Pradnya Sushil Shinde

Worcester, MA 01609

Phone: (765) 532-9604 | Mail: pshinde1@wpi.edu | LinkedIn | GitHub | Portfolio

Education

Worcester Polytechnic Institute

Aug 2023 - May 2025

Master of Science in Robotics Engineering (GPA: 4.0/4.0)

Worcester, MA

Relevant Coursework: Computer Vision, Vision-based Robotic Manipulation, Motion Planning, Advanced Robot Navigation

Symbiosis Skills and Professional University

Aug 2019 - May 2023

Bachelor of Technology in Mechatronics Engineering (GPA: 9.128/10.0)

Pune, India

Skills

Languages: Python, C++, C

Libraries, Tools, and Software: Linux OS, ROS (Noetic), ROS 2 (Humble), Nav2, Gazebo, RViz, Blender, OpenCV, PCL, SLAM Toolbox, NumPy, Matplotlib, Sklearn, PyTorch, Eigen, CUDA, Git, Docker, CMake, Arduino, MATLAB, Fusion 360, Solidworks, Ultimaker Cura, Jira, Confluence.

Hardware: Arduino, ESP32, ESP8266, Raspberry Pi, LiDAR

Experience

Gradute Student Researcher

August 2024 - Present

Worcester Polytechnic Institute

Worcester, MA

• Research Topic: Distributed **SLAM** for Collaborative Multi-Robot Mapping in Dynamic Outdoor Environments.

Robotics Software Engineer Intern

May 2024 - August 2024

National Robotics Engineering Center

Pittsburgh, PA

- Contributed to developing localization and mapping packages for a warehouse Mobile Manipulator, integrating perception and navigation capabilities.
- Conducted unit tests, and hardware-in-the-loop tests on robotic hardware to validate the performance of the robotic subcomponents.

Robotics Software Engineer Intern

June 2022 - Nov 2022

Technodune Pvt. Ltd.

Pune. IN

- Led software testing and embedded systems integration for the "Wirelessly Controlled Bionic Arm" and "Real-Time Robot Localization using Vision" projects using Python and C/C++.
- Contributed to developing: A 7DOF robotic arm with wireless gesture control and web interface; A real-time robot localization platform with Fiducial markers and Yolo V5, achieving 85% accuracy in a multi-robot platform.

Projects

Einstein Vision: A Perception Pipeline for Autonomous Vehicles GitHub | Python

• Integrated lane detection, pedestrian pose estimation, road sign recognition, object detection, and scene classification models to seamlessly visualize the environment around an Autonomous Vehicle as it perceives the world.

Motion and Trajectory Tracking of Aerial Vehicle | Python

- Integrated state estimation and global positioning algorithms such as EKF, UKF, Particle Filter and GNSS/INS to effectively track the motion of an aerial vehicle.
- Trained Convolutional Neural Network (CNN) with Supervised and Unsupervised Learning to predict homography and achieved RMSE of 3.5 - 5.0 %, leveraging **TensorDLT** and Spatial Transformer Network (STN).

SfM: Structure from Motion GitHub | Python

March 2024

• Engineered a robust Structure from Motion (SfM) pipeline for 3D scene reconstruction, employing feature matching, Fundamental Matrix estimation, and camera pose estimation, followed by triangulation, Perspective-n-Point (PnP) and Bundle Adjustment techniques.

Homography Estimation: Classical and Deep Leaning Methods GitHub | Python

Jan 2024

• Developed a panorama stitching algorithm with corner detection, ANMS, feature matching, and RANSAC; trained CNN with TensorDLT and STN to predict homography, achieving 3.5-5.0 % RMSE.

Probability-based Edge Detection: A Classical Approach to Boundary Detection GitHub | Python

• Developed a probability-based edge detection algorithm using filter banks, half-disc masks, k-means clustering for texture, brightness, and color features, and integrated with Sobel and Canny baselines for enhanced boundary detection.

Language Embodied Indoor Navigation GitHub | Python

• Developed an Object Navigation system enabling robots to interpret spoken language for goal identification and navigate using RRT* and A* algorithms in the Habitat Simulation Environment, retrieving RGB, depth, and semantic data for sensory feedback.

Vision-based Object Grasping for Robotic Manipulation assuming Symmetry GitHub | C++

• Developed a vision-based grasp pose analysis algorithm for robotic manipulation by processing depth point clouds, estimating symmetry for grasp point computation, using Gazebo and ROS 2 for simulation.