Contents

Clase 1: Introducción a la Simulación y Modelado de Sistemas		1
--	--	---

Clase 1: Introducción a la Simulación y Modelado de Sistemas

Objetivos de la Clase:

- Definir el concepto de simulación y su rol en el análisis de sistemas complejos.
- Identificar las ventajas y desventajas de la simulación en comparación con otros métodos de análisis.
- Describir los pasos fundamentales en un estudio de simulación.
- Comprender la importancia de la aleatoriedad en la simulación, especialmente en la simulación de Monte Carlo.
- Introducir el concepto de Simulación de Monte Carlo y su aplicación básica.

Contenido Teórico Detallado:

1. ¿Qué es la Simulación?

- La simulación es una técnica que imita el comportamiento de un sistema real a través de un modelo. Este modelo, que puede ser físico, matemático o computacional, representa las características y operaciones clave del sistema.
- En lugar de experimentar directamente con el sistema real (lo cual puede ser costoso, peligroso o imposible), se experimenta con el modelo para entender su comportamiento, evaluar estrategias y predecir resultados.
- **Ejemplo:** Simular el flujo de tráfico en una ciudad para evaluar el impacto de la construcción de una nueva carretera. Simular el comportamiento de un reactor nuclear bajo diferentes condiciones operativas.

2. Ventajas y Desventajas de la Simulación:

• Ventaias:

- Permite analizar sistemas complejos con interacciones no lineales o estocásticas.
- Puede evaluar diferentes escenarios y políticas sin interrumpir el sistema real.
- Identifica cuellos de botella y optimiza el rendimiento del sistema.
- Reduce el riesgo al probar nuevas ideas en un entorno virtual.
- Permite estudiar sistemas que aún no existen o que son difíciles de observar directamente.

• Desventajas:

- Requiere la construcción y validación de un modelo, lo cual puede ser un proceso complejo y costoso
- Los resultados de la simulación son solo una aproximación de la realidad y dependen de la precisión del modelo.
- La interpretación de los resultados puede requerir experiencia y conocimientos especializados.
- La simulación no siempre proporciona soluciones óptimas, sino que evalúa diferentes alternativas
- Puede ser computacionalmente intensiva, especialmente para sistemas complejos.

3. Pasos en un Estudio de Simulación:

- (a) **Definición del Problema:** Identificar claramente el objetivo del estudio y las preguntas que se quieren responder.
- (b) Formulación del Modelo: Desarrollar un modelo que represente las características y operaciones relevantes del sistema. Esto incluye definir las variables, las relaciones entre ellas y las distribuciones de probabilidad asociadas a las variables aleatorias.
- (c) **Recolección de Datos:** Recopilar datos relevantes para alimentar el modelo y validar sus resultados. La calidad de los datos es crucial para la precisión de la simulación.
- (d) Implementación del Modelo: Traducir el modelo a un programa de computadora utilizando un lenguaje de programación o un software de simulación especializado.

- (e) **Verificación y Validación:** Verificar que el modelo funciona correctamente (verificación) y que representa con precisión el sistema real (validación).
- (f) **Experimentación:** Ejecutar el modelo con diferentes parámetros y escenarios para obtener resultados.
- (g) Análisis de Resultados: Analizar los resultados de la simulación para responder a las preguntas del estudio y obtener conclusiones. Esto puede incluir análisis estadístico, visualización de datos y pruebas de sensibilidad.
- (h) **Documentación:** Documentar el modelo, los datos, el proceso de simulación y los resultados para facilitar la replicación y la comunicación.

4. Aleatoriedad en la Simulación:

- Muchos sistemas del mundo real involucran elementos aleatorios o inciertos. Para simular estos sistemas con precisión, es necesario incorporar la aleatoriedad en el modelo.
- Esto se hace mediante la generación de números aleatorios, que se utilizan para muestrear valores de distribuciones de probabilidad que representan la incertidumbre en el sistema.
- Ejemplo: Simular el tiempo de llegada de clientes a un banco utilizando una distribución exponencial. Simular la demanda de un producto utilizando una distribución normal.

5. Introducción a la Simulación de Monte Carlo:

- La Simulación de Monte Carlo es una técnica que utiliza muestreo aleatorio repetido para obtener resultados numéricos. Es particularmente útil para problemas que son difíciles de resolver analíticamente o que involucran muchas variables aleatorias.
- El nombre "Monte Carlo" proviene del famoso casino de Mónaco, haciendo referencia a la naturaleza aleatoria del método.
- Aplicaciones: Estimación de integrales, optimización, análisis de riesgo, física, finanzas.

Ejemplos y Casos de Estudio:

- Caso de Estudio 1: Simulación de una Cola de Espera: Un banco quiere determinar el número óptimo de cajeros para minimizar el tiempo de espera de los clientes. Se puede simular la llegada de clientes y el tiempo que tardan en ser atendidos para evaluar diferentes configuraciones de cajeros.
- Caso de Estudio 2: Estimación del Área de una Figura Irregular: Se puede estimar el área de una figura irregular dibujada en un cuadrado generando puntos aleatorios dentro del cuadrado y contando cuántos puntos caen dentro de la figura. La proporción de puntos dentro de la figura es aproximadamente igual a la proporción del área de la figura con respecto al área del cuadrado.

Problemas Prácticos y Ejercicios con Soluciones:

- Problema 1: Estimación del Valor de usando Simulación de Monte Carlo (Repaso con Mayor Detalle):
 - **Problema:** Estimar el valor de usando Simulación de Monte Carlo.
 - Solución:
 - 1. Generar un cuadrado de lado 2 centrado en el origen (coordenadas de -1 a 1 en ambos ejes x e y). El área del cuadrado es 2 * 2 = 4.
 - 2. Inscribir un círculo dentro del cuadrado, también centrado en el origen. El radio del círculo es 1. El área del círculo es $\ ^*$ r^2 = $\ ^*$ 1^2 = $\ ^*$.
 - 3. Generar N puntos aleatorios (x, y) dentro del cuadrado. Esto significa que tanto x como y deben estar entre -1 y 1. Usar un generador de números aleatorios para generar valores uniformemente distribuidos en este rango.
 - 4. Para cada punto (x, y), verificar si cae dentro del círculo. Un punto está dentro del círculo si su distancia al origen es menor o igual que el radio (1). La distancia al origen se calcula como sqrt(x^2 + y^2).
 - 5. Contar el número de puntos (M) que caen dentro del círculo.
 - 6. La proporción de puntos dentro del círculo (M/N) es aproximadamente igual a la proporción del área del círculo con respecto al área del cuadrado: M/N /4.
 - 7. Por lo tanto, se puede estimar como: 4 * (M/N).

8. A medida que se aumenta el número de puntos aleatorios (N), la estimación de se vuelve más precisa.

• Problema 2: Simular el Lanzamiento de un Dado:

- Problema: Simular el lanzamiento de un dado 1000 veces y calcular la frecuencia de cada número.
- Solución:
 - 1. Usar un generador de números aleatorios para generar números enteros aleatorios entre 1 y 6 (inclusive). Muchos lenguajes de programación tienen funciones para hacer esto directamente. Si no, se puede generar un número aleatorio entre 0 y 1 y luego escalar y truncar para obtener un entero entre 1 y 6.
 - 2. Repetir este proceso 1000 veces, simulando así 1000 lanzamientos del dado.
 - 3. Para cada lanzamiento, registrar el resultado (el número obtenido). Usar un array o diccionario para almacenar la frecuencia de cada número (cuántas veces salió cada número).
 - 4. Después de los 1000 lanzamientos, calcular la frecuencia de cada número dividiendo el número de veces que salió cada número por el número total de lanzamientos (1000).
 - 5. Mostrar la frecuencia de cada número. En teoría, si el dado es justo, la frecuencia de cada número debería ser cercana a 1/6.

Materiales Complementarios Recomendados:

- Libros:
 - "Simulation Modeling and Analysis" by Averill M. Law. (Un clásico en el campo de la simulación).
 - "Discrete-Event System Simulation" by Jerry Banks.
- Artículos: Buscar artículos sobre aplicaciones de simulación en diferentes campos (manufactura, logística, finanzas, etc.).
- Software: Familiarizarse con software de simulación como Arena, AnyLogic, Simio o incluso lenguajes de programación como Python con librerías como SimPy.

Preguntas para Discusión:

- ¿Cuáles son las limitaciones de la simulación como herramienta de análisis?
- ¿Cómo se asegura la validez de un modelo de simulación?
- ¿En qué situaciones la simulación de Monte Carlo es particularmente útil?
- ¿Cómo afecta la calidad de los números aleatorios a la precisión de la simulación de Monte Carlo?