Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_şt-nat* BAREM DE EVALUARE ȘI DE NOTARE

Test 3

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	Rația progresiei geometrice $(b_n)_{n\geq 1}$ este $q=2$	3 p
	$b_3 = 1 \cdot 2^2 = 4$	2 p
2.	$3x+1<7 \Leftrightarrow x<2$	2p
	Cum x este număr natural, obținem $x = 0$ sau $x = 1$	3 p
3.	$x^2 + 8 = (x+2)^2$	2p
	x = 1, care convine	3 p
4.	$C_4^2 = \frac{4!}{2! \cdot 2!} =$	3p
	= 6	2 p
5.	$m_{AB} = 1$, $m_{CD} = 1 - a$, unde a este număr real	2p
	$m_{AB} = m_{CD} \Leftrightarrow 1 - a = 1 \Leftrightarrow a = 0$	3 p
6.	$\cos B = \frac{AB}{BC} \Leftrightarrow \frac{1}{2} = \frac{10}{BC}$	3p
	BC = 20	2 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 2 & 1 \\ 2 & 3 \end{vmatrix} = 2 \cdot 3 - 2 \cdot 1 =$	3p
	=6-2=4	2 p
b)	$A(x)A(y) = \begin{pmatrix} 1+x+y+xy+2xy & y+xy+x+2xy \\ 2x+2xy+2y+4xy & 2xy+1+2x+2y+4xy \end{pmatrix} =$	2 p
	$= \begin{pmatrix} 1 + (x+y+3xy) & x+y+3xy \\ 2(x+y+3xy) & 1+2(x+y+3xy) \end{pmatrix} = A(x+y+3xy), \text{ pentru orice numere reale } x \text{ si } y$	3 p
c)	$A(a+a+3a\cdot a) = A(5) \Leftrightarrow 3a^2 + 2a - 5 = 0$	3p
	$a = -\frac{5}{3} \text{ sau } a = 1$	2 p
2.a)	x * y = -xy + 5x + 5y - 25 + 5 =	3 p
	=-x(y-5)+5(y-5)+5=-(x-5)(y-5)+5, pentru orice numere reale x şi y	2 p
b)	$-(x-5)^2 + 5 \ge x \Leftrightarrow (x-5)(x-4) \le 0$	3 p
	$x \in [4,5]$	2 p
c)	x*5 = x și $5*y = y$, unde x și y sunt numere reale	2p
	1*(-2)*3*(-4)*5**2019*(-2020) = ((1*(-2)*3*(-4))*5)*(-6)**2019*(-2020) = = 5*((-6)**2019*(-2020)) = 5	3 p

(30 de puncte) SUBIECTUL al III-lea

1.a)	$f'(x) = 2(x+2)e^{-x} + (x+2)^2 e^{-x} \cdot (-1) =$	3 p
	$=(-x^2-2x)e^{-x}=-x(x+2)e^{-x}, x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x+2)^2 e^{-x} = \lim_{x \to +\infty} \frac{(x+2)^2}{e^x} = \lim_{x \to +\infty} \frac{2(x+2)}{e^x} = \lim_{x \to +\infty} \frac{2}{e^x} = 0$	3p
	Dreapta de ecuație $y = 0$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2 p
c)	$f'(x) \ge 0$, pentru orice $x \in [-2,0] \Rightarrow f$ este crescătoare pe $[-2,0]$ și $f'(x) \le 0$, pentru orice	
	$x \in [0, +\infty) \Rightarrow f$ este descrescătoare pe $[0, +\infty)$ și, cum $f(0) = 4$, obținem $f(x) \le 4$,	3p
	pentru orice $x \in [-2, +\infty)$	
	$x, y \in [-2, +\infty) \Rightarrow 0 \le f(x) \le 4$ și $0 \le f(y) \le 4 \Rightarrow 0 \le f(x) f(y) \le 16 \Rightarrow 0 \le \sqrt{f(x) f(y)} \le 4$	
	de unde obţinem $0 \le \frac{(x+2)(y+2)}{\sqrt{e^{x+y}}} \le 4$, pentru orice $x, y \in [-2, +\infty)$	2 p
2.a)	$\int_{0}^{1} \frac{1}{e^{x}} f(x) dx = \int_{0}^{1} x^{3} dx = \frac{x^{4}}{4} \Big _{0}^{1} =$	3 p
	$= \frac{1}{4} - 0 = \frac{1}{4}$	2p
b)	$\int_{1}^{2} \frac{1}{x^{2}} f(x) dx = \int_{1}^{2} xe^{x} dx = (x-1)e^{x} \Big _{1}^{2} =$	3 p
	$=e^2$	2p
c)	$F: \mathbb{R} \to \mathbb{R}$ este o primitivă a funcției f , deci $F'(x) = f(x) \Rightarrow F''(x) = x^2(x+3)e^x$, $x \in \mathbb{R}$	2p
	$F''(x) < 0$, pentru orice $x \in (-\infty, -3)$, $F''(x) > 0$, pentru orice $x \in (-3, 0)$ și pentru orice	3р
	$x \in (0, +\infty)$, deci funcția F are un singur punct de inflexiune	~P