Knowledge Representation and Reasoning: SOLVING CONSTRAINT SATISFACTION PROBLEMS

CHAPTER 6

Constraint Satisfaction Problems

- \diamondsuit Binary constraint network $\gamma = \langle V, D, C \rangle$
 - V a finite set of variables v_1, \ldots, v_n
 - D a set of [finite] sets D_{v_1}, \ldots, D_{v_n}
 - C a set of binary relations $\{C_{u,v} \mid u,v \in V, u \neq v\}$ $C_{u,v} \subseteq D_u \times D_v$

Outline of the lecture

- ♦ Recall constraint networks and backtracking search
- ♦ Tightening CSPs by learning from mistakes
- ♦ Problem structure: constraint graphs
- ♦ Symmetry
- ♦ CSPs and optimisation
- \Diamond Summary

Recall

- ♦ Pure backtracking
 - If the current partial assignment is consistent
 - Choose a variable, assign each value from its domain in turn
 - Search the resulting sub-tree
- ♦ Forward checking
 - Prune values from neighbour variables if they are not supported by the assigned one
- ♦ Arc consistency
 - Prune similarly for all pairs of values related by a constraint
- ♦ Variable ordering and value ordering heuristics important for real efficiency

This assignment is consistent but can't be extended to a solution

This assignment is consistent but can't be extended to a solution

The previous assignment must be wrong not counting the last green one, which was forced so remember the earlier choices, and don't do it again!

- ♦ Actually, we're going to backtrack further
 - so the bottom line was no good.
 - Remember that combination $(v_1:b,\ v_2:r,\ v_3:b)$ as a disallowed triple of a (3-ary) constraint
- ♦ Never repeat a mistake: don't backtrack twice for the same reason

Constraint learning: notes

- ♦ Learned constraints may be added to the network or kept separately
- ♦ A separate store of nogoods is usual, as they are usually large
 - May add binary ones to the network and store the rest
 - Data structures matter: indexing for rapid inference is important
- ♦ Every branch may add another nogood, so there are too many of them
 - Storage requires exponential space
- ♦ Hence common to have a strategy for forgetting them
 - e.g. let the longest ones lapse after a while
 - or just keep the "tail" and discard when backtracking leaves the region where it applies
- ♦ Constraint learning useful for CSP solvers; essential for SAT solvers

Constraint graphs

- ♦ Some decision variables are related by constraints, some are not
- ♦ Hence we may consider the graph where
 - vertices are decision variables
 - edges are constraints
- ♦ Graph contains information about the structure of the problem
- \diamondsuit Great for visualisation, as well as automated reasoning

PSR Constraint Graph

PSR Constraint Graph

Can observe properties of the encoding from the graph:

- The plan (white) only loosely communicates with the calculations (blue and magenta)
- There is no direct information flow from the calculations at one step to the calculations at the next, even though most of the distribution grid is the same
- The first line of switches (green), next to the circuit breakers (orange) has a special status in the CSP. This may be worth investigating.

Constraint graphs: notes

- The examples are static views. Dynamic ones animated to show the search can also be very useful.

 by swapping vertices & edges.
- ♦ The dual graph, where the vertices are the constraints and an edge between two constraints means they share a variable, gives yet another view.
- ♦ So does the bipartite graph with variable nodes and constraint nodes.
- Constraint graphs are not specific to binary CSPs: they can be useful in analysing logical descriptions of given domains, in SAT solving or in automated reasoning generally.
- ♦ Note: the constraint graph only shows which decision variables are connected. It is not affected by whether the problem has solutions or not.

Tree-like constraint graphs

If the constraint graph is a tree, this is always good news!

We can always solve such a CSP efficiently:

Enforce arc consistency: if wiped out, you're done
Choose a vertex to be the root of the tree
Start assigning values at the root
Don't assign a value to a variable before its parent in the tree
Do forward checking at each step

The search will be backtrack-free.

Constraint graph: Longmult (SAT)

Constraint graph: logical calculus tester

Normal view: variables as vertices

Constraint graph: logical calculus tester

Dual view: constraints as vertices

Constraint graph: logical calculus tester

Bipartite view: variables and constraints as vertices

♦ What would happen if we started with a different choice of colours?

- What would happen if we started with a different choice of colours?
- ♦ Exactly the same, but with the colours interchanged.
- \diamondsuit So any solution to graph colouring with k colours can be re-labelled to give k! solutions with the same colours in different orders.
- ♦ We say that the values in this problem are symmetric.

♦ What would happen if we started at the top right?

- \Diamond What would happen if we started at the top right?
- \diamondsuit Exactly the same, but rotated 180°.
- Any solution can be rotated or reflected in a a diagonal to give an equivalent solution with variables interchanged.
- \diamondsuit We say that this problem has a variable symmetry.

Using symmetry

- ♦ Is symmetry on our side or against us?
- ♦ It's our friend if we know about it and use it, but our enemy otherwise!
- ♦ The bad part: if a problem has lots of symmetries, we can waste huge amounts of time searching symmetric (and equally empty) sub-spaces, or generating solutions that tell us nothing really new.
- ♦ The good part: if we explore one of these sub-spaces, we know we can prune all of the others without losing anything essential.
- ♦ Unlike arc consistency, etc, symmetry pruning can delete solutions, but it can never delete all of them.

Symmetry: how it's done

- Note that if solutions are symmetric, partial assignments have (at least) the same symmetries, so early pruning may be possible
- The usual method for removing symmetric sub-problems is to add symmetry-breaking constraints
- Formulae true of one (or some) of the symmetric solutions but false of the others.
- \diamondsuit E.g. we could add a constraint saying $v_1 = \mathsf{blue} \land v_2 = \mathsf{red}$.
 - safe addition: if there are solutions, there's one satisfying this
 - reduces two of the domains to singletons
 - rules out 5 of the 6 symmetric solutions.
- ♦ If we want to recover the missing solutions, that's possible without search.

Symmetry: an extreme case

- ♦ Suppose we have a pigeonhole problem: show that it's impossible to fit 10 pigeons in 9 pigeonholes (without overcrowding)
- ♦ A backtracking search will start assigning holes to pigeons, house 9 of them and discover that the tenth has nowhere to go.
- Then it will backtrack, try a different ninth pigeon, and find that there is still one left over . . . etc.
- ♦ 9! backtracks, even with arc consistency; no solution.

Symmetry: an extreme case

- ♦ But one pigeon looks just like another (to a CSP solver), and one hole looks just like another as well.
- \diamondsuit So pigeon number 1 goes in hole number 1, without loss of generality.
- \diamondsuit Assign hole 2 to pigeon 2, etc. Then pigeon 10 is homeless. The end!
- \diamondsuit A good symmetry-breaker is $\forall x \forall y ((x < y) \rightarrow (\mathsf{hole}(x) < \mathsf{hole}(y)))$. —would be true of 1 solution if there were just enough holes
- \Diamond 9! branches reduced to 1.

Optimal Solutions

- \Diamond Constraint solvers often asked to produce optimal solutions
 - though in practice, suboptimal but good solutions suffice
- ♦ Optimisation not treated (much) in this course
 - worth a course on its own
- \Diamond However, we should note it, so:

Optimal Solutions

- ♦ Constraint solvers often asked to produce optimal solutions
 - in practice, suboptimal but good solutions usually suffice
- ♦ Optimisation not treated (much) in this course
 - worth a course on its own
- ♦ However, we should note it, so
- \Diamond Two common ways of defining "better" or "worse" solutions:
- 1. via an objective function: a quantity to be minimised (or maximised)
- 2. via soft constraints: can be violated, but as little as possible
- \Diamond The sum of soft constraint violations behaves as an objective function.

Optimal Solving

There are **many** techniques for solving problems optimally. The only one to be noted here is Depth First Branch and Bound (DFBB)

- \diamondsuit The default search algorithm used by most FD solvers
- \Diamond Easy to implement, generally applicable, complete
- \Diamond Also functions well as an anytime method

Branch and Bound

- \diamondsuit Use lower bound estimate L of the cost of solutions extending the current partial assignment
 - underestimates the objective function at each node
- \diamondsuit Also use a bound B
 - strictly overestimates the objective function (globally)
 - initialise to infinity (or a known overestimate)
- ♦ Traverse the search tree e.g. depth first
- \diamondsuit Backtrack if $L \ge B$
- \diamondsuit Each time a solution is found, set B to its objective value
- $\diamondsuit \;\; B$ is monotone decreasing as solutions are found
- ♦ So search tree branches tend to get shorter towards the end

DFBB: Intermediate solutions

- ♦ First solution is at the bottom of the leftmost (complete) branch
 - Fast: Likely to be found quickly
 - Dirty: Likely to be of low quality
- ♦ Always trying to improve on the best so far
 - Any improvement will do
- \Diamond So DFBB produces a sequence of (strictly) improving solutions
- ♦ We can interrupt the search at any time
 - when the current solution is good enough
 - when a time limit expires
 - when the next process needs to start
 - when we just get fed up with waiting
- Intermediate solutions are valuable, because optimal ones can be very expensive to compute (and proofs of optimality even more expensive).

Summary

- ♦ Constraint (nogood) learning from wipeouts usually improves efficiency
- Space (memory) is a limitation for nogood learning, so forgetting is also important
- \Diamond Constraint graphs give information about problem structure
 - Certain constraint graphs (e.g. trees) indicate that problems are easy
- ♦ Value symmetry and variable symmetry are frequently present in CSPs
 - Pruning symmetric sub-spaces is a big winner where there is extensive symmetry
- ♦ Optimisation (minimising a cost or objective function) is usual for CSPs
- ♦ Depth First Branch and Bound is commonly used in FD solvers
 - Conveniently provides intermediate solutions of increasing goodness