Kolokwium z Rachunku Prawdopodobieństwa II

gr.I, 12 grudnia

Spośród poniższych sześciu zadań należy **wybrać pięć** i napisać pełne rozwiązanie każdego z nich na osobnej kartce podpisanej u góry iminiem, nazwiskiem, numerem indeksu i numerem grupy (grupa I). Każde z zadań będzie oceniane w skali 0-10. Można (i należy) wykorzystywać fakty udowodnione na wykładzie i ćwiczeniach.

- 1. a) Wyznacz wszystkie liczby $a, b, c \in \mathbb{R}$ takie, że $\varphi(t) = e^{at^2 + itb} \cos^2(ct)$ jest funkcją charakterystyczną pewnej zmiennej losowej.
 - b) Oblicz wartość oczekiwaną i wariancję zmienej losowej o funkcji charakterystycznej takiej jak w punkcie a).
- 2. Zmienna S_n ma rozkład Poissona z parametrem 5
n. Czy ciągi $\frac{S_n}{n}$, $\frac{S_n-5n}{\sqrt{n}}$ oraz $\sqrt{S_n}-\sqrt{5n}$ są zbieżne według rozkładu? W przypadku pozytywnej odpowiedzi wyznacz odpowiednie granice.
- 3. Załóżmy, że $S_n = X_1 + X_2 + \ldots + X_n$ oraz $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$ dla $n = 1, 2, \ldots$, gdzie X_1, X_2, \ldots są niezależnymi zmiennymi losowymi o rozkładzie jednostajnym na [-2, 2].
 - a) Znajdź wszystkie ciągi a_n takie, że $(S_n^3 + a_n S_n, \mathcal{F}_n)_{n\geqslant 1}$ jest martyngałem
 - b) Niech $\tau := \inf\{n: S_n \geqslant \sqrt{n+3}\}$. Czy τ jest momentem zatrzymania względem (\mathcal{F}_n) ?
- 4. Dla każdego $n=1,2,\ldots$ zmienne X_n i Y_n są niezależne i mają jednakowy rozkład. Ponadto zmienne $\min(X_n,Y_n)$ zbiegają według rozkładu do zmiennej o rozkładzie jednostajnym na [1,4]. Czy zmienne $\max(X_n,Y_n)$ muszą być zbieżne według rozkładu? Jeśli tak, to do jakiej granicy?
- 5. Pan Abacki przyjeżdża do pracy tramwajem, a wraca taksówką. Czas dojazdu tramwajem jest zmienną losową o średniej 40 minut i standardowym odchyleniu 4 minut, a taksówką 20 minut i standardowym odchyleniu 3 minut. Oblicz przybliżone prawdopodobieństwo tego, że w ciągu 100 kolejnych dni roboczych pan Abacki będzie dojeżdżał do pracy o 34 godziny dłużej niż z niej wracał.
- 6. Wykaż, że ciąg zmiennych losowych (X_n) jest ciasny wtedy i tylko wtedy, gdy dla dowolnego ciągu liczbowego (a_n) zbieżnego do zera ciąg (a_nX_n) zbiega do zera według prawdopodobieństwa.

Kolokwium z Rachunku Prawdopodobieństwa II

gr.II, 12 grudnia

Spośród poniższych sześciu zadań należy **wybrać pięć** i napisać pełne rozwiązanie każdego z nich na osobnej kartce podpisanej u góry iminiem, nazwiskiem, numerem indeksu i numerem grupy (grupa II). Każde z zadań będzie oceniane w skali 0-10. Można (i należy) wykorzystywać fakty udowodnione na wykładzie i ćwiczeniach.

- 1. a) Wyznacz wszystkie liczby $a, b, c \in \mathbb{R}$ takie, że $\varphi(t) = \cos^2(at)e^{-bt^2+itc}$ jest funkcją charakterystyczną pewnej zmiennej losowej.
 - b) Oblicz wartość oczekiwaną i wariancję zmienej losowej o funkcji charakterystycznej takiej jak w punkcie a).
- 2. Zmienna S_n ma rozkład Poissona z parametrem 3n. Czy ciągi $\frac{S_n}{n}$, $\frac{S_n-3n}{\sqrt{n}}$ oraz $\sqrt{S_n} \sqrt{3n}$ są zbieżne według rozkładu? W przypadku pozytywnej odpowiedzi wyznacz odpowiednie granice.
- 3. Załóżmy, że $S_n = X_1 + X_2 + \ldots + X_n$ oraz $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$ dla $n = 1, 2, \ldots$, gdzie X_1, X_2, \ldots są niezależnymi zmiennymi losowymi o rozkładzie jednostajnym na [-4, 4].
 - a) Znajdź wszystkie ciągi a_n takie, że $(S_n^3 a_n S_n, \mathcal{F}_n)_{n\geqslant 1}$ jest martyngałem.
 - b) Niech $\tau := \inf\{n: S_n \geqslant \sqrt{n+2}\}$. Czy τ jest momentem zatrzymania względem (\mathcal{F}_n) ?
- 4. Dla każdego n = 1, 2, ... zmienne X_n i Y_n są niezależne i mają jednakowy rozkład. Ponadto zmienne $\min(X_n, Y_n)$ zbiegają według rozkładu do zmiennej o rozkładzie jednostajnym na [-1, 3]. Czy zmienne $\max(X_n, Y_n)$ muszą być zbieżne według rozkładu? Jeśli tak, to do jakiej granicy?
- 5. Pan Abacki przyjeżdża do pracy tramwajem, a wraca taksówką. Czas dojazdu tramwajem jest zmienną losową o średniej 40 minut i standardowym odchyleniu 6 minut, a taksówką 25 minut i standardowym odchyleniu 8 minut. Oblicz przybliżone prawdopodobieństwo tego, że w ciągu 100 kolejnych dni roboczych pan Abacki będzie dojeżdżał do pracy o 35 godzin dłużej niż z niej wracał.
- 6. Wykaż, że ciąg zmiennych losowych (X_n) jest ciasny wtedy i tylko wtedy, gdy dla dowolnego ciągu liczbowego (a_n) zbieżnego do zera ciąg (a_nX_n) zbiega do zera według prawdopodobieństwa.