Basics of Probability

1) What is probability?

A number that represents the likelihood that a particular event will occur for a random variable.

2) What is Random Variable?

A variable whose numerical values represent the event of an experiment.

3) What is Event?

An outcome of Experiment or Survey.

4) What is sample Space?

A sample space is a collection or a set of possible outcomes of a random experiment.

5) What is Sample point?

A sample point is one of the possible outcomes of the experiment.

6) What is an equally likely events?

Equally likely events are those events which have an equal probability of occurring.

7) What is probability line?

Probability line is a line from 0 to 1 which represents the probability of difference events. The events closer to zero are more unlikely to happen than the event closer to one.

8) What is Independent Event?

An independent event is an event that has no connection to another event's chances of happening (or not happening).

9) What is Mutually Exclusive Events?

Mutually Exclusive events are completely independent of all other events and have no impact on the outcome.

10) What is Intersection?

The intersection is the set of elements that are common to both X and Y.

11) What is Union?

The Union of two sets contains all the elements contained in either set (or both sets)

12) What is Complement?

The complement of a set A contains everything that is not in the set A.

Probability Distributions

13) What is Probability Distribution?

The possible values that a variable can take and how frequently they occur.

- Mean
- Variance
- Standard deviation
- M.G.F

1) Bernoulli Distribution

The Bernoulli distribution is the discrete probability distribution of a random variable which takes a binary, Boolean output 1 and 0.

2) Binomial Distribution

- The binomial distribution is a discrete probability distribution.
- It describes the outcome of n independent trials in an experiment.
- Each trial is assumed to have only two outcomes, either success or failure.
- If the probability of a successful trial is p, then the probability of having x successful outcomes in an experiment of n independent trials is as follows.

Pre-requisites:

- There are two potential outcomes per trial
- The probability of success (p) is the same across all trials
- The number of trials (n) is fixed
- Each trial is independent

$$\frac{n!}{k!(n-k)!}p^{x}(1-p)^{n-x}$$

$$\sigma = \sqrt{np(1-p)}$$

dbinom(x,size,prob,log=False)

$$^{n}c_{x}p^{x}(1-p)^{n-x}$$

3) Poisson Distribution:

- The Poisson distribution is the discrete probability distribution.
- It describes the number of events occurring in a fixed time interval.
- \bullet It requires only one parameter which the expected number of events per time interval i.e. λ

For example: Poisson distribution (λ =3) means 3 customer every hour or 3 mistakes on a page. Or 3 accidents in a day it can be anything.

In these examples: fix time is one hour, one page, and one day

Bounded by 0 and ∞.

Poisson distribution Assumptions:

- The rate at which events occur is constant.
- The occurrence of one event does not affect the occurrence of a subsequent event. (I.e. events are independent)

 Ppois(q,lambda,lower.tail=TRUE,log.p=FALSE)

$$P(X) = \frac{\gamma^X e^{-\gamma}}{X!}$$

P.M.F is used for Poisson distribution

C.D.F is used when you calculate distribution at ∞ .

Expected value: $E(X) = \lambda$

Variance: $V(X) = \lambda$

Standard Deviation = $sqrt(V(X) = \lambda)$

4) Normal Distribution/Gaussian Distribution (Continuous)

The normal distribution is a continuous probability distribution that is symmetrical on both sides of the mean, so the right side of the center is a mirror image of the left side. pnorm(q,mean,sd,lower.tail,log.p)²

$$z = \frac{X - \mu}{\sigma}$$

PDF
$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$