COMP1200-001

Introduction to Computing for Engineers and Scientists

C Programming

Course Notes Chapter 1: Overview of Computers and Software

COMP 1200C Course Notes Set 1 - 1 of 31

Computer Components

• The CPU interprets and executes instructions in a continuous "fetch-decode-execute"

• All the activities of the CPU are synchronized and regulated by the system clock.

COMP 1200C Course Notes Set 1 - 3 of 31

Overview of Computers and Software

- Computer Components (Hardware)
 - Major components of a computer system
 - How component work together to solve problems and manipulate data
- Computer Software
 - Major categories of software
 - Kinds of languages in which they are implemented
 - Writing, compiling, and executing high-level language programs
- Computing for Engineers and Scientists
- The Software Development Method

COMP 1200C Course Notes Set 1 - 2 of 31

Central Processing Unit (CPU)

- Control unit (CU)
 - Processor, or microprocessor
- Arithmetic/Logic unit (ALU)
- · Housed in an Integrated circuit (IC), or chip

Central Processing Unit (CPU)

- Control unit (CU)
 - Control activities of CPU
 - Copies data and instructions from memory to registers
- Arithmetic-logic unit (ALU)
 - Contains circuitry for data manipulation
 - Arithmetic operations: + * /
 - Logical operations: > < = not= AND OR SHIFT ROTATE
- Registers
 - Memory cells in CPU
 - Allows rapid access of information by CU and ALU

COMP 1200C Course Notes Set 1 - 5 of 31

COMP 1200C Course Notes Set 1 - 7 of 31

Main Memory

Where information that is to be processed and instructions used to process the information are stored

- Information is stored in bits (binary digits)
 - · Two states 1 or 0...ON or OFF
- Bits are grouped into bytes (8 bits) and words (4 bytes)
- Byte is smallest piece of information that can be addressed
 - · All letters, special characters, and instructions are represented by a type code and stored as a bit pattern
- Size
 - megabytes (MB) mega ~ 1 million ~ 2^20 = 1,048,576
 - gigabytes (GB) giga ~ 1 billion ~ 2^30 = 1,073,741,824

Main Memory cont.

- Random access memory (RAM)
 - Allows access to the bytes in no particular order
- Read-only memory (ROM)
 - Information is permanent in memory
 - Cannot be modified by user
 - Set during manufacturing process
 - Contains instructions and information fundamental to the computer's performance

Hardware Communicates w/ CPU

Peripheral devices

- Mass storage (secondary storage)
- Input-output (I/O)
- Mass storage (Secondary storage)
 - Store information
 - · Tapes, hard disks, floppy disks, CDs
 - Drives: tape, hard disk, floppy disk, CD-ROM
 - Disk or tape "on-off" markings are magnetized or not magnetized
 - CDs "on-off" markings are pit or smooth

COMP 1200C Course Notes Set 1 - 11 of 31

Characters and Symbols

- Digital representation by 1s and 0s
- ASCII code
 - each character and symbol represented by 8 bits, or 1 byte

Char	Binary	Hex	Decimal
Α	0100 0001	41	65
В	0100 0010	42	66
а	0110 0001	61	97
b	0110 0010	62	98
?	0011 1111	3F	63
[space]	0010 0000	20	32
NUL	0000 0000	00	00
9	0011 1001	39	57
0	0011 0000	30	48

COMP 1200C Course Notes Set 1 - 10 of 31

Hardware Communicates w/ CPU

Mass Storage cont.

- · Difference between mass storage and main memory
 - Mass storage is
 - Slower
 - Moved into main memory to be processed
 - Required mechanical motion
 - Portable
 - · Greater capacity
 - Remains even when power is off...Non-volatile!

access speed	registers	
and cost	main memory	space increases
increases	mass storage	ļ

Hardware Communicates w/ CPU

Input-output (I/O) devices

- Input
 - Keyboard, mouse
 - Microwave oven temperature probe
 - Bar code scanner, card swipe, touch pad, microphone
- Output
 - Monitor, printer, speaker

· Peripheral device controller

- Miniature computer
- Coordinates the actions of peripheral device with activates of computer

ex.

- CPU send information to the SLOWer printer
- Controller takes over relieving the very FAST CPU
- Very FAST CPU can continue processing
- · Device driver
 - Software program compatible with the OS

COMP 1200C Course Notes Set 1 - 13 of 31

Software

- Hardware is the tangible part of a computer
- · Software is a set of instructions
 - Two types
 - · System software
 - · Application software

Connecting Computers

- · Wide are networks (WANs)
 - Large geographical area
- · Local area networks (LANs)
 - University or company
 - Your home
 - ex. Multiple computers sharing one printer

COMP 1200C Course Notes Set 1 - 14 of 31

System Software

- Operating system (OS)
 - Written into memory at the startup of the computer
 - Handles communication between all equipment
 - "Look and feel" of the computer
 - Layer between the user and the details in dealing with the devices
 - ex.
 - UNIX
 - Microsoft windows
 - · Macintosh operating system
 - MS-DOS
- · Utility programs handle files

COMP 1200C Course Notes Set 1 - 15 of 31

COMP 1200C Course Notes Set 1 - 16 of 31

Software Interface to the Computer

Etter, Engineering Problem Solving with C, Third Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-142971-X

COMP 1200C Course Notes

Program Compilation/Linking/Execution

Etter, Engineering Problem Solving with C, Third Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-142971-X

Language translators

- Create machine language instructions
- 3 types: assemblers, compliers, interpreters

Assembler

- · Convert assembly to object code
- · Less complicated than complier and interpreter

- Converts high level language to machine language
- Errors are detected
- Looks for violations of language or syntax rules
- Cannot detect logic errors
- · Links modules that are needed

Interpreter

- Used in high level languages
- Converts an instruction to machine language and execute it; then goes to next instruction

COMP 1200C Course Notes Set 1 - 18 of 31

Application Software

- · Programs with which you are familiar
- · Word processing, games, spreadsheets, internet browser, etc.

COMP 1200C Course Notes Set 1 - 20 of 31

Programming Languages

- · Machine language
 - 1s and 0s
 - Only language a computer understands
- · Assembly language
 - One level above machine language
 - Included instructions for moving information to and from registers
- High level languages
 - Created to simplify the commands written by a human
 - Syntax rules must be followed
- C is a procedural language
 - Layout the procedure, or steps, to solve a problem
 - Write a program to carry out the steps
- 4th generation language
 - programming environment designed with a specific purpose
 - MATLAB

COMP 1200C Course Notes Set 1 - 21 of 31

Comparison of Software Statements

Software	Example Statement
C++	<pre>area = 3.141593*(diameter/2)*(diameter/2);</pre>
C	<pre>area = 3.141593*(diameter/2)*(diameter/2);</pre>
MATLAB	area = pi*((diameter/2)∧2);
Fortran	area = 3.141593*(diameter/2.0)**2
Ada	area:=3.141593*(diameter/2)**2;
Pascal	<pre>area:=3.141593*(diameter/2)*(diameter/2)</pre>
Basic	let $a = 3.141593*(d/2)*(d/2)$
COBOL	<pre>compute area = 3.141593*(diameter/2)*</pre>

Etter, Engineering Problem Solving with C, Third Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-142971-X

COMP 1200C Course Notes

```
C:
      for (i=10; i > 0; i--)
         //loop1 body
Assembly:
      SET r1, 10
                          ;r1 will take the place of i
                          ;r2 will hold the value to
      SET r2, 1
                          ; subtract each time
LOOP1TOP:
                          ;loop1 body
      SUB r1, r1, r2
                          ;subtract one from r1
      CMP r1, r0
                          ;compare r1 with 0
      JMP NEQ, LOOP1TOP
                          ;keep going until r1=0
```

COMP 1200C Course Notes Set 1 - 22 of 31

SoftwareEngineering Life-Cycle Phases

Life Cycle	Percent of Effort
Definition	3
Specification	15
Coding and modular testing	14
Integrated testing	8
Maintenance	60

COMP 1200C Course Notes

Software Engineering

Describes the process of software development

- Define the function of the program
- Sketch out a design
 - · Pseudo code
- Discuss with all parties
- Modify
- Repeat
- After the design is agreed upon,
 - Write the real program
 - Test
 - Modify
 - Repeat

COMP 1200C Course Notes Set 1 - 25 of 31

Applying the Software Development Method

State the problem

- Compute the straight-line between two points in a plane.

Analysis

- Input: point_1 and point_2
- Output: distance between points

The Software Development Method

- 1. Specify the problem requirements
- 2. Analyze the problem
- Design the algorithm to solve the problem
- Implement the algorithm
- Test and verify the completed program
- Maintain and update the program

COMP 1200C Course Notes Set 1 - 26 of 31

Straight-line Distance Between Two Points

Design

The Algorithm

Step by step outline of the problem solution Decompose the problem into simpler steps

Develop the Algorithm

- 1. Give values of two points
- 2. Compute the lengths of the two side of the right triangle generated by the two points
- 3. Compute distance between points, the hypotenuse
- 4. Print distance between two points

COMP 1200C Course Notes Set 1 - 29 of 31

Implementation - MATLAB

```
% calDist.m : Defines the entry point for the console application.
% Computes distance between 2 pts.
x1=1;
v1=5;
x2=4;
y2=7;
side 1 = x2 - x1;
side 2 = y2 - y1;
distance = sqrt(side 1^2 + side 2^2);
fprintf('The distance between the two
            points is %5.2f \n', distance);
```


COMP 1200C Course Notes Set 1 - 31 of 31

Implementation - C

```
// pl_l.c : Defines the entry point for the console application.
/* Program chap1_1 - Computes distance between 2 pts. */
#include <stdio.h>
#include <math.h>
int main (void)
   double x1=1, y1=5, x2=4, y2=7
           side1, side2, distance;
   side 1 = x2 - x1;
   side 2 = y2 - y1;
   distance = sqrt(side_1*side_1 + side_2*side_2);
   printf("The distance between the two
           points is %5.2f \n", distance);
   return 0;
```

COMP 1200C Course Notes Set 1 - 30 of 31

The Program

Testing

- Use the numbers from your hand example
- Do you get the same result?

The distance between the two points is 3.61.

Maintenance

- **Enhancements**
- Fixing errors
- Adapting to new software and hardware

COMP 1200C Course Notes Set 1 - 32 of 31