第二章 插值法

- → 引言
- → 拉格朗日 (Lagrange) 插值
- → 均差与牛顿 (Newton) 插值
- **埃尔米特(Hermite)插值**
- **分段低次插值**
- 三次样条插值

引言

- 大多数实际问题都可用函数来表示某种内在规律的数量关系
- 但函数表达式无法给出,只有通过实验或观测得到的数据表
- 如何根据这些数据推测或估计其它点的函数值?

例: 已测得在某处海洋不同深度处的水温如下:

深度	(M)	466	741	950	1422	1634
水温	(oC)	7.04	4.28	3.40	2.54	2.13

根据这些数据,希望合理地估计出其它深度(如 500、600、800米...) 处的水温。

数学工具:插值

$$Erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

x	0	0.5000	1.0000	1.5000	2.0000	2.5000	3.0000
y	0	0.5205	0.8427	0.9661	0.9953	0.9996	1.0000

当
$$x \in (0.5, 1)$$
时

$$Erf(x) \approx \frac{1}{1 - 0.5}[(x - 0.5) \times 0.8427 + (1 - x) \times 0.5205]$$

当
$$x \in (1, 1.5)$$
时

$$Erf(x) \approx \frac{1}{1.5-1}[(x-1)\times 0.9661 + (1.5-x)\times 0.8427]$$

插值问题:

设函数 y = f(x) 在区间[a, b]上有定义, 且已知在点 $a \le x_0 < x_1 < \cdots < x_n \le b$ 上的值 y_0, y_1, \cdots, y_n ,若存在一简单函数 P(x),使

$$P(x_i) = y_i$$
 $(i = 0, 1, \dots, n)$

成立,就称P(x)为f(x)的插值函数,

点 x_0, x_1, \dots, x_n 称为插值节点,

区间[a,b]称为插值区间,

求插值函数P(x)的方法称为插值法.

若P(x)为多项式时,就称为多项式插值. 同理,有有理分式插值、三角插值等.

- [a, b] 为插值区间, x_i 为插值节点, $p(x_i) = f(x_i)$ 为插值条件
- 插值节点无需递增排列,但必须确保互不相同!
- ●求插值函数 p(x) 的方法就称为插值法

图2-1

定理1 若插值结点 x_0, x_1, \dots, x_n 是 (n+1)个互异

点,则满足插值条件 $P(x_k)=y_k$ (k=0,1,...,n)的 n 次插值多项式

$$P(x)=a_0 + a_1x + ... + a_nx^n$$

存在而且是唯一的。

证明: 由插值条件

$$P(x_0) = y_0 P(x_1) = y_1 P(x_n) = y_n$$

$$\begin{cases} a_0 + a_1 x_0 + \dots + a_n x_0^n = y_0 \\ a_0 + a_1 x_1 + \dots + a_n x_1^n = y_1 \\ \dots \\ a_0 + a_1 x_n + \dots + a_n x_n^n = y_n \end{cases}$$

方程组系数矩阵取行列式

$$|A| = \begin{vmatrix} 1 & x_0 & \cdots & x_0^n \\ 1 & x_1 & \cdots & x_1^n \\ \vdots & \vdots & \vdots \\ 1 & x_n & \cdots & x_n^n \end{vmatrix} = \prod_{n \ge i > j \ge 0} (x_i - x_j) \ne 0$$

故方程组有唯一解.

从而插值多项式 P(x) 存在而且是唯一的.

例 误差函数表可构造6次插值函数

x	0	0.5000	1.0000	1.5000	2.0000	2.5000	3.0000
y	0	0.5205	0.8427	0.9661	0.9953	0.9996	1.0000

注 虽然此法可以求出唯一的插值多项式,但是计算量太大,并不实用。下面介绍拉格朗日和牛顿两种插值法。

2.2 拉格朗日插值

2.2.1 线性插值与抛物插值

对给定的插值点,可以用多种不同的方法求得形如(1.2)的插值多项式.

$$P(x) = a_0 + a_1 x + \dots + a_n x^n$$
 (1.2)

先讨论 n=1的简单情形.

问题: 给定区间 $[x_k, x_{k+1}]$ 及端点函数值 $y_k = f(x_k), y_{k+1} = f(x_{k+1})$,

要求线性插值多项式 L(x), 使它满足

$$L_1(x_k) = y_k, \quad L_1(x_{k+1}) = y_{k+1}.$$

其几何意义就是通过两点 (x_k, y_k) , (x_{k+1}, y_{k+1}) 的直线.

图2-2

由 L(x) 的几何意义可得到表达式

$$L_{1}(x) = y_{k} + \frac{y_{k+1} - y_{k}}{x_{k+1} - x_{k}} (x - x_{k})$$
 (点斜式),
$$L_{1}(x) = \frac{x_{k+1} - x}{x_{k+1} - x_{k}} y_{k} + \frac{x - x_{k}}{x_{k+1} - x_{k}} y_{k+1}$$
 (两点式),

由两点式看出, $L_{l}(x)$ 是由两个线性函数

$$l_k(x) = \frac{x - x_{k+1}}{x_k - x_{k+1}}, \qquad l_{k+1}(x) = \frac{x - x_k}{x_{k+1} - x_k}$$
 (2.2)

的线性组合得到,其系数分别为 y_k 及 y_{k+1} ,即

$$L_{1}(x) = y_{k}l_{k}(x) + y_{k+1}l_{k+1}(x).$$
 (2.3)

显然, $l_k(x)$ 及 $l_{k+1}(x)$ 也是线性插值多项式,在节点 x_k 及 x_{k+1}

上满足条件 $l_k(x_k)=1$, $l_k(x_{k+1})=0$,

$$l_{k+1}(x_k) = 0, \ l_{k+1}(x_{k+1}) = 1,$$

称 $l_k(x)$ 及 $l_{k+1}(x)$ 为线性插值基函数。

图2-3

下面讨论 n=2 的情形.

假定插值节点为 x_{k-1} , x_k , x_{k+1} , 要求二次插值多项式 $L_2(x)$, 使它满足

$$L_2(x_j) = y_j$$
 $(j = k - 1, k, k + 1).$

几何上 $L_2(x)$ 是通过三点 $(x_{k-1}, y_{k-1}), (x_k, y_k), (x_{k+1}, y_{k+1})$ 的抛物线.

可以用基函数的方法求 $L_2(x)$ 的表达式,此时基函数

 $l_{k-1}(x)$, $l_{k}(x)$, $l_{k+1}(x)$ 是二次函数,且在节点上满足条件

$$l_{k-1}(x_{k-1}) = 1$$
, $l_{k-1}(x_j) = 0$, $(j = k, k+1)$;
 $l_k(x_k) = 1$, $l_k(x_j) = 0$, $(j = k-1, k+1)$; (2.4)
 $l_{k+1}(x_{k+1}) = 1$, $l_{k+1}(x_j) = 0$, $(j = k-1, k)$.

接下来讨论满足(2.4)的插值基函数的求法.

以求 $l_{k-1}(x)$ 为例,由插值条件,它应有两个零点 x_k 及 x_{k+1} ,

可表示为

$$l_{k-1}(x) = A(x - x_k)(x - x_{k+1}),$$

其中 A为待定系数,可由插值条件 $l_{k-1}(x_{k-1})=1$ 定出

$$A = \frac{1}{(x_{k-1} - x_k)(x_{k-1} - x_{k+1})}.$$

于是

$$l_{k-1}(x) = \frac{(x - x_k)(x - x_{k+1})}{(x_{k-1} - x_k)(x_{k-1} - x_{k+1})}.$$

同理

$$l_k(x) = \frac{(x - x_{k-1})(x - x_{k+1})}{(x_k - x_{k-1})(x_k - x_{k+1})}.$$

$$l_{k+1}(x) = \frac{(x - x_{k-1})(x - x_k)}{(x_{k+1} - x_{k-1})(x_{k+1} - x_k)}.$$

二次插值基函数 $l_{k-1}(x)$, $l_k(x)$, $l_{k+1}(x)$ 在区间 $[x_{k-1}, x_{k+1}]$ 上的图形:

利用 $l_{k-1}(x)$, $l_k(x)$, $l_{k+1}(x)$,立即得到二次插值多项式

$$L_{2}(x) = y_{k-1}l_{k-1}(x) + y_{k}l_{k}(x) + y_{k+1}l_{k+1}(x).$$
 (2.5)

显然, 它满足条件 $L_2(x_j) = y_j (j = k-1, k, k+1)$.

将 $l_{k-1}(x)$, $l_k(x)$, $l_{k+1}(x)$ 代入(2.5),得

$$L_{2}(x) = y_{k-1} \frac{(x - x_{k})(x - x_{k+1})}{(x_{k-1} - x_{k})(x_{k-1} - x_{k+1})}$$

$$+ y_{k} \frac{(x - x_{k-1})(x - x_{k+1})}{(x_{k} - x_{k-1})(x_{k} - x_{k+1})}$$

$$+ y_{k+1} \frac{(x - x_{k-1})(x - x_{k})}{(x_{k+1} - x_{k-1})(x_{k+1} - x_{k})}.$$

n+1个条件的n次插值多项式

基函数插值法

$$\operatorname{Li} Z_n(x) = \{ \text{次数不超过 } n \text{ 的多项式的全体 } \}$$
 $n+1$ 维

设 $z_0(x)$, $z_1(x)$,..., $z_n(x)$ 构成 $Z_n(x)$ 的一组基,则插值多项式可表示为

$$p(x) = a_0 z_0(x) + a_1 z_1(x) + \cdots + a_n z_n(x)$$

- ① 寻找合适的基函数
- ② 确定插值多项式在这组基下的线性表示系数

通过基函数来构造插值多项式的方法就称为基函数插值法

Lagrange 插值

● Lagrange 基函数

定义:设 $l_k(x)$ 是n次多项式,在节点 x_0, x_1, \ldots, x_n 上满足

$$l_k(x_i) = \begin{cases} 1, & i = k \\ 0, & i \neq k \end{cases}$$
 $i = 0, 1, 2, ..., n$

则称 $l_k(x)$ 为节点 x_0, x_1, \ldots, x_n 上的 n 次 Lagrange 插值基函数

通过构造法,可求得

$$\begin{split} & \boldsymbol{l}_{k}(x) = \frac{(x - x_{0}) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_{n})}{(x_{k} - x_{0}) \cdots (x_{k} - x_{k-1})(x_{k} - x_{k+1}) \cdots (x_{k} - x_{n})} \\ & = \prod_{i=0, i \neq k}^{n} \frac{x - x_{i}}{x_{k} - x_{i}} \end{split}$$

n 次Lagrange 插值基函数

$$\begin{split} & \boldsymbol{l}_{k}(x) = \frac{(x - x_{0}) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_{n})}{(x_{k} - x_{0}) \cdots (x_{k} - x_{k-1})(x_{k} - x_{k+1}) \cdots (x_{k} - x_{n})} \\ & = \prod_{i=0, i \neq k}^{n} \frac{x - x_{i}}{x_{k} - x_{i}} \end{split}$$

• 两点说明

- $l_0(x)$, $l_1(x)$, ..., $l_n(x)$ 构成 $\mathbf{Z}_n(x)$ 的一组基
- $l_0(x), l_1(x), \ldots, l_n(x)$ 与插值节点有关,但与f(x) 无关

利用 Lagrange 基函数求 P(x)

设
$$p(x) = a_0 l_0(x) + a_1 l_1(x) + \cdots + a_n l_n(x)$$

将 $p(x_i) = y_i$, i = 0, 1, ..., n 代入,可得

$$a_i = y_i$$
, $i = 0, 1, ..., n$

$$p(x) = y_0 l_0(x) + y_1 l_1(x) + \cdots + y_n l_n(x) \triangleq L_n(x)$$

$L_n(x)$ 就称为 f(x) 的 Lagrange 插值多项式

$$L_n(x) = \sum_{k=0}^n y_k l_k(x) = \sum_{k=0}^n y_k \prod_{i=0, i \neq k}^n \frac{x - x_i}{x_k - x_i}$$

若引入记号
$$\omega_{n+1}(x) = \prod_{k=0}^{n} (x - x_k)$$
,则 $\omega'_{n+1}(x_k) = \prod_{i=0}^{n} (x_k - x_i)$
有: $L_n(x) = \sum_{k=0}^{n} y_k \frac{\omega_{n+1}(x)}{(x - x_k)\omega'_{n+1}(x_k)}$

两种特殊情形

● 线性插值多项式(一次插值多项式): n=1

$$L_1(x) = y_0 l_0(x) + y_1 l_1(x) = y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0}$$

● 抛物线插值多项式(二次插值多项式): n=2

$$L_2(x) = y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_1)} + y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

注: n 次插值多项式 $L_n(x)$ 通常是 n 次的,但有时也会低于 n

次。如:二次插值中,如果三点共线,则 $L_n(x)$ 为直线

已知
$$\sqrt{4} = 2, \sqrt{9} = 3, \sqrt{16} = 4$$
 求 $\sqrt{7}$

$$\mathbb{R}x_0=4, y_0=2, x_1=9, y_1=3, x_2=16, y_2=4.$$

(1) 线性插值: $\mathbb{R}x_0=4, x_1=9$

$$L_1(x) = \frac{9-x}{9-4} \times 2 + \frac{x-4}{9-4} \times 3$$

$$\sqrt{7} \approx L_1(7) = \frac{2}{5}(9-7) + \frac{3}{5}(7-4) = \frac{13}{5} = 2.6$$

(2) 抛物插值:

例

解

$$\mathbb{R}x_0=4, x_1=9, x_2=16$$

$$\sqrt{7} \approx L_2(7)$$

$$= \frac{(7-9)(7-16)}{(4-9)(4-16)} \times 2 + \frac{(7-4)(7-16)}{(9-4)(9-16)} \times 3 + \frac{(7-4)(7-9)}{(16-4)(16-9)} \times 4$$

$$= 2.6286$$

$$(\sqrt{7} \approx 2.6458)$$
 21/114

误差估计:

对于两点线性插值

$$L(x) = \frac{x - x_0}{x_1 - x_0} y_1 + \frac{x_1 - x}{x_1 - x_0} y_0$$

插值余项(误差):

$$R(x) = f(x) - L(x)$$

由插值条件,知

$$R(x)=K(x) (x-x_0)(x-x_1)$$

即
$$f(x) - L(x) = K(x) (x - x_0)(x - x_1)$$

$$K(x) = ???$$

定理2 设 $f(x) \in C^n[a,b]$ (n 阶连续可微),

且 f(x) 在 (a, b)内具有n+1阶导数,取插值结点 $a \le x_0 < x_1 < \dots < x_n \le b$

则对任何 $x \in [a, b]$,满足 $L_n(x_k) = f(x_k)$ 的 n 次 插值多项式 $L_n(x)$ 的误差

$$R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \omega_{n+1}(x)$$

其中, $\omega_{n+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_n)$ $\xi_x \in (a, b)$ 且与x有关。

证明:

由插值条件可知: $R_n(x_i)=0$, i=0,1,...,n

 $R_n(x)$ 在[a,b]上至少有 n+1 个零点

 $R_n(x)$ 可写成 $R_n(x) = K(x)\omega_{n+1}(x)$

对任意给定的 $x \in [a,b]$ $(x \neq x_i, i = 0, 1, ..., n)$,构造辅助函数

$$\varphi(t) = R_n(t) - K(x)\omega_{n+1}(t)$$

则 $\varphi(t)$ 在 [a, b] 中有 n+2 个互不相同的零点: x, x_0, \ldots, x_n

罗尔 设 $f(x) \in C[a,b]$,且在(a,b)内可微;若f(a) = f(b) = 0, **定理** 则必存在一点 $\xi \in (a,b)$,使得 $f'(\xi) = 0$ 。

$f(x) \in C^n[a,b]$, 且 $f^{(n+1)}(x)$ 在(a,b) 内存在

由Rolle定理可知 $\varphi'(t)$ 在 (a,b) 内至少有 n+1 个不同的零点; 同理可知 $\varphi''(t)$ 在 (a,b) 内至少有 n 个零点;

以此类推,可知 $\varphi^{(n+1)}(t)$ 在 (a,b) 内至少有一个零点,设 为 ξ_r , 即 $\varphi^{(n+1)}(\xi_r) = 0$, $\xi_r \in (a,b)$ 。

$$\nabla \varphi^{(n+1)}(t) = R_n^{(n+1)}(t) - K(x) \omega_{n+1}^{(n+1)}(t)$$

$$= f^{(n+1)}(t) - L_n^{(n+1)}(t) - K(x)(n+1)!$$

$$= f^{(n+1)}(t) - K(x)(n+1)!$$

$$K(x) = \frac{\varphi^{(n+1)}(\xi_x)}{(n+1)!}$$

$$K(x) = \frac{\varphi^{(n+1)}(\xi_x)}{(n+1)!} \qquad R_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \omega_{n+1}(x)$$

余项公式:
$$R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)$$

注: 余项表达式只有在f(x)的高阶导数存在时才能使用, **ξ**通常不能具体给出.

若有
$$\max_{a < x < b} \left| f^{(n+1)}(x) \right| = M_{n+1}$$

则 $L_n(x)$ 逼近f(x)的截断误差限是

$$\left| R_n(x) \right| \leq \frac{M_{n+1}}{(n+1)!} \left| \omega_{n+1}(x) \right|$$

特殊情况:

n=1时,

n=2时,

$$R_1(x) = \frac{1}{2} f''(\xi) \omega_2(x) = \frac{1}{2} f''(\xi) (x - x_0)(x - x_1)$$

$$(\xi \in [x_0, x_1])$$

 $R_2(x) = \frac{1}{6} f'''(\xi)(x - x_0)(x - x_1)(x - x_2)$

 $(\xi \in [x_0, x_2])$

注: 当 f(x) 是n次的多项式时, $L_n(x)=f(x)$ 。

即n次多项式的n次插值函数即为该n次多项式本身。

Lagrange基函数性质

● 当f(x) 为一个次数 ≤ n 的多项式时,有 $f^{(n+1)}(x) \equiv 0$ 故

$$R_n(x) = f(x) - L_n(x) \equiv 0$$

即 n 次插值多项式对于次数 $\leq n$ 的多项式是精确的

• 若 $f(x) = x^k$, $k \le n$, 则有

$$R_n(x) = x^k - \sum_{j=0}^n x_j^k l_j(x) = 0$$

特别地,当 $k = 0$ 时有 $\sum_{j=0}^n l_j(x) = 1$
 $\sum_{j=0}^n x_j^k l_j(x) \equiv x^k$, $(k=0,1,2,\dots,n)$

例证明

(a)
$$\sum_{j=0}^{n} x_{j}^{k} l_{j}(x) \equiv x^{k}$$
 $(k = 0, 1, \dots, n)$

(b) $\sum_{i=0}^{5}$ 中一是我 点 0, 的 插值 基 函 数 。 x_0, x_1, \dots, x_5

证明:函数及均为被插道函数的关于互异节点的 k $\left\{x_j\right\}_{j=0}^n$

不超过次的插值多项式,利用插值多项式的唯一性知两者恒等。

(b)
$$\sum_{i=0}^{5} (x_i - x)^2 l_i(x) = \sum_{i=0}^{5} (x_i^2 - 2x_i x + x^2) l_i(x)$$
$$= \sum_{i=0}^{5} x_i^2 l_i(x) - \sum_{i=0}^{5} 2x_i x l_i(x) + \sum_{i=0}^{5} x^2 l_i(x)$$
$$= \sum_{i=0}^{5} x_i^2 l_i(x) - 2x \sum_{i=0}^{5} x_i l_i(x) + x^2 \sum_{i=0}^{5} l_i(x)$$
$$= x^2 - 2x^2 + x^2 = 0$$

解: 设 $R_1(x)$ 为Lagrange线性插值的余项

 $R_2(x)$ 为二次Lagrange插值的余项

$$f'(x) = \frac{1}{2\sqrt{x}} \qquad f''(x) = -\frac{1}{4}x^{-\frac{3}{2}} \qquad f'''(x) = \frac{3}{8}x^{-\frac{5}{2}}$$

$$M_2 = \max_{169 \le x \le 225} |f''(x)| = |f''(169)| \le 1.14 \times 10^{-4}$$

$$M_3 = \max_{144 < x < 225} |f'''(x)| = |f'''(144)| \le 1.51 \times 10^{-6}$$

$$N_2 = \mid \omega_2(x) \mid = \mid (175 - 169)(175 - 225) \mid = 300$$

$$N_3 = \mid \omega_3(x) \mid = \mid (175 - 144)(175 - 169)(175 - 225) \mid = 9300$$

$$|R_1(x)| \le \frac{1}{2!} M_2 N_2 \le \frac{1}{2} \times 1.14 \times 10^{-4} \times 300 \le 1.71 \times 10^{-2}$$

$$|R_2(x)| \le \frac{1}{3!} M_3 N_3 \le \frac{1}{6} \times 1.51 \times 10^{-6} \times 9300 \le 2.35 \times 10^{-3}$$

从以上分析可知,在求√175时,

用Lagrange二次插值比线性插值的误差更小。

例 取被插值函数为正弦函数 $f(x) = \sin x$, 取三点做 二次插值, 求区间内的误差上限。

\overline{x}	0	$\pi/2$	π
Sin x	0	1	0

$$\begin{split} L_2(x) &= 4x(\pi - x)/\pi^2 \\ |R_2| &= |\cos \xi| \cdot |x(x - \pi/2)(x - \pi)|/6 \\ |R_2| &\leq \frac{\pi}{2} \frac{\pi^2}{4} \frac{1}{6} = \frac{\pi^3}{48} \end{split}$$

例 设 y = f(x) 在区间 [a, b]上有连续,且 f(x) 在 (a, b)内具有2阶导数,已知f(x)在区间端点处的值.如果当 $x \in (a, b)$ 时,有f''(x)≤M. 试证明

$$|R_1(x)| \leq \frac{M}{8}(b-a)^2$$

证明 由Lagrange插值误差定理

$$R_1(x) = f(x) - L_1(x) = \frac{f''(\xi)}{2}(x-a)(x-b)$$

$$\diamondsuit h(x) = |(x-a)(x-b)|$$

$$\max_{a \le x \le b} h(x) = h(\frac{a+b}{2}) = \frac{(b-a)^2}{4} \qquad |R_1(x)| \le \frac{M}{8} (b-a)^2$$

拉格朗日插值公式的优缺点

利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中非常方便.

但是,当插值节点增加时,全部插值基函数 $l_k(k=0,1,...)$ 均要随 之变化,整个公式也要发生变化,这**为实**院服**第**中**最**很不方便的.

可把插值多项式变形为便于计算的形式,导出牛顿插值公式.

2.3均差与Newton 插值

Lagrange 插值简单易用,但若要增加一个节点时,全部基 函数 $l_k(x)$ 都需重新计算,很不方便!

解决办法 更换基函数

设计一个可以逐次生成插值多项式的算法。即

$$p_{n+1}(x) = p_n(x) + u_{n+1}(x)$$

其中 $p_{n+1}(x)$ 和 $p_n(x)$ 分别为 n+1 次和 n 次插值多项式

可行方案: Newton 插值

新的基函数

设插值节点: x_0, \ldots, x_n , Newton 插值采用的基函数为:

$$\omega_0(x) = 1$$

$$\omega_1(x) = x - x_0$$

$$\omega_2(x) = (x - x_0)(x - x_1)$$

$$\cdots$$

$$\omega_n(x) = (x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

lacktriangle 优点: 当增加一个节点 x_{n+1} 时,只需加上基函数

$$\omega_{n+1} = (x - x_0)(x - x_1) \cdots (x - x_{n-1})(x - x_n)$$

Newton 插值

• 此时 f(x) 的 n 次插值多项式为

$$p_n(x) = a_0 \omega_0(x) + a_1 \omega_1(x) + a_2 \omega_2(x) + \dots + a_n \omega_n(x)$$

需要解决的问题

① 怎样确定系数 a_0, \ldots, a_n ?

工具: 差商(均差)

② 如何从 $p_n(x)$ 得到 $p_{n+1}(x)$?

均差(差商)

设函数f(x), 节点 x_0, \ldots, x_n

$$f[x_i, x_j, x_k] = \frac{f[x_j, x_k] - f[x_i, x_k]}{x_j - x_i}$$

均差的一般定义

k 阶均差

$$f[x_0, x_1, ..., x_k] = \frac{f[x_0, ..., x_{k-2}, x_k] - f[x_0, ..., x_{k-2}, x_{k-1}]}{x_k - x_{k-1}}$$

均差的性质

● 均差可以表示为函数值的线性组合:用归纳法可以证明

$$\begin{split} f[x_0, x_1, \cdots, x_k] &= \sum_{j=0}^k \frac{f(x_j)}{(x_j - x_0) \cdots (x_j - x_{j-1})(x_j - x_{j+1}) \cdots (x_j - x_k)} \\ &= \sum_{j=0}^k \frac{f(x_j)}{\omega_{k+1}'(x_j)} \end{split}$$

差商与节点的排序无关,即差商具有对称性

$$f[x_0, x_1, \dots, x_k] = f[x_{i_0}, x_{i_1}, \dots, x_{i_k}]$$

其中 i_0, i_1, \ldots, i_k 是 $0, 1, \ldots, k$ 的一个任意排列

● 差商的等价定义:

$$f[x_0, x_1, \dots, x_k] = \frac{f[x_1, \dots, x_{k-1}, x_k] - f[x_0, x_1, \dots, x_{k-1}]}{x_k - x_0}$$

性质3

$$x_0, \dots, x_n \in [a, b],$$

$f[x_0,\dots,x_n] = \frac{f^{(n)}(\xi)}{n!}, \quad \xi \in [a,b]$

(用罗尔定理证明)

证明:设 $q(x) = f[x, x_0, ..., x_n](x-x_0)(x-x_1)...(x-x_n), q(x)$ 在 $x_0, ..., x_n$ 处均为零,所以q(x)在[a,b]上有n+1个零点,根据罗尔定理,q'(x)在q(x)的两个零点间至少有一个零点,故q'(x)在[a,b]内至少有n个零点;反复应用罗尔定理,可知 $q^{(n)}(x)$ 在[a,b]内至少有1个零点,记为 $\xi \in [a,b]$,使 $q^{(n)}(\xi) = f^{(n)}(\xi)-n! f[x_0, ..., x_n] = 0, \text{ 所以: } f[x_0, ..., x_n] = \frac{f^{(n)}(\xi)}{n!}.$

均差计算表

Xi	$f(x_i)$	一阶	二阶均差	三阶均差	 n阶均差
		均差			
X_0	$f(\mathbf{x}_0)$				
X_1	$f(x_1)$	$f[x_0,x_1]$			
			$\int [x_0, x_1, x_2]$		
X_3	$f(x_3)$	$f[x_2,x_3]$ –	$f[x_1,x_2,x_3]$	$f[x_0,x_1,x_2,x_3]$	
	•	•	•	•	 •
\mathbf{X}_{n}	$f(x_n)$	$f[x_{n-1},x_n]$	$f[x_{n-2},x_{n-1},x_n]$	$f[x_{n-3},x_{n-2},x_2,x_3]$	 $ f[x_0,x_1,\ldots,x_n] $

例 由函数y=f(x)的函数表写出均差表.

i	0	1	2	3
Xi	-2	-1	1	2
$f(x_i)$	5	3	17	21

解 均差表如下

i	Xi	$f(x_i)$	一阶均差	二阶均差	三阶均差
0	-2	5			
1	-1	3	-2		
2	1	17	7	3	
3	2	21	4	-1	-1

2.3.3牛顿插值插值多项式

取 $x_0, x_1, x_2, 求二次函数$

$$P(x)=a_0+a_1(x-x_0)+a_2(x-x_0)(x-x_1)$$

满足条件

$$P(x_0)=f(x_0), P(x_1)=f(x_1), P(x_2)=f(x_2)$$

插值条件引出关于 a_0, a_1, a_2 方程

$$\begin{cases} a_0 &= f(x_0) \\ a_0 + a_1(x_1 - x_0) &= f(x_1) \\ a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1) = f(x_2) \end{cases}$$

解下三角方程组过程中注意均差符号

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \qquad f[x_1, x_2] = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

解方程得到

$$a_0 = f(x_0), \quad a_1 = f[x_0, x_1], \quad a_2 = f[x_0, x_1, x_2]$$

牛顿插值公式:

$$P(x)=f(x_0) 1+f[x_1,x_2](x-x_0) + f[x_0,x_1,x_2](x-x_0)(x-x_1)$$

$$f(x) = f_0 + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

$$+ \cdots$$

$$+ f[x_0, x_1, \dots, x_n](x - x_0) \cdots (x - x_{n-1})$$

$$+ f[x, x_0, \dots, x_n] \omega_{n+1}(x)$$

$$= N_n(x) + R_n(x) \qquad (\omega_{n+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_n))$$

$$N_n(x) = f(x_0) + f[x_0, x_1](x - x_0) + \cdots$$
$$+ f[x_0, x_1, \dots, x_n](x - x_0) \cdots (x - x_{n-1})$$

$$R_n(x) = f(x) - N_n(x) = f[x, x_0, \dots, x_n]\omega_{n+1}(x)$$

 $N_n(x)$ 为Newton(均差)插值多项式。

注:

(1) Newton插值多项式的系数为均差表中各阶均差的第一个数据;

(2) Newton插值多项式的基函数为 $\omega_i(x)$, $i=0,1,\ldots,n$;

(3) Newton插值多项式的插值余项为 $R_n(x)$ 。

例: 已知f(x)的函数表,求4次牛顿插值多项式,并由此计算 f(0.596)的近似值。

x_k	$f(x_k)$	一阶均差	二阶均差	三阶均差	四阶均差	五阶均差
0.40	0.41075					
0.55	0.57815	1.11600				
0.65	0.69675	1.18600	0.28000			
0.80	0.88811	1.27573	0.35893	0.19733		
0.90	1.02652	1.38410	0.43348	0.21300	0.03134	
1.05	1.25382	1.51533	0.52493	0.22863	0.03126	-0.00012

从表中可以看到4阶均差几乎为常数,故取4次插值多项式即可,于是:

$$N_4(x) = 0.41075 + 1.166(x - 0.4) + 0.28(x - 0.4)(x - 0.55)$$
$$+ 0.19733(x - 0.4)(x - 0.55)(x - 0.65)$$
$$+ 0.03134(x - 0.4)(x - 0.55)(x - 0.65)(x - 0.8)$$

可得

$$f(0.596) \approx N_{A}(0.596) = 0.63192$$

截断误差为:

$$|R_4(x)| \approx |f[x_0, x_1, x_2, x_3, x_4, x_5]\omega_5(0.596)| \le 3.63 \times 10^{-9}$$

这说明截断误差很小。

截断误差的估计:

此例中,五阶均差 $f[x,x_0,x_1,....,x_4]$ 是用 $f[x_0,x_1,....,x_5]$ 来近似的。

另一种方法是取x=0.596,由 $f(0.596)\approx 0.61392$ 求得 $f[x,x_0,x_1,...,x_4]$ 的近似值,进而计算 $|R_4(x)|$ 。

定理(性质3) 设f(x)在[a,b]上具有n阶导数,且 $x_0,x_1,...,x_n \in [a,b]$,则n阶均差与导数的关系如下:

$$f[x_0, x_1, \dots, x_n] = \frac{f^{(n)}(\xi)}{n!}$$
 $\xi \in [a, b]$

因此,牛顿插值公式的余项公式还可以写成

$$R_{n}(x) = f(x) - N(x)$$

$$= \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x) = f[x, x_{0}, x_{1}, \dots, x_{n}] \omega_{n+1}(x)$$

可以证明:

$$N_n(x) = N_{n-1}(x) + f[x_0, \dots, x_n](x - x_0) \dots (x - x_{n-1})$$
 这样,每增加一个节点,掩值和项式只增加一项, 克服了插值的缺点。

Newton插值法的优点是计算较简单,尤其是增加节点时, 计算只要增加一项,这是Lagrange插值无法比的.

注: 增加插值节点时, 须排 在已有插值节点的后面!

另外,Newton插值多项式 $N_n(x)$ 需要除法 $\sum_{i=1}^n k = \frac{n^2 + n}{2}$ 次,及 n次乘法,大约比Lagrange公式节省3到4倍工作量.

$$N_3(x) = -56 + 40(x+2) - 13(x+2)(x+1) + 2(x+2)(x+1) x$$

$$a_0 = -56 + 80 - 26 = -2$$

$$a_1 = 40 - 39 + 4 = 5$$

$$a_2 = -13 + 6 = -7$$

$$a_3 = 2$$

$$P_3(x) = -2 + 5x - 7x^2 + 2x^3$$

函数值的计算技巧:

$$N_3(x) = -56 + (x + 2) [40 + (x + 1) [-13 + 2 x]]$$

2.3.3差分形式的牛顿插值公式

在实际应用中,通常采用等距节点:

$$x_i = x_0 + i h$$
, $i = 1, 2, ..., n$

h>0,称为步长

此时,可以使用差分来简化 Newton插值公式

向前差分(教材上简称为差分)

$$\Delta f_i = f(x_i + h) - f(x_i)$$

 \longrightarrow 定义为 f(x) 在 x_i 处步长为 h 的 一阶向前差分

高阶差分

$$\Delta^{1} f_{i} = f(x_{i} + h) - f(x_{i}) = f_{i+1} - f_{i}$$

$$\Delta^2 f_i = \Delta(\Delta f_i) = \Delta f_{i+1} - \Delta f_i$$

$$\vdots$$

二阶向前差分

$$\Delta^{n} f_{i} = \Delta(\Delta^{n-1} f_{i}) = \Delta^{n-1} f_{i+1} - \Delta^{n-1} f_{i}$$
 n 阶向前差分

规定
$$\Delta^0 f_i = f(x_i)$$

n 阶差分的具体表达式

定义不变算子 I 与移位算子 E, 即 $If_i = f_i$, $Ef_i = f_{i+1}$

$$\Delta f_i = f_{i+1} - f_i = \mathbf{E} f_i - \mathbf{I} f_i = (\mathbf{E} - \mathbf{I}) f_i$$

$$\Delta^{n} f_{i} = (\mathbf{E} - \mathbf{I})^{n} f_{i} = \left[\sum_{k=0}^{n} (-1)^{k} \binom{n}{k} \mathbf{E}^{n-k} \right] f_{i}$$

$$= \sum_{k=0}^{n} (-1)^{k} \frac{n(n-1)\cdots(n-k+1)}{k!} f_{n-k+i}$$

反之,有
$$f_{n+i} = \mathbf{E}^n f_i = (\mathbf{I} + \Delta)^n f_i = \left[\sum_{k=0}^n \binom{n}{k} \Delta^k\right] f_i$$

差分与差商之间的关系

$$f[x_0, x_1] = \frac{f_1 - f_0}{x_1 - x_0} = \frac{\Delta f_0}{h}$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{1}{2} \frac{\Delta^2 f_0}{h^2}$$

$$f[x_k, x_{k+1}, x_{k+2}] = \frac{1}{2} \frac{\Delta^2 f_k}{h^2}$$

$$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0} = \frac{1}{3!} \frac{\Delta^3 f_0}{h^3}$$

$$f[x_0, x_1, \dots, x_m] = \frac{1}{m!} \frac{\Delta^m f_0}{h^m}$$
 $m = 1, 2, 3, \dots$

差分与导数之间的关系

$$\Delta^{m} f_{k} = m! h^{m} f[x_{k}, x_{k+1}, \dots, x_{k+m}]$$

$$= m! h^{m} \frac{f^{(m)}(\xi)}{m!}$$

$$= h^{m} f^{(m)}(\xi) \qquad \qquad \xi \in (x_{k}, x_{k+m})$$

差分表

x_i	$f(x_i)$	一阶	二阶	三阶	•••	n 阶
		差分	差分	差分		差分
x_0	$f(x_0)$ —	$\Rightarrow \Delta f_0$	$\Rightarrow \Delta^2 f_0$	$\Rightarrow \Delta^3 f_0$	•••	$\Rightarrow \Delta^n f_0$
x_1	$f(x_1)$	Δf_1	$\Delta^2 f_1$	$\Delta^3 f_1$		
:	•			7	•••	
x_{n-3}	$f(x_{n-3})$	Δf_{n-3}	$\Delta^2 f_{n-3}$	$\Delta^3 f_{n-3}$		
x_{n-2}	$\int f(x_{n-2})$	$\rightarrow \Delta f_{n-2}$	$\Delta^2 f_{n-2}$			
x_{n-1}	$\int f(x_{n-1}) \leq$	Δf_{n-1}				
x_n	$f(x_n)$,				

Newton 插值只需使用差分表第一行

等距牛顿插值

$$N_{n}(x) = a_{0}\omega_{0}(x) + a_{1}\omega_{1}(x) + a_{2}\omega_{2}(x) + \dots + a_{n}\omega_{n}(x)$$

$$a_{k} = f[x_{0}, x_{1}, \dots, x_{k}] = \frac{\Delta^{k} f_{0}}{k!h^{k}}$$

牛顿向前插值公式

用向前差分表示的等距牛顿插值公式

设
$$x = x_0 + th$$
 则

$$N_n(x) = N_n(x_0 + th)$$

$$= f_0 + \frac{t}{1!} \Delta f_0 + \frac{t(t-1)}{2!} \Delta^2 f_0 + \dots + \frac{t(t-1)\cdots(t-n+1)}{n!} \Delta^n f_0$$

$$R_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} t(t-1)...(t-n)h^{n+1}, \quad \xi_x \in (x_0, x_n)$$

例: 已知 $f(x) = \cos x$ 在等距节点 0, 0.1, 0.2, 0.3, 0.4, 0.5 处的函数值,试用 4 次 Newton 前插公式计算f(0.048) 的近似值,并估计误差。

解: 取节点 x=0,0.1,0.2,0.3,0.4,做差分表

x_i	$f(x_i)$	Δf	$\Delta^2 f$	$\Delta^3 f$	$\Delta^4 f$
0.0	1.00000	-0.00500	-0.00993	-0.00013	-0.00012
0.1	0.99500	-0.01493	-0.00980	-0.00025	
0.2	0.98007	-0.02473	-0.00955		
0.3	0.95534	-0.03428			
0.4	0.92106				

插值点
$$x = 0.048$$
 $\Rightarrow t = (x - x_0)/h = 0.48$
$$N_4(0.048) = 1.000000 + 0.48*(-0.00500) + \cdots = 0.99884$$

$$|R_4(0.048)| \le t(t-1) (t-2) (t-3) (t-4)h^5 M_5 / 5!$$

 $\le 1.09212 \times 10^{-7}$

补充知识: 向后差分与中心差分

• 向后差分

$$\nabla^0 f_i = f(x_i)$$

$$\nabla^1 f_i = f(x_i) - f(x_{i-1})$$

$$\nabla^k f_i = \nabla(\nabla^{k-1} f_i) = \nabla^{k-1} f_i - \nabla^{k-1} f_{i-1}$$
 (k = 1, 2, ..., n)

• 中心差分

$$\delta f_i = f\left(x_i + \frac{h}{2}\right) - f\left(x_i - \frac{h}{2}\right) \qquad \delta^0 f_i = f(x_i)$$

$$\left| \delta^{k} f_{i} = \delta^{k-1} f_{i+\frac{1}{2}} - \delta^{k-1} f_{i-\frac{1}{2}} \right| \quad (k = 1, 2, ..., n)$$

§ 2.4 埃尔米特 Hermite 插值

不少实际问题不但要求在节点上函数值相等,而且还要求它的导数值也相等,甚至要求高阶导数也相等,满足这种要求的插值多项式就是**埃尔米特**(Hermite)**插值多项式**.

一、n+1个节点的2n+1次埃尔米特插值

给定数据表:

\boldsymbol{x}	x_0	x_1	•••	x_n
y = f(x)	y_0	y_1	•••	y_n
y'=f'(x)	y' 0	y' 1	•••	y' n

作一个次数不超过 2n+1 的多项式 $H_{2n+1}(x)$,使 $H_{2n+1}(x_i) = y_i$, $H'_{2n+1}(x_i) = y'_i$,则有

$$H_{2n+1}(x) = \sum_{i=0}^{n} [y_i \alpha_i(x) + y'_i \beta_i(x)],$$

$$f(x) = \left(1 - 2(x - x_i) \sum_{i=0}^{n} \frac{1}{x_i - x_i}\right) l_i^2(x),$$

其中
$$a_i(x) = \left(1 - 2(x - x_i) \sum_{\substack{j=0 \ j \neq i}}^n \frac{1}{x_i - x_j} \right) l_i^2(x),$$

$$\beta_i(x) = (x - x_i) l_i^2(x),$$

$$l_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x-x_j}{x_i-x_j}.$$

插值余项
$$R(x) = f(x) - H_{2n+1}(x) = \frac{f^{(2n+2)}(\xi)}{(2n+2)!}\omega_{n+1}^2(x)$$
 $\xi \in (a,b)$

二、两点三次埃尔米特插值(n=1)

给定数据表:

\boldsymbol{x}	x_k	x_{k+1}
y = f(x)	Уk	y_{k+1}
y'=f'(x)	y' k	y' k+1

作一个次数不超过三的多项式
$$H_3(x)$$
,使 $H_3(x_k) = y_k, H_3(x_{k+1})$

$$= y_{k+1}, H'_3(x_k) = y'_k, H'_3(x_{k+1}) = y'_{k+1}, 则有$$

$$H_3(x) = y_k \alpha_k(x) + y_{k+1} \alpha_{k+1}(x) + y'_k \beta_k(x)$$

$$+ y'_{k+1} \beta_{k+1}(x),$$

其中

$$\alpha_{k}(x) = \left(1 + 2\frac{x - x_{k}}{x_{k+1} - x_{k}}\right) \left(\frac{x - x_{k+1}}{x_{k} - x_{k+1}}\right)^{2},$$

$$\alpha_{k+1}(x) = \left(1 + 2\frac{x - x_{k+1}}{x_{k} - x_{k+1}}\right) \left(\frac{x - x_{k}}{x_{k+1} - x_{k}}\right)^{2},$$

$$\beta_{k}(x) = (x - x_{k}) \left(\frac{x - x_{k+1}}{x_{k} - x_{k+1}}\right)^{2},$$

$$\beta_{k+1}(x) = (x - x_{k+1}) \left(\frac{x - x_{k}}{x_{k+1} - x_{k}}\right)^{2}.$$

三、三点三次埃尔米特插值

给定数据表:

x	x_0	x_1	x_2
y = f(x)	\mathcal{Y}_0	<i>y</i> 1	У2
y'=f'(x)		y' 1	

作一个次数不超过三的多项式 $H_3(x)$,使

$$H_3(x_0) = y_0$$
, $H_3(x_1) = y_1$, $H_3(x_2) = y_2$, $H'_3(x_1) = y'_1$,
则有 $H_3(x) = f(x_0) + f[x_0, x_1](x - x_0)$
 $+ f[x_0, x_1, x_2](x - x_0)(x - x_1)$
 $+ A(x - x_0)(x - x_1)(x - x_2)$,

其中
$$A = \frac{y'_1 - f[x_0, x_1] - (x_1 - x_0) f[x_0, x_1, x_2]}{(x_1 - x_0)(x_1 - x_2)}$$

命题: N+1个节点确定一个N次多项式。

改进为:

命题: N+1个条件确定一个N次多项式。

求埃尔米特插值的方法

- 1. 存在唯一性证明方法(节点少一点可以)
- 2. 写出基函数(没有书不现实): 待定系数法(比1简单一点,类似P36例6)。
- 3. 均差表(利用重节点均差改进了均差表)

重节点均差(差商)

均差的一个性质

定理: 设 $f(x) \in C^n[a,b]$, x_0, \ldots, x_n 为 [a,b] 上的互异

节点,则 $f[x_0,\ldots,x_n]$ 是其变量的连续函数

重节点均差

$$f[x_0, x_0] = \lim_{x_1 \to x_0} f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = f'(x_0)$$

$$f[x_0, x_0, x_0] = \lim_{\substack{x_1 \to x_0 \\ x_2 \to x_0}} f[x_0, x_1, x_2] = \frac{1}{2!} f''(x_0)$$

一般地, n 阶重节点差商定义为

$$f[x_0,...,x_0] = \lim_{x_i \to x_0} f[x_0,x_1,...,x_n] = \frac{1}{n!} f^{(n)}(x_0)$$

Taylor (插值) 多项式

在 Newton 插值公式中, $x_i \rightarrow x_0, i=1,...,n,$ 则

$$N_n(x) = f(x_0) + f[x_0, x_1](x - x_0) + \dots + f[x_0, x_1, \dots, x_n] \prod_{i=1}^{n-1} (x - x_i)$$

$$= f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

余项
$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

Taylor (插值)多项式

就是在一个节点 x_0 上的 n 次 Hermite 插值多项式

例: 使用数据表建立不超过3次的埃米特插值多项。

X	0	1	2
f(x)	1	2	9
f'(x)		3	

解法一(待定系数法,基函数的推导过程,类似P36例6)

以已知函数值为插值条件的二次插值鑫频

$$\begin{split} N_2(x) &= f(0) + f[0, 1](x - 0) + f[0, 1, 2](x - 0)(x - 1) \\ &= 1 + 1 \times (x - 0) + 3 \times (x - 0)(x - 1) \\ &= 3x^2 - 2x + 1 \end{split}$$

设待求插值函数为

$$H_3(x) = N_2(x) + k(x-0)(x-1)(x-2)$$
 $H'_3(x) = 6x - 2 + [k(x-0)(x-1)(x-2)]'$
令即為時。
 f 知前 $4-k=3$, $k=1$
 $H_3(x) = N_2(x) + (x-0)(x-1)(x-2)$
 $= x^3 + 1$

解法二 (用重节点的均差表建立埃尔米特多项式)

X _i	$f(x_i)$	一阶均差	二阶均 差	三阶均 差
0	1			
1	2	1		
1	2	3	2	
2	9	7	4	1

$$H_3(x) = f(0) + f[0, 1](x - 0) + f[0, 1, 1](x - 0)(x - 1)$$

$$+ f[0, 1, 1, 2](x - 0)(x - 1)(x - 1)$$

$$= 1 + 1 \times (x - 0) + 2(x - 0)(x - 1)$$

$$+ 1(x - 0)(x - 1)(x - 1) = x^3 + 1$$

2.5 分段低次插值法

一、高次插值的龙格(Runge)现象

问题: 所构造的插值多项式 L_n 作为 $f(x) \in C[a,b]$ 近似函数,是否 $L_n(x)$ 的次数愈高,逼近 f(x) 的效果愈好,即

$$L_n(x) \xrightarrow[n \to \infty]{} f(x), x \in [a,b]$$

(插值过程的收敛性问题)

利用高次插值多项式的危险性,在20世纪初被Runge发现.

例 设函数
$$f(x) = \frac{1}{1+x^2}, x \in [-5,5]$$

将[-5,5]n等份取n+1个节点 $x_i=-5+ih,h=\frac{10}{n},i=0,1,\cdots,n$ 试就n=2,4,6,8,10作f(x)的n次Lagrange插值多项式 **并作图比较.**

#:
$$f_i = f(x_i) = \frac{1}{1 + x_i^2}$$

作n次Lagrange插值多项式

$$L_n(x) = \sum_{j=0}^n \left[\frac{1}{1+x_j^2} \cdot \prod_{\substack{i=0\\i\neq j}}^n \frac{(x-x_i)}{(x_j-x_i)} \right] \qquad n = 2,4,6,8,10$$

不同次数的Lagrange插值多项式的比较图

在[-2,2]上 $L_{10}(x)$ 对f(x)逼近较好,但在端点附近很差.可以证明

$$\lim_{n\to\infty} \max_{-5<|x|\le 5} \left| f(x) - L_n(x) \right| = \infty$$

即随着n的增长 $L_n(x)$ 在两端点附近的振荡会越来越大。高次代数插值所发生的这种现象称为Runge现象。在上个世纪初由Runge发现。

这表明:并不是插值多项式的次数越高,插值效果越好,精度也不一定是随次数的提高而升高.

结论: 不适宜在大范围使用高次代数插值.

考虑
$$R_n(x) = f(x) - L_n(x) = \frac{f^{(n)}(\xi)}{(n+1)!} w_n(x)$$

可知,Runge现象是由f(x)的高阶导数无界所致.

若从舍入误差分析,知当n>7时,舍入误差亦会增大.

解决办法: 分段低次插值;分段光滑插值;

常见的分段低次插值

- 分段线性插值
 - 每个小区间上用线性多项式来逼近 f(x)
- 分段三次 Hermite 插值
 - 每个小区间上用三次 Hermite多项式来逼近 f(x)
- 三次样条插值
 - 要求插值函数在整个插值区间上都二阶连续可导

分段线性插值

设
$$a \le x_0 < x_1 < \cdots < x_n \le b$$
 为 $[a, b]$ 上的互异节点 $f(x)$ 在这些节点上的函数值为 y_0, y_1, \ldots, y_n 记 $h_k = x_{k+1} - x_k$, $h = \max_k h_k$ 求分段函数 $I_h(x)$ 满足

- $I_h(x_k) = y_k, k = 0, 1, ..., n$
- ③ $I_h(x)$ 在每个小区间 $[x_k, x_{k+1}]$ 上是线性函数

分段线性插值

由以上条件直接可得 $I_h(x)$ 在小区间 $[x_k, x_{k+1}]$ 上的表达式

$$I_h(x) = y_k \frac{x - x_{k+1}}{x_k - x_{k+1}} + y_{k+1} \frac{x - x_k}{x_{k+1} - x_k}$$

$$x \in [x_k, x_{k+1}], \quad k = 0, 1, \dots, n-1$$

误差估计

在小区间 $[x_k, x_{k+1}]$ 上有

$$|f(x) - I_h(x)| = \frac{|f''(\xi_x^{(k)})|}{2!} (x - x_k)(x - x_{k+1}) \le \frac{M_2 h_k^2}{2 \cdot 4}$$

$$M_2 = \max_{a \le x \le b} |f''(x)|$$

$$|R(x)| = |f(x) - I_h(x)| \le \max_k \left| \frac{f''(\xi_x^{(k)})}{2!} (x - x_k)(x - x_{k+1}) \right| \le \frac{M_2}{8} h^2$$

 $I_b(x)$ 在 [a,b] 上 一致收敛 到 f(x)

分段线性插值的缺点: $I_h(x)$ 在节点不可导

用Matlab完成的分段线性插值(附程序):

附:分段线性插值程序

```
n=11; m=61;
x=-5:10/(m-1):5;
y=1./(1+x.^2);
z=0*x;
x0=-5:10/(n-1):5;
y0=1./(1+x0.^2);
y1=interp1(x0, y0, x);
plot(x, z, 'r', x, y, 'k:', x, y1, 'r')
gtext('Piece. –linear.'), gtext('y=1/(1+x^2)')
title('Piecewise Linear')
```

注: interp1(x0,y0,x)为Matlab中现成的分段线性插值程序.

分段三次 Hermite 插值

设 $a \le x_0 < x_1 < \dots < x_n \le b$ 为 [a, b] 上的互异节点 $y_k = f(x_k)$, $m_k = f'(x_k)$, $k = 0, 1, \dots, n$ 求分段函数 $I_h(x)$ 满足

- (2) $I_h(x_k) = y_k, \quad I_h'(x_k) = m_k, \quad k = 0, 1, \dots, n$
- ③ $I_h(x)$ 在每个小区间 $[x_k, x_{k+1}]$ 上是三次多项式

分段三次Hermite插值

由以上条件直接可得 $I_h(x)$ 在小区间 $[x_k, x_{k+1}]$ 上的表达式

$$I_{h}(x) = y_{k} \left(1 + 2 \frac{x - x_{k}}{x_{k+1} - x_{k}} \right) \left(\frac{x - x_{k+1}}{x_{k} - x_{k+1}} \right)^{2} + y_{k+1} \left(1 + 2 \frac{x - x_{k+1}}{x_{k} - x_{k+1}} \right) \left(\frac{x - x_{k}}{x_{k+1} - x_{k}} \right)^{2} + m_{k} \left(x - x_{k} \right) \left(\frac{x - x_{k+1}}{x_{k} - x_{k+1}} \right)^{2} + m_{k+1} \left(x - x_{k+1} \right) \left(\frac{x - x_{k}}{x_{k+1} - x_{k}} \right)^{2}$$

$$x \in [x_{k}, x_{k+1}], \quad k = 0, 1, \dots, n-1$$

● 误差估计(书P41定理 4)

$$|R(x)| = |f(x) - I_h(x)| \le \frac{M_4}{384}h^4$$

$$M_4 = \max_{a \le x \le b} |f^{(4)}(x)|, \quad h = \max_{0 \le k \le n-1} (x_{k+1} - x_k)$$

注记

基本思想: 用分段低次多项式来代替单个多项式

具体作法: (1) 把整个插值区间分割成多个小区间

(2) 在每个小区间上作低次插值多项式

(3) 将所有插值多项式拼接成一个多项式

优点:公式简单、运算量小、稳定性好、收敛性 ...

分段三次 Hermite 插值比分段线性插值效果更好,但公式较复杂,且需要额外信息(导数)。

分段低次插值的特点:

优点:

计算较容易

可以解决Runge现象,可保证收敛性

缺点:

但插值多项式分段

插值曲线在节点处会出现尖点,不可导

2.6 三次样条插值

因分段线性插值导数不连续,埃尔米特插值导数连续但需要已知,故引入样条插值概念。

样条:是 指飞机或轮船等的制造过程中为描绘出光滑的外形曲线(放样)所用的工具。

样条本质上是一段一段的三次多项式拼合而成的曲线,在拼接处,不仅函数是连续的,且一阶和二阶导数也是连续的。

1946年,Schoenberg将样条引入数学,即所谓的样条函数。

问题:结点增多,多项式次数增高,逼近精度越好?未必!多结点高次插值往往在局部误差更大——kunge现象。

实用:采用分段低次插值 有分段线形,分段二次插值等,几何上.....

缺点:分段插值函数只能保证连续性,不能保证光滑性。

分段插值可以得到整体连续函数,但 在接点处一般不光滑;

Hermite插值虽然在连节点处一阶光滑,但整体插值由于结点多,次数高而有可能发生龙格现象。

三次样条插值

既想分段插值,又想在结点处保持光滑,甚至 二阶光滑——三次样条。 定义:设函数 f(x) 是区间[a,b] 上的二次连续可微函数,在区间上给出一个划分

$$\Delta$$
: $a = x_0 < x_1 < ... < x_{n-1} < x_n = b$

如果函数S(x)满足条件

(1)
$$s(x_j) = f(x_j)$$
 ($j = 0,1,2,...n$);

- (2) 在每个小区间 $[x_{j-1},x_j]$ (j=1,2,...,n)上s(x)是不超过三次的多项式:
- (3) 在开区间(a,b 上 s(x) 有连续二阶导数;

则称 S(x) 为区间[a,b]对应于划分 Δ 的三次样条函数。

设三次样条函数S(x) 在每个子区间 $[x_{j-1},x_{j}]$ 上有表达式

$$s(x) = s_j(x) = a_j x^3 + b_j x^2 + c_j x + d_j$$
 $x \in (x_{j-1}, x_j), j = 1, 2...n$

其中 $a_i, b_i, c_i.d_i$ 为待定系数,其插值条件为:

(1)
$$s(x_j) = f(x_j)$$
 (*j*)=;0,1,...,n

(2) 内节点处连续及光滑性条件:

$$\begin{cases} s(x_j - 0) = s(x_j + 0) \\ s'(x_j - 0) = s'(x_j + 0), j = 1, 2, ..., n - 1 \\ s''(x_j - 0) = s''(x_j + 0) \end{cases}$$

对于待定系数 $a_j, b_j, c_j.d_j$ j = 1, 2, ...n ,即4n个未知系数,而插值条件为4n-2 个,还缺2个,因此必须给出两个条件 称为边界条件,有以下三类:

☞已知端点的一阶导数

$$\begin{cases} s'(x_0) = f'(x_0) = m_0 \\ s'(x_n) = f'(x_n) = m_n \end{cases}$$

☞已知端点二阶导数

$$\begin{cases} s''(x_0) = f''(x_0) = M_0 \\ s''(x_n) = f''(x_n) = M_n \end{cases}$$

当 $M_0 = M_n = 0$ 为自然边界条件

☞已知周期边界条件

$$\begin{cases} s(x_0) = s(x_n) \\ s'(x_0 + 0) = s'(x_0 - 0) \\ s''(x_n + 0) = s''(x_n - 0) \end{cases}$$

三次样条插值函数的建立

求三次样条插值函数常用三弯矩法和三转角法.

三转角法: 假定 $s'(x_j) = m_j (j = 0, \dots, n)$, 根据分段三次 埃尔米特插值多项式,

$$s(x) = \sum_{j=0}^{n} [f_j \alpha_j(x) + m_j \beta_j(x)],$$

由插值条件,连续性条件和边界条件,可得关于 m_j 的三对角方程组,求出 m_i ,得到三次样条插值函数.

三弯矩法: 令
$$s''(x_j) = M_j, j = 0, \dots, n, h_j = x_{j+1} - x_j.$$

$$\text{II} \quad s''\!(x) = \frac{x_{j+1} - x}{h_{_j}} M_{_j} + \frac{x - x_{_j}}{h_{_j}} M_{_{j+1}}, \quad x \in [x_{_j}, x_{_{j+1}}].$$

$$\begin{split} s'\left(x\right) &= -\frac{\left(x_{j+1} - x\right)^2}{2h_j} M_j + \frac{\left(x - x_j\right)^2}{2h_j} M_{j+1} + c_1, \\ s(x) &= \frac{\left(x_{j+1} - x\right)^3}{6h_j} M_j + \frac{\left(x - x_j\right)^3}{6h_j} M_{j+1} + c_1 x + c_2, \\ s(x_j) &= \frac{1}{6} h_j^2 M_j + c_1 x_j + c_2 = y_j, \\ s(x_j) &= \frac{1}{6} h_j^2 M_j + c_1 x_j + c_2 = y_j, \\ s(x_{j+1}) &= \frac{1}{6} h_j^2 M_{j+1} + c_1 x_{j+1} + c_2 = y_{j+1}, \\ c_1 &= \frac{y_{j+1} - y_j}{h_j} - \frac{1}{6} h_j (M_{j+1} - M_j), \\ c_2 &= \frac{y_j x_{j+1} - y_{j+1} x_j}{h_j} - \frac{1}{6} h_j (x_{j+1} M_j - x_j M_{j+1}), \\ s(x) &= \frac{\left(x_{j+1} - x\right)^3}{6h_j} M_j + \frac{\left(x - x_j\right)^3}{6h_j} M_{j+1} \end{split}$$

$$\begin{aligned} &6h_{j} & & & \\ &+ (y_{j} - \frac{M_{j}h_{j}^{2}}{6})\frac{x_{j+1} - x}{h_{j}} + (y_{j+1} - \frac{M_{j+1}h_{j}^{2}}{6})\frac{x - x_{j}}{h_{j}}, \end{aligned}$$

$$\begin{split} s'(x) &= -\frac{(x_{j+1}-x)^2}{2h_j} M_j + \frac{(x-x_j)^2}{2h_j} M_{j+1} + \frac{y_{j+1}-y_j}{h_j} - \frac{M_{j+1}-M_j}{6} h_j \\ \\ \mbox{为了求}\, M_0, \cdots, M_n, \ \, \mbox{要用导数连续条件}: s'\,(x_j+0) = s'\,(x_j-0) \\ s'(x_j+0) &= -\frac{h_j}{3} M_j - \frac{h_j}{6} M_{j+1} + \frac{y_{j+1}-y_j}{h_j}, \\ s'(x_{j+1}-0) &= \frac{h_j}{6} M_j + \frac{h_j}{3} M_{j+1} + \frac{y_{j+1}-y_j}{h_j}, \\ s'(x_j-0) &= \frac{h_{j-1}}{6} M_{j-1} + \frac{h_{j-1}}{3} M_j + \frac{y_j-y_{j-1}}{h_{j-1}}. \\ \frac{h_{j-1}}{6} M_{j-1} + \frac{h_{j-1}+h_j}{3} M_j + \frac{h_j}{6} M_{j+1} &= \frac{y_j-y_{j-1}}{h_{j-1}} - \frac{y_{j+1}-y_j}{h_j}, \ \, j=1,\cdots,n-1, \end{split}$$

最后,整理后得关于 M_{j-1} , M_j 和 M_{j+1} 的方程:

共 n-1 个方程,附加<mark>边界条件</mark>,补充两个方程后,即 可确定 n+1 个未知量 M_0, M_1, \dots, M_n

第一类边界条件: $S'(x_0) = f_0'$, $S'(x_n) = f_n'$

直接代入 $S_k(x)$ 的一阶导数表达式即得

$$2M_0 + M_1 = 6((y_1 - y_0) / h_0 - f_0') / h_0 \equiv d_0$$

$$M_{n-1} + 2M_n = 6(f_n' - (y_n - y_{n-1}) / h_{n-1}) / h_{n-1} \equiv d_n$$

与前面的 n-1 个方程联立可得 n+1 阶线性方程组:

$$\begin{bmatrix} 2 & 1 & & & & \\ \mu_1 & 2 & \lambda_1 & & & \\ & \mu_2 & 2 & \lambda_2 & & \\ & & \ddots & \ddots & \ddots & \\ & & \mu_{n-1} & 2 & \lambda_{n-1} \\ & & & 1 & 2 \end{bmatrix} \begin{bmatrix} M_0 \\ M_1 \\ M_2 \\ \vdots \\ M_{n-1} \\ M_n \end{bmatrix} = \begin{bmatrix} d_0 \\ d_1 \\ d_2 \\ \vdots \\ d_{n-1} \\ d_n \end{bmatrix}$$

第二类边界条件: $S''(x_0) = f_0''$, $S''(x_n) = f_n''$

直接可得
$$M_0 = f_0^{\prime\prime}$$
 , $M_n = f_n^{\prime\prime}$

故前面方程中只含 n-1 个未知量,即可得 n-1 阶线性方程组:

$$egin{bmatrix} 2 & \lambda_1 & & & & \ \mu_2 & 2 & \lambda_2 & & & \ & \ddots & \ddots & \ddots & & \ & \mu_{n-2} & 2 & \lambda_{n-2} & \mu_{n-1} & 2 \end{bmatrix} egin{bmatrix} M_1 & M_2 & & & \ M_2 & & & & \ & M_{n-2} & & & \ M_{n-2} & M_{n-1} \end{bmatrix} = egin{bmatrix} d_1 - \mu_1 f_0^{\prime\prime} & & & \ d_2 & & & \ & & & \ d_{n-2} & & \ d_{n-1} - \lambda_{n-1} f_n^{\prime\prime} \end{bmatrix}$$

第三类边界条件:
$$S'(x_0) = S'(x_n), S''(x_0) = S''(x_n)$$

可得
$$M_0 = M_n, \quad \lambda_n M_1 + \mu_n M_{n-1} + 2M_n = d_n$$
 其中
$$\lambda_n = h_0/(h_0 + h_{n-1}), \qquad \mu_n = h_{n-1}/(h_0 + h_{n-1}),$$

$$d_n = 6 \left(f[x_0, x_1] - f[x_{n-1}, x_n] \right) / (h_0 + h_{n-1})$$

与前面的 n-1 个方程联立可得 n 阶线性方程组:

$$egin{bmatrix} 2 & \lambda_1 & & \mu_1 \ \mu_2 & 2 & \lambda_2 & & \ & \ddots & \ddots & \ddots & \ & \mu_{n-1} & 2 & \lambda_{n-1} \ \lambda_n & & \mu_n & 2 \end{bmatrix} egin{bmatrix} M_1 \ M_2 \ dots \ M_{n-1} \ M_n \end{bmatrix} = egin{bmatrix} d_1 \ d_2 \ dots \ d_{n-1} \ d_n \end{bmatrix}$$

具体计算过程

上述三个方程都存在唯一解。

- 具体计算过程
 - (1) 根据插值条件和边界条件给出 M_0, M_1, \dots, M_n 的方程组
 - (2) 解方程
 - (3) 将 M_0 , M_1 , \cdots , M_n 代入 $S_j(x)$ 的表达式, 写出三次样条函数 S(x) 在整个插值区间上的分段表达式

104/114

注:需将 $s_i(x)$ 写成如下形式

$$s_j(x) = a_3(x - x_j)^3 + a_2(x - x_j)^2 + a_1(x - x_j) + a_0$$

$$s_{j}(x) = \frac{M_{j+1} - M_{j}}{6h_{j}} (x - x_{j})^{3} + \frac{M_{j}}{2} (x - x_{j})^{2}$$

$$+ \left(\frac{y_{j+1} - y_{j}}{h_{j}} - \frac{h_{j}(M_{j+1} + 2M_{j})}{6}\right) (x - x_{j}) + y_{j}$$

Matlab 中三次样条插值函数 spline 输出的多项式是按上面的格式输出的!

例 设在处有定义和节点上的函数值:

$$x_0 = 27.7$$
, $x_1 = 28$ $x_2 = 29$ $x_3 = 30$ $f_0 = 4.1$, $f_1 = 4.3$ $f_2 = 4.1$ $f_3 = 3.0$,

试求满足边界条件的 $\overline{x_n}$ 次样条 $,s'(x_n) = -4.0$ 插值函数.

解:
$$\mu_1 = \frac{h_0}{h_0 + h_1} = \frac{0.3}{0.3 + 1} = \frac{3}{13}, \mu_2 = \frac{h_1}{h_1 + h_2} = \frac{1}{2}, \lambda_1 = \frac{10}{13},$$

$$\lambda_2 = \frac{1}{2}, d_0 = \frac{6}{h_0} (f[x_0, x_1] - f'_0) = 20(\frac{0.2}{0.3} - 3.0) = -46.666,$$

$$d_1 = 6f[x_0, x_1, x_2] = -4.0002, d_2 = 6f[x_1, x_2, x_3] = -2.70000,$$

$$d_3 = \frac{6}{h_2} (f'_3 - f[x_2, x_3]) = -17.4.$$

$$\begin{bmatrix} 2 & 1 & & & \\ \frac{3}{13} & 2 & \frac{10}{13} & & & \\ & \frac{1}{2} & 2 & \frac{1}{2} & & M_1 \\ & & 1 & 2 \end{bmatrix} \begin{bmatrix} M_0 \\ M_1 \\ M_2 \\ M_3 \end{bmatrix} = \begin{bmatrix} -46.666 \\ -4.0002 \\ -2.70000 \\ -17.4 \end{bmatrix}$$

得到 $M_0 = -23.531, M_1 = 0.395, M_2 = 0.830, M_n = -9.115.$ 代入 (7.8):

$$s(x) = \frac{(x_{j+1} - x)^3}{6h_j} M_j + \frac{(x - x_j)^3}{6h_j} M_{j+1}$$

$$+ (y_j - \frac{M_j h_j^2}{6}) \frac{x_{j+1} - x}{h_j} + (y_{j+1} - \frac{M_{j+1} h_j^2}{6}) \frac{x - x_j}{h_j},$$

得到

$$S(x) = \begin{cases} 13.07278(x-28)^3 - 14.84322(x-28) + 0.21944 \\ (x-27.7)^3 + 14.31358(x-27.7), & x \in [27.7,28], \\ 0.06583(29-x)^3 + 4.23417(29-x) + 0.13833 \\ (x-28)^3 + 3.96167(x-28), & x \in [28,29], \\ 0.13833(30-x)^3 + 3.96167(30-x) - 1.51917 \\ (x-29)^3 + 4.51917(x-29), & x \in [29,30], \end{cases}$$

误差估计

定理: 设 $f(x) \in C^4[a,b]$, S(x) 为满足第一或第二类边界条件的三次样条函数,则

$$\max_{a \le x \le b} |\mathcal{F}(x) - S(x)| \le \frac{5}{384} \max_{a \le x \le b} |\mathcal{F}^{(4)}(x)| h^4$$

$$\max_{a \le x \le b} |\mathbf{y}^{(4)}(x) - S'(x)| \le \frac{1}{24} \max_{a \le x \le b} |\mathbf{y}^{(4)}(x)| h^3$$

$$\max_{a \le x \le b} |f''(x) - S''(x)| \le \frac{3}{8} \max_{a \le x \le b} |f^{(4)}(x)| h^2$$

其中
$$h = \max_{0 \le j \le n-1} h_j = \max_{0 \le j \le n-1} |x_{j+1} - x_j|$$

例 给定函数
$$f(x) = \frac{1}{1+x^2}$$
, $-5 \le x \le 5$, 节点

$$x_k = -5 + k \ (k = 0,1,\dots,10)$$
, 用三次样条插值求 $S_{10}(x)$.

$$\mathbb{R}$$
 $S_{10}(x_k) = f(x_k) (k = 0,1,\dots,10), S'_{10}(-5) = f'(-5),$

$$S'_{10}(5) = f'(5).$$

直接上机计算可求出 $S_{10}(x)$ 在表2-6所列各点的值.

表2-6

	1				1		
$\boldsymbol{\mathcal{X}}$	$1+x^2$	$S_{10}(x)$	$L_{10}(x)$	X	$1+x^2$	$S_{10}(x)$	$L_{10}(x)$
-5.0	0.03846	0.03846	0.03846	-2.3	0.15898	0.16115	0.24145
-4.8	0.04160	0.03758	1.80438	-2.0	0.20000	0.20000	0.20000
-4.5	0.04706	0.04248	1.57872	-1.8	0.23585	0.23154	0.18878
-4.3	0.05131	0.04842	0.88808	-1.5	0.30769	0.29744	0.23535
-4.0	0.05882	0.05882	0.05882	-1.3	0.37175	0.36133	0.31650
-3.8	0.06477	0.06556	-0.20130	-1.0	0.50000	0.50000	0.50000
-3.5	0.07547	0.07606	-0.22620	-0.8	0.60976	0.62420	0.64316
-3.3	0.08410	0.08426	-0.10832	-0.5	0.80000	0.82051	0.84340
-3.0	0.10000	0.10000	0.10000	-0.3	0.91743	0.92754	0.94090
-2.8	0.11312	0.11366	0.19837	0	1.0000	1.0000	1.0000
-2.5	0.13793	0.13971	0.25376				

下图是用Matlab完成的样条插值(附程序):

附: 样条插值程序

```
n=11; m=61;
x=-5:10/(m-1):5;
y=1./(1+x.^2);
z=0*x;
x0=-5:10/(n-1):5;
y0=1./(1+x0.^2);
y1=interp1(x0, y0, x, 'spline');
plot(x, z, 'r', x, y, 'k:', x, y1, 'r')
gtext('Spline'), gtext('y=1/(1+x^2)')
title('Spline')
```

注: interp1(x0, y0, x, 'spline')为Matlab中现成的样条插值程序.

章节总结

- ●插值问题
- ●三种方法:

存在唯一性,Lagrange,Newton

- Hermite插值,重节点均差
- ●分段线性与分段三次
- ●样条插值