DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2014**

MSc and EEE PART IV: MEng and ACGI

Corrected Copy

RADIO FREQUENCY ELECTRONICS

Tuesday, 13 May 10:00 am

Time allowed: 3:00 hours

There are SIX questions on this paper.

Answer FOUR questions.

All questions carry equal marks

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s): S. Lucyszyn

Second Marker(s): A.S. Holmes

Special instructions for invigilators

This is a closed book examination.

Special instructions for students

All variables and abbreviations have their usual meaning.

Boltzmann's constant, $k = 1.3805 \times 10^{-23} [W.s/K]$

Absolute temperature, $T[K] \approx 273 + T[^{\circ}C]$

The Questions

- 1. The Active Denial System is a non-lethal electromagnetic weapon for crowd control. It generates enough incident radiation to penetrate human skin (i.e. 400 μm), just beyond the epidermis layer. One system has the following specifications (all variables have their usual meaning):
 - fo = 95 GHz
 - $P_T = 100 \text{ kW}$
 - $R_{MAX} = 750 \text{ m}$
 - Circular parabolic reflector antenna diameter, D = 2.2 m, with 75% efficiency.

At 95 GHz, dry human epidermis has the following approximate parameter values:

- Mass density, $\rho_m = 1330 \text{ kg/m}^3$
- Specific heat capacity, $c_p = 3590 \text{ J/kg.K}$
- Conductivity, $\sigma = 39 \text{ S/m}$
- Dielectric constant, $\varepsilon_r' = 5.79$
- Voltage-wave reflection coefficient at the air-skin boundary, $|\rho| = 0.56$
- a) Calculate the following antenna parameters:
 - i) Effective area.
 - ii) Directivity. [2]
 - iii) Far-field distance. [2]
 - iv) Gain (state any assumptions). [2]
- b) Calculate the following link budget parameters:
 - i) EIRP and define this parameter. [1]
 - ii) Incident and absorbed power densities at the maximum target range. [2]
 - iii) Electric field density at the maximum target range.
 [2]
- c) Define and at the maximum target range calculate the following:
 - i) SAR. [3]
 - ii) ΔT for an exposure time of $\Delta t = 4$ seconds. [3]
 - iii) From the results given in 1(b)(ii) and 1(c)(ii), do you think this would be a serious hazard to humans? Explain your answer.

 [2]

[1]

2. The ultra-high speed 60 GHz wireless LAN defined, by the IEEE 802.11ad standard, has a 57 to 66 GHz operating frequency range within the European Union and a maximum permitted transmit power of +10 dBm. You are required to design the LO for a direct-conversion transmitter architecture. QuinStar Technology Inc. offers the following range of active frequency multiplier modules.

Output Frequency, Band, GHz	Multiplier Factor	Input Frequency, GHz	Output Power Range Offered, dBm ¹	Input Power Required dBm
8-20	2	4-10	13-27	3-6
18-26.5	2	9-13.25	13-27	5-10
26.5-40	1 million 2 million	13.25-20	10-20	5-10
26.5-40	3	8.83-13.33	10-20	4-6
26.5-40	4	6,62-10	10-20	3-6
33-50	2	16.5-25	10-17	0-5
33-50	3	11-16.67	10-17	5-10
33-50	4	8,25-12.5	10-15	5-10
40-60	2	20-30	10-13	5-10
40-60	3	13,3-20	10-13	5-10
40-60	4	10-15	10-13	5-10
50-75	2	25-37.5	7-16	5-8
50-75	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	16.7-25	7-16	7-10
50-75	4	12,5-18.75	7-16	5-8
50-75	6	8.33-12.5	7-16	4-6
50-75	8	6,25-9,38	7-16	4-6
60-90	2	30-45	0-5	5-8
60-90	3	20-30	0-5	5-8
60-90	4	15-22.5	0-5	5-8
60-90	6	10-15	0-5	5-8
60-90	8	7.5-11.25	0-5	5-8

Table 2.1 Commercially available frequency multiplier modules (QuinStar Technology Inc.)

- a) Draw a simple circuit topology that can be used as an even-order harmonic frequency multiplier and sketch typical plots of the input and out voltage waveforms and output frequency spectrum.
- [6]
- b) With a VCO and selecting the most appropriate module(s) available in Table 2.1, draw the block diagram of the LO that will have the least number of subsystem blocks to meet the IEEE 802.11ad specifications. Clearly identify each block and the frequency range of the VCO.
- [2]
- c) For the design in 2(b), and assuming a linear decrease with increasing frequency of the power gain specified in dB, calculate the values of VCO output powers to meet the IEEE 802.11ad specifications.
- [6]
- d) With reference to an equivalent circuit model, briefly describe the difference between *small-signal* and *large-signal* operation. Which of these describe the operation of the active devices listed in Table 2.1.
- [3]
- e) With a VCO and using the modules available in Table 2.1, draw the block diagram of the LO that will have the most number of subsystem blocks to meet the IEEE 802.11ad frequency specifications only. Clearly identify each block and all associated frequency ranges. Using data from Table 2.1, briefly explain why this solution would not work in practice.
- [3]

3. To meet maximum permitted transmit power of +10 dBm and output frequency specifications for the IEEE 802.11ad wireless LAN standard, a chain of three frequency multiplier stages are used. The respective power gain, noise figure and second-order intercept point values are as follows:

	G [dB]	F [dB]	1P ₂ [dBm]
Stage 1:	14.0	2.6	20.0
Stage 2:	8.0	3.1	15
Stage 3:	5.0	4.7	10

Assuming linear operation for each stage, calculate the following where appropriate:

i)	Carrier power levels and overall power gain.	[2]
ii)	Second-order intermodulation component power levels.	[3]
iii)	Suppression of second-order intermodulation components.	[3]
iv)	Noise figure.	[3]
v)	Noise temperature, given a room temperature of 20 °C.	[2]
vi)	Input noise power.	[2]
vii)	Input signal-to-noise ratio.	[1]
viii)	Output noise power.	[2]
ix)	Output signal-to-noise ratio.	[1]
x)	Show that the value from 3(iv) can be calculated using the values from 3(vii) and 3(ix).	
	Hom S(vii) and S(ix).	[1]

- 4. Your laboratory has the following:
 - One matched load having a 1 to 10 GHz bandwidth.
 - Four identical power attenuators having a 1 to 10 GHz bandwidth and tuneable over a 0 to 20 dB dynamic range.
 - Four identical carrier oscillators having a fixed output power of 0 dBm and tuneable over a 1 to 10 GHz frequency range.
 - One amplifier having a 1 to 10 GHz bandwidth and tuneable power gain from 0 to 20 dB.
 - Four ideal circulators having a 1 to 10 GHz bandwidth.
 - a) Using some of the above, design a system that will best synthesize the waveform defined by the following general mathematical expression (clearly identify all values of power attenuation, power gain and any assumptions about appropriate operating frequencies and impedance matching conditions):

$$f(x) = \frac{4}{\pi} \sum_{n=1,2,5,...}^{\infty} \frac{1}{n} \sin\left(\frac{n\pi x}{L}\right)$$
 (4.1)

[10]

b) What waveform does the series in (4.1) represent? Also, sketch the output voltage waveform from the approximating implementation design given in 4(a).

[2]

c) If the original circulators now have a 0.1 dB insertion loss, re-tune the design given in 4(a) to restore operation.

[2]

d) If the original circulators now have ideal transmission line interconnects that introduce a combined insertion phase delay of 45 degrees at the first harmonic frequency, calculated the differential-phase group delay as a fraction of the period of the first harmonic. Similarly, for each harmonic, calculate the overall differential-phase group delay at the output of the waveform generator. Briefly explain the effect of the interconnect delays on the output waveform generated.

[4]

e) If there is an impedance mismatch at the input of the original circulators, attenuators or amplifier, what could be the effects on the performance of the waveform generator?

[2]

A MESFET has input and output impedances of 2 - j 5 Ω and 40 - j 10 Ω , 5. respectively. You are required to design the inter-stage impedance matching network for a two-stage 1 GHz amplifier. Assume that the MESFET input and output impedances are fixed and ignore DC biasing networks. Draw the RC lumped-element models for the output of the first-stage a) transistor and the input for the second-stage transistor. Identify the dominant intrinsic parasitic resistive and capacitive elements of the MESFET. [2] From the RC lumped-element models drawn in 5(a), calculate: b) i) Parasitic values for both resistances and both capacitances. [4] Using the values in 5(b)(i), calculate the loaded quality factors for the ii) input and output of the MESFET. State if it is the input or output that limits the bandwidth of operation. [4] Using discrete lumped-element matching, calculate the: c) lumped-element component values and state their orientation needed i) to resonate out the intrinsic parasitic capacitances of the MESFET at the output of the first MESFET and input of the second MESFET. [2] loaded quality factor of the inter-stage impedance matching network ii) and its bandwidth. State if it is the input of the first MESFET, inter-

lumped-element component values needed to implement a one-stage resistive L-matching network. Draw the complete impedance matching network having the minimal number of lumped-element components.

that limits the bandwidth of operation.

stage impedance matching network or output of the second MESFET

d) With a two-stage resistive L-matching network calculate the new loaded quality factor. State if it is the input of the first MESFET, new inter-stage impedance matching network or output of the second MESFET that limits the bandwidth of operation.

[2]

[4]

- 6. Using the standard filter curves and tables provided, you are required to design a BPF that meets the following specifications:
 - Pass band attenuation ripple = 0.5 dB
 - Centre frequency, fo = 1.0 GHz
 - -3 dB bandwidth = 70 MHz
 - Attenuation ± 250 MHz from centre frequency = 36 dB
 - Source impedance, $Z_S = 0.504 \Omega$
 - Load impedance, $Z_L = 1.000 \Omega$
 - a) Identify the minimum theoretical order of the filter and draw the LPF prototype circuit, quoting the coefficients for each element.
 - b) Calculate all the component values for the BPF and draw the complete circuit.
 - c) Given a series $R_SL_SC_S$ circuit, with the aid of a diagram, show how an admittance invertee employing lumped-element capacitors can be used to synthesise the $R_SL_SC_S$ circuit using a shunt $R_PL_PC_P$ circuit. Derive expressions for all the $R_PL_PC_P$ components.
 - d) Use the technique in 6(c) to impedance match the source impedance of the circuit in 6(b) to Z_L . Calculate all the new component values for the BPF and draw the complete circuit.

[5]

[5]

[5]

[5]

Standard Filter Curves and Tables

Attenuation characteristics for Buttarworth filters.

Attenuation characteristics for a Chebyshev Bluer with 0,01-dB ripple.

Attenuation characteristics for a Chebyshov filter with 0,1,4B ripple.

Attenuation characteristics for a Chebyshev filter with 0.5-dB ripple.

Chebyshev Low-Pass Prototype Element Values for 1.0-dB Ripple

Attenuation characteristics for a Chebyshev filter with 1-dB ripple.

Chebyshev Low-Pass Prototype Element Values for 1.0-dB Ripple

	BINC, 101	1.0-010 20	ppro	
Ó	Rs C1	C2 T	R _L	
R_{θ}/R_{L}	C,	L_2	C _a	Lie
3.000 4.000 8.000 at 1.000 0.500 0.333 0.250 0.125 at 3.000 4.000 8.000	0.572 0.365 0.157 1.213 2.316 4.431 6.047 8.842 17.725 1.652 0.653 0.452 0.209 1.330	3.132 4.600 9.658 1.109 1.088 0.817 0.726 0.050 0.612 1.460 4.411 7.083 17.164 2.010	2.218 2.218 2.218 2.218 2.218 1.108 0.814 0.612 0.428 1.488	2.535 2.648 3.281 1.106
R_L/R_R	L_{i}	C ₂	L ₂	C_4
6	_c, <u>T</u>	T,	RL	

		1			- c, †	R.		
n	R_s/R_L	C_1	L	C ₁	L_4	Cs	L ₄	C_7
5	1.000 0.500 0.333 0.250 0.125	9.907 4.414 6.692 8.829 17.657 1.721	1.198 0.565 0.376 0.282 0.141 1.645	3.103 4.653 6.205 7.756 13.961 2.061	1.128 1.128 1.128 1.128 1.128 1.403	2.207 2.207 2.207 2.207 2.207 1.103		
đ	3.000 4.000 8.000	0.679 0.481 0.227 1.376	3.573 5.544 12.310 2.007	0.771 0.475 0.198 1.690	4.711 7.351 18.740 2.074	0.969 0.849 0.726 1.494	2.406 2.582 2.800 1,102	
7	1,000 0,300 0,333 0,250 0,125	8.204 4.408 6.012 8.815 17.631 1.741	1.131 0.506 0.377 0.283 0.141 1.677	3.147 6.293 9.441 12.588 25.173 2.153	1,194 0,895 0,796 0,747 0,671 1,703	3.147 3.147 3.147 3.147 3.147 2.079	1.131 1.131 1.131 1.131 1.131 1.494	2.204 2.204 2.204 2.204 2.204 2.304 1.102
n	R_L/R_g	L_1	C3	L,	C,	L ₁	G.	L_{q}
		e	سېر سېر	1		ī _{1.} ≸		

Butterworth Low-Pass Prototype Element Values

			e Element		
	(- c'		"	
n	Ra/Rt	C,	L,	C_1	L,
3	1.1.13 1.250 1.429 1.867 2.000 2.500 3.333 5.000 10.000 0.800 0.800 0.500 0.400 0.500 0.400 0.200 0.200 0.200	1.035 0.869 0.566 0.442 0.245 0.158 0.074 1.414 0.804 0.841 0.013 1.162 1.162 1.161 1.425 1.161 1.425 1.161 1.425 1.161	1.855 2.121 2.439 2.828 3.346 4.005 5.013 7.707 14.814 0.707 1.633 1.381 1.385 0.779 0.604 0.284 0.138	1.590 1.629 2.877 2.702 2.703 3.661 4.634 7.910 15.455 0.500	
n	1.111 1.250 1.420 1.507 2.500 3.313 5.000 10.000	0.498 0.388 0.325 0.200 0.218 0.109 0.124 0.000 0.030 1.531 L ₁	1.502 1.095 1.802 2.103 2.453 2.193 3.881 5.684 11.004 1.577 Ca	1.744 1.511 1.991 1.082 0.683 0.691 0.507 0.507 0.301 1.082 L ₃	1.459 1.811 1.175 9.613 3.167 4.000 5.238 7.940 15.642 0.383 C.
	Ţ	_ 4	- ‡	1	

Butterworth Low-Pass Prototype Element Values

			Ra	₩ <u>₩</u>				
			9 5	c, ‡	c. ‡ c. ‡	Ra		
п	R_{ϕ}/R_L	Cı	L ₂	C _a	L,	C.	La	C ₇
5	0.900 0.800 0.700 0.900 0.500 0.400 0.300 0.200	0.442 0.470 0.517 0.580 0.688 0.838 1.094 1.608 3.518 1.545	1.027 0.866 0.731 0.809 0.498 0.388 0.283 0.188 0.091 1.694	1,910 9,001 1,985 2,600 3,051 3,730 4,884 7,185 14,095 1,382	1.756 1.544 1.333 1.126 0.924 0.727 0.537 0.352 0.173 0.594	1,389 1,738 2,108 2,582 3,133 5,965 8,307 7,935 15,710 0,309		
5	1.111 1.250 1.429 1.687 2.000 2.500 3.333 5.000 10,000	0.289 0.245 0.207 0.173 0.141 0.111 0.082 0.054 0.028 1.553	1.040 1.118 1.236 1.407 1.683 3.028 2.656 3.917 7.705 1.759	1.322 1.123 0.957 0.801 0.654 0.514 0.379 0.248 0.123 1.553	2.054 2.230 2.499 2.658 3.369 4.141 5.433 8.020 15.786 1.202	1.744 1.550 1.746 1.143 0.942 0.745 0.853 0.863 0.758	1,335 1,688 8,063 9,500 0,094 0,931 5,280 7,922 15,738 0,259	
7	0.900 9.800 0,700 0.900 0.500 0.400 0.300 0.200 0.100	0.290 0.322 0.357 0.406 0.450 0.590 0.773 1.145 2.257 1.538	0.711 0.806 0.515 0.432 0.354 0.276 0.106 0.105 0.067 1.799	1.404 1.517 1.688 1.628 2.273 2.795 3.671 5.427 10.700 1.659	1.489 1.278 1.091 0.917 0.751 0.592 0.437 0.287 0.142 1.397	2.128 2.334 2.618 3.005 3.553 4.380 5.761 8.520 16.822 1.053	1,727 1,540 1,350 1,150 0,951 0,754 0,860 0,369 0,182 0,658	1,290 1,652 2,028 2,477 3,064 3,901 5,258 7,908 15,748 0,223
n	R_L/R_A	L_1	C,	La	C ₄	$L_{\mathfrak{g}}$	c.	L,
			المناسبة الم		· · · · · · · · · · · · · · · · · · ·	in a		63

Chebyshev Low-Pass Element Values for 0.01-dB Ripple

	6	C ₁	c, <u>†</u>	s' s	
n.	R_a/R_L	c,	L ₃	C ₃	L,
2	1.101 1.111 1.250 1.429 1.667 2.000 2.500 3.333 5.000 10.000	1.347 1.947 0.943 0.759 0.800 0.470 0.363 0.259 0.164 0.078 1.412	1.433 1.595 1.997 2.344 2.750 3.277 4.033 5.253 7.850 14.740 0.743		N
3	1.000 0.900 0.500 0.700 0.800 0.500 0.400 0.300 0.200 0.100	1.181 1.092 1.097 1.160 1.274 1.452 1.734 2.216 3.193 6.141 1.501	1.821 1.600 1.443 1.228 1.024 0.620 0.645 0.470 0.303 0.148 1.433	1.181 1.480 1.800 2.185 2.598 3.104 5.974 5.290 7.834 15.390 0.591	
4	1.100 1.111 1.250 1.429 1.667 2.900 2.500 3.333 5.000 10.000	0,950 0,854 0,618 0,495 0,308 0,318 0,242 0,174 0,112 0,034 1,529	1,936 1,946 2,075 2,279 2,571 2,094 3,441 4,727 8,010 13,409 1,694	1.701 1.744 1.542 1.004 1.129 0.920 0.729 0.508 0.053 0.170 1.212	1.048 1.165 1.017 2.008 2.401 3.045 3.875 5.209 5.209 15.510 0.523
h	RUR,	L,	C,	L_{a}	C.
		cı:	Ĭ.; <u>Ī</u>	RL	

Chebyshev Low-Pass Element Values for 0.01-dB Ripple

			R ₃	بـــــــــــس	mm			
			T T	°, Ţ	"Ť Ť	R _L §		
- 11	R_a/R_E	C,	L	C _t	L_4	C,	L_{i}	C ₂
5	1.000 0.900 0.800 0.700 0.800 0.500 0.400 0.300 0.200 0.100	0.977 0.880 0.877 0.926 1.019 1.166 1.398 1.797 2.004 5.041 1.547	1.685 1.456 1.235 1.040 0.883 0.690 0.544 0.398 0.259 0.127 1.795	2.037 2.174 2.379 2.658 3.041 3.584 4.403 5.772 8.514 16.741 1.645	1.885 1.641 1.492 1.320 1.135 0.942 0.749 0.537 0.308 0.183 1.237	0.977 1.274 1.807 1.077 3.424 3.009 3.845 5.193 7.826 15.613 0.488		
d	1.101 1.111 1.250 1.429 1.867 2.500 3.333 5.000 10.000	0.851 0.760 0.543 0.436 0.351 0.279 0.214 0.153 0.100 0.048 1.551	1.706 1.782 1.654 1.038 2.298 2.678 3.261 4.245 6.223 12.171 1.847	1.841 1.775 1.489 1.286 1.061 0.867 0.582 0.503 0.330 0.162 1.790	2.027 2.094 2.403 2.735 3.167 3.788 4.667 6.163 9.151 18.105 1.595	1.631 1.636 1.507 1.332 1.145 0.954 0.761 0.568 0.378 0.167 1.190	0.937 1.053 1.504 1.899 2.357 2.948 3.790 5.143 7.765 15.595 0.469	
7	3,000 0,900 0,800 0,700 0,800 0,500 0,400 0,300 0,200 0,100	0.913 0.816 0.811 0.857 0.943 1.080 1.297 1.869 2.242 4.701 1.359	1.595 1.362 1.150 0.907 0.803 0.650 0.507 0.372 0.242 0.119 1.567	9.003 2.040 8.262 2.316 2.872 3.362 4.156 5.454 6.057 15.672 1.866	1.870 1.722 1.325 1.325 1.124 0.928 0.735 0.546 0.360 0.178 1.765	2.002 2.802 2.465 2.802 3.250 3.875 4.812 6.370 9.464 18.818 1.503	1.595 1.581 1.404 1.307 1.131 0.947 0.758 0.568 0.378 0.188 1.161	0.913 1.200 1.538 1.910 2.359 2.948 3.790 5.146 7.802 15.852 0.456
n	R_L/R_d	L_1	C,	L_{3}	G ₄	$L_{\rm S}$	C.	L
			R ₃ L ₁			RL		

Chobyshov Low-Pass Prototype Element Values for 0.1-dB Ripple

	Ć	R ₉		RL F	
n	R_{a}/R_{L}	\mathcal{C}_1	£-2	C,	L,
21	1.355 1.429 1.667 2.000 2.500 3.333 5.600 10.000	1.209 0.977 0.733 0.500 0.417 0.293 0.184 0.037 1.391	1.838 1.982 2.489 3.054 3.927 5.050 7.420 14.433 0.819		
3	1.000 0 909 0.800 0.700 0.800 0.500 0.400 0.300 0.200 0.100	1,433 1,426 1,451 1,521 1,648 1,853 2,180 2,763 2,763 3,942 7,512 1,513	1.504 1.494 1.350 1.193 1.017 0.838 0.860 0.456 0.317 0.155 1.510	1.433 1.622 1.871 2.190 2.903 3.157 3.008 5.279 7.850 15.466 0.710	
4	1.355 1.429 1.867 2.009 2.500 3.333 5.000 10.000	0.992 0.779 0.578 0.440 0.329 0.233 0.149 0.070 1.511	2.149 2.348 2.730 3.227 3.661 5.178 7.607 14.697 1.768	1.585 1.429 1.185 0.967 0.760 0.560 0.367 0.160 1.433	1.341 1.700 2.243 2.856 3.895 5.030 7.814 15.230 0.673
F4	R_t/R_d	I_{-1}	C_{1}	L ₂	C,
		c, Ţ	rin_ c.‡	R	

Chebyshev Low-Pass Prototype Element Values for 0.1-dB Ripple

		. "	R ₅	π	ц			
			4 4	c, ‡	c, † c, †	*L\$		
n	$R_{\rm e}/R_{\rm L}$	C,	L_{s}	C,	L,	C,	L	C ₇
5	1.000 0.800 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100	1.201 1.265 1.300 1.358 1.470 1.654 1.054 2.417 2.546 6.787	1.550 1.433 1.283 1.117 0.947 0.778 0.612 0.451 0.205 0.115	2.241 2.380 2.582 2.868 3.269 3.845 4.720 6.196 9.127 17.957	1.550 1.488 1.382 1.844 1.085 0.913 0.733 0.550 0.306 0.182	1.301 1.488 1.736 2.062 2.484 3.065 3.886 5.237 7.889 15.745		
65	1,355 1,429 1,807 2,000 2,500 3,331 5,000 10,000	1.501 0.942 0.735 0.542 0.414 0.310 0.220 0.136 0.067 1.534	1.807 2.080 2.249 2.500 3.068 3.785 4.927 7.250 14.220 1.884	1.786 1.059 1.454 1.183 0.853 0.749 0.551 0.361 0.178 1.831	1.417 2.247 2.544 3.004 3.712 4.651 6.195 9.201 18.427 1.749	0.651 1.534 1.405 1.185 0.970 0.778 0.580 0.384 0.190 1.394	1.877 1.629 2.174 2.794 3.045 4.906 7.818 15.350 0.636	
7	1.000 9.901 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100	1.202 1.242 1.255 1.310 1.417 1.595 1.685 2.391 3.426 6.570 1.575	1.520 1.305 1.545 1.065 0.917 0.753 0.437 0.280 0.141 1.859	2,239 2,361 2,548 2,819 3,205 3,764 4,618 6,054 8,937 17,003 1,921	1.680 1.578 1.443 1.283 1.200 0.928 0.742 0.356 0.309 0.164 1.827	2,239 2,397 2,024 2,942 3,384 4,015 4,970 6,509 9,770 19,370 1,734	1.520 1.459 1.362 1.333 1.061 0.914 0.733 0.557 0.372 0.160 1.370	1.282 1.447 1.697 2.021 2.444 3.018 1.855 5.217 7.890 15.811 0.631
n	R_L/R_g	L_1	C,	L_1	C,	L,	C_4	Lo
			- c.		- T K]		

Chebyshev Low-Pass Prototype Element Values for 0.5-dB Ripple

	Ó	C ₁	e, T	min_ R_M	
PL	R_{θ}/R_{L}	C,	La	C,	I_{r_4}
E.	1.984 2.000 2.500 3.333 5.000 10.000	0.983 0.909 0.504 0.375 0.225 0.105 1.307	1.050 2.103 3.165 4.411 6.700 13.322 0.975		
Э	1,000 0,900 0,500 0,700 0,500 0,400 0,300 0,200 0,100	1.864 1.918 1.997 2.114 2.557 2.985 3.729 5.234 9.860 1.572	1.280 1.208 1.120 1.015 0.759 0.615 0.403 0.309 0.153 1.515	1,834 2,029 3,237 2,517 3,436 4,342 5,570 8,725 16,118 0,933	
4	1.984 2.000 2.500 3.333 5.000 10.000	0.920 0.845 0.510 0.344 0.310 0.098 1.436	2.586 2.720 3.700 5.120 7.706 15.352 1.880	1,304 1,238 0,869 0,621 0,400 0,194 1,531	1,526 1,985 3,121 4,430 0,987 14,262 0,913
п	R_L/R_8	L_1	C_2	L	C,
	٩	c. 1 		R	

Chebyshev Low-Pass Prototype Element Values for 0.5-dil Ripple

			C, T	c. c.	I c'I	π _L		
F),	B_{ϕ}/B_{L}	C,	L ₃	C _a	L_{1}	C,	L_{z}	C,
5	1.000 0.900 0.800 0.700 0.900 0.500 0.400 0.300 0.200 0.100	1.807 1.854 1.926 2.035 2.200 2.457 2.870 3.588 5.064 9.556	1.303 1.222 1.126 1.015 0.890 0.764 0.600 0.439 0.306 0.153	2.691 2.540 3.060 3.353 3.785 4.367 5.205 6.571 10.054 19.647	1,001 1,238 1,157 1,058 0,942 0,810 0,884 0,508 0,343 0,173	1.807 1.970 2.185 2.470 2.861 0.414 4.245 5.025 8.367 16.574		
6	1,984 2,000 2,500 3,333 5,000 10,000	1.630 0.905 0.830 0.500 0.337 0.206 0.096	1.740 2.577 2.701 3.722 5.055 7.615 15.186	1,922 1,365 1,291 0,590 0,600 0,406 0,197	1.514 2.713 2.872 4.100 5.890 8.732 17.681	0.903 1.299 1.237 0.881 0.635 0.412 0.502	1,796 1,956 3,103 4,481 7,031 14,433	
7	1,000 0,900 0,800 0,700 0,600 0,500 0,400 0,300 0,200 0,100	1,790 1,835 1,905 2,911 2,174 2,428 2,835 3,546 5,907 9,436 1,646	1.200 1.215 1.115 1.007 0.882 0.747 0.804 0.455 0.303 0.161 1.777	2.718 2.860 3.078 3.364 5.772 4.370 5.295 6.807 10.045 10.610 2.031	1.383 1.306 1.215 3.105 0.979 0.838 0.083 0.522 0.352 0.178 1.789	2.715 2.561 3.107 3.410 3.552 2.280 5.470 7.134 10.496 20.631 1.924	1.200 1.234 1.155 1.058 0.944 0.619 0.619 0.410 0.348 0.176 1.503	1,790 1,953 2,168 2,455 3,465 4,243 5,635 6,404 16,665 0,895
rs.	R_L/R_θ	L,	c,	L,	- C- /	L _A	C ₄	L ₇