

Escuela de Ingeniería en Computación Investigación de Operaciones

Knapsack Problem Dynamic Programming

Group 40 Professor: Francisco Torres Rojas

> Carmen Hidalgo Paz Id: 2020030538

Melissa Carvajal Charpentier Id: 2022197088

> Josué Soto González Id: 2023207915

19 september 2025

1 Knapsack

2 Problem

Agua: Amount:30, Profit:1, and Cost:2

Barrita: Amount:2147483647, Profit:2, and Cost:13

Linterna: Amount:10, Profit:5, and Cost:5

Encendedor: Amount:2147483647, Profit:3, and Cost:3

Kit de Costura: Amount:1, Profit:4, and Cost:7

This translates to:

 $\label{eq:maximize} \text{Maximize} \ Z = 1 \\ X_{\text{Agua}} + 2 \\ X_{\text{Barrita}} + 5 \\ X_{\text{Linterna}} + 3 \\ X_{\text{Encendedor}} + 4 \\ X_{\text{Kit de Costura}}$

Subject to:

 $20 \ge 2X_{\text{Agua}} + 13X_{\text{Barrita}} + 5X_{\text{Linterna}} + 3X_{\text{Encendedor}} + 7X_{\text{Kit de Costura}}$

 $X_{\text{Agua}} \leq 30$

 $X_{\mathrm{Barrita}} \leq 2147483647$

 $X_{\rm Linterna} \le 10$

 $X_{\rm Encendedor} \le 2147483647$

 $X_{\text{Kit de Costura}} \leq 1$

3 Costs Table

Capacity	Agua	Barrita	Linterna	Encendedor	Kit de Costura
0	0 = 0	0 = 0	0 x=0	0 x=0	0 x=0
1	0 x=0	0 x=0	0 x=0	0 x=0	0 x=0
2	1 x=1	1 x=0	1 x=0	1 x=0	1 x=0
3	1 x=1	1 x=0	1 x=0	3 x=1	3 x=0
4	2 x=2	2 x=0	2 x=0	3 x=1	3 x=0
5	2 x=2	2 x=0	5 x=1	5 x=0	5 x=0
6	3 x=3	3 x=0	5 x=1	6 x=2	6 x=0
7	3 x=3	3 x=0	6 x=1	6 x=0,2	6 x=0
8	4 x=4	4 x = 0	6 x=1	8 x=1	8 x=0
9	4 x=4	4 x = 0	7 x=1	9 x=3	9 x=0
10	5 x=5	5 x = 0	10 x=2	10 x=0	10 x=0
11	5 x=5	5 x = 0	10 x=2	11 x=2	11 x=0
12	6 x=6	6 x = 0	11 x=2	12 x=4	12 x = 0
13	6 x=6	6 x=0	11 x=2	13 x=1	13 x = 0
14	7 x=7	7 x=0	12 x=2	14 x=3	14 x=0
15	7 x=7	7 x=0	15 x=3	15 x=0,5	15 x=0
16	8 x=8	8 x=0	15 x=3	16 x=2	16 x=0
17	8 x=8	8 x=0	16 x=3	17 x=4	17 x=0
18	9 x=9	9 x=0	16 x=3	18 x=1,6	18 x=0
19	9 x=9	9 x=0	17 x=3	19 x=3	19 x=0
20	10 x=10	10 x=0	20 x=4	20 x=0.5	20 x = 0

4 Optimal Solutions

 $\begin{array}{l} X_{\rm Agua} = 0 \: X_{\rm Barrita} = 0 \: X_{\rm Linterna} = 4 \: X_{\rm Encendedor} = 0 \: X_{\rm Kit \ de \ Costura} = 0 \\ X_{\rm Agua} = 0 \: X_{\rm Barrita} = 0 \: X_{\rm Linterna} = 1 \: X_{\rm Encendedor} = 5 \: X_{\rm Kit \ de \ Costura} = 0 \end{array}$