- 1. As an ornithologist, you wish to determine the average body mass of *Seiurus noveboracensis*. You randomly capture 31 adults of *Seiurus noveboracensis*, resulting in a sample mean of 20.47 grams and a sample standard deviation of 3.53 grams. You decide to report a 95% confidence interval.
 - (a) Determine the lower bound of the confidence interval.
 - (b) Determine the upper bound of the confidence interval.

SOLUTION We are given the sample size, sample mean, sample standard deviation, and confidence level.

$$n = 31$$

 $\bar{x} = 20.47$
 $s = 3.53$
 $CL = 0.95$

Determine the degrees of freedom (because we don't know σ and we are doing inference so we need to use the t distribution).

$$df = n - 1 = 30$$

Determine the critical t value, t^* , such that $P(|T| < t^*) = 0.95$.

$$t^* = 2.04$$

Calculate the standard error.

$$SE = \frac{s}{\sqrt{n}} = \frac{3.53}{\sqrt{31}} = 0.634$$

We want to make an inference about the population mean.

$$\mu \approx \bar{x} \pm t^* SE$$

Determine the bounds.

$$CI = (\bar{x} - t^*SE, \bar{x} + t^*SE)$$

= $(20.47 - 2.04 \times 0.634, 20.47 - 2.04 \times 0.634)$
= $(19.2, 21.8)$

We are 95% confident that the population mean is between 19.2 and 21.8.

- (a) Lower bound = 19.2
- (b) Upper bound = 21.8

2. A teacher has 6 students who have each taken two quizzes. Perform a two-tail test with significance level 0.04 to determine whether students' performance changed on average.

	student1	student2	student3	student4	student5	student6
quiz 1:	62.9	83.4	55.8	57.7	85.9	62.3
quiz 2:	48.8	78.3	49.1	52.3	88.8	53.9

- (a) State the null hypothesis.
- (b) State the alternative hypothesis.
- (c) Evaluate the critical value. (The critical value is either z^* or t^* . Determine its value.)
- (d) Determine the standard error of the relevant sampling distribution.
- (e) Evaluate the absolute value of the test statistic. (The test statistic is either z_{obs} or t_{obs} . Determine its absolute value.)
- (f) If possible, evaluate the p-value. Otherwise, describe an interval containing the p-value.
- (g) Do we reject or retain the null?

SOLUTION We are given paired data. We are considering a mean of differences. Label the given information.

$$n = 6$$

$$\alpha = 0.04$$

State the hypotheses.

$$H_0$$
: $\mu_{\text{diff}} = 0$

$$H_A$$
: $\mu_{diff} \neq 0$

Determine the degrees of freedom.

$$df = n - 1 = 5$$

We determine t^* such that $P(|T| > t^*) = 0.04$.

$$t^* = 2.76$$

Subtract each student's scores to get the differences.

	student1	student2	student3	student4	student5	student6
quiz2-quiz1:	-14.1	-5.1	-6.7	-5.4	2.9	-8.4

Find the sample mean.

$$\overline{X_{\text{diff}}} = -6.13$$

Find the sample standard deviation.

$$S_{\text{diff}} = 5.52$$

Determine the standard error.

$$SE = \frac{s_{\text{diff}}}{\sqrt{n}} = 2.25$$

Calculate the observed *t* score.

$$t_{\text{obs}} = \frac{\overline{X_{\text{diff}}} - (\mu_{\text{diff}})_0}{SE} = \frac{-6.13 - 0}{2.25} = -2.724$$

Compare $|t_{obs}|$ and t^* .

$$|\mathit{t}_{\mathsf{obs}}| < \mathit{t}^{\star}$$

We can determine an interval for the p-value using the t table.

We conclude that we should retain the null hypothesis.

- (a) H_0 : $\mu_{\text{diff}} = 0$
- (b) H_A : $\mu_{diff} \neq 0$
- (c) $t^* = 2.76$

- (d) SE = 1.776631
- (e) $|t_{obs}| = 2.724$
- (f) 0.04 < p-value < 0.05
- (g) retain the null

3. You are interested in whether a treatment causes an effect on a continuously measurable attribute. You use a treatment group with 5 cases and a control group with 5 cases. You decide to run a hypothesis test with a significance level of 0.04. Your data is below. Please use 5 for the degrees of freedom (calculated with the Welch-Satterthwaite equation).

treatment	control
14.8	13.4
12.3	12.2
15.1	10.8
13.4	13
17.7	10.6

- (a) State the null hypothesis.
- (b) State the alternative hypothesis.
- (c) Evaluate the critical value. (The critical value is either z^* or t^* . Determine its value.)
- (d) Determine the standard error of the relevant sampling distribution.
- (e) Evaluate the absolute value of the test statistic. (The test statistic is either $z_{\rm obs}$ or $t_{\rm obs}$. Determine its absolute value.)
- (f) If possible, evaluate the p-value. Otherwise, describe an interval containing the p-value.
- (g) Do we reject or retain the null?

SOLUTION We are given unpaired data. We are considering a difference of means. Label the given information.

$$n_1 = 5$$

 $n_2 = 5$
 $\alpha = 0.04$

State the hypotheses.

$$H_0: \mu_2 - \mu_1 = 0$$

 $H_A: \mu_2 - \mu_1 \neq 0$

We are using a two-tail test. Find t^* such that $P(|T| > t^*)$ by using a t table.

$$t^* = 2.76$$

Determine the sample statistics. Use a calculator!

$$\bar{x}_1 = 14.7$$
 $s_1 = 2.04$
 $\bar{x}_2 = 12$
 $s_2 = 1.26$

Calculate the standard error.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}}$$
$$= \sqrt{\frac{(2.04)^2}{5} + \frac{(1.26)^2}{5}}$$
$$= 1.07$$

Determine the test statistic.

$$t_{\text{obs}} = \frac{(\bar{x}_2 - \bar{x}_1) - (\mu_2 - \mu_1)_0}{SE}$$
$$= \frac{(12 - 14.7) - (0)}{1.07}$$
$$= -2.52$$

Compare $|t_{obs}|$ and t^* .

$$|\mathit{t}_{\mathsf{obs}}| < \mathit{t}^{\star}$$

We can determine an interval for the p-value using the t table.

$$0.05 < p$$
-value < 0.1

Compare *p*-value and α .

$$p$$
-value $> \alpha$

We conclude that we should retain the null hypothesis.

(a)
$$H_0$$
: $\mu_2 - \mu_1 = 0$

- (b) H_A : $\mu_2 \mu_1 \neq 0$
- (c) $t^* = 2.76$
- (d) SE = 1.07
- (e) $|t_{obs}| = 2.52$
- (f) 0.05 < p-value < 0.1
- (g) retain the null

- 4. From a very large population, a random sample of 1300 individuals was taken. In that sample, 81% were blue. Determine a 95% confidence interval of the population proportion.
 - (a) Find the lower bound of the confidence interval.
 - (b) Find the upper bound of the condifence interval.

SOLUTION Determine z^* such that $P(|Z| < z^*) = 0.95$.

$$z^* = 1.96$$

Calculate the standard error.

$$SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{\frac{(0.81)(1-0.81)}{1300}} = 0.0109$$

Calculate the margin of error.

$$ME = z^*SE = (1.96)(0.0109) = 0.0214$$

To find the confidence interval's bounds, find the sample proportion plus or minus the margin of error.

$$p \approx \hat{p} \pm ME$$

Determine the interval.

We are 95% confident that the true population proportion is between 78.9% and 83.1%.

- (a) The lower bound = 0.789, which can also be expressed as 78.9%.
- (b) The upper bound = 0.831, which can also be expressed as 83.1%.

5. Your boss wants to know what proportion of a very large population is glowing. She also wants to guarantee that the margin of error of a 99% confidence interval will be less than 0.01 (which is 1 percentage points). How large of a sample is needed? Please round up, using only 2 significant digits.

SOLUTION Determine z^* such that $P(|Z| < z^*) = 0.99$.

$$z^* = 2.58$$

Determine the maximal standard error.

$$ME = z^*SE$$

$$SE = \frac{ME}{Z^*} = \frac{0.01}{2.58} = 0.00388$$

Calculate n. Because we have no idea what p is, we will use a conservative approach and use p = 0.5.

$$SE = \sqrt{\frac{p(1-p)}{n}}$$

$$n = \frac{p(1-p)}{SE^2} = \frac{(0.5)(0.5)}{(0.00388)^2} = 16606.4406419$$

When determining a necessary sample size, always round up (ceiling).

$$n = 16607$$

Also, for simplicity, you should probably only use about 2 significant digits, while still rounding up.

$$n = 17000$$

6. An experiment is run with a treatment group of size 290 and a control group of size 248. The results are summarized in the table below.

	treatment	control
omnivorous	217	171
not omnivorous	73	77

Using a significance level of 0.2, determine whether the treatment causes an effect on the proportion of cases that are omnivorous.

- (a) State the null hypothesis.
- (b) State the alternative hypothesis.
- (c) Evaluate the critical value. (The critical value is either z^* or t^* . Determine its value.)
- (d) Determine the standard error of the relevant sampling distribution.
- (e) Evaluate the absolute value of the test statistic. (The test statistic is either z_{obs} or t_{obs} . Determine its absolute value.)
- (f) If possible, evaluate the p-value. Otherwise, describe an interval containing the p-value.
- (g) Do we reject or retain the null?

SOLUTION State the hypotheses.

$$H_0: p_2 - p_1 = 0$$

$$H_{A}: p_{2}-p_{1} \neq 0$$

Find z^* such that $P(|Z| > z^*) = 0.2$.

$$z^* = \Phi^{-1} \left(1 - \frac{\alpha}{2} \right) = 1.28$$

Determine the sample proportions.

$$\hat{p}_1 = \frac{217}{290} = 0.748$$

$$\hat{p}_2 = \frac{171}{248} = 0.69$$

Determine the difference of sample proportions.

$$\hat{p}_2 - \hat{p}_1 = 0.69 - 0.748 = -0.058$$

Determine the pooled proportion (because the null assumes the population proportions are equal).

$$\hat{p} = \frac{217 + 171}{290 + 248} = 0.721$$

Determine the standard error.

$$SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n_1} + \frac{\hat{p}(1-\hat{p})}{n_2}}$$
$$= \sqrt{\frac{(0.721)(0.279)}{290} + \frac{(0.721)(0.279)}{248}}$$
$$= 0.0388$$

We can be more specific about what the null hypothesis claims.

$$H_0: \hat{P}_2 - \hat{P}_1 \sim \mathcal{N}(0, 0.0388)$$

We want to describe how unusual our observation is under the null by finding the p-value. To do so, first find the z score.

$$Z = \frac{(\hat{p}_2 - \hat{p}_1) - (p_2 - p_1)_0}{SE}$$
$$= \frac{(0.69 - 0.748) - 0}{0.0388}$$
$$= -1.49$$

Determine the p-value.

$$p$$
-value = $2 \cdot \Phi(-|z|)$
= $2 \cdot \Phi(-1.49)$
= 0.1362

Compare the *p*-value to the signficance level.

$$p$$
-value $< \alpha$

So, we reject the null hypothesis. Thus the difference in proportions is significant.

- (a) $H_0: p_2 p_1 = 0$
- (b) H_A : $p_2 p_1 \neq 0$
- (c) $z^* = 1.28$
- (d) SE = 0.0388
- (e) $|z_{obs}| = 1.49$
- (f) p-value = 0.1362
- (g) reject the null

- 1. (a) LB = 19.2
 - (b) UB = 21.8
- 2. (a) H_0 : $\mu_{\text{diff}} = 0$
 - (b) H_A : $\mu_{diff} \neq 0$
 - (c) $t^* = 2.76$
 - (d) SE = 1.78
 - (e) $|t_{obs}| = 2.724$
 - (f) 0.04 < p-value < 0.05
 - (g) retain
- 3. (a) H_0 : $\mu_2 \mu_1 = 0$
 - (b) H_0 : $\mu_2 \mu_1 \neq 0$
 - (c) $t^* = 2.76$
 - (d) SE = 1.07

- (e) $|t_{obs}| = 2.52$
- (f) 0.05 < p-value < 0.1
- (g) retain
- 4. (a) LB of p CI = 0.789 or 78.9%
 - (b) UB of p CI = 0.831 or 83.1%
- 5. $n \approx 17000$
- 6. (a) $H_0: p_2 p_1 = 0$
 - (b) H_A : $p_2 p_1 \neq 0$
 - (c) $z^* = 1.28$
 - (d) SE = 0.039
 - (e) $|z_{obs}| = 1.49$
 - (f) p-value = 0.1362
 - (g) reject