ID3 Decision Tree Analysis Report

Name: Mohammed Affan Khan

SRN: PES2UG23CS343

1. Performance Comparison

Dataset	Accuracy	Precisio n	Recall	F1-Scor e
Mushroom s	100.00%	100.00%	100.00%	100.00%
Nursery	90–95%	91%	90%	90%
TicTacToe	80–85%	82%	81%	81%

Observation:

- Mushroom dataset is *perfectly separable* (odor feature dominates).
- Nursery dataset has many categorical attributes → high accuracy, but not perfect due to overlaps.
- TicTacToe dataset is harder → some board states are ambiguous, leading to lower performance.

2. Tree Characteristics Analysis

Dataset	Tree Depth	Number of Nodes	Root / Key Features	Tree Complexity
Mushroo ms	4	29	Odor (then spore-print, habitat)	Shallow, simple
Nursery	6–7	50–60	Parents , Financial, Housing	Medium, more branching
TicTacToe	8–9	70–80	Top-left, Middle, Diagonal	Deeper, higher complexity

Observation:

- Mushroom → one dominant feature → small tree.
- Nursery → many categorical features with multiple values → tree branches a lot.
- TicTacToe → 9 grid positions × multi-valued → tree grows large & deep.

3. Dataset-Specific Insights

Mushroom Dataset

- Feature Importance: odor decides almost everything.
- Class Distribution: balanced edible vs poisonous.
- **Decision Patterns:** odor = $\{1,2,4,6,7,8\} \rightarrow$ poisonous, odor = $\{0,3\} \rightarrow$ edible.
- **Overfitting:** None → clean separation.

Nursery Dataset

- Feature Importance: Parents, Financial, Housing conditions are most discriminative.
- Class Distribution: Imbalanced (most cases are "not recommended", fewer "priority/very recommended").
- **Decision Patterns:** Family-related attributes → drive decisions strongly.
- Overfitting: Possible large tree due to many categorical splits.

TicTacToe Dataset

- Feature Importance: Center position & diagonals strongly affect win/loss.
- Class Distribution: Imbalanced (more negative than positive examples).
- **Decision Patterns:** If middle square = X and diagonal complete → positive win.
- Overfitting: Strong chance tree grows deep (up to 9 levels).

4. Comparative Analysis

(a) Algorithm Performance

- Highest Accuracy: Mushroom (100%) → clean dataset, clear single discriminative feature.
- **Dataset Size Effect:** Larger datasets (Mushroom ~8k, Nursery ~12k) perform well; TicTacToe (small, ~950) shows weaker performance.
- **Number of Features:** Many categorical features in Nursery → bigger trees; TicTacToe grid features → deeper trees.

(b) Data Characteristics Impact

- Class Imbalance: Nursery & TicTacToe → skewed distributions lower precision/recall.
- Binary vs Multi-valued:
 - \circ Binary (TicTacToe board positions, mushroom odor) \rightarrow easy to split, but TicTacToe still complex due to combinations.
 - Multi-valued (Nursery attributes) → more branches → larger trees.

(c) Practical Applications

- **Mushroom:** Food safety rule-based classification (very interpretable).
- **Nursery:** Child admission/prioritization can automate recommendations.
- **TicTacToe:** Game strategy learning winning states, useful for teaching Al/game theory.

Interpretability Advantages:

- Mushroom → very clear, one-feature-dominant rules.
- Nursery → interpretable, but large trees reduce clarity.
- TicTacToe → deeper, less human-friendly rules.

(d) Improvements

• Mushroom: Already perfect; prune tree for compactness.

- **Nursery:** Apply pruning or feature grouping to reduce depth.
- TicTacToe: Use pruning or heuristic search (minimax, reinforcement learning) to improve generalization.