CSE 122 / 222C; WES 269
WiFi — Return of the MAC

Pat Pannuto, UC San Diego

ppannuto@ucsd.edu

WiFi MAC Goals

- Introduce MAC layer concepts in 802.11
- Understand what exists, what is used in practice, and why
- Microcontroller use of WiFi

Outline

- 802.11 Access Control
- 802.11 Frame format
- 802.11e Improvements to MAC

Microcontrollers and WiFi

Basic WiFi network

- Star topology network
- Basic Service Set (BSS)
 - Access point(s)
 - Multiple connected clients
- Service Set ID (SSID)
 - Identifies network
 - Broadcast by access point in beacons

(original) WiFi superframe structure

- Beacon followed by contention-free period followed by contention
 - Repeats periodically (default ~100 ms)
 - 802.15.4 adopted a similar superframe

n.b. PCF is more hypothetical than real

PCF superseded by Hybrid Coordination Function (HCF)

- 802.11e (2005 spec) defines HCCA
 - HCF Controlled Channel Access
- ... which is complicated, and only supported in specialized hardware and specialized use cases ...
- ... and HCCA is old; newer WiFi has more complex QoS protocols ...

... so that's all we're going to say about it

WiFi superframe in practice

- Continuous contention access period
 - DCF = "Distributed Coordination Function"
 - CSMA/CA + optional RTS/CTS
- Periodic beacons
 - Which also use CSMA and therefore may be delayed

802.11 beacons

- Transmitted periodically (~100 ms by default)
 - Enable discovery of network
 - Contain capabilities and SSID for the network (802.11b/g/n/ac/ax...)
 - Assign contention-free slots if used
 - Notify devices of waiting packets
 - Traffic Indication Map (TIM) has a bitmap specifying which devices data is for
 - Enables devices to sleep, skipping a number of beacons
 - Handles broadcast/multicast messages
 - Every N beacons includes a notation of available broadcast messages
 - Messages are transmitted during next contention access period using normal CSMA
 - Defines maximum sleep period for devices (must listen to these beacons)

Contention-based access

- Known as Distributed Coordination Function (DCF)
 - Base communication method for WiFi
 - All packets are immediately ACK'd by receiving device
 - Uses CSMA/CA to determine when it can send
 - With random backoff
 - Problem: packets can be very long (up to 20 milliseconds)
 - Solution: Network Allocation Vector (NAV)
 - Packets include a notation of their duration
 - Sensing the beginning of a packet allows backoff to skip the whole packet duration before continuing

Reminder: hidden terminal problem

- Two devices communicating with Access Point may not be able to hear each other
 - CSMA fails and Access Point loses both messages

A solution: RTS/CTS (Request/Clear To Send)

Drawbacks of RTS/CTS

- Four packets per data (RTS, CTS, Data, Ack)
 - Could have just sent data instead of RTS
- Significant portion of traffic is application-layer Acks
 - Probably better to just have it fail and try again later
- RTS/CTS only used for very large packets in practice
 - *It's mentioned still in 802.11n and 802.11ac, so not entirely unused

Backoff in WiFi

- Listen for activity
 - If free
 - Wait for Inter Frame Spacing (IFS)
 - If still free, transmit
 - If busy
 - Randomly select a number of backoff Slots
 - Count down slots whenever medium is not busy
 - If busy when backoff completes:
 - Increase maximum backoff Slots
 - Repeat
- Slot time: basic time unit for protocol
 - Total time of: switch from Rx to Tx, plus processing time, plus propagation delay

Prioritizing packets with varying IFS

- Tiered Contention Multiple Access (TCMA)
 - Idea: assign different inter-frame spacing based on traffic class
 - Inherently prioritizes communication
- Acknowledgements sent with Short IFS (SIFS)
 - Will always transmit before new data clears CSMA check
- New data sent with DCF IFS (DIFS)

Putting backoff together

- Two variables
 - Contention Window (CW) maximum backoff amount
 - Backoff Count (BO) current remaining backoff
- When attempting to send, if busy Backoff selected in [0, CW]
 - Countdown Backoff slots whenever medium is not busy
 - At 0, attempt to transmit if not busy
 - If busy, double Window and select Backoff again
- 802.11g values:
 - Slot time= 20 μs, CWmin= 15 slots, CWmax= 1023 slots (20 ms)
 - SIFS= 10 μs, PIFS= 30 μs, DIFS= 50 μs

- A and B want to send and see the medium is busy
 - Followed by an Acknowledgement after SIFS

- Each chooses a random backoff [0, CW] (we'll say CW is 32)
 - Start counting down backoff slots

- C wants to send, waits DIFS, and can send immediately
 - No other traffic is going on
 - A and B pause backoff for packet duration

- A and B used NAV to pause backoff for entire traffic plus ACK
 - After DIFS, resume backoff count from its previous value

- B reaches zero backoff, finds channel empty, transmits
 - A pauses its backoff again for duration plus ACK

Break + Hacking

• If you wanted maximum data throughput on a WiFi radio, and you were willing to be non-standards-compliant, what would you do?

Break + Hacking

- If you wanted maximum data throughput on a WiFi radio, and you were willing to be non-standards-compliant, what would you do?
 - Never backoff at all. Just try during the next open period
 - Always be "device C" in our previous example
 - Use a shorter SIFS than other devices
 - If you start transmitting sooner, you get to keep transmitting!
 - Other devices will backoff on your transmission
 - Tragedy of the Commons: this utterly fails if many radios follow it

CSMA + OFDMA

 For WiFi 6 to be backwards compatible, the OFDMA stuff has to obey the normal CSMA/CA rules as well

- Downlink from AP
 - The AP wins contention and then transmits various data at various frequencies
- Uplink to AP
 - The AP wins contention,
 sends a "OFDMA uplink trigger frame",
 then devices send their responses

Outline

- 802.11 Access Control
- 802.11 Frame format
- 802.11e Improvements to MAC

Microcontrollers and WiFi

802.11 frame

Field	Frame control		Address 1	Address 2	Address 3	Sequence control		QoS control	HT control		Frame check sequence
Length (Bytes)	2	2	6	6	6	0, or 2	6	0, or 2	0, or 4	Variable	4

- Frame control (various bits)
 - Type of packet (Control, Management, Data)
 - Subtype (Association, RTS, CTS, Ack, etc.)
 - Indication of to/from "distribution system" (Internet rather than intranet)
- Duration
 - Specifies on-air time of full packet in μs
 - Note: no actual length field

Surprising, but smart!

Recall MCS vary — but everyone needs to be able to parse header (for duration, for NAV)

Length can be very large (e.g. in ac: 5.5 ms max duration is 4.5 MB length!); sent at full data rate

802.11 frame

Field	Frame control		Address 1	Address 2	Address 3	Sequence control	Address 4		HT. control		Frame check sequence
Length (Bytes)	2	2	6	6	6	0, or 2	6	0, or 2	0, or 4	Variable	4

- Sequence control
 - 4-bit fragment number
 - 12-bit sequence number
- Quality of Service control
 - Identifies traffic category
- High Throughput Control
 - Configurations for selecting best data rate

- Frame body
 - Max size depends on PHY
 - ~2000 for lower rates
 - ~8000 for 802.11n
 - ~11000 for 802.11ac
- Frame check sequence
 - 32-bit CRC

802.11 frames have four address fields... why?

Field	Frame	Duration,	Address	Address	Address	Sequence	Address	QoS	HT	Frame	Frame check
rieiu	control	id.	1	2	3	control	4	control	control	body	sequence
Length (Bytes)	2	2	6	6	6	0, or 2	6	0, or 2	0, or 4	Variable	4

	To DS	From DS	Address 1	Address 2	Address3	Address4	Use Case	
1	DC -	"Dict	ibution Syster	~"				cation
2	D3 -	. DISTI	ibution system	"				net
3	The	infract	ructure that co	onnects APs. 'A	lm I leaving th	ic wireless	area?'	t
4	1116	IIIIIast	ructure triat co	officets Ars. F	ann icaving th	iis wii ciess	arca:	

	To DS	From DS	Address 1	Address 2	Address3	Address4	Use Case
1	0	0	Destination Addr	Source Addr	BSS ID	-	Direct communication
2	0	1	Destination Addr	BSS ID	Source Addr	1	Traffic from Internet
3	1	0	BSS ID	Source Addr	Destination Addr	ı	Traffic to Internet
4	1	1	Receiver Addr	Transmitter Addr	Destination Addr	Source Addr	Repeater / Mesh

	To DS	From DS	Address 1	Address 2	Address3	Address4	Use Case
1	0	0	Destination Addr	Source Addr	BSS ID	-	Direct communication
2	0	1	Destination Addr	BSS ID	Source Addr	-	Traffic from Internet
3	1	0	BSS ID	Source Addr	Destination Addr	-	Traffic to Internet
4	1	1	Receiver Addr	Transmitter Addr	Destination Addr	Source Addr	Repeater

	To DS	From DS	Address 1	Address 2	Address3	Address4	Use Case
1	0	0	Destination Addr	Source Addr	BSS ID	-	Direct communication
2	0	1	Destination Addr	BSS ID	Source Addr	-	Traffic from Internet
3	1	0	BSS ID	Source Addr	Destination Addr	-	Traffic to Internet
4	1	1	Receiver Addr	Transmitter Addr	Destination Addr	Source Addr	Repeater

	To DS	From DS	Address 1	Address 2	Address3	Address4	Use Case
1	0	0	Destination Addr	Source Addr	BSS ID	-	Direct communication
2	0	1	Destination Addr	BSS ID	Source Addr	-	Traffic from Internet
3	1	0	BSS ID	Source Addr	Destination Addr	-	Traffic to Internet
4	1	1	Receiver Addr	Transmitter Addr	Destination Addr	Source Addr	Repeater

Sending frames in WiFi

- Frame bursting
 - Transmit multiple frames in a row

- Frame fragmentation
 - Split service data over multiple frames
- Frame aggregation
 - Multiple service data in a single frame
 - Allows multiple packets to reach Access Point in a single transmission

Calculating packet durations

- Example duration for a 1500 byte
 802.11g packet
 - 6 Mbps for header
 - 24 Mbps for payload
 - 566 μs for total packet
 - Plus 10 μs for SIFS
 - Plus 34 μs for ACK
- https://sarwiki.informatik.huberlin.de/Packet transmission time in 802.11

Data transmission bitrate		24	
(802.11g / a*):		Mbps	
	Bitrate	Length	Time
	(Mbit/s)	(bits)	(µs)
DIFS			28
PHY header: PLCP preamble	-	-	16
A PHY header: PLCP header	6	24	4
MAC headers (28 bytes) + MAC			
T body	24	12246	512
A signal extension time			6
tx time data:			566
SIFS			10
A PHY header: PLCP preamble	-	-	16
C PHY header: PLCP header	6	24	4
K MAC headers + PHY pad	24	134	8
signal extension time			6
tx time ack:			44
tx time data + ack:			610

Implementation Drives Specification Sometimes

- SIFS nominally defined by processing time
 - Aside: Big challenge for SDRs
- Convolutional decoders need(ed)
 16 µs to finish processing
 - For highest-rate MCS (ERP-OFDM)
- Processing must finish before next packet starts
 - To be able to decode NAV in header

Data transmission bitrate (802.11g / a*):		24 Mbps		
	Bitrate	Length	Time	
	(Mbit/s)	(bits)	(µs)	
DIFS			28	
PHY header: PLCP preamble	-	-	16	
A PHY header: PLCP header	6	24	4	
MAC headers (28 bytes) + MAC				
T body	24	12246	512	
A signal extension time			6	
A signal extension time tx time data:			5 66	
tx time data:	_	_	566	
tx time data:	- 6	- 24	566	
tx time data: SIFS A PHY header: PLCP preamble	- 6 24	- 24 134	566 10 16	
tx time data: SIFS A PHY header: PLCP preamble C PHY header: PLCP header			566 10 16 4	
tx time data: SIFS A PHY header: PLCP preamble C PHY header: PLCP header K MAC headers + PHY pad			566 10 16 4 8	

Break + xkcd

TECH TRIVIA: NO ONE ACTUALLY KNOWS WHAT DEVICES PRODUCE THOSE CRYPTIC WIFI NETWORKS. THEY JUST APPEAR AT RANDOM ACROSS THE EARTH'S SURFACE.

Outline

- 802.11 Access Control
- 802.11 Frame format
- 802.11e Improvements to MAC

Microcontrollers and WiFi

802.11e improves MAC layer

- Hybrid Coordination Function (HCF)
 - Modifies contention-free access (still no one uses it)
 - Modifies contention-based access: Enhanced Distributed Channel Access (EDCA)
- EDCA: Modifies Quality of Service based on application
 - Example of breaking layering for an optimization
 - Categories (lowest to highest priority):
 - Background
 - Best Effort
 - Video
 - Voice

Different priority for different application category

- Expand to more IFS lengths for different traffic categories
 - Smallest AIFS (equal to DIFS) goes to Voice, Largest to Background
 - Contention Window min and max also change for each category
 - Selects a probability that most important category goes first

Multiple queues within a single device

■ Figure 4. [3] Legacy 802.11 station and 802.11e station with four ACs within one station.

802.11e also adds maximum durations

- 802.11e also defines duration a device can transmit for
 - Based on PHY in use and Application category
 - Background/Best Effort: one frame per contention win
 - Example, up to 11 ms for Voice on 802.11ac
 - Could be one really big frame at a low data rate
 - Could be multiple frames in a row separated by SIFS

Outline

- 802.11 Access Control
- 802.11 Frame format
- 802.11e Improvements to MAC

Microcontrollers and WiFi

Why, why not, talk WiFi in when thinking about wireless for resource-constrained computing (aka, "The IoT")?

- Pros
 - Ubiquitous
 - High-performance
- Cons
 - Complex configuration
 - And security requirements
 - UCSD-DEVICE anyone?
 - Expensive in energy and money

WiFi capability in microcontrollers

- ESP32 (extremely popular; there are others)
 - Microcontroller plus WiFi radio in single chip
 - (Same idea as nRF52840)
- Capabilities
 - 802.11b/g/n 2.4 GHz only
 - 20 MHz or 40 MHz channels
 - Single antenna only (no MIMO)
 - MCS0-7
 - 7 Mbps 150 Mbps
 - Tx power up to 20.5 dBm

Low power WiFi

- Question: should a microcontroller stay connected or reconnect?
 - Light sleep: stay connected always, only listening to beacons
 - Deep sleep: reconnect to network each time data is ready
- Answer for ESP32 depends on security and data interval
 - Resecuring during connection takes lots of energy
 - Crossover point is about 60 seconds
 - Insecure transmissions have a crossover of 5-15 seconds.

https://blog.voneicken.com/2018/lp-wifi-esp-comparison/#conclusions

Next Up: Longer-Range Technologies

