Notes on Stochastic Network Modeling (SNM)

Llorenç Cerdà-Alabern

llorenc@ac.upc.edu

Barcelona, October 18, 2020

Contents I Introduction				 5.4 Mean Recurrence Time 5.5 Property of States 5.6 Recursive Equation for the First Passage Prob 5.7 Recursive Equation for the Mean Recurrence 5.8 Periodic states 	 abilities Time	8 8 9 9
1	Probability Review	1	6	Steady State 6.1 Limiting Distribution		0
	1.1 Ingredients of Probability			6.2 Stationary distribution		0
	1.2 Expected value			6.3 Numerical Solution		1
	1.3 Variance			6.4 Global balance equations		1
	1.4 Indicator Function			6.5 Ergodic Chains		
	1.5 Expected value of non negative RVs			6.5.1 Theorems for ergodic chains		2
	1.6 Wald's Equation					_
	1.7 Frobability III M	. 2	7	Reversed Chain	1	2
2	Stochastic Process (SP)	3		7.1 Computation of p_{ij}^r	1	2
	2.1 Introduction	. 3		•		
	2.2 Analysis of Stochastic Processes	. 4	8	Reversible Chains		3
				8.1 Kolmogorov Criteria		
TT	Diameter Time Mandage Chaire	4		8.2 Product Form Solution		3
П	Discrete Time Markov Chains	4		8.3 Birth and Death Chains	1	4
3	Definition of a DTMC	4	9	Research Example: Aloha	1	4
3	3.1 State Transition Diagram	. 4	9	Research Example: Aloha 9.1 Analysis with finite population		
3	3.1 State Transition Diagram3.2 Properties of a DTMC	. 4	9		1	
3	3.1 State Transition Diagram3.2 Properties of a DTMC3.3 Transition Matrix	. 4 4 . 4	9	9.1 Analysis with finite population	1	4
3	3.1 State Transition Diagram 3.2 Properties of a DTMC 3.3 Transition Matrix 3.4 Absorbing Chains	. 4 . 4 . 4	9	9.1 Analysis with finite population 9.1.1 Stationary distribution	1 1 1	4 5 5
3	3.1 State Transition Diagram 3.2 Properties of a DTMC 3.3 Transition Matrix 3.4 Absorbing Chains 3.5 Sojourn or Holding Time	. 4 . 4 . 4 . 5	9	9.1 Analysis with finite population9.1.1 Stationary distribution9.2 Throughput	1 1 1	4 5 5 5
3	3.1 State Transition Diagram 3.2 Properties of a DTMC 3.3 Transition Matrix 3.4 Absorbing Chains 3.5 Sojourn or Holding Time 3.6 n-step transition probabilities	. 4 . 4 . 4 . 5 . 5		9.1 Analysis with finite population	1 1 1	.4 .5 .5 .5
3	3.1 State Transition Diagram 3.2 Properties of a DTMC 3.3 Transition Matrix 3.4 Absorbing Chains 3.5 Sojourn or Holding Time 3.6 n-step transition probabilities 3.7 State Probabilities	. 4 . 4 . 4 . 5 . 5		9.1 Analysis with finite population	1 1 1	4 5 5 5 5
3	3.1 State Transition Diagram 3.2 Properties of a DTMC 3.3 Transition Matrix 3.4 Absorbing Chains 3.5 Sojourn or Holding Time 3.6 n-step transition probabilities	. 4 . 4 . 4 . 5 . 5		9.1 Analysis with finite population 9.1.1 Stationary distribution 9.2 Throughput 9.2.1 Dynamics 9.2.2 Stabilizing Aloha Finite Absorbing Chains 10.1 Results	1 1 1 1 1 1	4 5 5 5 5 6
3	3.1 State Transition Diagram 3.2 Properties of a DTMC 3.3 Transition Matrix 3.4 Absorbing Chains 3.5 Sojourn or Holding Time 3.6 n-step transition probabilities 3.7 State Probabilities	. 4 . 4 . 4 . 5 . 5		9.1 Analysis with finite population 9.1.1 Stationary distribution 9.2 Throughput 9.2.1 Dynamics 9.2.2 Stabilizing Aloha 9.2.2 Stabilizing Aloha 9.2.2 Stabilizing Aloha 9.2.1 Results 9.2.1 Stabilizing Aloha 9.2.1 Stabilizing Aloh	1 1 1	4 5 5 5 5 6 6
	3.1 State Transition Diagram 3.2 Properties of a DTMC 3.3 Transition Matrix 3.4 Absorbing Chains 3.5 Sojourn or Holding Time 3.6 n-step transition probabilities 3.7 State Probabilities 3.8 Chapman-Kolmogorov Equations	. 4 . 4 . 4 . 5 . 5 . 5		9.1 Analysis with finite population 9.1.1 Stationary distribution 9.2 Throughput 9.2.1 Dynamics 9.2.2 Stabilizing Aloha Finite Absorbing Chains 10.1 Results	1 1 1	4 5 5 5 5 6
	3.1 State Transition Diagram 3.2 Properties of a DTMC 3.3 Transition Matrix 3.4 Absorbing Chains 3.5 Sojourn or Holding Time 3.6 n-step transition probabilities 3.7 State Probabilities 3.8 Chapman-Kolmogorov Equations Transient Solution	. 4 . 4 . 4 . 5 . 5 . 5 . 5 . 6	10	9.1 Analysis with finite population 9.1.1 Stationary distribution 9.2 Throughput 9.2.1 Dynamics 9.2.2 Stabilizing Aloha Finite Absorbing Chains 10.1 Results 10.2 Extension of the Results 10.3 Inverse of a matrix	1 1 1	4 5 5 5 5 6 6
	3.1 State Transition Diagram 3.2 Properties of a DTMC 3.3 Transition Matrix 3.4 Absorbing Chains 3.5 Sojourn or Holding Time 3.6 n-step transition probabilities 3.7 State Probabilities 3.8 Chapman-Kolmogorov Equations Transient Solution 4.1 Close Form Solution 4.2 Eigenvalues 4.3 Determinant	. 4 . 4 . 4 . 5 . 5 . 5 . 5 . 6 . 6	10	9.1 Analysis with finite population 9.1.1 Stationary distribution 9.2 Throughput 9.2.1 Dynamics 9.2.2 Stabilizing Aloha 9.2.2 Stabilizing Aloha 9.2.2 Stabilizing Aloha 9.2.1 Results 9.2.1 Stabilizing Aloha 9.2.1 Stabilizing Aloh	1 1 1	4 5 5 5 5 6 6
	3.1 State Transition Diagram 3.2 Properties of a DTMC 3.3 Transition Matrix 3.4 Absorbing Chains 3.5 Sojourn or Holding Time 3.6 n-step transition probabilities 3.7 State Probabilities 3.8 Chapman-Kolmogorov Equations Transient Solution 4.1 Close Form Solution 4.2 Eigenvalues 4.3 Determinant 4.4 Eigenvalues of a Stochastic Matrix	. 4 . 4 . 4 . 5 . 5 . 5 . 5 . 6 . 6 . 6	100 P	9.1 Analysis with finite population 9.1.1 Stationary distribution 9.2 Throughput 9.2.1 Dynamics 9.2.2 Stabilizing Aloha Finite Absorbing Chains 10.1 Results 10.2 Extension of the Results 10.3 Inverse of a matrix	1 1 1	4 5 5 5 6 6 6
	3.1 State Transition Diagram 3.2 Properties of a DTMC 3.3 Transition Matrix 3.4 Absorbing Chains 3.5 Sojourn or Holding Time 3.6 n-step transition probabilities 3.7 State Probabilities 3.8 Chapman-Kolmogorov Equations Transient Solution 4.1 Close Form Solution 4.2 Eigenvalues 4.3 Determinant	. 4 . 4 . 4 . 5 . 5 . 5 . 5 . 6 . 6 . 6	The elic	9.1 Analysis with finite population		4 5 5 5 5 6 6 6
4	3.1 State Transition Diagram 3.2 Properties of a DTMC 3.3 Transition Matrix 3.4 Absorbing Chains 3.5 Sojourn or Holding Time 3.6 n-step transition probabilities 3.7 State Probabilities 3.8 Chapman-Kolmogorov Equations Transient Solution 4.1 Close Form Solution 4.2 Eigenvalues 4.3 Determinant 4.4 Eigenvalues of a Stochastic Matrix 4.5 Chain with a Defective Matrix	. 4 . 4 . 4 . 5 . 5 . 5 . 6 . 6 . 6 . 6	100 P The elime	9.1 Analysis with finite population		4 5 5 5 5 5 6 6 6
	3.1 State Transition Diagram 3.2 Properties of a DTMC 3.3 Transition Matrix 3.4 Absorbing Chains 3.5 Sojourn or Holding Time 3.6 n-step transition probabilities 3.7 State Probabilities 3.8 Chapman-Kolmogorov Equations Transient Solution 4.1 Close Form Solution 4.1 Close Form Solution 4.2 Eigenvalues 4.3 Determinant 4.4 Eigenvalues of a Stochastic Matrix 4.5 Chain with a Defective Matrix Classification of States	. 4 . 4 . 4 . 5 . 5 . 5 . 5 . 6 . 6 . 6 . 6 . 7	The elime	9.1 Analysis with finite population		4 5 5 5 5 6 6 6 — <i>d-r-</i> 7]
4	3.1 State Transition Diagram 3.2 Properties of a DTMC 3.3 Transition Matrix 3.4 Absorbing Chains 3.5 Sojourn or Holding Time 3.6 n-step transition probabilities 3.7 State Probabilities 3.8 Chapman-Kolmogorov Equations Transient Solution 4.1 Close Form Solution 4.2 Eigenvalues 4.3 Determinant 4.4 Eigenvalues of a Stochastic Matrix 4.5 Chain with a Defective Matrix	. 4 . 4 . 4 . 5 . 5 . 5 . 5 . 6 . 6 . 6 . 6 . 7	The eliment	9.1 Analysis with finite population		4 5 5 5 5 6 6 6 — <i>d-r-</i> 7]

Part I

Introduction

Chapter 1

Probability Review

Ingredients of Probability

- Random experiment, e.g. toss a die.
- Outcome, ω , e.g. tossing a die can be $\omega = 2$, choosing a fruit can be ω = orange.
- Sample space or Universal set, U, set of all possible outcomes. E.g. tossing a die $U = \{1,2,3,4,5,6\}$.
- Event, A, any subset of U (e.g. tossing a die $A = \{1,2,3\}$). We say the event A occurs if the outcome of the experiment $\omega \in A$. U is the sure event, and we represent by the empty set Ø an impossible outcome.

Random Variable

• For simplicity it is defined a **random variable** (**RV**), X as a function that assigns a real number to each outcome in the sample space *U*, i.e.:

$$X: U \to \mathbb{R} \tag{1.1}$$

- We will represent the experiment by a RV, X, and the possible outcomes by its values. $X = x_i$ is the outcome $X(\omega_i) = x_i$.
- Using RVs the sample space is mapped in a subset of \mathbb{R} . So, in terms of X, U is a set of points of \mathbb{R} . The same for any event.
- Normally the definition of X comes naturally from the experi**ment**, e.g. tossing a die: $X = \{\text{number in the toss}\}\$.
- RVs can be **discrete** (e.g. tossing a die) or **continuous** (e.g. waiting time of a packet in a queue).

Probability Measure

¹Some special distributions, called singular, do not have a PDF. One example is the Cantor distribution (see Wikipedia).

• If the sample space U of the RV X is finite (discrete RV), $U = \{x_1, \dots, x_n\}$, a **probability measure** is an assignment of numbers $P(x_i)$, referred to as **probabilities**, to each **outcome** x_i such that:

$$0 \le P(x_i) \le 1$$

$$P(A) = \sum_{x_i \in A} P(x_i)$$

$$P(A) = 1$$
(1.2)

E.g. tossing a fair die,

$$P(x_i) = 1/6$$

$$P(X \in \{2,4,6\}) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$$
(1.3)

• If the sample space of the RV X is continuous (continuous RV), the events are intervals of \mathbb{R} . The probability measure is defined by means of the **cumulative distribution function**, **CDF**:

$$F(x) = P(X \in (-\infty, x]) = P(X \le x) \tag{1.4}$$

• X is called absolutely continuous if there exists the **probability**

$$\int_{a}^{b} f(x) dx = P(X \in I) = F(b) - F(a)$$
 (1.5)

Conditional Probability and Bayes Formula

• Given the the sample space U and the **events** $A,B \in U$ with P(B) > 0 the **probability of** A **conditioned by** B is defined as:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \tag{1.6}$$

NOTE: It's common to use commas to denote set intersection, and write $P(A \cap B)$ as P(A,B).

· Bayes Formula

$$P(A|B) P(B) = P(B|A) P(A) \Rightarrow P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$
 (1.7)

Law of total probability

• Let B_i a **partition** of the sample space $U (\cup_i B_i = U, B_i \cap B_i =$ \emptyset , $\forall i \neq j$), then

$$P(A) = \sum_{i} P(A|B_{i}) P(B_{i})$$
 (1.8)

• For conditional probabilities:

$$P(A|C) = \sum_{i} P(A|C \cap B_i) P(B_i|C)$$
 (1.9)

• If C is **independent** of any of the B_i

$$P(A|C) = \sum_{i} P(A|C \cap B_{i}) P(B_{i})$$
 (1.10)

Expected value

• Given the discrete $N \in \mathbb{Z}$, respectively continuous $X \in \mathbb{R}$ RV, the expected value is:

$$E[N] = \sum_{k=-\infty}^{\infty} k P(N=k)$$

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$
(1.11)

Example A number $X_1 \in \{1,2,\dots 6\}$ is obtained tossing a dice. Then, a number $X_2 \in [0,\infty]$ is obtained exponentially distributed with parameter X_1 . Compute $f(x_1,x_2)$, $f(x_2)$ and $E[X_2]$.

Note: Exponential distribution with parameter α :

$$f(x) = \alpha e^{-\alpha x}, x \in [0, \infty], E[X] = \frac{1}{\alpha}.$$
 (1.12)

Solution:

$$f(x_1, x_2) = f(x_2 | x_1) P(x_1) = x_1 e^{-x_1 x_2} \frac{1}{6}, \begin{cases} x_1 \in \{1, 2, \dots 6\} \\ x_2 \in [0, \infty] \end{cases}$$
$$f(x_2) = \sum_{x_1} f(x_2 | x_1) P(x_1) = \frac{1}{6} \sum_{n=1}^{6} n e^{-nx_2}, x_2 \in [0, \infty]$$
$$E[X_2] = \frac{1}{6} \sum_{n=1}^{6} \int_{x_2 = 0}^{\infty} x_2 n e^{-nx_2} = \frac{1}{6} \sum_{n=1}^{6} \frac{1}{n} = \frac{49}{120}$$

1.3 Variance

• The amount of dispersion of a RV X with expected value $\mu = E[X]$ is measured by the **Variance**:

$$Var(X) = \sigma^2 = E[(X - \mu)^2] = E[X^2] - \mu^2$$
 (1.13)

• Often it is used the **standard deviation** $\sigma = \sqrt{\text{Var}(X)}$.

1.4 Indicator Function

$$I(A) = \begin{cases} 1, & \text{if } A \text{ occurs,} \\ 0, & \text{otherwise.} \end{cases}$$
 (1.14)

Therefore:

$$E[I(A)] = 0 \times P(I(A) = 0) + 1 \times P(I(A) = 1) = P(A)$$
 (1.15)

1.5 Expected value of non negative RVs

• For **non negative** RVs, $N \ge 0$ discrete and $X \ge 0$ continous:

$$E[N] = \sum_{k=0}^{\infty} k P(N = k) = \sum_{k=0}^{\infty} P(N > k)$$

$$E[X] = \int_{0}^{\infty} x f(x) dx = \int_{0}^{\infty} P(X > x) dx = \int_{0}^{\infty} (1 - F(x)) dx$$
(1.16)

$$N = \sum_{k=0}^{N-1} 1 = \sum_{k=0}^{\infty} I(N > k)$$

$$X = \int_{0}^{X} dx = \int_{0}^{\infty} I(X > x) dx$$
(1.17)

and take expectations.

1.6 Wald's Equation

• **Definition**: An positive integer RV N > 0 is a **stopping time** of a sequence X_1, X_2, \cdots if the event N = n is independent of X_{n+1}, X_{n+2}, \cdots .

E.g. toss a die until you get 6. Let *N* be the number of tosses. *N* does not depend on the values obtained after getting 6.

• Wald's Equation If X_1, X_2, \cdots are independent and identically distributed and N is a stopping time:

$$E\left[\sum_{n=1}^{N} X_n\right] = E[X]E[N]$$
 (1.18)

Proof.

$$\mathbf{E}\left[\sum_{n=1}^{N} X_n\right] = \mathbf{E}\left[\sum_{n=1}^{\infty} X_n I(n \le N)\right] =$$

$$\sum_{n=1}^{\infty} \mathbf{E}[X_n] \mathbf{E}[I(n \le N)] =$$

$$\mathbf{E}[X] \sum_{n=1}^{\infty} P(n \le N) =$$

$$\mathbf{E}[X] \sum_{n=0}^{\infty} P(N > n) = \mathbf{E}[X] E[N] \quad \Box$$

1.7 Probability in \mathbb{R}^k

If we have a set of k RV $\boldsymbol{X} = (X_1, \dots X_k)$ taking values in \mathbb{R}^k $(\boldsymbol{X} \in \mathbb{R}^k)$, we define the **joint distribution**:

· Discrete RV

$$P(\mathbf{x}) = P(x_1, \dots x_k) = P(X_1 = x_1, \dots X_k = x_k)$$
 (1.19)

- · Continuos RV:
 - cumulative distribution function, CDF:

$$F(\mathbf{x}) = F(x_1, \dots x_k) = P(X_1 \in (-\infty, x_1], \dots X_k \in (-\infty, x_k])$$
(1.20)

- with **joint density** function $f(\mathbf{x}) = f(x_1, \dots x_k)$ (if exists):

$$F(\mathbf{x}) = F(x_1, \dots x_k) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_k} f(x_1, \dots x_k) \, dx_k \dots dx_1$$
$$f(\mathbf{x}) = f(x_1, \dots x_k) = \frac{\partial^k F(x_1, \dots x_k)}{\partial x_1 \dots \partial x_k}$$
(1.21)

Marginal distributions Let $X = (X_1, X_2)$, where $X \in \mathbb{R}^k, X_1 \in \mathbb{R}^r, X_2 \in \mathbb{R}^{k-r}, 1 \le r < k$:

• Discrete RV

$$P(\boldsymbol{x}_2) = \sum_{x_1} \cdots \sum_{x_r} P(\boldsymbol{x}_1, \boldsymbol{x}_2)$$
 (1.22)

• Continuos RV

$$f(\mathbf{x}_2) = \int_{\mathbf{x}_1} \cdots \int_{\mathbf{x}_n} f(\mathbf{x}_1, \mathbf{x}_2) \, d\mathbf{x}_1 \cdots d\mathbf{x}_r \tag{1.23}$$

Independent RV

• Discrete RV

$$P(\mathbf{x}) = P(x_1, \dots x_k) = P(X_1 = x_1, \dots X_k = x_k) = P(X_1 = x_1) \dots P(X_k = x_k)$$
 (1.24)

• Continuos RV

$$F(\mathbf{x}) = F(x_1, \dots x_k) = F_{X_1}(x_1) \dots F_{X_k}(x_k)$$

$$f(\mathbf{x}) = f(x_1, \dots x_k) = f_{X_1}(x_1) \dots f_{X_k}(x_k)$$
(1.25)

Conditional Distribution

• Let $X = (X_1, X_2)$, where $X \in \mathbb{R}^k, X_1 \in \mathbb{R}^r, X_2 \in \mathbb{R}^{k-r}$, the r-dimensional distribuion of X_1 conditioned by $X_2 = x_2$, $P(\{X_2 = x_2\}) > 0$ is:

$$F(\boldsymbol{X}_1|\boldsymbol{X}_2) = P(\boldsymbol{X}_1 \leq \boldsymbol{x}_1|\boldsymbol{X}_2 = \boldsymbol{x}_2) = \frac{P(\boldsymbol{X}_1 \leq \boldsymbol{x}_1, \boldsymbol{X}_2 = \boldsymbol{x}_2)}{P(\boldsymbol{X}_2 = \boldsymbol{x}_2)}.$$

If **X** is **discrete** with probability $P(\mathbf{x}_1, \mathbf{x}_2)$ or absolutely **continuous** with density $f(\mathbf{x}_1, \mathbf{x}_2)$:

$$P(\mathbf{x}_1|\mathbf{x}_2) = \frac{P(\mathbf{x}_1,\mathbf{x}_2)}{P(\mathbf{x}_2)}$$

$$f(\mathbf{x}_1|\mathbf{x}_2) = \frac{f(\mathbf{x}_1,\mathbf{x}_2)}{f(\mathbf{x}_2)}$$
(1.26)

Composition of marginals and conditionals Using the previous formulas we can compute (**X** can be a mixture of discrete and continuous RV):

Law of total probability

- If x_1, x_2 are **discrete** RV: $P(x_2) = \sum_{x_1} P(x_2 | x_1) P(x_1)$
- If \mathbf{x}_1 is discrete and \mathbf{x}_2 is cont.: $f(\mathbf{x}_2) = \sum_{\mathbf{x}_1} f(\mathbf{x}_2 | \mathbf{x}_1) P(\mathbf{x}_1)$
- If x_1, x_2 are **cont.**: $f(x_2) = \int_{x_1} f(x_2|x_1) f(x_1) dx_1$
- If x_1 is **cont.** and x_2 is **discrete**: $P(x_2) = \int_{x_1} P(x_2|x_1) f(x_1) dx_1$

Conditional expected value

• Given $X \in \mathbb{R}$, $Y \in \mathbb{R}^k$ with density f(x,y):

$$E[X \mid \mathbf{Y} = \mathbf{y}] = \int_{\mathbb{R}} x f(x \mid \mathbf{y}) dx$$

$$E[X] = \int_{\mathbb{R}^k} E[X \mid \mathbf{Y} = \mathbf{y}] f(\mathbf{y}) d\mathbf{y}$$
(1.27)

where the **marginal** $f(y) = \int_{x=-\infty}^{\infty} f(x,y) dx$ and the **conditional** f(x|y) = f(x,y)/f(y).

Thus, the law of total probability also applies to expected value, and it is known as **law of total expectation**.

Chapter 2

Stochastic Process (SP)

2.1 Introduction

- Sequence of RVs $\{X(t)\}_{t\geq 0}$.
- X(t) is the **state** at time t.
- The state X(t) can be continuous or discrete.
- The **index** can be **continuous** or **discrete**. We shall use *n* for the **index**, and refer to it as **steps** when it is **discrete**, and *t* and refer to it as **time** when it is **continuous**.
- We call a possible sequence of states of the SP the sample function (or sample path) of the SP.

Sample Path

 Possible evolution (sample path) of a discrete state, discrete time SP {X(n)}_{n≥0}:

• To characterize the stochastic process we would need the distribution and **joint probabilities** of the $\{X(n)\}_{n\geq 0}$ RVs:

$$P(X(n) = i, X(n-1) = k, \dots X(0) = j)$$
 (2.1)

Example 2: Poisson Process

- It is a discrete state continuous time SP.
- It counts the number of events ocurred in a time interval.
- Often used to build models of other stochastic processes.
- Definition: The number of "events" in any interval of length t, X(t), is **Poisson distributed** with mean λt , i.e.

$$P(X(t+s) - X(s) = n) = P(X(t) - X(0) = n) =$$

$$P(X(t) = n) = e^{-\lambda t} \frac{(\lambda t)^n}{n!}$$
(2.2)

where we assume X(0) = 0.

Example 3: Queue with Poisson Arrivals

• The queue arrivals, A(t), are modeled as a **Poisson process** with mean λt . Each event model an arrival.

Example 4: Telegraph signal

• The signal is modeled as a **Poisson process** with mean λt such that X(0) = 1 or X(0) = -1 with equal probability of 1/2 and:

$$X(t) = \begin{cases} 1 & \text{if the number of events in } (0,t] \text{ is even} \\ -1 & \text{if the number of events in } (0,t] \text{ is odd} \end{cases}$$
 (2.3)

2.2 Analysis of Stochastic Processes

• **Signal Theory**: Normally interested in the **spectral analysis** of the signal. The basic tool is the **Fourier transform** of the **autocorrelation function** of the process (**energy spectral density**). We will not do this analysis.

$$R(t) = \mathrm{E}[X(\tau) \, X(\tau - t)]$$
 autocorrelation
 $F(f) = \mathscr{F}[R(t)] = \int_{-\infty}^{\infty} R(t) \, \mathrm{e}^{-j \, 2\pi \, f \, t} \, \mathrm{d}t$ (energy spectral density) (2.4)

• Computer Networks: Normally interested in probabilistic models using Markov Chains and Queueing Theory.

Part II

Discrete Time Markov Chains

Chapter 3

Definition of a DTMC

3.1 State Transition Diagram

- We are interested in a process that evolve in stages.
- For the model to be tractable, it is convenient to represent the SP by giving all possible states (there may be ∞), and the possible transitions between them:

· Mathematically:

$$p_{ij} = P(X(n) = j \mid X(n-1) = i)$$
 (3.1)

3.2 Properties of a DTMC

• The event X(n) = i (at step n the system is in state i) must satisfy (memoryless property):

$$P(X(n) = j \mid X(n-1) = i, X(n-2) = k, \dots) = P(X(n) = j \mid X(n-1) = i)$$
(3.2)

- If $P(X(n) = j \mid X(n-1) = i) = P(X(1) = j \mid X(0) = i)$ for any n we have an **homogeneous** DTMC. We shall only consider homogeneous DTMC.
- We call **one-step transition probabilities** to:

$$p_{ij} = P(X(n) = j \mid X(n-1) = i)$$
 (3.3)

• The SP is called a Markov Process (MP) or Markov Chain (MC) depending on the state being continuous or discrete.

3.3 Transition Matrix

• Transition probabilities:

$$p_{ij} = P(X(n) = j \mid X(n-1) = i)$$
 (3.4)

· In matrix form:

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & \cdots \\ p_{21} & p_{22} & \cdots \\ \cdots & \cdots & \cdots \end{bmatrix}$$
 (3.5)

• For the model to be consistent, the probability to move from *i* to any state must be 1. Mathematically:

$$\sum_{\forall j} p_{ij} = \sum_{\forall j} P(X(n) = j \mid X(n-1) = i) =$$

$$\sum_{\forall j} \frac{P(X(n-1) = i \mid X(n) = j) P(X(n) = j)}{P(X(n-1) = i)} = \frac{P(X(n-1) = i)}{P(X(n-1) = i)} = 1$$
(3.6)

• P is a stochastic matrix, i.e. a matrix which rows sum 1.

Example

- Assume a terminal can be in 3 states:
 - State 1: Idle.
 - State 2: Active without sending data.
 - State 3: Active and sending data at a rate ν bps.

• The average transmission rate (throughput), v_a , is:

$$v_a = P$$
 (the terminal is in state 3) × v (3.8)

3.4 Absorbing Chains

- It is possible to have chains with **absorbing states**.
- A state *i* is absorbing if $p_{ii} = 1$.
- Example: State 1 is absorbing.

3.5 Sojourn or Holding Time

• **Sojourn** or **holding time** in state k: Is the RV H_k equal to the number of steps that the chain remains in state k before leaving to a different state:

• The Markov property implies:

$$H_i(n) = P(H_i = n) = p_{ii}^{n-1} (1 - p_{ii}), n \ge 1$$
 (3.10)

• Which is a **geometric** distribution with mean:

$$E[H_i] = \sum_{n=1}^{\infty} n P(H_i = n) = \frac{1}{1 - p_{ii}}.$$
 (3.11)

The geometric distribution satisfies the Markov property

$$\begin{array}{c|c}
X(t) & H_i \\
i & t \\
0 & t_1 & t_2
\end{array}$$

Proof.

- Markov property: $P(X(n_2) = i \mid X(n_1) = i, X(n_0) = i) = P(X(n_2) = i \mid X(n_1) = i)$
- Thus, the Markov property in terms of the sojourn time can be written as:

$$P(H_i > n_2 - n_0 \mid H_i > n_1 - n_0) = P(H_i > n_2 - n_1)$$
 (3.12)

• Since

$$P(H_i > k) = 1 - P(H_i \le k) = 1 - \sum_{n=1}^{k} p^{n-1} (1-p) = 1 - (1-p) \frac{1-p^k}{1-p} = p^k$$
(3.13)

• We have:

$$P(H_{i} > n_{2} - n_{0} \mid H_{i} > n_{1} - n_{0}) = \frac{P(H_{i} > n_{2} - n_{0}, H_{i} > n_{1} - n_{0})}{P(H_{i} > n_{1} - n_{0})} = \frac{P(H_{i} > n_{2} - n_{0})}{P(H_{i} > n_{1} - n_{0})} = \frac{P(n_{2} - n_{0})}{P(n_{1} > n_{1} - n_{0})} = \frac{P(n_{2} - n_{0})}{P(n_{1} > n_{1} - n_{0})} = P(H_{i} > n_{2} - n_{1})$$
(3.14)

3.6 n-step transition probabilities

- Transition probabilities: $p_{ij} = P(X(n) = j \mid X(n-1) = i)$
- In matrix form:

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & \cdots \\ p_{21} & p_{22} & \cdots \\ \cdots & \cdots & \cdots \end{bmatrix}$$
 (3.15)

• We define the **n-step** transition probabilities:

$$p_{ij}(n) = P(X(n) = j \mid X(0) = i)$$
 (3.16)

$$\mathbf{P}(n) = \begin{bmatrix} p_{11}(n) & p_{12}(n) & \cdots \\ p_{21}(n) & p_{22}(n) & \cdots \\ \cdots & \cdots & \cdots \end{bmatrix}$$
(3.17)

• **P** and P(n) are stochastic matrices: Their rows sum 1.

3.7 State Probabilities

• Define the probability of being in state i at step n:

$$\pi_i(n) = P\left(X(n) = i\right) \tag{3.18}$$

• In vector form (row vector)

$$\boldsymbol{\pi}(n) = (\pi_1(n), \pi_2(n), \dots) = (P(X(n) = 1), P(X(n) = 2), \dots).$$
(3.19)

- Thus, the vector $\pi(n)$ is the distribution of the random variable X(n), and it is called the **state probability at step** n.
- Law of total prob. $P(A) = \sum_{n} P(A \cap B_n) = \sum_{n} P(A|B_n)P(B_n)$:

$$\pi_{i}(n) = \sum_{k} P\left(X(n-1) = k\right) P\left(X(n) = i \mid X(n-1) = k\right) = \sum_{k} \pi_{k}(n-1) p_{ki}$$

$$\pi_{i}(n) = \sum_{k} P\left(X(0) = k\right) P\left(X(n) = i \mid X(0) = k\right) = \sum_{k} \pi_{k}(0) p_{ki}(n)$$
(3.20)

• In matrix form:

$$\boldsymbol{\pi}(n) = \boldsymbol{\pi}(n-1) \mathbf{P}$$

$$\boldsymbol{\pi}(n) = \boldsymbol{\pi}(0) \mathbf{P}(n)$$
 (3.21)

where $\pi(0)$ is the initial distribution.

• Iterating

$$\boldsymbol{\pi}(n) = \boldsymbol{\pi}(n-1)\mathbf{P} = \boldsymbol{\pi}(n-2)\mathbf{P}\mathbf{P} = \boldsymbol{\pi}(n-3)\mathbf{P}\mathbf{P}\mathbf{P} = \dots = \boldsymbol{\pi}(0)\mathbf{P}^n$$
(3.22)

• Thus:

$$\boldsymbol{\pi}(n) = \boldsymbol{\pi}(0) \, \mathbf{P}(n) = \boldsymbol{\pi}(0) \, \mathbf{P}^n \tag{3.23}$$

3.8 Chapman-Kolmogorov Equations

$$p_{ij}(n) = \sum_{k} p_{ik}(r) \ p_{kj}(n-r)$$
 (3.24)

Proof.

$$p_{ij}(n) = P(X(n) = j \mid X(0) = i) = \sum_{k} P(X(n) = j, X(r) = k \mid X(0) = i)$$

$$= \sum_{k} \frac{P(X(n) = j, X(r) = k, X(0) = i)}{P(X(0) = i)} \times \frac{P(X(r) = k, X(0) = i)}{P(X(r) = k, X(0) = i)} = \sum_{k} P(X(n) = j \mid X(r) = k, X(0) = i) \times \frac{P(X(r) = k \mid X(0) = i)}{P(X(r) = k \mid X(0) = i)} = \sum_{k} P(X(n) = j \mid X(r) = k) P(X(r) = k \mid X(0) = i)$$

$$= \sum_{k} P(X(n) = j \mid X(r) = k) P(X(r) = k \mid X(0) = i)$$

$$= \sum_{k} P_{ik}(r) p_{kj}(n - r)$$

• Graphical interpretation:

· In matrix form:

$$\mathbf{P}(n) = \mathbf{P}(r)\,\mathbf{P}(n-r) \tag{3.25}$$

• Particularly:

$$\mathbf{P}(n) = \mathbf{P}(1)\mathbf{P}(n-1) = \mathbf{P}\mathbf{P}(n-1) = \mathbf{P}(n-1)\mathbf{P}$$
 (3.26)

• Iterating:

$$\mathbf{P}(n) = \mathbf{P}^n \tag{3.27}$$

• Thus:

$$\boldsymbol{\pi}(n) = \boldsymbol{\pi}(0) \mathbf{P}(n) = \boldsymbol{\pi}(0) \mathbf{P}^n \tag{3.28}$$

Chapter 4

Transient Solution

4.1 Close Form Solution

- If we are interested in the **transient evolution** we shall study $\pi(n) = \pi(0) \mathbf{P}^n$.
- If we can **diagonalize P**, we can obtain the transient evolution in **close form**.
- P can be diagonalized if P can be decomposed as:

$$\mathbf{P} = \mathbf{L}^{-1} \Lambda \mathbf{L} \tag{4.1}$$

where **L** is some invertible matrix and Λ is the diagonal matrix

$$\Lambda = \operatorname{diag}(\lambda_1, \dots \lambda_N) = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_N \end{bmatrix}$$
(4.2)

with λ_l , $l = 1, \dots N$ the **eigenvalues** of **P**.

- Assume a **finite DTMC** with N states. Then $P = P^{N \times N}$.
- Assume that **P** can be **diagonalized**: $\mathbf{P} = \mathbf{L}^{-1} \Lambda \mathbf{L}$, where Λ is the diagonal matrix $\Lambda = \operatorname{diag}(\lambda_1, \dots \lambda_N)$, with λ_l , $l = 1, \dots N$ the eigenvalues of **P**.
- But \mathbf{L}^{-1} diag $(\lambda_1^n, \dots \lambda_N^n)\mathbf{L}$ are linear combinations of $\lambda_1^n, \dots \lambda_N^n$. Thus, the probability of being in state i is given by:

$$\pi_i(n) = (\pi(n))_i = \sum_{l=1}^{N} a_i^{(l)} \lambda_l^n$$
 (4.3)

where the **unknown coefficients** $a_i^{(l)}$ can be obtained solving the system of equations:

$$\sum_{l=1}^{N} a_i^{(l)} \lambda_l^n = (\boldsymbol{\pi}(n))_i = (\boldsymbol{\pi}(0) \mathbf{P}^n)_i, n = 0, \dots N - 1$$
 (4.4)

4.2 Eigenvalues

• The **eigenvalues** λ_l of a matrix **A** are scalars that satisfy: $l\mathbf{A} = \lambda_l \mathbf{l}$ (or $\mathbf{A}\mathbf{r} = \lambda_l \mathbf{r}$) for some row vectors \mathbf{l} (column vectors \mathbf{r}), referred to as *left* **and** *right* **eigenvectors**, respectively.

$$l\mathbf{A} = \lambda_l \, l \Rightarrow l \, (\mathbf{A} - \mathbf{I}\lambda_l) = 0 \Rightarrow \det(\lambda_l \, \mathbf{I} - \mathbf{A}) = 0$$

$$\mathbf{A} \, \mathbf{r} = \lambda_l \, \mathbf{r} \Rightarrow (\mathbf{A} - \mathbf{I}\lambda_l) \, \mathbf{r} = 0 \Rightarrow \det(\lambda_l \, \mathbf{I} - \mathbf{A}) = 0$$
(4.5)

- Thus, λ_l solve the **characteristic polynomial** $\det(\lambda \mathbf{I} \mathbf{A}) = 0$.
- Note that, in general, *left* and *right* eigenvectors are different, but eigenvalues are the same (they solve the same characteristic polynomial).
- A matrix can be diagonalized if all eigenvalues are single (multiplicity = 1). If a matrix cannot be diagonalized it is called defective.

4.3 Determinant

$$\det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11} a_{22} - a_{12} a_{21}$$
 (4.6)

$$\det \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{pmatrix} +a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{21} a_{32} a_{13} \\ -a_{31} a_{22} a_{13} - a_{12} a_{21} a_{33} - a_{23} a_{32} a_{11} \end{bmatrix}$$

$$(4.7)$$

• Cofactor Formula: expanding along a row i:

$$\det \mathbf{A} = \sum_{j=1}^{N} a_{ij} (-1)^{i+j} \det M_{ij}, \tag{4.8}$$

where the **minor matrices** M_{ij} are obtained removing the row i and column j from **A**. $(-1)^{i+j} \det M_{ij}$ is called the **cofactor** of a_{ij} .

$$\det \mathbf{A} = \prod \text{ eigenvalues of } \mathbf{A} \tag{4.9}$$

trace
$$\mathbf{A} = \sum \text{eigenvalues of } \mathbf{A}$$
 (4.10)

where trace $\mathbf{A} = \sum$ elements of the diagonal of \mathbf{A} .

4.4 Eigenvalues of a Stochastic Matrix

- **P** has an eigenvalue equal to 1 ($\mathbf{P}x = \lambda x$, for $\lambda = 1$). **Proof**: $\mathbf{Pe} = \mathbf{e}$, where $\mathbf{e} = \begin{bmatrix} 1 & 1 & \cdots \end{bmatrix}^T$ is a column vector of 1 (all rows of **P** add to 1).
- All eigenvalues of **P** are $|\lambda_l| \le 1$.

Proof. Using Gerschgorin's theorem *The eigenvalues of a matrix* $\mathbf{P}_{n \times n}$ *lie within the union of the n circular disks with center* p_{ii} *and radius* $\sum_{j \neq i} |p_{ij}|$ in \mathbb{C} . Since $\sum_j p_{ij} = 1$, the property is proved.

Proof. of Gerschgorin's theorem From $\mathbf{P}\mathbf{x} = \lambda \mathbf{x}$ we have

$$\sum_{j} p_{ij} x_j = \lambda x_i \quad \forall i \in \{1, \dots, n\}.$$
 (4.11)

We choose *i* such that $|x_i| = \max_j |x_j|$. Thus, $\sum_{j \neq i} p_{ij} x_j = \lambda x_i - p_{ii} x_i$, and

$$|\lambda - p_{ii}| = \left| \sum_{j \neq i} p_{ij} \frac{x_j}{x_i} \right| \le \sum_{j \neq i} \left| p_{ij} \frac{x_j}{x_i} \right| \le \sum_{j \neq i} |p_{ij}| \tag{4.12}$$

and the equation $|\mathbf{x} - \mathbf{c}| \le \mathbf{r}$, $x, c \in \mathbb{C}$, $r \in \mathbb{R}$ is a disk of center c and radius r in \mathbb{C} .

Example

· Assume a DTMC with

$$\mathbf{P} = \begin{bmatrix} 4/5 & 1/5 \\ 2/5 & 3/5 \end{bmatrix}$$

• We want the probability of being in state 2 in *n* steps starting from state 1: $\pi_2(n)$ with $\pi(0) = \begin{bmatrix} 1 & 0 \end{bmatrix}$.

Solution

• It can be easily found that the **eigenvalues** of **P** are $\lambda_1 = 1$ and $\lambda_2 = 2/5$.

$$\pi_2(n) = \lambda_1^n a + b \lambda_2^n = a + b (2/5)^n \tag{4.13}$$

• Imposing the **boundary conditions** $\pi_i(n) = (\pi(0) \mathbf{P}^n)_i$:

$$\pi_2(0) = a + b = (\begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{P}^0)_2 = (\mathbf{P}^0)_{12} = 0$$

$$\pi_2(1) = a + b(2/5) = (\begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{P}^1)_2 = (\mathbf{P})_{12} = 1/5$$
(4.14)

we have that a = 1/3, b = -1/3, thus:

$$\pi_2(n) = 1/3 - 1/3 (2/5)^n, \quad n \ge 0$$

$$\pi_1(n) = 1 - \pi_2(n) = 2/3 + 1/3 (2/5)^n, \quad n \ge 0$$
(4.15)

4.5 Chain with a Defective Matrix

- What if **P** cannot be diagonalized? (**defective** matrix).
- Let λ_l , $l=1,\cdots L$ be the eigenvalues of $\mathbf{P}^{N\times N}$, each with multiplicity k_l ($k_l \ge 1$, $\sum_l k_l = N$), and a possible eigenvalue $\lambda_1 = 0$ with multiplicity k_1 . Then [1]:

$$\pi_{j}(n) = \sum_{m=0}^{k_{1}-1} a_{j}^{(1,m)} I(n=m) + \sum_{l=2}^{L} \lambda_{l}^{n} \sum_{m=0}^{k_{l}-1} a_{j}^{(l,m)} n^{m},$$

$$1 \le j \le N, n \ge 0$$

$$(4.16)$$

I(n = m) is the indicator func.: I(n) = 1 if n = m, I(n) = 0 if $n \neq m$.

Example

· Assume a DTMC with

$$\mathbf{P} = \begin{bmatrix} 3/4 & 1/4 & 0\\ 0 & 3/4 & 1/4\\ 1 & 0 & 0 \end{bmatrix} \tag{4.17}$$

- We want the probability of being in state 1 in n steps starting from state 1: $\pi_1(n)$ with $\pi_1(0) = 1$.
- It can be easily found that the **eigenvalues** of **P** are $\lambda_1 = 1$ and $\lambda_2 = 1/4$ with multiplicity 2. We guess:

$$\pi_1(n) = a + 1/4^n (b + c n)$$
 (4.18)

• Imposing $\pi_1(0) = 1$, $\pi_1(1) = 3/4$, $\pi_1(2) = (3/4)^2$, we have:

$$\pi_1(n) = \frac{4}{9} + \frac{1}{4^n} \left(\frac{5}{9} + \frac{2}{3} n \right)$$
 (4.19)

Chapter 5

Classification of States

Objective

- Identify the different **types of behavior** that the chain can have.
- Introduce the concepts of first passage probability and mean recurrence time.

5.1 Irreducibility

- A state j is said to **communicate** with i, $i \leftrightarrow j$, if $p_{ij}(m_1) > 0$, $p_{ji}(m_2) > 0$ for some $m_1, m_2 \ge 0$.
- We define an **irreducible closed set, ICS** C_k as a set where all states communicate with each other, and have no transitions to other states out of the set:

 $i \leftrightarrow j, \forall i, j \in C_k$ and $p_{ij} = 0, \forall i \in C_k, j \notin C_k$ (note that for $i \in C_k, j \notin C_k$ we have: $p_{ij}(2) = \sum_k p_{ik} p_{kj} = 0$, since $p_{ik} = 0$ if $k \notin C_k$, and $p_{kj} = 0$ if $k \in C_k$. Thus, $p_{ij}(n) = 0, \forall n$.)

- An **absorbing state** form an ICS of only one element. This state, i, must have $p_{ii} = 1$, $p_{ij} = 0 \forall j \neq i$.
- Transient states do not belong to any ICS.
- A MC is **irreducible** if all the states form a unique ICS.
- Assume a MC has M ICSs: By properly numbering the states, we can write **P** as an M block diagonal matrix with the probabilities of the transient states in the last rows.
- Example, if M = 3:

$$\mathbf{P} = \begin{bmatrix} \mathbf{P}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{P}_2 \\ \mathbf{0} & \mathbf{P}_3 \\ \text{at least one } > 0 & \mathbf{T} \end{bmatrix} \Rightarrow \boldsymbol{\pi}(n) = \boldsymbol{\pi}(0) \, \mathbf{P}^n = \boldsymbol{\pi}(0) \begin{bmatrix} \mathbf{P}_1^n & \mathbf{0} \\ \mathbf{0} & \mathbf{P}_2^n \\ \mathbf{0} & \mathbf{P}_3^n \\ \text{at least one } > 0 & \mathbf{T}^n \end{bmatrix}$$

• Note that **the** *M* **sub-matrices are stochastic** (their rows sum 1).

Example

$$\mathbf{P}^{\infty} = \begin{pmatrix} a & b & f & c & d \\ 0,5 & 0,5 & 0 & 0 & 0 \\ 0,5 & 0,5 & 0 & 0 & 0 \\ \hline 0,5 & 0,5 & 0 & 0 & 0 \\ \hline 0 & 0 & 1,0 & 0 & 0 \\ \hline 0,25 & 0,25 & 0,5 & 0 & 0 \\ 0,25 & 0,25 & 0,5 & 0 & 0 \end{pmatrix}$$

• What is the meaning of the probabilities in \mathbf{P}^{∞} ? (recall that $(\mathbf{P}^n)_{ij} = p_{ij}(n) = P(X(n) = j \mid X(0) = i)$).

5.2 Transient and Recurrent

- Recurrent: States that, being visited, they are visited again with probability 1. They are visited an infinite number of times when n→∞.
- Transient: States that, being visited, have a probability > 0 of never being visited again. They are visited a finite number of times when n→∞.
- **Absorbing**: A single (recurrent) state where the chain remains with probability = 1.

5.3 First Passage (Transition) Probabilities

• To derive a classification criteria, we shall study the distribution of the number of steps to **go for the first time from a state** *i* **another state** *j*. Definition:

$$f_{ii}(n) = P \begin{pmatrix} \text{first transition into state } i \\ \text{in } n \text{ steps starting from } i \end{pmatrix}$$
 (5.1)

• Do **not confuse** with the n-step transition probability $p_{ii}(n)$, where the state i can be visited in the intermediate states.

Relation between $f_{ii}(n)$ and $p_{ii}(n)$

• $f_{ii}(n)$ and $p_{ii}(n)$ satisfy:

$$f_{ii}(1) = p_{ii}(1)$$

$$p_{ii}(n) = \sum_{l=1}^{n} f_{ii}(l) p_{ii}(n-l), n >= 1$$
(5.2)

• The probability that the MC **eventually enters state** *i* **starting from** *i* is given by:

$$f_{ii} = \sum_{n=1}^{\infty} f_{ii}(n) \tag{5.3}$$

- If $f_{ii} = 1$ we say i is a **recurrent state**.
- If $f_{ii} < 1$ we say i is a **transient state**.

5.4 Mean Recurrence Time

• When $f_{ii} = 1$, we define the **mean recurrence time** m_{ii} as:

$$m_{ii} = \sum_{n=1}^{\infty} n \, f_{ii}(n) \tag{5.4}$$

- m_{ii} is the average number of steps to eventually reach i starting from i. If f_{ii} < 1 (transient state) then we define m_{ii} = ∞.
- Classification of **recurrent states** ($f_{ii} = 1$):
 - If $m_{ii} = \infty$ the state is **null recurrent**: it takes an ∞ time to reach the state after leave it. Can only happen in chains with an infinite number of states.
 - If $m_{ii} < \infty$ the state is **positive recurrent**: the state is reached in a finite time after leave it.

5.5 Property of States

In **finite MC**:

- 1. States can be only of type positive recurrent or transient.
- 2. At least one state must be positive recurrent.
- 3. There are not null recurrent states.
- Example:

• State 1 is transient. States 2 and 3 are positive recurrent.

Generalization to Any State Pair

- Analogously to $f_{ii}(n)$, we define the probability of the **first pas**sage to state j starting from any state i in n steps: $f_{ij}(n)$.
- $f_{ii}(n)$ and $p_{ii}(n)$ satisfy:

$$p_{ij}(n) = \sum_{l=1}^{n} f_{ij}(l) \, p_{ij}(n-l), \, n \ge 1$$
 (5.5)

• When $f_{ij} = 1$, the average number of steps to eventually reach jstarting from i, m_{ij} is given by:

$$m_{ij} = \sum_{n=1}^{\infty} n \, f_{ij}(n)$$
 (5.6)

• If state *j* can not be reached starting from state *i* with probability one (**if** $f_{ij} < 1$), then we define $m_{ij} = \infty$.

5.6 **Recursive Equation for the First Passage Prob**abilities

- Recall that the The probability that the MC eventually enters **state** *j* **starting from** *i* is given by: $f_{ij} = \sum_{n=1}^{\infty} f_{ij}(n)$
- f_{ij} can be computed as follows: Assume we are in i. With probability p_{ij} we will go to j in one step. Otherwise, we will go to $k, k \neq j$, and then we will reach j with probability f_{kj} . Thus:

$$f_{ij} = p_{ij} + \sum_{k \neq j} p_{ik} f_{kj}$$
 (5.7)

• If there are more than 1 absorbing states, we can compute the probability to reach them using this method (if there is only 1, say j, then $f_{ij} = 1, \forall i$).

5.7 Recursive Equation for the Mean Recurrence **Time**

- Recall that the **mean recurrence time** $m_{ij} = \sum_{n \ge 1} n f_{ij}(n)$ is the average number of steps to eventually reach j starting from i, i.e. it is the mean first passage time from state i to j.
- When $f_{ij} = 1$, m_{ij} can be computed as follows: Assume we are in i. With probability p_{ij} we will go to j in one step. Otherwise, we will go to $k, k \neq j$, and then it will take m_{kj} steps to reach j. Thus:

$$m_{ij} = p_{ij} + \sum_{k \neq j} p_{ik} (1 + m_{kj}) = 1 + \sum_{k \neq j} p_{ik} m_{kj}$$
 (5.8)

since $\sum_{i} p_{ij} = 1$.

Example: Recurrence Times Using the Definition

$$\mathbf{P} = \begin{bmatrix} 0.7 & 0.2 & 0.1 \\ 0.7 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{P} = \begin{bmatrix} 0.7 & 0.2 & 0.1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$f_{21}(n) = f_{31}(n) = 0$$

$$f_{11}(n) = 0,7 I(n = 1)$$

$$f_{22}(n) = f_{33}(n) = I(n = 2)$$

$$f_{23}(n) = f_{32}(n) = I(n = 1)$$

$$f_{12}(n) = \begin{cases} 0.2, & n = 1\\ 0.7^{n-1} 0.2 + 0.7^{n-2} 0.1, & n > 1 \end{cases}$$

$$f_{13}(n) = \begin{cases} 0.1, & n = 1\\ 0.7^{n-1} 0.1 + 0.7^{n-2} 0.2, & n > 1 \end{cases}$$

$$f_{11} = 0.7$$

 $f_{12} = f_{13} = 1$
 $f_{22} = f_{23} = 1$
 $f_{21} = f_{31} = 0$

$$\mathbf{M} = (m_{ij}) = \begin{bmatrix} \infty & 11/3 & 12/3 \\ \infty & 2 & 1 \\ \infty & 1 & 2 \end{bmatrix}$$

• State 1 is **transient**. States 2 and 3 are **recurrent**.

Example: First Passage Probability Using Recursion

$$\mathbf{P} = \begin{bmatrix} 0.7 & 0.2 & 0.1 \\ 0.7 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

· We have:

$$f_{12} = p_{11} f_{12} + p_{12} + p_{13} f_{32}$$
 (5.9)

• Clearly $f_{32} = 1$, thus:

$$f_{12} = 0.7 f_{12} + 0.2 + 0.1 \times 1 \Rightarrow \mathbf{f_{12}} = \mathbf{1}$$
 (5.10)

as before.

Example: Mean Recurrence Time Using Recursion

• We have:

$$m_{12} = p_{12} + p_{11} (1 + m_{12}) + p_{13} (1 + m_{32}) = 1 + p_{11} m_{12} + p_{13} m_{32}$$
(5.11)

• Clearly $m_{32} = 1$, thus:

$$m_{12} = 1 + 0.7 m_{12} + 0.1 \times 1 \Rightarrow \mathbf{m_{12}} = 11/3.$$
 (5.12)

Periodic states

- A recurrent state j is **periodic** with period d > 1 if j can only be reached after leaving it with a multiple of d steps.
- If d = 1 the state is aperiodic.
- Any **periodic irreducible chain** can be partitioned in *d* **cyclic classes** $C_0, \dots C_{d-1}$ such that at each step a transition occur from class C_i to $C_{(i+1) \mod d}$.
- By properly numerating the states, the transition matrix can be written as (the sub-matrices A_i may not be square):

$$\mathbf{P} = \begin{pmatrix} C_0 & C_1 & C_2 & \cdots & C_{d-1} \\ 0 & \mathbf{A}_1 & 0 & \cdots & 0 \\ 0 & 0 & \mathbf{A}_2 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \mathbf{A}_{d-1} & 0 & 0 & \cdots & 0 \end{pmatrix}$$
(5.13)

Example

	0	0.4	0.6	0	0	
	0	0	0	0.3	0.7	
$\mathbf{P} =$	0	0	0	1	0	
=	1	0	0	0	0	
	1	0	0	0	0	
	L r				ı,	ı
	0	0	0	0.72	0.28	
_	1	0	0	0	0	
$\mathbf{P}^2 =$	1	0	0	0	0	,
-	0	0.4	0.6	0	0	
	0	0.4	0.6	0	0	
	L T				1	
	1	0	0	0	0	
	0	0.4	0.6	0	0	
$\mathbf{P}^3 =$	0	0.4	0.6	0	0	,
	0	0	0	0.72	0.28	
	0	0	0	0.72	0.28	
	r r				1	
	0	0.4	0.6	0	0	_
	0	0	0	0.72	0.28	
$\mathbf{P}^4 =$	0	0	0	0.72	0.28	,
	1	0	0	0	0	
	1	0	0	0	0	

• In periodic chains P^n does not converge.

Chapter 6

Steady State

6.1 Limiting Distribution

• Probability of being in state i at step n:

$$\pi_i(n) = P\left(X(n) = i\right). \tag{6.1}$$

In vector form (row vector)

$$\pi(n) = (\pi_1(n), \pi_2(n), \cdots).$$
 (6.2)

- The evolution of the chain depends on the initial distribution $\pi(0)$.
- If we are interested in the **transient** evolution we shall study

$$\boldsymbol{\pi}(n) = \boldsymbol{\pi}(0) \, \mathbf{P}^n. \tag{6.3}$$

• If we are interested the **steady state** we shall be interested in the **limiting distribution** (if the limit exists):

$$\boldsymbol{\pi}(\infty) = (\pi_1(\infty), \pi_2(\infty), \cdots) \tag{6.4}$$

Assume an **irreducible** chain with **positive recurrent** states.

• With infinite steps, we look for a probability converging to a value that depends only on the final state:

$$\pi_j(\infty) = \sum_i \pi_i(0) \lim_{n \to \infty} p_{ij}(n), \forall j \text{ and for any } \boldsymbol{\pi}(0), \qquad (6.5)$$

which implies:

$$\pi_{j}(\infty) = \lim_{n \to \infty} p_{ij}(n) \sum_{i} \pi_{i}(0) = p_{ij}(\infty), \forall j \Rightarrow$$

$$\mathbf{P}(\infty) = \lim_{n \to \infty} \mathbf{P}^{n} = \begin{bmatrix} \boldsymbol{\pi}(\infty) \\ \cdots \\ \boldsymbol{\pi}(\infty) \end{bmatrix}$$
(6.6)

• If this limit exists, we call $P(\infty)$ the **limiting matrix**, and $\pi(\infty)$ the **limiting distribution**.

Example

$$\mathbf{P} = \begin{bmatrix} 0.8 & 0.15 & 0.05 \\ 0.7 & 0.2 & 0.1 \\ 0.5 & 0.3 & 0.2 \end{bmatrix}$$

$$\mathbf{P}^2 = \begin{bmatrix} 0.764 & 0.168 & 0.068 \\ 0.760 & 0.170 & 0.070 \\ 0.752 & 0.174 & 0.074 \end{bmatrix}$$

$$\mathbf{P}^4 = \begin{bmatrix} 0.7628 & 0.1686 & 0.0686 \\ 0.7620 & 0.1690 & 0.0690 \\ 0.7604 & 0.1698 & 0.0698 \end{bmatrix}$$

$$\mathbf{P}^8 = \begin{bmatrix} 0.762500 & 0.168750 & 0.068750 \\ 0.762499 & 0.168750 & 0.068750 \\ 0.762497 & 0.168752 & 0.068752 \end{bmatrix}$$
...

 $\Rightarrow \pi(\infty) = (0.76250, 0.16875, 0.06875)$

6.2 Stationary distribution

• We have:

$$\pi_{i}(n) = P(X(n) = i) = \sum_{k} P(X(n-1) = k) P(X(n) = i \mid X(n-1) = k) = \sum_{k} \pi_{k}(n-1) p_{ki}$$
 (6.7)

- In matrix form: $\pi(n) = \pi(n-1) \mathbf{P}$
- If $\pi_i(n) = \pi_i(n-1) = \pi_i \ \forall i$, we call π_i the stationary probability of state i, and $\pi = (\pi_1, \pi_2, \cdots)$, the stationary distribution of the chain.
- In matrix form (Global balance equations):

$$\pi = \pi P$$

$$\pi \mathbf{e} = 1, \mathbf{e} = \begin{bmatrix} 1 & 1 & \cdots \end{bmatrix}^{\mathrm{T}}$$
(6.8)

- Thus, the stationary distribution is the left-hand eigenvector corresponding to the unit eigenvalue of **P**.
- $\pi(n) = \pi \Rightarrow \pi(n+1) = \pi(n) \mathbf{P} = \pi \mathbf{P} = \pi \Rightarrow \pi(k) = \pi, k \ge n$
- Do not confuse the **limiting distribution** $\pi(\infty)$ and the **stationary distribution** $\pi = \pi P$.
- $\pi(\infty)$ and π may not be the same, e.g. in periodic chains $\pi(\infty)$ does not exists (**P** does not converge), but we can compute the stationary distribution.

• Example: the periodic chain

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \tag{6.9}$$

has the stationary distribution

$$\boldsymbol{\pi} = \begin{bmatrix} 1/3 & 1/3 & 1/3 \end{bmatrix}. \tag{6.10}$$

6.3 Numerical Solution

Replace one equation method

$$\pi = \pi P$$

$$\pi e = 1, e = \begin{bmatrix} 1 & 1 & \cdots \end{bmatrix}^T$$

We solve the equation $\pi(\mathbf{I} - \mathbf{P}) = 0$ replacing the last equation by $\pi \mathbf{e} = 1$:

$$\boldsymbol{\pi} \begin{bmatrix} p_{11} - 1 & p_{12} & \cdots p_{1n-1} & 1 \\ p_{21} & p_{22} - 1 & \cdots p_{2n-1} & 1 \\ \vdots & \vdots & \vdots & \vdots \\ p_{n1} & p_{n2} & \cdots p_{nn-1} & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$
(6.11)

Examples

- Replace one equation method: $P = \begin{bmatrix} 0.8 & 0.15 & 0.05 \\ 0.7 & 0.2 & 0.1 \\ 0.5 & 0.3 & 0.2 \end{bmatrix}$
- With octave (matlab clone):

```
octave:1> P

=[0.8,0.15,0.05;0.7,0.2,0.1;0.5,0.3,0.2];

octave:2> s=size(P,1); # number of rows.

octave:3> [zeros(1,s-1),1] / ...

> [eye(s,s-1)-P(1:s,1:s-1), ones(s,1)]

ans =

0.762500 0.168750 0.068750
```

• With R

NOTE: $\pi = \pi P \Rightarrow \pi^T = P^T \pi^T$. The transpose operator in R is t().

6.4 Global balance equations

• Why are they called Global balance equations?

$$\pi = \pi \mathbf{P} \Rightarrow \pi_{j} = \sum_{i=0}^{\infty} \pi_{i} p_{ij}
\sum_{i=0}^{\infty} p_{ji} = 1 \Rightarrow \pi_{j} \sum_{i=0}^{\infty} p_{ji} = \pi_{j}$$

$$\Rightarrow \sum_{i=0}^{\infty} \pi_{i} p_{ij} = \pi_{j} \sum_{i=0}^{\infty} p_{ji}$$
(6.12)

$$\sum_{i=0}^{\infty} \pi_i \, p_{ij} \quad \Rightarrow \text{Frequency of transitions entering state } j$$

$$\pi_j \sum_{i=0}^{\infty} p_{ji}$$
 \Rightarrow Frequency of **transitions leaving state** j (6.13)

• In **stationary regime**, the frequency of transitions leaving state *j* is equal to the frequency of transitions entering state *j*.

Flux Balancing

• Define the **flux** F_{uv} from state u to v:

$$F_{uv} = \pi_u \, p_{uv} \tag{6.14}$$

11

• and the flux from set of states U to V:

$$F(U,V) = \sum_{u \in U} \sum_{v \in V} F_{uv}$$

$$(6.15)$$

• From the Global balance equations we have:

$$\sum_{i=0}^{\infty} \pi_i \, p_{ij} = \pi_j \, \sum_{i=0}^{\infty} p_{ji} \Rightarrow \sum_{i \in U} F_{ij} + \sum_{i \notin U} F_{ij} = \sum_{i \in U} F_{ji} + \sum_{i \notin U} F_{ji}$$
(6.16)

• Adding for $j \in U$:

$$\begin{split} \sum_{j \in U} \sum_{i \in U} F_{ij} + \sum_{j \in U} \sum_{i \notin U} F_{ij} &= \sum_{j \in U} \sum_{i \in U} F_{ji} + \sum_{j \in U} \sum_{i \notin U} F_{ji} \Rightarrow \\ \sum_{j \in U} \sum_{i \notin U} F_{ij} &= \sum_{j \in U} \sum_{i \notin U} F_{ji} \Rightarrow \boxed{F(U, U^c) = F(U^c, U)} \end{split}$$

Solution Using Flux Balancing

- Flux balancing $\Rightarrow p\pi_i = q\pi_{i+1}$
- Iterating: $\pi_1 = \rho \pi_0$, $\pi_2 = \rho \pi_1 = \rho \rho \pi_0$, \cdots , \Rightarrow

$$\pi_i = \rho^i \pi_0, i = 1, \dots, N$$
 where: $\rho = \frac{p}{q}$

• Normalizing:
$$\sum_{i=0}^{N} \pi_i = 1$$

$$\pi_0 = \frac{1-\rho}{1-\rho^{N+1}}, \quad p \neq q$$

$$\pi_0 = \frac{1}{N+1}, \quad p = q$$

6.5 Ergodic Chains

Ergodic state positive recurrent and aperiodic state.

Ergodic chain if all states are ergodic.

Theorem: All states of an irreducible Markov chain are of the same type: Transient or positive/null recurrent, and aperiodic/periodic with the same period [2, chapter XV].

Consequences:

- Finite aperiodic and irreducible chains are ergodic (since all states are positive recurrent).
- Infinite aperiodic and irreducible chains can be:
 - Ergodic: all the states are positive recurrent (stable chains).
 - Non ergodic: all states are null recurrent or transient (unstable chains).

6.5.1 Theorems for ergodic chains

• $\pi = \pi(\infty)$

Proof. For an aperiodic irreducible chain with positive recurrent states:

$$\begin{cases} \boldsymbol{\pi}(\infty) &= \boldsymbol{\pi}(0) \, \mathbf{P}(\infty) \\ \mathbf{P}(\infty) &= \lim_{n \to \infty} \mathbf{P}^n = \begin{bmatrix} \boldsymbol{\pi}(\infty) \\ \cdots \\ \boldsymbol{\pi}(\infty) \end{bmatrix} \Rightarrow \\ \boldsymbol{\pi}(\infty) \, \mathbf{P} = (\boldsymbol{\pi}(0) \lim_{n \to \infty} \mathbf{P}^n) \, \mathbf{P} = \boldsymbol{\pi}(0) \, \mathbf{P}(\infty) = \boldsymbol{\pi}(\infty) \\ \Rightarrow \begin{cases} \boldsymbol{\pi}(\infty) \, \mathbf{P} = \boldsymbol{\pi}(\infty) \\ \boldsymbol{\pi}(\infty) \, \mathbf{e} = 1 \end{cases} \qquad \boldsymbol{\pi}(\infty) \text{ satisfies the GBE} \Rightarrow \boldsymbol{\pi} = \boldsymbol{\pi}(\infty) \end{cases}$$

• In stationary regime (when $\pi(n) \mathbf{P} = \pi(n)$), the **mean number of** steps the system remains in state j during k steps is given by

$$k\pi_i$$
. (6.18)

(6.17)

Proof. Assume the chain in stationary regime at time t = 0 $(\pi(0) \mathbf{P} = \pi(0))$, and let j(k) be the number of visits to j in k steps: $j(k) = \sum_{i=0}^{k-1} I(X(i) = j)$ (I(A) is the indicator function: I(A) = 1 if A occurs, I(A) = 0 otherwise):

$$E[j(k)] = \sum_{i=0}^{k-1} E[I(X(i) = j)] = \sum_{i=0}^{k-1} P(X(i) = j) = k\pi_j$$
 (6.19)

• In stationary regime the **mean recurrence time** (mean number of steps between two consecutive visits to state *j*) is given by

$$m_{jj} = 1/\pi_j \tag{6.20}$$

Proof. Let j(k) be the number of visits to j in k steps:

$$\pi_j = \lim_{k \to \infty} \frac{j(k)}{k} = \lim_{k \to \infty} \frac{1}{k/j(k)} = 1/m_{jj}$$
 (6.21)

Chapter 7

Reversed Chain

Definition

- Let X(n) be an **ergodic** MC. The chain $X^{r}(n) = X(-n)$ is referred to as the **time reversal chain** of X(n).
- **Example**, consider a possible sample path of X(n):

$$\cdots (i_0, n_0), (i_1, n_1), (i_2, n_2), \cdots$$
 (7.1)

The same path in the time reversal chain $X^{r}(n)$ would be:

$$\cdots (i_2, -n_2), (i_1, -n_1), (i_0, -n_0), \cdots$$
 (7.2)

Properties

• Let p_{ij} , p_{ij}^r be the transition probabilities of X(n) respectively $X^r(n)$, and π_i , π_i^r the stationary distributions of X(n) respectively $X^r(n)$, then:

$$\pi_i = \pi_i^r \tag{7.3}$$

- **Proof**: the mean time in each state is the same for both chains.
- However, in general $p_{ij} \neq p_{ij}^r$. For example, X(n) may be able to jump from state i to j, but not from j to $i \Rightarrow X^r(n)$ can jump from j to i, but not from i to j.
- But it must be $p_{ii} = p_{ii}^r$, since self-state transitions are the same in the direct and reversed chains.

7.1 Computation of p_{ij}^r

The transition probabilities in the time reversal chain (p_{ii}^r) satisfy:

$$\pi_i \, p_{ij} = \pi_j \, p_{ji}^r \tag{7.4}$$

Proof. Assume the chain in **steady state**. We have:

$$\begin{split} P\{X(n+1) = j, X(n) = i\} &= \\ P\{X^r(-n) = i, X^r(-n-1) = j\} &= \\ P\{X^r(n+1) = i, X^r(n) = j\} &\Rightarrow \\ P\{X(n) = i\} P\{X(n+1) = j \mid X(n) = i\} &= \\ P\{X(n) = j\} P\{X^r(n+1) = i \mid X^r(n) = j\} &\Rightarrow \\ \pi_i \, p_{ij} = \pi_j \, p_{ji}^r. \quad \Box \end{split}$$

We can compute p_{ji}^r using the reversed balance equations:

$$\pi_i \, p_{ij} = \pi_j \, p_{ji}^r \Rightarrow \sum_{i \in U} \sum_{j \in V} \pi_i \, p_{ij} = \sum_{i \in U} \sum_{j \in V} \pi_j \, p_{ji}^r \Rightarrow$$

$$F(U,V) = F^{r}(V,U) \tag{7.5}$$

Example

$$\Rightarrow \begin{cases} \pi_0 = \frac{p_{12} p_{20}}{p_{12} p_{20} + p_{01} (p_{20} + p_{21}) + p_{01} p_{12}} \\ \pi_1 = \frac{p_{01} (p_{20} + p_{21})}{p_{12} p_{20} + p_{01} (p_{20} + p_{21}) + p_{01} p_{12}} \\ \pi_2 = \frac{p_{01} p_{12}}{p_{12} p_{20} + p_{01} (p_{20} + p_{21}) + p_{01} p_{12}} \end{cases}$$

Time reversal chain:

$$\Rightarrow \begin{cases} \pi_0 \, p_{01} = \pi_1 \, p_{10}^r \\ \pi_1 \, p_{12} = \pi_2 \, p_{21}^r \\ \pi_2 \, p_{21} = \pi_1 \, p_{12}^r \\ \pi_2 \, p_{20} = \pi_0 \, p_{02}^r \end{cases} \Rightarrow \begin{cases} p_{10}^r = \frac{p_{12} \, p_{20}}{p_{20} + p_{21}} \\ p_{21}^r = p_{20} + p_{21} \\ p_{12}^r = \frac{p_{12} \, p_{21}}{p_{20} + p_{21}} \\ p_{02}^r = p_{01} \end{cases}$$

Chapter 8

Reversible Chains

Definition

• A chain is reversible if:

$$p_{ij} = p_{ij}^r \tag{8.1}$$

• This equality implies the reversibility balance equations:

$$\pi_i \, p_{ij} = \pi_i^r \, p_{ij}^r \Rightarrow F(U, V) = F^r(U, V)$$
 (8.2)

• Using both reversed $(F^r(U,V) = F(V,U))$ and reversibility balance equations, the following relation holds for a reversible chain (**detailed balance equations**):

$$F(U,V) = F(V,U) \tag{8.3}$$

• NOTE: Compare with the **global balance equations**: $F(U,U^C) = F(U^C,U)$.

8.1 Kolmogorov Criteria

Definition of path

Define a path as a possible sequence of transitions of the chain.
 For example, in the figure it could be 0 → 0 → 1 → 2.

ullet We denote the **sequence of states** of one path l as:

$$(\mathbf{l},1) \rightsquigarrow (\mathbf{l},2) \rightsquigarrow \cdots \rightsquigarrow (\mathbf{l},m)$$
 (8.4)

- For instance, if l is $0 \rightsquigarrow 0 \rightsquigarrow 1 \rightsquigarrow 2$, then $(\mathbf{l},1) = 0$, $(\mathbf{l},2) = 0$, $(\mathbf{l},3) = 1$, $(\mathbf{l},4) = 2$.
- We say that a path is **closed** if it starts and ends in the same state. For instance, a path stating and ending in state (**l**,**1**):

$$(\mathbf{l},\mathbf{1}) \leadsto (l,2) \leadsto \cdots \leadsto (l,m) \leadsto (\mathbf{l},\mathbf{1})$$
 (8.5)

Kolmogorov Criteria

• Take a **closed path** l with $m \ge 0$ transitions, i.e.:

$$(l,1) \rightsquigarrow (l,2) \rightsquigarrow \cdots \rightsquigarrow (l,m) \rightsquigarrow (l,1), m \ge 0$$
 (8.6)

• The chain is **reversible iff for all** *l*:

$$p_{(l,1)(l,2)} p_{(l,2)(l,3)} \cdots p_{(l,m)(l,1)} = p_{(l,1)(l,m)} p_{(l,m)(l,m-1)} \cdots p_{(l,2)(l,1)}$$
(8.7)

• Proof:

- If the chain is reversible $\pi_i p_{ij} = \pi_j p_{ji}$ (detailed balance equations): $\Rightarrow \pi_{(l,k)} p_{(l,k)(l,k+1)} = \pi_{(l,k+1)} p_{(l,k+1)(l,k)}$
- Multiplying for $k = 1, 2 \cdots m$ and simplifying we obtain the previous relation.

Corollary

• A reversible chain must satisfy:

$$p_{ij} > 0 \Rightarrow p_{ji} > 0$$

$$p_{ij} = 0 \Rightarrow p_{ji} = 0$$
 (8.8)

• An **ergodic tree chain is always reversible**. We define a tree chain as chain having no cycles, i.e. the only possible transitions are bidirectional arcs between states, and self transitions.

Example

• The chain is reversible iif:

$$p_{01} p_{13} p_{30} = p_{10} p_{03} p_{31}$$

8.2 Product Form Solution

- Let X(n) be a reversible MC with space state S ⇒ the stationary probabilities of X(n) can be computed as follows:
- Choose a state $\mathbf{s} \in S$,
- For every other state $\mathbf{i} \in S$, $i \neq s$ look for a possible path l_i from state s to state i:

$$\mathbf{s} = (l_i, 1) \leadsto (l_i, 2) \leadsto \cdots \leadsto (l_i, m_{l_i}) = \mathbf{i}, m_{l_i} \ge 1$$
 (8.9)

• The stationary probabilities are given by:

$$\pi_{i} = \frac{\psi_{i}}{\sum_{j \in S} \psi_{j}}, i \in S \quad \text{where } \psi_{i} = \begin{cases} 1, & i = s \\ \prod_{k=1}^{m_{l_{i}} - 1} \frac{p_{(l_{i}, k)(l_{i}, k + 1)}}{p_{(l_{i}, k + 1)(l_{i}, k)}}, & i \neq s \end{cases}$$
(8.10)

• **Proof** Use the detailed balance equations $\pi_i p_{ij} = \pi_j p_{ji}$.

8.3 Birth and Death Chains

- Birth and death chains are reversible.
- Applying the product form solution for reversible chains we obtain the general solution of birth death chains. Choosing s = 0:

$$\pi_{i} = \frac{\psi_{i}}{\sum_{j=0}^{N} \psi_{j}}, i \ge 0 \quad \text{where } \psi_{i} = \begin{cases} 1, & i = 0\\ \prod_{k=0}^{i-1} \frac{p_{k}}{q_{k}}, & i = 1, \dots, N \end{cases}$$
(8.11)

Truncated Reversible Chain

- Consider a reversible MC X with a stationary distribution π_i .
- Suppose that we truncate the chain X and we obtain another irreducible chain X'.
- Then, X' is also reversible with stationary distribution:

$$\pi'_{i} = \frac{\pi_{i}}{G}, \quad \sum_{k} \pi'_{k} = 1$$
 (8.12)

Chapter 9

Research Example: Aloha

Access Protocol (see the paper of Kleinrock and Lam [5]).

- Pure Aloha:
 - Broadcast radio system.
 - **Single hop** system (all stations are in coverage).
 - Whenever a station has a frame ready, it is transmitted.
 - If two or more frames Tx overlap in time there is a **collision**, otherwise the frame is received correctly.
 - Colliding frames are reTx after a random time (backoff).

• Slotted Aloha:

- Time is slotted.
- Tx can only occur at the beginning of a slot.
- Collisions occur when 2 or more stations Tx in the same slot.

9.1 Analysis with finite population

Assumptions

- Slotted Aloha.
- Acks are sent immediately after the reception of a frame, and are never lost.
- *M* nodes with a **buffer** of 1 frame.
- The **nodes** can be in 2 states:
 - Thinking: when the buffer is empty
 - Backlogged: when there is a frame in the buffer.

- A thinking node generate one frame in each slot with probability σ. When a frame collides, the frame is stored and the node becomes backlogged.
- A backlogged node ReTx the frame in each slot with probability v.

Markov Chain

• The system state, X(n), is the number of backlogged nodes:

$$p_{ij} = P(X(n) = j \text{ baklogged} \mid X(n-1) = i \text{ baklogged})$$
 (9.1)

Transition probabilities

- 0 for j < i 1.
- for j = i 1: no thinking Tx and only 1 backlogged Tx.
- for j = i:
 - 1. no thinking Tx and none or more than 1 backlogged Tx,
 - 2. only 1 thinking Tx and no backlogged Tx.
- for j = i + 1: 1 thinking and 1 or more backlogged Tx.
- for j > i + 1: j i thinking Tx, regardless of backlogged Tx.

In order to compute the previous events, define the probabilities:

• Arrivals: $Q_a(m,n)$, Probability of m thinking nodes Tx in a slot given that n nodes are backlogged:

$$Q_{a}(m,n) = P\left(\begin{array}{l} m \text{ think.} & | \text{ nnodes are backlogged} \\ | n \text{ backlogged} \end{array}\right) = \left(\begin{array}{l} M-n \\ m \end{array}\right) \sigma^{m} (1-\sigma)^{M-n-m} \quad (9.2)$$

• **Retransmissions:** $Q_r(m,n)$, Probability of m backlogged nodes Tx in a slot given that n nodes are backlogged:

$$Q_r(m,n) = P\left(\frac{\mathbf{m} \text{ backl.}}{\text{nodes Tx}} \mid \frac{\mathbf{n} \text{ nodes are}}{\text{backlogged}}\right) = \binom{n}{m} v^m (1-v)^{n-m}$$
 (9.3)

· and we have:

$$p_{ij} = \begin{cases} 0, & j < i - 1 \\ Q_a(0,i) Q_r(1,i), & j = i - 1 \\ Q_a(0,i) (1 - Q_r(1,i)) + Q_a(1,i) Q_r(0,i), & j = i \\ Q_a(1,i) (1 - Q_r(0,i)), & j = i + 1 \\ Q_a(j-i,i), & j > i + 1 \end{cases}$$
(9.4)

9.1.1 Stationary distribution

• Solving the global balance equations:

$$\pi = \pi \mathbf{P}$$

$$\pi \mathbf{e} = 1 \tag{9.5}$$

• We obtain the probability of having *i* backlogged nodes:

$$\pi_i = P(i \text{ backlogged nodes})$$
 (9.6)

NOTE: there is **no closed form solution** of the chain. The matrix **P** must be constructed using the expression of p_{ij} , and solved numerically.

9.2 Throughput

• Define the probabilities:

$$P_{succ}(i) = P(\text{successful Tx} \mid i \text{ backlogged})$$
 (9.7)

• The **normalized throughput**, i.e. proportion of steps with a successful transmission) is:

$$S = \sum_{i=0}^{M} P(\text{successful Tx} \mid i \text{ backlogged}) \times$$

$$P(i \text{ backlogged}) = \sum_{i=0}^{M} P_{succ}(i) \pi_i$$
 (9.8)

• For a slot to be successful: (i) 1 thinking Tx and no backlogged Tx, or (ii) no thinking Tx and 1 backlogged Tx:

$$P_{succ}(i) = Q_a(1,i) Q_r(0,i) + Q_a(0,i) Q_r(1,i)$$
 (9.9)

Notes on the throughput

$$S = \sum_{i=0}^{M} P_{succ}(i) \pi_i$$
 (9.10)

- For the **special case** $\sigma = v$ (thinking Tx with the same probability as backlogged): $P_{succ}(i) = M\sigma(1-\sigma)^{M-1}$, which does not depend on i, thus: $S = M\sigma(1-\sigma)^{M-1}$.
- The **offered load** (i.e. proportion of arrivals per slot) G is now: $G = M \sigma$, thus:

$$S = G \left(1 - \frac{G}{M} \right)^{M-1} \Rightarrow \lim_{M \to \infty} \mathbf{S} = \mathbf{G} e^{-\mathbf{G}}$$
 (9.11)

• We conclude that the **infinite population model** is the limit of the finite population if backlogged Tx with the same probability as thinking, and $M \to \infty$.

9.2.1 Dynamics

15

Note on the arrival rate (expected value of a binomial distribution):

$$\sum_{k=0}^{M-i} k \binom{M-i}{k} \sigma^k (1-\sigma)^{M-i-k} = (\mathbf{M} - \mathbf{i}) \sigma$$

Solving the chain: $S = \sum_{i=0}^{M} P_{succ}(i) \pi_i$

ν	S
0.1	2.38e-01
0.2	2.42e-01
0.3	1.30e-02
0.4	4.98e-04
0.5	1.90e-05

9.2.2 Stabilizing Aloha

- The retransmission probabilities must adapt in accordance with the state of the system.
- Example: **binary exponential backoff** (ethernet). The retransmission rate at retransmission i is adapted as $v = 2^{-i}$. Thus, the higher are the number of retransmission trials i, the lower (exponentially) is the retransmission rate.

Chapter 10

Finite Absorbing Chains

Canonical Form

• Let \mathbf{P}^{rxr} be the transition probability matrix of a chain with r states: s **transient** states and r-s **absorbing** states. We can write \mathbf{P}^{rxr} in the **canonical** form:

$$\mathbf{P}^{rxr} = \begin{bmatrix} \mathbf{Q}^{s \times s} & \mathbf{R}^{s \times r - s} \\ \mathbf{0}^{r - s \times s} & \mathbf{I}^{r - s \times r - s} \end{bmatrix}$$
(10.1)

Example

$$P = \begin{pmatrix} b & c & a & a & e \\ 0 & 0.1 & 0 & 0.9 & 0 \\ 0 & 0 & 0.8 & 0 & 0.2 \\ 0.3 & 0 & 0.7 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ e & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

10.1 Results

• Define:

$$\mathbf{n_{ij}} = \begin{cases} \text{number of steps in state } j \text{ before} \\ \text{absorption, starting from state } i \end{cases},$$

$$\mathbf{t_i} = \begin{cases} \text{number of steps in transient states before} \\ \text{absorption, starting from state } i \end{cases}, \quad (10.2)$$

$$\mathbf{b_{ij}} = P(\text{probability to be absorbed } j \text{ starting } i)$$

• Then:

$$\begin{aligned} \{\mathbf{E}[n_{ij}]\} &= \mathbf{N} = (\mathbf{I} - \mathbf{Q})^{-1} \\ \{\mathbf{Var}[n_{ij}]\} &= \mathbf{N} (2\mathbf{N}_{\text{diag}} - \mathbf{I}) - \mathbf{N} \text{sqr} \\ \{\mathbf{E}[t_i]\} &= \boldsymbol{\tau} = \mathbf{N} \mathbf{e} \\ \{\mathbf{Var}[t_i]\} &= (2\mathbf{N} - \mathbf{I}) \boldsymbol{\tau} - \boldsymbol{\tau}_{\text{sqr}} \\ \{b_{ij}\} &= \mathbf{B} = \mathbf{N} \mathbf{R}. \end{aligned}$$
(10.3)

where $\{a_{ij}\}$ is a matrix with a_{ij} as element ij and \mathbf{e} is a column vector of 1s. N is called the fundamental matrix.

Proofs

• $\{E[n_{i\,i}]\} = \mathbf{N} = (\mathbf{I} - \mathbf{Q})^{-1}$

$$\begin{split} \mathbf{E}[n_{ij}] &= \sum_{k \in A} p_{ik} \delta_{ij} + \sum_{k \in T} p_{ik} \mathbf{E}[n_{kj} + \delta_{ij}] = \\ \delta_{ij} &+ \sum_{k \in T} p_{ik} \mathbf{E}[n_{kj}] \\ \Rightarrow &\{ \mathbf{E}[n_{ij}] \} = \mathbf{N} = \mathbf{I} + \mathbf{Q} \mathbf{N} \Rightarrow \mathbf{N} = (\mathbf{I} - \mathbf{Q})^{-1} \end{split}$$

where A is the set of absorbing states and T is the set of transient

Notation:
$$\delta_{ij} = I(i = j) = \begin{cases} 1, & i = j, \\ 0, & \text{otherwise.} \end{cases}$$

• ${\operatorname{Var}[n_{ij}]} = {\operatorname{N}(2\operatorname{N}_{\operatorname{diag}} - {\operatorname{I}}) - \operatorname{N}_{\operatorname{sqr}}}$

$$\begin{aligned} \textit{Proof.} \\ \textit{Var}[n_{ij}] = & \, \text{E}[n_{ij}^2] - \text{E}[n_{ij}]^2 \Rightarrow \end{aligned}$$

$$\{\operatorname{Var}[\mathbf{n_{ij}}]\} = \{\operatorname{E}[\mathbf{n_{ij}^2}]\} - \mathbf{N_{sqr}}$$

$$\operatorname{E}[\mathbf{n_{ij}^2}] = \sum_{k \in A} p_{ik} \delta_{ij}^2 + \sum_{k \in T} p_{ik} \operatorname{E}[(n_{kj} + \delta_{ij})^2] =$$

$$\sum_{k \in A} p_{ik} \delta_{ij} + \sum_{k \in T} p_{ik} (\operatorname{E}[n_{kj}^2] + 2\operatorname{E}[n_{kj}] \delta_{ij} + \delta_{ij}) =$$

$$\sum_{k \in A} p_{ik} o_{ij} + \sum_{k \in T} p_{ik} (\mathbb{E}[n_{kj}^*] + 2\mathbb{E}[n_{kj}] o_{ij} + o_{ij}) =$$

$$\delta_{ij} + \sum_{k \in T} (p_{ik} \mathbb{E}[n_{kj}^2] + 2 p_{ik} \mathbb{E}[n_{kj}] \delta_{ij}) \Rightarrow$$

$$\{E[\mathbf{n_{ij}^2}]\} = \mathbf{I} + \mathbf{Q}\{E[n_{ij}^2]\} + 2(\mathbf{QN})_{\text{diag}} =$$

$$(\mathbf{I} - \mathbf{Q})^{-1}(\mathbf{I} + 2(\mathbf{Q} \mathbf{N})_{\text{diag}}) =$$

$$\mathbf{N}(\mathbf{I} + 2(\mathbf{N} - \mathbf{I})_{\text{diag}}) = \mathbf{N}(2\mathbf{N}_{\text{diag}} - \mathbf{I})$$

• $\{E[t_i]\} = \tau = Ne$

Proof.

$$E[t_i] = \sum_{k \in T} E[n_{ij}] \Rightarrow \{E[t_i]\} = \mathbf{\tau} = \mathbf{Ne}$$

• ${\operatorname{Var}[t_i]} = (2\mathbf{N} - \mathbf{I})\boldsymbol{\tau} - \boldsymbol{\tau}_{\operatorname{sor}}$

Proof.

$$\operatorname{Var}[t_i] = \operatorname{E}[t_i^2] - \operatorname{E}[t_i]^2 \Rightarrow \left\{ \operatorname{Var}[\mathbf{t}_i] \right\} = \left\{ \operatorname{E}[\mathbf{t}_i^2] \right\} - \tau_{\operatorname{sqr}}$$

$$\operatorname{E}[\mathbf{t}_i^2] = \sum_{k \in A} p_{ik} + \sum_{k \in T} p_{ik} \operatorname{E}[(t_k + 1)^2] =$$

$$\sum_{k \in A} p_{ik} + \sum_{k \in T} p_{ik} \left(\operatorname{E}[t_k^2] + 2\operatorname{E}[t_k] + 1 \right) =$$

$$1 + \sum_{k \in T} (p_{ik} \operatorname{E}[t_k^2] + 2 p_{ik} \operatorname{E}[t_k]) \Rightarrow$$

$$\left\{ \operatorname{E}[\mathbf{t}_i^2] \right\} = \mathbf{e} + \mathbf{Q} \left\{ \operatorname{E}[t_i^2] \right\} + 2 \mathbf{Q} \tau =$$

$$(\mathbf{I} - \mathbf{Q})^{-1} (\mathbf{e} + 2 \mathbf{Q} \tau) =$$

$$\mathbf{N}(\mathbf{e} + 2 \mathbf{Q} \tau) = \tau + 2 \mathbf{N} \mathbf{Q} \tau =$$

$$\tau + 2 (\mathbf{N} - \mathbf{I}) \tau = (2\mathbf{N} - \mathbf{I}) \tau \square$$

• $\{b_{ij}\} = \mathbf{B} = \mathbf{NR}$

Proof.

$$b_{ij} = p_{ij} + \sum_{k \in T} p_{ik} b_{kj}, j \in A \Rightarrow$$

$$\{b_{ij}\} = \mathbf{B} = \mathbf{R} + \mathbf{Q} \mathbf{B}$$

$$\Rightarrow \mathbf{B} = (\mathbf{I} - \mathbf{Q})^{-1} \mathbf{R} = \mathbf{N} \mathbf{R}. \quad \Box$$

Extension of the Results

- The previous results can be generalized to any group of states of
- A set S is referred to as **open** if the chain can reach some state of S^c starting from any state of S. Let

$$\mathbf{Q} = \{ p_{ij}, i \in S, j \in S \}$$
 (10.4)

$$\mathbf{R} = \{ p_{ij}, i \in S, j \in S^c \}$$
 (10.5)

Let assume that the process starts from $i \in S$. Define:

$$\mathbf{n_{ij}} = \begin{cases} \text{number of steps in state } j \text{ before} \\ \text{leaving } S, \text{ starting from state } i \end{cases},$$
$$\Rightarrow \{ \mathbf{E}[n_{ij}] \} = \mathbf{N} = (\mathbf{I} - \mathbf{Q})^{-1}.$$

• Similarly for the other results, e.g. $\tau = \{E[t_i]\} = \mathbf{Ne}$ and $\mathbf{B} = \mathbf{Ne}$ $\{b_{i\,i}\}=\mathbf{N}\mathbf{R}.$

10.3 Inverse of a matrix

Cofactors

$$\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \mathbf{C}^{\mathrm{T}} \tag{10.6}$$

where \mathbf{C}^{T} is the transposed cofactor matrix: $c_{ij} = (-1)^{i+j} \det \mathbf{M}_{ij}$, and \mathbf{M}_{ij} are the minor matrices obtained removing the row i and column j from A.

Gaussian Elimination

Do the transformation:

$$\left[\mathbf{A} \mid \mathbf{I}\right] \to \left[\mathbf{I} \mid \mathbf{A}^{-1}\right] \tag{10.7}$$

using the elementary row operations:

- · Swapping two rows.
- · Multiplying a row by a nonzero number.
- Adding a multiple of one row to another row.

Bibliography

- [1] Llorenç Cerdà-Alabern. Transient Solution of Markov Chains Using the Uniformized Vandermonde Method. Tech. rep. UPC-DAC-RR-XCSD-2010-2. Universitat Politècnica de Catalunya, Dec. 2010. URL: https://www.ac.upc.edu/app/research-reports/html/research_center_index-XCSD-2010, en.html.
- [2] William Feller. An Introduction to Probability Theory and Its Applications: Volume One. 3rd ed. John Wiley & Sons, 1968.
- [3] Mor Harchol-Balter. *Performance Modeling and Design of Computer Systems: Queueing Theory in Action*. Cambridge University Press, 2013.

- [4] John G Kemeny and James Laurie Snell. *Finite markov chains*. Vol. 356. van Nostrand Princeton, NJ, 1960.
- [5] Leonard Kleinrock and Simon Lam. "Packet Switching in a Multiaccess Broadcast Channel: Performance Evaluation". In: Communications, IEEE Transactions on 23.4 (1975), pp. 410–423.
- [6] Randolph Nelson. *Probability, stochastic processes, and queueing theory: the mathematics of computer performance modeling.* Springer, 1995.
- [7] Kishor S Trivedi. *Probability & statistics with reliability, queuing and computer science applications.* John Wiley & Sons, 2008.

Table with some distributions

Distribution	Parametres	Density	Mean	Variance	Characteristic Function
Bernoulli	$0 \le p \le 1$ $q = 1 - p$	$p^{k} (1-p)^{1-k}$ $k = 0,1$	p	p(1-p)	<i>q</i> + <i>p</i> e ^{<i>i t</i>}
Binomial	$0 \le p \le 1$ $q = 1 - p$	$\binom{n}{k} p^k (1-p)^{n-k}$ $k = 0, 1, \dots n$	n p	n p (1-p)	$(q+pe^{it})^n$
Geometric	$0 \le p \le 1$ $q = 1 - p$	$p(1-p)^k$ $k \ge 0$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$	$\frac{p}{1 - q e^{it}}$
Negative binomial	$r > 0$ $0 \le p \le 1$ $q = 1 - p$	$\binom{k+r-1}{k} p^r q^k$ $k \ge 0$	$r\frac{1-p}{p}$	$r\frac{1-p}{p^2}$	$\left(\frac{p}{1-q\mathrm{e}^{it}}\right)^r$
Poisson	$\lambda > 0$	$\frac{\lambda^k}{k!} e^{-\lambda}, k \ge 0$	λ	λ	$\exp\left\{\lambda\left(e^{it}-1\right)\right\}$
Normal $N(\mu,\sigma)$	$\mu \in \mathbb{R}$ $\sigma > 0$	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{ \frac{-(x-\mu)^2}{2\sigma^2} \right\}$ $x \in \mathbb{R}$	μ	σ^2	$\exp\left\{\muit - \frac{t^2\sigma^2}{2}\right\}$
Uniform	a < b	$\frac{1}{b-a}, a \ge x \ge b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$
Exponential	α	$\alpha e^{-\alpha x}, x \ge 0$	$\frac{1}{\alpha}$	$rac{1}{lpha^2}$	$\left(1-\frac{it}{\alpha}\right)^{-1}$
Gamma $\gamma(n,\alpha)$	$\alpha > 0$, $n > 0$	$\frac{\alpha^n x^{n-1} e^{-\alpha x}}{\Gamma(n)}, x \ge 0$	$\frac{n}{\alpha}$	$rac{n}{lpha^2}$	$\left(1-rac{it}{lpha} ight)^{-n}$
Beta $\beta(p,q)$	p > 0, $q > 0$	$\frac{x^{p-1} (1-x)^{q-1}}{B(p,q)},$ $0 \ge x \ge 1$	$\frac{p}{p+q}$	$\frac{pq}{(p+q)^2(p+q+1)}$	

$$\Gamma(x) = \int_0^\infty e^{-t} \, t^{x-1} \, dt, \\ \Gamma(n) = (n-1)! \quad \mathsf{B}(p,q) = \int_0^1 t^{p-1} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(p+q)} \, (1-t)^{q-1} \, dt, \\ \mathsf{B}$$