إصلاح اختبار الرياضيات دورة 2014

التمرين الأول:

(3، ب) ؛ (2، ج) ؛ (3، ب) ؛ (1) عدد الأعداد الصّحيحة الطّبيعية الزّوجية ذات ثلاثة أرقام مختلفة من بين 4 و 5 و 6 و 7 هو 12. (ن، 3)

	· · · · · · · · · · · · · · · · · · ·				
الآحاد	العشرات	المئات	الأعداد		
	5	6	654		
		7	754		
4	6	5	564		
	93-	7	764		
	7	5	574		
		6	674		

الأحاد	العشرات	المئات	الأعداد
	4	5	546
		7	746
6	5	4	456
		7	756
	7	4	476
		5	576

يعني 4 < x < 7 يعني 4 < x < 7 يعني -4 < x

.7 - (-1) = 7 + 1 = 8

3) المستقيم (FH) عمودي على المستوى (EGC).

لكان المستقيم (FH) عموديا على المستوى (ADH) لكان عموديا على كلّ مستقيماته المارّة من H و بالتّالى لكان في حين (FH) و (EH) ليسا متعامدين.

لأنّ (FH) = (FI) و بالتّالي (FH) = (FI) ليس عمو ديا على المستوى (HIJ).

التمرين الثّاني:

 $b = (1 + \sqrt{3})^2$ $a = 4 - 3\sqrt{12} + \sqrt{48}$

$$a = 4 - 3\sqrt{12} + \sqrt{48} = 4 - 3\sqrt{4 \times 3} + \sqrt{16 \times 3} = 4 - 3\sqrt{4} \times \sqrt{3} + \sqrt{16} \times \sqrt{3} = 4 - 3 \times 2\sqrt{3} + 4\sqrt{3}$$

$$= 4 - 6\sqrt{3} + 4\sqrt{3} = 4 - 2\sqrt{3}$$
(1)

$$b = (1 + \sqrt{3})^2 = 1^2 + 2 \times 1 \times \sqrt{3} + \sqrt{3}^2 = 1 + 2\sqrt{3} + 3 = 4 + 2\sqrt{3}$$

.
$$a\rangle 0$$
 إذن $2\sqrt{3}$ إذن $4^2 = 16$ إذن $4^2 < 4$ يعني $4 < 2\sqrt{3}$ يعني $4 < 2\sqrt{3}$ و بالتّالي $4 < 2\sqrt{3}$ (2

$$a \times b = (4 - 2\sqrt{3}) \times (4 + 2\sqrt{3}) = 4^2 - (2\sqrt{3})^2 = 16 - 12 = 4$$

$$= \frac{2 \times 2 - 2 \times \sqrt{3}}{2} = \frac{2 \times (2 - \sqrt{3})}{2} = 2 - \sqrt{3}$$

 $c = \sqrt{a} - \sqrt{b}$ (4)

.
$$c\langle 0$$
 يعني $\sqrt{a}-\sqrt{b}\langle 0$ يعني $\sqrt{a}\sqrt{b}$ يعني $a\langle b$ يعني $a\langle b$ يعني $a\langle b$ أـ $b=4+2\sqrt{3}$

$$c^{2} = (\sqrt{a} - \sqrt{b})^{2} = \sqrt{a}^{2} - 2 \times \sqrt{a} \times \sqrt{b} + \sqrt{b}^{2} = a - 2\sqrt{ab} + b = a + b - 2\sqrt{ab} - 4 - 2\sqrt{3} + 4 + 2\sqrt{3} - 2\sqrt{4} = 8 - 2 \times 2 = 8 - 4 = 4.$$

$$c = -\sqrt{4} = -2 \text{ (i.i.)}$$

التّمرين الثّالث:

(BC) قائم الزّاوية في A و H مسقطها العمودي على ABC إذن ABC المثلّث ABC $AH^2 = HC \times HB = X \times (6-X)$

يعني
$$x \times 6 - x \times x = \frac{27}{4}$$
 يعني $x \times (6 - x) = (\frac{3\sqrt{3}}{2})^2 = \frac{9 \times 3}{4} = \frac{27}{4}$

.
$$x^2 - 6x + \frac{27}{4} = 0$$
 يعني $\frac{27}{4} - 6x + x^2 = 0$ يعني $\frac{27}{4} - (6x - x^2) = 0$

$$(x - \frac{3}{2}) \times (x - \frac{9}{2}) = x \times x - x \times \frac{9}{2} - \frac{3}{2} \times x + \frac{3}{2} \times \frac{9}{2} = x^2 - \frac{9}{2}x - \frac{3}{2}x + \frac{27}{4} = x^2 - \frac{12}{2}x + \frac{27}{4}$$

$$= x^2 - 6x + \frac{27}{4}$$
(2)

$$x - \frac{3}{2} = 0$$
 يعني $x - \frac{3}{2} = 0$ يعني $x - \frac{3}{2} = 0$ يعني $x - \frac{3}{2} = 0$ أو (3) يعني $x - \frac{3}{2} = 0$ أو (3) يعني $x - \frac{3}{2} = 0$

.
$$x = \frac{9}{2}$$
 أو $x = \frac{3}{2}$ يعني $x - \frac{9}{2} = 0$

$$. \ CH = rac{3}{2}$$
 و بالتّالي $x = rac{3}{2}$ بما أنّ $CH < CI$ فإنّ $x < 3$ إذن

$$HB = CB - CH = 6 - \frac{3}{2} = \frac{12}{2} - \frac{3}{2} = \frac{9}{2}$$

المثلِّث ABH قائم الزّاوية في النّقطة H إذن حسب نظرية بيتاغور:

و بالتّالي
$$AB^2 = HA^2 + HB^2 = (\frac{3\sqrt{3}}{2})^2 + (\frac{9}{2})^2 = \frac{27}{4} + \frac{81}{4} = \frac{108}{4} = 27$$

. $AB = \sqrt{27} = \sqrt{9 \times 3} = \sqrt{9} \times \sqrt{3} = 3\sqrt{3}$

التّمرين الرّابع:

ب - المثلّث ABO قائم الزّاوية في O إذن حسب نظرية بيتاغور:

$$AB^2 = OA^2 + OB^2 = 4^2 + 2^2 = 16 + 4 = 20$$

$$AB = \sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2\sqrt{5}$$
 إذن

وي
$$C$$
 في (x_C, y_C) لإحداثيات النّقطة (x_C, y_C) في المعيّن (x_C, y_C) هي مناظرة (x_C, y_C) المعيّن (x_C, y_C) هي مناظرة (x_C, y_C)

$$y_M = \frac{y_B + y_C}{2}$$
 $y_M = \frac{x_B + x_C}{2}$

.
$$x_C = 2x_M - x_B = 2 \times (-2) - 0 = -4$$
 يعني $x_B + x_C = 2x_M$ يعني $x_M = \frac{x_B + x_C}{2}$

.
$$y_C = 2y_M - y_B = 2 \times 0 - 2 = -2$$
 يعني $y_B + y_C = 2y_M$ يعني $y_M = \frac{y_B + y_C}{2}$

و بالتَّالي (C(-4,-2).

$$\frac{AO}{AM} = \frac{|x_0 - x_A|}{|x_M - x_A|} = \frac{|0 - 4|}{|-2 - 4|} = \frac{|-4|}{|-6|} = \frac{4}{6} = \frac{2}{3} - 1 (3)$$

نجاحك يهمنا

ب- في المثلّث M ، ABC هي منتصف BC إذن BC هو موسّطه الصّادر من A و بالتّالي مركز ثقله A . ABC عند ثلثي الموسّط ABC انطلاقا من الرّأس A إذن ABC عند ثلثي الموسّط ABC انطلاقا من الرّأس A إذن ABC عند ثلثي الموسّط ABC انطلاقا من الرّأس A إذن ABC عند ثلثي الموسّط ABC انطلاقا من الرّأس A إذن ABC عند ثلثي الموسّط ABC انطلاقا من الرّأس A إذن ABC الموسّط A

. AO = AG يعني $\frac{AO}{AM} = \frac{AG}{AM}$ إذن $\frac{AO}{AM} = \frac{2}{3}$

و AO = AG و AG = AG و AO = AG إذن النّقطتان O و G متطابقتان و منه O هي مركز ثقل المثلّث $O \in [AM]$

ABC . (CO) هو الحامل للموسّط الصّادر من C فهو يقطع الضّلع C فه يقطع الضّلع C فهو يقطع الضّلع C في منتصف C أما منتصف C أما

 $ON = \frac{AB}{2}$ المثلّث ABO قائم الزّاوية في O و $ON = \frac{AB}{2}$ هو الموسّط الموافق لوتره $ON = \frac{AB}{2}$

 $ON = \frac{AB}{2} = \frac{2\sqrt{5}}{2} = \sqrt{5}$

و بالتّالي N و المنتصف N و المنتصف N و المنتصف N و المنتصف N و التّالي O

. $NC = 3NO = 3\sqrt{5}$ يعني $NO = \frac{1}{3}NC$

: مبر هنة طالس $E \in (CB)$ ، BCN أ- في المثلّث $E \in (CB)$ ، BCN و $O \in (CN)$ و $O \in (CN)$

 $\cdot \frac{CO}{CN} = \frac{OE}{BN}$: و بالتّالي $\frac{CO}{CN} = \frac{CE}{CB} = \frac{OE}{BN}$

 $\frac{CO}{CN} = \frac{OF}{AN}$ و بالتّالي : $\frac{CO}{CN} = \frac{CF}{CA} = \frac{OF}{AN}$

OE = OF : إذن : $\begin{cases} OE = OF \\ BN \end{cases}$ و بما أنّ OE = OF و بما أنّ OE = OF و بما أنّ OE = OF إذن : OE = OF إذن :

و بما أنّ EF و O و F على استقامة واحدة فإنّ O هي منتصف EF].

1	ı		ı

[40,44[[36,40[[32,36[[28,32[[24,28[العمر بالسنة
42	38	34	30	26	مركز الفئة
30	36	45	24	15	التّكرار (عدد العمّال)
100%	80%	56%	26%	10%	التواتر التراكمي الصاعد بالنسبة المائوية

2) معدّل أعمار العمّال بهذه المؤسّسة الصّناعية:

 $(26 \times 15 + 30 \times 24 + 34 \times 45 + 38 \times 36 + 42 \times 30):150 = 35.12$

3) أ- مضلّع التواترات التراكمية الصناعدة بالنسبة المانوية:

ب- موسلط هذه السلسلة الإحصائية هو تقريبا .35 (44%) إذا اخترنا بصفة عشوائية عاملا من هذه المؤسسة فاحتمال أن تشمله هذه المنحة هو $\frac{66}{150} = 0.44 = \frac{44}{100}$

نجاحك يهمنا