

Primitivas imediatas e quase imediatas

Se f = F', sendo F (geralmente) uma função elementar, diz-se que a fórmula

$$\int f(g(x))g'(x)dx = F(g(x)) + C, C \in \mathbb{R}$$

apresenta uma primitiva quase imediata (ou só imediata, quando g(x) = x) De facto, (F(g(x)))' = F'(g(x))g'(x) = f(g(x))g'(x), desde que g seja diferenciável

• A notação das seguintes tabelas obtém-se definindo u = g(x) (e u' = g'(x)): a derivada de F(u) é f(u)u' e uma primitiva de f(u)u' é F(u)

Além disso, através da equivalência formal $u' = \frac{du}{dx} \iff u' dx = du$ pode-se transformar a primitiva quase imediata $\int f(u)u'dx$ na primitiva imediata $\int f(u)du$

Exemplo: se
$$f(x) = \cos x$$
, com $F(x) = \sin(x)$, e $u = x^2$, com $u' = 2x$, então
$$\int \cos(x^2) 2x dx = \int \cos(u) u' dx = \left[\int \cos(u) du \right] = \sin(u) + C = \sin(x^2) + C, C \in \mathbb{R}$$

Tabela das derivadas de composições 2

Função	Derivada
u^r	$r u^{r-1} u'$
$\ln u $	<u>u'</u> u
e^u	u e ^u
a ^u	$u'a^u \ln a \ (a > 0, a \neq 1)$
sen u	$u'\cos u$
cos u	−u sen u
senh u	u' cosh u
cosh u	u' senh u

Função	Derivada
tg u	u' sec² u
cotg u	$-u' \csc^2 u$
sec u	u' sec u tg u
cosec u	-u' cosec u cotg u
arcsen u	$\frac{u'}{\sqrt{1-u^2}}$
arctg u	$\frac{u'}{1+u^2}$
arccos u	$-\frac{u'}{\sqrt{1-u^2}}$
arccotg u	$-\frac{u'}{1+u^2}$

Tabela das primitivas quase imediatas

Função	Primitiva
u ^r u ^l	$\frac{u^{r+1}}{r+1} \ (r \neq -1)$
<u>u'</u> u	$\ln u $
u'e ^u	e^u
u'a ^u	$\frac{a^u}{\ln a} \ (a > 0, a \neq 1)$
u' cos u	sen u
u' sen u	– cos <i>u</i>
$u' \cosh u$	senh u
u' senh u	cosh u

Função	Primitiva
u' sec ² u	tg u
u' cosec ² u	– cotg u
u secu tgu	sec u
$u' \operatorname{cosec} u \operatorname{cotg} u$	– cosec u
$\frac{u'}{\sqrt{1-u^2}}$	arcsen u
$\frac{u'}{1+u^2}$	arctg u
u' sec u	$\ln \sec u + \operatorname{tg} u $
u' cosec u	$-\ln \csc u + \cot g u $

Primitivas quase imediatas: exercícios

a)
$$\int x(1+x^2)^9 dx$$
 b) $\int \sin x \cos^5 x dx$ c) $\int \frac{x^5}{1+x^6} dx$ d) $\int \tan x dx$

e)
$$\int \frac{1}{1+4x^2} dx$$
 f) $\int e^{\operatorname{tg} x} \sec^2 x \, dx$ g) $\int x 7^{x^2} dx$ h) $\int \operatorname{tg}^2 x \, dx$

i)
$$\int \frac{x}{x^2 + 9} dx$$
 j) $\int \frac{1}{x^2 + 9} dx$ k) $\int \frac{1}{(x+9)^2} dx$ l) $\int \frac{x^2}{x^2 + 9} dx$

m)
$$\int x^3 \sqrt{1 - x^4} \, dx$$
 n) $\int \frac{x^3}{\sqrt{1 - x^4}} \, dx$ o) $\int \frac{3x}{\sqrt{1 - x^4}} \, dx$ p) $\int \frac{e^x}{1 + e^{2x}} \, dx$

q)
$$\int \frac{\ln x}{x} dx$$
 r) $\int \frac{5}{x \ln^3 x} dx$ s) $\int \frac{1}{x \ln x} dx$ t) $\int \frac{e^x}{1 + e^x} dx$

u)
$$\int \sin^3 x \cos^5 x \, dx$$
 v) $\int \frac{1}{\sec x - \cos x} \, dx$ w) $\int \frac{1}{\sqrt{x - x^2}} \, dx$ x) $\int \frac{1}{1 + e^x} \, dx$

Umas fórmulas de trigonometria 5

$$|\operatorname{sen}(\alpha \pm \beta)| = \operatorname{sen} \alpha \cos \beta \pm \cos \alpha \operatorname{sen} \beta \qquad \cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \operatorname{sen} \alpha \operatorname{sen} \beta$$

$$(\operatorname{donde} \operatorname{sen}(2x)) = 2 \operatorname{sen} x \cos x \operatorname{e} \cos(2x) = \cos^2 x - \operatorname{sen}^2 x = 2 \cos^2 x - 1 = 1 - 2 \operatorname{sen}^2 x)$$

$$(\operatorname{sen} \alpha \cos \beta) = \frac{1}{2} (\operatorname{sen}(\alpha - \beta) + \operatorname{sen}(\alpha + \beta))$$

$$(\operatorname{sen} \alpha \cos \beta) = \frac{1}{2} (\operatorname{cos}(\alpha - \beta) + \operatorname{cos}(\alpha + \beta))$$

$$(\operatorname{sen} \alpha \operatorname{sen} \beta) = \frac{1}{2} (\operatorname{cos}(\alpha - \beta) - \operatorname{cos}(\alpha + \beta))$$

$$(\operatorname{sen} \alpha \operatorname{sen} \beta) = \frac{1}{2} (\operatorname{cos}(\alpha - \beta) - \operatorname{cos}(\alpha + \beta))$$

$$(\operatorname{sen} \alpha \operatorname{sen} \beta) = \operatorname{cos} \alpha \operatorname{cos} \beta = \operatorname{sen} \alpha \operatorname{sen} \beta$$

$$(\operatorname{sen} \alpha \operatorname{cos} \beta) = \operatorname{cos} \alpha \operatorname{cos} \beta = \operatorname{cos} \alpha \operatorname{cos} \beta = \operatorname{sen} \alpha \operatorname{sen} \beta$$

$$(\operatorname{sen} \alpha \operatorname{cos} \beta) = \operatorname{cos} \alpha \operatorname{cos} \alpha \operatorname{cos} \beta = \operatorname{cos}$$

- para produtos de sen(nx) e cos(mx), $m, n \in \mathbb{N}$, basta usar (A)
- para senⁿ $x \cos^m x$, $m, n \in \mathbb{N}$, um deles ímpar, usar $\cos^2 x + \sin^2 x = 1$
- para senⁿ $x \cos^m x$, $m, n \in \mathbb{N}$, ambos pares, usar (B)

Calcular:

(a)
$$\int \operatorname{sen}(3x) \operatorname{sen}(5x) dx$$
 (b) $\int \cos^2 x dx$

(b)
$$\int \cos^2 x \, dx$$

(c) $\int \sin^2 x \cos^4 x \, dx$

wiki em [2.1 Primitivas - parte 2] ver Primitivação do produto de duas funções

Integração por partes 6

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$
(a) $\int x \sin x \, dx$ (b) $\int xe^{-x} \, dx$ (c) $\int \ln x \, dx$ (d) $\int \arctan x \, dx$
(e) $\int \sin^2 x \, dx$ (f) $\int e^x \cos x \, dx$ (g) $\int x^3 e^{x^2} \, dx$ (h) $\int x \arcsin x^2 \, dx$

Mais primitivas trigonométricas ...

- (co)tgⁿ $x, n \in \mathbb{N}$: destaca-se, substituindo, (co)tg² $x = (co)sec^2 x 1$
- (co)secⁿ, n par: destaca-se (co)sec² x e, noutro fator, (co)sec² x = (co)tg² x + 1
- (co)secⁿ, n impar: por partes, primitivando o fator (co)sec² x

Calcular:

(i)
$$\int tg^3 x \, dx$$

(j)
$$\int \csc^4 x \, dx$$

(k) $\int \sec^3 x \, dx$

Decomposição e primitivação de funções racionais

- Pode-se escrever uma função racional $f(x) = \frac{n(x)}{d(x)}$ na forma $f(x) = q(x) + \frac{r(x)}{d(x)}$, onde q é o quociente e r o resto da divisão de n por d, ou seja, $\frac{r(x)}{d(x)}$ é própria
- Se d_1 e d_2 não têm fatores em comum, a função racional própria $f(x) = \frac{n(x)}{d_1(x)d_2(x)}$ tem uma única decomposição em funções racionais próprias $f(x) = \frac{n_1(x)}{d_1(x)} + \frac{n_2(x)}{d_2(x)}$
- A função racional própria $f(x) = \frac{n(x)}{d^m(x)}$, $m \in \mathbb{N}$, admite uma única decomposição $f(x) = \frac{n_1(x)}{d(x)} + \frac{n_2(x)}{d^2(x)} + \dots + \frac{n_m(x)}{d^m(x)}$ com grau n_i < grau d para $i = 1, \dots, m$

Primitivas elementares, com $a, \alpha, \beta, \gamma \in \mathbb{R}, \beta \neq 0, n \in \mathbb{N}$ e $C \in \mathbb{R}$ (verificar!)

$$\int \frac{1}{(x+a)^n} dx = \begin{cases} \ln|x+a| + C & n=1\\ \frac{1}{(1-n)(x+a)^{n-1}} + C & n>1 \end{cases}$$

$$\int \frac{x+\gamma}{(x+\alpha)^2 + \beta^2} dx = \frac{1}{2} \ln\left((x+\alpha)^2 + \beta^2\right) + \frac{\gamma - \alpha}{\beta} \arctan \frac{x+\alpha}{\beta} + C$$
(a)
$$\int \frac{x^4 - 6}{x^3 - 2x^2} dx$$
(b)
$$\int \frac{3x}{x^3 - 3x^2 + 4} dx$$
(c)
$$\int \frac{x^2 - 1}{2x^3 + 6x^2 + 5x} dx$$

Exercício: calcula

Método de Hermite-Ostrogradski (facultativo) 8

O caso de potências de fatores irredutíveis de grau 2 no denominador é complicado: resolve-se com substituições trigonométricas ou com uma fórmula de recorrência

O método de Hermite-Ostrogradski elimina essa dificuldade:

seja $f(x) = \frac{n(x)}{d(x)}$ uma função racional própria; então, se

- $d_s(x)$ é o produto dos fatores de d(x) sem considerar as multiplicidades e
- $d_r(x) = d(x)/d_s(x)$ é o produto dos restantes fatores,

existem, e são únicas, as frações próprias $\frac{n_s(x)}{d_s(x)}$ e $\frac{n_r(x)}{d_r(x)}$ tais que $f(x) = \frac{n_s(x)}{d_s(x)} + \left(\frac{n_r(x)}{d_r(x)}\right)^{\frac{1}{2}}$

Observação: repare-se que $\int f(x)dx = \int \frac{n_s(x)}{d_s(x)}dx + \frac{n_r(x)}{d_r(x)}$

Para simplificar as contas, convém misturar os dois métodos apresentados:

- aplicar o método das frações simples a todos os fatores de grau 1
- aplicar o método de Hermite-Ostrogradski a cada fator de grau 2

9 Comparação de decomposições

Exemplo: são apresentadas três decomposições da mesma função racional própria

$$\frac{4(1-x)}{x^{3}(x^{2}+2)^{2}} = \frac{A}{x} + \frac{B}{x^{2}} + \frac{C}{x^{3}} + \frac{Dx+E}{x^{2}+2} + \frac{Fx+G}{(x^{2}+2)^{2}} \qquad \left(\begin{array}{c} \text{frações simples} \end{array}\right)$$

$$= \frac{ax^{2} + bx + c}{x(x^{2}+2)} + \left(\frac{dx^{3} + ex^{2} + fx + g}{x^{2}(x^{2}+2)}\right)' \qquad \left(\begin{array}{c} \text{Hermite Ostrogradski} \end{array}\right)$$

$$= \frac{A}{x} + \frac{B}{x^{2}} + \frac{C}{x^{3}} + \frac{Dx+E}{x^{2}+2} + \left(\frac{\phi x + \gamma}{x^{2}+2}\right)' \qquad \left(\begin{array}{c} \text{f.s. \&} \\ \text{H.O.} \end{array}\right)$$

$$\Rightarrow \int \frac{4(1-x)}{x^{3}(x^{2}+2)^{2}} dx = \int \frac{A}{x} + \frac{B}{x^{2}} + \frac{C}{x^{3}} + \frac{Dx+E}{x^{2}+2} dx + \frac{\phi x + \gamma}{x^{2}+2}$$

Exercícios:

1. Calcula os coeficientes das diferentes decomposições e a primitiva do exemplo

2. Calcula (a)
$$\int \frac{x-1}{(x^2+1)^2} dx$$
 (b) $\int \frac{x+1}{x(x^2-2x+2)^2} dx$