Dependencies

```
In [1]: using DataFrames using ExcelReaders
```

Data

```
In [2]: df assignment = readxl(DataFrame, "./gwl macro.xlsx", "Sheetl!Al:B101")
         df data = readxl(DataFrame, "./pwt90.xlsx", "Data!A1:AU11831");
In [3]: head(df_assignment,2)
Out[3]:
            group country
         1 100.0
                    CHN
                    USA
         2 101.0
In [4]: | head(df_data,2)
Out[4]:
            countrycode country currency_unit
                                           year rgdpe rgdpo pop emp avh
                                                                         hc ccon cda cgdpe cgdpo ck ctfp
                                                                                                           cwtfp
                                    Aruban
         1
                  ABW
                        Aruba
                                          1950.0
                                                                                   NA
                                                                                               NA NA
                                                                                                             NΑ
                                                  NA
                                                        NA
                                                            NA
                                                                 NA
                                                                      NA NA
                                                                               NA
                                                                                         NA
                                                                                                       NA
                                   Guilder
                                   Aruban
         2
                  ABW
                        Aruba
                                          1951.0
                                                  NA
                                                        NA
                                                            NA
                                                                 NA NA NA
                                                                              NA
                                                                                   NA
                                                                                         NA
                                                                                               NA NA
                                                                                                      NA
                                                                                                             NΑ
                                   Guilder
        4
```

Code

```
In [5]: function GW1 respondes(group)
             # Country selection
             country = df_assignment[(df_assignment[:group].==group),:][2]
             country_message = string("The second section of the anwers will show the solutions for PRT
             df country = df data[.|(df data[:countrycode] .== "PRT", df data[:countrycode] .== country
             data = df_country[.|(df_country[:year] .== 2000, df_country[:year] .== 2014), [:countrycod
             # Exercise 2
             gdp = []
             for i in 1:2 push!(gdp, ((data[i*2,4]/data[i*2-1,4])^(1/(data[i*2,3]-data[i*2-1,3]))-1)*10
             ex2 results = ["" data[1,2] data[3,2]; "Growth Rate (%)" gdp[1] gdp[2]]
             # Exercise 3
             ex3 results = ["Country" "TFP2000" "TFP2014" "ΔTFP/TFP"]
             for i in 1:2
                  \alpha = 1 - data[i*2-1,7]
                  TFP2000 = data[i*2-1,4]/(data[i*2-1,6]^{\alpha} * data[i*2-1,5]^{(1-\alpha)})
                  TFP2014 = data[i*2,4]/(data[i*2,6]^\alpha * data[i*2,5]^(1-\alpha))
                  ex3 results = [ex3 results; data[i*2,2] TFP2000 TFP2014 (TFP2014-TFP2000)/TFP2000*100]
             end
             # Exercise 4
             ex4_changes = ["Country" "\Delta Y/Y" "\Delta TFP/TFP" "\alpha * \Delta K/K" "(1-\alpha) * \Delta L/L"]
             ex4 contributions = ["Country" "%\DeltaTFP/TFP" "%\alpha*\DeltaK/K" "%(1-\alpha)*\DeltaL/L"]
             for i in 1:2
                  \alpha = 1 - data[i*2-1,7]
                  \Delta Y_Y = (data[i*2,4]-data[i*2-1,4])/data[i*2-1,4]
                  \Delta A A = ex3 results[i+1,4]
                  \Delta K_K = (data[i*2,6]-data[i*2-1,6])/data[i*2-1,6]
                  \Delta L_L = (data[i*2,5]-data[i*2-1,5])/data[i*2-1,5]
                  deltas = [\Delta A \Delta \alpha * \Delta K K (1-\alpha) * \Delta L L]
                  ex4 changes = [ex4 changes; data[i*2,2] \Delta Y Y deltas]
                  ex4 contributions = [ex4 contributions; data[i*2,2] deltas*(100/\DeltaY Y)]
             end
             if ex4_contributions[2,2] == maximum(ex4_contributions[2,2:4])
                  yn1 = "Yes, in $(ex4\_contributions[2,1])." else yn1 = "No, in $(ex4\_contributions[2,1])
             if ex4_contributions[3,2] == maximum(ex4_contributions[3,2:4])
                  yn2 = "Yes, in $(ex4 contributions[3,1])." else yn2 = "No, in $(ex4 contributions[3,1])
             return data, ex2 results, ex3 results, ex4 changes, ex4 contributions, yn1, yn2, country m
         end;
```

Group Selection

Use the cell below to check the solutions of other groups:

```
In [6]: group_number = 125;
In [7]: GW1_respondes(group_number)[8]
Out[7]: "The second section of the anwers will show the solutions for PRT and NLD."
```

Questions

1) Retrieving Data

Use the most recent version (9.0) of the Penn World Tables (at https://www.rug.nl/ggdc/productivity/pwt/) and retrieve the correct value to each component below to your designated country, as well as Portugal, for the years of 2000 and 2014.

- Output-side real GDP at chained PPPs (in mil. US\$2011) (rgdpo)
- Number of persons engaged (in millions) (emp)
- Capital stock at constant 2011 national prices (in mil. 2011US\$) (rkna)
- Share of labour compensation in GDP at current national prices (labsh)

Fill out the table below:

Answer of our group:

	Thailand		Portugal	
2014	2010	2014	2010	year
929554.5625	434126.28125	281354.90625	219630.03125	rgdpo
38.893306732177734	31.74068260192871	4.3413472175598145	5.0140275955200195	emp
3.62297275e6	2.38961475e6	1.7131235e6	1.30302975e6	rkna
0.3928701877593994	0.38971802592277527	0.5807642936706543	0.6547812819480896	labsh

Answer for the group chosen at the beginning:

In [8]: GW1_respondes(group_number)[1]

Out[8]:

	countrycode	country	year	rgdpo	emp	rkna	labsh
1	NLD	Netherlands	2000.0	596606.9375	8.19922924041748	2.6317835e6	0.6248472929000854
2	NLD	Netherlands	2014.0	812675.375	8.742557525634766	3.36735875e6	0.5955878496170044
3	PRT	Portugal	2000.0	219630.03125	5.0140275955200195	1.30302975e6	0.6547812819480896
4	PRT	Portugal	2014.0	281354.90625	4.3413472175598145	1.7131235e6	0.5807642936706543

2) Simple Math

Taking only these values from the above table, calculate Portugal's and your country's GDP growth rate. Fill out the below table:

Answer of our group:

$$g_{2000-2014} = \left(\frac{Y_{2014}}{Y_{2000}}\right)^{\frac{1}{2014-2000}} - 1$$

	Portugal	Thailand
GDP growth rate (%)	1.78483	5.588954

Answer for the group chosen at the beginning:

In [9]: GW1_respondes(group_number)[2]

Out[9]: 2×3 Array{Any,2}:

"" "Netherlands" "Portugal" "Growth Rate (%)" 2.23222 1.78483

3) Cobb Douglas

Taking only the variables from the initial table, believing that the volume of a country's production is well approximated by a Cobb Douglas Production Function and assuming that the share of labor income is constant and equal to that retrieved for the year 2000 calculate:

- The Total Factor Productivity level in the year 2000
- The Total Factor Productivity level in the year 2014
- The accumulated growth rate of TFP from 2000 to 2014

Answer of our group:

$$Y = A \cdot K^{\alpha} \cdot L^{1-\alpha}$$
$$A = \frac{Y}{K^{\alpha} \cdot L^{1-\alpha}}$$

	Portugal		Thailand	
year	2010	2014	2010	2014
TFP	591.869	758.105	14.4488	22.1714
ΔTFP/TFP (%)		28.0865%		53.4483%

Answer for the group chosen at the beginning:

```
In [10]: GW1_respondes(group_number)[3]
```

4) Growth

Was the growth in TFP the responsible for the majority of the growth experienced by Portugal? [Yes / No]

Was the growth in TFP the responsible for the majority of the growth experienced by your assigned country? [Yes / No]

Answer of our group:

$$Y = A \cdot K^{\alpha} \cdot L^{1-\alpha}$$

$$\frac{\Delta Y}{Y} = \frac{\Delta A}{A} + \alpha \cdot \frac{\Delta K}{K} + (1-\alpha) \cdot \frac{\Delta L}{L}$$

Country	ΔΥ/Υ	ΔTFP/TFP	α*ΔΚ/Κ	(1-α)*ΔL/L
Portugal	0.28104	0.280865	0.108648	-0.0878453
Thailand	1.14121	0.534483	0.314986	0.0878213

Country	%ΔTFP/TFP	%α*ΔK/K	%(1-α)*ΔL/L
Portugal	99.9378	38.6594	-31.2572
Thailand	46.8349	27.6011	7.69547

Yes, in Portugal.

Yes, in Thailand.

Answer for the group chosen at the beginning:

```
In [11]: GW1_respondes(group_number)[4]
Out[11]: 3×5 Array{Any,2}:
                          "ΔY/Y"
                                      "ATFP/TFP"
                                                    "α*ΔK/K"
                                                                "(1-\alpha)*\Delta L/L"
          "Country"
          "Netherlands" 0.362162 19.3057
                                                  0.104854
                                                               0.041406
                                    28.0865
          "Portugal"
                         0.28104
                                                  0.108648
                                                              -0.0878453
In [12]: GW1_respondes(group_number)[5]
Out[12]: 3×4 Array{Any,2}:
                              "%∆TFP/TFP"
                                             \%\alpha*\Delta K/K
                                                            "%(1-α)*ΔL/L"
          "Country"
           "Netherlands" 5330.67
                                           28.9522
                                                         11.433
          "Portugal"
                          9993.78
                                           38.6594
                                                         -31.2572
In [13]: GW1 respondes(group number)[6]
Out[13]: "Yes, in Netherlands."
In [14]: GW1_respondes(group_number)[7]
Out[14]: "Yes, in Portugal."
```