Cercle trigonométrique

Voici le cercle trigonométrique (de rayon 1), les angles sont comptés positivement dans le sens inverse des aiguilles d'une montre. Les angles remarquables sont marqués de 0 à 2π (en radian) et de 0° à 360° (bien que cette unité ne sera pas utilisée dans ce cours). Les coordonnées des points correspondant à ces angles sont aussi indiquées.

Le point M a pour coordonnées $(\cos x, \sin x)$. La droite (OM) coupe la droite d'équation (x=1) en T, l'ordonnée du point T est $\tan x$ (cela découle du théorème de Thalès). Les formules de base :

$$\cos^2 x + \sin^2 x = 1$$
$$\cos(x + 2\pi) = \cos x$$
$$\sin(x + 2\pi) = \sin x$$

Nous avons les formules suivantes :

$$\cos(-x) = \cos x$$
$$\sin(-x) = -\sin x$$

On retrouve graphiquement ces formules à l'aide du dessin des angles x et -x.

Il en est de même pour les formules suivantes :

$$\cos(\pi + x) = -\cos x \qquad \cos(\pi - x) = -\cos x \qquad \cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$\sin(\pi + x) = -\sin x \qquad \sin(\pi - x) = \sin x \qquad \sin\left(\frac{\pi}{2} - x\right) = \cos x$$

Valeurs remarquables du cos, sin et tan :

x	0	$\frac{\pi}{6}$	$rac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\tan x$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	non défini