

Cálculo Avanzado - Funciones continuas 1

Primer cuatrimestre de 2020

Daniel Carando

Dto. de Matemática - FCEN - UBA

Casi todo los resultados de esta clase están en la Sección 6.2 del apunte. Los ejemplos no son del apunte.

$$(E, d), (E', d')$$

$$(E = \pi E')$$

$$TALLER: E = \mathbb{R}^m \qquad E' \in \mathbb{R}^m.$$

$$Go dist EUCLIDEA$$

Definición

Una función $f: E \to E'$ es continua en el punto $x \in E$ si para cada $\varepsilon > 0$ existe $\delta > 0$ tal que si $y \in E$, $d(x,y) < \delta$, entonces $d'(f(x),f(y)) < \varepsilon$.

Definición

Una función $f: E \to E'$ es continua en el punto $x \in E$ si para cada $\varepsilon >$ o existe $\delta >$ o tal que si $y \in E$, $d(x,y) < \delta$, entonces $d'(f(x),f(y)) < \varepsilon$.

Esta condición equivale a: para cada $\varepsilon > 0$ existe $\delta > 0$ tal que $f(y) \in B(f(x), \varepsilon)$ para todo $y \in B(x, \delta)$.

Definición

Una función $f: E \to E'$ es continua en el punto $x \in E$ si para cada $\varepsilon >$ 0 existe $\delta >$ 0 tal que si $y \in E$, $d(x,y) < \delta$, entonces $d'(f(x),f(y)) < \varepsilon$.

Esta condición equivale a: para cada $\varepsilon > 0$ existe $\delta > 0$ tal que $f(y) \in B(f(x), \varepsilon)$ para todo $y \in B(x, \delta)$.

Es decir, para cada $\varepsilon > 0$ existe $\delta > 0$ tal que

$$f(B(x,\delta)) \subset B(f(x),\varepsilon).$$

Definición

Una función $f: E \to E'$ es continua en el punto $x \in E$ si para cada $\varepsilon >$ o existe $\delta >$ o tal que si $y \in E$, $d(x,y) < \delta$, entonces $d'(f(x),f(y)) < \varepsilon$.

Esta condición equivale a: para cada $\varepsilon > 0$ existe $\delta > 0$ tal que $f(y) \in B(f(x), \varepsilon)$ para todo $y \in B(x, \delta)$.

Es decir, para cada $\varepsilon >$ 0 existe $\delta >$ 0 tal que

Observación

Una función $f: E \to E'$ es continua en el punto $x \in E$ si y sólo si para cada entorno V de f(x) en E', existe un entorno U de x en E tal que $f(U) \subset V$.

Observación

Una función $f: E \to E'$ es continua en el punto $x \in E$ si y sólo si para cada entorno V de f(x) en E', existe un entorno U de X en E tal que $f(U) \subset V$.

Observación

Una función $f: E \to E'$ es continua en el punto $x \in E$ si y sólo si para cada entorno V de f(x) en E', existe un entorno U de X en E tal que $f(U) \subset V$.

Decir que $f(U) \subset V$ es equivalente a decir que $U \subset f^{-1}(V)$, con lo cual podemos afirmar que para cada entorno V de f(x), la imagen inversa f^{-1} es un entorno de x.

V out de $f(x) = f^{-1}(V)$ ent de X

f cont & 2

Observación

Una función $f: E \to E'$ es continua en el punto $x \in E$ si y sólo si para cada entorno V de f(x) en E', existe un entorno U de x en E tal que $f(U) \subset V$.

Decir que $f(U) \subset V$ es equivalente a decir que $U \subset f^{-1}(V)$, con lo cual podemos afirmar que para cada entorno V de f(x), la imagen inversa f^{-1} es un entorno de x.

Una función $f: E \to E'$ es continua en x si y sólo si transforma cualquier sucesión convergente a x en una sucesión convergente a f(x).

Una función $f: E \to E'$ es continua en x si y sólo si transforma cualquier sucesión convergente a x en una sucesión convergente a f(x).

En otras palabras, f es continua en x si y sólo si cumple:

• para toda sucesión $(x_n)_n \subset E$ convergente a x, se tiene que la sucesión $(f(x_n))_n \subset E'$ converge a f(x).

$$= \frac{1}{200} \left(\frac{1}{200} \left(\frac{1}{200} \left(\frac{1}{200} \right) \frac{1}{200} \right) \frac{1}{200} \left(\frac{1}{200} \left(\frac{1}{200} \left(\frac{1}{200} \right) \frac{1}{200} \left(\frac{1}{200} \left(\frac{1}{200} \left(\frac{1}{200} \right) \frac{1}{200} \right) \frac{1}{200} \right) \right) \right)$$

Cálculo Avanzado

P(x1 c B(P(x), E) 7 m2, mo

1-91, 3 mol 1 - 6 B(x, 8) V m) no.

Teorema Una función f es continua en x si y sólo si transforma cualquier sucesión convergente a x en una sucesión convergente a f(x).

$$S = 1/m, \quad \chi_m = \int_{-20}^{20} (1 + 1) \int_{-20}^{20$$

$$P(N_n) = P(D/n) \neq P(P(N_n)) = (n \rightarrow D)$$

$$P(N_n) = P(D/n) \neq P(P(N_n)) = (p(N_n) + p(N_n)) = (p(N_n) + p(N_n) + p(N_n) + p(N_n)) = (p(N_n) + p(N_n) + p(N_n)) = (p(N_n) + p(N_n) + p(N_n) + p(N_n)) = (p(N_n) + p(N_n) + p(N_n) + p(N_n) + p(N_n) + p(N_n) = (p(N_n) + p(N_n) + p(N_n) + p(N_n) + p(N_n) = (p(N_n) + p(N_n) + p(N_n)) = (p(N_n) + p(N_n) + p(N_n) + p(N_n) + p(N_n) + p(N_n) = (p(N_n) + p(N_n) + p(N_n) + p(N_n) + p(N_n) = (p(N_n) + p(N_n) + p(N_n) + p(N_n) + p(N_n) + p(N_n) = (p(N_n) + p(N_n) + p($$

Cálculo Avanzado Daniel Carando

DM-FCEN-UBA

Definición

Una función $f: E \to E'$ es continua en E si es continua en todo punto $x \in E$.

Definición

Una función $f: E \to E'$ es continua en E si es continua en todo punto $x \in E$.

Teorema

Una función $f: E \to E'$ es continua si y sólo si la preimagen de todo abierto de E' es abierto en E.

Cálculo Avanzado

Una función $f: E \to E'$ es continua si y sólo si la preimagen de *todo* abierto de E' es abierto en E.

Sen VCE' aliento. | q vq f-1(V) es al 2 = f-((V)) = { g < E / f(0) < V }. (5) P(A) EV at = 7 7 820 / B(PIN, E) CV (f(B(n,8)), > B(p(n), E) < V => B(n, b) < P-(V) f'(VI e aliento.

Una función $f: E \to E'$ es continua si y sólo si la preimagen de *todo* abierto de E' es abierto en E.

Ejercicio

Ver que lo mismo vale cambiando abiertos por cerrados.

front 67 filt garado YACE corrado

Ejemplo

$$V = \{(x, y, z) \in I(z^3) / x^2 + e^{yz} \neq 4\}$$
 Ab.

 $f: I(z^3) \rightarrow I(z) = f(x, y) = x^2 + e^{yz} \neq 2$ Ont

 $V = f^{-1}(-x, y) = ab$.

 $V = f^{-1}(-x, y) = ab$.

Teorema Gorema
Una función $f: E \to E'$ es continua **#** para todo $A \subset E$, 6 VALE LA $f(\bar{A}) \subset \overline{f(A)}$. VUEZTA THEAD 3 3 (Ma) CA/ $= \frac{1}{f_{\text{cont}}} \frac{f(x_n) - f(x)}{f_{\text{cont}}}$ (P(Mn)/m CP(A) Daniel Carando DM-FCEN-UBA Cálculo Avanzado

Una función $f: E \to E'$ es continua si para todo $A \subset E$, $f(\bar{A}) \subset \overline{f(A)}$.

Es le melta de la gue probamos en la pagina anterios. (EJCR CICIO; probarlo!)