Aufgabe 5

Lösen Sie das Gleichungssystem

$$\begin{pmatrix} x + 3y + 3z = -2 \\ x + 2y + 4z = 3 \\ x + y + z = 0 \end{pmatrix}$$

- a) nach dem Gauß-Verfahren
- b) nach der Cramerschen Regel und
- c) durch Invertierung von der Abbildungsmatrix.

Lösung 5

Das Gleichungssystem Ax = b löst sich durch Multiplikation von links mit dem Inversen von A zu $x = A^{-1}b$ auf.

Aufgabe 6

Welchen Rang haben die Matrizen $A \in \mathbb{R}^{4 \times 3}$ und $B \in \mathbb{R}^{n \times 2}$ mit $n \ge 2$?

a)
$$A = \begin{pmatrix} 4 & 3 & 6 \\ -2 & 1 & -8 \\ 1 & 5 & -7 \\ 4 & 2 & -1 \end{pmatrix}$$

b)
$$b_{ij} = \begin{cases} -i & i \text{ gerade} \\ i & i \text{ ungerade} \\ n & i = n, j = 1 \\ n - 1 & i = n, j = 2 \end{cases}$$

Lösung 6

Aufgabe 7

Gegeben seien die folgenden Vektoren

$$a_1=\begin{pmatrix}1\\0\\1\\1\end{pmatrix}$$
, $a_2=\begin{pmatrix}2\\0\\1\\2\end{pmatrix}$, $a_3=\begin{pmatrix}1\\1\\1\\1\end{pmatrix}$, $b=\begin{pmatrix}1\\0\\0\\lambda\end{pmatrix}$, $\lambda\in\mathbb{R}$

sowie die zugehörigen LGS

(1)
$$(a_1, a_2, a_3)x = b$$
 und (2) $(a_1, a_2, a_3, b)x = 0$.

Ausgabe: 22.05.2023

Abgabe: 29.05.2023

Ausgabe: 22.05.2023

Abgabe: 29.05.2023

- a) Berechnen Sie det(a_1 , a_2 , a_3 , b) in Abhängigkeit von λ und bestimmen Sie den Wert λ^* , für den die Determinante Null wird.
- b) Bestimmen Sie die Lösbarkeit der LGS (1) und (2) für den Fall $\lambda = \lambda^*$.
- c) Bestimmen Sie die Lösbarkeit der LGS (1) und (2) für den Fall $\lambda \neq \lambda^*$.
- d) Geben Sie die Lösungsmengen für b) und c) an, sollten unendlich viele Lösungen existieren.

Lösung 7