디지털 영상처리 연구실 연구보고서

김우헌

#뉴런으로 도식화

$$\hat{y} = w \times x + b$$

#역방향 계산

##로지스틱 회귀

#퍼셉트론

->이진분류를 위한 알고리즘

#아달린

#로지스틱 회귀

->활성화 함수는 비선형 함수사용(시그모이드함수)

회귀와 분류

#시그모이드 함수

오즈 비(odds ratio) --> 로짓 함수(logit funtion) --> 시모드이드 함수

#로지스틱 손실함수

->경사 하강법을 이용하기 위하여 미분가능한 로지스틱 손실함수 사용

$$L = -(ylog(a) + (1-y)log(1-a))$$

	L
y=1(양성클래스)	-log(a)
y = 0(음성클래스)	-log(1-a)

#제곱오차의 미분과 로지스틱 손실함수의 미분

	제곱 오차의 미분	로지스틱 손실 함수의 미분
가중치에 대한 미분	$rac{\partial SE}{\partial w} = \ - \ ig(y - \hat{ ext{y}}ig)x$	$rac{\partial L}{\partial w} = \ - \ (y-a)x$
절편에 대한 미분	$rac{\partial SE}{\partial b} = - ig(y - \hat{{ t y}}ig) 1$	$rac{\partial L}{\partial b} = - (y-a) 1$

#가중치 업데이트

$$w_i = w_i - \frac{\partial L}{\partial w_i} = w_i + (y - a)x_i$$

#인공 신경망(딥러닝,심층 신경망)

#단일층 신경망

