Feature Detection

Raul Queiroz Feitosa

Objetive

This chapter discusses the correspondence problem and presents approaches to solve it.

Outline

- □ The Correspondence Problem
- Corner Detection
 - Basics
 - Kanade Lucas Tomasi corner detector
 - Harris corner detector
 - Alternative approaches

□ SIFT

- Overview
- Keypoint detector
- Descriptor
- Matching
- Alternative Approaches

Introduction

Assume the point P in space emits light with the same energy in all directions (i.e., the surface around P is Lambertian)

then

$$I(\mathbf{p}) = I'(\mathbf{p}')$$

(brightness constancy constraint)

where p and p' are the images of P in the views I and I'.

The correspondence problem consists of establishing relationships between p and p', i.e.

$$I(p) = I'(h(p))$$
 (h o deformation)

Introduction: difficult to locate an accurate match ...

Promising image entities

Before starting the search for correspondences, it is convenient to locate entities, (interest points or keypoints) with good characteristics for an accurate match:

- 1. **Distinctiveness**: locally separable
- 2. **Invariance:** identifiable under the expected geometric and radiometric distortions
- **Stability**: appears in both images
- 4. **Seldomness**: globally separable

Types of invariance

Illumination

Scale

Rotation

Affine

Full

Perspective

Two groups of matching techniques

1. Feature Based: search for salient geometric features

2. **Area Based**: search for salient radiometric features

May be combined for improved accuracy.

Outline

- □ The Correspondence Problem
- Corner Detection
 - Basics
 - Kanade Lucas Tomasi corner detector
 - Harris corner detector
 - Alternative approaches

□ SIFT

- Overview
- Keypoint detector
- Descriptor
- Matching
- Alternative Approaches

Covariance matrix: definition

Let $\{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$ be a set of N points in a bidimensional space. The covariance matrix for this data set is defined by

$$\mathbf{S} = \frac{1}{N-1} \begin{bmatrix} \sum_{i} (x_i - \overline{x})^2 & \sum_{i} (x_i - \overline{x})(y_i - \overline{y}) \\ \sum_{i} (y_i - \overline{y})(x_i - \overline{x}) & \sum_{i} (y_i - \overline{y})^2 \end{bmatrix}$$

where

$$\overline{x} = \frac{1}{N} \sum_{i} x_{i} \quad \text{and} \quad \overline{y} = \frac{1}{N} \sum_{i} y_{i} \quad \frac{\text{actually valid }}{\text{any dimension}}$$

Covariance matrix: geometric interpretation

□ Let $X_i = (x_i - \overline{x})$ and $Y_i = (y_i - \overline{y})$. Clearly $\overline{X} = \overline{Y} = 0$, and

$$(N-1)S = \begin{bmatrix} \sum_{i} (x_{i} - \bar{x})^{2} & \sum_{i} (x_{i} - \bar{x}) (y_{i} - \bar{y}) \\ \sum_{i} (x_{i} - \bar{x}) (y_{i} - \bar{y}) & \sum_{i} (y_{i} - \bar{y})^{2} \end{bmatrix} = \begin{bmatrix} \sum_{i} X_{i}^{2} \sum_{i} X_{i} Y_{i} \\ \sum_{i} X_{i} Y_{i} & \sum_{i} Y_{i}^{2} \end{bmatrix}$$

- □ Let $\lambda_1 \ge \lambda_2$ and \mathbf{e}_1 and \mathbf{e}_2 be the eingenvalues/eigenvectors of \mathbf{S} .
- $f e_1$ points in the direction of maximum variance.
- \bullet **e**₂ is perpendicular to **e**₁.
- Each eigenvalue is proportional to the variance of the projections over the corresponding eigenvector.

Mathematical Description

Let $[G_x G_y]^T$ denote the gradient components on a pixel p and C the matrix defined as

$$\mathbf{C} = \sum_{\mathcal{Q}} \begin{bmatrix} G_x^2 & G_x G_y \\ G_x G_y & G_y^2 \end{bmatrix}$$

for each point p in the image, where the sums are taken over a small neighborhood Q.

□ This corresponds (up to a scale) to the covariance matrix of the following dataset

Local Gradient Behavior

On uniform regions
 magnitude of the gradient is small

both eigenvalues λ_1 and λ_2 of **C** will be small.

Local Gradient Behavior

On edgessignificant changes in magnitude but not in direction

One eigenvalue (λ_1) of **C** will be large and the other (λ_2) small.

Local Gradient Behavior

On cornerssignificant changes in magnitude as well as in direction

both eigenvalues λ_1 and λ_2 of **C** will be large.

Outline

- □ The Correspondence Problem
- Corner Detection
 - Basics
 - Kanade Lucas Tomasi corner detector
 - Harris corner detector
 - Alternative approaches

□ SIFT

- Overview
- Keypoint detector
- Descriptor
- Matching
- Alternative Approaches

Corner Detection (Kanade Lucas Tomasi)

Geometric interpretation of the eigenvalues

- □ neighborhood Q on a uniform region $\rightarrow \lambda_2 \approx \lambda_1 \approx 0$
- □ neighborhood Q over an ideal edge $\rightarrow \lambda_2 \approx 0, \lambda_1 > 0$
- □ neighborhood Q over an ideal corner $\rightarrow \lambda_1 \ge \lambda_2 > 0$

Defining **cornerness** $R(x_p, y_p)$ of a point p as:

$$R(x_p, y_p) = \min(|\lambda_1|, |\lambda_2|)$$

A corner is a location where $R(x_p, y_p)$ is large enough.

Corner Detection (Kanade Lucas Tomasi)

Corner Detection (Kanade Lucas Tomasi)

Algorithm

- 1. Compute the image gradient over the entire image
- 2. For each image point *p*
 - a) Form the matrix \mathbb{C} over a $(2N+1) \times (2N+1)$ neighborhood Q.
 - b) Compute $R(x_p, y_p)$.
 - c) If $R(x_p, y_p) > \tau_{KLT}$, save the coordinates of p into a list L.
- 3. Go through the list L in decreasing order of $R(x_p, y_p)$; if it does not fall within the minimum separation space of any previously selected corner, then select it; otherwise discard it.

Outline

- □ The Correspondence Problem
- Corner Detection
 - Basics
 - Kanade Lucas Tomasi corner detector
 - Harris corner detector
 - Alternative approaches

□ SIFT

- Overview
- Keypoint detector
- Descriptor
- Matching
- Alternative Approaches

Harris uses a smoothed version of the matrix C, given by

$$\mathbf{M} = \sum_{Q} w_{Q} \begin{bmatrix} G_{x}^{2} & G_{x}G_{y} \\ G_{x}G_{y} & G_{y}^{2} \end{bmatrix}$$

where $w_Q(u,v)$ is a smooth circular window (usually a Gaussian).

Harris proposes another cornerness measure.

If λ_1 and λ_2 are the eigenvalues of matrix **M**, then *R* is given by:

$$R = \lambda_1 \lambda_2 - k \left(\lambda_1 + \lambda_2\right)^2 = \det(\mathbf{M}) - k \left[\operatorname{tr}(\mathbf{M}) \right]^2$$

$$(k - \text{empirical constant}, k = 0.04 - 0.06)$$

which should be interpreted in the following way:

- \square R is large for a corner,
- \Box R is negative with large magnitude for an edge, and
- \square |R| is small for a flat region.

Algorithm

- 1. Compute the image gradient over the entire image
- 2. For each image point *p*
 - a) Form the matrix **M** over a $(2N+1) \times (2N+1)$ neighborhood Q.
 - b) Compute $R(x_p, y_p)$.
 - c) If $R(x_p, y_p) > \tau_{\text{Harris}}$, save the coordinates of p into a list L.
- 3. Find points with large corner response : $R > \tau_{\text{Harris}}$,
- 4. Take only the points of local maxima of *R*.

Corner Detection (Kanade Lucas Tomasi)

For
$$\tau_{KLT} = 0.01$$

L_omin=0.01 Qsize=7

Corner Detection (Kanade Lucas Tomasi)

For
$$\tau_{KLT} = 0.1$$

L_omin=0.1 Qsize=7

For
$$\tau_{Harris} = 0.001$$

Rmin=0.001 Qsize=7

For $\tau_{Harris} = 0.01$

Rmin=0.01 Qsize=7

Corner Detection so far

Some Properties

□ Rotation invariant: eigenvectors rotate with the image

- Partially invariant to affine intensity change
 - invariant to intensity shift (I = I + b): only derivatives count
 - partially invariant to intensity scale (I=aI)
- Non-invariant to image scale

corner

5

Outline

- □ The Correspondence Problem
- Corner Detection
 - Basics
 - Kanade Lucas Tomasi corner detector
 - Harris corner detector
 - Multi scale Harris corner detector
 - Alternative approaches

SIFT

- Overview
- Keypoint detector
- Descriptor
- Matching
- Alternative Approaches

Alternative Corner Detectors

Förstner

FÖRSTNER, W. and GÜLCH, E. A fast operator for detection and precise location of distinct points, corners and circular features. Intercommission Conf. on Fast Processing of Photogrammetric Data, p. 281-305, 1987.

SUSAN

SMITH, S.M.; BRADY, J.M., SUSAN – a new approach to low level image processing. Journal of Computer Vision, v.23, n.1, p. 45-78, 1997.

Harris-Laplacian

MIKOLAJCZYK, K.; SCHMID, C. Indexing based on scale invariant interest points, Proceedings Eighth IEEE International Conference on Computer Vision - ICCV 2001., v. 1, pp.525 - 531, 2001

Multi-scale

BROWN, M.; SZELISKI, R.; WINDER, S. Multi-image matching using multi-scale oriented patches, Conf. on Computer Vision and Pattern Recognition - CVPR 2005, v. 1, p 510-517, 2005.

• • •

Assignment on Corner Detectors

Download the <u>program</u> that implements the Harris and KLT Corner Detectors. Read the help, choose some <u>image</u> and test it.

Outline

- □ The Correspondence Problem
- Corner Detection
 - Basics
 - Kanade Lucas Tomasi corner detector
 - Harris corner detector
 - Multi scale Harris corner detector
 - Alternative approaches

SIFT

- Overview
- Keypoint detector
- Descriptor
- Matching
- Alternative Approaches

SIFT

Scale Invariant Feature Transform

David G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, 60, 2 (2004), pp. 91-110.

SIFT

Overview: Advantages

- □ Invariance to
 - Image scale,
 - Rotation on the plane.
- Robustness to
 - Affine distortion,
 - Change in 3D viewpoint,
 - Addition to noise.
- □ **Locality:** feature are local, so robust to occlusion and clutter
- □ **Distinctiveness**: individual features can be matched to a large database of objects
- Quantity: many features can be generated for even small objects.

SIFT

Example:

SIFT

Basic Steps:

- 1. Scale-space extrema detection
- 2. Keypoint localization
- 3. Orientation assignment
- 4. Keypoint descriptor construction
- 5. Matching keypoints

Interest-point detection

Description

Outline

- □ The Correspondence Problem
- Corner Detection
 - Basics
 - Kanade Lucas Tomasi corner detector
 - Harris corner detector
 - Alternative approaches

SIFT

- Overview
- Keypoint detector
- Descriptor
- Matching
- Alternative Approaches

Image Pyramid

The scale-space representation:

The input image is successively smoothed with a Gaussian kernel and subsampled, forming an image pyramid.

Overview:

Detecting Extrema:

Algorithm:

1. The image size is doubled

This implies in a smoothing corresponding to σ =0.5. Thus, the first smoothing should use σ =0.5 and from then on σ =1.6.

Algorithm:

2. Build the Gaussian pyramid

Algorithm:

3. Build the DoG pyramid - $D(x,y,\sigma)$

second octave

third octave

Scale-space extrema detection - algorithm:

4. Extrema in 3D

Accurate Keypoint Localization

- □ From difference-of-Gaussian local extrema detection we obtain approximate values for keypoints.
- Originally these approximations were used directly.
- □ For an improvement in matching and stability, fitting to a 3D quadratic function is used.
- □ It is specially important to localize keyponts detected on higher octaves.

Accurate Keypoint Localization

 A quadratic function is fitted to the sample points and its maximum is the correct location

- □ For the 3D DoG function $D(x,y,\sigma)$,
 - 1. Take Taylor Series Expansion of scale-space function

$$D(\mathbf{x}) = D + \frac{\partial D^T}{\partial \mathbf{x}} \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 D}{\partial \mathbf{x}^2} \mathbf{x}$$

where

D and its derivatives are evaluated at the sample point and $\mathbf{x} = (x, y, \sigma)$ is the offset from this point.

2. Use up to quadratic terms

Accurate Keypoint Localization

- □ For the 3D DoG function $D(x,y,\sigma)$,
 - 3. take derivative of

$$D(\mathbf{x}) = D + \frac{\partial D^T}{\partial \mathbf{x}} \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 D}{\partial \mathbf{x}^2} \mathbf{x}$$

and set to 0; this yields

$$\frac{\partial D}{\partial \mathbf{x}} + \frac{\partial^2 D}{\partial \mathbf{x}^2} \hat{\mathbf{x}} = 0 \qquad \rightarrow \qquad \hat{\mathbf{x}} = -\frac{\partial^2 D}{\partial \mathbf{x}^2} \frac{\partial D}{\partial \mathbf{x}}$$

where $\hat{\mathbf{x}}$ is the offset from the sample point.

Filtering out weak keypoints

- Keypoints with low contrast are discarded
 - Evaluate the function (DoG) value at the location and scale of the keypoint (replace the formula for $\hat{\mathbf{x}}$ in the Taylor approximation of $D(\mathbf{x})$)

$$D(\hat{\mathbf{x}}) = D + \frac{1}{2} \frac{\partial D^T}{\partial \mathbf{x}} \hat{\mathbf{x}}$$

If $|D(\hat{\mathbf{x}})| < 0.03$ discard it, whereby the image intensities are normalized in [0 1].

Filtering out weak keypoints

- Keypoints along edges are discarded
 - Evaluate the Hessian function at the extrema

$$\mathbf{H} = \begin{bmatrix} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{bmatrix}$$

- If λ_1 and λ_2 are the eigenvalues of **H**, and $r = \lambda_1/\lambda_2 > 1$
- We know that $\frac{\operatorname{tr}(\mathbf{H})^2}{\det(\mathbf{H})} = \frac{(\lambda_1 + \lambda_2)^2}{\lambda_1 \lambda_2} = \frac{(r+1)^2}{r}$
- If $\frac{\text{tr}(\mathbf{H})^2}{\text{det}(\mathbf{H})} > \frac{(r_{\text{max}} + \mathbf{I})^2}{r_{\text{max}}}$ for $r_{\text{max}} = 10$, discard it.

Example from Lowe

original image

The initial 832 keypoints locations at extrema of DoG. Vectors indicating scale, orientation, and location.

After applying a threshold on minimum contrast, 729 keypoints remain.

The final 536 keypoints after threshold on ratio of principal curvatures.

Outline

- □ The Correspondence Problem
- Corner Detection
 - Basics
 - Kanade Lucas Tomasi corner detector
 - Harris corner detector
 - Alternative approaches

SIFT

- Overview
- Keypoint detector
- Descriptor
- Matching
- Alternative Approaches

Assigning an Orientation

- \Box Take the image L at the scale closest to the keypoint.
- magnitude and orientations of gradient around the key point are calculated according to

$$m(x, y) = \sqrt{(L(x+1, y) - L(x-1, y))^2 + (L(x, y+1) - L(x, y-1))^2}$$

$$\theta(x, y) = \tan^{-1}((L(x, y+1) - L(x, y-1))/(L(x+1, y) - L(x-1, y)))$$

- Compute the *orientation histogram* with 36 bins. Each sample is weighted by
 - gradient magnitude and
 - Gaussian circular window with a σ equal to 1.5 times scale of keypoint

Assigning an Orientation

Assigning an Orientation

- □ Highest peak in orientation histogram is found along with any other peaks within 80% of highest peak \rightarrow more than one orientation may be assigned to a key point.
- □ A parabola is fit to the 3 closest histogram values to each peak and its maximum is taken → more accurate peak detection.
- □ Thus each keypoint has 4 dimesions:
 - \blacksquare x location,
 - y location,
 - \bullet σ scale, and
 - orientation

Building the Keypoint Descriptor

1. Compute the gradient magnitude and orientation at each image sample point around the keypoint. These are weighted by a Gaussian window, with $\sigma = 1/2$ width of the descriptor window.

to achieve orientation invariance, the coordinates of the descriptor and the gradient orientations are rotated relative to the keypoint orientation.

Image gradients

Building the Keypoint Descriptor

2. Form *orientation histograms* summarizing the contents over 4x4 subregions, with the *length* of each arrow given by the sum of the gradient magnitudes near that direction within the region.

Building the Keypoint Descriptor

- 3. Avoiding boundary effects between histograms
- Weight equal to 1 d, for each of the 3 dimensions where d is the distance of a sample to the center of a bin

Building the Keypoint Descriptor

- 4. Ensuring invariance to illumination
- □ Vector is normalized to 1; its components are thresholded to no larger than 0.2 and then the vector is normalized again.

Building the Keypoint Descriptor

This figure shows a 2×2 descriptor array computed from an 8×8 set of samples, whereas the experiments in this paper use 4×4 descriptors computed from a 16×16 sample array." Lowe

Keypoint Descriptor provides invariance to

- Scale (by using the DoG pyramid)
- □ Illumination (by using the gradients + normalization)
- Rotation (by rotating the description relative to the main direction)
- □ 3D camera viewpoint (to a certain extent)

Outline

- □ The Correspondence Problem
- Corner Detection
 - Basics
 - Kanade Lucas Tomasi corner detector
 - Harris corner detector
 - Alternative approaches

SIFT

- Overview
- Keypoint detector
- Descriptor
- Matching
- Alternative Approaches

Up to this point we have:

- □ Found rough approximations for features by looking at the difference-of-Gaussians
- □ Localized the keypoint more accurately
- □ Thresholded poor keypoints
- □ Determined the orientation of a keypoint
- □ Calculated a 128 feature vector for each keypoint

How to find corresponding keypoints on a pair (or more) of images?

Keypoint Matching

- □ The *dissimilarity measure* is given by the Euclidean distance between descriptors.
- □ Independently match all keypoints in all octaves in one image with all keypoints in all octaves in other image.
- □ Take the closest neighbor.
- □ If the ratio of closest nearest neighbor with second closest nearest neighbor, is greater than 0.8, discard them.

False × True Match distributions

- □ Threshold at 0.8
 - Eliminates 90% of false matches
 - Eliminates less than 5% of correct matches

Example of Matching

Outline

- □ The Correspondence Problem
- Corner Detection
 - Basics
 - Kanade Lucas Tomasi corner detector
 - Harris corner detector
 - Multi scale Harris corner detector
 - Matching
 - Alternative approaches

SIFT

- Overview
- Keypoint detector
- Descriptor
- Matching
- Alternative Approaches

SIFT Related References

SIFT

- LOWE, D.G. Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, v. 60, n. 2, pp. 91-110, 2004.
- SUSAN, S., JAIN, A., SHARMA, A., VERMA, A., JAIN, S., Fuzzy match index for scale-invariant feature transform (SIFT) features with application to face recognition with wek supervision, IET Image Processing, v. 9, n. 11, pp. 951-958m 2915

SURF

- BAY, H.; ESS, A.; TUYTELAARS, T.; VAN GOOL, L. Speeded-up robust features (SURF). Journal of Computer Vision and Image Understanding, v.110, n.3, p. 346-359, 2008.
- SANGINETO, E., Pose and Expression Independent Facil Landmark Localization Using Dense-SURF and the Hausdorff Distance, IEEE Trans. Pattern Analysis and Machine Intelligence, v. 35, n. 3, p. 624-637, 2013.

DAISY

■ TOLA, E.; LEPETIT, V.; FUA, DAISY: An efficient dense descriptor applied to wide-baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, v.32, n.5, p. 825-830, 2009.

HoG

- <u>DALAL, N. and B. TRIGGS. Histograms of Oriented Gradients for Human Detection, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1 (June 2005), pp. 886–893., v.32, n.5, p. 825-830, 2009.</u>
- DÉNIZ, O, BUENO, G., SALIDO, J. Dela TORRE, F., Face recognition using Histograms of Oriented Gradients, Pattern Recognition Letters, v. 32, n.12, (September 2011), pp. 1598-1603.

Assignment on SIFT

Write an extension to the program you developed for the Assignment on Homographies so that you use the

- a) SIFT, and
- b) SURF.

algorithms to automatically select pairs of corresponding points. Test your program with different sets of images and discuss the results. (*hint:* use the packages available here for <u>SIFT</u>, and <u>SURF</u>).

Next Topic

Cameras