Детальная таблица термического анализа основных групп минералов

Руководство для интерпретации DSC/TGA кривых

Расшифровка обозначений:

- DSC дифференциальная сканирующая калориметрия
- ТGA термогравиметрический анализ
- **ДН** энтальпия перехода (Дж/г)
- Endo эндотермический процесс, Экзо экзотермический процесс
- °C температура процесса

Минерал	DSC переходы (°C)	ТGА потери массы (%)	Энтальпия (ΔН, Дж/г)	Характеристические процессы
СИЛИКАТЫ СЛОИСТЫЕ (ФИЛЛО	ОСИЛИКАТЫ)			
Каолинит (Al ₂ Si ₂ O ₅ (OH) ₄)	Endo: 450- 600°C Экзо: 950- 1000°C	450- 600°C: 13.8%	$\Delta H_1 = -412$ $\Delta H_2 = +38$	Дегидроксилирование → метакаолинит Кристаллизация муллита
Галлуазит (Al₂Si₂O₅(OH)₄·2H₂O)	Endo: 100- 200°C Endo: 450- 600°C Экзо: 950- 1000°C	100- 200°C: 10.5% 450- 600°C: 13.8%	$\Delta H_1 = -165$ $\Delta H_2 = -412$ $\Delta H_3 = +38$	Потеря межслоевой Н₂О Дегидроксилирование Кристаллизация
Дикит (Al2Si2O5(OH)4)	Endo: 500- 650°C Экзо: 950- 1000°C	500- 650°C: 13.8%	ΔH ₁ = -425 ΔH ₂ = +35	Дегидроксилирование Образование муллита
Монтмориллонит ((Na,Ca)Al₂Si₄O1o(OH)2·nH2O)	Endo: 100- 200°C Endo: 650- 750°C	100- 200°C: 8- 15% 650- 750°C: 5%	ΔH ₁ = -180 ΔH ₂ = -85	Дегидратация межслоевая Дегидроксилирование
Вермикулит ((Mg,Fe) ₃ Si ₄ O ₁₀ (OH) ₂ ·4H ₂ O)	Endo: 120- 300°C Endo: 850- 950°C	120- 300°C: 22% 850- 950°C: 3%	ΔH ₁ = -275 ΔH ₂ = -65	Потеря межслоевой воды Дегидроксилирование

Минерал	DSC переходы (°C)	ТGА потери массы (%)	Энтальпия (ΔН, Дж/г)	Характеристические процессы
Иллит (KAI2(Si3AI)O10(OH)2)	Endo: 450- 550°С Экзо: 900- 1000°С	450- 550°C: 5- 8%	ΔH ₁ = -125 ΔH ₂ = +25	Дегидроксилирование Разложение структуры
Хлорит ((Mg,Fe) ₅ AI(Si ₃ AI)O ₁₀ (OH) ₈)	Endo: 600- 750°С Экзо: 800- 900°С	600- 750°C: 12- 15%	ΔH ₁ = -185 ΔH ₂ = +45	Дегидроксилирование Образование оливина
Мусковит (KAI2(Si3AI)O10(OH)2)	Endo: 900- 950°C	900- 950°C: 4.5%	ΔH1 = -98	Дегидроксилирование при высокой Т
Биотит (K(Mg,Fe)з(AlSiзO ₁₀) (OH) ₂)	Endo: 800- 900°С Экзо: 1000- 1100°С	800- 900°C: 3.5%	$\Delta H_1 = -82$ $\Delta H_2 = +35$	Дегидроксилирование Фазовые превращения
Тальк (Mg₃Si₄O1₀(OH)₂)	Endo: 850- 950°С Экзо: 1050- 1150°С	850- 950°C: 4.8%	ΔH1 = -115 ΔH2 = +85	Дегидроксилирование Кристаллизация энстатита
Пирофиллит (Al ₂ Si ₄ O ₁₀ (OH) ₂)	Endo: 800- 900°С Экзо: 1200- 1300°С	800- 900°C: 5.0%	ΔH ₁ = -125 ΔH ₂ = +65	Дегидроксилирование Образование муллита + кварц
Серпентин (Mg₃Si₂O₅(OH)₄)	Endo: 650- 750°С Экзо: 800- 850°С	650- 750°C: 13.0%	ΔH ₁ = -285 ΔH ₂ = +85	Дегидроксилирование Кристаллизация форстерита
СИЛИКАТЫ КАРКАСНЫЕ (ТЕКТО	ОСИЛИКАТЫ)			
Кварц (SiO ₂)	Endo: 573°C Endo: 1723°C	Нет потери массы	$\Delta H_1 = +0.38$ $\Delta H_2 = +9.6$	α→β переход Плавление
Кристобалит (SiO ₂)	Endo: 200- 270°C Endo: 1713°C	Нет потери массы	$\Delta H_1 = +4.2$ $\Delta H_2 = +9.6$	α→β переход Плавление
Тридимит (SiO ₂)	Endo: 117°C Endo: 163°C Endo: 1670°C	Нет потери массы	$\Delta H_1 = +0.5$ $\Delta H_2 = +1.8$ $\Delta H_3 = +8.4$	α → β переход β → γ переход Плавление
Альбит (NaAlSi₃O ₈)	Endo: 1118°C	Нет потери массы	ΔH1 = +59	Плавление конгруэнтное
Анортит (CaAl ₂ Si ₂ O ₈)	Endo: 1553°C	Нет потери массы	ΔH1 = +130	Плавление конгруэнтное

Минерал	DSC переходы (°C)	ТGА потери массы (%)	Энтальпия (ΔН, Дж/г)	Характеристические процессы
Ортоклаз (KAISi₃O₃)	Endo: 1150°C	Нет потери массы	ΔH1 = +54	Плавление инконгруэнтное
Микроклин (KAlSi₃O ₈)	Endo: 1170°C	Нет потери массы	ΔH1 = +52	Плавление инконгруэнтное
Нефелин (NaAISiO4)	Endo: 1526°C	Нет потери массы	ΔH1 = +75	Плавление конгруэнтное
ЦЕОЛИТЫ				
Анальцим (NaAlSi₂O ₆ ·H₂O)	Endo: 200- 400°С Экзо: 900- 1000°С	200- 400°C: 8.2%	ΔH ₁ = -85 ΔH ₂ = +35	Дегидратация Кристаллизация нефелина
Гейландит (СаАІ₂Sі ₇ О18·6Н2О)	Endo: 100- 250°C Endo: 250- 450°C Экзо: 900- 1000°C	100- 250°C: 8% 250- 450°C: 7%	ΔH ₁ = -95 ΔH ₂ = -75 ΔH ₃ = +45	Потеря слабосвязанной воды Потеря координационной воды Кристаллизация анортита
Клиноптилолит ((Na,K,Ca)₅Al₅Si₃₀O72·20H2O)	Endo: 100- 200°С Endo: 200- 500°С Экзо: 900- 1000°С	100- 200°C: 8% 200- 500°C: 10%	ΔH ₁ = -85 ΔH ₂ = -105 ΔH ₃ = +55	Потеря слабосвязанной воды Потеря структурной воды Коллапс каркаса
Морденит (NasAlsSi4oO96·28H2O)	Endo: 100- 300°С Экзо: 900- 1000°С	100- 300°C: 12%	$\Delta H_1 = -125$ $\Delta H_2 = +45$	Дегидратация Коллапс структуры
КАРБОНАТЫ				
Кальцит (CaCO₃)	Endo: 825- 950°C	825- 950°C: 44.0%	ΔH1 = -178	Декарбонизация: CaCO₃ → CaO + CO₂
Арагонит (CaCO ₃)	Endo: 400- 500°C Endo: 825- 950°C	825- 950°C: 44.0%	$\Delta H_1 = +0.8$ $\Delta H_2 = -178$	Арагонит → кальцит Декарбонизация
Доломит (CaMg(CO₃)₂)	Endo: 750- 850°C Endo: 850- 950°C	750- 850°C: 23.9% 850- 950°C: 23.9%	ΔH1 = -89 ΔH2 = -89	MgCO ₃ → MgO + CO ₂ CaCO ₃ → CaO + CO ₂

Минерал	DSC переходы (°C)	ТGА потери массы (%)	Энтальпия (ΔН, Дж/г)	Характеристические процессы
Магнезит (MgCO₃)	Endo: 450- 650°C	450- 650°C: 52.2%	ΔH1 = -117	Декарбонизация: MgCO₃ → MgO + CO₂
Сидерит (FeCO ₃)	Endo: 400- 500°С Экзо: 600- 700°С	400- 500°C: 38.0%	$\Delta H_1 = -83$ $\Delta H_2 = +85$	FeCO ₃ → FeO + CO ₂ Окисление: FeO → Fe ₂ O ₃
Родохрозит (MnCO₃)	Endo: 350- 450°С Экзо: 900- 1000°С	350- 450°C: 38.3%	$\Delta H_1 = -78$ $\Delta H_2 = +45$	MnCO₃ → MnO + CO₂ MnO → Mn₂O₃
Малахит (Cu₂CO₃(OH)₂)	Endo: 200- 350°C Endo: 350- 450°C	200- 350°C: 8.2% 350- 450°C: 19.9%	ΔH1 = -125 ΔH2 = -89	Cu(OH) ₂ → CuO + H ₂ O CuCO ₃ → CuO + CO ₂
Азурит (Cu₃(CO₃)₂(OH)₂)	Endo: 220- 300°C Endo: 300- 450°C	220- 300°C: 5.1% 300- 450°C: 25.6%	ΔH1 = -78 ΔH2 = -145	Cu(OH) ₂ → CuO + H ₂ O 2CuCO ₃ → 2CuO + 2CO ₂
СУЛЬФАТЫ				
Гипс (CaSO4·2H2O)	Endo: 120- 180°C Endo: 180- 250°C Endo: 1450°C	120-180°C: 15.7% 180- 250°C: 5.2%	ΔH ₁ = -105 ΔH ₂ = -35 ΔH ₃ = +17	Гипс → полугидрат Полугидрат → ангидрит Плавление
Ангидрит (CaSO4)	Endo: 1450°C	Нет потери массы	ΔH1 = +17	Плавление
Барит (BaSO ₄)	Endo: 1580°C	Нет потери массы	ΔH1 = +28	Плавление
Целестин (SrSO ₄)	Endo: 1605°C	Нет потери массы	ΔH1 = +25	Плавление
Алунит (КАІз(SO4)2(OH)6)	Endo: 450- 550°C Экзо: 900- 1000°C	450- 550°C: 13.0% 900- 1000°C: 23%	ΔH1 = -156 ΔH2 = +85	Дегидроксилирование Разложение сульфата

Минерал	DSC переходы (°C)	ТGА потери массы (%)	Энтальпия (ΔН, Дж/г)	Характеристические процессы
Ярозит (KFe₃(SO₄)₂(OH)₅)	Endo: 400- 500°С Экзо: 800- 900°С	400- 500°C: 12.5% 800- 900°C: 25%	ΔH1 = -145 ΔH2 = +95	Дегидроксилирование Разложение + окисление
Эпсомит (MgSO4·7H₂O)	Endo: 100- 200°C Endo: 200- 300°C Endo: 1124°C	100- 200°C: 51.2% 200- 300°C: 20.5%	ΔH ₁ = -335 ΔH ₂ = -135 ΔH ₃ = +14	Потеря 6Н₂О Потеря 1Н₂О Плавление
ФОСФАТЫ				
Апатит (Са₅(РО₄)₃(F,ОН,СІ))	Endo: 1670°C (F- апатит) Endo: 900- 1000°C (ОН- апатит)	ОН- апатит: 1.8%	ΔH ₁ = +95 ΔH ₂ = -25	Плавление Дегидроксилирование
Вавеллит (AI ₃ (PO ₄) ₂ (OH,F) ₃ ·5H ₂ O)	Endo: 200- 400°C Endo: 1400°C	200- 400°C: 25%	$\Delta H_1 = -285$ $\Delta H_2 = +125$	Дегидратация + дегидроксилирование Плавление
Вивианит (Fe₃(PO₄)₂·8H₂O)	Endo: 100- 300°C Экзо: 600- 700°C	100- 300°C: 30%	$\Delta H_1 = -345$ $\Delta H_2 = +85$	Дегидратация Окисление Fe ²⁺ → Fe ³⁺
Монацит ((Ce,La,Nd,Th)PO4)	Endo: 2070°C	Нет потери массы	ΔH1 = +145	Плавление
Ксенотим (ҮРО4)	Endo: 2200°C	Нет потери массы	ΔH1 = +165	Плавление
оксиды				
Гематит (Fe ₂ O ₃)	Endo: 1565°C	Нет потери массы	ΔH1 = +87	Плавление
Магнетит (Fe₃O₄)	Экзо: 580- 650°С Endo: 1597°С	Прирост массы	$\Delta H_1 = +15$ $\Delta H_2 = +138$	Окисление: Fe₃O₄ → γ- Fe₂O₃ Плавление
Корунд (АІ₂О₃)	Endo: 2072°C	Нет потери массы	ΔH1 = +111	Плавление

Минерал	DSC переходы (°C)	ТGА потери массы (%)	Энтальпия (ΔН, Дж/г)	Характеристические процессы
Рутил (TiO₂)	Endo: 1843°C	Нет потери массы	ΔH1 = +66	Плавление
Анатаз (ТіО2)	Экзо: 600- 900°С Endo: 1855°С	Нет потери массы	$\Delta H_1 = +8$ $\Delta H_2 = +66$	Анатаз → рутил Плавление
Касситерит (SnO ₂)	Endo: 1630°C	Нет потери массы	ΔH1 = +52	Плавление
Пиролюзит (MnO2)	Экзо: 530- 600°С Экзо: 900- 1000°С	530- 600°C: 6.3% 900- 1000°C: 4.5%	ΔH ₁ = +45 ΔH ₂ = +25	MnO2 → Mn2O3 Mn2O3 → Mn3O4
Гётит (α-FeOOH)	Endo: 300- 400°С Экзо: 600- 700°С	300- 400°C: 10.1%	ΔH ₁ = -145 ΔH ₂ = +25	Дегидратация → гематит Кристаллизация
Лепидокрокит (ү-FeOOH)	Endo: 350- 450°C	350- 450°C: 10.1%	ΔH1 = -156	Дегидратация → гематит
Акагенеит (β-FeOOH)	Endo: 400- 500°C	400- 500°C: 10.1%	ΔH1 = -138	Дегидратация → гематит
Бёмит (ү-АІООН)	Endo: 450- 550°C Экзо: 950- 1200°C	450- 550°C: 15.0%	ΔH ₁ = -185 ΔH ₂ = +125	Дегидратация → γ-Al ₂ O ₃ γ→α превращение
Диаспор (α-ΑΙΟΟΗ)	Endo: 500- 600°C Экзо: 1000- 1200°C	500- 600°C: 15.0%	ΔH ₁ = -195 ΔH ₂ = +105	Дегидратация → α-Al₂O₃ Рекристаллизация
Гиббсит (AI(OH)₃)	Endo: 200- 350°C Экзо: 950- 1200°C	200- 350°C: 34.6%	$\Delta H_1 = -312$ $\Delta H_2 = +125$	Дегидратация → бёмит → Al ₂ O ₃ Кристаллизация
Брусит (Mg(OH)₂)	Endo: 350- 450°C	350- 450°C: 30.9%	ΔH ₁ = -1450	Дегидратация: Mg(OH)₂ → MgO + H₂O
Портландит (Ca(OH)₂)	Endo: 450- 550°C	450- 550°C: 24.3%	ΔH1 = -1156	Дегидратация: Ca(OH)₂ → CaO + H₂O
СУЛЬФИДЫ				

Минерал	DSC переходы (°C)	ТGА потери массы (%)	Энтальпия (ΔН, Дж/г)	Характеристические процессы
Пирит (FeS2)	Экзо: 400- 600°С Экзо: 600- 800°С	400- 600°C: +16%	$\Delta H_1 = +850$ $\Delta H_2 = +425$	Окисление → пирротин + SO ₂ → Fe ₂ O ₃ + SO ₂
Пирротин (Fe _{1-x} S)	Экзо: 500- 700°C	500- 700°C: +15%	ΔH ₁ = +725	Окисление → Fe ₂ O ₃ + SO ₂
Галенит (PbS)	Экзо: 600- 800°C	600- 800°C: -6.7%	ΔH1 = +125	Окисление: PbS → PbO + SO ₂
Сфалерит (ZnS)	Экзо: 600- 900°С	600- 900°C: -33.1%	ΔH1 = +485	Окисление + сублимация ZnO
Халькопирит (CuFeS ₂)	Экзо: 500- 800°C	500- 800°C: +8.5%	ΔH1 = +625	Окисление → CuO + Fe ₂ O ₃ + SO ₂
Молибденит (MoS2)	Экзо: 450- 650°C	450- 650°C: +25%	ΔH1 = +385	Окисление: MoS ₂ → MoO ₃ + SO ₂
Арсенопирит (FeAsS)	Экзо: 400- 700°C	400- 700°C: +12%	ΔH1 = +456	Окисление → Fe ₂ O ₃ + As ₂ O ₃ + SO ₂
Киноварь (HgS)	Endo: 580°C	580°C: -86.3%	ΔH1 = +125	Сублимация: HgS → Hg↑ + S↑
ДРУГИЕ ВАЖНЫЕ МИНЕРАЛЫ				
Флюорит (CaF ₂)	Endo: 1418°C	Нет потери массы	ΔH1 = +30	Плавление
Галит (NaCl)	Endo: 801°C	Нет потери массы	ΔH1 = +28	Плавление
С ильвин (KCI)	Endo: 771°C	Нет потери массы	ΔH1 = +26	Плавление
Графит (С)	Экзо: 700- 800°С (воздух)	700- 800°C: 100%	ΔH1 = +393	Окисление: C + O ₂ → CO ₂
Алмаз (С)	Экзо: 850- 900°С (воздух)	850- 900°C: 100%	ΔH1 = +395	Окисление: C + O₂ → CO₂

Примечания:

• Данные приведены для скорости нагрева 10°С/мин в воздушной атмосфере

- Энтальпии указаны в Дж/г
- Потери массы даны в процентах от исходной массы
- Endo = эндотермический процесс, Экзо = экзотермический процесс
- Данные основаны на анализе более 32 авторитетных источников