CS 896 Capstone Project

Neural Network

Fujian Yan

Assistant Teaching Educator School of Computing, Wichita State University

Office: Jabara Hall 222

Office (student) hours: M 13:00-15:00

fujian.yan@wichita.edu

Outlines

- Midterm Presentation
- Neural Network

PRESENTATIONS

Tentative Presentation Date

Presentation Name	Date
Project Proposal Presentation	02/14/2023; 02/16/2023; 02/21/2023
Midterm Presentation	03/07/2023; 03/09/2023; 03/21/2023
Check Up presentation 1	03/30/2023
Check Up presentation 2	04/13/2023

Midterm Presentation

- Midterm Presentation
 - 20 min = 15 min + 5 min QA
 - All students should show up during the presentation
 - Preliminary results
 - Clearly describe the dataset
 - Progress of current project
 - Related Work (each student should present on paper regarding the topic)
 - Contribution of each group member based on the task distribution
 - Problems if you have any
 - Need to turn in the slides and the data Dashboard

Questions?

AI Approaches

Experiment: Pigeon in Skinner box

- Pigeons as art experts (Watanabe. et al. 1995)
 - Present paintings of two different artists (e.g., Chagall/Van Gogh)
 - Reward the pigeon for pecking when it is presented a particular artist (e.g., Van Gogh)

Experiment: Pigeon in Skinner box

- When presented with pictures they had been trained on, pigeons could tell the difference between Van Gogh and Chagall accuracy
 95%
- When presented previously unseen paintings of the artists 85%

What is a Neural Network (NN)

 A neural network is a massively parallel distributed processor made up of simple processing unit, which has a natural propensity for storing experiential knowledge and making it available for use.

 The artificial neural networks are largely inspired by the <u>biological neural networks</u>, and the ultimate goal of building an intelligent machine which can mimic the

human brain.

Biological Neurons

A typical biological neuron is composed of

- A cell body
- Hair-like dendrites: input channels
- Axon: output cable; it usually branches.

Biological Neurons

 The neuron responds to many sources of electric impulses in three ways: some inputs excite the neuron, some inhibit it, and some modulate its behavior.

 If the neuron becomes sufficiently excited, it responds ("fires") by sending an electric pulse (a spike)-down its

output cable—(its axon).

Biological Neuron

- It receives information, usually in the form of electrical pulses, from many other neurons.
- It does what is, in effect, a complex dynamic sum of these inputs.
- It sends out information in the form of a stream of electrical impulses down its axon and on to many other neurons.
- The conduction of nerve impulses is all-or-none.
- The connections (synapses) are crucial for excitation, inhibition or modulation of the cells.
- Learning is possible by adjusting the synapses.

NEURAL NETWORK MODEL

NN Model

- Threshold: The neuron will not fire till it is "high"
- Nonlinear activation function
- Inhibition and excitation: synaptic weights

Benefits of Neural Network

- High computational power
 - Generalization: Producing reasonable outputs for inputs not encountered during training (learning).
 - Has a massively parallel distributed structure.
- Useful properties and capabilities
 - Nonlinearity: Most physical systems are nonlinear.
 - Adaptivity (plasticity): Has built-in capability to adapt their synaptic weights to changes in the environment.
 - Fault tolerance: If a neuron or its connecting links are damaged, the overall response may still be ok (due to the distributed nature of information stored in a network).

LEARNING WEIGHTS

Learning Weights

- How to adjust weights?
- Adjust weights using known examples (training data) $(X_1, X_2, X_3, ..., X_d, t)$.
- Try to adjust weights so that the difference between the output of the neural network y and t (target) becomes smaller and smaller.
- Goal is to minimize Error (difference)

Neural Network Learning: Two Processes

- Forward propagation: present an example (data) into neural network. Compute activation into units and output from units.
- Backward propagation: propagate error back from output layer to the input layer and compute derivatives (or gradients).

Forward Propagation

- L2: Activation function: *f* (linear, sigmoid, softmax)
- Activation $\sum_{j=0}^{M} w_{kj} z_{j}$
- L1: Activation function: g' (linear, tanh, sigmoid)
- Activation $\sum_{i=0}^{d} w_{ji} x_i$

Backward Propagation

Learning by Gradient Decent (Back-Propagation)

- Initialize weights w
- Repeat
 - For each data point x, do the following:
 - Forward propagation: compute outputs and activations
 - Backward propagation: compute errors for each output units and hidden units. Compute gradient for each weight.
 - Update weight $w *= w \eta (\partial E / \partial w)$
- Until a number of iterations or errors drops below a threshold.

Note: η is learning rate or step size.

Overfitting in Learning

- The training data contains information about the regularities in the mapping from input to output. But it also contains noise
 - The target values may be unreliable.
 - There is sampling error. There will be accidental regularities just because of the particular training cases that were chosen.
- When we fit the model, it cannot tell which regularities are real and which are caused by sampling error.
 - So it fits both kinds of regularity.
 - If the model is very flexible it can model the sampling error really well. This is a disaster.

Example of Overfitting and Good Fitting

Overfitting function can not generalize well to unseen data.

Preventing Overfitting

- Use a model that has the right capacity:
 - enough to model the true regularities
 - not enough to also model the spurious regularities (assuming they are weaker).
- Standard ways to limit the capacity of a neural net:
 - Limit the number of hidden units.
 - Limit the size of the weights.
 - Stop the learning before it has time to overfit.

Limiting the Size of the Weights

- Weight-decay involves adding an extra term to the cost function that penalizes the squared weights.
 - Keeps weights small unless they have big error derivatives.

$$C = E + \frac{\lambda}{2} \sum_{i} w_i^2$$

$$\frac{\partial C}{\partial w_i} = \frac{\partial E}{\partial w_i} + \lambda w_i$$

when
$$\frac{\partial C}{\partial w_i} = 0$$
, $w_i = -\frac{1}{\lambda} \frac{\partial E}{\partial w_i}$

Using a Validation Set

- Divide the total dataset into three subsets:
 - Training data is used for learning the parameters of the model.
 - Validation data is not used of learning but is used for deciding what type of model and what amount of regularization works best.
 - Test data is used to get a final, unbiased estimate of how well the network works. We expect this estimate to be worse than on the validation data.
- We could then re-divide the total dataset to get another unbiased estimate of the true error rate.

TRAINING ISSUES

How to Speedup Learning?

- The error surface lies in a space with a horizontal axis for each weight and one vertical axis for the error.
 - It is a quadratic bowl: the height can be expressed as a function of the weights without using powers higher than 2. Quadratics have constant curvature (because the second derivative must be a constant)
 - Vertical cross-sections are parabolas.
 - Horizontal cross-sections are ellipses.

Convergence Speed

- The direction of steepest descent does not point at the minimum unless the ellipse is a circle.
 - The gradient is big in the direction in which we only want to travel a small distance.
 - The gradient is small in the direction in which we want to travel a large distance.

$$\Delta w_i = -\varepsilon \frac{\partial E}{\partial w_i}$$

How the Learning Goes Wrong

- If the learning rate is big, it sloshes to and from across the ravine. If the rate is too big, this oscillation diverges.
- How can we move quickly in directions with small gradients without getting divergent oscillations in directions with big gradients?

Five Ways to Speed up Learning

- Use an adaptive global learning rate
 - Increase the rate slowly if it's not diverging
 - Decrease the rate quickly if it starts diverging
- Use separate adaptive learning rate on each connection
- Use momentum
 - Instead of using the gradient to change the position of the weight "particle", use it to change the velocity.
- Use a stochastic estimate of the gradient from a few cases
 - This works very well on large, redundant datasets.

Challenges with Neural Network

Model

- Vanishing gradients
- Cannot use unlabeled data
- Hard to understand the relationship between input and output
- Cannot generate data

Training

- Diminishing gradient inhibits multiple layers
- Can get stuck in local minimums
- Training time can be extensive

HPC

https://www.wichita.edu/services/hpc/hpc-guides.php

Questions?

Summary

- Review the plan of this semester
- Dataset Preview
- Form a team next week by Tuesday.
- Project Selection