Задание №4

Итерационные вычисления

1. Общая постановка задачи

На языке Standard ML опишите реализацию у : real * real * int -> real * int для функции $y(x, \varepsilon, N)$ для заданного рекуррентного соотношения, соответствующего номеру вашего варианта. Функция должна вычислять для заданных чисел $0 < \varepsilon < 1$ и N пару (y_n, n) , где y_n — элемент заданной последовательности для минимального n, 0 < n < N, при котором выполняется условие

$$|y_n - y_{n-1}| < \varepsilon.$$

Если такого элемента не найдется, то функция должна выдавать (y_N, N) . При N = 0 функция должна выдавать $(y_0, 0)$, не зависимо от значения ε .

СТРОГО! В функции ни одно выражение не должно вычисляться дважды. В случае необходимости такого вычисления нужно связать значение вычисленного выражения с некоторым локальным именем для дальнейшего использования.

СТРОГО! В функции не должно определяться имен, используемых только один раз. Если с именем связано значение некоторого выражения, то это имя должно использоваться не менее двух раз.

СТРОГО! Все необходимые циклические процессы должны быть реализованы посредством хвостовой рекурсии.

В файле с программой приведите несколько вызовов функции у, демонстрирующих корректную работу в различных ситуациях.

Файлу с программой дайте имя task4-NN.sml, где NN—номер вашего варианта. Полученный файл загрузите на портал в качестве решения задания.

2. Предварительные замечания

Не следует выполнять никаких предварительных преобразований заданных выражений, в частности сокращений дробей.

Не следует проводить предварительных вычислений элементов последовательности, не заданных явно в задании.

Вспомогательные функции и значения должны определяться только в качестве локальных. Результат загрузки файла с решением в интерпретатор — только определение функции у.

Не следует делать предположений на счет задания, не сформулированных явно в условии. Если возникают сомнения—задайте вопрос на форуме «Язык Standard ML».

3. Пример выполнения задания

ЗАДАННОЕ ВЫРАЖЕНИЕ:

$$y_0 = 1$$
, $y_1 = \frac{x}{2}$, $y_{n+1} = \frac{xy_n^2 - 5}{y_{n-1}y_n}$

РЕШЕНИЕ: Содержимое файла task4-NN.sml:

```
і (* Функция у определяется с помощью шаблонов *)
| y (x, e, N) = (* иначе определим вспомогательные элементы *)
       let
         (* функция yNext - функция вычисления очередного i-го
          * элемента последовательности. Параметры yPred и yPredpred -
          * (i-1)-й (i-2)-й элементы последовательности, соответственно *)
         fun yNext (yPred, yPredpred, i) =
           (* Если разность yPred и yPredpred по модулю не превосходит
10
            * значения е, то yPred - искомый элемент *)
11
           if abs (yPred - yPredpred) < e then (yPred, i - 1)</pre>
           else
             let
                (* вычисляется yCur - i-й элемент последовательности *)
               val yCur = (x * yPred * yPred - 5.0)
                           / (yPredpred * yPred)
17
              in
                (* если і достигло значения N то вернуть yCur как результат
                * в противном случае запускается алгоритм
                * вычисления і+1-го элемента *)
               if i >= N then (yCur, i)
                else yNext (yCur, yPred, i + 1)
23
              end
25
         (* Для вычисления второго элемента последовательности
          * нам потрубуются значения нулевого и первого элементов.
          * Не будем повторять описание их вычисления, а используем
          * уже описанные алгоритмы. Так как функция у возвращает пару
          * значений, а второй элемент этой пары нам не нужен,
          * то с помощью шаблонов извлекаем первый элемент пары *)
         val (y0, _) = y (x, e, 0)
         val (y1, _) = y (x, e, 1)
33
         (* запуск вычисления 2-го элемента последовательности:
          * не повторяем вычисления нулевого и первого элемента,
          * а используем описанные ранее алгоритмы их вычисления. *)
37
         yNext (#1 (y (x, e, 1)), #1 (y (x, e, 0)), 2)
38
       end
41 (* TECTOBЫE ЗАПУСКИ *)
_{42} val test1 = y (0.09, 0.1, 0)
^{43} val test2 = y (0.09, 0.1, 1)
^{44} val test3 = y (0.09, 0.1, 60)
_{45} val test4 = y (0.09, 0.001, 5)
_{46} val test5 = y (0.09, 0.001, 60)
47 val test6 = y (0.09, 0.001, 500)
48 val test7 = y (0.09, 0.001, 501)
_{49} val test8 = y (0.09, 0.001, 1000)
50 val test9 = y (0.09, 0.001, 1001)
```

Текст примера можно загрузить с портала.

4. Варианты заданий

1.
$$y_0 = 1$$
, $y_1 = 0.5x$, $y_{n+1} = \frac{x^2 + 5}{100n}y_n + xy_{n-1}^3$

2.
$$y_0 = 1$$
, $y_1 = \frac{x}{6}$, $y_{n+1} = x^2 y_n + \frac{y_{n-1}}{n^2}$

3.
$$y_0 = 1$$
, $y_1 = x^2$, $y_{n+1} = \frac{5xy_n}{n^2} - y_{n-1}^2$

4.
$$y_0 = 0$$
, $y_1 = x^4$, $y_{n+1} = \frac{5xy_n}{n} - y_{n-1}$

5.
$$y_0 = 0$$
, $y_1 = x^2$, $y_{n+1} = x^2 y_n^2 + x \frac{n}{n^2 + 1} y_{n-1}^3$

6.
$$y_0 = 1$$
, $y_1 = x$, $y_{n+1} = \frac{x+7}{nx^2}y_n^3 - \frac{y_{n-1}}{n^2}$

7.
$$y_0 = 0.1$$
, $y_{n+1} = \frac{y_n^3 + 0.05}{x}$

8.
$$y_0 = 1$$
, $y_1 = \frac{x^2}{5}$, $y_{n+1} = \frac{2n}{n^2}y_n + x^2y_{n-1}$

9.
$$y_0 = 1$$
, $y_{n+1} = xy_n^4 + \frac{1}{n}$

10.
$$y_0 = 0.1$$
, $y_{n+1} = \frac{1}{6}(xy_n^2 + 0.05)$

11.
$$y_0 = 4$$
, $y_{n+1} = \frac{x - y_n^3}{60}$

12.
$$y_0 = 4.7$$
, $y_{n+1} = \sin y_n + x$

13.
$$y_0 = 1.8$$
, $y_{n+1} = \frac{3}{r}y_n - \frac{10}{13}y_n^2$

14.
$$y_0 = 0.03, y_1 = 0.0001,$$

 $y_{n+1} = \frac{x}{2}y_n^2 + y_{n-1}$

15.
$$y_0 = 0$$
, $y_1 = 0.5$, $y_{n+1} = x \frac{y_n + y_{n-1}}{2} + y_{n-1}x^2$

16.
$$y_0 = 1$$
, $y_1 = x$, $y_{n-1} + 1$ $y_n = \frac{y_{n-1} + 1}{n(y_{n-1} + 2)}y_n^2 + y_n x^2$

17.
$$y_0 = 1$$
, $y_1 = \frac{x}{2}$, $y_{n+1} = 2y_n - \frac{x^2}{n^2}y_{n-1}$

18.
$$y_0 = 0$$
, $y_1 = 1$, $y_{n+1} = \frac{n+5}{n^2} y_{n-1} + xy_n$

19.
$$y_0 = 1$$
, $y_1 = \frac{x}{5}$, $y_{n+1} = (x-1)\frac{y_n}{n} + y_{n-1}$

20.
$$y_0 = 1, y_1 = x,$$

 $y_{n+1} = \frac{x}{n}y_n^2 - y_{n-1}$