Lecture 18

October 22, 2018 12:22 PM

Last time: 1-to-1 bivariate transformation

Find $\frac{\partial (w_1, w_2)}{\partial (u, v)}$ indirectly via $\frac{\partial (h_1, h_2)}{\partial (u, y)}$

Find g(u,v) without the complete inverse transformation (w,, wz)

Today: Univarite, bivariate, multivarite transformation via

Method 3: MGF method Basic: Let $M_X(t)$ be the mgf of X, for $|t| \le h$, some h > 0Let $Y = a \cdot X + b$, $a \ne 0$, $b \in \mathbb{R}$. Find $M_Y(t)$

 $M_{Y}(t) = E[e^{t\cdot Y}] = E[e^{t(\alpha x + b)}] = e^{tb}E[e^{(t\alpha)x}]$ let $t^* = ta$, then $M_{Y}(t) = e^{tb} \cdot E[e^{t^* \cdot x}]$ $= e^{tb} \cdot M_{X}(t^*)$ $= e^{tb} M_{X}(ta)$

Notice $M_{Y}(t) = e^{tb} \cdot M_{X}(t^{*})$ therefore, $M_{Y}(t)$ exists only if $M_{X}(t^{*})$ exists, i.e. $|t^{*}| < h$

i.e. |ta| < h i.e. $|t| < \frac{h}{|a|}$

4.3.2 Special Results

(1) If X ~ GAM (x, P) and x is positive integer

Let Y= 2x, then Y~ X2 (2x)

Proof: $Y = \frac{2X}{\beta}$ i.e. $a = \frac{2}{\beta}$, b = 0 $= \frac{2}{\beta}\chi + 0$

 $M_{Y}(t) = e^{t \cdot 0} M_{X}(t \cdot = 0) = M_{X}(= 0) = M_{X}(= 0)$

Recall: If X~GAM (d, B), Mx(t) = (1-Bt) , t < B

M~141 = M~14*1 - +* +

 $M_{Y}(t) = M_{X}(t^{*}) = \frac{1}{(1-\beta t^{*})^{K}}, t^{*} < \frac{1}{\beta}$ 长= 学 (1-13学)一、学、方 ie. Mylt)= (1-2t)= , t<= Notice If X~ X2(n), Mx(t)= (1-2+)=, t== Therefore, $M_Y(t)$ is identical to the mgf of $\chi^2(2d)$ i.e. $Y \sim \chi^2(2d)$ due to the uniqueness than of mgf (Z) If $X_i \sim GAM(X_i, \beta)$, i=1,...,n, indep. then $\sum_{i=1}^{n} X_i \sim GAM(\sum_{i=1}^{n} X_i, \beta)$ Proof: My(t) = E[etY] = E[et(x,+x2+···+xn)] = E[etx, etx2 --- e-exn] = E[etx.]. E[etx2] --- E[etxn] Mx, (t) Mx, (t) due to indep. Recall: Xi~GAM(Xi,B) Mxi(t) = (1-pt)xi, t<\br/>B1 $= \frac{1}{(1-\beta t)\sum_{i=1}^{n} x_{i}}, t < \frac{1}{\beta}$ which is identical to the nof of GAM (Exi, B) i.e. YNGAM (Zdi, B) due to the uniqueness thm (3) If Xi N EXP(B), then ZXi ~ GAM(n, B) Hint: Exp (13) = GAM (1, B)

(4) If $Xi \sim X^2(ki)$ i=1,...,n indep. then $= Xi \sim X^2(=ki)$

Hint: similar to the proof 12)

(5) If $\chi_i \stackrel{\text{ID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, then $\sum_{i=1}^{n} \left(\frac{\chi_i - \mu}{\sigma}\right)^2 \sim \chi^2(n)$

Hint: $\frac{x_{\overline{i}}-\mu}{\sigma} \sim N(0,1)$ due to 2.5. [$\left(\frac{x_{\overline{i}}-\mu}{\sigma}\right)^2 \sim \chi^2(1)$ due to 2.5. [

(6) If Xin POI (Mi) i=1,..., n indep.

Then ZXi ~ POI (ZMi)

(7) If $x_i \sim BIN(n_i, p)$, i=1,...,n indep.

 $\frac{s}{\tilde{x}-1}X_{i} \sim BIN(\frac{s}{\tilde{x}-1}N_{i}, P)$

T Skip (8) which is related to NB 1

Thm 4.3.5; If Xi~N(pi, o?) i=1,...,n indep. then 喜aiXi~N(喜aipi,喜aioi)

Proof: Exercise

Corollary: 4.3.6 If Xi N(M, o2), then X~N(M, on)

Proof: Let ai = T

 $\sum_{i=1}^{n} a_i X_i = \sum_{i=1}^{n} \frac{1}{n} X_i = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}$

then x~N(=1.1, = (t)202)

= N(M, -2)

Thm 4.3.8: If $X_i \stackrel{\text{TD}}{\sim} N(M, \sigma^2)$ then $\bar{X} \sim N(M, \frac{\sigma^2}{n})$ is indep. of $(n-1)s^2 \sim X^2(n-1)$ (4.3.6)

where $S^2 = \frac{1}{n-1} \sum_{i=1}^{n-1} (X_i - \overline{X})^2$ is the sample variance.

Proof: Steps to complete the proof:

1: X and (n-1)s2 are indep. (by the indep thm of mgf's)

2. $\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{\sum_{i=1}^{n} (x_i - \mu)^2} = \frac{n(x - \mu)^2}{\sum_{i=1}^{n} (x_i - \mu)^2} + \frac{(n-1)s^2}{\sum_{i=1}^{n} (x_i - \mu)^2}$ $(\chi^2(n))$ $(\chi^2(1))$ + $(\chi^2(n-1))$

3. $\frac{(h-1)s^2}{O^2} \sim X^2(h-1)$ (due to special result 4)

Step 1: $(n-1)s^2 = \sum_{i=1}^{n} (X_i - \bar{X})^2 = (X_i - \bar{X})^2 + (X_2 - \bar{X})^2 + \dots + (X_n - \bar{X})^2$

(n-1) s² is a function of $\{(X_1-\overline{X}), (X_2-\overline{X_2}), ..., (X_n-\overline{X})\}$

To show \bar{X} is indep. of $(n-1)S^2$, it sulfices to

show \overline{x} is indep of $\{(x_1-\overline{x}),...,(x_n-\overline{x})\}$

Let $Ui = Xi - \overline{X}$, find the joint mgf of

 $(U_1, U_2, ..., U_n, \overline{X})$ and therefore the marginal n+1 entries

mgf's of $(u_1,...,u_n)$ and \overline{z} , respectively.