

Sangria is relaxed PLONK: A Nova-style folding scheme for PLONK

APR | 2023

Sangria: Overview

- Folding schemes were introduced in <u>Nova</u> and are the key ingredient to achieving cheap recursion.
 Nova only shows a folding scheme for R1CS.
- A folding scheme compresses two instances of a problem into a single instance of the same problem
- Sangria is a folding scheme for PLONKish circuits
- Costs are similar to Nova:
 - Verifier work is constant in the depth of the circuit
 - o Constants are worse than Nova, this is the price we pay to get a more flexible arithmetization

This Talk

- Motivation: why do we care about recursion? What are the known results?
- Some background: PLONK circuits and folding schemes
- Sangria: how to fold PLONK circuits
- Trade-offs and a new design space

Goal: Incrementally Verifiable Computation (IVC)

Imagine a long computation that results from n applications of a function F.

We want to produce a succinct proof that the prover knows $\omega_0, \omega_1, ..., \omega_{n-1}$ such that s_n is the correct final state

Goal: Incrementally Verifiable Computation (IVC)

Imagine a long computation that results from n applications of a function F.

We want to produce a succinct proof that the prover knows $\omega_0, \omega_1, ..., \omega_{n-1}$ such that s_n is the correct final state

In practice, IVC can be used to build zkVMs, rollups and verifiable delay functions

Realising IVC

To realise IVC, we define a prover the takes in a state and proof, and updates both

Realising IVC

To realise IVC, we define a prover the takes in a state and proof, and updates both

We must pay some overhead to update the proof. How small can we get it?

	Overhead	Examples
SNARK of SNARK	Read whole proof, run full verifier, defer nothing	Plonky2, recursive STARK, Fractal, Groth16 + [BCTV14]

 s_i $rac{s_i}{F}$ $rac{s_{i+1}}{r}$ $rac{s_{i+1}}{r}$

	Overhead		
SNARK of SNARK	Read whole proof, run full verifier, defer nothing	Plonky2, recursive STARK, Fractal, Groth16 + [BCTV14]	
Accumulation (atomic)	Read whole proof, run partial verifier, defer hard verification	Halo/Halo2, [BCMS20]	

 s_i $rac{1}{F}$ $rac{1}{F}$ $rac{1}{T_{i+1}}$ $rac{1}{T_{i+1}}$

	Overhead				
SNARK of SNARK	Read whole proof, run full verifier, defer nothing	Plonky2, recursive STARK, Fractal, Groth16 + [BCTV14]			
Accumulation (atomic)	Read whole proof, run partial verifier, defer hard verification	Halo/Halo2, [BCMS20]			
Accumulation (split)	Read partial proof, run partial verifier, defer hard verification and reading whole proof	[BCLMS21]			

	Overhead	Examples
SNARK of SNARK	Read whole proof, run full verifier, defer nothing	Plonky2, recursive STARK, Fractal, Groth16 + [BCTV14]
Accumulation (atomic)	Read whole proof, run partial verifier, defer hard verification	Halo/Halo2, [BCMS20]
Accumulation (split)	Read partial proof, run partial verifier, defer hard verification and reading whole proof	[BCLMS21]
Folding	Read an <u>unproven</u> instance, compress it into a running instance, defer proving	<u>Nova</u>

Recent works have drastically reduced the recursion overhead:

	Overhead	Examples		
SNARK of SNARK	Read whole proof, run full verifier, defer nothing	Plonky2, recursive STARK, Fractal, Groth16 + [BCTV14]		
Accumulation (atomic)	Read whole proof, run partial verifier, defer hard verification	Halo/Halo2, [BCMS20]		
Accumulation (split)	Read partial proof, run partial verifier, defer hard verification and reading whole proof	[BCLMS21]		
Folding	Read an <u>unproven</u> instance, compress it into a running instance, defer proving	Nova		

Unlikely we can do better than deferring the proving. However, we can maybe have a more efficient circuit representation

- PLONK traces are like Sudokus
 - fixed-size grid
 - o fill the cells with "numbers"
 - set of rules to follow

${f q_L}$	${f q}_{f R}$	$\mathbf{q_0}$	${f q_M}$	$\mathbf{q}_{\mathbf{C}}$	a	b	c
1	0	0	0	0	5		
1	0	0	0	0	10		
-1	0	0	1	0			
-1	0	0	1	0			
1	1	-1	0	0			
0	0	-1	1	0			

- PLONK traces are like Sudokus
 - fixed-size grid
 - fill the cells with "numbers"
 - set of rules to follow
- Some values are already filled in: these are the selectors and public inputs

${f q_L}$	${f q}_{f R}$	\mathbf{q}_{0}	${f q_M}$	$\mathbf{q}_{\mathbf{C}}$	a	b	c
1	0	0	0	0	5		
1	0	0	0	0	10		
-1	0	0	1	0			
-1	0	0	1	0			
1	1	-1	0	0			
0	0	-1	1	0			

- PLONK traces are like Sudokus
 - fixed-size grid
 - fill the cells with "numbers"
 - set of rules to follow
- Some values are already filled in: these are the selectors and public inputs
- Rule #1: copy constraints

${f q_L}$	${f q}_{f R}$	$\mathbf{q_{O}}$	$\mathbf{q_{M}}$	$\mathbf{q}_{\mathbf{C}}$		a	b	c
1	0	0	0	0		5		
1	0	0	0	0	ı	10		
-1	0	0	1	0				
-1	0	0	1	0				
1	1	-1	0	0	ı			
0	0	-1	1	0				

- PLONK traces are like Sudokus
 - fixed-size grid
 - fill the cells with "numbers"
 - set of rules to follow
- Some values are already filled in: these are the selectors and public inputs
- Rule #1: copy constraints
- Rule #2: gate equation, applies at each row

$$(\mathbf{q_L})_i \mathbf{a}_i + (\mathbf{q_R})_i \mathbf{b}_i + (\mathbf{q_O})_i \mathbf{c}_i + (\mathbf{q_M})_i \mathbf{a}_i \mathbf{b}_i + (\mathbf{q_C})_i = 0$$

$$\mathbf{X} = (\mathbf{x_a}, \mathbf{x_b}, \mathbf{x_c})$$

$$\mathbf{W} = (\mathbf{w_a}, \mathbf{w_b}, \mathbf{w_c})$$

- fixed-size grid
- fill the cells with "numbers"
- set of rules to follow
- Some values are already filled in: these are the selectors and public inputs
- Rule #1: copy constraints
- Rule #2: gate equation, applies at each row
- Selectors and rules define a circuit
- Trace be divided into an instance and witness

Definition: Folding Schemes

Definition: Folding Schemes

A folding scheme: compress two instances into one

Let $C: \mathbb{F}_p^n \times \mathbb{F}_p^m \to \mathbb{F}_p$ be a circuit

A folding scheme for C is a protocol between two parties:

Complete: if $C(x_1, w_1) = C(x_2, w_2) = 0$ then C(x, w) = 0

Knowledge sound: $\forall P^* \exists E \text{ s.t. } \forall x_1, x_2 \in P^* \text{ outputs } \underline{\text{valid}} \text{ } w \text{ for } x \Rightarrow E \text{ outputs } \underline{\text{valid}} \text{ } w_1, w_2$

ZKP MOOC

• We use the cryptographer's best friend: a random linear combination

	${\sf trace}'$,	trace"				trace" fina			al_tr	ace
$\mathbf{a'}_1$	$\mathbf{b'}_1$	$\mathbf{c'}_1$		$\mathbf{a''}_1$	$\mathbf{b''}_1$	$\mathbf{c''}_1$	\mathbf{a}_1	\mathbf{b}_1	\mathbf{c}_1		
$\mathbf{a'}_2$	$\mathbf{b'}_2$	$\mathbf{c'}_2$	\perp \sim	$\mathbf{a''}_2$	$\mathbf{b''}_2$	$\mathbf{c''}_2$	 \mathbf{a}_2	\mathbf{b}_2	\mathbf{c}_2		
$\mathbf{a'}_3$	$\mathbf{b'}_3$	$\mathbf{c'}_3$	7	$\mathbf{a''}_3$	\mathbf{b}''_3	$\mathbf{c''}_3$	 \mathbf{a}_3	\mathbf{b}_3	\mathbf{c}_3		
$\mathbf{a'}_4$	$\mathbf{b'}_4$	$\mathbf{c'}_4$		$\mathbf{a''}_4$	$\mathbf{b''}_4$	$\mathbf{c''}_4$	\mathbf{a}_4	\mathbf{b}_4	\mathbf{c}_4		

- Copy constraints are preserved
- The gate equation is not linear, we are going to run into some trouble

- Apply Nova's insights:
 - the gate equation can be relaxed
 - the Prover works over the trace while the Verifier works with commitments

- Apply Nova's insights:
 - the gate equation can be relaxed
 - the Prover works over the trace while the Verifier works with commitments

Relaxed PLONK arithmetization:

Witness: PLONK witness $\mathbf{W} = (\mathbf{w_a}, \mathbf{w_b}, \mathbf{w_c})$ and an error vector \mathbf{e}

Instance: public inputs $\mathbf{X}=(\mathbf{x_a},\mathbf{x_b},\mathbf{x_c})$, a scalar u and commitments

Relaxed gate equation:

$$\frac{\mathbf{u}}{\mathbf{u}}[(\mathbf{q_L})_i\mathbf{a}_i + (\mathbf{q_R})_i\mathbf{b}_i + (\mathbf{q_O})_i\mathbf{c}_i] + (\mathbf{q_M})_i\mathbf{a}_i\mathbf{b}_i + \frac{\mathbf{u^2}}{\mathbf{q_C}}(\mathbf{q_C})_i + \mathbf{e_i}$$

• Folding:

$$extbf{final_trace} = extbf{trace}' + r * extbf{trace}''$$
 $u = u' + ru''$ $\mathbf{e} = ?$

• Folding:

$$extbf{final_trace} = extbf{trace}' + r * extbf{trace}''$$
 $u = u' + ru''$ $\mathbf{e} = ?$

Plugging in the new values to the relaxed gate equation yields:

$$Gate(final_trace) = Gate(trace') + rt + r^2 * Gate(trace'')$$

• Folding:

$$extbf{final_trace} = extbf{trace}' + r * extbf{trace}''$$
 $u = u' + ru''$ $\mathbf{e} = ?$

Plugging in the new values to the relaxed gate equation yields:

$$Gate(final_trace) = Gate(trace') + rt + r^2 * Gate(trace')$$

We can get rid of t by defining the error term and its folding as:

$$\mathbf{e} = \mathbf{e}' - r\mathbf{t} + r^2\mathbf{e}''$$

- Compute *t*, as prescribed by distributing the gate equation
- Commit to **t**

- Compute *t*, as prescribed by distributing the gate equation
- Commit to **t**

- Compute *t*, as prescribed by distributing the gate equation
- Commit to **t**

• Sample a random value r

 \mathcal{P}

- Compute t, as prescribed by distributing the gate equation
- Commit to **t**

 Compute linear combinations of the trace values

$$extbf{final_trace} = extbf{trace}' + r * extbf{trace}''$$
 $extbf{e} = extbf{e}' - r extbf{t} + r^2 extbf{e}''$

- Sample a random value r
- Compute linear combinations of the public inputs and commitments:

$$oxed{f w_a} = oxed{f w_a'} + r oxed{f w_a''}$$

$$oxed{f w_b} = oxed{f w_b'} + r oxed{f w_b''}$$

$$egin{bmatrix} \mathbf{e} & = & \mathbf{e}' & - & r & \mathbf{t} & + & r^2 & \mathbf{e}'' \end{bmatrix}$$

The verifier \mathcal{V} is given the verifier key vk and two committed relaxed PLONK instances, $\left(\mathbf{X}',u',\overline{W_a'},\overline{W_b'},\overline{W_c'},\overline{E'}\right)$ and $\left(\mathbf{X}'',u'',\overline{W_a''},\overline{W_b''},\overline{W_c''},\overline{E''}\right)$. The prover \mathcal{P} is given the prover key pk and both instances with their corresponding witnesses $\left(\mathbf{W}',\mathbf{e}',r_a',r_b',r_c',r_e'\right)$ and $\left(\mathbf{W}'',\mathbf{e}'',r_a'',r_b'',r_c'',r_e''\right)$.

The Sangria folding scheme proceeds as follows:

1. \mathcal{P} samples r_t at random and sends $\overline{T} = \mathsf{Com}\left(\mathsf{pp}_E, \mathsf{t}; r_t\right)$ where t is computed as:

$$\mathbf{t} := u''(\mathbf{q_L} \circ \mathbf{a}' + \mathbf{q_R} \circ \mathbf{b}' + \mathbf{q_O} \circ \mathbf{c}') + u'(\mathbf{q_L} \circ \mathbf{a}'' + \mathbf{q_R} \circ \mathbf{b}'' + \mathbf{q_O} \circ \mathbf{c}'')$$
(7)

$$+ \mathbf{q_M} \circ (\mathbf{a'} \circ \mathbf{b''} + \mathbf{a''} \circ \mathbf{b'}) \tag{8}$$

$$+2ru'u''\mathbf{q_C} \tag{9}$$

- 2. V samples the challenge r at random.
- 3. \mathcal{P} and \mathcal{V} output the folded instance $(\mathbf{X}, u, \overline{W_a}, \overline{W_b}, \overline{W_c}, \overline{E})$ where:

$$\mathbf{X} \leftarrow \mathbf{X}' + r\mathbf{X}'' \tag{10}$$

$$u \leftarrow u' + ru'' \tag{11}$$

$$\overline{W_a} \leftarrow \overline{W_a'} + r \overline{W_a''} \tag{12}$$

$$\overline{W_b} \leftarrow \overline{W_b'} + r\overline{W_b''} \tag{13}$$

$$\overline{W_c} \leftarrow \overline{W_c'} + r \overline{W_c''} \tag{14}$$

$$\overline{E} \leftarrow \overline{E'} - r\overline{T} + r^2 \overline{E''} \tag{15}$$

4. \mathcal{P} outputs the folded witness $(\mathbf{W}, \mathbf{e}, r_a, r_b, r_c, r_e)$ where:

$$\mathbf{W} \leftarrow \mathbf{W}' + r\mathbf{W}'' \tag{16}$$

$$r_a \leftarrow r_a' + r \cdot r_a'' \tag{17}$$

$$r_b \leftarrow r_b' + r \cdot r_b'' \tag{18}$$

$$r_c \leftarrow r_c' + r \cdot r_c'' \tag{19}$$

$$\mathbf{e} \leftarrow \mathbf{e}' - r\mathbf{t} + r^2 \mathbf{e}'' \tag{20}$$

$$r_e \leftarrow r_e' - r \cdot r_t + r^2 \cdot r_e'' \tag{21}$$

Performance

The verifier's work is dominated by the additions of commitments

- In practice we will be folding a standard PLONK instance into a relaxed PLONK instance:
 - o the standard instance will not have an error term
 - the verifier will only have to perform 4 point additions

Wide Circuits and Custom Gates (TurboPLONK)

- We can deal with wider circuits (circuits with larger fan-in fan-out at each gate) by committing to each extra column
 - Cost: The verifier will have to perform 1 extra point addition per trace column

Wide Circuits and Custom Gates (TurboPLONK)

- We can deal with wider circuits (circuits with larger fan-in fan-out at each gate) by committing to each extra column
 - Cost: The verifier will have to perform 1 extra point addition per trace column

- Dealing with **higher degree gates**:
 - A gate of degree d will be relaxed with powers of u up to u^d
 - o the error's folding equation will be of the form

$$\mathbf{e} = \mathbf{e}' - r\mathbf{t_1} - r^2\mathbf{t_2} \cdots - r^{d-1}\mathbf{t_{d-1}} + r^d\mathbf{e}''$$

Cost: each additional degree requires the Prover's message to include 1 new commitment. The
 Verifier will perform 1 extra point addition per degree

New Design Space

Back to our original question, how small can we make the recursion overhead?

• Nova's circuit has approximately 20k constraints of which 12k are for point addition

Open question: can the benefit of wider circuits and custom gates outweigh the cost of the extra point additions that the folding verifier (recursion overhead) will perform?

Upcoming Work & Comments

- Sangria is a folding scheme for PLONK and piggybacks on Nova's results to achieve IVC. We can also piggyback on SuperNova!
- Implementation in progress for standard PLONK
- Folding lookup-enabled traces (ultraPLONK)
- (Hopefully) some circuit wizardry very soon, get in touch!

hello@geometry.xyz

@__geometry__

