

Mobile Private Contact Discovery

https://contact-discovery.github.io/

Daniel Kales

Secure Messaging Summit, September 3rd, 2020

Outline

- Contact Discovery
- Q Existing Approaches
- Private Set Intersection
 - using Oblivious Pseudorandom Functions
 - using Private Information Retrieval
 - using Fully Homomorphic Encryption
- Conclusion & Outlook

Contact Discovery

Finding your friends

Mobile Contact Discovery

Procedure executed when new user signs up to messaging service.

Privacy Concerns!

Existing Approaches Q

What is done today?

A naive Solution - Hashing

Basic Idea: Send hashes of phone numbers instead

A naive Solution - Hashing (cont.)

Problem: Phone Numbers do not have a lot of entropy!

- Easy for powerful server to brute-force hashes
 - Hash cracking tools, rainbow tables,...
 - Even salts do not help (much) against targeted attacks

Trusting Hardware

Perform contact discovery in trusted execution environment.

Existing Situation in the Mobile Messaging World

We performed a survey in our 2019 paper "Mobile Private Contact Discovery at Scale".

Messenger	Naïve Hashing	Analysis Technique
Confide [*]	✓	Privacy Policy
Dust*	X	Network Traffic
Eleet*	X	Privacy Policy
G DATA Secure Chat	✓	Network Traffic
Signal (legacy / non-SGX)	✓	Source Code
SIMSme	✓	Network Traffic
Telegram	X	Privacy Policy
Threema	✓	Privacy Policy
Viber	X	Privacy Policy
WhatsApp	X	Privacy Policy
Wickr Me	✓	Privacy Policy
Wire	✓	Privacy Policy

^{*}contact discovery is optional

Private Set Intersection

 $A \cap B$ (but with privacy)

Background - Private Set Intersection

- Compute intersection of two sets
- Privacy-preserving (other party learns nothing about items outside intersection)

Background - Parameters in PSI

Many different scenarios for PSI

- Balanced vs. unbalanced set sizes
- Security against semi-honest vs. malicious parties
- Leakage of parties' set sizes allowed?
- Different cryptographic building blocks
 - Generic multiparty computation
 - Public-key cryptography
 - Oblivious transfer

PSI for Mobile Private Contact Discovery

- Popular messengers have millions, if not billions of users.
 - typical phone address books have 100-1000 contacts.
 - → unbalanced PSI
- "The poster child of use-cases for unbalanced PSI"

Unhalanced PSI Protocols

Oblivious Pseudorandom Functions

Problem with hash-based solution:

No secret information, server can brute-force hash

Idea: What if we "encrypt" items instead?

We cannot give both parties key (essentially equal to hashing with salt)

Oblivious Pseudorandom Functions

Problem with hash-based solution:

No secret information, server can brute-force hash

Idea: What if we "encrypt" items instead?

We cannot give both parties key (essentially equal to hashing with salt)

Pseudorandom Function

$$y = PRF_k(x)$$

Oblivious Pseudorandom Functions

Problem with hash-based solution:

No secret information, server can brute-force hash

Idea: What if we "encrypt" items instead?

We cannot give both parties key (essentially equal to hashing with salt)

Oblivious Pseudorandom Function $V = PRF_k(X)$

OPRF-based PSI for Unequal Set Sizes

Kiss et al. [Kis+17] explored unbalanced PSI for mobile use-cases.

Split into Setup, Base, and Online phases

Server		Client
	1. Setup Phase $\mathcal{O}(\text{server})$	
Encrypt contacts with key k		
and insert into Cuckoo Filter <i>CF</i>	CF	Store <i>CF</i>
	2. Base Phase $\mathcal{O}(\text{client})$	
	OT Precomputation	
(Build Garbled Circuits <i>GC_i</i>)	$(\underline{GC_i})$	
	3. Online Phase $\mathcal{O}(\text{client})$	
	$k \longrightarrow \begin{array}{c} C_i \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Run OPRF for all contacts c_i Check if e_i is in CF

Mobile Private Contact Discovery at Scale [Kal+19]

Our improvements over previous work

- Security against malicious receiver at negligible cost
- Lower communication
 - Use of LowMC instead of AES for garbled circuits
 - ECC version of Naor-Reingold PRF
- Better Cuckoo Filter parameters and novel compression
- High-performance native ARMv8-A implementation
 - Up to 1000x performance gain

Paper and Implementation at contact-discovery.github.io

Mobile Private Contact Discovery at Scale (cont.)

eters Client	PSI Protocol	Base + Or WiFi	nline Time [s] LTE	$S \rightarrow C$	cation [MiB] S←C
1 024	LowMC-GC-PSI ECC-NR-PSI	3.54 2.92	8.59 6.53	22.01 4.07	2.02 2.00
1	LowMC-GC-PSI	0.17	0.18	0.04	0.02
	Client	Client PSI Protocol	Client	Client	Client PSI Protocol WiFi LTE $S \rightarrow C$ 1 024 LowMC-GC-PSI 3.54 8.59 22.01 ECC-NR-PSI 2.92 6.53 4.07 LowMC-GC-PSI 0.17 0.18 0.04

- Fast online phase $(\mathcal{O}(|Client|))$
- Downside: large one-time setup transfer $(\mathcal{O}(|Server|))$
 - Size of initial cuckoo filter for 2²⁸ contacts is 1 GiB
 - Size of initial cuckoo filter for 2²⁰ contacts is 4 MiB

Privacy Tradeoff: Database Sharding

Solution to reduce data transfer for cuckoo filter

- Split into region-based shards
 - problem: leaks information
 - e.g., person has a contact in a different country
- Split into random shards
 - e.g., based on hash-prefix of phone number
 - Reduced leaks, but gets less efficient for many contacts

Private Information Retrieval

Retrieve item from Database **Database** Item 1 Item 2 Item 3 Item 4 Item i Client Item 5 Item 6 Item 7

Private Information Retrieval

Retrieve item from Database **Database** Without revealing which item was accessed! Item 1 [*i*]_ Item 2 Item 3 Item 4 [Item i] Client Item 5 Item 6 Item 7

Combining OPRF-PSI with PIR

Fully Homomorphic Encryption (FHE)

FHE enables us to perform operations on encrypted data.

PSI using FHE (basic protocol)

Client	Server
У	x_1
	<i>x</i> ₂
	<i>x</i> ₃
	<i>X</i> ₄

Client

Server

 x_1

 X_2

*X*₃

 χ_4

Performance of FHE-based approaches

- Lots of additional optimizations ([Che+18; CLR17])
 - SIMD HE operations, Cuckoo Hashing, OPRF pre-processing, ...
- Communication complexity: $\mathcal{O}(|Client|)$
 - No large offline transfer needed!
- Computational complexity: $\mathcal{O}(|Server|)$
 - Expensive FHE operations!

Server	Client	Offline [s]	Online [s]	Communication [MB]
2 ²⁸	1024	4 628 (32 threads)	12.1 (32 threads)	18.57

Conclusion & Outlook

The Quest for efficient unbalanced PSI protocols

PSI is a highly active research topic!

- New papers at top-tier conferences each year
 - Most focused on balanced set sizes.
- OPRF-based solutions need more efficient offline phase
- FHE-based solutions need faster FHE schemes

Goals for practical deployment:

# registered users	> 1 billion
# Entries per address book	10 000
Latency	< 2s
Communication	< 10 MiB

Limitations of PSI

Even perfectly secure and efficient PSI cannot protect against all attacks:

- Enumeration attacks
 - Try to find out which numbers are registered with a service
 - Countermeasure: Rate limiting
- Metadata leakage in Contact Discovery APIs
 - Some solutions send (a lot of) additional information
 - Attacks on existing Contact Discovery APIs
 - Brand-new paper at https://contact-discovery.github.io
 - Closer look at APIs of WhatsApp, Signal, Telegram

Questions ?

The End

- **Contact Discovery**
- **Q** Existing Approaches
- Private Set Intersection
 - using Oblivious Pseudorandom Functions
 - using Private Information Retrieval
 - using Fully Homomorphic Encryption
 - Conclusion & Outlook

References I

- [BG116] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function Secret Sharing: Improvements and Extensions. ACM Conference on Computer and Communications Security. ACM, 2016, pp. 1292–1303.
- [Che+18] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled PSI from Fully Homomorphic Encryption with Malicious Security. ACM Conference on Computer and Communications Security. ACM, 2018, pp. 1223–1237.
- [CLR17] Hao Chen, Kim Laine, and Peter Rindal. Fast Private Set Intersection from Homomorphic Encryption. ACM Conference on Computer and Communications Security. ACM, 2017, pp. 1243–1255.
- [CT10] Emiliano De Cristofaro and Gene Tsudik. Practical Private Set Intersection Protocols with Linear Complexity. Financial Cryptography. Vol. 6052. Lecture Notes in Computer Science. Springer, 2010, pp. 143–159.
- [CT12] Emiliano De Cristofaro and Gene Tsudik. Experimenting with Fast Private Set Intersection. TRUST. Vol. 7344. Lecture Notes in Computer Science. Springer, 2012, pp. 55–73.

References II

- [Dem+18] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. PIR-PSI: Scaling Private Contact Discovery. PoPETs 2018.4 (2018), pp. 159–178.
- [JL10] Stanislaw Jarecki and Xiaomin Liu. Fast Secure Computation of Set Intersection. SCN. Vol. 6280. Lecture Notes in Computer Science. Springer, 2010, pp. 418–435.
- [Kal+19] Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, and Christian Weinert. Mobile Private Contact Discovery at Scale. USENIX Security Symposium. USENIX Association, 2019, pp. 1447–1464.
- [Kis+17] Ágnes Kiss, Jian Liu, Thomas Schneider, N. Asokan, and Benny Pinkas. Private Set Intersection for Unequal Set Sizes with Mobile Applications. PoPETs 2017.4 (2017), pp. 177–197.
- [RA18] Amanda C. Davi Resende and Diego F. Aranha. Faster Unbalanced Private Set Intersection. Financial Cryptography. Vol. 10957. Lecture Notes in Computer Science. Springer, 2018, pp. 203–221.