МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра Физики

ОТЧЕТ

по лабораторной работе №1

Тема: ОПРЕДЕЛЕНИЕ ФОКУСНЫХРАССТОЯНИЙ ЛИНЗ

Студент гр. 3488	 Шабалин Д.О.
Преподаватель	Шейнман И.Л.

Санкт-Петербург

Цель работы: определение фокусных расстояний собирающей и рассеивающей линз исходя из результатов измерений расстояний от исследуемых линз до предмета и его изображения.

Общие сведения

Фокусным расстоянием тонкой линзы называют расстояние между оптическим центром линзы и ее главным фокусом, т. е. точкой, лежащей на главной оптической оси, в которой пересекаются после преломления в линзе световые лучи, падающие на линзу параллельно главной оптической оси.

Элементарная теория оптических стекол приводит к простым соотношениям между фокусным расстоянием F линзы, расстоянием d от линзы до предмета, расстоянием d от линзы до его изображения, относительным показателем преломления d0 предмета линзы, где d1 и d2 предостивней среды и линзы, и радиусами кривизны d1 и d2 сферических поверхностей линзы. Для тонкой линзы (толщиной которой по сравнению d3 и d4 можно пренебречь) справедливы следующие соотношения:

$$\frac{1}{F} = \frac{1}{d} + \frac{1}{f}, D = \frac{1}{F} = (n_{21} - 1) \left(\frac{1}{R_1} + \frac{1}{R_2} \right),$$

где D=1/F — оптическая сила линзы, R>0 для выпуклых поверхностей и R<0 — для вогнутых. Если D>0 , то линза собирающая, а если D<0 , то — рассеивающая.

Для определения фокусных расстояний собирающих линз существует ряд способов. В данной работе применяют два из них:

- 1) путем нахождения расстояний d и f от линзы до предмета и от линзы до изображения;
- 2) путем измерения расстояния L между предметом и изображением и расстояния l между уменьшенным и увеличенным изображениями предмета. Суть метода поясняется рис.1.1.

Если предмет, поставленный на расстоянии d_1 от линзы, дает действительное изображение на расстоянии f_1 от нее, то предмет, поставленный на расстоянии d_2 = f_1 от линзы, дает действительное изображение на расстоянии f_2 = d_1 от нее. В одном случае получится увеличенное изображение предмета, во втором — уменьшенное (рис. 1.1). Поэтому при одном и том же существовать два положения линзы, при которых на экране будут получаться резкие изображения предмета.

Расстояние между двумя положениями линзы равно $l = f_1 - d_1$, а расстояние между предметом и экраном – $L = f_1 + d_1$. Из этих соотношений следует d = (L-1)/2, f = (L+1)/2 тогда согласно формуле линзы получим

$$F = \frac{df}{d+f} = \frac{L^2 - l^2}{4L}$$

Рис. 1.1. Ход лучей в собирающей линзе

Рассеивающая линза не дает действительного изображения предмета наэкране, поэтому для определения фокусного расстояния такой линзы используют оптическую систему, составленную из двух линз: исследуемой – рассеивающей, и вспомогательной – собирающей, такой, чтобы комбинация этих двух линз служила собирающей оптической системой (рис. 1.2), с помощью которой можно получить действительное изображение предмета.

Рис. 1.2. К определению фокусного расстояния рассеивающей линзы

Если с помощью собирающей линзы получить на экране уменьшенное изображение предмета S_1 , а затем за ней поставить рассеивающую линзу (рис.1.2), то удаляя экран от лампы можно найти его положение, при котором на экране возникнет действительное изображение S_2 мнимого (по отношению к рассеивающей линзе) предмета, создаваемого собирающей линзой. Определив расстояния d и f от рассеивающей линзы до изображения предмета, даваемого собирающей линзой, и его изображения, даваемого рассеивающей линзой, можно найти фокусное расстояние F рассеивающей линзы. Формула рассеивающей линзы в рассматриваемом случае (предмет мнимый, а его изображение действительное) имеет вид -1/F = -1/d + 1/f, откуда фокусное расстояние рассеивающей линзы F = fd/(f-d).

Протокол ОПРЕДЕЛЕНИЕ ФОКУСНЫХРАССТОЯНИЙ ЛИНЗ

Определение фокусного расстояния F собирающей линзы по расстояниям от линзы до предмета d и его изображения f (см. рис. 1.1). $\theta_d = \theta_f = 1$ мм

No	m_1	k ₁		$d = k_1 - m_1$			$\theta_F = \frac{\left(d^2 + f^2\right)\theta_f}{\left(d + f\right)^2}$
Разм.	MM	MM	MM	MM	MM	MM	MM
1							
2							
3							
4							
5							

Определение фокусного расстояния F собирающей линзы по расстояниям от предмета до его изображения L и между его уменьшенным и увеличенным изображениями 1 (см. рис. 1.2). $\theta_L = \theta_L = 1$ мм

No	m_1	m_2	\mathbf{k}_1	k_2	L= m ₂ -	$l = k_2 -$	$E_2 - \frac{L^2 - l^2}{l^2}$	$\theta_F = \left(\frac{L+l}{2L}\right)^2 \theta_L$
					m_1	k_1	$r_2 = \frac{1}{4L}$	$(2L)^{3L}$
Разм.	MM	MM	MM	MM	MM	MM	MM	MM
1								
2								
3								
4								
5								

Определение фокусного расстояния F рассеивающей линзы по расстояниям от этой линзы до изображения предмета d, даваемого собирающей линзой, и его изображения f, даваемого рассеивающей линзой (см. рис. 1.2). $\theta_d = \theta_f = 1$ мм

No	m_1	k ₃	m_3	m ₄	k ₄	$d=m_3-$	f=m ₄ -	$F_3 = \frac{df}{d - f}$	$\theta_F = \frac{\left(d^2 + f^2\right)\theta_f}{\left(d - f\right)^2}$
						k_4	k_4	d-f	$\theta_F = \frac{1}{(d-f)^2}$
Разм.	MM	MM	MM	MM	MM	MM	MM	MM	MM
1									
2									
3									
4									
5									

Студент гр. 3488	 Шабалин Д.О.
Преподаватель	Шейнман И.Л.