Lecture 10: Boosting

STATS 202: Statistical Learning and Data Science

Linh Tran

tranlm@stanford.edu

Department of Statistics Stanford University

July 28, 2025

Announcements

- ► Midterm grades will be out soon
- Homework 3 due today
 - Homework 4 is posted
- Final predictions due in 2 weeks
- Section this Friday goes into more final project details

Outline

- ► Boosting introduction
- ► Boosting vs bagging
- Boosting remarks
- ► AdaBoost
- Boosting training error
- ► Gradient boosting
- Regularization
- Random tips

Recall

- Decision trees partition our feature space and make predictions within each partitioned region.
- Bagging reduces the high variability of decision trees.
- ► Random forest further reduces variance via random variable selection.

Recall

- Decision trees partition our feature space and make predictions within each partitioned region.
- Bagging reduces the high variability of decision trees.
- Random forest further reduces variance via random variable selection.

Question: Is there another way of improving the performance of decision trees?

Boosting uses a set of weak learners (e.g. decision trees) to create a strong one.

Boosting uses a set of weak learners (e.g. decision trees) to create a strong one.

The general algorithm is:

1. Fit an initial \hat{f}_n^0 to the data and compute residuals r_i .

Boosting uses a set of weak learners (e.g. decision trees) to create a strong one.

The general algorithm is:

- 1. Fit an initial \hat{f}_n^0 to the data and compute residuals r_i .
- 2. For b = 1, ..., B:
 - ▶ Fit a weak leaner \hat{f}_n^b on the residuals.

Boosting uses a set of weak learners (e.g. decision trees) to create a strong one.

The general algorithm is:

- 1. Fit an initial \hat{f}_n^0 to the data and compute residuals r_i .
- 2. For b = 1, ..., B:
 - Fit a weak leaner \hat{f}_n^b on the residuals.
 - With learning rate λ_b , update prediction to:

$$\hat{f}_n \leftarrow \hat{f}_n + \lambda_b \hat{f}_n^b. \tag{1}$$

Boosting uses a set of weak learners (e.g. decision trees) to create a strong one.

The general algorithm is:

- 1. Fit an initial \hat{f}_n^0 to the data and compute residuals r_i .
- 2. For b = 1, ..., B:
 - Fit a weak leaner \hat{f}_n^b on the residuals.
 - With learning rate λ_b , update prediction to:

$$\hat{f}_n \leftarrow \hat{f}_n + \lambda_b \hat{f}_n^b. \tag{1}$$

Update the residuals

$$r_i \leftarrow r_i - \lambda_b \hat{f}_n^b(x_i).$$
 (2)

Boosting uses a set of weak learners (e.g. decision trees) to create a strong one.

The general algorithm is:

- 1. Fit an initial \hat{f}_n^0 to the data and compute residuals r_i .
- 2. For b = 1, ..., B:
 - Fit a weak leaner \hat{f}_n^b on the residuals.
 - With learning rate λ_b , update prediction to:

$$\hat{f}_n \leftarrow \hat{f}_n + \lambda_b \hat{f}_n^b. \tag{1}$$

Update the residuals

3. Output prediction, e.g.
$$r_i \leftarrow r_i - \lambda_b \hat{f}_n^b(x_i)$$
. (2)

$$\hat{f}_n(x) = \sum_{b=1}^B \lambda_b \hat{f}_n^b(x). \tag{3}$$

Figure 10.2

Boosting hyperparameters

Hyper-parameters to consider when applying a boosting model:

- ► The number of learners (aka trees) B to use.
- ▶ The shrinkage parameter λ_b .
- ▶ The parameters of the learner (e.g. splits in each tree).

Typically, these are found via *cross-validation*.

Boosting vs bagging

Bagging: For $b = 1, \dots, B$:

- 1. Created a bootstrapped sample, P_n^b .
- 2. Get estimate $\hat{f}_n^b(x)$ using P_n^b .

Average the estimates, i.e.

$$\hat{f}_n^{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^B \hat{f}_n^b(x).$$

- $ightharpoonup P_n$ is varied for each fit.
- Designed to reduce variance.

Boosting vs bagging

Bagging: For $b = 1, \dots, B$:

- 1. Created a bootstrapped sample, P_n^b .
- 2. Get estimate $\hat{f}_n^b(x)$ using P_n^b .

Average the estimates, i.e.

$$\hat{f}_n^{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^B \hat{f}_n^b(x).$$

- $ightharpoonup P_n$ is varied for each fit.
- Designed to reduce variance.

Boosting: For $b = 1, \dots, B$:

- 1. Get estimate $\hat{f}_n^b(x)$ for the residuals r^{b-1} .
- 2. Update residuals $r_i^b = r_i^{b-1} \lambda_b \hat{f}_n^b(x_i)$.

Sum the estimates, i.e.

$$\hat{f}_n^{\text{boost}}(x) = \sum_{b=1}^B \lambda_b \hat{f}_n^b(x).$$

- 'Y' is varied for each fit.
- Designed to reduce bias.

Remarks:

▶ Boosting has been called the "best off-the-shelf classifier in the world".

- ▶ Boosting has been called the "best off-the-shelf classifier in the world".
- ▶ Boosting (generally) works by upweighing points at each iteration which are misclassified.

- ▶ Boosting has been called the "best off-the-shelf classifier in the world".
- ▶ Boosting (generally) works by upweighing points at each iteration which are misclassified.
- Boosting can use any classifier as its weak learner (base classifier) but decision trees are by far the most popular.

- ▶ Boosting has been called the "best off-the-shelf classifier in the world".
- ▶ Boosting (generally) works by upweighing points at each iteration which are misclassified.
- Boosting can use any classifier as its weak learner (base classifier) but decision trees are by far the most popular.
- Boosting learns slowly, first using the samples that are easiest to predict, then slowly down weigh these cases, moving on to harder samples.

- ▶ Boosting has been called the "best off-the-shelf classifier in the world".
- ▶ Boosting (generally) works by upweighing points at each iteration which are misclassified.
- Boosting can use any classifier as its weak learner (base classifier) but decision trees are by far the most popular.
- Boosting learns slowly, first using the samples that are easiest to predict, then slowly down weigh these cases, moving on to harder samples.
- ▶ Boosting can give zero training error, but rarely overfits.

- ▶ Boosting has been called the "best off-the-shelf classifier in the world".
- ▶ Boosting (generally) works by upweighing points at each iteration which are misclassified.
- Boosting can use any classifier as its weak learner (base classifier) but decision trees are by far the most popular.
- Boosting learns slowly, first using the samples that are easiest to predict, then slowly down weigh these cases, moving on to harder samples.
- Boosting can give zero training error, but rarely overfits.
- ► Can be thought of as fitting a model on multiple data sets.

A popular earlier version of boosting is AdaBoost:

1. Initialize the observation weights $w_i = 1/n$: i = 1, ..., n.

A popular earlier version of boosting is AdaBoost:

- 1. Initialize the observation weights $w_i = 1/n$: i = 1, ..., n.
- 2. For b = 1, ..., B:
 - a Fit a classifier $G^b(x)$ to the training data using weights w_i .

A popular earlier version of boosting is AdaBoost:

- 1. Initialize the observation weights $w_i = 1/n$: i = 1, ..., n.
- 2. For b = 1, ..., B:
 - a Fit a classifier $G^b(x)$ to the training data using weights w_i .
 - **b** Compute

$$err_b = \frac{\sum_{i=1}^{n} w_i \mathbb{I}(y_i \neq G^b(x_i))}{\sum_{i=1}^{n} w_i}$$
 (4)

A popular earlier version of boosting is AdaBoost:

- 1. Initialize the observation weights $w_i = 1/n$: i = 1, ..., n.
- 2. For b = 1, ..., B:
 - a Fit a classifier $G^b(x)$ to the training data using weights w_i .
 - **b** Compute

$$err_b = \frac{\sum_{i=1}^{n} w_i \mathbb{I}(y_i \neq G^b(x_i))}{\sum_{i=1}^{n} w_i}$$
 (4)

c Compute $\alpha_b = \log((1 - err_b)/err_b)$

A popular earlier version of boosting is AdaBoost:

- 1. Initialize the observation weights $w_i = 1/n$: i = 1, ..., n.
- 2. For b = 1, ..., B:
 - a Fit a classifier $G^b(x)$ to the training data using weights w_i .
 - **b** Compute

$$err_b = \frac{\sum_{i=1}^{n} w_i \mathbb{I}(y_i \neq G^b(x_i))}{\sum_{i=1}^{n} w_i}$$
 (4)

- c Compute $\alpha_b = \log((1 err_b)/err_b)$
- d Set $w_i \leftarrow w_i \cdot \exp[\alpha_b \mathbb{I}(y_i \neq G^b(x_i))] : i = 1, ..., n.$

A popular earlier version of boosting is AdaBoost:

- 1. Initialize the observation weights $w_i = 1/n$: i = 1, ..., n.
- 2. For b = 1, ..., B:
 - a Fit a classifier $G^b(x)$ to the training data using weights w_i .
 - **b** Compute

$$err_b = \frac{\sum_{i=1}^{n} w_i \mathbb{I}(y_i \neq G^b(x_i))}{\sum_{i=1}^{n} w_i}$$
 (4)

- c Compute $\alpha_b = \log((1 err_b)/err_b)$
- d Set $w_i \leftarrow w_i \cdot \exp[\alpha_b \mathbb{I}(y_i \neq G^b(x_i))] : i = 1, ..., n.$
- 3. Output $G_B(x) = \operatorname{sign}\left(\sum_{b=1}^B \alpha_b G^b(x)\right)$.

FINAL CLASSIFIER

$$G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$$

Weighted Sample $\longrightarrow G_3(x)$

Weighted Sample $\longrightarrow G_2(x)$

Training Sample $\longrightarrow G_1(x)$

Figure 10.1

AdaBoost example

Features

Measured energy level within one of 60 frequency bands

Label

▶ Indicator object is a Mine (1) vs Rock (0)

AdaBoost example

AdaBoost applied to the Sonar Data.

Question: What happens after the training error reaches 0?

Question: What happens after the training error reaches 0?

Define:

$$G_B^*(x) = \frac{\sum_{b=1}^{B} \alpha_b G^b(x)}{\sum_{b=1}^{B} \alpha_b}$$
 (5)

Question: What happens after the training error reaches 0?

Define:

$$G_B^*(x) = \frac{\sum_{b=1}^{B} \alpha_b G^b(x)}{\sum_{b=1}^{B} \alpha_b}$$
 (5)

We can look at voting margins for our training data, i.e.

$$margin(x) = y * G_B^*(x)$$
 (6)

Question: What happens after the training error reaches 0?

Define:

$$G_B^*(x) = \frac{\sum_{b=1}^{B} \alpha_b G^b(x)}{\sum_{b=1}^{B} \alpha_b}$$
 (5)

We can look at voting margins for our training data, i.e.

$$margin(x) = y * G_B^*(x)$$
 (6)

n.b. Letting $err_b \leq 1/2 - \gamma$, then $Error_{train} \leq (\sqrt{1 - 4\gamma^2})^B$

Weak learners

Question: How "weak" should our learners be?

Figure 10.9

Boosting vs. random forests

Example: Applied to 15-class gene expression data (Figure 8.11).

Boosting can be viewed as an additive model, i.e.

$$f(\mathbf{X}) = \sum_{m=1}^{M} \beta_m b(\mathbf{X}; \gamma_m)$$
 (7)

for \emph{M} basis functions characterized by $\gamma_{\emph{m}}$

Boosting can be viewed as an additive model, i.e.

$$f(\mathbf{X}) = \sum_{m=1}^{M} \beta_m b(\mathbf{X}; \gamma_m)$$
 (7)

for M basis functions characterized by γ_m

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For m = 1 to M:
 - (a) Compute

$$(\beta_m, \gamma_m) = \arg\min_{\beta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)).$$

(b) Set
$$f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$$
.

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For m = 1 to M:
 - (a) Compute

$$(\beta_m, \gamma_m) = \arg\min_{\beta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)).$$

(b) Set
$$f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$$
.

$$L(y_{i}, f_{m-1}(x_{i}) + \beta b(x_{i}; \gamma)) = (y_{i} - (f_{m-1}(x_{i}) + \beta b(x_{i}; \gamma)))^{2}$$

$$= (y_{i} - f_{m-1}(x_{i}) - \beta b(x_{i}; \gamma))^{2}$$

$$= (r_{im} - \beta b(x_{i}; \gamma))^{2}$$

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For m = 1 to M:
 - (a) Compute

$$(\beta_m, \gamma_m) = \arg\min_{\beta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)).$$

(b) Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$.

$$L(y_{i}, f_{m-1}(x_{i}) + \beta b(x_{i}; \gamma)) = (y_{i} - (f_{m-1}(x_{i}) + \beta b(x_{i}; \gamma)))^{2}$$

$$= (y_{i} - f_{m-1}(x_{i}) - \beta b(x_{i}; \gamma))^{2}$$

$$= (r_{im} - \beta b(x_{i}; \gamma))^{2}$$

Problem: RSS isn't a good loss for classification

Gradient Boosting

Define the following loss:

$$L(y, f(x)) = \exp(-yf(x)) \tag{8}$$

Applying the forward stagewise additive representation to Adaboost:

$$(\beta_m, G_m) = \arg \min_{\beta, G} \sum_{i=1}^n \exp\left(-y_i(f_{m-1}(x_i) + \beta G(x_i))\right)$$
$$= \arg \min_{\beta, G} \sum_{i=1}^n w_i^{(m)} \exp\left(-\beta y_i G(x_i)\right)$$

where $w_i^{(m)} = \exp(-y_i f_{m-1}(x_i))$ It can be shown that

$$w_i^{(m+1)} = w_i^{(m)} \cdot \exp(\alpha_m \mathbb{I}(y_i \neq G_m(x_i))) \cdot \exp(-\beta_m)$$

Gradient Boosting

Gradient boosting generalizes L(y, f(x)) to any smooth loss function.

Some common loss functions:

TABLE 10.2. Gradients for commonly used loss functions.

Setting	Loss Function	$-\partial L(y_i, f(x_i))/\partial f(x_i)$	
Regression	$\frac{1}{2}[y_i - f(x_i)]^2$	$y_i - f(x_i)$	
Regression	$ y_i - f(x_i) $	$sign[y_i - f(x_i)]$	
Regression	Huber	$ \begin{vmatrix} y_i - f(x_i) \text{ for } y_i - f(x_i) \leq \delta_m \\ \delta_m \text{sign}[y_i - f(x_i)] \text{ for } y_i - f(x_i) > \delta_m \\ \text{where } \delta_m = \alpha \text{th-quantile}\{ y_i - f(x_i) \} $	
Classification	Deviance	kth component: $I(y_i = G_k) - p_k(x_i)$	

1. Initialize $f_n^0(x) = \underset{\gamma}{\arg\min} \sum_{i=1}^n L(y_i, \gamma)$.

- 1. Initialize $f_n^0(x) = \arg\min_{\gamma} \sum_{i=1}^n L(y_i, \gamma)$.
- 2. For b = 1, ..., B:
 - a Compute the residuals/gradients:

$$r_i^b = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f^{b-1}} : i = 1, ..., n$$
 (9)

- 1. Initialize $f_n^0(x) = \arg\min_{\gamma} \sum_{i=1}^n L(y_i, \gamma)$.
- 2. For b = 1, ..., B:
 - a Compute the residuals/gradients:

$$r_i^b = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f^{b-1}} : i = 1, ..., n$$
 (9)

b Fit a regression tree to r_i^b , giving terminal regions $R_i^b: j=1,...,J^b$

- 1. Initialize $f_n^0(x) = \arg\min_{\gamma} \sum_{i=1}^n L(y_i, \gamma)$.
- 2. For b = 1, ..., B:
 - a Compute the residuals/gradients:

$$r_i^b = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f^{b-1}} : i = 1, ..., n$$
 (9)

- b Fit a regression tree to r_i^b , giving terminal regions $R_i^b: j = 1, ..., J^b$
- c For $j = 1, ..., J^b$, compute

$$\gamma_i^b = \arg\min_{\gamma} \sum_{x_i \in R_j^b} L(y_i, f^{b-1}(x_i) + \gamma)$$
 (10)

- 1. Initialize $f_n^0(x) = \arg\min_{\gamma} \sum_{i=1}^n L(y_i, \gamma)$.
- 2. For b = 1, ..., B:
 - a Compute the residuals/gradients:

$$r_i^b = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f^{b-1}} : i = 1, ..., n$$
 (9)

- b Fit a regression tree to r_i^b , giving terminal regions $R_i^b: j = 1, ..., J^b$
- c For $j = 1, ..., J^b$, compute

$$\gamma_i^b = \arg\min_{\gamma} \sum_{x_i \in R_j^b} L(y_i, f^{b-1}(x_i) + \gamma)$$
 (10)

d Update
$$f^b(x) = f^{b-1}(x) + \sum_{j=1}^{J^b} \gamma_j^b \mathbb{I}(x \in R_j^b)$$

- 1. Initialize $f_n^0(x) = \arg\min_{x} \sum_{i=1}^n L(y_i, \gamma)$.
- 2. For b = 1, ..., B:
 - a Compute the residuals/gradients:

$$r_i^b = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f^{b-1}} : i = 1, ..., n$$
 (9)

- b Fit a regression tree to r_i^b , giving terminal regions $R_i^b: j=1,...,J^b$
- c For $j = 1, ..., J^b$, compute

$$\gamma_i^b = \arg\min_{\gamma} \sum_{x_i \in R_i^b} L(y_i, f^{b-1}(x_i) + \gamma)$$
 (10)

d Update
$$f^b(x) = f^{b-1}(x) + \sum_{j=1}^{J^b} \gamma_j^b \mathbb{I}(x \in R_j^b)$$

3. Output $\hat{f}_n(x) = f^B(x)$.

Gradient boosting is greedy and can still overfit.

Gradient boosting is greedy and can still overfit.

Regularization methods:

Tree constraints: for each tree, limiting the e.g. number of trees, depth, terminal nodes, obserations in a split, improvement made.

Gradient boosting is greedy and can still overfit.

Regularization methods:

- Tree constraints: for each tree, limiting the e.g. number of trees, depth, terminal nodes, obserations in a split, improvement made.
- ► Shrinkage: Each tree is weighted to slow down the learning by the algorithm.

Gradient boosting is greedy and can still overfit.

Regularization methods:

- Tree constraints: for each tree, limiting the e.g. number of trees, depth, terminal nodes, obserations in a split, improvement made.
- Shrinkage: Each tree is weighted to slow down the learning by the algorithm.
- Random splitting: at each iteration a subsample of the training data is drawn at random (without replacement).

Gradient boosting is greedy and can still overfit.

Regularization methods:

- Tree constraints: for each tree, limiting the e.g. number of trees, depth, terminal nodes, obserations in a split, improvement made.
- Shrinkage: Each tree is weighted to slow down the learning by the algorithm.
- Random splitting: at each iteration a subsample of the training data is drawn at random (without replacement).
- ▶ Penalized learning: Apply *L*1 or *L*2 regularization to the terminal nodes.

Example: Shrinkage (ν)

$$f^{b}(x) = f^{b-1}(x) + \nu \sum_{j=1}^{J^{b}} \gamma_{j}^{b} \mathbb{I}(x \in R_{j}^{b})$$
 (11)

Further trades off slower / longer learning.

Shrinkage

Example: Comparing shrinkage vs not.

Figure 10.11

Sub-sampling

Example: Shrinkage with sub-sampling.

Figure 10.12

Gradient boosting tips

Gradient boosting wins most of the Kaggle competitions.

► Trick is to fine tune the hyper-parameters during training.

Gradient boosting tips

Gradient boosting wins most of the Kaggle competitions.

► Trick is to fine tune the hyper-parameters during training.

Some tips from Kaggle master Owen Zhang:

GBDT Hyper Parameter Tuning

Hyper Parameter	Tuning Approach	Range	Note
# of Trees	Fixed value	100-1000	Depending on datasize
Learning Rate	Fixed => Fine Tune	[2 - 10] / # of Trees	Depending on # trees
Row Sampling	Grid Search	[.5, .75, 1.0]	
Column Sampling	Grid Search	[.4, .6, .8, 1.0]	
Min Leaf Weight	Fixed => Fine Tune	3/(% of rare events)	Rule of thumb
Max Tree Depth	Grid Search	[4, 6, 8, 10]	
Min Split Gain	Fixed	0	Keep it 0

Best GBDT implementation today: https://github.com/tqchen/xqboost by **Tianqi Chen** (U of Washington)

References

- [1] ISL. Chapter 8
- [2] ESL. Chapter 10
- [3] Schapire, RE. The Boosting Approach to Machine Learning An Overview. Nonlinear Estimation and Classification, Springer, 2003.