A.Three (three.in/out),3s,1024MB

给定长度为 n 的序列 a ,对于一个长度不小于 3 的区间,定义其价值为区间中最大的三个数的积。 求所有区间价值和。答案对 10^9+7 取模。

输入格式

第一行一个整数 n ,第二行 n 个整数表示序列 a 。

输出格式

一行一个整数表示答案。

样例

input1

```
6
1 1 4 5 1 4
```

output1

200

数据范围

对于 10%的数据, $n \le 100$

对于 30%的数据, $n \leq 1000$

对于 70%的数据, $n \le 10^5$

对于 100%的数据, $n \leq 10^6$

对于所有数据, $0 < a_i \le 10^6$

B.Robot (robot.in/out),3s,512MB

A和B各有一个机器人,它们一开始(第0时刻)分别位于数轴上的某个整点(可以不同)。

A 会向他的机器人依次下达 n 条指令(指令编号从 1 开始)。其中第 i 条指令的内容是:在接下来的 A_i 个时刻都以沿正方向 V_i 每时刻的速度在数轴上匀速运动($V_i \in \{-1,0,1\}$)。

B 也会类似地向他的机器人依次下达 m 条指令(指令编号从 1 开始)。其中第 i 条指令的内容是:在接下来的 B_i 个时刻都以沿正方向 W_i 每时刻的速度在数轴上匀速运动($W_i \in \{-1,0,1\}$)。

保证 $\sum_{i=1}^n A_i = \sum_{i=1}^m B_i$, 将这个总和记作 L。

如果在某个**整数**时刻(即包括 0 时刻),两个机器人位于数轴上同一个位置,则认为这个时刻是优秀的。

现在给出操作序列,问对于所有可能的起始位置,最多有多少优秀的时刻。

输入格式

第一行一个非负整数 T 表示数据组数。

对于每组数据:

第一行一个整数 n 接下来 n 行每行两个整数 V_i, A_i 。

接下来一行一个整数 m, 之后 m 行每行两个整数 W_i, B_i 。

输出格式

对于每组数据,输出一行一个整数表示答案。

样例

input1

output1

```
3
2
```

数据范围

n, m	$\sum (n+m)$	测试点编号	L	V_i	W_i
≤ 100	$\leq 1,000$	1	≤ 200	$\in \{-1, 0, 1\}$	$\in \{-1, 0, 1\}$
≤ 1,000	≤ 10,000	2	= n = m		
		3~4	$\leq 3,000$		
		5~6	$\leq 10^{9}$		
$\leq 10^{5}$	$\leq 2 \times 10^6$	7~8	= n = m		
		9~10	$\leq 2 \times 10^5$		
		11	$\leq 10^{18}$	€ {0}	
		12~14		$\in \{0, 1\}$	$\in \{-1, 0\}$
		15~18			$\in \{0, 1\}$
		19~25		$\in \{-1, 0, 1\}$	$\in \{-1, 0, 1\}$

对于所有数据,保证 $n, m, A_i, B_i \geq 1$ 。

C.A(a.in/out),1s,512MB

给定c长度为 n 的整数序列 a_1,a_2,\ldots,a_n ,你需要维护 m 次操作,每个操作可能是下面两种中的一种:

- $1 \times y$ 将序列中所有的 x 变为 y。
- 2 x y 询问序列中同时包含 x 和 y 的区间的最短长度。如果不存在,输出 yyb is our red sun and zsy is our blue moon

注意: 区间 [l,r] 的长度定义为 r-l 。

强制在线。

输入格式

第一行两个数n, m表示序列长度和操作次数。

接下来一行 n 个整数,表示初始的 a 序列。

接下来 m 行,每行三个数 opt,x',y' ,真正的 x,y 需要通过将 x',y' 异或 lastans 得到。lastans 为上一个询问操作的答案,初始为 0 ,如果上一个询问答案为 yyb is our red sun and zsy is our blue moon ,则 lastans=0。

输出格式

对于每个 opt=2 的操作,输出同时包含 x,y 的最短区间的长度。如果不存在,输出 yyb is our red sun and zsy is our blue moon

样例

input1

```
5 5
1 2 3 4 1
2 1 4
1 3 0
2 0 2
1 0 2
2 0 2
```

output1

```
1
1
yyb is our red sun and zsy is our blue moon
```

数据范围

对于5%的数据, $n, m \leq 200$

对于另外5%的数据, $n, m \leq 2000$

对于另外20%的数据,opt=2

对于 100% 的数据,保证 $n,m \leq 100000$

对于所有的数据,有所有数据保证解密后的所有数字 ≤ 100000 ,且 ≥ 0