Inducción simple y fuerte

Clase 1

IIC 1253

Prof. Diego Bustamante

Outline

Obertura

Inducción simple

Inducción fuerte

Epílogo

Fundamentos Inducción y lógica

Diagnóstico

A ⊊ B

Asumiremos como conocidos estos símbolos. Los estudiaremos en detalle más adelante.

(A es subconjunto propio de B)

El punto de partida del curso

Las matemáticas discretas se encargan del estudio de estructuras discretas.

- ¿Cuál es la estructura discreta más sencilla?
- ¿Para qué podemos usarla?

Los naturales serán la base de nuestro trabajo.

Nuestra primera "definición"

Definición (en chileno)

Los números naturales, denotados por \mathbb{N} , son los números que sirven para contar los elementos de un conjunto.

¿Qué propiedades tiene este conjunto?

Axiomas de N

Axiomas de Peano (extracto)

- 1. El número $0 \in \mathbb{N}$.
- 2. Si $n \in \mathbb{N}$, entonces $(n+1) \in \mathbb{N}$ donde n+1 es el sucesor de n.
- 3. Todo $n \in \mathbb{N}$ tal que $n \neq 0$ tiene un antecesor en \mathbb{N} .
- 4. Principio del buen orden:

Todo subconjunto no vacío $A \subseteq \mathbb{N}$ tiene un menor elemento.

¿El cero está en los naturales?

Una propiedad interesante y útil

Hoy nos centraremos en una propiedad intrínseca de los naturales:

- Se deduce de los axiomas (veremos que es más potente que una simple deducción).
- Nos permitirá demostrar propiedades en N.
- Nos permitirá definir objetos.

Esta propiedad es el Principio de inducción.

Objetivos de la clase

- □ Comprender el principio de inducción simple.
- □ Conocer diferentes formulaciones del principio.
- Aplicar el principio para demostrar propiedades.
- □ Demostrar una de las equivalencias de estos principios.

Outline

Obertura

Inducción simple

Inducción fuerte

Epílogo

Principios de inducción: PBO

Principio del buen orden (PBO)

Todo subconjunto no vacío de los naturales tiene un menor elemento, i.e.

$$A \neq \emptyset$$
, $A \subseteq \mathbb{N} \Rightarrow \exists x \in A. \ \forall y \in A. \ (x \le y)$

Paréntesis

El símbolo ⇒ denota una implicancia.

- Lo que está antes de ⇒ es el antecedente
- Lo que está después de ⇒ es el **consecuente**

¿Es cierto el PBO en los racionales? ¿Y en los reales?

Principios de inducción: PBO

Proposición

El PBO no es cierto en Q.

Demostración

Considere el conjunto $A = \{x \in \mathbb{Q} \mid x > 0\}$. Observamos que:

- A no es vacío y
- $A \subseteq \mathbb{Q}$

Supongamos por contradicción que $\mathbb Q$ cumple el PBO. En tal caso, existe $q_0 \in A$ que es su menor elemento.

Como $q_0 \in A$, entonces $q_0 > 0$ y $q_0/2 \in A$. Como $0 < q_0/2 < q_0$, concluimos que q_0 no es el menor elemento de A. Esto contradice el supuesto del PBO.

Por lo tanto, \mathbb{Q} no cumple el PBO.

Observe que la misma demostración sirve para ${\mathbb R}$

Principio de inducción

Principio de inducción simple (PIS)

Para A un subconjunto de \mathbb{N} . Si se cumple que:

- 1. $0 \in A$
- 2. Si $n \in A$, entonces $n + 1 \in A$

entonces $A = \mathbb{N}$.

Notación

- La condición 1. se llama el caso base o base de inducción.
- La condición 2. se llama paso inductivo.
 - La suposición $n \in A$ es la **hipótesis de inducción**.
 - La demostración de que $n + 1 \in A$ es la **tesis de inducción**.

Principio de inducción

Ejercicio

Demuestre que 0 es el menor número natural.

Demostración

Considere el conjunto $A = \{x \in \mathbb{N} \mid x \ge 0\}$. Usaremos el PIS para demostrar que $A = \mathbb{N}$, con lo que estaremos demostrando que para todo elemento $x \in \mathbb{N}$ se cumple que $x \ge 0$, y por lo tanto que 0 es el menor natural.

- **CB:** Es claro que $0 \in A$, puesto que $0 \in \mathbb{N}$ y $0 \ge 0$.
- **HI:** Supongamos que $n \in A$, y por lo tanto $n \ge 0$.
- **TI:** Debemos demostrar que $n+1 \in A$. Por hipótesis de inducción, sabemos que $n \ge 0$, y por lo tanto $n+1 \ge 1$. Concluimos que $n+1 \ge 0$, y entonces $n+1 \in A$.

Por PIS, se sigue que $A = \mathbb{N}$.

Principio de inducción

PIS (Segunda formulación)

Sea P una propiedad sobre elementos de \mathbb{N} . Si se cumple que:

- 1. P(0) es verdadero (0 cumple la propiedad P)
- 2. Para todo $n \in \mathbb{N}$, si P(n) es verdadero, entonces P(n+1) es verdadero, entonces para todo $n \in \mathbb{N}$ se tiene que P(n) es verdadero.

Notación

- P(0) se llama caso base.
- El punto 2. es el paso inductivo.
 - P(n) se llama la **hipótesis de inducción**.
 - P(n+1) se llama la **tesis de inducción**.

Ejemplo de demostración por inducción

Teorema

La suma de los primeros n números naturales es igual a

$$\sum_{i=0}^{n} i = \frac{n \cdot (n+1)}{2}$$

Demostración

Demostramos que se cumple para n = 0:

Caso base
$$(n = 0)$$
: $\sum_{i=0}^{0} i = 0 = \frac{0 \cdot (0+1)}{2}$

Ejemplo de demostración por inducción

Demostración (continuación)

Suponemos que se cumple para un n cualquiera y demostramos para n+1:

Hipótesis:
$$\sum_{i=0}^{n} i = \frac{n \cdot (n+1)}{2}$$
Tesis:
$$\sum_{i=0}^{n+1} i = \sum_{i=0}^{n} i + (n+1)$$

$$= \frac{n \cdot (n+1)}{2} + \frac{2 \cdot (n+1)}{2}$$

$$= \frac{((n+1)+1) \cdot (n+1)}{2}$$

Una variación del principio de inducción

Existen propiedades en $\mathbb N$ que no se cumplen en todos los naturales, pero sí desde cierto número.

- Podemos modificar el PIS
- El CB ya no es 0

Ejemplo

Demuestre que para todo natural $n \ge 4$ se cumple

$$n! > 2^n$$

Una variación del principio de inducción

Demostración $n! > 2^n$ es verdadero para todo $n \ge 4$ 1. $P(4): 4! = 24 > 16 = 2^4$ 2. si P(n): $n! > 2^n$ es verdadero con $n \ge 4$, entonces: $P(n+1): (n+1)! = n! \cdot (n+1)$ $> 2^n \cdot (n+1)$ (por HI) $> 2^n \cdot 4$ (como $n \ge 4$) $> 2^{n+1}$ Por lo tanto, P(n) es verdadero para todo $n \ge 4$.

Una variación del principio de inducción

PIS (Tercera formulación)

Sea P una propiedad sobre elementos de \mathbb{N} . Si se cumple que:

- 1. $P(n_0)$ es verdadero.
- 2. Para todo $n \in \mathbb{N}$, si P(n) es verdadero, entonces P(n+1) es verdadero, entonces para todo $n \in \mathbb{N}$ tal que $n \ge n_0$ se tiene que P(n) es verdadero.

Esta formulación permite demostrar propiedades con un caso base mayor a 0.

Outline

Obertura

Inducción simple

Inducción fuerte

Epílogo

El poder de la inducción

La sucesión de Fibonacci es una serie de naturales $F(0), F(1), F(2), \ldots$ que cumple la siguiente recurrencia

$$F(0) = 0$$

 $F(1) = 1$
 $F(n) = F(n-1) + F(n-2)$ para $n \ge 2$

¿cómo calculamos el valor de F(n) para un n cualquiera?

$$F(0) = 0$$

$$F(1) = 1$$

$$F(2) = F(1) + F(0) = 1 + 0 = 1$$

$$F(3) = F(2) + F(1) = 1 + 1 = 2$$

$$F(4) = \dots$$

¿Basta inducción simple para probar que $F(n) \le 2^n$, para todo $n \in \mathbb{N}$?

Principio de inducción por curso de valores (PICV)

Sea A un subconjunto de \mathbb{N} . Si se cumple que para todo $n \in \mathbb{N}$

$$\{0,1,\ldots,n-1\}\subseteq A \Rightarrow n\in A$$

entonces $A = \mathbb{N}$.

Observaciones

- También es conocido como Principio de Inducción Fuerte
- La **HI** es la expresión $\{0, 1, ..., n-1\} \subseteq A$
- La **TI** es la expresión $n \in A$

¿Dónde está el caso base en el principio anterior?

PICV (segunda formulación)

Sea P una propiedad sobre \mathbb{N} . Si P cumple que para todo $n \in \mathbb{N}$:

P(k) es verdadero **para todo k** < **n**, entonces P(n) es verdadero entonces para todo $n \in \mathbb{N}$ se tiene que P(n) es verdadero.

Ejemplo

Demuestre que $F(n) \leq 2^n$, para todo $n \in \mathbb{N}$.

¡Ojo! El CB se debe demostrar manualmente igual que en inducción simple.

Demostración

$$P(n) := F(n) \le 2^n$$
 para todo n

1. **CB.**
$$P(0)$$
: $F(0) = 0 \le 2^0$
 $P(1)$: $F(1) = 1 \le 2^1$

2. **HI.** Sup. P(k): $F(k) \le 2^k$ es verdadero para todo k < n, entonces:

TI.
$$P(n)$$
: $F(n) = F(n-1) + F(n-2)$
 $\leq 2^{n-1} + 2^{n-2}$ (por HI)
 $\leq 2^{n-1} + 2^{n-1}$
 $\leq 2^{n}$

Por lo tanto, P(n) es verdadero para todo $n \in \mathbb{N}$.

En este caso se debía demostrar 2 casos base.

Ejemplo (Propuesto ★)

Demostremos que la siguiente propiedad se cumple para todo natural $n \ge 2$

$$P(n) := n \text{ tiene un factor primo}$$

- 1. **CB.** P(2) es cierto pues 2 es primo, por lo que tiene un factor primo.
- 2. **HI.** Supongamos que todo k < n tiene un factor primo.
- 3. **TI.** Consideramos P(n). Tenemos dos casos:
 - Si *n* es primo, entonces tiene un factor primo.
 - Si no, existen dos naturales k₁, k₂ tales que n = k₁ · k₂ y donde 1 < k₁, k₂ < n. Como k₁ < n, por HI tiene un factor primo k₃. Como n = k₁ · k₂, entonces k₃ también es factor de n.

Por lo tanto, P(n) es verdadero para todo $n \in \mathbb{N}$ tal que $n \ge 2$.

Notemos que en TI, cuando n es primo en realidad es un caso base.

Equivalencia de principios de inducción

Teorema

Las siguientes condiciones son equivalentes:

- 1. Principio del buen orden.
- 2. Principio de inducción simple.
- 3. Principio de inducción fuerte.

Demostraremos solo que $1. \Rightarrow 2.$ Las implicancias $2. \Rightarrow 3. y \ 3. \Rightarrow 1.$ quedan propuestas.

ADVERTENCIA: usaremos el método de demostración por **contrapositivo**. Supondremos falso 2. y probaremos que 1. es falso.

Recordatorio: PBO y PIS

Principio del buen orden (PBO)

Todo subconjunto no vacío de los naturales tiene un menor elemento, i.e.

$$A \neq \emptyset, \ A \subseteq \mathbb{N} \implies \exists x \in A. \ \forall y \in A. \ (x \leq y)$$

Principio de inducción simple (PIS)

Para A un subconjunto de \mathbb{N} . Si se cumple que

- 1. $0 \in A$
- 2. Si $n \in A$, entonces $n + 1 \in A$

entonces $A = \mathbb{N}$.

Equivalencia de principios de inducción

Demostración (Propuesta 🖈)

Supongamos que el PIS es falso; es decir, existe un conjunto $A \subseteq \mathbb{N}$ que cumple las reglas del PIS, pero $A \neq \mathbb{N}$.

Sea entonces el conjunto $B = \mathbb{N} - A$, el cual cumple que $B \subseteq \mathbb{N}$ y $B \neq \emptyset$. Mostraremos que este conjunto no tiene menor elemento, y por lo tanto el PBO es falso.

Por contradicción, supongamos que B sí tiene un menor elemento al que llamamos b.

$$0 \in A \implies b \neq 0$$
 (def. de B)
 $\Rightarrow b - 1 \in \mathbb{N}$ (axioma 3 sobre antecesores de \mathbb{N})
 $\Rightarrow b - 1 \notin B$ (b es el menor de B)
 $\Rightarrow b - 1 \in A$ (def. de B)
 $\Rightarrow b \in A$ (A cumple reglas del PIS)

Esto contradice el hecho de que *b* sea el menor elemento de *B*.

Outline

Obertura

Inducción simple

Inducción fuerte

Epílogo

La dirección de la inducción

No olvidar la dirección en que se demuestra por inducción:

- Casos base son independientes (se hace a mano).
- Se asume verdadera la Hipótesis.
- A partir de la HI se demuestra la Tesis.

¡No se puede partir la demostración desde lo que se quiere demostrar!