Brief Article

Éloi Perdereau

July 25, 2013

1 Notations

Chemin Soit p et q deux points appartenant au complexe. On note $\lambda(p,q)$ la liste ordonnée des arêtes constituant le plus court chemin reliant p à q.

2 Définitions

On considerera le point o qui est le point du complexe dominant tout les autres.

Domination Soit a et b deux points de coordonnées respectives (x_a, y_a, z_a) et (x_b, y_b, z_b) . On dit que a domine b si $x_a \le x_b$, $y_a \le y_b$ et $z_a \le z_b$.

Prolongement interne Soit p et q deux points appartenant au complexe. On dit que q est dans le prolongement interne de $\lambda(o, p)$ si $\lambda(o, p) \subset \lambda(o, q)$.

Prolongement direct Soit p et q deux points tels que q est dans le prolongement interne de $\lambda(o, p)$. On dit que q est dans le prolongement direct de $\lambda(o, p)$ si $\lambda(p, q)$ n'est constitué que d'un seul segment.

Prolongement externe Soit p un point à l'intérieur du complexe et q un point à l'extérieur. q est dans le prolongement externe de $\lambda(o, p)$ s'il existe un point $q' \in [pq]$ tel que q' est dans le prolongement direct de $\lambda(o, p)$.

Prolongement vers une droite Soit p un point du complexe, et d une droite axe-parallèle (à définir) qui intersecte des points dominés par p. Le prolongement de $\lambda(o, p)$ vers d est un point $q \in d$ tel que q est dans le prolongement interne ou externe de $\lambda(o, p)$. Si q existe, il est unique.

Remarque Il peut y avoir plusieurs prolongement d'un chemin $\lambda(o, p)$ vers d.

Extension Soit λ_1 et λ_2 deux chemins dans le complexe. On dit que λ_2 est une extension de λ_1 si $\lambda_1 \subset \lambda_2$.

Extension unitaire Soit λ_1 et λ_2 deux chemins dans le complexe tels que λ_2 est une extension de λ_1 . On dit que λ_2 est une extension unitaire de λ_1 si $\lambda_2 - \lambda_1$ n'est constitué que d'un seul segment.

3 Calcul du prolongement d'un chemin vers une droite

Étant donné p un point appartenant à une et une seule arête e concave du complexe, et soit une droite d axe-parallèle qui intersecte des points dominés par p. On veut calculer le point q qui est le prolongement de $\lambda(o, p)$ vers d. Soit [rp] le dernier segment de $\lambda(o, p)$. Par définition r domine p.

On considère le plan P contenant [rp] et e et on note q_0 le point d'intersection de P et d. On considère le plan Q à plat par rapport à l'obstacle de e et on note q_1 le point d'intersection de Q et d.

 $q \in [q_0q_1]$