Ch.3: Functions and branching

Hans Petter Langtangen^{1,2}

Simula Research Laboratory 1 University of Oslo, Dept. of Informatics 2

Sep 4, 2014

```
Mathematical functions:
    from math import *
    y = sin(x)*log(x)

Other functions:
    n = len(somelist)
    integers = range(5, n, 2)

Functions used with the dot syntax (called methods):
    C = [5, 10, 40, 45]
    i = C.index(10)  # result: i=1
    C.append(50)
    C.apsert(2, 20)
```

We have used many Python functions

What is a function? So far we have seen that we put some objects in and sometimes get an object (result) out of functions. Now it is time to write our own functions!

Functions are one of the most import tools in programming

- Function = a collection of statements we can execute wherever and whenever we want
- Function can take input objects (arguments) and produce output objects (returned results)
- Functions help to organize programs, make them more understandable, shorter, reusable, and easier to extend

Python function for implementing a mathematical function

The mathematical function

$$F(C) = \frac{9}{5}C + 32$$

can be implemented in Python as follows:

Note:

- Functions start with def, then the name of the function, then a list of arguments (here C) the function header
- Inside the function: statements the function body
- Wherever we want, inside the function, we can "stop the function" and return as many values/variables we want

Functions can have as many arguments as you like

Make a Python function of the mathematical function

$$y(t) = v_0 t - \frac{1}{2}gt^2$$

```
def yfunc(t, v0):
    g = 9.81
    return v0*t - 0.5*g*t**2

# sample calls:
    y = yfunc(0.1, 6)
    y = yfunc(0.1, v0=6)
    y = yfunc(t=0.1, v0=6)
    y = yfunc(v0=6, t=0.1)
(Visualize execution)
```

Function arguments become local variables def yfunc(t, v0): g = 9.81 return v0*t - 0.5*g*t**2 v0 = 5 t = 0.6 y = yfunc(t, 3) (Visualize execution) Local vs global variables. When calling yfunc(t, 3), all these statements are in fact executed: t = 0.6 # arguments get values as in standard assignments v0 = 3 g = 9.81 return v0*t - 0.5*g*t**2 Inside yfunc, t, v0, and g are local variables, not visible outside yfunc and desroyed after return. Outside yfunc (in the main program), t, v0, and y are global variables, visible everywhere.

```
Test this:

def yfunc(t):
    print '1. local t inside yfunc:', t
    g = 9.81
    t = 0.1
    print '2. local t inside yfunc:', t
    return v0*t - 0.5*g*t**2

t = 0.6
    v0 = 2
    print '1. global t:', t
    print '2. global t:', t

(Visualize execution)

Question.

What gets printed?
```

```
Functions can return multiple values

Say we want to compute y(t) and y'(t) = v_0 - gt:

def yfunc(t, v0):
    g = 9.81
    y = v0*t - 0.5*g*t**2
    dydt = v0 - g*t
    return y, dydt

# call:
position, velocity = yfunc(0.6, 3)

Separate the objects to be returned by comma, assign to variables separated by comma. Actually, a tuple is returned:

>>> def f(x):
    return x, x**2, x**4

>>> s = f(2)
>>> s
(2, 4, 16)
>>> type(s)
<type 'tuple'>
>>> x, x2, x4 = f(2)  # same syntax as x, y = (obj1, obj2)
```

```
The yfunc(t,v0) function took two arguments. Could implement y(t) as a function of t only:

>>> def yfunc(t):
... g = 9.81
... return v0*t - 0.5*g*t**2
...
>>> t = 0.6
>>> yfunc(t)
...
NameError: global name 'v0' is not defined

Problem: v0 must be defined in the calling program program before we call yfunc!

>>> v0 = 5
>>> yfunc(0.6)
1.2342

Note: v0 and t (in the main program) are global variables, while the t in yfunc is a local variable.
```

```
Global variables can be changed if declared global

def yfunc(t):
    g = 9.81
    global vo # now v0 can be changed inside this function
    v0 = 9
    return v0+t - 0.5*g+t++2

v0 = 2 # global variable
print '1. v0'; , v0
print yfunc(0.8)
print '2. v0:', v0

(Visualize execution)

What gets printed?

1. v0: 2
4.0608
2. v0: 9

What happens if we comment out global v0?

1. v0: 2
4.0608
2. v0: 2

v0 in yfunc becomes a local variable (i.e., we have two v0)
```

Returning errors as well from the L(x, n) function

```
We can return more: 1) the first neglected term in the sum and 2) the error (\ln(1+x)-L(x;n)):

def \  L2(x,n): \\ x = float(x) \\ s = 0
for \ i \ in \ range(1, n+1): \\ s += (1.0/1)*(x/(1+x))**i
value \ of \ sum = s
first \ neglected \ term = (1.0/(n+1))*(x/(1+x))**(n+1)
from \ math \ import \ log \\ exact \ error = log(1+x) - value \ of \ sum \\ return \ value \ of \ sum, \ first \ neglected \ term, \ exact \ error
\# \ typical \ call: \\ x = 1.2; \ n = 100 \\ value, \ approximate \ error, \ exact \ error = L2(x, n)
```

Functions do not need to return objects

```
def somefunc(obj):
    print obj

return_value = somefunc(3.4)

Here, return_value becomes None because if we do not explicitly
return something, Python will insert return None.
```

Example on a function without return value

Keyword arguments are useful to simplify function calls and help document the arguments

Functions can have arguments of the form ${\tt name=value}, {\tt called}$ ${\tt keyword\ arguments}:$

def somefunc(arg1, arg2, kwarg1=True, kwarg2=0):
 print arg1, arg2, kwarg1, kwarg2

Examples on calling functions with keyword arguments

```
>>> def somefunc(arg1, arg2, kwarg1=True, kwarg2=0):
>>> print arg1, arg2, kwarg1, kwarg2
>>> somefunc('Hello', [1,2])  # drop kwarg1 and kwarg2
Hello [1, 2] True 0  # default values are used
>>> somefunc('Hello', [1,2], kwarg1='Hi')
Hello [1, 2] Hi 0  # kwarg2 has default value
>>> somefunc('Hello', [1,2], kwarg2='Hi')
Hello [1, 2] True Hi  # kwarg1 has default value
>>> somefunc('Hello', [1,2], kwarg2='Hi', kwarg1=6)
Hello [1, 2] 6 Hi  # specify all args

If we use name=value for all arguments in the call, their sequence can in fact be arbitrary:
>>> somefunc(kwarg2='Hello', arg1='Hi', kwarg1=6, arg2=[2])
Hi [2] 6 Hello
```

How to implement a mathematical function of one variable, but with additional parameteres?

Consider a function of t, with parameters A, a, and ω :

$$f(t; A, a, \omega) = Ae^{-at}\sin(\omega t)$$

Possible implementation.

Python function with t as positional argument, and A, a, and ω as keyword arguments:

```
from math import pi, exp, sin

def f(t, A=1, a=1, omega=2*pi):
    return A*exp(-a*t)*sin(omega*t)

v1 = f(0.2)
    v2 = f(0.2, omega=1)
    v2 = f(0.2, 1, 3) # same as f(0.2, A=1, a=3)
    v3 = f(0.2, omega=1, A=2.5)
    v4 = f(A=5, a=0.1, omega=1, t=1.3)
    v5 = f(t=0.2, A=3)
    v6 = f(t=0.2, A=3)
    w6 = f(t=0.2, A=3)
    w6 = f(t=0.2, A=3)
    w6 = f(t=0.2, B=3)
# illegal: keyword arg before positional
```

Doc strings are used to document the usage of a function

Important Python convention:

Document the purpose of a function, its arguments, and its return values in a *doc string* - a (triple-quoted) string written right after the function header.

```
def C2F(C):

"""Convert Celsius degrees (C) to Fahrenheit."""

return (9.0/5)*0 + 32

def line(x0, y0, x1, y1):

"""

Compute the coefficients a and b in the mathematical expression for a straight line y = a*x + b that goes through two points (x0, y0) and (x1, y1).

x0, y0: a point on the line (floats).

x1, y1: another point on the line (floats).

return: a, b (floats) for the line (y=a*x+b).

"""

a = (y1 - y0)/(x1 - x0)

b = y0 - a*x0

return a, b
```

Convention for input and output data in functions

- A function can have three types of input and output data:
 - input data specified through positional/keyword arguments
 - input/output data given as positional/keyword arguments that will be modified and returned
 - · output data created inside the function
- All output data are returned, all input data are arguments

```
def somefunc(i1, i2, i3, io4, io5, i6-value1, io7-value2):
    # modify to4, to5, to7; compute o1, o2, o3
    return o1, o2, o3, io4, io5, io7
The function arguments are
    pure input: i1, i2, i3, i6
```

The main program is the set of statements outside functions

```
from math import * # in main

def f(x): # in main

e = exp(-0.1*x)
s = sin(6*pi*x)
return e*s

x = 2
y = f(x) # in main
print 'f(%g)=%g', % (x, y) # in main
```

The execution starts with the first statement in the main program and proceeds line by line, top to bottom.

def statements define a function, but the statements inside the function are not executed before the function is called.

Python functions as arguments to Python functions

- Programs doing calculus frequently need to have functions as arguments in other functions, e.g.,
 - numerical integration: $\int_a^b f(x)dx$

• input and output: io4, io5, io7

- numerical differentiation: f'(x)
- numerical root finding: f(x) = 0
- All three cases need f as a Python function f(x)

Example: numerical computation of f''(x).

$$f''(x) \approx \frac{f(x-h) - 2f(x) + f(x+h)}{h^2}$$
 def diff2(f, x, h=1E-6):
 r = (f(x-h) - 2*f(x) + f(x+h))/float(h*h) return r

No difficulty with f being a function (more complicated in Matlab, C, C++, Fortran, Java, ...).

```
Application of the diff2 function
```

```
Code:

def g(t):
    return t**(-6)

# make table of g''(t) for 13 h values:
    for k in range(1,14):
        h = 10**(-1);
        print 'h=%.0e: %.5f' % (h, diff2(g, 1, h))
```

```
Output (g"(1) = 42):

h=1e-01: 44, 61504
h=1e-02: 42, 02521
h=1e-03: 42, 00025
h=1e-04: 42, 00000
h=1e-05: 41, 19999
h=1e-06: 42, 00074
h=1e-07: 41, 94423
h=1e-08: 47, 73959
h=1e-08: 47, 73959
h=1e-09: 666, 13381
h=1e-10: 0,00000
h=1e-12: -666133814, 77509
h=1e-12: -666133814, 77509
```

Round-off errors caused nonsense values in the table

- For $h < 10^{-8}$ the results are totally wrong!
- We would expect better approximations as h gets smaller
- ullet Problem 1: for small h we subtract numbers of approx equal size and this gives rise to round-off errors
- Problem 2: for small h the round-off errors are multiplied by a big number
- Remedy: use float variables with more digits
- Python has a (slow) float variable (decimal.Decimal) with arbitrary number of digits
- ullet Using 25 digits gives accurate results for $h \leq 10^{-13}$
- Is this really a problem? Quite seldom other uncertainies in input data to a mathematical computation makes it usual to have (e.g.) $10^{-2} \leq h \leq 10^{-6}$

def f(x): return x**2 - 1 The lambda construction can define this function in one line: f = lambda x: x**2 - 1 In general, somefunct = lambda a1, a2, ...: some_expression is equivalent to def somefunc(a1, a2, ...): return some_expression Lambda functions can be used directly as arguments in function calls: value = someotherfunc(lambda x, y, z: x*y*3*z, 4)

```
Old code:

def g(t):
    return t**(-6)
    dgdt = diff2(g)
    print dgdt

New more compact code with lambda:
    dgdt = diff2(lambda t: t**(-6))
    print dgdt
```

Sometimes we want to perform different actions depending on a condition. Example: $f(x) = \begin{cases} \sin x, & 0 \le x \le \pi \\ 0, & \text{otherwise} \end{cases}$ A Python implementation of f needs to test on the value of x and branch into two computations: $from \ \text{math import sin, pi}$ $def \ f(x): \\ if \ 0 <= x <= pi: \\ return \ sin(x) \\ else: \\ return \ 0 \end{cases}$ $print \ f(0.5)$ $print \ f(0.5)$ $print \ f(5*pi)$ (Visualize execution)

```
Example on multiple branching N(x) = \begin{cases} 0, & x < 0 \\ x, & 0 \le x < 1 \\ 2 - x, & 1 \le x < 2 \\ 0, & x \ge 2 \end{cases}
Python implementation with if-branching.

\text{def N}(x): \\ \text{if } x < 0: \\ \text{return 0} \\ \text{elif } 0 < x < 1: \\ \text{return x} \\ \text{elif } 1 < x < 2: \\ \text{return 2} - x \\ \text{elif } x > 2: \\ \text{return 0} \end{cases}
```

```
A common construction is

if condition:
    variable = value1
    else:
        variable = value2

This test can be placed on one line as an expression:
    variable = (value1 if condition else value2)

Example:

def f(x):
    return (sin(x) if 0 <= x <= 2*pi else 0)
```

We shall write special *test functions* to verify functions

```
def double(x):  # some function
    return 2*x

def test_double():  # associated test function
    x = 4
    exact = 8  # expected result from function double
    computed = double(x)
    success = computed == exact # boolean value: test passed
    msg = 'computed %s, expected %s' % (computed, exact)
    assert success, msg
```

Rules for test functions

- name begins with test_
- no arguments
- must have an assert success statement, where success is True if the test passed and False otherwise (assert success, msg prints msg on failure)

Why write test functions according to these rules?

- Easy to recognize where functions are verified
- Test frameworks, like nose and pytest, can automatically run all your test functions (in a folder tree) and report if any bugs have sneaked in

```
Terminal> nosetests -s
Terminal> pytest -s .
```

Unit tests.

A test function as test_double() is often referred to as a *unit* test since it tests a small unit (function) of a program. When all unit tests work, the whole program is supposed to work.

```
If tests:
    if x < 0:
        value = -1
    elif x >= 0 and x <= 1:
        value = x
    else:
        value = 1

User-defined functions:

def quadratic_polynomial(x, a, b, c)
        value = a*x*x + b*x + c
        derivative = 2*a*x + b
        return value, derivative

# function call:
    x = 1
    p, dp = quadratic_polynomial(x, 2, 0.5, 1)
    p, dp = quadratic_polynomial(x=x, a=-4, b=0.5, c=0)

Positional arguments must appear before keyword arguments:
    def f(x, A=1, a=1, w=pi):
        return A*exp(-a*x)*sin(w*x)</pre>
```

A summarizing example for Chapter 3; problem

An integral

$$\int_{a}^{b} f(x) dx$$

can be approximated by Simpson's rule:

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{3n} \left(f(a) + f(b) + 4 \sum_{i=1}^{n/2} f(a + (2i-1)h) + 2 \sum_{i=1}^{n/2-1} f(a+2ih) \right)$$

Problem: make a function Simpson(f, a, b, n=500) for computing an integral of f(x) by Simpson's rule. Call Simpson(...) for $\frac{3}{2}\int_0^\pi \sin^3 x dx$ (exact value: 2) for n=2.6.12.100.500.

```
The program: function for computing the formula
```

The program: function, now with test for possible errors

```
def Simpson(f, a, b, n=500):
    if a > b:
        print 'Error: a=%g > b=%g' % (a, b)
        return None

# Check that n is even
    if n % 2 != 0:
        print 'Error: n=%d is not an even integer!' % n
        n = n+1 # make n even

# as before...
...
return integral
```

```
def h(x):
    return (3./2)*sin(x)**3
from math import sin, pi

def application():
    print 'Integral of 1.5*sin'3 from 0 to pi:'
    for n in 2, 6, 12, 100, 500:
        approx = Simpson(h, 0, pi, n)
        print 'n=%3d, approx=*(18.16f, error=%9.2E' % \
        (n, approx, 2-approx)
application()
```

```
The program: verification (with test function)

Property of Simpson's rule: 2nd degree polynomials are integrated exactly!

def test_Simpson():  # rule: no arguments
    """Check that quadratic functions are integrated exactly.*""
    a = 1.5
    b = 2.0
    n = 8
    g = lambda x: 3*x**2 - 7*x + 2.5  # test integrand
    G = lambda x: x**3 - 3.5*x**2 + 2.5*x  # integrand of g
    exact = 0(b) - 0(a)
    approx = Simpson(g, a, b, n)
    success = abs(exact - approx) < 1E-14  # tolerance for floats
    msg = 'exact**/g, approx*/g' (exact, approx)
    assert success, msg

Can either call test_Simpson() or run nose or pytest:
    Terminal> nosetests -s Simpson.py
    Terminal> pytest -s Simpson.py
    Terminal> pytest -s Simpson.py
    Terminal> pytest -s Simpson.py
    Terminal> pytest -s Simpson.py
    Terminal> nosetests -s Simpson.py
    Terminal> pytest -s Simpson.py
```