(B) 日本 国特 許 庁 (JP) (①実用新案出願公開

◎ 公開実用新案公報(U) 昭60-188396

@Int Cl.4

識別記号

庁内整理番号

G 04 C H 02 N 3/12 2/00 7809-2F 8325-5H

客查請求 未請求 (全 頁)

❷考案の名称

指針式時計

顧 昭59-75884 到実

多出 厘 昭59(1984)5月25日

①出

砂代 理

東京都西多摩郡羽村町栄町3丁目2番1号 カシオ計算機

株式会社羽村技術センター内

カシオ計算機株式会社

弁理士 町田 俊正

東京都新宿区西新宿2丁目6番1号

BEST AVAILABLE COPY

- 考案の名称
 指針式時計
- 2. 実用新案登録請求の範囲

電圧が印加されると振動する圧電型アクチュェータと、この圧電型アクチュェータにより駆動される時計機構部とを具備してなる指針式時計。

- 3. 考案の詳細な説明
 - 〔考案の技術分野〕

この考案は指針式時計に関する。

(考案の背景)

一般に、指針式電子腕時計等においては、アナログムーブメントがコイル、ステータ、ロータ等よりなるパルスモータにより駆動される部品はなつているが、パルスモータに使用される部品は細い線材のコイル、高磁性材のロータ等のように、特殊で高価なものであり、しかも耐磁構造を必要とし、その構造が複雑になるばかりか、コイルの断線等、取り扱いに神経を使わなければならない

等の欠点があつた。

(考案の目的)

この考案は上記のような事情を背景になされたものであり、細い線材のコイルや、高磁性材のロータ等の高価な部品を用いる必要がなく、耐磁構造も不要で、安価に製作でき、かつ部品の取り扱いも簡単で、組立て等も容易にできる指針式時計を提供することにある。

〔考案の要点〕

この考案は上記のような目的を達成するために、 駆動源として圧電型アクチュエータを用い、この 圧電型アクチュエータで時計機構部を駆動するよ うにしたものである。

(第1実施例)

以下、第1図ないし第4図を参照して、この考 案の第1実施例を説明する。

第1図はアナログムープメントの断面図であり、 第2図はそのⅡ - Ⅱ線平面図である。このアナロ グムープメント1は、地板2上の回路基板3に設 けられた圧電型アクチュエータ4を駆動源とし、 この圧電型アクチュエータ4で地板2と輪列受5とに設けられた輪列機構6を駆動することにより、分針、時針等の指針(図示せず)を運針させ、時刻を指示するようになつている。

即ち、圧電型アクチュエータ4は第3図に示す ように、所定の交流電圧が印加されると振動する 圧電素子7を振動板8、8で挟み、これを枠部材 9に取り付けると共に、一方の振動板 8 の中央に 操作子10を設けたものであり、LSI等の電子 部品3aを備えた回路基板3上に設けられ、各振 動板8、8がそれぞれリード線12……を介して 回路基板3に接続されている。したがつて、圧電 型アクチュエータ4は回路基板3から所定の交流 電圧が各振動板8、8に与えられると、圧電素子 7 および各振動板 8 、 8 が一定の振幅で振動し、 この振動に伴つて操作子10が出役運動を行ない、 これにより第4図に示すように、摩擦リング13 を矢印X方向へ移動させるようになつている。即 ち、操作子10は摩擦リング13の内側(第4図 中右側)に位置し、圧電素子7および各振動板8、

8の振動に伴つて押し出されたときに、摩擦りし、 が13の内側面(摩擦リング13を移動させるより、 相互の摩擦リング13を移動させるより、 になかった。この動きせるに、ののでは、 が13を円滑に移動させるれる。ときないでは、 が13を円滑にをかった。ときないでは、 が13を円滑にがあるとないでは、 が13を円滑にがあるとないでは、 が13を円滑にがあるとないでは、 が13を円滑にがあるとないでは、 が13を円滑にがあるとないでは、 が13を円滑にがあるとないでは、 が13を円滑にがあるとないでは、 が13を円滑にがあるとないでは、 が13を円滑にがあるとないでは、 が13を円滑にがある。 が13を形が、 が13を形が、 が13を形が、 が14を形が、 が15を形が、 が15をのかいる。 が15をのがいる。 が15をの

一方、輪列機構 6 は、内歯車 1 4 によつて回転する伝達車 1 6、四番車 1 7、三番車 1 8、二番車 1 9、筒カナ 2 0、日ノ 3 車 2 1、および筒車 2 2 等よりなり、地板 2 と輪列受 5 との間に伝達車 1 6、四番車 1 7、三番車 1 8 がそれぞれ軸受

16 a、17 a、18 aを介して配列されており、 輪列受5上に筒カナ20、二番車19、筒車22 が同心状に配置されていると共に、日ノ裏車21 が配置されている。この場合、伝達車16は内的 車14に噛み合つて回転し、この回転を四番車1 7を介して三番車18に伝達している。三番車1 8はその上部が輪列受5を通して上方へ突出し、 この突出した部分に二番車19が嚙み合つており、 その回転を二番車19に伝達している。この二番 車19は輪列受5上に配置された筒カナ20に摩 **黎伝達可能に取り付けられている。この筒カナ2** 0 はその上端部に分針(図示せず)が取り付けら れる分針軸であり、二番車19の回転が魘擦によ り伝達され、これにより回転するようになつてい ると共に、この回転を日ノ褒車21を介して簡車 22に伝達している。この簡単22はその上端部 に時針(図示せず)が取り付けられる時針軸であ り、筒カナ20に回転自在に取り付けられている。 なお、地板2と輪列受5とはピス23…により所 定間隔離れて相互に取り付けられている。

次に、上記のように構成されたアナログムープ メント1の動作につき、簡単に説明する。

しかるに、上記のような指針式時計によれば、 圧電型アクチュエータ4を駆動源として用い、この圧電型アクチュエータ4でアナログムープメント1を駆動するようにしたので、従来のような細い線材のコイルや、高磁性材のロータ等の高価な都品を用いる必要がないばかりか、耐磁構造も不 要なため、安価に製作できる。しかも、圧電型アクチュエータ4を回路基板3上に取り付けて、各振動板8、8をリード線12…で回路基板3に接続するだけでよいので、従来のようにコイルの断線等、取り扱いに神経を使う必要がなく、部品の取り扱いが簡単で、組立て作業も容易にできる。(第2実施例)

次に、第5図ないし第7図を参照して、この考 案の第2実施例を説明する。この場合、上述した 第1実施例と同一部分には同一符号を付し、その 説明は省略する。

アナログムーブメント30は、圧電型アクチュエータ31を駆動源とし、この圧電型アクチュエータ31で輪列機構6を駆動して、分針、時針等の指針を選針させ、時刻を指示するようになつている。即ち、圧電型アクチュエータ31は第5図および第6図に示すように、輪列受5の下面に基板32aを介して取り付けられる保持部材32と、この保持部材32に互いに対向して取り付けられる第1、第2の振動体33、34と、この第1、

第2の振動体33、34の間に回転可能に配置さ れるロータ35とから構成されている。この場合、 第1、第2の振動体33、34はそれぞれ、圧電 素子33a、34aを各振動板33b、33b、 34 b、34 bで挟み、これらが楕円状をなすよ うに互いに対向して配置されていると共に、対向 面にはそれぞれ操作爪33c、34cが対向して 設けられている。そして、第1、第2の振動体3 3、34は各振動板33b、33b、34b、3 4 b がそれぞれリード級36 a 、36 b を介して 基板32aに接続されており、地板2上に設けら れた回路基板3から所定の交流電圧が接続線37 および基板32aを介して夫々与えられると、圧 電素子33 a、34 a および振動板33 b、33 b、34b、34bが一定の振幅で振動する。ご の場合、第1、第2の振動体33、34のリード 級36a、360には回路基板3から例えば、第 7図に示す如き交流電圧が与えられるため、交互 に振動し、この振動に伴つて採作爪33c、34 c が交互に出没するようになつている。

一方、第1、第2の振動体33、34の間に配 置されるロータ35は、第1、第2の振動体33、 3 4 の振動に伴つて回転するものであり、第 5 図 に示すように、その上端部が基板32に回転可能 に取り付けられていると共に、その下端部が地板 2の軸受38に取り付けられており、その中間部 には入力歯車35aおよび出力歯車35bが形成 されている。入力歯車35 aは第6図(a)、(b)、(c)に示すように、第1、第2の振動体 33、34の各操作爪33c、34cが交互に嚙 み合うことにより、1歯ずつ矢印 Y 方向に回転し、 ロータ35を回転させるようになつている。即ち、 第6図(a)に示すように、第1の振動体33が 振動すると、その操作爪33cが入力的車35a の1つの歯に深く喰い込む。すると、入力歯車3 5 a は若干矢印 Y 方向へ移動する。このとき、第 2の振動体34の操作爪34aは入力歯車35a から離れ、次に嚙み合う歯に離間対応する。そし て、第6図(b)に示すように、各振動体33、 34が耐止すると、第2の振動体34の操作爪3

4 cが若干押し出され、入力歯車35 aの離間対 応した歯に僅に嚙み合うと共に、第1の振動体3 3の操作爪33cは引き出され、入力歯車35a から離れることなく、若干呶み合つた状態となる。 これにより、入力歯車35aは逆転が防止される。 この後、第6図(c)に示すように、第2の振動 体34が振動すると、その操作爪34cが入力歯 車35mの歯に深く喰い込み、入力歯車35mを 更に矢印Y方向へ若干移動する。これにより、入 力歯車35aは1歯分回転する。このとき、第1 の振動体33の操作爪33aは入力歯車35aか ら離れ、次に嚙み合う歯に離間対応する。このよ うに、順次各振動体33、34が交互に振動する と、入力歯車35 aは1歯ずつ矢印Y方向へ回転 し、ロータ35を回転する。また、ロータ35に 設けられた出力歯車35bは、第5図に示すよう に、輪列機構6の伝達車16に嚙み合つており、 人力報車35 aの回転に伴つて回転し、その回転 を伝遠車16に伝達し、輪列機構6を介して分針、 時針等の指針を運針し、時刻を指示させるように

なつている。

しかるに、上記のような圧電型アクチュェータ 31を駆動源とする指針式時計においても、前述 した第1実施例と同様の効果がある。

〔考案の効果〕

以上説明したように、この考案の指針式時計によれば、圧電型アクチュエータを駆動源として用い、この圧電型アクチュエータで時計機構部を駆動するようにしたので、従来のような細い移動するようにしたので、である。 動するようにしたので、従来のような細い移ののコイルや、高磁性材のロータ等の高価な部のの用いる必要がないばかりか、耐磁構造もイルの断線を価に製作することができ、しかもコイルの断線等、取り扱いに神経を使う必要がなく、部品の取り扱いが簡単で、組立て作業が容易にできる等の利点がある。

4. 図面の簡単な説明

第1図ないし第4図はこの考案の第1実施例を示し、第1図はアナログムープメントの断面図、第2図はそのⅡーⅡ線平面図、第3図はその圧電型アクチュエータの外観斜視図、第4図はその動

作状態を示す要部拡大平面図、第5図ないし第7図はこの考案の第2実施例を示し、第5図はそのアナログムープメントの断面図、第6図はその圧 電型アクチュエータの動作状態を示し、第7図は その圧電アクチュエータに与えられる交流電圧の 波形図である。

1、30……アナログムーブメント、4、31 ……圧電型アクチュエータ、6……輪列機構。

実用新案登録出願人 カシオ計算機株式会社

代理人 弁理士 山 田 靖

坛

959 カシオ計算機体式会社:シ 弁理士 山田 雄 彦・ 吊蹭人

第 2 図

1000 出 願 人 カシオ計算機株式会社[~] 代 理 人 弁理士 山 田 靖 彦

第 4 図

第 5 図

1001 出 願 人 カシオ計算機株式会社 代 理 人 弁理士 山川,南,彦

1002 出 願 人 カシオ計算機株式会社 代 理 人 弁理士 山 田 靖 彦

PThis Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.