Logistics Research Papers Classification

By Iffan Kepan

Table of contents

OIntroduction

02

Methodology

Overview of the problem and the project's objectives.

Processes and techniques used to conduct the research.

03 Summary

Key findings from models and future development.

01

Introduction

Do you ever struggle with finding documents?

Life is better when...

Problem Statement

66

Students face significant difficulty in finding literature reviews or research papers from their seniors, as there is no categorization of research work, and all papers are stored in a single folder.

What is the criteria to classify?

02

Methodology

Data Collection

Students

The data comes from logistics bachelor's degree students.

Language

All documents are written in Thai.

Dataset

The dataset includes a total of 340 files.

Size

Each file contains an average of 6 pages.

Category Distribution

- Warehouse and Inventory Management is the most topic with 102 papers (30% of the total 340 files).
- While After Sales Service has the fewest papers with only 15.
- Train/Test with 70%/30%

Flow of Process

Tokenization

Used two Thai tokenizers:

Newmm, WangchanBERTa

Model Training

Compared 4 models:

Neural Network, SVM,

Gradient Boosting, Naive Bayes

ฉัน | รัก | การอ่าน | หนังสือ

Raw Data

Plain text from Research paper

TF-IDF Vectorization

Tested different parameters:

max features: 5000, 7000, None

max df: 0.9, 0.8

Evaluation

Measured performance using Accuracy

Performance Comparison

Newmm performs better than **WangchanBERTa** in many models except SVM where both have the same score.

Comparison by Tokenizer

Performance Comparison (2)

Comparison by Max DF

Constraining **Max DF** to **0.9** marginally improves **Neural Network** performance, but has no significant impact on other models.

Comparison by Max Features

Neural Network benefits most from constraining **Max Features** to **5000**, while other models remain unaffected.

Model Evaluation

- Neural Network performs the best, with an accuracy of 0.68
- Other models like SVM (0.51),
 Gradient Boosting (0.49), and Naive
 Bayes (0.44) show lower accuracies.

03 Summary

Key Findings

Accuracy

71.57%

Best Combination

- Model: Neural Network
- Tokenizer: Newmm Tokenizer
- max_features = 5000
- $max_df = 0.9$

Best Performance

- Import-Export (92%)
- Procurement and Sourcing (89%)
- Warehouse and Inventory Management (84%)

Challenges

- After Sales Service (20%)
- Others (38%)
- Manufacturing and Production (44%)

Future Development and Recommendations

End-to-end pipeline automates the entire process, from data collection to final output:

- Categorization
- Summarization
- Analysis
- Recommender System

Thank you