OPTIMIZATION (SI 416) – LECTURE 5

Harsha Hutridurga

IIT Bombay

RECENT STORY

- \clubsuit Take a continuously differentiable function $f: \mathbb{R}^n \to \mathbb{R}$
- Gradient descent algorithm reads as follows:

$$\begin{cases} \text{Begin with a} & x^{(0)} \in \mathbb{R}^n \\ \text{Build iterates using} & x^{(n+1)} = x^{(n)} - \delta \nabla f(x^{(n)}) & \text{for } n = 0, 1, 2, \end{cases}$$

- \clubsuit If f is strongly convex, then there is a unique global minimizer x_*
- A If f is further assumed to be β -smooth, then picking $\delta \in (0, \beta^{-1})$ yields a minimizing sequence, i.e. $f(x^{(n+1)}) \leq f(x^{(n)})$
- Furthermore, we have the estimate:

$$||x^{(n)} - x_*|| \le \left(\frac{1}{1 + 2\delta\lambda}\right)^{\frac{n}{2}} ||x^{(0)} - x_*||$$
 for $n = 0, 1, ...$

RECENT STORY (CONTD.)

- \$\ \sim \text{Suppose we have a tolerance of } \varepsilon > 0\$, i.e we are looking for $x^{(n)}$ which is at ε distance from x_*
- ♣ Observe that

$$\left(\frac{1}{1+2\delta\lambda}\right)^{\frac{n}{2}} \left\| x^{(0)} - x_* \right\| \le \varepsilon \implies \left\| x^{(n)} - x_* \right\| \le \varepsilon$$

♣ That is

$$n \ge \frac{2}{\ln(1+2\delta\lambda)} \ln\left(\frac{\left\|x^{(0)} - x_*\right\|}{\varepsilon}\right)$$

 \clubsuit Hence, for the n^{th} iterate to be ε close to x_* , we must have

$$n = \mathcal{O}(\ln(\varepsilon^{-1}))$$

AN IDEA OF NEWTON

- \clubsuit Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is such that $\nabla^2 f(x)$ is invertible for all x
- Consider the algorithm

$$\begin{cases} \text{ Begin with a } & x^{(0)} \in \mathbb{R}^n \\ \text{ Build iterates using } & x^{(n+1)} = x^{(n)} - \delta \left(\nabla^2 f(x^{(n)}) \right)^{-1} \nabla f(x^{(n)}) \end{cases}$$

- for $n = 0, 1, 2, \dots$
- \clubsuit The parameter $\delta > 0$ to be chosen later
- Does this generate a minimizing sequence?
- & Employing Taylor's theorem, we get

$$f(x^{(n+1)}) = f(x^{(n)}) - \delta \left\langle \nabla f(x^{(n)}), \left(\nabla^2 f(x^{(n)}) \right)^{-1} \nabla f(x^{(n)}) \right\rangle + \frac{\delta^2}{2} \left\langle \nabla^2 f(y) \left(\nabla^2 f(x^{(n)}) \right)^{-1} \nabla f(x^{(n)}), \left(\nabla^2 f(x^{(n)}) \right)^{-1} \nabla f(x^{(n)}) \right\rangle$$

- \bullet Observe that choosing $\delta \ll 1$, we can drop the term of $\mathcal{O}(\delta^2)$
- \clubsuit Note: Positive definite $\nabla^2 f$ will generate minimizing sequence

 \clubsuit Similar to the β -smoothness condition, we shall assume that

$$\left\| \nabla^2 f(x) v - \nabla^2 f(y) v \right\| \le \gamma \|x - y\| \|v\| \quad \text{ for all } x, y, v \in \mathbb{R}^n$$
 for some $\gamma > 0$

- \clubsuit Suppose f is strongly convex, i.e. a minimizer x_* exists
- \clubsuit Take $\delta = 1$ in the algorithm and note that

$$x^{(n+1)} - x_* = x^{(n)} - x_* - \left(\nabla^2 f(x^{(n)})\right)^{-1} \nabla f(x^{(n)})$$

$$= x^{(n)} - x_*$$

$$- \left(\nabla^2 f(x^{(n)})\right)^{-1} \int_0^1 \nabla^2 f(x_* + \alpha(x^{(n)} - x_*))(x^{(n)} - x_*) d\alpha$$

$$= \left(\nabla^2 f(x^{(n)})\right)^{-1} \left(\nabla^2 f(x^{(n)})\right) \left(x^{(n)} - x_*\right)$$

$$- \left(\nabla^2 f(x^{(n)})\right)^{-1} \int_0^1 \nabla^2 f(x_* + \alpha(x^{(n)} - x_*))(x^{(n)} - x_*) d\alpha$$

Recall that we had

$$x^{(n+1)} - x_* = \left(\nabla^2 f(x^{(n)})\right)^{-1}$$
$$\left(\int_0^1 \left(\nabla^2 f(x^{(n)}) - \nabla^2 f(x_* + \alpha(x^{(n)} - x_*))\right) d\alpha\right) \left(x^{(n)} - x_*\right)$$

♣ Hence we deduce that

$$\begin{aligned} & \left\| x^{(n+1)} - x_* \right\| \le \left\| \left(\nabla^2 f(x^{(n)}) \right)^{-1} \right\| \\ & \left\| \int_0^1 \left(\nabla^2 f(x^{(n)}) - \nabla^2 f(x_* + \alpha(x^{(n)} - x_*)) \right) \, d\alpha \right\| \left\| x^{(n)} - x_* \right\| \\ & \le \frac{\left\| x^{(n)} - x_* \right\|}{\lambda} \int_0^1 \left\| \nabla^2 f(x^{(n)}) - \nabla^2 f(x_* + \alpha(x^{(n)} - x_*)) \right\| \, d\alpha \end{aligned}$$

thanks to strong convexity of f

4 Using the smoothness assumption on the Hessian, we obtain

$$\left\| x^{(n+1)} - x_* \right\| \le \frac{\|x^{(n)} - x_*\|}{\lambda} \int_0^1 \gamma (1 - \alpha) \left\| x^{(n)} - x_* \right\| d\alpha$$
$$= \frac{\gamma}{2\lambda} \left\| x^{(n)} - x_* \right\|^2$$

A Hence we deduce that

$$||x^{(n)} - x_*|| \le \left(\frac{\gamma}{2\lambda}\right)^{2^n - 1} ||x^{(0)} - x_*||^{2^n}$$

♣ Observe that

$$\left\|x^{(0)} - x_*\right\| \le \frac{\lambda}{\gamma} \implies \left\|x^{(n)} - x_*\right\| \le \left(\frac{2\lambda}{\gamma}\right) 2^{-2^n}$$

- \$\iiiis\$ Suppose we have a tolerance of $\varepsilon > 0$, i.e we are looking for $x^{(n)}$ which is at ε distance from x_*
- ♣ Observe that

$$\left(\frac{2\lambda}{\gamma}\right)2^{-2^n} \le \varepsilon \implies \left\|x^{(n)} - x_*\right\| \le \varepsilon$$

A That is

$$n \ge \log_2\left(\log_2\left(\frac{2\lambda}{\gamma\varepsilon}\right)\right)$$

 \clubsuit Hence, for the n^{th} iterate to be ε close to x_* , we must have

$$n = \mathcal{O}(\ln(\ln(\varepsilon^{-1})))$$

 \clubsuit Recall that for gradient descent, we had $n = \mathcal{O}(\ln(\varepsilon^{-1}))$

RATES OF CONVERGENCE

 Λ If a sequence $\{x^{(n)}\}\subset\mathbb{R}^n$ converging to a point $x_*\in\mathbb{R}^n$, then

$$\lim_{n \to \infty} \left\| x^{(n)} - x_* \right\| = 0$$

- \$\rightarrow\$ For a convergent sequence, we can talk about rate of convergence
 - ▶ The convergence is **linear** if there exists a $\theta \in (0,1)$ such that

$$||x^{(n+1)} - x_*|| \le \theta ||x^{(n)} - x_*||$$

for all n sufficiently large

▶ The convergence is **superlinear** if

$$\lim_{n \to \infty} \frac{\|x^{(n+1)} - x_*\|}{\|x^{(n)} - x_*\|} = 0$$

▶ The convergence is **quadratic** if there exists a C > 0 such that

$$||x^{(n+1)} - x_*|| \le C ||x^{(n)} - x_*||^2$$

for all n sufficiently large

RATE OF CONVERGENCE (CONTD.)

 \clubsuit Recall: For the gradient descent algorithm to minimize a strongly convex β -smooth function, we had

$$\left\| x^{(n+1)} - x_* \right\| \le \left(\frac{1}{1 + 2\delta\lambda} \right)^{\frac{1}{2}} \left\| x^{(n)} - x_* \right\|$$

- ♣ Hence the convergence here is linear
- A Recall: For the Newton's algorithm to minimize a smooth strongly convex function, we had

$$||x^{(n+1)} - x_*|| \le \frac{\gamma}{2\lambda} ||x^{(n)} - x_*||^2$$

♣ Hence the convergence here is quadratic

LINE SEARCH ALGORITHMS

- \clubsuit Start with an initial vector $x^{(0)} \in \mathbb{R}^n$ and a direction $p^{(0)} \in \mathbb{R}^n$
- \clubsuit Find the next iterate $x^{(1)}$ along the line $x^{(0)} + \alpha p^{(0)}$ with $\alpha > 0$ s.t.

$$f(x^{(1)}) \le f(x^{(0)})$$

- \clubsuit At the point $x^{(1)}$, pick a new direction $p^{(1)} \in \mathbb{R}^n$
- \clubsuit Find the next iterate $x^{(2)}$ along the line $x^{(1)} + \alpha p^{(1)}$ with $\alpha > 0$ s.t.

$$f(x^{(2)}) \le f(x^{(1)})$$

- General principle of line search algorithms:
 - At the current iterate $x^{(n)}$, choose a direction $p^{(n)}$
 - Pick the next iterate $x^{(n+1)}$ along the line $x^{(n)} + \alpha p^{(n)}$ with $\alpha > 0$ such that

$$f(x^{(n+1)}) \le f(x^{(n)})$$

At each iteration step, we may perform a one-dimensional minimization problem:

$$\min_{\alpha>0} f(x^{(n)} + \alpha p^{(n)})$$

- ♣ But, in practice, we are content with finding a candidate that comes close to solving the above one-dimensional problem
- \clubsuit The direction $p^{(n)}$ is referred to as the SEARCH DIRECTION
- Recall the steepest descent algorithm:

$$x^{(n+1)} = x^{(n)} - \delta \nabla f(x^{(n)})$$

 \clubsuit So, here the search direction at the n^{th} iteration step is

$$p^{(n)} = -\nabla f(x^{(n)})$$

 \clubsuit At the iterate $x^{(n)}$ and for any search direction $p^{(n)}$, we have

$$\begin{split} f(x^{(n)} + \alpha p^{(n)}) &= f(x^{(n)}) + \alpha \left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle \\ &+ \frac{\alpha^2}{2} \left\langle \nabla^2 f(x^{(n)} + s p^{(n)}) p^{(n)}, p^{(n)} \right\rangle \end{split}$$

for some $s \in (0, \alpha)$, thanks to Taylor's theorem.

 \clubsuit Define a function $g:[0,\infty)\to\mathbb{R}$ as follows:

$$g(\alpha) := f(x^{(n)} + \alpha p^{(n)}) \quad \text{for } \alpha \in [0, \infty).$$

♣ Observe that

$$g'(0) = \left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle$$

 \clubsuit That is, the rate of change of f at the point $x^{(n)}$ in the direction $p^{(n)}$ is given by

$$\left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle$$

 \clubsuit If we are interested in finding a unit direction of maximum decrease at the point $x^{(n)}$, we should understand

$$\min_{p \in \mathbb{R}^n, \|p\| = 1} \left\langle \nabla f(x^{(n)}), p \right\rangle$$

Recall that, if θ_n denotes the angle between $\nabla f(x^{(n)})$ and p, then $\left\langle \nabla f(x^{(n)}), p \right\rangle = \|p\| \left\| \nabla f(x^{(n)}) \right\| \cos(\theta_n) = \left\| \nabla f(x^{(n)}) \right\| \cos(\theta_n)$

♣ So, the minimum possible value of $\langle \nabla f(x^{(n)}), p \rangle$ is obtained when $\cos(\theta_n) = -1$

 \clubsuit Observe that the unit vector p which realises that is

$$p = -\frac{\nabla f(x^{(n)})}{\|\nabla f(x^{(n)})\|}$$

♣ We have seen that steepest descent is a line search algorithm where we take the search direction

$$p^{(n)} = -\nabla f(x^{(n)})$$

A Taylor's theorem says

$$f(x^{(n)} + \alpha p^{(n)}) = f(x^{(n)}) + \alpha \left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle + \frac{\alpha^2}{2} \left\langle \nabla^2 f(x^{(n)} + sp^{(n)}) p^{(n)}, p^{(n)} \right\rangle$$

 \clubsuit Hence, if we take $0 < \alpha \ll 1$, and if we ensure that

$$\left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle < 0$$

then we find that $f(x^{(n+1)}) < f(x^{(n)})$

 \clubsuit Any such direction $p^{(n)}$ is referred to as DESCENT DIRECTION

 \clubsuit For any search direction p, we have by Taylor's theorem:

$$f(x^{(n)} + p) = f(x^{(n)}) + \left\langle \nabla f(x^{(n)}), p \right\rangle + \frac{1}{2} \left\langle \nabla^2 f(x^{(n)} + sp)p, p \right\rangle$$
 for some $s \in (0, 1)$.

- \clubsuit Let us assume that $\nabla^2 f(x^{(n)} + sp) \approx \nabla^2 f(x^{(n)})$
- ♣ Hence we obtain

$$f(x^{(n)} + p) \approx f(x^{(n)}) + \left\langle \nabla f(x^{(n)}), p \right\rangle + \frac{1}{2} \left\langle \nabla^2 f(x^{(n)})p, p \right\rangle =: F(p)$$

- \clubsuit Observe that F is a quadratic function in p
- \clubsuit If $\nabla^2 f$ is positive definite, then F(p) has a unique global minimum
- \clubsuit Recall: that global minimizer p_* is a critical point of F, i.e.

$$\nabla F(p_*) = 0 \implies p_* = -\left(\nabla^2 f(x^{(n)})\right)^{-1} \nabla f(x^{(n)})$$

♣ This is the search direction in Newton's algorithm

- A Newton's algorithm is also a line search algorithm
- ♣ The search direction in Newton's algorithm is

$$p^{(n)} = -\left(\nabla^2 f(x^{(n)})\right)^{-1} \nabla f(x^{(n)})$$

 \clubsuit If $\nabla^2 f$ is strictly positive definite, then

$$\left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle = -\left\langle \nabla f(x^{(n)}), \left(\nabla^2 f(x^{(n)}) \right)^{-1} \nabla f(x^{(n)}) \right\rangle < 0$$

 \clubsuit Hence the above $p^{(n)}$ is a descent direction

AN ILLUSTRATIVE EXAMPLE

 \clubsuit Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined as follows:

$$f(x) := x^2 - 1$$
 for $x \in \mathbb{R}$

 \clubsuit The point x=0 is the minimizer and f(0)=-1

AN ILLUSTRATIVE EXAMPLE (CONTD.)

$$Arr ext{Take } x^{(0)} = -2 \text{ and } p^{(0)} = 1$$

• Note that
$$f(x^{(0)}) = 3$$

. Take
$$\alpha_0 = 2 + \sqrt{3}$$
 so that $x^{(1)} = x^{(0)} + \alpha_0 p^{(0)} = \sqrt{3}$

$$Arr$$
 Note that $f(x^{(1)}) = 2$

♣ Take
$$p^{(1)} = -1$$

. Take
$$\alpha_1 = \sqrt{3} + \sqrt{2}$$
 so that $x^{(2)} = x^{(1)} + \alpha_1 p^{(1)} = -\sqrt{2}$

$$Arr$$
 Note that $f(x^{(2)}) = 1$

• Take
$$p^{(2)} = 1$$

A Take
$$\alpha_2 = \sqrt{2} + \sqrt{\frac{5}{3}}$$
 so that $x^{(3)} = x^{(2)} + \alpha_2 p^{(2)} = \sqrt{\frac{5}{3}}$

• Note that
$$f(x^{(3)}) = \frac{2}{3}$$

♣ Take
$$p^{(3)} = -1$$

. Take
$$\alpha_3 = \sqrt{\frac{5}{3}} + \sqrt{\frac{3}{2}}$$
 so that $x^{(4)} = x^{(3)} + \alpha_3 p^{(3)} = -\sqrt{\frac{3}{2}}$

• Note that
$$f(x^{(4)}) = \frac{1}{2}$$

♣ Observe that

$$f(x^{(0)}) > f(x^{(1)}) > f(x^{(2)}) > f(x^{(3)}) > f(x^{(4)})$$

AN ILLUSTRATIVE EXAMPLE (CONTD.)

 \clubsuit We can thus build a minimizing sequence $x^{(n)}$ such that

$$f(x^{(n)}) = \frac{2}{n}$$
 for $n = 1, 2, ...$

- A But the limiting function value for this sequence is zero
- \clubsuit Recall that the minimum value of the objective function is -1
- A This illustrates the possibility of a general line search algorithm
 - \triangleright leading to insufficient reduction in f in each iteration
 - \blacktriangleright failing to converge to the minimizer of f
- \clubsuit The root cause for this behaviour stems from the choice of step lengths α_n in each iteration step
- ♣ Here we encounter certain sufficient decrease conditions

END OF LECTURE 5 THANK YOU FOR YOUR ATTENTION