sd5 - Exercices Arbres

Partie 1

Bac 2022 Metropole1 : Exercice 3

Cet exercice porte sur les représentations binaires et les protocoles de routage, et les arbres couvrant sur un graphe.

On verra dans ce sujet que le routage sur internet demande :

- des opérations sur les graphes
- des opérations régulières de tri
- de manipuler des arbres

1.1 Question 1

Une adresse IPv4 est représentée sous la forme de 4 nombres séparés par des points. Chacun de ces 4 nombres peut être représenté sur un octet.

A. Donner en écriture décimale l'adresse IPv4 correspondant à l'écriture binaire :

11000000.10101000.10000000.10000011

B. Tous les ordinateurs du réseau A ont une adresse IPv4 de la forme : 192.168.128._ _ _ , où seul le dernier octet (représenté par _ _ _) diffère. Donner le nombre d'adresses différentes possibles du réseau A.

1.2 Question 2

On rappelle que le protocole RIP cherche à minimiser le nombre de routeurs traversés (qui correspond à la métrique). On donne les tables de routage d'un réseau informatique composé de 5 routeurs (appelés A, B, C, D et E), chacun associé directement à un réseau du même nom obtenues avec le protocole RIP :

Routeur A		Routeur B	Routeur B		Routeur C	
Destination	Métrique	Destination Métrique		Destination	Métrique	
Α	0	Α	1	А	1	
В	1	В	0	В	2	
С	1	С	2	С	0	
D	1	D	1	D	1	
E	2	E	2	E	2	
Routeur D		Routeur E				
Destination	Métrique	Destination	Métrique			
Α	1	Α	2			
В	1	В	2			
С	1	С	2			
D	0	D	1			
E	1	Е	0			

Figure 1 – tables de routage

- A. Donner la liste des routeurs avec lesquels le routeur A est directement relié.
- B. Représenter graphiquement et de manière sommaire les 5 routeurs ainsi que les liaisons existantes entre ceux-ci.

1.3 Question 3

Le protocole OSPF est un protocole de routage qui cherche à minimiser la somme des métriques des liaisons entre routeurs.

Dans le protocole de routage OSPF le débit des liaisons entre routeurs agit sur la métrique via la relation : $metrique = \frac{10^8}{debit}$ dans laquelle le débit est exprimé en bit par seconde (bps).

On rappelle qu'un kbps est égal à 10^3 bps et qu'un Mbps est égal à 10^6 bps.

A. Recopier sur votre copie et compléter le tableau suivant :

Débit	100 kbps	500 kbps	?	100 Mbps
Métrique associé	1000	?	10	1

Routeur F				
Destination	Métrique			
F	0			
G	8			
Н	5			
J				
К				
L				

Figure 2 – graphe du reseau

Les nombres présents sur les liaisons représentent les coûts des routes avec le protocole OSPF.

- B. Indiquer le chemin emprunté par un message d'un ordinateur du réseau F à destination d'un ordinateur du réseau I. Justifier votre réponse.
- C. Recopier et compléter la table de routage du routeur F.
- D. Citer une unique panne qui suffirait à ce que toutes les données des échanges de tout autre réseau à destination du réseau F transitent par le routeur G. Expliquer en détail votre réponse.

1.4 Question 4 (sup hors bac)

A. Donner les caractéristiques du graphe de réseaux schématisé plus haut.

On donne cette fois le tableau constitué à partir de l'algorithme de Dijkstra, appliqué à ce même graphe de reseaux :

- le colonnes représentent les sommets à atteindre
- les lignes sont les sommets de départ
- On renseigne dans les cases la distance cumulée depuis le noeud F, jusqu'au noeud de la colonne, en passant par le noeud adjacent de la ligne. Par exemple, I peut être atteint en venant du noeud H avec une longueur de 15.

	G	Н	I	J	K	L
F		5				
G						
Η			15	6		
I						
J	8				8	11
K						
L						

B. Représenter le graphe des chemins pour explorer depuis F les autres noeuds, en suivant le chemin le plus court.

- C. Ce graphe représente l'arbre couvrant du graphe. Donner les caractéristiques de cet arbre.
- D. Quel est le chemin le plus court pour aller de F à G?
- E. Même question, mais cette fois pour aller de H à K.

Partie 2 Connaissance du cours

- 2.1 Représenter tous les arbres binaires de taille inférieure ou égale à 3.
- 2.2 Donner la definition de *hauteur* d'un arbre.
- 2.3 Représenter un arbre binaire de hauteur (ou profondeur) égale à 2.
- 2.4 Completer la matrice d'adjacence de l'arbre suivant :

FIGURE 3 – exemple d'arbre de sommets A,B,D,E,F,G

matrice de sommets A,B,D,E,F,G

```
1 [[..., ..., ..., ...],
2 [..., ..., ..., ...],
3 [..., ..., ..., ...],
4 [..., ..., ..., ...],
5 [..., ..., ..., ...],
6 [..., ..., ..., ...]]
```

2.5 Quel est la taille d'un arbre binaire complet de hauteur 3?

Partie 3

Implementations d'un arbre

On traitera les questions pour l'arbre suivant :

FIGURE 4 - exemple d'arbre de taille 7

3.1 Listes imbriquées

Ecrire la liste qui représente cet arbre en utilisant la convention suivante :

```
arbre = ['r',['a',['c',None,None], ...]
```

Conseil: attention à bien écrire ['cle', None, None] pour chacune des feuilles.

- 3.2 Classe
- 3.2.1 Ecrire le constructeur de la classe ArbreBinaire qui permettra de représenter un arbre binaire. Les fils gauche et fils droit de chaque noeud seront initialisés à None.
- 3.2.2 Ajouter les méthodes de classe ajoute_fils_gauche et ajoute_fils_droit qui vont permettre d'ajouter un fils gauche ou fils droit à un noeud, si la place est libre.
- 3.2.3 Ecrire les instructions d'instanciation pour cet arbre : instancier les noeuds appelés racine (clé 'r'), noeud1 (clé 'a'), noeud2 (clé 'b'),...

Partie 4

Exercice: arbres binaires - bac 2019

Dans cet exercice on adoptera la convention suivante : la hauteur d'un arbre binaire ne comportant qu'un nœud est 1.

4.1 Déterminer la taille et la hauteur de l'arbre binaire suivant :

Figure 5 – arbre binaire alphabet

4.2 Arbre et numération binaire

On décide de numéroter en binaire les noeuds d'un arbre binaire de la façon suivante :

- la racine correspond à 1;
- la numérotation pour un fils gauche s'obtient en ajoutant le chiffre 0 à droite de son père ;
- la numérotation pour un fils droit s'obtient en ajoutant le chiffre 1 à droite de son père ;

Exemple:

Figure 6 – fig 4 - arbre binaire numéroté

L'arbre présenté ici n'est pas complet.

4.2.1 Quel est le numéro en binaire associé aux noeuds H et G?

4.2.2 Combien de noeuds différents peut-on dénombrer à l'aide de cette méthode sur le niveau le plus en bas?

On donne l'agorithme général du parcours postfixe d'un arbre binaire :

```
ParcoursPostfixe (Arbre binaire T de racine r)
ParcoursPostfixe(Arbre de racine fils_gauche[r])
ParcoursPostfixe(Arbre de racine fils_droit[r])
Afficher clef [r]
```

4.2.3 Donner la succession des clés affichées lorsque l'on realise le parcours postfixe sur l'arbre binaire précédent. Vous n'écrirez que les lettres de chaque noeud.

4.3 Représentation d'un arbre

On décide de représenter un arbre binaire par un tableau (une liste) de taille n+1, où n est la taille de l'arbre, de la façon suivante :

- La racine a pour indice 1;
- Le fils gauche du nœud d'indice i a pour indice $2 \times i$;
- Le fils droit du nœud d'indice i a pour indice 2×i+1;
- On place la taille n de l'arbre dans la case d'indice 0.
- Lorsqu'il n'y a pas de valeur à renseigner pour un indice donné, mettre None
- 4.3.1 Déterminer le tableau qui représente l'arbre binaire de l'exemple précédent. (fig 4)
- 4.3.2 On considère le père du nœud d'indice i avec i ≥ 2. Quel est son indice dans le tableau? Considérer les 2 cas :
 - i pair
 - i impair

Partie 5

Parcours d'un arbre

5.1 Affichage selon le parcours

Pour l'arbre suivant :

FIGURE 7 - arbre binaire

5.1.1 Dessinez le parcours préfixe puis donner la sortie si le traitement réalisé ne fait qu'afficher la clé. (voir dessin plus bas).

- 5.1.2 Dessinez le parcours postfixe puis donner la sortie si le traitement réalisé ne fait qu'afficher la clé.
- 5.1.3 Dessinez le parcours infixe puis donner la sortie si le traitement réalisé ne fait qu'afficher la clé.

FIGURE 8 - parcours d'un arbre binaire

5.2 Expression arithmetique

Figure 9 – expression arithmetique

- 5.2.1 Quelle est l'expression arithmetique représentée par cet arbre? Celle-ci sera écrite en notation polonaise inversée. (valeur1 valeur2 operateur)
- 5.2.2 Quel doit être le parcours de l'arbre pour retourner cette expression en notation polonaise inversée.
- 5.2.3 Quel parcours de l'arbre va donner l'expression telle qu'on la manipule en cours de math?

Partie 6

Corrections

Q2.1 Connaissance du cours : arbres de taille inf ou egale à 3

Q2.2 cours

Q2.3 exemple d'arbre de hauteur 2

Figure 10 – exemple taille 2

Q2.4 matrice de sommets A,B,D,E,F,G

```
[[0,1,0,0,0,0],

[1,0,1,1,0,0],

[0,1,0,0,0,0],

[0,1,0,0,1,0],

[0,0,0,1,0,1],

[0,0,0,0,1,0]]
```

Q2.5 Pour le niveau 0 : 1 sommet; pour le niveau 1 : 2 sommets; pour le niveau 2 : 4 sommets; pour le niveau 3 : 8 sommets.

```
Donc au total : N = 1 + 2 + 4 + 8 = 15 sommets => taille = 15.
```

```
Q2.1 arbre = ['r',['a',['c',None,None],['d',None,None]],['b',['e',None,None],['f',None,None]]]
```

Q221 et Q222 classe ArbreBinaire

```
class ArbreBinaire:
def __init__(self,value):
self.cle = value
self.FilsGauche = None
```

```
self.FilsDroit = None

def set_value(self,value):
    # non demandé
    self.cle = value

def set_FG(self,FG):
    self.FilsGauche = FG

def set_FD(self,FD):
    self.FilsDroit = FD
```

Q223 instanciation

```
racine = ArbreBinaire('r')
noeud1 = ArbreBinaire('a')
noeud2 = ArbreBinaire('b')
noeud3 = ArbreBinaire('c')
noeud4 = ArbreBinaire('d')
noeud5 = ArbreBinaire('e')
noeud6 = ArbreBinaire('f')

racine.set_FG(noeud1)
racine.set_FG(noeud2)
noeud1.set_FG(noeud3)
noeud1.set_FG(noeud4)
noeud2.set_FG(noeud5)
noeud2.set_FD(noeud6)
```

Q3 exercice de bac