QUI017 - Química Geral Experimental: P2 (Práticas 6 a 8)			Pontuação ↓
Data: 11/07/2025	Questões: 2	Pontos totais: 20	
Matrícula:	Nome:		

Questão	Pontos	Nota
1	10	
2	10	
Total:	20	

Instruções:

- 1. Justifique todas as suas respostas.
- 2. Entregue as repostas manuscritas com essa folha anexa.
- 3. A Tabela Periódica dos Elementos está ao final da prova.
- 4. Equações:
 - (a) Variação da energia livre de Gibbs (ΔG) em uma célula galvânica:

$$(\Delta G/J) = -(n/\text{mol}) (F/J V^{-1} \text{mol}^{-1}) (\Delta E/V)$$

(b) Desvio padrão (s):
$$s = \sqrt{\frac{\sum\limits_{i=1}^{n}(x_i - \bar{x})^2}{n-1}}$$

1. (10 pontos) Ao realizar um experimento sobre o ciclo do cobre, uma aluna verificou que uma das etapas envolvia a reação entre o sulfato de cobre(II) (CuSO₄) e zinco metálico, para que o cobre fosse recuperado. Essa reação é descrita pela **Equação 1**.

$$CuSO_4(aq) + Zn(s) \longrightarrow ZnSO_4(aq) + Cu(s)$$
 (1)

Macroscopicamente, percebe-se que a solução, previamente azulada, se torna incolor, e o zinco metálico, de coloração cinza/preateada, se torna um sólido de coloração vermelha/alaranjada. Ao pesquisar sobre o processo, a aluna verificou que as duas semirreações que representam a reação global são mostradas nas **Equações 2 e 3**.

$$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s) \quad E^{\circ} = +0.3419 \text{ V}$$
 (2)

$$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2 \operatorname{e}^{-} \Longrightarrow \operatorname{Zn}(\operatorname{s}) \quad E^{\circ} = -0.7618 \text{ V}$$
 (3)

Ambos os valores de potencial-padrão de redução (E°) foram obtidos à 298,15 K.

- (a) Identifique o catodo sítio de redução e o anodo sítio de oxidação da reação de oxirredução e indique, matematicamente, se a reação é espontânea ou não. Considere que a constante de Faraday (F) é igual a $9,648\,533\,\times10^4\,\mathrm{J\,V^{-1}\,mol^{-1}}$.
- (b) Considerando que a massa inicial de cobre para o experimento foi de 2,0144 g e a final, após a recuperação por zinco e subsequente filtração, foi de 1,9879 g, qual o rendimento percentual obtido pela aluna?
- (c) Após a adição de zinco, comumente feita em excesso em relação ao CuSO₄, a aluna colocou ácido clorídrico (HCl(aq)) concentrado no meio, observando a formação de bolhas. Qual a importância dessa etapa reacional?
- 2. (10 pontos) Considere a reação de precipitação entre o tiossulfato de sódio (Na₂S₂O₃) e o ácido clorídrico (HCl), expressa pela **Equação 4**.

$$Na_2S_2O_3(aq) + 2HCl(aq) \longrightarrow S(s) + SO_2(g) + 2NaCl(aq) + H_2O(l)$$
 (4)

Para avaliar a influência da concentração de $Na_2S_2O_3$ ($[Na_2S_2O_3]$) na velocidade da reação, preparou-se 5 béqueres contendo água destilada e uma solução $0,15 \text{ mol } L^{-1}$ do tiossulfato de sódio em diferentes volumes, conforme a **Tabela 1**. Cada béquer foi colocado acima de uma folha branca com um "X" feito à lápis. Os "X" possuíam tamanhos iguais. Para iniciar o experimento, 5 mL de uma solução $2,0 \text{ mol } L^{-1}$ de HCl foram adicionados a cada béquer e um cronômetro foi iniciado. O cronômetro foi parado assim que o precipitado formado cobriu toda a extensão do "X". Os valores obtidos estão dispostos na **Tabela 1**.

Tabela 1: Volumes de uma solução $0.15~\mathrm{mol}\,\mathrm{L}^{-1}$ de $\mathrm{Na_2S_2O_3}$ ($v\,(\mathrm{Na_2S_2O_3})/\mathrm{mL}$), de água ($v\,(\mathrm{H_2O})/\mathrm{mL}$) e de uma solução $2.0~\mathrm{mol}\,\mathrm{L}^{-1}$ de HCl ($v\,(\mathrm{HCl})/\mathrm{mL}$) utilizados nas reações de precipitação de enxofre (S).

Béquer	$v\left(\mathrm{Na_{2}S_{2}O_{3}}\right)\left(\mathrm{mL}\right)$	$v\left(\mathrm{H_2O}\right)\left(\mathrm{mL}\right)$	$v (\mathrm{HCl}) (\mathrm{mL})$	t/s
1	50,0	0	5,0	22,5
2	40,0	10,0	5,0	27,3
3	30,0	20,0	5,0	35,1
4	20,0	30,0	5,0	60,0
5	10,0	40,0	5,0	159,1

Considerando os dados obtidos, como o efeito da concentração de tiossulfato de sódio na velocidade de reação pode ser avaliado quantitativamente? Qual é esse efeito?

