How improve PINNs?

Authors:

Frédérique LECOURTIER

Supervisors:

Emmanuel FRANCK Michel DUPREZ Vanessa LLERAS

March 26, 2024

Problem considered

Poisson problem with homogeneous Dirichlet conditions:

Find $u:\Omega\to\mathbb{R}^d(d=1,2,3)$ such that

$$\begin{cases} -\Delta u(\mathbf{X}) = f & \text{in } \Omega, \\ u(\mathbf{X}) = g & \text{on } \partial \Omega \end{cases}$$

with Δ the Laplace operator, Ω a smooth bounded open set and Γ its boundary. Standard PINNs : We are looking for θ such that

$$\theta_u = \underset{\theta}{\operatorname{argmin}} w_r J_r(\theta) + w_{bc} J_{bc}(\theta)$$

where w_r and w_{bc} are the respective weights associated with

$$J_r = \int_{\Omega} (\Delta u + 1)^2$$
 and $J_{bc} = \int_{\partial \Omega} u^2$.

Remark: In practice, we use a Monte-Carlo method to discretize the cost function by random process.

Simple geometry

Claim on PINNs: No mesh, so easy to go on complex geometry!

Complex geometry

In practice : Not so easy! We need to find how to sample in the geometry.

1st approach: Mapping

Idea:

- $\rightarrow \Omega_0$ a simple domain (as circle)
- $ightharpoonup \Omega$ a target domain
- ightharpoonup A mapping from Ω_0 to Ω

$$\Omega = \phi(\Omega_0)$$

2nd approach: LevelSet function

Advantages:

- → Sample is easy in this case.
- → Allow to impose in hard the BC :

$$u_{\theta}(X) = \phi(X)w_{\theta}(X) + g(X)$$

Natural LevelSet:

Signed Distance Function (SDF)

LevelSet Approach

Problem:

SDF is a \mathcal{C}^0 function \Rightarrow its derivatives explodes \Rightarrow We need a regular levelset How construct smooth SDF?

- → 1st solution : Approximation theory ADD REFERENCE !! Δu can be singular at the boundary. Sampling at ϵ to it solve the problem.
- → 2nd solution: Learn the levelset. How make that? with a PINNs

Approximation theory

Learn LevelSet I

Learn LevelSet I

Learn LevelSet II

Learn LevelSet II

Conclusion

Thank you!

Bibliography

Appendix 1: Polygonal domain

Appendix 2: Curved domain