

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization  
International Bureau



(43) International Publication Date  
14 November 2002 (14.11.2002)

PCT

(10) International Publication Number  
**WO 02/089733 A2**

(51) International Patent Classification<sup>7</sup>:

A61K

(74) Agent: FEILER, William, S.; Morgan & Finnegan,  
L.L.P., 345 Park Avenue, New York, NY 10154 (US).

(21) International Application Number: PCT/US02/14100

(22) International Filing Date: 2 May 2002 (02.05.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:  
60/289,220 7 May 2001 (07.05.2001) US

(71) Applicant (for all designated States except US): THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES [US/US]; National Institutes of Health, Office of Technology Transfer, Suite 325, 6011 Executive Boulevard, Rockville, MD 20852 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MENG, Xiang-Jin [CN/US]; 401 Craig Drive, Blacksburg, VA 24060 (US). PURCELL, Robert, H. [US/US]; 17517 White Grounds Road, Boyds, MD 20814 (US). EMERSON, Suzanne, U. [US/US]; 4517 Everett Street, Kensington, MD 20895 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE (utility model), DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

**WO 02/089733 A2**

(54) Title: RECOMBINANT ORF2 PROTEINS OF THE SWINE HEPATITIS E VIRUS AND THEIR USE AS A VACCINE AND AS A DIAGNOSTIC REAGENT FOR MEDICAL AND VETERINARY APPLICATIONS

(57) Abstract: The invention relates to open reading frame 2 (ORF-2) proteins of a swine hepatitis E virus and the use of these proteins as an antigen in diagnostic immunoassays and/or as immunogen or vaccine to protect against infection by hepatitis E.

- 1 -

### TITLE OF INVENTION

Recombinant ORF2 proteins of the swine hepatitis E virus and their use as a vaccine and as a diagnostic reagent for medical and veterinary applications.

### FIELD OF INVENTION

The invention is in the field of hepatitis virology. More specifically, this invention relates to recombinant ORF2 proteins derived from a swine hepatitis E virus and to diagnostic methods and vaccine applications which employ these proteins.

### BACKGROUND OF INVENTION

Hepatitis E virus (HEV), the causative agent of hepatitis E, is an important public health problem in developing countries. Most global public health organizations consider hepatitis E to be the major cause of acute viral hepatitis in young adults in regions where sanitation conditions are poor. The mortality rate of HEV infection is generally low, but was reportedly up to 20% in patients infected during pregnancy. In the United States, two cases of acute hepatitis E not associated with travel to present regions have been recently reported, and hepatitis E is now considered to be endemic in the United States. A vaccine for hepatitis E is not available yet. The first animal strain of HEV, swine hepatitis E virus (swine HEV), was recently identified and found to be ubiquitous in the general pig population in the United States and other countries, and to experimentally infect non-human primates, the surrogates of humans. The complete genome of swine HEV, including the putative capsid gene (ORF2), has been sequenced.

The possibility that swine HEV may infect humans raises a potential public health concern for zoonosis or xenozoonosis in the United States and perhaps other countries. Therefore, diagnostic reagents based on recombinant proteins of swine HEV will be very useful in screening donor pigs used in xenotransplantation and in detecting swine HEV or similar virus infection in humans. The diagnostic reagents may also be useful for veterinary studies and monitoring pig herds in general. A vaccine based on the recombinant capsid protein of swine HEV might also

- 2 -

be useful in protecting humans against zoonotic and other HEV infections and pigs against infection with the swine HEV.

### **SUMMARY OF INVENTION**

The invention relates to isolated and substantially purified open reading frame 2 proteins encoded by the swine HEV genome and in particular to a recombinantly produced ORF2 protein consisting of amino acids 112-602 of the swine ORF2.

It is therefore an object of this invention to provide synthetic nucleic acid sequences capable of directing production of these recombinant HEV proteins, as well as equivalent natural nucleic acid sequences. Such natural nucleic acid sequences may be isolated from a cDNA or genomic library from which the gene capable of directing synthesis of the HEV proteins may be identified and isolated. For purposes of this application, nucleic acid sequence refers to RNA, DNA, cDNA or any synthetic variant thereof.

The invention also relates to methods of preparing the HEV proteins by expressing the recombinant protein in a host cell.

The invention also relates to the use of the resultant recombinant HEV proteins as diagnostic agents and as vaccines.

The present invention also encompasses methods of detecting antibodies specific for swine hepatitis E virus in biological samples. Such methods are useful in diagnosis of infection and disease caused by swine HEV, and for monitoring the progression of such disease. Such methods are also useful for monitoring the efficacy of therapeutic agents during the course of treatment of HEV infection and disease in a mammal.

### **DETAILED DESCRIPTION OF THE FIGURES**

**Figures 1A and 1B** show amino acid (SEQ. ID NO:1, Figure 1A) and nucleotide (SEQ. ID NO:2, Figure 1B) sequences respectively of open reading frame 2 of the swine HEV of Meng et al. [Proc Natl Acad. Sci. USA (1997) 98:9860-9865]

- 3 -

**Figures 2A-2O** show the results of EIAs, using as the antigen, either the swine ORF2 protein consisting of amino acids 112-602 of swine ORF2 (designated "swORF2" in the Figures) or the human HEV ORF2 antigen consisting of amino acids 112-607 of the ORF2 of the Pakistani SAR-55 strain of HEV (designated "humSAR55" in the Figures). Anti-HEV antibody levels were measured in serum from swine obtained from the United States (Iowa), China, Thailand, Canada and Korea (Figures 2A-2N) and the results of the EIAs with the swORF2 and humSAR55 antigens are summarized in Figure 2O. In Figures 2A-2N a sample was considered positive if the ratio (see column headed "sample/coff") of the optical density measured for the human SAR55 ("humSAR55" column) or swine antigens ("swORF2" column) to the cutoff value (see columns headed "cutoff") for the humSAR55 or swORF2 antigens was greater than 1.0.

**Figures 3A-3R** show the results of EIAs using as the antigen, either the swine ORF2 protein consisting of amino acids 112-602 of swine ORF2 (designated "swORF2" in the Figures) or the human HEV ORF2 antigen consisting of amino acids 112-617 of the ORF2 of the Pakistani SAR-55 strain of HEV. (designated "humSAR55" in the Figures). Anti-HEV antibody levels were measured in human serum samples. In the Figures the designation "Thai PH" refers to samples from Thai pig handlers, the designation "Chi PH" refers to samples from Chinese pig handlers, the designation "Chin BD" refers to samples from Chinese blood donors, the designation "Lcl BD" refers to samples from US blood donors and the designation "XJPH" refers to samples from US pig handlers. In Figures 3A-3Q, a sample was considered positive if the ratio (see column headed "sample/coff") of the optical density measured for the human SAR55 ("humSAR55" column) or swine antigens ("swORF2" column) to the cutoff value (see columns headed "coff") for the humSAR55 or swORF2 antigens was greater than 1.0.

**Figure 4** shows an anti-HEV IgG response time course of two chimpanzees experimentally infected with the Sar-55 strain as determined by EIAs using capsid antigens generated from the human and swine HEV strains. The values are expressed as Sample over Cut-off ratios and 1.0 is the positive baseline.

- 4 -

Figure 5 shows an anti-HEV IgG response time course of two rhesus monkeys experimentally infected with the genotype 2 Mexican strain as determined by EIAs using capsid antigens generated from the Sar-55 and Meng HEV strains.

#### DETAILED DESCRIPTION OF INVENTION

The swine hepatitis E virus open reading frame 2 (sHEV ORF2) capsid antigen is structurally very similar to the human HEV ORF2 gene product. Of course, it is not clear whether swine HEV evolved into human HEV, or vice versa, or whether they diverged from a common ancestor. Regardless of lineage, the possibility that swine HEV could infect humans raises a potential public health concern for zoonosis or xenozoonosis, especially since xenotransplantation of pig organs has been suggested as a solution to the solid organ donor shortage for transplantations. Thus, xenozoonoses, the inadvertent transmission of pathogens from animal organs to human recipients, is of major concern. Viruses pathogenic for pigs might pose a risk to humans. However, nonpathogenic pig viruses may also become pathogenic for humans after xenotransplantation, as a result of species-jumping, recombination or adaptation in immunocompromised xenotransplantation recipients. Furthermore, pigs recovered from swine HEV infection might have a damaged liver (or other organ) which would limit usefulness for xenotransplantation.

Because of these and other potential public health concerns, it would be highly advantageous to have a swine HEV ORF2 antigen that is sufficiently closely related to human HEV to allow evaluation as a potential source of infection in humans.

The full-length sHEV ORF2 protein product is predicted to contain 660 amino acids and to weigh 71,000 daltons. Example 3 discloses that expression of the sHEV ORF2 capsid gene from recombinant baculoviruses in insect cells produces multiple HEV capsid polypeptides, including a set of major proteins with molecular weights of 71, 63, and 55 kD. The present invention relates to these proteins and in particular, to the most abundant of these proteins, the 55 kD protein, which is present primarily within the cell by 24 hr. post-infection though a minor fraction of the 55 kD protein is secreted. Amino acid 112 of the full-length sHEV ORF2 is located at the amino terminus of the 55 kD protein as determined by N-terminal sequence analysis.

- 5 -

Amino acid 602 of the full-length sHEV ORF2 is located at the carboxy terminus of the 55 kD protein as determined by C-terminal sequence analysis. The present invention therefore relates to nucleic acid molecules which encode this 55 kilodalton swine HEV ORF2 protein. Such nucleic acid molecules can be selected from sequences which encode the swine HEV ORF2 protein sequence shown in Figure 1A as SEQ. ID NO:1. Preferred nucleic acid sequences are those obtained from the nucleotide sequence of the swine HEV ORF2 shown in Figure 1B as SEQ. ID NO:2. In one embodiment, the nucleic acid molecule encodes the full-length 660 amino acid ORF2 protein as described in Example 2. Alternatively, the nucleic acid molecule may consist of nucleotides which encode amino acids 112-602 of ORF2 (i.e., nucleotides 334 to 1806 of SEQ. ID NO:2).

Such nucleic acid molecules may be inserted into any vector suitable for expression in prokaryotic or eukaryotic cells. Such vectors include any vectors into which a nucleic acid sequence as described above can be inserted, along with any preferred or required operational elements, and which vector can then be subsequently transferred into a host organism and replicated in such organism. Preferred vectors are those whose restriction sites have been well documented and which contain the operational elements preferred or required for transcription of the nucleic acid sequence.

The "operational elements" as discussed herein include at least one promoter, at least one operator, at least one leader sequence, at least one terminator codon, and any other DNA sequences necessary or preferred for appropriate transcription and subsequent translation of the vector nucleic acid. In particular, it is contemplated that such vectors will contain at least one origin of replication recognized by the host organism along with at least one selectable marker and at least one promoter sequence capable of initiating transcription of the nucleic acid sequence.

In construction of the vector of the present invention, it should additionally be noted that multiple copies of the nucleic acid sequence and its attendant operational elements may be inserted into each vector. In such an embodiment, the host organism would produce greater amounts per vector of the desired HEV protein. The number of multiple copies of the DNA sequence which may

- 6 -

be inserted into the vector is limited only by the ability of the resultant vector due to its size, to be transferred into and replicated and transcribed in an appropriate host microorganism.

Preferred expression vectors are those that function in a eukaryotic cell. Examples of such vectors include but are not limited to baculovirus transfer vectors.

The selected recombinant expression vector may then be transfected into a suitable eukaryotic cell system for purposes of expressing the recombinant protein. Preferred cell systems for expression are eukaryotic cells. Such eukaryotic cell systems include, but are not limited to, yeast, insect cells and cell lines such as HeLa, MRC5 or Cv1.

The expressed recombinant protein may be detected by methods known in the art which include SDS-PAGE and Western blotting using sera containing anti-HEV antibody as described in Example 3.

The recombinant protein expressed by the SF9 cells can be obtained as a crude lysate or it can be purified by standard protein purification procedures known in the art which may include differential precipitation, molecular sieve chromatography, ion-exchange chromatography, isoelectric focusing, gel electrophoresis, affinity, and immunoaffinity chromatography and the like. In the case of immunoaffinity chromatography, the recombinant protein may be purified by passage through a column containing a resin which has bound thereto antibodies specific for the ORF protein. An example of a protocol for the purification of the recombinantly expressed 55 kilodalton swine HEV ORF protein is provided in Example 4.

In another embodiment, the expressed recombinant proteins of this invention can be used in immunoassays for the diagnosis or prognosis of hepatitis E in a mammal including, but not limited to, swine and humans. Such assays could be used for detection of swine HEV or similar virus infection in humans, for monitoring pig herds in general, and for risk assessment of swine HEV infection in xenotransplantation using pig organs. In a preferred embodiment, the immunoassay is useful in diagnosing infection of humans and swine with swine hepatitis E. Immunoassays using the swine HEV proteins of the invention therefore provide a highly specific reproducible method for diagnosing swine HEV infections.

- 7 -

Immunoassays of the present invention may be a radioimmunoassay, Western blot assay, immunofluorescent assay, enzyme immunoassay, chemiluminescent assay, immunohistochemical assay and the like. Standard techniques known in the art for EIA are described in Methods in Immunodiagnosis, 2nd Edition, Rose and Bigazzi, eds., John Wiley and Sons, 1980 and Campbell et al., Methods of Immunology, W.A. Benjamin, Inc., 1964, both of which are incorporated herein by reference. Such assays may be a direct, indirect, competitive, or noncompetitive immunoassay as described in the art. (Oellerich, M. 1984. J.Clin. Chem. Clin. BioChem. 22: 895904) Biological samples appropriate for such detection assays include, but are not limited to, tissue biopsy extracts, whole blood, plasma, serum, cerebrospinal fluid, pleural fluid, urine and the like.

In one embodiment, test serum is reacted with a solid phase reagent having surface-bound recombinant swine HEV ORF2 protein as an antigen, preferably, the HEV protein is the swine ORF2 protein consisting of amino acids 112-602 of SEQ. ID NO:1. The solid surface reagent can be prepared by known techniques for attaching protein to solid support material. These attachment methods include nonspecific adsorption of the protein to the support or covalent attachment of the protein to a reactive group on the support. After reaction of the antigen with anti-HEV antibody, unbound serum components are removed by washing and the antigen-antibody complex is reacted with a secondary antibody such as labelled antihuman antibody. The label may be an enzyme which is detected by incubating the solid support in the presence of a suitable fluorimetric or colorimetric reagent. Other detectable labels may also be used, such as radiolabels or colloidal gold, and the like.

In one embodiment, protein expressed by a recombinant baculovirus vector containing the entire ORF2 sequence of swine HEV is used as a specific binding agent to detect anti-HEV antibodies, preferably IgG or IgM antibodies. Figures 2 and 3 show the results of EIAs in which the solid phase reagent has the recombinant swine ORF2 protein consisting of amino acids 112-602 as the surface antigen.

The HEV protein and analogs may be prepared in the form of a kit, alone, or in combinations with other reagents such as secondary antibodies, for use in immunoassays.

- 8 -

The recombinant HEV proteins can be used as a vaccine to protect mammals against challenge with hepatitis E derived from human, swine or other species. The vaccine, which acts as an immunogen, may be a cell, cell lysate from cells transfected with a recombinant expression vector or a culture supernatant containing the expressed protein. Alternatively, the immunogen is a partially or substantially purified recombinant protein. While it is possible for the immunogen to be administered in a pure or substantially pure form, it is preferable to present it as a pharmaceutical composition, formulation or preparation.

The formulations of the present invention, both for veterinary and for human use, comprise an immunogen as described above, together with one or more pharmaceutically acceptable carriers and optionally other therapeutic ingredients. The carrier(s) must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof. The formulations may conveniently be presented in unit dosage form and may be prepared by any method well-known in the pharmaceutical art.

All methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product into the desired formulation.

Formulations suitable for intravenous intramuscular, subcutaneous, or intraperitoneal administration conveniently comprise sterile aqueous solutions of the active ingredient with solutions which are preferably isotonic with the blood of the recipient. Such formulations may be conveniently prepared by dissolving solid active ingredient in water containing physiologically compatible substances such as sodium chloride (e.g. 0.1-2.0M), glycine, and the like, and having a buffered pH compatible with physiological conditions to produce an aqueous solution, and rendering said solution sterile. These may be present in unit or multidose containers, for example, sealed ampoules or vials.

The formulations of the present invention may incorporate a stabilizer. Illustrative stabilizers are polyethylene glycol, proteins, saccharides, amino acids, inorganic acids, and organic acids which may be used either on their own or as

- 9 -

admixtures. These stabilizers are preferably incorporated in an amount of 0.1 to 1:10,000 parts by weight per part by weight of immunogen. If two or more stabilizers are to be used, their total amount is preferably within the range specified above. These stabilizers are used in aqueous solutions at the appropriate concentration and pH. The specific osmotic pressure of such aqueous solutions is generally in the range of 0.1-3.0 osmoles, preferably in the range of 0.8-1.2. The pH of the aqueous solution is adjusted to be within the range of 5.0-9.0, preferably within the range of 6-8. In formulating the immunogen of the present invention, an anti-adsorption agent may be used.

Additional pharmaceutical methods may be employed to control the duration of action. Controlled release preparations may be achieved through the use of polymer to complex or absorb the proteins or their derivatives. The controlled delivery may be exercised by selecting appropriate macromolecules (for example polyester, polyamino acids, polyvinyl, pyrrolidone, ethylenevinylacetate, methylcellulose, carboxymethylcellulose, or protamine sulfate) and the concentration of macromolecules as well as the methods of incorporation in order to control release. Another possible method to control the duration of action by controlled release preparations is to incorporate the proteins, protein analogs or their functional derivatives, into particles of a polymeric material such as polyesters, polyamino acids, hydrogels, poly(lactic acid) or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these agents into polymeric particles, it is possible to entrap these materials in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin microcapsules and poly(methylmethacrylate) microcapsules, respectively, or in colloidal drug delivery systems, for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules or in macroemulsions.

When oral preparations are desired, the compositions may be combined with typical carriers, such as lactose, sucrose, starch, talc magnesium stearate, crystalline cellulose, methyl cellulose, carboxymethyl cellulose, glycerin, sodium alginate or gum arabic among others.

The proteins of the present invention may be supplied in the form of a kit, alone, or in the form of a pharmaceutical composition as described above.

- 10 -

Vaccination can be conducted by conventional methods. For example, the immunogen can be used in a suitable diluent such as saline or water, or complete or incomplete adjuvants. Further, the immunogen may or may not be bound to a carrier to make the protein immunogenic. Examples of such carrier molecules include but are not limited to bovine serum albumin (BSA), keyhole limpet hemocyanin (KLH), tetanus toxoid, and the like. The immunogen can be administered by any route appropriate for antibody production such as intravenous, intraperitoneal, intramuscular, subcutaneous, and the like. The immunogen may be administered once or at periodic intervals until a significant titer of anti-HEV antibody is produced. The antibody may be detected in the serum using an immunoassay.

In yet another embodiment, the immunogen may be nucleic acid sequence capable of directing host organism synthesis of an HEV ORF protein. Such nucleic acid sequence may be inserted into a suitable expression vector by methods known to those skilled in the art. Expression vectors suitable for producing high efficiency gene transfer *in vivo* include, but are not limited to, retroviral, adenoviral and vaccinia viral vectors. Operational elements of such expression vectors are disclosed previously in the present specification and are known to one skilled in the art. Such expression vectors can be administered intravenously, intramuscularly, subcutaneously, intraperitoneally or orally.

In an alternative embodiment, direct gene transfer may be accomplished via intramuscular injection of, for example, plasmid-based eukaryotic expression vectors containing a nucleic acid sequence capable of directing host organism synthesis of HEV ORF protein(s). Such an approach has previously been utilized to produce the hepatitis B surface antigen *in vivo* and resulted in an antibody response to the surface antigen (Davis, H.L. et al. (1993) Human Molecular Genetics, 2:1847-1851; see also Davis et al. (1993) Human Gene Therapy, 4:151-159 and 733-740).

When the immunogen is a partially or substantially purified recombinant swine HEV ORF2 protein, dosages effective to elicit a protective antibody response against HEV range from about 0.5 $\mu$ g to about 50 $\mu$ g. A more preferred range is from about 1 $\mu$ g to about 30 $\mu$ g and a most preferred range is from about 5 $\mu$ g to about 20 $\mu$ g.

- 11 -

Dosages of swine HEV ORF2 protein-encoding nucleic acid sequence effective to elicit a protective antibody response against HEV range from about 1 to about 5000 µg; a more preferred range being about 300 to about 1000 µg.

The expression vectors containing a nucleic acid sequence capable of directing host organism synthesis of a swine HEV ORF2 protein(s) may be supplied in the form of a kit, alone, or in the form of a pharmaceutical composition as described above.

The administration of the immunogen of the present invention may be for either a prophylactic or therapeutic purpose. When provided prophylactically, the immunogen is provided in advance of any exposure to HEV or in advance of any symptom due to HEV infection. The prophylactic administration of the immunogen serves to prevent or attenuate any subsequent infection of HEV in a mammal. When provided therapeutically, the immunogen is provided at (or shortly after) the onset of the infection or at the onset of any symptom of infection or disease caused by HEV. The therapeutic administration of the immunogen serves to attenuate the infection or disease.

A preferred embodiment is a vaccine prepared using the recombinant swine ORF2 protein expressed by the ORF2 sequence of swine HEV encoding amino acids 1-660 of ORF2. Since the recombinant swine ORF2 protein (112-602) has already been demonstrated to be reactive with a variety of HEV-positive sera from swine and humans (Figures 2 and 3), its utility in protecting against HEV strains is indicated.

In addition to use as a vaccine, the compositions can be used to prepare antibodies. The antibodies can be used directly as antiviral agents. To prepare antibodies, a host animal is immunized using the virus particles or, as appropriate, nonparticle antigens native to the virus particle can be administered in conjunction with an adjuvant as described above for vaccines. The host serum or plasma is collected following an appropriate time interval to provide a composition comprising antibodies reactive with the virus particle. The gamma globulin fraction or the IgG antibodies can be obtained, for example, by use of saturated ammonium sulfate or DEAE Sephadex, or other techniques known to those skilled in the art. The

- 12 -

antibodies are substantially free of many of the adverse side effects which may be associated with other antiviral agents such as drugs.

The antibody compositions can be made even more compatible with the host system by minimizing potential adverse immune system responses. This is accomplished by removing all or a portion of the Fc portion of a foreign species antibody or using an antibody of the same species as the host animal, for example, the use of antibodies from human/human hybridomas. Humanized antibodies (i.e., non-immunogenic in a human) may be produced, for example, by replacing an immunogenic portion of an antibody with a corresponding, but non-immunogenic portion (i.e., chimeric antibodies). Such chimeric antibodies may contain the reactive or antigen binding portion of an antibody from one species and the Fc portion of an antibody (non-immunogenic) from a different species. Examples of chimeric antibodies, include but are not limited to, non-human mammal-human chimeras, rodent-human chimeras, murine-human and rat-human chimeras (Robinson et al., International Patent Application 184,187; Taniguchi M., European Patent Application 171,496; Morrison et al., European Patent Application 173,494; Neuberger et al., PCT Application WO 86/01533; Cabilly et al., (1987) Proc. Natl. Acad. Sci. USA 84:3439; Nishimura et al., (1987) Canc. Res. 47:999; Wood et al., (1985) Nature 314:446; Shaw et al., (1988) J. Natl. Cancer Inst. 80: 15553, all incorporated herein by reference).

General reviews of "humanized" chimeric antibodies are provided by Morrison S., (1985) Science 229:1202 and by Oi et al., (1986) BioTechniques 4:214.

Suitable "humanized" antibodies can be alternatively produced by CDR or CEA substitution (Jones et al., (1986) Nature 321:552; Verhoeyan et al., (1988) Science 239:1534; Biedleret al. (1988) J. Immunol. 141:4053, all incorporated herein by reference).

The antibodies or antigen binding fragments may also be produced by genetic engineering. The technology for expression of both heavy and light chain genes in E. coli is the subject the PCT patent applications; publication number WO 901443, WO901443, and WO 9014424 and in Huse et al., (1989) Science 246:12751281.

- 13 -

The antibodies can also be used as a means of enhancing the immune response. The antibodies can be administered in amounts similar to those used for other therapeutic administrations of antibody. For example, pooled gamma globulin is administered at 0.02-0.1 ml/lb body weight during the early incubation period of other viral diseases such as rabies, measles and hepatitis B to interfere with viral entry into cells. Thus, antibodies reactive with the HEV virus particle can be passively administered alone or in conjunction with another antiviral agent to a host infected with an HEV to enhance the effectiveness of an antiviral drug.

Alternatively, anti-HEV antibodies can be induced by administering anti-idiotype antibodies as immunogens. Conveniently, a purified anti-HEV antibody preparation prepared as described above is used to induce anti-idiotype antibody in a host animal. The composition is administered to the host animal in a suitable diluent. Following administration, usually repeated administration, the host produces anti-idiotype antibody. To eliminate an immunogenic response to the Fc region, antibodies produced by the same species as the host animal can be used or the FC region of the administered antibodies can be removed. Following induction of anti-idiotype antibody in the host animal, serum or plasma is removed to provide an antibody composition. The composition can be purified as described above for anti-HEV antibodies, or by affinity chromatography using anti-HEV antibodies bound to the affinity matrix. The anti-idiotype antibodies produced are similar in conformation to the authentic HEV antigen and may be used to prepare an HEV vaccine rather than using an HEV particle antigen.

When used as a means of inducing anti-HEV virus antibodies in an animal, the manner of injecting the antibody is the same as for vaccination purposes, namely intramuscularly, intraperitoneally, subcutaneously or the like in an effective concentration in a physiologically suitable diluent with or without adjuvant. One or more booster injections may be desirable.

The HEV-derived proteins of the invention are also intended for use in producing antiserum designed for pre or post-exposure prophylaxis. Here an HEV protein, or mixture of proteins is formulated with a suitable adjuvant and administered by injection to human volunteers, according to known methods for producing human antisera. Antibody response to the injected proteins is monitored, during a several-

- 14 -

week period following immunization, by periodic serum sampling to detect the presence of anti-HEV serum antibodies, using an immunoassay as described herein.

The antiserum from immunized individuals may be administered as a pre-exposure prophylactic measure for individuals who are at risk of contracting infection. The antiserum is also useful in treating an individual post-exposure, analogous to the use of high titer antiserum against hepatitis B virus for post-exposure prophylaxis. Of course, those of skill in the art would readily understand that immune globulin (HEV immune globulin) purified from the antiserum of immunized individuals using standard techniques may be used as a pre-exposure prophylactic measure or in treating individuals post-exposure.

For both in vivo use of antibodies to HEV virus-like particles and proteins and anti-idiotype antibodies and diagnostic use, it may be preferable to use monoclonal antibodies. Monoclonal anti-virus particle antibodies or anti-idiotype antibodies can be produced as follows. The spleen or lymphocytes from an immunized animal are removed and immortalized or used to prepare hybridomas by methods known to those skilled in the art. (Goding, J.W. 1983. Monoclonal Antibodies: Principles and Practice, Pladermic Press, Inc., NY, NY, pp. 5697). To produce a human-human hybridoma, a human lymphocyte donor is selected. A donor known to be infected with HEV (where infection has been shown for example by the presence of anti-virus antibodies in the blood or by virus culture) may serve as a suitable lymphocyte donor. Lymphocytes can be isolated from a peripheral blood sample or spleen cells may be used if the donor is subject to splenectomy. EpsteinBarr virus (EBV) can be used to immortalize human lymphocytes or a human fusion partner can be used to produce humanhuman hybridomas. Primary in vitro immunization with peptides can also be used in the generation of human monoclonal antibodies.

Antibodies secreted by the immortalized cells are screened to determine the clones that secrete antibodies of the desired specificity. For monoclonal anti-virus particle antibodies, the antibodies must bind to HEV virus particles. For monoclonal anti-idiotype antibodies, the antibodies must bind to anti-virus particle antibodies. Cells producing antibodies of the desired specificity are selected.

- 15 -

In another embodiment, antibody phage display libraries can be constructed from variable heavy and light chain antibody genes using a phage display vector specifically designed for the expression of antibody fragments to an antigen (Winter et al., (1994) *Annu. Rev. Immunol.* 12:433-55; de Kruif et al., (1996) *Immunol. Today* 17: 453-5; Burton et al., (1994) *Science* 266:1024-7). From such libraries, large numbers of monoclonal antibodies to an antigen of choice can be cloned and isolated. The technique produces high affinity monoclonal antibodies for use in passive immunoprophylaxis.

The above described antibodies and antigen binding fragments thereof may be supplied in kit form alone, or as a pharmaceutical composition for *in vivo* use. The antibodies may be used for therapeutic uses, diagnostic use in immunoassays or as an immunoaffinity agent to purify ORF 2 proteins as described herein.

## EXAMPLES

### EXAMPLE 1

#### Baculovirus Cloning of Swine HEV ORF2 Gene

A PCR DNA fragment containing a full-length copy of sHEV ORF2 cDNA was digested with the restriction endonucleases *Bam* HI and *Xho* I. The digestion products were purified on a QIA quick column and ligated into the respective sites of the bacterial TA-cloning vector pCR2. 1. The ligation products were used to transform competent *E. coli* DH5 $\alpha$  cells, and bacterial clones containing plasmids with the sHEV ORF2 gene insert were selected by DNA gel analysis of miniprep plasmid DNA. Plasmid DNA of bacterial clone pCRsHEV-9 was digested with *Bam* HI and *Xho* I. A 1992 bp DNA fragment was isolated from the restricted DNA and ligated into the bacmid transfer vector pFASTBAC-1 at the *Bam* HI and *Xho* I sites located downstream of the baculovirus polyhedrin promoter. The ligation products were used to transform competent *E. coli* DH5 $\alpha$  cells, and bacterial clones containing plasmids with the sHEV ORF2 gene were selected by DNA gel analysis of miniprep plasmid DNA. Digestion of plasmid DNA from the bacterial clone designated pFBsHEV ORF2 (6,681 bp) with *Bam* HI and *Xho* I released a 1992 bp DNA fragment as expected for the sHEV ORF2 DNA insert.

- 16 -

pFBsHEV ORF2 DNA was transformed into competent *E. coli* DHIOBac cells containing parental bacmid DNA to facilitate site-specific recombination of the sHEV ORF2 gene into the baculovirus genome within the *polh* locus. Recombinant bacmid DNA was isolated from amplified bacterial cultures derived from white antibiotic resistant colonies. Bacmid DNA containing sHEV ORF2 DNA was transfected into Sf-9 cells using the cationic lipid CELLFECTIN. Transfected cells were harvested after three days and assayed for expression of sHEV ORF2 capsid proteins by SDS-PAGE and Western blot analysis using antisera to human HEV. A single protein band with a molecular weight of 55,000 daltons was detected in the transfected cells by immunoblotting with the anti-HEV sera. Recombinant baculoviruses in culture media from transfected cells harvested at 72 hours post-transfection was used to infect Sf-9 insect cells in agarose plaque assays. Virus from plaques was isolated and amplified further in Sf-9 insect cells. The resulting recombinant baculovirus expressed sHEV ORF2 proteins in Sf-9 insect cells.

## EXAMPLE 2

### Establishment of Master Virus Seed Bank.

A virus stock designated bsHEV ORF2 (R257) was prepared in Sf-9 cells following three serial plaque purifications. No wild type baculovirus was present in the virus stock as demonstrated by the absence of wild-type plaque morphology and  $\beta$ -galactosidase expression in agarose plaque assays. Baculovirus genomic DNA was isolated from recombinant virus in the virus stock and subjected to nucleotide sequence analysis using the cycle sequencing technique. The location of the swine HEV ORF2 DNA insert (1992 bp) was confirmed to be in-frame and downstream of the polyhedrin promoter in the *polh* locus as expected. The observed nucleotide sequence shared 100% homology with the nucleotide sequence of the swine HEV ORF2 shown in Figure 1. This bsHEV ORF2 baculovirus stock was tested for microbial sterility, mycoplasma and spiroplasma contamination, and the presence of endotoxins. No microbial contaminants were detected by these tests, and an endotoxin level of 0.1 EU/ml was observed. bsHEV ORF2 (R257) was designated as the master virus seed bank and stored in 10 ml aliquots at 2°C, -8°C, and -70°C.

- 17 -

The virus titer of R257 was  $2.9 \times 10^7$  pfu/ml as determined by agarose plaque assay using Sf-9 cells.

### EXAMPLE 3

#### Expression of Recombinant Swine HEV ORF2 Proteins in Insect Cells

Temporal expression of the swine HEV ORF2 gene in baculovirus-infected cells was investigated. Sf-9 insect cells cultivated as shaker suspension cultures in serum-free medium were infected with recombinant baculoviruses encoding the full-length swine hepatitis E virus ORF2 gene. Cell lysates and media were harvested from virus infections daily for four consecutive days and analyzed by SDS-PAGE and immunoblotting methods.

The result showed that in addition to the full-length ORF2 product of 71 kD, multiple sHEV related proteins appeared in infected cells and in the media. The most abundant of these proteins had a molecular weight of 55 kD. The HEV 71 kD protein was detected as early as one day post-infection in infected cell lysates and media and accumulated for several more days in . . . disappeared in media by four days post-infection. Another sHEV protein (~ 63 kD) appeared in infected cells and media by one day post-infection and accumulated over the next two days. At four days post-infection, the level of 63 kD protein in cells and media decreased. A sHEV 55 kD protein appeared in cells and in media by two days post-infection. The sHEV 55 kD protein accumulated intracellularly at days three and four post-infection. Additionally, sHEV proteins with other molecular weights, but in smaller amounts, were observed intracellularly and extracellularly.

### EXAMPLE 4

#### Recombinant sHEV ORF2 protein purification.

Recombinant sHEV ORF2 proteins were purified from Sf-9 insect cell cultures infected with recombinant baculoviruses expressing the full-length sHEV ORF2 gene using a purification scheme that included anion exchange and size exclusion chromatography. Recombinant swine HEV ORF2 proteins were purified from clarified baculovirus-infected cell lysates. Cell lysates were prepared at 4°C for

- 18 -

30 minutes by differential lysis of infected cells harvested at five days post-infection with the nonionic detergent, Nonidet P-40, at a final concentration of 0.5%. Following cell lysis and removal of infected cell nuclei by centrifugation, cell lysates were diluted 1:10 with Q loading buffer (50 mM Tris-HCl, pH 8.0, 10 mM NaCl) to reduce the ionic strength. In contrast, media harvested from virus infections were clarified by centrifugation, concentrated 10 fold by tangential flow ultrafiltration using hollow fiber filters comprised of polysulfone, and subjected to diafiltration against Q loading buffer to reduce the ionic strength.

Recombinant sHEV ORF2 proteins in cell lysates and media were captured by anion exchange chromatography. Diluted crude lysate (1.5 bed vol.) was loaded onto a Q Sepharose Fast Flow strong anion exchange column (XK50 column, 5.0 x 7.5 cm, 150 ml; Pharmacia, Piscataway, NJ) at a flow rate of 10.0 ml/min. The column was washed first with 1.0 bed volume of loading buffer at a flow rate of 10 ml/min. followed by a second wash with 1.0 bed volume of loading buffer at a flow rate of 20 ml/min. Proteins were eluted with 7.5 bed volumes of a continuous linear NaCl gradient (10 - 300 mM) in loading buffer at a flow rate of 20 ml/min. Recombinant sHEV ORF2 proteins bound to Q Sepharose Fast Flow resin, a strong anion exchange chromatographic matrix, and selectively eluted at a NaCl concentration of 140 mM as determined by SDS-PAGE and immunoblot analyses of unbound and bound column fractions. Fractions containing sHEV ORF2 55 kD proteins were pooled and desalting by gel filtration through a Sephadryl G-25 column (Pharmacia) with Q loading buffer.

The peak protein fraction from the Sephadryl G-25 column was collected and loaded onto a Source 15 Q High Performance (Pharmacia) strong anion exchange column to resolve and concentrate sHEV ORF2 polypeptides. The Source 15 Q HP column was washed and eluted as described above for anion exchange chromatography using Q Sepharose. Recombinant sHEV ORF2 55 kD proteins bound to the matrix and eluted again at 140 mM NaCl. Peak fractions containing sHEV ORF2 proteins were pooled and fractionated further by size exclusion chromatography using a Superdex G-75 column. Size exclusion chromatography using phosphate-buffered saline (pH 7.2) as a final purification step resolved the recombinant sHEV ORF2 55 kD protein from other protein contaminants as

- 19 -

determined by SDS-PAGE and Western blot analyses. The purity of the final bulk product by size exclusion chromatography was > 98% as determined by laser scanning densitometry of Coomassie Blue stained gels.

### **EXAMPLE 5**

#### **Amino terminal sequence analysis of sHEV 55kD protein.**

The amino terminus of the recombinant sHEV ORF2 55 kD protein was determined by automated micro Edman degradation. 11 cycles of direct Edman degradation were performed on the recombinant sHEV ORF2 55 kD proteins. The amino acid sequence corresponded to residues 112 through 122 (AVSPAPDTAPV) of the full-length recombinant sHEV ORF2 gene product. The carboxy terminus of the recombinant sHEV ORF2 55 kD protein was determined by automated chemical cleavage. Three rounds of chemical lysis were performed on recombinant sHEV ORF2 55 kD protein. The amino acid sequence corresponded to residues 600 through 602 (VLA) of the full-length recombinant sHEV ORF2 gene product.

The recombinant swine and human HEV ORF2 proteins produced in baculovirus-infected insect cells share 91.4% protein sequence homology. Both swine and human HEV ORF2 gene products undergo proteolytic cleavage to produce final intracellular products of 55 and 56 kD respectively. The amino termini of these two proteins are similar, as N-terminal cleavages occur between amino acids 111 and 112 of both proteins to produce the final protein products. The C-termini of these proteins differ slightly following C-terminal proteolysis, as the swine HEV ORF2 protein ends at amino acid 602 whereas the human HEV ORF2 protein terminates at amino acid 607.

### **EXAMPLE 6**

#### **Detection by EIA of anti-HEV Antibodies In Sera From Swine**

To determine if the insect cell-derived swine HEV ORF2 antigen 112-602 could detect anti-HEV antibody in sera from swine and humans, EIAs were carried out as follows on sera collected from swine and humans using either the 55 kilodalton swine ORF2 protein (amino acids 112-602) or the 56 kilodalton protein of the SAR55 strain of HEV (amino acids 112-607).

- 20 -

### Capture Plate Preparation

The antigen preparation was diluted to approximate by 0.5 µg/ml in carbonate buffer (Carbonate-Bicarbonate capsules, Sigma #C-3041, final 0.05M, pH9.6) and 100µl of the diluted antigen preparation was added to each of 96 wells of a microtiter plate (Linbro/Titertek, ICN#76-381-04). The plates were then incubated for 18 hours at room temperature, washed twice with 0.02% Tween-20 (KPL #50-63-00) solution, and 120µl of blocking solution was then added and incubated 1 hour at 37°C, followed by washing five times with 0.02% Tween-20 (K&P #50-63-00) solution.

The plates were now ready for use.

### Sample Preparation

In a separate microtiter plate, 10-fold dilutions ( $10^1$ ,  $10^2$ ,  $10^3$ ,  $10^4$ ,  $10^5$ ,  $10^6$ ) of the starting sample were made in blocking buffer.

100µl of dilutions to be tested, starting with the  $10^2$  dilution, were added into wells of the capture plate. The plate was incubated at 37°C for 30 minutes and then washed five times with 0.02% Tween-20 solution.

100µl of secondary antibody (anti-human-IgG-HRPO, KPL# 74-1006 prepared to manufacturer's recommendations using the blocking reagent as diluent) was added to each well, incubated 30 minutes at 37°C, and then washed five times with 0.02% Tween-20 solution.

100µl of ABTS substrate (ABTS-citric acid-H<sub>2</sub>O<sub>2</sub>, KPL # 50-66-01) was t added to each well, then kept covered for 30 minutes. After 30 minutes had elapsed, 100µl of stop solution (KPL# 50-85-02) were added to each well and optical density was read at 405nm.

Four five-fold dilutions of a WHO anti-HEV standard preparation (95/584, calibrated to 100 Units/ml) obtained from the National Institute for Biological Standards and Control, Hertfordshire, England, starting at 1:400 (0.25 WHO units), was included in each test plate to establish a sensitivity range and develop a standard line from which relative quantity values were extrapolated.

- 21 -

### Commercial reagents

Washing solution, ready-to-use ABTS, HRPO labeled antibodies and BSA were obtained from Kirkegaard & Perry, 2 Cesna Ct, Gaithersburg, MD 20879. Other reagents are available from Sigma.

### EIA Results

The results for the swine sera are shown in Figures 2A-2N and for the human sera in Figures 3A-3Q and the data are summarized in Figures 2O and 3R respectively.

### EXAMPLE 7

#### Use of the Swine 55 Kilodalton ORF2 Protein as a Vaccine

As described above in Example 6, the swine ORF-2 protein is immunoreactive as it has been shown to react with a variety of sera taken from swine and humans infected with HEV. This provides support for the use of this recombinant protein as a vaccine to protect against HEV strains. Mammals, preferably rhesus monkeys or chimpanzees, are immunized by intramuscular injection with purified or partially purified recombinant swine ORF-2 protein (112-602) in an amount sufficient (0.1 to 100 $\mu$ g) to stimulate the production of protective antibodies. The immunized mammals are then challenged with a wild-type strain of HEV and protection from challenge may be measured by a variety of assays including, but not limited to, assaying sera of immunized mammals for levels of alanine aminotransferase, (ALT), anti-HEV antibodies or HEV RNA by RT-PCR.

### EXAMPLE 8

#### Hepatitis E Virus (HEV) Capsid Antigen Derived From Virus of Human or Swine is Equally Efficient for Detecting Anti-HEV by Enzyme Immunoassay

The goal of this study was to evaluate and compare a pair of enzyme immunoassays for the detection of antibodies to HEV in human and swine sera. Though we tested only swine and human sera, these results likely apply to other species since it is reported that the ORF2 epitopes are broadly reactive across

- 22 -

species and strains (Anderson, D. A. et al., (1999) J Virol Methods 81:131-42; Khudyakov, Y. E. et al., (1999) J Clin Microbiol 37:2863-71; Meng, J. et al., (2001) Virology 288:203-11). The assays we describe here are virtually the same but for the capture antigen each employs, namely a truncated portion of the ORF2 gene product from a swine strain of HEV and from a human strain of HEV. The human strain is the Pakistani Sar-55 strain (Bryan, J.P. et al., (1994) J Infect Dis 170:517-21, and the swine strain is the US Meng strain (Meng, X. J. et al., (1997) J Clin Microbiol 40:117-22).

### Serum samples

Serial weekly serum samples from two chimpanzees and two rhesus monkeys experimentally infected with HEV were compared with both assays. The chimpanzees were infected with the Pakistani strain (Sar-55) representing genotype 1 and the rhesus monkeys were infected with the Mexican strain of HEV, representing genotype 2.

Another sample set consisted of 792 pig sera (360 samples from US, 152 from Canada, 30 from China, 190 from Korea and 60 from Thailand) and 882 human sera (230 samples from US volunteer blood donors, 603 US pig handlers, 18 Thai animal handlers and 31 blood bank volunteers from China) (Meng, S. J. et al., (1999) J Med Virol 59:297-302). Overall, specimens were obtained in areas where HEV genotypes 1, 3 and possibly 4 predominate (Schlauder, G. G. et al., (2001) J Med Virol 65:282-92). All samples were unlinked from the identity of their donors.

### Antigen preparation and purification

The putative HEV capsid protein (ORF2) was expressed in insect cells (SF9) from a recombinant baculovirus (Robinson, R. A. et al., (1998) Protein Expr Purif 12:75084; Tsarev, S. A. et al., (1993) J Infect Dis 168:369-78). The 72kD full-length product was processed in the cells to yield a 63-kD peptide, a 55 or 56-kD peptide, and a 53-kD peptide. The 55 or 56-kD antigen was used in the EIA and was purified by anion-exchange and gel filtration chromatography (Robinson, R. A. et al., (1998) Protein Expr Purif 12:75-84). The products of the human and swine strains contained amino acids 112 to 607 (496 amino acids) and 112 to 602 (491 amino acids), respectively.

- 23 -

EIA for the detection of anti-HEV IgG in swine and humans.

We used a modification of the EIA described by Tsarev (Tsarev, S. A., (1993) J Infect Dis 168:369-78). Polystyrene microwell plates (ICN 76-381-04, Costa Mesa, CA) were incubated with ORF2 antigen diluted in a carbonate-bicarbonate (pH 9.6) buffer for 18 hours at room temperature. The antigen concentration was 0.05 µg/well for the human strain and 0.029 µg/well for the swine strain. The optimal concentrations of capture antigen were established by block titration using a known anti-HEV positive chimpanzee serum and a hyperimmune swine anti-HEV positive serum. The wells were washed twice in an automated plate washer with a commercially available wash solution (Kirkegaard & Perry, Gaithersburg, MD) containing 0.02% Tween 20 in 0.002M imidazole-buffered saline. The wells were blocked with BSA/gelatin for 1 hour at 37°C prior to freezing at -20°C in plastic bags. Immediately before use the blocking buffer was removed and the plates were washed twice with wash buffer as described above.

Ten microliters of each test and control sample were diluted 1:10. The sample was further diluted 1:10 into the antigen-coated test plate (1:100 final test dilution) and incubated for 30 minutes at 37°C. Wells were washed 5 times and 100 µl of horseradish peroxidase (HRPO)-labeled anti-IgG (Kirkegaard & Perry, Gaithersburg, MD) was added to each well. The HRPO-labeled secondary antibodies were species-specific anti-IgG (heavy and light chain) and were used at a net 1.0 µg/ml. Following a 30 minute incubation at 37°C, unbound conjugate was removed by washing 5 times as described above. Azino-diethylbenzotiazol-sulfonate (ABTS) substrate was added for color development and absorbance (405nm) was read after 30 minutes.

The cutoff for the EIA using swine antigen was established for each test from internal controls and throughout this study ranged between 0.300 and 0.383 with a median of 0.330 (Meng, X. J. et al., (1997) Proc Natl Acad Sci USA 94:9860-5). The positive cut-off for the EIA using the human Sar-55 antigen was similarly established (Tsarev, S. A., (1993) J Infect Dis 168:369-78) and ranged between 0.300 and 0.342 in this study. Previously tested negative blood bank samples, dilution buffer and pre-inoculation swine sera served as negative controls.

- 24 -

### Statistical Analysis.

Calculations to determine concordance and prevalence were carried out using the PC version of S-Plus software as an add-on to Microsoft Excel.

### Results

#### Development of anti-HEV in non-human primates following injection, as measured by both assays.

Serial samples from two chimpanzees experimentally infected with the Sar-55 (genotype 1) HEV strain (Figure 4) and two rhesus monkeys experimentally infected with the Mexican (genotype 2) HEV strain (Figure 5) were tested with both EIAs. Very similar values were obtained regardless of whether the capture antigen in the EIA was from Sar-55 (genotype 1) or Meng (genotype 3) strain. The agreement for these two sets of data was 98% (Kappa value =0.952, CI<sub>95%</sub> 79-106%). In all four cases, seroconversion was detected at the appropriate time and the patterns of antibody positivity were as expected for a normal infection thus validating each assay.

#### Seroprevalence of HEV in human serum or plasma samples as determined by both assays.

Human sera from HEV endemic and non-endemic areas were tested with both EIAs. The overall prevalence of anti-HEV in the human sera was virtually the same regardless of the capture antigen. Prevalence was 13% when evaluated with the human capture antigen versus 12% with the swine capture antigen (Table 1). Furthermore, the prevalence values for each of the sub-groups were practically equal.

**Table 1. Anti-HEV prevalence in human sera as determined by human or swine antigen capture EIAs.**

| Source                   | No. (%) positive for antibody reactive with indicated antigen |                     |
|--------------------------|---------------------------------------------------------------|---------------------|
|                          | Sar-55 (Human strain)                                         | Meng (Swine strain) |
| Foreign Pig Handlers     | 12 (67)                                                       | 12 (67)             |
| US Pig Handlers          | 63 (10)                                                       | 58 (10)             |
| Foreign Blood Donors     | 5 (16)                                                        | 5 (16)              |
| US Blood Bank Volunteers | 31 (13)                                                       | 35 (15)             |
| <b>Total</b>             | <b>111 (13)</b>                                               | <b>110 (12)</b>     |

- 25 -

There was a 99% concordance (Kappa value =0.938, CI<sub>95%</sub> 97-99) when data from human sera tested with the human and swine ORF2-coated capture plates were compared (Table 2).

**Table 2. Contingency table comparing results of testing human serum with the Sar-55 ORF2 and the Meng ORF2 capture antigens.**

|           |          | Sar-55 ORF2 |          |       |
|-----------|----------|-------------|----------|-------|
|           |          | Negative    | Positive | Total |
| Meng ORF2 | Negative | 765         | 7        | 772   |
|           | Positive | 6           | 104      | 110   |
|           | Total    | 771         | 111      | 882   |

Concordance = 99%, calculated by dividing the sum of concordant values by the sum total. Kappa value = 0.938, CI<sub>95%</sub> = 97% – 99%

Comparisons between data obtained from the two EIAs for foreign pig handlers and blood donors each showed 100% agreement and comparisons of results for US volunteer blood donors and pig handlers yielded concordance values of 97% (Kappa value =0.894, CI<sub>95%</sub> 95-99%) and 99% (Kappa value =0.936, CI<sub>95%</sub> 98-100%) respectively. Therefore, both antigens reacted equally with anti-HEV in human sera.

#### **Seroprevalence of HEV in swine as determined by both assays.**

Anti-HEV prevalence in swine sera was also measured by EIAs containing each of the capture antigens. Once again, the results with the two capture antigens agreed. The human and swine ORF2 EIAs yielded 37% and 35% prevalence respectively (Table 3).

- 26 -

**Table 3. Anti-HEV prevalence (%) in swine sera as determined by human or swine antigen capture EIAs.**

| Source       | No. (%) positive for antibody reactive with indicated antigen |                     |
|--------------|---------------------------------------------------------------|---------------------|
|              | Sar-55 (Human strain)                                         | Meng (Swine strain) |
| USA          | 66 (18)                                                       | 69 (19)             |
| Canada       | 95 (63)                                                       | 86 (57)             |
| China        | 5 (17)                                                        | 3 (10)              |
| Korea        | 97 (51)                                                       | 89 (47)             |
| Thailand     | 29 (48)                                                       | 34 (57)             |
| <b>Total</b> | <b>292 (37)</b>                                               | <b>281 (35)</b>     |

As seen in Table 4, comparison of test results for swine sera yielded a concordance value of 93% (Kappa value =0.839, CI<sub>95%</sub> 86-92%). Independently, the subgroups that made up the swine serum set yielded concordance values of 96% (Kappa value =0.882, CI<sub>95%</sub> 93-98%) for the USA, 86% (Kappa value =0.714, CI<sub>95%</sub> 60-81%) for Canada, 91% (Kappa value =0.811, CI<sub>95%</sub> 76-90%) for Korea, 92% (Kappa value =0.84, CI<sub>95%</sub> 71-97%) for Thailand and 93% (Kappa value =0.714, CI<sub>95%</sub> 83-102%) for China.

**Table 4. Contingency table comparing results of testing swine serum with the Sar-55 ORF2 and the Meng ORF2 capture antigens.**

|           |          | Sar-55 ORF2 |          | Total |
|-----------|----------|-------------|----------|-------|
|           |          | Negative    | Positive |       |
| Meng ORF2 | Negative | 476         | 35       | 511   |
|           | Positive | 24          | 257      | 281   |
|           | Total    | 500         | 292      | 792   |

Concordance = 93%. Kappa value = 0.839, CI<sub>95%</sub> = 86% – 92%

These data demonstrate the comparable ability of each of the capture antigens to identify anti-HEV in swine serum.

The contents of all citations, i.e., journal articles, patents and the like, are incorporated herein by reference.

It is understood that the examples and embodiments described herein are for illustrative purposes and that various modifications and changes in light

- 27 -

thereof to persons skilled in the art are included within the spirit and purview of this application and scope of the appended claims.

- 28 -

**Claims**

1. A swine hepatitis E virus open-reading frame 2 protein consisting of amino acids 112 to 602.
2. A swine hepatitis E virus open-reading frame 2 protein consisting of amino acids 112 to 602 of SEQ ID NO: 1.
3. A pharmaceutical composition comprising the protein of claim 1 and a suitable excipient, diluent or carrier.
4. A pharmaceutical composition comprising the protein of claim 2 and a suitable excipient, diluent or carrier.
5. A method of preventing hepatitis E, comprising administering the pharmaceutical composition of claim 3 to a mammal in an amount sufficient to stimulate the production of protective antibodies.
6. A method of preventing hepatitis E, comprising administering the pharmaceutical composition of claim 4 to a mammal in an amount sufficient to stimulate the production of protective antibodies.
7. A vaccine for immunizing a mammal against hepatitis E, said vaccine comprising a protein according to claim 1 in a pharmaceutically acceptable carrier.
8. A vaccine for immunizing a mammal against hepatitis E, said vaccine comprising a protein according to claim 2 in a pharmaceutically acceptable carrier.
9. A kit for preventing hepatitis E in a mammal, said kit comprising a protein according to claim 1.

- 29 -

10. A kit for preventing hepatitis E in a mammal, said kit comprising a protein according to claim 2.

11. A DNA molecule having a sequence consisting of nucleotides which encode amino acids 112 to 602 of a swine hepatitis E virus open reading frame 2 protein.

12. The DNA molecule of claim 11, wherein the molecule encodes amino acids 112 to 602 of SEQ ID NO:1.

13. A recombinant expression vector comprising a DNA molecule according to claims 11 or 12.

14. A host cell containing an expression vector according to claim 13.

15. A method of producing a recombinant hepatitis E virus open reading frame 2 protein, said method comprising:

- (a) culturing a host cell of claim 14 under conditions appropriate to cause expression of said protein; and
- (b) obtaining said expressed protein from the host cell.

16. A method of detecting antibodies to hepatitis E virus in a biological sample, said method comprising:

- (a) contacting said sample with a swine hepatitis E virus open-reading frame 2 protein consisting of amino acids 112 to 602; and
- (b) detecting immune complexes formed between said protein and said antibodies, wherein detection of said complexes indicates the presence of antibodies to hepatitis E virus in said sample.

17. The method of claim 16, wherein the protein consists of amino acids 112-602 of SEQ ID NO:1.

- 30 -

18. A kit for use in a method of detecting antibodies to hepatitis E virus in a biological sample, said kit comprising a swine hepatitis E virus open-reading frame 2 protein consisting of amino acids 112 to 602.

19. The kit of claim 18, wherein the protein consists of amino acids 112-602 of SEQ ID NO:1.

20. Antibodies having specific binding affinity for a swine hepatitis E virus open-reading frame 2 protein consisting of amino acids 112 to 602.

21. The antibodies of claim 16, wherein said antibodies have specific binding affinity for a protein consisting of amino acids 112-602 of SEQ ID NO:1.

22. A method for detecting hepatitis E virus in a biological sample, said method comprising;

- (a) contacting said sample with the antibodies of claim 20 to form an immune complex with said hepatitis E virus; and
- (b) detecting the presence of said complex, wherein detection of said complex indicates the presence of hepatitis E virus in said sample.

23. A method for detecting hepatitis E virus in a biological sample, said method comprising;

- (a) contacting said sample with the antibodies of claim 21 to form an immune complex with said hepatitis E virus; and
- (b) detecting the presence of said complex, wherein detection of said complex indicates the presence of hepatitis E virus in said sample.

24. A method for producing the antibodies of claim 20, said method comprising immunizing a mammal with a swine hepatitis E virus open-reading frame 2 protein consisting of amino acids 112 to 602.

- 31 -

25. A method for producing the antibodies of claim 21, said method comprising immunizing a mammal with a protein consisting of amino acids 112-602 of SEQ ID NO:1.

26. A DNA molecule having a sequence consisting of nucleotides which encode amino acids 112-660 of a swine hepatitis E virus open reading frame 2 protein.

27. The DNA molecule of claim 26, wherein the molecule encodes amino acids 112-660 of SEQ ID. NO. 1.

28. A recombinant expression vector comprising a DNA molecule according to claims 26 and 27.

29. A host cell containing an expression vector according to claim 28.

30. A method of producing a recombinant hepatitis E virus open reading frame 2 protein, said method comprising:

- (a) culturing a host cell according to claim 29 under conditions appropriate to cause expression of said protein; and
- (b) obtaining said expressed protein from the host cell.

31. A kit for use in a method of detecting antibodies to hepatitis E virus in a biological sample, said kit comprising a swine hepatitis E virus open-reading frame 2 protein consisting of amino acids 112-660.

32. The kit of claim 31, where the protein consists of amino acids 112-660 of SEQ ID NO:1.

## FIG. 1A (Seq. ID NO:1)

Met Arg Pro Arg Ala Val Leu Leu Leu Phe Val Leu Leu Pro Met  
     1                       5                       10                       15  
 Leu Pro Ala Pro Pro Ala Gly Gln Pro Ser Gly Arg Arg Cys Gly Arg  
     20                       25                       30  
 Arg Asn Gly Gly Ala Gly Gly Phe Trp Gly Asp Arg Val Asp Ser  
     35                       40                       45  
 Gln Pro Phe Ala Leu Pro Tyr Ile His Pro Thr Asn Pro Phe Ala Ala  
     50                       55                       60  
 Asp Val Val Ser Gln Pro Gly Ala Gly Val Arg Pro Arg Gln Pro Pro  
     65                       70                       75                       80  
 Arg Pro Leu Gly Ser Ala Trp Arg Asp Gln Ser Gln Arg Pro Ser Thr  
     85                       90                       95  
 Ala Pro Arg Arg Ser Ala Pro Ala Gly Ala Ala Pro Leu Thr Ala  
     100                       105                       110  
 Val Ser Pro Ala Pro Asp Thr Ala Pro Val Pro Asp Val Asp Ser Arg  
     115                       120                       125  
 Gly Ala Ile Leu Arg Arg Gln Tyr Asn Leu Ser Thr Ser Pro Leu Thr  
     130                       135                       140  
 Ser Ser Val Ala Ala Gly Thr Asn Leu Val Leu Tyr Ala Ala Pro Leu  
     145                       150                       155                       160  
 Asn Pro Leu Leu Pro Leu Gln Asp Gly Thr Asn Thr His Ile Met Ala  
     165                       170                       175  
 Thr Glu Ala Ser Asn Tyr Ala Gln Tyr Arg Val Val Arg Ala Thr Ile  
     180                       185                       190  
 Arg Tyr Arg Pro Leu Val Pro Asn Ala Val Gly Gly Tyr Ala Ile Ser  
     195                       200                       205  
 Ile Ser Phe Trp Pro Gln Thr Thr Thr Pro Thr Ser Val Asp Met  
     210                       215                       220  
 Asn Ser Ile Thr Ser Thr Asp Val Arg Ile Leu Val Gln Pro Gly Ile  
     225                       230                       235                       240  
 Ala Ser Glu Leu Val Ile Pro Ser Glu Arg Leu His Tyr Arg Asn Gln  
     245                       250                       255  
 Gly Trp Arg Ser Val Glu Thr Thr Gly Val Ala Glu Glu Ala Thr  
     260                       265                       270  
 Ser Gly Leu Val Met Leu Cys Ile His Gly Ser Pro Val Asn Ser Tyr  
     275                       280                       285  
 Thr Asn Thr Pro Tyr Thr Gly Ala Leu Gly Leu Leu Asp Phe Ala Leu  
     290                       295                       300  
 Glu Leu Glu Phe Arg Asn Leu Thr Pro Gly Asn Thr Asn Thr Arg Val  
     305                       310                       315                       320  
 Ser Arg Tyr Thr Ser Thr Ala Arg His Arg Leu Arg Arg Gly Ala Asp  
     325                       330                       335  
 Gly Thr Ala Glu Leu Thr Thr Ala Ala Thr Arg Phe Met Lys Asp  
     340                       345                       350

FIG. 1A (Seq. ID NO:1)

Leu His Phe Thr Gly Thr Asn Gly Val Gly Glu Val Gly Arg Gly Ile  
           355                  360                  365  
 Ala Leu Thr Leu Phe Asn Leu Ala Asp Thr Leu Leu Gly Gly Leu Pro  
           370                  375                  380  
 Thr Glu Leu Ile Ser Ser Ala Gly Gly Gln Leu Phe Tyr Ser Arg Pro  
           385                  390                  395                  400  
 Val Val Ser Ala Asn Gly Glu Pro Thr Val Lys Leu Tyr Thr Ser Val  
           405                  410                  415  
 Glu Asn Ala Gln Gln Asp Lys Gly Ile Thr Ile Pro His Asp Ile Asp  
           420                  425                  430  
 Leu Gly Asp Ser Arg Val Val Ile Gln Asp Tyr Asp Asn Gln His Glu  
           435                  440                  445  
 Gln Asp Arg Pro Thr Pro Ser Pro Ala Pro Ser Arg Pro Phe Ser Val  
           450                  455                  460  
 Leu Arg Ala Asn Asp Val Leu Trp Leu Ser Leu Thr Ala Ala Glu Tyr  
           465                  470                  475                  480  
 Asp Gln Thr Thr Tyr Gly Ser Ser Thr Asn Pro Met Tyr Val Ser Asp  
           485                  490                  495  
 Thr Val Thr Leu Val Asn Val Ala Thr Gly Ala Gln Ala Val Ala Arg  
           500                  505                  510  
 Ser Leu Asp Trp Ser Lys Val Thr Leu Asp Gly Arg Pro Leu Thr Thr  
           515                  520                  525  
 Ile Gln Gln Tyr Ser Lys Thr Phe Tyr Val Leu Pro Leu Arg Gly Lys  
           530                  535                  540  
 Leu Ser Phe Trp Glu Ala Gly Thr Thr Lys Ala Gly Tyr Pro Tyr Asn  
           545                  550                  555                  560  
 Tyr Asn Thr Thr Ala Ser Asp Gln Ile Leu Ile Glu Asn Ala Ala Gly  
           565                  570                  575  
 His Arg Val Ala Ile Ser Thr Tyr Thr Ser Leu Gly Ala Gly Pro  
           580                  585                  590  
 Thr Ser Ile Ser Ala Val Gly Val Leu Ala Pro His Ser Ala Leu Ala  
           595                  600                  605  
 Val Leu Glu Asp Thr Val Asp Tyr Pro Ala Arg Ala His Thr Phe Asp  
           610                  615                  620  
 Asp Phe Cys Pro Glu Cys Arg Thr Leu Gly Leu Gln Gly Cys Ala Phe  
           625                  630                  635                  640  
 Gln Ser Thr Ile Ala Glu Leu Gln Arg Leu Lys Met Lys Val Gly Lys  
           645                  650                  655  
 Thr Arg Glu Ser  
           660

FIG. 1B (Seq. ID NO:2)

|             |            |             |             |             |      |
|-------------|------------|-------------|-------------|-------------|------|
| ATGCGCCCTA  | GGGCTGTTCT | GTTGTTGCTC  | TTCGTGCTTC  | TGCCTATGCT  | 50   |
| GCCCCGCCA   | CGGGCCGGCC | AGCCGCTCTGG | CCGCCGTTGT  | GGGC GGCGCA | 100  |
| ACGGCGGTGC  | CGGCGGTGGT | TTCTGGGGTG  | ACAGGGTTGA  | TTCTCAGGCC  | 150  |
| TTCGCCCTCC  | CCTATATTCA | TCCAACCAAC  | CCCTTCGCTG  | CCGATGTCGT  | 200  |
| TTCACAACCC  | GGGGCTGGAG | TTCGCCCTCG  | ACAGCCGCC   | CGCCCCCTTG  | 250  |
| GCTCCGCTTG  | GGGTGACCAG | TCCCAGCGCC  | CCTCCACTGC  | CCCCCGTCGT  | 300  |
| CGATCTGCC   | CAGCTGGGGC | TGCGCCGCTG  | ACTGCTGTAT  | CACCGGGCCCC | 350  |
| CGACACAGCT  | CCTGTACCTG | ATGTTGACTC  | ACGTGGTGCT  | ATCCTGCGCC  | 400  |
| GGCAGTACAA  | TCTGTCTACG | TCCCCGCTCA  | CGTCATCTGT  | CGCTGCTGGT  | 450  |
| ACCAACCTGG  | TTCTCTATGC | CGCCCCGCTG  | AATCCTCTCT  | TGCCCCCTCCA | 500  |
| GGATGGCAC   | AACACTCAT  | TTATGGCTAC  | TGAGGGTGTCC | AATTATGCTC  | 550  |
| AGTATCGGGT  | TGTTCGAGCT | ACGATCCGTT  | ATCGCCCGCT  | GGTGCCAAAT  | 600  |
| GCTGTTGGTG  | GCTATGCTAT | CTCTATTCT   | TTCTGGCCTC  | AAACTACAAAC | 650  |
| CACCCCTACT  | TCAGTTGACA | TGAACCTAT   | TACCTCCACT  | GATGTCAGGA  | 700  |
| TTTTGGTTCA  | GCCCCGTATT | GCCTCCGAGT  | TAGTCATCCC  | TAGTGAGCGC  | 750  |
| CTTCATTACC  | GCAATCAAGG | CTGGCGCTCT  | GTAGAGACCA  | CGGGCGTGGC  | 800  |
| CGAGGGAGGAA | GCTACCTCCG | GTCTGGTAAT  | GCTTGCAATT  | CACGGTTCTC  | 850  |
| CTGTTAACTC  | CTATACTAAC | ACACCTTACA  | CTGGTGCATT  | GGGGCTCCCT  | 900  |
| GATTTGCAT   | TAGAGCTTGA | ATTCAAGAAAT | TTGACACCCG  | GGAACACTAA  | 950  |
| CACCCGTGTT  | TCCCCGTACA | CCAGCACAGC  | CCGCCATCGG  | CTGCGCCCG   | 1000 |
| GTGCTGATGG  | GACCGCAGAG | CTTACCACCA  | CAGCAGCCAC  | ACGTTTCATG  | 1050 |
| AAGGACTTGC  | ATTTCACCGG | CACGAACGGC  | GTTGGTGAGG  | TGGGTCGCGG  | 1100 |
| TATAGCTCTA  | ACACTGTTA  | ACCTTGCTGA  | TACGCTTCTT  | GGTGGTTTAC  | 1150 |
| CGACAGAAATT | GATTGCGTCG | GCCGGGGGCC  | AACTGTTTA   | CTCCC GCCCT | 1200 |
| GTGCGTCTCGG | CCAATGGCGA | GCCGACGGTT  | AAGTTATATA  | CATCTGTTGA  | 1250 |
| GAATGCGCAG  | CAGGACAAGG | GCATTACCAT  | CCCACACGAT  | ATAGATCTGG  | 1300 |
| GTGATTCCCG  | TGTGGTTATT | CAGGATTATG  | ATAACCAGCA  | CGAGCAAGAC  | 1350 |
| CGACCTACTC  | CGTCACCAGC | CCCCTCTCGC  | CCTTCTCAG   | TTCTTCGCGC  | 1400 |
| CAATGATGTT  | CTGTGGCTCT | CCCTCACCGC  | CCCTGAGTAC  | GATCAGACTA  | 1450 |
| CATATGGGTC  | GTCCACCAAC | CCTATGTATG  | TCTCCGATAC  | GGTCACGCTA  | 1500 |
| GTAAATGTGG  | CCACTGGTGC | TCAGGCTGTT  | GCCC GCTCTC | TTGATTGGTC  | 1550 |
| TAAAGTCACT  | CTGGATGGCC | GCCCCCTCAC  | TACCATTCA   | CGATATTCAA  | 1600 |
| AGACATTCTA  | TGTTCTCCCG | CTCCGCGGG   | AGCTGTCCTT  | TTGGGAGGCT  | 1650 |
| GGTACCACTA  | AGGCCGGCTA | CCCGTATAAT  | TATAATACCA  | CTGCTAGTGA  | 1700 |
| TCAAATTTCG  | ATTGAGAACG | CGGCTGGCCA  | CCGTGTTGCT  | ATCTCTACCT  | 1750 |
| ATACCACTAG  | CTTGGGTGCC | GGCCCTACCT  | CGATTTCCGC  | CGTTGGTG    | 1800 |
| CTAGCCCCAC  | ACTCGGCTCT | CGCCGTCCTT  | GAGGATACTG  | TTGATTACCC  | 1850 |
| TGCTCGTGCT  | CATACTTTG  | ATGATTCTG   | CCCGGAGTGC  | CGCACCCCTG  | 1900 |
| GTTTGCAGGG  | TTGTGCATT  | CAGTCTACTA  | TTGCTGAGCT  | TCAGCGTCTT  | 1950 |
| AAAATGAAGG  | TAGGTAAAAC | CCGGGAGTCT  |             |             | 1980 |

Figure 2A

| Name      | SampleDate | OD       |                 |          | Sample/Coff |        | Result |          |
|-----------|------------|----------|-----------------|----------|-------------|--------|--------|----------|
|           |            | humSAR55 | Cutoff 1 swORF2 | Cutoff 2 | humSAR55    | swORF2 |        |          |
| 15 Sow 1  | Iowa       | 0.054    | 0.332           | 0.094    | 0.383       | 0.16   | 0.25   | Neg      |
| 16 Sow 2  | Iowa       | 0.059    | 0.332           | 0.065    | 0.383       | 0.18   | 0.17   | Neg      |
| 17 Sow 3  | Iowa       | 1.699    | 0.332           | 1.966    | 0.383       | 5.12   | 5.13   | Neg      |
| 18 Sow 4  | Iowa       | 0.073    | 0.332           | 0.098    | 0.383       | 0.22   | 0.26   | Both +   |
| 19 Sow 5  | Iowa       | 1.999    | 0.332           | 2.226    | 0.383       | 6.02   | 5.81   | Neg      |
| 20 Sow 6  | Iowa       | 1.143    | 0.332           | 1.694    | 0.383       | 3.44   | 4.42   | Both +   |
| 21 Sow 7  | Iowa       | 0.064    | 0.332           | 0.090    | 0.383       | 0.19   | 0.23   | Both +   |
| 22 Sow 8  | Iowa       | 1.713    | 0.332           | 2.167    | 0.383       | 5.16   | 5.66   | Neg      |
| 23 Sow 9  | Iowa       | 0.061    | 0.332           | 0.076    | 0.383       | 0.18   | 0.20   | Both +   |
| 24 Sow 10 | Iowa       | 0.138    | 0.332           | 0.192    | 0.383       | 0.42   | 0.50   | Neg      |
| 25 Sow 11 | Iowa       | 0.701    | 0.332           | 1.105    | 0.383       | 2.11   | 2.89   | Neg      |
| 26 Sow 12 | Iowa       | 1.793    | 0.332           | 2.149    | 0.383       | 5.40   | 5.61   | Both +   |
| 27 Sow 13 | Iowa       | 1.812    | 0.332           | 2.023    | 0.383       | 5.46   | 5.28   | Both +   |
| 28 Sow 14 | Iowa       | 1.360    | 0.332           | 1.735    | 0.383       | 4.10   | 4.53   | Both +   |
| 29 Sow 15 | Iowa       | 0.070    | 0.332           | 0.101    | 0.383       | 0.21   | 0.26   | Both +   |
| 30 Sow 16 | Iowa       | 1.775    | 0.332           | 1.989    | 0.383       | 5.35   | 5.19   | Neg      |
| 31 Sow 17 | Iowa       | 0.411    | 0.332           | 0.595    | 0.383       | 1.24   | 1.55   | Both +   |
| 32 Sow 18 | Iowa       | 0.050    | 0.332           | 0.075    | 0.383       | 0.15   | 0.20   | Both +   |
| 33 Sow 19 | Iowa       | 1.164    | 0.332           | 1.618    | 0.383       | 3.51   | 4.22   | Neg      |
| 34 Sow 20 | Iowa       | 0.069    | 0.332           | 0.072    | 0.383       | 0.21   | 0.19   | Both +   |
| 35 Sow 21 | Iowa       | 0.281    | 0.332           | 0.447    | 0.383       | 0.85   | 1.17   | Neg      |
| 36 Sow 22 | Iowa       | 1.212    | 0.332           | 1.916    | 0.383       | 3.65   | 5.00   | Both +   |
| 37 Sow 23 | Iowa       | 1.667    | 0.332           | 1.947    | 0.383       | 5.02   | 5.08   | Both +   |
| 38 Sow 24 | Iowa       | 0.586    | 0.332           | 0.907    | 0.383       | 2.07   | 2.37   | Both +   |
| 39 Sow 25 | Iowa       | 0.564    | 0.332           | 0.730    | 0.383       | 1.70   | 1.91   | Both +   |
| 40 Sow 26 | Iowa       | 0.664    | 0.332           | 0.951    | 0.383       | 2.00   | 2.48   | Both +   |
| 41 Sow 27 | Iowa       | 0.418    | 0.332           | 0.589    | 0.383       | 1.26   | 1.54   | Both +   |
| 42 Sow 28 | Iowa       | 0.449    | 0.332           | 0.660    | 0.383       | 1.35   | 1.72   | Both +   |
| 43 Sow 29 | Iowa       | 0.049    | 0.332           | 0.094    | 0.383       | 0.15   | 0.25   | Neg      |
| 44 Sow 30 | Iowa       | 0.050    | 0.332           | 0.164    | 0.383       | 0.15   | 0.43   | Neg      |
| 45 Sow 31 | Iowa       | 0.057    | 0.332           | 0.068    | 0.383       | 0.17   | 0.18   | Neg      |
| 46 Sow 32 | Iowa       | 0.051    | 0.332           | 0.065    | 0.383       | 0.15   | 0.17   | Neg      |
| 47 Sow 33 | Iowa       | 0.968    | 0.332           | 1.154    | 0.383       | 2.92   | 3.01   | Both +   |
| 48 Sow 34 | Iowa       | 0.740    | 0.332           | 1.097    | 0.383       | 2.23   | 2.86   | Both +   |
| 49 Sow 35 | Iowa       | 1.461    | 0.332           | 1.572    | 0.383       | 4.40   | 4.10   | Both +   |
| 50 Sow 36 | Iowa       | 0.668    | 0.332           | 0.863    | 0.383       | 2.01   | 2.25   | Both +   |
| 51 Sow 37 | Iowa       | 0.066    | 0.332           | 0.091    | 0.383       | 0.20   | 0.24   | Neg      |
| 52 Sow 38 | Iowa       | 1.256    | 0.332           | 1.332    | 0.383       | 3.78   | 3.48   | Both +   |
| 53 Sow 39 | Iowa       | 0.054    | 0.332           | 0.081    | 0.383       | 0.16   | 0.21   | Neg      |
| 54 Sow 40 | Iowa       | 0.072    | 0.332           | 0.096    | 0.383       | 0.22   | 0.25   | Neg      |
| 55 Sow 41 | Iowa       | 0.223    | 0.332           | 0.337    | 0.383       | 0.67   | 0.88   | Neg      |
| 56 Sow 42 | Iowa       | 0.775    | 0.332           | 0.972    | 0.383       | 2.33   | 2.54   | Both +   |
| 57 Sow 43 | Iowa       | 1.119    | 0.332           | 1.296    | 0.383       | 3.37   | 3.38   | Both +   |
| 58 Sow 44 | Iowa       | 0.534    | 0.332           | 0.858    | 0.383       | 1.61   | 2.24   | Both +   |
| 59 Sow 45 | Iowa       | 0.053    | 0.332           | 0.084    | 0.383       | 0.16   | 0.22   | Neg      |
| 60 Sow 46 | Iowa       | 0.941    | 0.332           | 1.219    | 0.383       | 2.83   | 3.16   | Both +   |
| 61 Sow 47 | Iowa       | 0.251    | 0.332           | 0.389    | 0.383       | 0.76   | 1.02   | Both +   |
| 62 Sow 48 | Iowa       | 0.053    | 0.332           | 0.056    | 0.383       | 0.16   | 0.15   | swORF2 + |
| 63 Sow 49 | Iowa       | 0.785    | 0.332           | 1.103    | 0.383       | 2.30   | 2.88   | Neg      |
| 64 Sow 50 | Iowa       | 0.052    | 0.332           | 0.088    | 0.383       | 0.16   | 0.23   | Both +   |
| 65 Sow 51 | Iowa       | 0.198    | 0.332           | 0.225    | 0.383       | 0.60   | 0.59   | Neg      |
| 66 Sow 52 | Iowa       | 0.938    | 0.332           | 1.197    | 0.383       | 2.83   | 3.13   | Both +   |
| 67 Sow 53 | Iowa       | 0.743    | 0.332           | 1.039    | 0.383       | 2.24   | 2.71   | Both +   |
| 68 Sow 54 | Iowa       | 0.397    | 0.332           | 0.472    | 0.383       | 1.20   | 1.23   | Both +   |
| 69 Sow 55 | Iowa       | 0.370    | 0.332           | 0.440    | 0.383       | 1.11   | 1.15   | Both +   |
| 70 Sow 56 | Iowa       | 0.238    | 0.332           | 0.345    | 0.383       | 0.72   | 0.90   | Neg      |

Figure 2B

| Name        | Sample Date | OD       |          |        | Sample/Coff |          | Result |          |
|-------------|-------------|----------|----------|--------|-------------|----------|--------|----------|
|             |             | humSAR55 | Cutoff 1 | swORF2 | Cutoff 2    | humSAR55 | swORF2 |          |
| 71 Sow 57   | Iowa        | 0.235    | 0.332    | 0.323  | 0.383       | 0.71     | 0.84   | Neg      |
| 72 Sow 58   | Iowa        | 0.194    | 0.332    | 0.333  | 0.383       | 0.58     | 0.87   | Neg      |
| 73 Sow 59   | Iowa        | 0.050    | 0.332    | 0.073  | 0.383       | 0.15     | 0.19   | Neg      |
| 74 Sow 60   | Iowa        | 0.057    | 0.332    | 0.067  | 0.383       | 0.17     | 0.17   | Neg      |
| 75 Sow 61   | Iowa        | 0.143    | 0.332    | 0.076  | 0.383       | 0.43     | 0.20   | Neg      |
| 76 Sow 62   | Iowa        | 0.058    | 0.332    | 0.068  | 0.383       | 0.17     | 0.18   | Neg      |
| 77 Sow 63   | Iowa        | 0.479    | 0.332    | 0.567  | 0.383       | 1.44     | 1.48   | Both +   |
| 78 Sow 64   | Iowa        | 0.411    | 0.332    | 0.463  | 0.383       | 1.24     | 1.21   | Both +   |
| 79 Sow 65   | Iowa        | 0.386    | 0.332    | 0.404  | 0.383       | 1.16     | 1.05   | Both +   |
| 80 Sow 66   | Iowa        | 0.198    | 0.332    | 0.262  | 0.383       | 0.60     | 0.68   | Neg      |
| 81 Sow 67   | Iowa        | 0.071    | 0.332    | 0.084  | 0.383       | 0.21     | 0.22   | Neg      |
| 82 Sow 68   | Iowa        | 0.419    | 0.332    | 0.504  | 0.383       | 1.26     | 1.32   | Both +   |
| 83 Sow 69   | Iowa        | 0.059    | 0.332    | 0.090  | 0.383       | 0.18     | 0.23   | Neg      |
| 84 Sow 70   | Iowa        | 0.066    | 0.332    | 0.119  | 0.383       | 0.20     | 0.31   | Neg      |
| 85 Sow 71   | Iowa        | 0.139    | 0.332    | 0.181  | 0.383       | 0.42     | 0.47   | Neg      |
| 86 Sow 72   | Iowa        | 0.844    | 0.332    | 0.808  | 0.383       | 2.54     | 2.11   | Both +   |
| 87 Sow 73   | Iowa        | 0.916    | 0.332    | 0.871  | 0.383       | 2.76     | 2.27   | Both +   |
| 88 Sow 74   | Iowa        | 0.384    | 0.332    | 0.439  | 0.383       | 1.16     | 1.15   | Both +   |
| 89 Sow 75   | Iowa        | 0.055    | 0.332    | 0.071  | 0.383       | 0.17     | 0.19   | Neg      |
| 90 Sow 76   | Iowa        | 0.710    | 0.332    | 0.696  | 0.383       | 2.14     | 1.82   | Both +   |
| 91 Sow 77   | Iowa        | 0.129    | 0.332    | 0.136  | 0.383       | 0.39     | 0.36   | Neg      |
| 92 Sow 78   | Iowa        | 0.063    | 0.332    | 0.071  | 0.383       | 0.19     | 0.19   | Neg      |
| 93 Sow 79   | Iowa        | 0.379    | 0.332    | 0.516  | 0.383       | 1.14     | 1.35   | Both +   |
| 94 Sow 80   | Iowa        | 0.070    | 0.332    | 0.090  | 0.383       | 0.21     | 0.23   | Neg      |
| 95 Sow 81   | Iowa        | 0.088    | 0.338    | 0.095  | 0.335       | 0.26     | 0.28   | Neg      |
| 96 Sow 82   | Iowa        | 0.280    | 0.338    | 0.556  | 0.335       | 0.83     | 1.66   | swORF2 + |
| 97 Sow 83   | Iowa        | 0.223    | 0.338    | 0.511  | 0.335       | 0.66     | 1.53   | swORF2 + |
| 98 Sow 84   | Iowa        | 0.107    | 0.338    | 0.191  | 0.335       | 0.32     | 0.57   | Neg      |
| 99 Sow 85   | Iowa        | 0.142    | 0.338    | 0.235  | 0.335       | 0.42     | 0.70   | Neg      |
| 100 Sow 86  | Iowa        | 0.105    | 0.338    | 0.251  | 0.335       | 0.31     | 0.75   | Neg      |
| 101 Sow 87  | Iowa        | 0.118    | 0.338    | 0.159  | 0.335       | 0.35     | 0.47   | Neg      |
| 102 Sow 88  | Iowa        | 0.086    | 0.338    | 0.156  | 0.335       | 0.25     | 0.47   | Neg      |
| 103 Sow 89  | Iowa        | 0.060    | 0.338    | 0.052  | 0.335       | 0.12     | 0.16   | Neg      |
| 104 Sow 90  | Iowa        | 0.053    | 0.338    | 0.076  | 0.335       | 0.16     | 0.23   | Neg      |
| 105 Sow 91  | Iowa        | 0.122    | 0.338    | 0.074  | 0.335       | 0.36     | 0.22   | Neg      |
| 106 Sow 92  | Iowa        | 0.079    | 0.338    | 0.073  | 0.335       | 0.23     | 0.22   | Neg      |
| 107 Sow 93  | Iowa        | 0.152    | 0.338    | 0.173  | 0.335       | 0.45     | 0.52   | Neg      |
| 108 Sow 94  | Iowa        | 0.165    | 0.338    | 0.226  | 0.335       | 0.49     | 0.67   | Neg      |
| 109 Sow 95  | Iowa        | 0.147    | 0.338    | 0.226  | 0.335       | 0.43     | 0.67   | Neg      |
| 110 Sow 96  | Iowa        | 0.078    | 0.338    | 0.133  | 0.335       | 0.23     | 0.40   | Neg      |
| 111 Sow 97  | Iowa        | 0.058    | 0.338    | 0.115  | 0.335       | 0.17     | 0.34   | Neg      |
| 112 Sow 98  | Iowa        | 0.161    | 0.338    | 0.303  | 0.335       | 0.48     | 0.90   | Neg      |
| 113 Sow 99  | Iowa        | 0.058    | 0.338    | 0.069  | 0.335       | 0.17     | 0.21   | Neg      |
| 114 Sow 100 | Iowa        | 0.059    | 0.338    | 0.086  | 0.335       | 0.17     | 0.26   | Neg      |
| 115 Sow 101 | Iowa        | 0.066    | 0.338    | 0.149  | 0.335       | 0.20     | 0.44   | Neg      |
| 116 Sow 102 | Iowa        | 0.248    | 0.338    | 0.447  | 0.335       | 0.73     | 1.33   | swORF2 + |
| 117 Sow 103 | Iowa        | 0.267    | 0.338    | 0.383  | 0.335       | 0.79     | 1.14   | swORF2 + |
| 118 Sow 104 | Iowa        | 0.250    | 0.338    | 0.267  | 0.335       | 0.74     | 0.80   | Neg      |
| 119 Sow 105 | Iowa        | 0.066    | 0.338    | 0.048  | 0.335       | 0.20     | 0.14   | Neg      |
| 120 Sow 106 | Iowa        | 0.231    | 0.338    | 0.303  | 0.335       | 0.68     | 0.90   | Neg      |
| 121 Sow 107 | Iowa        | 0.087    | 0.338    | 0.079  | 0.335       | 0.26     | 0.24   | Neg      |
| 122 Sow 108 | Iowa        | 0.051    | 0.338    | 0.054  | 0.335       | 0.15     | 0.16   | Neg      |
| 123 Sow 109 | Iowa        | 0.146    | 0.338    | 0.275  | 0.335       | 0.43     | 0.82   | Neg      |
| 124 Sow 110 | Iowa        | 0.058    | 0.338    | 0.072  | 0.335       | 0.17     | 0.21   | Neg      |
| 125 Sow 111 | Iowa        | 0.083    | 0.338    | 0.104  | 0.335       | 0.25     | 0.31   | Neg      |
| 126 Sow 112 | Iowa        | 0.157    | 0.338    | 0.282  | 0.335       | 0.46     | 0.84   | Neg      |
| 127 Sow 113 | Iowa        | 0.118    | 0.338    | 0.268  | 0.335       | 0.35     | 0.80   | Neg      |

Figure 2C

| Name        | SampleDate | OD       |                 |          | Sample/Coff |        | Result     |
|-------------|------------|----------|-----------------|----------|-------------|--------|------------|
|             |            | humSAR55 | Cutoff 1 swORF2 | Cutoff 2 | humSAR55    | swORF2 |            |
| 128 Sow 114 | Iowa       | 0.093    | 0.338           | 0.146    | 0.335       | 0.28   | 0.44 Neg 0 |
| 129 Sow 115 | Iowa       | 0.148    | 0.338           | 0.123    | 0.335       | 0.44   | 0.37 Neg 0 |
| 130 Sow 116 | Iowa       | 0.083    | 0.338           | 0.140    | 0.335       | 0.25   | 0.42 Neg 0 |
| 131 Sow 117 | Iowa       | 0.182    | 0.338           | 0.099    | 0.335       | 0.54   | 0.30 Neg 0 |
| 132 Sow 118 | Iowa       | 0.095    | 0.338           | 0.120    | 0.335       | 0.28   | 0.36 Neg 0 |
| 133 Sow 119 | Iowa       | 0.072    | 0.338           | 0.063    | 0.335       | 0.21   | 0.19 Neg 0 |
| 134 Sow 120 | Iowa       | 0.060    | 0.338           | 0.064    | 0.335       | 0.18   | 0.19 Neg 0 |
| 135 Sow 121 | Iowa       | 0.058    | 0.338           | 0.082    | 0.335       | 0.17   | 0.24 Neg 0 |
| 136 Sow 122 | Iowa       | 0.060    | 0.338           | 0.073    | 0.335       | 0.18   | 0.22 Neg 0 |
| 137 Sow 123 | Iowa       | 0.091    | 0.338           | 0.199    | 0.335       | 0.27   | 0.59 Neg 0 |
| 138 Sow 124 | Iowa       | 0.109    | 0.338           | 0.168    | 0.335       | 0.32   | 0.50 Neg 0 |
| 139 Sow 125 | Iowa       | 0.127    | 0.338           | 0.190    | 0.335       | 0.38   | 0.57 Neg 0 |
| 140 Sow 126 | Iowa       | 0.083    | 0.338           | 0.138    | 0.335       | 0.25   | 0.41 Neg 0 |
| 141 Sow 127 | Iowa       | 0.070    | 0.338           | 0.063    | 0.335       | 0.21   | 0.19 Neg 0 |
| 142 Sow 128 | Iowa       | 0.116    | 0.338           | 0.159    | 0.335       | 0.34   | 0.47 Neg 0 |
| 143 Sow 129 | Iowa       | 0.055    | 0.338           | 0.054    | 0.335       | 0.16   | 0.16 Neg 0 |
| 144 Sow 130 | Iowa       | 0.105    | 0.338           | 0.092    | 0.335       | 0.31   | 0.27 Neg 0 |
| 145 Sow 131 | Iowa       | 0.081    | 0.338           | 0.083    | 0.335       | 0.24   | 0.25 Neg 0 |
| 146 Sow 132 | Iowa       | 0.139    | 0.338           | 0.194    | 0.335       | 0.41   | 0.58 Neg 0 |
| 147 Sow 133 | Iowa       | 0.129    | 0.338           | 0.179    | 0.335       | 0.38   | 0.53 Neg 0 |
| 148 Sow 134 | Iowa       | 0.094    | 0.338           | 0.115    | 0.335       | 0.28   | 0.34 Neg 0 |
| 149 Sow 135 | Iowa       | 0.076    | 0.338           | 0.071    | 0.335       | 0.22   | 0.21 Neg 0 |
| 150 Sow 136 | Iowa       | 0.118    | 0.338           | 0.195    | 0.335       | 0.35   | 0.58 Neg 0 |
| 151 Sow 137 | Iowa       | 0.065    | 0.338           | 0.087    | 0.335       | 0.19   | 0.26 Neg 0 |
| 152 Sow 138 | Iowa       | 0.065    | 0.338           | 0.068    | 0.335       | 0.19   | 0.20 Neg 0 |
| 153 Sow 139 | Iowa       | 0.123    | 0.338           | 0.139    | 0.335       | 0.36   | 0.41 Neg 0 |
| 154 Sow 140 | Iowa       | 0.067    | 0.338           | 0.066    | 0.335       | 0.20   | 0.20 Neg 0 |
| 155 Sow 141 | Iowa       | 0.067    | 0.338           | 0.069    | 0.335       | 0.20   | 0.21 Neg 0 |
| 156 Sow 142 | Iowa       | 0.091    | 0.338           | 0.134    | 0.335       | 0.27   | 0.40 Neg 0 |
| 157 Sow 143 | Iowa       | 0.119    | 0.338           | 0.100    | 0.335       | 0.35   | 0.30 Neg 0 |
| 158 Sow 144 | Iowa       | 0.077    | 0.338           | 0.082    | 0.335       | 0.23   | 0.24 Neg 0 |
| 159 Sow 145 | Iowa       | 0.078    | 0.338           | 0.094    | 0.335       | 0.23   | 0.28 Neg 0 |
| 160 Sow 146 | Iowa       | 0.095    | 0.338           | 0.113    | 0.335       | 0.28   | 0.34 Neg 0 |
| 161 Sow 147 | Iowa       | 0.069    | 0.338           | 0.086    | 0.335       | 0.20   | 0.26 Neg 0 |
| 162 Sow 148 | Iowa       | 0.067    | 0.338           | 0.083    | 0.335       | 0.20   | 0.25 Neg 0 |
| 163 Sow 149 | Iowa       | 0.061    | 0.338           | 0.062    | 0.335       | 0.18   | 0.19 Neg 0 |
| 164 Sow 150 | Iowa       | 0.066    | 0.338           | 0.072    | 0.335       | 0.20   | 0.21 Neg 0 |
| 165 Sow 151 | Iowa       | 0.065    | 0.338           | 0.082    | 0.335       | 0.19   | 0.24 Neg 0 |
| 166 Sow 152 | Iowa       | 0.062    | 0.338           | 0.053    | 0.335       | 0.18   | 0.16 Neg 0 |
| 167 Sow 153 | Iowa       | 0.090    | 0.338           | 0.099    | 0.335       | 0.27   | 0.30 Neg 0 |
| 168 Sow 154 | Iowa       | 0.101    | 0.338           | 0.102    | 0.335       | 0.30   | 0.30 Neg 0 |
| 169 Sow 155 | Iowa       | 0.076    | 0.338           | 0.108    | 0.335       | 0.22   | 0.32 Neg 0 |
| 170 Sow 156 | Iowa       | 0.072    | 0.338           | 0.092    | 0.335       | 0.21   | 0.27 Neg 0 |
| 171 Sow 157 | Iowa       | 0.067    | 0.338           | 0.076    | 0.335       | 0.20   | 0.23 Neg 0 |
| 172 Sow 158 | Iowa       | 0.084    | 0.338           | 0.093    | 0.335       | 0.25   | 0.28 Neg 0 |
| 173 Sow 159 | Iowa       | 0.055    | 0.338           | 0.095    | 0.335       | 0.16   | 0.28 Neg 0 |
| 174 Sow 160 | Iowa       | 0.067    | 0.338           | 0.060    | 0.335       | 0.20   | 0.18 Neg 0 |
| 175 Sow 161 | Iowa       | 0.086    | 0.338           | 0.079    | 0.335       | 0.25   | 0.24 Neg 0 |
| 176 Sow 162 | Iowa       | 0.176    | 0.338           | 0.181    | 0.335       | 0.52   | 0.54 Neg 0 |
| 177 Sow 163 | Iowa       | 0.279    | 0.338           | 0.280    | 0.335       | 0.83   | 0.84 Neg 0 |
| 178 Sow 164 | Iowa       | 0.143    | 0.338           | 0.140    | 0.335       | 0.42   | 0.42 Neg 0 |
| 179 Sow 165 | Iowa       | 0.085    | 0.338           | 0.082    | 0.335       | 0.25   | 0.24 Neg 0 |
| 180 Sow 166 | Iowa       | 0.122    | 0.338           | 0.145    | 0.335       | 0.36   | 0.43 Neg 0 |
| 181 Sow 167 | Iowa       | 0.063    | 0.338           | 0.079    | 0.335       | 0.19   | 0.24 Neg 0 |
| 182 Sow 168 | Iowa       | 0.062    | 0.338           | 0.071    | 0.335       | 0.18   | 0.21 Neg 0 |
| 183 Sow 169 | Iowa       | 0.115    | 0.338           | 0.140    | 0.335       | 0.34   | 0.42 Neg 0 |
| 184 Sow 170 | Iowa       | 0.049    | 0.338           | 0.094    | 0.335       | 0.14   | 0.28 Neg 0 |

Figure 2D

| Name        | SampleDate | OD       |                 |          | Sample/Coff |        | Result |         |
|-------------|------------|----------|-----------------|----------|-------------|--------|--------|---------|
|             |            | humSAR55 | Cutoff 1 swORF2 | Cutoff 2 | humSAR55    | swORF2 |        |         |
| 185 Sow 171 | Iowa       | 0.074    | 0.338           | 0.090    | 0.335       | 0.22   | 0.27   | Neg     |
| 186 Sow 172 | Iowa       | 0.118    | 0.338           | 0.116    | 0.335       | 0.35   | 0.35   | Neg     |
| 187 Sow 173 | Iowa       | 0.130    | 0.338           | 0.090    | 0.335       | 0.38   | 0.27   | Neg     |
| 188 Sow 174 | Iowa       | 0.088    | 0.338           | 0.098    | 0.335       | 0.26   | 0.29   | Neg     |
| 189 Sow 175 | Iowa       | 0.085    | 0.338           | 0.100    | 0.335       | 0.25   | 0.30   | Neg     |
| 190 Sow 176 | Iowa       | 0.072    | 0.338           | 0.100    | 0.335       | 0.21   | 0.30   | Neg     |
| 191 Sow 177 | Iowa       | 0.149    | 0.338           | 0.123    | 0.335       | 0.44   | 0.37   | Neg     |
| 192 Sow 178 | Iowa       | 0.088    | 0.338           | 0.135    | 0.335       | 0.26   | 0.40   | Neg     |
| 193 Sow 179 | Iowa       | 0.065    | 0.338           | 0.060    | 0.335       | 0.19   | 0.18   | Neg     |
| 194 Sow 180 | Iowa       | 0.057    | 0.338           | 0.132    | 0.335       | 0.17   | 0.39   | Neg     |
| 195 Sow 181 | Iowa       | 0.091    | 0.338           | 0.103    | 0.335       | 0.27   | 0.31   | Neg     |
| 196 Sow 182 | Iowa       | 0.080    | 0.338           | 0.080    | 0.335       | 0.24   | 0.24   | Neg     |
| 197 Sow 183 | Iowa       | 0.102    | 0.338           | 0.107    | 0.335       | 0.30   | 0.32   | Neg     |
| 198 Sow 184 | Iowa       | 0.111    | 0.338           | 0.093    | 0.335       | 0.33   | 0.28   | Neg     |
| 199 Sow 185 | Iowa       | 0.079    | 0.338           | 0.080    | 0.335       | 0.23   | 0.24   | Neg     |
| 200 Sow 186 | Iowa       | 0.146    | 0.338           | 0.096    | 0.335       | 0.43   | 0.29   | Neg     |
| 201 Sow 187 | Iowa       | 0.060    | 0.338           | 0.073    | 0.335       | 0.18   | 0.22   | Neg     |
| 202 Sow 188 | Iowa       | 0.093    | 0.338           | 0.094    | 0.335       | 0.28   | 0.28   | Neg     |
| 203 Sow 189 | Iowa       | 0.079    | 0.338           | 0.081    | 0.335       | 0.23   | 0.24   | Neg     |
| 204 Sow 190 | Iowa       | 0.073    | 0.338           | 0.069    | 0.335       | 0.22   | 0.21   | Neg     |
| 205 Sow 191 | Iowa       | 0.095    | 0.338           | 0.085    | 0.335       | 0.28   | 0.25   | Neg     |
| 206 Sow 192 | Iowa       | 0.095    | 0.338           | 0.088    | 0.335       | 0.28   | 0.26   | Neg     |
| 207 Sow 193 | Iowa       | 0.171    | 0.338           | 0.131    | 0.335       | 0.51   | 0.39   | Neg     |
| 208 Sow 194 | Iowa       | 0.101    | 0.338           | 0.166    | 0.335       | 0.30   | 0.50   | Neg     |
| 209 Sow 195 | Iowa       | 0.089    | 0.338           | 0.076    | 0.335       | 0.26   | 0.23   | Neg     |
| 210 Sow 196 | Iowa       | 0.111    | 0.338           | 0.123    | 0.335       | 0.33   | 0.37   | Neg     |
| 211 Sow 197 | Iowa       | 0.075    | 0.338           | 0.078    | 0.335       | 0.22   | 0.23   | Neg     |
| 212 Sow 198 | Iowa       | 0.067    | 0.338           | 0.086    | 0.335       | 0.20   | 0.26   | Neg     |
| 213 Sow 199 | Iowa       | 0.100    | 0.338           | 0.099    | 0.335       | 0.30   | 0.30   | Neg     |
| 214 Sow 200 | Iowa       | 0.063    | 0.338           | 0.063    | 0.335       | 0.19   | 0.19   | Neg     |
| 215 Sow 201 | Iowa       | 0.073    | 0.338           | 0.087    | 0.335       | 0.22   | 0.26   | Neg     |
| 216 Sow 202 | Iowa       | 0.094    | 0.338           | 0.091    | 0.335       | 0.28   | 0.27   | Neg     |
| 217 Sow 203 | Iowa       | 0.094    | 0.338           | 0.110    | 0.335       | 0.28   | 0.33   | Neg     |
| 218 Sow 204 | Iowa       | 0.069    | 0.338           | 0.076    | 0.335       | 0.20   | 0.23   | Neg     |
| 219 Sow 205 | Iowa       | 0.076    | 0.338           | 0.104    | 0.335       | 0.22   | 0.31   | Neg     |
| 220 Sow 206 | Iowa       | 0.091    | 0.338           | 0.103    | 0.335       | 0.27   | 0.31   | Neg     |
| 221 Sow 207 | Iowa       | 0.083    | 0.338           | 0.102    | 0.335       | 0.25   | 0.30   | Neg     |
| 222 Sow 208 | Iowa       | 0.092    | 0.338           | 0.083    | 0.335       | 0.27   | 0.25   | Neg     |
| 223 CSFP-1  | Chin       | 0.171    | 0.300           | 0.089    | 0.335       | 0.57   | 0.30   | Neg     |
| 224 CSFP-2  | Chin       | 0.158    | 0.300           | 0.093    | 0.335       | 0.53   | 0.31   | Neg     |
| 225 CSFP-3  | Chin       | 0.212    | 0.300           | 0.114    | 0.335       | 0.71   | 0.38   | Neg     |
| 226 CSFP-4  | Chin       | 0.134    | 0.300           | 0.086    | 0.335       | 0.45   | 0.29   | Neg     |
| 227 CSFP-5  | Chin       | 0.211    | 0.300           | 0.117    | 0.335       | 0.70   | 0.39   | Neg     |
| 228 CSFP-6  | Chin       | 0.165    | 0.300           | 0.102    | 0.335       | 0.55   | 0.34   | Neg     |
| 229 CSFP-7  | Chin       | 0.183    | 0.300           | 0.120    | 0.335       | 0.61   | 0.40   | Neg     |
| 230 CSFP-8  | Chin       | 0.128    | 0.300           | 0.165    | 0.335       | 0.43   | 0.55   | Neg     |
| 231 CSFP-9  | Chin       | 0.260    | 0.300           | 0.196    | 0.335       | 0.87   | 0.65   | Neg     |
| 232 CSFP-10 | Chin       | 0.232    | 0.300           | 0.168    | 0.335       | 0.77   | 0.56   | Neg     |
| 233 1       | Chin       | 0.839    | 0.300           | 0.725    | 0.330       | 2.80   | 2.42   | Both +  |
| 234 2       | Chin       | 0.240    | 0.300           | 0.172    | 0.330       | 0.80   | 0.57   | Neg     |
| 235 3       | Chin       | 0.739    | 0.300           | 0.507    | 0.330       | 2.46   | 1.69   | Both +  |
| 236 4       | Chin       | 0.187    | 0.300           | 0.150    | 0.330       | 0.62   | 0.50   | Neg     |
| 237 5       | Chin       | 0.170    | 0.300           | 0.097    | 0.330       | 0.57   | 0.32   | Neg     |
| 238 6       | Chin       | 0.319    | 0.300           | 0.228    | 0.330       | 1.06   | 0.76   | sar55 + |
| 239 7       | Chin       | 0.261    | 0.300           | 0.169    | 0.330       | 0.87   | 0.56   | Neg     |
| 240 8       | Chin       | 0.254    | 0.300           | 0.161    | 0.330       | 0.85   | 0.54   | Neg     |
| 241 9       | Chin       | 0.151    | 0.300           | 0.142    | 0.330       | 0.50   | 0.47   | Neg     |

Figure 2E

| Name      | SampleDate | OD       |                 |          | Sample/Coff |        | Result |           |
|-----------|------------|----------|-----------------|----------|-------------|--------|--------|-----------|
|           |            | humSAR55 | Cutoff 1 swORF2 | Cutoff 2 | humSAR55    | swORF2 |        |           |
| 242 10    | Chin       | 0.210    | 0.300           | 0.151    | 0.330       | 0.70   | 0.50   | Neg 0     |
| 243 11    | Chin       | 0.154    | 0.300           | 0.123    | 0.330       | 0.51   | 0.41   | Neg 0     |
| 244 12    | Chin       | 0.140    | 0.300           | 0.095    | 0.330       | 0.47   | 0.32   | Neg 0     |
| 245 13    | Chin       | 0.277    | 0.300           | 0.202    | 0.330       | 0.92   | 0.67   | Neg 0     |
| 246 14    | Chin       | 0.217    | 0.300           | 0.157    | 0.330       | 0.72   | 0.52   | Neg 0     |
| 247 15    | Chin       | 0.364    | 0.300           | 0.176    | 0.330       | 1.21   | 0.56   | sar55+ 1  |
| 248 16    | Chin       | 0.232    | 0.300           | 0.163    | 0.330       | 0.77   | 0.54   | Neg 0     |
| 249 17    | Chin       | 0.216    | 0.300           | 0.138    | 0.330       | 0.72   | 0.46   | Neg 0     |
| 250 18    | Chin       | 0.286    | 0.300           | 0.219    | 0.330       | 0.95   | 0.73   | Neg 0     |
| 251 19    | Chin       | 0.476    | 0.300           | 0.360    | 0.330       | 1.59   | 1.20   | Both + 3  |
| 252 20    | Chin       | 0.170    | 0.300           | 0.119    | 0.330       | 0.57   | 0.40   | Neg 0     |
| 253 M1-1  | Thai       | 0.089    | 0.300           | 0.080    | 0.330       | 0.30   | 0.27   | Neg 0     |
| 254 M1-2  | Thai       | 0.055    | 0.300           | 0.057    | 0.330       | 0.22   | 0.19   | Neg 0     |
| 255 M1-3  | Thai       | 0.057    | 0.300           | 0.056    | 0.330       | 0.19   | 0.19   | Neg 0     |
| 256 M1-4  | Thai       | 0.083    | 0.300           | 0.079    | 0.330       | 0.28   | 0.26   | Neg 0     |
| 257 M1-5  | Thai       | 0.074    | 0.300           | 0.078    | 0.330       | 0.25   | 0.26   | Neg 0     |
| 258 M1-6  | Thai       | 0.084    | 0.300           | 0.072    | 0.330       | 0.28   | 0.24   | Neg 0     |
| 259 M1-7  | Thai       | 0.256    | 0.300           | 0.201    | 0.330       | 0.85   | 0.79   | Neg 0     |
| 260 M1-8  | Thai       | 0.114    | 0.300           | 0.118    | 0.330       | 0.38   | 0.39   | Neg 0     |
| 261 M1-9  | Thai       | 0.109    | 0.300           | 0.109    | 0.330       | 0.36   | 0.36   | Neg 0     |
| 262 M1-10 | Thai       | 0.073    | 0.300           | 0.066    | 0.330       | 0.24   | 0.22   | Neg 0     |
| 263 M2-1  | Thai       | 0.112    | 0.300           | 0.089    | 0.330       | 0.37   | 0.30   | Neg 0     |
| 264 M2-2  | Thai       | 0.197    | 0.300           | 0.223    | 0.330       | 0.66   | 0.74   | Neg 0     |
| 265 M2-3  | Thai       | 0.182    | 0.300           | 0.215    | 0.330       | 0.61   | 0.72   | Neg 0     |
| 266 M2-4  | Thai       | 0.376    | 0.300           | 0.414    | 0.330       | 1.25   | 1.38   | Both + 3  |
| 267 M2-5  | Thai       | 0.669    | 0.300           | 0.859    | 0.330       | 2.23   | 2.86   | Both + 3  |
| 268 M2-6  | Thai       | 0.277    | 0.300           | 0.473    | 0.330       | 0.92   | 1.58   | swORF2+ 2 |
| 269 M2-7  | Thai       | 0.244    | 0.300           | 0.266    | 0.330       | 0.81   | 0.89   | Neg 0     |
| 270 M2-8  | Thai       | 0.170    | 0.300           | 0.181    | 0.330       | 0.57   | 0.60   | Neg 0     |
| 271 M2-9  | Thai       | 0.267    | 0.300           | 0.213    | 0.330       | 0.89   | 0.71   | Neg 0     |
| 272 M2-10 | Thai       | 0.717    | 0.300           | 0.722    | 0.330       | 2.39   | 2.41   | Both + 3  |
| 273 M3-1  | Thai       | 1.605    | 0.300           | 1.762    | 0.330       | 5.35   | 5.87   | Both + 3  |
| 274 M3-2  | Thai       | 1.430    | 0.300           | 1.598    | 0.330       | 4.77   | 5.33   | Both + 3  |
| 275 M3-3  | Thai       | 0.551    | 0.300           | 0.542    | 0.330       | 1.84   | 1.81   | Both + 3  |
| 276 M3-4  | Thai       | 1.250    | 0.300           | 1.660    | 0.330       | 4.17   | 5.53   | Both + 3  |
| 277 M3-5  | Thai       | 1.039    | 0.300           | 1.191    | 0.330       | 3.46   | 3.97   | Both + 3  |
| 278 M3-6  | Thai       | 0.909    | 0.300           | 1.018    | 0.330       | 3.03   | 3.39   | Both + 3  |
| 279 M3-7  | Thai       | 1.146    | 0.300           | 1.793    | 0.330       | 3.82   | 5.98   | Both + 3  |
| 280 M3-8  | Thai       | 1.445    | 0.300           | 1.664    | 0.330       | 4.82   | 5.55   | Both + 3  |
| 281 M3-9  | Thai       | 1.359    | 0.300           | 1.737    | 0.330       | 4.53   | 5.79   | Both + 3  |
| 282 M3-10 | Thai       | 0.194    | 0.300           | 0.274    | 0.330       | 0.65   | 0.91   | Neg 0     |
| 283 M4-1  | Thai       | 1.379    | 0.300           | 1.971    | 0.330       | 4.60   | 6.57   | Both + 3  |
| 284 M4-2  | Thai       | 1.036    | 0.300           | 1.285    | 0.330       | 3.45   | 4.28   | Both + 3  |
| 285 M4-3  | Thai       | 1.536    | 0.300           | 1.643    | 0.330       | 5.12   | 5.48   | Both + 3  |
| 286 M4-4  | Thai       | 0.537    | 0.300           | 0.688    | 0.330       | 1.79   | 2.29   | Both + 3  |
| 287 M4-5  | Thai       | 0.734    | 0.300           | 1.145    | 0.330       | 2.45   | 3.82   | Both + 3  |
| 288 M4-6  | Thai       | 0.401    | 0.300           | 0.483    | 0.330       | 1.34   | 1.61   | Both + 3  |
| 289 M4-7  | Thai       | 0.536    | 0.300           | 0.847    | 0.330       | 1.79   | 2.82   | Both + 3  |
| 290 M4-8  | Thai       | 0.181    | 0.300           | 0.175    | 0.330       | 0.60   | 0.58   | Neg 0     |
| 291 M4-9  | Thai       | 1.347    | 0.300           | 1.519    | 0.330       | 4.49   | 5.06   | Both + 3  |
| 292 M4-10 | Thai       | 0.283    | 0.300           | 0.369    | 0.330       | 0.94   | 1.23   | swORF2+ 2 |
| 293 M6-1  | Thai       | 0.804    | 0.300           | 1.115    | 0.330       | 2.68   | 3.72   | Both + 3  |
| 294 M6-2  | Thai       | 0.577    | 0.300           | 0.758    | 0.330       | 1.92   | 2.52   | Both + 3  |
| 295 M6-3  | Thai       | 0.772    | 0.300           | 1.341    | 0.330       | 2.57   | 4.47   | Both + 3  |
| 296 M6-4  | Thai       | 0.374    | 0.300           | 0.383    | 0.330       | 1.25   | 1.28   | Both + 3  |
| 297 M6-5  | Thai       | 0.610    | 0.300           | 0.755    | 0.330       | 2.03   | 2.52   | Both + 3  |
| 298 M6-6  | Thai       | 1.118    | 0.300           | 1.308    | 0.330       | 3.73   | 4.36   | Both + 3  |

Figure 2F

| Name      | Sample Date | OD       |          |        | Sample/Coff |        | Result |          |
|-----------|-------------|----------|----------|--------|-------------|--------|--------|----------|
|           |             | humSAR55 | Cutoff 1 | swORF2 | humSAR55    | swORF2 |        |          |
| 299 M6-7  | Thai        | 0.209    | 0.300    | 0.224  | 0.330       | 0.70   | 0.75   | Neg      |
| 300 M6-8  | Thai        | 0.585    | 0.300    | 0.908  | 0.330       | 1.95   | 3.03   | Both +   |
| 301 M6-9  | Thai        | 0.258    | 0.300    | 0.307  | 0.330       | 0.86   | 1.02   | swORF2 + |
| 302 M6-10 | Thai        | 0.906    | 0.300    | 1.170  | 0.330       | 3.02   | 3.90   | Both +   |
| 303 A1    | Thai        | 0.195    | 0.300    | 0.205  | 0.330       | 0.65   | 0.68   | Neg      |
| 304 A2    | Thai        | 0.141    | 0.300    | 0.149  | 0.330       | 0.47   | 0.50   | Neg      |
| 305 A3    | Thai        | 0.214    | 0.300    | 0.218  | 0.330       | 0.71   | 0.73   | Neg      |
| 306 A4    | Thai        | 0.266    | 0.300    | 0.275  | 0.330       | 0.89   | 0.92   | Neg      |
| 307 A5    | Thai        | 0.200    | 0.300    | 0.179  | 0.330       | 0.67   | 0.60   | Neg      |
| 308 A6    | Thai        | 0.245    | 0.300    | 0.256  | 0.330       | 0.82   | 0.85   | Neg      |
| 309 A7    | Thai        | 0.180    | 0.300    | 0.246  | 0.330       | 0.60   | 0.62   | Neg      |
| 310 A8    | Thai        | 0.123    | 0.300    | 0.351  | 0.330       | 0.41   | 1.17   | swORF2 + |
| 311 A9    | Thai        | 0.588    | 0.300    | 0.740  | 0.330       | 1.96   | 2.47   | Both +   |
| 312 A10   | Thai        | 0.266    | 0.300    | 0.358  | 0.330       | 0.89   | 1.19   | swORF2 + |
| 313 WA3   | Cana        | 1.060    | 0.300    | 1.560  | 0.330       | 3.53   | 5.20   | Both +   |
| 314 WA4   | Cana        | 0.722    | 0.300    | 0.894  | 0.330       | 2.41   | 2.98   | Both +   |
| 315 WA5   | Cana        | 1.009    | 0.300    | 1.426  | 0.330       | 3.36   | 4.75   | Both +   |
| 316 WA6   | Cana        | 1.146    | 0.300    | 1.498  | 0.330       | 3.82   | 4.99   | Both +   |
| 317 WA7   | Cana        | 0.635    | 0.300    | 0.872  | 0.330       | 2.12   | 2.91   | Both +   |
| 318 WB8   | Cana        | 1.644    | 0.300    | 2.156  | 0.330       | 5.48   | 7.19   | Both +   |
| 319 WB9   | Cana        | 1.067    | 0.300    | 1.494  | 0.330       | 3.56   | 4.98   | Both +   |
| 320 WA10  | Cana        | 0.614    | 0.300    | 0.783  | 0.330       | 2.05   | 2.61   | Both +   |
| 321 WA11  | Cana        | 0.873    | 0.300    | 1.009  | 0.330       | 2.91   | 3.36   | Both +   |
| 322 WA12  | Cana        | 0.843    | 0.300    | 1.227  | 0.330       | 2.81   | 4.09   | Both +   |
| 323 WB3   | Cana        | 0.304    | 0.300    | 0.370  | 0.330       | 1.01   | 1.23   | Both +   |
| 324 WB4   | Cana        | 0.841    | 0.300    | 1.219  | 0.330       | 2.80   | 4.06   | Both +   |
| 325 WB5   | Cana        | 0.252    | 0.300    | 0.221  | 0.330       | 0.84   | 0.74   | Neg      |
| 326 WB6   | Cana        | 0.323    | 0.300    | 0.422  | 0.330       | 1.08   | 1.41   | Both +   |
| 327 WB7   | Cana        | 0.205    | 0.300    | 0.193  | 0.330       | 0.68   | 0.64   | Neg      |
| 328 WB8   | Cana        | 0.566    | 0.300    | 0.754  | 0.330       | 1.89   | 2.51   | Both +   |
| 329 V19   | Cana        | 0.416    | 0.300    | 0.544  | 0.330       | 1.39   | 1.81   | Both +   |
| 330 WB10  | Cana        | 0.392    | 0.300    | 0.420  | 0.330       | 1.31   | 1.40   | Both +   |
| 331 WB11  | Cana        | 0.710    | 0.300    | 0.899  | 0.330       | 2.37   | 3.00   | Both +   |
| 332 WC2   | Cana        | 0.732    | 0.300    | 0.954  | 0.330       | 2.44   | 3.18   | Both +   |
| 333 WC3   | Cana        | 0.570    | 0.300    | 0.775  | 0.330       | 1.90   | 2.58   | Both +   |
| 334 WC4   | Cana        | 0.680    | 0.300    | 0.857  | 0.330       | 2.27   | 2.86   | Both +   |
| 335 WC5   | Cana        | 0.647    | 0.300    | 0.803  | 0.330       | 2.16   | 2.68   | Both +   |
| 336 WC6   | Cana        | 0.904    | 0.300    | 1.189  | 0.330       | 3.01   | 3.96   | Both +   |
| 337 WC7   | Cana        | 0.958    | 0.300    | 1.147  | 0.330       | 3.19   | 3.82   | Both +   |
| 338 WC8   | Cana        | 0.424    | 0.300    | 0.436  | 0.330       | 1.41   | 1.45   | Both +   |
| 339 WC9   | Cana        | 0.418    | 0.300    | 0.520  | 0.330       | 1.39   | 1.73   | Both +   |
| 340 WC10  | Cana        | 0.432    | 0.300    | 0.539  | 0.330       | 1.44   | 1.80   | Both +   |
| 341 WC11  | Cana        | 0.262    | 0.300    | 0.283  | 0.330       | 0.87   | 0.94   | Neg      |
| 342 WC12  | Cana        | 0.462    | 0.300    | 0.533  | 0.330       | 1.54   | 1.78   | Both +   |
| 343 WD3   | Cana        | 1.302    | 0.300    | 1.625  | 0.330       | 4.34   | 5.42   | Both +   |
| 344 WD4   | Cana        | 0.598    | 0.300    | 0.743  | 0.330       | 1.99   | 2.48   | Both +   |
| 345 WD5   | Cana        | 0.488    | 0.300    | 0.539  | 0.330       | 1.63   | 1.80   | Both +   |
| 346 WD6   | Cana        | 0.992    | 0.300    | 1.176  | 0.330       | 3.31   | 3.92   | Both +   |
| 347 WD7   | Cana        | 0.425    | 0.300    | 0.521  | 0.330       | 1.42   | 1.74   | Both +   |
| 348 WD8   | Cana        | 0.343    | 0.300    | 0.326  | 0.330       | 1.14   | 1.09   | Both +   |
| 349 WD9   | Cana        | 0.505    | 0.300    | 0.598  | 0.330       | 1.68   | 1.99   | Both +   |
| 350 WD10  | Cana        | 0.546    | 0.300    | 0.573  | 0.330       | 1.82   | 1.91   | Both +   |
| 351 WD11  | Cana        | 0.618    | 0.300    | 0.677  | 0.330       | 2.06   | 2.26   | Both +   |
| 352 WE3   | Cana        | 0.531    | 0.300    | 0.620  | 0.330       | 1.77   | 2.07   | Both +   |
| 353 WE4   | Cana        | 0.361    | 0.300    | 0.281  | 0.330       | 1.20   | 0.94   | sar55 +  |
| 354 WE5   | Cana        | 0.236    | 0.300    | 0.231  | 0.330       | 0.79   | 0.77   | Neg      |
| 355 WE6   | Cana        | 0.399    | 0.300    | 0.468  | 0.330       | 1.33   | 1.56   | Both +   |

Figure 2G

| Name      | SampleDate | OD       |                 |                   | Sample/Coff |        | Result   |
|-----------|------------|----------|-----------------|-------------------|-------------|--------|----------|
|           |            | humSAR55 | Cutoff 1 swORF2 | Cutoff 2          | humSAR55    | swORF2 |          |
| 356 WE7   | Can        | 0.238    | 0.300           | 0.260             | 0.330       | 0.79   | 0.87     |
| 357 WE8   | Can        | 0.166    | 0.300           | 0.177             | 0.330       | 0.55   | Neg      |
| 358 WE9   | Can        | 0.192    | 0.300           | 0.175             | 0.330       | 0.64   | Neg      |
| 359 WE10  | Can        | 0.345    | 0.300           | 0.356             | 0.330       | 1.15   | Neg      |
| 360 WE11  | Can        | 0.267    | 0.300           | 0.239             | 0.330       | 0.89   | Both +   |
| 361 WE12  | Can        | 0.627    | 0.300           | 0.657             | 0.330       | 2.09   | Both +   |
| 362 WF2   | Can        | 0.408    | 0.300           | 0.458             | 0.330       | 1.36   | Both +   |
| 363 WF3   | Can        | 0.276    | 0.300           | 0.204             | 0.330       | 0.92   | Both +   |
| 364 WF4   | Can        | 0.329    | 0.300           | 0.251             | 0.330       | 1.10   | Neg      |
| 365 WF5   | Can        | 0.211    | 0.300           | 0.168             | 0.330       | 0.70   | sar55 +  |
| 366 WF6   | Can        | 0.346    | 0.300           | 0.223             | 0.330       | 1.15   | Neg      |
| 367 WF7   | Can        | 0.332    | 0.300           | 0.239             | 0.330       | 1.11   | sar55 +  |
| 368 WF8   | Can        | 0.285    | 0.300           | 0.274             | 0.330       | 0.95   | sar55 +  |
| 369 WF9   | Can        | 0.252    | 0.300           | 0.254             | 0.330       | 0.84   | Neg      |
| 370 WF10  | Can        | 0.652    | 0.300           | 0.678             | 0.330       | 2.17   | Both +   |
| 371 WF11  | Can        | 0.268    | 0.300           | 0.208             | 0.330       | 0.89   | Neg      |
| 372 WF12  | Can        | 0.300    | 0.300           | 0.235             | 0.330       | 1.00   | Both +   |
| 373 WG3   | Can        | 0.298    | 0.300           | 0.201             | 0.330       | 0.99   | sar55 +  |
| 374 WG4   | Can        | 0.298    | 0.300           | 0.228             | 0.330       | 0.99   | Neg      |
| 375 WG5   | Can        | 0.324    | 0.300           | 0.190             | 0.330       | 1.08   | -sg      |
| 376 WG6   | Can        | 0.555    | 0.300           | 0.536             | 0.330       | 1.85   | sar55 +  |
| 377 WG7   | Can        | 0.484    | 0.300           | 0.397             | 0.330       | 1.61   | Both +   |
| 378 WG8   | Can        | 0.253    | 0.300           | 0.145             | 0.330       | 0.88   | Both +   |
| 379 WG9   | Can        | 0.303    | 0.300           | 0.203             | 0.330       | 1.01   | Neg      |
| 380 WG10  | Can        | 0.360    | 0.300           | 0.220             | 0.330       | 1.20   | sar55 +  |
| 381 WG11  | Can        | 0.759    | 0.300           | 0.632             | 0.330       | 2.57   | sar55 +  |
| 382 WG12  | Can        | 0.434    | 0.300           | 0.287             | 0.330       | 2.11   | Both +   |
| 383 WH3   | Can        | 0.294    | 0.300           | 0.499             | 0.330       | 0.98   | sar55 +  |
| 384 WH4   | Can        | 0.409    | 0.300           | 0.37 <sup>c</sup> | 0.330       | 1.36   | swORF2 + |
| 385 WH6   | Can        | 0.542    | 0.300           | 0.55              | 0.330       | 1.25   | Both +   |
| 386 5-S1  | Sask       | 0.182    | 0.300           | 0.258             | 0.330       | 1.81   | Both +   |
| 387 5-S2  | Sask       | 0.274    | 0.300           | 0.161             | 0.330       | 0.61   | Neg      |
| 388 5-S3  | Sask       | 0.300    | 0.300           | 0.151             | 0.330       | 0.91   | Neg      |
| 389 5-S4  | Sask       | 0.345    | 0.300           | 0.221             | 0.330       | 1.33   | sar55 +  |
| 390 5-S5  | Sask       | 0.225    | 0.300           | 0.138             | 0.330       | 1.15   | sar55 +  |
| 391 5-S6  | Sask       | 0.244    | 0.300           | 0.129             | 0.330       | 0.75   | Neg      |
| 392 5-S7  | Sask       | 1.133    | 0.300           | 0.770             | 0.330       | 0.81   | Neg      |
| 393 5-S8  | Sask       | 0.150    | 0.300           | 0.103             | 0.330       | 3.78   | Both +   |
| 394 5-S9  | Sask       | 0.344    | 0.300           | 0.288             | 0.330       | 0.50   | Neg      |
| 395 5-S10 | Sask       | 0.234    | 0.300           | 0.148             | 0.330       | 1.15   | sar55 +  |
| 396 5-S11 | Sask       | 1.261    | 0.300           | 0.968             | 0.330       | 0.78   | Neg      |
| 397 5-S12 | Sask       | 0.449    | 0.300           | 0.235             | 0.330       | 4.20   | Both +   |
| 398 5-S13 | Sask       | 0.852    | 0.300           | 0.431             | 0.330       | 1.50   | sar55 +  |
| 399 5-S14 | Sask       | 0.401    | 0.300           | 0.168             | 0.330       | 2.84   | Both +   |
| 400 5-S15 | Sask       | 0.661    | 0.300           | 0.396             | 0.330       | 1.34   | sar55 +  |
| 401 5-S16 | Sask       | 0.671    | 0.300           | 0.535             | 0.330       | 2.20   | Both +   |
| 402 5-S17 | Sask       | 0.922    | 0.300           | 0.644             | 0.330       | 2.24   | Both +   |
| 403 5-S18 | Sask       | 0.682    | 0.300           | 0.413             | 0.330       | 3.07   | Both +   |
| 404 5-S19 | Sask       | 0.591    | 0.300           | 0.335             | 0.330       | 2.27   | Both +   |
| 405 5-S20 | Sask       | 0.673    | 0.300           | 0.512             | 0.330       | 1.97   | Both +   |
| 406 5-S21 | Sask       | 1.204    | 0.300           | 0.825             | 0.330       | 2.24   | Both +   |
| 407 5-S22 | Sask       | 0.196    | 0.300           | 0.194             | 0.330       | 4.01   | Both +   |
| 408 5-S23 | Sask       | 0.253    | 0.300           | 0.237             | 0.330       | 0.65   | Neg      |
| 409 5-S24 | Sask       | 0.521    | 0.300           | 0.920             | 0.330       | 0.84   | Neg      |
| 410 5-S25 | Sask       | 0.674    | 0.300           | 0.089             | 0.330       | 1.74   | 3.07     |
| 411 5-S26 | Sask       | 0.214    | 0.300           | 0.210             | 0.330       | 0.71   | Both +   |
| 412 6-S1  | Sask       | 0.292    | 0.300           | 0.328             | 0.330       | 0.97   | 0.70     |
|           |            |          |                 |                   |             | 1.09   | swORF2 + |

Figure 2H

| Name      | SampleDate | OD       |          |        | Sample/Coff |        | Result |            |
|-----------|------------|----------|----------|--------|-------------|--------|--------|------------|
|           |            | humSAR55 | Cutoff 1 | swORF2 | humSAR55    | swORF2 |        |            |
| 413 6-S2  | Sask       | 0.303    | 0.300    | 0.357  | 0.330       | 1.01   | 1.19   | Both +     |
| 414 6-S3  | Sask       | 0.154    | 0.300    | 0.194  | 0.330       | 0.51   | 0.66   | Neg        |
| 415 6-S4  | Sask       | 0.208    | 0.300    | 0.268  | 0.330       | 0.69   | 0.89   | Neg        |
| 416 6-S5  | Sask       | 0.689    | 0.300    | 0.837  | 0.330       | 2.30   | 2.79   | Both +     |
| 417 6-S6  | Sask       | 0.238    | 0.300    | 0.215  | 0.330       | 0.79   | 0.72   | Neg        |
| 418 6-S7  | Sask       | 0.130    | 0.300    | 0.137  | 0.330       | 0.43   | 0.46   | Neg        |
| 419 6-S8  | Sask       | 0.197    | 0.300    | 0.186  | 0.330       | 0.66   | 0.62   | Neg        |
| 420 6-S9  | Sask       | 0.292    | 0.300    | 0.314  | 0.330       | 0.97   | 1.05   | swORF2 +   |
| 421 6-S10 | Sask       | 0.212    | 0.300    | 0.211  | 0.330       | 0.71   | 0.70   | Neg        |
| 422 6-S11 | Sask       | 0.251    | 0.300    | 0.262  | 0.330       | 0.84   | 0.87   | Neg        |
| 423 6-S12 | Sask       | 0.436    | 0.300    | 0.553  | 0.330       | 1.45   | 1.84   | Both +     |
| 424 6-S13 | Sask       | 0.222    | 0.300    | 0.243  | 0.330       | 0.74   | 0.81   | Neg        |
| 425 6-S14 | Sask       | 0.263    | 0.300    | 0.315  | 0.330       | 0.88   | 1.05   | swORF2 +   |
| 426 6-S15 | Sask       | 0.210    | 0.300    | 0.224  | 0.330       | 0.70   | 0.75   | Neg        |
| 427 7-S1  | Sask       | 0.360    | 0.300    | 0.469  | 0.330       | 1.20   | 1.56   | Both +     |
| 428 7-S2  | Sask       | 0.319    | 0.300    | 0.425  | 0.330       | 1.06   | 1.42   | Both +     |
| 429 7-S3  | Sask       | 0.146    | 0.300    | 0.121  | 0.330       | 0.49   | 0.40   | Neg        |
| 430 7-S4  | Sask       | 0.469    | 0.300    | 0.679  | 0.330       | 1.56   | 2.26   | Both +     |
| 431 7-S5  | Sask       | 0.494    | 0.300    | 0.722  | 0.330       | 1.65   | 2.41   | Both +     |
| 432 7-S6  | Sask       | 0.191    | 0.300    | 0.223  | 0.330       | 0.64   | 0.74   | Neg        |
| 433 7-S7  | Sask       | 0.251    | 0.300    | 0.243  | 0.330       | 0.84   | 0.81   | Neg        |
| 434 7-S8  | Sask       | 0.177    | 0.300    | 0.156  | 0.330       | 0.59   | 0.52   | Neg        |
| 435 7-S9  | Sask       | 0.448    | 0.300    | 0.428  | 0.330       | 1.49   | 1.43   | Both +     |
| 436 7-S10 | Sask       | 0.179    | 0.300    | 0.194  | 0.330       | 0.60   | 0.65   | Neg        |
| 437 7-S11 | Sask       | 0.653    | 0.300    | 0.681  | 0.330       | 2.18   | 2.27   | Both +     |
| 438 7-S12 | Sask       | 0.286    | 0.300    | 0.327  | 0.330       | 0.95   | 1.09   | swORF2 +   |
| 439 7-S13 | Sask       | 0.162    | 0.300    | 0.147  | 0.330       | 0.54   | 0.49   | Neg        |
| 440 7-S14 | Sask       | 0.553    | 0.300    | 0.560  | 0.330       | 1.84   | 1.87   | Both +     |
| 441 7-S15 | Sask       | 0.449    | 0.300    | 0.367  | 0.330       | 1.50   | 1.22   | Both +     |
| 442 7-S16 | Sask       | 0.227    | 0.300    | 0.221  | 0.330       | 0.76   | 0.74   | Neg        |
| 443 7-S17 | Sask       | 0.141    | 0.300    | 0.136  | 0.330       | 0.47   | 0.45   | Neg        |
| 444 7-S18 | Sask       | 0.290    | 0.300    | 0.350  | 0.330       | 0.97   | 1.17   | swORF2 +   |
| 445 7-S19 | Sask       | 0.367    | 0.300    | 0.369  | 0.330       | 1.22   | 1.23   | Both +     |
| 446 7-S20 | Sask       | 0.162    | 0.300    | 0.116  | 0.330       | 0.54   | 0.39   | Neg        |
| 447 7-S21 | Sask       | 0.210    | 0.300    | 0.208  | 0.330       | 0.70   | 0.69   | Neg        |
| 448 9-S1  | Sask       | 0.332    | 0.300    | 0.308  | 0.330       | 1.11   | 1.03   | Both +     |
| 449 9-S2  | Sask       | 0.413    | 0.300    | 0.387  | 0.330       | 1.38   | 1.29   | Both +     |
| 450 9-S3  | Sask       | 0.442    | 0.300    | 0.396  | 0.330       | 1.47   | 1.32   | Both +     |
| 451 9-S4  | Sask       | 0.378    | 0.300    | 0.452  | 0.330       | 1.26   | 1.51   | Both +     |
| 452 9-S5  | Sask       | 0.776    | 0.300    | 0.880  | 0.330       | 2.59   | 2.93   | Both +     |
| 453 9-S6  | Sask       | 0.163    | 0.300    | 0.200  | 0.330       | 0.54   | 0.67   | Neg        |
| 454 9-S7  | Sask       | 0.279    | 0.300    | 0.246  | 0.330       | 0.93   | 0.82   | Neg        |
| 455 9-S8  | Sask       | 0.300    | 0.300    | 0.325  | 0.330       | 1.00   | 1.08   | Both +     |
| 456 9-S9  | Sask       | 0.202    | 0.300    | 0.207  | 0.330       | 0.67   | 0.69   | Neg        |
| 457 9-S10 | Sask       | 0.264    | 0.300    | 0.169  | 0.330       | 0.88   | 0.56   | Neg        |
| 458 9-S11 | Sask       | 0.425    | 0.300    | 0.483  | 0.330       | 1.42   | 1.61   | Both +     |
| 459 9-S12 | Sask       | 0.346    | 0.300    | 0.335  | 0.330       | 1.15   | 1.12   | Both +     |
| 460 9-S13 | Sask       | 0.383    | 0.300    | 0.349  | 0.330       | 1.28   | 1.16   | Both +     |
| 461 9-S14 | Sask       | 0.174    | 0.300    | 0.146  | 0.330       | 0.58   | 0.49   | Neg        |
| 462 9-S15 | Sask       | 0.474    | 0.300    | 0.362  | 0.330       | 1.58   | 1.21   | Both +     |
| 463 9-S16 | Sask       | 0.315    | 0.300    | 0.274  | 0.330       | 1.05   | 0.91   | humSAR55 + |
| 464 9-S17 | Sask       | 0.192    | 0.300    | 0.157  | 0.330       | 0.64   | 0.52   | Neg        |
| 465 1-1   | Kor        | 0.127    | 0.300    | 0.085  | 0.330       | 0.42   | 0.28   | Neg        |
| 466 1-2   | Kor        | 0.097    | 0.300    | 0.079  | 0.330       | 0.32   | 0.26   | Neg        |
| 467 1-3   | Kor        | 0.139    | 0.300    | 0.113  | 0.330       | 0.46   | 0.38   | Neg        |
| 468 1-4   | Kor        | 0.130    | 0.300    | 0.103  | 0.330       | 0.43   | 0.34   | Neg        |
| 469 1-5   | Kor        | 0.210    | 0.300    | 0.129  | 0.330       | 0.70   | 0.43   | Neg        |

Figure 21

| Name      | Sample Date | OD       |                 |          | Sample/Coff |        | Result |          |
|-----------|-------------|----------|-----------------|----------|-------------|--------|--------|----------|
|           |             | humSAR55 | Cutoff 1 swORF2 | Cutoff 2 | humSAR55    | swORF2 |        |          |
| 470 1-6   | Kor         | 0.159    | 0.300           | 0.116    | 0.330       | 0.53   | 0.39   | Neg      |
| 471 1-7   | Kor         | 0.271    | 0.300           | 0.236    | 0.330       | 0.90   | 0.79   | Neg      |
| 472 1-8   | Kor         | 0.174    | 0.300           | 0.148    | 0.330       | 0.58   | 0.49   | Neg      |
| 473 1-9   | Kor         | 0.093    | 0.300           | 0.075    | 0.330       | 0.31   | 0.25   | Neg      |
| 474 1-10  | Kor         | 0.131    | 0.300           | 0.094    | 0.330       | 0.44   | 0.31   | Neg      |
| 475 1-11  | Kor         | 0.091    | 0.300           | 0.072    | 0.330       | 0.30   | 0.24   | Neg      |
| 476 1-12  | Kor         | 0.105    | 0.300           | 0.078    | 0.330       | 0.35   | 0.26   | Neg      |
| 477 1-13  | Kor         | 0.115    | 0.300           | 0.081    | 0.330       | 0.38   | 0.27   | Neg      |
| 478 1-14  | Kor         | 0.130    | 0.300           | 0.122    | 0.330       | 0.43   | 0.41   | Neg      |
| 479 1-15  | Kor         | 0.078    | 0.300           | 0.073    | 0.330       | 0.26   | 0.24   | Neg      |
| 480 1-16  | Kor         | 0.101    | 0.300           | 0.076    | 0.330       | 0.34   | 0.25   | Neg      |
| 481 1-17  | Kor         | 0.128    | 0.300           | 0.082    | 0.330       | 0.43   | 0.27   | Neg      |
| 482 1-18  | Kor         | 0.132    | 0.300           | 0.081    | 0.330       | 0.44   | 0.27   | Neg      |
| 483 1-19  | Kor         | 0.109    | 0.300           | 0.075    | 0.330       | 0.36   | 0.25   | Neg      |
| 484 1-20  | Kor         | 0.185    | 0.300           | 0.155    | 0.330       | 0.62   | 0.52   | Neg      |
| 485 2-1   | Kor         | 0.661    | 0.300           | 0.655    | 0.330       | 2.20   | 2.18   | Both +   |
| 486 2-2   | Kor         | 0.178    | 0.300           | 0.169    | 0.330       | 0.59   | 0.56   | Neg      |
| 487 2-3   | Kor         | 1.661    | 0.300           | 1.672    | 0.330       | 5.54   | 5.57   | Both +   |
| 488 2-4   | Kor         | 0.201    | 0.300           | 0.107    | 0.330       | 0.67   | 0.36   | Neg      |
|           | Kor         | 0.181    | 0.300           | 0.099    | 0.330       | 0.60   | 0.33   | Neg      |
|           | Kor         | 0.177    | 0.300           | 0.106    | 0.330       | 0.59   | 0.35   | Neg      |
| 491 2-7   | Kor         | 0.129    | 0.300           | 0.091    | 0.330       | 0.43   | 0.30   | Neg      |
| 492 2-8   | Kor         | 0.139    | 0.300           | 0.095    | 0.330       | 0.46   | 0.32   | Neg      |
| 493 2-9   | Kor         | 0.125    | 0.300           | 0.096    | 0.330       | 0.42   | 0.32   | Neg      |
| 494 2-10  | Kor         | 0.139    | 0.300           | 0.084    | 0.330       | 0.46   | 0.28   | Neg      |
| 495 2-11  | Kor         | 0.117    | 0.300           | 0.088    | 0.330       | 0.39   | 0.29   | Neg      |
| 496 2-12  | Kor         | 0.170    | 0.300           | 0.090    | 0.330       | 0.57   | 0.30   | Neg      |
| 497 2-13  | Kor         | 1.646    | 0.300           | 1.381    | 0.330       | 5.49   | 4.60   | Both +   |
| 498 2-14  | Kor         | 0.287    | 0.300           | 0.208    | 0.330       | 0.96   | 0.69   | Neg      |
| 499 2-15  | Kor         | 0.132    | 0.300           | 0.129    | 0.330       | 0.44   | 0.43   | Neg      |
| 500 2-16  | Kor         | 0.204    | 0.300           | 0.123    | 0.330       | 0.68   | 0.41   | Neg      |
| 501 2-17  | Kor         | 0.135    | 0.300           | 0.148    | 0.330       | 0.45   | 0.49   | Neg      |
| 502 2-18  | Kor         | 0.374    | 0.300           | 0.300    | 0.330       | 1.25   | 1.00   | Both +   |
| 503 2-19  | Kor         | 0.122    | 0.300           | 0.128    | 0.330       | 0.41   | 0.43   | Neg      |
| 504 2-20  | Kor         | 0.170    | 0.300           | 0.173    | 0.330       | 0.57   | 0.58   | Neg      |
| 505 3-1   | Kor         | 0.431    | 0.300           | 0.336    | 0.330       | 1.44   | 1.12   | Both +   |
| 506 3-2   | Kor         | 1.968    | 0.300           | 2.116    | 0.330       | 6.56   | 7.05   | Both +   |
| 507 3-3   | Kor         | 0.536    | 0.300           | 0.585    | 0.330       | 1.79   | 1.95   | Both +   |
| 508 3-4   | Kor         | 0.508    | 0.300           | 0.645    | 0.330       | 1.69   | 2.15   | Both +   |
| 509 3-5   | Kor         | 0.274    | 0.300           | 0.360    | 0.330       | 0.91   | 1.20   | swORF2 + |
| 510 3-6   | Kor         | 0.257    | 0.300           | 0.200    | 0.330       | 0.86   | 0.67   | Neg      |
| 511 3-7   | Kor         | 0.081    | 0.300           | 0.089    | 0.330       | 0.27   | 0.30   | Neg      |
| 512 3-8   | Kor         | 0.068    | 0.300           | 0.071    | 0.330       | 0.23   | 0.24   | Neg      |
| 513 3-9   | Kor         | 0.102    | 0.300           | 0.100    | 0.330       | 0.34   | 0.33   | Neg      |
| 514 3-10  | Kor         | 0.130    | 0.300           | 0.117    | 0.330       | 0.43   | 0.39   | Neg      |
| 515 3-11  | Kor         | 0.303    | 0.300           | 0.353    | 0.330       | 1.01   | 1.18   | Both +   |
| 516 3-12  | Kor         | 1.930    | 0.300           | 2.041    | 0.330       | 6.43   | 6.80   | Both +   |
| 517 3-13  | Kor         | 1.584    | 0.300           | 1.767    | 0.330       | 5.28   | 5.89   | Both +   |
| 518 3-14  | Kor         | 0.333    | 0.300           | 0.376    | 0.330       | 1.11   | 1.25   | Both +   |
| 519 3-15  | Kor         | 0.912    | 0.300           | 1.187    | 0.330       | 3.04   | 3.96   | Both +   |
| 520 3-16  | Kor         | 0.581    | 0.300           | 0.533    | 0.330       | 1.94   | 1.78   | Both +   |
| 521 3-17  | Kor         | 1.098    | 0.300           | 1.228    | 0.330       | 3.66   | 4.09   | Both +   |
| 522 3-18  | Kor         | 1.027    | 0.300           | 1.140    | 0.330       | 3.42   | 3.80   | Both +   |
| 523 3-19  | Kor         | 1.530    | 0.300           | 1.970    | 0.330       | 5.10   | 6.57   | Both +   |
| 524 3-20  | Kor         | 1.643    | 0.300           | 1.454    | 0.330       | 5.48   | 4.85   | Both +   |
| 1 Kor 5.1 | Kor         | 1.927    | 0.326           | 1.447    | 0.325       | 5.91   | 4.45   | Both +   |
| 2 Kor 5.2 | Kor         | 1.583    | 0.326           | 1.258    | 0.325       | 4.86   | 3.87   | Both +   |

Figure 2J

| Name        | SampleDate | OD       |                 |          | Sample/Coff |        | Result |         |
|-------------|------------|----------|-----------------|----------|-------------|--------|--------|---------|
|             |            | humSARS5 | Cutoff 1 swORF2 | Cutoff 2 | humSARS5    | swORF2 |        |         |
| 3 Kor 5.3   | Kor        | 0.511    | 0.326           | 0.311    | 0.325       | 1.57   | 0.96   | sar55 + |
| 4 Kor 5.4   | Kor        | 0.436    | 0.326           | 0.374    | 0.325       | 1.34   | 1.15   | Both +  |
| 5 Kor 5.5   | Kor        | 0.645    | 0.326           | 0.356    | 0.325       | 1.98   | 1.10   | Both +  |
| 6 Kor 5.6   | Kor        | 2.678    | 0.326           | 2.278    | 0.325       | 8.21   | 7.01   | Both +  |
| 7 Kor 5.7   | Kor        | 1.309    | 0.326           | 0.812    | 0.325       | 4.02   | 2.50   | Both +  |
| 8 Kor 5.8   | Kor        | 0.230    | 0.326           | 0.161    | 0.325       | 0.71   | 0.50   | Neg     |
| 9 Kor 5.9   | Kor        | 0.246    | 0.326           | 0.181    | 0.325       | 0.75   | 0.56   | Neg     |
| 10 Kor 5.10 | Kor        | 2.185    | 0.326           | 1.464    | 0.325       | 6.70   | 4.50   | Both +  |
| 11 Kor 5.11 | Kor        | 0.281    | 0.326           | 0.241    | 0.325       | 0.86   | 0.74   | Neg     |
| 12 Kor 5.12 | Kor        | 0.166    | 0.326           | 0.127    | 0.325       | 0.51   | 0.39   | Neg     |
| 13 Kor 5.13 | Kor        | 0.168    | 0.326           | 0.102    | 0.325       | 0.52   | 0.31   | Neg     |
| 14 Kor 5.14 | Kor        | 0.379    | 0.326           | 0.267    | 0.325       | 1.16   | 0.82   | sar55 + |
| 15 Kor 5.15 | Kor        | 0.338    | 0.326           | 0.252    | 0.325       | 1.04   | 0.78   | sar55 + |
| 16 Kor 5.16 | Kor        | 0.242    | 0.326           | 0.163    | 0.325       | 0.74   | 0.50   | Neg     |
| 17 Kor 5.17 | Kor        | 0.182    | 0.326           | 0.114    | 0.325       | 0.56   | 0.35   | Neg     |
| 18 Kor 5.18 | Kor        | 0.199    | 0.326           | 0.137    | 0.325       | 0.61   | 0.42   | Neg     |
| 19 Kor 5.19 | Kor        | 0.330    | 0.326           | 0.180    | 0.325       | 1.01   | 0.55   | sar55 + |
| 20 Kor 5.20 | Kor        | 0.277    | 0.326           | 0.180    | 0.325       | 0.85   | 0.55   | Neg     |
| 21 Kor 6.1  | Kor        | 0.387    | 0.326           | 0.222    | 0.325       | 1.19   | 0.68   | sar55 + |
| 22 Kor 6.2  | Kor        | 0.137    | 0.326           | 0.091    | 0.325       | 0.42   | 0.28   | Neg     |
| 23 Kor 6.3  | Kor        | 1.444    | 0.326           | 0.892    | 0.325       | 4.43   | 2.74   | Both +  |
| 24 Kor 6.4  | Kor        | 0.709    | 0.326           | 0.461    | 0.325       | 2.17   | 1.42   | Both +  |
| 25 Kor 6.5  | Kor        | 0.359    | 0.326           | 0.233    | 0.325       | 1.10   | 0.72   | sar55 + |
| 26 Kor 6.6  | Kor        | 1.531    | 0.326           | 1.147    | 0.325       | 4.70   | 3.53   | Both +  |
| 27 Kor 6.7  | Kor        | 0.305    | 0.326           | 0.137    | 0.325       | 0.94   | 0.42   | Neg     |
| 28 Kor 6.8  | Kor        | 0.793    | 0.326           | 0.544    | 0.325       | 2.43   | 1.67   | Both +  |
| 29 Kor 6.9  | Kor        | 0.687    | 0.326           | 0.456    | 0.325       | 2.11   | 1.40   | Both +  |
| 30 Kor 6.10 | Kor        | 0.271    | 0.326           | 0.199    | 0.325       | 0.83   | 0.61   | Neg     |
| 31 Kor 6.11 | Kor        | 0.109    | 0.326           | 0.077    | 0.325       | 0.33   | 0.24   | Neg     |
| 32 Kor 6.12 | Kor        | 0.622    | 0.326           | 0.382    | 0.325       | 1.91   | 1.18   | Both +  |
| 33 Kor 6.13 | Kor        | 0.135    | 0.326           | 0.076    | 0.325       | 0.41   | 0.23   | Neg     |
| 34 Kor 6.14 | Kor        | 0.648    | 0.326           | 0.444    | 0.325       | 1.99   | 1.37   | Both +  |
| 35 Kor 6.15 | Kor        | 0.136    | 0.326           | 0.096    | 0.325       | 0.42   | 0.30   | Neg     |
| 36 Kor 6.16 | Kor        | 0.664    | 0.326           | 0.515    | 0.325       | 2.04   | 1.58   | Both +  |
| 37 Kor 6.19 | Kor        | 0.667    | 0.326           | 0.520    | 0.325       | 2.05   | 1.60   | Both +  |
| 38 Kor 6.20 | Kor        | 0.115    | 0.326           | 0.099    | 0.325       | 0.35   | 0.30   | Neg     |
| 1 Kor 8.1   | Kor        | 0.452    | 0.337           | 0.599    | 0.328       | 1.34   | 1.83   | Both +  |
| 2 Kor 8.2   | Kor        | 0.244    | 0.337           | 0.247    | 0.328       | 0.72   | 0.75   | Neg     |
| 3 Kor 8.3   | Kor        | 1.167    | 0.337           | 1.249    | 0.328       | 3.46   | 3.81   | Both +  |
| 4 Kor 8.4   | Kor        | 0.532    | 0.337           | 0.451    | 0.328       | 1.58   | 1.38   | Both +  |
| 5 Kor 8.5   | Kor        | 0.548    | 0.337           | 0.670    | 0.328       | 1.63   | 2.04   | Both +  |
| 6 Kor 8.6   | Kor        | 0.842    | 0.337           | 0.948    | 0.328       | 2.50   | 2.89   | Both +  |
| 7 Kor 8.7   | Kor        | 0.055    | 0.337           | 0.058    | 0.328       | 0.16   | 0.18   | Neg     |
| 8 Kor 8.8   | Kor        | 0.935    | 0.337           | 0.674    | 0.328       | 2.77   | 2.05   | Both +  |
| 9 Kor 8.9   | Kor        | 1.115    | 0.337           | 1.021    | 0.328       | 3.31   | 3.11   | Both +  |
| 10 Kor 8.10 | Kor        | 0.581    | 0.337           | 0.292    | 0.328       | 1.72   | 0.89   | sar55 + |
| 11 Kor 8.11 | Kor        | 0.056    | 0.337           | 0.059    | 0.328       | 0.17   | 0.18   | Neg     |
| 12 Kor 8.12 | Kor        | 0.198    | 0.337           | 0.213    | 0.328       | 0.59   | 0.65   | Neg     |
| 13 Kor 8.13 | Kor        | 0.620    | 0.337           | 0.673    | 0.328       | 1.84   | 2.05   | Both +  |
| 14 Kor 8.14 | Kor        | 0.787    | 0.337           | 0.699    | 0.328       | 2.34   | 2.13   | Both +  |
| 15 Kor 8.15 | Kor        | 0.510    | 0.337           | 0.374    | 0.328       | 1.51   | 1.14   | Both +  |
| 16 Kor 8.16 | Kor        | 1.646    | 0.337           | 1.681    | 0.328       | 4.88   | 5.13   | Both +  |
| 17 Kor 8.17 | Kor        | 0.147    | 0.337           | 0.111    | 0.328       | 0.44   | 0.34   | Neg     |
| 18 Kor 8.18 | Kor        | 0.461    | 0.337           | 0.357    | 0.328       | 1.37   | 1.09   | Both +  |
| 19 Kor 8.19 | Kor        | 0.304    | 0.337           | 0.245    | 0.328       | 0.90   | 0.75   | Neg     |
| 20 Kor 8.20 | Kor        | 0.146    | 0.337           | 0.119    | 0.328       | 0.43   | 0.36   | Neg     |
| 21 CM1-1    | Kor        | 0.540    | 0.337           | 0.368    | 0.328       | 1.60   | 1.12   | Both +  |

Figure 2K

| Name      | SampleDate | OD       |          |        | Sample/Coff |        | Result |          |
|-----------|------------|----------|----------|--------|-------------|--------|--------|----------|
|           |            | humSAR55 | Cutoff 1 | swORF2 | humSAR55    | swORF2 |        |          |
| 22 CM1-2  | Kor        | 0.312    | 0.337    | 0.250  | 0.328       | 0.93   | 0.76   | Neg      |
| 23 CM1-3  | Kor        | 0.305    | 0.337    | 0.367  | 0.328       | 0.91   | 1.12   | swORF2 + |
| 24 CM1-4  | Kor        | 1.615    | 0.337    | 1.606  | 0.328       | 4.79   | 4.90   | Both +   |
| 25 CM1-5  | Kor        | 1.051    | 0.337    | 1.074  | 0.328       | 3.12   | 3.27   | Both +   |
| 26 CM1-6  | Kor        | 0.435    | 0.337    | 0.231  | 0.328       | 1.29   | 0.70   | sar55 +  |
| 27 CM1-7  | Kor        | 0.548    | 0.337    | 0.378  | 0.328       | 1.63   | 1.16   | Both +   |
| 28 CM1-8  | Kor        | 0.408    | 0.337    | 0.417  | 0.328       | 1.21   | 1.27   | Both +   |
| 29 CM1-9  | Kor        | 1.231    | 0.337    | 0.961  | 0.328       | 3.65   | 2.93   | Both +   |
| 30 CM1-10 | Kor        | 0.608    | 0.337    | 0.533  | 0.328       | 1.80   | 1.63   | Both +   |
| 31 CM1-11 | Kor        | 0.367    | 0.337    | 0.326  | 0.328       | 1.09   | 0.99   | sar55 +  |
| 32 CM2-1  | Kor        | 1.145    | 0.337    | 0.834  | 0.328       | 3.40   | 2.54   | Both +   |
| 33 CM2-2  | Kor        | 0.477    | 0.337    | 0.407  | 0.328       | 1.42   | 1.24   | Both +   |
| 34 CM2-3  | Kor        | 0.761    | 0.337    | 0.523  | 0.328       | 2.26   | 1.59   | Both +   |
| 35 CM2-4  | Kor        | 1.499    | 0.337    | 1.812  | 0.328       | 4.45   | 5.52   | Both +   |
| 36 CM2-5  | Kor        | 0.342    | 0.337    | 0.423  | 0.328       | 1.01   | 1.29   | Both +   |
| 37 CM2-6  | Kor        | 0.422    | 0.337    | 0.601  | 0.328       | 1.25   | 1.83   | Both +   |
| 38 CM2-7  | Kor        | 0.264    | 0.337    | 0.255  | 0.328       | 0.78   | 0.7    | Neg      |
| 39 CM2-8  | Kor        | 0.358    | 0.337    | 0.299  | 0.328       | 1.06   | 0.91   | sar55 +  |
| 40 CM2-9  | Kor        | 0.329    | 0.337    | 0.260  | 0.328       | 0.98   | 0.79   | Neg      |
| 41 CM2-10 | Kor        | 0.308    | 0.337    | 0.430  | 0.328       | 0.91   | 1.31   | swORF2 + |
| 42 CM3-1  | Kor        | 0.259    | 0.337    | 0.335  | 0.328       | 0.77   | 1.02   | swORF2 + |
| 43 CM3-2  | Kor        | 0.279    | 0.337    | 0.233  | 0.328       | 0.83   | 0.71   | Neg      |
| 44 CM3-3  | Kor        | 0.657    | 0.337    | 0.628  | 0.328       | 1.95   | 1.91   | Both +   |
| 45 CM3-4  | Kor        | 0.591    | 0.337    | 0.371  | 0.328       | 1.75   | 1.13   | Both +   |
| 46 CM3-5  | Kor        | 0.161    | 0.337    | 0.108  | 0.328       | 0.48   | 0.33   | Neg      |
| 47 CM3-6  | Kor        | 0.195    | 0.337    | 0.238  | 0.328       | 0.58   | 0.73   | Neg      |
| 48 CM3-7  | Kor        | 0.573    | 0.337    | 0.585  | 0.328       | 1.70   | 1.78   | Both +   |
| 49 CM3-8  | Kor        | 0.482    | 0.337    | 0.471  | 0.328       | 1.43   | 1.44   | Both +   |
| 50 CM3-9  | Kor        | 0.345    | 0.337    | 0.285  | 0.328       | 1.02   | 0.87   | sar55 +  |
| 51 CM3-10 | Kor        | 0.434    | 0.337    | 0.203  | 0.328       | 1.29   | 0.62   | sar55 +  |
| 52 CM4-1  | Kor        | 0.290    | 0.337    | 0.308  | 0.328       | 0.86   | 0.94   | Neg      |
| 53 CM4-2  | Kor        | 0.780    | 0.337    | 0.691  | 0.328       | 2.31   | 2.11   | Both +   |
| 54 CM4-3  | Kor        | 0.751    | 0.337    | 0.541  | 0.328       | 2.23   | 1.65   | Both +   |
| 55 CM4-4  | Kor        | 0.434    | 0.337    | 0.376  | 0.328       | 1.29   | 1.15   | Both +   |
| 56 CM4-5  | Kor        | 0.600    | 0.337    | 0.476  | 0.328       | 1.78   | 1.45   | Both +   |
| 57 CM4-6  | Kor        | 1.034    | 0.337    | 0.803  | 0.328       | 3.07   | 2.45   | Both +   |
| 58 CM4-7  | Kor        | 1.079    | 0.337    | 0.776  | 0.328       | 3.20   | 2.37   | Both +   |
| 59 CM4-8  | Kor        | 0.443    | 0.337    | 0.564  | 0.328       | 1.31   | 1.72   | Both +   |
| 60 CM4-9  | Kor        | 0.452    | 0.337    | 0.509  | 0.328       | 1.34   | 1.55   | Both +   |
| 61 CM4-10 | Kor        | 1.025    | 0.337    | 1.042  | 0.328       | 3.04   | 3.18   | Both +   |
| 62 CM5-1  | Kor        | 2.209    | 0.337    | 2.007  | 0.328       | 6.55   | 6.12   | Both +   |
| 63 CM5-2  | Kor        | 0.309    | 0.337    | 0.324  | 0.328       | 0.92   | 0.99   | Neg      |
| 64 CM5-3  | Kor        | 2.100    | 0.337    | 1.996  | 0.328       | 6.23   | 6.09   | Both +   |
| 65 CM5-4  | Kor        | 0.180    | 0.337    | 0.125  | 0.328       | 0.53   | 0.38   | Neg      |
| 66 CM5-5  | Kor        | 0.156    | 0.337    | 0.097  | 0.328       | 0.46   | 0.30   | Neg      |
| 67 CM5-6  | Kor        | 1.311    | 0.337    | 1.035  | 0.328       | 3.89   | 3.16   | Both +   |
| 68 CM5-7  | Kor        | 1.950    | 0.337    | 1.686  | 0.328       | 5.79   | 5.14   | Both +   |
| 69 CM5-8  | Kor        | 0.176    | 0.337    | 0.117  | 0.328       | 0.52   | 0.36   | Neg      |
| 70 CM5-9  | Kor        | 0.168    | 0.337    | 0.135  | 0.328       | 0.50   | 0.41   | Neg      |
| 71 CM5-10 | Kor        | 0.664    | 0.337    | 0.782  | 0.328       | 1.97   | 2.38   | Both +   |
| 72 CM6-1  | Kor        | 0.215    | 0.337    | 0.297  | 0.328       | 0.64   | 0.91   | Neg      |
| 73 CM6-2  | Kor        | 0.280    | 0.337    | 0.263  | 0.328       | 0.83   | 0.80   | Neg      |
| 74 CM6-3  | Kor        | 0.318    | 0.337    | 0.342  | 0.328       | 0.94   | 1.04   | swORF2 + |
| 75 CM6-4  | Kor        | 0.305    | 0.337    | 0.216  | 0.328       | 0.91   | 0.66   | Neg      |
| 76 CM6-5  | Kor        | 0.182    | 0.337    | 0.135  | 0.328       | 0.54   | 0.41   | Neg      |
| 77 CM6-6  | Kor        | 0.301    | 0.337    | 0.279  | 0.328       | 0.89   | 0.85   | Neg      |
| 78 CM6-7  | Kor        | 0.216    | 0.337    | 0.178  | 0.328       | 0.64   | 0.54   | Neg      |

Figure 2L

| Name               | SampleDate   | OD       |                 |        | Sample/Coff |        | Result |          |
|--------------------|--------------|----------|-----------------|--------|-------------|--------|--------|----------|
|                    |              | humSAR55 | Cutoff 1 swORF2 | Cutoff | humSAR55    | swORF2 |        |          |
| 79 CM6-8           | Kor          | 0.231    | 0.337           | 0.192  | 0.328       | 0.69   | 0.59   | Neg      |
| 80 CM6-9           | Kor          | 0.240    | 0.337           | 0.177  | 0.328       | 0.71   | 0.54   | Neg      |
| 81 CM6-10          | Kor          | 0.357    | 0.337           | 0.239  | 0.328       | 1.06   | 0.73   | sar55 +  |
| 82 CAD-1           | Kor          | 0.162    | 0.337           | 0.124  | 0.328       | 0.48   | 0.38   | Neg      |
| 83 CAD-2           | Kor          | 0.154    | 0.337           | 0.115  | 0.328       | 0.46   | 0.35   | Neg      |
| 84 CAD-3           | Kor          | 0.152    | 0.337           | 0.251  | 0.328       | 0.45   | 0.77   | Neg      |
| 85 CAD-4           | Kor          | 1.052    | 0.337           | 0.849  | 0.328       | 3.12   | 2.59   | Both +   |
| 86 CAD-5           | Kor          | 1.014    | 0.337           | 0.882  | 0.328       | 3.01   | 2.68   | Both +   |
| 87 CAD-6           | Kor          | 1.699    | 0.337           | 1.276  | 0.328       | 5.04   | 3.89   | Both -   |
| 88 CAD-7           | Kor          | 0.286    | 0.337           | 0.197  | 0.328       | 0.85   | 0.60   | Neg      |
| 89 CAD-8           | Kor          | 0.514    | 0.337           | 0.363  | 0.328       | 1.53   | 1.11   | Both +   |
| 90 CAD-9           | Kor          | 0.590    | 0.337           | 0.479  | 0.328       | 1.75   | 1.46   | Both +   |
| 91 CAD-10          | Kor          | 0.655    | 0.337           | 0.341  | 0.328       | 1.94   | 1.04   | Both +   |
| 92 CAD-11          | Kor          | 1.348    | 0.332           | 1.536  | 0.328       | 4.00   | 4.58   | Both +   |
| 3 0301012999-1DO   | USA1         | 0.618    | 0.332           | 0.575  | 0.327       | 1.86   | 1.76   | Both +   |
| 4 0301012999-2DO   | USA1         | 0.838    | 0.332           | 0.715  | 0.327       | 2.52   | 2.19   | Both -   |
| 5 0301012999-3DO   | USA1         | 0.509    | 0.332           | 0.436  | 0.327       | 1.53   | 1.33   | Both -   |
| 6 0301012999-4DO   | USA1         | 0.121    | 0.332           | 0.084  | 0.327       | 0.36   | 0.26   | Neg      |
| 7 0301012999-5DO   | USA1         | 0.435    | 0.332           | 0.407  | 0.327       | 1.31   | 1.24   | Both +   |
| 8 0301012999-6DO   | USA1         | 0.154    | 0.332           | 0.067  | 0.327       | 0.46   | 0.20   | Neg      |
| 9 0301012999-7DO   | USA1         | 0.109    | 0.332           | 0.085  | 0.327       | 0.33   | 0.26   | Neg      |
| 10 0301012999-8DO  | USA1         | 0.606    | 0.332           | 0.456  | 0.327       | 1.83   | 1.39   | Both +   |
| 11 0301012999-9DO  | USA1         | 0.100    | 0.332           | 0.061  | 0.327       | 0.30   | 0.19   | Neg      |
| 12 0301012999-10DO | USA1         | 0.304    | 0.332           | 0.326  | 0.327       | 0.92   | 1.00   | Neg      |
| 3 1                | 2/25/00 USA1 | 0.183    | 0.332           | 0.219  | 0.329       | 0.55   | 0.67   | Neg      |
| 4 2                | 2/25/00 USA1 | 0.629    | 0.332           | 0.796  | 0.329       | 1.89   | 2.42   | Both +   |
| 5 3                | 2/25/00 USA1 | 0.091    | 0.332           | 0.133  | 0.329       | 0.27   | 0.40   | Neg      |
| 6 4                | 2/25/00 USA1 | 0.141    | 0.332           | 0.154  | 0.329       | 0.42   | 0.47   | Neg      |
| 7 5                | 2/25/00 USA1 | 0.081    | 0.332           | 0.092  | 0.329       | 0.24   | 0.28   | Neg      |
| 8 6                | 2/25/00 USA1 | 0.228    | 0.332           | 0.300  | 0.329       | 0.69   | 0.91   | Neg      |
| 9 7                | 2/25/00 USA1 | 0.210    | 0.332           | 0.231  | 0.329       | 0.63   | 0.70   | Neg      |
| 10 8               | 2/25/00 USA1 | 0.105    | 0.332           | 0.113  | 0.329       | 0.32   | 0.34   | Neg      |
| 11 9               | 2/25/00 USA1 | 0.071    | 0.332           | 0.097  | 0.329       | 0.21   | 0.29   | Neg      |
| 12 10              | 2/25/00 USA1 | 0.080    | 0.332           | 0.103  | 0.329       | 0.24   | 0.31   | Neg      |
| 13 11              | 2/25/00 USA1 | 0.064    | 0.332           | 0.076  | 0.329       | 0.19   | 0.23   | Neg      |
| 14 12              | 2/25/00 USA1 | 0.380    | 0.332           | 0.500  | 0.329       | 1.14   | 1.52   | Both +   |
| 15 13              | 2/25/00 USA1 | 0.527    | 0.332           | 0.600  | 0.329       | 1.59   | 1.82   | Both +   |
| 16 14              | 2/25/00 USA1 | 0.068    | 0.332           | 0.079  | 0.329       | 0.20   | 0.24   | Neg      |
| 17 15              | 2/25/00 USA1 | 0.100    | 0.332           | 0.150  | 0.329       | 0.30   | 0.46   | Neg      |
| 18 16              | 2/25/00 USA1 | 0.223    | 0.332           | 0.281  | 0.329       | 0.67   | 0.85   | Neg      |
| 19 17              | 2/25/00 USA1 | 0.125    | 0.332           | 0.148  | 0.329       | 0.38   | 0.45   | Neg      |
| 20 18              | 2/25/00 USA1 | 0.633    | 0.332           | 0.826  | 0.329       | 1.91   | 2.51   | Both +   |
| 21 19              | 2/25/00 USA1 | 0.178    | 0.332           | 0.192  | 0.329       | 0.54   | 0.58   | Neg      |
| 22 20              | 2/25/00 USA1 | 0.351    | 0.332           | 0.373  | 0.329       | 1.06   | 1.13   | Both +   |
| 23 21              | 2/25/00 USA1 | 0.564    | 0.332           | 0.623  | 0.329       | 1.70   | 1.89   | Both +   |
| 24 22              | 2/25/00 USA1 | 0.070    | 0.332           | 0.068  | 0.329       | 0.21   | 0.21   | Neg      |
| 25 23              | 2/25/00 USA1 | 0.088    | 0.332           | 0.102  | 0.329       | 0.27   | 0.31   | Neg      |
| 26 24              | 2/25/00 USA1 | 0.072    | 0.332           | 0.072  | 0.329       | 0.22   | 0.22   | Neg      |
| 27 25              | 2/25/00 USA1 | 0.076    | 0.332           | 0.072  | 0.329       | 0.23   | 0.22   | Neg      |
| 28 26              | 2/25/00 USA1 | 0.206    | 0.332           | 0.316  | 0.329       | 0.62   | 0.96   | Neg      |
| 29 27              | 2/25/00 USA1 | 0.212    | 0.332           | 0.257  | 0.329       | 0.64   | 0.78   | Neg      |
| 30 28              | 2/25/00 USA1 | 0.319    | 0.332           | 0.424  | 0.329       | 0.96   | 1.29   | swORF2 + |
| 31 29              | 2/25/00 USA1 | 0.072    | 0.332           | 0.084  | 0.329       | 0.22   | 0.26   | Neg      |
| 32 30              | 2/25/00 USA1 | 0.067    | 0.332           | 0.079  | 0.329       | 0.20   | 0.24   | Neg      |
| 33 31              | 2/25/00 USA1 | 0.061    | 0.332           | 0.066  | 0.329       | 0.18   | 0.20   | Neg      |
| 34 32              | 2/25/00 USA1 | 0.238    | 0.332           | 0.300  | 0.329       | 0.72   | 0.91   | Neg      |
| 35 33              | 2/25/00 USA1 | 0.093    | 0.332           | 0.107  | 0.329       | 0.28   | 0.33   | Neg      |

Figure 2M

| Name        | SampleDate   | OD       |                 |          | Sample/Coff |        | Result |          |
|-------------|--------------|----------|-----------------|----------|-------------|--------|--------|----------|
|             |              | humSAR55 | Cutoff 1 swORF2 | Cutoff 2 | humSAR55    | swORF2 |        |          |
| 36 34       | 2/25/00 USA1 | 0.320    | 0.332           | 0.316    | 0.329       | 0.96   | 0.97   | Neg      |
| 37 35       | 2/25/00 USA1 | 0.093    | 0.332           | 0.128    | 0.329       | 0.28   | 0.39   | Neg      |
| 38 36       | 2/25/00 USA1 | 0.223    | 0.332           | 0.372    | 0.329       | 0.67   | 1.13   | swORF2 + |
| 39 37       | 2/25/00 USA1 | 0.065    | 0.332           | 0.071    | 0.329       | 0.20   | 0.22   | Neg      |
| 40 38       | 2/25/00 USA1 | 0.121    | 0.332           | 0.157    | 0.329       | 0.30   | 0.48   | Neg      |
| 41 39       | 2/25/00 USA1 | 0.116    | 0.332           | 0.161    | 0.329       | 0.35   | 0.49   | Neg      |
| 42 40       | 2/25/00 USA1 | 0.174    | 0.332           | 0.234    | 0.329       | 0.52   | 0.71   | Neg      |
| 5 2-1712    | 3/22/00 USA1 | 0.602    | 0.332           | 0.428    | 0.300       | 1.81   | 1.43   | Both +   |
| 6 9-7115    | 3/22/00 USA1 | 0.364    | 0.332           | 0.120    | 0.300       | 1.10   | 0.40   | sar55 +  |
| 7 1-1180    | 3/22/00 USA1 | 0.159    | 0.332           | 0.198    | 0.300       | 0.48   | 0.66   | Neg      |
| 7 20-7260   | 3/22/00 USA1 | 0.272    | 0.332           | 0.106    | 0.300       | 0.82   | 0.35   | Neg      |
| 8 2-1712    | 3/22/00 USA1 | 0.422    | 0.332           | 0.397    | 0.300       | 1.27   | 1.32   | Both +   |
| 8 24-7315   | 3/22/00 USA1 | 0.339    | 0.332           | 0.174    | 0.300       | 1.02   | 0.58   | sar55 +  |
| 9 29-7333   | 3/22/00 USA1 | 0.209    | 0.332           | 0.087    | 0.300       | 0.63   | 0.29   | Neg      |
| 9 3-4511    | 3/22/00 USA1 | 0.121    | 0.332           | 0.143    | 0.300       | 0.36   | 0.48   | Neg      |
| 10 30-7334  | 3/22/00 USA1 | 0.233    | 0.332           | 0.077    | 0.300       | 0.70   | 0.26   | Neg      |
| 10 4-6710   | 3/22/00 USA1 | 0.135    | 0.332           | 0.130    | 0.300       | 0.41   | 0.43   | Neg      |
| 11 34-41746 | 3/22/00 USA1 | 0.468    | 0.332           | 0.241    | 0.300       | 1.41   | 0.80   | sar55 +  |
| 11 35-41740 | 3/22/00 USA1 | 0.094    | 0.332           | 0.118    | 0.300       | 0.28   | 0.39   | Neg      |
|             | 3/22/00 USA1 | 0.301    | 0.332           | 0.179    | 0.300       | 0.91   | 0.60   | Neg      |
| 12 5-6847   | 3/22/00 USA1 | 0.093    | 0.332           | 0.118    | 0.300       | 0.28   | 0.39   | Neg      |
| 13 36-41741 | 3/22/00 USA1 | 0.402    | 0.332           | 0.273    | 0.300       | 1.21   | 0.91   | sar55 +  |
| 13 7-7125   | 3/22/00 USA1 |          |                 | 0.127    | 0.300       | 0.26   | 0.42   | Neg      |
| 14 5-6844   | 3/22/00 USA1 | 1.717    | 0.332           |          | 0.300       | 5.17   | 3.02   | Both +   |
|             | 3/22/00 USA1 | 0.126    | 0.332           | 0.077    | 0.300       | 0.38   | 0.26   | Neg      |
| 15 11-728   | 3/22/00 USA1 | 0.618    | 0.332           | 0.510    | 0.300       | 1.86   | 1.70   | Both +   |
| 15 9-7115   | 3/22/00 USA1 | 0.287    | 0.332           | 0.106    | 0.300       | 0.21   | 0.35   | Neg      |
| 16 10-7119  | 3/22/00 USA1 | 0.118    | 0.332           | 0.097    | 0.300       | 0.36   | 0.32   | Neg      |
| 16 39-41855 | 3/22/00 USA1 | 0.259    | 0.332           | 0.207    | 0.300       | 0.78   | 0.69   | Neg      |
| 17 11-7127  | 3/22/00 USA1 | 0.102    | 0.332           | 0.125    | 0.300       | 0.31   | 0.42   | Neg      |
| 17 41-41867 | 3/22/00 USA1 | 0.532    | 0.332           | 0.361    | 0.300       | 1.60   | 1.20   | Both +   |
| 18 12-7129  | 3/22/00 USA1 | 0.184    | 0.332           | 0.107    | 0.300       | 0.55   | 0.36   | Neg      |
| 18 42-41907 | 3/22/00 USA1 | 0.461    | 0.332           | 0.332    | 0.300       | 1.39   | 1.11   | Both +   |
| 19 13-7130  | 3/22/00 USA1 | 0.115    | 0.332           | 0.138    | 0.300       | 0.35   | 0.46   | Neg      |
| 20 14-7132  | 3/22/00 USA1 | 0.153    | 0.332           | 0.109    | 0.300       | 0.46   | 0.36   | Neg      |
| 21 15-7133  | 3/22/00 USA1 | 0.138    | 0.332           | 0.129    | 0.300       | 0.42   | 0.43   | Neg      |
| 22 16-7171  | 3/22/00 USA1 | 0.106    | 0.338           | 0.089    | 0.300       | 0.31   | 0.30   | Neg      |
| 23 17-7172  | 3/22/00 USA1 | 0.173    | 0.338           | 0.076    | 0.300       | 0.51   | 0.25   | Neg      |
| 24 18-7199  | 3/22/00 USA1 | 0.197    | 0.338           | 0.095    | 0.300       | 0.58   | 0.32   | Neg      |
| 25 19-7259  | 3/22/00 USA1 | 0.107    | 0.338           | 0.075    | 0.300       | 0.32   | 0.25   | Neg      |
| 26 20-7260  | 3/22/00 USA1 | 0.213    | 0.338           | 0.089    | 0.300       | 0.63   | 0.30   | Neg      |
| 27 21-7262  | 3/22/00 USA1 | 0.133    | 0.338           | 0.078    | 0.300       | 0.48   | 0.26   | Neg      |
| 28 22-7275  | 3/22/00 USA1 | 0.156    | 0.338           | 0.088    | 0.300       | 0.46   | 0.29   | Neg      |
| 29 23-7281  | 3/22/00 USA1 | 0.164    | 0.338           | 0.093    | 0.300       | 0.49   | 0.31   | Neg      |
| 30 24-7315  | 3/22/00 USA1 | 0.306    | 0.338           | 0.161    | 0.300       | 0.91   | 0.54   | Neg      |
| 31 25-7316  | 3/22/00 USA1 | 0.136    | 0.338           | 0.098    | 0.300       | 0.40   | 0.33   | Neg      |
| 32 26-7319  | 3/22/00 USA1 | 0.159    | 0.338           | 0.109    | 0.300       | 0.47   | 0.36   | Neg      |
| 33 27-7322  | 3/22/00 USA1 | 0.127    | 0.338           | 0.106    | 0.300       | 0.38   | 0.35   | Neg      |
| 34 28-7326  | 3/22/00 USA1 | 0.126    | 0.338           | 0.075    | 0.300       | 0.37   | 0.25   | Neg      |
| 35 29-7333  | 3/22/00 USA1 | 0.201    | 0.338           | 0.075    | 0.300       | 0.59   | 0.25   | Neg      |
| 36 30-7334  | 3/22/00 USA1 | 0.166    | 0.338           | 0.170    | 0.300       | 0.49   | 0.90   | Neg      |
| 37 31-7335  | 3/22/00 USA1 | 0.189    | 0.338           | 0.073    | 0.300       | 0.56   | 0.24   | Neg      |
| 38 32-7425  | 3/22/00 USA1 | 0.090    | 0.338           | 0.062    | 0.300       | 0.27   | 0.21   | Neg      |
| 39 33-7446  | 3/22/00 USA1 | 0.175    | 0.338           | 0.072    | 0.300       | 0.52   | 0.24   | Neg      |
| 40 34-41746 | 3/22/00 USA1 | 0.328    | 0.338           | 0.157    | 0.300       | 0.97   | 0.52   | Neg      |
| 41 35-41793 | 3/22/00 USA1 | 0.208    | 0.338           | 0.135    | 0.300       | 0.62   | 0.45   | Neg      |
| 42 36-41823 | 3/22/00 USA1 | 0.286    | 0.338           | 0.216    | 0.300       | 0.85   | 0.72   | Neg      |

Figure 2N

| Name            | SampleDate   | OD       |                 |          | Sample/Coff |        | Result |         |
|-----------------|--------------|----------|-----------------|----------|-------------|--------|--------|---------|
|                 |              | humSAR55 | Cutoff 1 swORF2 | Cutoff 2 | humSAR55    | swORF2 |        |         |
| 43 37-41824     | 3/22/00 USA1 | 0.957    | 0.338           | 0.483    | 0.300       | 2.83   | 1.61   | Both +  |
| 44 38-41828     | 3/22/00 USA1 | 0.418    | 0.338           | 0.284    | 0.300       | 1.24   | 0.95   | sar55 + |
| 45 39-41855     | 3/22/00 USA1 | 0.212    | 0.338           | 0.143    | 0.300       | 0.63   | 0.48   | Neg     |
| 46 40-41863     | 3/22/00 USA1 | 0.178    | 0.338           | 0.129    | 0.300       | 0.53   | 0.43   | Neg     |
| 47 41-41867     | 3/22/00 USA1 | 0.489    | 0.338           | 0.307    | 0.300       | 1.45   | 1.02   | Both +  |
| 48 42-41807     | 3/22/00 USA1 | 0.362    | 0.338           | 0.324    | 0.300       | 1.07   | 1.08   | Both +  |
| 49 R7-0799007   | 3/22/00 USA1 | 0.089    | 0.338           | 0.055    | 0.300       | 0.26   | 0.18   | Neg     |
| 50 R31          | 3/22/00 USA1 | 0.070    | 0.338           | 0.059    | 0.300       | 0.21   | 0.20   | Neg     |
| 51 R33          | 3/22/00 USA1 | 0.086    | 0.338           | 0.058    | 0.300       | 0.25   | 0.19   | Neg     |
| 52 R46-0799038  | 3/22/00 USA1 | 0.065    | 0.338           | 0.060    | 0.300       | 0.19   | 0.20   | Neg     |
| 53 R49          | 3/22/00 USA1 | 0.082    | 0.338           | 0.064    | 0.300       | 0.24   | 0.21   | Neg     |
| 54 R66-0799049  | 3/22/00 USA1 | 0.094    | 0.338           | 0.062    | 0.300       | 0.28   | 0.21   | Neg     |
| 55 R80-0799055  | 3/22/00 USA1 | 0.074    | 0.338           | 0.060    | 0.300       | 0.22   | 0.20   | Neg     |
| 56 R134         | 3/22/00 USA1 | 0.115    | 0.338           | 0.058    | 0.300       | 0.34   | 0.19   | Neg     |
| 57 R139         | 3/22/00 USA1 | 0.162    | 0.338           | 0.065    | 0.300       | 0.48   | 0.22   | Neg     |
| 58 R150         | 3/22/00 USA1 | 0.090    | 0.338           | 0.056    | 0.300       | 0.27   | 0.19   | Neg     |
| 59 R168-0799244 | 3/22/00 USA1 | 0.099    | 0.338           | 0.055    | 0.300       | 0.29   | 0.18   | Neg     |
| 60 R169-0799249 | 3/22/00 USA1 | 0.097    | 0.338           | 0.076    | 0.300       | 0.29   | 0.25   | Neg     |
| 61 R195         | 3/22/00 USA1 | 0.058    | 0.338           | 0.052    | 0.300       | 0.17   | 0.17   | Neg     |
| 62 R197         | 3/22/00 USA1 | 0.067    | 0.338           | 0.050    | 0.300       | 0.20   | 0.17   | Neg     |
| 63 R199         | 3/22/00 USA1 | 0.084    | 0.338           | 0.055    | 0.300       | 0.25   | 0.18   | Neg     |
| 64 R213         | 3/22/00 USA1 | 0.087    | 0.338           | 0.060    | 0.300       | 0.26   | 0.20   | Neg     |
| 65 R219         | 3/22/00 USA1 | 0.099    | 0.338           | 0.056    | 0.300       | 0.29   | 0.19   | Neg     |
| 66 R242         | 3/22/00 USA1 | 0.098    | 0.338           | 0.060    | 0.300       | 0.29   | 0.20   | Neg     |
| 67 R246         | 3/22/00 USA1 | 0.095    | 0.338           | 0.058    | 0.300       | 0.28   | 0.19   | Neg     |
| 68 R299         | 3/22/00 USA1 | 0.124    | 0.338           | 0.060    | 0.300       | 0.37   | 0.20   | Neg     |
| 69 R346         | 3/22/00 USA1 | 0.131    | 0.338           | 0.061    | 0.300       | 0.39   | 0.20   | Neg     |
| 70 R347         | 3/22/00 USA1 | 0.077    | 0.338           | 0.057    | 0.300       | 0.23   | 0.19   | Neg     |
| 71 R361         | 3/22/00 USA1 | 0.106    | 0.338           | 0.065    | 0.300       | 0.31   | 0.22   | Neg     |
| 72 R370         | 3/22/00 USA1 | 0.087    | 0.338           | 0.074    | 0.300       | 0.26   | 0.25   | Neg     |
| 73 R374         | 3/22/00 USA1 | 0.062    | 0.338           | 0.052    | 0.300       | 0.18   | 0.17   | Neg     |
| 74 Y22-0799115  | 3/22/00 USA1 | 0.062    | 0.338           | 0.053    | 0.300       | 0.18   | 0.18   | Neg     |
| 75 Y24-0799118  | 3/22/00 USA1 | 0.073    | 0.338           | 0.061    | 0.300       | 0.22   | 0.20   | Neg     |
| 76 Y26          | 3/22/00 USA1 | 0.065    | 0.338           | 0.051    | 0.300       | 0.19   | 0.17   | Neg     |
| 77 Y37          | 3/22/00 USA1 | 0.082    | 0.338           | 0.051    | 0.300       | 0.24   | 0.17   | Neg     |
| 78 Y42          | 3/22/00 USA1 | 0.095    | 0.338           | 0.167    | 0.300       | 0.28   | 0.56   | Neg     |
| 79 Y43          | 3/22/00 USA1 | 0.065    | 0.338           | 0.054    | 0.300       | 0.19   | 0.18   | Neg     |
| 80 Y45          | 3/22/00 USA1 | 0.108    | 0.338           | 0.056    | 0.300       | 0.32   | 0.19   | Neg     |
| 81 Y47          | 3/22/00 USA1 | 0.120    | 0.338           | 0.056    | 0.300       | 0.36   | 0.19   | Neg     |
| 82 Y48          | 3/22/00 USA1 | 0.083    | 0.338           | 0.055    | 0.300       | 0.25   | 0.18   | Neg     |
| 83 Y49-0799139  | 3/22/00 USA1 | 0.073    | 0.338           | 0.056    | 0.300       | 0.22   | 0.19   | Neg     |
| 84 Y51-0799141  | 3/22/00 USA1 | 0.080    | 0.338           | 0.068    | 0.300       | 0.24   | 0.23   | Neg     |
| 85 Y52          | 3/22/00 USA1 | 0.066    | 0.338           | 0.056    | 0.300       | 0.20   | 0.19   | Neg     |
| 86 Y54-0799143  | 3/22/00 USA1 | 0.068    | 0.338           | 0.054    | 0.300       | 0.20   | 0.18   | Neg     |
| 87 Y66-0799155  | 3/22/00 USA1 | 0.060    | 0.338           | 0.053    | 0.300       | 0.18   | 0.18   | Neg     |
| 88 Y68          | 3/22/00 USA1 | 0.085    | 0.338           | 0.054    | 0.300       | 0.25   | 0.18   | Neg     |
| 89 Y74          | 3/22/00 USA1 | 0.084    | 0.338           | 0.060    | 0.300       | 0.25   | 0.20   | Neg     |
| 90 Y83          | 3/22/00 USA1 | 0.126    | 0.338           | 0.052    | 0.300       | 0.37   | 0.17   | Neg     |
| 91 Y89          | 3/22/00 USA1 | 0.125    | 0.338           | 0.053    | 0.300       | 0.37   | 0.18   | Neg     |
| 92 Y90          | 3/22/00 USA1 | 0.063    | 0.338           | 0.054    | 0.300       | 0.19   | 0.18   | Neg     |
| 93 Y94          | 3/22/00 USA1 | 0.075    | 0.338           | 0.057    | 0.300       | 0.22   | 0.19   | Neg     |
| 94 Y77-0799291  | 3/22/00 USA1 | 0.089    | 0.338           | 0.054    | 0.300       | 0.26   | 0.18   | Neg     |

Figure 2O

| Overall Sar55  |     |     |                  |
|----------------|-----|-----|------------------|
| SNORF2         | Neg | Pos | Total            |
|                | Neg | 476 | 35               |
|                | Pos | 24  | 257              |
|                |     | 500 | 292              |
|                |     |     | $\kappa = 0.839$ |
| USA Sar55      |     |     |                  |
| SNORF2         | Neg | Pos | Total            |
|                | Neg | 286 | 5                |
|                | Pos | 8   | 61               |
|                |     | 294 | 66               |
|                |     |     | $\kappa = 0.882$ |
| Korea Sar55    |     |     |                  |
| SNORF2         | Neg | Pos | Total            |
|                | Neg | 88  | 13               |
|                | Pos | 5   | 84               |
|                |     | 93  | 97               |
|                |     |     | $\kappa = 0.811$ |
| Canada Sar55   |     |     |                  |
| SNORF2         | Neg | Pos | Total            |
|                | Neg | 51  | 15               |
|                | Pos | 6   | 80               |
|                |     | 57  | 95               |
|                |     |     | $\kappa = 0.714$ |
| Thailand Sar55 |     |     |                  |
| SNORF2         | Neg | Pos | Total            |
|                | Neg | 26  | 0                |
|                | Pos | 5   | 29               |
|                |     | 31  | 29               |
|                |     |     | $\kappa = 0.834$ |
| China Sar55    |     |     |                  |
| SNORF2         | Neg | Pos | Total            |
|                | Neg | 25  | 2                |
|                | Pos | 0   | 3                |
|                |     | 25  | 5                |
|                |     |     | $\kappa = 0.714$ |

Figure 3A

| anti-HEV EIA |             | OD       |       |             | Sample/CoM  |        |       | Result |          |
|--------------|-------------|----------|-------|-------------|-------------|--------|-------|--------|----------|
| Name         | Sample Date | humSAR55 | coff  | swORF2 coff | humSAR55    | swORF2 | %CV   |        |          |
| 3 P1         | ThaiPH      | 0.200    | 0.328 | 0.144 0.300 | 0.67        | 0.48   |       | Neg    |          |
| 4 P2         | ThaiPH      | 0.265    | 0.328 | 0.179 0.300 | 0.88        | 0.60   |       | Neg    |          |
| 5 P3         | ThaiPH      | 0.836    | 0.328 | 0.642 0.300 | 2.79        | 2.14   | 18.56 | Both + |          |
| 6 P4         | ThaiPH      | 0.126    | 0.328 | 0.114 0.300 | 0.42        | 0.38   |       | Neg    |          |
| 7 P5         | ThaiPH      | 0.121    | 0.328 | 0.107 0.300 | 0.40        | 0.36   |       | Neg    |          |
| 8 P6         | ThaiPH      | 0.136    | 0.328 | 0.116 0.300 | 0.45        | 0.39   |       | Neg    |          |
| 9 P7         | ThaiPH      | 0.122    | 0.328 | 0.108 0.300 | 0.41        | 0.36   |       | Neg    |          |
| 10 CP-1      | ChiPH       | 0.875    | 0.328 | 0.922 0.300 | 2.92        | 3.07   | 3.70  | Both + |          |
| 11 CP-2      | ChiPH       | 0.899    | 0.328 | 0.885 0.300 | 3.00        | 2.95   | 1.11  | Both + |          |
| 12 CP-3      | ChiPH       | 0.875    | 0.328 | 0.939 0.300 | 2.92        | 3.13   | 4.99  | Both + |          |
| 13 CP-4      | ChiPH       | 1.101    | 0.328 | 1.048 0.300 | 3.67        | 3.49   | 3.49  | Both + |          |
| 14 CP-5      | ChiPH       | 0.957    | 0.328 | 0.901 0.300 | 3.19        | 3.00   | 4.26  | Both + |          |
| 15 CP-6      | ChiPH       | 1.034    | 0.328 | 0.860 0.300 | 3.45        | 2.87   | 12.99 | Both + |          |
| 16 CP-7      | ChiPH       | 0.984    | 0.328 | 0.801 0.300 | 3.26        | 2.67   | 14.50 | Both + |          |
| 17 CP-8      | ChiPH       | 1.014    | 0.328 | 0.867 0.300 | 3.38        | 2.89   | 11.05 | Both + |          |
| 18 CP-9      | ChiPH       | 0.973    | 0.328 | 0.835 0.300 | 3.24        | 2.78   | 10.79 | Both + |          |
| 19 CP-10     | ChiPH       | 0.923    | 0.328 | 0.780 0.300 | 3.08        | 2.60   | 11.88 | Both + |          |
| 20 CP-11     | ChiPH       | 0.956    | 0.328 | 0.859 0.300 | 3.19        | 2.86   | 7.56  | Both + |          |
| 21 HD1       | ChinBD      | 0.143    | 0.328 | 0.110 0.300 | 0.48        | 0.37   |       | Neg    |          |
| 22 HD2       | ChinBD      | 0.144    | 0.328 | 0.123 0.300 | 0.48        | 0.41   |       | Neg    |          |
| 23 HD3       | ChinBD      | 0.103    | 0.328 | 0.095 0.300 | 0.34        | 0.32   |       | Neg    |          |
| 24 HD4       | ChinBD      | 0.077    | 0.328 | 0.081 0.300 | 0.26        | 0.27   |       | Neg    |          |
| 25 HD5       | ChinBD      | 1.028    | 0.328 | 1.137 0.300 | 3.43        | 3.79   | 7.12  | Both + |          |
| 26 HD6       | ChinBD      | 0.533    | 0.328 | 0.427 0.300 | 1.78        | 1.42   | 15.62 | Both + |          |
| 27 HD7       | ChinBD      | 0.082    | 0.328 | 0.072 0.300 | 0.27        | 0.24   |       | Neg    |          |
| 28 HD8       | ChinBD      | 0.067    | 0.328 | 0.068 0.300 | 0.22        | 0.23   |       | Neg    |          |
| 29 HD9       | ChinBD      | 2.329    | 0.328 | 1.967 0.300 | 7.76        | 6.56   | 11.92 | Both + |          |
| 30 HD10      | ChinBD      | 0.085    | 0.328 | 0.077 0.300 | 0.28        | 0.26   |       | Neg    |          |
| 31 HD11      | ChinBD      | 0.080    | 0.328 | 0.074 0.300 | 0.27        | 0.25   |       | Neg    |          |
| 32 HD12      | ChinBD      | 0.072    | 0.328 | 0.069 0.300 | 0.24        | 0.23   |       | Neg    |          |
| 33 HD13      | ChinBD      | 0.078    | 0.328 | 0.072 0.300 | 0.26        | 0.24   |       | Neg    |          |
| 34 HD14      | ChinBD      | 0.111    | 0.328 | 0.086 0.300 | 0.37        | 0.29   |       | Neg    |          |
| 35 HD15      | ChinBD      | 0.195    | 0.328 | 0.184 0.300 | 0.65        | 0.61   |       | Neg    |          |
| 36 HD16      | ChinBD      | 1.628    | 0.328 | 1.383 0.300 | 5.43        | 4.61   | 11.51 | Both + |          |
| 37 HD17      | ChinBD      | 0.103    | 0.328 | 0.096 0.300 | 0.34        | 0.32   |       | Neg    |          |
| 38 HD18      | ChinBD      | 0.172    | 0.328 | 0.168 0.300 | 0.57        | 0.56   |       | Neg    |          |
| 39 HD19      | ChinBD      | 0.100    | 0.328 | 0.071 0.300 | 0.33        | 0.24   |       | Neg    |          |
| 40 HD20      | ChinBD      | 0.083    | 0.328 | 0.073 0.300 | 0.28        | 0.24   |       | Neg    |          |
| 41 HD21      | ChinBD      | 0.140    | 0.328 | 0.127 0.300 | 0.47        | 0.42   |       | Neg    |          |
| 42 RH1       | ChinBD      | 0.276    | 0.328 | 0.194 0.300 | 0.92        | 0.65   |       | Neg    |          |
| 43 RH2       | ChinBD      | 0.186    | 0.328 | 0.167 0.300 | 0.62        | 0.56   |       | Neg    |          |
| 44 RH3       | ChinBD      | 0.242    | 0.328 | 0.184 0.300 | 0.81        | 0.61   |       | Neg    |          |
| 45 RH4       | ChinBD      | 0.265    | 0.328 | 0.277 0.300 | 0.88        | 0.92   |       | Neg    |          |
| 46 RHS       | ChinBD      | 0.198    | 0.328 | 0.205 0.300 | 0.66        | 0.68   |       | Neg    |          |
| 47 RH6       | ChinBD      | 0.205    | 0.328 | 0.211 0.300 | 0.68        | 0.70   |       | Neg    |          |
| 48 RH7       | ChinBD      | 0.169    | 0.328 | 0.169 0.300 | 0.56        | 0.56   |       | Neg    |          |
| 49 RH8       | ChinBD      | 0.118    | 0.328 | 0.102 0.300 | 0.39        | 0.34   |       | Neg    |          |
| 50 RH9       | ChinBD      | 0.386    | 0.328 | 0.307 0.300 | 1.29        | 1.02   | 16.12 | Both + |          |
| 51 RH10      | ChinBD      | 0.072    | 0.328 | 0.068 0.300 | 0.24        | 0.23   |       | Neg    |          |
| 3            | 3573        | Lcl BD   | 0.123 | 0.342       | 0.255 0.331 | 0.36   | 0.77  |        | Neg      |
| 4            | 3566        | Lcl BD   | 0.092 | 0.342       | 0.130 0.331 | 0.27   | 0.39  |        | Neg      |
| 5            | 3562        | Lcl BD   | 0.334 | 0.342       | 0.816 0.331 | 0.98   | 2.47  |        | swORF2 + |
| 6            | 3564        | Lcl BD   | 0.078 | 0.342       | 0.134 0.331 | 0.23   | 0.40  |        | Neg      |
| 7            | 3563        | Lcl BD   | 0.072 | 0.342       | 0.121 0.331 | 0.21   | 0.37  |        | Neg      |
| 8            | 3572        | Lcl BD   | 0.067 | 0.342       | 0.108 0.331 | 0.20   | 0.33  |        | Neg      |
| 9            | 3571        | Lcl BD   | 0.063 | 0.342       | 0.110 0.331 | 0.18   | 0.33  |        | Neg      |

Figure 3B

| anti-HEV EIA |            | OD       |       |             | Sample/Coff |        |      | Result            |
|--------------|------------|----------|-------|-------------|-------------|--------|------|-------------------|
| Name         | SampleDate | humSAR55 | coff  | swORF2 coff | humSAR55    | swORF2 | %CV  |                   |
| 10           | 3570       | Ld BD    | 0.144 | 0.342       | 0.257       | 0.331  | 0.42 | 0.78 Neg          |
| 11           | 3569       | Ld BD    | 0.764 | 0.342       | 0.667       | 0.331  | 2.23 | 2.02 7.28 Both +  |
| 12           | 3568       | Ld BD    | 0.070 | 0.342       | 0.098       | 0.331  | 0.20 | 0.30 Neg          |
| 13           | 3567       | Ld BD    | 0.060 | 0.342       | 0.056       | 0.331  | 0.18 | 0.17 Neg          |
| 14           | 3561       | Ld BD    | 0.138 | 0.342       | 0.175       | 0.331  | 0.40 | 0.53 Neg          |
| 15           | 12365      | Ld BD    | 0.392 | 0.342       | 0.416       | 0.331  | 1.15 | 1.26 6.51 Both +  |
| 16           | 12366      | Ld BD    | 0.192 | 0.342       | 0.250       | 0.331  | 0.56 | 0.76 Neg          |
| 17           | 12367      | Ld BD    | 0.515 | 0.342       | 0.400       | 0.331  | 1.51 | 1.21 15.49 Both + |
| 18           | 532        | Ld BD    | 0.071 | 0.342       | 0.093       | 0.331  | 0.21 | 0.28 Neg          |
| 19           | 533        | Ld BD    | 0.091 | 0.342       | 0.113       | 0.331  | 0.27 | 0.34 Neg          |
| 20           | 534        | Ld BD    | 0.086 | 0.342       | 0.345       | 0.331  | 0.25 | 1.04 swORF2 +     |
| 21           | 547        | Ld BD    | 0.232 | 0.342       | 0.196       | 0.331  | 0.68 | 0.59 Neg          |
| 22           | 12361      | Ld BD    | 0.066 | 0.342       | 0.118       | 0.331  | 0.36 | Neg               |
| 23           | 548        | Ld BD    | 1.843 | 0.342       | 1.742       | 0.331  | 5.27 | 1.51 Both +       |
| 24           | 1721       | Ld BD    | 2.770 | 0.342       | 2           | 0.331  | 7.82 | 2.52 Both +       |
| 25           | 536        | Ld BD    | 1.078 | 0.342       | 1           | 0.331  | 2.78 | 8.88 Both +       |
| 26           | 1722       | Ld BD    | 0.068 | 0.342       | 0.111       | 0.331  | 0.37 | Neg               |
| 27           | 535        | Ld BD    | 0.085 | 0.342       | 0.111       | 0.331  | 0.50 | Neg               |
| 28           | 1723       | Ld BD    | 0.111 | 0.342       | 0.111       | 0.331  | 0.24 | Neg               |
| 29           | 1724       | Ld BD    | 0.102 | 0.342       | 0.111       | 0.331  | 0.38 | Neg               |
| 30           | 1725       | Ld BD    | 0.066 | 0.342       | 0.111       | 0.331  | 0.28 | Neg               |
|              | 12371      | Ld BD    | 0.126 | 0.342       | 0.111       | 0.331  | 0.24 | Neg               |
|              | 12372      | Ld BD    | 0.285 | 0.342       | 0.244       | 0.331  | 0.75 | Neg               |
| 33           | 3          | Ld BD    | 0.090 | 0.342       | 0.111       | 0.331  | 0.29 | Neg               |
| 34           | 12374      | Ld BD    | 0.154 | 0.342       | 0.074       | 0.331  | 0.45 | 0.22 Neg          |
| 35           | 3584       | Ld BD    | 0.342 | 0.342       | 0.235       | 0.331  | 0.43 | 0.71 Neg          |
| 36           | 3585       | Ld BD    | 0.119 | 0.342       | 0.146       | 0.331  | 0.35 | 0.44 Neg          |
| 37           | 1726       | Ld BD    | 0.087 | 0.342       | 0.057       | 0.331  | 0.25 | 0.17 Neg          |
| 38           | 1727       | Ld BD    | 0.623 | 0.342       | 2.534       | 0.331  | 1.82 | 7.66 87.06 Both + |
| 39           | 12360      | Ld BD    | 0.109 | 0.342       | 0.078       | 0.331  | 0.22 | 0.24 Neg          |
| 40           | 12363      | Ld BD    | 0.095 | 0.342       | 0.108       | 0.331  | 0.29 | 0.33 Neg          |
| 41           | 12364      | Ld BD    | 0.578 | 0.342       | 0.602       | 0.331  | 1.69 | 1.82 5.19 Both +  |
| 42           | 1742       | Ld BD    | 0.074 | 0.342       | 0.118       | 0.331  | 0.22 | 0.36 Neg          |
| 43           | 1744       | Ld BD    | 0.076 | 0.342       | 0.106       | 0.331  | 0.22 | 0.32 Neg          |
| 44           | 3613       | Ld BD    | 0.066 | 0.342       | 0.107       | 0.331  | 0.19 | 0.32 Neg          |
| 45           | 1733       | Ld BD    | 0.083 | 0.342       | 0.105       | 0.331  | 0.24 | 0.32 Neg          |
| 46           | 3600       | Ld BD    | 0.058 | 0.342       | 0.073       | 0.331  | 0.17 | 0.22 Neg          |
| 47           | 3610       | Ld BD    | 0.062 | 0.342       | 0.062       | 0.331  | 0.18 | 0.19 Neg          |
| 48           | 3604       | Ld BD    | 0.067 | 0.342       | 0.094       | 0.331  | 0.20 | 0.28 Neg          |
| 49           | 3594       | Ld BD    | 0.103 | 0.342       | 0.073       | 0.331  | 0.30 | 0.22 Neg          |
| 50           | 12381      | Ld BD    | 0.698 | 0.342       | 0.393       | 0.331  | 2.04 | 1.19 37.40 Both + |
| 51           | 3598       | Ld BD    | 0.214 | 0.342       | 0.216       | 0.331  | 0.63 | 0.65 Neg          |
| 52           | 12387      | Ld BD    | 0.072 | 0.342       | 0.110       | 0.331  | 0.21 | 0.33 Neg          |
| 53           | 550        | Ld BD    | 0.163 | 0.342       | 0.111       | 0.331  | 0.48 | 0.34 Neg          |
| 54           | 3605       | Ld BD    | 0.145 | 0.342       | 0.100       | 0.331  | 0.42 | 0.30 Neg          |
| 55           | 1729       | Ld BD    | 0.132 | 0.342       | 0.184       | 0.331  | 0.39 | 0.56 Neg          |
| 56           | 12382      | Ld BD    | 0.069 | 0.342       | 0.079       | 0.331  | 0.20 | 0.24 Neg          |
| 57           | 12384      | Ld BD    | 0.076 | 0.342       | 0.066       | 0.331  | 0.22 | 0.20 Neg          |
| 58           | 3608       | Ld BD    | 0.124 | 0.342       | 0.108       | 0.331  | 0.36 | 0.33 Neg          |
| 59           | 1737       | Ld BD    | 0.076 | 0.342       | 0.071       | 0.331  | 0.22 | 0.21 Neg          |
| 60           | 1732       | Ld BD    | 0.266 | 0.342       | 0.142       | 0.331  | 0.78 | 0.43 Neg          |
| 61           | 1731       | Ld BD    | 0.062 | 0.342       | 0.094       | 0.331  | 0.18 | 0.28 Neg          |
| 62           | 1743       | Ld BD    | 0.071 | 0.342       | 0.083       | 0.331  | 0.21 | 0.25 Neg          |

Figure 3C

| anti-HEV EIA<br>Name | SampleDate | OD       |       |             | Sample/Coff |        |      | Result             |
|----------------------|------------|----------|-------|-------------|-------------|--------|------|--------------------|
|                      |            | humSAR55 | coH   | swORF2 coff | humSAR55    | swORF2 | %CV  |                    |
| 63                   | 1746       | Lcl BD   | 0.061 | 0.342       | 0.085       | 0.331  | 0.18 | 0.26 Neg           |
| 64                   | 1730       | Lcl BD   | 0.280 | 0.342       | 0.335       | 0.331  | 0.82 | 1.01 swORF2 +      |
| 65                   | 1740       | Lcl BD   | 0.078 | 0.342       | 0.125       | 0.331  | 0.23 | 0.38 Neg           |
| 66                   | 12383      | Lcl BD   | 0.101 | 0.342       | 0.079       | 0.331  | 0.30 | 0.24 Neg           |
| 67                   | 12388      | Lcl BD   | 1.137 | 0.342       | 1.028       | 0.331  | 3.32 | 3.11 4.81 Both +   |
| 68                   | 3592       | Lcl BD   | 0.557 | 0.342       | 0.302       | 0.331  | 1.53 | 0.91 39.86 sar55 + |
| 69                   | 3609       | Lcl BD   | 0.550 | 0.342       | 0.531       | 0.331  | 1.51 | 1.60 0.17 Both +   |
| 70                   | 1735       | Lcl BD   | 0.079 | 0.342       | 0.122       | 0.331  | 0.23 | 0.37 Neg           |
| 71                   | 3602       | Lcl BD   | 0.074 | 0.342       | 0.092       | 0.331  | 0.22 | 0.28 Neg           |
| 72                   | 3597       | Lcl BD   | 0.142 | 0.342       | 0.059       | 0.331  | 0.42 | 0.18 Neg           |
| 73                   | 12390      | Lcl BD   | 0.081 | 0.342       | 0.158       | 0.331  | 0.24 | 0.48 Neg           |
| 74                   | 545        | Lcl BD   | 0.074 | 0.342       | 0.085       | 0.331  | 0.22 | 0.26 Neg           |
| 75                   | 3616       | Lcl BD   | 0.090 | 0.342       | 0.104       | 0.331  | 0.26 | 0.31 Neg           |
| 76                   | 3595       | Lcl BD   | 0.083 | 0.342       | 0.090       | 0.331  | 0.24 | 0.27 Neg           |
| 77                   | 543        | Lcl BD   | 0.217 | 0.342       | 0.126       | 0.331  | 0.63 | 0.38 Neg           |
| 78                   | 549        | Lcl BD   | 0.096 | 0.342       | 0.080       | 0.331  | 0.28 | 0.24 Neg           |
| 79                   | 3606       | Lcl BD   | 0.075 | 0.342       | 0.106       | 0.331  | 0.22 | 0.32 Neg           |
| 80                   | 1736       | Lcl BD   | 0.138 | 0.342       | 0.097       | 0.331  | 0.40 | 0.29 Neg           |
| 81                   | 3611       | Lcl BD   | 0.267 | 0.342       | 0.124       | 0.331  | 0.78 | 0.37 Neg           |
| 82                   | 1745       | Lcl BD   | 0.536 | 0.342       | 0.393       | 0.331  | 1.57 | 1.19 19.51 Both +  |
| 83                   | 1728       | Lcl BD   | 0.092 | 0.342       | 0.082       | 0.331  | 0.27 | 0.25 Neg           |
| 84                   | 6121       | Lcl BD   | 0.088 | 0.342       | 0.096       | 0.331  | 0.26 | 0.29 Neg           |
| 85                   | 3615       | Lcl BD   | 0.062 | 0.342       | 0.083       | 0.331  | 0.18 | 0.26 Neg           |
| 86                   | 1734       | Lcl BD   | 0.182 | 0.342       | 0.078       | 0.331  | 0.53 | 0.24 Neg           |
| 87                   | 3599       | Lcl BD   | 0.089 | 0.342       | 0.083       | 0.331  | 0.26 | 0.25 Neg           |
| 88                   | 3618       | Lcl BD   | 0.082 | 0.342       | 0.077       | 0.331  | 0.24 | 0.23 Neg           |
| 89                   | 3617       | Lcl BD   | 0.063 | 0.342       | 0.082       | 0.331  | 0.18 | 0.25 Neg           |
| 90                   | 12386      | Lcl BD   | 0.072 | 0.342       | 0.077       | 0.331  | 0.21 | 0.23 Neg           |
| 91                   | 1739       | Lcl BD   | 0.138 | 0.342       | 0.252       | 0.331  | 0.40 | 0.76 Neg           |
| 92                   | 3603       | Lcl BD   | 0.106 | 0.342       | 0.106       | 0.331  | 0.31 | 0.32 Neg           |
| 93                   | 12389      | Lcl BD   | 0.076 | 0.342       | 0.077       | 0.331  | 0.22 | 0.23 Neg           |
| 94                   | 3614       | Lcl BD   | 0.075 | 0.342       | 0.087       | 0.331  | 0.22 | 0.26 Neg           |
| 95                   | 3593       | Lcl BD   | 0.141 | 0.342       | 0.082       | 0.331  | 0.41 | 0.25 Neg           |
| 3                    | 3596       | Lcl BD   | 0.236 | 0.342       | 0.276       | 0.331  | 0.69 | 0.83 Neg           |
| 4                    | 3623       | Lcl BD   | 0.290 | 0.342       | 0.267       | 0.331  | 0.85 | 0.81 Neg           |
| 5                    | 3663       | Lcl BD   | 0.070 | 0.342       | 0.082       | 0.331  | 0.20 | 0.25 Neg           |
| 6                    | 3622       | Lcl BD   | 0.185 | 0.342       | 0.325       | 0.331  | 0.54 | 0.98 Neg           |
| 7                    | 3637       | Lcl BD   | 0.063 | 0.342       | 0.087       | 0.331  | 0.18 | 0.26 Neg           |
| 8                    | 3657       | Lcl BD   | 0.082 | 0.342       | 0.116       | 0.331  | 0.24 | 0.35 Neg           |
| 9                    | 3656       | Lcl BD   | 0.081 | 0.342       | 0.082       | 0.331  | 0.24 | 0.25 Neg           |
| 10                   | 3655       | Lcl BD   | 0.085 | 0.342       | 0.102       | 0.331  | 0.25 | 0.31 Neg           |
| 11                   | 3654       | Lcl BD   | 1.373 | 0.342       | 1.685       | 0.331  | 4.01 | 5.09 16.71 Both +  |
| 12                   | 12418      | Lcl BD   | 0.113 | 0.342       | 0.098       | 0.331  | 0.33 | 0.30 Neg           |
| 13                   | 12417      | Lcl BD   | 0.072 | 0.342       | 0.087       | 0.331  | 0.21 | 0.26 Neg           |
| 14                   | 12392      | Lcl BD   | 1.192 | 0.342       | 1.204       | 0.331  | 3.49 | 3.11 3.02 Both +   |
| 15                   | 3621       | Lcl BD   | 1.748 | 0.342       | 1.450       | 0.331  | 5.11 | 4.38 10.88 Both +  |
| 16                   | 12391      | Lcl BD   | 0.070 | 0.342       | 0.078       | 0.331  | 0.20 | 0.24 Neg           |
| 17                   | 3620       | Lcl BD   | 0.079 | 0.342       | 0.077       | 0.331  | 0.23 | 0.23 Neg           |
| 18                   | 12416      | Lcl BD   | 1.581 | 0.342       | 1.655       | 0.331  | 4.62 | 5.00 5.54 Both +   |
| 19                   | 12415      | Lcl BD   | 0.214 | 0.342       | 0.111       | 0.331  | 0.63 | 0.34 Neg           |
| 20                   | 12414      | Lcl BD   | 0.065 | 0.342       | 0.084       | 0.331  | 0.19 | 0.25 Neg           |
| 21                   | 552        | Lcl BD   | 0.082 | 0.342       | 0.085       | 0.331  | 0.24 | 0.26 Neg           |
| 22                   | 3639       | Lcl BD   | 0.429 | 0.342       | 0.505       | 0.331  | 1.25 | 1.53 13.80 Both +  |

Figure 3D

| anti-HEV EIA | Name | SampleDate | OD       |       |        |       | Sample/Coff |        |      | Result       |
|--------------|------|------------|----------|-------|--------|-------|-------------|--------|------|--------------|
|              |      |            | humSAR55 | coff  | swORF2 | coff  | humSAR55    | swORF2 | %CV  |              |
|              | 23   | 3690       | Lcl BD   | 0.064 | 0.342  | 0.058 | 0.331       | 0.19   | 0.18 | Neg          |
|              | 24   | 12412      | Lcl BD   | 0.083 | 0.342  | 0.132 | 0.331       | 0.24   | 0.40 | Neg          |
|              | 25   | 12410      | Lcl BD   | 0.127 | 0.342  | 0.157 | 0.331       | 0.37   | 0.47 | Neg          |
|              | 26   | 12408      | Lcl BD   | 0.235 | 0.342  | 0.243 | 0.331       | 0.69   | 0.73 | Neg          |
|              | 27   | 12409      | Lcl BD   | 0.070 | 0.342  | 0.086 | 0.331       | 0.20   | 0.26 | Neg          |
|              | 28   | 12413      | Lcl BD   | 0.254 | 0.342  | 0.197 | 0.331       | 0.74   | 0.60 | Neg          |
|              | 29   | 12425      | Lcl BD   | 0.072 | 0.342  | 0.082 | 0.331       | 0.21   | 0.25 | Neg          |
|              | 30   | 3653       | Lcl BD   | 0.058 | 0.342  | 0.080 | 0.331       | 0.17   | 0.24 | Neg          |
|              | 31   | 3662       | Lcl BD   | 0.937 | 0.342  | 0.977 | 0.331       | 2.74   | 2.95 | 5.27 Both +  |
|              | 32   | 1748       | Lcl BD   | 0.093 | 0.342  | 0.078 | 0.331       | 0.27   | 0.24 | Neg          |
|              | 33   | 12411      | Lcl BD   | 0.124 | 0.342  | 0.055 | 0.331       | 0.36   | 0.17 | Neg          |
|              | 34   | 3638       | Lcl BD   | 0.068 | 0.342  | 0.065 | 0.331       | 0.20   | 0.20 | Neg          |
|              | 35   | 3636       | Lcl BD   | 0.102 | 0.342  | 0.122 | 0.331       | 0.30   | 0.37 | Neg          |
|              | 36   | 12403      | Lcl BD   | 0.067 | 0.342  | 0.063 | 0.331       | 0.20   | 0.19 | Neg          |
|              | 37   | 12424      | Lcl BD   | 0.059 | 0.342  | 0.061 | 0.331       | 0.17   | 0.18 | Neg          |
|              | 38   | 12423      | Lcl BD   | 0.047 | 0.342  | 0.053 | 0.331       | 0.14   | 0.16 | Neg          |
|              | 39   | 12394      | Lcl BD   | 0.071 | 0.342  | 0.149 | 0.331       | 0.21   | 0.45 | Neg          |
|              | 40   | 50546      | Lcl BD   | 0.090 | 0.342  | 0.071 | 0.331       | 0.26   | 0.21 | Neg          |
|              | 41   | 12393      | Lcl BD   | 0.060 | 0.342  | 0.088 | 0.331       | 0.18   | 0.27 | Neg          |
|              | 42   | 12404      | Lcl BD   | 0.194 | 0.342  | 0.083 | 0.331       | 0.57   | 0.25 | Neg          |
|              | 43   | 3651       | Lcl BD   | 0.057 | 0.342  | 0.079 | 0.331       | 0.17   | 0.24 | Neg          |
|              | 44   | 12422      | Lcl BD   | 0.056 | 0.342  | 0.073 | 0.331       | 0.16   | 0.22 | Neg          |
|              | 45   | 3649       | Lcl BD   | 0.216 | 0.342  | 0.118 | 0.331       | 0.63   | 0.36 | Neg          |
|              | 46   | 12420      | Lcl BD   | 0.061 | 0.342  | 0.058 | 0.331       | 0.18   | 0.18 | Neg          |
|              | 47   | 3648       | Lcl BD   | 0.069 | 0.342  | 0.080 | 0.331       | 0.20   | 0.24 | Neg          |
|              | 48   | 3646       | Lcl BD   | 0.064 | 0.342  | 0.069 | 0.331       | 0.19   | 0.21 | Neg          |
|              | 49   | 12406      | Lcl BD   | 0.069 | 0.342  | 0.049 | 0.331       | 0.20   | 0.15 | Neg          |
|              | 50   | 1761       | Lcl BD   | 0.063 | 0.342  | 0.066 | 0.331       | 0.18   | 0.20 | Neg          |
|              | 51   | 1759       | Lcl BD   | 0.073 | 0.342  | 0.080 | 0.331       | 0.21   | 0.24 | Neg          |
|              | 52   | 1237B      | Lcl BD   | 0.064 | 0.342  | 0.073 | 0.331       | 0.19   | 0.22 | Neg          |
|              | 53   | 12377      | Lcl BD   | 0.813 | 0.342  | 1.386 | 0.331       | 2.38   | 4.19 | 39.09 Both + |
|              | 54   | 12376      | Lcl BD   | 0.056 | 0.342  | 0.061 | 0.331       | 0.16   | 0.18 | Neg          |
|              | 55   | 12375      | Lcl BD   | 0.483 | 0.342  | 1.062 | 0.331       | 1.41   | 3.21 | 54.97 Both + |
|              | 56   | 3587       | Lcl BD   | 0.166 | 0.342  | 0.630 | 0.331       | 0.49   | 1.90 | swORF2 +     |
|              | 57   | 541        | Lcl BD   | 0.062 | 0.342  | 0.075 | 0.331       | 0.18   | 0.23 | Neg          |
|              | 58   | 539        | Lcl BD   | 0.266 | 0.342  | 0.065 | 0.331       | 0.78   | 0.20 | Neg          |
|              | 59   | 538        | Lcl BD   | 0.074 | 0.342  | 0.100 | 0.331       | 0.22   | 0.30 | Neg          |
|              | 60   | 12370      | Lcl BD   | 0.056 | 0.342  | 0.092 | 0.331       | 0.16   | 0.28 | Neg          |
|              | 61   | 12369      | Lcl BD   | 2.102 | 0.342  | 2.366 | 0.331       | 6.15   | 7.15 | 10.66 Both + |
|              | 62   | 12368      | Lcl BD   | 0.252 | 0.342  | 0.416 | 0.331       | 0.74   | 1.26 | swORF2 +     |
|              | 63   | 3590       | Lcl BD   | 0.128 | 0.342  | 0.194 | 0.331       | 0.37   | 0.59 | Neg          |
|              | 64   | 3589       | Lcl BD   | 0.058 | 0.342  | 0.061 | 0.331       | 0.17   | 0.18 | Neg          |
|              | 65   | 3586       | Lcl BD   | 0.060 | 0.342  | 0.054 | 0.331       | 0.18   | 0.16 | Neg          |
|              | 66   | 3588       | Lcl BD   | 0.059 | 0.342  | 0.084 | 0.331       | 0.17   | 0.25 | Neg          |
|              | 67   | 12395      | Lcl BD   | 0.054 | 0.342  | 0.055 | 0.331       | 0.16   | 0.17 | Neg          |
|              | 68   | 12396      | Lcl BD   | 0.059 | 0.342  | 0.064 | 0.331       | 0.17   | 0.19 | Neg          |
|              | 69   | 3826       | Lcl BD   | 0.068 | 0.342  | 0.126 | 0.331       | 0.20   | 0.38 | I - J        |
|              | 70   | 3627       | Lcl BD   | 0.061 | 0.342  | 0.065 | 0.331       | 0.18   | 0.20 | Neg          |
|              | 71   | 3629       | Lcl BD   | 0.060 | 0.342  | 0.071 | 0.331       | 0.18   | 0.21 | Neg          |
|              | 72   | 3630       | Lcl BD   | 0.715 | 0.342  | 1.134 | 0.331       | 2.09   | 3.43 | 34.23 Both + |
|              | 73   | 1756       | Lcl BD   | 0.058 | 0.342  | 0.117 | 0.331       | 0.17   | 0.35 | Neg          |
|              | 74   | 12405      | Lcl BD   | 0.059 | 0.342  | 0.068 | 0.331       | 0.17   | 0.21 | Neg          |
|              | 75   | 46395      | Lcl BD   | 0.060 | 0.342  | 0.073 | 0.331       | 0.18   | 0.22 | Neg          |

Figure 3E

| anti-HEV EIA |            | OD       |       |        |       | Sample/Coff |        |      | Result |        |
|--------------|------------|----------|-------|--------|-------|-------------|--------|------|--------|--------|
| Name         | SampleDate | humSAR55 | coff  | swORF2 | coff  | humSAR55    | swORF2 | %CV  |        |        |
| 76           | 1749       | Lcl BD   | 0.076 | 0.342  | 0.206 | 0.331       | 0.22   | 0.62 | Neg    |        |
| 77           | 1750       | Lcl BD   | 0.081 | 0.342  | 0.088 | 0.331       | 0.24   | 0.27 | Neg    |        |
| 78           | 12397      | Lcl BD   | 0.065 | 0.342  | 0.129 | 0.331       | 0.19   | 0.39 | Neg    |        |
| 79           | 12398      | Lcl BD   | 0.057 | 0.342  | 0.060 | 0.331       | 0.17   | 0.18 | Neg    |        |
| 80           | 12399      | Lcl BD   | 0.076 | 0.342  | 0.074 | 0.331       | 0.22   | 0.22 | Neg    |        |
| 81           | 12400      | Lcl BD   | 0.943 | 0.342  | 1.643 | 0.331       | 2.76   | 4.96 | 40.41  | Both + |
| 82           | 1757       | Lcl BD   | 0.084 | 0.342  | 0.076 | 0.331       | 0.25   | 0.23 | Neg    |        |
| 83           | 12407      | Lcl BD   | 0.077 | 0.342  | 0.065 | 0.331       | 0.23   | 0.20 | Neg    |        |
| 84           | 3607       | Lcl BD   | 0.117 | 0.342  | 0.053 | 0.331       | 0.34   | 0.16 | Neg    |        |
| 85           | 12385      | Lcl BD   | 0.059 | 0.342  | 0.083 | 0.331       | 0.17   | 0.19 | Neg    |        |
| 86           | 3624       | Lcl BD   | 0.062 | 0.342  | 0.071 | 0.331       | 0.18   | 0.21 | Neg    |        |
| 87           | 3641       | Lcl BD   | 0.125 | 0.342  | 0.069 | 0.331       | 0.37   | 0.21 | Neg    |        |
| 88           | 3642       | Lcl BD   | 0.200 | 0.342  | 0.071 | 0.331       | 0.58   | 0.21 | Neg    |        |
| 89           | 3643       | Lcl BD   | 0.166 | 0.342  | 0.052 | 0.331       | 0.49   | 0.16 | Neg    |        |
| 90           | 1751       | Lcl BD   | 0.064 | 0.342  | 0.059 | 0.331       | 0.19   | 0.18 | Neg    |        |
| 91           | 3644       | Lcl BD   | 0.090 | 0.342  | 0.059 | 0.331       | 0.26   | 0.18 | Neg    |        |
| 92           | 3633       | Lcl BD   | 0.354 | 0.342  | 0.479 | 0.331       | 1.04   | 1.45 | 23.48  | Both + |
| 93           | 3631       | Lcl BD   | 0.058 | 0.342  | 0.054 | 0.331       | 0.17   | 0.16 | Neg    |        |
| 94           | 3634       | Lcl BD   | 0.107 | 0.342  | 0.058 | 0.331       | 0.31   | 0.18 | Neg    |        |
| 95           | 3632       | Lcl BD   | 0.066 | 0.342  | 0.071 | 0.331       | 0.19   | 0.21 | Neg    |        |
| 3            | 3625       | Lcl BD   | 0.199 | 0.342  | 0.067 | 0.331       | 0.58   | 0.20 | Neg    |        |
| 4            | 1753       | Lcl BD   | 0.097 | 0.342  | 0.09* | 0.331       | 0.28   | 0.27 | Neg    |        |
| 5            | 1754       | Lcl BD   | 0.301 | 0.342  | 0.31  | 0.331       | 0.88   | 0.94 | Neg    |        |
| 6            | 1752       | Lcl BD   | 0.095 | 0.342  | 0.093 | 0.331       | 0.28   | 0.28 | Neg    |        |
| 7            | 13717-0    | Lcl BD   | 0.105 | 0.342  | 0.072 | 0.331       | 0.31   | 0.22 | Neg    |        |
| 8            | 3645       | Lcl BD   | 0.110 | 0.342  | 0.056 | 0.331       | 0.32   | 0.17 | Neg    |        |
| 9            | 12401      | Lcl BD   | 0.105 | 0.342  | 0.058 | 0.331       | 0.31   | 0.18 | Neg    |        |
| 10           | 3635       | Lcl BD   | 0.168 | 0.342  | 0.075 | 0.331       | 0.49   | 0.23 | Neg    |        |
| 11           | 12402      | Lcl BD   | 0.068 | 0.342  | 0.078 | 0.331       | 0.20   | 0.24 | Neg    |        |
| 12           | 3628       | Lcl BD   | 0.094 | 0.342  | 0.089 | 0.331       | 0.27   | 0.27 | Neg    |        |
| 13           | 99934222   | Lcl BD   | 0.132 | 0.342  | 0.069 | 0.331       | 0.39   | 0.21 | Neg    |        |
| 14           | 551        | Lcl BD   | 0.140 | 0.342  | 0.065 | 0.331       | 0.41   | 0.20 | Neg    |        |
| 15           | 9920465    | Lcl BD   | 0.531 | 0.342  | 0.340 | 0.331       | 1.55   | 1.03 | 28.80  | Both + |
| 16           | 99901651   | Lcl BD   | 0.086 | 0.342  | 0.075 | 0.331       | 0.25   | 0.23 | Neg    |        |
| 17           | 99952134   | Lcl BD   | 0.168 | 0.342  | 0.088 | 0.331       | 0.49   | 0.27 | Neg    |        |
| 18           | 99952133   | Lcl BD   | 0.148 | 0.342  | 0.082 | 0.331       | 0.43   | 0.25 | Neg    |        |
| 19           | 99914721   | Lcl BD   | 0.083 | 0.342  | 0.092 | 0.331       | 0.24   | 0.28 | Neg    |        |
| 20           | 3583       | Lcl BD   | 0.115 | 0.342  | 0.059 | 0.331       | 0.34   | 0.18 | Neg    |        |
| 21           | 12362      | Lcl BD   | 0.073 | 0.342  | 0.076 | 0.331       | 0.21   | 0.23 | Neg    |        |
| 22           | 3580       | Lcl BD   | 0.131 | 0.342  | 0.066 | 0.331       | 0.38   | 0.20 | Neg    |        |
| 23           | 179        | Lcl BD   | 0.068 | 0.342  | 0.071 | 0.331       | 0.20   | 0.21 | Neg    |        |
| 24           | 3578       | Lcl BD   | 0.069 | 0.342  | 0.054 | 0.331       | 0.20   | 0.16 | Neg    |        |
| 25           | 3577       | Lcl BD   | 0.095 | 0.342  | 0.079 | 0.331       | 0.28   | 0.24 | Neg    |        |
| 26           | 3576       | Lcl BD   | 0.107 | 0.342  | 0.070 | 0.331       | 0.31   | 0.21 | Neg    |        |
| 27           | 3582       | Lcl BD   | 0.199 | 0.342  | 0.111 | 0.331       | 0.58   | 0.34 | Neg    |        |
| 28           | 3575       | Lcl BD   | 0.140 | 0.342  | 0.072 | 0.331       | 0.41   | 0.22 | Neg    |        |
| 29           | 3565       | Lcl BD   | 0.089 | 0.342  | 0.074 | 0.331       | 0.26   | 0.22 | Neg    |        |
| 30           | 3574       | Lcl BD   | 0.093 | 0.342  | 0.095 | 0.331       | 0.27   | 0.29 | Neg    |        |
| 31           | 3650       | Lcl BD   | 1.789 | 0.342  | 1.226 | 0.331       | 5.23   | 3.70 | 24.17  | Both + |
| 32           | 12421      | Lcl BD   | 0.183 | 0.342  | 0.222 | 0.331       | 0.54   | 0.67 | Neg    |        |
| 33           | 3661       | Lcl BD   | 0.135 | 0.342  | 0.066 | 0.331       | 0.39   | 0.20 | Neg    |        |
| 34           | 12419      | Lcl BD   | 0.126 | 0.342  | 0.058 | 0.331       | 0.37   | 0.18 | Neg    |        |
| 35           | 3660       | Lcl BD   | 2.798 | 0.342  | 2.427 | 0.331       | 8.18   | 7.33 | 7.74   | Both + |

Figure 3F

| anti-HEV EA | Name  | SampleDate | OD       |       |        |       | Sample/Coh |        |       | Result |
|-------------|-------|------------|----------|-------|--------|-------|------------|--------|-------|--------|
|             |       |            | humSAR55 | coff  | swORF2 | coff  | humSAR55   | swORF2 | %CV   |        |
| 36          | 3658  | Lcl BD     | 0.055    | 0.342 | 0.059  | 0.331 | 0.16       | 0.18   |       | Neg    |
| 37          | 3659  | Lcl BD     | 0.126    | 0.342 | 0.066  | 0.331 | 0.37       | 0.20   |       | Neg    |
| 38          | 1762  | Lcl BD     | 0.161    | 0.342 | 0.064  | 0.331 | 0.47       | 0.19   |       | Neg    |
| 39          | 1760  | Lcl BD     | 0.223    | 0.342 | 0.072  | 0.331 | 0.65       | 0.22   |       | Neg    |
| 40          | 1758  | Lcl BD     | 0.601    | 0.342 | 0.466  | 0.331 | 1.76       | 1.41   | 15.61 | Both + |
| 41          | 540   | Lcl BD     | 0.088    | 0.342 | 0.067  | 0.331 | 0.26       | 0.20   |       | Neg    |
| 42          | 542   | Lcl BD     | 0.097    | 0.342 | 0.134  | 0.331 | 0.28       | 0.40   |       | Neg    |
| 43          | 537   | Lcl BD     | 0.115    | 0.342 | 0.072  | 0.331 | 0.34       | 0.22   |       | Neg    |
| 44          | 12380 | Lcl BD     | 0.468    | 0.342 | 0.437  | 0.331 | 1.37       | 1.32   | 2.53  | Both + |
| 45          | 12379 | Lcl BD     | 0.080    | 0.342 | 0.085  | 0.331 | 0.23       | 0.26   |       | Neg    |
| 46          | 5347  | Lcl BD     | 0.625    | 0.342 | 0.438  | 0.331 | 1.83       | 1.32   | 22.63 | Both + |

Figure 3G

| anti-HEV EIA | Name | SampleDate | OD       |       |             | Sample/Coff |        |      | Result |
|--------------|------|------------|----------|-------|-------------|-------------|--------|------|--------|
|              |      |            | humSAR55 | coff  | swORF2 coff | humSAR55    | swORF2 | %CV  |        |
| 5            | 101  | XJ PH      | 0.057    | 0.300 | 0.097       | 0.300       | 0.19   | 0.32 | Neg    |
| 6            | 102  | XJ PH      | 0.061    | 0.300 | 0.064       | 0.300       | 0.20   | 0.21 | Neg    |
| 7            | 103  | XJ PH      | 0.058    | 0.300 | 0.074       | 0.300       | 0.19   | 0.25 | Neg    |
| 8            | 104  | XJ PH      | 0.067    | 0.300 | 0.077       | 0.300       | 0.22   | 0.26 | Neg    |
| 9            | 105  | XJ PH      | 0.055    | 0.300 | 0.073       | 0.300       | 0.18   | 0.24 | Neg    |
| 10           | 106  | XJ PH      | 0.055    | 0.300 | 0.084       | 0.300       | 0.18   | 0.28 | Neg    |
| 11           | 107  | XJ PH      | 0.077    | 0.300 | 0.117       | 0.300       | 0.26   | 0.39 | Neg    |
| 63           | 108  | XJ PH      | 0.444    | 0.300 | 0.936       | 0.300       | 1.48   | 3.12 | 50.42  |
| 13           | 109  | XJ PH      | 0.064    | 0.300 | 0.073       | 0.300       | 0.21   | 0.24 | Neg    |
| 14           | 110  | XJ PH      | 0.054    | 0.300 | 0.066       | 0.300       | 0.18   | 0.22 | Neg    |
| 15           | 111  | XJ PH      | 0.055    | 0.300 | 0.071       | 0.300       | 0.18   | 0.24 | Neg    |
| 64           | 112  | XJ PH      | 1.372    | 0.300 | 0.862       | 0.300       | 4.57   | 2.87 | 32.29  |
| 17           | 113  | XJ PH      | 0.055    | 0.300 | 0.071       | 0.300       | 0.18   | 0.24 | Neg    |
| 18           | 114  | XJ PH      | 0.141    | 0.300 | 0.268       | 0.300       | 0.47   | 0.89 | Neg    |
| 19           | 115  | XJ PH      | 0.059    | 0.300 | 0.060       | 0.300       | 0.20   | 0.20 | Neg    |
| 20           | 116  | XJ PH      | 0.055    | 0.300 | 0.067       | 0.300       | 0.18   | 0.22 | Neg    |
| 66           | 117  | XJ PH      | 0.308    | 0.300 | 0.433       | 0.300       | 1.03   | 1.44 | 23.86  |
| 22           | 118  | XJ PH      | 0.054    | 0.300 | 0.061       | 0.300       | 0.18   | 0.20 | Neg    |
| 67           | 119  | XJ PH      | 0.062    | 0.300 | 0.219       | 0.300       | 0.21   | 0.73 | Neg    |
| 68           | 121  | XJ PH      | 0.357    | 0.300 | 0.499       | 0.300       | 1.19   | 1.66 | 23.46  |
| 69           | 122  | XJ PH      | 0.215    | 0.300 | 0.148       | 0.300       | 0.72   | 0.49 | Neg    |
| 27           | 123  | XJ PH      | 0.052    | 0.300 | 0.066       | 0.300       | 0.17   | 0.22 | Neg    |
| 28           | 124  | XJ PH      | 0.057    | 0.300 | 0.071       | 0.300       | 0.19   | 0.24 | Neg    |
| 29           | 125  | XJ PH      | 0.066    | 0.300 | 0.067       | 0.300       | 0.22   | 0.22 | Neg    |
| 30           | 126  | XJ PH      | 0.062    | 0.300 | 0.092       | 0.300       | 0.21   | 0.31 | Neg    |
| 31           | 127  | XJ PH      | 0.066    | 0.300 | 0.126       | 0.300       | 0.22   | 0.42 | Neg    |
| 70           | 128  | XJ PH      | 0.200    | 0.300 | 0.219       | 0.300       | 0.67   | 0.73 | Neg    |
| 33           | 129  | XJ PH      | 0.054    | 0.300 | 0.071       | 0.300       | 0.18   | 0.24 | Neg    |
| 34           | 130  | XJ PH      | 0.055    | 0.300 | 0.073       | 0.300       | 0.18   | 0.24 | Neg    |
| 35           | 131  | XJ PH      | 0.055    | 0.300 | 0.062       | 0.300       | 0.18   | 0.21 | Neg    |
| 36           | 132  | XJ PH      | 0.062    | 0.300 | 0.081       | 0.300       | 0.21   | 0.27 | Neg    |
| 71           | 133  | XJ PH      | 0.945    | 0.300 | 0.586       | 0.300       | 3.15   | 1.95 | 33.16  |
| 38           | 134  | XJ PH      | 0.054    | 0.300 | 0.064       | 0.300       | 0.18   | 0.21 | Neg    |
| 39           | 135  | XJ PH      | 0.068    | 0.300 | 0.136       | 0.300       | 0.23   | 0.45 | Neg    |
| 40           | 136  | XJ PH      | 0.055    | 0.300 | 0.064       | 0.300       | 0.18   | 0.21 | Neg    |
| 41           | 137  | XJ PH      | 0.053    | 0.300 | 0.062       | 0.300       | 0.18   | 0.21 | Neg    |
| 42           | 138  | XJ PH      | 0.055    | 0.300 | 0.064       | 0.300       | 0.18   | 0.21 | Neg    |
| 43           | 139  | XJ PH      | 0.054    | 0.300 | 0.066       | 0.300       | 0.18   | 0.22 | Neg    |
| 72           | 140  | XJ PH      | 1.804    | 0.300 | 1.317       | 0.300       | 6.01   | 4.39 | 22.07  |
| 73           | 141  | XJ PH      | 0.167    | 0.300 | 0.197       | 0.300       | 0.56   | 0.66 | Neg    |
| 45           | 142  | XJ PH      | 0.131    | 0.300 | 0.116       | 0.300       | 0.44   | 0.39 | Neg    |
| 47           | 143  | XJ PH      | 0.060    | 0.300 | 0.069       | 0.300       | 0.20   | 0.23 | Neg    |
| 48           | 144  | XJ PH      | 0.066    | 0.300 | 0.074       | 0.300       | 0.22   | 0.25 | Neg    |
| 49           | 145  | XJ PH      | 0.089    | 0.300 | 0.206       | 0.300       | 0.30   | 0.69 | Neg    |
| 75           | 146  | XJ PH      | 0.268    | 0.300 | 0.274       | 0.300       | 0.89   | 0.91 | Neg    |
| 51           | 147  | XJ PH      | 0.056    | 0.300 | 0.073       | 0.300       | 0.19   | 0.24 | Neg    |
| 52           | 148  | XJ PH      | 0.065    | 0.300 | 0.107       | 0.300       | 0.22   | 0.36 | Neg    |
| 53           | 149  | XJ PH      | 0.053    | 0.300 | 0.067       | 0.300       | 0.18   | 0.22 | Neg    |
| 54           | 150  | XJ PH      | 0.052    | 0.300 | 0.060       | 0.300       | 0.17   | 0.20 | Neg    |
| 55           | 151  | XJ PH      | 0.053    | 0.300 | 0.060       | 0.300       | 0.18   | 0.20 | Neg    |
| 76           | 152  | XJ PH      | 0.904    | 0.300 | 0.533       | 0.300       | 3.01   | 1.78 | 36.51  |
| 57           | 153  | XJ PH      | 0.054    | 0.300 | 0.064       | 0.300       | 0.18   | 0.21 | Neg    |
| 58           | 154  | XJ PH      | 0.059    | 0.300 | 0.080       | 0.300       | 0.20   | 0.20 | Neg    |
| 59           | 155  | XJ PH      | 0.057    | 0.300 | 0.067       | 0.300       | 0.19   | 0.22 | Neg    |
| 60           | 156  | XJ PH      | 0.059    | 0.300 | 0.076       | 0.300       | 0.20   | 0.25 | Neg    |
| 61           | 157  | XJ PH      | 0.052    | 0.300 | 0.069       | 0.300       | 0.17   | 0.23 | Neg    |
| 77           | 158  | XJ PH      | 0.217    | 0.300 | 0.132       | 0.300       | 0.72   | 0.44 | Neg    |

Figure 3H

| anti-HEV EIA |            | OD       |       |             | Sample/Coff |        |      | Result |       |        |
|--------------|------------|----------|-------|-------------|-------------|--------|------|--------|-------|--------|
| Name         | SampleDate | humSAR55 | coff  | swORF2 coff | humSAR55    | swORF2 | %CV  |        |       |        |
| 63           | 159        | XJ PH    | 0.060 | 0.300       | 0.071       | 0.300  | 0.20 | 0.24   | Neg   |        |
| 64           | 160        | XJ PH    | 0.052 | 0.300       | 0.092       | 0.300  | 0.17 | 0.31   | Neg   |        |
| 65           | 161        | XJ PH    | 0.054 | 0.300       | 0.084       | 0.300  | 0.18 | 0.28   | Neg   |        |
| 66           | 162        | XJ PH    | 0.050 | 0.300       | 0.068       | 0.300  | 0.17 | 0.23   | Neg   |        |
| 67           | 163        | XJ PH    | 0.053 | 0.300       | 0.069       | 0.300  | 0.18 | 0.23   | Neg   |        |
| 68           | 164        | XJ PH    | 0.067 | 0.300       | 0.058       | 0.300  | 0.22 | 0.23   | Neg   |        |
| 69           | 165        | XJ PH    | 0.058 | 0.300       | 0.060       | 0.300  | 0.19 | 0.20   | Neg   |        |
| 70           | 166        | XJ PH    | 0.054 | 0.300       | 0.064       | 0.300  | 0.18 | 0.21   | Neg   |        |
| 71           | 167        | XJ PH    | 0.310 | 0.300       | 0.707       | 0.300  | 1.03 | 2.36   | 55.21 | Both + |
| 72           | 168        | XJ PH    | 0.080 | 0.300       | 0.135       | 0.300  | 0.27 | 0.45   | Neg   |        |
| 73           | 169        | XJ PH    | 0.085 | 0.300       | 0.204       | 0.300  | 0.29 | 0.68   | Neg   |        |
| 74           | 170        | XJ PH    | 0.059 | 0.300       | 0.072       | 0.300  | 0.20 | 0.24   | Neg   |        |
| 75           | 171        | XJ PH    | 0.054 | 0.300       | 0.064       | 0.300  | 0.18 | 0.21   | Neg   |        |
| 76           | 172        | XJ PH    | 0.054 | 0.300       | 0.071       | 0.300  | 0.18 | 0.24   | Neg   |        |
| 77           | 173        | XJ PH    | 0.074 | 0.300       | 0.084       | 0.300  | 0.25 | 0.28   | Neg   |        |
| 78           | 174        | XJ PH    | 0.301 | 0.300       | 0.439       | 0.300  | 1.00 | 1.46   | 26.37 | Both + |
| 79           | 175        | XJ PH    | 0.075 | 0.300       | 0.071       | 0.300  | 0.25 | 0.24   | Neg   |        |
| 80           | 176        | XJ PH    | 0.066 | 0.300       | 0.075       | 0.300  | 0.22 | 0.25   | Neg   |        |
| 81           | 177        | XJ PH    | 0.176 | 0.300       | 0.157       | 0.300  | 0.59 | 0.52   | Neg   |        |
| 82           | 178        | XJ PH    | 1.023 | 0.300       | 1.316       | 0.300  | 3.41 | 4.39   | 17.72 | Both + |
| 83           | 179        | XJ PH    | 0.080 | 0.300       | 0.070       | 0.300  | 0.27 | 0.23   | Neg   |        |
| 84           | 180        | XJ PH    | 0.062 | 0.300       | 0.116       | 0.300  | 0.21 | 0.39   | Neg   |        |
| 83           | 181        | XJ PH    | 0.853 | 0.300       | 0.463       | 0.300  | 2.84 | 1.54   | 41.91 | Both + |
| 86           | 182        | XJ PH    | 0.061 | 0.300       | 0.092       | 0.300  | 0.20 | 0.31   | Neg   |        |
| 87           | 183        | XJ PH    | 0.055 | 0.300       | 0.074       | 0.300  | 0.18 | 0.25   | Neg   |        |
| 88           | 184        | XJ PH    | 0.054 | 0.300       | 0.078       | 0.300  | 0.18 | 0.26   | Neg   |        |
| 89           | 185        | XJ PH    | 0.080 | 0.300       | 0.074       | 0.300  | 0.20 | 0.25   | Neg   |        |
| 90           | 186        | XJ PH    | 0.060 | 0.300       | 0.072       | 0.300  | 0.20 | 0.24   | Neg   |        |
| 91           | 187        | XJ PH    | 0.071 | 0.300       | 0.084       | 0.300  | 0.24 | 0.28   | Neg   |        |
| 92           | 188        | XJ PH    | 0.060 | 0.300       | 0.080       | 0.300  | 0.20 | 0.27   | Neg   |        |
| 93           | 189        | XJ PH    | 0.095 | 0.300       | 0.102       | 0.300  | 0.32 | 0.34   | Neg   |        |
| 94           | 190        | XJ PH    | 0.057 | 0.300       | 0.068       | 0.300  | 0.19 | 0.23   | Neg   |        |
| 95           | 191        | XJ PH    | 0.078 | 0.300       | 0.071       | 0.300  | 0.26 | 0.24   | Neg   |        |
| 5            | 192        | XJ PH    | 0.104 | 0.300       | 0.121       | 0.300  | 0.35 | 0.40   | Neg   |        |
| 6            | 193        | XJ PH    | 0.082 | 0.300       | 0.083       | 0.300  | 0.27 | 0.28   | Neg   |        |
| 7            | 194        | XJ PH    | 0.070 | 0.300       | 0.089       | 0.300  | 0.23 | 0.30   | Neg   |        |
| 8            | 195        | XJ PH    | 0.119 | 0.300       | 0.109       | 0.300  | 0.40 | 0.36   | Neg   |        |
| 84           | 196        | XJ PH    | 0.259 | 0.300       | 0.230       | 0.300  | 0.86 | 0.77   | Neg   |        |
| 10           | 197        | XJ PH    | 0.090 | 0.300       | 0.096       | 0.300  | 0.30 | 0.32   | Neg   |        |
| 11           | 198        | XJ PH    | 0.084 | 0.300       | 0.109       | 0.300  | 0.28 | 0.36   | Neg   |        |
| 12           | 199        | XJ PH    | 0.080 | 0.300       | 0.080       | 0.300  | 0.27 | 0.27   | Neg   |        |
| 13           | 200        | XJ PH    | 0.118 | 0.300       | 0.141       | 0.300  | 0.39 | 0.47   | Neg   |        |
| 14           | 201        | XJ PH    | 0.060 | 0.300       | 0.066       | 0.300  | 0.20 | 0.22   | Neg   |        |
| 15           | 202        | XJ PH    | 0.070 | 0.300       | 0.077       | 0.300  | 0.23 | 0.26   | Neg   |        |
| 16           | 203        | XJ PH    | 0.070 | 0.300       | 0.084       | 0.300  | 0.23 | 0.28   | Neg   |        |
| 17           | 204        | XJ PH    | 0.065 | 0.300       | 0.079       | 0.300  | 0.22 | 0.26   | Neg   |        |
| 85           | 205        | XJ PH    | 0.585 | 0.300       | 0.312       | 0.300  | 1.95 | 1.04   | 43.04 | Both + |
| 19           | 206        | XJ PH    | 0.301 | 0.300       | 0.516       | 0.300  | 1.00 | 1.72   | 37.22 | Both + |
| 87           | 207        | XJ PH    | 0.849 | 0.300       | 0.388       | 0.300  | 2.83 | 1.33   | 51.15 | Both + |
| 21           | 208        | XJ PH    | 0.079 | 0.300       | 0.080       | 0.300  | 0.26 | 0.30   | Neg   |        |
| 22           | 209        | XJ PH    | 0.065 | 0.300       | 0.072       | 0.300  | 0.22 | 0.24   | Neg   |        |
| 23           | 210        | XJ PH    | 0.135 | 0.300       | 0.157       | 0.300  | 0.45 | 0.52   | Neg   |        |
| 88           | 211        | XJ PH    | 0.221 | 0.300       | 0.125       | 0.300  | 0.74 | 0.42   | Neg   |        |
| 25           | 212        | XJ PH    | 0.062 | 0.300       | 0.069       | 0.300  | 0.21 | 0.23   | Neg   |        |
| 26           | 213        | XJ PH    | 0.067 | 0.300       | 0.073       | 0.300  | 0.22 | 0.24   | Neg   |        |
| 89           | 214        | XJ PH    | 2.423 | 0.300       | 1.474       | 0.300  | 8.08 | 4.91   | 34.44 | Both + |
| 28           | 215        | XJ PH    | 0.193 | 0.300       | 0.294       | 0.300  | 0.64 | 0.98   | Neg   |        |

Figure 3I

| anti-HEV EIA | Name | SampleDate | OD       |       |             | Sample/CoM |        |      | Result            |
|--------------|------|------------|----------|-------|-------------|------------|--------|------|-------------------|
|              |      |            | humSAR55 | coff  | swORF2 coff | humSAR55   | swORF2 | %CV  |                   |
|              | 5    | 216        | XJ PH    | 1.604 | 0.300       | 1.215      | 0.300  | 5.35 | 4.05 19.52 Both + |
|              | 6    | 217        | XJ PH    | 0.830 | 0.300       | 0.619      | 0.300  | 2.77 | 2.06 20.59 Both + |
|              | 31   | 218        | XJ PH    | 0.065 | 0.300       | 0.077      | 0.300  | 0.22 | 0.26 Neg          |
|              | 32   | 219        | XJ PH    | 0.070 | 0.300       | 0.085      | 0.300  | 0.23 | 0.28 Neg          |
|              | 33   | 220        | XJ PH    | 0.071 | 0.300       | 0.081      | 0.300  | 0.24 | 0.27 Neg          |
|              | 34   | 221        | XJ PH    | 0.064 | 0.300       | 0.064      | 0.300  | 0.21 | 0.21 Neg          |
|              | 35   | 222        | XJ PH    | 0.080 | 0.300       | 0.072      | 0.300  | 0.27 | 0.24 Neg          |
|              | 7    | 223        | XJ PH    | 0.668 | 0.300       | 0.364      | 0.300  | 2.23 | 1.21 41.66 Both + |
|              | 8    | 224        | XJ PH    | 0.512 | 0.300       | 0.431      | 0.300  | 1.71 | 1.44 12.15 Both + |
|              | 9    | 225        | XJ PH    | 1.328 | 0.300       | 1.062      | 0.300  | 4.43 | 3.54 15.74 Both + |
|              | 39   | 226        | XJ PH    | 0.068 | 0.300       | 0.080      | 0.300  | 0.23 | 0.27 Neg          |
|              | 10   | 227        | XJ PH    | 0.159 | 0.300       | 0.547      | 0.300  | 2.20 | 1.82 13.13 Both + |
|              | 41   | 228        | XJ PH    | 0.202 | 0.300       | 0.286      | 0.300  | 0.67 | 0.95 Neg          |
|              | 42   | 229        | XJ PH    | 0.068 | 0.300       | 0.088      | 0.300  | 0.23 | 0.29 Neg          |
|              | 43   | 230        | XJ PH    | 0.137 | 0.300       | 0.204      | 0.300  | 0.46 | 0.68 Neg          |
|              | 44   | 231        | XJ PH    | 0.140 | 0.300       | 0.250      | 0.300  | 0.47 | 0.83 Neg          |
|              | 45   | 232        | XJ PH    | 0.210 | 0.300       | 0.264      | 0.300  | 0.70 | 0.88 Neg          |
|              | 46   | 233        | XJ PH    | 0.079 | 0.300       | 0.064      | 0.300  | 0.26 | 0.21 Neg          |
|              | 47   | 234        | XJ PH    | 0.085 | 0.300       | 0.072      | 0.300  | 0.28 | 0.24 Neg          |
|              | 48   | 235        | XJ PH    | 0.069 | 0.300       | 0.084      | 0.300  | 0.23 | 0.28 Neg          |
|              | 49   | 236        | XJ PH    | 0.067 | 0.300       | 0.071      | 0.300  | 0.22 | 0.24 Neg          |
|              | 50   | 237        | XJ PH    | 0.084 | 0.300       | 0.093      | 0.300  | 0.26 | 0.31 Neg          |
|              | 51   | 238        | XJ PH    | 0.078 | 0.300       | 0.087      | 0.300  | 0.26 | 0.29 Neg          |
|              | 52   | 239        | XJ PH    | 0.096 | 0.300       | 0.147      | 0.300  | 0.32 | 0.49 Neg          |
|              | 53   | 240        | XJ PH    | 0.066 | 0.300       | 0.082      | 0.300  | 0.22 | 0.27 Neg          |
|              | 55   | 241        | XJ PH    | 0.762 | 0.300       | 0.657      | 0.300  | 2.54 | 2.19 10.46 Both + |
|              | 55   | 242        | XJ PH    | 0.068 | 0.300       | 0.080      | 0.300  | 0.23 | 0.27 Neg          |
|              | 56   | 243        | XJ PH    | 0.065 | 0.300       | 0.074      | 0.300  | 0.22 | 0.25 Neg          |
|              | 57   | 244        | XJ PH    | 0.063 | 0.300       | 0.069      | 0.300  | 0.21 | 0.23 Neg          |
|              | 58   | 245        | XJ PH    | 0.065 | 0.300       | 0.060      | 0.300  | 0.22 | 0.20 Neg          |
|              | 59   | 246        | XJ PH    | 0.159 | 0.300       | 0.214      | 0.300  | 0.53 | 0.71 Neg          |
|              | 60   | 247        | XJ PH    | 0.072 | 0.300       | 0.072      | 0.300  | 0.24 | 0.24 Neg          |
|              | 61   | 248        | XJ PH    | 0.103 | 0.300       | 0.211      | 0.300  | 0.34 | 0.70 Neg          |
|              | 62   | 249        | XJ PH    | 0.100 | 0.300       | 0.071      | 0.300  | 0.33 | 0.24 Neg          |
|              | 63   | 250        | XJ PH    | 0.099 | 0.300       | 0.142      | 0.300  | 0.33 | 0.47 Neg          |
|              | 64   | 251        | XJ PH    | 0.073 | 0.300       | 0.106      | 0.300  | 0.24 | 0.35 Neg          |
|              | 65   | 252        | XJ PH    | 0.059 | 0.300       | 0.069      | 0.300  | 0.20 | 0.23 Neg          |
|              | 66   | 253        | XJ PH    | 0.065 | 0.300       | 0.077      | 0.300  | 0.22 | 0.26 Neg          |
|              | 67   | 254        | XJ PH    | 0.064 | 0.300       | 0.068      | 0.300  | 0.21 | 0.23 Neg          |
|              | 68   | 255        | XJ PH    | 0.284 | 0.300       | 0.245      | 0.300  | 0.95 | 0.82 Neg          |
|              | 69   | 256        | XJ PH    | 0.064 | 0.300       | 0.069      | 0.300  | 0.21 | 0.23 Neg          |
|              | 70   | 257        | XJ PH    | 0.063 | 0.300       | 0.062      | 0.300  | 0.21 | 0.21 Neg          |
|              | 71   | 258        | XJ PH    | 0.074 | 0.300       | 0.065      | 0.300  | 0.25 | 0.22 Neg          |
|              | 72   | 259        | XJ PH    | 0.067 | 0.300       | 0.071      | 0.300  | 0.22 | 0.24 Neg          |
|              | 73   | 260        | XJ PH    | 0.102 | 0.300       | 0.066      | 0.300  | 0.34 | 0.22 Neg          |
|              | 74   | 261        | XJ PH    | 0.629 | 0.300       | 0.399      | 0.300  | 2.10 | 1.33 31.64 Both + |
|              | 75   | 262        | XJ PH    | 0.060 | 0.300       | 0.065      | 0.300  | 0.20 | 0.22 Neg          |
|              | 76   | 263        | XJ PH    | 0.346 | 0.300       | 0.551      | 0.300  | 1.15 | 1.84 32.32 Both + |
|              | 77   | 264        | XJ PH    | 0.062 | 0.300       | 0.065      | 0.300  | 0.21 | 0.22 Neg          |
|              | 78   | 265        | XJ PH    | 0.077 | 0.300       | 0.078      | 0.300  | 0.26 | 0.26 Neg          |
|              | 79   | 266        | XJ PH    | 0.145 | 0.300       | 0.228      | 0.300  | 0.48 | 0.76 Neg          |
|              | 80   | 267        | XJ PH    | 0.061 | 0.300       | 0.065      | 0.300  | 0.20 | 0.23 Neg          |
|              | 81   | 268        | XJ PH    | 0.152 | 0.300       | 0.170      | 0.300  | 0.51 | 0.57 Neg          |
|              | 83   | 269        | XJ PH    | 0.497 | 0.300       | 0.376      | 0.300  | 1.66 | 1.25 19.60 Both + |
|              | 83   | 270        | XJ PH    | 0.063 | 0.300       | 0.061      | 0.300  | 0.21 | 0.20 Neg          |
|              | 84   | 271        | XJ PH    | 0.068 | 0.300       | 0.064      | 0.300  | 0.23 | 0.21 Neg          |
|              | 85   | 272        | XJ PH    | 0.071 | 0.300       | 0.064      | 0.300  | 0.24 | 0.21 Neg          |

Figure 3J

| anti-HEV EA |             | OD       |       |        |       | Sample/Coff |        |      | Result |          |
|-------------|-------------|----------|-------|--------|-------|-------------|--------|------|--------|----------|
| Name        | Sample Date | humSAR55 | coff  | swORF2 | coff  | humSAR55    | swORF2 | %CV  |        |          |
| 86          | 273         | XJ PH    | 0.072 | 0.300  | 0.084 | 0.300       | 0.24   | 0.28 |        | Neg      |
| 87          | 274         | XJ PH    | 0.144 | 0.300  | 0.204 | 0.300       | 0.48   | 0.66 |        | Neg      |
| 88          | 275         | XJ PH    | 0.066 | 0.300  | 0.066 | 0.300       | 0.22   | 0.22 |        | Neg      |
| 89          | 276         | XJ PH    | 0.070 | 0.300  | 0.077 | 0.300       | 0.23   | 0.26 |        | Neg      |
| 25          | 277         | XJ PH    | 0.240 | 0.300  | 0.204 | 0.300       | 0.80   | 0.68 |        | Neg      |
| 91          | 278         | XJ PH    | 0.078 | 0.300  | 0.074 | 0.300       | 0.26   | 0.25 |        | Neg      |
| 92          | 279         | XJ PH    | 0.078 | 0.300  | 0.086 | 0.300       | 0.26   | 0.29 |        | Neg      |
| 93          | 280         | XJ PH    | 0.074 | 0.300  | 0.091 | 0.300       | 0.25   | 0.30 |        | Neg      |
| 94          | 281         | XJ PH    | 0.065 | 0.300  | 0.069 | 0.300       | 0.22   | 0.23 |        | Neg      |
| 26          | 282         | XJ PH    | 0.481 | 0.300  | 0.407 | 0.341       | 1.60   | 1.19 | 20.72  | Both +   |
| 5           | 283         | XJ PH    | 0.070 | 0.300  | 0.073 | 0.341       | 0.23   | 0.21 |        | Neg      |
| 6           | 284         | XJ PH    | 0.061 | 0.300  | 0.083 | 0.341       | 0.20   | 0.24 |        | Neg      |
| 7           | 285         | XJ PH    | 0.067 | 0.300  | 0.076 | 0.341       | 0.22   | 0.22 |        | Neg      |
| 27          | 286         | XJ PH    | 0.366 | 0.300  | 0.356 | 0.341       | 1.22   | 1.04 | 10.99  | Both +   |
| 9           | 287         | XJ PH    | 0.085 | 0.300  | 0.135 | 0.341       | 0.28   | 0.40 |        | Neg      |
| 28          | 288         | XJ PH    | 0.538 | 0.300  | 0.631 | 0.341       | 1.79   | 1.85 | 2.22   | Both +   |
| 11          | 289         | XJ PH    | 0.067 | 0.300  | 0.189 | 0.341       | 0.22   | 0.55 |        | Neg      |
| 29          | 290         | XJ PH    | 0.357 | 0.300  | 0.321 | 0.341       | 1.19   | 0.94 | 16.50  | sar55 +  |
| 13          | 291         | XJ PH    | 0.112 | 0.300  | 0.167 | 0.341       | 0.37   | 0.49 |        | Neg      |
| 14          | 292         | XJ PH    | 0.068 | 0.300  | 0.077 | 0.341       | 0.23   | 0.23 |        | Neg      |
| 15          | 293         | XJ PH    | 0.062 | 0.300  | 0.062 | 0.341       | 0.21   | 0.18 |        | Neg      |
| 30          | 294         | XJ PH    | 0.255 | 0.300  | 0.352 | 0.341       | 0.85   | 1.03 |        | swORF2 + |
| 31          | 295         | XJ PH    | 0.350 | 0.300  | 0.370 | 0.341       | 1.17   | 1.09 | 5.13   | Both +   |
| 18          | 296         | XJ PH    | 0.061 | 0.300  | 0.062 | 0.341       | 0.20   | 0.18 |        | Neg      |
| 19          | 297         | XJ PH    | 0.081 | 0.300  | 0.062 | 0.341       | 0.27   | 0.18 |        | Neg      |
| 20          | 298         | XJ PH    | 0.062 | 0.300  | 0.068 | 0.341       | 0.21   | 0.20 |        | Neg      |
| 21          | 299         | XJ PH    | 0.076 | 0.300  | 0.085 | 0.341       | 0.25   | 0.25 |        | Neg      |
| 22          | 300         | XJ PH    | 0.065 | 0.300  | 0.057 | 0.341       | 0.22   | 0.17 |        | Neg      |
| 23          | 301         | XJ PH    | 0.064 | 0.300  | 0.064 | 0.341       | 0.21   | 0.19 |        | Neg      |
| 32          | 302         | XJ PH    | 0.611 | 0.300  | 0.704 | 0.341       | 2.04   | 2.06 | 0.96   | Both +   |
| 25          | 303         | XJ PH    | 0.077 | 0.300  | 0.104 | 0.341       | 0.26   | 0.30 |        | Neg      |
| 26          | 304         | XJ PH    | 0.057 | 0.300  | 0.060 | 0.341       | 0.19   | 0.18 |        | Neg      |
| 27          | 305         | XJ PH    | 0.060 | 0.300  | 0.059 | 0.341       | 0.20   | 0.17 |        | Neg      |
| 28          | 306         | XJ PH    | 0.064 | 0.300  | 0.067 | 0.341       | 0.21   | 0.20 |        | Neg      |
| 29          | 307         | XJ PH    | 0.119 | 0.300  | 0.209 | 0.341       | 0.40   | 0.61 |        | Neg      |
| 30          | 308         | XJ PH    | 0.075 | 0.300  | 0.076 | 0.341       | 0.25   | 0.22 |        | Neg      |
| 31          | 309         | XJ PH    | 0.058 | 0.300  | 0.063 | 0.341       | 0.19   | 0.18 |        | Neg      |
| 32          | 310         | XJ PH    | 0.067 | 0.300  | 0.061 | 0.341       | 0.22   | 0.18 |        | Neg      |
| 33          | 311         | XJ PH    | 0.061 | 0.300  | 0.054 | 0.341       | 0.20   | 0.16 |        | Neg      |
| 34          | 312         | XJ PH    | 0.062 | 0.300  | 0.062 | 0.341       | 0.21   | 0.18 |        | Neg      |
| 35          | 313         | XJ PH    | 0.060 | 0.300  | 0.060 | 0.341       | 0.20   | 0.18 |        | Neg      |
| 36          | 314         | XJ PH    | 0.064 | 0.300  | 0.061 | 0.341       | 0.21   | 0.18 |        | Neg      |
| 37          | 315         | XJ PH    | 0.058 | 0.300  | 0.058 | 0.341       | 0.19   | 0.17 |        | Neg      |
| 38          | 316         | XJ PH    | 0.073 | 0.300  | 0.065 | 0.341       | 0.24   | 0.19 |        | Neg      |
| 39          | 317         | XJ PH    | 0.060 | 0.300  | 0.060 | 0.341       | 0.20   | 0.18 |        | Neg      |
| 40          | 318         | XJ PH    | 0.057 | 0.300  | 0.059 | 0.341       | 0.19   | 0.17 |        | Neg      |
| 6           | 319         | XJ PH    | 0.914 | 0.300  | 0.695 | 0.341       | 3.05   | 2.04 | 28.05  | Both +   |
| 42          | 320         | XJ PH    | 0.068 | 0.300  | 0.064 | 0.341       | 0.23   | 0.19 |        | Neg      |
| 43          | 321         | XJ PH    | 0.083 | 0.300  | 0.071 | 0.341       | 0.28   | 0.21 |        | Neg      |
| 44          | 322         | XJ PH    | 0.058 | 0.300  | 0.058 | 0.341       | 0.19   | 0.17 |        | Neg      |
| 45          | 323         | XJ PH    | 0.060 | 0.300  | 0.058 | 0.341       | 0.20   | 0.17 |        | Neg      |
| 46          | 324         | XJ PH    | 0.072 | 0.300  | 0.063 | 0.341       | 0.24   | 0.18 |        | Neg      |
| 47          | 325         | XJ PH    | 0.059 | 0.300  | 0.058 | 0.341       | 0.20   | 0.17 |        | Neg      |
| 48          | 326         | XJ PH    | 0.062 | 0.300  | 0.073 | 0.341       | 0.21   | 0.21 |        | Neg      |
| 49          | 327         | XJ PH    | 0.058 | 0.300  | 0.057 | 0.341       | 0.19   | 0.17 |        | Neg      |
| 50          | 328         | XJ PH    | 0.064 | 0.300  | 0.060 | 0.341       | 0.21   | 0.18 |        | Neg      |
| 51          | 329         | XJ PH    | 0.112 | 0.300  | 0.119 | 0.341       | 0.37   | 0.35 |        | Neg      |

Figure 3K

| anti-HEV EIA | Name | SampleDate | OD       |       |             | Sample/Coff |        |      | Result             |
|--------------|------|------------|----------|-------|-------------|-------------|--------|------|--------------------|
|              |      |            | humSAR55 | coff  | swORF2 coff | humSAR55    | swORF2 | %CV  |                    |
|              | 7    | 330        | XJ PH    | 0.455 | 0.300       | 0.389       | 0.341  | 1.52 | 1.14 20.00 Both +  |
|              | 53   | 331        | XJ PH    | 0.070 | 0.300       | 0.090       | 0.341  | 0.23 | 0.26 Neg           |
|              | 54   | 332        | XJ PH    | 0.060 | 0.300       | 0.056       | 0.341  | 0.20 | 0.16 Neg           |
|              | 55   | 333        | XJ PH    | 0.090 | 0.300       | 0.075       | 0.341  | 0.30 | 0.22 Neg           |
|              | 56   | 334        | XJ PH    | 0.089 | 0.300       | 0.081       | 0.341  | 0.30 | 0.24 Neg           |
|              | 57   | 335        | XJ PH    | 0.059 | 0.300       | 0.056       | 0.341  | 0.20 | 0.16 Neg           |
|              | 58   | 336        | XJ PH    | 0.057 | 0.300       | 0.055       | 0.341  | 0.19 | 0.16 Neg           |
|              | 8    | 337        | XJ PH    | 0.464 | 0.300       | 0.370       | 0.341  | 1.55 | 1.09 24.81 Both -  |
|              | 60   | 338        | XJ PH    | 0.106 | 0.300       | 0.201       | 0.341  | 0.35 | 0.59 Neg           |
|              | 10   | 339        | XJ PH    | 1.650 | 0.300       | 1.339       | 0.341  | 5.50 | 3.93 23.60 Both -  |
|              | 62   | 340        | XJ PH    | 0.065 | 0.300       | 0.064       | 0.341  | 0.22 | 0.19 Neg           |
|              | 63   | 341        | XJ PH    | 0.069 | 0.300       | 0.062       | 0.341  | 0.23 | 0.18 Neg           |
|              | 11   | 342        | XJ PH    | 1.433 | 0.300       | 1.163       | 0.341  | 4.78 | 3.41 23.60 Both +  |
|              | 65   | 343        | XJ PH    | 0.073 | 0.300       | 0.064       | 0.341  | 0.24 | 0.19 Neg           |
|              | 12   | 344        | XJ PH    | 0.525 | 0.300       | 0.466       | 0.341  | 1.75 | 1.37 17.40 Both -  |
|              | 67   | 345        | XJ PH    | 0.059 | 0.300       | 0.058       | 0.341  | 0.20 | 0.17 Neg           |
|              | 68   | 346        | XJ PH    | 0.060 | 0.300       | 0.062       | 0.341  | 0.20 | 0.18 Neg           |
|              | 13   | 347        | XJ PH    | 0.301 | 0.300       | 0.305       | 0.341  | 1.00 | 0.89 8.12 sar55 +  |
|              | 70   | 348        | XJ PH    | 0.087 | 0.300       | 0.065       | 0.341  | 0.29 | 0.19 Neg           |
|              | 14   | 349        | XJ PH    | 0.347 | 0.300       | 0.317       | 0.341  | 1.16 | 0.93 15.39 sar55 + |
|              | 72   | 350        | XJ PH    | 0.062 | 0.300       | 0.060       | 0.341  | 0.21 | 0.18 Neg           |
|              | 73   | 351        | XJ PH    | 0.059 | 0.300       | 0.062       | 0.341  | 0.20 | 0.18 Neg           |
|              | 74   | 352        | XJ PH    | 0.058 | 0.300       | 0.056       | 0.341  | 0.19 | 0.16 Neg           |
|              | 15   | 353        | XJ PH    | 0.695 | 0.300       | 0.692       | 0.341  | 2.32 | 2.03 9.35 Both +   |
|              | 76   | 354        | XJ PH    | 0.059 | 0.300       | 0.057       | 0.341  | 0.20 | 0.17 Neg           |
|              | 77   | 355        | XJ PH    | 0.063 | 0.300       | 0.063       | 0.341  | 0.21 | 0.18 Neg           |
|              | 78   | 356        | XJ PH    | 0.068 | 0.300       | 0.070       | 0.341  | 0.23 | 0.21 Neg           |
|              | 79   | 357        | XJ PH    | 0.060 | 0.300       | 0.060       | 0.341  | 0.20 | 0.18 Neg           |
|              | 80   | 358        | XJ PH    | 0.062 | 0.300       | 0.063       | 0.341  | 0.21 | 0.18 Neg           |
|              | 81   | 359        | XJ PH    | 0.061 | 0.300       | 0.058       | 0.341  | 0.20 | 0.17 Neg           |
|              | 82   | 360        | XJ PH    | 0.060 | 0.300       | 0.058       | 0.341  | 0.20 | 0.17 Neg           |
|              | 83   | 361        | XJ PH    | 0.061 | 0.300       | 0.060       | 0.341  | 0.20 | 0.18 Neg           |
|              | 84   | 362        | XJ PH    | 0.093 | 0.300       | 0.138       | 0.341  | 0.31 | 0.40 Neg           |
|              | 85   | 363        | XJ PH    | 0.060 | 0.300       | 0.064       | 0.341  | 0.20 | 0.19 Neg           |
|              | 86   | 364        | XJ PH    | 0.086 | 0.300       | 0.114       | 0.341  | 0.29 | 0.33 Neg           |
|              | 87   | 365        | XJ PH    | 0.059 | 0.300       | 0.058       | 0.341  | 0.20 | 0.17 Neg           |
|              | 16   | 366        | XJ PH    | 0.757 | 0.300       | 0.523       | 0.341  | 2.52 | 1.53 34.50 Both +  |
|              | 89   | 367        | XJ PH    | 0.064 | 0.300       | 0.062       | 0.341  | 0.21 | 0.18 Neg           |
|              | 90   | 368        | XJ PH    | 0.065 | 0.300       | 0.062       | 0.341  | 0.22 | 0.18 Neg           |
|              | 91   | 369        | XJ PH    | 0.069 | 0.300       | 0.067       | 0.341  | 0.23 | 0.20 Neg           |
|              | 92   | 370        | XJ PH    | 0.061 | 0.300       | 0.064       | 0.341  | 0.20 | 0.19 Neg           |
|              | 93   | 371        | XJ PH    | 0.074 | 0.300       | 0.058       | 0.341  | 0.25 | 0.17 Neg           |
|              | 94   | 372        | XJ PH    | 0.141 | 0.300       | 0.185       | 0.341  | 0.47 | 0.54 Neg           |
|              | 95   | 373        | XJ PH    | 0.062 | 0.300       | 0.068       | 0.341  | 0.21 | 0.20 Neg           |
|              | 5    | 374        | XJ PH    | 0.068 | 0.300       | 0.061       | 0.300  | 0.23 | 0.20 Neg           |
|              | 6    | 375        | XJ PH    | 0.112 | 0.300       | 0.088       | 0.300  | 0.37 | 0.29 Neg           |
|              | 7    | 376        | XJ PH    | 0.068 | 0.300       | 0.056       | 0.300  | 0.23 | 0.19 Neg           |
|              | 17   | 377        | XJ PH    | 0.344 | 0.300       | 0.244       | 0.300  | 1.15 | 0.81 24.05 sar55 + |
|              | 9    | 378        | XJ PH    | 0.073 | 0.300       | 0.056       | 0.300  | 0.24 | 0.19 Neg           |
|              | 10   | 379        | XJ PH    | 0.117 | 0.300       | 0.126       | 0.300  | 0.39 | 0.42 Neg           |
|              | 11   | 380        | XJ PH    | 0.067 | 0.300       | 0.058       | 0.300  | 0.22 | 0.19 Neg           |
|              | 12   | 381        | XJ PH    | 0.072 | 0.300       | 0.058       | 0.300  | 0.24 | 0.19 Neg           |
|              | 13   | 382        | XJ PH    | 0.072 | 0.300       | 0.059       | 0.300  | 0.24 | 0.20 Neg           |
|              | 14   | 383        | XJ PH    | 0.070 | 0.300       | 0.064       | 0.300  | 0.23 | 0.21 Neg           |
|              | 18   | 384        | XJ PH    | 1.457 | 0.300       | 1.085       | 0.300  | 4.86 | 3.62 20.70 Both +  |
|              | 16   | 385        | XJ PH    | 0.065 | 0.300       | 0.057       | 0.300  | 0.22 | 0.19 Neg           |
|              | 17   | 386        | XJ PH    | 0.069 | 0.300       | 0.062       | 0.300  | 0.23 | 0.21 Neg           |

Figure 3L

| anti-HEV EIA<br>Name | Sample Date | OD       |       |        |       | Sample/Coff |        |       | Result |
|----------------------|-------------|----------|-------|--------|-------|-------------|--------|-------|--------|
|                      |             | humSAR55 | coff  | swORF2 | coff  | humSAR55    | swORF2 | %CV   |        |
| 18 387               | XJ PH       | 0.241    | 0.300 | 0.262  | 0.300 | 0.80        | 0.87   |       | Neg    |
| 19 388               | XJ PH       | 0.108    | 0.300 | 0.113  | 0.300 | 0.36        | 0.38   |       | Neg    |
| 20 389               | XJ PH       | 0.072    | 0.300 | 0.059  | 0.300 | 0.24        | 0.20   |       | Neg    |
| 21 390               | XJ PH       | 0.063    | 0.300 | 0.058  | 0.300 | 0.21        | 0.19   |       | Neg    |
| 22 391               | XJ PH       | 0.186    | 0.300 | 0.295  | 0.300 | 0.62        | 0.98   |       | Neg    |
| 23 392               | XJ PH       | 0.066    | 0.300 | 0.058  | 0.300 | 0.22        | 0.19   |       | Neg    |
| 24 393               | XJ PH       | 0.084    | 0.300 | 0.060  | 0.300 | 0.28        | 0.20   |       | Neg    |
| 25 394               | XJ PH       | 0.070    | 0.300 | 0.065  | 0.300 | 0.23        | 0.22   |       | Neg    |
| 26 395               | XJ PH       | 0.228    | 0.300 | 0.267  | 0.300 | 0.76        | 0.89   |       | Neg    |
| 27 396               | XJ PH       | 0.070    | 0.300 | 0.060  | 0.300 | 0.23        | 0.20   |       | Neg    |
| 28 397               | XJ PH       | 0.064    | 0.300 | 0.056  | 0.300 | 0.21        | 0.19   |       | Neg    |
| 29 398               | XJ PH       | 0.068    | 0.300 | 0.057  | 0.300 | 0.23        | 0.19   |       | Neg    |
| 30 399               | XJ PH       | 0.068    | 0.300 | 0.059  | 0.300 | 0.23        | 0.20   |       | Neg    |
| 31 400               | XJ PH       | 0.067    | 0.300 | 0.059  | 0.300 | 0.22        | 0.20   |       | Neg    |
| 22 401               | XJ PH       | 0.610    | 0.300 | 0.375  | 0.300 | 2.03        | 1.25   | 33.74 | Both + |
| 33 402               | XJ PH       | 0.063    | 0.300 | 0.055  | 0.300 | 0.21        | 0.18   |       | Neg    |
| 34 403               | XJ PH       | 0.068    | 0.300 | 0.059  | 0.300 | 0.23        | 0.20   |       | Neg    |
| 35 404               | XJ PH       | 0.075    | 0.300 | 0.060  | 0.300 | 0.25        | 0.20   |       | Neg    |
| 36 405               | XJ PH       | 0.069    | 0.300 | 0.058  | 0.300 | 0.23        | 0.19   |       | Neg    |
| 37 406               | XJ PH       | 0.139    | 0.300 | 0.196  | 0.300 | 0.46        | 0.65   |       | Neg    |
| 38 407               | XJ PH       | 0.070    | 0.300 | 0.065  | 0.300 | 0.23        | 0.22   |       | Neg    |
| 39 408               | XJ PH       | 0.115    | 0.300 | 0.127  | 0.300 | 0.38        | 0.42   |       | Neg    |
| 40 409               | XJ PH       | 0.074    | 0.300 | 0.070  | 0.300 | 0.25        | 0.23   |       | Neg    |
| 41 410               | XJ PH       | 0.069    | 0.300 | 0.070  | 0.300 | 0.23        | 0.23   |       | Neg    |
| 42 411               | XJ PH       | 0.070    | 0.300 | 0.064  | 0.300 | 0.23        | 0.21   |       | Neg    |
| 43 412               | XJ PH       | 0.069    | 0.300 | 0.061  | 0.300 | 0.23        | 0.20   |       | Neg    |
| 44 413               | XJ PH       | 0.063    | 0.300 | 0.057  | 0.300 | 0.21        | 0.19   |       | Neg    |
| 45 414               | XJ PH       | 0.066    | 0.300 | 0.056  | 0.300 | 0.22        | 0.19   |       | Neg    |
| 46 415               | XJ PH       | 0.184    | 0.300 | 0.221  | 0.300 | 0.61        | 0.74   |       | Neg    |
| 47 416               | XJ PH       | 0.105    | 0.300 | 0.124  | 0.300 | 0.35        | 0.41   |       | Neg    |
| 48 417               | XJ PH       | 0.073    | 0.300 | 0.066  | 0.300 | 0.24        | 0.22   |       | Neg    |
| 49 418               | XJ PH       | 0.069    | 0.300 | 0.058  | 0.300 | 0.23        | 0.19   |       | Neg    |
| 50 419               | XJ PH       | 0.065    | 0.300 | 0.055  | 0.300 | 0.22        | 0.18   |       | Neg    |
| 51 420               | XJ PH       | 0.063    | 0.300 | 0.055  | 0.300 | 0.21        | 0.18   |       | Neg    |
| 24 421               | XJ PH       | 1.019    | 0.300 | 0.831  | 0.300 | 3.40        | 2.77   | 14.37 | Both + |
| 53 422               | XJ PH       | 0.066    | 0.300 | 0.059  | 0.300 | 0.22        | 0.20   |       | Neg    |
| 25 423               | XJ PH       | 0.662    | 0.300 | 0.532  | 0.300 | 2.21        | 1.77   | 15.40 | Both + |
| 55 424               | XJ PH       | 0.070    | 0.300 | 0.056  | 0.300 | 0.23        | 0.19   |       | Neg    |
| 56 425               | XJ PH       | 0.065    | 0.300 | 0.069  | 0.300 | 0.22        | 0.23   |       | Neg    |
| 57 426               | XJ PH       | 0.108    | 0.300 | 0.139  | 0.300 | 0.36        | 0.46   |       | Neg    |
| 58 427               | XJ PH       | 0.186    | 0.300 | 0.212  | 0.300 | 0.62        | 0.71   |       | Neg    |
| 27 428               | XJ PH       | 0.658    | 0.300 | 0.652  | 0.300 | 2.19        | 2.17   | 0.65  | Both + |
| 60 429               | XJ PH       | 0.078    | 0.300 | 0.063  | 0.300 | 0.26        | 0.21   |       | Neg    |
| 61 430               | XJ PH       | 0.065    | 0.300 | 0.055  | 0.300 | 0.22        | 0.18   |       | Neg    |
| 62 431               | XJ PH       | 0.067    | 0.300 | 0.056  | 0.300 | 0.22        | 0.19   |       | Neg    |
| 63 432               | XJ PH       | 0.071    | 0.300 | 0.058  | 0.300 | 0.24        | 0.19   |       | Neg    |
| 64 433               | XJ PH       | 0.245    | 0.300 | 0.268  | 0.300 | 0.82        | 0.89   |       | Neg    |
| 65 434               | XJ PH       | 0.128    | 0.300 | 0.171  | 0.300 | 0.43        | 0.57   |       | Neg    |
| 66 435               | XJ PH       | 0.069    | 0.300 | 0.058  | 0.300 | 0.23        | 0.19   |       | Neg    |
| 29 436               | XJ PH       | 0.751    | 0.300 | 0.523  | 0.300 | 2.50        | 1.74   | 25.31 | Both + |
| 68 437               | XJ PH       | 0.072    | 0.300 | 0.064  | 0.300 | 0.24        | 0.21   |       | Neg    |
| 69 438               | XJ PH       | 0.064    | 0.300 | 0.055  | 0.300 | 0.21        | 0.18   |       | Neg    |
| 70 439               | XJ PH       | 0.065    | 0.300 | 0.065  | 0.300 | 0.22        | 0.22   |       | Neg    |
| 71 440               | XJ PH       | 0.111    | 0.300 | 0.109  | 0.300 | 0.37        | 0.36   |       | Neg    |
| 72 441               | XJ PH       | 0.074    | 0.300 | 0.060  | 0.300 | 0.25        | 0.20   |       | Neg    |
| 73 442               | XJ PH       | 0.108    | 0.300 | 0.134  | 0.300 | 0.36        | 0.45   |       | Neg    |
| 74 443               | XJ PH       | 0.062    | 0.300 | 0.054  | 0.300 | 0.21        | 0.18   |       | Neg    |

Figure 3M

| anti-HEV E1A |            | OD       |       |             | Sample/Coff |        |      | Result |       |        |
|--------------|------------|----------|-------|-------------|-------------|--------|------|--------|-------|--------|
| Name         | SampleDate | humSAR55 | coff  | swORF2 coff | humSAR55    | swORF2 | %CV  |        |       |        |
| 75           | 444        | XJ PH    | 0.198 | 0.300       | 0.216       | 0.300  | 0.66 | 0.73   | Neg   |        |
| 76           | 445        | XJ PH    | 0.065 | 0.300       | 0.059       | 0.300  | 0.22 | 0.20   | Neg   |        |
| 77           | 446        | XJ PH    | 0.065 | 0.300       | 0.057       | 0.300  | 0.22 | 0.19   | Neg   |        |
| 78           | 447        | XJ PH    | 0.064 | 0.300       | 0.059       | 0.300  | 0.21 | 0.20   | Neg   |        |
| 79           | 448        | XJ PH    | 0.066 | 0.300       | 0.058       | 0.300  | 0.22 | 0.19   | Neg   |        |
| 80           | 449        | XJ PH    | 0.070 | 0.300       | 0.058       | 0.300  | 0.23 | 0.19   | Neg   |        |
| 81           | 450        | XJ PH    | 0.063 | 0.300       | 0.057       | 0.300  | 0.21 | 0.19   | Neg   |        |
| 82           | 451        | XJ PH    | 0.081 | 0.300       | 0.084       | 0.300  | 0.27 | 0.21   | Neg   |        |
| 83           | 452        | XJ PH    | 0.067 | 0.300       | 0.059       | 0.300  | 0.22 | 0.20   | Neg   |        |
| 84           | 453        | XJ PH    | 0.071 | 0.300       | 0.060       | 0.300  | 0.24 | 0.20   | Neg   |        |
| 31           | 454        | XJ PH    | 0.821 | 0.300       | 0.604       | 0.300  | 2.74 | 2.01   | 21.54 | Both + |
| 86           | 455        | XJ PH    | 0.100 | 0.300       | 0.141       | 0.300  | 0.33 | 0.47   | Neg   |        |
| 87           | 456        | XJ PH    | 0.066 | 0.300       | 0.057       | 0.300  | 0.22 | 0.19   | Neg   |        |
| 32           | 457        | XJ PH    | 0.683 | 0.300       | 0.576       | 0.300  | 2.28 | 1.92   | 12.02 | Both + |
| 89           | 458        | XJ PH    | 0.084 | 0.300       | 0.074       | 0.300  | 0.28 | 0.25   | Neg   |        |
| 90           | 459        | XJ PH    | 0.066 | 0.300       | 0.055       | 0.300  | 0.22 | 0.18   | Neg   |        |
| 91           | 460        | XJ PH    | 0.064 | 0.300       | 0.060       | 0.300  | 0.21 | 0.20   | Neg   |        |
| 92           | 461        | XJ PH    | 0.112 | 0.300       | 0.116       | 0.300  | 0.37 | 0.39   | Neg   |        |
| 93           | 462        | XJ PH    | 0.227 | 0.300       | 0.234       | 0.300  | 0.76 | 0.78   | Neg   |        |
| 94           | 463        | XJ PH    | 0.124 | 0.300       | 0.129       | 0.300  | 0.41 | 0.43   | Neg   |        |
| 95           | 464        | XJ PH    | 0.103 | 0.300       | 0.215       | 0.300  | 0.34 | 0.72   | Neg   |        |
| 5            | 465        | XJ PH    | 0.066 | 0.300       | 0.064       | 0.300  | 0.22 | 0.21   | Neg   |        |
| 6            | 466        | XJ PH    | 0.072 | 0.300       | 0.067       | 0.300  | 0.24 | 0.22   | Neg   |        |
| 7            | 467        | XJ PH    | 0.064 | 0.300       | 0.057       | 0.300  | 0.21 | 0.19   | Neg   |        |
| 8            | 468        | XJ PH    | 0.066 | 0.300       | 0.070       | 0.300  | 0.22 | 0.23   | Neg   |        |
| 7            | 469        | XJ PH    | 0.748 | 0.300       | 0.988       | 0.300  | 2.49 | 3.29   | 19.55 | Both + |
| 8            | 470        | XJ PH    | 0.634 | 0.300       | 0.860       | 0.300  | 2.11 | 2.87   | 21.39 | Both + |
| 9            | 471        | XJ PH    | 0.306 | 0.300       | 0.406       | 0.300  | 1.02 | 1.35   | 19.86 | Both + |
| 12           | 472        | XJ PH    | 0.068 | 0.300       | 0.061       | 0.300  | 0.23 | 0.20   | Neg   |        |
| 10           | 473        | XJ PH    | 0.561 | 0.300       | 0.783       | 0.300  | 1.87 | 2.61   | 23.36 | Both + |
| 14           | 474        | XJ PH    | 0.066 | 0.300       | 0.058       | 0.300  | 0.22 | 0.19   | Neg   |        |
| 15           | 475        | XJ PH    | 0.072 | 0.300       | 0.060       | 0.300  | 0.24 | 0.20   | Neg   |        |
| 16           | 476        | XJ PH    | 0.066 | 0.300       | 0.061       | 0.300  | 0.22 | 0.20   | Neg   |        |
| 17           | 477        | XJ PH    | 0.061 | 0.300       | 0.056       | 0.300  | 0.20 | 0.19   | Neg   |        |
| 18           | 478        | XJ PH    | 0.135 | 0.300       | 0.210       | 0.300  | 0.45 | 0.70   | Neg   |        |
| 19           | 479        | XJ PH    | 0.143 | 0.300       | 0.253       | 0.300  | 0.48 | 0.84   | Neg   |        |
| 20           | 480        | XJ PH    | 0.064 | 0.300       | 0.057       | 0.300  | 0.21 | 0.19   | Neg   |        |
| 21           | 481        | XJ PH    | 0.131 | 0.300       | 0.223       | 0.300  | 0.44 | 0.74   | Neg   |        |
| 22           | 482        | XJ PH    | 0.065 | 0.300       | 0.054       | 0.300  | 0.22 | 0.18   | Neg   |        |
| 23           | 483        | XJ PH    | 0.073 | 0.300       | 0.058       | 0.300  | 0.24 | 0.19   | Neg   |        |
| 24           | 484        | XJ PH    | 0.069 | 0.300       | 0.065       | 0.300  | 0.23 | 0.22   | Neg   |        |
| 25           | 485        | XJ PH    | 0.069 | 0.300       | 0.066       | 0.300  | 0.23 | 0.22   | Neg   |        |
| 26           | 486        | XJ PH    | 0.083 | 0.300       | 0.067       | 0.300  | 0.28 | 0.22   | Neg   |        |
| 27           | 487        | XJ PH    | 0.076 | 0.300       | 0.069       | 0.300  | 0.25 | 0.23   | Neg   |        |
| 28           | 488        | XJ PH    | 0.067 | 0.300       | 0.062       | 0.300  | 0.22 | 0.21   | Neg   |        |
| 29           | 489        | XJ PH    | 0.071 | 0.300       | 0.056       | 0.300  | 0.24 | 0.19   | Neg   |        |
| 30           | 490        | XJ PH    | 0.084 | 0.300       | 0.084       | 0.300  | 0.28 | 0.28   | Neg   |        |
| 31           | 491        | XJ PH    | 0.068 | 0.300       | 0.060       | 0.300  | 0.23 | 0.20   | Neg   |        |
| 32           | 492        | XJ PH    | 0.065 | 0.300       | 0.062       | 0.300  | 0.22 | 0.21   | Neg   |        |
| 33           | 493        | XJ PH    | 0.081 | 0.300       | 0.085       | 0.300  | 0.27 | 0.28   | Neg   |        |
| 34           | 494        | XJ PH    | 0.064 | 0.300       | 0.058       | 0.300  | 0.21 | 0.19   | Neg   |        |
| 35           | 495        | XJ PH    | 0.064 | 0.300       | 0.064       | 0.300  | 0.21 | 0.21   | Neg   |        |
| 36           | 496        | XJ PH    | 0.071 | 0.300       | 0.061       | 0.300  | 0.24 | 0.20   | Neg   |        |
| 37           | 497        | XJ PH    | 0.065 | 0.300       | 0.058       | 0.300  | 0.22 | 0.19   | Neg   |        |
| 38           | 498        | XJ PH    | 0.069 | 0.300       | 0.081       | 0.300  | 0.23 | 0.27   | Neg   |        |
| 39           | 499        | XJ PH    | 0.178 | 0.300       | 0.241       | 0.300  | 0.59 | 0.80   | Neg   |        |
| 40           | 500        | XJ PH    | 0.066 | 0.300       | 0.065       | 0.300  | 0.22 | 0.22   | Neg   |        |

Figure 3N

| anti-HEV EIA |            | OD       |       |        |       | Sample/Coff |        |      | Result |  |
|--------------|------------|----------|-------|--------|-------|-------------|--------|------|--------|--|
| Name         | SampleDate | humSAR55 | coff  | swORF2 | coff  | humSAR55    | swORF2 | %CV  |        |  |
| 41           | 501        | XJ PH    | 0.074 | 0.300  | 0.061 | 0.300       | 0.25   | 0.20 | Neg    |  |
| 42           | 502        | XJ PH    | 0.124 | 0.300  | 0.145 | 0.300       | 0.41   | 0.48 | Neg    |  |
| 43           | 503        | XJ PH    | 0.061 | 0.300  | 0.058 | 0.300       | 0.20   | 0.19 | Neg    |  |
| 44           | 504        | XJ PH    | 0.062 | 0.300  | 0.057 | 0.300       | 0.21   | 0.19 | Neg    |  |
| 45           | 505        | XJ PH    | 0.074 | 0.300  | 0.060 | 0.300       | 0.25   | 0.20 | Neg    |  |
| 46           | 506        | XJ PH    | 0.067 | 0.300  | 0.058 | 0.300       | 0.22   | 0.19 | Neg    |  |
| 15           | 507        | XJ PH    | 1.467 | 0.300  | 1.103 | 0.300       | 4.89   | 3.68 | 20.03  |  |
| 48           | 508        | XJ PH    | 0.067 | 0.300  | 0.059 | 0.300       | 0.22   | 0.20 | Neg    |  |
| 49           | 509        | XJ PH    | 0.102 | 0.300  | 0.141 | 0.300       | 0.34   | 0.47 | Neg    |  |
| 50           | 510        | XJ PH    | 0.061 | 0.300  | 0.063 | 0.300       | 0.20   | 0.21 | Neg    |  |
| 51           | 511        | XJ PH    | 0.099 | 0.300  | 0.129 | 0.300       | 0.33   | 0.43 | Neg    |  |
| 52           | 512        | XJ PH    | 0.064 | 0.300  | 0.057 | 0.300       | 0.21   | 0.19 | Neg    |  |
| 53           | 513        | XJ PH    | 0.059 | 0.300  | 0.057 | 0.300       | 0.20   | 0.19 | Neg    |  |
| 54           | 514        | XJ PH    | 0.059 | 0.300  | 0.054 | 0.300       | 0.20   | 0.18 | Neg    |  |
| 55           | 515        | XJ PH    | 0.076 | 0.300  | 0.098 | 0.300       | 0.25   | 0.33 | Neg    |  |
| 56           | 516        | XJ PH    | 0.062 | 0.300  | 0.058 | 0.300       | 0.21   | 0.19 | Neg    |  |
| 57           | 517        | XJ PH    | 0.059 | 0.300  | 0.056 | 0.300       | 0.20   | 0.19 | Neg    |  |
| 58           | 518        | XJ PH    | 0.061 | 0.300  | 0.054 | 0.300       | 0.20   | 0.18 | Neg    |  |
| 59           | 519        | XJ PH    | 0.066 | 0.300  | 0.063 | 0.300       | 0.22   | 0.21 | Neg    |  |
| 60           | 520        | XJ PH    | 0.064 | 0.300  | 0.058 | 0.300       | 0.21   | 0.19 | Neg    |  |
| 61           | 521        | XJ PH    | 0.062 | 0.300  | 0.058 | 0.300       | 0.21   | 0.19 | Neg    |  |
| 62           | 522        | XJ PH    | 0.099 | 0.300  | 0.116 | 0.300       | 0.33   | 0.39 | Neg    |  |
| 63           | 523        | XJ PH    | 0.068 | 0.300  | 0.061 | 0.300       | 0.23   | 0.20 | Neg    |  |
| 64           | 524        | XJ PH    | 0.089 | f      | 0.076 | 0.300       | 0.30   | 0.25 | Neg    |  |
| 65           | 525        | XJ PH    | 0.064 | t      | 0.065 | 0.300       | 0.21   | 0.22 | Neg    |  |
| 66           | 526        | XJ PH    | 0.060 | 0.300  | 0.058 | 0.300       | 0.20   | 0.19 | Neg    |  |
| 67           | 527        | XJ PH    | 0.062 | 0.300  | 0.058 | 0.300       | 0.21   | 0.19 | Neg    |  |
| 68           | 528        | XJ PH    | 0.062 | 0.300  | 0.057 | 0.300       | 0.21   | 0.19 | Neg    |  |
| 69           | 529        | XJ PH    | 0.067 | 0.300  | 0.057 | 0.300       | 0.22   | 0.19 | Neg    |  |
| 70           | 530        | XJ PH    | 0.063 | 0.300  | 0.055 | 0.300       | 0.21   | 0.18 | Neg    |  |
| 71           | 531        | XJ PH    | 0.063 | 0.300  | 0.058 | 0.300       | 0.21   | 0.19 | Neg    |  |
| 72           | 532        | XJ PH    | 0.073 | 0.300  | 0.058 | 0.300       | 0.24   | 0.19 | Neg    |  |
| 73           | 533        | XJ PH    | 0.069 | 0.300  | 0.060 | 0.300       | 0.23   | 0.20 | Neg    |  |
| 74           | 534        | XJ PH    | 0.069 | 0.300  | 0.059 | 0.300       | 0.23   | 0.20 | Neg    |  |
| 75           | 535        | XJ PH    | 0.067 | 0.300  | 0.058 | 0.300       | 0.22   | 0.19 | Neg    |  |
| 76           | 536        | XJ PH    | 0.067 | 0.300  | 0.058 | 0.300       | 0.22   | 0.19 | Neg    |  |
| 77           | 553        | XJ PH    | 0.066 | 0.300  | 0.062 | 0.300       | 0.22   | 0.21 | Neg    |  |
| 78           | 554        | XJ PH    | 0.062 | 0.300  | 0.059 | 0.300       | 0.21   | 0.20 | Neg    |  |
| 79           | 555        | XJ PH    | 0.122 | 0.300  | 0.159 | 0.300       | 0.41   | 0.53 | Neg    |  |
| 80           | 556        | XJ PH    | 0.062 | 0.300  | 0.056 | 0.300       | 0.21   | 0.19 | Neg    |  |
| 81           | 557        | XJ PH    | 0.063 | 0.300  | 0.058 | 0.300       | 0.21   | 0.19 | Neg    |  |
| 82           | 558        | XJ PH    | 0.090 | 0.300  | 0.070 | 0.300       | 0.30   | 0.23 | Neg    |  |
| 83           | 559        | XJ PH    | 0.101 | 0.300  | 0.083 | 0.300       | 0.34   | 0.28 | Neg    |  |
| 84           | 560        | XJ PH    | 0.088 | 0.300  | 0.073 | 0.300       | 0.29   | 0.24 | Neg    |  |
| 85           | 561        | XJ PH    | 0.072 | 0.300  | 0.062 | 0.300       | 0.24   | 0.21 | Neg    |  |
| 86           | 562        | XJ PH    | 0.075 | 0.300  | 0.080 | 0.300       | 0.25   | 0.27 | Neg    |  |
| 87           | 563        | XJ PH    | 0.067 | 0.300  | 0.059 | 0.300       | 0.21   | 0.20 | Neg    |  |
| 88           | 564        | XJ PH    | 0     | 0.300  | 0.057 | 0.300       | 0.22   | 0.19 | Neg    |  |
| 89           | 565        | XJ PH    | 0     | 0.300  | 0.057 | 0.300       | 0.22   | 0.19 | Neg    |  |
| 90           | 566        | XJ PH    | 0     | 0.300  | 0.059 | 0.300       | 0.22   | 0.20 | Neg    |  |
| 91           | 567        | XJ PH    | 0.073 | 0.300  | 0.058 | 0.300       | 0.24   | 0.19 | Neg    |  |
| 92           | 568        | XJ PH    | 0.071 | 0.300  | 0.062 | 0.300       | 0.24   | 0.21 | Neg    |  |
| 93           | 569        | XJ PH    | 0.177 | 0.300  | 0.211 | 0.300       | 0.59   | 0.70 | Neg    |  |
| 17           | 570        | XJ PH    | 0.623 | 0.300  | 0.500 | 0.300       | 2.08   | 1.67 | 15.49  |  |
| 95           | 571        | XJ PH    | 0.068 | 0.300  | 0.060 | 0.300       | 0.23   | 0.20 | Neg    |  |
| 5            | 572        | XJ PH    | 0.067 | 0.300  | 0.071 | 0.300       | 0.22   | 0.24 | Neg    |  |
| 6            | 573        | XJ PH    | 0.101 | 0.300  | 0.075 | 0.300       | 0.34   | 0.25 | Neg    |  |

Figure 3O

| anti-HEV EIA |            | OD       |       |        |       | Sample/Coff |        |      | Result         |
|--------------|------------|----------|-------|--------|-------|-------------|--------|------|----------------|
| Name         | SampleDate | humSAR55 | coff  | swORF2 | coff  | humSAR55    | swORF2 | %CV  |                |
| 7            | 574        | XJ PH    | 0.068 | 0.300  | 0.063 | 0.300       | 0.23   | 0.21 | Neg            |
| 8            | 575        | XJ PH    | 0.077 | 0.300  | 0.068 | 0.300       | 0.26   | 0.23 | Neg            |
| 9            | 576        | XJ PH    | 0.071 | 0.300  | 0.062 | 0.300       | 0.24   | 0.21 | Neg            |
| 10           | 577        | XJ PH    | 0.169 | 0.300  | 0.133 | 0.300       | 0.56   | 0.44 | Neg            |
| 11           | 578        | XJ PH    | 0.195 | 0.300  | 0.152 | 0.300       | 0.65   | 0.51 | Neg            |
| 12           | 579        | XJ PH    | 0.079 | 0.300  | 0.065 | 0.300       | 0.26   | 0.22 | Neg            |
| 13           | 580        | XJ PH    | 0.155 | 0.300  | 0.147 | 0.300       | 0.52   | 0.49 | Neg            |
| 14           | 581        | XJ PH    | 0.062 | 0.300  | 0.062 | 0.300       | 0.21   | 0.21 | Neg            |
| 15           | 582        | XJ PH    | 0.123 | 0.300  | 0.109 | 0.300       | 0.41   | 0.36 | Neg            |
| 16           | 583        | XJ PH    | 0.069 | 0.300  | 0.063 | 0.300       | 0.23   | 0.21 | Neg            |
| 17           | 584        | XJ PH    | 0.163 | 0.300  | 0.146 | 0.300       | 0.54   | 0.49 | Neg            |
| 18           | 585        | XJ PH    | 0.154 | 0.300  | 0.131 | 0.300       | 0.51   | 0.44 | Neg            |
| 19           | 586        | XJ PH    | 0.080 | 0.300  | 0.071 | 0.300       | 0.27   | 0.24 | Neg            |
| 20           | 587        | XJ PH    | 0.069 | 0.300  | 0.060 | 0.300       | 0.23   | 0.20 | Neg            |
| 21           | 588        | XJ PH    | 0.078 | 0.300  | 0.067 | 0.300       | 0.26   | 0.22 | Neg            |
| 18           | 589        | XJ PH    | 1.895 | 0.300  | 1.486 | 0.300       | 6.32   | 4.95 | 17.11 Both +   |
| 23           | 590        | XJ PH    | 0.103 | 0.300  | 0.076 | 0.300       | 0.34   | 0.25 | Neg            |
| 24           | 591        | XJ PH    | 0.074 | 0.300  | 0.061 | 0.300       | 0.25   | 0.20 | Neg            |
| 25           | 592        | XJ PH    | 0.069 | 0.300  | 0.063 | 0.300       | 0.23   | 0.21 | Neg            |
| 26           | 593        | XJ PH    | 0.071 | 0.300  | 0.062 | 0.300       | 0.24   | 0.21 | Neg            |
| 27           | 594        | XJ PH    | 0.070 | 0.300  | 0.063 | 0.300       | 0.23   | 0.21 | Neg            |
| 19           | 595        | XJ PH    | 0.456 | 0.300  | 0.335 | 0.300       | 1.52   | 1.12 | 21.63 Both +   |
| 29           | 596        | XJ PH    | 0.066 | 0.300  | 0.062 | 0.300       | 0.22   | 0.21 | Neg            |
| 30           | 597        | XJ PH    | 0.090 | 0.300  | 0.064 | 0.300       | 0.30   | 0.21 | Neg            |
| 31           | 598        | XJ PH    | 0.064 | 0.300  | 0.060 | 0.300       | 0.21   | 0.20 | Neg            |
| 32           | 599        | XJ PH    | 0.069 | 0.300  | 0.061 | 0.300       | 0.23   | 0.20 | Neg            |
| 33           | 600        | XJ PH    | 0.075 | 0.300  | 0.060 | 0.300       | 0.25   | 0.20 | Neg            |
| 34           | 601        | XJ PH    | 0.211 | 0.300  | 0.157 | 0.300       | 0.70   | 0.56 | Neg            |
| 35           | 602        | XJ PH    | 0.097 | 0.300  | 0.066 | 0.300       | 0.32   | 0.22 | Neg            |
| 36           | 603        | XJ PH    | 0.067 | 0.300  | 0.062 | 0.300       | 0.22   | 0.21 | Neg            |
| 37           | 604        | XJ PH    | 0.069 | 0.300  | 0.063 | 0.300       | 0.23   | 0.21 | Neg            |
| 38           | 605        | XJ PH    | 0.072 | 0.300  | 0.063 | 0.300       | 0.24   | 0.21 | Neg            |
| 39           | 606        | XJ PH    | 0.080 | 0.300  | 0.072 | 0.300       | 0.27   | 0.24 | Neg            |
| 40           | 607        | XJ PH    | 0.064 | 0.300  | 0.071 | 0.300       | 0.21   | 0.24 | Neg            |
| 41           | 608        | XJ PH    | 0.080 | 0.300  | 0.072 | 0.300       | 0.27   | 0.24 | Neg            |
| 42           | 609        | XJ PH    | 0.069 | 0.300  | 0.066 | 0.300       | 0.23   | 0.22 | Neg            |
| 21           | 610        | XJ PH    | 0.462 | 0.300  | 0.074 | 0.300       | 1.54   | 0.25 | 102.37 sar55 + |
| 44           | 611        | XJ PH    | 0.071 | 0.300  | 0.062 | 0.300       | 0.24   | 0.21 | Neg            |
| 45           | 612        | XJ PH    | 0.089 | 0.300  | 0.069 | 0.300       | 0.30   | 0.23 | Neg            |
| 46           | 613        | XJ PH    | 0.076 | 0.300  | 0.066 | 0.300       | 0.25   | 0.22 | Neg            |
| 47           | 614        | XJ PH    | 0.085 | 0.300  | 0.067 | 0.300       | 0.28   | 0.22 | Neg            |
| 48           | 615        | XJ PH    | 0.074 | 0.300  | 0.073 | 0.300       | 0.25   | 0.24 | Neg            |
| 49           | 616        | XJ PH    | 0.114 | 0.300  | 0.192 | 0.300       | 0.38   | 0.64 | Neg            |
| 50           | 617        | XJ PH    | 0.068 | 0.300  | 0.063 | 0.300       | 0.23   | 0.21 | Neg            |
| 51           | 618        | XJ PH    | 0.086 | 0.300  | 0.072 | 0.300       | 0.29   | 0.24 | Neg            |
| 52           | 619        | XJ PH    | 0.066 | 0.300  | 0.058 | 0.300       | 0.22   | 0.19 | Neg            |
| 53           | 620        | XJ PH    | 0.067 | 0.300  | 0.062 | 0.300       | 0.22   | 0.21 | Neg            |
| 54           | 621        | XJ PH    | 0.063 | 0.300  | 0.057 | 0.300       | 0.21   | 0.19 | Neg            |
| 55           | 622        | XJ PH    | 0.065 | 0.300  | 0.068 | 0.300       | 0.22   | 0.23 | Neg            |
| 56           | 623        | XJ PH    | 0.085 | 0.300  | 0.076 | 0.300       | 0.28   | 0.25 | Neg            |
| 57           | 624        | XJ PH    | 0.082 | 0.300  | 0.065 | 0.300       | 0.27   | 0.22 | Neg            |
| 58           | 625        | XJ PH    | 0.279 | 0.300  | 0.215 | 0.300       | 0.93   | 0.72 | Neg            |
| 59           | 626        | XJ PH    | 0.092 | 0.300  | 0.063 | 0.300       | 0.31   | 0.21 | Neg            |
| 60           | 627        | XJ PH    | 0.070 | 0.300  | 0.197 | 0.300       | 0.23   | 0.66 | Neg            |
| 23           | 628        | XJ PH    | 0.540 | 0.300  | 0.466 | 0.300       | 1.80   | 1.55 | 10.40 Both +   |
| 62           | 629        | XJ PH    | 0.074 | 0.300  | 0.064 | 0.300       | 0.25   | 0.21 | Neg            |
| 63           | 630        | XJ PH    | 0.085 | 0.300  | 0.076 | 0.300       | 0.28   | 0.25 | Neg            |

Figure 3P

| anti-HEV EIA |            | OD       |       |        |       | Sample/Coff |        |      | Result |
|--------------|------------|----------|-------|--------|-------|-------------|--------|------|--------|
| Name         | SampleDate | humSAR55 | coff  | swORF2 | coff  | humSAR55    | swORF2 | %CV  |        |
| 64           | 631        | XJ PH    | 0.106 | 0.300  | 0.101 | 0.300       | 0.35   | 0.   | Neg    |
| 65           | 632        | XJ PH    | 0.065 | 0.300  | 0.060 | 0.300       | 0.22   | 0.20 | Neg    |
| 66           | 633        | XJ PH    | 0.078 | 0.300  | 0.074 | 0.300       | 0.26   | 0.25 | Neg    |
| 67           | 634        | XJ PH    | 0.061 | 0.300  | 0.063 | 0.300       | 0.20   | 0.21 | Neg    |
| 68           | 635        | XJ PH    | 0.067 | 0.300  | 0.063 | 0.300       | 0.22   | 0.21 | Neg    |
| 69           | 636        | XJ PH    | 0.081 | 0.300  | 0.067 | 0.300       | 0.27   | 0.22 | Neg    |
| 70           | 637        | XJ PH    | 0.084 | 0.300  | 0.062 | 0.300       | 0.28   | 0.21 | Neg    |
| 71           | 638        | XJ PH    | 0.099 | 0.300  | 0.076 | 0.300       | 0.33   | 0.25 | Neg    |
| 72           | 639        | XJ PH    | 0.085 | 0.300  | 0.079 | 0.300       | 0.28   | 0.26 | Neg    |
| 73           | 640        | XJ PH    | 0.087 | 0.300  | 0.074 | 0.300       | 0.29   | 0.25 | Neg    |
| 74           | 641        | XJ PH    | 0.068 | 0.300  | 0.065 | 0.300       | 0.23   | 0.22 | Neg    |
| 75           | 642        | XJ PH    | 0.073 | 0.300  | 0.063 | 0.300       | 0.24   | 0.21 | Neg    |
| 76           | 643        | XJ PH    | 0.063 | 0.300  | 0.061 | 0.300       | 0.21   | 0.20 | Neg    |
| 77           | 644        | XJ PH    | 0.068 | 0.300  | 0.066 | 0.300       | 0.23   | 0.22 | Neg    |
| 78           | 645        | XJ PH    | 0.066 | 0.300  | 0.068 | 0.300       | 0.22   | 0.23 | Neg    |
| 79           | 646        | XJ PH    | 0.074 | 0.300  | 0.064 | 0.300       | 0.25   | 0.21 | Neg    |
| 80           | 647        | XJ PH    | 0.075 | 0.300  | 0.068 | 0.300       | 0.25   | 0.23 | Neg    |
| 81           | 648        | XJ PH    | 0.071 | 0.300  | 0.063 | 0.300       | 0.24   | 0.21 | Neg    |
| 82           | 649        | XJ PH    | 0.086 | 0.300  | 0.060 | 0.300       | 0.29   | 0.20 | Neg    |
| 83           | 650        | XJ PH    | 0.051 | 0.300  | 0.056 | 0.300       | 0.31   | 0.22 | Neg    |
| 84           | 651        | XJ PH    | 0.072 | 0.300  | 0.068 | 0.300       | 0.24   | 0.23 | Neg    |
| 85           | 652        | XJ PH    | 0.071 | 0.300  | 0.066 | 0.300       | 0.24   | 0.22 | Neg    |
| 86           | 653        | XJ PH    | 0.081 | 0.300  | 0.064 | 0.300       | 0.27   | 0.21 | Neg    |
|              |            | XJ PH    | 0.074 | 0.300  | 0.065 | 0.300       | 0.25   | 0.22 | Neg    |
|              |            | XJ PH    | 0.065 | 0.300  | 0.061 | 0.300       | 0.22   | 0.20 | Neg    |
|              | 656        | XJ PH    | 0.062 | 0.300  | 0.059 | 0.300       | 0.21   | 0.20 | Neg    |
| 90           | 657        | XJ PH    | 0.075 | 0.300  | 0.067 | 0.300       | 0.25   | 0.22 | Neg    |
| 91           | 658        | XJ PH    | 0.075 | 0.300  | 0.064 | 0.300       | 0.25   | 0.21 | Neg    |
| 92           | 659        | XJ PH    | 0.088 | 0.300  | 0.075 | 0.300       | 0.29   | 0.25 | Neg    |
| 24           | 660        | XJ PH    | 0.538 | 0.300  | 0.513 | 0.300       | 1.79   | 1.71 | 3.36   |
| 94           | 661        | XJ PH    | 0.097 | 0.300  | 0.067 | 0.300       | 0.32   | 0.22 | Neg    |
| 95           | 662        | XJ PH    | 0.104 | 0.300  | 0.095 | 0.300       | 0.35   | 0.32 | Neg    |
| 25           | 663        | XJ PH    | 0.225 | 0.300  | 0.169 | 0.300       | 0.75   | 0.56 | Neg    |
| 6            | 664        | XJ PH    | 0.063 | 0.300  | 0.054 | 0.300       | 0.21   | 0.18 | Neg    |
| 7            | 665        | XJ PH    | 0.090 | 0.300  | 0.066 | 0.300       | 0.30   | 0.22 | Neg    |
| 8            | 666        | XJ PH    | 0.172 | 0.300  | 0.110 | 0.300       | 0.57   | 0.37 | Neg    |
| 9            | 667        | XJ PH    | 0.063 | 0.300  | 0.058 | 0.300       | 0.21   | 0.19 | Neg    |
| 10           | 668        | XJ PH    | 0.060 | 0.300  | 0.055 | 0.300       | 0.20   | 0.18 | Neg    |
| 11           | 669        | XJ PH    | 0.086 | 0.300  | 0.073 | 0.300       | 0.29   | 0.24 | Neg    |
| 12           | 670        | XJ PH    | 0.080 | 0.300  | 0.058 | 0.300       | 0.27   | 0.19 | Neg    |
| 13           | 671        | XJ PH    | 0.148 | 0.300  | 0.053 | 0.300       | 0.49   | 0.16 | Neg    |
| 14           | 672        | XJ PH    | 0.090 | 0.300  | 0.057 | 0.300       | 0.30   | 0.19 | Neg    |
| 15           | 673        | XJ PH    | 0.061 | 0.300  | 0.057 | 0.300       | 0.20   | 0.19 | Neg    |
| 16           | 674        | XJ PH    | 0.080 | 0.300  | 0.066 | 0.300       | 0.27   | 0.22 | Neg    |
| 17           | 675        | XJ PH    | 0.096 | 0.300  | 0.064 | 0.300       | 0.32   | 0.21 | Neg    |
| 18           | 676        | XJ PH    | 0.058 | 0.300  | 0.053 | 0.300       | 0.19   | 0.18 | Neg    |
| 19           | 677        | XJ PH    | 0.064 | 0.300  | 0.057 | 0.300       | 0.21   | 0.19 | Neg    |
| 20           | 678        | XJ PH    | 0.071 | 0.300  | 0.058 | 0.300       | 0.24   | 0.19 | Neg    |
| 21           | 679        | XJ PH    | 0.104 | 0.300  | 0.066 | 0.300       | 0.35   | 0.22 | Neg    |
| 22           | 680        | XJ PH    | 0.105 | 0.300  | 0.079 | 0.300       | 0.35   | 0.26 | Neg    |
| 23           | 681        | XJ PH    | 0.065 | 0.300  | 0.058 | 0.300       | 0.22   | 0.19 | Neg    |
| 24           | 682        | XJ PH    | 0.071 | 0.300  | 0.055 | 0.300       | 0.24   | 0.18 | Neg    |
| 25           | 683        | XJ PH    | 0.073 | 0.300  | 0.056 | 0.300       | 0.24   | 0.19 | Neg    |
| 26           | 684        | XJ PH    | 0.067 | 0.300  | 0.054 | 0.300       | 0.22   | 0.18 | Neg    |
| 27           | 685        | XJ PH    | 0.097 | 0.300  | 0.070 | 0.300       | 0.32   | 0.23 | Neg    |
| 28           | 686        | XJ PH    | 0.085 | 0.300  | 0.073 | 0.300       | 0.28   | 0.24 | Neg    |
| 29           | 687        | XJ PH    | 0.061 | 0.300  | 0.055 | 0.300       | 0.20   | 0.18 | Neg    |

Figure 3Q

| anti-HEV EIA |            | OD       |       |             | Sample/Coff |        |      | Result |               |
|--------------|------------|----------|-------|-------------|-------------|--------|------|--------|---------------|
| Name         | SampleDate | humSAR55 | coff  | swORF2 coff | humSAR55    | swORF2 | %CV  |        |               |
| 30           | 688        | XJ PH    | 0.078 | 0.300       | 0.069       | 0.300  | 0.26 | 0.23   | Neg           |
| 31           | 689        | XJ PH    | 0.072 | 0.300       | 0.055       | 0.300  | 0.24 | 0.18   | Neg           |
| 32           | 690        | XJ PH    | 0.082 | 0.300       | 0.058       | 0.300  | 0.27 | 0.19   | Neg           |
| 33           | 691        | XJ PH    | 0.065 | 0.300       | 0.057       | 0.300  | 0.22 | 0.19   | Neg           |
| 34           | 692        | XJ PH    | 0.099 | 0.300       | 0.075       | 0.300  | 0.33 | 0.25   | Neg           |
| 35           | 693        | XJ PH    | 0.058 | 0.300       | 0.054       | 0.300  | 0.19 | 0.18   | Neg           |
| 36           | 694        | XJ PH    | 0.074 | 0.300       | 0.059       | 0.300  | 0.25 | 0.20   | Neg           |
| 37           | 695        | XJ PH    | 0.090 | 0.300       | 0.066       | 0.300  | 0.30 | 0.22   | Neg           |
| 38           | 696        | XJ PH    | 0.071 | 0.300       | 0.058       | 0.300  | 0.24 | 0.19   | Neg           |
| 39           | 697        | XJ PH    | 0.090 | 0.300       | 0.077       | 0.300  | 0.30 | 0.26   | Neg           |
| 40           | 698        | XJ PH    | 0.085 | 0.300       | 0.058       | 0.300  | 0.28 | 0.19   | Neg           |
| 41           | 699        | XJ PH    | 0.058 | 0.300       | 0.055       | 0.300  | 0.19 | 0.18   | Neg           |
| 26           | 700        | XJ PH    | 0.399 | 0.300       | 0.483       | 0.300  | 1.33 | 1.61   | 13.47 Both +  |
| 43           | 701        | XJ PH    | 0.059 | 0.300       | 0.054       | 0.300  | 0.20 | 0.18   | Neg           |
| 44           | 702        | XJ PH    | 0.068 | 0.300       | 0.061       | 0.300  | 0.23 | 0.20   | Neg           |
| 45           | 703        | XJ PH    | 0.067 | 0.300       | 0.056       | 0.300  | 0.22 | 0.19   | Neg           |
| 46           | 704        | XJ PH    | 0.078 | 0.300       | 0.060       | 0.300  | 0.26 | 0.20   | Neg           |
| 47           | 705        | XJ PH    | 0.260 | 0.300       | 0.176       | 0.300  | 0.87 | 0.59   | Neg           |
| 48           | 706        | XJ PH    | 0.065 | 0.300       | 0.055       | 0.300  | 0.22 | 0.18   | Neg           |
| 49           | 707        | XJ PH    | 0.060 | 0.300       | 0.063       | 0.300  | 0.20 | 0.21   | Neg           |
| 50           | 708        | XJ PH    | 0.075 | 0.300       | 0.060       | 0.300  | 0.25 | 0.20   | Neg           |
| 51           | 709        | XJ PH    | 0.243 | 0.300       | 0.174       | 0.300  | 0.81 | 0.58   | Neg           |
| 52           | 710        | XJ PH    | 0.063 | 0.300       | 0.067       | 0.300  | 0.21 | 0.22   | Neg           |
| 53           | 711        | XJ PH    | 0.068 | 0.300       | 0.055       | 0.300  | 0.23 | 0.18   | Neg           |
| 29           | 712        | XJ PH    | 0.416 | 0.300       | 0.260       | 0.300  | 1.39 | 0.87   | 32.64 sar55 + |
| 55           | 713        | XJ PH    | 0.088 | 0.300       | 0.072       | 0.300  | 0.29 | 0.24   | Neg           |
| 56           | 714        | XJ PH    | 0.070 | 0.300       | 0.057       | 0.300  | 0.23 | 0.19   | Neg           |
| 57           | 715        | XJ PH    | 0.057 | 0.300       | 0.052       | 0.300  | 0.19 | 0.17   | Neg           |
| 58           | 716        | XJ PH    | 0.065 | 0.300       | 0.058       | 0.300  | 0.22 | 0.19   | Neg           |
| 59           | 717        | XJ PH    | 0.062 | 0.300       | 0.053       | 0.300  | 0.21 | 0.18   | Neg           |
| 60           | 718        | XJ PH    | 0.064 | 0.300       | 0.054       | 0.300  | 0.21 | 0.16   | Neg           |
| 61           | 719        | XJ PH    | 0.072 | 0.300       | 0.056       | 0.300  | 0.24 | 0.19   | Neg           |
| 62           | 720        | XJ PH    | 0.061 | 0.300       | 0.055       | 0.300  | 0.20 | 0.18   | Neg           |

**Figure 3R**

| Overall                 |       | Sar55 |       |     |       |
|-------------------------|-------|-------|-------|-----|-------|
| SwORF                   | Neg   | Pos   | Total |     |       |
|                         | Neg   | 765   | 7     | 772 |       |
|                         | Pos   | 6     | 104   | 110 |       |
|                         | Total | 771   | 111   | 882 |       |
|                         |       |       |       | KW= | 0.938 |
| Foreign Pig Handlers    |       | Sar55 |       |     |       |
| SwORF                   | Neg   | Pos   | Total |     |       |
|                         | Neg   | 5     | 0     | 5   |       |
|                         | Pos   | 0     | 12    | 12  |       |
|                         | Total | 5     | 12    | 18  |       |
|                         |       |       |       | KW= | 1.000 |
| Foreign Blood Donors    |       | Sar55 |       |     |       |
| SwORF                   | Neg   | Pos   | Total |     |       |
|                         | Neg   | 26    | 0     | 26  |       |
|                         | Pos   | 0     | 5     | 5   |       |
|                         | Total | 26    | 5     | 31  |       |
|                         |       |       |       | KW= | 1.000 |
| Local Blood Donors      |       | Sar55 |       |     |       |
| SwORF                   | Neg   | Pos   | Total |     |       |
|                         | Neg   | 194   | 1     | 195 |       |
|                         | Pos   | 5     | 30    | 35  |       |
|                         | Total | 199   | 31    | 230 |       |
|                         |       |       |       | KW= | 0.894 |
| US Pig Handlers/Workers |       | Sar55 |       |     |       |
| SwORF                   | Neg   | Pos   | Total |     |       |
|                         | Neg   | 539   | 6     | 545 |       |
|                         | Pos   | 1     | 57    | 58  |       |
|                         | Total | 540   | 63    | 603 |       |
|                         |       |       |       | KW= | 0.936 |

**FIG. 4**

FIG. 5



(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization  
International Bureau



(43) International Publication Date  
14 November 2002 (14.11.2002)

PCT

(10) International Publication Number  
**WO 02/089733 A3**

- (51) International Patent Classification<sup>1</sup>: C07K 17/00, A61K 39/00, 39/29
- (21) International Application Number: PCT/US02/14100
- (22) International Filing Date: 2 May 2002 (02.05.2002)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:  
60/289,220 7 May 2001 (07.05.2001) US
- (71) Applicant (*for all designated States except US*): THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES [US/US]; National Institutes of Health, Office of Technology Transfer, Suite 325, 6011 Executive Boulevard, Rockville, MD 20852 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (*for US only*): MENG, Xiang-Jin [CN/US]; 401 Craig Drive, Blacksburg, VA 24060 (US). PURCELL, Robert, H. [US/US]; 17517 White Grounds Road, Boyds, MD 20814 (US). EMERSON, Suzanne, U. [US/US]; 4517 Everett Street, Kensington, MD 20895 (US).
- (74) Agent: ALTMAN, Daniel, E.; Knobbe, Martens, Olson and Bear, LLP, 2040 Main Street, Fourteenth Floor, Irvine, CA 92614 (US).
- (81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE (utility model), DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

(88) Date of publication of the international search report:  
4 September 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A3  
WO 02/089733 A3

(54) Title: RECOMBINANT ORF2 PROTEINS OF THE SWINE HEPATITIS E VIRUS AND THEIR USE AS A VACCINE AND AS A DIAGNOSTIC REAGENT FOR MEDICAL AND VETERINARY APPLICATIONS

(57) Abstract: The invention relates to open reading frame 2 (ORF-2) proteins of a swine hepatitis E virus and the use of these proteins as an antigen in diagnostic immunoassays and/or as immunogen or vaccine to protect against infection by hepatitis E.

## INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/14100

## A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) : C07K 17/00; A61K 39/00, 39/29  
 US CL : 424/186.1, 189.1, 225.1, 228.1; 530/350

According to International Patent Classification (IPC) or to both national classification and IPC

## B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)  
 U.S. : 424/186.1, 189.1, 225.1, 228.1; 530/350

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)  
 Please See Continuation Sheet

## C. DOCUMENTS CONSIDERED TO BE RELEVANT

| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                                                                      | Relevant to claim No.            |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| A          | WO 99/04029 A2 (MENG et al.) 28 January 1999 (28.01.1999), claims 1, 9, 5-15, 24, 26-28, 30                                                                             | 1, 3, 5, 7, 9, 11, 13-15, 26, 31 |
| A          | MENG et al. A novel virus in swine is closely related to the human hepatitis E virus, U.S.A. September 1997, Vol 94, pages 9860-9865, especially Figure 4 on page 9864. | 1, 3, 5, 7, 9, 11, 13-15, 26, 31 |

Further documents are listed in the continuation of Box C.

See patent family annex.

|                                          |                                                                                                                                                                                                                                              |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| * Special categories of cited documents: |                                                                                                                                                                                                                                              |
| "A"                                      | document defining the general state of the art which is not considered to be of particular relevance                                                                                                                                         |
| "B"                                      | earlier application or patent published on or after the international filing date                                                                                                                                                            |
| "T"                                      | document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)                                                                          |
| "Q"                                      | document referring to an oral disclosure, use, exhibition or other means                                                                                                                                                                     |
| "P"                                      | document published prior to the international filing date but later than the priority date claimed                                                                                                                                           |
| "T"                                      | later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention                                              |
| "X"                                      | document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone                                                                     |
| "Y"                                      | document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art |
| "E"                                      | document member of the same patent family                                                                                                                                                                                                    |

Date of the actual completion of the international search

12 December 2002 (12.12.2002)

Date of mailing of the international search report

14 JAN 2003

Name and mailing address of the ISA/US

Authorized officer

Commissioner of Patents and Trademarks  
 Box PCT  
 Washington, D.C. 20231

*Shane Foley*

Facsimile No. (703)305-3230

Telephone No. (703) 308-0196

Form PCT/ISA/210 (second sheet) (July 1998)

**INTERNATIONAL SEARCH REPORT**

International application No.

PCT/US02/14100

**Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)**

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1.  Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
  
2.  Claim Nos.: 2,4,6,8,10,12,27-30 and 32 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:  
Claims 2, 4, 6, 8, 10, 12, 27-30 and 32 could not be searched because no computer readable form of the sequence listing was submitted.
  
3.  Claim Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

**Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)**

This International Searching Authority found multiple inventions in this International application, as follows:  
Please See Continuation Sheet

1.  As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.  As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.  As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
  
4.  No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1, 3, 5, 7, 9, 11, 13-15, 26 and 31

Remark on Protest

  

The additional search fees were accompanied by the applicant's protest

No protest accompanied the payment of additional search fees.

**BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING**

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid. If applicant pays no additional fees, Group I, claims 1-15 and 26-32 will be examined.

Group I, claim(s) 1-, 3, 5, 7, 9, 11, 13-15, 26 and 31, drawn to HEV ORF2 protein, a DNA molecule, kit, first method of making, and first method of using the protein as a vaccine.

Group II, claim(s) 16-19, drawn to a method of detecting antibodies.

Group III, claim(s) 20 and 21, drawn to antibodies.

Group IV, claim(s) 22 and 23, drawn to a method of detecting HEV using the HEV ORF2 protein.

Group V, claim(s) 24 and 25, drawn to a method of making antibodies.

The inventions listed as Groups I-V do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: The special technical feature of group I is the HEV ORF2 protein, a DNA molecule encoding the protein, the first method of making the protein and the first method of using the protein as a vaccine. Any product or subsequent methods using the same or different products lack unity of invention because they do not share a special technical feature with the first group.

Group II is drawn to a second method of using the first product. The special technical feature of this group is a method of detecting antibodies. This method does not share the special technical feature with the first group because the method of group II requires different method steps from those in group I.

Group III is drawn to a second product. The special technical feature of this group is antibodies. This group does not share a special technical feature with group I because the products do not share a common structure or activity.

Group IV is drawn to a first method of using the second product. The special technical feature of this group is a method of detection, which does not share the special technical feature with Group I because the method does not require the products or the method steps of Group I.

Group V is drawn to a third method of using the first product. The special technical feature of this group is a method of making antibodies, which does not require the same method steps required in Group I.

**Continuation of B. FIELDS SEARCHED Item 3:**

USPatfull, EPO, JPO, Derwent, USPGpub, medline, crabase, biosis, vetu

search terms: hepatitis E virus, HEV, Porcine Reproductive and Respiratory Syndrome Virus, PRRSV, Mystery Swine Disease, Lelystad, ORF 2, open reading frame 2, pig, swine, porcine