Population Principal Components

- Result 8.1: Let Σ be the covariance matrix of $X'=(X_1,X_2,...,X_p)$ Let Σ have eigen-pairs $(\lambda_1,e_1),(\lambda_2,e_2),...,(\lambda_p,e_p)$ where $\lambda_1>\lambda_2>...>\lambda_p>0$ Then the i-th principal component is given by $Y_i=e_i'X=e_{i1}X_1+e_{i2}X_2+...+e_{ip}X_p$ With these, $Var(Y_i)=e_i'\Sigma e_i=\lambda_i$, $Cov(Y_i,Y_k)=e_i'\Sigma e_k=0$
- Result 6.2: Let $X'=(X_1, X_2, ..., X_p)$ have covariance matrix Σ , with eigen-pairs $(\lambda_1, e_1), (\lambda_2, e_2), ..., (\lambda_p, e_p)$ Where $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_p$. Let $Y_1 = e_1'X$, $Y_2 = e_2'X$, ..., $Y_p = e_p'X$. Then $U_{11} + U_{22} + ... + U_{nn} = \sum_{i=1}^{p} Var(X_i) = \lambda_1 + \lambda_2 + ... + \lambda_p = \sum_{i=1}^{p} Var(Y_i)$.

 Proof; $U_{11} + U_{12} + ... + U_{nn} = tr(\Sigma) = tr(P \land P') = tr(\Lambda) = \lambda_1 + \lambda_2 + ... + \lambda_p$
- Result 8.3: If $Y_1 = e_1'X$, $Y_2 = e_2'X$... $Y_p = e_p'X$ are principal components

 Then $P(Y_i, X_k) = \frac{e_i k J \lambda_i}{\sqrt{\sigma_{kk}}}$ are coefficients between the Components Y_i and X_k Proof: $P(Y_i, X_k) = \frac{cov(Y_i, X_k)}{\sqrt{V_{ar}(X_k)}} = \frac{\lambda_i e_i k}{\sqrt{J_{ik}}} = \frac{e_i k J \lambda_i}{\sqrt{\sigma_{kk}}}$

Remark: Coefficients and correlations are both important.

Principal Components from Standardized Variables

· Standardized variable.
$$Z_1 = \frac{X_1 - M_1}{\sqrt{\sigma_{11}}}$$
, $Z_2 = \frac{X_2 - M_2}{\sqrt{\sigma_{22}}}$, ..., $Z_p = \frac{X_p - M_p}{\sqrt{\sigma_{pp}}}$

And
$$Cov(z) = V^{-1/2} \sum V^{-1/2} = p$$
 is the correlation matrix of X

Result 8.4 The ith principal component of standardized variables $Z'=(Z_1, Z_2, ...Z_p)$ with Cov(Z)=P is given by $Y_i=e_i'V^{-1/2}(X-\mu)$.

Moreover,
$$\sum_{i=1}^{p} Var(Y_i) = \sum_{i=1}^{p} Var(Z_i) = p$$
 and $P(Y_i, Z_k) = e_{ik} J \overline{\Lambda}_i$

- Remark: Proportion of variance due to k-th principal component = $\frac{\lambda k}{p}$ Principal Components of Σ and P are different.

Special cases:
$$P = \begin{pmatrix} 1 & P & P \\ P & 1 & P \\ P & P \end{pmatrix}$$
, then $\lambda_1 = (+(p-1)P, e_1' = (\frac{1}{|P|}, \frac{1}{|P|}, ..., \frac{1}{|P|})$
 $\lambda_2, ..., \lambda_p = 1-P$, $e_2', ..., e_p' = (\frac{1}{|A|-2i}, ..., \frac{-(i-1)}{|A|-2i}, o...)$
explained proportion $= \frac{\lambda_1}{P} = P + \frac{1-P}{P}$

Principal Components for Samples

· Sample Covariance:
$$S = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})(X_i - \overline{X})^T$$

If S has eigen-pairs $(\hat{\lambda}_1, \hat{e}_1), (\hat{\lambda}_2, \hat{e}_2), \dots, (\hat{\lambda}_p, \hat{e}_p)$, then the i-th component will be given by $\hat{\gamma}_1 = \hat{e}_1' x = \hat{e}_1 x_1 + \hat{e}_1 x_2 + \dots + \hat{e}_1 p x_p$

If $\hat{\lambda}_1 > \hat{\lambda}_2 > \cdots > \hat{\lambda}_p$, sample variance $(\hat{y}_k) = \hat{\lambda}_k$ sample covariance $(\hat{y}_i, \hat{y}_k) = 0$

Total sample variance = $\sum_{i=1}^{P} s_{ii} = \hat{\lambda}_{i} + \hat{\lambda}_{2} + \cdots + \hat{\lambda}_{p}$ Correlation $\hat{\Gamma}(\hat{y}_{i}, X_{k}) = \frac{\hat{e}_{ik} \sqrt{\chi}_{i}}{\sqrt{s_{kk}}}$

Remark: If $\hat{y}_i = \hat{e}_i'(x_i - \bar{x})$ is centralized, then \hat{y}_i is contralized at 0. $\frac{1}{\hat{y}_i} = \frac{1}{n} \sum_{i=1}^n \hat{e}_i'(x_j - \bar{x}) = \frac{1}{n} \hat{e}_i'(\sum_{j=1}^n (x_j - \bar{x})) = \frac{1}{n} \hat{e}_i! \cdot 0 = 0$

Sample principal components are not either invariant with respect to changes in scale.