Junio 2025

PROYECTO FINAL TÓPICOS EN COMPUTACIÓN GRÁFICA

Emamnuel Galdos

CONTEXTO

- Evaluar calidad de ejecuciones deportivas automáticamente
- Elimina sesgo humano y permite análisis a gran escala
- Aplicable a clavados, gimnasia, esquí, etc.

DATA SET

- AQA 7 (Clavado, snowboarding, etc)
- Corte en clips
- Clips de 16 frames
- Resolución: 224×224 px
- Normalizados para pasar al modelo

Pipeline General

- **01.** Lectura de videos .avi
- 02. División en clips de 16 frames
- 03. Entrada de clips a red Conv3D propia
- 04. Predicción directa del puntaje por clip
- 05. Evaluación con métricas estándar

Preprocesamiento

- Datos:
 - Cada video tiene un puntaje asignado
- Procesamiento:
 - Corte en clips de 16 frames (112x112 px)
 - Normalización y transformación a tensores (C, T, H, W)

ARQUITECTURA

- 3 bloques Conv3D + ReLU + Pooling
- Pooling final adaptativo
- MLP con capas totalmente conectadas

Conv3D-AQA Conv3D ReLU ReLU (1, 1) (3×3) (4×3) 16 t frames Conv3D ReLU Flatteni (6×3) (6×3) R Score e e 3,4 (112 x 112, 112) Linear **ApAfte** Conv3D AvgPoold R (3×3) (64, 4)Linear (128, 1)(1, 1, 1)

ARQUITECTURA

- Conv3D permite capturar simultáneamente patrones espaciales y temporales (movimiento + forma)
- Bloques múltiples profundizan la jerarquía de representación
- Pooling reduce dimensionalidad y mejora eficiencia
- AdaptiveAvgPool3D asegura que la salida final sea fija sin importar el tamaño del input
- MLP final aprende la regresión del score sobre los features comprimidos

BATCHNORM3D

- Se añade después de cada Conv3D
- Mejora estabilidad y acelera entrenamiento
- Permite usar tasas de aprendizaje más altas sin explotar gradientes

ENTRENAMIENTO

• Pérdida: MSELoss

• Epochs: 20

• División 80% train / 20% test

Batch size: 4

RESULTADOS

CONCLUSIONES

- El modelo toma como entrada un clip corto de video (16 frames consecutivos)
- A través de una red convolucional 3D, extrae patrones de movimiento y forma en el tiempo
- Luego, una red neuronal densa (MLP) transforma esos patrones en un puntaje continuo de calidad

<u>Link: https://colab.research.google.com/drive/1esZW8UsMjQ-IUI442WVuRbnuidKVGzn1?usp=sharing</u>

MUCHAS GRACIAS