Parabolas

Standard Form

$$f(x) = ax^2 + bx + c$$

The coefficient a determines both width and direction:

• a > 0: Opens upward

• $\mathbf{a} < \mathbf{0}$: Opens downward

• $|\mathbf{a}| > 1$: Narrower

• $|\mathbf{a}| < 1$: Wider

The constant term c controls vertical position:

• c > 0: shift up

• $\mathbf{c} < \mathbf{0}$: shift down

Vertex Form

$$f(x) = a(x - h)^2 + k$$

- h controls **horizontal shift**
 - -h > 0: shift right
 - -h < 0: shift left
- k is the **vertical position** of the vertex
 - -k > 0: shift up
 - -k < 0: shift down

Try it out!

Explore more

Parabolas appear in many real-world applications. Check out how they are used in:

- Bridges and Architecture: Learn how parabolic shapes provide structural efficiency in suspension bridges and architectural designs.
- Projectile Motion: Discover how parabolas describe the path of objects moving under gravity.

 $\bullet \ \ Antennas \ and \ Satellite \ Dishes: \ Explore \ how \ parabolic \ reflectors \ focus \ signals \ in \ communication \ systems.$