Guia de dimensionamento de cabos para baixa tensão

De acordo com a NBR 5410

Prysmian

Sumário

1.	INTRODUÇÃO	2
2. 2.1. 2.2. 2.3.	CONSIDERAÇÕES SOBRE A UTILIZAÇÃO DE CONDUTOR DE ALUMÍNIO Instalações industriais Instalações comerciais Instalações residenciais	<u> </u>
2.4. 3 .	Instalações públicas com alta densidade de ocupação CRITÉRIOS TÉCNICOS DE DIMENSIONAMENTO DE CONDUTORES ELÉTRICOS	4
4. 4.1. 4.2. 4.3.	DIMENSIONAMENTO PELA SEÇÃO MÍNIMA Seção Mínima dos Condutores de Fase Seção Mínima do Condutor Neutro Seção Mínima do Condutor de Proteção (PE) - Condutor Terra	4 4 5
5. 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.7.1. 5.7.2. 5.7.3. 5.7.4. 5.7.5. 5.7.6.	Métodos de instalação Condutores e cabos Prysmian Capacidades de condução de corrente, em ampères, para os métodos de referência A1, A2, B1, B2, C e D. Capacidades de condução de corrente, em ampères, para os métodos de referência A1, A2, B1, B2, C e D. Capacidades de condução de corrente, em ampères, para os métodos de referência E, F e G. Capacidades de condução de corrente, em ampères, para os métodos de referência E, F e G. Fatores de correção Temperatura ambiente Resistividade térmica do solo Agrupamento de cabos/circuitos Regra prática e simplificada para diferentes profundidades em linhas enterradas no solo Número de condutores carregados Grupos contendo cabos de dimensões diferentes Variações das condições de instalação num percurso (6.2.5.8 da NBR 5410:2004)	6 7 8 9 10 11 14 14 15 15 18 19
6 . 6.1. 6.2. 6.3. 6.4. 6.5. 6.6.	DIMENSIONAMENTO PELA QUEDA DE TENSÃO Limites de queda de tensão de acordo com 6.2.7 da NBR 5410:2004 Cálculo da queda de tensão Resistência elétrica do condutor em corrente alternada Indutância e reatância indutiva Tabelas prontas para valores de queda de tensão Tabelas de resistências elétricas e reatâncias indutivas	20 20 21 21 23 23
7 . 7.1. 7.2.	DIMENSIONAMENTO PELA CORRENTE DE CURTO-CIRCUITO Condutor de proteção (PE) Gráficos da capacidade de corrente de curto-circuito	42 42 45
8.	SOBRECARGA	47
9.	PROTEÇÃO CONTRA CHOQUES ELÉTRICOS (quando aplicável)	47
10.	UTILIZAÇÃO DE MAIS DE UM CABO POR FASE EM PARALELO	47
11	ΙΝΣΤΔΙ ΔΕÃΩ ΕΜ ΓΩΝΡΙΙΤΩς ΜΕΤΔΙ ΙΓΩς ΕΕΓΗΔΡΩς	50

1. Introdução

O objetivo deste Guia é a escolha correta da seção do condutor a ser utilizada.

O dimensionamento elétrico dos cabos de baixa tensão deve ser feito conforme a norma ABNT NBR 5410, de forma geral, complementada pelas normas ABNT NBR 13570 para instalações elétricas em locais de afluência de público e ABNT NBR 16690 para instalações fotovoltaicas. Esse Guia é baseado somente nas normas NBR 5410 de 2004 e NBR 13570 de 1996, indicando as seções das normas ao longo do texto. Ao serem publicadas outras versões dessas normas, essas novas versões devem ser consultadas pelo projetista, tendo a prevalência sobre eventuais dados diferentes contidos nesse Guia.

Tabela 1 - Cabos Prysmian mais comuns para aplicações em tensões até 1 kV

Norma ABNT	Tipo de Cabo	Tensão de Isolamento Uo/U	Material da Isolação	Material da Cobertura (capa externa)	Temperatura Máxima de Operação do Condutor [°C]	Temperatura Máxima de Sobrecarga [°C]	Temperatura Máxima de Curto-Circuito [°C]	Número de Condutores
NBR NM 247-3	Superastic	450/750 V	PVC	-	70	100	140 / 160*	1
NBR NM 247-3	Superastic Flex	450/750 V	PVC	-	70	100	140 / 160*	1
NBR 13248	Afumex Green	450/750 V	LSHF/A	-	70	100	160	1
NBR 7288	Sintenax	0,6/1 kV	PVC	PVC	70	100	140 / 160*	1,2,3,4 e 5
NBR 7288	Sintenax Flex	0,6/1 kV	PVC	PVC	70	100	140 / 160*	1,2,3,4 e 5
NBR 7286	GSette Easy	0,6/1kV	HEPR	PVC	90	130	250	1,2,3,4 e 5
NBR 7285	Voltalene	0,6/1 kV	XLPE	-	90	130	250	1 ou 3 (triplexado)
NBR 7287	Voltenax	0,6/1 kV	XLPE	PVC	90	130	250	1,2,3,4 e5
NBR 13248	Afumex Flex	0,6/1 kV	HEPR	SHF1	90	130	250	1,2,3,4 e 5

^{*}PVC, $\leq 300 \text{ mm}^2 = 160 \text{ °C}$, $>300 \text{ mm}^2 = 140 \text{ °C}$

2. Considerações sobre a utilização de condutor de alumínio

É proibido o uso de condutores de alumínio de acordo com a NBR 5410 em:

2.1. INSTALAÇÕES INDUSTRIAIS

- se a instalação não for alimentada diretamente por subestação de transformação ou transformador, a partir de uma rede de alta tensão, ou possua fonte própria; ou
- se a seção nominal dos condutores for inferior a 16 mm²; ou
- se a instalação e a manutenção não forem realizadas por pessoas qualificadas (engenheiros ou técnicos).

2.2. INSTALAÇÕES COMERCIAIS

- se os locais não forem exclusivamente BD1 (baixa densidade de ocupação, percurso de fuga breve e altura inferior a 28 metros); ou
- se a seção nominal dos condutores for inferior a 50 mm²; ou
- se a instalação e a manutenção não forem realizadas por pessoas qualificadas (engenheiros ou técnicos).

2.3. INSTALAÇÕES RESIDENCIAIS

Não é permitido o uso de condutores de alumínio em nenhuma hipótese.

2.4. INSTALAÇÕES PÚBLICAS COM ALTA DENSIDADE DE OCUPAÇÃO

Locais BD4 (alta densidade de ocupação, percurso de fuga longo) - em nenhuma circunstância.

3. Critérios técnicos de dimensionamento de condutores elétricos

A norma NBR 5410:2004 em 6.2.6.1.2 indica que a seção dos condutores deve ser determinada de forma que sejam atendidos, no mínimo, todos os seguintes critérios:

- a. Seção mínima, conforme 6.2.6;
- b. Capacidade de condução de corrente, conforme 6.2.5;
- c. Queda de tensão, conforme 6.2.7;
- d. Curto-circuito, conforme 5.3.5;
- e. Sobrecarga, conforme 5.3.4;
- f. Proteção contra choques elétricos, quando pertinente, conforme 5.1.2.2.4.

Nota 1: a seção a ser adotada deve ser a maior dentre as obtidas em cada um dos critérios.

Nota 2: dependendo das condições de dimensionamento se houver mais cabos por fase, verifique as considerações abordadas no capítulo 10 deste Guia sobre a posição física, que os cabos devem seguir.

4. Dimensionamento pela seção mínima

4.1. SEÇÃO MÍNIMA DOS CONDUTORES DE FASE

Seção mínima dos condutores de fase em circuitos CA e dos condutores vivos em circuitos CC. para instalações fixas: (6.2.6.1 da NBR 5410:2004).

Tabela 2 - Seção Mínima dos Condutores(1)

Tipo de Linh	ıa	Utilização do Circuito	Seção Mínima do condutor mm² - material
		Circuitos de iluminação	1,5 Cu 16 Al
Instalações fixas em geral	Condutores e cabos isolados	Circuitos de força ⁽²⁾	2,5 Cu 16 Al
		Circuitos de sinalização e circuitos de controle	0,5 Cu ⁽³⁾
	Condutores e cabos isolados	Circuitos de força	10 Cu 16 Al
		Circuitos de sinalização e circuitos de controle	4 Cu
		Para um equipamento específico	Como especificado na norma do equipamento
Linhas flexíveis com cabos isolados		Para qualquer outra aplicação	0,75 Cu ⁽⁴⁾
		Circuitos a extrabaixa tensão para aplicações especiais	0,75 Cu

⁽¹⁾ Seções mínimas ditadas por razões mecânicas.

4.2. SEÇÃO MÍNIMA DO CONDUTOR NEUTRO

Se a taxa de terceira harmônica e seus múltiplos for superior a 15%, consulte a seção 6.2.6.2 da NBR 5410:2004 e nos casos em que essa for omissa, a IEC 60364-5-52:2009, seção 524.2, pode ser consultada. Nos casos em que a taxa de terceira harmônica e seus múltiplos for menor ou igual a 15% valem as prescrições seguintes.

O condutor neutro deve ter a mesma seção do condutor de fase.

Se o circuito for trifásico equilibrado com neutro, os condutores de fase e neutro forem constituídos do mesmo metal e o condutor neutro for protegido contra sobrecorrentes, a seção do neutro pode ser menor que a dos condutores de fase conforme a tabela a seguir:

Tabela 3 - Seção Mínima do Condutor Neutro

Seção dos condutores de fase (mm²)	Seção do condutor neutro (mm²)
S ≤ 25	S
35	25
50	25
70	35
95	50
120	70
150	70
185	95
240	120
300	150
400	185

⁽²⁾ Os circuitos de tomadas de corrente são considerados circuitos de força.

⁽³⁾ Em circuitos de sinalização e controle destinados a equipamentos eletrônicos é admitida uma seção mínima de 0,1 mm².

⁽⁴⁾ Em cabos multipolares flexíveis contendo sete ou mais veias é admitida uma seção mínima de 0,1 mm².

4.3. SEÇÃO MÍNIMA DO CONDUTOR DE PROTEÇÃO (PE) - CONDUTOR TERRA

Se o metal de que é feito o condutor de proteção for o mesmo de que são feitos os condutores de fase, a seção mínima do condutor de proteção é:

Tabela 4 - Seção Mínima do Condutor de Proteção (PE)

Seção dos condutores de fase, S mm²	Seção mínima do condutor de proteção correspondente mm²
5≤16	S
16 < S ≤ 35	16 ⁽¹⁾
S > 35	S/2 ⁽¹⁾

⁽¹⁾ Para um condutor PEN (funções de neutro e proteção combinadas em um único condutor), a redução da seção só é permitida se não contrariar as regras de dimensionamento do condutor neutro.

Quando a aplicação da tabela anterior conduzir a seções não padronizadas, devem ser escolhidos condutores com a seção padronizada mais próxima.

A seção do condutor de proteção que não faça parte do mesmo cabo ou não esteja contido no mesmo conduto fechado que os condutores de fase não deve ser inferior a 2,5 mm² em cobre ou 16 mm² em alumínio se for provida proteção contra danos mecânicos, e não deve ser inferior a 4 mm² em cobre ou 16 mm² em alumínio se não for provida proteção contra danos mecânicos.

Nota: ver critério de cálculo da seção do condutor de proteção em "Dimensionamento pela corrente de curto-circuito".

5. Dimensionamento pela capacidade de condução de corrente

As capacidades de condução de corrente dadas nas tabelas a seguir, conforme NBR 5410:2004, referem-se ao funcionamento contínuo em regime permanente, fator de carga 100%, em corrente contínua ou em corrente alternada com frequência de 50 Hz ou 60 Hz, para condutores isolados (450/750V) e cabos unipolares/multipolares (0,6/1kV) com classes de encordoamento 1, 2 e 5.

Os valores são aproximados, com precisão razoável, e são dados para os tipos mais comuns de instalação. Valores não tabelados ou que não possam ser corrigidos pelos fatores de correção dados ou ainda quando for necessária maior precisão, devem ser calculados, utilizando a série de normas IEC 60287.

5.1. MÉTODOS DE INSTALAÇÃO

Tabela 5 - Métodos de instalação e determinação das colunas das tabelas⁽¹⁾

Tabeta 3 - Metodos de Ilista	itação e determinação das colun	1		
		Condutor Isolado	Cabo Unipolar	Cabo Multipolar
Tipo de linha elétrica		Superastic, Superastic Flex e Afumex Green.	Sintenax, Sintenax Flex, GSette Easy, Voltenax, Voltalene e Afumex Flex.	Sintenax, Sintenax Flex, GSette Easy, Voltenax, Voltalene e Afumex Flex.
	Método de Instalação ⁽²⁾	Mé	todo de Referên	cia
Eletroduto embutido em parede isolante	1/2	A1	A1	A2
Embutimento direto em parede isolante	51	-	-	A1
Moldura	71	A1	A1	-
Eletroduto embutido em caixilho de porta ou janela	73/74	A1	-	-
Embutimento direto em caixilho de porta ou janela	73/74	-	A1	A1
Eletroduto aparente	3/4/5/6	B1	B1	B2
Eletroduto embutido em alvenaria	7/8	B1	B1	B2
Diretamente em espaço de construção - 1,5D _e ≤ V < 5D _e ⁽⁵⁾	21	-	B2	B2
Diretamente em espaço de construção - 5D _e ≤ V < 50D _e ⁽⁵⁾	21	-	B1	B1
Eletroduto em espaço de construção - 1,5D _e ≤ V < 5D _e ⁽⁵⁾	22/24	B2	-	-
Eletroduto em espaço de construção - V ≥ 20D _e ⁽⁵⁾	22/24	B1	-	-
Eletroduto em espaço de construção	23/25	-	B2	B2
Eletroduto de seção não circular embutido em alvenaria $1,5D_e \le V < 5D_e^{(5)}$	26	B2	-	-
Eletroduto de seção não circular embutido em alvenaria $5D_e \le V < 50D_e^{(5)}$	26	B1	-	-
Eletroduto de seção não circular embutido em alvenaria	27	-	B2	B2
Forro falso ou piso elevado - 1,5D _e ≤ V < 5D _e ⁽⁵⁾	28	-	B2	B2
Forro falso ou piso elevado - 5D _e ≤ V < 50D _e ⁽⁵⁾	28	-	B1	B1
Eletrocalha	31/31A/32/32A/35/36	B1	B1	B2
Canaleta fechada no piso, solo ou parede	33/34/72/72A/75/75A	B1	B1	B2
Eletroduto em canaleta fechada - 1,5 $D_e \le V < 20D_e$ (5)	41	B2	B2	-
Eletroduto em canaleta fechada - V ≥ 20D _e ⁽⁵⁾	41	B1	B1	-
Eletroduto em canaleta ventilada no piso ou solo	42	B1	-	-
Canaleta ventilada no piso ou solo	43	-	B1	B1
Fixação direta à parede ou teto ⁽⁴⁾	11/11A/11B	-	С	С
Bandejas não perfuradas ou prateleiras	12	-	С	С
Embutimento direto em alvenaria	52/53	-	С	С
Eletroduto enterrado no solo ou canaleta não ventilada no solo	61/61A	-	D	D
Diretamente enterrado	63	-	D	D
Bandejas perfuradas (horizontal ou vertical)	13	-	F	E
Leitos, suportes horizontais ou telas	14/16	-	F	E
Afastado da parede ou suspenso por cabo de suporte (3)	15/17	-	F	E
Sobre isoladores	18	G	G	-

- (1) Os locais da tabela assinalados por (-) significam que os cabos correspondentes não podem, de acordo com a NBR 5410/1997, ser instalados na maneira especificada ou então, trata-se de uma maneira de instalar não usual para o tipo de cabo escolhido.
- (2) Método de instalação conforme a tabela 33 da NBR 5410/2004.
- (3) Distância entre o cabo e a parede ≥ 0,3 diâmetro externo do cabo.
- (4) Distância entre o cabo e a parede < 0,3 diâmetro externo do cabo.
- (5) V = altura do espaço de construção ou da canaleta / D_e = diâmetro externo do cabo.

Nos métodos A1 e A2, a parede é formada por uma face externa estanque, isolação térmica e uma face interna em madeira ou material análogo com condutância térmica de, no mínimo, 10 W/K m². O eletroduto, metálico ou de plástico, é fixado junto à face interna (sem ter, necessariamente, contato físico com ela).

Nos métodos B1 e B2, o eletroduto, metálico ou de plástico, é montado sobre uma parede de madeira, sendo a distância entre o eletroduto e a superfície da parede inferior a 0,3 vez o diâmetro do eletroduto.

No método C, a distância entre o cabo multipolar ou qualquer cabo unipolar, e a parede de madeira é inferior a 0,3 vez o diâmetro do cabo.

No método D, o cabo é instalado em eletroduto (seja metálico, de plástico ou de barro) enterrado em solo com resistividade térmica de 2,5 K.m/W, a uma profundidade de 0,7 m.

Nos métodos E, F e G, a distância entre o cabo multipolar ou qualquer cabo unipolar e qualquer superfície adjacente é de, no mínimo, 0,3 vez o diâmetro externo do cabo, para o cabo multipolar ou, no mínimo, uma vez o diâmetro do cabo para os cabos unipolares.

No método G, o espaçamento entre os cabos unipolares é de, no mínimo, uma vez o diâmetro externo do cabo.

5.2. CONDUTORES E CABOS PRYSMIAN

Tabela 6 - Condutores e Cabos Prysmian

Condutores Isolados	Cabos Unipolares (1 condutor)	Cabos Multipolares (2, 3, 4 ou 5 condutores)
Superastic Superastic Flex Afumex Green	Sintenax Sintenax Flex GSette Easy Voltalene Voltenax Afumex Flex	Sintenax Sintenax Flex GSette Easy Voltalene Voltenax Afumex Flex

5.3. CAPACIDADES DE CONDUÇÃO DE CORRENTE, EM AMPÈRES, PARA OS MÉTODOS DE REFERÊNCIA A1, A2, B1, B2, C E D.

Superastic, Superastic Flex, Sintenax, Sintenax Flex e Afumex Green

Condutores: cobre e alumínio • Isolação de PVC ou LSHF/A • Temperatura no condutor: 70 °C • Temperatura ambiente: 30 °C (ao ar), 20 °C (solo)

Tabela 7 - Capacidade de condução de corrente conforme tabela 36 da NBR 5410:2004

Tabela 7 - Capacidade de condução de corrente conforme tabela 36 da NBR 5410:2004 Métodos de referência indicados na tabela 33										JU4		
Seções		Nel .								<u> </u>		
nominais	<i>I</i>	\1	A	.2		31		32		С		D
mm²	2	7	-	7		ro de condu			-	7	2	7
	2	3	2	3	2	3	2	3	2	3	2	3
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
						Cobre						
0,5	7	7	7	7	9	8	9	8	10	9	12	10
0,75	9	9	9	9	11	10	11	10	13	11	15	12
1	11	10	11	10	14	12	13	12	15	14	18	15
1,5	14,5	13,5	14	13	17,5	15,5	16,5	15	19,5	17,5	22	18
2,5	19,5	18	18,5	17,5	24	21	23	20	27	24	29	24
4	26	24	25	23	32	28	30	27	36	32	38	31
6	34	31	32	29	41	36	38	34	46	41	47	39
10	46	42	43	39	57	50	52	46	63	57	63	52
16	61	56	57	52	76	68	69	62	85	76	81	67
25	80	73	75	68	101	89	90	80	112	96	104	86
35	99	89	92	83	125	110	111	99	138	119	125	103
50	119	108	110	99	151	134	133	118	168	144	148	122
70	151	136	139	125	192	171	168	149	213	184	183	151
95	182	164	167	150	232	207	201	179	258	223	216	179
120	210	188	192	172	269	239	232	206	299	259	246	203
150	240	216	219	196	309	275	265	236	344	299	278	230
185	273	245	248	223	353	314	300	268	392	341	312	258
240	321	286	291	261	415	370	351	313	461	403	361	297
300	367	328	334	298	477	426	401	358	530	464	408	336
400	438	390	398	355	571	510	477	425	634	557	478	394
500	502	447	456	406	656	587	545	486	729	642	540	445
630	578	514	526	467	758	678	626	559	843	743	614	506
800	669	593	609	540	881	788	723	645	978	865	700	577
1.000	767	679	698	618	1.012	906	827	738	1.125	996	792	652
					ı	Alumínio						
16	48	43	44	41	60	53	54	48	66	59	62	52
25	63	57	58	53	79	70	71	62	83	73	80	66
35	77	70	71	65	97	86	86	77	103	90	96	80
50	93	84	86	78	118	104	104	92	125	110	113	94
70	118	107	108	98	150	133	131	116	160	140	140	117
95	142	129	130	118	181	161	157	139	195	170	166	138
120	164	149	150	135	210	186	181	160	226	197	189	157
150	189	170	172	155	241	214	206	183	261	227	213	178
185	215	194	195	176	275	245	234	208	298	259	240	200
240	252	227	229	207	324	288	274	243	352	305	277	230
300	289	261	263	237	372	331	313	278	406	351	313	260
400	345	311	314	283	446	397	372	331	488	422	366	305
500	396	356	360	324	512	456	425	378	563	486	414	345
630	456	410	416	373	592	527	488	435	653	562	471	391
800	529	475	482	432	687	612	563	502	761	654	537	446
1.000	607	544	552	495	790	704	643	574	878	753	607	505

5.4. CAPACIDADES DE CONDUÇÃO DE CORRENTE, EM AMPÈRES, PARA OS MÉTODOS DE REFERÊNCIA A1, A2, B1, B2, C E D.

GSette Easy, Voltalene, Voltenax e Afumex Flex

Condutores: cobre e alumínio • Isolação de EPR/HEPR ou XLPE • Temperatura no condutor: 90 °C • Temperatura ambiente: 30 °C (ao ar), 20 °C (solo)

Tabela 8 - Capacidade de condução de corrente conforme tabela 37 da NBR 5410:2004

						referência						
Seções	F	\1	А	2	E	31	В	32		С		D
nominais mm²					Núme	ro de condu	itores carre	egados				
	2	3	2	3	2	3	2	3	2	3	2	3
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
						Cobre						
0,5	10	9	10	9	12	10	11	10	12	11	14	12
0,75	12	11	12	11	15	13	15	13	16	14	18	15
1	15	13	14	13	18	16	17	15	19	17	21	17
1,5	19	17	18,5	16,5	23	20	22	19,5	24	22	26	22
2,5	26	23	25	22	31	28	30	26	33	30	34	29
4	35	31	33	30	42	37	40	35	45	40	44	37
6	45	40	42	38	54	48	51	44	58	52	56	46
10	61	54	57	51	75	66	69	60	80	71	73	61
16	81	73	76	68	100	88	91	80	107	96	95	79
25	106	95	99	89	133	117	119	105	138	119	121	101
35 50	131 158	117 141	121 145	109 130	164 198	144 175	146 175	128 154	171 209	147 179	146 173	122 144
70	200	179	183	164	253	222	221	194	269	229	213	178
95	241	216	220	197	306	269	265	233	328	278	252	211
120	278	249	253	227	354	312	305	268	382	322	287	240
150	318	285	290	259	407	358	349	307	441	371	324	271
185	362	324	329	295	464	408	395	348	506	424	363	304
240	424	380	386	346	546	481	462	407	599	500	419	351
300	486	435	442	396	628	553	529	465	693	576	474	396
400	579	519	527	472	751	661	628	552	835	692	555	464
500	664	595	604	541	864	760	718	631	966	797	627	525
630	765	685	696	623	998	879	825	725	1122	923	711	596
800	885	792	805	721	1158	1020	952	837	1 311	1074	811	679
1.000	1.014	908	923	826	1.332	1.173	1.088	957	1.515	1.237	916	767
					P	llumínio						
16	64	58	60	55	79	71	72	64	84	76	73	61
25	84	76	78	71	105	93	94	84	101	90	93	78
35	103	94	96	87	130	116	115	103	126	112	112	94
50	125	113	115	104	157	140	138	124	154	136	132	112
70	158	142	145	131	200	179	175	156	198	174	163	138
95	191	171	175	157	242	217	210	188	241	211	193	164
120 150	220 253	197	201	180 206	281 323	251	242 277	216 248	280	245	220	186 210
185	288	226 256	262	233	368	289 330	314	246	324 371	283 323	249 279	236
240	338	300	307	273	433	389	368	329	439	382	322	272
300	387	344	352	313	499	447	421	377	508	440	364	308
400	462	409	421	372	597	536	500	448	612	529	426	361
500	530	468	483	426	687	617	573	513	707	610	482	408
630	611	538	556	490	794	714	658	590	821	707	547	464
800	708	622	644	566	922	830	760	682	958	824	624	529
1.000	812	712	739	648	1.061	955	870	780	1.108	950	706	598

5.5. CAPACIDADES DE CONDUÇÃO DE CORRENTE, EM AMPÈRES, PARA OS MÉTODOS DE REFERÊNCIA E, F e G.

Superastic, Superastic Flex, Sintenax, Sintenax Flex e Afumex Green

Condutores: cobre e alumínio • Isolação de PVC ou LSHF/A • Temperatura no condutor: 70 °C • Temperatura ambiente de referência: 30 °C

Tabela 9 - Capacidade de condução de corrente conforme tabela 38 da NBR 5410:2004

labela 9 - Capacidade de condução de corrente conforme tabela 38 da NBR 5410:2004 Métodos de referência indicados na tabela 33									
	Cabos mu	ıltipolares			Cabos unipolares(1)				
			Dois	Três		res carregados no l	mesmo plano		
Seções	Dois condutores	Três condutores	condutores	condutores		Espaçados			
nominais	carregados	carregados	carregados justapostos	carregados em trifólio	Justapostos	Horizontal	Vertical		
dos	Método E	Método E	Método F	Método F	Método F	Método G	Método G		
condutores mm²				000	000	O O O De	De De		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
		ı		Cobre	1	·			
0,5	11	9	11	8	9	12	10		
0,75	14	12	14	11	11	16	13		
1	17	14	17	13	14	19	16		
1,5	22	18,5	22	17	18	24	21		
2,5	30	25	31	24	25	34	29		
6	40 51	34 43	41 53	33 43	34 45	45 59	39 51		
10	70	60	73	60	63	81	71		
16	94	80	99	82	85	110	97		
25	119	101	131	110	114	146	130		
35	148	126	162	137	143	181	162		
50	180	153	196	167	174	219	197		
70	232	196	251	216	225	281	254		
95	282	238	304	264	275	341	311		
120	328	276	352	308	321	396	362		
150	379	319	406	356	372	456	419		
185	434	364	463	409	427	521	480		
240	514	430	546	485	507	615	569		
300	593	497	629	561	587	709	659		
400	715	597	754	656	689	852	795		
500	826	689	868	749	789	982	920		
630	958	798	1005	855	905	1.138	1.070		
800	1.118	930	1.169	971	1.119	1.325	1.251		
1.000	1.292	1.073	1.346	1.079	1.296	1.528	1.448		
16	73	61	73	umínio 62	65	84	73		
25	89	78	98	84	87	112	99		
35	111	96	122	105	109	139	124		
50	135	117	149	128	133	169	152		
70	173	150	192	166	173	217	196		
95	210	183	235	203	212	265	241		
120	244	212	273	237	247	308	282		
150	282	245	316	274	287	356	327		
185	322	280	363	315	330	407	376		
240	380	330	430	375	392	482	447		

Tabela 9 (continuação)

				continuação						
			Métodos de r	eferência indicado	s na tabela 33					
	Cabos mu	ltipolares	Cabos unipolares ⁽¹⁾							
	Dois	Três	Dois	Três	Três condutores carregados no mesmo plano					
Seções	condutores	condutores	condutores carregados	condutores carregados		Espa	çados			
nominais	carregados	carregados	justapostos	em trifólio	Justapostos	Horizontal	Vertical			
dos condutores	Método E	Método E	Método F	Método F	Método F	Método G	Método G			
mm²			00.5.00	000	© E © © E © © © © © © © © © © © © © © ©	000 117 De	De De			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)			
			Alı	umínio						
300	439	381	497	434	455	557	519			
400	528	458	600	526	552	671	629			
500	608	528	694	610	640	775	730			
630	705	613	808	711	640	775	730			
800	822	714	944	832	875	1.050	1.000			
1.000	948	823	1.092	965	1.015	1.213	1.161			
			~							

⁽¹⁾ Ou, ainda, condutores isolados quando o método de instalação permitir.

5.6. CAPACIDADES DE CONDUÇÃO DE CORRENTE, EM AMPÈRES, PARA OS MÉTODOS DE REFERÊNCIA E, F e G.

GSette Easy, Voltalene, Voltenax e Afumex Flex

Condutores: cobre e alumínio • Isolação de EPR/HEPR ou XLPE • Temperatura no condutor: 90 °C • Temperatura ambiente de referência: 30 °C

Tabela 10 - Capacidade de condução de corrente conforme tabela 39 da NBR 5410:2004

			Métodos de r	eferência indicado	s na tabela 33					
	Cabos mu	ltipolares	Cabos unipolares ⁽¹⁾							
	Dois	Três	Dois	Três condutores carregados em trifólio	Três condutores carregados no mesmo plano					
Seções	condutores		condutores carregados		Justapostos	Espaçados				
nominais dos	carregados	carregados	justapostos			Horizontal	Vertical			
condutores	Método E	Método E	Método F	Método F	Método F	Método G	Método G			
mm²			© = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000	© E O O O					
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)			
			c	Cobre						
0,5	13	12	13	10	10	15	12			
0,75	17	15	17	13	14	19	16			
1	21	18	21	16	17	23	19			
1,5	26	23	27	21	22	30	25			
2,5	36	32	37	29	30	41	35			
4	49	42	50	40	42	56	48			
6	63	54	65	53	55	73	63			
10	86	75	90	74	77	101	88			
16	115	100	121	101	105	137	120			
25	149	127	161	135	141	182	161			

Tabela 10 (continuação)

nominais car	Cabos multi Dois Indutores Interpretation Cabos multi Dois Intuition Cabos multi Cabos mul	Três condutores carregados	Dois condutores carregados justapostos Método F	eferência indicado Três condutores carregados em trifólio Método F	Cabos unipolares ⁽¹⁾	res carregados no r Espaç			
nominais dos condutores mm²	Dois ndutores rregados	Três condutores carregados Método E	condutores carregados justapostos Método F	Três condutores carregados em trifólio	Três conduto	res carregados no r			
nominais dos condutores mm²	ndutores rregados létodo E	condutores carregados Método E	condutores carregados justapostos Método F	condutores carregados em trifólio					
nominais dos condutores mm²	rregados Jétodo E	carregados Método E	carregados justapostos Método F	carregados em trifólio	Justapostos	Espac	, 		
dos condutores mm²	létodo E	Método E	Método F						
condutores M			1 1	Mátada E		Horizontal	Vertical		
/			<u> </u>	Metodor	Método F	Método G	Método G		
(1)				000	© © E ©	© © De	De		
,	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
			С	obre					
35	185	158	200	169	176	226	201		
50	225	192	242	207	216	275	246		
70	289	246	310	268	279	353	318		
95	352	298	377	328	342	430	389		
120	410	346	437	383	400	500	454		
150	473	399	504	444	464	577	527		
185	542	456	575	510	533	661	605		
240	641	538	679	607	634	781	719		
300	741	621	783	703	736	902	833		
400	892	745	940	823	868	1085	1008		
500	1030	859	1083	946	998	1253	1169		
630	1196	995	1254	1088	1151	1454	1362		
800	1396	1159	1460	1 252	1328	1696	1595		
1000	1 613	1336	1683	1 420	1 511	1958	1849		
			Alı	ımínio					
16	91	77	90	76	79	103	90		
25	108	97	121	103	107	138	122		
35	135	120	150	129	135	172	153		
50	164	146	184	159	165	210	188		
70	211	187	237	206	215	271	244		
95	257	227	289	253	264	332	300		
120	300	263	337	296	308	387	351		
150	346	304	389	343	358	448	408		
185	397	347	447	395	413	515	470		
240	470	409	530	471	492	611	561		
300	543	471	613	547	571	708	652		
400	654	566	740	663	694	856	792		
500	756	652	856	770	806	991	921		
630	879	755	996	899	942	1154	1077		
800	1026	879	1164	1 056	1106	1 351	1266		
1000	1186	1 012	1347	1226	1285	1565	1 472		

⁽¹⁾ Ou, ainda, condutores isolados quando o método de instalação permitir.

5.7. FATORES DE CORREÇÃO 5.7.1. Temperatura ambiente

Tabela 11 - Fatores de correção para temperatura ambiente diferente de 30 °C para linhas não subterrâneas e de 20 °C (temperatura do solo) para linhas subterrâneas, conforme tabela 40 da NBR 5410:2004

	Temperatura °C	Isolação	Número de Condutores
	remperatura "C	PVC ou LSHF/A	EPR ou XLPE
	10	1,22	1,15
	15	1,17	1,12
	20	1,12	1,08
	25	1,06	1,04
	35	0,94	0,96
	40	0,87	0,91
Ambiente	45	0,79	0,87
Ambiente	50	0,71	0,82
	55	0,61	0,76
	60	0,50	0,71
	65	-	0,65
	70	-	0,58
	75	-	0,50
	80		0,41
	10	1,10	1,07
	15	1,05	1,04
	25	0,95	0,96
	30	0,89	0,93
	35	0,84	0,89
	40	0,77	0,85
Colle	45	0,71	0,80
Solo	50	0,63	0,76
	55	0,55	0,71
	60	0,45	0,65
	65	-	0,60
	70	-	0,53
	75	-	0,46
	80	-	0,38

5.7.2. RESISTIVIDADE TÉRMICA DO SOLO

Tabela 12 - Fatores de correção para linhas subterrâneas em solo com resistividade térmica diferente de 2,5 K.m/W, conforme tabela 41 da NBR 5410:2004

Resistividade térmica (K.m/W)	0,5	0,7	1	1,5	2	3
Fator de correção para cabos em dutos enterrados	1,28	1,20	1,18	1,10	1,05	0,96
Fator de correção para cabos diretamente enterrados	1,88	1,62	1,50	1,28	1,12	0,90

Notas

- **1**. Os fatores de correção para a resistividade do solo são aplicáveis a cabos e eletrodutos enterrados a uma profundidade de até 0,8 m.
- 2. A resistividade térmica do solo utilizada, de 2,5 K.m/W, foi considerada suficientemente alta para resultar em um valor de capacidade de condução de corrente conservador, quando não se conhece o valor real dessa resistividade.
- **3**. Esta tabela foi baseada nas normas ABNT NBR 5410: 2004 e IEC 60364-5-52:2009.

5.7.3. AGRUPAMENTO DE CABOS/CIRCUITOS

Tabela 13 - Fatores de correção aplicáveis a condutores agrupados em feixe (em linhas abertas ou fechadas) e a condutores agrupados num mesmo plano, em camada única, conforme tabela 42 da NBR 5410:2004

Ref.	Forma de agrupamento	Número de circuitos ou de cabos multipolares									Método de			
Kei.	dos condutores	1	2	3	4	5	6	7	8	9 a 11	12 a 15	16 a 19	≥ 20	instalação
1	Em feixe: ao ar livre ou sobre superfície; embutidos; em conduto fechado	1,00	0,80	0,70	0,65	0,60	0,57	0,54	0,52	0,50	0,45	0,41	0,38	Métodos A a F
2	Camada única sobre parede, piso ou em bandeja não perfurada ou prateleira	1,00	0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,70		Método C		
3	Camada única no teto	0,95	0,81	0,72	0,68	0,66	0,64	0,63	0,62		0,	61		
4	Camada única em bandeja perfurada	1,00	0,88	0,82	0,77	0,75	0,73	0,73	0,72	0,72		Métodos		
5	Camada única sobre leito, suporte, etc.	1,00	0,87	0,82	0,80	0,80	0,79	0,79	0,78		0,	78		EeF

Notas

- 1. Estes fatores são aplicáveis a grupos homogêneos de cabos uniformemente carregados (mesma seção e corrente).
- 2. Quando a distância horizontal entre cabos adjacentes for superior ao dobro de seu diâmetro externo não é necessário aplicar nenhum fator de redução (exceto em casos de instalação enterrada, conforme indicados nas tabelas 10, 11 e 12).
- 3. O número de circuitos ou de cabos com o qual se consulta a tabela refere-se:
- a. se os cabos forem unipolares, dois cabos formam um circuito bifásico ou monofásico e três cabos formam um circuito trifásico, sem considerar condutores em paralelo; assim, se os circuitos forem trifásicos e houver 6 cabos unipolares, deve-se entrar na tabela com "2 circuitos".
- **b**. se os cabos forem multipolares, entra-se com o número de cabos; por exemplo, se houver 5 cabos com duas veias isoladas cada um, entra-se com "5 cabos" (ou 5 circuitos).
- **4.** Se o agrupamento for constituído, ao mesmo tempo, de cabos bipolares e tripolares, deve-se considerar o número total de cabos como sendo o número de circuitos e, de posse do fator de agrupamento resultante a determinação das capacidades de condução de corrente, nas tabelas acima, devem ser então efetuadas:
- na coluna de dois condutores carregados para cabos bipolares; e
- na coluna de três condutores carregados para cabos tripolares.

- **5**. Um agrupamento com N condutores isolados ou N cabos unipolares, pode ser considerado composto, tanto de N/2 circuitos com dois condutores carregados quanto de N/3 circuitos com três condutores carregados.
- **6**. Os valores indicados são médios para a faixa usual de seções nominais com dispersão geralmente inferior a 5%.

Tabela 14 - Fatores de correção aplicáveis a agrupamentos consistindo em mais de uma camada de condutores - Métodos de Referência C, E e F, conforme tabela 43 da NBR 5410:2004

				Quantidade de circuitos trifásicos ou de cabos multipolares por camada							
		2	3	4 ou 5	6 a 8	9 e mais					
	2	0,68	0,62	0,60	0,58	0,56					
	3	0,62	0,57	0,55	0,53	0,51					
Quantidade de camadas	4 ou 5	0,60	0,55	0,52	0,51	0,49					
	6 a 8	0,58	0,53	0,51	0,49	0,48					
	9 e mais	0,56	0,51	0,49	0,48	0,46					

- 1. Os fatores são válidos independentemente da disposição da camada, se horizontal ou vertical.
- 2. Sobre condutores agrupados em uma única camada, ver tabela anterior (linhas 2 a 5).
- 3. Estes fatores são aplicáveis a grupos homogêneos de cabos uniformemente carregados (mesma seção e corrente).

Tabela 15 - Fatores de correção aplicáveis a agrupamento de cabos diretamente enterrados, conforme tabela 44 da NBR 5410:2004

Número de circuitos	Distância entre cabos ⁽¹⁾ (a)								
Numero de circuitos	Nula (cabos em contato)	Um diâmetro de cabo	0,125 m	0,25 m	0,5 m				
2	0,75	0,80	0,85	0,90	0,90				
3	0,65	0,70	0,75	0,80	0,85				
4	0,60	0,60	0,70	0,75	0,80				
5	0,55	0,55	0,65	0,70	0,80				
6	0,50	0,55	0,60	0,70	0,80				
7	0,45	0,51	0,59	0,67	0,76				
8	0,43	0,48	0,57	0,65	0,75				
9	0,41	0,46	0,55	0,63	0,74				
12	0,36	0,42	0,51	0,59	0,71				
16	0,32	0,38	0,47	0,56	0,68				
20	0,29	0,35	0,44	0,53	0,66				

Cabos multipolares

(2 condutores)

Cabos unipolares (ou condutor isolado)

Notas

- 1. Estes fatores são aplicáveis para profundidade de 0,7 m e resistividade térmica do solo de 2,5 K.m/W e podem apresentar erros de até +/- 10%. Para maior precisão, o cálculo deve ser feito pela série de normas IEC 60287.
- 2. Esta tabela foi baseada nas normas ABNT NBR 5410: 2004 e IEC 60364-5-52:2009.
- 3. Estes fatores são aplicáveis a grupos homogêneos de cabos uniformemente carregados (mesma seção e corrente).

Tabela 16 - Fatores de redução para mais do que um circuito formado por cabo multipolar em duto individual enterrado, conforme tabela 45 da NBR 5410:2004

Número de circuitos		Distância entre dutos ⁽¹⁾	(a)	
Numero de circuitos	Nula	0,25 m	0,5 m	1,0 m
2	0,85	0,90	0,95	0,95
3	0,75	0,85	0,90	0,95
4	0,70	0,80	0,85	0,90
5	0,65	0,80	0,85	0,90
6	0,60	0,80	0,80	0,80
7	0,57	0,76	0,80	0,88
8	0,54	0,74	0,78	0,88
9	0,52	0,73	0,77	0,87
10	0,49	0,72	0,76	0,86
11	0,47	0,70	0,75	0,86
12	0,45	0,69	0,74	0,85
13	0,44	0,68	0,73	0,85
14	0,42	0,68	0,72	0,84
15	0,41	0,67	0,72	0,84
16	0,39	0,66	0,71	0,83
17	0,38	0,65	0,70	0,83
18	0,37	0,65	0,70	0,83
19	0,35	0,64	0,69	0,82
20	0,34	0,63	0,68	0,82

- **1**. Estes fatores são aplicáveis para profundidade de 0,7 m e resistividade térmica do solo de 2,5 K.m/W e podem apresentar erros de até +/- 10%. Para maior precisão, o cálculo deve ser feito pela série de normas IEC 60287.
- **2**. Esta tabela foi baseada nas normas ABNT NBR 5410: 2004 e IEC 60364-5-52:2009.
- 3. Estes fatores são aplicáveis a grupos homogêneos de cabos uniformemente carregados (mesma seção e corrente).

Tabela 17 - Fatores de redução para mais do que um circuito formado por cabos unipolares em dutos individuais enterrados, conforme tabela 45 da NBR 5410:2004

Número de circuitos		Distância entre dutos ⁽¹⁾	(a)	
(grupo de dois ou três condutores)	Nula	0,25 m	0,5 m	1,0 m
2	0,80	0,90	0,90	0,95
3	0,70	0,80	0,85	0,90
4	0,65	0,75	0,80	0,90
5	0,60	0,70	0,80	0,90
6	0,60	0,70	0,80	0,90
7	0,53	0,66	0,76	0,87
8	0,50	0,63	0,74	0,87
9	0,47	0,61	0,73	0,86
10	0,45	0,59	0,72	0,85
11	0,43	0,57	0,70	0,85
12	0,41	0,56	0,69	0,84
13	0,39	0,54	0,68	0,84
14	0,37	0,53	0,68	0,83
15	0,35	0,52	0,67	0,83
16	0,34	0,51	0,66	0,83
17	0,33	0,50	0,65	0,82
18	0,31	0,49	0,65	0,82
19	0,30	0,48	0,64	0,82
20	0,29	0,47	0,63	0,81

- 1. Estes fatores são aplicáveis para profundidade de 0,7 m e resistividade térmica do solo de 2,5 K.m/W e podem apresentar erros de até +/- 10%. Para maior precisão, o cálculo deve ser feito pela série de normas IEC 60287.
- 2. Esta tabela foi baseada nas normas ABNT NBR 5410: 2004 e IEC 60364-5-52:2009.
- 3. Estes fatores são aplicáveis a grupos homogêneos de cabos uniformemente carregados (mesma seção e corrente).
- **4.** Deve-se atentar para as restrições e problemas que envolvem o uso de cabos unipolares em eletrodutos metálicos quando se tem um único cabo por eletroduto. Ver considerações em Instalação em Condutos Metálicos Fechados.

5.7.4. REGRA PRÁTICA E SIMPLIFICADA PARA DIFERENTES PROFUNDIDADES EM LINHAS ENTERRADAS NO SOLO

Cabos enterrados no solo, diretamente ou em eletrodutos, têm o valor da capacidade de condução de corrente em função da profundidade da instalação, sendo menor quanto mais profundo estiver.

Essa redução não é muito significativa nas profundidades normalmente utilizadas para instalar os cabos previstos neste Guia, dependendo ligeiramente do arranjo físico dos mesmos e da seção do condutor, sendo independente da resistividade térmica do solo.

Para profundidades entre 70 cm (utilizada nas tabelas) e 200 cm, uma regra prática e simplificada: cada 10 cm a mais de profundidade, a capacidade de corrente reduz 1%.

Exemplos:

a. Linha enterrada com 80 cm de profundidade:

80 cm - 70 cm = 10 cm

Aplicar redução de 1% na tabela de capacidade de corrente, ou seja, fator 0,99.

b. Linha enterrada com 150 cm de profundidade:

150 cm - 70 cm = 80 cm

Aplicar redução de 8% na tabela de capacidade de corrente, ou seja, fator 0,92.

c. Linha enterrada com 200 cm de profundidade:

200 cm - 70 cm = 130 cm

Aplicar redução de 13% na tabela de capacidade de corrente, ou seja, fator 0,87.

Nota:

Todos os demais fatores previstos para linhas enterradas são aplicáveis, quando necessários, adicionalmente ao exposto acima.

5.7.5. NÚMERO DE CONDUTORES CARREGADOS

As tabelas de capacidade de condução de corrente (itens 5.3 a 5.6) trazem colunas para dois e três condutores carregados, mas nenhuma coluna válida especificamente para quatro condutores carregados. Por isso, a determinação da capacidade de condução de corrente para quatro condutores carregados deve ser feita aplicando-se o fator de 0,86 às capacidades de condução de corrente válidas para três condutores carregados - sem prejuízo dos demais fatores de correção eventualmente aplicáveis como os referentes à temperatura ambiente, resistividade térmica do solo e agrupamento de cabos/circuitos.

5.7.6. GRUPOS CONTENDO CABOS DE DIMENSÕES DIFERENTES

Os fatores de correção tabelados acima são aplicáveis a grupos de cabos semelhantes, igualmente carregados. O cálculo dos fatores de correção para grupos contendo condutores isolados ou cabos unipolares ou multipolares de diferentes seções nominais depende da quantidade de condutores ou cabos e da faixa de seções. Tais fatores não podem ser tabelados e devem ser calculados caso a caso, utilizando, por exemplo, a IEC 60287.

NOTA:

São considerados cabos semelhantes aqueles cujas capacidades de condução de corrente baseiam-se na mesma temperatura máxima para serviço contínuo e cujas seções nominais estão contidas no intervalo de 3 seções normalizadas sucessivas.

No caso de condutores isolados, cabos unipolares ou cabos multipolares de dimensões diferentes em condutos fechados ou em bandejas, leitos, prateleiras ou suportes, caso não seja viável um cálculo mais específico, deve-se utilizar a expressão:

$$F = \frac{1}{\sqrt{n}}$$

Onde:

F = fator de correção

n = número de circuitos ou de cabos multipolares

NOTA:

A expressão está a favor da segurança e reduz os perigos de sobrecarga sobre os cabos de menor seção nominal. Pode, no entanto, resultar no superdimensionamento dos cabos de seções mais elevadas.

5.7.7. VARIAÇÕES DAS CONDIÇÕES DE INSTALAÇÃO NUM PERCURSO (6.2.5.8 DA NBR 5410: 2004)

Quando forem identificadas, ao longo do percurso previsto de uma linha elétrica, diferentes condições de resfriamento (dissipação de calor), as capacidades de condução de corrente dos seus condutores devem ser determinadas com base nas condições mais desfavoráveis encontradas.

6. Dimensionamento pela queda de tensão

6.1. LIMITES DE QUEDA DE TENSÃO DE ACORDO COM 6.2.7 DA NBR 5410: 2004

A queda de tensão não deve ser superior aos seguintes valores expressos em relação à tensão nominal da instalação.

	Valor máximo
A. Calculada a partir dos terminais secundários do transformador MT/BT, no caso de transformador próprio	7%
B. Calculada a partir dos terminais secundários do transformador MT/BT da empresa distrubuidora de eletricidade, quando o ponto de entrega for aí localizado	7%
C. Calcudada a partir do ponto de entrega, nos casos de ponto de entrega com fornecimento em tensão secundária de distribuição	5%
D. Calculada a partir dos terminais de saída do gerador, no caso de grupo gerador próprio	7%

Notas:

- 1. Em nenhum caso, a queda de tensão nos circuitos terminais pode ser superior a 4%.
- **2**. Nos casos A, B e D (ver abaixo), quando as linhas principais da instalação tiverem um comprimento supeior a 100 m, as quedas de tensão podem ser aumentadas de 0,005% por metro de linha superior a 100 m, sem que, no entanto, essa suplementação seja superior a 0,5%.

6.2. CÁLCULO DA QUEDA DE TENSÃO

Fórmulas práticas:

Corrente contínua:

$$\Delta V = 2 \cdot R' \cdot I \cdot \ell$$

Corrente alternada:

Circuito Monofásico ou Bifásico:

$$\Delta V = 2 \cdot (R \cdot \cos \phi + X_L \cdot \sin \phi) \cdot I \cdot \ell$$

Circuito Trifásico:

$$\Delta V = \sqrt{3} \cdot (R \cdot \cos \varphi + X_L \cdot \sin \varphi) \cdot I \cdot \ell$$

 ΔV = queda de tensão (V)

R = resistência elétrica do condutor corrente alternada na temperatura máxima de operação (Ω /km)

 X_L = reatância indutiva da linha (Ω /km)

 $cos\phi$ = FP = fator de potência da carga

$$sen\phi = \sqrt{1 - cos^2 \phi}$$

I = corrente a ser transportada (A)

 ℓ = comprimento do circuito, do ponto de alimentação até a carga (km)

Queda de tensão em %:

$$\Delta V(\%) = \frac{\Delta V}{V} \cdot 100$$

V = tensão nominal da instalação no ponto de alimentação (V)

6.3. RESISTÊNCIA ELÉTRICA DO CONDUTOR EM CORRENTE ALTERNADA

$$R = R' \cdot (1 + y_s + y_p)$$

R = resistência em corrente alternada do condutor na temperatura máxima de operação (Ω/km)

R' = resistência em corrente contínua do condutor na temperatura máxima de operação (Ω /km)

 y_s = fator de efeito pelicular

 y_p = fator de efeito de proximidade

$$R' = R_o \cdot [1 + \alpha_{20} \cdot (\theta - 20)]$$

 R_0 = resistência em corrente contínua a 20°C (Ω /km)

 α_{20} = coeficiente de temperatura da resistividade a 20°C (°C-1)

 α_{20} = 0,00393 °C⁻¹ para o cobre

 α_{20} = 0,00403 °C⁻¹ para o alumínio

 θ = temperatura máxima de operação do condutor em regime permanente (°C)

 θ = 70 °C para Superastic, Superastic Flex, Sintenax, Sintenax Flex e Afumex Green

 θ = 90°C para GSette Easy, Voltenax, Voltalene e Afumex Flex

Para as seções catalogadas:

$$y_{s} = \frac{x_{s}^{4}}{192 + 0.8 \cdot x_{s}^{4}}$$

X_S = argumento da função de Bessel para o efeito pelicular

$$x_s^2 = \frac{8 \cdot \pi \cdot f}{R'} \cdot 10^{-4}$$

f = 60 Hz

Para 2 condutores carregados:

$$y_p = \frac{x_p^4}{192 + 0.8 \cdot x_p^4} \cdot \left(\frac{d_c}{s}\right)^2 \cdot 2.9$$

 d_c = diâmetro do condutor (mm)

S = distância entre os eixos dos condutores (mm)

 ${
m X}_{
m p}$ = argumento da função de Bessel para o efeito de proximidade

Para 3 condutores carregados:

$$y_p = \frac{x_p^4}{192 + 0.8 \cdot x_p^4} \cdot \left(\frac{d_c}{s}\right)^2 \cdot \left[0.312 \cdot \left(\frac{d_c}{s}\right)^2 + \frac{1.18}{\frac{x_p^4}{192 + 0.8 \cdot x_p^4} + 0.27}\right]$$

Neste caso, S = distância entre eixos de condutores adjacentes (mm)

$$x_p^2 = \frac{8 \cdot \pi \cdot f}{R'} \cdot 10^{-4} \cdot k_p$$

f = 60 Hz

 k_p = 1 para condutores de cobre

 k_p = 0,8 para condutores de alumínio

Tabela 18 - Resistência Elétrica em Corrente Contínua a 20 °C

Seção nominal mm²	Classe 2 Compactado ou Não	Classe 2 Compactado ou Não	Classe 5 Flexível	
Seçao nominat mm	Cobre	Alumínio	Cobre	
1,5	12,1	-	13,3	
2,5	7,41	-	7,98	
4	4,61	-	4,95	
6	3,08	-	3,30	
10	1,83	-	1,91	
16	1,15	1,91	1,21	
25	0,727	1,20	0,780	
35	0,524	0,868	0,554	
50	0,387	0,641	0,386	
70	0,268	0,443	0,272	
95	0,193	0,320	0,206	
120	0,153	0,253	0,161	
150	0,124	0,206	0,129	
185	0,0991	0,164	0,106	
240	0,0754	0,125	0,0801	
300	0,0601	0,100	0,0641	
400	0,0470	0,0778	0,0486	
500	0,0366	0,0605	0,0384	
630	0,0283	0,0469	0,0287	

6.4. INDUTÂNCIA E REATÂNCIA INDUTIVA

$$L = 0.05 + 0.2 \cdot \ln \frac{2 \cdot GMD}{d_c}$$

L = indutância (mH/km)

GMD = "geometric mean distance" ou distância média geométrica (mm)

 d_c = diâmetro do condutor (mm)

$$X_L = 2 \cdot \pi \cdot f \cdot L \cdot 10^{-3}$$

 X_L = reatância indutiva (Ω /km) f = 60 Hz

6.5. TABELAS PRONTAS PARA VALORES DE QUEDA DE TENSÃO

Nas tabelas a seguir são apresentados os valores de queda de tensão expressos em V/A.km para várias maneiras de instalar e fatores de potência 0,8 e 0,95. Caso a instalação seja diferente em algum destes aspectos, recomenda-se o uso da metodologia do cálculo conforme visto no início deste capítulo.

O valor da queda de tensão pode ser obtido da seguinte forma:

 ΔV [V] = Fator da tabela [V/A.km] x comprimento do circuito [km] x corrente do circuito [A]

O valor da queda de tensão para circuito CA quando instalado em conduto fechado constituído de material ferromagnético (ferroso) pode ser estimada utilizando-se nas tabelas sempre os circuitos monofásicos (dois condutores isolados encostados ou dois cabos unipolares encostados ou um cabo de dois condutores), mesmo que o circuito seja trifásico, multiplicando os valores lidos pelos seguintes fatores:

FP=0,8	FP=0,95
Até 70 mm² Fator = 1	Até 185 mm²
De 95 mm² até 185 mm² Fator = 1,06	Fator = 1
De 240 mm² até 500 mm² Fator = 1,18	De 240 mm² até 500 mm² Fator = 1,16

Tabela 19 - Queda de Tensão - Superastic (cobre)

QUEDA DE TENSÃO

Condutor de Cobre

Superastic

Frequência: 60 Hz

Seção	•	•								
nominal	nominal		s = 2.D		s = 13 cm		s = 20 cm			
	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95
(mm²)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)
1,5	23,34	27,62	23,40	27,66	23,68	27,80	23,72	27,82	20,21	23,90
2,5	14,33	16,93	14,39	16,96	14,66	17,09	14,69	17,11	12,41	14,65
4	8,96	10,56	8,99	10,55	9,24	10,68	9,31	10,74	7,77	9,14
6	6,03	7,07	6,11	7,13	6,34	7,25	6,37	7,25	5,23	6,13
10	3,63	4,23	3,71	4,28	3,93	4,39	3,95	4,39	3,16	3,66
16	2,33	2,68	2,39	2,72	2,63	2,86	2,63	2,84	2,03	2,33
25	1,51	1,71	1,57	1,75	1,76	1,84	1,80	1,86	1,32	1,49
35	1,12	1,25	1,18	1,28	1,35	1,37	1,39	1,39	0,98	1,09
50	0,85	0,94	0,92	0,97	1,08	1,05	1,12	1,07	0,76	0,82
70	0,62	0,67	0,68	0,70	0,83	0,78	0,87	0,80	0,56	0,59
95	0,48	0,50	0,54	0,53	0,68	0,60	0,71	0,62	0,43	0,44
120	0,40	0,41	0,46	0,44	0,59	0,50	0,63	0,52	0,37	0,36
150	0,35	0,34	0,41	0,37	0,53	0,43	0,56	0,45	0,32	0,31
185	0,30	0,28	0,36	0,32	0,47	0,37	0,51	0,39	0,28	0,26
240	0,26	0,23	0,32	0,26	0,41	0,31	0,45	0,33	0,24	0,21

Seção			• s						
nominal	s =	2.D	s = 1	3 cm	s = 2	0 cm			
	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	
(mm²)	(V/A.km)								
1,5	20,26	23,93	20,50	24,06	20,54	24,08	20,19	23,89	
2,5	12,47	14,68	12,69	14,80	12,73	14,81	12,40	14,64	
4	7,82	9,17	8,04	9,28	8,07	9,30	7,75	9,13	
6	5,29	6,16	5,49	6,26	5,52	6,28	5,21	6,12	
10	3,21	3,69	3,40	3,79	3,44	3,81	3,14	3,66	
16	2,08	2,36	2,26	2,45	2,30	2,47	2,01	2,32	
25	1,38	1,52	1,54	1,60	1,57	1,62	1,30	1,48	
35	1,04	1,12	1,19	1,20	1,22	1,22	0,97	1,08	
50	0,81	0,85	0,95	0,92	0,98	0,94	0,74	0,81	
70	0,61	0,61	0,74	0,68	0,77	0,70	0,54	0,58	
95	0,49	0,47	0,60	0,53	0,64	0,54	0,42	0,43	
120	0,42	0,39	0,53	0,44	0,56	0,46	0,35	0,35	
150	0,37	0,33	0,47	0,38	0,51	0,40	0,30	0,30	
185	0,33	0,28	0,42	0,33	0,46	0,35	0,26	0,25	
240	0,29	0,24	0,37	0,28	0,41	0,30	0,22	0,20	

Tabela 20 - Queda de Tensão - Superastic Flex (cobre) e Afumex Green (cobre) QUEDA DE TENSÃO

Condutor de Cobre Superastic Flex e Afumex Green

Frequência: 60 Hz

Seção	•				<u></u> 5	□ ↓ D					
nominal			s =	2.D	s = 1	3 cm	s = 2	0 cm			
	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	
(mm²)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	
1,5	23,34	27,62	23,40	27,66	25,93	30,46	15,90	0,44	22,15	26,21	
2,5	14,33	16,93	14,39	16,96	15,75	18,39	9,55	0,42	13,36	15,77	
4	8,96	10,56	8,99	10,55	9,89	11,44	5,92	0,40	8,33	9,80	
6	6,03	7,07	6,11	7,13	6,67	7,63	3,95	0,39	5,59	6,56	
10	3,63	4,23	3,71	4,28	4,08	4,58	2,29	0,37	3,29	3,83	
16	2,33	2,68	2,39	2,72	2,61	2,85	1,45	0,34	2,12	2,44	
25	1,51	1,71	1,57	1,75	1,85	1,96	0,93	0,33	1,41	1,60	
35	1,12	1,25	1,18	1,28	1,40	1,43	0,66	0,31	1,03	1,15	
50	0,85	0,94	0,92	0,97	1,06	1,05	0,46	0,30	0,75	0,82	
70	0,62	0,67	0,68	0,70	0,83	0,78	0,33	0,29	0,56	0,59	
95	0,48	0,50	0,54	0,53	0,69	0,62	0,25	0,28	0,45	0,46	
120	0,40	0,41	0,46	0,44	0,60	0,52	0,19	0,27	0,38	0,38	
150	0,35	0,34	0,41	0,37	0,52	0,44	0,16	0,26	0,33	0,31	
185	0,30	0,28	0,36	0,32	0,47	0,38	0,13	0,25	0,29	0,27	
240	0,26	0,23	0,32	0,26	0,41	0,32	0,10	0,24	0,25	0,22	

Seção			• s						
nominal	s =	2.D	s = 1	3 cm	s = 2	0 cm			
	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	
(mm²)	(V/A.km)								
1,5	22,20	26,23	22,45	26,36	22,48	26,38	22,13	26,20	
2,5	13,41	15,80	13,64	15,92	13,67	15,93	13,34	15,76	
4	8,38	9,83	8,60	9,94	8,63	9,96	8,31	9,79	
6	5,65	6,59	5,85	6,69	5,89	6,71	5,57	6,55	
10	3,35	3,86	3,54	3,95	3,57	3,97	3,28	3,82	
16	2,18	2,47	2,35	2,56	2,38	2,58	2,10	2,43	
25	1,46	1,62	1,62	1,71	1,66	1,72	1,39	1,59	
35	1,08	1,18	1,23	1,25	1,26	1,27	1,01	1,14	
50	0,81	0,85	0,94	0,91	0,97	0,93	0,74	0,81	
70	0,62	0,62	0,74	0,68	0,77	0,70	0,54	0,59	
95	0,51	0,49	0,62	0,55	0,65	0,57	0,43	0,46	
120	0,43	0,40	0,53	0,46	0,57	0,47	0,36	0,37	
150	0,38	0,34	0,47	0,39	0,50	0,41	0,31	0,30	
185	0,34	0,29	0,43	0,34	0,46	0,36	0,27	0,26	
240	0,30	0,24	0,37	0,28	0,41	0,30	0,23	0,21	

Tabela 21 - Queda de Tensão - Sintenax (cobre)

QUEDA DE TENSÃO

Condutor de Cobre

Sintenax

Frequência: 60 Hz

Seção	•											
nominal					s =	2.D	s = 1	3 cm	s = 2	0 cm		
	FP=0,80	FP=0,95										
(mm²)	(V/A.km)											
1,5	23,39	27,65	23,35	27,63	23,45	27,68	23,68	27,80	23,72	27,82	20,25	23,92
2,5	14,37	16,94	14,33	16,93	14,43	16,98	14,66	17,09	14,69	17,11	12,45	14,67
4	9,00	10,58	8,97	10,56	9,07	10,61	9,27	10,72	9,31	10,74	7,81	9,16
6	6,06	7,09	6,03	7,08	6,13	7,13	6,33	7,23	6,37	7,25	5,26	6,15
10	3,66	4,24	3,63	4,23	3,72	4,27	3,91	4,37	3,95	4,39	3,18	3,68
16	2,35	2,70	2,33	2,68	2,41	2,73	2,59	2,82	2,63	2,84	2,05	2,34
25	1,53	1,72	1,51	1,71	1,59	1,76	1,76	1,84	1,80	1,86	1,34	1,50
35	1,13	1,26	1,12	1,25	1,20	1,29	1,35	1,37	1,39	1,39	1,00	1,10
50	0,87	0,95	0,85	0,94	0,93	0,98	1,08	1,05	1,12	1,07	0,77	0,83
70	0,64	0,67	0,62	0,67	0,70	0,71	0,83	0,78	0,87	0,80	0,57	0,59
95	0,49	0,50	0,48	0,50	0,56	0,54	0,68	0,60	0,71	0,62	0,45	0,45
120	0,42	0,41	0,40	0,41	0,48	0,44	0,59	0,50	0,63	0,52	0,38	0,37
150	0,36	0,35	0,35	0,34	0,42	0,38	0,52	0,43	0,56	0,45	0,33	0,31
185	0,31	0,29	0,30	0,28	0,37	0,32	0,47	0,37	0,51	0,39	0,29	0,26
240	0,27	0,24	0,26	0,23	0,33	0,27	0,41	0,31	0,45	0,33	0,25	0,22
300	0,24	0,20	0,23	0,20	0,30	0,23	0,37	0,27	0,41	0,29	0,23	0,19
400	0,21	0,18	0,20	0,17	0,27	0,20	0,34	0,24	0,38	0,26	0,20	0,16
500	0,19	0,15	0,19	0,15	0,25	0,18	0,31	0,21	0,34	0,23	0,19	0,15

Seção		s = 2.D									20 CM	
nominal	s =	2.D	s = 1	3 cm	s = 2	0 cm				9	1	
	FP=0,80	FP=0,95										
(mm²)	(V/A.km)											
1,5	20,30	23,95	20,50	24,06	20,54	24,08	20,23	23,92	20,20	23,90	20,53	24,07
2,5	12,50	14,69	12,69	14,79	12,72	14,81	12,42	14,65	12,39	14,63	12,71	14,80
4	7,86	9,19	8,04	9,27	8,07	9,29	7,78	9,14	7,75	9,13	8,06	9,29
6	5,32	6,17	5,48	6,26	5,52	6,27	5,24	6,13	5,21	6,12	5,51	6,27
10	3,23	3,71	3,40	3,79	3,43	3,81	3,16	3,67	3,14	3,65	3,43	3,80
16	2,10	2,37	2,26	2,44	2,29	2,46	2,03	2,33	2,01	2,31	2,28	2,46
25	1,40	1,53	1,54	1,60	1,57	1,62	1,32	1,49	1,30	1,48	1,56	1,62
35	1,05	1,13	1,19	1,20	1,22	1,22	0,98	1,09	0,97	1,08	1,21	1,21
50	0,83	0,86	0,95	0,92	0,98	0,94	0,75	0,82	0,74	0,81	0,97	0,93
70	0,62	0,62	0,74	0,68	0,77	0,70	0,55	0,59	0,54	0,58	0,76	0,69
95	0,50	0,47	0,60	0,53	0,64	0,54	0,43	0,44	0,42	0,43	0,63	0,54
120	0,43	0,39	0,53	0,44	0,56	0,46	0,36	0,36	0,35	0,35	0,55	0,46
150	0,38	0,34	0,47	0,38	0,51	0,40	0,31	0,30	0,30	0,30	0,50	0,40
185	0,34	0,29	0,42	0,33	0,46	0,35	0,27	0,25	0,26	0,25	0,45	0,34
240	0,30	0,24	0,37	0,28	0,41	0,30	0,23	0,21	0,22	0,20	0,40	0,29
300	0,28	0,21	0,34	0,24	0,37	0,26	0,21	0,18	0,20	0,18	0,36	0,26
400	0,25	0,19	0,31	0,21	0,34	0,23	0,19	0,15	0,18	0,15	0,33	0,23
500	0,24	0,17	0,28	0,19	0,32	0,21	0,17	0,14	0,16	0,13	0,31	0,20

Tabela 22 - Queda de Tensão - Sintenax Flex (cobre)

QUEDA DE TENSÃO

Condutor de Cobre

Sintenax Flex Frequência: 60 Hz

Seção	•						<u></u> 5(D				
nominal					s =	2.D	s = 1	3 cm	s = 2	0 cm		
	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95
(mm²)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)						
1,5	25,63	30,31	25,59	30,29	25,70	30,34	25,93	30,46	25,97	30,48	22,19	26,23
2,5	15,46	18,24	15,42	18,22	15,52	18,27	15,75	18,39	15,79	18,41	13,39	15,78
4	9,65	11,34	9,61	11,32	9,71	11,37	9,92	11,48	9,96	11,50	8,36	9,82
6	6,48	7,59	6,45	7,57	6,54	7,62	6,75	7,73	6,79	7,75	5,63	6,57
10	3,81	4,43	3,79	4,41	3,88	4,46	4,07	4,56	4,11	4,58	3,32	3,84
16	2,45	2,83	2,43	2,81	2,52	2,86	2,69	2,95	2,73	2,97	2,14	2,45
25	1,63	1,85	1,61	1,83	1,69	1,88	1,85	1,96	1,89	1,98	1,43	1,61
35	1,19	1,33	1,17	1,32	1,25	1,36	1,40	1,43	1,44	1,45	1,04	1,16
50	0,87	0,94	0,85	0,94	0,93	0,98	1,06	1,05	1,10	1,07	0,77	0,83
70	0,64	0,68	0,63	0,67	0,70	0,71	0,83	0,78	0,87	0,80	0,57	0,60
95	0,52	0,53	0,50	0,53	0,58	0,56	0,69	0,62	0,73	0,64	0,46	0,47
120	0,43	0,43	0,41	0,42	0,49	0,46	0,60	0,52	0,63	0,54	0,39	0,38
150	0,37	0,36	0,35	0,35	0,43	0,39	0,52	0,44	0,56	0,46	0,34	0,32
185	0,32	0,31	0,31	0,30	0,38	0,34	0,47	0,38	0,51	0,40	0,30	0,28
240	0,27	0,25	0,26	0,24	0,33	0,28	0,41	0,32	0,45	0,34	0,26	0,22
300	0,24	0,21	0,23	0,21	0,30	0,24	0,36	0,27	0,40	0,29	0,23	0,19
400	0,21	0,18	0,20	0,17	0,27	0,21	0,33	0,23	0,37	0,25	0,20	0,17
500	0,19	0,16	0,19	0,15	0,25	0,18	0,30	0,21	0,34	0,23	0,19	0,15

Seção			• s								20 CM	
nominal	s =	2.D	s = 1	3 cm	s = 2	0 cm				<i></i>	+)
	FP=0,80	FP=0,95										
(mm²)	(V/A.km)											
1,5	22,24	26,26	22,45	26,36	22,48	26,38	22,17	26,22	22,14	26,20	22,47	26,37
2,5	13,44	15,81	13,64	15,91	13,67	15,93	13,37	15,77	13,34	15,76	13,66	15,92
4	8,42	9,85	8,60	9,94	8,64	9,96	8,35	9,81	8,32	9,80	8,63	9,96
6	5,68	6,60	5,85	6,69	5,89	6,71	5,60	6,56	5,58	6,55	5,88	6,70
10	3,37	3,87	3,53	3,95	3,56	3,96	3,29	3,82	3,27	3,81	3,55	3,96
16	2,20	2,48	2,34	2,56	2,38	2,57	2,12	2,44	2,10	2,43	2,37	2,57
25	1,48	1,63	1,62	1,71	1,66	1,72	1,41	1,60	1,39	1,59	1,65	1,72
35	1,10	1,18	1,23	1,25	1,26	1,27	1,03	1,15	1,01	1,14	1,25	1,26
50	0,82	0,85	0,94	0,91	0,97	0,93	0,75	0,82	0,74	0,81	0,96	0,93
70	0,63	0,63	0,74	0,68	0,77	0,70	0,56	0,59	0,54	0,59	0,76	0,70
95	0,52	0,50	0,62	0,55	0,65	0,57	0,45	0,46	0,43	0,46	0,64	0,56
120	0,44	0,41	0,53	0,46	0,57	0,47	0,37	0,37	0,36	0,37	0,56	0,47
150	0,39	0,35	0,47	0,39	0,50	0,41	0,32	0,31	0,31	0,30	0,50	0,40
185	0,35	0,30	0,43	0,34	0,46	0,36	0,28	0,27	0,27	0,26	0,45	0,35
240	0,31	0,25	0,37	0,28	0,41	0,30	0,24	0,22	0,23	0,21	0,40	0,30
300	0,28	0,22	0,33	0,24	0,36	0,26	0,21	0,18	0,20	0,18	0,36	0,26
400	0,25	0,19	0,30	0,21	0,33	0,23	0,19	0,16	0,18	0,15	0,33	0,23
500	0,24	0,17	0,28	0,19	0,31	0,21	0,17	0,14	0,16	0,14	0,30	0,20

Tabela 23 - Queda de Tensão - GSette Easy (cobre) e Afumex Flex (cobre)

QUEDA DE TENSÃO

Condutor de Cobre **GSette Easy e Afumex Flex** Frequência: 60 Hz

Seção	•				s = 2.D								
nominal					s =	2.D	s = 1	3 cm	s = 2	0 cm			
	FP=0,80	FP=0,95											
(mm²)	(V/A.km)												
1,5	27,38	32,40	27,34	32,37	27,45	32,43	27,68	32,55	27,72	32,57	23,71	28,03	
2,5	16,46	19,43	16,42	19,41	16,52	19,46	16,78	19,62	16,82	19,64	14,28	16,85	
4	10,26	12,07	10,22	12,05	10,32	12,10	10,54	12,22	10,58	12,24	8,89	10,45	
6	6,89	8,08	6,86	8,06	6,95	8,11	7,16	8,22	7,20	8,24	5,97	7,00	
10	4,05	4,71	4,02	4,70	4,11	4,74	4,31	4,85	4,35	4,87	3,52	4,08	
16	2,60	3,00	2,57	2,98	2,66	3,03	2,85	3,13	2,89	3,15	2,27	2,60	
25	1,72	1,96	1,70	1,95	1,79	1,99	1,96	2,08	2,00	2,10	1,51	1,70	
35	1,26	1,41	1,24	1,40	1,32	1,44	1,48	1,53	1,52	1,55	1,11	1,23	
50	0,91	1,00	0,89	0,99	0,98	1,03	1,12	1,11	1,16	1,13	0,81	0,88	
70	0,68	0,72	0,66	0,72	0,74	0,75	0,88	0,83	0,92	0,85	0,60	0,64	
95	0,54	0,56	0,52	0,55	0,60	0,59	0,73	0,66	0,77	0,68	0,48	0,50	
120	0,45	0,45	0,43	0,45	0,51	0,48	0,62	0,54	0,66	0,57	0,40	0,40	
150	0,38	0,38	0,37	0,37	0,44	0,41	0,55	0,46	0,59	0,48	0,35	0,34	
185	0,33	0,32	0,32	0,32	0,39	0,35	0,49	0,40	0,53	0,42	0,31	0,29	
240	0,28	0,26	0,27	0,25	0,34	0,29	0,43	0,33	0,47	0,35	0,26	0,23	
300	0,25	0,22	0,24	0,22	0,31	0,25	0,39	0,29	0,43	0,31	0,23	0,20	
400	0,22	0,18	0,21	0,18	0,28	0,21	0,35	0,25	0,38	0,27	0,21	0,17	
500	0,20	0,16	0,19	0,16	0,26	0,19	0,31	0,22	0,35	0,24	0,19	0,15	

Seção			● s								20 CM	$\langle $
nominal	s =	2.D	s = 1	3 cm	s = 2	0 cm)	+)
	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95
(mm²)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)
1,5	23,76	28,06	23,964	28,166	24,00	28,18	23,69	28,02	23,65	28,00	23,99	28,18
2,5	14,31	16,85	14,535	16,981	14,57	17,00	14,27	16,84	14,23	16,82	14,56	16,99
4	8,94	10,48	9,134	10,579	9,17	10,60	8,87	10,44	8,84	10,43	9,16	10,59
6	6,03	7,02	6,211	7,119	6,24	7,14	5,96	6,99	5,93	6,97	6,24	7,13
10	3,57	4,11	3,747	4,203	3,78	4,22	3,50	4,08	3,48	4,06	3,77	4,22
16	2,32	2,63	2,483	2,714	2,52	2,73	2,25	2,59	2,23	2,58	2,51	2,73
25	1,56	1,73	1,711	1,809	1,74	1,83	1,49	1,69	1,47	1,68	1,74	1,82
35	1,16	1,26	1,300	1,329	1,33	1,35	1,09	1,22	1,07	1,21	1,32	1,34
50	0,86	0,90	0,989	0,969	1,02	0,99	0,79	0,87	0,77	0,86	1,01	0,98
70	0,66	0,66	0,776	0,724	0,81	0,74	0,59	0,63	0,57	0,62	0,80	0,74
95	0,54	0,52	0,646	0,579	0,68	0,60	0,47	0,49	0,45	0,48	0,67	0,59
120	0,46	0,43	0,558	0,481	0,59	0,50	0,39	0,39	0,38	0,39	0,58	0,49
150	0,40	0,36	0,494	0,409	0,53	0,43	0,33	0,33	0,32	0,32	0,52	0,42
185	0,36	0,31	0,446	0,357	0,48	0,37	0,29	0,28	0,28	0,27	0,47	0,37
240	0,31	0,26	0,389	0,298	0,42	0,32	0,24	0,22	0,24	0,22	0,41	0,31
300	0,29	0,23	0,353	0,260	0,39	0,28	0,22	0,19	0,21	0,19	0,38	0,27
400	0,26	0,19	0,317	0,224	0,35	0,24	0,19	0,16	0,18	0,16	0,34	0,24
500	0,24	0,17	0,289	0,198	0,32	0,22	0,17	0,14	0,17	0,14	0,31	0,21

Tabela 24 - Queda de Tensão - Voltenax (cobre) e Voltalene (cobre)

QUEDA DE TENSÃO

Condutor de Cobre Voltenax e Voltalene

Frequência: 60 Hz

Seção	•		•				<u></u> <u>s</u>	<u> </u>				
nominal			Ver No	ota (1)	s =	2.D	s = 1	3 cm	s = 2	0 cm		
	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95
(mm²)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)						
1,5	24,82	29,36	24,78	29,33	24,89	29,39	25,12	29,51	25,16	29,53	21,49	25,40
2,5	15,29	18,04	15,25	18,02	15,35	18,08	15,58	18,20	15,62	18,22	13,25	15,62
4	9,57	11,26	9,53	11,24	9,63	11,29	9,85	11,40	9,89	11,42	8,29	9,75
6	6,44	7,54	6,41	7,53	6,50	7,58	6,71	7,69	6,75	7,71	5,59	6,54
10	3,87	4,50	3,84	4,49	3,94	4,53	4,14	4,64	4,17	4,66	3,37	3,90
16	2,49	2,86	2,46	2,85	2,55	2,90	2,74	2,99	2,78	3,01	2,17	2,49
25	1,62	1,83	1,59	1,82	1,68	1,86	1,85	1,95	1,89	1,97	1,42	1,59
35	1,20	1,34	1,18	1,33	1,26	1,37	1,42	1,45	1,46	1,47	1,05	1,17
50	0,91	1,00	0,90	0,99	0,98	1,04	1,13	1,11	1,16	1,13	0,81	0,88
70	0,67	0,71	0,65	0,71	0,73	0,75	0,87	0,82	0,91	0,84	0,60	0,63
95	0,51	0,53	0,50	0,52	0,58	0,56	0,70	0,63	0,74	0,65	0,46	0,47
120	0,43	0,43	0,42	0,43	0,49	0,46	0,61	0,53	0,65	0,55	0,39	0,38
150	0,37	0,36	0,36	0,36	0,43	0,39	0,54	0,45	0,58	0,47	0,34	0,33
185	0,32	0,30	0,31	0,30	0,38	0,34	0,48	0,39	0,52	0,41	0,30	0,27
240	0,27	0,25	0,26	0,24	0,33	0,28	0,42	0,32	0,46	0,34	0,25	0,22
300	0,24	0,21	0,23	0,21	0,30	0,24	0,38	0,28	0,42	0,30	0,23	0,19
400	0,21	0,18	0,21	0,18	0,27	0,21	0,34	0,24	0,38	0,26	0,21	0,17
500	0,19	0,16	0,19	0,15	0,25	0,18	0,31	0,21	0,35	0,23	0,19	0,15

Seção			• s								20 CM	_
nominal	s =	2.D	s = 1	3 cm	s = 2	0 cm			Ver No	ota (1)	+(0	ע
	FP=0,80	FP=0,95										
(mm²)	(V/A.km)											
1,5	21,55	25,43	21,75	25,54	21,78	25,55	21,47	25,39	21,44	25,37	21,77	25,55
2,5	13,30	15,65	13,50	15,75	13,53	15,77	13,23	15,61	13,19	15,59	13,52	15,76
4	8,35	9,77	8,54	9,87	8,57	9,89	8,28	9,74	8,25	9,72	8,56	9,89
6	5,64	6,56	5,82	6,66	5,86	6,68	5,57	6,53	5,54	6,51	5,85	6,67
10	3,42	3,93	3,60	4,02	3,63	4,04	3,35	3,89	3,32	3,88	3,62	4,03
16	2,22	2,51	2,39	2,60	2,42	2,62	2,15	2,48	2,13	2,46	2,41	2,61
25	1,47	1,62	1,62	1,70	1,65	1,71	1,40	1,58	1,38	1,57	1,64	1,71
35	1,11	1,19	1,25	1,27	1,28	1,28	1,04	1,16	1,02	1,15	1,27	1,28
50	0,86	0,91	0,99	0,97	1,03	0,99	0,79	0,87	0,77	0,86	1,02	0,98
70	0,65	0,65	0,77	0,72	0,80	0,73	0,58	0,62	0,56	0,61	0,79	0,73
95	0,52	0,50	0,62	0,55	0,66	0,57	0,44	0,46	0,43	0,45	0,65	0,57
120	0,44	0,41	0,54	0,46	0,58	0,48	0,37	0,38	0,36	0,37	0,57	0,48
150	0,39	0,35	0,49	0,40	0,52	0,42	0,32	0,32	0,31	0,31	0,51	0,41
185	0,35	0,30	0,43	0,34	0,47	0,36	0,28	0,26	0,27	0,26	0,46	0,36
240	0,31	0,25	0,38	0,29	0,42	0,31	0,24	0,22	0,23	0,21	0,41	0,30
300	0,28	0,22	0,35	0,25	0,38	0,27	0,21	0,18	0,20	0,18	0,37	0,26
400	0,26	0,19	0,31	0,22	0,35	0,24	0,19	0,16	0,18	0,16	0,34	0,23
500	0,24	0,17	0,29	0,19	0,32	0,21	0,17	0,14	0,16	0,14	0,31	0,21

Tabela 25 - Queda de Tensão - Superastic (alumínio)

QUEDA DE TENSÃO

Condutor de Alumínio

Superastic AL

Frequência: 60 Hz

Seção nominal					<u></u> 5						
nominal			s =	2.D	s = 1	3 cm	s = 2	0 cm			
	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	
(mm²)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	
16	3,79	4,42	3,85	4,45	4,06	4,56	4,10	4,58	3,30	3,83	
25	2,42	2,80	2,49	2,83	2,67	2,93	2,71	2,95	2,11	2,43	
35	1,78	2,04	1,84	2,07	2,02	2,16	2,06	2,18	1,56	1,77	
50	1,34	1,52	1,41	1,55	1,57	1,64	1,61	1,66	1,18	1,33	
70	0,96	1,07	1,02	1,10	1,17	1,18	1,21	1,20	0,85	0,93	
95	0,72	0,79	0,79	0,82	0,92	0,89	0,96	0,91	0,64	0,69	
120	0,59	0,63	0,66	0,67	0,78	0,73	0,82	0,75	0,53	0,56	
150	0,50	0,53	0,57	0,56	0,68	0,62	0,72	0,64	0,45	0,47	
185	0,42	0,43	0,49	0,46	0,59	0,52	0,63	0,54	0,38	0,38	
240	0,35	0,34	0,41	0,37	0,51	0,42	0,54	0,44	0,32	0,31	
300	0,30	0,29	0,36	0,32	0,45	0,36	0,49	0,38	0,28	0,26	
400	0,26	0,24	0,32	0,27	0,40	0,31	0,43	0,33	0,24	0,22	
500	0,23	0,20	0,29	0,23	0,35	0,26	0,39	0,28	0,21	0,18	

Seção			• s					
nominal	s =	2.D	s = 1	3 cm	s = 2	0 cm		
	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95
(mm²)	(V/A.km)							
16	3,35	3,86	3,53	3,95	3,56	3,97	3,28	3,82
25	2,17	2,46	2,33	2,54	2,36	2,56	2,10	2,42
35	1,61	1,80	1,77	1,88	1,80	1,90	1,54	1,77
50	1,24	1,35	1,37	1,43	1,41	1,44	1,16	1,32
70	0,90	0,96	1,03	1,03	1,07	1,05	0,83	0,92
95	0,70	0,72	0,81	0,78	0,85	0,80	0,63	0,68
120	0,59	0,59	0,69	0,64	0,73	0,66	0,51	0,55
150	0,51	0,49	0,61	0,55	0,64	0,56	0,44	0,46
185	0,44	0,41	0,53	0,46	0,56	0,48	0,37	0,37
240	0,37	0,33	0,46	0,38	0,49	0,39	0,30	0,30
300	0,33	0,28	0,40	0,32	0,44	0,34	0,26	0,25
400	0,29	0,24	0,36	0,27	0,39	0,29	0,22	0,21
500	0,27	0,21	0,32	0,24	0,35	0,25	0,20	0,17

Tabela 26 - Queda de Tensão - Sintenax (alumínio)

QUEDA DE TENSÃO

Condutor de Alumínio

Sintenax AL

Frequência: 60 Hz

Seção	•		(<u></u> (D D			•	
nominal					s =	2.D	s = 1	3 cm	s = 2	0 cm		
	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95
(mm²)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)						
16	3,81	4,43	3,79	4,42	3,88	4,47	4,06	4,56	4,10	4,58	3,83	4,44
25	2,44	2,81	2,42	2,80	2,51	2,84	2,67	2,93	2,71	2,95	2,47	2,82
35	1,80	2,05	1,78	2,04	1,86	2,08	2,02	2,16	2,06	2,18	1,82	2,06
50	1,36	1,53	1,34	1,52	1,43	1,56	1,57	1,64	1,61	1,66	1,38	1,54
70	0,98	1,08	0,96	1,07	1,04	1,11	1,17	1,18	1,21	1,20	1,00	1,09
95	0,74	0,80	0,72	0,79	0,80	0,83	0,92	0,89	0,96	0,91	0,76	0,81
120	0,61	0,64	0,59	0,63	0,67	0,67	0,78	0,73	0,82	0,75	0,63	0,65
150	0,52	0,53	0,50	0,53	0,58	0,57	0,68	0,62	0,72	0,64	0,54	0,55
185	0,44	0,44	0,42	0,43	0,50	0,47	0,59	0,52	0,63	0,54	0,46	0,45
240	0,36	0,35	0,35	0,34	0,42	0,38	0,51	0,42	0,54	0,44	0,38	0,36
300	0,31	0,29	0,30	0,29	0,37	0,32	0,45	0,36	0,49	0,38	0,33	0,30
400	0,27	0,24	0,26	0,24	0,33	0,27	0,39	0,31	0,43	0,33	0,29	0,25
500	0,23	0,20	0,23	0,20	0,30	0,23	0,35	0,26	0,39	0,28	0,26	0,22

Seção			• s								20 CM + 20 CM +		
nominal	s =	2.D	s = 1	3 cm	s = 2	s = 20 cm				9		<u> </u>	
	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	
(mm²)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	
16	3,90	4,48	4,08	4,57	4,12	4,59	3,81	4,43	3,79	4,42	4,11	4,59	
25	2,53	2,85	2,69	2,94	2,73	2,96	2,44	2,81	2,42	2,80	2,72	2,96	
35	1,88	2,09	2,04	2,18	2,08	2,20	1,80	2,05	1,78	2,04	2,07	2,19	
50	1,45	1,57	1,59	1,65	1,63	1,67	1,36	1,53	1,34	1,52	1,62	1,66	
70	1,06	1,12	1,19	1,19	1,23	1,21	0,98	1,08	0,96	1,07	1,22	1,20	
95	0,82	0,84	0,94	0,90	0,98	0,92	0,74	0,80	0,72	0,79	0,97	0,92	
120	0,69	0,68	0,80	0,74	0,84	0,76	0,61	0,64	0,59	0,63	0,83	0,76	
150	0,60	0,58	0,70	0,63	0,74	0,65	0,52	0,53	0,50	0,53	0,73	0,65	
185	0,52	0,48	0,61	0,53	0,65	0,55	0,44	0,44	0,42	0,43	0,64	0,55	
240	0,44	0,39	0,53	0,44	0,57	0,46	0,36	0,35	0,35	0,34	0,56	0,45	
300	0,39	0,33	0,47	0,37	0,51	0,39	0,31	0,29	0,30	0,29	0,50	0,39	
400	0,35	0,28	0,42	0,32	0,45	0,34	0,27	0,24	0,26	0,24	0,44	0,33	
500	0,32	0,24	0,37	0,27	0,41	0,29	0,24	0,20	0,23	0,20	0,40	0,29	

Tabela 27 - Queda de Tensão - Voltenax (alumínio) e Voltalene (alumínio)

QUEDA DE TENSÃO

Condutor de Alumínio Voltenax AL e Voltalene AL

Frequência: 60 Hz

Seção	•		•				<u></u>	● □ □				
nominal			Ver No	ota (1)	s =	2.D	s = 1	3 cm	s = 2	0 cm		
	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95
(mm²)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)							
16	4,03	4,70	4,01	4,68	4,09	4,73	4,28	4,83	4,32	4,85	4,05	4,71
25	2,58	2,98	2,56	2,96	2,64	3,01	2,81	3,10	2,85	3,12	2,60	2,99
35	1,90	2,17	1,88	2,16	1,96	2,20	2,12	2,29	2,16	2,31	1,92	2,18
50	1,43	1,62	1,41	1,61	1,49	1,65	1,64	1,73	1,68	1,75	1,45	1,63
70	1,03	1,14	1,01	1,13	1,09	1,17	1,23	1,24	1,26	1,26	1,05	1,15
95	0,77	0,84	0,76	0,83	0,83	0,87	0,96	0,93	1,00	0,95	0,79	0,85
120	0,63	0,67	0,62	0,67	0,69	0,71	0,81	0,77	0,85	0,79	0,65	0,69
150	0,54	0,56	0,52	0,55	0,60	0,59	0,71	0,65	0,75	0,67	0,56	0,57
185	0,45	0,46	0,44	0,45	0,51	0,49	0,61	0,54	0,65	0,56	0,47	0,47
240	0,37	0,36	0,36	0,36	0,43	0,40	0,52	0,44	0,56	0,46	0,39	0,38
300	0,32	0,30	0,31	0,30	0,38	0,34	0,46	0,38	0,50	0,40	0,34	0,32
400	0,27	0,25	0,26	0,25	0,33	0,28	0,40	0,32	0,44	0,34	0,30	0,26
500	0,24	0,21	0,23	0,21	0,30	0,24	0,36	0,27	0,40	0,29	0,26	0,22

Seção			• s								20 CM	
nominal	s =	2.D	s = 1	3 cm	s = 2	0 cm			Ver No	ota (1)	1	<u> </u>
	FP=0,80	FP=0,95										
(mm²)	(V/A.km)											
16	4,12	4,74	4,30	4,84	4,34	4,86	4,03	4,70	4,01	4,68	4,33	4,85
25	2,66	3,02	2,83	3,11	2,87	3,13	2,58	2,98	2,56	2,96	2,86	3,12
35	1,98	2,21	2,14	2,30	2,18	2,32	1,90	2,17	1,88	2,16	2,17	2,31
50	1,52	1,66	1,66	1,74	1,70	1,76	1,43	1,62	1,41	1,61	1,69	1,75
70	1,11	1,18	1,25	1,25	1,29	1,27	1,03	1,14	1,01	1,13	1,27	1,27
95	0,85	0,88	0,98	0,95	1,02	0,97	0,77	0,84	0,76	0,83	1,01	0,96
120	0,72	0,72	0,83	0,78	0,87	0,80	0,63	0,67	0,62	0,67	0,86	0,79
150	0,62	0,60	0,73	0,66	0,77	0,68	0,54	0,56	0,52	0,55	0,76	0,67
185	0,53	0,50	0,63	0,55	0,67	0,57	0,45	0,46	0,44	0,45	0,66	0,57
240	0,45	0,41	0,54	0,45	0,58	0,47	0,37	0,37	0,36	0,36	0,57	0,47
300	0,40	0,35	0,48	0,39	0,52	0,41	0,32	0,30	0,31	0,30	0,51	0,40
400	0,36	0,29	0,42	0,33	0,46	0,35	0,27	0,25	0,26	0,25	0,45	0,34
500	0,32	0,25	0,38	0,28	0,42	0,30	0,24	0,21	0,23	0,21	0,41	0,30

Nota (1): Cabo Voltenax

6.6. TABELAS DE RESISTÊNCIAS ELÉTRICAS E REATÂNCIAS INDUTIVAS

Os valores de resistências elétricas e reatâncias indutivas indicados nas tabelas a seguir destinam-se a cálculos de circuitos elétricos e representam as impedâncias de sequência positiva ou negativa do cabo: $Z = R_{ca} + jX_{L}$

Tabela 28 - Resistências Elétricas e Reatâncias Indutivas - Superastic (cobre)

RESISTÊNCIAS ELÉTRICAS E REATÂNCIAS INDUTIVAS

Condutor de Cobre

Superastic

Frequência: 60 Hz • Rca: Resistência elétrica máxima do condutor em corrente alternada na temperatura de operação • X_i: Reatância Indutiva

Seção	•				<u></u> 5					
nominal			s =	2.D	s = 1	3 cm	s = 2	0 cm		
	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L
(mm²)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)
1,5	14,50	0,12	14,50	0,17	14,50	0,40	14,50	0,44	14,50	0,14
2,5	8,87	0,12	8,87	0,17	8,87	0,39	8,87	0,42	8,87	0,13
4	5,52	0,11	5,50	0,16	5,50	0,37	5,52	0,40	5,52	0,13
6	3,69	0,10	3,70	0,15	3,70	0,35	3,69	0,39	3,69	0,12
10	2,19	0,10	2,20	0,16	2,20	0,34	2,19	0,37	2,19	0,12
16	1,38	0,10	1,38	0,15	1,40	0,32	1,38	0,35	1,38	0,12
25	0,87	0,10	0,87	0,15	0,87	0,30	0,87	0,34	0,87	0,11
35	0,63	0,09	0,63	0,15	0,63	0,29	0,63	0,32	0,63	0,11
50	0,46	0,09	0,46	0,15	0,46	0,28	0,46	0,31	0,46	0,11
70	0,32	0,09	0,32	0,14	0,32	0,27	0,32	0,30	0,32	0,11
95	0,23	0,09	0,23	0,14	0,23	0,25	0,23	0,29	0,23	0,11
120	0,19	0,09	0,18	0,14	0,18	0,25	0,18	0,28	0,19	0,11
150	0,15	0,09	0,15	0,14	0,15	0,24	0,15	0,27	0,15	0,11
185	0,12	0,09	0,12	0,14	0,12	0,23	0,12	0,26	0,12	0,11
240	0,09	0,09	0,09	0,14	0,09	0,22	0,09	0,25	0,10	0,11

Seção			• s					
nominal	s =	2.D	s = 1	3 cm	s = 2	0 cm		
	Rca	X _L						
(mm²)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)
1,5	14,50	0,19	14,50	0,42	14,50	0,45	14,50	0,12
2,5	8,87	0,19	8,87	0,40	8,87	0,44	8,87	0,12
4	5,52	0,18	5,52	0,39	5,52	0,42	5,52	0,11
6	3,69	0,17	3,69	0,37	3,69	0,40	3,69	0,10
10	2,19	0,17	2,19	0,36	2,19	0,39	2,19	0,10
16	1,38	0,17	1,38	0,34	1,38	0,37	1,38	0,10
25	0,87	0,17	0,87	0,32	0,87	0,35	0,87	0,10
35	0,63	0,16	0,63	0,31	0,63	0,34	0,63	0,09
50	0,46	0,16	0,46	0,30	0,46	0,33	0,46	0,09
70	0,32	0,16	0,32	0,29	0,32	0,32	0,32	0,09
95	0,23	0,16	0,23	0,27	0,23	0,30	0,23	0,09
120	0,18	0,16	0,18	0,26	0,18	0,30	0,19	0,09
150	0,15	0,16	0,15	0,26	0,15	0,29	0,15	0,09
185	0,12	0,16	0,12	0,25	0,12	0,28	0,12	0,09
240	0,09	0,16	0,09	0,24	0,09	0,27	0,10	0,09

Tabela 29 - Resistências Elétricas e Reatâncias Indutivas - Superastic Flex (cobre) e Afumex Green (cobre) RESISTÊNCIAS ELÉTRICAS E REATÂNCIAS INDUTIVAS

Condutor de Cobre

Superastic Flex e Afumex Green

Frequência: 60 Hz • Rca: Resistência elétrica máxima do condutor em corrente alternada na temperatura de operação • X_i: Reatância Indutiva

Seção	•				<u></u> 5					
nominal			s =	2.D	s = 1	3 cm	s = 2	0 cm		
	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L
(mm²)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)
1,5	15,90	0,12	15,90	0,17	15,90	0,41	15,90	0,44	15,90	0,14
2,5	9,55	0,12	9,55	0,17	9,55	0,39	9,55	0,42	9,55	0,13
4	5,92	0,11	5,92	0,16	5,90	0,37	5,92	0,40	5,92	0,13
6	3,95	0,10	3,95	0,16	3,90	0,36	3,95	0,39	3,95	0,12
10	2,29	0,10	2,29	0,15	2,30	0,34	2,29	0,37	2,29	0,12
16	1,45	0,09	1,45	0,15	1,40	0,31	1,45	0,34	1,45	0,11
25	0,93	0,10	0,93	0,15	0,93	0,30	0,93	0,33	0,93	0,11
35	0,66	0,09	0,66	0,14	0,66	0,28	0,66	0,31	0,66	0,11
50	0,46	0,09	0,46	0,14	0,46	0,27	0,46	0,30	0,46	0,11
70	0,33	0,09	0,33	0,14	0,33	0,26	0,33	0,29	0,33	0,11
95	0,25	0,09	0,25	0,14	0,25	0,25	0,25	0,28	0,25	0,11
120	0,19	0,09	0,19	0,14	0,19	0,24	0,19	0,27	0,20	0,10
150	0,16	0,09	0,16	0,14	0,16	0,23	0,16	0,26	0,16	0,10
185	0,13	0,09	0,13	0,14	0,13	0,22	0,13	0,25	0,13	0,10
240	0,10	0,09	0,10	0,14	0,10	0,21	0,10	0,24	0,10	0,10

Seção			• s						
nominal	s =	2.D	s = 1	3 cm	s = 2	0 cm			
	Rca	X _L							
(mm²)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	
1,5	15,90	0,19	15,90	0,42	15,90	0,46	15,90	0,12	
2,5	9,55	0,19	9,55	0,41	9,55	0,44	9,55	0,12	
4	5,92	0,18	5,92	0,39	5,92	0,42	5,92	0,11	
6	3,95	0,17	3,95	0,37	3,95	0,41	3,95	0,10	
10	2,29	0,17	2,29	0,35	2,29	0,39	2,29	0,10	
16	1,45	0,16	1,45	0,33	1,45	0,36	1,45	0,09	
25	0,93	0,17	0,93	0,32	0,93	0,35	0,93	0,10	
35	0,66	0,16	0,66	0,30	0,66	0,33	0,66	0,09	
50	0,46	0,16	0,46	0,29	0,46	0,32	0,46	0,09	
70	0,33	0,16	0,33	0,28	0,33	0,31	0,33	0,09	
95	0,25	0,16	0,25	0,26	0,25	0,30	0,25	0,09	
120	0,19	0,16	0,19	0,26	0,19	0,29	0,20	0,09	
150	0,16	0,16	0,16	0,25	0,16	0,28	0,16	0,09	
185	0,13	0,16	0,13	0,24	0,13	0,27	0,13	0,09	
240	0,10	0,16	0,10	0,23	0,10	0,26	0,10	0,09	

Tabela 30 - Resistências Elétricas e Reatâncias Indutivas - Sintenax (cobre) RESISTÊNCIAS ELÉTRICAS E REATÂNCIAS INDUTIVAS

Condutor de Cobre

Sintenax

Frequência: 60 Hz • Rca: Resistência elétrica máxima do condutor em corrente alternada na temperatura de operação • X₁: Reatância Indutiva

Seção			(<u></u> (
nominal					s =	2.D	s = 1	3 cm	s = 2	0 cm		
	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L
(mm²)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)
1,5	14,50	0,16	14,50	0,12	14,50	0,21	14,50	0,40	14,50	0,44	14,50	0,17
2,5	8,87	0,15	8,87	0,12	8,87	0,20	8,87	0,39	8,87	0,42	8,87	0,16
4	5,52	0,14	5,52	0,12	5,52	0,20	5,52	0,37	5,52	0,40	5,52	0,16
6	3,69	0,13	3,69	0,11	3,69	0,19	3,69	0,35	3,69	0,39	3,69	0,15
10	2,19	0,13	2,19	0,10	2,19	0,18	2,19	0,34	2,19	0,37	2,19	0,14
16	1,38	0,12	1,38	0,10	1,38	0,17	1,38	0,32	1,38	0,35	1,38	0,13
25	0,87	0,11	0,87	0,10	0,87	0,17	0,87	0,30	0,87	0,34	0,87	0,13
35	0,63	0,11	0,63	0,09	0,63	0,16	0,63	0,29	0,63	0,32	0,63	0,13
50	0,46	0,11	0,46	0,09	0,46	0,16	0,46	0,28	0,46	0,31	0,46	0,13
70	0,32	0,10	0,32	0,09	0,32	0,16	0,32	0,27	0,32	0,30	0,32	0,12
95	0,23	0,10	0,23	0,09	0,23	0,15	0,23	0,25	0,23	0,29	0,23	0,12
120	0,19	0,10	0,19	0,09	0,18	0,15	0,18	0,25	0,18	0,28	0,19	0,12
150	0,15	0,10	0,15	0,09	0,15	0,15	0,15	0,24	0,15	0,27	0,15	0,12
185	0,12	0,10	0,12	0,09	0,12	0,15	0,12	0,23	0,12	0,26	0,12	0,12
240	0,09	0,10	0,09	0,09	0,09	0,15	0,09	0,22	0,09	0,25	0,09	0,12
300	0,08	0,10	-	-	0,07	0,15	0,07	0,21	0,07	0,24	0,08	0,11
400	0,06	0,10	-	-	0,06	0,15	0,06	0,20	0,06	0,24	0,06	0,11
500	0,05	0,09	-	-	0,05	0,15	0,05	0,19	0,05	0,22	0,05	0,11

Seção											20 CM	
nominal	s =	2.D	s = 1	3 cm	s = 2	0 cm				9	+40	
	Rca	X _L										
(mm²)	(Ω/km)	(Ω/km)										
1,5	14,50	0,23	14,50	0,42	14,50	0,45	14,50	0,16	14,50	0,12	14,50	0,44
2,5	8,87	0,22	8,87	0,40	8,87	0,44	8,87	0,15	8,87	0,12	8,87	0,43
4	5,52	0,21	5,52	0,39	5,52	0,42	5,52	0,14	5,52	0,12	5,52	0,41
6	3,69	0,20	3,69	0,37	3,69	0,40	3,69	0,13	3,69	0,11	3,69	0,39
10	2,19	0,20	2,19	0,36	2,19	0,39	2,19	0,13	2,19	0,10	2,19	0,38
16	1,38	0,19	1,38	0,34	1,38	0,37	1,38	0,12	1,38	0,10	1,38	0,36
25	0,87	0,18	0,87	0,32	0,87	0,35	0,87	0,11	0,87	0,10	0,87	0,35
35	0,63	0,18	0,63	0,31	0,63	0,34	0,63	0,11	0,63	0,09	0,63	0,33
50	0,46	0,18	0,46	0,30	0,46	0,33	0,46	0,11	0,46	0,09	0,46	0,32
70	0,32	0,17	0,32	0,29	0,32	0,32	0,32	0,10	0,32	0,09	0,32	0,31
95	0,23	0,17	0,23	0,27	0,23	0,30	0,23	0,10	0,23	0,09	0,23	0,30
120	0,18	0,17	0,18	0,26	0,18	0,30	0,19	0,10	0,19	0,09	0,18	0,29
150	0,15	0,17	0,15	0,26	0,15	0,29	0,15	0,10	0,15	0,09	0,15	0,28
185	0,12	0,17	0,12	0,25	0,12	0,28	0,12	0,10	0,12	0,09	0,12	0,27
240	0,09	0,17	0,09	0,24	0,09	0,27	0,09	0,10	0,10	0,09	0,09	0,26
300	0,07	0,17	0,07	0,23	0,07	0,26	0,08	0,10	-	-	0,07	0,25
400	0,06	0,17	0,06	0,22	0,06	0,25	0,06	0,10	-	-	0,06	0,24
500	0,05	0,16	0,05	0,21	0,05	0,24	0,05	0,09	-	-	0,05	0,23

Tabela 31 - Resistências Elétricas e Reatâncias Indutivas - Sintenax Flex (cobre) RESISTÊNCIAS ELÉTRICAS E REATÂNCIAS INDUTIVAS

Condutor de Cobre

Sintenax Flex

Frequência: 60 Hz • Rca: Resistência elétrica máxima do condutor em corrente alternada na temperatura de operação • X₁: Reatância Indutiva

Seção			(s = 2.D							
nominal					s =	2.D	s = 1	3 cm	s = 2	0 cm		
	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L
(mm²)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)
1,5	15,90	0,16	15,90	0,13	15,90	0,21	15,90	0,41	15,90	0,44	15,90	0,18
2,5	9,55	0,15	9,55	0,12	9,55	0,20	9,55	0,39	9,55	0,42	9,55	0,17
4	5,92	0,15	5,92	0,12	5,92	0,20	5,92	0,37	5,92	0,40	5,92	0,16
6	3,95	0,13	3,95	0,11	3,95	0,19	3,95	0,36	3,95	0,39	3,95	0,15
10	2,29	0,12	2,29	0,10	2,29	0,18	2,29	0,34	2,29	0,37	2,29	0,14
16	1,45	0,11	1,45	0,09	1,45	0,16	1,45	0,31	1,45	0,34	1,45	0,13
25	0,93	0,11	0,93	0,10	0,93	0,17	0,93	0,30	0,93	0,33	0,93	0,13
35	0,66	0,10	0,66	0,09	0,66	0,16	0,66	0,28	0,66	0,31	0,66	0,12
50	0,46	0,10	0,46	0,09	0,46	0,16	0,46	0,27	0,46	0,30	0,46	0,12
70	0,33	0,10	0,33	0,09	0,33	0,15	0,33	0,26	0,33	0,29	0,33	0,12
95	0,25	0,10	0,25	0,09	0,25	0,15	0,25	0,25	0,25	0,28	0,25	0,12
120	0,19	0,10	0,19	0,09	0,19	0,15	0,19	0,24	0,19	0,27	0,20	0,11
150	0,16	0,10	0,16	0,09	0,16	0,15	0,16	0,23	0,16	0,26	0,16	0,11
185	0,13	0,10	0,13	0,09	0,13	0,15	0,13	0,22	0,13	0,25	0,13	0,11
240	0,10	0,10	0,10	0,09	0,10	0,15	0,10	0,21	0,10	0,24	0,10	0,11
300	0,08	0,09	-	-	0,08	0,15	0,08	0,20	0,08	0,23	0,08	0,11
400	0,06	0,09	-	-	0,06	0,15	0,06	0,19	0,06	0,22	0,06	0,11
500	0,05	0,09	-	-	0,05	0,14	0,05	0,18	0,05	0,22	0,05	0,11

Seção nominal											20 CM	
	s = 2.D		s = 13 cm		s = 20 cm						+	
	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L
(mm²)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)
1,5	15,90	0,23	15,90	0,42	15,90	0,46	15,90	0,16	15,90	0,13	15,90	0,45
2,5	9,55	0,22	9,55	0,41	9,55	0,44	9,55	0,15	9,55	0,12	9,55	0,43
4	5,92	0,21	5,92	0,39	5,92	0,42	5,92	0,15	5,92	0,12	5,92	0,41
6	3,95	0,20	3,95	0,37	3,95	0,41	3,95	0,13	3,95	0,11	3,95	0,40
10	2,29	0,19	2,29	0,35	2,29	0,39	2,29	0,12	2,29	0,10	2,29	0,38
16	1,45	0,18	1,45	0,33	1,45	0,36	1,45	0,11	1,45	0,09	1,45	0,35
25	0,93	0,18	0,93	0,32	0,93	0,35	0,93	0,11	0,93	0,10	0,93	0,34
35	0,66	0,17	0,66	0,30	0,66	0,33	0,66	0,10	0,66	0,09	0,66	0,32
50	0,46	0,17	0,46	0,29	0,46	0,32	0,46	0,10	0,46	0,09	0,46	0,31
70	0,33	0,17	0,33	0,28	0,33	0,31	0,33	0,10	0,33	0,09	0,33	0,30
95	0,25	0,17	0,25	0,26	0,25	0,30	0,25	0,10	0,25	0,09	0,25	0,29
120	0,19	0,17	0,19	0,26	0,19	0,29	0,20	0,10	0,20	0,09	0,19	0,28
150	0,16	0,17	0,16	0,25	0,16	0,28	0,16	0,10	0,16	0,09	0,16	0,27
185	0,13	0,17	0,13	0,24	0,13	0,27	0,13	0,10	0,13	0,09	0,13	0,26
240	0,10	0,17	0,10	0,23	0,10	0,26	0,10	0,10	0,10	0,09	0,10	0,25
300	0,08	0,16	0,08	0,21	0,08	0,25	0,08	0,09	-	-	0,08	0,24
400	0,06	0,16	0,06	0,21	0,06	0,24	0,06	0,09	-	-	0,06	0,23
500	0,05	0,16	0,05	0,20	0,05	0,23	0,05	0,09	-	-	0,05	0,23

Tabela 32 - Resistências Elétricas e Reatâncias Indutivas - GSette Easy (cobre) e Afumex Flex (cobre) RESISTÊNCIAS ELÉTRICAS E REATÂNCIAS INDUTIVAS

Condutor de Cobre

GSette Easy e Afumex Flex

Frequência: 60 Hz • Rca: Resistência elétrica máxima do condutor em corrente alternada na temperatura de operação • X₁: Reatância Indutiva

	- 0 0 1											
Seção							<u></u> s	₽				
nominal					s =	2.D	s = 1	3 cm	s = 2	0 cm		
	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L
(mm²)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)
1,5	17,00	0,15	17,00	0,12	17,00	0,21	17,00	0,40	17,00	0,44	17,00	0,17
2,5	10,18	0,14	10,18	0,11	10,18	0,20	10,20	0,39	10,20	0,42	10,20	0,16
4	6,31	0,13	6,31	0,10	6,31	0,19	6,31	0,37	6,31	0,40	6,31	0,15
6	4,21	0,12	4,21	0,10	4,21	0,18	4,21	0,35	4,21	0,39	4,21	0,14
10	2,44	0,12	2,44	0,10	2,44	0,17	2,44	0,34	2,44	0,37	2,44	0,14
16	1,54	0,11	1,54	0,09	1,54	0,16	1,54	0,32	1,54	0,35	1,54	0,13
25	1,00	0,11	1,00	0,09	1,00	0,16	1,00	0,30	1,00	0,34	1,00	0,13
35	0,71	0,11	0,71	0,09	0,71	0,16	0,71	0,29	0,71	0,32	0,71	0,12
50	0,49	0,10	0,49	0,09	0,49	0,16	0,49	0,28	0,49	0,31	0,49	0,12
70	0,35	0,10	0,35	0,09	0,35	0,15	0,35	0,27	0,35	0,30	0,35	0,12
95	0,26	0,10	0,26	0,08	0,26	0,15	0,26	0,25	0,26	0,29	0,26	0,12
120	0,21	0,10	0,21	0,08	0,21	0,15	0,21	0,25	0,21	0,28	0,21	0,11
150	0,17	0,10	0,17	0,08	0,17	0,15	0,17	0,24	0,17	0,27	0,17	0,11
185	0,14	0,10	0,14	0,09	0,14	0,15	0,14	0,23	0,14	0,26	0,14	0,11
240	0,11	0,09	0,11	0,08	0,10	0,15	0,10	0,22	0,10	0,25	0,11	0,11
300	0,09	0,09	-	-	0,08	0,15	0,08	0,21	0,08	0,24	0,09	0,11
400	0,07	0,09	-	-	0,06	0,14	0,06	0,20	0,06	0,24	0,07	0,11
500	0,06	0,09	-	-	0,05	0,14	0,05	0,19	0,05	0,22	0,06	0,11

Seção	s = 2.D		<u>s</u>	s = 13 cm						20 CM 20 CM		
nominal	s =	2.D	s = 1	3 cm	s = 2	0 cm				<i></i>	+	
	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L
(mm²)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)
1,5	17,00	0,22	17,00	0,42	17,00	0,45	17,00	0,15	17,00	0,12	17,00	0,44
2,5	10,18	0,21	10,20	0,40	10,20	0,44	10,20	0,14	10,20	0,11	10,20	0,43
4	6,31	0,20	6,31	0,39	6,31	0,42	6,31	0,13	6,31	0,10	6,31	0,41
6	4,21	0,19	4,21	0,37	4,21	0,40	4,21	0,12	4,21	0,10	4,21	0,39
10	2,44	0,19	2,44	0,36	2,44	0,39	2,44	0,12	2,44	0,10	2,44	0,38
16	1,54	0,18	1,54	0,34	1,54	0,37	1,54	0,11	1,54	0,09	1,54	0,36
25	1,00	0,18	1,00	0,32	1,00	0,35	1,00	0,11	1,00	0,09	1,00	0,35
35	0,71	0,18	0,71	0,31	0,71	0,34	0,71	0,11	0,71	0,09	0,71	0,33
50	0,49	0,17	0,49	0,30	0,49	0,33	0,49	0,10	0,49	0,09	0,49	0,32
70	0,35	0,17	0,35	0,29	0,35	0,32	0,35	0,10	0,35	0,09	0,35	0,31
95	0,26	0,17	0,26	0,27	0,26	0,30	0,26	0,10	0,27	0,08	0,26	0,30
120	0,21	0,17	0,21	0,26	0,21	0,30	0,21	0,10	0,21	0,08	0,21	0,29
150	0,17	0,17	0,17	0,26	0,17	0,29	0,17	0,10	0,17	0,08	0,17	0,28
185	0,14	0,17	0,14	0,25	0,14	0,28	0,14	0,10	0,14	0,09	0,14	0,27
240	0,10	0,16	0,10	0,24	0,10	0,27	0,11	0,09	0,11	0,08	0,10	0,26
300	0,08	0,16	0,08	0,23	0,08	0,26	0,09	0,09	-	-	0,08	0,25
400	0,06	0,16	0,06	0,22	0,06	0,25	0,07	0,09	-	-	0,06	0,24
500	0,05	0,16	0,05	0,21	0,05	0,24	0,06	0,09	-	-	0,05	0,23

Tabela 33 - Resistências Elétricas e Reatâncias Indutivas - Voltenax (cobre) e Voltalene (cobre) RESISTÊNCIAS ELÉTRICAS E REATÂNCIAS INDUTIVAS

Condutor de Cobre

Voltenax e Voltalene

Frequência: 60 Hz • Rca: Resistência elétrica máxima do condutor em corrente alternada na temperatura de operação • X₁: Reatância Indutiva

Seção 			•				<u>s</u>	D				
nominal			Ver No	ota (1)	s =	2.D	s = 1	3 cm	s = 2	0 cm		
	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L
(mm²)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)
1,5	15,40	0,15	15,40	0,12	15,40	0,21	15,40	0,40	15,40	0,44	15,40	0,17
2,5	9,45	0,14	9,45	0,11	9,45	0,20	9,45	0,39	9,45	0,42	9,45	0,16
4	5,88	0,13	5,88	0,10	5,88	0,19	5,88	0,37	5,88	0,40	5,88	0,15
6	3,93	0,12	3,93	0,10	3,93	0,18	3,93	0,35	3,93	0,39	3,93	0,14
10	2,33	0,12	2,33	0,10	2,33	0,17	2,33	0,34	2,33	0,37	2,33	0,14
16	1,47	0,11	1,47	0,09	1,47	0,16	1,47	0,32	1,47	0,35	1,47	0,13
25	0,93	0,11	0,93	0,09	0,93	0,16	0,93	0,30	0,93	0,34	0,93	0,13
35	0,67	0,11	0,67	0,09	0,67	0,16	0,67	0,29	0,67	0,32	0,67	0,12
50	0,49	0,10	0,49	0,09	0,49	0,16	0,49	0,28	0,49	0,31	0,49	0,12
70	0,34	0,10	0,34	0,09	0,34	0,15	0,34	0,27	0,34	0,30	0,34	0,12
95	0,25	0,10	0,25	0,08	0,25	0,15	0,25	0,25	0,25	0,29	0,25	0,12
120	0,20	0,10	0,20	0,08	0,20	0,15	0,20	0,25	0,20	0,28	0,20	0,11
150	0,16	0,10	0,16	0,08	0,16	0,15	0,16	0,24	0,16	0,27	0,16	0,11
185	0,13	0,10	0,13	0,09	0,13	0,15	0,13	0,23	0,13	0,26	0,13	0,11
240	0,10	0,09	0,10	0,08	0,10	0,15	0,10	0,22	0,10	0,25	0,10	0,11
300	0,08	0,09	-	-	0,08	0,15	0,08	0,21	0,08	0,24	0,08	0,11
400	0,07	0,09	-	-	0,06	0,14	0,06	0,20	0,06	0,24	0,07	0,11
500	0,05	0,09	-	-	0,05	0,14	0,05	0,19	0,05	0,22	0,05	0,11

Seção	s = 2.D		<u>s</u>								20 CM	
nominal	s =	2.D	s = 1	3 cm	s = 2	0 cm			Ver No	ota (1)	+ •	
	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L
(mm²)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)
1,5	15,40	0,17	15,40	0,42	15,40	0,45	15,40	0,15	15,40	0,12	15,40	0,44
2,5	9,45	0,16	9,45	0,40	9,45	0,44	9,45	0,14	9,45	0,11	9,45	0,43
4	5,88	0,15	5,88	0,39	5,88	0,42	5,88	0,13	5,88	0,10	5,88	0,41
6	3,93	0,14	3,93	0,37	3,93	0,40	3,93	0,12	3,93	0,10	3,93	0,39
10	2,33	0,14	2,33	0,36	2,33	0,39	2,33	0,12	2,33	0,10	2,33	0,38
16	1,47	0,13	1,47	0,34	1,47	0,37	1,47	0,11	1,47	0,09	1,47	0,36
25	0,93	0,13	0,93	0,32	0,93	0,35	0,93	0,11	0,93	0,09	0,93	0,35
35	0,67	0,12	0,67	0,31	0,67	0,34	0,67	0,11	0,67	0,09	0,67	0,33
50	0,49	0,12	0,49	0,30	0,49	0,33	0,49	0,10	0,49	0,09	0,49	0,32
70	0,34	0,12	0,34	0,29	0,34	0,32	0,34	0,10	0,34	0,09	0,34	0,31
95	0,25	0,12	0,25	0,27	0,25	0,30	0,25	0,10	0,25	0,08	0,25	0,30
120	0,20	0,11	0,20	0,26	0,20	0,30	0,20	0,10	0,20	0,08	0,20	0,29
150	0,16	0,11	0,16	0,26	0,16	0,29	0,16	0,10	0,16	0,08	0,16	0,28
185	0,13	0,11	0,13	0,25	0,13	0,28	0,13	0,10	0,13	0,09	0,13	0,27
240	0,10	0,11	0,10	0,24	0,10	0,27	0,10	0,09	0,10	0,08	0,10	0,26
300	0,08	0,11	0,08	0,23	0,08	0,26	0,08	0,09	-	-	0,08	0,25
400	0,07	0,11	0,06	0,22	0,06	0,25	0,07	0,09	-	-	0,06	0,24
500	0,05	0,11	0,05	0,21	0,05	0,24	0,05	0,09	-	-	0,05	0,23

Tabela 34 - Resistências Elétricas e Reatâncias Indutivas - Superastic (alumínio) RESISTÊNCIAS ELÉTRICAS E REATÂNCIAS INDUTIVAS

Condutor de Alumínio

Superastic AL

Frequência: 60 Hz • Rca: Resistência elétrica máxima do condutor em corrente alternada na temperatura de operação • X_i: Reatância Indutiva

Seção	•									
nominal			s =	2.D	s = 1	3 cm	s = 2	0 cm		
	Rca	X _L								
(mm²)	(Ω/km)	(Ω/km)								
16	2,30	0,10	2,29	0,15	2,29	0,32	2,29	0,35	2,30	0,12
25	1,44	0,10	1,44	0,15	1,44	0,30	1,44	0,34	1,44	0,11
35	1,04	0,09	1,04	0,15	1,04	0,29	1,04	0,32	1,04	0,11
50	0,77	0,09	0,77	0,15	0,77	0,28	0,77	0,31	0,77	0,11
70	0,53	0,09	0,53	0,14	0,53	0,27	0,53	0,30	0,53	0,11
95	0,39	0,09	0,38	0,14	0,38	0,25	0,38	0,29	0,39	0,11
120	0,30	0,09	0,30	0,14	0,30	0,25	0,30	0,28	0,31	0,11
150	0,25	0,09	0,25	0,14	0,25	0,24	0,25	0,27	0,25	0,11
185	0,20	0,09	0,20	0,14	0,20	0,23	0,20	0,26	0,20	0,11
240	0,15	0,09	0,15	0,14	0,15	0,22	0,15	0,25	0,15	0,11
300	0,12	0,09	0,12	0,14	0,12	0,21	0,12	0,24	0,12	0,10
400	0,10	0,09	0,10	0,14	0,10	0,20	0,10	0,24	0,10	0,10
500	0,08	0,09	0,07	0,14	0,07	0,19	0,07	0,22	0,08	0,10

Seção								
nominal	s =	2.D	s = 1	3 cm	s = 2	0 cm		
	Rca	Χ _L	Rca	X _L	Rca	X _L	Rca	X _L
(mm²)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)
16	2,29	0,17	2,29	0,34	2,29	0,37	2,30	0,10
25	1,44	0,17	1,44	0,32	1,44	0,35	1,44	0,10
35	1,04	0,16	1,04	0,31	1,04	0,34	1,04	0,09
50	0,77	0,16	0,77	0,30	0,77	0,33	0,77	0,09
70	0,53	0,16	0,53	0,29	0,53	0,32	0,53	0,09
95	0,38	0,16	0,38	0,27	0,38	0,30	0,39	0,09
120	0,30	0,16	0,30	0,26	0,30	0,30	0,31	0,09
150	0,25	0,16	0,25	0,26	0,25	0,29	0,25	0,09
185	0,20	0,16	0,20	0,25	0,20	0,28	0,20	0,09
240	0,15	0,16	0,15	0,24	0,15	0,27	0,15	0,09
300	0,12	0,16	0,12	0,23	0,12	0,26	0,12	0,09
400	0,10	0,16	0,09	0,22	0,09	0,25	0,10	0,09
500	0,08	0,16	0,07	0,21	0,07	0,24	0,08	0,09

Tabela 35 - Resistências Elétricas e Reatâncias Indutivas - Sintenax (alumínio) RESISTÊNCIAS ELÉTRICAS E REATÂNCIAS INDUTIVAS

Condutor de Alumínio

Sintenax AL

Frequência: 60 Hz • Rca: Resistência elétrica máxima do condutor em corrente alternada na temperatura de operação • X₁: Reatância Indutiva

Seção nominal	•		•		s = 2.D							
Hommat								1				
	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L	Rca	Χ _L	Rca	X _L
(mm²)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)
16	2,29	0,12	2,29	0,10	2,29	0,17	2,29	0,32	2,29	0,35	2,29	0,13
25	1,44	0,11	1,44	0,10	1,44	0,17	1,44	0,30	1,44	0,34	1,44	0,13
35	1,04	0,11	1,04	0,09	1,04	0,16	1,04	0,29	1,04	0,32	1,04	0,13
50	0,77	0,11	0,77	0,09	0,77	0,16	0,77	0,28	0,77	0,31	0,77	0,13
70	0,53	0,10	0,53	0,09	0,53	0,16	0,53	0,27	0,53	0,30	0,53	0,12
95	0,39	0,10	0,39	0,09	0,38	0,15	0,38	0,25	0,38	0,29	0,39	0,12
120	0,30	0,10	0,30	0,09	0,30	0,15	0,30	0,25	0,30	0,28	0,30	0,12
150	0,25	0,10	0,25	0,09	0,25	0,15	0,25	0,24	0,25	0,27	0,25	0,12
185	0,20	0,10	0,20	0,09	0,20	0,15	0,20	0,23	0,20	0,26	0,20	0,12
240	0,15	0,10	0,15	0,09	0,15	0,15	0,15	0,22	0,15	0,25	0,15	0,12
300	0,12	0,10	0,12	0,09	0,12	0,15	0,12	0,21	0,12	0,24	0,12	0,11
400	0,10	0,10	0,10	0,09	0,10	0,15	0,09	0,20	0,09	0,24	0,10	0,11
500	0,08	0,09	0,08	0,09	0,07	0,15	0,07	0,19	0,07	0,22	0,08	0,11

Seção	s = 2.D										20 CM 20 CM	
nominal	s =	2.D	s = 1	3 cm	s = 2	0 cm				9	#@	
	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L	Rca	X _L
(mm²)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)
16	2,29	0,19	2,29	0,34	2,29	0,37	2,29	0,12	2,29	0,10	2,29	0,36
25	1,44	0,18	1,44	0,32	1,44	0,35	1,44	0,11	1,44	0,10	1,44	0,35
35	1,04	0,18	1,04	0,31	1,04	0,34	1,04	0,11	1,04	0,09	1,04	0,33
50	0,77	0,18	0,77	0,30	0,77	0,33	0,77	0,11	0,77	0,09	0,77	0,32
70	0,53	0,17	0,53	0,29	0,53	0,32	0,53	0,10	0,53	0,09	0,53	0,31
95	0,38	0,17	0,38	0,27	0,38	0,30	0,39	0,10	0,39	0,09	0,38	0,30
120	0,30	0,17	0,30	0,26	0,30	0,30	0,30	0,10	0,31	0,09	0,30	0,29
150	0,25	0,17	0,25	0,26	0,25	0,29	0,25	0,10	0,25	0,09	0,25	0,28
185	0,20	0,17	0,20	0,25	0,20	0,28	0,20	0,10	0,20	0,09	0,20	0,27
240	0,15	0,17	0,15	0,24	0,15	0,27	0,15	0,10	0,15	0,09	0,15	0,26
300	0,12	0,17	0,12	0,23	0,12	0,26	0,12	0,10	0,12	0,09	0,12	0,25
400	0,10	0,17	0,09	0,22	0,09	0,25	0,10	0,10	0,10	0,09	0,09	0,24
500	0,07	0,16	0,07	0,21	0,07	0,24	0,08	0,09	0,08	0,09	0,07	0,23

Tabela 36 - Resistências Elétricas e Reatâncias Indutivas - Voltenax (alumínio) e Voltalene (alumínio) RESISTÊNCIAS ELÉTRICAS E REATÂNCIAS INDUTIVAS

Condutor de Alumínio

Voltenax AL e Voltalene AL

Frequência: 60 Hz • Rca: Resistência elétrica máxima do condutor em corrente alternada na temperatura de operação • X₁: Reatância Indutiva

Seção nominal	•				s = 2.D							
HUHHHAL			Ver No	ota (1)	s =	2.D	s = 1	3 cm	s = 2	0 cm		
	Rca	X _L	Rca	X _L	Rca	\mathbf{X}_{L}	Rca	X _L	Rca	X _L	Rca	X _L
(mm²)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)
16	2,44	0,11	2,44	0,09	2,44	0,16	2,44	0,32	2,44	0,35	2,44	0,13
25	1,53	0,11	1,53	0,09	1,53	0,16	1,53	0,30	1,53	0,34	1,53	0,13
35	1,11	0,11	1,11	0,09	1,11	0,16	1,11	0,29	1,11	0,32	1,11	0,12
50	0,82	0,10	0,82	0,09	0,82	0,16	0,82	0,28	0,82	0,31	0,82	0,12
70	0,57	0,10	0,57	0,09	0,57	0,15	0,57	0,27	0,57	0,30	0,57	0,12
95	0,41	0,10	0,41	0,08	0,41	0,15	0,41	0,25	0,41	0,29	0,41	0,12
120	0,32	0,10	0,32	0,08	0,32	0,15	0,32	0,25	0,32	0,28	0,32	0,11
150	0,26	0,10	0,26	0,08	0,26	0,15	0,26	0,24	0,26	0,27	0,26	0,11
185	0,21	0,10	0,21	0,09	0,21	0,15	0,21	0,23	0,21	0,26	0,21	0,11
240	0,16	0,09	0,16	0,08	0,16	0,15	0,16	0,22	0,16	0,25	0,16	0,11
300	0,13	0,09	0,13	0,08	0,13	0,15	0,13	0,21	0,13	0,24	0,13	0,11
400	0,10	0,09	0,10	0,08	0,10	0,14	0,10	0,20	0,10	0,24	0,10	0,11
500	0,08	0,09	0,08	0,08	0,08	0,14	0,08	0,19	0,08	0,22	0,08	0,11

Seção											20 CM 20 CM	
nominal	s =	2.D	s = 1	3 cm	s = 2	0 cm			Ver No	ota (1)	1	
	Rca	X _L	Rca	X _L								
(mm²)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)								
16	2,44	0,18	2,44	0,34	2,44	0,37	2,44	0,11	2,44	0,09	2,44	0,36
25	1,53	0,18	1,53	0,32	1,53	0,35	1,53	0,11	1,53	0,09	1,53	0,35
35	1,11	0,18	1,11	0,31	1,11	0,34	1,11	0,11	1,11	0,09	1,11	0,33
50	0,82	0,17	0,82	0,30	0,82	0,33	0,82	0,10	0,82	0,09	0,82	0,32
70	0,57	0,17	0,57	0,29	0,57	0,32	0,57	0,10	0,57	0,09	0,57	0,31
95	0,41	0,17	0,41	0,27	0,41	0,30	0,41	0,10	0,41	0,08	0,41	0,30
120	0,32	0,17	0,32	0,26	0,32	0,30	0,32	0,10	0,32	0,08	0,32	0,29
150	0,26	0,17	0,26	0,26	0,26	0,29	0,26	0,10	0,26	0,08	0,26	0,28
185	0,21	0,17	0,21	0,25	0,21	0,28	0,21	0,10	0,21	0,09	0,21	0,27
240	0,16	0,16	0,16	0,24	0,16	0,27	0,16	0,09	0,16	0,08	0,16	0,26
300	0,13	0,16	0,13	0,23	0,13	0,26	0,13	0,09	0,13	0,08	0,13	0,25
400	0,10	0,16	0,10	0,22	0,10	0,25	0,10	0,09	0,10	0,08	0,10	0,24
500	0,08	0,16	0,08	0,21	0,08	0,24	0,08	0,09	0,08	0,08	0,08	0,23

Nota (1): Cabo Voltenax

7. Dimensionamento pela corrente de curto-circuito

A fórmula simplificada abaixo pode ser utilizada nas seguintes situações:

- Determinação da máxima corrente de curto-circuito permitida em um cabo, num certo tempo;
- Determinação da seção do condutor necessária para suportar uma particular condição de curto-circuito;
- Determinação do tempo máximo que um cabo pode funcionar com uma particular corrente de curto-circuito, sem danificar a isolação.

Baseia-se na energia térmica armazenada no condutor e no limite máximo de temperatura admitido pela isolação. Supõe-se que o intervalo de tempo da passagem da corrente de curto-circuito é relativamente pequeno (máximo 5 s), de forma que o calor desenvolvido no condutor fica todo ele contido no mesmo.

Geralmente, a temperatura no condutor no instante inicial de um curto-circuito não é precisamente conhecida, pois depende da carga do cabo e das condições ambientais. Por motivos de segurança, sugere-se adotar a máxima temperatura admissível no condutor em regime permanente como sendo a temperatura no instante inicial do curto-circuito.

$$S = \frac{I \cdot \sqrt{t}}{k}$$

S = seção do condutor (mm²)

I = valor eficaz da corrente de falta presumida, considerando falta direta (A)

t = tempo de atuação do seccionamento (abertura da proteção) - máximo de 5 s (s)

k = fator

Tabela 37 - Valores de k

	Superasti	c, Superastic Fle	x, Sintenax, Sint	tenax Flex	Afumex Green		GSette Easy, Voltalene,			
	≤ 300	mm²	> 300	mm²	Atume	x Green	Voltenax	, Afumex		
Material do	Temperatura									
Condutor	Inicial	Final	Inicial	Final	Inicial	Final	Inicial	Final		
	70°C	160 °C	70 °C	140 °C	70 °C	160 °C	90 °C	250 °C		
				Fat	or k					
Cobre	11	5	10	03	11	15	143 (*)			
Alumínio	7	6	6	8	76		94			

^(*) Condutor de cobre e conexões (emendas e terminais) soldadas com liga de estanho/chumbo, a temperatura fica limitada a cerca de 160°C para preservar a solda. Utilizar k = 100

7.1. CONDUTOR DE PROTEÇÃO (PE)

A seção do condutor de proteção deve ser dimensionada para suportar a corrente de falta presumida. Se o valor resultante desse dimensionamento for menor que o valor dado como mínimo, a seção mínima deve ser utilizada.

O dimensionamento é feito com a mesma expressão indicada acima.

Os valores de k são fornecidos nas tabelas seguintes para várias formas possíveis e usuais de condutor de proteção.

Tabela 38 - Fator k - Condutor de proteção isolado não incorporado a cabo multipolar e não enfeixado com outros cabos

		Isol	ação	
Material do condutor	P\	/C	EPR ou XLPE	LSHF/A
	≤300 mm²	>300 mm²	EPR OU ALPE	Г ЭПГ/А
Cobre	143	133	176 (*)	143
Alumínio	95	88	116	95
Aço	52	49	64	52

Temperatura inicial: 30°C • (*)Conexão soldada: k = 143

Temperatura final: PVC até 300 mm^2 : $160 ^{\circ}\text{C}$ • PVC > 300 mm^2 : $140 ^{\circ}\text{C}$

EPR e XLPE: 250°C • LSHF/A: 160°C

Tabela 39 - Fator k - Condutor de proteção nu em contato com a cobertura de cabo, mas não enfeixado com outros cabos

Material do condutor	Cobertura do cabo		
	PVC	Polietileno	SHF1
Cobre	159 (*)	138	151 (*)
Alumínio	105	91	100
Aço	58	50	55

Temperatura inicial: 30°C • (*)Conexão soldada: k = 143

Temperatura final: PVC: 200°C • Polietileno: 150°C • SHF1: 180°C

Tabela 40 - Fator k - Condutor de proteção constituído por veia de cabo multipolar ou enfeixado com outros cabos, ou condutores isolados

Material do condutor	Isolação				
	PVC		EPR ou XLPE	LSHF/A	
	≤300 mm²	>300 mm²	EPR OU ALPE	LSHF/A	
Cobre	115	103	143 (*)	115	
Alumínio	76	68	94	76	
Aço	42	37	52	42	

(*)Conexão soldada: k = 100

Temperatura inicial: 70°C para o PVC e LSHF/A • 90°C para o EPR e XLPE

Temperatura final: PVC até 300 mm²: 160°C • PVC > 300 mm²: 140°C • EPR e XLPE: 250°C • LSHF/A: 160°C

Tabela 41 - Fator k - Condutor de proteção constituído pela armação, capa metálica ou condutor concêntrico de um cabo

Material do condutor	Isolação			
	PVC	EPR ou XLPE		
Cobre	141 (*)	128 (*)		
Alumínio	93	85		
Chumbo	26	23		
Aço	51	46		

Temperatura inicial: 60° C para o PVC • 80° C para o EPR e XLPE

Temperatura final: 200°C para PVC, EPR ou XLPE

(*)Conexão soldada: k =122 PVC • k = 108 (EPR ou XLPE)

Tabela 42 - Fator k - Condutor de proteção nu onde não houver risco de que as temperaturas indicadas possam danificar qualquer material adjacente

	Temperatura inicial °C	Material do condutor					
Condições		Cobre		Alumínio		Aço	
		Fator k	Temperatura máxima °C	Fator k	Temperatura máxima °C	Fator k	Temperatura máxima °C
Visível e em áreas restritas	30	228 (*)	500	125	300	82	500
Condições normais	30	159 (*)	200	105	200	58	200
Risco de incêndio	30	138	150	91	150	50	150

^(*) k = 143 para conexões soldadas

Exemplo:

Corrente de curto presumida do sistema 10kA; Tempo de atuação da proteção 0,5 segundo; Condutor de Cobre; Cabo GSette Easy multipolar; Fator k =143;

$$S = \frac{I.\sqrt{t}}{k} \longrightarrow \frac{10.000.\sqrt{0.5}}{143}$$

 $S = 49.44 \, \text{mm}^2$

Conexões prensadas.

Portanto, um condutor de fase 50 mm², deve ser utilizado para atendimento do critério de C.C.

Para o condutor de proteção PE:

Supondo as mesmas condições acima e se:

A. condutor de proteção seja isolado não incorporado a cabo multipolar e não enfeixado com outros cabos. Condutor de Cobre

Fator *k*= 176:

 $S = 40.17 \, \text{mm}^2 = > 50 \, \text{mm}^2$

B. Condutor de proteção nu em contato com a cobertura de cabo, mas não enfeixado com outros cabos.

Condutor de Cobre

Fator k = 159;

 $S = 44,47 \, \text{mm}^2 = > 50 \, \text{mm}^2$

C. Condutor de proteção constituído por veia de cabo multipolar ou enfeixado com outros cabos, ou condutores isolados. Condutor de Cobre

Fator k = 143:

 $S = 49,44 \text{ mm}^2 = > 50 \text{ mm}^2$

D. Condutor de proteção constituído pela armação, capa metálica ou condutor concêntrico de um cabo. Condutor de Cobre

Fator k = 128;

 $S = 55,24 \text{ mm}^2 = 70 \text{ mm}^2$

E. Condutor de proteção nu onde não houver risco de que as temperaturas indicadas possam danificar qualquer material adjacente.

Condutor de Cobre

Visível e em áreas restritas

Fator k = 228;

 $S = 31,01 \text{ mm}^2 = > 35 \text{ mm}^2$

7.2. GRÁFICOS DA CAPACIDADE DE CORRENTE DE CURTO-CIRCUITO

Os gráficos a seguir foram desenvolvidos com base na formula simplificada apresentada neste capítulo representando de forma visual os valores de corrente de curto-circuito (kA) em função da seção dos condutores (mm²) e do tempo (1 ciclo = 1/60s = 16,66 ms).

CAPACIDADE DE CURTO-CIRCUITO (condutores ≤300mm²)

Superastic, Superastic Flex, Sintenax, Sintenax Flex, Afumex Green Condutor de Cobre - Conexões Prensadas

Seção nominal do Condutor (mm²)

CAPACIDADE DE CURTO-CIRCUITO

GSette Easy, Voltalene, Voltenax, Afumex Flex Condutor de Cobre - Conexões Prensadas

Seção nominal do Condutor (mm²)

CAPACIDADE DE CURTO-CIRCUITO (condutores ≤300mm²)

Superastic, Sintenax Condutor de Alumínio

CAPACIDADE DE CURTO-CIRCUITO

Voltenax, Voltalene Condutor de Alumínio

8. Sobrecarga

Este critério depende dos métodos de proteção utilizados na instalação.

Como regra geral, os condutores isolados ou os cabos, não devem operar com correntes acima das máximas capacidades de condução de corrente em regime permanente. Quando alguma sobrecarga ocorre no circuito, ele deve ser interrompido pelo dispositivo de proteção, em um tempo relativamente curto, evitando que os condutores atinjam as temperaturas de sobrecarga indicadas na tabela abaixo.

	Temperatura Máxima no Condutor (°C)		
Isolação	Regime Permanente	Regime Sobrecarga	
PVC e LSHF/A	70	100	
EPR e XLPE	90	130	

Nota: a operação em regime de sobrecarga nas temperaturas indicadas acima não pode superar 100h durante 12 meses consecutivos, nem 500h durante tempo de uso do cabo.

Os cabos quando submetidos a essas temperaturas de sobrecarga - correntes cerca de 25% superiores à máxima capacidade em regime permanente - têm sua vida útil reduzida em certo grau, em relação à vida prevista em regime normal.

9. Proteção contra choques elétricos (quando aplicável)

As condições de proteção contra choques elétricos são tratadas em 5.1.2.2.4.2 - esquema de aterramento TN da NBR 5410.

10. Utilização de mais de um cabo por fase em paralelo

No dimensionamento térmico de cabos isolados para a transmissão de potência em corrente alternada, um aspecto importante que deve ser analisado diz respeito ao arranjo físico dos cabos no caso de mais de um cabo por fase. A corrente de fase pode não se repartir igualmente entre os condutores dos cabos, chegando a valores muito desiguais se estiverem em posições desfavoráveis.

Essa desigualdade de correntes deve-se ao fato de que uma grande parte da impedância dos cabos - quanto maior for a seção do condutor - provem de suas reatâncias própria e mútuas. Assim, o distanciamento e a posição de cada cabo em relação aos demais têm efeito relevante sobre a repartição de correntes.

Normalmente os cabos são dimensionados para transportarem a corrente nominal do sistema, às vezes com uma certa folga. Mas se o desequilíbrio for grande pode ocorrer que alguns operem com correntes muito acima da máxima admissível (e outros bem abaixo), pondo em risco sua vida útil, como também de todo o sistema, dependendo das condições de instalação.

Quando vários cabos forem conectados em paralelo por fase, eles devem ser do mesmo tipo, mesma seção e de comprimentos iguais.

A impedância é composta pela resistência e reatância indutiva (própria e mútua). Para todos os condutores de uma mesma fase, as resistências são praticamente iguais, uma vez que o material do condutor e a seção normalmente são iguais como também o comprimento. As reatâncias próprias também são iguais, pois só dependem da construção dos cabos. A reatância mútua, no entanto, depende da posição relativa dos cabos e das distâncias entre eles.

Por exemplo, sistema trifásico com três condutores por fase.

Rca = resistência Xp = reatância indutiva própria Xm1, Xm2, Xm3 = reatâncias indutivas mútuas $i_A = i_{A1} + i_{A2} + i_{A3}$ Se Xm1 = Xm2 = Xm3, então $i_{A1} = i_{A2} = i_{A3}$

Para que as correntes nos condutores de mesma fase sejam iguais ou próximas, as reatâncias (indutâncias) mútuas devem ser iguais ou parecidas.

Uma forma de se conseguir isso é agrupando os cabos, com o número de grupos igual ao número de cabos por fase e cada grupo deve conter um cabo de cada fase.

Quando se utilizam cabos multipolares, pelo fato dos condutores do cabo já estarem agrupados, basta fazer com que cada cabo contenha um condutor de cada fase, para que a diferença de correntes entre os condutores de mesma fase fique dentro do aceitável, sem qualquer prejuízo ao cabo nem ao sistema.

Com os cabos unipolares existem mais opções. Pode-se agrupá-los de forma semelhante aos tripolares, quer dizer em trifólio ou em plano de forma contígua ou não.

A utilização de cabos unipolares permite instalá-los separados uns dos outros, termicamente mais desacoplados, aumentando sua capacidade de condução de corrente. Para que isso possa ser feito sem que haja desequilíbrios significativos nas correntes dos cabos, seguem algumas recomendações de disposições.

Genericamente pode-se dizer que existe igual repartição de correntes entre os cabos de uma mesma fase, qualquer que seja o número deles, se eles resultarem dispostos em posição simétrica com relação a um ponto central fictício da disposição geométrica do arranjo dos cabos. Exemplos:

a. Todos os cabos do sistema estiverem localizados nos vértices de um polígono regular, cujo número de lados é igual ao número total de condutores;

b. Todos os cabos estiverem localizados nos vértices de três polígonos regulares concêntricos (um para cada fase) de raios de circunferências envolventes diferentes. O número de lados é o mesmo para os três polígonos, sendo igual ao número de cabos por fase. Para dois cabos por fase o polígono degenera-se, resultando em disposição muito conhecida e utilizada.

As sugestões de a e b por razões de ordem prática não são utilizadas (exceto aquela com dois cabos por fase do item b), embora as do item a) sejam mais factíveis - em banco de dutos, por exemplo.

Alguns exemplos de arranjo de sistemas trifásicos contendo vários cabos unipolares por fase (fases 1, 2, 3). A disposição em trifólio, com as três fases em cada um, é sempre aceitável.

Dois cabos por fase

Quatro cabos por fase

Seis cabos por fase

Nota: como forma de verificar que as recomendações descritas neste capítulo foram seguidas, sugere-se, após a instalação, a medição das correntes elétricas em cada cabo de cada fase as quais devem estar balanceadas, ou seja, próximas ou iguais.

11. INSTALAÇÃO EM CONDUTOS METÁLICOS FECHADOS*.

Condutores de circuito de corrente alternada, CA, instalados em condutos fechados de material metálico, em especial se for ferromagnético, devem ser arranjados de forma que todos os condutores do circuito - fase, neutro e proteção - fiquem contidos no mesmo conduto. No caso de condutos ferrosos, os efeitos eletromagnéticos indesejados e mesmo impeditivos, tais como as correntes parasitas, serão minimizados com esse procedimento.

(*) Eletroduto, eletrocalha, canaleta fechada, perfilado com tampa e moldura.

Conduto metálico (principalmente se ferromagnético)

Conduto metálico (principalmente se ferromagnético)

O Grupo Prysmian reserva-se no direito de modificar sem aviso prévio as características técnicas, pesos e dimensões apresentadas neste catálogo, sempre respeitando os valores nas normas citadas. A Prysmian não se responsabiliza por danos pessoais ou materiais decorrentes do uso inadequado e/ou negligente das informações contidas neste catálogo. Recomendamos que consulte um profissional habilitado para o correto dimensionamento do seu projeto. Imagens meramente ilustrativas.

DESCARTE: ao final de sua utilização, o produto deverá ser descartado de acordo com a legislação ambiental vigente em seu País/Estado.

PRYSMIAN GROUP

Prysmian Cabos e Sistemas do Brasil S.A. Avenida Pirelli 1.100 18.103-085 Sorocaba - SP Brasil

Central de Relacionamento +551535000530 vendas@prysmiangroup.com

Atendimento Técnico webcabos@prysmiangroup.com

Versão 9/2020

prysmiangroup.com.br