MATB24 TUTORIAL PROBLEMS 2

KEY WORDS: subspace, spanning set, linearly independent, basis RELEVANT SECTIONS IN THE TEXTBOOK: Sec 3.2 FB or Sec 2.A and Sec 1.C SA

WARM-UP: Write down a complete definition or a complete mathematical characterization for the following terms.

Let V be an F-vector space

- A subspace of V
- A linear combination of v_1, v_2, \cdots, v_k in V
- A dependency relation in a subset X of V
- \bullet A spanning set for a subspace W of V
- \bullet The span of a subset X of V
- \bullet A linearly independent subset of V
- ullet A linearly dependent subset of V

A: Let \mathcal{F} be the set of all functions from \mathbb{R} to \mathbb{R} . Recall that \mathcal{F} is a vector space, with operations (f+g)(x)=f(x)+g(x) and (kf)(x)=kf(x), for all $f,g\in\mathcal{F},k\in\mathbb{R}$, and $x\in\mathbb{R}$. Prove or disprove the following:

- (1) The set $\{\sin^2(x), \cos^2(x)\}\$ is linearly independent.
- (2) The set $\{\sin(x), \cos(2x), \sin(3x)\}\$ is linearly independent.
- (3) The set $\{1, e^x + e^{-x}, e^x e^{-x}\}$ is linearly independent.
- (4) Span($\sin^2(x)$, $\cos^2(x)$) contains all the constant function.
- (5) If V is the subspace of \mathcal{F} spanned by $\{1, 2\sin^2(x), 3\cos^2(x)\}$, then $\dim(V) = 2$.

B: Let V be a real vector space and $\vec{v_i}$ and $\vec{w_i}$ be in V, i = 1, ..., n.

- (1) Give a necessary and sufficient condition for $\operatorname{Span}(\vec{v}_1, \dots, \vec{v}_n) = \operatorname{Span}(\vec{w}_1, \dots, \vec{w}_n)$.
- (2) Prove that $\operatorname{Span}(\vec{v}_1, \dots, \vec{v}_n) = \operatorname{Span}(\vec{w}_1, \dots, \vec{w}_n)$ if and only if $\vec{v}_1, \dots, \vec{v}_n$ are in $\operatorname{Span}(\vec{w}_1, \dots, \vec{w}_n)$ and $\vec{w}_1, \dots, \vec{w}_n$ are in $\operatorname{Span}(\vec{v}_1, \dots, \vec{v}_n)$. Is this the same condition that you gave in 1? If not, is it equivalent?
- (3) Prove that $\operatorname{Span}(\vec{v}_1, \vec{v}_2) = \operatorname{Span}(\vec{v}_1, 2\vec{v}_1 + 3\vec{v}_2)$. You can use the previous parts.
- (4) Let $\vec{w} \in V$. Prove or disprove: $\vec{w} \in \operatorname{Span}(\vec{v}_1, \dots, \vec{v}_n)$ if and only if $\operatorname{Span}(\vec{w}, \vec{v}_1, \dots, \vec{v}_n) = \operatorname{Span}(\vec{v}_1, \dots, \vec{v}_n)$

¹Means fill in the blank for if and only if $\operatorname{Span}(\vec{v}_1, \dots, \vec{v}_n) = \operatorname{Span}(\vec{w}_1, \dots, \vec{w}_n)$.

²Remember how we proved two sets are equal in class. You need to show they are subsets of one another.

C: Let P denote the vector space of all polynomials (that is, functions of the form $f(x) = a_n x^n + \cdots + a_1 x + a_0$ where each $a_i \in \mathbb{R}$ and n is any non-negative integer).

- (1) Give two spanning sets for P.
- (2) What do you think it means for a vector space to be finitely generated? Write down the definition explicitly. Check your definition with your TA.
- (3) Suppose V is a finitely generated subspace of P, and S is a finite spanning set for V. Let $m = \max\{\deg(f(x)) \mid f \in S\}$. Discuss with your group why m is a well defined integer. One way to think about this is, if you were to program a computer to find m what would your algorithm be, and does that algorithm end.
- (4) Construct an element g in P of degree m+1. Prove that g is not in $\mathrm{Span}(S)$.
- (5) Prove that P is not finitely generated.

COOL-OFF: Give an example of the described object or explain why such an example does not exists.

- (1) A finitely generated vector space.
- (2) A vector space that is not finitely generated
- (3) A linearly dependent subset of \mathcal{F} and a dependency relation among its vectors
- (4) A linearly independent subset of \mathcal{F} .