The Role of Land in Temperate and Tropical Agriculture

T. Ryan Johnson ¹ Dietrich Vollrath ²

¹Washington University

²University of Houston

The basic questions

What is the elasticity of agricultural output with respect to land? Does it differ in tropical and temperate agriculture?

What we do:

- Estimate the elasticity using district-level (2nd-level admin unit) variation in rural density
- Estimate elasticity separately for tropical and temperate regions
- Find elasticity is higher for temperate (0.23) vs. tropical (0.13)
- Show differences are robust w.r.t. data sources, samples, measurement issues

Why do you care?

With constant returns, the land elasticity determines the degree of decreasing returns to scale for labor/capital in agriculture.

- **Theory**: The higher the elasticity, the more sensitive are real income and the agric. labor share to shocks in population/productivity.
- Evidence: Using epidemiological transition after WWII a la Acemoglu and Johnson (2007), countries with high, temperate, elasticities had more severe negative effect of rising life expectancy
- **Speculation**: Informative about historical development (Asia vs. Europe) and contemporary development (delayed development in tropics?). Geography as mediator, not cause.

Why do you care?

Informs any work that involves an agricultural sector within the economy

- Structural change: Gollin, Parente, Rogerson (2007); Restuccia, Yang, Zhu (2008); Weil and Wilde (2009); Gollin (2010); Duarte and Restuccia (2010); Alvarez-Cuadrado and Poschke (2011); Herrendorf, Rogerson, Valentinyi (2014); Eberhardt and Vollrath (2018);
- Malthusian stagnation/UGT: Ashraf and Galor (2011); Galor (2011); Hansen and Prescott (2002); Cervellati and Sunde (2005); Lagerlöf (2006); Strulik and Weisdorf (2008)
- Comparative development: Kogel and Prskawetz (2001); Galor and Mountford (2008); Vollrath (2011); Voigtlaender and Voth (2013a,b); Cervellati and Sunde (2015)

Density and Productivity

Think of many districts *i* within a given province/state *I*

- Each has Cobb-Douglas ag prod fct: $Y_i = A_i X_i^{\beta} \left(K_{Ai}^{\alpha} L_{Ai}^{1-\alpha} \right)^{1-\beta}$
- X is land, K is capital, L is labor
- Across districts, wage and rate of return on capital equalized
- Capital/labor ratio equalized across districts
- Total ag labor in province in $L_A = \sum_i L_{Ai}$
- Higher productivity, A_i , implies higher rural density L_{Ai}/X_i

Agricultural Labor Allocation

In log terms:

$$\ln A_i = \beta \ln L_{Ai}/X_i + \Omega, \tag{1}$$

where second term is province-specific,

$$\Omega = \beta \ln \sum_{j \in I} A_j^{1/\beta} X_j - \beta \ln L_A.$$
 (2)

- β can be estimated from elasticity of A_i w.r.t. L_{Ai}/X_i
- Ag labor relative to total labor (L_A/L) is implicit in Ω
- Expression is not unique to heavily agricultural provinces (or eras)

Using as a Specification

Adding some notation:

$$\ln A_{isg}^{GAEZ} = \beta_g \ln L_{Aisg} / X_{isg} + \gamma_s + \delta_g' \mathbf{Z}_{isg} + \epsilon_{isg}$$
 (3)

- District i, region/state/province s
- *g* indicates a geographic area (e.g. temperate)
- ullet γ_s , province FE, picks up Ω and province-specific productivity level
- Z_{isg} is district-level proxies for productivity, controls
- ullet In A_{isg}^{GAEZ} is agro-climatic measure of productivity

Empirical assumptions

What are the key assumptions for getting good estimates of β_g ?

$$\ln A_{isg}^{GAEZ} = \beta_g \ln L_{Aisg} / X_{isg} + \gamma_s + \delta_g' \mathbf{Z}_{isg} + \epsilon_{isg}, \tag{4}$$

- Estimating β_g using *within* provinces, *across*-province variation is not used
- Country-level variation is not used
- Danger is unobserved district-level variation in productivity within a province
- Danger is fundamental difference in district-level production function (i.e. different β_g) within our samples (e.g. pastoralism versus crop production)

"Temperate" versus "Tropical"

How do we define the geographic types g?

- Temperate: suitable for barley, buckwheat, rye, oats, white potatoes, and/or wheat but zero suitability for Tropical crops
- Tropical: suitable for cassava, cowpeas, pearl millet, sweet potatoes, paddy rice, and/or yams but zero suitability for Temperate crops

Definition of geographic type is specific to a district, allows heterogeneity within country

Main data

- L_{Aisg} comes from HYDE 3.1 database (Goldewijk et al, 2011)
- X_{isq} calculated as area of a given district (GAEZ)
- A_{isg}^{GAEZ} caloric suitability index (Galor and Özak, 2016)
- **Z**_{isg} includes urban percent (HYDE) and district-level night lights (Henderson et al, 2016)

Results by Temperate/Tropical

Residual plot from baseline results

Results by Temperate/Tropical

Results using different population sources

Results using different land assumptions

Results using different A_{isg}^{GAEZ} level

Questions and more robustness

- Use province level data (with country FE)
- By political regions Results
- By Koppen-Geiger climate zone Results
- Inclusive definitions of temp. and trop. Results
- Use rural density for 1900 from HYDE Results
- Workers not mobile between districts?
- Districts autarkic?
- Elasticity of substitution? Slides
- Measurement error? Slides
- Factor shares? Slides

Back to the model

- Non-agricultural sector that uses capital and labor too, with TFP A_N
- Agricultural sector as before, with TFP A_A (a combo of district A_A)
- Labor and capital mobile between ag and non-ag, and across districts
- Preferences (Boppart, 2014) with income elasticity < 1, governed by parameters γ and ϵ
- Gives nice analytical solutions for L_A/L and real income y

Elasticities

The elasticities of the agricultural labor share (L_A/L) and real income (y) with respect to various shocks,

(a) Agricultural productivity (A_A) :

$$\frac{\partial \ln L_A/L}{\partial \ln A_A} = -\frac{\gamma}{1 - \beta \gamma} \qquad \frac{\partial \ln y}{\partial \ln A_A} = \frac{1}{1 - \beta \gamma}$$
 (5)

(c) Population (L):

$$\frac{\partial \ln L_A/L}{\partial \ln L} = \frac{\beta \gamma}{1 - \beta \gamma} \qquad \frac{\partial \ln y}{\partial \ln L} = -\frac{\beta}{1 - \beta \gamma} \tag{6}$$

are all increasing in absolute value with β .

Speculative implications:

Three settings where the Malthusian constraint might matter

- Effect of Black Death: Large effects on European development (Voigtländer and Voth, 2013a,b) due to tight constraint? Similar epidemics in Asia w/o major changes due to loose constraint?
- Involution: Higher densities and output, but not living standards, in response to productivity (Geertz, 1963; Huang, 1990) due to loose constraint?
- Response to agric. technology/inputs: Necessary increase to match rich countries in TFP/inputs is larger with loose constraint (Eberhardt and Vollrath, 2016a,b)

Empirical implications:

Acemoglu and Johnson (2007) analysis of epidemiological transition:

- WHO (and other) interventions lower mortality rates from many tropical diseases
- They find higher resulting population was negative for income per capita
- According to our theory, the negative effect should be bigger for places with higher land elasticity
- ullet We divide countries in AJ into "high" and "low" eta groups based on country-specific elasticities, run AJ analysis separately for those groups
- Consistent with prediction, high β countries had much larger negative effects on GDP per worker, GDP per capita in response to mortality decline

Conclusion

- Estimate aggregate land elasticity from variation in rural density within provinces
- Elasticity is high (0.20-0.25) in temperate agricultural areas
- Elasticity is low (0.10-0.15) in tropical agricultural areas
- Elasticity affects the sensitivity of L_A/L and living standards to population and productivity
- Evidence from epidemiological transition is consistent with our findings and theory
- Implications for the study of historical and contemporary development

Interaction Regression

Combine a given sample with the reference sample (denoted by *Ref*). Run the following regression with interaction terms

$$\ln A_{isg} = \beta \ln L_{Aisg} / X_{isg} + (\beta_g^{Ref} - \beta_g) \ln L_{Aisg} / X_{isg} \times I(Ref)
+ \gamma_s + \delta_g' \mathbf{Z}_{isg} + (\delta_g^{Ref} - \delta_g)' \mathbf{Z}_{isg} \times I(Ref) + \epsilon_{isg}.$$
(7)

where I(Ref) is an indicator for the reference region. Our hypothesis test is $H_0: \beta_g^{Ref} - \beta_g = 0$, the coefficient on the interaction term for rural density.

Summary statistics

					Percentiles	s:	
	Mean	SD	10th	25th	50th	75th	90th
Rural density (persons/ha)	0.68	1.32	0.02	0.07	0.21	0.62	1.75
Caloric yield (mil cals/ha)	10.65	4.89	4.64	7.01	10.52	13.74	16.79
Urbanization rate	0.34	0.34	0.00	0.00	0.28	0.66	0.85
Log light density	-2.71	3.06	-6.42	-3.81	-2.33	-0.66	0.57

Crops used in productivity calculation

alfalfa, banana, barley, buckwheat, cassava, chickpea, cowpea, drypea, flax, foxtail millet, greengram, groundnut, indica rice, maize, oat, pearl millet, phaselous bean, pigeon pea, rye, sorghum, soybean, spring wheat, sweetpotato, rape, wet/paddy rice, wheat, winter wheat, white potato, and vams

Crop Results

Dependent Variable in all panels: Log caloric yield (A_{isc})

Panel A: Samples defined by crop family (wheat vs. rice):

	By suitability:		By max calories:		By harvest area:	
	Wheat Only (1)	Rice Only (2)	Wheat > 33% (3)	Rice > 33% (4)	Wheat > 50% (5)	Rice > 50% (6)
Log rural density	0.228 (0.021)	0.132 (0.018)	0.192 (0.016)	0.113 (0.018)	0.205 (0.015)	0.133 (0.012)
p-value $\beta=0$ p-value $\beta=\beta_{\textit{Temp}}$ Countries Observations Adjusted R-square	0.000 91 10661 0.24	0.000 0.000 81 9088 0.20	0.000 83 10768 0.21	0.000 0.001 71 8113 0.18	0.000 74 10708 0.20	0.000 0.000 84 7564 0.18

Crop Results

Dependent Variable in all panels: Log caloric yield (A_{isg}^{GAEZ})

Panel A: Regions defined by:

	Suitability:		Max calories:		Harvest area:	
	Temperate (1)	Tropical (2)	Temperate (3)	Tropical (4)	Temperate (5)	Tropical (6)
Log rural density	0.228 (0.021)	0.132 (0.018)	0.192 (0.016)	0.113 (0.018)	0.205 (0.015)	0.133 (0.012)
p-value $\beta=0$ p-value $\beta=\beta_{\textit{Temp}}$ Countries Observations Adjusted R-square	0.000 91 10661 0.24	0.000 0.000 81 9088 0.20	0.000 83 10768 0.21	0.000 0.001 71 8113 0.18	0.000 74 10708 0.20	0.000 0.000 84 7564 0.18

Population results

Panel B: With other restrictions (using suitability to define temperate/tropical)

	Urban Pop. < 25 <i>K</i> :		Ex. Euro	Ex. Europe/N. Amer.:		Rural dens. > 25th P'tile:	
	Temperation (1)	te Tropical (2)	Tempera (3)	te Tropical (4)	Tempera (5)	te Tropical (6)	
Log rural density	0.261 (0.022)	0.143 (0.021)	0.242 (0.033)	0.133 (0.018)	0.281 (0.035)	0.185 (0.019)	
p-value $\beta=0$ p-value $\beta=\beta_{Temp}$ Countries Observations Adjusted R-square	0.000 83 7648 0.29	0.000 0.000 75 6662 0.24	0.000 24 824 0.19	0.000 0.003 70 8826 0.14	0.000 89 7237 0.27	0.000 0.015 77 7082 0.22	

Land results

Dependent Variable in all panels: Log caloric yield (A_{isq}^{GAEZ})

Panel B: Different land assumptions

	Cultivated Area:		Drop > 9	Drop > 90th Ptile size:		Drop < 25th Ptile Prod:	
	Temperation (1)	te Tropical (2)	Tempera (3)	te Tropical (4)	Tempera (5)	te Tropical (6)	
Log rural density	0.219 (0.020)	0.135 (0.020)	0.231 (0.026)	0.149 (0.017)	0.220 (0.021)	0.131 (0.020)	
p-value $\beta=0$ p-value $\beta=\beta_{Temp}$ Countries Observations Adjusted R-square	0.000 90 10600 0.21	0.000 0.003 78 8979 0.18	0.000 88 9440 0.24	0.000 0.008 78 8266 0.21	0.000 82 8026 0.23	0.000 0.002 66 6537 0.19	

Productivity results

Dependent Variable in all panels: Log caloric yield (A_{isg}^{GAEZ})

Panel A: Caloric yield based on GAEZ input/water use:

	Medium/Irrigated:		High/Rain-fed:		High/Irrigated:	
	Temperate (1)	Tropical (2)	Temperate (3)	Tropical (4)	Temperate (5)	Tropical (6)
Log rural density	0.195 (0.028)	0.125 (0.018)	0.225 (0.021)	0.137 (0.019)	0.192 (0.028)	0.124 (0.018)
p-value $\beta=0$ p-value $\beta=\beta_{Temp}$ Countries Observations Adjusted R-square	0.000 91 10661 0.19	0.000 0.037 81 9088 0.17	0.000 90 10628 0.22	0.000 0.002 79 9059 0.18	0.000 91 10661 0.19	0.000 0.041 81 9088 0.17

Productivity results

Dependent Variable in all panels: Log caloric yield (A_{isg}^{GAEZ})

Panel B: Excluding N.A. and Europe, caloric yield based on GAEZ input/water use:

	Medium/Irrigated:		High/Rain-fed:		High/Irrigated:	
	Temperate (1)	Tropical (2)	Temperate (3)	Tropical (4)	Temperate (5)	Tropical (6)
Log rural density	0.254 (0.038)	0.126 (0.019)	0.252 (0.040)	0.138 (0.019)	0.254 (0.036)	0.125 (0.019)
p-value $\beta = 0$ p-value $\beta = \beta_{Temp}$	0.000	0.000 0.002	0.000	0.000 0.009	0.000	0.000 0.001
Countries	24	70	23	69	24	70
Observations Adjusted R-square	824 0.21	8826 0.15	816 0.19	8801 0.12	824 0.21	8826 0.15

Climate Results

Dependent Variable in all panels: Log caloric yield (A_{isc})

Panel A: Climate Zones

	Equatorial (1)	Arid (2)	Temperate (3)	Snow (4)	
Log rural density	0.142 (0.014)	0.219 (0.030)	0.247 (0.048)	0.149 (0.030)	0.124 (0.033)
p-value $\beta = 0$ p-value $\beta = \beta^{Hot}$	0.000	0.000 0.004	0.000 0.035	0.000 0.850	0.000 0.576
Countries	61	84	26	43	27
Observations	9312	9858	540	1582	1160
Adjusted R-square	0.16	0.22	0.16	0.14	0.15

Climate Results

Panel B: Precipitation	n Zones Fully Humid (1)	Dry Summer (2)	Dry Winter (3)	Monsoon (4)	Desert (5)	Steppe (6)
Log rural density	0.185 (0.024)	0.169 (0.018)	0.115 (0.016)	0.130 (0.023)	0.112 (0.040)	0.110 (0.026)
p-value $\beta=0$ p-value $\beta=\beta^{Fully}$ Countries Observations Adjusted R-square	0.000 98 17327 0.21	0.000 0.594 45 3150 0.20	0.000 0.013 74 9224 0.18	0.000 0.090 42 1816 0.20	0.005 0.120 30 364 0.20	0.000 0.034 54 2339 0.19

Climate Results

Panel C: Temperatu	re Zones Hot Summer (1)	Warm Summer (2)	Cool Summer (3)	Hot Arid (4)	Cold Arid (5)
Log rural density	0.142 (0.014)	0.219 (0.030)	0.247 (0.048)	0.149 (0.030)	0.124 (0.033)
$\begin{array}{c} \text{p-value } \beta = 0 \\ \text{p-value } \beta = \beta^{Hot} \\ \text{Countries} \\ \text{Observations} \\ \text{Adjusted R-square} \end{array}$	0.000 61 9312 0.16	0.000 0.004 84 9858 0.22	0.000 0.035 26 540 0.16	0.000 0.850 43 1582 0.14	0.000 0.576 27 1160 0.15

Region Results

Dependent Variable in all panels: Log caloric yield (A_{isc})

Panel A

Excl. China, Japan, Korea

				,	
	North & Western Europe (1)	Eastern Europe (2)	Southern Europe (3)	South & Southeast Asia (4)	Central & West Asia (5)
Log rural density	0.259 (0.036)	0.287 (0.031)	0.272 (0.041)	0.152 (0.026)	0.181 (0.024)
p-value $\beta=0$ p-value $\beta=\beta^{NWEur}$ Countries Observations Adjusted R-square	0.000 16 1684 0.22	0.000 0.539 9 4821 0.32	0.000 0.791 9 1137 0.28	0.000 0.017 13 4312 0.18	0.000 0.072 18 2878 0.20

Region Results

Dependent Variable in all panels: Log caloric yield (A_{isc})

Panel B

i and b					
	Temperate	Tropical	Tropical	South	North
	Americas	Americas	Africa	Africa	Africa
Log rural density	0.188	0.113	0.089	0.134	0.249
	(0.030)	(0.016)	(0.014)	(0.071)	(0.014)
p-value $\beta=0$	0.000	0.000	0.000	0.059	0.000
p-value $\beta=\beta^{NWEur}$	0.133	0.000	0.000	0.116	0.827
Countries	5	22	39	4	5
Observations	3796	9373	3181	198	1220
Adjusted R-square	0.20	0.10	0.14	0.20	0.24

Region Results

Dependent Variable in all panels: Log caloric yield (A_{isc})

Panel	C

i anei O	All	Temperate	Sub- Tropical		North &
	China	China	China	Japan	South Ko- rea
	(1)	(2)	(3)	(4)	(5)
Log rural density	0.388 (0.084)	0.508 (0.054)	0.095 (0.026)	0.177 (0.013)	0.162 (0.065)
p-value $\beta=0$ p-value $\beta=\beta^{NWEur}$ Observations Adjusted R-square	0.000 0.156 289 0.26	0.000 0.000 134 0.28	0.000 0.000 155 0.22	0.000 0.034 1198 0.26	0.012 0.192 326 0.22

Results by Region

Results by Province

Baseline results assume β constant within larger sub-samples.

Instead, estimate β individually for each province

- Only provinces with 6 or more districts (1,260 provinces)
- ... so really big SE on any individual estimate
- Then look at pattern of β 's for each sub-sample

Results by Province

						Percentile	s:	
Sample	Prov.	Mean	SD	10th	25th	50th	75th	90th
All provinces	1,183	0.21	0.23	-0.02	0.05	0.18	0.33	0.49
Temperate Suitable Tropical Suitable Temperate cals over 33%	619 469 457	0.23 0.17 0.23	0.23 0.24 0.22	-0.00 -0.04 -0.00	0.08 0.03 0.08	0.21 0.15 0.21	0.36 0.28 0.36	0.50 0.43 0.50
Tropical cals over 33% Temperate area over 50% Tropical area over 50%	307 485 297	0.18 0.22 0.18	0.21 0.23 0.23	-0.04 -0.01 -0.04	0.03 0.07 0.03	0.15 0.20 0.14	0.29 0.36 0.29	0.41 0.53 0.47
Northwest Europe Eastern Europe Southern Europe South and S. East Asia Central and West. Asia Temperate Americas Tropical Americas Tropical Africa Southern Africa Northern Africa	79 173 60 248 163 87 195 118 11	0.26 0.24 0.27 0.20 0.20 0.14 0.18 0.16 0.15	0.31 0.20 0.17 0.23 0.20 0.25 0.26 0.24 0.21	0.00 0.01 0.08 -0.03 -0.02 -0.13 -0.02 -0.09 -0.11	0.08 0.09 0.16 0.04 0.06 0.02 0.06 -0.01 -0.05 0.22	0.22 0.23 0.25 0.16 0.16 0.17 0.09 0.17 0.31	0.46 0.38 0.37 0.31 0.33 0.26 0.28 0.25 0.33 0.42	0.62 0.50 0.50 0.49 0.45 0.40 0.39 0.51 0.34

Results by Province

Relationship of β to rural density, by province

Return

Labor and capital not mobile

Factors cannot move within province, but output can.

Changes relationship of density and productivity to

$$\ln A_{Ai} = \beta \ln L_{Ai}/X_i + \ln A_{Ni} + \alpha \beta \ln K_i/L_i + \ln p_N/p_A$$

- Night lights provide proxy for A_{Ni} and K_i/L_i ?
- p_N/p_A is province-specific (FE)
- Is correlation of A_{Ni} and K_i/L_i with L_{Ai}/X_i different by climate zone?

Districts are autarkic

Factors and output are immobile within province.

Changes relationship of density and productivity to

$$\ln A_i = \beta \ln L_{Ai}/X_i - \ln L_{Ai}/L_i - \alpha(1-\beta) \ln K_i/L_i + \ln C_{Ai}$$

- Can control for L_{Ai}/L_i using HYDE data
- Night lights provide proxy for K_i/L_i?
- c_{Ai} doesn't vary much and/or proxied by night lights?

Johnson & Vollrath (UH) Land Constraints 22 / 37 November 2018

Using Cultivated Area

Cultivated area, X_{isc}^{C} , available from GAEZ. Rural density is

$$\ln L_{Aisc}/X_{isc} = \ln L_{Aisc}/X_{isc}^{C} + \ln X_{isc}^{C}/X_{isc}$$
 (8)

- Regress In A_{isc} on both terms on the right hand-side
- Coefficient on $\ln L_{Aisc}/X_{isc}^{C}$ gives similar results for β
- Controls for percent of land actually being cultivated

Return

Measurement error?

- Whether we are using cultivated or total area
- Systematic mismeasurement of districts within a province not a problem, FE
- Variation in systematic mismeasurement across provinces not a problem, FE
- Problem is variation in noise of mismeasurement across provinces
- Is there noisier measurement in tropical areas?

Province-level Data

Dependent Variable in all panels: Log caloric yield (A_{isc})

Panel A: Samples defined by crop family (wheat vs. rice):

	By suitability:		By max calories:		By harvest area:	
	Wheat Only (1)	Rice Only (2)	Wheat > 33% (3)	Rice > 33% (4)	Wheat > 50% (5)	Rice > 50% (6)
Log rural density	0.399 (0.058)	0.070 (0.020)	0.248 (0.030)	0.016 (0.013)	0.368 (0.043)	0.052 (0.021)
p-value $\beta=0$ p-value $\beta=\beta^{Wheat}$ Countries Observations Adjusted R-square	0.000 60 417 0.39	0.000 0.000 65 587 0.27	0.000 70 768 0.29	0.199 0.000 63 617 0.26	0.000 69 797 0.35	0.014 0.000 73 721 0.30

Population Data from 1900

Dependent Variable in all panels: Log caloric yield (A_{isc})

Panel A: Samples defined by crop family (wheat vs. rice):

	By suitability:		By max calories:		By harvest area:	
	Wheat Only (1)	Rice Only (2)	Wheat > 33% (3)	Rice > 33% (4)	Wheat > 50% (5)	Rice > 50% (6)
Log rural density	0.294 (0.032)	0.170 (0.025)	0.239 (0.023)	0.149 (0.025)	0.258 (0.026)	0.182 (0.017)
p-value $\beta=0$ p-value $\beta=\beta^{Wheat}$ Countries Observations Adjusted R-square	0.000 91 10644 0.30	0.000 0.002 81 9081 0.25	0.000 83 10774 0.25	0.000 0.007 71 8213 0.22	0.000 74 10689 0.24	0.000 0.014 84 7561 0.22

Above 25th Percentile Harvested Area

Dependent Variable in all panels: Log caloric yield (A_{isc})

Panel A: Samples defined by crop family (wheat vs. rice):

	By suitability:		By max calories:		By harvest area:	
	Wheat Only (1)	Rice Only (2)	Wheat > 33% (3)	Rice > 33% (4)	Wheat > 50% (5)	Rice > 50% (6)
Log rural density	0.226 (0.025)	0.140 (0.020)	0.186 (0.017)	0.111 (0.021)	0.213 (0.018)	0.125 (0.013)
p-value $\beta=0$ p-value $\beta=\beta^{Wheat}$ Countries Observations Adjusted R-square	0.000 82 7568 0.22	0.000 0.008 65 6092 0.18	0.000 77 7540 0.19	0.000 0.005 58 5374 0.16	0.000 70 8400 0.19	0.000 0.000 72 5704 0.16

Other definitions of temperate and tropical

Dependent Variable: Log caloric yield (A_{isg})

Suitable for:	

Urban Pop. < 25*K* Suitable for:

	Temperate and Tropical	Any Temperate	Any Tropical	Temperate and Tropical	Any Temperate	Any Tropical
	(1)	(2)	(3)	(4)	(5)	(6)
Log rural density	0.140	0.180	0.132	0.156	0.202	0.145
	(0.013)	(0.017)	(0.011)	(0.015)	(0.020)	(0.013)
p-value $\beta=0$	0.000	0.000	0.000	0.000	0.000	0.000
Countries	119	137	137	110	131	130
Observations	15692	26353	24780	11008	18656	17670
Adjusted R-square	0.13	0.18	0.12	0.15	0.20	0.14

Measurement Error

Measurement error ⇒ attentuation bias

- Population data from HYDE may not be accurate for districts
- Is measurement error more pronounced in some places (e.g. tropical areas) and driving results?
- Is true variance of In L_{Aisc}/X_{isc} one-third of measured variance?
- Is rural population mis-stated by factor of > 2 or < 0.5?</p>

Elasticity of Substitution?

What if land and labor do not have elasticity of subs. equal to one?

- Elasticity of output w.r.t. land depends on rural density L_A/X
- With EOS more than one, higher density, lower elasticity
- Do results fit this?
 - South/SE Asia, some SS Afr are high density, low β
 - ..but C/S America, other SS Afr are low density, low β
 - ..but N America lowest density, not highest β

Factor shares

Our β does not correlate well with factor share data

- Fuglie (2010) reports share for "land and structures"
 - 0.22-0.25 share for Brazil, India, Indonesia > our estimates
 - 0.22 share for China, aggregate number?
 - 0.17-0.26 for US, ex-Soviet ≈ our estimates
- Hayami, Ruttan, Southworth (1979) for Asia
 - 0.3-0.4 shares for Taiwan, Japan, Korea, Philippines > our estimates
- Clark (2002) for England, long run
 - 0.3-0.35 shares > our estimate for Northwest Europe

Factor Shares

Possible sources of difference

- Biased estimates of β
- Market frictions/wedges for agricultural inputs
- Mis-reporting of land versus labor income
- Difference of aggregate elasticity from farm-specific elasticity/share

Using GRUMP Population Data

GRUMP (Global Rural-Urban Mapping Project) also provides grid-cell population estimates.

- Define urban/rural differently than HYDE. They denote specific grid-cells as "urban", and any population in that cell is assumed to be urban.
- Inclusion of cells in districts and provinces is identical to HYDE.

Using IPUMS Population Data

39 countries in IPUMS with geographic identifiers for individuals at the "district" level (agglomerations of districts with constant boundaries).

- IPUMS gives industry/occupation and labor force status, so we can measure agricultural worker density, not just rural density. In practice, rural density and ag worker density correlated at 91%, sig at less than 1%
- Counts of residents in each district are presumably more accurate that HYDE or GRUMP, as they are drawn from census.
- Cost is limited coverage of countries, and fewer districts
- Rebuild data on A_{isc} and L_{Aisc} at the level of the IPUMS districts

Response to mortality rate changes

			Dependent	Variable:			
	Log GDP per capita I		Log GDP p	Log GDP per worker		Log population	
	β < Median (1)	β >Median (2)	β < Median (3)	β >Median (4)	β < Median (5)	β >Mediar (6)	
	Panel A:						
Mortality rate	0.333 (0.271)	0.723 (0.136)	0.284 (0.262)	0.776 (0.145)	-0.361 (0.186)	-0.597 (0.152)	
p-value $\theta = 0$ p-value $\theta = \theta^{Below}$ Countries Observations	0.220 16 128	0.000 0.199 16 128	0.281 16 128	0.000 0.102 16 128	0.054 16 128	0.000 0.327 16 128	

Response to life expectancy changes

			Dependent	Variable:			
	Log GDP per capita		Log GDP per worker		Log population		
	β < Median (1)	β >Median (2)	β < Median (3)	$\beta > Median$ (4)	β < Median (5)	β >Mediar (6)	
	Panel B:						
Log life expectancy	0.067 (0.419)	-1.864 (0.226)	0.051 (0.399)	-1.876 (0.236)	1.520 (0.228)	2.008 (0.223)	
p-value $\theta=0$ p-value $\theta=\theta^{Below}$ Countries Observations	0.873 16 122	0.000 0.000 16 121	0.899 16 122	0.000 0.000 16 121	0.000 16 122	0.000 0.128 16 121	

Response to population change

			Dependent	Variable:				
	Log GDP p	er capita	Log GDP p	er worker	Log pop	ulation		
	$\beta <$ Median (1)	β >Median (2)	β < Median (3)	β >Median (4)	β < Median (5)	β >Mediar (6)		
		Panel C:						
Log population	-0.380 (0.125)	-0.776 (0.067)	-0.383 (0.121)	-0.763 (0.062)				
p-value $\theta = 0$ p-value $\theta = \theta^{Below}$ Countries Observations	0.003 16 128	0.000 0.006 16 128	0.002 16 128	0.000 0.006 16 128				

