

目录 CONTENTS

01 域融合现状与趋势

02 汽车操作系统的技术路线

03 汽车操作系统的发展策略

智能网联汽车电子电气架构正加速向域融合方向演进

分布式架构

域控制器架构

中央计算架构

智能汽车	分布式	域控制器(DCU)	中央计算(CCU)
ECU	Cluster、IVI、中控、网关、T-Box、 行车记录仪、车身控制、辅助驾驶等 10+个ECU	座舱域控、车身域控、辅助驾驶、 中央网关等典型域控制器	1个HPC和多个Zone控制器
传感器	每个ECU单独传感器,功能越多,需 要的冗余传感器越多	传感器连接域控制器,可复用大部 分传感器	传感器连接到HPC或Zone控制器,所有业务功能通过服务访问
整车线束	>6km	3~5km	<1km
骨干网络	CAN	CAN/Ethernet	Ethernet
通信方式	信号	信号或服务	服务

智能网联汽车是复杂网络系统和多网络节点的电子电气架构

不同网络节点业务需求具有差异性,需要多个不同类型的操作系统来达成业务目标

智能网联汽车需多类型操作系统满足差异化的业务需求

来源:《车用操作系统标准体系》

来源:《车载智能计算基础平台SOA软件架构白皮书》

智能网联汽车域融合趋势下的多操作系统架构

- 汽车EEA四种典型多系统架构
 - ✓ 硬件分离(不同SoC)
 - ✓ 硬件隔离(相同SoC、不同硬件资源)
 - ✓ 硬件虚拟化(Hypervisor)
 - √ 软件虚拟化(容器)

技术路线	功能安全	系统性能	实时性	软件平台化	配置灵活性	系统成本
硬件分离	高	高	高	中	低	高
硬件隔离	高	中	高	中	中	中
Hypervisor	高	高	高	高	高	中
容器	低	高	低	高	高	低

■ Hypervisor既有硬件分离和硬件隔离方案的安全性、系统性能和实时性优点,也具有容器方案的平台 化、灵活配置和低成本特征

					Apps	Apps	Apps	Apps	Apps	Apps			
Арј	ps	Ар	ps	Apps	Framework	Framework	Framework	Framework	Framework	Framework	Apps	Apps	Apps
Frame	work	Frame	work	Framework	OS1	OS2	OS3	OS1	OS2	OS3	Framework	Framework	Framework
os	51	09	52	OS3		AMP		VCPU1 VCPU2	VCPU3VCPU4	VCPU5 VCP6		Container	
So	C1	So	C2	SoC3		Single SoC	C Hypervisor			Host OS			
GPU	CPU	GPU	CPU	CPU IO	GPU1 CPU1	GPU2 CPU2	CPU3 IO3		Single SoC			Single SoC	
DSP	10	NPU	Ю		DSP IO1	NPU IO2		CPUs GPU	Js DSP	NPU IOs	CPUs GP	Us DSP	NPU IOs
DCU/HPC			DCU/HPC			DCU/HPC		DCU/HPC					

硬件分离 硬件隔离 硬件虚拟化 软件虚拟化

四种多系统架构短期并存,随MPU/MCU芯片的发展 Hypervisor会成为汽车域融合架构中最基础的底座

软件虚拟化:容器

硬件分离: 异构核

或独立MCU

Hypervisor FSM

硬件隔离: AMP

硬件虚拟化: Hypervisor

关键需求

- L.资源占用轻量化(ROM/RAM)
- 2. ISO 26262 ASIL D
- 3. 跨SOC/CPU/VM的快速IPC机制

- 4. MCU的支持
- 5. 多类型和多数量的虚拟机支持
- 6. 硬件设备的软件抽象

国内外主要Hypervisor方案和应用情况

《中国汽车基础软件白皮书V3.0》

2.4.4 典型应用案例

在汽车智能化发展历程中,虚拟化主要应用于智能座舱、智能驾驶、智能网关等融合场景。智能驾驶 受技术成熟度、政策法规所限,基本处于预研、方案原型阶段。智能网关业务功能相对同构,并且有可能 进一步融合到其他场景方案中。因此,目前主要的应用案例集中在智能座舱中。

智能座舱域融合也是在近几年启动,正在不断迭代演进中。受芯片算力、虚拟化技术成熟度、生态链对于虚拟化解决方案的掌控能力等因素影响,有些厂商同时采用了硬隔离方案来实现域融合,一方面最大程度地沿用既有技术能力,有确定性保障,但是缺少了软件定义的灵活性,智能化程度有限,是域融合的一种可选方案。在嵌入式虚拟化技术方面,国外的 QNX、OpenSynergy、PikeOS 等有先发优势,尤其在汽车领域已耕耘多年,因此在这两年涌现了较多的应用案例。在智能本土化发展的趋势带动下,国内这几年也出现了不少芯片厂商、独立软件厂商研发嵌入式虚拟化技术、产品、解决方案,如中瓴智行的 RAITE Hypervisor(RHOS)、中兴 GoldenOS、斑马智行的 AliOS Hypervisor、中汽创智 CAIC Hypervisor等。

1. 智能座舱域控制器产品

某厂家智能座舱域控制器产品,如图 2.4-9 和图 2.4-10 所示,基于高通 8155、瑞萨 R-Car H3 处理器,采用 QNX Hypervisor,搭载 QNX Host、Android P/R/S Guest OS,可配置输出最多 6 块高清大屏独立显示,集成了娱乐系统、液晶仪表、车身控制、DMS、APA 等功能,支持独立四音区、多屏互动和音视频分享,集成度高,在长城、长安、宇通客车等多款车型上适配量产。

另外,国产化方案芯驰 X9HP+ 平台,采用硬分区、Hypervisor 两种方案灵活配置实现中低端智能座舱域控制器产品。

国外案例: QNX Hypervisor (高通/瑞萨/芯驰/...)

2. RHOS 智能座舱域控制器平台

(1) NXP I.MX8QM 座舱域控制器

某厂家基于自研的 Type-1 型虚拟化软件 RHOS(Raite Hypervisor OS),适配支持了 NXP I.MX8QM,提供一个轻量、灵活的汽车智能座舱虚拟化解决方案,已在东风车型量产上市。其系统架构如图 2.4-11 所示:

图 2.4-11 NXP I.MX8智能座舱系统架构

在 SoC 上运行 Hypervisor 后可支持同时运行多个操作系统,比如 Linux 系统可以运行实时性和安全性较高的业务,如全液晶仪表等,可以扩展运行 DMS、HUD 等业务。另外一个虚拟机运行 Android 操作系统,上面部署信息娱乐等安全性和实时性要求较低的业务。为保证系统具备良好的市场竞争力,域控制器兼容 TBOX 功能需求,系统能够支持休眠唤醒和快速启动。

Linux 和 Android 虚拟机可按需进行资源的配置,包括内存、CPU、存储空间、外设等。该架构支持系统升级,包括对虚拟机和 Hypervisor 的升级,支持异常日志记录,包括虚拟机内核和 Hypervisor 日志。

多屏交互是智能座舱重要的应用场景,Android 的 APP 应用程序可以通过 Hypervisor 推送到 Linux 仪表进行显示。

国内案例: RAITE Hypervisor (MTK/NXP/瑞萨/瑞芯微/芯弛/...)

目录 CONTENTS

01 域融合现状与趋势

02 汽车操作系统的技术路线

03 汽车操作系统的发展策略

汽车操作系统特性趋势 – 智能化、网联化

- ICT技术发展使能一分多(域融合、复合型设备)、多合一(网联化),需要功能更强大的操作系统支撑业务场景;
- 虚拟化是实现一分多的首选支撑技术;
- 短期看,多合一可在现有多种异构OS上演进SOA平台实现融合;长期看,原生服务化、可扩展、统一架构规范的全场景泛在操作系统更有优势;

- > 智能化:单设备既可完成自有特色功能,也可以软件定义成复合型设备,完成原先多个设备的功能;
- ▶ 网联化:多设备通过SOA实现算力、外设、数据、服务、应用融合,相互赋能、各展所长,实现超能系统、最佳体验;

汽车操作系统特性趋势 - 安全、可靠

中 瓴 智 行 Zlingsmart

- 智能化、网联化打破了传统安全边界,对安全性、可靠性带来全新、持续挑战
- 安全、可靠、实时的操作系统是智能网联汽车的根基;
- 安全可靠的设计实现方法、解决方案会成为高度智能化、网联化时代的核心竞争力;

安全通信 用户数据安全 安全、可靠升级 仪表安全显示

智能座舱

汽车操作系统由满足功能性需求向智能网联、安全可靠演进

中瓴智行 Zlingsmart

垂直耦合架构

(如:功能机OS、

基础嵌入式OS)

垂直分层模块化架构 (如:智能手机OS Android) 微内核分布式服务化架构

(如:智能网联汽车OS)

应用软件/功能软件

安全、分布式应用:

提供安全的应用编程 语言、安全应用运行时环 境,应用可分可合,分布

式协同;

应用生态

安全、分布式服务:

系统/驱动/应用开放 功能调用均采用基于能力 的访问控制下的SOA服务 架构、安全、按需部署、 分布式易扩展;

安全、分布式驱动:

复杂多变的外设驱动 用户态化,安全、即插即 用、分布式易扩展;

安全内核:

遵循最小化原则、最 小权限原则,形成最小、 可安全认证的可信任基。

微内核架构理念符合操作系统发展趋势,原生满足智能、网 联、安全可靠发展需求

典型OS架构对比分析

OS架构	特权模式	内核	驱动	应用	服务化扩展	访问控制	安全开发/认证	典型OS
传统 RTOS	通常不区分, 安全性差	通常为平板式 内核	与内核同地 址空间,直 接调用,相 互影响	地址空间不隔 离,相互影响。 可利用MPU 实现空间隔离。	Æ OS	无	代码量小,方便 认证。但应用/ 驱动集成后使认 证无效。	FreeRTOS
宏内核 OS	宏内核以特权 模式运行其整 个代码,增 加了发生灾难 的概率。	系统功能集中 于内核,庞杂、 攻击面大	主体处于内 核中,驱动 的不稳定影 响内核安全。 Android有重 构改进。	应用与内核分 离、应用与应 用分离,系统 调用较多,有 安全威胁	标准Linux无。 Android扩展 了部分机制。	DAC, MAC, RBAC, ABAC	分散开源开发, 难以遵循安全流 程。 难以做到高等级 安全。未达到 ASIL-B。	Linux, VxWorks
微 内核 OS	充分利用硬件 特权级别 (ELO~EL3), 安全管控完整。	最小化原则, 只保留最基本 功能、早小机 制。信任基小, 可证明安全。	主体处于内 核外,相互 独立,稳定 性、安全性 好。	应用与内核分 离、应用与应 用分离,基于 安全管控的 IPC调用	原生架构支持 服务化及安全 调用,FC、本 地IPC、远程 IPC自适应。	基于能力 的访问控 制,类零 信任安全 机制。	符合ASIL-D最高等级开发流程认证、产品认证,可形式化证明。	QNX

- 微内核的最小化原则、最小权限原则决定其原生适用于高信息安全、高功能安全系统;
- 微内核的服务化架构决定其原生支持智能化、网联化;

目录 CONTENTS

01 域融合现状与趋势

02 汽车操作系统的技术路线

03 汽车操作系统的发展策略

开放 ≠ 开源,开源 ≠ 自由、免费

BSD

MIT

GPL

LGPL

Apache

还要持续运营的经济基础。

软件市场模式 AOSP+GMS 专业服务模式 Redhat 售卖开源软件 BSD Unix 延迟开源模式 QT 带动产品售卖 芯片SDK 认证和培训 悬赏、众筹、捐赠等品牌效应

汽车操作系统应具备开放性,兼容应用、中间件、硬件等生态,支持上下游供应商的重塑。

编号	开放模式	模式说明	产品示例
1	架构、接口、组件全封闭	需求方与供应商约定产品功能、性能指标等	特定领域的OS
2	架构、接口开放标准,组件封闭	架构和接口依据行业、客户、技术标准,如POSIX、 ARINC653、AUTOSAR等	QNX、VxWorks、Windows、 ARINC653、AUTOSAR OS等
3	架构、接口开放标准,部分组件 开放源码	标准化、开放的产品架构和接口多供应商产品组件可组合、可对接、可替换,保证生态兼容,供应链灵活性、持续性	Android、Harmony等
4	架构、接口、组件全部开放源码	开源开放指源代码可见,授权协议约束使用方式	Linux、Redhat、FreeRTOS等

⑤智能驾驶芯片与操作系统适配过程中存在哪些痛点和瓶颈? 中 飯智行

编号	生态模式		模式说明	OS 类型	
1	PC时代 - Wintel联盟				
2	智能数码时 代 - AA联盟	android ARM	 ➤ 架构和应用编程接口标准化,向上开放给应用软件开发者 ➤ 内部系统组件(AOSP)开源,支持系统深度定制,发布ROM型OS ➤ HAL等组件接口标准化,芯片和硬件厂商遵循标准可闭源提供 ➤ 系统软件因开源而产生特色化的ROM型OS,应用和芯片生态因标准化而繁荣 	定制型操作系统	
4	智能汽车时 代 - 生态联 盟	OS 芯片 服务组件	■ 芯片特征 > 架构异构: CPU、MCU、GPU、NPU、DSP等 > 供应商重塑: 传统芯片供应商(NXP、Renesas等)、新势力(地平线、黑芝麻等)、跨界供应商(NVIDA、高通、MTK等) OS特征 ■ 不差异性: 安全车控OS(实时、安全、可靠)、智能驾驶OS(安全、可靠、高计算性能)、车载OS(人机交互、高性能) → 供应商重塑: 传统OS供应商(QNX、VxWorks、EB、Vector)、新势力(斑马OS、RAITE OS) ■ 服务组件 > SOA框架: 跨芯片架构、跨网络的SOA服务架构 > 中间件: 算法、功能组件等与SOA的集成	泛在操作系统	

谢谢!

http://www.zlingsmart.com/