ST314 Midterm Exam Fall 2020

Take a deep breath. Read every question. Follow directions. Be confident. Relax. You've got this!

Student Name: Lyell Read

Student ID: 000-000-000

Directions:

- This exam is open book and open note. You may use any materials posted on Canvas but please refrain from using any other resources.
- Please do not discuss the exam with anyone else in the class or outside of the class. Also, please do not post questions to online forums for help.
 - O Do not share solutions, code, answers, etc. Answers which appear "too similar" will be forwarded to the *Office of Student Life* for investigation.
- Write you solutions where indicated in the exam document itself. Please don't make any other alterations to the exam.
 - O I've tried to include a purple font color to make your solutions "stand out". If possible, keep the purple color for your solutions.
- When asked, please show your work and write explanations, justifications, etc. using complete sentences.
 - O This is really helpful for assigning partial credit in case you do something incorrectly in the short answer section.
 - O Do not show your work for the multiple choice questions.
 - O If you need to include math, write it out in plain text or using Word's equation editor.
- Submit your completed exam as a PDF file to Gradescope prior to the deadline shown on Canvas.
 - O Indicate where the solutions are in the uploaded document. Not doing this slows the grading process down considerably and will result in a points deduction for each instance the questions are not properly indicated in Gradescope.
- Read each question slowly and carefully. If you don't understand a question, write a post on the Midterm Exam Question Clarification discussion board on Canvas (But do not include solutions/partial solutions in your post).

Questions 1-3 (3 points each): Choose the appropriate probability distribution for the scenario. That is, which probability distribution should be used to most accurately represent the scenario.

- 1 Typographical errors in a single chapter of a statistics textbook occur at a rate of 2 errors per chapter. Which probability distribution would you use to model the number of errors in a random chapter of a statistics textbook?
 - A Binomial Distribution
 - B Poisson Distribution
 - C Exponential Distribution
 - D Uniform Distribution
 - **E** Normal Distribution

Answer: D

- Wood screws produced by a certain manufacturing company will be defective with a probability of 0.01, independently of each other. The company sells screws in packages of 10. Which probability distribution would you use to model the number of defective screws in a randomly selected package?
 - A Binomial Distribution
 - **B** Poisson Distribution
 - C Exponential Distribution
 - D Uniform Distribution
 - E Normal Distribution

Answer: A

- 3 The number of miles that a car is able to moves under its own power starts "high" and gradually declines, at a rate of 1/150,000 per mile, as the number of miles its driven increases. Which probability distribution would you use to model the lifetime of a car?
 - A Binomial Distribution
 - B Poisson Distribution
 - C Exponential Distribution
 - D Uniform Distribution
 - E Normal Distribution

Answer: B

Questions 4 - 6 (3 points each): Use the following scenario to answer the questions.

In a population of one-million people, one in every one-thousand members of the population has a rare, non-contagious super-flu virus. The population's public health agency develops a test which is 98% accurate. That is, it correctly indicates whether a person has the virus (tests positive) or does not have the virus (tests negative) 98% of the time.

- 4 If everyone in the population gets tested, how many people will have the virus and receive a negative test result?
 - A 10
 - B $20 = 1000000 \times (0.001 \times 0.02)$
 - C 1,000
 - D 20,000

Answer: B

- 5 Given that a particular person tests positive for having the super-flu, what is the probability that they are actually infected?
 - A 0.00098
 - B 0.001
 - C $0.04676 = (0.001 \times 0.98)/((0.001 \times 0.98) + (0.999 \times 0.02))$
 - D 0.09016

Answer: C

- 6 What is the probability a randomly chosen person tests positive for the flu?
 - A 0.00098
 - B 0.0196
 - C $0.02096 = (0.001 \times 0.98) + (0.999 \times 0.02)$
 - D 0.98

Answer: C

Questions 7 - 9 (3 points each): Use the following scenario to answer the questions.

During a shift at a Student Success Learning Center, there are always five tutors scheduled to help. The following probability mass function represents the number of available tutors (tutors that are not currently helping other students) at any given moment during a single shift.

x=	0	1	2	3	4	5
p(x)	0.08	0.24	0.32	0.19	0.10	0.07

- 7 What is the probability there will be three or more tutors available during a given shift?
 - A 0.17
 - B 0.19
 - C 0.36 = .19 + .1 + .07
 - D 0.83

Answer: C

- 8 How many tutors are expected to be available during a single shift?
 - A $2.2 = (0 \times 0.08) + (1 \times 0.24) + (2 \times 0.32) + (3 \times 0.19) + (4 \times 0.10) + (5 \times 0.07)$
 - B 2.5
 - C 3.0
 - D 3.2

Answer: A

- 9 What is the standard deviation for the number of tutors available during a single shift?
 - A 0.101
 - B $1.319 = \text{sqrt}((0^2 \times 0.08) + (1^2 \times 0.24) + (2^2 \times 0.32) + (3^2 \times 0.19) + (4^2 \times 0.10) + (5^2 \times 0.07) ((0 \times 0.08) + (1 \times 0.24) + (2 \times 0.32) + (3 \times 0.19) + (4 \times 0.10) + (5 \times 0.07))^2)$
 - C 1.740
 - D 1.871

Answer: B

Questions 10 – 12 (3 points each): Use the following scenario to answer the questions.

According to an industrial company's records of 302 accidents, the time in days between accidents has the following distribution.

- 10 Based on the shape of the distribution, what type of probability distribution would be the most appropriate to model days between accidents?
 - A Binomial
 - B Exponential
 - C Normal
 - D Uniform

Answer: A

11 The cumulative distribution function for days between accidents is:

$$F(x) = 1 - e^{\frac{-x}{18}}$$
, for $x \ge 0$

What is the probability the time between accidents is more than 40 days?

- A 0.1025
- B $0.1084 = 1 (1 e^{(-40)/18})$
- C 0.8916
- D 0.8975

Answer: B

- 12 Based on 1/150,000 and the distribution of time between accidents, what is the approximate median?
 - A 0.0274
 - B 5.4185
 - C 12.4767 = 0.5 = F(mu) = -18*ln(0.5)
 - D 18.0

Answer: C

Questions 13 – 14 (3 points each): Use the following scenario to answer the questions.

The average birth weight of a full-term newborn baby is approximately normal with a mean of 7.5 pounds and a standard deviation of 1.25 pounds.

13 Suppose a random sample of 12 full-term newborn babies is taken with an average weight of 7.41 pounds. Further suppose that another random sample of 12 full-term newborn babies is taken and yields an average weight of 7.46 pounds. If we were to continue sampling every possible sample of size 12, which plot below would represent the sampling distribution of the sample means?

[Sdx = 1.25/sqrt(12)]

Answer: Plot A

What is the approximate probability that the **average** birth weight for a randomly selected sample of 12 full-term newborns is greater than 7.2 pounds?

A 0.2029

B 0.4052

C 0.5948

D 0.7971 = 1-pnorm(7.2, 7.5, 1.25/sqrt(12))

7.19 7.29 7.4 7.5 7.6 7.71 7.81

Answer: D

Questions 15 – 17 (3 points each): Use the following scenario to answer the questions.

A process for producing vinyl floor covering has been stable for a long period. The surface hardness measurement of the flooring is normally distributed with a mean of 5 and a standard deviation of 1.2. Suppose a new crew of workers have been hired and trained. To monitor the production of the new crew, a random sample of 15 vinyl specimens are measured for hardness. The sample yields an average of 5.2.

15 Calculate the 95% confidence interval for the average hardness of vinyl.

```
A(2.848, 7.552)
B(4.3927, 5.6073)
C(4.5927, 5.8073) = 5.2+/-(1.96×(1.2/sqrt(15)))
D(4.6904, 5.7096)
```

Answer: C

- 16 Suppose the engineer would like the entire 95% confidence interval to be no wider than 0.4 units. What is the smallest sample size needed to obtain the desired margin of error?
 - A $F|_{x|=1-e^{\frac{-x}{B}}, \text{for } x \ge 0}$
 - $\mathbf{B} \mathbf{F}(\mathbf{x})$
 - C $n \ge 34$
 - D $n \ge 139 = (1.96 \times (1.2/\text{sqrt}(139))) = 0.199494, 138 \text{ is } > 0.2$

Answer: D

- 17 Suppose the engineers wanted to conduct a hypothesis test at the α =0.1 significance level to see if there was evidence that the population mean surface hardness was more than 5.0. Which of the following represents the appropriate alternative hypothesis?
 - A $H_A: \bar{x} > 5.0$
 - B $H_A: \mu > 5.0$
 - $C n \ge 35$
 - D $n \ge 138$

Answer: B

Questions 18 – 20 (3 points each): Answer the following questions.

- 18 Suppose a 95% confidence interval for the population mean of some computational process is (4.3, 5.9) microseconds. Which of the following statements is TRUE:
 - A a 90% confidence interval will be wider than the 95% confidence interval. [false]
 - B There's a 95% probability the true population mean is between 4.3 and 5.9 microseconds.
 - C The margin of error is equal to 1.6. [no, it's half that]
 - D The sample mean is equal to 5.1. [possibly, not a sample mean though]

Answer: B

- 19 When our goal is to make inferences from a sample to a desired population, the single most important condition for the inference to be valid is:
 - A a large sample size.
 - B a random sample. [slides 58, 47, 46, 27 in W4]
 - C a population that is normally distributed.
 - D a sample that is normally distributed.

Answer: B

- 20 In a hypothesis test, if we fail to reject a false null hypothesis, we make...
 - A the correct choice.
 - B a type I error.
 - C a type II error.
 - D All of the above (\leftarrow Thanks for the idea, Zach!)

Answer: C

Questions 21 – 26: Use the following scenario to answer the questions.

Metal wires produced in a chip-manufacturing process have a target thickness of 8 micrometers (n2139) and a known population standard deviation of 0.8 micrometers. The manufacturer routinely samples batches to ensure the average thickness is within this specification. If there is evidence the average thickness is other than 8 micrometers (α =0.1), the manufacturer will need to evaluate the process and possibly remove the batch of wires. The following is data from a batch of 27 randomly selected wires from a batch, for which the sample mean value was 8.26 micrometers.

Question of interest: Is there evidence the average wire thickness is different than 8 micrometers ($\mathbb{H}_{\mathbb{P}}$)? Use a significance level of 0.05.

21 (8 points) Describe the sample distribution using the context of the problem and terms for the shape, center and spread of the distribution. Is there visual evidence the average wire thickness is different than 8 micrometers?

The sample distribution does not closely resemble any standard shape. It appears to be centered around 8.0-8.1, with a spread of +/-1 micrometer, approximately. If a shape was required to be ascribed to this graph, it would be a right skewed distribution, possibly bimodal with two centers, one at around 7.6, and one around 8.6. It would be possible to ascribe a normal distribution to this graph too. There is no significant visual evidence that points to the wire thickness average of this sample being significantly different from 8.0 micrometers.

22 (4 points) State the null and alternative hypotheses for the appropriate hypothesis test, based on the scenario. Use correct statistical notation.

$$H_A: \mu > 5.0$$

$$H_A: \mu \ge 5.0$$

- 23 (8 points) Compute (1) the value of the test statistic for the test as well as (2) the appropriate p-value given the hypotheses you wrote in Question 22. (Show your work. Writing your work as "R code" is fine but don't include extraneous steps). Highlight the computed values if possible to make them easy to find.
 - (1) Compute the test statistic for 22.

$$\alpha = 0.05$$
, $\bar{x} = 8.26$, $\mu_0 = 8$, $\sigma = 0.8$, $Sided = 2$, $n = 27$

$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{8.26 - 8}{0.8 / \sqrt{27}} = 1.689$$

(2) Compute the appropriate p-value given the hypothesis in 22.

We find the area under the tail of the graph from 1.67 on (using the negative measure, as the Z table is counted for all values to the left of a certain z). We multiply it by 2, as we are considering both tails, given our hypothesis is double sided.

Z Table Value at
$$-1.67 = 0.04746$$

For $2 - sided$: $p = 2 * 0.04746 = 0.09492$

24 (4 points) Compute a 95% confidence interval for the population mean wire thickness (Show you work. Writing you work as "R code" is fine but don't include extraneous steps). Write your answer as an interval, i.e. "(Lower bound, Upper bound)"

We calculate this using the formula for confidence intervals:

$$\bar{x}$$
=8.26, σ_x =0.8, n =27, $Z_{a/2:95}$ =1.960

$$\overline{x} \mp (Z_{a/2})(\sigma_{x}) = \overline{x} \mp (Z_{a/2})(\frac{\sigma_{x}}{\sqrt{n}})$$

$$8.26 \mp (1.960)(\frac{0.8}{\sqrt{27}}) = (7.958, 8.562)$$

25 (8 points) Write a 4-part conclusion, based on your work from above. Be sure to answer the question of interest in your conclusion, i.e. is there evidence the average wire thickness is different than 8 micrometers ([[44]])? Use complete sentences.

There is not sufficient evidence to declare that the wire diameter is different than 8 micrometers. There is moderate strength of evidence against H_0 , however not enough to refute H_0 . The null hypothesis would be rejected at a significance level of 0.05, and our p-value was one of 0.09492, which is higher than this significance level (z-stat = 1.67). The sample estimates the wire diameter to be 8 micrometers with a 95% confidence interval of 7.958 to 8.562 micrometers. Given this, we can say that we are unable to claim that the wire diameter average is not 8 micrometers, and we fail to reject H_0 .

26 (8 points) Would a 90% confidence interval contain the target population mean of 8 micrometers? How would you answer this question without making any additional computations than what you computed in Questions 21 through 25? Answer this question using 2-3 complete sentences.

Yes, this 90% confidence interval would indeed contain the target population mean of 8 micrometers. It would do so because a 90% confidence interval would indicate that we must use a significance level of 0.1, which is pretty much exactly the p-value that we determined. This combined with the fact that the strength of evidence at a significance level of 0.1 is "slightly suggestive" indicates that despite technically refuting H_0 in this case, we do it with very little certainty, as we are right on the edge.

7	.00	10'	.03	.03	4	90.	90.	10.	80'	60'
00	20000	50399	50798	51197	51595	51994	52392	52790	53188	53586
3	53983	54380	54776	55172	.55567	55962	56356	56749	.57142	57535
2	57926	58317	58706	59095	59483	59871	.60257	.60642	61026	61409
3	16/19	.62172	62552	62930	.63307	.63683	64058	64431	64803	.65173
70	.65542	65910	66276	.66640	.67003	.67364	67724	68082	68439	.68793
6,0	69146	69497	69847	70194	.70540	70884	71226	71566	71904	.72240
970	27227.	72907	73237	.73565	73891	74215	74537	74857	25125	75490
5	75804	76115	76424	76730	.77035	77337	77637	.77935	.78230	78524
8	78814	.79103	79389	79673	.79955	.80234	80511	80785	.81057	81327
00	.81594	81859	82121	.82381	.82639	82894	.83147	833398	83646	83891
2	84134	.84375	84614	.84849	.85083	.85314	.85543	85769	85993	86214
	.86433	86650	86864	87076	87286	.87493	86928	87900	.88100	88798
=	.88493	98988	88877	39065	.89251	.89435	71968	96168	89973	90147
T	90320	90490	90658	90824	90988	91149	91309	91466	91621	PT74
7	91924	92073	92220	92364	92507	92647	92785	92922	93056	93189
7	93319	93448	93574	93699	.93822	93943	94062	94179	94295	94408
1.6	94520	94630	94738	94845	94950	.95053	95154	95254	.95352	9549
1.	95543	95637	95728	95818	95907	95994	08096	96164	96246	96327
128	96407	96485	96562	96638	.96712	96784	96856	96926	36696	97062
13	97128	97193	97257	97320	97381	97441	97500	97558	97615	07670
2	97725	87778	97831	97882	.97932	97982	98030	77086	98124	98169
7	98214	98257	98300	.98341	.98382	.98422	98461	98500	98537	98574
:1	90610	98645	98679	98713	98745	8778	60886	98840	07889.	66886
77	98928	98686	98983	01066	98036	19066	98066	99111	99134	99158
7	99180	99202	99224	39245	99266	99286	99305	99324	99343	19666
	99379	96196	99413	99430	99446	.99461	99477	99492	90566	99520
3.6	99534	99547	99560	99573	99585	86566	60966	12966	99632	99643
	99653	9966	99674	99683	99693	99702	11166	99720	99728	96136
23	99744	99752	99760	79762	99774	18799.	88166	99795	10866	0866
33	99813	61866	52866	18866	98836	99841	99846	15866	95866	19866
3.0	39865	69866	99874	87899.	.99882	98866	68866	66866	96866	00666
77	99903	90666	01666	99913	91666	81666	12666	99924	92666	99929
2	99931	99934	98666	99938	99940	99942	99944	95666	81666	05666
33	99952	99953	99955	75666	99958	09666	19666	99965	19666	9666
3.4	99666	89666	69666	07992	17999.	99972	99973	47666	51666	97999
3.5	77666	\$7,666	87666	99979	08666	18666	18666	28666	88666	99983
3.6	99984	58666	38688	98666	98666	78666.	18666	88666	88666	68666
2	68666	06666	06666	06666	16666	16666	26666	99992	99992	99992
3.8	99993	99993	99993	16666	99994	99994	16666	56666	56666	36666
3.6	*****									

7	00'	.01	.02	.03	3.	5	90.	.07	90.	60.
3.9	00000	00000	00000	00000	00004	00000	00004	00000	00003	00003
-3.8	70000	70000	70000	90000	90000	90000	90000	00000	00000	00000
13.7	.00011	01000	01000	01000	60000	60000	00000	80000	80000	00000
-3.6	91000	00015	51000.	.00014	.00014	.00013	.00013	.00012	.00012	1000
-3.5	.00023	.00022	.00022	.00021	.000020	61000	61000	81000	71000.	71000
-3.4	.00034	.00032	.00031	.000030	.00029	.00028	.00027	.00026	.00025	.00024
-3.3	30000	.00047	.00045	.00043	.00042	000040	000039	.00038	95000	.00035
	69000	99000	.00064	.00062	09000	.00058	950000	.00054	.00052	000020
-3.1	76000.	00004	06000	78000.	00084	.00082	61000	9/000	47000.	0000
-3.0	.00135	.00131	97100	.00122	\$1100	.00114	11100	70100.	100100	00100
-139	78100.	18100	57100.	69100	.00164	.00159	90154	.00149	.00144	.00139
-1.8	.00256	.00248	.00240	.00233	.00226	.00219	.00212	.00205	66100	.00193
-	.00347	.00336	.00326	.00317	.00307	.00298	00289	.00280	.00272	.00264
-1.6	.00466	.00453	.00440	.00427	.00415	.00402	.00391	.00379	.00368	75500
1.5	.00621	00000	78500	00570	.00554	.00539	.00523	00500	100494	.00480
7.7	.00820	86200	9/1/00.	.00755	.00734	.00714	36900	9/900	.00657	00639
	.01072	.01044	71010.	06600	.00964	.00939	00914	.00889	99800	.00842
7	01390	.01355	.01321	.01287	.01255	.01222	01191	.01160	.01130	.01101
7	98710.	.01743	00710	01659	81910	01578	01539	01500	.01463	01426
-2.0	.02275	.02222	.02169	.02118	.02068	.02018	01970	.01923	97810.	.01831
-13	.02872	.02807	.02743	.02680	02619	.02559	.02500	.02442	.02385	.02330
-1,8	.03593	.03515	.03438	.03362	.03288	.03216	.03144	.03074	.03005	02938
-1.7	.04457	.04363	.04272	.04182	.04093	.04006	.03920	.03836	.03754	03673
-1.6	.05480	.05370	.05262	.05155	.05050	.04947	.04846	.04746	.04648	.04551
-1.5	18990	.06552	06426	106301	8/190	75090.	05938	.05821	30720.	.05592
-1.4	9/080.	72670.	08770.	96970.	.07493	.07353	.07215	87070.	.06944	.06811
-1.3	08960	.09510	.09342	91160	.09012	.08851	16980	.08534	.08379	08226
-11	.11507	.11314	11123	.10935	10749	.10565	10383	10204	.10027	.09853
7	.13567	.13350	.13136	.12924	12714	.12507	12302	.12100	11900	11702
-1.0	.15866	.15625	15386	15151	14917	.14686	14457	.14231	.14007	.13786
60-	.18406	18141	17879	17619	17361	17106	16853	.16602	.16354	16109
-0.8	21186	20897	20611	.20327	20045	.19766	19489	19215	18943	18673
-0.7	24196	23885	23576	23270	22965	.22663	22363	22065	21770	21476
9.0-	.27425	27093	26763	.26435	26109	.25785	25463	25143	24825	24510
-0.5	30854	30503	30153	29806	19460	29116	28774	28434	28096	.27760
-0.4	34458	34090	33724	.33360	32997	.32636	32276	31918	31561	31207
-0.3	38209	37828	37448	37070	36693	36317	35942	35569	35197	34827
-0.2	.42074	.41683	.41294	.40905	.40517	40129	39743	39358	38974	38591
-0,1	46017	.45620	.45224	.44828	44433	44038	43644	.43251	.42858	42465