I. Définition du produit scalaire de deux vecteurs

1. Cas de deux vecteurs colinéaires

Soit \vec{u} et \vec{v} sont deux vecteurs colinéaires. On appelle **produit scalaire** des vecteurs \vec{u} et \vec{v} le

réel noté
$$\vec{u}.\vec{v}$$
 défini par : $\vec{u}.\vec{v} = \begin{cases} ||\vec{u}|| \times ||\vec{v}|| & \text{si } \vec{u} \text{ et } \vec{v} \text{ sont de même sens} \\ -||\vec{u}|| \times ||\vec{v}|| & \text{si } \vec{u} \text{ et } \vec{v} \text{ sont de sens contraires} \end{cases}$

Exemple

• Lorsque l'un des deux vecteur \vec{u} ou \vec{v} est nul on a $\vec{u} \cdot \vec{v} = 0$.

C'est-à-dire :

Si
$$\vec{u} = \vec{0}$$
 ou $\vec{v} = \vec{0}$ alors $\vec{u} \cdot \vec{v} = 0$

• Le produit scalaire de \vec{u} par lui-même $\vec{u}.\vec{u}$ est appelé « carré scalaire de \vec{u} » et est noté \vec{u}^2 .

Par définition, $\vec{u}^2 = ||\vec{u}||^2$; donc, pour deux points A et B, on a $\overrightarrow{AB}^2 = AB^2$

2. Cas général

Soit \vec{u} et \vec{v} deux vecteurs non nuls A, B et C, trois points tels que:

 $\overrightarrow{AB} = \overrightarrow{u}$ et $\overrightarrow{AC} = \overrightarrow{v}$ et soit H la projection orthogonale de C sur (AB) et $\overrightarrow{v'} = \overrightarrow{AH}$.

On pose, par définition : $\vec{u}.\vec{v} = \vec{u}.\vec{v}'$ (\vec{u} et \vec{v}' sont colinèaires)

Exemple:

ABCD un rectangle tel que AB = 6 et BC = 4, soient I, le milieu de AB et AB et AB son projeté orthogonal sur AB

Calculer les produits scalaires suivants :

 $\overrightarrow{AB}.\overrightarrow{AC}$; $\overrightarrow{AB}.\overrightarrow{CB}$; $\overrightarrow{DI}.\overrightarrow{DC}$

Réponse :

$$\overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AB}.\overrightarrow{AB} = AB^2 = 36$$
; $\overrightarrow{AB}.\overrightarrow{CB} = \overrightarrow{AB}.\overrightarrow{BB} = 6 \times 0 = 0$; $\overrightarrow{DI}.\overrightarrow{DC} = \overrightarrow{DH}.\overrightarrow{DC} = 3 \times 6 = 18$

II. Propriétés du produit scalaire

1. Orthogonalité et produit scalaire

si \vec{u} et \vec{v} sont orthogonaux ou l'un d'entre eux est nul, alors : $\vec{u} \cdot \vec{v} = 0$

Définition :

On dit que deux vecteurs sont orthogonaux lorsque leur produit scalaire est nul

$$\vec{u} \perp \vec{v}$$
 signifie $\vec{u} \cdot \vec{v} = 0$

2. Propriétés algébriques

- Quels que soit les vecteurs \vec{u} , \vec{v} et \vec{w} et le nombre réel α :
- $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$ (on dit que le produit scalaire est symétrique)
- $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$
- $(\alpha \vec{u}) \cdot \vec{v} = \vec{u} \cdot (\alpha \vec{v}) = \alpha (\vec{u} \cdot \vec{v})$
- $\vec{u} \cdot \vec{u} \ge 0$ et $\vec{u} \cdot \vec{u} = 0$ signifie que $\vec{u} = \vec{0}$
 - Produits scalaire remarquables
- $(\vec{u} + \vec{v})^2 = ||\vec{u}||^2 + ||\vec{v}||^2 + 2\vec{u}.\vec{v}$
- $(\vec{u} \vec{v})^2 = ||\vec{u}||^2 + ||\vec{v}||^2 2\vec{u}.\vec{v}$
- $\bullet \qquad \left(\vec{u} + \vec{v}\right)\left(\vec{u} \vec{v}\right) = \left\|\vec{u}\right\|^2 \left\|\vec{v}\right\|^2$
- $(\vec{u} + \vec{v})^2 + (\vec{u} \vec{v})^2 = 2(||\vec{u}||^2 + ||\vec{v}||^2)$
 - Autre expression du produit scalaire

$$\vec{u}.\vec{v} = \frac{1}{2} \left(\left\| \vec{u} + \vec{v} \right\|^2 - \left\| \vec{u} \right\|^2 - \left\| \vec{v} \right\|^2 \right)$$

III. Forme géométrique du Produit scalaire

Propriété

Soient A, B et C trois points du plan tels que : $A \neq B$ et $A \neq C$, on a:

$$\overrightarrow{AB}.\overrightarrow{AC} = AB \times AC \times \cos \widehat{BAC}$$

Soient \vec{u} et \vec{v} deux vecteurs non nuls, on a:

$$\vec{u}.\vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\overline{\vec{u},\vec{v}})$$

Si
$$\|\vec{u}\| = 4$$
 et $\|\vec{v}\| = 3$ et $\alpha = \frac{\pi}{3}$ alors $\vec{u} \cdot \vec{v} = \|\vec{u}\| \times \|\vec{v}\| \times \cos \alpha = 4 \times 3 \times \cos \frac{\pi}{3} = 6$

Si
$$\|\vec{u}\| = 5$$
 et $\|\vec{v}\| = 2$ et $\alpha = \frac{3\pi}{4}$ alors $\vec{u}.\vec{v} = \|\vec{u}\| \times \|\vec{v}\| \times \cos \alpha = 5 \times 2 \times \cos\left(\frac{3\pi}{4}\right) = -5\sqrt{2}$

IV. Application du produit scalaire

1. Relations métriques dans le triangle rectangle

Soit ABC un triangle rectangle en A et H le projeté orthogonale de A sur $\left(BC\right)$ et I le milieu de $\left[BC\right]$, on a:

$$BC^2 = AB^2 + AC^2$$
 ; $AI = \frac{1}{2}BC$; $BA^2 = BH \times BC$; $CA^2 = CH \times CB$; $AH^2 = HB \times HC$

2. Théorème d'Al Kashi

Soit *ABC* un triangle on a :

$$BC^2 = BA^2 + CA^2 - 2BA \times CA \times \cos \hat{A}$$

$$AB^2 = CA^2 + CB^2 - 2CA \times CB \times \cos \hat{C}$$

$$CA^2 = BC^2 + BA^2 - 2BC \times BA \times \cos \hat{B}$$

3. Théorème de la médiane

Soient A et B deux points distincts du plan t I est le milieu de [AB].

Pour tout point M du plan, on a:

$$MA^2 + MB^2 = 2MI^2 + \frac{1}{2}AB^2$$

