IoT Challenge 2018-Clustering and Twitter flows Intro

16-17 March 2018

Clustering flow

- Objective: implement a simple generic L architecture in Node-RED
- Specific example: Exploit street speed data from Madrid and group speeds in two states (good and bad state)
- Store and process, extract high and low speed clusters for a single point
- Can be generalized for all points, extended to use a database or used in a different data source

Clustering flow

- Exploit open street data from madrid
 - http://informo.munimadri d.es/informo/tmadrid/pm .xml
 - Be careful, not all PMs have speed (velocidad field) in them

```
informo.munimad
🕙 Φωτογραφίες γιά αγγ... 🧱 r - Fit a sinusoidal ter...
    <nivelServicio>0</nivelServicio>
    <velocidad>81</velocidad>
    <error>N</error>
  </pm>
-<pm>
    <codigo>PM10091</codigo>
    <intensidad>5040</intensidad>
    <ocupacion>12</ocupacion>
    <carga>94</carga>
    <nivelServicio>0</nivelServicio>
     <velocidad>89</velocidad>
    <error>N</error>
  </pm>
-<pm>
    <codigo>PM10092</codigo>
    <intensidad>1140</intensidad>
    <ocupacion>3</ocupacion>
    <carga>34</carga>
    <nivelServicio>0</nivelServicio>
    <velocidad>78</velocidad>
    <error>N</error>
```

Clustering flow horizontal Larchitecture

- Http GET call to Madrid for data
- Transformation from XML to JSON
- Filter to get only the point we need
 - Check returned JSON from Madrid for the structure of the data!!
- Transform to csv and store in file

Clustering flow- Vertical part

- Usage of external node.js function 'clusters' in kmeans cluster function node
 - Be sure to include it in settings.js file
- This needs data inserted in a specific form
 - Array of arrays of data points
 - [[2,4],[3,5]...]
- Data points come as array of objects from csv file
 - Transformed in array of arrays in the split-filter-join part of the flow
- Read file produced from the previous flow

Object to array code in filter function node

 If more dimensions are needed in the clustering case, one can add more points in the array

Clustering flow-diagonal part

- Retrieve real time value and compare with cluster centroids
 - Current value is already extracted from the horizontal flow

Intercept and compare function

```
var velocity=msg.payload.velocidad;
localclusters=global.get("foundclusters");
var overall_cluster=-1;
var diff;
var min=10000000;
for (var k=0;k<localclusters.length;k++){
  diff=Math.abs(localclusters[k].centroid[o]-velocity);
  if (diff<min){
     overall_cluster=k;
    min=diff;
  console.log(diff));
if (overall_cluster===o){
  msg.payload="bad state";
if (overall_cluster===1){
  msg.payload="good state";
msg.payload.cluster_number=overall_cluster;
return msg;
```

Overall flow

Twitter count per location flow

- Dependencies
 - https://github.com/ttezel/twit
 - To be added in settings.js

Twitter count per location flow

- Functionalities
 - Register in Twitter Streaming API (needs credentials from a Twitter account inside the Twitlib function node)
 - REST Service to register a location bounding box for monitoring
 - http://localhost:188o/PostBox
 - REST Service to get current counters for all bounding boxes
 - http://localhost:1880/counters
 - REST Service to delete a bounding box from monitoring
 - http://localhost:1880/deleteBox