

Description

The VSM5N15 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 150V, I_D = 5.2A$ $R_{DS(ON)} < 44m\Omega @ V_{GS} = 10V$ (Typ: $31m\Omega$)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Low gate to drain charge to reduce switching losses

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

SOP-8

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM5N15-S8	VSM5N15	SOP-8	Ø330mm	12mm	4000 units

Absolute Maximum Ratings (T_A=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	150	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	5.2	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	3.7	Α	
Pulsed Drain Current(Note 1)	I _{DM}	42	А	
Maximum Power Dissipation	P _D	3.5	W	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	$^{\circ}$	

Thermal Characteristic

Thermal Resistance,Junction-to-Ambient Note 2)	R _{0JA}	35.7	°C/W
--	------------------	------	------

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	BV _{DSS} V _{GS} =0V I _D =250µA		170	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =150V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_{D}=250\mu A$	2.5	3.2	4.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =5.2A	-	31	44	mΩ
Forward Transconductance	G FS	V _{DS} =50V,I _D =5.2A	12	-	-	S
Dynamic Characteristics (Note4)			•			•
Input Capacitance	C _{lss}	\/ -25\/\/ -0\/	-	1700	-	PF
Output Capacitance	Coss	V_{DS} =25V, V_{GS} =0V, F=1.0MHz	-	190	-	PF
Reverse Transfer Capacitance	C _{rss}	r-1.0lvinz	-	90	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}	V _{DD} =75V,I _D =3.1A	-	15	-	nS
Turn-on Rise Time	t _r		-	13	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{GEN} =6.5 Ω	-	26	-	nS
Turn-Off Fall Time	t _f		-	14	-	nS
Total Gate Charge	Qg	\/ -75\/ -2.44	-	35.8	-	nC
Gate-Source Charge	Q _{gs}	$V_{DS}=75V,I_{D}=3.1A,$ $V_{GS}=10V$	-	7.5	-	nC
Gate-Drain Charge	Q_{gd}	V GS-10 V	-	13	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =3.1A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	2.7	А
Reverse Recovery Time	trr	T _J = 25°C, I _F = 3.1A,	-	50	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs	-	140	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production.

Test Circuit

1) E_{AS} test Circuits

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Vds Drain-Source Voltage (V)

Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Vds Drain-Source Voltage (V)

Figure 7 Capacitance vs Vds

T_J-Junction Temperature(°C)

Figure 9 BV_{DSS} vs Junction Temperature

Figure 8 Safe Operation Area

Figure 10 V_{GS(th)} vs Junction Temperatur

Figure 11 Normalized Maximum Transient Thermal Impedance