Homework 4 (Due October 31, 2016, 9:00 AM)
BLM 1541: Statistics and Probability — Fall 2016
Print family (or last) name:
Print given (or first) name:
Print given student number:
I see that this homework has 3 questions in total.
I agree that I have to submit my homework solution before the deadline (October 31, 2016, 9 AM) otherwise my homework solution will not be graded.
I accept that <i>I will add the signed version of this instruction page as a first page into my homework solution</i> ; otherwise my homework solution will not be graded.
I know that <i>I have to give my solutions written on white A4-sized pages that are stapled on the left-up corner</i> ; otherwise my homework solution will not be graded.
I will take care of the readability of my solutions, from which I may lose 10 points.
For any proofs, I am sure to provide a step-by-step argument, with justifications for every step.
I understand that, during solving this homework, it is prohibited to exchange information about solutions with any other person in any way, including by talking or ex-changing solutions / papers.
I know that the course book is "Probability and Statistics for Computer Scientists, by Michael Baron (2nd Edition)".
I have read, understand and accept all of the instructions above. On my honor, I pledge that I have not violated the provisions of the Academic Integrity Code of Yıldız Technical University
Signature and Date

Problem 1 [30 Points]: Show that the following equalities are correct for any discrete random variable X,

- a) $P(a \le X \le b) = P(X = a) + F_X(b) F_X(a)$,
- b) $P(a < X < b) = F_X(b) F_X(a) P(X = b)$,
- c) $P(a \le X < b) = P(X = a) + F_X(b) F_X(a) P(X = b)$,

where $F_X(x)$ denotes the cumulative distribution function of the random variable X.

Problem 2 [35 Points]: The way TÜBİTAK hires graduated students from Yıldız Technical University is exemplified in the following table. Each applicant is rated to a discrete "graduation point average (mezuniyet not ortalaması)" *X* (horizontal axis) and a discrete "personal rating index" *Y* (vertical axis). The top number in each cell (in bold) is the number of applicants is a given year with the associated combination. The bottom number in each cell (in italic) is the probability of being accepted. (*Note that, although this is assumed the way TÜBİTAK handles applications, all numbers are fictitious*).

 \leftarrow Graduation Point Average $X \rightarrow$

		90 - 100	80 - 90	70 - 80	60 - 70	50 - 60	≤ 50
\leftarrow Personal Rating $Y \rightarrow$	10	27	32	43	30	10	6
		1.0	0.9	0.7	0.5	0.4	0.3
	9	60	95	110	150	45	20
		0.9	0.7	0.5	0.4	0.3	0.2
	8	86	175	305	350	78	62
		0.7	0.5	0.4	0.3	0.2	0.1
	7	39	173	250	165	102	50
		0.5	0.4	0.3	0.2	0.1	0.0
	6	17	54	118	151	97	68
		0.4	0.3	0.2	0.1	0.0	0.0
	≤ 5	1	12	28	45	17	21
	≥ 5	0.3	0.2	0.1	0.0	0.0	0.0

- a) Plot the marginal PMF of the two indices.
- b) Plot the conditional PMFs (X|Y = 8) and (X|Y = 6).
- c) Plot the conditional PMF of $(Y|X \le 50)$.
- d) What is the probability that an applicant with Y = 7 is accepted.
- e) Are *X* and *Y* independent? Why?

Problem 3 [35 Points]: Let *X* and *Y* be two discrete random variables with the joint probability mass function (PMF) given by

$$P_{XY}(x,y) = \begin{cases} k(x+1)^y, & \text{if } x \in \{-1,0,1\} \text{ and } y \in \{1,2\} \\ 0, & \text{Otherwise} \end{cases}$$

- a) Find the value of k in order to make $P_{XY}(x, y)$ a joint PMF.
- b) Find the PMFs of X and Y. Are X and Y are independent? Why?
- c) Find the PMF of $Z = X^2$.
- d) Find the PMF of $Z = X^Y$.