# Revisiting and extending probabilistic Boolean networks

## Zachary Assoumani

June 26th, 2022

Supervised by: Elisabeth REMY & Claudine CHAOUIYA







## Mathematical models

### Applied to many fields of science

- Elaborated from ground data
- Used to reproduce, understand, and predict behaviors



Linear regression.



Differential equations.



Boolean networks.

# Gene Regulatory Networks

### Interaction between genes

- Positive interactions
- Negative interactions



### Transition functions

- One boolean function associated to each gene
- Computes the next state depending on the current one



$$f_1(x) = \begin{cases} 1 \text{ if } (x_3 = 1) \lor (x_4 = 1) \\ 0 \text{ otherwise} \end{cases}$$

$$f_2(x) = \begin{cases} 1 \text{ if } (x_1 = 1) \lor (x_2 = 1) \\ 0 \text{ otherwise} \end{cases}$$

$$f_3(x) = \begin{cases} 1 \text{ if } (x_1 = 1) \land (x_2 = 1) \\ 0 \text{ otherwise} \end{cases}$$

$$f_{\mathbf{4}}(x) = \begin{cases} 1 \text{ if } (x_{\mathbf{3}} = 0) \land (x_{\mathbf{4}} = 1) \\ 0 \text{ otherwise} \end{cases}$$

#### Transition functions

- One boolean function associated to each gene
- Computes the next state depending on the current one



$$f_1(x) = \begin{cases} 1 \text{ if } (x_3 = 1) \lor (x_4 = 1) \\ 0 \text{ otherwise} \end{cases}$$

$$f_2(x) = \begin{cases} 1 \text{ if } (x_1 = 1) \lor (x_2 = 1) \\ 0 \text{ otherwise} \end{cases}$$

$$f_3(x) = \begin{cases} 1 \text{ if } (x_1 = 1) \land (x_2 = 1) \\ 0 \text{ otherwise} \end{cases}$$

$$f_4(x) = \begin{cases} 1 \text{ if } (x_3 = 0) \land (x_4 = 1) \\ 0 \text{ otherwise} \end{cases}$$

#### Transition functions

- One associated to each gene
- Computes the next state depending on the current one



$$f_{\mathbf{1}}(x) = \begin{cases} 1 \text{ if } (x_{\mathbf{3}} = 1) \lor (x_{\mathbf{4}} = 1) \\ 0 \text{ otherwise} \end{cases}$$

$$f_2(x) = \begin{cases} 1 \text{ if } (x_1 = 1) \lor (x_2 = 1) \\ 0 \text{ otherwise} \end{cases}$$

$$f_3(x) = \begin{cases} 1 \text{ if } (x_1 = 1) \land (x_2 = 1) \\ 0 \text{ otherwise} \end{cases}$$

$$f_{\mathbf{4}}(x) = \begin{cases} 1 \text{ if } (x_{\mathbf{3}} = 0) \land (x_{\mathbf{4}} = 1) \\ 0 \text{ otherwise} \end{cases}$$

#### State transitions

# State Transition Graph (STG)





### State transitions

## State Transition Graph (STG) with attractors



# Boolean Networks : update mode

### **Synchronous**

Updates all the genes simultaneously



## Asynchronous

Updates one randomly-chosen gene at a time



 $\rightarrow$  Also modifies the attractors.

# Boolean Networks : update mode

### Example: STG for asynchronous update



- · Attracted by the blue attractor
- Attracted by the blue and red attractors
- · Attracted by all three attractors

## Software tools

### Analyze a Boolean network with GINSIM

- Takes a set of transition functions as an input
- Computes the state transition graph
- Identifies attractor states and their basins of attraction

## Complexity

■ With n genes, the STG contains  $2^n$  states. . .

#### Reduction model

■ Methods to approximate the attractors without combinatorial explosion

### Extensions I

#### Perturbations

- lacksquare Each iteration, a random gene is flipped with probability  $p\ll 1$
- Emanates from biological noise



In this example, the gene n°2 is **flipped** from a '1' to a '0', and the current state moves to another attractor.

### Extensions II

### Probabilistic Boolean Networks (PBNs)

- lacksquare Each iteration, the transition functions are re-drawn from a set with probability  $q\ll 1$
- It can alter the 'attractor landscape' of the state space.





## Extensions

## Example of a PBN evolution



## Software tools

### Sample the stationary law

- Simulating the model a large number of times
- Identify the recurrent states (=attractors)



Example with n = 10 [Kim et al., 2003].

# Future extensions - My internship

## Asynchronous PBNs

- Extend the formalism
- Study dynamical properties
- Adapt the algorithms

# Thank you for your attention.

#### Selected sources:

- Ilya Shmulevich and Edward R. Dougherty. Probabilistic Boolean Networks The Modeling and Control of Gene Regulatory Networks. SIAM, 2010. ISBN 978-0-89871-692-4. doi:10.5555/1734075.
- W. Abou-Jaoudé, P. Traynard, P.T. Monteiro, J. Saez-Rodriguez, T. Helikar, D. Thieffry, and C. Chaouiya. Logical Modeling and Dynamical Analysis of Cellular Networks. Frontiers in Genetics, 7(94), 2016. doi:10.3389/fgene.2016.00094.
- Marcel Brun, Edward R. Dougherty, and Ilya Shmulevich. Steady-state probabilities for attractors in probabilistic boolean networks. Signal Processing, 85(10):1993–2013, 2005. doi:10.1016/j.sigpro.2005.02.016.
- Seungchan Kim, Edward Dougherty, Yidong Chen, Michael Bittner, and Edward Suh. Can Markov Chain Models Mimic Biological Regulation? Journal of Biological Systems, 10(4):337–357, 03 2003. doi:10.1142/S0218339002000676.