Bill Jin

Problem 1 — The *n*th Fibonacci number can be computed by dynamic programming. Since this is not an optimization problem, we will name the function val rather than the usual opt. Step 2 of the dynamic programming methodology results in the definition

$$val(i) = \begin{cases} 1 & \text{if } i < 2\\ val(i-1) + val(i-2) & \text{if } i \ge 2 \end{cases}$$

Show the code that would result from implementing this definition in memoized C++ code as would be done in step 3 of dynamic programming. Show *only* the function val, not the main program or any helper code.

Answer: Implementing the above definition as a recursive, memoized C++ function is straightforward. We have a 1-dimension table which assigns all elements with max number it could have, which are used to show if the cell has or has not been calculated.

```
unsigned val(unsigned value, vector<unsigned>& memo)
2
     if (memo.at(value) == UINT_MAX)
       if (value < 2)
          memo.at(value) = 1;
       else if (value >= 2)
10
          memo.at(value) = val(value - 1, memo) + val(value - 2, memo);
11
       }
12
     }
13
     return memo.at(value);
14
   }
15
```

Problem 2 — Show the filled-in memo table the code in the previous problem would create when computing the value for n = 8.

Answer: Since the program calculate the 8th Fibonacci number (count the very first Fibonacci number as 0th), which is also the index of 8 in memo table. All the rest of the cells are not calculated and remain the UINT_MAX.

1	1	2	3	5	8	13	21	32	UINT_MAX	UINT_MAX	UINT_MAX		Ì
---	---	---	---	---	---	----	----	----	----------	----------	----------	--	---

Problem 3 — Show the filled-in memo table for making 12¢ using the denominations 1¢, 4¢, and 10¢. Use bold entries to show the traceback path of cells for the optimal set of coins used.

Answer: Since there could be two different ways to trace up those coins, therefore there are two solutions for this problem. The first one is one 10¢, two 1¢, the other is three 4¢:

The trace back is 10¢, and two 1¢:

Problem 4 — Show the filled-in memo table for finding a longest common subsequence of the strings SLWOVNNDK and ALWGQVNBKB. Use bold entries to show the traceback path of cells for the LCS.

Answer: I highlight the both the head and tail of the arrow:

	-	\mathbf{S}	L	W	Ο	V	N	N	D	K
-	0	0	0	0	0	0	0	0	0	0
A	0	0	0	0	0	0	0	0	0	0
\mathbf{L}	0	0	1	1	1	1	1	1	1	1
W	0	0	1	2	2	2	2	2	2	2
G	0	0	1	2	2	2	2	2	2	2
Q	0	0	1	2	2	2	2	2	2	2
V	0	0	1	2	2	3	3	3	3	3
N	0	0	1	2	2	3	4	4	4	4
В	0	0	1	2	2	3	4	4	4	4
K	0	0	1	2	2	3	4	4	4	5
В	0	0	1	2	2	3	4	4	4	5