TEM: Tree-enhanced Embedding Model for Explainable Recommendation

XiangWang1, XiangnanHe1, FuliFeng1, LiqiangNie2, Tat-SengChua1 1 National University of Singapore, 2 Shandong University In WWW 2018: The 2018 Web Conference, April 23–27, 2018, Lyon, France. https://doi.org/10.1145/3178876.3186066

OUTLINE

- Introduction
- Tree-enhanced Embedding Model
- Experimental Results
- Conclusion

OUTLINE

- Introduction
- Tree-enhanced Embedding Model
- Experimental Results
- Conclusion

Trade-off of Accuracy & Explainability

Our Goal:

- Accurate: achieve the same level or comparable performance as embedding-based methods
- Explainable: be transparent in generating a recommendation & can identify the key rules for a prediction

Explainable Recommendation

User-Item Interactions

Recommended List:

- $\hat{y}_{u3} = 0.9$
- $\hat{y}_{ul} = 0.7$
- $\hat{y}_{u5} = 0.3$
- $\hat{y}_{u2} = 0.2$

- Why did RS recommend it?
- Why not something else?
- How do I correct an error?

Black-box Model

Recommended Reason

Style: Sci-Fi> like items of

<Price: \$\$, Attribute: Science>

Users of <City: SG, Age: 18-25,

Explainable Model

End User/ Data Scientist

- I understand why
- I understand why not
- I know how to correct RS

End User/ Data Scientist

Transparency, Trust, Explainability, Scrutability

OUTLINE

- Introduction
- Tree-enhanced Embedding Model
- Experimental Results
- Conclusion

Embedding-based Models

Learn latent factors for each feature (IDs & side Info)

User-Item Interactions

Matrix Factorization (MF)

Input: user ID, item ID **Interaction:** Inner Product

$$\hat{y}_{MF}(u,i) = b_0 + b_u + b_i + \mathbf{p}_u^{\mathsf{T}} \mathbf{q}_i$$

Factorization Machine (FM)

Input: user ID, item ID, side features ID

Interaction: Element-wise Product

Neural Network Methods

NCF, Deep Crossing, Wide&Deep, DIN, NFM

User-Item Multi-hot Representation

Cross Features

- Cross Feature: combinatorial feature that crosses (or multiplies) multiple individual input features.
- Why?
 - Higher-order feature interactions: e.g., [Age * Occupation *Gender]
 - Explicit decision rules
- For example
 - Users of <Gender=female & Age=20-25 & Income Level=\$8,000> tend to adopt items of <Color=Pink & Product=Apple>

Tree-based Methods

Decision Tree (DT):

- Each node splits a feature variable into two decision edges based on a value.
- A path from the root to a leaf -> a decision rule (like a cross feature).
- The leaf node -> the prediction value.

leaf node v_{L_2} represents $[x_0 < a_0] \& [x_3 \ge a_3] \& [x_2 \ne a_2]$

Forest (ensemble of trees)

- Since a single tree may not be expressive enough, a typical way is to build a forest, i.e., an ensemble of additive trees

$$\hat{y}_{GBDT}(\mathbf{x}) = \sum_{s=1}^{S} \hat{y}_{DT_s}(\mathbf{x}),$$

Prediction of the s-th tree

Tree-based vs. Embedding-based Model

Tree-based Model (e.g., GBDT)	Embedding-based Model (e.g., DNN, FM)
+ Strong at continuous features	+ Strong at categorical features
+ Explainable	- Blackbox
+ Low serving cost	- High serving cost
- Weak generalization ability to unseen feature combinations.	+ Strong generalization ability to unseen feature combinations.

Why not combining the strengths of the two types of models?

Tree-enhanced Embedding Model

Concrete Reasons: Explicitly discover effective cross features from rich side information of users & items

Explicit Decision Process: Estimate user-item matching score in an explainable way

Constructing Cross Features

- Traditional Solution: manually cross all values of feature variables
- Our Solution: GBDT -> automatically identify useful cross features
- We bulled GBDT on user attributes and item attributes.

Explicit Cross Features with easy-to-comprehend semantics!

Cross Features Embedding

- Primary Consideration: seamlessly integrate cross features with embedding-based CF
- Our Solution: embed them into user-item latent space

$$\mathbf{q} = GBDT(\mathbf{x}|\mathbf{Q}) = [Q_1(\mathbf{x}), \cdots, Q_S(\mathbf{x})].$$

Multi-hot encoding of cross-feature ID

$$\mathcal{V} = \{q_1 \mathbf{v}_1, \cdots, q_L \mathbf{v}_L\}$$

Embedding for each cross-feature ID

The correlations among cross features may be captured in the embedding space.

Attention Network

- Primary Consideration: different cross features contribute differently for a prediction
- Solution: Attention Network

Final Prediction

- Primary Consideration: explicit decision process & similarity-based + cross feature-based explanation mechanism
- Solution: Simple linear regression

$$\hat{y}_{TEM}(u,i,\mathbf{x}) = b_0 + \sum_{t=1}^m b_t x_t + \mathbf{r}_1^\top (\mathbf{p}_u \odot \mathbf{q}_i) + \mathbf{r}_2^\top e(u,i,\mathcal{V})$$
Similarity Cross Feature
$$\mathcal{L} = \sum_{(u,i,\mathbf{x}) \in O} -y_{ui} \log \sigma(\hat{y}_{ui}) - (1-y_{ui}) \log (1-\sigma(\hat{y}_{ui})),$$
• Pointwise logloss

- Pointwise regression loss
- Pairwise Ranking loss

OUTLINE

- Introduction
- Tree-enhanced Embedding Model
- Experimental Results
- Conclusion

Experimental Settings

- Research Questions:
 - RQ1: Compared with the state-of-the-art recsys methods, can TEM achieve comparable accuracy?
 - RQ2: Can TEM make the recsys results easy-to-interpret by using cross features and the attention network?
 - RQ3: how do different hyper-paramaters settings affect TEM?
- Tasks: Attraction Recommendation & Restaurant Recommendation
- Dataset: TripAdvisor
 - (https://www.tripadvisor.cn/)

Table 2: Statistics of the datasets.

Dataset	User#	User Feature#	Item#	Item Feature#	Interaction#
LON-A	16, 315	3, 230	953	4,731	136, 978
NYC-R	15, 232	3, 230	6, 258	10, 411	129, 964

Table 3: Statistics of the side information, where the dimension of each feature is shown in parentheses.

Side Information	Features (Category#)
LON-A/NYC-R User Feature	Age (6), Gender (2), Expert Level (6), Traveler Styles (18), Country (126), City (3,072)
LON-A Attraction Feature	Attributes (89), Tags (4, 635), Rating (7)
NYC-R Restaurant Feature	Attributes (100), Tags (10, 301), Price (3), Rating (7)

Baselines

- XGBoost: the state-of-the-art tree-based model
- GBDT+LR [ADKDD'14]: feeding the cross features extracted from GBDT into the logistic regression
- **GB-CENT [WWW'17]:** modeling categorical features with embedding-based model, numerical features with decision trees.
- FM: a generic embedding model that implicitly models all the second-order cross features
- NFM [SIGIR'17]: the state-of-the-art factorization model under the neural network framework
- Evaluation Protocols:
 - logloss: indicate the generalization ability of each model
 - ndcg@k: reflect the top-k recommendation performance

RQ1: Overall Performance Comparison

• Observations: Comparable Expressiveness & Accuracy

- TEM achieves the best performance w.r.t. logloss.
- TEM achieves comparable ndcg@5 to NFM

RQ1: Overall Performance Comparison

Without cross feature modeling:

- All methods have worse performance
- TEM is still better than others, due to the utility of attention network (can learn which features are more important for a user-item prediction).

RQ2: Case Study of Explainability

Sampled a user and check her predictions.

- V130: User Gender=Female] &
 [User Style=Peace and Quiet
 Seeker] ⇒ [Item Attribute=Sights
 & Landmarks] & [Item Tag=Walk
 Around]
- V148: [User Age=30-40] & [User Country=USA] ⇒ [Item Tag=Top Deck & Canary Wharf]

We attribute the user's preferences on The View from the Shard to her special interests in the item aspects of Walk Around, Top Deck & Canary Wharf.

TEM can provide more informative explanations based on a user's preferred cross features.

RQ3: Hyper-parameter Studies

Figure 6: Performance comparison of logloss w.r.t. the tree number S and the embedding size k.

OUTLINE

- Introduction
- Tree-enhanced Embedding Model
- Experimental Results
- Conclusion

Conclusions

- We proposed a tree-enhanced embedding method (TEM), which seamlessly combines the generalization ability of embeddingbased models with the explainability of tree-based models.
- Owing to the explicit cross features from tree-based part & the easy-to-interpret attention network, the whole prediction process of our solution is transparent & self-explainable.

Future Work:

- Jointly learn the tree-based and embedding-based
- Relational reasoning over KG (symbolic logics) + Deep Learning
- How to evaluate the quality of explanations?

Thanks!