Rightarrow A^\top (b - A \hat{\boldsymbol{x}}) = 0$, which gives $\hat{\boldsymbol{x}} = (A^\top A)^{-1} A^\top b$, and $p = A \hat{\boldsymbol{x}} = A (A^\top A)^{-1} A^\top b$.

References

- 1. Su, Xin, et al. "Task Understanding from Confusing Multi-task Data." International Conference on Machine Learning. PMLR, 2020. •
- 2. Hu, Hengtong, et al. "One-bit Supervision for Image Classification." arXiv preprint arXiv:2009.06168 (2020). ↔
- 3. Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17.4 (2007): 395-416.APA ↔
- 4. Horn, Roger A., and Charles R. Johnson. *Matrix analysis*. Cambridge university press, 2012. •