Topics: Duality

1. Consider the optimization problem

with variable $x \in \mathbb{R}$

- (a) Give the feasible set, the optimal value, and the optimal solution.
- (b) Plot the objective versus x. On the same plot, show the feasible set, optimal point and value, and plot the Lagrangian $L(x,\lambda)$ versus x for a few positive values of λ . Verify the lower bound property $p^* \geq \inf_x L(x,\lambda)$ for $\lambda \geq 0$. Derive and sketch the Lagrange dual function g.
- (c) State the dual problem, and verify that it is a concave maximization problem. Find the dual optimal value and dual optimal solution λ^* . Does strong duality hold?
- 2. Find the dual function of the LP

Also give the dual problem,

3. Derive a dual problem for

minimize
$$\sum_{i=1}^{N} \|A_i x + b_i\}_2 + (1/2) \|x - x_0\|_2^2$$

where $A_i \in \mathbb{R}^{m_i \times n}$, $b_i \in \mathbb{R}^{m_i}$ and $x_0 \in \mathbb{R}^n$. First introduce new variables $y_i = A_i x + b_i$.

4. We consider the convex piecewise-linear minimization problem

minimize
$$\max_{i=1,\dots,m} (a_i^T x + b_i) \tag{1}$$

with variable $x \in \mathbb{R}^n$

(a) Derive a dual problem based on the equivalent problem

minimize
$$\max_{i=1,...,m} y_i$$

subject to $a_i^T x + b_i = y_i, i = 1,...,m$

(b) Alternatively, formulate the problem (1) as an LP, and find the dual of that LP. Is that dual problem same as the result in (a)?

(c) Suppose that, instead of hard-pointwise maximum in (1), we use a soft (smooth) max function given by

minimize
$$\log \left(\sum_{i=1}^{m} \exp(a_i^T x + b_i) \right)$$
 (2)

We would like to derive a dual for problem (2) Show that the dual problem is given by

maximize
$$b^T \nu - \sum_{i=1}^m \nu_i \log \nu_i$$

subject to $\mathbf{1}^T \nu = 1, \ \nu \ge 0, \ A^T \nu = 0$

You may consider problem

minimize
$$\log \left(\sum_{i=1}^{m} \exp(y_i) \right)$$

subject to $y = Ax + b$

(d) Denote the optimal value of (1) and (2) by p^* and p_{soft}^* respectively. Show that

$$0 \le p_{\text{soft}}^* - p^* \le \log m$$

You may want to use the fact that the optimal value of entropy maximization problem

maximize
$$-\sum_{i=1}^{m} z_i \log z_i$$
 subject to
$$\mathbf{1}^T z = 1$$

is given by $\log m$ (try to solve the entropy maximization using KKT condition!)

5. Consider the QCQP

minimize
$$x_1^2 + x_2^2$$

subject to $(x_1 - 1)^2 + (x_2 - 1)^2 \le 1$
 $(x_1 - 1)^2 + (x_2 + 1)^2 \le 1$

with variable $x \in \mathbb{R}^2$.

- (a) Sketch the feasible set and level sets of the objective. Find the optimal point x^* and optimal value p^* .
- (b) Give the KKT conditions. Do there exist Lagrange multipliers λ_1^* and λ_2^* that prove that x^* is optimal?
- (c) Derive and solve the Lagrange dual problem. Does strong duality hold?
- 6. Consider the equality constrained least-squares problem

minimize
$$||Ax - b||_2^2$$

subject to $Gx = h$

where $A \in \mathbb{R}^{m \times n}$, with rank A = n, and $G \in \mathbb{R}^{p \times n}$ with rank G = p

- (a) Find Lagrange dual function
- (b) Find KKT condition.
- (c) Derive expressions for the primal solution x^* and the dual solution ν^* .