

WEBENCH® Design Report

VinMin = 10.0V VinMax = 20.0V Vout = 5.0V Iout = 5.0A Device = LM22679TJ-5.0/NOPB Topology = Buck Created = 3/6/16 5:47:36 PM BOM Cost = \$3.89 BOM Count = 8 Total Pd = 3.91W

Design: 4613839/4 LM22679TJ-5.0/NOPB LM22679TJ-5.0/NOPB 10.0V-20.0V to 5.00V @ 5.0A

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cbst	Kemet	C0805C103K5RACTU Series= X7R	Cap= 10.0 nF ESR= 1.739 Ohm VDC= 50.0 V IRMS= 411.0 mA	1	\$0.01	0805 7 mm ²
2.	Cin	MuRata	GRM32ER7YA106KA12L Series= X7R	Cap= 10.0 uF ESR= 2.008 mOhm VDC= 35.0 V IRMS= 4.6772 A	1	\$0.25	1210_280 15 mm ²
3.	Cinx	MuRata	GRM188R61E105KA12D Series= X5R	Cap= 1.0 uF ESR= 17.113 mOhm VDC= 25.0 V IRMS= 979.39 mA	1	\$0.01	0603 5 mm ²
4.	Cout	Chemi-Con	APXE100ARA121MF61G Series= PXE	Cap= 120.0 uF ESR= 25.0 mOhm VDC= 10.0 V IRMS= 2.53 A	1	\$0.43	CAPSMT_62_F61 74 mm ²
5.	Css	AVX	08055C393KAT2A Series= X7R	Cap= 39.0 nF ESR= 38.0 mOhm VDC= 50.0 V IRMS= 0.0 A	1	\$0.02	0805 7 mm ²
6.	D1	Vishay-Semiconductor	50WQ04FNPBF	VF@Io= 510.0 mV VRRM= 40.0 V	1	\$0.40	DPAK 102 mm ²

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
7.	L1	Bourns	SRR1208-6R5ML	L= 6.5 μH DCR= 18.0 mOhm	1	\$0.37	SRR1208 216 mm ²
8.	U1	Texas Instruments	LM22679TJ-5.0/NOPB	Switcher	1	\$2.40	TJ7A 199 mm ²

Operating Values

Opc	operating values						
#	Name	Value	Category	Description			
1.	Cin IRMS	1.768 A	Current	Input capacitor RMS ripple current			
2.	Cout IRMS	359.071 mA	Current	Output capacitor RMS ripple current			
3.	IC lpk	5.622 A	Current	Peak switch current in IC			
4.	lin Avg	1.446 A	Current	Average input current			
5.	L lpp	1.244 A	Current	Peak-to-peak inductor ripple current			
6.	M1 Irms	2.596 A	Current	Q lavg			
7.	BOM Count	8	General	Total Design BOM count			
8.	FootPrint	623.0 mm ²	General	Total Foot Print Area of BOM components			
9.	Frequency	500.0 kHz	General	Switching frequency			
10.	IC Tolerance	75.0 mV	General	IC Feedback Tolerance			
11.	M Vds Act	313.783 mV	General	Voltage drop across the MosFET			
12.	Pout	25.0 W	General	Total output power			
13.	Total BOM	\$3.89	General	Total BOM Cost			
14.	D1 Tj	98.734 degC	Op_Point	D1 junction temperature			
15.	Vout OP	5.0 V	Op_Point	Operational Output Voltage			
16.	Cross Freq	79.691 kHz	Op_point	Bode plot crossover frequency			
17.	Duty Cycle	26.95 %	Op_point	Duty cycle			
18.	Efficiency	86.462 %	Op_point	Steady state efficiency			
19.	IC Tj	71.415 degC	Op_point	IC junction temperature			
20.	ICThetaJA	22.0 degC/W	Op_point	IC junction-to-ambient thermal resistance			
21.	IOUT_OP	5.0 A	Op_point	lout operating point			
22.	Phase Marg	91.412 deg	Op_point	Bode Plot Phase Margin			
23.	VIN_OP	20.0 V	Op_point	Vin operating point			
24.	Vout p-p	31.204 mV	Op_point	Peak-to-peak output ripple voltage			
25.	Cin Pd	6.274 mW	Power	Input capacitor power dissipation			
26.	Cout Pd	3.223 mW	Power	Output capacitor power dissipation			
27.	Diode Pd	1.527 W	Power	Diode power dissipation			
28.	IC Pd	1.882 W	Power	IC power dissipation			
29.	L Pd	495.0 mW	Power	Inductor power dissipation			
30.	Total Pd	3.914 W	Power	Total Power Dissipation			

#	Name	Value	Category	Description
31.	Vout Tolerance	1.5 %	Unknown Vout Tolerance based on IC Tolerance and voltage divider resistors if applicable	

Design Inputs

#	Name	Value	Description
1.	lout	5.0	Maximum Output Current
2.	VinMax	20.0	Maximum input voltage
3.	VinMin	10.0	Minimum input voltage
4.	Vout	5.0	Output Voltage
5.	base_pn	LM22679	Base Product Number
6.	source	DC	Input Source Type
7.	Та	30.0	Ambient temperature

Design Assistance

- 1. Part Description The LM22679 is a monolithic integrated circuit that provides all of the active functions for a step-down (buck) switching regulator capable of driving up to 5.0A loads with excellent line and load regulation characteristics. High efficiency (>90%) is obtained through the use of a low ON-resistance N-channel MOSFET.
- 2. LM22679 Product Folder: http://www.ti.com/product/LM22679: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.