第1節 確率分布 53

4 確率変数の和と期待値

ここでは2つの確率変数X,Yの確率分布について考えてみよう。

2つの確率変数 X, Yについて, X=a かつ Y=b となる確率を

P(X=a, Y=b) で表すことにする。

例 1,2の数が書かれたカードが,それぞ 6 れ5枚,3枚ある。この8枚のカー から1枚を引き、カードに書かれた をXとする。引いたカードをもとに さずにもう1回引き、カードに書か た数をYとする。このとき,

にぞ	X^{Y}	1	2	î
-ド c数	1	$\frac{5}{8} \cdot \frac{4}{7}$	$\frac{5}{8} \cdot \frac{3}{7}$	20,00
に戻	2	$\frac{3}{8} \cdot \frac{5}{7}$	$\frac{3}{8} \cdot \frac{2}{7}$	2
いれ	計	35 56	<u>21</u> 56	

P(X=a, Y=b) (a, b=1, 2) の値を求めると、上の表のようになる。

一般に、2つの確率変数X、Yについて、

 $X=x_i$ かつ $Y=y_j$ となる確率を $P(X=x_i, Y=y_j)=p_{ij}$

 $(i=1, 2, \dots, m, j=1, 2, \dots, n)$ とおくと、右の表のように、すべての組 (x_i, y_i) に対して、確率 p_{ij} が定まる。この

20 対応関係を*XとYの* **同時分布** という。 右の表から、各 x_i 、 y_i に対して、

X^{Y}	y_1	y_2	 y_n	計
x_1	p ₁₁	p ₁₂	 p_{1n}	p_1
x_2	p ₂₁	p 22	 p_{2n}	p ₂
:	:	:	:	:
x_m	p_{m1}	p_{m2}	 p_{mn}	p_n
計	q_1	q_2	 q_n	1

 $P(X=x_i) = \sum_{i=1}^{n} p_{ij} = p_i, \quad P(Y=y_j) = \sum_{i=1}^{m} p_{ij} = q_j$

となる。したがって、X、Yの確率分布は、それぞれ次の表のようになる。

	X	x_1	x_2	 x_m	計
ĺ	P	Ďı	p 2	 D_m	1

X	x_1	x_2	 x_m	計	Y	<i>y</i> ₁	y_2	 y_n	計
P	p_1	p ₂	 p_m	1	P	q_1	q_2	 q_n	1

これらの対応関係をそれぞれ **X の周辺分布**,**Y の周辺分布** という。

例 6

1,2の数が書かれたカードが、それぞれ5枚、3枚ある。この8枚のカードから1枚 を引き、カードに書かれた数を X とする。引いたカードを**もとに戻さずに**もう 1回引き、カードに書かれた数を Y とする。

※ ステップを踏みながら例6を理解しよう。

(1). 確率 P(X = 1, Y = 1) を求めよう。

X=1 8 枚のカードから 1 枚引いたときに 1 が出るのは $\frac{5}{8}$ Y=1 残り 7 枚のカードから 1 枚引いたときに 1 が出るのは $\frac{4}{7}$ よって, $P(X=1,Y=1)=\frac{5}{8}\times\frac{4}{7}=\frac{20}{56}$ ※ 分布を考えるときは約分しない。

(2). 確率 P(X = 1, Y = 2) を求めよう。

(3). 確率 P(X = 2, Y = 1) を求めよう。

(4). 確率 P(X = 2, Y = 2) を求めよう。

(5). ここまでの結果を利用して、下の表を埋めよう。

※ この表を X と Y の同時分布という。

(6). $X \ge Y$ の同時分布から、X,Y の確率分布を探して表を埋めよう。

X	1	2	計
p			

X	1	2	計		Y	1	2	計
p					p			
* X	の周辺分	·布 = X 0	D確率分 [:]	 	Y	の周辺分布	5 = Y の{	確率分布

54 第2章 統計的な推測

確率変数の和の期待値

2つの確率変数 X, Yの和 X+Y もまた確率変数である。 X+Y の確 率分布と期待値について考えてみよう。

たとえば、X、Yの確率分布が、それぞれ次の表で与えられたとする。

X	x_1	x_2	計
P	p_1	p ₂	1

1					
	Y	y_1	y_2	計	
	P	q_1	q_2	1	

このとき、X、Y の期待値は、それぞれ次のようになる。

 $E(X) = x_1 p_1 + x_2 p_2$

 $E(Y) = v_1 q_1 + v_2 q_2$

また、確率変数 X、Y を同時に考えた Xとき, その同時分布が右の表のようにな っているとすると、

 $p_{11}+p_{12}=p_1, \quad p_{21}+p_{22}=p_2$ $p_{11}+p_{21}=q_1, \quad p_{12}+p_{22}=q_2$

このとき、X、Y の和 X+Y の確率分布は、次の表のようになる。

X+Y	$x_1 + y_1$	$x_1 + y_2$	$x_2 + y_1$	$x_2 + y_2$	計
P	p ₁₁	p ₁₂	p ₂₁	p ₂₂	1

これより、X+Yの期待値は、次のように計算できる。

 $E(X+Y)=(x_1+y_1)p_{11}+(x_1+y_2)p_{12}+(x_2+y_1)p_{21}+(x_2+y_2)p_{22}$

 $= x_1(p_{11}+p_{12})+x_2(p_{21}+p_{22})+y_1(p_{11}+p_{21})+y_2(p_{12}+p_{22})$

 $= x_1 p_1 + x_2 p_2 + y_1 q_1 + y_2 q_2$

=E(X)+E(Y)

一般に、確率変数の和の期待値について、次のことが成り立つ。

確率変数の和の期待値

E(X+Y)=E(X)+E(Y)

第1節 確率分布 55

表に2または10, 裏に3または 6 の数が書かれたカードが 13 枚 あり、その表と裏の内訳は、次の 表のようになっているとする。

この13枚のカードの中から1枚を引くとき、表に書かれた数Xと裏 に書かれた数Yの和X+Yの期待値を求めてみよう。

X、Yの確率分布と期待値は、それぞれ次のようになる。

	X	2	10	計
	P	<u>6</u> 13	$\frac{7}{13}$	1
r(·	v)_	a 6	. 103	, 7 _

Y	3	6	計
P	<u>8</u> 13	<u>5</u> 13	1

 $E(X) = 2 \times \frac{6}{13} + 10 \times \frac{7}{13} = \frac{82}{13}, \quad E(Y) = 3 \times \frac{8}{13} + 6 \times \frac{5}{13} = \frac{54}{13}$

よって, $E(X+Y)=E(X)+E(Y)=\frac{82}{12}+\frac{54}{12}=\frac{136}{12}$

補足 右の表のように例7の確率を えるとき、確率 p11, p12, p21, p22 は まらない。このように、XとYの同 分布が定まらない場合でも, X の周 分布とYの周辺分布だけからX+Yの期待値を求めることができる。

	13	13	13	
考	X^{Y}	3	6	計
定	2	p ₁₁	p ₁₂	<u>6</u> 13
辺	10	p ₂₁	p ₂₂	$\frac{7}{13}$
7	計	8 13	$\frac{5}{13}$	1

1個のさいころを2回投げるとき、出る目の和の期待値を求めよ。

3つ以上の確率変数についても、前ページと同様の性質が成り立つ。 20 たとえば, 3つの確率変数 X, Y, Z に対して,

E(X+Y+Z)=E(X)+E(Y)+E(Z)

▶問 500 円硬貨 1 枚, 100 円硬貨 1 枚, 10 円硬貨 1 枚を投げるとき,表が出た

硬貨の金額の和の期待値を求めよ。

例 7

表に2または10, 裏に3または6の数が書かれたカードが13枚あり, その表と裏 の内訳は、次の表のようになっているとする。

この 13 枚のカードの中から 1 枚を引くとき、表に書かれた数 X と裏に書かれた数 Y の和 X + Y の期待値を求めてみよう。

※ ステップを踏みながら例7を理解しよう。

(1). X + Y の取り得る値を下の表を使って求めよう。

(2). 下の表を利用して X + Y の確率分布を求めよう。

と思ったけど、何もわかりません。orz

X + Y	5	8	13	16	計
p					1

例えば、カードは全部で13通り。

X + Y = 5 になるのは X = 2,Y = 3 のときだけ。

よって表が2, 裏が3のカードを数えればいいのですが・・・何枚あるか分かりま すか。まったく分かりません。つまり P(X + Y = 5) は求められない!

この方法ではE(X+Y)を求めることはできません。

条件を満たす13枚のカードを実際に作れば求められます。が・・・大変です。

そこで E(X + Y) = E(X) + E(Y) の登場です!

(3). 下の表を埋めて確率分布を作り、期待値 E(X)、E(Y) を求めよう。

X	2	10	計
p			1

3 6 計

E(X) =

E(Y) =

(4). X + Y の期待値 E(X + Y) を求めよう。

第1節 確率分布 55

表に 2 または 10, 裏に 3 または 6 の数が書かれたカードが 13 枚 あり, その表と裏の内訳は, 次の表のようになっているとする。

				•	
善)	数	2	10	計	
₹)	枚数	6	7	13	

する。			,	_	
計	(車)	数	3	6	計
13	(表)	枚数	8	5	13

この 13 枚のカードの中から 1 枚を引くとき、表に書かれた数Xと裏に書かれた数Yの和 X+Y の期待値を求めてみよう。

X, Yの確率分布と期待値は、それぞれ次のようになる。

X	2	10	計
P	$\frac{6}{13}$	$\frac{7}{13}$	1

Y	3	6	計
P	<u>8</u> 13	$\frac{5}{13}$	1

 $E(X) = 2 \times \frac{6}{13} + 10 \times \frac{7}{13} = \frac{82}{13}, \quad E(Y) = 3 \times \frac{8}{13} + 6 \times \frac{5}{13} = \frac{54}{13}$

よって, $E(X+Y)=E(X)+E(Y)=\frac{82}{13}+\frac{54}{13}=\frac{136}{13}$

補足 右の表のように例 7 の確率を考えるとき、確率 p_{11} , p_{12} , p_{21} , p_{22} は定まらない。このように、X と Y の同時分布が定まらない場合でも、X の周辺分布と Y の周辺分布だけから X+Y の期待値を求めることができる。

X	3	6	計
2	p ₁₁	p ₁₂	$\frac{6}{13}$
10	p ₂₁	p ₂₂	$\frac{7}{13}$
計	$\frac{8}{13}$	$\frac{5}{13}$	1

8

1個のさいころを2回投げるとき、出る目の和の期待値を求めよ。

3つ以上の確率変数についても、前ページと同様の性質が成り立つ。

20 たとえば, 3つの確率変数 X, Y, Z に対して,

E(X+Y+Z)=E(X)+E(Y)+E(Z)

| 500 円硬貨 1 枚, 100 円硬貨 1 枚, 10 円硬貨 1 枚を投げるとき, 表が出た | 硬貨の金額の和の期待値を求めよ。

問8

1個のサイコロを2回投げるとき、出る目の和の期待値を求めよ。

※ 数学 A 風に解いてみよう。

(1). 下の表を埋めよう。また、出る目の和Zのとり得る値を求めよう。

和	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

Z =

(2). 下の表を埋めて出る目の和 Z の確率分布を作ろう。

\overline{Z}	2	3	4	5	6	7	8	9	10	11	12	計
p												

(3). 出る目の和の期待値を求めよう。

和の期待値

$$E(X+Y) = E(X) + E(Y)$$

X+Y の期待値が欲しいなら,X,Y の期待値を求めればいい!

問8

1個のサイコロを2回投げるとき、出る目の和の期待値を求めよ。

※ 和の期待値の公式を使ってみよう。

(1). サイコロ 1 個目を投げるとき、出る目 X の期待値を求めよう。

計

E(X) =

(2). サイコロ 2 個目を投げるとき、出る目 Y の期待値を求めよう。

Y	1	2	3	4	5	6	計
p							

E(Y) =

(3). 2 個のサイコロを投げるとき、出る目の和 X,Y の期待値を求めよう。

$$E(X+Y) = E(X) + E(Y)$$
 より

和の期待値

$$E(X + Y + Z) = E(X) + E(Y) + E(Z)$$

・・・つまり何個でも OK!

問 9

500 円硬貨 1 枚, 100 円硬貨 1 枚, 10 円硬貨 1 枚を投げるとき, 表が出た硬貨の金額の和の期待値を求めよ。

※確率変数が何個になっても和の期待値の公式が使えます♪

(1). 500 円硬貨 1 枚を投げるとき、表が出た硬貨の金額 X の期待値 E(X) を求めよ。

X	0	500	計
p			
	<i>y</i>		

E(X) =

(2). 100 円硬貨 1 枚を投げるとき、表が出た硬貨の金額 Y の期待値 E(Y) を求めよ。

Y	0	100	計
p			
Р			

E(Y) =

(3). 10 円硬貨 1 枚を投げるとき、表が出た硬貨の金額 Z の期待値 E(Z) を求めよ。

Z	0	10	計			
p						
E(Z)						

E(Z) =

(4). E(X+Y+Z) を求めよ。

$$E(X+Y+Z) = E(X) + E(Y) + E(Z)$$
 より

おつかれさまでした。

すべて取り組んだら今回の学びを「振り返り」ましょう。

・評価2点・・・記入できた。

・評価2点・・・文章で書けた。

・評価2点・・・2文以上書けた。

Y. やったこと

今回の課題で学んだことを自分のことばでまとめよう

W. わかったこと

今回の課題で理解したことを自分のことばでまとめよう

次にやること

次の課題に向けて何をすべきか自分のことばで残しましょう

※青い枠が課題です。青い枠内で解いてください。 ※赤い枠も課題です。こちらは記述問題としてチェックします。途中もしっかりと残しておこう。 ※少しずつ○付けをしていきます。1週間ぐらいしたら評価を行います。お早めに。