Sieci urządzeń mobilnych

Część 3 wykładu

SKO2

Mapa wykładu

- Wprowadzenie
 - O Dlaczego mobilność?
 - Rynek dla mobilnych urządzeń
 - Dziedziny badań
- □ Transmisja radiowa
- □ Protokoły wielodostępowe
- ☐ Systemy GSM
- □ Systemy satelitarne
- Bezprzewodowe sieci lokalne

Historia komunikacji satelitarnej

1945 Arthur C. Clarke publikuje eseje o "Pozaziemskich przekaźnikach" pierwszy satelita: SPUTNIK! 1957 pierwszy satelita komunikacyjny ECHO **1960** pierwszy satelita geostacjonarny SYNCOM **1963 1965** pierwszy komercyjny satelita geostacjonarny "Early Bird" (INTELSAT I): 240 dupleksowe kanały telefoniczne lub 1 kanał TV, okres życia 1.5 roku

Historia komunikacji satelitarnej

1976	trzy satelity MARISAT dla komunikacji morskiej
1982	pierwszy system satelitarnej telefonii mobilnej INMARSAT-A
1988	pierwszy system satelitarnej telefonii mobilnej z komunikacją danych INMARSAT-C
1993	pierwszy cyfrowy system telefonii satelitarnej
1998	globalne systemy satelitarne dla małych telefonów mobilnych

Zastosowania

- Telekomunikacyjne
 - globalne połączenia telefoniczne zastąpione przez sieci światłowodowe
 - o szkielet dla sieci globalnych
 - komunikacja w odległych lub słabo rozwiniętych obszarach geograficznych
 - o globalna komunikacja mobilna
- Inne
 - satelity pogodowe
 - satelity rozsiewcze radia i telewizji
 - satelity militarne
 - satelity dla nawigacji i lokalizacji (n.p., GPS)
- systemy satelitarne mające na celu rozszerzenie systemów komórkowych (n.p., GSM lub AMPS)

Klasyczny system satelitarny

SKO2

Podstawy

- Satelity na orbitach kołowych
 - \circ siła przyciągania $F_q = mg (R/r)^2$
 - \circ siła odśrodkowa $F_c = m r \omega^2$
 - o m: masa satelity
 - R: promień ziemi (R = 6370 km)
 - or: odległość satelity od środka ziemi
 - \circ g: przyciąganie grawitacyjne (g = 9.81 m/s²)
 - \circ ω : prędkość kątowa (ω = 2 π f, f: częstotliwość obrotu)
- Stała orbita
 - \circ $F_g = F_c$

Okresy obrotu satelitów i orbity

SKO₂

Podstawy

- orbity kołowe lub eliptyczne
- całkowity czas obrotu zależy od odległości satelity od Ziemi
- nachylenie: kat pomiędzy orbita a równikiem
- elewacja: kat pomiędzy satelita a horyzontem
- LOS (Line of Sight) do satelity konieczna dla połączenia
 - → potrzebna wysoka elewacja, mniejsze zakłócenia przez n.p. budynki

Podstawy

- Uplink: łącze od stacji bazowej do satelity
- Downlink: łącze od satelity do stacji bazowej
- zwykle, oddzielne częstotliwości na uplink i downlink
 - przełącznik na satelicie nadaje/odbiera i zmienia częstotliwości
 - przezroczysty przełącznik: tylko zmienia częstotliwości
 - regenerujący przełącznik: dodatkowo regeneracja sygnału

Nachylenie (inklinacja)

Elewacja

Łacza satelitarne

Ostabienie i moc odbieranego sygnatu określone są przez cztery parametry: L: strata

moc nadawczą

zysk anteny nadawczej

odległość pomiędzy nadawcą a odbiorcą

zysk anteny odbiorczej

Problemy

- zmienna moc odbieranego sygnału z powodu propagacji wielościeżkowej
- o przerwania z powodu cienia (brak LOS)
- Możliwe rozwiązania
 - Margines łącza eliminujący zmienność mocy sygnału
 - różnorodność satelitów (użycie wielu widocznych satelitów) jednocześnie) pozwala użyć mniejszej mocy nadawczej

f: częstotliwość nośna

r: odległość

c: prędkość światła

$$L = \left(\frac{4\pi rf}{c}\right)^2$$

Atmosferyczne tłumienie sygnału

SKO2

Orbity I

- Rozróżniamy cztery różne typy orbit satelitarnych w zależności od kształtu i średnicy orbity:
- □ GEO: orbita geostacjonarna, ok. 36000 km powyżej powierzchni ziemi
- □ LEO (Low Earth Orbit): ok. 500 1500 km
- □ MEO (Medium Earth Orbit) lub ICO (Intermediate Circular Orbit): ok. 6000 20000 km
- ☐ HEO (Highly Elliptical Orbit) orbity eliptyczne

Orbity II

Satelity geostacjonarne

- Orbita 35,786 km od powierzchni ziemi, orbita w płaszczyźnie równika (nachylenie 0°)
 - ⊃ całkowity obrót dokładnie w jeden dzień, satelita jest zsynchronizowany z obrotem Ziemi
- pozycja anten może być stała, nie potrzeba jej zmieniać
- satelity zwykle mają duże pole (do 34% powierzchni Ziemi!), dlatego trudno jest ponownie używać częstotliwości

Satelity geostacjonarne

- złe elewacje w obszarach o szerokości geogr. powyżej 60° z powodu stałej pozycji nad równikiem
- potrzebna wysoka moc nadawcza
- duże opóźnienie ze względu na wysokość (ok. 275 ms)
 - → nie jest użyteczne dla globalnej komunikacji małych telefonów mobilnych i transmisji danych, typowo używany dla transmisji radiowej i telewizyjnej

Systemy LEO

- Orbita ok. 500 1500 km nad pow. Ziemi
- □ widoczność satelity przez ok. 10 40 minut
- możliwy globalny zasięg radiowy
- opóźnienie porównywalne z ziemską rozmową zagraniczną, ok. 5 - 10 ms
- mniejsze pola, lepsze wykorzystanie częstotliwości
- ale potrzebne przekazywanie od jednego satelity do drugiego
- potrzeba wiele satelitów dla globalnego zasięgu
- bardziej złożone systemy z powodu ruchomych satelitów

Systemy MEO

- Orbita ok. 5000 12000 km nad pow. Ziemi
- porównanie z systemami LEO:
 - mniejsza prędkość satelitów
 - potrzeba mniej satelitów
 - prostszy system
 - dla wielu połączeń, nie potrzeba przekazywania
 - większe opóźnienie, ok. 70 80 ms
 - potrzebna większa moc nadawcza
 - potrzebne specjalne anteny dla mniejszych pól

Ruting

- Możliwe rozwiązanie: łącza pomiędzy satelitami
 - potrzeba mniej bram
 - przekazywanie połączeń lub pakietów w obrębie sieci satelitarnej tak długo, jak to możliwe
 - tylko jeden uplink i downlink dla każdego końca połączenia potrzebny dla połączenia dwóch mobilnych telefonów

Problemy:

- o bardziej złożone sterowanie antenami pomiędzy satelitami
- duża złożoność systemu z powodu ruchomych ruterów
- większe zużycie paliwa
- dlatego krótszy okres życia satelity

Ruting połączeń w telefonii satelitarnej

- Mechanizm podobny do GSM
- Bramy utrzymują rejestry danych użytkownika
 - O HLR (Home Location Register): statyczne dane
 - VLR (Visitor Location Register): (ostatnio znane) położenie stacji mobilnej
 - SUMR (Satellite User Mapping Register):
 - satelita przypisany do stacji mobilnej
 - położenie wszystkich satelitów
- Rejestracja stacji mobilnych
 - Lokalizacja stacji mobilnej przez pozycję satelity
 - żądanie danych użytkownika z HLR
 - aktualizacja VLR oraz SUMR
- □ Połączenie ze stacją mobilną
 - lokalizacja przez HLR/VLR podobnie jak w GSM
 - o tworzenie połączenia przezkodpowiedniego satelitę

Przekazywanie w systemach satelitarnych

- Ruch satelitów zwiększa częstość i złożoność przekazywania w porównaniu do systemów komórkowych
 - Przekazywanie w polu jednego satelity
 - · handover z jednej komórki w polu do drugiej
 - · stacja pozostaje w polu satelity, lecz zmienia komórkę
 - Przekazywanie pomiędzy satelitami
 - stacja mobilna opuszcza pole jednego, wchodzi w pole drugiego satelity
 - Przekazywanie pomiędzy bramami
 - stacja mobilna pozostaje w polu satelity, lecz zmienia bramę
 - Przekazywanie pomiędzy systemami
 - przekazywanie z sieci satelitarnej do ziemskiej sieci komórkowej

Mapa wykładu

- Wprowadzenie
 - O Dlaczego mobilność?
 - Rynek dla mobilnych urządzeń
 - Dziedziny badań
- □ Transmisja radiowa
- Protokoły wielodostępowe
- ☐ Systemy GSM
- Systemy satelitarne
- Bezprzewodowe sieci lokalne

Cechy bezprzewodowych sieci LAN

□ Zalety

- bardzo elastyczne
- możliwe tworzenie sieci ad-hoc bez infrastruktury i planowania
- (prawie) nie ma problemów z przewodami
- o bardziej odporne na sytuacje awaryjne i katastrofalne

■ Wady

- zwykle mała przepustowość w porównaniu do sieci przewodowych (1-10 Mb/s)
- wiele rozwiązań niestandardowych, szczególnie o wyższych przepustowościach, standardy powstają powoli (n.p. IEEE 802.11)
- produkty muszą być zgodne z regulacjami narodowymi dotyczącymi radia
 - stworzenie globalnych systemów trwa długo
- Bezpieczeństwo informacji

Cele projektowe sieci WLAN

- □ małe zużycie mocy
- technologia transmisyjna odporna na zakłócenia
- bezpieczeństwo informacji
- globalne działanie stacji mobilnych
- brak specjalnych licencji na używanie sieci WLAN
- prostota w użyciu
- ochrona inwestycji w sieci przewodowe
- bezpieczeństwo radiowe (niskie promieniowanie)
- przezroczystość dla warstwy aplikacji
- znajomość lokalizacji, gdy jest to potrzebne

Podczerwień a radio

- Podczerwień
- Zalety
 - proste, tanie, dostępne w wielu urządzeniach mobilnych
 - nie potrzeba licencji
 - o proste ekranowanie
- Wady
 - interferencja ze światłem słonecznym, źródłami ciepła itd.
 - łatwo zasłonić/wchłonąć światło IR
 - mała przepustowość
- □ Przykład
 - IrDA (Infrared Data Association)
 - interfejs dostępny wszędzie

- □ Radio
- Zalety
 - można użyć doświadczenia z radiowych sieci WAN
 - większy zasięg (radio przechodzi przez ściany, meble itd.)
- Wady
 - bardzo niewiele częstotliwości bez licencji
 - ekranowanie trudne, zakłócenia przez inne urządzenia elektryczne
- Przykład
 - WaveLAN, HIPERLAN, Bluetooth

Bezprzewodowa sieć LAN IEEE 802.11

□ 802.11b

- pasmo radiowe 2.4-5 GHz bez licencji
- o do 11 Mb/s
- w warstwie fizycznej, używa direct sequence spread spectrum (DSSS)
 - wszystkie hosty używają tego samego kodu dzielącego
- szeroko używane, korzysta z punktów dostępowych

- ⊃ 802.11a
 - o pasmo 5-6 GHz
 - o do 54 Mb/s
- □ 802.11g
 - o pasmo 2.4-5 GHz
 - o do 54 Mb/s
- Używają CSMA/CA do wielodostępu
- Wszystkie mają wersję z punktami dostępowymi i adhoc

Sieci ad-hoc a infrastrukturalne

802.11 - architektura sieci infrastrukturalne

- □Stacja mobilna (STA)
 - terminal z łącznością radiową do punktu dostępowego
- □ Basic Service Set (BSS)
 - grupa stacji używających tej samej częstotliwości
- □Punkt dostępowy
 - stacja połączona z siecią bezprzedową i szkieletową
- □Portal
 - most do innych sieci (przewodowych)
- □Sieć szkieletowa
 - sieć łącząca sieci BSS w jedną logiczną sieć (EES: Extended Service Set)

802.11 - architektura sieci ad hoc

- Bezpośrednia komunikacja na mniejszym obszarze
 - Stacja (STA): terminal z dostępem do medium radiowego
 - Independent Basic Service Set (IBSS): grupa stacji na tej samej częstotliwości

IEEE standard 802.11

802.11 - Warstwy i funkcje

- □ MAC
 - protokoły wielodostępowe, fragmentacja, szyfrowanie
- Zarządzanie MAC
 - synchronizacja, roaming,
 MIB, zarządzanie mocą

			رجي
DLC	LLC		stacja
	MAC	Zarządzanie MAC	anie (
>	PLCP	Zarządzanie PHY	zadz
PHY	PMD		Zar

- □ PLCP (Physical Layer Convergence Protocol)
 - o carrier sense
- PMD (Physical Medium Dependent)
 - modulacja, kodowanie
- Zarządzanie PHY
 - o wybór kanału, MIB

Zarządzanie stacją

 koordynacja wszystkich funkcji zarządzania

802.11 - Warstwa fizyczna (podstawowa wersja)

- □ 3 wersje: 2 radiowe (zwykle 2.4 GHz), 1 w podczerwieni
 - o przepustowości 1 do 2 Mb/s
 - FHSS (Frequency Hopping Spread Spectrum)
 - DSSS (Direct Sequence Spread Spectrum)
 - Podczerwień
- □ Warstwa fizyczna protokołu 802.11 została zastąpiona najpierw w wersji 802.11b, potem w 802.11g

- Usługi ruchowe
 - Asynchroniczna usługa ruchowa (obowiązkowa)
 - wymiana pakietów przy jakości "best-effort"
 - możliwość komunikacji rozsiewczej
 - Usługa z gwarancją ograniczonego opóźnienia (opcjonalna)
- Metody dostępowe
 - DFWMAC-DCF CSMA/CA (obowiązkowe)
 - unikanie kolizjie przez losowy mechanizm "cofania"
 - minimalna odległość w czasie pomiędzy pakietami
 - pakiet ACK dla potwierdzenie (nie przy broadcast)
 - DFWMAC-DCF z RTS/CTS (opcjonalne)
 - · Distributed Foundation Wireless MAC
 - unika problemu z ukrytym terminalem
 - DFWMAC- PCF (opcjonalne)
 - punkt dostępowy odpytuje terminale według listy

802.11 - warstwa MAC II

Priorytety

- określone przez różne odstępy między ramkami
- o nie ma gwarantowanych, twardych priorytetów
- SIFS (Short Inter Frame Spacing)
 - · najwyższy priorytet, dla ACK, CTS, odpowiedzi na odpytywanie
- O PIFS (PCF IFS)
 - średni priorytet, dla usługi PCF (gwarancje maksymalnego opóźnienia)
- DIFS (DCF, Distributed Coordination Function IFS)
 - najniższy priorytet, dla usługi asynchronicznej

802.11 - protokół CSMA/CA

- stacja gotowa do nadawania rozpoczyna nasłuchiwanie medium (Carrier Sense w oparciu o CCA, Clear Channel Assessment)
- jeśli medium jest wolne przez okres Inter-Frame Space (IFS), stacja może rozpocząć nadawanie (IFS zależy od rodzaju usługi)
- jeśli medium jest zajęte, stacja musi czekać na wolny okres IFS, a potem dodatkowo czekać losowy czas wycofywania (unikanie kolizji, wielokrotność szczeliny czasowej)

802.11 - konkurujące urządzenia

zajęte medium zajęte (ramka, ack itp.)

bo_e czas wycofywania

pakiet dochodzi do warstwy MAC

bo_r pozostały czas wycofywania

802.11 - DFWMAC z RTS/CTS

- Wysyłanie pakietów unicast
 - Stacja może wysłać ramkę RTS z parametrami rezerwacji po odczekaniu czasu DIFS (rezerwacja określa, na jak długo potrzebne jest medium)
 - Potwierdzenie przez ramkę CTS po czasie SIFS przez odbiorcę (jeśli jest gotów)
 - Nadawca może wysłać dane od razu, potwierdzenie przez ramkę ACK
 - Inne stacje zachowują rezerwacje otrzymane przez RTS i CTS w Net Allocation Vector (NAV)

Mobilne-39

Fragmentacja

SKO2

DFWMAC-PCF cz.I

DFWMAC-PCF cz.II

SKO2

802.11 - Format ramki

- Typy ramek
 - O Ramki sterujące, ramki zarządzające, ramki danych
- Numery sekwencyjne
 - Potrzebne z powodu wielokrotnych transmisji po stracie ACK
- Adresy
 - nadawcy, odbiorcy (fizyczny), identyfikator BSS, nadawcy (logiczny)
- □ Różne
- Czas wysyłania, suma kontrolna, dane sterujące ramki, dane

bajty	/ 2	2	6	6	6	2	6	0-2312	4
		Duration/	Address	Address	Address	Sequence	Address	Data	CRC
	Control	ID	1	2	3	Control	4	Bata	
;									

		T		l	•	•	•	7		
Protocol version	Туре	Subtype	To DS	From DS	More Frag	Retry	Power Mgmt	More Data	WEP	Order

Znaczenie 4 adresów MAC

scenariusz	do DS	od DS	addres 1	addres 2	addres 3	addres 4
sieć ad-hoc	0	0	DA	SA	BSSID	-
sieć z infrastrukturą, od AP	0	1	DA	BSSID	SA	-
sieć z infrastrukturą, do AP	1	0	BSSID	SA	DA	-
sieć z infrastrukturą, w obrębie DS	1	1	RA	TA	DA	SA

DS: Distribution System

AP: Access Point

DA: Destination Address

SA: Source Address

BSSID: Basic Service Set Identifier

RA: Receiver Address
TA: Transmitter Address

RTS

CTS

□ Potwierdzenie (ACK)

Request To Send

Clear To Send

802.11 - Zarządzanie w w. MAC

- Synchronizacja
 - Próbuj znaleźć sieć LAN, próbuj pozostać w sieci LAN
 - Zegarek, itd.
- □ Zarządzanie energią
 - Tryb hibernacji bez tracenia komunikatów
 - Okresy snu, buforowania ramek, pomiarów ruchu
- □ Asocjacja/Ponowna asocjacja
 - o Integracja w sieci LAN
 - roaming, czyli zmiana sieci przez zmianę punktu dostępowego
 - scanning, czyli aktywne poszukiwanie sieci
- ☐ MIB Management Information Base
 - O Baza danych służących do zarządzania siecią

Synchronizacja (w sieci z infrastruktura)

- Sygnał nawigacyjny (beacon)
 - Nadawany ciągle przez punkt dostępowy

Synchronizacja (w sieci ad-hoc)

SKO2

Zarzadzanie energia

- Pomysł: wyłączyć nadajnik-odbiornik, jeśli nie jest potrzebny
 - O Ang. Transceiver = nadajnik-odbiornik
- Stany stacji: sen i czuwanie
- Timing Synchronization Function (TSF)
 - Stacje budzą się w tym samym czasie
- Infrastruktura
 - Traffic Indication Map (TIM)
 - Lista odbiorców unicast, wysyłana przez AP
 - Delivery Traffic Indication Map (DTIM)
 - Lista odbiorców broadcast/multicast, wysyłana przez AP
- □ Ad-hoc
 - Ad-hoc Traffic Indication Map (ATIM)
 - Ogłoszenia odbiorcy przez stacje buforujące ramki
 - Bardziej złożone nie ma centralnego AP
 - Kolizje ramek ATIMs są możliwe (skalowalność?)

Zarządzanie energią przez okresy czuwania (infrastruktura)

Zarządzanie energią przez okresy czuwania (ad-hoc)

SKO2

802.11 - Roaming

- Brak połączenia lub złe połączenie? Wykonaj:
- Skanowanie
 - Skanuj otoczenie, czyli nasłuchuj sygnałów nawigacyjnych lub wysyłaj próbne ramki i czekaj na odpowiedź
- Žądanie ponownej asocjacji
 - Stacja wysyała żądanie do nowego punktu dostępowego AP
- Odpowiedź na żądanie asocjacji
 - o sukces: AP odpowiedział, stacja bieże udział w jego sieci
 - o porażka: stacja kontynuuje skanowanie
- □ AP akceptuje żądanie asocjacji
 - Informuje system dystrybucji o nowej stacji
 - System dystrybucji aktualizuje bazę danych (n.p., informacje lokalizacyjne)
 - zwykle, system dystrybucji informuje stary AP, który może zwolnić zasoby

WLAN: IEEE 802.11b

- ☐ Co nowego?
 - Definiuje nową warstwę PHY. Wszystkie protokoły MAC, zarządzania pozostają te same
 - Przepustowość danych użytkownika maks. około. 6 Mb/s
- Częstotliwości
 - O Używa częstotliwości w wolnym paśmie ISM 2.4 GHz
- Ochrona informacji
 - Ograniczona, mało bezpieczny WEP, SSID
- Dostępność
 - Wiele produktów, producentów
- Specjalne zalety/Wady
 - Zalety: wiele zainstalowanych systemów, wiele doświadczenia, dostępne na całym świecie, wolne pasmo ISM, wielu producentów, zintegrowane z komputerami przeniośnymi, proste
 - Wady: duże zakłócenia w paśmie ISM, brak gwarancji jakości, wolne

Wybór kanału (bez nakładania)

WLAN: IEEE 802.11a

- Częstotliwość
 - USA 5 GHz: wolne pasmo ISM 5.15-5.25, 5.25-5.35, 5.725-5.825 GHz
- Multipleksacja: Orthogonal FDM (nowa forma FDM)
- Czas nawiązywania połączenia
 - Bezpołączeniowe/zawsze włączone
- Ochrona informacji
 - Ograniczona, mało bezpieczny WEP, SSID
- Dostępność
 - Kilka produktów i producentów
- 🗇 Jakośc usług
 - Typu best-effort (podobnie jak we wszystkich produktach 802.11)
- Specjalne zalety/Wady
 - Zalety: wolne pasmo ISM, dostępne, proste, używa pasma 5 GHz, w którym jest mniej zakłóceń
 - Wady: bardziej wrażliwe na przeszkody z powodu wyższej częstotliwośći, brak QoS

Kanały dla 802.11a / USA U-NII

centralna częstotliwość = 5000 + 5*numer kanału [MHz]

WLAN: IEEE 802.11g

- □ Co nowego?
 - Definiuje nową warstwę PHY. Wszystkie protokoły MAC, zarządzania pozostają te same
 - Przepustowość danych maks. 54 Mb/s
 - Nowa modulacja, kody nadmiarowe, oraz OFDM jak w 80.11a
- Częstotliwości
 - Używa częstotliwości w wolnym paśmie ISM 2.4 GHz takie same, jak 802.11b
- Dostępność
 - Wiele produktów, producentów
- Specjalne zalety/Wady
 - Zalety: wiele zainstalowanych systemów, wiele doświadczenia, dostępne na całym świecie, wolne pasmo ISM, wielu producentów, zintegrowane z komputerami przeniośnymi, proste
 - Wady: duże zakłócenia w paśmie ISM, brak gwarancji jakości

Przyszłość WLAN

- Ochrona informacji: 802.11i
 - Istniejący standard mało wdrożeń
- Nowy standard ochrony informacji: 802.11w
 - Poprawa bezpieczeństwa ramek sterujących w warstwie MAC
- □ Przepustowość: 802.11n:
 - 0 540 Mb/s!
 - Pasmo to samo, co 802.11b/g: 2.4 GHz!
 - O Prawdopodobne zakończenie prac: 2007 rok
 - O Pierwsze urządzenia: 2006 rok (Linksys, D-link, Netgear, Belkin)

ETSI - HIPERLAN

- Bezprzewodowy LAN obsługujący priorytety i czas życia ramek
- Standard ETSI
 - Standard Europejski
 - O Rozszerzenie standardów sieci lokalnych
 - Od początku integruje usługi dla aplikacji wrażliwych na opóźnienia
- □ Rodzina HIPERLAN
 - o jeden standard nie spełnia wszystkich wymagań:
 - zasięgu, przepustowości, jakości usług
 - ograniczeń komercyjnych
 - HIPERLAN 1 jest standardem od 1996 roku nie ma produktów!

Przegląd: orginalna rodzina protokołów HIPERLAN

	HERANI	HPERAN2	HPERAN3	HPERAN4		
Application	wirdessLAN	access to ATIM	virdesolocal	paint-to-paint		
		fixedretworks	loop	wirdess ATM		
				corrections		
Frequency		172-17.33±±				
Topology	decentralizedad	ællular,	point-to-	point-to-point		
	hod/infrætructure	centralized	multipoint			
Arterna	omri-dre	ectional	drectional			
Range	50m	50-100 m	5000 m	150m		
QsS	statistical	All Mrafficd	RABRUBR)			
National	<10	1/6	stationary			
Interface	convertional LAN					
Detarate	235Ntbt/s	>201	155 Nbit/s			
Power	yes yes		notne	nd necessary		
conservation						

HIPERLAN 1 nigdy nie był produkowany, pozostałe standardy zostały zmodyfikowane i zmieniły nazwy!

HIPERLAN 1

- Wiele terminali może chcieć nadawać z tym samym priorytetem
 - faza rywalizacji
 - Węzeł z priorytetem p słucha kanału przez p ramek
 - Jeśli kanał jest wolny przez cały okres p ramek, węzeł potwierdza swój priorytet przez transmisję ciągu bitów (1111010100010011100000110010110, wysoka przepustowość)
 - Węzeł zaprzestaje próby nadawania, jeśli usłyszy sygnały w kanale
 - Faza rywalizacji kończy się, gdy węzeł potwierdzi swój priorytet
 - transmisja danych
 - zwycięzca wysyła dane (choć nadal istnieje niewielka szansa kolizji)
 - o do synchronizacji służy ostatnia transmisja danych

Trochę historii: Czemu bezprzewodowy ATM?

- gładkie połączenie z przewodowym ATM, sieć o wysokiej wydajności, oferująca różne rodzaje zintegrowanych usług
- Sieci ATM skalują się od sieci LAN do WAN, a mobilność jest potrzebna zarówno w lokalnych, jak i rozległych sieciach
- Oferuje QoS dla komunikacji multimedialnej
- Połączenie sieci ATM i komunikacji mobilnych, bezprzewodowych urządzeń jest naturalne
- Bezprzewodowe ATM jest przydatne z punktu widzenia operatora sieci telekomunikacyjnej
- □ Problem: bardzo duża złożoność nie ma produktów

Bluetooth

Koncepcja

- Uniwersalna łączność radiowa dla połączeń ad-hoc
- Połączenie komputerów z urządzeniami peryferyjnymi, przenośnymi, klasy PDA, telfonami komórkowymi - zastępuje IrDA
- Wbudowane w inne urządzenia, cel: 5€/device (2002: 50€/USB Bluetooth)
- Krótki zasięg (do 10 m), niski pobór mocy, wolne pasmo ISM
 2.45 GHz

Transmisia danych i dźwięku, około 1 Mb/s przepustowości

Bluetooth

₿ Bluetooth™

□ Historia

(było: WBluetooth.)

- 1994: Projekt "MC-link" firmy Ericsson
- Zmiana nazwy: Bluetooth po królu Haraldzie "Blåtand" Gormsen [syn Gorma], Królu Danii w 10-tym wieku
- 1998: założenie Bluetooth SIG (Special Interest Group), www.bluetooth.org
- 1999: ustawienie kamienia runicznego w Ercisson/Lund ;-)
- 2001: pierwsze produkty na rynku masowym, opublikowana wersja 1.1 specyfikacji

Special Interest Group

- O Członkowie założyciele: Ericsson, Intel, IBM, Nokia, Toshiba
- Dodani promotorzy: 3Com, Agere (poprzednio: Lucent), Microsoft, Motorola
- o ponas 2500 członków
- Wspólna specyfikacja i certyfikacja produktów

Historia i hi-tech...

...i prawdziwy kamień runiczny

Położony w Jelling, Dania, ustawiony przez Króla Haralda "Blåtand" dla upamiętnienia jego rodziców. Kamień ma trzy strony – jedna strona pokazuje obraz Chrystusa.

Inskrypcja na kamieniu:

"Harald król wykonał ten wspaniały pomnik ku pamięci Gorma, swojego ojca, i Thyry, swojej matki. Ten Harald który podbił całą Danię i norwegię i nawrócił Duńczyków na Chrześcijaństwo."

A propos: Blåtand oznacza "ciemnej karnacji" (a nie z niebieskim zębem...)

Tak mogły wyglądać orginalne kolory kamienia.

Krótka charakterystyka Bluetooth

- Technologia sieci bezprzewodowych o małej mocy, małym zasięgu
 - 10-100 metrów
- bezkierunkowy
 - o nie to samo co podczerwień
- Łączy małe urządzenia
- Używa nie licencjonowanego pasma 2.4-2.5 GHz
- do 721 kb/s

- Zakłócenia za strony bezprzewodowych sieci LAN, telefonów bezprzewodowych, mikrofalówek:
 - pomaga przeskakiwanie po częstotliwościach
- Protokół MAC udostępnia:
 - naprawę błędów
 - ARQ
- Każdy węzeł ma 12-bitowy adres

Charakterystyka bardziej szczegółowa

- Pasmo ISM 2.4 GHz, 79 (23) kanałów RF, oddzielenie częstotliwości nośnych o 1 MHz
- □ FHSS oraz TDD
 - Przeskakiwanie po częstotliwościach z częstością 1600 zmian na sekundę
 - Pseudolosowy ciąg częstotliwości, ustalany przez kontrolera ("master")
 - Time division duplex dla oddzielenia nadawania i odbierania
- □ Łącze głosowe SCO (Synchronous Connection Oriented)
 - Kody nadmiarowe (FEC, forward error correction), brak retransmisji, 64 kb/s dupleks, punkt-punkt, komutacja kanałów
- □ Łącze danych ACL (Asynchronous ConnectionLess)
 - Asynchroniczne, szybkie potwierdzenia, punkt-wielopunkt, do 433.9 kb/s symetrycznie lub 723.2/57.6 kb/s asymetrycznie, komutacja pakietów
- Topologia
 - Nakładające się na siebie pikosieci (gwiazdy) tworzą "scatternet"

Pikosieć (ang. Piconet)

- Zbiór urządzeń połączonych w sposób ad-hoc
- □ Jedno urządzenie pełni rolę koordynatora ("master"), pozostałe są podwładnymi ("slave") przez czas istnienia pikosieci
- Koordynator ustala sekwencję częstotliwości, podwładni muszą się synchronizować
- Każda pikosieć ma niepowtarzalny ciąg częstotliwości
- Udział w pikosieci = synchronizacja z ciągiem częstotliwości
- Każda pikosieć ma jednego koordynatora o najwyżej 7 podwładnych jednocześnie (ponad 200 może być nieaktywnych, "parked")

M=Master S=Slave

P=Parked SB=Standby

Tworzenie się pikosieci

- Wszystkie urządzenia pikosieci zmieniają częstotliwości jednocześnie
 - Koordynator daje podwładnym swój czas zegara i identyfikator ID
 - Ciąg częstotliwości: ustalany przez identyfikator ID (48 bitów, niepowtarzalny na całym świecie)
 - Okres zmian częstotliwości ustalany przez czas zegara
- Adresowanie
 - Active Member Address (AMA, 3 bit)
 - Parked Member Address (PMA, 8 bit)

Scatternet

M=Master

P=Parked

S=Slave

- Połączenie wielu nakładających się pikosieci poprzez wspólne urządzenia koordynujące lub podwładnych
 - Urządzenia mogą być podwładnymi w jednej pikosieci, a koordynatorami w drugiej
- Komunikacja pomiędzy pikosieciami
 - Urządzenia przeskakujące pomiędzy pikosieciami

Pikosieci (każda z przepustowością do 1 Mb/s)

Stos protokołów Bluetooth

AT: attention sequence OBEX: object exchange

TCS BIN: telephony control protocol specification – binary

BNEP: Bluetooth network encapsulation protocol

SDP: service discovery protocol RFCOMM: radio frequency comm.

- Pasmo ISM 2.4 GHz, 79 RF kanałów, kanałów RF, oddzielenie częstotliwości nośnych o 1 MHz
- FHSS oraz TDD
 - Przeskakiwanie po częstotliwościach z częstością 1600 zmian na sekundę
 - Pseudolosowy ciąg częstotliwości, ustalany przez kontrolera ("master")
 - Time division duplex dla oddzielenia nadawania i odbierania

Warstwa pasma podstawowego

- 🗇 Transmisja pakietów w oparciu o odpytywanie (TDD)
- □ SCO (Synchronous Connection Oriented) Głos
 - Okresowe przydzielanie jednej ramki, 64 kb/s full-duplex, punkt-punkt
- ACL (Asynchronous ConnectionLess) Dane
 - Zmienna długość ramki (1,3,5), asymetryczna przepustowość, punktwielopunkt

Niezawodność

- Wolne przeskakiwanie po częstotliwościach według wzorca ustalonego przez koordynatora
 - O Chroni przed zakłóceniami na niektórych częstotliwościach
 - Oddziela od innych pikosieci (FH-CDMA)
- Naprawa błędów:
 - wysyłamy 3 kopie każdego pakietu, odbiorca podejmuje decyzję większościową
- Retransmisje
 - Tylko tryb asynchroniczny, bardzo szybkie

Stany pasma podstawowego urządzenia Bluetooth

Standby: nie rób nic

Inquire: szukaj innych urządzeń Page: połącz się z konkretnym

urządzeniem

Connected: bierz udział w pikosieci

Park: oddaj AMA, pobierz PMA

Sniff: słuchaj okresowo, nie każdej ramki

Hold: zatrzymaj ACL, SCO dalej możliwe, możliwe

wzięcie udziału w innej pikosieci

SK₀2

Przykład: Adapter Bluetooth/USB (2002 rok: 50€)

SDP - Service Discovery Protocol

- Protokół żądania/odpowiedzi dla znajdowania usług
 - O Poszukiwanie i eksploracja usług w sąsiedztwie radiowym
 - Dostosowany do bardzo zmiennego środowiska
 - O Definiuje tylko znajdowanie, a nie wykorzystanie usług
 - Utrzymuje "cache" odkrytych usług
 - Stopniowe odkrywanie usług

IEEE 802.15

- WPAN: IEEE 802.15-1 Bluetooth
 - Standardyzacja niższych warstw Bluetooth
- WPAN: IEEE 802.15.2 rozwój 1
 - Współistnienie Wireless Personal Area Networks (802.15) i Wireless Local Area Networks (802.11), określa wzajemne zakłócanie
- 🗖 802.15-3: Wysoka przepustowość
 - Standard sieci WPAN o wysokiej przepustowości (20Mb/s lub większej), wciąż o małym poborze mocy/koszcie
 - Protokół QoS
 - Sieć ad-hoc
 - Ochrona informacji
 - Mały pobór mocy
 - Mały koszt
 - Ma na celu zaspokoić oczekiwania konsumentów dotyczących multimedialnej komunikacji bezprzewodowej

Ochrona informacji w bezprzewodowych sieciach LAN

- Proste formy zabezpieczeń
- Protokoły
 - Poufność
 - WiFi: WEP, WPA, WPA2/802.11i
 - Bluetooth
 - Uwierzytelnienie
 - WiFi: WEP, WPA-PSK, WPA-EAP
 - Bluetooth
- Naruszenia bezpieczeństwa sieci
 - Wardriving, Warflying, Warchalking...
 - Wrogie punkty dostępowe
 - Zagrożenia WiFi, Bluetooth
 - Metody ochrony

Sieci bezprzewodowe i zagrożenia

- Bezprzewodowe słuchawki...
- Dostęp do WWW na lotnisku lub w galerii...
- ☐ Praca w systemie "hot desk"...
- Czytanie poczty na organizerze...
- □ ... wygoda, czy początek katastrofy??

Bilans sit

- Napastnik ma większą antenę i silniejszy sygnał...
- Napastnik ma szybszy komputer (lub cały klaster)...
- Napastnik wybiera czas i miejsce ataku...
- Napastnik jest mobilny, cel niekoniecznie...
- Napastnik może nasłuchiwać dowolnie długo, będąc niezauważonym...

SKO2

Proste formy zabezpieczeń

- ☐ Filtrowanie adresów MAC
 - adres MAC łatwo jest zmienić
 - bezwartościowe
- □ "Zamknięte" sieci
 - SSID nie jest rozgłaszane przez punkt dostępowy
 - o ale jest zawarte w innych ramkach
- Wyłączanie DHCP
 - o nie marnujcie na to czasu

Protokoły - poufność: WEP

- 802.11 Wireless Equivalent Privacy
 - Szyfr: RC4
 - oparty na operacji XOR danych ze strumieniem kluczy szyfrujących
 - Klucze szyfrujące generowane na podstawie klucza WEP oraz wektora inicjalizującego (IV)
 - Manualna dystrybucja kluczy
 - Suma kontrolna: CRC-32
 - Algorytm wybrano z powodów:
 - · wydajności
 - · ograniczeń eksportowych USA

K – klucz WEP

IV – wektor inicjujący

XOR

WIADOMOŚĆ SUMA KONTROLNA

KLUCZ SZYFRUJĄCY: RC4(IV, K)

IV SZYFROGRAM

SKO2

Protokoły - poufność: WEP

- 802.11 WEP: ataki
 - Kryptoanaliza:
 - AirSnort, 2001: szuka "słabych" wektorów IV, pozwalających odgadnąć klucz WEP
 - chopper -> aircrack, WepLab, 2004: narzędzie statystyczne.
 Potrzebuje tylko 200.000 pakietów
 - Ataki słownikowe: WepAttack
 - Ataki powtórzeniowe (ang. replay attacks)
 - Cel: zebranie danych do kryptoanalizy lub ataku słownikowego
 - WEP nie ma ochrony przed tym atakiem. Nie potrzeba odszyfrować pakietu, żeby odgadnąć jego rodzaj po długości i adresie odbiorcy
 - aireplay
 - Ataki na klucze szyfrujące
 - zamiast odgadywać klucz WEP, poznać klucze szyfrujące wystarczy, by wysyłać własne pakiety
 - WEPWedgie

Klasy ataków na IEEE 802.11 (WEP)

- Atak wykorzystujący ponowne użycie IV
- Atak ze znanym tekstem jawnym
- Atak z częściowo znanym tekstem jawnym
- Atak słownikowy
- Atak wykorzystujące słabości algorytmu RC4
- Podszycie się
- → Odmowa usługi (denial of service)

Ponowne użycie IV

- Autorzy: Borisov, Goldberg, Wagner
 - Atak teoretyczny
- Wykorzystanie własności działania XOR (suma modulo 2):
- X XOR X = [0,0,...], Y XOR [0,0,...] = Y
- □ (IV,k) daje strumień klucza: RC4(IV,k)
 - Pierwszy szyfrogram: C1 = M1 XOR RC4(IV,k)
 - Drugi szyfrogram: C2 = M2 XOR RC4(IV,k)
 - O C1 XOR C2 = M1 XOR RC4(IV,k) XOR M2 XOR RC4(IV,k) = M1 XOR M2
- M1, M2 można przewidzieć
- dodatkowo: IV jest generowane za pomocą licznika, inkrementowanego co 1 i zerowany po każdym restarcie karty
- 🗖 przestrzeń IV: 224
- wniosek dla wytwórców sprzętu: IV powinno być generowane losowo

Przeszukiwanie przestrzeni klucza

- Autor: Tim Newsham
 - Jeden z najefektywniejszych pod względem szybkości ataków
- Atakujący posiada zestaw kluczy:
 - przechwycenie pakietu 802.11
 - deszyfrowanie wybranym kluczem pola użytkowego pakietu
 - zliczenie sumy kontrolnej
 - jeśli suma zgadza się: odszyfrowujemy pole użytkowe następnego pakietu
 - o jeśli znowu się zgadza mamy klucz!
- Atak skuteczny na urządzenie IEEE 802.11 mające generatory kluczy bazujące na hasłach: redukcja przestrzeni klucza z 240 do 221
- W praktyce: zestaw kluczy= słownik (atak słownikowy)
- Wniosek dla użytkowników WLAN: nie używać kluczy bazujących na hasłach

Atak na słabe klucze RC4

- Autorzy: Fluhrer, Mantin, Shamir
 - o najczęściej implementowany atak (AirSnort, WEPcrack)
- Atak niezależny od długości klucza RC4
- ☐ Atak na IV postaci: (A + 3, N 1, X)
- Stwierdzenie czy IV jest słabe zaraz po kroku KSA algorytmu RC4: X = S{B + 3}[1] < B + 3, X + S{B + 3}[X] = B + 3</p>
- □ atak z wykorzystaniem znajomości pierwszego bajtu strumienia klucza na którym ukazuje się fragment współdzielonego klucza
- wykrywanie poszczególnych bajtów współdzielonego klucza poprzez "probabilistyczne głosowanie"
- (spóźnione) wnioski dla twórców standardu IEEE 802.11: pominąć pierwsze bajty strumienia klucza RC4 albo stosować klucze sesyjne
- wniosek dla wytwórców sprzętu: nie dopuszczać do użycia słabych IV albo stosować klucze sesyjne

Protokoły - poufność: WEP

- 802.11 WEP
 - wniosek: nie używać?
- Nie całkiem...
 - WEP można złamać w pięć minut.
 - O Czemu nie zmieniać automatycznie klucza WEP co kilka minut?
 - SecureWEP rozwiązanie opracowane w PJWSTK

- □ 802.11 Wireless Protected Access
 - Szyfr: RC4 !!
 - nowy protokół, TKIP, ale stary szyfr...
 - Większe klucze, wektory IV
 - używa wielu kluczy
 - Dynamiczna wymiana klucza co 10k
 - O Jednorazowe wartości: uniemożliwiają ataki powtórzeniowe
 - Nowa suma kontrolna (Michael) zapewnia integralność

- 802.11i (AES-CCMP)
 - uchwalone przez IETF w czerwcu, 2004
 - Szyfr: AES
 - Michael zastapiono przez CCMP (algorytm Message Authentication Code, MAC)
- WPA2 zapewnia poufność...
 - o jednak ma większe wymagania obliczeniowe
 - nadal możliwe jest podszywanie się pod adresy MAC, wysyłanie ramek sygnalizacyjnych, ataki DoS

Protokoły - poufność: Bluetooth

- □ Szyfr: E0
 - specjalnie zaprojektowany dla Bluetooth
 - klucze generowane dla każdej sesji
 - o z klucza dla sesji, generowany jest klucz dla pakietu
 - w WEP, zbyt często używano tych samych kluczy dla różnych pakietów
 - Bezpośrednie ataki istnieją ale są złożone obliczeniowo
 - oddzielne klucze do szyfrowania i uwierzytelnienia

Plan wykładu

- Wstęp: bezprzewodowe sieci lokalne (WLAN)
- Proste formy zabezpieczeń
- □ Protokoły
 - Poufność
 - WiFi: WEP, WPA, WPA2/802.11i
 - Bluetooth
 - O Uwierzytelnienie
 - WiFi: WEP, WPA-PSK, WPA-EAP
 - Bluetooth
- Naruszenia bezpieczeństwa sieci
 - Wardriving, Warflying, Warchalking...
 - Wrogie punkty dostępowe
 - Zagrożenia WiFi, Bluetooth
 - Metody ochrony

Protokoły - uwierzytelnienie: WEP

- Procedura challenge-response
 - oparta na szyfrowaniu: trzeba udowodnić, że zna się wspólny klucz WEP
 - dwustronna, symetryczna
 - o przy każdym uwierzytelnieniu, używany jest ten sam klucz
- □ Możliwy atak na klucz szyfrujący
 - wystarczy, by podszyć się pod ofiarę po wysłuchaniu początku procedury
 - nie trzeba znać klucza WEP

Protokoły - uwierzytelnienie: WPA

- □ Dwa rodzaje
 - Pre-Shared Key
 - oparty na wspólnym kluczu (np. haśle)
 - Extensible Authentication Protocol
 - uwierzytelnienie 802.1X
 - oparte o uwierzytelnienie użytkowników, oraz certyfikat punktu dostępowego. Możliwy mechanizm: TLS. Wymagany serwer RADIUS
 - może także użyć certyfikatów klientów: ochrona przed atakami słownikowymi

- Oparte o wspólny sekret, challenge-response
 - tzw. klucz łącza (ang. link key)
 - o dwa rodzaje:
 - · unit key: dla wszystkich połączeń
 - · combination key: dla jednego połączenia
 - oparty o szyfrowanie, ale nie wysyła pełnego szyfrogramu, tylko najważniejsze 32 bity
 - pozostałe bity są używane do tworzenia kluczy szyfrujących dla sesji

Protokoły - uwierzytelnienie: Bluetooth

- □ Klucz łącza dla jednego połączenia jest tworzony podczas procedury zwanej *Bluetooth Pairing*
 - o do obliczenia klucza łącza służy klucz inicjalizacyjny
 - Klucz inicjalizacyjny zależy od PINu
- Należy chronić urządzenia przed podsłuchem podczas pairing
- Należy używać długich PINów łatwo jest złamać PIN, zmieniając swój adres MAC

Plan wykładu

- Wstęp: bezprzewodowe sieci lokalne (WLAN)
- Proste formy zabezpieczeń
- Protokoły
 - Poufność
 - WiFi: WEP, WPA, WPA2/802.11i
 - Bluetooth
 - Uwierzytelnienie
 - WiFi: WEP, WPA-PSK, WPA-EAP
 - Bluetooth
- Naruszenia bezpieczeństwa sieci
 - Wardriving, Warflying, Warchalking...
 - Wrogie punkty dostępowe
 - Zagrożenia WiFi, Bluetooth
 - Metody ochrony

Wardriving, Warflying, Warchalking...

Wardriving, Warflying, Warchalking...

Mapka Bostonu – topografia WiFi..

Wardriving, Warflying, Warchalking...

Co, jeśli zobaczysz taki znak na swoim domu...?

Zagrożenie totalne

- □ Na nic wszystkie zabezpieczenia...
- ...jeśli napastnik kontroluje punkt dostępowy!
- □ Wszelkie metody szyfrowania są bezużyteczne
- Uwierzytelnienie często jest nieskuteczne: np. bazuje na adresie MAC
- Nawet jeśli uwierzytelnienie jest skuteczne, trzeba mieć zaufanie do punktu dostępowego

Zagrożenia WiFi

- □ Wrogie punkty dostępowe
 - o punkty dostępowe o silniejszym sygnale
 - o punkty dostępowe zmieniające MAC
 - Evil twin
- □ Źle skonfigurowane punkty dostępowe
 - otwieranie drogi do własnej sieci
 - ...a może do sieci firmy? Złośliwie?
- Połączenie ad-hoc

Zagrożenia Bluetooth

- □ Bluetooth ma zasięg...
 - 10m?
 - 100m??
 - 1000m??!!! (z anteną kierunkową)
- □ PINy to często jest żart
 - zachowywane są fabryczne ustawienia
- W takiej sytuacji, klawiatura bądź słuchawka Bluetooth nabiera zupełnie nowych zastosowań...

Jak się chronić?

- Planowanie sieci WiFi
 - ustawienie punktów dostępowych z dala od fizycznych granic obszaru organizacji
 - rejestracja wszystkich punktów dostępowych
 - mapa pola radiowego wraz z wizualizacją
- Stosowanie systemów IPS
 - Intrusion Prevention Systems
 - Lokalizacja i fizyczna reakcja na pojawienie się napastnika
- Unikanie WiFi w instytucjach, dla których bezpieczeństwo informacji ma kluczowe znaczenie