令和 元年度 卒業論文

OpenModelica のシミュレーション結果を 用いたモータ特性表自動生成ツールの試作

指導教員 片山 徹郎 教授

宮崎大学 工学部 情報システム工学科

原田 海人

2020年1月

目次

1	はじ	めに		1
2	研究	の準備		2
	2.1	モータ	作成	2
		2.1.1	仕様書	2
		2.1.2	シミュレータの役割	2
	2.2	モータ	特性表	2
		2.2.1	特性表の種類	2
		2.2.2	特性表の要素	2
	2.3	OpenM	Iodelica	2
		2.3.1	modelica	2
		2.3.2	出力	2
3	機能			3
	3.1	対応す	るモデル	3
		3.1.1	モータ単体の Modelica モデル	3
		3.1.2	モータ単体の Modelica モデルをサブシステムとするモデル	4
	3.2	モータ	特性表生成	7
4	実装			9
	4.1	特性表	生成機能	9
		4.1.1	csv ファイルの読み込み	9
		4.1.2	特性表の各要素を算出するために必要なデータを取得	9
		4.1.3	特性表の各要素を算出	10
		4.1.4	始動電流	10
		4.1.5	停動トルク	11
		4.1.6	最大効率	11
		4.1.7	定格トルク	11

		4.1.8	定格	回転	数.				 	 •			•	•		•		 			11
		4.1.9	定格	電流					 									 			11
		4.1.10	定格	出力					 									 			11
		4.1.11	定格	電圧					 									 			11
		4.1.12	最大	回転	数				 					•				 			11
		4.1.13	特性	表を	生瓦	戈			 									 	•		11
5	適用	例																			12
	5.1	モータ	単体の	のモ う	デル				 									 			12
	5.2	パッケ	ージイ	じされ	れた	モラ	デル	レ	 									 	•		12
6	考察																				13
	6.1	評価.							 					•				 			13
		6.1.1	評価	方法					 									 			13
		6.1.2	結果	:					 									 			13
	6.2	関連研	究 .						 									 			13
	6.3	ツール	の問題	題点					 							•		 			13
7	おわ	りに																			14
謝辞																					15
参考区	文献																				16

第1章 はじめに 1

第1章

はじめに

本論文の構成は、以下の通りである。

第2章では、試作したモータ特性表自動生成ツールを開発するために必要となる前提知識について説明する。

第3章では、試作したモータ特性表自動生成ツールの機能について説明する。

第4章では、モータ特性表自動生成ツールの実装について説明する。

第5章では、試作したモータ特性表自動生成ツールの機能が正しく動作することを検証する。

第6章では、試作したモータ特性表自動生成ツールについて考察する。

第7章では、本論文のまとめと今度の課題を述べる。

第2章 研究の準備 2

第2章

研究の準備

本章では、本研究で必要となる前提知識を説明する。

- 2.1 モータ作成
- 2.1.1 仕様書
- 2.1.2 シミュレータの役割
- 2.2 モータ特性表
- 2.2.1 特性表の種類
- 2.2.2 特性表の要素
- 2.3 OpenModelica
- 2.3.1 modelica
- 2.3.2 出力

第3章

機能

本章では、本研究で試作したモータ特性表自動生成ツールの機能について説明する。

モータ特性表自動生成ツールは、OpenModelica で、Modelica 言語にて作成したモータのモデルをシミュレーションした時に、出力される csv ファイルを読み込み、実行することによって、モータ特性表を生成する。

3.1 対応するモデル

試作したモータ特性表自動生成ツールでは、以下の Modelica モデルのシミュレーション結果に対応する。

- モータ単体の Modelica モデル
- モータ単体の Modelica モデルをサブシステムとするモデル

なお、今回はモータの中でもブラシ付き DC モータに対応する。 以降、上記のモデルについて具体的に説明する。

3.1.1 モータ単体の **Modelica** モデル

モータ単体の Modelica モデルとは、電源部品、抵抗部品、インダクター部品、起電力部品、慣性部品、接地部品を持つモデルのことである。

部品名 使用する MSL
電源部品 Modelica.Electrical.Analog.Sources
抵抗部品 Modelica.Electrical.Analog.Basic
インダクター部品 Modelica.Electrical.Analog.Basic
起電力部品 Modelica.Electrical.Analog.Basic
関性部品 Modelica.Electrical.Analog.Basic
接地部品 Modelica.Electrical.Analog.Basic

表 3.1: MSL 対応表

Ea:電源電圧、Ia:モータの電流、R:電機子抵抗 L:コイルのインダクタンス、Ec:モータの発電電圧

図 3.1: ブラシ付き DC モータの等価回路

上記 6 つの部品が必要な理由は、ブラシ付き DC モータの等価回路 [1] を Modelica 言語で表す際に、使用する部品 [2] だからである。

各部品で使用する MSL を表 3.1 に、ブラシ付き DC モータの等価回路図を図 3.1 に、モータ単体の Modelica モデルの例を図 3.2 に、図 3.2 の Modelica コードを図 3.3 に示す。

3.1.2 モータ単体の Modelica モデルをサブシステムとするモデル

モータ単体の Modelica モデルをサブシステム [2] とするモデルとは、3.1.1 節で説明したモータ単体の Modelica モデルを一つのモデルとし、サブシステムとして書いたモデルのことである。 例として、DC モータのサブシステムを用いた DC モータサーボのモデルを図 3.4 に、図 3.4 の Modelica コードを図 3.5 に示す。

図 3.2: モータ単体の Modelica モデルの例

```
1 model DCmotor
      Modelica.Electrical.Analog.Basic.Resistor resistor1(T = 283.15) annotation(
           Placement (visible = true, transformation (origin = \{-40, 54\}, extent = \{\{-10, -10\}, \{10, 10\}\}, rotation = 0\})); 
 4 ⊟
       Modelica.Electrical.Analog.Basic.Inductor inductor1 annotation(
          \textbf{Placement} ( \textbf{visible} = \textbf{true}, \ \textbf{transformation} ( \textbf{origin} = \{-12, \ 54\}, \ \textbf{extent} = \{\{-10, \ -10\}, \ \{10, \ 10\}\}, \ \textbf{rotation} = 0))); 
 6 ⊟
       Modelica.Electrical.Analog.Basic.Ground ground1 annotation(
       Placement(visible = true, transformation(origin = {-34, -54}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Mechanics.Rotational.Components.Inertia inertial(a(start = 0), phi(start = 0), w(start = 0)) annotation(
         Placement(visible = true, transformation(origin = \{25, 18\}, extent = \{\{-10, -10\}, \{10, 10\}\}, rotation = \{0, 10\});
10⊟
       Modelica.Electrical.Analog.Basic.EMF emf(useSupport = false) annotation(
          Placement(visible = true, transformation(origin = \{-2, 18\}, extent = \{\{-10, -10\}, \{10, 10\}\}, rotation = 0\})); \\ 
12 ⊟
       Modelica.Electrical.Analog.Sources.ConstantVoltage constantVoltage1 annotation(
         Placement(visible = true, transformation(origin = {-64, 8}, extent = {{-10, -10}, {10, 10}}, rotation = -90)));
14 equation
15⊟
       connect(constantVoltage1.n, ground1.p) annotation(
          \text{Line}(\text{points} = \{\{-64, -2\}, \{-64, -2\}, \{-64, -30\}, \{-34, -30\}, \{-34, -44\}, \{-34, -44\}, \{-34, -44\}\}, \text{color} = \{0, 0, 255\})); 
       connect(constantVoltage1.n, emf.n) annotation(
          \text{Line(points} = \{ \{-64, -2\}, \{-64, -2\}, \{-64, -30\}, \{-2, -30\}, \{-2, 8\}, \{-2, 8\}\}, \text{ color} = \{0, 0, 255\}) \}; 
19⊟
       connect(constantVoltage1.p, resistor1.p) annotation(
         Line(points = {{-64, 18}, {-64, 18}, {-64, 54}, {-50, 54}, {-50, 54}}, color = {0, 0, 255}));
21⊟
       connect(resistor1.n, inductor1.p) annotation(
         Line(points = \{\{-30, 54\}, \{-22, 54\}\}, \text{ color } = \{0, 0, 255\}\});
       connect(inductor1.n, emf.p) annotation(
         Line(points = \{\{-2, 54\}, \{-2, 28\}\}, \text{color} = \{0, 0, 255\}\});
       connect(emf.flange, inertial.flange_a) annotation(
26 <sup>L</sup>
27
28
         Line(points = \{\{8, 18\}, \{15, 18\}\}));
       annotation (
         uses(Modelica(version = "3.2.3")));end DCmotor;
```

図 3.3: 図 3.2 の Modelica コード

図 3.4: DC モータサーボのモデル

```
model submodel
          Modelica.Blocks.Sources.Step step1(height = 1.5) annotation(
          Placement(visible = true, transformation(origin = {-70, 48}, extent = {{-4, -4}, {4, 4}}, rotation = 0)));
Modelica.Blocks.Math.Feedback feedback1 annotation(
 4 ⊟
               Placement(visible = true, transformation(origin = \{-56, 48\}, extent = \{\{-4, -4\}, \{4, 4\}\}, rotation = 0\})); 
          Modelica.Blocks.Continuous.PI PI(T = 1) annotation(
Placement(visible = true, transformation(origin = {-42, 48}, extent = {{-4, -4}, {4, 4}}, rotation = 0)));
 6 ⊟
         Modelica.Mechanics.Rotational.Components.IdealGear idealGear1 annotation(
Placement(visible = true, transformation(origin = {13, 49}, extent = {{-5, -5}, {5, 5}}, rotation = 0)));
Modelica.Mechanics.Rotational.Components.Inertia inertia2(J = 1) annotation(
Placement(visible = true, transformation(origin = {31, 49}, extent = {{-5, -5}, {5, 5}}, rotation = 0)));
 8 🖃
10∃
11 L
12 ⊟
          Modelica.Mechanics.Rotational.Components.Spring spring1(c = 1) annotation(
          Placement(visible = true, transformation(origin = {47, 49}, extent = {{-5, -5}, {5, 5}}, rotation = 0)));
Modelica.Mechanics.Rotational.Components.Inertia inertia3(J = 0.00020979666) annotation(
14⊟
             Placement(visible = true, transformation(origin = {194, 14}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
          Modelica.Mechanics.Rotational.Sensors.SpeedSensor speedSensor1 annotation(
Placement(visible = true, transformation(origin = {57, 33}, extent = {{-5, -5}}, {5, 5}}, rotation = -90)));
16⊟
          pack_iner pack_iner1 annotation(
   Placement(visible = true, transformation(origin = {-16, 48}, extent = {{-10, -10}}, {10, 10}}, rotation = 0)));
18 ⊟
          connect(idealGear1.flange_a, pack_iner1.flange_b) annotation(
   Line(points = {{8, 49}, {8, 49.5}, {-6, 49.5}, {-6, 48}}));
connect(idealGear1.flange_b, inertia2.flange_a) annotation(
   Line(points = {{18, 49}, {26, 49}}));
21 ⊟
23∃
24 L
          connect(spring1.flange_b, speedSensor1.flange) annotation(
   Line(points = {52, 49}, {57, 49}, {57, 38}}));
connect(inertia2.flange_b, spring1.flange_a) annotation(
25⊟
          Line(points = {{36, 49}, {42, 49}}));

connect(PI.y, pack_iner1.u) annotation(
    Line(points = {{-38, 48}, {-28, 48}}, color = {0, 0, 127}));

connect(speedSensor1.w, feedback1.u2) annotation(
    Line(points = {{57, 27}, {57, 22.5}, {-56, 22.5}, {-56, 45}}, color = {0, 0, 127}));
29⊟
31 ⊟
33 ⊟
          connect(feedback1.y, PI.u) annotation(
  Line(points = {{-52.4, 48}, {-46.8, 48}}, color = {0, 0, 127}));
35 ⊟
          connect(step1.y, feedback1.u1) annotation(
          Line(points = {{-65.6, 48}, {-59.2, 48}}, color = {0, 0, 127})); annotation(
             uses(Modelica(version = "3.2.3")));end submodel;
38
```

図 3.5: 図 3.4 の Modelica コード

第3章 機能 7

3.2 モータ特性表生成

今回試作したモータ特性表自動生成ツールは次の9個の要素を持つモータ特性表を生成する。

- 始動電流 mA
- 停動トルク mNm
- 最大効率 %
- 定格トルク mNm
- 定格回転数 rpm
- 定格電流 mA
- 定格出力 W
- 定格電圧 V
- 最大回転数 rpm

図 3.2 のモデルをシミュレーションした時に、OpenModelica から出力される csv ファイルの 一部を図 3.6 に、図 3.6 から作成できる特性表を図 3.7 に示す。

図 3.6: 図 3.2 のシミュレーション結果の csv ファイルの一部

始動電流 mA	580.7439
停動トルク mNm	0.452399
最大効率 %	99.96091
定格トルク mNm	0.000177
定格回転数 rpm	18380.42
定格電流 mA	0.227271
定格出力 W	0.003254
定格電圧 V	1.5
最大回転数 rpm	18380.42

図 3.7: 図 3.6 の csv ファイルから作成した特性表

第4章 実装 9

第4章

実装

本章では、本研究で試作したモータ特性表自動生成ツールの実装について説明する。

4.1 特性表生成機能

特性表生成機能の処理の流れを以下に示す。

- 1. OpenModelica から出力された csv ファイルを読み込む
- 2. 特性表の各要素を算出するために必要なデータを csv ファイルから取得する
- 3. 特性表の各要素を算出する
- 4. 特性表を生成する

以下、各処理について具体的に説明する。

4.1.1 csv ファイルの読み込み

Python で実装するため、Python の標準ライブラリの csv モジュールをインポートし、csv ファイルを読み込む。

4.1.2 特性表の各要素を算出するために必要なデータを取得

4.1.1 章で読み込んだ csv ファイルから、以下のデータを取得する。

第4章 実装

- 時間
- 電流
- 電圧
- ・トルク
- 角速度

取得方法としては、まず、図 3.6 にあるように、OpenModelica から出力された csv ファイルの 1 行目には各部品の変数名が記載されているので、取得したいデータを持つ変数名を探し、その変数名がある列番号を取得する。そして、各データに対応した配列に、列番号の位置にある値を繰り返し処理で格納する。

4.1.3 特性表の各要素を算出

4.1.2章で取得したデータを用いて、3.2章で挙げた各要素を算出する。

4.1.4 始動電流

始動電流とは

第4章 実装 11

- 4.1.5 停動トルク
- 4.1.6 最大効率
- 4.1.7 定格トルク
- 4.1.8 定格回転数
- 4.1.9 定格電流
- 4.1.10 定格出力
- 4.1.11 定格電圧
- 4.1.12 最大回転数
- 4.1.13 特性表を生成

第 5 章 適用例 12

第5章

適用例

本章では、本研究で作成した

- **5.1** モータ単体のモデル
- 5.2 パッケージ化されたモデル

第6章

考察

本論文では、モータ特性表自動生成ツールを試作した。

- 6.1 評価
- 6.1.1 評価方法
- 6.1.2 結果

本論文で試作したモータ特性表自動生成ツールは、

6.2 関連研究

関連研究について述べる。

6.3 ツールの問題点

以下に、今回作成したモータ特性表自動生成ツールの問題点を示す。

● 対応するモータのモデルは1種類しかない モータは~種類に分けることができ、今回は1つにしか対応していない。対応できる数を 増やす必要がある。 第7章 おわりに 14

第7章

おわりに

以下に、今後の課題を示す。

謝辞 15

謝辞

参考文献 16

参考文献

[1] Device Plus - デバプラ ,"モータに最大の電流が流れる状態について": https://deviceplus.jp/glossary/qa_006/, アクセス日:2020/01/17.

[2] Peter Fritzson 著 (監訳:大畠 明, 訳:広野 友英):"Modelica によるシステムシミュレーション入門", TechShare 社 (2015).