collaborative filtering \$\rightarrow\$ low rank matrix factorization

vectorization: low rank matrix factorization

	1				$n_m = 5$)			
movie	user ₁	user ₂	user ₃	user ₄	$n_u = 4$				
$movie_1$	5	5	0	0	г5	5	0	01	
movie ₂	5	?	?	0	5	?	?	0	
movie ₃	?	4	0	?	Y = ?	4	0	?	
movie ₄	0	0	5	4	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	5	4	
movie ₅	0	0	5	?	τ0	0	5 (i	(;) (i	
					\		$y^{(i)}$	7. J	

collaborative filtering -> low rank matrix factorization

predicted ratings:

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix} \begin{bmatrix} (\theta^{(1)})^T (x^{(1)}) & (\theta^{(2)})^T (x^{(1)}) & \cdots & (\theta^{(n_u)})^T (x^{(1)}) \\ (\theta^{(1)})^T (x^{(2)}) & (\theta^{(2)})^T (x^{(2)}) & \cdots & (\theta^{(n_u)})^T (x^{(2)}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (\theta^{(1)})^T (x^{(n_m)}) & (\theta^{(2)})^T (x^{(n_m)}) & \cdots & (\theta^{(n_u)})^T (x^{(n_m)}) \end{bmatrix}$$

$$X = \begin{bmatrix} - & (x^{(1)})^T & - \\ - & (x^{(2)})^T & - \\ - & \vdots & - \\ - & (x^{(n_m)})^T & - \end{bmatrix} \qquad \Theta = \begin{bmatrix} - & (\theta^{(1)})^T & - \\ - & (\theta^{(2)})^T & - \\ - & \vdots & - \\ - & (\theta^{(n_u)})^T & - \end{bmatrix} \qquad (\theta^{(1)})^T (x^{(1)}) \rightarrow X\Theta^T$$

$$\text{Let } X = \begin{bmatrix} -& (x^{(1)})^T & -\\ & \vdots & \\ -& (x^{(n_m)} & - \end{bmatrix}, \ \Theta = \begin{bmatrix} -& (\theta^{(1)})^T & -\\ & \vdots & \\ -& (\theta^{(n_u)} & - \end{bmatrix}. \\ \text{What is another way of writing the following:} \\ \begin{bmatrix} (x^{(1)})^T(\theta^{(1)}) & \dots & (x^{(1)})^T(\theta^{(n_u)})\\ \vdots & \ddots & \vdots \\ (x^{(n_m)})^T(\theta^{(1)}) & \dots & (x^{(n_m)})^T(\theta^{(n_u)}) \end{bmatrix}$$

using the learned features to find related movies

for each product i, the algorithm learns feature vector $x^{(i)} \in \mathbb{R}^n$

$$x_1$$
 = romance, x_2 = action, x_3 = comedy, x_4 = ...

how to find moves j related to movie i:

small
$$||x^{(i)} - x^{(j)}|| \rightarrow \text{movie } j \text{ and } i \text{ are 'similar'}$$

5 most similar movies to movie *i*:

find the 5 movies j with the smallest distance between features $\|x^{(i)} - x^{(j)}\|$

implementational detail: mean normalization

consideration of an example where a user has not rated any movies

movie	user ₁	user ₂	user ₃	user ₄	user ₅					
movie ₁	5	5	0	0	?	г5	5	0	0	2-
movie ₂	5	?	?	0	?	5	5 ?	?	0	?
movie ₃	?	4	0	?	?		4	0	?	?
movie ₄	0	0	5	4	?	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	5 5	4	?
movie ₅	0	0	5	?	?	-0	U	3	U	: -

$$\min_{\substack{x^{(1)}, \dots, x^{(m)} \\ \theta^{(1)}, \dots, \theta^{(n_u)}}} \frac{1}{2} \sum_{(i,j): r(i,j) = 1} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n \left(x_k^{(j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n \left(\theta_k^{(j)} \right)^2$$

$$n = 2 \text{ features to learn and } \theta^{(5)} \in \mathbb{R}^2 \qquad \theta^{(5)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \text{minimize} \quad \frac{\lambda}{2} \left[\left(\theta_1^{(5)} \right)^2 + \left(\theta_2^{(5)} \right)^2 \right]$$

minimizing the regularization parameter encourages the algorithm to set $\theta^{(5)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and thus will predict **user**₅ as giving all 0 ratings for the examples $\rightarrow (\theta^{(5)})^T(x^{(i)}) = 0$ this problem is addressed with mean normalization

mean normalization

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 & ? \\ 5 & ? & ? & 0 & ? \\ ? & 4 & 0 & ? & ? \\ 0 & 0 & 5 & 4 & ? \\ 0 & 0 & 5 & 0 & ? \end{bmatrix}$$
 stored in matrix as average $\mu = \begin{bmatrix} 2.5 \\ 2.5 \\ 2 \\ 2.25 \\ 1.25 \end{bmatrix}$

then subtract off the average rating matrix μ from matrix Y

$$\mu = \begin{bmatrix} 2.5 \\ 2.5 \\ 2 \\ 2.25 \\ 1.25 \end{bmatrix} \rightarrow Y = \begin{bmatrix} 2.5 & 2.5 & -2.5 & -2.5 & ? \\ 2.5 & ? & ? & -2.5 & ? \\ ? & 2 & -2 & ? & ? \\ -2.25 & -2.25 & 2.75 & 1.75 & ? \\ -1.25 & -1.25 & 3.75 & -1.25 & ? \end{bmatrix}$$

$$\rightarrow \text{learn } \theta^{(j)}, x^{(i)}$$

treat the new matrix Y as the original ratings of movies given by users

for user j, on movie i, predict: $(\theta^{(j)})^T(x^{(i)}) + \mu_i$

$$\mathbf{user_5}: \theta^{(5)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \qquad \left(\theta^{(5)}\right)^T \left(x^{(i)}\right) + \boldsymbol{\mu_i}$$

because minimization of the regularization parameter promoted a zero assignment to parameter vector $\theta^{(5)}$, mean normalization will simplay apply the addition of μ_i vector for each movie rating example predicted for **user**₅

$$\mu = \begin{bmatrix} 2.5 \\ 2.5 \\ 2 \\ 2.25 \\ 1.25 \end{bmatrix} \rightarrow Y = \begin{bmatrix} 5 & 5 & 0 & 0 & \mathbf{2.5} \\ 5 & ? & ? & 0 & \mathbf{2.5} \\ ? & 4 & 0 & ? & \mathbf{2} \\ 0 & 0 & 5 & 4 & \mathbf{2.25} \\ 0 & 0 & 5 & 0 & \mathbf{1.25} \end{bmatrix}$$

mean normalization is a method of feature scaling applied in machine learning algorithms. Unlike other applications of feature scaling, this method did not scale the movie ratings by dividing by the range (max – min value).

this is due to the ratings already having comparable scales (0 to 5 stars)