Prova d'Esame Calcolo Delle Probabilità - 02.07.2024

NOTA. Sono riportate *solo* le domande "pratiche", le domande teoriche (del tipo *vero/falso/vero condizionato*) non sono riportate in quanto non le ho segnate sulla brutta copia. Inoltre le domande sono riportate sotto forma di *domanda aperta*, non *quiz a scelta multipla*.

Domande

- 1. Sia $X \sim \mathcal{E}(3), \, Y \sim \Gamma(1,1)$. Calcolare $E[XY^2]$ e $\mathrm{var}\,(3X-Y)$.
- 2. Si supponga che il peso della popolazione degli orsi polari segua una legge gaussiana avente media $\mu=500~{\rm kg}$. Conoscendo che il 10% ha un peso sotto $400~{\rm kg}$, calcolare la percentuale degli orsi avente peso $\geq 550~{\rm kg}$.
- 3. Sia $(X_n)_n$ un campione per un modello statistico $(\Omega, \mathcal{A}, p_{\sigma^2})_{\sigma^2}$, con n=60 e varianza campionaria calcolata come $\bar{\sigma}^2=4$. Stabilire un intervallo di confidenza per la varianza calcolata su $\bar{\sigma}^2$ a livello 86%.
- 4. Sia F(x) una funzione definita a tratti come: 0 se x < 0; $\frac{x}{3}$ se 0 < x < 2; c se $c \ge 2$. Dire se F possa essere una funzione di ripartizione o meno; in tal caso stabilire la costante $c \in \mathbb{R}$.
- 5. Sia f(x) la legge di una variabile aleatoria X, definita a tratti: f(x)=2c se $x\in (1,2)\cup (3,4)$ e f(x)=c se $x\in (0,1)\cup (2,3)$ e 0 altrove. Stabilire la costante c per cui X è una variabile aleatoria assolutamente continue e calcolare $p\{X\leq 3\}$.
- 6. Si ha un'urna di 85 palline, tutte numerate da 1 a 85. Si estraggono 6 palline da quest'urna senza reimmissione: calcolare la probabilità di avere esattamente la tripletta $\{40,41,42\}$.

Questions (versione inglese)

- 1. Let X be an exponential random variable with parameter $\lambda=3$ ($X\sim\mathcal{E}(3)$) and let Y be a Gamma random variable with parameters $\alpha=1,\lambda=1$ ($Y\sim\Gamma(1,1)$). Calculate the mean value $\mathbb{E}[XY^2]$ and the variance $\operatorname{var}(3X-Y)$.
- 2. Suppose that the distribution for the weight of polar bears follow the Gaussian density with mean $\mu=500~{\rm kg}$. Knowing that the 10% of bears have a weight under $400~{\rm kg}$, calculate the percentage of the bears with a weight $\geq 550~{\rm kg}$.

- 3. Let $(X_n)_n$ be a sample of a statistical model $(\Omega, \mathcal{A}, p_{\sigma^2})_{\sigma^2}$ with sample size n=60 and sample variance $\bar{\sigma}^2=4$. Establish an interval of confidence for the variance at level 86%, basing on the sample variance $\bar{\sigma}^2$.
- 4. Let F(x) be a function piecewise function defined as follows: 0 if x < 0, $\frac{x}{3}$ if 0 < x < 2, c if $x \ge 2$. Establish whether F can be a cumulative distribution function or less; if it is the case, determine the constant $c \in \mathbb{R}$.
- 5. Let f(x) be the density of an absolutely continuous random variable X, defined piecewise as follows: f(x)=2c if $x\in(1,2)\cup(3,4)$; f(x)=c if $x\in(0,1)\cup(2,3)$; f(x)=0 otherwise. Determine the constant c such that X is a random variable and calculate $p\{X\leq 3\}$.
- 6. Suppose we have a container with 85 balls, each one numbered from 1 to 85. We extract 6 balls from this container, without reintroducing the extracted balls: calculate the probability of having exactly the triplet $\{40, 41, 42\}$.