6. An input signal
$$x(t) = 2 + 5\sin(100\pi t)$$
 is sampled with a sampling frequency of 400 Hz and applied to the system whose transfer function is represented by $H(z) = \frac{1}{N} \left[\frac{1-z^{-N}}{1-z^{-1}} \right]$ where N represents the number of samples per cycle. The output $y(n)$ of the system under steady state is ______.

(a) 0

- (b) 1
- (c) 2
- (d)5

$$x(t) = 2 + 5 \sin 100\pi t$$

$$f_5 = 400 + 3 \Rightarrow 5 = \frac{1}{400}$$

$$x(nT_5) = 2 + 5 \sin 100\pi \frac{1}{400}$$

$$N = 2 + 55 \text{ M} = 2 \text{ M}$$

$$N = 2 \text{ M}$$

$$N = 8 \text{ M}$$

$$=\frac{1}{8}\left(1-1\right)=0$$

$$y(n) = 1.(2) + 0.(55in In)$$

 $y(n) = 2$

D.E
$$2y(n) = \alpha y[n-2] - 2x[n] + \beta x[n-1]$$

The system is stable only if

(a)
$$|\alpha| = 2$$
, $|\beta| < 2$

(b)
$$|\alpha| > 2$$
, $|\beta| > 2$

$$(c)|\alpha| < 2$$
, any β

(d)
$$|\beta| < 2$$
, any α

$$Y(z)(2-4z^2) = X(z)(-2+Bz^2)$$

$$H(2) = \frac{\chi(2)}{\chi(2)} = \frac{-2 + \beta 2}{2 - \chi_2 - 2}$$

29. Consider an LTI system whose pole-zero pattern is shown in figure

- (a) Find the ROC of system function, if it is known to be stable?
- (b) Is it possible for the given pole-zero plot to be a causal & stable system?
- (c) How many possible ROC's are there?

envalid as inis is envalid as inis is encluding pole at 2=2

Aditya Vangala

The transfer function H(z) of the system has only one pole and it is at z = 4/3. The zeros of H(z) are non-real and located at |z| = 3/4. The system is

- (a) stable & causal
 - (b) unstable & anticausal
- (c) unstable & causal
- (d) stable & anticausal

If h(n) is real and if at all H(z) has
complex zeros and complex poles then mey always
occur in conjugate pairs. $(z-\frac{3}{4}e^{i\theta})(z-\frac{3}{4}e^{i\theta}) = \frac{z}{z-413}$ $= z + \cdots$

System is Anticausal = 1214 #3

121 / 1.33

System 15 stable

Procludes

(a)
$$-0.5 \delta(n) - 0.5 (2)^n u[-n-1]$$

(b)
$$2^{n-1} u[n-1]$$

(c)
$$0.5 \delta(n) + 0.5 (2)^{n-1} u[n-1]$$

(d)
$$0.5 \delta(n) + 2^n u[-n-1]$$

- 33. Suptime with z =
 - Suppose x[n] is an absolutely summable discretetime signal. Its z-transform is a rational function with two poles and two zeros. The poles are at $z = \pm 2j$. Which one of the following statements is TRUE for the signal x[n]?
 - (a) It is a finite duration signal.
 - (b) It is a causal signal.
 - (c) It is a non-causal signal.
 - (d) It is a periodic signal.
 - X(2) = (Z+2j)(2-2j)

 Roc Should include unit circle

 X (12172), 121 L 2 Non-causal signal

- 34. y(n) 0.8y(n-1) = x(n) + 1.25x(n+1). Its right sided impulse response is
 - (a) Causal

(b) Unbounded

(c) Periodic

(d) Non-negative

$$Y(2) - 0.82^{-1}Y(2) = x(2) + 1.252^{-1}x(2)$$

 $Y(2)(1-0.82^{-1}) = x(2)(1+1.252)$
 $Y(2) = Y(2) = 1+1.252$

$$H(2) = \frac{Y(2)}{x(2)} = \frac{1 + 1.252}{1 - 0.82^{1}}$$

$$= \frac{1}{1 - 0.82^{1}} + \frac{1.252}{1 - 0.82^{1}}$$

$$=\frac{2}{2-0.8}$$
 + 1.25 2 $=\frac{2}{2-0.8}$

$$h(n) = (0.8)^n u(n)$$

 $+ 1.25 (0.8)^n u(n+1)$

35. Consider the following statements regarding a linear discrete - time system

$$H(z) = \frac{z^2 + 1}{(z+0.5)(z-0.5)}$$

- 1. The system is stable.
- 2. The initial value h(0) of the impulse response is 4.
- The steady-state output is zero for a sinusoidal discrete time input of frequency equal to onefourth the sampling frequency.

Which of these statements are correct?

(a) 1, 2 and 3

(b) 1 and 2

(c) 1 and 3

(d) 2 and 3

Aditya Vangala toles are inside A unit circle => stable lim H(2) 2-10 (1+0)(1-0)

 Consider the following statements regarding a linear discrete - time system

$$H(z) = \frac{z^2 + 1}{(z+0.5)(z-0.5)}$$

- The system is stable.
- 2. The initial value h(0) of the impulse response is 4.
- The steady-state output is zero for a sinusoidal discrete time input of frequency equal to onefourth the sampling frequency.

Which of these statements are correct?

(a) 1, 2 and 3

(b) 1 and 2

(c) 1 and 3

(d) 2 and 3

$$H(e^{j\omega}) = \frac{e^{j2\omega} + 1}{(e^{j\omega} + 0.5)(e^{j\omega} - 0.5)}$$

$$x(t) = A \sin \omega_{0}t$$

$$\omega_{0} = \frac{\omega_{0}}{2t}$$

$$x(n) = A \sin \omega_{0} \cdot n$$

$$= A \sin \frac{2\pi}{2} \cdot n$$

$$= A \sin \frac{\pi}{2} \cdot n$$

36. **Assertion (A):** The stability of the system is assured if the Region of Convergence (ROC) includes the unit circle in the Z-plane.

Reason (R): For a causal stable system all the poles should be outside the unit circle in the Z-plane.

A: True R: False

$$H(z) = \frac{z^3 - 2z^2 + z}{z^2 + \frac{1}{4}z + \frac{1}{8}}$$
 is not causal.

Statement (II): If the numerator of H(z) is of lower order than the denominator, the system may be causal.

$$H(2) = -\frac{1}{2} + \frac{1}{2} = \frac{2}{2-2}$$

$$h(n) = -\frac{1}{2} \delta(n) - \frac{1}{2} 2^{n} u(-n-1)$$

k(n) \$0 nc0

Aditya Vangala

H(2) = Z + () h(n) = J(n+1) + () +0 n<0 => Not causal => Not causal

$$\frac{11}{11} H(2) = \frac{1}{1-2}$$

$$= \frac{1}{2(2-2)} = \frac{1}{2} \frac{(2-2+2)}{2-2}$$

whenever the numerator of H(2) is of lower order man the denominator, me sys may or may be causal.

Z-transform approach is used to analyze the discrete time systems and is also called as pulse transfer function approach.

ACE

Statement (II):

The sampled signal is assumed to be a train of impulses whose strengths, or areas, are equal to the continuous time signal at the sampling instants.

H(2) Is the ratio of z-Transform of sampled output to the z-Transform of sampled enput $H(2) = \frac{Y(2)}{X(2)} = \frac{Z \cdot T \left\{ \frac{Y(n)}{X(n)} \right\}}{Z \cdot T \left\{ \frac{X(n)}{X(n)} \right\}}$ Both I and II are true and II is the correct explanation for I

Continuous	$\omega \rightarrow 0$	$\omega \to \infty$	
	$s \rightarrow 0$	$s \to \infty$	
Discrete	$\omega \rightarrow 0$	$\omega \to \pi$	WZWC
	$z \rightarrow 1$	$z \rightarrow -1$	
LPF	1	0	15
HPF	0	1	1/52
BPF	0	0	1
BRF	1	1	0

APF

Aditya Vangala

z = e îw

Identify the nature of the filter $H(s) = \frac{s}{s^2 + 3s + 3}$

$$H(0) = \frac{0}{0+0+3} = 0$$

$$t+(\infty) = \lim_{s\to\infty} \frac{s}{s^2(1+\frac{3}{s}+\frac{3}{s^2})}$$

$$=\frac{1}{S(1+\frac{3}{5}+\frac{3}{5})}$$

$$=\frac{1}{\varpi(1+0+0)}=0$$

$$t+15) = \frac{5^2}{5^2 + 35 + 3}$$

$$H(0) = \frac{0}{3} = 0$$

$$H(\infty) = llm$$

$$S \rightarrow \infty$$

$$S \downarrow \left(1 + \frac{3}{5} + \frac{3}{52} \right)$$

Identify the nature of the filter with Impulse response $h(n) = (-0.8)^n u(n)$

$$H(2) = \frac{2}{2+0.8}$$

HPF

$$W = 0$$
 $H(1) = \frac{1}{1+0.8} = \frac{1}{1.8} = 0.555$

$$w = 17$$
 $+(-1) = \frac{-1}{-1+0.8} = \frac{-1}{-0.2} = 5$

The pole-zero plots of three discrete-time systems P, Q and R on the z-plane are shown below.

Which one of the following is TRUE about the frequency selectivity of these systems?

- (a) All three are high-pass filters
- (b) All three are band-pass filters
- (c) All three are low-pass filters
- (d) P is a low-pass filter, Q is a band-pass filter and R is a high-pass filter.

- (a) also has a pole at $1/2 \angle 30^{\circ}$
- (b) has a constant phase response over the z-plane: arg|H(z)| = const
- (c) is stable only if it is anticausal
- (d) has a constant phase response over the unit circle: $arg|H(e^{j\Omega})| = const$

Fox real all pass system

Conjugate pairs

Z = 2 130 = 2e -intle

The other pole is 2e

Aditya Vangala

poles occur in

[1216]

1216]

1216]

1216]

Anticausal 1216

Anticausal 1216

Proc is including anit circle. => stable fins (C)

A discrete-time all-pass system has two of its poles at $0.25\angle0^{\circ}$ and $2\angle30^{\circ}$. Which one of the following statements about the system is TRUE?

(GATE -18)

- (a) It has two more poles at $0.5\angle 30^{\circ}$ and $4\angle 0^{\circ}$.
- (b) It is stable only when the impulse response is two-sided.
- (c) It has constant phase response over all frequencies.
- (d) It has constant phase response over the entire z-plane.

Aditya Vangala

D) 0.25 \(\) 12 \(\) \(

Ans (b)

 $H(2) = \frac{d+\overline{z'}}{1+d\overline{z'}}$, find $\left|H(e^{jw})\right|$, $\left|H(e^{jw})\right|$

$$t+(e^{jw}) = \frac{d+e^{jw}}{1+de^{jw}} = \frac{d+\cos w - j\sin w}{1+d\cos w - jd\sin w}$$

[GATE-14-S1]

(a) 0 and 0

(b) 0 and 1

$$u(n) \longrightarrow \frac{2}{2-1}$$

$$u(n|_3) \longrightarrow \frac{2}{2^3-1}$$

(c) 1 and 0 (d) 1 and 1
$$\times (2) = \frac{2^{3}}{2^{3}-1}$$

$$x(n) = u(n|3) = \begin{cases} 1,0,0,1,0,0,1,0,0 \end{cases}$$

 $x(a) = 0, x(3) = 1$ (b)

$$\frac{1}{1-z^{3}} = 1+z^{3}+z^{6}+z^{9}+\cdots$$

$$\frac{1}{1-z^{3}}=1+z^{3}+z^{6}+z^{9}+\cdots$$

$$\frac{1}{121^{3}}<1=2(1+z^{3})$$

[GATE-15 S2]

(a)
$$2z + 2 - \frac{8}{z} + \frac{7}{z^2} - \frac{3}{z^3}$$

(b)
$$-2z + 2 - \frac{6}{z} + \frac{1}{z^2} - \frac{3}{z^3}$$

(c)
$$-2z-2+\frac{8}{z}-\frac{7}{z^2}+\frac{3}{z^3}$$

(d)
$$4z-2-\frac{8}{z}-\frac{1}{z^2}+\frac{3}{z^3}$$

-15 S2]
$$y(n) = x(n) - x(n-1)$$

$$Y(2) = x(2) - \frac{1}{2}x(2)$$

$$Y(2) = 22 + 4 - 42 + 32$$

$$-2 - 42 + 42 - 32$$

$$Y(2) = 22 + 4 - 42 - 32$$

The z – transform of a signal x[n] is given by $4z^{-3} + 3z^{-1} + 2 - 6z^2 + 2z^3$. It is applied to a system, with a transfer function $H(z) = 3z^{-1}-2$. Let the output be y(n). Which of the following is true?

[GATE-09]

- (a) y(n) is non causal with finite support
- (b) y(n) is causal with infinite support
- (c) y(n) = 0; |n| > 3
- (d) $\operatorname{Re}[Y(z)]_{z=e^{j\theta}} = -\operatorname{Re}[Y(z)]_{z=e^{-j\theta}}$ $\operatorname{Im}[Y(z)]_{Z=e^{j\theta}} = \operatorname{Im}[y(z)]_{Z=e^{-j\theta}}; -\pi \le \theta < \pi$

 $Y(12) = X(12) \cdot H(12)$ $= 12 \frac{1}{2} + 42 + 42 + 42 + 62$ $- 8 \frac{1}{2} - 82 - 4 + 122 - 42^{3}$ $= -42^{3} + 182^{3} - 182^{3} - 4$ $+ 97^{3} - 82^{3} + 122^{4}$

Aditya Vangala

 $y(n) = \{-4, 18, -18, -4, 0, 9, -8, 12\}$ ANN 10)

A cascade system having the impulse responses $h_1(n) = \{1, -1\}$ and $h_2(n) = \{1, 1\}$

is shown in the figure below, where symbol ↑ denotes the time origin. [GATE-17-S2]

$$x(n) \longrightarrow h_1(n) \longrightarrow h_2(n) \longrightarrow y(n)$$

The input sequence x(n) for which the cascade system produces an output sequence

$$y(n) = \{ 1, 2, 1, -1, -2, -1 \}$$
 is

(a)
$$x(n) = \{1, 2, 1, 1\}$$

(b)
$$x(n) = \{1, 1, 2, 2\}$$

(c)
$$x(n) = \{1, 1, 1\}$$

(d)
$$x(n) = \{1, 2, 2, 1\}$$

$$X(2) = \frac{1+2\overline{2}+1\overline{2}-2\overline{2}-2\overline{2}-2\overline{2}}{1-2\overline{2}}$$

$$= (1 + az^{-1} + z^{-2}) - z^{-3} (1 + az^{-1} + z^{-2})$$

$$= \frac{(1+az^{1}+z^{2})(1-z^{3})}{a^{2}-b^{2}} \qquad a^{2}-b^{2} = (a+b)(a-b)$$

$$= \frac{(1+2^{1})^{2}(1-z^{1})(1+z^{1}+z^{2})}{(1-z^{1})(1+z^{1}+z^{2})} = \frac{(1+z^{1})(1+z^{1}+z^{2})}{(1+z^{1}+z^{2})}$$

$$= \frac{(1+z^{1})^{2}(1+z^{1}+z^{2})}{(1+z^{1}+z^{2}+z^{2})} = \frac{(1+z^{1})(1+z^{1}+z^{2}+z^{2})}{(1+z^{1}+z^{2}+z^{2}+z^{2})}$$

$$a^{3}-b^{3}=(a-b)(a^{2}+abtb^{2})$$

 $a^{2}-b^{2}=(a+b)(a-b)$

$$\frac{2}{(1-z^{2})(1+z^{2})} = \frac{(1+z^{2})(1+z^{2}+z^{2})}{(1-z^{2})(1+z^{2}+z^{$$

The causal signal with z-transform $z^2(z-a)^{-2}$ is (u[n] is the unit step signal) [GATE-21]

(a)
$$a^{2n}u[n]$$

(b)
$$(n + 1)a^nu[n]$$

(c)
$$n^{-1}a^nu[n]$$

(d)
$$n^2a^nu[n]$$

$$anu(n)$$
 $\frac{2}{2-a}$

$$=\frac{2}{(2-a)^{a}}=\frac{2-a2+a2}{(2-a)^{a}}$$

$$nu(\eta) \rightarrow \frac{2}{(2-1)^a}$$

$$2$$
 $2-1$

$$= 2(2-\alpha) + \frac{\alpha^2}{(2-\alpha)^2}$$

$$\frac{2|\alpha|}{2-1|\alpha|} = \frac{\alpha 2}{(2-\alpha)^2}$$

$$=\frac{2}{2-a}+\frac{a^2}{(2-a)^2}$$

$$a^nu(n) + a^n nu(n)$$
 $(n+1)a^nu(n)$

Let H(z) be the z-transform of a real-valued discrete-time signal h[n]. If P(z) = H(z) $H\left(\frac{1}{z}\right)$ has a zero at $z = \frac{1}{2} + \frac{1}{2}j$, and P(z) has a total of four zeros, which one of the following plots represents all the zeros correctly?

0

Which one of the following pole-zero plots corresponds to the transfer function of an LTI system characterized by the input-output difference equation given below?

$$y[n] = \sum_{k=0}^{3} (-1)^k x[n-k]$$
 (GATE -20)

