ICS 2021 Problem Sheet #7

Problem 7.1: quine-mccluskey algorithm

(2+4+3+1 = 10 points)

Module: CH-232

Date: 2021-10-22

Due: 2021-10-29

Consider integer numbers in the range 0...63 that can be represented using six bits. The boolean function $F(X_5, X_4, X_3, X_2, X_1, X_0)$ is true when the number $(X_5 X_4 X_3 X_2 X_1 X_0)_2$ is a Fibonacci number and false otherwise.

- a) Provide a boolean expression in DNF defining the function F. What is the cost of the DNF expression?
- b) Calculate the prime implicants of F.
- c) Construct the prime implicant chart and identify the essential prime implicants. What is a minimal set of prime implicants covering the function *F*?
- d) Write out a minimal boolean expression defining F using mathematical logic notation. What is the cost of the minimal boolean expression?

For calculating the cost of a boolean expression, we only consider logical \wedge and \vee operations.

Solution:

a) The Fibonacci numbers in the range 0...63 are the numbers 0, 1, 2, 3, 5, 8, 13, 21, 34, 55. Hence, the Boolean function F is defined by the following DNF expression:

$$F = m_0 + m_1 + m_2 + m_3 + m_5 + m_8 + m_{13} + m_{21} + m_{34} + m_{55}$$

The cost of the expression is $10 \cdot 5 + 9 = 59$ logical \land and \lor operations.

b) Prime implicants:

minterm	pattern	used	minterms	pattern	used	minterms	pattern	used
m_0	000000	√	$m_{0,1}$	00000-	√	$m_{0,1,2,3}$	0000-	
			$m_{0,2}$	0000-0	\checkmark			
			$m_{0,8}$	00-000				
m_1	000001	√	$m_{1,3}$	0000-1	√			
			$m_{1,5}$	000-01				
m_2	000010	\checkmark	$m_{2,3}$	00001-	\checkmark			
			$m_{2,34}$	-00010				
m_8	001000	\checkmark						
m_3	000011	\checkmark						
m_5	000101	\checkmark	$m_{5,13}$	00-101				
			$m_{5,21}$	0-0101				
m_{34}	100010	\checkmark						
m_{13}	001101	√						
m_{21}	010101	\checkmark						
m_{55}	110111							

The set of prime implicants is: $m_{0,1,2,3}, m_{0,8}, m_{1,5}, m_{2,34}, m_{5,13}, m_{5,21}, m_{55}$

c) Prime implicant chart:

	m_0	m_1	m_2	m_3	m_5	m_8	m_{13}	m_{21}	m_{34}	m_{55}	
$m_{0,1,2,3}$	✓	✓	✓	✓							(essential for m_3)
$m_{0,8}$	✓					\checkmark					(essential for m_8)
$m_{1,5}$		\checkmark			\checkmark						
$m_{2,34}$			\checkmark						\checkmark		(essential for m_{34})
$m_{5,13}$					\checkmark		\checkmark				(essential for m_{13})
$m_{5,21}$					\checkmark			\checkmark			(essential for m_{21})
m_{55}										✓	(essential for m_{55})
covered	√	✓	✓	√	√	✓	\checkmark	√	√	√	

The set of essential prime implicants is: $m_{0,1,2,3}, m_{0,8}, m_{2,34}, m_{5,13}, m_{5,21}, m_{55}$ In this case, the essential prime implicants are sufficient to cover all minterms of the function F.

d) We obtain:

$$F(X_5, X_4, X_3, X_2, X_1, X_0) = (\neg X_5 \wedge \neg X_4 \wedge \neg X_3 \wedge \neg X_2) \vee (\neg X_5 \wedge \neg X_4 \wedge \neg X_2 \wedge \neg X_1 \wedge \neg X_0) \vee (\neg X_4 \wedge \neg X_3 \wedge \neg X_2 \wedge X_1 \wedge \neg X_0) \vee (\neg X_5 \wedge \neg X_4 \wedge X_2 \wedge \neg X_1 \wedge X_0) \vee (\neg X_5 \wedge \neg X_3 \wedge X_2 \wedge \neg X_1 \wedge X_0) \vee (X_5 \wedge X_4 \wedge \neg X_3 \wedge X_2 \wedge X_1 \wedge X_0)$$

The cost of the minimal expression is (3+4+4+4+4+4+5)+5=29 logical \land and \lor operations.

Marking:

- a) 1pt for the correct DNF expression
 - 1pt for the correct cost
- b) 1pt for correctly sorting and classifying the minterms
 - 2pt for obtaining the combined minterms in the first iteration
 - 1pt for obtaining the combined minterm in the second iteration
- c) 0.5pt for each correctly derived essential prime implicant
 - -0.5pt if the non-essential prime implicant is marked as essential
 - -0.5pt if the obtained coverage is wrong
- d) 0.5pt for writing out the function correctly
 - 0.5pt for the correct cost