

Architecture and Administration Basics

Workshop Day 1 - XDCR

Introduction

Intra-Cluster vs. Inter-Cluster

VS.

Purposes

- Deliver high performing, async. data replication
- Provide disaster recovery and high availability across data centers
- Support data locality
- For load separation
- Support various topologies and replication schemes, including filtering
- Easy setup of development and test environments

Example

2 Key Features

Key Features

Continuous Replication

- For existing and modified data
- Per bucket
- Asynchronous
- From memory
- Multiple data streams (configurable), shuffled across all shards to move data in parallel to the destination cluster
- Replication evenly load balanced across all servers in the destination cluster

Cluster Aware

- Source and destinations can have different number of servers
- Takes topology update into account if E.G. a node of the destination cluster goes down

Key Features

Automatic Resume

- Push based replication
- Compares revisions before transfer
- Source tracks what destination last received via checkpoints
- Resume from last checkpoint

Conflict Resolution

Same 'winner' on both sides

Transfer and Security

- •HTTP (v1)
- XMEM (v2, uses Memcached protocol)
- Encrypted transfer (SSL)

Administrative Interface

Web-UI, REST, CLI

How it works

XDCR after Write

From Bucket to Bucket

Follows Cluster Map

Conflict resolution

• What happens when you write the same key in multiple clusters?

Conflict resolution

- •XDCR is eventually consistent; checks document metadata to resolve conflicts:
- 1. Numerical sequence (incremented on each mutation)
- 2. CAS value
- 3. Expiration (TTL) value
- →All clusters will pick the same "winner"

Topologies & Use Cases

Uni-Directional

- Hot spare / Disaster recovery
- Development/testing copies
- Heavy reporting (since 4.0 via MDS)
- Integrate to Elasticsearch
- Integrate to custom consumer

Chain

17

Data Aggregation

(Filtered) Propagation

Bi-Directional (aka Active-Active)

- Multiple active masters
- Disaster Recovery
- Data locality

Caution

- Avoid updating the same document in multiple clusters with bi-directional XDCR
 - Be sure to understand the conflict resolution rules
- Best Practices
 - Data Center stickiness
 - Keep users/transactions isolated to a DC
 - Only redirect to another DC in case of major outage
 - Use separate key spaces (e.g. DC prefix) to avoid conflicts on individual documents. Example:
 - dc1::user:a9838-s92-s00
 - dc2::user:293ba-293-922

5 Tuning Parameters

Advanced Settings

Parameter	Default	Description
Optimistic replication threshold	256	If the size of a document is higher than this threshold then XDCR will send a getMeta request (in batches) from the source cluster to the destination cluster in order to find out if the document needs to be sent over.
Source nozzles per node	2	Controls the parallelism
Target nozzles per node	2	Controls the parallelism
Checkpoint interval	1800	Time in seconds between checkpoints. This defines the amount of data which has to be resent in case of a communication failure.
Batch count	500	Controls the number of documents to be transferred in one batch.
Batch size (kB)	2048	Limits the size of a batch in KB.
Failure retry interval (s)	10	Time in seconds before XDCR retires to resume the replication after a failure.
Filter	None	The filter expression allows you to limit the data which will be sent over the wire by using a regular expression on the document key.

©2016 Couchbase Inc. 23

Thank you

