

1200V APT25GT120BRDQ2 APT25GT120BRDQ2G*

*G Denotes RoHS Compliant, Pb Free Terminal Finish.

Thunderbolt IGBT®

The Thunderblot IGBT® is a new generation of high voltage power IGBTs. Using Non-Punch Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast switching speed.

- Low Forward Voltage Drop
- High Freq. Switching to 50KHz

Low Tail Current

- Ultra Low Leakage Current
- RBSOA and SCSOA Rated

MAXIMUM RATINGS

All Ratings: $T_C = 25$ °C unless otherwise specified.

Symbol	Parameter	APT25GT120BRDQ2(G)	UNIT	
V _{CES}	Collector-Emitter Voltage	1200	Volts	
V _{GE}	Gate-Emitter Voltage	±30	VOILS	
I _{C1}	Continuous Collector Current @ T _C = 25°C	54		
I _{C2}	Continuous Collector Current @ T _C = 110°C	25	Amps	
I _{CM}	Pulsed Collector Current (1)	75		
SSOA	Switching Safe Operating Area @ T _J = 150°C	75A @ 1200V		
P _D	Total Power Dissipation	347	Watts	
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55 to 150	°C	
T _L	Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.	300	C	

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	Units
V _{(BR)CES}	Collector-Emitter Breakdown Voltage $(V_{GE} = 0V, I_C = 1.5mA)$	1200			
V _{GE(TH)}	Gate Threshold Voltage $(V_{CE} = V_{GE}, I_{C} = 1 \text{mA}, T_{j} = 25^{\circ}\text{C})$	4.5	5.5	6.5	Volts
V _{CE(ON)}	Collector-Emitter On Voltage $(V_{GE} = 15V, I_C = 25A, T_j = 25^{\circ}C)$	2.7	3.2	3.7	, volto
	Collector-Emitter On Voltage $(V_{GE} = 15V, I_C = 25A, T_j = 125^{\circ}C)$		3.9		
loso	Collector Cut-off Current (V _{CE} = 1200V, V _{GE} = 0V, T _j = 25°C) [€]			200	μA
CES	Collector Cut-off Current (V _{CE} = 1200V, V _{GE} = 0V, T _j = 125°C) (C)			TBD	, ,,,
I _{GES}	Gate-Emitter Leakage Current (V _{GE} = ±20V)			120	nA

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

DYNAMIC CHARACTERISTICS

APT25GT120BRDQ2(G)

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C _{ies}	Input Capacitance	Capacitance		1650		
C _{oes}	Output Capacitance	$V_{GE} = 0V, V_{CE} = 25V$		250		pF
C _{res}	Reverse Transfer Capacitance	f = 1 MHz		110		
V _{GEP}	Gate-to-Emitter Plateau Voltage	Gate Charge		10.0		V
Q_g	Total Gate Charge ^③	V _{GE} = 15V		170		
Q _{ge}	Gate-Emitter Charge	V _{CE} = 600V		20		nC
Q _{gc}	Gate-Collector ("Miller") Charge	I _C = 25A		100		
SSOA	Switching Safe Operating Area	$T_J = 150$ °C, $R_G = 5\Omega$, $V_{GE} = 15V$, $L = 100\mu H$, $V_{CE} = 1200V$	75			А
t _{d(on)}	Turn-on Delay Time	Inductive Switching (25°C)		14		
t _r	Current Rise Time	V _{CC} = 800V		27		ns
t _{d(off)}	Turn-off Delay Time	V _{GE} = 15V		150		113
t _f	Current Fall Time	$I_{\rm C} = 25A$		36		
E _{on1}	Turn-on Switching Energy ^④	$R_{G} = 5\Omega$		930		
E _{on2}	Turn-on Switching Energy (Diode) ^⑤	T _J = +25°C		1860		μJ
E _{off}	Turn-off Switching Energy ^⑥			720		
t _{d(on)}	Turn-on Delay Time	Inductive Switching (125°C)		14		
t _r	Current Rise Time	V _{CC} = 800V		27		ns
t _{d(off)}	Turn-off Delay Time	V _{GE} = 15V		175		113
t _f	Current Fall Time	$I_{C} = 25A$		45		
E _{on1}	Turn-on Switching Energy ^④	$R_{G} = 5\Omega$		925		
E _{on2}	Turn-on Switching Energy (Diode) ^⑤	$T_{J} = +125^{\circ}C$		3265		μJ
E _{off}	Turn-off Switching Energy ^⑥			965		

THERMAL AND MECHANICAL CHARACTERISTICS

Symbol	Characteristic	MIN	TYP	MAX	UNIT
$R_{ heta JC}$	Junction to Case (IGBT)			.36	°C/W
$R_{ heta JC}$	Junction to Case (DIODE)			.61	- C/VV
W_{T}	Package Weight		5.9		gm

- ① Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2 For Combi devices, \textbf{I}_{ces} includes both IGBT and FRED leakages
- (3) See MIL-STD-750 Method 3471.
- (4) E_{on1} is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
- ⑤ E_{on2} is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.)
- 6 E_{off} is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)

APT Reserves the right to change, without notice, the specifications and information contained herein.

FIGURE 7, Threshold Voltage vs. Junction Temperature

T_J, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature

R_G, GATE RESISTANCE (OHMS)

FIGURE 15, Switching Energy Losses vs. Gate Resistance

TYPICAL PERFORMANCE CURVES

APT25GT120BRDQ2(G)

Figure 17, Capacitance vs Collector-To-Emitter Voltage

RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration

FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL

I_C, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current

APT25GT120BRDQ2(G)

Figure 21, Inductive Switching Test Circuit

Figure 23, Turn-off Switching Waveforms and Definitions

Figure 22, Turn-on Switching Waveforms and Definitions

ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE

MAXIMUM RATINGS

All Ratings: T_C = 25°C unless otherwise specified.

Symbol	Characteristic / Test Conditions	APT25GT120BRDQ2(G)		UNIT	
I _F (AV)	Maximum Average Forward Current (T _C = 112°C, Duty Cycle = 0.5)		40		
I _F (RMS)	RMS Forward Current (Square wave, 50% duty)		63		Amps
I _{FSM}	Non-Repetitive Forward Surge Current (T _J = 45°C, 8.3ms)		210		

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions		MIN	TYP	MAX	UNIT
		I _F = 25A		2.5		
V _F	Forward Voltage	I _F = 50A		2.9		Volts
		I _F = 25A, T _J = 125°C		1.5		

DYNAMIC CHARACTERISTICS

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
t _{rr}	Reverse Recovery Time I _F = 1A, di _F /dt =	Reverse Recovery Time $I_F = 1A$, $di_F/dt = -100A/\mu s$, $V_R = 30V$, $T_J = 25^{\circ}C$		26		20
t _{rr}	Reverse Recovery Time		-	350		ns
Q _{rr}	Reverse Recovery Charge	$I_F = 40A, di_F/dt = -200A/\mu s$ $V_B = 800V, T_C = 25^{\circ}C$	-	570		nC
I _{RRM}	Maximum Reverse Recovery Current	R = 000 V, 1C = 23 C	-	4	-	Amps
t _{rr}	Reverse Recovery Time	$I_F = 40A$, $di_F/dt = -200A/\mu s$ $V_R = 800V$, $T_C = 125$ °C	-	430		ns
Q _{rr}	Reverse Recovery Charge		-	2200		nC
I _{RRM}	Maximum Reverse Recovery Current		1	9	-	Amps
t _{rr}	Reverse Recovery Time	$I_F = 40A$, $di_F/dt = -1000A/\mu s$ $V_R = 800V$, $T_C = 125°C$	-	210		ns
Q _{rr}	Reverse Recovery Charge		-	3400		nC
I _{RRM}	Maximum Reverse Recovery Current		-	29		Amps

RECTANGULAR PULSE DURATION (seconds)
FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
RC MODEL

FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL

Figure 27. Reverse Recovery Charge vs. Current Rate of Change

Figure 28. Reverse Recovery Current vs. Current Rate of Change

Figure 30. Maximum Average Forward Current vs. CaseTemperature

4

6

0.25 I_{RRM}

Figure 32. Diode Test Circuit

Zero

- 1 I_F Forward Conduction Current
- 2 di_F/dt Rate of Diode Current Change Through Zero Crossing.
- 3 I_{RBM} Maximum Reverse Recovery Current.
- 4 t_{rr} Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through I_{RRM} and 0.25 •I_{RRM} passes through zero.
- 5 Q_{rr} Area Under the Curve Defined by I_{RRM} and t_{rr}.

Figure 33, Diode Reverse Recovery Waveform and Definitions

TO-247 Package Outline

e1 SAC: Tin, Silver, Copper

Dimensions in Millimeters and (Inches)