DeepEMO: A Multi-Indicator Convolutional Neural Network-based Evolutionary Multi-Objective Algorithm

Emilio Bernal-Zubieta $^{1[0000-0003-2043-0238]}$, Jesús Guillermo Falcón-Cardona $^{1[0000-0003-1131-098X]}$, and Jorge M. Cruz-Duarte $^{1[0000-0003-4494-7864]}$

Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., México, 64849 {a01570751, jfalcon, jorge.cruz}@tec.mx

1 Supplementary Material

This section will include supplementary material regarding our experiments, such as tables and figures. In Figure 1, we show a graphic comparison of the final approximation sets obtained by each EMOA for the DTLZ1 test problem, which features a simplex-like linear geometry. Figure 2 shows a graphic comparison of the final approximation sets obtained by each EMOA for the three-objective DTLZ2⁻¹ problem, which features a convex geometry. In Figure 3, we show a graphic comparison of the final approximation sets obtained by each EMOA for the IMOP5 test problem, which features a disconnected geometry. This problem is difficult for EMOAs as its Pareto front comprises eight circular regions.

In Tables 1 to 7, we present the complete numerical results of all the EMOAs regarding R2, E_s , IGD, IGD⁺, Δ_p , ϵ^+ , and SPD. In all tables, the two best values are shown in grayscale, with the darker tone being the best. A one-tailed Wilcoxon test using a significance level of $\alpha = 0.05$ was used to check if the outperforming EMOA performed significantly better than the other EMOAs, with a # symbol being placed to indicate this. Table 1 shows the mean performance and standard deviation (in parentheses) for each problem as measured by the R2indicator. Table 2 shows the mean performance and the standard deviation (in parentheses) for each problem as measured by the E_s indicator. Table 3 features the mean performance and standard deviation (in parentheses) for each MOP as measured by the IGD indicator. Table 4 showcases the mean performance and standard deviation (in parentheses) as measured by the IGD⁺. Table 5 shows the mean performance and standard deviation (in parentheses) as measured by the Δ_p indicator. Table 6 includes the mean performance and standard deviation (in parentheses) as measured by the ϵ^+ indicator. Table 7 shows the mean performance and standard deviation (in parentheses) as measured by the SPD indicator.

2

Fig. 1. Graphic comparison of performance between **(a)** DeepEMO, **(b)** Rand-DeepEMO, **(c)** SMS-EMOA, **(d)** E_s -EMOA, and **(e)** R2-EMOA in the DTLZ1 problem.

Fig. 2. Graphic comparison of performance between (a) DeepEMO, (b) Rand-DeepEMO, (c) SMS-EMOA, (d) E_s -EMOA, and (e) R2-EMOA in the DTLZ2⁻¹ problem.

4 Bernal-Zubieta et al.

Fig. 3. Graphic comparison of performance between **(a)** DeepEMO, **(b)** Rand-DeepEMO, **(c)** SMS-EMOA, **(d)** E_s -EMOA, and **(e)** R2-EMOA in the IMOP5 problem.

Table 1. Mean and standard deviation (in parentheses) of R2 results. A symbol # is placed when the outperforming EMOA performed significantly better than the other EMOAs based on a one-tailed Wilcoxon test using a significance level of $\alpha=0.05$. The two best values are shown in gray scale, where the darker tone corresponds to the best value.

MOP	Dim.	SMS-EMOA	$R2\text{-}\mathbf{EMOA}$	E_s -EMOA	Rand-DeepEMO	DeepEMO
DTLZ1	3	$6.815529e-01^5 \#$ (5.712299e-02)	3.689387e-01 ¹ (3.994651e-04)	$5.918704e-01^4 #$ (1.014548e-01)	$5.123234e-01^2 \#$ (1.147065e-01)	5.517063e-01 ³ # (1.234633e-01)
DTLZ1 ⁻¹	3	$2.193736e+03^{3}\#$ $(4.279848e+02)$	$3.446509e + 04^5 #$ (1.545554e + 04)	$\begin{array}{c} 6.598808e + 02^{1} \\ (1.485682e + 02) \end{array}$	5.644166e+03 ⁴ # (4.740002e+03)	$ \begin{array}{c} 6.744177e + 02^{2} \\ (1.620693e + 02) \end{array} $
DTLZ2	3	$7.156855e+00^5 \#$ (2.363708e-01)	$\begin{array}{c} 1.119036e + 00^{1} \\ (2.033107e - 01) \end{array}$	$ \begin{array}{c} 1.912819e + 00^3 \# \\ (2.553794e - 01) \end{array} $	$\begin{array}{c} 4.945274e + 00^4 \# \\ (2.491535e + 00) \end{array}$	$1.173508e + 00^{2}$ (2.372220e-01)
$\overline{\mathrm{DTLZ}2^{-1}}$	3	$6.448971e+00^2 \#$ (3.393293e-01)	$\begin{array}{c} 6.090353e + 02^5 \# \\ (1.415175e + 02) \end{array}$	$\begin{array}{c} 6.128197e + 00^{1} \\ (6.346480e - 01) \end{array}$	$\begin{array}{c} 9.133029e{+}01^4\# \\ (7.471806e{+}01) \end{array}$	$\begin{array}{c} 7.416565e + 00^{3} \# \\ (5.866231e - 01) \end{array}$
DTLZ7	3	$2.692379e+03^{1}$ (6.666652e+02)	$3.741646e+03^5 \#$ (7.247880e+02)	$\begin{array}{c} 2.755525e + 03^{3} \\ (7.747503e + 02) \end{array}$	$\begin{array}{c} 2.859202\mathrm{e}{+03}^{4}\# \\ (6.703520\mathrm{e}{+02}) \end{array}$	$2.745643e+03^2 \#$ $(5.542140e+02)$
DTLZ7 ⁻¹	3	$2.797489e+04^3 #$ $(4.135886e-01)$	$\begin{array}{c} 2.797913e + 04^5 \# \\ (3.282683e + 00) \end{array}$	$\begin{array}{c} 2.796073e + 04^{1} \\ (2.680030e + 00) \end{array}$	$\begin{array}{c} 2.797824 \text{e} + 04^4 \# \\ (2.575768 \text{e} + 00) \end{array}$	$2.796973e + 04^2 \#$ (5.894600e+00)
IMOP1	2	$1.323267e-01^{1}$ (1.590965e-04)	$7.788520e+02^5 \#$ (9.511550e+00)	$1.981020e-01^3 \#$ (1.377545e-02)	$9.272196e+01^4$ (1.125635e+02)	$1.323860e-01^2$ (3.274378e-04)
IMOP2	2	$4.026869e+01^{1}$ (2.860542e+01)	$7.203953e+02^5 #$ (1.070688e+01)	$\begin{array}{c} 4.999264e + 01^2 \\ (2.671132e + 01) \end{array}$	$\begin{array}{c} 4.719226e + 02^{3} \# \\ (1.065543e + 02) \end{array}$	$7.172669e+02^4 \#$ (8.236408e+00)
IMOP3	2	$2.419825e+00^3$ (4.803895e+00)	$6.595992e+02^5 #$ (5.981732e+01)	$\begin{array}{c} 2.149384e + 00^{2} \\ (3.120995e + 00) \end{array}$	$\begin{array}{c} 4.873941e + 02^4 \# \\ (1.792201e + 01) \end{array}$	$1.620519e+00^{1}$ $(1.976019e+00)$
IMOP4	3	$4.593245e+02^2$ (8.069629e+00)	$\begin{array}{c} 1.315927e + 03^5 \# \\ (5.327980e + 00) \end{array}$	$\begin{array}{c} 4.585174e + 02^{1} \\ (4.045225e + 00) \end{array}$	$1.193923e+03^4 #$ (1.800646e+01)	$4.598390e+02^{3} (6.866369e+00)$
IMOP5	3	$1.880301e+02^3 \#$ (4.284865e+00)	$\begin{array}{c} 2.855712e + 02^5 \# \\ (4.247623e + 01) \end{array}$	$\begin{array}{c} 1.848943e + 02^{1} \\ (3.847052e + 00) \end{array}$	$2.627559e + 02^4 \#$ (1.357482e + 01)	$ \begin{array}{c c} 1.854980e + 02^{2} \\ (3.714512e + 00) \end{array} $
IMOP6	3	$1.574111e + 02^{3} \# $ $(1.162030e + 02)$	$\begin{array}{c} 8.069710e + 02^5 \# \\ (4.268351e + 01) \end{array}$	$\begin{array}{c} 1.312674e + 02^{1} \\ (5.902483e - 01) \end{array}$	$\begin{array}{c} 7.730191e + 02^4 \# \\ (1.478006e + 02) \end{array}$	$\begin{array}{c} 1.313697e + 02^2 \\ (9.452300e - 01) \end{array}$
IMOP7	3	$7.271210e+02^2#$ (3.495057e+02)	$9.119309e+02^5 \#$ (3.356095e+00)	$\begin{array}{c} 4.588144e{+}01^{1} \\ (1.000246e{+}00) \end{array}$	$8.527087e + 02^3 \#$ (1.860357e+02)	$8.572841e+02^4 \#$ $(1.794092e+02)$
IMOP8	3	$\begin{array}{c} 2.834786e + 02^{3} \\ (2.961041e + 02) \end{array}$	$ \begin{array}{c} 1.084524 \mathrm{e} + 03^5 \# \\ (2.963933 \mathrm{e} + 02) \end{array} $	$\begin{array}{c} 2.269768e + 02^{1} \\ (1.219134e + 01) \end{array}$	$5.316769e+02^4$ $(4.659727e+02)$	$\begin{array}{c} 2.325103e{+}02^2\\ (1.984310e{+}01) \end{array}$
VIE1	3	$2.235373e+03^3 \#$ (5.997280e+00)	$2.247898e + 03^4 \#$ (9.418676e+01)	$\begin{array}{c} 2.050822e{+}03^{1} \\ (1.869753e{+}01) \end{array}$	$2.175530e+03^2#$ (3.984952e+01)	$\begin{array}{c} 2.235373e + 03^{3}\# \\ (5.997280e + 00) \end{array}$
VIE2	3	$2.007229e+04^3 \#$ (2.429878e+00)	$2.021204e+04^5\#$ (1.784344e+02)	$2.006071e+04^{1}$ (1.906801e+00)	$2.015485e+04^4#$ (1.044185e+02)	$\begin{array}{c} 2.006133e{+}04^2 \\ (1.580238e{+}00) \end{array}$
VIE3	3	$1.217050e + 04^{1}$ (5.298401e-01)	$1.321261e+04^5\# (4.919373e+02)$	$\begin{array}{c} 1.218598\mathrm{e}{+04^3\#} \\ (1.922241\mathrm{e}{+01}) \end{array}$	$\begin{array}{c} 1.258677e + 04^4 \# \\ (1.762456e + 02) \end{array}$	$1.218432e + 04^{2} \# $ $(1.637350e + 01)$

Table 2. Mean and standard deviation (in parentheses) of E_s results. A symbol # is placed when the outperforming EMOA performed significantly better than the other EMOAs based on a one-tailed Wilcoxon test using a significance level of $\alpha=0.05$. The two best values are shown in gray scale, where the darker tone corresponds to the best value.

MOP	Dim.	SMS-EMOA	R2-EMOA	E_s -EMOA	Rand-DeepEMO	DeepEMO
DTLZ1	3	$8.555404e+05^4\#$	$7.838071e+05^{1}$	$7.881412e + 05^2 \#$	$1.796610e + 06^5 \#$	$7.892367e + 05^3 \#$
DILL		(1.096847e+04)	(2.322225e+03)	(7.043412e+03)	(3.248982e+06)	(1.413359e+04)
$DTLZ1^{-1}$	3	$9.250368e-04^3\#$	$4.000004e+12^5\#$	$6.132142e-04^{1}$	2.000000e+11 ⁴ #	$6.155464e-04^2$
DILL	٥	(2.348007e-05)	(3.947013e+12)	(2.054614e-05)	(6.155870e+11)	(2.006527e-05)
DTLZ2	3	$1.057069e+05^2#$	$1.193565e + 08^4 \#$	$4.654907e+04^{1}$	$3.199842e+10^5 #$	$5.358347e + 07^3 \#$
DILLEZ	J	(9.514843e+03)	(5.109900e+08)	(5.815003e+02)	(1.427364e+11)	(2.222651e+08)
$DTLZ2^{-1}$	3	$1.794532e+03^3#$	$2.580727e + 51^5 \#$	$1.086880e+03^{1}$	2.000037e+11 ⁴ #	$1.705908e + 03^2 \#$
DILLZ)	(3.147280e+01)	(7.963084e+51)	(1.337135e+01)	(6.155857e+11)	(7.696956e+01)
DOT 25		$2.794323e+05^2#$	$1.382596e + 23^5 \#$	$9.604062e+05^3$	$2.080375e+06^4#$	$1.545118e+05^{1}$
DTLZ7	3	(4.317235e+05)	(6.183155e+23)	(3.399590e+06)	(4.081876e+06)	(1.531743e+05)
D. 27 - 1		$5.671426e+05^2\#$	1.051234e+18 ⁵ #	$2.425466e+05^{1}$	1.009549e+11 ³ #	3.817727e+11 ⁴ #
DTLZ7 ⁻¹	3	(5.781104e+05)	(4.700993e+18)	(1.811588e+04)	(4.492142e+11)	(9.814288e+11)
TMOD:	_	$1.147259e+06^3\#$	1.006376e+15 ⁵ #	$1.781171e+05^{1}$	$2.096084e + 08^4 \#$	$1.145280e + 06^2 \#$
IMOP1	2	(5.335096e+04)	(3.514131e+15)	(7.473682e+03)	(5.782098e+08)	(9.673941e+04)
T) (ODO	2	$8.309957e + 05^2 \#$	1.391101e+14 ⁵ #	$3.983023e+05^{1}$	1.416161e+07 ³ #	1.483422e+13 ⁴ #
IMOP2		(1.526420e+05)	(6.198192e+14)	(4.562362e+04)	(1.091261e+07)	(3.722084e+13)
TMODO	0	$7.205966e+05^3\#$	$7.064968e + 11^5 \#$	$5.667994e + 05^{2}$	3.182858e+07 ⁴ #	$5.059133e+05^{1}$
IMOP3	2	(3.147870e+05)	(2.122832e+12)	(2.322607e+05)	(2.107698e+07)	(2.046339e+05)
TMOD4	3	$3.491875e+06^3\#$	$2.456896e + 22^5 \#$	$2.108116e+06^{1}$	1.134721e+11 ⁴ #	$2.134124e+06^2$
IMOP4	3	(5.221591e+05)	(6.232126e+22)	(2.807477e+05)	(1.908632e+11)	(3.428303e+05)
TMODE		$3.068360e+05^3\#$	$7.081429e + 29^5 \#$	$1.446778e + 05^2$	1.028503e+11 ⁴ #	$1.443357e+05^{1}$
IMOP5	3	(1.602601e+04)	(3.166832e+30)	(2.443692e+03)	(4.466868e+11)	(2.425053e+03)
TMODA		$2.164288e+06^3\#$	1.451166e+30 ⁵ #	$6.480664e+04^2$	9.105640e+07 ⁴ #	$6.474019e+04^{1}$
IMOP6	3	(9.031515e+06)	(6.482119e+30)	(1.078281e+03)	(7.974157e+07)	(7.823316e+02)
IMOD7		$2.825797e+10^{2}#$	1.869560e+34 ⁴ #	$1.001604e+05^{1}$	1.874938e+26 ³ #	2.470831e+38 ⁵ #
IMOP7	3	(1.473128e+10)	(7.856127e+34)	(2.092979e+03)	(8.384973e+26)	(1.104989e+39)
TMODO		$9.683622e+05^3\#$	7.807935e+38 ⁵ #	$2.059517e+04^{1}$	3.461083e+08 ⁴ #	$2.129625e+04^{2}$
IMOP8	3	(2.956174e+06)	(3.491815e+39)	(1.058066e+03)	(7.961343e+08)	(1.833898e+03)
T.TID4		1.071705e+04 ² #	8.170045e+44 ⁴ #	$4.457618e + 03^{1}$	2.000000e+11 ³ #	1.071705e+04 ² #
VIE1	3	(4.091148e+02)	(3.653755e+45)	(3.769419e+02)	(6.155870e+11)	(4.091148e+02)
LITTO		$7.409281e+06^3\#$	8.586644e+13 ⁵ #	$1.701927e + 06^2$	1.310283e+12 ⁴ #	$1.655433e+06^{1}$
VIE2	3	(4.571843e+05)	(3.069842e+14)	(2.107662e+05)	(5.407335e+12)	(1.522353e+05)
T.TTO		2.762736e+05 ³ #	1.324369e+45 ⁵ #	$2.664948e+02^{1}$	2.000002e+11 ⁴ #	$2.739037e+02^{2}$
VIE3	3	(2.544827e+04)	(4.650078e+45)	(1.059207e+02)	(6.155870e+11)	(2.172698e+02)

Table 3. Mean and standard deviation (in parentheses) of IGD results. A symbol # is placed when the outperforming EMOA performed significantly better than the other EMOAs based on a one-tailed Wilcoxon test using a significance level of $\alpha=0.05$. The two best values are shown in gray scale, where the darker tone corresponds to the best value.

MOP	Dim.	SMS-EMOA	$R2\text{-}\mathbf{EMOA}$	E_s -EMOA	Rand-DeepEMO	DeepEMO
DTLZ1	3	$2.861410e-02^2\#$	$2.827091e-02^{1}$	$2.892274e-02^4#$	$2.988609e-02^5\#$	$2.880920e-02^3\#$
DILL	3	(3.162496e-04)	(2.939249e-05)	(2.866761e-04)	(8.128918e-04)	(2.233730e-04)
$DTLZ1^{-1}$	3	$3.667983e+02^{1}$	$3.723776e + 02^5 \#$	$3.669734e + 02^3 \#$	$3.701679e + 02^4 \#$	$3.669690e + 02^2 \#$
DILL	3	(3.274004e-02)	(1.143572e+00)	(6.065991e-02)	(7.080741e-01)	(4.952593e-02)
DTI 70	9	$1.045549e-01^5\#$	$7.813285e-02^2\#$	$7.661003e-02^{1}$	$9.636619e-02^4\#$	$7.876167e-02^3\#$
DTLZ2	3	(2.150346e-03)	(1.592205e-03)	(7.005726e-04)	(3.013346e-03)	(1.834633e-03)
$\mathrm{DTLZ2^{-1}}$	3	$2.756250e-01^2\#$	6.316006e-01 ⁵ #	$2.635957e-01^{1}$	3.878818e-01 ⁴ #	$2.770555e-01^3\#$
DILZZ	3	(1.872538e-03)	(3.930287e-02)	(1.734480e-03)	(3.884384e-02)	(2.960541e-03)
D.T.I. 77	2	$3.262437e-01^3\#$	$7.428838e-01^5\#$	$2.945584e-01^2$	$3.495229e-01^4\#$	$2.767777e-01^{1}$
DTLZ7	3	(2.533027e-01)	(3.327275e-01)	(3.450529e-01)	(2.790459e-01)	(2.236599e-01)
DOT 75-1	0	1.203165e-01 ⁴ #	$1.250064 \text{e-} 01^5 \#$	$5.341874e-02^{1}$	1.016095e-01 ³ #	$6.670036e-02^2$
$DTLZ7^{-1}$	3	(1.446368e-02)	(2.222334e-02)	(1.483899e-03)	(1.893063e-02)	(2.450917e-02)
D (OD4	_	$5.125835e-02^2\#$	$8.976944e-01^5\#$	$2.051430e-02^{1}$	2.777318e-01 ⁴ #	$5.280787e-02^3\#$
IMOP1	2	(3.776483e-03)	(9.408380e-03)	(3.488812e-03)	(1.706220e-01)	(6.685649e-03)
T) (OD0	0	$1.079952e-01^{1}$	8.075596e-01 ⁵ #	$1.119683e-01^2$	4.823508e-01 ³ #	8.036038e-01 ⁴ #
IMOP2	2	(1.904404e-02)	(1.361505e-02)	(1.714082e-02)	(1.089253e-01)	(1.050013e-02)
n topo	0	$8.405944e-02^{1}$	8.269868e-01 ⁵ #	8.862462e-02 ³	6.788577e-01 ⁴ #	$8.691152e-02^2$
IMOP3	2	(2.557894e-02)	(5.680047e-02)	(2.518382e-02)	(4.240582e-02)	(2.043327e-02)
IMOP4	3	$4.865782e-02^2$	$9.872588e-01^5 \#$	$4.737670e-02^{1}$	8.944643e-01 ⁴ #	$4.904950e-02^3$
IMOP4	3	(1.213043e-02)	(4.277788e-03)	(9.966395e-03)	(1.691783e-02)	(1.245756e-02)
IMODE	9	$9.385251e-02^3\#$	2.211618e-01 ⁵ #	$8.606775e-02^{1}$	1.235335e-01 ⁴ #	$8.649406e-02^2$
IMOP5	3	(1.243771e-03)	(2.245907e-01)	(5.635506e-04)	(7.597249e-03)	(8.851700e-04)
IMOP6	3	1.555263 e- 01^3 #	6.549822e-01 ⁵ #	$1.250250 e\text{-}01^{1}$	6.100868e-01 ⁴ #	$1.251928e-01^2$
IMOPO	3	(1.164452e-01)	(4.267674e-04)	(4.934768e-04)	(1.132456e-01)	(5.610394e-04)
IMOP7	3	$7.921229e-01^2 \#$	$1.006864e + 00^5 \#$	$6.415742e-02^{1}$	9.211792e-01 ³ #	$9.298298e-01^4 \#$
IMOP	3	(3.698789e-01)	(6.923686e-03)	(1.201222e-03)	(2.024124e-01)	(2.026094e-01)
IMOP8	3	$1.785156e-01^3$	$9.180657e-01^5\#$	$1.290660e-01^2$	$3.887299e-01^4#$	$1.290447e-01^{1}$
IMOP8	3	(1.793178e-01)	(1.197965e-01)	(4.528589e-03)	(3.477471e-01)	(5.670750e-03)
VIE1	3	1.750223e-01 ¹	$3.036876e-01^4\#$	$2.123987e-01^2\#$	2.393316e-01 ³ #	$1.750223 \text{e-} 01^1$
VIEI	િ	(3.132802e-03)	(5.727569e-02)	(6.836933e-03)	(5.007878e-02)	(3.132802e-03)
VIE2	3	$3.037353e-02^3 \#$	$1.150057e-01^5\#$	$2.133348e-02^2$	7.256103e-02 ⁴ #	$2.125693e-02^{1}$
VIEZ	3	(1.406457e-03)	(3.214621e-02)	(5.992631e-04)	(1.793425e-02)	(5.876940e-04)
VIE3	3	6.734126e-01 ¹	$1.777128e + 00^5 \#$	$6.951721e-01^3 \#$	1.232485e+00 ⁴ #	$6.923582 \text{e-} 01^2 \#$
VIES	0	(1.698856e-03)	(7.591623e-01)	(2.019560e-02)	(3.355433e-01)	(3.133966e-02)

Table 4. Mean and standard deviation (in parentheses) of IGD⁺ results. A symbol # is placed when the outperforming EMOA performed significantly better than the other EMOAs based on a one-tailed Wilcoxon test using a significance level of $\alpha=0.05$. The two best values are shown in gray scale, where the darker tone corresponds to the best value.

MOP	Dim.	SMS-EMOA	$R2\text{-}\mathbf{EMOA}$	E_s -EMOA	Rand-DeepEMO	DeepEMO
DTLZ1	3	$1.723662e-02^{1}$ $(2.997624e-04)$	$1.750618e-02^2 \#$ (2.381428e-04)	$1.775521e-02^4 \#$ (3.922386e-04)	$1.820652e-02^5 \#$ (4.997667e-04)	$1.770381e-02^3 \#$ (3.523215e-04)
DTLZ1 ⁻¹	3	$3.634408e+02^{1}$ (3.606626e-02)	$3.692607e + 02^5 \#$ (1.191903e+00)	$3.636146e+02^3 \#$ (6.732243e-02)	$3.669071e+02^4 \#$ (7.276475e-01)	$3.636082e+02^2 \#$ $(5.437623e-02)$
DTLZ2	3	$2.519279e-02^{1}$ (3.222554e-04)	$3.045805 \text{e-} 02^3 \#$ (1.288124e-04)	$3.056343e-02^5 \#$ (8.038148e-04)	$2.979966e-02^2 \#$ (1.163911e-03)	$3.052701e-02^4 #$ (1.438658e-04)
DTLZ2 ⁻¹	3	$1.300036e-01^2$ (1.603028e-03)	$3.506713e-01^5 \#$ (2.656736e-02)	$1.294503e-01^{1}$ $(1.863423e-03)$	1.876921e-01 ⁴ # (1.878283e-02)	$\frac{1.318378\text{e-}01^3\#}{(3.019644\text{e-}03)}$
DTLZ7	3	$1.174114e-01^{1}$ $(1.768499e-01)$	$4.501602 \text{e-} 01^5 \#$ (2.465525 e-01)	$1.507089e-01^3 \#$ (2.246874e-01)	$1.575071e-01^4 #$ $(1.760925e-01)$	$1.205011e-01^2 \#$ (1.059940e-01)
$DTLZ7^{-1}$	3	$1.756750e-02^2$ (1.824919e-02)	$4.849035e-02^5 \#$ (1.499030e-02)	$1.653446e-02^{1}$ (5.428712e-04)	$2.600850e-02^4 \#$ (6.447150e-03)	$2.165257e-02^3 \#$ (9.545484e-03)
IMOP1	2	$3.872137e-04^{1}$ (5.215087e-06)	$7.227611e-01^5 \#$ (1.134124e-02)	$7.289502e-04^3 \#$ (2.879971e-05)	$6.599975e-02^4 \#$ (7.834779e-02)	$3.903555e-04^2$ (1.555003e-05)
IMOP2	2	$3.157071e-03^{1}$ (1.173276e-03)	$3.039119 \text{e-} 01^5 \#$ (2.363738 e-05)	$3.859210e-03^2 \#$ (1.098733e-03)	$2.610628e-01^3 \#$ (7.677068e-02)	$3.039075 \text{e-} 01^4 \#$ (2.074418e-05)
IMOP3	2	$4.036363e-02^{1}$ (1.011898e-02)	$4.761706e-01^5 \#$ (1.088737e-02)	$4.294459e-02^2$ (1.028424e-02)	$3.641483e-01^4 \#$ (3.871938e-02)	$4.424858e-02^3$ (7.594932e-03)
IMOP4	3	$1.342977e-02^2$ (4.920049e-03)	$6.962487 \text{e-} 01^5 \#$ (4.975672 e-03)	$1.305994e-02^{1}$ (4.235382e-03)	$5.960938e-01^4 #$ (1.542981e-02)	$1.371423e-02^3$ (5.084249e-03)
IMOP5	3	$4.903519e-02^3 \#$ (6.189105e-04)	$1.256344 \text{e-} 01^5 \#$ (1.371114e-01)	$4.254827e-02^{1}$ (3.172216e-04)	6.228372e-02 ⁴ # (3.283851e-03)	$4.271106e-02^2$ ($4.332631e-04$)
IMOP6	3	$6.340468e-02^3 \#$ (4.128570e-02)	$4.829676 \text{e-} 01^5 \#$ (7.972308e-02)	$5.209422e-02^{1}$ (7.982253e-04)	4.656887e-01 ⁴ # (9.674080e-02)	$5.218971e-02^2$ (9.182813e-04)
IMOP7	3	$4.153648e-01^2 \#$ (2.023482e-01)	$5.182143 \text{e-} 01^5 \#$ (4.725092 \text{e-} 04)	$2.335656e-02^{1}$ (5.070965e-04)	$4.875721e-01^3 \#$ (1.093828e-01)	4.889347e-01 ⁴ # (1.089516e-01)
IMOP8	3	$8.010665e-02^3$ (9.964600e-02)	$6.434371e-01^5 \#$ (9.303049e-02)	$7.279422e-02^2$ (4.199884e-03)	$2.792545e-01^4 #$ (2.844809e-01)	$7.211751e-02^{1}$ (5.967181e-03)
VIE1	3	$8.772351e-02^{1}$ (2.586308e-03)	$1.085663 \text{e-} 01^4 \#$ (1.872102e-02)	$9.604337e-02^3 \#$ (4.324776e-03)	$9.530881e-02^2\#$ (1.273319e-02)	$8.772351e-02^{1}$ (2.586308e-03)
VIE2	3	$4.456801e-03^{1}$ (9.748758e-05)	$9.077799e-03^5 \#$ (1.809990e-03)	$5.327477e-03^2 \#$ (3.357166e-04)	5.812080e-03 ⁴ # (6.742103e-04)	$5.390655e-03^3 \#$ (3.163599e-04)
VIE3	3	$1.983055e-01^{1}$ $(7.654473e-05)$	9.247887e-01 ⁵ # (5.928640e-01)	$2.159523e-01^2 \#$ $(8.240867e-03)$	$2.509725 \text{e-} 01^4 \#$ (4.329906 e- 02)	$2.233116e-01^3 \#$ (2.886938e-02)

Table 5. Mean and standard deviation (in parentheses) of Δ_p results. A symbol # is placed when the outperforming EMOA performed significantly better than the other EMOAs based on a one-tailed Wilcoxon test using a significance level of $\alpha=0.05$. The two best values are shown in gray scale, where the darker tone corresponds to the best value.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55e-01 ⁵ # 909e-01) 10e+02 ² # 593e-02) 17e-02 ³ # 533e-03) 15e-01 ³ # 541e-03) 777e-01 ¹ 559e-01)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0e+02 ² # 593e-02) 57e-02 ³ # 533e-03) 55e-01 ³ # 541e-03)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	593e-02) 57e-02 ³ # 533e-03) 5e-01 ³ # 541e-03)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	57e-02 ³ # 533e-03) 55e-01 ³ # 541e-03)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	533e-03) 55e-01 ³ # 541e-03) 777e-01 ¹
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	55e-01 ³ # 541e-03) 777e-01 ¹
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	541e-03) 777e-01 ¹
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	777e-01 ¹
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	599e-01)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$036e-02^2$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	917e-02)
IMOP1 2 5.125835e-02 ² # 8.976944e-01 ⁵ # 2.051430e-02 ¹ 2.777318e-01 ⁴ # 5.28078	37e-02 ³ #
IMOP1 2 (3.776483e-03) (9.408380e-03) (3.488812e-03) (1.706220e-01) (6.6856	649e-03)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8e-01 ⁴ #
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	013e-02)
$8.405944e-02^{1}$ $8.269868e-01^{5}\#$ $8.862462e-02^{3}$ $6.788577e-01^{4}\#$ 8.6911	152e-02 ²
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	327e-02)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$50e-02^3$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	756e-02)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$106e-02^2$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	700e-04)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	928e-01 ²
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	394e-04)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	08e-01 ⁴ #
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$)94e-01)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	147e-01 ¹
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	750e-03)
VIE1 3 $4.269261e-01^1$ $4.325627e-01^2$ $5.830041e-01^4\#$ $4.666026e-01^3\#$ $4.269261e-01^4\#$	261e-01 ¹
VIET 3 (6.285103e-03) (8.710993e-02) (2.487121e-02) (3.965330e-02) (6.285103e-03)	103e-03)
VIE2 3 3.037353e-02 ³ # 1.150057e-01 ⁵ # 2.214329e-02 ² 7.256103e-02 ⁴ # 2.2066	675e-02 ¹
VIE2 3 $(1.406457e-03)$ $(3.214621e-02)$ $(2.084490e-03)$ $(1.793425e-02)$ (2.1123666)	312e-03)
VIE3 3 1.276038e $+00^1$ 2.994820e $+00^3$ # 1.678026e $+01^5$ # 2.925609e $+00^2$ # 1.672819	
VIE.3 $(1.432809e-02)$ $(2.278282e+00)$ $(5.425940e-01)$ $(1.356164e+00)$ (7.5898)	9e+01 ⁴ #

Table 6. Mean and standard deviation (in parentheses) of ϵ^+ results. A symbol # is placed when the outperforming EMOA performed significantly better than the other EMOAs based on a one-tailed Wilcoxon test using a significance level of $\alpha=0.05$. The two best values are shown in gray scale, where the darker tone corresponds to the best value.

MOP	Dim.	SMS-EMOA	$R2 extbf{-} extbf{EMOA}$	E_s -EMOA	Rand-DeepEMO	DeepEMO
DTLZ1	3	$3.351217e-02^{1}$	$3.576627e-02^2\#$	$3.644716e-02^3\#$	$4.588518e-02^5 \#$	$3.693057e-02^4 \#$
DILL	0	(1.337600e-03)	(1.294748e-04)	(1.543333e-03)	(6.490948e-03)	(2.911785e-03)
$DTLZ1^{-1}$	3	$5.506488e + 02^4 \#$	$5.506486e + 02^3 \#$	$5.506496e + 02^5 \#$	$5.506485e+02^2$	$5.506485e+02^{1}$
DILL	3	(3.754296e-04)	(4.838443e-04)	(3.381233e-03)	(3.275105e-04)	(3.773523e-04)
D/III 70		$6.140099e-02^{1}$	$8.548580e-02^4\#$	$8.008654e-02^2\#$	9.237722e-02 ⁵ #	$8.542433e-02^3\#$
DTLZ2	3	(3.119889e-03)	(2.328459e-04)	(4.564751e-03)	(8.661539e-03)	(1.781895e-04)
$DTLZ2^{-1}$	3	$3.269054 \text{e-} 01^2 \#$	8.201939e-01 ⁵ #	$3.175923e-01^{1}$	5.187449e-01 ⁴ #	$3.319803e-01^3\#$
DILZZ	3	(1.691369e-02)	(5.216523e-02)	(1.375828e-02)	(8.093046e-02)	(2.096213e-02)
DOL 77	9	$5.060694 e\text{-}01^{1}$	$1.653302e+00^{5}#$	$5.751527e-01^3$	7.260028e-01 ⁴ #	$5.658259e-01^2$
DTLZ7	3	(7.040513e-01)	(7.022865e-01)	(8.215834e-01)	(6.814760e-01)	(5.899179e-01)
DTI 77-1	2	$6.539725 \text{e-} 02^2$	2.641862e-01 ⁵ #	$4.442333e-02^{1}$	1.728907e-01 ⁴ #	$8.954716e-02^3\#$
$DTLZ7^{-1}$	3	(1.101246e-01)	(7.826103e-02)	(5.352483e-03)	(9.554187e-02)	(8.187483e-02)
D (OD)	0	$2.736021e-03^{1}$	9.911009e-01 ⁵ #	$1.076117e-02^3\#$	1.234198e-01 ⁴ #	$2.791864e-03^{2}$
IMOP1	2	(8.688928e-05)	(1.148696e-02)	(5.544852e-04)	(1.430895e-01)	(1.628172e-04)
DAODO	0	$2.939543e-02^{1}$	$9.999627e-01^5\#$	$3.413629e-02^2$	9.018331e-01 ³ #	$9.999574e-01^4#$
IMOP2	2	(1.287751e-02)	(2.543199e-05)	(1.180452e-02)	(2.214916e-01)	(2.180804e-05)
DAODO		$1.565163e-01^{1}$	8.667794e-01 ⁵ #	$1.650813e-01^{2}$	7.305232e-01 ⁴ #	$1.679943e-01^3$
IMOP3	2	(4.179985e-02)	(1.302946e-02)	(4.353941e-02)	(4.100049e-02)	(3.359432e-02)
IMOP4	3	$8.978590e-02^{1}$	9.961003e-01 ⁵ #	$8.981573e-02^2$	9.570172e-01 ⁴ #	$9.317336e-02^3$
IMOP4	િ	(3.085621e-02)	(1.423072e-03)	(3.134513e-02)	(1.241352e-02)	(3.495967e-02)
IMOP5	3	$1.642659e-01^{1}$	$3.318207e-01^5 \#$	$1.704069e-01^2$ #	2.191348e-01 ⁴ #	$1.708921e-01^3\#$
IMOF5	ว	(2.419221e-06)	(2.419582e-01)	(4.284000e-03)	(2.625320e-02)	(5.688217e-03)
IMOP6	3	$5.646745 e - 01^3 \#$	9.651527e-01 ⁵ #	$5.545996e-01^2$	9.507222e-01 ⁴ #	5.508729e-01 ¹
IMOFO	ว	(2.769343e-02)	(9.957586e-02)	(1.331839e-02)	(9.024993e-02)	(1.099010e-02)
IMOP7	3	$8.084795 \text{e-} 01^2 \#$	$9.995894e-01^5 \#$	$7.598088e-02^{1}$	$9.468639e-01^3\#$	$9.490800e-01^4\#$
IMOP /	0	(3.827055e-01)	(4.949771e-04)	(7.155305e-03)	(2.036990e-01)	(2.000066e-01)
IMOP8	3	$3.014464e-01^3$	$1.633005e+00^5#$	$1.742035e-01^2$	7.445496e-01 ⁴ #	1.731876e-01 ¹
IMOF 8	ว	(5.387722e-01)	(5.402161e-01)	(2.952561e-02)	(7.807219e-01)	(2.647645e-02)
VIE1	3	$2.324179e-01^{1}$	2.950161e-01 ⁴ #	$2.354697e-01^2$	2.581480e-01 ³	2.324179e-01 ¹
VIEI	0	(1.326168e-02)	(4.709265e-02)	(1.692497e-02)	(5.747417e-02)	(1.326168e-02)
VIE2	3	$2.653366e-02^4\#$	$3.341458e-02^5 \#$	$2.474499e-02^2 \#$	$2.270797e-02^{1}$	$2.556834e-02^3\#$
V IEZ	3	(3.640883e-04)	(8.476573e-03)	(2.958495e-03)	(5.404677e-03)	(2.668093e-03)
VIE3	3	$1.141736e+00^{1}$	$2.691092e+00^{5}#$	$1.205296e + 00^3 \#$	$1.157543e+00^2\#$	$1.212537e + 00^4 \#$
V IES	3	(3.422487e-03)	(1.350787e+00)	(2.994757e-02)	(2.011475e-02)	(2.543573e-02)

Table 7. Mean and standard deviation (in parentheses) of SPD results. A symbol # is placed when the outperforming EMOA performed significantly better than the other EMOAs based on a one-tailed Wilcoxon test using a significance level of $\alpha=0.05$. The two best values are shown in gray scale, where the darker tone corresponds to the best value.

MOP	Dim.	SMS-EMOA	R2-EMOA	E_s -EMOA	Rand-DeepEMO	DeepEMO
DTLZ1	3	$9.055368e+00^{5}\#$ (1.862275e-02)	9.148001e+00 ³ # (1.064257e-02)	$9.170850e+00^2$ (2.016585e-02)	9.076815e+00 ⁴ # (4.053745e-02)	$9.207686e+00^{1}$ (2.237013e-01)
DTLZ1 ⁻¹	3	$5.500000e+01^{1}$ (0.000000e+00)	$\begin{array}{c} 5.287191e + 01^3 \# \\ (1.601598e + 00) \end{array}$	5.500000e+01 ¹ (0.000000e+00)	$\begin{array}{c} 5.489999e + 01^2 \\ (3.078166e - 01) \end{array}$	$\begin{array}{c} 5.500000\text{e}{+01}^{1} \\ (0.000000\text{e}{+00}) \end{array}$
DTLZ2	3	$2.719427e + 01^5 \#$ (1.924554e-01)	$2.918328e+01^2 \#$ (1.302854e-01)	$2.982793e+01^{1}$ (7.523631e-02)	$2.762914e+01^4 #$ (3.355055e-01)	2.911081e+01 ³ # (1.483171e-01)
$DTLZ2^{-1}$	3	$5.383237e+01^3 #$ (4.486853e-02)	$3.169553e+01^5 \#$ (4.078808e+00)	$5.475480e+01^{1}$ (8.152090e-03)	$4.988262e+01^4 #$ (1.492805e+00)	$5.395493e+01^2 \#$ (8.854022e-02)
DTLZ7	3	$2.673063e+01^3 \#$ (7.251372e+00)	$1.258404e+01^5 \#$ (4.948288e+00)	$3.093610e+01^{1}$ (1.057513e+01)	$2.369720e+01^4 #$ (7.000567e+00)	$3.037893e+01^{2}$ (8.943325e+00)
$DTLZ7^{-1}$	3	$1.932238e+01^3 \#$ (1.139173e+00)	$1.524358e+01^5 \#$ (1.556741e+00)	$2.261089e+01^{1}$ (2.605415e-01)	$1.729186e+01^4 #$ (1.385740e+00)	$2.090379e+01^{2}\#$ (2.375215e+00)
IMOP1	2	$8.519319e+00^2\#$ (1.905160e-01)	$1.034160e + 00^5 \#$ (4.591984e-02)	$9.962349e+00^{1}$ (8.086014e-02)	$5.627870e + 00^4 \#$ (1.302105e+00)	$\begin{array}{c c} 8.488366e + 00^{3} \# \\ (2.326329e - 01) \end{array}$
IMOP2	2	$7.312690e+00^2#$ (3.648345e-01)	$\begin{array}{c} 1.532493e + 00^5 \# \\ (9.270027e - 02) \end{array}$	$7.559593e+00^{1}$ (3.197709e-01)	$3.900257e + 00^3 \#$ (8.939274e-01)	$ \begin{array}{c c} 1.557683e + 00^4 \# \\ (7.262938e - 02) \end{array} $
IMOP3	2	$8.126736e+00^3 \#$ (6.662503e-01)	$\begin{array}{c} 1.735499e + 00^5 \# \\ (4.025599e - 01) \end{array}$	$8.194289e+00^2$ (7.406894e-01)	$\begin{array}{c} 2.855633e + 00^4 \# \\ (4.513087e - 01) \end{array}$	$8.400648e+00^{1}$ (6.811295e-01)
IMOP4	3	$1.068482e+01^{3}$ $(3.478179e-01)$	$1.087290e+00^5 \#$ (3.100570e-02)	$1.072415e+01^{1}$ (2.837158e-01)	$\begin{array}{c} 1.747847e + 00^4 \# \\ (1.083156e - 01) \end{array}$	$\begin{array}{c} 1.068777e + 01^2 \\ (3.540219e - 01) \end{array}$
IMOP5	3	$2.097595e+01^3 \#$ (7.357660e-02)	$\begin{array}{c} 1.407017e + 01^5 \# \\ (5.036230e + 00) \end{array}$	$2.105391e+01^{2}$ (5.378903e-02)	$\begin{array}{c} 1.709453e + 01^4 \# \\ (4.161487e - 01) \end{array}$	$\begin{array}{c} 2.106648e{+}01^{1} \\ (8.141869e{-}02) \end{array}$
IMOP6	3	$2.449089e+01^3 \#$ (4.255569e+00)	$6.396641e+00^5 \#$ (2.866519e-01)	$2.643096e+01^{2}$ (9.714243e-02)	$7.544883e+00^4 #$ (3.899855e+00)	$\begin{array}{c} 2.643856e{+}01^{1} \\ (7.593774e{-}02) \end{array}$
IMOP7	3	$5.882547e+00^2 \#$ (8.991557e+00)	$\begin{array}{c} 1.127093e + 00^5 \# \\ (7.277314e - 02) \end{array}$	$2.406796e+01^{1}$ $(1.297629e-01)$	$\begin{array}{c} 2.504921e + 00^{3} \# \\ (4.208082e + 00) \end{array}$	$ \begin{array}{c c} 2.334991e + 00^4 \# \\ \hline (3.852071e + 00) \end{array} $
IMOP8	3	$3.769519e+01^3 \#$ (8.892837e+00)	$1.075654e + 01^5 \#$ (3.935661e + 00)	$4.092913e+01^{1}$ (4.285666e-01)	$2.856126e+01^4 \#$ $(1.263666e+01)$	$4.063746e+01^2$ (8.245871e-01)
VIE1	3	$4.644379e+01^2#$ (1.405075e-01)	$3.480495e+01^4 #$ (2.216949e+00)	$5.152835e+01^{1}$ (2.675843e-01)	$4.564080e+01^3 \#$ (1.240949e+00)	$4.644379e + 01^{2} \# $ $(1.405075e - 01)$
VIE2	3	$1.078860e + 01^3 \#$ (1.419263e-01)	$\begin{array}{c} 8.049622e + 00^5 \# \\ (7.536916e - 01) \end{array}$	$1.209430e+01^{1}$ (1.459292e-01)	$\begin{array}{c} 9.260691e + 00^4 \# \\ (5.977132e - 01) \end{array}$	$ \begin{array}{c c} 1.209226e + 01^2 \\ \hline (1.488862e - 01) \end{array} $
VIE3	3	$3.140308e+01^5 \#$ (4.239334e-01)	$3.393923e+01^4 \#$ (7.311392e+00)	$5.481397e+01^2$ (1.119817e-01)	$\begin{array}{c} 4.787282e + 01^{3} \# \\ (2.857204e + 00) \end{array}$	$\begin{array}{c} 5.483158e{+}01^{1} \\ (1.141229e{-}01) \end{array}$