

Der Landesbeauftragte für Naturschutz und Landschaftspflege

> Senatsverwaltung für Umwelt, Verkehr und Klimaschutz

Rote Listen der gefährdeten Pflanzen, Pilze und Tiere von Berlin

Rote Liste und Gesamtartenliste der Flechten (Lichenes)

Inhalt

1. Einleitung	2
2. Methodik	2
3. Gesamtartenliste und Rote Liste	4
4. Auswertung	19
5. Gefährdung und Schutz	21
6. Danksagung	22
7. Literatur	22
Legende	24
Impressum	28

Zitiervorschlag:

KRAUSE, J., WAGNER, H.-G. & OTTE, V. (2017): Rote Liste und Gesamtartenliste der Flechten (Lichenes) von Berlin. In: DER LANDESBEAUFTRAGTE FÜR NATURSCHUTZ UND LANDSCHAFTSPFLEGE / SENATSVERWALTUNG FÜR UMWELT, VERKEHR UND KLIMASCHUTZ (Hrsg.): Rote Listen der gefährdeten Pflanzen, Pilze und Tiere von Berlin, 28 S. doi: 10.14279/depositonce-5841

Rote Liste und Gesamtartenliste der Flechten (Lichenes) von Berlin

2. Fassung, Stand April 2016

Josephin Krause, Hans-Georg Wagner & Volker Otte

Zusammenfassung: Derzeit sind aus Berlin 315 Flechtensippen (310 Arten, 3 Unterarten, eine Varietät und eine Form) bekannt. Davon werden 112 (35,6 %) in die Rote Liste aufgenommen. 59 Taxa gelten als ausgestorben oder verschollen, 47 sind bestandsgefährdet und 6 Arten sind sehr selten. Der Vergleich mit der Vorgängerliste (OTTE 2005) zeigt, dass sich bei 44 Taxa die Kategorie verändert hat, 21 Taxa erhielten einen geringeren Gefährdungsgrad, 23 einen höheren.

Abstract: [Red List and checklist of the lichens of Berlin] Currently, 315 lichen taxa (310 species, 3 subspecies, 1 variety and 1 forma) are known from Berlin. The Red List contains 112 (35.6 %) of them. 59 taxa are extinct or missing, 47 are endangered and 6 species are extremely rare. Compared to the last Red List (OTTE 2005) the categories of 44 taxa have changed. 21 taxa are classified into a lower category of threat, 23 taxa into a higher category.

Einleitung

Diese Liste stellt eine überarbeitete und ergänzte Neuausgabe derjenigen von OTTE (2005) dar, welcher schon eine Liste von LEUCKERT & RUX (1991) für den Westteil Berlins vorausgegangen war. Allgemeine Angaben zur Historie von Flechtenvegetation und Flechtenforschung in Berlin und zu den heutigen Existenzbedingungen der Flechten in dem zum Teil durch urbane Verhältnisse geprägten, aber auch große Waldflächen umfassenden Gebiet des Landes Berlin können bei OTTE (2005) nachgelesen werden.

Die vorliegende Liste ist gegenüber den früheren Fassungen dadurch erweitert worden, dass eine möglichst vollständige Berücksichtigung auch der historisch aus dem Gebiet des Landes Berlin nachgewiesenen Flechten angestrebt wurde, wozu unter anderem das Exsiccatenwerk von FLÖRKE (1815) ausgewertet wurde.

Methodik

Wesentliche Arbeiten, die unsere Kenntnis zur Berliner Flechtenflora in den letzten 10 Jahren erweitert haben, sind neben eigenen Beobachtungen der Autoren die Veröffentlichungen von SIPMAN & APTROOT (2007) und von SIPMAN et al. (2012). Die bei OTTE (2005) mit eingeschlossenen lichenicolen Pilze (Flechtenparasiten) werden mit Rücksicht auf die Vervielfachung der Zahl der aus Berlin bekannten Arten jetzt in einer eigenen Liste behandelt (WAGNER et al. 2016).

Eine Änderung gegenüber der früheren Roten Liste ist auch die Einführung und Anwendung eines sogenannten objektiven Kriterienkataloges zur Ermittlung der Gefährdungsgrade gemäß Ludwig et al. (2009). Das kann allerdings nicht darüber hinwegtäuschen, dass Probleme bei der Einschätzung von Gefährdungsgraden auch bisher schon nicht in erster Linie dem Fehlen eines Algorithmus zur Berechnung der Gefährdungsgrade geschuldet waren, sondern in sehr vielen Fällen die Gefährdung schlicht aus Mangel an Daten nicht zuverlässig bewertet werden kann.

Schon die Kenntnis der aktuellen Situation vieler Arten ist schlecht. Zwar wurde vor mehr als 20 Jahren ein Monitoringprogramm zur Bioindikation mit Flechten in Berlin aufgelegt (SENSTADTUM 1993). Bisher wurden jedoch keine Wiederholungsaufnahmen vorgenommen.

Umso mehr fehlen Informationen über die Situation in der ferneren Vergangenheit. So ist insbesondere der "langfristige Bestandstrend" oft schlecht einzuschätzen. Dieser soll gemäß Ludwig et al. (2009) die Veränderung im Vergleich zur Situation vor etwa 100 Jahren (bzw. etwa zwischen 50 und 150 Jahren vor heute) darstellen. Zu dieser Zeit war Berlin ein bedeutendes Industriezentrum mit erheblicher Umweltbelastung (vgl. Otte 2005) und etliche in der ersten Hälfte des 19. Jahrhunderts noch in Berlin gefundene Arten waren sicherlich bereits verschwunden. Im Vergleich zum vorindustriellen Zeitalter ist der Bestandstrend für viele Arten zweifellos negativ.

Nach Ludwig et al. (2009) muss der "langfristige Bestandstrend" jedoch als positiv oder unverändert angegeben werden, da schon der Vergleichszeitraum für den "langfristigen Bestandstrend" durch rapiden Schwund an Arten infolge der zunehmenden Luftbelastung im größten Ballungsraum Deutschlands gekennzeichnet war.

Für einen großen Teil der Arten lässt sich solch eine Einschätzung gar nicht mit Sicherheit vornehmen, da es aus dem Vergleichszeitraum schlicht zu wenig Daten zu Flechtenvorkommen in Berlin gibt. Dies schränkt die angestrebte Objektivität der Bewertung erheblich ein.

Als fundiert können im Allgemeinen die Einstufungen einerseits bei ungefährdeten, andererseits bei ausgestorbenen bzw. verschollenen Arten gelten. Die übrigen Eingruppierungen mögen hier und da bei verbessertem Kenntnisstand noch Modifikationen erfahren. Für die Verbesserung der Kenntnisse zur aktuellen Situation könnte die Fortführung des o. g. Monitoringprogramms Abhilfe schaffen. Fehlende historische Daten können hingegen nicht mehr im Nachhinein beschafft werden.

Auch die von Ludwig et al. (2009) geforderte Berücksichtigung populationsbiologischer Kriterien für jedes Taxon der Liste: "Bildung selbständig vermehrungsfähiger Einheiten in zweimaliger Folge und für lokale Populationen gilt zusätzlich mehrfaches Entstehen neuer Teilpopulationen ohne Hilfe des Menschen aus der zuerst angelangten Populationen außerhalb des Nahverbreitungsradius" erschien für die Bewertung der Etablierung der Flechten für vorliegende Arbeit nicht praktikabel, da viele Arten selten bzw. die ausgestorbenen oft nur durch Einzelbeobachtungen dokumentiert sind.

Aber auch bei den häufigen Arten schien der entsprechende Abstammungsnachweis – nur mit genetischen Methoden möglich – weder machbar noch notwendig. Vielmehr werden hier alle Arten als etabliert betrachtet, die nicht auf offensichtlich eingeschlepptem Substrat mir zweifelhafter Perspektive angetroffen wurden. Entsprechend wurden Epiphyten auf jüngst angepflanzten Bäumen unklarer Provenienz nicht berücksichtigt, Arten auf älteren Bäumen oder auf schon langfristig am Ort befindlichem allochthonem Gesteinsmaterial dagegen schon.

Einige Rentierflechten (*Cladonia rangiferina, C. ciliata, C. portentosa*) sind aktuell im Land Berlin nur noch durch die ausgedehnten Bestände auf dem Gründach des Ökowerks im Grunewald bekannt. Hier ergab sich die Frage, ob diese Vorkommen als "wild lebende Populationen" im Sinne von Ludwig et al. (2009) zu berücksichtigen oder diese Arten als in Berlin ausgestorben zu betrachten seien. Da die Bestände auf dem Gründach in ihrer Entwicklung sich selbst überlassen sind, werden sie hier als "wild lebend" eingestuft.

Als nomenklatorische Referenz dient WIRTH et al. (2013), bei erst danach neu beschriebenen oder umkombinierten Taxa die jeweilige Fachpublikation.

Gesamtartenliste und Rote Liste

Aktuell wird von 315 etablierten Flechtentaxa im Berliner Stadtgebiet ausgegangen. Die Gesamtartenliste (Tabelle 1) enthält neben Angaben zur Gefährdung im Land Berlin (BE) die Gefährdungseinschätzungen aus dem "Kommentierten Verzeichnis" der Flechten Brandenburgs (BB) (OTTE & RÄTZEL 2004) und der Roten Liste Deutschlands (D) (WIRTH et al. 2011).

Eingeschlossen sind einige flechtenähnliche, jedoch nicht lichenisierte (also mit Algen in Symbiose lebende) Sippen, die traditionell von der Flechtenkunde berücksichtigt werden (z. B. *Cyrtidula quercus* oder *Sarea resinae*; vgl. WIRTH et al. 2013).

Zu ausgewählten Arten (mit * markiert) folgen nach der Tabelle weitere Anmerkungen. Erläuterungen der verwendeten Abkürzungen sind der Legende auf Seite 24 zu entnehmen.

Tabelle 1: Rote Liste und Gesamtartenliste der Flechten (Lichenes) von Berlin (* verweist auf Anmerkung).

Wissenschaftlicher Name	BE	Bestand	Trend lang	Trend kurz	RF	ВВ	D	GS	GfU	Vorzugs- habitat	Ökologischer Typ
Acarospora fuscata (Schrad.) Th. Fr.	G	S	(<)	=	=	*	*		2c	PF, AH, AF, OK	sax, aci
Acarospora moenium (Vain.) Räsänen	*	SS	?	=	=	*	*			0	sax, bas, syn
Acarospora nitrophila H. MAGN.	D	S	?	?	=	*	*				sax, nit
Acarospora veronensis A. Massal.	D	?	?	?	=	3	*				sax
Acarospora versicolor Bagl. & Carestia	*	SS	?	=	=	G	2				sax
Alyxoria ochrocheila (NYL.) ERTZ & TEHLER	R	es	?	?	=	1	2				epi
Amandinea punctata (HOFFM.) COPPINS & SCHEID.	*	sh	=	=	=	*	*			В	epi, nit
Anaptychia ciliaris (L.) Körb.	0	ex				1	2		11d		epi
Anisomeridium polypori (ELLIS & EVERH.) M. E. BARR	*	mh	?	1	=	*	*			W, PF	epi
Arthonia fusca (A. MASSAL.) HEPP.	D	?	?	?	=	1	*				sax
Arthonia radiata (Pers.) Асн.	D	?	?	?	=	3	V				epi
Aspicilia cinerea (L.) Körb.	D	?	?	?	=	2	*		1, 2c, 11d	AF	sax, aci
Bacidia friesiana (HEPP) KÖRB.	D	?	?	?	=		1				epi
Bacidia rosella (PERS.) DE NOT.	0	ex				1	1		11d		epi, neu
Bacidia rubella (Hoffm.) A. Massal.	1	es	<<<	?	=	2	V				epi
Bacidina adastra (Sparrius & Арткоот) М. Наиск & V. Wirth	D	?	?	?	=	kN	*				epi
Bacidina caligans (NYL.) LLOP & HLADUM	D	?	?	?	=	D	D				epi, sax, bas
Bacidina chloroticula (NYL.) VĚZDA & POELT	D	?	?	?	=	D	*			B, W, P	epi
Bacidina delicata (Larbal. & Leight.) V. Wirth & Vězda	D	?	?	?	=	*	*				epi
Bacidina egenula (NYL.) VĚZDA	D	?	?	?	=	D	*				sax
Bacidina neosquamulosa (APTROOT & HERK) S. EKMAN	*	h	?	†	=	kN	*				epi
Bacidina sulphurella (SAMP.) M. HAUCK & V. WIRTH*	D	?	=	=	=	*	*			B, W, P	epi, nit
Bactrospora dryina (Ach.) A. MASSAL.	0	ex				0	2		9, 11d	W	epi

Wissenschaftlicher Name	BE	Bestand	Trend lang	Trend kurz	RF	ВВ	D	GS	GfU	Vorzugs- habitat	Ökologischer Typ
Baeomyces carneus FLÖRKE	0	ex				kN	0				ter
Baeomyces rufus (HUDS.) REBENT.	1	SS	<<	(1)	-	*	*		8, 11b, 11d	W, AT, AW	ter, aci
Bagliettoa baldensis (A. MASSAL.) VĚZDA	D	?	?	?	=	D	*		2c, 14a	P,O	sax, bas
Bagliettoa calciseda (DC.) GUEIDAN & CL. ROUX	D	?	?	?	=	kN	*				sax, bas
Bagliettoa steineri (Kušan) Vězda	G	SS	?	(1)	=	kN	*				sax
Bilimbia sabuletorum (SCHREB.) ARNOLD	3	S	<	(1)	=	*	*		2c	PF	bry
Botryolepraria lesdainii (HUE) CANALS et al.	G	SS	?	(†)	=	kN	*				sax
Bryoria fuscescens (GYELN.) BRODO & D. HAWKSW.	0	ex				*	3		2a, 11d	W	lig, epi, aci, anit
Buellia aethalea (Ach.) Th.Fr.	*	mh	=	=	=	*	*			PFF, AH, AF	sax, aci
Buellia griseovirens (TURNER & BORRER ex Sm.) ALMB.	*	h	=	=	=	*	*			B,P,W	epi
Calicium adspersum PERS.	2	SS	<<	=	=	3	2		2a, 9, 11d	W	epi
Caloplaca cerina (EHRH. ex HEDW.) TH. FR.	*	SS	?	†	=	1	2		11d		epi, neu
Caloplaca cerinella (NYL.) FLAGEY	D	?	?	t	=	0	2				epi
Caloplaca chlorina (FLOT.) H.OLIVIER	D	S	?	?	=	D	*			0	sax, bas
Caloplaca chrysodeta (VAIN. ex RÄSÄNEN) DOMBR.	R	es	?	?	=	kN	*				sax
Caloplaca citrina (HOFFM.) TH. FR.	*	sh	=	=	=	*	*				sax, nit, syn
Caloplaca crenulatella (NYL.) H. OLIVIER	*	mh	=	=	=	*	*			0	sax, bas, syn
Caloplaca decipiens (ARNOLD) BLOMB. & FORSSELL	*	S	=	=	=	*	*			0	sax, bas, syn
Caloplaca flavocitrina (NYL.) H. OLIVIER	*	S	=	t	=	*	*			P, 0	epi, sax, bas
Caloplaca flavovirescens (Wulfen) Dalla Torre & Sarnth.	D	?	?	?	=	G	3				sax, syn
Caloplaca holocarpa (HOFFM.) A. E. WADE	*	S	?	1	=	*	V			O, P, B	sax, epi, bas
Caloplaca lactea (A. Massal.) Zahlbr.	D	?	?	?	=	kN	*				sax
Caloplaca lobulata (FLÖRKE) HELLB.	0	ex				0	1		11d		epi, bas
Caloplaca oasis (A. MASSAL.) SZATALA	*	mh	?	=	=	kN	*				sax, syn
Caloplaca obscurella (J. LAHM ex KÖRB.) TH. FR.	D	?	?	†	=	G	*				epi

Wissenschaftlicher Name	BE	Bestand	Trend lang	Trend kurz	RF	ВВ	D	GS	GfU	Vorzugs- habitat	Ökologischer Typ
Caloplaca pyracea (Ach.) Th. Fr.	D	?	=	1	=	kN	2				epi
Caloplaca saxicola (Hoffm.) Nordin	D	?	?	?	=	*	*		2c	OKSM	sax, bas
Caloplaca teicholyta (ACH.) STEINER	*	mh	=	=	=	*	*			0	sax, bas, syn
Caloplaca variabilis (PERS.) MÜLL. ARG.	D	?	?	?	=	D	*				sax, bas
Candelaria concolor (DICKS.) B. STEIN	G	S	(<)	1	=	3	*			В, Р	epi, bas
Candelaria pacifica M. WESTBERG & ARUP	*	S	?	†	=	kN	kN				
Candelariella aurella (HOFFM.) ZAHLBR.	*	sh	=	=	=	*	*			О, В	epi, bas, syn
Candelariella coralliza (NYL.) H. MAGN.	D	?	?	?	=	G	*				sax, aci
Candelariella reflexa (NYL.) LETTAU	*	sh	=	†	=	*	*			В	epi, bas, nit
Candelariella vitellina (HOFFM.) MÜLL. ARG.	*	mh	=	=	=	*	*			AH, AF, O, B	sax, epi, lig, aci, nit
Candelariella xanthostigma (ACH.) LETTAU	V	S	<	=	=	*	*		2a	В	epi, bas
Catillaria lenticularis (ACH.) TH. FR.	D	?	?	?	=	G	*				sax, bas
Catillaria nigroclavata (NYL.) SCHULER	D	?	?	?	=	R	V				epi, bas
Cetraria aculeata (SCHREB.) Fr.	1	SS	<<	(†)	=	V	3		7f, 8, 11e	GTS	ter
Cetraria ericetorum OPIZ	0	ex				1	1		7d, 11e	WKL, HZ	ter
Cetraria islandica (L.) Асн.	0	ex				3	2		7d, 11e	WKL, HZ	ter
Chaenotheca chlorella (ACH.) MÜLL. ARG.	0	ex				2	2				epi
Chaenotheca chrysocephala (Turner ex Ach.) Th. Fr.	2	es	<	=	=	3	V		9, 11d	W, PF	epi, aci
Chaenotheca ferruginea (Turner ex Sm.) Mig.	G	S	(<)	=	=	*	*			W, PF	epi, aci
Chaenotheca furfuracea (L.) TIBELL	0	ex				3	V		9, 11d	W	epi, aci
Chaenotheca stemonea (ACH.) MÜLL. ARG.	D	?	?	?	=	*	3			W, PF	epi, aci
Chaenotheca trichialis (Асн.) Тн. Fr.	*	S	=	=	=	*	V			W, PF	epi, aci
Chaenothecopsis pusilla (ACH.) A. F. W. SCHMIDT	R	es	=	=	=	2	3		2d, 11d, 11e	MAA	lig, aci
Chrysothrix candelaris (L.) J. R. LAUNDON	0	ex				2	V				epi

Wissenschaftlicher Name	BE	Bestand	Trend lang	Trend kurz	RF	ВВ	D	GS	GfU	Vorzugs- habitat	Ökologischer Typ
Circinaria caesiocinerea (NYL. ex MALBR.) A. NORDIN, S. SAVIĆ & TIBELL	1	SS	?	(†)	-	2	*				sax
Circinaria calcarea (L.) A. Nordin, S. Savić & Tibell	G	S	(<)	(1)	=	3	*			0	sax, bas
Circinaria contorta (HOFFM.) A. NORDIN, S. SAVIĆ & TIBELL	*	sh	=	=	=	*	*			0	sax, bas, syn
Cladonia arbuscula (WALLR.) FLOT.	G	SS	(<)	=	-	G	G		7d, 7f, 8e, 11	GTS, WKL, HZ	ter
Cladonia bellidiflora (ACH.) SCHAER.	0	ex				0	*		Arealgrenze		sax
Cladonia botrytes (K. G. HAGEN) WILLD.	0	ex				1	1		Arealgrenze	W	lig, nit
Cladonia caespiticia (PERS.) FLÖRKE	0	ex				3	*		11	W	ter
Cladonia cariosa (ACH.) SPRENG.	2	es	<	=	=	3	2		7d, 7f, 8e	RR, GT	ter
Cladonia cenotea (ACH.) SCHAER	D	?	?	?	=	3	3		2d	MAA, W	lig, aci, hyg
Cladonia cervicornis (Асн.) FLOT. subsp. verticillata (Ноffм.) Анті	1	SS	<<<	11	-	V	3		7d, 7f, 8e	GTS, HZ	ter
Cladonia ciliata STIRT.	2	es	<<	(†)	-	3	2				ter
Cladonia coccifera (L.) WILLD.	*	S	=	=	=	*	*			RR, GTS, HZ	ter
Cladonia coniocraea (FLÖRKE) SPRENG.	*	h	=	=	=	*	*			W	lig, epi, aci
Cladonia conista (NYL.) ROBBINS	D	?	?	?	=	D	D				ter
Cladonia cornuta (L.) HOFFM.	1	es	?	(1)	=	2	2		7d, 7f, 8e, 11	GTS, HZ, WKL	ter
Cladonia crispata (Асн.) FLOT.	0	ex				0	1		7d, 7f, 8e, 11	GTS	ter
Cladonia decorticata (FLÖRKE) SPRENG.	0	ex				0	1				ter
Cladonia deformis (L.) HOFFM.	D	?	?	?	=	3	3		2d, 7d, 7f, 8e, 11	GTS, HZ	ter, hyg
Cladonia digitata (L.) HOFFM.	*	S	=	=	=	*	*			W	lig, epi, aci
Cladonia fimbriata (L.) Fr.	*	h	=	=	=	*	*				eur
Cladonia floerkeana (Fr.) FLÖRKE	3	S	<	(1)	-	*	3			GTS	ter
Cladonia foliacea (HUDS.) WILLD.	1	SS	<<	=	-	V	3		7d, 7f, 8e, 11	GTS	ter

Wissenschaftlicher Name	ВЕ	Bestand	Trend lang	Trend kurz	RF	ВВ	D	GS	GfU	Vorzugs- habitat	Ökologischer Typ
Cladonia furcata (Huds.) Schrad.	3	S	<	=	-	*	*			GTS	ter
Cladonia glauca FLÖRKE	D	?	?	?	=	*	*			GTS, HZ	ter
Cladonia gracilis (L.) WILLD.	1	SS	<<	(†)	-	*	3		7d, 7f, 8e, 11	GTS, WKL, WZ	ter
Cladonia grayi G. Merr. ex SANDST.	D	?	?	?	=	*	*			RR, HZ, GTS	ter
Cladonia humilis (WITH.) J. R. LAUNDON	D	?	?	?	=	D	*			RR, GTS	ter
Cladonia macilenta HOFFM.	D	?	?	?	=	*	*			W	lig, epi
Cladonia mitis SANDST.	2	SS	<<	(1)	-	V	3			GTS, HZ	ter
Cladonia monomorpha Aptroot, Sipman & Herk	D	?	?	?	=	G	3				ter
Cladonia parasitica (HOFFM.) HOFFM.	0	ex				2	2				epi
Cladonia phyllophora EHRH. ex HOFFM.	2	SS	<	(†)	-	*	3		7d, 7f, 8e, 11	GTS, HZ, WKL, WZ	ter
Cladonia pleurota (FLÖRKE) SCHAER.	G	S	?	(1)	=	*	3			RR, HZ, GTS	ter
Cladonia polydactyla (FLÖRKE) SPRENG.	D	?	?	?	=	*	*			W	epi, aci
Cladonia portentosa (DUFOUR) COEM.	2	es	<<	(†)	-	3	3		7d, 7f, 8e, 11	HZ, GTS, WZ	ter
Cladonia pulvinata (SANDST.) VAN HERK & APTROOT	D	?	(<)	(1)	-	G	3		7d, 7f, 8e	GTS, HZ	ter
Cladonia pyxidata (L.) HOFFM. subsp. chlorophaea (FLÖRKE ex SOMMERF.) V. WIRTH	*	mh	=	=	-	D	*			RR, HZ, GTS	ter
Cladonia ramulosa (WITH.) J. R. LAUNDON	D	?	?	?	=	*	V		7d, 7f, 8e	HZ, GTS	ter
Cladonia rangiferina (L.) F. H. WIGG.	2	es	<<	(†)	-	2	2		7d, 7f, 8e, 11	WKL, HZ, GTS	ter
Cladonia rangiformis HOFFM.	2	SS	<	=	-	3	3		7d, 7f, 8e, 11	GTK	ter, bas
Cladonia rei Schaer.	*	mh	=	=	-	*	*			RR	eur
Cladonia scabriuscula (DELIS) LEIGHT.	3	SS	=	(1)	=	*	3		7d, 7f, 8e	GTS	ter
Cladonia squamosa (SCOP.) HOFFM.	D	?	<<	(†)	-	V	*		7d, 7f, 8e, 11	GTS, HZ, WKL	ter

Wissenschaftlicher Name	BE	Bestand	Trend lang	Trend kurz	RF	ВВ	D	GS	GfU	Vorzugs- habitat	Ökologischer Typ
Cladonia subulata (L.) F. H. WIGG.	*	h	=	=	=	*	*			RR	eur
Cladonia uncialis (L.) F. H. WIGG. subsp. biuncialis (HOFFM.) M. CHOISY	1	SS	<<	(†)	-	*	kN		7d, 7f, 8e, 11	GTS, HZ	ter
Cliostomum griffithii (Sm.) COPPINS	D	?	?	?	=	3	3			В	epi
Coenogonium pineti (SCHRAD. ex ACH.) LÜCKING & LUMBSCH	*	mh	=	=	=	*	*			W	ephiph, aci, hyg
Collema crispum (HUDS.) F. H. WIGG.	D	?	?	?	=	*	*				sax
Collema cristatum (L.) F. H. WIGG.	0	ex				0	V		14a		sax, bas
Collema fuscovirens (WITH.) J. R. LAUNDON	0	ex				0	*		14a		sax, bas
Collema limosum (Ach.) Ach.	D	S	?	?	=	*	*				ter
Collema tenax (Sw.) ACH. em. DEGEL.	*	mh	=	=	=	*	*			RS	ter, bas, nit
Cresporhaphis macrospora (EITNER) M. B. AGUIRRE	D	S	?	?	=	kN	D				epi
Cyphelium notarisii (TUL.) BLOMB. & FORSSELL	0	ex				0	1		14a		lig
Cyrtidula quercus (A. MASSAL.) MINKS	D	S	?	?	=	kN	kN				epi
Dibaeis baeomyces (L. F.) RAMBOLD & HERTEL	0	ex				2	2		7d, 7f, 8e, 11	RR, HZ	ter
Diploschistes muscorum (Scop.) R. SANT.	D	?	<<	(1)	=	3	3		7, 8, 11, 14a	GTK	bry
Evernia prunastri (L.) ACH.	*	mh	>	†	=	*	*			W, B, P	epi
Fellhanera subtilis (Vězda) Dieder. & Sérus.	D	?	?	?	=	D	*				epi, sax
Fellhaneropsis myrtillicola (ERICHSEN) SÉRUS. & COPPINS	D	?	?	?	=	kN	*				epi
Flavoparmelia caperata (L.) HALE	*	S	=	†	=	D	*		11d	B, W	epi
Flavoparmelia soredians (NYL.) HALE	*	SS	?	†	=	D	*				epi
Fuscidea praeruptorum (Du RIETZ & H. MAGN.) V. WIRTH & VĚZDA	D	?	?	?	=	kN	*				sax
Graphis scripta (L.) ACH.	0	ex				3	V		2d, 11d	W	epi, hyg
<i>Hyperphyscia adglutinata</i> (FLÖRKE) H. MAYRHOFER & POELT	*	S	>	†	=	0	*		11 d		epi

Wissenschaftlicher Name	BE	Bestand	Trend lang	Trend kurz	RF	ВВ	D	GS	GfU	Vorzugs- habitat	Ökologischer Typ
<i>Hypocenomyce anthracophila</i> (LEIGHT. ex NYL.) P. JAMES & GOTTH. SCHNEID.)	D	?	?	?	=	D	*			W	epi
<i>Hypocenomyce caradocensis</i> (LEIGHT. ex NYL.) P. JAMES & GOTTH. SCHNEID.	0	ex				D	*			W	epi
Hypocenomyce scalaris (Асн. ex LILJ.)	G	S	(<)	(†)	=	*	*			W, P	epi, aci
Hypogymnia physodes (L.) NYL.	*	sh	>	Ť	=	*	*			W, P	epi
Hypogymnia tubulosa (Schaer.) Hav.	*	sh	>	†	=	*	*			W, P	epi
Hypotrachyna revoluta (FLÖRKE) HALE	*	SS	?	†	=	D	1		11d	W, B	epi
Icmadophila ericetorum (L.) ZAHLBR.	0	ex				0	1		2d, 11	W, MA	lig, ter, anit
Imshaugia aleurites (Асн.) S. L. F. Меч	D	?	?	?	=	*	*			W	lig, epi, aci
Jamesiella anastomosans (P. JAMES & VĚZDA) LÜCKING, SÉRUS. & VĚZDA	R	es	?	t	=	kN	*				epi
Lecania cyrtella (Ach.) Th. Fr.	*	h	=	t	=	*	*			В	epi, neu
Lecania erysibe (Ach.) Mudd	D	?	?	?	=	D	*			0	sax, bas
Lecania naegelii (HEPP) DIEDERICH & VAN DEN BOOM	*	S	?	Ť	=	2	*			В	epi, bas
Lecanographa amylacea (EHRH. ex PERS.) EGEA & Torrente	0	ex				kN	2				epi
Lecanora albescens (HOFFM.) BRANTH & ROSTR.	*	h	=	=	=	*	*			0	sax, bas, syn
Lecanora argentata (ACH.) MALME	0	ex				2	V		11d	W	epi
Lecanora barkmaniana Арткоот & Некк	D	?	?	?	=	kN	D				epi
Lecanora campestris (SCHAER.) HUE	3	SS	<	=	=	3	*		2c, 11	0	sax, lig
Lecanora carpinea (L.) VAIN.	*	S	?	Ť	=	3	*			В	epi, neu
Lecanora chlarotera NyL.	*	S	?	†	=	*	*			В, Р	epi, neu
Lecanora conizaeoides Nyl. ex Cromb.	V	S	>	111	=	*	*		14a, 11d		epi, aci
Lecanora dispersa (Pers.) Sommerf.	*	sh	=	=	=	*	*			O, B	sax, epi, bas
Lecanora expallens Ach.	*	mh	=	=	=	*	*		2a, 11d	В, Р	epi
Lecanora hagenii (Ach.) Ach.	*	mh	=	=	=	*	*				epi, lig, bas

Wissenschaftlicher Name	ВЕ	Bestand	Trend lang	Trend kurz	RF	ВВ	D	GS	GfU	Vorzugs- habitat	Ökologischer Typ
Lecanora intricata (ACH.) ACH.	D	?	?	?	=	0	*				sax
Lecanora muralis (SCHREB.) RABENH.	*	sh	=	†	=	*	*			0	sax, bas, syn
Lecanora persimilis Th. Fr.	*	mh	=	=	=	kN	D				epi
Lecanora polytropa (EHRH. ex HOFFM.) RABENH.	*	mh	=	=	=	*	*				sax, aci
Lecanora semipallida H. MAGN.	*	mh	=	=	=	kN	*				sax, syn
Lecanora saligna (SCHRAD.) ZAHLBR.	*	mh	<	=	=	*	*			B, P	lig, epi
Lecanora symmicta (ACH.) ACH.	0	ex				3	*		11d	W	epi, aci
Lecanora varia (HOFFM.) ACH.	0	ex				3	3		2a, 11d	W, B	lig, epi, aci
Lecidea fuscoatra (L.) ACH.	*	mh	<	=	=	V	*		2c, 11		sax
Lecidea grisella FLÖRKE	D	?	?	?	=	kN	*				sax
Lecidella carpathica KÖRB.	D	?	?	?	=	3	*				sax, neu, syn
Lecidella elaeochroma (Ach.) M. Choisy	*	h	(<)	†	=	3	*			В	epi
Lecidella scabra (TAYLOR) HERTEL & LEUCKERT	D	?	?	?	=	3	*		2c		sax
Lecidella stigmatea (ACH.) HERTEL & LEUCKERT	*	sh	=	=	=	*	*			0	sax, bas, syn
Leimonis erratica (KÖRB.) R. C. HARRIS & LENDEMER	D	?	?	?	=	D	*				sax
Lepraria finkii (Hue) R. C. Harris	*	mh	=	=	=	*	*			W, P	epi, sax
Lepraria incana (L.) Асн.	*	sh	=	†	=	*	*			W, P	epi
Lepraria jackii Tønsberg	D	?	?	?	=	D	*				epi
Lepraria rigidula (B. DE LESD.) TØNSBERG	D	?	?	?	=	0	*				epi
Lepraria vouauxii (Hue) R. C. Harris	D	?	?	?	=	D	*				sax, epi, bas
Leptogium biatorinum (NYL.) LEIGHT.	D	SS	?	?	=	R	D				sax, ter
Leptogium teretiusculum (WLLR.) ARNOLD	D	?	?	?	=	1	2				sax, epi, bas
Leptorhaphis atomaria (ACH.) SZATALA	D	?	?	?	=	D	D				ері
									2d, 9, 11d,		
Lobaria pulmonaria (L.) HOFFM.	0	ex				0	1	§§	12b, 14a, 14b, 14f	W	epi, neu

Wissenschaftlicher Name	BE	Bestand	Trend lang	Trend kurz	RF	ВВ	D	GS GfU	Vorzugs- habitat	Ökologischer Typ
Melanelixia glabratula (LAMY) SANDLER & ARUP	*	mh	<	=	=	*	*		W, P, B	epi
Melanelixia subaurifera (NYL.) O. BLANCO et al.	*	h	=	†	=	*	*		W, P, B	epi
Melanohalea elegantula (ZAHLBR.) O. BLANCO et al.	3	mh	<<<	=	=	*	*		W, P, B	epi
Melanohalea exasperatula (NYL.) O. BLANCO et al.	*	mh	=	†	=	*	*		W, P, B	epi
Micarea denigrata (Fr.) HEDL.	*	mh	=	=	=	*	*			lig
Micarea prasina Fr.	*	S	=	=	=	*	*			epi, lig
Microcalicium disseminatum (ACH.) VAIN.	D	SS	?	?	=	kN	3			epi
Mycobilimbia tetramera (DE Noт.) VITIK.	0	ex				R	2	14a		sax, bas
Ochrolechia microstictoides Räsänen	1	es	<	(1)	=	*	*	2a, 11d	W, PF	epi
Opegrapha rufescens PERS	0	ex				2	V			epi
Parmelia ernstiae FEUERER & A. THELL	D	?	?	?	=	kN	*			epi
Parmelia saxatilis (L.) Асн.	3	S	<	(1)	=	*	D		W, PF	epi, sax, aci
Parmelia sulcata TAYLOR	*	sh	=	t	=	*	*		W, P, B	epi
Parmelina quercina (WILLD.) HALE	0	ex				0	1	11d		epi
Parmelina tiliacea (HOFFM.) HALE	G	es	(<)	Ť	=	3	*	2a, 11d	B, PF	epi
Parmeliopsis ambigua (WULFEN) NYL.	G	S	(<)	=	=	*	*		W	epi, lig, aci
Parmeliopsis hyperopta (ACH.) ARNOLD	D	?	?	?	=	*	*		W	epi, aci
Parmotrema perlatum (Huds.) M. Choisy	*	SS	?	†	=	0	V			epi
Peltigera canina (L.) WILLD.	2	SS	<<	=	=	2	2			bryo, ter
Peltigera didyctyla (Wiтн.) J. R. Laundon	*	mh	=	=	=	*	*		RS	ter, nit
Peltigera horizontalis (Huds.) Baumg.	0	ex				1	3	2d, 9, 11, 12b	W	lig
Peltigera leucophlebia (NYL.) GYELN.	0	ex				0	2	9,11	W	ter, bas
Peltigera malacea (ACH.) FUNCK	0	ex				0	1	7, 8, 11	GTK	ter
Peltigera membranacea (Асн.) NyL.	0	ex				3	3	7,11	GZ	ter
Peltigera neckeri HEPP ex Müll. ARG.	2	es	(<)	=	=	2	3	11	GZ	ter
Peltigera polydactylon (NECK.) HOFFM.	0	ex				1	3	7, 11		ter

Wissenschaftlicher Name	BE	Bestand	Trend lang	Trend kurz	RF	ВВ	D	GS	GfU	Vorzugs- habitat	Ökologischer Typ
Peltigera ponojensis Gyeln.	D	?	?	?	=	G	2				ter
Peltigera praetextata (FLÖRKE ex SOMMERF.) ZOPF	0	ex				3	V		2d, 9, 11, 12b	W	ter, lig, epi
Peltigera rufescens (WEISS) HUMB.	3	S	<	(1)	=	*	3		7, 8, 11	GT, GZ	ter
Pertusaria albescens (Huds.) M. Choisy & Werner	2	SS	<<	(1)	=	3	*		2a, 9, 11d	PF, W	epi
Pertusaria amara (ACH.) NYL.	2	SS	<<	(1)	=	3	*		2a, 2d, 9, 11d	PF, W	epi
Pertusaria coccodes (ACH.) NYL.	1	SS	<<	(1)	=	3	V		2a, 9, 11d	PF, W	epi
Pertusaria flavida (DC.) J. R. LAUNDON	0	ex				2	V		2a, 9, 11d	PF, W	epi
Pertusaria pertusa (WEIGEL) TUCK.	0	ex				3	V		2a, 9, 11d	PF, W	epi
Phaeophyscia nigricans (FLÖRKE) MORBERG	*	h	=	Ť	=	*	*			B, P, O	sax, epi, bas, nit
Phaeophyscia orbicularis (NECK.) MOBERG	*	sh	=	†	=	*	*			B, P, O	epi, sax, bas, nit
Phlyctis argena (SPRENG.) FLOT.	*	mh	?	†	-	*	*		2a, 9, 11d	W, B, P	epi
Physcia adscendens H. OLIVIER	*	sh	=	†	=	*	*			B, P	epi, sax, bas, nit
Physcia aipolia (EHRH. ex HUMB.) FÜRNR.	*	S	<	†	=	2	2			В	epi, bas
Physcia caesia (HOFFM.) FÜRNF.	*	h	=	†	=	*	*			0	sax, bas, nit
Physcia dubia (HOFFM.) LETTAU	*	h	=	?	=	*	*			B, P, O	sax, epi, bas, nit
Physcia leptalea (Асн.) DC.	D	?	?	?	=	kN	0				epi
Physcia stellaris (L.) NYL.	*	S	<	†	=	*	*		11d	В	epi
Physcia tenella (Scop.) DC.	*	sh	=	†	=	*	*			B, P	epi, bas, nit
Physcia tribacioides NYL.	R	es	?	†	=	kN	R				epi
Physconia distorta (WIRTH.) J. R. LAUNDON	0	ex				2	3		2a, 11d	В	epi, neu
Physconia grisea (LAM.) POELT	*	S	<	†	=	*	*		2a, 2c, 11d	B, PZ	epi, sax, bas, nit
Physconia perisidiosa (ERICHSEN) MOBERG	0	ex				3	V		2a, 2c, 11d		epi, sax
Piccolia ochrophora (NYL.) HAFELLNER	D	S	?	?	=	kN	*				epi
Placopyrenium fuscellum (Turner) Gueidan & Cl. Roux	D	?	?	?	=	D	*				sax, bas
Placynthiella dasaea (STIRT.) TØNSBERG	V	S	<	=	=	D	*				lig
Placynthiella icmalea (ACH.) COPPINS & P. JAMES	*	mh	<	=	=	*	*			RR, W	ter, lig

Wissenschaftlicher Name	BE	Bestand	Trend lang	Trend kurz	RF	ВВ	D	GS	GfU	Vorzugs- habitat	Ökologischer Typ
Placynthiella oligotropha (J. R. LAUNDON) COPPINS & P. JAMES	3	S	<	?	=	*	V		7d, 7f, 8e, 11	RR, HZ	ter, aci
Placynthiella uliginosa (SCHRAD.) COPPINS & P. JAMES	D	?	<	?	=	*	3				ter, anit
Placynthium nigrum (HUDS.) GRAY	D	?	?	?	=	R	*		14a		sax, bas
Platismatia glauca (L.) W. L. CULB. & C. F. CULB.	*	S	<	†	=	*	*		9, 11d	W, P	epi, aci, anit
Pleurosticta acetabulum (NECK.) ELIX & LUMBSCH	0	ex				2	V		2a, 11d	В	epi, neu
Polycauliona candelaria (L.) FRÖDÉN, ARUP & SØCHTING	*	mh	>	t	=	*	*			В	epi, bas, nit
Polycauliona polycarpa (Hoffmann) Frödén, Arup & SØCHTING	*	sh	>	1	=	*	*			В, Р	epi, nit
Polycauliona ucrainica (S. Y. KONDR.) FRÖDÉN, ARUP & SØCHTING	*	S	?	1	=	kN	D				epi, sax
Polysporina simplex (DAVIES) VĚZDA	D	?	?	?	=	3	*		2c, 11		sax
Porpidia soredizodes (LAMY ex NYL.) J. R. LAUNDON	D	?	?	?	=	kN	*				sax
Protoblastenia rupestris (SCOP.) J. STEINER	G	SS	(<)	(†)	=	3	*		2c, 14a		sax, bas
Pseudevernia furfuracea (L.) ZOPF	V	S	<<	†	=	*	*			P, W	epi, lig, aci
Pseudosagedia aenea (WALLR.) HAFELLNER & KALB	*	S	?	†	=	*	*			W	epi, hyg
Pseudosagedia chlorotica (ACH.) HAFELLNER & KALB	D	?	?	?	=	*	*				sax
Psilolechia leprosa COPPINS & PURVIS	D	?	?	?	=	kN	*				sax
Psilolechia lucida (Ach.) M. Choisy	*	S	=	=	=	*	*			Р	sax
Punctelia borreri (Sm.) KROG	R	es	?	t	=	R	*				epi
Punctelia jeckeri (ROUM.) KALB	*	S	?	†	=	*	*				epi
Punctelia subrudecta (NYL.) KROG	*	S	?	†	=	D	*				epi
Pycnothelia papillaria (EHRH.) Dufour	0	ex				2	1		7d, 7f, 8e, 11	RR, GTS, WKL	ter, anit
Pyrrhospora quernea (DICKS.) KÖRB.	0	ex				kN	kN				epi
Ramalina farinacea (L.) ACH.	V	S	<<	†	=	*	*		2a, 11d	R, P	epi
Ramalina fastigiata (PERS.) ACH.	0	ex				2	2		2a, 11d	В	epi, neu

Wissenschaftlicher Name	ВЕ	Bestand	Trend lang	Trend kurz	RF	ВВ	D	GS	GfU	Vorzugs- habitat	Ökologischer Typ
Ramalina fraxinea (L.) ACH.	0	ex				2	2		2a, 11d	В	epi, neu
Ramalina pollinaria (WESTR.) ACH.	0	ex				2	3		2a, 2c, 11d	B, OKSM	epi, sax, neu
Rinodina bischoffii (HEPP) A. MASSAL.	D	?	?	?	=	G	*			0	sax, bas
Rinodina gennarii BAGL.	D	?	?	?	=	*	*			O, B, P	sax, epi, bas, nit
Rinodina griseosoralifera COPPINS	D	?	?	?	=	kN	G				epi
Rinodina pityrea Ropin & H. Mayrhofer	*	mh	?	†	=	*	*			B, P, O	epi, sax, bas, nit, syn
Rinodina pyrina (Ach.) ARNOLD	D	?	?	Ť	=	1	2			В	epi, bas
Rusavskia elegans (LINK) S. Y. KONDR. et al.	*	h	>	=	=	*	*			0	sax, bas, nit
Sarcogyne regularis KÖRB.	*	h	=	=	=	*	*			0	sax, bas
Sarcosagium campestre (Fr.) Poetsch & Schiederm.	D	?	?	?	=	D	2				sax
Sarea resinae (Fr.) KUNTZE	*	S	=	=	=	R	V				epi
Scoliciosporum chlorococcum (GRAEWE ex STENH.) Vězda	*	h	=	=	=	*	*				epi, lig, aci
Scoliciosporum gallurae Vězda & Poelt	D	?	?	?	=	kN	D				epi
Scoliciosporum umbrinum (ACH.) ARNOLD	*	mh	?	=	=	*	*				sax, epi
Staurothele frustulenta VAIN.	D	?	?	?	=	G	*				sax, bas
Steinia geophana (NYL.) STEIN	*	S	=	=	=	D	3				ter
Stereocaulon condensatum HOFFM.	0	ex				3	1		7d, 7f, 8e, 11	RR, GTS, WKL	ter, anit
Stereocaulon incrustatum FLÖRKE	0	ex				1	1		7d, 7f, 8e, 11	RR, GTS, WKL	ter, anit
Stereocaulon nanodes Tuck.	D	?	?	?	=	R	*			OVG	sax
Stereocaulon PASCHALE (L.) HOFFM.	0	ex				0	1				ter
Stereocaulon pileatum ACH.	0	ex				R	*		1, 14a	OVG	sax
Stereocaulon tomentosum Fr.	0	ex				0	1		7d, 7f, 8e, 11	RR, GTS, WKL	ter, anit

Wissenschaftlicher Name

Stereocaulon vesuvianum PERS.

Strangospora pinicola (A. MASSAL.) KÖRB.

										O,
Tephromela atra (Huds.) HAFELLNER	0	ex				2	V	11d		sax, epi, neu
Tephromela atra (Huds.) Hafellner var. torulosa (Flörke) Hafellner	0	ex				kN	D			epi
Thelidium incavatum NyL. ex MUDD	*	SS	=	=	=	0	*	2c, 14a	OKB	sax, bas
Thelocarpon magnussonii G. SALISB.	D	SS	?	?	=	D	R			sax
Thelocarpon pallidum G. SALISB.	D	S	?	?	=	kN	D			sax
Thelomma ocellatum (KÖRB.) TIBELL	D	?	?	?	=	*	V	11d, 14a	G	lig, nit
Toninia aromatica (TURNER ex Sm.) A. MASSAL.	0	ex				0	3	14a		sax, acid
Trapelia coarctata (Turner ex Sm.) M. Choisy	*	S	=	?	=	*	*			sax, acid
Trapelia glebulosa (Sm.) J. R. LAUNDON	*	S	=	?	=	*	*			sax, acid
Trapelia obtegens (Th. Fr.) HERTEL	*	S	=	?	=	D	*			sax, acid
Trapelia placodioides Coppins & P. James	*	S	=	?	=	3	*			sax, acid
Trapeliopsis flexuosa (Fr.) COPPINS & P. JAMES	*	h	=	?	=	*	*			lig, epi
Trapeliopsis gelatinosa (FLÖRKE) COPPINS & P. JAMES	D	SS	?	?	=	kN	3			ter
Trapeliopsis granulosa (HOFFM.) LUMBSCH	*	h	?	†	=	*	*		W, RR, GTS	ter, lig, epi, acio
Tuckermannopsis chlorophylla (WILLD.) HALE	V	S	<<	Ť	=	*	*	11d	W, P	epi
Usnea florida (L.) F. H. WIGG.	0	ex				0	2	11d	W	epi, anit
Usnea glabrescens (Nyl. ex Vain.) Vain ex. Räsänen	0	ex				0	1	11d		epi
Usnea hirta (L.) F. H. WIGG.	2	S	<<<	=	=	*	*	2a, 11d	W, P	epi, lig, anit
Varicellaria hemisphaerica (FLÖRKE) I. SCHMITT & LUMBSCH	D	?	?	?	=	2	V	2a, 9, 11d	PF, W	epi
Verrucaria dolosa HEPP	D	?	?	?	=	kN	*			sax
Verrucaria macrostoma DuFour ex DC.	D	?	?	?	=	kN	V			sax, nit
Verrucaria muralis Асн.	*	mh	>	=	=	*	*		0	sax, bas

Trend

lang

(<)

BE Bestand

SS

mh

G

*

Trend

kurz

(1)

=

RF

BB

D

3

GS

GfU

1

Vorzugs-

habitat

OVG, O

Ökologischer

Тур

sax

lig, aci

Wissenschaftlicher Name	BE	Bestand	Trend lang	Trend kurz	RF	ВВ	D	GS	GfU	Vorzugs- habitat	Ökologischer Typ
Verrucaria nigrescens PERS.	*	h	=	=	=	*	*			0	sax, bas, syn
Verrucaria nigrescens f. tectorum (A. MASSAL.) COPPINS & APTROOT	D	SS	?	?	=	kN	*				sax, nit
Verrucaria ochrostoma (BORRER ex LEIGHT.)	D	SS	?	?	=	kN	D				sax, bas
Verrucaria viridula (Schrad.) Ach.	D	?	?	?	=	D	*				sax, bas
Verruculopsis lecideoides (A. Massal.) Gueidan & Cl. Roux	D	?	?	?	=	G	3				sax, bas
Vezdaea aestivalis (OHLERT) TSCHERMWOESS & POELT	D	?	?	?	=	D	D				epi, sax
Vezdaea leprosa (P. JAMES) VĚZDA	*	S	=	=	=	D	*				sax, ter, aci
Vulpicidia pinastri (Scop.) JE. MATTSSON & M. J. LAI	*	SS	>	=	=	*	V		11d	B, W, P	epi, aci
Xanthoparmelia conspersa (EHRH. ex ACH.) HALE*	0	ex				3	*		1, 8, 6e, 11, 14a	AF	sax, aci
Xanthoria parietina (L.) Th. Fr.	*	sh	>	†	=	*	*			В, Р, О	epi, sax, bas, nit

Anmerkungen

Bacidina sulphurella: Nach der Auftrennung in *B. arnoldiana* und *B. sulphurella* sind die früher unter *B. arnoldiana* geführten Funde wohl zu *B. sulphurella* zu stellen.

Xanthoparmelia conspersa: Bei WILLDENOW (1787) als *Lichen centrifugus*, die Angabe wird von Schlechtendal (1824) zu *X. conspersa* gestellt (vgl. SIPMAN et al. 2004).

Auswertung

In Berlin gelten derzeit 315 Flechtentaxa als etabliert, wobei es sich um 310 Arten, drei Unterarten, eine Varietät und eine Form handelt. Gegenüber der Liste von OTTE (2005) bedeuten diese Zahlen eine Zunahme um 75 Taxa, was in 65 Fällen auf aktuelle Neuentdeckungen im Gebiet, in 10 Fällen auf Nachweise ausgestorbener Sippen durch Herbarbelege zurückgeht.

Der Großteil der Taxa (etwa 40 %) lebt weitgehend epiphytisch, ca. 30 % auf Gesteinen und ca. 20 % auf offenen Böden. Die restlichen Arten besiedeln andere Habitate, wie verrottendes Holz oder Moose. Von den 315 Flechtensippen werden aktuell 112 (35,6 %) in der Roten Liste geführt (Tabelle 2). Sechs Arten stehen auf der Vorwarnliste. Als ungefährdet werden 102 Taxa (32,4 %) eingestuft. Für die Einschätzung von 95 Taxa (30,2 %) ist die Datenlage nicht ausreichend (Kategorie D). Sechs Arten gelten als extrem selten (Kategorie R).

Von den 112 Rote-Liste-Taxa gilt derzeit mehr als die Hälfte (59 Taxa = 18,7 % aller nachgewiesenen Sippen) als bereits ausgestorben oder verschollen. Ein Großteil dieser Arten wurde das letzte Mal im 18. oder 19. Jahrhundert sicher in Berlin nachgewiesen. Etwa die Hälfte der Sippen dieser Kategorie wächst epiphytisch und 27 % terrestrisch. Die übrigen Sippen kommen entweder auf Gesteinen oder verrottendem Holz vor.

Neben den bereits ausgestorben oder verschollenen Arten gelten 47 Taxa als im Bestand gefährdet, wovon 11 vom Aussterben bedroht sind. Allein fünf der vom Aussterben bedrohten Arten bzw. Unterarten gehören zu den terrestrisch wachsenden *Cladonia*-Taxa. 14 Arten wurden als stark gefährdet und neun Arten als gefährdet eingestuft. Weitere 13 Arten sind in unbekanntem Ausmaß gefährdet (Kategorie G). Innerhalb der Gruppe der bestandsgefährdeten Flechten wachsen ebenso viele Sippen weitgehend epiphytisch wie terrestrisch. Die restlichen 25 % besiedeln andere Habitate. Innerhalb der bestandsgefährdeten, terrestrisch wachsenden Flechten machen die Arten und Unterarten der Gattung *Cladonia* mit 17 von 22 Taxa den größten Anteil aus.

In der Vergangenheit wurde die Entwicklung der Flechtenflora in Berlin nur ungenügend erfasst und viele wichtige Informationen fehlen, was eine genaue Einschätzung der Bestandsentwicklung in vielen Fällen schwierig oder gar unmöglich macht. Das spiegelt sich auch in den Daten wider.

So sind für den langfristigen Bestandstrend 38,4 % der Daten ungenügend, für einen kurzfristigen Bestandstrend 30,8 %. Der langfristige Bestandstrend ist für 65 Taxa (20,6 %) gleichbleibend, der kurzfristige Bestandstrend für 71 Taxa (22,5 %). Betrachtet man den langfristigen Bestandstrend, so weisen 59 Sippen (18,7 %) einen Rückgang

auf, vier davon einen sehr starken. Kurzfristig sind nur 32 Taxa (10,1 %) von einer Abnahme betroffen, wobei 30 davon (9,5 %) eine mäßige Abnahme oder unbekannt starke Abnahme aufweisen und je eine Sippe eine starke bzw. sehr starke Abnahme.

Tabelle 2: Bilanz der aktuellen Einstufung in die Rote-Liste-Kategorien.

Bilan	zierung der Anzahl etablierter Taxa	absolut	prozentual
Gesa	amtzahl etablierter Taxa	315	100,0 %
	Neobiota	0	0,0 %
Indigene und Archaeobiota bewertet		315	100,0 %
		315	100,0 %
	nicht bewertet (♦)	0	0,0 %
Bilan	zierung der Roten-Liste-Kategorien	absolut	prozentual
Bew	ertete Taxa	315	100,0 %
0	Ausgestorben oder verschollen	59	18,7 %
1	Vom Aussterben bedroht	11	3,5 %
2	Stark gefährdet	14	4,4 %
3	Gefährdet	9	2,9 %
G	Gefährdung unbekannten Ausmaßes	13	4,1 %
R	Extrem selten	6	1,9 %
Rote Liste insgesamt		112	35,6 %
V	Vorwarnliste	6	1,9 %
*	Ungefährdet	102	32,4 %
D	Daten unzureichend	95	30,2 %

Eine deutliche Zunahme konnten im langfristigen Bestandtrend lediglich 11 Arten (3,5 %) aufweisen. Kurzfristig sieht das Ergebnis deutlich besser aus. Hier nahm der Bestand von 56 Arten (17,8 %) deutlich zu, was der allgemein verbesserten Luftqualität geschuldet ist (vgl. OTTE 2005).

Obwohl also eine relativ hohe Zahl einen positiven kurzfristigen Bestandstrend aufweist, spiegelt sich dieser weniger stark im Vergleich der Gefährdungskategorien mit der letzten Roten Liste (OTTE 2005) wider, wo bereits viele Arten infolge verbesserter Luftqualität als nicht mehr gefährdet betrachtet werden konnten. Lediglich bei 21 Arten (6,7 %) wurde ein geringerer Gefährdungsgrad ermittelt. 149 Taxa (47,3 %) behielten den gleichen Gefährdungsgrad. Immerhin 23 Sippen (7,3 %) erhielten einen höheren Gefährdungsgrad.

Bei 122 Taxa (38,7 %) konnte die Kategorieänderung nicht ausgewertet werden, da diese z.B. bei Otte (2005) noch nicht enthalten waren oder die Datenlage nicht ausreichend ist. Die jetzt im Sinne von Ludwig et al. (2009) veränderte Bewertungsmethodik hat also nicht zu einer durchgreifenden Veränderung der Eingruppierungen geführt – veränderte Einstufungen spiegeln zum Teil eine tatsächliche Veränderung der Situation

seit 2005 wider (z.B. einerseits die Wiederentdeckung von acht verschollenen Arten, andererseits das Aussterben von zuletzt vom Aussterben bedrohten Arten).

5

Gefährdung und Schutz

Zumindest im Hinblick auf viele epiphytische Arten ist die Einschätzung möglich, dass sich die Bestände mit der weiteren Verbesserung der Luftqualität in jüngerer Zeit deutlich erholt haben. In den letzten 10 Jahren haben sich epiphytische Flechten bis in die innersten Stadtbereiche wieder angesiedelt und ausgebreitet, wobei die zahlreichen Allee- und Parkbäume häufig bessere Bedingungen für den Flechtenwuchs bieten als viele der stärker gegen Licht und Niederschläge abgeschirmten Bäume der geschlossenen Waldbereiche an der Peripherie.

Allerdings ist mit der zunehmenden Wiederausbreitung einer epiphytischen Flechtenvegetation auch die starke Nährstoffbelastung in der Stadt deutlich geworden. Das gilt nicht nur für die Innenstadt, sondern auch für die Außenbezirke. Auf den Straßenbäumen dominieren heutzutage allenthalben nitrophile Arten, z.B. *Phaeophyscia orbicularis, Physcia adscendens* oder *Xanthoria parietina*. Die Zunahme dieser nitrophilen Arten spiegelt sich in der hohen Anzahl von Arten wider, die einen positiven kurzfristigen Bestandstrend aufweisen.

Im Gegensatz dazu sind es eher die waldreicheren Bezirke im Süden der Stadt, in denen auch gegen Nährstoffbelastung empfindlichere Arten in gewissem Umfang Lebensmöglichkeiten finden. Dennoch haben ausgesprochen nitrophobe Flechten (z. B. Bartflechten) in Berlin insgesamt einen schweren Stand und sind nur selten und meist nur in kleinen Exemplaren anzutreffen.

Diese Nährstofflast führt auch zu einer Verkrautung einst nährstoffarmer Kiefernbestände, so dass für Erdflechten im Waldbereich kaum noch Raum bleibt. Die hohe Anzahl an terrestrisch lebenden Rote-Liste-Taxa zeigt das Ausmaß der Gefährdung dieser Habitate. Einige kleinere Bereiche mit flechtenreichen Heiden und Sandtrockenrasen, zum Teil aufgegebene Militärflächen, unterliegen allerdings der gezielten Pflege, so dass hier Rentierflechten und andere *Cladonia*-Taxa zumindest stellenweise und beispielhaft erhalten werden können.

Hierzu haben auch die FFH-Berichtspflichten beigetragen, in deren Umsetzung das Monitoring aller bekannten Berliner Rentierflechtenvorkommen organisiert wurde. Die verbliebenen Vorkommen erscheinen daher aktuell besser gesichert als vor 10 Jahren. Einen reichen und nicht gefährdet erscheinenden Rentierflechtenbestand beherbergt das Gründach des "Naturschutzzentrums Ökowerk" im Grunewald, wo ansonsten im Land Berlin ausgestorbene Arten wie die Echte Rentierflechte (Cladonia rangiferina) ein Refugium haben.

Danksagung

Ein Teil der Beobachtungen wurde im Zusammenhang mit der Etablierung des Rentierflechtenmonitorings im Auftrage der Senatsverwaltung für Stadtentwicklung und Umweltschutz getätigt.

7 Literatur

- FLÖRKE, H. (1815): Deutsche Lichenen, gesammelt und mit Anmerkungen herausgegeben. Erste Lieferung, No. 1–20, Zweite Lieferung, No. 21–40, Dritte Lieferung, No. 41–60. Berlin.
- LEUCKERT, C. & RUX, K.-D. (1991): Die Flechtenflora von Berlin (West) mit besonderer Berücksichtigung epiphytischer und epigäischer Sippen (Rote Liste). In: AUHA-GEN, A., PLATEN, R. & SUKOPP, H. (Hrsg.): Rote Listen der gefährdeten Pflanzen und Tiere in Berlin. Schwerpunkt Berlin (West). Landschaftsentwicklung und Umweltforschung, Sonderheft 6: 119–124.
- LUDWIG, G., HAUPT, H., GRUTTKE, H. & BINOT-HAFKE, M. (2009): Methodik der Gefährdungsanalyse für Rote Listen. In: BUNDESAMT FÜR NATURSCHUTZ (Hrsg.): Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands. Band 1: Wirbeltiere. Naturschutz und Biologische Vielfalt 70 (1): 23–71.
- OTTE, V. (2005): Rote Liste und Gesamtartenliste der Flechten (Lichenes) von Berlin. In: DER LANDESBEAUFTRAGTE FÜR NATURSCHUTZ UND LANDSCHAFTSPFLEGE / SENATSVERWALTUNG FÜR STADTENTWICKLUNG (Hrsg.): Rote Listen der gefährdeten Pflanzen und Tiere von Berlin. CD-ROM.
- OTTE, V. & RÄTZEL, S. (2004): Kommentiertes Verzeichnis der Flechten und flechtenbewohnenden Pilze Brandenburgs zweite Fassung. Feddes Repertorium 115 (1–2): 134–154.
- Schlechtendal, D. F. L. v. (1824): Synopsis plantarum cryptogamarum in Mesomarchia praesertim circum Berolinum provenientium. 284 S.; Berolini (Dümmler).
- SenStadtUm, Senatsverwaltung für Stadtentwicklung und Umweltschutz Berlin (1993): Bioindikation mit Flechten. Monitoringprogramm Naturhaushalt Heft 2. Ökologische Planungsgrundlagen 1991 und 1992. 62 S.; Berlin.
- SIPMAN, H. J. M., LEUCKERT, C., KNOPH, J.-G., RUX, K.-D. & OTTE, V. (2004): Die Flechten in Willdenows "Florae Berolinensis Prodromus" und ihr Vorkommen im heutigen Berlin. Feddes Repertorium 115: 121–133.
- SIPMAN, H. & APTROOT, A. (2007): Beitrag zur Kenntnis der Flechtenflora des Landes Berlin. Verhandlungen des Botanischen Vereins von Berlin und Brandenburg 140: 101–117.
- SIPMAN, H., VAN DEN BOOM, P., OTTE, V. & RUX, K. (2012): *Hyperphyscia adglutinata* ist zurück in Berlin über die Erholung der Flechtenflora auf der Pfaueninsel.

- Verhandlungen des Botanischen Vereins von Berlin und Brandenburg 145: 139-150.
- WAGNER, H.-G., KRAUSE, J. & OTTE, V. (2016): Rote Liste und Gesamtartenliste der flechtenbewohnenden (lichenicolen) Pilze von Berlin. In: DER LANDESBEAUFTRAGTE FÜR NATURSCHUTZ UND LANDSCHAFTSPFLEGE / SENATSVERWALTUNG FÜR STADTENTWICKLUNG UND UMWELT (Hrsg.): Rote Listen der gefährdeten Pflanzen, Pilze und Tiere von Berlin.
- WILLDENOW, C. L. (1787): Florae Berolinensis prodromus secundum systema Linaeanum. 439 S. + 7 Taf.; Berolini (Vieweg).
- WIRTH, M., HAUCK, M., VON BRACKEL, W., CEZANNE, R., DE BRUYN, U., DÜRHAMMER, O., EICHLER, M., GNÜCHTEL, A., JOHN, V., LITTERSKI, B., OTTE, V., SCHIEFELBEIN, U., SCHOLZ, P., SCHULTZ, M., STORDEUR, R., FEUERER, T. & HEINRICH, D. (2011): Rote Liste und Artenverzeichnis der Flechten und flechtenbewohnenden Pilz Deutschlands. In: BUNDESAMT FÜR NATURSCHUTZ (Hrsg.): Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands. Band 6: Pilze (Teil 2). Naturschutz und Biologische Vielfalt 70 (6): 7–122.
- WIRTH, V., HAUCK, M. & SCHULTZ, M. (unter Mitarbeit von DE BRUYN, U., BÜLTMANN, H., JOHN, V., LITTERSKI, B. & OTTE, V.) (2013): Die Flechten Deutschlands. 2 Bde., 1244 S.; Stuttgart (Ulmer).

Legende

Rote-Liste-Kategorien

- 0 ausgestorben oder verschollen
- 1 vom Aussterben bedroht
- 2 stark gefährdet
- 3 gefährdet
- G Gefährdung unbekannten Ausmaßes
- R extrem selten V Vorwarnliste
- D Daten unzureichend
- ★ ungefährdet
- nicht bewertet
- kein Nachweis oder nicht etabliert

Aktuelle Bestandssituation (Bestand)

- ex ausgestorben oder verschollen
- es extrem selten
- ss sehr selten
- s selten
- mh mäßig häufig
- h häufig
- sh sehr häufig
- ? unbekannt
- nb nicht bewertet
- kN kein Nachweis

Langfristiger Bestandstrend (Trend lang)

- <<< sehr starker Rückgang
- << starker Rückgang
- < mäßiger Rückgang
- (<) Rückgang, Ausmaß unbekannt
- = gleich bleibend
- > deutliche Zunahme
- ? Daten ungenügend

Kurzfristiger Bestandstrend (Trend kurz)

- **‡**‡‡ sehr starke Abnahme
- ↓↓ starke Abnahme
- (+) Abnahme mäßig oder im Ausmaß unbekannt
- = gleich bleibend
- † deutliche Zunahme
- ? Daten ungenügend

Risikofaktoren (RF)

- negativ wirksam
- = nicht feststellbar

Gesetzlicher Schutz (GS)

- § besonders geschützt
- §§ streng geschützt
- II, IV FFH-Arten Anhang II, Anhang IV

Gefährdungsursachen (GfU)

- 1 Irreversible Lebensraum- bzw. Standortzerstörung (keine Regenerierung möglich)
- Zerstörung von Saumbiotopen und kleinräumigen Sonderstandorten, z. B. im Rahmen einer Nutzungsoder Pflegeintensivierung (Zerstörung von Wegrändern, Feldrainen, Hecken, Feldgehölzen, Allee- und Parkbäumen, Ruderalstellen, Böschungen, Natursteinmauern, alten Holzzäunen u. a.)
- Gebäudesanierung, Mauerverfugung, Kleinflächige Versiegelung (Beseitigung von Lebensräumen bzw. Wuchsorten an oder in Gebäuden, in Höfen, an Mauern, Grabsteinen, Denkmälern)
- 2d Absenkung des Grundwasserspiegels
- 7 Nutzungsaufgabe mit nachfolgendem Brachfallen und Gehölzsukzession
- 7d Aufgabe der Heide- und Bauernwaldnutzung (Wegfall von Weide, Abplaggen, Streunutzung, Gehölzverjüngung, Brand)
- 7f Nutzungsaufgabe auf ehemaligen Militärflächen
- 8 Aufforstung waldfreier Flächen
- 8e Aufforstung von brachliegenden Äckern, Ödland und Heideflächen
- 9 Waldbauliche Maßnahmen
- Lebensraum- bzw. Standortveränderungen durch Nährstoff- und Schadstoffeintrag oder direkte Schädigung von Pflanzen und Tieren (Verschiebung des Konkurrenzgleichgewichts)
- Eutrophierung oder Verschmutzung von Böden durch Nährstoff- bzw. Schadstoffeintrag über die Luft (Eintrag von Schwefel- und Stickstoff-Verbindungen, Industriestäuben, Schwermetallen, Ozon oder anderen Stoffen, die schädigend auf Pflanzen und Tiere wirken)

- Unmittelbare Schädigung von Organismen durch Stoffeinträge (insbesondere durch Luftverschmutzung mit Schwefeldioxid)
 Vegetationswandel infolge von Nährstoffeinträgen
 Ausbleiben der natürlichen Walddynamik (Verhinderung der Zerfallsphase von Wäldern mit hohem Totholzanteil und mit natürlichen Auflichtungen durch eine intensive Waldnutzung)
- 14a Enge ökologische Bindung an gefährdete oder seltene Lebensräume oder Lebensraumstrukturen
- 14b Sehr störungsempfindliche Art
- 14f Geringe Reproduktionsrate, geringe Diasporenbildung, mangelnde Ausbreitungsfähigkeit

Biotoptypen der Vorzugshabitate (Berliner Biotoptypenschlüssel)

Kürzel	Biotoptyp	Code
AH	Steinhaufen, Steinwälle, Steinriegel	11160
AF	Findlinge	11170
AT	trockene Gruben	11200
AW	Sand-, Mergel- oder Lehmwand	11300
В	Laubgebüsche, Feldgehölze, Alleen, Baumreihen, Baumgruppen und mehrschichtige Gehölzbestände auf sekundären Standorten	07
G	Grünland, Staudenfluren und Rasengesellschaften	05
GT	Trocken- und Magerrasen	05120
GTK	basiphile Trocken- und Halbtrockenrasen, Steppenrasen	05122
GTS	Sandtrockenrasen (einschl. offene Sandstandorte und Borstgrasrasen trockener Ausprägung)	05121
GZ	Zierrasen/Scherrasen	05160
HZ	Zwergstrauchheiden	06100
MA	saure Arm- und Zwischenmoore (Oligo- und mesotrophe Moore)	04300
MAA	Sauer-Armmoore (oligotroph-saure Moore)	04310
0	Bebaute Gebiete, Verkehrsanlagen und Sonderflächen	12
OK	besondere Bauwerke	12800
OKB	historische Bauwerke und Anlagen	12810
OKSM	alte Mauern mit zerfallendem Mörtel	12835
OVG	Bahnanlagen	12660
P	Grün- und Freiflächen	10
PF	Parkanlagen und Friedhöfe (inkl. Friedhofsbrachen)	10100
PFF	Friedhöfe	10102
PZ	Dorfanger	10240
R	Anthropogene Rohbodenstandorte und Ruderalfluren	03
RR	vegetationsfreie und -arme Rohbodenstandorte (Deckungsgrad < 10%)	03100
RS	ruderale Pionier-, Gras- und Staudenfluren	03200
W	Wälder und Forsten	80
WKL	Flechten-Kiefernwälder	-
WZ	Zwergstrauch-Kiefernwälder	08220

Ökologische Typen

eur euryök
syn synanthrop
nit nitrophil
anit anitrophil
aci acidophil
bas basiphil

neu neutro- und subneutrophil

hyg hygrophil
sax saxicol
ter terricol
lig lignicol
bry epibryisch
epi epiphytisch

Abbildung 1: Rentierflechten (*Cladonia* spec.) auf einer Heidefläche im Grunewald (Foto: Volker Otte).

Impressum

Herausgeber

Der Landesbeauftragte für Naturschutz und Landschaftspflege Berlin Prof. Dr. Ingo Kowarik, Bernd Machatzi im Hause der Senatsverwaltung für Umwelt, Verkehr und Klimaschutz

Senatsverwaltung für Umwelt, Verkehr und Klimaschutz Am Köllnischen Park 3 10179 Berlin https://www.berlin.de/sen/uvk/

Autoren

Josephin Krause Silbersteinstraße 128 12051 Berlin josi.krause@mail.de

Dr. Volker Otte Senckenberg Museum für Naturkunde Görlitz PF 300 154 02806 Görlitz Dr. Hans-Georg Wagner Bonhoefferstraße 11a 30457 Hannover

Redaktion

Büro für tierökologische Studien Dr. Christoph Saure Dr. Karl-Hinrich Kielhorn Am Heidehof 44 14163 Berlin saure-tieroekologie@t-online.de

Universitätsverlag der TU Berlin, 2017

http://verlag.tu-berlin.de Fasanenstraße 88 10623 Berlin Tel.: +49 (0)30 314 76131 / Fax: -76133 publikationen@ub.tu-berlin.de

Diese Veröffentlichung – ausgenommen Zitate und Abbildungen Dritter – ist unter der CC-Lizenz CC BY 4.0 lizenziert.

Lizenzvertrag: Creative Commons Namensnennung 4.0

http://creativecommons.org/licenses/by/4.0/

Online veröffentlicht auf dem institutionellen Repositorium der Technischen Universität Berlin: DOI 10.14279/depositonce-5841

http://dx.doi.org/10.14279/depositonce-5841