1 The Space and Time of Relativity

- $\bullet \ \vec{u} = \vec{u}' + \vec{v}$
- Newton's Laws are valid in one reference frame, they are also valid in any frame that moves with constant velocity relative to the first.
- Inertial Frame: A reference frame that is not accelerating.
- Postulates of relativity:
 - (1) If S is an inertial frame and if a second frame S' moves with constant velocity relative to S, then S' is also and inertial frame.
 - (2) In all inertial frames, light travels through the vacuum with the same speed, c = 299,792,458 m/s in any direction.
- Time dilation: $t = \gamma t_0 \ge t_0$, $\gamma = \frac{1}{\sqrt{1-\beta^2}} \ge 1$, $\beta = \frac{v}{c}$, "A moving clock is observed to run slow"
- Proper Time (t_0) : Time interval measured between two events occurring in the same location.
- Length Contraction: $l = \frac{l_0}{\gamma} \le l_0$, $\gamma = \frac{1}{\sqrt{1-\beta^2}} \ge 1$, $\beta = \frac{v}{c}$, "A moving objected is observed to be contracted"
- Proper Length (l_0) : Length of an object in it's inertial rest frame.
- Transformations:

Galilean	$Galilean^{-1}$	Lorentz	$Lorentz^{-1}$
x' = x - vt	x = x' + vt	$x' = \gamma(x - vt)$	$x = \gamma(x' + vt)$
y' = y	y' = y	y' = y	y' = y
z'=z	z'=z	z'=z	z'=z
t'=t	t=t'	$t' = \gamma \left(t - \frac{vx}{c^2} \right)$	$t = \gamma \left(t' + \frac{vx}{c^2} \right)$

• The Velocity Addition Formula:

$$u'_{x} = \frac{u_{x} - v}{1 - \frac{u_{x}v}{c^{2}}} \qquad \qquad u'_{y} = \frac{u_{y}}{\gamma(1 - \frac{u_{x}v}{c^{2}})} \qquad \qquad u'_{z} = \frac{u_{z}}{\gamma(1 - \frac{u_{x}v}{c^{2}})}$$

- Spacetime Interval: $(\Delta s)^2 = (c\Delta t)^2 (\Delta x)^2 (\Delta y)^2 (\Delta z)^2$
- The Doppler Effect: $f_{obs} = \sqrt{\frac{1+\beta}{1-\beta}} f_{sce}$ (approaching), $f_{obs} = \sqrt{\frac{1-\beta}{1+\beta}} f_{sce}$ (receding). $\beta = \frac{v}{c} = \frac{f_{obs}^2 f_{sce}^2}{f_{obs}^2 + f_{sce}^2}$

2 Relativistic Mechanics

- Proper Mass: Mass of an object in its inertial rest frame.
- Relativistic Momentum: $\vec{p} = \frac{m\vec{u}}{\sqrt{1 \frac{u^2}{c^2}}} = \gamma m\vec{u}$
- Moving Total Energy: $E = \frac{mc^2}{\sqrt{1 \frac{u^2}{c^2}}} = \gamma mc^2$
- Rest Total Energy: $E = mc^2$

- Moving Energy Breakdown: $E = mc^2 + K$, $K = E mc^2 = (\gamma 1)mc^2$
- Pythagorean Relation: $E^2 = (pc)^2 + (mc^2)^2$
- Conversion of Mass to Energy:
 - (1) Fly apart: $\Delta M = M (m_1 + m_2), \ \Delta M c^2 = K_1 + K_2$
 - (2) Bind together: $\Delta M = (m_1 + m_2) M$, $\Delta M c^2 = E_{Binding}$
- Lorentz Force: $\vec{F} = q(\mathcal{E} + \vec{u} \times \vec{B})$, $Radius = \frac{p}{qB}$
- Massless Particles (m = 0): E = pc, $\beta = 1$ or u = c

3 Atoms

- Atomic Number Z: the number of electrons in a neutral atom = the number of protons in nucleus.
- Mass Number A: (number of protons) + (number of neutrons)
- A.M.U u: $\frac{1}{12}$ (mass of one neutral ^{12}C atom)
- Mass of atom with mass number $A \cong Au$
- Avagadro's Number N_A : (number of atoms in 12 grams of ^{12}C) = 6.022×10^{23}
- Ideal gas law: $pV = nRT = Nk_BT$, N = number of molecules, $k_B = \frac{R}{N_A} = 1.38 \times 10^{-23} [J/K]$

4 Quantization of Light

- Planck: Energy of light varies with frequency and a constant: E = hf
- Photoelectric Effect:
 - (1) Stopping Potential: $V_s e = K_{max}$
 - (2) If the intensity of the incident light on a metal plate is increased, the number of ejected electrons increases, but their kinetic energy does not change at all.
 - (3) If the frequency f of the incident light is reduced below a certain critical frequency f_0 , no electrons are ejected, no matter how intense the light may be.
 - (4) Work Function: $K_{max} = hf \phi$
- Compton Effect: $\Delta \lambda = \lambda \lambda_0 = \frac{h}{mc}(1 \cos(\theta))$
- Particle Wave Duality: E = hf and $p = \frac{h}{\lambda}$

5 Quantization of Atomic Energy Levels

- Absorption spectrum: graph that shows which wavelengths are absorbed by a material
- Emission spectrum: graph that shows which wavelengths are emitted from a material
- The Balmer-Rydberg Formula:
 - (1) $\frac{1}{\lambda} = R(\frac{1}{n'^2} \frac{1}{n^2})$, (n > n'), both integers)
 - (2) $E_{\lambda} = hcR(\frac{1}{n'^2} \frac{1}{n^2}), (n > n', \text{ both integers})$
- The Bohr Model:
 - (1) $E = K + U = \frac{1}{2}U = -\frac{1}{2}\frac{ke^2}{r}$, r can have range of $0 < r < \infty$, E can have range of $-\infty < E < 0$
 - (2) Angular Momentum is quantized: $L = n\hbar$, (n = 1, 2, 3, ...)
 - (3) Allowed Radii: $r = n^2 a_B$, (n = 1, 2, 3, ...)
 - (4) Bohr Radius: $a_B = \frac{\hbar^2}{ke^2m}$
 - (5) Rydberg Energy: $E_R=hcR=\frac{ke^2}{2a_B}=\frac{m(ke^2)^2}{2\hbar^2}=13.6eV$
 - (6) Allowed Energies: $E_n = -\frac{E_R}{n^2}$
 - (7) Lyman Series: n' = 1, Balmer Series: n' = 2, Paschen Series: n' = 3
- Hydrogen-Like Ions:
 - (1) Allowed Radii: $r=n^2\frac{\hbar^2}{Zke^2m}=n^2\frac{a_B}{Z}$
 - (2) Reduced Mass: $\mu = \frac{m_e}{1 + \frac{m_e}{m_{erg}}} \rightarrow E_R = \frac{\mu (ke^2)^{\circ 0}}{2\hbar^2}$
 - (3) Allowed Energies: $E_n = -Z^2 \frac{E_R}{n^2}$, may or may not need reduced mass E_R

6 Matter Waves

- De
Broglie's Hypothesis: $E=hf=\hbar\omega,\,p=\frac{p}{\lambda}=\hbar k$
- (Probability number of electrons in dV at \vec{r}) $\propto [\Psi(\vec{r},t)]^2 dV$
- $\Psi = \Psi_{real} + \Psi_{imag}$, $|\Psi| = \sqrt{\Psi_{real}^2 + \Psi_{imag}^2}$
- $|\Psi(\vec{r},t)|^2 dV = P(\text{finding particle in } dV \text{ at } \vec{r})$
- $|\Psi(\vec{r},t)|^2 = P(\text{finding particle at } \vec{r})$
- Sinusoidal Waves:
 - (1) $y(x,t) = Asin(2\pi(\frac{x}{\lambda} + \frac{t}{T})) = Asin(kx \omega t)$
 - (2) Wavelength: λ , Wave Number: $k = \frac{2\pi}{\lambda}$, Period: T, Frequency: $f = \frac{1}{T}$, Angular Frequency: $\omega = 2\pi f = \frac{2\pi}{T}$
 - (3) $v = \frac{\lambda}{T} = \lambda f = \frac{\omega}{k}$
- Wave Packets and Fourier Analysis:

- (1) Fourier Series: $f(x) = \sum_{n=0}^{\infty} A_n \cos\left(\frac{2\pi n}{\lambda}x\right), A_n = \frac{2}{\pi n} \sin\left(\frac{\pi a n}{\lambda}\right)$
- (2) Fourier Integral: $f(x) = \int A(k)\cos(kx)dk$
- (3) Uncertainty Principles: $\Delta x \Delta k \geq \frac{1}{2}$, $\Delta t \Delta \omega \geq \frac{1}{2}$
- Heisenburg Uncertainty Principles: $\Delta x \Delta p \geq \frac{\hbar}{2}, \ \Delta t \Delta E \geq \frac{\hbar}{2}, \ \Delta p = \Delta v m$
- Wave Velocity: $v_{pack} = \frac{d\omega}{dk}$

7 The Schrodinger Equation in One Dimension

- Standing waves: if a is the length of the wire, then $\lambda = \frac{2a}{n}$ where n = 1, 2, 3... The ends of this string are fixed.
- Standing waves in quantum mechanics (Stationary States):
 - (1) Classical Standing wave: $\Psi(x,t) = A\sin(kx)\cos(\omega t) = \psi(x)\cos(\omega t) = \psi(x)e^{-i\omega t}$
 - (2) $|\Psi(x,t)|^2 = |\psi(x)|^2$
- Particle in a rigid box (No Schrodinger):
 - (1) Allowed Energies: $E_n = n^2 \frac{\pi^2 \hbar^2}{2ma^2} = n^2 E_1, n = 1, 2, 3, ...$
 - (2) Ground State Energy: $E_1 = \frac{\pi^2 \hbar^2}{2ma^2}$
- Time Independant Schrödinger Equation: $\frac{d^2\phi}{dx^2} = \frac{2m}{\hbar^2}[U(x) E]\psi$
- Particle in a rigid box (With Schrodinger):
 - (1) $\psi(x) = \sqrt{\frac{2}{a}} sin(\frac{n\pi x}{a})$
 - (2) Normalization Constraint: $\int_{-\infty}^{\infty} |\psi(x)|^2 dx = 1$
 - (3) Expectation Value: $\langle x \rangle = \frac{2}{a} \int_0^a x \sin^2\left(\frac{\pi x}{a}\right) dx$
- The Free Particle:
 - (1) $\Psi(x,t) = \psi(x)e^{-i\omega t} = Ce^{i(kx-\omega t)} + De^{-i(kx+\omega t)}$
 - (2) This is a superposition of two travelling waves, one moving to the right (with coefficient C) and the other moving to the left (with Coefficient D). If we choose the coefficient D = 0, then (1) represents a particle with definite momentum $\hbar k$ to the right; if we choose the coefficient C = 0, then (1) represents a particle with definite momentum $\hbar k$ to the left.
- The Nonrigid Box:

(1)

$$U(x) = \begin{cases} 0, & 0 \le x \le a \\ U_0, & x < 0 \text{ and } x > a \end{cases}$$

(2)

$$\psi(x) = \begin{cases} Ce^{\alpha x}, & x < 0\\ Fsin(kx) + Gcos(kx)\\ Be^{-\alpha x}, & x > a \end{cases}$$

December 11, 2015

- (3) The parts of the piecewise function must be continuous and differentiable.
- Simple Harmonic Oscillator: $E_n = (n + \frac{1}{2})\hbar\omega_c$
- Tunneling Penetration: $\alpha = \sqrt{\frac{2m(U_0 E)}{\hbar^2}}$, (Probability of Tunneling) = $e^{-2\alpha L}$
- Time Dependant Schrodinger Equation: $i\hbar \frac{\partial}{\partial t} \Psi(x,t) = \left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + U(x)\right) \Psi(x,t)$

8 The Three Dimensional Schrodinger Equation

- 3DSE: $\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} = \frac{2M}{\hbar^2} [U E] \psi$
- 2D square box:
 - (1) 2DSE: $\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = \frac{2M}{\hbar^2} [U E] \psi$
 - (2) Setup:

$$U(x) = \begin{cases} 0, & 0 \le x \le a \text{ and } 0 \le y \le a \\ \infty, & \text{Otherwise} \end{cases}$$

(3) Complete wave function:

$$\psi(x,y) = X(x)Y(y) = B\sin(\frac{n_x\pi}{a}x)C\sin(\frac{n_y\pi}{a}y) = A\sin(k_xx)\sin(k_yy) = \left(\frac{2}{a}\right)\sin(k_xx)\sin(k_yy)$$

- (4) Allowed Energies: $E = E_{n_x,n_y} = \frac{\hbar^2 \pi^2}{2Ma^2} (n_x^2 + n_y^2) = E_0(n_x^2 + n_y^2), E_0 = \frac{\hbar^2 \pi^2}{2Ma^2}$
- (5) 2D Probability: $|\psi(x,y)|^2 = A^2 sin^2 \left(\frac{\pi x}{a}\right) sin^2 \left(\frac{\pi y}{a}\right)$
- Two Dimensional Central Force problem:
 - (1) Solution is of the form: $\psi(r,\phi) = R(r)\Phi(\phi) = R(r)e^{im\phi}$
 - (2) 2DSE in polar form: $\frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} = \frac{2M}{\hbar^2} [U E] \psi$
 - (3) Differential Equations from 2DSE in polar form:

$$\Phi''(\phi) = -m^2 \Phi(\phi)$$

$$R'' + \frac{R'}{r} - \left[\frac{m^2}{r^2} + \frac{2M}{\hbar^2}(U - E)\right]R = 0$$

- (4) $\Phi(\phi) = e^{im\phi}, m = 0, \pm 1, \pm 2, ...$
- (5) $L = m\hbar$
- Three Dimensional Central Force Problem
 - (1) Solution is of the form: $\psi(r,\phi) = R(r)\Phi(\phi)\Theta(\theta) = R(r)\Theta_{l,m}e^{im\phi}$
 - (2) 3DSE in polar form: $\frac{1}{r} \frac{\partial^2 r \psi}{\partial r^2} + \frac{1}{r^2 sin(\theta)} \frac{\partial}{\partial \theta} \left(sin(\theta) \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 sin^2(\theta)} \frac{\partial^2 \psi}{\partial \theta^2} = \frac{2M}{\hbar^2} [U E] \psi$

(3) Differential Equations from 3DSE in polar form:

$$\Phi''(\phi) = -m^2 \Phi(\phi)$$

$$\frac{1}{\sin(\theta)} \frac{\partial}{\partial t heta} \left(\sin(\theta) \frac{\partial \Theta}{\partial \theta} \right) + \left(k - \frac{m^2}{\sin^2(\theta)} \right) \Theta = 0$$

$$\frac{\partial^2}{\partial r^2} (rR) = \frac{2M}{\hbar^2} \left[U(r) + \frac{k\hbar^2}{2Mr^2} - E \right] (rR)$$

- (4) $\Phi(\phi) = e^{im\phi}, m = 0, \pm 1, \pm 2, \dots$
- (5) $L_Z = m\hbar, m = l, l 1, ...l$
- (6) m gives the angular momentum around the z-axis
- (7) l given the magnitude of the angular momentum $|L|=\sqrt{l(l+1)}\hbar$
- The Energy Levels of the Hydrogen Atom:
 - (1) Allowable Energies: $E = -\frac{E_R}{n^2}$
 - (2) Choose n. n creates allowable values for $l, l < n, l \in \mathbb{Z}$. l creates allowable values for m, $|m| \le l, m, l \in \mathbb{Z}$.
 - (3) Code Letters for $l\colon$ s 0, p 1, d 2, f 3, g 4, ...
 - (4) Degeneracy without spin m_s is n^2
- Spin:
 - (1) Spin quantum number: $s = \mathbb{N} * \frac{1}{2}$
 - (2) s determines the magnitude of the spin, $S = \frac{h}{2\pi} \sqrt{s(s+1)}$
 - (3) m_s determines the spin around the z-axis. $S_z=m_s\hbar$
 - (4) Degeneracy with spin $m_s = 2n^2$
 - (3) Total Angular Momentum: J = L + S