CSC510 Automated Online Email Categorization

Group C

Shijie Li, Zhe Yu, Amritanshu Agrawal, Di Chen

Introduction (Jerry)

Outline:

- Problems & Challenges
- Solutions & Results
- Evaluation & Demo

Problems of Current Email Categorization

Problem #1

- Limited automatic email categorization:
 - Most Email applications only categorize email into default folders.
 - Not applicable to customized categories created by user.

Problems of Current Email Categorization

Problem #1

- Limited automatic email categorization:
 - Most Email applications only categorize email into default folders.
 - Not applicable to customized categories created by user.

Problems of Current Email Categorization

Problem #2

- Explicit user feedbacks needed:
 - Most Email applications require user to manually assign new labels beyond default categories.
 - Inconvenient for frequent use
 - Inefficient for large amount

Project Goal

User-oriented:

- Personalized
- Private
- Automatic
- Flexible
- Efficient
- Accurate
- Active

Lack of Training Examples

Implicit Feedback:

User is busy/lazy to provide explicit confirmation

Unbalanced Importance:

Miss important emails due to incorrect categorization

Different Types of Folders:

Not Every Folder is Content-aware

Non-text Content:

Attachments, pictures, urls can be useful

- Lack of Training Examples
- Implicit Feedback:
 - User is busy/lazy to provide explicit confirmation
- Unbalanced Importance:
 - Miss important emails due to incorrect categorization
- Different Types of Folders:
 - Not Every Folder is Content-aware
- Non-text Content:
 - Attachments, pictures, urls can be useful

- Lack of Training Examples
- Implicit Feedback:
 - User is busy/lazy to provide explicit confirmation
- Unbalanced Importance:
 - Miss important emails due to incorrect categorization

Lack of Training Examples

• What we expect:

 Hundreds of training examples for each folder in order to achieve a reliable classifier.

• What we get:

- About 5 to 10 emails per folder for training.
- Tens of rows and thousands of columns in the feature matrix.

Lack of Training Examples

Solutions:

Try different classifiers. Is there a particular classifier performing better when having few training examples?

 Incremental Learning. Keep retraining the classifier with new emails.

 Dimensionality Reduction. Use LDA to reduce the number of features before training.

Experiment Design

- Performance metrics:
 - Macro F score: 2*P*R/(P+R)
 - P=Mean(Precision of each folder)
 - R=Mean(Recall of each folder)

Data sets:

- 7 data sets from 7 users in Enron data set.
- 5 to 10 folders in each data set.
- 50 emails at least in each folder.

Preprocessing

Solution 1: Different classifiers

• Experiment:

- 5 to 10 randomly selected emails in each folder for training.
- Three classifiers: Decision Tree, K nearest neighbors, support vector machine.
- Test on all the rest.
- Repeat 25 times on 7 data sets

Solution 1: Different classifiers

Results:

• Experiment:

- 5 to 10 randomly selected emails in each folder for initial training.
- SVM classifier.
- Three ways to select new emails for retraining. (Brutal, Credit, Wrong)
- Test on a hold out data set with half the population.
- Repeat 25 times on 7 data sets

Brutal: add everything we have into the training set.

Credit:

- Each email has a credit of 1-Probability (true_folder)
- Emails with top N credit goes into the training set. N keeps growing.

Wrong: add every wrongly predicted email into the training set.

Compare the three

Solution 3: Dimensionality Reduction

• Experiment:

- 5 to 10 randomly selected emails in each folder for initial training.
- Use LDA to map the 4000 words to 100 topics.
- Train by SVM.
- Select new emails for retraining by Credit.
- Test on a hold out data set with half the population.
- Repeat 25 times on 7 data sets

Solution 3: Dimensionality Reduction

Result

Conclusion

Best solution for lack of training examples:

Train by SVM.

Select new emails for retraining by Credit.

Do not use LDA for dimensionality reduction.

- Cold Start:
 - Lack of Training Examples
- Implicit Feedback:
 - User is busy/lazy to provide explicit confirmation
- Unbalanced Importance:
 - Miss important emails due to incorrect categorization

No Explicit Feedback

• What we expect:

 Users will do explicit feedback of modifying the label of emails if they are labelled wrong.

• What we get:

 Limited feedback or no feedback at all.

No Explicit Feedback

Solutions:

- Simple Implicit Feedback (SIF). When the user changes any label, immediately treats all remaining labels as correct.
- Implicit Feedback without SIF (IFwoSIF). Maintain a count of the total number of IF events to reach a minimum threshold.
- Implicit Feedback with SIF (IFwSIF). Inclusion of both the above.

Details

The implicit events are defined as follows:

- User add or remove a tag on the message;
- User add or remove a flag from the message;
- User move the message to a folder;
- User copy, reply, forward, or print a message;
- User save an attachment from the message.

Solution

• Literature review suggests to proceed ahead with Implicit Feedback with SIF (IFwSIF).

• **IFwSIF** If the user changes a label, then implicit feedback examples are immediately created. Otherwise, continue to count up implicit events to reach a specified threshold.

 In our design, we just implemented User reading a message from time and again. The other events could have been implemented.

Lack of Training Examples

Implicit Feedback:

User is busy/lazy to provide explicit confirmation

Unbalanced Importance:

Miss important emails due to incorrect categorization

Unbalanced Importance

• What we expect:

Properly classified mails to a single folder.

• What we get:

Miss important emails due to incorrect categorization.

Solution

- Multi-folder Categorization:
 - Changed the problem to multi-label, multi-classification problem.

Different weight can be addressed on the labels.

 The folders with high rank, the threshold can be reduced to allow emails to go into that folder more easily.

GUI Development

- Developed using Python Tkinter package.
- Gmail as our sample for making the Mailbox GUI.
- Features:
 - Read mails
 - Move mails to different folders.
 - Creation of user defined folders.
 - On demand selection of different features which includes
 - Implicit User Feedback
 - Explicit User Feedback
 - Multi-folders

Demo

Telemetry

- Four users operate on GUI for testing, each with four different setups of features.
- User task is to make sure every new coming email end up in the correct folder.
- Data is stored for whether a new coming email is correctly predicted and a Macro Precision, Recall, F score is calculated for each experiment.

Results

Future Work

Test more.

Continue on challenges.

Build a real product and test more.

Reference

- [1] R. Bekkerman. Automatic categorization of email into folders: Benchmark experiments on enron and sri corpora. 2004.
- [2] V. Bellotti, N. Ducheneaut, M. Howard, and I. Smith. Taking email to task: the design and evaluation of a task management centered email tool. In Proceedings of the SIGCHI conference on Human factors in computing systems, pages 345-352. ACM, 2003.
- [3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. the Journal of machine Learning research, 3:993-1022, 2003.
- [4] V. R. Carvalho and W. W. Cohen. Learning to extract signature and reply lines from email. In Proceedings of the Conference on Email and Anti-Spam, volume 2004, 2004.
- [5] G. V. Cormack. Email spam Itering: A systematic review. Foundations and Trends in Information Retrieval, 1(4):335-455, 2007.

- [6] M. Dehghani, A. Shakery, and M. S. Mirian. Alecsa: Attentive learning for email categorization using structural aspects. Knowledge-Based Systems, 201
- [7] B. Klimt and Y. Yang. The enron corpus: A new dataset for email classication research. Pages 217-226, 2004.
- [8] H. Murakoshi, A. Shimazu, and K. Ochimizu. Construction of deliberation structure in e-mail communication. Computational Intelligence, 16(4):570-577, 2000.
- [9] M. Sokolova and G. Lapalme. A systematic analysis of performance measures for classication tasks. Information Processing & Management, 45(4):427-437, 2009.
- [10] M. S. Sorower, M. Slater, and T. G. Dietterich. Improving automated email tagging with implicit feedback. Pages 201-211, 2015.
- [11] R. Sproat, J. Hu, and H. Chen. Emu: An e-mail preprocessor for text-to-speech. In Multimedia Signal Processing, 1998 IEEE Second Workshop on, pages239-244. IEEE, 1998.

Thank You!

Q&A