Final Exam Review

14.03.2023

Consolidation of Action Taken

Questions submitted by students: 1,2,3,4,5,6,7,8,9,14,16,18,20

Compensation: Question 6,7,8, and 9.

Re-grading: Question 2.

Folgefehler: Please write us individually for question 1 with subject: "[DBT]

Folgefehler Question 1 DBT WS-2022/23".

Tables	Join Plan	Cross Product	Join Size	Join Cost
{R, S, U}	(U x R) x S			
	(U x S) x R			
	(S x R) x U			

Given are four tables R(a,e), S(b,d), T(c,e), and U(a,d). Each relation has 1000 tuples. The relations have the following attribute domain cardinalities:

R(a, e)	S(b, d)	T(c, e)	U(a, d)
V(R,a) = 20			V(U,a) = 400
	V(S,b) = 10		
		V(T,c)=400	
	V(S,d) = 20		V(U,d) = 500
V(R,e) = 50		V(T,e) = 1000	

Compute the cost of the best left-deep join plan using dynamic programming and fill out the tables below.

Note: Read the notes below each table before filling out the answers.

Two tables (already provided):

Tables	$\{R,T\}$	$\{R,S\}$	$\{S,T\}$	$\{R,U\}$	$\{S,U\}$	$\{T,U\}$
Join Size	1000	1000000	1000000	2500	2000	1000000

1. <u>(U x R) x S</u>

- a. Join Size = $T(U \times R) \times T(S) / max(V((U \times R), d), V(S, d)) = 2500 \times 1000 / (max(20, 500)) = 5000$
- b. Cost = Size of $(U \times R) = 2500$

2. (U x S) x R

- a. $Cost = Size of (U \times S) = 2000$
- 3. (S x R) x U
 - a. Cost = Size of (S x R) = 1000000

Tables	Join Plan	Cross Product	Join Size	Join Cost
{R, S, U}	(U x R) x S	No	5000	2500
	(U x S) x R	No		2000
	(S x R) x U	Yes		1000000

Given are four tables R(a,e), S(b,d), T(c,e), and U(a,d). Each relation has 1000 tuples. The relations have the following attribute domain cardinalities:

R(a, e)	S(b, d)	T(c, e)	U(a, d)
V(R,a) = 20			V(U,a) = 400
	V(S,b) = 10		
		V(T,c)=400	
	V(S,d) = 20		V(U,d) = 500
V(R,e) = 50		V(T,e) = 1000	

Compute the cost of the best left-deep join plan using dynamic programming and fill out the tables below.

Note: Read the notes below each table before filling out the answers.

Two tables (already provided):

Tables	$\{R,T\}$	$\{R,S\}$	$\{S,T\}$	$\{R,U\}$	$\{S,U\}$	$\{T,U\}$
Join Size	1000	1000000	1000000	2500	2000	1000000

1. <u>(U x R) x S</u>

- a. Join Size = $T(U \times R) \times T(S) / \max(V((U \times R), d), V(S, d)) = 2500 \times 1000 / (\max(20, 500)) = 5000$
- b. Cost = Size of $(U \times R) = 2500$

2. (U x S) x R

- a. $Cost = Size of (U \times S) = 2000$
- 3. (S x R) x U
 - a. $Cost = Size of (S \times R) = 1000000$

Tables	Join Plan	Cross Product	Join Size	Join Cost
{R, T, U}	(T x U) x R	Yes	2500	1000000
	(R x U) x T	No		2500
	(R x T) x U	No		1000

Given are four tables R(a,e), S(b,d), T(c,e), and U(a,d). Each relation has 1000 tuples. The relations have the following attribute domain cardinalities:

R(a, e)	S(b, d)	T(c, e)	U(a, d)
V(R,a) = 20			V(U,a) = 400
	V(S,b)=10		
		V(T,c)=400	
	V(S,d) = 20		V(U,d) = 500
V(R,e) = 50		V(T,e) = 1000	

Compute the cost of the best left-deep join plan using dynamic programming and fill out the tables below.

Note: Read the notes below each table before filling out the answers.

Two tables (already provided):

Tables	$\{R,T\}$	$\{R,S\}$	$\{S,T\}$	$\{R,U\}$	$\{S,U\}$	$\{T,U\}$	
Join Size	1000	1000000	1000000	2500	2000	1000000	

1. <u>(T x U) x R</u>

- a. Join Size = $T(T \times U) * T(R) / max(V((T \times U), e), V(R, e)) * max(V(R, a), (T \times U), a))$
 - = 1000000 * 1000 / (max(50, 1000) * max(20, 400)) = 2500
- b. Cost = Size of (T x U) = 1000000
- 2. (R x U) x T
 - a. Cost = Size of $(R \times U) = 2500$
- 3. $(R \times T) \times U$
 - a. Cost = Size of $(R \times T) = 1000$

Three tables:

Tables	Join Plan	С	ross Product	Join Size	Join Cost
$\{R,S,T\}$	$(R \bowtie T) \bowtie S$		Yes \$	1000000	0
	$(S\bowtie R)\bowtie T$		Yes \$		0
	$(S\bowtie T)\bowtie R$		Yes \$		0
$\{R,S,U\}$	$(U\bowtie R)\bowtie S$		No \$	5000	2500
	$(U\bowtie S)\bowtie R$		No \$		2000
	$(S\bowtie R)\bowtie U$		Yes \$		0
$\{R,T,U\}$	$(T\bowtie U)\bowtie R$		Yes \$	2500	0
	$(R\bowtie U)\bowtie T$		No \$		2500
	$(R\bowtie T)\bowtie U$		No \$		1000
$\{S,T,U\}$	$(S\bowtie U)\bowtie T$		Yes \$	2000000	0
	$(T\bowtie U)\bowtie S$		Yes \$		0
	$(S\bowtie T)\bowtie U$		Yes \$		0

Given are four tables R(a,e), S(b,d), T(c,e), and U(a,d). Each relation has 1000 tuples. The relations have the following attribute domain cardinalities:

R(a, e)	S(b, d)	T(c, e)	U(a, d)
V(R,a) = 20			V(U,a) = 400
	V(S,b) = 10		
		V(T,c)=400	
	V(S,d) = 20		V(U,d) = 500
V(R,e) = 50		V(T,e) = 1000	

Compute the cost of the best left-deep join plan using dynamic programming and fill out the tables below.

Note: Read the notes below each table before filling out the answers.

Two tables (already provided):

Tables	$\{R,T\}$	$\{R,S\}$	$\{S,T\}$	$\{R,U\}$	$\{S,U\}$	$\{T,U\}$
Join Size	1000	1000000	1000000	2500	2000	1000000

Three tables:

Tables	Join Plan	Cross Product		Join Size	Join Cost
$\{R,S,T\}$	$(R\bowtie T)\bowtie S$		Yes \$	1000000	0
	$(S\bowtie R)\bowtie T$		Yes \$		0
	$(S\bowtie T)\bowtie R$		Yes \$		0
$\{R,S,U\}$	$(U\bowtie R)\bowtie S$		No \$	5000	2500
	$(U\bowtie S)\bowtie R$		No \$		2000
	$(S\bowtie R)\bowtie U$		Yes \$		0
$\{R,T,U\}$	$(T\bowtie U)\bowtie R$		Yes \$	2500	0
	$(R\bowtie U)\bowtie T$		No \$		2500
	$(R\bowtie T)\bowtie U$		No \$		1000
$\{S,T,U\}$	$(S\bowtie U)\bowtie T$		Yes \$	2000000	0
	$(T\bowtie U)\bowtie S$		Yes \$		0
	$(S\bowtie T)\bowtie U$		Yes \$		0

Given are four tables R(a,e), S(b,d), T(c,e), and U(a,d). Each relation has 1000 tuples. The relations have the following attribute domain cardinalities:

R(a, e)	S(b, d)	T(c, e)	U(a, d)
V(R,a) = 20			V(U,a) = 400
	V(S,b) = 10		
		V(T,c)=400	
	V(S,d) = 20		V(U,d) = 500
V(R,e) = 50		V(T,e) = 1000	

Compute the cost of the best left-deep join plan using dynamic programming and fill out the tables below.

Note: Read the notes below each table before filling out the answers.

Two tables (already provided):

Tables
$$\{R,T\}$$
 $\{R,S\}$ $\{S,T\}$ $\{R,U\}$ $\{S,U\}$ $\{T,U\}$ Join Size 1000 1000000 1000000 2500 2000 1000000