Problem Set: Calculus

J. Balasubramaniam[†]

I. CONTINUITY

- 1) Show that the following functions are continuous by using $\epsilon \delta$ definition.
 - (i) x^n

- (iv) $\ln x$
- (vii) $x^2 + x$
- (x) $\ln(\sin x)$

- (ii) $\sin x$
- (v) \sqrt{x} (viii) $\frac{x+1}{x-2}, x \neq 2$ (xi) $\sin(2x) + x^2$

- (iii) e^{2x}
- (vi) $\sin^{-1}(x)$
- (ix) $\sinh 4x$
- (xii) $(x+2)^3$
- 2) Investigate the continuity of each of the following functions at the indicated point x_0 .

(i)
$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0; \\ 0, & x = 0 \end{cases}, x_0 = 0.$$

(iii)
$$f(x) = \begin{cases} \frac{x^3 - 8}{x^2 - 4}, & x \neq 2; \\ 3, & x = 2 \end{cases}, x_0 = 2.$$

(ii)
$$f(x) = x - |x|, x_0 = 0.$$

(iii)
$$f(x) = \begin{cases} \frac{x^3 - 8}{x^2 - 4}, & x \neq 2; \\ 3, & x = 2 \end{cases}, x_0 = 2.$$

(iv) $f(x) = \begin{cases} \sin \pi x, & 0 < x < 1 \\ \ln x, & 1 < x < 2 \end{cases}, x_0 = 1.$

- 3) Give examples of functions with the following properties:
 - (a) A function f which is continuous at *only* a finite number of points.
 - (b) A function f which is discontinuous at *only* a finite number of points.
 - (c) An f which is nowhere continuous on the real line.
 - (d) An f which is continuous at every rational number.
 - (e) An f which is discontinuous at every rational and continuous at every irrational on $(0, \infty)$.
 - (f) A $c \in \mathbb{R}$ and two functions f,g that are discontinuous at c but such that f+g and fg are continuous at c.
- 4) Prove that any polynomial of finite degree over \mathbb{R} is continuous. Hence show that rational functions are continuous over their admissible domain.
- 5) Let f,g be two continuous functions on (a,b) such that f(x)=g(x) for every rational $x\in(a,b)$. Prove that f(x) = g(x) for all $x \in (a, b)$.

[†] The author is with the Department of Mathematics, IIT Hyderabad 502285 India e-mail: jbala@iith.ac.in.

6) Determine the domain of continuity of the following functions.

(i)
$$\sqrt{1-x^2}$$

(v)
$$\frac{1}{\sqrt{10+x}}$$

(ix)
$$\begin{cases} x^2 \sin\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

(ii)
$$\sin(e^{-x^2})$$

(vi)
$$\sin \frac{1}{(x-1)^2}$$

(x)
$$\sqrt{x+\sqrt{x}}$$

(iii)
$$\ln(1+\sin x)$$

(vii)
$$\sin\left(\frac{1}{\cos x}\right)$$

(xi)
$$\cos(\sqrt{1+x^2})$$

(iv)
$$\frac{1+\cos x}{3+\sin x}$$

(viii)
$$\sqrt{(x-3)(6-x)}$$

(xii)
$$\frac{\sqrt{1+|\sin|x}}{x}$$

- 7) (a) Prove that $f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right), & x \neq 0 \\ 5, & x = 0 \end{cases}$, is not continuous at x = 0.
 - (b) Can you redefine f(0) so that f is continuous at x = 0.
- 8) Let $f: \mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} .
 - (a) If f(r) = 0 for every rational number r, then prove that f(x) = 0 for all $x \in \mathbb{R}$.
 - (b) If f(r) = 0 for every irrational number r, then is it true that f(x) = 0 on whole of \mathbb{R} .
- 9) Show that every polynomial of odd degree with real coefficients has atleast one real root.
- 10) Prove that $\lim_{x\to 0} \frac{x^2 \sin(\frac{1}{x})}{\sin x} = 0$.
- 11) Let I = [a, b] and $f: I \to \mathbb{R}$ be a continuous function.
 - (a) If f(x) > 0 for all $x \in I$, show that there exists an $\alpha > 0$ such that $f(x) \ge \alpha$ for all $x \in I$.
 - (b) If for each $x \in I$ there exists a $y \in I$ such that $|f(y)| \leq \frac{1}{2}f(x)$, then show that there exists a $c \in I$ such that f(c) = 0.
 - (c) Show that f is bounded on I, i.e., there exists an M>0 such that |f(x)|< M for all $x\in I$. What if the interval $I=(-\infty,b]$ or $I=[a,\infty)$, will f still be bounded?
 - (d) Show that f attains both maximum and minimum values over I, i.e., there exists $p, q \in I$ such that $f(p) \leq f(x) \leq f(q)$ for all $x \in I$. What happens if either $a = -\infty$ or $b = \infty$?
 - (e) Let I = [0, 1] and f(0) = f(1). Prove that there exists a point $c \in [0, \frac{1}{2}]$ such that $f(c) = f\left(c + \frac{1}{2}\right)$.

- (f) Let I = [0, 1] and let $0 \le f(x) \le 1$ for all $x \in I$. Show that there exists a point $c \in I$ such that f(c) = c, i.e., f has a fixed point.
- (g) Show that if $f(a) \le a$ and $f(b) \ge b$ then f has a fixed point in I, i.e., there exists a point $c \in I$ such that f(c) = c.
- 12) Let K>0 and let $f:\mathbb{R}\to\mathbb{R}$ satisfy the condition $|f(x)-f(y)|\leqslant K|x-y|$ for all $x,y\in\mathbb{R}$. Show that f is continuous at every point $c\in\mathbb{R}$.
- 13) Define $g: \mathbb{R} \to \mathbb{R}$ as follows. $g(x) = \begin{cases} 2x, & x \in \mathbb{Q} \\ x+3, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$. Find all the points at which g is continuous.
- 14) Let $A \subseteq B \subseteq \mathbb{R}$, $f : \mathbb{B} \to \mathbb{R}$ and g be the restriction of f to A, i.e., g(x) = f(x) for $x \in A$.
 - If f is continuous at some $c \in A$, then show that g is also continuous at c.
 - Show by example that g is continuous at some $c \in A$ does not necessarily imply that f is continuous at that c.
- 15) Let $A, B \subseteq \mathbb{R}$, $f : A \to B$ and $g : B \to \mathbb{R}$. If f is continuous on A and g is continuous on B, show that $g \circ f$ is continuous on f(A).
- 16) While the intermediate value theorem assures you of a root of a continuous function which assumes both negative and positive values on a bounded interval, how do you actually find the roots? Read up on some such methods, viz., Bisection Method, Newton-Raphson method, etc. Investigate the additional requirements on f for such methods to be applicable.
- 17) Let $f:[a,b] \to \mathbb{R}$ be integrable on [a,x] for every $x \in [a,b]$ and let the indefinite integral A(x) be defined as $A(x) = \int_a^x f(t)dt.$

Show that A is continuous on whole of [a, b]. (At each end point we have one-sided continuity.)

II. DIFFERENTIATION

- 18) Find the derivatives of the following functions from the definition.
 - (i) $\frac{3+x}{3-x}, x \neq 3$

- (iii) $ln(1 + \sin x)$
- (v) $\frac{1}{\sqrt{10+x}}$

(ii) $\sqrt{2x-1}$

(iv) $\frac{1+\cos x}{3+\sin x}$

(vi) $\sin \frac{1}{(x-1)^2}$

(vii)
$$\sin\left(\frac{1}{\cos x}\right)$$

(ix)
$$x^2 \sin(\frac{1}{x}), x \neq 0; f(0) = 0$$
 (xi) $\cos(\sqrt{1+x^2})$

(viii)
$$\sqrt{(x-3)(6-x)}$$
, (x) $\sqrt{x+\sqrt{x}}$
 $3 \leqslant x \leqslant 6$

(x)
$$\sqrt{x+\sqrt{x}}$$

(xii)
$$\frac{\sqrt{1+|\sin x|}}{x}$$

19) Let
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0. \end{cases}$$

- (a). Is f differentiable at x = 0?
- (b). Is f' is continuous at x = 0?
- 20) Use L'Hospital's rule to evaluate the following limits.

$$(i) \lim_{x \to 0} \frac{e^{2x} - 1}{x}$$

(iv)
$$\lim_{x \to \infty} x^2 e^{-x}$$

(vii)
$$\lim_{x \to \infty} \frac{5x^2 - 3x}{7x^2 + 1}$$

(ii)
$$\lim_{x\to 0} \frac{1+\cos \pi x}{x^2-2x+1}$$

(v)
$$\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}}$$

(viii)
$$\lim_{x \to \infty} \left(x - \sqrt{x + x^2} \right)$$

(iii)
$$\lim_{x \to \infty} \frac{3x^2 - x + 5}{5x^2 + 6x - 3}$$

(vi)
$$\lim_{x \to 1} \frac{(2x-x^4)^{\frac{1}{2}}-x^{\frac{1}{3}}}{1-x^{\frac{3}{4}}}$$

(ix)
$$\lim_{x \to \infty} \frac{\sqrt{x+2}}{\sqrt{x+1}}$$