Université Abdelmalek Essaâdi Faculté Polydisciplinaire de Larache IA-S1/Année 2023-2024 Rattrapage ALGÈBRE I Durée : 1 h 00 Pr. El Mahjour

Nom:	
Prénom :	
N°Ins: SMI	
Table n°:	Salle :

CALCULATRICE INTERDITE

Vendredi 02 février 2024

CALCULATRICE INTERDITE	Vendredi 02 février 202
1. Soit $G=\{-1,1,i,i\}\subset\mathbb{C}.$ Montrer que (G,\times) est un se groupe de $(\mathbb{C}^*,\times).$	ous-
$x \times y^{-1}$	
2. On considère le groupe symétrique \mathfrak{S}_5 . Soit les deux per tations σ_1 et σ_2 $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 5 & 4 & 2 \end{pmatrix} \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 4 & 3 & 2 \end{pmatrix}$ (a) Quel est le cardinal de \mathfrak{S}_5 ? (b) Quel est l'ordre de σ_1 et pourquoi?	3. Soit $a=26676$ et $b=19266$. (a) En appliquant et en respectant l'ALGORITHME d'EU CLIDE, calculer $d=PGCD(a,b)$.

	$P(X) = X^4 + 1.$	5. Soit
(a)	Résoudre dans \mathbb{C} l'équation $z^4 = -1$.	$A(X) = X^5 - 2X^4 + X^3 - X^2 + 2X - 1$ et $B(X) = X^3 - X^2 + 2X - 2$.
		(a) Trouver le PGCD de $A(X)$ et $B(X)$.
(b)	Grâce aux racines conjuguées trouvées, déduire une fac-	
torisation du polynôme $P(X) = Q(X)R(X)$ où Q et R sont des polynômes réels de degré 2.		
	sofit des polyfionies feels de degle 2.	
		$A \setminus C$: $A(X)$
		(b) Simplifier la fraction $\frac{A(X)}{B(X)}$

4.