Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica e Eletrônica

Eletrônica Básica – EEL 5346 Avaliação II – 2014/1 (04/06/2014)

<u>Questão 1:</u> [2,5 pontos] Determine a tensão coletor-emissor (v_{CE}) para o transistor a seguir. Dados: I=400 μ A, I_S=2·10⁻⁵A, α_F =0,99 e α_R =0,5.

Questão 2: [2,5 pontos] Dado o circuito a seguir e assumindo que os três transistores são idênticos e operam na RAD, determine literalmente I_L em função de I_{REF} e dos parâmetros dos transistores, assumindo: (a) β finito; (b) β infinito. Fonte: Sedra, 5° ed., pp. 408.

Questão 3: [5,0 pontos] Dado o circuito a seguir, sabendo-se que os transistores são idênticos, o efeito Early é desprezível, β =100 e que $vs_1=v_{cm}+v_d/2$ e $vs_2=v_{cm}-v_d/2$ são fontes de tensão AC de pequena amplitude, determine: (a) I_{BQ1} , I_{BQ2} ; (b) o modelo de pequenos sinais para o circuito completo; (c) a tensão de saída (v_L); (d) a impedância de entrada vista por vs_1 ; (e) a impedância de saída (vs_1). Dados: $vs_2=v_{cm}-v_d/2$ são fontes de tensão AC de pequena amplitude, determine: (a) $vs_2=v_{cm}-v_d/2$ são fontes de tensão AC de pequena amplitude, determine: (a) $vs_2=v_{cm}-v_d/2$ são fontes de tensão AC de pequena amplitude, determine: (a) $vs_2=v_{cm}-v_d/2$ são fontes de tensão AC de pequena amplitude, determine: (a) $vs_2=v_{cm}-v_d/2$ são fontes de tensão AC de pequena amplitude, determine: (a) $vs_2=v_{cm}-v_d/2$ são fontes de tensão AC de pequena amplitude, determine: (a) $vs_2=v_{cm}-v_d/2$ são fontes de tensão AC de pequena amplitude, determine: (a) $vs_2=v_{cm}-v_d/2$ são fontes de versão AC de pequena amplitude, determine: (a) $vs_2=v_{cm}-v_d/2$ são fontes de versão AC de pequena amplitude, determine: (a) $vs_2=v_{cm}-v_d/2$ são fontes de versão AC de pequena amplitude, determine: (a) $vs_2=v_{cm}-v_d/2$ são fontes de versão AC de pequena amplitude, determine: (a) $vs_2=v_{cm}-v_d/2$ são fontes de versão AC de pequena amplitude, determine: (a) $vs_2=v_{cm}-v_d/2$ são fontes de versão AC de pequena amplitude, determine: (a) $vs_2=v_{cm}-v_d/2$ são fontes de versão AC de versão

FORMULÁRIO

• Modelo de pequenos sinais para o transistor NPN:

$$g_m\!\!=\!\!I_{CQ}\!/v_T\!;\,r_\pi\!\!=\!\!\beta/g_m;\,r_o\!\!=\!\!V_A\!/I_C;\,v_T\!\!=\!\!25mV$$

• Modelo de Ebers-Moll para o transistor NPN: v_T=25mV

$$i_{DE} = I_{SE} \left(e^{\frac{v_{BE}}{v_T}} - 1 \right); \ i_{DC} = I_{SC} \left(e^{\frac{v_{BC}}{v_T}} - 1 \right); \ I_{SE} = \frac{I_S}{\alpha_F}; \ I_{SC} = \frac{I_S}{\alpha_R}$$

