the encoder does not require knowledge of the realization of Y^N to implement this scheme.)

Decoding: Having received $u_{E_{X|Y}}$ and observed the realization $Y^N=y^N$, the decoder sequentially builds an estimate \hat{u}^N of u^N by the rule

$$\hat{u}_i = \begin{cases} u_i & \text{if } i \in E_{X|Y} \\ 0 & \text{if } i \in E_{X|Y}^c \text{ and } L_N^{(i)}(y^N, \hat{u}^{i-1}) \geq 1 \\ 1 & \text{else} \end{cases}$$

where

$$L_N^{(i)}(y^N, \hat{u}^{i-1}) = \frac{\Pr(U_i = 0|Y^N = y^N, U^{i-1} = \hat{u}^{i-1})}{\Pr(U_i = 1|Y^N = y^N, U^{i-1} = \hat{u}^{i-1})}$$

is a likelihood ratio, which can be computed recursively using the formulas:

$$\begin{split} L_N^{(2i-1)}(y^N, u^{2i-2}) \\ &= \frac{L_{N/2}^{(i)}(y^{N/2}, u_o^{2i-2} \oplus u_e^{2i-2}) L_{N/2}^{(i)}(y_{N/2+1}^N, u_e^{2i-2}) + 1}{L_{N/2}^{(i)}(y^{N/2}, u_o^{2i-2} \oplus u_e^{2i-2}) + L_{N/2}^{(i)}(y_{N/2+1}^N, u_e^{2i-2})} \end{split}$$

and

$$\begin{split} L_N^{(2i)}(y^N, u^{2i-1}) \\ &= L_{N/2}^{(i)}(y^{N/2}, u_o^{2i-2} \oplus u_e^{2i-2})^{\delta_i} L_{N/2}^{(i)}(y_{N/2+1}^N, u_e^{2i-2}) \end{split}$$

where u_o^{2i-2} and u_e^{2i-2} denote, respectively, the parts of u^{2i-2} with odd and even indices, and δ_i equals 1 or -1 according to u_{2i-1} being 0 or 1, respectively. Having constructed \hat{u}^N , the decoder outputs $\hat{x}^N = \hat{u}^N G_N^{-1}$ as the estimate of x^N . (It is easy to verify that $G_N^{-1} = G_N$.)

Performance: The performance of the decoder is measured by the probability of error

$$P_e = \Pr(\hat{U}^N \neq U^N) = \Pr(\hat{U}_{E_{X|Y}^c} \neq U_{E_{X|Y}^c}),$$

which can be upper-bounded by standard (union-bound) techniques as

$$P_e \le \sum_{i \in E_{X|Y}^c(N,R)} Z(U_i|Y^N, U^{i-1}).$$
 (7)

The following is a simple corollary to Theorem 2 and (7).

Theorem 3. For any fixed R > H(X|Y) and $\beta < \frac{1}{2}$, the probability of error for the above polar source coding method is bounded as $P_e = O(2^{-N^{\beta}})$.

Complexity: The complexity of encoding and that of decoding are both $O(N \log N)$.

IV. APPLICATION TO CHANNEL CODING: DUALITY

The above source coding scheme can be used to design a capacity-achieving code for any binary-input memoryless channel. Let such a channel be defined by the transition probabilities $W(y|x), x \in \mathcal{X} = \{0,1\}$ and $y \in \mathcal{Y}$. Consider the block coding scheme shown in Fig. 3, where signals flow from right to left. Here, $N=2^n, n \geq 1$, is the code block length; U^N denotes the message vector, $X^N=U^NG_N$ the channel input vector, and Y^N the channel output vector. Due

Fig. 3. Channel coding.

to memorylessness, $W^N(y^N|x^N)=\prod_{i=1}^N W(y_i|x_i)$ for any $x^N\in\mathcal{X}^N,\,y^N\in\mathcal{Y}^N.$

We turn the triple (U^N,X^N,Y^N) into a joint ensemble of random vectors by assigning the probabilities $\Pr(X^N=x^N)=2^{-N}$ for all $x^N\in\{0,1\}^N$. Under this assignment, (X^N,Y^N) may be regarded as independent samples from a source $(X,Y)\sim Q(x)W(y|x)$ where Q is the uniform distribution on $\{0,1\}$. We let I(W)=I(X;Y) denote the symmetric channel capacity and fix R< I(W). This implies that 1-R>H(X|Y). Let $E_{X|Y}=E_{X|Y}(N,1-R)$ denote a high-entropy set of rate (1-R) for the source (X,Y). The following coding scheme achieves reliable communication at rate R over the channel W.

Encoding: Prepare a binary source vector U^N as follows. Pick the pattern $U_{E_{X|Y}}$ at random from the uniform distribution and make it available to the decoder ahead of the session. In each round, fill $U_{E_{X|Y}^c}$ with uniformly chosen data bits. (Thus, $\lfloor NR \rfloor$ bits are sent in each round, for a data transmission rate of roughly R.) Encode U^N into a channel codeword by computing $X^N = U^N G_N$ and transmit X^N over the channel W.

Decoding: Having received Y^N , use the source decoder of the previous section to produce an estimate $\hat{U}_{E_{X|Y}^c}$ of the data bits $U_{E_{X|Y}^c}$.

Analysis: The error probability $\Pr(\hat{U}_{E_{X|Y}^c} \neq U_{E_{X|Y}^c})$ is bounded as $O(2^{-N^\beta})$ for any fixed $\beta < \frac{1}{2}$ since the source coding rate is 1-R > H(X|Y). The complexity of the scheme is bounded as $O(N \log N)$.

Remark. The above argument reduces the channel coding problem for achieving the symmetric capacity I(W) of a binary-input channel W to a source coding problem for a source $(X,Y) \sim QW$ where Q is uniform on $\{0,1\}$. This reduction exploits the duality of the two problems. This dual approach provides an alternative proof of the channel coding results of [1]. It also complements the duality arguments in [2] and [3], where the source coding problem for a $\mathrm{Ber}(p)$ source was reduced to a channel coding problem for a binary symmetric channel with cross-over probability p.

V. SLEPIAN-WOLF CODING

The above source coding method can be easily extended to the Slepian-Wolf setting [5]. Suppose $\{(X_i,Y_i)\}_{i=1}^\infty$ are independent samples from a source (X,Y) where both X and Y are binary RVs. In the Slepian-Wolf scenario, there are two encoders and one decoder. Fix a block-length $N=2^n$, $n\geq 1$, and rates R_x and R_y for the two encoders. Encoder 1 observes X^N only and maps it to an integer $i_x\in[1,2^{NR_x}]$, encoder 2 observes Y^N only and maps it to an integer $i_y\in[1,2^{NR_y}]$. The decoder in the system observes (i_x,i_y)