Data Mining Classification: Basic Concepts and Techniques

Lecture Notes for Chapter 3

Introduction to Data Mining, 2nd Edition by Tan, Steinbach, Karpatne, Kumar

2/1/2021

Introduction to Data Mining, 2nd Edition

1

1

Classification: Definition

- Given a collection of records (training set)
 - Each record is by characterized by a tuple (x,y), where x is the attribute set and y is the class label
 - x: attribute, predictor, independent variable, input
 - ◆ y: class, response, dependent variable, output
- ∟ Task:
 - Learn a model that maps each attribute set x into one of the predefined class labels y

2/1/2021

Introduction to Data Mining, 2nd Edition

Examples of Classification Task

Task	Attribute set, <i>x</i>	Class label, y
Categorizing email messages	Features extracted from email message header and content	spam or non-spam
Identifying tumor cells	Features extracted from x-rays or MRI scans	malignant or benign cells
Cataloging galaxies	Features extracted from telescope images	Elliptical, spiral, or irregular-shaped galaxies

2/1/2021

Introduction to Data Mining, 2nd Edition

3

Classification Techniques

- □ Base Classifiers
 - Decision Tree based Methods
 - Rule-based Methods
 - Nearest-neighbor
 - Naïve Bayes and Bayesian Belief Networks
 - Support Vector Machines
 - Neural Networks, Deep Neural Nets
- Ensemble Classifiers
 - Boosting, Bagging, Random Forests

2/1/2021

Introduction to Data Mining, 2nd Edition

5

Decision Tree Induction

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ, SPRINT

2/1/2021

Introduction to Data Mining, 2nd Edition

15

15

General Structure of Hunt's Algorithm

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
 - If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

2/1/2021

Introduction to Data Mining, 2nd Edition

Design Issues of Decision Tree Induction

- How should training records be split?
 - Method for expressing test condition
 - depending on attribute types
 - Measure for evaluating the goodness of a test condition
- How should the splitting procedure stop?
 - Stop splitting if all the records belong to the same class or have identical attribute values
 - Early termination

2/1/2021

Introduction to Data Mining, 2nd Edition

2

21

Methods for Expressing Test Conditions

- Depends on attribute types
 - Binary
 - Nominal
 - Ordinal
 - Continuous

2/1/2021

Introduction to Data Mining, 2nd Edition

(i) Binary split

(ii) Multi-way split

2/1/2021

Introduction to Data Mining, 2nd Edition

25

25

Splitting Based on Continuous Attributes

- Different ways of handling
 - Discretization to form an ordinal categorical attribute

Ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.

- Static discretize once at the beginning
- Dynamic repeat at each node
- Binary Decision: (A < v) or (A ≥ v)
 - consider all possible splits and finds the best cut
 - can be more compute intensive

2/1/2021

Introduction to Data Mining, 2nd Edition

How to determine the Best Split

- Greedy approach:
 - Nodes with purer class distribution are preferred
- Need a measure of node impurity:

C0: 5 C1: 5

High degree of impurity Low degree of impurity

C0: 9

C1: 1

2/1/2021 Introduction to Data Mining, 2nd Edition

Measures of Node Impurity

Gini Index

Gini Index =
$$1 - \sum_{i=0}^{c-1} p_i(t)^2$$
 Where $p_i(t)$ is the frequency of class i at node t , and c is the total number of classes

Entropy
$$Entropy = -\sum_{i=0}^{c-1} p_i(t)log_2p_i(t)$$

Misclassification error

Classification error =
$$1 - \max[p_i(t)]$$

2/1/2021

Introduction to Data Mining, 2nd Edition

29

Finding the Best Split

- Compute impurity measure (P) before splitting
- Compute impurity measure (M) after splitting
 - I Compute impurity measure of each child node
 - I M is the weighted impurity of child nodes
- Choose the attribute test condition that produces the highest gain

$$Gain = P - M$$

or equivalently, lowest impurity measure after splitting (M)

2/1/2021

Introduction to Data Mining, 2nd Edition

Measure of Impurity: GINI

☐ Gini Index for a given node *t*

Gini Index =
$$1 - \sum_{i=0}^{c-1} p_i(t)^2$$

Where $p_i(t)$ is the frequency of class i at node t, and c is the total number of classes

- Maximum of 1 1/c when records are equally distributed among all classes, implying the least beneficial situation for classification
- Minimum of 0 when all records belong to one class, implying the most beneficial situation for classification
- Gini index is used in decision tree algorithms such as CART, SLIQ, SPRINT

2/1/2021

Introduction to Data Mining, 2nd Edition

Measure of Impurity: GINI

Gini Index for a given node t :

Gini Index =
$$1 - \sum_{i=0}^{c-1} p_i(t)^2$$

- For 2-class problem (p, 1 - p):

• GINI =
$$1 - p^2 - (1 - p)^2 = 2p (1-p)$$

C1	0
C2	6
Gini=	0.000

C1	1	
C2	5	
Gini=0.278		

2/1/2021

Introduction to Data Mining, 2nd Edition

33

33

Computing Gini Index of a Single Node

Gini Index =
$$1 - \sum_{i=0}^{c-1} p_i(t)^2$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Gini =
$$1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Gini =
$$1 - (1/6)^2 - (5/6)^2 = 0.278$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
 $Gini = 1 - (2/6)^2 - (4/6)^2 = 0.444$

2/1/2021

Introduction to Data Mining, 2nd Edition

Computing Gini Index for a Collection of Nodes

When a node p is split into k partitions (children)

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where,

 n_i = number of records at child i,

n = number of records at parent node p.

2/1/2021

Introduction to Data Mining, 2nd Edition

35

35

Binary Attributes: Computing GINI Index

- Splits into two partitions (child nodes)
- Effect of Weighing partitions:
 - Larger and purer partitions are sought

	Parent
C1	7
C2	5
Gini	= 0.486

Gini(N1) = $1 - (5/6)^2 - (1/6)^2$ = 0.278

Gini(N2) = $1 - (2/6)^2 - (4/6)^2$ = 0.444

	N1	N2
C1	5	2
C2	1	4
Gini=0.361		

Weighted Gini of N1 N2 = 6/12 * 0.278 + 6/12 * 0.444 = 0.361

Gain = 0.486 - 0.361 = 0.125

2/1/2021

Introduction to Data Mining, 2nd Edition

Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Multi-way split

	CarType		
	Family Sports Luxury		
C1	1	8	1
C2	3	0	7
Gini		0.163	

Two-way split (find best partition of values)

	CarType	
	{Sports, Luxury}	{Family}
C1	9	1
C2	7	3
Gini	0.468	

	CarType		
	{Sports}	{Family, Luxury}	
C1	8	2	
C2	0	10	
Gini	0.167		

Which of these is the best?

2/1/2021

Introduction to Data Mining, 2nd Edition

37

37

Continuous Attributes: Computing Gini Index

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting valuesNumber of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A ≤ v and A > v
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient!
 Repetition of work.

2/1/2021

Introduction to Data Mining, 2nd Edition

Continuous Attributes: Computing Gini Index...

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

	Cheat	No	No	No	Yes	Yes	Yes	No	No	No	No
						Annu	al Incom	е			
Sorted Values	\rightarrow	60	70	75	85	90	95	100	120	125	220
2/1/2021			Intro	duction	to Data	Mining,	2 nd Editi	on			39

39

Continuous Attributes: Computing Gini Index...

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

Continuous Attributes: Computing Gini Index...

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

2/1/2021

Introduction to Data Mining, 2nd Edition

43

43

Measure of Impurity: Entropy

Entropy at a given node t

$$Entropy = -\sum_{i=0}^{c-1} p_i(t)log_2p_i(t)$$

Where $p_i(t)$ is the frequency of class i at node t, and c is the total number of classes

- Maximum of log₂c when records are equally distributed among all classes, implying the least beneficial situation for classification
- Minimum of 0 when all records belong to one class, implying most beneficial situation for classification
- Entropy based computations are quite similar to the GINI index computations

2/1/2021

Introduction to Data Mining, 2nd Edition

Computing Entropy of a Single Node

$$Entropy = -\sum_{i=0}^{c-1} p_i(t)log_2p_i(t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
Entropy = -0 log 0 - 1 log 1 = -0 - 0 = 0

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
Entropy = - (1/6) log_2 (1/6) - (5/6) log_2 (1/6) = 0.65

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Entropy =
$$-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$$

2/1/2021

Introduction to Data Mining, 2nd Edition

45

45

Computing Information Gain After Splitting

Information Gain:

$$Gain_{split} = Entropy(p) - \sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)$$

Parent Node, p is split into k partitions (children) n_i is number of records in child node i

- Choose the split that achieves most reduction (maximizes GAIN)
- Used in the ID3 and C4.5 decision tree algorithms
- Information gain is the mutual information between the class variable and the splitting variable

2/1/2021

Introduction to Data Mining, 2nd Edition

Problem with large number of partitions

 Node impurity measures tend to prefer splits that result in large number of partitions, each being small but pure

 Customer ID has highest information gain because entropy for all the children is zero

2/1/2021

Introduction to Data Mining, 2nd Edition

47

47

Gain Ratio

Gain Ratio:

$$Gain Ratio = \frac{Gain_{split}}{Split Info} \qquad Split Info = -\sum_{i=1}^{k} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

Parent Node, p is split into k partitions (children) n_i is number of records in child node i

- Adjusts Information Gain by the entropy of the partitioning (Split Info).
 - Higher entropy partitioning (large number of small partitions) is penalized!
- Used in C4.5 algorithm
- Designed to overcome the disadvantage of Information Gain

2/1/2021

Introduction to Data Mining, 2nd Edition

Gain Ratio

Gain Ratio:

$$Gain\ Ratio = \frac{Gain_{split}}{Split\ Info} \qquad Split\ Info = \sum_{i=1}^k \frac{n_i}{n}log_2\frac{n_i}{n}$$

Parent Node, p is split into k partitions (children) n_i is number of records in child node i

	CarType		
	Family	Sports	Luxury
C1	1	8	1
C2	3	0	7
Gini	0.163		

	CarType	
	{Sports, Luxury}	{Family}
C1	9	1
C2	7	3
Gini	0.468	

SplitINFO = 1.52

SplitINFO = 0.72

SplitINFO = 0.97

2/1/2021

Introduction to Data Mining, 2nd Edition

49

49

Measure of Impurity: Classification Error

Classification error at a node t

$$Error(t) = 1 - \max_{i}[p_i(t)]$$

- Maximum of 1-1/c when records are equally distributed among all classes, implying the least interesting situation
- Minimum of 0 when all records belong to one class, implying the most interesting situation

2/1/2021

Introduction to Data Mining, 2nd Edition

Computing Error of a Single Node

$$Error(t) = 1 - \max_{i}[p_i(t)]$$

2/1/2021

Introduction to Data Mining, 2nd Edition

52

51

Comparison among Impurity Measures For a 2-class problem:

2/1/2021

Misclassification Error vs Gini Index

	Parent	
C1	7	
C2	3	
Gini = 0.42		

Gini(N1)

 $= 1 - (3/3)^2 - (0/3)^2$

Gini(N2)

 $= 1 - (4/7)^2 - (3/7)^2$

= 0.489

	N1	N2	
C1	3	4	
C2	0	3	
Gini=0.342			

Gini(Children)

= 3/10 * 0

+ 7/10 * 0.489

= 0.342

Gini improves but error remains the same!!

2/1/2021

Introduction to Data Mining, 2nd Edition

53

Misclassification Error vs Gini Index

	Parent	
C1	7	
C2	3	
Gini = 0.42		

	N1	N2	
C1	3	4	
C2	0	3	
Gini=0.342			

	N1	N2
C1	3	4
C2	1	2
Gini=0.416		

Misclassification error for all three cases = 0.3!

2/1/2021

Introduction to Data Mining, 2nd Edition

Decision Tree Based Classification

Advantages:

- Relatively inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Robust to noise (especially when methods to avoid overfitting are employed)
- Can easily handle redundant attributes
- Can easily handle irrelevant attributes (unless the attributes are interacting)

Disadvantages: .

- Due to the greedy nature of splitting criterion, interacting attributes (that
 can distinguish between classes together but not individually) may be
 passed over in favor of other attributed that are less discriminating.
- Each decision boundary involves only a single attribute

2/1/2021

Introduction to Data Mining, 2nd Edition

55

55

Handling interactions

+: 1000 instances

o: 1000 instances

Entropy (X): 0.99 Entropy (Y): 0.99

2/1/2021

Introduction to Data Mining, 2nd Edition

