Chapter 1

2024-04-21 - Cyclotomic Polynomials

1.1 Explicit construction

For the cyclotomic polynomials there is always a coefficient which is exactly $1 \in \mathbb{Z}$ and maps to the relevant $1 \in R$ for any commutative unital zero-divisor-free factorial ring over which we consider the cyclotomic polynomial. Hence recall the famous Eisenstein's criterion to look up in your favourite algebra reference, with a minute simplification assuming there is a coefficient $a_i = 1$.

Proposition 1.1.1. Let A be a factorial ring with quotient field $K: A \hookrightarrow Quot(A) = K$. Let $f = \sum_i a_i X^i \in A[X]$ be a polynomial with coefficients in A of degree N such that $a_N = 1$ and $a_0 = \pm 1$.

If there exists $p \in A$ which is indecomposable, satisfying $p|a_i$ for i = 1, ..., N-1, then f is indecomposable over K[X] as well as A[X].

Proof.