DSCI561: Regression I

Lecture 4: November 27, 2017

Gabriela Cohen Freue Department of Statistics, UBC

Review from lecture 3

- Analyze the output of lm() in relation with the mathematical formulation of the model
- Linear models with more than one categorical variable
- By default, R uses the "reference-treatment" parametrization in `lm()`
- We can test other hypotheses with "contrast"

2 categorical variables

age (2 levels) and FIREPLACE (2 levels)

$$Y = X\alpha + \varepsilon$$

age_factor	FIREPLACÊ	assessment_k		1 0 0	0]
С	N N	390 541	$\left[\begin{array}{c}Y_{CN1}\\Y_{CN2}\\.\end{array}\right]$	$\begin{array}{cccc} \vdots & \vdots & \vdots \\ 1 & 0 & 0 \end{array}$	$\begin{array}{c c} \vdots \\ 0 \\ \hline \\ \text{CY} \end{array} \qquad \begin{array}{c c} \varepsilon_{CN1} \\ \varepsilon_{CN2} \\ \vdots \\ \end{array}$
C	N 	364	$egin{array}{c c} \vdots \\ Y_{CY1} \\ \vdots \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 0 \\ \vdots \\ \theta \end{bmatrix}$ $\begin{bmatrix} \varepsilon_{CY1} \\ \vdots \end{bmatrix}$
С	Y	536	Y_{ON1}	$= \begin{bmatrix} 1 & 1 & 0 \\ \hline 1 & 0 & 1 \\ \hline & & & & & & & & & & & & & & & & & &$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
C	Y	449	Y_{OY1}	1 0 1	$\begin{bmatrix} \vdots \\ 0 \end{bmatrix}$ $\begin{bmatrix} 10^{Y} \end{bmatrix}$ \vdots ε_{OY1}
0	N N	355 396	$\left[\begin{array}{c} : \\ Y_{OY145} \end{array}\right]$		$\begin{bmatrix} \vdots \\ \vdots \\ 1 \end{bmatrix}$
0	Υ	354		interaction	FIREPLACE in C
0	Υ	363		interaction	C vs O without FIREPLACE

Main effect

```
#Two-way ANOVA table
summary(aov(assessment_k~age_factor*FIREPLACE,data=dat.2))
##
                              Sum Sq Mean Sq F value
                                                       Pr(>F)
                        Df
                             2536324 2536324 57.352 3.03e-13 ***
## age factor
## FTREPLACE
                                              11.516 0.000766 ***
                              509278 509278
## age factor:FIREPLACE
                                             0.445 0.505095
                               19684
                                       19684
## Residuals
                        364 16097397
                                       44224
                                                                     same test
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
## Signif. codes:
                                                                        but
#Compare the 2-way and the 1-way ANOVA tables
                                                                     different
summary(aov(assessment_k~age_factor,data=dat.2))
                                                                       MSW
##
                Df
                     Sum Sa Mean Sa F value
                                             Pr(>F)
## age factor
                   2536324 2536324
                                      55.83 5.86e-13 ***
## Residuals
               366 16626359
                              45427
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

Note that both the residuals sum of squares and the degrees of freedom are different! Part of the variation is explained by "FIREPLACE" in the 2-way ANOVA

ANOVA vs Regression: only interaction is the same

```
#Two-way ANOVA table
summary(aov(assessment k~age factor*FIREPLACE,data=dat.2))
##
                              Sum Sq Mean Sq F value
                                                      Pr(>F)
                          1 2536324 2536324 57.352 3.03e-13 ***
## age_factor
                                     509278 11.516 0.000766 ***
## FIREPLACE
                              509278
## age factor:FIREPLACE
                                       19684
                                               0.445 0.505095
                               19684
## Residuals
                                       44224
                        364 16097397
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lm(assessment k~age factor*FIREPLACE,data=dat.2))
##
## Call:
## lm(formula = assessment_k ~ age_factor * FIREPLACE, data = dat.2)
##
## Residuals:
      Min
               10 Median
                               30
                                      Max
## -446.84 -93.74 -44.05
                            21.56 2314.16
##
## Coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                           469.20
                                       54.30 8.641
                                                      <2e-16 ***
## age_factor0
                          -110.94
                                       59.69 -1.859
                                                      0.0639
## FIREPLACEY
                           124.64
                                       57.21
                                              2.178
                                                      0.0300 *
## age factorO:FIREPLACEY
                                                      0.5051
                           -43.20
                                       64.75 -0.667
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 210.3 on 364 degrees of freedom
## Multiple R-squared: 0.16, Adjusted R-squared: 0.153
## F-statistic: 23.1 on 3 and 364 DF, p-value: 1.033e-13
```

Age-effect (ignoring fireplace-effect)

$$H_0: \mu_C = \mu_O$$

Note: aov() gives sequential type I SS. Thus, the first row ignores the fireplace-effect. The second row, tests the fireplace-effect, on average over age.

Conditional effect: C vs O without FIREPLACE

$$H_0: \tau_O = 0$$

$$H_0: \tau_O = 0$$
$$H_0: \mu_{ON} = \mu_{CN}$$

Interaction effect

```
#Two-way ANOVA table
summary(aov(assessment k~age factor*FIREPLACE,data=dat.2))
##
                               Sum Sq Mean Sq F value Pr(>F)
                          Df
                              2536324 2536324 57.352 3.03e-13 ***
## age factor
## FIREPLACE
                               509278 509278 11.516 0.000766 ***
## age factor:FIREPLACE
                                19684
                                         19684
                                                 0.445 0.505095
## Residuals
                         364 16097397
                                        44224
## ---
                    0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
                                600 +
                              assessment k
                                550
                                                                     FIRFPI ACF
                                500
   Is the "FIREPLACE"
                                450
                                                                     → Y
   effect the same at
                                400
    all age periods?
                                350
                                              age_factor
```

Note that the lines do not have any meaning here. These are NOT regression lines!! They just illustrate the trends

In today's lecture

- Linear models with a continuous independent variable
- Linear models with both continuous and categorical variables

$$Y = X\alpha + \varepsilon$$

This gives us a VERY FLEXIBLE framework!!

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

$$egin{bmatrix} 1 & 0 & 0 & 0 & 0 \ dots & dots & dots & dots & dots \ 1 & 0 & 0 & 0 \ 1 & 1 & 0 & 0 \ 1 & 0 & 1 & 0 \ 1 & 1 & 1 & 1 \ dots & dots & dots & dots \ 1 & 1 & 1 & 1 \ dots & dots & dots & dots \ 1 & 1 & 1 & 1 \ \end{pmatrix}$$

$$\begin{bmatrix} 1 & 1.22 \\ 1 & 2.02 \\ 1 & 1.42 \\ \vdots & \vdots \\ 1 & 1.89 \\ 1 & 2.01 \\ \vdots & \vdots \\ 1 & 1.56 \\ 1 & 2.17 \\ 1 & 1.51 \end{bmatrix}$$

$$egin{bmatrix} 1 & 0 & 1.22 & 0 \ 1 & 0 & 2.02 & 0 \ 1 & 0 & 1.42 & 0 \ dots & dots & dots & dots \ 1 & 0 & 1.89 & 0 \ 1 & 1 & 2.01 & 2.01 \ dots & dots & dots & dots \ 1 & 1 & 1.56 & 1.56 \ 1 & 1 & 2.17 & 2.17 \ 1 & 1 & 1.51 & 1.51 \ \end{bmatrix}$$

1 categorical covariate

2 categorical covariates

1 continuous covariate

1 continuous 1 categorical

AND MANY MORE

Tip: ?model.matrix

Beyond categorical covariates: continuous

LINEAR REGRESSION

"BLDG_METRE" as a continuous variable

age_factor	FIREPLACE	BLDG_METRÊ	assessment_k
0	Υ	97	354
С	Υ	166	449
0	N	108	383
С	Υ	217	536
С	Υ	145	595
С	Υ	171	449
0	Υ	106	363
0	Υ	160	776
0	N	99	349
0	N	104	371
0	Υ	100	346
0	Υ	110	358
0	Υ	223	575
0	Υ	168	608
С	Υ	120	505
0	Υ	110	329
С	Y	244	667
С	Υ	226	739
0	Υ	110	429

$$Y = X\alpha + \varepsilon$$

$$\left[\begin{array}{c} Y_1 \\ Y_2 \\ \vdots \\ Y_{368} \end{array} \right] = \left[\begin{array}{c} 1 & 97 \\ 1 & 166 \\ 1 & 108 \\ \vdots & \vdots \\ 1 & 110 \\ \vdots & \vdots \end{array} \right] + \left[\begin{array}{c} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_{368} \end{array} \right]$$

Simple linear regression

```
summary(lm(assessment k~BLDG METRE,data=dat.2))
##
## Call:
## lm(formula = assessment k ~ BLDG METRE, data = dat.2)
##
## Residuals:
      Min
               10 Median
                               30
##
                                      Max
## -663.35 -62.18 -2.37 39.15 1481.79
##
                                                       (usually, not of interest)
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                                    1.132
                                             0.258
  (Intercept) 22.0460
                          19.4790
##
                                                         H_0:\beta_0=0
                                            <2e-16 ***
                           0.1213 25.396
## BLDG METRE
                3.0793
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 137.7 on 366 degrees of freedom
## Multiple R-squared: 0.638, Adjusted R-squared: 0.637
## F-statistic: 645 on 1 and 366 DF, p-value: < 2.2e-16
```

Simple linear regression

```
summary(lm(assessment k~BLDG METRE,data=dat.2))
##
## Call:
## lm(formula = assessment k ~ BLDG METRE, data = dat.2)
##
## Residuals:
##
      Min
               10 Median
                               30
                                      Max
## -663.35 -62.18 -2.37 39.15 1481.79
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
                                             0.258
## (Intercept) 22.0460
                          19.4790
                                    1.132
                                            <2e-16 ***
## BLDG METRE
                3.0793
                           0.1213
                                   25.396
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 137.7 on 366 degrees of freedom
## Multiple R-squared: 0.638, Adjusted R-squared: 0.637
## F-statistic: 645 on 1 and 366 DF, p-value: < 2.2e-16
```

categorical and continuous covariates

LINEAR REGRESSION

"BLDG_METRE" continuous variable

"age_factor" categorical variable

age_factor	BLDG_METRÊ	assessment_k
С	166	449
С	217	536
С	145	595
С	171	449
С	120	505
С	244	667
С	226	739
С	178	799
С	197	523
С	235	718
С	128	412
С	184	468
• • •	•••	• • •
0	97	354
0	108	383
0	106	363
0	160	776
0	99	349
0	104	371
0	100	346
0	110	358
0	223	575
• • •	•••	•••

$$Y = X\alpha + \varepsilon$$


```
summary(lm(assessment k~BLDG METRE*age factor,data=dat.2))
##
## Call:
## lm(formula = assessment k ~ BLDG METRE * age factor, data = dat.2)
##
## Residuals:
      Min
                               30
##
               10 Median
                                     Max
## -708.11 -48.09 -8.34
                            36.01 1343.92
##
## Coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
                                    31.1763 -1.680 0.0939 .
                         -52.3654
## (Intercept)
                                                                  H_0: \beta_{C1} = 0
                                                     < 2e+16 ***
                                             21.677
## BLDG METRE
                           3.5448
                                     0.1635
                                              4.435 1.22e-05 ***
## age_factor0
                         186.8247
                                    42.1280
## BLDG_METRE:age_factorO -1.3856
                                     0.2649 -5.230 2.87e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 132.9 on 364 degrees of freedom
## Multiple R-squared: 0.6644, Adjusted R-squared: 0.6617
## F-statistic: 240.3 on 3 and 364 DF, p-value: < 2.2e-16
```

```
summary(lm(assessment k~BLDG METRE*age factor,data=dat.2))
##
## Call:
## lm(formula = assessment k ~ BLDG METRE * age factor, data = dat.2)
##
## Residuals:
##
      Min
                10 Median
                               30
                                      Max
## -708.11 -48.09 -8.34
                            36.01 1343.92
                                                                H_0: \tau_1 = 0
H_0: \beta_{C1} = \beta_{O1}
##
## Coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                         -52.3654
                                     31.1763 -1.680
                                                       0.0939
## BLDG METRE
                                      0.1635 21.677 < 2e-16 ***
                           3.5448
## age_factor0
                         186.8247 42.1280 4.435 1.22e-05 ***
## BLDG METRE:age factorO -1.3856
                                      0.2649 -5.230 2.87e-07 ***
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 132.9 on 364 degrees of freedom
## Multiple R-squared: 0.6644, Adjusted R-squared: 0.6617
## F-statistic: 240.3 on 3 and 364 DF, p-value: < 2.2e-16
```

Additive models

 In some applications you may want to ignore the interaction between variables

```
1500
summary(lm(assessment k~BLDG METRE+age factor,data=dat.2))
##
## Call:
                                                                                                               age factor
## lm(formula = assessment k ~ BLDG METRE + age factor, data
##
## Residuals:
                10 Median
                                        Max
                             40.24 1493.23
## -661.54 -66.04 -0.50
##
## Coefficients:
                                                                               building size (mtr,continuous)
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 32.571
                             29.024 1.122
                                               0.263
## BLDG METRE
                  3.031
                              0.144 21.052
                                              <2e-16 ***
                                                                   400
## age factorO
               -10.890
                             18.189 -0.599
                                               0.550
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '
                                                                   300
                                                                                                               age factor
                                                                                                                  С

    O

## Residual standard error: 141 on 295 degrees of freedom
## Multiple R-squared: 0.6505, Adjusted R-squared: 0.6481
## F-statistic: 274.5 on 2 and 295 DF, p-value: < 2.2e-16
                                                                   100
      Common slope
                                                                              building size (mtr,continuous)-ZOOM
```

Which one is the best line?

The error is the vertical distance between the line and the real observation

Ordinary least squares (OLS) estimates of the parameters minimize the sum of squares of the errors

Ordinary Least Square Estimator

Visual representation of the squared errors http://setosa.io/ev/ordinary-least-squares-regression/

- The squares of the errors are represented by squared areas in the second plot:
 - select different lines by changing the intercept and the slope
 - see how the squares of the errors change
 - Which line minimizes the sum of these areas? OLS answers this question
- Move a point of the first plot along the line and away from the line. See how see how sensitive is the estimation.

Ordinary Least Square Estimator

Mathematically:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, i = 1, \dots, n$$

We want to find a line (i.e., an intercept and a slope) such that the sum of the squared errors is minimized

$$S(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Using results from Calculus:

$$\frac{\partial S}{\partial \beta_0} = -2\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0$$
$$\frac{\partial S}{\partial \beta_1} = -2\sum_{i=1}^n x_i (y_i - \beta_0 - \beta_1 x_i) = 0$$

- The values β_0, β_1 that satisfies these equations are the **OLS** estimates of the intercept and the slope, respectively.
- Estimates are represented by a "hat" over the parameter.

After simplification, the previous equations become

$$n(\bar{y} - \hat{\beta}_0 - \hat{\beta}_1 \bar{x}) = 0$$

$$\sum_{i=1}^{n} x_i y_i - \hat{\beta}_0 n \bar{x} - \hat{\beta}_1 \sum_{i=1}^{n} x_i^2 = 0$$

Thus,

$$\hat{\beta_0} = \bar{y} - \hat{\beta}_1 \bar{x}$$

And

$$0 = \sum_{i=1}^{n} x_i y_i - (\bar{y} - \hat{\beta}_1 \bar{x}) n \bar{x} - \hat{\beta}_1 \sum_{i=1}^{n} x_i^2$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_i^2 - n \bar{x}^2}$$

$$= \frac{(n-1) s_{xy}}{(n-1) s_x^2}$$

$$= \frac{r_{xy} s_x s_y}{s_x^2} \qquad r_{xy} \text{ is the correlation between the response and the explanatory variable}$$

$$= \frac{r_{xy} s_y}{s_x} \qquad \text{Sx and Sy are the standard deviation of the response and the explanatory variable,}$$

resp.

$$\frac{y_i-\bar{y}}{s_y}=r_{xy}\frac{x_i-\bar{x}}{s_x}$$

The linear relation between two continuous variables is characterized by their *correlation*

Simple linear regression

```
#BB continuous
summary(lm(rpg~bbpg,data=teams.2small))
##
## Call:
## lm(formula = rpg ~ bbpg, data = teams.2small)
##
## Residuals:
##
       Min
                  1Q Median
                                    3Q
                                            Max
## -0.72450 -0.35515 0.00861 0.21001 0.95257
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
  (Intercept)
                 0.7647
                           0.6003 1.274
                                              0.212
                            0.1666 6.926 7.67e-08 ***
## bbpg
                 1.1538
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
## Signif. codes:
##
## Residual standard error: 0.4114 on 32 degrees of freedom
## Multiple R-squared: 0.5998, Adjusted R-squared: 0.5873
## F-statistic: 47.97 on 1 and 32 DF, p-value: 7.667e-08
```

Simple linear regression

```
#BB continuous
summary(lm(rpg~bbpg,data=teams.2small))
##
## Call:
## lm(formula = rpg ~ bbpg, data = teams.2small)
##
## Residuals:
##
        Min
                  1Q Median
                                    3Q
                                             Max
## -0.72450 -0.35515 0.00861 0.21001 0.95257
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
                                                                \hat{\beta_0} = \bar{y} - \hat{\beta}_1 \bar{x}
## (Intercept)
                 0.7647
                            0.6003 1.274
                                               0.212
                            0.1666 6.926 7.67e-08 ***
                 1.1538
## bbpg
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4114 on 32 degrees of freedom
## Multiple R-squared: 0.5998, Adjusted R-squared: 0.5873
## F-statistic: 47.97 on 1 and 32 DF, p-value: 7.667e-08
```