CÁLCULO DIFERENCIAL E INTEGRAL-LSI TEMA

Mgtr. César Garau

Tema 7: Derivada de Funciones de varias variables.

Derivada de una función de dos variables independientes. Interpretación geométrica de las derivadas parciales. Relación entre derivabilidad y la continuidad. Derivadas parciales de orden superior. Diferenciabilidad de funciones de dos variables independientes. Diferencial total. Extremos relativos de una función de dos variables. Determinación de extremos. Aplicaciones.

Derivada de una función de dos variables independientes.

Supongamos que tenemos una función f de dos variables, x e y. Si dejamos una variable fija (constante) por ejemplo x, asumiendo un valor a y variamos la y, podemos ver en cierta manera que tenemos una función de una sola variable dada por g(y) = f(a,y). Podemos entonces considerar derivar a g con respecto a su variable g. El resultado es la derivada parcial de g con respecto a la variable g en g0

Incremento parcial $\Delta_x z$ y $\Delta_v z$

Sea
$$z = f(x, y)$$
 y $(x_0, y_0) \in Dm_f$

Incremento parcial $\Delta_x z$ de la función f(x,y) respecto de x en el punto (x_0,y_0) es

$$\Delta_{x}\mathbf{z} = f(x_0 + \Delta x, y_0) - f(x_0, y_0)$$

Incremento parcial $\Delta_y z$ de la función f(x,y) respecto de y en el punto (x_0,y_0) es

$$\Delta_{\mathbf{y}}\mathbf{z} = f(x_0, y_0 + \Delta y) - f(x_0, y_0)$$

Derivadas parciales

Sea una función z = f(x, y). El limite de la razón del incremento parcial $\Delta_x z$ respecto de x, en relación al incremento Δx , cuando el incremento Δx tiende a cero se llama derivada parcial respecto a x de la función z = f(x, y).

$$\lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x} = \frac{\partial z}{\partial x}$$

Siempre y cuando este limite exista. Otras notaciones: z_x ; $f_x(x,y)$; $\frac{\partial f(x,y)}{\partial x}$.

Sea una función z = f(x, y). El limite de la razón del incremento parcial $\Delta_y z$ respecto de y, en relación al incremento Δy , cuando el incremento Δy tiende a cero se llama derivada parcial respecto a y de la función z = f(x, y).

$$\lim_{\Delta y \to 0} \frac{\Delta_y z}{\Delta y} = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y} = \frac{\partial z}{\partial y}$$

Siempre y cuando este limite exista. Otras notaciones: z_y ; $f_y(x,y)$; $\frac{\partial f(x,y)}{\partial y}$.

Definición: Una función es derivable en un punto (x_0, y_0) cuando existen las derivadas parciales en ese punto con respecto a cada una de las variables independientes.

Interpretación geométrica de las derivadas parciales.

Las derivadas parciales de una función de dos variables, z = f(x, y), tienen una interpretación geométrica útil. Si $y = y_0$, entonces $z = f(x, y_0)$ representan la curva intersección de la superficie z = f(x, y) con el plano $y = y_0$, como se muestra en la figura 13.29.

Por consiguiente,

$$f_x(x_0, y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

representa la pendiente de esta curva en el punto $(x_0, y_0, f(x_0, y_0))$. Nótese que tanto la curva como la recta tangente se encuentran en el plano $y = y_0$.

$$\frac{\partial f}{\partial x}$$
 = pendiente en la dirección x

Figura 13.29

Análogamente,

$$f_{y}(x_{0}, y_{0}) = \lim_{\Delta y \to 0} \frac{f(x_{0}, y_{0} + \Delta y) - f(x_{0}, y_{0})}{\Delta y}$$

representa la pendiente de la curva dada por la intersección de z = f(x, y) y el plano $x = x_0$ en $(x_0, y_0, f(x_0, y_0))$, como se muestra en la figura 13.30.

Informalmente, los valores $\partial f/\partial x$ y $\partial f/\partial y$ en (x_0, y_0, z_0) denotan las **pendientes de la superficie en las direcciones de** x y y, respectivamente.

$$\frac{\partial f}{\partial y}$$
 = pendiente en la dirección y

Figura 13.30

Derivadas parciales de orden superior

Dada una función z = f(x,y) podemos calcular, en caso de existir, las derivadas parciales $f_x(x,y)$ y $f_y(x,y)$. Éstas a su vez vuelven a ser funciones de las variables x e y, por lo que cabe plantearse el cálculo de las derivadas parciales de las funciones derivadas parciales. Así, para $f_x(x,y)$ podemos calcular su derivada parcial tanto respecto de x como respecto de y; y análogamente para $f_y(x,y)$. Estas cuatro nuevas derivadas se denominan derivadas parciales de segundo orden.

Las derivadas parciales de segundo orden se designan así:

$$\frac{\partial}{\partial x} \left(\frac{\partial f(x, y)}{\partial x} \right) = \frac{\partial^2 f(x, y)}{\partial x^2} = f_{xx}(x, y) \qquad \frac{\partial}{\partial y} \left(\frac{\partial f(x, y)}{\partial x} \right) = \frac{\partial^2 f(x, y)}{\partial y \partial x} = f_{xy}(x, y)$$

$$\frac{\partial}{\partial y} \left(\frac{\partial f(x, y)}{\partial y} \right) = \frac{\partial^2 f(x, y)}{\partial y^2} = f_{yy}(x, y) \qquad \frac{\partial}{\partial x} \left(\frac{\partial f(x, y)}{\partial y} \right) = \frac{\partial^2 f(x, y)}{\partial x \partial y} = f_{yx}(x, y)$$

Las derivadas parciales $f_{xy}(x,y)$ y $f_{yx}(x,y)$ se denominan también derivadas parciales cruzadas o mixtas.

Teorema de Schwartz

Si $f_y(x,y)$ y $f_{xy}(x,y)$ existen en un entorno del punto (x,y) y $f_{xy}(x,y)$ es continua en dicho entorno, entonces $f_{yx}(x,y)$ existe y además $f_{yx}(x,y) = f_{xy}(x,y)$

Corolario de Bonnet

Si $f_{xy}(x,y)$ y $f_{yx}(x,y)$ existen y son continuas en un entorno del punto (x_0,y_0) entonces $f_{yx}(x,y) = f_{xy}(x,y)$

Diferenciales

Una función z = f(x, y) es diferenciable en un punto (x, y), si está definida en un entorno del punto (x,y) y su incremento total $\Delta z = f(x + \Delta x, y + \Delta y) - f(x,y)$ se puede expresar como:

$$\Delta z = f_x(x, y). \, \Delta x + f_y(x, y). \, \Delta y + \varepsilon_1. \, \Delta x + \varepsilon_2. \, \Delta y$$

Donde ε_1 y ε_2 tienden a cero, $\varepsilon_1 \to 0$, $\varepsilon_2 \to 0$ cuando $\Delta x \to 0$ y $\Delta y \to 0$ respectivamente.

Es decir:
$$dz = z_x . dx + z_y . dy$$

Diferencial total

Diferencial de una función de n variables independientes.

Esta definición (*) puede extenderse a una función de tres o más variables. Por ejemplo, si w = f(x, y, z, u), entonces $dx = \Delta x$, $dy = \Delta y$, $dz = \Delta z$, $du = \Delta u$, y la diferencial total de wes

$$dw = \frac{\partial w}{\partial x} dx + \frac{\partial w}{\partial y} dy + \frac{\partial w}{\partial z} dz + \frac{\partial w}{\partial u} du.$$

Mostrar que una función es diferenciable

Mostrar que la función dada por

$$f(x, y) = x^2 + 3y$$
 es diferenciable en todo punto del plano.

EJEMPLO I Hallar la diferencial total

Hallar la diferencial total de cada función.

a)
$$z = 2x \operatorname{sen} y - 3x^2y^2$$
 b) $w = x^2 + y^2 + z^2$

b)
$$w = x^2 + y^2 + z^2$$

Relación entre la continuidad, la derivabilidad, y la diferenciabilidad

Teorema 1

Si una función z = f(x, y) es diferenciable en un punto f(x, y) entonces es continua y derivable en ese punto.

Teorema 2

Si una función z = f(x, y) es continua, derivable y tiene sus derivadas parciales continuas en un entorno del punto P(x, y) entonces es diferenciable en dicho punto.

Derivada de la función compuesta

Para derivar funciones compuestas de una sola variable podíamos usar la regla de la cadena. Si y = f(x) y x a su vez es una función de t, entonces podíamos pensar a y como función de t y para calcular su derivada lo podíamos hacer directamente por la regla de la cadena: $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$.

En el caso de varias variables tenemos

Sea z = f(x, y) función con derivadas parciales continuas y x = x(t) y y = y(t) funciones derivables. Entonces z = f(x(t), y(t)) es derivable en t y

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$

Observación.- Note como se ha usado los signos $\frac{\partial \bullet}{\partial \bullet}$ de derivadas parciales cuando corresponde a una función de varias variable y la notación $\frac{d \bullet}{d \bullet}$ cuando se refiere a la derivada de una función en una sola variable.

Ejemplo 1.- Sean $z = y^2 \sqrt{x+1}$ donde $x(t) = t^3 - t$ y $y(t) = t^2 - 2t + 4$. Encontrar $\frac{dz}{dt}$.

EJEMPLO I Regla de la cadena con una variable independiente

Sea $w = x^2y - y^2$, donde $x = \text{sen } t \text{ y } y = e^t$. Hallar dw/dt cuando t = 0.

Prof. César Garan

Derivada de la función compuesta

Sea z = F(u, v) con u y v funciones de las variables independientes x e y, es decir:

$$u = g(x, y)$$
 y $v = h(x, y)$

En este caso z es una función compuesta de las variables x e y, sus derivadas parciales respecto a x e y esta dada por

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

Extremos relativos de una función de dos variables. Determinación de extremos. Aplicaciones.

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ definida en un entorno abierto de centro (x_0, y_0)

- La función z = f(x, y) tiene un <u>Máximo relativo</u> en (x_0, y_0) si $f(x, y) \le f(x_0, y_0)$ para todos los puntos (x, y) de un entorno (x_0, y_0)
- La funciónz = f(x, y) tiene un <u>mínimo relativo</u> en (x_0, y_0) si $f(x, y) \ge f(x_0, y_0)$ para todo entorno abierto de centro (x_0, y_0)

Teorema 1

Condiciones necesarias para la existencia de un extremo.

Sea z = f(x, y) y un punto (x_0, y_0)

Si la función z = f(x, y) tiene un extremo (punto critico) en un punto $P(x_0, y_0)$ entonces cada derivada de primer orden de z o bien se anula en ese punto o bien no existe.

Es decir:

1)
$$f_x(x_0, y_0) = 0$$
 y $f_y(x_0, y_0) = 0$

2) $f_x(x_0, y_0)$ o $f_y(x_0, y_0)$ no existe.

Matriz Hessiana

Sea z = f(x, y) una función y además existen sus derivadas parciales. Sea el determinante D, llamado Hessiano de f, definido de la siguiente forma:

$$D = H(x,y) = \begin{vmatrix} f_{xx}(x,y) & f_{xy}(x,y) \\ f_{yx}(x,y) & f_{yy}(x,y) \end{vmatrix} = f_{xx} \cdot f_{yy} - f_{xy} \cdot f_{yx} = f_{xx} \cdot f_{yy} - (f_{xy})^2$$

Teorema 2

Condiciones suficiente para la existencia de un extremo

Criterio de las segundas derivadas.

Sea z = f(x, y) una funciones definida en un dominio que comprende al punto $P(x_0, y_0)$. Esta función tiene derivadas parciales continuas de hasta tercer orden inclusive. Supongamos además que $P(x_0, y_0)$ es un punto critico de la función f, entonces:

- 1. Si $H(x_0, y_0) > \mathbf{0}$ entonces se alcanza un extremo relativo en $P(x_0, y_0)$. 1.1 Si $f_{xx}(x_0, y_0) < \mathbf{0}$ entonces f tiene un **Máximo relatico** en $P(x_0, y_0)$
 - 1.2 Si $f_{xx}(x_0, y_0) > 0$ entonces f tiene un **mínimo relatico** en $P(x_0, y_0)$
- 2. Si $H(x_0, y_0) < 0$ entonces f tiene un **punto de ensilladura** en $P(x_0, y_0)$
- 3. Si $H(x_0, y_0) = 0$, caso dudoso, el criterio no es concluyente.

V EJEMPLO 3 Determine los valores máximo y mínimo locales y los puntos silla de $f(x, y) = x^4 + y^4 - 4xy + 1$.

SOLUCIÓN Primero localizamos los puntos críticos:

$$f_x = 4x^3 - 4y$$
 $f_y = 4y^3 - 4x$

Al igualar a estas derivadas parciales con 0, se obtienen las ecuaciones

$$x^3 - y = 0$$
 y $y^3 - x = 0$

Para resolver estas ecuaciones, sustituimos $y = x^3$ de la primera ecuación en la segunda, y obtenemos

$$0 = x^9 - x = x(x^8 - 1) = x(x^4 - 1)(x^4 + 1) = x(x^2 - 1)(x^2 + 1)(x^4 + 1)$$

de modo que hay tres raíces reales: x = 0, 1, -1. Los tres puntos críticos son (0, 0), (1, 1) y (-1, -1).

Luego calculamos la segunda derivada parcial y D(x, y):

$$f_{xx} = 12x^2$$
 $f_{xy} = -4$ $f_{yy} = 12y^2$
 $D(x, y) = f_{xx}f_{yy} - (f_{xy})^2 = 144x^2y^2 - 16$

Puesto que D(0, 0) = -16 < 0, se infiere del caso c) de la prueba de la segunda derivada que el origen es un punto silla; es decir, f no tiene máximo ni mínimo local en (0, 0). Como D(1, 1) = 128 > 0 y $f_{xx}(1, 1) = 12 > 0$, se ve que según el caso a) de la prueba que f(1, 1) = -1 es un mínimo local. De igual manera, D(-1, -1) = 128 > 0 y $f_{xx}(-1, -1) = 12 > 0$, de modo que f(-1, -1) = -1 es también un mínimo local.

La gráfica de f se ilustra en la figura 4.

FIGURA 4 $z = x^4 + y^4 - 4xy + 1$

EJEMPLO 3 Aplicación del criterio de las segundas derivadas parciales

Identificar los extremos relativos de $f(x, y) = -x^3 + 4xy - 2y^2 + 1$.

Aplicaciones.

EJEMPLO 2 Beneficio máximo

Un fabricante de artículos electrónicos determina que la ganancia o beneficio P (en dólares) obtenido al producir x unidades de un reproductor de DVD y y unidades de un grabador de DVD se aproxima mediante el modelo

$$P(x, y) = 8x + 10y - (0.001)(x^2 + xy + y^2) - 10000.$$

Hallar el nivel de producción que proporciona una ganancia o beneficio máximo. ¿Cuál es la ganancia máxima?

Solución Las derivadas parciales de la función de beneficio son

$$P_x(x, y) = 8 - (0.001)(2x + y)$$
 y $P_y(x, y) = 10 - (0.001)(x + 2y)$.

Igualando estas derivadas parciales a 0, se obtiene el sistema de ecuaciones siguiente.

$$8 - (0.001)(2x + y) = 0$$

$$10 - (0.001)(x + 2y) = 0$$

Después de simplificar, este sistema de ecuaciones lineales puede expresarse como

$$2x + y = 8000$$

$$x + 2y = 10000$$
.

Resolviendo el sistema se obtiene $x = 2\,000$ y $y = 4\,000$. Las segundas derivadas parciales de P son

$$P_{\rm rr}(2\ 000,\ 4\ 000) = -0.002$$

$$P_{yy}(2\ 000, 4\ 000) = -0.002$$

$$P_{xy}(2\ 000, 4\ 000) = -0.001.$$

Como $P_{xx} < 0$ y

$$P_{xx}(2\ 000,\ 4\ 000)P_{yy}(2\ 000,\ 4\ 000) - [P_{xy}(2\ 000,\ 4\ 000)]^2 = (-0.002)^2 - (-0.001)^2 > 0$$

se concluye que el nivel de producción con $x = 2\,000$ unidades y $y = 4\,000$ unidades proporciona el beneficio *máximo*. El beneficio máximo es

$$P(2\ 000, 4\ 000) = 8(2\ 000) + 10(4\ 000) - (0.001)[2\ 000^2 + 2\ 000(4\ 000) + 4\ 000^2)] - 10\ 000$$

= \$18\ 000.

of. Césair Garain

