Grammaires et Hiérarchie de Chomsky Grammaires : Séance 1

Marie-Laure Potet

Grenoble INP-Ensimag

2020-2021

Summary

- Introduction
- Grammaires
- Langage associé à une grammaire
- 4 Hiérarchie de Chomsky

Description de langages

Rappels:

- V un vocabulaire (ensemble fini de symboles), $L \subseteq V^*$ un langage.
- Langages réguliers: langages reconnus par automate ayant un nombre fini d'états, langages descriptibles par expressions régulières (union, concaténation, itération)
- Certains langages ne sont pas réguliers : aⁿbⁿ. Preuve en montrant qu'il n'existe pas d'automate (lemme de l'étoile)
- Problème d'expressivité : peut-on décrire systématiquement plus de langages ?
 - √ Les grammaires
- Le langage de programmation idéal ça serait quoi ?

- Permet de caractériser une classe de langages. Exemples : les langages reconnus par automates d'état fini.
- Permet de donner des algorithmes agissant sur les formalismes.
 Exemple : algorithme de déterminisation.
- Permet d'étudier la décidabilité de propriétés sur les formalismes.
 - P(x) Décidable : il existe un algorithme permettant de répondre oui/non à la question "P(x) est vrai" pour tout x.
 - Indécidable : il n'existe pas d'algorithme
- √ La hiérarchie de Chomsky. Expressivité versus Décidabilité et Complexité.

Exemples de problèmes décidables/indécidables sur les langages réguliers ? sur les programmes ?

Grenoble INP-Ensimag Grammaires 2020-2021 < 4 / 29 >

Summary

- Introduction
- Grammaires
- Langage associé à une grammaire
- 4 Hiérarchie de Chomsky

Grammaires : qu'est ce que c'est ?

- \checkmark Similaire à la grammaire d'une langue. Exemple grammaire de l'anglais en français.
 - Un vocabulaire terminal : ce qui constituera les mots (les phrases) du langage. Exemple : le vocabulaire de l'anglais.
 - Un vocabulaire non terminal : ce qui permet de parler de la construction des mots (phrases). Les catégories grammaticales.
 - Des règles permettant de produire les mots (phrases) du langage.
 Groupe_Nominal → Article Adjectif Nom.

Grammaires: définition formelle

Définition: (Grammaire)

Une grammaire est un quadruplet $G = \langle V_T, V_N, S, R \rangle$, où :

- V_T est un vocabulaire, appelé vocabulaire terminal;
- V_N est un vocabulaire, appelé vocabulaire non terminal, et tel que $V_N \cap V_T = \emptyset$. On pose $V = V_T \cup V_N$.
- $S \in V_N$ est appelé l'axiome de la grammaire.
- R est un ensemble de règles de la forme u → v avec :
 - u ∈ V⁺
 - v ∈ V*

Donner une grammaire pour les langages suivants :

- *G*₁ pour (*ab*)*(*ba*)+
- G_2 pour $a^n b^n$ avec $n \ge 0$
- G_3 pour $a^n b^n c^n$ avec $n \ge 1$

Donner V_T , V_N , l'axiome et les règles.

√ Conventions:

- on fixe V_T . V_N est l'ensemble des symboles apparaissant dans les règles et n'appartenant pas à V_T , l'axiome est le symbole en partie gauche de la première règle.
- Si plusieurs règles A → w₁, ..., A → w_n on peut noter A → w₁ | ... | w_n.

Donner une grammaire pour les langages suivants :

• *G*₁ pour (*ab*)*(*ba*)+

Donner V_T , V_N , l'axiome et les règles.

$$egin{array}{lll} \mathcal{S} &
ightarrow & \mathcal{A}\mathcal{B} \ \mathcal{A} &
ightarrow & ab\mathcal{A} \ \mathcal{A} &
ightarrow & \epsilon \end{array}$$

$$B \rightarrow baB$$

$$B \rightarrow ba$$

$$V_T = \{a, b\}, \ V_N = \{S, A, B\}, \ S \text{ est l'axiome.}$$
 ou bien :

$$egin{array}{lll} S &
ightarrow & AB \ A &
ightarrow & abA \mid \epsilon \ B &
ightarrow & baB \mid ba \end{array}$$

Donner une grammaire pour les langages suivants :

• G_2 pour $a^n b^n$ avec $n \ge 0$

Donner V_T , V_N , l'axiome et les règles.

$$egin{array}{lll} \mathcal{S} &
ightarrow & \mathit{aSb} \ \mathcal{S} &
ightarrow & \epsilon \end{array}$$

$$V_T = \{a, b\}, \ V_N = \{S\}, \ S \text{ est l'axiome.}$$

ou bien:

$$S \rightarrow aSb \mid \epsilon$$

Donner une grammaire pour les langages suivants :

• G_3 pour $a^n b^n c^n$ avec $n \ge 1$

Donner V_T , V_N , l'axiome et les règles.

- (1) $S \rightarrow abc$
- (2) $S \rightarrow aSBc$
- (3) $cB \rightarrow Bc$
- (4) $bB \rightarrow bb$

 $V_T = \{a, b, c\}, \ V_N = \{S, B\}, \ S \text{ est l'axiome.}$

Summary

- Introduction
- Grammaires
- Langage associé à une grammaire
- 4 Hiérarchie de Chomsky

Relation de dérivation

Définition: (Relation de dérivation)

- Soit $G = \langle V_T, V_N, S, R \rangle$ une grammaire.
- Soit $x, y \in V^*$. On dit que x dérive vers y, noté $x \Longrightarrow y$ si et seulement si il existe une règle $u \rightarrow v$ et deux chaînes $\alpha, \beta \in V^*$ telles que $x = \alpha u \beta$ et $y = \alpha v \beta$.

Si on veut être précis on note \Longrightarrow_r , avec r une règle ou $\Longrightarrow_{p,r}$ avec p une position dans x et r une règle.

- \checkmark Ne pas mélanger \rightarrow (pour les règles) et \Longrightarrow (pour les dérivations).
- \checkmark Ne pas mélanger \Rightarrow (implication logique) et \Longrightarrow (pour les dérivations).

Dérivation de longueur quelconque

On note \Longrightarrow^p une dérivation de longueur p. Définie par :

✓ Propriété de composition des dérivations :

$$u_1 \Longrightarrow^{p_1} v_1 \qquad u_2 \Longrightarrow^{p_2} v_2$$

$$u_1 u_2 \Longrightarrow^{p_1 + p_2} v_1 v_2$$

On note \Longrightarrow^* la fermeture réflexive et transitive de \Longrightarrow .

$$\Longrightarrow^* = \bigcup_{i \in N} \Longrightarrow^i$$

$$egin{aligned} V_T &= \{a,b\} \ V_N &= \{S\} \ R &= \left\{ egin{aligned} S &
ightarrow &arepsilon \ S &
ightarrow & a\,S\,b \end{aligned} \end{aligned} \qquad ext{noté également } S
ightarrow arepsilon \mid a\,S\,b \end{aligned}$$

- $S \Longrightarrow^1 \varepsilon$
- $S \Longrightarrow^1 aSb \Longrightarrow^1 ab (S \Longrightarrow^2 ab)$
- $S \Longrightarrow aSb \Longrightarrow aaSbb \Longrightarrow aaaSbbb \Longrightarrow aaabbb \ (S \Longrightarrow^*$ aaaabbbb)

- S o abc
- $S \rightarrow aSBc$
- $cB \rightarrow Bc$

$$S \implies_2 aSBc$$
 $\implies_1 aabcBc$
 $\implies_3 aabBcc$
 $\implies_4 aabbcc$

2020-2021

Définition: (Langage engendré par une grammaire)

• Soit une grammaire $G = \langle V_T, V_N, S, R \rangle$. Le langage engendré par G est $L(G) = L(S) = \{x \in V_{\tau}^* \mid S \Longrightarrow^* x\}$

Généralisation. Soit $w \in V^*$. On pose :

$$L(w) = \{x \in V_T^* \mid w \Longrightarrow^* x\}$$

Exemple. Soit $V_T = \{a, b\}$ et les règles suivantes :

$$S \rightarrow AB$$
 $A \rightarrow a$ $A \rightarrow aA$ $B \rightarrow \epsilon$ $B \rightarrow bB$

$$L(A)$$
 ? $L(B)$? $L(S)$? $L(AbA)$?

 \checkmark Propriété : Deux grammaires G_1 et G_2 sont dites équivalentes ssi elles engendrent le même langage :

$$L(G_1) = L(G_2)$$

- ⇒ On peut voir les grammaires comme un processus permettant d'énumerer les mots du langage :
 - On part de l'axiome
 - ② On applique toutes les règles possibles sur toutes les occurrences possibles
 - on réitère le pas 2 sur les mots de dérivation obtenus
- \Rightarrow une procédure de semi-décision pour le problème $w \in L(G)$.

Exemple grammaire précédente:

```
pas 0 : S
pas 1 : AB
```

pas 2 : aB, aAB, A, AbB

pas 3 : a, abB, aaB, aaAb, aA, aAbB, a, aA, abB, aaAB

pas 4 : ...

 $aa \in L(G)$? ba $\in L(G)$? Comment décider de l'arrêt?

- 1 Introduction
- Grammaires
- Langage associé à une grammaire
- 4 Hiérarchie de Chomsky

Noam Chomsky (1928) : linguiste et philosophe. 1950 : théorie des grammaires génératives.

- Une classification des grammaires (et des langages) qui permettra l'étude du compromis expressivité/décision.
- Une restriction sur la forme des règles
- 4 classes de grammaires :
 - Grammaires régulières (classe 3)
 - Grammaires hors-contexte (classe 2)
 - Grammaires sous-contexte (classe 1)
 - Grammaires générales (classe 0)

Grammaire régulière

Soit $G = \langle V_T, V_N, S, R \rangle$ une grammaire. G est dite régulière si et seulement si les règles sont d'une des formes suivantes :

- $A \rightarrow \epsilon$
- A → aB

avec $A \in V_N$, $B \in V_N$ et $a \in V_T$.

√ Exemples

Une telle grammaire est dite linéaire à droite. Il existe d'autres façons équivalentes (i.e. engendrant les mêmes langages) de décrire les grammaires régulières (voir TD).

C'est bien la même classe que celle qu'on a déjà vue! (séance 2 ou 3)

Soit $G = \langle V_T, V_N, S, R \rangle$ une grammaire. G est dite hors-contexte si et seulement si les règles sont de la forme :

• $A \rightarrow w$

avec $A \in V_N$ et $w \in (V_T \cup V_N)^*$.

√ Exemples

⇒ Une classe qu'on aime bien! Bon compromis Expressivité/décidabilité

Soit $G = \langle V_T, V_N, S, R \rangle$ une grammaire. G est dite sous-contexte si et seulement si les règles sont de la forme :

- $u \rightarrow v$ avec $|u| \leq |v|$
- avec $u \in V^+$, $v \in V^+$. Rappel : par définition des grammaires $u \neq \epsilon$.
- √ Exemples
- \Rightarrow La condition sur la taille donnera un algorithme de décision pour $w \in L(G)$.
- \Rightarrow On énumère tous les mots $\alpha \in (V_T \cup V_N)^*$ tel que $S \Longrightarrow^* \alpha$ et $|\alpha| \leq |w|$. Si on n'a pas trouvé w on ne le trouvera pas.

Grammaire sous-contexte (suite)

- Une définition équivalente (si, si !). Règles de la forme :
 - uAv → uwv

avec $A \in V_N$ et u, v, w dans V^* et $w \neq \epsilon$.

Pour les 2 définitions :

Si ϵ dans le langage on peut ajouter les règles :

- $Z \rightarrow \epsilon$
- et *Z* → *S*.

avec Z un nouveau symbole qui devient l'axiome.

Pas de restriction.

✓ Résultats :

- G régulière ⇒ G hors-contexte
- G hors-contexte sans ε-règle ⇒ G sous-contexte
- G sous-contexte $\Rightarrow G$ générale

On appelle ϵ -règle une règle de la forme $A \to \epsilon$.

✓ Questions :

- Soit G une grammaire. Peut-on décider de sa classe ?
- Grammaire des grammaires ?

⇒ Extension de la notion de classes de grammaires aux langages.

Un langage L est dit régulier (hors-contexte, sous-contexte, général) si et seulement si il existe une grammaire G régulière (hors-contexte, sous-contexte, générale) telle que L(G) = L.

√ Remarques:

- On s'intéresse généralement à la plus petite sous-classe d'un langage
- Prouver L(G) = L est "complexe". On verra une manière systématique de faire cette preuve (pour les langages hors-contexte).
- Il n'y a pas d'algorithme pour décider de la classe d'un langage.

√ Résultats :

- Extension des implications sur les grammaires aux langages
- Plus généralement L hors-contexte ⇒ L sous-contexte (preuve en séance 2 ou 3)
- Inclusion stricte des classes de langages
- Les grammaires ne captent pas tous les langages
- √ Voir schéma au tableau
- L Hors-contexte non régulier:
- L Sous-contexte non Hors-contexte:
- L géneral non Sous-contexte :
- L non général:

Ce qu'on étudiera

- Les propriétés (en termes de décidabilité) de ces différentes sous-classes
 - $w \in L(G)$?
 - $L(G_1) = L(G_2)$?
 - •
- Plus particulièrement la classe des langages hors-contexte et ses propriétés