OS - TD 4

Signaux électriques dans l'ARQS

Méthode

Avant de chercher à répondre aux questions d'un exercice d'électrocinétique :

- 1. schématiser:
- 2. repérer sur le schéma les points de connexion distincts et les nœuds et leur donner un nom (cf Chapitre F);
- 3. compléter le schéma avec le nom et l'orientation de toutes les grandeurs utiles;
- 4. identifier le cas échéant les parties du circuit qui sont en série ou en parallèle (cf Chapitre G).

I - Modèle de pile

Une pile possède une différence de potentiels à ses bornes égale à $2,2\,\mathrm{V}$ quand elle est traversée par un courant d'intensité $0,20\,\mathrm{A}$. La différence de potentiels monte à $3,0\,\mathrm{V}$ lorsque l'intensité du courant descend à $0,12\,\mathrm{A}$.

- 1. Combien valent la résistance interne et la force électromotrice du modèle de Thévenin de la pile?
- 2. Dans la seconde situation, calculer la puissance fournie par la pile au reste du circuit ainsi que la puissance reçue puis dissipée par effet Joule à l'intérieur de la pile.

II - Fonctionnement d'un circuit à diode Zener

Un générateur de tension idéal de fem E>0 est branché en série avec une résistance R et une diode Zener D. Le circuit est représenté à gauche ci-dessous. Le fonctionnement de la diode Zener est explicité par la courbe courant-tension représentée à droite ci-dessous.

- 1. Déterminer la relation entre I et U, pour la partie gauche du circuit, c'est-à-dire pour le générateur de Thévenin.
- 2. Représenter la relation précédente sous la forme de la courbe I = f(U).
- 3. Déterminer les valeurs prises par U et I selon les valeurs de E. On pourra s'aider en superposant la réponse à la question précédente et la courbe courant-tension de la diode Zener.
- 4. Même question si on retourne la diode Zener.

III - Modèle de Thévenin

On souhaite déterminer U' et I' en fonction de E et R en déterminant au préalable un modèle équivalent de Thévenin de la portion de circuit à gauche de A et B. Pour cela, on se rappelle qu'un générateur de Thévenin, de fem E_0 et de résistance interne R_0 , parcouru par l'intensité I' et ayant la différence de potentiels U' à ses bornes, vérifie (en convention générateur)

$$U' = E_0 - R_0 I'$$

On a alors : $E_0 = U'_{(I'=0)}$ et $R_0 = -\left(\frac{U'}{I'}\right)_{E_0=0}$, le signe « - » dans la définition de R_0 étant dû à la convention générateur utilisée.

- 1. Dessiner le schéma du circuit équivalent quand on débranche la résistance 3R qui est à droite de A et B.
- 2. À partir du circuit précédent, déterminer l'expression de U' quand I'=0.
- 3. De même, déterminer la résistance équivalente entre A et B quand on éteint la source de tension.
- 4. Déduire de ce qui précède les paramètres de Thévenin E_0 et R_0 qui permettent de modéliser la portion de circuit à gauche de A et B par un générateur de Thévenin et dessiner le schéma du circuit équivalent quand on remplace cette portion de circuit par son générateur de Thévenin équivalent.
- 5. Tracer les caractéristiques U' = f(I') des deux dipôles AB du circuit équivalent de la question précédente et déduire de leur intersection les expressions de U' et I', solutions du problème.

IV - Puissance électrique

On considère le circuit suivant, avec $u_{AC}=30$ V, $R_1=22\,\Omega,\,R_2=24\,\Omega,\,R_3=12\,\Omega$ et $R_4=30\,\Omega$

- 1. Déterminer la résistance équivalente entre les nœuds A et C, notée R_{AC} .
- 2. Déterminer la valeur de la tension u_{BC} .
- 3. Déterminer les intensités des courants dans chaque résistance (on notera i_1 l'intensité du courant traversant R_1 etc...).
- 4. Déterminer la puissance Joule dissipée dans R_4 .

V - Adaptation de résistances en puissance

L'objectif de l'exercice est de choisir le résistor à brancher en sortie d'un générateur de Thévenin pour que la puissance qu'il reçoit soit maximale.

1. Faire un schéma d'un générateur de Thévenin de fem E et de résistance interne r en série avec un résistor de résistance R.

- 2. Déterminer l'expression de la puissance reçue par le résistor en fonction de R, r et E.
- 3. On considère E et r fixées. Démontrer que la puissance reçue par le résistor en fonction de R est extrémale si r = R.
- 4. Démontrer que l'extremum obtenu pour R=r est le maximum de la puissance reçue par le résistor.
- 5. Que vaut la puissance reçue par le résistor quand r = R?
- 6. Que vaut la puissance fournie par la fem du générateur de Thévenin quand r=R?
- 7. Quel est alors le rendement, si on considère que ce qui est utile est la puissance reçue par le résistor?
- 8. Que vaut la tension aux bornes du résistor quand r = R?

VI - Pont de Wheatstone

Un pont de Wheatstone est un système de mesure constitué de 4 résistances R_1 , R_2 , R_3 et R_4 et d'un galvanomètre (ou micro-ampèremètre) G qu'on caractérise par sa résistance interne r_G comme indiqué sur le circuit ci-contre.

On dit que le pont est équilibré lorsque l'intensité du courant parcourant la branche BD, lue sur le galvanomètre, est nulle.

- 1. En remarquant que si I_G est nul alors on a également $v_B = v_D$, déterminer la relation entre les quatre résistances R_1 , R_2 , R_3 et R_4 lorsque le pont est équilibré.
- 2. Comment déterminer R_4 si celle ci est inconnue?

VII - Attention danger

FIGURE 1.1 – Deux générateurs de tension montés en parallèles.

On considère deux générateurs de tension réels linéaires, de fem et résistances internes respectives E_1 et r_1 et E_2 et r_2 , montés en parallèle comme indiqué sur la figure 1.1.

- 1. Exprimer la loi des nœuds.
- 2. Donner les deux expressions de U_{AB} : respectivement en fonction de E_1 , r_1 et i_1 (expression 1) et en fonction de E_2 , r_2 et i_2 (expression 2).
- 3. Pour simplifier la discussion, on fixe arbitrairement la valeur de i à zéro et on prend $E_1 > E_2$. Cela ne nuit pas à la généralité des conclusions.
 - (a) Que devient la loi des nœuds de la question 1? En déduire, une nouvelle expression de U_{AB} en fonction de E_2 , r_2 et i_1 (expression 3).
 - (b) À l'aide des expressions 1 et 3, représenter sur le même graphique, l'allure des deux caractéristiques $U_{AB} = f(i_1)$.

- (c) Quelle est l'expression de l'intensité i_1 à leur intersection en fonction de E_1 , E_2 , r_1 et r_2 ?
- (d) Que passe-t-il si les deux générateurs réels ont des défauts très faibles, c'est-à-dire qu'ils tendent à être des générateurs idéaux? Représenter à nouveau l'allure des deux caractéristiques $U_{AB} = f(i_1)$ dans ce cas. Quelle conséquence pratique cela peut-il avoir?

VIII - Equivalence triangle-étoile

On considère les deux circuits ci-dessus, appelés montage étoile (à gauche) et triangle (à droite). Pour des valeurs bien choisies des résistances ces deux circuits peuvent être équivalents. On suppose connues les résistances r_i de la configuration triangle et on cherche les résistances R_j de la configuration étoile.

- 1. Exprimer le plus simplement possible la tension U_{AB} en fonction de certaines résistances et certains courants pour les deux montages.
- 2. Exprimer j_3 en fonction de i_1 et i_2 .
- 3. En déduire les expressions de R_1 et R_2 pour que les circuits soient équivalents.
- 4. En déduire l'expression de R_3 par analogie.

IX - Chaîne infinie de résistances

Déterminer la résistance équivalente vue entre A et B. La chaîne de résistances se poursuit à l'infini vers la droite en répétant toujours le même motif. Cet exercice ne nécessite aucun calcul compliqué.