Results Lathyrus paper 1

Contents

Calculate proportion of plants flowering per year at each of Models proportion of plants flowering per year against date Calculate dates when 10%, 20%, 80% and 90% of plants he Calculate other metrics of the flowering season and merge	late te ave star	ted fl	owerin	 g in 6	ach	 year		
odels of FFD_first, FFD_last, date_10-20-80-9	o, FFI	D_m	ean,d	ays_	_90	10	agai	inst
weather variables								
With FFD_first								
With FFD_last								
With date_10								
With date_20								
With date_80								
With date_90								
With days_90_10								
With FFD_mean								
lection differentials for each year								
FFD, linear								
FFD, quadratic								
Number of flowers, linear								
Number of flowers, quadratic								
Plots								
election gradients for each year								
FFD, linear								
FFD, quadratic and correlational								
Plots								
esults 1: Among-year variation and trends								
Trends								
Trend in spring temperature								
Trend in FFD								
RESIDUALS FFD~TEMP UNRELATED TO YEAR	₹							
RESIDUALS FFD RELATED TO RESIDUALS TE	MP							
Trend in fitness								
Trend in selection gradients for FFD								
PLOT RESIDUALS FFD AGAINST RESIDUALS T	TEMP.							
Proprtion of variation explained by year								
FFD								
Fitness								
Fig. 1								

FFD for each plant	;7
Fig. 2: Response of FFD for each plant to spring temperature	8
	8
O I I I I I	11
Duration	11
Fig. 4: Response of duration of the flowering season to spring temperature	.3
Results 3 NEW: Response of fitness to spring temperature, mean position and duration of	
flowering 4	3
Spring temperature	:3
Position	:3
Duration	4
Fig. 5: Response of fitness to spring temperature, mean position and duration of flowering 4	4
Results 4: Differences in selection among years 4	6
Indirect selection (selection differentials)	6
Direct selection (selection gradients)	6
Results 5: Are differences in selection among years related to climatic conditions? 4	7
Analysis with selection gradients (not used)	17
Spring temperature	17
Position of the flowering season	17
Duration of the flowering season	8
Analysis with selection differentials (not used)	8
Spring temperature	18
	19
	19
GLMMs (not used)	19
	51
Fig. 6: Response of selection gradients to spring temperature, position and duration of flowering	
	52

Select data and look at variables

```
data_sel<-subset(alldata_weather_subs,!is.na(n_fl)&!is.na(FFD))
#Select data where both FFD and n_fl are available
nrow(subset(data_sel,is.na(n_intact_seeds))) #No NAs for seed data
## [1] 0
data_sel_agg$year<-as.factor(data_sel_agg$year)
data_sel<-merge(data_sel[c(1:19,56)],data_sel_agg[c(1:217,223:235)],by="year")</pre>
```

Calculation of relative fitness and standardized traits

Relativization and standardization was done within each year.

```
data_sel<-data.frame(
  data_sel %>%
  group_by(year) %>%
  mutate(n_intact_seeds_rel=n_intact_seeds/mean(n_intact_seeds)) %>% #Relative fitness
  mutate(FFD_std=(FFD-mean(FFD))/sd(FFD)) %>% #Standardized FFD
  mutate(n_fl_std=(n_fl-mean(n_fl))/sd(n_fl))) #Standardized n_fl
```

Calculation of position and duration of flowering season

Calculate proportion of plants flowering per year at each date

Models proportion of plants flowering per year against date

```
1 1987
             (Intercept)
                           -27.7
                                      0.808
                                                  -34.3 9.89e-258
##
##
    2 1987
            FFD
                             0.422
                                      0.0122
                                                   34.5 1.74e-260
                           -23.6
    3 1988
             (Intercept)
                                      0.748
                                                  -31.5 2.16e-218
    4 1988
            FFD
                             0.398
                                      0.0126
                                                   31.7 4.45e-220
##
##
      1989
             (Intercept)
                           -20.9
                                      0.937
                                                  -22.3 2.19e-110
    6 1989
                             0.393
                                      0.0174
                                                   22.6 5.79e-113
##
            FFD
                           -19.1
                                                  -14.7 1.00e- 48
##
    7 1990
             (Intercept)
                                      1.30
                                                   14.8 2.71e- 49
##
    8 1990
            FFD
                             0.367
                                      0.0249
##
    9 1991
             (Intercept)
                           -18.7
                                      1.06
                                                  -17.7 5.22e- 70
## 10 1991
            FFD
                             0.299
                                      0.0169
                                                   17.8 1.64e- 70
     ... with 34 more rows
```


Calculate dates when 10%, 20%, 80% and 90% of plants have started flowering in each year

Dates are calculated using the binomial models (calculations not shown).

```
dates_fl<-data.frame(year=c(1987:1996,2006:2017),date_10,date_20,date_80,date_90)
head(dates_fl)</pre>
```

Calculate other metrics of the flowering season and merge

```
dplyr::group_by(year) %>%
            dplyr::summarise(FFD_mean=mean(FFD),FFD_first=min(FFD), FFD_last=max(FFD),
                             FFD_var=var(FFD),FFD_dur=range(FFD)[2]-range(FFD)[1],
                             FFD_skew=skewness(FFD),FFD_kurt=kurtosis(FFD))),dates_f1)
fl_pos_dur$days_90_10<-with(fl_pos_dur,date_90-date_10) # Another measure of duration
head(fl pos dur)
    year FFD_mean FFD_first FFD_last
                                       FFD_var FFD_dur FFD_skew
                                                                    FFD_kurt
## 1 1987 66.25589 56.88194 79.88194 16.699234
                                                     23 0.8626570 0.2201882
## 2 1988 59.90789 50.63889 78.63889 20.244857
                                                     28 0.5791351 0.9320223
## 3 1989 53.85571 45.39653 65.39653 18.807595
                                                     20 0.1920443 -0.2264171
## 4 1990 54.46244 41.15417 71.15417 26.093643
                                                     30 0.2452248 0.5593864
## 5 1991 64.99514 49.91181 74.91181 36.445531
                                                     25 0.2566082 -0.7587831
## 6 1992 59.85048 55.66944 65.66944 9.975637
                                                     10 0.1424553 -0.5373083
      date_10 date_20 date_80 date_90 days_90_10
## 1 60.38876 62.30943 68.87634 70.79705
## 2 53.79735 55.83503 62.80182 64.83949 11.042139
## 3 47.67251 49.73706 56.79583 58.86038 11.187872
## 4 45.95380 48.16479 55.72425 57.93525 11.981455
## 5 55.15323 57.86356 67.13019 69.84053 14.687303
## 6 55.78171 55.78171 59.57069 60.94629
                                           5.164579
mean_weather7<-merge(mean_weather6,fl_pos_dur[c(1,3:4,9:13)])</pre>
data_sel<-merge(data_sel,fl_pos_dur)</pre>
```

$Models\ of\ FFD_first,\ FFD_last,\ date_10\mbox{-}20\mbox{-}80\mbox{-}90,\ FFD_mean, days_90_10$ against weather variables

With FFD_first

variable	Estimate	Р	sig	Rsquare
scale(mean_b)	-6.103908	< 0.001	***	0.6760532
scale(GDD3_34)	-5.968178	< 0.001	***	0.6441223
scale(max_b)	-5.946634	< 0.001	***	0.6391199
scale(GDH3_34)	-5.871961	< 0.001	***	0.6219219
scale(mean_45)	-5.767840	< 0.001	***	0.5983041
scale(GDH3_b)	-5.764751	< 0.001	***	0.5976101
scale(GDD3_b)	-5.751481	< 0.001	***	0.5946319
scale(GDH5_34)	-5.723634	< 0.001	***	0.5884048

variable	Estimate	P	sig	Rsquare
$scale(GDD5_34)$	-5.581013	< 0.001	***	0.5569857
scale(GDD3_45)	-5.541647	< 0.001	***	0.5484532
scale(min_45)	-5.526175	< 0.001	***	0.5451160
scale(max_34)	-5.493885	< 0.001	***	0.5381818
scale(GDH3_45)	-5.490866	< 0.001	***	0.5375355
$scale(max_45)$	-5.481160	< 0.001	***	0.5354603
scale(GDH5_b)	-5.427729	< 0.001	***	0.5241016
scale(GDH7_34)	-5.402895	< 0.001	***	0.5188601
scale(mean_4)	-5.307262	< 0.001	***	0.4989002
scale(mean_34)	-5.236920	< 0.001	***	0.4844465
$scale(GDD3_4)$	-5.229496	< 0.001	***	0.4829323
$scale(GDD5_b)$	-5.176071	< 0.001	***	0.4720991
$scale(GDH5_45)$	-5.161470	< 0.001	***	0.4691576
scale(GDH3_4)	-5.142703	< 0.001	***	0.4653893
$scale(GDD5_45)$	-5.108651	< 0.001	***	0.4585866
$scale(GDD5_4)$	-5.080960	< 0.001	***	0.4530880
scale(min_b)	-5.038395	< 0.001	***	0.4446942
scale(GDH5 4)	-5.016737	< 0.001	***	0.4404504
$scale(min_4)$	-5.009479	< 0.001	***	0.4390323
$scale(max_16)$	-4.998807	< 0.001	***	0.4369509
scale(GDD3 16)	-4.869855	0.001	***	0.4121516
scale(GDH3_16)	-4.836155	0.001	***	0.4057775
scale(GDH7_b)	-4.826718	0.001	***	0.4040004
scale(GDD7_34)	-4.817469	0.001	***	0.4022622
$scale(max_4)$	-4.794050	0.001	***	0.3978757
scale(GDH7_4)	-4.778104	0.001	**	0.3949012
scale(mean_16)	-4.774932	0.001	**	0.3943012 0.3943107
scale(GDH7_45)	-4.586492	0.001 0.002	**	0.3599337
scale(GDH10_34)	-4.582941	0.002	**	0.3592993
scale(GDD7_4)	-4.472055	0.002 0.003	**	0.3397327
scale(min 34)	-4.448603	0.003	**	0.3356556
scale(GDH3_3)	-4.411203	0.003	**	0.3291985
scale(mean_46)	-4.407258	0.003	**	0.3285204
scale(GDD3_3)	-4.404001	0.003	**	0.3279613
scale(min_16)	-4.402526	0.003	**	0.3277080
scale(max_46)	-4.370736	0.003	**	0.3227731
scale(max_3)	-4.363559	0.003 0.004	**	0.3210514
scale(GDH5 16)	-4.285088	0.004	**	0.3210314 0.3078261
scale(GDD7 45)	-4.272444	0.004	**	0.3070201 0.3057175
scale(GDD7_43)	-4.267057	0.004 0.005	**	0.3048211
scale(GDH5_3)	-4.247907	0.005	**	0.3046211 0.3016433
scale(GDH3_13)	-4.243260	0.005	**	0.3010435 0.3008745
scale(GDD7_b)	-4.245200	0.005	**	0.3008743 0.2948679
scale(GDD7_D) scale(precipitation_13)	-4.200784 -4.195822		**	
\ /		$0.005 \\ 0.006$	**	0.2930729
scale(max_13)	-4.171834		**	0.2891614
scale(mean_13) scale(GDH5 13)	-4.143596	0.006	**	0.2845856
_ /	-4.142648	0.006	**	0.2844326
scale(GDD5_16)	-4.138801	0.006	**	0.2838116
scale(GDD3_46)	-4.100848	0.007	**	0.2777176
scale(mean_3)	-4.094986	0.007	**	0.2767814
scale(GDH10_4)	-4.073755 4.026217	0.007	**	0.2734016
$scale(min_13)$	-4.026217	0.008		0.2658980

variable	Estimate	Р	sig	Rsquare
scale(GDH3_46)	-4.002432	0.009	**	0.2621766
scale(GDH7_3)	-3.854263	0.012	*	0.2394911
scale(min_46)	-3.797499	0.014	*	0.2310268
scale(GDD5_3)	-3.790514	0.014	*	0.2299940
scale(GDD5_13)	-3.755164	0.015	*	0.2247959
scale(GDH7_13)	-3.748279	0.015	*	0.2237891
scale(min_3)	-3.653020	0.018	*	0.2100498
scale(GDH10_b)	-3.621330	0.02	*	0.2055576
scale(GDD5_46)	-3.615456	0.02	*	0.2047291
scale(GDH5_46)	-3.577493	0.021	*	0.1994077
scale(GDH10_45)	-3.542694	0.023	*	0.1945792
scale(GDD10_34)	-3.501712	0.025	*	0.1889534
scale(GDH7_16)	-3.434157	0.028	*	0.1798226
$scale(GDD10_4)$	-3.106852	0.05	*	0.1381021

With FFD last

variable	Estimate	Р	sig	Rsquare
scale(min_5)	-4.510640	< 0.001	***	0.5598494
scale(GDH7_45)	-4.506935	< 0.001	***	0.5588481
scale(GDH5_45)	-4.491293	< 0.001	***	0.5546291
$scale(GDD5_45)$	-4.462057	< 0.001	***	0.5467830
$scale(GDD7_45)$	-4.429817	< 0.001	***	0.5381902
scale(GDH3_45)	-4.394657	< 0.001	***	0.5288904
$scale(GDD3_45)$	-4.358849	< 0.001	***	0.5194949
$scale(min_45)$	-4.311812	< 0.001	***	0.5072703
$scale(GDH10_45)$	-4.301700	< 0.001	***	0.5046596
$scale(GDH5_5)$	-4.265259	< 0.001	***	0.4953020
$scale(GDH3_16)$	-4.264740	< 0.001	***	0.4951692
$scale(GDH7_5)$	-4.259634	< 0.001	***	0.4938647
$scale(GDH3_5)$	-4.254050	< 0.001	***	0.4924396
$scale(mean_45)$	-4.249681	< 0.001	***	0.4913260
$scale(GDD5_5)$	-4.244828	< 0.001	***	0.4900905
$scale(GDD7_5)$	-4.242475	< 0.001	***	0.4894917
$scale(GDD3_5)$	-4.238589	< 0.001	***	0.4885039
$scale(GDD3_16)$	-4.219686	< 0.001	***	0.4837114
scale(GDD10_45)	-4.215292	< 0.001	***	0.4826005
scale(mean_5)	-4.182338	< 0.001	***	0.4743055

variable	Estimate	P	sig	Rsquare
scale(GDD10_5)	-4.146113	< 0.001	***	0.4652625
scale(GDH10_5)	-4.114950	< 0.001	***	0.4575459
scale(GDH5 16)	-4.110689	< 0.001	***	0.4564955
$scale(GDD5_16)$	-3.997899	0.001	***	0.4290822
$scale(GDD3_46)$	-3.882864	0.001	***	0.4019086
scale(mean_46)	-3.872485	0.001	***	0.3994959
scale(GDH3_46)	-3.872152	0.001	***	0.3994186
$scale(max_5)$	-3.866074	0.001	***	0.3980088
scale(max_16)	-3.846577	0.001	**	0.3935016
scale(max_45)	-3.840321	0.001	**	0.3920601
scale(GDD5_46)	-3.824981	0.001	**	0.3885356
scale(GDH5_46)	-3.797762	0.001	**	0.3823164
scale(GDH7_16)	-3.795933	0.001	**	0.3819001
scale(min_46)	-3.768138	0.001	**	0.3755982
scale(GDD7_16)	-3.620926	0.001 0.002	**	0.3133932 0.3429937
scale(GDB7_10) scale(GDH7_46)	-3.618182	0.002	**	0.3423983
scale(GDI7_40) scale(max_46)	-3.602800	0.003	**	0.3423963
scale(max_40) scale(max_3)	-3.597444	0.003	**	0.3379131
scale(GDD7_46)		0.003	**	0.3365526
	-3.591130		**	0.3303320 0.3134532
scale(mean_16)	-3.482179	0.004	**	
scale(mean_b)	-3.319274	0.007	**	0.2802422
scale(max_34)	-3.278196	0.007	**	0.2721189
scale(GDH10_16)	-3.241990	0.008	**	0.2650428
scale(GDH3_3)	-3.217362	0.009	**	0.2602745
scale(GDH10_46)	-3.187718	0.01	**	0.2545834
scale(GDH3_13)	-3.178015	0.01	*	0.2527319
scale(GDH3_b)	-3.164582	0.01	*	0.2501780
scale(GDD3_b)	-3.151599	0.011	*	0.2477201
scale(GDD3_3)	-3.142863	0.011		0.2460720
scale(max_b)	-3.133708	0.011	*	0.2443495
$scale(max_13)$	-3.093156	0.013	*	0.2367806
scale(GDD10_16)	-3.090531	0.013	*	0.2362942
scale(GDD3_13)	-3.089528	0.013	*	0.2361084
$scale(GDD10_46)$	-3.088169	0.013	*	0.2358567
scale(mean_3)	-3.086984	0.013	*	0.2356374
$scale(min_16)$	-3.053517	0.014	*	0.2294776
$scale(mean_34)$	-3.049881	0.014	*	0.2288125
$scale(GDH5_b)$	-3.025428	0.015	*	0.2243595
$scale(GDD5_b)$	-2.944207	0.018	*	0.2098263
$scale(GDH5_13)$	-2.880970	0.022	*	0.1987848
$scale(GDH3_34)$	-2.833682	0.024	*	0.1906847
$scale(GDD3_34)$	-2.806325	0.026	*	0.1860599
$scale(GDH5_3)$	-2.805960	0.026	*	0.1859986
$scale(GDH7_b)$	-2.800757	0.026	*	0.1851240
$scale(mean_13)$	-2.780684	0.027	*	0.1817659
scale(min_b)	-2.701016	0.033	*	0.1686758
scale(min_3)	-2.576678	0.043	*	0.1490062
$scale(min_34)$	-2.543446	0.046	*	0.1439061
scale(GDD7_b)	-2.543048	0.046	*	0.1438454
scale(min_13)	-2.506245	0.05	*	0.1382753

With date 10

variable	Estimate	Р	sig	Rsquare
scale(mean_45)	-5.609292	< 0.001	***	0.7023764
scale(mean_b)	-5.525249	< 0.001	***	0.6799997
$scale(min_45)$	-5.382888	< 0.001	***	0.6428667
scale(GDD3_45)	-5.371391	< 0.001	***	0.6399102
scale(GDD3_b)	-5.363048	< 0.001	***	0.6377688
scale(max_45)	-5.325682	< 0.001	***	0.6282183
scale(GDH3_b)	-5.325520	< 0.001	***	0.6281770
scale(GDH3_45)	-5.310196	< 0.001	***	0.6242797
scale(max_b)	-5.302125	< 0.001	***	0.6222317
scale(GDH5_b)	-5.036591	< 0.001	***	0.5565859
scale(GDD3_34)	-5.013581	< 0.001	***	0.5510562
scale(GDH5_45)	-5.000905	< 0.001	***	0.5480208
$scale(GDD5_45)$	-4.946429	< 0.001	***	0.5350629
scale(GDH3_34)	-4.908166	< 0.001	***	0.5260465
$scale(GDD5_b)$	-4.868289	< 0.001	***	0.5167242
scale(GDD3_16)	-4.742488	< 0.001	***	0.4878133
$scale(max_16)$	-4.709113	< 0.001	***	0.4802702
scale(GDH3_16)	-4.693240	< 0.001	***	0.4767014
scale(min_b)	-4.679390	< 0.001	***	0.4735975
$scale(max_34)$	-4.661398	< 0.001	***	0.4695787
scale(GDH5_34)	-4.653344	< 0.001	***	0.4677849
$scale(min_4)$	-4.631395	< 0.001	***	0.4629117
scale(mean_4)	-4.590518	< 0.001	***	0.4538978
$scale(GDH7_b)$	-4.535646	< 0.001	***	0.4419232
$scale(mean_34)$	-4.525262	< 0.001	***	0.4396732
$scale(max_46)$	-4.519119	< 0.001	***	0.4383448
$scale(mean_46)$	-4.502448	0.001	***	0.4347485
$scale(GDD5_34)$	-4.500811	0.001	***	0.4343961
$scale(GDH7_45)$	-4.479617	0.001	***	0.4298448
$scale(mean_16)$	-4.443113	0.001	***	0.4220563
$scale(GDD3_4)$	-4.436783	0.001	***	0.4207121
$scale(GDH3_4)$	-4.333740	0.001	***	0.3991017
$scale(GDH7_34)$	-4.302026	0.001	**	0.3925528
$scale(GDD7_45)$	-4.223716	0.001	**	0.3765878
scale(GDH5_16)	-4.212508	0.001	**	0.3743268
scale(GDD3_46)	-4.211584	0.001	**	0.3741407
scale(GDD5_4)	-4.139377	0.002	**	0.3597216
$scale(GDH5_4)$	-4.138168	0.002	**	0.3594825
· · · · · · · · · · · · · · · · · · ·				

variable	Estimate	Р	sig	Rsquare
scale(GDH3_46)	-4.113352	0.002	**	0.3545859
scale(GDD5_16)	-4.088070	0.002	**	0.3496278
scale(GDD7_b)	-4.067765	0.002	**	0.3456678
scale(min_16)	-4.033000	0.003	**	0.3389336
scale(max_4)	-3.999222	0.003	**	0.3324460
$scale(min_34)$	-3.936563	0.004	**	0.3205557
$scale(GDH7_4)$	-3.872536	0.004	**	0.3085997
$scale(GDD7_34)$	-3.839761	0.005	**	0.3025553
$scale(min_46)$	-3.837762	0.005	**	0.3021884
$scale(GDD3_13)$	-3.753343	0.006	**	0.2868647
scale(precipitation_13)	-3.752029	0.006	**	0.2866289
$scale(GDD5_46)$	-3.749015	0.006	**	0.2860883
$scale(max_13)$	-3.747423	0.006	**	0.2858029
$scale(max_3)$	-3.746788	0.006	**	0.2856891
$scale(GDH3_13)$	-3.740661	0.006	**	0.2845921
$scale(GDH5_46)$	-3.721209	0.007	**	0.2811214
$scale(mean_13)$	-3.716385	0.007	**	0.2802634
$scale(GDH3_3)$	-3.647065	0.008	**	0.2680578
$scale(GDD3_3)$	-3.643690	0.008	**	0.2674694
$scale(GDD7_4)$	-3.607219	0.009	**	0.2611459
$scale(min_13)$	-3.602717	0.009	**	0.2603697
$scale(GDH10_34)$	-3.555027	0.01	*	0.2522073
$scale(mean_3)$	-3.536272	0.011	*	0.2490270
$scale(GDH10_45)$	-3.525101	0.011	*	0.2471407
$scale(GDH10_b)$	-3.501433	0.011	*	0.2431640
$scale(GDH7_16)$	-3.492608	0.012	*	0.2416882
$scale(GDH5_13)$	-3.462076	0.013	*	0.2366106
$scale(GDH5_3)$	-3.366089	0.016	*	0.2209381
$scale(mean_5)$	-3.302640	0.018	*	0.2108203
$scale(GDD3_5)$	-3.251299	0.02	*	0.2027743
$scale(GDD7_16)$	-3.218828	0.022	*	0.1977505
$scale(GDH10_4)$	-3.216880	0.022	*	0.1974507
$scale(GDH3_5)$	-3.210184	0.022	*	0.1964216
$scale(max_5)$	-3.196151	0.023	*	0.1942719
$scale(GDD5_5)$	-3.194765	0.023	*	0.1940602
$scale(GDH7_46)$	-3.171379	0.024	*	0.1905001
$scale(min_3)$	-3.163497	0.025	*	0.1893061
$scale(min_5)$	-3.108100	0.028	*	0.1809984
$scale(GDH5_5)$	-3.106551	0.028	*	0.1807683
$scale(GDD5_13)$	-3.061536	0.03	*	0.1741289
scale(GDD7_46)	-3.046592	0.031	*	0.1719461
$scale(GDD5_3)$	-2.984799	0.035	*	0.1630341
$scale(GDD7_5)$	-2.958619	0.037	*	0.1593134
$scale(GDH7_13)$	-2.947866	0.038	*	0.1577947
$scale(GDH7_3)$	-2.939229	0.039	*	0.1565788
$scale(GDH7_5)$	-2.904674	0.041	*	0.1517501
scale(GDD10_34)	-2.834436	0.047	*	0.1421111

With date 20

variable	Estimate	Р	sig	Rsquare
$scale(mean_45)$	-5.304641	< 0.001	***	0.7488650
$scale(GDD3_45)$	-5.082933	< 0.001	***	0.6834830
$scale(min_45)$	-5.080096	< 0.001	***	0.6826647
scale(mean_b)	-5.051815	< 0.001	***	0.6745299
scale(GDH3_45)	-5.033528	< 0.001	***	0.6692938
$scale(max_45)$	-5.019049	< 0.001	***	0.6651618
scale(GDD3_b)	-4.933349	< 0.001	***	0.6409474
scale(GDH3_b)	-4.897249	< 0.001	***	0.6308725
scale(max_b)	-4.850269	< 0.001	***	0.6178717
scale(GDH5_45)	-4.793629	< 0.001	***	0.6023644
scale(GDD5_45)	-4.734707	< 0.001	***	0.5864255
scale(GDH5_b)	-4.671399	< 0.001	***	0.5695199
scale(GDD3_16)	-4.596247	< 0.001	***	0.5497469
scale(GDH3_16)	-4.554746	< 0.001	***	0.5389654
scale(GDD5_b)	-4.529060	< 0.001	***	0.5323412
scale(max_16)	-4.496285	< 0.001	***	0.5239434
$scale(max_46)$	-4.444193	< 0.001	***	0.5107214
scale(mean_46)	-4.433625	< 0.001	***	0.5080580
scale(GDD3_34)	-4.389811	< 0.001	***	0.4970827
scale(GDH7_45)	-4.378863	< 0.001	***	0.4943573
$scale(GDH3_34)$	-4.296344	< 0.001	***	0.4740339
$scale(GDH7_b)$	-4.280149	< 0.001	***	0.4700907
$scale(min_b)$	-4.248920	< 0.001	***	0.4625291
$scale(mean_16)$	-4.207527	< 0.001	***	0.4525915
$scale(GDD3_46)$	-4.175745	< 0.001	***	0.4450275
$scale(GDD7_45)$	-4.162683	< 0.001	***	0.4419355
$scale(GDH5_16)$	-4.159465	< 0.001	***	0.4411751
$scale(max_34)$	-4.149316	< 0.001	***	0.4387811
$scale(min_4)$	-4.140371	< 0.001	***	0.4366758
$scale(GDH3_46)$	-4.092908	0.001	***	0.4255819
$scale(mean_34)$	-4.053436	0.001	***	0.4164532
$scale(GDD5_16)$	-4.045154	0.001	***	0.4145489
$scale(GDH5_34)$	-4.014749	0.001	***	0.4075917
$scale(mean_4)$	-3.994912	0.001	***	0.4030810
$scale(GDD7_b)$	-3.890528	0.001	**	0.3797130
$scale(GDD5_34)$	-3.869625	0.001	**	0.3751078
$scale(GDD3_4)$	-3.823607	0.002	**	0.3650570
$scale(min_46)$	-3.793420	0.002	**	0.3585293

scale(min_16) -3.778393 0.002 ** 0.3552996 scale(GDH5_46) -3.765321 0.002 ** 0.3524996 scale(GDH3_4) -3.718213 0.003 ** 0.3424915 scale(GDH7_34) -3.680089 0.003 ** 0.344843 scale(GDH7_16) -3.561914 0.004 ** 0.310187 scale(GDH5_4) -3.555382 0.004 ** 0.308867 scale(GDD5_4) -3.515541 0.005 ** 0.302359 scale(GDD5_4) -3.515541 0.005 ** 0.300869 scale(GDD3_13) -3.464158 0.006 ** 0.290687 scale(GDD3_13) -3.464189 0.006 ** 0.2906867 scale(mean_13) -3.464189 0.006 ** 0.289245 scale(mean_5) -3.447991 0.006 ** 0.289245 scale(max_3) -3.456817 0.006 ** 0.285246 scale(GDD3_5) -3.379665 0.007 ** 0.274271 scale(GDD3_5) -3.379665 0.007 ** 0.274271 scale(GDH3_5) -3.345352 0.008 <t< th=""><th>variable</th><th>Estimate</th><th>P</th><th>sig</th><th>Rsquare</th></t<>	variable	Estimate	P	sig	Rsquare
scale(GDH5_46) -3.765321 0.002 ** 0.352499* scale(GDH3_4) -3.718213 0.003 ** 0.342491* scale(GDH7_34) -3.680089 0.003 ** 0.342491* scale(GDH10_45) -3.588484 0.004 ** 0.315580* scale(GDH7_16) -3.561914 0.004 ** 0.310187* scale(GDH5_4) -3.555382 0.004 ** 0.3002359* scale(GDD5_4) -3.515141 0.005 ** 0.300790* scale(GDB5_4) -3.515143 0.005 ** 0.300790* scale(GDB3_13) -3.464158 0.006 ** 0.290686* scale(man_13) -3.456817 0.006 ** 0.289245* scale(man_5) -3.447991 0.006 ** 0.289245* scale(max_3) -3.436382 0.006 ** 0.288245* scale(GDH10_b) -3.425894 0.006 ** 0.28726* scale(max_4) -3.447991 0.006 ** 0.274271* scale(GDH3_5) -3.379665 0.007 ** 0.274271* scale(GDB3_5) -3.379038 0.007	scale(GDD5_46)	-3.782681	0.002	**	0.3562194
scale(GDH3_4) -3.718213 0.002 0.3424915 scale(GDH7_34) -3.680089 0.003 ** 0.3424915 scale(GDH7_34) -3.680089 0.003 ** 0.3344837 scale(GDH7_16) -3.561914 0.004 ** 0.3101871 scale(min_34) -3.555382 0.004 ** 0.3088673 scale(GDH5_4) -3.515541 0.005 ** 0.3008696 scale(GDD5_4) -3.515143 0.005 ** 0.3007901 scale(GDB3_13) -3.464158 0.006 ** 0.2906873 scale(GDB3_13) -3.456817 0.006 ** 0.29068673 scale(man_3) -3.456817 0.006 ** 0.29068673 scale(man_3) -3.436382 0.006 ** 0.29068673 scale(man_3) -3.447991 0.006 ** 0.2892456 scale(man_3) -3.425894 0.006 ** 0.287155 scale(max_4) -3.404147 0.007 ** 0.274261 <	scale(min_16)	-3.778393	0.002	**	0.3552990
scale(GDH7_34) -3.680089 0.003 ** 0.334483' scale(GDH10_45) -3.588484 0.004 ** 0.315180' scale(Min_34) -3.55382 0.004 ** 0.308867' scale(Min_34) -3.555382 0.004 ** 0.308867' scale(Min_34) -3.555382 0.005 ** 0.302359' scale(Min_34) -3.515541 0.005 ** 0.300869' scale(Min_34) -3.515541 0.005 ** 0.300869' scale(Min_34) -3.515541 0.005 ** 0.300869' scale(Min_34) -3.515541 0.005 ** 0.300790' scale(Min_34) -3.464158 0.006 ** 0.290687' scale(Min_34) -3.464158 0.006 ** 0.290687' scale(Min_34) -3.46419 0.006 ** 0.290686' scale(Min_34) -3.46419 0.006 ** 0.290686' scale(Min_34) -3.445817 0.006 ** 0.289245' scale(Min_34) -3.445817 0.006 ** 0.285246' scale(Min_34) -3.445894 0.006 ** 0.285246' scale(Min_34) -3.445894 0.006 ** 0.285246' scale(Min_35) -3.379665 0.007 ** 0.274271' scale(Min_35) -3.379088 0.007 ** 0.274271' scale(Min_35) -3.379088 0.007 ** 0.274271' scale(Min_35) -3.366027 0.008 ** 0.267320' scale(GDH3_5) -3.333036 0.008 ** 0.267520' scale(GDD7_16) -3.330017 0.008 ** 0.263823' scale(GDD7_16) -3.330017 0.008 ** 0.263823' scale(GDH7_46) -3.302618 0.009 ** 0.25385' scale(GDH7_46) -3.302618 0.009 ** 0.25385' scale(GDH7_46) -3.326180 0.009 ** 0.253655' scale(GDH3_3) -3.278406 0.01 ** 0.2532981' scale(GDH3_3) -3.278406 0.01 ** 0.2532981' scale(GDH3_3) -3.278406 0.01 ** 0.2532981' scale(GDH5_5) -3.261869 0.01 * 0.2532981' scale(GDH5_5) -3.261869 0.01 * 0.2532981' scale(GDH5_5) -3.261869 0.01 * 0.2532981' scale(GDH5_13) -3.146706 0.014 * 0.2311084' scale(GDH5_13) -3.146706 0.014 * 0.221359' scale(GDH7_5) -3.125652 0.014 * 0.223759' scale(GDH7_5) -3.125652 0.014 * 0.223759' scale(GDH7_5) -3.091937 0.016 * 0.221407' scale(GDH5_3) -3.091937 0.016 * 0.221407' scale(GDH5_3) -3.091937 0.016 * 0.221407' scale(GDH5_3) -2.973613 0.021 * 0.201332' scale(GDH5_3) -2.973613 0.021 * 0.201332' scale(GDH5_3) -2.973613 0.021 * 0.201332' scale(GDH5_3) -2.973613 0.021 * 0.201032' scale(GDH5_3) -2.973613 0.028 * 0.1796068'	scale(GDH5_46)	-3.765321	0.002	**	0.3524994
scale(GDH10_45)	$scale(GDH3_4)$	-3.718213	0.003	**	0.3424912
scale(GDH7_16) -3.561914 0.004 *** 0.3101871 scale(GDH7_16) -3.561914 0.004 *** 0.3101871 scale(min_34) -3.555382 0.004 *** 0.3088675 scale(GDH5_4) -3.515541 0.005 *** 0.3008696 scale(GDB3_13) -3.464158 0.006 *** 0.290687 scale(mean_13) -3.464149 0.006 *** 0.2906867 scale(mean_13) -3.465817 0.006 *** 0.2906861 scale(man_3) -3.447991 0.006 *** 0.289245 scale(man_3) -3.447991 0.006 *** 0.287515 scale(max_3) -3.436382 0.006 *** 0.287515 scale(max_3) -3.447991 0.006 *** 0.283203 scale(GDH10_b) -3.425894 0.006 *** 0.283203 scale(GDB3_5) -3.379665 0.007 *** 0.274271 scale(GDB3_5) -3.379665 0.007 *** 0.	$scale(GDH7_34)$	-3.680089	0.003	**	0.3344837
scale(min_34) -3.555382 0.004 ** 0.3088673 scale(GDH5_4) -3.522998 0.005 ** 0.3023593 scale(GDD5_4) -3.515541 0.005 ** 0.3008696 scale(GDD5_4) -3.515143 0.005 ** 0.3007903 scale(GDB3_13) -3.464148 0.006 ** 0.2906867 scale(mean_13) -3.456817 0.006 ** 0.2892456 scale(mean_5) -3.447991 0.006 ** 0.2892456 scale(max_3) -3.456817 0.006 ** 0.2875155 scale(max_3) -3.456817 0.006 ** 0.2875155 scale(max_3) -3.447991 0.006 ** 0.2882466 scale(max_4) -3.44147 0.007 ** 0.278866 scale(GDH10_b) -3.425894 0.006 ** 0.274271 scale(gDB3_5) -3.379665 0.007 ** 0.274271 scale(gDB3_5) -3.379038 0.007 ** 0.274271 scale(gDH3_5) -3.345352 0.008 ** 0.265385 scale(GDD7_16) -3.333036 0.008 <t< td=""><td>$scale(GDH10_45)$</td><td>-3.588484</td><td>0.004</td><td>**</td><td>0.3155809</td></t<>	$scale(GDH10_45)$	-3.588484	0.004	**	0.3155809
scale(GDH5_4) -3.522998 0.004 *** 0.3038078 scale(GDH5_4) -3.515541 0.005 *** 0.3008696 scale(GDD5_4) -3.515143 0.005 *** 0.3008696 scale(GDB3_13) -3.464148 0.006 ** 0.2906867 scale(mean_13) -3.456817 0.006 ** 0.2892456 scale(max_3) -3.456817 0.006 ** 0.2892456 scale(max_3) -3.436382 0.006 ** 0.287515 scale(GDH10_b) -3.425894 0.006 ** 0.285246 scale(GDH3_5) -3.379665 0.007 ** 0.2742714 scale(GDB3_5) -3.379038 0.007 ** 0.2742714 scale(precipitation_13) -3.366027 0.008 ** 0.2677202 scale(GDB3_5) -3.333036 0.008 ** 0.2677202 scale(GDD7_16) -3.330017 0.008 ** 0.263823 scale(GDD7_34) -3.294086 0.009 ** <t< td=""><td>$scale(GDH7_16)$</td><td>-3.561914</td><td>0.004</td><td>**</td><td>0.3101871</td></t<>	$scale(GDH7_16)$	-3.561914	0.004	**	0.3101871
scale(max_13) -3.515541 0.005 ** 0.3008696 scale(GDD5_4) -3.515143 0.005 ** 0.3007901 scale(GDH3_13) -3.464158 0.006 ** 0.290687 scale(GDD3_13) -3.465817 0.006 ** 0.2906861 scale(mean_13) -3.456817 0.006 ** 0.2892456 scale(max_3) -3.436382 0.006 ** 0.2852466 scale(GDH10_b) -3.425894 0.006 ** 0.2832032 scale(max_4) -3.404147 0.007 ** 0.2742714 scale(GDB3_5) -3.379665 0.007 ** 0.2742714 scale(gmax_5) -3.379038 0.007 ** 0.2741513 scale(precipitation_13) -3.366027 0.008 ** 0.2716593 scale(gDB3_5) -3.3345352 0.008 ** 0.265385 scale(GDD7_16) -3.330017 0.008 ** 0.265385 scale(GDH7_46) -3.302618 0.009 ** <td< td=""><td>$scale(min_34)$</td><td>-3.555382</td><td>0.004</td><td>**</td><td>0.3088673</td></td<>	$scale(min_34)$	-3.555382	0.004	**	0.3088673
scale(GDD5_4) -3.515143 0.005 ** 0.3007905 scale(GDH3_13) -3.464158 0.006 ** 0.2906875 scale(GDD3_13) -3.464149 0.006 ** 0.2906865 scale(mean_13) -3.456817 0.006 ** 0.2875155 scale(mean_5) -3.447991 0.006 ** 0.2875155 scale(max_3) -3.436382 0.006 ** 0.2852465 scale(GDH10_b) -3.425894 0.006 ** 0.2832035 scale(GDB3_5) -3.479665 0.007 ** 0.2742714 scale(GDB3_5) -3.379038 0.007 ** 0.2741515 scale(GDH3_5) -3.379038 0.007 ** 0.2741515 scale(GDB5_5) -3.345352 0.008 ** 0.2677205 scale(GDD7_16) -3.330017 0.008 ** 0.2653855 scale(GDD7_16) -3.330017 0.008 ** 0.2648141 scale(GDH7_46) -3.302618 0.009 ** 0.259655 scale(GDH7_44) -3.285560 0.009 ** 0.2564648 scale(GDH3_3) -3.278406 0.01	$scale(GDH5_4)$	-3.522998	0.005	**	0.3023597
scale(GDH3_13) -3.464158 0.006 ** 0.2906873 scale(GDD3_13) -3.464149 0.006 ** 0.29068613 scale(mean_13) -3.456817 0.006 ** 0.2892456 scale(mean_5) -3.447991 0.006 ** 0.285246 scale(GDH10_b) -3.425894 0.006 ** 0.283203 scale(GDB3_5) -3.379665 0.007 ** 0.274271 scale(max_4) -3.404147 0.007 ** 0.274271 scale(GDD3_5) -3.379038 0.007 ** 0.274151 scale(precipitation_13) -3.366027 0.008 ** 0.267720 scale(GDH3_5) -3.339036 0.008 ** 0.267820 scale(GDD5_5) -3.333036 0.008 ** 0.263823 scale(GDD7_16) -3.330017 0.008 ** 0.263823 scale(GDH7_46) -3.302618 0.009 ** 0.259655 scale(GDH7_44) -3.285560 0.009 ** 0.258057 scale(GDH3_3) -3.278406 0.01 ** 0.253298 scale(GDH5_5) -3.261869 0.01	$scale(max_13)$	-3.515541	0.005	**	0.3008696
scale(GDD3_13) -3.464149 0.006 ** 0.2906863 scale(GDD3_13) -3.464149 0.006 ** 0.2906863 scale(mean_13) -3.456817 0.006 ** 0.287515 scale(mean_5) -3.447991 0.006 ** 0.285246 scale(GDH10_b) -3.425894 0.006 ** 0.283203 scale(GDD3_5) -3.379665 0.007 ** 0.274271 scale(GDD3_5) -3.379038 0.007 ** 0.274151 scale(precipitation_13) -3.366027 0.008 ** 0.267720 scale(GDD3_5) -3.345352 0.008 ** 0.267720 scale(GDD5_5) -3.333036 0.008 ** 0.263823 scale(GDD7_16) -3.330017 0.008 ** 0.263823 scale(GDH7_46) -3.302618 0.009 ** 0.258656 scale(GDT_34) -3.294086 0.009 ** 0.258657 scale(GDH3_3) -3.278406 0.01 ** 0.253298 scale(GDH5_5) -3.261869 0.01 * 0.253298 scale(GDT_46) -3.194596 0.012	$scale(GDD5_4)$	-3.515143	0.005	**	0.3007901
scale(mean_13) -3.456817 0.006 ** 0.2892456 scale(mean_5) -3.447991 0.006 ** 0.2875155 scale(max_3) -3.436382 0.006 ** 0.2852466 scale(GDH10_b) -3.425894 0.006 ** 0.2832032 scale(max_4) -3.404147 0.007 ** 0.2742714 scale(GDD3_5) -3.379665 0.007 ** 0.2742714 scale(precipitation_13) -3.366027 0.008 ** 0.2716597 scale(GDH3_5) -3.345352 0.008 ** 0.2677202 scale(GDD5_5) -3.333036 0.008 ** 0.2653853 scale(GDD7_16) -3.330017 0.008 ** 0.2648141 scale(GDH7_46) -3.302618 0.009 ** 0.2596551 scale(GDH7_4) -3.294086 0.009 ** 0.2564644 scale(GDH3_3) -3.278406 0.01 ** 0.25532981 scale(GDH5_5) -3.261869 0.01 * 0	$scale(GDH3_13)$	-3.464158	0.006	**	0.2906879
scale(mean_5) -3.447991 0.006 ** 0.287515 scale(max_3) -3.436382 0.006 ** 0.285246 scale(GDH10_b) -3.425894 0.006 ** 0.283203 scale(max_4) -3.404147 0.007 ** 0.278986 scale(GDD3_5) -3.379038 0.007 ** 0.274271 scale(max_5) -3.379038 0.007 ** 0.274151 scale(GDH3_5) -3.345352 0.008 ** 0.267720 scale(GDH3_5) -3.345352 0.008 ** 0.267720 scale(GDD5_5) -3.333036 0.008 ** 0.265385 scale(GDD7_16) -3.330017 0.008 ** 0.265385 scale(GDD7_46) -3.302618 0.009 ** 0.259655 scale(GDH7_4) -3.294086 0.009 ** 0.258057 scale(GDH3_3) -3.278406 0.01 ** 0.258057 scale(GDH3_3) -3.261869 0.01 * 0.253298	$scale(GDD3_13)$	-3.464149	0.006	**	0.2906861
scale(max_3) -3.436382 0.006 ** 0.2852468 scale(GDH10_b) -3.425894 0.006 ** 0.2832032 scale(max_4) -3.404147 0.007 ** 0.2789868 scale(GDD3_5) -3.379665 0.007 ** 0.2742714 scale(precipitation_13) -3.366027 0.008 ** 0.2716597 scale(GDH3_5) -3.345352 0.008 ** 0.2677202 scale(GDD5_5) -3.333036 0.008 ** 0.2653853 scale(GDD7_16) -3.330017 0.008 ** 0.2648141 scale(GDH7_46) -3.302618 0.009 ** 0.2596551 scale(GDH7_44) -3.284774 0.008 ** 0.2596551 scale(GDH3_3) -3.278406 0.009 ** 0.2564644 scale(GDH5_3) -3.261869 0.01 ** 0.2532981 scale(GDH5_5) -3.261869 0.01 * 0.252060 scale(GDH5_13) -3.146706 0.014 * 0.2	$scale(mean_13)$	-3.456817	0.006	**	0.2892456
scale(GDH10_b) -3.425894 0.006 ** 0.2832032 scale(max_4) -3.404147 0.007 ** 0.2789863 scale(GDD3_5) -3.379665 0.007 ** 0.2742714 scale(precipitation_13) -3.366027 0.008 ** 0.2716593 scale(GDH3_5) -3.345352 0.008 ** 0.2677202 scale(GDD5_5) -3.339017 0.008 ** 0.2653853 scale(GDD7_16) -3.330017 0.008 ** 0.2648141 scale(GDH7_46) -3.302618 0.009 ** 0.2596551 scale(GDH7_46) -3.302618 0.009 ** 0.2596551 scale(GDH7_34) -3.294086 0.009 ** 0.2586570 scale(GDH3_3) -3.278406 0.01 ** 0.25564644 scale(GDH5_5) -3.261869 0.01 * 0.2539293 scale(GDH5_5) -3.261869 0.01 * 0.2397298 scale(GDH5_13) -3.146706 0.014 * 0	$scale(mean_5)$	-3.447991	0.006		0.2875155
scale(GDH10_B) -3.423634 0.000 0.2832032 scale(Max_4) -3.404147 0.007 ** 0.2789863 scale(GDD3_5) -3.379665 0.007 ** 0.2742714 scale(max_5) -3.379038 0.007 ** 0.2741513 scale(GDH3_5) -3.345352 0.008 ** 0.2677202 scale(GDD5_5) -3.333036 0.008 ** 0.2653853 scale(GDD7_16) -3.330017 0.008 ** 0.2648141 scale(GDH7_46) -3.302618 0.009 ** 0.2596551 scale(GDH7_46) -3.294086 0.009 ** 0.2580570 scale(GDH7_4) -3.285560 0.009 ** 0.2580570 scale(GDH3_3) -3.278406 0.01 ** 0.2550551 scale(GDH5_5) -3.261869 0.01 * 0.2520606 scale(GDH5_5) -3.261869 0.01 * 0.2397298 scale(GDD7_46) -3.194596 0.012 * 0.2397298	$scale(max_3)$	-3.436382	0.006	**	0.2852465
scale(GDD3_5) -3.49444 0.007 ** 0.2742714 scale(GDD3_5) -3.379665 0.007 ** 0.2742714 scale(max_5) -3.379038 0.007 ** 0.2741511 scale(precipitation_13) -3.366027 0.008 ** 0.2677202 scale(GDH3_5) -3.345352 0.008 ** 0.2677202 scale(GDD7_16) -3.330017 0.008 ** 0.2648141 scale(min_13) -3.324774 0.008 ** 0.2638236 scale(GDH7_46) -3.302618 0.009 ** 0.2596551 scale(GDH7_4) -3.294086 0.009 ** 0.2580570 scale(GDH3_3) -3.278406 0.009 ** 0.2580570 scale(GDH3_3) -3.278406 0.01 ** 0.2551313 scale(GDH5_5) -3.261869 0.01 * 0.2552060 scale(GDH5_5) -3.261869 0.01 * 0.2454598 scale(GDD7_46) -3.194596 0.012 * 0.2397298 scale(GDH5_13) -3.146706 0.014 * 0.2214078 scale(GDH7_5) -3.091937 0.016	$scale(GDH10_b)$	-3.425894	0.006	**	0.2832032
scale(max_5) -3.379038 0.007 ** 0.274151 scale(precipitation_13) -3.366027 0.008 ** 0.2716597 scale(GDH3_5) -3.345352 0.008 ** 0.2677202 scale(GDD5_5) -3.333036 0.008 ** 0.2653853 scale(GDD7_16) -3.330017 0.008 ** 0.2648141 scale(min_13) -3.324774 0.008 ** 0.2638236 scale(GDH7_46) -3.302618 0.009 ** 0.2596551 scale(GDH7_4) -3.285560 0.009 ** 0.2580576 scale(GDH3_3) -3.278406 0.01 ** 0.2551313 scale(GDB3_3) -3.268543 0.01 ** 0.2532983 scale(GDH5_5) -3.261869 0.01 * 0.2532983 scale(GDH5_5) -3.261869 0.01 * 0.2397298 scale(GDD7_46) -3.194596 0.012 * 0.2397298 scale(GDH5_13) -3.146706 0.014 * 0.2214078 scale(GDH7_5) -3.125652 0.014 * 0.2273592 scale(GDH7_5) -3.091937 0.016	$scale(max_4)$	-3.404147	0.007	**	0.2789865
scale(precipitation_13) -3.366027 0.008 ** 0.2716597 scale(GDH3_5) -3.345352 0.008 ** 0.2677202 scale(GDD5_5) -3.333036 0.008 ** 0.2653853 scale(GDD7_16) -3.330017 0.008 ** 0.2648141 scale(min_13) -3.324774 0.008 ** 0.2638236 scale(GDH7_46) -3.302618 0.009 ** 0.2596551 scale(GDD7_34) -3.294086 0.009 ** 0.2580570 scale(GDH7_4) -3.285560 0.009 ** 0.2580570 scale(GDH3_3) -3.278406 0.01 ** 0.2550570 scale(GDH3_3) -3.268543 0.01 ** 0.2550570 scale(GDH5_5) -3.261869 0.01 * 0.2532981 scale(GDH5_5) -3.261869 0.01 * 0.2397298 scale(GDH5_13) -3.146706 0.014 * 0.2397298 scale(GDH5_13) -3.125652 0.014 * 0.22	$scale(GDD3_5)$	-3.379665	0.007	**	0.2742714
scale(GDH3_5) -3.345352 0.008 ** 0.2677202 scale(GDD5_5) -3.33036 0.008 ** 0.2653853 scale(GDD7_16) -3.330017 0.008 ** 0.2648141 scale(min_13) -3.324774 0.008 ** 0.2638236 scale(GDH7_46) -3.302618 0.009 ** 0.2596551 scale(GDD7_34) -3.294086 0.009 ** 0.2580570 scale(GDH3_3) -3.285560 0.009 ** 0.2580570 scale(GDH3_3) -3.278406 0.01 ** 0.2550570 scale(GDH3_3) -3.278406 0.01 ** 0.2550570 scale(GDH3_3) -3.268543 0.01 ** 0.2552060 scale(GDH5_5) -3.261869 0.01 * 0.2532981 scale(GDH5_5) -3.261869 0.01 * 0.2397298 scale(GDH5_13) -3.146706 0.014 * 0.2311084 scale(GDH5_13) -3.140416 0.014 * 0.2273592 scale(GDH7_5) -3.091937 0.016 * 0.2214073 scale(GDH7_5) -3.091937 0.016 <t< td=""><td>$scale(max_5)$</td><td>-3.379038</td><td>0.007</td><td>**</td><td>0.2741511</td></t<>	$scale(max_5)$	-3.379038	0.007	**	0.2741511
scale(GDH3_5) -3.34332 0.008 ** 0.2653853 scale(GDD7_16) -3.330017 0.008 ** 0.2648141 scale(min_13) -3.324774 0.008 ** 0.2638236 scale(GDH7_46) -3.302618 0.009 ** 0.2596551 scale(GDH7_4) -3.294086 0.009 ** 0.2580576 scale(GDH3_3) -3.278406 0.01 ** 0.2554648 scale(GDB3_3) -3.268543 0.01 ** 0.2532981 scale(GDH5_5) -3.261869 0.01 * 0.2520608 scale(GDD7_46) -3.194596 0.012 * 0.2397298 scale(GDH5_13) -3.146706 0.014 * 0.2311084 scale(GDH7_5) -3.125652 0.014 * 0.2273592 scale(GDH7_5) -3.091937 0.016 * 0.2214073 scale(GDH7_5) -3.091937 0.016 * 0.2193127 scale(GDH5_3) -2.973613 0.021 * 0.2010327 scale(GDH5_3) -2.973613 0.021 * 0.2010327 scale(GDH5_3) -2.871978 0.026	scale(precipitation_13)	-3.366027	0.008	**	0.2716597
scale(GDD5_5) -3.3303017 0.008 ** 0.2648141 scale(GDD7_16) -3.330017 0.008 ** 0.2648141 scale(min_13) -3.324774 0.008 ** 0.2638236 scale(GDH7_46) -3.302618 0.009 ** 0.2596551 scale(GDH7_4) -3.285560 0.009 ** 0.2580576 scale(GDH3_3) -3.278406 0.01 ** 0.2551313 scale(GDD3_3) -3.268543 0.01 ** 0.2532981 scale(GDH5_5) -3.261869 0.01 * 0.2520609 scale(GDD7_46) -3.194596 0.012 * 0.2397298 scale(GDH5_13) -3.146706 0.014 * 0.2311084 scale(GDH5_13) -3.140416 0.014 * 0.2273592 scale(GDH7_5) -3.125652 0.014 * 0.2273592 scale(GDH7_5) -3.091937 0.016 * 0.2214079 scale(GDH7_5) -3.079979 0.016 * 0.2193127 scale(GDH5_3) -2.973613 0.021 * 0.2010327 scale(GDH5_3) -2.871978 0.026 <	$scale(GDH3_5)$	-3.345352	0.008	**	0.2677202
scale(min_13) -3.324774 0.008 ** 0.2638236 scale(GDH7_46) -3.302618 0.009 ** 0.2596551 scale(GDD7_34) -3.294086 0.009 ** 0.2580576 scale(GDH7_4) -3.285560 0.009 ** 0.2564648 scale(GDH3_3) -3.278406 0.01 ** 0.2551313 scale(GDB3_3) -3.268543 0.01 ** 0.2532983 scale(GDH5_5) -3.261869 0.01 * 0.25520603 scale(mean_3) -3.226031 0.011 * 0.2454598 scale(GDT_46) -3.194596 0.012 * 0.2397298 scale(GDH5_13) -3.146706 0.014 * 0.2239856 scale(GDT_5) -3.125652 0.014 * 0.2273592 scale(GDH7_5) -3.091937 0.016 * 0.2214076 scale(GDH7_5) -3.079979 0.016 * 0.2193127 scale(GDH5_3) -2.973613 0.021 * 0.2010327 scale(GDH5_3) -2.973613 0.026 * 0.1841658 scale(GDD10_45) -2.843882 0.028 <td< td=""><td>$scale(GDD5_5)$</td><td>-3.333036</td><td>0.008</td><td>**</td><td>0.2653853</td></td<>	$scale(GDD5_5)$	-3.333036	0.008	**	0.2653853
scale(GDH7_46) -3.302618 0.009 ** 0.2596551 scale(GDD7_34) -3.294086 0.009 ** 0.2596557 scale(GDH7_4) -3.285560 0.009 ** 0.2580576 scale(GDH3_3) -3.278406 0.01 ** 0.2551313 scale(GDD3_3) -3.268543 0.01 ** 0.2532981 scale(GDH5_5) -3.261869 0.01 * 0.2520609 scale(mean_3) -3.226031 0.011 * 0.2454598 scale(GDD7_46) -3.194596 0.012 * 0.2397298 scale(GDH5_13) -3.146706 0.014 * 0.2397298 scale(GDH5_13) -3.140416 0.014 * 0.2299856 scale(GDD7_5) -3.125652 0.014 * 0.2273592 scale(GDH7_5) -3.091937 0.016 * 0.2214079 scale(GDH7_4) -3.079979 0.016 * 0.2111098 scale(GDH5_3) -2.973613 0.021 * 0.2010327 scale(GDD7_45) -2.843882 0.028 * 0.1796068 </td <td>$scale(GDD7_16)$</td> <td>-3.330017</td> <td>0.008</td> <td>**</td> <td>0.2648141</td>	$scale(GDD7_16)$	-3.330017	0.008	**	0.2648141
scale(GDH7_40) -3.302018 0.009 ** 0.2580570 scale(GDH7_4) -3.285560 0.009 ** 0.2580570 scale(GDH3_3) -3.278406 0.01 ** 0.2551313 scale(GDD3_3) -3.268543 0.01 ** 0.2532981 scale(GDH5_5) -3.261869 0.01 * 0.2520609 scale(mean_3) -3.226031 0.011 * 0.2454598 scale(GDD7_46) -3.194596 0.012 * 0.2397298 scale(GDH5_13) -3.146706 0.014 * 0.2311084 scale(GDD7_5) -3.125652 0.014 * 0.2273592 scale(GDH7_5) -3.091937 0.016 * 0.2214073 scale(GDH7_5) -3.079979 0.016 * 0.2111098 scale(GDH5_3) -2.973613 0.021 * 0.2010327 scale(GDH5_3) -2.871978 0.026 * 0.1841658 scale(GDD10_45) -2.843882 0.028 * 0.1796068	$scale(min_13)$	-3.324774	0.008	**	0.2638236
scale(GDB7_34) -3.284060 0.009 0.2560376 scale(GDH7_4) -3.285560 0.009 ** 0.2564644 scale(GDH3_3) -3.278406 0.01 ** 0.2551313 scale(GDD3_3) -3.268543 0.01 ** 0.2532981 scale(GDH5_5) -3.261869 0.01 * 0.2520609 scale(mean_3) -3.226031 0.011 * 0.2454598 scale(GDD7_46) -3.194596 0.012 * 0.2397298 scale(GDH5_13) -3.146706 0.014 * 0.2311084 scale(min_5) -3.140416 0.014 * 0.2299856 scale(GDD7_5) -3.125652 0.014 * 0.2273592 scale(GDH7_5) -3.091937 0.016 * 0.2214073 scale(GDT_4) -3.079979 0.016 * 0.2193127 scale(GDH5_3) -2.973613 0.021 * 0.2010327 scale(GDH5_3) -2.871978 0.026 * 0.1841658 scale(GDD10_45) -2.843882 0.028 * 0.1796068 <td>scale(GDH7_46)</td> <td>-3.302618</td> <td>0.009</td> <td>**</td> <td>0.2596551</td>	scale(GDH7_46)	-3.302618	0.009	**	0.2596551
scale(GDH3_3) -3.278406 0.01 ** 0.2551313 scale(GDD3_3) -3.268543 0.01 ** 0.2532981 scale(GDH5_5) -3.261869 0.01 * 0.2520609 scale(mean_3) -3.226031 0.011 * 0.2454598 scale(GDD7_46) -3.194596 0.012 * 0.2397298 scale(GDH5_13) -3.146706 0.014 * 0.2311084 scale(GDT_5) -3.140416 0.014 * 0.2299856 scale(GDD7_5) -3.125652 0.014 * 0.2273592 scale(GDH7_5) -3.091937 0.016 * 0.2214076 scale(GDH7_5) -3.079979 0.016 * 0.2193127 scale(GDH10_34) -3.032710 0.018 * 0.2111098 scale(GDH5_3) -2.973613 0.021 * 0.2010327 scale(GDD10_45) -2.843882 0.026 * 0.1841658 scale(GDD10_45) -2.843882 0.028 * 0.1796068	$scale(GDD7_34)$	-3.294086	0.009	**	0.2580570
scale(GDH3_3) -3.268543 0.01 ** 0.2532981 scale(GDH5_5) -3.261869 0.01 * 0.2520609 scale(mean_3) -3.226031 0.011 * 0.2454598 scale(GDD7_46) -3.194596 0.012 * 0.2397298 scale(GDH5_13) -3.146706 0.014 * 0.2311084 scale(min_5) -3.140416 0.014 * 0.2299856 scale(GDD7_5) -3.125652 0.014 * 0.2273592 scale(GDH7_5) -3.091937 0.016 * 0.2214079 scale(GDH7_4) -3.079979 0.016 * 0.2193127 scale(GDH10_34) -3.032710 0.018 * 0.2111098 scale(GDH5_3) -2.973613 0.021 * 0.2010327 scale(GDD10_45) -2.843882 0.028 * 0.1796068	$scale(GDH7_4)$	-3.285560	0.009	**	0.2564645
scale(GDD5_5) -3.261869 0.01 * 0.2520609 scale(mean_3) -3.226031 0.011 * 0.2454598 scale(GDD7_46) -3.194596 0.012 * 0.2397298 scale(GDH5_13) -3.146706 0.014 * 0.2311084 scale(min_5) -3.140416 0.014 * 0.2299856 scale(GDD7_5) -3.125652 0.014 * 0.2273592 scale(GDH7_5) -3.091937 0.016 * 0.2214076 scale(GDD7_4) -3.079979 0.016 * 0.2193127 scale(GDH10_34) -3.032710 0.018 * 0.2111098 scale(GDH5_3) -2.973613 0.021 * 0.2010327 scale(GDD10_45) -2.843882 0.028 * 0.1796068	$scale(GDH3_3)$	-3.278406	0.01	**	0.2551313
scale(GDH3_5) -3.201603 0.01 0.2320003 scale(mean_3) -3.226031 0.011 * 0.2454598 scale(GDD7_46) -3.194596 0.012 * 0.2397298 scale(GDH5_13) -3.146706 0.014 * 0.2311084 scale(min_5) -3.140416 0.014 * 0.2299856 scale(GDD7_5) -3.125652 0.014 * 0.2273592 scale(GDH7_5) -3.091937 0.016 * 0.2214079 scale(GDD7_4) -3.079979 0.016 * 0.2193127 scale(GDH10_34) -3.032710 0.018 * 0.2111098 scale(GDH5_3) -2.973613 0.021 * 0.2010327 scale(GDD10_45) -2.843882 0.028 * 0.1796068	$scale(GDD3_3)$	-3.268543	0.01	**	0.2532981
scale(GDD7_46) -3.194596 0.012 * 0.2397298 scale(GDH5_13) -3.146706 0.014 * 0.2311084 scale(min_5) -3.140416 0.014 * 0.2299856 scale(GDD7_5) -3.125652 0.014 * 0.2273592 scale(GDH7_5) -3.091937 0.016 * 0.2214073 scale(GDD7_4) -3.079979 0.016 * 0.2193127 scale(GDH10_34) -3.032710 0.018 * 0.2111098 scale(GDH5_3) -2.973613 0.021 * 0.2010327 scale(GDD10_45) -2.843882 0.028 * 0.1796068	$scale(GDH5_5)$	-3.261869	0.01	*	0.2520609
scale(GDB7_40) -3.146706 0.012 0.2311084 scale(GDH5_13) -3.146706 0.014 * 0.2311084 scale(min_5) -3.140416 0.014 * 0.2299856 scale(GDD7_5) -3.125652 0.014 * 0.2273592 scale(GDH7_5) -3.091937 0.016 * 0.2214079 scale(GDD7_4) -3.079979 0.016 * 0.2193127 scale(GDH10_34) -3.032710 0.018 * 0.2111098 scale(GDH5_3) -2.973613 0.021 * 0.2010327 scale(min_3) -2.871978 0.026 * 0.1841658 scale(GDD10_45) -2.843882 0.028 * 0.1796068	$scale(mean_3)$	-3.226031	0.011	*	0.2454598
scale(GDH5_13) -3.140416 0.014 * 0.2299856 scale(GDD7_5) -3.125652 0.014 * 0.2273592 scale(GDH7_5) -3.091937 0.016 * 0.2214073 scale(GDD7_4) -3.079979 0.016 * 0.2193127 scale(GDH10_34) -3.032710 0.018 * 0.2111098 scale(GDH5_3) -2.973613 0.021 * 0.2010327 scale(min_3) -2.871978 0.026 * 0.1841658 scale(GDD10_45) -2.843882 0.028 * 0.1796068	$scale(GDD7_46)$	-3.194596	0.012		0.2397298
scale(GDD7_5) -3.125652 0.014 * 0.2273592 scale(GDH7_5) -3.091937 0.016 * 0.2214079 scale(GDD7_4) -3.079979 0.016 * 0.2193127 scale(GDH10_34) -3.032710 0.018 * 0.2111098 scale(GDH5_3) -2.973613 0.021 * 0.2010327 scale(min_3) -2.871978 0.026 * 0.1841658 scale(GDD10_45) -2.843882 0.028 * 0.1796068	$scale(GDH5_13)$	-3.146706	0.014		0.2311084
scale(GDH7_5) -3.091937 0.016 * 0.2214079 scale(GDD7_4) -3.079979 0.016 * 0.2193127 scale(GDH10_34) -3.032710 0.018 * 0.2111098 scale(GDH5_3) -2.973613 0.021 * 0.2010327 scale(min_3) -2.871978 0.026 * 0.1841658 scale(GDD10_45) -2.843882 0.028 * 0.1796068		-3.140416	0.014	*	0.2299856
scale(GDD7_4) -3.079979 0.016 * 0.2193127 scale(GDH10_34) -3.032710 0.018 * 0.2111098 scale(GDH5_3) -2.973613 0.021 * 0.2010327 scale(min_3) -2.871978 0.026 * 0.1841658 scale(GDD10_45) -2.843882 0.028 * 0.1796068		-3.125652	0.014	*	0.2273592
scale(GDH10_34) -3.032710 0.018 * 0.2111098 scale(GDH5_3) -2.973613 0.021 * 0.2010327 scale(min_3) -2.871978 0.026 * 0.1841658 scale(GDD10_45) -2.843882 0.028 * 0.1796068		-3.091937	0.016	*	0.2214079
scale(GDH5_3) -2.973613 0.021 * 0.2010327 scale(min_3) -2.871978 0.026 * 0.1841658 scale(GDD10_45) -2.843882 0.028 * 0.1796068		-3.079979	0.016	*	0.2193127
scale(min_3) -2.871978 0.026 * 0.1841658 scale(GDD10_45) -2.843882 0.028 * 0.1796068	_ /	-3.032710	0.018	*	0.2111098
scale(GDD10_45) -2.843882 0.028 * 0.1796068		-2.973613	0.021	*	0.2010327
,	` _ /	-2.871978	0.026	*	0.1841658
scale(GDD5_13) -2.763541 0.034 * 0.1668169	$scale(GDD10_45)$	-2.843882	0.028	*	0.1796068
		-2.763541	0.034	*	0.1668169
		-2.737903	0.036	*	0.1628127
(= /	_ /	-2.733017	0.036		0.1620537
\ <u> </u>		-2.691537	0.039		0.1556658
\ /			0.043		0.1480983
			0.045		0.1461472
$scale(GDH10_46)$ -2.596006 0.048 * 0.1413254	$scale(GDH10_46)$	-2.596006	0.048	*	0.1413254

With date 80

variable	Estimate	Р	sig	Rsquare
scale(mean_45)	-4.886031	< 0.001	***	0.7791540
$scale(GDD3_45)$	-4.792512	< 0.001	***	0.7477174
scale(GDH3_45)	-4.782490	< 0.001	***	0.7443847
scale(GDH5_45)	-4.754108	< 0.001	***	0.7349839
$scale(GDD5_45)$	-4.714959	< 0.001	***	0.7221088
scale(min_45)	-4.651202	< 0.001	***	0.7013687
scale(GDH7_45)	-4.625914	< 0.001	***	0.6932207
$scale(max_45)$	-4.610132	< 0.001	***	0.6881582
scale(GDD3_16)	-4.541063	< 0.001	***	0.6662057
scale(GDD7_45)	-4.513680	< 0.001	***	0.6575940
scale(GDH3_16)	-4.507984	< 0.001	***	0.6558092
scale(mean_46)	-4.471568	< 0.001	***	0.6444521
$scale(max_46)$	-4.429332	< 0.001	***	0.6313953
scale(GDH5_16)	-4.342895	< 0.001	***	0.6050604
scale(GDD3_46)	-4.331809	< 0.001	***	0.6017202
scale(mean_5)	-4.316552	< 0.001	***	0.5971376
scale(max_5)	-4.314047	< 0.001	***	0.5963866
scale(GDH3_46)	-4.287641	< 0.001	***	0.5884980
scale(GDD5_16)	-4.279888	< 0.001	***	0.5861910
scale(GDD3_5)	-4.254152	< 0.001	***	0.5785628
scale(GDH10_45)	-4.239341	< 0.001	***	0.5741938
scale(GDH3_5)	-4.237401	< 0.001	***	0.5736224
scale(GDD3_b)	-4.235220	< 0.001	***	0.5729807
scale(GDD5_5)	-4.233961	< 0.001	***	0.5726104
scale(GDH3_b)	-4.206094	< 0.001	***	0.5644415
scale(GDH5_5)	-4.194005	< 0.001	***	0.5609146
scale(mean_b)	-4.188906	< 0.001	***	0.5594301
scale(GDH5_b)	-4.173152	< 0.001	***	0.5548547
scale(GDD5_46)	-4.145354	< 0.001	***	0.5468236
scale(GDH5_46)	-4.125117	< 0.001	***	0.5410106
scale(GDD5_b)	-4.121912	< 0.001	***	0.5400924
scale(max_16)	-4.113530	< 0.001	***	0.5376949
scale(GDD7 5)	-4.091047	< 0.001	***	0.5312882
scale(GDH7_5)	-4.087710	< 0.001	***	0.5303405
scale(GDH7 b)	-4.067070	< 0.001	***	0.5244946
scale(max_b)	-4.032612	< 0.001	***	0.5148011
scale(GDH7_16)	-4.015607	< 0.001	***	0.5100477
scale(min_46)	-3.917565	< 0.001	***	0.4830341
_==/				

variable	Estimate	P	sig	Rsquare
scale(GDD7_16)	-3.884384	< 0.001	***	0.4740431
scale(GDH7_46)	-3.860158	< 0.001	***	0.4675267
scale(GDD7_b)	-3.855158	< 0.001	***	0.4661869
scale(min 5)	-3.850984	< 0.001	***	0.4650698
scale(GDH10_5)	-3.822571	< 0.001	***	0.4574974
scale(GDD7_46)	-3.804748	< 0.001	***	0.4527760
scale(GDD10_45)	-3.802173	< 0.001	***	0.4520957
scale(mean_16)	-3.754825	< 0.001	***	0.4396684
scale(GDH10_b)	-3.630432	0.001	***	0.4077616
$scale(GDD10_5)$	-3.533529	0.001	**	0.3836507
scale(GDH10_16)	-3.446255	0.002	**	0.3624939
$scale(min_b)$	-3.411415	0.002	**	0.3541957
$scale(GDH10_46)$	-3.379851	0.002	**	0.3467507
$scale(min_16)$	-3.254903	0.004	**	0.3179583
$scale(GDD10_16)$	-3.111827	0.006	**	0.2863206
$scale(GDD10_46)$	-3.092343	0.006	**	0.2821222
$scale(max_13)$	-3.043923	0.008	**	0.2718028
$scale(GDD3_13)$	-3.042196	0.008	**	0.2714378
$scale(GDH3_13)$	-3.038950	0.008	**	0.2707523
$scale(GDD10_b)$	-3.025818	0.008	**	0.2679862
$scale(GDD3_34)$	-2.990606	0.009	**	0.2606283
$scale(GDH3_34)$	-2.905369	0.011	*	0.2431739
$scale(mean_13)$	-2.898273	0.012	*	0.2417435
$scale(max_34)$	-2.886996	0.012	*	0.2394778
$scale(mean_34)$	-2.841236	0.014	*	0.2303738
$scale(GDH5_13)$	-2.706629	0.02	*	0.2044370
$scale(min_4)$	-2.705104	0.02	*	0.2041503
$scale(min_13)$	-2.700853	0.02	*	0.2033522
$scale(max_3)$	-2.680203	0.021	*	0.1994928
$scale(GDD3_3)$	-2.636802	0.024	*	0.1914781
$scale(GDH3_3)$	-2.612213	0.025	*	0.1869953
$scale(GDH5_34)$	-2.596949	0.026	*	0.1842338
$scale(GDD5_34)$	-2.504409	0.033	*	0.1678377
$scale(min_34)$	-2.481947	0.035	*	0.1639477
$scale(mean_4)$	-2.463259	0.037	*	0.1607380
$scale(mean_3)$	-2.429688	0.039	*	0.1550330
$scale(GDD5_13)$	-2.402659	0.042	*	0.1504965
scale(GDH5_3)	-2.338815	0.048	*	0.1399829

With date_90

variable	Estimate	P	sig	Rsquare

scale(mean_45)	-4.780968	< 0.001	***	0.7464281
scale(GDH5_45)	-4.768925	< 0.001	***	0.7424209
scale(GDD5_45)	-4.735733	< 0.001	***	0.7314288
scale(GDH3_45)	-4.733345	< 0.001	***	0.7306408
scale(GDD3_45)	-4.730538	< 0.001		0.7297153
scale(GDH7_45)	-4.725221	< 0.001	***	0.7279636
scale(GDD7_45)	-4.642303	< 0.001		0.7008996
$scale(max_5)$	-4.602059	< 0.001	***	0.6879369
scale(mean_5)	-4.588322	< 0.001	***	0.6835382
$scale(min_45)$	-4.540131	< 0.001	***	0.6682103
$scale(GDD3_16)$	-4.539823	< 0.001	***	0.6681129
$scale(GDD3_5)$	-4.532186	< 0.001	***	0.6656989
$scale(GDH3_5)$	-4.521116	< 0.001	***	0.6622070
$scale(GDD5_5)$	-4.520168	< 0.001	***	0.6619086
$scale(max_45)$	-4.511601	< 0.001	***	0.6592125
$scale(GDH3_16)$	-4.509169	< 0.001	***	0.6584482
$scale(mean_46)$	-4.492335	< 0.001	***	0.6531683
$scale(GDH5_5)$	-4.489746	< 0.001	***	0.6523579
$scale(GDH10_45)$	-4.456266	< 0.001	***	0.6419221
$scale(max_46)$	-4.434144	< 0.001	***	0.6350694
$scale(GDH5_16)$	-4.413710	< 0.001	***	0.6287699
$scale(GDH7_5)$	-4.402538	< 0.001	***	0.6253379
$scale(GDD7_5)$	-4.398666	< 0.001	***	0.6241505
$scale(GDD3_46)$	-4.390457	< 0.001	***	0.6216367
$scale(GDD5_16)$	-4.366589	< 0.001	***	0.6143542
$scale(GDH3_46)$	-4.358142	< 0.001	***	0.6117863
$scale(GDD5_46)$	-4.265769	< 0.001	***	0.5840298
$scale(GDH5_46)$	-4.244093	< 0.001	***	0.5776027
$scale(GDH10_5)$	-4.164493	< 0.001	***	0.5542814
$scale(GDH7_16)$	-4.163759	< 0.001	***	0.5540683
$scale(GDD10_45)$	-4.110401	< 0.001	***	0.5386855
scale(min_5)	-4.091547	< 0.001	***	0.5332975
scale(GDD7_16)	-4.060930	< 0.001	***	0.5246005
scale(GDD3_b)	-4.051381	< 0.001	***	0.5219015
scale(GDH5_b)	-4.050217	< 0.001	***	0.5215727
scale(GDH7_46)	-4.035462	< 0.001	***	0.5174157
scale(GDH7_b)	-4.026263	< 0.001	***	0.5148319
scale(GDH3_b)	-4.025277	< 0.001	***	0.5145554
scale(GDD5_b)	-4.024906	< 0.001	***	0.5144512
scale(max_16)	-4.007816	< 0.001	***	0.5096679
scale(GDD7_46)	-3.995372	< 0.001	***	0.5061981
scale(min_46)	-3.966258	< 0.001	***	0.4981215
scale(mean_b)	-3.952909	< 0.001	***	0.4944382
$scale(GDD10_5)$	-3.886912	< 0.001	***	0.4764102
scale(GDD7_b)	-3.863227	< 0.001	***	0.4700145
scale(max_b)	-3.811781	< 0.001	***	0.4562567
scale(GDH10_b)	-3.708891	0.001	***	0.4292951
scale(GDH10_16)	-3.676291	0.001	***	0.4209065
scale(mean_16)	-3.628740	0.001	***	0.4088033

variable	Estimate	P	sig	Rsquare
scale(GDH10_46)	-3.616994	0.001	***	0.4058380
scale(GDD10_16)	-3.387460	0.002	**	0.3498189
scale(GDD10_46)	-3.370005	0.002	**	0.3457091
scale(GDD10_b)	-3.207245	0.004	**	0.3084093
scale(min_b)	-3.175444	0.005	**	0.3013370
$scale(min_16)$	-3.107722	0.006	**	0.2865110
$scale(GDD3_13)$	-2.930996	0.01	*	0.2493267
scale(GDH3_13)	-2.925578	0.011	*	0.2482210
$scale(max_13)$	-2.909480	0.011	*	0.2449481
scale(mean_13)	-2.739041	0.018	*	0.2114039
$scale(GDD3_34)$	-2.596743	0.026	*	0.1849487
scale(GDH5_13)	-2.596269	0.026	*	0.1848628
$scale(max_34)$	-2.526502	0.031	*	0.1724099
$scale(min_13)$	-2.521991	0.031	*	0.1716165
$scale(GDH3_34)$	-2.513398	0.032	*	0.1701089
$scale(mean_34)$	-2.487120	0.034	*	0.1655304
$scale(GDD3_3)$	-2.469574	0.036	*	0.1625001
$scale(max_3)$	-2.461834	0.036	*	0.1611702
scale(GDH3_3)	-2.432732	0.039	*	0.1562070
scale(precipitation_5)	2.324265	0.05	*	0.1382289

With days 90 10

variable	Estimate	P	sig	Rsquare
scale(GDH3_4)	2.609587	< 0.001	***	0.4926759
$scale(GDD3_4)$	2.594391	< 0.001	***	0.4863741
$scale(GDH5_4)$	2.577190	< 0.001	***	0.4792852
$scale(mean_4)$	2.569025	< 0.001	***	0.4759370
$scale(GDD5_4)$	2.552054	< 0.001	***	0.4690110
$scale(max_4)$	2.494973	< 0.001	***	0.4460537
$scale(GDH5_34)$	2.451434	0.001	***	0.4288916
$scale(GDH7_4)$	2.436748	0.001	***	0.4231710
$scale(GDD3_34)$	2.416838	0.001	***	0.4154703
scale(GDH3_34)	2.394768	0.001	***	0.4070079
$scale(GDH7_34)$	2.382928	0.001	***	0.4025001
$scale(GDD5_34)$	2.374691	0.001	***	0.3993775
$scale(min_4)$	2.360905	0.001	**	0.3941750
$scale(GDD7_4)$	2.239838	0.002	**	0.3497883

variable	Estimate	Р	sig	Rsquare
scale(GDD7_34)	2.143644	0.004	**	0.3161863
scale(max_34)	2.134896	0.004	**	0.3132039
scale(precipitation_13)	2.043201	0.006	**	0.2826741
scale(mean_34)	2.038141	0.007	**	0.2810286
$scale(GDH10_34)$	2.024376	0.007	**	0.2765723
scale(GDH10_4)	2.014481	0.007	**	0.2733876
$scale(min_34)$	1.779925	0.021	*	0.2024645
scale(precipitation_4)	-1.753201	0.023	*	0.1949405
$scale(GDD10_5)$	-1.716217	0.026	*	0.1847153
$scale(GDH10_5)$	-1.660582	0.032	*	0.1697443
scale(precipitation_3)	1.623650	0.037	*	0.1600787
scale(mean_b)	1.572340	0.044	*	0.1470107

With FFD_mean

variable	Estimate	Р	sig	Rsquare
scale(mean_45)	-5.189354	< 0.001	***	0.7644192
scale(GDD3_45)	-5.044179	< 0.001	***	0.7194888
scale(GDH3_45)	-5.017876	< 0.001	***	0.7114849
$scale(max_45)$	-4.966059	< 0.001	***	0.6958392
$scale(GDH5_45)$	-4.880152	< 0.001	***	0.6702579
$scale(min_45)$	-4.867603	< 0.001	***	0.6665584
$scale(GDD5_45)$	-4.812688	< 0.001	***	0.6504817
scale(GDD3_16)	-4.635369	< 0.001	***	0.5998155
$scale(max_46)$	-4.632479	< 0.001	***	0.5990053
$scale(mean_b)$	-4.595254	< 0.001	***	0.5886171
$scale(mean_46)$	-4.592294	< 0.001	***	0.5877946
$scale(GDH3_16)$	-4.587069	< 0.001	***	0.5863439
$scale(GDH7_45)$	-4.582832	< 0.001	***	0.5851690
$scale(GDD3_b)$	-4.579945	< 0.001	***	0.5843690
$scale(GDH3_b)$	-4.545754	< 0.001	***	0.5749327
$scale(max_b)$	-4.503158	< 0.001	***	0.5632756
$scale(GDH5_b)$	-4.411765	< 0.001	***	0.5386352
$scale(GDD3_46)$	-4.408219	< 0.001	***	0.5376892
$scale(GDD7_45)$	-4.382465	< 0.001	***	0.5308423
$scale(GDH5_16)$	-4.357646	< 0.001	***	0.5242821
scale(GDH3_46)	-4.347540	< 0.001	***	0.5216214
$scale(GDD5_b)$	-4.289443	< 0.001	***	0.5064463

variable	Estimate	P	sig	Rsquare
$scale(GDD5_16)$	-4.264398	< 0.001	***	0.4999672
$scale(max_16)$	-4.212815	< 0.001	***	0.4867426
scale(GDH7_b)	-4.123679	< 0.001	***	0.4642699
scale(GDD5_46)	-4.106000	< 0.001	***	0.4598697
scale(GDH5_46)	-4.099952	< 0.001	***	0.4583689
$scale(GDH10_45)$	-3.925744	0.001	***	0.4160853
scale(min_46)	-3.910445	0.001	***	0.4124596
scale(GDH7_16)	-3.906964	0.001	***	0.4116365
scale(mean_5)	-3.900101	0.001	***	0.4100162
$scale(max_5)$	-3.856773	0.001	***	0.3998518
$scale(GDD3_5)$	-3.850707	0.001	***	0.3984379
scale(mean_16)	-3.843845	0.001	**	0.3968412
$scale(GDH3_5)$	-3.826077	0.001	**	0.3927197
$scale(GDD5_5)$	-3.816282	0.001	**	0.3904556
scale(GDH5_5)	-3.759896	0.001	**	0.3775364
scale(GDD3_34)	-3.759883	0.001	**	0.3775333
scale(GDD7_b)	-3.757060	0.001	**	0.3768917
scale(GDH7_46)	-3.720840	0.001	**	0.3687005
scale(GDD7_16)	-3.697863	0.002	**	0.3635453
scale(GDH3_34)	-3.668764	0.002 0.002	**	0.3570624
scale(min_b)	-3.662870	0.002 0.002	**	0.3570024 0.3557554
scale(GDD7 5)	-3.627302	0.002 0.002	**	0.3377334 0.3479135
scale(GDD7_3) scale(GDD7_46)	-3.627302 -3.615971	0.002 0.002	**	0.3479135 0.3454315
scale(GDD7_40) scale(GDH7_5)	-3.607169	0.002 0.002	**	0.3434313 0.3435086
		0.002 0.003	**	
scale(min_5)	-3.562855		**	0.3338996
scale(max_34)	-3.553435	0.003	**	0.3318722
scale(GDH5_34)	-3.408210	0.005	**	0.3012967
scale(GDH10_b)	-3.373028	0.005	**	0.2940815
$scale(mean_34)$	-3.360440	0.006	**	0.2915180
scale(min_4)	-3.350947	0.006	**	0.2895912
scale(mean_4)	-3.346046	0.006	**	0.2885986
scale(min_16)	-3.339803	0.006	**	0.2873363
scale(GDD10_45)	-3.281799	0.007	**	0.2757207
scale(GDH10_5)	-3.264463	0.007	**	0.2722885
scale(GDD5_34)	-3.260892	0.008	**	0.2715839
scale(GDD3_4)	-3.179679	0.01	**	0.2557651
scale(GDH10_16)	-3.177653	0.01	*	0.2553757
scale(GDD3_13)	-3.130368	0.011		0.2463550
scale(GDH3_13)	-3.117478	0.011	*	0.2439194
scale(GDH10_46)	-3.103625	0.012	*	0.2413129
scale(GDH7_34)	-3.101454	0.012	*	0.2409056
scale(GDH3_4)	-3.073732	0.013	*	0.2357284
scale(max_13)	-3.071511	0.013	*	0.2353156
$scale(max_3)$	-2.980283	0.016	*	0.2186187
scale(mean_13)	-2.961587	0.017	*	0.2152592
$scale(GDD10_5)$	-2.946252	0.018	*	0.2125193
$scale(GDD3_3)$	-2.921262	0.019	*	0.2080848
$scale(GDH3_3)$	-2.915207	0.019	*	0.2070160
$scale(GDH5_4)$	-2.900750	0.02	*	0.2044732
$scale(GDD5_4)$	-2.876729	0.021	*	0.2002760
$scale(max_4)$	-2.857728	0.022	*	0.1969808
$scale(GDH5_13)$	-2.832867	0.024	*	0.1927021

variable	Estimate	Р	sig	Rsquare
scale(min_34)	-2.813026	0.025	*	0.1893145
scale(min_13)	-2.798831	0.025	*	0.1869053
scale(GDD10_16)	-2.739030	0.029	*	0.1768897
scale(GDD10_46)	-2.721254	0.03	*	0.1739544
scale(precipitation_13)	-2.712312	0.031	*	0.1724851
scale(GDH7_4)	-2.703993	0.032	*	0.1711223
scale(GDD7_34)	-2.690342	0.033	*	0.1688953
scale(mean_3)	-2.657436	0.035	*	0.1635733
scale(GDH5_3)	-2.656617	0.035	*	0.1634417
$scale(GDH10_34)$	-2.503700	0.049	*	0.1395771

Selection differentials for each year

FFD, linear

```
seldiffs_FFD<-data.frame(data_sel %>% group_by(year) %>%
  do(model = lm(n_intact_seeds_rel ~ FFD_std, data = .)) %>% tidy(model))
seldiffs_FFD_nobs<-data.frame(data_sel %>% group_by(year) %>%
  do(nobs = nobs(lm(n_intact_seeds_rel ~ FFD_std, data = .)))) #N observations for each year
seldiffs_FFD_nobs
##
      year nobs
           238
## 1
     1987
## 2 1988
           171
     1989
## 4
     1990 133
## 5
     1991
           180
## 6 1992
           116
     1993 177
## 7
## 8 1994
           187
## 9
     1995
## 10 1996
## 11 2006
## 12 2007
## 13 2008
## 14 2009
## 15 2010
            74
## 16 2011
## 17 2012
           110
## 18 2013
## 19 2014
             63
## 20 2015
## 21 2016
           111
## 22 2017 129
seldiffs_FFD$sig<-ifelse(seldiffs_FFD$p.value<0.05,"*","")</pre>
kable(subset(seldiffs_FFD,term=="FFD_std"),digits=3) #Linear selection differentials for FFD
```

	year	term	estimate	std.error	statistic	p.value	sig
$\overline{2}$	1987	FFD_std	-0.372	0.092	-4.052	0.000	*

	year	term	estimate	std.error	statistic	p.value	sig
4	1988	FFD std	-0.302	0.106	-2.840	0.005	*
6	1989	FFD std	-0.609	0.128	-4.767	0.000	*
8	1990	FFD_std	-0.469	0.162	-2.887	0.005	*
10	1991	FFD_std	-0.662	0.078	-8.495	0.000	*
12	1992	FFD_std	-0.438	0.183	-2.391	0.018	*
14	1993	FFD_std	-0.428	0.133	-3.227	0.001	*
16	1994	FFD_std	-0.429	0.180	-2.387	0.018	*
18	1995	FFD_std	-0.147	0.241	-0.607	0.547	
20	1996	FFD_std	-0.373	0.106	-3.512	0.001	*
22	2006	FFD_std	-0.396	0.135	-2.920	0.004	*
24	2007	FFD_std	-0.425	0.111	-3.839	0.000	*
26	2008	FFD_std	-0.512	0.121	-4.247	0.000	*
28	2009	FFD_std	-0.215	0.269	-0.800	0.427	
30	2010	FFD_std	-0.492	0.164	-3.008	0.004	*
32	2011	FFD_std	-0.709	0.196	-3.609	0.001	*
34	2012	FFD_std	-1.035	0.187	-5.532	0.000	*
36	2013	FFD_std	-0.425	0.322	-1.319	0.192	
38	2014	FFD_std	-0.668	0.173	-3.854	0.000	*
40	2015	FFD_std	0.048	0.231	0.208	0.837	
42	2016	FFD_std	-0.351	0.096	-3.664	0.000	*
44	2017	FFD_std	0.282	0.497	0.567	0.572	

#FFD * (selection for early flowering) in all years but 1995,2009,2013,2015,2017

FFD, quadratic

```
seldiffs_FFD_q<-data.frame(data_sel %>% group_by(year) %>%
   do(model = lm(n_intact_seeds_rel ~ FFD_std+I(FFD_std^2), data = .)) %>% tidy(model))
seldiffs_FFD_q$sig<-ifelse(seldiffs_FFD_q$p.value<0.05,"*","")
kable(subset(seldiffs_FFD_q,term=="I(FFD_std^2)"),digits=3) #Quadratic selection differentials for FFD</pre>
```

	year	term	estimate	std.error	statistic	p.value	sig
3	1987	I(FFD_std^2)	-0.027	0.076	-0.348	0.728	
6	1988	I(FFD_std^2)	-0.030	0.067	-0.444	0.658	
9	1989	I(FFD_std^2)	0.067	0.099	0.673	0.502	
12	1990	I(FFD_std^2)	0.060	0.105	0.574	0.567	
15	1991	I(FFD_std^2)	0.087	0.072	1.200	0.232	
18	1992	I(FFD_std^2)	0.014	0.155	0.092	0.927	
21	1993	I(FFD_std^2)	-0.039	0.105	-0.376	0.707	
24	1994	I(FFD_std^2)	0.028	0.150	0.187	0.852	
27	1995	I(FFD_std^2)	-0.174	0.247	-0.703	0.486	
30	1996	I(FFD_std^2)	-0.089	0.089	-0.997	0.321	
33	2006	I(FFD_std^2)	0.075	0.073	1.016	0.312	
36	2007	I(FFD_std^2)	0.090	0.097	0.926	0.357	
39	2008	I(FFD_std^2)	0.164	0.063	2.595	0.011	*
42	2009	I(FFD_std^2)	-0.203	0.234	-0.866	0.390	
45	2010	I(FFD_std^2)	0.141	0.142	0.994	0.324	
48	2011	I(FFD_std^2)	0.191	0.134	1.425	0.158	
51	2012	I(FFD_std^2)	0.560	0.138	4.063	0.000	*

	year	term	estimate	std.error	statistic	p.value	sig
54	2013	I(FFD_std^2)	0.003	0.303	0.011	0.992	
57	2014	$I(FFD_std^2)$	0.177	0.143	1.241	0.219	
60	2015	$I(FFD_std^2)$	-0.423	0.237	-1.783	0.084	
63	2016	$I(FFD_std^2)$	0.008	0.068	0.112	0.911	
66	2017	$I(FFD_std^2)$	-0.125	0.250	-0.497	0.620	

```
#I(FFD_std^2) * (disruptive selection - increases variance) in 2008 and 2012
```

Number of flowers, linear

```
seldiffs_nfl<-data.frame(data_sel %>% group_by(year) %>%
  do(model = lm(n_intact_seeds_rel ~ n_fl_std, data = .)) %>% tidy(model))
seldiffs_nfl$sig<-ifelse(seldiffs_nfl$p.value<0.05,"*","")
kable(subset(seldiffs_nfl,term=="n_fl_std"),digits=3) #Linear selection differentials for nfl</pre>
```

	year	$_{ m term}$	estimate	std.error	statistic	p.value	sig
	•						*
2	1987	n_fl_std	0.766	0.081	9.478	0.000	
4	1988	n_fl_std	0.541	0.101	5.376	0.000	*
6	1989	n_fl_std	0.846	0.113	7.504	0.000	*
8	1990	n_fl_std	0.681	0.156	4.357	0.000	*
10	1991	n_fl_std	0.695	0.076	9.104	0.000	*
12	1992	n_fl_std	0.114	0.187	0.606	0.546	
14	1993	n_fl_std	0.436	0.133	3.285	0.001	*
16	1994	n_fl_std	0.449	0.180	2.498	0.013	*
18	1995	n_fl_std	0.364	0.236	1.545	0.130	
20	1996	n_fl_std	0.642	0.095	6.750	0.000	*
22	2006	n_fl_std	0.611	0.126	4.835	0.000	*
24	2007	n_fl_std	0.283	0.116	2.445	0.016	*
26	2008	n_fl_std	0.769	0.102	7.541	0.000	*
28	2009	n_fl_std	0.304	0.267	1.137	0.260	
30	2010	n_fl_std	0.280	0.170	1.644	0.104	
32	2011	n_fl_std	0.924	0.185	4.985	0.000	*
34	2012	n fl std	1.054	0.186	5.666	0.000	*
36	2013	n fl std	0.083	0.326	0.255	0.800	
38	2014	n fl std	0.252	0.191	1.324	0.190	
40	2015	n fl std	-0.003	0.231	-0.012	0.990	
42	2016	n fl std	0.606	0.083	7.267	0.000	*
44	2017	n fl std	-0.541	0.496	-1.091	0.277	

#nfl * (selection for high number of flowers) in all years but 1992, 1995, 2009, 2010, 2013, 2014, 2015, 2017

Number of flowers, quadratic

```
seldiffs_nfl_q<-data.frame(data_sel %>% group_by(year) %>%
  do(model = lm(n_intact_seeds_rel ~ n_fl_std+I(n_fl_std^2), data = .)) %>% tidy(model))
seldiffs_nfl_q$sig<-ifelse(seldiffs_nfl_q$p.value<0.05,"*","")
kable(subset(seldiffs_nfl_q,term=="I(n_fl_std^2)"),digits=3) #Quadratic selection differentials for nf</pre>
```

	year	term	estimate	std.error	statistic	p.value	sig
3	1987	I(n_fl_std^2)	-0.006	0.043	-0.135	0.892	
6	1988	I(n_fl_std^2)	0.001	0.066	0.009	0.993	
9	1989	I(n_fl_std^2)	0.027	0.099	0.274	0.785	
12	1990	I(n_fl_std^2)	-0.224	0.069	-3.234	0.002	*
15	1991	$I(n_fl_std^2)$	0.019	0.058	0.326	0.745	
18	1992	$I(n_fl_std^2)$	-0.261	0.106	-2.455	0.016	*
21	1993	$I(n_fl_std^2)$	-0.110	0.085	-1.293	0.198	
24	1994	I(n_fl_std^2)	-0.099	0.090	-1.098	0.274	
27	1995	I(n_fl_std^2)	-0.130	0.125	-1.039	0.305	
30	1996	$I(n_fl_std^2)$	-0.078	0.070	-1.121	0.264	
33	2006	$I(n_fl_std^2)$	-0.242	0.045	-5.402	0.000	*
36	2007	$I(n_fl_std^2)$	-0.135	0.053	-2.544	0.013	*
39	2008	$I(n_fl_std^2)$	-0.102	0.057	-1.775	0.080	
42	2009	$I(n_fl_std^2)$	-0.237	0.120	-1.976	0.053	
45	2010	$I(n_fl_std^2)$	-0.300	0.109	-2.740	0.008	*
48	2011	$I(n_fl_std^2)$	0.036	0.130	0.275	0.784	
51	2012	I(n_fl_std^2)	-0.179	0.110	-1.621	0.108	
54	2013	I(n_fl_std^2)	-0.185	0.322	-0.574	0.568	
57	2014	$I(n_fl_std^2)$	-0.222	0.091	-2.428	0.018	*
60	2015	I(n_fl_std^2)	-0.272	0.161	-1.694	0.100	
63	2016	$I(n_fl_std^2)$	-0.062	0.066	-0.944	0.347	
66	2017	I(n_fl_std^2)	0.156	0.350	0.447	0.656	

$\#I(n_fl_std^2) * (stabilizing selection - decreases variance) in 1990,1992,2006,2007,2010,2014$

All selection differentials

Plots

-1.0

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Year

Selection gradients for each year

FFD, linear

```
selgrads_FFD<-data.frame(data_sel %>% group_by(year) %>%
  do(model = lm(n_intact_seeds_rel ~ FFD_std+n_fl_std, data = .)) %>% tidy(model))
selgrads_FFD$sig<-ifelse(selgrads_FFD$p.value<0.05,"*","")
kable(subset(selgrads_FFD,term=="FFD_std"),digits=3) #Linear selection gradients for FFD</pre>
```

			4.	. 1		1	
	year	term	estimate	std.error	statistic	p.value	$\frac{\text{sig}}{}$
2	1987	FFD_std	-0.078	0.088	-0.883	0.378	
5	1988	FFD_std	-0.088	0.111	-0.789	0.431	
8	1989	FFD_std	-0.144	0.143	-1.010	0.315	
11	1990	FFD_std	-0.240	0.169	-1.418	0.159	
14	1991	FFD_std	-0.398	0.087	-4.564	0.000	*
17	1992	FFD_std	-0.463	0.199	-2.323	0.022	*
20	1993	FFD_std	-0.300	0.144	-2.084	0.039	*
23	1994	FFD_std	-0.300	0.194	-1.545	0.124	
26	1995	FFD_std	0.018	0.266	0.069	0.945	
29	1996	FFD_std	-0.170	0.101	-1.684	0.095	
32	2006	FFD_std	-0.228	0.132	-1.733	0.086	
35	2007	FFD_std	-0.383	0.131	-2.922	0.004	*
38	2008	FFD_std	-0.210	0.112	-1.873	0.065	
41	2009	FFD_std	-0.070	0.321	-0.218	0.828	
44	2010	FFD_std	-0.478	0.195	-2.459	0.016	*
47	2011	FFD_std	-0.301	0.218	-1.379	0.172	
50	2012	FFD_std	-0.665	0.210	-3.174	0.002	*
53	2013	FFD_std	-0.426	0.331	-1.284	0.204	
56	2014	FFD_std	-0.777	0.211	-3.676	0.001	*
59	2015	FFD_std	0.083	0.315	0.264	0.794	
62	2016	FFD_std	-0.055	0.097	-0.563	0.575	
65	2017	FFD_std	-0.020	0.595	-0.034	0.973	

#FFD * (selection for early flowering) in 1991,1992,1993,2007,2010,2012,2014

FFD, quadratic and correlational

```
selgrads_FFD_q<-data.frame(data_sel %>% group_by(year) %>%
   do(model = lm(n_intact_seeds_rel ~ FFD_std+I(FFD_std^2)+n_fl_std+I(n_fl_std^2)+FFD_std:n_fl_std, data
selgrads_FFD_q$sig<-ifelse(selgrads_FFD_q$p.value<0.05,"*","")
kable(subset(selgrads_FFD_q,term=="I(FFD_std^2)"),digits=3)</pre>
```

-	year	term	estimate	std.error	statistic	p.value	sig
3	1987	I(FFD_std^2)	-0.071	0.085	-0.836	0.404	
9	1988	I(FFD_std^2)	0.091	0.075	1.208	0.229	
15	1989	$I(FFD_std^2)$	0.035	0.134	0.259	0.796	
21	1990	$I(FFD_std^2)$	-0.049	0.120	-0.410	0.682	
27	1991	$I(FFD_std^2)$	0.039	0.086	0.450	0.653	
33	1992	I(FFD_std^2)	0.096	0.184	0.525	0.600	

	year	term	estimate	$\operatorname{std.error}$	statistic	p.value	sig
39	1993	I(FFD_std^2)	0.021	0.119	0.173	0.863	
45	1994	I(FFD_std^2)	-0.018	0.171	-0.104	0.917	
51	1995	I(FFD_std^2)	-0.229	0.308	-0.743	0.462	
57	1996	I(FFD_std^2)	-0.049	0.093	-0.529	0.598	
63	2006	I(FFD_std^2)	0.113	0.075	1.517	0.133	
69	2007	I(FFD_std^2)	0.243	0.150	1.626	0.108	
75	2008	I(FFD_std^2)	0.073	0.067	1.093	0.278	
81	2009	I(FFD_std^2)	-0.063	0.303	-0.207	0.837	
87	2010	I(FFD_std^2)	0.196	0.165	1.183	0.241	
93	2011	I(FFD_std^2)	0.052	0.171	0.302	0.763	
99	2012	I(FFD_std^2)	0.370	0.187	1.976	0.051	
105	2013	I(FFD_std^2)	0.178	0.362	0.491	0.625	
111	2014	I(FFD_std^2)	0.340	0.207	1.645	0.105	
117	2015	I(FFD_std^2)	-0.975	0.364	-2.679	0.012	*
123	2016	$I(FFD_std^2)$	0.005	0.076	0.062	0.951	
129	2017	$I(FFD_std^2)$	-0.206	0.406	-0.507	0.613	

#Quadratic selection gradients for FFD
#I(FFD_std^2) * (stabilizing selection - decreases variance) in 2015
kable(subset(selgrads_FFD_q,term=="FFD_std:n_fl_std"),digits=3)

	year	term	estimate	std.error	statistic	p.value	sig
6	1987	FFD std:n fl std	0.010	0.180	0.058	0.954	
12	1988	FFD std:n fl std	0.578	0.179	3.236	0.001	*
18	1989	FFD std:n fl std	0.061	0.225	0.271	0.787	
24	1990	FFD std:n fl std	-0.352	0.278	-1.264	0.209	
30	1991	FFD std:n fl std	0.122	0.165	0.742	0.459	
36	1992	FFD std:n fl std	0.172	0.252	0.681	0.497	
42	1993	FFD std:n fl std	0.153	0.194	0.787	0.432	
48	1994	FFD std:n fl std	-0.081	0.236	-0.344	0.731	
54	1995	FFD std:n fl std	-0.154	0.443	-0.347	0.730	
60	1996	FFD std:n fl std	-0.006	0.139	-0.041	0.967	
66	2006	$FFD_std:n_fl_std$	0.360	0.210	1.713	0.090	
72	2007	$FFD_std:n_fl_std$	0.394	0.266	1.481	0.142	
78	2008	$FFD_std:n_fl_std$	-0.096	0.246	-0.393	0.696	
84	2009	$FFD_std:n_fl_std$	1.285	0.794	1.619	0.111	
90	2010	$FFD_std:n_fl_std$	0.379	0.358	1.061	0.293	
96	2011	$FFD_std:n_fl_std$	-0.318	0.507	-0.629	0.531	
102	2012	$FFD_std:n_fl_std$	-0.335	0.430	-0.778	0.438	
108	2013	$FFD_std:n_fl_std$	0.455	0.449	1.013	0.315	
114	2014	$FFD_std:n_fl_std$	0.315	0.351	0.896	0.374	
120	2015	$FFD_std:n_fl_std$	-1.041	0.555	-1.875	0.071	
126	2016	FFD_std:n_fl_std	0.500	0.189	2.640	0.010	*
132	2017	$FFD_std:n_fl_std$	-0.006	0.759	-0.008	0.994	

Plots

Calculate BCa confindence intervals for model estimates? (selection differentials and gradients)

Results 1: Among-year variation and trends

Trends

Trend in spring temperature

```
with(summarySE(weather_45, measurevar="mean", groupvars=c("year")),tidy(lm(mean~year))) #NS
## # A tibble: 2 x 5
##
     term
                  estimate std.error statistic p.value
     <chr>>
                               <dbl>
                                          <dbl>
                                                  <dbl>
                     <dbl>
## 1 (Intercept) -58.0
                             38.1
                                          -1.52 0.144
                              0.0190
## 2 year
                    0.0331
                                           1.74 0.0974
First set of years
with(subset(summarySE(weather_45, measurevar="mean", groupvars=c("year")),
            year<2006),tidy(lm(mean~year))) #NS</pre>
## # A tibble: 2 x 5
##
     term
                   estimate std.error statistic p.value
##
     <chr>>
                                 <dbl>
                                           <dbl>
                                                    <dbl>
## 1 (Intercept)
                   129.
                              266.
                                           0.486
                                                    0.640
## 2 year
                    -0.0609
                                0.133
                                          -0.456
                                                    0.660
Second set of years
with(subset(summarySE(weather_45, measurevar="mean", groupvars=c("year")),
            year>1996),tidy(lm(mean~year))) #NS
```

```
## # A tibble: 2 x 5
          estimate std.error statistic p.value
##
   term
##
    <chr>
                <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 27.5 114.
                                       0.241 0.815
## 2 year
                -0.00938 0.0568 -0.165 0.872
Trend in FFD
All years
data_sel$year_int<-as.integer(as.character(data_sel$year))</pre>
with(summarySE(data sel, measurevar="FFD", groupvars=c("year int")),tidy(lm(FFD~year int))) #*
## # A tibble: 2 x 5
## term
               estimate std.error statistic p.value
##
    <chr>
                 <dbl> <dbl>
                                     <dbl> <dbl>
## 1 (Intercept) 583.
                          217.
                                      2.69 0.0141
                                      -2.42 0.0250
## 2 year int
                 -0.262 0.108
First set of years
with(subset(summarySE(data_sel, measurevar="FFD", groupvars=c("year_int")),
 year_int<2006),tidy(lm(FFD~year_int))) #NS</pre>
## # A tibble: 2 x 5
##
                 estimate std.error statistic p.value
    term
##
    <chr>>
                    <dbl>
                             <dbl>
                                       <dbl>
                                              <dbl>
## 1 (Intercept) -1694.
                          1307.
                                       -1.30
                                              0.231
## 2 year_int
                    0.882
                             0.656
                                        1.34 0.216
Second set of years
with(subset(summarySE(data_sel, measurevar="FFD", groupvars=c("year_int")),
 year_int>1996),tidy(lm(FFD~year_int))) #NS
## # A tibble: 2 x 5
##
   term
               estimate std.error statistic p.value
##
    <chr>
                   <dbl> <dbl>
                                     <dbl>
                                              <dbl>
                          622.
                                     -0.402
                                              0.696
## 1 (Intercept) -250.
                   0.152 0.309
                                     0.490 0.634
## 2 year int
RESIDUALS FFD~TEMP UNRELATED TO YEAR.
with(merge(summarySE(data_sel, measurevar="FFD", groupvars=c("year_int")),
     summarySE(data_sel, measurevar="mean_45", groupvars=c("year_int"))[c(1,3)]),
    tidy(lm(residuals(lm(FFD~mean_45))~year_int)))
## # A tibble: 2 x 5
                 estimate std.error statistic p.value
##
   term
```

<dbl>

1.57 0.132

-1.57 0.132

<dbl> <dbl> <dbl>

110.

0.0550

##

<chr>

2 year int

1 (Intercept) 173.

-0.0865

RESIDUALS FFD RELATED TO RESIDUALS TEMP

```
with(merge(summarySE(data_sel, measurevar="FFD", groupvars=c("year_int")),
      summarySE(data_sel, measurevar="mean_45", groupvars=c("year_int"))[c(1,3)]),
    tidy(lm(residuals(lm(FFD~year_int))~residuals(lm(mean_45~year_int)))))
## # A tibble: 2 x 5
##
    term
                                     estimate std.error statistic
                                                                     p.value
##
    <chr>
                                                                       <dbl>
                                        <dbl>
                                                 <dbl>
                                                            <dbl>
                                                                   10.00e-1
## 1 (Intercept)
                                     6.54e-16
                                                  0.570 1.15e-15
## 2 residuals(lm(mean_45 ~ year_in~ -4.91e+ 0
                                                  0.640 -7.67e+ 0
                                                                     2.22e-7
Trend in fitness
All years
with(summarySE(data_sel, measurevar="n_intact_seeds",groupvars=c("year_int")),
    tidy(lm(n_intact_seeds~year_int))) #NS
## # A tibble: 2 x 5
##
    term
                estimate std.error statistic p.value
##
    <chr>
                   <dbl>
                             <dbl>
                                       <dbl> <dbl>
                          177.
                                       0.154
                                               0.879
## 1 (Intercept) 27.3
## 2 year_int
                 -0.0112
                            0.0883
                                      -0.127
                                               0.901
First set of years
with(subset(summarySE(data_sel, measurevar="n_intact_seeds",groupvars=c("year_int")),year_int<2006),</pre>
    tidy(lm(n_intact_seeds~year_int))) #NS
## # A tibble: 2 x 5
##
   term
                estimate std.error statistic p.value
##
    <chr>>
                  <dbl> <dbl>
                                       <dbl> <dbl>
## 1 (Intercept) 821.
                           526.
                                       1.56
                                               0.157
                                       -1.55 0.159
## 2 year int
                  -0.410
                            0.264
Second set of years
with(subset(summarySE(data_sel, measurevar="n_intact_seeds",groupvars=c("year_int")),year_int>1996),
    tidy(lm(n_intact_seeds~year_int))) #NS
## # A tibble: 2 x 5
##
    term
                estimate std.error statistic p.value
                             <dbl>
                                       <dbl>
    <chr>>
                   <dbl>
                                               <dbl>
                                       0.941
                                               0.369
## 1 (Intercept) 850.
                           903.
                             0.449
                                      -0.935 0.372
## 2 year_int
                  -0.420
Trend in selection gradients for FFD
All years
selgrads_FFD$year_int<-as.integer(as.character(selgrads_FFD$year))</pre>
with(subset(selgrads_FFD,term=="FFD_std"),tidy(lm(estimate~year_int))) #NS
## # A tibble: 2 x 5
                estimate std.error statistic p.value
```

```
## <chr>
          <dbl>
                       <dbl>
                                 <dbl>
                                         <dbl>
## 1 (Intercept) 5.80
                       9.05
                                 0.641 0.529
## 2 year_int
            -0.00303 0.00452
                                 -0.670 0.511
First set of years
with(subset(selgrads_FFD,term=="FFD_std"&year_int<2006),tidy(lm(estimate~year_int))) #NS
## # A tibble: 2 x 5
## term
             estimate std.error statistic p.value
## <chr>
               <dbl> <dbl>
                                  <dbl>
                                          <dbl>
                                   0.377 0.716
## 1 (Intercept) 13.2
                         34.9
               -0.00672 0.0175 -0.384 0.711
## 2 year_int
Second set of years
with(subset(selgrads_FFD,term=="FFD_std"&year_int>1996),tidy(lm(estimate~year_int))) #NS
## # A tibble: 2 x 5
## term
              estimate std.error statistic p.value
##
    <chr>
            <dbl> <dbl>
                                  <dbl> <dbl>
## 1 (Intercept) -25.2
                       45.9
                                 -0.550
                                         0.595
## 2 year_int 0.0124 0.0228
                                 0.543 0.599
```

PLOT RESIDUALS FFD AGAINST RESIDUALS TEMP

Proprtion of variation explained by year

\mathbf{FFD}

```
with(data_sel,summary(lm(FFD~year))) #* Linear model, year=factor, Adjusted R-squared: 0.5836
##
## Call:
## lm(formula = FFD ~ year)
## Residuals:
       Min
                  1Q
                       Median
                                    3Q
                                            Max
## -15.0833 -3.3083 -0.3107
                                2.7421
                                        22.7284
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
```

```
## (Intercept)
                66.2559
                            0.3066 216.070 < 2e-16 ***
## year1988
                -6.3480
                            0.4742 -13.386 < 2e-16 ***
## year1989
               -12.4002
                            0.5678 -21.839
                                            < 2e-16 ***
## year1990
               -11.7935
                            0.5121 -23.028
                                            < 2e-16 ***
## year1991
                -1.2608
                            0.4673 -2.698
                                            0.00702 **
## year1992
                -6.4054
                            0.5357 - 11.958
                                            < 2e-16 ***
## year1993
               -10.5188
                            0.4695 -22.403 < 2e-16 ***
## year1994
                -6.0558
                            0.4623 -13.100 < 2e-16 ***
## year1995
                 3.2810
                            0.7917
                                     4.144 3.53e-05 ***
## year1996
                 5.2983
                            0.5239 10.112 < 2e-16 ***
## year2006
                -7.7275
                            0.5763 -13.409
                                           < 2e-16 ***
## year2007
               -14.6554
                            0.5763 -25.431 < 2e-16 ***
## year2008
               -18.1954
                            0.6085 -29.900
                                            < 2e-16 ***
## year2009
               -10.3651
                            0.6789 -15.268 < 2e-16 ***
## year2010
               -7.5692
                            0.6296 -12.021
                                            < 2e-16 ***
## year2011
               -12.8012
                            0.5952 -21.508
                                            < 2e-16 ***
                            0.5454 -19.434
## year2012
               -10.5993
                                            < 2e-16 ***
## year2013
                -6.7810
                            0.6468 -10.484
                                            < 2e-16 ***
               -12.2865
## year2014
                            0.6703 -18.331
                                            < 2e-16 ***
                                            < 2e-16 ***
## year2015
               -13.4203
                            0.8460 -15.864
## year2016
               -13.8570
                            0.5437 -25.485
                                           < 2e-16 ***
                -7.0210
                            0.5172 -13.575 < 2e-16 ***
## year2017
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.731 on 2452 degrees of freedom
## Multiple R-squared: 0.5871, Adjusted R-squared: 0.5836
                  166 on 21 and 2452 DF, p-value: < 2.2e-16
## F-statistic:
with(data_sel,summary(lmer(FFD~(1|year)))) #* Linear mixed model, year=factor
## Linear mixed model fit by REML ['lmerMod']
## Formula: FFD ~ (1 | year)
## REML criterion at convergence: 14818.3
##
## Scaled residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -3.1831 -0.7083 -0.0674 0.5806 4.7878
## Random effects:
##
   Groups
                         Variance Std.Dev.
             Name
##
   year
             (Intercept) 34.45
                                  5.869
  Residual
                         22.38
                                  4.731
## Number of obs: 2474, groups: year, 22
##
## Fixed effects:
               Estimate Std. Error t value
##
## (Intercept)
                 58.010
                             1.256
                                     46.19
r.squaredGLMM(lmer(FFD~(1|year),data_sel)) # 0.6062021
## Warning: 'r.squaredGLMM' now calculates a revised statistic. See the help
## page.
        R<sub>2</sub>m
                  R<sub>2</sub>c
##
```

```
## [1,]
         0 0.6062021
r.squaredLR(lmer(FFD~(1|year),data_sel)) # 0.5650669
## [1] 0.564451
## attr(, "adj.r.squared")
## [1] 0.5650669
Fitness
with(data_sel,summary(lm(n_intact_seeds~year))) #* Linear model, year=factor, Adjusted R-squared:
##
## Call:
## lm(formula = n_intact_seeds ~ year)
## Residuals:
##
               1Q Median
                               3Q
      Min
                                      Max
## -18.332 -3.540 -1.415
                            1.618 88.274
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                7.7259
                           0.5358 14.418 < 2e-16 ***
                           0.8287 -4.274 1.99e-05 ***
## year1988
               -3.5421
## year1989
                0.9577
                           0.9922
                                   0.965 0.334499
## year1990
               -4.2609
                           0.8949 -4.761 2.04e-06 ***
## year1991
               -0.9378
                           0.8166 -1.148 0.250890
## year1992
               -6.5356
                           0.9361 -6.982 3.73e-12 ***
## year1993
               -4.3438
                           0.8205
                                   -5.294 1.30e-07 ***
               -5.9031
                           0.8078 -7.308 3.66e-13 ***
## year1994
## year1995
               -5.2326
                           1.3835 -3.782 0.000159 ***
## year1996
               -1.7421
                           0.9155 -1.903 0.057188 .
## year2006
                0.8449
                           1.0070
                                    0.839 0.401530
## year2007
               -2.1040
                          1.0070 -2.089 0.036784 *
## year2008
               10.6065
                          1.0634
                                   9.974 < 2e-16 ***
## year2009
               -6.3109
                           1.1863 -5.320 1.13e-07 ***
               -5.1741
## year2010
                           1.1003 -4.703 2.71e-06 ***
## year2011
               -6.7883
                           1.0401 -6.527 8.13e-11 ***
## year2012
               -4.6805
                           0.9531 -4.911 9.66e-07 ***
               -7.2380
                           1.1303 -6.404 1.81e-10 ***
## year2013
                           1.1712 -3.574 0.000358 ***
## year2014
               -4.1862
## year2015
               -1.0870
                           1.4783 -0.735 0.462203
## year2016
                                    3.373 0.000755 ***
                3.2049
                           0.9501
## year2017
               -7.5673
                           0.9038 -8.373 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 8.267 on 2452 degrees of freedom
## Multiple R-squared: 0.176, Adjusted R-squared: 0.1689
```

F-statistic: 24.93 on 21 and 2452 DF, p-value: < 2.2e-16

Fig. 1

Results 2: Response of FFD for each plant, mean position and duration of flowering to temperature

FFD for each plant

```
tidy(lm(FFD ~ mean_45,data = data_sel))
## # A tibble: 2 x 5
    term
               estimate std.error statistic p.value
##
    <chr>
          ## 1 (Intercept)
                  99.6
                           0.895
                                    111.
                           0.109
                                    -45.8
                                               0
## 2 mean_45
                  -5.01
glance(lm(FFD~mean_45,data=data_sel))$adj.r.squared # Rsquare
## [1] 0.4587361
predict(lm(FFD_mean~mean_45,data=data_sel),
       data.frame(mean_45=with(data_sel,min(mean_45)))) # Coldest
##
## 67.25939
predict(lm(FFD_mean~mean_45,data=data_sel),
       data.frame(mean_45=with(data_sel,max(mean_45)))) # Warmest
## 50.95233
## FFD also related to temp when including year (Supp. mat)
tidy(lm(FFD ~ mean_45+as.integer(year),data = data_sel))
## # A tibble: 3 x 5
##
   term
                   estimate std.error statistic p.value
    <chr>
                     <dbl> <dbl> <dbl> <dbl>
                                                  <dbl>
                     98.6
                               0.901
## 1 (Intercept)
                                        109. 0.
                     -4.77
## 2 mean_45
                               0.116
                                        -41.2 2.54e-283
## 3 as.integer(year) -0.107 0.0175
                                       -6.10 1.20e- 9
glance(lm(FFD~mean_45+as.integer(year),data=data_sel))$adj.r.squared # Rsquare
## [1] 0.4665613
```

Fig. 2: Response of FFD for each plant to spring temperature

Position

```
tidy(lm(FFD_mean~mean_45,data=mean_weather7))
## # A tibble: 2 x 5
##
     term
                 estimate std.error statistic p.value
     <chr>
                              <dbl>
## 1 (Intercept)
                              5.30
                                        19.2 2.36e-14
                   102.
## 2 mean_45
                    -5.31
                              0.638
                                        -8.32 6.38e- 8
glance(lm(FFD_mean~mean_45,data=mean_weather7))$adj.r.squared # Rsquare
## [1] 0.7644192
predict(lm(FFD_mean~mean_45,data=mean_weather7),
        data.frame(mean_45=with(mean_weather7,min(mean_45)))) # Coldest
```

```
##
## 67.6142
predict(lm(FFD_mean~mean_45,data=mean_weather7),
        data.frame(mean_45=with(mean_weather7,max(mean_45)))) # Warmest
##
## 50.33326
## FFD_mean also related to temp when including year
                                                     (Supp. mat)
tidy(lm(FFD_mean~mean_45+year,data=mean_weather7))
## # A tibble: 3 x 5
##
    term
                 estimate std.error statistic
                                                  p.value
##
     <chr>>
                    <dbl>
                              <dbl>
                                        <dbl>
                                                    <dbl>
## 1 (Intercept) 297.
                           118.
                                         2.52 0.0210
## 2 mean_45
                  -4.91
                             0.657
                                        -7.48 0.000000448
## 3 year
                   -0.0993
                             0.0600
                                        -1.66 0.114
glance(lm(FFD_mean~mean_45+year,data=mean_weather7))$adj.r.squared # Rsquare
## [1] 0.7833063
tidy(lm(date_10~mean_45,data=mean_weather7))
## # A tibble: 2 x 5
##
    term
                estimate std.error statistic p.value
##
     <chr>>
                   <dbl>
                             <dbl>
                                       <dbl>
                                                <db1>
## 1 (Intercept)
                   98.7
                             6.70
                                       14.7 3.40e-12
                   -5.74
                             0.807
                                       -7.11 6.85e- 7
## 2 mean_45
glance(lm(date_10~mean_45,data=mean_weather7))$adj.r.squared # Rsquare
## [1] 0.7023764
predict(lm(date_10~mean_45,data=mean_weather7),
        data.frame(mean_45=with(mean_weather7,min(mean_45)))) # Coldest
##
## 61.72497
predict(lm(date 10~mean 45,data=mean weather7),
        data.frame(mean_45=with(mean_weather7,max(mean_45)))) # Warmest
## 43.04561
## date_10 also related to temp when including year (Supp. mat)
tidy(lm(date_10~mean_45+year,data=mean_weather7))
## # A tibble: 3 x 5
##
    term
                 estimate std.error statistic
                                                 p.value
     <chr>
                    <dbl> <dbl>
                                                   <dbl>
                                        <dbl>
## 1 (Intercept) 261.
                          155.
                                        1.68 0.109
                             0.863
                                       -6.26 0.00000516
## 2 mean 45
                  -5.41
## 3 year
                  -0.0826
                             0.0789
                                        -1.05 0.308
glance(lm(date_10~mean_45+year,data=mean_weather7))$adj.r.squared # Rsquare
```

[1] 0.7038144

```
tidy(lm(date_90~mean_45,data=mean_weather7))
## # A tibble: 2 x 5
##
   term estimate std.error statistic p.value
     <chr> <dbl> <dbl> <dbl>
                                                <dbl>
## 1 (Intercept) 103.
                                       20.1 9.56e-15
                             5.13
## 2 mean_45
                   -4.89
                             0.617
                                      -7.93 1.35e- 7
glance(lm(date_90~mean_45,data=mean_weather7))$adj.r.squared # Rsquare
## [1] 0.7464281
predict(lm(date_90~mean_45,data=mean_weather7),
       data.frame(mean_45=with(mean_weather7,min(mean_45)))) # Coldest
##
## 71.67857
predict(lm(date_90~mean_45,data=mean_weather7),
       data.frame(mean_45=with(mean_weather7,max(mean_45)))) # Warmest
##
        1
## 55.7576
## date_90 also related to temp when including year (Supp. mat)
tidy(lm(date_90~mean_45+year,data=mean_weather7))
## # A tibble: 3 x 5
                 estimate std.error statistic
    term
                                                  p.value
##
    <chr>
                  <dbl> <dbl> <dbl>
                                                    <dbl>
## 1 (Intercept) 158. 122. 1.30 0.209
## 2 mean_45 -4.78 0.675 -7.07 0.000000990
                             0.0617
## 3 year
                  -0.0280
                                      -0.453 0.656
glance(lm(date_90~mean_45+year,data=mean_weather7))$adj.r.squared # Rsquare
## [1] 0.7359362
```

Fig. 3: Response of position to spring temperature

Duration

```
tidy(lm(days_90_10~mean_4,data=mean_weather7))
## # A tibble: 2 x 5
##
                 estimate std.error statistic
     term
                                                p.value
     <chr>
                    <dbl>
                               <dbl>
                                         <dbl>
## 1 (Intercept)
                    0.928
                               2.42
                                         0.383 0.706
                               0.417
## 2 mean_4
                    1.87
                                                0.000229
tidy(lm(days_90_10~mean_45,data=mean_weather7))
## # A tibble: 2 x 5
##
     term
                 estimate std.error statistic p.value
##
     <chr>
                    <dbl>
                               <dbl>
                                          <dbl>
                                                  <dbl>
## 1 (Intercept)
                    4.49
                               6.72
                                         0.669
                                                  0.511
                               0.808
                                                  0.307
## 2 mean_45
                    0.847
                                         1.05
```

```
tidy(lm(days_90_10~mean_5,data=mean_weather7))
## # A tibble: 2 x 5
##
              estimate std.error statistic p.value
   term
##
    <chr>
                  <dbl>
                             <dbl>
                                      <dbl> <dbl>
## 1 (Intercept)
                  21.3
                             5.81
                                       3.66 0.00157
## 2 mean_5
                  -0.906
                             0.535
                                       -1.690.106
glance(lm(days_90_10~mean_4,data=mean_weather7))$adj.r.squared # Rsquare
## [1] 0.475937
glance(lm(days_90_10~mean_45,data=mean_weather7))$adj.r.squared # Rsquare
## [1] 0.004676164
glance(lm(days_90_10~mean_5,data=mean_weather7))$adj.r.squared # Rsquare
## [1] 0.08172378
predict(lm(days_90_10~mean_4,data=mean_weather7),
       data.frame(mean_4=with(mean_weather7,min(mean_4)))) # Coldest
##
         1
## 7.636388
predict(lm(days_90_10~mean_4,data=mean_weather7),
       data.frame(mean_4=with(mean_weather7,max(mean_4)))) # Warmest
##
         1
## 16.69564
## days_90_10 also related to temp when including year (Supp. mat)
tidy(lm(days_90_10~mean_4+year,data=mean_weather7))
## # A tibble: 3 x 5
##
    term
                 estimate std.error statistic p.value
##
    <chr>
                    <dbl>
                              <dbl>
                                       <dbl>
                                                 <dbl>
## 1 (Intercept) 20.5
                           117.
                                        0.176 0.862
## 2 mean_4
                  1.90
                             0.457
                                        4.15 0.000542
## 3 year
                 -0.00985
                             0.0586
                                       -0.168 0.868
tidy(lm(days_90_10~mean_45+year,data=mean_weather7))
## # A tibble: 3 x 5
##
   term
                estimate std.error statistic p.value
    <chr>
                              <dbl>
                                        <dbl>
                                                <dbl>
                    <dbl>
                                       -0.652
                                                0.522
## 1 (Intercept) -103.
                           158.
## 2 mean_45
                   0.630
                             0.879
                                        0.717
                                                0.482
## 3 year
                   0.0547
                             0.0803
                                        0.681
                                                0.504
tidy(lm(days_90_10~mean_5+year,data=mean_weather7))
## # A tibble: 3 x 5
##
                 estimate std.error statistic p.value
    term
                   <dbl> <dbl> <dbl>
    <chr>
                                                <dbl>
                           140.
                                        -1.24 0.231
## 1 (Intercept) -173.
                -1.03
                           0.530
                                        -1.94 0.0679
## 2 mean_5
                   0.0976
                             0.0702
## 3 year
                                        1.39 0.181
```

```
glance(lm(days_90_10~mean_4+year,data=mean_weather7))$adj.r.squared # Rsquare
## [1] 0.4491733
glance(lm(days_90_10~mean_45+year,data=mean_weather7))$adj.r.squared # Rsquare
## [1] -0.0227632
glance(lm(days_90_10~mean_5+year,data=mean_weather7))$adj.r.squared # Rsquare
## [1] 0.1226226
```

Fig. 4: Response of duration of the flowering season to spring temperature

Results 3 NEW: Response of fitness to spring temperature, mean position and duration of flowering

Spring temperature

```
tidy(lm(n_intact_seeds ~ mean_45+n_fl,data = data_sel)) #*
## # A tibble: 3 x 5
##
                 estimate std.error statistic p.value
     term
                                                  <dbl>
     <chr>>
                    <dbl>
                              <dbl>
                                         <dbl>
## 1 (Intercept)
                    7.43
                            1.39
                                         5.35 9.54e- 8
## 2 mean_45
                   -0.628
                            0.170
                                         -3.69 2.30e- 4
                    0.195
                            0.00936
                                        20.8 1.65e-88
## 3 n_fl
glance(lm(n_intact_seeds ~ mean_45+n_f1,data = data_sel))$adj.r.squared # Rsquare
## [1] 0.1493946
```

Position

```
## 1 (Intercept) 2.09   1.83   1.14  2.54e- 1
## 2 FFD_mean   0.00470  0.0305   0.154  8.77e- 1
## 3 n_fl    0.192  0.00950  20.2  2.06e-84

glance(lm(n_intact_seeds~FFD_mean+n_fl,data=data_sel))$adj.r.squared # Rsquare
## [1] 0.1447179
```

Duration

```
tidy(lm(n_intact_seeds~days_90_10+n_fl,data=data_sel)) #*
## # A tibble: 3 x 5
##
     term
                 estimate std.error statistic p.value
     <chr>>
                    <dbl>
                              <dbl>
                                         <dbl>
                                                  <dbl>
                   -1.78
                            0.657
                                         -2.70 6.88e- 3
## 1 (Intercept)
## 2 days_90_10
                    0.379
                            0.0569
                                          6.65 3.54e-11
## 3 n_fl
                    0.186
                            0.00933
                                         19.9 8.42e-82
glance(lm(n_intact_seeds~days_90_10+n_fl,data=data_sel))$adj.r.squared # Rsquare
## [1] 0.159758
```

Fig. 5: Response of fitness to spring temperature, mean position and duration of flowering

Graphs of the effect of variables taking into account that number of flowers is included in the model

Graphs with raw data

```
# Spring temperature, fitness for each plant
ggplot(data_sel,aes(x=mean_45,y=n_intact_seeds))+
geom_point()+geom_smooth(method="lm",se=F)+my_theme()
```



```
# Duration
ggplot(data_sel,aes(x=days_90_10,y=n_intact_seeds))+
geom_point()+geom_smooth(method="lm",se=F)+my_theme()
```


Results 4: Differences in selection among years

Indirect selection (selection differentials)

```
Anova(lm(n_intact_seeds_rel ~ FFD_std+FFD_std:year,data = data_sel),type="II")
## Anova Table (Type II tests)
## Response: n_intact_seeds_rel
##
                Sum Sq
                        Df F value Pr(>F)
                          1 107.6082 < 2e-16 ***
## FFD_std
                 446.8
## FFD_std:year
                 147.4
                         21
                              1.6906 0.02561 *
## Residuals
               10177.0 2451
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#Indirect selection for early flowering differs among years
```

Direct selection (selection gradients)

```
Anova(lm(n_intact_seeds_rel ~ FFD_std+FFD_std:year+n_fl_std,data = data_sel),type="II")
## Anova Table (Type II tests)
```

Results 5: Are differences in selection among years related to climatic conditions?

Response of selection to spring temperature, position and duration of flowering season.

```
mean_weather8<-merge(mean_weather7, subset(selgrads_FFD, term=="FFD_std")[c(1,3)])
names(mean_weather8)[241]<-"selgrad_FFD"
mean_weather8<-merge(mean_weather8, subset(seldiffs_FFD, term=="FFD_std")[c(1,3)])
names(mean_weather8)[242]<-"seldiff_FFD"
```

Analysis with selection gradients (not used)

Spring temperature

```
tidy(lm(selgrad FFD~mean 45,data=mean weather8))
## # A tibble: 2 x 5
##
   term estimate std.error statistic p.value
##
    <chr>
               <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) -0.0169
                          0.412
                                   -0.0410
                                            0.968
## 2 mean_45
                -0.0293 0.0496 -0.590
                                            0.562
glance(lm(selgrad_FFD~mean_45,data=mean_weather8))$adj.r.squared # Rsquare
## [1] -0.03201525
```

Position of the flowering season

```
tidy(lm(selgrad_FFD~date_10,data=mean_weather8))
## # A tibble: 2 x 5
##
    term
                estimate std.error statistic p.value
##
    <chr>>
                   <dbl> <dbl>
                                      <dbl> <dbl>
## 1 (Intercept) -0.479
                           0.379
                                      -1.26
                                               0.221
## 2 date_10
                 0.00429 0.00732
                                       0.586
                                              0.564
glance(lm(selgrad_FFD~date_10,data=mean_weather8))$adj.r.squared # Rsquare
## [1] -0.03227546
```

```
tidy(lm(selgrad_FFD~FFD_mean,data=mean_weather8))
## # A tibble: 2 x 5
   term estimate std.error statistic p.value
##
##
    <chr> <dbl> <dbl>
                                   <dbl> <dbl>
## 1 (Intercept) -0.616
                        0.478
                                  -1.29
                                          0.212
## 2 FFD_mean
               0.00616 0.00819
                                   0.752 0.461
glance(lm(selgrad_FFD~FFD_mean,data=mean_weather8))$adj.r.squared # Rsquare
## [1] -0.02112519
tidy(lm(selgrad_FFD~date_90,data=mean_weather8))
## # A tibble: 2 x 5
##
          estimate std.error statistic p.value
   term
    <chr>
                <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) -0.739 0.552
                                  -1.34
                                          0.195
               0.00765 0.00875
## 2 date 90
                                   0.874 0.392
glance(lm(selgrad_FFD~date_90,data=mean_weather8))$adj.r.squared # Rsquare
## [1] -0.01135115
Duration of the flowering season
tidy(lm(selgrad_FFD~days_90_10,data=mean_weather8))
## # A tibble: 2 x 5
  term estimate std.error statistic p.value
    ##
## 1 (Intercept) -0.295
                         0.162
                                  -1.83
                                        0.0829
## 2 days_90_10 0.00319 0.0135
                                   0.237 0.815
glance(lm(selgrad_FFD~days_90_10,data=mean_weather8))$adj.r.squared # Rsquare
## [1] -0.04705471
Analysis with selection differentials (not used)
Spring temperature
tidy(lm(seldiff FFD~mean 45,data=mean weather8))
## # A tibble: 2 x 5
    term
               estimate std.error statistic p.value
##
    <chr>
                <dbl> <dbl>
## 1 (Intercept) -0.132
                         0.501
                                  -0.262 0.796
                         0.0603
                                  -0.569 0.576
## 2 mean_45
               -0.0343
glance(lm(seldiff_FFD~mean_45,data=mean_weather8))$adj.r.squared # Rsquare
## [1] -0.03328917
```

Position of the flowering season

```
tidy(lm(seldiff_FFD~date_10,data=mean_weather8))
## # A tibble: 2 x 5
##
    term
                estimate std.error statistic p.value
##
    <chr>
                             <dbl>
                                       <dbl>
                   <dbl>
                                               <dbl>
                                              0.0909
## 1 (Intercept) -0.810
                           0.456
                                      -1.78
                 0.00769
                           0.00881
                                       0.873 0.393
## 2 date_10
glance(lm(seldiff_FFD~date_10,data=mean_weather8))$adj.r.squared # Rsquare
## [1] -0.01147158
tidy(lm(seldiff_FFD~FFD_mean,data=mean_weather8))
## # A tibble: 2 x 5
##
    term
                estimate std.error statistic p.value
                             <dbl>
                                       <dbl>
##
    <chr>>
                   <dbl>
                                               <dbl>
## 1 (Intercept) -0.886
                           0.579
                                      -1.53
                                               0.141
                           0.00993
                                               0.423
## 2 FFD_mean
                 0.00812
                                       0.818
glance(lm(seldiff_FFD~FFD_mean,data=mean_weather8))$adj.r.squared # Rsquare
## [1] -0.01599007
tidy(lm(seldiff_FFD~date_90,data=mean_weather8))
## # A tibble: 2 x 5
    term
                estimate std.error statistic p.value
                                               <dbl>
##
    <chr>
                   <dbl>
                          <dbl>
                                       <dbl>
## 1 (Intercept) -0.991
                            0.671
                                      -1.48
                                               0.155
## 2 date_90
                 0.00916
                            0.0106
                                       0.862
                                               0.399
glance(lm(seldiff_FFD~date_90,data=mean_weather8))$adj.r.squared # Rsquare
## [1] -0.01241985
Duration of the flowering season
tidy(lm(seldiff_FFD~days_90_10,data=mean_weather8))
## # A tibble: 2 x 5
##
    term
                estimate std.error statistic p.value
##
    <chr>>
                   <dbl> <dbl>
                                       <dbl>
                                             <dbl>
## 1 (Intercept) -0.361
                            0.197
                                      -1.84
                                              0.0809
## 2 days_90_10 -0.00466
                            0.0163
                                      -0.285 0.779
glance(lm(seldiff_FFD~days_90_10,data=mean_weather8))$adj.r.squared # Rsquare
## [1] -0.04575463
GLMMs (not used)
Anova(lmer(n_intact_seeds_rel ~ FFD_std+FFD_std:mean_45+n_fl_std+(1|year),data = data_sel),type="II")
```

```
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: n intact seeds rel
                    Chisq Df Pr(>Chisq)
## FFD std
                  29.9759 1 4.375e-08 ***
                  72.2770 1 < 2.2e-16 ***
## n fl std
## FFD_std:mean_45 0.1552 1
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#No influences of spring temperature on selection on FFD
Anova(lmer(n_intact_seeds_rel ~ FFD_std+FFD_std:date_10+n_fl_std+(1|year),data = data_sel),type="II")
## Analysis of Deviance Table (Type II Wald chisquare tests)
## Response: n_intact_seeds_rel
                   Chisq Df Pr(>Chisq)
                  29.986 1 4.352e-08 ***
## FFD_std
## n_fl_std
                  71.521 1 < 2.2e-16 ***
## FFD_std:date_10 0.984 1
                                0.3212
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#No influences of date_10 on selection on FFD
Anova(lmer(n_intact_seeds_rel ~ FFD_std+FFD_std:FFD_mean+n_fl_std+(1|year),data = data_sel),type="II")
## Analysis of Deviance Table (Type II Wald chisquare tests)
## Response: n_intact_seeds_rel
                     Chisq Df Pr(>Chisq)
                   29.9784 1 4.369e-08 ***
## FFD std
                   71.9743 1 < 2.2e-16 ***
## n fl std
## FFD_std:FFD_mean 0.3614 1
                                  0.5477
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#No influences of FFD_mean on selection on FFD
Anova(lmer(n_intact_seeds_rel ~ FFD_std+FFD_std:date_90+n_fl_std+(1|year),data = data_sel),type="II")
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: n_intact_seeds_rel
                    Chisq Df Pr(>Chisq)
## FFD std
                  29.9772 1 4.372e-08 ***
## n fl std
                  72.2185 1 < 2.2e-16 ***
## FFD_std:date_90 0.2619 1
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#No influences of date_90 on selection on FFD
Anova(lmer(n_intact_seeds_rel ~ FFD_std+FFD_std:days_90_10+n_fl_std+(1|year),data = data_sel),type="II"
## Analysis of Deviance Table (Type II Wald chisquare tests)
```

GLMs

```
Anova(lm(n_intact_seeds_rel ~ FFD_std+FFD_std:mean_45+n_fl_std,data = data_sel),type="II")
## Anova Table (Type II tests)
##
## Response: n_intact_seeds_rel
##
                   Sum Sq Df F value
                                         Pr(>F)
## FFD std
                   121.7
                           1 29.9759 4.816e-08 ***
                            1 72.2770 < 2.2e-16 ***
## n fl std
                    293.5
                                         0.6937
## FFD_std:mean_45
                    0.6
                            1 0.1552
## Residuals
                10029.7 2470
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#No influences of spring temperature on selection on FFD
Anova(lm(n_intact_seeds_rel ~ FFD_std+FFD_std:date_10+n_fl_std,data = data_sel),type="II")
## Anova Table (Type II tests)
## Response: n_intact_seeds_rel
                   Sum Sq Df F value
##
                                         Pr(>F)
## FFD_std
                           1 29.986 4.792e-08 ***
                   121.7
## n_fl_std
                    290.3
                          1 71.521 < 2.2e-16 ***
## FFD_std:date_10
                    4.0
                          1
                               0.984
                                         0.3213
## Residuals
                10026.3 2470
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#No influences of date_10 on selection on FFD
Anova(lm(n_intact_seeds_rel ~ FFD_std+FFD_std:FFD_mean+n_fl_std,data = data_sel),type="II")
## Anova Table (Type II tests)
## Response: n_intact_seeds_rel
                    Sum Sq Df F value
## FFD_std
                    121.7
                            1 29.9784 4.81e-08 ***
                    292.2
                             1 71.9743 < 2.2e-16 ***
## n fl std
                             1 0.3614
## FFD std:FFD mean
                      1.5
                                         0.5478
## Residuals 10028.8 2470
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
#No influences of FFD_mean on selection on FFD
Anova(lm(n_intact_seeds_rel ~ FFD_std+FFD_std:date_90+n_fl_std,data = data_sel),type="II")
## Anova Table (Type II tests)
##
## Response: n intact seeds rel
##
                    Sum Sq
                            Df F value
                                           Pr(>F)
## FFD std
                     121.7
                              1 29.9772 4.813e-08 ***
## n_fl_std
                     293.2
                              1 72.2185 < 2.2e-16 ***
## FFD_std:date_90
                       1.1
                                0.2619
                                           0.6089
## Residuals
                   10029.2 2470
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#No influences of date_90 on selection on FFD
Anova(lm(n_intact_seeds_rel ~ FFD_std+FFD_std:days_90_10+n_fl_std,data = data_sel),type="II")
## Anova Table (Type II tests)
##
## Response: n_intact_seeds_rel
                                              Pr(>F)
##
                       Sum Sq
                               Df F value
## FFD_std
                        121.7
                                   29.987 4.788e-08 ***
## n_fl_std
                                    71.278 < 2.2e-16 ***
                        289.3
                                 1
## FFD_std:days_90_10
                          4.4
                                 1
                                     1.096
                                              0.2953
## Residuals
                      10025.9 2470
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#No influences of days_90_10 on selection on FFD
```

Fig. 6: Response of selection gradients to spring temperature, position and duration of flowering season

