Appendix: Complete Elliptic integrals and the Nome q expansion

In this appendix we present the definition and some properties of elliptic integrals which are needed for the derivation of our result. The complete elliptic integrals of the first (\mathbf{K}) and the second (\mathbf{E}) kind are defined as

$$\mathbf{K}(m) = \int_0^{\pi/2} \frac{d\phi}{\sqrt{1 - m\sin^2\phi}},\tag{A.1}$$

$$\mathbf{E}(m) = \int_0^{\pi/2} \sqrt{1 - m\sin^2\phi} \,d\phi. \tag{A.2}$$

For our purpose it is useful to note that

$$\int_0^{\theta_0} \frac{d\theta}{\sqrt{\sin^2 \theta_0 - \sin^2 \theta}} = \mathbf{K}(\sin^2 \theta_0),\tag{A.3}$$

$$\int_0^{\theta_0} \sqrt{\sin^2 \theta_0 - \sin^2 \theta} \, d\theta = \mathbf{E}(\sin^2 \theta_0) - (1 - \sin^2 \theta_0) \mathbf{K}(\sin^2 \theta_0). \tag{A.4}$$

In order to study the elliptic integrals near the logarithmic singularity, it is convenient to use the q-series, defined as

$$q \equiv \exp[-\pi \mathbf{K}(1-m)/\mathbf{K}(m)] \tag{A.5}$$

$$= \frac{m}{16} + 8\left(\frac{m}{16}\right)^2 + 84\left(\frac{m}{16}\right)^3 + \cdots$$
 (A.6)

Inverting, one obtains

$$m = 16(q - 8q^2 + 44q^3 - 192q^4 + \cdots). \tag{A.7}$$

Now that we have m(q) and q(m) as given above, we have the following alternative expansions.

$$\mathbf{K}(m) = \frac{\pi}{2} (1 + 4q + 4q^2 + 4q^4 + \cdots), \tag{A.8}$$

$$\mathbf{E}(m) = \frac{\pi}{2}(1 - 4q + 20q^2 - 64q^3 + \cdots). \tag{A.9}$$

And more importantly,

$$\mathbf{K}(1-m) = -\frac{\ln q}{2}(1 + 4q + 4q^2 + 4q^4 + \cdots),\tag{A.10}$$

$$\mathbf{E}(1-m) = (1 - 4q + 12q^2 - 32q^3 + \dots) - 4q \ln q (1 - 2q + 8q^2 + \dots). \tag{A.11}$$