PRO-REPRESENTABILITY OF K^M -COHOMOLOGY IN WEIGHT 3 GENERALIZING A RESULT OF BLOCH

EOIN MACKALL

ABSTRACT. We generalize a result, on the pro-representability of Milnor K-cohomology groups at the identity, that's due to Bloch. In particular, we prove, for X a smooth, proper, and geometrically connected variety defined over an algebraic field extension k/\mathbb{Q} , that the functor

$$\mathscr{T}_X^{i,3}(A) = \ker \left(H^i(X_A, \mathcal{K}_{3,X_A}^M) \to H^i(X, \mathcal{K}_{3,X}^M) \right),$$

defined on Artin local k-algebras (A, \mathfrak{m}_A) with $A/\mathfrak{m}_A \cong k$, is prorepresentable provided that certain Hodge numbers of X vanish.

1. Introduction

Bloch [Blo75] has shown that the Milnor K-cohomology $H^i(X, \mathcal{K}^M_{2,X})$, for a variety X defined over a number field k, is an interesting object amenable to study by deformation theory. More precisely, Bloch found a necessary and sufficient criterion for determining pro-representability of the functor which sends a local Artinian k-algebra A to the kernel of the canonical map

$$\mathrm{H}^{i}(X_{A},\mathcal{K}^{M}_{2,X_{A}}) \to \mathrm{H}^{i}(X,\mathcal{K}^{M}_{2,X})$$

in terms of the vanishing of some Hodge numbers of X. Recall [Sch68] that a functor $F: \mathsf{Art}_k \to \mathsf{Set}$ from the category Art_k of local Artinian k-algebras (A, \mathfrak{m}_A) with residue field $A/\mathfrak{m}_A \cong k$ is called *pro-representable* if there is a complete local Noetherian k-algebra (R, \mathfrak{m}_R) such that:

- (1) $(R/\mathfrak{m}_R^n, \mathfrak{m}_R/\mathfrak{m}_R^n)$ is an object in Art_k for all integers $n \geq 1$,
- (2) there exists a canonical isomorphism of functors $F \simeq h_R$ between F and the functor $h_R : \operatorname{Art}_k \to \operatorname{Set}$ characterized by the assignment $h_R(A) = \operatorname{Hom}_{\operatorname{local} k-\operatorname{alg}}(R,A)$ for any object (A,\mathfrak{m}_A) of Art_k .

A key ingredient necessary for the proof of Bloch's criterion is the existence of a certain logarithmic comparison isomorphism between the kernel of the restriction map $K_2(B) \to K_2(A)$, for a local \mathbb{Q} -algebra

Date: January 19, 2023.

²⁰²⁰ Mathematics Subject Classification. 19E08; 14D15.

Key words and phrases. K-cohomology; pro-representability.

A and an A-algebra B with A-augmentation $\rho: B \to A$ so that the kernel $J = \ker(\rho)$ is nilpotent, and a certain subquotient of the group of absolute Kähler differentials for B (this was also proved in [Blo75]).

Since [Blo75], there have been some attempts at generalizing Bloch's results in different directions. To name some of the successes: Stienstra [Sti83] generalized the pro-representability criterion to surfaces defined over more general base fields; Maazen and Stienstra [MS78] provided an explicit presentation for $K_2(R)$ for a large class of rings R, allowing them to recover the relation to differentials provided by Bloch; and, more recently, Bloch's logarithmic comparison isomorphism has been extended to higher Milnor K-groups by both Gorchinskiy and Tyurin [GT18], and independently Dribus [Dri14].

In this note, we show how the theorems of Gorchinskiy and Tyurin, and Dribus, sheafify to allow study of pro-representability for functors that are related to the higher Milnor K-cohomology groups $\mathrm{H}^i(X,\mathcal{K}^M_{n,X})$. Our main result is a sufficiency criterion for pro-representability in the case of weight 3 Milnor K-cohomology. That is to say, we prove that for a variety X satisfying a host of assumptions (specifically, X should be very nice geometrically, defined over an algebraic extension k/\mathbb{Q} , and have some vanishing Hodge numbers), the functor which assigns to an Artin local k-algebra (A, \mathfrak{m}_A) with residue field $A/\mathfrak{m}_A \cong k$ the group $\mathrm{H}^i(X_A, \mathcal{K}^M_{3,X_A})$ is pro-representable at the identity (Theorem 3.1). Our proof is also descriptive, like Bloch's, in the sense that we prove pro-representability by constructing an isomorphism

$$\ker\left(\mathrm{H}^i(X_A,\mathcal{K}^M_{3,X_A})\to\mathrm{H}^i(X,\mathcal{K}^M_{3,X})\right)\cong\mathrm{H}^i(X,\Omega^2_{X/k})\otimes_k\mathfrak{m}_A$$

which is of independent interest.

Lastly, we point out that most of the results proved here actually apply to all Milnor K-cohomology groups of arbitrary weight $n \geq 1$. Our main theorem is only limited to weight 3 because of the author's inability to determine the vanishing of certain sheaf cohomology groups related to differential p-forms for p > 2. So, if one could generalize the vanishing result of Lemma 3.3, then it should be possible to prove an appropriate sufficiency criterion for pro-representability in any weight.

Acknowledgments. The author would like to thank an anonymous referee whose comments and suggestions have greatly increased the readability of the given article.

Conventions. We use the following conventions throughout:

• a variety is an integral scheme that is separated and of finite type over a base field.

Notation. We use the following notation throughout:

- k/\mathbb{Q} is a fixed algebraic extension
- (A, \mathfrak{m}_A) is an Artin local k-algebra with structure map $s: k \to A$ and residue field $A/\mathfrak{m}_A = k$
- X is a smooth k-variety with structure map $\phi: X \to \operatorname{Spec}(k)$ and $X_A = X \times_k \operatorname{Spec}(A)$ is the trivial deformation of X over $\operatorname{Spec}(A)$
- $\pi_1: X_A \to X$ and $\pi_2: X_A \to \operatorname{Spec}(A)$ are the first and second projections respectively.
- $\mathcal{J} \subset \mathcal{O}_{X_A}$ is the ideal sheaf of the reduction $\rho: X \to X_A$.

2. Generalizing Bloch's result

The purpose of this section is to collect preliminaries (mostly without proof) that directly generalize known results from the literature.

Definition 2.1. We write \mathcal{R}^1_{ρ} for the kernel sheaf

$$\mathcal{R}^1_{\rho} = \ker \left(\Omega^1_{X_A/k} \twoheadrightarrow \rho_* \Omega^1_{X/k} \right).$$

This sheaf is sometimes denoted $\Omega^1_{X_A,\mathcal{J}}$ or $\Omega^1_{X\times A,X\times\mathfrak{m}_A}$ in the literature. Note that \mathcal{R}^1_{ρ} is coherent.

Definition 2.2. For any n > 1 we define \mathcal{R}_{ρ}^{n} as the kernel

$$\mathcal{R}^n_{\rho} = \ker\left(\Omega^n_{X_A/k} \twoheadrightarrow \wedge^n \left(\rho_* \Omega^1_{X/k}\right)\right).$$

This is equal to the image sheaf

$$\mathcal{R}^n_{\rho} = \operatorname{Im}\left(\mathcal{R}^1_{\rho} \otimes_{\mathcal{O}_{X_A}} \Omega^{n-1}_{X_A/k} \twoheadrightarrow \Omega^n_{X_A/k}\right).$$

Note that \mathcal{R}^n_{ρ} is also coherent.

Remark 2.3. The differentials $d^n: \Omega^n_{X_A/k} \to \Omega^{n+1}_{X_A/k}$ restricted to the subsheaves \mathcal{R}^n_o fit together in a complex

$$\mathcal{R}^0_{
ho} := \mathcal{J}
ightarrow \mathcal{R}^1_{
ho} \xrightarrow{d^1} \mathcal{R}^2_{
ho} \xrightarrow{d^2} \cdots \xrightarrow{d^{i-1}} \mathcal{R}^i_{
ho} \xrightarrow{d^i} \cdots$$

We will often write d to mean any one of these differentials.

For any scheme Y we write $\mathcal{K}_{n,Y}^M$ for the Zariski sheaf associated to the presheaf of Milnor K-groups defined by the assignment

$$U \rightsquigarrow K_n^M(\mathcal{O}_Y(U))$$

for any open $U \subset Y$. There is then an exact sequence

$$0 \to \mathcal{K}_{n,\rho}^M \to \mathcal{K}_{n,X_A}^M \to \mathcal{K}_{n,X}^M \to 0$$

induced by the reduction $\mathcal{O}_{X_A} \to \rho_* \mathcal{O}_X$ and with $\mathcal{K}_{n,\rho}^M$ defined to be the appropriate kernel sheaf. This exact sequence is, moreover, right-split by the structure map

$$\mathcal{O}_X \to s_* \mathcal{O}_{X_A} \to s_* \rho_* \mathcal{O}_X = \mathcal{O}_X.$$

Lemma 2.4. For each $n \geq 2$, there is an isomorphism of sheaves of abelian groups

$$\psi^n: \mathcal{K}_{n,\rho}^M \xrightarrow{\sim} \mathcal{R}_{\rho}^{n-1}/d\mathcal{R}_{\rho}^{n-2}$$

coming from sheafifying the Bloch maps of [GT18, Theorem 2.10]. \Box

From now on we identify $\Omega^1_{X_A/k}$ with the sum

$$\Omega^1_{X_A/k} \cong \pi_1^* \Omega^1_{X/k} \oplus \pi_2^* \Omega^1_{A/k}$$

via the isomorphism of [Sta21, Tag 01V1]. Similarly we identify

(Kün)
$$\Omega^n_{X_A/k} \cong \bigoplus_{j=0}^n \Omega^j_{X/k} \boxtimes \Omega^{n-j}_{A/k}$$

where for any $0 \le j \le n$ we use the notation

$$\Omega^{j}_{X/k} \boxtimes \Omega^{n-j}_{A/k} := \pi_{1}^{*} \Omega^{j}_{X/k} \otimes_{\mathcal{O}_{X_{A}}} \pi_{2}^{*} \Omega^{n-j}_{A/k} \quad \left(\cong \Omega^{j}_{X/k} \otimes_{k} \Omega^{n-j}_{A/k} \right)$$

for the exterior product of sheaves on the product $X_A = X \times_k \operatorname{Spec}(A)$. The following two lemmas are direct generalizations from the case when n = 1 which is observed in [Blo75, §3].

Lemma 2.5. The composition

$$\mathcal{R}^n_{\rho} \to \Omega^n_{X_A/k} \twoheadrightarrow \bigoplus_{j=0}^{n-1} \Omega^j_{X/k} \boxtimes \Omega^{n-j}_{A/k}$$

of the natural inclusion and projection induces a short exact sequence

$$0 \to \Omega^n_{X/k} \boxtimes \mathfrak{m}_A \to \mathcal{R}^n_\rho \to \bigoplus_{j=0}^{n-1} \Omega^j_{X/k} \boxtimes \Omega^{n-j}_{A/k} \to 0.$$

This exact sequence is, moreover, split.

From now on we write $\mathfrak{m}_A^0 = \ker(\mathfrak{m}_A \xrightarrow{d} \Omega^1_{A/k})$ for the given kernel.

Lemma 2.6. For any $n \ge 1$, the following square of differentials and inclusions is commutative.

$$\begin{array}{ccc}
\Omega_{X/k}^{n-1} \otimes_k \mathfrak{m}_A^0 & \longrightarrow \mathcal{R}_{\rho}^{n-1} \\
\downarrow^{d \otimes 1} & & \downarrow^{d} \\
\Omega_{X/k}^n \boxtimes \mathfrak{m}_A & \longrightarrow \mathcal{R}_{\rho}^n
\end{array}$$

From the square (*) one also gets an exact sequence

$$0 \to \frac{\Omega^n_{X/k} \boxtimes \mathfrak{m}_A}{\operatorname{Im}(d \otimes 1)} \to \frac{\mathcal{R}^n_\rho}{d\mathcal{R}^{n-1}_\rho} \to \mathcal{C}^n_\rho \to 0$$

where

$$\mathcal{C}^n_{\rho} = \frac{\bigoplus_{j=0}^{n-1} \Omega^j_{X/k} \boxtimes \Omega^{n-j}_{A/k}}{\Omega^{n-1}_{X/k} \otimes_k d(\mathfrak{m}_A) + d\left(\bigoplus_{j=0}^{n-2} \Omega^j_{X/k} \boxtimes \Omega^{n-1-j}_{A/k}\right)}$$

is the canonical quotient sheaf.

Proof. To see that the square (*) above is commutative, it suffices to observe that the differential d of the de Rham complex $\Omega_{X_A/k}^{\bullet}$ is identifiable, via the isomorphism of (Kün), with the differential of the total complex $\text{Tot}(\Omega_{X/k}^{\bullet} \boxtimes \Omega_{A/k}^{\bullet})$; for more information, one can consult [Sta21, Tag 0FM9,Tag 012Z]. It follows from the existence of (*) that there is a commutative diagram with exact rows

$$0 \longrightarrow \Omega_{X/k}^{n-1} \otimes_k \mathfrak{m}_A^0 \longrightarrow \mathcal{R}_{\rho}^{n-1} \longrightarrow \mathcal{E} \longrightarrow 0$$

$$\downarrow^{d \otimes 1} \qquad \qquad \downarrow^{\tilde{d}} \qquad \qquad \downarrow^{\tilde{d}}$$

$$0 \longrightarrow \Omega_{X/k}^n \boxtimes \mathfrak{m}_A \longrightarrow \mathcal{R}_{\rho}^n \longrightarrow \bigoplus_{j=0}^{n-1} \Omega_{X/k}^j \boxtimes \Omega_{A/k}^{n-j} \longrightarrow 0$$

where we use the placeholder

$$\mathcal{E} = \Omega_{X/k}^{n-1} \otimes_k \left(\mathfrak{m}_A / \mathfrak{m}_A^0 \right) \oplus \bigoplus_{j=0}^{n-2} \Omega_{X/k}^j \boxtimes \Omega_{A/k}^{n-1-j}$$

and write \tilde{d} for the induced map forming the rightmost vertical arrow. We prove in Lemma 2.7 below that the kernel of the composition

$$\mathcal{R}^{n-1}_{\rho} \xrightarrow{d} \mathcal{R}^{n}_{\rho} \to \bigoplus_{j=0}^{n-1} \Omega^{j}_{X/k} \boxtimes \Omega^{n-j}_{A/k}$$

is locally generated by both $\ker(d)$ and $\Omega_{X/k}^{n-1} \otimes_k \mathfrak{m}_A^0$. This implies that, for each point $x \in X_A$, any local section ψ of \mathcal{E}_x in the kernel of \tilde{d} can be lifted to a local section $\psi' \in (\mathcal{R}_{\rho}^{n-1})_x$ that can be written as a sum of local sections from $\ker(d)_x$. The final claim of the lemma, regarding the given exact sequence, then follows from an application of the snake lemma to the above commutative diagram.

Lemma 2.7. With notation as in Lemma 2.6, let $x \in X_A$ be a point and let $\psi \in (\mathcal{R}_{\rho}^{n-1})_x$ be a local section such that $d(\psi)$ is contained in $(\Omega_{X/k}^n \boxtimes \mathfrak{m}_A)_x \subset (\mathcal{R}_{\rho}^n)_x$. Then $\psi \in \ker(d)_x + (\Omega_{X/k}^{n-1} \otimes_k \mathfrak{m}_A^0)_x$.

Proof. Fix a basis $\{e_i\}_{i\in I}$ for the k-vector space \mathfrak{m}_A^0 and extend this to a basis $\{e_i\}_{i\in J}$ for the k-vector space \mathfrak{m}_A . We note that it's possible to have $\mathfrak{m}_A^0 = 0$, in which case we have $I = \emptyset$, and we can assume that $\mathfrak{m}_A \neq 0$ since if $\mathfrak{m}_A = 0$ then A = k and the claim is immediate.

By general properties of Kähler differentials, in particular [Sta21, Tag 02HP], we have that $\Omega^1_{A/k}$ is generated as an A-module by the elements $\{de_i\}_{i\in J}$. Considering the A-module $\Omega^1_{A/k}$ as a k-vector space, it follows that the elements

$$\{de_i\}_{i\in J\setminus I}$$
, and $\{e_jde_i\}_{j\in J, i\in J\setminus I}$

span all of $\Omega^1_{A/k}$. The elements $\{de_i\}_{i\in J\setminus I}$ are k-linearly independent by construction so, by restricting to a subset $J' \subset J$, we can suppose that the collection

$$\{de_i\}_{i\in J\setminus I}\cup\{e_jde_i\}_{j\in J',i\in J\setminus I}$$

forms a basis for $\Omega^1_{A/k}$.

Using the splitting of \mathcal{R}_{ρ}^{n-1} given in Lemma 2.5, an arbitrary local section $\psi \in (\mathcal{R}_{\rho}^{n-1})_x$ can be written as a sum

$$\psi = \sum_{i \in I} \omega_i \otimes e_i + \sum_{j \in J \setminus I} \omega_j \otimes e_j + \sum_{r \in J \setminus I} \alpha_r \otimes de_r + \sum_{r \in J \setminus I, s \in J'} \alpha_{r,s} \otimes e_s de_r + \psi'$$

where we have:

- $\begin{aligned} & \cdot \ \omega_i \in \Omega^{n-1}_{X/k,x} \ \text{for all} \ i \in I, \\ & \cdot \ \omega_j \in \Omega^{n-1}_{X/k,x} \ \text{for all} \ j \in J \setminus I, \end{aligned}$
- $\cdot \alpha_r \in \Omega_{X/k,x}^{n-2} \text{ for all } r \in J \setminus I,$ $\cdot \alpha_{r,s} \in \Omega_{X/k,x}^{n-2} \text{ for all pairs } (r,s) \in (J \setminus I) \times J',$
- · and for a uniquely determined local section ψ' of $(\mathcal{R}_{\rho}^{n-1})_x$ contained in the summand coming from $\bigoplus_{j=2}^{n-1} \Omega_{X/k}^{n-1-j} \boxtimes \Omega_{A/k}^{j}$.

Applying the differential d to the local section ψ then gives:

$$d(\psi) = \sum_{i \in I} d\omega_i \otimes e_i$$

$$+ \sum_{j \in J \setminus I} d\omega_j \otimes e_j + (-1)^{n-1} \omega_j \otimes de_j$$

$$+ \sum_{r \in J \setminus I} d\alpha_r \otimes de_r$$

$$+ \sum_{r \in J \setminus I, s \in J'} d(\alpha_{r,s}) \otimes e_s de_r + (-1)^{n-2} \alpha_{r,s} \otimes de_s \wedge de_r$$

$$+ d\psi'.$$

Combining terms by their appropriate bidegrees, we can write:

$$d(\psi) - \psi'' = \sum_{i \in J} d\omega_i \otimes e_i + \sum_{j \in J \setminus I} (d\alpha_j + (-1)^{n-1}\omega_j) \otimes de_j + \sum_{r \in J \setminus I, s \in J'} d(\alpha_{r,s}) \otimes e_s de_r$$

for a local section ψ'' of $(\mathcal{R}^n_\rho)_x$ contained in the sum of those summands where $\Omega^j_{A/k}$ appears as a factor for any $j \geq 2$.

Now suppose that $d(\psi)$ is contained in $(\Omega_{X/k}^n \boxtimes \mathfrak{m}_A)_x$. It follows that $\psi'' = 0$, there is vanishing $d(\alpha_{r,s}) = 0$ for all $r \in J \setminus I$, and we get an equality $d\alpha_j + (-1)^{n-1}\omega_j = 0$ for all $j \in J \setminus I$. From the latter of these we find

$$\omega_i = d((-1)^n \alpha_i)$$

for all $j \in J \setminus I$. From this we find that both

$$\sum_{j \in J \setminus I} \omega_j \otimes e_j + \sum_{r \in J \setminus I} \alpha_r \otimes de_r \quad \text{and} \quad \sum_{r \in J \setminus I, s \in J'} \alpha_{r,s} \otimes e_s de_r + \psi'$$

are elements of $\ker(d)_x$. This immediately implies the claim, comparing with the presentation of ψ above.

Example 2.8. If $A = k[\epsilon]/(\epsilon^2)$ is the ring of dual numbers, then both $\mathfrak{m}_A^0 = 0$ and $\mathcal{C}_\rho^n = 0$. It follows that

$$\mathrm{H}^{i}(X, \mathcal{R}^{n}_{\rho}/d\mathcal{R}^{n-1}_{\rho}) = \mathrm{H}^{i}(X, \Omega^{n}_{X/k})$$

for any $i \ge 0$ and for any $n \ge 1$ in this case.

Example 2.9. In the case n=1, the sheaf \mathcal{C}_{ρ}^{n} simplifies to

$$\mathcal{C}^1_{\rho} = \mathcal{O}_X \otimes_k \left(\Omega^1_{A/k}/d(\mathfrak{m}_A)\right).$$

This is the case that's studied in [Blo75]; explicitly, the sheaf C^1_{ρ} appears in [Blo75, (3.2)].

Example 2.10. For n=2 the above sheaf \mathcal{C}_{ρ}^{n} becomes

$$\mathcal{C}^2_{\rho} = \frac{\left(\Omega^1_{X/k} \boxtimes \Omega^1_{A/k}\right) \oplus \left(\mathcal{O}_X \boxtimes \Omega^2_{A/k}\right)}{\Omega^1_{X/k} \otimes_k d(\mathfrak{m}_A) + d(\mathcal{O}_X \boxtimes \Omega^1_{A/k})}.$$

We study this sheaf in more detail in the next section.

3. Weight 3

We write $\mathscr{T}_X^{i,n}$ for the functor which assigns to an Artin local k-algebra (A, \mathfrak{m}_A) with residue field $A/\mathfrak{m}_A \cong k$, as above, the group

$$\mathscr{T}_{X}^{i,n}(A) = \mathrm{H}^{i}(X, \mathcal{K}_{n,o}^{M}).$$

Our goal in this section is to prove the following theorem.

Theorem 3.1. Suppose that X is a smooth, proper, and geometrically connected k-variety. Fix an integer $j \geq 1$, and suppose also that the following conditions are satisfied:

(1)
$$H^{j}(X, \mathcal{O}_{X}) = H^{j+1}(X, \mathcal{O}_{X}) = H^{j+2}(X, \mathcal{O}_{X}) = 0$$
,

(2)
$$H^{j}(X, \Omega_{X/k}^{1}) = H^{j+1}(X, \Omega_{X/k}^{1}) = 0.$$

Then there is a canonical isomorphism

$$\mathscr{T}_X^{j,3}(A) = \mathrm{H}^j(X,\Omega^2_{X/k}) \otimes_k \mathfrak{m}_A$$

for any Artinian local k-algebra (A, \mathfrak{m}_A) as above. In particular, this implies that the functor $\mathscr{T}_X^{j,3}$ is pro-representable.

Example 3.2. The assumptions of Theorem 3.1 are satisfied if j = 3 and X is a smooth complete intersection of two quadrics in \mathbb{P}^7 or if X is a smooth cubic hypersurface in \mathbb{P}^6 , see [Rap72, §2]. If j = 3 still, the assumptions are also satisfied when X is a Gushel-Mukai fivefold [DK19, Proposition 3.1].

The proof of Theorem 3.1 relies crucially on the next two lemmas.

Lemma 3.3. Suppose that X is geometrically integral. Fix some $j \geq 1$. Assume also that:

(1)
$$H^{j}(X, \mathcal{O}_{X}) = H^{j+1}(X, \mathcal{O}_{X}) = 0,$$

(2) and
$$H^{j}(X, \Omega^{1}_{X/k}) = H^{j+1}(X, \Omega^{1}_{X/k}) = 0.$$

Then we have $H^j(X, \mathcal{C}^2_\rho) = 0$, and hence also

$$\mathrm{H}^{j}(X, \mathcal{R}^{2}_{\rho}/d\mathcal{R}^{1}_{\rho}) = \mathrm{H}^{j}(X, \Omega^{2}_{X/k} \boxtimes \mathfrak{m}_{A}/d\Omega^{1}_{X/k} \otimes_{k} \mathfrak{m}^{0}_{A}),$$

for any Artinian local k-algebra (A, \mathfrak{m}_A) with $A/\mathfrak{m}_A \cong k$ as above.

Proof. To prove the lemma we'll use the exact sequence

$$0 \longrightarrow \left(\Omega^{1}_{X/k} \otimes_{k} d(\mathfrak{m}_{A})\right) \cap d(\mathcal{O}_{X} \boxtimes \Omega^{1}_{A/k}) \longrightarrow \left(\Omega^{1}_{X/k} \otimes_{k} d(\mathfrak{m}_{A})\right) \oplus d(\mathcal{O}_{X} \boxtimes \Omega^{1}_{A/k})$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

where the second arrow is (+, -) and the third is the sum $(a, b) \mapsto a + b$. We're going to identify the cohomology groups of each of these sheaves; then we'll patch together some long-exact cohomology sequences and deduce the result.

To simplify our notation, we write

$$D = \left(\Omega^1_{X/k} \otimes_k d(\mathfrak{m}_A)\right) \cap d(\mathcal{O}_X \boxtimes \Omega^1_{A/k})$$

and we set K to be the kernel of the third arrow. By splicing the four-term sequence above we get two short exact sequences

(S1)
$$0 \to D \to (\Omega^1_{X/k} \otimes_k d(\mathfrak{m}_A)) \oplus d(\mathcal{O}_X \boxtimes \Omega^1_{A/k}) \to K \to 0$$

and

(S2)
$$0 \to K \to \left(\Omega^1_{X/k} \boxtimes \Omega^1_{A/k}\right) \oplus \left(\mathcal{O}_X \boxtimes \Omega^2_{A/k}\right) \to \mathcal{C}^2_{\rho} \to 0.$$

The first nontrivial term D can be identified as

$$D = \left(\Omega^1_{X/k} \otimes_k d(\mathfrak{m}_A)\right) \cap d(\mathcal{O}_X \boxtimes \Omega^1_{A/k}) = d(\mathcal{O}_X) \otimes_k d(\mathfrak{m}_A) \subset \Omega^1_{X/k} \boxtimes \Omega^1_{A/k}.$$

By [Har77, Remark 2.9.1] sheaf cohomology commutes with arbitrary (especially finite) direct sums, so this yields an isomorphism

$$H^{i}(X, D) = H^{i}(X, d(\mathcal{O}_{X}) \otimes_{k} d(\mathfrak{m}_{A}))$$

$$\cong H^{i}(X, d(\mathcal{O}_{X})) \otimes_{k} d(\mathfrak{m}_{A}).$$

Since X is geometrically integral, hence irreducible, the constant sheaf \underline{k} is flasque. From the long exact cohomology sequence associated to the short exact sequence

$$0 \to \underline{k} \to \mathcal{O}_X \xrightarrow{d} d(\mathcal{O}_X) \to 0$$

this, in turn, implies that, for any $i \geq 1$, there is an isomorphism

$$H^i(X, d(\mathcal{O}_X)) \cong H^i(X, \mathcal{O}_X)$$

since the higher cohomology of a flasque sheaf vanishes by [Har77, Proposition 2.5]. Altogether, this produces an isomorphism

$$\mathrm{H}^{i}(X,D) \cong \mathrm{H}^{i}(X,\mathcal{O}_{X}) \otimes_{k} d(\mathfrak{m}_{A})$$

for any i > 1.

To compute the cohomology of the middle term in the sequence (S1), we need to write $d(\mathcal{O}_X \boxtimes \Omega^1_{A/k})$ in a way that allows us to compute its cohomology. But note that the differential

$$\mathcal{O}_X \boxtimes \Omega^1_{A/k} \xrightarrow{d} \left(\Omega^1_{X/k} \boxtimes \Omega^1_{A/k}\right) \oplus \left(\mathcal{O}_X \boxtimes \Omega^2_{A/k}\right)$$

has kernel $\underline{k} \otimes_k L$ where $L = \ker(\Omega^1_{A/k} \to \Omega^2_{A/k})$. By an argument similar to before, noting that $\underline{k} \otimes_k L$ is also flasque, we have isomorphisms for all i > 0

$$H^{i}(X, d(\mathcal{O}_{X} \boxtimes \Omega^{1}_{A/k})) \cong H^{i}(X, \mathcal{O}_{X} \boxtimes \Omega^{1}_{A/k})$$
$$\cong H^{i}(X, \mathcal{O}_{X}) \otimes_{k} \Omega^{1}_{A/k}.$$

The long-exact cohomology sequence associated to (S1) now breaks up into short exact sequences, for every $i \ge 1$,

$$0 \to \mathrm{H}^{i}(X, \mathcal{O}_{X}) \otimes d(\mathfrak{m}_{A}) \to \left(\mathrm{H}^{i}(X, \Omega^{1}_{X/k}) \otimes d(\mathfrak{m}_{A})\right) \oplus \left(\mathrm{H}^{i}(X, \mathcal{O}_{X}) \otimes \Omega^{1}_{A/k}\right)$$
$$\to \mathrm{H}^{i}(X, K) \to 0.$$

Our assumptions on the vanishing of the cohomology of \mathcal{O}_X and $\Omega^1_{X/k}$ imply that both $H^j(X,K)$ and $H^{j+1}(X,K)$ vanish.

The long-exact sequence associated to (S2) now shows that

$$\mathrm{H}^{j}(X, \mathcal{C}^{2}_{\rho}) \cong \left(\mathrm{H}^{j}(X, \Omega^{1}_{X/k}) \otimes \Omega^{1}_{A/k}\right) \oplus \left(\mathrm{H}^{j}(X, \mathcal{O}_{X}) \otimes \Omega^{2}_{A/k}\right).$$

But both summands of this latter space vanish by assumption. Lastly, the claim that

$$H^{i}(X, \mathcal{R}^{2}_{\rho}/d\mathcal{R}^{1}_{\rho}) = H^{i}(X, \left(\Omega^{2}_{X/k} \boxtimes \mathfrak{m}_{A}\right) / \left(d\Omega^{1}_{X/k} \otimes_{k} \mathfrak{m}^{0}_{A}\right))$$

follows as a consequence of Lemma 2.6.

Remark 3.4. If X is a smooth, proper, and geometrically integral k-variety, then the map $H^*(X, \mathcal{O}_X) \to H^*(X, \Omega^1_{X/k})$ induced by the differential vanishes (this follows from the degeneration of the Hodge to de Rham spectral sequence proved, for example, in [DI87, Corollaire 2.7]). In this case, the above proof can be modified (with no assumptions on the vanishing of the cohomology of either \mathcal{O}_X or $\Omega^1_{X/k}$) to show that

$$\mathrm{H}^{i}(X,\mathcal{C}_{\rho}^{2})\cong \left(\mathrm{H}^{i}(X,\Omega_{X/k}^{1})\otimes_{k}\Omega_{A/k}^{1}/d(\mathfrak{m}_{A})\right)\oplus\left(\mathrm{H}^{i}(X,\mathcal{O}_{X})\otimes_{k}\Omega_{A/k}^{2}/d(\Omega_{A/k}^{1})\right)$$
 for any $i\geq 1$. Hence, if for some fixed $j\geq 1$ one has $\mathrm{H}^{j}(X,\Omega_{X/k}^{1})=0$ and $\mathrm{H}^{j}(X,\mathcal{O}_{X})=0$, then $\mathrm{H}^{j}(X,\mathcal{C}_{\rho}^{2})=0$.

Lemma 3.5. Suppose that X is a smooth, proper, and geometrically connected k-variety. Fix two integers $p \ge j \ge 1$, and suppose also that the following conditions are satisfied:

(1)
$$H^{p+q}(X, \Omega_{X/k}^{j-q-1}) = 0$$
 for all $0 \le q \le j-1$

(2) and
$$H^{p+q}(X, \Omega_{X/k}^{j-q}) = 0$$
 for all $1 \le q \le j$

Then the canonical quotient map induces an isomorphism

$$H^p(X, \Omega^j_{X/k}) \otimes_k \mathfrak{m}_A \cong H^p\left(X, \frac{\Omega^j_{X/k} \boxtimes \mathfrak{m}_A}{d\Omega^{j-1}_{X/k} \otimes_k \mathfrak{m}_A^0}\right)$$

for any Artinian local k-algebra (A, \mathfrak{m}_A) with $A/\mathfrak{m}_A \cong k$ as above.

Proof. We write

$$\mathscr{K}^i = \ker\left(\Omega^i_{X/k} \xrightarrow{d^i} \Omega^{i+1}_{X/k}\right)$$

for the given sheaf kernel and

$$\mathscr{H}^i = \mathrm{H}\left(\Omega^{i-1}_{X/k} \to \Omega^i_{X/k} \to \Omega^{i+1}_{X/k}\right)$$

for the given homology sheaf, i.e. the quotient of \mathcal{K}^i by the image sheaf of the first morphism. We don't use it but, the sheaf \mathcal{K}^i can also be identified with the sheafification of the presheaf associating to an open $U \subset X$ the algebraic de Rham cohomology $\mathrm{H}^i_{dR}(U)$.

Using this notation, there are the following exact sequences:

$$(D_0)$$
 $0 \to \underline{k} \to \mathcal{O}_X \to d\mathcal{O}_X \to 0,$

$$(H_i)$$
 $0 \to d\Omega_{X/k}^{i-1} \to \mathcal{K}^i \to \mathcal{H}^i \to 0 \text{ for } i \ge 1,$

$$(D_i)$$
 $0 \to \mathcal{K}^i \to \Omega^i_{X/k} \to d\Omega^i_{X/k} \to 0$ for $1 \le i \le j-1$,

$$(D_j) \qquad 0 \to d\Omega_{X/k}^{j-1} \otimes_k \mathfrak{m}_A^0 \to \Omega_{X/k}^j \boxtimes \mathfrak{m}_A \to \frac{\Omega_{X/k}^j \boxtimes \mathfrak{m}_A}{d\Omega_{X/k}^{j-1} \otimes_k \mathfrak{m}_A^0} \to 0.$$

The long exact sequence associated to (D_j) shows that, in order to prove the lemma, it suffices to show the simultaneous vanishing

$$H^p(X, d\Omega_{X/k}^{j-1}) = H^{p+1}(X, d\Omega_{X/k}^{j-1}) = 0.$$

Looking at the sequence (D_i) when i = j - 1, this is implied by the simultaneous vanishing

$$H^p(X, \Omega_{X/k}^{j-1}) = H^{p+1}(X, \mathcal{K}^{j-1}) = 0$$

and
$$H^{p+1}(X, \Omega_{X/k}^{j-1}) = H^{p+2}(X, \mathcal{K}^{j-1}) = 0.$$

The cohomology of $\Omega_{X/k}^{j-1}$ vanishes by assumption and, from the long exact sequence of cohomology associated with (H_i) when i = j - 1, the vanishing of the cohomology of \mathcal{K}^{j-1} is implied by the simultaneous vanishing

$$H^{p+1}(X, d\Omega_{X/k}^{j-2}) = H^{p+1}(X, \mathcal{H}^{j-1}) = 0$$

and
$$H^{p+2}(X, d\Omega_{X/k}^{j-2}) = H^{p+2}(X, \mathcal{H}^{j-1}) = 0.$$

According to [BO74, Corollary 6.2], the cohomology $H^a(X, \mathcal{H}^b) = 0$ vanishes whenever a > b (which is the case when a = p and b = j - 1 by assumption). The claim then follows from repeating this argument,

eventually reducing to a computation of the terms of the long exact sequence associated to (D_0) .

Proof of Theorem 3.1. The isomorphism

$$\mathscr{T}_X^{j,3}(A) \cong \mathrm{H}^j(X,\Omega^2_{X/k}) \otimes_k \mathfrak{m}_A$$

follows immediately from Lemmas 2.4, 2.6, 3.3, and 3.5.

That $\mathscr{T}_X^{j,3}$ is pro-representable can be checked using Schlessinger's Criterion [Sch68, Theorem 2.11]. We'll show, instead, that, under the assumptions of the theorem statement, the functor $\mathscr{T}_X^{j,3}$ has a tangent-obstruction theory; the sufficiency of this condition to guarantee pro-representability is proved in [FG05, Corollary 6.3.5]. Specifically, we'll show that there exist finite dimensional k-vector spaces T_1, T_2 and an exact sequence

(T-O)
$$0 \to T_1 \otimes_k J \to \mathscr{T}_X^{j,3}(A') \to \mathscr{T}_X^{j,3}(A) \to T_2 \otimes_k J$$

whenever there exists a small-extension

$$0 \to J \to A' \to A \to 0$$

of local Artinian k-algebras (A, \mathfrak{m}_A) and $(A', \mathfrak{m}_{A'})$ with residue fields isomorphic to k (recall that A' is a small extension of A if $J \cdot \mathfrak{m}_{A'} = 0$). It will be clear from the construction that the exact sequence (T-O) is functorial in small-extensions, and this will complete the proof.

So, assume we're in the setting above with A, A', J given. We'll see that $T_1 \cong H^j(X, \Omega^2_{X/k})$ and $T_2 = 0$. From the surjection $A' \to A$ we get a commutative ladder with exact rows:

In view of the isomorphisms

$$\mathscr{T}_X^{j,3}(A') \cong \mathrm{H}^j(X,\Omega^2_{X/k}) \otimes_k \mathfrak{m}_{A'}$$
 and $\mathscr{T}_X^{j,3}(A) \cong \mathrm{H}^j(X,\Omega^2_{X/k}) \otimes_k \mathfrak{m}_{A}$,

the leftmost vertical arrow is a surjection with kernel $\mathrm{H}^{j}(X,\Omega_{X/k}^{2})\otimes_{k}J$. This immediately proves the theorem, by the comments above. \square

REFERENCES

- [Blo75] Spencer Bloch, K_2 of Artinian Q-algebras, with application to algebraic cycles, Comm. Algebra 3 (1975), 405–428. MR 371891
- [BO74] Spencer Bloch and Arthur Ogus, Gersten's conjecture and the homology of schemes, Ann. Sci. École Norm. Sup. (4) 7 (1974), 181–201 (1975). MR 412191

- [DI87] Pierre Deligne and Luc Illusie, Relèvements modulo p² et décomposition du complexe de de Rham, Invent. Math. 89 (1987), no. 2, 247–270. MR 894379
- [DK19] Olivier Debarre and Alexander Kuznetsov, Gushel-Mukai varieties: linear spaces and periods, Kyoto J. Math. **59** (2019), no. 4, 897–953. MR 4032203
- [Dri14] Benjamin F. Dribus, A goodwillie-type theorem for milnor k-theory, 2014, Arxiv. https://arxiv.org/abs/1402.2222.
- [FG05] Barbara Fantechi and Lothar Göttsche, Local properties and Hilbert schemes of points, Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, Amer. Math. Soc., Providence, RI, 2005, pp. 139–178. MR 2223408
- [GT18] S. O. Gorchinskiĭ and D. N. Tyurin, Relative Milnor K-groups and differential forms of split nilpotent extensions, Izv. Ross. Akad. Nauk Ser. Mat. 82 (2018), no. 5, 23–60. MR 3859378
- [Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977, Graduate Texts in Mathematics, No. 52. MR 0463157
- [MS78] Hendrik Maazen and Jan Stienstra, A presentation for K_2 of split radical pairs, J. Pure Appl. Algebra 10 (1977/78), no. 3, 271–294. MR 472795
- [Rap72] Michael Rapoport, Complément à l'article de P. Deligne "La conjecture de Weil pour les surfaces K3", Invent. Math. 15 (1972), 227–236. MR 309943
- [Sch68] Michael Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208–222. MR 217093
- [Sta21] The Stacks project authors, *The stacks project*, https://stacks.math.columbia.edu, 2021.
- [Sti83] Jan Stienstra, On the formal completion of the Chow group $\mathrm{CH}^2(X)$ for a smooth projective surface in characteristic 0, Nederl. Akad. Wetensch. Indag. Math. **45** (1983), no. 3, 361–382. MR 718076

Email address: eoinmackall at gmail.com

URL: www.eoinmackall.com