PROBLEM SET 03: TENSOR PRODUCTS AND THE QUANTUM AXIOMS

Exercise 0.1 (Recalling Defintions). Define the

- (i) tensor product $\mathcal{H} \otimes \mathcal{K}$ of two finite dimensional spaces.
- (ii) Kronecker product of two arbitrary sized matrices $\rho \in M_{n \times m}(\mathbb{C})$ and $\sigma \in M_{s \times t}(\mathbb{C})$.
- (iii) multiple system axiom.
- (iv) system evolution axiom.

Exercise 0.2 (Tensoring with \mathbb{C}). Suppose \mathcal{H} is a finite dimensional (complex) Hilbert space. Prove that $\mathcal{H} \otimes \mathbb{C}$ is isomorphic to \mathcal{H} .¹

Exercise 0.3. If \mathcal{H} , $\mathcal{K} \in \mathsf{FdHilb}_{\mathbb{C}}$ have bases $\beta = \{b_1, b_2, \dots, b_n\}$ and $\gamma = \{g_1, g_2, \dots, g_m\}$, respectively, show that the set

$$\delta = \{b_i \otimes g_j : 1 \le i \le n \text{ and } 1 \le j \le m\}$$

is a basis for $\mathcal{H} \otimes \mathcal{K}^2$.

Exercise 0.4 (Direct and Tensor Products Commute). Let $\{\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_n\} \subseteq \mathsf{FdHilb}_{\mathbb{C}}$ be a collection of finite dimensional Hilbert spaces. Let \mathcal{K} be another finite dimensional Hilbert space. Denote by \mathcal{H} the direct product $\mathcal{H}_1 \times \mathcal{H}_2 \times \cdots \mathcal{H}_n$. Prove that

$$\mathcal{H} \otimes \mathcal{K} \simeq \prod_{i=1}^{n} (\mathcal{H}_{i} \otimes \mathcal{K})$$

by showing that the homomorphism $\varphi: \mathcal{H} \otimes \mathcal{K} \to \prod_{i=1}^n (\mathcal{H}_i \otimes \mathcal{K})$ given by

$$\varphi((h_1, h_2 \dots, h_n) \otimes k) = (h_1 \otimes k, h_2 \otimes k, \dots, h_n \otimes k)$$

is a bijection.

Exercise 0.5. In what sense does the tensor product bifunctor $(-) \otimes (-)$: FdHilb_C × FdHilb_C \rightarrow FdHilb_C provide a way to join finite quantum systems?

University of Illinois Urbana-Champaign, Illinois, 61801 Email address: dheeran2@illinois.edu

Date: July 7, 2025.

¹You do *not* need to explicitly construct an isomorphism.

²*Hint:* Construct a bilinear function $\mathcal{H} \times \mathcal{K} \to \mathbb{C}$ and then use the universal property of the tensor product bifunctor.