Chapter 3 Syntax Analysis

Nai-Wei Lin

Syntax Analysis

- Syntax analysis recognizes the syntactic structure of the programming language and transforms a string of tokens into a tree of tokens and syntactic categories
- Parser is the program that performs syntax analysis

Outline

- Introduction to parsers
- Syntax trees
- Context-free grammars
- Push-down automata
- Top-down parsing
- A parser generator
- Bottom-up parsing

Introduction to Parsers

Syntax Trees

 A syntax tree represents the syntactic structure of tokens in a program defined by the grammar of the programming language

Context-Free Grammars (CFG)

- A set of terminals: basic symbols (token types) from which strings are formed
- A set of nonterminals: syntactic categories each of which denotes a set of strings
- A set of productions: rules specifying how the terminals and nonterminals can be combined to form strings
- The start symbol: a distinguished nonterminal that denotes the whole language

An Example: Arithmetic Expressions

- Terminals: id, '+', '-', '*', '/', '(', ')'
- Nonterminals: expr, op
- Productions:

$$expr \rightarrow expr \ op \ expr$$

 $expr \rightarrow `(' \ expr `)'$
 $expr \rightarrow `-' \ expr$
 $expr \rightarrow \mathbf{id}$
 $op \rightarrow `+' \mid `-' \mid `*' \mid `/'$

Start symbol: expr

An Example: Arithmetic Expressions

```
id \Rightarrow \{ id \},
+' \Rightarrow \{+\},
-, \Longrightarrow \{-\},
"" \Rightarrow \{""\},
'/' \Longrightarrow \{/\},
(') \Rightarrow \{ () \},
() \Rightarrow \{ \}
op \Rightarrow \{+, -, *, /\},
expr \Rightarrow \{ id, -id, (id), id + id, id - id, ... \}.
```

Derivations

 A derivation step is an application of a production as a rewriting rule, namely, replacing a nonterminal in the string by one of its right-hand sides, N → α

$$\dots N \dots \Rightarrow \dots \alpha \dots$$

 Starting with the start symbol, a sequence of derivation steps is called a derivation

$$S \Rightarrow ... \Rightarrow \alpha$$
 or $S \Rightarrow^* \alpha$

Grammar:

1.
$$expr \rightarrow expr \ op \ expr$$

2.
$$expr \rightarrow ('expr')'$$

3.
$$expr \rightarrow$$
 '-' $expr$

4.
$$expr \rightarrow id$$

5.
$$op \rightarrow +$$

6.
$$op \rightarrow$$
 '-'

7.
$$op \rightarrow `*$$

8.
$$op \rightarrow '/'$$

Derivation:

$$\Rightarrow$$
 - expr

$$\Rightarrow$$
 - (expr)

$$\Rightarrow$$
 - (expr op expr)

$$\Rightarrow$$
 - (**id** op expr)

$$\Rightarrow$$
 - (id + expr)

$$\Rightarrow$$
 - (id + id)

Left- & Right-Most Derivations

- If there are more than one nonterminal in the string, many choices are possible
- A leftmost derivation always chooses the leftmost nonterminal to rewrite
- A rightmost derivation always chooses the rightmost nonterminal to rewrite

Leftmost derivation: Rightmost derivation:

```
\underline{expr} \qquad \underline{expr} \\
\Rightarrow - \underline{expr} \qquad \Rightarrow - \underline{expr} \\
\Rightarrow - (\underline{expr}) \qquad \Rightarrow - (\underline{expr}) \\
\Rightarrow - (\underline{expr} op expr) \qquad \Rightarrow - (\underline{expr} op \underline{expr}) \\
\Rightarrow - (\underline{id} \underline{op} expr) \qquad \Rightarrow - (\underline{expr} \underline{op} \underline{id}) \\
\Rightarrow - (\underline{id} + \underline{expr}) \qquad \Rightarrow - (\underline{expr} + \underline{id}) \\
\Rightarrow - (\underline{id} + \underline{id}) \qquad \Rightarrow - (\underline{id} + \underline{id})
```

Parse Trees

- A parse tree is a graphical representation for a derivation that filters out the order of choosing nonterminals for rewriting
- Many derivations may correspond to the same parse tree, but every parse tree has associated with it a unique leftmost and a unique rightmost derivation

Leftmost derivation:

$\frac{expr}{\Rightarrow - expr} \Rightarrow - (expr) \Rightarrow - (expr op expr) \Rightarrow - (id op expr) \Rightarrow - (id + expr) \Rightarrow - (id + id)$

Rightmost derivation:

Ambiguous Grammars

- A grammar is ambiguous if it can derive a string with two different parse trees
- If we use the syntactic structure of a parse tree to interpret the meaning of the string, the two parse trees have different meanings
- Since compilers do use parse trees to derive meaning, we would prefer to have unambiguous grammars

Transform Ambiguous Grammars

Ambiguous grammar:

$$expr \rightarrow expr \ op \ expr$$

 $expr \rightarrow `(` expr `)`$
 $expr \rightarrow `-` expr$
 $expr \rightarrow id$
 $op \rightarrow `+` | `-` | `*` | `/`$

Not every ambiguous grammar can be transformed to an unambiguous one!

Unambiguous grammar:

$$expr \rightarrow expr$$
 '+' $term$
 $expr \rightarrow expr$ '-' $term$
 $expr \rightarrow term$
 $term \rightarrow term$ '*' $factor$
 $term \rightarrow term$ '/' $factor$
 $term \rightarrow factor$
 $factor \rightarrow$ '(' $expr$ ')'
 $factor \rightarrow$ '-' $expr$
 $factor \rightarrow$ id

Push-Down Automata

End-Of-File and Bottom-of-Stack Markers

- Parsers must read not only terminal symbols but also the end-of-file marker and the bottomof-stack maker
- We will use \$ to represent the end of file marker
- We will also use \$ to represent the bottom-ofstack maker

CFG versus RE

- Every language defined by a RE can also be defined by a CFG
- Why use REs for lexical syntax?
 - Do not need a notation as powerful as CFGs
 - Are more concise and easier to understand than CFGs
 - More efficient lexical analyzers can be constructed from REs than from CFGs
 - Provide a way for modularizing the front end into two manageable-sized components

Nonregular Languages

 REs can denote only a fixed number of repetitions or an unspecified number of repetitions of one given construct

$$a^n$$
, a^*

A nonregular language: L = {aⁿbⁿ | n ≥ 0}

$$S \rightarrow a S b$$

$$S \rightarrow \epsilon$$

Top-Down Parsing

 Construct a parse tree from the root to the leaves using the leftmost derivation

$$S \rightarrow c A B$$

 $A \rightarrow a b$ input: cad
 $A \rightarrow a$
 $B \rightarrow d$

Predictive Parsing

- Predictive parsing is a top-down parsing without backtracking
- Namely, according to the next token, there is only one production to choose at each derivation step

```
stmt → if expr then stmt else stmt
| while expr do stmt
| begin stmt_list end
```

LL(k) Parsing

- Predictive parsing is also called LL(k) parsing
- The first L stands for scanning the input from left to right
- The second L stands for producing a leftmost derivation
- The k stands for using k lookahead input symbol to choose alternative productions at each derivation step

LL(1) Parsing

- We will only describe LL(1) parsing from now on, namely, parsing using only one lookahead input symbol
- Recursive-descent parsing hand written or tool (e.g. ANTLR and CoCo/R) generated
- Table-driven predictive parsing tool (e.g. LISA and LLGEN) generated

Recursive Descent Parsing

- A procedure is associated with each nonterminal of the grammar
- An alternative case in the procedure is associated with each production of that nonterminal
- A match of a token is associated with each terminal in the right hand side of the production
- A procedure call is associated with each nonterminal in the right hand side of the production

Recursive Descent Parsing

 $S \rightarrow \text{if } E \text{ then } S \text{ else } S$ | begin L end| print E

$$L \rightarrow S; L$$
 $|\varepsilon|$

$$E \rightarrow \text{num} = \text{num}$$

begin print num = num; end

Choosing the Alternative Case

```
S \rightarrow \text{if } E \text{ then } S \text{ else } S FIRST(if E \text{ then } ...) = \{\text{if}\}

| \text{ begin } L \text{ end} | \text{ FIRST(begin } L \text{ end}) = \{\text{begin}\}

| \text{ print } E | \text{ FIRST(print } E) = \{\text{print}\}

| L \rightarrow S \text{ ; } L | \text{ FIRST(} S \text{ ; } L) = \{\text{if, begin, print}\}

| \epsilon | \text{ FOLLOW(} L) = \{\text{end}\}

| E \rightarrow \text{ num = num} | \text{ FIRST(num = num)} = \{\text{num}\}
```

```
const int
  IF = 1, THEN = 2, ELSE = 3, BEGIN = 4,
  END = 5, PRINT = 6, SEMI = 7, NUM = 8,
  EQ = 9:
int token = lexer();
void match(int t)
  if (token == t) token = lexer(); else error();
```

```
void S() {
  switch (token) {
     case IF: match(IF); E(); match(THEN); S();
             match(ELSE); S(); break;
     case BEGIN: match(BEGIN); L();
             match(END); break;
     case PRINT: match(PRINT); E(); break;
     default: error();
```

```
void L() {
  switch (token) {
     case IF:
     case BEGIN:
     case PRINT:
           S(); match(SEMI); L(); break;
     case END: break;
     default: error();
```

```
void E() {
    switch (token) {
        case NUM:
            match(NUM); match(EQ); match(NUM);
            break;
        default: error();
    }
}
```

First and Follow Sets

- The first set of a string α , FIRST(α), is the set of terminals that can begin the strings derived from α . If $\alpha \Rightarrow^* \varepsilon$, then ε is also in FIRST(α)
- The follow set of a nonterminal X, FOLLOW(X), is the set of terminals that can immediately follow X

Computing First Sets

- If X is terminal, then FIRST(X) is {X}
- If X is nonterminal and X → ε is a production, then add ε to FIRST(X)
- If X is nonterminal and $X \to Y_1 Y_2 ... Y_k$ is a production, then add a to FIRST(X) if for some i, a is in FIRST(Y_i) and ε is in all of FIRST(Y_1), ..., FIRST(Y_{i-1}). If ε is in FIRST(Y_j) for all j, then add ε to FIRST(X)

```
S \rightarrow \text{if } E \text{ then } S \text{ else } S
      | begin L end
      print E
L \rightarrow S; L \mid \varepsilon
E \rightarrow \text{num} = \text{num}
FIRST(E) = \{ num \}
FIRST(L) = { if, begin, print, \varepsilon }
FIRST(S) = { if, begin, print }
```

Computing Follow Sets

- Place \$ in FOLLOW(S), where S is the start symbol and \$ is the end-of-file marker
- If there is a production A → α Bβ, then everything in FIRST(β) except for ε is placed in FOLLOW(B)
- If there is a production $A \to \alpha B$ or $A \to \alpha B\beta$ where FIRST(β) contains ε , then everything in FOLLOW(A) is in FOLLOW(B)

```
S \rightarrow \text{if } E \text{ then } S \text{ else } S
     | begin L end
     print E
L \rightarrow S; L \mid \varepsilon
E \rightarrow \text{num} = \text{num}
FOLLOW(S) = \{ \$, else, ; \}
FOLLOW(L) = \{ end \}
FOLLOW(E) = \{ then, \$, else, ; \}
```

Table-Driven Predictive Parsing

Input. Grammar *G*. Output. Parsing Table *M*. Method.

- 1. For each production $A \rightarrow \alpha$ of the grammar, do steps 2 and 3.
- 2. For each terminal *a* in FIRST(α), add $A \rightarrow \alpha$ to M[A, a].
- 3. If ε is in FIRST(α), add $A \to \alpha$ to M[A, b] for each terminal b in FOLLOW(A). If ε is in FIRST(α) and \$ is in FOLLOW(A), add $A \to \alpha$ to M[A, \$].
- 4. Make each undefined entry of *M* be error.

	S	L	E
if	$S \rightarrow \text{if } E \text{ then } S \text{ else } S$	$L \rightarrow S$; L	
then			
else			
begin	$S \rightarrow begin L end$	$L \rightarrow S; L$ $L \rightarrow \varepsilon$	
end		$L \rightarrow \epsilon$	
print	S → print <i>E</i>	$L \rightarrow S; L$	
num			<i>E</i> → num = num
•			
\$			

```
Stack
                            Input
$ S
                          begin print num = num; end $
$ end L begin
                          begin print num = num; end $
$ end L
                          print num = num; end $
$ end L; S
                          print num = num; end $
$ end L; E print
                          print num = num ; end $
$ end L; E
                          num = num; end $
$ end L ; num = num 
                          num = num ; end $
$ end L;
                          ; end $
$ end L
                          end $
$ end
                          end $
```

LL(1) Grammars

- A grammar is LL(1) iff its predictive parsing table has no multiply-defined entries
- A grammar G is LL(1) iff whenever A → α | β
 are two distinct productions of G, the following
 conditions hold:

```
(1)FIRST(\alpha) \cap FIRST(\beta) = \emptyset,
(2)If \epsilon \in \text{FIRST}(\alpha), FOLLOW(A) \cap FIRST(\beta) = \emptyset,
(3)If \epsilon \in \text{FIRST}(\beta), FOLLOW(A) \cap FIRST(\alpha) = \emptyset.
```

A Counter Example

$$S \rightarrow i E t S S' | a$$

 $S' \rightarrow e S | \epsilon$
 $E \rightarrow b$

	а	b	е	i	t	\$
S	$S \rightarrow a$			$S \rightarrow i E t S S'$		
S'			$S' \rightarrow \epsilon$			$S' \rightarrow \epsilon$
			$S' \rightarrow e S$			
Ε		$E \to b$				

 $\varepsilon \in FIRST(\varepsilon) \land FOLLOW(S') \cap FIRST(e S) = \{e\} \neq \emptyset$

Left Recursive Grammars

- A grammar is left recursive if it has a nonterminal A such that $A \Rightarrow^* A \alpha$
- Left recursive grammars are not LL(1) because

$$A \rightarrow A \alpha$$
 $A \rightarrow \beta$

will cause FIRST(A α) \cap FIRST(β) $\neq \emptyset$

 We can transform them into LL(1) by eliminating left recursion

Eliminating Left Recursion

$$A \rightarrow A \alpha \mid \beta \Rightarrow A \rightarrow \beta R \\ R \rightarrow \alpha R \mid \epsilon$$

Direct Left Recursion

$$A \rightarrow A \alpha_{1} \mid A \alpha_{2} \mid \dots \mid A \alpha_{m} \mid \beta_{1} \mid \beta_{2} \mid \dots \mid \beta_{n}$$

$$\downarrow \downarrow \downarrow$$

$$A \rightarrow \beta_{1} A' \mid \beta_{2} A' \mid \dots \mid \beta_{n} A'$$

 $A' \rightarrow \alpha_1 A' \mid \alpha_2 A' \mid \dots \mid \alpha_m A' \mid \epsilon$

$$\begin{array}{c} T \rightarrow T \ * \ F \ | \ F \\ F \rightarrow (\ E\) \ | \ \text{id} \\ \\ \downarrow \\ E \rightarrow T \ E' \\ E' \rightarrow + \ T \ E' \ | \ \epsilon \\ T \rightarrow F \ T' \\ T' \rightarrow * \ F \ T' \ | \ \epsilon \\ F \rightarrow (\ E\) \ | \ \text{id} \\ \end{array}$$

 $E \rightarrow E + T \mid T$

Indirect Left Recursion

$$S \rightarrow Aa|b$$

 $A \rightarrow Ac|Sd|\epsilon$
 $S \Rightarrow Aa \Rightarrow Sda$
 $A \rightarrow Ac|Aad|bd|\epsilon$
 J
 $S \rightarrow Aa|b$
 $A \rightarrow bdA'|A'$
 $A' \rightarrow cA'|adA'|\epsilon$

Left factoring

- A grammar is not LL(1) if two productions of a nonterminal A have a nontrivial common prefix. For example, if $\alpha \neq \epsilon$, and $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$, then FIRST($\alpha \beta_1$) \cap FIRST($\alpha \beta_2$) $\neq \emptyset$
- We can transform them into LL(1) by performing left factoring

$$A \rightarrow \alpha A'$$

$$A' \rightarrow \beta_1 \mid \beta_2$$

$$S \rightarrow i E t S | i E t S e S | a$$
 $E \rightarrow b$

$$S \rightarrow i E t S S' | a$$
 $S' \rightarrow e S | \varepsilon$
 $E \rightarrow b$

Parser Rules

 Parser rule names must begin with a lowercase letter.

```
parserRuleName : alternative1 | ... | alternativeN ;
```

Parser Rule Elements

- T: Match token T at the current input position.
- 'literal': Match the string literal at the current input position.
- r: Match rule r at current input position, which amounts to invoking the rule just like a function call.

```
program: MAIN '(' ')' '{' declarations statements '}';
declarations: INT ID SEMI declarations
statements: statement statements
statement: READ ID SEMI
     RETURN SEMI
```

Parser Rule Elements

- {«action»}: Execute an action immediately after the preceding rule element and immediately before the following rule element.
- The action conforms to the syntax of the target language.
- ANTLR copies the action code to the generated class verbatim.

Bottom-Up Parsing

 Construct a parse tree from the leaves to the root using rightmost derivation in reverse

Hierarchy of Grammar Classes

