Assignment: Section 4.2 Homework

1.

Determine if
$$\mathbf{w} = \begin{bmatrix} 5 \\ 2 \\ -1 \end{bmatrix}$$
 is in Nul A, where $A = \begin{bmatrix} 3 & -4 & 7 \\ 3 & -1 & 13 \\ -7 & 5 & -25 \end{bmatrix}$.

Is w in Nul A? Select the correct choice below and fill in the answer box to complete your choice.

(Simplify your answer.)

B. No, because Aw =

2. Find an explicit description of Nul A by listing vectors that span the null space.

$$A = \begin{bmatrix} 1 & -2 & -2 & 0 \\ 0 & 0 & 3 & 0 \end{bmatrix}$$

A spanning set for Nul A is $\left\{ \begin{array}{c} \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}.$

(Use a comma to separate answers as needed.)

3. Find an explicit description of Nul A by listing vectors that span the null space.

$$A = \begin{bmatrix} 1 & -2 & 0 & -3 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

A spanning set for Nul A is $\left\{ \begin{array}{c|c} 2 & 3 \\ 1 & 0 \\ 0 & -4 \\ 0 & 1 \\ 0 & 0 \end{array} \right\}.$

(Use a comma to separate answers as needed.)

4. Either use an appropriate theorem to show that the given set, W, is a vector space, or find a specific example to the contrary.

$$W = \left\{ \begin{bmatrix} p \\ q \\ r \\ s \end{bmatrix} : \begin{array}{l} p-2q=-s \\ 3p=-s+r \end{array} \right\}$$

Rewrite the system of equations in the form Ax = 0.

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} & 1 & -2 & & 0 & & 1 \\ & 3 & 0 & & -1 & & & \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ \mathbf{q} \\ \mathbf{r} \\ \mathbf{s} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

What does the given set represent?

- A. The set of solutions to one of the homogeneous equations.
- **B.** The set of all solutions to the homogeneous system of equations.
- C. The set represents the values which are not solutions.

Therefore, the set W = Nul A.

The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n . Equivalently, the set of all solutions to a system $A\mathbf{x} = 0$ of m homogeneous linear equations in n unknowns is a subspace of \mathbb{R}^n .

Which of the following is a true statement?

- \bigcirc **A.** The proof is complete since W is a subspace of \mathbb{R} . The given set W must be a vector space because a subspace itself is a vector space.
- igotimes The proof is complete since W is a subspace of \mathbb{R}^4 . The given set W must be a vector space because a subspace itself is a vector space.
- \bigcirc **C.** The proof is complete since W is a subspace of \mathbb{R}^3 . The given set W must be a vector space because a subspace itself is a vector space.
- \bigcirc **D.** The proof is complete since W is a subspace of \mathbb{R}^2 . The given set W must be a vector space because a subspace itself is a vector space.

5. Either use an appropriate theorem to show that the given set, W, is a vector space, or find a specific example to the contrary.

$$W = \left\{ \begin{bmatrix} s - 2t \\ 3 + 2s \\ 3s + t \\ 3s \end{bmatrix} : s, t real \right\}$$

The set W is a subset of \mathbb{R}^4 . If W were a vector space, what else would be true about it?

- $igotimes_{\mathbf{A}}$. The set W would be a subspace of \mathbb{R}^4 .
- \bigcirc **B.** The set W would be the null space of \mathbb{R}^2 .
- \bigcirc **C.** The set W would be the null space of \mathbb{R}^4 .
- \bigcirc **D.** The set W would be a subspace of \mathbb{R}^2 .

Determine whether the zero vector is in W. Find values for t and s such that $\begin{bmatrix} s-2t \\ 3+2s \\ 3s+t \\ 3s \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$. Select the correct choice

below and, if necessary, fill in any answer boxes to complete your choice.

- The zero vector is in W. The vector equation is satisfied when t = and s =
- **B.** The zero vector is not in W. There is no t and s such that the vector equation is satisfied.

Which of the following is a true statement?

- \bigcirc **A.** Since the zero vector is not in W, W is not the null space of \mathbb{R}^2 . Thus W is not a vector space.
- \bigcirc **B.** Since the zero vector is in W, W is the null space of \mathbb{R}^4 . Thus W is a vector space.
- $^{\bullet}$ C. Since the zero vector is not in W, W is not a subspace of \mathbb{R}^4 . Thus W is not a vector space.
- \bigcirc **D.** Since the zero vector is in W, W is a subspace of \mathbb{R}^2 . Thus W is a vector space.

6. Find A such that the given set is Col A.

$$\begin{cases}
 r + 3t \\
 -2r + 2s - t \\
 -3r - 2s + 2t \\
 3r - s - 3t
\end{cases}
: r, s, t real$$

Choose the correct answer below.

$$A = \begin{bmatrix} 1 & 0 & 3 \\ -1 & 2 & -2 \\ 2 & -2 & -3 \\ -3 & -1 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 3 \\ -1 & 2 & -2 \\ 2 & -2 & -3 \\ -3 & -1 & 3 \end{bmatrix}$$

$$\bullet C.$$

$$A = \begin{bmatrix} 1 & 0 & 3 \\ -2 & 2 & -1 \\ -3 & -2 & 2 \\ 3 & -1 & -3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 0 \\ -2 & -1 & 2 \\ -3 & 2 & -2 \\ 3 & -1 & -3 \end{bmatrix}$$

B.
$$A = \begin{bmatrix} 1 & 3 & 0 \\ -2 & -1 & 2 \\ -3 & 2 & -2 \\ 3 & -1 & -3 \end{bmatrix}$$
D.
$$A = \begin{bmatrix} 0 & 1 & 3 \\ 2 & -2 & -1 \\ -2 & -3 & 2 \\ 3 & -1 & -3 \end{bmatrix}$$

7. Complete parts (a) and (b) for the matrix below.

$$A = \begin{bmatrix} 8 & 5 \\ -5 & 9 \\ -9 & 0 \\ -5 & 7 \\ -8 & -1 \end{bmatrix}$$

(a) Find k such that Nul(A) is a subspace of \mathbb{R}^k .

(b) Find k such that Col(A) is a subspace of \mathbb{R}^k .

8. Complete parts (a) and (b) for the matrix below.

$$A = \begin{bmatrix} 3 & 0 & 6 \\ -6 & -9 & -8 \\ -2 & -6 & -6 \\ 2 & -2 & 8 \end{bmatrix}$$

(a) Find k such that Nul(A) is a subspace of \mathbb{R}^{k} .

(b) Find k such that Col(A) is a subspace of \mathbb{R}^{K} .

9. For the matrix A below, find a nonzero vector in Nul A and a nonzero vector in Col A.

$$A = \begin{bmatrix} -4 & -16 \\ 1 & 4 \\ 3 & 12 \\ 2 & 8 \end{bmatrix}$$

A nonzero vector in Col A is $\begin{bmatrix}
-4 \\
1 \\
3 \\
2
\end{bmatrix}$

a. A nu	ıll space is a vector space.
Is this	statement true or false?
ℰ A.	True because the null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n
○ В.	False, a vector space is a null space, but a null space is not necessarily a vector space
○ c .	True because the null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m
O D.	False, a column space is a vector space, but a null space is not a vector space
b. The	column space of an $m \times n$ matrix is in \mathbb{R}^m .
Is this	statement true or false?
A.	True because the column space of an $m \times n$ matrix A is the set of all solutions of the homogeneous equation $Ax = 0$
ℰ В.	True because the column space of an $m\times n$ matrix A is a subspace of \mathbb{R}^m
○ c .	False because the column space of an $m\times n$ matrix A is a subspace of \mathbb{R}^n
O D.	False because the column space of an $m\times n$ matrix \boldsymbol{A} is the set of all linear combinations of the columns of \boldsymbol{A}
c. The	column space of A, Col(A), is the set of all solutions of $Ax = b$.
Is this	statement true or false?
) A.	True because $Col(A) = \{b : b = Ax \text{ for some } x \text{ in } \mathbb{R}^n\}$
ℰ В.	False because $Col(A) = \{b : b = Ax \text{ for some } x \text{ in } \mathbb{R}^n\}$
O C.	False because $Col(A)$ is the set of all solutions of $Ax = 0$
O D.	True because $Col(A)$ is the set of all solutions of $Ax = 0$
d. The	null space of A, Nul(A), is the kernel of the mapping $\mathbf{x} \mapsto A\mathbf{x}$.
Is this	statement true or false?
A .	False, the kernel of a linear transformation T, from a vector space V to a vector space W, is the set of all vectors in W of the form $T(\mathbf{x})$ for some \mathbf{x} in V. Thus, the kernel of a matrix transformation $T(\mathbf{x}) = A\mathbf{x}$ is the column space of A, not the null space of A.
() В.	False, the kernel of a linear transformation T, from a vector space V to a vector space W, is the set of all \mathbf{u} in V such that $T(\mathbf{u}) = 0$. Thus, the kernel of a matrix transformation $T(\mathbf{x}) = A\mathbf{x}$ is the column space of A, not the null space of A.
) C.	True, the kernel of a linear transformation T, from a vector space V to a vector space W, is the set of all vectors in W of the form $T(\mathbf{x})$ for some \mathbf{x} in V. Thus, the kernel of a matrix transformation $T(\mathbf{x}) = A\mathbf{x}$ is the null space of A.

Is this statement true or false?

(A.	False, the range of a linear transformation T, from a vector space V to a vector space W, is a subspace of W.
ℰ В.	True, the range of a linear transformation T, from a vector space V to a vector space W, is a subspace of W.
O C.	False, the range of a linear transformation T, from a vector space V to a vector space W, is a subspace of V.
O D.	True, the range of a linear transformation T, from a vector space V to a vector space W, is a subspace of V.
f. The	set of all solutions of a homogeneous linear differential equation is the kernel of a linear transformation.
Is this	statement true or false?
∛ A.	False, the set of all solutions of a homogeneous linear differential equation is the range of a linear transformation, rather than the kernal.
() В.	False, a homogeneous linear differential equation cannot be modeled by a linear transformation.
♂ c.	True, the linear transformation maps each function f to a linear combination of f and at least one of its derivatives, exactly as these appear in the homogeneous linear differential equation.
YOU	ANSWERED: A.

	and W be vector spaces, and let T : $V \rightarrow W$ be a linear transformation. Given a subspace U of V, let T(U) denote the all images of the form T(\mathbf{x}), where \mathbf{x} is in U. Show that T(U) is a subspace of W.
To sho	w that T(U) is a subspace of W, first show that the zero vector of W is in T(U). Choose the correct answer below.
O A.	Since V is a subspace of U, the zero vector of U, 0_{U} , is in V. Since T is linear, $T(0_{U}) = 0_{W}$, where 0_{W} is the zero vector of W. So 0_{W} is in $T(U)$.
○ В.	Since V is a subspace of U, the zero vector of V, 0_V , is in U. Since T is linear, $T(0_V) = 0_W$, where 0_W is the zero vector of W. So 0_W is in $T(U)$.
ℰ C.	Since U is a subspace of V, the zero vector of V, 0_V , is in U. Since T is linear, $T(0_V) = 0_W$, where 0_W is the zero vector of W. So 0_W is in $T(U)$.
O D.	Since U is a subspace of W, the zero vector of W, 0_{W} , is in U. Since T is linear, $T(0_{W}) = 0_{V}$, where 0_{V} is the zero vector of V. So 0_{W} is in $T(U)$.
Let v a	and w be in T(U). Relate v and w to vectors in U.
Since	$T(U)$ is the set of all images from U, there exist \mathbf{x} and \mathbf{y} in U such that $T(\mathbf{x}) = \mathbf{v}$ and $T(\mathbf{y}) = \mathbf{w}$.
Next, s	show that T(U) is closed under vector addition in W.
Let T(x	\mathbf{x}) and $\mathbf{T}(\mathbf{y})$ be in $\mathbf{T}(\mathbf{U})$, for some \mathbf{x} and \mathbf{y} in \mathbf{U} . Choose the correct answer below.
○ A.	Since \mathbf{x} and \mathbf{y} are in T(U) and U is a subspace of V, $\mathbf{x} + \mathbf{y}$ is also in U.
ℰ В.	Since \mathbf{x} and \mathbf{y} are in U and U is a subspace of V, $\mathbf{x} + \mathbf{y}$ is also in U.
○ C.	Since \mathbf{x} and \mathbf{y} are in $T(U)$ and $T(U)$ is a subspace of W , $\mathbf{x} + \mathbf{y}$ is also in W .
O D.	Since \mathbf{x} and \mathbf{y} are in U and T(U) is a subspace of W, $\mathbf{x} + \mathbf{y}$ is also in W.
Use th	ese results to explain why T(U) is closed under vector addition in W. Choose the correct answer below.
O A.	Since T is linear, $T(x) + T(y) = T(x + y)$. So $T(x) + T(y)$ is in W, and $T(U)$ is closed under vector addition in W.
○ B.	Since T is linear, $T(x) + T(y) = T(x + y)$. So $T(x) + T(y)$ is in V, and $T(U)$ is closed under vector addition in W.
ℰ C.	Since T is linear, $T(x) + T(y) = T(x + y)$. So $T(x) + T(y)$ is in $T(U)$, and $T(U)$ is closed under vector addition in W.
O D.	Since T is linear, $T(x) + T(y) = T(x + y)$. So $T(x) + T(y)$ is in U, and $T(U)$ is closed under vector addition in W.
Next, s	show that T(U) is closed under multiplication by scalars.
Let c b	e any scalar and x be in U. Choose the correct answer below.
(A.	Since x is in U and U is a subspace of W, c x is in U. Thus, T(c x) is in T(W).
○ В.	Since \mathbf{x} is in U and U is a subspace of V, $c\mathbf{x}$ is in V. Thus, $T(c\mathbf{x})$ is in $T(U)$.
O C.	Since \mathbf{x} is in U and U is a subspace of V, $c\mathbf{x}$ is in W. Thus, $T(c\mathbf{x})$ is in $T(V)$.
ℰ D.	Since \mathbf{x} is in U and U is a subspace of V, $c\mathbf{x}$ is in U. Thus, $T(c\mathbf{x})$ is in $T(U)$.
•	eceding result helps to show why $T(U)$ is closed under multiplication by scalars. Recall that every element of $T(U)$ written as $T(\mathbf{x})$ for some \mathbf{x} in U . Choose the correct answer below.
) A.	Since T is linear, $T(c\mathbf{x}) = cT(\mathbf{x})$ and $cT(\mathbf{x})$ is in V. Thus, $T(U)$ is closed under multiplication by scalars.

ℰ В.	Since T is linear, $T(c\mathbf{x}) = cT(\mathbf{x})$ and $cT(\mathbf{x})$ is in $T(U)$. Thus, $T(U)$ is closed under multiplication by scalars.	
) C.	Since T is linear, $T(c\mathbf{x}) = cT(\mathbf{x})$ and $cT(\mathbf{x})$ is in W. Thus, $T(U)$ is closed under multiplication by scalars.	
) D.	Since T is linear, $T(c\mathbf{x}) = cT(\mathbf{x})$ and $cT(\mathbf{x})$ is in U. Thus, $T(U)$ is closed under multiplication by scalars.	
Use these results to explain why T(U) is a subspace of W. Choose the correct answer below.		
A .	The image of the transformation $T(U)$ is a subspace of W because $T(U)$ contains the zero vector of V and is closed under vector addition and multiplication by a scalar.	
() В.	The image of the transformation $T(U)$ is a subspace of W because $T(U)$ is closed under vector addition and multiplication by a scalar.	
) C.	The image of the transformation $T(U)$ is a subspace of W because U contains the zero vector of W and $T(U)$ is closed under vector addition and multiplication by a scalar.	
ℰ D.	The image of the transformation T(U) is a subspace of W because T(U) contains the zero vector of W and is closed under vector addition and multiplication by a scalar.	