

CHEM F111: General Chemistry Semester II: AY 2017-18

Lecture-04, 15-01-2018

Summary: Lecture-03

Time independent Schröndinger Equation

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2}+u(x)\psi(x)=E\psi(x)$$

Well behaved wave function for a physical system:

- Ψ must be single-valued.
- Ψ must be finite everywhere.
- Ψ must be continuous.
- $\frac{d\psi}{dx}$ must be continuous.

Normalization of wavefunction is a consequence of Born Interpretation.

$$\int_{-\infty}^{\infty} [N\Psi(x)] [N\Psi(x)] dx = 1$$

Work out: Normalize the following wavefunction, $\phi = \sin \frac{n\pi x}{a}$

Summary: Lecture-03

Postulates of Quantum Mechanics

Postulate 1: Quantum mechanical system is completely specified by wavefunction.

Postulate 2: To every observable in classical mechanics there is an operator in quantum mechanics.

Postulate 3: Quantum Mechanical operators are **special in nature**. In any measurement of the observable associated with the operator \hat{A} , the only values that will be ever observed are the eigenvalues a, which satisfy the eigen value equation:

$$\widehat{A}\psi=a\psi$$

Schröndinger Equation using operators:

Time independent Schröndinger Equation (ODE)

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} + u(x)\psi(x) = E\psi(x)$$

We can rewrite as,
$$\left\{-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + u(x)\right\} \psi(x) = E \psi(x)$$

$$\left\{-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + u(x)\right\} = \widehat{H};$$

Energy Operator or Hamiltonian

Schröndinger Equation using operators:

Schröndinger Equation as energy eigen value problem:

$$\widehat{H}\psi=E\psi$$

For a physical system which is having more than one eigen state, such as, H-Atom – 1s, 2s, 2p, 3s, 3p and so on

$$\widehat{H}\psi_n=E_n\psi_n$$

What would be the form of $\widehat{\boldsymbol{H}}$ for a two particle system (masses m_1 and m_2) interacting through Coulomb's potential in one dimension? The distance between the two particles is x_{12}

Application: Free Particle, Momentum

- Free particle in 1D: A particle which is not under any forces {Simplest system}
- Start with the Schröndinger representation of momentum operator:

$$\hat{P} = -i \hbar \frac{d}{dx}$$

Let us start with a trial function:

$$\psi_p = C e^{\pm ipx/\hbar}$$

(c is a constant other than zero)

What would be the momentum value?

We'll determine the eigen value? {Ans: $\pm p$)

Energy,
$$E = \frac{p^2}{2m} \Rightarrow behaves as a classical system$$

Application in Free Particle: Energy

Particle subject to no forces: U(x) = 0

Schröndinger equation becomes: $\frac{d^2\psi(x)}{dx^2} + \frac{2m}{\hbar^2} E\psi(x) = 0$

ODE of order 2: General solution would be,

$$\psi_E = C_1 e^{i\sqrt{(2mE)} x/\hbar} + C_2 e^{-i\sqrt{(2mE)} x/\hbar}$$

$$\equiv C_3 \cos kx + C_4 \sin kx; k = \frac{(2mE)^{1/2}}{\hbar}$$

 Ψ will remain finite as $x \rightarrow \pm \infty$; $E \geq 0$ (Boundary condition)

Classical analogue

- One-dimensional racquet ball court with infinitely massive walls.
- Perfect ball: collisions are perfectly elastic.
- There is no resistance in this racquet ball court.
- If a player hits a ball against the wall no loss of kinetic energy; Continue to bounce between the walls indefinitely.
- Energy of the ball is only kinetic energy (KE).
- The ball can be hit hard or soft to provide more or less KE.
- Energy for this classical particle in a box is continuous.
- Energy can take on any value even can have zero energy at point X.
- Probability of finding the ball is equally likely at every point

The quantum mechanical particle in a box:

- Consists of a particle, such as an electron,
- The box is small in an absolute sense (~ nanometer).

$$U(x) = 0 for -b < x < b$$

What would be the value of ψ_{l} and ψ_{lll} ?

How do we obtain the form of ψ_{II} ?

Schröndinger Equation:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} + u(x)\psi(x) = E\psi(x)$$

 $\psi(x)$ is the eigen function for PIB with E as the energy eigen value

What would be the form of PE?

$$U(x) = 0, |x| < b \text{ and } U(x) = \infty, |x| \ge b$$
Interest is in the regions $|x| < b$ $\{\psi_{\parallel}\}$

$$\widehat{H} = -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2 \psi}{\mathrm{d} x^2}$$

Schröndinger Equation for 1D PIB:

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi(x)=E\psi(x)$$

- Solution of ODE of 2^{nd} order yield: $\psi(x)$
- $\psi(x)$ will be acceptable if,
 - 1. Ψ (x) is single-valued.
 - 2. Ψ (x) is finite everywhere
 - 3. Ψ (x) is continuous
 - 4. $\frac{d\psi}{dx}$ is continuous

Solution of 1D PIB

Schröndinger Equation for 1D PIB:

$$-rac{\hbar^2}{2m} rac{d^2}{dx^2} \psi(x) = E \psi(x)$$
Equn. 1

Rearrange Equn. 1

$$rac{{
m d}^2}{{
m d}{
m x}^2} \; \psi({
m x}) = -rac{2mE}{\hbar^2} \; \psi({
m x}) \; \;$$
Equn. 2

Can we guess any solution for this ODE?

2nd derivative of a function is equals the function times a –ve const.

Solution of 1D PIB

Consider sin(ax) and cos(ax)

$$\frac{d^2}{dx^2}\sin(ax) = -a^2\sin(ax)$$

.....Equn. 3

$$\frac{d^2}{dx^2}\cos(ax) = -a^2\cos(ax)$$

.....Equn. 4

$$\frac{d^2}{dx^2} \psi(x) = -\frac{2mE}{\hbar^2} \psi(x)$$
Equn. 2

Solution of 1D PIB

Either the sin or cos functions or any combination of sin and cos function solve the differential equation. Compare Equn. (2), (3), and (4)

$$\frac{d^2}{dx^2}\sin(ax) = -a^2\sin(ax)$$
.....Equn. 3

$$\frac{d^2}{dx^2}\cos(ax) = -a^2\cos(ax)$$
Equn. 4

$$\frac{d^2}{dx^2} \psi(x) = -\frac{2mE}{\hbar^2} \psi(x)$$
Equn. 2

Physical condition

$$a^2 = \frac{2mE}{\hbar^2}$$

Solution of 1D PIB: Is it acceptable?

Well is infinitely deep.

Particle has zero probability of being found outside the box.

Function as drawn discontinuous at

$$|x| \ge \ell$$

To be an acceptable wavefunction for PIB $\Psi \Rightarrow \sin$ and $\cos \Rightarrow 0$ at |x| = b

Solution of 1D PIB: Acceptable solution?

Ψ will vanish at |x| = b if

$$a = \frac{n\pi}{2b} \equiv a_n$$
 n is an integer

$$\cos a_n x$$

$$n = 1, 3, 5...$$

$$\sin a_n x$$

$$n = 2, 4, 6...$$

Integral number of half wavelengths in box. Zero at walls.

We have two condition for a², solve for E

$$a_n^2 = \frac{n^2 \pi^2}{4b^2} = \frac{2mE}{\hbar^2}$$
 $E_n = \frac{n^2 \pi^2 \hbar^2}{8mb^2} = \frac{n^2 h^2}{8mL^2}$ Energy eigenvalues,

Energy levels are not continuous L = 2b - length of box.

What do we learn from PIB problem?

- Energy in PIB is discrete
- Energy eigen values are labelled by the integer n
- n is referred to as quantum number
- Lowest energy state is for $n = 1 \Rightarrow E \neq 0$
- Lowest state is having finite kinetic energy
- Particle is never perfectly localized and stationary uncertainty principle is not violated.

PIB wavefunctions

$$\Psi_n(x) = \left(\frac{1}{b}\right)^{1/2} \cos \frac{n\pi x}{2b} |x| \le b \quad n = 1, 3, 5 \dots$$

$$\Psi_n(x) = \left(\frac{1}{b}\right)^{1/2} \sin\frac{n\pi x}{2b} |x| \le b$$

$$n = 2, 4, 6 \dots$$

General form of the wavefunctions:

$$\Psi_n(x) = \left(\frac{2}{a}\right)^{1/2} \sin\frac{n\pi x}{a} \quad 0 \le x \le a, \text{ n = 1, 2, 3}$$

Wave functions & Born Conditions

- Quantization is forced by Born condition boundary condition
- Wave function must be finite everywhere.
- Wave function is single valued.
- Wave function is continuous.
- What about the 4th condition: $\frac{d\psi}{dx}$???

Consider
$$\frac{d\psi}{dx}$$
 at $|x| = b$

Outside the box at
$$|x| = b$$
, $\frac{d\psi}{dx} = 0$

Outside the box at
$$|x| = b$$
, $\frac{d\psi}{dx} = 0$
Inside the box at $|x| = b$, $\frac{d\psi}{dx} \neq 0$, finite