RMXplorer

LEB 1: Sensor

Name

- นายสิรภพ วาทินชัย 67340500045
- นางสาวพัทธ์นันท์ รำพึงพงษ์ 67340500058
- นางสาววิชชาดา แสงระวี 67340500064

Objectives

- เพื่อให้สามารถออกแบบการทดลองด้วยตนเองเพื่อสำรวจพฤติกรรมของเซนเซอร์
- เพื่อให้เข้าใจหลักการทำงานของเซนเซอร์ และกระบวนการแปลงสัญญาณ
- เพื่อให้สามารถใช้ MATLEB และ Simulink ในการเก็บข้อมูลจากเซนเซอร์ พร้อม วิเคราะห์ความเที่ยงตรง และความแม่นยำของข้อมูลที่ได้จากการทดลอง
- เพื่อให้สามารถเปรียบเทียบผลการทดลองกับทฤษฎีและ Datasheet แสดงผลใน รูปแบบกราฟและตารางที่เหมาะสม และอภิปรายผลการทดลองได้อย่างเป็น ระบบ

LAB 1.1: Potentiometer

การทดลองที่ 1: เปรียบเทียบการตอบสนองของแรงดันไฟฟ้าขาออกต่อระยะทางของ Potentiometer จุดประสงค์

- 1. เพื่ออธิบายหลักการทำงานของ Potentiometer
- 2. เพื่ออธิบายการระบุชนิดของของ Potentiometer ทั้งหมด
- 3. เพื่ออธิบายคุณสมบัติและความเป็นเชิงเส้นของ Potentiometer แต่ละชนิด

สมมติฐาน

ชนิดของ Potentiometer มีผลต่อความเป็นเชิงเส้นของอัตราการเปลี่ยนแปลงของแรงดันไฟฟ้าขา ออกต่อระยะทางของ Potentiometer

ตัวแปร

- 1. ตัวแปรต้น:
 - ระยะทางของ Potentiometer
- 2. ตัวแปรตาม:
 - แรงดันไฟฟ้าขาออก
- 3. ตัวแปรควบคุม:
 - ชนิดของ Potentiometer
 - ทิศทางการหมุนของแกน Potentiometer
 - แรงดับไฟฟ้าขาเข้า
 - อุปกรณ์ที่ใช้ในการวัดสัญญาณ

เอกสารและงานวิจัยที่เกี่ยวข้อง

1. หลักการทำงานของ Potentiometer

Potentiometer หรือ "ตัวต้านทานปรับค่าได้" เป็นทรานสดิวเซอร์ (transducer) วัดตำแหน่ง ระยะทางชนิดเปลี่ยนแปลงค่าความต้านทาน โดยอาศัยหลักการของวงจรแบ่งแรงดัน ประกอบไปด้วยแถบ ความต้านทาน และหน้าสัมผัส (Wiper) ที่เคลื่อนที่บนแถบความต้านทาน เมื่อป้อนแรงดันไฟฟ้าที่ปลายขั้วทั้ง สองข้างของตัวต้านทาน แรงดันขาออกจะเปลี่ยนแปลงไปตามตำแหน่งของหน้าสัมผัส

รูปที่ 1 ชนิดของ Potentiometer และความเป็นเชิงเส้น จาก Datasheet

- 2. ชนิดของ Potentiometer และความเป็นเชิงเส้น สามารถแบ่งชนิดของ Potentiometer ได้จากลักษณะการเปลี่ยนแปลงค่าความต้านทาน (Taper) และลักษณะทางกายภาพ
 - การแบ่งชนิดตาม Taper (ความเป็นเชิงเส้น) คือ ความสัมพันธ์ระหว่างตำแหน่งของแกนหมุนและค่า ความต้านทานที่เปลี่ยนแปลงไป ซึ่งเป็นตัวกำหนดความเป็นเชิงเส้นของ Potentiometer สามารถ แบ่งได้ 2 ชนิด คือ แบบเชิงเส้น (Linear Taper) สัญลักษณ์เป็นตัว B ซึ่งมีความเป็นเชิงเส้นอย่าง สมบูรณ์ โดยค่าความต้านทานจะเปลี่ยนแปลงไปในอัตราส่วนคงที่ และเป็นสัดส่วนกับมุมที่หมุน กราฟที่ได้จะมีลักษณะเป็นเส้นตรงทำมุม 45 องศา แบบลอการิทึม (Logarithmic Taper หรือ Audio Taper) สัญลักษณ์เป็นตัว A ไม่เป็นเชิงเส้น โดยค่าความต้านทานจะเปลี่ยนแปลงไปอย่างช้า ๆ ในช่วงแรกของการหมุน และจะค่อย ๆ ชันขึ้น กราฟที่ได้จะมีลักษณะเป็นเส้นโค้ง
 - แบ่งตามลักษณะทางกายภาพ คือ แบบหมุน (Rotary Potentiometer) ซึ่งจะมีแกนให้ใช้มือบิดเพื่อ ปรับค่า แบบเลื่อน (Slide Potentiometer) มีก้านให้เลื่อนในแนวเส้นตรง มักพบในอุปกรณ์ผสม สัญญาณเสียง ทริมพ็อต (Trimpot หรือ Trimmer Potentiometer) มีขนาดเล็กที่ติดตั้งบนแผงวงจร โดยตรง ไม่มีก้านให้ปรับด้วยมือ จะใช้ไขควงเพื่อปรับจูนค่าต่าง ๆ ในวงจร
 - 3. การคำนวนหาแรงดันไฟฟ้าขาออกของ Potentiometer สูตรที่ใช้ในการคำนวณคือ

$$V_{out} = V_{in} \times (\frac{R_2}{R_{total}})$$

 V_{out} = แรงดันไฟฟ้าขาออก ซึ่งวัดได้ที่ขาไวเปอร์เทียบ GND

 V_{in} = แรงดันไฟฟ้าอินพุตที่จ่ายให้กับ Potentiometer

 R_2 = ค่าความต้านทานรวมทั้งหมดของ Potentiometer

 R_{total} = ค่าความต้านทานจากขาไวเปอร์ (Wiper) ไปยังขา GND ซึ่งจะเปลี่ยนไปตามตำแหน่งที่หมุน

ขั้นตอนการดำเนินงาน

- 1. เขียนเสกลสำหรับการเก็บค่า Linear Potentiometer
- 2. ปรับระยะทาง Rotary Potentiometer Type A เพื่อเก็บค่าสัญญาณ โดยจะเก็บค่าทุก ๆ 5 มิลลิเมตร ตั้งแต่ 0 จนถึง 100 มิลลิเมตร
- 3. ทำซ้ำในข้อที่สองอีกสองครั้ง
- 4. ทำซ้ำในข้อที่ 2 และ 3 โดยเปลี่ยน Rotary Potentiometer เป็น Type B Type C
- 5. ปรับระยะทาง Linear Potentiometer Type A เพื่อเก็บค่าสัญญาณ โดยจะเก็บค่าทุก ๆ 5 มิลลิเมตร ตั้งแต่ 0 จนถึง 60 มิลลิเมตร
- 6. ทำซ้ำในข้อที่ห้าอีกสองครั้ง
- 7. ทำซ้ำในข้อที่ 5 และ 6 โดยเปลี่ยน Rotary Potentiometer เป็น Type B
- 8. นำค่าที่ได้จากการทดลองมาแปลงเป็นค่าของแรงดันไฟฟ้า

ผลการทดลอง

จากการทดลองในการเก็บค่าแรงดันไฟฟ้าขาออกของ Potentiometer แต่ละชนิด ชนิดละ 3 ครั้ง 3 ครั้ง และนำมาแสดงผลลงกราฟเป็นแสดง อัตราการเปลี่ยนแปลงของแรงดันไฟฟ้าขาออกต่อระยะทางของ Potentiometer ได้ผลการทดลองดังต่อไปนี้

อัตราการเปลี่ยนแปลงของแรงดันไฟฟ้าขาออกต่อระยะทางของ Rotary Potentiometer Type A

รูปที่ 2 กราฟแสดงอัตราการเปลี่ยนแปลงของแรงดันไฟฟ้าขาออกต่อระยะทางของ Rotary Potentiometer Type A

อัตราการเปลี่ยนแปลงของแรงดันไฟฟ้าขาออกต่อระยะทางของ Rotary Potentiometer Type B

รูปที่ 3 กราฟแสดงอัตราการเปลี่ยนแปลงของแรงดันไฟฟ้าขาออกต่อระยะทางของ Rotary Potentiometer Type B อัตราการเปลี่ยนแปลงของแรงดันไฟฟ้าขาออกต่อระยะทางของ Rotary Potentiometer Type C

รูปที่ 4 กราฟแสดงอัตราการเปลี่ยนแปลงของแรงดันไฟฟ้าขาออกต่อระยะทางของ Rotary Potentiometer Type C

อัตราการเปลี่ยนแปลงของแรงดันไฟฟ้าขาออกต่อระยะทางของ Linear Potentiometer Type A

รูปที่ 5 กราฟแสดงอัตราการเปลี่ยนแปลงของแรงดันไฟฟ้าขาออกต่อระยะทางของ Linear Potentiometer Type A

อัตราการเปลี่ยนแปลงของแรงดันไฟฟ้าขาออกต่อระยะทางของ Linear Potentiometer Type B

รูปที่ 6 กราฟแสดงอัตราการเปลี่ยนแปลงของแรงคันไฟฟ้าขาออกต่อระยะทางของ Linear Potentiometer Type B

สรุปผลการทดลอง

จากการทดลองเก็บผลของ Potentiometer ทั้ง 5 พบว่าระยะทางที่เพิ่มขึ้นของการหมุนหรือการ เลื่อน Potentiometer ส่งผลต่อค่าแรงดันไฟฟ้าขาออก จากผลการทดลองจะพบว่าเราสามารถจำแนกชนิด ของ Potentiometer แต่ละชนิดได้จากอัตราการเปลี่ยนแปลงของแรงดันไฟฟ้าขาออกต่อระยะทางของ Potentiometer ซึ่งจะเห็นได้ว่า Potentiometer Type B มีลักษณะการเป็นเชิงเส้นในขณะที่ Type อื่น ๆ ไม่เป็นเช่นนั้น

อภิปรายผล

ในส่วนของผลการทดลองที่สอดคล้องกับ data sheet ของ Potentiometer แต่ละชนิด นั่นคือ

- 1. Rotary Potentiometer Type A แบบลอการิทึม ไม่เป็นเชิงเส้น โดยค่าความต้านทานจะ เปลี่ยนแปลงไปอย่างช้า ๆ ในช่วงแรกของการหมุน และจะค่อย ๆ เร็วขึ้นในช่วงหลัง กราฟที่ได้จะมีลักษณะ เป็นเส้นโค้ง
- 2. Rotary Potentiometer Type B และ Linear Potentiometer Type B เป็น Potentiometer แบบเชิงเส้น มีความเป็นเชิงเส้นอย่างสมบูรณ์ โดยค่าความต้านทานจะเปลี่ยนแปลงไปในอัตราส่วนคงที่ และ เป็นสัดส่วนกับมุมที่หมุน กราฟที่ได้จะมีลักษณะเป็นเส้นตรงทำมุม 45 องศา
- 3. Rotary Potentiometer Type C แบบ Reverse ลอการิทึม ไม่เป็นเชิงเส้น โดยค่าความต้านทาน จะเปลี่ยนแปลงไปอย่างเร็ว ในช่วงแรกของการหมุน และจะค่อย ๆ ช้าลงในช่วงหลัง กราฟที่ได้จะมีลักษณะ เป็นเส้นโค้ง ซึ่งกลับกับ Type A

ส่วน Linear Potentiometer Type A ตามทฤษฎีจะต้องมีลักษณะเหมือน Rotary Potentiometer Type A ซึ่งมีลักษณะกราฟแบบลอการิทึม แต่กราฟที่ออกมากลับเป็นแบบ Rotary Potentiometer Type C ซึ่งมีลักษณะ Reverse ลอการิทึม ซึ่งคาดว่าเกิดจากการที่ Potentiometer มีการกลับค่าระหว่าง ค่าเริ่มต้น และค่าสิ้นสุด

ข้อเสนอแนะ

ควรเก็บค่าด้วยอุปกรณ์ที่แม่นยำมากยิ่งขึ้น

อ้างอิง

- 1. https://www.foodnetworksolution.com/wiki/word/7247/potentiometer-%E0%B9%82%E0%B8%9E%E0%B9%80%E0%B8%97%E0%B8%99%E0%B8%88%88%B4%E0%B9%82%E0%B8%AD%E0%B8%A1%E0%B8%B4%E0%B9%80%E0%B8%95%E0%B8%AD%E0%B8%A3%E0%B9%8C
- 2. https://www.electronics-tutorials.ws/resistor/potentiometer.html

การทดลองที่ 2: Schmitt Trigger การแปลงสัญญาณจากอะนาล็อกเป็นดิจิทัล เพื่อลด Noise ใน สัญญาณ

จุดประสงค์

- 1. เพื่อเปลี่ยนสัญญาณที่มีการเปลี่ยนแปลงอย่างให้กลายเป็นสัญญาณดิจิทัลที่มี 2 สถานะ คือ HIGH (1) และ LOW (0)
- 2. เพื่อกำจัดสัญญาณรบกวน (Noise Rejection)
- 3. เพื่อเปลี่ยนสัญญาณที่มีขอบขาขึ้น ขาลงช้า (Slow Slew Rate) ให้กลายเป็นสัญญาณดิจิทัลที่มีขอบ คมชัด

สมมติฐาน

เมื่อนำสัญญาณอะนาล็อกที่มีสัญญาณรบกวน (Noise) ป้อนเข้าสู่วงจร Schmitt Trigger แล้ววงจรจะ สามารถสร้างสัญญาณดิจิทัลเอาต์พุตที่มีรูปคลื่นสี่เหลี่ยม (Square Wave) ที่สมบูรณ์

ตัวแปร

ตัวแปรต้น:

• ระยะทางของ Potentiometer

ตัวแปรตาม:

• แรงดันไฟฟ้าขาออก

ตัวแปรควบคุม:

- ชนิดของ Potentiometer
- ทิศทางการหมุนของแกน Potentiometer
- แรงดันไฟฟ้าขาเข้า
- อุปกรณ์ที่ใช้ในการวัดสัญญาณ

รูปที่ 7 รูปวงจร Schmitt Trigger ใน Simulink

เลือกใช้ค่า Switch on point = 2500 และ Switch off point = 2000 เพราะต้องการให้มีช่วง Hysteresis = 500 เพื่อกรองสัญญาณรบกวนที่เกิดจากการหมุน Potentiometer ถ้า Hysteresis แคบเกินไป Output จะไวต่อ Noise มากทำให้ Output เกิดความไม่เสถียร แต่ถ้าหากช่วงกว้างเกินไป วงจรจะตอบสนองช้าและที่ เลือกค่าทั้งสองให้อยู่ในช่วงกลางของ ADC 12-Bits (0-4095) เพราะช่วยให้วงจรสามารถตอบสนองได้ดีทั้ง ขณะเพิ่มและลดแรงดัน Input

ผลการทดลอง

รูปที่ 8 การทดลองครั้งที่1

รูปที่ 9 การทดลองครั้งที่2

รูปที่ 10 การทดลองครั้งที่3

จากการทดลองทั้ง 3 ครั้ง โดยใช้สัญญาณแรงดันจาก Potentiometer เป็น Input แสดงให้เห็นว่า สัญญาณ Analog มีการเปลี่ยนแปลงตามการหมุนของ Potentiometer ส่วนสัญญาณ Digital จาก Relay เกิดเปลี่ยนแปลงแรงดันตามจุด Switch on point = 2500 และ Switch off point = 2000 เมื่อค่า Input เพิ่มขึ้นถึง 2500 Output เปลี่ยนจาก 0 เป็น 1 และเมื่อค่า Input ลดลงต่ำกว่า 2000 Output เปลี่ยนกลับ จาก 1 เป็น 0 ทั้ง 3 กราฟแสดงสัญญาณไปทางเดียวกัน

สรุปผลการทดลอง

จากการทดลองแสดงให้เห็นว่า วงจร Schmitt Trigger สามารถแปลงสัญญาณ Analog ให้เป็น สัญญาณ Digital ได้และค่าที่กำหนด Switch on point = 2500 และ Switch off point = 2000 ให้มีช่วง Hysteresis = 500 มีประสิทธิภาพในการกรอง Noise และทำให้ Output เปลี่ยนเฉพาะเมื่อค่า Input ค่า เพิ่มขึ้นถึง 2500 และเมื่อค่า Input ลดลงต่ำกว่า 2000 สัญญาณ Output จึงมีความชัดและเสถียร

อภิปรายผล

Schmitt Trigger เป็นวงจรเปรียบเทียบแรงดันที่มีเกณฑ์การสวิตช์สองระดับและมีช่วง Hysteresis ระหว่างกลางผลการทดลองแสดงให้เห็นว่าวงจรสามารถกรองสัญญาณรบกวนจาก Potentiometer ได้อย่างดี ช่วง Hysteresis = 500 มีความเหมาะสม และทำให้เอาต์พุตนิ่ง เสถียรตอบสนองได้รวดเร็วหากช่วง Hysteresis แคบกว่านี้ สัญญาณ Digital จะเกิดการเปลี่ยนสถานะบ่อยจาก Noise แต่หากกว้างกว่านี้ จะ ตอบสนองช้า ดังนั้นค่าที่เลือกในครั้งนี้ถือว่าเหมาะสมและแสดงพฤติกรรมของ Schmitt Trigger ได้ชัดเจน ตามทฤษฎี

ข้อเสนอแนะ

- ควรทดลองปรับค่าช่วง Hysteresis ให้แคบหรือกว้างขึ้น เพื่อศึกษาผลต่อความไวของการตอบสนอง ของเอาต์พุต
- ทดลองกับสัญญาณอินพุตรูปคลื่น เช่น Sine หรือ Triangle เพื่อสังเกตพฤติกรรมการตัดสัญญาณ ต่อเนื่อง

เอกสารอ้างอิง

- 1. How To Mechatronics Schmitt Trigger Explained. https://shorturl.at/cuK9B
- 2. Circuit Digest. What is Schmitt Trigger Working and Applications. https://circuitdigest.com/tutorial/what-is-schmitt-trigger-working-and-applications

LAB 1.2: Incremental Encoder

การทดลองที่ 1: วิเคราะห์การเปลี่ยนแปลงของสัญญาณใน Incremental Encoder เมื่อหมุนด้วยองศาที่ เปลี่ยนไป

จุดประสงค์

- 1. เพื่ออธิบายหลักการทำงานของ Incremental Encoder และลักษณะของสัญญาณที่อ่านได้จาก Incremental Encoder
- 2. เพื่ออธิบายวิธีการวัดและคำนวณ Pulses Per Revolution (PPR)
- 3. เพื่อศึกษาวิธีการคำนวณ Angular Resolution
- 4. เพื่อศึกษาความแตกต่างของวิธีการอ่านสัญญาณจาก Encoder แบบ X1 X2 และ X4
- 5. เพื่อศึกษาความแตกต่างของสัญญาณเมื่อหมุนตามเข็มนาฬิกาและและเมื่อหมุนทวนเข็มนาฬิกา

สมมติฐาน

สัญญาณจาก Incremental Encoder จะมีความถี่คงที่ต่อองศาที่หมุนไปอย่างสม่ำเสมอ

ตัวแปร

ตัวแปรต้น:

• องศาที่เปลี่ยนแปลงไป

ตัวแปรตาม:

• ค่าของสัญญาณ Pulses ที่ออกจาก Incremental Encoder

ตัวแปรควบคุม:

- วิธีการอ่านสัญญาณจาก Encoder
- ทิศทางการหมุนของแกน Encoder
- อุปกรณ์ที่ใช้ในการวัดสัญญาณ

เอกสารและงานวิจัยที่เกี่ยวข้อง

1. หลักการทำงานของ Incremental Encoder

Encoder เป็น senser สำหรับการวัดระยะทาง ความเร็ว และทิศทางการหมุน โดยมีสองประเภท ตามลักษณาณอ่านค่าสัญญาณคือ แบบ Incremental และ Absolute โดย Incremental Encoder ทำงาน โดยใช้ดิสก์ซึ่งมีช่องสำหรับ Phase A, Phase B ที่ยึดติดอยู่กับเพลา โดยเมื่อเพลาหมุนแหล่งกำเนิดแสงจะส่ง แสงผ่านช่องว่างเหล่านั้น ซึ่งภายในจะมีตัวรับแสง และจะเปลี่ยนการเปลี่ยนแปลงของแสงเป็นสัญญาณดิจิทัล (High/Low)

โดยนอกจาก Phase Z ซึ่งเป็น "ช่องพิเศษ" ที่จะสร้างพัลส์ เพียงหนึ่งครั้งต่อการหมุนครบ 1 รอบ พัลส์นี้มัก ใช้เป็นตำแหน่งอ้างอิง (Origin) เพื่อบอกว่าเพลากำลังหมุนมาถึงจุด "ศูนย์" หรือจุดเริ่มต้นของรอบ

2. Pulses Per Revolution (PPR)

คือจำนวนพัลส์สูงที่ Incremental Encoder สร้างขึ้นในสัญญาณเอาต์พุต Phase A หรือ Phase B เมื่อเพลาหมุนเต็มรอบ 1 รอบ จำนวนพัลส์สูงสุดที่เป็นไปได้จะเป็นตัวที่กำหนดความละเอียดพื้นฐานของ Encoder และสามารถเพิ่มความละเอียดได้ด้วยวิธีการอ่านสัญญาณต่าง ๆ ได้แก่

- X1 mode: นับเฉพาะขอบขาขึ้นของ Phase A
- X2 mode: นับทั้งขาขึ้นและขาลงของ Phase A
- X4 mode: นับทุกขอบของทั้ง Phase A และ Phase B สามารถตรวจจับการเปลี่ยนแปลงได้ดีที่สุด ทำให้ Encoder สามารถวัดตำแหน่งและทิศทางได้แม่นยำมากขึ้น
 - 3. Angular Resolution

คือความละเอียดของข้อมูลมุมการหมุนที่ Encoder สามารถวัดได้ ความละเอียดเชิงมุมคำนวณโดยใช้ สมการ

$$Angular Resolution = \frac{360}{PPR}$$

ตัวอย่างเช่น Encoder มี 24 PPR $\frac{360}{24}$ = 15

4. การเขียนโปรแกรม Wrap-around

ช่วยจัดการค่าการนับพัลส์เมื่อมีการหมุนต่อเนื่องหลายรอบ ทำให้ค่าพัลส์เกินช่วงสูงสุดของ Encoder หรือก็คือการรีเซตค่าให้เริ่มต้นนับจากศูนย์ใหม่โดยอัตโนมัติ เพื่อให้ค่ามีความต่อเนื่องและสามารถใช้งานได้ ต่อเนื่องหลายรอบ

5. การเขียนโปรแกรม Homing Sequence

คือการใช้สัญญาณจาก Phase Z หรือ Index Pulse เพื่อกำหนดตำแหน่งศูนย์ของการหมุน แต่การ ทดลองไม่ได้ใช้สัญญาณ Phase Z หรือ Index Pulse แต่เป็นการสร้าง Homing ขึ้นเองในโปรแกรม เพื่อให้ ทำหน้าที่เหมือนกัน เมื่อเริ่มต้นรันโปรแกรม ตำแหน่งของเพลาในขณะนั้นจะถูกตั้งเป็นตำแหน่งศูนย์เพื่อใช้เป็น จุดอ้างอิงสำหรับการนับพัลส์

ขั้นตอนการดำเนินงาน

- 1. ทดลอง Incremental Encoder BOURNS PEC11R-4220F-N0024 และ AMT103-V หมุนตามเข็ม นาฬิกาและและหมุนทวนเข็มนาฬิกา
- ทดลองอ่านสัญญาณจาก Encoder BOURNS PEC11R-4220F-N0024 และ AMT103-V แบบ X1
 X2 และ X4
- 3. เลือกวิธีการอ่านสัญญาณจาก Encoder 1 แบบมาจากข้อที่สอง

- 4. หมุน Encoder BOURNS PEC11R-4220F-N0024 ไปในทิศทางตามเข็มนาฬิกาครั้งละ 15 องศา จนกว่าจะครบ 360 องศา และบันทึกค่าของสัญญาณ Pulses ที่เปลี่ยนแปลงไป
- 5. ทำซ้ำในข้อที่สี่อีกสองครั้ง
- 6. หมุน Encoder AMT103-V ไปในทิศทางตามเข็มนาฬิกาครั้งละ 15 องศา จนกว่าจะครบ 360 องศา และบันทึกค่าของสัญญาณ Pulses ที่เปลี่ยนแปลงไป
- 7. ทำซ้ำในข้อที่หกอีกสองครั้ง

ผลการทดลอง

จากการทดลองทำซ้ำกรณีละ 3 ครั้ง และใช้วิธีการอ่านสัญญาณแบบ X4 จะพบว่าเมื่อนำค่าของแต่ละ กรณีมาหาค่าเฉลี่ยและสร้างกราฟแสดงค่าของสัญญาณ Pulses ที่เปลี่ยนแปลงไปเทียบกับมุมที่หมุน (หน่วย เป็นองศา) จะพบว่ากราฟที่ได้จะมีลักษณะดังนี้

รูปที่ 11 กราฟแสดงเปลี่ยนแปลงของสัญญาณใน Incremental Encoder AMT103-V เมื่อหมุนด้วยมุมที่เปลี่ยนไป

รูปที่ 12 กราฟแสดงเปลี่ยนแปลงของสัญญาณใน Incremental Encoder BOURNS PEC11R-4220F-N0024 เมื่อหมุนด้วย มุมที่เปลี่ยนไป

สรุปผลการทดลอง

จากผลการทดลองจะพบว่าอัตราการเปลี่ยนแปลงของของสัญญาณใน Incremental Encoder แปร ผันตรงกับมุมที่เปลี่ยนไป โดย Incremental Encoder BOURNS PEC11R-4220F-N0024 เมื่อหมุนไป 360 จะมีค่าของสัญญาณ Pulses อยู่ที่ 96 ในขณะที่ Incremental Encoder AMT103-V เมื่อหมุนไป 360 จะมีค่าของสัญญาณ Pulses อยู่ที่ 2048 ซึ่งจะเห็นได้ว่าค่าของสัญญาณ Pulses เมื่อหมุนครบ 1 รอบของ Encoder แต่ละตัวมีค่าที่ไม่เท่ากัน ซึ่งค่านี้เองที่เรียกว่า Pulses Per Revolution (PPR) (กรณีนี้คืออ่าน สัญญาณแบบ X4)

อภิปรายผล

ในระหว่างที่ทำการทดลองสามารถนำข้อมูลจากการทดลองที่ได้มาวิเคราะห์ดังต่อไปนี้

1. ความแตกต่างของการอ่าน X1. X2 และ X4

เมื่อเปิด data sheet ของ Incremental Encoder แต่ละตัว จะบบว่าแต่ละโมเดลจะมีค่า Pulses Per Revolution (PPR) ที่แตกต่างกัน โดยค่านั้นเป็นค่าแสดงให้เห็นว่าในการหมุน 1 รอบ ของ Encode สามารถสร้าง สัญญาณ Pulses ได้กี่ Pulses ซึ่งสิ่งนี้แสดงให้เห็นว่า Encode มีความละเอียดในการอ่าน สัญญาณเท่าไร โดยหากผู้ใช้ต้องการ Encoder ที่มีความละเอียดมากขึ้น แต่ไม่ต้องการเปลี่ยน Encode สามารถทำได้โดยการตั้งค่าใน IOC ซึ่งค่าที่ได้จากการอ่านแต่ละแบบจะมีลักษณะดังต่อไปนี้

รูปที่ 13 แสดงสัญญาณ Encode ที่ได้จากการอ่านแบบ X1, X2 และ X4

จากภาพ เส้นสีแดงคือ X4 สีเขียวคือ X2 และสีเหลืองคือ X3 จะเห็นได้ว่า ความละเอียดของ X2 และ X4 เพิ่มจากการอ่านแบบ X1เป็นจำนวน 2 และ 4 เท่าตามลำดับ ซึ่งสิ่งนี้เกิดจากการเพิ่มค่า Pulses Per Revolution (PPR) โดยการเพิ่มการนับขอบขาของสัญญาณ A และ B ใน Encode และเนื่องจากในการ ทดลองอยากได้ค่าที่มีความละเอียดมากที่สุดจึงใช้การอ่านสัญญาณแบบ X4 ในการทำการทดลอง

2. การหมุนตามเข็มและทวนเข็มของ Encode

ตามทฤษฎีเราสามารถดูทิศทางการหมุนของแกน Encode ได้จาก ขาของสัญญาณ A และ B ที่ออก จาก Encode โดยหากขาของสัญญาณ A นำสัญญาณ B จะเป็นการหมุนตามเข็ม และ หากขาของสัญญาณ B นำสัญญาณ A จะเป็นการหมุนแบบทวนเข็ม

3. ความเร็วในการหมุนต่อคุณภาพสัญญาณ

ที่ความเร็วต่ำถึงปานกลาง (Low to Medium Speed): สัญญาณที่ได้จาก Encoder ทั้งสองรุ่นมี คุณภาพดี มีลักษณะเป็นคลื่นสี่เหลี่ยม (Square Wave) ที่สมบูรณ์ มีความชันของขอบสัญญาณ (Edge) ที่ดี และมี Duty Cycle ใกล้เคียง 50% ความถี่ของสัญญาณเอาต์พุตเพิ่มขึ้นเป็นสัดส่วนโดยตรงกับความเร็วในการ หมุน ซึ่งสอดคล้องกับทฤษฎี Frequency = $(\frac{RPM}{60}) \times PPR$

ที่ความเร็วสูง (High Speed): เมื่อเพิ่มความเร็วรอบเข้าใกล้ขีดจำกัดสูงสุดของ Encoder หรือของ ระบบวัด พบว่าคุณภาพสัญญาณเริ่มลดลง โดยสังเกตเห็นการเปลี่ยนแปลงดังนี้

- รูปคลื่นผิดเพี้ยน (Waveform Distortion): ขอบของสัญญาณเริ่มมีความโค้งมนมากขึ้น และอาจเกิด การกระเพื่อม (Ringing) ที่ขอบขาขึ้นและขาลงของพัลส์
- ความถี่สูงสุด: Encoder ที่มีความละเอียดสูงกว่า (รุ่น B: 1024 PPR) จะสร้างสัญญาณที่มีความถี่สูง กว่าที่ความเร็วรอบเดียวกัน ทำให้ถึงข้อจำกัดด้านความถี่สูงสุด (Maximum Frequency Response) ของตัว Encoder หรืออุปกรณ์รับสัญญาณได้เร็วกว่า

ข้อเสนอแนะ

- ควรทดสอบการอ่านค่าแบบ X4 และเปรียบเทียบกับ X1 เพื่อศึกษาความละเอียดที่เพิ่มขึ้นต่อความ
 แม่นยำของมุมการหมุน
- ควรตรวจสอบค่าพัลส์ที่ได้จาก Encoder แต่ละรอบให้ละเอียดขึ้น โดยเปรียบเทียบกับค่าทางทฤษฎี
 เพื่อให้แน่ใจว่าการนับไม่สูญหายหรือเกิดซ้ำระหว่างการหมุน

อ้างอิง

- 1. https://shorturl.at/gG6Oy
- 2. https://misumitechnical.com/technical/what-is-rotary-encoder-omron/
- 3. https://www.sameskydevices.com/blog/what-is-encoder-ppr-cpr-and-lpr#ppr
- 4. https://eltra-encoder.eu/news/encoder-ppr-and-cpr#pulses
- 5. https://www.sameskydevices.com/product/resource/amt10.pdf

Leb 1.3: Ratiometric Linear Hall Effect Magnetic Sensor

การทดลองที่ 1: ศึกษาความสัมพันธ์ระหว่างค่าความหนาแน่นฟลักซ์แม่เหล็ก และแรงดันไฟฟ้าขาออกกับ ระยะทาง โดยเปรียบเทียบขั้วแม่เหล็กที่แตกต่างกัน และการใส่ Shield หรือไม่ใส่ Shield

จุดประสงค์

- 1. เพื่อศึกษาหลักการทำงานของ Ratiometric Linear Hall Effect Sensor (DRV5055)
- 2. เพื่อศึกษาการเปลี่ยนแปลงของสัญญาณเอาต์พุตเมื่อขั้วของแม่เหล็ก และระยะที่เกิดการเปลี่ยนแปลง
- 3. เพื่อเปรียบเทียบการตอบสนองของ Sensor ในกรณีที่มี และไม่มีแผ่น Magnetic Shield
- 4. เพื่อศึกษาผลการตอบสนองของsensorตามขั้วของแม่เหล็ก(ขั้วที่ 1 และขั้วที่ 2)

สมมติฐาน

หากสลับขั้วของแม่เหล็ก (ขั้วที่ 1 และขั้วที่ 2) ทำให้สัญญาณที่ออกจาก Scope (ADC Output) เกิด การเปลี่ยนแปลงในทิศทางตรงข้ามกัน โดยเมื่อนำแม่เหล็กเข้ามาใกล้ตัว Sensor มาขึ้นค่าสัญญาณจะ เปลี่ยนแปลงตามรายะที่ปรับ และถ้าใช้แผ่น Shield ค่าสัญญาณจะลดลงเนื่องจากสนามแม่เหล็กบางส่วนถูก บังไว้

ตัวแปร

ตัวแปรต้น:

- ระยะระหว่างแม่เหล็กกับ Hall Effect Sensor
- ขั้วของแม่เหล็กที่หันเข้าหาเซนเซอร์ (กลับขั้ว/ไม่กลับขั้ว)
- การมี หรือไม่มีแผ่นป้องกันสนามแม่เหล็ก (Magnetic Shield)

ตัวแปรตาม:

- ค่าสัญญาณ ADC ที่ได้จาก Sensor
- ullet แรงดันไฟฟ้าขาออก (V_{out})
- ค่าความหนาแน่นของฟลักซ์แม่เหล็ก (B) ที่คำนวณได้

ตัวแปรควบคุม:

- ชนิดของแม่เหล็ก
- Hall Effect Sensor (DRV5055)
- ullet แรงดันไฟฟ้า (V_{in}) ที่จ่ายเข้า Sensor (3.3 V คงที่)
- อุณหภูมิขณะทำการทดลอง

เอกสารและงานวิจัยที่เกี่ยวข้อง

1. หลักการทำงานของ Magnetic Sensor

ทำงานโดยการแปลงสนามแม่เหล็กเป็นสัญญารไฟฟ้า ซึ่งอาศัยหลักกายเปลี่ยนแปลงทางกายภาพของ วัสดุเมื่อได้รับอิทธิพลจากสนามแม่เหล็ก เช่น ปรากฏการณ์ฮอลล์ (Hall Effect) หรือการเหนี่ยวนำในขดลวดที่ ทำให้เกิดกระแสไฟฟ้าเมื่อความหนาแน่นฟลักซ์เปลี่ยนแปลง โดยเซนเซอร์จะรับรู้ถึงการเปลี่ยนแปลงของ สนามแม่เหล็กที่เกิดจากแม่เหล็กถาวร หรือแม่เหล็กไฟฟ้า เมื่อสนามแม่เหล็กเปลี่ยนไปคุณสมบัติของเซนเซอร์ จะเปลี่ยนแปลง ระบบอิเล็กทรอนิกส์จะแปลงสัญญาณให้เป็นสัญญาณอะนาล็อก หรือดิจิทัลที่สามารถอ่านค่า เอาต์พุตได้ เพื่อแสดงผลเป็นตำแหน่ง ความเร็ว หรือการเคลื่อนไหว

2. Hall Effect

ปรากฏการณ์ทางฟิสิกส์ไฟฟ้าที่เกิดขึ้นเมื่อมีสนามแม่เหล็กตั้งฉากกับทิศทางการไหลของการแสไฟฟ้าในวัสดุ ตัวนำ ส่งผลให้เกิดความต่างศักย์ไฟฟ้าในทิศตั้งฉากกับกระแสไฟฟ้า และสนามแม่เหล็ก ความต่างศักย์ที่เกิดขึ้น นี้เรียกว่า "แรงดันฮอลล์"

- 3. การป้องกันสนามแม่เหล็ก (Magnetic Field Shielding)
 การใช้วัสดุเพื่อสร้างเกราะป้องกันไม่ให้สนามแม่เหล็กสามารถผ่านได้ โดยมีหลักการคือ การนำสนามแม่เหล็กให้รวมตัวกันอยู่ที่เปลือกของเกราะป้องกัน วัสดุที่ใช้ต้องมีความสามารถในการซึมผ่านของ แม่เหล็กได้ดี และการเลือกใช้วัสดุจะต่างกันตามลักษณะของสนามแม่เหล็กที่ต้องการป้องกัน
 - 4. ค่าความหนาแน่นฟลักซ์แม่เหล็ก (Magnetic Flux Density)

ค่าความหนาแน่นฟลักซ์แม่เหล็ก (B) คือ ปริมาณที่ใช้วัดความแรง และความหนาแน่นของ สนามแม่เหล็ก สามารถคำนวณได้โดยตรงจากค่าแรงดันไฟฟ้าที่วัดได้ สมการความสัมพันธ์ระหว่าง แรงดันไฟฟ้า และความหนาแน่นฟลักซ์แม่เหล็ก

$$\begin{aligned} V_{out} &= V_Q + B \times (Sensitivity_{25^{\circ}\text{C}} \times \left(1 + S_{TC} \times (T_A - 25^{\circ}\text{C})\right)) \\ B &= \frac{V_{out} - V_Q}{Sensitivity_{25^{\circ}\text{C}}} \end{aligned}$$

 V_{out} = แรงดันไฟฟ้าขาออก (mV)

 V_Q = Quiescent Voltage หรือแรงดันเมื่อไม่มีสนามแม่เหล็ก

B = ความหนาแน่นฟลักซ์แม่เหล็ก (Magnetic Flux Density)

 $Sensitivity_{25^{\circ}\text{C}}$ = ค่าความไวของเซนเซอร์ที่อุณหภูมิห้อง (25°C)

 S_{TC} และ T_A = ค่าที่เกี่ยวข้องกับอุณหภูมิ

ขั้นตอนการดำเนินงาน

- 1. ต่อวงจรเซนเซอร์ DRV5055 เข้ากับบอร์ด Nucleo STM32G474RE โดยใช้ขา VCC, GND และ OUT ต่อเข้ากับช่อง ADC1
- 2. ตั้งค่าระบบใน Simulink โดยใช้บล็อก ADC1 (PA0) เพื่ออ่านค่าสัญญาณแบบ Real-time ผ่าน Display และ Scope
- 3. วางแม่เหล็กบนฐาน Magnetic Xplorer โดยหันขั้วที่ 1 เข้าหาเซนเซอร์ ปรับระยะห่างจาก 1.1 cm ถึง 4.4 cm โดยเพิ่มระยะห่างครั้งละ 0.1 cm
- 4. ทำการบันทึกค่าสัญญาณจาก Scope ทั้งในกรณี มี Shield และไม่มี Shield
- 5. ทำซ้ำการทดลองกับ ขั้วที่ 2 ของแม่เหล็ก เพื่อเปรียบเทียบการตอบสนอง

ผลการทดลอง

จากการทดลองทำซ้ำกรณีละ 3 ครั้ง ทั้ง 4 กรณี นำแต่ละกรณีมาหาค่าเฉลี่ยและพล็อตกราฟเพื่อให้ เห็นถึงความเปลี่ยนแปลง กราฟที่ได้จะมีลักษณะดังนี้

รูปที่ 14 ความสัมพันธ์ระหว่างค่าแรงดันไฟฟ้าขาออก (V_{out}) กับระยะ (cm)

รูปที่ 15 ความสัมพันธ์ระหว่างค่าความเข้มสนามแม่เหล็ก (B) กับระยะ (cm)

สรุปผลการทดลอง

จากการทดลองทั้ง 4 กรณีพบว่า ระยะห่างระหว่างแม่เหล็ก และเซนเซอร์ส่งผลต่อค่าที่วัดได้ โดยเมื่อ ระยะห่างระหว่างแม่เหล็ก และเซนเซอร์ลดลงแรงดันไฟฟ้าขาออก (V_{out}) จะมีค่ามากขึ้น ซึ่งแปรผันตรงกับ ความเข้มของสนามแม่เหล็ก การที่มีแผ่น Shield ทำให้ค่าสัญญาณที่วัดได้มีขนาดเล็กลงเมื่อเทียบกับไม่มีแผ่น Shield แสดงให้เห็นว่าแผ่น Shield มีการลดทอน หรือเบี่ยงเบนสนามแม่เหล็กบางส่วนไม่ให้ไปถึงตัวเซนเซอร์ และการสลับขั้วของแม่เหล็กทำให้สัญญาณขาออกเปลี่ยนทิศทางเป็นตรงข้ามอย่างชัดเจน แสดงให้เห็น เซนเซอร์สามารถตรวจจับทิศทางของสนามแม่เหล็กได้

อภิปรายผล

ผลการทดลองสอดคล้องกับทฤษฎีการทำงานของ Hall Effect Sensor และคุณสมบัติของเซนเซอร์ DRV5055 ที่ระบุไว้ใน Datasheet นั่นคือ

- 1. กราฟที่ 1 และกราฟที่ 2 แสดงให้เห็นว่า เมื่อระยะห่างระหว่างเซนเซอร์ และแม่เหล็กอยู่ห่างกันค่า แรงดันไฟฟ้า (V_{out}) จะเข้าใกล้ Quiescent Voltage (V_Q) หรือก็คือแรงดันไฟฟ้าขาออกพื้นฐาน และ B = 0 mT เมื่อนำแม่เหล็กเข้าใกล้เซนเซอร์ค่าที่วัดได้จะมีการเปลี่ยนแปลงอย่างชัดเจน เนื่องจากค่า ความหนาแน่นฟลักซ์แม่เหล็กลดลง
- 2. จากผลการทดลองสามารถยืนยันได้ว่าเซนเซอร์ DRV5055 สามารถแยกแยะทิศทางของ สนามแม่เหล็กได้ โดยเมื่อกลับขั้วของแม่เหล็กกราฟมีลักษณะสมมาตรเมื่อเทียบกับแกน X (แกนนอน) ของทั้ง 2 กราฟ ซึ่งตรงตาม Datasheet
- 3. การใช้แผ่น Shield ทำให้ค่า V_{out} และ B ที่วัดได้น้อยลงเมื่อเทียบกับไม่มีแผ่น Shield เนื่องจากแผ่น Shield เข้ามาขวางการเดินทางของสนามแม่เหล็ก

ข้อเสนอแนะ

- 1. ควรใช้อุปกรณ์วัด และควบคุมระยะห่างที่มีความแม่นยำสูงขึ้น
- 2. ควรเก็บข้อมูลซ้ำในแต่ละระยะเพื่อเพิ่มความแม่นยำของค่าเฉลี่ย

อ้างอิง

- 1. https://www.ti.com/lit/ds/symlink/drv5055.pdf?ts=1761685105498
- 2. https://shorturl.asia/V70KD

Leb 1.4: Single Point Load Cell with INA125 Instrumentation Amplifier การทดลองที่ 1: การเปรียบเทียบน้ำหนักที่ชั่งได้จากกเครื่องชั่งดิจิทัลกับน้ำหนักที่ได้จากการอ่านค่าของ Loadcell sensor

จุดประสงค์

- 1. เพื่อศึกษา และทำความเข้าใจหลักการทำงานของโหลดเซลล์ (Loadcell) ,สเตรนเกจ (Strain Gauge) ,วงจรวิทสโตนบริดจ์ (Wheatstone Bridge) และวงจรขยายผลต่าง (Differential Amplifier)
- 2. เพื่อคำนวณหาอัตราการขยาย (Gain) และทำความเข้าใจความสัมพันธ์ระหว่างอัตราการขยายกับ ความต้านทาน (R_G)
- 3. เพื่อทำการเปรียบเทียบสัญญาณ (Calibration) และการแปลงสัญญาณ (Signal Conditioning) จาก โหลดเซลล์
- 4. เพื่อวิเคราะห์การเกิดสภาวะอิ่มตัว (Saturation) ของสัญญาณ
- 5. เพื่อเปรียบเทียบค่าที่วัดได้กับเครื่องชั่งดิจิทัลมาตรฐาน

สมมติฐาน

สัญญาณไฟฟ้าที่ออกจากววงจรขยายสัญญาณ (INA125) จะแปนผันตรงกับน้ำหนักที่กระทำต่อโหลด เซลล์ เมื่อนำสัญญาณดิจิทัลที่อ่านได้ (bit) มาแปลงค่าให้อยู่ในหน่วย SI ค่าน้ำหนักที่ได้จะเท่ากับน้ำหนักที่ชั่ง ได้จากเครื่องชั่งดิจิทัลมาตรฐาน

ตัวแปร

ตัวแปรต้าม.

• น้ำหนักของถุงทราย (g)

ตัวแปรตาม

- ค่าดิจิทัล (bit) ที่อ่านได้จาก ADC
- น้ำหนักที่คำนวณได้หลังจากแปลงค่า

ตัวแปรควบคุม:

- YZC-131A Load cell
- Instrumentation Amplifier: INA125
- แรงดันไฟฟ้าขาเข้า (3.3 V)
- ullet ค่าความต้านทาน (R_G)
- อุณหภูมิแวดล้อม

เอกสารและงานวิจัยที่เกี่ยวข้อง

1. หลักการทำงานของ Loadcell YZC-131A

โหลดเซลล์แบบสเตรนเกจจะแปลงน้ำหนักที่กระทำต่อโหลดเซลล์ให้เป็นสัญญาณไฟฟ้า การวัดจะทำโดยใช้ตัวต้านทานขนาดเล็กมากที่เรียกว่า "สเตรนเกจ" เป็นแผงวงจรขนาดเล็กที่มีความยืดหยุ่น เกจจะถูกยึด ติดกับคาน หรือขึ้นส่วนโครงสร้าง ซึ่งจะเสียรูปเมื่อถูกน้ำหนัก ส่งผลให้สเตรนเกจเสียรูปไปด้วย เมื่อสเตรนเกจ เสียรูป ความต้านทานไฟฟ้าจะเปลี่ยนแปลงไปตามสัดส่วนของน้ำหนัก การเปลี่ยนแปลงของวงจรที่เกิดจาก แรงจะน้อยกว่าการเปลี่ยนแปลงที่เกิดจากการเปลี่ยนแปลงของอุณหภูมิมาก โหลดเซลล์คุณภาพสูงกว่าจะ หักล้างผลกระทบของอุณหภูมิโดยใช้สองเทคนิค การจับคู่อัตราการขยายตัวของสเตรนเกจกับอัตราการ ขยายตัวของโลหะที่ติดตั้งอยู่ จะช่วยหลีกเลี่ยงความเครียดที่ไม่เหมาะสมบนเกจเมื่อโหลดเซลล์ร้อนขึ้น และ เย็นลง วิธีการชดเชยอุณหภูมิที่สำคัญที่สุดคือการใช้สเตรนเกจหลายตัว ซึ่งทั้งหมดตอบสนองต่อการ เปลี่ยนแปลงของความต้านทานที่เท่ากัน การออกแบบโหลดเซลล์บางแบบ ใช้เกจวัดที่ไม่ต้องรับแรงใดๆ แต่ทำหน้าที่เพียงถ่วงคุลผลกระทบของอุณหภูมิที่มีต่อเกจวัดแรง การออกแบบ ส่วนใหญ่ใช้เกจวัดความเครียด 4 ตัว บางตัวรับแรงกด บางตัวรับแรงดึง ซึ่งช่วยเพิ่มความไวของโหลดเซลล์ให้ สูงสุด และตัดทอนผลกระทบของอุณหภูมิโดยอัตโนมัติ

2. สเตรนเกจ (Strain Gauge)

Strain Gauge เปรียบเสมือนตัวต้านทานที่ปรับค่าได้จากแรงทางกล มีลักษณะเป็นเส้นลวดโลหะขนาดเล็กขด รวมกันเป็นกลุ่มเรียกว่า กริด (Grid) ส่วนหัวและส่วนท้ายของขดลวดนี้ถูกออกแบบให้มีขนาดใหญ่เพื่อให้ง่าย ต่อการเชื่อมต่อวงจร เมื่อสเตรนเกจถูกกระทำด้วยแรงใด ๆ จนทำให้เส้นโลหะภายในเกิดการเปลี่ยนรูป เช่น ยืด หด บิด หรือ งอ จะส่งผลให้ความต้านทานไฟฟ้าของตัวมันเปลี่ยนไปเมื่อมีแรงกระทำต่อโลหะทำให้โลหะ ขยาย หรือหดตัว ความต้านทานไฟฟ้าจะเปลี่ยนแปลงตามไปด้วย กล่าวคือ Strain Gauge วัดค่าความเครียด โดยการอ่านค่าความต้านทานไฟฟ้า และขยายค่าให้เป็นค่าไฟฟ้าจาออก โดยเมื่อโลหะมีการขยายตัว ความ ต้านทานไฟฟ้าจะเพิ่มขึ้น เมื่อโลหะมีการหดตัว ความต้านทานไฟฟ้าจะลดลง

3. วงจรวิทสโตนบริดจ์ (Wheatstone Bridge)

วงจรรูปเพชร Wheatstone Bridge สามารถใช้เปรียบเทียบค่าความต้านทานที่ไม่ทราบค่ากับค่า ความต้านทานที่ทราบค่า เพื่อกำหนดค่าความต้านทานที่แม่นยำ ซึ่งช่วยให้วัดค่าความต้านทานที่ต่ำมากในช่วง มิลลิโอห์มได้อย่างแม่นยำ โดย Wheatstone Bridge ใน Loadcell sensor เป็นเการจัดเรียง Strain Gauge 4 ตัวต่อกันเป็นรูปสี่เหลี่ยมขนมเปียกปูน

ในสภาวะสมดุล (ไม่มีแรงกระทำ) เมื่อไม่มีน้ำหนักมากดทับความต้านทานของ Strain Gauge ทุกตัว จะเท่ากันทำให้แรงดันไฟฟ้าที่ V_{out} มีค่าศูนย์โวลต์ เรียกว่า "บริดจ์สมดุล"

ในสภาวะไม่สมดุล (มีแรงกระทำ) เมื่อมีน้ำหนักมากดทับ Strain Gauge บางตัวจะเกิดการขยายตัว (ยืดออก) ส่งผลให้ค่าความต้านทานเพิ่มขึ้น บางตัวเกิดการหดตัว(กดทับ) ส่งผลให้ค่าความต้านทานลดลง ทำ

ให้วงจรเสียสมดุลเกิดเป็น "ผลต่างแรงดันไฟฟ้า (Differential Voltage)" ขนาดระดับมิลลิโวลต์ที่จุด V_{out} ซึ่ง ค่าเหล่านี้จะแปรผันตรงกับน้ำหนักที่กระทำ

4. วงจรขยายผลต่าง (Differential Amplifier)

หลังจากที่วงจรวิทสโตนบริดจ์แปลงแรงกระทำเป็นสัญญาณแรงดันไฟฟ้าแล้ว สัญญาณดังกล่าวมี ขนาดเล็กมากในระดับมิลลิโวลต์ และไวต่อสัญญาณรบกวน (Noise) จากสภาพแวดล้อม ดังนั้นจึงจำเป็นต้องมี วงจรขยายผลต่าง เพื่อขยายสัญญาณ และกำจัดสัญญาณรบกวน โดยการใช้ Op-amp 2 ตัวในวงจรขยาย สัญญาณจะทำให้ Input Impedance มีประสิทธิภาพสูงขึ้นทำให้ไม่รบกวนการทำงานของวงจรบริดจ์ต้นทาง

การทดลองนี้ใช้วงจรขยายสัญญาณ INA125 ซึ่งเป็น Instrumentation Amplifier ในการหา Gain หรืออัตราการขยายของวงจรขยายผลต่าง เป็นตัวกำหนดสัญญาณไฟฟ้าที่ออกจากวงจรบริดจ์ ซึ่งมีขนาดเล็ก จะถูกขยายให้มีขนาดใหญ่ขึ้น โดยค่า Gain ในวงจรขยายผลต่างโดยทั่วไปจะถูกกำหนดโดยอัตราส่วนของค่า ความต้านทาน (Resistors) ในวงจรจากสูตร

$$V_o = (V_{IN}^+ - V_{IN}^-)G$$
$$G = 4 + \frac{60k\Omega}{R_G}$$

หากต้องการ Gain ที่สูงขึ้น จะต้องเพิ่มค่าความต้านทาน R_G การเลือก Gain ที่เหมาะสมจะช่วยให้ สามารถใช้ช่วงการวัดของ ADC ได้อย่างเต็มประสิทธิภาพ และให้ความละเอียดในการวัดสูง หาก Gain สูง เกินไปสัญญาณจะเกิดการอิ่มตัว (Saturation) แต่หาก Gain ต่ำเกินไปสัญญาณที่ได้จะมีความละเอียดต่ำและ ถูกรบกวนได้ง่าย

5. กระบวนการ Signal Conditioning และ Calibration

Signal Conditioning คือ การปรับปรุงสัญญาณอะนาล็อกให้อยู่ในรูปแบบที่เหมาะสมสำหรับการ ประมวลผล เช่น สัญญาณอ่อนเกินไป, มีสัญญาณรบกวน (Noise) โดยมีกระบวนการดังนี้

- การขยายสัญญาณ (Amplification)
- การกรองสัญญาณ (Filtering)
- การทำให้เป็นเชิงเส้น (Linearization)
- การแยกสัญญาณ (Isolation)
- การแปลงสัญญาณ (Conversion)

Calibration คือ กระบวนการสอบเทียบเพื่อเปรียบเทียบค่าของเครื่องมือวัดกับค่ามาตรฐาน เพื่อ ตรวจสอบความถูกต้อง และปรับแต่งเครื่องมือวัดให้มีความแม่นยำ

6. สภาวะอื่มตัว (Saturation)

เมื่อปริมาณที่วัดได้มีค่าสูงเกินกว่าเซนเซอร์จะรองรับได้ สัญญาณขาออกจะคงที่อยู่ที่ค่าสูงสุด จุดนี้จะ ถูกเรียกว่า "จุดอิ่มตัว"

ขั้นตอนการดำเนินงาน

- 1. ต่อวงจรโหลดเซลล์เข้ากับวงจร Amplifier INA125 และ Trim pot และเชื่อม Output ของ วงจรขยายเข้ากับขาอะนาล็อก ของบอร์ด Nucleo STM32G474RE
- 2. คำนวณหาค่า Gain ที่เหมาะสมกับช่วงน้ำหนักสูงสุดที่ต้องการวัด (10 kg) โดยค่า Gain ที่คำนวณได้ คือ 500 และได้ R_G มีค่า 150 โอมห์ และปรับค่า Trim pot ให้ตรงกับค่าความต้านทานที่คำนวณได้
- 3. เปิดโปรมแกรม Simulink เพื่ออ่านค่าสัญญาณอะนาล็อกจากบอร์ด
- 4. ค่อย ๆ เพิ่มน้ำหนักถุงทรายบนโหลดเซลล์ครั้งละประมาณ 500 กรัม จนถึง 10,000 กรัม (10 kg)
- 5. บันทึกค่าที่ได้ และทำการทดลองซ้ำ 3 ครั้ง หาค่าเฉลี่ยเพื่อตรวจสอบความแม่นยำของการทดลอง
- 6. นำข้อมูลค่า bit ที่ได้มาแปลงค่ากลับเป็นหน่วย SI: หน่วย กรัม เพื่อเปรียบเทียบกับค่ามาตรฐาน ใน กระบวนการ Calibrate จากวิธีการทางสถิติ "การถดถอยเชิงเส้น (Linear Regression)" เพื่อหา ความสัมพันธ์เชิงเส้นระหว่างน้ำหนัก และค่า bit ที่อ่านได้จากสูตร

น้ำหนัก
$$(kg)=rac{bit-78.37}{322.35}$$

ผลการทดลอง

จากการทดลองซ้ำทั้ง 3 ครั้ง นำค่า bit ที่ได้มาหาค่าเฉลี่ย และแปลงค่าเป็นหน่วยSI (g) กราฟท่ได้จะ มีลักษณะดังนี้

รูปที่ 16 แสดงกราฟผลการทดลองทั้งสามครั้งโดยเฉลี่ย

สรุปผลการทดลอง

จากผลการทดลองพบว่า ค่า bit ที่วัดได้มีความสัมพันธ์เชิงเส้นกับน้ำหนักที่กระทำต่อโหลดเซลล์ ซึ่ง เป็นไปตามสมมติฐานที่ตั้งไว้ ระบบสามารถวัดน้ำหนักได้ค่อนข้างแม่นยำในช่วง 500 - 9,000 กรัม แต่เมื่อ น้ำหนักเข้าใกล้ 10,000 กรัม ค่า bit ที่อ่านได้เริ่มมีค่าคงที่ซึ่งแสดงถึงการเกิดสภาวะอิ่มตัว (Saturation) ของ สัญญาณ

อภิปรายผล

ความเป็นเชิงเส้น (Linearity): จากกราฟจะเห็นว่า Sensor ตอบสนองต่อน้ำหนักของถุงทรายที่ เพิ่มขึ้นเป็นเส้นตรง ซึ่งแสดงให้เห็นว่า Gain ที่เลือกมีความเหมาะสมในระดับหนึ่ง

สภาวะอิ่มตัว (Saturation): จากการทดลองสภาวะอิ่มตัวเกิดขึ้นเพราะ วงจรขยายสัญญาณ (INA125) มีแรงดันไฟฟ้าขาออก (V_{out}) สูงเกินกว่าที่วงจรจะจ่ายได้ หรือเกินกว่าแรงดันไฟฟ้าที่ ADC ของบอร์ดสามารถ รับได้ ส่งผลให้แม้จะเพิ่มน้ำหนักให้มากขึ้น สัญญาณขาออกก็จะไม่เพิ่มขึ้นตามน้ำหนัก

ความคลาดเคลื่อนที่เกิดขึ้นมาอาจมาจาก Noise ภายในวงจร การเปลี่ยนแปลงของอุณหภูมิขณะทำ การทดลองซึ่งส่งผลต่อการขยาย หรือหดตัวของ Strain Gauge ตำแหน่งการวางถุงทรายที่ส่งผลต่อการ กระจายแรง และการอ่านค่า

ข้อเสนอแนะ

1. ปรับค่า Gain ให้ต่ำลง เพื่อขยายช่วงการวัดให้ถึงน้ำหนักสูงสุดคือ 10 กิโลกรัม จะทำให้ช่วง Saturation เกิดขึ้นหลังจากน้ำหนักเกิน 10 กิโลกรัม

อ้างอิง

- https://www.electronicoscaldas.com/datasheet/YZC-131A.pdf?srsltid=AfmBOops1gbE1lWAcJPUJmLfk3H2Sz0CLiJ0Wk-7dg4c6z6crpRdHi6G
- https://www.ti.com/lit/ds/symlink/ina125.pdf?ts=1753106316476&ref_url=https%253A %252F%252Fwww.ti.com%252Fproduct%252FINA125%253Futm_source%253Dgoogle %2526utm_medium%253Dcpc%2526utm_campaign%253Dasc-null-null-GPN_EN-cpc-pf-google
 - soas_en_cons%2526utm_content%253DINA125%2526ds_k%253DINA125%2526DCM% 253Dyes%2526gad_source%253D1%2526gad_campaignid%253D8754035891%2526gbr aid%253D0AAAAAC068F3ORg3SGN8hLYwquBa6P4bAH%2526gclid%253DCj0KCQjwyvfD BhDYARIsAltzbZEhLXom-xmT1qM1eD1rmX2tBfuDQTbJT-
 - CSpvHZYhIl cESTSq 1Y0aAqBbEALw wcB%2526gclsrc%253Daw.ds
- 3. https://www.fujifilm.com/in/en/business/inspection/measurement-film/prescale/column/strain-gauge
- 4. https://mall.factomart.com/load-cell-design-not-only-from-strain-gauge/
- 5. https://www.kmutech.com/strain-gauge/
- 6. https://www.electronics-tutorials.ws/blog/wheatstone-bridge.html

ภาคผนวก


```
MATLAB Function
ADC_reader_simulink ▶ ▲ MATLAB Function
           function [avg, n] = fcn(u, t)
  2
           persistent sumVal count avgVal done
  3
  4
  5
           if isempty(sumVal)
  6
               sumVal = 0;
               count = 0;
  7
  8
               avgVal = 0;
  9
               done = false;
 10
           end
 11
 12
           if t >= 0 && t <= 0.2
               sumVal = sumVal + double(u);
 13
 14
               count = count + 1;
 15
 16
           if t > 0.2 && ~done
 17
 18
               if count > 0
                   avgVal = sumVal / count;
 19
 20
               done = true;
 21
           end
 22
 23
           if t < 0.001 && done
 24
 25
               sumVal = 0;
 26
               count = 0;
 27
               avgVal = 0;
 28
               done = false;
 29
           end
 30
 31
           avg = avgVal;
 32
 33
           n = count;
```

หาค่าเฉลี่ยของช่วง ๆ หนึ่ง โดยจะนับค่า ตามจำนวนเวลาที่กำหนดพร้อมระบุว่าค่าที่ส่งออกมานั้นมาจากการเฉลี่ย ค่าทั้งหมดกี่ค่า ใช้กับ lab Potentiometer Load cell และ Magnetic Sensor โดยแต่ละ lab จะกำหนดเวลาที่ใช้ในการนับ ไม่เหมือนกัน โดยในทุกการทดลองจะกำหนดให้จำนวนครั้งที่ใช้ในการนับมากกว่า 50 ครั้ง Α

ใช้สำหรับทดลองหาว่าขอบขาของสัญญาณ A และสัญญาณ B ใน encoder ในกรณที่มีการหมุนตามเข็มนาฬิกา และหมุนทวนเข็มนาฬิกามีลักษณะสัญญาณที่แตกต่างกันอย่างไร

ผังนี้เป็นกระบวนการเต็มของการหาค่า ความเร็วของการหมุน encoder โดยในส่วนแรกจะเป็นการรับค่าเข้ามาผ่าน ฟังก์ชัน Wrap Around ซึ่งทำหน้าที่สามารถเก็บค่าเพิ่มขึ้นไปได้เรื่อย ๆ โดยไม่โดนขอบเขตของ bit encoder กำหนด จากนั้นจะเข้าสู่ฟังก์ชัน Homing ซึ่งทำให้เราสามารถกำหนดตำแหน่งต่าง ๆ ของค่าสัญญาณที่เคลื่อนไปเป็นค่าเริ่มต้น หรือค่า 0 ได้ หลังจากนั้นจะผ่าน การแปลงอัตราส่วนของค่าสัญญาณ ได้เป็นค่าของมุมซึ่งมีหน่วยเป็น องศา และ เรเดียน โดยหากนำ ค่าเหล่านี้ไป diff จะได้ค่าความเร็ว และความเร่งตามลำดับ

ผังนี้ใช้ 3 TIM คือ TIM3 TIM4 และ TIM1 เพื่ออ้านค่าสัญญาณแบบ X1 X2 และX4 พร้อมกันใช้ในการเปรียบเทียบ

```
← 

→ 

→ 

WrapAround

function delta = WrapAround(u1)
                  persistent u0
                  persistent total_delta
     4
                  Counter_Period = 65535;
     6
                  if isempty(u0)
                      u0 = u1;
     9
                  end
    10
                  if isempty(total_delta)
    11
    12
                      total_delta = 0;
                  end
    13
    14
15
                  diff = u1 - u0;
    16
                  if diff > Counter_Period/2
    diff = diff - Counter_Period;
    17
    18
    19
                  elseif diff < -Counter_Period/2
    20
                      diff = diff + Counter_Period;
    21
    22
                  total_delta = total_delta + diff;
    23
    24
                  delta = total_delta;
    25
    26
27
                  u0 = u1;
              end
    28
```

ฟังก์ชันนี้คือ Wrap Around แนวคิดในการเขียนสามารถอ่านเอกสารอ้างอิงของ lab encoder

```
MATLAB Function3
Encoder_reader_simulink ►  MATLAB Function3
 1
 2
           function start = Homing(u_1, trigger)
      口
 3
 4
           persistent home
 5
           if isempty(home)
 6
 7
               home = 0;
 8
           end
 9
          if trigger
10
11
               home = u_1;
12
13
           start = u_1 - home;
14
15
```

ฟังก์ชันนี้คือ Homing แนวคิดในการเขียนสามารถอ่านเอกสารอ้างอิงของ lab encoder