Midterm 1, Financial Econometrics, Econ 40357 University of Notre Dame Prof. Mark

Tuesday October 15, 2019

Choose the best answer.

- 1. Suppose $y_t = y_{t-1} + \epsilon_t$, where $\epsilon_t \stackrel{iid}{\sim} (0, \sigma_{\epsilon}^2)$. The impulse response at time t = 1, 2, 3, 4 for a shock of size $\epsilon_1 = 1$ are,
 - (a) 1, 0.9, $(0.9)^2$, $(0.9)^3$
 - (b) 1, 0.8, 0, 0
 - (c) 1, 1, 1, 1
 - (d) 1, 0, 0, 0
- 2. Suppose $y_t = \rho y_{t-1} + \epsilon_t$, where $\rho = 0.9$ and $\epsilon_t \stackrel{iid}{\sim} (0, \sigma_{\epsilon}^2)$. The impulse response at time t = 1, 2, 3, 4 for a shock of size $\epsilon_1 = 1$ are,
 - (a) 1, 0.9, $(0.9)^2$, $(0.9)^3$
 - (b) 1, 0.8, 0, 0
 - (c) 1, 1, 1, 1
 - (d) 1, 0, 0, 0
- 3. Suppose X_t has the normal distribution with mean $\mu = 100$ and variance $\sigma^2 = 20$. Then $\frac{E(X_t \mu)^3}{\sigma^3} = \frac{E(X_t 100)^3}{20^3}$ is
 - (a) Negative
 - (b) Positive
 - (c) 0
 - (d) 1
- 4. Suppose X_t has the student-t distribution with 4 degrees of freedom. It has mean $\mu=100$ and variance $\sigma^2=20$. Then $\frac{E(X_t-\mu)^3}{\sigma^3}=\frac{E(X_t-100)^3}{20^3}$ is
 - (a) Negative
 - (b) Positive
 - (c) 0
 - (d) 1
- 5. Suppose X_t has the student-t distribution with 4 degrees of freedom. It has mean $\mu = 100$ and variance $\sigma^2 = 20$. Then $\frac{E(X_t \mu)4}{\sigma^4} = \frac{E(X_t 100)^4}{20^4}$ is
 - (a) Negative
 - (b) Positive, but less than 3
 - (c) Positive, but greater than 3
 - (d) 1

- 6. Suppose Kai runs the Jarque-Bera test on a sample of data. Kai gets a value for the test statistic of 30 (the 5% critical value for a χ^2_2 is 5.99). He concludes
 - (a) The observations are not independent
 - (b) The observations are not stationary
 - (c) The observations are not normally distributed
 - (d) The observations are not persistent
- 7. Let x_t and y_t be stationary time series. When Louie runs the regression $y_t = \alpha + \beta x_t + \epsilon_t$, the slope is his estimator of
 - (a) $\frac{Cov(y_t, x_t)}{Var(x_t)}$
 - (b) $\frac{Cov(y_t, x_t)}{Var(y_t)}$
 - (c) $\frac{Cov(y_{t}, x_{t})}{\sqrt{Var(y_{t})}} \sqrt{Var(x_{t})}$
 - (d) $E(y_t) \beta E(x_t)$
- 8. Suppose $y_t = \rho y_{t-1} + \epsilon_t$, where $0 < \rho < 1$, and $\epsilon_t \stackrel{iid}{\sim} (0, \sigma_{\epsilon}^2)$. The optimal forecast of y_{t+3} , formed at time t is,
 - (a) y_t
 - (b) ρy_t
 - (c) ρy_{t+2}
 - (d) $\rho^3 y_t$
- 9. Suppose $y_t = \theta_1 \epsilon_t + \theta_2 \epsilon_{t-1} + \theta_3 \epsilon_{t-3}$, where $\epsilon_t \stackrel{iid}{\sim} (0, \sigma_{\epsilon}^2)$, and $\theta_1 + \theta_2 + \theta_3 = 1.2$.
 - (a) y_t has a unit root
 - (b) y_t is nonstationary
 - (c) y_t is stationary
 - (d) y_t is i.i.d.
- 10. Suppose $y_t = \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2}$, where $\epsilon_t \stackrel{iid}{\sim} (0, \sigma_{\epsilon}^2)$, and $\theta_1 + \theta_2 = 0.8$. The optimal forecast of y_{t+3} at time t is,
 - (a) $\theta_1 \epsilon_{t+3} + \theta_2 \epsilon_{t+2} + \theta_3 \epsilon_{t+1}$
 - (b) $\theta_1 \epsilon_t$
 - (c) 0
 - (d) y_t

- 11. Consider the regression $y_t = \alpha + \beta x_t + \epsilon_t$ where y_t and x_t are stationary time series. The t-ratio is $\tilde{\beta}/\text{se}(\hat{\beta})$. That is, the least-squares estimate divided by its standard error. Typically, the Newey-West t-ratio will be smaller than the usual (standard) t-ratio because
 - (a) The assumptions under which Newey-West is derived are more restrictive than that for the standard t-ratio
 - (b) The assumptions under which Newey-West is derived are less restrictive than that for the standard t-ratio
 - (c) The estimate of β under Newey-West is usually smaller than under standard least squares
 - (d) None of the above
- 12. In maximum likelihood estimation, the parameters of the model are chosen such that
 - (a) under the assumed model, we are most likely to have observed the actual data
 - (b) under the alternative hypothesis, we would be most likely to have observed the actual data
 - (c) the t-ratios are valid whether the observations are stationary or nonstationary
 - (d) None of the above
- 13. In the AIC, $\ln\left(\hat{\sigma}_{\epsilon}^2\right) + \frac{2k}{T}$, $\ln\left(\hat{\sigma}_{\epsilon}^2\right)$ is,
 - (a) apart from a factor of proportionality, the likelihood function
 - (b) apart from a factor of proportionality, the negative of the likelihood function
 - (c) apart from a factor of proportionality, the logarithm of the likelihood function
 - (d) apart from a factor of proportionality, the negative of the logarithm of the likelihood function
- 14. In the AIC, $\ln(\hat{\sigma}_{\epsilon}^2) + \frac{2k}{T}$, the $\frac{2k}{T}$ part
 - (a) is a penalty for adding parameters to the model
 - (b) is a reward for adding parameters to the model
 - (c) is the likelihood function
 - (d) is the log likelihood function
- 15. Suppose $y_t = y_{t-1} + \epsilon_t$, and $x_t = x_{t-1} + \nu_t$, where $\epsilon_t \stackrel{iid}{\sim} (0, \sigma_{\epsilon}^2)$, and $\nu_t \stackrel{iid}{\sim} (0, \sigma_{\nu}^2)$. Sookie regresses y_t on x_t . As the sample size increases,
 - (a) the slope coefficient converges to 0
 - (b) the slope-coefficient diverges (it goes to infinity)
 - (c) the t-ratio will indicate significance
 - (d) the t-ratio will converge to 0
- 16. Suppose $y_t = y_{t-1} + \epsilon_t$, and $x_t = x_{t-1} + \nu_t$, where $\epsilon_t \stackrel{iid}{\sim} (0, \sigma_{\epsilon}^2)$, and $\nu_t \stackrel{iid}{\sim} (0, \sigma_{\nu}^2)$. We regress Δy_t on Δx_t . As the sample size increases,
 - (a) the slope coefficient converges to 0
 - (b) the slope-coefficient diverges (it goes to infinity)
 - (c) the t-ratio will indicate significance
 - (d) the t-ratio will converge to 0

- 17. Suppose Kai runs an Augmented Dickey-Fuller test on the regression $\Delta y_t = \alpha + \beta y_{t-1} + \delta_1 \Delta y_{t-1} + \delta_2 \Delta y_{t-2} + \delta_3 \Delta y_{t-3} + \epsilon_t$. He is testing
 - (a) $\beta = \delta_1 = \delta_2 = \delta_3 = 1$
 - (b) $\beta = 0$
 - (c) $|\beta + \delta_1 + \delta_2 + \delta_3| < 1$
 - (d) $|\delta_1 + \delta_2 + \delta_3| < 1$
- 18. Louie runs the predictive regression $\sum_{j=1}^{10} r_{t+j}^e = \alpha + \beta \left(\frac{d_t}{p_t}\right) + \epsilon_{t+10}$ where r_t^e is the one-year excess return on the market, and d_t/p_t is the dividend yield on the market. Louie finds $\hat{\beta} > 0$ and statistically significant with Newey-West t-ratio. Louie can conclude, this is evidence of
 - (a) a pro-cyclical risk premium
 - (b) a counter-cyclical risk premium
 - (c) the Newey-West t-ratio is biased upwards
 - (d) the beta-risk model doesn't work
- 19. If excess returns are given by the single-factor representation, $r_{t,i}^e = \alpha_i + \beta_i f_t + \epsilon_{t,i}$ for each asset i = 1, ..., n, where $r_{t,i}^e$ is the excess return on asset i and f_t is factor, then
 - (a) β_i is asset i's exposure to the (risk) factor
 - (b) The mean excess returns of these assets vary proportionally to their betas
 - (c) $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$
 - (d) all of the above
- 20. (pure extra credit) In Louie's regression from question 18, the regression error
 - (a) follows an MA(10)
 - (b) follows an MA(9)
 - (c) is independent and identically distributed
 - (d) is serially uncorrelated