

What Is Cluster Analysis?

- When flying over a city, one can easily identify fields, forests, commercial areas, and residential areas based on their features, without anyone's explicit "training"—This is the power of cluster analysis
- ☐ This course will systematically study cluster analysis methods and help answer the following:
 - What are the different proximity measures for effective clustering?
 - Can we cluster a massive number of data points efficiently?
 - Can we find clusters of arbitrary shape? At multiple levels of granularity?
 - How can we judge the quality of the clusters discovered by our system?

The Value of Cluster Analysis

- What is the value of cluster analysis?
 - Cluster analysis helps you partition massive data into groups based on its features
 - Cluster analysis will often help subsequent data mining processes such as pattern discovery, classification, and outlier analysis
- What roles does cluster analysis play in the Data Mining Specialization?
 - You will learn various scalable methods to find clusters from massive data
 - ☐ You will learn how to mine different kinds of clusters effectively
 - You will also learn how to evaluate the quality of the clusters you find
 - Cluster analysis will help with classification, outlier analysis, and other data mining tasks

Broad Applications of Cluster Analysis

- Data summarization, compression, and reduction
 - Examples: Image processing or vector quantization
- Collaborative filtering, recommendation systems, or customer segmentation
 - ☐ Finding like-minded users or similar products
- Dynamic trend detection
 - Clustering stream data and detecting trends and patterns
- Multimedia data analysis, biological data analysis, and social network analysis
 - Examples: Clustering video/audio clips or gene/protein sequences
- □ A key intermediate step for other data mining tasks
 - Generating a compact summary of data for classification, pattern discovery, and hypothesis generation and testing
 - Outlier detection: Outliers are those "far away" from any cluster

Major Reference Readings for the Module

■ Textbook

- Han, J., Pei, J. & Tong, H. (2022). Data mining: Concepts and techniques (4th ed.). Morgan Kaufmann
- Chapters most related to the course
 - Chapter 2: Data, Measurements, and Data Preprocessing (Section 2.3: Similarity and Distance Measures)
 - Chapter 8: Cluster Analysis
 - Chapter 9: Advanced Cluster Analysis

Other references will be listed at the end of each lecture video

Cluster Analysis: An Introduction

- What Is Cluster Analysis?
- Applications of Cluster Analysis
- Cluster Analysis: Requirements and Challenges
- Cluster Analysis: A Multi-Dimensional Categorization
- An Overview of Typical Clustering Methodologies
- An Overview of Clustering Different Types of Data
- An Overview of User Insights and Clustering
- Summary

What Is Cluster Analysis?

- What is a cluster?
 - A cluster is a collection of data objects which are
 - □ Similar (or related) to one another within the same group (i.e., cluster)
 - □ Dissimilar (or unrelated) to the objects in other groups (i.e., clusters)
- □ Cluster analysis (or *clustering*, *data segmentation*, ...)
 - Given a set of data points, partition them into a set of groups (i.e., clusters) which are as similar as possible
- Cluster analysis is unsupervised learning (i.e., no predefined classes)
 - This contrasts with classification (i.e., supervised learning)
- Typical ways to use/apply cluster analysis
 - As a stand-alone tool to get insight into data distribution, or
 - ☐ As a preprocessing (or intermediate) step for other algorithms

Cluster Analysis: Applications

- ☐ A key intermediate step for other data mining tasks
 - Generating a compact summary of data for classification, pattern discovery, hypothesis generation and testing, etc.
 - Outlier detection: Outliers—those "far away" from any cluster
- □ Data summarization, compression, and reduction
 - Ex. Image processing: Vector quantization
- Collaborative filtering, recommendation systems, or customer segmentation
 - ☐ Find like-minded users or similar products
- Dynamic trend detection
 - Clustering stream data and detecting trends and patterns
- Multimedia data analysis, biological data analysis and social network analysis
 - Ex. Clustering images or video/audio clips, gene/protein sequences, etc.

Considerations for Cluster Analysis

Partitioning criteria

□ Single level vs. hierarchical partitioning (often, multi-level hierarchical partitioning is desirable, e.g., grouping topical terms)

Separation of clusters

 Exclusive (e.g., one customer belongs to only one region) vs. non-exclusive (e.g., one document may belong to more than one class)

■ Similarity measure

Distance-based (e.g., Euclidean, road network, vector) vs. connectivitybased (e.g., density or contiguity)

Clustering space

□ Full space (often when low dimensional) vs. subspaces (often in high-dimensional clustering)

Requirements and Challenges

Quality

- Ability to deal with different types of attributes: Numerical, categorical, text, multimedia, networks, and mixture of multiple types
- Discovery of clusters with arbitrary shape
- Ability to deal with noisy data

Scalability

- Clustering all the data instead of only on samples
- High dimensionality
- Incremental or stream clustering and insensitivity to input order

Constraint-based clustering

- User-given preferences or constraints; domain knowledge; user queries
- Interpretability and usability

Cluster Analysis: A Multi-Dimensional Categorization

■ Technique-Centered

- Distance-based methods
- Density-based and grid-based methods
- Probabilistic and generative models
- Leveraging dimensionality reduction methods
- High-dimensional clustering
- Scalable techniques for cluster analysis

Data Type-Centered

 Clustering numerical data, categorical data, text data, multimedia data, timeseries data, sequences, stream data, networked data, uncertain data

Additional Insight-Centered

Visual insights, semi-supervised, ensemble-based, validation-based

Typical Clustering Methodologies (I)

- Distance-based methods
 - □ Partitioning algorithms: K-Means, K-Medians, K-Medoids
 - ☐ Hierarchical algorithms: Agglomerative vs. divisive methods
- Density-based and grid-based methods
 - □ Density-based: Data space is explored at a high-level of granularity and then post-processing to put together dense regions into an arbitrary shape
 - □ Grid-based: Individual regions of the data space are formed into a grid-like structure
- □ Probabilistic and generative models: Modeling data from a generative process
 - □ Assume a specific form of the generative model (e.g., mixture of Gaussians)
 - Model parameters are estimated with the Expectation-Maximization (EM) algorithm (using the available dataset, for a maximum likelihood fit)
 - ☐ Then estimate the generative probability of the underlying data points

Typical Clustering Methodologies (II)

☐ High-dimensional clustering

- Subspace clustering: Find clusters on various subspaces
 - \square Bottom-up, top-down, correlation-based methods vs. δ -cluster methods
- □ Dimensionality reduction: A vertical form (i.e., columns) of clustering
 - Columns are clustered; may cluster rows and columns together (co-clustering)
 - □ Probabilistic latent semantic indexing (PLSI) then LDA: Topic modeling of text data
 - □ A cluster (i.e., topic) is associated with a set of words (i.e., dimensions) and a set of documents (i.e., rows) simultaneously
 - Nonnegative matrix factorization (NMF) (as one kind of co-clustering)
 - □ A nonnegative matrix A (e.g., word frequencies in documents) can be approximately factorized two non-negative low rank matrices U and V
 - □ Spectral clustering: Use the *spectrum* of the similarity matrix of the data to perform dimensionality reduction for clustering in fewer dimensions

Clustering Different Types of Data (I)

Numerical data

- Most earliest clustering algorithms were designed for numerical data
- □ Categorical data (including binary data)
 - □ Discrete data, no natural order (e.g., sex, race, zip-code, and market-basket)
- ☐ **Text data**: Popular in social media, Web, and social networks
 - ☐ Features: High-dimensional, sparse, value corresponding to word frequencies
 - ☐ Methods: Combination of k-means and agglomerative; topic modeling; co-clustering
- □ Multimedia data: Image, audio, video (e.g., on Flickr, YouTube)
 - Multi-modal (often combined with text data)
 - Contextual: Containing both behavioral and contextual attributes
 - □ Images: Position of a pixel represents its context, value represents its behavior
 - □ Video and music data: Temporal ordering of records represents its meaning

Clustering Different Types of Data (II)

- □ **Time-series data**: Sensor data, stock markets, temporal tracking, forecasting, etc.
 - Data are temporally dependent
 - ☐ Time: contextual attribute; data value: behavioral attribute
 - Correlation-based online analysis (e.g., online clustering of stock to find stock tickers)
 - Shape-based offline analysis (e.g., cluster ECG based on overall shapes)
- □ **Sequence data**: Weblogs, biological sequences, system command sequences
 - Contextual attribute: Placement (rather than time)
 - □ Similarity functions: Hamming distance, edit distance, longest common subsequence
 - □ Sequence clustering: Suffix tree; generative model (e.g., Hidden Markov Model)
- Stream data:
 - Real-time, evolution and concept drift, single pass algorithm
 - □ Create efficient intermediate representation, e.g., micro-clustering

Clustering Different Types of Data (III)

□ Graphs and homogeneous networks

- Every kind of data can be represented as a graph with similarity values as edges
- Methods: Generative models; combinatorial algorithms (graph cuts); spectral methods; non-negative matrix factorization methods

Heterogeneous networks

- □ A network consists of multiple typed nodes and edges (e.g., bibliographical data)
- Clustering different typed nodes/links together (e.g., NetClus)
- ☐ Uncertain data: Noise, approximate values, multiple possible values
 - Incorporation of probabilistic information will improve the quality of clustering
- □ **Big data**: Model systems may store and process very big data (e.g., weblogs)
 - Ex. Google's MapReduce framework
 - ☐ Use *Map* function to distribute the computation across different machines
 - ☐ Use Reduce function to aggregate results obtained from the Map step

User Insights and Interactions in Clustering

- □ Visual insights: One picture is worth a thousand words
 - Human eyes: High-speed processor linking with a rich knowledge-base
 - A human can provide intuitive insights; HD-eye: visualizing HD clusters
- □ **Semi-supervised insights**: Passing user's insights or intention to system
 - User-seeding: A user provides a number of labeled examples, approximately representing categories of interest
- Multi-view and ensemble-based insights
 - Multi-view clustering: Multiple clusterings represent different perspectives
 - Multiple clustering results can be ensembled to provide a more robust solution
- □ Validation-based insights: Evaluation of the quality of clusters generated
 - May use case studies, specific measures, or pre-existing labels

Summary: Cluster Analysis—An Introduction

- What Is Cluster Analysis?
- Applications of Cluster Analysis
- Cluster Analysis: Requirements and Challenges
- Cluster Analysis: A Multi-Dimensional Categorization
- An Overview of Typical Clustering Methodologies
- An Overview of Clustering Different Types of Data
- An Overview of User Insights and Clustering

Recommended Readings

- Major Reference Books on Cluster Analysis
 - Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011 (Chapters 10 & 11)
 - Charu Aggarwal and Chandran K. Reddy (eds.). Data Clustering: Algorithms and Applications. CRC Press, 2014
 - Mohammed J. Zaki and Wagner Meira, Jr.. Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press, 2014
- □ Reference paper for this lecture
 - □ Charu Aggarwal. An Introduction to Clustering Analysis. *in* Aggarwal and Reddy (eds.). Data Clustering: Algorithms and Applications (Chapter 1). CRC Press, 2014

Similarity Measures for Cluster Analysis

- Basic Concept: Measuring Similarity between Objects
- □ Distance on Numeric Data: Minkowski Distance
- □ Proximity Measure for Symmetric vs. Asymmetric Binary Variables
- □ Distance between Categorical Attributes, Ordinal Attributes, and Mixed Types
- □ Proximity Measure between Two Vectors: Cosine Similarity
- □ Correlation Measures between Two Variables: Covariance and Correlation Coefficient

What Is Good Clustering?

- ☐ A good clustering method will produce high quality clusters which should have
 - ☐ **High intra-class similarity: Cohesive** within clusters
 - □ Low inter-class similarity: Distinctive between clusters
- Quality function
 - □ There is usually a separate "quality" function that measures the "goodness" of a cluster
 - It is hard to define "similar enough" or "good enough"
 - The answer is typically highly subjective
- There exist many similarity measures and/or functions for different applications
- Similarity measure is critical for cluster analysis

Similarity, Dissimilarity, and Proximity

- □ Similarity measure or similarity function
 - A real-valued function that quantifies the similarity between two objects
 - Measure how two data objects are alike: The higher value, the more alike
 - □ Often falls in the range [0,1]: 0: no similarity; 1: completely similar
- Dissimilarity (or distance) measure
 - Numerical measure of how different two data objects are
 - ☐ In some sense, the inverse of similarity: The lower, the more alike
 - Minimum dissimilarity is often 0 (i.e., completely similar)
 - □ Range [0, 1] or $[0, \infty)$, depending on the definition
- Proximity usually refers to either similarity or dissimilarity

Data Matrix and Dissimilarity Matrix

- Data matrix
 - A data matrix of n data points with I dimensions

- \square n data points, but registers only the distance d(i, j)(typically metric)
- Usually symmetric, thus a triangular matrix
- □ Distance functions are usually different for real, boolean, categorical, ordinal, ratio, and vector variables
- Weights can be associated with different variables based on applications and data semantics

$$D = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1l} \\ x_{21} & x_{22} & \dots & x_{2l} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nl} \end{pmatrix}$$

Example: Data Matrix and Dissimilarity Matrix

Data Matrix

point	attribute1	attribute2
x1	1	2
<i>x2</i>	3	5
х3	2	0
<i>x4</i>	4	5

Dissimilarity Matrix (by Euclidean Distance)

	<i>x1</i>	<i>x</i> 2	<i>x3</i>	<i>x4</i>
<i>x1</i>	0			
<i>x2</i>	3.61	0		
<i>x3</i>	2.24	5.1	0	
<i>x4</i>	4.24	1	5.39	0

Distance on Numeric Data: Minkowski Distance

Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p}$$

where $i = (x_{i1}, x_{i2}, ..., x_{il})$ and $j = (x_{j1}, x_{j2}, ..., x_{jl})$ are two l-dimensional data objects, and p is the order (the distance so defined is also called L-p norm)

- Properties
 - \Box d(i, j) > 0 if i \neq j, and d(i, i) = 0 (Positivity)
 - \Box d(i, j) = d(j, i) (Symmetry)
 - $d(i, j) \le d(i, k) + d(k, j)$ (Triangle Inequality)
- A distance that satisfies these properties is a metric
- Note: There are nonmetric dissimilarities, e.g., set differences

Special Cases of Minkowski Distance

- \square p = 1: (L₁ norm) Manhattan (or city block) distance
 - E.g., the Hamming distance: the number of bits that are different between two binary vectors $d(i,j) = |x_{i1} x_{i1}| + |x_{i2} x_{i2}| + \dots + |x_{il} x_{il}|$
- \square p = 2: (L₂ norm) Euclidean distance

$$d(i,j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{il} - x_{jl}|^2}$$

- $\square p \rightarrow \infty$: (L_{max} norm, L_{\infty} norm) "supremum" distance
 - □ The maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{p \to \infty} \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p} = \max_{f=1}^l |x_{if} - x_{jf}|$$

Example: Minkowski Distance at Special Cases

point	attribute 1	attribute 2
x 1	1	2
x2	3	5
х3	2	0
x4	4	5

Manhattan (L₁)

L	x 1	x2	х3	x4
x1	0			
x2	5	0		
х3	3	6	0	
x4	6	1	7	0

Euclidean (L₂)

L2	x1	x2	х3	x4
x1	0			
x2	3.61	0		
х3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum (L_{∞})

L_{∞}	x 1	x2	х3	x4
x1	0			
x2	3	0		
х3	2	5	0	
x 4	3	1	5	0

Proximity Measure for Binary Attributes

A contingency table for binary data

	Object j					
		1	0	sum		
Object i	1	q	r	q+r		
Object i	0	s	t	s+t		
	sum	q + s	r+t	p		

Distance measure for symmetric binary variables:
$$d(i,j) = \frac{r+s}{q+r+s+t}$$

- $d(i,j) = \frac{r+s}{a+r+s}$ □ Distance measure for asymmetric binary variables:
- ☐ Jaccard coefficient (*similarity* measure for *asymmetric* $sim_{Jaccard}(i,j) = \frac{q}{q+r+s}$ binary variables):
- □ Note: Jaccard coefficient is the same as "coherence": (a concept discussed in Pattern Discovery)

$$coherence(i,j) = \frac{sup(i,j)}{sup(i) + sup(j) - sup(i,j)} = \frac{q}{(q+r) + (q+s) - q}$$

Example: Dissimilarity between Asymmetric Binary Variables

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- ☐ Gender is a symmetric attribute (not counted in)
- ☐ The remaining attributes are asymmetric binary
- ☐ Let the values Y and P be 1, and the value N be 0

☐ Distance:
$$d(i, j) = \frac{r+s}{q+r+s}$$

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$

$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

			\sum_{col}	3		3
		J	im			
		1	0		\sum_{r}	ow
	1	1	1		2	
Jack	0	1	3		4	
	\sum_{col}	2	4		6	

Mary

		— coi				
		M	ary			
		1	0	\sum_{row}		
	1	1	1	2		
Jim	0	2	2	4		
	\sum_{col}	3	3	6		

Proximity Measure for Categorical Attributes

- □ Categorical data, also called nominal attributes
 - Example: Color (red, yellow, blue, green), profession, etc.
- □ Method 1: Simple matching
 - □ *m*: # of matches, *p*: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- □ Method 2: Use a large number of binary attributes
 - Creating a new binary attribute for each of the M nominal states

Ordinal Variables

- □ An ordinal variable can be discrete or continuous
- □ Order is important, e.g., rank (e.g., freshman, sophomore, junior, senior)
- Can be treated like interval-scaled
 - Replace an ordinal variable value by its rank: $r_{if} \in \{1,...,M_f\}$
 - Map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

- □ Example: freshman: 0; sophomore: 1/3; junior: 2/3; senior 1
 - \square Then distance: d(freshman, senior) = 1, d(junior, senior) = 1/3
- Compute the dissimilarity using methods for interval-scaled variables

Attributes of Mixed Type

- A dataset may contain all attribute types
 - Nominal, symmetric binary, asymmetric binary, numeric, and ordinal
- □ One may use a weighted formula to combine their effects:

$$d(i,j) = \frac{\sum_{f=1}^{p} w_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} w_{ij}^{(f)}}$$

- \Box If f is numeric: Use the normalized distance
- □ If f is binary or nominal: $d_{ij}^{(f)} = 0$ if $x_{if} = x_{jf}$; or $d_{ij}^{(f)} = 1$ otherwise
- \square If f is ordinal

 - ☐ Treat z_{if} as interval-scaled

Cosine Similarity of Two Vectors

□ A document can be represented by a bag of terms or a long vector, with each attribute recording the *frequency* of a particular term (such as word, keyword, or phrase) in the document

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: Gene features in micro-arrays
- □ Applications: Information retrieval, biologic taxonomy, gene feature mapping, etc.
- \square Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then

$$cos(d_1, d_2) = \frac{d_1 \bullet d_2}{\|d_1\| \times \|d_2\|}$$

where \bullet indicates vector dot product, ||d||: the length of vector d

Example: Calculating Cosine Similarity

- Calculating Cosine Similarity: $d_1 \bullet d_2$ $cos(d_1, d_2) = \frac{d_1 \bullet d_2}{\|d_1\| \times \|d_2\|}$
- $sim(A, B) = cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$
- where \bullet indicates vector dot product, ||d||: the length of vector d
- Ex: Find the **similarity** between documents 1 and 2.

$$d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$
 $d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$

☐ First, calculate vector dot product

$$d_1 \bullet d_2 = 5 \times 3 + 0 \times 0 + 3 \times 2 + 0 \times 0 + 2 \times 1 + 0 \times 1 + 0 \times 1 + 2 \times 1 + 0 \times 0 + 0 \times 1 = 25$$

■ Then, calculate $||d_1||$ and $||d_2||$

$$||d_1|| = \sqrt{5 \times 5 + 0 \times 0 + 3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0} = 6.481$$

$$||d_2|| = \sqrt{3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 1 \times 1 + 1 \times 1 + 0 \times 0 + 1 \times 1 + 0 \times 0 + 1 \times 1} = 4.12$$

Calculate cosine similarity: $cos(d_1, d_2) = 25/(6.481 \times 4.12) = 0.94$

Variance for Single Variable

☐ The variance of a random variable *X* provides a measure of how much the value of *X* deviates from the mean or expected value of *X*:

$$\sigma^{2} = \operatorname{var}(X) = E[(X - \mu)^{2}] = \begin{cases} \sum_{x} (x - \mu)^{2} f(x) & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx & \text{if } X \text{ is continuous} \end{cases}$$

- where σ^2 is the variance of X, σ is called *standard deviation* μ is the mean, and μ = E[X] is the expected value of X
- ☐ That is, variance is the expected value of the square deviation from the mean
- □ It can also be written as: $\sigma^2 = \text{var}(X) = E[(X \mu)^2] = E[X^2] \mu^2 = E[X^2] [E(x)]^2$
- □ Sample variance is the average squared deviation of the data value x_i from the sample mean $\hat{\mu}$ $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \hat{\mu})^2$

Covariance for Two Variables

 \square Covariance between two variables X_1 and X_2

$$\sigma_{12} = E[(X_1 - \mu_1)(X_2 - \mu_2)] = E[X_1 X_2] - \mu_1 \mu_2 = E[X_1 X_2] - E[X_1] E[X_2]$$

where $\mu_1 = E[X_1]$ is the respective mean or **expected value** of X_1 ; similarly, for μ_2

- □ Sample covariance between X_1 and X_2 : $\hat{\sigma}_{12} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i1} \hat{\mu}_1)(x_{i2} \hat{\mu}_2)$
- \square Sample covariance is a generalization of the sample variance:

$$\hat{\sigma}_{11} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i1} - \hat{\mu}_1)(x_{i1} - \hat{\mu}_1) = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i1} - \hat{\mu}_1)^2 = \hat{\sigma}_1^2$$

- □ Positive covariance: If $\sigma_{12} > 0$
- **□** Negative covariance: If $\sigma_{12} < 0$
- □ Independence: If X_1 and X_2 are independent, $\sigma_{12} = 0$ but the reverse is not true
 - □ Some pairs of random variables may have a covariance 0 but are not independent
 - Only under some additional assumptions (e.g., the data follow multivariate normal distributions) does a covariance of 0 imply independence

Example: Calculation of Covariance

- \square Suppose two stocks X_1 and X_2 have the following values in one week:
 - \square (2, 5), (3, 8), (5, 10), (4, 11), (6, 14)
- □ Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?
- Covariance formula

$$\sigma_{12} = E[(X_1 - \mu_1)(X_2 - \mu_2)] = E[X_1 X_2] - \mu_1 \mu_2 = E[X_1 X_2] - E[X_1] E[X_2]$$

- □ Its computation can be simplified as: $\sigma_{12} = E[X_1X_2] E[X_1]E[X_2]$
 - \square E(X₁) = (2 + 3 + 5 + 4 + 6)/5 = 20/5 = 4
 - \Box E(X₂) = (5 + 8 + 10 + 11 + 14) /5 = 48/5 = 9.6
 - $\sigma_{12} = (2 \times 5 + 3 \times 8 + 5 \times 10 + 4 \times 11 + 6 \times 14)/5 4 \times 9.6 = 4$
- □ Thus, X_1 and X_2 rise together since $\sigma_{12} > 0$

Correlation between Two Numerical Variables

 \square Correlation between two variables X_1 and X_2 is the standard covariance, obtained by normalizing the covariance with the standard deviation of each variable

$$\rho_{12} = \frac{\sigma_{12}}{\sigma_1 \sigma_2} = \frac{\sigma_{12}}{\sqrt{\sigma_1^2 \sigma_2^2}}$$

Sample correlation for two attributes
$$X_1$$
 and X_2 : $\hat{\rho}_{12} = \frac{\hat{\sigma}_{12}}{\hat{\sigma}_1 \hat{\sigma}_2} = \frac{\sum_{i=1}^n (x_{i1} - \hat{\mu}_1)(x_{i2} - \hat{\mu}_2)}{\sqrt{\sum_{i=1}^n (x_{i1} - \hat{\mu}_1)^2 \sum_{i=1}^n (x_{i2} - \hat{\mu}_2)^2}}$

where n is the number of tuples, μ_1 and μ_2 are the respective means of X_1 and X_2 , σ_1 and σ_2 are the respective standard deviation of X_1 and X_2

- \square If $\rho_{12} > 0$: A and B are positively correlated (X_1 's values increase as X_2 's)
 - The higher, the stronger correlation
- \square If $\rho_{12} = 0$: independent (under the same assumption as discussed in co-variance)
- \square If ρ_{12} < 0: negatively correlated

Visualizing Changes of Correlation Coefficient

- □ Correlation coefficient value range:[-1, 1]
- □ A set of scatter plots shows sets of points and their correlation coefficients changing from −1 to 1

Covariance Matrix

The variance and covariance information for the two variables X_1 and X_2 can be summarized as 2 X 2 covariance matrix as

$$\Sigma = E[(\mathbf{X} - \mu)(\mathbf{X} - \mu)^{T}] = E[(\frac{X_{1} - \mu_{1}}{X_{2} - \mu_{2}})(X_{1} - \mu_{1} \quad X_{2} - \mu_{2})]$$

$$= \begin{pmatrix} E[(X_{1} - \mu_{1})(X_{1} - \mu_{1})] & E[(X_{1} - \mu_{1})(X_{2} - \mu_{2})] \\ E[(X_{2} - \mu_{2})(X_{1} - \mu_{1})] & E[(X_{2} - \mu_{2})(X_{2} - \mu_{2})] \end{pmatrix}$$

$$= \begin{pmatrix} \sigma_{1}^{2} & \sigma_{12} \\ \sigma_{21} & \sigma_{2}^{2} \end{pmatrix}$$

Generalizing it to d dimensions, we have,

$$D = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{d1} & x_{d2} & \cdots & x_{dd} \end{pmatrix} \mathbf{\Sigma} = E[(\mathbf{X} - \mu)(\mathbf{X} - \mu)^T] = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1d} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \cdots & \sigma_d^2 \end{pmatrix}$$

Summary: Similarity Measures for Cluster Analysis

- Basic Concept: Measuring Similarity between Objects
- ☐ Distance on Numeric Data: Minkowski Distance
- □ Proximity Measure for Symmetric vs. Asymmetric Binary Variables
- □ Distance between Categorical Attributes, Ordinal Attributes, and Mixed Types
- ☐ Proximity Measure between Two Vectors: Cosine Similarity
- □ Correlation Measures between Two Variables: Covariance and
 - **Correlation Coefficient**

Recommended Readings

- □ L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley & Sons, 1990
- Mohammed J. Zaki and Wagner Meira, Jr. Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press, 2014
- □ Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques.

 Morgan Kaufmann, 3rd ed., 2011
- □ Charu Aggarwal and Chandran K. Reddy (eds.). Data Clustering: Algorithms and Applications. CRC Press, 2014