Rappresentazione dell'informazione

Notazione posizionale: valore cifra dipendente dalla posizione (sistema decimale)

Numeri naturali

b (base)	2	8	10	16
insieme S	0, 1	0,1,2,3,4,5,6,7	0,1,2,3,4,	0,1,2,3,4,5,6,7,8,9,
$c_{1} \in [0, b-1]$			5,6,7,8,9	A,B,C,D,E,F

numero N (posizionale) = $c_{n-1} c_{n-2} \dots c_0$ con $c_i \in S$

Interpretazione in base decimale di un numero in base b

$$N_{10} = \sum_{i=0}^{n-1} c_i b^i$$
, dove n= numero cifre

Es.
$$N_2 = 101_2 = 1.2^2 + 0.2^1 + 1.2^0 = 5_{10}$$

 $N_8 = 101_8 = 1.8^2 + 0.8^1 + 1.8^0 = 65_{10}$
 $N_{10} = 101_{10} = 1.10^2 + 0.10^1 + 1.10^0 = 101_{10}$

Conversione numero naturale da base 10 a base 2

- 1. Numero iniziale diviso (divisione intera) ripetutamente per la base 2 fino a quando il risultato è 0;
- 2. i resti prodotti dalle divisioni intere presi in ordine inverso costituiscono la codifica cercata.

Osservazione: l'algoritmo converge sempre

Esempio: $N_{10} = 26$ resti base $\rightarrow 2$ base 8 26 | 0 - significativo $26 \mid 2$ 13 | 3 | 30 fine 6 | 0 3 | 1+ significativo ←fine $\mathbf{0}$

$$26_{10} = 11010_2 \ = 32_8 \ = 1A_{16}$$

Conversioni utili

Binario
$$\leftarrow \rightarrow$$
 ottale $26_{10} = (0)11.010 = 32$

Binario
$$\longleftrightarrow$$
 esadecimale 26_{10} = (000)1.1010 = 1 A

Rappresentazione dei numeri naturali nel calcolatore

L'unità atomica di rappresentazione è la cifra binaria (base 2) chiamata bit (BInary digiT).

Un numero naturale binario è memorizzato in una parola di memoria composta da N bit (cifre).

Impossibile rappresentare tutti i numeri naturali: ∞ richiede ∞ bit

La rappresentazione finita riduce quindi l'intervallo rappresentabile

Intervallo di rappresentabilità

Dati N bit quanti e quali numeri naturali si possono rappresentare?

2^N combinazioni, ossia tutti i numeri nell'intervallo [0, 2^N-1]

N	2 ^N
10	1024 (1K)
16	65536(64K)
20	≅1.000.000(M)
32	≅ 4 miliardi (G)

Corrispondenza tra combinazione binaria e numero per N=16

 $0000\ 0000\ 0000\ 0000\ = 0$

 $0000\ 0000\ 0000\ 0001\ = 1$

 $0000\ 0000\ 0000\ 0010\ = 2$

...

 $0000\ 0000\ 0001\ 1010\ = 26$

 $1111\ 1111\ 1111\ 1111\ = 65535$

Osservazioni:

- l'intervallo di rappresentabilità è finito
- tutti i numeri all'interno dell'intervallo sono rappresentabili

		Aritmetica	binaria		
Somma		Sottrazione		Prodott	O
00001 ←1	riporti	$00100 \leftarrow$	prestiti	010 x	2 x
011001 +	25+	101001 -	41 -	101 =	5 =
100001 =	33=	100101 =	37 =		
				010	
111010	58	000100	4	000	
				010	
Aumenta il num. di bit necessari ->			01010	10	

Osservazioni

- possibile produzione di valori non rappresentabili (es. 65535+1)
- Ogni operazione produce sempre un risultato

(1)0000 0000 0000 0000

Circolarità nel calcolo

Registro di stato della CPU (SR)

ZŃCV

Z = 1 se addizione = 0

N=1 se risultato addizione è negativo

C=1 se riporto sul bit + significativo in addizione (carry)

V=1 se overflow

Un esempio più concreto?

```
. . . . .
```

```
int main()
{int c, int v=1;
while (1)
{v=v+1000000; if (v<0)scanf("%d",&c); printf("\n%d",v);}
}
```

Quando viene superato 2.147.483.647 il programma produce numeri negativi

Attenzione: se un'operazione A/B produce un numero reale si avrà un troncamento.

Errore assoluto è costante < 1

Errore relativo che diminuisce al crescere dei numeri.

Rappresentazione dei numeri interi

L'intervallo di rappresentabilità viene suddiviso tra numeri positivi e negativi

Esempi di intervalli f(hardware, linguaggio) Ogni linguaggio, compilatore decide come gestire questi limiti.

Tipi C	Bit	Intervallo possibile (limits.h)
short integer	16	-32768 a 32767
		SHRT_MIN, SHRT_MAX
unsigned short integer	16	0 a 65535 USHRT_MAX
Integer	32	-2147483648 a 2147483647
		INT_MIN, INT_MAX
unsigned integer	32	0 a 4294967295 UINT_MAX
long integer	32	-2147483648 a 2147483647
		LONG_MIN, LONG_MAX
unsigned long integer	32	0 a 4294967295 ULONG_MAX

Convenzione codifica in modulo e segno (N bits)

- bit + significativo: 1 (negativi), 0 (positivi)
- valori rappresentabili: $-(2^{N-1}) \longleftrightarrow (2^{N-1})$
- doppia rappresentazione dello 0

Esempio:

111(-3), 110(-2), 101(-1), 100(-0), 000(+0), 001(+1), 010(+2), 011(+3)

Codifica in complemento a 2

- si abbandona la regola del cambio base
- valori rappresentabili: $-(2^{N-1}) \longleftrightarrow (2^{N-1}-1)$
- primo bit mantiene il segno

Esempio:

100(-4), 101(-3), 110(-2), 111(-1), 000(+0), 001(+1), 010(+2), 011(+3)

Come si calcola

Numeri positivi: codifica binaria del valore assoluto

Numeri negativi: $|N_2| + (N_2) = 0$

ES. -3

011 (3)
101 (-3)
$$\rightarrow N_2 = 2^N - |N_2|$$

(1)000 011

101

Regole immediate per numeri negativi

- 1. complemento a 1 di $+N_2$ +1 (011 \rightarrow 100 +1 \rightarrow 101)
- 2. ricopiare bit significativi di N_2 sino a primo 1 incluso e poi complemento a 1 dei rimanenti.

Osservazioni:

- unica rappresentazione dello 0 (complemento a 2)
- sottrazione realizzata come somma

Torniamo all'overflow di A + B

Come vengono caricati i bit C e V

- C = 0
- se risultato ha primo bit a $0 \Rightarrow$ no overflow altrimenti V=1

$$011 + 3$$

$$011 = 3$$

110 -2

A>0, B<0 (o viceversa)
$$A + (2^N - |B|) = 2^N - (|B| - A)$$

$$-|B| > A \rightarrow C=0$$

$$010 + 2$$

$$101 = -3$$

- $|B| \le A \rightarrow C=1$ corretto dopo eliminazione riporto

$$011 + (3)$$

$$011 + (3)$$

$$101 = (-3)$$

$$110 = (-2)$$

(1)001

A<0, B<0
$$(2^N - |A|) + (2^N - |B|) = 2^N + 2^N - (|B| + |A|)$$

- C=1 riporto è strutturale e quindi non significativo
- se risultato ha primo bit a $1 \Rightarrow$ no overflow altrimenti V=1

$$V=0 111 + -1 101 = -3 ---- (1)100 -4$$

V=1
$$101+ (-3)$$

 $101= (-3)$
 $----$
 $010 \rightarrow +2$

Rappresentazione dei caratteri

- lettere maiuscole/minuscole A a .. Z z
- spazio
- cifre 0 9
- segni di interpunzione , ; ; .
- simboli ! " # % @) < =
- caratteri di controllo per gestire la visualizzazione, la stampa, la trasmissione dei caratteri (inizio riga, salto di riga, salto pagina)

Codifica ASCII (American Standard Code for Information Interchange) basata su 8 bit

- da 0 a 32 caratteri speciali
- 65 A, 66 B, 67 C, 97 a, 98 b ordinamento per concetto di precede/segue e distanza tra due lettere e tra la stessa lettera minuscola e maiuscola (costante)
- codifiche nazionali nell'intervallo 128-255 ⇒ portabilità

Codifica Unicode (ISO 10646)

- 16 bit
- include alfabeti: latino, greco, arabo, ideogrammi cinesi,...

Osservazione: la doppia interpretazione dei caratteri in C

char b;

scanf("%c",&b); z

printf("% $c\n$ ",b); z

printf("%d\n", b); 122

Rappresentazioni di immagini come bitmap

Immagine → digitalizzazione (cm x cm→ punti x punti)

↑
risoluzione dpi(dot per inch - es. 1200 per fotogrammetria)

Numero bit x punto (pixel):

- 1. bianco/nero 1 bit x pixel
- 2. scala grigi (256 toni) 8 bit x pixel
- 3. colori a video: sistema RGB (256 toni per colore) 8 bit x 3 colori (24 bit)

Dimensioni: area(pixel * pixel)*bit x punto.

Es

schermo colori: (1400*1050)*3*8=35.280.000 bits ~ 4,4Mbytes

Distanza di distinguibilità

2,56 cm (pollice) * 1/dpi (ad es., 1200) \cong 21 μ m

Fotogrammetria: risoluzione al suolo

scala	scala media fotogramm	na risoluzione al suolo
1000	4500	21µm *4500=94500µm≅ 9,5cm
2000	7000	$21\mu m *7000=147000\mu m \cong 14,7cm$
5000	13000	21µm*13000=273000µm≅ 27,3cm
10000	22000	$21\mu m *22000=462000\mu m \cong 46,2cm$

Tecniche di compressione

senza TIFF con perdita di informazione JPEG

Dalle immagini alla sintesi vettoriale (cartografia)

Dalle immagini alla sintesi vettoriale (DB spaziali)

Rappresentazione dei video

Video: sequenza di immagini

Sistema PAL: 720x576 pixel - 25 frame/sec.

$$(720*576*3*8)*25 = (1,244MB)*25 = ~31MB/sec$$

Film 133 minuti = 7980" = ~ 247GB (29 DVD SSDL-8,5GB)

Tecniche di compressione variabile MPEG-2

- variazione tra fotogramma i-esimo e (i-1)- esimo
- velocità media 3,5Mb/sec

Film 133 minuti = 7980" *3,5= \sim 28Gb = \sim 3,5GB (1,2GB restanti per sottotitoli, lingue) \Rightarrow 1 DVD SSSL-4,7GB)

Rappresentazione del suono

Frequenza campionamento = 2*22.000Hz = ~44.100campioni/sec Numero bit per campione per canale: 16 Dimensione= 44.100*16*2= 1,4Mb/sec = 172KB/sec

Voce (freq. Camp.2*4.000Hz)

