MAT 2143 Lecture Notes

Last updated:

 $March\ 24,\ 2023$

Contents

1	Equivalence Relations								
	1.1	Review of Equivalence Relations	3						
	1.2		3						
2	Well-defined Operations on Equivalence Classes and Number								
	The	eory	7						
	2.1	Well-defined Operations on Equivalence Classes	7						
	2.2	Number Theory	9						
3	Number Theory Cont. and Integers Modulo n								
	3.1	More Number Theory	10						
	3.2	Prime Factorization	12						
		3.2.1 Summary	13						
	3.3	Integers Modulo n	13						
4	Ope	Operations on \mathbb{Z}_n , Symmetries, and Groups							
	$4.\overline{1}$	Arithmetic Modulo n	16						
		4.1.1 Properties of Arithmetic Modulo n	17						
		4.1.2 Multiplicative Inverses	17						
	4.2	Symmetries	19						
		4.2.1 Properties of Symmetries	20						
		4.2.2 Generating Sets	21						
	4.3	Groups	21						
5	Mo	re Examples of Groups	23						
6	Bas	Basic Properties of Groups, Products of Groups, Isomorphisms							
	6.1		24						
		6.1.1 Small Groups	26						
	6.2	Products of Groups	27						
	6.3	Icomorphicms	27						

7	Automorphisms, Subgroups	2 9					
	7.1 Automorphisms	29					
	7.2 Quaternions	30					
	7.3 Subgroups	$\frac{31}{32}$					
	7.3.1 Subgroup Test	$\frac{32}{32}$					
8	Lattices and Cyclic Groups	34					
	8.1 Find all subgroups of $(\mathbb{Z}, +)$	34					
	8.2 Symmetries of a Square	35					
	8.2.1 Subgroups of Symmetries of a Square	38					
9	Cyclic Groups	40					
	9.1 Cyclic Groups	40					
10	Subgroups of Cyclic Groups, Lattices, $\mathbb T$						
	10.0.1 Lattices	49					
	10.1 Complex Numbers	49					
11	Subgroups of \mathbb{T} , Permutations, Disjoint Cycles						
	11.1 Subgroups of a Finite Cyclic Subgroup	51					
12		54					
13		55					
14		56					
15		57					
16		58					
17		59					
18		60					
19	Normal Subgroups, Quotient Groups						
	19.1 Normal Subgroups	64					
	19.2 Quotient Groups	65					

Equivalence Relations

1.1 Review of Equivalence Relations

Set X and a notion of equivalence \sim . For all $x, y \in X$, either $x \sim y$ or $x \not\sim y$. Recall: $X \times X = \{(x, y) : x, y \in \mathbb{R}\}$. Define $R = \{(x, y) : x, y \in \mathbb{R} \mid x \sim y\}$.

R is an equivalence relation if

- $x, y \in R \ \forall x \in X$
- $(x,y) \in R \iff (y,x) \in R$
- $(x,y) \in R \ (y,z) \in R \implies (x,z) \in R$

If R is an equivalence relation on X, then we define the equivalence class of $x \in X$ as

$$[x] = \{y \in X : x \sim y\}$$

1.2 Examples of Equivalence Relations

- Take any set X and let $x \sim y$ mean x = yReflexive: $x \sim y$? Yes, because x = x
 - **Symmetric:** $x \sim y \iff y \sim x$? Yes, because if x = y, then y = x.

Transitive: $x \sim y \ y \sim z \implies x \sim z$? Yes, because if x = y and y = z, then x = z.

 Take $X=\mathbb{R}^2$ and let $(a,b)\sim (c,d)$ mean $a^2+b^2=c^2+d^2$

Reflexive: $(a, b) \sim (a, b)$? Yes, because $a^2 + b^2 = a^2 + b^2$

Symmetric: $(a,b) \sim (c,d) \iff (c,d) \sim (a,b)$? Yes, because if $a^2 + b^2 =$

 $c^2 + d^2$, then $c^2 + d^2 = a^2 + b^2$.

Transitive: $(a,b) \sim (c,d) (c,d) \sim (e,f) \implies (a,b) \sim (e,f)$? Yes, because if $a^2 + b^2 = c^2 + d^2$ and $c^2 + d^2 = e^2 + f^2$, then $a^2 + b^2 = e^2 + f^2$.

• Take $X = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ and let $(a,b) \sim (c,d)$ mean (ad = bc). Reflexive: $(a,b) \sim (a,b)$? Yes, because multiplication of \mathbb{Z} is commutative, so ab = ba.

Symmetric: $(a,b) \sim (c,d) \iff (c,d) \sim (a,b)$? Yes,

$$(a,b) \sim (c,d) \implies ad = bc$$

$$cb = da$$

$$(c,d) \sim (a,b)$$

Transitive: $(a,b) \sim (c,d) \ (c,d) \sim (e,f) \implies (a,b) \sim (e,f)$? We want $ad = bc, \ cf = de \implies af = be$

Case 1: c = 0 Then bc = 0 = ad, $d \in \mathbb{Z} \setminus \{0\}$, so $d \neq 0$, a = 0 cf = 0 = de, again $d \neq 0$, so e = 0.

$$\therefore af = be = 0$$

Case 2: $c \neq 0$ Then $\frac{ad}{c} = b$, $\frac{de}{c} = f$

$$\therefore af = a \cdot \frac{de}{c} = \frac{ad}{c} \cdot e = be$$

Theorem 1.2.1. Let X be a set with an equivalence relation. Then

$$[x] \cap [y] \neq \emptyset \implies [x] = [y]$$

So, equivalence classes are disjoint or equal.

Proof. Assume $[x] \cap [y] \neq \emptyset$. So $\exists z \in [x] \cap [y]$

Now let $a \in [x]$

$$a \sim z$$
 (since $z \in [x]$, $z \sim x \sim a$)
$$z \sim y$$
 (since $z \in [y]$)
$$a \sim y$$
 (transitivity)
$$a \in [y]$$

$$\therefore [x] \subseteq [y]$$

Now take $b \in [y]$, using the same arguments we get

$$b \sim z \qquad \qquad \text{(since } z \in [y] \ , \ z \sim y \sim b)$$

$$z \sim x \qquad \qquad \text{(since } z \in [x])$$

$$b \sim x \qquad \qquad \text{(transitivity)}$$

$$b \in [x]$$

$$\therefore [y] \subseteq [x]$$

Observation: If X is some set with an equivalence relation, then every $x \in X$ is in some equivalence class.

Definition 1.2.1 (Partitions). Say we have some $R_j \subseteq X$ for $j \in \{1, 2, ..., n\}$, with every $x \in X$ in exactly one R_j , then the R_j form a partition of X.

Theorem 1.2.2. Let X be a set with an equivalence relation. Then the equivalence classes form a partition of X.

Proof. If $z \in X$, then $z \in [z]$, therefore z is in at least one equivalence class. If $z \in [x]$ and $z \in [y]$, then $[x] \cap [y] \neq \emptyset$ therefore [x] = [y] (as shown previously). Therefore z is in at most one equivalence class.

Theorem 1.2.3. Let R_j form a partition of X. Say that $x \sim y$ means $x, y \in R_j$ for some j. Then \sim is an equivalence relation on X.

Proof.

- $x \in X$, so $x \in R_j$ for some j $impliesx, x \in R_j \implies x \sim x$
- $x \sim y \iff x, y \in R_i \iff y, x \in R_i \iff y \sim x$

$$x \sim y \ y \sim z \implies \begin{cases} x, y \in R_i \\ y, z \in R_j \end{cases} \implies y \in R_i, R_j$$

$$\implies i = j$$

$$\implies x, z \in R_j$$

$$\therefore x \sim z$$

Example of Finding Equivalence Classes

Take $X = R \times R$, and let $(a,b) \sim (c,d)$ mean $a^2 + b^2 = c^2 + d^2$. Find the equivalence class of (0,0), (3,4), (a,b)

$$[(0,0)] = \{(x,y) : (x,y) \sim (0,0)\}$$
$$= \{(x,y) : x^2 + y^2 = 0^2 + 0^2 = 0\}$$
$$= \{(x,y) : x = y = 0\}$$

$$\begin{aligned} [(3,4)] &= \{(x,y) : (x,y) \sim (3,4)\} \\ &= \{(x,y) : x^2 + y^2 = 3^2 + 4^2 = 25\} \\ &= \{(x,y) : \sqrt{x^2 + y^2} = 5\} \end{aligned}$$

$$[(a,b)] = \{(x,y) : (x,y) \sim (a,b)\}$$
$$= \{(x,y) : x^2 + y^2 = a^2 + b^2 = r\}$$
$$= \{(x,y) : \sqrt{x^2 + y^2} = r\}$$

Well-defined Operations on Equivalence Classes and Number Theory

2.1 Well-defined Operations on Equivalence Classes

Consider a set X, an equivalence relation \sim , and an operation \cdot . This operation is well-defined on equivalence classes if

$$\begin{cases} x \sim y \\ w \sim z \end{cases} \implies x \cdot w \sim y \cdot z$$

$$[x] = [y] \\ [w] = [z] \end{cases} \implies [x \cdot w] = [y \cdot z]$$

Example: Let $X = \mathbb{R} \times \mathbb{R}$, $(a,b) \sim (c,d)$ means $a^2 + b^2 = c^2 + d^2$, is addition well-defined on equivalence classes? (Addition meaning (x,y) + (z,y) = (x+z,y+w))

Let
$$\begin{cases} (a,b) \sim (c,d) \\ (e,f) \sim (g,h) \end{cases}$$
 then
$$\begin{cases} a^2 + b^2 = c^2 + d^2 \\ e^2 + f^2 = g^2 + h^2 \end{cases}$$

Now,

$$\begin{cases} (a,b) + (e,f) = (a+e,b+f) \\ (c,d) + (g,h) = (c+g,d+h) \end{cases}$$

Question: Is $(a+e)^2 + (b+f)^2 = (c+g)^2 + (d+h)^2$?

$$(a+e)^2 + (b+f)^2 = a^2 + 2ae + e^2 + b^2 + 2bf + f^2$$

$$(c+g)^2 + (d+h)^2 = c^2 + 2cg + g^2 + d^2 + 2dh + h^2$$

$$a^2 + b^2 = c^2 + d^2$$
, and $e^2 + f^2 = g^2 + h^2$, so

$$(a+e)^2 + (b+f)^2 = (c+g)^2 + (d+h)^2 \iff 2ae + 2bf = 2cg + 2dh$$

Counterexample: Take

$$(a,b) = (c,d) = (1,2)$$

$$(e, f) = (3, 4)$$
 $(g, h) = (4, 3)$

So no, addition is not well defined.

Another Example: $X = (\mathbb{Z}, \mathbb{Z} \setminus \{0\})$. $(a,b) \sim (c,d)$ means ad = bc. Is multiplication well-defined on equivalence classes? (Multiplication meaning $(x,y) \cdot (w,z) = (x \cdot w, y \cdot z)$). Let

$$\begin{cases} (a,b) \sim (c,d) \\ (e,f) \sim (g,h) \end{cases} \implies \begin{cases} ad = bc \\ ef = gh \end{cases}$$

Now,

$$\begin{cases} (a,b)\cdot(e,f) = (a\cdot e,b\cdot f) \\ (c,d)\cdot(g,h) = (c\cdot g,d\cdot h) \end{cases}$$

Question: Is $(ae, bf) \sim (cg, dh)$?

$$(ae)(dh) = ad \cdot eh$$

$$(bf)(cg) = \mathbf{bc} \cdot \mathbf{fg}$$

We have $(a,b) \sim (c,d)$, so ad = bc, and $(e,f) \sim (g,h)$, so ek = fg. So yes, multiplication is well-defined on equivalence classes.

2.2 Number Theory

Fact 2.2.1. Every non-empty set $S \subseteq \mathbb{N}$ has a minimum element d in S

Proposition 2.2.1. Let $a, b \in \mathbb{Z}$, b > 0, then $\exists ! \ q, r \in \mathbb{Z}$ with a = bq + r, $0 \le r < b$

Proof. (Existence) Let $S = \{a - bx : x \in \mathbb{Z}, a - bx \ge 0\}$. $\emptyset \ne S \subseteq \mathbb{N}$, so S has a minimum element.

Let

$$\begin{cases} r = \min(S) \\ q = \frac{a-r}{b} \end{cases}$$

 $r=a-bd,\,d\in\mathbb{Z},$ then $bq+r=b(\frac{a-r}{b})+r=a-r+r=a.$

If $b \le r$, then $0 \le r - b < r$, which contradicts the minimality of r.

(Uniqueness) Say a = bq + r = bp + s, $0 \le r, s < b$. Then

$$b(q-p) = s - r$$

So s-r is a multiple of b, but $0 \le r, s < b$, so it must be that r-s=0, therefore r=s.

Number Theory Cont. and Integers Modulo n

3.1 More Number Theory

Definition 3.1.1. $m \mid n \text{ means } \exists x \in \mathbb{Z} \text{ with } n = mx$

Definition 3.1.2. Let $a, b \in \mathbb{Z}$. If d is a positive integer with $d \mid a$ and $d \mid b$, if $c \mid a$ and $c \mid b$, then $c \mid d$, then d is a gcd of a and b.

Theorem 3.1.1. For every $a, b \in \mathbb{Z}$, $\exists ! gcd d$. Furthermore, $\exists x, y \in \mathbb{Z}$, d = ax + by. Furthermore, d is the largest common divisor of a, b

Proof. Let $S = \{ax + by : x, y \in \mathbb{Z}, ax + by > 0\}$. $S \subseteq \mathbb{N}$, so \exists ! minimum element d in S.

Write

$$a = dq + r \qquad (0 \le r < d)$$

$$a = (ax + by)q + r \qquad \text{(some } x, y \in \mathbb{Z})$$

$$r = a(1 - qx) + b(-qy)$$

$$r = ax' + by' \qquad (x' = 1 - qx, y' = -qy)$$

$$0 \le r = ax' + by' < d$$

So. either r=0 or $r \in S$ but not both, but r < d which is the minimum of the set. Therefore $r \notin S$. So r=0 and $d \mid a$. Same argument with

 $b = dq + r \implies d \mid b.$

Now suppose $c \mid a$ and $c \mid b$, then a = a'c and b = b'c, $a', b' \in \mathbb{Z}$.

$$d = ax + by = a'cx + b'cy = c(a'x + b'y)$$

So,
$$c \mid d$$
.

Corollary 3.1.1. If gcd(a,b) = 1, then $\exists x, y \text{ such that } ax + by = 1$.

Proof. Same as the previous proof, in the case that gcd(a,b) = 1.

Corollary 3.1.2. If gcd(a,b) = d, then $\{ax + by : x, y \in \mathbb{Z}\} = d \cdot n$, $\forall n \in \mathbb{Z}$.

Proof. No proof was provided in the notes I guess. :P \Box

Definition 3.1.3 (Least Common Multiple). Let $a, b \in \mathbb{Z}$. If m is a positive integer with

- \bullet $a \mid m$ and $b \mid m$
- if $a \mid n$ and $b \mid n$, then $m \mid n$

then m is a lcm of a, b.

Theorem 3.1.2. For every $a, b, \exists ! lcm m$.

Definition 3.1.4. $p \in \mathbb{Z}$ p > 1

- ullet p is irreducible if the only positive divisors of p are 1 and p
- p is prime if whenever $p \mid ab$, then $p \mid a$ or $p \mid b$

Proposition 3.1.1. p is prime $\implies p$ is irreducible

Proof. Say p is not irreducible, p = ab, and 1 < a, b < p. Then $p \nmid a$ and $p \nmid b$.

Proposition 3.1.2. p is irreducible $\implies p$ is prime

Proof. $p \mid ab \implies ab = mp$ for some $m \in \mathbb{Z}$. Say $p \nmid a$, since p is irreducible gcd(a,p) = 1. So $\exists s,t$ such that as + pt = 1.

$$b = b(as + pt) = abs + bpt$$
 $= mps + bpt = (ms + bt)p$

Therefore b is a multiple of p, so $p \mid b$.

3.2 Prime Factorization

Theorem 3.2.1. $n \in \mathbb{Z}$ n > 1 $\exists! \begin{cases} p_1 p_2 \dots p_s, & distinct \ primes \\ e_1 e_2 \dots e_s, & positive \ integers \end{cases}$ With

$$n = p_1^{e_1} \cdot p_2^{e_2} \cdots p_s^{e_s}$$

Proof. Proof was omitted.

Prime Factorization Gives GCD:

Example:

$$a = 2 \cdot 5 \cdot 7^{10} \cdot 13 = 2 \cdot 3 \cdot 3 \cdot 5^{1} \cdot 7^{10} \cdot 13^{1} \cdot 17^{10}$$

$$b = 2 \cdot 3^{2} \cdot 7^{2} \cdot 17 = 2^{1} \cdot 3^{2} \cdot 5 \cdot 0 \cdot 7^{2} \cdot 13^{10} \cdot 17^{1}$$

$$\gcd(a,b) = 2^{1} \cdot 7^{2}$$

$$a = p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdots p_{s}^{e_{s}}$$

$$b = q_{1}^{F_{1}} \cdot q_{2}^{F_{2}} \cdots q_{s}^{F_{s}}$$

$$\forall \text{ prime } p, \text{ define } g(p) = \min \begin{cases} e_{i} & \text{if } p = p_{i} \\ f_{j} & \text{if } p = q_{j} \\ 0 \end{cases}$$

Then,

$$gcd(a,b) = \prod_{prime\ p} p^{g(p)}$$

Prime Factorization Gives LCM:

Example:

$$a = 2 \cdot 5 \cdot 7^{10} \cdot 13 = 2^{1} \cdot 3^{0} \cdot 5^{1} \cdot 7^{10} \cdot 13^{1} \cdot 17^{0}$$

$$b = 2 \cdot 3^{2} \cdot 7^{2} \cdot 17 = 2^{1} \cdot 3^{2} \cdot 5^{0} \cdot 7^{2} \cdot 13^{0} \cdot 17^{1}$$

$$lcm(a, b) = 2^{1} \cdot 3^{2} \cdot 5^{1} \cdot 7^{10} \cdot 13^{1} \cdot 17^{1}$$

$$a=p_1^{e_1}\cdot p_2^{e_2}\cdots p_s^{e_s}$$

$$b=q_1^{F_1}\cdot q_2^{F_2}\cdots q_s^{F_s}$$

$$\forall \text{ prime } p, \text{ define } l(p)=min\begin{cases} e_i & \text{if } p=p_i\\ f_j & \text{if } p=q_j\\ 0 \end{cases}$$
 Then,

Then,

$$\gcd(a,b) = \prod_{prime\ p} p^{l(p)}$$

3.2.1 Summary

- Definition of gcd(a, b)
- d = gcd(a, b) exists \implies d is a divisor of a and b and d = ax + by for some $x, y \in \mathbb{Z}$
- also, $\{ax + by : x, y \in \mathbb{Z}\} = d\mathbb{Z}$
- Definition of lcm(a, b)
- m = lcm(a, b) exists and is unique, m is the smallest common multiple.
- Prime Factorization exists and is unique.
- Prime factorization of a and b gives gcd(a, b) and lcm(a, b)
- $gcd(a,b) \cdot lcm(a,b) = |ab|$

Integers Modulo n 3.3

Let $n \in \mathbb{Z}$ with $n \geq 2$, $a \equiv b \pmod{n}$ means $n \mid (a - b)$. So

$$\begin{aligned} a \equiv b \pmod{()n)} &\iff n \mid (a-b) \\ &\iff a-b=kn, \text{ for some } k \in \mathbb{Z} \\ &\iff \frac{a-b}{n} \in \mathbb{Z} \end{aligned}$$

Proposition 3.3.1. Congruence modulo n is an equivalence relation.

Proof.

• Reflexivity: Show $a \equiv a \pmod{n} \ \forall a \in \mathbb{Z}$.

$$\frac{a-a}{n} = 0 \in \mathbb{Z}$$

So $a \equiv a \pmod{n}$.

• Symmetric: Show $a \equiv b \iff b \equiv a \ \forall a, b \in \mathbb{Z}$

$$a \equiv b \iff \frac{a-b}{n} \in \mathbb{Z} \iff -\frac{a-b}{n} = \frac{b-a}{n} \in \mathbb{Z} \iff b \equiv a$$

• Transitivity: Show $a \equiv b \land b \equiv c \implies a \equiv c \ \forall a,b,c \in \mathbb{Z}$

$$\begin{split} a &\equiv b \equiv c \implies \frac{a-b}{n} \in \mathbb{Z} \wedge \frac{b-c}{n} \in \mathbb{Z} \\ &\implies \frac{a-b}{n} + \frac{b-c}{n} = \frac{a-c}{n} \in \mathbb{Z} \implies a \equiv c \end{split}$$

Example: Define $\mathbb{Z}_n = \{[k]_n : k \in \mathbb{Z}\}$. Consider n = 5.

- $[2] = \{\ldots, -8, -3, 2, 7, 12, 17, \ldots\}$
- $[0] = \{\ldots, -10, -5, 0, 5, 10, \ldots\}$
- $[7] = \{\ldots, -3, 2, 7, 12, 17, 22, \ldots\}$

Note: \mathbb{Z}_5 is a set containing 5 elements, and each element of \mathbb{Z}_5 is a subset of \mathbb{Z} . Also, recall that equivalence classes are disjoint or equal, so [2] = [7]

$$\mathbb{Z}_5 = \{[0], [1], [2], [3], [4]\}$$

= $\{[-2], [-1], [0], [1], [2]\}$

Examples:

(a)
$$[3]_5 = [8]_5 \ 3 \equiv 8 \pmod{5} \ 5 | (8-3)$$

(b)
$$[3]_9 = [-24]_9 \ 3 \equiv -24 \pmod{9} \ 9 | (3 - (-24))$$

All representations in an equivalence classare equivalent (modulo n).

Question: Is addition and multiplication on \mathbb{Z}_n well defined? We want

$$\begin{cases} [a] + [b] = [a+b] \\ [a] \cdot [b] = [a \cdot b] \end{cases}$$

We'll see this in the lecture.

Operations on \mathbb{Z}_n , Symmetries, and Groups

4.1 Arithmetic Modulo n

Question: Is addition and multiplication on \mathbb{Z}_n well defined? We want

$$\begin{cases} [a] + [b] = [a+b] \\ [a] \cdot [b] = [a \cdot b] \end{cases}$$

Proposition 4.1.1. Let $n \in \mathbb{Z}$ $n \geq 2$. Suppose

$$a \equiv a' \pmod{n}$$

 $b \equiv b' \pmod{n}$

then

$$a + b \equiv a' + b' \pmod{n}$$

 $ab \equiv a'b' \pmod{n}$

So, addition and multiplication on integers are well well defined on congruence classes.

Proof.

$$a \equiv a' \pmod{n} \iff \frac{a-a'}{n} \in \mathbb{Z} \iff a' = a + sn \text{ for some } s \in \mathbb{Z}$$

$$b \equiv b' \pmod{n} \iff \frac{b-b'}{n} \in \mathbb{Z} \iff b' = b + tn \text{ for some } t \in \mathbb{Z}$$

Then,

$$\frac{(a+b)-(a'+b')}{n}=\frac{a-a'}{n}+\frac{b-b'}{n}\in\mathbb{Z}$$

So, $a + b \equiv a' + b' \pmod{n}$. Also,

$$\begin{split} \frac{ab-a'b'}{n} &= \frac{ab-a'b+a'b-a'b'}{n} \\ &= \left(\frac{a-a'}{n}\right)b + \left(\frac{b-b'}{n}\right)a' \in \mathbb{Z} \end{split}$$

So $ab \equiv a'b' \pmod{n}$.

4.1.1 Properties of Arithmetic Modulo n

- Commutative: $a + b \equiv b + a \pmod{n}$
- Commutative: $ab \equiv ba \pmod{n}$
- Associative: $(a+b)+c\equiv a+(b+c)\pmod n$
- Associative: $(ab)c \equiv a(bc) \pmod{n}$
- **Distributive:** $a(b+c) \equiv ab + ac \pmod{n}$
- Identity for +: $a + 0 \equiv a \pmod{n}$
- Identity for \cdot : $a \cdot 1 \equiv a \pmod{n}$
- Additive Inverse: $a + (-a) \equiv 0 \pmod{n}$
- Multiplicative Inverse?

4.1.2 Multiplicative Inverses

Proposition 4.1.2. Let $a \in \mathbb{Z}_n$, $\exists b \in \mathbb{Z}_n$ with $ab \equiv 1 \pmod{n} \iff gcd(a, n) = 1$.

Proof. Suppose such b exists, then

$$ab-1=rn$$
 for some $r\in\mathbb{Z}$ $ab+(-r)n=1$ $\therefore \gcd(a,n)=1$

Suppose gcd(a, n) = 1, then

$$as + nt = 1$$
 for some $s, t \in \mathbb{Z}$
 $as - 1 = (-t)n$
 $as \equiv 1 \pmod{n}$

So we can choose b = s.

Example: Addition and multiplication in \mathbb{Z}_6 .

+	0	1	2	3	4	5
0	0	1	2	3 4 5 0 1 2	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

The table being symmetric implies that addition is commutative, 0-row and 0-column implies that 0 is the identity for addition, every row has a 0 imples that the additive inverse exists for every element.

•	0	1	2 0 2 4 0 2 4	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

The table being symmetric implies that multiplication is commutative, 1-row and 1-column is the header implies that 1 is the identity for multiplication, some rows not having 1 implies that some elements have no multiplicative inverse.

4.2 Symmetries

Consider the symmetries of a rectangle.

The notation for functions is

$$F = \begin{pmatrix} 1 & 2 & 3 & 4 \\ f(1) & f(2) & f(3) & f(4) \end{pmatrix}$$

$$\epsilon = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \qquad \alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

$$\rho = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \qquad \beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

Claim: $\{\epsilon,\rho,\alpha,\beta\}$ are all the symmetries of a rectangle.

Proof. DGD Question - Will add later.

Consider the symmetries of a square.

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \qquad \qquad \epsilon \qquad \qquad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \qquad \qquad 90^{\circ} \qquad \qquad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \qquad \qquad 180^{\circ} \qquad \qquad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} \qquad \qquad 270^{\circ} \qquad \qquad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$$

4.2.1 Properties of Symmetries

 $S = \{\alpha, \beta, \dots\}$ symmetries of some objection, with the operation composition. **Properties:**

- $\alpha \circ \beta$ is a symmetry $\forall \alpha, \beta \in S$
- $(\alpha \circ \beta) \circ \gamma = \alpha \circ (\beta \circ \gamma) \ \forall \alpha, \beta, \gamma \in S$
- $\exists \epsilon \in S$ such that $\epsilon \circ \alpha = \alpha \circ \epsilon = \alpha \ \forall \alpha \in S$
- $\forall \alpha \in S, \, \exists \beta \in S, \, \text{such that } \alpha \circ \beta = \beta circ\alpha = \epsilon \,\, \forall \alpha, \beta \in S$

Note: we often write $\alpha\beta$ instead of $\alpha \circ \beta$

Example: S = symmetries of some object, is $gh = hg \ \forall g, h \in S$?. **Answer:** For a rectangle, yes. But for a square, no.

These symmetries do not compute, so $gh \neq hg$.

4.2.2 Generating Sets

$$\epsilon = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \qquad \qquad \alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

$$\rho = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \qquad \qquad \beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

Check: $\alpha\beta = \rho$, $\alpha^2 = \epsilon$. So $\forall g \in S$, g can be written in terms of α, β .

We say that $\{\alpha, \beta\}$ generates S

4.3 Groups

Let S be some set with some operation \cdot . Then (S, \cdot) is a group if

- Closure: $ab \in S \ \forall a,b \in S$
- Associativity: $(ab)c = a(bc) \ \forall a,b,c \in S$
- Identity: $\exists \epsilon \in S$ such that $x\epsilon = \epsilon x = x \ \forall x \in S$

• Inverses: $\forall x \in S, \exists y \in S \text{ such that } xy = yx = \epsilon$

Examples:

- Symmetries of an object form a group.
- $(\mathbb{R}, +)$ forms a group.
- $(\mathbb{R} \setminus \{0\}, \cdot)$ forms a group.
- $(\mathbb{Z},+)$ forms a group.
- (\mathbb{Z},\cdot) does not form a group since inverses are typically not integers.
- $(\mathbb{Z}_n, +)$ forms a group.
- $(\mathbb{Z}_n \setminus \{0\}, \cdot)$ forms a group.

More Examples of Groups

This lecture was not well organizing so I am not gonna type it out.

Basic Properties of Groups, Products of Groups, Isomorphisms

Examples were left out I may come back to finish

6.1 Basic Properties of Groups

Proposition 6.1.1. In every group, the identity is unique.

Proof. Suppose a, b are identities, so

Because b is an identity, we have a=ab, and since a is an identity, we have ab=b. So

$$a = ab = b$$

$$\therefore a = b$$

Proposition 6.1.2. In every group, the equation ax = b has a unique solution x for all a, b

Proof. There was no proof :(

Proposition 6.1.3. In every group, $ab = ac \implies b = c$

Proof. Again, no proof:(

Note: For matricies it is not the same, $AB = AC \implies B = C$

Proposition 6.1.4. *In every group,* $(ab)^{-1} = b^{-1}a^{-1}$

Proof.

$$(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1}$$
 $(b^{-1}a^{-1})(ab) = b^{-1}(a^{-1}a)b$
 $= a\epsilon a^{-1}$ $= b^{-1}\epsilon b$
 $= aa^{-1}$ $= \epsilon$

Proposition 6.1.5. *In every group,* $(a^{-1})^{-1} = a$

Proof. Since a^{-1} is the inverse of a, we have

$$aa^{-1} = a^{-1}a = \epsilon$$

but then,

$$a^{-1}a = aa^{-1} = \epsilon$$

So a is the inverse of a^{-1}

Proposition 6.1.6. In every group, if xy = x, for some x, y, then $y = \epsilon$. So if y behaves as the identity just once, then y is the identity.

Proof. No proof again :P. \Box

Proposition 6.1.7. In every group, if $xy = \epsilon$, for some x, y, then $y = x^{-1}$. So if y behaves like x^{-1} on one side, then y is x^{-1}

Proof. No proof D: \Box

Proposition 6.1.8. In every group, the Cayley table has exactly one row and column that matches the headers, and no other row or column mathes the header even once.

Proof. Start by taking G to be some group, then let $x, y \in G$. And let H be a subgroup of G.

just kidding no proof.

Proposition 6.1.9. In every group, every row and column of the Cayley table contains each element exactly once.

Proof. Why does the prof include a spot for the proof.

6.1.1 Small Groups

• Say G has one element $G = \{x\}$

Closure: $x \cdot x = x$ Identity: $x = \epsilon$ Inverse: $x^{-1} = x$

$$\begin{array}{c|c} \cdot & x \\ \hline x & x \end{array}$$

• Say G has two elements, it must have an identity so $G = \{\epsilon, x\}$ If xx = x, $x = \epsilon$, this is a contradiction, So $xx = \epsilon$

$$\begin{array}{c|cccc} \cdot & \epsilon & x \\ \hline \epsilon & \epsilon & x \\ x & x & \epsilon \end{array}$$

• Say G has three elements. $G = \{\epsilon, x, y\}$

$$x\epsilon = x \implies xy \neq x$$

 $\epsilon y = y \implies xy = \neq y$

So $xy = \epsilon$

$$x\epsilon = x \implies xx \neq x$$

 $xy = \epsilon \implies xx \neq \epsilon$

So xx = y

 \bullet Say G has 4 elements. Assignment Question!

6.2 Products of Groups

G, H are groups, define

$$G \times H = \{(g,h) : g \in G, h \in H\}$$
$$(x,a) \cdot (y,b) = (x \cdot y, a \cdot b)$$
$$G_1 \times G_2 \times \cdots G_k = \{(g_1, g_2, \dots, g_n : g_j \in G_j\}$$

To reiterate, operations are done by component according to the operations of the group. i.e Suppose we have a group G = (A, +) and $H = (B, \cdot)$ and $g, a \in G, h, b \in H$.

$$(g,h) \times (a,b) = (g+a,h\cdot b)$$

Proposition 6.2.1. The product of groups is a group.

Proof. Exercise. \Box

6.3 Isomorphisms

Suppose $\phi: G \to H$ is a bijection between two groups with the property

$$\phi(xy) = \phi(x)\phi(y)$$

Then ϕ is an isomorphism of $G\cong H$. So

$$G: x \cdot y = z \implies H: \phi(x) \cdot \phi(y) = \phi(z)$$

$$x' = \phi(x) \qquad \qquad y' = \phi(y) \qquad \qquad z' = x'y' = \phi(z)$$

Start with G's Cayley table, change the names (symbols, consistently) and permute the rows and columns. This gives H's Cayley table.

Example:

Proposition 6.3.1. All groups with two elements are isomorphic

Proof. If G has two elements, then its Cayley table looks like

$$\begin{array}{c|cccc} \cdot & \epsilon & x \\ \hline \epsilon & \epsilon & x \\ x & x & \epsilon \end{array}$$

Except they may use different symbols and have reordered rows/columns, so they are all isomorphic. $\hfill\Box$

Automorphisms, Subgroups

7.1 Automorphisms

Example: Let H = symmetries of a rectangle and $K = \mathbb{Z}_2 \times \mathbb{Z}_2 = \{(x, y) : x \in \mathbb{Z}_2, y \in \mathbb{Z}_2\}$

$$H = \{\epsilon, \alpha, \beta, \rho\}$$
 with composition

 $K = \{00, 01, 10, 11\}$ with addition in \mathbb{Z}_2

$$\phi \begin{cases}
\epsilon \to 00 \\
\alpha \to 01 \\
\beta \to 10 \\
\rho \to 11
\end{cases} \qquad or \qquad \phi \begin{cases}
\epsilon \to 00 \\
\alpha \to 01 \\
\beta \to 11 \\
\rho \to 10
\end{cases}$$

In fact, all we need for the isomorphism is $\epsilon \to 00$, we can have $\alpha, \beta, \rho \to 01, 10, 11$ in any order.

An automorphism of G is an isomorphism $G \to G$, this is a symmetry group of G. The set of all automorphisms of G is a group we call aut(G), the automorphism group of G.

Let ϕ be any bijection $\{\epsilon, \alpha, \beta, \rho\} \to \{\epsilon, \alpha, \rho, \beta\}$ with $\phi(\epsilon) = \epsilon$. Then ϕ is an automorphism of H.

Exercise: Let G = the symmetries of an equilateral triangle. Show that

$$aut(H)\cong G$$

7.2 Quaternions

$$Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$$

 \pm and 1 operate as expected. And

$$i^2 = j^2 = k^2 = ijk = -1$$

• Closure: Yes, Q_8 is closed.

- **Identity:** 1 is the identity for Q_8 .
- Inverse: Every column has the identity (1), so an inverse exists for every element in Q_8 .
- Associativity: Consider the set of matrices M_8 with entries in $\mathbb C$

$$M_8 = \left\{ \pm \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \pm \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \pm \begin{bmatrix} 0 & \mathbf{i} \\ \mathbf{i} & 0 \end{bmatrix}, \pm \begin{bmatrix} \mathbf{i} & 0 \\ 0 & -\mathbf{i} \end{bmatrix} \right\}$$

And the function $\phi: M_8 \to Q_8$

$$Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$$

 $\phi: M_8 \to Q_8$ is a bijection

$$\phi(ab) = \phi(a)\phi(b)$$

Because M_8 is a set of matrices, it is closed, associative, has an identity and has inverses, therefore M_8 is a group. Q_8 is isomorphic to M_8 , so it follows that it is also a group.

Therefore, Q_8 is closed, has identity, has inverses and is associative.

7.3 Subgroups

Consider the following

- G is a group with operation \cdot
- \bullet *H* is a subset of *G*
- H is a group with the same operation \cdot

Then H is a subgroup of G. We denote subgroups as $H \leq G$ or H < G

$$(\mathbb{Z},+)<(\mathbb{Q},+)<(\mathbb{R},+)<(\mathbb{C},+)$$

Example:

$$(\mathbb{Z}_3,+) \not\leq (\mathbb{Z}_5,+)$$

This is the case because

$$\mathbb{Z}_3 = \{0,1,2\} = \{[0],[1],[2]\} \not\subseteq \{[0],[1],[2],[3],[4]\} = \{0,1,2,3,4\} = \mathbb{Z}_5$$

These sets are equivalence classes **not** numbers so they are not subsets of each other.

7.3.1 Subgroup Test

Proposition 7.3.1. Suppose H is a subset of G, if $H \neq \emptyset$

$$x, y \in H \implies xy \in H$$

$$x \in H \implies x^{-1} \in H$$

then H is a subgroup.

Proof. Show that H is a group

- Closure: Is given.
- Associative: G is associative so any subset "inherits" associativity.
- **Identity:** Let ϵ_g be the identity in G. $\epsilon_a \cdot a = a \ \forall a \in H$. $\exists a \in H$, so $a^{-1} \in H$, since H is a subset of G, a, $a^{-1} \in G$, therefore $a \cdot a^{-1} = \epsilon_g \in H$.
- Inverse: Given

Proposition 7.3.2. H a subgroup of $G \implies \epsilon_g \in H$ and so $\epsilon_H \in G$

Proof. $H \neq \emptyset$, so let $x \in H$, then $x^{-1} \in H$, then $x \cdot x^{-1} = \epsilon_G \in H$. Furthermore

$$\epsilon_G \cdot h = h \cdot \epsilon_G = h \ \forall h \in H$$

Since $H \subseteq G$, and H has a unique identity, then $\epsilon_G = \epsilon_H$

7.3.2 Alternative Versions of Subgroup Test

Suppose H is a subset of G, if

• $H \neq \emptyset$

$$\bullet \ x,y \in H \implies xy \in H$$

$$\bullet \ x \in H \implies x^{-1} \in H$$

then H is a subgroup.

Lattices and Cyclic Groups

Recall: H is a subgroup of G if

- $H \subseteq G$
- \bullet They have the same operation (Cayley table of H is obtained by deleting rows/columns from G
- \bullet *H* is a group

Subgroup Test: If $H \subseteq G$ with the same operation and H is not empty,

$$x, y \in H \implies xy \in H$$

$$x \in H \implies x^{-1} \in H$$

then H is a subgroup of G.

8.1 Find all subgroups of $(\mathbb{Z}, +)$

Say H is a subgroup of \mathbb{Z} , $H \neq \{0\}$. Let n be the smallest positive integer in H, then

$$\{\ldots, -n, 0, n, 2n, 3n, \ldots\} \subseteq H$$

$$n\mathbb{Z}=\{nK:k\in Z\}\subseteq H$$

Suppose $x \in H \setminus n\mathbb{Z}$, then write x = qn + r for $0 \le r < n$. By closure, we have

$$x - qn = r \in H$$

But, this contradicts the minimality of n unless r=0, but if r=0, then $x\in n\mathbb{Z}$. Therefore, $H=n\mathbb{Z}$

Subgroups of \mathbb{Z} : $n\mathbb{Z} \ \forall n \in \mathbb{Z}$, $(n = 0 \implies H = \{0\})$

8.2 Symmetries of a Square

Lemma 8.2.1. There are at most eight symmetries of a square.

Proof. Let γ be a symmetry, γ maps corners to corners.

- $\gamma(1)$ has at most four possibilities, then $\gamma(2)$ must be one of the corners adjacent to $\gamma(1)$
- $\gamma(2)$ has at most two possibilities, then $\gamma(4)$ must be the other corner adjacent to $\gamma(1)$
- $\gamma(4)$ has at most one possibility, then $\gamma(3)$ must be $\{1,2,3,4\}\setminus\{\gamma(1),\gamma(2),\gamma(3),\gamma(4)\}$

• $\gamma(3)$ has at most one possibility

So, we have $4 \cdot 2 \cdot 1 \cdot 1 = 8$ possibilities.

Question: Do all possibilities work?

Lemma 8.2.2. There are at least eight symmetries of a square

Proof. Consider the symmetries of a square.

Let

$$\mu = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \qquad \qquad \rho = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$

Proposition 8.2.1.

$$\rho\mu = \mu\rho^{-1} = \mu\rho^3$$

Proof. Consider the square and function μ, ρ .

$$\mu = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \qquad \qquad \rho = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$

$$\rho\mu = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 2 & 1 & 4 \end{pmatrix} \qquad \mu\rho^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix} \qquad = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$

The 2 functions are equal.

Example:

$$\rho^{2}\mu\rho\mu\rho^{3} = \mu\rho^{6}\rho\mu\rho^{3} = \mu\rho^{7}\mu\rho^{3} = \mu\mu\rho^{21}\rho^{3} = \mu\rho^{24} = \epsilon$$
$$\mu\rho\mu\rho^{2}\mu\rho = \mu\mu\rho^{3}\rho^{2}\mu\rho = \mu^{2}\rho^{5}\mu\rho = \rho\mu\rho = \mu\rho^{3}\rho = \mu\rho^{3}\rho = \mu$$

Corollary 8.2.1.

$$G = \langle \mu, \rho : \mu^2 = \epsilon, \rho^4 = \epsilon, \rho \mu = \mu \rho^3 \rangle$$

$$= \{ \mu^i \rho^j : 0 \le i \le 1, 0 \le j \le 3 \}$$

$$= \{ \rho^i \mu^i : 0 \le i \le 1, 0 \le j \le 3 \}$$

Proof. Any sequence of μ 's and ρ 's can be written as $\mu^s \rho^t$ using $\rho \mu = \mu \rho^3$ ($\rho^t \mu^s$ using $\mu \rho = \rho^3 \mu$) reduce powers on μ and ρ using $\mu^2 = \epsilon \rho^4 = \epsilon$

$$G = \{\mu^i \rho^j : 0 \le i \le 1, \ 0 \le j \le 3\}$$

These are all distinct since |G|=8 so the relations $\mu^2=\epsilon$ $\rho^4=\epsilon$ $\rho\mu=\mu\rho^3$ are sufficient to characterize G

Compare:

$$F = <\alpha, \beta: \alpha^2 = \epsilon, \beta^4 = \epsilon>$$

 $\alpha\beta, \alpha\beta\alpha, \alpha\beta\alpha\beta, \dots$ are all distinct

$$\alpha^3 \beta^7 \alpha \beta = \alpha \beta^3 \alpha \beta$$

$$|F| = \infty$$

$$\mu = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \qquad \qquad \rho = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$

$$G = \{\mu^i \rho^i : 0 \le i \le 1, 0 \le j \le 3\}$$
$$= \{\rho^i \mu^i : 0 \le i \le 1, 0 \le j \le 3\}$$

Elements of G are symmetries of a square, they also permute G itself! Buy they are not symmetries of G.

$$\mu \cdot \rho = \mu \rho$$

$$\mu \mu \mu \rho = \mu(\mu) \mu(\rho) \neq \mu(\mu \rho) = \mu \mu \rho$$

8.2.1 Subgroups of Symmetries of a Square

$$G=Sym(\square)=\{\mu^i\rho^i:0\leq i\leq 1,0\leq j\leq 3\}$$

$$\langle \epsilon \rangle = \{ \epsilon \} \qquad \langle \mu, \rho \rangle = G = \langle \mu, \rho^3 \rangle$$

$$\langle \mu \rangle = \{ \epsilon, \mu \} \qquad \langle \mu, \rho^2 \rangle = \{ \epsilon, \mu, \rho^2, \mu \rho^2 \}$$

$$\langle \rho \rangle = \{ \epsilon, \rho, \rho^2, \rho^3 \}$$

$$\langle \rho^2 \rangle = \{ \epsilon, \rho^2 \} \qquad \langle \mu, \mu \rho \rangle = \{ \epsilon, \mu, \rho, \dots \} = G$$

$$\langle \rho^3 \rangle = \{ \epsilon, \rho^3, \rho^2, \rho \} \qquad \langle \mu, \mu \rho^3 \rangle = \{ \epsilon, \mu, \rho^3, \dots \} = G$$

$$\langle \mu \rho \rangle = \{ \epsilon, \mu \rho \} \qquad \langle \mu, \mu \rho^2 \rangle = \{ \epsilon, \mu, \rho^2, \mu \rho^2 \}$$

$$\langle \mu \rho^2 \rangle = \{ \epsilon, \mu \rho^2 \}$$

$$\langle \mu \rho^3 \rangle = \{ \epsilon, \mu \rho^3 \} \qquad \langle \rho, \mu \rho \rangle = \{ \epsilon, \mu, \rho, \dots \} = G$$

$$\langle \rho, \mu \rho^3 \rangle = \{ \epsilon, \mu, \rho, \dots \} = G$$

$$\langle \rho, \mu \rho^2 \rangle = \{ \epsilon, \mu, \rho, \dots \} = G$$

$$\langle \rho^2, \mu \rho^2 \rangle = \{ \epsilon, \rho^2, \mu \rho, \mu \rho^3 \} = G$$

$$\langle \rho^2, \mu \rho^2 \rangle = \{ \epsilon, \rho^2, \mu \rho^2, \mu \} = G$$

$$\langle \rho^2, \mu \rho^2 \rangle = \{ \epsilon, \rho, \mu, \dots \} = G$$

$$\langle \mu \rho, \mu \rho^3 \rangle = \{ \epsilon, \mu, \rho, \mu \rho^3, \rho^2 \} = G$$

 $\langle \mu \rho^2, \mu \rho^3 \rangle = \{ \epsilon, \rho, \mu, \dots \} = G$

Cyclic Groups

9.1 Cyclic Groups

G is cyclic if $G = \langle g \rangle = \{g^k : k \in \mathbb{Z}\}$ for some $g \in G$. g is a generator of G, there could be other generators. For addition,

$$G\langle g\rangle = \{kg : k \in \mathbb{Z}\}\$$

The order of g is the smallest positive integer n with $g^n = \epsilon$, written as |g|. For addition, it's the smallest positive integer n with $ng = \epsilon$.

Proposition 9.1.1. G is cyclic $\implies G$ is abelian

Proof. Since G is cyclic, then $G = \langle g \rangle$ for some $g \in G$, take $x, y \in G$. Then $x = g^s$ and $y = g^t$. So

$$xy = g^s g^t = g^{s+t} = g^{t+s} = g^t g^s = yx$$

However, G being abelian $\implies G$ is cyclic. **Examples:** Are the following in cyclic? Find generators, and all orders

 Q_8 :

• $\langle 1 \rangle = \{1\}$ Order 1

• $\langle -1 \rangle = \{-1,1\}$ Order 2

•
$$\langle i \rangle = \{i, -1, -i, 1\}$$
 Order 4

•
$$\langle -i \rangle = \{-i, -1, i, 1\}$$
 Order 4

•
$$\langle \pm j \rangle = \{ \pm j, -1, \mp j, 1 \}$$
 Order 4

•
$$\langle \pm k \rangle = \{ \pm k, -1, \mp k, 1 \}$$
 Order 4

Not cyclic

 \mathbb{Z} :

• $\langle 1 \rangle = \{k \cdot 1 : k \in \mathbb{Z}\} = \mathbb{Z}$ Order is ∞ , so no finite order

Are there other generators? Consider -1

•
$$\langle -1 \rangle = \{k \cdot (-1) : k \in \mathbb{Z}\} = \mathbb{Z}$$

 \mathbb{Z}_5 :

•
$$\langle 1 \rangle = \{1, 2, 3, 4, 5 = 0\}$$
 Order 5

•
$$\langle 2 \rangle = \{2, 4, 6 = 1, 3, 5 = 0\}$$
 Order 5

•
$$\langle -2 \rangle = \langle 3 \rangle = \{3, 1, 4, 2, 5 = 0\}$$
 Order 5

•
$$\langle -1 \rangle = \langle 4 \rangle = \{4, 3, 2, 1, 5 = 0\}$$
 Order 5

•
$$\langle 0 \rangle = \{0\}$$

Therefore $\langle 1 \rangle, \langle 2 \rangle, \langle 3 \rangle, \langle 4 \rangle$ generate the group, so it is cyclic. \mathbb{Z}_9^{\times} :

•
$$\langle 1 \rangle = \{1\}$$
 Order 1

•
$$\langle 2 \rangle = \{2, 4, 8, 16 = 7, 14 = 5, 10 = 1\}$$
 Order 6

•
$$\langle -4 \rangle = \langle 4 \rangle = \{4, 7, 1\}$$
 Order 3

•
$$\langle -2 \rangle = \langle 5 \rangle = \{5, 7, 8, 4, 2, 1\}$$
 Order 6

•
$$\langle -1 \rangle = \langle 8 \rangle = \{8, 1\}$$
 Order 2

Therefore $\langle 2 \rangle$ and $\langle 5 \rangle$ generate the group, so it is cyclic.

 \mathbb{Z}_8^{\times}

•
$$\langle 1 \rangle = \{1\}$$
 Order 1

- $\langle 3 \rangle = \{3,1\}$ Order 2
- $\langle 5 \rangle = \{5,1\}$ Order 2
- $\langle 7 \rangle = \{7,1\}$ Order 2

Therefore not cyclic.

 \mathbb{Q} :

- $\langle 1 \rangle = \mathbb{Z}$
- $\langle 0 \rangle = \{0\}$
- $\langle q \rangle = q\mathbb{Z}, q \in \mathbb{Q}$

Therefore not cyclic.

 \mathbb{R} :

- $\langle 1 \rangle = \mathbb{Z}$
- $\langle 0 \rangle = \{0\}$
- $\langle r \rangle = r \mathbb{Z}$

Therefore not cyclic.

Note: $q\mathbb{Z} \cong \mathbb{Z}$ and $r\mathbb{Z} \cong \mathbb{Z}$

 $\mathbb{Z}_2 \times \mathbb{Z}_4$:

- $\langle 00 \rangle = \{00\}$ Order 1
- $\langle 01 \rangle = \{01, 02, 03, 00\}$ Order 4
- $\langle 02 \rangle = \{02, 00\}$ Order 2
- $\langle 03 \rangle = \{03, 02, 01, 00\}$ Order 4
- $\langle 10 \rangle = \{10, 00\}$ Order 2
- $\langle 11 \rangle = \{11, 02, 13, 00\}$ Order 4
- $\langle 12 \rangle = \{12,00\}$ Order 2
- $\langle 13 \rangle = \{13, 02, 11, 00\}$ Order 4

Therefore not cyclic.

 $\mathbb{Z}_2 \times \mathbb{Z}_3$:

- $(00) = \{00\}$ Order 1
- $\langle 01 \rangle = \{01, 02, 00\}$ Order 3
- $\langle 02 \rangle = \{02, 01, 00\}$ Order 3
- $\langle 10 \rangle = \{10, 00\}$ Order 2
- $\langle 11 \rangle = \{11, 02, 10, 01, 12, 00\}$ Order 6
- $\langle 12 \rangle = \{12, 01, 10, 02, 11, 00\}$ Order 6

Therefore cyclic

Proposition 9.1.2. G is cyclic \implies all subgroups of G are cyclic

Proof. Let $G = \langle a \rangle = \{a^i : i \in \mathbb{Z}\}$. Let H be a sub group of G.

$$H = \{a^i : some \ i \in \mathbb{Z}\}\$$

could be $H = \{a^0\} = \{\epsilon\}$. Let

$$n = \min\{k : a^k \in H, k > 0\}$$

$$\langle a^n \rangle = \{ (a^n)^k : k \in \mathbb{Z} \} = \{ a^{kn} : k \in \mathbb{Z} \} = \{ a^k : k \in n\mathbb{Z} \}$$
$$\langle a^n \rangle < H < G$$

Suppose $a^j \in H$ with $j \notin \mathbb{Z}$ so $\langle a^n \rangle \neq H$. Then

$$j = qn + r \quad 0 \le r < n \quad r \ne 0$$

So

$$a^r = a^{j-qn} = a^j (a^n)^{-q} \in H$$

This contradicts the minimality of n. Therefore $H = \langle a^n \rangle$.

Definition 9.1.1 (Order). The order of an element $g \in G$ is the smallest positive integer n such that $g^n = \epsilon$. We write |g| for the order of g, if no such n exists we say $|g| = \infty$.

Proposition 9.1.3. Suppose $|a| = n < \infty$, then

$$a^j = \epsilon \iff n|j$$

In otherwords,

$${j: a^j = \epsilon} = n\mathbb{Z}$$

Furthermore,

$$a^s = a^t \iff n|s-t$$

Example: |a| = 5

$$a^5 = a^{10} = a^{-15} = a^{1005} = \dots = \epsilon$$

 $a^j \neq \epsilon$ when j is not a multiple of 5.

Proof. \iff if n|j then j = tn for some $t \in \mathbb{Z}$

$$a^j = a^{tn} = (a^n)^t = \epsilon^t = \epsilon$$

 \implies : if $a^j = \epsilon$, then write j = qn + r for $0 \le r < n$

$$a^r = a^{j-qn} = j (a^n)^{-q} = \epsilon(\epsilon^{-q}) = \epsilon$$

but n is the smallest positive integer with $a^n = \epsilon$, so $0 \le r < n$ implies r = 0. Therefore j = nq and $n \mid j$.

Also,

$$a^s = a^t \iff a^{s-t}\epsilon \iff n|s-t$$

Corollary 9.1.1. |a| = |b| is equivalent to

$$a^j = \epsilon \iff b^j = \epsilon$$

Proposition 9.1.4. Suppose $a \in G$, $|a| = n < \infty$, $k \in \mathbb{Z}$. Then

$$|a^k| = \frac{n}{\gcd(k,m)}$$

Example: |a| = 12

•
$$\langle a^1 \rangle = \{a^1, a^2, a^3, \dots, a^{12}\}$$

- $\langle a^5 \rangle = \{ a^5, a^{10}, a^3 \dots, a^{12} \} = \langle a \rangle$
- $\langle a^4 \rangle = \{a^4, a^8, a^{12} = a^0\}$
- $\langle a^{10} \rangle = \{a^{10}, a^8, a^6, a^4, a^2, a^0\}$

Proof. Let $|a^k| = m$, then $\epsilon = (a^k)^m = a^k m$ Therefore, n|km and km is a multiple of |a| by the previous theorem. Let $d = \gcd(kn)$ and set

$$\begin{cases} n = n'd \\ k = k'd \end{cases}$$
$$\gcd(n', k') = 1$$

Since n|km for some $t \in \mathbb{Z}$ we have,

$$km = tn$$

$$dk'm = tdn'$$

$$k'm = tn'$$

$$m = \frac{tn'}{k'} = \frac{t}{k'} \cdot n'$$

This must be an integer because $gcd(k',n')=1 \implies k' \mid t$ Smallest $m \iff$ smallest t with $\frac{tn'}{k'}$ positive integer. So

Corollary 9.1.2. Suppose $G = \langle a \rangle$, with $|a| = n < \infty$, then the generators of G are $\{a^k : gcd(n,k) = 1\}$

Proof.

$$|a^k| = \frac{n}{\gcd(n,k)} = n \iff \gcd(n,k) = 1$$

Corollary 9.1.3. $\mathbb{Z}_n = \langle 1 \rangle$ and |1| = n. Generators of \mathbb{Z} with addition are

$$\{k \cdot 1 : gcd(n,k) = 1\} = \{k : gcd(n,k) = 1\} = \mathbb{Z}_n^{\times}$$

Corollary 9.1.4. all nonzero elements of \mathbb{Z}_n are generators of $\mathbb{Z}_n \iff n$ is prime

Proof. We want
$$|k| = \frac{n}{\gcd(n,k)} = n$$
 for $k = 1, 2, 3, \dots, n-1$. So $\gcd(n,k) = 1$

Subgroups of Cyclic Groups, Lattices, \mathbb{T}

- G cyclic means there exists $g \in G$ with $G = \langle g \rangle = \{g^k : k \in \mathbb{Z}\}$
- The order of an element g is the smallest positive integer n with $g^n = \epsilon$
- Notation: Order of an element g is written |g|. Order (=size!) of a group G is written |G|. $|g| = \infty$ means $g^k \neq \epsilon \ \forall k \in \mathbb{Z}$
- $\{k: g^k = \epsilon\} = |g|\mathbb{Z} \text{ so } g^k \epsilon \iff |g| \text{ divides } k$
- |x| = |y| is equivalent to $x^k = \epsilon \iff y^k = \epsilon$
- if $|g| = n < \infty$, then

$$G = \langle g \rangle = \{g, g^2, \dots, g^n = \epsilon\}$$
$$|G| = |g|$$
$$|g^k| = \frac{n}{\gcd(n, k)}$$

generators of G are exactly $\{g^k : gcd(n, k) = 1\}$

Corollary 10.0.1. All nonezero elements of \mathbb{Z}_n are generators of $\mathbb{Z}_n \iff n$ is prime.

Proof. We want $k = \frac{n}{\gcd(n,k)} = n$ for $k = 1, 2, 3, \dots, n-1$. So $\gcd(n,k) = 1$ for $k = 1, 2, 3, \dots, n-1$. Therefore n is prime.

Theorem 10.0.1. G has no subgroups other than $\{\epsilon\}$ and $G \iff G$ is cyclic of prime order $\iff |G|$ is prime.

Proof. Suppose $g \in G$, then $\langle g \rangle$ is a subgroup of G. Therefore, either $\langle g \rangle = G$ or $\langle g \rangle = \{ \epsilon \}$. g is a generator of G So

$$G = \{g, g^2, g^3, \dots, g^n = \epsilon\}$$

 g^k is a generator for $k = 1, 2, \dots, n-1$ Therefore,

$$\frac{n}{\gcd(n,k)} = n$$

So n is prime, therefore G is cyclic of prime order $G\cong \mathbb{Z}_n$ for n prime.

Conversely,

$$G = \{g, g^2, \dots, g^n = \epsilon\}$$

then $S \neq \emptyset$ and $S \neq \{\epsilon\} \implies \langle S \rangle = G$. So $x \in S, \ x = g^k$ then

$$|x| = |g^k| = \frac{n}{\gcd(n,k)}$$

So the only subgroups are $\{\epsilon\}$ and G

Theorem 10.0.2. Suppose G, H are both cyclic, $G \cong H \iff |G| = |H|$

Proof. (\Longrightarrow) an isomorphism is a bijection.

$$(\longleftarrow)G = \langle a \rangle$$
 and $H = \langle b \rangle$, then

$$|a| = |G| = |H| = |b|$$

define

$$\phi:G\to H$$

$$\phi(a^k) = b^k$$

We have 2 cases, either the order is infinite.

$$\begin{cases} G = \{\dots, a^{-2}, a^{-1}, a^{0}, a^{1}, a^{2}, \dots\} \\ H = \{\dots, a^{-2}, a^{-1}, a^{0}, a^{1}, a^{2}, \dots\} \end{cases}$$

Or their order is finite

$$\begin{cases} G = \{a, a^2, a^3, \dots, a^n \epsilon\} \\ H = \{b, b^2, b^3, \dots, b^n = \epsilon\} \end{cases}$$

In both cases ϕ is a bijection.

$$\phi(a^s a^t) = \phi(a^{s+t}) = b^{s+t} = b^s b^t = \phi(a^s)\phi(a^t)$$

Subgroups of $C_n = \langle a \rangle = \{a, a^2, \dots, a^n\}$

- \bullet C_n is cyclic, therefore all subgroups are cyclic
- $|a^k| = \frac{n}{\gcd(k,n)}$
- Let $d \mid n$ then $|a^d| = \frac{n}{\gcd(d,n) = \frac{n}{d}}$

So for each $d \mid n$, then $\langle a \rangle^d \cong C_{\frac{n}{d}}$ is a subgroup.

No let $k \in \{1, 2, 3 \in n\}$. Suppose gcd(k, n) = d for some $d \mid n$, then

$$k \in \{d, 2d, 3d, \dots, \frac{n}{d}d\}$$

So $a^k \in \langle a^d \rangle$. i.e. all elements of order $\frac{n}{d}$ are contained in the subgroup $\langle a^d \rangle$

Conclusion: For all $d \mid n$, there is a unique subgroup of C_n of order $\frac{n}{d}$, generated by a^d .

Example: n = 2. $C_{12} = \langle a \rangle = \{a, a^2, a^3, \dots, a^{11}, a^{12}\}$

- Order 12: $a^1, a^5, a^7, a^11 \ \langle a \rangle = C_{12} = \langle a^5 \rangle = \langle a^7 \rangle = \langle a^11 \rangle$
- Order 6: a^2a^{10} $\langle a^2\rangle=\{a^2,a^4,a^6,a^8,a^{10},a^{12}\}=\langle a^{10}\rangle$
- • Order 4: a^3, a^9 $\langle a^3 \rangle = \{a^3, a^6, a^9, a^{12}\} = \langle a^9 \rangle$
- Order 3: a^4, a^8 $\langle a^4 \rangle = \{a^4, a^8, a^{12}\} = \langle a^8 \rangle$
- Order2: $a^6 \langle a^6 \rangle = \{a^6, a^{12}\}$
- Order 1: $a^2 \langle a^2 \rangle = \{a^{12}\}$

Example: $n = 12 \mathbb{Z}_{12} = \{1, 2, 3, \dots, 12\}$

- Order 12: 1, 5, 7, 11 $\langle 1 \rangle = \mathbb{Z}_{12} = \langle 5 \rangle = \langle 7 \rangle = \langle 11 \rangle$
- Order 6: $2,10 \langle 2 \rangle = \{2,4,6,8,10,12\} = \langle 10 \rangle$
- Order 4: $3,9 \langle 3 \rangle = \{3,6,9,12\} = \langle 9 \rangle$
- Order 3: $4,8 \langle 4 \rangle = \{4,8,12\} = \langle 8 \rangle$
- Order 2: $6 \langle 6 \rangle = \{6, 12\}$
- Order 1: $12 \langle 12 \rangle = \{12\}$

10.0.1 Lattices

Subgroups of \mathbb{Z}_{12}

Positive Divisors of 12

Cyclic groups with subgroups \cong integers with divisibility

10.1 Complex Numbers

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$$

$$\mathbb{C} = \{ re^{i\theta} : r, \theta \in \mathbb{R} \}$$

Lemma 10.1.1.

$$e^{i\theta} = \cos\theta = i\sin\theta$$

$$z = re^{i\theta} = re^{i(\theta + 2k\pi)} = -re^{i(\theta + (2k+1)\theta)}$$
$$z = re^{i\theta} = r\cos\theta + ir\sin\theta$$

$$\begin{cases} |z| = |a + bi| = \sqrt{a^2 + b^2} = r \\ \frac{b}{a} = \tan \theta \end{cases}$$

Refer to the profs notes for the rest of the complex number stuff.

Subgroups of \mathbb{T} , Permutations, Disjoint Cycles

11.1 Subgroups of a Finite Cyclic Subgroup

 $G = \langle g \rangle$ with |g| = |G| = n = md, choose r with $\gcd(n,r) = d$, then

$$|g^r| = \frac{n}{\gcd(n,r)} = \frac{n}{d} = m$$

Any subgroup of order m can be obtained this way. If

$$H = \langle g^r \rangle$$

is a subgroup of G of order m, then

$$H = \langle g^r, g^{2r}, \dots, g^{mr} = \epsilon \rangle$$
 and $|g| = n = |nr|$

Furthermore,

$$(g^{tr})^m = (g^{mr})^t = (\epsilon)^t = \epsilon$$

So H consists of m elements and $x \in H \to x^m = \epsilon$. So

$$\begin{split} x^m &= (g^k)^m = \epsilon \iff g^{km} = \epsilon \\ &\iff |g| \text{ divides } km \\ &\iff n \mid km \\ &\iff dm \mid km \\ &\iff k \text{ is a multiple of } d \\ &\iff x \in \{g^d, g^{2d}, \dots, g^{md}\} \end{split}$$

Proposition 11.1.1. Let $x = (a_1, a_2, ..., a_t) \in G_1 \times G_2 \times ... \times G_t$, then $|x| = (|a_1|, |a_2|, ..., |a_t|)$

Proof. $x^k = \epsilon$ means $(a_i)^k = \epsilon_i \ \forall i = 1, 2, ...t, k$ is a multiple of each $|a_i|$ smallest such k is $lcm(|a_1|, |a_2|, ..., |a_t|)$.

Proposition 11.1.2. Let G_1, G_2, \ldots, G_t be finite groups.

$$G_1 \times G_2 \times \dots \times G_t \ cyclic \iff \begin{cases} each \ G_i \ is \ cyclic \\ \gcd(|G_i|, |G_j|) = 1) \ \forall 1 \le i < j \le t \end{cases}$$

Proof. See assignment 3.

Subgroups of

$$\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$$

$$R = \{e^{2\pi i j/n} : 0 < j < n, n > 1\}$$

Consider only reduced fractions gcd(i, n) = 1 so

$$e^{2\pi i 4/12} \to e^{2\pi i 1/3}$$

then $e^{2\pi ij/n}$ generates

$$R_n = \{ e^{2\pi i j/n} : 0 \le j < n \}$$

order of $e^{2\pi ij/n}$ is n finite. If $S\subseteq R$, then let m=lcm of all the n, then

$$\bullet \ S \subseteq \langle e^{2\pi i 1/m} \rangle$$

$$\bullet \ e^{2\pi i 1/m} \in \langle S \rangle$$

• So
$$\langle S \rangle = \langle e^{2\pi i 1/m} \rangle$$

every finite subgroup is cyclic.

Suppose $S \subseteq R$. Choose TBC

Normal Subgroups, Quotient Groups

Recall: The external direct product is defined as

$$H, K \text{ groups} \implies G = H \times K = \{(x, y) : x \in H, y \in K\}$$

The internal direct product is defined on subgroups H, K of G with

$$H \cap K = \{\epsilon\}$$

$$xy = yx \ \forall x \in H \ y \in K$$

Uniqueness: If G = HK as an internal direct product, then $\forall g \in G$, $\exists ! x \in H, y \in K$ such that g = xy.

Isomorphisms: If $G = H \times K$ as an external direct product, then

$$G = (H \times \{\epsilon\})(\{\epsilon\} \times K)$$

as an internal direct product. If G = HK as an internal direct product then $G \cong H \times K$ as an external direct product.

Theorem 19.0.1. If G = HK as internal direct product, then

$$G \cong H \times K$$

Proof. For $g \in G$, $\exists 1x \in H, y \in K$ such that g = xy. Define

$$\psi: G \mapsto H \times K$$

by $\psi(g) = (x, y)$. So

$$g_1 = x_1 y_1$$
 $\Longrightarrow g_1 g_2 = x_1 y_1 x_2 y_2 = g_2 = x_2 y_2$

Claim: ψ is an isomorphism. TBC

Theorem 19.0.2. If $G = H \times K$ as an external direct product, then $G \cong MN$ as an internal direct product where

$$M = H \times \{\epsilon_K\}$$
 and $N = \{\epsilon_H\} \times K$

Proof. • M and N are subgroups of G

•
$$(x,y) \in M \implies y = \epsilon_K \text{ and } (x,y) \in N \implies x = \epsilon_H \text{ so}$$

$$(x,y) \in M \cap N) \implies (x,y) = (\epsilon_H, \epsilon_G)$$

So $M \cap N = \epsilon_G$

_

$$(x, \epsilon_K)(\epsilon_H, y) = (x\epsilon_H, \epsilon_K y)$$
$$= (\epsilon_H x, y\epsilon_K)$$
$$= (\epsilon_H y)(x, \epsilon_K)$$

So hK = Kh if $h \in H$ and $k \in K$

•
$$(x,y) \in G \implies (x,y) = (x,\epsilon_K)(\epsilon_K,y)$$
 So $HK = G$

Example: Consider $D_6 = \langle \mu, \rho \rangle$. Set $H = \langle \mu \rangle$ and $K = \langle \rho \rangle$. Is $D_6 = HK$ as an inner direct product?

We want to check if $H \cap K = \{\epsilon\}$.

$$H = \{\epsilon, \mu\} \ K = \{\epsilon, \rho, \rho^2, \rho^3, \rho^4, \rho^5\}$$

So we have

$$H \cap K = \{\epsilon\}$$

We also want to show that

$$hk = kh \ \forall h \in H \ k \in K$$

No, since

$$\rho\mu = \mu\rho^{-1} = \neq \rho\mu$$

Is $D_6 = HK$? Yes, since

$$HK = \{hk : h \in H \ k \in K\} = \{\mu^i \rho^j : 0 \le i \le 1 \ 0 \le \rho \le 5\} = D_6$$

So this is not a direct product.

Example: Set $H = \langle \rho^3 \rangle = \{\epsilon, \rho^3\}$, and

$$K = \langle \mu, \rho^2 \rangle = \{\epsilon, \mu, \rho^2, \mu \rho^2, \rho^4, \mu \rho^4 \}$$

Is $D_6 = HK$ an inner direct product?

We have that $\{H \cap K = \{\epsilon\}\}\$. We want to show that

$$hk = kh \ \forall h \in H \ k \in K$$

Yes, since $(\rho^3)^{-1} = \rho^3$, so $\mu \rho^3 = \rho^3 \mu$, we can show that ρ^3 commutes with every element in K. We can also just check that the generator of H (ρ^3) commutes with the generator of K (μ, ρ^2) . Now we want to check if $D_6 = HK$.

$$HK = \{hk : h \in H \ k \in K\} = D_6$$

So this is a direct product.

Notice: $H \cong \mathbb{Z}_2$ and $K \cong D_3$. To prove this, we want to show that

$$K = \langle \alpha, \beta : \alpha^2 = \beta^3 = \epsilon, \alpha\beta = \beta^{-1}\alpha \rangle$$

by mapping elements of K to α, β .

Question: For which m is $D_{2m} \cong \mathbb{Z}_2 \times D_m$?

19.1 Normal Subgroups

Definition 19.1.1. For K < G, we say K is a normal subgroup of G if

$$gK = Kg \ \forall g \in G$$

We denote a normal subgroup as

$$K \triangleleft G$$

Note: $gx = xg \forall x \in K \implies gK = Kg$ but $gK = Kg \implies gx = xg$

Facts:

- \bullet G abelian \implies every subgroup is normal
- $K < Z(G) \implies K \triangleleft G$
- $[G:K] = 2 \implies K \triangleleft G$

Example:

$$S_3 = \{\epsilon, (23), (13), (12), (123), (132)\}$$

Is $K = {\epsilon, (12)}$ normal in S_3 ?

$$g \in G \implies gK = \{g\epsilon, g(12)\}$$

$$Kg = \{\epsilon g, (12)g\}$$

The following statements are equivalent:

- $K \triangleleft G$
- $gK = Kg \ \forall g \in G$
- $\bullet \ gKg^{-1} = K \ \forall g \in G$
- Define phi_g by $\phi_g(x) = gxg^{-1} \ \forall x \in G$ then ϕ_g maps KtoK

Lemma 19.1.1. Suppose $K \triangleleft G$, then

$$g_1K = g_2K \iff g_1K = Kg_2 \iff g_1Kg_2^{-1} = K$$

TBC

19.2 Quotient Groups

Definition 19.2.1. Let $K \triangleleft G$. Define a group G/K, then the elements of the group are the cosets of K in G, so

$$G/K = \{gK : g \in G\}$$

The operation is on the representatives of the cosets

$$xK \cdot yK = xyK$$

The order of G/K is

$$[G:K] = \frac{|G|}{|K|}$$

Question: Is this operation well-defined?

$$x_1K = x_2K \quad y_1K = y_2K$$

$$\begin{cases} x_1 K \cdot y_1 K = x_1 y_1 K \\ x_2 K \cdot y_2 K = x_2 y_2 K \end{cases}$$

From the coset comparison theorem, is $x_1y_1K = x_2y_2K$, $(x_2y_2)^{-1}x_1y_1 \in K$?

$$(x_2y_2)^{-1}x_1y_1 = y_2^{-1}x_2^{-1}x_1y_1 = y_2^{-1}Ky_1$$

Since $x_1K = x_2K, x_2^{-1}x_1 \in K$. So

$$ky_1 = Ky + 1 = y_1K$$

SO

$$ky_1 = y_1k'$$
 some $k' \in K$

Then

$$(x_2y_2)^{-1}x_1y_1 = y_2^{-1}y_1k' = k''k' \in K$$

$$\therefore x_1 y_1 K =$$

Theorem 19.2.1. If $K \triangleleft G$, then G/K is a group.

Proof. • closure: $xK \cdot yK = xyK$

• Associativity:

$$aK \cdot (bK \cdot cK) = aK \cdot (bc)K = a(bc)K$$

 $(aK \cdot bK) \cdot cK = (ab)K \cdot cK = (ab)cK$
 $a(bc) = (ab)c$ since G is a group

• Identity:

$$aK\cdot \epsilon K=a\epsilon K=aK$$

$$\epsilon K \cdot aK = \epsilon aK = aK$$

• Inverses:

$$aK \cdot a^{-1}K = aa^{-1}K = \epsilon K = K$$

$$a^{-1}K \cdot aK = a^{-1}1K = \epsilon K = K$$