Pollard's rho algorithm for logarithms

From Wikipedia, the free encyclopedia

Pollard's rho algorithm for logarithms is an algorithm introduced by John Pollard in 1978 for solving the discrete logarithm problem analogous to Pollard's rho algorithm for solving the Integer factorization problem.

The goal is to compute γ such that $\alpha^{\gamma} = \beta$, where β belongs to a group G generated by α . The algorithm computes integers a, b, A, and B such that $\alpha^a \beta^b = \alpha^A \beta^B$. Assuming, for simplicity, that the underlying group is cyclic of order n, we can calculate γ as a solution of the equation $(B-b)\gamma = (a-A) \pmod{n}$.

To find the needed a,b,A, and B the algorithm uses Floyd's cycle-finding algorithm to find a cycle in the sequence $x_i=\alpha^{a_i}\beta^{b_i}$, where the function $f:x_i\mapsto x_{i+1}$ is assumed to be random-looking and thus is likely to enter into a loop after approximately $\sqrt{\frac{\pi n}{2}}$ steps. One way to define such a function is to use the following rules: Divide G into three disjoint subsets of approximately equal size: S_0, S_1 , and S_2 . If x_i is in S_0 then double both a and b; if $x_i\in S_1$ then increment a, if $x_i\in S_2$ then increment b.

Contents

- 1 Algorithm
- 2 Example
- 3 Complexity
- 4 References

Algorithm

Let G be a cyclic group of order P, and given $\alpha, \beta \in G$, and a partition $G = S_0 \cup S_1 \cup S_2$, let $f: G \to G$ be a map

$$f(x) = \begin{cases} \beta x & x \in S_0 \\ x^2 & x \in S_1 \\ \alpha x & x \in S_2 \end{cases}$$

and define maps $g:G imes \mathbb{Z} o \mathbb{Z}$ and $h:G imes \mathbb{Z} o \mathbb{Z}$ by

$$g(x,n) = \begin{cases} n & x \in S_0 \\ 2n \pmod{p} & x \in S_1 \\ n+1 \pmod{p} & x \in S_2 \end{cases}$$

$$h(x,n) = \begin{cases} n+1 \pmod{p} & x \in S_0 \\ 2n \pmod{p} & x \in S_1 \\ n & x \in S_2 \end{cases}$$

Inputs a a generator of G, b an element of G**Output** An integer x such that $a^x = b$, or failure

1. Initialise $a_0 \leftarrow 0$

$$b_0 \leftarrow 0$$

$$x_0 \leftarrow 1 \in G$$

$$i \leftarrow 1$$

- 2. $x_i \leftarrow f(x_{i-1}), a_i \leftarrow g(x_{i-1}, a_{i-1}), b_i \leftarrow h(x_{i-1}, b_{i-1})$
- 3. $x_{2i} \leftarrow f(f(x_{2i-2})), a_{2i} \leftarrow g(f(x_{2i-2}), g(x_{2i-2}, a_{2i-2})), b_{2i} \leftarrow h(f(x_{2i-2}), h(x_{2i-2}, b_{2i-2}))$
- 4. If $x_i = x_{2i}$ then
 - 1. $r \leftarrow b_i b_{2i}$
 - 2. If r = 0 return failure
 - 3. $\mathbf{x} \leftarrow r^{-1} (a_{2i} a_i) \bmod p$
 - return x
- 5. If $x_i \neq x_{2i}$ then $i \leftarrow i+1$, and go to step 2.

Example

Consider, for example, the group generated by 2 modulo N=1019 (the order of the group is n=1018,2 generates the group of units modulo 1019). The algorithm is implemented by the following C++ program:

```
#include <stdio.h>
const int n = 1018, N = n + 1; /* N = 1019 -- prime

const int alpha = 2; /* generator

const int bota = 5: (N)
                                     /* 2^{10} = 1024 = 5 (N) */
const int beta = 5;
void new_xab( int& x, int& a, int& b ) {
  switch(x%3) {
                     % N; a = a*2 % n; b = b*2 % n; break;
  case 0: x = x*x
  case 1: x = x*alpha % N; a = (a+1) % n;
  case 2: x = x*beta % N;
int main(void) {
  int x=1, a=0, b=0;
  int X=x, A=a, B=b;
  for(int i = 1; i < n; ++i ) {</pre>
    new_xab(x, a, b);
    new_xab( X, A, B ); new_xab( X, A, B );
printf( "%3d %4d %3d %3d %4d %3d %3d\n", i, x, a, b, X, A, B );
    if(x == X) break;
  return 0;
```

The results are as follows (edited):

1						
i	X	a	b	X	A	В
!						
1	2	1	0	10	1	1
Τ.					_	_
2	10	1	1	100	2	2
3	20	2	1	1000	3	3
4	100	2	2	425	8	6
		_	_		-	-
5	200	3	2	436	16	14
6	1000	3	3	284	17	15
7	981	4	3	986	17	17
1 0						
8	425	8	6	194	17	19
		. .				
48	224	680	376	86	299	412
49	101	680	377	860	300	413
-						
50	505			101	300	415
51	1010	681	378	1010	301	416
i						

```
That is 2^{681}5^{378}=1010=2^{301}5^{416}\pmod{1019} and so (416-378)\gamma=681-301\pmod{1018}, for which \gamma_1=10 is a solution as expected. As n=1018 is not prime, there is another solution \gamma_2=519, for which 2^{519}=1014=-5\pmod{1019} holds.
```

Complexity

The running time is approximately $O(\sqrt{p})$ where p is n's largest prime factor.

References

- Pollard, J. M. (1978). "Monte Carlo methods for index computation (mod *p*)". *Mathematics of Computation* **32** (143): 918–924. JSTOR 2006496 (//www.jstor.org/stable/2006496).
- Menezes, Alfred J.; van Oorschot, Paul C.; Vanstone, Scott A. (2001). "Chapter 3" (http://www.cacr.math.uwaterloo.ca/hac/about/chap3.pdf). Handbook of Applied Cryptography.

Retrieved from "http://en.wikipedia.org/w/index.php? title=Pollard%27s_rho_algorithm_for_logarithms&oldid=568798736" Categories: Logarithms | Number theoretic algorithms

- This page was last modified on 16 August 2013 at 13:49.
- Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.