20. Даны α и буква x. Найти максимальное k, такое что в L есть слова, содержащие подслово x^k .

Решение:

Каждому регулярному выражению β , встретимшемуся при разборе α , в стеке соответсвует список из 4 элементов [pref, suff, whole, substr], где

```
\begin{aligned} & pref - \{ max \ k : \exists \ w \in L(\beta) \ x^k w \in L(\beta) \}, \\ & suff = \{ max \ k : \exists \ w \in L(\beta) \ wx^k \in L(\beta) \}, \\ & whole = \{ max \ k : x^k \in L(\beta) \}, \\ & substr = \{ max \ k : \exists \ w \in L(\beta) \ \exists u \in L(\beta) \ wx^k u \in L(\beta) \} \end{aligned}
```

- 1. Добавление элемента в стек:
 - Если элемент равен x, то добавляем в стек [1, 1, 1, 1]
 - Если элемент не совпадает с x, то добавляем [0, 0, -INF, 0]
 - Усли элемент яяляется пустый словом, то добавляем [0, 0, 0, 0]
- 2. Выполнение операции '*':

Берем значение последнего элемента стека. Он соответствует регулярного выражению $L(\beta)$.

- Если значение переменной $whole_{\beta} > 0$, то можно сделать сколь угодно большое слово, содержащее только символы x. Значит, кладём на стек новый элемент со значениями [INF, INF, INF, INF]
- Если же $whole_{\beta}=0$, то посчитаем значения pref, suff, whole и substr. Новый префикс максимальной длины будет совпадать со страрым, т.е. $pref=pref_{\beta}$. Аналогично, максимальная длина суффикса не изменится, значит, $suff=suff_{\beta}$. Длина полного слова может стать равной 0, если степень будет равна 0, либо совпасть с предыдущей максимальной длиной. Тогда $whole=max\{0,\ whole_{\beta}\}$. Новая подстрока максимальной длины может либо полностью входить в одно из слов $L(\beta)$ (тогда её длина не будет превышать $substr_{\beta}$), либо являться объединением суффикса одного слова из $L(\beta)$ с префиксом другого. В последнем случае длина подстроки не больше $suff_{\beta}+pref_{\beta}$. Следовательно, ноавя длина будет максимум этих величин, причем очевидно, что такая длина достигается. Добавим в стек элемент [pref, suff, whole, substr].
- 3. Выполнение операции '+':

Берём два значения со стека.

Каждое новое значение является максимальным из соответствующих ему значений, т.к. можно выбрать слово, на котором достигается указанное значение.

Кладем в стек элемент с получившимися значениями pref, suff, whole и substr.

4. Выполнение операции '.':

Берём два элемента со стека. Они соответствуют регулярным выражениям β и γ .

Максимальный префикс может либо полностью входить в одно из слов β , либо являться объединением слова из β , состоящего только из x, и префикса слова, принадлежащего $L(\gamma)$. В первом случае длина префикса не превышает $pref_{\beta}$, во втором — $whole_{\beta}+pref_{\gamma}$. В обоих случаях строится пример, в котором достигаются указанные значения. Следовательно, $pref = max\{pref_{\beta},\ whole_{\beta}+pref_{\gamma}\}$.

По аналогичным рассуждениям, $suff = max\{suff_{\beta} + whole_{\gamma}, suff_{\gamma}\}.$

Длина максимального слова, полностью состоящего из x, равны сумме длин максимальных слов, состоящих из x, принадлежащих $L(\beta)$ и $L(\gamma)$. Таким образов, $whole = whole_{\beta} + whole_{\gamma}$.

Новая подстрока может полностью принадлежать слову из $L(\beta)$, либо принадлежать слову из $L(\gamma)$, либо являться объединением суффикса из $L(\beta)$ и префикса из $L(\gamma)$. В первом случае длина подстроки не превосходит $substr_{\beta}$, во втором — $substr_{\gamma}$, а в третьем — $suff_{\beta}+pref_{\gamma}$. Значит, значение substr является максимумом этих трёх значений. Кладем в стек элемент [pref, suff, whole, substr].

Ответом на задачу будет значение substr после окончания чтения строки, задающей регулярное выражение $\alpha.$