Дискретная математика. І Семестр

Лектор: Пузынина Светлана Александровна Автор конспекта: Буглеев Антон 2022

1 Булевы Функции

Булевы Функции. Базис

Def. *Булевой функцией* называется функция вида

$$f: \{0,1\}^n \to \{0,1\}.$$

Def. *Базис* - некоторое множество булевых функций.

Def. Формула над базисом определяется по индукции: База: всякая функция $f \in F$ является формулой над F Индуктивный переход: если $f(x_1,...,x_n)$ - формула над F, а $\Phi_1,...,\Phi_n$ - переменные, либо формулы над F, то тогда $f(\Phi_1,...\Phi_n)$ - тоже формула над F.

ПК, ДНФ, СДНФ, ПД, КНФ, СКНФ, Многочлен (полином) Жегалкина

Def. Простой конъюнкцией (ПК) называется конъюнкция одной или нескольких переменных или их отрицаний, причём каждая переменная встречается не более одного раза.

Def. Дизтонктивная нормальная форма (ДНФ) - дизъюнкция простых конъюнкций

Def. Совершенная дизтюнктивная нормальная форма (СДНФ) - ДНФ, в которой в каждой конъюнкции учавствуют все переменные.

Аналогично определяются Π ростая дизъюнкция (ПД), K онъюнктивная нормальная форма (КНФ), C овершенная конъюнктивная нормальная форма (СКНФ).

Def. *Многочлен (полином) Жегалкина* - сумма по модулю 2 конъюнкций переменных без повторений слагаемых, а также (необязательно) слагаемое 1.

$$f(x_1,...,x_n)=a\oplus a_1\wedge x_1\oplus ...\oplus a_{12}\wedge x_1\wedge x_2\oplus ...\oplus a_{1..n}\wedge x_1\wedge ...\wedge x_n$$

Например, $f(x, y, z) = x \oplus x \land y \land z \oplus 1$

Theorem. Для каждой функции существует единственное представление многочленом Жегалкина.

Proof...

Замыкание. Замкнутые классы. Полнота

 $\mathbf{Def.}\ \mathit{Замыканием}\ [F]$ базиса F называется множество всех функций, представимых формулой над F

Def. Замкнутый класс - класс, равный своему замыканию: F = [F]

1.
$$T_0 = \{ f \mid f(0, \dots, 0) = 0 \}$$

2.
$$T_1 = \{ f \mid f(1, \dots, 1) = 1 \}$$

3.
$$S = \{ f \mid f(x_1, \dots, x_n) = \neg f(\neg x_1, \dots, \neg x_n) \}$$

4.
$$M = \{f \mid \forall \text{ двоичных наборов } \alpha \leq \beta: f(\alpha) \leq f(\beta)\}$$

5.
$$L = \{f \mid f(x_1, \dots, x_n) = x_1 \oplus \dots \oplus x_n \oplus c\}$$
, где $c \in \{0, 1\}$

Theorem. Классы T_0, T_1, S, M, L являются замкнутыми.

Proof. . . .

Def. Множество булевых функций F называется *полной системой*, если все булевы функции выразимы как формулы над данным базисом.

Theorem. Множество булевых функций F является полным тогда u только тогда, когда F не содержится ни в одном из пяти классов T_0, T_1, S, M, L

Proof. $1. \Rightarrow$

. .

2. \Leftarrow

. . .

Комбинаторика 2

Выборки

 ${f Def.}$ Введём $A=\{a_1,\ldots,a_n\}$. Некоторый набор элементов (a_{i_1},\ldots,a_{i_r}) называется выборкой объёма r из n элементов или (n,r)-выборкой.

Выборки бывают упорядоченные (порядок элементов важен) или неупорядоченные (без разницы, в каком порядке элементы), а также с повторениями и без повторений.

Пусть объект A можно выбрать n способами, а объект B - m способами. Тогда важны два правила:

- 1. Правило суммы. Выбор «А или B» можно выбрать n+m способами.
- 2. Правило произведения. Выбор пары (A, B) можно выбрать nmспособами.

Def. Выборки k элементов из n:

- 1. Упорядоченная с повторениями: n^k
- 2. Упорядоченная без повторений (размещения): $A_n^k = \frac{n!}{(n-k)!}$
- 3. Неупорядоченная без повторений (сочетания): $C_n^k = \frac{n!}{k!(n-k)!}$
- 4. Неупорядоченная с повторениями: $\stackrel{\wedge}{C} = C^k_{n+k-1}$

Proof. Пусть $A = \{a_1, \ldots, a_n\}$. Неупорядоченная выборка k элементов с повторениями задаётся вектором (x_1, \ldots, x_n) , где x_i - число повторений элемента a_i . Таким образом, $x_1 + \cdots + x_n = k$

Закодируем решение бинарным вектором $\underbrace{11\dots1}_{x_1}0\underbrace{11\dots1}_{x_2}0\dots0\underbrace{11\dots1}_{x_n}$. Получаем вектор, состоящий из k единиц и (n-1) нулей. Число

таких векторов: C_{n-1+k}^k , что и требовалось

Полезные свойства сочетаний

Theorem. $C_n^k = C_{n-1}^k + C_{n-1}^{k-1}$

Proof.

$$C_{n-1}^{k} + C_{n-1}^{k-1} = \frac{(n-1)!}{k!(n-1-k)!} + \frac{(n-1)!}{(k-1)!(n-k)!} = \frac{(n-k)(n-1)! + k(n-1)!}{k!(n-k)!} = \frac{(n-1)!((n-k)+k)}{k!(n-k)!} = \frac{n!}{k!(n-k)!} = C_n^k$$

 $Треугольник Паскаля \dots$

Theorem. Бином Ньютона.

$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$$

Proof. Член $a^k b^{n-k}$ участвует в разложение $(a+b)^n$ столько раз, сколько есть способов выбрать a в k множителях из n - а это C_n^k . \square

Lemma. Грубые оценки для n!:

$$(n/e)^n < n! < n^n$$

Proof. Верхняя оценка очевидна. Докажем нижнюю по индукции:

1. База: $(1/e)^1 < 1 \Leftrightarrow 1/e < 1$

2. Переход: пусть верно для n:

$$n! > \left(\frac{n}{e}\right)^n \Leftrightarrow (n+1)n! > (n+1)\left(\frac{n}{e}\right)^n$$
$$(n+1)! > (n+1)\left(\frac{n}{e}\right)^n$$

Теперь покажем, что

$$(n+1)\left(\frac{n}{e}\right)^n > \left(\frac{n+1}{e}\right)^{n+1} \Leftrightarrow$$
 $e(n+1)n^n > (n+1)^{n+1} \Leftrightarrow$ $en^n > (n+1)^n$ (верно в курсе матанализа)

Theorem. Формула Стирлинга.

$$n! = (1 + o(1))\sqrt{2\pi n} \left(\frac{n}{e}\right)^n \Leftrightarrow \frac{n!}{1 + o(1)} = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

6