Knowledge Discovery and Data Mining 1 (VO) (707.003)

Data Matrices and Vector Space Model

Denis Helic

KTI, TU Graz

Nov 6, 2014

Big picture: KDDM

Outline

- Recap
- Data Representation
- Oata Matrix
- 4 Vector Space Model: Document-Term Matrix (Running Example 1)
- 5 Recommender Systems: Utility Matrix (Running Example 2)

Recap

Recap - Preprocessing

- Initial phase of the Knowledge Discovery process
- ... acquire the data to be analyzed
- e.g. by **crawling** the data from the Web
- ... prepare the data
- e.g. by cleaning and removing outliers

Recap - Feature Extraction

- Example of features:
- Images → colors, textures, contours, ...
- ullet Signals o frequency, phase, samples, spectrum, ...
- ullet Time series o ticks, trends, self-similarities, ...
- Biomed \rightarrow dna sequence, genes, ...
- ullet Text o words, POS tags, grammatical dependencies, ...

Features encode these properties in a way suitable for a chosen algorithm

Recap – Feature Selection

- Approach: select the sub-set of all features without redundant or irrelevant features
 - Unsupervised, e.g. heuristics (black & white lists, score for ranking, ...)
 - Supervised, e.g. using a training data set (calculate measure to assess how discriminative is a feature, e.g. information gain)
 - Penalty for more features, e.g. regularization

Recap – Text mining

- Once when we have the features that we want: how can we represent them?
- Two representations:
 - Mathematical (model, analyze, and reason about data and algorithms in a formal way)
 - Representation in computers (data structures, implementation, performance)
- In this course we concentrate on mathematical models
- KDDM2 is about second representation

- Given: Preprocessed data objects as a set of features
- E.g. for text documents set of words, bigrams, n-grams, . . .
- Given: Feature statistics for each data object
- E.g. number of occurrences, magnitudes, ticks, ...
- Find: Mathematical model for calculations
- E.g. similarity, distance, add, subtract, transform, . . .

- Let us think (geometrically) about features as dimensions (coordinates) in an m-dimensional space
- For two features we have 2D-space, for three features we have 3D-space, and so on
- \bullet For numeric features the feature statistics will be numbers coming from e.g. $\mathbb R$
- Then each data object is a point in the *m*-dimensional space
- The value of a given feature is then the value for its coordinate in this m-dimensional space

Representing data: Example

Text documents

Suppose we have the following documents:

DocID	Document
d1	Chinese Chinese
d2	Chinese Chinese Tokyo Tokyo Beijing Beijing Beijing
d3	Chinese Tokyo Tokyo Tokyo Beijing Beijing
d4	Tokyo Tokyo Tokyo
d5	Tokyo

Representing data: Example

- Now, we take words as features
- We take word occurrences as the feature values
- Three features: Beijing, Chinese, Tokyo

Doc	Feature	Beijing	Chinese	Tokyo
	d1	0	2	0
	d2	3	2	2
	d3	2	1	3
	d4	0	0	3
	d5	0	0	1

Representing data: Example

- Now, an intuitive representation of the data is a matrix
- In a general case
- Columns correspond to features, i.e. dimensions or coordinates in an m-dimensional space
- Rows correspond to data objects, i.e. data points
- An element d_{ij} in the i-th row and the j-th column is the j-th coordinate of the i-th data point
- The data is represented by a matrix $\mathbf{D} \in \mathbb{R}^{n \times m}$, where n is the number of data points and m the number of features

- For text
- Columns correspond to terms, words, and so on
- I.e. each word is a dimension or a coordinate in an *m*-dimensional space
- Rows correspond to documents
- An element d_{ij} in the i-th row and the j-th column is the e.g. number of occurrences of the j-th word in the i-th document
- This matrix is called document-term matrix

Representing data: example

$$\mathbf{D} = \begin{pmatrix} 0 & 2 & 0 \\ 3 & 2 & 2 \\ 2 & 1 & 3 \\ 0 & 0 & 3 \\ 0 & 0 & 1 \end{pmatrix}$$

Vector interpretation

- Alternative and very useful interpretation of data matrices is in terms of vectors
- Each data point, i.e. each row in the data matrix can be interpreted as a vector in an *m*-dimensional space
- This allows us to work with:
 - the vector direction, i.e. the line connecting the origin and a given data point
 - 2 the vector magnitude (length), i.e. the distance from the origin and a given data point \rightarrow feature weighting
 - similarity, distance, correlations between vectors
 - manipulate vectors, and so on.
- Vector space model

Vector interpretation: Example

Vector space model: feature weighting

- What we did so far is that we counted word occurrences and used these counts as the coordinates in a given dimension
- This weighting scheme is referred to as term frequency (TF)
- Three features: Beijing, Chinese, Tokyo

Doc	Feature	Beijing	Chinese	Tokyo
	d1	0	2	0
	d2	3	2	2
	d3	2	1	3
	d4	0	0	3
	d5	0	0	1

Vector space model: TF

- Please note the difference between the vector space model with TF weighting and e.g. Standard boolean model in information retrieval
- Standard boolean model uses binary feature values
- ullet If the feature j occurs in the document i (regardless how many times) then $d_{ij}=1$
- Otherwise $d_{ij} = 0$
- Allows very simple manipulation of the model, but does not capture the relative importance of the feature j for the document i
- If a feature occurs more frequently in a document then it is more important for that document and TF captures this intuition

Vector space model: feature weighting

- However, raw TF has a critical problem: all terms are considered equally important for assessing relevance
- In fact, certain terms have no discriminative power at all considering relevance
- For example, a collection of documents on the auto industry will have most probably term "auto" in every document
- We need to penalize terms which occur too often in the complete collection
- We start with the notion of document frequency (DF) of a term
- This is the number of documents that contain a given term

Vector space model: IDF

- If a term is discriminative then it will only appear in a small number of documents
- I.e. its DF will be low, or its *inverse document frequency* (IDF) will be high
- In practice we typically calculate IDF as:

$$IDF_j = log(\frac{N}{DF_j}),$$

• where N is the number of documents and DF_j is the document frequency of the term j.

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 夕 Q ()

1

Vector space model: TFxIDF

 Finally, we combine TF and IDF to produce a composite weight for a given feature

$$TFxIDF_{ij} = TF_{ij}log(\frac{N}{DF_j})$$

 Now, this quantity will be high if the feature j occurs only a couple of times in the whole collection, and most of these occurrences are in the document i

◆ロト ◆個ト ◆差ト ◆差ト 差 めらぐ

TFxIDF: Example

Text documents

Suppose we have the following documents:

DocID	Document
d1	Chinese Chinese
d2	Chinese Chinese Tokyo Tokyo Beijing Beijing Beijing
d3	Chinese Tokyo Tokyo Tokyo Beijing Beijing
d4	Tokyo Tokyo Tokyo
d5	Tokyo

TFxIDF: Example

• Three features: Beijing, Chinese, Tokyo

• TF:

Doc	Feature	Beijing	Chinese	Tokyo
	d1	0	2	0
	d2	3	2	2
	d3	2	1	3
	d4	0	0	3
	d5	0	0	1

TFxIDF: Example

- Three features: Beijing, Chinese, Tokyo
- DF:

$$DF_{Beijing} = 2$$

 $DF_{Chinese} = 3$
 $DF_{Tokyo} = 4$

TFxIDF: Example

• Three features: Beijing, Chinese, Tokyo

IDF:

$$IDF_j = log(\frac{N}{DF_j})$$

$$IDF_{Beijing} = 0.3979$$

 $IDF_{Chinese} = 0.2218$
 $IDF_{Tokyo} = 0.0969$

TFxIDF: Example

• Three features: Beijing, Chinese, Tokyo

TFxIDF:

$$TFxIDF_{ij} = TF_{ij}log(\frac{N}{DF_j})$$

Doc	Feature	Beijing	Chinese	Tokyo
	d1	0	0.4436	0
	d2	1.1937	0.4436	0.1938
	d3	0.7958	0.2218	0.2907
	d4	0	0	0.2907
	d5	0	0	0.0969

TFxIDF: Example

TFxIDF: Example

Vector space model: TFxIDF

- Further TF variants are possible
- Sub-linear TF scaling, e.g. \sqrt{TF} or 1 + log(TF)
- Unlikely that e.g. 20 occurrences of a single term carry 20 times the weight of a single occurrence
- Also very often TF-normalization by e.g. dividing by the maximal TF in the collection

Vector space model: vector manipulation

- Vector addition: concatenate two documents
- Vector subtraction: diff two documents
- Transform the vector space in a new vector space: projection and feature selection
- Similarity calculations
- Distance calculations
- Scaling for visualization

1

Vector space model: similarity and distance

- Similarity and distance allow us to order documents
- This is useful in many applications:
 - Relevance ranking (information retrieval)
 - Classification
 - Clustering
 - Transformation and projection

1,

Properties of similarity and distance

Definition

Let D be the set of all data objects, e.g. all documents. Similarity and distance are functions $sim: D \times D \to \mathbb{R}$, $dist: D \times D \to \mathbb{R}$ with the following properties:

Symmetry

$$sim(d_i, d_j) = sim(d_j, d_i)$$

 $dist(d_i, d_j) = dist(d_j, d_i)$

Self-similarity (self-distance)

$$sim(d_i, d_j) \le sim(d_i, d_i) = sim(d_j, d_j)$$

 $dist(d_i, d_j) \ge dist(d_i, d_i) = dist(d_j, d_j) = 0$

◆ロト ◆部ト ◆差ト ◆差ト 差 めなべ

Properties of similarity and distance

Additional properties

Some additional properties of the sim function:

ullet Normalization of similarity to the interval [0,1]

$$sim(d_i, d_j) \geq 0$$

 $sim(d_i, d_i) = 1$

ullet Normalization of similarity to the interval [-1,1]

$$sim(d_i, d_j) \ge -1$$

 $sim(d_i, d_i) = 1$

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 - 夕 Q (C)

1)

Properties of similarity and distance

Additional properties

Some additional properties of the dist functions:

Triangle inequality

$$dist(d_i, d_j) \leq dist(d_i, d_k) + dist(d_k, d_j)$$

• If triangle inequality is satisfied then *dist* function defines a norm on the vector space

◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

Euclidean distance

Norm

We can apply the Euclidean or ℓ_2 norm as a distance metric in the vector space model.

$$||\mathbf{x}||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$
$$||\mathbf{x}||_2 = \sqrt{\mathbf{x}^T \mathbf{x}}$$

• Euclidean distance of two vectors \mathbf{d}_i and \mathbf{d}_j is the length of their displacement vector $\mathbf{x} = \mathbf{d}_i - \mathbf{d}_j$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト 9 Q (^

Euclidean distance: Example

Euclidean distance

$$\mathbf{D} = \begin{pmatrix} \mathbf{d}_1^T \\ \mathbf{d}_2^T \\ \vdots \\ \mathbf{d}_n^T \end{pmatrix}$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めらぐ

Euclidean distance

$$\mathbf{D} = \begin{pmatrix} 0 & 2 & 0 \\ 3 & 2 & 2 \\ 2 & 1 & 3 \\ 0 & 0 & 3 \\ 0 & 0 & 1 \end{pmatrix}$$

Euclidean distance

$$\mathbf{dist} = \begin{pmatrix} 0. & 3.60555128 & 3.74165739 & 3.60555128 & 2.23606798 \\ 3.60555128 & 0. & 1.73205081 & 3.74165739 & 3.74165739 \\ 3.74165739 & 1.73205081 & 0. & 2.23606798 & 3. \\ 3.60555128 & 3.74165739 & 2.23606798 & 0. & 2. \\ 2.23606798 & 3.74165739 & 3. & 2. & 0. \end{pmatrix}$$

1)

Cosine similarity

Angle between vectors

We can think of the angle φ between two vectors \mathbf{d}_i and \mathbf{d}_j as a measure of their similarity.

- Smaller angles mean that the vectors point in two directions that are close to each other
- Thus, smaller angles mean that the vectors are more similar
- Larger angles imply smaller similarity
- ullet To obtain a numerical value from the interval [0,1] we can calculate cosarphi
- Cosine of an angle can be also negative! Why do we always get the values from [0,1]

Cosine similarity: Example

Cosine similarity

 We can calculate the cosine similarity we make use of the dot product and Euclidean norm:

$$sim(d_i, d_j) = \frac{\mathbf{d}_i^T \mathbf{d}_j}{||\mathbf{d}_i||_2||\mathbf{d}_j||_2}$$

Cosine similarity

$$\mathbf{D} = \begin{pmatrix} 0 & 2 & 0 \\ 3 & 2 & 2 \\ 2 & 1 & 3 \\ 0 & 0 & 3 \\ 0 & 0 & 1 \end{pmatrix}$$

Cosine similarity

$$\mathbf{sim} = \begin{pmatrix} 1. & 0.48507125 & 0.26726124 & 0. & 0. \\ 0.48507125 & 1. & 0.90748521 & 0.48507125 & 0.48507125 \\ 0.26726124 & 0.90748521 & 1. & 0.80178373 & 0.80178373 \\ 0. & 0.48507125 & 0.80178373 & 1. & 1. \\ 0. & 0.48507125 & 0.80178373 & 1. & 1. \end{pmatrix}$$

Representing data as matrices

- There are many other sources of the data that can be represented as large matrices
- We use also matrices to represent the social networks, etc.
- Measurement data, and much more
- In recommender systems, we represent user ratings of items as a utility matrix

Recommender systems

- Recommender systems predict user responses to options
- E.g. recommend news articles based on prediction of user interests
- E.g. recommend products based on the predictions of what user might like
- Recommender systems are necessary whenever users interact with huge catalogs of items
- E.g. thousands, even millions of products, movies, music, and so on.

Recommender systems

- These huge numbers of items arise because online you can interact also with the "long tail" items
- These are not available in retail because of e.g. limited shelf space
- Recommender systems try to support this interaction by suggesting certain items to the user
- The suggestions or recommendations are based on what the systems know about the user and about the items

Formal model: the utility matrix

 In a recommender system there are two classes of entities: users and items

Utility Function

Let us denote the set of all users with U and the set of all items with I. We define the utility function $u: UxI \rightarrow R$, where R is a set of ratings and

is a totally ordered set.

For example, $R = \{1, 2, 3, 4, 5\}$ set of star ratings, or R = [0, 1] set of real numbers from that interval.

The Utility Matrix

- The utility function maps pairs of users and items to numbers
- These numbers can be represented by a utility matrix $\mathbf{M} \in \mathbb{R}^{n \times m}$, where n is the number of users and m the number of items
- The matrix gives a value for each user-item pair where we know about the preference of that user for that item
- E.g. the values can come from an ordered set (1 to 5) and represent a rating that a user gave for an item

The Utility Matrix

- We assume that the matrix is sparse
- This means that most entries are unknown
- The majority of the user preferences for specific items is unknown
- An unknown rating means that we do not have explicit information
- It does not mean that the rating is low
- Formally: the goal of a recommender system is to predict the blank in the utility matrix

The Utility Matrix: example

Movie User	HP1	HP2	HP3	Hobbit	SW1	SW2	SW3
А	4			5	1		
В	5	5	4				
С				2	4	5	
D		3					3

Recommender systems: short summary

- Three key problems in the recommender systems:
- Collecting data for the utility matrix
 - Explicit by e.g. collecting ratings
 - 2 Implicit by e.g. interactions (users buy a product implies a high rating)
- Predicting missing values in the utility matrix
 - Problems are sparsity, cold start, and so on.
 - 2 Content-based, collaborative filtering, matrix factorization
- Evaluating predictions
 - Training dataset, test dataset, error