2事故应急池

2.1 概念

事故应急池又称事故缓冲池或应急事故池,是指在发生事故时,能有效的接纳装置排水、消防水等污染水,以免事故污染水进入外环境造成污染的污水收集设施。在实际事故处置过程中,通过事故应急池收集事故废水,最大程度的降低了由事故引发次生水环境污染事件的发生概率,保障了环境安全。

不同行业对事故应急池的称谓各不相同的,且容积的计算方式也存在差别,本系统主要介绍石油化 工企业事故缓冲池的容积计算。

2.2 计算方法

事故缓冲设施包括围堰、围堤、防火堤、缓冲池等。根据《事故状态下水体污染的预防与控制技术要求》,石油化工企业的事故缓冲设施总有效容积计算公式如下:

$$V_{\mathbb{A}} = (V_1 + V_2 - V_3)_{max} + V_4 + V_5$$

式中:

(1) V_1 : 收集系统范围内发生事故的物料量, m^3 。其中:

表1 V ₁ 的取值依据						
类型	装置	油罐组	铁路装卸区	汽车装卸区		
V ₁	单套装置物料量按存留最大物料量的 一台反应器或中间储罐计	按一个最 大储罐计	按系统范围一 个最大槽车计	按系统范围一 个最大罐车计		

(2) V_2 : 发生事故的储罐、装置或铁路、汽车装卸区的消防水量, m^3 。

$$V_2 = \sum Q_{lpha}{ imes}t_{lpha}$$

式中:

 Q_{H} : 发生事故的储罐、装置或铁路、汽车装卸区同时使用的消防设施给水流量, m^3/h 。

 $t_{\rm li}$: 消防设施对应的设计消防历时, h。

消防用水量取值参考系数						
厂区占地 面积,m ³	工艺装置消 (持续供水) 于3h) , L/s	时间不应小	辅助生产设施消防用水量 (持续供水时间不应小于	装卸栈台消防用水量 (持续供水时间不应小 于3h),L/s		
	中型装置	大型装置	2h) , L/s			
≤1000,000	150~300	300~600		≥60		
>1000,000	150~300		50			

(3) V_3 : 发生事故时可以转输到其他储存或处理设施的物料量, m^3 。

(4) $(V_1 + V_2 - V_3)_{max}$: 对收集系统范围内不同罐组、装置或槽车分别计算 $(V_1 + V_2 - V_3)$, 取其最大值。

(5) V_4 : 发生事故时仍必须进入该收集系统的生产废水量, m^3 。

(6) V_5 : 发生事故时仍可能进入该收集系统的降雨量, m^3 。

$$V_5 = 10q \times f$$
 $q = q_a \div n$

式中:

①q: 一降雨强度, 按平均日降雨量, mm。

② q_a : 年平均降雨量, mm。

③n: 年平均降雨日数。

④ f: 必须进入事故废水收集系统的雨水汇水面积, $10^4 m^2$ 。