Лабораторная работа:

Сравнение контейнеров ручной работы и контейнеров из stl

Зависимость объема выделенной памяти от размера вектора при push_back

больше уже используемой памяти в рассчете на дальнейшее заполнение

•Каждый раз, достигая степени двойки, вектор из stl выделяет в 2 раза

Зависимость среднего времени вставки в произвольное место вектора от его размера

Зависимость среднего времени удаления элемента из произвольного места вектора от его размера

•Вектор ручной работы не оптимизирован, поэтому он создает новый вектор, копируя в него элементы старого, чтобы добавить/удалить

видно из первого графика, и добивается константного времени работы.

один элемент. А вектор из stl увеличивает сарасіtу с запасом, как

Зависимость среднего времени доступа к произвольному элементу вектора от его размера

константу, в отличие от, например, списка

•Т.к. все элементы в векторе лежат подряд, то доступ к ним возможен за

Зависимость времени добавления элемента в начало списка от его размера

большее.

•Список из stl при при добавлении нового элемента выделяет памяти с

запасом, a subforwardlist выделяет для каждого добавленного элемента

отдельно, поэтому он тоже работает за константное время, но гораздо

Зависимость времени удаления элемента из начала списка от его размера

Зависимость среднего времени обхода контейнера от его размера

•Односвязный и двусвязные списки совершают обход одинаково долго, т.к.

•Вектор работает быстро, потому что все его элементы лежат в куче подряд

им приходится разыменовывать все указатели на элементы.