LA2 12

KYB

Thrn, it's a Fact mathrnfact@gmail.com

December 4, 2020

Overview

Ch10. Analysis in vector spaces
Background of topology
10.4 Weak convergence
Convexity

Proposition

Let V be a normed vector space over \mathbb{R} . Suppose C is a nonempty subset of V. V is closed iff for each sequence $\{x_k\}$ in C which converges to $x \in V$, $x \in C$.

Proof.

 (\Longrightarrow) . Let $\{x_k\}$ be a sequence in C converging to $x \in V$. Then for any $\epsilon > 0$, $B_{\epsilon}(x) \cap C$ is not empty. Since C is closed, $x \notin V - C$, or $x \in C$.

(\iff) Suppose C is not closed. Then there is $x \in V - C$ such that for all $\epsilon > 0$, $B_{\epsilon}(x) \cap C \neq \varnothing$. For each k, we can choose x_k so that

$$x_k \in B_{1/k}(x) \cap C$$
, or $||x_k - x|| < \frac{1}{k}$.

Then $x_k \to x$. By the assumption, $x \in C$, a contradiction.

Recall

- lacktriangle A topology ${\mathcal T}$ on X is a collection of subsets of X satisfying
 - 1. $\varnothing, X \in \mathcal{T}$;
 - 2. if $U_1, U_2 \in \mathcal{T}$, then $U_1 \cap U_2 \in \mathcal{T}$;
 - 3. if $\{U_{\alpha} : \alpha \in J\} \subset \mathcal{T}$, then $\bigcup_{\alpha \in J} U_{\alpha} \in \mathcal{T}$.
- lacktriangle A basis ${\mathcal B}$ on X is a collection of subsets of X satisfying
 - 1. for each $x \in X$, there is $B \in \mathcal{B}$ such that $x \in B$;
 - 2. if $B_1, B_2 \in \mathcal{B}$ intersects, then for each $x \in B_1 \cap B_2$ there is $B_3 \in \mathcal{B}$ such that

$$x \in B_3 \subset B_1 \cap B_2$$
.

Definition

A subbasis ${\mathcal S}$ is a collection of subsets of X satisfying

$$X = \bigcup_{S \in \mathcal{S}} S.$$

Using a subbasis, we can construct a basis as follows:

$$B \in \mathcal{B} \iff \exists S_1, \cdots, S_k \in \mathcal{S} \text{ such that } B = S_1 \cap \cdots \cap S_k.$$

Remark

Every topology is itself a basis and every basis is itself a subbasis. In general, the converses does not hold.

Definition

Let X be a topological space and suppose $\{x_k\}$ is a sequence in X. Let $x \in X$. x_k converges to x if for each open set U containing x, there is N such that $x_n \in U$ for all $n \geq N$.

If $\mathcal B$ is a (topological) basis for X, it suffices to check for basis elements instead for all open sets.

Example

- 1. For a normed vector space V, this definition is equivalent to the usual definition.
- 2. Let X be infinite set and topolize it by given co-finite topology, i.e. $U \subset X$ is open iff $U = \emptyset$ or X U is finite. Then for any sequence $\{x_k\}$ converges to any point of X.
- 3. We know that every nontrivial vector space over $\mathbb R$ is infinite. If U is open in co-finite topology, so is in normed space. But the converse does not hold. In this sense, we can weaken the topology (deleting open sets).

Theorem

Let H be an inner product space over \mathbb{R} , and let \overline{B} be the closed unit ball in H. Then \overline{B} is sequentially compact if and only if H is finite-dimensional.

Proof

It suffices to show that if H is infinite-dimensional then \overline{B} is not sequentially compact.

Let x_1 be any vector of norm 1 in H. Suppose $\{x_1,\cdots,x_n\}$ are an orthonormal set in H. Let $S_n=\operatorname{span}\{x_1,\cdots,x_n\}$. Choose $y\notin H-S_n$ (we can always find such y because H is infinite dimensional). Define $w=y-\operatorname{proj}_{S_n}y$ and $x_{n+1}=w/\|w\|$. Then $\{x_1,\cdots,x_n,x_{n+1}\}$ is also orthonormal. Thus we can construct a sequence $\{x_k\}$ in \overline{B} which can not converge to any vector in H.

Corollary

If H is an infinite-dimensional Hilbert space and S is a subset of H with a nonempty interior, then S is not sequentially compact.

Definition

Let H be a Hilbert space over \mathbb{R} . The weak topology on H is the weakest topology such that each $f \in H^*$ is still continuous. If a sequence in H converges with respect to the weak topology, then it is said to converge weakly or to be weakly convergent.

Theorem (460)

Let H be a Hilbert space over \mathbb{R} , and let $\{x_k\}$ be a sequence in H. Then $\{x_k\}$ converges weakly to $x \in H$ if and only if

$$f(x_k) \to f(x)$$
 for all $f \in H^*$.

By the Riesz representation theorem, we can eqivalently say that $\{x_k\}$ converges weakly to $x \in H$ if and only if

$$\langle x_k, u \rangle_H \to \langle x, u \rangle_H$$
 for all $u \in H$.

Proof of Theorem 460

 (\Longrightarrow) Since every $f \in H^*$ is still continuous in the weak topology, $f(x_k) \to f(x)$.

(\Longleftarrow) The weakest topology on H such that every $f\in H^*$ is still continuous means this topology induced by a subbasis $\mathcal S$ such that

$$\mathcal{S} = \{ f^{-1}(V) : V \text{ is open in } \mathbb{R} \text{ and } f \in H^* \}.$$

(continued)

Let U be an open in H containing x. Then there $f_1,\cdots,f_k\in H^*$ and open sets V_1,\cdots,V_k in $\mathbb R$ such that

$$x \in f_1^{-1}(V_1) \cap \cdots \cap f_k^{-1}(V_k) \subset U.$$

Since $f_i(x_k) \to f_i(x)$ for all i, there is N_i such that

$$|f_i(x_n) - f_i(x)| < \epsilon \text{ for all } n \ge N_i.$$

Choose $\epsilon_i>0$ so that $(f_i(x)-\epsilon_i,f_i(x)+\epsilon_i)\subset V_i$. Then $x_n\in f_i^{-1}(V_i)$ for all $n\geq N_i$. Take $N=\max\{N_1,\cdots,N_k\}$, and the for all $n\geq N$, $x_n\in U$. Hence $x_k\to x$ in the weak topology on H.

Example

Consider l^2 . In l^2 , $\{e_k\}$ is not a convergent sequence in the norm topology. But, given any $u \in l^2$, we have $\langle e_k, u \rangle_{l^2} = u_k$ and $u_k \to 0$. It follows that $\{e_k\}$ converges weakly to the zero vector in l^2 .

To distinguish convergence in the norm topology from weak convergence, we say $x_k \to x$ strongly or $x_k \to x$ in norm.

For net, see MSG-net

Theorem (462)

Let H be a Hilbert space over \mathbb{R} . Then the closed unit ball \overline{B} is sequentially compact in the weak topology.

Corollary (463)

Let H be a Hilbert space over \mathbb{R} , and let S be a closed and bounded subset of H. If $\{x_k\}$ is a sequence in S, then there exists a subsequence $\{x_{k_j}\}$ and a vector $x \in H$ such that $x_{k_j} \to x$ weakly.

Ex 10.4.2

Prove Corollary 463.

Let L be a bound of S, i.e. for all $x \in S$, ||x|| < M. Then

$$S' = \{x/M : x \in S\} \subset \overline{B}.$$

Thus $\{x_k/M\}$ has a subsequence $\{x_{k_j}/M\}$ and a vector x such that $x_{k_j}/M\to x$ weakly. Hence $x_{k_j}\to Mx$ weakly.

Theorem (464)

Let H be a Hilbert space over \mathbb{R} , and suppose $\{x_k\}$ is a sequence in H converging strongly to $x \in H$. Then $x_k \to x$ weakly.

Proof

Let $y \in H$.

$$|\langle x_k, y \rangle - \langle x, y \rangle| = |\langle x_k - x, y \rangle| \le ||x_k - x|| ||y||.$$

Since $x_k \to x$ strongly, $||x_k - x|| ||y|| \to 0$ as $k \to \infty$. Thus $\langle x_k, y \rangle \to \langle x, y \rangle$ as $k \to \infty$.

Theorem (465)

Let H be a Hilbert space over \mathbb{R} , and suppose $\{x_k\}$ is a sequence in H. If $x_k \to x \in H$ weakly and $\|x_k\| \to \|x\|$, then $x_k \to x$ strongly.

Proof

$$||x_{k} - x||^{2} = \langle x_{k} - x, x_{k} - x \rangle = \langle x_{k}, x_{k} \rangle - 2\langle x_{k}, x \rangle + \langle x, x \rangle$$
$$= ||x_{k}||^{2} - 2\langle x_{k}, x \rangle + ||x||^{2}$$
$$\to ||x||^{2} - 2\langle x, x \rangle + ||x||^{2} = 0.$$

Definition

Let $\{\alpha_k\}$ be a sequence of real numbers. The limit inferior of $\{\alpha_k\}$ is defined by

$$\liminf_{k\to\infty}=\lim_{k\to\infty}\inf\{\alpha_l:l\geq k\}=\sup_{k\geq 1}\inf_{l\geq k}\{\alpha_l:l\geq k\}$$

Similarly, we define the limit superior of $\{\alpha_k\}$ as

$$\limsup_{k\to\infty}=\lim_{k\to\infty}\sup\{\alpha_l:l\geq k\}\inf_{k\geq 1}\sup_{l\geq k}\{\alpha_l:l\geq k\}$$

Remark

It is possible that $\inf\{\alpha_k: k \geq 1\} = -\infty$. In this case, $\inf\{\alpha_l: l \geq k\} = -\infty$ for all k. Suppose $-\infty < \inf\{\alpha_k : k \ge 1\}$, $\{\inf\{\alpha_l : l \ge k\}\}$ is a monotonically increasing sequence of real numbers. So $\liminf_{k\to\infty} \alpha_k$ is always exists, possibly $\pm \infty$.

Theorem (467)

Let $\{\alpha_k\}$ be a sequence of real numbers.

1. There exists a subsequence $\{\alpha_{k_j}\}$ such that

$$\lim_{j\to\infty}\alpha_{k_j}=\liminf_{k\to\infty}\alpha_k$$

2. There exists a subsequence $\{\alpha_{k_i}\}$ such that

$$\lim_{j \to \infty} \alpha_{k_j} = \limsup_{k \to \infty} \alpha_k$$

3. If $\{\alpha_{k_k}\}$ is any convergent subsequence of $\{\alpha_k\}$, then

$$\liminf_{k \to \infty} \alpha_k \le \lim_{j \to \infty} \alpha_{k_j} \le \limsup_{k \to \infty} \alpha_k.$$

4. If $\lim_{k\to\infty} \alpha_k$ exists, then

$$\liminf_{k\to\infty}\alpha_k=\lim_{j\to\infty}\alpha_k=\limsup_{k\to\infty}\alpha_k.$$

1 and 2. Let $\alpha = \liminf_{k \to \infty} \alpha_k$. We may assume $\alpha > -\infty$. Since $\inf \{\alpha_l : l \ge k\}$ is a monotonically increasing sequence, for each j we can find j such that

$$\alpha \le \inf\{\alpha_l : l \ge j\} < \alpha + \frac{1}{j}.$$

For given $\{k_1 < \cdots < k_{j-1}\}$, we can find k_j such that $k_j > k_{j-1}$ and

$$\alpha \le \alpha_{k_j} < \alpha + \frac{1}{j}.$$

Then $\{\alpha_{k_j}\}$ is a subsequence converging to α . In the same way, you can find a subsequence converging to $\limsup_{k\to\infty}\alpha_k$ (continued)

3. Suppose $\{\alpha_{k_j}\}$ is a convergent subsequence of $\{\alpha_k\}$. Let $\alpha = \lim_{j \to \infty} \alpha_{k_j}$. Then for any m > 0, there is N such that

$$\left|\alpha_{k_j} - \alpha\right| < \frac{1}{m} \text{ for all } j \ge N.$$

For all $j \geq N$, $\alpha_{k_j} < \alpha + \frac{1}{m}$. Then

$$\inf\{\alpha_l: l \ge k_N\} \le \alpha_{k_j} < \alpha + \frac{1}{m}.$$

Now letting $N \to \infty$, we get

$$\liminf_{N \to \infty} \{ \alpha_l : l \ge N \} \le \alpha + \frac{1}{m}.$$

But m is arbitrary, and thus $\liminf_{k\to\infty}\{\alpha_l:l\geq k\}\leq \alpha$. Similarly, you can show that $\alpha\leq \limsup_{k\to\infty}\{\alpha_l:l\geq k\}$.

4. Since $\lim_{k \to \infty} \alpha_k$ exists, for any subsequence $\{\alpha_{k_j}\}$,

$$\lim_{j\to\infty}\alpha_{k_j}=\lim_{k\to\infty}\alpha_k.$$

Now by 1 and 2,

$$\liminf_{k \to \infty} \alpha_k = \lim_{j \to \infty} \alpha_k = \limsup_{k \to \infty} \alpha_k.$$

Theorem (468)

Let H be a Hilbert space over \mathbb{R} , and let $\{x_k\}$ be a sequence in H converging weakly to $x \in H$. Then

$$||x|| \le \liminf_{k \to \infty} ||x_k||.$$

Proof

We may assume $x \neq 0$. Let $\{x_{k_j}\}$ be a subsequence of $\{x_k\}$ such that

$$\lim_{j \to \infty} \|x_{k_j}\| = \liminf_{k \to \infty} \|x_k\|.$$

Since
$$\langle x_{k_j}, x \rangle \le ||x_{k_j}|| ||x||$$
,

$$||x||^2 = \lim_{j \to \infty} \langle x_{k_j}, x \rangle \le \lim_{j \to \infty} ||x_{k_j}|| ||x|| = ||x|| \liminf_{k \to \infty} ||x_k||.$$

Definition

Let X be a normed vector space and let $f: X \to \mathbb{R}$.

1. We say that f is lower semicontinuous at x if

$$f(x) \le \liminf_{k \to \infty} f(x_k)$$

for all sequences $x_k \to x$.

2. We say that f is upper semicontinuous at x if

$$f(x) \ge \limsup_{k \to \infty} f(x_k)$$

for all sequences $x_k \to x$.

Theorem (470)

Let H be a Hilbert space over $\mathbb R$, and let S be a closed and bounded subset of H. If S is also closed with respect to the weak topology, then there exists $\overline{x} \in S$ such that

$$\|\overline{x}\| = \inf\{\|x\| : x \in S\}.$$

Proof

Let $\{x_k\} \subset S$ be a minimizing sequence:

$$\lim_{k \to \infty} ||x_k|| = \inf\{||x|| : x \in S\}.$$

Since S is closed and bounded, there exists a subsequence $\{x_{k_j}\}$ and $\overline{x} \in H$ such that $x_{k_j} \to \overline{x}$ weakly. Since S is weakly closed, $\overline{x} \in S$. Then

$$\|\overline{x}\| \le \liminf_{j \to \infty} \|x_{k_j}\| = \lim_{j \to \infty} \|x_{k_j}\| = \inf\{\|x\| : x \in S\} \le \|\overline{x}\|.$$

Convexity

Definition

Let V be a vector space over $\mathbb R$, and let C be a subset of V. We say that C is convex if and only if

$$x, y \in C, \alpha \in [0, 1] \implies (1 - \alpha)x + \alpha y \in C.$$

Definition

Let C be a convex subset of a vector space V over $\mathbb R.$ We say that $f:C\to\mathbb R$ is a convex function if

$$f((1-\alpha)x+\alpha y)\leq (1-\alpha)f(x)+\alpha f(y) \text{ for all } x,y\in C,\alpha\in[0,1].$$

Theorem

Let H be a Hilbert space over \mathbb{R} , and let C be a nonempty, closed, convex subset of H. For any $x \in H$, there exists a unique $\overline{x} \in C$ such that

$$||x - \overline{x}|| = \inf\{||x - z|| : z \in C\}.$$

Moreover, \overline{x} is the unique vector in C satisfying

$$\langle x - \overline{x}, z - \overline{x} \rangle \leq 0$$
 for all $z \in C$.

Theorem (474)

Let H be a Hilbert space over \mathbb{R} , and let C be a closed convex subset of H. Then C is weakly sequentially closed; that is, if $\{x_k\} \subset C$ converges weakly to $x \in H$, then $x \in C$.

Definition

Let V be a vector space over \mathbb{R} , ler S be a subset of V, and suppose $f:S\to\mathbb{R}$. The epigraph of f is the following subset of $S\times\mathbb{R}$:

$$\operatorname{epi}(f) = \{(x, r) \in V \times \mathbb{R} : f(x) \le r\}.$$

Theorem (476)

Let V be a vector space over \mathbb{R} , and let C be a convex subset of V. A function $f:C\to\mathbb{R}$ is convex if and only if $\operatorname{epi}(f)$ is a convex set.

Theorem (477)

Let H be a Hilbert space over \mathbb{R} , let S be a closed subset of H, and let $f:S\to\mathbb{R}$. Then f is lower semicontinuous with respect to a given topology if and only if $\operatorname{epi}(f)$ is sequentially closed with respect to that topology.

Theorem (478)

Let H be a Hilbert space over \mathbb{R} , let C be a closed and bounded convex subset of H, and let $f:C\to\mathbb{R}$ be convex and lower semicontinuous. Then there exists $\overline{x}\in C$ such that

$$f(\overline{x}) = \inf\{f(x) : x \in C\}.$$

Ex 10.4.10

Let H be a Hilbert space, and let $\{u_k\}$ be an orthonormal sequence in H:

$$\langle u_j, u_k \rangle = \begin{cases} 1, & j = k \\ 0, & j \neq k \end{cases}.$$

(a) Prove Bessel's inequality: For all $x \in H$,

$$\sum_{k=1}^{\infty} \left| \langle x, u_k \rangle \right|^2 < \infty.$$

(b) Using Bessel's inequality, prove that $\{u_k\}$ converges weakly to the zero vector.

(a) Let $S_n=\mathrm{span}\{u_1,\cdots,u_n\}$. Since $\{u_1,\cdots,u_n\}$ is an orthonormal basis for S_n ,

$$\left\|\operatorname{proj}_{S_n} x\right\|^2 = \sum_{k=1}^n |\langle x, u_k \rangle|^2.$$

Let $x_n = \operatorname{proj}_{S_n} x$. Then $\langle x - x_n, x_n \rangle = 0$.

$$||x||^2 = ||x - x_n + x_n||^2 = ||x - x_n||^2 + ||x_n||^2 \ge ||x_n||^2.$$

Thus $\left\|\operatorname{proj}_{S_n} x\right\|^2 \le \left\|x\right\|^2$ for all n, or

$$\sum_{k=1}^{\infty} |\langle x, u_k \rangle|^2 < \infty.$$

(b) Since $\sum_{k=1}^{\infty} |\langle x, u_k \rangle|^2$ converges, $\langle u_k, x \rangle \to 0 = \langle 0, x \rangle$ for all $x \in H$. Hence $u_k \to 0$ weakly.

Example

 $L^2[0,2\pi]$ is the Hilbert space with the inner product

$$\langle f, g \rangle = \int_0^{2\pi} f(x)g(x)dx.$$

Recall that f(x)=g(x) in $L^2[0,2\pi]$ means $\{x\in[0,2\pi]:f(x)\neq g(x)\}$ is a measure zero set. Let $f_n(x)=\sin(nx)/\sqrt{\pi}$ $n\geq 1$ and $g_n(x)=\cos(nx)/\sqrt{\pi}$ $m\geq 1$ and $g_0(x)=\frac{1}{\sqrt{2\pi}}$. Then

$$\langle f_n, f_m \rangle = \delta_{mn} = \langle g_n, g_m \rangle, \langle f_n, g_m \rangle = 0.$$

Thus $\{f_n,g_m\}_{n\geq 1,m\geq 0}$ is an orthonormal set. (continued)

Let $\tilde{f}(x) = \sum_{n=1}^{\infty} a_n f_n + \sum_{m=0}^{\infty} b_m g_m$ where

$$a_n = \langle f, f_n \rangle, b_m = \langle f, g_m \rangle.$$

By the previous exercise, $a_n, b_m \to 0$ as $n, m \to \infty$ and

$$b_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = |\langle f, g_0 \rangle|^2 + \sum_{n=0}^{\infty} (|\langle f, f_n \rangle|^2 + |\langle f, g_n \rangle|^2) < \infty.$$

The End