

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.

CLAIMS

full B5

1. A nucleic acid molecule encoding a VEGF-X protein or a functional equivalent, derivative or bioprecursor thereof, said protein comprising any of the sequences from position 23 to 345 of the amino acid sequence illustrated in Figure 10, or the complete sequence as illustrated in Figure 10.

10 2. A nucleic acid molecule according to claim 1 wherein said nucleic acid is a DNA molecule.

15 3. A nucleic acid molecule according to claim 1 wherein said nucleic acid is a cDNA molecule.

20 4. A nucleic acid molecule according to claim 3 comprising the nucleotide sequence from position 257 to 1291 of the nucleotide sequence illustrated in Figure 9, or sequences that hybridise thereto under high stringency conditions or the complement thereto.

25 5. An antisense molecule capable of hybridising to a molecule according to claim 1 under high stringency conditions.

full B6

25 6. A nucleic acid molecule according to claim 1 which is of mammalian origin.

30 7. A nucleic acid molecule according to claim 6 which is of human origin.

35 8. An isolated VEGF-X protein, or a functional equivalent, derivative or bioprecursor thereof, having an amino acid sequence from position 23 to 345 of the amino acid sequence illustrated in Figure 10 or the complete amino acid sequence of Figure 10.

9. A VEGF-X protein, or a functional equivalent, derivative or bioprecursor thereof, encoded by a nucleic acid molecule as defined in claim 1.

5 10. A protein according to claim 9, which comprises the amino acid sequence illustrated in Figure 10.

Durr BT 10

11. An expression vector comprising a nucleic acid molecule according to claim 1.

12. An expression vector according to claim 11 further comprising a nucleotide sequence encoding a reporter molecule.

15 13. An expression vector comprising an antisense molecule according to claim 5.

14. A nucleic acid molecule according to claim 1 for use as a medicament.

20 15. A host cell transformed or transfected with an expression vector according to claim 11 or 12.

16. A host cell transformed or transfected with an expression vector according to claim 13.

25 17. A transgenic cell, tissue or organism comprising a transgene capable of expressing a VEGF-X protein according to claim 8 or 9.

30 18. A transgenic cell, tissue or organism according to claim 17, wherein said transgene is included in an expression vector.

35 19. A VEGF-X protein or a functional equivalent, derivative or bioprecursor thereof, expressed by a cell according to claim 15.

20. A VEGF-X protein, or a functional equivalent, derivative or bioprecursor thereof, expressed by a transgenic cell, tissue or organism according to claim 17.

5

10

full B8

21. A process for producing a VEGF-X protein according to claim 8, said process comprising transforming a host cell or organism with an expression vector according to claim 11, and recovering the expressed protein from said host cell or organism.

15

22. An antibody capable of binding to a protein according to claim 8, or an epitope thereof.

20

23. An antibody according to claim 22 for use as a medicament.

24. A pharmaceutical composition comprising an antibody according to claim 22 together with a pharmaceutically acceptable carrier diluent or excipient thereof.

25

25. A method of identifying VEGF-X protein in a sample which method comprises contacting said sample with an antibody according to claim 22 and monitoring for binding of any protein to said antibody.

30

26. A kit for identifying the presence of VEGF-X protein in a sample which comprises an antibody according to claim 22 and means for contacting said antibody with said sample.

35

27. A method of identifying compounds which modulate angiogenesis which method comprises providing a host cell or organism according to claim 15 or a transgenic cell, tissue or organism according to

claim 17, contacting a test compound with said cell, tissue or organism and monitoring for an effect of said compound on said VEGF compared to a host cell or organism according to claim 15 or a transgenic cell tissue or organism which has not been contacted with said compound.

5
28. A compound identifiable according to the method of claim 27.

10
29. A compound according to claim 28 for use as a medicament.

B9 > 15
30. A nucleic acid sequence comprising the nucleotide sequences illustrated in any of Figures 3, 5, 8 or 13.

20
31. A method for producing a polypeptide, said method comprising the steps of:

a) culturing the host cell of claim 15 under conditions suitable for expression of the polypeptide, and
b) recovering the polypeptide from the host cell culture.

25
32. A method of inhibiting angiogenic activity and inappropriate vascularisation including formation and proliferation of new blood vessels, growth and development of tissues, tissue regeneration and organ and tissue repair in a subject said method comprising administering to said subject an amount of an antisense molecule according to claim 5 in sufficient concentration to reduce or prevent said angiogenic activity.

35
33. A method of inhibiting angiogenic activity or

inappropriate vascularisation including any of
formation and proliferation of new blood vessels,
growth and development of tissues, tissue
regeneration and organ and tissue repair in a subject
said method comprising administering to said subject
an amount of an antibody according to ~~claim 22~~ in
sufficient concentration to reduce or prevent said
angiogenic activity or inappropriate vascularisation.

34. A method of inhibiting angiogenic activity or
inappropriate vascularisation including any of
formation and proliferation of new blood vessels,
growth and development of tissues, tissue
regeneration and organ and tissue repair in a
subject, said method comprising implanting in said
subject cells that express an antibody according to
~~claim 22~~.

35. A method of treating or preventing any of
cancer, rheumatoid arthritis, psoriasis and diabetic
retinopathy, said method comprising administering to
said subject an amount of an antisense molecule
according to ~~claim 5~~ in sufficient concentration to
treat or prevent said disorders.

36. A method of treating or preventing any of
cancer, rheumatoid arthritis, psoriasis and diabetic
retinopathy, said method comprising administering to
said subject an amount of an antibody according to
~~claim 22~~ in sufficient concentration to reduce or
prevent said disorders.

37. A method of promoting angiogenic activity or
vascularisation to promote wound healing, skin graft
growth, tissue repair, proliferation of new blood
vessels, tissue regeneration and organ repair which
method comprises applying or delivering to a site of

interest a therapeutically effective amount of any of
a group selected from a protein according to claim 8
and a nucleic acid molecule encoding a VEGF-X protein
or a functional equivalent, derivative or
5 bioprecursor thereof comprising an amino acid
sequence illustrated in Figure 10, an expression
vector comprising said nucleic acid molecule and a
pharmaceutical composition comprising any of said
nucleic acid molecule and said protein.

10 38. A method of treating wounds selected from the
group consisting of dermal ulcers, pressure sores,
venous sores, diabetic ulcers and burns by applying
to said wound a therapeutically effective amount of
any of a VEGF-X protein according to claim 8, a
15 pharmaceutical composition comprising said protein
and a pharmaceutically acceptable carrier, diluent or
excipient therefor.

20 39. A nucleic acid molecule encoding a polypeptide
having a CUB domain said polypeptide comprising the
amino acid sequence from position 40 to 150 of the
sequence of Figure 10.

25 40. A nucleic acid molecule encoding a polypeptide
having a CUB domain, said polypeptide comprising the
amino acid sequence of Figure 26.

30 41. A nucleic acid molecule according to claim 40,
comprising the nucleotide sequence from position 5 to
508 of the sequence illustrated in Figure 26.

35 42. A nucleic acid molecule according to claim 41
comprising the nucleotide sequence illustrated in
Figure 26.

43. A nucleic acid molecule encoding a VEGF like

Sur BD

SAC
BIO
CMI

5
domain comprising the sequence from position 214-345
of the sequence of Figure 10 or the sequence from
position 15 to 461 illustrated in Figure 24.

10
44. An expression vector comprising a nucleic acid
molecule according to claim 39 or 40.

15
45. An expression vector comprising a nucleic acid
molecule according to claim 43.

20
46. A host cell transformed or transfected with an
expression vector according to claim 44.

25
47. A host cell transformed or transfected with an
expression vector according to claim 45.

30
48. A protein expressed by the cell according to
claim 46.

35
49. A protein expressed by the cell according to
claim 47.

50. A method of identifying compounds that inhibit
or enhance angiogenic activity, said method
comprising contacting a cell expressing a VEGF
receptor and/or a neuropilin 1 or 2 type receptor
with said compound in the presence of a VEGF-X
protein according to claim 8 and monitoring for the
effect of said compound or said cell when compared to
a cell which has not been contacted with said
compound.

51. A compound identifiable according to the method
of claim 50 as an inhibitor or enhancer of angiogenic
activity.

52. A method of inhibiting angiogenic activity or

inappropriate vascularisation, said method comprising
contacting a cell expressing a VEGF receptor and a
neuropilin type receptor with a protein selected from
any of a protein according to claim 8 and a protein
according to claim 48 or a protein according to claim
49.

5 53. Use of a nucleotide sequence illustrated in any
of Figures 14 and 15 in identifying a VEGF-X protein
10 according to claim 8.

15 *Sul BII* 54. A nucleic acid molecule encoding a polypeptide
comprising a CUB domain having the sequence from
position 40 to 150 of the sequence of Figure 10 or
from position 5 to 508 of the sequence of Figure 26
and a sequence encoding a VEGF domain.

20 55. A nucleic acid molecule according to claim 54
wherein said sequence encoding said VEGF domain is
selected from the sequences encoding any of VEGF A to
D or isoforms or variants thereof.

25 56. A nucleic acid molecule encoding a polypeptide
comprising the amino acid sequence from position 40
to 150 of the sequence illustrated in Figure 10 for
use as a medicament.

30 57. Use of a nucleic acid molecule encoding a
polypeptide having the amino acid sequence from
position 40 to 150 of the sequence illustrated in
Figure 10 in the manufacture of a medicament for
treatment of disease conditions associated with
inappropriate angiogenesis such as tumour or cancer
growth, retinopathy, osteoarthritis or psoriasis.

35 58. A polypeptide comprising the amino acid sequence
from position 40 to 150 of the sequence illustrated

in figure 10 for use as a medicament.

5 59. A polypeptide comprising the amino acid sequence from position 40 to 150 of the sequence illustrated in Figure 10 in the manufacture of a medicament for the treatment of disease conditions associated with inappropriate angiogenesis such as tumour growth, retinopathy, osteoarthritis or psoriasis.

10 60. Use of a CUB domain comprising the amino acid sequence from position 40 to 150 of the sequence of Figure 10, or the amino acid sequence of Figure 26, to identify compounds which inhibit angiogenic activity in a method according to claim 50.

15 61. A method of inhibiting angiogenic activity and inappropriate vascularisation including formation and proliferation of new blood vessels, growth and development of tissues, tissue regeneration and organ and tissue repair in a subject said method comprising administering to said subject an amount of a polypeptide having an amino acid sequence from position 40 to 150 of the sequence illustrated in Figure 10 or a nucleic acid molecule according to any of claims 39 to 42 in sufficient concentration to reduce or prevent said angiogenic activity.

20 25 30 35 62. A method of treating or preventing any of cancer, rheumatoid arthritis, psoriasis and diabetic retinopathy, said method comprising administering to said subject an amount of a polypeptide having an amino acid sequence from position 40 to 150 of the sequence illustrated in Figure 10 or a nucleic acid molecule according to any of claims 39 to 42 in sufficient concentration to treat or prevent said disorders.

63. An antisense molecule capable of hybridising to
a molecule according to claim 39 under high
stringency conditions.

5 64. An antisense molecule capable of hybridising to
a molecule according to claim 43 under high
stringency conditions.

10 65. A transgenic cell, tissue or organism comprising
a transgene capable of expressing a protein according
to claim 48.

15 66. A transgenic cell, tissue or organism comprising
a transgene capable of expressing a protein according
to claim 49.

20 67. A transgenic, cell tissue or organism
according to claim 65 or 66, wherein said transgene
is included in an expression vector according to
claim 41 or 42.

25 68. An antibody capable of binding to a protein
according to claim 48 or an epitope thereof.

25 69. An antibody capable of binding to a protein
according to claim 49 or an epitope thereof.

30 70. A pharmaceutical composition comprising an
antibody according to claim 68 or 69 together with a
pharmaceutically acceptable carrier diluent or
excipient therefor.

35 71. A pharmaceutical composition comprising a
compound according to claim 48 together with a
pharmaceutically acceptable carrier, diluent or
excipient therefor.

*See
B12*

72. A nucleic acid molecule encoding a variant of a VEGF-X protein having any of the sequences of nucleotides illustrated in Figure 12.

Add C3