### (19) World Intellectual Property Organization International Bureau





#### (43) International Publication Date 6 December 2001 (06.12.2001)

### **PCT**

## (10) International Publication Number WO 01/92282 A2

C07H 19/00 (51) International Patent Classification7:

(21) International Application Number: PCT/US01/16687

(22) International Filing Date: 23 May 2001 (23.05.2001)

English

(26) Publication Language: English

(30) Priority Data:

(25) Filing Language:

60/207.674 26 May 2000 (26.05.2000) US 60/283,276 11 April 2001 (11.04.2001)

(71) Applicants (for all designated States except US): NOVIRIO PHARMACEUTICALS LIMITED [--/--]; Walker Secretaries, Walker House, Grand Cayman (KY). UNIVERSITA DEGLI STUDI DI CAGLIARI [IT/IT]; Dip. Biologia Sperimentale, Sezione di Microbiologia, Cittadella Universitaria SS 554, Km. 4.500, I-09042 Monserrato (IT).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SOMMADOSSI, Jean-Pierre [FR/US]; 5075 Greystone Way, Birmingham, AL 35242 (US). LACOLLA, Paolo [IT/IT]; 5 Strada no. 11, Poggio dei Pini, I-09012 Capoterra (IT).

(74) Agent: KNOWLES, Sherry, M.; King & Spalding, 191 Peachtree Street, Atlanta, GA 30303-1763 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA,

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.



(54) Title: METHODS AND COMPOSITIONS FOR TREATING FLAVIVIRUSES AND PESTTVIRUSES

(57) Abstract: A method and composition for treating a host infected with flavivirus or pestivirus comprising administering an effective flavivirus or pestivirus treatment amount of a described 1', 2' or 3'-modified nucleoside or a pharmaceutically acceptable salt or prodrug thereof, is provided.

# METHODS AND COMPOSITIONS FOR TREATING FLAVIVIRUSES AND PESTIVIRUSES

## FIELD OF THE INVENTION

This invention is in the area of pharmaceutical chemistry, and in particular, is a compound, method and composition for the treatment of flaviviruses and pestiviruses. This application claims priority to U.S. provisional application no. 60/207,674, filed on May 26, 2000 and U.S. provisional application no. 60/283,276, filed on April 11, 2001.

#### **BACKGROUND OF THE INVENTION**

Pestiviruses and flaviviruses belong to the *Flaviviridae* family of viruses along with hepatitis C virus. The pestivirus genus includes bovine viral diarrhea virus (BVDV), classical swine fever virus (CSFV, also called hog cholera virus) and border disease virus (BDV) of sheep (Moennig, V. et al. *Adv. Vir. Res.* 1992, 41, 53-98). Pestivirus infections of domesticated livestock (cattle, pigs and sheep) cause significant economic losses worldwide. BVDV causes mucosal disease in cattle and is of significant economic importance to the livestock industry (Meyers, G. and Thiel, H.-J., *Advances in Virus Research*, 1996, 47, 53-118; Moennig V., et al, *Adv. Vir. Res.* 1992, 41, 53-98).

Human pestiviruses have not been as extensively characterized as the animal pestiviruses. However, serological surveys indicate considerable pestivirus exposure in humans. Pestivirus infections in man have been implicated in several diseases including congenital brain injury, infantile gastroenteritis and chronic diarrhea in human immunodeficiency virus (HIV) positive patients. M. Giangaspero et al., *Arch. Virol. Suppl.*, 1993, 7, 53-62; M. Giangaspero et al., *Int. J. Std. Aids*, 1993, 4 (5): 300-302.

The flavivirus genus includes more than 68 members separated into groups on the basis of serological relatedness (Calisher et al., *J. Gen. Virol*, 1993, 70, 37-43). Clinical symptoms vary and include fever, encephalitis and hemorrhagic fever. *Fields Virology*, Editors: Fields, B. N., Knipe, D. M., and Howley, P. M., Lippincott-Raven Publishers, Philadelphia, PA, 1996, Chapter 31, 931-959. Flaviviruses of global concern that are associated with human disease include the dengue hemorrhagic fever viruses (DHF), yellow fever virus, shock syndrome and Japanese encephalitis virus. Halstead, S. B., *Rev. Infect.* 

Dis., 1984, 6, 251-264; Halstead, S. B., Science, 239:476-481, 1988; Monath, T. P., New Eng. J. Med., 1988, 319, 641-643.

Examples of antiviral agents that have been identified as active against the flavivirus or pestiviruses include:

- (1) interferon and ribavirin (Battaglia, A.M. et al., Ann. Pharmacother, 2000,. 34, 487-494); Berenguer, M. et al. Antivir. Ther., 1998, 3 (Suppl. 3), 125-136);
- (2) Substrate-based NS3 protease inhibitors (Attwood et al., Antiviral peptide derivatives, PCT WO 98/22496, 1998; Attwood et al., Antiviral Chemistry and Chemotherapy 1999, 10, 259-273; Attwood et al., Preparation and use of amino acid derivatives as anti-viral agents, German Patent Pub. DE 19914474; Tung et al. Inhibitors of serine proteases, particularly hepatitis C virus NS3 protease, PCT WO 98/17679), including alphaketoamides and hydrazinoureas, and inhibitors that terminate in an electrophile such as a boronic acid or phosphonate (Llinas-Brunet et al, Hepatitis C inhibitor peptide analogues, PCT WO 99/07734).
- (3) Non-substrate-based inhibitors such as 2,4,6-trihydroxy-3-nitro-benzamide derivatives (Sudo K. et al., Biochemical and Biophysical Research Communications, 1997, 238, 643-647; Sudo K. et al. Antiviral Chemistry and Chemotherapy, 1998, 9, 186), including RD3-4082 and RD3-4078, the former substituted on the amide with a 14 carbon chain and the latter processing a paraphenoxyphenyl group;
- (4) Thiazolidine derivatives which show relevant inhibition in a reverse-phase HPLC assay with an NS3/4A fusion protein and NS5A/5B substrate (Sudo K. et al., Antiviral Research, 1996, 32, 9-18), especially compound RD-1-6250, possessing a fused cinnamoyl moiety substituted with a long alkyl chain, RD4 6205 and RD4 6193;
- (5) Thiazolidines and benzanilides identified in Kakiuchi N. et al. J. EBS Letters 421, 217-220; Takeshita N. et al. Analytical Biochemistry, 1997, 247, 242-246;
- (6) A phenan-threnequinone possessing activity against protease in a SDS-PAGE and autoradiography assay isolated from the fermentation culture broth of *Streptomyces* sp., Sch 68631 (Chu M. et al., Tetrahedron Letters, 1996, 37, 7229-7232), and Sch 351633, isolated from the fungus Penicillium griscofuluum, which demonstrates

5

10

15

20

- activity in a scintillation proximity assay (Chu M. et al., Bioorganic and Medicinal Chemistry Letters 9, 1949-1952);
- (7) Selective NS3 inhibitors based on the macromolecule elgin c, isolated from leech (Qasim M.A. et al., Biochemistry, 1997, 36, 1598-1607);
- (8) Helicase inhibitors (Diana G.D. et al., Compounds, compositions and methods for treatment of hepatitis C, U.S. Pat. No. 5,633,358; Diana G.D. et al., Piperidine derivatives, pharmaceutical compositions thereof and their use in the treatment of hepatitis C, PCT WO 97/36554);
- (9) Polymerase inhibitors such as nucleotide analogues, gliotoxin (Ferrari R. et al. Journal of Virology, 1999, 73, 1649-1654), and the natural product cerulenin (Lohmann V. et al., Virology, 1998, 249, 108-118);
- (10) Antisense phosphorothioate oligodeoxynucleotides (S-ODN) complementary to sequence stretches in the 5' non-coding region (NCR) of the virus (Alt M. et al., Hepatology, 1995, 22, 707-717), or nucleotides 326-348 comprising the 3' end of the NCR and nucleotides 371-388 located in the core coding region of the IICV RNA (Alt M. et al., Archives of Virology, 1997, 142, 589-599; Galderisi U. et al., Journal of Cellular Physiology, 1999, 181, 251-257);
- (11) Inhibitors of IRES-dependent translation (Ikeda N et al., Agent for the prevention and treatment of hepatitis C, Japanese Patent Pub. JP-08268890; Kai Y. et al. Prevention and treatment of viral diseases, Japanese Patent Pub. JP-10101591);
- (12) Nuclease-resistant ribozymes (Maccjak, D. J. et al., Hepatology 1999, 30, abstract 995); and
- (13) Other miscellaneous compounds including 1-amino-alkylcyclohexanes (U.S. Patent No. 6,034,134 to Gold *et al.*), alkyl lipids (U.S. Pat. No. 5,922,757 to Chojkier *et al.*), vitamin E and other antioxidants (U.S. Pat. No. 5,922,757 to Chojkier *et al.*), squalene, amantadine, bile acids (U.S. Pat. No. 5,846,964 to Ozeki *et al.*), N-(phosphonoacetyl)-L-aspartic acid, (U.S. Pat. No. 5,830,905 to Diana *et al.*), benzenedicarboxamides (U.S. Pat. No. 5,633,388 to Diana *et al.*), polyadenylic acid derivatives (U.S. Pat. No. 5,496,546 to Wang *et al.*), 2',3'-dideoxyinosine (U.S. Pat. No. 5,026,687 to Yarchoan *et al.*), and benzimidazoles (U.S. Pat. No. 5,891,874 to Colacino *et al.*).

25

In view of the severity of diseases associated with pestiviruses and flaviviruses, and their pervasiveness in animal and man, it is an object of the present invention to provide a compound, method and composition for the treatment of a host infected with flavivirus or pestivirus.

#### SUMMARY OF THE INVENTION

Compounds, methods and compositions for the treatment of a host infected with a flavivirus or pestivirus infection are described that includes an effective treatment amount of a  $\beta$ -D- or  $\beta$ -L-nucleoside of the Formulas (I) - (XVIII), or a pharmaceutically acceptable salt or prodrug thereof.

In a first principal embodiment, a compound of Formula I, or a pharmaceutically acceptable salt or prodrug thereof, is provided:

$$X^1$$
 $N$ 
 $N$ 
 $X^2$ 
 $CH_3$ 
 $O$ 
 $CH_3$ 
 $O$ 
 $O$ 

wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> or R<sup>3</sup> is independently H or phosphate;

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> and X<sup>2</sup> are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>5</sup>; and

4

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

In a second principal embodiment, a compound of Formula II, or a pharmaceutically acceptable salt or prodrug thereof, is provided:

wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> or R<sup>3</sup> is independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> and X<sup>2</sup> are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, jodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>5</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

In a third principal embodiment, a compound of Formula III, or a pharmaceutically acceptable salt or prodrug thereof, is provided:

5

$$X^{1} \longrightarrow X^{1} \longrightarrow X^{1$$

wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> or R<sup>3</sup> is independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

 $X^1$  and  $X^2$  are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo,  $OR^4$ ,  $NR^4NR^5$  or  $SR^5$ ; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

In a fourth principal embodiment, a compound of Formula IV, or a pharmaceutically acceptable salt or prodrug thereof, is provided:

wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> or R<sup>3</sup> is independently H or phosphate;

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>5</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

In a fifth principal embodiment, a compound of Formula V, or a pharmaceutically acceptable salt or prodrug thereof, is provided:

wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving

group which when administered in vivo is capable of providing a compound wherein  $R^1$ ,  $R^2$  or  $R^3$  is independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

 $X^1$  is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo,  $OR^4$ ,  $NR^4NR^5$  or  $SR^5$ ; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

In a sixth principal embodiment, a compound of Formula VI, or a pharmaceutically acceptable salt or prodrug thereof, is provided:

wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> or R<sup>3</sup> is independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

not limited to methyl, ethyl, propyl and cyclopropyl).

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>5</sup>; and R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but

In a seventh principal embodiment, a compound selected from Formulas VII, VIII and IX, or a pharmaceutically acceptable salt or prodrug thereof, is provided:

wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> or R<sup>3</sup> is independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Brvinyl, 2-Br-ethyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), CF<sub>3</sub>, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; and

X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a eighth principal embodiment, a compound of Formulas X, XI and XII, or a pharmaceutically acceptable salt or prodrug thereof, is provided:

$$R^{1}O$$
 $X$ 
 $R^{6}$ 
 $R^{1}O$ 
 $R^{6}$ 
 $R^{1}O$ 
 $R^{6}$ 
 $R^{6}$ 
 $R^{6}$ 
 $R^{6}$ 
 $R^{6}$ 
 $R^{1}O$ 
 $R^{6}$ 
 $R^{6}$ 
 $R^{6}$ 
 $R^{1}O$ 
 $R^{6}$ 
 $R^{6}$ 
 $R^{6}$ 

wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> or R<sup>3</sup> is independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Brvinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl), -O(alkyl), -O(alkyl), -N(acyl), -N(acyl), -N(acyl)<sub>2</sub>;

R<sup>7</sup> is hydrogen, OR<sup>3</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; and

X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a ninth principal embodiment a compound selected from Formulas XIII, XIV and XV, or a pharmaceutically acceptable salt or prodrug thereof, is provided:

wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino

acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein  $R^1$ ,  $R^2$  or  $R^3$  is independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Brvinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; and

X is O, S, SO<sub>2</sub>, or CH<sub>2</sub>.

In a tenth principal embodiment the invention provides a compound of Formula XVI, or a pharmaceutically acceptable salt or prodrug thereof:

$$R^{10}$$
 $R^{10}$ 
 $R$ 

wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> or R<sup>2</sup> is independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Brvinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl), -O(alkyl), -O(alkyl), -N(acyl), -N(acyl), -N(acyl)<sub>2</sub>;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(alkyl), -O(alkyl), -O(alkyl), -O(alkyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>8</sup> and R<sup>10</sup> are independently H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R<sup>7</sup> and R<sup>9</sup>, R<sup>7</sup> and R<sup>10</sup>, R<sup>8</sup> and R<sup>9</sup>, or R<sup>8</sup> and R<sup>10</sup> can come together to form a pi bond; and

X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a eleventh principal embodiment the invention provides a compound of Formula XVII, or a pharmaceutically acceptable salt or prodrug thereof:



wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> or R<sup>2</sup> is independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Brvinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl), -O(alkyl), -O(alkyl), -N(acyl), -N(acyl), -N(acyl)<sub>2</sub>;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

 $R^{10}$  is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively,  $R^7$  and  $R^9$ , or  $R^7$  and  $R^{10}$  can come together to form a pi bond; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In an twelfth principal embodiment, the invention provides a compound of Formula XVIII, or a pharmaceutically acceptable salt or prodrug thereof:

$$R^{1}O$$
 $R^{6}$ 
 $X$ 
 $R^{8}$ 
 $R^{7}$ 
 $(XVIII)$ 

wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup> and R<sup>2</sup> independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> or R<sup>2</sup> is independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Brvinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl), -O(alkyl), -O(alkyl), -N(acyl), -N(acyl), -N(acyl);

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO<sub>2</sub>, amino, loweralkylamino or di(loweralkylamino;

R<sup>8</sup> is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R<sup>7</sup> and R<sup>9</sup>, or R<sup>8</sup> and R<sup>9</sup> can come together to form a pi bond; X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

The  $\beta$ -D- and  $\beta$ -L-nucleosides of this invention may inhibit flavivirus or pestivirus polymerase activity. These nucleosides can be assessed for their ability to inhibit flavivirus or pestivirus polymerase activity *in vitro* according to standard screening methods.

In one embodiment the efficacy of the anti-flavivirus or pestivirus compound is measured according to the concentration of compound necessary to reduce the plaque number of the virus *in vitro*, according to methods set forth more particularly herein, by 50% (i.e. the compound's  $EC_{50}$ ). In preferred embodiments the compound exhibits an  $EC_{50}$  of less than 15 or preferably, less than 10 micromolar *in vitro*.

In another embodiment, the active compound can be administered in combination or alternation with another anti-flavivirus or pestivirus agent. In combination therapy, effective dosages of two or more agents are administered together, whereas during alternation therapy an effective dosage of each agent is administered serially. The dosages will depend on absorption, inactivation and excretion rates of the drug as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens and schedules should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions.

HCV is a member of the *Flaviviridae* family; however, now, HCV has been placed in a new monotypic genus, hepacivirus. Therefore, in one embodiment, the flavivirus or pestivirus is not HCV.

Nonlimiting examples of antiviral agents that can be used in combination with the compounds disclosed herein include:

(1) an interferon and/or ribavirin (Battaglia, A.M. et al., Ann. Pharmacother. 34:487-494, 2000); Berenguer, M. et al. Antivir. Ther. 3(Suppl. 3):125-136, 1998);

- (2) Substrate-based NS3 protease inhibitors (Attwood et al., Antiviral peptide derivatives, PCT WO 98/22496, 1998; Attwood et al., Antiviral Chemistry and Chemotherapy 10.259-273, 1999; Attwood et al., Preparation and use of amino acid derivatives as anti-viral agents, German Patent Publication DE 19914474; Tung et al. Inhibitors of serine proteases, particularly hepatitis C virus NS3 protease, PCT WO 98/17679), including alphaketoamides and hydrazinoureas, and inhibitors that terminate in an electrophile such as a boronic acid or phosphonate. Llinas-Brunet et al, Hepatitis C inhibitor peptide analogues, PCT WO 99/07734.
- (3) Non-substrate-based inhibitors such as 2,4,6-trihydroxy-3-nitro-benzamide derivatives (Sudo K. et al., Biochemical and Biophysical Research Communications, 238:643-647, 1997; Sudo K. et al. Antiviral Chemistry and Chemotherapy 9:186, 1998), including RD3-4082 and RD3-4078, the former substituted on the amide with a 14 carbon chain and the latter processing a para-phenoxyphenyl group;
- (4) Thiazolidine derivatives which show relevant inhibition in a reverse-phase HPLC assay with an NS3/4A fusion protein and NS5A/5B substrate (Sudo K. et al., Antiviral Research 32:9-18, 1996), especially compound RD-1-6250, possessing a fused cinnamoyl moiety substituted with a long alkyl chain, RD4 6205 and RD4 6193;
- (5) Thiazolidines and benzanilides identified in Kakiuchi N. et al. J. EBS Letters 421:217-220; Takeshita N. et al. Analytical Biochemistry 247:242-246, 1997;
- (6) A phenan-threnequinone possessing activity against protease in a SDS-PAGE and autoradiography assay isolated from the fermentation culture broth of *Streptomyces* sp., Sch 68631 (Chu M. et al., Tetrahedron Letters 37:7229-7232, 1996), and Sch 351633, isolated from the fungus Penicillium griscofuluum, which demonstrates activity in a scintillation proximity assay (Chu M. et al., Bioorganic and Medicinal Chemistry Letters 9:1949-1952);
- (7) Selective NS3 inhibitors based on the macromolecule elgin c, isolated from leech (Qasim M.A. et al., Biochemistry 36:1598-1607, 1997);
- (8) Helicase inhibitors (Diana G.D. et al., Compounds, compositions and methods for treatment of hepatitis C, U.S. Patent No. 5,633,358; Diana G.D. et al., Piperidine derivatives, pharmaceutical compositions thereof and their use in the treatment of hepatitis C, PCT WO 97/36554);

(9) Polymerase inhibitors such as nucleotide analogues, gliotoxin (Ferrari R. et al. Journal of Virology 73:1649-1654, 1999), and the natural product cerulenin (Lohmann V. et al., Virology 249:108-118, 1998);

- (10) Antisense phosphorothioate oligodeoxynucleotides (S-ODN) complementary to sequence stretches in the 5' non-coding region (NCR) of the virus (Alt M. et al., Hepatology 22:707-717, 1995), or nucleotides 326-348 comprising the 3' end of the NCR and nucleotides 371-388 located in the core coding region of the IICV RNA (Alt M. et al., Archives of Virology 142:589-599, 1997; Galderisi U. et al., Journal of Cellular Physiology 181:251-257, 1999);
- (11) Inhibitors of IRES-dependent translation (Ikeda N et al., Agent for the prevention and treatment of hepatitis C, Japanese Patent Publication JP-08268890; Kai Y. et al. Prevention and treatment of viral diseases, Japanese Patent Publication JP-10101591);
- (12) Nuclease-resistant ribozymes. (Maccjak D.J. et al., Hepatology 30 abstract 995, 1999); and
- (13) Other miscellaneous compounds including 1-amino-alkylcyclohexanes (U.S. Patent No. 6,034,134 to Gold et al.), alkyl lipids (U.S. Patent No. 5,922,757 to Chojkier et al.), vitamin E and other antioxidants (U.S. Patent No. 5,922,757 to Chojkier et al.), squalene, amantadine, bile acids (U.S. Patent No. 5,846,964 to Ozeki et al.), N-(phosphonoacetyl)-L-aspartic acid, (U.S. Patent No. 5,830,905 to Diana et al.), benzenedicarboxamides (U.S. Patent No. 5,633,388 to Diana et al.), polyadenylic acid derivatives (U.S. Patent No. 5,496,546 to Wang et al.), 2',3'-dideoxyinosine (U.S. Patent No. 5,026,687 to Yarchoan et al.), and benzimidazoles (U.S. Patent No. 5,891,874 to Colacino et al.).

## BRIEF DESCRIPTION OF THE FIGURES

Figure 1 provides the structure of various non-limiting examples of nucleosides of the present invention, as well as other known nucleosides, FIAU and Ribavirin, which are used as comparative examples in the text.

Figure 2 is a line graph of the pharmacokinetics (plasma concentrations) of  $\beta$ -D-2'-CH<sub>3</sub>-riboG administered to Cynomolgus Monkeys over time after administration.

Figure 3a and 3b are line graphs of the pharmacokinetics (plasma concentrations) of β-D-2'-CH<sub>3</sub>-riboG administered to Cynomolgus Monkeys either intravenously (3a) or orally (3b) over time after administration.

- Figure 4 depicts line graphs of the results of the cell protection assay of  $\beta$ -D-2'-CH<sub>3</sub>-riboG against BVDV.
- Figure 5 depicts line graphs of the results of the cell protection assay of ribavirin against BVDV.
- Figure 6 are line graphs of the cell protection assay of  $\beta$ -D-2'-CH<sub>3</sub>-riboG,  $\beta$ -D-2'-CH<sub>3</sub>-riboO,  $\beta$ -D-2'-CH<sub>3</sub>-riboA and ribavirin.
- Figure 7 are line graphs of the results of the plaque reduction assay for  $\beta$ -D-2'-CH<sub>3</sub>-riboU,  $\beta$ -D-2'-CH<sub>3</sub>-riboG and  $\beta$ -D-2'-CH<sub>3</sub>-riboG.
- Figure 8 is an illustration of plaque reduction based on increasing concentrations of β-D-2'-CH<sub>3</sub>-nboU.
- Figure 9 is a line graph of the results of the yield reduction assay for  $\beta$ -D-2'-CH<sub>3</sub>-riboG, depicting a 4 log reduction at 9  $\mu$ M.
- Figure 10 is an illustration of the yield reduction based on increasing concentrations of β-D-2'-CH<sub>3</sub>-riboC.

#### DETAILED DESCRIPTION OF THE INVENTION

The invention as disclosed herein is a compound, method and composition for the treatment of pestiviruses and flaviviruses in humans and other host animals, that includes the administration of an effective flavivirus or pestivirus treatment amount of an  $\beta$ -D- or  $\beta$ -L-nucleoside as described herein or a pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier. The compounds of this invention either possess antiviral (i.e., anti-flavivirus or pestivirus) activity, or are metabolized to a compound that exhibits such activity.

In summary, the present invention includes the following features:

(a)  $\beta$ -D- and  $\beta$ -L-nucleosides, as described herein, and pharmaceutically acceptable salts and prodrugs thereof;

(b) β-D- and β-L-nucleosides as described herein, and pharmaceutically acceptable salts and prodrugs thereof for use in the treatment or prophylaxis of a flavivirus or pestivirus infection, especially in individuals diagnosed as having a flavivirus or pestivirus infection or being at risk for becoming infected by flavivirus or pestivirus;

- (c) use of these  $\beta$ -D- and  $\beta$ -L-nucleosides, and pharmaceutically acceptable salts and prodrugs thereof in the manufacture of a medicament for treatment of a flavivirus or pestivirus infection;
- (d) pharmaceutical formulations comprising the  $\beta$ -D- and  $\beta$ -L-nucleosides or pharmaceutically acceptable salts or prodrugs thereof together with a pharmaceutically acceptable carrier or diluent;
- (e)  $\beta$ -D- and  $\beta$ -L-nucleosides as described herein substantially in the absence of enantiomers of the described nucleoside, or substantially isolated from other chemical entities;
- (f) processes for the preparation of  $\beta$ -D- and  $\beta$ -L-nucleosides, as described in more detail below; and
- (g) processes for the preparation of  $\beta$ -D- and  $\beta$ -L-nucleosides substantially in the absence of enantiomers of the described nucleoside, or substantially isolated from other chemical entities.

Flaviviruses included within the scope of this invention are discussed generally in Fields Virology, Editors: Fields, B. N., Knipe, D. M., and Howley, P. M., Lippincott-Raven Publishers, Philadelphia, PA, Chapter 31, 1996. Specific flaviviruses include, without limitation: Absettarov, Alfuy, Apoi, Aroa, Bagaza, Banzi, Bouboui, Bussuquara, Cacipacore, Carey Island, Dakar bat, Dengue 1, Dengue 2, Dengue 3, Dengue 4, Edge Hill, Entebbe bat, Gadgets Gully, Hanzalova, Hypr, Ilheus, Israel turkey meningoencephalitis, Japanese encephalitis, Jugra, Jutiapa, Kadam, Karshi, Kedougou, Kokobera, Koutango, Kumlinge, Kunjin, Kyasanur Forest disease, Langat, Louping ill, Meaban, Modoc, Montana myotis leukoencephalitis, Murray valley encephalitis, Naranjal, Negishi, Ntaya, Omsk hemorrhagic fever, Phnom-Penh bat, Powassan, Rio Bravo, Rocio, Royal Farm, Russian spring-summer encephalitis, Saboya, St. Louis encephalitis, Sal Vieja, San Perlita, Saumarez Reef, Sepik, Sokuluk, Spondweni, Stratford, Tembusu, Tyuleniy, Uganda S, Usutu, Wesselsbron, West Nile, Yaounde, Yellow fever, and Zika.

Pestiviruses included within the scope of this invention are discussed generally in *Fields Virology*, Editors: Fields, B. N., Knipe, D. M., and Howley, P. M., Lippincott-Raven Publishers, Philadelphia, PA, Chapter 33, 1996. Specific pestiviruses include, without limitation: bovine viral diarrhea virus ("BVDV"), classical swine fever virus ("CSFV," also called hog cholera virus), and border disease virus ("BDV").

## I. Active Compound, and Physiologically Acceptable Salts and Prodrugs Thereof

In a first principal embodiment, a compound of Formula I, or a pharmaceutically acceptable salt or prodrug thereof, is provided:

wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> or R<sup>3</sup> is independently H or phosphate;

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> and X<sup>2</sup> are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>5</sup>; and

In a preferred subembodiment, a compound of Formula I, or a pharmaceutically acceptable salt or produce thereof, is provided wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate (preferably H);

X1 is H;

X<sup>2</sup> is H or NH<sub>2</sub>; and

Y is hydrogen, bromo, chloro, fluoro, iodo, NH2 or OH.

In a second principal embodiment, a compound of Formula II, or a pharmaceutically acceptable salt or prodrug thereof, is provided:

wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> or R<sup>3</sup> is independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> and X<sup>2</sup> are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>5</sup>; and

In a preferred subembodiment, a compound of Formula II, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate (preferably H);

X1 is H;

X2 is H or NH2; and

Y is hydrogen, bromo, chloro, fluoro, iodo, NH2 or OH.

In a third principal embodiment, a compound of Formula III, or a pharmaceutically acceptable salt or prodrug thereof, is provided:

$$X^{1} \longrightarrow X^{1} \longrightarrow X^{2}$$

$$CH_{3} \longrightarrow CH_{3}$$

$$OR^{2} \longrightarrow OR^{3}$$
(III)

wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> or R<sup>3</sup> is independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> and X<sup>2</sup> are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>5</sup>; and

In a preferred subembodiment, a compound of Formula III, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate (preferably H);

X<sup>1</sup> is H;

X<sup>2</sup> is H or NH<sub>2</sub>; and

Y is hydrogen, bromo, chloro, fluoro, iodo, NH2 or OH.

In a fourth principal embodiment, a compound of Formula IV, or a pharmaceutically acceptable salt or prodrug thereof, is provided:

wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> or R<sup>3</sup> is independently H or phosphate;

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>5</sup>; and

In a preferred subembodiment, a compound of Formula IV, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate (preferably H);

X1 is H or CH3; and

Y is hydrogen, bromo, chloro, fluoro, iodo, NH2 or OH.

In a fifth principal embodiment, a compound of Formula V, or a pharmaceutically acceptable salt or prodrug thereof, is provided:

wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> or R<sup>3</sup> is independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>5</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

In a preferred subembodiment, a compound of Formula V, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate (preferably H);

X1 is H or CH3; and

Y is hydrogen, bromo, chloro, fluoro, iodo, NH2 or OH.

In a sixth principal embodiment, a compound of Formula VI, or a pharmaceutically acceptable salt or prodrug thereof, is provided:

$$X^1$$
 $X^1$ 
 $X^1$ 

wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> or R<sup>3</sup> is independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>5</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

In a preferred subembodiment, a compound of Formula VI, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:

 $R^1$ ,  $R^2$  and  $R^3$  are independently H or phosphate (preferably H);

X1 is H or CH3; and

Y is hydrogen, bromo, chloro, fluoro, iodo, NH2 or OH.

In a seventh principal embodiment, a compound selected from Formulas VII, VIII and IX, or a pharmaceutically acceptable salt or prodrug thereof, is provided:

Base 
$$R^{1}O$$
  $X$   $R^{6}$   $R^{6}$   $QR^{2}$   $QR^{2}$   $QR^{2}$   $QR^{2}$   $QR^{3}$   $QR^{2}$   $QR^{3}$   $QR^{2}$   $QR^{2}$   $QR^{3}$   $QR^$ 

wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> or R<sup>3</sup> is independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Brvinyl, 2-Br-ethyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), CF<sub>3</sub>, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; and

X is O, S,  $SO_2$ , or  $CH_2$ .

In a first preferred subembodiment, a compound of Formula VII, VIII or IX, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently hydrogen or phosphate;

R<sup>6</sup> is alkyl; and

X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a second preferred subembodiment, a compound of Formula VII, VIII or IX, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are hydrogens;

R<sup>6</sup> is alkyl; and

X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a third preferred subembodiment, a compound of Formula VII, VIII or IX, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently hydrogen or phosphate;

R<sup>6</sup> is alkyl; and

X is O.

In a eighth principal embodiment, a compound of Formula X, XI or XII, or a pharmaceutically acceptable salt or prodrug thereof, is provided:

$$R^{1}O$$
 $R^{1}O$ 
 $R$ 

wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> or R<sup>3</sup> is independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Brvinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl), -O(alkyl), -O(alkyl), -N(acyl), -N(acyl), -N(acyl)<sub>2</sub>;

R<sup>7</sup> is hydrogen, OR<sup>3</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl), -O(alkyl), -O(alkyl), -NH(acyl), -NH(lower alkyl), -NH(acyl), -N(acyl)<sub>2</sub>; and

X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a first preferred subembodiment, a compound of Formula X, XI or XII, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently hydrogen or phosphate;

R<sup>6</sup> is alkyl; and

X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a second preferred subembodiment, a compound of Formula X, XI or XII, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are hydrogens;

R<sup>6</sup> is alkyl; and

X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a third preferred subembodiment, a compound of Formula X, XI or XII, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

R<sup>6</sup> is alkyl; and

X is O.

In even more preferred subembodiments, a compound of Formula XI, or its pharmaceutically acceptable salt or prodrug, is provided:

wherein:

Base is a purine or pyrimidine base as defined herein; optionally substituted with an amine or cyclopropyl (e.g., 2-amino, 2,6-diamino or cyclopropyl guanosine); and

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> or R<sup>2</sup> is independently H or phosphate.

In a ninth principal embodiment a compound selected from Formula XIII, XIV or XV, or a pharmaceutically acceptable salt or prodrug thereof, is provided:

R<sup>1</sup>O Base 
$$\mathbb{R}^6$$
 X  $\mathbb{R}^6$  X  $\mathbb{R}^6$  X  $\mathbb{R}^6$  (XIII) (XIV) (XV)

wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl

and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> or R<sup>3</sup> is independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Brvinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl), -O(alkyl), -O(alkyl), -N(acyl), -N(acyl), -N(acyl), and

X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a first preferred subembodiment, a compound of Formula XIII, XIV or XV, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently hydrogen or phosphate;

R<sup>6</sup> is alkyl; and

X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a second preferred subembodiment, a compound of Formula XIII, XIV or XV, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are hydrogens;

R<sup>6</sup> is alkyl; and

X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a third preferred subembodiment, a compound of Formula XIII, XIV or XV, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently hydrogen or phosphate;

R6 is alkyl; and

X is O.

In a tenth principal embodiment the invention provides a compound of Formula XVI, or a pharmaceutically acceptable salt or prodrug thereof:

$$R^{10}$$
  $X$   $R^{8}$   $R^{6}$   $R^{7}$   $R^{7}$ 

wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> and R<sup>2</sup> are independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Brvinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl), -O(alkyl), -O(alkyl), -N(acyl), -N(acyl), -N(acyl)<sub>2</sub>;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>8</sup> and R<sup>10</sup> are independently H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R<sup>7</sup> and R<sup>9</sup>, R<sup>7</sup> and R<sup>10</sup>, R<sup>8</sup> and R<sup>9</sup>, or R<sup>8</sup> and R<sup>10</sup> can come together to form a pi bond; and

X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a first preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl; (4) R<sup>7</sup> and R<sup>9</sup> are independently OR<sup>2</sup>, alkyl, alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO<sub>2</sub>, amino, loweralkylamino or di(loweralkyl)amino; (5) R<sup>8</sup> and R<sup>10</sup> are independently H, alkyl (including lower alkyl), chlorine, bromine, or iodine; and (6) X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a second preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl, alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, amino, loweralkylamino, or di(loweralkyl)amino; (4) R<sup>7</sup> and R<sup>9</sup> are independently OR<sup>2</sup>; (5) R<sup>8</sup> and R<sup>10</sup> are independently H, alkyl (including lower alkyl), chlorine, bromine, or iodine; and (6) X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a third preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or

arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl, alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, amino, loweralkylamino or di(loweralkyl)amino; (4) R<sup>7</sup> and R<sup>9</sup> are independently OR<sup>2</sup>, alkyl, alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO<sub>2</sub>, amino, loweralkylamino or di(loweralkyl)amino; (5) R<sup>8</sup> and R<sup>10</sup> are H; and (6) X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a fourth preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl, alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, amino, loweralkylamino, or di(loweralkyl)amino; (4) R<sup>7</sup> and R<sup>9</sup> are independently OR<sup>2</sup>, alkyl, alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO<sub>2</sub>, amino, loweralkylamino, or di(loweralkyl)amino; (5) R<sup>8</sup> and R<sup>10</sup> are independently H, alkyl (including lower alkyl), chlorine, bromine, or iodine; and (6) X is O.

In a fifth preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a

cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl; (4) R<sup>7</sup> and R<sup>9</sup> are independently OR<sup>1</sup>; (5) R<sup>8</sup> and R<sup>10</sup> are independently H, alkyl (including lower alkyl), chlorine, bromine or iodine; and (6) X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a sixth preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl; (4) R<sup>7</sup> and R<sup>9</sup> are independently OR<sup>2</sup>, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO<sub>2</sub>, amino, loweralkylamino, or di(loweralkyl)amino; (5) R<sup>8</sup> and R<sup>10</sup> are H; and (6) X is O, S, SO<sub>2</sub>, or CH<sub>2</sub>.

In a seventh preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl; (4) R<sup>7</sup> and R<sup>9</sup> are independently OR<sup>2</sup>, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO<sub>2</sub>, amino, loweralkylamino or di(loweralkyl)amino; (5) R<sup>8</sup> and R<sup>10</sup> are independently H, alkyl (including lower alkyl), chlorine, bromine or iodine; and (6) X is O.

In a eighth preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or

pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, amino, loweralkylamino or di(loweralkyl)amino; (4) R<sup>7</sup> and R<sup>9</sup> are independently OR<sup>2</sup>; (5) R<sup>8</sup> and R<sup>10</sup> are hydrogen; and (6) X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a ninth preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, amino, loweralkylamino or di(loweralkyl)amino; (4) R<sup>7</sup> and R<sup>9</sup> are independently OR<sup>2</sup>; (5) R<sup>8</sup> and R<sup>10</sup> are independently H, alkyl (including lower alkyl), chlorine, bromine or iodine; and (6) X is O.

In a tenth preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a

cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, amino, loweralkylamino or di(loweralkyl)amino; (4) R<sup>7</sup> and R<sup>9</sup> are independently OR<sup>2</sup>, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO<sub>2</sub>, amino, loweralkylamino, or di(loweralkyl)amino; (5) R<sup>8</sup> and R<sup>10</sup> are hydrogen; and (6) X is O.

In an eleventh preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, amino, loweralkylamino or di(loweralkyl)amino; (4) R<sup>7</sup> and R<sup>9</sup> are independently OR<sup>2</sup>; (5) R<sup>8</sup> and R<sup>10</sup> are hydrogen; and (6) X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a twelfth preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl; (4) R<sup>7</sup> and R<sup>9</sup> are independently OR<sup>2</sup>; (5) R<sup>8</sup> and R<sup>10</sup> are hydrogen; and (6) X is O, S, SO<sub>2</sub>, or CH<sub>2</sub>.

In a thirteenth preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl; (4) R<sup>7</sup> and R<sup>9</sup> are independently OR<sup>2</sup>; (5) R<sup>8</sup> and R<sup>10</sup> are independently H, alkyl (including lower alkyl), chlorine, bromine, or iodine; and (6) X is O.

In a fourteenth preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl; (4) R<sup>7</sup> and R<sup>9</sup> are independently OR<sup>2</sup>, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO<sub>2</sub>, amino, loweralkylamino or di(loweralkyl)amino; (5) R<sup>8</sup> and R<sup>10</sup> are hydrogen; and (6) X is O.

In even more preferred subembodiments, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which:

(1) Base is adenine; (2)  $R^1$  is hydrogen; (3)  $R^6$  is methyl; (4)  $R^7$  and  $R^9$  are hydroxyl; (5)  $R^8$  and  $R^{10}$  are hydrogen; and (6) X is O;

- (1) Base is guanine; (2) R<sup>1</sup> is hydrogen; (3) R<sup>6</sup> is methyl; (4) R<sup>7</sup> and R<sup>9</sup> are hydroxyl; (5) R<sup>8</sup> and R<sup>10</sup> are hydrogen; and (6) X is O;
- (1) Base is cytosine; (2)  $R^1$  is hydrogen; (3)  $R^6$  is methyl; (4)  $R^7$  and  $R^9$  are hydroxyl; (5)  $R^8$  and  $R^{10}$  are hydrogen; and (6) X is O;
- (1) Base is thymine; (2)  $R^1$  is hydrogen; (3)  $R^6$  is methyl; (4)  $R^7$  and  $R^9$  are hydroxyl; (5)  $R^8$  and  $R^{10}$  are hydrogen; and (6) X is O;
- (1) Base is uracil; (2) R<sup>1</sup> is hydrogen; (3) R<sup>6</sup> is methyl; (4) R<sup>7</sup> and R<sup>9</sup> are hydroxyl; (5) R<sup>8</sup> and R<sup>10</sup> are hydrogen; and (6) X is O;
- (1) Base is adenine; (2)  $R^1$  is phosphate; (3)  $R^6$  is methyl; (4)  $R^7$  and  $R^9$  are hydroxyl; (5)  $R^8$  and  $R^{10}$  are hydrogen; and (6) X is O;
- (1) Base is adenine; (2)  $R^1$  is hydrogen; (3)  $R^6$  is ethyl; (4)  $R^7$  and  $R^9$  are hydroxyl; (5)  $R^8$  and  $R^{10}$  are hydrogen; and (6) X is O;
- (1) Base is adenine; (2)  $R^1$  is hydrogen; (3)  $R^6$  is propyl; (4)  $R^7$  and  $R^9$  are hydroxyl; (5)  $R^8$  and  $R^{10}$  are hydrogen; and (6) X is O;
- (1) Base is adenine; (2)  $R^1$  is hydrogen; (3)  $R^6$  is butyl; (4)  $R^7$  and  $R^9$  are hydroxyl; (5)  $R^8$  and  $R^{10}$  are hydrogen; and (6) X is O;
- (1) Base is adenine; (2)  $R^1$  is hydrogen; (3)  $R^6$  is methyl; (4)  $R^7$  is hydrogen and  $R^9$  is hydroxyl; (5)  $R^8$  and  $R^{10}$  are hydrogen; and (6) X is O;
- (1) Base is adenine; (2)  $R^1$  is hydrogen; (3)  $R^6$  is methyl; (4)  $R^7$  and  $R^9$  are hydroxyl; (5)  $R^8$  and  $R^{10}$  are hydrogen; and (6) X is S;
- (1) Base is adenine; (2) R<sup>1</sup> is hydrogen; (3) R<sup>6</sup> is methyl; (4) R<sup>7</sup> and R<sup>9</sup> are hydroxyl; (5) R<sup>8</sup> and R<sup>10</sup> are hydrogen; and (6) X is SO<sub>2</sub>;
- (1) Base is adenine; (2) R<sup>1</sup> is hydrogen; (3) R<sup>6</sup> is methyl; (4) R<sup>7</sup> and R<sup>9</sup> are hydroxyl; (5) R<sup>8</sup> and R<sup>10</sup> are hydrogen; and (6) X is CH<sub>2</sub>;

In a eleventh principal embodiment the invention provides a compound of Formula XVII, or a pharmaceutically acceptable salt or prodrug thereof:

wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup> is H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Brvinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl), -O(alkyl), -O(alkyl), -N(acyl), -N(acyl), -N(acyl)<sub>2</sub>;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

 $R^{10}$  is H, alkyl (including lower alkyl), chlorine, bromine, or iodine; alternatively,  $R^7$  and  $R^9$ , or  $R^7$  and  $R^{10}$  can come together to form a pi bond; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a first preferred subembodiment, a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl

(including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, amino, loweralkylamino, or di(loweralkyl)amino; (4) R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO<sub>2</sub>, amino, loweralkylamino or di(loweralkyl)-amino; (5) R<sup>10</sup> is H; and (6) X is O, S, SO<sub>2</sub>, or CH<sub>2</sub>.

In a second preferred subembodiment, a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, amino, loweralkylamino or di(loweralkyl)amino; (4) R<sup>7</sup> and R<sup>9</sup> are independently OR<sup>2</sup>; (5) R<sup>10</sup> is H, alkyl (including lower alkyl), chlorine, bromine, or iodine; and (6) X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a third preferred subembodiment, a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a

cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, amino, loweralkylamino, or di(loweralkyl)amino; (4) R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO<sub>2</sub>, amino, loweralkylamino or di(loweralkyl)-amino; (5) R<sup>10</sup> is H, alkyl (including lower alkyl), chlorine, bromine or iodine; and (6) X is O.

In a fourth preferred subembodiment, a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, amino, loweralkylamino or di(loweralkyl)amino; (4) R<sup>7</sup> and R<sup>9</sup> are independently OR<sup>2</sup>; (5) R<sup>10</sup> is H; and (6) X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a fifth preferred subembodiment, a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, amino, loweralkylamino or di(loweralkyl)amino; (4) R<sup>7</sup>

and R<sup>9</sup> are independently OR<sup>2</sup>; (5) R<sup>10</sup> is H, alkyl (including lower alkyl), chlorine, bromine or iodine; and (6) X is O.

In a sixth preferred subembodiment, a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, amino, loweralkylamino, or di(loweralkyl)amino; (4) R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO<sub>2</sub>, amino, loweralkylamino, or di(loweralkyl)amino; (5) R<sup>10</sup> is H; and (6) X is O.

In a seventh preferred subembodiment, a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, amino, loweralkylamino, or di(loweralkyl)amino; (4) R<sup>7</sup> and R<sup>9</sup> are independently OR<sup>2</sup>; (5) R<sup>10</sup> is H; and (6) X is O.

In an eighth preferred subembodiment, a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl; (4)

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO<sub>2</sub>, amino, loweralkylamino or di(loweralkyl)-amino; (5) R<sup>10</sup> is H, alkyl (including lower alkyl), chlorine, bromine or iodine; and (6) X is O, S, SO<sub>2</sub>, or CH<sub>2</sub>.

In a ninth preferred subembodiment, a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, amino, loweralkylamino, or di(loweralkyl)amino; (4) R<sup>7</sup> and R<sup>9</sup> are independently OR<sup>2</sup>; (5) R<sup>10</sup> is H; and (6) X is O, S, SO<sub>2</sub>, or CH<sub>2</sub>.

In a tenth preferred subembodiment, a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl; (4) R<sup>7</sup> and R<sup>9</sup> are independently OR<sup>2</sup>; (5) R<sup>10</sup> is H; and (6) X is O, S, SO<sub>2</sub>, or CH<sub>2</sub>.

In even more preferred subembodiments, a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug, is provided in which:

- (1) Base is adenine; (2) R<sup>1</sup> is hydrogen; (3) R<sup>6</sup> is methyl; (4) R<sup>7</sup> and R<sup>9</sup> are hydroxyl; (5) R<sup>10</sup> is hydrogen; and (6) X is O;
- (1) Base is guanine; (2)  $R^1$  is hydrogen; (3)  $R^6$  is methyl; (4)  $R^7$  and  $R^9$  are hydroxyl; (5)  $R^{10}$  is hydrogen; and (6) X is O;
- (1) Base is cytosine; (2) R<sup>1</sup> is hydrogen; (3) R<sup>6</sup> is methyl; (4) R<sup>7</sup> and R<sup>9</sup> are hydroxyl; (5) R<sup>10</sup> is hydrogen; and (6) X is O;
- (1) Base is thymine; (2) R<sup>1</sup> is hydrogen; (3) R<sup>6</sup> is methyl; (4) R<sup>7</sup> and R<sup>9</sup> are hydroxyl; (5) R<sup>10</sup> is hydrogen; and (6) X is O;
- (1) Base is uracil; (2)  $R^1$  is hydrogen; (3)  $R^6$  is methyl; (4)  $R^7$  and  $R^9$  are hydroxyl; (5)  $R^{10}$  is hydrogen; and (6) X is O;
- (1) Base is adenine; (2) R<sup>1</sup> is phosphate; (3) R<sup>6</sup> is methyl; (4) R<sup>7</sup> and R<sup>9</sup> are hydroxyl; (5) R<sup>10</sup> is hydrogen; and (6) X is O;
- (1) Base is adenine; (2)  $R^1$  is hydrogen; (3)  $R^6$  is ethyl; (4)  $R^7$  and  $R^9$  are hydroxyl; (5)  $R^{10}$  is hydrogen; and (6) X is O;

(1) Base is adenine; (2) R<sup>1</sup> is hydrogen; (3) R<sup>6</sup> is propyl; (4) R<sup>7</sup> and R<sup>9</sup> are hydroxyl; (5) R<sup>10</sup> is hydrogen; and (6) X is O;

- (1) Base is adenine; (2)  $R^1$  is hydrogen; (3)  $R^6$  is butyl; (4)  $R^7$  and  $R^9$  are hydroxyl; (5)  $R^{10}$  is hydrogen; and (6) X is O;
- (1) Base is adenine; (2) R<sup>1</sup> is hydrogen; (3) R<sup>6</sup> is methyl; (4) R<sup>7</sup> and R<sup>9</sup> are hydroxyl; (5) R<sup>10</sup> is hydrogen; and (6) X is S;
- (1) Base is adenine; (2) R<sup>1</sup> is hydrogen; (3) R<sup>6</sup> is methyl; (4) R<sup>7</sup> and R<sup>9</sup> are hydroxyl; (5) R<sup>10</sup> is hydrogen; and (6) X is SO<sub>2</sub>; or
- (1) Base is adenine; (2) R<sup>1</sup> is hydrogen; (3) R<sup>6</sup> is methyl; (4) R<sup>7</sup> and R<sup>9</sup> are hydroxyl; (5) R<sup>10</sup> is hydrogen; and (6) X is CH<sub>2</sub>.

In an twelfth principal embodiment the invention provides a compound of Formula XVIII, or a pharmaceutically acceptable salt or prodrug thereof:



wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup> is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Brvinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower acyl), -O(alkyl), -O(alkyl),

alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO<sub>2</sub>, amino, lower alkylamino, or di(loweralkyl)amino;

 $R^8$  is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively,  $R^7$  and  $R^9$ , or  $R^8$  and  $R^9$  can come together to form a pi bond; X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a first preferred subembodiment, a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl; (4) R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO<sub>2</sub>, amino, loweralkylamino or di(loweralkyl)amino; (5) R<sup>8</sup> is H, alkyl (including lower alkyl), chlorine, bromine or iodine; and (6) X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a second preferred subembodiment, a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup>

is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, amino, loweralkylamino or di-(loweralkyl)amino; (4) R<sup>7</sup> and R<sup>9</sup> are independently OR<sup>2</sup>; (5) R<sup>8</sup> is H, alkyl (including lower alkyl), chlorine, bromine, or iodine; and (6) X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a third preferred subembodiment, a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, amino, loweralkylamino, or di(lower-alkyl)amino; (4) R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO<sub>2</sub>, amino, loweralkylamino, or di(loweralkyl)amino; (5) R<sup>8</sup> is H; and (6) X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a fourth preferred subembodiment, a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, amino, loweralkylamino, or di(loweralkyl)amino; (4) R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO<sub>2</sub>, amino, loweralkylamino, or

di(loweralkyl)amino; (5) R<sup>8</sup> is H, alkyl (including lower alkyl), chlorine, bromine, or iodine; and (6) X is O.

In a fifth preferred subembodiment, a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, amino, loweralkylamino, or di(loweralkyl)amino; (4) R<sup>7</sup> and R<sup>9</sup> are independently OR<sup>2</sup>; (5) R<sup>8</sup> is H; and (6) X is O, S, SO<sub>2</sub>, or CH<sub>2</sub>.

In a sixth preferred subembodiment, a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, amino, loweralkylamino, or di(loweralkyl)amino; (4) R<sup>7</sup> and R<sup>9</sup> are independently OR<sup>2</sup>; (5) R<sup>8</sup> is H, alkyl (including lower alkyl), chlorine, bromine, or iodine; and (6) X is O.

In a seventh preferred subembodiment, a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl

(including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, amino, loweralkylamino, or di(loweralkyl)amino; (4) R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO<sub>2</sub>, amino, loweralkylamino, or di(loweralkyl)amino; (5) R<sup>8</sup> is H; and (6) X is O.

In an eighth preferred subembodiment, a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R<sup>1</sup> is independently H or phosphate; (3) R<sup>6</sup> is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, amino, loweralkylamino or di(loweralkyl)amino; (4) R<sup>7</sup> and R<sup>9</sup> are independently OR<sup>2</sup>; (5) R<sup>8</sup> is H; and (6) X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

In a ninth preferred subembodiment, a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2)  $R^1$  is independently H or phosphate; (3)  $R^6$  is alkyl; (4)  $R^7$  and  $R^9$  are independently  $OR^2$ ; (5)  $R^8$  is H; and (6) X is O, S,  $SO_2$ , or  $CH_2$ .

In a tenth preferred subembodiment, a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2)  $R^1$  is independently H or phosphate; (3)  $R^6$  is alkyl; (4)  $R^7$  and  $R^9$  are independently  $OR^2$ ; (5)  $R^8$  is H; and (6) X is O.

In even more preferred subembodiments, a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug, is provided in which:

- (1) Base is adenine; (2) R<sup>1</sup> is hydrogen; (3) R<sup>6</sup> is methyl; (4) R<sup>7</sup> and R<sup>9</sup> are hydroxyl; (5) R<sup>8</sup> is hydrogen; and (6) X is O;
- (1) Base is guanine; (2)  $R^1$  is hydrogen; (3)  $R^6$  is methyl; (4)  $R^7$  and  $R^9$  are hydroxyl; (5)  $R^8$  is hydrogen; and (6) X is O;

(1) Base is cytosine; (2) R<sup>1</sup> is hydrogen; (3) R<sup>6</sup> is methyl; (4) R<sup>7</sup> and R<sup>9</sup> are hydroxyl; (5) R<sup>8</sup> is hydrogen; and (6) X is O;

- (1) Base is thymine; (2)  $R^1$  is hydrogen; (3)  $R^6$  is methyl; (4)  $R^7$  and  $R^9$  are hydroxyl; (5)  $R^8$  is hydrogen; and (6) X is O;
- (1) Base is uracil; (2)  $R^1$  is hydrogen; (3)  $R^6$  is methyl; (4)  $R^7$  and  $R^9$  are hydroxyl; (5)  $R^8$  is hydrogen; and (6) X is O;
- (1) Base is adenine; (2) R<sup>1</sup> is phosphate; (3) R<sup>6</sup> is methyl; (4) R<sup>7</sup> and R<sup>9</sup> are hydroxyl; (5) R<sup>8</sup> is hydrogen; and (6) X is O;
- (1) Base is adenine; (2) R<sup>1</sup> is hydrogen; (3) R<sup>6</sup> is ethyl; (4) R<sup>7</sup> and R<sup>9</sup> are hydroxyl; (5) R<sup>8</sup> is hydrogen; and (6) X is O;
- (1) Base is adenine; (2) R<sup>1</sup> is hydrogen; (3) R<sup>6</sup> is propyl; (4) R<sup>7</sup> and R<sup>9</sup> are hydroxyl; (5) R<sup>8</sup> is hydrogen; and (6) X is O;
- (1) Base is adenine; (2) R<sup>1</sup> is hydrogen; (3) R<sup>6</sup> is butyl; (4) R<sup>7</sup> and R<sup>9</sup> are hydroxyl; (5) R<sup>8</sup> is hydrogen; and (6) X is O;
- (1) Base is adenine; (2) R<sup>1</sup> is hydrogen; (3) R<sup>6</sup> is methyl; (4) R<sup>7</sup> and R<sup>9</sup> are hydroxyl; (5) R<sup>8</sup> is hydrogen; and (6) X is S;
- (1) Base is adenine; (2) R<sup>1</sup> is hydrogen; (3) R<sup>6</sup> is methyl; (4) R<sup>7</sup> and R<sup>9</sup> are hydroxyl; (5) R<sup>8</sup> is hydrogen; and (6) X is SO<sub>2</sub>; or
- (1) Base is adenine; (2) R<sup>1</sup> is hydrogen; (3) R<sup>6</sup> is methyl; (4) R<sup>7</sup> and R<sup>9</sup> are hydroxyl; (5) R<sup>8</sup> is hydrogen; and (6) X is CH<sub>2</sub>.

The  $\beta$ -D- and  $\beta$ -L-nucleosides of this invention belong to a class of anti-flavivirus or pestivirus agents that may inhibit flavivirus or pestivirus polymerase activity. Nucleosides can be screened for their ability to inhibit flavivirus or pestivirus polymerase activity in vitro according to screening methods set forth more particularly herein. One can readily determine the spectrum of activity by evaluating the compound in the assays described herein or with another confirmatory assay.

In one embodiment the efficacy of the anti-flavivirus or pestivirus compound is measured according to the concentration of compound necessary to reduce the plaque number of the virus *in vitro*, according to methods set forth more particularly herein, by 50% (i.e. the compound's EC<sub>50</sub>). In preferred embodiments the compound exhibits an EC<sub>50</sub> of less than 15 or 10 micromolar.

HCV is a member of the *Flaviviridae* family; however, now, HCV has been placed in a new monotypic genus, hepacivirus. Therefore, in one embodiment, the flavivirus or pestivirus is not HCV.

The active compound can be administered as any salt or prodrug that upon administration to the recipient is capable of providing directly or indirectly the parent compound, or that exhibits activity itself. Nonlimiting examples are the pharmaceutically acceptable salts (alternatively referred to as "physiologically acceptable salts"), and a compound, which has been alkylated or acylated at the 5'-position, or on the purine or pyrimidine base (a type of "pharmaceutically acceptable prodrug"). Further, the modifications can affect the biological activity of the compound, in some cases increasing the activity over the parent compound. This can easily be assessed by preparing the salt or prodrug and testing its antiviral activity according to the methods described herein, or other methods known to those skilled in the art.

#### II. Definitions

The term alkyl, as used herein, unless otherwise specified, refers to a saturated straight, branched, or cyclic, primary, secondary, or tertiary hydrocarbon of typically C<sub>1</sub> to C<sub>10</sub>, and specifically includes methyl, trifluoromethyl, ethyl, propyl, isopropyl, cyclopropyl, butyl, isobutyl, t-butyl, pentyl, cyclopentyl, isopentyl, neopentyl, hexyl, isohexyl, cyclohexyl, cyclohexylmethyl, 3-methylpentyl, 2,2-dimethylbutyl, and 2,3-dimethylbutyl. The term includes both substituted and unsubstituted alkyl groups. Moieties with which the alkyl group can be substituted are selected from the group consisting of hydroxyl, amino, alkylamino, arylamino, alkoxy, aryloxy, nitro, cyano, sulfonic acid, sulfate, phosphonic acid, phosphate, or phosphonate, either unprotected, or protected as necessary, as known to those skilled in the art, for example, as taught in Greene, et al., Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991, hereby incorporated by reference.

The term lower alkyl, as used herein, and unless otherwise specified, refers to a  $C_1$  to  $C_4$  saturated straight, branched, or if appropriate, a cyclic (for example, cyclopropyl) alkyl group, including both substituted and unsubstituted forms. Unless otherwise specifically stated in this application, when alkyl is a suitable moiety, lower alkyl is preferred. Similarly, when alkyl or lower alkyl is a suitable moiety, unsubstituted alkyl or lower alkyl is preferred.

The term alkylamino or arylamino refers to an amino group that has one or two alkyl or aryl substituents, respectively.

The term "protected" as used herein and unless otherwise defined refers to a group that is added to an oxygen, nitrogen, or phosphorus atom to prevent its further reaction or for other purposes. A wide variety of oxygen and nitrogen protecting groups are known to those skilled in the art of organic synthesis.

The term aryl, as used herein, and unless otherwise specified, refers to phenyl, biphenyl, or naphthyl, and preferably phenyl. The term includes both substituted and unsubstituted moieties. The aryl group can be substituted with one or more moieties selected from the group consisting of hydroxyl, amino, alkylamino, arylamino, alkoxy, aryloxy, nitro, cyano, sulfonic acid, sulfate, phosphonic acid, phosphate, or phosphonate, either unprotected, or protected as necessary, as known to those skilled in the art, for example, as taught in Greene, et al., Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.

The term alkaryl or alkylaryl refers to an alkyl group with an aryl substituent. The term aralkyl or arylalkyl refers to an aryl group with an alkyl substituent.

The term halo, as used herein, includes chloro, bromo, iodo, and fluoro.

The term purine or pyrimidine base includes, but is not limited to, adenine, N<sup>6</sup>alkylpurines, N<sup>6</sup>-acylpurines (wherein acyl is C(O)(alkyl, aryl, alkylaryl, or arylalkyl), N<sup>6</sup>benzylpurine, N<sup>6</sup>-halopurine, N<sup>6</sup>-vinylpurine, N<sup>6</sup>-acetylenic purine, N<sup>6</sup>-acyl purine, N<sup>6</sup>-hydroxyalkyl purine, N<sup>6</sup>-thioalkyl purine, N<sup>2</sup>-alkylpurines, N<sup>2</sup>-alkyl-6-thiopurines, thymine, cytosine, 5-fluorocytosine, 5-methylcytosine, 6-azapyrimidine, including 6azacytosine, 2- and/or 4-mercaptopyrmidine, uracil, 5-halouracil, including 5-fluorouracil, C<sup>5</sup>-alkylpyrimidines, C<sup>5</sup>-benzylpyrimidines, C<sup>5</sup>-halopyrimidines, C<sup>5</sup>-vinylpyrimidine, C<sup>5</sup>acetylenic pyrimidine, C<sup>5</sup>-acyl pyrimidine, C<sup>5</sup>-hydroxyalkyl purine, C<sup>5</sup>-amidopyrimidine, C<sup>5</sup>cyanopyrimidine, C<sup>5</sup>-nitropyrimidine, C<sup>5</sup>-aminopyrimidine, N<sup>2</sup>-alkylpurines, N<sup>2</sup>-alkyl-6-5-azauracilyl, triazolopyridinyl, imidazolopyridinyl, 5-azacytidinyl, thiopurines, pyrrolopyrimidinyl, and pyrazolo-pyrimidinyl. Purine bases include, but are not limited to, guanine, adenine, hypoxanthine, 2,6-diaminopurine, and 6-chloropurine. Functional oxygen and nitrogen groups on the base can be protected as necessary or desired. Suitable protecting groups are well known to those skilled in the art, and include trimethylsilyl, dimethylhexylsilyl, t-butyldimethylsilyl and t-butyldiphenylsilyl, trityl, alkyl groups, and acyl groups such as acetyl and propionyl, methanesulfonyl, and p-toluenesulfonyl. Alternatively, the purine or pyrimidine base can optionally substituted such that it forms a viable prodrug,

which can be cleaved in vivo. Examples of appropriate substituents include acyl moiety, an amine or cyclopropyl (e.g., 2-amino, 2,6-diamino or cyclopropyl guanosine).

The term acyl refers to a carboxylic acid ester in which the non-carbonyl moiety of the ester group is selected from straight, branched, or cyclic alkyl or lower alkyl, alkoxyalkyl including methoxymethyl, aralkyl including benzyl, aryloxyalkyl such as phenoxymethyl, aryl including phenyl optionally substituted with halogen, C<sub>1</sub> to C<sub>4</sub> alkyl or C<sub>1</sub> to C<sub>4</sub> alkoxy, sulfonate esters such as alkyl or aralkyl sulphonyl including methanesulfonyl, the mono, di or triphosphate ester, trityl or monomethoxytrityl, substituted benzyl, trialkylsilyl (e.g. dimethylt-butylsilyl) or diphenylmethylsilyl. Aryl groups in the esters optimally comprise a phenyl group. The term "lower acyl" refers to an acyl group in which the non-carbonyl moiety is lower alkyl.

As used herein, the term "substantially free of" or "substantially in the absence of" refers to a nucleoside composition that includes at least 85 or 90% by weight, preferably 95% to 98 % by weight, and even more preferably 99% to 100% by weight, of the designated enantiomer of that nucleoside. In a preferred embodiment, in the methods and compounds of this invention, the compounds are substantially free of enantiomers.

Similarly, the term "isolated" refers to a nucleoside composition that includes at least 85 or 90% by weight, preferably 95% to 98 % by weight, and even more preferably 99% to 100% by weight, of the nucleoside, the remainder comprising other chemical species or enantiomers.

The term "independently" is used herein to indicate that the variable, which is independently applied, varies independently from application to application. Thus, in a compound such as R"XYR", wherein R" is "independently carbon or nitrogen," both R" can be carbon, both R" can be nitrogen, or one R" can be carbon and the other R" nitrogen.

The term host, as used herein, refers to an unicellular or multicellular organism in which the virus can replicate, including cell lines and animals, and preferably a human. Alternatively, the host can be carrying a part of the flavivirus or pestivirus genome, whose replication or function can be altered by the compounds of the present invention. The term host specifically refers to infected cells, cells transfected with all or part of the flavivirus or pestivirus genome and animals, in particular, primates (including chimpanzees) and humans. In most animal applications of the present invention, the host is a human patient. Veterinary

applications, in certain indications, however, are clearly anticipated by the present invention (such as chimpanzees).

The term "pharmaceutically acceptable salt or prodrug" is used throughout the specification to describe any pharmaceutically acceptable form (such as an ester, phosphate ester, salt of an ester or a related group) of a nucleoside compound which, upon administration to a patient, provides the nucleoside compound. Pharmaceutically acceptable salts include those derived from pharmaceutically acceptable inorganic or organic bases and acids. Suitable salts include those derived from alkali metals such as potassium and sodium, alkaline earth metals such as calcium and magnesium, among numerous other acids well known in the pharmaceutical art. Pharmaceutically acceptable prodrugs refer to a compound that is metabolized, for example hydrolyzed or oxidized, in the host to form the compound of the present invention. Typical examples of prodrugs include compounds that have biologically labile protecting groups on a functional moiety of the active compound. Prodrugs include compounds that can be oxidized, reduced, aminated, deaminated, hydroxylated, dehydroxylated, hydrolyzed, dehydrolyzed, alkylated, dealkylated, acylated, deacylated, phosphorylated, dephosphorylated to produce the active compound. compounds of this invention possess antiviral activity against flavivirus or pestivirus, or are metabolized to a compound that exhibits such activity.

# III. Nucleotide Salt or Prodrug Formulations

In cases where compounds are sufficiently basic or acidic to form stable nontoxic acid or base salts, administration of the compound as a pharmaceutically acceptable salt may be appropriate. Examples of pharmaceutically acceptable salts are organic acid addition salts formed with acids, which form a physiological acceptable anion, for example, tosylate, methanesulfonate, acetate, citrate, malonate, tartarate, succinate, benzoate, ascorbate,  $\alpha$ -ketoglutarate, and  $\alpha$ -glycerophosphate. Suitable inorganic salts may also be formed, including, sulfate, nitrate, bicarbonate, and carbonate salts.

Pharmaceutically acceptable salts may be obtained using standard procedures well known in the art, for example by reacting a sufficiently basic compound such as an amine with a suitable acid affording a physiologically acceptable anion. Alkali metal (for example, sodium, potassium or lithium) or alkaline earth metal (for example calcium) salts of carboxylic acids can also be made.

Any of the nucleosides described herein can be administered as a nucleotide prodrug to increase the activity, bioavailability, stability or otherwise alter the properties of the nucleoside. A number of nucleotide prodrug ligands are known. In general, alkylation, acylation or other lipophilic modification of the mono, di or triphosphate of the nucleoside will increase the stability of the nucleotide. Examples of substituent groups that can replace one or more hydrogens on the phosphate moiety are alkyl, aryl, steroids, carbohydrates, including sugars, 1,2-diacylglycerol and alcohols. Many are described in R. Jones and N. Bischofberger, *Antiviral Research*, 27 (1995) 1-17. Any of these can be used in combination with the disclosed nucleosides to achieve a desired effect.

The active nucleoside can also be provided as a 5'-phosphoether lipid or a 5'-ether lipid, as disclosed in the following references, which are incorporated by reference herein: Kucera, L.S., N. Iyer, E. Leake, A. Raben, Modest E.K., D.L.W., and C. Piantadosi, "Novel membrane-interactive ether lipid analogs that inhibit infectious HIV-1 production and induce defective virus formation," *AIDS Res. Hum. Retro Viruses*, 1990, 6, 491-501; Piantadosi, C., J. Marasco C.J., S.L. Morris-Natschke, K.L. Meyer, F. Gumus, J.R. Surles, K.S. Ishaq, L.S. Kucera, N. Iyer, C.A. Wallen, S. Piantadosi, and E.J. Modest, "Synthesis and evaluation of novel ether lipid nucleoside conjugates for anti-HIV activity," *J. Med. Chem.*, 1991, 34, 1408-1414; Hosteller, K.Y., D.D. Richman, D.A. Carson, L.M. Stuhmiller, G.M. T. van Wijk, and H. van den Bosch, "Greatly enhanced inhibition of human immunodeficiency virus type 1 replication in CEM and HT4-6C cells by 3'-deoxythymidine diphosphate dimyristoylglycerol, a lipid prodrug of 3,-deoxythymidine," *Antimicrob. Agents Chemother.*, 1992, 36, 2025-2029; Hosetler, K.Y., L.M. Stuhmiller, H.B. Lenting, H. van den Bosch, and D.D. Richman, "Synthesis and antiretroviral activity of phospholipid analogs of azidothymidine and other antiviral nucleosides." *J. Biol. Chem.*, 1990, 265, 61127.

Nonlimiting examples of U.S. patents that disclose suitable lipophilic substituents that can be covalently incorporated into the nucleoside, preferably at the 5'-OH position of the nucleoside or lipophilic preparations, include U.S. Patent Nos. 5,149,794 (Sep. 22, 1992, Yatvin et al.); 5,194,654 (Mar. 16, 1993, Hostetler et al., 5,223,263 (June 29, 1993, Hostetler et al.); 5,256,641 (Oct. 26, 1993, Yatvin et al.); 5,411,947 (May 2, 1995, Hostetler et al.); 5,463,092 (Oct. 31, 1995, Hostetler et al.); 5,543,389 (Aug. 6, 1996, Yatvin et al.); 5,543,390 (Aug. 6, 1996, Yatvin et al.); 5,543,391 (Aug. 6, 1996, Yatvin et al.); and 5,554,728 (Sep. 10, 1996; Basava et al.), all of which are incorporated herein by reference. Foreign patent applications that disclose lipophilic substituents that can be attached to the nucleosides of the

present invention, or lipophilic preparations, include WO 89/02733, W0 90/00555, W0 91/16920, W0 91/18914, W0 93/00910, W0 94/26273, W0 96/15132, EP 0 350 287, EP 93917054.4, and W0 91/19721.

#### IV. Combination and Alternation Therapy

It has been recognized that drug-resistant variants of viruses can emerge after prolonged treatment with an antiviral agent. Drug resistance most typically occurs by mutation of a gene that encodes for an enzyme used in viral replication. The efficacy of a drug against flavivirus or pestivirus infection can be prolonged, augmented, or restored by administering the compound in combination or alternation with a second, and perhaps third, antiviral compound that induces a different mutation from that caused by the principle drug. Alternatively, the pharmacokinetics, biodistribution or other parameter of the drug can be altered by such combination or alternation therapy. In general, combination therapy is typically preferred over alternation therapy because it induces multiple simultaneous stresses on the virus.

Nonlimiting examples of antiviral agents that can be used in combination or alternation with the compounds disclosed herein include:

- (1) an interferon and/or ribavirin (Battaglia, A.M. et al., Ann. Pharmacother. 34:487-494, 2000); Berenguer, M. et al. Antivir. Ther. 3(Suppl. 3):125-136, 1998);
- (2) Substrate-based NS3 protease inhibitors (Attwood et al., Antiviral peptide derivatives, PCT WO 98/22496, 1998; Attwood et al., Antiviral Chemistry and Chemotherapy 10.259-273, 1999; Attwood et al., Preparation and use of amino acid derivatives as anti-viral agents, German Patent Publication DE 19914474; Tung et al. Inhibitors of serine proteases, particularly hepatitis C virus NS3 protease, PCT WO 98/17679), including alphaketoamides and hydrazinoureas, and inhibitors that terminate in an electrophile such as a boronic acid or phosphonate. Llinas-Brunet et al, Hepatitis C inhibitor peptide analogues, PCT WO 99/07734.
- (3) Non-substrate-based inhibitors such as 2,4,6-trihydroxy-3-nitro-benzamide derivatives (Sudo K. et al., Biochemical and Biophysical Research Communications, 238:643-647, 1997; Sudo K. et al. Antiviral Chemistry and Chemotherapy 9:186, 1998), including

RD3-4082 and RD3-4078, the former substituted on the amide with a 14 carbon chain and the latter processing a *para*-phenoxyphenyl group;

- (4) Thiazolidine derivatives which show relevant inhibition in a reverse-phase HPLC assay with an NS3/4A fusion protein and NS5A/5B substrate (Sudo K. *et al.*, *Antiviral Research* 32:9-18, 1996), especially compound RD-1-6250, possessing a fused cinnamoyl moiety substituted with a long alkyl chain, RD4 6205 and RD4 6193;
- (5) Thiazolidines and benzanilides identified in Kakiuchi N. et al. J. EBS Letters 421:217-220; Takeshita N. et al. Analytical Biochemistry 247:242-246, 1997;
- (6) A phenan-threnequinone possessing activity against protease in a SDS-PAGE and autoradiography assay isolated from the fermentation culture broth of *Streptomyces* sp., Sch 68631 (Chu M. et al., Tetrahedron Letters 37:7229-7232, 1996), and Sch 351633, isolated from the fungus Penicillium griscofuluum, which demonstrates activity in a scintillation proximity assay (Chu M. et al., Bioorganic and Medicinal Chemistry Letters 9:1949-1952);
- (7) Selective NS3 inhibitors based on the macromolecule elgin c, isolated from leech (Qasim M.A. et al., Biochemistry 36:1598-1607, 1997);
- (8) Helicase inhibitors (Diana G.D. et al., Compounds, compositions and methods for treatment of hepatitis C, U.S. Patent No. 5,633,358; Diana G.D. et al., Piperidine derivatives, pharmaceutical compositions thereof and their use in the treatment of hepatitis C, PCT WO 97/36554);
- (9) Polymerase inhibitors such as nucleotide analogues, gliotoxin (Ferrari R. et al. Journal of Virology 73:1649-1654, 1999), and the natural product cerulenin (Lohmann V. et al., Virology 249:108-118, 1998);
- (10) Antisense phosphorothioate oligodeoxynucleotides (S-ODN) complementary to sequence stretches in the 5' non-coding region (NCR) of the virus (Alt M. et al., Hepatology 22:707-717, 1995), or nucleotides 326-348 comprising the 3' end of the NCR and nucleotides 371-388 located in the core coding region of the IICV RNA (Alt M. et al., Archives of Virology 142:589-599, 1997; Galderisi U. et al., Journal of Cellular Physiology 181:251-257, 1999);
- (11) Inhibitors of IRES-dependent translation (Ikeda N et al., Agent for the prevention and treatment of hepatitis C, Japanese Patent Publication JP-08268890; Kai Y. et al. Prevention and treatment of viral diseases, Japanese Patent Publication JP-10101591);

(12) Nuclease-resistant ribozymes. (Maccjak D.J. et al., Hepatology 30 abstract 995, 1999); and

(13) Other miscellaneous compounds including 1-amino-alkylcyclohexanes (U.S. Patent No. 6,034,134 to Gold et al.), alkyl lipids (U.S. Patent No. 5,922,757 to Chojkier et al.), vitamin E and other antioxidants (U.S. Patent No. 5,922,757 to Chojkier et al.), squalene, amantadine, bile acids (U.S. Patent No. 5,846,964 to Ozeki et al.), N-(phosphonoacetyl)-L-aspartic acid, (U.S. Patent No. 5,830,905 to Diana et al.), benzenedicarboxamides (U.S. Patent No. 5,633,388 to Diana et al.), polyadenylic acid derivatives (U.S. Patent No. 5,496,546 to Wang et al.), 2',3'-dideoxyinosine (U.S. Patent No. 5,026,687 to Yarchoan et al.), and benzimidazoles (U.S. Patent No. 5,891,874 to Colacino et al.).

#### V. Pharmaceutical Compositions

Host, including humans, infected with flavivirus or pestivirus, or a gene fragment thereof can be treated by administering to the patient an effective amount of the active compound or a pharmaceutically acceptable prodrug or salt thereof in the presence of a pharmaceutically acceptable carrier or diluent. The active materials can be administered by any appropriate route, for example, orally, parenterally, intravenously, intradermally, subcutaneously, or topically, in liquid or solid form.

A preferred dose of the compound for flavivirus or pestivirus infection will be in the range from about 1 to 50 mg/kg, preferably 1 to 20 mg/kg, of body weight per day, more generally 0.1 to about 100 mg per kilogram body weight of the recipient per day. The effective dosage range of the pharmaceutically acceptable salts and prodrugs can be calculated based on the weight of the parent nucleoside to be delivered. If the salt or prodrug exhibits activity in itself, the effective dosage can be estimated as above using the weight of the salt or prodrug, or by other means known to those skilled in the art.

The compound is conveniently administered in unit any suitable dosage form, including but not limited to one containing 7 to 3000 mg, preferably 70 to 1400 mg of active ingredient per unit dosage form. A oral dosage of 50-1000 mg is usually convenient.

Ideally the active ingredient should be administered to achieve peak plasma concentrations of the active compound of from about 0.2 to 70 µM, preferably about 1.0 to 10

 $\mu$ M. This may be achieved, for example, by the intravenous injection of a 0.1 to 5% solution of the active ingredient, optionally in saline, or administered as a bolus of the active ingredient.

The concentration of active compound in the drug composition will depend on absorption, inactivation, and excretion rates of the drug as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition. The active ingredient may be administered at once, or may be divided into a number of smaller doses to be administered at varying intervals of time.

A preferred mode of administration of the active compound is oral. Oral compositions will generally include an inert diluent or an edible carrier. They may be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches or capsules. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition.

The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring. When the dosage unit form is a capsule, it can contain, in addition to material of the above type, a liquid carrier such as a fatty oil. In addition, dosage unit forms can contain various other materials which modify the physical form of the dosage unit, for example, coatings of sugar, shellac, or other enteric agents.

The compound can be administered as a component of an elixir, suspension, syrup, wafer, chewing gum or the like. A syrup may contain, in addition to the active compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors.

The compound or a pharmaceutically acceptable prodrug or salts thereof can also be mixed with other active materials that do not impair the desired action, or with materials that supplement the desired action, such as antibiotics, antifungals, anti-inflammatories, or other antivirals, including other nucleoside compounds. Solutions or suspensions used for parenteral, intradermal, subcutaneous, or topical application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. The parental preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.

If administered intravenously, preferred carriers are physiological saline or phosphate buffered saline (PBS).

In a preferred embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation.

Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) are also preferred as pharmaceutically acceptable carriers. These may be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811 (which is incorporated herein by reference in its entirety). For example, liposome formulations may be prepared by dissolving appropriate lipid(s) (such as stearoyl phosphatidyl ethanolamine, stearoyl phosphatidyl choline, arachadoyl phosphatidyl choline, and cholesterol) in an inorganic solvent that is then evaporated, leaving behind a thin film of dried lipid on the surface of the container. An aqueous solution of the active compound or its monophosphate, diphosphate, and/or triphosphate derivatives is then introduced into the container. The container is then swirled by hand to free lipid material from the sides of the container and to disperse lipid aggregates, thereby forming the liposomal suspension.

# VI. Processes for the Preparation of Active Compounds

The nucleosides of the present invention can be synthesized by any means known in the art. In particular, the synthesis of the present nucleosides can be achieved by either alkylating the appropriately modified sugar, followed by glycosylation or glycosylation followed by alkylation of the nucleoside. The following non-limiting embodiments illustrate some general methodology to obtain the nucleosides of the present invention.

# A. General Synthesis of 1'-C-Branched Nucleosides

1'-C-Branched ribonucleosides of the following structure:

wherein BASE is a purine or pyrimidine base as defined herein;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>8</sup> and R<sup>10</sup> are independently H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R<sup>7</sup> and R<sup>9</sup>, R<sup>7</sup> and R<sup>10</sup>, R<sup>8</sup> and R<sup>9</sup>, or R<sup>8</sup> and R<sup>10</sup>can come together to form a pi bond;

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate;

R<sup>6</sup> is an alkyl, halogeno-alkyl (i.e. CF<sub>3</sub>), alkenyl, or alkynyl (i.e. allyl); and

X is O, S, SO<sub>2</sub> or CH<sub>2</sub>

can be prepared by one of the following general methods.

# 1) Modification from the lactone

The key starting material for this process is an appropriately substituted lactone. The lactone can be purchased or can be prepared by any known means including standard epimerization, substitution and cyclization techniques. The lactone can be optionally protected with a suitable protecting group, preferably with an acyl or silyl group, by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991. The protected lactone can then be coupled with a suitable coupling agent, such as an organometallic carbon nucleophile, such as a Grignard reagent, an organolithium, lithium dialkylcopper or R<sup>6</sup>-SiMe<sub>3</sub> in TBAF with the appropriate non-protic solvent at a suitable temperature, to give the 1'-alkylated sugar.

The optionally activated sugar can then be coupled to the BASE by methods well known to those skilled in the art, as taught by Townsend Chemistry of Nucleosides and Nucleotides, Plenum Press, 1994. For example, an acylated sugar can be coupled to a silylated base with a lewis acid, such as tin tetrachloride, titanium tetrachloride or trimethylsilyltriflate in the appropriate solvent at a suitable temperature.

Subsequently, the nucleoside can be deprotected by methods well known to those skilled in the art, as taught by Greene *et al.* Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.

In a particular embodiment, the 1'-C-branched ribonucleoside is desired. The synthesis of a ribonucleoside is shown in **Scheme 1**. Alternatively, deoxyribo-nucleoside is desired. To obtain these nucleosides, the formed ribonucleoside can optionally be protected by methods well known to those skilled in the art, as taught by Greene *et al.* Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991, and then the 2'-OH can be reduced with a suitable reducing agent. Optionally, the 2'-hydroxyl can be activated to facilitate reduction; i.e. via the Barton reduction.

# Scheme 1

# 2. Alternative method for the preparation of 1'-C-branched nucleosides

The key starting material for this process is an appropriately substituted hexose. The hexose can be purchased or can be prepared by any known means including standard epimerization (e.g. via alkaline treatment), substitution and coupling techniques. The hexose can be selectively protected to give the appropriate hexa-furanose, as taught by Townsend Chemistry of Nucleosides and Nucleotides, Plenum Press, 1994.

The 1'-hydroxyl can be optionally activated to a suitable leaving group such as an acyl group or a halogen via acylation or halogenation, respectively. The optionally activated sugar can then be coupled to the BASE by methods well known to those skilled in the art, as taught by Townsend Chemistry of Nucleosides and Nucleotides, Plenum Press, 1994. For example, an acylated sugar can be coupled to a silylated base with a lewis acid, such as tin tetrachloride, titanium tetrachloride or trimethylsilyltriflate in the appropriate solvent at a suitable temperature. Alternatively, a halo-sugar can be coupled to a silylated base with the presence of trimethylsilyltriflate.

The 1'-CH<sub>2</sub>-OH, if protected, can be selectively deprotected by methods well known in the art. The resultant primary hydroxyl can be functionalized to yield various C-branched nucleosides. For example, the primary hydroxyl can be reduced to give the methyl, using a suitable reducing agent. Alternatively, the hydroxyl can be activated prior to reduction to facilitate the reaction; i.e. via the Barton reduction. In an alternate embodiment, the primary hydroxyl can be oxidized to the aldehyde, then coupled with a carbon nucleophile, such as a Grignard reagent, an organolithium, lithium dialkylcopper or R<sup>6</sup>-SiMe<sub>3</sub> in TBAF with the appropriate non-protic solvent at a suitable temperature.

In a particular embodiment, the 1'-C-branched ribonucleoside is desired. The synthesis of a ribonucleoside is shown in **Scheme 2**. Alternatively, deoxyribo-nucleoside is desired. To obtain these nucleosides, the formed ribonucleoside can optionally be protected by methods well known to those skilled in the art, as taught by Greene *et al.* Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991, and then the 2'-OH can be reduced with a suitable reducing agent. Optionally, the 2'-hydroxyl can be activated to facilitate reduction; i.e. via the Barton reduction.

# Scheme 2

In addition, the L-enantiomers corresponding to the compounds of the invention can be prepared following the same general methods (1 or 2), beginning with the corresponding L-sugar or nucleoside L-enantiomer as starting material.

# B. General Synthesis of 2'-C-Branched Nucleosides

2'-C-Branched ribonucleosides of the following structure:

wherein BASE is a purine or pyrimidine base as defined herein;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>10</sup> is H, alkyl (including lower alkyl), chlorine, bromine or iodine;

alternatively, R<sup>7</sup> and R<sup>9</sup>, or R<sup>7</sup> and R<sup>10</sup> can come together to form a pi bond;

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate;

R<sup>6</sup> is an alkyl, halogeno-alkyl (i.e. CF<sub>3</sub>), alkenyl, or alkynyl (i.e. allyl); and

X is O, S, SO<sub>2</sub> or CH<sub>2</sub>

can be prepared by one of the following general methods.

#### 1. Glycosylation of the nucleobase with an appropriately modified sugar

The key starting material for this process is an appropriately substituted sugar with a 2'-OH and 2'-H, with the appropriate leaving group (LG), for example an acyl group or a

halogen. The sugar can be purchased or can be prepared by any known means including standard epimerization, substitution, oxidation and reduction techniques. The substituted sugar can then be oxidized with the appropriate oxidizing agent in a compatible solvent at a suitable temperature to yield the 2'-modified sugar. Possible oxidizing agents are Jones reagent (a mixture of chromic acid and sulfuric acid), Collins's reagent (dipyridine Cr(VI) oxide, Corey's reagent (pyridinium chlorochromate), pyridinium dichromate, acid dichromate, potassium permanganate, MnO<sub>2</sub>, ruthenium tetroxide, phase transfer catalysts such as chromic acid or permanganate supported on a polymer, Cl<sub>2</sub>-pyridine, H<sub>2</sub>O<sub>2</sub>-ammonium molybdate, NaBrO<sub>2</sub>-CAN, NaOCl in HOAc, copper chromite, copper oxide, Raney nickel, palladium acetate, Meerwin-Pondorf-Verley reagent (aluminum t-butoxide with another ketone) and N-bromosuccinimide.

Then coupling of an organometallic carbon nucleophile, such as a Grignard reagent, an organolithium, lithium dialkylcopper or R<sup>6</sup>-SiMe<sub>3</sub> in TBAF with the ketone with the appropriate non-protic solvent at a suitable temperature, yields the 2'-alkylated sugar. The alkylated sugar can be optionally protected with a suitable protecting group, preferably with an acyl or silyl group, by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.

The optionally protected sugar can then be coupled to the BASE by methods well known to those skilled in the art, as taught by Townsend Chemistry of Nucleosides and Nucleotides, Plenum Press, 1994. For example, an acylated sugar can be coupled to a silylated base with a lewis acid, such as tin tetrachloride, titanium tetrachloride or trimethylsilyltriflate in the appropriate solvent at a suitable temperature. Alternatively, a halo-sugar can be coupled to a silylated base with the presence of trimethylsilyltriflate.

Subsequently, the nucleoside can be deprotected by methods well known to those skilled in the art, as taught by Greene *et al.* Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.

In a particular embodiment, the 2'-C-branched ribonucleoside is desired. The synthesis of a ribonucleoside is shown in **Scheme 3**. Alternatively, deoxyribo-nucleoside is desired. To obtain these nucleosides, the formed ribonucleoside can optionally be protected by methods well known to those skilled in the art, as taught by Greene *et al.* Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991, and then the 2'-

OH can be reduced with a suitable reducing agent. Optionally, the 2'-hydroxyl can be activated to facilitate reduction; i.e. via the Barton reduction.

# 2. Modification of a pre-formed nucleoside

The key starting material for this process is an appropriately substituted nucleoside with a 2'-OH and 2'-H. The nucleoside can be purchased or can be prepared by any known means including standard coupling techniques. The nucleoside can be optionally protected with suitable protecting groups, preferably with acyl or silyl groups, by methods well known to those skilled in the art, as taught by Greene *et al.* <u>Protective Groups in Organic Synthesis</u>, John Wiley and Sons, Second Edition, 1991.

The appropriately protected nucleoside can then be oxidized with the appropriate oxidizing agent in a compatible solvent at a suitable temperature to yield the 2'-modified

sugar. Possible oxidizing agents are Jones reagent (a mixture of chromic acid and sulfuric acid), Collins's reagent (dipyridine Cr(VI) oxide, Corey's reagent (pyridinium chlorochromate), pyridinium dichromate, acid dichromate, potassium permanganate, MnO<sub>2</sub>, ruthenium tetroxide, phase transfer catalysts such as chromic acid or permanganate supported on a polymer, Cl<sub>2</sub>-pyridine, H<sub>2</sub>O<sub>2</sub>-ammonium molybdate, NaBrO<sub>2</sub>-CAN, NaOCl in HOAc, copper chromite, copper oxide, Raney nickel, palladium acetate, Meerwin-Pondorf-Verley reagent (aluminum t-butoxide with another ketone) and N-bromosuccinimide.

Subsequently, the nucleoside can be deprotected by methods well known to those skilled in the art, as taught by GreeneGreene *et al.* Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.

In a particular embodiment, the 2'-C-branched ribonucleoside is desired. The synthesis of a ribonucleoside is shown in **Scheme 4**. Alternatively, deoxyribo-nucleoside is desired. To obtain these nucleosides, the formed ribonucleoside can optionally be protected by methods well known to those skilled in the art, as taught by Greene *et al.* Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991, and then the 2'-OH can be reduced with a suitable reducing agent. Optionally, the 2'-hydroxyl can be activated to facilitate reduction; i.e. via the Barton reduction.

#### Scheme 4

In another embodiment of the invention, the L-enantiomers are desired. Therefore, the L-enantiomers can be corresponding to the compounds of the invention can be prepared following the same foregoing general methods, beginning with the corresponding L-sugar or nucleoside L-enantiomer as starting material.

# C. General Synthesis of 3'-C-Branched Nucleosides

3'-C-Branched ribonucleosides of the following structure:

wherein BASE is a purine or pyrimidine base as defined herein;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>8</sup> is H, alkyl (including lower alkyl), chlorine, bromine or iodine;

alternatively, R<sup>7</sup> and R<sup>9</sup>, or R<sup>8</sup> and R<sup>9</sup> can come together to form a pi bond;

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> is independently H or phosphate;

R<sup>6</sup> is an alkyl, halogeno-alkyl (i.e. CF<sub>3</sub>), alkenyl, or alkynyl (i.e. allyl); and

X is O, S, SO<sub>2</sub> or CH<sub>2</sub>

can be prepared by one of the following general methods.

# 1 Glycosylation of the nucleobase with an appropriately modified sugar

The key starting material for this process is an appropriately substituted sugar with a 3'-OH and 3'-H, with the appropriate leaving group (LG), for example an acyl group or a halogen. The sugar can be purchased or can be prepared by any known means including standard epimerization, substitution, oxidation and reduction techniques. The substituted sugar can then be oxidized with the appropriate oxidizing agent in a compatible solvent at a suitable temperature to yield the 3'-modified sugar. Possible oxidizing agents are Jones reagent (a mixture of chromic acid and sulfuric acid), Collins's reagent (dipyridine Cr(VI) oxide, Corey's reagent (pyridinium chlorochromate), pyridinium dichromate, acid dichromate, potassium permanganate, MnO<sub>2</sub>, ruthenium tetroxide, phase transfer catalysts such as chromic acid or permanganate supported on a polymer, Cl<sub>2</sub>-pyridine, H<sub>2</sub>O<sub>2</sub>-ammonium molybdate, NaBrO<sub>2</sub>-CAN, NaOCl in HOAc, copper chromite, copper oxide, Raney nickel, palladium acetate, Meerwin-Pondorf-Verley reagent (aluminum t-butoxide with another ketone) and N-bromosuccinimide.

Then coupling of an organometallic carbon nucleophile, such as a Grignard reagent, an organolithium, lithium dialkylcopper or R<sup>6</sup>-SiMe<sub>3</sub> in TBAF with the ketone with the appropriate non-protic solvent at a suitable temperature, yields the 3'-C-branched sugar. The 3'-C-branched sugar can be optionally protected with a suitable protecting group, preferably with an acyl or silyl group, by methods well known to those skilled in the art, as taught by Greene *et al.* Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.

The optionally protected sugar can then be coupled to the BASE by methods well known to those skilled in the art, as taught by Townsend Chemistry of Nucleosides and Nucleotides, Plenum Press, 1994. For example, an acylated sugar can be coupled to a silylated base with a lewis acid, such as tin tetrachloride, titanium tetrachloride or trimethylsilyltriflate in the appropriate solvent at a suitable temperature. Alternatively, a halo-sugar can be coupled to a silylated base with the presence of trimethylsilyltriflate.

Subsequently, the nucleoside can be deprotected by methods well known to those skilled in the art, as taught by Greene *et al.* Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.

In a particular embodiment, the 3'-C-branched ribonucleoside is desired. The synthesis of a ribonucleoside is shown in **Scheme 5**. Alternatively, deoxyribo-nucleoside is

desired. To obtain these nucleosides, the formed ribonucleoside can optionally be protected by methods well known to those skilled in the art, as taught by Greene *et al.* Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991, and then the 2'-OH can be reduced with a suitable reducing agent. Optionally, the 2'-hydroxyl can be activated to facilitate reduction; i.e. via the Barton reduction.

# Scheme 5 1) Optional R<sup>1</sup>O Protection 2) Optional 2) Oxidation Protection 1) Coupling 2) Optional Deprotection 1) Optional BASE BASE Protection 2) Optional Reduction Optional Deprotection BASE

# 2. Modification of a pre-formed nucleoside

The key starting material for this process is an appropriately substituted nucleoside with a 3'-OH and 3'-H. The nucleoside can be purchased or can be prepared by any known means including standard coupling techniques. The nucleoside can be optionally protected with suitable protecting groups, preferably with acyl or silyl groups, by methods well known to those skilled in the art, as taught by Greene *et al.* Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.

The appropriately protected nucleoside can then be oxidized with the appropriate oxidizing agent in a compatible solvent at a suitable temperature to yield the 2'-modified

sugar. Possible oxidizing agents are Jones reagent (a mixture of chromic acid and sulfuric acid), Collins's reagent (dipyridine Cr(VI) oxide, Corey's reagent (pyridinium chlorochromate), pyridinium dichromate, acid dichromate, potassium permanganate, MnO<sub>2</sub>, ruthenium tetroxide, phase transfer catalysts such as chromic acid or permanganate supported on a polymer, Cl<sub>2</sub>-pyridine, H<sub>2</sub>O<sub>2</sub>-ammonium molybdate, NaBrO<sub>2</sub>-CAN, NaOCl in HOAc, copper chromite, copper oxide, Raney nickel, palladium acetate, Meerwin-Pondorf-Verley reagent (aluminum t-butoxide with another ketone) and N-bromosuccinimide.

Subsequently, the nucleoside can be deprotected by methods well known to those skilled in the art, as taught by Greene *et al.* Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.

In a particular embodiment, the 3'-C-branched ribonucleoside is desired. The synthesis of a ribonucleoside is shown in **Scheme 6**. Alternatively, deoxyribo-nucleoside is desired. To obtain these nucleosides, the formed ribonucleoside can optionally be protected by methods well known to those skilled in the art, as taught by Greene *et al.* Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991, and then the 2'-OH can be reduced with a suitable reducing agent. Optionally, the 2'-hydroxyl can be activated to facilitate reduction; i.e. via the Barton reduction.

# Scheme 6

In another embodiment of the invention, the L-enantiomers are desired. Therefore, the L-enantiomers can be corresponding to the compounds of the invention can be prepared following the same foregoing general methods, beginning with the corresponding L-sugar or nucleoside L-enantiomer as starting material.

# **EXAMPLES**

# Example 1: Preparation of 1'-C-methylriboadenine via 6-amino-9-(1-deoxy-β-D-psicofuranosyl)purine

The title compound could also be prepared according to a published procedure (J. Farkas, and F. Sorm, "Nucleic acid components and their analogues. XCIV. Synthesis of 6-amino-9-(1-deoxy-β-D-psicofuranosyl)purine" Collect. Czech. Chem. Commun. 1967, 32, 2663-2667; J. Farkas", Collect. Czech. Chem. Commun. 1966, 31, 1535) (Scheme 7).

#### Scheme 7

In a similar manner, but using the appropriate sugar and pyrimidine or purine bases, the following nucleosides of Formula I are prepared.

wherein:

| R <sup>1</sup> | $\mathbb{R}^2$ | R <sup>3</sup> | X <sup>1</sup> | X <sup>2</sup> | Y               |
|----------------|----------------|----------------|----------------|----------------|-----------------|
| H              | Н              | H              | H              | Н              | Н               |
| Н              | H              | H              | H              | H              | NH <sub>2</sub> |
| Н              | H              | H              | H              | H              | NH-cyclopropyl  |
| H              | Н              | H              | H              | Н              | NH-methyl       |
| Н              | Н              | H              | H              | H              | NH-ethyl        |
| Н              | Н              | H              | H              | H              | NH-acetyl       |
| H              | H              | Н              | H              | H              | ОН              |
| H              | H              | Н              | H              | H              | OMe             |
| Н              | Н              | Н              | Н              | H              | OEt             |
| Н              | Н              | Н              | Н              | Н              | O-cyclopropyl   |
| H              | Н              | Н              | H              | H              | O-acetyl        |
| Н              | Н              | Н              | H              | H              | SH              |
| Н              | H              | Н              | H              | H              | SMe             |
| H              | H              | Н              | H              | Н              | SEt             |
| Н              | Н              | Н              | Н              | Н              | S-cyclopropyl   |
| Н              | Н              | Н              | Н              | Н              | F               |
| Н              | Н              | Н              | H              | H              | CI              |
| H              | Н              | Н              | H              | Н              | Br              |
| H              | Н              | Н              | Н              | H              | I               |
| monophosphate  | Н              | Н              | Н              | H              | NH <sub>2</sub> |
| monophosphate  | Н              | Н              | Н              | Н              | NH-acetyl       |
| monophosphate  | Н              | Н              | Н              | H              | NH-cyclopropyl  |
| monophosphate  | Н              | Н              | H              | H              | NH-methyl       |

| $\mathbb{R}^1$ | R <sup>2</sup> | R <sup>3</sup> | X <sup>1</sup> | X <sup>2</sup> | Y               |
|----------------|----------------|----------------|----------------|----------------|-----------------|
| monophosphate  | Н              | H              | H              | H              | NH-ethyl        |
| monophosphate  | H              | Н              | Н              | H              | ОН              |
| monophosphate  | Н              | Н              | H              | H              | O-acetyl        |
| monophosphate  | H              | H .            | H              | H              | OMe             |
| monophosphate  | Н              | Н              | H              | H              | OEt             |
| monophosphate  | Н              | Н              | Н              | Н              | O-cyclopropyl   |
| monophosphate  | Н              | Н              | H              | H              | SH              |
| monophosphate  | Н              | Н              | Н              | H              | SMe             |
| monophosphate  | Н              | Н              | H              | H              | SEt             |
| monophosphate  | Н              | Н              | H              | Н              | S-cyclopropyl   |
| monophosphate  | Н              | Н              | Н              | H              | F               |
| monophosphate  | Н              | H              | H              | H              | Cl              |
| monophosphate  | H              | Н              | H              | H              | Br              |
| monophosphate  | Н              | Н              | H              | Н              | I               |
| diphosphate    | Н              | H              | H              | H              | NH <sub>2</sub> |
| diphosphate    | Н              | Н              | H              | H              | NH-acetyl       |
| diphosphate    | H              | H              | H              | H              | NH-cyclopropyl  |
| diphosphate    | Н              | H              | H              | Н              | NH-methyl       |
| diphosphate    | Н              | Н              | H              | H              | NH-ethyl        |
| diphosphate    | H              | Н              | H              | H              | OH              |
| diphosphate    | H              | Н              | H              | H              | O-acetyl        |
| diphosphate    | Н              | Н              | H              | H              | OMe             |
| diphosphate    | Н              | Н              | H              | H              | OEt             |
| diphosphate    | Н              | Н              | H              | H              | O-cyclopropyl   |
| diphosphate    | H              | Н              | H              | H              | SH              |
| diphosphate    | Н              | Н              | H              | H              | SMe             |
| diphosphate    | H              | H              | H              | H              | SEt             |
| diphosphate    | H              | H              | Н              | Н              | S-cyclopropyl   |
| diphosphate    | H              | H              | H              | H              | F               |
| diphosphate    | Н              | H              | H              | H              | Cl              |
| diphosphate    | H              | H              | Н              | Н              | Br              |

| R¹            | $\mathbb{R}^2$ | $\mathbb{R}^3$ | X <sup>1</sup> | X <sup>2</sup> | Y               |
|---------------|----------------|----------------|----------------|----------------|-----------------|
| diphosphate   | Н              | H              | H              | H              | I               |
| triphosphate  | Н              | Н              | H              | H              | NH <sub>2</sub> |
| triphosphate  | Н              | Н              | H              | Н              | NH-acetyl       |
| triphosphate  | H              | Н              | H              | Н              | NH-cyclopropyl  |
| triphosphate  | Н              | Н              | H              | H              | NH-methyl       |
| triphosphate  | Н              | Н              | H              | H              | NH-ethyl        |
| triphosphate  | H              | Н              | H              | Н              | ОН              |
| triphosphate  | Н              | Н              | H              | Н              | OMe             |
| triphosphate  | Н              | H              | Н              | Н              | OEt             |
| triphosphate  | H              | Н              | H              | H              | O-cyclopropyl   |
| triphosphate  | H              | H              | H              | Н              | O-acetyl        |
| triphosphate  | Н              | Н              | Н              | Н              | SH              |
| triphosphate  | Н              | Н              | H              | Н              | SMe             |
| triphosphate  | Н              | Н              | Н              | H              | SEt             |
| triphosphate  | H              | H              | Н              | Н              | S-cyclopropyl   |
| triphosphate  | H              | H              | Н              | H              | F               |
| triphosphate  | H              | Н              | Н              | Н              | Cl              |
| triphosphate  | H              | Н              | H              | H              | Br              |
| triphosphate  | H              | H              | H              | Н              | I               |
| monophosphate | monophosphate  | monophosphate  | H              | H              | NH <sub>2</sub> |
| monophosphate | monophosphate  | monophosphate  | H              | H              | NH-cyclopropyl  |
| monophosphate | monophosphate  | monophosphate  | H              | H              | ОН              |
| monophosphate | monophosphate  | monophosphate  | H              | H              | F               |
| monophosphate | monophosphate  | monophosphate  | H              | H              | Cl              |
| diphosphate   | diphosphate    | diphosphate    | H              | H              | NH <sub>2</sub> |
| diphosphate   | diphosphate    | diphosphate    | H              | H              | NH-cyclopropyl  |
| diphosphate   | diphosphate    | diphosphate    | H              | H              | ОН              |
| diphosphate   | diphosphate    | diphosphate    | H              | H              | F               |
| diphosphate   | diphosphate    | diphosphate    | H              | H              | Cl              |
| triphosphate  | triphosphate   | triphosphate   | H              | H              | NH <sub>2</sub> |
| triphosphate  | triphosphate   | triphosphate   | Н              | Н              | NH-cyclopropyl  |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | X <sup>1</sup>  | X <sup>2</sup> | Y               |
|----------------|----------------|----------------|-----------------|----------------|-----------------|
| triphosphate   | triphosphate   | triphosphate   | H               | Н              | ОН              |
| triphosphate   | triphosphate   | triphosphate   | Н               | H              | F               |
| triphosphate   | triphosphate   | triphosphate   | H               | H              | Cl              |
| Н              | H              | H              | F               | H              | NH <sub>2</sub> |
| Н              | H              | H              | F               | Н              | NH-cyclopropyl  |
| H              | H              | Н              | F               | H              | ОН              |
| Н              | H              | H              | F               | H              | F               |
| H              | Н              | H              | F               | H              | Cl              |
| Н              | Н              | H              | Cl              | Н              | NH <sub>2</sub> |
| H              | Н              | H              | Cl              | H              | NH-cyclopropyl  |
| H              | Н              | H              | Cl              | Н              | ОН              |
| Н              | H              | Н              | Cl              | H              | F               |
| Н              | H              | H              | Cl              | Н              | Cl              |
| Н              | Н              | Н              | Br              | H              | NH <sub>2</sub> |
| Н              | Н              | H              | Br              | Н              | NH-cyclopropyl  |
| H              | H              | Н              | Br              | H              | OH              |
| Н              | H              | Н              | Br              | H              | F               |
| Н              | Н              | H              | Br              | Н              | Cl              |
| Н              | Н              | H              | NH <sub>2</sub> | H              | NH <sub>2</sub> |
| Н              | H              | Н              | NH <sub>2</sub> | H              | NH-cyclopropyl  |
| H              | Н              | H              | NH <sub>2</sub> | H              | ОН              |
| H              | H              | H              | NH <sub>2</sub> | H              | F               |
| Н              | Н              | H              | NH <sub>2</sub> | H              | Cl              |
| Н              | Н              | H              | SH              | H              | NH <sub>2</sub> |
| H              | H              | H              | SH              | Н              | NH-cyclopropyl  |
| Н              | Н              | H              | SH              | Н              | ОН              |
| H              | Н              | H              | SH              | H              | F               |
| H              | Н              | Н              | SH              | H              | C1              |
| acetyl         | Н              | Н              | Н               | H              | NH <sub>2</sub> |
| acetyl         | Н              | H              | Н               | H              | NH-cyclopropyl  |
| acetyl         | Н              | Н              | Н               | Н              | ОН              |

| R <sup>1</sup> | $\mathbb{R}^2$ | $\mathbb{R}^3$ | X <sup>1</sup> | X <sup>2</sup> | Y               |
|----------------|----------------|----------------|----------------|----------------|-----------------|
| acetyl         | Н              | H              | Н              | H              | F               |
| acetyl         | H              | H              | Н              | H              | C1              |
| acetyl         | Н              | H              | F              | H              | NH <sub>2</sub> |
| acetyl         | H              | H              | F              | H              | NH-cyclopropyl  |
| acetyl         | H              | H              | F              | H              | ОН              |
| acetyl         | Н              | Н              | F              | H              | F               |
| acetyl         | H              | Н              | F              | H              | Cl              |
| Н              | acetyl         | acetyl         | H              | Н              | NH <sub>2</sub> |
| Н              | acetyl         | acetyl         | H              | H              | NH-cyclopropyl  |
| Н              | acetyl         | acetyl         | Н              | H              | ОН              |
| H              | acetyl         | acetyl         | H              | H              | F               |
| Н              | acetyl         | acetyl         | H              | H              | Cl              |
| acetyl         | acetyl         | acetyl         | Н              | Н              | NH <sub>2</sub> |
| acetyl         | acetyl         | acetyl         | H              | H              | NH-cyclopropyl  |
| acetyl         | acetyl         | acetyl         | H              | ·H             | ОН              |
| acetyl         | acetyl         | acetyl         | Н              | H              | F               |
| acetyl         | acetyl         | acetyl         | H              | H              | Cl              |
| monophosphate  | acetyl         | acetyl         | H              | H              | NH <sub>2</sub> |
| monophosphate  | acetyl         | acetyl         | Н              | H              | NH-cyclopropyl  |
| monophosphate  | acetyl         | acetyl         | H              | Н              | ОН              |
| monophosphate  | acetyl         | acetyl         | H              | H              | F               |
| monophosphate  | acetyl         | acetyl         | H              | Н              | Cl              |
| diphosphate    | acetyl         | acetyl         | H              | H              | NH <sub>2</sub> |
| diphosphate    | acetyl         | acetyl         | H              | Н              | NH-cyclopropyl  |
| diphosphate    | acetyl         | acetyl         | H              | Н              | ОН              |
| diphosphate    | acetyl         | acetyl         | H              | H              | F               |
| diphosphate    | acetyl         | acetyl         | H              | Н              | Cl              |
| triphosphate   | acetyl         | acetyl         | H              | Н              | NH <sub>2</sub> |
| triphosphate   | acety <b>i</b> | acetyl         | H              | H              | NH-cyclopropyl  |
| triphosphate   | acetyl         | acetyl         | Н              | H              | ОН              |
| triphosphate   | acetyl         | acetyl         | Н              | H              | F               |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | X <sup>1</sup> | X <sup>2</sup>  | Y               |
|----------------|----------------|----------------|----------------|-----------------|-----------------|
| triphosphate   | acetyl         | acetyl         | Н              | H               | Cl              |
| Н              | H              | Н              | Н              | NH <sub>2</sub> | Н               |
| Н              | H              | H              | Н              | NH <sub>2</sub> | NH <sub>2</sub> |
| Н              | H              | Н              | H              | NH <sub>2</sub> | NH-cyclopropyl  |
| Н              | Н              | Н              | H              | NH <sub>2</sub> | NH-methyl       |
| Н              | H              | - H            | H              | NH <sub>2</sub> | NH-ethyl        |
| Н              | Н              | H              | Н              | NH <sub>2</sub> | NH-acetyl       |
| H              | Н              | H              | H              | NH <sub>2</sub> | ОН              |
| Н              | Н              | Н              | Н              | NH <sub>2</sub> | OMe             |
| H              | Н              | Н              | H              | NH <sub>2</sub> | OEt             |
| Н              | Н              | Н              | H              | NH <sub>2</sub> | O-cyclopropyl   |
| H              | Н              | H              | H              | NH <sub>2</sub> | O-acetyl        |
| Н              | Н              | Н              | Н              | NH <sub>2</sub> | SH              |
| Н              | Н              | Н              | H              | NH <sub>2</sub> | SMe             |
| H              | Н              | Н              | Н              | NH <sub>2</sub> | SEt             |
| H ,            | H              | Н              | H              | NH <sub>2</sub> | S-cyclopropyl   |
| H              | H              | H              | Н              | NH <sub>2</sub> | F               |
| Н              | H              | H              | H              | NH <sub>2</sub> | Cl              |
| Н              | Н              | H              | Н              | NH <sub>2</sub> | Br              |
| H              | Н              | Н              | H              | NH <sub>2</sub> | I               |
| monophosphate  | Н              | H              | H              | NH <sub>2</sub> | NH <sub>2</sub> |
| monophosphate  | Н              | Н              | H              | NH <sub>2</sub> | NH-acetyl       |
| monophosphate  | Н              | H              | H              | NH <sub>2</sub> | NH-cyclopropyl  |
| monophosphate  | H              | Н              | H              | NH <sub>2</sub> | NH-methyl       |
| monophosphate  | H              | Н              | H              | NH <sub>2</sub> | NH-ethyl        |
| monophosphate  | H              | H              | H              | NH <sub>2</sub> | OH              |
| monophosphate  | Н              | Н              | Н              | NH <sub>2</sub> | O-acetyl        |
| monophosphate  | Н              | Н              | H              | NH <sub>2</sub> | OMe             |
| monophosphate  | Н              | Н              | H              | NH <sub>2</sub> | OEt             |
| monophosphate  | H              | H              | Н              | NH <sub>2</sub> | O-cyclopropyl   |
| monophosphate  | Н              | Н              | Н              | NH <sub>2</sub> | SH              |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | X <sup>1</sup> . | X <sup>2</sup>  | Y               |
|----------------|----------------|----------------|------------------|-----------------|-----------------|
| monophosphate  | Н              | Н              | H                | NH <sub>2</sub> | SMe             |
| monophosphate  | Н              | Н              | H                | NH <sub>2</sub> | SEt             |
| monophosphate  | Н              | Н              | H                | NH <sub>2</sub> | S-cyclopropyl   |
| monophosphate  | H              | Н              | Н                | NH <sub>2</sub> | F               |
| monophosphate  | Н              | Н              | H                | NH <sub>2</sub> | Cl              |
| monophosphate  | H              | Н              | H                | NH <sub>2</sub> | Br              |
| monophosphate  | Н              | H              | H                | NH <sub>2</sub> | I               |
| diphosphate    | Н              | Н              | H                | NH <sub>2</sub> | NH <sub>2</sub> |
| diphosphate    | Н              | H              | Н                | NH <sub>2</sub> | NH-acetyl       |
| diphosphate    | Н              | Н              | H                | NH <sub>2</sub> | NH-cyclopropyl  |
| diphosphate    | Н              | Н              | H                | NH <sub>2</sub> | NH-methyl       |
| diphosphate    | Н              | Н              | H                | NH <sub>2</sub> | NH-ethyl        |
| diphosphate    | Н              | Н              | H                | NH <sub>2</sub> | ОН              |
| diphosphate    | Н              | Н              | H                | NH <sub>2</sub> | O-acetyl        |
| diphosphate    | Н              | H              | Н                | NH <sub>2</sub> | OMe             |
| diphosphate    | Н              | Н              | H                | NH <sub>2</sub> | OEt             |
| diphosphate    | Н              | Н              | H                | NH <sub>2</sub> | O-cyclopropyl   |
| diphosphate    | H              | Н              | H                | NH <sub>2</sub> | SH              |
| diphosphate    | H              | Н              | H                | NH <sub>2</sub> | SMe             |
| diphosphate    | Н              | H              | Н                | NH <sub>2</sub> | SEt             |
| diphosphate    | Н              | H              | Н                | NH <sub>2</sub> | S-cyclopropyl   |
| diphosphate    | Н              | H              | H                | NH <sub>2</sub> | F               |
| diphosphate    | Н              | Н              | H                | NH <sub>2</sub> | Cl              |
| diphosphate    | Н              | Н              | H                | NH <sub>2</sub> | Br              |
| diphosphate    | Н              | Н              | Н                | NH <sub>2</sub> | I               |
| triphosphate   | Н              | Н              | Н                | NH <sub>2</sub> | NH <sub>2</sub> |
| triphosphate   | H .            | Н              | Н                | NH <sub>2</sub> | NH-acetyl       |
| triphosphate   | Н              | Н              | H                | NH <sub>2</sub> | NH-cyclopropyl  |
| triphosphate   | H              | Н              | Н                | NH <sub>2</sub> | NH-methyl       |
| triphosphate   | H              | Н              | Н                | NH <sub>2</sub> | NH-ethyl        |
| triphosphate   | Н              | H              | Н                | NH <sub>2</sub> | ОН              |

| R <sup>1</sup> | R <sup>2</sup> | $\mathbb{R}^3$ | X <sup>1</sup> | X <sup>2</sup>  | Y               |
|----------------|----------------|----------------|----------------|-----------------|-----------------|
| triphosphate   | Н              | Н              | Н              | NH <sub>2</sub> | OMe             |
| triphosphate   | Н              | Н              | H              | NH <sub>2</sub> | OEt             |
| triphosphate   | Н              | Н              | Н              | NH <sub>2</sub> | O-cyclopropyl   |
| triphosphate   | Н              | H              | Н              | NH <sub>2</sub> | O-acetyl        |
| triphosphate   | Н              | H              | H              | NH <sub>2</sub> | SH              |
| triphosphate   | Н              | H              | Н              | NH <sub>2</sub> | SMe             |
| triphosphate   | Н              | H              | Н              | NH <sub>2</sub> | SEt             |
| triphosphate   | Н              | Н              | Н              | NH <sub>2</sub> | S-cyclopropyl   |
| triphosphate   | H              | Н              | H              | NH <sub>2</sub> | F               |
| triphosphate   | Н              | Н              | H              | NH <sub>2</sub> | Cl              |
| triphosphate   | Н              | H .            | Н              | NH <sub>2</sub> | Br              |
| triphosphate   | Н              | Н              | Н              | NH <sub>2</sub> | I               |
| monophosphate  | monophosphate  | monophosphate  | Н              | NH <sub>2</sub> | NH <sub>2</sub> |
| monophosphate  | monophosphate  | monophosphate  | Н              | NH <sub>2</sub> | NH-cyclopropyl  |
| monophosphate  | monophosphate  | monophosphate  | H              | NH <sub>2</sub> | ОН              |
| monophosphate  | monophosphate  | monophosphate  | Н              | NH <sub>2</sub> | F               |
| monophosphate  | monophosphate  | monophosphate  | H              | NH <sub>2</sub> | Cl              |
| diphosphate    | diphosphate    | diphosphate    | Н              | NH <sub>2</sub> | NH <sub>2</sub> |
| diphosphate    | diphosphate    | diphosphate    | H              | NH <sub>2</sub> | NH-cyclopropyl  |
| diphosphate    | diphosphate    | diphosphate    | Н              | NH <sub>2</sub> | ОН              |
| diphosphate    | diphosphate    | diphosphate    | H              | NH <sub>2</sub> | F               |
| diphosphate    | diphosphate    | diphosphate    | Н              | NH <sub>2</sub> | Cl              |
| triphosphate   | triphosphate   | triphosphate   | H              | NH <sub>2</sub> | NH <sub>2</sub> |
| triphosphate   | triphosphate   | triphosphate   | Н              | NH <sub>2</sub> | NH-cyclopropyl  |
| triphosphate   | triphosphate   | triphosphate   | Н              | NH <sub>2</sub> | OH              |
| triphosphate   | triphosphate   | triphosphate   | H              | NH <sub>2</sub> | F               |
| triphosphate   | triphosphate   | triphosphate   | H              | NH <sub>2</sub> | Cl              |
| H              | H              | H              | F              | NH <sub>2</sub> | NH <sub>2</sub> |
| Н              | Н              | H              | F              | NH <sub>2</sub> | NH-cyclopropyl  |
| Н              | H              | Н              | F              | NH <sub>2</sub> | ОН              |
| H              | Н              | H              | F              | NH <sub>2</sub> | F               |

| $\mathbb{R}^1$ | R <sup>2</sup> | R <sup>3</sup> | X <sup>1</sup>  | X <sup>2</sup>  | Y               |
|----------------|----------------|----------------|-----------------|-----------------|-----------------|
| H              | Н              | H              | F               | NH <sub>2</sub> | Cl              |
| Н              | H              | Н              | Cl              | NH <sub>2</sub> | NH <sub>2</sub> |
| H              | H              | Н              | Cl              | NH <sub>2</sub> | NH-cyclopropyl  |
| Ĥ              | Н              | Н              | Cl              | NH <sub>2</sub> | ОН              |
| H              | Н              | Н              | Cl              | NH <sub>2</sub> | F               |
| H              | H              | Н              | C1              | NH <sub>2</sub> | Cl              |
| H              | H              | Н              | Br              | NH <sub>2</sub> | NH <sub>2</sub> |
| Н              | Н              | Н              | Br              | NH <sub>2</sub> | NH-cyclopropyl  |
| Н              | Н              | Н              | Br              | NH <sub>2</sub> | OH              |
| Н              | H              | H              | Br              | NH <sub>2</sub> | F               |
| H              | Н              | Н              | Br              | NH <sub>2</sub> | Cl              |
| Н              | Н              | Н              | NH <sub>2</sub> | NH <sub>2</sub> | NH <sub>2</sub> |
| Н              | Н              | H              | NH <sub>2</sub> | NH <sub>2</sub> | NH-cyclopropyl  |
| Н              | Н              | Н              | NH <sub>2</sub> | NH <sub>2</sub> | ОН              |
| H              | Н              | Н              | NH <sub>2</sub> | NH <sub>2</sub> | F               |
| H              | H              | H .            | NH <sub>2</sub> | NH <sub>2</sub> | Cl              |
| Н              | H              | Н              | SH              | NH <sub>2</sub> | NH <sub>2</sub> |
| H              | Н              | Н              | SH              | NH <sub>2</sub> | NH-cyclopropyl  |
| Н              | Н              | Н              | SH              | NH <sub>2</sub> | ОН              |
| Н              | Н              | Н              | SH              | NH <sub>2</sub> | F               |
| H              | H              | Н              | SH              | NH <sub>2</sub> | Cl              |
| acetyl         | Н              | Н              | H               | NH <sub>2</sub> | NH <sub>2</sub> |
| acetyl         | Н              | H              | H               | NH <sub>2</sub> | NH-cyclopropyl  |
| acetyl         | H              | H              | H               | NH <sub>2</sub> | ОН              |
| acetyl         | H              | H              | H               | NH <sub>2</sub> | F               |
| acetyl         | H              | Н              | H               | NH <sub>2</sub> | Cl              |
| acetyl         | Н              | H              | F               | NH <sub>2</sub> | NH <sub>2</sub> |
| acetyl         | Н              | H              | F               | NH <sub>2</sub> | NH-cyclopropyl  |
| acetyl         | H              | H              | F               | NH <sub>2</sub> | OH ,            |
| acetyl         | H              | H              | F               | NH <sub>2</sub> | F               |
| acetyl         | Н              | Н              | F               | NH <sub>2</sub> | Cl              |

| R <sup>i</sup> | R <sup>2</sup> | $\mathbb{R}^3$ | XI | X <sup>2</sup>  | Y               |
|----------------|----------------|----------------|----|-----------------|-----------------|
| H              | acetyl         | acetyl         | Н  | NH <sub>2</sub> | NH <sub>2</sub> |
| H              | acetyl         | acetyl         | H  | NH <sub>2</sub> | NH-cyclopropyl  |
| Н              | acetyl         | acetyl         | Н  | NH <sub>2</sub> | ОН              |
| H              | acetyl         | acetyl         | Н  | NH <sub>2</sub> | F               |
| H              | acetyl         | acetyl         | Н  | NH <sub>2</sub> | Cl              |
| acetyl         | acetyl         | acetyl         | Н  | NH <sub>2</sub> | NH <sub>2</sub> |
| acetyl         | acetyl         | acetyl         | Н  | NH <sub>2</sub> | NH-cyclopropyl  |
| acetyl         | acetyl         | acetyl         | Н  | NH <sub>2</sub> | ОН              |
| acetyl         | acetyl         | acetyl         | H  | NH <sub>2</sub> | F               |
| acetyl         | acetyl         | acetyl         | H  | NH <sub>2</sub> | Cl              |
| monophosphate  | acetyl         | acetyl         | H  | NH <sub>2</sub> | NH <sub>2</sub> |
| monophosphate  | acetyl         | acetyl         | Н  | NH <sub>2</sub> | NH-cyclopropyl  |
| monophosphate  | acetyl         | acetyl         | Н  | NH <sub>2</sub> | ОН              |
| monophosphate  | acetyl         | acetyl         | H  | NH <sub>2</sub> | F               |
| monophosphate  | acetyl         | acetyl         | Н  | NH <sub>2</sub> | Cl              |
| diphosphate    | acetyl         | acetyl         | Н  | NH <sub>2</sub> | NH <sub>2</sub> |
| diphosphate    | acetyl         | acetyl         | H  | NH <sub>2</sub> | NH-cyclopropyl  |
| diphosphate    | acetyl         | acetyl         | H  | NH <sub>2</sub> | ОН              |
| diphosphate    | acetyl         | acetyl         | H  | NH <sub>2</sub> | F               |
| diphosphate    | acetyl         | acetyl         | Н  | NH <sub>2</sub> | Cl              |
| triphosphate   | acetyl         | acetyl         | H  | NH <sub>2</sub> | NH <sub>2</sub> |
| triphosphate   | acetyl         | acetyl         | H  | NH <sub>2</sub> | NH-cyclopropyl  |
| triphosphate   | acetyl         | acetyl         | H  | NH <sub>2</sub> | ОН              |
| triphosphate   | acetyl         | acetyl         | H  | NH <sub>2</sub> | F               |
| triphosphate   | acetyl         | acetyl         | H  | NH <sub>2</sub> | Cl              |
| Н              | Н              | Н              | H  | Cl              | Н               |
| Н              | H              | Н              | H  | Cl              | Н               |
| Н              | Н              | H              | H  | Cl              | NH <sub>2</sub> |
| Н              | Н              | Н              | H  | Cl              | NH-cyclopropyl  |
| Н              | Н              | Н              | H  | Cl              | NH-methyl       |
| H              | Н              | Н              | Н  | Cl              | NH-ethyl        |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | X <sup>1</sup> | X <sup>2</sup> | Y               |
|----------------|----------------|----------------|----------------|----------------|-----------------|
| H              | Н              | H              | H              | Cl             | NH-acetyl       |
| H              | Н              | Н              | Н              | Cl             | OH              |
| H              | Н              | Н              | Н              | Cl             | OMe             |
| H              | Н              | Н              | H              | Cl             | OEt             |
| H              | H              | Н              | Н              | Cl             | O-cyclopropyl   |
| H              | H              | Н              | ·H             | Cl             | O-acetyl        |
| H              | Н              | Н              | H              | Cl             | SH              |
| H              | Н              | H              | H              | Cl             | SMe             |
| H              | Н              | Н              | Н              | Cl             | SEt             |
| H              | Н              | H              | Н              | Cl             | S-cyclopropyl   |
| monophosphate  | Н              | H              | Н              | Cl ·           | NH <sub>2</sub> |
| monophosphate  | H              | Н              | Н              | Cl             | NH-acetyl       |
| monophosphate  | Н              | Н              | Н              | Cl             | NH-cyclopropyl  |
| monophosphate  | H              | Н              | Н              | Cl             | NH-methyl       |
| monophosphate  | Н              | Н              | H              | Cl             | NH-ethyl        |
| monophosphate  | Н              | Н              | H              | Cl             | ОН              |
| monophosphate  | Н              | Н              | Н              | Cl             | O-acetyl        |
| monophosphate  | Н              | Н              | Н              | Cl             | OMe             |
| monophosphate  | Н              | Н              | H              | Cl             | OEt             |
| monophosphate  | Н              | Н              | Н              | Cl             | O-cyclopropyl   |
| monophosphate  | Н              | H              | Н              | Cl             | SH              |
| monophosphate  | Н              | Н              | Н              | Cl             | SMe             |
| monophosphate  | Н              | H              | Н              | Cl             | SEt             |
| monophosphate  | Н              | Н              | Н              | Cl             | S-cyclopropyl   |
| diphosphate    | Н              | Н              | Н              | Cl             | NH <sub>2</sub> |
| diphosphate    | Н              | Н              | H              | Cl             | NH-acetyl       |
| diphosphate    | Н              | Н              | Н              | Cl             | NH-cyclopropyl  |
| diphosphate    | Н              | Н              | Н              | Cl             | NH-methyl       |
| diphosphate    | Н              | Н              | Н              | Cl             | NH-ethyl        |
| diphosphate    | Н              | Н              | Н              | Cl             | ОН              |
| diphosphate    | Н              | Н              | H              | Cl             | O-acetyl        |

| R <sup>1</sup> | R <sup>2</sup> | $\mathbb{R}^3$ | X <sup>1</sup> | X <sup>2</sup> | Y               |
|----------------|----------------|----------------|----------------|----------------|-----------------|
| diphosphate    | Н              | Н              | H              | Cl             | OMe             |
| diphosphate    | Н              | H              | Н              | Cl             | OEt             |
| diphosphate    | Н              | Н              | Н              | Cl             | O-cyclopropyl   |
| diphosphate    | Н              | Н              | H              | Cl             | SH              |
| diphosphate    | Н              | Н              | H              | Cl             | SMe             |
| diphosphate    | Н              | Н              | H              | Cl             | SEt             |
| diphosphate    | Н              | Н              | H              | Cl             | S-cyclopropyl   |
| triphosphate   | Н              | Н              | H              | Cl             | NH <sub>2</sub> |
| triphosphate   | Н              | H              | H              | Cl             | NH-acetyl       |
| triphosphate   | H              | H              | H              | Cl             | NH-cyclopropyl  |
| triphosphate   | Н              | H              | H              | Cl             | NH-methyl       |
| triphosphate   | H              | Н              | H              | Cl             | NH-ethyl        |
| triphosphate   | H              | Н              | H              | CI             | ОН              |
| triphosphate   | Н              | Н              | Н              | Cl             | OMe             |
| triphosphate   | Н              | Н              | H              | Cl             | OEt             |
| triphosphate   | Н              | H              | H              | C1             | O-cyclopropyl   |
| triphosphate   | Н              | Н              | H              | Cl             | O-acetyl        |
| triphosphate   | Н              | Н              | H              | Cl             | SH              |
| triphosphate   | H              | Н              | H              | Cl             | SMe             |
| triphosphate   | Н              | Н              | Н              | Cl             | SEt             |
| triphosphate   | Н              | Н              | H              | Cl             | S-cyclopropyl   |
| monophosphate  | monophosphate  | monophosphate  | H              | Cl             | NH <sub>2</sub> |
| monophosphate  | monophosphate  | monophosphate  | Н              | Cl             | NH-cyclopropyl  |
| monophosphate  | monophosphate  | monophosphate  | H              | Cl             | OH              |
| diphosphate    | diphosphate    | diphosphate    | H              | Cl             | NH <sub>2</sub> |
| diphosphate    | diphosphate    | diphosphate    | H              | C1             | NH-cyclopropyl  |
| diphosphate    | diphosphate    | diphosphate    | H              | Cl             | OH              |
| triphosphate   | triphosphate   | triphosphate   | H              | Cl             | NH <sub>2</sub> |
| triphosphate   | triphosphate   | triphosphate   | H              | Cl             | NH-cyclopropyl  |
| triphosphate   | triphosphate   | triphosphate   | Н              | C1             | ОН              |
| H              | Н              | H              | F              | Cl             | NH <sub>2</sub> |

| $\mathbb{R}^1$ | $\mathbb{R}^2$ | $\mathbb{R}^3$ | X¹              | X <sup>2</sup> | Y               |
|----------------|----------------|----------------|-----------------|----------------|-----------------|
| H              | Н              | Н              | F               | Cl             | NH-cyclopropyl  |
| H              | Н              | Н              | F               | Cl             | ОН              |
| Н              | Н              | H              | Cl              | Cl             | NH <sub>2</sub> |
| H              | Н              | Н              | Cl              | Cl             | NH-cyclopropyl  |
| H              | Н              | H              | Cl              | Cl             | OH              |
| Н              | Н              | H              | Br ·            | C1             | NH <sub>2</sub> |
| H              | H              | Н              | Br              | C1             | NH-cyclopropyl  |
| H              | Н              | H              | Br              | C1             | OH              |
| H              | H              | H              | NH <sub>2</sub> | C1             | NH <sub>2</sub> |
| Н              | H ·            | Н              | NH <sub>2</sub> | Cl             | NH-cyclopropyl  |
| H              | H              | H              | NH <sub>2</sub> | Cl             | OH              |
| H              | H              | H              | SH              | Cl             | NH <sub>2</sub> |
| Н              | Н              | Н              | SH              | Cl             | NH-cyclopropyl  |
| Н              | Н              | Н              | SH              | Cl             | OH              |
| acetyl         | H              | H              | Н               | C1             | NH <sub>2</sub> |
| acetyl         | Н              | Н              | Н               | Cl             | NH-cyclopropyl  |
| acetyl         | Н              | Н              | Н               | Cl             | ОН              |
| acetyl         | H              | н              | F               | CI             | NH <sub>2</sub> |
| acetyl         | H              | Н              | F               | Cl             | NH-cyclopropyl  |
| acetyl         | Н              | Н              | F               | C1             | ОН              |
| H              | acetyl         | acetyl         | H               | C1             | NH <sub>2</sub> |
| H              | acetyl         | acetyl         | Н               | Cl             | NH-cyclopropyl  |
| H              | acetyl         | acetyl         | Н               | C1             | ОН              |
| acetyl         | acetyl         | acetyl         | Н               | Cl             | NH <sub>2</sub> |
| acetyl         | acetyl         | acetyl         | Н               | Cl             | NH-cyclopropyl  |
| acetyl         | acetyl         | acetyl         | Н               | Cl             | OH              |
| monophosphate  | acetyl         | acetyl         | Н               | Cl             | NH <sub>2</sub> |
| monophosphate  | acetyl         | acetyl         | Н               | Cl             | NH-cyclopropyl  |
| monophosphate  | acetyl         | acetyl         | Н               | Cl             | OH              |
| diphosphate    | acetyl         | acetyl         | Н               | Cl             | NH <sub>2</sub> |
| diphosphate    | acetyl         | acetyl         | H               | Cl             | NH-cyclopropyl  |

| $\mathbb{R}^{1}$ | R <sup>2</sup> | R <sup>3</sup> | X <sup>1</sup> | X <sup>2</sup> | Y               |
|------------------|----------------|----------------|----------------|----------------|-----------------|
| diphosphate      | acetyl         | acetyl         | H              | Cl             | OH              |
| triphosphate     | acetyl         | acetyl         | Н              | Cl             | NH <sub>2</sub> |
| triphosphate     | acetyl         | acetyl         | H              | C1             | NH-cyclopropyl  |
| triphosphate     | acetyl         | acetyl         | Н              | Cl             | OH              |
| Н                | Н              | H              | H              | Cl             | NH <sub>2</sub> |
| H                | H              | Н              | H              | C1.            | NH-cyclopropyl  |
| Н                | Н              | Н              | H              | C1             | ОН              |
| Н                | Н              | H              | H              | Br             | NH <sub>2</sub> |
| H                | H              | Н              | Н              | Br             | NH-cyclopropyl  |
| Н                | Н              | Н              | Н              | Br             | ОН              |

Alternatively, the following nucleosides of Formula IV are prepared, using the appropriate sugar and pyrimidine or purine bases.

$$X^1$$
 $X^1$ 
 $X^1$ 

## wherein:

| R <sup>1</sup> | $\mathbb{R}^2$ | R <sup>3</sup> | X <sup>1</sup> | Y               |
|----------------|----------------|----------------|----------------|-----------------|
| H              | H              | Н              | Н              | Н               |
| Н              | H              | Н              | Н              | NH <sub>2</sub> |
| H              | H              | Н              | H              | NH-cyclopropyl  |
| H              | H              | H              | H              | NH-methyl       |
| H              | Н              | Н              | Н              | NH-ethyl        |
| H              | Н              | Н              | Н              | NH-acetyl       |
| H              | Н              | Н              | Н              | ОН              |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | X¹ | Y               |
|----------------|----------------|----------------|----|-----------------|
| H              | Н              | H              | H  | OMe             |
| Н              | H              | H              | Н  | OEt             |
| H              | Н              | H              | Н  | O-cyclopropyl   |
| Н              | Н              | Н              | H  | O-acetyl        |
| Н              | Н              | Н              | H  | SH              |
| H              | Н              | Н              | H  | SMe             |
| Н              | Н              | Н              | H  | SEt             |
| Н              | Н              | H              | H  | S-cyclopropyl   |
| monophosphate  | Н              | H              | Н  | NH <sub>2</sub> |
| monophosphate  | Н              | Н              | H  | NH-acetyl       |
| monophosphate  | H              | H              | H  | NH-cyclopropyl  |
| monophosphate  | Н              | Н              | H  | NH-methyl       |
| monophosphate  | Н              | H              | H  | NH-ethyl        |
| monophosphate  | Н              | H              | H  | ОН              |
| monophosphate  | Н              | Н              | Н  | O-acetyl        |
| monophosphate  | H              | H              | H  | OMe             |
| monophosphate  | Н              | Н              | H  | OEt             |
| monophosphate  | H              | Н              | Н  | O-cyclopropyl   |
| monophosphate  | Н              | Н              | Н  | SH              |
| monophosphate  | H              | H              | H  | SMe             |
| monophosphate  | Н              | Н              | H  | SEt             |
| monophosphate  | Н              | H              | H  | S-cyclopropyl   |
| diphosphate    | Н              | H              | H  | NH <sub>2</sub> |
| diphosphate    | Н              | Н              | H  | NH-acetyl       |
| diphosphate    | Н              | Н              | H  | NH-cyclopropyl  |
| diphosphate    | Н              | Н              | H  | NH-methyl       |
| diphosphate    | H              | Н              | H  | NH-ethyl        |
| diphosphate    | H              | Н              | H  | ОН              |
| diphosphate    | H              | Н              | H  | O-acetyl        |
| diphosphate    | Н              | H              | H  | OMe             |
| diphosphate    | H              | Н              | Н  | OEt             |

| R <sup>1</sup> | R <sup>2</sup> | $\mathbb{R}^3$ | X <sup>1</sup> | Y               |
|----------------|----------------|----------------|----------------|-----------------|
| diphosphate    | Н              | H              | H              | O-cyclopropyl   |
| diphosphate    | Н              | H              | H              | SH              |
| diphosphate    | Н              | Н              | H              | SMe             |
| diphosphate    | Н              | H              | H              | SEt             |
| diphosphate    | H              | H              | H              | S-cyclopropyl   |
| triphosphate   | H              | H              | Н              | NH <sub>2</sub> |
| triphosphate   | Н              | Н              | H              | NH-acetyl       |
| triphosphate   | Н              | Н              | Н              | NH-cyclopropyl  |
| triphosphate   | Н              | Н              | H              | NH-methyl       |
| triphosphate   | H              | Н              | H              | NH-ethyl        |
| triphosphate   | Н              | Н              | H              | ОН              |
| triphosphate   | Н              | Н              | Н              | OMe             |
| triphosphate   | Н              | H              | H              | OEt             |
| triphosphate   | Н              | H              | Н              | O-cyclopropyl   |
| triphosphate   | H              | H              | Н              | O-acetyl        |
| triphosphate   | H              | Н              | H              | SH              |
| triphosphate   | Н              | Н              | H              | SMe             |
| triphosphate   | Н              | Н              | H              | SEt             |
| triphosphate   | Н              | Н              | Н              | S-cyclopropyl   |
| monophosphate  | monophosphate  | monophosphate  | Н              | NH <sub>2</sub> |
| monophosphate  | monophosphate  | monophosphate  | H              | NH-cyclopropyl  |
| monophosphate  | monophosphate  | monophosphate  | H              | ОН              |
| diphosphate    | diphosphate    | diphosphate    | Н              | NH <sub>2</sub> |
| diphosphate    | diphosphate    | diphosphate    | Н              | NH-cyclopropyl  |
| diphosphate    | diphosphate    | diphosphate    | Н              | OH              |
| triphosphate   | triphosphate   | triphosphate   | H              | NH <sub>2</sub> |
| triphosphate   | triphosphate   | triphosphate   | Н              | NH-cyclopropyl  |
| triphosphate   | triphosphate   | triphosphate   | H              | ОН              |
| H              | H              | Н              | F              | NH <sub>2</sub> |
| H              | Н              | Н              | F              | NH-cyclopropyl  |
| Н              | Н              | Н              | F              | ОН              |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | X <sup>1</sup>  | Y               |
|----------------|----------------|----------------|-----------------|-----------------|
| Н              | Н              | Н              | Cl              | NH <sub>2</sub> |
| H              | H              | Н              | Cl              | NH-cyclopropyl  |
| Н              | Н              | H              | Cl              | ОН              |
| Н              | Н              | Н              | Br              | NH <sub>2</sub> |
| Н              | H              | Н              | Br              | NH-cyclopropyl  |
| Н              | Н              | Н              | Br              | ОН              |
| H              | Н              | Н              | NH <sub>2</sub> | NH <sub>2</sub> |
| Н              | Н              | Н              | NH <sub>2</sub> | NH-cyclopropyl  |
| H              | H              | Н              | NH <sub>2</sub> | OH              |
| H              | Н              | H ·            | SH              | NH <sub>2</sub> |
| Н              | Н              | Н              | SH              | NH-cyclopropyl  |
| Н              | Н              | Н              | SH              | ОН              |
| acetyl         | Н              | Н              | Н               | NH <sub>2</sub> |
| acetyl         | Н              | Н              | Н               | NH-cyclopropyl  |
| acetyl         | H              | H              | H               | ОН              |
| acetyl         | Н              | H              | F               | NH <sub>2</sub> |
| acetyl         | Н              | H              | F               | NH-cyclopropyl  |
| acetyl         | Н              | H              | F               | ОН              |
| H              | acetyl         | acetyl         | H               | NH <sub>2</sub> |
| Н              | acetyl         | acetyl         | H               | NH-cyclopropyl  |
| Н              | acetyl         | acetyl         | H               | ОН              |
| acetyl         | acetyl         | acetyl         | H               | NH <sub>2</sub> |
| acetyl         | acetyl         | acetyl         | Н               | NH-cyclopropyl  |
| acetyl         | acetyl         | acetyl         | H               | ОН              |
| monophosphate  | acetyl         | acetyl         | H               | NH <sub>2</sub> |
| monophosphate  | acetyl         | acetyl         | H               | NH-cyclopropyl  |
| monophosphate  | acetyl         | acetyl         | Н               | ОН              |
| diphosphate    | acetyl         | acetyl         | Н               | NH <sub>2</sub> |
| diphosphate    | acetyl         | acetyl         | H               | NH-cyclopropyl  |
| diphosphate    | acetyl         | acetyl         | H               | ОН              |
| triphosphate   | acetyl         | acetyl         | H               | NH <sub>2</sub> |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | X <sup>1</sup> | Y              |
|----------------|----------------|----------------|----------------|----------------|
| triphosphate   | acetyl         | acetyl         | Н              | NH-cyclopropyl |
| triphosphate   | acetyl         | acetyl         | H              | ОН             |

Alternatively, the following nucleosides of Formula VII are prepared, using the appropriate sugar and pyrimidine or purine bases.

$$R^{1}O$$
 $X$ 
 $R^{6}$ 
 $OR^{2}$ 
 $OR^{3}$ 
 $(VII)$ 

wherein:

| R <sup>1</sup> | R <sup>2</sup> | $\mathbb{R}^3$ | R <sup>6</sup>  | X | Base              |
|----------------|----------------|----------------|-----------------|---|-------------------|
| H              | Н              | Н              | CH <sub>3</sub> | 0 | 2,4-O-            |
|                |                |                |                 |   | Diacetyluracil    |
| Н              | H              | H              | CH <sub>3</sub> | О | Hypoxanthine      |
| H              | Н              | Н              | CH <sub>3</sub> | 0 | 2,4-O-            |
|                |                |                |                 |   | Diacetylthymine   |
| H              | Н              | Н              | CH <sub>3</sub> | 0 | Thymine           |
| H              | H              | H              | CH <sub>3</sub> | 0 | Cytosine          |
| H              | Н              | Н              | CH <sub>3</sub> | 0 | 4-(N-mono-        |
|                |                |                |                 |   | acetyl)cytosine   |
| H              | H              | H              | CH <sub>3</sub> | 0 | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |
| H              | Н              | H              | CH <sub>3</sub> | 0 | Uracil            |
| H              | Н              | Н              | CH <sub>3</sub> | 0 | 5-Fluorouracil    |
| H              | Н              | H              | CH <sub>3</sub> | S | 2,4-0-            |
|                |                |                |                 |   | Diacetyluraci     |
| H              | Н              | Н              | CH <sub>3</sub> | S | Hypoxanthine      |
| H              | Н              | Н              | CH <sub>3</sub> | S | 2,4-O-            |
|                |                |                |                 |   | Diacetylthymine   |

| $\mathbb{R}^1$ | R <sup>2</sup> | R <sup>3</sup> | R <sup>6</sup>  | X | Base              |
|----------------|----------------|----------------|-----------------|---|-------------------|
| H              | Н              | H              | CH <sub>3</sub> | S | Thymine           |
| Н              | Н              | Н              | CH <sub>3</sub> | S | Cytosine          |
| H              | Н              | Н              | CH <sub>3</sub> | S | 4-(N-mono-        |
|                |                |                |                 |   | acetyl)cytosine   |
| Н              | Н              | Н              | CH <sub>3</sub> | S | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |
| Н              | Н              | Н              | CH <sub>3</sub> | S | Uracil            |
| Н              | Н              | Н              | CH <sub>3</sub> | S | 5-Fluorouracil    |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | 0 | 2,4-O-            |
|                |                |                |                 |   | Diacetyluracil    |
| monophosphate  | Н              | H              | CH <sub>3</sub> | 0 | Hypoxanthine      |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | 0 | 2,4-O-            |
|                |                |                | }               |   | Diacetylthym      |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | 0 | Thymine           |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | 0 | Cytosine          |
| monophosphate  | Н              | H              | CH <sub>3</sub> | 0 | 4-(N-mono-        |
|                |                |                |                 |   | acetyl)cytosine   |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | 0 | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |
| monophosphate  | Н              | H              | CH <sub>3</sub> | 0 | Uracil            |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | 0 | 5-Fluorouracil    |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S | 2,4-O-            |
|                |                |                |                 |   | Diacetyluracil    |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S | Hypoxanthine      |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S | 2,4-0-            |
|                |                |                |                 |   | Diacetylthym      |
| monophosphate  | H              | Н              | CH <sub>3</sub> | S | Thymine           |
| monophosphate  | H              | Н              | CH <sub>3</sub> | S | Cytosine          |
| monophosphate  | Н              | H              | CH <sub>3</sub> | S | 4-(N-mono-        |
|                | 1              |                |                 |   | acetyl)cytosine   |
| monophosphate  | H              | H              | CH <sub>3</sub> | S | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |

| R <sup>1</sup> | $\mathbb{R}^2$ | $\mathbb{R}^3$ | R <sup>6</sup>  | X | Base              |
|----------------|----------------|----------------|-----------------|---|-------------------|
| monophosphate  | H              | H              | CH <sub>3</sub> | S | Uracil            |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S | 5-Fluorouracil    |
| diphosphate    | H              | Н              | CH <sub>3</sub> | 0 | 2,4-0-            |
|                |                |                |                 |   | Diacetyluracil    |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0 | Hypoxanthine      |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0 | 2,4-O-            |
|                |                |                |                 |   | Diacetylthymine   |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0 | Thymine           |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0 | Cytosine          |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0 | 4-(N-mono-        |
|                |                |                |                 |   | acetyl)cytosine   |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0 | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0 | Uracil            |
| diphosphate    | H              | Н              | CH <sub>3</sub> | 0 | 5-Fluorouracil    |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | S | 2,4-O-            |
| ·              |                |                |                 |   | Diacetyluracil    |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | S | Hypoxanthine      |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | S | 2,4-O-            |
|                |                |                |                 |   | Diacetylthym      |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | S | Thymine           |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | S | Cytosine          |
| triphosphate   | Н              | H              | CH <sub>3</sub> | 0 | 2,4-0-            |
|                |                |                |                 |   | Diacetyluracil    |
| triphosphate   | H              | Н              | CH <sub>3</sub> | 0 | Hypoxanthine      |
| triphosphate   | H              | H              | CH <sub>3</sub> | 0 | 2,4-0-            |
|                |                |                |                 |   | Diacetylthymine   |
| triphosphate   | Н              | H              | CH <sub>3</sub> | 0 | Thymine           |
| triphosphate   | Н              | Н              | CH <sub>3</sub> | 0 | Cytosine          |
| triphosphate   | Н              | H              | CH <sub>3</sub> | 0 | 4-(N-mono-        |
|                |                |                |                 |   | acetyl)cytosine   |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | R <sup>6</sup>  | X | Base              |
|----------------|----------------|----------------|-----------------|---|-------------------|
| triphosphate   | H              | H              | CH <sub>3</sub> | Q | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |
| triphosphate   | Н              | Н              | CH <sub>3</sub> | 0 | Uracil            |
| triphosphate   | H              | Н              | CH <sub>3</sub> | 0 | 5-Fluorouracil    |
| triphosphate   | Н              | H              | CH <sub>3</sub> | S | 2,4-O-            |
|                |                |                |                 |   | Diacetyluracil    |
| triphosphate   | Н              | Н              | CH <sub>3</sub> | S | Hypoxanthine      |
| triphosphate   | H              | H              | CH <sub>3</sub> | S | 2,4-O-            |
|                |                |                |                 |   | Diacetylthymine   |
| triphosphate   | Н              | Н              | CH <sub>3</sub> | S | Thymine           |
| triphosphate   | H              | Н              | CH <sub>3</sub> | S | Cytosine          |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 2,4-O-            |
|                |                |                |                 |   | Diacetyluracil    |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | Hypoxanthine      |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 2,4-O-            |
|                |                |                |                 |   | Diacetylthymine   |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | Thymine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | Cytosine          |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 4-(N-mono-        |
|                |                |                |                 |   | acetyl)cytosine   |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | Uracil            |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 5-Fluorouracil    |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | 2,4-O-            |
|                |                |                |                 |   | Diacetyluracil    |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | Hypoxanthine      |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | 2,4-O-            |
|                |                |                |                 |   | Diacetylthymine   |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | Thymine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | Cytosine          |

| $\mathbb{R}^1$ | R <sup>2</sup> | R <sup>3</sup> | R <sup>6</sup>  | X | Base              |
|----------------|----------------|----------------|-----------------|---|-------------------|
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | 4-(N-mono-        |
|                |                |                | ļ               |   | acetyl)cytosine   |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | Uracil            |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | 5-Fluorouracil    |
| acetyl         | acetyl         | acetyl         | CF <sub>3</sub> | 0 | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |
| acetyl         | acetyl         | acetyl         | CF <sub>3</sub> | S | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |
| acetyl         | acetyl         | acetyl         | 2-bromo-        | 0 | 4-(N,N-           |
|                |                |                | vinyl           |   | diacetyl)cytosine |
| acetyl         | acetyl         | acetyl         | 2-bromo-        | S | 4-(N,N-           |
|                |                |                | vinyl           |   | diacetyl)cytosine |
| H              | Н              | H              | CH <sub>3</sub> | 0 | 2-(N,N-diacetyl)- |
|                |                |                |                 |   | guanine           |
| H              | H              | Н              | CH <sub>3</sub> | 0 | 6-O-acetyl        |
|                |                |                |                 |   | guanine           |
| H              | H              | Н              | CH <sub>3</sub> | 0 | 8-fluoroguanine   |
| H              | H              | Н              | CH <sub>3</sub> | 0 | guanine           |
| H              | H              | Н              | CH <sub>3</sub> | 0 | 6-(N,N-diacetyl)- |
|                |                |                |                 |   | adenine           |
| H              | Н              | Н              | CH <sub>3</sub> | 0 | 2-fluoroadenine   |
| H              | Н              | Н              | CH <sub>3</sub> | 0 | 8-fluoroadenine   |
| H              | Н              | Н              | CH <sub>3</sub> | 0 | 2,8-difluoro-     |
|                |                |                |                 |   | adenine           |
| H              | Н              | H              | CH <sub>3</sub> | 0 | adenine           |
| H              | Н              | H              | CH <sub>3</sub> | S | 2-(N,N-diacetyl)- |
|                |                |                |                 |   | guanine           |
| H              | Н              | H              | CH <sub>3</sub> | S | 6-O-acetyl        |
|                |                |                |                 |   | guanine           |
| Н              | Н              | Н              | CH <sub>3</sub> | S | 8-fluoroguanine   |

| R <sup>1</sup> | R <sup>2</sup> | $\mathbb{R}^3$ | R <sup>6</sup>  | X | Base              |
|----------------|----------------|----------------|-----------------|---|-------------------|
| H              | Н              | Н              | CH <sub>3</sub> | S | guanine           |
| H              | Н              | Н              | CH <sub>3</sub> | S | 6-(N,N-diacetyl)- |
|                |                |                |                 |   | adenine           |
| H              | Н              | Н              | CH <sub>3</sub> | S | 2-fluoroadenine   |
| H              | Н              | Н              | CH <sub>3</sub> | S | 8-fluoroadenine   |
| H              | Н              | Н              | CH <sub>3</sub> | S | 2,8-difluoro-     |
|                |                |                |                 |   | adenine           |
| Н              | Н              | Н              | CH <sub>3</sub> | S | adenine           |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | 0 | 2-(N,N-diacetyl)- |
|                |                |                |                 | } | guanine           |
| monophosphate  | H              | Н              | CH <sub>3</sub> | 0 | 6-O-acetyl        |
|                |                |                |                 |   | guanine           |
| monophosphate  | H              | Н              | CH <sub>3</sub> | 0 | 8-fluoroguanine   |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | 0 | guanine           |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | 0 | 6-(N,N-diacetyl)- |
|                |                |                |                 |   | adenine           |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | 0 | 2-fluoroadenine   |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | 0 | 8-fluoroadenine   |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | 0 | 2,8-difluoro-     |
|                |                |                |                 |   | adenine           |
| monophosphate  | Н              | H              | CH <sub>3</sub> | 0 | adenine           |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S | 2-(N,N-diacetyl)- |
|                |                |                |                 |   | guanine           |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S | 6-O-acetyl        |
|                |                |                |                 |   | guanine           |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S | 8-fluoroguanine   |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S | guanine           |
| monophosphate  | H              | Н              | CH <sub>3</sub> | S | 6-(N,N-diacetyl)- |
|                |                |                |                 |   | adenine           |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S | 2-fluoroadenine   |
| monophosphate  | H              | Н              | CH <sub>3</sub> | S | 8-fluoroadenine   |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | R <sup>6</sup>  | X  | Base              |
|----------------|----------------|----------------|-----------------|----|-------------------|
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S  | 2,8-difluoro-     |
|                |                |                |                 |    | adenine           |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S  | adenine           |
| diphosphate    | H              | Н              | CH <sub>3</sub> | 0  | 2-(N,N-diacetyl)- |
|                |                |                |                 |    | guanine           |
| diphosphate    | H              | Н              | CH <sub>3</sub> | 0  | 6-O-acetyl        |
|                |                |                |                 | s. | guanine           |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0  | 8-fluoroguanine   |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0  | guanine           |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0  | 6-(N,N-diacetyl)- |
|                |                |                |                 |    | adenine           |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0  | 2-fluoroadenine   |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0  | 8-fluoroadenine   |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0  | 2,8-difluoro-     |
|                |                |                |                 |    | adenine           |
| diphosphate    | H              | Н              | CH <sub>3</sub> | 0  | adenine           |
| diphosphate    | H              | Н              | CH <sub>3</sub> | S  | 2-(N,N-diacetyl)- |
|                |                |                |                 |    | guanine           |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | S  | 6-O-acetyl        |
|                |                |                |                 |    | guanine           |
| diphosphate    | H              | Н              | CH <sub>3</sub> | S  | 8-fluoroguanine   |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | S  | guanine           |
| diphosphate    | Н              | H              | CH <sub>3</sub> | S  | 6-(N,N-diacetyl)- |
|                |                |                |                 |    | adenine           |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | S  | 2-fluoroadenine   |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | S  | 8-fluoroadenine   |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | S  | 2,8-difluoro-     |
|                |                |                |                 |    | adenine           |
| diphosphate    | Н              | H              | CH <sub>3</sub> | S  | adenine           |
| triphosphate   | H              | Н              | CH <sub>3</sub> | 0  | 2-(N,N-diacetyl)- |
|                |                |                |                 |    | guanine           |

| $\mathbb{R}^1$ | R <sup>2</sup> | R <sup>3</sup> | R <sup>6</sup>  | X | Base              |
|----------------|----------------|----------------|-----------------|---|-------------------|
| triphosphate   | H              | Н              | CH <sub>3</sub> | 0 | 6-O-acetyl        |
|                |                |                |                 |   | guanine           |
| triphosphate   | H              | Н              | CH <sub>3</sub> | 0 | 8-fluoroguanine   |
| triphosphate   | Н              | Н              | CH <sub>3</sub> | 0 | guanine           |
| triphosphate   | Н              | H              | CH <sub>3</sub> | 0 | 6-(N,N-diacetyl)- |
|                | :              |                |                 |   | adenine           |
| triphosphate   | Н              | Н              | CH <sub>3</sub> | 0 | 2-fluoroadenine   |
| triphosphate   | Н              | H              | CH <sub>3</sub> | 0 | 8-fluoroadenine   |
| triphosphate   | Н              | Н              | CH <sub>3</sub> | 0 | 2,8-difluoro-     |
|                |                |                |                 |   | adenine           |
| triphosphate   | H              | H              | CH <sub>3</sub> | 0 | 2-(N,N-diacetyl)- |
|                |                |                |                 |   | guanine           |
| triphosphate   | Н              | Н              | CH <sub>3</sub> | S | 6-O-acetyl        |
|                |                |                |                 |   | guanine           |
| triphosphate   | Н              | Н              | CH <sub>3</sub> | S | 8-fluoroguanine   |
| triphosphate   | Н              | H              | CH <sub>3</sub> | S | guanine           |
| triphosphate   | Н              | H              | CH <sub>3</sub> | S | 6-(N,N-diacetyl)- |
|                |                | 1              |                 |   | adenine           |
| triphosphate   | Н              | Н              | CH <sub>3</sub> | S | 2-fluoroadenine   |
| triphosphate   | Н              | H              | CH <sub>3</sub> | S | 8-fluoroadenine   |
| triphosphate   | Н              | Н              | CH <sub>3</sub> | S | 2,8-difluoro-     |
|                |                |                |                 |   | adenine           |
| triphosphate   | Н              | Н              | CH <sub>3</sub> | S | adenine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 2-(N,N-diacetyl)- |
|                |                |                |                 |   | guanine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 6-O-acetyl        |
|                |                |                |                 |   | guanine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 8-fluoroguanine   |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | guanine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 6-(N,N-diacetyl)- |
|                |                |                |                 |   | adenine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 2-fluoroadenine   |

| $\mathbb{R}^1$ $\mathbb{R}$ | R <sup>2</sup> | $\mathbb{R}^3$ | $\mathbb{R}^6$  | X | Base              |
|-----------------------------|----------------|----------------|-----------------|---|-------------------|
| monophosphate m             | nonophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 8-fluoroadenine   |
| monophosphate m             | nonophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 2,8-difluoro-     |
|                             |                |                |                 |   | adenine           |
| monophosphate m             | nonophosphate  | monophosphate  | CF <sub>3</sub> | 0 | adenine           |
| monophosphate m             | nonophosphate  | monophosphate  | CF <sub>3</sub> | S | 2-(N,N-diacetyl)- |
|                             |                |                |                 |   | guanine           |
| monophosphate m             | nonophosphate  | monophosphate  | CF <sub>3</sub> | S | 6-O-acetyl        |
|                             |                |                |                 |   | guanine           |
| monophosphate m             | nonophosphate  | monophosphate  | CF <sub>3</sub> | S | 8-fluoroguanine   |
| monophosphate m             | nonophosphate  | monophosphate  | CF <sub>3</sub> | S | guanine           |
| monophosphate m             | nonophosphate  | monophosphate  | CF <sub>3</sub> | S | 6-(N,N-diacetyl)- |
|                             |                |                |                 |   | adenine           |
| monophosphate m             | nonophosphate  | monophosphate  | CF <sub>3</sub> | S | 2-fluoroadenine   |
| monophosphate m             | nonophosphate  | monophosphate  | CF <sub>3</sub> | S | 8-fluoroadenine   |
| monophosphate m             | nonophosphate  | monophosphate  | CF <sub>3</sub> | S | 2,8-difluoro-     |
|                             |                |                |                 |   | adenine           |
| monophosphate n             | nonophosphate  | monophosphate  | CF <sub>3</sub> | S | adenine           |
| acetyl a                    | acetyl         | acetyl         | CF <sub>3</sub> | 0 | guanine           |
| acetyl a                    | acetyl         | acetyl         | CF <sub>3</sub> | S | guanine           |
| acetyl a                    | acetyl         | acetyl         | 2-bromo-        | О | guanine           |
|                             |                |                | vinyl           |   | ·                 |
| acetyl a                    | acetyl         | acetyl         | 2-bromo-        | S | guanine           |
|                             |                |                | vinyl           |   |                   |

Alternatively, the following nucleosides of Formula VIII are prepared, using the appropriate sugar and pyrimidine or purine bases.

$$R^{1}O$$
 $X$ 
 $R^{6}$ 
 $OR^{2}$ 
 $(VIII)$ 

## wherein

| R <sup>1</sup> | $\mathbb{R}^2$ | R <sup>6</sup>  | X | Base                      |
|----------------|----------------|-----------------|---|---------------------------|
| Н              | H              | CH <sub>3</sub> | 0 | 2,4-O-Diacetyluracil      |
| H              | Н              | CH <sub>3</sub> | 0 | Hypoxanthine              |
| Н              | Н              | CH <sub>3</sub> | 0 | 2,4-O-Diacetylthymine     |
| H              | Н              | CH <sub>3</sub> | 0 | Thymine                   |
| H              | Н              | CH <sub>3</sub> | 0 | Cytosine                  |
| Н              | Н              | CH <sub>3</sub> | 0 | 4-(N-mono-acetyl)cytosine |
| H              | Н              | CH <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |
| Н              | Н              | CH <sub>3</sub> | 0 | Uracil                    |
| Н              | Н              | CH <sub>3</sub> | 0 | 5-Fluorouracil            |
| H              | H              | CH <sub>3</sub> | S | 2,4-O-Diacetyluracil      |
| H              | H              | CH <sub>3</sub> | S | Hypoxanthine              |
| Н              | H              | CH <sub>3</sub> | S | 2,4-O-Diacetylthymine     |
| H              | Н              | CH <sub>3</sub> | S | Thymine                   |
| H              | Н              | CH <sub>3</sub> | S | Cytosine                  |
| H              | Н              | CH <sub>3</sub> | S | 4-(N-mono-acetyl)cytosine |
| Н              | Н              | CH <sub>3</sub> | S | 4-(N,N-diacetyl)cytosine  |
| H              | H              | CH <sub>3</sub> | S | Uracil                    |
| Н              | Н              | CH <sub>3</sub> | S | 5-Fluorouracil            |
| monophosphate  | Н              | CH <sub>3</sub> | 0 | 2,4-O-Diacetyluracil      |
| monophosphate  | Н              | CH <sub>3</sub> | 0 | Hypoxanthine              |
| monophosphate  | H              | CH <sub>3</sub> | 0 | 2,4-O-Diacetylthymine     |
| monophosphate  | Н              | CH <sub>3</sub> | 0 | Thymine                   |
| monophosphate  | Н              | CH <sub>3</sub> | 0 | Cytosine                  |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>6</sup>  | X | Base                      |
|----------------|----------------|-----------------|---|---------------------------|
| monophosphate  | H              | CH <sub>3</sub> | 0 | 4-(N-mono-acetyl)cytosine |
| monophosphate  | Н              | CH <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |
| monophosphate  | Н              | CH <sub>3</sub> | 0 | Uracil                    |
| monophosphate  | H              | CH <sub>3</sub> | 0 | 5-Fluorouracil            |
| monophosphate  | Н              | CH <sub>3</sub> | S | 2,4-O-Diacetyluracil      |
| monophosphate  | Н              | CH <sub>3</sub> | S | Hypoxanthine              |
| monophosphate  | Н              | CH <sub>3</sub> | S | 2,4-O-Diacetylthymine     |
| monophosphate  | Н              | CH <sub>3</sub> | S | Thymine                   |
| monophosphate  | Н              | CH <sub>3</sub> | S | Cytosine                  |
| monophosphate  | H              | CH <sub>3</sub> | S | 4-(N-mono-acetyl)cytosine |
| monophosphate  | Н              | CH <sub>3</sub> | S | 4-(N,N-diacetyl)cytosine  |
| monophosphate  | Н              | CH <sub>3</sub> | S | Uracil                    |
| monophosphate  | H              | CH <sub>3</sub> | S | 5-Fluorouracil            |
| diphosphate    | H              | CH <sub>3</sub> | 0 | 2,4-O-Diacetyluracil      |
| diphosphate    | H              | CH <sub>3</sub> | 0 | Hypoxanthine              |
| diphosphate    | Н              | CH <sub>3</sub> | 0 | 2,4-O-Diacetylthymine     |
| diphosphate    | Н              | CH <sub>3</sub> | 0 | Thymine                   |
| diphosphate    | Н              | CH <sub>3</sub> | 0 | Cytosine                  |
| diphosphate    | Н              | CH <sub>3</sub> | 0 | 4-(N-mono-acetyl)cytosine |
| diphosphate    | Н              | CH <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |
| diphosphate    | Н              | CH <sub>3</sub> | 0 | Uracil                    |
| diphosphate    | Н              | CH <sub>3</sub> | 0 | 5-Fluorouracil            |
| diphosphate    | Н              | CH <sub>3</sub> | S | 2,4-O-Diacetyluracil      |
| diphosphate    | Н              | CH <sub>3</sub> | S | Hypoxanthine              |
| diphosphate    | Н              | CH <sub>3</sub> | S | 2,4-O-Diacetylthymine     |
| diphosphate    | Н              | CH <sub>3</sub> | S | Thymine                   |
| diphosphate    | Н              | CH <sub>3</sub> | S | Cytosine                  |
| diphosphate    | H              | CH <sub>3</sub> | S | 4-(N-mono-acetyl)cytosine |
| diphosphate    | Н              | CH <sub>3</sub> | S | 4-(N,N-diacetyl)cytosine  |
| diphosphate    | H              | CH <sub>3</sub> | S | Uracil                    |
| diphosphate    | Н              | CH <sub>3</sub> | S | 5-Fluorouracil            |

| $\mathbb{R}^1$ | $\mathbb{R}^2$ | $\mathbb{R}^6$  | X | Base                      |
|----------------|----------------|-----------------|---|---------------------------|
| triphosphate   | Н              | CH <sub>3</sub> | 0 | 2,4-O-Diacetyluracil      |
| triphosphate   | Н              | CH <sub>3</sub> | 0 | Hypoxanthine              |
| triphosphate   | H              | CH <sub>3</sub> | 0 | 2,4-O-diacethylthymine    |
| triphosphate   | H              | CH <sub>3</sub> | 0 | Thymine                   |
| triphosphate   | Н              | CH <sub>3</sub> | 0 | Cytosine                  |
| triphosphate   | Н              | CH <sub>3</sub> | 0 | 4-(N-mono-acetyl)cytosine |
| triphosphate   | Н              | CH <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |
| triphosphate   | Н              | CH <sub>3</sub> | 0 | Uracil                    |
| triphosphate   | Н              | CH <sub>3</sub> | 0 | 5-Fluorouracil            |
| triphosphate   | H              | CH <sub>3</sub> | S | 2,4-O-Diacetyluracil      |
| triphosphate   | Н              | CH <sub>3</sub> | S | Hypoxanthine              |
| triphosphate   | Н              | CH <sub>3</sub> | S | 2,4-O-Diacetylthymine     |
| triphosphate   | Н              | CH <sub>3</sub> | S | Thymine                   |
| triphosphate   | Н              | CH <sub>3</sub> | S | Cytosine                  |
| triphosphate   | Н              | CH <sub>3</sub> | S | 4-(N-mono-acetyl)cytosine |
| triphosphate   | Н              | CH <sub>3</sub> | S | 4-(N,N-diacetyl)cytosine  |
| triphosphate   | Н              | CH <sub>3</sub> | S | Uracil                    |
| triphosphate   | Н              | CH <sub>3</sub> | S | 5-Fluorouracil            |
| monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 2,4-O-Diacetyluracil      |
| monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | Hypoxanthine              |
| monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 2,4-O-Diacetylthymine     |
| monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | Thymine                   |
| monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | Cytosine                  |
| monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 4-(N-mono-acetyl)cytosine |
| monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |
| monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | Uracil                    |
| monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 5-Fluorouracil            |
| monophosphate  | monophosphate  | CF <sub>3</sub> | S | 2,4-O-Diacetyluracil      |
| monophosphate  | monophosphate  | CF <sub>3</sub> | S | Hypoxanthine              |
| monophosphate  | monophosphate  | CF <sub>3</sub> | S | 2,4-O-Diacetylthymine     |
| monophosphate  | monophosphate  | CF <sub>3</sub> | S | Thymine                   |

| R <sup>1</sup> | $\mathbb{R}^2$ | R <sup>6</sup>  | X | Base                      |
|----------------|----------------|-----------------|---|---------------------------|
| monophosphate  | monophosphate  | CF <sub>3</sub> | S | Cytosine                  |
| monophosphate  | monophosphate  | CF <sub>3</sub> | S | 4-(N-mono-acetyl)cytosine |
| monophosphate  | monophosphate  | CF <sub>3</sub> | S | 4-(N,N-diacetyl)cytosine  |
| monophosphate  | monophosphate  | CF <sub>3</sub> | S | Uracil                    |
| monophosphate  | monophosphate  | CF <sub>3</sub> | S | 5-Fluorouracil            |
| acetyl         | acetyl         | CF <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |
| acetyl         | acetyl         | CF <sub>3</sub> | S | 4-(N,N-diacetyl)cytosine  |
| acetyl         | acetyl         | 2-bromo-        | 0 | 4-(N,N-diacetyl)cytosine  |
|                |                | vinyl           |   |                           |
| acetyl         | acetyl         | 2-bromo-        | S | 4-(N,N-diacetyl)cytosine  |
|                | ·              | vinyl           |   |                           |
| H              | H              | CH <sub>3</sub> | 0 | 2-(N,N-diacetyl)-guanine  |
| Н              | Н              | CH <sub>3</sub> | 0 | 6-O-acetyl guanine        |
| H              | Н              | CH <sub>3</sub> | 0 | 8-fluoroguanine           |
| Н              | Н              | CH <sub>3</sub> | 0 | guanine                   |
| H              | Н              | CH <sub>3</sub> | 0 | 6-(N,N-diacetyl)-adenine  |
| Н              | H ·            | CH <sub>3</sub> | 0 | 2-fluoroadenine           |
| H              | H              | CH <sub>3</sub> | 0 | 8-fluoroadenine           |
| Н              | Н              | CH <sub>3</sub> | 0 | 2,8-difluoro-adenine      |
| H              | Н              | CH <sub>3</sub> | 0 | adenine                   |
| H              | H              | CH <sub>3</sub> | S | 2-(N,N-diacetyl)-guanine  |
| H              | Н              | CH <sub>3</sub> | S | 6-O-acetyl guanine        |
| Н              | Н              | CH <sub>3</sub> | S | 8-fluoroguanine           |
| H              | Н              | CH <sub>3</sub> | S | guanine                   |
| Н              | H              | CH <sub>3</sub> | S | 6-(N,N-diacetyl)-adenine  |
| Н              | H              | CH <sub>3</sub> | S | 2-fluoroadenine           |
| Н              | Н              | CH <sub>3</sub> | S | 8-fluoroadenine           |
| Н              | Н              | CH <sub>3</sub> | S | 2,8-difluoro-adenine      |
| H              | H              | CH <sub>3</sub> | S | adenine                   |
| monophosphate  | Н              | CH <sub>3</sub> | 0 | 2-(N,N-diacetyl)-guanine  |
| monophosphate  | Н              | CH <sub>3</sub> | 0 | 6-O-acetyl guanine        |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>6</sup>  | X | Base                     |
|----------------|----------------|-----------------|---|--------------------------|
| monophosphate  | Н              | CH <sub>3</sub> | 0 | 8-fluoroguanine          |
| monophosphate  | Н              | CH <sub>3</sub> | 0 | guanine                  |
| monophosphate  | Н              | CH <sub>3</sub> | 0 | 6-(N,N-diacetyl)-adenine |
| monophosphate  | Н              | CH <sub>3</sub> | 0 | 2-fluoroadenine          |
| monophosphate  | Н              | CH <sub>3</sub> | 0 | 8-fluoroadenine          |
| monophosphate  | Н              | CH <sub>3</sub> | 0 | 2,8-difluoro-adenine     |
| monophosphate  | H              | CH <sub>3</sub> | 0 | adenine                  |
| monophosphate  | Н              | CH <sub>3</sub> | S | 2-(N,N-diacetyl)-guanine |
| monophosphate  | Н              | CH <sub>3</sub> | S | 6-O-acetyl guanine       |
| monophosphate  | Н              | CH <sub>3</sub> | S | 8-fluoroguanine          |
| monophosphate  | Н              | CH <sub>3</sub> | S | guanine                  |
| monophosphate  | Н              | CH <sub>3</sub> | S | 6-(N,N-diacetyl)-adenine |
| monophosphate  | Н              | CH <sub>3</sub> | S | 2-fluoroadenine          |
| monophosphate  | Н              | CH <sub>3</sub> | S | 8-fluoroadenine          |
| monophosphate  | Н              | CH <sub>3</sub> | S | 2,8-difluoro-adenine     |
| monophosphate  | H              | CH <sub>3</sub> | S | adenine                  |
| diphosphate    | Н              | CH <sub>3</sub> | 0 | 2-(N,N-diacetyl)-guanine |
| diphosphate    | Н              | CH <sub>3</sub> | 0 | 6-O-acetyl guanine       |
| diphosphate    | Н              | CH <sub>3</sub> | 0 | 8-fluoroguanine          |
| diphosphate    | Н              | CH <sub>3</sub> | 0 | guanine                  |
| diphosphate    | Н              | CH <sub>3</sub> | 0 | 6-(N,N-diacetyl)-adenine |
| diphosphate    | Н              | CH <sub>3</sub> | 0 | 2-fluoroadenine          |
| diphosphate    | Н              | CH <sub>3</sub> | 0 | 8-fluoroadenine          |
| diphosphate    | Н              | CH <sub>3</sub> | 0 | 2,8-difluoro-adenine     |
| diphosphate    | Н              | CH <sub>3</sub> | 0 | adenine                  |
| diphosphate    | H-             | CH <sub>3</sub> | S | 2-(N,N-diacetyl)-guanine |
| diphosphate    | H              | CH <sub>3</sub> | S | 6-O-acetyl guanine       |
| diphosphate    | Н              | CH <sub>3</sub> | S | 8-fluoroguanine          |
| diphosphate    | H              | CH <sub>3</sub> | S | guanine                  |
| diphosphate    | H              | CH <sub>3</sub> | S | 6-(N,N-diacetyl)-adenine |
| diphosphate    | Н              | CH <sub>3</sub> | S | 2-fluoroadenine          |

| $\mathbb{R}^{1}$ | $\mathbb{R}^2$ | $\mathbb{R}^6$  | X | Base                     |
|------------------|----------------|-----------------|---|--------------------------|
| diphosphate      | Н              | CH <sub>3</sub> | S | 8-fluoroadenine          |
| diphosphate      | Н              | CH <sub>3</sub> | S | 2,8-difluoro-adenine     |
| diphosphate      | H              | CH <sub>3</sub> | S | adenine                  |
| triphosphate     | Н              | CH <sub>3</sub> | 0 | 2-(N,N-diacetyl)-guanine |
| triphosphate     | H              | CH <sub>3</sub> | 0 | 6-O-acetyl guanine       |
| triphosphate     | Н              | CH <sub>3</sub> | 0 | 8-fluoroguanine          |
| triphosphate     | Н              | CH <sub>3</sub> | 0 | guanine                  |
| triphosphate     | Н              | CH <sub>3</sub> | 0 | 6-(N,N-diacetyl)-adenine |
| triphosphate     | Н              | CH <sub>3</sub> | 0 | 2-fluoroadenine          |
| triphosphate     | Н              | CH <sub>3</sub> | 0 | 8-fluoroadenine          |
| triphosphate     | Н              | CH <sub>3</sub> | 0 | 2,8-difluoro-adenine     |
| triphosphate     | Н              | CH <sub>3</sub> | 0 | adenine                  |
| triphosphate     | Н              | CH <sub>3</sub> | S | 2-(N,N-diacetyl)-guanine |
| triphosphate     | Н              | CH <sub>3</sub> | S | 6-O-acetyl guanine       |
| triphosphate     | H              | CH <sub>3</sub> | S | 8-fluoroguanine          |
| triphosphate     | Н              | CH <sub>3</sub> | S | guanine                  |
| triphosphate     | Н              | CH <sub>3</sub> | S | 6-(N,N-diacetyl)-adenine |
| triphosphate     | Н              | CH <sub>3</sub> | S | 2-fluoroadenine          |
| triphosphate     | Н              | CH <sub>3</sub> | S | 8-fluoroadenine          |
| triphosphate     | Н              | CH <sub>3</sub> | S | 2,8-difluoro-adenine     |
| triphosphate     | Н              | CH <sub>3</sub> | S | adenine                  |
| monophosphate    | monophosphate  | CF <sub>3</sub> | 0 | 2-(N,N-diacetyl)-guanine |
| monophosphate    | monophosphate  | CF <sub>3</sub> | 0 | 6-O-acetyl guanine       |
| monophosphate    | monophosphate  | CF <sub>3</sub> | 0 | 8-fluoroguanine          |
| monophosphate    | monophosphate  | CF <sub>3</sub> | 0 | guanine                  |
| monophosphate    | monophosphate  | CF <sub>3</sub> | 0 | 6-(N,N-diacetyl)-adenine |
| monophosphate    | monophosphate  | CF <sub>3</sub> | 0 | 2-fluoroadenine          |
| monophosphate    | monophosphate  | CF <sub>3</sub> | 0 | 8-fluoroadenine          |
| monophosphate    | monophosphate  | CF <sub>3</sub> | 0 | 2,8-difluoro-adenine     |
| monophosphate    | monophosphate  | CF <sub>3</sub> | 0 | adenine                  |
| monophosphate    | monophosphate  | CF <sub>3</sub> | S | 2-(N,N-diacetyl)-guanine |

| R <sup>1</sup> | $\mathbb{R}^2$ | R <sup>6</sup>  | X | Base                     |
|----------------|----------------|-----------------|---|--------------------------|
| monophosphate  | monophosphate  | CF <sub>3</sub> | S | 6-O-acetyl guanine       |
| monophosphate  | monophosphate  | CF <sub>3</sub> | S | 8-fluoroguanine          |
| monophosphate  | monophosphate  | CF <sub>3</sub> | S | guanine                  |
| monophosphate  | monophosphate  | CF <sub>3</sub> | S | 6-(N,N-diacetyl)-adenine |
| monophosphate  | monophosphate  | CF <sub>3</sub> | S | 2-fluoroadenine          |
| monophosphate  | monophosphate  | CF <sub>3</sub> | S | 8-fluoroadenine          |
| monophosphate  | monophosphate  | CF <sub>3</sub> | S | 2,8-difluoro-adenine     |
| monophosphate  | monophosphate  | CF <sub>3</sub> | S | adenine                  |
| acetyl         | acetyl         | CF <sub>3</sub> | 0 | guanine                  |
| acetyl         | acetyl         | CF <sub>3</sub> | S | guanine                  |
| acetyl         | acetyl         | 2-bromo-        | 0 | guanine                  |
|                | <b>[</b>       | vinyl           |   |                          |
| acetyl         | acetyl         | 2-bromo-        | S | guanine                  |
|                |                | vinyl           |   |                          |

Alternatively, the following nucleosides of Formula IX are prepared, using the appropriate sugar and pyrimidine or purine bases.



## wherein:

| R <sup>6</sup>  | X                                                               | Base                                                                    |
|-----------------|-----------------------------------------------------------------|-------------------------------------------------------------------------|
| CH <sub>3</sub> | 0                                                               | 2,4-O-Diacetyluracil                                                    |
| CH <sub>3</sub> | 0                                                               | Hypoxanthine                                                            |
| CH <sub>3</sub> | 0                                                               | 2,4-O-Diacetylthymine                                                   |
| CH <sub>3</sub> | 0                                                               | Thymine                                                                 |
| CH <sub>3</sub> | 0                                                               | Cytosine                                                                |
|                 | CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> | CH <sub>3</sub> O CH <sub>3</sub> O CH <sub>3</sub> O CH <sub>3</sub> O |

| R <sup>1</sup> | R <sup>6</sup>  | X | Base                      |  |  |
|----------------|-----------------|---|---------------------------|--|--|
| Н              | CH <sub>3</sub> | 0 | 4-(N-mono-acetyl)cytosine |  |  |
| Н              | CH <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |  |  |
| Н              | CH <sub>3</sub> | 0 | Uracil                    |  |  |
| Н              | CH <sub>3</sub> | 0 | 5-Fluorouracil            |  |  |
| Н              | CH <sub>3</sub> | S | 2,4-O-Diacetyluracil      |  |  |
| H              | CH <sub>3</sub> | S | Hypoxanthine              |  |  |
| Н              | CH <sub>3</sub> | S | 2,4-O-Diacetylthymine     |  |  |
| Н              | CH <sub>3</sub> | S | Thymine                   |  |  |
| Н              | CH <sub>3</sub> | S | Cytosine                  |  |  |
| Н              | CH <sub>3</sub> | S | 4-(N-mono-acetyl)cytosine |  |  |
| Н              | CH <sub>3</sub> | S | 4-(N,N-diacetyl)cytosine  |  |  |
| H              | CH <sub>3</sub> | S | Uracil                    |  |  |
| H              | CH <sub>3</sub> | S | 5-Fluorouracil            |  |  |
| monophosphate  | CH <sub>3</sub> | 0 | 2,4-O-Diacetyluracil      |  |  |
| monophosphate  | CH <sub>3</sub> | 0 | Hypoxanthine              |  |  |
| monophosphate  | CH <sub>3</sub> | 0 | 2,4-O-Diacetylthymine     |  |  |
| monophosphate  | CH <sub>3</sub> | 0 | Thymine                   |  |  |
| monophosphate  | CH <sub>3</sub> | 0 | Cytosine                  |  |  |
| monophosphate  | CH <sub>3</sub> | 0 | 4-(N-mono-acetyl)cytosine |  |  |
| monophosphate  | CH <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |  |  |
| monophosphate  | CH <sub>3</sub> | 0 | Uracil                    |  |  |
| monophosphate  | CH <sub>3</sub> | 0 | 5-Fluorouracil            |  |  |
| monophosphate  | CH <sub>3</sub> | S | 2,4-O-Diacetyluracil      |  |  |
| monophosphate  | CH <sub>3</sub> | S | Hypoxanthine              |  |  |
| monophosphate  | CH <sub>3</sub> | S | 2,4-O-Diacetylthymine     |  |  |
| monophosphate  | CH <sub>3</sub> | S | Thymine                   |  |  |
| monophosphate  | CH <sub>3</sub> | S | Cytosine                  |  |  |
| monophosphate  | CH <sub>3</sub> | S | 4-(N-mono-acetyl)cytosine |  |  |
| monophosphate  | CH <sub>3</sub> | S | 4-(N,N-diacetyl)cytos     |  |  |
| monophosphate  | CH <sub>3</sub> | S | Uracil                    |  |  |
| monophosphate  | CH <sub>3</sub> | S | 5-Fluorouracil            |  |  |

| R <sup>1</sup> | R <sup>6</sup>  | X | Base                      |  |  |
|----------------|-----------------|---|---------------------------|--|--|
| diphosphate    | CH <sub>3</sub> | 0 | 2,4-O-Diacetyluracil      |  |  |
| diphosphate    | CH <sub>3</sub> | 0 | Hypoxanthine              |  |  |
| diphosphate    | CH <sub>3</sub> | 0 | 2,4-O-Diacetylthymine     |  |  |
| diphosphate    | CH <sub>3</sub> | 0 | Thymine                   |  |  |
| diphosphate    | CH <sub>3</sub> | 0 | Cytosine                  |  |  |
| diphosphate    | CH <sub>3</sub> | 0 | 4-(N-mono-acetyl)cytosine |  |  |
| diphosphate    | CH <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |  |  |
| diphosphate    | CH <sub>3</sub> | 0 | Uracil                    |  |  |
| diphosphate    | CH <sub>3</sub> | 0 | 5-Fluorouracil            |  |  |
| diphosphate    | CH <sub>3</sub> | S | 2,4-O-Diacetyluracil      |  |  |
| diphosphate    | CH <sub>3</sub> | S | Hypoxanthine              |  |  |
| diphosphate    | CH <sub>3</sub> | S | 2,4-O-Diacetylthymine     |  |  |
| diphosphate    | CH <sub>3</sub> | S | Thymine                   |  |  |
| diphosphate    | CH <sub>3</sub> | S | Cytosine                  |  |  |
| triphosphate   | CH <sub>3</sub> | 0 | 2,4-O-Diacetyluracil      |  |  |
| triphosphate   | CH <sub>3</sub> | 0 | Hypoxanthine              |  |  |
| triphosphate   | CH <sub>3</sub> | 0 | 2,4-O-Diacetylthymine     |  |  |
| triphosphate   | CH <sub>3</sub> | 0 | Thymine                   |  |  |
| triphosphate   | CH <sub>3</sub> | 0 | Cytosine                  |  |  |
| triphosphate   | CH <sub>3</sub> | 0 | 4-(N-mono-acetyl)cytosine |  |  |
| triphosphate   | CH <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |  |  |
| triphosphate   | CH <sub>3</sub> | 0 | Uracil                    |  |  |
| triphosphate   | CH <sub>3</sub> | 0 | 5-Fluorouracil            |  |  |
| triphosphate   | CH <sub>3</sub> | S | 2,4-O-Diacetyluracil      |  |  |
| triphosphate   | CH <sub>3</sub> | S | Hypoxanthine              |  |  |
| triphospahate  | CH <sub>3</sub> | S | 2,4-O-Diacetylthymine     |  |  |
| triphospahate  | CH <sub>3</sub> | S | Thymine                   |  |  |
| triphospahate  | CH <sub>3</sub> | S | Cytosine                  |  |  |
| monophosphate  | CF <sub>3</sub> | 0 | 2,4-O-Diacetyluracil      |  |  |
| monophosphate  | CF <sub>3</sub> | 0 | Hypoxanthine              |  |  |
| monophosphate  | CF <sub>3</sub> | 0 | 2,4-O-Diacetylthymine     |  |  |

| R <sup>1</sup> | $\mathbb{R}^6$  | X | Base                      |  |  |
|----------------|-----------------|---|---------------------------|--|--|
| monophosphate  | CF <sub>3</sub> | 0 | Thymine                   |  |  |
| monophosphate  | CF <sub>3</sub> | 0 | Cytosine                  |  |  |
| monophosphate  | CF <sub>3</sub> | 0 | 4-(N-mono-acetyl)cytosine |  |  |
| monophosphate  | CF <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytos     |  |  |
| monophosphate  | CF <sub>3</sub> | 0 | Uracil                    |  |  |
| monophosphate  | CF <sub>3</sub> | 0 | 5-Fluorouracil            |  |  |
| monophosphate  | CF <sub>3</sub> | S | 2,4-O-Diacetyluracil      |  |  |
| monophosphate  | CF <sub>3</sub> | S | Hypoxanthine              |  |  |
| monophosphate  | CF <sub>3</sub> | S | 2,4-O-Diacetylthymine     |  |  |
| monophosphate  | CF <sub>3</sub> | S | Thymine                   |  |  |
| monophosphate  | CF <sub>3</sub> | S | Cytosine                  |  |  |
| monophosphate  | CF <sub>3</sub> | S | 4-(N-mono-acetyl)cytosine |  |  |
| monophosphate  | CF <sub>3</sub> | S | 4-(N,N-diacetyl)cytosine  |  |  |
| monophosphate  | CF <sub>3</sub> | S | Uracil                    |  |  |
| monophosphate  | CF <sub>3</sub> | S | 5-Fluorouracil            |  |  |
| acetyl         | CF <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |  |  |
| acetyl         | CF <sub>3</sub> | S | 4-(N,N-diacetyl)cytosine  |  |  |
| acetyl         | 2-bromo-vinyl   | 0 | 4-(N,N-diacetyl)cytosine  |  |  |
| acetyl         | 2-bromo-vinyl   | S | 4-(N,N-diacetyl)cytosine  |  |  |

Alternatively, the following nucleosides of Formula XVI are prepared, using the appropriate sugar and pyrimidine or purine bases.

## wherein:

| $\mathbb{R}^1$ | R <sup>6</sup>  | R <sup>7</sup> | R <sup>8</sup> | X | Base                 | R <sup>10</sup> | R <sup>9</sup> |
|----------------|-----------------|----------------|----------------|---|----------------------|-----------------|----------------|
| H              | CH <sub>3</sub> | Н              | Н              | 0 | 2,4-O-Diacetyluracil | ОН              | Me             |
| H              | CH <sub>3</sub> | H              | Н              | 0 | Hypoxanthine         | ОН              | Ме             |

| R <sup>1</sup> | R <sup>6</sup>  | R <sup>7</sup> | R <sup>8</sup> | X | Base                      | R <sup>10</sup> | R <sup>9</sup> |
|----------------|-----------------|----------------|----------------|---|---------------------------|-----------------|----------------|
| Н              | CH <sub>3</sub> | H              | H              | 0 | 2,4-O-Diacetylthymine     | OH              | Me             |
| H              | CH <sub>3</sub> | H              | H              | 0 | Thymine                   | OH              | Me             |
| Н              | CH <sub>3</sub> | Н              | H              | 0 | Cytosine                  | OH              | Me             |
| H              | CH <sub>3</sub> | Н              | H              | 0 | 4-(N-mono-acetyl)cytosine | OH              | Me             |
| Н              | CH <sub>3</sub> | Н              | H              | 0 | 4-(N,N-diacetyl)cytosine  | ОН              | Me             |
| Н              | CH <sub>3</sub> | H              | Н              | 0 | Uracil                    | ОН              | Me             |
| H              | CH <sub>3</sub> | H              | H              | 0 | 5-Fluorouracil            | ОН              | Me             |
| H              | CH <sub>3</sub> | H              | H              | S | 2,4-O-Diacetyluracil      | ОН              | Me             |
| H              | CH <sub>3</sub> | H              | Н              | S | Hypoxanthine              | OH              | Me             |
| Н              | CH <sub>3</sub> | Н              | H              | S | 2,4-O-Diacetylthymine     | OH              | Me             |
| H              | CH <sub>3</sub> | Н              | Н              | S | Thymine                   | OH              | Me             |
| H              | CH <sub>3</sub> | H              | Н              | S | Cytosine                  | OH              | Me             |
| H              | CH <sub>3</sub> | Н              | Н              | S | 4-(N-mono-acetyl)cytosine | ОН              | Me             |
| Н              | CH <sub>3</sub> | Н              | Н              | S | 4-(N,N-diacetyl)cytosine  | OH              | Me             |
| H              | CH <sub>3</sub> | Н              | H              | S | Uracil                    | OH              | Me             |
| Н              | CH <sub>3</sub> | Н              | H              | S | 5-Fluorouracil            | OH              | Me             |
| monophosphate  | CH <sub>3</sub> | Н              | H              | 0 | 2,4-O-Diacetyluracil      | OH              | Me             |
| monophosphate  | CH <sub>3</sub> | Н              | H              | 0 | Hypoxanthine              | ОН              | Me             |
| monophosphate  | CH <sub>3</sub> | Н              | Н              | 0 | 2,4-O-Diacetylthymine     | OH              | Me             |
| monophosphate  | CH <sub>3</sub> | Н              | Н              | 0 | Thymine                   | OH              | Me             |
| monophosphate  | CH <sub>3</sub> | Н              | Н              | 0 | Cytosine                  | ОН              | Me             |
| monophosphate  | CH <sub>3</sub> | Н              | Н              | 0 | 4-(N-mono-acetyl)cytosine | OH              | Me             |
| monophosphate  | CH <sub>3</sub> | H              | Н              | 0 | 4-(N,N-diacetyl)cytosine  | OH              | Me             |
| monophosphate  | CH <sub>3</sub> | H              | Н              | 0 | Uracil                    | OH              | Me             |
| monophosphate  | CH <sub>3</sub> | H              | H              | 0 | 5-Fluorouracil            | OH              | Me             |
| monophosphate  | CH <sub>3</sub> | H              | H              | S | 2,4-O-Diacetyluracil      | OH              | Me             |
| monophosphate  | CH <sub>3</sub> | Н              | Н              | S | Hypoxanthine              | OH              | Me             |
| monophosphate  | CH <sub>3</sub> | H              | Н              | S | 2,4-O-Diacetylthymine     | ОН              | Me             |
| monophosphate  | CH <sub>3</sub> | Н              | Н              | S | Thymine OH I              |                 | Me             |
| monophosphate  | CH <sub>3</sub> | Н              | H              | S | Cytosine                  | ОН              | Me             |
| monophosphate  | CH <sub>3</sub> | Н              | Н              | S | 4-(N-mono-acetyl)cytosine | OH              | Me             |

| $\mathbb{R}^1$ | R <sup>6</sup>  | R <sup>7</sup> | R <sup>8</sup> | X | Base                       | R <sup>10</sup> - | R <sup>9</sup> |
|----------------|-----------------|----------------|----------------|---|----------------------------|-------------------|----------------|
| monophosphate  | CH <sub>3</sub> | H              | Н              | S | 4-(N,N-diacetyl)cytosine   | ОН                | Me             |
| monophosphate  | CH <sub>3</sub> | Н              | Н              | S | Uracil                     | ОН                | Me             |
| monophosphate  | CH <sub>3</sub> | H              | H              | S | 5-Fluorouracil             | OH                | Me             |
| diphosphate    | CH <sub>3</sub> | Н              | H              | 0 | 2,4-O-Diacetyluracil       | ОН                | Me             |
| diphosphate    | CH <sub>3</sub> | Н              | Н              | 0 | Hypoxanthine               | OH                | Me             |
| diphosphate    | CH <sub>3</sub> | Н              | H              | 0 | 2,4-O-Diacetylthymine      | OH                | Me             |
| diphosphate    | CH <sub>3</sub> | Н              | Н              | 0 | Thymine                    | ОН                | Me             |
| diphosphate    | CH <sub>3</sub> | Н              | H              | 0 | Cytosine                   | OH                | Me             |
| diphosphate    | CH <sub>3</sub> | H              | Н              | 0 | 4-(N-mono-acetyl)cytosine  | OH                | Me             |
| diphosphate    | CH <sub>3</sub> | Н              | Н              | 0 | 4-(N,N-diacetyl)cytosine   | ОН                | Me             |
| diphosphate    | CH <sub>3</sub> | H              | H              | 0 | Uracil                     | OH                | Me             |
| diphosphate    | CH <sub>3</sub> | H              | Н              | 0 | 5-Fluorouracil             | ОН                | Me             |
| diphosphate    | CH <sub>3</sub> | Н              | H              | S | 2,4-O-Diacetyluracil       | OH                | Me             |
| diphosphate    | CH <sub>3</sub> | Н              | Н              | S | Hypoxanthine               | OH                | Me             |
| diphosphate    | CH <sub>3</sub> | Н              | Н              | S | 2,4-O-Diacetylthymine      | ОН                | Me             |
| diphosphate    | CH <sub>3</sub> | H              | H              | S | Thymine                    | ОН                | Me             |
| diphosphate    | CH <sub>3</sub> | H              | H              | S | Cytosine                   | OH                | Me             |
| triphosphate   | CH <sub>3</sub> | H              | H              | 0 | 2,4-O-Diacetyluracil       | OH                | Me             |
| triphosphate   | CH <sub>3</sub> | H              | H              | 0 | Hypoxanthine               | OH                | Me             |
| triphosphate   | CH <sub>3</sub> | H              | Н              | 0 | 2,4-O-Diacetylthymine      | OH                | Me             |
| triphosphate   | CH <sub>3</sub> | H              | H              | 0 | Thymine                    | OH                | Me             |
| triphosphate   | CH <sub>3</sub> | H              | H              | 0 | Cytosine                   | OH                | Me             |
| triphosphate   | CH <sub>3</sub> | H              | Н              | 0 | 4-(N-mono-acetyl)cytosine  | OH                | Me             |
| triphosphate   | CH <sub>3</sub> | Н              | H              | 0 | 4-(N,N-diacetyl)cytosine   | OH                | Me             |
| triphosphate   | CH <sub>3</sub> | Н              | H              | 0 | Uracil                     | OH                | Me             |
| triphosphate   | CH <sub>3</sub> | Н              | Н              | 0 | 5-Fluorouracil             | OH                | Me             |
| triphosphate   | CH <sub>3</sub> | H              | Н              | S | 2,4-O-Diacetyluracil       | ОН                | Me             |
| triphosphate   | CH <sub>3</sub> | Н              | Н              | S | Hypoxanthine               | OH                | Me             |
| triphosphate   | CH <sub>3</sub> | Н              | Н              | S | 2,4-O-Diacetylthymine OH I |                   | Me             |
| triphosphate   | CH <sub>3</sub> | H              | H              | S | Thymine                    | OH                | Me             |
| triphosphate   | CH <sub>3</sub> | Н              | H              | S | Cytosine                   | ОН                | Me             |

| R <sup>1</sup> | R <sup>6</sup>  | R <sup>7</sup> | R <sup>8</sup> | X | Base                         | R <sup>10</sup> | R <sup>9</sup> |
|----------------|-----------------|----------------|----------------|---|------------------------------|-----------------|----------------|
| monophosphate  | CF <sub>3</sub> | H              | Н              | 0 | 2,4-O-Diacetyluracil         | OH              | Me             |
| monophosphate  | CF <sub>3</sub> | Н              | H              | 0 | Hypoxanthine                 | ОН              | Me             |
| monophosphate  | CF <sub>3</sub> | Н              | H              | 0 | 2,4-O-Diacetylthymine        | OH              | Me             |
| monophosphate  | CF <sub>3</sub> | Н              | H              | 0 | Thymine                      | ОН              | Me             |
| monophosphate  | CF <sub>3</sub> | H              | H              | 0 | Cytosine                     | ОН              | Me             |
| monophosphate  | CF <sub>3</sub> | Н              | H              | 0 | 4-(N-mono-acetyl)cytosine    | OH              | Me             |
| monophosphate  | CF <sub>3</sub> | Н              | H              | 0 | 4-(N,N-diacetyl)cytosine     | OH              | Me             |
| monophosphate  | CF <sub>3</sub> | Н              | H              | 0 | Uracil                       | OH              | Me             |
| monophosphate  | CF <sub>3</sub> | Н              | H              | 0 | 5-Fluorouracil               | ОН              | Me             |
| monophosphate  | CF <sub>3</sub> | Н              | H              | S | 2,4-O-Diacetyluracil         | OH              | Me             |
| monophosphate  | CF <sub>3</sub> | Н              | Н              | S | Hypoxanthine                 | ОН              | Me             |
| monophosphate  | CF <sub>3</sub> | H              | H              | S | 2,4-O-Diacetylthymine        | OH              | Me             |
| monophosphate  | CF <sub>3</sub> | H              | H              | S | Thymine                      | OH              | Me             |
| monophosphate  | CF <sub>3</sub> | H              | H              | S | Cytosine                     | OH              | Me             |
| monophosphate  | CF <sub>3</sub> | Н              | H              | S | 4-(N-mono-acetyl)cytosine    | OH              | Me             |
| monophosphate  | CF <sub>3</sub> | H              | H              | S | 4-(N,N-diacetyl)cytosine     | OH              | Me             |
| monophosphate  | CF <sub>3</sub> | Н              | H              | S | Uracil                       | OH              | Me             |
| monophosphate  | CF <sub>3</sub> | Н              | H              | S | 5-Fluorouracil               | OH              | Me             |
| acetyl         | CH <sub>3</sub> | H              | Н              | 0 | 4-(N,N-diacetyl)cytosine     | Н               | Br             |
| acetyl         | CH <sub>3</sub> | H              | Н              | S | 4-(N,N-diacetyl)cytosine H   |                 | Br             |
| acetyl         | CH <sub>3</sub> | ОН             | Н              | 0 | 4-(N,N-diacetyl)cytosine H I |                 | Br             |
| acetyl         | CH <sub>3</sub> | OH             | H              | S | 4-(N,N-diacetyl)cytosine     | H               | Br             |

## Example 2: Preparation of 2'-C-methylriboadenine

The title compound was prepared according to a published procedure (R.E. Harry-O'kuru, J.M. Smith, and M.S. Wolfe, "A short, flexible route toward 2'-C-branched ribonucleosides", *J.Org. Chem.* 1997, <u>62</u>, 1754-1759) (Scheme 8).

## Scheme 8

(a) Dess-Martin periodinane; (b) MeMgBr / TiCl<sub>4</sub>; (c) BzCl, DMAP, Et<sub>3</sub>N; (d) bis(trimethylsilyl)acetamide, N<sup>6</sup>-benzoyl adenine, TMSOTf; (e) NH<sub>3</sub> / MeOH

In a similar manner, but using the appropriate sugar and pyrimidine or purine bases, the following nucleosides of Formula II are prepared.

$$X^{1}$$
 $N$ 
 $N$ 
 $X^{2}$ 
 $N$ 
 $N$ 
 $X$ 
 $X$ 

wherein:

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | X¹ | X <sup>2</sup> | Y               |
|----------------|----------------|----------------|----|----------------|-----------------|
| H              | Н              | Н              | H  | Н              | H               |
| Н              | Н              | H              | H  | Н              | NH <sub>2</sub> |
| Н              | Н              | H              | Н  | H              | NH-cyclopropyl  |
| Н              | Н              | H              | Н  | Н              | NH-methyl       |
| Н              | Н              | Н              | H  | Н              | NH-ethyl        |
| Н              | Н              | Н              | Н  | H              | NH-acetyl       |
| Н              | Н              | H              | H  | H              | ОН              |
| Н              | Н              | H              | Н  | H              | OMe             |
| Н              | Н              | Н              | H  | H              | OEt             |

| $\mathbb{R}^{1}$ | R <sup>2</sup> | R <sup>3</sup> | X <sup>1</sup> | X <sup>2</sup> | Y               |
|------------------|----------------|----------------|----------------|----------------|-----------------|
| H                | Н              | Н              | Н              | H              | O-cyclopropyl   |
| H                | Н              | H              | Н              | Н              | O-acetyl        |
| H                | Н              | H              | H              | Н              | SH              |
| H                | H              | H              | H              | H              | SMe             |
| H                | Н              | H              | H              | Н              | SEt             |
| H                | H              | H              | Н              | H              | S-cyclopropyl   |
| Н                | H              | H              | Н              | Н              | F               |
| H                | Н              | H              | Н              | H              | Cl              |
| Н                | Н              | H              | H              | Н              | Br              |
| H                | Н              | H              | H              | Н              | I               |
| monophosphate    | Н              | H              | H              | H              | NH <sub>2</sub> |
| monophosphate    | Н              | H              | H              | Н              | NH-acetyl       |
| monophosphate    | Н              | H              | Н              | H              | NH-cyclopropyl  |
| monophosphate    | Н              | H              | Н              | Н              | NH-methyl       |
| monophosphate    | Н              | Н              | H              | H              | NH-ethyl        |
| monophosphate    | Н              | H              | Н              | Н              | OH              |
| monophosphate    | Н              | H              | H              | H              | O-acetyl        |
| monophosphate    | Н              | H              | H              | Н              | ОМе             |
| monophosphate    | Н              | H              | H              | Н              | OEt             |
| monophosphate    | Н              | H              | H              | Н              | O-cyclopropyl   |
| monophosphate    | Н              | Н              | H              | H              | SH              |
| monophosphate    | Н              | Н              | H              | H              | SMe             |
| monophosphate    | Н              | Н              | H              | H              | SEt             |
| monophosphate    | Н              | Н              | Н              | H              | S-cyclopropyl   |
| monophosphate    | Н              | Н              | H              | H              | F               |
| monophosphate    | H              | Н              | H              | H              | Cl              |
| monophosphate    | Н              | Н              | Н              | H              | Br              |
| monophosphate    | Н              | H .            | H              | H              | I               |
| diphosphate      | Н              | H              | Н              | H              | NH <sub>2</sub> |
| diphosphate      | Н              | Н              | Н              | H              | NH-acetyl       |
| diphosphate      | Н              | Н              | Н              | H              | NH-cyclopropyl  |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | X <sup>1</sup> | X <sup>2</sup> | Y               |
|----------------|----------------|----------------|----------------|----------------|-----------------|
| diphosphate    | H              | Н              | H              | H              | NH-methyl       |
| diphosphate    | Н              | Н              | H              | H              | NH-ethyl        |
| diphosphate    | Н              | H              | H              | H              | ОН              |
| diphosphate    | Н              | Н              | H              | H              | O-acetyl        |
| diphosphate    | H              | H              | H              | H              | OMe             |
| diphosphate    | H              | H              | H              | H              | OEt             |
| diphosphate    | H              | H              | H              | Н              | O-cyclopropyl   |
| diphosphate    | H              | H              | Н              | Н              | SH              |
| diphosphate    | H              | H              | Н              | Н              | SMe             |
| diphosphate    | Н              | Н              | Н              | Н              | SEt             |
| diphosphate    | Н              | Н              | H              | H              | S-cyclopropyl   |
| diphosphate    | Н              | Н              | H              | Н              | F               |
| diphosphate    | Н              | Н              | Н              | Н              | Cl              |
| diphosphate    | Н              | Н              | H              | H              | Br              |
| diphosphate    | Н              | Н              | Н              | Н              | I               |
| triphosphate   | Н              | Н              | H              | Н              | NH <sub>2</sub> |
| triphosphate   | H              | Н              | Н              | H              | NH-acetyl       |
| triphosphate   | H              | Н              | Н              | H              | NH-cyclopropyl  |
| triphosphate   | H              | Н              | H              | Н              | NH-methyl       |
| triphosphate   | H              | Н              | Н              | H              | NH-ethyl        |
| triphosphate   | H              | Н              | H              | H,             | ОН              |
| triphosphate   | H              | H              | H              | Н              | OMe             |
| triphosphate   | H              | Н              | H              | Н              | OEt             |
| triphosphate   | H              | Н              | Н              | H              | O-cyclopropyl   |
| triphosphate   | H              | Н              | H              | H              | O-acetyl        |
| triphosphate   | H              | Н              | Н              | H              | SH              |
| triphosphate   | H              | Н              | Н              | H              | SMe             |
| triphosphate   | Н              | Н              | H              | H              | SEt             |
| triphosphate   | H              | Н              | H              | H              | S-cyclopropyl   |
| triphosphate   | H              | Н              | Н              | H              | F               |
| triphosphate   | Н .            | Н              | H              | Н              | Cl              |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | X <sup>1</sup> | X <sup>2</sup> | Y               |
|----------------|----------------|----------------|----------------|----------------|-----------------|
| triphosphate   | Н              | Н              | Н              | H              | Br              |
| triphosphate   | Н              | Н              | H              | H              | I               |
| monophosphate  | monophosphate  | monophosphate  | Н              | Н              | NH <sub>2</sub> |
| monophosphate  | monophosphate  | monophosphate  | Н              | H              | NH-cyclopropyl  |
| monophosphate  | monophosphate  | monophosphate  | Н              | H              | OH              |
| monophosphate  | monophosphate  | monophosphate  | Н              | H              | F               |
| monophosphate  | monophosphate  | monophosphate  | H              | H              | Cl              |
| diphosphate    | diphosphate    | diphosphate    | Н              | H              | NH <sub>2</sub> |
| diphosphate    | diphosphate    | diphosphate    | Н              | Н              | NH-cyclopropyl  |
| diphosphate    | diphosphate    | diphosphate    | H              | Н              | OH              |
| diphosphate    | diphosphate    | diphosphate    | H              | H              | F               |
| diphosphate    | diphosphate    | diphosphate    | Н              | H              | Cl              |
| triphosphate   | triphosphate   | triphosphate   | H              | H              | NH <sub>2</sub> |
| triphosphate   | triphosphate   | triphosphate   | Н              | H              | NH-cyclopropyl  |
| triphosphate   | triphosphate   | triphosphate   | Н              | H              | ОН              |
| triphosphate   | triphosphate   | triphosphate   | H              | H              | F               |
| triphosphate   | triphosphate   | triphosphate   | Н              | H              | Cl              |
| H              | Н              | Н              | F              | H              | NH <sub>2</sub> |
| H              | H              | Н              | F              | Н              | NH-cyclopropyl  |
| H              | H              | H              | F              | H              | ОН              |
| Н              | H              | Н              | F              | H              | F               |
| H              | Н              | Н              | F              | H              | Cl              |
| Н              | H              | Н              | Cl             | H              | NH <sub>2</sub> |
| Н              | Н              | H              | C1             | Н              | NH-cyclopropyl  |
| H              | Н              | Н              | Cl             | Н              | OH              |
| H              | H              | H              | Cl             | Н              | F               |
| H              | Н              | Н              | Cl             | Н              | Cl              |
| H              | Н              | Н              | Br             | H              | NH <sub>2</sub> |
| H              | Н              | Н              | Br             | H              | NH-cyclopropyl  |
| H              | Н              | Н              | Br             | Н              | ОН              |
| Н              | Н              | H              | Br             | Н              | F               |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | X <sup>1</sup>  | X <sup>2</sup> | Y               |
|----------------|----------------|----------------|-----------------|----------------|-----------------|
| Н              | H              | H              | Br              | H              | Cl              |
| H              | Н              | H              | NH <sub>2</sub> | H              | NH <sub>2</sub> |
| H              | H              | H              | NH <sub>2</sub> | H              | NH-cyclopropyl  |
| H              | H              | H              | NH <sub>2</sub> | Н              | ОН              |
| H              | Н              | Н              | NH <sub>2</sub> | H              | F               |
| H              | H              | H              | NH <sub>2</sub> | Н              | Cl              |
| H              | H              | Н              | SH              | H              | NH <sub>2</sub> |
| H              | H              | Н              | SH              | H              | NH-cyclopropyl  |
| H              | H              | Н              | SH              | Н              | ОН              |
| Н              | Н              | Н              | SH              | Н              | F               |
| Н              | Н              | Н              | SH              | H              | Cl              |
| acetyl         | H              | Н              | Н               | H              | NH <sub>2</sub> |
| acetyl         | H              | Н              | Н               | Н              | NH-cyclopropyl  |
| acetyl         | Н              | Н              | Н               | Н              | OH              |
| acetyl         | H              | H              | Н               | Н              | F               |
| acetyl         | H              | H              | Н               | Η .            | Cl              |
| acetyl         | Н              | Н              | F               | H              | NH <sub>2</sub> |
| acetyl         | Н              | Н              | F               | Н              | NH-cyclopropyl  |
| acetyl         | H              | Н              | F               | Н              | ОН              |
| acetyl         | H              | H              | F               | H              | F               |
| acetyl         | H              | Н              | F               | Н              | Cl              |
| H              | acetyl         | acetyl         | H               | H              | NH <sub>2</sub> |
| H              | acetyl         | acetyl         | H               | H              | NH-cyclopropyl  |
| H              | acetyl         | acetyl         | H               | H              | ОН              |
| H              | acetyl         | acetyl         | Н               | H              | F               |
| H              | acetyl         | acetyl         | H               | H              | Cl              |
| acetyl         | acetyl         | acetyl         | H               | H              | NH <sub>2</sub> |
| acetyl         | acetyl         | acetyl         | Н               | H              | NH-cyclopropyl  |
| acetyl         | acetyl         | acetyl         | H               | H              | OH              |
| acetyl         | acetyl         | acetyl         | Н               | H              | F               |
| acetyl         | acetyl         | acetyl         | Н               | H              | Cl              |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | X¹ | X <sup>2</sup>  | Y               |
|----------------|----------------|----------------|----|-----------------|-----------------|
| monophosphate  | acetyl         | acetyl         | H  | Н               | NH <sub>2</sub> |
| monophosphate  | acetyl         | acetyl ·       | Н  | Н               | NH-cyclopropyl  |
| monophosphate  | acetyl         | acetyl         | H  | Н               | ОН              |
| monophosphate  | acetyl         | acetyl         | H  | Н               | F               |
| monophosphate  | acetyl         | acetyl         | H  | Н               | Cl              |
| diphosphate    | acetyl         | acetyl         | H  | Н               | NH <sub>2</sub> |
| diphosphate    | acetyl         | acetyl         | Н  | Н               | NH-cyclopropyl  |
| diphosphate    | acetyl         | acetyl         | H  | Н               | ОН              |
| diphosphate    | acetyl         | acetyl         | H  | H               | F               |
| diphosphate    | acetyl         | acetyl         | H  | H               | Cl              |
| triphosphate   | acetyl         | acetyl         | H  | H               | NH <sub>2</sub> |
| triphosphate   | acetyl         | acetyl         | H  | H               | NH-cyclopropyl  |
| triphosphate   | acetyl         | acetyl         | Н  | H               | ОН              |
| triphosphate   | acetyl         | acetyl         | H  | H               | F               |
| triphosphate   | acetyl         | acetyl         | H  | H               | Cl              |
| H              | H              | Н              | H  | NH <sub>2</sub> | H               |
| H              | Н              | Н              | H  | NH <sub>2</sub> | NH <sub>2</sub> |
| H              | Н              | Н              | H  | NH <sub>2</sub> | NH-cyclopropyl  |
| H              | H              | Н              | H  | NH <sub>2</sub> | NH-methyl       |
| H              | H              | Н              | H  | NH <sub>2</sub> | NH-ethyl        |
| Н              | H              | Н              | H  | NH <sub>2</sub> | NH-acetyl       |
| H              | H              | Н              | H  | NH <sub>2</sub> | OH              |
| Н              | H              | Н              | Н  | NH <sub>2</sub> | OMe             |
| Н              | H              | Н              | H  | NH <sub>2</sub> | OEt             |
| H              | H              | Н              | Н  | NH <sub>2</sub> | O-cyclopropyl   |
| Н              | Н              | Н              | Н  | NH <sub>2</sub> | O-acetyl        |
| H              | H              | Н              | Н  | NH <sub>2</sub> | SH              |
| H              | H              | Н              | H  | NH <sub>2</sub> | SMe             |
| H              | H              | H              | Н  | NH <sub>2</sub> | SEt             |
| H              | H              | Н              | H  | NH <sub>2</sub> | S-cyclopropyl   |
| Н              | H              | Н              | Н  | NH <sub>2</sub> | F               |

| $\mathbb{R}^1$ | R <sup>2</sup> | $\mathbb{R}^3$ | $X^1$ | X <sup>2</sup>  | Y               |
|----------------|----------------|----------------|-------|-----------------|-----------------|
| Н              | Н              | Н              | H     | NH <sub>2</sub> | Cl              |
| H              | Н              | Н              | H     | NH <sub>2</sub> | Br              |
| Н              | H              | Н              | H     | NH <sub>2</sub> | I               |
| monophosphate  | Н              | Н              | H     | NH <sub>2</sub> | NH <sub>2</sub> |
| monophosphate  | Н              | Н              | H     | NH <sub>2</sub> | NH-acetyl       |
| monophosphate  | Н              | H              | H     | NH <sub>2</sub> | NH-cyclopropyl  |
| monophosphate  | H              | Н              | H     | NH <sub>2</sub> | NH-methyl       |
| monophosphate  | H              | Н              | H     | NH <sub>2</sub> | NH-ethyl        |
| monophosphate  | Н              | Н              | H     | NH <sub>2</sub> | ОН              |
| monophosphate  | Н              | Н              | H     | NH <sub>2</sub> | O-acetyl        |
| monophosphate  | H              | H              | Н     | NH <sub>2</sub> | OMe             |
| monophosphate  | Н              | H              | Н     | NH <sub>2</sub> | OEt             |
| monophosphate  | Н              | Н              | Н     | NH <sub>2</sub> | O-cyclopropyl   |
| monophosphate  | Н              | H              | Н     | NH <sub>2</sub> | SH              |
| monophosphate  | H              | H              | Н     | NH <sub>2</sub> | SMe             |
| monophosphate  | H              | Н              | Н     | NH <sub>2</sub> | SEt             |
| monophosphate  | H              | Н              | Н     | NH <sub>2</sub> | S-cyclopropyl   |
| monophosphate  | H              | Н              | H     | NH <sub>2</sub> | F               |
| monophosphate  | Н              | Н              | Н     | NH <sub>2</sub> | Cl              |
| monophosphate  | H              | Н              | Н     | NH <sub>2</sub> | Br              |
| monophosphate  | Н              | Н              | H     | NH <sub>2</sub> | I               |
| diphosphate    | H              | Н              | Н     | NH <sub>2</sub> | NH <sub>2</sub> |
| diphosphate    | H              | Н              | H     | NH <sub>2</sub> | NH-acetyl       |
| diphosphate    | Н              | Н              | H     | NH <sub>2</sub> | NH-cyclopropyl  |
| diphosphate    | H              | H              | Н     | NH <sub>2</sub> | NH-methyl       |
| diphosphate    | H              | Н              | H     | NH <sub>2</sub> | NH-ethyl        |
| diphosphate    | Н              | Н              | Н     | NH <sub>2</sub> | OH              |
| diphosphate    | H              | Н              | Н     | NH <sub>2</sub> | O-acetyl        |
| diphosphate    | H              | Н              | Н     | NH <sub>2</sub> | OMe             |
| diphosphate    | H              | Н              | H     | NH <sub>2</sub> | OEt             |
| diphosphate    | Н              | Н              | Н     | NH <sub>2</sub> | O-cyclopropyl   |

| $\mathbb{R}^{1}$ | R <sup>2</sup> | R <sup>3</sup> | X <sup>1</sup> | X <sup>2</sup>  | Y               |
|------------------|----------------|----------------|----------------|-----------------|-----------------|
| diphosphate      | H              | Н              | Н              | NH <sub>2</sub> | SH              |
| diphosphate      | Н              | Н              | Н              | NH <sub>2</sub> | SMe             |
| diphosphate      | H              | Н              | Н              | NH <sub>2</sub> | SEt             |
| diphosphate      | H              | Н              | H              | NH <sub>2</sub> | S-cyclopropyl   |
| diphosphate      | Н              | H              | H              | NH <sub>2</sub> | F               |
| diphosphate      | H              | Н              | H              | NH <sub>2</sub> | Cl              |
| diphosphate      | H              | Н              | Н              | NH <sub>2</sub> | Br              |
| diphosphate      | Н              | Н              | Н              | NH <sub>2</sub> | I               |
| triphosphate     | H              | H              | H              | NH <sub>2</sub> | NH <sub>2</sub> |
| triphosphate     | Н              | Н              | H              | NH <sub>2</sub> | NH-acetyl       |
| triphosphate     | Н              | Н              | H              | NH <sub>2</sub> | NH-cyclopropyl  |
| triphosphate     | Н              | Н              | Н              | NH <sub>2</sub> | NH-methyl       |
| triphosphate     | Н              | Н              | Н              | NH <sub>2</sub> | NH-ethyl        |
| triphosphate     | Н              | Н              | H              | NH <sub>2</sub> | ОН              |
| triphosphate     | H              | Н              | H              | NH <sub>2</sub> | OMe             |
| triphosphate     | Н              | Н              | Н              | NH <sub>2</sub> | OEt             |
| triphosphate     | Н              | H              | H              | NH <sub>2</sub> | O-cyclopropyl   |
| triphosphate     | H              | Н              | H              | NH <sub>2</sub> | O-acetyl        |
| triphosphate     | H              | Н              | H              | NH <sub>2</sub> | SH              |
| triphosphate     | H              | Н              | H              | NH <sub>2</sub> | SMe             |
| triphosphate     | H              | Н              | H              | NH <sub>2</sub> | SEt             |
| triphosphate     | H              | Н              | Н              | NH <sub>2</sub> | S-cyclopropyl   |
| triphosphate     | H              | H              | Н              | NH <sub>2</sub> | F               |
| triphosphate     | H              | Н              | H              | NH <sub>2</sub> | Cl              |
| triphosphate     | H              | Н              | Н              | NH <sub>2</sub> | Br              |
| triphosphate     | H              | Н              | Н              | NH <sub>2</sub> | I               |
| monophosphate    | monophosphate  | monophosphate  | Н              | NH <sub>2</sub> | NH <sub>2</sub> |
| monophosphate    | monophosphate  | monophosphate  | H              | NH <sub>2</sub> | NH-cyclopropyl  |
| monophosphate    | monophosphate  | monophosphate  | Н              | NH <sub>2</sub> | ОН              |
| monophosphate    | monophosphate  | monophosphate  | Н              | NH <sub>2</sub> | F               |
| monophosphate    | monophosphate  | monophosphate  | Н              | NH <sub>2</sub> | Cl              |

| R <sup>1</sup> | $\mathbb{R}^2$ | $\mathbb{R}^3$ | X <sup>1</sup>  | X <sup>2</sup>  | Y               |
|----------------|----------------|----------------|-----------------|-----------------|-----------------|
| diphosphate    | diphosphate    | diphosphate    | H               | NH <sub>2</sub> | NH <sub>2</sub> |
| diphosphate    | diphosphate    | diphosphate    | H               | NH <sub>2</sub> | NH-cyclopropyl  |
| diphosphate    | diphosphate    | diphosphate    | H               | NH <sub>2</sub> | ОН              |
| diphosphate    | diphosphate    | diphosphate    | H               | NH <sub>2</sub> | F               |
| diphosphate    | diphosphate    | diphosphate    | H               | NH <sub>2</sub> | Cl .            |
| triphosphate   | triphosphate   | triphosphate   | H               | NH <sub>2</sub> | NH <sub>2</sub> |
| triphosphate   | triphosphate   | triphosphate   | H               | NH <sub>2</sub> | NH-cyclopropyl  |
| triphosphate   | triphosphate   | triphosphate   | H               | NH <sub>2</sub> | OH .            |
| triphosphate   | triphosphate   | triphosphate   | H               | NH <sub>2</sub> | F               |
| triphosphate   | triphosphate   | triphosphate   | H               | NH <sub>2</sub> | Cl              |
| H              | Н              | Н              | F               | NH <sub>2</sub> | NH <sub>2</sub> |
| H              | Н              | H              | F               | NH <sub>2</sub> | NH-cyclopropyl  |
| Н              | H              | Н              | F               | NH <sub>2</sub> | ОН              |
| Н              | H              | H              | F               | NH <sub>2</sub> | F               |
| Н              | Н              | H              | F               | NH <sub>2</sub> | Cl              |
| H              | Н              | H              | C1              | NH <sub>2</sub> | NH <sub>2</sub> |
| Н              | Н              | H              | Cl              | NH <sub>2</sub> | NH-cyclopropyl  |
| Н              | Н              | H              | Cl              | NH <sub>2</sub> | OH              |
| Н              | H              | Н              | Cl              | NH <sub>2</sub> | F               |
| Н              | H              | Н              | C1              | NH <sub>2</sub> | Cl              |
| Н              | Н              | Н              | Br              | NH <sub>2</sub> | NH <sub>2</sub> |
| Н              | Н              | Н              | Br              | NH <sub>2</sub> | NH-cyclopropyl  |
| H              | Н              | Н              | Br              | NH <sub>2</sub> | ОН              |
| Н              | H              | Н              | Br              | NH <sub>2</sub> | F               |
| Н              | Н              | Н              | Br              | NH <sub>2</sub> | Cl              |
| Н              | Н              | Н              | NH <sub>2</sub> | NH <sub>2</sub> | NH <sub>2</sub> |
| Н              | H              | Н              | NH <sub>2</sub> | NH <sub>2</sub> | NH-cyclopropyl  |
| Н              | Н              | Н              | NH <sub>2</sub> | NH <sub>2</sub> | ОН              |
| Н              | Н              | Н              | NH <sub>2</sub> | NH <sub>2</sub> | F               |
| Н              | Н              | Н              | NH <sub>2</sub> | NH <sub>2</sub> | Cl              |
| Н              | H              | Н              | SH              | NH <sub>2</sub> | NH <sub>2</sub> |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | X¹ | X <sup>2</sup>  | Y               |
|----------------|----------------|----------------|----|-----------------|-----------------|
| Н              | Н              | Н              | SH | NH <sub>2</sub> | NH-cyclopropyl  |
| Н              | Н              | Н              | SH | NH <sub>2</sub> | ОН              |
| Н              | Н              | Н              | SH | NH <sub>2</sub> | F               |
| Н              | Н              | Н              | SH | NH <sub>2</sub> | Cl              |
| acetyl         | Н              | Н              | Н  | NH <sub>2</sub> | NH <sub>2</sub> |
| acetyl         | Н              | Н              | H  | NH <sub>2</sub> | NH-cyclopropyl  |
| acetyl         | Н              | Н              | H  | NH <sub>2</sub> | ОН              |
| acetyl         | Н              | Н              | Н  | NH <sub>2</sub> | F               |
| acetyl         | Н              | Н              | H  | NH <sub>2</sub> | Cl              |
| acetyl         | Н              | H              | F  | NH <sub>2</sub> | NH <sub>2</sub> |
| acetyl         | Н              | Н              | F  | NH <sub>2</sub> | NH-cyclopropyl  |
| acetyl         | Н              | H              | F  | NH <sub>2</sub> | ОН              |
| acetyl         | Н              | H              | F  | NH <sub>2</sub> | F               |
| acetyl         | Н              | H              | F  | NH <sub>2</sub> | Cl              |
| H              | acetyl         | acetyl         | H  | NH <sub>2</sub> | NH <sub>2</sub> |
| Н              | acetyl         | acetyl         | Н  | NH <sub>2</sub> | NH-cyclopropyl  |
| H              | acetyl         | acetyl         | H  | NH <sub>2</sub> | ОН              |
| H              | acetyl         | acetyl         | H  | NH <sub>2</sub> | F               |
| Н              | acetyl         | acetyl         | H  | NH <sub>2</sub> | Cl              |
| acetyl         | acetyl         | acetyl         | H  | NH <sub>2</sub> | NH <sub>2</sub> |
| acetyl         | acetyl         | acetyl         | H  | NH <sub>2</sub> | NH-cyclopropyl  |
| acetyl         | acetyl         | acetyl         | H  | NH <sub>2</sub> | ОН              |
| acetyl         | acetyl         | acetyl         | H  | NH <sub>2</sub> | F               |
| acetyl         | acetyl         | acetyl         | Н  | NH <sub>2</sub> | Cl              |
| monophosphate  | acetyl         | acetyl         | Н  | NH <sub>2</sub> | NH <sub>2</sub> |
| monophosphate  | acetyl         | acetyl         | Н  | NH <sub>2</sub> | NH-cyclopropyl  |
| monophosphate  | acetyl         | acetyl         | Н  | NH <sub>2</sub> | ОН              |
| monophosphate  | acetyl         | acetyl         | Н  | NH <sub>2</sub> | F               |
| monophosphate  | acetyl         | acetyl         | Н  | NH <sub>2</sub> | Cl              |
| diphosphate    | acetyl         | acetyl         | H  | NH <sub>2</sub> | NH <sub>2</sub> |
| diphosphate    | acetyl         | acetyl         | Н  | NH <sub>2</sub> | NH-cyclopropyl  |

| R <sup>1</sup> | $\mathbb{R}^2$ | $\mathbb{R}^3$ | X <sup>1</sup> | X <sup>2</sup>  | Y               |
|----------------|----------------|----------------|----------------|-----------------|-----------------|
| diphosphate    | acetyl         | acetyl         | H              | NH <sub>2</sub> | ОН              |
| diphosphate    | acetyl         | acetyl         | H              | NH <sub>2</sub> | F               |
| diphosphate    | acetyl         | acetyl         | H              | NH <sub>2</sub> | Cl              |
| triphosphate   | acetyl         | acetyl         | H              | NH <sub>2</sub> | NH <sub>2</sub> |
| triphosphate   | acetyl         | acetyl         | H              | NH <sub>2</sub> | NH-cyclopropyl  |
| triphosphate   | acetyl         | acetyl         | H              | NH <sub>2</sub> | ОН              |
| triphosphate   | acetyl         | acetyl         | H              | NH <sub>2</sub> | F               |
| triphosphate   | acetyl         | acetyl         | H              | NH <sub>2</sub> | C1              |
| Н              | H              | Н              | H              | Cl              | H               |
| Н              | H              | H              | H              | Cl              | Н               |
| Н              | H              | H ·            | H              | Cl              | NH <sub>2</sub> |
| H              | H              | Н              | H              | Cl              | NH-cyclopropyl  |
| H              | Н              | Н              | Н              | Cl              | NH-methyl       |
| H              | Н              | Н              | H              | Cl              | NH-ethyl        |
| Н              | Н              | Н              | Н              | Cl              | NH-acetyl       |
| H              | Н              | Н              | Н              | Cl              | ОН              |
| Н              | Н              | H              | H              | Cl              | OMe             |
| Н              | Н              | Н              | H              | Cl              | OEt             |
| Н              | Н              | H              | H              | Cl              | O-cyclopropyl   |
| Н              | Н              | Н              | H              | Cl              | O-acetyl        |
| H              | H              | Н              | Н              | Cl              | SH              |
| Н              | Н              | H              | Н              | Cl              | SMe             |
| H              | H              | Н              | H              | Cl              | SEt             |
| H              | Н              | Н              | H              | Cl              | S-cyclopropyl   |
| monophosphate  | Н              | Н              | H              | Cl              | NH <sub>2</sub> |
| monophosphate  | H              | H              | H              | Cl              | NH-acetyl       |
| monophosphate  | H              | H              | H              | Cl              | NH-cyclopropyl  |
| monophosphate  | Н              | Н              | H              | Cl              | NH-methyl       |
| monophosphate  | H              | Н              | H              | Cl              | NH-ethyl        |
| monophosphate  | H              | Н              | H              | Cl              | ОН              |
| monophosphate  | Н              | Н              | Н              | Cl              | O-acetyl        |

| R <sup>1</sup> | $ \mathbf{R}^2 $ | $\mathbb{R}^3$ | X <sup>1</sup> | X <sup>2</sup> | Y               |
|----------------|------------------|----------------|----------------|----------------|-----------------|
| monophosphate  | H                | Н              | Н              | Cl             | OMe             |
| monophosphate  | Н                | Н              | Н              | Cl             | OEt             |
| monophosphate  | H                | Н              | H              | Cl             | O-cyclopropyl   |
| monophosphate  | Н                | Н              | Н              | Cl             | SH              |
| monophosphate  | Н                | Н              | Н              | C1             | SMe             |
| monophosphate  | Н                | Н              | Н              | Cl             | SEt             |
| monophosphate  | Н                | Н              | Н              | Cl             | S-cyclopropyl   |
| diphosphate    | Н                | Н              | Н              | Cl             | NH <sub>2</sub> |
| diphosphate    | H                | Н              | H              | Cl             | NH-acetyl       |
| diphosphate    | Н                | Н              | H              | Cl             | NH-cyclopropyl  |
| diphosphate    | Н                | H              | H              | Cl             | NH-methyl       |
| diphosphate    | Н                | Н              | Н              | Cl             | NH-ethyl        |
| diphosphate    | Н                | Н              | Н              | Cl             | ОН              |
| diphosphate    | Н                | Н              | Н              | Cl             | O-acetyl        |
| diphosphate    | H                | Н              | H              | Cl             | OMe             |
| diphosphate    | H                | Н              | Н              | Cl             | OEt             |
| diphosphate    | Н                | Н              | H              | Cl             | O-cyclopropyl   |
| diphosphate    | H                | Н              | Н              | Cl             | SH              |
| diphosphate    | Н                | Н              | Н              | Cl             | SMe             |
| diphosphate    | Н                | Н              | H              | Cl             | SEt             |
| diphosphate    | Н                | H              | H              | Cl             | S-cyclopropyl   |
| triphosphate   | Н                | H              | H              | Cl             | NH <sub>2</sub> |
| triphosphate   | Н                | Н              | H              | Cl             | NH-acetyl       |
| triphosphate   | Н                | Н              | H              | Cl             | NH-cyclopropyl  |
| triphosphate   | Н                | H              | Н              | Cl             | NH-methyl       |
| triphosphate   | Н                | H              | Н              | Cl             | NH-ethyl        |
| triphosphate   | H                | H              | Н              | Cl             | ОН              |
| triphosphate   | H                | H              | H              | Cl             | OMe             |
| triphosphate   | Н                | H              | H              | Cl             | OEt             |
| triphosphate   | Н                | Н              | H              | Cl             | O-cyclopropyl   |
| triphosphate   | Н                | Н              | H              | Cl             | O-acetyl        |

| $\mathbb{R}^1$ | R <sup>2</sup> | $\mathbb{R}^3$ | X <sup>1</sup>  | X <sup>2</sup> | Y               |
|----------------|----------------|----------------|-----------------|----------------|-----------------|
| triphosphate   | H              | Н              | Н               | Cl             | SH              |
| triphosphate   | Н              | H              | H               | Cl             | SMe             |
| triphosphate   | Н              | Н              | H               | Cl             | SEt             |
| triphosphate   | Н              | Н              | Н               | Cl             | S-cyclopropyl   |
| monophosphate  | monophosphate  | monophosphate  | Н               | Cl             | NH <sub>2</sub> |
| monophosphate  | monophosphate  | monophosphate  | H               | C1             | NH-cyclopropyl  |
| monophosphate  | monophosphate  | monophosphate  | Н               | Cl             | ОН              |
| diphosphate    | diphosphate    | diphosphate    | H               | Cl             | NH <sub>2</sub> |
| diphosphate    | diphosphate    | diphosphate    | H               | C1             | NH-cyclopropyl  |
| diphosphate    | diphosphate    | diphosphate    | H               | Cl             | ОН              |
| triphosphate   | triphosphate   | triphosphate   | H               | Cl             | NH <sub>2</sub> |
| triphosphate   | triphosphate   | triphosphate   | H               | C1             | NH-cyclopropyl  |
| triphosphate   | triphosphate   | triphosphate   | H               | Cl             | OH              |
| H              | Н              | Н              | F               | Cl             | NH <sub>2</sub> |
| Н              | Н              | H              | F               | Cl             | NH-cyclopropyl  |
| Н              | Н              | Н              | F               | Cl             | ОН              |
| H              | Н              | Н              | C1              | Cl             | NH <sub>2</sub> |
| Н              | Н              | Н              | CI              | Cl             | NH-cyclopropyl  |
| Н              | H              | Н              | Cl              | Cl             | ОН              |
| H              | H              | Н              | Br              | Cl             | NH <sub>2</sub> |
| Н              | Н              | Н              | Br              | Cl             | NH-cyclopropyl  |
| H              | Н              | H              | Br              | Cl             | ОН              |
| H              | Н              | Н              | NH <sub>2</sub> | Cl             | NH <sub>2</sub> |
| H              | Н              | H              | NH <sub>2</sub> | Cl             | NH-cyclopropyl  |
| H              | H              | Н              | NH <sub>2</sub> | Cl             | ОН              |
| H              | Н              | Н              | SH              | Cl             | NH <sub>2</sub> |
| H              | H              | H              | SH              | Cl             | NH-cyclopropyl  |
| H              | Н              | Н              | SH              | Cl             | ОН              |
| acetyl         | H              | Н              | H               | Cl             | NH <sub>2</sub> |
| acetyl         | H              | Н              | H               | Cl             | NH-cyclopropyl  |
| acetyl         | H              | H              | Н               | Cl             | OH .            |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | X1 | X <sup>2</sup> | Y               |
|----------------|----------------|----------------|----|----------------|-----------------|
| acetyl         | Н              | Н              | F  | Cl             | NH <sub>2</sub> |
| acetyl         | Н              | H              | F  | Cl             | NH-cyclopropyl  |
| acetyl         | Н              | Н              | F  | Ci             | ОН              |
| Н              | acetyl         | acetyl         | Н  | Cl             | NH <sub>2</sub> |
| Н              | acetyl         | acetyl         | Н  | Cl             | NH-cyclopropyl  |
| Н              | acetyl         | acetyl         | H  | Cl             | ОН              |
| acetyl         | acetyl         | acetyl         | H  | Cl             | NH <sub>2</sub> |
| acetyl         | acetyl         | acetyl         | H  | Cl             | NH-cyclopropyl  |
| acetyl         | acetyl         | acetyl         | Н  | Cl             | OH              |
| monophosphate  | acetyl         | acetyl         | H  | CI             | NH <sub>2</sub> |
| monophosphate  | acetyl         | acetyl         | H  | Cl             | NH-cyclopropyl  |
| monophosphate  | acetyl         | acetyl         | H  | Cl             | OH              |
| diphosphate    | acetyl         | acetyl         | H  | Cl             | NH <sub>2</sub> |
| diphosphate    | acetyl         | acetyl         | H  | Cl             | NH-cyclopropyl  |
| diphosphate    | acetyl         | acetyl         | H  | Cl             | OH              |
| triphosphate   | acetyl         | acetyl         | Н  | Cl             | NH <sub>2</sub> |
| triphosphate   | acetyl         | acetyl         | H  | Cl             | NH-cyclopropyl  |
| triphosphate   | acetyl         | acetyl         | Н  | Cl             | ОН              |
| H              | Н              | Н              | Н  | Cl             | NH <sub>2</sub> |
| Н              | Н              | Н              | Н  | C1             | NH-cyclopropyl  |
| H              | Н              | H              | H  | Cl             | ОН              |
| H              | Н              | Н              | Н  | Br             | NH <sub>2</sub> |
| H              | Н              | H              | H  | Br             | NH-cyclopropyl  |
| H              | Н              | Н              | Н  | Br             | OH              |

Alternatively, the following nucleosides of Formula V are prepared, using the appropriate sugar and pyrimidine or purine bases.

## wherein:

| R <sup>1</sup> | R <sup>2</sup> . | R <sup>3</sup> | X <sup>1</sup> | Y               |
|----------------|------------------|----------------|----------------|-----------------|
| H              | Н                | Н              | Н              | Н               |
| H              | Н                | Н              | Н              | NH <sub>2</sub> |
| Н              | Н                | Н              | H              | NH-cyclopropyl  |
| Н              | Н                | H              | Н              | NH-methyl       |
| Н              | Н                | Н              | Н              | NH-ethyl        |
| H              | H                | H              | Н              | NH-acetyl       |
| H              | Н                | H              | Н              | ОН              |
| H              | H                | H              | Н              | OMe             |
| H              | Н                | Н              | Н              | OEt             |
| H              | H                | H              | Н              | O-cyclopropyl   |
| H              | Н                | Н              | Н              | O-acetyl        |
| H              | Н                | Н              | H              | SH              |
| H              | Н                | Н              | Н              | SMe             |
| Н              | Н                | H              | H              | SEt             |
| H              | H                | H              | H              | S-cyclopropyl   |
| monophosphate  | Н                | Н              | Н              | NH <sub>2</sub> |
| monophosphate  | Н                | Н              | Н              | NH-acetyl       |
| monophosphate  | H                | H              | H              | NH-cyclopropyl  |
| monophosphate  | Н                | H              | Н              | NH-methyl       |
| monophosphate  | Н                | Н              | H              | NH-ethyl        |
| monophosphate  | H                | Н              | H              | ОН              |
| monophosphate  | Н                | Н              | Н              | O-acetyl        |

| R <sup>1</sup> | R <sup>2</sup> | $\mathbb{R}^3$ | X <sup>1</sup> | Y               |
|----------------|----------------|----------------|----------------|-----------------|
| monophosphate  | Н              | Н              | H              | OMe             |
| monophosphate  | Н              | Н              | H              | OEt             |
| monophosphate  | H              | Н              | Н              | O-cyclopropyl   |
| monophosphate  | H              | Н              | Н              | SH              |
| monophosphate  | H              | Н              | Н              | SMe             |
| monophosphate  | Н              | Н              | Н              | SEt             |
| monophosphate  | H              | Н              | H              | S-cyclopropyl   |
| diphosphate    | Н              | Н              | Н              | NH <sub>2</sub> |
| diphosphate    | Н              | Н              | H              | NH-acetyl       |
| diphosphate    | Н              | H              | H              | NH-cyclopropyl  |
| diphosphate    | H              | H              | H              | NH-methyl       |
| diphosphate    | Н              | Н              | Н              | NH-ethyl        |
| diphosphate    | H              | Н              | H              | ОН              |
| diphosphate    | Н              | H              | H              | O-acetyl        |
| diphosphate    | H              | Н              | H              | OMe             |
| diphosphate    | Н              | Н              | H              | OEt             |
| diphosphate    | Н              | Н              | H              | O-cyclopropyl   |
| diphosphate    | H              | Н              | H              | SH              |
| diphosphate    | H              | Н              | H              | SMe             |
| diphosphate    | H              | Н              | H              | SEt             |
| diphosphate    | Н              | Н              | H              | S-cyclopropyl   |
| triphosphate   | Н              | Н              | H              | NH <sub>2</sub> |
| triphosphate   | H              | Н              | H              | NH-acetyl       |
| triphosphate   | Н              | Н              | H              | NH-cyclopropyl  |
| triphosphate   | Н              | Н              | H              | NH-methyl       |
| triphosphate   | Н              | Н              | Н              | NH-ethyl        |
| triphosphate   | Н              | Н              | H              | ОН              |
| triphosphate   | H .            | Н              | H              | OMe             |
| triphosphate   | H              | Н              | H              | OEt             |
| triphosphate   | H              | Н              | Н              | O-cyclopropyl   |
| triphosphate   | Н              | H              | Н              | O-acetyl        |

| $\mathbb{R}^1$ | R <sup>2</sup> | $\mathbb{R}^3$ | X <sup>1</sup>  | Y               |
|----------------|----------------|----------------|-----------------|-----------------|
| triphosphate   | Н              | Н              | H               | SH              |
| triphosphate   | Н              | Н              | H               | SMe             |
| triphosphate   | Н              | H              | H               | SEt             |
| triphosphate   | Н              | H              | H               | S-cyclopropyl   |
| monophosphate  | monophosphate  | monophosphate  | H               | NH <sub>2</sub> |
| monophosphate  | monophosphate  | monophosphate  | H               | NH-cyclopropyl  |
| monophosphate  | monophosphate  | monophosphate  | H               | ОН              |
| diphosphate    | diphosphate    | diphosphate    | H               | NH <sub>2</sub> |
| diphosphate    | diphosphate    | diphosphate    | H               | NH-cyclopropyl  |
| diphosphate    | diphosphate    | diphosphate    | H               | OH              |
| triphosphate   | triphosphate   | triphosphate   | H               | NH <sub>2</sub> |
| triphosphate   | triphosphate   | triphosphate   | H               | NH-cyclopropyl  |
| triphosphate   | triphosphate   | triphosphate   | H               | ОН              |
| H              | Н              | Н              | F               | NH <sub>2</sub> |
| H              | Н              | H              | F               | NH-cyclopropyl  |
| H              | H              | H              | F               | ОН              |
| H              | Н              | H              | Cl              | NH <sub>2</sub> |
| H              | H              | H              | Cl              | NH-cyclopropyl  |
| H              | Н              | Н              | Cl              | ОН              |
| H              | Н              | Н              | Br              | NH <sub>2</sub> |
| H              | Н              | H              | Br              | NH-cyclopropyl  |
| H              | H              | H              | Br              | ОН              |
| H              | Н              | H              | NH <sub>2</sub> | NH <sub>2</sub> |
| H              | Н              | Н              | NH <sub>2</sub> | NH-cyclopropyl  |
| Н              | H              | Н              | NH <sub>2</sub> | ОН              |
| H              | H              | H              | SH              | NH <sub>2</sub> |
| H              | Н              | Н              | SH              | NH-cyclopropyl  |
| Н              | H              | H              | SH              | ОН              |
| acetyl         | H              | Н              | H               | NH <sub>2</sub> |
| acetyl         | H              | Н              | H               | NH-cyclopropyl  |
| acetyl         | H              | H              | Н               | ОН              |

| $\mathbb{R}^1$ | $\mathbb{R}^2$ | $\mathbb{R}^3$ | X <sup>1</sup> | Y               |
|----------------|----------------|----------------|----------------|-----------------|
| acetyl         | Н              | H              | F              | NH <sub>2</sub> |
| acetyl         | Н              | Н              | F              | NH-cyclopropyl  |
| acetyl         | H              | Н              | F              | ОН              |
| H              | acetyl         | acetyl         | Н              | NH <sub>2</sub> |
| H              | acetyl         | acetyl         | Н              | NH-cyclopropyl  |
| H              | acetyl         | acetyl         | H              | ОН              |
| acetyl         | acetyl         | acetyl         | H              | NH <sub>2</sub> |
| acetyl         | acetyl         | acetyl         | H              | NH-cyclopropyl  |
| acetyl         | acetyl         | acetyl         | H              | ОН              |
| monophosphate  | acetyl         | acetyl         | Н              | NH <sub>2</sub> |
| monophosphate  | acetyl         | acetyl         | H              | NH-cyclopropyl  |
| monophosphate  | acetyl         | acetyl         | Н              | ОН              |
| diphosphate    | acetyl         | acetyl         | Н              | NH <sub>2</sub> |
| diphosphate    | acetyl         | acetyl         | H              | NH-cyclopropyl  |
| diphosphate    | acetyl         | acetyl         | H              | ОН              |
| triphosphate   | acetyl         | acetyl         | H              | NH <sub>2</sub> |
| triphosphate   | acetyl         | acetyl         | Н              | NH-cyclopropyl  |
| triphosphate   | acetyl         | acetyl         | Н              | ОН              |

Alternatively, the following nucleosides of Formula X are prepared, using the appropriate sugar and pyrimidine or purine bases.

wherein:

| $\mathbb{R}^{1}$ | $\mathbb{R}^2$ | R <sup>3</sup> | R <sup>6</sup>  | X | Base           |
|------------------|----------------|----------------|-----------------|---|----------------|
| H                | Н              | H              | CH <sub>3</sub> | 0 | 2,4-0-         |
|                  |                |                |                 |   | Diacetyluracil |

128

| R <sup>1</sup> | R <sup>2</sup> | $\mathbb{R}^3$ | R <sup>6</sup>  | X | Base              |
|----------------|----------------|----------------|-----------------|---|-------------------|
| Н              | H              | H              | CH <sub>3</sub> | 0 | Hypoxanthine      |
| H              | Н              | H              | CH <sub>3</sub> | 0 | 2,4-O-            |
|                |                |                |                 |   | Diacetylthymine   |
| H              | Н              | Н              | CH <sub>3</sub> | 0 | Thymine           |
| Н              | Н              | H              | CH <sub>3</sub> | 0 | Cytosine          |
| Н              | H              | H              | CH <sub>3</sub> | 0 | 4-(N-mono-        |
|                |                |                |                 |   | acetyl)cytosine   |
| H              | H              | Н              | CH <sub>3</sub> | 0 | 4-(N,N-           |
|                |                |                |                 | } | diacetyl)cytosine |
| Н              | Н              | Н              | CH <sub>3</sub> | 0 | Uracil            |
| H              | H              | H              | CH <sub>3</sub> | 0 | 5-Fluorouracil    |
| H              | H              | Н              | CH <sub>3</sub> | S | 2,4-O-            |
|                |                |                |                 |   | Diacetyluraci     |
| H              | H              | Н              | CH <sub>3</sub> | S | Hypoxanthine      |
| Н              | H              | Н              | CH <sub>3</sub> | S | 2,4-O-            |
|                |                |                |                 |   | Diacetylthymine   |
| H              | Н              | Н              | CH <sub>3</sub> | S | Thymine           |
| H              | Н              | H              | CH <sub>3</sub> | S | Cytosine          |
| H              | Н              | Н              | CH <sub>3</sub> | S | 4-(N-mono-        |
|                |                |                |                 |   | acetyl)cytosine   |
| H              | Н              | Н              | CH <sub>3</sub> | S | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |
| H              | H              | Н              | CH <sub>3</sub> | S | Uracil            |
| H              | Н              | Н              | CH <sub>3</sub> | S | 5-Fluorouracil    |
| monophosphate  | H              | H              | CH <sub>3</sub> | 0 | 2,4-0-            |
|                |                |                |                 |   | Diacetyluracil    |
| monophosphate  | H              | H              | CH <sub>3</sub> | 0 | Hypoxanthine      |
| monophosphate  | H              | H              | CH <sub>3</sub> | 0 | 2,4-O-            |
|                |                |                |                 |   | Diacetylthym      |
| monophosphate  | H              | H              | CH <sub>3</sub> | 0 | Thymine           |
| monophosphate  | H              | H              | CH <sub>3</sub> | 0 | Cytosine          |

| R <sup>1</sup> | R <sup>2</sup> | $\mathbb{R}^3$ | R <sup>6</sup>  | X | Base              |
|----------------|----------------|----------------|-----------------|---|-------------------|
| monophosphate  | Н              | Н              | CH <sub>3</sub> | 0 | 4-(N-mono-        |
|                |                |                |                 |   | acetyl)cytosine   |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | 0 | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |
| monophosphate  | H              | H              | CH <sub>3</sub> | 0 | Uracil            |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | 0 | 5-Fluorouracil    |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S | 2,4-O-            |
|                |                |                |                 |   | Diacetyluracil    |
| monophosphate  | Н              | H              | CH <sub>3</sub> | S | Hypoxanthine      |
| monophosphate  | Н              | H              | CH <sub>3</sub> | S | 2,4-O-            |
|                |                |                |                 |   | Diacetylthym      |
| monophosphate  | H              | Н              | CH <sub>3</sub> | S | Thymine           |
| monophosphate  | Н              | H              | CH <sub>3</sub> | S | Cytosine          |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S | 4-(N-mono-        |
|                |                |                |                 |   | acetyl)cytosine   |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S | Uracil            |
| monophosphate  | H              | Н              | CH <sub>3</sub> | S | 5-Fluorouracil    |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0 | 2,4-0-            |
|                | }              |                |                 |   | Diacetyluracil    |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0 | Hypoxanthine      |
| diphosphate    | Н              | H              | CH <sub>3</sub> | 0 | 2,4-O-            |
|                |                |                |                 |   | Diacetylthymine   |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0 | Thymine           |
| diphosphate    | H              | Н              | CH <sub>3</sub> | 0 | Cytosine          |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0 | 4-(N-mono-        |
|                |                |                |                 |   | acetyl)cytosine   |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0 | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |
| diphosphate    | H              | Н              | CH <sub>3</sub> | 0 | Uracil            |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0 | 5-Fluorouracil    |

| R <sup>1</sup> | R <sup>2</sup> | $\mathbb{R}^3$ | R <sup>6</sup>  | X  | Base              |
|----------------|----------------|----------------|-----------------|----|-------------------|
| diphosphate    | Н              | H              | CH <sub>3</sub> | S  | 2,4-O-            |
|                |                |                |                 |    | Diacetyluracil    |
| diphosphate    | H              | H              | CH <sub>3</sub> | S  | Hypoxanthine      |
| diphosphate    | Н              | H              | CH <sub>3</sub> | S  | 2,4-O-            |
|                |                |                |                 |    | Diacetylthym      |
| diphosphate    | Н              | H              | CH <sub>3</sub> | S  | Thymine           |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | S  | Cytosine          |
| triphosphate   | H              | Н              | CH <sub>3</sub> | 0  | 2,4-O-            |
|                |                |                |                 | į. | Diacetyluracil    |
| triphosphate   | H              | Н              | CH <sub>3</sub> | О  | Hypoxanthine      |
| triphosphate   | H              | H              | CH <sub>3</sub> | 0  | 2,4-O-            |
|                |                |                |                 | į  | Diacetylthymine   |
| triphosphate   | Н              | Н              | CH <sub>3</sub> | 0  | Thymine           |
| triphosphate   | Н              | Н              | CH <sub>3</sub> | 0  | Cytosine          |
| triphosphate   | H              | H              | CH <sub>3</sub> | 0  | 4-(N-mono-        |
|                |                |                |                 |    | acetyl)cytosine   |
| triphosphate   | Н              | Н              | CH <sub>3</sub> | 0  | 4-(N,N-           |
|                |                |                |                 |    | diacetyl)cytosine |
| triphosphate   | H              | Н              | CH <sub>3</sub> | 0  | Uracil            |
| triphosphate   | H              | Н              | CH <sub>3</sub> | 0  | 5-Fluorouracil    |
| triphosphate   | Н              | H              | CH <sub>3</sub> | S  | 2,4-O-            |
|                |                |                | •               |    | Diacetyluracil    |
| triphosphate   | H              | H              | CH <sub>3</sub> | S  | Hypoxanthine      |
| triphosphate   | Н              | H              | CH <sub>3</sub> | S  | 2,4-O-            |
|                |                |                |                 |    | Diacetylthymine   |
| triphosphate   | Н              | H              | CH <sub>3</sub> | S  | Thymine           |
| triphosphate   | H              | H              | CH <sub>3</sub> | S  | Cytosine          |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0  | 2,4-O-            |
|                |                |                |                 | Ì  | Diacetyluracil    |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0  | Hypoxanthine      |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0  | 2,4-0-            |
|                |                |                |                 |    | Diacetylthymine   |

| R <sup>1</sup> | R <sup>2</sup> | $\mathbb{R}^3$ | R <sup>6</sup>  | X | Base              |
|----------------|----------------|----------------|-----------------|---|-------------------|
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | Thymine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | Cytosine          |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 4-(N-mono-        |
|                |                |                | ľ               |   | acetyl)cytosine   |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | Uracil            |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 5-Fluorouracil    |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | 2,4-O-            |
|                |                |                |                 |   | Diacetyluracil    |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | Hypoxanthine      |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | 2,4-O-            |
|                |                |                |                 |   | Diacetylthymine   |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | Thymine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | Cytosine          |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | 4-(N-mono-        |
|                |                |                |                 |   | acetyl)cytosine   |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | Uracil            |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | 5-Fluorouracil    |
| acetyl         | acetyl         | acetyl         | CF <sub>3</sub> | 0 | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |
| acetyl         | acetyl         | acetyl         | CF <sub>3</sub> | S | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |
| acetyl         | acetyl         | acetyl         | 2-bromo-        | 0 | 4-(N,N-           |
|                |                |                | vinyl           |   | diacetyl)cytosine |
| acetyl         | acetyl         | acetyl         | 2-bromo-        | S | 4-(N,N-           |
|                |                |                | vinyl           |   | diacetyl)cytosine |
| H              | H              | H              | CH <sub>3</sub> | 0 | 2-(N,N-diacetyl)- |
|                |                |                |                 |   | guanine           |

| $\mathbb{R}^{1}$ | R <sup>2</sup> | R <sup>3</sup> | R <sup>6</sup>  | X | Base              |
|------------------|----------------|----------------|-----------------|---|-------------------|
| Н                | Н              | H              | CH <sub>3</sub> | 0 | 6-O-acetyl        |
|                  |                |                |                 |   | guanine           |
| Ĥ                | Н              | Н              | CH <sub>3</sub> | 0 | 8-fluoroguanine   |
| H                | Н              | Н              | CH <sub>3</sub> | 0 | guanine           |
| H                | H              | Н              | CH <sub>3</sub> | 0 | 6-(N,N-diacetyl)- |
|                  |                |                | }               |   | adenine           |
| Н                | Н              | Н              | CH <sub>3</sub> | 0 | 2-fluoroadenine   |
| Н                | Н              | H              | CH <sub>3</sub> | 0 | 8-fluoroadenine   |
| Н                | Н              | H              | CH <sub>3</sub> | 0 | 2,8-difluoro-     |
|                  |                |                |                 |   | adenine           |
| Н                | Н              | Н              | CH <sub>3</sub> | 0 | adenine           |
| Н                | H              | Н              | CH <sub>3</sub> | S | 2-(N,N-diacetyl)- |
|                  |                |                |                 |   | guanine           |
| Н                | Н              | H              | CH <sub>3</sub> | S | 6-O-acetyl        |
|                  |                |                |                 |   | guanine           |
| Н                | Н              | H              | CH <sub>3</sub> | S | 8-fluoroguanine   |
| H                | H              | H              | CH <sub>3</sub> | S | guanine           |
| H                | Н              | Н              | CH <sub>3</sub> | S | 6-(N,N-diacetyl)- |
|                  |                |                |                 |   | adenine           |
| Н                | H              | H              | CH <sub>3</sub> | S | 2-fluoroadenine   |
| H                | Н              | H              | CH <sub>3</sub> | S | 8-fluoroadenine   |
| H                | H              | Н              | CH <sub>3</sub> | S | 2,8-difluoro-     |
|                  |                |                |                 |   | adenine           |
| H                | Н              | Н              | CH <sub>3</sub> | S | adenine           |
| monophosphate    | Н              | Н              | CH <sub>3</sub> | 0 | 2-(N,N-diacetyl)- |
|                  |                |                |                 |   | guanine           |
| monophosphate    | Н              | H              | CH <sub>3</sub> | 0 | 6-O-acetyl        |
|                  |                |                |                 |   | guanine           |
| monophosphate    | H              | H              | CH <sub>3</sub> | 0 | 8-fluoroguanine   |
| monophosphate    | H              | H              | CH <sub>3</sub> | 0 | guanine           |
| monophosphate    | H              | Н              | CH <sub>3</sub> | 0 | 6-(N,N-diacetyl)- |
|                  | }              |                |                 |   | adenine           |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | R <sup>6</sup>  | X        | Base              |
|----------------|----------------|----------------|-----------------|----------|-------------------|
| monophosphate  | H              | Н              | CH <sub>3</sub> | 0        | 2-fluoroadenine   |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | 0        | 8-fluoroadenine   |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | 0        | 2,8-difluoro-     |
|                |                |                |                 |          | adenine           |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | 0        | adenine           |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S        | 2-(N,N-diacetyl)- |
|                |                |                |                 |          | guanine           |
| monophosphate  | H              | Н              | CH <sub>3</sub> | S        | 6-O-acetyl        |
|                |                |                |                 |          | guanine           |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S        | 8-fluoroguanine   |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S        | guanine           |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S        | 6-(N,N-diacetyl)- |
|                |                |                |                 |          | adenine           |
| monophosphate  | H              | H              | CH <sub>3</sub> | S        | 2-fluoroadenine   |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S        | 8-fluoroadenine   |
| monophosphate  | H              | Н              | CH <sub>3</sub> | S        | 2,8-difluoro-     |
|                |                |                |                 |          | adenine           |
| monophosphate  | Н              | H              | CH <sub>3</sub> | S        | adenine           |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0        | 2-(N,N-diacetyl)- |
|                |                |                |                 |          | guanine           |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0        | 6-O-acetyl        |
|                |                |                |                 |          | guanine           |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0        | 8-fluoroguanine   |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0        | guanine           |
| diphosphate    | Н              | H              | CH <sub>3</sub> | 0        | 6-(N,N-diacetyl)- |
|                |                |                |                 |          | adenine           |
| diphosphate    | H              | Н              | CH <sub>3</sub> | 0        | 2-fluoroadenine   |
| diphosphate    | Н .            | Н              | CH <sub>3</sub> | 0        | 8-fluoroadenine   |
| diphosphate    | H              | Н              | CH <sub>3</sub> | 0        | 2,8-difluoro-     |
|                |                |                |                 | <u> </u> | adenine           |
| diphosphate    | H              | Н              | CH <sub>3</sub> | 0        | adenine           |

| $\mathbb{R}^1$ | R <sup>2</sup> | R <sup>3</sup> | R <sup>6</sup>  | X | Base              |
|----------------|----------------|----------------|-----------------|---|-------------------|
| diphosphate    | H              | Н              | CH <sub>3</sub> | S | 2-(N,N-diacetyl)- |
|                |                |                |                 |   | guanine           |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | S | 6-O-acetyl        |
|                |                |                |                 |   | guanine           |
| diphosphate    | H              | Н              | CH <sub>3</sub> | S | 8-fluoroguanine   |
| diphosphate    | H              | H              | CH <sub>3</sub> | S | guanine           |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | S | 6-(N,N-diacetyl)- |
|                |                |                |                 |   | adenine           |
| diphosphate    | H              | H              | CH <sub>3</sub> | S | 2-fluoroadenine   |
| diphosphate    | H              | Н              | CH <sub>3</sub> | S | 8-fluoroadenine   |
| diphosphate    | H              | Н              | CH <sub>3</sub> | S | 2,8-difluoro-     |
|                |                |                |                 |   | adenine           |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | S | adenine           |
| triphosphate   | Н              | Н              | CH <sub>3</sub> | 0 | 2-(N,N-diacetyl)- |
|                |                |                |                 |   | guanine           |
| triphosphate   | H              | H              | CH <sub>3</sub> | 0 | 6-O-acetyl        |
|                |                |                |                 |   | guanine           |
| triphosphate   | Н              | Н              | CH <sub>3</sub> | 0 | 8-fluoroguanine   |
| triphosphate   | H              | Н              | CH <sub>3</sub> | 0 | guanine           |
| triphosphate   | H              | Н              | CH <sub>3</sub> | 0 | 6-(N,N-diacetyl)- |
|                |                |                |                 |   | adenine           |
| triphosphate   | H              | H              | CH <sub>3</sub> | 0 | 2-fluoroadenine   |
| triphosphate   | Н              | H              | CH <sub>3</sub> | 0 | 8-fluoroadenine   |
| triphosphate   | H              | Н              | CH <sub>3</sub> | 0 | 2,8-difluoro-     |
|                |                |                |                 |   | adenine           |
| triphosphate   | H              | Н              | CH <sub>3</sub> | 0 | 2-(N,N-diacetyl)- |
|                |                |                |                 |   | guanine           |
| triphosphate   | Н              | H              | CH <sub>3</sub> | S | 6-O-acetyl        |
|                |                |                |                 |   | guanine           |
| triphosphate   | H              | Н              | CH <sub>3</sub> | S | 8-fluoroguanine   |
| triphosphate   | H              | H              | CH <sub>3</sub> | S | guanine           |

| R <sup>1</sup> | $\mathbb{R}^2$ | $\mathbb{R}^3$ | $\mathbb{R}^6$  | X | Base              |
|----------------|----------------|----------------|-----------------|---|-------------------|
| triphosphate   | Н              | Н              | CH <sub>3</sub> | S | 6-(N,N-diacetyl)- |
|                |                |                |                 |   | adenine           |
| triphosphate   | Н              | Н              | CH <sub>3</sub> | S | 2-fluoroadenine   |
| triphosphate   | H              | H              | CH <sub>3</sub> | S | 8-fluoroadenine   |
| triphosphate   | Н              | H              | CH <sub>3</sub> | S | 2,8-difluoro-     |
|                |                |                |                 |   | adenine           |
| triphosphate   | Н              | Н              | CH <sub>3</sub> | S | adenine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 2-(N,N-diacetyl)- |
|                | 1              |                |                 |   | guanine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 6-O-acetyl        |
|                |                |                |                 |   | guanine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 8-fluoroguanine   |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | guanine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 6-(N,N-diacetyl)- |
|                |                |                |                 |   | adenine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 2-fluoroadenine   |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 8-fluoroadenine   |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 2,8-difluoro-     |
|                |                |                |                 |   | adenine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | adenine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | 2-(N,N-diacetyl)- |
|                |                |                |                 |   | guanine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | 6-O-acetyl        |
|                |                |                |                 |   | guanine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | 8-fluoroguanine   |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | guanine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | 6-(N,N-diacetyl)- |
|                |                |                |                 |   | adenine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | 2-fluoroadenine   |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | 8-fluoroadenine   |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | 2,8-difluoro-     |
|                |                |                |                 |   | adenine           |

| $\mathbb{R}^1$ | $\mathbb{R}^2$ | $\mathbb{R}^3$ | R <sup>6</sup>    | X | Base    |
|----------------|----------------|----------------|-------------------|---|---------|
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub>   | S | adenine |
| acetyl         | acetyl         | acetyl         | CF <sub>3</sub>   | 0 | guanine |
| acetyl         | acetyl         | acetyl         | CF <sub>3</sub>   | S | guanine |
| acetyl         | acetyl         | acetyl         | 2-bromo-<br>vinyl | 0 | guanine |
| acetyl         | acetyl         | acetyl         | 2-bromo-<br>vinyl | S | guanine |

Alternatively, the following nucleosides of Formula XI are prepared, using the appropriate sugar and pyrimidine or purine bases.

## wherein:

| $R^1$ | $\mathbb{R}^2$ | $\mathbb{R}^7$ | R <sup>6</sup>  | X | Base                     |
|-------|----------------|----------------|-----------------|---|--------------------------|
| H     | H              | Н              | CH <sub>3</sub> | 0 | 2,4-O-Diacetyluracil     |
| H     | H              | H              | CH <sub>3</sub> | 0 | Hypoxanthine             |
| H     | H              | H              | CH <sub>3</sub> | 0 | 2,4-O-Diacetylthymine    |
| Н     | H              | H              | CH <sub>3</sub> | 0 | Thymine                  |
| H     | H              | H              | CH <sub>3</sub> | 0 | Cytosine                 |
| H     | H              | Н              | CH <sub>3</sub> | 0 | 4-(N-mono-               |
|       |                |                |                 |   | acetyl)cytosine          |
| H     | H              | Н              | CH <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine |
| H     | H              | H              | CH <sub>3</sub> | 0 | Uracil                   |
| H     | H              | Н              | CH <sub>3</sub> | 0 | 5-Fluorouracil           |
| H     | H              | Н              | CH <sub>3</sub> | S | 2,4-O-Diacetyluracil     |
| Н     | H              | Н              | CH <sub>3</sub> | S | Hypoxanthine             |

| $\mathbb{R}^{1}$ | R <sup>2</sup> | R <sup>7</sup> | R <sup>6</sup>  | X | Base                     |
|------------------|----------------|----------------|-----------------|---|--------------------------|
| H                | H              | Н              | CH <sub>3</sub> | S | 2,4-O-Diacetylthymine    |
| H                | H              | H              | CH <sub>3</sub> | S | Thymine                  |
| H                | Н              | H              | CH <sub>3</sub> | S | Cytosine                 |
| Н                | H              | Н              | CH <sub>3</sub> | S | 4-(N-mono-acetyl)cytosin |
| Н                | H              | Н              | CH <sub>3</sub> | S | 4-(N,N-diacetyl)cytosine |
| H                | H              | H              | CH <sub>3</sub> | S | Uracil                   |
| H                | H              | Н              | CH <sub>3</sub> | S | 5-Fluorouracil           |
|                  |                |                | CH <sub>3</sub> |   |                          |
| monophosphate    | Н              | H              | CH <sub>3</sub> | 0 | 2,4-O-Diacetyluracil     |
| monophosphate    | Н              | Н              | CH <sub>3</sub> | 0 | Hypoxanthine             |
| monophosphate    | H              | H              | CH <sub>3</sub> | 0 | 2,4-O-Diacetylthymine    |
| monophosphate    | Н              | H              | CH <sub>3</sub> | 0 | Thymine                  |
| monophosphate    | Н              | Н              | CH <sub>3</sub> | 0 | Cytosine                 |
| monophosphate    | H              | H              | CH <sub>3</sub> | 0 | 4-(N-mono-               |
|                  |                |                |                 |   | acetyl)cytosine          |
| monophosphate    | H              | H              | CH <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine |
| monophosphate    | H              | H              | CH <sub>3</sub> | 0 | Uracil                   |
| monophosphate    | H              | H              | CH <sub>3</sub> | 0 | 5-Fluorouracil           |
| monophosphate    | H              | Н              | CH <sub>3</sub> | S | 2,4-O-Diacetyluracil     |
| monophosphate    | H              | Н              | CH <sub>3</sub> | S | Hypoxanthine             |
| monophosphate    | Н              | Н              | CH <sub>3</sub> | S | 2,4-O-Diacetylthymine    |
| monophosphate    | H              | H              | CH <sub>3</sub> | S | Thymine                  |
| monophosphate    | Н              | Н              | CH <sub>3</sub> | S | Cytosine                 |
| monophosphate    | H              | H              | CH <sub>3</sub> | S | 4-(N-mono-               |
| }                |                |                | }               |   | acetyl)cytosine          |
| monophosphate    | Н              | H              | CH <sub>3</sub> | S | 4-(N,N-diacetyl)cytosine |
| monophosphate    | Н              | H              | CH <sub>3</sub> | S | Uracil                   |
| monophosphate    | Н              | H              | CH <sub>3</sub> | S | 5-Fluorouracil           |
| diphosphate      | Н              | H              | CH <sub>3</sub> | 0 | 2,4-O-Diacetylurac       |
| diphosphate      | H              | H              | CH <sub>3</sub> | 0 | Hypoxanthine             |
| diphosphate      | H              | H              | CH <sub>3</sub> | 0 | 2,4-O-Diacetylthymine    |

| $\mathbb{R}^1$ | $\mathbb{R}^2$ | R  | R <sup>6</sup>  | X | Base                     |
|----------------|----------------|----|-----------------|---|--------------------------|
| diphosphate    | Н              | H  | CH <sub>3</sub> | 0 | Thymine                  |
| diphosphate    | H              | H  | CH <sub>3</sub> | 0 | Cytosine                 |
| diphosphate    | H              | Н  | CH <sub>3</sub> | 0 | 4-(N-mono-               |
|                |                |    |                 | } | acetyl)cytosine          |
| diphosphate    | H              | Н  | CH <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine |
| diphosphate    | Н              | Н  | CH <sub>3</sub> | 0 | Uracil                   |
| diphosphate    | H              | H  | CH <sub>3</sub> | 0 | 5-Fluorouracil           |
| diphosphate    | H              | Н  | CH <sub>3</sub> | S | 2,4-O-Diacetyluracil     |
| diphosphate    | Н              | H  | CH <sub>3</sub> | S | Hypoxanthine             |
| diphosphate    | Н              | H  | CH <sub>3</sub> | S | 2,4-O-Diacetylthym       |
| diphosphate    | Н              | H  | CH <sub>3</sub> | S | Thymine                  |
| diphosphate    | H              | H  | CH <sub>3</sub> | S | Cytosine                 |
| triphosphate   | Н              | H  | CH <sub>3</sub> | 0 | 2,4-O-Diacetyluracil     |
| triphosphate   | H              | Н  | CH <sub>3</sub> | 0 | Hypoxanthine             |
| triphosphate   | Н              | H  | CH <sub>3</sub> | 0 | 2,4-O-Diacetylthymine    |
| triphosphate   | Н              | H  | CH <sub>3</sub> | 0 | Thymine                  |
| triphosphate   | Н              | H  | CH <sub>3</sub> | 0 | Cytosine                 |
| triphosphate   | Н              | H  | CH <sub>3</sub> | 0 | 4-(N-mono-               |
|                |                |    |                 |   | acetyl)cytosine          |
| triphosphate   | Н              | H  | CH <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytos    |
| triphosphate   | Н              | H  | CH <sub>3</sub> | 0 | Uracil                   |
| triphosphate   | Н              | H  | CH <sub>3</sub> | 0 | 5-Fluorouracil           |
| triphosphate   | Н              | H  | CH <sub>3</sub> | S | 2,4-O-Diacetyluracil     |
| triphosphate   | Н              | H  | CH <sub>3</sub> | S | Hypoxanthine             |
| triphosphate   | Н              | H  | CH <sub>3</sub> | S | 2,4-O-Diacetylthym       |
| triphosphate   | Н              | H  | CH <sub>3</sub> | S | Thymine                  |
| triphosphate   | Н              | H  | CH <sub>3</sub> | S | Cytosine                 |
| monophosphate  | monophosphate  | Br | CF <sub>3</sub> | 0 | 2,4-O-Diacetyluracil     |
| monophosphate  | monophosphate  | Br | CF <sub>3</sub> | 0 | Hypoxanthine             |
| monophosphate  | monophosphate  | Br | CF <sub>3</sub> | 0 | 2,4-O-Diacetylthymine    |
| monophosphate  | monophosphate  | Br | CF <sub>3</sub> | 0 | Thymine                  |

| R <sup>i</sup> | R <sup>2</sup> | R <sup>7</sup> | R <sup>6</sup>  | X | Base                     |
|----------------|----------------|----------------|-----------------|---|--------------------------|
| monophosphate  | monophosphate  | Br             | CF <sub>3</sub> | 0 | Cytosine                 |
| monophosphate  | monophosphate  | Br             | CF <sub>3</sub> | 0 | 4-(N-mono-               |
|                |                |                |                 |   | acetyl)cytosine          |
| monophosphate  | monophosphate  | Br             | CF <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine |
| monophosphate  | monophosphate  | Br             | CF <sub>3</sub> | О | Uracil                   |
| monophosphate  | monophosphate  | Br             | CF <sub>3</sub> | 0 | 5-Fluorouracil           |
| monophosphate  | monophosphate  | Br             | CF <sub>3</sub> | S | 2,4-O-Diacetyluracil     |
| monophosphate  | monophosphate  | Br             | CF <sub>3</sub> | S | Hypoxanthine             |
| monophosphate  | monophosphate  | Br             | CF <sub>3</sub> | S | 2,4-O-Diacetylthymine    |
| monophosphate  | monophosphate  | Br             | CF <sub>3</sub> | S | Thymine                  |
| monophosphate  | monophosphate  | Br             | CF <sub>3</sub> | S | Cytosine                 |
| monophosphate  | monophosphate  | Br             | CF <sub>3</sub> | S | 4-(N-mono-               |
|                |                |                |                 |   | acetyl)cytosine          |
| monophosphate  | monophosphate  | Br             | CF <sub>3</sub> | S | 4-(N,N-diacetyl)cytos    |
| monophosphate  | monophosphate  | Br             | CF <sub>3</sub> | S | Uracil                   |
| monophosphate  | monophosphate  | Br             | CF <sub>3</sub> | S | 5-Fluorouracil           |
| acetyl         | acetyl         | NO2            | CF <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine |
| acetyl         | acetyl         | NO2            | CF <sub>3</sub> | S | 4-(N,N-diacetyl)cytosine |
| acetyl         | acetyl         | NO2            | CF <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine |
| acetyl         | acetyl         | NO2            | 2-bromo-        | S | 4-(N,N-diacetyl)cytosine |
|                |                |                | vinyl           |   |                          |

Alternatively, the following nucleosides of Formula XII are prepared, using the appropriate sugar and pyrimidine or purine bases.

wherein:

| $\mathbb{R}^1$ | R <sup>6</sup>  | X | Base                      |
|----------------|-----------------|---|---------------------------|
| Н              | CH <sub>3</sub> | 0 | 2,4-O-Diacetyluracil      |
| H              | CH <sub>3</sub> | 0 | Hypoxanthine              |
| H              | CH <sub>3</sub> | 0 | 2,4-O-Diacetylthymine     |
| Н              | CH <sub>3</sub> | 0 | Thymine                   |
| Н              | CH <sub>3</sub> | 0 | Cytosine                  |
| H              | CH <sub>3</sub> | 0 | 4-(N-mono-acetyl)cytosine |
| Ĥ              | CH <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |
| H              | CH <sub>3</sub> | 0 | Uracil                    |
| H              | CH <sub>3</sub> | 0 | 5-Fluorouracil            |
| H              | CH <sub>3</sub> | S | 2,4-O-Diacetyluracil      |
| Н              | CH <sub>3</sub> | S | Hypoxanthine              |
| Н              | CH <sub>3</sub> | S | 2,4-O-Diacetylthymine     |
| H              | CH <sub>3</sub> | S | Thymine                   |
| H              | CH <sub>3</sub> | S | Cytosine                  |
| Н              | CH <sub>3</sub> | S | 4-(N-mono-acetyl)cytosine |
| H              | CH <sub>3</sub> | S | 4-(N,N-diacetyl)cytosine  |
| H              | CH <sub>3</sub> | S | Uracil                    |
| Н              | CH <sub>3</sub> | S | 5-Fluorouracil            |
| monophosphate  | CH <sub>3</sub> | 0 | 2,4-O-Diacetyluracil      |
| monophosphate  | CH <sub>3</sub> | 0 | Hypoxanthine              |
| monophosphate  | CH <sub>3</sub> | 0 | 2,4-O-Diacetylthymine     |
| monophosphate  | CH <sub>3</sub> | 0 | Thymine                   |
| monophosphate  | CH <sub>3</sub> | 0 | Cytosine                  |
| monophosphate  | CH <sub>3</sub> | 0 | 4-(N-mono-acetyl)cytosine |
| monophosphate  | CH <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |
| monophosphate  | CH <sub>3</sub> | 0 | Uracil                    |
| monophosphate  | CH <sub>3</sub> | 0 | 5-Fluorouracil            |
| monophosphate  | CH <sub>3</sub> | S | 2,4-O-Diacetyluracil      |
| monophosphate  | CH <sub>3</sub> | S | Hypoxanthine              |
| monophosphate  | CH <sub>3</sub> | S | 2,4-O-Diacetylthymine     |
| monophosphate  | CH <sub>3</sub> | S | Thymine                   |

| R <sup>1</sup> | R <sup>6</sup>  | X | Base                      |
|----------------|-----------------|---|---------------------------|
| monophosphate  | CH <sub>3</sub> | S | Cytosine                  |
| monophosphate  | CH <sub>3</sub> | S | 4-(N-mono-acetyl)cytosine |
| monophosphate  | CH <sub>3</sub> | S | 4-(N,N-diacetyl)cytosine  |
| monophosphate  | CH <sub>3</sub> | S | Uracil                    |
| monophosphate  | CH <sub>3</sub> | S | 5-Fluorouracil            |
| diphosphate    | CH <sub>3</sub> | 0 | 2,4-O-Diacetyluracil      |
| diphosphate    | CH <sub>3</sub> | 0 | Hypoxanthine              |
| diphosphate    | CH <sub>3</sub> | 0 | 2,4-O-Diacetylthymine     |
| diphosphate    | CH <sub>3</sub> | 0 | Thymine                   |
| diphosphate    | CH <sub>3</sub> | 0 | Cytosine                  |
| diphosphate    | CH <sub>3</sub> | 0 | 4-(N-mono-acetyl)cytosine |
| diphosphate    | CH <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |
| diphosphate    | CH <sub>3</sub> | 0 | Uracil                    |
| diphosphate    | CH <sub>3</sub> | 0 | 5-Fluorouracil            |
| diphosphate    | CH <sub>3</sub> | S | 2,4-O-Diacetyluracil      |
| diphosphate    | CH <sub>3</sub> | S | Hypoxanthine              |
| diphosphate    | CH <sub>3</sub> | S | 2,4-O-Diacetylthymine     |
| diphosphate    | CH <sub>3</sub> | S | Thymine                   |
| diphosphate    | CH <sub>3</sub> | S | Cytosine                  |
| triphosphate   | CH <sub>3</sub> | 0 | 2,4-O-Diacetyluracil      |
| triphosphate   | CH <sub>3</sub> | 0 | Hypoxanthine              |
| triphosphate   | CH <sub>3</sub> | 0 | 2,4-O-Diacetylthymine     |
| triphosphate   | CH <sub>3</sub> | 0 | Thymine                   |
| triphosphate   | CH <sub>3</sub> | 0 | Cytosine                  |
| triphosphate   | CH <sub>3</sub> | 0 | 4-(N-mono-acetyl)cytosine |
| triphosphate   | CH <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |
| triphosphate   | CH <sub>3</sub> | 0 | Uracil                    |
| triphosphate   | CH <sub>3</sub> | 0 | 5-Fluorouracil            |
| triphosphate   | CH <sub>3</sub> | S | 2,4-O-Diacetyluracil      |
| triphosphate   | CH <sub>3</sub> | S | Hypoxanthine              |
| triphosphate   | CH <sub>3</sub> | S | 2,4-O-Diacetylthymine     |

| $\mathbb{R}^1$ | R <sup>6</sup>  | X | Base                      |
|----------------|-----------------|---|---------------------------|
| triphosphate   | CH <sub>3</sub> | S | Thymine                   |
| triphosphate   | CH <sub>3</sub> | S | Cytosine                  |
| monophosphate  | CF <sub>3</sub> | 0 | 2,4-O-Diacetyluracil      |
| monophosphate  | CF <sub>3</sub> | 0 | Hypoxanthine              |
| monophosphate  | CF <sub>3</sub> | 0 | 2,4-O-Diacetylthymine     |
| monophosphate  | CF <sub>3</sub> | 0 | Thymine                   |
| monophosphate  | CF <sub>3</sub> | 0 | Cytosine                  |
| monophosphate  | CF <sub>3</sub> | 0 | 4-(N-mono-acetyl)cytosine |
| monophosphate  | CF <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |
| monophosphate  | CF <sub>3</sub> | 0 | Uracil                    |
| monophosphate  | CF <sub>3</sub> | 0 | 5-Fluorouracil            |
| monophosphate  | CF <sub>3</sub> | S | 2,4-O-Diacetyluracil      |
| monophosphate  | CF <sub>3</sub> | S | Hypoxanthine              |
| monophosphate  | CF <sub>3</sub> | S | 2,4-O-Diacetylthymine     |
| monophosphate  | CF <sub>3</sub> | S | Thymine                   |
| monophosphate  | CF <sub>3</sub> | S | Cytosine                  |
| monophosphate  | CF <sub>3</sub> | S | 4-(N-mono-acetyl)cytosine |
| monophosphate  | CF <sub>3</sub> | S | 4-(N,N-diacetyl)cytosine  |
| monophosphate  | CF <sub>3</sub> | S | Uracil                    |
| monophosphate  | CF <sub>3</sub> | S | 5-Fluorouracil            |
| acetyl         | CF <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |
| acetyl         | CF <sub>3</sub> | S | 4-(N,N-diacetyl)cytosine  |
| acetyl         | 2-bromo-vinyl   | 0 | 4-(N,N-diacetyl)cytosine  |
| acetyl         | 2-bromo-vinyl   | S | 4-(N,N-diacetyl)cytosine  |

Alternatively, the following nucleosides of Formula XVII are prepared, using the appropriate sugar and pyrimidine or purine bases.

### wherein:

| R <sup>1</sup> | R <sup>6</sup>  | $\mathbb{R}^7$ | X | Base                      | R <sup>9</sup> | R <sup>10</sup> |
|----------------|-----------------|----------------|---|---------------------------|----------------|-----------------|
| Н              | CH <sub>3</sub> | H              | 0 | 2,4-O-Diacetyluracil      | NHAc           | Me              |
| H              | CH <sub>3</sub> | Н              | 0 | Hypoxanthine              | NH2            | Me              |
| Н              | CH <sub>3</sub> | H              | 0 | 2,4-O-Diacetylthymine     | NHAc           | Me              |
| Н              | CH <sub>3</sub> | Н              | 0 | Thymine                   | NH2            | Me              |
| H              | CH <sub>3</sub> | H              | 0 | Cytosine                  | NH2            | Me              |
| Н              | CH <sub>3</sub> | H              | 0 | 4-(N-mono-acetyl)cytosine | NHAc           | Me              |
| H              | CH <sub>3</sub> | Н              | 0 | 4-(N,N-diacetyl)cytosine  | NHAc           | Me              |
| Н              | CH <sub>3</sub> | H              | 0 | Uracil                    | NH2            | Me              |
| H              | CH <sub>3</sub> | H              | 0 | 5-Fluorouracil            | NH2            | Me              |
| Н              | CH <sub>3</sub> | H              | S | 2,4-O-Diacetyluracil      | NHAc           | Me              |
| Н              | CH <sub>3</sub> | H              | S | Hypoxanthine              | NH2            | Me              |
| H              | CH <sub>3</sub> | H              | S | 2,4-O-Diacetylthymine     | NHAc           | Me              |
| Н              | CH <sub>3</sub> | H              | S | Thymine                   | NH2            | Me              |
| Н              | CH <sub>3</sub> | H              | S | Cytosine                  | NH2            | Me              |
| Н              | CH <sub>3</sub> | H              | S | 4-(N-mono-acetyl)cytosine | NHAc           | Me              |
| H              | CH <sub>3</sub> | H              | S | 4-(N,N-diacetyl)cytosine  | NHAc           | Me              |
| H              | CH <sub>3</sub> | H              | S | Uracil                    | NH2            | Me              |
| H              | CH <sub>3</sub> | Н              | S | 5-Fluorouracil            | NH2            | Me              |
| monophosphate  | CH <sub>3</sub> | H              | 0 | 2,4-O-Diacetyluracil      | NHAc           | Me              |
| monophosphate  | CH <sub>3</sub> | H              | 0 | Hypoxanthine              | NH2            | Me              |
| monophosphate  | CH <sub>3</sub> | Н              | 0 | 2,4-O-Diacetylthymine     | NHAc           | Me              |
| monophosphate  | CH <sub>3</sub> | H              | 0 | Thymine                   | NH2            | Me              |
| monophosphate  | CH <sub>3</sub> | H              | 0 | Cytosine                  | NH2            | Me              |
| monophosphate  | CH <sub>3</sub> | H              | 0 | 4-(N-mono-acetyl)cytosine | NHAC           | Me              |
| monophosphate  | CH <sub>3</sub> | H              | 0 | 4-(N,N-diacetyl)cytosine  | NHAc           | Me              |
| monophosphate  | CH <sub>3</sub> | H              | 0 | Uracil                    | NH2            | Me              |
| monophosphate  | CH <sub>3</sub> | Н              | 0 | 5-Fluorouracil            | NH2            | Me              |
| monophosphate  | CH <sub>3</sub> | Н              | S | 2,4-O-Diacetyluracil      | NHAc           | Me              |
| monophosphate  | CH <sub>3</sub> | Н              | S | Hypoxanthine              | NH2            | Me              |
| monophosphate  | CH <sub>3</sub> | Н              | S | 2,4-O-Diacetylthymine     | NHAc           | Me              |

| $\mathbb{R}^{1}$ | R <sup>6</sup>  | $\mathbf{R}^{7}$ | X. | Base                      | R <sup>9</sup> | R <sup>10</sup> |
|------------------|-----------------|------------------|----|---------------------------|----------------|-----------------|
| monophosphate    | CH <sub>3</sub> | H                | S  | Thymine                   | NH2            | Me              |
| monophosphate    | CH <sub>3</sub> | H                | S  | Cytosine                  | NH2            | Me              |
| monophosphate    | CH <sub>3</sub> | H                | S  | 4-(N-mono-acetyl)cytosine | NHAc           | Me              |
| monophosphate    | CH <sub>3</sub> | H                | S  | 4-(N,N-diacetyl)cytosine  | NHAc           | Me              |
| monophosphate    | CH <sub>3</sub> | Н                | S  | Uracil                    | NH2            | Me              |
| monophosphate    | CH <sub>3</sub> | Н                | S  | 5-Fluorouracil            | NH2            | Me              |
| diphosphate      | CH <sub>3</sub> | Н                | 0  | 2,4-O-Diacetyluracil      | NHAc           | Me              |
| diphosphate      | CH <sub>3</sub> | H                | 0  | Hypoxanthine              | NH2            | Me              |
| diphosphate      | CH <sub>3</sub> | Н                | 0  | 2,4-O-Diacetylthymine     | NH2            | Me              |
| diphosphate      | CH <sub>3</sub> | H                | 0  | Thymine                   | NH2            | Me              |
| diphosphate      | CH <sub>3</sub> | H                | 0  | Cytosine                  | NH2            | Me              |
| diphosphate      | CH <sub>3</sub> | H                | 0  | 4-(N-mono-acetyl)cytosine | NHAc           | Me              |
| diphosphate      | CH <sub>3</sub> | H                | 0  | 4-(N,N-diacetyl)cytos     | NHAc           | Me              |
| diphosphate      | CH <sub>3</sub> | Н                | 0  | Uracil                    | NH2            | Me              |
| diphosphate      | CH <sub>3</sub> | H                | 0  | 5-Fluorouracil            | NH2            | Me              |
| diphosphate      | CH <sub>3</sub> | Н                | S  | 2,4-O-Diacetyluracil      | NH2            | Me              |
| diphosphate      | CH <sub>3</sub> | H                | S  | Hypoxanthine              | NH2            | Me              |
| diphosphate      | CH <sub>3</sub> | Н                | S  | 2,4-O-Diacetylthymine     | NHAc           | Me              |
| diphosphate      | CH <sub>3</sub> | Н                | S  | Thymine                   | NH2            | Me              |
| diphosphate      | CH <sub>3</sub> | Н                | S  | Cytosine                  | NH2            | Me              |
| triphosphate     | CH <sub>3</sub> | Н                | 0  | 2,4-O-Diacetyluracil      | NHAc           | Me              |
| triphosphate     | CH <sub>3</sub> | Н                | 0  | Hypoxanthine              | NHAc           | Me              |
| triphosphate     | CH <sub>3</sub> | Н                | 0  | 2,4-O-Diacetylthymine     | NHAc           | Me              |
| triphosphate     | CH <sub>3</sub> | Н                | 0  | Thymine                   | NH2            | Me              |
| triphosphate     | CH <sub>3</sub> | Н                | 0  | Cytosine                  | NH2            | Me              |
| triphosphate     | CH <sub>3</sub> | H                | 0  | 4-(N-mono-acetyl)cytosine | NHAc           | Me              |
| triphosphate     | CH <sub>3</sub> | Н                | 0  | 4-(N,N-diacetyl)cytosine  | NH2            | Me              |
| triphosphate     | CH <sub>3</sub> | H                | 0  | Uracil                    | NH2            | Me              |
| triphosphate     | CH <sub>3</sub> | H                | 0  | 5-Fluorouracil            | NH2            | Me              |
| triphosphate     | CH <sub>3</sub> | H                | S  | 2,4-O-Diacetyluracil      | NH2            | Me              |
| triphosphate     | CH <sub>3</sub> | H                | S  | Hypoxanthine              | NH2            | Me              |

| $\mathbb{R}^{1}$ | R <sup>6</sup>  | $\mathbf{R}^7$ | X | Base                      | R <sup>9</sup> | R <sup>10</sup> |
|------------------|-----------------|----------------|---|---------------------------|----------------|-----------------|
| triphosphate     | CH <sub>3</sub> | H              | S | 2,4-O-Diacetylthymine     | NH2            | Me              |
| triphosphate     | CH <sub>3</sub> | H              | S | Thymine                   | NH2            | Me              |
| triphosphate     | CH <sub>3</sub> | H              | S | Cytosine                  | NH2            | Me              |
| monophosphate    | CF <sub>3</sub> | H              | 0 | 2,4-O-Diacetyluracil      | NH2            | Ме              |
| monophosphate    | CF <sub>3</sub> | H              | 0 | Hypoxanthine              | NH2            | Me              |
| monophosphate    | CF <sub>3</sub> | H              | 0 | 2,4-O-Diacetylthymine     | NH2            | Ме              |
| monophosphate    | CF <sub>3</sub> | Н              | 0 | Thymine                   | NH2            | Me              |
| monophosphate    | CF <sub>3</sub> | H              | 0 | Cytosine                  | NH2            | Ме              |
| monophosphate    | CF <sub>3</sub> | H              | 0 | 4-(N-mono-acetyl)cytosine | NH2            | Me              |
| monophosphate    | CF <sub>3</sub> | H              | 0 | 4-(N,N-diacetyl)cytosine  | NH2            | Me              |
| monophosphate    | CF <sub>3</sub> | H              | 0 | Uracil                    | NH2            | Me              |
| monophosphate    | CF <sub>3</sub> | Н              | 0 | 5-Fluorouracil            | NH2            | Me              |
| monophosphate    | CF <sub>3</sub> | H              | S | 2,4-O-Diacetyluracil      | NH2            | Me              |
| monophosphate    | CF <sub>3</sub> | Н              | S | Hypoxanthine              | NH2            | Me              |
| monophosphate    | CF <sub>3</sub> | Н              | S | 2,4-O-Diacetylthymine     | NH2            | Me              |
| monophosphate    | CF <sub>3</sub> | Н              | S | Thymine                   | NH2            | Me              |
| monophosphate    | CF <sub>3</sub> | Н              | S | Cytosine                  | NH2            | Me              |
| monophosphate    | CF <sub>3</sub> | Н              | S | 4-(N-mono-acetyl)cytosine | NH2            | Me              |
| monophosphate    | CF <sub>3</sub> | Н              | S | 4-(N,N-diacetyl)cytosine  | NH2            | Me              |
| monophosphate    | CF <sub>3</sub> | Н              | S | Uracil                    | NH2            | Me              |
| monophosphate    | CF <sub>3</sub> | H              | S | 5-Fluorouracil            | NH2            | Me              |
| acetyl           | CH <sub>3</sub> | H              | 0 | 4-(N,N-diacetyl)cytosine  | H              | Br              |
| acetyl           | CH <sub>3</sub> | H              | S | 4-(N,N-diacetyl)cytosine  | H              | Br              |
| acetyl           | CH <sub>3</sub> | ОН             | 0 | 4-(N,N-diacetyl)cytosine  | H              | Br              |
| acetyl           | CH <sub>3</sub> | ОН             | S | 4-(N,N-diacetyl)cytosine  | Н              | Br              |

# Example 3: Preparation of 3'-C-methylriboadenine

The title compound can be prepared according to a published procedure (R.F. Nutt, M.J. Dickinson, F.W. Holly, and E. Walton, "Branched-chain sugar nucleosides. III. 3'-C-methyladenine", *J.Org. Chem.* 1968, 33, 1789-1795) (Scheme 9).

### Scheme 9

(a) RuO<sub>2</sub> / NaIO<sub>4</sub>; (b) MeMgI / TiCl<sub>4</sub>; (c) HCl / MeOH / H<sub>2</sub>O; (d) BzCl / pyridine; (e) AcBr, HBr / AcOH; (f) chloromercuri-6-benzamidopurine; (g) NH<sub>3</sub> / MeOH.

In a similar manner, but using the appropriate sugar and pyrimidine or purine bases, the following nucleosides of Formula III are prepared.

$$X^1$$
 $X^1$ 
 $X^2$ 
 $X^2$ 
 $X^2$ 
 $X^2$ 
 $X^2$ 
 $X^2$ 
 $X^2$ 
 $X^2$ 

(III)

wherein:

| R <sup>i</sup> | R <sup>2</sup> | R <sup>3</sup> | X <sup>1</sup> | X <sup>2</sup> | Y               |
|----------------|----------------|----------------|----------------|----------------|-----------------|
| H              | H              | Н              | H              | Н              | Н               |
| Н              | Н              | H              | H              | Н              | NH <sub>2</sub> |
| Н              | H              | Н              | H              | Н              | NH-cyclopropyl  |
| H              | H              | Н              | H              | H              | NH-methyl       |
| H              | Н              | Н              | H              | H              | NH-ethyl        |
| H              | Н              | H              | H              | H              | NH-acetyl       |
| Н              | H              | Н              | H              | H              | OH              |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | X <sup>1</sup> | X <sup>2</sup> | Y               |
|----------------|----------------|----------------|----------------|----------------|-----------------|
| H              | Н              | Н              | Н              | Н              | OMe             |
| H              | H              | H              | H              | H              | OEt             |
| Н              | Н              | Н              | H              | H              | O-cyclopropyl   |
| H              | Н              | Н              | H              | H              | O-acetyl        |
| H              | Н              | Н              | H              | H              | SH              |
| H              | H              | Н              | H              | H              | SMe             |
| H              | H              | Н              | H              | H              | SEt             |
| H              | H              | H              | H              | H              | S-cyclopropyl   |
| Н              | Н              | Н              | H              | H              | F               |
| H              | Н              | H              | H              | H              | Cl              |
| Н              | Н              | Н              | H              | H              | Br              |
| H              | H              | Н              | H              | H              | 1               |
| monophosphate  | Н              | H              | H              | H              | NH <sub>2</sub> |
| monophosphate  | Н              | Н              | H              | H              | NH-acetyl       |
| monophosphate  | H              | Н              | H              | H              | NH-cyclopropyl  |
| monophosphate  | H              | Н              | H              | H              | NH-methyl       |
| monophosphate  | H              | Н              | H              | H              | NH-ethyl        |
| monophosphate  | H              | H              | H              | H              | ОН              |
| monophosphate  | H              | Н              | H              | H              | O-acetyl        |
| monophosphate  | H              | Н              | H              | H              | OMe             |
| monophosphate  | H              | Н              | H              | H              | OEt             |
| monophosphate  | H              | H              | H              | H              | O-cyclopropyl   |
| monophosphate  | Н              | Н              | H              | H              | SH              |
| monophosphate  | H              | H              | H              | H              | SMe             |
| monophosphate  | Н              | H              | H              | H              | SEt             |
| monophosphate  | H              | Н              | H              | H              | S-cyclopropyl   |
| monophosphate  | H              | H              | Н              | H              | F               |
| monophosphate  | Н              | Н              | Н              | H              | Cl              |
| monophosphate  | Н              | H              | H              | H              | Br              |
| monophosphate  | Н              | Н              | Н              | H              | I               |
| diphosphate    | Н              | H              | H              | H              | NH <sub>2</sub> |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | X1 | X <sup>2</sup> | Y               |
|----------------|----------------|----------------|----|----------------|-----------------|
| diphosphate    | Н              | Н              | H  | H              | NH-acetyl       |
| diphosphate    | Н              | H              | H  | H              | NH-cyclopropyl  |
| diphosphate    | Н              | H              | H  | H              | NH-methyl       |
| diphosphate    | Н              | H              | H  | H              | NH-ethyl        |
| diphosphate    | Н              | Н              | H  | H              | ОН              |
| diphosphate    | Н              | Н              | H  | H              | O-acetyl        |
| diphosphate    | H              | Н              | H  | H              | OMe             |
| diphosphate    | H ·            | Н              | H  | H              | OEt             |
| diphosphate    | H              | Н              | Н  | Н              | O-cyclopropyl   |
| diphosphate    | H              | H              | H  | H              | SH              |
| diphosphate    | Н              | H              | H  | H              | SMe             |
| diphosphate    | H              | Н              | Н  | Н              | SEt             |
| diphosphate    | Н              | Н              | Н  | Н              | S-cyclopropyl   |
| diphosphate    | H              | H              | Н  | H              | F               |
| diphosphate    | H              | Н              | H  | H              | Cl              |
| diphosphate    | H              | Н              | Н  | H              | Br              |
| diphosphate    | Н              | Н              | H  | H              | I               |
| triphosphate   | Н              | H              | H  | H              | NH <sub>2</sub> |
| triphosphate   | H              | H              | H  | H              | NH-acetyl       |
| triphosphate   | Н              | H              | Н  | Н              | NH-cyclopropyl  |
| triphosphate   | Н              | H              | H  | Н              | NH-methyl       |
| triphosphate   | Н              | Н              | H  | Н              | NH-ethyl        |
| triphosphate   | Н              | Н              | H  | Н              | ОН              |
| triphosphate   | Н              | H              | Н  | H              | OMe             |
| triphosphate   | Н              | H              | Н  | Н              | OEt             |
| triphosphate   | H              | Н              | Н  | H              | O-cyclopropyl   |
| triphosphate   | H              | H              | H  | H              | O-acetyl        |
| triphosphate   | Н              | H              | H  | H              | SH              |
| triphosphate   | Н              | H              | H  | H              | SMe             |
| triphosphate   | H              | H              | H  | H              | SEt             |
| triphosphate   | Н              | Н              | H  | H              | S-cyclopropyl   |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | $X^1$ | X <sup>2</sup> | Y               |
|----------------|----------------|----------------|-------|----------------|-----------------|
| triphosphate   | Н              | Н              | H     | Н              | F               |
| triphosphate   | Н              | Н              | Н     | H              | Cl              |
| triphosphate   | Н              | Н              | H     | H              | Br              |
| triphosphate   | Н              | H              | H     | Н              | I               |
| monophosphate  | monophosphate  | monophosphate  | H     | Н              | NH <sub>2</sub> |
| monophosphate  | monophosphate  | monophosphate  | H     | H              | NH-cyclopropyl  |
| monophosphate  | monophosphate  | monophosphate  | H     | Н              | ОН              |
| monophosphate  | monophosphate  | monophosphate  | H     | H              | F               |
| monophosphate  | monophosphate  | monophosphate  | H     | Н              | Cl              |
| diphosphate    | diphosphate    | diphosphate    | H     | H              | NH <sub>2</sub> |
| diphosphate    | diphosphate    | diphosphate    | H     | H              | NH-cyclopropyl  |
| diphosphate    | diphosphate    | diphosphate    | H     | H              | ОН              |
| diphosphate    | diphosphate    | diphosphate    | H     | H              | F               |
| diphosphate    | diphosphate    | diphosphate    | H     | Н              | Cl              |
| triphosphate   | triphosphate   | triphosphate   | Н     | Н              | NH <sub>2</sub> |
| triphosphate   | triphosphate   | triphosphate   | H     | H              | NH-cyclopropyl  |
| triphosphate   | triphosphate   | triphosphate   | H     | H              | OH              |
| triphosphate   | triphosphate   | triphosphate   | H     | H              | F               |
| triphosphate   | triphosphate   | triphosphate   | H     | Н              | Cl              |
| H              | Н              | Н              | F     | H              | NH <sub>2</sub> |
| H              | Н              | Н              | F     | H              | NH-cyclopropyl  |
| H              | H              | H              | F     | H              | ОН              |
| H              | Н              | H              | F     | H              | F               |
| H              | H              | Н              | F     | H              | Cl              |
| H              | Н              | Н              | Cl    | H              | NH <sub>2</sub> |
| H              | Н              | H              | Cl    | H              | NH-cyclopropyl  |
| Н              | Н              | Н              | Cl    | H              | ОН              |
| Н              | Н              | Н              | Cl    | H              | F               |
| Н              | Н              | Н              | Cl    | H              | Cl              |
| H              | H              | Н              | Br    | H              | NH <sub>2</sub> |
| H              | H              | H              | Br    | H              | NH-cyclopropyl  |

| $\mathbb{R}^1$ | R <sup>2</sup> | $\mathbb{R}^3$ | X <sup>I</sup>  | X <sup>2</sup> | Y               |
|----------------|----------------|----------------|-----------------|----------------|-----------------|
| H              | H              | H              | Br              | H              | ОН              |
| H              | H              | H              | Br              | H              | F               |
| H              | H              | Н              | Br              | H              | Cl              |
| H              | H              | Н              | NH <sub>2</sub> | H              | NH <sub>2</sub> |
| H              | H              | H              | NH <sub>2</sub> | Н              | NH-cyclopropyl  |
| H              | H              | Н              | NH <sub>2</sub> | H              | ОН              |
| H              | H              | Н              | NH <sub>2</sub> | Н              | F               |
| H              | H              | Н              | NH <sub>2</sub> | H              | Cl              |
| H              | H              | H              | SH              | Н              | NH <sub>2</sub> |
| H              | H              | H              | SH              | Н              | NH-cyclopropyl  |
| H              | H              | Н              | SH              | H              | OH              |
| H              | Н              | H              | SH              | H              | F               |
| H              | Н              | Н              | SH              | H              | Cl              |
| acetyl         | H              | H              | Н               | H              | NH <sub>2</sub> |
| acetyl         | H              | H              | H               | H              | NH-cyclopropyl  |
| acetyl         | H              | Н              | H               | H              | ОН              |
| acetyl         | H              | Н              | H               | H              | F               |
| acetyl         | H              | H              | H               | H              | Cl              |
| acetyl         | H              | Н              | F               | H              | NH <sub>2</sub> |
| acetyl         | H              | Н              | F               | H              | NH-cyclopropyl  |
| acetyl         | H              | H              | F               | H              | OH              |
| acetyl         | H              | Н              | F               | H              | F               |
| acetyl         | H              | Н              | F               | H              | Cl              |
| H              | acetyl         | acetyl         | Н               | H              | NH <sub>2</sub> |
| H              | acetyl         | acetyl         | H               | H              | NH-cyclopropyl  |
| H              | acetyl         | acetyl         | H               | H              | ОН              |
| H              | acetyl         | acetyl         | H               | H              | F               |
| H              | acetyl         | acetyl         | H               | H              | Cl              |
| acetyl         | acetyl         | acetyl         | H               | H              | NH <sub>2</sub> |
| acetyl         | acetyl         | acetyl         | H               | H              | NH-cyclopropyl  |
| acetyl         | acetyl         | acetyl         | H               | H              | OH              |

| R¹            | $\mathbb{R}^2$ | R <sup>3</sup> | X | X <sup>2</sup>  | Y               |
|---------------|----------------|----------------|---|-----------------|-----------------|
| acetyl        | acetyl         | acetyl         | H | H               | F               |
| acetyl        | acetyl         | acetyl         | H | H               | Cl              |
| monophosphate | acetyl         | acetyl         | Н | H               | NH <sub>2</sub> |
| monophosphate | acetyl         | acetyl         | H | H               | NH-cyclopropyl  |
| monophosphate | acetyl         | acetyl         | H | H               | ОН              |
| monophosphate | acetyl         | acetyl         | H | H               | F               |
| monophosphate | acetyl         | acetyl         | H | H               | Cl              |
| diphosphate   | acetyl         | acetyl         | H | H               | NH <sub>2</sub> |
| diphosphate   | acetyl         | acetyl         | H | H               | NH-cyclopropyl  |
| diphosphate   | acetyl         | acetyl         | H | H               | ОН              |
| diphosphate   | acetyl         | acetyl         | H | H               | F               |
| diphosphate   | acetyl         | acetyl         | H | H               | Cl              |
| triphosphate  | acetyl         | acetyl         | H | H               | NH <sub>2</sub> |
| triphosphate  | acetyl         | acetyl         | H | H               | NH-cyclopropyl  |
| triphosphate  | acetyl         | acetyl         | H | Н               | ОН              |
| triphosphate  | acetyl         | acetyl         | H | H               | F               |
| triphosphate  | acetyl         | acetyl         | H | H               | Cl              |
| Н             | H              | H              | H | NH <sub>2</sub> | Н               |
| H             | Н              | H              | H | NH <sub>2</sub> | NH <sub>2</sub> |
| H             | Н              | Н              | H | NH <sub>2</sub> | NH-cyclopropyl  |
| H             | H              | H              | H | NH <sub>2</sub> | NH-methyl       |
| H             | Н              | H              | H | NH <sub>2</sub> | NH-ethyl        |
| H             | Н              | H              | H | NH <sub>2</sub> | NH-acetyl       |
| H             | Н              | H              | H | NH <sub>2</sub> | ОН              |
| H             | Н              | H              | H | NH <sub>2</sub> | OMe             |
| H             | Н              | H              | H | NH <sub>2</sub> | OEt             |
| H             | H              | H              | H | NH <sub>2</sub> | O-cyclopropyl   |
| H             | H              | Н              | H | NH <sub>2</sub> | O-acetyl        |
| H             | H              | H              | H | NH <sub>2</sub> | SH              |
| H             | H              | H              | Н | NH <sub>2</sub> | SMe             |
| H             | Н              | Н              | Н | NH <sub>2</sub> | SEt             |

| $\mathbb{R}^{1}$ | R <sup>2</sup> | R <sup>3</sup> | X <sup>1</sup> | X <sup>2</sup>  | Y               |
|------------------|----------------|----------------|----------------|-----------------|-----------------|
| Н                | H              | Н              | H              | NH <sub>2</sub> | S-cyclopropyl   |
| H                | Н              | Н              | H              | NH <sub>2</sub> | F               |
| H                | Н              | Н              | H              | NH <sub>2</sub> | Cl              |
| H                | H              | Н              | H              | NH <sub>2</sub> | Br              |
| H                | H              | Н              | H              | NH <sub>2</sub> | I               |
| monophosphate    | Н              | Н              | H              | NH <sub>2</sub> | NH <sub>2</sub> |
| monophosphate    | Н              | H              | H              | NH <sub>2</sub> | NH-acetyl       |
| monophosphate    | Н              | H              | H              | NH <sub>2</sub> | NH-cyclopropyl  |
| monophosphate    | H              | H              | H              | NH <sub>2</sub> | NH-methyl       |
| monophosphate    | H              | Н              | H              | NH <sub>2</sub> | NH-ethyl        |
| monophosphate    | Н              | Н              | H              | NH <sub>2</sub> | ОН              |
| monophosphate    | Н              | Н              | Н              | NH <sub>2</sub> | O-acetyl        |
| monophosphate    | H              | Н              | Н              | NH <sub>2</sub> | OMe             |
| monophosphate    | Н              | Н              | H              | NH <sub>2</sub> | OEt             |
| monophosphate    | Н              | Н              | H              | NH <sub>2</sub> | O-cyclopropyl   |
| monophosphate    | Н              | Н              | H              | NH <sub>2</sub> | SH              |
| monophosphate    | Н              | H              | H              | NH <sub>2</sub> | SMe             |
| monophosphate    | Н              | H              | H              | NH <sub>2</sub> | SEt             |
| monophosphate    | Н              | Н              | H              | NH <sub>2</sub> | S-cyclopropyl   |
| monophosphate    | Н              | Н              | H              | NH <sub>2</sub> | F               |
| monophosphate    | Н              | H              | H              | NH <sub>2</sub> | Cl              |
| monophosphate    | Н              | Н              | Н              | NH <sub>2</sub> | Br              |
| monophosphate    | Н              | Н              | H              | NH <sub>2</sub> | I               |
| diphosphate      | Н              | Н              | H              | NH <sub>2</sub> | NH <sub>2</sub> |
| diphosphate      | Н              | H              | H              | NH <sub>2</sub> | NH-acetyl       |
| diphosphate      | Н              | H              | H              | NH <sub>2</sub> | NH-cyclopropyl  |
| diphosphate      | Н              | Н              | Н              | NH <sub>2</sub> | NH-methyl       |
| diphosphate      | Н              | Н              | Н              | NH <sub>2</sub> | NH-ethyl        |
| diphosphate      | Н              | Н              | H              | NH <sub>2</sub> | OH              |
| diphosphate      | Н              | Н              | H              | NH <sub>2</sub> | O-acetyl        |
| diphosphate      | Н              | Н              | H              | NH <sub>2</sub> | OMe             |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | X | X <sup>2</sup>  | Y               |
|----------------|----------------|----------------|---|-----------------|-----------------|
| diphosphate    | Н              | Н              | H | NH <sub>2</sub> | OEt             |
| diphosphate    | Н              | Н              | Н | NH <sub>2</sub> | O-cyclopropyl   |
| diphosphate    | H              | Н              | H | NH <sub>2</sub> | SH              |
| diphosphate    | Н              | Н              | H | NH <sub>2</sub> | SMe             |
| diphosphate    | Н              | H              | H | NH <sub>2</sub> | SEt             |
| diphosphate    | Н              | Н              | H | NH <sub>2</sub> | S-cyclopropyl   |
| diphosphate    | Н              | Н              | H | NH <sub>2</sub> | F               |
| diphosphate    | Н              | H              | H | NH <sub>2</sub> | Cl              |
| diphosphate    | Н              | Н              | H | NH <sub>2</sub> | Br              |
| diphosphate    | Н              | Н              | H | NH <sub>2</sub> | I               |
| triphosphate   | H              | Н              | H | NH <sub>2</sub> | NH <sub>2</sub> |
| triphosphate   | Н              | Н              | H | NH <sub>2</sub> | NH-acetyl       |
| triphosphate   | Н              | Н              | H | NH <sub>2</sub> | NH-cyclopropyl  |
| triphosphate   | Н              | Н              | H | NH <sub>2</sub> | NH-methyl       |
| triphosphate   | Н              | Н              | H | NH <sub>2</sub> | NH-ethyl        |
| triphosphate   | Н              | Н              | H | NH <sub>2</sub> | ОН              |
| triphosphate   | Н              | Н              | H | NH <sub>2</sub> | OMe             |
| triphosphate   | Н              | Н              | H | NH <sub>2</sub> | OEt             |
| triphosphate   | H              | Н              | H | NH <sub>2</sub> | O-cyclopropyl   |
| triphosphate   | Н              | Н              | H | NH <sub>2</sub> | O-acetyl        |
| triphosphate   | H              | H              | H | NH <sub>2</sub> | SH              |
| triphosphate   | Н              | Н              | H | NH <sub>2</sub> | SMe             |
| triphosphate   | Н              | Н              | H | NH <sub>2</sub> | SEt             |
| triphosphate   | Н              | H              | H | NH <sub>2</sub> | S-cyclopropyl   |
| triphosphate   | H              | Н              | H | NH <sub>2</sub> | F               |
| triphosphate   | Н              | Н              | H | NH <sub>2</sub> | Cl              |
| triphosphate   | Н              | H              | Н | NH <sub>2</sub> | Br              |
| triphosphate   | H              | H              | H | NH <sub>2</sub> | I               |
| monophosphate  | monophosphate  | monophosphate  | H | NH <sub>2</sub> | NH <sub>2</sub> |
| monophosphate  | monophosphate  | monophosphate  | H | NH <sub>2</sub> | NH-cyclopropyl  |
| monophosphate  | monophosphate  | monophosphate  | H | NH <sub>2</sub> | ОН              |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | X1              | X <sup>2</sup>  | Y               |
|----------------|----------------|----------------|-----------------|-----------------|-----------------|
| monophosphate  | monophosphate  | monophosphate  | H               | NH <sub>2</sub> | F               |
| monophosphate  | monophosphate  | monophosphate  | H               | NH <sub>2</sub> | Cl              |
| diphosphate    | diphosphate    | diphosphate    | H               | NH <sub>2</sub> | NH <sub>2</sub> |
| diphosphate    | diphosphate    | diphosphate    | H               | NH <sub>2</sub> | NH-cyclopropyl  |
| diphosphate    | diphosphate    | diphosphate    | H               | NH <sub>2</sub> | OH              |
| diphosphate    | diphosphate    | diphosphate    | H               | NH <sub>2</sub> | F               |
| diphosphate    | diphosphate    | diphosphate    | H               | NH <sub>2</sub> | Cl              |
| triphosphate   | triphosphate   | triphosphate   | H               | NH <sub>2</sub> | NH <sub>2</sub> |
| triphosphate   | triphosphate   | triphosphate   | H               | NH <sub>2</sub> | NH-cyclopropyl  |
| triphosphate   | triphosphate   | triphosphate   | H               | NH <sub>2</sub> | ОН              |
| triphosphate   | triphosphate   | triphosphate   | H               | NH <sub>2</sub> | F               |
| triphosphate   | triphosphate   | triphosphate   | H               | NH <sub>2</sub> | Cl              |
| Н              | H              | H              | F               | NH <sub>2</sub> | NH <sub>2</sub> |
| H              | Н              | Н              | F               | NH <sub>2</sub> | NH-cyclopropyl  |
| H              | H              | Н              | F               | NH <sub>2</sub> | ОН              |
| H              | Н              | Н              | F               | NH <sub>2</sub> | F               |
| H              | Н              | Н              | F               | NH <sub>2</sub> | Cl              |
| H              | Н              | Н              | Cl              | NH <sub>2</sub> | NH <sub>2</sub> |
| H              | Н              | H              | C1              | NH <sub>2</sub> | NH-cyclopropyl  |
| H              | Н              | Н              | Cl              | NH <sub>2</sub> | ОН              |
| H              | Н              | H              | Cl              | NH <sub>2</sub> | F               |
| H              | Н              | Н              | Cl              | NH <sub>2</sub> | Cl              |
| H              | Н              | Н              | Br              | NH <sub>2</sub> | NH <sub>2</sub> |
| H              | H              | Н              | Br              | NH <sub>2</sub> | NH-cyclopropyl  |
| H              | Н              | Н              | Br              | NH <sub>2</sub> | OH              |
| H              | Н              | H              | Br              | NH <sub>2</sub> | F               |
| H              | Н              | Н              | Br              | NH <sub>2</sub> | Cl              |
| H              | H              | H              | NH <sub>2</sub> | NH <sub>2</sub> | NH <sub>2</sub> |
| H              | Н              | H              | NH <sub>2</sub> | NH <sub>2</sub> | NH-cyclopropyl  |
| H              | Н              | Н              | NH <sub>2</sub> | NH <sub>2</sub> | ОН              |
| Н              | Н              | H              | NH <sub>2</sub> | NH <sub>2</sub> | F               |

| $\mathbb{R}^1$ | R <sup>2</sup> | R <sup>3</sup> | X <sup>1</sup>  | X <sup>2</sup>  | Y               |
|----------------|----------------|----------------|-----------------|-----------------|-----------------|
| Н              | Н              | Н              | NH <sub>2</sub> | NH <sub>2</sub> | C1              |
| Н              | H              | Н              | SH              | NH <sub>2</sub> | NH <sub>2</sub> |
| Н              | H              | Н              | SH              | NH <sub>2</sub> | NH-cyclopropyl  |
| Н              | Н              | H              | SH              | NH <sub>2</sub> | ОН              |
| H              | Н              | Н              | SH              | NH <sub>2</sub> | F               |
| Н              | Н              | Н              | SH              | NH <sub>2</sub> | Cl              |
| acetyl         | Н              | H              | H               | NH <sub>2</sub> | NH <sub>2</sub> |
| acetyl         | Н              | Н              | Н               | NH <sub>2</sub> | NH-cyclopropyl  |
| acetyl         | H              | H              | H               | NH <sub>2</sub> | ОН              |
| acetyl         | H              | Н              | H               | NH <sub>2</sub> | F               |
| acetyl         | Н              | Н              | H               | NH <sub>2</sub> | Cl              |
| acetyl         | H              | Н              | F               | NH <sub>2</sub> | NH <sub>2</sub> |
| acetyl         | H              | Н              | F               | NH <sub>2</sub> | NH-cyclopropyl  |
| acetyl         | Н              | Н              | F               | NH <sub>2</sub> | ОН              |
| acetyl         | Н              | Н              | F               | NH <sub>2</sub> | F               |
| acetyl         | H              | H              | F               | NH <sub>2</sub> | Cl              |
| Н              | acetyl         | acetyl         | Н               | NH <sub>2</sub> | NH <sub>2</sub> |
| H              | acetyl         | acetyl         | H               | NH <sub>2</sub> | NH-cyclopropyl  |
| Н              | acetyl         | acetyl         | H               | NH <sub>2</sub> | ОН              |
| H              | acetyl         | acetyl         | H               | NH <sub>2</sub> | F               |
| H              | acetyl         | acetyl         | H               | NH <sub>2</sub> | Cl              |
| acetyl         | acetyl         | acetyl         | H               | NH <sub>2</sub> | NH <sub>2</sub> |
| acetyl         | acetyl         | acetyl         | H               | NH <sub>2</sub> | NH-cyclopropyl  |
| acetyl         | acetyl         | acetyl         | Н               | NH <sub>2</sub> | ОН              |
| acetyl         | acetyl         | acetyl         | H               | NH <sub>2</sub> | F               |
| acetyl         | acetyl         | acetyl         | H               | NH <sub>2</sub> | Cl              |
| monophosphate  | acetyl         | acetyl         | H               | NH <sub>2</sub> | NH <sub>2</sub> |
| monophosphate  | acetyl         | acetyl         | Н               | NH <sub>2</sub> | NH-cyclopropyl  |
| monophosphate  | acetyl         | acetyl         | H               | NH <sub>2</sub> | OH              |
| monophosphate  | acetyl         | acetyl         | H               | NH <sub>2</sub> | F               |
| monophosphate  | acetyl         | acetyl         | H               | NH <sub>2</sub> | Cl              |

| $\mathbb{R}^1$ | R <sup>2</sup> | $\mathbb{R}^3$ | X¹ | X <sup>2</sup>  | Y               |
|----------------|----------------|----------------|----|-----------------|-----------------|
| diphosphate    | acetyl         | acetyl         | H  | NH <sub>2</sub> | NH <sub>2</sub> |
| diphosphate    | acetyl         | acetyl         | H  | NH <sub>2</sub> | NH-cyclopropyl  |
| diphosphate    | acetyl         | acetyl         | H  | NH <sub>2</sub> | ОН              |
| diphosphate    | acetyl         | acetyl         | H  | NH <sub>2</sub> | F               |
| diphosphate    | acetyl         | acetyl         | H  | NH <sub>2</sub> | Cl              |
| triphosphate   | acetyl         | acetyl         | H  | NH <sub>2</sub> | NH <sub>2</sub> |
| triphosphate   | acetyl         | acetyl         | Н  | NH <sub>2</sub> | NH-cyclopropyl  |
| triphosphate   | acetyl         | acetyl         | H  | NH <sub>2</sub> | OH              |
| triphosphate   | acetyl         | acetyl         | H  | NH <sub>2</sub> | F               |
| triphosphate   | acetyl         | acetyl         | H  | NH <sub>2</sub> | Cl              |
| Н              | Н              | Н              | H  | Cl              | Н               |
| H              | Н              | H              | H  | Cl              | Н               |
| Н              | Н              | H              | Н  | C1              | NH <sub>2</sub> |
| H              | Н              | H              | H  | C1              | NH-cyclopropyl  |
| H              | Н              | Н              | Н  | Cl              | NH-methyl       |
| H              | Н              | Н              | H  | Cl              | NH-ethyl        |
| Н              | Н              | Н              | Н  | Cl              | NH-acetyl       |
| Н              | Н              | H              | H  | Cl              | ОН              |
| H              | Н              | Н              | H  | C1              | OMe             |
| Н              | H              | Н              | H  | Cl              | OEt             |
| H              | Н              | Н              | H  | Cl              | O-cyclopropyl   |
| H              | Н              | H              | H  | Cl              | O-acetyl        |
| H              | Н              | Н              | H  | C1              | SH              |
| Н              | Н              | Н              | H  | Cl              | SMe             |
| H              | Н              | Н              | H  | Cl              | SEt             |
| Н              | Н              | Н              | H. | Cl              | S-cyclopropyl   |
| monophosphate  | Н              | Н              | H  | Cl              | NH <sub>2</sub> |
| monophosphate  | Н              | Н              | H  | Cl              | NH-acetyl       |
| monophosphate  | H              | Н              | H  | Cl              | NH-cyclopropyl  |
| monophosphate  | Н              | Н              | H  | Cl              | NH-methyl       |
| monophosphate  | H              | Н              | H  | Cl              | NH-ethyl        |

| $\mathbb{R}^{1}$ | $\mathbb{R}^2$ | $\mathbb{R}^3$ | X | X <sup>2</sup> | Y               |
|------------------|----------------|----------------|---|----------------|-----------------|
| monophosphate    | H              | H              | H | Cl             | ОН              |
| monophosphate    | H              | H              | H | Cl             | O-acetyl        |
| monophosphate    | H              | Н              | H | C1             | OMe             |
| monophosphate    | H              | H              | H | Cl             | OEt             |
| monophosphate    | H              | Н              | H | Cl             | O-cyclopropyl   |
| monophosphate    | H              | H              | H | C1             | SH              |
| monophosphate    | H              | H              | H | C1             | SMe             |
| monophosphate    | Н              | Н              | H | Cl             | SEt             |
| monophosphate    | Н              | Н              | Н | Cl             | S-cyclopropyl   |
| diphosphate      | H              | H              | H | Cl             | NH <sub>2</sub> |
| diphosphate      | H              | H              | H | CI             | NH-acetyl       |
| diphosphate      | H              | Н              | H | Cl             | NH-cyclopropyl  |
| diphosphate      | Н              | Н              | H | Cl             | NH-methyl       |
| diphosphate      | H              | H              | H | C1             | NH-ethyl        |
| diphosphate      | H              | Н              | H | C1             | ОН              |
| diphosphate      | H              | Н              | H | Cl             | O-acetyl        |
| diphosphate      | Н              | Н              | H | C1             | OMe             |
| diphosphate      | Н              | Н              | H | C1             | OEt             |
| diphosphate      | Н              | Н              | H | C1             | O-cyclopropyl   |
| diphosphate      | Н              | H              | H | Cl             | SH              |
| diphosphate      | H              | Н              | H | CI             | SMe             |
| diphosphate      | H              | Н              | H | C1             | SEt             |
| diphosphate      | Н              | H              | H | Cl             | S-cyclopropyl   |
| triphosphate     | Н              | Н              | H | Cl             | NH <sub>2</sub> |
| triphosphate     | Н              | Н              | H | C1             | NH-acetyl       |
| triphosphate     | Н              | Н              | H | CI             | NH-cyclopropyl  |
| triphosphate     | H              | H              | H | Cl             | NH-methyl       |
| triphosphate     | Н              | H              | Н | Cl             | NH-ethyl        |
| triphosphate     | Н              | H              | H | Cl             | ОН              |
| triphosphate     | Н              | H              | H | Cl             | OMe             |
| triphosphate     | H              | Н              | H | Cl             | OEt             |

| $\mathbb{R}^1$ | $\mathbb{R}^2$ | R <sup>3</sup> | X <sup>1</sup>  | X <sup>2</sup> | Y               |
|----------------|----------------|----------------|-----------------|----------------|-----------------|
| triphosphate   | Н              | H              | H               | C1             | O-cyclopropyl   |
| triphosphate   | Н              | Н              | Н               | Cl             | O-acetyl        |
| triphosphate   | Н              | Н              | H               | Cl             | SH              |
| triphosphate   | H              | H              | H               | Cl             | SMe             |
| triphosphate   | Н              | Н              | H               | Cl             | SEt             |
| triphosphate   | H              | H              | H               | Cl             | S-cyclopropyl   |
| monophosphate  | monophosphate  | monophosphate  | H               | C1             | NH <sub>2</sub> |
| monophosphate  | monophosphate  | monophosphate  | Н               | Cl             | NH-cyclopropyl  |
| monophosphate  | monophosphate  | monophosphate  | H               | Cl             | ОН              |
| diphosphate    | diphosphate    | diphosphate    | H               | C1             | NH <sub>2</sub> |
| diphosphate    | diphosphate    | diphosphate    | H               | Cl             | NH-cyclopropyl  |
| diphosphate    | diphosphate    | diphosphate    | H               | Cl             | ОН              |
| triphosphate   | triphosphate   | triphosphate   | Н               | Cl             | NH <sub>2</sub> |
| triphosphate   | triphosphate   | triphosphate   | Н               | Cl             | NH-cyclopropyl  |
| triphosphate   | triphosphate   | triphosphate   | Н               | Cl             | ОН              |
| H              | Н              | H              | F               | Cl             | NH <sub>2</sub> |
| Н              | Н              | H              | F               | C1             | NH-cyclopropyl  |
| H              | Н              | H              | F               | Cl             | ОН              |
| H              | H              | Н              | Cl              | Cl             | NH <sub>2</sub> |
| Н              | Н              | Н              | Cl              | C1             | NH-cyclopropyl  |
| H              | Н              | H              | CI              | Cl             | OH              |
| H              | Н              | H              | Br              | C1             | NH <sub>2</sub> |
| H              | Н              | H              | Br              | Cl             | NH-cyclopropyl  |
| H              | Н              | H              | Br              | Cl             | ОН              |
| H              | Н              | H              | NH <sub>2</sub> | Cl             | NH <sub>2</sub> |
| H              | Н              | H              | NH <sub>2</sub> | Cl             | NH-cyclopropyl  |
| Н              | Н              | Н              | NH <sub>2</sub> | Cl             | ОН              |
| H              | Н              | H              | SH              | Cl             | NH <sub>2</sub> |
| H              | Н              | H              | SH              | Cl             | NH-cyclopropyl  |
| H              | H              | Н              | SH              | Cl             | ОН              |
| acetyl         | H              | H              | Н               | Cl             | NH <sub>2</sub> |

| $\mathbb{R}^1$ | R <sup>2</sup> | R <sup>3</sup> | X <sup>1</sup> | X <sup>2</sup> | Y               |
|----------------|----------------|----------------|----------------|----------------|-----------------|
| acetyl         | H              | H              | H              | Cl             | NH-cyclopropyl  |
| acetyl         | H              | Н              | H              | C1             | ОН              |
| acetyl         | Н              | H              | F              | Cl             | NH <sub>2</sub> |
| acetyl         | H              | H              | F              | C1             | NH-cyclopropyl  |
| acetyl         | Н              | Н              | F              | Cl             | ОН              |
| H              | acetyl         | acetyl         | H              | Cl             | NH <sub>2</sub> |
| H              | acetyl         | acetyl         | H              | C1             | NH-cyclopropyl  |
| H              | acetyl         | acetyl         | H              | Cl             | ОН              |
| acetyl         | acetyl         | acetyl         | H              | Cl             | NH <sub>2</sub> |
| acetyl         | acetyl         | acetyl         | H              | Cl             | NH-cyclopropyl  |
| acetyl         | acetyl         | acetyl         | H              | C1             | OH _            |
| monophosphate  | acetyl         | acetyl         | H              | C1             | NH <sub>2</sub> |
| monophosphate  | acetyl         | acetyl         | H              | C1             | NH-cyclopropyl  |
| monophosphate  | acetyl         | acetyl         | Н              | Cl             | ОН              |
| diphosphate    | acetyl         | acetyl         | H              | C1             | NH <sub>2</sub> |
| diphosphate    | acetyl         | acetyl         | H              | Cl             | NH-cyclopropyl  |
| diphosphate    | acetyl         | acetyl         | H              | Cl             | ОН              |
| triphosphate   | acetyl         | acetyl         | Н              | CI             | NH <sub>2</sub> |
| triphosphate   | acetyl         | acetyl         | H              | C1             | NH-cyclopropyl  |
| triphosphate   | acetyl         | acetyl         | Н              | Cl             | ОН              |
| H              | H              | H              | H              | C1             | NH <sub>2</sub> |
| H              | Н              | H              | H              | Cl             | NH-cyclopropyl  |
| Н              | Н              | H              | H              | Cl             | ОН              |
| H              | Н              | H              | Н              | Br             | NH <sub>2</sub> |
| H              | Н              | H              | H              | Br             | NH-cyclopropyl  |
| H              | H              | H              | Н              | Br             | ОН              |

Alternatively, the following nucleosides of Formula VI are prepared, using the appropriate sugar and pyrimidine or purine bases.

$$X^{1}$$
 $X^{1}$ 
 $X^{1$ 

# wherein:

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | X <sup>1</sup> | Y               |
|----------------|----------------|----------------|----------------|-----------------|
| H              | Н              | Н              | H              | Н               |
| Н              | Н              | Н              | H              | NH <sub>2</sub> |
| H              | Н              | H              | H              | NH-cyclopropyl  |
| H              | Н              | H              | H              | NH-methyl       |
| H              | Н              | H              | H              | NH-ethyl        |
| H              | Н              | H              | H              | NH-acetyl       |
| H              | Н              | H              | H              | ОН              |
| H              | Н              | H              | H              | OMe             |
| H              | Н              | H              | Н              | OEt             |
| H              | Н              | H              | H              | O-cyclopropyl   |
| H              | H              | H              | H              | O-acetyl        |
| H              | Н              | H              | H              | SH              |
| H              | H              | H              | H              | SMe             |
| H              | Н              | H              | H              | SEt             |
| H              | Н              | Н              | H              | S-cyclopropyl   |
| monophosphate  | Н              | Н              | H              | NH <sub>2</sub> |
| monophosphate  | Н              | H              | H              | NH-acetyl       |
| monophosphate  | Н              | H              | H              | NH-cyclopropyl  |
| monophosphate  | Н              | H              | Н              | NH-methyl       |
| monophosphate  | H              | H              | H              | NH-ethyl        |
| monophosphate  | H              | H              | H              | ОН              |
| monophosphate  | Н              | H              | Н              | O-acetyl        |

| $\mathbb{R}^1$ | R <sup>2</sup> | R <sup>3</sup> | X <sup>1</sup> | Y               |
|----------------|----------------|----------------|----------------|-----------------|
| monophosphate  | Н              | H              | Н              | OMe             |
| monophosphate  | Н              | Н              | Н              | OEt             |
| monophosphate  | Н              | Н              | H              | O-cyclopropyl   |
| monophosphate  | Н              | Н              | H              | SH              |
| monophosphate  | Н              | Н              | H              | SMe             |
| monophosphate  | Н              | Н              | H              | SEt             |
| monophosphate  | Н              | Н              | H              | S-cyclopropyl   |
| diphosphate    | Н              | Н              | Н              | NH <sub>2</sub> |
| diphosphate    | Н              | H              | H              | NH-acetyl       |
| diphosphate    | H              | Н              | H              | NH-cyclopropyl  |
| diphosphate    | Н              | H              | H              | NH-methyl       |
| diphosphate    | Н              | H              | H              | NH-ethyl        |
| diphosphate    | Н              | Н              | H              | ОН              |
| diphosphate    | H              | H              | H              | O-acetyl        |
| diphosphate    | H              | Н              | H              | OMe             |
| diphosphate    | H              | Н              | H              | OEt             |
| diphosphate    | Н              | Н              | H              | O-cyclopropyl   |
| diphosphate    | Н              | Н              | H              | SH              |
| diphosphate    | H              | H              | H              | SMe             |
| diphosphate    | Н              | H              | H              | SEt             |
| diphosphate    | H              | Н              | H              | S-cyclopropyl   |
| triphosphate   | H              | Н              | H              | NH <sub>2</sub> |
| triphosphate   | H              | Н              | Н              | NH-acetyl       |
| triphosphate   | H              | H              | H              | NH-cyclopropyl  |
| triphosphate   | H              | Н              | Н              | NH-methyl       |
| triphosphate   | H ·            | Н              | H              | NH-ethyl        |
| triphosphate   | H              | Н              | H              | ОН              |
| triphosphate   | H              | Н              | H              | OMe             |
| triphosphate   | H              | H              | H              | OEt             |
| triphosphate   | H              | H              | H              | O-cyclopropyl   |
| triphosphate   | Н              | Н              | Н              | O-acetyl        |

| R <sup>1</sup> | $\mathbb{R}^2$ | $\mathbb{R}^3$ | X <sup>1</sup>  | Y               |
|----------------|----------------|----------------|-----------------|-----------------|
| triphosphate   | Н              | Н              | H               | SH              |
| triphosphate   | Н              | Н              | H               | SMe             |
| triphosphate   | Н              | Н              | H               | SEt             |
| triphosphate   | Н              | Н              | H               | S-cyclopropyl   |
| monophosphate  | monophosphate  | monophosphate  | H               | NH <sub>2</sub> |
| monophosphate  | monophosphate  | monophosphate  | H               | NH-cyclopropyl  |
| monophosphate  | monophosphate  | monophosphate  | H               | ОН              |
| diphosphate    | diphosphate    | diphosphate    | Н               | NH <sub>2</sub> |
| diphosphate    | diphosphate    | diphosphate    | H               | NH-cyclopropyl  |
| diphosphate    | diphosphate    | diphosphate    | H               | OH              |
| triphosphate   | triphosphate   | triphosphate   | H               | NH <sub>2</sub> |
| triphosphate   | triphosphate   | triphosphate   | Н               | NH-cyclopropyl  |
| triphosphate   | triphosphate   | triphosphate   | H               | ОН              |
| Н              | Н              | Н              | F               | NH <sub>2</sub> |
| H              | H              | Н              | F               | NH-cyclopropyl  |
| H              | Н              | Н              | F               | ОН              |
| Н              | Н              | Н              | Cl              | NH <sub>2</sub> |
| H              | H              | Н              | Cl              | NH-cyclopropyl  |
| H              | H              | H              | Cl              | ОН              |
| H              | Н              | Н              | Br              | NH <sub>2</sub> |
| H              | H              | Н              | Br              | NH-cyclopropyl  |
| H              | Н              | H              | Br              | ОН              |
| H              | H              | Н              | NH <sub>2</sub> | NH <sub>2</sub> |
| H              | H              | H              | NH <sub>2</sub> | NH-cyclopropyl  |
| H              | H              | Н              | NH <sub>2</sub> | ОН              |
| H              | H              | Н              | SH              | NH <sub>2</sub> |
| H              | H              | H              | SH              | NH-cyclopropyl  |
| H              | H              | H              | SH              | ОН              |
| acetyl         | H              | Н              | H               | NH <sub>2</sub> |
| acetyl         | Н              | Н              | H               | NH-cyclopropyl  |
| acetyl         | H              | Н              | H               | ОН              |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | X | Y               |
|----------------|----------------|----------------|---|-----------------|
| acetyl         | H              | Н              | F | NH <sub>2</sub> |
| acetyl         | H              | H              | F | NH-cyclopropyl  |
| acetyl         | H              | Н              | F | ОН              |
| H              | acetyl         | acetyl         | H | NH <sub>2</sub> |
| H              | acetyl         | acetyl         | Н | NH-cyclopropyl  |
| Н              | acetyl         | acetyl         | H | OH              |
| acetyl         | acetyl         | acetyl         | H | NH <sub>2</sub> |
| acetyl         | acetyl         | acetyl         | H | NH-cyclopropyl  |
| acetyl         | acetyl         | acetyl         | H | ОН              |
| monophosphate  | acetyl         | acetyl         | H | NH <sub>2</sub> |
| monophosphate  | acetyl         | acetyl         | H | NH-cyclopropyl  |
| monophosphate  | acetyl         | acetyl         | H | ОН              |
| diphosphate    | acetyl         | acetyl         | H | NH <sub>2</sub> |
| diphosphate    | acetyl         | acetyl         | H | NH-cyclopropyl  |
| diphosphate    | acetyl         | acetyl         | H | ОН              |
| triphosphate   | acetyl         | acetyl         | Н | NH <sub>2</sub> |
| triphosphate   | acetyl         | acetyl         | Н | NH-cyclopropyl  |
| triphosphate   | acetyl         | acetyl         | Н | ОН              |

Alternatively, the following nucleosides of Formula XIII are prepared, using the appropriate sugar and pyrimidine or purine bases.

$$R^{1}O$$
 $R^{6}$ 
 $R^{6}$ 
 $R^{6}$ 
 $R^{3}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{5}$ 
 $R^{$ 

wherein:

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | R <sup>6</sup>  | X | Base           |
|----------------|----------------|----------------|-----------------|---|----------------|
| H              | Н              | H              | CH <sub>3</sub> | 0 | 2,4-0-         |
|                |                |                |                 |   | Diacetyluracil |
| H              | Н              | Н              | CH <sub>3</sub> | 0 | Hypoxanthine   |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | R <sup>6</sup>  | X | Base              |
|----------------|----------------|----------------|-----------------|---|-------------------|
| Н              | H              | H              | CH <sub>3</sub> | 0 | 2,4-O-            |
|                |                |                |                 |   | Diacetylthymine   |
| H              | Н              | H              | CH <sub>3</sub> | 0 | Thymine           |
| H              | Н              | H              | CH <sub>3</sub> | 0 | Cytosine          |
| H              | Н              | H              | CH <sub>3</sub> | 0 | 4-(N-mono-        |
|                |                |                |                 |   | acetyl)cytosine   |
| Н              | Н              | Н              | CH <sub>3</sub> | 0 | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |
| Н              | Н              | Н              | CH <sub>3</sub> | 0 | Uracil            |
| Н              | Н              | Н              | CH <sub>3</sub> | 0 | 5-Fluorouracil    |
| Н              | Н              | Н              | CH <sub>3</sub> | S | 2,4-O-            |
|                |                |                |                 |   | Diacetyluraci     |
| Н              | Н              | H              | CH <sub>3</sub> | S | Hypoxanthine      |
| H              | Н              | Н              | CH <sub>3</sub> | S | 2,4-O-            |
|                |                |                |                 |   | Diacetylthymine   |
| H              | H              | H              | CH <sub>3</sub> | S | Thymine           |
| H              | H              | Н              | CH <sub>3</sub> | S | Cytosine          |
| H              | H              | H              | CH <sub>3</sub> | S | 4-(N-mono-        |
|                |                |                |                 |   | acetyl)cytosine   |
| H              | Н              | Н              | CH <sub>3</sub> | S | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |
| H              | H              | Н              | CH <sub>3</sub> | S | Uracil            |
| H              | H              | Н              | CH <sub>3</sub> | S | 5-Fluorouracil    |
| monophosphate  | H              | Н              | CH <sub>3</sub> | 0 | 2,4-O-            |
|                |                |                |                 |   | Diacetyluracil    |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | 0 | Hypoxanthine      |
| monophosphate  | Н              | H              | CH <sub>3</sub> | 0 | 2,4-O-            |
|                |                |                |                 |   | Diacetylthym      |
| monophosphate  | H              | Н              | CH <sub>3</sub> | 0 | Thymine           |
| monophosphate  | Н .            | Н              | CH <sub>3</sub> | 0 | Cytosine          |
| monophosphate  | H              | Н              | CH <sub>3</sub> | 0 | 4-(N-mono-        |
|                |                |                |                 |   | acetyl)cytosine   |

| R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | R <sup>6</sup>  | X | Base              |
|----------------|----------------|----------------|-----------------|---|-------------------|
| monophosphate  | Н              | H              | CH <sub>3</sub> | 0 | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | 0 | Uracil            |
| monophosphate  | H              | Н              | CH <sub>3</sub> | 0 | 5-Fluorouracil    |
| monophosphate  | Н              | H              | CH <sub>3</sub> | S | 2,4-O-            |
|                |                |                |                 |   | Diacetyluracil    |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S | Hypoxanthine      |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S | 2,4-O-            |
|                |                |                |                 |   | Diacetylthym      |
| monophosphate  | H              | Н              | CH <sub>3</sub> | S | Thymine           |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S | Cytosine          |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S | 4-(N-mono-        |
|                |                |                |                 |   | acetyl)cytosine   |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |
| monophosphate  | Н              | H              | CH <sub>3</sub> | S | Uracil            |
| monophosphate  | H              | Н              | CH <sub>3</sub> | S | 5-Fluorouracil    |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0 | 2,4-O-            |
|                |                |                |                 |   | Diacetyluracil    |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0 | Hypoxanthine      |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0 | 2,4-0-            |
|                |                |                |                 |   | Diacetylthymine   |
| diphosphate    | H              | H              | CH <sub>3</sub> | 0 | Thymine           |
| diphosphate    | Н              | H              | CH <sub>3</sub> | 0 | Cytosine          |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0 | 4-(N-mono-        |
|                |                |                |                 |   | acetyl)cytosine   |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0 | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |
| diphosphate    | H              | H              | CH <sub>3</sub> | 0 | Uracil            |
| diphosphate    | H              | H              | CH <sub>3</sub> | 0 | 5-Fluorouracil    |
| diphosphate    | H              | Н              | CH <sub>3</sub> | S | 2,4-0-            |
|                |                |                |                 |   | Diacetyluracil    |

| $\mathbf{R}^{1}$ | R <sup>2</sup> | $\mathbb{R}^3$ | R <sup>6</sup>  | X | Base              |
|------------------|----------------|----------------|-----------------|---|-------------------|
| diphosphate      | Н              | H              | CH <sub>3</sub> | S | Hypoxanthine      |
| diphosphate      | H              | H              | CH <sub>3</sub> | S | 2,4-O-            |
|                  |                |                |                 |   | Diacetylthym      |
| diphosphate      | Н              | H              | CH <sub>3</sub> | S | Thymine           |
| diphosphate      | H              | Н              | CH <sub>3</sub> | S | Cytosine          |
| triphosphate     | Н              | H              | CH <sub>3</sub> | 0 | 2,4-O-            |
|                  | i              |                |                 |   | Diacetyluracil    |
| triphosphate     | Н              | Н              | CH <sub>3</sub> | 0 | Hypoxanthine      |
| triphosphate     | Н              | H              | CH <sub>3</sub> | 0 | 2,4-O-            |
|                  |                |                |                 |   | Diacetylthymine   |
| triphosphate     | Н              | H              | CH <sub>3</sub> | 0 | Thymine           |
| triphosphate     | Н              | Н              | CH <sub>3</sub> | 0 | Cytosine          |
| triphosphate     | Н              | Н              | CH <sub>3</sub> | 0 | 4-(N-mono-        |
|                  |                |                |                 |   | acetyl)cytosine   |
| triphosphate     | Н              | Н              | CH <sub>3</sub> | 0 | 4-(N,N-           |
|                  |                |                |                 |   | diacetyl)cytosine |
| triphosphate     | Н              | Н              | CH <sub>3</sub> | 0 | Uracil            |
| triphosphate     | Н              | Н              | CH <sub>3</sub> | 0 | 5-Fluorouracil    |
| triphosphate     | Н              | Н              | CH <sub>3</sub> | S | 2,4-O-            |
|                  |                |                |                 |   | Diacetyluracil    |
| triphosphate     | Н              | Н              | CH <sub>3</sub> | S | Hypoxanthine      |
| triphosphate     | Н              | Н              | CH <sub>3</sub> | S | 2,4-O-            |
|                  |                |                |                 |   | Diacetylthymine   |
| triphosphate     | Н              | H              | CH <sub>3</sub> | S | Thymine           |
| triphosphate     | Н              | Н              | CH <sub>3</sub> | S | Cytosine          |
| monophosphate    | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 2,4-O-            |
|                  |                |                |                 |   | Diacetyluracil    |
| monophosphate    | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | Hypoxanthine      |
| monophosphate    | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 2,4-O-            |
|                  |                |                |                 |   | Diacetylthymine   |
| monophosphate    | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | Thymine           |
| monophosphate    | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | Cytosine          |

| $\mathbb{R}^1$ | R <sup>2</sup> | R <sup>3</sup> | $\mathbb{R}^6$  | X | Base              |
|----------------|----------------|----------------|-----------------|---|-------------------|
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 4-(N-mono-        |
|                |                |                |                 |   | acetyl)cytosine   |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | Uracil            |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 5-Fluorouracil    |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | 2,4-O-            |
|                |                |                |                 |   | Diacetyluracil    |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | Hypoxanthine      |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | 2,4-O-            |
|                |                |                |                 |   | Diacetylthymine   |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | Thymine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | Cytosine          |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | 4-(N-mono-        |
|                |                |                |                 |   | acetyl)cytosine   |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | Uracil            |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S | 5-Fluorouracil    |
| acetyl         | acetyl         | acetyl         | CF <sub>3</sub> | 0 | 4-(N,N-           |
|                |                |                |                 |   | diacetyl)cytosine |
| acetyl         | acetyl         | acetyl         | CF <sub>3</sub> | S | 4-(N,N-           |
|                | }              |                |                 |   | diacetyl)cytosine |
| acetyl         | acetyl         | acetyl         | 2-bromo-        | 0 | 4-(N,N-           |
|                |                |                | vinyl           |   | diacetyl)cytosine |
| acetyl         | acetyl         | acetyl         | 2-bromo-        | S | 4-(N,N-           |
|                |                |                | vinyl           |   | diacetyl)cytosine |
| H              | H              | Н              | CH <sub>3</sub> | 0 | 2-(N,N-diacetyl)- |
|                |                |                |                 |   | guanine           |
| H              | H              | Н              | CH <sub>3</sub> | 0 | 6-O-acetyl        |
|                |                |                |                 |   | guanine           |
| H              | Н              | H              | CH <sub>3</sub> | 0 | 8-fluoroguanine   |

| R <sup>1</sup> | R <sup>2</sup> | $\mathbb{R}^3$ | R <sup>6</sup>  | X | Base              |
|----------------|----------------|----------------|-----------------|---|-------------------|
| H              | H              | H              | CH <sub>3</sub> | 0 | guanine           |
| Н              | Н              | H              | CH <sub>3</sub> | 0 | 6-(N,N-diacetyl)- |
|                |                |                |                 | } | adenine           |
| H              | Н              | H              | CH <sub>3</sub> | 0 | 2-fluoroadenine   |
| H              | H              | H              | CH <sub>3</sub> | 0 | 8-fluoroadenine   |
| Н              | Н              | Н              | CH <sub>3</sub> | 0 | 2,8-difluoro-     |
|                |                |                | <u> </u>        |   | adenine           |
| H              | Н              | Н              | CH <sub>3</sub> | 0 | adenine           |
| Н              | H              | H              | CH <sub>3</sub> | S | 2-(N,N-diacetyl)- |
|                |                |                |                 |   | guanine           |
| Н              | H              | Н              | CH <sub>3</sub> | S | 6-O-acetyl        |
| ,              |                |                |                 |   | guanine           |
| Н              | H              | H              | CH <sub>3</sub> | S | 8-fluoroguanine   |
| Н              | H              | Н              | CH <sub>3</sub> | S | guanine           |
| Н              | Н              | Н              | CH <sub>3</sub> | S | 6-(N,N-diacetyl)- |
|                |                |                |                 |   | adenine           |
| Н              | H              | Н              | CH <sub>3</sub> | S | 2-fluoroadenine   |
| Н              | H              | Н              | CH <sub>3</sub> | S | 8-fluoroadenine   |
| H              | H              | H              | CH <sub>3</sub> | S | 2,8-difluoro-     |
|                | ,              |                |                 |   | adenine           |
| H              | H              | Н              | CH <sub>3</sub> | S | adenine           |
| monophosphate  | H              | Н              | CH <sub>3</sub> | 0 | 2-(N,N-diacetyl)- |
|                |                |                |                 |   | guanine           |
| monophosphate  | H              | Н              | CH <sub>3</sub> | 0 | 6-O-acetyl        |
|                |                |                |                 |   | guanine           |
| monophosphate  | H              | H              | CH <sub>3</sub> | 0 | 8-fluoroguanine   |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | 0 | guanine           |
| monophosphate  | H              | Н              | CH <sub>3</sub> | 0 | 6-(N,N-diacetyl)- |
|                |                |                |                 |   | adenine           |
| monophosphate  | H              | H              | CH <sub>3</sub> | 0 | 2-fluoroadenine   |
| monophosphate  | H              | Н              | CH <sub>3</sub> | 0 | 8-fluoroadenine   |

| $\mathbb{R}^1$ | $\mathbb{R}^2$ | R <sup>3</sup> | R <sup>6</sup>  | X | Base              |
|----------------|----------------|----------------|-----------------|---|-------------------|
| monophosphate  | H              | Н              | CH <sub>3</sub> | 0 | 2,8-difluoro-     |
|                |                |                |                 | į | adenine           |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | 0 | adenine           |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S | 2-(N,N-diacetyl)- |
|                |                | {              |                 |   | guanine           |
| monophosphate  | H              | Н              | CH <sub>3</sub> | S | 6-O-acetyl        |
|                |                |                |                 |   | guanine           |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S | 8-fluoroguanine   |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S | guanine           |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S | 6-(N,N-diacetyl)- |
|                |                |                |                 |   | adenine           |
| monophosphate  | H              | Н              | CH <sub>3</sub> | S | 2-fluoroadenine   |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S | 8-fluoroadenine   |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S | 2,8-difluoro-     |
|                |                |                |                 |   | adenine           |
| monophosphate  | Н              | Н              | CH <sub>3</sub> | S | adenine           |
| diphosphate    | Н              | H              | CH <sub>3</sub> | О | 2-(N,N-diacetyl)- |
|                |                |                | <u></u>         |   | guanine           |
| diphosphate    | Н              | H              | CH <sub>3</sub> | 0 | 6-O-acetyl        |
|                |                |                |                 |   | guanine           |
| diphosphate    | Н              | H              | CH <sub>3</sub> | 0 | 8-fluoroguanine   |
| diphosphate    | H              | H              | CH <sub>3</sub> | 0 | guanine           |
| diphosphate    | Н              | H              | CH <sub>3</sub> | 0 | 6-(N,N-diacetyl)- |
|                |                |                |                 |   | adenine           |
| diphosphate    | H              | H              | CH <sub>3</sub> | 0 | 2-fluoroadenine   |
| diphosphate    | Н              | Н              | CH <sub>3</sub> | 0 | 8-fluoroadenine   |
| diphosphate    | Н              | H              | CH <sub>3</sub> | 0 | 2,8-difluoro-     |
|                |                |                |                 |   | adenine           |
| diphosphate    | Н              | H              | CH <sub>3</sub> | 0 | adenine           |
| diphosphate    | Н              | H              | CH <sub>3</sub> | S | 2-(N,N-diacetyl)- |
|                |                |                |                 |   | guanine           |

| $R^1$        | R <sup>2</sup> | R <sup>3</sup> | R <sup>6</sup>  | X | Base              |
|--------------|----------------|----------------|-----------------|---|-------------------|
| diphosphate  | H              | H              | CH <sub>3</sub> | S | 6-O-acetyl        |
|              |                |                |                 |   | guanine           |
| diphosphate  | Н              | H              | CH <sub>3</sub> | S | 8-fluoroguanine   |
| diphosphate  | Н              | Н              | CH <sub>3</sub> | S | guanine           |
| diphosphate  | Н              | Н              | CH <sub>3</sub> | S | 6-(N,N-diacetyl)- |
|              |                |                |                 |   | adenine           |
| diphosphate  | Н              | H              | CH <sub>3</sub> | S | 2-fluoroadenine   |
| diphosphate  | Н              | Н              | CH <sub>3</sub> | S | 8-fluoroadenine   |
| diphosphate  | Н              | Н              | CH <sub>3</sub> | S | 2,8-difluoro-     |
|              |                |                |                 |   | adenine           |
| diphosphate  | Н              | Н              | CH <sub>3</sub> | S | adenine           |
| triphosphate | Н              | Н              | CH <sub>3</sub> | 0 | 2-(N,N-diacetyl)- |
|              |                |                |                 |   | guanine           |
| triphosphate | Н              | Н              | CH <sub>3</sub> | 0 | 6-O-acetyl        |
|              |                |                |                 |   | guanine           |
| triphosphate | Н              | H              | CH <sub>3</sub> | 0 | 8-fluoroguanine   |
| triphosphate | Н              | Н              | CH <sub>3</sub> | 0 | guanine           |
| triphosphate | H              | Н              | CH <sub>3</sub> | 0 | 6-(N,N-diacetyl)- |
|              |                |                | 1               |   | adenine           |
| triphosphate | Н              | Н              | CH <sub>3</sub> | 0 | 2-fluoroadenine   |
| triphosphate | H              | H              | CH <sub>3</sub> | 0 | 8-fluoroadenine   |
| triphosphate | H              | H              | CH <sub>3</sub> | 0 | 2,8-difluoro-     |
|              |                |                |                 |   | adenine           |
| triphosphate | Н              | Н              | CH <sub>3</sub> | 0 | 2-(N,N-diacetyl)- |
|              |                |                |                 |   | guanine           |
| triphosphate | Н              | Н              | CH <sub>3</sub> | S | 6-O-acetyl        |
|              |                |                | l:              |   | guanine           |
| triphosphate | Н              | Н              | CH <sub>3</sub> | S | 8-fluoroguanine   |
| triphosphate | Н              | H              | CH <sub>3</sub> | S | guanine           |
| triphosphate | Н              | H              | CH <sub>3</sub> | S | 6-(N,N-diacetyl)- |
|              |                |                |                 |   | adenine           |
| triphosphate | Н              | Н              | CH <sub>3</sub> | S | 2-fluoroadenine   |

| $\mathbb{R}^1$ | $\mathbb{R}^2$ | $\mathbb{R}^3$ | R <sup>6</sup>  | X  | Base              |
|----------------|----------------|----------------|-----------------|----|-------------------|
| triphosphate   | Н              | H              | CH <sub>3</sub> | S  | 8-fluoroadenine   |
| triphosphate   | H              | H              | CH <sub>3</sub> | S  | 2,8-difluoro-     |
|                |                |                |                 |    | adenine           |
| triphosphate   | H              | H              | CH <sub>3</sub> | S  | adenine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0  | 2-(N,N-diacetyl)- |
|                |                |                |                 |    | guanine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0  | 6-O-acetyl        |
|                |                |                |                 |    | guanine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0  | 8-fluoroguanine   |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0  | guanine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0  | 6-(N,N-diacetyl)- |
|                |                |                |                 |    | adenine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0  | 2-fluoroadenine   |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0  | 8-fluoroadenine   |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0  | 2,8-difluoro-     |
|                |                |                |                 |    | adenine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | 0  | adenine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S  | 2-(N,N-diacetyl)- |
|                |                |                |                 |    | guanine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S  | 6-O-acetyl        |
|                |                |                |                 |    | guanine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S  | 8-fluoroguanine   |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S  | guanine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S  | 6-(N,N-diacetyl)- |
|                |                |                |                 |    | adenine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S. | 2-fluoroadenine   |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S  | 8-fluoroadenine   |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S  | 2,8-difluoro-     |
|                |                |                |                 |    | adenine           |
| monophosphate  | monophosphate  | monophosphate  | CF <sub>3</sub> | S  | adenine           |
| acetyl         | acetyl         | acetyl         | CF <sub>3</sub> | 0  | guanine           |
| acetyl         | acetyl         | acetyl         | CF <sub>3</sub> | S  | guanine           |

| $\mathbb{R}^1$ | R <sup>2</sup> | R <sup>3</sup> | R <sup>6</sup>    | X | Base    |
|----------------|----------------|----------------|-------------------|---|---------|
| acetyl         | acetyl         | acetyl         | 2-bromo-<br>vinyl | 0 | guanine |
| acetyl         | acetyl         | acetyl         | 2-bromo-<br>vinyl | S | guanine |

Alternatively, the following nucleosides of Formula XIV are prepared, using the appropriate sugar and pyrimidine or purine bases.

$$R^{1}O$$
 $R^{6}$ 
 $X$ 
 $OR^{2}$ 
 $(XIV)$ 

## wherein:

| $\mathbb{R}^1$ | R <sup>2</sup> | R <sup>6</sup>  | X | Base                      |
|----------------|----------------|-----------------|---|---------------------------|
| H              | Н              | CH <sub>3</sub> | 0 | 2,4-O-Diacetyluracil      |
| H              | Н              | CH <sub>3</sub> | 0 | Hypoxanthine              |
| H              | Н              | CH <sub>3</sub> | 0 | 2,4-O-Diacetylthymine     |
| H              | Н              | CH <sub>3</sub> | 0 | Thymine                   |
| H              | H              | CH <sub>3</sub> | 0 | Cytosine                  |
| H              | Н              | CH <sub>3</sub> | 0 | 4-(N-mono-acetyl)cytosine |
| H              | H              | CH <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |
| H              | Н              | CH <sub>3</sub> | 0 | Uracil                    |
| H              | Н              | CH <sub>3</sub> | 0 | 5-Fluorouracil            |
| H              | Н              | CH <sub>3</sub> | S | 2,4-O-Diacetyluracil      |
| H              | Н              | CH <sub>3</sub> | S | Hypoxanthine              |
| H              | H              | CH <sub>3</sub> | S | 2,4-O-Diacetylthymine     |
| H              | H              | CH <sub>3</sub> | S | Thymine                   |
| H              | H              | CH <sub>3</sub> | S | Cytosine                  |
| H              | Н              | CH <sub>3</sub> | S | 4-(N-mono-acetyl)cytosin  |
| H              | H              | CH <sub>3</sub> | S | 4-(N,N-diacetyl)cytosine  |

| $\mathbb{R}^1$ | $\mathbb{R}^2$ | R <sup>6</sup>  | X | Base                      |
|----------------|----------------|-----------------|---|---------------------------|
| H              | H              | CH <sub>3</sub> | S | Uracil                    |
| H              | H ·            | CH <sub>3</sub> | S | 5-Fluorouracil            |
| monophosphate  | Н              | CH <sub>3</sub> | 0 | 2,4-O-Diacetyluracil      |
| monophosphate  | Н              | CH <sub>3</sub> | 0 | Hypoxanthine              |
| monophosphate  | Н              | CH <sub>3</sub> | 0 | 2,4-O-Diacetylthym        |
| monophosphate  | Н              | CH <sub>3</sub> | 0 | Thymine                   |
| monophosphate  | Н              | CH <sub>3</sub> | 0 | Cytosine                  |
| monophosphate  | Н              | CH <sub>3</sub> | 0 | 4-(N-mono-acetyl)cytosine |
| monophosphate  | Н              | CH <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytos     |
| monophosphate  | Н              | CH <sub>3</sub> | 0 | Uracil                    |
| monophosphate  | H              | CH <sub>3</sub> | 0 | 5-Fluorouracil            |
| monophosphate  | H              | CH <sub>3</sub> | S | 2,4-O-Diacetyluracil      |
| monophosphate  | Н              | CH <sub>3</sub> | S | Hypoxanthine              |
| monophosphate  | H              | CH <sub>3</sub> | S | 2,4-O-Diacetylthym        |
| monophosphate  | Н              | CH <sub>3</sub> | S | Thymine                   |
| monophosphate  | Н              | CH <sub>3</sub> | S | Cytosine                  |
| monophosphate  | Н              | CH <sub>3</sub> | S | 4-(N-mono-acetyl)cytosine |
| monophosphate  | Н              | CH <sub>3</sub> | S | 4-(N,N-diacetyl)cytosine  |
| monophosphate  | Н              | CH <sub>3</sub> | S | Uracil                    |
| monophosphate  | Н              | CH <sub>3</sub> | S | 5-Fluorouracil            |
| diphosphate    | H              | CH <sub>3</sub> | 0 | 2,4-O-Diacetyluracil      |
| diphosphate    | Н              | CH <sub>3</sub> | 0 | Hypoxanthine              |
| diphosphate    | H              | CH <sub>3</sub> | 0 | 2,4-O-Diacetylthymine     |
| diphosphate    | Н              | CH <sub>3</sub> | 0 | Thymine                   |
| diphosphate    | H              | CH <sub>3</sub> | 0 | Cytosine                  |
| diphosphate    | H              | CH <sub>3</sub> | 0 | 4-(N-mono-acetyl)cytosine |
| diphosphate    | Н              | CH <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |
| diphosphate    | Н              | CH <sub>3</sub> | 0 | Uracil                    |
| diphosphate    | H              | CH <sub>3</sub> | 0 | 5-Fluorouracil            |
| diphosphate    | H              | CH <sub>3</sub> | S | 2,4-O-Diacetyluracil      |
| diphosphate    | H              | CH <sub>3</sub> | S | Hypoxanthine              |

| $\mathbb{R}^1$ | $\mathbb{R}^2$ | R <sup>6</sup>  | X | Base                      |
|----------------|----------------|-----------------|---|---------------------------|
| diphosphate    | Н              | CH <sub>3</sub> | S | 2,4-O-Diacetylthymine     |
| diphosphate    | Н              | CH <sub>3</sub> | S | Thymine                   |
| diphosphate    | Н              | CH <sub>3</sub> | S | Cytosine                  |
| triphosphate   | H              | CH <sub>3</sub> | 0 | 2,4-O-Diacetyluracil      |
| triphosphate   | Н              | CH <sub>3</sub> | 0 | Hypoxanthine              |
| triphosphate   | Н              | CH <sub>3</sub> | 0 | 2,4-O-Diacetylthymine     |
| triphosphate   | Н              | CH <sub>3</sub> | 0 | Thymine                   |
| triphosphate   | Н              | CH <sub>3</sub> | 0 | Cytosine                  |
| triphosphate   | Н              | CH <sub>3</sub> | 0 | 4-(N-mono-acetyl)cytosine |
| triphosphate   | Н              | CH <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |
| triphosphate   | Н              | CH <sub>3</sub> | 0 | Uracil                    |
| triphosphate   | Н              | CH <sub>3</sub> | 0 | 5-Fluorouracil            |
| triphosphate   | Н              | CH <sub>3</sub> | S | 2,4-O-Diacetyluracil      |
| triphosphate   | Н              | CH <sub>3</sub> | S | Hypoxanthine              |
| triphosphate   | Н              | CH <sub>3</sub> | S | 2,4-O-Diacetylthymine     |
| triphosphate   | H              | CH <sub>3</sub> | S | Thymine                   |
| triphosphate   | Н              | CH <sub>3</sub> | S | Cytosine                  |
| monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 2,4-O-Diacetyluracil      |
| monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | Hypoxanthine              |
| monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 2,4-O-Diacetylthymine     |
| monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | Thymine                   |
| monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | Cytosine                  |
| monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 4-(N-mono-acetyl)cytosine |
| monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |
| monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | Uracil                    |
| monophosphate  | monophosphate  | CF <sub>3</sub> | 0 | 5-Fluorouracil            |
| monophosphate  | monophosphate  | CF <sub>3</sub> | S | 2,4-O-Diacetyluracil      |
| monophosphate  | monophosphate  | CF <sub>3</sub> | S | Hypoxanthine              |
| monophosphate  | monophosphate  | CF <sub>3</sub> | S | 2,4-O-Diacetylthymine     |
| monophosphate  | monophosphate  | CF <sub>3</sub> | S | Thymine                   |
| monophosphate  | monophosphate  | CF <sub>3</sub> | S | Cytosine                  |

| $\mathbf{R}^{1}$ | R <sup>2</sup> | R <sup>6</sup>    | X | Base                      |
|------------------|----------------|-------------------|---|---------------------------|
| monophosphate    | monophosphate  | CF <sub>3</sub>   | S | 4-(N-mono-acetyl)cytosine |
| monophosphate    | monophosphate  | CF <sub>3</sub>   | S | 4-(N,N-diacetyl)cytosine  |
| monophosphate    | monophosphate  | CF <sub>3</sub>   | S | Uracil                    |
| monophosphate    | monophosphate  | CF <sub>3</sub>   | S | 5-Fluorouracil            |
| acetyl           | acetyl         | CF <sub>3</sub>   | 0 | 4-(N,N-diacetyl)cytosine  |
| acetyl           | acetyl         | CF <sub>3</sub>   | S | 4-(N,N-diacetyl)cytosine  |
| acetyl           | acetyl         | 2-bromo-<br>vinyl | 0 | 4-(N,N-diacetyl)cytosine  |
| acetyl           | acetyl         | 2-bromo-<br>vinyl | S | 4-(N,N-diacetyl)cytosine  |

Alternatively, the following nucleosides of Formula XV are prepared, using the appropriate sugar and pyrimidine or purine bases.

wherein:

| R <sup>1</sup> | R <sup>6</sup>  | X | Base                      |
|----------------|-----------------|---|---------------------------|
| H              | CH <sub>3</sub> | 0 | 2,4-O-Diacetyluracil      |
| Н              | CH <sub>3</sub> | 0 | Hypoxanthine              |
| H              | CH <sub>3</sub> | 0 | 2,4-O-Diacetylthymine     |
| Н              | CH <sub>3</sub> | 0 | Thymine                   |
| H              | CH <sub>3</sub> | 0 | Cytosine                  |
| Н              | CH <sub>3</sub> | 0 | 4-(N-mono-acetyl)cytosine |
| H              | CH <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |
| Н              | CH <sub>3</sub> | 0 | Uracil                    |
| H              | CH <sub>3</sub> | 0 | 5-Fluorouracil            |
| Н              | CH <sub>3</sub> | S | 2,4-O-Diacetyluracil      |

| R <sup>1</sup> | R <sup>6</sup>  | X. | Base                      |  |
|----------------|-----------------|----|---------------------------|--|
| H              | CH <sub>3</sub> | S  | Hypoxanthine              |  |
| H              | CH <sub>3</sub> | S  | 2,4-O-Diacetylthymine     |  |
| H              | CH <sub>3</sub> | S  | Thymine                   |  |
| H              | CH <sub>3</sub> | S  | Cytosine                  |  |
| H              | CH <sub>3</sub> | S  | 4-(N-mono-acetyl)cytosine |  |
| H              | CH <sub>3</sub> | S  | 4-(N,N-diacetyl)cytosine  |  |
| H              | CH <sub>3</sub> | S  | Uracil                    |  |
| H              | CH <sub>3</sub> | S  | 5-Fluorouracil            |  |
| monophosphate  | CH <sub>3</sub> | 0  | 2,4-O-Diacetyluracil      |  |
| monophosphate  | CH <sub>3</sub> | 0  | Hypoxanthine              |  |
| monophosphate  | CH <sub>3</sub> | 0  | 2,4-O-Diacetylthymine     |  |
| monophosphate  | CH <sub>3</sub> | 0  | Thymine                   |  |
| monophosphate  | CH <sub>3</sub> | 0  | Cytosine                  |  |
| monophosphate  | CH <sub>3</sub> | 0  | 4-(N-mono-acetyl)cytosine |  |
| monophosphate  | CH <sub>3</sub> | 0  | 4-(N,N-diacetyl)cytosine  |  |
| monophosphate  | CH <sub>3</sub> | 0  | Uracil                    |  |
| monophosphate  | CH <sub>3</sub> | Ó  | 5-Fluorouracil            |  |
| monophosphate  | CH <sub>3</sub> | S  | 2,4-O-Diacetyluracil      |  |
| monophosphate  | CH <sub>3</sub> | S  | Hypoxanthine              |  |
| monophosphate  | CH <sub>3</sub> | S  | 2,4-O-Diacetylthymine     |  |
| monophosphate  | CH <sub>3</sub> | S  | Thymine                   |  |
| monophosphate  | CH <sub>3</sub> | S  | Cytosine                  |  |
| monophosphate  | CH <sub>3</sub> | S  | 4-(N-mono-acetyl)cytosine |  |
| monophosphate  | CH <sub>3</sub> | S  | 4-(N,N-diacetyl)cytosine  |  |
| monophosphate  | CH <sub>3</sub> | S  | Uracil                    |  |
| monophosphate  | CH <sub>3</sub> | S  | 5-Fluorouracil            |  |
| diphosphate    | CH <sub>3</sub> | 0  | 2,4-O-Diacetyluracil      |  |
| diphosphate    | CH <sub>3</sub> | 0  | Hypoxanthine              |  |
| diphosphate    | CH <sub>3</sub> | 0  | 2,4-O-Diacetylthymine     |  |
| diphosphate    | CH <sub>3</sub> | 0  | Thymine                   |  |
| diphosphate    | CH <sub>3</sub> | 0  | Cytosine                  |  |

| R <sup>1</sup> | R <sup>6</sup>  | X | Base                      |  |
|----------------|-----------------|---|---------------------------|--|
| diphosphate    | CH <sub>3</sub> | 0 | 4-(N-mono-acetyl)cytosine |  |
| diphosphate    | CH <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |  |
| diphosphate    | CH <sub>3</sub> | 0 | Uracil                    |  |
| diphosphate    | CH <sub>3</sub> | 0 | 5-Fluorouracil            |  |
| diphosphate    | CH <sub>3</sub> | S | 2,4-O-Diacetyluracil      |  |
| diphosphate    | CH <sub>3</sub> | S | Hypoxanthine              |  |
| diphosphate    | CH <sub>3</sub> | S | 2,4-O-Diacetylthymine     |  |
| diphosphate    | CH <sub>3</sub> | S | Thymine                   |  |
| diphosphate    | CH <sub>3</sub> | S | Cytosine                  |  |
| triphosphate   | CH <sub>3</sub> | 0 | 2,4-O-Diacetyluracil      |  |
| triphosphate   | CH <sub>3</sub> | 0 | Hypoxanthine              |  |
| triphosphate   | CH <sub>3</sub> | 0 | 2,4-O-Diacetylthymine     |  |
| triphosphate   | CH <sub>3</sub> | 0 | Thymine                   |  |
| triphosphate   | CH <sub>3</sub> | 0 | Cytosine                  |  |
| triphosphate   | CH <sub>3</sub> | 0 | 4-(N-mono-acetyl)cytosine |  |
| triphosphate   | CH <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |  |
| triphosphate   | CH <sub>3</sub> | 0 | Uracil                    |  |
| triphosphate   | CH <sub>3</sub> | 0 | 5-Fluorouracil            |  |
| triphosphate   | CH <sub>3</sub> | S | 2,4-O-Diacetyluracil      |  |
| triphosphate   | CH <sub>3</sub> | S | Hypoxanthine              |  |
| triphosphate   | CH <sub>3</sub> | S | 2,4-O-Diacetylthymine     |  |
| triphosphate   | CH <sub>3</sub> | S | Thymine                   |  |
| triphosphate   | CH <sub>3</sub> | S | Cytosine                  |  |
| monophosphate  | CF <sub>3</sub> | 0 | 2,4-O-Diacetyluracil      |  |
| monophosphate  | CF <sub>3</sub> | 0 | Hypoxanthine              |  |
| monophosphate  | CF <sub>3</sub> | 0 | 2,4-O-Diacetylthymine     |  |
| monophosphate  | CF <sub>3</sub> | 0 | Thymine                   |  |
| monophosphate  | CF <sub>3</sub> | 0 | Cytosine                  |  |
| monophosphate  | CF <sub>3</sub> | 0 | 4-(N-mono-acetyl)cytosine |  |
| monophosphate  | CF <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |  |
| monophosphate  | CF <sub>3</sub> | 0 | Uracil                    |  |

| R <sup>1</sup> | R <sup>6</sup>  | X | Base                      |  |
|----------------|-----------------|---|---------------------------|--|
| monophosphate  | CF <sub>3</sub> | 0 | 5-Fluorouracil            |  |
| monophosphate  | CF <sub>3</sub> | S | 2,4-O-Diacetyluracil      |  |
| monophosphate  | CF <sub>3</sub> | S | Hypoxanthine              |  |
| monophosphate  | CF <sub>3</sub> | S | 2,4-O-Diacetylthymine     |  |
| monophosphate  | CF <sub>3</sub> | S | Thymine                   |  |
| monophosphate  | CF <sub>3</sub> | S | Cytosine                  |  |
| monophosphate  | CF <sub>3</sub> | S | 4-(N-mono-acetyl)cytosine |  |
| monophosphate  | CF <sub>3</sub> | S | 4-(N,N-diacetyl)cytosine  |  |
| monophosphate  | CF <sub>3</sub> | S | Uracil                    |  |
| monophosphate  | CF <sub>3</sub> | S | 5-Fluorouracil            |  |
| acetyl         | CF <sub>3</sub> | 0 | 4-(N,N-diacetyl)cytosine  |  |
| acetyl         | CF <sub>3</sub> | S | 4-(N,N-diacetyl)cytosine  |  |
| acetyl         | 2-bromo-vinyl   | 0 | 4-(N,N-diacetyl)cytosine  |  |
| acetyl         | 2-bromo-vinyl   | S | 4-(N,N-diacetyl)cytosine  |  |

Alternatively, the following nucleosides of Formula XVIII are prepared, using the appropriate sugar and pyrimidine or purine bases.



## wherein:

| R <sup>1</sup> | R <sup>6</sup>  | $\mathbf{R}^7$ | X | Base                  | R <sup>8</sup> | R <sup>9</sup> |
|----------------|-----------------|----------------|---|-----------------------|----------------|----------------|
| H              | CH <sub>3</sub> | OH             | 0 | 2,4-O-Diacetyluracil  | H              | Me             |
| H              | CH <sub>3</sub> | ОН             | 0 | Hypoxanthine          | H              | Me             |
| H              | CH <sub>3</sub> | OH             | 0 | 2,4-O-Diacetylthymine | H              | Me             |
| H              | CH <sub>3</sub> | OH             | 0 | Thymine               | Н              | Me             |
| H              | CH <sub>3</sub> | ОН             | 0 | Cytosine              | Н              | Me             |

| R <sup>1</sup> | R <sup>6</sup>  | R <sup>7</sup> | X | Base                      | R <sup>8</sup> | R <sup>9</sup> |
|----------------|-----------------|----------------|---|---------------------------|----------------|----------------|
| H              | CH <sub>3</sub> | ОН             | 0 | 4-(N-mono-acetyl)cytosine | Н              | Me             |
| H              | CH <sub>3</sub> | OH             | 0 | 4-(N,N-diacetyl)cytosine  | H              | Me             |
| H              | CH <sub>3</sub> | OH             | 0 | Uracil                    | Н              | Me             |
| Н              | CH <sub>3</sub> | ОН             | 0 | 5-Fluorouracil            | H              | Me             |
| Н              | CH <sub>3</sub> | OH             | S | 2,4-O-Diacetyluracil      | H              | Me             |
| Н              | CH <sub>3</sub> | OH             | S | Hypoxanthine              | Н              | Me             |
| Н              | CH <sub>3</sub> | ОН             | S | 2,4-O-Diacetylthymine     | Н              | Me             |
| Н              | CH <sub>3</sub> | OH             | S | Thymine                   | H              | Me             |
| H              | CH <sub>3</sub> | ОН             | S | Cytosine                  | Н              | Me             |
| Н              | CH <sub>3</sub> | ОН             | S | 4-(N-mono-acetyl)cytosine | H              | Me             |
| Н              | CH <sub>3</sub> | OH             | S | 4-(N,N-diacetyl)cytosine  | H              | Me             |
| Н              | CH <sub>3</sub> | OH             | S | Uracil                    | Н              | Me             |
| H              | CH <sub>3</sub> | OH             | S | 5-Fluorouracil            | Н              | Me             |
| monophosphate  | CH <sub>3</sub> | OH             | 0 | 2,4-O-Diacetyluracil      | Н              | Me             |
| monophosphate  | CH <sub>3</sub> | ОН             | 0 | Hypoxanthine              | Н              | Me             |
| monophosphate  | CH <sub>3</sub> | OH             | 0 | 2,4-O-Diacetylthymine     | H              | Me             |
| monophosphate  | CH <sub>3</sub> | ОН             | 0 | Thymine                   | H              | Me             |
| monophosphate  | CH <sub>3</sub> | OH             | 0 | Cytosine                  | H              | Me             |
| monophosphate  | CH <sub>3</sub> | ОН             | 0 | 4-(N-mono-acetyl)cytosine | H              | Me             |
| monophosphate  | CH <sub>3</sub> | OH             | 0 | 4-(N,N-diacetyl)cytosine  | Н              | Me             |
| monophosphate  | CH <sub>3</sub> | OH             | 0 | Uracil                    | Н              | Me             |
| monophosphate  | CH <sub>3</sub> | OH             | 0 | 5-Fluorouracil            | H              | Me             |
| monophosphate  | CH <sub>3</sub> | OH             | S | 2,4-O-Diacetyluracil      | H              | Me             |
| monophosphate  | CH <sub>3</sub> | OH             | S | Hypoxanthine              | Н              | Me             |
| monophosphate  | CH <sub>3</sub> | OH             | S | 2,4-O-Diacetylthymine     | Н              | Me             |
| monophosphate  | CH <sub>3</sub> | ОН             | S | Thymine                   | Н              | Me             |
| monophosphate  | CH <sub>3</sub> | ОН             | S | Cytosine                  | Н              | Me             |
| monophosphate  | CH <sub>3</sub> | ОН             | S | 4-(N-mono-acetyl)cytosine | Н              | Me             |
| monophosphate  | CH <sub>3</sub> | ОН             | S | 4-(N,N-diacetyl)cytosine  |                | Me             |
| monophosphate  | CH <sub>3</sub> | ОН             | S | Uracil                    | Н              | Me             |
| monophosphate  | CH <sub>3</sub> | ОН             | S | 5-Fluorouracil            | Н              | Me             |

| $\mathbb{R}^1$ | R <sup>6</sup>  | $\mathbb{R}^7$ | X | Base                      | R <sup>8</sup> | R <sup>9</sup> |
|----------------|-----------------|----------------|---|---------------------------|----------------|----------------|
| diphosphate    | CH <sub>3</sub> | OH             | 0 | 2,4-O-Diacetyluracil      | H              | Me             |
| diphosphate    | CH <sub>3</sub> | OH             | 0 | Hypoxanthine              | H              | Me             |
| diphosphate    | CH <sub>3</sub> | OH             | 0 | 2,4-O-Diacetylthymine     | H              | Me             |
| diphosphate    | CH <sub>3</sub> | OH             | 0 | Thymine                   | H              | Me             |
| diphosphate    | CH <sub>3</sub> | OH             | 0 | Cytosine                  | H              | Me             |
| diphosphate    | CH <sub>3</sub> | OH             | 0 | 4-(N-mono-acetyl)cytosine | H              | Me             |
| diphosphate    | CH <sub>3</sub> | ОН             | 0 | 4-(N,N-diacetyl)cytosine  | H              | Me             |
| diphosphate    | CH <sub>3</sub> | OH             | 0 | Uracil                    | H              | Me             |
| diphosphate    | CH <sub>3</sub> | ОН             | 0 | 5-Fluorouracil            | H              | Me             |
| diphosphate    | CH <sub>3</sub> | OH             | S | 2,4-O-Diacetyluracil      | Н              | Me             |
| diphosphate    | CH <sub>3</sub> | OH             | S | Hypoxanthine              | H              | Me             |
| diphosphate    | CH <sub>3</sub> | OH             | S | 2,4-O-Diacetylthymine     | H              | Me             |
| diphosphate    | CH <sub>3</sub> | ОН             | S | Thymine                   | Н              | Me             |
| diphosphate    | CH <sub>3</sub> | ОН             | S | Cytosine                  | Н              | Me             |
| triphosphate   | CH <sub>3</sub> | ОН             | 0 | 2,4-O-Diacetyluracil      | Н              | Me             |
| triphosphate   | CH <sub>3</sub> | ОН             | 0 | Hypoxanthine              | Н              | Me             |
| triphosphate   | CH <sub>3</sub> | ОН             | 0 | 2,4-O-Diacetylthymine     | H              | Me             |
| triphosphate   | CH <sub>3</sub> | ОН             | 0 | Thymine                   | Н              | Me             |
| triphosphate   | CH <sub>3</sub> | OH             | 0 | Cytosine                  | Н              | Me             |
| triphosphate   | CH <sub>3</sub> | OH             | 0 | 4-(N-mono-acetyl)cytosine | H              | Me             |
| triphosphate   | CH <sub>3</sub> | ОН             | 0 | 4-(N,N-diacetyl)cytosine  | H              | Me             |
| triphosphate   | CH <sub>3</sub> | OH             | 0 | Uracil                    | H              | Me             |
| triphosphate   | CH <sub>3</sub> | OH             | 0 | 5-Fluorouracil            | Н              | Me             |
| triphosphate   | CH <sub>3</sub> | OH             | S | 2,4-O-Diacetyluracil      | Н              | Me             |
| triphosphate   | CH <sub>3</sub> | OH             | S | Hypoxanthine              | H              | Me             |
| triphosphate   | CH <sub>3</sub> | ОН             | S | 2,4-O-Diacetylthymine     | Н              | Me             |
| triphosphate   | CH <sub>3</sub> | ОН             | S | Thymine                   | H              | Me             |
| triphosphate   | CH <sub>3</sub> | ОН             | S | Cytosine                  | H              | Me             |
| monophosphate  | CF <sub>3</sub> | ОН             | 0 | 2,4-O-Diacetyluracil      | Н              | Me             |
| monophosphate  | CF <sub>3</sub> | ОН             | 0 | Hypoxanthine              | Н              | Me             |
| monophosphate  | CF <sub>3</sub> | ОН             | 0 | 2,4-O-Diacetylthymine     | H              | Me             |

| $\mathbb{R}^1$ | R <sup>6</sup>  | $\mathbb{R}^7$ | X | Base                      | R <sup>8</sup> | R <sup>9</sup> |
|----------------|-----------------|----------------|---|---------------------------|----------------|----------------|
| monophosphate  | CF <sub>3</sub> | ОН             | 0 | Thymine                   | H              | Me             |
| monophosphate  | CF <sub>3</sub> | OH             | 0 | Cytosine                  | H              | Me             |
| monophosphate  | CF <sub>3</sub> | ОН             | 0 | 4-(N-mono-acetyl)cytosine | Н              | Me             |
| monophosphate  | CF <sub>3</sub> | ОН             | 0 | 4-(N,N-diacetyl)cytosine  | H              | Me             |
| monophosphate  | CF <sub>3</sub> | OH             | 0 | Uracil                    | H              | Me             |
| monophosphate  | CF <sub>3</sub> | OH             | 0 | 5-Fluorouracil            | H              | Me             |
| monophosphate  | CF <sub>3</sub> | OH             | S | 2,4-O-Diacetyluracil      | H              | Me             |
| monophosphate  | CF <sub>3</sub> | ОН             | S | Hypoxanthine              | Н              | Me             |
| monophosphate  | CF <sub>3</sub> | OH             | S | 2,4-O-Diacetylthymine     | Н              | Me             |
| monophosphate  | CF <sub>3</sub> | OH             | S | Thymine                   | H              | Me             |
| monophosphate  | CF <sub>3</sub> | OH             | S | Cytosine                  | H              | Me             |
| monophosphate  | CF <sub>3</sub> | OH             | S | 4-(N-mono-acetyl)cytosine | H              | Me             |
| monophosphate  | CF <sub>3</sub> | OH             | S | 4-(N,N-diacetyl)cytosine  | Н              | Me             |
| monophosphate  | CF <sub>3</sub> | OH             | S | Uracil                    | Н              | Me             |
| monophosphate  | CF <sub>3</sub> | OH             | S | 5-Fluorouracil            | H              | Me             |
| acetyl         | CH <sub>3</sub> | OH             | 0 | 4-(N,N-diacetyl)cytosine  | Н              | Br             |
| acetyl         | CH <sub>3</sub> | ОН             | S | 4-(N,N-diacetyl)cytosine  | Н              | Br             |

## VII. Anti-Flavivirus or Pestivirus Activity

Compounds can exhibit anti-flavivirus or pestivirus activity by inhibiting flavivirus or pestivirus polymerase, by inhibiting other enzymes needed in the replication cycle, or by other pathways.

### **EXAMPLES**

The test compounds were dissolved in DMSO at an initial concentration of 200  $\mu M$  and then were serially diluted in culture medium.

Unless otherwise stated, baby hamster kidney (BHK-21) (ATCC CCL-10) and Bos Taurus (BT) (ATCC CRL 1390) cells were grown at 37°C in a humidified CO<sub>2</sub> (5%) atmosphere. BHK-21 cells were passaged in Eagle MEM additioned of 2 mM L-glutamine,

10% fetal bovine serum (FBS, Gibco) and Earle's BSS adjusted to contain 1.5 g/L sodium bicarbonate and 0.1 mM non-essential amino acids. BT cells were passaged in Dulbecco's modified Eagle's medium with 4 mM L-glutamine and 10% horse serum (HS, Gibco), adjusted to contain 1.5 g/L sodium bicarbonate, 4.5 g/L glucose and 1.0 mM sodium pyruvate. The vaccine strain 17D (YFV-17D) (Stamaril®, Pasteur Merieux) and Bovine Viral Diarrhea virus (BVDV) (ATCC VR-534) were used to infect BHK and BT cells, respectively, in 75 cm² bottles. After a 3 day incubation period at 37°C, extensive cytopathic effect was observed. Cultures were freeze-thawed three times, cell debris were removed by centrifugation and the supernatant was aliquoted and stored at -70°C. YFV-17D and BVDV were titrated in BHK-21 and BT cells, respectively, that were grown to confluency in 24-well plates.

### Example 4: Phosphorylation Assay of Nucleoside to Active Triphosphate

To determine the cellular metabolism of the compounds, HepG2 cells were obtained from the American Type Culture Collection (Rockville, MD), and were grown in 225 cm² tissue culture flasks in minimal essential medium supplemented with non-essential amino acids, 1% penicillin-streptomycin. The medium was renewed every three days, and the cells were subcultured once a week. After detachment of the adherent monolayer with a 10 minute exposure to 30 mL of trypsin-EDTA and three consecutive washes with medium, confluent HepG2 cells were seeded at a density of 2.5 x 10<sup>6</sup> cells per well in a 6-well plate and exposed to 10 μM of [³H] labeled active compound (500 dpm/pmol) for the specified time periods. The cells were maintained at 37°C under a 5% CO<sub>2</sub> atmosphere. At the selected time points, the cells were washed three times with ice-cold phosphate-buffered saline (PBS). Intracellular active compound and its respective metabolites were extracted by incubating the cell pellet overnight at -20°C with 60% methanol followed by extraction with an additional 20 μL of cold methanol for one hour in an ice bath. The extracts were then combined, dried under gentle filtered air flow and stored at -20°C until HPLC analysis. The preliminary results of the HPLC analysis are tabulated in Table 1.

Table 1

|          | [pmol/million cells]                 |                                      |                                      |                                      |  |  |
|----------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|
| Time (h) | β-D-2'-CH <sub>3</sub> -<br>riboA-TP | β-D-2'-CH <sub>3</sub> -<br>riboU-TP | β-D-2'-CH <sub>3</sub> -<br>riboC-TP | β-D-2'-CH <sub>3</sub> -<br>riboG-TP |  |  |
| 2        | 33.1                                 | 0.40                                 | 2.24                                 | ND                                   |  |  |
| 4        | 67.7                                 | 1.21                                 | 3.99                                 | ND                                   |  |  |
| 8        | 147                                  | 1.57                                 | 9.76                                 | 2.85                                 |  |  |
| 24       | 427                                  | 6.39                                 | 34.9                                 | 0.91                                 |  |  |
| 30       | 456                                  | 7.18                                 | 36.2                                 | 3.22                                 |  |  |
| 48       | 288                                  | 9.42                                 | 56.4                                 | 6.26                                 |  |  |

## **Example 5: Bioavailability Assay in Cynomolgus Monkeys**

Within 1 week prior to the study initiation, the cynomolgus monkey was surgically implanted with a chronic venous catheter and subcutaneous venous access port (VAP) to facilitate blood collection and underwent a physical examination including hematology and serum chemistry evaluations and the body weight was recorded. Each monkey (six total), received approximately 250 uCi of <sup>3</sup>H activity with each dose of active compound, namely β-D-2'-CH<sub>3</sub>-riboG at a dose level of 10 mg/kg at a dose concentration of 5 mg/mL, either via an intravenous bolus (3 monkeys, IV), or via oral gavage (3 monkeys, PO). Each dosing syringe was weighed before dosing to gravimetrically determine the quantity of formulation administered. Urine samples were collected via pan catch at the designated intervals (approximately 18-0 hours pre-dose, 0-4, 4-8 and 8-12 hours post-dosage) and processed. Blood samples were collected as well (pre-dose, 0.25, 0.5, 1, 2, 3, 6, 8, 12 and 24 hours postdosage) via the chronic venous catheter and VAP or from a peripheral vessel if the chronic venous catheter procedure should not be possible. The blood and urine samples were analyzed for the maximum concentration (C<sub>max</sub>), time when the maximum concentration was achieved (T<sub>max</sub>), area under the curve (AUC), half life of the dosage concentration (T<sub>1/2</sub>), clearance (CL), steady state volume and distribution (Vss) and bioavailability (F), which are tabulated in Tables 2 and 3, and graphically illustrated in Figures 2 and 3, respectively.

Table 2: Oral Bioavailability in Monkeys

|             | Dose<br>(mg) | AUC<br>(ng/mL x h) | Norm AUC<br>(ng/mL x h/mg) | Mean Norm AUC<br>(ng/mL x h/mg) | F (%) |
|-------------|--------------|--------------------|----------------------------|---------------------------------|-------|
| IV Monkey 1 | 46.44        | 13614              | 293.2                      |                                 |       |
| IV Monkey 2 | 24.53        | 6581               | 268.3                      |                                 |       |
| IV Monkey 3 | 20.72        | 6079               | 293.4                      | 284.9                           |       |
| PO Monkey 1 | 29.04        | 758                | 26.1                       |                                 |       |
| PO Monkey 2 | 30.93        | 898                | 29.0                       |                                 |       |
| PO Monkey 3 | 30.04        | 1842               | 61.3                       | 38.8                            | 13.6  |

Table 3: Experimental Pharmacokinetics of β-D-2'-CH<sub>3</sub>-riboG in Cynomolgus Monkeys

|                          | IV                  | PO                 |
|--------------------------|---------------------|--------------------|
| Dose/Route (mg/kg)       | 10                  | 10                 |
| C <sub>max</sub> (ng/mL) | $6945.6 \pm 1886.0$ | $217.7 \pm 132.1$  |
| T <sub>max</sub> (hr)    | $0.25 \pm 0.00$     | $2.00 \pm 1.00$    |
| AUC (ng/mL x hr)         | $8758.0 \pm 4212.9$ | $1166.0 \pm 589.6$ |
| T <sub>1/2</sub> (hr)    | $7.9 \pm 5.4$       | $10.3 \pm 4.1$     |
| CL (L/hr/kg)             | $1.28 \pm 0.48$     |                    |
| V <sub>ss</sub> (L/kg)   | $2.09 \pm 0.54$     |                    |
| F (%)                    | 13.8                | 3                  |

# **Example 6: Bone Marrow Toxicity Assay**

Human bone marrow cells were collected from normal healthy volunteers and the mononuclear population was separated by Ficoll-Hypaque gradient centrifugation as described previously by Sommadossi J-P, Carlisle R. "Toxicity of 3'-azido-3'-deoxythymidine and 9-(1,3-dihydroxy-2-propoxymethyl)guanine for normal human hematopoietic progenitor cells *in vitro*" Antimicrobial Agents and Chemotherapy 1987; 31:452-454; and Sommadossi J-P, Schinazi RF, Chu CK, Xie M-Y. "Comparison of cytotoxicity of the (-)- and (+)-enantiomer of 2',3'-dideoxy-3'-thiacytidine in normal human bone marrow progenitor cells" Biochemical Pharmacology 1992; 44:1921-1925. The culture assays for CFU-GM and BFU-E were performed using a bilayer soft agar or methylcellulose method. Drugs were diluted in tissue culture medium and filtered. After 14 to 18 days at 37°C in a humidified atmosphere of 5% CO<sub>2</sub> in air, colonies of greater than 50 cells were counted using an inverted microscope. The results in **Table 4** are presented as the percent inhibition of colony formation in the presence of drug compared to solvent control cultures.

Table 4: Human Bone Marrow Toxicity CFU-GM and BFU-E Clonogenic Assays

|                               | IC <sub>50</sub> in μM |       |  |
|-------------------------------|------------------------|-------|--|
| Treatment                     | CFU-GM                 | BFU-E |  |
| ribavirin                     | ~ 5                    | ~ 1   |  |
| β-D-2'-CH <sub>3</sub> -riboA | > 100                  | > 100 |  |
| β-D-2'-CH <sub>3</sub> -riboU | > 100                  | > 100 |  |
| β-D-2'-CH <sub>3</sub> -riboC | > 10                   | > 10  |  |
| β-D-2'-CH <sub>3</sub> -riboG | > 10                   | > 100 |  |

### **Example 7: Mitochondria Toxicity Assay**

HepG2 cells were cultured in 12-well plates as described above and exposed to various concentrations of drugs as taught by Pan-Zhou X-R, Cui L, Zhou X-J, Sommadossi J-P, Darley-Usmer VM. "Differential effects of antiretroviral nucleoside analogs on mitochondrial function in HepG2 cells" Antimicrob Agents Chemother 2000; 44:496-503. Lactic acid levels in the culture medium after 4 day drug exposure was measured using a Boehringer lactic acid assay kit. Lactic acid levels were normalized by cell number as measured by hemocytometer count. The preliminary results from this assay are tabulated in Table 5.

Table 5: Mitochondrial Toxicity Study (L-lactic acid assay)

|                               | Conc. (µM) | lactate (mg/10 <sup>6</sup> cell) | % of Control |
|-------------------------------|------------|-----------------------------------|--------------|
| Control                       |            | 2.18                              |              |
| FIAU                          | 10         | 3.73                              | 170.4        |
| β-D-2'-CH <sub>3</sub> -riboC | 1          | 2.52                              | 115.3        |
|                               | 10         | 2.36                              | 107.9        |
|                               | 50         | 2.26                              | 103.4        |
|                               | 100        | 2.21                              | 101.2        |
| НО                            | I NH OH    | HO H <sub>3</sub> C O             |              |
|                               | FIAU       | β-D-2'-CH <sub>3</sub> -ribo      | С            |

### **Example 8: Cytotoxicity Assay**

Cells were seeded at a rate of between  $5 \times 10^3$  and  $5 \times 10^4$ /well into 96-well plates in growth medium overnight at 37°C in a humidified CO<sub>2</sub> (5%) atmosphere. New growth medium containing serial dilutions of the drugs was then added. After incubation for 4 days, cultures were fixed in 50% TCA and stained with sulforhodamineB. The optical density was read at 550 nm. The cytotoxic concentration was expressed as the concentration required to reduce the cell number by 50% (CC<sub>50</sub>). The data is tabulated in **Table 6**.

| Compound                      |       | CC <sub>50</sub> , µM |       |
|-------------------------------|-------|-----------------------|-------|
| •                             | MDBK  | Huh7                  | HepG2 |
| β-D-2'-CH <sub>3</sub> -riboA | 20    | 40                    | 50-60 |
| β-D-2'-CH <sub>3</sub> -riboU | > 250 | > 250                 | > 250 |
| β-D-2'-CH <sub>3</sub> -riboC | 100   | > 250                 | 150   |
| β-D-2'-CH <sub>3</sub> -riboG | 100   | > 250                 | > 250 |
| Ribavirin                     | 5     | 25                    | 150   |

Table 6: MDBK versus Human Hepatoma

#### Example 9: Cell Protection Assay (CPA)

The assay was performed essentially as described by Baginski, S. G.; Pevear, D. C.; Seipel, M.; Sun, S. C. C.; Benetatos, C. A.; Chunduru, S. K.; Rice, C. M. and M. S. Collett "Mechanism of action of a pestivirus antiviral compound" *PNAS USA* **2000**, 97(14), 7981-7986. MDBK cells (ATCC) were seeded onto 96-well culture plates (4,000 cells per well) 24 hours before use. After infection with BVDV (strain NADL, ATCC) at a multiplicity of infection (MOI) of 0.02 plaque forming units (PFU) per cell, serial dilutions of test compounds were added to both infected and uninfected cells in a final concentration of 0.5% DMSO in growth medium. Each dilution was tested in quadruplicate. Cell densities and virus inocula were adjusted to ensure continuous cell growth throughout the experiment and to achieve more than 90% virus-induced cell destruction in the untreated controls after four days post-infection. After four days, plates were fixed with 50% TCA and stained with sulforhodamine B. The optical density of the wells was read in a microplate reader at 550 nm. The 50% effective concentration (EC<sub>50</sub>) values were defined as the compound concentration that achieved 50% reduction of cytopathic effect of the virus. The results are tabulated in Table 7. Figures 4 and 5 provide a graphical illustration of the methodology used to arrive

at the 50% effective concentration (EC<sub>50</sub>) values for  $\beta$ -D-2'-CH<sub>3</sub>-riboG and ribavirin. **Figure** 6 compares the results of the CPA for  $\beta$ -D-2'-CH<sub>3</sub>-riboG,  $\beta$ -D-2'-CH<sub>3</sub>-riboO,  $\beta$ -D-2'-CH<sub>3</sub>-riboA and ribavirin

 EC<sub>50</sub>, μΜ
 CC<sub>50</sub>, μΜ

 β-D-2'-CH<sub>3</sub>-riboA
 2
 20

 β-D-2'-CH<sub>3</sub>-riboU
 20
 >250

 β-D-2'-CH<sub>3</sub>-riboC
 2
 100

 β-D-2'-CH<sub>3</sub>-riboG
 4
 100

> 3

5

**Table 7: Cell Protection Assay** 

# **Example 10: Plaque Reduction Assay**

Ribavirin

For each compound the effective concentration was determined in duplicate 24-well plates by plaque reduction assays. Cell monolayers were infected with 100 PFU/well of virus. Then, serial dilutions of test compounds in MEM supplemented with 2% inactivated serum and 0.75% of methyl cellulose were added to the monolayers. Cultures were further incubated at 37°C for 3 days, then fixed with 50% ethanol and 0.8% Crystal Violet, washed and air-dried. Then plaques were counted to determine the concentration to obtain 90% virus suppression and tabulated in **Table 8**. **Figure 7** is a graphical illustration of the results from the Plaque Reduction Assay. **Figure 8** is an image of BVDV plaque formation in the presence of increasing concentrations of β-D-2'-CH<sub>3</sub>-riboU.

Table 8: Viral Suppression via Plaque Reduction Assay

|                               | EC <sub>90</sub> , μM |
|-------------------------------|-----------------------|
| β-D-2'-CH <sub>3</sub> -riboA | < 3                   |
| β-D-2'-CH <sub>3</sub> -riboU | < 81                  |
| β-D-2'-CH <sub>3</sub> -riboC | < 9                   |
| β-D-2'-CH <sub>3</sub> -riboG | < 9                   |

### **Example 11: Yield Reduction Assay**

For each compound the concentration to obtain a 6-log reduction in viral load was determined in duplicate 24-well plates by yield reduction assays. The assay was performed

as described by Baginski, S. G.; Pevear, D. C.; Seipel, M.; Sun, S. C. C.; Benetatos, C. A.; Chunduru, S. K.; Rice, C. M. and M. S. Collett "Mechanism of action of a pestivirus antiviral compound" PNAS USA 2000, 97(14), 7981-7986, with minor modifications. Briefly, MDBK cells were seeded onto 24-well plates (2 x 105 cells per well) 24 hours before infection with BVDV (NADL strain) at a multiplicity of infection (MOI) of 0.1 PFU per cell. Serial dilutions of test compounds were added to cells in a final concentration of 0.5% DMSO in growth medium. Each dilution was tested in triplicate. After three days, cell cultures (cell monolayers and supernatants) were lysed by three freeze-thaw cycles, and virus yield was quantified by plaque assay. Briefly, MDBK cells were seeded onto 6-well plates (5 x 105 cells per well) 24 h before use. Cells were inoculated with 0.2 mL of test lysates for 1 hour, washed and overlaid with 0.5% agarose in growth medium. After 3 days, cell monolayers were fixed with 3.5% formaldehyde and stained with 1% crystal violet (w/v in 50% ethanol) to visualize plaques. The plaques were counted to determine the concentration to obtain a 6log reduction in viral load as tabulated in Table 9. Figure 9 is a graphical illustration of the results from the Yield Reduction Assay. Figure 8 is an image of BVDV yield reduction in the presence of increasing concentrations of β-D-2'-CH<sub>3</sub>-riboC.

Table 9: Concentration to Obtain 6-log Reduction

|                               | Conc. for 6-log Reduction (µM) |
|-------------------------------|--------------------------------|
| β-D-2'-CH <sub>3</sub> -riboU | 120                            |
| β-D-2'-CH <sub>3</sub> -riboG | 20                             |
| β-D-2'-CH <sub>3</sub> -riboC | 20                             |
| B-D-2'-CH <sub>3</sub> -riboA | 9                              |

#### **Example 12: Comparative Cytotoxicity**

Table 10 summarizes the cytoxicity of two compounds of this invention, β-D-1'-CH<sub>3</sub>-riboA and β-D-2'-CH<sub>3</sub>-riboA, in comparison to RBV ("ribavirin"), in various cell systems.

|                               | BD   | ВНК | VERO_ | MT-4 |
|-------------------------------|------|-----|-------|------|
| β-D-1'-CH <sub>3</sub> -riboA | >100 | 200 | >100  | 18   |
| β-D-2'-CH <sub>3</sub> -riboA | 75   | 22  | 22    | 6.6  |
| RBV                           | ND   | 50  | 11    | ND   |

Table 10: Comparative Cytotoxicity\* (CC<sub>50</sub>)

The chemical structures for  $\beta$ -D-1'-CH<sub>3</sub>-riboA and  $\beta$ -D-2'-CH<sub>3</sub>-riboA are as follows:

β-D-1'-CH<sub>3</sub>-riboA

β-D-2'-CH<sub>3</sub>-riboA

Table 11 summarizes the antiviral activity of  $\beta$ -D-1'-CH<sub>3</sub>-riboA and  $\beta$ -D-2'-CH<sub>3</sub>-riboA against several viruses within the flavivirus and pestivirus genuses.

Table 11: Comparative Antiviral Activity\* (EC<sub>50</sub>)

|                  | BVDV | YFV | PICO | VSV  | HIV-1 |
|------------------|------|-----|------|------|-------|
| β-D-1'-CH3-riboA | 10   | 7.0 | 51   | >100 | >18   |
| β-D-2'-CH3-riboA | 0.1  | 0.2 | 5.0  | >100 | >6.6  |
| RBV              | ND   | 30  | >30  | ND   | ND    |

\* Compound concentration (µM) required to reduce the plaque number by 50%. The following virus-cell system were used: BVDC-BT, YFV-BHK, PICO (Cosxackie B1 and Polio Sabin)/VSV – Vero.

Table 12 summarizes the antiviral activity and toxicity of  $\beta$ -D-2'-methyl-riboG,  $\beta$ -D-2'-methyl-riboC and  $\beta$ -D-2'-methyl-riboU, against a couple of viruses within the flavivirus and pestivirus genuses.

<sup>\*</sup> Compound concentration (µM) required to reduce the viability of cells by 50%.

|                               | BVDV               |                     | YFV                |                     |
|-------------------------------|--------------------|---------------------|--------------------|---------------------|
|                               | EC <sub>50</sub> * | CC <sub>50</sub> ** | EC <sub>50</sub> * | CC <sub>50</sub> ** |
| β-D-2'-CH <sub>3</sub> -riboG | 2                  | >100                | 1.2                | 20                  |
| β-D-2'-CH <sub>3</sub> -riboC | 3.7                | >100                | 70                 | >100                |
| B-D-2'-CH2-riboII             | 20                 | >100                | 33                 | >100                |

Table 12: Comparative Antiviral Activity\* (EC<sub>50</sub>)

The chemical structures for  $\beta$ -D-2'-CH<sub>3</sub>-riboG,  $\beta$ -D-2'-CH<sub>3</sub>-riboU are as follows:

Table 13 summarizes the anti-viral activity of several compounds of this invention against BVDV in three different assays.

Table 13: for BVDV

|                               | Cell               | Plaque                  | Yield Reduction       |                     | Cytotoxicity       |
|-------------------------------|--------------------|-------------------------|-----------------------|---------------------|--------------------|
| Compound                      | Protection         | Reduction               | EC <sub>90</sub> , μΜ | 6 log <sub>10</sub> | Huh7 cells         |
|                               | $(EC_{50}, \mu M)$ | (EC <sub>90</sub> , μM) |                       | reduction (μM)      | $(EC_{50}, \mu M)$ |
| β-D-2'-CH <sub>3</sub> -riboA | 2                  | < 3                     | < 2                   | 9                   | 50                 |
| β-D-2'-CH <sub>3</sub> -riboT | > 250              | ND                      | ND                    | ND                  | > 250              |
| β-D-2'-CH <sub>3</sub> -riboU | 20                 | < 81                    | 24                    | 120                 | > 250              |
| β-D-2'-CH <sub>3</sub> -riboC | 2                  | < 9                     | < 4                   | 20                  | > 250              |
| β-D-2'-CH <sub>3</sub> -riboG | 4                  | < 9                     | 3                     | 20                  | > 250              |
| β-D-2'-CH <sub>3</sub> -ribol | 45                 | ND                      | ND                    | ND                  | > 250              |
| Ribavirin                     | > 3                | > 200                   | > 20                  | toxic               | 20                 |

<sup>\*</sup> Compound concentration (µM) required to reduce the plaque number by 50%. The following virus-cell system were used: BVDC-BT and YFV-BHK.

<sup>\*</sup> Compound concentration (µM) required to reduce the viability of cells by 50%.

This invention has been described with reference to its preferred embodiments. Variations and modifications of the invention, will be obvious to those skilled in the art from the foregoing detailed description of the invention.

#### We Claim:

## 1. A compound of Formula I:

$$X^{1}$$
 $N$ 
 $N$ 
 $X^{2}$ 
 $CH_{3}$ 
 $CH_{3}$ 
 $(I)$ 

or a pharmaceutically acceptable salt thereof, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

 $X^1$  and  $X^2$  are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo,  $OR^4$ ,  $NR^4NR^5$  or  $SR^4$ ; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

#### 2. A compound of Formula II:

$$X^{1} \longrightarrow X^{2}$$

$$OR^{2} OR^{3}$$
(II)

or a pharmaceutically acceptable salt thereof, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> and X<sup>2</sup> are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

#### 3. A compound of Formula III:

$$X^1$$
 $N$ 
 $N$ 
 $N$ 
 $X^2$ 
 $CH_3$ 
 $OR^2$ 
 $OR^3$ 
(IIII)

or a pharmaceutically acceptable salt thereof, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is

capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> and X<sup>2</sup> are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

## 4. A compound of Formula IV:

or a pharmaceutically acceptable salt thereof, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

### 5. A compound of Formula V:

$$X^1$$
 $X^1$ 
 $X^1$ 

or a pharmaceutically acceptable salt thereof, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

### 6. A compound of Formula VI:

$$R^{1}O$$
 $CH_{3}$ 
 $OR^{2}$ 
 $OR^{3}$ 
 $(VI)$ 

or a pharmaceutically acceptable salt thereof, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

## 7. A compound selected from Formulas VII, VIII and IX:



or a pharmaceutically acceptable salt thereof, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is

capable of providing a compound wherein  $R^1$ ,  $R^2$  and  $R^3$  are independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, 2-Br-ethyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), CF<sub>3</sub>, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; and X is O, S, SO<sub>2</sub>, or CH<sub>2</sub>.

### 8. A compound of Formulas X, XI and XII:



or a pharmaceutically acceptable salt thereof, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>7</sup> is hydrogen, OR<sup>3</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; and

X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

# 9. A compound selected from Formulas XIII, XIV and XV:

R<sup>1</sup>O Base R<sup>1</sup>O Base 
$$\mathbb{R}^6$$
 X  $\mathbb{R}^6$  X

or a pharmaceutically acceptable salt thereof, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

## 10. A compound of Formula XVI:

or a pharmaceutically acceptable salt thereof, wherein:

Base is a purine or pyrimidine base as defined herein;

R¹ and R² are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ and R² are independently H or phosphate; R⁶ is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO₂, NH₂, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)₂, -N(acyl)₂;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>8</sup> and R<sup>10</sup> are independently H, alkyl (including lower alkyl), chlorine, bromine, or iodine;

alternatively,  $R^7$  and  $R^9$ ,  $R^7$  and  $R^{10}$ ,  $R^8$  and  $R^9$ , or  $R^8$  and  $R^{10}$  can come together to form a bond; and

X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

#### 11. A compound of Formula XVII:



or a pharmaceutically acceptable salt thereof, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl

(including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> and R<sup>2</sup> are independently H or phosphate; R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

 $R^{10}$  is H, alkyl (including lower alkyl), chlorine, bromine, or iodine; alternatively,  $R^7$  and  $R^9$ , or  $R^7$  and  $R^{10}$  can come together to form a bond; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

## 12. A compound of Formula XVIII:



or a pharmaceutically acceptable salt thereof, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or

other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> and R<sup>2</sup> are independently H or phosphate; R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO<sub>2</sub>, amino, loweralkylamino, or di(loweralkyl)amino;

 $R^8$  is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively,  $R^7$  and  $R^9$ , or  $R^8$  and  $R^9$  can come together to form a bond; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

### 13. A compound of the structure:

or a pharmaceutically acceptable salt thereof.

#### 14. A compound of the structure:

# 15. A compound of the structure:

or a pharmaceutically acceptable salt thereof.

# 16. A compound of the structure:

or a pharmaceutically acceptable salt thereof.

# 17. A compound of the structure:

or a pharmaceutically acceptable salt thereof.

# 18. A compound of the structure:

# 19. A compound of the structure:

or a pharmaceutically acceptable salt thereof.

# 20. A compound of the structure:

or a pharmaceutically acceptable salt thereof.

# 21. A compound of the structure:

or a pharmaceutically acceptable salt thereof.

# 22. A compound of the structure:

23. A compound of the structure:

or a pharmaceutically acceptable salt thereof.

24. A compound of the structure:

- 25. The compound as described in any of the preceding claims 1-24, wherein the said compound is in the form of a dosage unit.
- 26. The compound as described in claim 187, wherein the dosage unit contains 10 to 1500 mg of said compound.
- 27. The compound as described in claim 187 or 188, wherein said dosage unit is a tablet or capsule.
- 28. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula I:

$$X^1$$
 $X^1$ 
 $X^2$ 
 $CH_3$ 
 $CH_3$ 
 $(I)$ 

or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> and X<sup>2</sup> are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

29. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula II:

$$X^{1}$$
 $N$ 
 $N$ 
 $X^{2}$ 
 $OR^{2}$ 
 $OR^{3}$ 
(II)

or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> and X<sup>2</sup> are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

30. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula III:

$$X^1$$
 $N$ 
 $N$ 
 $X^2$ 
 $CH_3$ 
 $OR^2$ 
 $OR^3$ 
(III)

or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with

one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> and X<sup>2</sup> are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

31. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula IV:

or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

32. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula V:

$$X^{1}$$
 $X^{1}$ 
 $X^{1$ 

or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

33. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula VI:

or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

34. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formulas VII, VIII or IX:

$$R^{1}O$$
 $X$ 
 $R^{6}$ 
 $R^{1}O$ 
 $X$ 
 $R^{6}$ 
 $R^{6}$ 
 $R^{1}O$ 
 $R^{6}$ 
 $R^{6}$ 
 $R^{1}O$ 
 $R^{6}$ 
 $R^{1}O$ 
 $R^{6}$ 
 $R^{6}$ 
 $R^{1}O$ 
 $R^{6}$ 
 $R^{1}O$ 
 $R^$ 

or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, 2-Br-ethyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), CF<sub>3</sub>, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

35. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula X, XI or XII:



or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(acyl)<sub>2</sub>;

R<sup>7</sup> is hydrogen, OR<sup>3</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

36. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula XIII, XIV or XV:



or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl

(including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

37. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula XVI:



or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> and R<sup>2</sup> are independently H or phosphate; R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl

O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub> or -N(acyl)<sub>2</sub>;

R<sup>8</sup> and R<sup>10</sup> are independently H, alkyl (including lower alkyl), chlorine, bromine or iodine;

alternatively, R<sup>7</sup> and R<sup>9</sup>, R<sup>7</sup> and R<sup>10</sup>, R<sup>8</sup> and R<sup>9</sup>, or R<sup>8</sup> and R<sup>10</sup> can come together to form a bond; and

X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

38. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula XVII:



or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> and R<sup>2</sup> are independently H or phosphate; R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl

O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; R<sup>10</sup> is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R<sup>7</sup> and R<sup>9</sup>, or R<sup>7</sup> and R<sup>10</sup> can come together to form a bond; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

39. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula XVIII:



or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> and R<sup>2</sup> are independently H or phosphate; R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO<sub>2</sub>, amino, loweralkylamino, or di(loweralkyl)amino;

R<sup>8</sup> is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R<sup>7</sup> and R<sup>9</sup>, or R<sup>8</sup> and R<sup>9</sup> can come together to form a bond; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

40. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:

or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent.

41. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:

42. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:

or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent.

43. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:

or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent.

44. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:

45. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:

or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent.

46. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:

or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent.

47. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:

48. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:

or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent.

49. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:

or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent.

50. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:

51. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:

or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent.

52. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula I:

or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> and X<sup>2</sup> are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

53. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula II:

or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> and X<sup>2</sup> are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

54. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula III:

$$X^1$$
 $N$ 
 $N$ 
 $N$ 
 $X^2$ 
 $OR^2$ 
 $OR^3$ 
 $OR^3$ 

or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> and X<sup>2</sup> are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

55. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula IV:

$$X^{1}$$
 $X^{1}$ 
 $X^{1$ 

or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

56. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula V:

or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

57. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula VI:

or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

58. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula VII, VIII or IX:

Base 
$$R^{1}O$$
 $X$ 
 $R^{6}$ 
 $OR^{2}$ 
 $OR^{3}$ 
 $OR^{2}$ 
 $OR^{3}$ 
 $OR^{2}$ 
 $OR^{2}$ 
 $OR^{3}$ 
 $OR^{3}$ 
 $OR^{2}$ 
 $OR^{3}$ 
 $OR$ 

or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, 2-Br-ethyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), CF<sub>3</sub>, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; and X is O, S, SO<sub>2</sub>, or CH<sub>2</sub>.

59. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula X, XI or XII:



Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>7</sup> is hydrogen, OR<sup>3</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; and X is O, S, SO<sub>2</sub>, or CH<sub>2</sub>.

60. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula XIII, XIV or XV:



or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl

(including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; and

X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

61. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula XVI:



or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> and R<sup>2</sup> are independently H or phosphate; R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl

O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>8</sup> and R<sup>10</sup> are independently H, alkyl (including lower alkyl), chlorine, bromine, or iodine;

alternatively, R<sup>7</sup> and R<sup>9</sup>, R<sup>7</sup> and R<sup>10</sup>, R<sup>8</sup> and R<sup>9</sup>, or R<sup>8</sup> and R<sup>10</sup> can come together to form a bond; and

X is O, S, SO<sub>2</sub>, or CH<sub>2</sub>.

62. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula XVII:



or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> and R<sup>2</sup> are independently H or phosphate; R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl

O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; R<sup>10</sup> is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R<sup>7</sup> and R<sup>9</sup>, or R<sup>7</sup> and R<sup>10</sup> can come together to form a bond; and

63. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula XVIII:



or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents, wherein:

Base is a purine or pyrimidine base as defined herein;

X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> and R<sup>2</sup> are independently H or phosphate; R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO<sub>2</sub>, amino, loweralkylamino, or di(loweralkyl)amino;

 $R^8$  is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively,  $R^7$  and  $R^9$ , or  $R^8$  and  $R^9$  can come together to form a bond; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

64. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:

or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents.

65. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:

66. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:

or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents.

67. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:

or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents.

68. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:

69. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:

or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents.

70. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:

or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents.

71. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:

72. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:

or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents.

73. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:

or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents.

74. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:

75. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:

or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents.

- 76. The pharmaceutical composition as described in any of the preceding claims 28-75, wherein the said compound is in the form of a dosage unit.
- 77. The pharmaceutical composition as described in claim 76, wherein the dosage unit contains 10 to 1500 mg of said compound.
- 78. The pharmaceutical composition as described in claim 75 or 76, wherein said dosage unit is a tablet or capsule.
- 79. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula I:

or a pharmaceutically acceptable salt thereof, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower

alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> and X<sup>2</sup> are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

80. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula II:

or a pharmaceutically acceptable salt thereof, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> and X<sup>2</sup> are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

81. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula III:

$$X^1$$
 $N$ 
 $N$ 
 $X^2$ 
 $CH_3$ 
 $OR^2$ 
 $OR^3$ 
(III)

or a pharmaceutically acceptable salt thereof, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> and X<sup>2</sup> are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

82. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula IV:

or a pharmaceutically acceptable salt thereof, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

83. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula V:

$$X^{1}$$
 $X^{1}$ 
 $X^{1$ 

or a pharmaceutically acceptable salt thereof, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

84. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula VI:

$$X^{1}$$
 $X^{1}$ 
 $X^{1$ 

or a pharmaceutically acceptable salt thereof, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

85. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula VII, VIII or IX:

Base 
$$R^{1}O$$
  $X$   $R^{6}$   $R^{6}$   $QR^{2}$   $QR^{3}$   $QR^{2}$   $QR^{2}$   $QR^{3}$   $QR^$ 

or a pharmaceutically acceptable salt thereof, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, 2-Br-ethyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), CF<sub>3</sub>, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; and X is O, S, SO<sub>2</sub>, or CH<sub>2</sub>.

86. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula X, XI or XII:



or a pharmaceutically acceptable salt thereof, wherein: Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>7</sup> is hydrogen, OR<sup>3</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

87. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula XIII, XIV or XV:



or a pharmaceutically acceptable salt thereof, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with

one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

88. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula XVI:



or a pharmaceutically acceptable salt thereof, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> and R<sup>2</sup> are independently H or phosphate; R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>8</sup> and R<sup>10</sup> are independently H, alkyl (including lower alkyl), chlorine, bromine or iodine;

alternatively,  $R^7$  and  $R^9$ ,  $R^7$  and  $R^{10}$ ,  $R^8$  and  $R^9$ , or  $R^8$  and  $R^{10}$  can come together to form a bond; and

X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

89. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula XVII:



or a pharmaceutically acceptable salt thereof, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> and R<sup>2</sup> are independently H or phosphate; R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl), -O(alkyl), -O(alkyl), -N(lower alkyl), -N(lower alky

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; R<sup>10</sup> is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R<sup>7</sup> and R<sup>9</sup>, or R<sup>7</sup> and R<sup>10</sup> can come together to form a bond; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

90. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula XVIII:



or a pharmaceutically acceptable salt thereof, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> and R<sup>2</sup> are independently H or phosphate; R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO<sub>2</sub>, amino, loweralkylamino, or di(loweralkyl)amino;

R<sup>8</sup> is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R<sup>7</sup> and R<sup>9</sup>, or R<sup>8</sup> and R<sup>9</sup> can come together to form a bond; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

91. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:

or a pharmaceutically acceptable salt thereof.

92. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:

or a pharmaceutically acceptable salt thereof.

93. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:

94. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:

or a pharmaceutically acceptable salt thereof.

95. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:

or a pharmaceutically acceptable salt thereof.

96. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:

97. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:

or a pharmaceutically acceptable salt thereof.

98. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:

or a pharmaceutically acceptable salt thereof.

99. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:

100. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:

or a pharmaceutically acceptable salt thereof.

101. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:

or a pharmaceutically acceptable salt thereof.

102. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:

103. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula I:

or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more other antivirally effective agents, wherein:

 $R^1$ ,  $R^2$  and  $R^3$  are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein  $R^1$ ,  $R^2$  and  $R^3$  are independently H or phosphate;

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> and X<sup>2</sup> are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

104. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula II:

$$X^1$$
 $N$ 
 $N$ 
 $X^2$ 
 $N$ 
 $N$ 
 $X^2$ 
 $N$ 
 $N$ 
 $X^2$ 
 $N$ 
 $N$ 
 $N$ 
 $X^2$ 
 $N$ 
 $N$ 
 $X^2$ 
 $N$ 
 $N$ 
 $X$ 

or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more other antivirally effective agents, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> and X<sup>2</sup> are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

105. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula III:

$$X^1$$
 $N$ 
 $N$ 
 $N$ 
 $N$ 
 $X^2$ 
 $OR^2$ 
 $OR^3$ 
(III)

or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more other antivirally effective agents, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> and X<sup>2</sup> are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

106. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula IV:

or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more other antivirally effective agents, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

107. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula V:

or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more other antivirally effective agents, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

108. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula VI:

or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more other antivirally effective agents, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

109. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula VII, VIII or IX:

$$R^{1}O$$
 $X$ 
 $R^{6}$ 
 $R^{6}$ 

or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more other antivirally effective agents, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, 2-Br-ethyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), CF<sub>3</sub>, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; and X is O, S, SO<sub>2</sub>, or CH<sub>2</sub>.

110. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula X, XI or XII:



or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more other antivirally effective agents, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>7</sup> is hydrogen, OR<sup>3</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

111. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula XIII, XIV or XV:



or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more other antivirally effective agents, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl

(including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

112. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula XVI:

$$R^{10}$$
  $R^{10}$   $R^{8}$   $R^{6}$   $R^{9}$   $R^{7}$   $(XVI)$ 

or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more other antivirally effective agents, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> and R<sup>2</sup> are independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>8</sup> and R<sup>10</sup> are independently H, alkyl (including lower alkyl), chlorine, bromine or iodine;

alternatively, R<sup>7</sup> and R<sup>9</sup>, R<sup>7</sup> and R<sup>10</sup>, R<sup>8</sup> and R<sup>9</sup>, or R<sup>8</sup> and R<sup>10</sup> can come together to form a bond; and

X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

113. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula XVII:



or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more other antivirally effective agents, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> and R<sup>2</sup> are independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; R<sup>10</sup> is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R<sup>7</sup> and R<sup>9</sup>, or R<sup>7</sup> and R<sup>10</sup> can come together to form a bond; and

114. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula XVIII:



or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more other antivirally effective agents, wherein:

Base is a purine or pyrimidine base as defined herein;

X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> and R<sup>2</sup> are independently H or phosphate; R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl

O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO<sub>2</sub>, amino, loweralkylamino, or di(loweralkyl)amino;

R<sup>8</sup> is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R<sup>7</sup> and R<sup>9</sup>, or R<sup>8</sup> and R<sup>9</sup> can come together to form a bond; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

115. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:

or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more antivirally effective agents.

116. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:

or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more antivirally effective agents.

117. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:

or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more antivirally effective agents.

118. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:

or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more antivirally effective agents.

119. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:

or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more antivirally effective agents.

120. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:

or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more antivirally effective agents.

121. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:

or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more antivirally effective agents.

122. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:

or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more antivirally effective agents.

123. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:

or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more antivirally effective agents.

124. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:

or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more antivirally effective agents.

125. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:

or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more antivirally effective agents.

126. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:

or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more antivirally effective agents.

- 127. Method of treatment as described in any of the preceding claims 79-126, wherein the said compound is in the form of a dosage unit.
- 128. Method of treatment as described in claim 127, wherein the dosage unit contains 10 to 1500 mg of said compound.
- 129. Method of treatment as described in claim 127 or 128, wherein said dosage unit is a tablet or capsule.
- 130. A use of a compound of Formula I:

$$X^{1}$$
 $N$ 
 $N$ 
 $X^{2}$ 
 $CH_{3}$ 
 $OR^{2}$ 
 $OR^{3}$ 
 $OR^{3}$ 

or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower

alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> and X<sup>2</sup> are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

### 131. A use of a compound of Formula II:

$$X^1$$
 $N$ 
 $N$ 
 $X^2$ 
 $N$ 
 $N$ 
 $X^2$ 
 $N$ 
 $N$ 
 $X^2$ 
 $N$ 
 $N$ 
 $N$ 
 $X^2$ 
 $N$ 
 $N$ 
 $X$ 
 $X$ 

or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

 $X^1$  and  $X^2$  are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo,  $OR^4$ ,  $NR^4NR^5$  or  $SR^4$ ; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

### 132. A use of a compound of Formula III:

$$X^1$$
 $N$ 
 $N$ 
 $N$ 
 $X^2$ 
 $CH_3$ 
 $OR^2$ 
 $OR^3$ 
(III)

or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> and X<sup>2</sup> are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

## 133. A use of a compound of Formula IV:

$$R^{1}O$$
 $O$ 
 $CH_{3}$ 
 $(IV)$ 

or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

### 134. A use of a compound of Formula V:

or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

#### 135. A use of a compound of Formula VI:

$$R^{1}O$$
 $CH_{3}$ 
 $OR^{2}$ 
 $OR^{3}$ 
 $(VI)$ 

or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein:

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid,

including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

## 136. A use of a compound selected from Formulas VII, VIII and IX:



or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, 2-Br-ethyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), CF<sub>3</sub>, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; and

X is O, S, SO<sub>2</sub>, or CH<sub>2</sub>.

### 137. A use of a compound of Formulas X, XI and XII:



or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>7</sup> is hydrogen, OR<sup>3</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

## 138. A use of a compound selected from Formulas XIII, XIV and XV:

or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(acyl)<sub>2</sub>; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

### 139. A use of a compound of Formula XVI:



Base is a purine or pyrimidine base as defined herein;

R¹ and R² are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ and R² are independently H or phosphate; R⁶ is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>8</sup> and R<sup>10</sup> are independently H, alkyl (including lower alkyl), chlorine, bromine, or iodine;

alternatively, R<sup>7</sup> and R<sup>9</sup>, R<sup>7</sup> and R<sup>10</sup>, R<sup>8</sup> and R<sup>9</sup>, or R<sup>8</sup> and R<sup>10</sup> can come together to form a bond; and

X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

#### 140. A use of a compound of Formula XVII:



or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> and R<sup>2</sup> are independently H or phosphate; R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>10</sup> is H, alkyl (including lower alkyl), chlorine, bromine, or iodine; alternatively, R<sup>7</sup> and R<sup>9</sup>, or R<sup>7</sup> and R<sup>10</sup> can come together to form a bond; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

### 141. A use of a compound of Formula XVIII:



or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with

one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> and R<sup>2</sup> are independently H or phosphate; R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl), -O(alkyl), -O(alkyl), -O(alkyl), -O(alkyl), -N(lower alkyl), -N(lower alkyl), -N(lower alkyl), -N(lower alkyl), -N(lower alkyl), -N(lower alkyl);

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO<sub>2</sub>, amino, loweralkylamino, or di(loweralkyl)amino;

R<sup>8</sup> is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R<sup>7</sup> and R<sup>9</sup>, or R<sup>8</sup> and R<sup>9</sup> can come together to form a bond; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

#### 142. A use of a compound of the structure:

or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.

#### 143. A use of a compound of the structure:

## 144. A use of a compound of the structure:

or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.

## 145. A use of a compound of the structure:

or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.

## 146. A use of a compound of the structure:

## 147. A use of a compound of the structure:

or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.

# 148. A use of a compound of the structure:

or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.

## 149. A use of a compound of the structure:

150. A use of a compound of the structure:

or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.

151. A use of a compound of the structure:

or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.

152. A use of a compound of the structure:

### 153. A use of a compound of the structure:

or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.

### 154. A use of a compound of Formula I:

$$X^{1}$$
 $N$ 
 $N$ 
 $N$ 
 $X^{2}$ 
 $CH_{3}$ 
 $CH_{3}$ 
 $(I)$ 

or a pharmaceutically acceptable salt thereof, for the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein:  $R^1$ ,  $R^2$  and  $R^3$  are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein  $R^1$ ,  $R^2$  and  $R^3$  are independently H or phosphate; Y is hydrogen, bromo, chloro, fluoro, iodo,  $OR^4$ ,  $NR^4R^5$  or  $SR^4$ ;

 $X^1$  and  $X^2$  are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo,  $OR^4$ ,  $NR^4NR^5$  or  $SR^4$ ; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

### 155. A use of a compound of Formula II:

or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein:  $R^1$ ,  $R^2$  and  $R^3$  are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein  $R^1$ ,  $R^2$  and  $R^3$  are is independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> and X<sup>2</sup> are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

## 156. A use of a compound of Formula III:

or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein:  $R^1$ ,  $R^2$  and  $R^3$  are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein  $R^1$ ,  $R^2$  and  $R^3$  are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> and X<sup>2</sup> are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

## 157. A use of a compound of Formula IV:

or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein:  $R^1$ ,  $R^2$  and  $R^3$  are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein  $R^1$ ,  $R^2$  and  $R^3$  are independently H or phosphate;

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

#### 158. A use of a compound of Formula V:

or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein:  $R^1$ ,  $R^2$  and  $R^3$  are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein  $R^1$ ,  $R^2$  and  $R^3$  are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

## 159. A use of a compound of Formula VI:

$$X^1$$
 $N$ 
 $N$ 
 $CH_3$ 
 $OR^2$ 
 $OR^3$ 
 $(VI)$ 

or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein:  $R^1$ ,  $R^2$  and  $R^3$  are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid,

including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate; and

Y is hydrogen, bromo, chloro, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup> or SR<sup>4</sup>;

X<sup>1</sup> is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR<sup>4</sup>, NR<sup>4</sup>NR<sup>5</sup> or SR<sup>4</sup>; and

R<sup>4</sup> and R<sup>5</sup> are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).

## 160. A use of a compound selected from Formulas VII, VIII and IX:



or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein: Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, 2-Br-ethyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), CF<sub>3</sub>, chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; and X is O, S, SO<sub>2</sub>, or CH<sub>2</sub>.

#### 161. A use of a compound of Formulas X, XI and XII:



or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein: Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>7</sup> is hydrogen, OR<sup>3</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

162. A use of a compound selected from Formulas XIII, XIV and XV:

$$R^{10}$$
 $R^{6}$ 
 $R^{$ 

or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein: Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are independently H or phosphate;

R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

#### 163. A use of a compound of Formula XVI:

or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein:

Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> and R<sup>2</sup> are independently H or phosphate; R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), -O(alkenyl), -N(lower alkyl), -N(acyl)2;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>8</sup> and R<sup>10</sup> are independently H, alkyl (including lower alkyl), chlorine, bromine or iodine;

alternatively, R<sup>7</sup> and R<sup>9</sup>, R<sup>7</sup> and R<sup>10</sup>, R<sup>8</sup> and R<sup>9</sup>, or R<sup>8</sup> and R<sup>10</sup> can come together to form a bond; and

X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

#### 164. A use of a compound of Formula XVII:



or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein: Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> and R<sup>2</sup> are independently H or phosphate; R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), -O(alkenyl), chlorine, bromine, iodine, NO<sub>2</sub>, NH<sub>2</sub>, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)<sub>2</sub>, -N(acyl)<sub>2</sub>;

 $R^{10}$  is H, alkyl (including lower alkyl), chlorine, bromine, or iodine; alternatively,  $R^7$  and  $R^9$ , or  $R^7$  and  $R^{10}$  can come together to form a bond; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

### 165. A use of a compound of Formula XVIII:



or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein: Base is a purine or pyrimidine base as defined herein;

R<sup>1</sup> and R<sup>2</sup> are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with

one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R<sup>1</sup> and R<sup>2</sup> are independently H or phosphate; R<sup>6</sup> is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkyl), -O(alkyl), -O(alkyl), -O(alkyl), -O(alkyl), -N(lower alkyl), -N(lower alkyl), -N(lower alkyl), -N(lower alkyl), -N(lower alkyl), -N(lower alkyl);

R<sup>7</sup> and R<sup>9</sup> are independently hydrogen, OR<sup>2</sup>, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO<sub>2</sub>, amino, loweralkylamino, or di(loweralkyl)amino;

R<sup>8</sup> is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R<sup>7</sup> and R<sup>9</sup>, or R<sup>8</sup> and R<sup>9</sup> can come together to form a bond; and X is O, S, SO<sub>2</sub> or CH<sub>2</sub>.

## 166. A use of a compound of the structure:

or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.

## 167. A use of a compound of the structure:

## 168. A use of a compound of the structure:

or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.

## 169. A use of a compound of the structure:

or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.

## 170. A use of a compound of the structure:

## 171. A use of a compound of the structure:

or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.

## 172. A use of a compound of the structure:

or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.

## 173. A use of a compound of the structure:

## 174. A use of a compound of the structure:

or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.

## 175. A use of a compound of the structure:

or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.

## 176. A use of a compound of the structure:

177. A use of a compound of the structure:

- 178. Use of the compound as described in any of the preceding claims 130-177, wherein the said compound is in the form of a dosage unit.
- 179. Use of the compound of claim 101, wherein the dosage unit contains 178 to 1500 mg of said compound.
- 180. Use of the compound of claim 178 or 179, wherein said dosage unit is a tablet or capsule.

Figure 1: Chemical Structures of Illustrative Nucleosides

Figure 2: Screening Phamacokinetics of β-D-2'-CH<sub>3</sub>-riboG in Cynomolgus Monkeys



Figure 3: Phamacokinetics of β-D-2'-CH<sub>3</sub>-riboG in Cynomolgus Monkeys



Figure 3a



Figure 3b

Figure 4: BVDV Cell Protection Assay (CPA) Of β-D-2'-CH<sub>3</sub>-riboG





**Cell Protection Assay** 



Figure 5: BVDV Cell Protection Assay (CPA) of Ribavirin





**Cell Protection Assay** 



Figure 6: BVDV Cell Protection Assays











Figure 7: Plaque Purified BVDV







No Virus

BVDV

BVDV plaque
purified

Figure 8:BVDV Plaque Assay of β-D-2'-CH<sub>3</sub>-riboU



Figure 9: Yield Reduction Assay of β-D-2'-CH<sub>3</sub>-riboG



4-log virus reduction at 9  $\mu M$ 

Figure 10: BVDV Yield Reduction Assay for β-D-2'-CH<sub>3</sub>-riboC



## (19) World Intellectual Property Organization International Bureau



## - 1 Maria (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800)

## (43) International Publication Date 6 December 2001 (06.12.2001)

### **PCT**

# (10) International Publication Number WO 01/92282 A3

(51) International Patent Classification?: C07H 19/06, 19/10, 19/16, 19/20, A61K 31/7068, 31/7076, A61P 31/14

(21) International Application Number: PCT/US01/16687

(22) International Filing Date: 23 May 2001 (23.05.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/207.674 26 May 2000 (26.05.2000) US 60/283.276 11 April 2001 (11.04.2001) US

(71) Applicants (for all designated States except US):
NOVIRIO PHARMACEUTICALS LIMITED [—/—];
Walker Secretaries. Walker House. Grand Cayman (KY).

UNIVERSITA DEGLI STUDI DI CAGLIARI [IT/IT]; Dip. Biologia Sperimentale, Sezione di Microbiologia, Cittadella Universitaria SS 554, Km. 4,500, 1-09042 Monserrato (IT).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SOMMADOSSI, Jean-Pierre [FR/US]; 5075 Greystone Way, Birmingham, AL 35242 (US). LACOLLA, Paolo [IT/IT]; 5 Strada no. 11, Poggio dei Pini, I-09012 Capoterra (IT).

(74) Agent: KNOWLES, Sherry, M.: King & Spalding. 191 Peachtree Street. Atlanta, GA 30303-1763 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW.

[Continued on next page]

#### (54) Title: METHODS AND COMPOSITIONS FOR TREATING FLAVIVIRUSES AND PESTIVIRUSES



(57) Abstract: A method and composition for treating a host infected with flavivirus or pestivirus comprising administering an effective flavivirus or pestivirus treatment amount of a described 1', 2' or 3'-modified nucleoside or a pharmaceutically acceptable salt or prodrug thereof, is provided.





MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SI), SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report: 2 May 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

tional Application No PCT/US 01/16687

A. CLASSIFICATION OF SUBJECT MATTER 1PC 7 C07H19/06 C07H19/10 A61K31/7076 A61P31/14

C07H19/16

C07H19/20

A61K31/7068

According to International Patent Classification (IPC) or to both national classification and IPC

#### B. FIELDS SEARCHED

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, CHEM ABS Data

|                                                                                                                                                                                                                                                                                                                                                              | ENTS CONSIDERED TO BE RELEVANT                                      |                                                                                                                |                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Category °                                                                                                                                                                                                                                                                                                                                                   | Citation of document, with indication, where appropriate, of        | he relevant passages                                                                                           | Relevant to claim No.                                                                       |
| Y                                                                                                                                                                                                                                                                                                                                                            | US 5 977 325 A (EDWARDS MICHA<br>2 November 1999 (1999-11-02)       | ELL ET AL)                                                                                                     | 25,<br>28-39,<br>52-63,<br>76,<br>79-90,<br>103-114,<br>127,<br>130-141,<br>154-165,<br>178 |
|                                                                                                                                                                                                                                                                                                                                                              | column 2, structure 1b                                              |                                                                                                                |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                              | column 23, lines 11-27                                              |                                                                                                                |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                              | column 26, lines 5-10                                               |                                                                                                                |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                              | the whole document                                                  |                                                                                                                |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                              |                                                                     |                                                                                                                |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                              |                                                                     | -/                                                                                                             |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                              |                                                                     |                                                                                                                |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                              |                                                                     |                                                                                                                |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                              |                                                                     |                                                                                                                |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                              |                                                                     |                                                                                                                |                                                                                             |
| X Funt                                                                                                                                                                                                                                                                                                                                                       | her documents are listed in the continuation of box C.              | Patent family members are liste                                                                                | ed in annex.                                                                                |
| Special ca                                                                                                                                                                                                                                                                                                                                                   | tegories of cited documents:                                        | "T" later document published after the in                                                                      | ternational filing date                                                                     |
| *A* document defining the general state of the art which is not considered to be of particular relevance  *E* earlier document but published on or after the international filing date                                                                                                                                                                       |                                                                     | or priority date and not in conflict will<br>cited to understand the principle or t<br>invention               | th the application but                                                                      |
|                                                                                                                                                                                                                                                                                                                                                              |                                                                     | "X" document of particular relevance; the                                                                      |                                                                                             |
| "L" document which may throw doubts on priority claim(s) or                                                                                                                                                                                                                                                                                                  |                                                                     | cannot be considered novel or cann<br>involve an inventive step when the c                                     |                                                                                             |
| which is cited to establish the publication date of another citation or other special reason (as specified)  "O" document referring to an oral disclosure, use, exhibition or other means  "P" document published prior to the international filing date but later than the priority date claimed  Date of the actual completion of the international search |                                                                     | "Y" document of particular relevance; the                                                                      |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                              |                                                                     | cannot be considered to involve an<br>document is combined with one or n<br>ments, such combination being obvi | nore other such docu-                                                                       |
|                                                                                                                                                                                                                                                                                                                                                              |                                                                     | in the art. "&" document member of the same pater                                                              | nt family                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                              |                                                                     | Date of mailing of the international s                                                                         | earch report                                                                                |
| 6                                                                                                                                                                                                                                                                                                                                                            | February 2002                                                       | 0 4. 03. 2002                                                                                                  |                                                                                             |
| larne and ri                                                                                                                                                                                                                                                                                                                                                 | nailing address of the ISA                                          | Authorized officer                                                                                             |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                              | European Patent Office, P.B. 5818 Patentlaan 2                      |                                                                                                                |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                              | NL - 2280 HV Rijswijk<br>Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, | do Nooy A                                                                                                      |                                                                                             |
| Fax: (+31-70) 340-3016                                                                                                                                                                                                                                                                                                                                       |                                                                     | de Nooy, A                                                                                                     |                                                                                             |

Int tional Application No PCT/US 01/16687

|            |                                                                                                                                                                                          | PC1/US U1/1668/                                                                                                                                       |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| C.(Continu | ation) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                               |                                                                                                                                                       |
| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                       | Relevant to claim No.                                                                                                                                 |
| X          | X. MARTIN ET AL.: "Intramolecular hydrogen bonding in primary hydroxyl of thymine 1-(1-deoxy-beta-D-psicofuranosyl) nucleoside" TETRAHEDRON, vol. 50, 1994, pages 6689-6694, XP002176339 | 4,7,10,<br>23                                                                                                                                         |
| Y          | page 6689, introduction<br>figure 1                                                                                                                                                      | 25,28,<br>31,34,<br>37,52,<br>55,58,<br>61,76,<br>79,82,<br>85,88,<br>103,106,<br>109,112,<br>127,130,<br>133,136,<br>139,154,<br>157,160,<br>163,178 |
| x          | E. ROGERS ET AL.:  "2'C-alkylribonucleosides: design, synthesis, and conformation"  NUCLEOSIDES & NUCLEOTIDES, vol. 16, 1997, pages 1457-1460, XP002189347                               | 2,5,8,<br>11,20,<br>22-24                                                                                                                             |
| Y          | compounds 8a-f<br>page 1457, paragraph 1                                                                                                                                                 | 25,29, 32,35, 38,53, 56,59, 62,76, 80,83, 86,89, 104,107, 110,113, 127,131, 134,137, 140,155, 158,161, 164,178                                        |
|            | <br>-/                                                                                                                                                                                   |                                                                                                                                                       |

Int tional Application No PCT/US 01/16687

| C (Continu | ation) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                           | PC1/US 01/1668/                                                                                                               |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Category ° | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                   | Relevant to claim No.                                                                                                         |
| X<br>Y     | GB 1 209 654 A (MERCK & CO INC) 21 October 1970 (1970-10-21) page 2 lines 17-19 the whole document                                                                                                                                                                   | 5,6,8,9, 11,12 25,30, 33,36, 39,54, 57,60, 63,76, 81,84, 87,90, 105,108, 111,114, 127,132, 135,138, 141,156, 159,162, 165,178 |
| X          | J. FARKAS, F. SORM: "Nucleic acids components and their analogues. XCIV. Synthesis of 6-amino-9-(1-deoxy-beta-D-psicofuranosyl)p urine" COLLECTION CZECHOSLOV. CHEM. COMM., vol. 32, 1967, pages 2663-2667, XP001016337 cited in the application structure I and III | 1,7,10,                                                                                                                       |
| X          | H. HREBABECKY, J. FARKAS: "Synthesis of 7- and 9-beta-D-psicofuranosylguanine and their 1'-deoxy derivatives" COLLECTION CZECHOSLOV. CHEM. COMM., vol. 39, 1974, pages 2115-2123, XP002176340 compound VIII page 2116                                                | 1,7,10,                                                                                                                       |
| x          | WOLFE M S ET AL: "A Concise Synthesis of 2'-C-Methylribonucleosides" TETRAHEDRON LETTERS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 36, no. 42, 16 October 1995 (1995-10-16), pages 7611-7614, XP004027097 ISSN: 0040-4039 compounds 5a-d, SMDC, SMIU         | 2,5,8,<br>11,20,24                                                                                                            |
| X          | P. FRANCHETTI ET AL.: "2'-C-Methyl analogues of selective adenosine receptor agonists: Synthesis and binding studies" J. MED. CHEM., vol. 41, 1998, pages 1708-1715, XP002189348 compounds 4-9,12,13                                                                 | 2,8,11,                                                                                                                       |

Intraction No
PCT/US 01/16687

| <u> </u>        |
|-----------------|
| to claim No.    |
| - Cann No.      |
| ,8,11           |
| 6,9,12          |
| 9,12            |
| 6,9,12          |
|                 |
| 6,9,12          |
| 7,10,<br>,23,24 |
|                 |

Intr ional Application No
PCT/US 01/16687

|            |                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>              |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| C.(Continu | ation) DOCUMENTS CONSIDERED TO BE RELEVANT  Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                                       | Relevant to claim No. |
|            |                                                                                                                                                                                                                                                                                                                                                                                      |                       |
| X          | A. GROUILLER ET AL.: "Novel p-toluenesulfonylation and thiocarbonylation of unprotected thymine nucleosides" SYNLETT, 1993, pages 221-222, XP002189351 comound 1                                                                                                                                                                                                                     | 4,7,10,<br>17         |
| X          | S.N. MIKHAILOV ET AL.: "Hydrolysis of 2'- and 3'-c-methyluridine 2',3'-monophosphates and interconversion and dephosphorylation of the resulting 2'- and 3'-monophosphates: Comparison with the reactions of uridine monophosphates" J. ORG. CHEM., vol. 57, 1992, pages 4122-4126, XP002189352 compounds 2-5                                                                        | 5,6,8,9,<br>11,12,24  |
| X          | MATSUDA A ET AL: "Nucleosides and nucleotides. 94. Radical deoxygenation of tert-alcohols in 1-(2-C-alkylpentafuranosyl)pyrimidines: Synthesis of (2'S)-2'-deoxy-2'-C-methylcytidine, an antileukemic nucleoside" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, vol. 34, 1991, pages 234-239, XP002178370 ISSN: 0022-2623 compounds 1i,j,4a,b,7,8,13,17 | 5,8,11,<br>22         |
| X          | E. WALTON ET AL.: "Branched-chain sugar nucleosides. V. Synthesis and antiviral properties of several branched-chain sugar nucleosides"  J. MED. CHEM., vol. 12, 1969, pages 306-309, XP002189353 compounds 5,6,10,12,14,16-18                                                                                                                                                       | 5,6,8,9,<br>11,12     |
| X          | V.L. TUNITSKAYA ET AL.: "Substrate properties of C'-methyl UTP derivatives in T7 RNA polymerase reactions. Evidence for N-type NTP conformation" FEBS LETTERS, vol. 400, 1997, pages 263-266, XP002189354 compounds 3 and 4                                                                                                                                                          | 5,6,8,9,<br>11,12     |

Int tional Application No
PCT/US 01/16687

| ation) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                            | Indiana.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                    | Relevant to claim No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| A. MATSUDA ET AL.: "Radical deoxygenation of tert-alcohols in 2'-branched-chain sugar pyrimidine nucleosides: synthesis and antileukemic activity of 2'-deoxy-2'(S)-methylcytidine" CHEM. PHARM. BULL., vol. 35, 1987, pages 3967-3970, XP002189355 compounds 3b,7,15 | 5,8,11,<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A. MATSUDA ET AL.: "Alkyl addition reaction of pyrimidine 2'-ketonucleosides: synthesis of 2'-branched-chain sugar pyrimidine nucleosides" CHEM. PHARM. BULL., vol. 36, 1988, pages 945-953, XP002189356 compounds 13a,b,19a,b,20a,b                                  | 5,8,11,<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ALTMANN ET AL: "The effects of 2'- and 3'-alkyl substituents on oligonucleotide hybridization and stability" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 4, no. 16, 1994, pages 1969-1974, XP002105090 ISSN: 0960-894X compounds 2,9,10                | 6,8,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| L.N. BEIGELMAN ET AL.: "A general method<br>for synthesis of 3'-alkylnucleosides"<br>NUCLEIC ACIDS SYMP. SER.,<br>vol. 9, 1981, pages 115-118, XP001059721<br>page 116                                                                                                | 6,9,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| S.N. MIKHAILOV ET AL.: "Synthesis and properties of 3'-C-methylnucleosides and their phosphoric esters" CARBOHYDRATE RESEARCH, vol. 124, 1983, pages 75-96, XP002189357 compounds 9,12,14,20,21                                                                       | 6,9,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Y. ITOH ET AL.: "Divergent stereocontrolled approach to the synthesis of uracil nucleosides branched at the anomeric position" J. ORG. CHEM., vol. 60, 1995, pages 656-662, XP002189358 compounds 22,23,31                                                            | 7,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                       | A. MATSUDA ET AL.: "Radical deoxygenation of tert-alcohols in 2'-branched-chain sugar pyrimidine nucleosides: synthesis and antileukemic activity of 2'-deoxy-2'(S)-methylcytidine" CHEM. PHARM. BULL., vol. 35, 1987, pages 3967-3970, XP002189355 compounds 3b,7,15  A. MATSUDA ET AL.: "Alkyl addition reaction of pyrimidine 2'-ketonucleosides: synthesis of 2'-branched-chain sugar pyrimidine nucleosides" CHEM. PHARM. BULL., vol. 36, 1988, pages 945-953, XP002189356 compounds 13a,b,19a,b,20a,b  ALTMANN ET AL: "The effects of 2'- and 3'-alkyl substituents on oligonucleotide hybridization and stability" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 4, no. 16, 1994, pages 1969-1974, XP002105090 ISSN: 0960-894X compounds 2,9,10  L.N. BEIGELMAN ET AL.: "A general method for synthesis of 3'-alkylnucleosides" NUCLEIC ACIDS SYMP. SER., vol. 9, 1981, pages 115-118, XP001059721 page 116  S.N. MIKHAILOV ET AL.: "Synthesis and properties of 3'-C-methylnucleosides and their phosphoric esters" CARBOHYDRATE RESEARCH, vol. 124, 1983, pages 75-96, XP002189357 compounds 9,12,14,20,21  Y. ITOH ET AL.: "Divergent stereocontrolled approach to the synthesis of uracil nucleosides branched at the anomeric position" J. ORG. CHEM., vol. 60, 1995, pages 656-662, XP002189358 compounds 22,23,31 |

Int tional Application No PCT/US 01/16687

|                                                                                                                                                                                                                                                                                                                            | FC1703 01710087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                         | Relevant to claim No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FAIVRE-BUET V ET AL: "SYNTHESIS OF 1'-DEOXYPSICOFURANOSYL-DEOXYNUCLEOSIDES AS POTENTIAL ANTI-HIV AGENTS" NUCLEOSIDES & NUCLEOTIDES, DEKKER, NEW YORK,NY,, US, vol. 11, no. 7, 1992, pages 1411-1424, XP001025527 ISSN: 0732-8311 compounds 1-3                                                                             | 7,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SERAFINOWSKI P J ET AL: "NEW METHOD FOR THE PREPARATION OF SOME 2'- AND 3'-TRIFLUOROMETHYL- 2',3'-DIDEOXYURIDINE DERIVATIVES" TETRAHEDRON, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 56, no. 2, 1999, pages 333-339, XP001050335 ISSN: 0040-4020 Scheme 1                                                           | 8,9,11,<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| HARAGUCHI K ET AL: "PREPARATION AND REACTIONS OF 2'- AND 3'-VINYL BROMIDES OF URACIL-NUCLEOSIDES: VERSATILE SYNTHONS FOR ANTI-HIV AGENTS" TETRAHEDRON LETTERS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 32, no. 28, 1991, pages 3391-3394, XP001041740 ISSN: 0040-4039 compounds 14,21                             | 8,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| S.N. MIKHAILOV ET AL.: "Substrate properties of C'-methylnucleoside and C'-methyl-2'-deoxynucleoside 5'-triphosphates in RNA and DNA synthesis reactions catalysed by RNA and DNA polymerases" NUCLEOSIDES & NUCLEOTIDES, vol. 10, 1991, pages 339-343, XP001059775 compounds 3b,d,4b,d                                    | 8,9,11,<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| AKIRA MATSUDA ET AL: "NUCLEOSIDES AND NUCLEOTIDES 104. RADICAL AND PALLADIUM-CATALYZED DEOXYGENATION OF THE ALLYLIC ALCOHOL SYSTEMS IN THE SUGAR MOIETY OF PYRIMIDINE NUCLEOSIDES" NUCLEOSIDES & NUCLEOTIDES, DEKKER, NEW YORK,NY,, US, vol. 11, no. 2/4, 1992, pages 197-226, XP000573757 ISSN: 0732-8311 compounds 28,31 | 8,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                            | FAIVRE-BUET V ET AL: "SYNTHESIS OF 1'-DEOXYPSICOFURANOSYL-DEOXYNUCLEOSIDES AS POTENTIAL ANTI-HIV AGENTS" NUCLEOSIDES & NUCLEOTIDES, DEKKER, NEW YORK,NY,, US, vol. 11, no. 7, 1992, pages 1411-1424, XPOO1025527 ISSN: 0732-8311 compounds 1-3  SERAFINOWSKI P J ET AL: "NEW METHOD FOR THE PREPARATION OF SOME 2'- AND 3'-TRIFLUOROMETHYL- 2',3'-DIDEOXYURIDINE DERIVATIVES" TETRAHEDRON, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 56, no. 2, 1999, pages 333-339, XPO01050335 ISSN: 0040-4020 Scheme 1  HARAGUCHI K ET AL: "PREPARATION AND REACTIONS OF 2'- AND 3'-VINYL BROMIDES OF URACIL-NUCLEOSIDES: VERSATILE SYNTHONS FOR ANTI-HIV AGENTS" TETRAHEDRON LETTERS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 32, no. 28, 1991, pages 3391-3394, XP001041740 ISSN: 0040-4039 compounds 14,21  S.N. MIKHAILOV ET AL.: "Substrate properties of C'-methylnucleoside and C'-methyl-2'-deoxynucleoside 5'-triphosphates in RNA and DNA synthesis reactions catalysed by RNA and DNA polymerases" NUCLEOSIDES & NUCLEOTIDES, vol. 10, 1991, pages 339-343, XP001059775 compounds 3b,d,4b,d  AKIRA MATSUDA ET AL: "NUCLEOSIDES AND NUCLEOTIDES 104. RADICAL AND PALLADIUM-CATALYZED DEOXYGENATION OF THE ALLYLIC ALCOHOL SYSTEMS IN THE SUGAR MOIETY OF PYRIMIDINE NUCLEOSIDES" NUCLEOSIDES & NUCLEOTIDES, vol. 11, no. 2/4, 1992, pages 197-226, XP000573757 ISSN: 0732-8311 |

Int tional Application No
PCT/US 01/16687

|                                                                                                                                                                                                                                                                                         | PC1/US 01/1668/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                      | Relevant to claim No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| T. IINO ET AL.: "Nucleosides and nucleotides. 139. Stereoselective synthesis of (2'S)-2'-C-alkyl-2'-deoxyuridines" NUCLEOSIDES & NUCLEOTIDES, vol. 15, 1996, pages 169-181, XP002189359 compound 9b                                                                                     | 8,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SHARMA P K ET AL: "SYNTHESIS OF<br>3'-TRIFLUOROMETHYL NUCLEOSIDES AS<br>POTENTIAL ANTIVIRAL AGENTS"<br>NUCLEOSIDES, NUCLEOTIDES AND NUCLEIC<br>ACIDS, MARCEL DEKKER, ANN HARBOR, MI, US,<br>vol. 19, no. 4, 2000, pages 757-774,<br>XP001050475<br>ISSN: 1525-7770<br>compounds 17,19   | 8,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| JC. WU, J. CHATTOPADDYAYA: "A new stereospecific synthesis of '3.1.0! bicyclic cyclopropano analog of 2',3'-dideoxyuridine" TETRAHEDRON, vol. 46, 1990, pages 2587-2592, XP002189360 compound 16                                                                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| V. SAMANO, M.J. ROBBINS: "Synthesis and radical-induced ring-opening reactions of 2'-deoxyadenosine-2'-spirocyclopropane and its uridine analogue. Mechanistic probes for ribonucleotide reductases" J. AM. CHEM. SOC., vol. 114, 1992, pages 4007-4008, XP002189361 compounds 8 and 10 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| V. SAMANO, M.J. ROBINS: "Nucleic acid related compounds. 77." CAN. J. CHEM., vol. 71, 1993, pages 186-191, XP002189362 compounds 7,14                                                                                                                                                   | 8,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C.R. JOHNSON, D.R. BHUMRALKAR: "3'-C-Trifluoromethyl ribonucleosides" NUCLEOSIDES & NUCLEOTIDES, vol. 14, 1995, pages 185-194, XP002189363 compounds 7,9,11,12                                                                                                                          | 9,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                         | nucleotides. 139. Stereoselective synthesis of (2'S)-2'-C-alkyl-2'-deoxyuridines" NUCLEOSIDES & NUCLEOTIDES, vol. 15, 1996, pages 169-181, XP002189359 compound 9b  SHARMA P K ET AL: "SYNTHESIS OF 3'-TRIFLUOROMETHYL NUCLEOSIDES AS POTENTIAL ANTIVIRAL AGENTS" NUCLEOSIDES, NUCLEOTIDES AND NUCLEIC ACIDS, MARCEL DEKKER, ANN HARBOR, MI, US, vol. 19, no. 4, 2000, pages 757-774, XP001050475 ISSN: 1525-7770 compounds 17,19  JC. WU, J. CHATTOPADDYAYA: "A new stereospecific synthesis of '3.1.0! bicyclic cyclopropano analog of 2',3'-dideoxyuridine" TETRAHEDRON, vol. 46, 1990, pages 2587-2592, XP002189360 compound 16  V. SAMANO, M.J. ROBBINS: "Synthesis and radical-induced ring-opening reactions of 2'-deoxyadenosine-2'-spirocyclopropane and its uridine analogue. Mechanistic probes for ribonucleotide reductases" J. AM. CHEM. SOC., vol. 114, 1992, pages 4007-4008, XP002189361 compounds 8 and 10  V. SAMANO, M.J. ROBINS: "Nucleic acid related compounds. 77." CAN. J. CHEM., vol. 71, 1993, pages 186-191, XP002189362 compounds 7,14  C.R. JOHNSON, D.R. BHUMRALKAR: "3'-C-Trifluoromethyl ribonucleosides" NUCLEOSIDES & NUCLEOTIDES, vol. 14, 1995, pages 185-194, XP002189363 compounds 7,9,11,12 |

Int: Gonal Application No
PCT/US 01/16687

| Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                    | Relevant to claim No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S. LAVAIRE ET AL.: "3'-Deoxy-3'-C-trifluoromethyl nucleosides: synthesis and antiviral evaluation" NUCLEOSIDES & NUCLEOTIDES, vol. 17, 1998, pages 2267-2280, XP002189364 compound 11                                                                                                                 | 9,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TRITSCH D D ET AL: "3'-beta-ethynyl and 2'-deoxy-3'-beta-ethynyl adenosines: first 3'-beta-branched-adenosines substrates of adenosine deaminase" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 10, no. 2, January 2000 (2000-01), pages 139-141, XP004188802 ISSN: 0960-894X compound 3 | 9,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| I.I. FEDEROV ET AL.: "3'-C-Branched 2'-deoxy-5-methyluridines: Synthesis, enzyme inhibition, and antiviral properties" J. MED. CHEM., vol. 35, 1992, pages 4567-4575, XP002189365 compounds 12-14,16,17,19                                                                                            | 9,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| S. CZERNECKI, A. EZZITOUNI: "Synthesis of various 3'-branched 2',3'-unsaturated pyrimidine nucleosides as potential anti-HIV agents" J. ORG. CHEM., vol. 57, 1992, pages 7325-7328, XP002189366 compound 1                                                                                            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| H. HATTORI ET AL.: "Nucleosides and nucleotides. 175." J. MED. CHEM., vol. 41, 1998, pages 2892-2902, XP002189367 Compounds 14-17d                                                                                                                                                                    | 9,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| FR 2 662 165 A (UNIV PARIS CURIE) 22 November 1991 (1991-11-22) example 16/                                                                                                                                                                                                                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                       | "3'-Deoxy-3'-C-trifluoromethyl nucleosides: synthesis and antiviral evaluation" NUCLEOSIDES & NUCLEOTIDES, vol. 17, 1998, pages 2267-2280, XP002189364 compound 11  TRITSCH D D ET AL: "3'-beta-ethynyl and 2'-deoxy-3'-beta-ethynyl adenosines: first 3'-beta-branched-adenosines substrates of adenosine deaminase" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 10, no. 2, January 2000 (2000-01), pages 139-141, XP004188802 ISSN: 0960-894X compound 3  I.I. FEDEROV ET AL.: "3'-C-Branched 2'-deoxy-5-methyluridines: Synthesis, enzyme inhibition, and antiviral properties" J. MED. CHEM., vol. 35, 1992, pages 4567-4575, XP002189365 compounds 12-14,16,17,19  S. CZERNECKI, A. EZZITOUNI: "Synthesis of various 3'-branched 2',3'-unsaturated pyrimidine nucleosides as potential anti-HIV agents" J. ORG. CHEM., vol. 57, 1992, pages 7325-7328, XP002189366 compound 1  H. HATTORI ET AL.: "Nucleosides and nucleotides. 175." J. MED. CHEM., vol. 41, 1998, pages 2892-2902, XP002189367 Compounds 14-17d  FR 2 662 165 A (UNIV PARIS CURIE) 22 November 1991 (1991-11-22) example 16 |

Intr Yonal Application No
PCT/US 01/16687

|             |                                                                                                                                                                                                                                                | PC1703 01710087       |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| C.(Continue | ation) DOCUMENTS CONSIDERED TO BE RELEVANT  Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                 | Relevant to claim No. |
| X           | A. ROSENTHAL, S.N. MIKHAILOV: "Branched-chain sugar nucleosides. Synthesis of 3'-C-ethyl (and 3'-C-butyl)uridine" CARBOHYDRATE RESEARCH, vol. 79, 1980, pages 235-242, XP002189368 compounds 12-15                                             | 9,12                  |
| X           | K. HARAGUCHI ET AL.: "Stereoselective synthesis of l'-C-branched uracil nucleosides from uridine" NUCLEOSIDES & NUCLEOTIDES, vol. 14, 1995, pages 417-420, XP002189369 compounds 17,18                                                         | 10                    |
| <b>X</b>    | ALTMANN ET AL: "The synthesis of 1'-methyl carbocyclic thymidine and its effect on nucleic acid duplex stability" SYNLETT, THIEME VERLAG, STUTTGART, DE, no. 10, October 1994 (1994-10), pages 853-855, XP002105092 ISSN: 0936-5214 compound 1 | 10                    |
| X           | M. KAWANA ET AL.: "The deoxygenations of tosylated adenosine derivatives with Grignard reagents" NUCLEIC ACIDS SYMP. SER., vol. 17, 1986, pages 37-40, XP001059719 compound 13                                                                 | 11                    |
| X           | K. WALCZAK, E.B. PEDERSEN: "Synthesis of 1-(3-alkyl-2,3-dideoxy-D-pentofuranosyl)ur acils with potential anti-HIV activity" ACTA CHEM. SCAND., vol. 45, 1991, pages 930-934, XP002189370 compound 10c                                          | 12                    |
| X           | H. USUI, T. UEDA: "Synthesis of 2'-deoxy-8,2'-ethanoadenosine and 3'-deoxy-8,3'-ethanoadenosine (Nucleosides and nucleotides. LXIV)" CHEM. PHARM. BULL., vol. 34, 1986, pages 15-23, XP002189371 compound 23                                   | 12                    |
| A           | US 5 977 061 A (DE CLERCQ ERIK DESIRE ALICE ET AL) 2 November 1999 (1999-11-02) column 1 -column 4 column 13, line 6 - line 28                                                                                                                 | 1,130                 |
|             |                                                                                                                                                                                                                                                |                       |

Int tional Application No PCT/US 01/16687

| C.(Continu | ation) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                  |                       |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Category ° | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                          | Relevant to claim No. |
| 4          | LEYSSEN P ET AL: "PERSPECTIVES FOR THE TREATMENT OF INFECTIONS WITH FLAVIVIRIDAE" CLINICAL MICROBIOLOGY REVIEWS, WASHINGTON, DC, US, vol. 13, no. 1, January 2000 (2000-01), pages 67-82, XP000889854 ISSN: 0893-8512 page 71, right-hand column -page 72, left-hand column | 1,130                 |
| 4          | WO 99 43691 A (CHOI YONGSEOK ;CHU CHUNG K (US); HONG JOON H (US); SHI JUNXING (US) 2 September 1999 (1999-09-02) the whole document                                                                                                                                         | 1,130                 |
|            | WO 01 90121 A (NOVIRIO PHARMACEUTICALS LTD; UNI DEGLI STUDI DI CAGLIARI (IT); LAC) 29 November 2001 (2001-11-29) the whole document                                                                                                                                         | 1-24                  |

arnational application No. PCT/US 01/16687

## INTERNATIONAL SEARCH REPORT

| Box I      | Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)                                                                                                                          |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| This Inte  | mational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:                                                                                             |
| 1. χ       | Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:                                                                                                                  |
|            | Although claims $79-129$ are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound.                                                 |
|            | Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: |
|            | see FURTHER INFORMATION sheet PCT/ISA/210                                                                                                                                                                                  |
| L1         | Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).                                                                                       |
| Box II     | Observations where unity of invention is lacking (Continuation of item 2 of first sheet)                                                                                                                                   |
| This Inter | rnational Searching Authority found multiple inventions in this international application, as follows:                                                                                                                     |
|            | see additional sheet                                                                                                                                                                                                       |
| 1. X       | As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.                                                                                   |
|            | As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.                                                                       |
|            | As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:                       |
| 4.         | No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:           |
| Remark o   | The additional search fees were accompanied by the applicant's protest.     X   No protest accompanied the payment of additional search fees.                                                                              |

## FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1,4,13-18,25-27 (in part),28,31,40-45,52,55,64-69,76-78 (in part),79,82,91-96,103,106,115-120,127-129 (in part),130,133,142-147,154,157,166-171,178 (in part),180 (in part)

Compounds of Formula I of claim 1 or compounds of Formula IV of claim 4, pharmaceutical compositions and uses pertaining thereto.

2. Claims: 2,5,19-24,25-27 (in part),29,32,46-51,53,56,70-75, 76-78 (in part),80,83,97-102,104,107,121-126, 127-129 (in part),131,134,148-153,155,158,172-177, 178 (in part),179, 180 (in part)

Compounds of Formula II of claim 2 or compounds of Formula  ${\bf V}$  of claim 5, pharmaceutical compositions and uses pertaining thereto.

3. Claims: 3,6,25-27 (in part),30,33,54,57,76-78 (in part),81,84,105,108,127-129 (in part),132,135,156,159,178 (in part),180 (in part)

Compounds of Formula III of claim 3 or compounds of Formula VI of claim 6, pharmaceutical compositions and uses pertaining thereto.

4. Claims: 7,25-27 (in part),34,58,76-78 (in part),85,109, 127-129 (in part),136,160,178 (in part), 180 (in part)

Compounds of Formulae VII or VIII or IX of claim 7, pharmaceutical compositions and uses pertaining thereto, where the compounds do not fall within one of the earlier described subjects.

5. Claims: 8,25-27 (in part),35,59,76-78 (in part),86,110, 127-129 (in part),137,161,178 (in part), 180 (in part)

Compounds of Formulae X or XI or XII of claim 8, pharmaceutical compositions and uses pertaining thereto, where the compounds do not fall within one of the earlier described subjects.

## FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

6. Claims: 9,25-27 (in part),36,60,76-78 (in part),87,111, 127-129 (in part),138,162,178 (in part), 180 (in part)

Compounds of Formulae XIII or XIV or XV of claim 9, pharmaceutical compositions and uses pertaining thereto, where the compounds do not fall within one of the earlier described subjects.

7. Claims: 10, 25-27 (in part),37,61,76-78 (in part),88,112, 127-129 (in part),139,163,178 (in part), 180 (in part)

Compounds of Formula XVI of claim 10, pharmaceutical compositions and uses pertaining thereto, where the compounds do not fall within one of the earlier described subjects.

8. Claims: 11,25-27 (in part),38,62,76-78 (in part),89,113, 127-129 (in part),140,164,178 (in part), 180 (in part)

Compounds of Formula XVII of claim 11, pharmaceutical compositions and uses pertaining thereto, where the compounds do not fall within one of the earlier described subjects.

9. Claims: 12,25-27 (in part),39,63,76-78 (in part),90,114, 127-129 (in part),141,165,178 (in part), 180 (in part)

Compounds of Formula XVIII of claim 12, pharmaceutical compositions and uses pertaining thereto, where the compounds do not fall within one of the earlier described subjects.

## FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 7-12,25-27,34-39,58-63,76-78,85-90,109-114,127-129,136-141,160-165,178-18 0 (all partially)

The initial phase of the search revealed a very large number of documents relevant to the issue of novelty. So many documents were retrieved that it is impossible to determine which parts of the claims may be said to define subject-matter for which protection might legitimately be sought (Article 6 PCT). For these reasons it appears impossible to execute a meaningful search and/or to issue a complete search report over the whole breadth of the above mentioned claims. Consequently, the search has been restricted to the compounds of the above mentioned claims where R6 is methyl, ethyl, propyl, butyl, CF3 or Br-vinyl. Furthermore, in the case where R6 is methyl for compounds XI, XIV, XVII, or XVIII of the above mentioned claims, only several documents were cited.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

information on patent family members

Intracional Application No
PCT/US 01/16687

| Patent document<br>cited in search report |   | Publication date |          | Patent family<br>member(s) | Publication date         |
|-------------------------------------------|---|------------------|----------|----------------------------|--------------------------|
| US 5977325                                |   | 02-11-1999       | US       | 5792841 A                  | 11-08-1998               |
|                                           |   |                  | US       | 5616702 A                  | 01-04-1997               |
|                                           |   |                  | US       | 5378693 A                  | 03-01-1995               |
|                                           |   |                  | US       | 5607925 A                  | 04-03-1997               |
|                                           |   |                  | ΜX       | 9203459 A1                 | 01-08-1992               |
|                                           |   |                  | ΑT       | 105297 T                   | 15-05-1994               |
|                                           |   |                  | AU       | 621160 B2                  | 05-03-1992               |
|                                           |   |                  | AU       | 4461189 A                  | 24-05-1990               |
|                                           |   |                  | CA       | 2002648 A1                 | 15-05-1990               |
|                                           |   |                  | CN       | 1042715 A ,B               | 06-06-1990               |
|                                           |   |                  | DE       | 68915128 D1                | 09-06-1994               |
|                                           |   |                  | DE       | 68915128 T2                | 25-08-1994               |
|                                           |   |                  | DK       | 570089 A                   | 16-05-1990               |
|                                           |   |                  | EP       | 0372268 A1                 | 13-06-1990               |
|                                           |   |                  | ES       | 2056180 T3                 | 01-10-1994               |
|                                           |   |                  | FI       | 92588 B                    | 31-08-1994<br>15-11-1993 |
|                                           |   |                  | FI       | 935041 A ,B,               | 15-11-1993               |
|                                           |   |                  | FI       | 935042 A ,B,<br>51642 A2   | 28-05-1990               |
|                                           |   |                  | HU<br>HU | 9400045 A3                 | 30-01-1995               |
|                                           |   |                  | HU       | 210343 B3                  | 28-03-1995               |
|                                           |   |                  | IE       | 63563 B1                   | 17-05-1995               |
|                                           |   |                  | ĬĹ       | 92293 A                    | 24-01-1995               |
|                                           |   |                  | JP       | 2178272 A                  | 11-07-1990               |
|                                           |   |                  | JΡ       | 2802947 B2                 | 24-09-1998               |
|                                           |   |                  | NO       | 894539 A ,B,               | 16-05-1990               |
|                                           |   |                  | NZ       | 231365 A                   | 26-08-1992               |
|                                           |   |                  | PT       | 92309 A ,B                 | 31-05-1990               |
|                                           |   |                  | ZA       | 8908567 A                  | 29-08-1990               |
| GB 1209654                                | Α | 21-10-1970       | CH       | 498825 A                   | 15-11-1970               |
|                                           |   |                  | DE       | 1770700 A1                 | 09-12-1971               |
|                                           |   |                  | FR       | 1581628 A                  | 19-09-1969               |
|                                           |   |                  | NL       | 6808783 A                  | 07-01-1969               |
|                                           |   |                  | US<br>   | 3480613 A                  | 25-11-1969<br>           |
| FR 1521076                                | Α | 12-04-1968       | DE       | 1695411 A1                 | 15-04-1971               |
|                                           |   | •                | GB       | 1187824 A                  | 15-04-1970               |
|                                           |   |                  | GB       | 1187825 A                  | 15-04-19/0               |
|                                           |   |                  | NL<br>   | 6705985 A                  | 03-11-1967<br>           |
| GB 1163103                                | Α | 04-09-1969       | СН       | 490395 A                   | 15-05-1970               |
|                                           |   |                  | DE       | 1620053 A1                 | 12-03-1970               |
|                                           |   |                  | FR       | 1504091 A                  | 01-12-1967               |
|                                           |   |                  | NL<br>   | 6615905 A                  | 16-05-1967               |
| FR 2662165                                | Α | 22-11-1991       | FR       | 2662165 Al                 | 22-11-1 <b>991</b>       |
| US 5977061                                | Α | 02-11-1999       | AU       | 5268696 A                  | 07-11-1996               |
|                                           |   |                  | WO       | 9633200 A1                 | 24-10-1996               |
|                                           |   |                  | EP       | 0821690 A1                 | 04-02-1998               |
|                                           |   |                  | JP       | 11511114 T                 | 28-09-1999<br>           |
| WO 9943691                                | Α | 02-09-1999       | AU       | 2787199 A                  | 15-09-1999               |
|                                           |   |                  | CN       | 1332747 T                  | 23-01-2002               |
|                                           |   |                  | r n      | 1058686 A1                 | 13-12-2000               |
|                                           |   |                  | EP<br>WO | 9943691 A1                 | 02-09-1999               |

Information on patent family members

International Application No
PCT/US 01/16687

| Patent document cited in search report |   | Publication date | Patent family member(s) |         |    | Publication date |
|----------------------------------------|---|------------------|-------------------------|---------|----|------------------|
| WO 0190121                             | Α | 29-11-2001       | WO                      | 0190121 | A2 | 29-11-2001       |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         | ·       |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         | •       |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |
|                                        |   |                  |                         |         |    |                  |