디지털논리회로 (Digital Logic Circuit)

- Chapter 5

Chapters 1, 2 & 3에서 공부한 것

Chapter 1 Introduction

컴퓨터에서의 수 체계 (이진수 + alpha)

Chapter 2 Combinational Systems

진리표로 구현하는 combinational systems 스위칭 대수로 표현되는 진리표 게이트로 표현되는 진리표 입력→Combinational systems→출력

Chapter 3 The Karnaugh Map (K-map)

진리표를 map으로 표시 → 단순화, 최소화 → 최적의 시스템 만들기

조합회로 시스템 설계 과정

1 단계: 각 입력과 출력을 2진으로 표현하라.

1.5 단계: 필요하면, 문제를 더 작은 부(sub) 문제로 나누어라.

2 단계: 설계 사양을 **진리표 혹은 대수 식**으로 형식화(formalize)해라.

3 단계: 서술을 **간단히** 하라.

4 단계: 설계 목표와 제약에 근거하여,

사용 가능한 부품으로 시스템을 구현한다.

Chapter 5 Designing Combinational Systems

- 5.1 Iterative (반복) 시스템 ex) ALUs
- 5.2 Binary Decoders
- 5.3 Encoders and Priority Encoders
- 5.4 Multiplexer (Mux) & Demultiplexers (Demux)
- 5.5 Three-State Gates
- 5.6 Gate Arrays ROM, PLA, PALs..

Chapter 5 Designing Combinational Systems

5.1 Iterative (반복) 시스템 ex) ALUs

- 5.2 Binary Decoders
- 5.3 Encoders and Priority Encoders
- 5.4 Multiplexer (Mux) & Demultiplexers (Demux)
- 5.5 Tree-State Gates
- 5.6 Gate Arrays ROM, PLA, PALs..

Iterative (반복) 시스템이란?

1 bit 덧셈 회로 표현:

Table 1.5 One-bit adder.

a	b	C _{in}	Cout	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

 작은 블록의 회로를 여러 번 복사하여 시스템 구성

- 1비트 full adder 4개의 복사본을 직렬로 연결하여 4비트 adder 구성

Table 1.5 One-bit adder.

a	b	C _{in}	Cout	s
0	0	0	0	0
0	O	1	0	1
0	1	0	0	1
0	1	1	1	0
1	O	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

• 게이트의 입력 변화시 게이트의 출력은 동시에 변하지 않음

→ 작은 지연 (△) 발생

A	В	С	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

• 게이트의 입력 변화시 게이트의 출력은 동시에 변하지 않음

• 게이트의 입력 변화시 게이트의 출력은 동시에 변하지 않음

• 게이트의 입력 변화시 게이트의 출력은 동시에 변하지 않음

1-bit Adder에서의 지연

- 가산기의 덧셈에 걸리는 시간 계산(모든 입력이 동시에 들어간다고 가정)
- 입력 a와 b가 변할 때 회로의 다양한 지점에서 생기는 지연을 표시

- 입력 a 와 b가 변하는 시점에서 **합(s)이 나오는 시점까지 지연 시간은 6△**, **캐리 출력 (Cout)이 나오는 시점까지 지연 시간은 5△**
- a, b의 값이 고정되면, Cin 에서 **캐리 출력 (Cout)까지 지연 시간은 단지 2**△, Cin 에서 **합(S)까지 지연은 3**△

N-bit Adder에서의 지연

• n개의 1비트 Adder를 가지고 n비트 Adder 구현시 총 지연 시간 계산

$$= (1) + (2) + (3)$$

<u>주의: 다음 bit Adder 영향을 미치는 Cout 중심으로 path 계산</u>

- (1) LSB의 입력(a1, b1)에서 C_{out} 까지의 지연 시간
- (2) 중간 Adder들의 *C_{in}* 에서 C_{out}까지의 지연 시간×(n-2)
- (3) MSB의 C_{in} 에서 C_{out} 혹은 C_{in} 에서 s까지의 지연시간 중 긴 것

(a1, b1
$$\rightarrow$$
 C_1)
($C_{in} \rightarrow C_{out}$)
($C_{in} \rightarrow C_{out}$ or $C_{in} \rightarrow S$)

N-bit Adder에서의 지연

- 예제 2.34의 회로에서 n-bit adder의 지연 시간을 구하면
 - (1) LSB의 입력에서 Cout까지의 지연 시간: 5△
 - (2) 중간 가산기들의 Cin 에서 Cout까지의 지연 시간×(n-2) : 2△ ×(n-2)
 - (3) MSB의 Cin 에서 Cout 혹은 Cin 에서 s까지의 지연시간 중 긴 것: **3**△

$$(1) + (2) + (3) = 5\triangle + 2(n-2)\triangle + 3\triangle = (2n + 4)\triangle$$

N-bit Adder에서의 지연

64bit adder라면?? : 132△! 너무 크다!!

- 예제 2.34의 회로를 사용하면..
 - (1) LSB의 입력에서 Cout까지의 지연 시간 : **5**△
 - (2) 중간 가산기들의 Cin 에서 Cout까지의 지연 시간×(n-2) : 2△ ×(n-2)
 - (3) MSB의 Cin 에서 Cout 혹은 Cin 에서 s까지의 지연시간 중 긴 것: **3**△

$$(1) + (2) + (3) = 5\triangle + 2(n-2)\triangle + 3\triangle = (2n + 4)\triangle$$

Chapter 5 Designing Combinational Systems

- 5.1 Iterative (반복) 시스템 ex) ALUs
 - Adder 설계
- 5.2 Binary Decoders
- 5.3 Encoders and Priority Encoders
- 5.4 Multiplexer (Mux) & Demultiplexers (Demux)
- 5.5 Tree-State Gates
- 5.6 Gate Arrays ROM, PLA, PALs..

저지연 Adder 설계 (1): two-level adder

Two-level

SOP 활용

• SOP 형식으로 구현한 1-bit adder의 2-level 회로

$$C_{out} = aC_{in} + bC_{in} + ab$$

$$s = a'b'C_{in} + a'bC'_{in} + ab'C'_{in} + abC_{in}$$

Table 1.5 One-bit adder.

а	b	C _{in}	Cout	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

- 캐리출력 (Cout): 각 입력(*a,b,C_{in}*)이 주어졌을 때 *C_{out}*까지의 지연은 **2**△
- 합(s): C_{in}이 주어졌을 때 NOT 게이트를 필요로 하므로 s까지의 지연은 3△

저지연 Adder 설계 (1): two-level adder

- n개의 1-bit Adder 회로를 이용한 n-bit Adder 구현 시 총 지연 시간 비교
 - (1) LSB의 입력에서 C_{out} 까지의 지연 시간
 - (2) 중간 가산기들의 C_{in} 에서 C_{out} 까지의 지연 시간×(n-2)
 - (3) MSB의 C_{in} 에서 C_{out} 혹은 C_{in} 에서 S까지의 지연시간중 긴 것
 - => multilevel 가산기 : 5△ + 2(n-2)△ + 3△ = (2n + 4)△
 - => 2-level 가산기 : 2△ + 2(n-2)△ + 3△ = (2n + 1)△
 - Ex. 64비트 가산기: 132△(multilevel 가산기)와 129△(2-level 가산기)
- △가 아무리 작다 해도 총 지연 시간이 길어짐.

저지연 Adder 설계 (2): two-level multi-bit adder

• 2-bit adder 에 대한 minimum SOP 표현 (2-level 구현)

$$\begin{split} c_{\text{out}} &= a_1b_1 + a_0b_0a_1 + a_0b_0b_1 + c_{\text{in}}b_0b_1 + c_{\text{in}}b_0a_1 + c_{\text{in}}a_0b_1 \\ &+ c_{\text{in}}a_0a_1 \\ s_1 &= a_0b_0a_1'b_1' + a_0b_0a_1b_1 + c_{\text{in}}'a_0'a_1'b_1 + c_{\text{in}}'a_0'a_1b_1' + c_{\text{in}}'b_0'a_1'b_1 \\ &+ c_{\text{in}}'b_0'a_1b_1' + a_0'b_0'a_1b_1' + a_0'b_0'a_1'b_1 + c_{\text{in}}b_0a_1'b_1' \\ &+ c_{\text{in}}b_0a_1b_1 + c_{\text{in}}a_0a_1'b_1' + c_{\text{in}}a_0a_1b_1 \\ s_0 &= c_{\text{in}}'a_0'b_0 + c_{\text{in}}'a_0b_0' + c_{\text{in}}a_0'b_0' + c_{\text{in}}a_0b_0 \end{split}$$

- 캐리출력 (Cout): 각 입력(a0, b0, a1, b1, C_{in})에서 C_{out}까지의 지연은 2本
- 합(s0, s1): *C_{in}*에 대한 NOT 게이트를 필요로 함. 따라서, **3**△
- 총 지연 시간은

$$2\triangle + 2(n/2-2)\triangle + 3\triangle = (n+1)\triangle$$

=> 2-level 가산기 :

$$2\triangle + 2(n-2)\triangle + 3\triangle = (2n + 1)\triangle$$

=> multilevel 가산기 :

$$5\triangle + 2(n-2)\triangle + 3\triangle = (2n + 4)\triangle$$

거의 절반!

저지연 Adder 설계 (2): two-level multi-bit adder

• 4-bit adder : 7483, 74283

• 12-bit adder by cascading 4-bit adders

→ Carry-Look-Ahead (CLA) Adder

- 좋은 설계를 위한 관찰 Carry에 초점을 맞추어서 살펴 보니..
- 1) 입력 a와 b가 모두 1일 때는 Cin과 상관 없이 Cout이 항상 1: ab
- 2) 입력 a와 b가 모두 0일 때는 Cin과 상관 없이 Cout이 항상 0
- 3) 입력 a, b 중 둘 중 하나가 1일 때는 Cin 값으로 Cout 결정 C_{in} (a + b)

Table 1.5 One-bit adder.

a	b	C _{in}	Cout	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$C_{out} = aC_{in} + bC_{in} + ab$$

- 좋은 설계를 위한 관찰 Carry에 초점을 맞추어서 살펴 보니..
- 1) 입력 a와 b가 모두 1일 때는 Cin과 상관 없이 Cout이 항상 1: ab
- 2) 입력 a와 b가 모두 0일 때는 Cin과 상관 없이 Cout이 항상 0
- 3) 입력 a, b 중 둘 중 하나가 1일 때는 Cin 값으로 Cout 결정 C_{in} (a + b)

```
    g (generate) = ab //Cout이 1로 '생성'되는 경우
    p (propagate) = a + b //Cin이 1일 때 Cout이 1이 되어 '전파'되는 경우
```

Cout 을 g와 p로 표현하면,

$$C_{out} = aC_{in} + bC_{in} + ab$$
 \rightarrow $g + pC_{in}$ 전파되거나 생성되면 $C_{out} = 1$

- multi-bit adder의 각 자리수(i)에서 두 개의 신호를 만들어 냄
 - $G_i(generate) = a_ib_i$
 - $P_i(propagate) = a_i + b_i$

lable 1.5		One-bit adder.		
a	b	C _{in}	C _{out}	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

•
$$c_{i+1} = a_i b_i + a_i c_i + b_i c_i$$

= $a_i b_i + (a_i + b_i) c_i$
= $G_i + P_i c_i$

•
$$c_2 = G_1 + P_1 c_1$$

= $G_1 + P_1 (G_0 + P_0 c_0)$
= $G_1 + P_1 G_0 + P_1 P_0 c_0$

Carry-ripple

 $C_{out} = g + pC_{in}$

Carry-look-ahead

• $c_{i+1} = G_i + P_i G_{i-1} + P_i P_{i-1} G_{i-2} + P_i P_{i-1} P_{i-2} G_{i-3} + + P_i P_{i-1} P_{i-2...} P_2 P_1 C_0$

C_{in}이 아니라 a, b 입력으로 C_{out}을 계산할 수 있다! 즉, 더 이상 아래 자리 bit의 덧셈이 끝나길 기다리지 않아도 된다.

CR Adder 회로 분석

Table 1.5 One-bit adder. b Cin Cout 0 0 0 0 b_0 a_1 a_0 0 • g = ab0 • p = a + b0 $c_2 = G_1 + P_1 c_1$ g_1 p_1 g_0 p_0 c_1 c_2 c_0 Q1. Sum 생성 로직 설명해 보기 Stage 1 Stage 0 <Carry-ripple> **2**△ **3**△ s_1 s_0

- (1) LSB의 입력(a1, b1)에서 C_{out} 까지의 지연 시간
- (2) (2) 중간 Adder들의 C_{in} 에서 C_{out}까지의 지연 시간×(n-2)
- (3) (3) MSB의 C_{in} 에서 C_{out} 혹은 C_{in} 에서 S까지의 지연시간 중 긴 것

 s_0

CLA Adder 회로 분석

Chapter 5 Designing Combinational Systems

- 5.1 Iterative (반복) 시스템 ex) ALUs
 - Adder 설계
 - Subtractor/Adder 설계
- 5.2 Binary Decoders
- 5.3 Encoders and Priority Encoders
- 5.4 Multiplexer (Mux) & Demultiplexers (Demux)
- 5.5 Tree-State Gates
- 5.6 Gate Arrays ROM, PLA, PALs..

2진수 뺄셈

• 뺄셈: 2의 보수를 취하여 더한다.

$$a-b = a+(-b)$$

예제 1.18:7-5

5: 0101

1010

+ 1

-5: 1011

7:

0111

-5:

+1011

(1) 0010

2의 보수 (2's complement)이용 음수 만드는 법

음수 만드는 법

- 1. 크기에 해당하는 2 진수 값을 찾는다.
- 2. <u>각 비트에 대한 보수</u>를 취한다.
- 3. 1을 더한다.

```
예제 1.13
```

	-5?	-	1?		-0?
1.	5: 0101	1: C	0001	0:	0000
2.	1010	1	110		1111
3.	+1		+1		+1
	-5: 1011	-1: 1	1111		0000

Subtractor 설계 1

4bit subtractor :

$$a + (-b)$$

음수 만드는 법

- . 크기에 해당하는 2 진수 값을 찾는다.
- 2. <u>각 비트에 대한 보수</u>를 취한다.
- 3. <u>1을 더한다.</u>

더 좋은 솔루션 찾아보자.

+1을 하기 위해서 복잡한 4개의 FA를 꼭 써야만 하나?

Subtractor 설계 2

4bit subtractor : a+(-b)

Adder/Subtractor 설계

b4 b3 b2 b1 **0**

Subtractor 입력

Adder 입력

두 가지 로직을 손쉽게 컨트롤 할 수 있는 방법? 1) 동일한 로직 2) 컨트롤 신호만 다를 것

Adder/Subtractor 설계

Adder/Subtractor 설계

Adder/Subtractor 를 위한 공용로직

하나의 컨트롤 신호

Adder: 0 Subtractor: 1