# BEST AVAILABLE COF

# BUNDESREPUBLIK DEUTSCHLAND



# Prioritätsbescheinigung über die Einreichung einer Gebrauchsmusteranmeldung

Aktenzeichen:

203 17 248.5

**Anmeldetag:** 

06. November 2003

Anmelder/Inhaber:

Blanke GmbH & Co KG, 58642 Iserlohn/DE

Bezeichnung:

Mehrschichtiges Entkopplungs- und

Abdichtungssystem

IPC:

E 04 F 15/18.



Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Gebrauchsmusteranmeldung.

München, den 30. März 2005

Deutsches Patent- und Markenamt

Der Präsident

Im Auffrag

Stark

Blanke & Co.

Gebrauchsmusteranmeldung

Blanke & Co.

Im Mühlental 11

58642 Iseriohn

Patentanwalt
Uwe Schneider

Diplom-Ingenieur

European Trademark Altomey European Patent Attorney

Zugelassener Vertreter beim Europäischen Patentamt (EPA) und beim Europäischen Markenamt (HABM)

Holbeinstr. 27 D-59423 Unna Fon +49 (0) 2303/22064 Fax +49 (0) 2303/22054 Email US@Patent-Schneider.de http://www.Patent-Schneider.de

2/20

Erselvi durch

<u>Beschreibung</u>

Mehrschichtiges Entkopplungs- und Abdichtungssystem

Die Erfindung betrifft ein mehrschichtiges Entkopplungs- und Abdichtungssystem, insbesondere für die Verlegung keramischer Beläge im Dünnbettverfahren, gemäß Oberbegriff des Anspruches 1.

Keramische Beläge und insbesondere Fliesen werden heute üblicherweise im sogenannten Dünnbettverfahren verlegt, bei dem die keramischen Beläge in eine dünne Kieberschicht aus einem Fliesenmörtel verlegt werden. Dieses im Innenbereich zufriedenstellende Verfahren weist jedoch bei der Verarbeitung von keramischen Belägen im Außenbereich insofern Probleme auf, als die Feuchtigkeitsbelastung und die Temperaturbelastung derartiger Beläge nicht selten zu schleichender Zerstörung der Fliesen bzw. deren Verlegungsuntergründe führt, wodurch geringe Haltbarkeitszeiten derartiger Beläge nicht zu vermeiden sind und für die Sanierung hohe Kosten entstehen können. Auch führt durch den Fliesenbelag in den Untergrund eingedrungene Feuchtigkeit häufig zu Schäden am Bauwerk selbst, da die Feuchtigkeit nicht mehr frei entweichen kann. Dies ist besonders häufig bei Balkonabdichtungen festzustellen.

15

20

Auch ist durch die teilweise deutlich unterschiedlichen Ausdehnungskoeffizienten von Untergrund, Dünnbettmörtel und keramischem Belag durch die im Außenbereich auftretenden sehr hohen Temperaturdifferenzen zwischen hohen Temperaturen aufgrund Sonneneinstrahlung und niedrigeren Temperaturen bei Frost das Rißverhalten des keramischen Belages und des Untergrundes schwierig zu beherrschen. Es kommt daher häufig zu Rissen im Fliesenbelag, wenn der Fliesenbelag fest mit dem Untergrund verbunden wird.

Es ist daher schon vielfach vorgeschlagen worden, derartige im Außenbereich verlegte keramische Beläge dadurch haltbarer verlegen zu können, daß eine gezielte Entkopplung zwischen dem keramischen Belag und dem Unterbau herbeigeführt wird. Ein solches Entkopplungssystem sorgt zwar für die mechanische Entkopplung quer zur Verlegefläche, hat jedoch häufig den Nachteil, daß die mechanische Belastbarkeit des Fliesenbelages und des Entkopplungssystems nicht zufriedenstellend ist. Einerseits ist die Verankerung der Fliesen an dem Entkopplungssystem nicht hinreichend fest, andererseits ist die Druckfestigkeit des Entkopplungssystems selbst nicht optimal.

Eine derartige Gestaltung eines Entkopplungs- und Abdichtungssystems ist aus der DE 100 60 751 C1 bekannt. Bei dieser Gestaltung wird ein Abdichtungs- und Drainagesystem vorgeschlagen, das unterseitig eine Kunststoff- oder Bitumenschicht aufwelst, über der eine erste Vliesschicht aus einem ersten hydrophoben Polymer, darüber eine Drainageschicht aus einem zweiten hydrophoben Polymer und wieder- um darüber eine zweite Vliesschicht aus dem ersten hydrophoben Polymer angeordnet sind. Dieser Schichtaufbau erlaubt zwar in gewissen Grenzen eine Abführung eingedrungener Feuchtigkeit aus dem Unterbau einer Fliesenschicht, doch ist die mechanische Belastbarkeit eines derartigen Schichtaufbaus nicht zufriedenstellend, da die Einbettung der obersten Vliesschicht in den Fliesenmörtel keine hinreichende Verankerungsfunktion bzw. Bewehrungsfunktion erlaubt. Die Drainageschicht ist hierbei als eine gitterartige Schicht ausgebildet, ohne das genaue Angaben zur Ausbildung der gitterartigen Schicht gemacht werden.

Aufgabe der vorliegenden Erfindung ist es daher, ein gattungsgemäßes mehrschlichtiges Entkopplungs- und Abdichtungssystem derart weiterzubilden, daß eine Verbes-

20

4

serung der mechanischen Belastbarkeit und der Verankerung an der Fliesenschicht erreichbar ist.

Die Lösung der erfindungsgemäßen Aufgabe ergibt sich aus den kennzeichnenden Merkmalen des Anspruches 1 in Zusammenwirken mit den Merkmalen des Oberbegriffes. Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.

Die Erfindung beschreibt ein mehrschichtiges Entkopplungs- und Abdichtungssystem, insbesondere für die Verlegung keramischer Beläge im Dünnbettverfahren, aufweisend einen Schichtaufbau, aufgeführt von unten nach oben, mit einer flüssigkeitsundurchlässigen Abdichtungsschicht, einer aus einem gitterartigen Struktureiement gebildeten Verankerungsschicht für eine im Bereich der Oberseite des Entkopplungs- und Abdichtungssystems einzubringende, bei der Verarbeitung plastische und danach aushärtende Verfüllmasse sowie einer an der Verankerungsschicht zumindest abschnittsweise fest angeordneten Armierungsschicht. Hierbei ist Insbesondere durch die oberseitig angeordnete Verankerungsschicht und die darüber aufgelegte und damit befestigte Armierungsschicht dafür gesorgt, daß ein oberseitig eingebrachter Fugenmörtel sich vollständig mit dem Entkopplungs- und Abdichtungssystem verbindet und dabei dafür sorgt, daß eine entsprechende Belastbarkeit des Entkopplungs- und Abdichtungssystems erzielt wird. Das gitterartige Strukturelement erlaubt hierbei einen besonders einfachen Aufbau der im wesentlichen die Dicke des Entkopplungs- und Abdichtungssystems bestimmenden Verankerungsschicht. Die Abdichtungsschicht sorgt dabei für eine entsprechende feuchtigkeitsundurchlässige Abdichtung gegenüber einem Untergrund am Einbauort und Im Falle einer schwimmenden Verlegung auch für eine mechanische Entkopplung.

In einer ersten Ausgestaltung kann vorgesehen werden, daß das gitterartige Strukturelement aus stabförmig gitterartig zueinander angeordneten und aneinander an den Kreuzungspunkten des Gitters festgelegten Einzelstäben gebildet ist. Ein derartiges gitterartiges Strukturelement läßt sich einfach aus gleichartig vorfertigbaren Einzelstäben herstellen und man kann daher etwa kostengünstig extrudierte Einzelstäbe verarbeiten, die auf Trommeln aufgewickelt und für das Herstellen der gitterartigen Strukturelemente jeweils zueinander positioniert werden. Damit ist die Herstellung eines solchen gitterartigen Strukturelementes sehr kostengünstig und einfach.

20

Anders als bei bekannten Entkopplungs- und Abdichtungssystem müssen keine aufwendigen Werkzeuge gefertigt werden, die zueinander abgewinkelte oder sonstwie verformte Bereiche herstellen. Hierbei kann in weiterer Ausgestaltung dafür gesorgt werden, daß die Einzelstäbe des gitterartigen Strukturelementes eine im wesentlichen rechteckige Querschnittsform aufweisen. Insbesondere wenn die Einzelstäbe ungleichförmige Abmessungen ihrer Kanten aufweisen, läßt sich die Dicke der gitterartigen Strukturelemente einfach verändern und an unterschiedliche Bedürfnisse anpassen.

Von besonderem Vorteil ist es, wenn die sich kreuzenden Einzelstäbe des gitterartigen Strukturelementes so angeordnet sind, daß eine erste Schicht aus jeweils gleich orientierten Einzelstäben unterhalb einer zweiten Schicht aus dazu in einem Winkel angeordneten, jeweils zueinander gleich orientierten Einzelstäben besteht. Somit entfällt bei der Herstellung des gitterartigen Strukturelementes die Notwendigkeit, die Einzelstäbe wie bei textilen Geweben jeweils zueinander zu verschränken, was die Herstellung weiter vereinfacht und zum anderen dafür sorgt, daß die gleichartigen Schichten der unteren und der oberen Lage der Einzelstäbe zwischen sich jeweils entsprechende Freiräume bilden, die für die Einbringung der Verfüllmasse genutzt werden können. Es ist hierbei denkbar, daß die gitterartige Struktur aus den Einzelstäben eine Rauten-, Rechteck- oder Quadratform aufweist. Auch andere geometrische Muster sind selbstverständlich denkbar.

Elne weitere Vereinfachung der Herstellung der Drainageschicht läßt sich erreichen, wenn die Einzelstäbe der beiden Schichten miteinander im Kreuzungsbereich unter mechanischem Druck verschweißt sind. Etwa kann durch Aufheizen der durch Temperatureinfluß plastisch verformbaren Einzelstäbe dafür gesorgt werden, daß im Berührungsbereich der Einzelstäbe eine Erweichung und ein Verschweißen mit dem lewells darunter liegenden Einzelstab erfolgt und sich damit ein mattenartiger Verbund der Einzelstäbe ergibt.

Weiterhin ist es denkbar, daß etwa bei einem Verschweißen der Einzelstäbe die Einzelstäbe des gitterartigen Strukturelementes zu mindestens an den Kreuzungspunkten zueinander verkippte Kantenbereiche aufweisen, wodurch sich hinterschnittene Abschnitte an den Einzelstäben bilden. Durch das plastische Umformen der Einzelstäbe im Bereich der Kreuzungspunkte durch Temperatureinfluß kommt es dazu,



daß die Einzelstäbe durch den mechanischen Druck ein wenig verformt werden und dadurch ihre Ausrichtung abhängig von der Lage des mit dem Einzelstab zu verbindenden anderen Einzelstabes verändern. Dies führt dazu, daß sich Hinterschneidungen bilden, die etwa für die Verankerung in der Verfüllmasse von besonderem Vorteil sind. Die Verfüllmasse dringt aufgrund ihrer Plastizität bei der Verarbeitung in diese Hinterschneidungsbereiche ein und kann nach dem Aushärten sich wesentlich besser an der Verankerungsschicht durch die Hinterschnitte der Einzelstäbe festhalten.

Von weiterem Vorteil ist es, wenn zwischen jeweils der ersten und der zweiten Schicht aus Einzelstäben eine durchgehende Dampfdruckausgleichsschicht angeordnet wird. Eine solche Dampfdruckausgleichsschicht, die etwa aus einer Polyethylenfolle gebildet sein kann, dient zu einer weiteren Abdichtung des Untergrundes, läßt gleichzeitig in grundsätzlich bekannter Weise aber ein Abdampfen von Feuchtigkeit aus dem Untergrund zu. Diese Dampfdruckausgleichsschicht kann bei der Herstellung des Verbundes der beiden Scharen der Einzelstäbe zwischen diese Schichten mit eingelegt und durch Verschweißen gleichzeitig fest mit den Einzelstäben verbunden werden. Dadurch ist eine besonders einfache Herstellung gewährleistet.

Weiterhin ist es in anderer Ausgestaltung denkbar, daß die Armierungsschicht auf der Verankerungsschicht aufgeschweißt oder auch aufgeklebt ist. Hierdurch kann die Armierungsschicht zum einen gut in die Verfüllmasse eingebettet werden, zum anderen hängt sie fest an der Verankerungsschicht, die ebenfalls mit der Verfüllmasse ausgefüllt wird. Damit ergibt sich ein besonders guter Verbund zwischen der Verfüllmasse und der Armierungsschicht bzw. der Verankerungsschicht. Es ist hierbei denkbar, daß die Armierungsschicht als ein gitterartiges Gewebe gebildet ist, vorzugsweise als ein Glasfasergewebe, das zur sicheren Verankerung mit der oberseltig des Entkopplungs- und Abdichtungssystems einzubringenden Verfüllmasse dient.

Von Vorteil für die Verarbeitung größerer Flächen des Entkopplungs- und Abdichtungssystems ist es, wenn die Armierungsschicht sich zu mindestens in einzelnen Randbereichen des Entkopplungs- und Abdichtungssystems über die anderen Schichten hinaus erstreckt, um einen Übergang zu anderen Abschnitten des Entkopplungs- und Abdichtungssystems zu schaffen. Hierdurch kann ein entsprechend

30

25

30

7

überlappter Anschluß an den Rändern etwa einzeln verarbeitbarer Bahnen erreicht werden, der keinerlei Festigkeitsverlust an den Übergangsbereichen zwischen benachbarten Bahnen mit sich bringt.

Welterhin ist es denkbar, daß das Entkopplungs- und Abdichtungssystem lose auf einem Untergrund verlegbar ist. Hierdurch wird eine vollständige mechanische Entkopplung etwa eines aufgebrachten Fliesenbelages vom jeweiligen Untergrund erreicht, der etwa bei stark unterschiedlichen Temperatur-Ausdehnungskoeffizienten oder arbeitenden Untergründen wie etwa Holzböden notwendig ist.

in einer anderen Ausgestaltung ist es denkbar, daß das Entkopplungs- und Abdichtungssystem fest, vorzugsweise verklebt auf einem Untergrund verlegbar ist. Hierdurch wird eine sichere Befestigung des Entkopplungs- und Abdichtungssystems erreicht, wenn dies durch die Eigenschaften des Untergrundes zulässig und sinnvoll ist.

Denkbar ist in einer weiteren Ausgestaltung, daß die Abdichtungsschicht aus einem feuchtigkeitsundurchlässigen Verankerungsvlies gebildet ist. Ein solches Verankerungsvlies verbindet sich aufgrund seiner Struktur besonders gut mit dem Untergrund und ist an sich grundsätzlich bekannt.

In einer anderen Ausgestaltung kann zur Erhöhung der Abdichtungswirkung die Abdichtungsschicht auch aus einer Polymer-Abdichtungsschicht bestehen, Insbesondere aus einer Polyethylen-Abdichtungsschicht, die grundsätzlich schon bekannt ist. Auch ist dabei denkbar, daß die Abdichtungsschicht zumindest unterseitig ein Vliesgewebe zur Verankerung mit dem Untergrund, vorzugsweise zur Verankerung in einem Kleber bei fester Verlegung aufweist.

Von Vorteil für die Abdichtung auch größerer Flächen ist es dabei, wenn die Abdichtungsschicht sich zu mindestens in einzelnen Randbereichen des Entkopplungs- und Abdichtungssystems über die anderen Schichten hinaus erstreckt, um einen feuchtigkeitsundurchlässigen Übergangsbereich zu anderen Abschnitten des Entkopplungs- und Abdichtungssystems zu schaffen. Damit kann im Bereich der Überlappung ein feuchtigkeitsdichter Anschluß an benachbart verlegte Bahnen erreicht werden.



Hinsichtlich der Abmessungen der einzelnen Schlichten des Entkopplungs- und Abdichtungssystems ist es denkbar, daß die Dicke der Verankerungsschicht zwischen 2 und 6 Millimetern und damit in einer Ausgestaltung die Gesamtdicke des Entkopplungs- und Abdichtungssystems im wesentlichen zwischen 2 und 8 Millimetern beträgt. Hierdurch trägt das Entkopplungs- und Abdichtungssystem nicht wesentlich relativ zu einem vorgegebenen Untergrund auf und kann auch bei räumlichen knappen Einbauverhältnissen unproblematisch eingesetzt werden.

Es ist von wesentlichem Vorteil für die Benutzungseigenschaften des erfindungsgemäßen Entkopplungs- und Abdichtungssystems, wenn die Verankerungsschicht nach dem Einbringen der Verfüllmasse im wesentlichen vollständig mit der Verfüllmasse ausgefüllt ist und die in die ausgehärtete Verfüllmasse eingebettete Armierungsschicht eine Versteifungs- und Bewehrungsfunktion für die Abtragung von oberhalb eingeleiteter mechanischer Belastungen erfüllt. Damit wird die Lastabtragung über wesentlich größere Schichtdicken als bei bekannten Entkopplungs- und Abdichtungssystemen möglich, da zusätzlich noch die ganze Schichtdicke der Verankerungsschicht bei mechanischen Belastungen mitträgt und gleichzeitig durch die Armierungsschicht verstärkt ist.

Eine besonders bevorzugte Ausführungsform des erfindungsgemäßen Entkopplungs- und Abdichtungssystems zeigt die Zeichnung.

### 20 Es zeigen:

30

10

- Figur 1 einen Schnitt durch ein erstes erfindungsgemäßes Entkopplungsund Abdichtungssystem zur Erläuterung des Schichtaufbaus,
- Figur 2 eine Draufsicht auf ein erfindungsgemäßes Entkopplungs- und Abdichtungssystem gemäß Figur 1,
- Figur 3 Anordnung von Überlappungsbereichen für Armierungsschicht und Abdichtungsschicht an einem erfindungsgemäßes Entkopplungsund Abdichtungssystem gemäß Figur 1,
  - Figur 4 einen anderen Schichtaufbau des erfindungsgemäßen Entkopplungs- und Abdichtungssystems ohne zwischengelegte Dampfdruckausgleichsschicht und unterseitig nur mit einem Verankerungsvlies.

Patentanwalt Dipl.-Ing. Uwe Schneider, Unna

06. November 2003

15



In der Figur 1 ist in einer geschnittenen Seitenansicht der Schichtaufbau eines ersten erfindungsgemäßen mehrschichtigen Entkopplungs- und Abdichtungssystems 1 aufgezelgt, wobei in der Figur 2 eine geschnittene Draufsicht etwa in Höhe einer Abdichtungsschicht 4 zu erkennen ist und in der Figur 3 eine Draufsicht auf das Entkopplungs- und Abdichtungssystem 1 geschnitten entlang der Armierungsschicht 5 dargestellt ist. Das Entkopplungs- und Abdichtungssystems 1 ist in der Figur 1 im Einbauzustand auf einem Untergrund 15, etwa einem Zementestrich oder dergleichen dargestellt, wobei oberhalb des Entkopplungs- und Abdichtungssystems 1 ein Fliesenbelag aus Fliesen 10 zu erkennen ist, der im Dünnbettverfahren in einem Fliesenmörtel 12 verlegt ist, wobei die Fugen 11 zwischen den einzelnen Fliesen 10 ebenfalls mit dem Fliesenmörtel 12 ausgefüllt sind.

Das erfindungsgemäße Entkopplungs- und Abdichtungssystem 1 besteht dabel aus einer auf dem Untergrund 15 aufliegenden Abdichtungsschicht 4, die beispleisweise aus einem Polyethylen gebildet ist und als Bahn bestimmter Breite verlegt werden kann. Die Abdichtungsschicht 4 kann dabei mit dem Untergrund 15 verklebt sein, ebenfalls ist es denkbar, zur Entkopplung von Untergrund 15 und Fliesenbelag aus den Fliesen 10 die Abdichtungsschicht 4 auf dem Untergrund 15 nur schwimmend aufzulegen. Derartige Verlegeverfahren sind grundsätzlich bekannt und sollen daher hier nicht weiter behandelt werden.

Oberhalb dieser Abdichtungsschicht 4 ist eine Verankerungsschicht 2, 3 aus einer noch später erläuterten gitterartigen Struktur mit der Abdichtungsschicht 4 verbunden. Die Verbindung kann beispielsweise durch Verkleben oder Verschweißen in grundsätzlich bekannter Welse abhängig von den verwendeten Materialien erfolgen. Diese Verankerungsschicht 2, 3 ist aus zwei einzelnen Schichten 2, 3 gebildet, zwischen denen eine Dampfdruckausgleichsschicht 6 in noch näher beschriebener Weise angeordnet werden kann.

Die Verankerungsschicht 2, 3 ebenso wie die mit ihr verbundene und oberhalb angeordnete Armierungsschicht 5 dient zur Verankerung des Entkopplungs- und Abdichtungssystems 1 an dem Fliesenmörtel 12 und damit der Schicht aus den Fliesen 10. Die Armierungsschicht 5 kann beispielsweise im grundsätzlich bekannter Weise aus einem gitterartig angeordneten Glasfasergewebe bestehen, das entsprechende Öffnungen und freie Bereiche aufweist, damit der Filesenmörtel 12 möglichst tief in

Patentanwait Dipl.-Ing. Uwe Schneider, Unna

06. November 2003

20



die Verankerungsschicht 2, 3 eintreten kann. Die Verankerungsschicht 2, 3 weist dabei in noch näher beschriebener Weise Aufnahmeräume 16 für den Fliesenmörtel 12 auf und dient damit zur Verbesserung der Verankerung des Fliesenmörtels 12 an dem mehrschichtigen Entkopplungs- und Abdichtungssystem 1.

Die Festlegung der Fliesenschicht aus den Fliesen 10 erfolgt hierbei dadurch, daß der Fliesenmörtel 12 vor dem Auflegen der Fliesen 10 oberseitig auf die Armlerungsschicht 5 aufgebracht und mit einer Kelle möglichst tief durch die Öffnungen der Armierungsschicht 5 in die Verankerungsschicht 2 bzw. 3 bei Fehlen der optionalen Dampfdruckausgleichsschicht 6 hinein gedrückt wird. Ist die Dampfdruckausgleichsschicht 6 vorhanden, so wird nur die Verankerungsschicht 2 von dem Fliesenmörtel 12 ausgefüllt. Der im plastischen Zustand verarbeitete Fliesenmörtel 12 füllt hierbei die Aufnahmeräume 16 in der Verankerungsschicht 2, 3 weitgehend aus und umfließt dabei die in noch näher beschriebener Weise gebildeten Einzelstäbe 7, 8 der Verankerungsschicht 2, 3 nahezu vollständig. Nach dem Aushärten des Fliesenmörtels 12 hat sich ein sehr fester Verband zwischen der Verankerungsschicht 2, der Armierungsschicht 5 und dem Fliesenmörtel 12 gebildet, der zum einen die Fliesen 10 fest an dem Entkopplungs- und Abdichtungssystem 1 verankert und zum anderen eine stabile, plattenartigen Ausgestaltung der Verankerungsschicht 2, 3 hervorruft. Dadurch ist das Entkopplungs- und Abdichtungssystem 1 besonders gut belastbar durch oberseitig der Fliesen 10 aufgebrachte mechanische Belastungen.

Die gitterartige Struktur der Verankerungsschicht 2, 3 wird hierbei aus unter einem Winkel zueinander angeordneten Einzelstäben 7, 8 gebildet, die übereinander angeordnet eine zweilagige Schichtanordnung aus den Schichten 2 und 3 bilden. Die Einzelstäbe 7, 8 weisen jeweils einen etwa rechteckigen Querschnitt auf und sind an den Kreuzungspunkten 9 etwa durch thermische Verfahren miteinander verschweißt. Hierdurch bildet sich auf einfachste Weise eine Übereinanderordnung von etwa parallele Scharen der Einzelstäbe 7, die mit ebenfalls parallelen Scharen der Einzelstäbe 8, die unter einem Winkel zu der Schar der Einzelstäbe 7 liegen, verbunden sind. Zwischen den Einzelstäben 7 bzw. 8 bilden sich die Aufnahmeräume 16 in der Verankerungsschicht 2, 3.

Die gitterartige Struktur aus den Einzelstäben 7, 8 hat weiterhin den Vorteil, daß im Bereich der Kreuzungspunkte 9 beim Verschweißen der Einzelstäbe 7, 8 sich Berei-

che an den Einzelstäben 7, 8 bilden, die Hinterschnitte aufweisen und daher zu einer sehr starken Verklammerung des in diese Bereiche eintretenden Filesenmörtels 12 mit den Einzelstäben 7, 8 nach dem Erhärten führen.

Wenn größere Flächen verarbeitet werden sollen, empflehlt es sich, sowohl die Armierungsschicht 5 als auch die Abdichtungsschicht 4 in Überlappungsbereichen 14, 14' soweit über die Berandung der gitterartigen Verankerungsschicht 2, 3 hinüber ragen zu lassen, daß sie mit benachbart anzuordnenden entsprechenden Schichten überlappend etwa verklebt oder sonstwie an diesen befestigt werden können.

Es versteht sich von selbst, daß die in den Figuren 2 und 3 aufgezeigte Anordnung der Einzelstäbe 7, 8 nur beispielhaft anzusehen ist und sich jegliche Art von geometrischen Mustern aus solchen Einzelstäben 7, 8 bilden lassen, die von Vorteil für die Eigenschaften des hier genannten Entkopplungs- und Abdichtungssystems 1 ist.

Zwischen die beiden Schichten 2 und 3 der Verankerungsschicht kann eine zusätzliche Dampfdruckausgleichsschicht 6 eingelegt sein, die direkt bei der Herstellung der gitterartigen Struktur der Verankerungsschicht 2, 3 mit eingebracht werden kann. Hlerdurch kann auch eine besonders einfache und sichere Festlegung der Dampfdruckausgleichsschicht 6 in dem Schichtaufbau des Entkopplungs- und Abdichtungssystems 1 erfolgen. Derartige Dampfdruckausgleichsschichten 6 sind grundsätzlich bekannt und sollen daher hier nicht näher erläutert werden.

Unterhalb der Abdichtungsschicht 4 kann in grundsätzlich bekannter Weise eine 20 Vllesschicht 13 vorgesehen werden, die auf die Abdichtungsschicht 4 aufkaschiert oder in sonst bekannter Weise an der Abdichtungsschicht 4 befestigt ist und für den Fall des Verklebens der Abdichtungsschicht 4 mit dem Untergrund 15 eine besonders gute Befestigung am Untergrund 15 etwa über einen Mörtel oder Kleber erlaubt.

In der Figur 4 ist eine andere Ausgestaltung des erfindungsgemäßen Entkopplungsund Abdichtungssystems 1 dargestellt, bei der die Dampfdruckausgleichsschicht 6 nicht vorhanden ist und anstelle der Abdichtungsschicht 4 nur eine Vliesschicht 13 zur Auflage auf dem Untergrund 15 vorgesehen ist. Hierdurch kann für nicht feuchtigkeitsempfindliche Untergründe 15, etwa bauwerksseitig dichte Untergründe 15 der Aufbau des Entkopplungs- und Abdichtungssystems 1 weiter vereinfacht werden, ohne daß die Entkopplungswirkung darunter leidet. Ansonsten gelten für die Eigen-

Beschreibung Blatt 1

12

schaften der Schichten die vorstehend gemachten Angaben in entsprechender Weise.

Patentanwalt
Uwe Schneider

Diplom-Ingenieur

European Trademark Altomey European Patent Attorney

Zugelassener Vertreter beim Europäischen Patentamt (EPA) und beim Europäischen Markenamt (HABM)

Holbeinstr. 27 D-59423 Unna Fon +49 (0) 2303/22064 Fax +49 (0) 2303/22054 Email US@Petent-Schneider.de http://www.Patent-Schneider.de

Blanke & Co.

im Mühlental 11

58642 Iserlohn

### **Schutzansprüche**

- Mehrschichtiges Entkopplungs- und Abdichtungssystem (1), insbesondere für die Verlegung keramischer Beläge (10) im Dünnbettverfahren (12), aufweisend einen Schichtaufbau, aufgeführt von unten nach oben, mit
- einer flüssigkeitsundurchlässigen Abdichtungsschicht (4),
  - einer aus einem gitterartigen Strukturelement gebildeten Verankerungsschicht (2, 3) für eine im Bereich der Oberseite des Entkopplungs- und Abdichtungssystems (1) einzubringende, bei der Verarbeitung plastische und danach aushärtende Verfüllmasse (12),
- einer an der Verankerungsschicht (2, 3) zumindest abschnittsweise fest angeordneten Armierungsschicht (5).
  - Entkopplungs- und Abdichtungssystem (1) gemäß Anspruch 1, dadurch gekennzeichnet, daß das gitterartige Strukturelement (2, 3) aus stabförmig gitterartig zueinander angeordneten und aneinander an den Kreuzungspunkten (9) des Gitters festgelegten Einzelstäben (7, 8) gebildet ist.
  - Entkopplungs- und Abdichtungssystem (1) gemäß Anspruch 2, dadurch gekennzeichnet, daß die Einzelstäbe (7, 8) des gitterartigen Strukturelementes (2, 3) eine im wesentlichen rechteckige Querschnittsform aufweisen.

Patentanwali Dipl.-Ing. Uwe Schneider, Unna

15

08. November 2003

25

- 4. Entkopplungs- und Abdichtungssystem (1) gemäß einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, daß die sich kreuzenden Einzelstäbe (7, 8) des gitterartigen Strukturelementes (2, 3) so angeordnet sind, daß eine erste Schicht(2) aus jeweils gleich orientierten Einzelstäben (7) unterhalb einer zweiten Schicht (3) aus dazu in einem Winkel angeordneten, jeweils zueinander gleich orientierten Einzelstäben (8) besteht.
- Entkopplungs- und Abdichtungssystem (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die gitterartige Struktur aus den Einzelstäben (7, 8) eine Rauten-, Rechteck- oder Quadratform aufweist.
- 6. Entkopplungs- und Abdichtungssystem (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Einzelstäbe (7, 8) der beiden Schichten (2, 3) miteinander im Kreuzungsbereich (9) unter mechanischem Druck verschweißt sind.
- 7. Entkopplungs- und Abdichtungssystem (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Einzelstäbe (7, 8) des gitterartigen Strukturelementes (2, 3) zu mindestens an den Kreuzungspunkten (9) zueinander verkippte Kantenbereiche aufweisen, wodurch sich hinterschnittene Abschnitte an den Einzelstäben (7, 8) bilden.
  - Entkopplungs- und Abdichtungssystem (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß zwischen jeweils der ersten und der zweiten Schicht (2, 3) aus Einzelstäben (7, 8) eine durchgehende Dampfdruckausgleichsschicht (6) angeordnet ist.
    - Entkopplungs- und Abdichtungssystem (1) gemäß Anspruch 8, dadurch gekennzeichnet, daß die Dampfdruckausgleichsschicht (6) aus einer Polyethylenfolie gebildet ist.
    - 10. Entkopplungs- und Abdichtungssystem (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Armierungsschicht (5) auf der Verankerungsschicht (2) aufgeschweißt ist.

25



- Entkopplungs- und Abdichtungssystem (1) gemäß einem der Ansprüche 1 bis
   dadurch gekennzeichnet, daß die Armierungsschicht (5) auf der Verankerungsschicht (2) aufgeklebt ist.
- 12. Entkopplungs- und Abdichtungssystem (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Armierungsschicht (5) ein gitterartig gebildetes Gewebe, vorzugsweise ein Glasfasergewebe, aufweist zur sicheren Verankerung mit der oberseitig des Entkopplungs- und Abdichtungssystems (1) einzubringenden Verfüllmasse (12).
- 13. Entkopplungs- und Abdichtungssystem (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Armierungsschicht (5) sich zu mindestens in einzelnen Randbereichen (14) des Entkopplungs- und Abdichtungssystems (1) über die anderen Schichten (2, 3, 6) hinaus erstreckt, um einen Übergang zu anderen Abschnitten des Entkopplungs- und Abdichtungssystems (1) zu schaffen.
  - 14. Entkopplungs- und Abdichtungssystem (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Entkopplungs- und Abdichtungssystem (1) lose auf einem Untergrund (15) verlegbar ist.
    - Entkopplungs- und Abdichtungssystem (1) gemäß einem der Ansprüche 1 bls
       dadurch gekennzeichnet, daß das Entkopplungs- und Abdichtungssystem
       fest, vorzugsweise verklebt auf einem Untergrund (15) verlegbar ist.
    - 16. Entkopplungs- und Abdichtungssystem (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Abdichtungsschicht (4) aus einem feuchtigkeitsundurchlässigen Verankerungsvlies gebildet ist.
    - 17. Entkopplungs- und Abdichtungssystem (1) gemäß einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die Abdichtungsschicht (4) aus einer Polymer-Abdichtungsschicht, insbesondere aus einer Polyethylen-Abdichtungsschicht gebildet ist.
    - 18. Entkopplungs- und Abdichtungssystem (1) gemäß Anspruch 17, dadurch gekennzeichnet, daß die Abdichtungsschicht (4) zumindest unterseitig ein Vlies-

Blanke & Co.



gewebe (13) zur Verankerung mit dem Untergrund (15), vorzugsweise zur Verankerung in dem Kleber aufweist.

- 19. Entkopplungs- und Abdichtungssystem (1) gemäß Anspruch 19, dadurch gekennzeichnet, daß die Abdichtungsschicht (4) sich zu mindestens in einzelnen Randbereichen (14') des Entkopplungs- und Abdichtungssystems (1) über die anderen Schichten (2, 3, 5, 6) hinaus erstreckt, um einen feuchtigkeitsundurchlässigen Übergangsbereich zu anderen Abschnitten des Entkopplungs- und Abdichtungssystems (1) zu schaffen.
- 20. Entkopplungs- und Abdichtungssystem (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Dicke der Verankerungsschicht (2, 3) zwischen 2 und 6 Millimetern beträgt.
  - Entkopplungs- und Abdichtungssystem (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Gesamtdicke des Entkopplungs- und Abdichtungssystems (1) zwischen 2 und 8 Millimetern beträgt.
- 22. Entkopplungs- und Abdichtungssystem (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Verankerungsschicht (2, 3) nach dem Einbringen der Verfüllmasse (12) im wesentlichen vollständig mit der Verfüllmasse (12) ausgefüllt ist und die in die ausgehärtete Verfüllmasse (12) eingebettete Armierungsschicht (5) eine Verstelfungs- und Bewehrungsfunktion für die Abtragung von oberhalb eingeleiteter mechanischer Belastungen erfüllt.



### **Sachnummernliste**

| •  | 1   |                | Entkopplungs- und Abdichtungssystem |
|----|-----|----------------|-------------------------------------|
|    | 2   | -              | Verankerungsschicht                 |
|    | 3   | · <del>-</del> | Verankerungsschicht ,               |
| 5  | 4   | -              | . Abdichtungsschicht                |
|    | 5   | -              | Armierungsschicht                   |
|    | -6  | <b>-</b> ·     | Dampfdruckausgleichsschicht         |
| •  | 7   | -              | Einzelstab                          |
|    | 8   | -              | Einzelstab                          |
| 10 | 9 . | -              | Kreuzungsbereich                    |
|    | 10  | _              | Filese                              |
|    | 11  | _              | Fuge                                |
|    | 12  | -              | Fliesenmörtel                       |
|    | 13  |                | Verankerungsviles                   |
| 15 | 14  | _              | Überlappungsbereich                 |
|    | 15  | _              | Untergrund                          |
|    | 16  | ••             | Aufnahmeräume                       |
|    |     |                |                                     |

Patentanwalt
Uwe Schneider

Diplom-Ingenieur

European Trademark Attorney European Patent Attorney

Zugelassener Vertreter beim Europäischen Patentamt (EPA) und beim Europäischen Markenamt (HABM)

Holbeinstr. 27
D-59423 Unna
Fon +48 (0) 2303/22064
Fax +49 (0) 2303/22054
Email US@Patent-Schneider.de
http://www.Patent-Schneider.de

Blanke & Co.

lm Mühlental 11

58642 Iserlohn

### Zusammenfassung

Die Erfindung betrifft ein mehrschichtiges Entkopplungs- und Abdichtungssystem (1), insbesondere für die Verlegung keramischer Beläge (10) im Dünnbettverfahren (12), aufweisend einen Schichtaufbau, aufgeführt von unten nach oben, mit einer flüssigkeitsundurchlässigen Abdichtungsschicht (4), einer aus einem gitterartigen Strukturelement gebildeten Verankerungsschicht (2, 3) für eine im Bereich der Oberseite des Entkopplungs- und Abdichtungssystems (1) einzubringende, bei der Verarbeitung plastische und danach aushärtende Verfüllmasse (12) sowie einer an der Verankerungsschicht (2, 3) zumindest abschnittsweise fest angeordneten Armierungsschicht (5). Hierdurch wird die Belastbarkeit des Entkopplungs- und Abdichtungssystems (1) und die Verbindung mit auf dem Entkopplungs- und Abdichtungssystem (1) üblicherweise verlegten keramischen Belägen (10) wesentlich verbessert.

(hlerzu Fig. 1)





Blanke



Blanke

## Document made available under the **Patent Cooperation Treaty (PCT)**

International application number: PCT/DE04/002470

International filing date:

05 November 2004 (05.11.2004)

Document type:

Certified copy of priority document

Document details:

Country/Office: DE

Number:

203 17 248.5

Filing date: 06 November 2003 (06.11.2003)

Date of receipt at the International Bureau: 12 April 2005 (12.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)



# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

### IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.