Clustering

What is Cluster Analysis?

- Cluster: A collection of data objects
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups
- Cluster analysis (or clustering, data segmentation, ...)
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes
- learning by observations vs.
 - learning by examples: supervised

Clustering Applications

- Information retrieval: document clustering
- Land use: Identification of areas of similar land use in an earth observation database
- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- Earth-quake studies: Observed earth quake epi-centers should be clustered along continent faults
- Climate: understanding earth climate, find patterns of atmospheric and ocean
- Economic Science: market resarch

Clustering as a Preprocessing

- Summarization:
 - Preprocessing for regression, classification, and association analysis
- Finding K-nearest Neighbors
 - Localizing search to one or a small number of clusters
- Outlier detection
 - Outliers are often viewed as those "far away" from any cluster

Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters
 - high intra-class similarity: cohesive within clusters
 - low inter-class similarity: distinctive between clusters
- The <u>quality</u> of a clustering method depends on
 - the similarity measure used by the method
 - its implementation, and
 - Its ability to discover some or all of the <u>hidden</u> patterns

Measure the Quality of Clustering

- Dissimilarity/Similarity metric
 - Similarity is expressed in terms of a distance function, typically metric: d(i, j)
 - The definitions of distance functions are usually rather different for interval-scaled, boolean, categorical, ordinal ratio, and vector variables
 - Weights should be associated with different variables based on applications and data semantics
- Quality of clustering:
 - There is usually a separate "quality" function that measures the "goodness" of a cluster.
 - It is hard to define "similar enough" or "good enough"

Considerations for Clustering Analysis

- Partitioning criteria
 - Single level vs. hierarchical partitioning (often, multi-level hierarchical partitioning is desirable)
- Separation of clusters
 - Exclusive (e.g., one customer belongs to only one region)
 - non-exclusive (e.g., one document may belong to more than one class)
- Similarity measure
 - Distance-based (e.g., Euclidian, vector) vs. connectivity-based (e.g., density or contiguity)
- Clustering space
 - Full space (often when low dimensional) vs. subspaces (often in high-dimensional clustering)

Major Clustering Approaches

- Partitioning approach:
 - Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors
 - Typical methods: k-means, k-medoids, CLARANS
- Hierarchical approach:
 - Create a hierarchical decomposition of the set of data (or objects) using some criterion
 - Typical methods: Diana, Agnes, BIRCH, CAMELEON
- Density-based approach:
 - Based on connectivity and density functions
 - Typical methods: DBSACN, OPTICS, DenClue
- Grid-based approach:
 - based on a multiple-level granularity structure
 - Typical methods: STING, WaveCluster, CLIQUE

Partitioning Algorithms: Basic Concept

Partitioning method: Partitioning a database D of n objects into a set of k clusters, such that the sum of squared distances is minimized (where c_i is the centroid or medoid of cluster C_i)

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} (p - c_i)^2$$

- Given k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: k-means and k-medoids algorithms
 - <u>k-means</u> (MacQueen'67, Lloyd'57/'82): Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

The K-Means Clustering Method

- Given k, the k-means algorithm is implemented in four steps:
 - Partition objects into k nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partitioning (the centroid is the center, i.e., mean point, of the cluster)
 - Assign each object to the cluster with the nearest seed point
 - Go back to Step 2, stop when the assignment does not change

An Example of *K-Means* Clustering

Until no change

Comments on the *K-Means* Method

- Strength: Efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n</p>
- Comment: Often terminates at a local optimal.
- Weakness
 - Applicable only to objects in a continuous n-dimensional space
 - In comparison, k-medoids can be applied to a wide range of data
 - Need to specify k, the number of clusters, in advance (there are ways to automatically determine the best k (see Hastie et al., 2009)
 - Sensitive to noisy data and outliers
 - Not suitable to discover clusters with non-convex shapes

Variations of the *K-Means* Method

- Most of the variants of the k-means which differ in
 - Selection of the initial k means
 - Dissimilarity calculations
 - Strategies to calculate cluster means

- Replacing means of clusters with <u>modes</u>
- Using new dissimilarity measures to deal with categorical objects
- Using a <u>frequency</u>-based method to update modes of clusters

Problem of the K-Means Method?

- The k-means algorithm is sensitive to outliers!
 - Since an object with an extremely large value may substantially distort the distribution of the data
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster

PAM: A Typical K-Medoids Algorithm

Arbitrary choose k object as initial medoids Assign each remaining object to nearest medoids

Randomly select a nonmedoid object,O_{ramdom}

K=2

Do loop Until no change

Swap Medoin

If quality is improved.

Compute total cost of swapping

15

	X	Y
0	8	7
1	3	7
2 3	4	9
3	9	6 5
4	8	5
5	5	8
6 7	7	3
7	8	4
8	7	5
9	4	5

randomly selected 2 medoids, so select k = 2 and let C1 -(4, 5) and C2 -(8, 5)

	X	Υ
0	8	7
1	3	7
2	4	9
3	9	6
4	8	5
5	5	8
6	7	3
7	8	4
8	7	5
9	4	5

	X	Υ	Dissimilarity from C1	Dissimilarity from C2
0	8	7	6	2
1	3	7	3	7
2	4	9	4	8
3	9	6	6	2
4	8	5	-	-
5	5	8	4	6
6	7	3	5	3
7	8	4	5	1
8	7	5	3	1
9	4	5	-	-

Each point is assigned to the cluster of that medoid whose dissimilarity is less.

The points 1, 2, 5 go to cluster C1 and 0, 3, 6, 7, 8 go to cluster C2.

The Cost =
$$(3 + 4 + 4) + (3 + 1 + 1 + 2 + 2) = 20$$

randomly selected point be (8, 4). The dissimilarity of each non-medoid point with the medoids – C1 (4, 5) and C2 (8, 4) is calculated

	X	Υ
0	8	7
1	3	7
2	4	9
3	9	6
4	8	5
5	5	8
6	7	3
7	8	4
8	7	5
9	4	5

	X	Υ	Dissimilarity from C1	Dissimilarity from C2
0	8	7	6	2
1	3	7	3	7
2	4	9	4	8
3	9	6	6	2
4	8	5	-	-
5	5	8	4	6
6	7	3	5	3
7	8	4	5	1
8	7	5	3	1
9	4	5	-	-

	X	Y	Dissimilarity from C1	Dissimilarity from C2
0	8	7	6	3
1	3	7	3	8
2	4	9	4	9
3	9	6	6	3
4	8	5	4	1
5	5	8	4	7
6	7	3	5	2
7	8	4	-	-
8	7	5	3	2
9	4	5	-	-

The New cost = (3 + 4 + 4) + (2 + 2 + 1 + 3 + 3) = 22Swap Cost = New Cost - Previous Cost = 22 - 20 = 2 > 0As the swap cost is not less than zero, undo the swap

	X	Y
0	8	7
1	3	7
2	4	9
3	9	
4	8	5
5	5	5 8 3
6	7	
7	8	4
8	7	5
9	4	5

	X	Υ	Dissimilarity from C1	Dissimilarity from C2
0	8	7	6	2
1	3	7	3	7
2	4	9	4	8
3	9	6	6	2
4	8	5	-	-
5	5	8	4	6
6	7	3	5	3
7	8	4	5	1
8	7	5	3	1
9	4	5	-	-

As there is no change in medoid set Algorithm Terminates

	X	Y	Dissimilarity from C1	Dissimilarity from C2
0	8	7	6	3
1	3	7	3	8
2	4	9	4	9
3	9	6	6	3
4	8	5	4	1
5	5	8	4	7
6	7	3	5	2
7	8	4	-	-
8	7	5	3	2
9	4	5	-	-

The K-Medoid Clustering Method

- K-Medoids Clustering: Find representative objects (medoids) in clusters
 - PAM (Partitioning Around Medoids, Kaufmann & Rousseeuw 1987)
 - Starts from an initial set of medoids and iteratively replaces one
 of the medoids by one of the non-medoids if it improves the total
 distance of the resulting clustering
 - PAM works effectively for small data sets, but does not scale well for large data sets (due to the computational complexity)
- Efficiency improvement on PAM
 - CLARA (Kaufmann & Rousseeuw, 1990): PAM on samples