FIT3003: Major Assignment 2

Monash Equipment Centre: Dataware House and Analysis

Table of Contents

FIT3003: Major Assignment 2	1
Table of Contents	2
A. Transformation Stage	3
(a) Preparation Stage	3
(b) Design Task A	10
(c) Suggestion to increase the granularity	10
(d) SCD	11
Star Schema A implementation	12
B. Analysis Stage	14
1. Equipments Sold vs Hired	14
2. Revenue generation through the years (2018-2020)	15
3. Product Category Analysis	17

A. Transformation Stage

(a) Preparation Stage

<u>Error 1 & 2:</u> A null value as description in the category table, also affecting the equipment table

BEFORE

Code:

```
SELECT *
FROM ME_CATEGORY;
```

Output:

But before removing this, we need to check the other tables where a foreign key has been used a foreign key.

Code:

```
SELECT *

FROM ME_EQUIPMENT

WHERE CATEGORY_ID = 15;
```

Category_id is also used in the equipment table. Over here we can see that the equipment table has a record which has the category id 15.

Output:

The equipment_id 158 has an invalid category_id. But seeing that the other tables that use equipment_id don't have a value of equipment id 158. So we don't need to worry about it.

So we delete this record from the equipment table and the category table.

AFTER

Code:

```
DELETE FROM ME_CATEGORY
WHERE CATEGORY_ID = 15;
```

Output:

Now only 14 rows are left in the category table.

Code:

```
DELETE FROM ME_EQUIPMENT
WHERE CATEGORY_ID = 15;
```

Output:

The record from the equipment table which had category id 15 is removed as well.

Error 3: Customer table duplicates

BEFORE

```
SELECT *

FROM ME_CUSTOMER

WHERE (CUSTOMER_ID, CUSTOMER_TYPE_ID, NAME, GENDER, ADDRESS_ID, PHONE,

EMAIL) IN (

SELECT CUSTOMER_ID, CUSTOMER_TYPE_ID, NAME, GENDER, ADDRESS_ID,

PHONE, EMAIL

FROM ME_CUSTOMER
```

```
GROUP BY CUSTOMER_ID, CUSTOMER_TYPE_ID, NAME, GENDER, ADDRESS_ID,
PHONE, EMAIL
HAVING COUNT(*) > 1
)
ORDER BY CUSTOMER_ID, NAME;
```

Output:

	CUSTOMER_ID	CUSTOMER_TYPE_ID	NAME	GENDER	ADDRESS_ID	PHONE	EMAIL
1	52		Abbie Maddie	Male	52	904 627 9038	amaddie1f@columbia.edu
2			Abbie Maddie	Male	52	904 627 9038	amaddie1f@columbia.edu
3	52		Abbie Maddie	Male	52	904 627 9038	amaddie1f@columbia.edu
4			Abbie Maddie	Male	52	904 627 9038	amaddie1f@columbia.edu

AFTER

Code:

```
DELETE FROM ME_CUSTOMER

WHERE ROWID NOT IN (

SELECT MIN(ROWID)

FROM ME_CUSTOMER

GROUP BY CUSTOMER_ID

);
```

```
SELECT COUNT(*) - COUNT(DISTINCT CUSTOMER_ID || '-' || CUSTOMER_TYPE_ID || '-' || NAME|| '-' || GENDER || '-' || ADDRESS_ID || '-' ||PHONE|| '-' ||EMAIL ) AS DUPLICATES
FROM ME_CUSTOMER;
```

Output:

We remove the duplicates

Error 4: Customer table gender values are inconsistent

BEFORE

```
SELECT *

FROM ME_CUSTOMER

WHERE GENDER <> 'Male'

AND GENDER <> 'Female';
```

Output:

	CUSTOMER_ID	CUSTOMER_TYPE_ID	NAME	GENDER	ADDRESS_ID	PHONE	EMAIL
23	23		Astra Petlyura	Female	23	410 351 7284	apetlyuram@bizjournals.com
24	24		Enrika Aleksich	Female	24	731 262 1586	ealeksichn@ameblo.jp
			Burton Allery	Male		610 880 4187	balleryo@pbs.org
26	26		Germayne Winsper	Male	26	301 243 7927	gwinsperp@phoca.cz
27	27		Darrelle Durgan	F	27	659 308 2928	ddurganq@mapquest.com
28	28		Ruttger Hamfleet	Male	28	313 240 5119	rhamfleetr@howstuffworks.com
29	29		West Kopf	Male	29	786 152 7034	wkopfs@umich.edu
30	30		Adlai Dunbavin	Male	30	413 346 6507	adunbavint@bluehost.com
31	31		Patti Creggan	Female	31	289 284 5903	pcregganu@prnewswire.com
32			Grata Newcom	Female		996 106 1417	gnewcomv@blogtalkradio.com

AFTER

Code:

```
UPDATE ME_CUSTOMER
SET GENDER = 'Male'
WHERE GENDER IN ('M');

UPDATE ME_CUSTOMER
SET GENDER = 'Female'
WHERE GENDER IN ('F');
```

Output:

We will replace these errors with the full form for F and M.

The customer ids where the gender values were inconsistent, have been updated.

Error 5: Duplicate in Customer type table

BEFORE

Code:

```
SELECT *
FROM ME_CUSTOMERTYPE;
```

Output:

Both these records are stating the same thing, so we will just delete the record with the description of 'business'.

AFTER

Code:

```
DELETE FROM ME_CUSTOMERTYPE
WHERE description = 'business';
```

Output:

Error 6: Invalid date spotted in the Hire table

BEFORE

Code:

```
SELECT hire_id, START_DATE, END_DATE, END_DATE - START_DATE AS
duration_days
FROM ME_HIRE
WHERE END_DATE-START_DATE <0;
```

Output:

Hire id 302 has a start date after the end date, we can see from the negative duration days calculated.

So we delete this record.

AFTER

Code:

```
DELETE FROM ME_HIRE
WHERE HIRE_ID = 302;
```

Output:

No output after we search for invalid dates.

Error 7: Invalid staff id spotted in the Hire table

BEFORE

Code:

```
select * from me_hire where staff_id >51;
```

Output:

	HIRE_ID	START_DATE	END_DATE	EQUIPMENT_ID	QUANTITY	UNIT_HIRE_PRICE	TOTAL_HIRE_PRICE	CUSTOMER_ID	STAFF_ID
1	301	08/12/2020 12:00:00	08/12/2020 12:00:00	190		300	300	181	174
2	303	25/01/2090 12:00:00	27/12/2099 12:00:00	43		50	-150		223
3	304	08/12/2020 12:00:00	08/12/2020 12:00:00	114		350		34	85

AFTER

Code:

```
delete from me_hire where staff_id > 51;
select * from me_hire where staff_id >51;
```

Output:

Error 8: Sales table has a negative quantity

BEFORE

```
select *
from ME_SALES
```

```
WHERE QUANTITY < 0;
```

Output:

The quantity for sales_id 151 is negative which is wrong. So will be deleting this record as well.

AFTER

Code:

```
DELETE FROM ME_SALES
WHERE SALES_ID = 151;
select *
from ME_SALES
WHERE QUANTITY < 0;
```

Output:

(b) Design Task A

(c) Suggestion to increase the granularity

To increase the granularity of Star Schema A, here are a few suggestions:

1. Adding equipment-level details

By introducing an Equipment Dimension, we can include the EquipmentID in the fact tables. This allows the fact tables to record exactly which equipment item was sold or hired, instead of keeping it only at the category level. It would also let us view details such as the manufacturer and the year each equipment was made.

2. Adding a customer dimension

Including a Customer Dimension would help identify repeat customers and analyze customer loyalty. It would also provide more insights into how different factors, such as gender or customer type, influence the sales or hire of equipment.

3. Expanding the staff dimension

By adding more details to the Staff Dimension, we can see how many staff members work in each branch and analyze the ratio of male to female employees. This can also support more detailed performance comparisons across branches.

(d) SCD

Slowly changing dimensions are dimensions which have records which change slowly over a period of time.

There are 6 types of SCD:

Type 0

Type 1: In this type of dimension, the record is changed directly and no past history is saved **Type 2:** This type preserves the full history of data by creating a new record every time a

record is updated. Each version of this record is assigned a unique identifier like an id which helps us track the evolution of the record.

Type 3:This type only records the current and the previous record.

Type 4: This type makes a new table which stores the complete history of each record

Type 6: This is a hybrid approach where types 1, 2 and 3 are combined together. It preserves full history with new records, tracks previous values in columns and also allows certain attributes to be updated directly for convenience.

My star schema contains a temporal dimension which is the staff dimension. Staff relocation is a very common thing, so in this dimension there can be the SCD like the following -

For easier explanation lets take for example a staff member with staff id - 1, who is currently in the Caulfield branch and is relocated to the Toorak branch.

In this case these will how the different types of SCD work:

- Type 1: The company branch column for staff id 1 will be directly updated
- Type 2: In this case, a new record for the staff id will be created and keeping
 everything else the same, only the company branch for that new record will be
 changed to Toorak.
- **Type 3**: A new column will be created in the dimension named something like *previous_branch*. This will store the past branch and the existing branch column would store the current branch information.
- **Type 4:** The Staff Dimension will only keep the current branch of each staff member. To keep track of any branch changes, another dimension called StaffHistoryDIM will be added. This table will store the previous branches where the staff have worked, so we can still see their past branch information when needed.
- Type 6: Both the current and previous branch details will be kept in the same record, and a new row will be added whenever a staff member moves to a new branch. This way, we can see their full branch history while still keeping their latest branch information updated.

Star Schema A implementation

Time Dimension

Table Structure

Table example

Staff Dimension

Table Structure

Table example

	STAFF_ID	COMPANY_BRANCH
1		Caulfield
2		Hughesdale
3		Clayton
4		Toorak
5		Clayton
6		Eltham
7		Chadstone
8		Docklands

Category Dimension

Table Structure

	COLUMN_NAME	DATA_TYPE	NULLABLE	DATA_DEFAULT	COLUMN_ID
1	CATEGORY_ID	NUMBER		(null)	1
2	CATEGORY_DESCRIPTION	VARCHAR2		(null)	2

Table example

CustomerType Dimension

Table Structure

1		COLUMN_NAME	DATA_TYPE	NULLABLE	DATA_DEFAULT	COLUMN_ID
1		CUSTOMERTYPEID	NUMBER		(null)	1
	2	DESCRIPTION	VARCHAR2	Υ	(null)	2

Table example

	CUSTOMERTYPEID	DESCRIPTION
1		Individual
2		Business

SalesScale Dimension

Table Structure

	COLUMN_NAME	DATA_TYPE	NULLABLE	DATA_DEFAULT	COLUMN_ID
	SCALEID	NUMBER		(null)	1
	SCALEDESC	VARCHAR2		(null)	2

Table example

	SCALEID	I	SCALEDESC
1	1	1	Low Sales (Below \$5000)
2	2	2	Medium Sales (\$5000 - \$10000)
3	3	3	High Sales (Above \$10000)

Hire Fact Table

Table Structure

	COLUMN_NAME	DATA_TYPE	NULLABLE	DATA_DEFAULT	COLUMN_ID
1	CATEGORY_ID	NUMBER		(null)	1
2	STAFF_ID	NUMBER		(null)	2
3	TIME_ID	NUMBER		(null)	3
4	CUSTOMER_TYPE_ID	NUMBER		(null)	4
5	TOTAL_HIRE_REVENUE	NUMBER		(null)	5
6	TOTAL_EQUIPMENTS_HIRED	NUMBER		(null)	6

Table example

	CATEGORY_ID	STAFF_ID	TIME_ID	CUSTOMER_TYPE_ID	TOTAL_HIRE_REVENUE	TOTAL_EQUIPMENTS_HIRED
1					240	
2	12		10		240	
3	12		12		240	
4	10				150	
5					1200	
6					1000	
7		10			420	
8		10	10		420	

Sales Fact Table

Table Structure

	COLUMN_NAME	DATA_TYPE	NULLABLE	DATA_DEFAULT	COLUMN_ID
1	CATEGORY_ID	NUMBER		(null)	1
2	STAFF_ID	NUMBER		(null)	2
3	TIME_ID	NUMBER		(null)	3
4	SCALE_ID	NUMBER		(null)	4
5	TOTAL_SALES_REVENUE	NUMBER		(null)	5
6	TOTAL_EQUIPMENTS_SOLD	NUMBER		(null)	6

Table example

	CATEGORY_ID	STAFF_ID	TIME_ID	SCALE_ID	TOTAL_SALES_REVENUE	TOTAL_EQUIPMENTS_SOLD
1		39	10		83200	
2		16			18000	
3			20		216000	
4	11	26	20		11200	
5			21		216000	
6					60000	
7					216000	
8	11	26	22	3	11200	2

B. Analysis Stage

1. Equipments Sold vs Hired

```
SELECT

s.company_branch,

NVL(SUM(sf.total_sold), 0) AS total_sold,

NVL(SUM(hf.total_hired), 0) AS total_hired

FROM StaffDIM s

LEFT JOIN (

SELECT staff_id, SUM(total_equipments_sold) AS total_sold

FROM SalesFact

GROUP BY staff_id
```

```
) sf ON s.staff_id = sf.staff_id

LEFT JOIN (
     SELECT staff_id, SUM(total_equipments_hired) AS total_hired
     FROM HireFact
     GROUP BY staff_id
) hf ON s.staff_id = hf.staff_id

GROUP BY s.company_branch;
```

Output:

	COMPANY_BRANCH	TOTAL_SOLD	TOTAL_HIRED
1	Richmond	211	280
2	Pakenham	311	521
3	Caulfield	313	844
4	Clayton	1075	1025
5	Docklands	384	607
6	Parkville	493	461
7	Dandenong	150	249
8	Eltham		378
9	Toorak	443	579
10	Chadstone	265	381
11	Geelong	112	222
12	Prahran	260	624
13	Cheltenham	97	89
14	Hughesdale	165	749
15	Fitzroy	217	429

Visualisation:

The stacked bar chart created in PowerBI, representing the code output from the OLAP query, presents the number of equipment units hired and sold across MonEquip branches in Victoria. From the visual, it's clear that the Clayton branch recorded the highest level of activity, while Cheltenham showed the least. Generally, most branches reported more equipment hires than sales, with the exception of Clayton (1,075 sold vs. 1,025 hired) and Parkville (493 sold vs. 461 hired). However, the difference in these figures

remains minimal. Overall, the data indicates that hiring transactions slightly outpace sales transactions across MonEquip's branches.

2. Revenue generation through the years (2018-2020)

Code:

```
OLAP Operation : Selling Revenue by year
   SUM(sf.total sales revenue) AS total sales revenue,
   ROUND (
       SUM(sf.total sales revenue) * 100 /
       SUM(SUM(sf.total sales revenue)) OVER(),
   ) AS percentage contribution
FROM SalesFact sf
JOIN TimeDIM t
       SUM(hf.total hire revenue) * 100 /
       SUM(SUM(hf.total hire revenue)) OVER(),
   ) AS percentage contribution
FROM HireFACT hf
JOIN TimeDIM t
```

Output:

	YEAR	TOTAL_SALES_REVENUE	PERCENTAGE_CONTRIBUTION
1	2018	44313200	33.19
2	2019	36384050	27.25
3	2020	52817800	39.56
	YEAR	TOTAL_HIRE_REVENUE	PERCENTAGE_CONTRIBUTION
1	YEAR 2018	TOTAL_HIRE_REVENUE 574850	PERCENTAGE_CONTRIBUTION 33.53
1 2			_

Visualisation:

From the pie charts above, we can observe how hire and sales revenue have changed over the three years from 2018 to 2020. In 2018, there was little difference between the revenue generated from hired and sold equipment. By 2019, sales revenue had dipped below hire revenue, but the most notable shift occurred in 2020, when sales revenue surpassed hire revenue by a significant margin. Overall, hire revenue remained relatively stable across the three years, while sales revenue in 2020 showed a sharp increase compared to the previous years.

3. Product Category Analysis

```
C.category_description,
    SUM(hf.total_hire_revenue) AS total_hire_revenue,
    ROUND(
        SUM(hf.total_hire_revenue) * 100 /
        SUM(SUM(hf.total_hire_revenue)) OVER(),
        2
    ) AS percentage_contribution

FROM HireFact hf

JOIN CategoryDIM c
    ON hf.category_id = c.category_id

GROUP BY c.category_description

ORDER BY total_hire_revenue DESC;
-- OLAP Operation : Sales Revenue by Category

SELECT
```

Output:

	CATEGORY_DESCRIPTION	TOTAL_HIRE_REVENUE	PERCENTAGE_CONTRIBUTION
1	Generators	199040	11.61
2	Earthmoving	196930	11.48
3	Access	174710	10.19
4	Lighting	159140	9.28
5	Rail	144580	8.43
6	Site Equipment	121345	7.08
7	Air Compressor	117065	6.83
8	Compaction	113370	6.61
9	Trailers	109980	6.41
10	Landscaping	91040	5.31
11	Plumbing	76720	4.47
12	Safety	74560	4.35
13	Vehicles	74410	4.34
14	Concrete	61790	3.6

	CATEGORY_DESCRIPTION	TOTAL_SALES_REVENUE	PERCENTAGE_CONTRIBUTION
1	Earthmoving	23690000	17.74
2	Landscaping	18789200	14.07
3	Air Compressor	12037000	9.02
4	Compaction	11259200	8.43
5	Generators	10690500	8.01
6	Access	9872250	7.39
7	Vehicles	8872000	6.64
8	Rail	8632300	6.47
9	Safety	5995000	4.49
10	Concrete	5820600	4.36
11	Trailers	5808800	4.35
12	Lighting	5211000	3.9
13	Plumbing	4202600	3.15
14	Site Equipment	2634600	1.97

Visualisation:

The top three product categories contributing to hire revenue over the years were Generators, Earthmoving, and Access, while Concrete consistently contributed the least.

On the sales side, the two major contributors to revenue were Earthmoving and Landscaping, whereas Site Equipment generated comparatively lower sales revenue.

Overall, Generators and Access show relatively lower contributions on the sales front, whereas Concrete demonstrates a stronger performance in sales compared to hire revenue.