

ГЕНЕРАЦИЯ ИЗОБРАЖЕНИЙ ДЛЯ АНАЛИЗА УСТОЙЧИВОСТИ НЕЙРОННЫХ СЕТЕЙ В ЗАДАЧЕ КЛАССИФИКАЦИИ

Студент 535 группы | Клиентов Г.А.

Научные руководители:

д. ф.-м. н., профессор | Голубцов П.В.

д. м.-м. н., профессор РАН | Дьяконов А.Г.

Adversarial attack на примере

 $+.007 \times$

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$

"nematode" 8.2% confidence

 $x + \epsilon sign(\nabla_{x}J(\theta, x, y))$ "gibbon"

99.3 % confidence

"panda"
57.7% confidence

 \boldsymbol{x}

Можем ли мы подобрать изображение, которое бы относилось к любому классу?

Способ генерации изображения

Фиксируем веса модели

- В качестве параметров для оптимизации используются значения пикселей самого изображения
- Батч собираем из всего набора масок (размер батча равен количеству классов)

Используемые модели

Несколько SOTA моделей, предобученных на ImageNet-1K

Размер искомого изображения – 3x64x64 (RGB)

Количество классов – от 2 до 62 с шагом 8

Количество эпох – до 5000

Loss-функция – CrossEntropyLoss

Оптимизатор – SGD c learning rate=0.1

Используемые модели

Модель	Acc@1	Acc@5	Params	GFLOPS
ResNet-50	80.9 %	95.4 %	25.6M	4.09
VGG-16	71.6 %	90.4 %	138.4M	15.47
EfficientNet_B4	83.3 %	96.6 %	19.3M	4.39
AlexNet	56.5 %	79.0 %	61.1M	0.71
GoogleNet	69.8 %	89.5 %	6.6M	1.5
MobileNet_v3_Small	67.7 %	87.4 %	2.5M	0.06

Исходное изображение

Скрыта часть номер 5

Уменьшаем рецептивное поле модели, из-за чего она классифицирует изображение только по немаскированной части

ResNet-50

VGG-16

EfficientNet-B4

MobileNet-V3-Small

AlexNet

GoogleNet

Исходное изображение

Скрыта часть номер 5

ResNet-50

VGG-16

EfficientNet-B4

MobileNet-V3-Small

AlexNet

GoogleNet

ResNet-50

EfficientNet-B4

MobileNet-V3-Small

AlexNet

GoogleNet

AlexNet

GoogleNet

Какие выводы можно сделать?

Модели были использованы в задаче, на которой они не тренировались. Однако EfficientNet показала хороший результат

Результаты AlexNet обусловлены её плохим качеством на оригинальной задаче классификации изображений

Видно, что в моделях, в которых используется архитектура только на свертках (без учета глубины) – разделение на классы довольно четкое

Примеры генерируемого изображения

Изображение не несет какого-либо смысла для человеческого восприятия и имеет вид белого шума. Изображения получены в экспериментах с количеством классов равным 62.

ResNet-50 (маска из равных квадратов)

ResNet-50 (маска из горизонтальных полос)

Теоретическая интерпретация

- Представим изображение как объект в линейном пространстве (все множество изображений гиперкуб со стороной 1)
- При применении масок мы получаем объекты из некоторой окрестности универсального изображения
- Внутри этой окрестности содержатся объекты, которые модель переводит в любой класс из заданного набора

Пример – при применении горизонтальной маски с количеством классов = 64, относительная разность норм для маскированных изображений не более 1.6%. И в этом шаре содержатся объекты всех 64 классов.

Иллюстрация

В данном случае разделяющие гиперплоскости пересекаются в некоторой точке — в её окрестности есть любой класс

Здесь разделяющие гиперплоскости НЕ пересекаются – нет окрестности, в которой есть объекты любого класса

Основные итоги работы

Разработан алгоритм для генерации универсальных изображений, которые при применении различных масок имеют разные классы на выходе модели

Алгоритм был применен на 6 моделей SOTA для задачи Image Classification

Такие исследования могут помочь в теоретических исследованиях работы нейронных сетей (о том, как именно они работают изнутри)

