H6: roosterdefecten					
6.1 inleiding					
tracer experiment	radioactieven worden gedetecteerd wanneer ze vervallen > sturen hoogenergetische straling uit > we tracen dit volgens:				
	1: dunne laag van radioactieve atomen aangebracht op een kristal > atomen in dunne laag zijn van zelfde soort als atomen vh kristal				
	2: kristal met dunne laag wordt op hoge temp verwarmd				
	3: dunne laag wordt stapsgewijs vh kristal verwijderd > atoomlaag per atoomlaag				
	4: meet de radioactiviteit van elke laag > bereken met de halfwaardetijd vd tracer en de tijd die sinds de afzetting is verstreken, hoeveel traceratomen zich in de laag bevinden > concentratieprofiel vh radioactief isotoop wordt bepaald				
	>> tracer atomen diffunderen in het materiaal				
roosterdefecten	 verschijnsel waarbij dichtste stapeling niet wordt nagegaan in een kristal zitten altijd enkele atomen/ionen niet exact op de juiste positie deze defecten geven eigenschappen die een 'perfect' kristal niet zou hebben 				
types roosterdefecten	1: puntdefecten: vacatures, interstitiëlen en vreemde atomen/ionen 2: lijndefecten/dislocaties 3: oppervlak				
	6.2 puntdefecten: vacatures en interstitiëlen				
6.2.1 evenwichtsaantal vacat	ures in een mono-atomair kristal				
def: vacatures	= onbezette roosterplaatsen				
def: interstitiëlen	= atomen/ionen op een plaats die geen roosterplaats is				
	>> bestaan hiervan maakt diffusie mogelijk				
bewijs bestaan vacatures	bekijk een schikking van atomen A > de entropie van dit systeem is gegeven door: $S = k \ln W$ met k de cte van Boltzmann en W de aantal mogelijke schikkingen				
	We willen zien of vacatures thermodynamisch verantwoord zijn > bekijk N roosterplaatsen, waar n atomen worden weggehaald				
	deze atomen worden op het opp vh kristal geplaatster zijn nu n+N roosterplaatsende vrije energie is:				
	F = U - TS = U aangezien voor deze situatie W=1 en dus de entropie nul bedraagt				
	> na het aanmaken vd vacatures is de vrije energie: $F' = U + n\Delta E_v - kT \ln W$				
	waarbij $W = C_{N+n}^n = \frac{(N+n)!}{n!N!}$				
	met ΔE_v = energie nodig om een vacature te vormen				

bewijs	bestaan	vacatures
--------	---------	-----------

we kunnen InW berekenen als:

$$\ln W = \ln C_{N+n}^{n} = \ln \left[\frac{(N+n)!}{n!N!} \right] = \ln \left[(N+n)! \right] - \ln \left[n! \right] - \ln \left[N! \right]$$

met de benaderingsformule van Sterling kan dit genoteerd worden als:

$$\ln W = (N+n) \ln (N+n) - (N+n) - n \ln n + n - N \ln N + N$$

$$= (N+n)\ln(N+n) - n\ln n - N\ln N$$

dus:

$$F' = U + n\Delta E_v - kT \left[(N+n) \ln(N+n) - n \ln n - N \ln N \right]$$

de vrije energieverandering ΔF=F'-F per roosterplaats is dan:

$$\Delta F/N = x \Delta E_v - kT \left[\ln \left(1 + x \right) + x \ln \left(\frac{1 + x}{x} \right) \right]$$

met x=n/N

> bij cte temp heeft deze functie een minimum bij een negatieve waarde van vrij energie maw: een bepaalde hoeveelheid vacatures leidt tot lagere vrije energie

> de evenwichtsconcentratie aan vacatures wordt op basis van dit minimum berekend:

$$\frac{\partial \Delta F}{\partial n} = \Delta E_v - kT \ln \frac{n+N}{n} = 0$$

$$\ln \frac{n}{N+n} = -\frac{\Delta E_v}{kT}$$

$$\frac{n}{n+N} = e^{-\Delta E_v/kT}$$
als $n \ll N$
$$\frac{n}{N} = e^{-\Delta E_v/kT}$$

>> hiermee kunnen we een schatting vh aantal vacatures maken

Α

evenwichtsconcentratie van interstitiëlen

n_i atomen worden uit de bulk vh kristal weggenomen

ie: er worden ni vacatures gemaakt

> er zijn N!/((N-n_i)!n_i!) keuzemogelijkheden

> deze n_i worden dan op N_i interstitiële posities geplaatst

> er zijn $N_i!/((N_i-n_i)!n_i!)$ manier om dit te doen

> met ΔE_{fr} de energie om een Frenkel-paar te maken wordt de uitdrukking:

$$\frac{n_i}{\sqrt{NN_i}} = e^{-\Delta E_{fr}/2kT}$$

de verhouding vacatures tov interstitiëlen is dan:

$$\frac{n/N}{n_t/N} = \frac{n}{n_t} = \exp\left[\left(\frac{\Delta E_{fi}}{2} - \Delta E_v\right)/kT\right]$$

6.2.2 puntdefecten in verbindingen

puntdefecten in verbindingen

In verbindingen is de concentratie aan vacatures typisch veel hoger

> echter: er moet altijd elektroneutraliteit zijn

> wordt verzekerd door e of ionen die verschillende valentietoestanden hebben

vb: in AB-type zoals NaCl moet het aantal kationvacatures gelijk zijn aan het aantal anionvacatures en dergelijke paren wordt dan

$$\frac{n}{N} \propto e^{-\Delta E_p/2kT}$$

met ΔE_p de vormingsenergie voor een defectenpaar

verder: elk tweewaardig ion geeft aanleiding tot een vacature

6.3 dislocaties

6.3.1 glijding

glijding

bij vervorming ve kristal hebben we een plastisch en elastisch gebied:

> plastisch = omkeerbaar elastisch = onomkeerbaar

Nu: glijdlijnen zijn treden die op het opp vh kristal verschijnen bij plastische vervorming

- > aantal vergroot naarmate de vervorming vergroot
- > parallel aan elkaar, gescheiden door de volgende set glijdlijnen
- > glijding gebeurt in een welbepaalde kristallografische richting nl: die vd dichtstgestapelde richting waarvoor de component van F het grootst is

glijding theoretisch

beschouw twee aanliggende (001)-vlakken die we de glijdvlakken noemen

> de afstand ertussen is a

de afstand tss de atomen in één vlak is b

verplaats het bovenste vlak een afstand x tov het onderste

- > kracht moet uitgeoefend worden
- > zorgt voor een schuifspanning σ:

$$\Delta y = \frac{1}{\mu} \ \sigma \cdot y_0$$

met σ =F/A de schuifspanning en μ = glijmodulus

Nu: de betrekking tss σ en x heeft een periodiek karakter

- $> \sigma$ moet nul worden voor x=0,b/2,b,...
- > stabiele en labiele evenwichtsposities komen hiermee overeen
- > het verband wordt gegeven door:

$$\sigma = \sigma_m \sin(2\pi x/b)$$

en dus voor kleine verplaatsingen:

$$\sigma \approx \sigma_m 2\pi x/b$$

uit de definitie vd glijmodulus geldt er:

$$x = \frac{1}{\mu}\sigma\iota$$

uit de combinatie van deze twee vgln kunnen we $\sigma_{\!A}$ berekenen:

$$\sigma_A = \frac{b}{a} \frac{\mu}{2\pi}$$

- >> bij ruwe benadering kunnen we stellen dat a=b
- > dan is de glijdsterkte gelijk aan de glijmodulus gedeeld door 2π

6.3.2 definitie van de types dislocaties

0.3.2 definitie van de types dislocaties			
types dislocaties	1: randdislocaties 2: schroefdisclocaties 3: dislocatiering 4: prismatische dislocatiering		
1: randdislocaties	bekijk een kristal opgebouwd uit elementaire kubusjes met zijde a > maak een snede ABCD volgens een netvlak > verplaats het rechterdeel vd snede over een afstand a > er ontstaat een spie in de materie > er is een half vlak aanwezig in de materie > noem deze lijn de dislocatielijn		

2: schroefdislocatie	neem opnieuw ABCD > verplaats beide helften tov elkaar > dit vormt één schroefoppervlak			
3: dislocatiering	Neem ABCD volledig in het kristal gele > voer een verplaatsing uit zoals in de > wordt begrensd door twee schroef-	afbeelding	ocaties	
		A I I C		
4: prismatische dislocatiering	dislocatiering waarbij de verplaatsing	ipv parallel aan Al	BCD, loodrecht wo	rdt uitgevoerd
6.3.3 Burgers-circuit en Burgersve	ctor			
Burgersvectoren	Bekijk een kristal met schroef- en rand > we tekenen gesloten circuits rond e > indien deze circuits op een identiek dan zijn ze niet meer gesloten We moeten vectoren toevoegen om d	lk van hen en één e manier in een po	erfect kristal herha	
	> noem deze vectoren Burgersvectore > staat: - loodrecht op de dislocatielij - evenwijdig aan de dislocatie > indien de dislocatielijn schuin staat Dan kan deze ontbonden worden in	n ve randdislocatio dijn ve schroefdislo tov de dislocatieli	ocatie ijn	ienten
6.3.4 beweging door glijding				
herordening van atomen	bekijk twee randdislocaties in O ₁ en O > stand vd dislocatielijn is een labiel e > wanneer dit wordt verbroken heroi ie: de dislocatielijn beweegt en wor > er komen treden op het opp	venwicht rdenen de atomen		
	De beweging vd dislocatielijn is progre ie: op ieder ogenblik vd beweging bev	vegen maar een b	kl	eine afstand
	Verder: glijding is enkel mogelijk in vla	akken waarin de B	urgersvector geleg	gen is

6.3.5 aantonen van dislocatie	s		
etsen	Bekijk een rooster met een dislocatie > op die plaats zullen etsmiddelen sneller aangetast worden dan op andere plaatsen > er ontstaan etsputten > bekijk deze etsputten en je vindt de dislocaties		
belang dislocatiedichtheid	Bekijk halfgeleiders > dislocaties hebben negatieve invloed op de elektrische eigenschappen vd halfgeleider dislocaties bevorderen het diffunderen vd onzuiverheden		
6.3.6 korrelgrenzen	·		
korrelgrenzen	bekijk twee kubisch primitieve roosters die over een hoek θ gedraaid zijn tov elkaar > we kunnen een continue verbinding maken tss de roosters > doe dit via evenwijdig gespatieerde randdislocaties Zei D de afstand tss twee opeenvolgende dislocaties > dan geldt voor kleine hoeken θ=D/b, met b de burgersvector		
6.3.7 de oorsprong van disloc	aties		
oorsprong van dislocaties	dislocaties in een kristal zijn niet in thermodynamisch evenwicht > het is dus mogelijk om een perfect kristal te vormen > vb: whiskers = kristallen met doorsnede 1µm en lengte van enkele cm echter: het aanraken vh kristal kan al genoeg zijn om dislocaties op te wekken		