Obligatory Excercise 1 2014 TMA4275 - Lifetime analysis NTNU

10057

March 11, 2014

a)

The Kaplan-Meier estimator is $\hat{R}_1(t) = \prod_{T_{i_i} \leq t} \frac{n_i - d_i}{n_i}$ where n_i is the number of units at risk, and d_i is the number of unit failing at time t_i , $n_i = n_{i-1} - d_{i-1} - c_{i-1}$ where c_i is the censoring at time T_i . The given values together with the formula gives the values in table 1.

time	expression		value
23	$\frac{13-1}{13}$	=	0.9231
47	$\frac{13-1}{13} \cdot \frac{12-1}{12}$	=	0.8461
69	$\frac{13-1}{13} \cdot \frac{12-1}{12} \cdot \frac{11-1}{11}$	=	0.7692
148	$\frac{13-1}{13} \cdot \frac{12-1}{12} \cdot \frac{11-1}{11} \cdot \frac{6-1}{6}$	=	0.6410
181	$\frac{13-1}{13} \cdot \frac{12-1}{12} \cdot \frac{11-1}{11} \cdot \frac{6-1}{6} \cdot \frac{5-1}{5}$	=	0.5128

Table 1: Table with survival probability for the negatively stained group.

As we can see from the table above, the quantile for $t_{0.75}$ is approximate 69, but because of censoring there is not a good estimate for the $t_{0.25}$ quantile. The median is also not possible to find because of the lack of $t_{0.25}$ quantile value.

Greenwoods formula is for standard error is

$$\widehat{SD(\hat{R}_1(t))} = \sqrt{\widehat{\operatorname{var}(\hat{R}(t))}} = \hat{R}(t) \cdot \sqrt{\sum_{T_{1_i} \le t} \frac{d_i}{n_i(n_i - d_i)}}$$

The standard error can be found in table 2.

The estimated lifetime $E(T_1) = \int_0^\infty R(t)dt$ can be approximated by a sum when we use $\hat{R}_1(t)$ instead of $R_1(t)$. We the get

$$\hat{E(t)} \sum_{i} \hat{R}(T_i)(T_i - T_{i-1}) = 1 \cdot (23 - 0) + 0.9231 \cdot (47 - 23) + 0.8461 \cdot (69 - 47) + 0.7692 \cdot (148 - 69) + 0.6410 \cdot (181 - 148) + 0.5128 \cdot (224 - 181) = 167.74$$

This is the same as the area under the curve in figure 1.

time expression value
$$23 \quad 0.9231 \cdot \sqrt{\frac{1}{13(13-1)}} = 0.0739$$

$$47 \quad 0.8461 \cdot \sqrt{\frac{1}{13(13-1)} + \frac{1}{12(12-1)}} = 0.1001$$

$$69 \quad 0.7692 \cdot \sqrt{\frac{1}{13(13-1)} + \frac{1}{12(12-1)} + \frac{1}{11(11-1)}} = 0.1169$$

$$148 \quad 0.6410 \cdot \sqrt{\frac{1}{13(13-1)} + \frac{1}{12(12-1)} + \frac{1}{11(11-1)} + \frac{1}{6(6-1)}} = 0.1522$$

$$181 \quad 0.5128 \cdot \sqrt{\frac{1}{13(13-1)} + \frac{1}{12(12-1)} + \frac{1}{11(11-1)} + \frac{1}{6(6-1)} + \frac{1}{5(5-1)}} = 0.2091$$

Table 2: Table with estimated time to fail for the negatively stained group.

Figure 1: A figure showing the survival data together with the 95 % confidence interval.

Because of censoring we do not have the last points, but if we pretend that the fail-rate continue as it has, the estimated expected lifetime could seem to be a little pessimistic. We also see that about half the population has failed at about 175. So I would expect the real value to be a bit higher than the estimation.

b)

The Nelson-Aalen estimator is given by

$$\hat{Z}_{NA}(t) = \sum_{T_{1_i} \le t} \frac{d_i}{n_i}$$

With d_i and n_i as in a). Nelson-Aalen values for the hazard rate is given in table 3.

time	expression		value
23	$\frac{1}{13}$	=	0.0769
47	$\frac{1}{13} + \frac{1}{12}$	=	0.1603
69	$\frac{1}{13} + \frac{1}{12} + \frac{1}{11}$	=	0.2512
148	$\frac{1}{13} + \frac{1}{12} + \frac{1}{11} + \frac{1}{6}$	=	0.4178
181	$\frac{1}{13} + \frac{1}{12} + \frac{1}{11} + \frac{1}{6} + \frac{1}{5}$	=	0.6178

Table 3: Table with hazard rates calculated using the Nelson-Aalen estimator using the negatively stained data.

From figure 2 I would expect the hazard-rate to be constant, or close to constant, but it is difficult to be sure with so few data points.

The hazard-rate in plot 3 is not as straight as in plot 2. So the hazard-rate for the positively stained case could definitely be time-dependant. It seams to be concave shaped, so it has a decreasing failure rate.

c)

TTT plot is given by

$$(\frac{i}{n}, \frac{Y_i}{Y_n})$$

Where
$$Y_i = \sum_{j=1}^{i-1} T_j + (n-i+1)T_i$$

Figure 2: Plot of Nelson-Aalen hazard-rate in table 3, from the negatively stained data.

Figure 3: Plot of Nelson-Aalen hazard-rate of the positively stained data from minitab.

We now want to test if the data has a monotone hazard-rate. To check this we can use a Barlow-Proschan's test:

 $H_0: T \operatorname{expon}(\lambda)$ versus $H_1: T$ has monotone hazard.

Table 4: A table of the values used for the TTT-plot.

Figure 4: TTT-plot made from the values in table 4.

We the need to compute

$$Z = \frac{W - \frac{n-1}{2}}{\sqrt{\frac{n-1}{2}}}$$

where

$$W = \frac{Y_1}{Y_n} + \frac{Y_2}{Y_n} + \dots + \frac{Y_{n-1}}{Y_n}$$

where Y_i is a above. Reject H_1 if $Z \leq -z_{\alpha/2}$ or $Z \geq z_{\alpha/2}$. Barlow-Proschan's test only works with uncensored data, we therefore take out all censored data from the set before we do the calculations. This gives the following numbers: n=5, W=2.2179, which gives Z=0.1541. Therefore we easily reject H_1 when $\alpha=0.05$. That is, when $z_{\alpha/2}=1.96$, and conclude that the data does not have a monotone hazard-rate.

Figure 5: TTT-plot by minitab of the positively stained data.

We now want to do a Barlow-Proschan-test for the positively stained data, because it looks like it might have some DFR-tendencies. As with in the negatively stained case we also here take away the censored data, and make a test with

 $H_0: T \operatorname{expon}(\lambda) \operatorname{versus} H_1: T \operatorname{has DFR}.$

We reject H_1 if $Z \le -z_{\alpha}$. Minitab gives n = 18 W = 7.4858, which gives a Z = -0.1193. With $z_{0.05} = 1.65$, we do not reject H_1 and conclude that the data for the positively stained case has DFR.

d)

As we can see in figure 6 it seems that the population the negatively stained group had a tendency to live longer than the population in the positively stained group.

e)

We want to test the data in d) to see if the groups really have a different lifetime using a logrank test.

 $H_0: R_1(t) = R_2(t)$ versus $H_1: R_1(t) \neq R_2(t)$. We reject H_0 if $V \geq \chi_1^2$. Where $V = \frac{(O_1 - E_1)^2}{E_1} + \frac{(O_2 - E_2)^2}{E_2}$, $E_i = \sum_{j=1}^k E_{ij} = \sum_{j=1}^k \frac{O_j}{N_j} \cdot N_{ij}$ is the estimated expected number of failures, $O_j = \sum_{i=1}^n O_{ij}$ observed number of failures at time T_j , $N_j = \sum_{i=1}^n N_{ij}$ is the number at risk, n is number of groups to compare, and k is the number of failure times.

For this case n=2, k=19. The rest of the numbers are given in the table 5.

Figure 6: A survival plot with the negatively stained data(blue) and the positively stained data(red), by minitab.

Time	O_{1j}	O_{2j}	N_{1j}	N_{2j}	N_{j}	E_{1j}	E_{2j}
5	0	1	13	20	$3\ddot{3}$	13/33	20/33
8	0	1	13	19	32	13/32	19/32
10	0	1	13	18	31	13/31	18/31
13	0	1	13	17	30	13/30	17/30
18	0	1	13	16	29	13/29	16/29
23	1	0	13	15	28	13/28	15/28
24	0	1	12	15	27	12/27	15/27
26	0	1	12	14	26	12/26	14/26
31	0	1	12	13	25	12/25	13/25
35	0	1	12	12	24	12/24	12/24
47	1	0	12	11	23	12/23	11/23
50	0	1	11	11	22	11/22	11/12
59	0	1	11	10	21	11/21	10/21
61	0	1	11	9	20	11/20	9/20
69	1	0	11	8	19	11/19	8/19
118	0	1	6	5	11	6/11	5/11
143	0	1	6	4	10	6/10	4/10
148	1	0	6	3	9	6/9	3/9
181	1	0	5	1	6	5/6	1/6
SUM	5	14				9.77	9.23

Table 5: Calculated values for E_i , N_{ij} , O_{ij}

We get V=4.7940. $\chi_1^2=3.84$ for $\alpha=0.05$, so we reject the H_0 at $\alpha=0.05$. We therefore conclude that the lifetimes are different.

f)

Figure 7: Fitted distributions over the positively stained case.

At figure 7 we see that the positively stained data fits the lognormal plot best.

At figure 8 we see that the data fits all the models, probably due to too little data, but if I had to, I would say log-logistics fits the data best.

The difference in the average lifetimes (MTTF) for the different models can be due of the different way the model fit data. Some models have a long tail, and some data have a higher peak at the center, changing the mean.

$\mathbf{g})$

Log-location-scale families are distributions where $Y = \ln(T) = \mu + \sigma Z$, Where Z is normal distributed. The location parameter is the expected value, μ . The location of the peak can be moved by changing μ . The scale parameter, σ determines the shape of the distribution. Changing σ will spread or gather the probability.

Figure 8: Fitted distributions over the negatively stained case.

To find the hazard-function for the log-logistics distribution we start with probability density function $\phi(x) = \frac{e^x}{(e^x+1)^2}$, and the cumulative distribution function $\Phi(x) = \frac{e^x}{e^x+1}$. From this we can calculate the survival-function, R(t).

$$R(t) = P(T > t) = P(\ln(T) > \ln(t)) = P(\mu + \sigma Z > \ln t) = P(Z > \frac{\ln(t) - \mu}{\sigma}) = 1 - \Phi(\frac{\ln(t) - \mu}{\sigma})$$

so the survival function becomes

$$R(t) = \frac{1}{e^{\frac{\ln(t) - \mu}{\sigma}} + 1}$$

We also have f(t) = -R'(t), and with some work we get

$$f(t) = \frac{e^{\frac{\ln(t) - \mu}{\sigma}}}{(e^{\frac{\ln(t) - \mu}{\sigma}} + 1)^2} \cdot \frac{1}{t\sigma}$$

Finally we know that

$$z(t) = \frac{f(t)}{R(t)} = \frac{e^{\frac{\ln(t) - \mu}{\sigma}}}{e^{\frac{\ln(t) - \mu}{\sigma}} + 1} \frac{1}{t\sigma} = \frac{1}{\sigma} \frac{t^{1/\sigma - 1}}{t^{1/\sigma} + e^{\mu/\sigma}}$$

Which is the hazard distribution for the log-logistics distribution.