Huitong Yang

236 Haigu Road, Pudong New Area, Shanghai, China

EDUCATION

Liaoning University of Technology

Bachelor of Engineering in Control Engineering

Liaoning, China

Sept. 2015 - Jun. 2019

Guangdong University of Technology

Master's degree of Optical Engineering

Guangdong Guangzhou, China

Email: huitongy0126@gmail.com

Mobile: (+86)18704103928

Sept. 2019 - Jun. 2022

Work Experience

ShanghaiTech University

Research Assistant(Supervisor: Yuexin Ma)

Shanghai, China

Mar. 2022 - Dec. 2022

- o Participate in the research of Vision-Centric bird's eye view(BEV) Autonomous Driving perception algorithm
- o Responsible for the implementation of LiDAR-Camera fusion perception algorithms and related validation
- Responsible for the implementation of unsupervised domain adaptation algorithms for 3D scene understanding

Tsinghua University

Beijing, China

Research Assistant(Supervisor: Hang Zhao)

Jan. 2023 - Now

- o Participate in the research of unified architecture for self-driving motion forecasting and planning
- $\circ~$ Responsible for the implementation of End-to-End 3D Detection and Tracking in bird's eye view(BEV)

Paper List

• Vision-Centric BEV Perception: A Survey

Yuexin Ma, Tai Wang, Xuyang Bai, **Huitong Yang**, Yuenan Hou, Yaming Wang, Yu Qiao, Ruigang Yang, Dinesh Manocha, Xinge Zhu

Submitted to IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE(TPAMI)¹ 2022

Polar-based Adaptive BEV Perception for Autonomous Driving

Huitong Yang, Xuyang Bai, Xinge Zhu, and Yuexin Ma

Accepted by IEEE International Conference on Robotics and Automation (ICRA) 2023

• GAMNet: Global Attention Via Multi-scale Context for Depth Estimation Algorithm

Huitong Yang, Qi Wang, Liang Lei

Submitted to Measurement Science and Technology(MST) 2022

RESEARCH EXPERIENCE

Vision-Centric BEV Perception: A Survey

TPAMI Submission. Fourth Author (Supervisor: Yuexin Ma)

 $Jun.\ 2022$ - $Aug.\ 2022$

- \circ To the best of our knowledge, this is the first survey to review the recent progress in solving the view transformation between the perspective view and bird's eye view (BEV).
- We present the most recent related methods of vision-centric BEV perception, clearly classifying them according to the core idea and downstream vision tasks. Detailed analysis and comparison on performance and limitation for these methods are also provided.
- We propose extra extensions of BEV perception works, including the multi-task learning strategies, fusion operations in BEV, and empirical training tricks, to facilitate the implementation and development of related approaches.

Polar-based Adaptive BEV Perception for Autonomous Driving

ICRA 2023 Submission. First Author (Supervisor: Xinge Zhu & Xuyang Bai)

Jun. 2022 - Sep. 2022

• We propose a novel Polar-based BEV perception method, which can adapt to various computing budgets for multiple deployments based on one training.

¹https://arxiv.org/pdf/2208.02797.pdf

- We make use of the information interaction among multi-scale features to enhance the feature representation for better adaptation.
- Our method achieves state-of-the-art generalization capability of inferring novel scale of feature maps for 3D detection on large-scale autonomous driving dataset.

GAMNet: Global Attention Via Multi-scale Context for Depth Estimation Algorithm

Measurement Science and Technology Submission. First Author

Jan. 2021 - Jun. 2021

- We design a lightweight global duple attention module for aggregating the global information from the horizontal and vertical spatial dimensions, and capturing the cross-channel relationships efficiently along the channel dimension.
- We introduce a multi-scale fusion module to reconstruct the feature pyramid, promoting the spatial coherence among the adjacent scales, and aligning the contexts from multiple scales.
- We apply a 3D densely connected module in cost aggregation to refine matching feature representation and promote the sensitivity to salient matching details.
- We propose a linear measurement strategy on spatial grasping point to verify the relative 3D reconstruction accuracy of the end-to-end stereo algorithms in actual application scenarios.²

AWARD-WINNING EXPERIENCE

Academic Scholarships

- \circ Guangdong University of Technology Academic Third Class Scholarship for Master's Degree Students for the academic year 2018-2019.
- o Guangdong University of Technology Academic Third Class Scholarship for Master's Degree Students for the academic year 2019-2020.
- Guangdong University of Technology Academic Third Class Scholarship for Master's Degree Students for the academic year 2020-2021.

Competition Awards

- o National Third Prize of the 8th National Student Optoelectronic Design Competition.
- o National Seconde Prize of the "Huawei Cup" 17th China Post-Graduate Mathematical Contest in Modeling.

²The video of 3D reconstruction visual guidance system based on GAMNet: https://www.bilibili.com/video/BV19r4y1U7oR/