Elementary Plasticity
Uniaxial Tension 1D shess state
P = P/A P
<
Flockie pu Co-klu plockie TY
Plastic perfectly plastic
/ [0 0] ' / /
 (000) = 5 expt.
(000)
3 D
Tresca Max shear skess theory
Plastic def occurs yield criterion
Plastic def occurs yield criterion caled a expts
comb. $\gamma_{max} = \gamma_{\gamma}$ principal stresses
η- Γ ₃ η Γ ₁ > Γ ₂ > Γ ₃
Uniaxial tension $\sigma - 0 - \gamma$
e failure 2
 ry - ry as per this
2 theory

Plastic Yielding of Hollow Disk

Under Internal Pressure

Po onset of plastic def. just yielded PL limit of plastic def. fully yielded

clastic solution

$$\Gamma_{\Gamma} = \frac{\rho a}{b^2 - a^2} \left(\frac{1 - b^2}{r^2} \right)$$

Yield occurs

$$\frac{\Gamma_{00} - \Gamma_{1r}}{2} = \frac{\Gamma_{Y}}{2} = \frac{1}{1} \qquad \frac{\Gamma_{zz} = 0}{-b}$$

a rit

TOB

www.PrintablePaper.net

$$e_{\Gamma} = a \frac{\rho a^2}{b^2 - a^2} \left(\frac{1 + b^2 - 1 + b^2}{a^2} \right) - \Gamma_{\gamma}$$

$$\Rightarrow \rho_0 = \frac{\Gamma_{\gamma}(b-a^2)}{2b^2}$$

Limiting Pressure

$$\frac{2^{2} + b^{2}}{b^{2} - a^{2}} = \frac{1 + b^{2} - 1 + b^{2}}{b^{2}} = r_{\gamma}$$

$$\Rightarrow \rho = \nabla_{\gamma} (b-a^2)$$

$$2a^2$$

Hookes Law not applicable when entire disk undergoes plastic deformation

plastically Jeformed Equilibrium Max Shear Skess Theory

DNIXA	NESH	DATAZA	CIZAD
DNYA	NESH	PAWA	SKAR

www.PrintablePaper.net

Rotating Solid Disk

wo onset of yield

Wr fully yielded

Flastic solution

$$\Gamma_{11} = C_1 + \frac{C_2}{I^2} - \frac{3+\nu}{8} \int_{0}^{2} w^2 r^2$$

$$\Gamma_{00} = C_1 - \frac{C_2}{I^2} - \frac{1+3\nu}{9} \int_{0}^{2} w^2 r^2$$

$$C_2=0$$
 finite stresses
 $\Gamma_{11}(b)=0 \Rightarrow$

$$\Gamma_{11} = 3+\nu \quad g\omega^{2} \left(b^{2}-r^{2}\right)$$

$$\Gamma_{00} = g\omega^{2} \left[(3+\nu)b^{2} \right]$$

$$V_{11} = \frac{1}{3}$$

$$V_{12} = \frac{1}{3}$$

$$V_{12} = \frac{1}{3}$$

$$V_{13} = \frac{1}{3}$$

Tresca $\Gamma_{00} - 0 = \Gamma_{1}$

$$\Theta_1=0$$
, $\Gamma_{\theta\theta}=9\omega^2[(3+\nu)b^2]=\Gamma_{\gamma}$

$$W_0 = 8 \text{ Ty}$$
 onset of $\frac{(3+\nu)gb^2}{er=0}$

Wrong solution

cannot use clastic solution in plastic zone

Correct Solution

plastic zone in entire disk

Equilibrium holds Max shear skess / Tresca

www.PrintablePaper.net

yield criterion holds

dTir.	Trr - Too	$\pm erw^2 = 0$	equilibrium
dr	r	1 2	1

Too - 0 = Ty yielding everywhere in disk

Traction free outer boundary

Tr (b) = 0

$$\Rightarrow \Gamma^{\mathsf{LL}}(\mathsf{P}) = 0$$

$$\Rightarrow r_{\gamma} = gw^{2}b^{2}$$

 $\omega_1 =$ 362