Логика предикатов

Приведенная нормальная форма (ПНФ) формул логики предикатов

Определение 1. Формула логики предикатов находится в приведенной форме если:

- 1) в ней только операции конъюнкции, дизъюнкции и отрицания;
- 2) все отрицания стоят перед предикатными символами (с тесными отрицаниями).

Определение 2. Формула логики предикатов находится в приведенной нормальной форме если:

- 1) она находится в приведенной форме;
- 2) кванторы либо отсутствуют, либо вынесены перед формулой так, что каждая переменная находится под действием всех кванторов.

Например, $\exists (\forall x) A(x) \ni B$ — не в приведенной форме;

 $(\forall x)$ $\exists A(x) \& B$ – в приведенной, но не в нормальной форме;

$$(\forall x) (\exists y) (A(x,y) \lor \exists B(x,y)) - B \Pi H \Phi.$$

Алгоритм построения ПНФ

(следует из определения)

1. Избавляемся от 5, 5, 4, 5, 5 по формулам:

$$A \supset B = \exists A \lor B,$$

$$A \sim B = (A \& B) \lor (\exists A \& \exists B),$$

$$A + B = (\exists A \lor \exists B) \& (A \lor B).$$

2. Приводим к формуле с тесными отрицаниями, используя:

Законы де Моргана

$$\exists (A \lor B) = \exists A \& \exists B,$$

$$1(A \& B) = 1A \lor 1B$$

И тождества 1 – Перенос 7 через квантор.

3. Выносим кванторы за скобку тождества 2,3,4 (из основных тождеств ЛП).

Замечания.

- **1.** Если кванторов в формуле несколько, то выносим крайний левый с учетом тождеств 4.
- **2.** Если тождества 3 применить нельзя, то делаем замену по правилу 5, а затем применим тождества 2.

Обоснование алгоритма.

Теорема 1. Для любой формулы логики предикатов существует равносильная ей формула, находящаяся в ПНФ.

Доказательство:

I часть. Найдем приведенную форму \widetilde{F} формулы $F\colon \widetilde{F} \equiv F$.

1. Найдем равносильную формулу, содержащую только операции {&, v, \}

$$A \supset B = \exists A \lor B$$
,

$$A \sim B = (A \& B) \lor (\exists A \& \exists B),$$

$$A + B = (\exists A \lor \exists B) \& (A \lor B)$$

2. Приведем полученную формулу к виду с тесными отрицаниями: 1 перед предикатными символами.

Докажем, что это возможно, при этом свободные и связанные переменные F не изменятся.

Докажем индукцией по k (число логических символов формулы $F: \&, \lor, \exists \lor, \exists$)

- 1) n = 0 атомарная формула $\to A(x_1, ..., x_n)$ не содержит логических символов \Rightarrow верно
- 2) Предположим, что для числа логических символов < k верно.
- 3) Доказательство для k логических символов.

Рассмотрим следующие случаи.

1.
$$F = A \vee B$$

2.
$$F = A \& B$$

3.
$$F = 1A$$

4.
$$F = (\forall x)(A(x))$$

5.
$$F = (\exists x)(A(x))$$

По предположению индукции, можно привести формулы в пунктах 1, 2, 4, 5 к формулам с тесными отрицаниями (у формул A и B логических символов < k).

Рассмотрим случай 3. F = 1A

3.1. $A = B \lor C$. $F = \exists A = \exists (B \lor C) = \exists B \& \exists C = \tilde{B} \& \tilde{C} - c$ тесными отрицаниями по предположению индукции.

3.2.
$$A = B \& C$$
. $F = \exists A = \exists (B \& C) = \exists B \lor \exists C = \tilde{B} \lor \tilde{C}$ – аналогично.

3.3.
$$A = \exists B$$
 $\Rightarrow F = \exists A = \exists (\exists B) = B$

3.4.
$$A = (\forall x)B(x)$$
 \Rightarrow $F = \exists A = \exists (\forall x)B(x) = (\exists x)\exists B(x) = (\exists x)\tilde{B}(x) - c$ тесными \exists

3.5.
$$A = (\exists x)B(x)$$
 \Rightarrow $F = \exists A = \exists (\exists x)B(x) = (\forall x)\exists B(x) = (\forall x)\tilde{B}(x) - c$ тесными \exists

Π часть. Для приведенной формулы \widetilde{F} , существует формула $\widetilde{\widetilde{F}}$ в $\Pi H \Phi$ (все кванторы, если они есть, впереди формулы) $\widetilde{\widetilde{F}} \equiv \widetilde{F}$.

Докажем индукцией по числу логических символов k:

- 1) k = 0. $A(x_1, ..., x_n)$ атомарная формула, кванторов нет.
- 2) Предположим, что для числа логических символов < k верно.
- 3) Докажем для k логических символов.

Рассмотрим следующие случаи.

1.
$$\widetilde{F} = A \vee B$$

2.
$$\widetilde{F} = A \& B$$

3.
$$\widetilde{F} = \exists A$$

4.
$$\widetilde{F} = (\forall x)(A(x))$$

5.
$$\widetilde{F} = (\exists x)(A(x))$$

1. Пусть $\widetilde{F} = A \vee B$

1.1.
$$A = (\forall x)C(x)$$
, B не зависит от x

$$\tilde{F} = A \vee B = (\forall x)C(x) \vee B = (\forall x)(C(x) \vee B)$$
 – тождество (2.1).

1.2.
$$A = (\exists x)C(x)$$
, B не зависит от x – аналогично 1.1.

1.3.
$$B = (\forall x)D(x)$$
, A не зависит от x – аналогично 1.1.

1.4.
$$B = (\exists x)D(x)$$
, A не зависит от x — аналогично 1.1.

1.5.
$$A = (\forall x)C(x)$$
, $B = (\forall x)D(x)$

$$\tilde{F} = A \vee B = (\forall x)C(x) \vee (\forall x)D(x) \equiv (\forall x)C(x) \vee (\forall y)D(y) \equiv$$

Применили правило замены связной переменной под знаком квантора, тождество (5.1), и вынесли кванторы согласно тождеству (2.1).

$$\equiv (\forall x)(C(x) \lor (\forall y)D(y)) \equiv (\forall x)(\forall y)(C(x) \lor D(y))$$

1.6.
$$A = (\exists x) C(x), B = (\exists x) D(x)$$

$$F = A \lor B = (\exists x) C(x) \lor (\exists x) D(x) \equiv (\exists x) (\underbrace{C(x) \lor (Dx)}_{< k})$$
 – тождество (3.2).

1.7.
$$A = (\exists x) C(x), B = (\forall x) D(x)$$

$$F = A \lor B = (\exists x) C(x) \lor (\forall x) D(x) \equiv (\exists x) C(x) \lor (\forall y) D(y) \equiv$$

$$(\exists x)(\forall y)(C(x)\lor D(y))$$
 – аналогично 1.5.

1.8.
$$A = (\forall x) C(x), B = (\exists x) D(x)$$
 — аналогично 1.5.

2. Пусть $\widetilde{F} = A \& B$

Аналогично п. 1, но, когда $A = (\forall x) C(x)$, $B = (\forall x) D(x)$, имеем $F = A \& B = (\forall x) C(x) \& (\forall x) D(x) \equiv (\forall x) (C(x) \& D(x))$ по тождеству из 3. $A \& B = (\exists x) C(x) \& (\exists x) D(x) \equiv (\exists x) C(x) \& (\exists y) D(y) \equiv (\exists x) (\exists y) (C(x) \& D(y))$ – замена переменной, затем тождество (2.4).

- 3. $\widetilde{F} = A c$ тесными отрицаниями (кванторов нет).
- $\mathbf{4.} \qquad \widetilde{\mathbf{F}} = (\forall \ \mathbf{x}) \ \mathbf{A}(\mathbf{x})$
- $5. \qquad \widetilde{F} = (\exists \ x) \ A(x)$

В 4 и 5 квантор находится в начале формулы, а в A(x) вынесем кванторы по предположению индукции.

Примеры приведения формулы к ПНФ

Пример 1.

$$(\forall x) (\forall y) A_1(x,y) \supset (\exists x)(\forall y) A_2(x,y) \equiv \exists (\forall x) (\forall y) A_1(x,y) \lor (\exists x)(\forall y) A_2(x,y) \equiv$$
 Вносим отрицание по тождеству (1.1).

$$\equiv (\exists x)(\exists y) \exists A_1(x,y) \lor (\exists x)(\forall y) A_2(x,y) \equiv (\exists x) ((\exists y) \exists A_1(x,y) \lor (\forall y) A_2(x,y)) \equiv$$
 Выносим ($\exists x$) по тождеству (3.2). Затем замена переменной по тождеству (5.1).

$$\equiv (\exists \ x) \big((\exists \ y) \land A_1(x,y) \lor (\forall \ z) \ A_2(x,z) \big) \equiv (\exists \ x) (\exists \ y) (\forall \ z) (\land A_1(x,y) \lor A_2(x,z))$$
 Применили тождества (2.2) и (2.1).

Пример 2.

$$(\exists x) (\exists y) A_1(x,y) \lor (\forall y) (\exists x) A_2(x,y) \equiv$$

Выносить можно, только крайние левые кванторы и разноименные кванторы переставлять нельзя, одноименные можно. Переставили одноименные кванторы и

$$\equiv (\exists \ y)(\exists \ x) \ A_1(x,y) \lor (\forall \ y)(\exists \ x) \ A_2(x,y) \equiv$$

Сделали замену переменной по тождеству (5.1)

$$\equiv (\exists y)(\exists x) A_1(x,y) \lor (\forall z)(\exists x) A_2(x,z) \equiv$$

Выносим ($\forall z$) по тождеству (2.1).

$$\equiv (\forall z) ((\exists y)(\exists x) \ A_1(x,y) \lor (\exists x) \ A_2(x,z)) \equiv$$

Выносим ($\exists y$) по тождеству (2.2).

$$\equiv (\forall z) (\exists y) ((\exists x) A_1(x, y) \lor (\exists x) A_2(x, z)) \equiv$$

Выносим ($\exists x$) по тождеству (3.2).

$$\equiv (\forall z)(\exists y)(\exists x)(A_1(x,y) \lor A_2(x,z))$$

Пример 3.

$$(\forall x) (\exists y) A_1(x,y) \& (\exists x)(\forall y) A_2(x,y) \equiv (\forall x) (\exists y) A_1(x,y) \& (\exists z)(\forall y) A_2(z,y) \equiv$$

Сделали замену переменной по тождеству (5.2). Затем выносим $(\exists z)$ по тождеству (2.4).

$$\equiv \ (\exists \ z) \ ((\forall \ x) \ (\exists \ y) \ A_1(x,y) \ \& \ (\forall \ x) \ A_2(z,x)) \equiv (\exists \ z) \ (\forall \ x) \ ((\exists \ y) \ A_1(x,y) \ \& \ A_2(z,x)) \equiv$$

Выносим ($\forall x$) по тождеству (3.1). Затем выносим ($\exists y$) по тождеству (2.4).

$$\equiv (\exists z) (\forall x) (\exists y) (A_1(x,y) \& A_2(z,x)).$$

Двойная замена переменных проводится, чтобы оставить минимальное число переменных.

ПНФ формул логики предикатов используется для нахождения СКОЛЕМОВСКОЙ нормальной формы, которая вместе с правилами вывода в логическом программировании позволяет доказывать теоремы.

Общезначимость формул логики предикатов.

Определение 1. Формула F выполнима в интерпретации $I = \langle M, f \rangle$, если существует оценка свободных переменных $\langle s_1 ... s_n \rangle$, на которой она принимает значение V.

$$F|_{\langle S_1,\dots,S_n\rangle} = M, S_i \in M, i = \overline{1,n}$$

Определение 2. Формула F выполнима в ЛП, если \exists интерпретация и \exists оценка свободных переменных $< s_1 \dots s_n >$, на которой она принимает значение \forall .

Определение 3. Формула F общезначима в ЛП, если в $\forall I = < M, f>$, на \forall оценке свободных переменных $< s_1 \dots s_n>$ она принимает значение $\forall I$.

Пример 1. Общезначимая формула (получена из тождества):

$$\neg(\forall x)A(x)\sim(\exists x)\neg A(x).$$

Не общезначимая формула:

$$A(y) \supset (\forall x)A(x)$$

Покажем это. Возьмем $I = \langle N, f \rangle, f : A(x) = V \iff x - \text{четное}.$

При y = 4 имеем:

$$A(4) \supset (\forall x) A(x)$$

$$И \supset Л = Л$$

Утверждение 1. Формула $(\forall x) A(x) \supset A(y)$ – общезначима.

Доказательство.

Свободные переменные формулы $(\forall x) A(x) \supset A(y) : \langle y, x_1 ... x_n \rangle$.

Предположим, что существуют интерпретация I = < M, f > и оценка свободных переменных $< b, s_1, ..., s_n >$, на которой формула принимает значение Ложь

$$(\forall x) A(x) \supset A(y)|_{\langle b, S_1, \dots, S_n \rangle} = J.$$

Тогда

$$\begin{cases} (\forall x) \, A(x)|_{\langle s_1, \dots, s_n \rangle} = \mathsf{H} \\ A(y)|_{\langle b, s_1, \dots, s_n \rangle} = \mathsf{J} \end{cases}.$$

 $(\forall x) \ A(x)|_{\langle S_1,\dots,S_n\rangle} = \mathbb{N} \Longrightarrow \forall \ a \in M \colon A(a)|_{\langle S_1,\dots,S_n\rangle} = \mathbb{N} \Longrightarrow A(y)|_{\langle b,S_1,\dots,S_n\rangle} = \mathbb{N}, b \in M.$ Противоречие.

Утверждение 2. Формула_ $A(y) \supset (\exists x) A(x)$ – общезначима.

Докажем, что формула $A(y) \supset (\exists x) A(x)$ – общезначима, используя общезначимость формулы $(\forall x) A(x) \supset A(y)$. Подставим вместо $A(x) \rightarrow \neg A(x)$

$$(\forall x) \neg A(x) \supset \neg A(y) \equiv \neg(\forall x) \neg A(x) \lor \neg A(y) \equiv (\exists x) A(x) \lor \neg A(y) \equiv \underbrace{A(y) \supset (\exists x) A(x)}_{\text{обшезначима}}.$$

Покажем, что формула $(\exists x)A(x) \supset A(y)$ не является общезначимой.

Возьмем $I = \langle N, f \rangle, f : A(x) = \mathsf{V} \iff x - \mathsf{Ч}$ етное.

При x = 3 имеем:

$$(\exists x)A(x) \supset A(3) = \Lambda$$

 $\Lambda \supset \Lambda = \Lambda$

Утверждение 3. Формула $(\exists x)(\forall y) A(x,y) \supset (\forall y)(\exists x)A(x,y)$ – общезначима.

Докажем общезначимость данной формулы. Предположим, что существуют интерпретация $I = \langle M, f \rangle$ и оценка свободных переменных $\langle s_1 ... s_n \rangle$, на которой формула принимает значение Ложь.

$$\underbrace{(\exists x)(\forall y) A(x,y)}_{\text{H}} \supset \underbrace{(\forall y)(\exists x) A(x,y)}_{\text{J}}$$

Запишем системой

$$\begin{cases} (\exists x)(\forall y) A(x,y)|_{\langle s_1...s_n\rangle} = \mathsf{H} \\ (\forall y)(\exists x)A(x,y)|_{\langle s_1...s_n\rangle} = \mathsf{J} \end{cases}$$

Возьмем отрицание от второго выражения, получим

$$\begin{cases} (\exists x)(\forall y) \ A(x,y)|_{< s_1 \dots s_n >} = \mathbb{N} \\ (\exists y)(\forall x) \neg A(x,y)|_{< s_1 \dots s_n >} = \mathbb{N}, \end{cases} \Rightarrow \begin{cases} \exists x = a \in M : (\forall y) \ A(a,y)|_{< s_1 \dots s_n >} = \mathbb{N} \\ \exists y = b \in M : (\forall x) \neg A(x,b)|_{< s_1 \dots s_n >} = \mathbb{N}. \end{cases}$$
 Тогда
$$\begin{cases} (\forall y) \Rightarrow \text{и для } y = b : A(a,b)|_{< s_1 \dots s_n >} = \mathbb{N} \\ (\forall x) \Rightarrow \text{и для } x = a : \neg A(a,b)|_{< s_1 \dots s_n >} = \mathbb{N} \end{cases} \Rightarrow \text{противоречие.}$$

Следовательно, не существует интерпретации и оценки свободных переменных, на которой формула принимает значение Ложь. Формула общезначима.

Правильные рассуждения в логике предикатов

Напомню, что рассуждение называется правильным, если из конъюнкции посылок следует заключение, т.е. всякий раз, когда все посылки истинны, заключение тоже истинно.

$$\frac{P_1, P_2, \dots, P_k}{D}.$$

Для проверки правильности рассуждений проверяем тождественную истинность (общезначимость) формулы

$$(P_1 \& P_2 \& \dots \& P_k) \supset D$$

Заметим, что, если рассуждение правильное и все посылки истинны, то тогда можно сделать вывод: заключение тоже истинно.

Алгоритм проверки текста на правильность рассуждения в ЛП

- 1. Разбиваем текст на элементарные высказывания. Выбираем интерпретацию, в которой записываем элементарные высказывания.
- 2. Из каждого предложения составляем формулу-посылку.
- 3. Составляем формулу конъюнкция посылок влечет заключение.
- 4. Проверяем формулу на общезначимость. Если формула общезначима, то рассуждение правильное.

Пример 2. Проверить правильность рассуждения.

В частично упорядоченном множестве любой наименьший элемент является минимальным.

- 1. Выбираем интерпретацию $I = \langle M, f \rangle$, где M частично упорядоченное множество; $f: Q(x,y) \to x \leqslant y$ (отношение частичного порядка).
- 2. Составляем формулы посылок и заключения

Наименьший элемент
$$x$$
: $(\forall y) Q(x, y)$

Минимальный элемент
$$x$$
: $(\exists y)(Q(y,x) \supset (Q(x,y)\&Q(y,x)))$.

$$Q(x,y)$$
& $Q(y,x)$ из антисимметричности $x=y$

Запишем рассуждение формулой ЛП.

$$(\forall x) \left[(\forall y) Q(x, y) \supset (\exists y) \left(Q(y, x) \supset \left(Q(x, y) \& Q(y, x) \right) \right) \right]$$

Проверим формулу на общезначимость. Предположим, что существует интерпретация I = < M, f>, в которой формула принимает значение Π .

Тогда $\exists x = s_0 \in M$:

Выпишем систему

$$\begin{cases} (\forall y) \ Q(s_0, y) = \mathbb{N} \\ (\exists y)(Q(y, s_0) \supset (Q(s_0, y) \& Q(y, s_0))) = \mathbb{N} \end{cases}$$

Для любого y истина и существует y ложь означает, что для любого элемента множества M, а значит и для $y = s_0 \in M$: справедливо

$$\begin{cases} Q(s_0, s_0) = \mathbb{M} \\ Q(s_0, s_0) \supset \left(Q(s_0, s_0) & \mathbb{Q}(s_0, s_0)\right) = \mathbb{M} \end{cases} \Longrightarrow \begin{cases} Q(s_0, s_0) = \mathbb{M} \\ \left(Q(s_0, s_0) & \mathbb{Q}(s_0, s_0)\right) = \mathbb{M} \end{cases} \Longrightarrow \begin{cases} Q(s_0, s_0) = \mathbb{M} \\ Q(s_0, s_0) & \mathbb{Q}(s_0, s_0) = \mathbb{M} \end{cases}$$

– противоречие. Следовательно, формула общезначима и рассуждение правильное.

Пример 3. Проверить правильность рассуждения.

В частично упорядоченном множестве любой минимальный элемент является наименьшим.

Формулы посылки и заключения возьмем из примера 2. Запишем рассуждение формулой ЛП.

$$(\forall x) \left[(\exists y) \left(Q(y,x) \supset \left(Q(x,y) & Q(y,x) \right) \right) \supset (\forall y) Q(x,y) \right]$$

Упростим формулу:

$$(\forall x) \left[(\exists y) \left(Q(y, x) \supset \left(Q(x, y) \& Q(y, x) \right) \right) \supset (\forall y) Q(x, y) \right] \equiv$$

$$\equiv (\forall x) \left[(\exists y) \left(\neg Q(y, x) \lor \left(Q(x, y) \& Q(y, x) \right) \right) \supset (\forall y) Q(x, y) \right] \equiv$$

$$\equiv (\forall x) \left[(\exists y) \left(\left(\neg Q(y, x) \lor Q(x, y) \right) \& \left(\underbrace{\neg Q(y, x) \lor Q(y, x)}_{\mathsf{H}} \right) \right) \supset (\forall y) Q(x, y) \right] \equiv$$

$$\equiv (\forall x) \left[(\exists y) \left(\neg Q(y, x) \lor Q(x, y) \right) \supset (\forall y) Q(x, y) \right]$$

Покажем, что эта формула не общезначима. От противного. Предположим, что формула общезначима. Тогда для $\forall x$, а, следовательно, и для x = y имеем

$$(\exists y) (\neg Q(y,y) \lor Q(y,y)) \supset (\forall y) Q(y,y) \equiv \mathsf{H}$$
 (*)

Следовательно, $\mathbb{N} \supset (\forall y)Q(y,y) \equiv \mathbb{N} \Longrightarrow (\forall y)Q(y,y) \equiv \mathbb{N}$

Возьмем интерпретацию $I=<\mathbb{R}, f>$, где \mathbb{R} множество действительных чисел; $f\colon Q(x,y)\to x< y.$

Тогда $(\forall y)Q(y,y) = \Pi$ – противоречие с $(\forall y)Q(y,y) \equiv \Pi$. А это выражение мы получили из предположения о тождественной истинности формулы (*).

Вывод: формула не общезначима, рассуждение не является правильным.

Проблема разрешимости

в логике высказываний и в логике предикатов

Суть проблемы. Существует ли алгоритм, который для любой формулы ЛВ (ЛП) может определить, является ли формула тождественно истинной (общезначимой).

(ЛВ – тавтология, ЛП – общезначимость).

В логике высказываний – проблема разрешима. Алгоритм проверки тождественной истинности формулы существует. По таблице истинности всегда можно определить, является ли формула тавтологией.

Критерий тождественной истинности в Л.В.

Формула F – тождественно истинна, тогда и только тогда, когда существует $\tilde{F} \equiv F$, \tilde{F} – в KHФ, в каждой элементарной дизьюнкции которой содержится какая-либо переменная и её отрицание одновременно.

Доказательство.

Достаточность. Пусть в каждой элементарной дизъюнкции \tilde{F} содержится одновременно какая-нибудь переменная и её отрицание.

$$\tilde{F} = \&(\dots \lor x_i \dots \lor \neg x_i)$$

 $x_i \lor \neg x_i = \mathsf{И}$ (по коммутативности \lor можно поставить вместе: $x_i \lor \neg x_i$).

Следовательно,
$$C \vee H = H \implies \tilde{F} = H \& \dots \& H = H$$

Heoбxoдимость. Пусть в \tilde{F} существует элементарная дизъюнкция, которая ни одной переменной вместе с её отрицанием не содержит. В этом случае всегда можно найти оценку переменных формулы, на которой эта дизъюнкция принимает значение Π , а следовательно, и вся $KH\Phi$ \tilde{F} примет значение Π .

Если входит переменная: $x_i = \Pi$; Если отрицание переменной: $\neg x_i$, то $x_i = \Pi \rightarrow \neg x_i = \Pi$. Например, дизъюнкция $x_1 \lor x_2 \ldots \lor \neg x_3$ на оценке $<\Pi$, Π > примет значение Π . Тогда и вся формула \tilde{F} примет значение Π : $\tilde{F} = \ldots \& \Pi \& \ldots \& \Pi \ldots = \Pi$

Тезис Чёрча.

В логике предикатов проблема неразрешима. Не существует эффективного алгоритма, позволяющего определить общезначима формула ЛП или нет.

В частности, из этого следует, что и проверить правильность рассуждений в логике предикатов мы сможем не всегда.

Замечание. Если в $I = \langle M, f \rangle$, M — конечное множество $M = \{a_1, a_2, ..., a_n\}$, то проверить на общезначимость можно, заменив следующие формулы ЛП формулами ЛВ

$$(\forall x) A(x) = A(a_1) \& A(a_2) \& \dots \& A(a_n) = \&_{i=1}^n A(a_i)$$

$$(\exists x) A(x) = A(a_1) \lor A(a_2) \lor ... \lor A(a_n) = \bigvee_{i=1}^n A(a_i)$$