Part III-B: Probability Theory and Mathematical Statistics

Lecture by 李漫漫 Note by THF

2024年11月30日

目录

Lecture 21

两个总体的参数估计

假设种类:

• $H_0: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2$

• $H_0: \mu_1 \geq \mu_2, H_1: \mu_1 < \mu_2$

• $H_0: \mu_1 \leq \mu_2, H_2: \mu_1 > \mu_2$

• ${}^{\star}H_0: \mu_1 - \mu_2 \ge c, H_1: \mu_1 - \mu_2 < c$

• ${}^{\star}H_0: \mu_1 - \mu_2 \le c, H_1: \mu_1 - \mu_2 > c$

一般使用点估计: $\overline{X} = \hat{\mu_1}, \overline{Y} = \hat{\mu_2}$, 将假设转为: $\mu_1 - \mu_2 \ge c \Rightarrow \overline{X} - \overline{Y} \ge c$ 原因: $\overline{X} - \overline{Y}$ 是 $\mu_1 - \mu_2$ 的最小方差无偏估计

Notation. 两个总体匹配/不独立

Example. 一种马达正常工作的平均电流不超过 0.8A, 抽取 16 台马达, 测得 $\overline{X}=0.92, S^2=0.32$,假设电流符合正态分布 $X\sim N\left(\mu,\sigma^2\right)$,取 $\alpha=0.05$,求厂家的话是否可信

Solve. 确定假设: 有两种可能的假设:

a. $H_0: \mu \le 0.8, H_1: \mu > 0.8$ b. $H_0: \mu \ge 0.8, H_1: \mu < 0.8$

确定假设统计量:由于 σ 未知,因此使用 t 统计量: $\frac{\overline{X}-\mu}{S}\sqrt{n}>t_{1-\frac{\alpha}{2}}\,(n-1)$ 分别带入数据后发现:对于 $H_0:\mu<0.8$ 和 $H_0:\mu\geq0.8$,都不拒绝原假设

Notation. 对于假设检验,任何假设都有犯错误的可能,拒绝原假设的可能是充分的(α 一般较小),不拒绝原假设有较大的可能犯错误(β 可能更大),因此不拒绝原假设的结论需要加大样本量继续验证

正态总体的方差的检验

检验统计量不使用 μ : $\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$ 继续化简:

$$\chi^2 = \frac{(n-1) S^2}{\sigma_0^2} = \frac{(n-1) \cdot \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2}{\sigma_0^2} = \frac{\sum_{i=1}^n \left(X_i - \overline{X} \right)^2}{\sigma_0^2}.$$

此时使用 $S^2 = \hat{\sigma}^2$ 来估计 σ ,如果 μ 已知则可以使用 $\frac{1}{n}\sum_{i=1}^n (X_i - \mu)^2 = \hat{\sigma}^2$ 来估计 σ

总体分布的卡方拟合优度检验

根据样本预测总体的分布种类 (假设)

Example. 某建筑工地发生事故的记录: 求 $\alpha = 0.05$ 下,数据是否符合泊松分布 $P(\lambda)$

表 1: 工地事故	
事故数	天数
0	102
1	59
2	30
3	8
4	0
5	1
≥ 6	0
合计	200

Notation. 泊松分布:

$$X \sim P(\lambda)$$
 $p = P(X \le x) = \sum_{k=1}^{n} \frac{\lambda^{k}}{k!} e^{-\lambda}$.

Solve. 设每天发生事故 i 次为事件 A_i , 确定假设:

- 原假设 $H_0: \forall i, P(A_i) = p_i$
- 被则假设 $H_1: \exists i, P(A_i) \neq p_i$

 λ 可以使用 $\overline{X} = \hat{\lambda}$ 估计,即 $\hat{\lambda} = \overline{x} = 0.74$,使用 P(0.74) 可以计算 \hat{p}_i

确定假设统计量:

$$\chi^2 = \sum_{i=1}^m \frac{n_i}{np_i} - n$$
$$\hat{\chi}^2 = \sum_{i=1}^m \frac{n_i}{n\hat{p}_i} - n$$

.

Lecture 22

11.30