Circuits and Transforms

Jarpula Bhanu Prasad - AI21BTECH11015

CONTENTS

1 Definitions

2 Laplace Transform

3 Initial Conditions

Abstract—This manual provides a simple introduction to Transforms

1 Definitions

1. The unit step function is

$$u(t) = \begin{cases} 1 & t > 0 \\ \frac{1}{2} & t = 0 \\ 0 & t < 0 \end{cases}$$
 (1.1)

2. The Laplace transform of g(t) is defined as

$$G(s) = \int_{-\infty}^{\infty} g(t)e^{-st} dt$$
 (1.2)

2 Laplace Transform

1. In the circuit, the switch S is connected to position P for a long time so that the charge on the capacitor becomes $q_1 \mu C$. Then S is switched to position Q. After a long time, the charge on the capacitor is $q_2 \mu C$.

Fig. 2.1

2. Draw the circuit using latex-tikz. **Solution:** The circuit drawn using the latex-tikz is Fig.(2.2)

When switch is closed at position P

3. Find q_1 .

Solution: When the switch is closed for long time the circuit achives steady state condition. Then the equivalent circuit is given by

1

consider the circuit as cells with internal resistors connected in series.

$$i = \frac{V}{R_{eq}} = \frac{1}{1+2} = \frac{1}{3}A$$
 (2.1)

Now voltage across 2Ω resistro is given by

$$\implies$$
 2 - $V_A = \frac{1}{3} \times 2 = \frac{2}{3}$ (2.2)

$$V_A = 2 - \frac{2}{3} \tag{2.3}$$

$$=\frac{4}{3}\tag{2.4}$$

Now, charge

$$q_1 = C\Delta V \tag{2.5}$$

$$=1\times\frac{4}{3}\tag{2.6}$$

$$=\frac{4}{3}\tag{2.7}$$

charge on q_1 is $\frac{4}{3}\mu C$

4. Show that the Laplace transform of u(t) is $\frac{1}{s}$ and find the ROC.

Solution:

$$\mathcal{L}[u(t)] = U(s) = \int_{-\infty}^{\infty} u(t)e^{-st}dt$$
 (2.8)

$$U(s) = \int_0^0 \frac{1}{2} e^{-st} dt + \int_0^\infty 1 e^{-st} dt$$
 (2.9)

$$= -\frac{1}{s} \left| e^{-st} \right|_0^{\infty} \tag{2.10}$$

$$= -\frac{1}{s} \left[e^{-s\infty} - e^{-s \times 0} \right]$$
 (2.11)

The above term converges if and only if $e^{-st} \rightarrow 0$ as $t \rightarrow \infty$ only possible if $Re\{s\} > 0$. hence

$$U(s) = \frac{1}{s}$$
 $Re\{s\} > 0$ (2.12)

5. Show that

hence

$$e^{-at}u(t) \stackrel{\mathcal{H}}{\longleftrightarrow} L\frac{1}{s+a}, \quad a > 0$$
 (2.13)

and find the ROC.

Solution: Let $x(t) = e^{-at}u(t)$

$$\mathcal{L}[x(t)] = X(s) = \int_{-\infty}^{\infty} e^{-at} u(t) e^{-st} dt \qquad (2.14)$$

$$= \int_{-\infty}^{\infty} e^{-(s+a)t} u(t)dt \tag{2.15}$$

$$X(s) = \int_0^0 \frac{1}{2} e^{-(s+a)t} dt + \int_0^\infty 1 e^{-(s+a)t} dt$$
(2.16)

$$= -\frac{1}{s+a} \left| e^{-(s+a)t} \right|_0^{\infty} \tag{2.17}$$

$$= -\frac{1}{s+a} \left[e^{-(s+a)\infty} - e^{-(s+a)\times 0} \right] \quad (2.18)$$

The above term converges if and only if $e^{-(s+a)t} \to 0$ as $t \to \infty$ only possible if $Re\{s\} > -a$.

 $X(s) = \frac{1}{s+a}$ $Re\{s\} > -a$ (2.19)

6. Now consider the following resistive circuit transformed from Fig. 2.1 where

$$u(t) \stackrel{\mathcal{H}}{\longleftrightarrow} LV_1(s)$$
 (2.20)

$$2u(t) \stackrel{\mathcal{H}}{\longleftrightarrow} LV_2(s) \tag{2.21}$$

Find the voltage across the capacitor $V_{C_0}(s)$.

Fig. 2.4

Solution: We see that

$$V_1(s) = \frac{1}{s}$$
 $V_2(s) = \frac{2}{s}$ (2.22)

In Fig. 2.2, we use KCL at A.

$$\frac{V - \frac{1}{s}}{R_1} + \frac{V - \frac{2}{s}}{R_2} + sC_0V = 0 \tag{2.23}$$

$$V\left(\frac{1}{R_1} + \frac{1}{R_2} + sC_0\right) = \frac{1}{s}\left(\frac{1}{R_1} + \frac{2}{R_2}\right)$$
 (2.24)

$$V(s) = \frac{\frac{1}{R_1} + \frac{2}{R_2}}{s\left(\frac{1}{R_1} + \frac{1}{R_2} + sC_0\right)}$$
(2.25)

$$=\frac{\frac{1}{R_1} + \frac{2}{R_2}}{\frac{1}{R_1} + \frac{1}{R_2}} \left(\frac{1}{s} - \frac{1}{\frac{1}{C_0} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) + s} \right)$$
(2.26)

7. Find $v_{C_0}(t)$. Plot using python.

Solution: Taking the inverse Laplace transform in (2.26),

$$V(s) \stackrel{\mathcal{H}}{\longleftrightarrow} L \frac{2R_1 + R_2}{R_1 + R_2} u(t) \left(1 - e^{-\left(\frac{1}{R_1} + \frac{1}{R_2}\right)\frac{t}{C_0}} \right)$$

$$(2.27)$$

$$= \frac{4}{3} \left(1 - e^{-\left(1.5 \times 10^6\right)t} \right) u(t) \tag{2.28}$$

The following code will plot the graph Fig.(2.5)

wget https://github.com/jarpula-Bhanu/ EE3900/blob/main/Filter/Codes/2.7.py

run the above code using the command

8. Verify your result using ngspice.

Solution:

9. Obtain Fig. 2.4 using the equivalent differential equation.

Fig. 2.5: $v_{C_0}(t)$ before the switch is flipped

3 Initial Conditions

1. Find q_2 in Fig. 2.1.

Solution: When the switch is closed for long time the circuit achives steady state condition. Then the equivalent circuit is given by

Fig. 3.1

- 2. Draw the equivalent *s*-domain resistive circuit when S is switched to position Q. Use variables R_1, R_2, C_0 for the passive elements. Use latextikz.
- 3. $V_{C_0}(s) = ?$
- 4. $v_{C_0}(t) = ?$ Plot using python.
- 5. Verify your result using ngspice.
- 6. Find $v_{C_0}(0-), v_{C_0}(0+)$ and $v_{C_0}(\infty)$.
- 7. Obtain the Fig. in problem 3.2 using the equivalent differential equation.