Paths of analysis*

Synthia

October 11, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Tunnels, FGI, FGI with protections

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

Strategies: none selected

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection

with the rights afforded in the license agreement and for no other purpose.

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 139.14

Figure 1: Outline of path 1

2.1.1 Reduction of ester to allylic alcohol

Substrates:

1. methyl 4-bromobut-2-enoate - SYNTHONIXCORPORATION

Products:

1. (e)-4-bromo-2-buten-1-ol

 $\textbf{Typical conditions:} \ \mathrm{DIBAL\text{-}H.DCM}$

Protections: none

Reference: 10.1021/ja960040w Retrosynthesis ID: 9900043

2.1.2 Acylation of primary alcohols

Substrates:

1. (e)-4-bromo-2-buten-1-ol

2. 5-phenyl-penta-2,4-dienoic acid

Products:

 $1. \ O{=}C(C{=}CC{=}Cc1ccccc1)OCC{=}CCBr$

 $\textbf{Typical conditions:} \ \mathsf{DCC.DMAP.DCM}$

Protections: none

Reference: 10.1016/j.molstruc.2016.10.087 and 10.1016/j.bmc.2014.12.043 and 10.1016/j.steroids.2013.03.004 and 10.3390/molecules21091123

2.1.3 Diels-Alder

Substrates:

 $1. \ \, O{=}C(C{=}CC{=}Cc1ccccc1)OCC{=}CCBr$

Products:

1. O=C1OCC2C1C=CC(c1cccc1)C2CBr

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO;2-Z AND <math>10.1021/ja062508t

Retrosynthesis ID: 18116

2.1.4 Wittig-Schlosser olefination

Substrates:

- 1. O=C1OCC2C1C=CC(c1cccc1)C2CBr
- 2. Ethanal available at Sigma-Aldrich

Products:

 $1. \ C/C=C/C1C(c2cccc2)C=CC2C(=O)OCC21$

Typical conditions: 1.PPh3 or trialkylphosphite.2.base.aldehyde.3.base

Protections: none

Reference: 10.1021/ol049701h and 10.1021/ja00535a063 and Kurti and Czako; Strategic Applications of Named Reactions in Organic Synthesis. 1st edn., 488-489.

Retrosynthesis ID: 9546

2.1.5 Claisen Condensation

Substrates:

- $1. \ C/C=C/C1C(c2cccc2)C=CC2C(=O)OCC21$
- 2. Methyl acetate available at Sigma-Aldrich

Products:

 $1. \ C/C = C/C1C(c2cccc2)C = CC2(C(C) = O)C(=O)OCC12$

Typical conditions: Base.Solvent

Protections: none

Reference: 10.1021/cr020703u and 10.1021/cr60088a002

2.2 Path 2

Score: 146.56

Figure 2: Outline of path 2

2.2.1 Suzuki coupling of vinyl bromides with alkenyl boronic acids pinacol esters

Substrates:

1. 3-bromo-2,5-dihydrofuran-2-one - available at Sigma-Aldrich

2. Vinylboronic acid pinacol ester - available at Sigma-Aldrich

Products:

1. 3-vinyl-2(5h)-furanone

 ${\bf Typical\ conditions:}\ {\bf Pd\ catalyst.base.solvent}$

Protections: none

Reference: 10.1021/cr00039a007 and $10.1007/3418_2012_32$ and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H

2.2.2 Coupling of alkynes and alcohols

Substrates:

1. 2-Buten-1-ol - available at Sigma-Aldrich

 $2. \ \, \hbox{1-Phenyl-1-propyne} \, \hbox{-} \quad \, \textit{available at Sigma-Aldrich}$

Products:

1. C13H16O

Typical conditions: H2Ru(CO)(PPh3)3.2,4,6-(iPr)3PhSO3H.SL-J009-

1. TBAI. IPA. THF. 95C

Protections: none

Reference: DOI: 10.1021/jacs.5b00747

2.2.3 Appel Reaction

Substrates:

1. C13H16O

Products:

 $1. \ C{=}CC(c1cccc1)C(Br)/C{=}C/C$

Typical conditions: PPh3.CBr4

 ${\bf Protections:}\ {\bf none}$

Reference: 10.1016/j.jfluchem.2015.03.009 and 10.1016/j.tet.2005.12.006 and 10.1021/jm00161a029 and 10.1055/s-1995-5215

Retrosynthesis ID: 9990042

2.2.4 Conjugated addition of organocuprate-acylation of enones and enoate esters

Substrates:

- 1. C=CC(c1cccc1)C(Br)/C=C/C
- 2. 3-vinyl-2(5h)-furanone
- 3. Acetyl chloride available at Sigma-Aldrich

Products:

 $1. \ C=CC(c1ccccc1)C(/C=C/C)C1COC(=O)C1(C=C)C(C)=O$

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.3987/COM-99-S143 AND 10.1021/ja00148a023 AND

10.1016/S0040-4039(01)80891-1

Retrosynthesis ID: 20523

2.2.5 Ring-Closing Metathesis

Substrates:

 $1. \ C = CC(c1ccccc1)C(/C = C/C)C1COC(=O)C1(C = C)C(C) = O$

Products:

 $1. \ C/C=C/C1C(c2cccc2)C=CC2(C(C)=O)C(=O)OCC12$

Typical conditions: catalyst e.g. Hoveyda-Grubbs . solvent e.g. CH2Cl2

Protections: none

Reference: DOI: 10.1002/anie.200800693 and 10.1021/acs.orglett.8b04003 and 10.1021/jo0264729 and 10.1021/ja072334v and 10.1002/ejoc.201001102

2.3 Path 3

Score: 146.56

Figure 3: Outline of path 3

2.3.1 Coupling of alkynes and alcohols

Substrates:

1. 2-Buten-1-ol - available at Sigma-Aldrich

2. 1-Phenyl-1-propyne - available at Sigma-Aldrich

Products:

1. C13H16O

Typical conditions: H2Ru(CO)(PPh3)3.2,4,6-(iPr)3PhSO3H.SL-J009-

1. TBAI. IPA. THF. 95C

Protections: none

Reference: DOI: 10.1021/jacs.5b00747

2.3.2 Appel Reaction

Substrates:

1. C13H16O

Products:

 $1. \ C{=}CC(c1ccccc1)C(Br)/C{=}C/C$

Typical conditions: PPh3.CBr4

 ${\bf Protections:}\ {\rm none}$

Reference: 10.1016/j.jfluchem.2015.03.009 and 10.1016/j.tet.2005.12.006 and 10.1021/jm00161a029 and 10.1055/s-1995-5215

Retrosynthesis ID: 9990042

2.3.3 Suzuki coupling of vinyl bromides with alkenyl boronic acids

Substrates:

1. Vinylboronic acid - available at Sigma-Aldrich

2. 3-bromo-2,5-dihydrofuran-2-one - available at Sigma-Aldrich

Products:

1. 3-vinyl-2(5h)-furanone

Typical conditions: Pd catalyst.base.solvent

Protections: none

Reference: 10.1021/cr00039a007 and 10.1007/3418_2012_32 and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H

Retrosynthesis ID: 24926

2.3.4 Conjugated addition of organocuprate-acylation of enones and enoate esters

Substrates:

- 1. C=CC(c1cccc1)C(Br)/C=C/C
- 2. 3-vinyl-2(5h)-furanone
- 3. Acetyl chloride available at Sigma-Aldrich

Products:

 $1. \ C{=}CC(c1ccccc1)C(/C{=}C/C)C1COC({=}O)C1(C{=}C)C(C){=}O$

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.3987/COM-99-S143 AND 10.1021/ja00148a023 AND

10.1016/S0040-4039(01)80891-1

2.3.5 Ring-Closing Metathesis

Substrates:

 $1. \ C=CC(c1ccccc1)C(/C=C/C)C1COC(=O)C1(C=C)C(C)=O$

Products:

 $1. \ C/C=C/C1C(c2cccc2)C=CC2(C(C)=O)C(=O)OCC12$

Typical conditions: catalyst e.g. Hoveyda-Grubbs . solvent e.g. CH2Cl2

Protections: none

Reference: DOI: 10.1002/anie.200800693 and 10.1021/acs.orglett.8b04003 and 10.1021/jo0264729 and 10.1021/ja072334v and 10.1002/ejoc.201001102

Retrosynthesis ID: 31014187

2.4 Path 4

Score: 154.38

2.4.1 Pd-catalyzed formylation of vinyl halides

Substrates:

Figure 4: Outline of path 4

1. tert-Butyl isocyanide - available at Sigma-Aldrich

2. 3-bromo-2,5-dihydrofuran-2-one - available at Sigma-Aldrich

Products:

1. O=CC1=CCOC1=O

Typical conditions: Pd(OAc)2.JohnPhos.Na2CO3.H2O.Et3SiH.DMF.65C

 ${\bf Protections:}\ {\bf none}$

Reference: DOI: 10.1021/ol5014262

Retrosynthesis ID: 3104

2.4.2 Tebbe Olefination

Substrates:

1. O = CC1 = CCOC1 = O

Products:

 $1. \ \, 3\text{-vinyl-}2(5h)\text{-furanone}$

 $\textbf{Typical conditions:} \ \text{Cp2TiCl2.AlMe3.} toluene$

Protections: none

Reference: 10.1016/j.tet.2007.03.015 and 10.1002/9780470638859.conrr617

Retrosynthesis ID: 11714

2.4.3 Coupling of alkynes and alcohols

Substrates:

 $1. \ \, \hbox{$2$-Buten-1-ol-} \quad \, \textit{available at Sigma-Aldrich}$

2. 1-Phenyl-1-propyne - available at Sigma-Aldrich

Products:

1. C13H16O

Typical conditions: H2Ru(CO)(PPh3)3.2,4,6-(iPr)3PhSO3H.SL-J009-

1. TBAI. IPA. THF. 95C

Protections: none

Reference: DOI: 10.1021/jacs.5b00747

2.4.4 Appel Reaction

Substrates:

1. C13H16O

Products:

 $1. \ C{=}CC(c1cccc1)C(Br)/C{=}C/C$

Typical conditions: PPh3.CBr4

 ${\bf Protections:}\ {\bf none}$

Reference: 10.1016/j.jfluchem.2015.03.009 and 10.1016/j.tet.2005.12.006 and 10.1021/jm00161a029 and 10.1055/s-1995-5215

Retrosynthesis ID: 9990042

2.4.5 Conjugated addition of organocuprate-acylation of enones and enoate esters

Substrates:

- 1. C=CC(c1cccc1)C(Br)/C=C/C
- 2. 3-vinyl-2(5h)-furanone
- 3. Acetyl chloride available at Sigma-Aldrich

Products:

 $1. \ C=CC(c1ccccc1)C(/C=C/C)C1COC(=O)C1(C=C)C(C)=O$

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.3987/COM-99-S143 AND 10.1021/ja00148a023 AND

10.1016/S0040-4039(01)80891-1

Retrosynthesis ID: 20523

2.4.6 Ring-Closing Metathesis

Substrates:

 $1. \ C = CC(c1ccccc1)C(/C = C/C)C1COC(=O)C1(C = C)C(C) = O$

Products:

 $1. \ C/C=C/C1C(c2cccc2)C=CC2(C(C)=O)C(=O)OCC12$

Typical conditions: catalyst e.g. Hoveyda-Grubbs . solvent e.g. CH2Cl2

Protections: none

 $\textbf{Reference:} \ \ DOI: \ \textit{10.1002/anie.200800693} \ \ \text{and} \ \ \textit{10.1021/acs.orglett.8b04003} \ \ \text{and}$

10.1021/jo0264729 and 10.1021/ja072334v and 10.1002/ejoc.201001102

2.5 Path 5

Score: 164.14

Figure 5: Outline of path 5

2.5.1 Synthesis of lactones from epoxides

Substrates:

- 1. Oxirane available at Sigma-Aldrich
- 2. Ethyl but-3-enoate available at Sigma-Aldrich

Products:

1. 3-vinyl-dihydro-furan-2-one

Typical conditions: EtONa.EtOH.rt

Protections: none

Reference: 10.1021/ja9049959 and 10.1016/j.tetlet.2014.12.024 and 10.1021/jo00077a012 and 10.1016/0040-4039(96)00494-7 and 10.1002/chem.201403294

2.5.2 Enol esters and ethers synthesis

Substrates:

1. 3-vinyl-dihydro-furan-2-one

2. TMSCl - available at Sigma-Aldrich

Products:

 $1. \ C{=}CC1{=}C(O[Si](C)(C)C)OCC1$

Typical conditions: 1. Et3N.Electrophile

Protections: none

Reference: 10.1016/S0040-4020(03)00977-3 AND 10.1021/ja00056a002

Retrosynthesis ID: 7799

2.5.3 Dehydrogenation of silyl enol ethers

Substrates:

1. C=CC1=C(O[Si](C)(C)C)OCC1

Products:

1. 3-vinyl-2(5h)-furanone

Typical conditions: Pd(OAc)2.Cu(OAc)2.O2.MeCN

Protections: none

Reference: 10.1271/bbb.60.405 and 10.1039/C3CC46778C and US2015284405 p.40 and 10.1016/S0040-4039(01)81518-5 and US2010204477 p. 15-16 and 10.1016/0040-4039(95)00694-8 and 10.1021/jo00089a034 and 10.1016/S0040-4020(01)90587-3 and 10.1080/00397919008052802 and 10.1021/ja00218a060

Retrosynthesis ID: 9999877

2.5.4 Coupling of alkynes and alcohols

Substrates:

1. 2-Buten-1-ol - available at Sigma-Aldrich

2. 1-Phenyl-1-propyne - available at Sigma-Aldrich

Products:

1. C13H16O

Typical conditions: H2Ru(CO)(PPh3)3.2,4,6-(iPr)3PhSO3H.SL-J009-

1.TBAI.IPA.THF.95C

Protections: none

Reference: DOI: 10.1021/jacs.5b00747

2.5.5 Appel Reaction

Substrates:

1. C13H16O

Products:

 $1. \ C{=}CC(c1cccc1)C(Br)/C{=}C/C$

Typical conditions: PPh3.CBr4

 ${\bf Protections:}\ {\bf none}$

Reference: 10.1016/j.jfluchem.2015.03.009 and 10.1016/j.tet.2005.12.006 and 10.1021/jm00161a029 and 10.1055/s-1995-5215

Retrosynthesis ID: 9990042

2.5.6 Conjugated addition of organocuprate-acylation of enones and enoate esters

Substrates:

- 1. C=CC(c1cccc1)C(Br)/C=C/C
- 2. 3-vinyl-2(5h)-furanone
- 3. Acetyl chloride available at Sigma-Aldrich

Products:

 $1. \ C = CC(c1ccccc1)C(/C = C/C)C1COC(=O)C1(C = C)C(C) = O$

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.3987/COM-99-S143 AND 10.1021/ja00148a023 AND

10.1016/S0040-4039(01)80891-1

Retrosynthesis ID: 20523

2.5.7 Ring-Closing Metathesis

Substrates:

 $1. \ C=CC(c1ccccc1)C(/C=C/C)C1COC(=O)C1(C=C)C(C)=O$

Products:

 $1. \ C/C=C/C1C(c2cccc2)C=CC2(C(C)=O)C(=O)OCC12$

 $\textbf{Typical conditions:} \ \ \text{catalyst e.g.} \ \ \text{Hoveyda-Grubbs} \ \ . \ \ \text{solvent e.g.} \ \ \text{CH2Cl2}$

Protections: none

Reference: DOI: 10.1002/anie.200800693 and 10.1021/acs.orglett.8b04003 and

10.1021/jo0264729 and 10.1021/ja072334v and 10.1002/ejoc.201001102