ELENA: ELEVATION BASED NAVIGATION

By Group Kashikoi

Members: Astha Baranwal, Divya Sharma, Kavya Harlalka, Rohan Acharya Github: https://github.com/kavyaharlalka/kashikoi-elena-navigation

THE PROBLEM

Navigation Systems typically provide the shortest path between any two given points. These are not optimal for a lot of scenarios where the user is interested in finding a path which has the least elevation gain. Moreover, some users might be interested in finding a path which has elevation gain so that they can partake in an intense and time-constrained workout. To extend navigation systems to solve the above problems, we have designed a software system that takes two points as input and finds the optimal route between them that maximizes or minimizes elevation gain while limiting the total path distance to n% of the shortest path between these two points.

THE PROBLEM

Stakeholders

Runners, bikers, hikers, tourists, fitness enthusiasts, event organizers, researchers, rescue teams.

Non Functional Requirements

Understandability, Readability, Testability, Reliability, Compatibility, Modularity, Extensibility and Usability

Functional Requirements

Map which renders the optimal route for the set of inputs sent by user, apply 5 algorithms, check and validate the inputs, ensure accuracy and performance of the algorithm is optimal etc.

USER STORIES

- 1. As the user, I want to consider the elevation gain while planning a route between two locations.
- 2. As the user, I want to select a location from dropdown.
- 3. As the user, I want to be able to choose minimize or maximize elevation gain.
- 4. As the user, I want to be able to limit the path to n% of the shortest path between two points.
- 5. As the user, I want to be able to choose which algorithm should be used.
- As the user, I want to be able to choose which transportation mode I prefer.
- 7. As the user, I want the optimal route to be visible on the map.
- 8. As the user, I want the distance and elevation gain information for the optimal route to be visible.

THE DESIGN

We built a fully functional system focusing on developing and experimenting with six routing algorithms for computing the route.

Architecture: Model View Controller (MVC)

Tech Stack:

- Python Flask for backend
- HTML, CSS, Javascript for frontend
- Google Maps API to display the final route to the user
- OpenStreetMap API to access the geographic database
- SQLite for storing navigation history

ARCHITECTURE

- View will take the input:
 - Origin and Destination location
 - Strategy corresponding to the minimum or maximum elevation
 - One of the two algorithms (Dijkstra/A*)
 - Path limit (Maximum percentage of the shortest path)
- Controller will call OpenStreetAPI to generate the graph and GoogleMaps Elevation API to populate the nodes with elevation attributes.
- Controller will send the coordinates and strategy to Model.
- Model will store the coordinates and strategy in history.
- Finally, Controller notifies the view to display the computed path.

FRONTEND

FRONTEND

DEMO: CODE WALKTHROUGH

- We have created an independent API that can be used externally by other users as well for their own applications.
- This API is capable of finding the best and shortest routes and responds with their details.
- We will now walkthrough the code and show the key components of the Controller and Model.
- Then we will use Postman to demonstrate a request sent to our API and its response.

eader(); ?>

THE EVALUATION

We have done testing to to ensure that all the functions and modules are tested and all corner cases are covered:

- 1. UI Test
- 2. Manual Test
- 3. Performance Test
- 4. Unit Test
- 5. Integration/API Test

We achieved a test coverage of 100% (evaluated using pytest-cov)

UI TEST EXAMPLE

MANUAL TEST EXAMPLE

o is loading Please wait !!!	127.0.0.1:5000 says Implementation for this request doesn't exist. Try again with a different configuration!		
Source		ely	
1st Ave, Seattle, WA, USA			40
Destination			Mill Riv Recreat
Leavenworth, WA, USA		RTH HATFIELD	Area
Choose the elevation type:			U _I
Minimum	~		47 11
Choose the Algorithm:			
Dijkstra	~	Ha	tfield
Transportation Mode:			Trader Joe's
Bike	V	er Valley Co-op	
		Thection 2	Hadley
Path Limit			(1)
		on	The Eric Carle Museum of Picture Book Ar
Go	Reset		AT

SPIRE Log	gon 🗏 Information reque 🚍 Syllabus: MAS.S6 🖕 (1	1) Am 127.0.0.1:5000 says
Map is	loading Please wait !!!	We have shown an approximated path as the maximum number of waypoints has been exceeded OK
	Source	
	172 Plain Road, Hatfield, MA, USA	
	Destination	
	12 Brandywine, Amherst, MA, USA	
	Choose the elevation type:	
	Maximum	·
	Choose the Algorithm:	
	Dijkstra	Ÿ
	Transportation Mode:	
	Walk	·
	Path Limit	
	Go	Reset Map

PERFORMANCE TEST RESULTS

Response Time for Minimum and Maximum Elevation for Dijkstras Algorithm

Response Time for 1st time and 2nd time API Hit for same configuration

UNIT TEST

- Testing with invalid values to ensure error is thrown
- Testing the sql db manager methods to:
 - ensure that insertion and fetch are working
 - throw data check errors
 in case of invalid data

INTEGRATION TEST

- Illegal Source Address
- Illegal Destination Address
- Null Source Address
- Null Destination Address
- Illegal Algorithm ID
- Illegal Path Percentage
- Illegal Transportation Mode

CONTRIBUTIONS

Group Member Responsibilities

We implemented the entire application using pair programming.

Frontend:

Map component - Divya, Rohan Input component - Divya, Rohan

Backend:

Algorithms - Kavya, Astha All other components - Kavya, Astha

Test suites: Everyone

Documentation: Everyone

THANK YOU!