Hilbert's Problems and Complexity

- In 1900, mathematician David Hilbert delivered a now-famous address at the International Congress of Mathematicians in Paris.
- Identified twenty-three mathematical problems and posed them as a challenge for the coming century.
- Hilbert's tenth problem was to devise an algorithm that tests whether a polynomial has an integral root. [Some polynomials have an integral root and some do not.]
- Hilbert's tenth problem asks in essence whether the set D is decidable.

 $D = \{p | p \text{ is a polynomial with an integral root}\}.$

Hilbert's Problems and Complexity

For single variable:

```
D_1 = \{p | p \text{ is a polynomial over } x \text{ with an integral root}\}.
```

Here is a TM M_1 that recognizes D_1 :

 M_1 = "The input is a polynomial p over the variable x.

- 1. Evaluate p with x set successively to the values $0, 1, -1, 2, -2, 3, -3, \ldots$ If at any point the polynomial evaluates to 0, accept."
- If p has an integral root, *M1* eventually will find it and accept. If p does not have an integral root, *M1* will run forever.
- For single variable, bound exist. $\pm k \frac{c_{\text{max}}}{c_1}$,
- For multivariable, no such bound exist.

Complexity Classes

```
\begin{split} \mathsf{P} &\equiv \mathsf{DTIME}(\mathsf{poly}(n)) \equiv \underset{k>0}{\cup} \mathsf{DTIME}(n^k) \\ \mathsf{NP} &\equiv \mathsf{NTIME}(\mathsf{poly}(n)) \\ \mathsf{EXP} &\equiv \underset{k>0}{\cup} \mathsf{DTIME}(2^{n^k}) \\ \mathsf{NEXP} &\equiv \underset{k>0}{\cup} \mathsf{NTIME}(2^{n^k}) \\ \mathsf{NEXP} &\equiv \underset{k>0}{\cup} \mathsf{NTIME}(2^{n^k}) \\ \end{split}
```

$$\mathsf{LOG} \subseteq \mathsf{NLOG} \subseteq \mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE} \subseteq \mathsf{EXP} \subseteq \mathsf{NEXP}.$$

- NL ⊆ P ⊆ NP ⊆ PSPACE = NPSPACE ⊆
 EXPTIME
- P ⊂ EXPTIME
- NL ⊂ PSPACE

Hierarchy of Complexity Classes


```
CONNECTED := \{\langle G \rangle \mid G \text{ is a connected undirected graph}\}

BIPARTITE := \{\langle G \rangle \mid G \text{ is an undirected bipartite graph}\}

TRIANGLE-FREE := \{\langle G \rangle \mid G \text{ is a triangle-free undirected graph}\}

PATH := \{\langle G, s, t \rangle \mid \text{ There is a path from vertex } s \text{ to vertex } t \text{ in a directed graph } G\}

RELPRIME := \{\langle x, y \rangle \mid \text{ The positive integers } x \text{ and } y \text{ are relatively prime}\}
```

The class NP

Class of problems having efficiently verifiable solutions.

A decision problem/language is in NP if given an input x, we can easily verify that x is a YES instance of the problem (x is in the language) if we are given the polynomial-size solution for x, that certifies this fact.

Def: A language $L \subseteq \{0, 1\}^*$ is in NP if there exists a polynomial p and a polynomial-time Turing machine M such that for every $x \in \{0, 1\}^n$:

$$x \in L \Leftrightarrow \exists u \in \{0,1\}^{p(|x|)} : M(x,u) = 1$$
.

If $x \in L$ and $u \in \{0,1\}^{p(|x|)}$ satisfy M(x,u) = 1 then we call u a *certificate* (or a *witness*) for x (with respect to the language L and machine M).

Relation between NP and P

We have the following trivial relationships between NP and the classes P and DTIME(T(n)):

Claim 2.3:
$$P \subseteq NP \subseteq \bigcup_{c>1} DTIME(2^{n^c})$$
.

Proof: Suppose $L \in \mathbf{P}$ is decided in poly-time by M, i.e.

$$x \in L \Leftrightarrow M(x) = 1 \Leftrightarrow \exists u \in \{0,1\}^0 M(x,u) = 1$$
.

Hence, $L \in \mathbf{NP}$.

If $L \in \mathbf{NP}$ and M and, p(n) are as in the definition of \mathbf{NP} , then we can decide L in time $2^{O(p(n))}$ by enumerating all possible u and using M to check whether u is a valid certificate for the input x. The machine accepts iff such a u is ever found. Since $p(n) = O(n^c)$ for some c > 1, then this machine runs in $2^{O(n^c)}$ time.

Non-deterministic Turing machines

The class NP can also be defined using non-deterministic Turing machines (NDTMs). The only differences between an NDTM and a TM are:

- NDTM has two transition functions δ_0 and δ_1 .
- NDTM has a special state we denote by q_{accept} .
- NDTM makes (at each step) an arbitrary choice as to which of its two transition functions to apply.

We say that a NDTM N outputs 1 on a given input x if there is some sequence of these non-deterministic choices that would make N reach q_{accept} on input x. Otherwise, if every sequence of choices makes N halt without reaching q_{accept} , then we say that N outputs 0.

We say that N runs in T(n) time if for every $x \in \{0,1\}^n$ and every sequence of choices, M(x) reaches either the halting state or q_{accept} within T(|x|) steps.

Alternative definition of NP

Def: For every function $T: \mathbb{N} \to \mathbb{N}$ and $L \subseteq \{0,1\}^*$, we say that $L \in \text{NTIME}(T(n))$ if there is a constant c > 0 and a cT(n)-time NDTM N such that for every $x \in \{0,1\}^n$: $x \in L \Leftrightarrow N(x) = 1$.

Theorem 2.6: NP = $\cup_{c \in \mathbb{N}}$ NTIME (n^c) .

Proof idea: If L is decided by a p(n)-time NDTM N, then the sequence of choices that lead to q_{accept} can be used as a certificate of size p(n).

If $L \in \operatorname{NP}$ (with machine M and cert-size p(n)) then we can construct a NDTM N that given $x \in \{0,1\}^n$ as input first makes p(n) non-deterministic choices to write down $u \in \{0,1\}^{p(n)}$; after that, N computes M(x,u) and finishes in state q_{accept} if M(x,u) = 1, otherwise N just halts.

L ∈ NTIME(T): Equivalent views

- Non-deterministic M
- input: x
- makes non-det choices
- x ∈ L iff some thread of
 M accepts
- in at most T(|x|) steps

- Deterministic M'
- input: x and cert. w
- reads bits from the cert.
- x ∈ L iff for some cert.
 w, M' accepts
- in at most T(|x|) steps

Problems in NP

Independent set: Given a graph G and a number k, decide if there is a k-size independent subset of vertices in G. The certificate is the list of k vertices forming an independent set.

Traveling salesman: Given a set of n nodes, $\binom{n}{2}$ numbers d_{ij} denoting the distances between all pairs of nodes, and a number k, decide if there is a closed circuit (i.e., a "salesman tour") that visits every node exactly once and has total length at most k. The certificate is the sequence of nodes in the tour.

Subset sum: Given a list of n numbers A_1, \ldots, A_n and a number T, decide if there is a subset of the numbers that sums up to T. The certificate is the list of members in this subset.

Problems in NP

Linear programming: Given a list of m linear inequalities with rational coefficients over n variables u_1, \ldots, u_n (in the form $a_1u_1 + a_2u_2 + \ldots + a_nu_n \le b$ for some coefficients a_1, \ldots, a_n, b), decide if there is an assignment of rational numbers to the variables u_1, \ldots, u_n that satisfies all the inequalities. The certificate is the assignment.

Integer programming: Given a list of m linear inequalities with rational coefficients over n variables u_1, \ldots, u_m , find out if there is an assignment of integer numbers to u_1, \ldots, u_n satisfying the inequalities. The certificate is the assignment.

Graph isomorphism: Given two $n \times n$ adjacency matrices M_1 and M_2 , decide if M_1 and M_2 define the same graph, up to renaming of vertices. The certificate is the permutation $\pi \colon [n] \to [n]$, such that M_2 is equal to M_1 after reordering M_1 s indices according to π .

Problems in NP

Composite numbers: Given a number N decide if N is a composite (i.e., non-prime) number. The certificate is the factorization of N.

Factoring: Given three numbers N,L and U decide if N has a factor M in the interval [L,U]. The certificate is the factor M.

Connectivity: Given a graph G and two vertices s, t in G, decide if s is connected to t in G. The certificate is the path from s to t.

```
HAMPATH := \{\langle G, s, t \rangle \mid \text{ There is a Hamiltonian path from vertex } s \text{ to vertex } t \text{ in the}
                                                      directed graph G}
       UHAMPATH := \{\langle G, s, t \rangle \mid \text{ There is a Hamiltonian path from vertex } s \text{ to vertex } t \text{ in the}
                                                      undirected graph G}
              CLIQUE := \{\langle G, k \rangle \mid \text{ The undirected graph } G \text{ has a } k\text{-clique}\}
         INDEP-SET := \{\langle G, k \rangle \mid \text{ The undirected graph } G \text{ has an independent set of size } k\}
VERTEX-COVER := \{\langle G, k \rangle \mid \text{ The undirected graph } G \text{ has a vertex cover of size } k\}
      COMPOSITE := \{\langle x \rangle \mid \text{ The positive integer } x \text{ is composite} \}
     SUBSET-SUM := \{\langle S, t \rangle \mid \text{ There is a subset } T \text{ of the set } S \text{ with } t = \sum x \}
                     SAT := \{\langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula}\}
                   3SAT := \{\langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula in 3-cnf}\}
```

NP Complete

P & NP-Complete Problems

Shortest simple path

- Given a graph G = (V, E) find a **shortest** path from a source to all other vertices
- Polynomial solution: O(VE)

Longest simple path

- Given a graph G = (V, E) find a **longest** path from a source to all other vertices
- NP-complete

P & NP-Complete Problems

■ **3-CNF** is NP-Complete

Interestingly enough, 2-CNF is in P!

P & NP-Complete Problems

Euler tour

- G = (V, E) a connected, directed graph find a cycle that traverses <u>each edge</u> of G exactly once (may visit a vertex multiple times)
- Polynomial solution O(E)

Hamiltonian cycle

- G = (V, E) a connected, directed graph find a cycle that visits
 each vertex of G exactly once
- NP-complete

coNP

Def: coNP = $\{L \subseteq \{0,1\}^*: \overline{L} \in NP\}.$

Hence, $\overline{\mathsf{SAT}} \in \mathsf{coNP}$.

Alternative def:

For every $L \subseteq \{0,1\}^*$, we say that $L \in \mathbf{coNP}$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M such that for every $x \in \{0,1\}^*$,

$$x \in L \Leftrightarrow \forall u \in \{0,1\}^{p(|x|)}$$
 s.t. $M(x,u) = 1$

coNP Complete

TAUTOLOGY is coNP-complete

In classical logic, tautologies are true statements. The following language is ${
m coNP}$ -complete:

TAUTOLOGY = $\{\varphi \colon \varphi$ – Boolean formula that is satisfied by every assignment $\}$.

It is clearly in coNP and so all we have to show is that for every $L \in \text{coNP}$, $L \leq_p \text{TAUTOLOGY}$. But this is easy: just modify the Cook-Levin reduction from \overline{L} (which is in NP) to SAT. For every input $x \in \{0,1\}^*$ that reduction produces a formula φ_x that is satisfiable iff $x \in \overline{L}$. Now consider the formula $\neg \varphi_x$. It is in TAUTOLOGY iff $x \in L$, and this completes the description of the reduction.

coNP Complete

coNP-complete problems

- Complements of NP-complete problems
- UNSAT: Given Boolean formula, is it unsatisfiable?
- TAUTOLOGY (VALIDITY): Given Boolean formula, is it a tautology (valid), i.e. satisfied by all truth assignments?
- NONHAMILTONICITY: Given a (undirected or directed) graph, is it nonHamiltonian?
- NON 3-COLORABILITY: Given an undirected graph, is it the case that it has no 3-coloring?
- NODE COVER LOWER BOUND: Given graph G and number k, does every node cover of G have ≥k nodes?
- INDEPENDENT SET UPPER BOUND: Given a graph G and number k, does every independent set of G have ≤k nodes?

NP and coNP

NP\CoNP

- Short, easy to check certificates both for the Yes and the No instances
- Examples:
- Graph Bipartiteness:
 - bipartite ⇔ nodes can be partitioned into two sets V1, V2 so that all edges connect a node in V1 with a node in V2
 - nonbipartite ⇔ there is an odd length cycle
- Graph Planarity
 - planar ⇔ can draw on the plane so that no edges intersect
 - nonplanar ⇔ contains a homeomorph of K5 or K33 (Kuratowski's theorem)

These particular properties happen to be in fact in P

P, NP, coNP

- NP is closed under union, intersection
- coNP is also closed under union, intersection
- NP (and coNP) closed under complement iff NP=coNP
- conjectured not

NP-naming convention

- NP-complete means problems that are 'complete' in NP, i.e. the most difficult to solve in NP
- NP-hard stands for 'at least' as hard as NP (but not necessarily in NP);
- NP-easy stands for 'at most' as hard as NP (but not necessarily in NP);
- NP-equivalent means equally difficult as NP, (but not necessarily in NP);

24

Decision Vs. Optimization

Decision problem: a question that has two possible answers yes or no. The question is about some input.

 Optimization problem: find a solution that maximizes or minimizes some objective function

Decision Vs. Optimization

Decision problem:

- Given a graph G and a set of vertices K, is K a clique?
- Given a graph G and a set of edges M, is M a spanning tree?
- Given a set of axioms (boolean expressions) and an expression, is the expression provable under the axioms?

Decision Vs. Optimization

- Optimization problems are not stated as "yes/no' questions.
- An optimization problem can be transformed to a decision problem using a bound on the solution
- Example:
 - ➤ TSP Optimization: Find the shortest path that visits all cities
 - TSP Decision: Is there a path of length smaller than B?

Max2Sat is NP-Complete

Max-2-SAT

Instance:

· a 2-CNF formula ϕ

Maximization Problem:

 Find the maximum # of clauses satisfied by an assignment to φ

<u>Instance (decis. ver.)</u>:

· a 2-CNF formula ϕ and a threshold K

Decision Problem:

• Is there an assign, satisfying $\geq K$ clauses of φ ?

- Halting Problem is NP-hard decision problem, but it is not NP-complete.
- For this let us construct an algorithm A whose input is a prepositional formula X.
- Suppose X has n variables. Algorithm A tries out all 2ⁿ possible truth assignments and verifies if X is satisfiable.
- If it is satisfied then A stops. If X is not satisfiable, then A enters an infinite loop. Hence A halts on input iff X is satisfiable.
- If we had a polynomial time algorithm for the halting problem, then we could solve the satisfiability problem in polynomial time using A and X as input to the algorithm for the halting problem.

Complexity Classes EXP, NEXP

EXP and NEXP

The following two classes are exponential time analogues of P and NP.

Def:

- EXP = $\cup_{c>0}$ DTIME(2^{n^c}).
- NEXP = $\bigcup_{c>0}$ NTIME(2^{n^c}).

Because every problem in NP can be solved in exponential time by a brute force search for the certificate, $P \subseteq NP \subseteq EXP \subseteq NEXP$.

Is there any point to studying classes involving exponential running times?

The following simple result may be a partial answer.

- Generalized chess is the game of chess played on an n-byn board, with 2n pieces on each side.
- For many generalized games which may last for a number of moves exponential in the size of the board, the problem of determining if there is a win for the first player in a given position is EXPTIME-complete.
- SUCCINT representation of P problems.

SUCCINCT HAMILTON PATH:

A Boolean circuit with 2n inputs and one output represents a graph on 2^n vertices. To determine if there is an edge between vertices i and j, encode i and j in n bits each, and feed their concatenation to the circuit: there is an edge between these vertices iff the output of the circuit is true.

$$C: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}$$

 $G = (\{0,1\}^n, \{(u,v) : C(u,v) = 1\})$

Given such a circuit, is there a Hamilton path in the graph represented by the circuit?

 $L = \{C : C \text{ describes a graph with a Hamiltonian cycle}\}.$

For some NP-complete problems, there's a SUCCINCT variant that's NEXP-complete. E.g., SUCCINCT 3SAT, SUCCINCT KNAPSACK, etc.

Definition 2.1 TILING

Problem Parameters: A set of titles $T = \{t_1, \ldots, t_m\}$. A set of horizontal constraints $H \subseteq T \times T$ such that if t_i is placed to the left of t_j , then it must be the case that $(t_i, t_j) \in H$. A set of vertical constraints $V \subseteq T \times T$ such that if t_i is placed below t_j , then it must be the case that $(t_i, t_j) \in V$. A designated tile t_1 that must be placed in the four corners of the grid.

Problem Input: *Integer N*, *specified in binary.*

Output: Determine whether there is a valid tiling of an $N \times N$ grid.

Theorem 2.2 TILING is NEXP-complete.

Satisfyability of true boolean quantified formulas is NEXP.

3.1 EXP and NEXP-complete problems

One general method is to find *succinct* versions of **P**, **NP**-complete problems. But what is a succinct representation of a graph?

Definition 3 A succinct representation of a graph is a circuit $C: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ defining $G_C = (V, E), V = \{0,1\}^n, E = \{(u,v): C(u,v) = 1\}$

We then have a potentially succinct representation of the graph, since it can represent something exponentially larger than its description length (the circuit).

This yields succinct versions of familiar graph problems.

Definition 4 SUCCINCT HAMILTONIAN PATH: SHP = $\{C : G_C \text{ has a Hamiltonian path}\}.$

Proposition 5 SHP \in NEXP

Theorem 6 Succinct Circuit Value is EXP-complete. Also, Succinct Circuit SAT is NEXP-complete.

Complexity Classes EXP, NEXP

If EXP \neq NEXP then P \neq NP

We prove the contrapositive: P = NP implies EXP = NEXP.

Suppose $L \in \text{NTIME}(2^{n^c})$ and NDTM M decides it. We claim that then the language

$$L_{\mathsf{pad}} = \{ \langle x, \mathbf{1}^{2^{|x|^c}} \rangle \colon x \in L \}$$

is in NP. Here is an NDTM for L_{pad} :

- given y, first check if there is a string z such that $y = \langle z, \mathbf{1}^{2^{|z|^c}} \rangle$. If not, output REJECT.
- If y is of this form, then run M on z for $2^{|z|^c}$ steps and output its answer.

Clearly, the running time is polynomial in |y|, and hence $L_{\mathsf{pad}} \in \mathsf{NP}$. Hence if $\mathsf{P} = \mathsf{NP}$ then L_{pad} is in P . But if L_{pad} is in P then L is in EXP : to determine whether an input x is in L, we just pad the input and decide whether it is in L_{pad} using the polynomial-time machine for L_{pad} .

Complexity Classes P and NP

Source: Wikipedia (Complexity Classes P and NP)

Your Chance to be Famous

The question of whether P is the same set as NP is the most important open question in theoretical computer science. There is even a \$1,000,000 prize for solving it.

Source: Wikipedia (Clay Mathematics Insitute)