Pascal's Triangle

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^i b^{n-i}$$

$$(a+b)^0 = 1$$

$$(a+b)^1 = 1a+1b$$

$$(a+b)^2 = 1a^2 + 2ab + 1b^2$$

$$(a+b)^3 = 1a^3 + 3a^2b + 3ab^2 + 1b^3$$

$$(a+b)^4 = 1a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + 1b^4$$

$$(a+b)^5 = 1a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + 1b^5$$

$$(a+b)^6 = 1a^6 + 6a^5b + 15a^4b^2 + 20a^3b^3 + 15a^2b^4 + 6ab^5 + 1b^6$$

$$(a+b)^7 = 1a^7 + 7a^6b + 21a^5b^2 + 35a^4b^3 + 35a^3b^4 + 21a^2b^5 + 7ab^6 + 1b^7$$

Khayyam - Pascal's Triangle

Discrete Mathematics

Fibonacci Sequence: A00045 (See also the On-Line Encyclopedia of Integer Sequences)

$$\begin{cases} F_0 = 0, & F_1 = 1 \\ F_n = F_{n-1} + F_{n-2}, & n \ge 2 \end{cases}$$

$$L(7) = \begin{bmatrix} 1 & & & & \\ 1 & 1 & & & \\ 1 & 2 & 1 & & \\ 1 & 3 & 3 & 1 & & \\ 1 & 4 & 6 & 4 & 1 & \\ 1 & 5 & 10 & 10 & 5 & 1 \\ 1 & 6 & 15 & 20 & 15 & 6 & 1 \end{bmatrix}$$

$$L(n)$$

$$U(7) = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ & 1 & 2 & 3 & 4 & 5 & 6 \\ & & 1 & 3 & 6 & 10 & 15 \\ & & & 1 & 4 & 10 & 20 \\ & & & & 1 & 5 & 15 \\ & & & & & 1 & 6 \\ & & & & & 1 \end{bmatrix}$$

$$P(7) = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 3 & 6 & 10 & 15 & 21 & 28 \\ 1 & 4 & 10 & 20 & 35 & 56 & 84 \\ 1 & 5 & 15 & 35 & 70 & 126 & 210 \\ 1 & 6 & 21 & 56 & 126 & 252 & 462 \\ 1 & 7 & 28 & 84 & 210 & 462 & 924 \end{bmatrix}$$

Pascal's Matrix

$$P(n) = L(n)U(n)$$

$$\det P(n) = \det L(n)U(n) = \det L(n) \det U(n) = 1 \times 1 = 1.$$

1	1	1	1	1	1	1
1	2	3	4	5	6	7
1	3	6	10	15	21	28
1	4	10	20	35	56	84
1	5	15	35	70	126	210
1	6	21	56	126	252	462
1	7	28	84	210	462	924

1	1	1	1	1	1	1
1	2	3	4	5	6	7
1	3	6	10	15	21	28
1	4	10	20	35	56	84
1	5	15	35	70	126	210
1	6	21	56	126	252	462
1	7	28	84	210	462	924

```
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
```

Discrete Mathematics

Khayyam - Pascal's Triangle

The sequence : 1,1,1,1,1,...

Discrete Mathematics

The natural numbers: 1,2,3,4,5,...

The triangular numbers: 1,3,6,10,15,...

Discrete Mathematics

The tetrahedral numbers: 1,4,10,20,...

The first ten tetrahedral numbers are:

Strictly Come Counting Pascal's Triangle:

The *pentagonal numbers* are shown in the Figure below. Determine a formula for the *n*th pentagonal number.

