

Anti-gout Potential of Malaysian Medicinal Plants

Fazleen I. Abu Bakar^{1,2}, Mohd F. Abu Bakar^{1,2*}, Asmah Rahmat^{1*}, Norazlin Abdullah¹, Siti F. Sabran^{1,2} and Susi Endrini³

¹ Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Muar, Malaysia, ² Centre of Research for Sustainable Uses of Natural Resources, Universiti Tun Hussein Onn Malaysia, Parit Raja, Malaysia, ³ Faculty of Medicine, YARSI University, Jakarta, Indonesia

Gout is a type of arthritis that causes painful inflammation in one or more joints. In gout, elevation of uric acid in the blood triggers the formation of crystals, causing joint pain. Malaysia is a mega-biodiversity country that is rich in medicinal plants species. Therefore, its flora might offer promising therapies for gout. This article aims to systematically review the anti-gout potential of Malaysian medicinal plants. Articles on gout published from 2000 to 2017 were identified using PubMed, Scopus, ScienceDirect, and Google Scholar with the following keyword search terms: "gout," "medicinal plants," "Malaysia," "epidemiology," "in vitro," and "in vivo." In this study, 85 plants were identified as possessing anti-gout activity. These plants had higher percentages of xanthine oxidase inhibitory activity (>85%); specifically, the *Momordica charantia*, Chrysanthemum indicum, Cinnamomum cassia, Kaempferia galanga, Artemisia vulgaris, and Morinda elliptica had the highest values, due to their diverse natural bioactive compounds, which include flavonoids, phenolics, tannin, coumarins, luteolin, and apigenin. This review summarizes the anti-gout potential of Malaysian medicinal plants but the mechanisms, active compounds, pharmacokinetics, bioavailability, and safety of the plants still remain to be elucidated.

OPEN ACCESS

Edited by:

Per-Johan Jakobsson, Karolinska Institute (KI), Sweden

Reviewed by:

Marina Korotkova, Karolinska Institute (KI), Sweden Soon Yew Tang, University of Pennsylvania, United States

*Correspondence:

Mohd F. Abu Bakar fadzelly@uthm.edu.my Asmah Rahmat asmahr@uthm.edu.my

Specialty section:

This article was submitted to Inflammation Pharmacology, a section of the journal Frontiers in Pharmacology

Received: 28 September 2017 Accepted: 08 March 2018 Published: 23 March 2018

Citation:

Abu Bakar FI, Abu Bakar MF, Rahmat A, Abdullah N, Sabran SF and Endrini S (2018) Anti-gout Potential of Malaysian Medicinal Plants. Front. Pharmacol. 9:261. doi: 10.3389/fphar.2018.00261 Keywords: xanthine oxidase inhibition, anti-gout, phytochemical, Malaysian medicinal plants, in vitro, in vivo

BACKGROUND

Gout incidence has increased over the past 50 years, especially in developing countries (Kuo et al., 2015). Gout is a type of inflammatory arthritis triggered by interactions between monosodium urate (MSU) crystals and tissue (Dalbeth et al., 2014) during purine catabolism by the enzyme of xanthine oxidase (Nile et al., 2013). Xanthine oxidase catalyzes the oxidative hydroxylation of hypoxanthine to xanthine to uric acid, leading to painful inflammation (Nile and Khobragade, 2011). Uricase is an enzyme that further catalyzes the conversion of uric acid to the highly soluble allantoin that is excreted in the urine (**Figure 1**). Unfortunately, uricase is not a functional human enzyme and, as a result, humans can develop hyperuricemia (Gliozzi et al., 2016). Gout has also been reported to cause tophi, joint deformities, and kidney stones (Teh et al., 2014).

Hyperuricemia, a major etiological factor of gout, develops either due to overproduction caused by a metabolic disorder or due to under excretion of blood uric acid due to abnormal renal urate transport activity (Ichida et al., 2012). Kidney is the main regulator of serum uric acid levels where renal urate excretion is determined by the balance of the reabsorption and secretion of urate. Renal urate reabsorption is mainly mediated by two urate transporters—urate transporter

1

1 (URAT1) and glucose transporter 9 (GLUT9) (Enomoto et al., 2002; Matsuo et al., 2008). One of the mechanisms involved in reducing the plasma uric acid concentration is an inhibition of the reabsorption of urate in renal tissue via renal mRNA and protein levels of urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), organic anion transporter 1 (OAT1) and organic cation/carnitine transporters (OCT1/2, OCTN1/2) (Sungthong et al., 2016). Hyperuricemia occurs when serum uric acid levels are >0.42 mmol/L (Stamp et al., 2007). Therefore, reducing uric acid is the main approach for the treatment of gout, with target levels of serum uric acid of less than 0.36 mmol/L (Falasca, 2006; Pillinger et al., 2007).

Several risk factors for the development of gout have been established, including hyperuricemia, age, genetic factors, dietary factors, alcohol consumption, metabolic syndrome, hypertension, obesity, diuretic use, cholesterol level, and chronic renal disease (Roddy and Doherty, 2010). Men are believed to have four- to nine-fold increased the risk of developing gout compared to women; however, once women reach menopause, they tend to develop gout, as the uricosuric action of estrogen is lost (Tausche et al., 2009). Genetics and race may also be important factors that contribute to the incidence of gout (Mohd et al., 2011).

Several drugs are approved for the treatment of gout, including colchicine, steroids, non-steroidal anti-inflammatory drugs (ibuprofen, naproxen, indomethacin, and aspirin), cyclooxygenase 2 (COX-2) inhibitors (etoricoxib), and allopurinol. Although these agents are effective, they also cause side effects, such as skin allergies, fever, rash, renal dysfunction, aseptic meningitis, and hepatic dysfunction (Nguyen et al., 2004;

Strazzullo and Puig, 2007). For example, allopurinol, which is the most commonly used xanthine oxidase inhibitor for gout (Pacher et al., 2006), causes nephrolithiasis, hypersensitivity reaction, Stevens-Johnson syndrome, renal toxicity, allergic reactions, and fatal liver necrosis, and increases the toxicity of 6-mercaptopurin (Kong et al., 2004; Wang et al., 2004).

Recently, treating disease using medicinal plants is gaining new interest (Unno et al., 2004) and research on medicinal plants has increased worldwide (Tapsell et al., 2006; Triggiani et al., 2006) due to fewer side effects and lower costs (Srivastava et al., 2012). Malaysia is a country that has more than 8,000 species of flowering plants and \sim 7,411 plant species have been identified in Sabah, Malaysia Borneo; in addition, 1,300 medicinal plant species have been documented in Peninsular, Malaysia (Kulip, 2003; Abd Aziz et al., 2011). The aim of the present review is to provide comprehensive information on the potential of antigout Malaysian medicinal plants and review the scientific data, including the experimental methodologies, active compounds, and mechanisms of action against gout.

METHODS

PubMed, Scopus, ScienceDirect and Google Scholar databases were searched for publications from 2000 to 2017 with *in vitro* and *in vivo* data on Malaysian medicinal plants for gout. The search terms included the following: "gout," "medicinal plants," "*in vivo*," "*in vitro*," "epidemiology," "Malaysia," and "mechanisms." Publications with available abstracts were also reviewed and ~99 publications, including journal articles and proceedings, were reviewed. Data from these studies were then were summarized (Table 1: *in vitro* data; Table 2: *in vivo* data).

DISCUSSION

Medicinal plants contain many bioactive compounds and antioxidants that can be used as complementary or alternative medicines to treat gout. In fact, \sim 65–80% of people in developing countries use medicinal plants as remedies (World Health Organization, 2011). Plants are also important sources of medicines in the United States, where at least one plant-based ingredient is used in 25% of pharmaceutical prescriptions (Kumar and Azmi, 2014).

The xanthine oxidase inhibition assay is considered a gold standard to study the anti-gout potential of medicinal plants. Some plants and their phytochemicals are worthy of exploration as they can act as xanthine oxidase inhibitors. These compounds are also safe if an appropriate amount is taken and have few side effects (Rates, 2001; Abd Aziz et al., 2011). Previous studies have reported that five vegetables contain possible agents that can cause acute or chronic toxicities when consumed in large quantities or over a long period of time (Orech et al., 2005). Thus, it is very important for researchers to evaluate the toxicity of plants in *in vitro* and *in vivo* studies and clinical trials.

In this study, \sim 46 families of plants were identified and studied, both *in vitro* (n=30) and *in vivo* (n=24), for anti-gout activity (**Tables 1**, **2**). Plants from the Asteraceae,

TABLE 1 | The medicinal plants which are considered to possess anti-gout activity based on in vitro studies.

Acorus calamus Ara Adenanthera payonina Leg Allium ampeloprasum Lilie Alpinia galanga Zin, Annona reticulata Ant Annona squamosa Ant Aplum graveolens Api Artemisia vulgaris Ast	Araceae Leguminosae Liliaceae Zingiberaceae Annonaceae Annonaceae Apiaceae Apiaceae Asteraceae Oxalidaceae Lecythidaceae	Pokok jerangau Saga Bawang perai Lengkuas Durian belanda Lonang, Nona kapri Buah nona Saderi Baru cina Belimbing manis	Rhizome/Methanol Leaves/Methanol Leaves/Ethanol	89.2 NA	55 10% at 100a/ml	ΦN	NOOC le te cessual
ac a		ig perai Las belanda g. Nona kapri nona ina ing manis	_eaves/Methanol Leaves/Ethanol	NA	00.10 / DE 100 PSQ 111		ואפעוצפון פו מו., בטט4
2		uas belanda g, Nona kapri nona ina	∟eaves/Ethanol		47.15% at 100 μg/ml	Cardiac glycosides	Apaya and Chichioco-Hern, 2011
		pri.		₹Z	43.71% at 100 µg/ml	NA	El-Rahman and Abd-Elhak, 2015
		iri	Rhizome/Ethanol	¥Z	57.99% at 100 μg/ml	NA	Yumita et al., 2013
		.pri	Leaves/Ethanol	>200	14.18% at 100 µg/ml	NA	Sunarni et al., 2015
			Leaves/Ethanol	171.73	47.38% at 100 μg/ml	NA	Sunarni et al., 2015
			Leaves/Ethanol	>200	6.37% at 100 µg/ml	NA	Sunarni et al., 2015
			Leaves/Ethanol	₹Z	73.89% at 100 µg/ml	NA	El-Rahman and Abd-Elhak, 2015
			Leaves/Methanol	₹Z	37.92% at 100 μg/ml		Alsultanee et al., 2014
			Leaves/Methanol	14.7	89.30% at 100 µg/ml	Flavonoids	Nguyen et al., 2004
		_	Leaves /Ethanol	₹Z	23.61% at 100 μg/ml	NA	Azmi et al., 2012
		-	Flowers/Ethanol		2.47% at 100 µg/ml		
		1	Ripe fruit peels/ethanol		7.11% at 100 µg/ml		
Barleria prionitis Ace		Bunga landak	Folium/Ethanol	₹Z	1.73% at 100 µg/ml	ΑN	Yumita et al., 2013
Barringtonia racemosa Lec		Putat	Leaves/Methanol	₹Z	58.82% at 1,000 μg/ml	AN	Osman et al., 2016
			Endosperm/Methanol		57.20% at 1,000 μg/ml		
			Pericarp/Methanol		57.99% at 1,000 μg/ml		
		0	Infloresence axis/Methanol		59.54% at 1,000 μg/ml		
Blumea balsamifera Ast	Asteraceae	ng, capa,	Leaves/Methanol	0.111	AN	Flavonoids	Nessa et al., 2010
		telinga kerbau		6.0	80.90% at 100 µg/ml	ΑN	Nguyen et al., 2004
Brassica oleracea Bra	Brassicaceae	Kubis merah	Leaves/Water	230,150.00	53.72% at 250 mg/ml	Phenolic acids,	Al-Azzawie and Abd, 2015
						anthocyanins	
Butea monosperma Fak	Fabaceae	Palasa	Roots/Methanol	5.0	75.00% at 100 µg/ml	AN	Nile and Park, 2014
Caesalpinia sappan Cae	Caesalpiniaceae 3	Sepang	Wood/Methanol	14.2	78.50% at 100 µg/ml	NA	Nguyen et al., 2004
Calophyllum inophyllum Cal	Calophyllaceae	Penaga laut	Leaves/Methanol	₽	25.63% at 100 µg/ml	Phenolic, tannins, flavonoids	Apaya and Chichioco-Hern, 2011
Cantella asiatica Um	Umbelliferae	Pegaga \	Whole plant/Methanol	NA	27.20% at 100 μg/ml	NA AN	Nguyen et al., 2004
					41.00% at 100 µg/ml	NA	Kong et al., 2000
Carica papaya Car	Caricaceae	Betik 1	Leaves/Ethanol	₹Z	78.38% at 100 µg/ml	NA	Azmi et al., 2012
			Petioles/Ethanol		8.11% at 100 µg/ml		
			Seeds/Ethanol		19.82% at 100 µg/ml		
		_	Unripe fruits/Ethanol		68.47% at 100 µg/ml		
			Flowers/Ethanol		66.03% at 100 µg/ml		
		_ 3	Unripe fruit peels/ethanol		71.17% at 100 µg/ml		
Cassia fistula Fab	Fabaceae	kayu raja 1	anol	¥	61.90 % at 100 µg/ml	Alkaloid, tannins	Apaya and Chichioco-Hern, 2011
			Seeds/Methanol		64.56% at 100 μg/ml		Jothy et al., 2011
Chrysanthemum Ast indicum	Asteraceae	Bunga kekwa	Flower/Methanol	22	95.00% at 100 µg/ml	Luteolin and apigenin	Kong et al., 2000

TABLE 1 | Continued

Scientific name	Family	Local name	Part/Solvent used	IC50 (µ.g/mi)	Aantinine oxidase	Active compounds	Reference(s)
					nonibition		
Chrysanthemum sinense	Asteraceae	Teh bunga	Flower/Methanol	5.1	82.90% at 100 µ.g/ml	Caffeic acid, luteolin, eriodictyol	Nguyen et al., 2004
Cinnamomum cassia	Lauraceae	Kayu manis cina	Twig/Methanol	18	93.00% at 100 µg/ml	Eugenol	Kong et al., 2000; Nguyen et al., 2004
			Bark/Methanol	58	89.00% at 100 µg/ml		
				82.4	55.80% at 100 µg/ml		
Cinnamomum cinnamon	Lauraceae	Kayu manis	Leaves/Methanol	₹ Z	44.34% at 100 µg/ml	∀ N	Alsultanee et al., 2014
Citrullus colocynthis	Cucurbitaceae	Tembikai	Seeds/water	₹ Z	14.40% at 200 µg/ml	NA	Bustanji et al., 2011
Citrus sinensis	Rutaceae	Oren	Fruit shell/Methanol	₹	51.00% at 100 μg/ml	ΝΑ	Kong et al., 2000
Clinacanthus nutans	Acanthaceae	Belalai gajah	Aerial part/Ethanol	10	¥N	NA	Tu et al., 2014
Cucurbita pepo	Cucurbitaceae	Labu	Seeds/methanol	₹	27.33% at 100 µg/ml	NA	Alsultanee et al., 2014
Curcuma longa	Zingiberaceae	Kunyit	Whole plant/methanol	₹	28.31% at 100 µg/ml	NA	Alsultanee et al., 2014
Cymbopogon citratus	Poaceae	Serai makan	Stalks/Eessential oil	₹ Z	81.34% at ratio of volume concentration of essential oil per volume of solvent, 1:2	Ϋ́	Mirghani et al., 2012
Cymbopogon nardus	Poaceae	Serai wangi	Petiolum/Ethanol	₹	18.12% at 100 µg/ml	NA	Yumita et al., 2013
Cyperus rotundus	Cyperaceae	Rumput halia hitam	Rhizome/Methanol	52.9	79.40% at 100 µg/ml	NA	Nguyen et al., 2004
Dimocarpus longan	Sapindaceae	Longan	Flower/Ethyl acetate	115.8	78.60% at 100 µg/ml	Proanthocyanidin A2,	Sheu et al., 2016
			Pericarps/Ethyl acetate	118.9	79.20% at 50 µg/ml	Acetonylgeraniin A	
			Twigs/Ethyl acetate	125.3	79.20% at 50 µg/ml		
			Seeds/Ethyl acetate	262.5	78.90% at 50 µg/ml		
			Leaves/Ethyl acetate	331.1	42.10% at 100 µg/ml		
Dimocarpus longan	00000	Mata kucing, Longan	Leaves/Ethanol	₹	46.88% at 100 μg/ml	NA	Azmi et al., 2012
malesianus	oapiildaceae	hijau Sarawak	Ripe fruit peels/Ethanol		13.41% at 100 µg/ml		
Erythrina indica	Fabaceae	Dedap batik	Bark/Methanol	52.75	NA A	Phenolic	Sowndhararajan et al., 2012
Erythrina stricta	Fabaceae	Bunga dedap	Leaves/Chloroform fraction	21.20	NA	Phenolic and flavonoid	Phenolic and flavonoid Umamaheswari et al., 2009
			Leaves/Ethyl acetate	44.90			
			fraction				
Glycyrrhiza uralensis	Fabaceae	Akar manis	Root/Methanol	54.9	64.40% at 100 µg/ml	NA	Nguyen et al., 2004
Hedyotis diffusa	Rubiaceae	Rumput lidah ular	Aerial part/Methanol	78.9	55.90% at 100 μg/ml	₹Z :	Nguyen et al., 2004
Hibiscus sabdariffa	Malvaceae	Asam susur	Calyx/Water	¥.	19.40% at 200 µg/ml	₹Z	Bustanji et al., 2011
			Calyx/Ethanol	₹	27.12% at 200 µg/ml	NA V	Wahyuningsih et al., 2016b
Justicia gendarussa	Acanthaceae	Daun rusa	Folium/Ethanol	₹	18.48% at 100 µg/ml	Υ _N	Yumita et al., 2013
Kaempferia galangal	Zingiberaceae	Cekur	Rhizome/Ethanol	¥	28.86% at 100 µg/ml	AN	Yumita et al., 2013
			Rhizome/Methanol	53.4	90.60% at 100 µg/ml	AN	Nguyen et al., 2004
Kalanchoe pinnata	Crassulaceae	Setawar	Aerial part/Methanol	40.8	68.10% at 100 µg/ml	NA AN	Nguyen et al., 2004
Lantana camara	Verbenaceae	Bunga tahi ayam	Folium/Ethanol	¥	17.17% at 100 µg/ml	AN	Yumita et al., 2013
Manilkara zapota	Sanotaceae	Niki	loas/Ethanol	×IV	70 81% at 100 a/ml	ΔN	A=m; a+ a a04a

	Reference(s)	
	Active compounds	
	IC ₅₀ (μg/ml) Xanthine oxidase inhibition	
	IC ₅₀ (μg/ml)	
	Part/Solvent used	
	Local name	
	Family	
-	Scientific name	

					inhibition		
			Peels/Ethanol		41.03% at 100 µg/ml		
			Seeds/Ethanol		11.81% at 100 µg/ml		
Melaleuca leucadendra	Myrtaceae	Gelam, kayu putih	Stem and fruit/Methanol	76.7	64.60% at 100 µg/ml	NA	Nguyen et al., 2004
Mimosa pudica	Leguminosae	Semalu	Leaves/Methanol	₹ Z	62.36% at 100 µg/ml	Flavonoids, phenolic	Nguyen et al., 2004; Apaya and Chichioco-Hern, 2011
			Aerial part/Methanol	52.7	65.50% at 100 µg/ml		
Momordica charantia	Cucurbitaceae	Peria	Pulp/Methanol	Y V	96.50% at 100 μg/ml	Flavonoid, tannin,	Kong et al., 2000; Alsultanee et al., 2014
			Seed/Methanol		45.00% at 100 μg/ml	coumarins, glycoside	
Morinda citrifolia	Rubiaceae	Mengkudu jantan/mengkudu besar/noni	Fruit/Methanol	¥	64.00% at 0.1 mg/ml	Ϋ́	Palu et al., 2009
Morinda elliptica	Rubiaceae	Mengkudu hutan/mengkudu tahi ayam	Leaves/Methanol	AN A	88.93% at 100 µg/ml	₹Z	Jamal et al., 2014
Olea europaea	Oleaceae	Zaitun	Leaves/Water	114,020.00	80.00% at 250 mg/ml	Oleuropein, apigenin,	Al-Azzawie and Abd, 2015;Flemmig et al., 2011
Orthosiphon stamineus	Lamiaceae	Misai kucing	Leaves/Ethanol Leaves/Ethanol	42 92.4	60.00% at 50 µg/ml 68.59% at 100 µg/ml	luteolin, caffeic acid NA	Nguyen et al., 2004; Hendriani et al., 2016
			Aerial part/Methanol	₹	37.60% at 100 µg/ml		
Petroselinum crispum	Apiaceae	Daun sup	Leaves/Ethanol	¥.	82.57% at 100 µg/ml	NA	Alsultanee et al., 2014; El-Rahman and Abd-Elhak,
			Leaves/Methanol		28.63% at 100 µg/ml		2015
Phaleria macrocarpa	Thymelaeaceae	Mahkota dewa	Leaves/Methanol	Ą	34.83% at 100 µg/ml	Phalerin	Fariza et al., 2012
Phaseolus vulgaris	Papilinaceae	Kacang buncis	Fruit/Water	>300	26.00% at 300 μg/ml	Flavonoids	Roohbakhsh et al., 2009
Pimpinella anisum	Apiaceae	Jintan manis	Fruit/Water	300.4	35.60% at 200 µg/ml	NA	Bustanji et al., 2011
Piper betle	Piperaceae	Sireh	Leaves/Ethanol	16.7	₹Z	4-allyl-1,3- hydroxychavicol	Murata et al., 2009
Plantago major	Plantaginaceae	Ekor anjing, daun	Folium/Ethanol	Ą	21.70% at 100 µg/ml	Ϋ́	Yumita et al., 2013
			Radix/Ethanol		3.66% at 100 µg/ml		
Plumbago zeylanica	Plumbaginaceae	Celaka putih, celaka bukit	Roots/Methanol	ſΩ	65.40% at 100 µg/ml	ΝΑ	Nile and Park, 2014
Pogostemon cablin	Lamiaceae	Pokok Nilam	Leaves/Methanol	₹ V	33.16% at 100 µg/ml	AN	Apaya and Chichioco-Hern, 2011
Portulaca oleracea	Portulacaceae	Gelang pasir	Leaves/Methanol	NA	39.00% at 100 µg/ml	Flavonoids, phenolic, tannins	Apaya and Chichioco-Hern, 2011
Punica granatum	Lythraceae	Buah delima	Seed/Methanol	₹ Z	15.53% at 100 µg/ml	Ą	Wong et al., 2014
Salacca zalacca	Arecaceae	Salak	Leaves/Ethanol	₹ Z	19.66% at 100 µg/ml	Ą	Azmi et al., 2012
			Pulps/Ethanol		2.88% at 100 µg/ml		
			Ripe fruit peels/ethanol		12.85% at 100 µg/ml		
Senna alata Svnsepelum dulcificum	Fabaceae	Gelenggang Buah ajaih	Leaves/Methanol	₹ Z	71.00% at 100 µg/ml	Kaempferol	Fadzureena et al., 2013 Spilot al., 2018
Tamarindus indica	Espana	Acam iama	Pulp/Ethanol	<u> </u>	21 40% at 100 a/m		X:::::::::::::::::::::::::::::::::::::

-							
Scientific name	Family	Local name	Part/Solvent used	IC ₅₀ (μg/ml)	IC ₅₀ (µg/ml) Xanthine oxidase inhibition	Active compounds	Reference(s)
			Lignum/Ethanol		44.90% at 100 μg/ml		
Tetracera scandens	Dilleniaceae	Mempelas kasar	Root and stem/methanol	33.3	73.60% at 100 µg/ml	NA A	Nguyen et al., 2004
Tinospora rumphii	Menispermaceae Petawali	e Petawali	Leaves/Methanol	Y.	39.99% at 100 µg/ml	Alkaloids, terpenoids, tannins, cardiac glycosides	Alkaloids, terpenoids, Apaya and Chichioco-Hern, 2011 tannins, cardiac glycosides
Trachelospemum jasminoides	Apocynaceae	Melur hutan	Stem/Methanol	108	51.00% at 100 μg/ml	NA A	Kong et al., 2000
Vitex negundo	Lamiaceae	Lenggundi	Leaves/Methanol Roots/Methanol	¥ 0	50.42% at 100 µg/ml 70.00%	Flavonoids, steroids, tannins, terpenoids	Apaya and Chichioco-Hern, 2011; Nile and Park, 2014
Woodfordia floribunda	Lythraceae	Seduayah	Flos/Ethanol	¥.	55.33% at 100 µg/ml	Flavonoids	Yumita et al., 2013
Zingiber officinale	Zingiberaceae	Наїа	Rhizome/Methanol	10.5 μM of 6-gingerol value	VY V	ΝΑ	Alsultanee et al., 2014
			Rhizome/Water	NA 99,370	81.56% at 100 µg/ml 87.97% at 250 mg/ml		Nile and Park, 2014 Al-Azzawie and Abd, 2015

IC₅₀ value is based on the type of solvent used in the extraction NA = clata is not available

Cucurbitaceae, Fabaceae, Lamiaceae, and Zingiberaceae families have been studied extensively. Momordica charantia, from the Cucurbitaceae, had the highest in percentage of xanthine oxidase inhibitory activity of 96.5% at 100 µg/mL using 70% methanol extract (Alsultanee et al., 2014); the total phenolic content of this plant was $80.83 \pm 0.30 \,\mathrm{mg}$ gallic acid equivalent/100 g. Further phenolic compound analysis revealed the presence of phenolic compounds, including tannin, coumarin, flavonoid, and glycoside; among these, coumarine had the strongest inhibitory activity (97.29 %) against xanthine oxidase (Alsultanee et al., 2014). Other studies have suggested that this activity is due to the presence of bioactive phenolic compounds, such as polyphenols, tocopherols, and alkaloids, in the pulp of the plant (Tan et al., 2008). However, other plants in this family, such as Cucurbita pepo and Citrullus colocynthis, have lower xanthine oxidase inhibition values of 27.33% at 100 µg/mL and 14.40% at 200 µg/mL, respectively (Bustanji et al., 2011; Alsultanee et al., 2014).

In the Zingiberaceae family, Kaempferia galanga had the highest xanthine oxidase inhibitory activity at $100\,\mu g/mL$ (90.6%), followed by Zingiber officinale (81.56%), Alpinia galanga (57.99%), and Curcuna longa (28.31%) (Nguyen et al., 2004; Yumita et al., 2013; Alsultanee et al., 2014). Yumita et al. (2013) also studied K. galanga but the results were in contrast to other studies (28.86%). These contrary results could be due to the different localities (Vietnam and Indonesia), although both studies employed similar drying methods. Moderate total phenolic content was found in Z. officinale, with a value of 62.18 \pm 0.65 mg gallic acid equivalent/100 g (Alsultanee et al., 2014).

Plants from the Asteraceae family include Artemisia vulgaris, Blumea balsamifera, Chrysanthemum indicum, and Chrysanthemum sinense, of which C. indicum exhibited 95% xanthine oxidase inhibitory activity at 100 μg/mL. The isolated flavonoid compounds from the flower of C. indicum, namely luteolin and apigenin, may act as xanthine oxidase inhibitors (Kong et al., 2000). Moreover, C. sinense also had higher xanthine oxidase inhibitory activity (82.90%) at 100 µg/mL with an IC₅₀ value of 5.1 µg/mL (Nguyen et al., 2004). Further isolation of the active compounds from the flower of C. sinense led to the identification of caffeic acid, luteolin, eriodictyol, and 1,5-di-O-caffeoylquinic acid, which, among them, luteolin displayed more potent inhibitory activity compared to the positive control allopurinol, with IC₅₀ values of 1.3 and 2.5 µM, respectively (Nguyen et al., 2004). A. vulgaris also exhibited higher xanthine oxidase inhibitory activity of 89.30% at 100 µg/mL (Nguyen et al., 2004).

Method of extraction is considered an important factor that affects xanthine oxidase inhibitory activity. The type of solvents used also contributes to differences in compounds extracted from the plants. El-Rahman and Abd–Elhak (2015) and Alsultanee et al. (2014) reported similar results on the ethanol and methanol extracts of *Petroselinum crispum*, with inhibition values of 82.57 and 28.63%, respectively. In contrast, Alsultanee et al. (2014) and Al-Azzawie and Abd (2015) reported that both the methanol and aqueous extracts of *Z. officinale* had similar xanthine oxidase inhibition percentages, with values of 81.56% and 87.97%, respectively. In addition, Azmi et al. (2012)

TABLE 1 | Continued

TABLE 2 | The medicinal plants which are considered to possess anti-gout activity based on in vivo studies.

Scientific name	Family	Local name	Part/solvent used	Dose of the extract	Experimental animal model	Main outcomes	References
Allium ampeloprasum	Lliaceae	Bawang perai	Leaves/Water	5 g/kg body weight	Male albino hyperuricemia rats induced by potassium oxonate	Serum uric acid levels of hyperuricemic rats reduced significantly	El-Rahman and Abd-Elhak, 2015
Allium oepa	Amaryllidaceae	Bawang merah	Edible portion/Water	5 g/kg body weight	Wistar hyperuricemia rats induced by potassium oxonate	Serum uric acid levels of hyperuricemic rats reduced significantly after 14 days of treatment/onion resulted in significant inhibition on liver of xanthine oxidase activity (39.75%)	Haidari et al., 2008
Annona muricata	Annonaceae	Durian belanda	Leaves/Ethanol	75 mg/kg body weight 100, 200, and 400 mg/kg of body weight	Male Wistar hyperuricemia rats induced by potassium oxonate Wistar hyperuricemia rats induced by potassium oxonate	Serum uric acid level in oxonate-induce rats reduced significantly All doses reduced serum uric acid levels of hyperuricemic rats by 63.98, 86.29, and	Sunarni et al., 2015 Sri-Wahjuni et al., 2012
Annona reticulata	Annonaceae	Lonang, Nona kapri	Leaves/Methanol	75 mg/kg body weight	Male Wistar hyperurioemia rats induced by potassium oxonate	61.50%, respectively Serum uric acid level in oxonate-induce rats reduced significantly	Sunarni et al., 2015
Annona squamosa Apium graveolens	Annonaceae Apiaceae	Buah nona Saderi	Leaves/Ethanol Leaves/Water	75 mg/kg body weight orally 5 g/kg body weight	Male Wistar hyperuricemia rats induced by potassium oxonate Male albino hyperuricemia rats induced by notassium oxonate	Serum unic acid level in oxonate-induce rats reduced significantly Serum unic acid levels of hyperunicemic rats reduced significantly	Sunarni et al., 2015 El-Rahman and Abd-Elhak, 2015
			Seeds/Petroleum ether	500 mg/kg rat body weight	Male Sprague-Dawley hyperuricemia rats induced by potassium oxonate	Produced the highest reduction (56%) in uric acid level in urine	Mohamed and Al-Okbi, 2008
Cinnamomum zeylanicum	Lauraceae	Kayu manis	Bark/Petroleum ether	500 mg/kg rat body weight	Male Sprague-Dawley hyperuricemia rats induced by potassium oxonate	Produced the reduction (47%) in uric acid level in urine	Mohamed and Al-Okbi, 2008
Cooccinia drandi	Cucurbitaceae	Timun padang, pepasan	Leaves/Methanol	200 mg/kg body weight oral per day	Swiss albino hyperuricemia mice induced by potassium oxonate	Serum urate level reduced significantly up to 3.90 ± 0.07 mg/dl	Umamaheswari et al., 2007
Dimocarpus longan	Sapindaceae	Longan	Flower, pericarp, seed, leaf, and twig/methanol	50, 75, and 100 mg/kg of body weight	Male ICR hyperuricemia mice induced by potassium oxonate	Plasma urate levels of hyperuricemic mice reduced significantly in dose-dependent manner	Sheu et al., 2016
			Seed/Water	80 mg/kg of body weight for crude extract	Male Sprague-Dawley hyperurioemia rats induced by potassium oxonate and hypoxanthine	Serum uric acid level and xanthine oxidase activity reduced significantly. However, the extract increased xanthine oxidase activities in liver	Hou et al., 2012
Emblica officinalis	Euphobiaceae	Рокок тевака	Triphala powder, an Indian ayurvedic herbal formulation) (mixture of dried and powdered fruits of the three plants in equal proportions)	1 g/kg body weight oral per day	Monosodium urate crystal-induced inflammation in Swiss albino mice	Triphala treatment decreased the paw diameter significantly in monosodium urate crystal-induced mice	Sabina and Rasool, 2008
Epiphyllum oxypetalum	Cactaceae	Bakawali	Leaves/Ethanol and water	200, 400, 600 mg/kg body weight	Carrageenan induced adult rats of Albino Wistar strain paw edema	Percentage inhibition of rat paw edema by alcohol and aqueous extracts was 75.44 and 82.14% at dose of 600 mg/kg at 3 h	Dandekar et al., 2015
Erythrina stricta	Fabaceae	Bunga dedap	Leaves/Petroleum ether, chloroform, and ethyl acetate fractions	200 mg/kg body weight orally	Hyperuricemia Swiss albino mice induced by potassium oxonate	Produced significant reduction in serum urate levels and elicited significant inhibitory actions on xanthine oxidase/xanthinedehydrogenase enzyme activities in the mouse liver	Raju et al., 2012
Hibiscus sabdariffa	Malvaceae	Asam susur	Calyx/Water	1, 2, and 5% of H. sabdariffa extract	Mate Sprague-Dawley hyperuricemia rats induced by oxonic acid	Extract significantly lowered unic acid by increasing unicase activity to promote unic acid excretion	Kuo et al., 2012
			Calyx/Ethanol extract, ethyl acetate fraction and water fraction	40 and 80 mg/kg body weight	Male Wistar hyperurioemia rats induced by potassium oxonate	The extract showed a significant reduction in serum uric acid leveland had uricosuric effect that increased the excretion of uric acid in urine significantly	Wahyuningsih et al., 2016a
							(paraitaci)

TABLE 2 Continued							
Scientific name	Family	Local name	Part/solvent used	Dose of the extract	Experimental animal model	Main outcomes	References
Jatropha curcas	Euphorbiaceae	Pokok jarak	Roots/Methanol	100 and 200 mg/kg orally	Carrageenan induced Swiss albino mice and the Wisterrat paw edema	There were dose-dependant significant reduction in carrageenan-induced rat paw edema at 100 and 200 mg/kg of extract	Mujumdar and Misar, 2004
Leonurus sibiricus	Lamiaceae	Pokok padang deman	Leaves/Water	50, 100, and 200 mg/kg orally	Sprague-Dawley hyperuricemia rats induced by oteracil potassium	Extract reduced serum uric acid and oreatinine levels of hyperuricemia rats and promote the excretion of uric acid of kidney	Yan et al., 2014
Mangifera indica	Anacardiaceae	Mangga	Leaves/Ethanol	100 and 200 mg/kg body weight by oral per day for crude extract	Monosodium urate (MSU) crystals-induced gouty arthritis male Sprague-Dawley rats	Extract significantly decreased ankle swelling in monosodium urate (MSU) crystal-induced gouty arthritis rats	Jiang et al., 2012
Orthosiphon stamineus	Lamiaceae	Misai kucing	Leaves/Methanol	0.5, 1, and 2 g/kg body weight	Male Sprague-Dawley hyperuricemia rats induced by potassium oxonate	Extract reduced the serum urate level inhyperuricemic rats at hour 6 and showed a significant increase in urine volume and electrolytes excretion	Arafat et al., 2008
Peperomia pellucida	Piperaceae	Ketumpangan air/sireh cina	Whole plant with flower petroleum ether	1,000 mg/kg body weight oral per day	Carrageenan induced male Sprague Dawley rats hind paw edema	Extract showed significant in magnitude of swelling 4 h following carrageenan administration	Mutee et al., 2010
Petroselinum crispum	Apiaceae	Daun sup	Leaves/Water	5 g/kg body weight	Male albino hyperuricemia rats induced by potassium oxonate	Serum uric acid levels of hyperuricemic rats reduced significantly	El-Rahman and Abd-Elhak, 2015
Phyllanthus emblica	Phyllanthaceae	Pokok Melaka	Fruit/Alcoholic and water	200 and 400 mg/kg of body weight	Male Sprague-Dawley hyperuricemia rats induced by potassium oxonate	Both extracts showed reduction in platelets counts, serum creatinine, uric acid, blood urea nitrogen and xanthine oxidase enzyme level	Sarvaiya et al., 2015
Phyllanthus niruri	Phyllanthaceae	Dukung anak	Leaves/Methanol	50 mg/kg body weight oral per day	Male Sprague-Dawley hyperuricemia rats induced by potassium oxonate	Extract increased urinary uric acid excretion and exhibited a significant 76.84% inhibition of xanthine oxidase activity	Murugalyah and Chan, 2009
Piper nigrum	Piperaceae	Lada hitam	Piperine (active compounds)	30 mg/kg body weight oral per day	Monosodium urate crystal-induced inflammation in Swiss albino mice	Piperine decreased the paw diameter significantly in monosodium urate crystal-induced mice	Sabina et al., 2011
Premna serratifolia	Lamiaceae	Buas- buas	Wood without bark/ethanol extract	300 mg/kg body weight orally per day for 14 days	Bacteria induced Wistar albino rats hind paw edema	Extract inhibited the rat paw edema by 68.32% after 21 days	Rajendran and Krishnakumar, 2010
Synsepalum dulcificum	Sapotaceae	Buah ajaib	Fruit/Butanol	500-1,000 mg/kg body weight per day orally	Male ICR hyperuricemia mice induced by oxonic acid potassium salt	Extract lowered serum uric acid levels and activated hepatic xanthine oxidase	Shi et al., 2016
Zingiber officinale	Zingiberaceae	Halia	Rhizome/Water	50 and 100 mg/kg of body weight	Hyperuricemia rats induced by potassium oxonate	Extract reduced the uric acid levels significantly in hyperuricemic rats after 14 days	Al-Azzawie and Abd, 2015
Zingiber zerumbet	Zingiberaceae	Halia hutan, Lempoyang	Rhizome/mixture of hexane and ethyl acetate	10 and 20 mg/kg of body weight	Carrageenan induced female Sprague dawley rats hind paw edema	10 and 20 mg/kg zerumbone exhibited significant maximum inhibition of 45.67 and 70.37%, respectively	Somchit et al., 2012

reported that both methanol and ethanol had a higher capacity to extract xanthine oxidase inhibitors from all parts of plants; 25% of all plant extracts showed more than 50% inhibition using these two solvents compared to distilled water with only 20% of all plant extracts showing more than 50% xanthine oxidase inhibitory activity. In another study, methanol extract was found to be more active than hydroalcoholic and aqueous extracts (Nguyen et al., 2004; Umamaheswari et al., 2007). Even though methanol and ethanol extracts have higher rates of xanthine oxidase inhibitory activity, safety is the main concern of the pharmaceutical industry. Alcohol is a nervous system depressant that impairs the transmission of nerve signals, ultimately leading to respiratory suppression (Bailey and Bailey, 2000). Methanol is a highly poisonous solvent that can upset the acid-base balance of body (Azmi et al., 2012). Therefore, identifying a less toxic solvent is important.

Based on results of xanthine oxidase inhibitory activity analysis, the following plants showed more than 85% activity at 100 µg/mL: M. charantia (96.50%), C. indicum (95.00%), Cinnamomum cassia (93.00%), K. galanga (90.60%), A. vulgaris (89.30%), and Morinda elliptica (88.93%) (Kong et al., 2000; Nguyen et al., 2004; Alsultanee et al., 2014; Jamal et al., 2014). Of the other studied plants, three exhibited at least 80% activity, including C. sinense (82.90%), Z. officinale (81.56%), and B. balsamifera (80.90%) (Nguyen et al., 2004; Alsultanee et al., 2014; Jamal et al., 2014) at 100 µg/mL, while Olea europaea and Synsepalum dulcificum exhibited 80.00% activity at 250 mg/mL and 10 mg/mL, respectively (Al-Azzawie and Abd, 2015; Shi et al., 2016). IC₅₀ values, the concentration at which half the xanthine oxidase activity is inhibited, were determined in a few studies. In this study, the lowest IC₅₀ value was 0.111 µg/mL, indicating that B. balsamifera extract inhibited 50% of xanthine oxidase activity (Nessa et al., 2010).

A few studies further analyzed and isolated the bioactive compounds present in plants that exerted the highest xanthine oxidase inhibitory activity, allowing them to act as xanthine oxidase inhibitors by blocking the biosynthesis of uric acid from purine in the body (Unno et al., 2004). Please see the following examples: cardiac glycosides (Apaya and Chichioco-Hern, 2011), flavonoids (Nguyen et al., 2004; Roohbakhsh et al., 2009; Umamaheswari et al., 2009; Nessa et al., 2010; Apaya and Chichioco-Hern, 2011; Yumita et al., 2013), phenolics (Umamaheswari et al., 2009; Apaya and Chichioco-Hern, 2011; Sowndhararajan et al., 2012; Alsultanee et al., 2014; Al-Azzawie and Abd, 2015), anthocyanins (Al-Azzawie and Abd, 2015), tannins (Apaya and Chichioco-Hern, 2011), alkaloids (Apaya and Chichioco-Hern, 2011), proanthocyanidin A2 (Sheu et al., 2016), acetonylgeraniin A (Sheu et al., 2016), phalerin (Fariza et al., 2012), 4-allyl-1,3- hydroxychavicol (Murata et al., 2009), kaempferol (Fadzureena et al., 2013), terpenoids Apaya and Chichioco-Hern, 2011, luteolin (Kong et al., 2000; Nguyen et al., 2004; Flemmig et al., 2011), apigenin (Kong et al., 2000; Flemmig et al., 2011), caffeic acid (Nguyen et al., 2004; Flemmig et al., 2011), eriodictyol (Nguyen et al., 2004), oleuropein (Flemmig et al., 2011), luteolin-7-O-d-glucoside (Flemmig et al., 2011), and scopoletin (Ding et al., 2005). Until now, these bioactive compounds have not been further analyzed or developed into anti-gout medications.

Hyperuricemia has been modeled in pre-clinical studies by blocking uricase enzyme with potassium oxonate (Umamaheswari et al., 2007; Haidari et al., 2008). Administration of potassium oxonate (250 mg/kg) results in marked increases in serum uric acid level in rats (Shi et al., 2016). Several in vivo studies have demonstrated a reduction of serum uric acid levels in hyperuricemic rats. For example, administration of aqueous and alcoholic extracts of Phyllanthus emblica (200 and 400 mg/kg) reduced serum uric acid and xanthine oxidase enzyme levels in hyperuricemic rats while allopurinol was more potent in inhibiting xanthine oxidase enzyme (Sarvaiya et al., 2015). Similar results have also been reported by El-Rahman and Abd-Elhak (2015) for Allium ampeloprasum, Apium graveolens, and P. crispum using albino rats, where both extracts significantly reduced serum uric acid and lipid peroxidation and increased antioxidant enzyme activity levels at a dose of 5 g/kg. Phytochemical screening of the extracts also revealed their major constituents, which include phenolic (polyphenols, tocopherols, and alkaloids), flavonoids, and saponins that may act as xanthine oxidase inhibitors (Fejes et al., 2000; Zhou and Yu, 2006; Sreeramulu and Raghunath, 2010).

Some of the active compounds were isolated from the medicinal plants for investigating the underlying mechanisms of hypouricemic actions in rat model. Zeng et al. (2017) studied the bioavailability of scopoletin or 6-methoxy-7hydroxycoumarin, a major active coumarin isolated from the stems of Erycibe obtusifolia and its hypouricemic effects in vivo. In this study, they encapsulated scopoletin into Soluplus micelles (Soluplus-based scopoletin micelles, Sco-Ms) in order to improve its oral bioavailability. To study the pharmacokinetics and biodistribution in vivo, the rats were orally administered with scopoletin suspension, physical mixtures of scopoletin and Soluplus (Sco-PM) and Sco-Ms at dose of 100 mg/kg scopoletin. At predetermined time intervals (2, 5, 10, 15, 20, 30, 45, 60, 90, and 120 min), the blood samples were collected for determining the plasma concentrations of scopoletin. Sco-Ms showed significantly higher maximum plasma concentration, $C_{\rm max}$ of 14,674.796 \pm 2,997.147 µg/L than scopoletin and Sco-PM at 10 min. Orally administered Sco-Ms was rapidly absorbed than Sco-PM and scopoletin, with a time to reach maximum plasma concentration, t_{max} of 0.167 h while the time taken for plasma concentration of Sco-Ms to reduce by 50% of its initial value, $t_{1/2}$ was 0.468 h. Sco-Ms showed CL value (ability to clear drug from the bloodstream which usually by hepatic metabolism or renal excretion) of $28.703 \pm 3.482 \, \text{L.h}^{-1} \, \text{kg}^{-1}$. Interestingly, Sco-Ms was found to have higher scopoletin concentration in liver than the scopoletin suspension which would be importance for the inhibition of hepatic xanthine oxidase activity. The hepatic and serum xanthine oxidase activity of hyperuricemic rats were investigated in order to determine the possible mechanism of the anti-hyperuricemic effect of Sco-MS. Based on the result obtained, the oral administration of Sco-Ms at dose of 300 mg/kg reduced the serum uric acid concentration to the normal level. In addition, Zhang et al. (2016) studied the biodistribution and hypouricemic efficacy of morin

(3,5,7,2',4'-pentahydroxyflavone), a yellow pigment present in the plants from the Moraceae family. In this study, they tested a novel self-nanoemulsifying drug delivery system based on morinphospholipid complex (MPC-SNEDDS) in vivo which improved the oral bioavailability of morin. After the administration of morin suspension, the concentration of morin in liver was markedly higher than other tissues (e.g., heart, spleen, lung, and kidney) at 0.5, 1, and 4 h. Moreover, the morin concentration in the liver at 0.5 h after orally administered with MPC-SNEDDS (1,096 µg/mg) was three-fold higher than morin suspension (252 µg/mg) and thus, MPC-SNEDDS possessed more potent inhibitory effect on hepatic xanthine oxidase activity than morin. As expected, MPC-SNEDDS reduced serum uric acid level of hyperuricemic rats (145 µmol/l) to normal (45 µmol/l) at 6 h after oral administration. Hence, the hypouricemic effect of the active compounds (e.g., morin and scopoletin) may therefore be explained, at least in part, by a lowering of xanthine oxidase activity in rat liver.

Another possible mechanism to reduce plasma uric acid concentration is to inhibit the reabsorption of urate in renal tissue. In some studies, the mRNA and protein expression levels of the transporters responsible for urate reabsorption are examined in order to explore the underlying molecular mechanisms of uricosuric effects of active compounds or medicinal plants. For instance, mangiferin, an isolated compound from the leaves of Mangifera indica significantly decreased the mRNA and protein levels of URAT1 and GLUT9 in kidney of hyperuricemic rats, suggesting that it possessed the uricosuric action, which was associated to inhibiting reabsorption of urate (Yang et al., 2015). In other study, Dimocarpus longan Lour seed decreased GLUT9 protein level from the liver of the rat model (Hou et al., 2012). The ethanol extract of Ramulus mori, the branch of Morus alba possessed the uricosuric effects in hyperuricemic mice by down-regulating renal mURAT1 and mGLUT9 expression and up-regulating renal mOAT1 expression, which contributed to the enhancement of urate excretion and reduction of serum urate level as well as improved renal dysfunction in hyperuricemic rats by up-regulating renal expression of mOCT1, mOCT2, mOCTN1, and mOCTN2 (Shi et al., 2012). In cell culture model, stably hURAT1 transfected human epithelial kidney cell line was used by Zhang et al. (2017) to evaluate the ability of tigogenin (active metabolites of dioscin) in inhibiting ¹⁴Curic acid uptake via hURAT1 and the result showed that this compound possessed significant inhibitory effect from 10 to 100 µM with a concentration-dependent manner and the uric acid permeability was significantly reduced to 60% at $100 \mu M$.

The results of standard *in vitro* screening assays provided useful information to guide the next stage of investigation such as testing the plant extract in rodents. Administration of ethyl acetate fraction from a butanol extract of *S. dulcificum* resulted in 80% of xanthine oxidase inhibitory activity at 10 mg/mL; the effects of butanol extract from this fruit was similar to the results of an *in vivo* study using allopurinol (Shi et al., 2016). Al-Azzawie and Abd (2015) showed that the *Z. officinale* extract had the highest xanthine oxidase inhibition *in vitro*

(87.97%) at 250 mg/mL; at both doses (100 and 250 mg/kg), ginger extract significantly reduced mean serum uric acid levels and inhibited xanthine oxidase activity in hyperuricemia rats.

Some studies have shown that different parts of the same plants can contribute differently to effects on uric acid levels. For example, methanol extracted from the *D. longan* flowers had a greater effect on lowering uric acid compared to the seeds due to the 10 phytochemicals in the flowers. Further analysis revealed that proanthocyanidin A2 and acetonylgeraniin have higher inhibitory activity against xanthine oxidase compared to allopurinol (Sheu et al., 2016). In addition, the ethanol extract from Hibiscus sabdariffa calyx, as well as ethyl acetate and water fractions, reduced uric acid levels in male Sprague-Dawley rats and Wistar rats, where the ethyl acetate fraction at a dose of 6.25 mg/kg demonstrated the best effect on uricosuric compared to water fraction and ethanol. Phytochemical screening of the ethanol extract of this plant also revealed the presence of flavonoid, saponin, polyphenol, and quinone (Wahyuningsih et al., 2016b). Monosodium urate crystal-induced inflammation in mice or rats is commonly used to study the anti-gout effect of plant extracts (Sabina and Rasool, 2008). Oral administration of triphala significantly reduced paw diameter at a dose of 1 g/kg body weight (Sabina and Rasool, 2008). Extracts from the M. indica leaf also significantly reduced ankle swelling in monosodium urate crystal-induced gout arthritis at a dose of 200 mg/kg across 8 h (Jiang et al., 2012).

In this study, we evaluated whether the doses used in in vitro and in vivo studies are physiologically relevant. In one study, administration of 250 mg/mL of Z. officinale extract resulted in high levels of xanthine oxidase inhibiton (87.97%) in vitro, while 250 mg/kg exhibited 57.14% of xanthine oxidase inhibition and significantly reduced serum uric acid levels (Al-Azzawie and Abd, 2015). In another study, S. dulcificum extract administration suppressed xanthine oxidase activity in MSUtreated RAW264.7 macrophages at 500 µg/mL, while a 1000 mg/kg dose in vivo reduced uric acid levels in rats (Shi et al., 2016). Methanol extracts from Phyllanthus niruri resulted in 67.66% inhibition at 100 μg/mL in an in vitro study and caused significant inhibition (76.84%) of xanthine oxidase activity at a 50 mg/kg dose in vivo (Murugaiyah and Chan, 2009). The results from these studies were very similar results in inhibiting xanthine oxidase activity, suggesting that the doses used were physiologically relevant.

Allopurinol, common drug used for gout patients, is approved by the US FDA for doses up to 800 mg/day for the treatment of hyperuricemia and gout (Chao and Terkeltaub, 2009). One study reported that gout patients attained target serum uric acid levels of <360 mmol/L at 300 mg/day of allopurinol, and that this dose was increased up to 600 mg/day in some patients; favorable results were observed as the dose increased and it was well tolerated, such that the therapeutic goal was achieved in 92.5% of patients. These doses are therefore well tolerated in those with well-preserved renal function (RadakPerović and ZlatkovićŠvenda, 2013). However, febuxostat, a non-purine selective xanthine oxidase inhibitor, at a daily dose

of 80 mg or 120 mg was reported to be more effective than allopurinol (300 mg) in lowering serum urate levels (Becker et al., 2005).

Many plants used in *in vivo* studies, including *Peperomia* pellucida, Mangifera indica, Jatropha curcas, Epiphyllum oxypetalum, Zingiber zerumbet, Emblica officinalis, and Piper nigrum, have exhibited anti-inflammatory activities (Mujumdar and Misar, 2004; Mutee et al., 2010; Sabina et al., 2011; Somchit et al., 2012; Dandekar et al., 2015). In addition, zerombone, which is found in the rhizome of *Zingiber zerumbet*, may act as an anti-inflammatory agent similar to non-steroidal anti-inflammatory drugs (Somchit et al., 2012). It has been proposed that phenolic compounds, such as anthocyanins and quercetin, which are found abundantly in certain plants, can inhibit xanthine oxidase activity, as they are structurally related to xanthine (Mo et al., 2007). Additional studies must be conducted on the possible mechanisms of the anti-gout activity of these medicinal plants.

In addition, there are also human clinical trials performed in gout using plant based drugs. For instance, Prasongwatana et al. (2008) investigated the effects of roselle (H. sabdariffa) on urinary excretions of uric acid in human models with and without renal-stone history where they found the mean levels of uric acid clearance, uric acid excretion and fractional excretion of uric acid increased significantly after consuming H. sabdariffa tea and then decreased to baseline level (control) at the end of the washout period in both groups, suggesting its uricosuric effect provides a long-term benefit of hyperuricemia in gouty subjects. However, the chemical constituents responsible for the anti-gout effects in this plant yet to be fully elucidated. Furthermore, the same trend of results were observed in Orthosiphon stamineus tea where the consumption of this tea caused an increasing of uric acid excretion (Premgamone et al., 2001). It is well understood that the increase of uric acid excretion may result in urolithiasis (development of stones in the kidney due to supersaturation of the urine with stone-forming salts). As reviewed by Butterweck and Khan (2009), they gathered the information of few plants that have been studied for the management of urolithiasis such as H. sabdariffa, P. niruri, O. stamineus, Andrographis paniculata, Sambucus nigra, Solidago virgaurea, and Dolichos biflores. For instance, Nishiura et al. (2004) demonstrated that P. niruri extract reduced the uric acid level as well as normalized the urinary calcium levels in calcium stone forming patients. As mentioned above, many plants had been studied for the anti-urolithiasis rather than anti-gout activities. Furthermore, there is also a very limited number of clinical studies for the anti-gout activity as compared to in vitro and in vivo studies. To the best of our knowledge, there are no human studies on the anti-gout activity specifically to xanthine oxidase inhibitor mechanism. It is further suggested that pharmacologist and clinical investigators to conduct larger randomized clinical trials of longer duration in order to determine the efficacy of plant based drugs in the treatment of gout. The doses of the plant extract, method of extract preparation, and extraction solvent must also be taken into consideration.

CONCLUSION

This review summarized the potential of Malaysian medicinal plants treat gout based on research conducted over the last 17 years. Taking all results into consideration, *M. charantia*, *C. indicum*, *C. cassia*, *K. galanga*, *A. vulgaris*, and *M. elliptica* were found to have the highest xanthine oxidase inhibitory potential *in vitro*. This review suggests further research on the natural xanthine oxidase inhibitors, especially in *in vivo* studies, clinical studies, investigation of active compounds, safety of the plants as well as the pharmacokinetic and bioavailability studies, which remain to be elucidated.

AUTHOR CONTRIBUTIONS

FA: preparing and writing the manuscript; MA: initiate the process of the review paper; AR, NA, SS, SE: check and comment the manuscript.

ACKNOWLEDGMENTS

We would like to thank Universiti Tun Hussein Onn Malaysia (UTHM) for providing internal research grant (Vot No. U758; E15501; U673; U908) to fund this research.

REFERENCES

- Abd Aziz, S. M., Low, C. N., Chai, L. C., Abd Razak, S. S. N., Selamat, J., Son, R., et al. (2011). Screening of selected Malaysian plants against several food borne pathogen bacteria. *Int. Food Res. J.* 18, 1141–1147.
- Al-Azzawie, H. F., and Abd, S. A. (2015). Effect of some plant extracts on serum uric acid levels and xanthine oxidase activity *in vitro* and in oxonate-induced hyperuricemic rats. *Eur. J. Pharm. Med. Res.* 2, 55–61.
- Alsultanee, I. R., Ewadh, M. J., and Mohammed, M. F. (2014). Novel natural anti gout medication extract from *Momordica charantia*. J. Nat. Sci. Res. 4, 16–23.
- Apaya, K. L., and Chichioco-Hern, C. L. (2011). Xanthine oxidase inhibition of selected Philippine medicinal plants. J. Med. Plant Res. 5, 289–292.
- Arafat, O. M., Tham, S. Y., Sadikun, A., Zhari, I., Haughton, P. J., and Asmawi, M. Z. (2008). Studies on diuretic and hypouricemic effects of Orthosiphon stamineus methanol extracts in rats. J. Ethnopharmacol. 118, 354–360. doi: 10.1016/j.jep.2008.04.015
- Azmi, S. M. N., Jamal, P., and Amid, A. (2012). Xanthine oxidase inhibitory activity from potential Malaysian medicinal plant as remedies for gout. *Int. Food Res. J.* 19, 159-165.
- Bailey, P. S. Jr., and Bailey, C. A. (2000). Organic Chemistry: A Brief Survey of Concepts and Applications. New Jersey, NJ: Pearson Education International; Prentice-Hall Inc
- Becker, M. A., Schumacher Jr, H. R., Wortmann, R. L., MacDonald, P. A., Eustace, D., Palo, W. A., et al. (2005). Febuxostat compared with allopurinol in patients with hyperuricemia and gout. N. Engl. J. Med. 353, 2450–2461. doi: 10.1056/NEJMoa050373

- Bustanji, Y., Hudaib, M., Tawaha, K., Mohammad, M. K., Almasri, I., Hamed, S., et al. (2011). *In vitro* xanthine oxidase inhibition by selected Jordanian medicinal plants. *Jordan J. Pharm. Sci.* 4, 49–56.
- Butterweck, V., and Khan, S. R. (2009). Herbal medicines in the management of urolithiasis: alternative or complementary? *Planta Med.* 75, 1095–1103. doi: 10.1055/s-0029-1185719
- Chao, J., and Terkeltaub, R. (2009). A critical reappraisal of allopurinol dosing, safety, and efficacy for hyperuricemia in gout. Curr. Rheumatol. Rep. 11, 135–140. doi: 10.1007/s11926-009-0019-z
- Dalbeth, N., Lauterio, T. J., and Wolfe, H. R. (2014). Mechanism of action of colchicine in the treatment of gout. Clin. Ther. 36, 1465–1479. doi:10.1016/j.clinthera.2014.07.017
- Dandekar, R., Fegade, B., and Naik, A. (2015). Evaluation of anti-inflammatory activity of alcohol and aqueous extract of *Epiphyllum oxypetalum* leaves. *World J. Pharm. Pharm. Sci.* 4, 851–858.
- Ding, Z., Dai, Y., and Wang, Z. (2005). Hypouricemic action of scopoletin arising from xanthineoxidase inhibition and uricosuric activity. *Planta Med.* 71, 183–185. doi: 10.1055/s-2005-837789
- El-Rahman, H. S., and Abd–Elhak, N. A. (2015). Xanthine oxidase inhibitory activity and antigout of celery leek parsley and molokhia. *Adv. Biochem.* 3, 40–50. doi: 10.11648/j.ab.20150304.11
- Enomoto, A., Kimura, H., Chairoungdua, A., Shigeta, Y., Jutabha, P., Cha, S. H., et al. (2002). Molecular identification of a renal urate–anion exchanger that regulates blood urate levels. *Nature* 417, 447–452. doi: 10.1038/nature742
- Fadzureena, J., Mazura, M. P., Adiana, M. A., and Hani, I. B. (2013). "An investigation into the inhibitory effect of Senna alata L. leaf extract as well as its isolated compound on xanthine oxidase assay," in Proceedings of the Conference on Forestry and Forest Products Research (Kuala Lumpur), 262.
- Falasca, G. F. (2006). Metabolic diseases: gout. Clin. Dermatol. 24, 498–508. doi: 10.1016/j.clindermatol.2006.07.015
- Fariza, I., Fadzureena, J., Zunoliza, A., Chuah, A. L., Pin, K. Y., and Adawiah, I. (2012). Anti-inflammatory activity of the major compound from methanol extract of *Phaleria macrocarpa* leaves. *J. Appl. Sci.* 12, 1195–1198. doi: 10.3923/jas.2012.1195.1198
- Fejes, S. Z., Blazovics, A., Lemberkovics, E., Petri, G., Szöke, E., and Kery, A. (2000). Free radical scavenging and membrane protective effects of methanol extracts from *Anthriscus cerefolium* L.(Hoffm.) and *Petroselinum crispum* (Mill.) Nym. ex AW Hill. *Phytother. Res.* 14, 362–365. doi: 10.1002/1099-1573(200008)14:5<362::AID-PTR554>3.0.CO;2-G
- Flemmig, J., Kuchta, K., Arnhold, J., and Rauwald, H. W. (2011). Olea europaea leaf (Ph. Eur.) extract as well as several of its isolated phenolics inhibit the gout-related enzyme xanthine oxidase. Phytomedicine 18, 561–566. doi: 10.1016/j.phymed.2010.10.021
- Gliozzi, M., Malara, N., Muscoli, S., and Mollace, V. (2016). The treatment of hyperuricemia. Int. J. Cardiol. 213, 23–27. doi: 10.1016/j.ijcard.2015.08.087
- Haidari, F., Rashidi, M. R., Eshraghian, M. R., Mahboob, S. A., Shahi, M. M., and Keshavarz, S. A. (2008). Hypouricemic and antioxidant activities of *Allium cepa* Lilliaceae and quercetin in normal and hyperuricemic rats. *Saudi Med. J.* 29, 1573–1579.
- Hendriani, R., Sukandar, E. Y., Anggadiredja, K., and Sukrasno. (2016). In vitro evaluation of xanthine oxidase inhibitory activity of selected medicinal plants. Int. J. Pharm. Clin. Res. 8, 235–238.
- Hou, C. W., Lee, Y. C., Hung, H. F., Fu, H. W., and Jeng, K. C. (2012). Longan seed extract reduces hyperuricemia via modulating urate transporters and suppressing xanthine oxidase activity. Am. J.Chin. Med. 40, 979–991. doi:10.1142/S0192415X12500723
- Ichida, K., Matsuo, H., Takada, T., Nakayama, A., Murakami, K., Shimizu, T., et al. (2012). Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat. Commun. 3:764. doi: 10.1038/ncomms1756
- Jamal, P., Azmi, S. M., Amid, A., Salleh, H. M., and Hashim, Y. Z. (2014). Development and improvement of anti-gout property from aqueous-methanol extract of *Morinda elliptica* using central composite design. *Adv. Environ. Biol.* 8,734–743.
- Jiang, Y., You, X. Y., Fu, K. L., and Yin, W. L. (2012). Effects of extract from *Mangifera indica* leaf on monosodium urate crystal-induced gouty arthritis in rats. *Evid. Based Complement. Alternat. Med.* 2012:967573. doi: 10.1155/2012/967573.

- Jothy, S. L., Zuraini, Z., and Sasidharan, S. (2011). Phytochemicals screening, DPPH free radical scavenging and xanthine oxidase inhibitiory activities of Cassia fistula seeds extract. J. Med. Plants Res. 5, 1941–1947.
- Kong, L. D., Cai, Y., Huang, W. W., Cheng, C. H., and Tan, R. X. (2000). Inhibition of xanthine oxidase by some Chinese medicinal plants used to treat gout. J. Ethnopharmacol. 73, 199–207. doi: 10.1016/S0378-8741(00)0 0305-6
- Kong, L. D., Yang, C., Ge, F., Wang, H. D., and Guo, Y. S. (2004). A Chinese herbal medicine Ermiao wan reduces serum uric acid level and inhibits liver xanthine dehydrogenase and xanthine oxidase in mice. *J. Ethnopharmacol.* 93, 325–330. doi: 10.1016/j.jep.2004.04.008
- Kulip, J. (2003). An ethnobotanical survey of medicinal and other useful plants of Muruts in Sabah, Malaysia. Telopea 10, 81–98. doi: 10.7751/telopea20035608
- Kumar, A., and Azmi, W. (2014). Phytomedicine: a novel alternative for treatment of gout. Ann. Phys. Med. 3, 80–88.
- Kuo, C. F., Grainge, M. J., Zhang, W., and Doherty, M. (2015). Global epidemiology of gout: prevalence, incidence and risk factors. *Nat. Rev. Rheumatol.* 11, 649–662. doi: 10.1038/nrrheum.2015.91
- Kuo, C. Y., Kao, E. S., Chan, K. C., Lee, H. J., Huang, T. F., and Wang, C. J. (2012). Hibiscus sabdariffa L. extracts reduce serum uric acid levels in oxonate-induced rats. J. Funct. Foods. 4, 375–381. doi: 10.1016/j.jff.2012.01.007
- Matsuo, H., Chiba, T., Nagamori, S., Nakayama, A., Domoto, H., Phetdee, K., et al. (2008). Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am. J. Hum. Genet. 83, 744–751. doi: 10.1016/j.ajhg.2008.11.001
- Mirghani, M. E. S., Liyana, Y., and Parveen, J. (2012). Bioactivity analysis of lemongrass (Cymbopogan citratus) essential oil. Int. Food. Res. J. 19, 569–575.
- Mo, S. F., Zhou, F., Lv, Y. Z., Hu, Q. H., Zhang, D. M., and Kong, L. D. (2007). Hypouricemic action of selected flavonoids in mice: structure–activity relationships. *Biol. Pharm. Bull.* 30, 1551–1556. doi: 10.1248/bpb.30.1551
- Mohamed, D. A., and Al-Okbi, S. Y. (2008). Evaluation of anti-gout activity of some plant food extracts. Pol. J. Food Nutr. Sci. 58, 389–395.
- Mohd, A., Das Gupta, E., Loh, Y. L., Gandhi, C., D'Souza, B., and Gun, S. C. (2011).
 Clinical characteristics of gout: a hospital case series. *Malaysian Fam. Phys.* 6, 72–73.
- Mujumdar, A. M., and Misar, A. V. (2004). Anti-inflammatory activity of Jatropha curcas roots in mice and rats. J. Ethnopharmacol. 90, 11–15. doi:10.1016/j.jep.2003.09.019
- Murata, K., Nakao, K., Hirata, N., Namba, K., Nomi, T., Kitamura, Y., et al. (2009). Hydroxychavicol: a potent xanthine oxidase inhibitor obtained from the leaves of betel, *Piper betle. J. Nat. Med.* 63, 355–359. doi: 10.1007/s11418-009-0331-y
- Murugaiyah, V., and Chan, K. L. (2009). Mechanisms of antihyperuricemic effect of *Phyllanthus niruri* and its lignan constituents. *J. Ethnopharmacol.* 124, 233–239. doi: 10.1016/j.jep.2009.04.026
- Mutee, A. F., Salhimi, S. M., Yam, M. F., Lim, C. P., Abdullah, G. Z., and Ameer, O. Z., et al. (2010). In vivo anti-inflammatory and in vitro antioxidant activities of Peperomia pellucida. Int. J. Pharmacol. 6, 686–690. doi: 10.3923/ijp.2010.686.690
- Nessa, F., Ismail, Z., and Mohamed, N. (2010). Xanthine oxidase inhibitory activities of extracts and flavonoids of the leaves of *Blumea balsamifera*. *Pharm. Biol.* 48, 1405–1412. doi: 10.3109/13880209.2010.487281
- Nguyen, M. T. T., Awale, S., Tezuka, Y., Le Tran, Q., Watanabe, H., and Kadota, S. (2004). Xanthine oxidase inhibitory activity of Vietnamese medicinal plants. *Biol. Pharm. Bull.* 27, 1414–1421. doi: 10.1248/bpb.27.1414
- Nile, S. H., and Khobragade, C. N. (2011). In vitro anti-inflammatory and xanthine oxidase inhibitory activity of Tephrosia purpurea shoot extract. Nat. Prod. Commun. 6, 1437–1440.
- Nile, S. H., Kumar, B., and Park, S. W. (2013). In vitro evaluation of selected benzimidazole derivatives as an antioxidant and xanthine oxidase inhibitors. Chem. Biol. Drug Des. 82, 290–295. doi: 10.1111/cbdd.12141
- Nile, S. H., and Park, S. W. (2014). HPTLC analysis, antioxidant and antigout activity of Indian plants. Iran, J. Pharm. Res. 13, 531.
- Nishiura, J. L., Campos, A. H., Boim, M. A., Heilberg, I. P., and Schor, N. (2004). Phyllanthus niruri normalizes elevated urinary calcium levels in calcium stone forming (CSF) patients. Urol. Res. 32, 362–366. doi: 10.1007/s00240-004-0432-8
- Offermanns, S., and Rosenthal, W. (2008). Encyclopedia of Molecular Pharmacology. New York, NY: Springer.

- Orech, F. O., Akenga, T., Ochora, J., Friis, H., and Aagaard-Hansen, J. (2005). Potential toxicity of some traditional leafy vegetables consumed in Nyang'oma Division, Western Kenya. *Afr. J. Food Agric. Nutr. Dev.* 5, 1–13.
- Osman, N. I., Sidik, N. J., Awal, A., Adam, N. A. M., and Rezali, N. I. (2016). *In vitro* xanthine oxidase and albumin denaturation inhibition assay of *Barringtonia racemosa* L. and total phenolic content analysis for potential anti-inflammatory use in gouty arthritis. *J. Intercult. Ethnopharmacol.* 5, 343–349. doi: 10.5455/jice.20160731025522
- Pacher, P., Nivorozhkin, A., and Szabó, C. (2006). Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. *Pharmacol. Rev.* 58, 87–114. doi: 10.1124/pr.58.1.6
- Palu, A., Deng, S., West, B., and Jensen, J. (2009). Xanthine oxidase inhibiting effects of noni (*Morinda citrifolia*) fruit juice. *Phytother. Res.* 23, 1790–1791. doi: 10.1002/ptr.2842
- Pillinger, M. H., Rosenthal, P., and Abeles, A. M. (2007). Hyperuricemia and gout: new insights into pathogenesis and treatment. *Bull. NYU Hosp. Jt. Dis.* 65, 215–215.
- Prasongwatana, V., Woottisin, S., Sriboonlue, P., and Kukongviriyapan, V. (2008). Uricosuric effect of Roselle (*Hibiscus sabdariffa*) in normal and renal-stone former subjects. *J. Ethnopharmacol*. 117, 491–495. doi:10.1016/j.jep.2008.02.036
- Premgamone, A., Sriboonlue, P., Disatapornjaroen, W., Maskasem, S., Sinsupan, N., and Apinives, C. (2001). A long-term study on the efficacy of a herbal plant, Orthosiphon grandiflorus, and sodium potassium citrate in renal calculi treatment. Southeast Asian J. Trop. Med. Public Health. 32, 654–660.
- Sri-Wahjuni, Putra-Manuaba, I. B., Rahayu-Artini, N. P., and Wahyu-Dwijani, S. (2012). Uric acid inhibition activity of *Annona muricata* L. leave extract in hyperuricemia induced wistar rat. *Adv. Pure and Appl. Chem.* 2, 86–90.
- RadakPerović, M., and ZlatkovićŠvenda, M. (2013). The efficacy and tolerability of allopurinol dose escalation in patients with gout. *Srpski arhiv za celokupno lekarstvo*, 141, 333–336. doi: 10.2298/SARH1306333R
- Rajendran, R., and Krishnakumar, E. (2010). Anti-arthritic activity of Premna serratifolia Linn., wood against adjuvant induced arthritis. Avicenna J. Med. Biotechnol. 2, 101–106.
- Raju, R., Joseph, S., Scria, S., Mathews, S. M., and Umamheshwari, M. (2012). Effect of the fractions of *Erythrina stricta* leaf extract on serum urate levels and Xo/Xdh activities in oxonate-induced hyperuricaemic mice. *J. Appl. Pharm. Sci.* 2, 89–94
- Rates, S. M. K. (2001). Plants as source of drugs. Toxicon 39, 603–613. doi:10.1016/S0041-0101(00)00154-9
- Roddy, E., and Doherty, M. (2010). Gout. Epidemiology of gout. Arthritis Res. Ther. 12:223. doi: 10.1186/ar3199
- Roohbakhsh, A., Shamsara, J., Khayyat, M. H., and Karimi, G. (2009). Inhibition of xanthine oxidase by some Iranian plant remedies used for gout. *Pharmacologyonline*. 3, 1031–1036.
- Sabina, E. P., Nagar, S., and Rasool, M. (2011). A role of piperine on monosodium urate crystal-induced inflammation—an experimental model of gouty arthritis. *Inflammation* 34, 184–192. doi: 10.1007/s10753-010-9222-3
- Sabina, E. P., and Rasool, M. (2008). An in vivo and in vitro potential of Indian ayurvedic herbal formulation Triphala on experimental gouty arthritis in mice. Vasc. Pharmacol. 48, 14–20. doi: 10.1016/j.vph.2007.11.001
- Sarvaiya, V. N., Sadariya, K. A., Pancha, P. G., Thaker, A. M., Patel, A. C., and Prajapati, A. S. (2015). Evaluation of antigout activity of *Phyllanthus emblica* fruit extracts on potassium oxonate-induced gout rat model. *Vet. World* 8, 1230–1236. doi: 10.14202/vetworld.2015.1230-1236
- Sheu, S. Y., Fu, Y. T., Huang, W. D., Chen, Y. A., Lei, Y. C., Yao, C. H., et al. (2016). Evaluation of xanthine oxidase inhibitory potential and in vivo hypouricemic activity of *Dimocarpus longan* lour. extracts. *Pharmacogn. Mag.* 12, 206–212. doi: 10.4103/0973-1296.182176
- Shi, Y. C., Lin, K. S., Jhai, Y. F., Lee, B. H., Han, Y., Cui, Z., et al. (2016). Miracle fruit (Synsepalum dulcificum) exhibits as a novel anti-hyperuricaemia agent. Molecules 21:140. doi: 10.3390/molecules21020140
- Shi, Y. W., Wang, C. P., Wang, X., Zhang, Y. L., Liu, L., Wang, R. W., et al. (2012). Uricosuric and nephroprotective properties of Ramulus Mori ethanol extract in hyperuricemic mice. *J. Ethnopharmacol.* 143, 896–904. doi:10.1016/j.jep.2012.08.023

- Somchit, M. N., Mak, J. H., Bustamam, A. A., Zuraini, A., Arifah, A. K., Adam, Y., et al. (2012). Zerumbone isolated from *Zingiber zerumbet* inhibits inflammation and pain in rats. *J. Med. Plants Res.* 6, 177–180. doi: 10.5897/JMPR10.492
- Sowndhararajan, K., Joseph, J. M., and Rajendrakumaran, D. (2012). In vitro xanthine oxidase inhibitory activity of methanol extracts of Erythrina indica Lam. leaves and stem bark. Asian Pac. J. Trop. Biomed. 2, 1415–S1417. doi: 10.1016/S2221-1691(12)60428-6
- Sreeramulu, D., and Raghunath, M. (2010). Antioxidant activity and phenolic content of roots, tubers and vegetables commonly consumed in India. Food Res. Int. 43, 1017–1020. doi: 10.1016/j.foodres.2010.01.009
- Srivastava, S., Lal, V. K., and Pant, K. K. (2012). Polyherbal formulations based on Indian medicinal plants as antidiabetic phytotherapeutics. *Phytopharmacology* 2, 1–5
- Stamp, L. K., O'Donnell, J. L., and Chapman, P. T. (2007). Emerging therapies in the long-termmanagement of hyperuricaemia and gout. *Intern. Med. J.* 37, 258–266. doi: 10.1111/j.1445-5994.2007.01315.x
- Strazzullo, P., and Puig, J. G. (2007). Uric acid and oxidative stress: relative impact on cardiovascular risk. Nutr. Metab. Cardiovasc. Dis. 17, 409–414. doi: 10.1016/j.numecd.2007.02.011
- Sunarni, T., Leviana, F., Fidrianny, I., Iwo, M. I., and Wirasutisna, K. R. (2015). Antihyperuricemic activity of four plants Annonaceae using hyperuricemic rats model and enzyme assay. Asian J. Pharm. Clin. Res. 8, 250–253.
- Sungthong, B., Manok, S., Sato, H., and Sato, V. H. (2016). Effects of Aquilaria Crassna on xanthine oxidase activity in vitro and hyperuricemic mice. Indian J. Pharm. Sci. 78, 547–552. doi: 10.4172/pharmaceutical-sciences.10 00151
- Tan, M. J., Ye, J. M., Turner, N., Hohnen-Behrens, C., Ke, C. Q., Tang, C. P., et al. (2008). Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. *Chem. Biol.* 15, 263–273. doi: 10.1016/j.chembiol.2008.01.013
- Tapsell, L. C., Hemphill, I., Cobiac, L., Sullivan, D. R., Fenech, M., Patch, C. S., et al. (2006). Supplement-health benefits of herbs and spices: the past, the present, the future. *Med. J. Aust.* 185, 4–24.
- Tausche, A. K., Jansen, T. L., Schröder, H. E., Bornstein, S. R., Aringer, M., and Müller-Ladner, U. (2009). Gout—current diagnosis and treatment. *Dtsch. Arztebl. Int.* 106, 549–555. doi: 10.3238/arztebl.2009.0549
- Teh, C. L., Chew, K. F., and Ling, G. R. (2014). Acute gout in hospitalized patients in Sarawak general hospital. *Med. J. Malaysia* 69, 126–128.
- Triggiani, V., Resta, F., Guastamacchia, E., Sabbà, C., Licchelli, B., Ghiyasaldin, S., et al. (2006). Role of antioxidants, essential fatty acids, carnitine, vitamins, phytochemicals and trace elements in the treatment of diabetes mellitus and its chronic complications. *Endocr. Metab. Immune Disord. Drug Targets* 6, 77–93. doi: 10.2174/187153006776056611
- Tu, S. F., Liu, R. H., Cheng, Y. B., Hsu, Y. M., Du, Y. C., El-Shazly, M., et al. (2014). Chemical constituents and bioactivities of *Clinacanthus nutans* aerial parts. *Molecules* 19, 20382–20390. doi: 10.3390/molecules191220382
- Umamaheswari, M., Asokkumar, K., Sivashanmugam, A. T., Remyaraju, A., Subhadradevi, V., and Ravi, T. K. (2009). In vitro xanthine oxidase inhibitory activity of the fractions of Erythrina stricta Roxb. J. Ethnopharmacol. 124, 646–648. doi: 10.1016/j.jep.2009.05.018
- Umamaheswari, M., AsokKumar, K., Somasundaram, A., Sivashanmugam, T., Subhadradevi, V., and Ravi, T. K. (2007). Xanthine oxidase inhibitory activity of some Indian medical plants. *J. Ethnopharmacol.* 109, 547–551. doi: 10.1016/j.jep.2006.08.020
- Unno, T., Sugimoto, A., and Kakuda, T. (2004). Xanthine oxidase inhibitors from the leaves of *Lagerstroemia speciosa* (L.) *Pers. J. Ethnopharmacol.* 93, 391–395. doi: 10.1016/j.jep.2004.04.012
- Wahyuningsih, S., Sukandar, E. Y., and Sukrasno. (2016a). Antihyperuricemia activity of the ethanol extract of Roselle calyx and its fraction (*Hibiscus sabdariffa* Linn) on male wistar rats. *Int. J. Pharm. Pharm. Sci.* 8, 278–280.
- World Health Organization (2011). The World Traditional Medicines Situation, in Traditional Medicines: Global Situation, Issues and Challenges. Geneva 3, 1–14.
- Wahyuningsih, S., Sukandar, E. Y., and Sukrasno. (2016b). In vitro xanthine oxidase inhibitor activity of ethanol extract and fraction roselle calyx (Hibiscus sabdariffa L.). Int. J. Pharma. Clin. Res. 94, 5–35.
- Wang, Y., Zhu, J. X., Kong, L. D., Yang, C., Cheng, C. H. K., and Zhang, X. (2004). Administration of procyanidins from grape seeds reduces serum uric acid levels and decreases hepatic xanthine dehydrogenase/oxidase activities

- in oxonate-treated mice. Basic Clin. Pharmacol. Toxicol. 94, 232–237. doi: 10.1111/j.1742-7843.2004.pto940506.x,
- Wong, Y. P., Ng, R. C., Chuah, S. P., Koh, R. Y., and Ling, A. P. K. (2014). "Antioxidant and xanthine oxidase inhibitory activities of Swietenia macrophylla and Punica granatum," in International Conference on Biological, Environment and Food Engineering (Bali).
- Yang, H., Gao, L., Niu, Y., Zhou, Y., Lin, H., Jiang, J., et al. (2015). Mangiferin inhibits renal urate reabsorption by modulating urate transporters in experimental hyperuricemia. *Biol. Pharm. Bull.* 38, 1591–1598. doi:10.1248/bpb.b15-00402
- Yan, M., An, Y. T., Li, J., Wu, Z. Z., and Wang, T. (2014). Regulatory effect of leonurus extracts on hyperuricemia in rats. China J. Chin. Mater. Med. 39, 4856–4859.
- Yumita, A., Suganda, A. G., and Sukandar, E. Y. (2013). Xanthine oxidase inhibitory activity of some Indonesian medicinal plants and active fraction of selected plants. *Int. J. Pharmacy Pharm. Sci.* 5, 293–296.
- Zeng, Y. C., Li, S., Liu, C., Gong, T., Sun, X., Fu, Y., et al. (2017). Soluplus micelles forimproving the oral bioavailability of scopoletin and their hypouricemic effect *in vivo. Acta Pharmacol. Sin.* 38, 424–433. doi: 10.1038/aps.2016.126
- Zhang, J., Shuai, X., Li, J., Xiang, N., Gong, T., and Zhang, Z. (2016). Biodistribution, hypouricemic efficacy and therapeutic mechanism of morin phospholipid complex loaded self-nanoemulsifying drug delivery systems in

- an experimental hyperuricemic model in rats. *J. Pharm. Pharmacol.* 68, 14–25. doi: 10.1111/jphp.12492
- Zhang, Y., Jin, L., Liu, J., Wang, W., Yu, H., Li, J., et al. (2017). Regulation mechanism of Dioscin on uric acid excretion. J. Ethnopharmacol. 214, 29–36. doi: 10.1016/j.jep.2017.12.004
- Zhou, K., and Yu, L. (2006). Total phenolic contents and antioxidant properties of commonly consumed vegetables grown in Colorado. Food Sci. Technol. 39, 1155–1162. doi: 10.1016/j.lwt.2005.07.015

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer MK and handling Editor declared their shared affiliation.

Copyright © 2018 Abu Bakar, Abu Bakar, Rahmat, Abdullah, Sabran and Endrini. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.