Introduction to Algorithms (Cont.) and Big-oh Notation

Subhabrata Samajder

IIIT, Delhi Winter Semester, 3rd March, 2023

Recap: Algorithms

• **Algorithm:** It is a finite sequence of elementary operations with the objective of performing some (computational) task.

Recap: Algorithms

- **Algorithm:** It is a finite sequence of elementary operations with the objective of performing some (computational) task.
 - **Elementary operations:** Arithmetic and logical operations.
 - Finiteness: It must stop.

Recap: Algorithms

• **Algorithm:** It is a finite sequence of elementary operations with the objective of performing some (computational) task.

• Input and Output: Can take *several* inputs but produces a *single* output.

- **Efficiency:** Requiring little 'resources'.
 - **Resources:** Time and space.

• Intuitively: Time taken by an algorithm will depend on the size(s) of its input(s).

• Intuitively: Time taken by an algorithm will depend on the size(s) of its input(s).

Example: Consider the search problem.

• \uparrow size of the list \Rightarrow algorithm takes more time.

• **Intuitively:** Time taken by an algorithm will depend on the size(s) of its input(s).

Example: Consider the search problem.

• \uparrow size of the list \Rightarrow algorithm takes more time.

Example: Is $a \ge 0$ prime?

• $\uparrow \log_2 a \Rightarrow$ algorithm takes more time.

• **Intuitively:** Time taken by an algorithm will depend on the size(s) of its input(s).

Example: Consider the search problem.

• \uparrow size of the list \Rightarrow algorithm takes more time.

Example: Is $a \ge 0$ prime?

• $\uparrow \log_2 a \Rightarrow$ algorithm takes more time.

Example: gcd(a, b).

• $\uparrow n = \log_2(\max\{|a|,|b|\}) \Rightarrow \text{algorithm takes more time.}$

• **Intuitively:** Time taken by an algorithm will depend on the size(s) of its input(s).

• Thus, one has to factor in the size(s) of the input(s) while talking about algorithmic efficiency.

• **Intuitively:** Time taken by an algorithm will depend on the size(s) of its input(s).

• Thus, one has to factor in the size(s) of the input(s) while talking about algorithmic efficiency.

• Note: Set of all possible inputs is *typically infinite*.

- **Intuitively:** Time taken by an algorithm will depend on the size(s) of its input(s).
- Thus, one has to factor in the size(s) of the input(s) while talking about algorithmic efficiency.
- **Note:** Set of all possible inputs is *typically infinite*.
- Size of inputs: A function from the set of all possible inputs to \mathbb{Z}^+ .

- **Intuitively:** Time taken by an algorithm will depend on the size(s) of its input(s).
- Thus, one has to factor in the size(s) of the input(s) while talking about algorithmic efficiency.
- **Note:** Set of all possible inputs is *typically infinite*.
- Size of inputs: A function from the set of all possible inputs to \mathbb{Z}^+ .
- Fixing a positive integer *n* fixes the set of all inputs of size *n* and this is a typically a *finite set*.

• **Note:** The set of all possible inputs depend on the algorithm and so does the size function.

• **Note:** The set of all possible inputs depend on the algorithm and so does the size function.

Example:

• Search Problem: |L|.

• Arithmetic Problem: $\max\{\log_2 a, \log_2 b, \log_2 c, \log_2 d\}$.

• **Note:** The set of all possible inputs depend on the algorithm and so does the size function.

Example:

- Search Problem: |L|.
- Arithmetic Problem:
 - Additions: 2
 - Multiplications: 1
 - ullet Time: $2 \times \text{Cost}$ of Additions $+ \ 1 \times \text{Cost}$ of Multiplication

Runtime Function of an Algorithm

t(n): # steps required by the algorithm on an input of size n.

Runtime Function of an Algorithm

t(n): # steps required by the algorithm on an input of size n.

Note:

• # steps can vary across two different inputs of size n.

Runtime Function of an Algorithm

t(n): # steps required by the algorithm on an input of size n.

Note:

- # steps can vary across two different inputs of size n.
- : given n, one cannot define a unique t(n) such that the algorithm requires exactly t(n) steps on any input of size n.

1 Worst-case time complexity: t(n) is the maximum of the different numbers of steps that the algorithm requires for different inputs of size n.

- **Worst-case time complexity:** t(n) is the *maximum* of the different numbers of steps that the algorithm requires for different inputs of size n.
 - May not present a proper picture of the performance.

- **Worst-case time complexity:** t(n) is the *maximum* of the different numbers of steps that the algorithm requires for different inputs of size n.
 - May not present a proper picture of the performance.
 - May take a rather long time only for a few inputs of size n.

- **Worst-case time complexity:** t(n) is the *maximum* of the different numbers of steps that the algorithm requires for different inputs of size n.
 - May not present a proper picture of the performance.
 - May take a rather long time only for a few inputs of size n.

Example: Quick Sort.

- **1** Worst-case time complexity: t(n) is the maximum of the different numbers of steps that the algorithm requires for different inputs of size n.
 - May not present a proper picture of the performance.
 - May take a rather long time only for a few inputs of size n.

Example: Quick Sort.

• Labelling such an algorithm as inefficient is inappropriate.

- **Worst-case time complexity:** t(n) is the *maximum* of the different numbers of steps that the algorithm requires for different inputs of size n.
 - May not present a proper picture of the performance.
 - May take a rather long time only for a few inputs of size n.

Example: Quick Sort.

- Labelling such an algorithm as inefficient is inappropriate.
- 2 Average-case time complexity: Considers the average case behaviour of the algorithm.
 - For each *n*, the set of all inputs of size *n* is assumed to be finite.
 - Define a *uniform distribution* on this set.
 - Then the time function T(n) becomes a random variable.
 - Average-case time complexity = E[T(n)] (function of n).

Runtime Function of an Algorithm (Cont.)

• We will mostly focus on the worst-case time complexity.

Runtime Function of an Algorithm (Cont.)

We will mostly focus on the worst-case time complexity.

• Analogously, one can also formulate the worst-case and average-case *space* required by an algorithm.

```
f(a, b, c, d):

t_1 = a + b

t_2 = c + d

t_3 = t_1 * t_2

return t_3
```

$$f(a, b, c, d)$$
:
 $t_1 = a + b$
 $t_2 = c + d$
 $t_3 = t_1 * t_2$
return t_3

• Basic operation: 2 Addition and 1 multiplication

```
f(a, b, c, d):

t_1 = a + b

t_2 = c + d

t_3 = t_1 * t_2

return t_3
```

- Basic operation: 2 Addition and 1 multiplication
 - Depends on the size of integers a, b, c and d.
 - The sizes of a, b, c and d can vary.
 - Assume that $n = \max\{\lceil \log_2 a \rceil, \lceil \log_2 b \rceil, \lceil \log_2 c \rceil, \lceil \log_2 d \rceil\}$.
 - Adding two *n*-bit integers take time $\propto n$.
 - Multiplying two *n*-bit integers take time $\propto n^{\log_2 3}$.

```
f(a, b, c, d):

t_1 = a + b

t_2 = c + d

t_3 = t_1 * t_2

return t_3
```

- Basic operation: 2 Addition and 1 multiplication
 - Depends on the size of integers a, b, c and d.
 - The sizes of a, b, c and d can vary.
 - Assume that $n = \max\{\lceil \log_2 a \rceil, \lceil \log_2 b \rceil, \lceil \log_2 c \rceil, \lceil \log_2 d \rceil\}$.
 - Adding two *n*-bit integers take time $\propto n$.
 - Multiplying two *n*-bit integers take time $\propto n^{\log_2 3}$.
- Size of input: *n*.

```
f(a, b, c, d):

t_1 = a + b

t_2 = c + d

t_3 = t_1 * t_2

return t_3
```

- Basic operation: 2 Addition and 1 multiplication
 - Depends on the size of integers a, b, c and d.
 - The sizes of a, b, c and d can vary.
 - Assume that $n = \max\{\lceil \log_2 a \rceil, \lceil \log_2 b \rceil, \lceil \log_2 c \rceil, \lceil \log_2 d \rceil\}$.
 - Adding two *n*-bit integers take time $\propto n$.
 - Multiplying two *n*-bit integers take time $\propto n^{\log_2 3}$.
- Size of input: n.
- Time complexity: $\propto n^{\log_2 3}$.

Searching Problem

• I/P: A list L of integer values and another value v.

• **Question:** Does $v \in L$?

• **O/P:** 'index of s' if $v \in L$; else it returns 'FLAG'.

```
LinearSearch(L[1, ..., n], s):
for i = 1 to n
if (L[i] = s)
return i;
endfor;
return FLAG.
```

```
LinearSearch(L[1, ..., n], s):
for i = 1 to n
if (L[i] = s)
return i;
endfor;
return FLAG.
```

• Basic operation: Comparison of the type L[i] = s'

```
LinearSearch(L[1, ..., n], s):
for i = 1 to n
if (L[i] = s)
return i;
endfor;
return FLAG.
```

- Basic operation: Comparison of the type L[i] = s'
 - Depends on the size of integers L[i]'s and s.
 - **Assumption:** The sizes of L[i]'s and s are constant.
 - Then, the time taken for each comparison is a *constant*.

```
LinearSearch(L[1, ..., n], s):
for i = 1 to n
if (L[i] = s)
return i;
endfor;
return FLAG.
```

- Basic operation: Comparison of the type L[i] = s'
 - Depends on the size of integers L[i]'s and s.
 - **Assumption:** The sizes of L[i]'s and s are constant.
 - Then, the time taken for each comparison is a *constant*.
- Size of input: |L|.

```
LinearSearch(L[1, ..., n], s):

for i = 1 to n

if (L[i] = s)

return i;

endfor;

return FLAG.
```

- Basic operation: Comparison of the type L[i] = s'
 - Depends on the size of integers L[i]'s and s.
 - **Assumption:** The sizes of L[i]'s and s are constant.
 - Then, the time taken for each comparison is a constant.
- Size of input: |L|.
- Time complexity: Number of comparisons of the type

$$L[i] = s'$$
.

ullet # other operations \propto # comparisons.

```
LinearSearch(L[1, ..., n], s):
for i = 1 to n
if (L[i] = s)
return i;
endfor;
return FLAG.
```

• Unsuccessful search: *n* comparisons.

```
LinearSearch(L[1, ..., n], s):
for i = 1 to n
if (L[i] = s)
return i;
endfor;
return FLAG.
```

- Unsuccessful search: *n* comparisons.
- Successful search: Between 1 to *n* comparisons.

```
LinearSearch(L[1, ..., n], s):
for i = 1 to n
if (L[i] = s)
return i;
endfor;
return FLAG.
```

- Unsuccessful search: *n* comparisons.
- Successful search: Between 1 to *n* comparisons.
- Worst-case complexity: *n* comparisons.

```
LinearSearch(L[1, ..., n], s):

for i = 1 to n

if (L[i] = s)

return i;

endfor;

return FLAG.
```

- Unsuccessful search: *n* comparisons.
- Successful search: Between 1 to *n* comparisons.
- Worst-case complexity: *n* comparisons.
- : # steps in the worst case = $c_1 n$, for some constant c_1 .

Average-case complexity:

• Fix *n* integers.

Average-case complexity:

• Fix *n* integers.

- Two cases may arise:
 - Successful search: $s \in L[1]$.
 - Call this event succ.
 - Assign 1/n (uniform) probability to each of these cases.
 - That is, $\Pr[T(n) = i | \text{succ}] = \frac{(n-1)!}{n!} = \frac{1}{n}, \ \forall \ i = 1, 2, ..., n.$

Average-case complexity:

- Fix *n* integers.
- Two cases may arise:
 - Successful search: $s \in L[1]$.
 - Call this event succ.
 - Assign 1/n (uniform) probability to each of these cases.
 - That is, $\Pr[T(n) = i | \text{succ}] = \frac{(n-1)!}{n!} = \frac{1}{n}, \ \forall \ i = 1, 2, ..., n.$
 - Unsuccessful search: $s \notin L$.
 - Call this event unsucc.
 - In this case Pr[T(n) = n | unsucc] = 1.

Average-case complexity:

- Fix *n* integers.
- Two cases may arise:
 - Successful search: $s \in L[1]$.
 - Call this event succ.
 - Assign 1/n (uniform) probability to each of these cases.
 - That is, $\Pr[T(n) = i | \text{succ}] = \frac{(n-1)!}{n!} = \frac{1}{n}, \ \forall \ i = 1, 2, ..., n.$
 - Unsuccessful search: $s \notin L$.
 - Call this event unsucc.
 - In this case Pr[T(n) = n | unsucc] = 1.
- Assume that $Pr[succ] = Pr[unsucc] = \frac{1}{2}$.

Average-case complexity:

- Fix *n* integers.
- Two cases may arise:
 - Successful search: $s \in L[1]$.
 - Call this event succ.
 - Assign 1/n (uniform) probability to each of these cases.
 - That is, $\Pr[T(n) = i | \text{succ}] = \frac{(n-1)!}{n!} = \frac{1}{n}, \ \forall \ i = 1, 2, ..., n.$
 - Unsuccessful search: $s \notin L$.
 - Call this event unsucc.
 - In this case Pr[T(n) = n | unsucc] = 1.
- Assume that $Pr[succ] = Pr[unsucc] = \frac{1}{2}$.

Then,

$$E[T(n)] = E[T(n)|succ] \cdot Pr[succ] + E[T(n)|unsucc] \cdot Pr[unsucc]$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} i \cdot \frac{1}{n} + n \cdot 1 \right) = \frac{3n+1}{4}.$$

Assume: *L* is sorted in ascending order.

Assume: *L* is sorted in ascending order.

• **Note:** LinearSearch cannot take advantage of this information.

Assume: *L* is sorted in ascending order.

• **Note:** LinearSearch cannot take advantage of this information.

• Question: Can we do better?

Binary Search

Figure: Binary Search (Courtesy: Wikipedia)

```
Binary_Search(L, n, s)

I/P: L (a sorted array in the range 1 to n), and z (the search key).

O/P: Position (an index i such that L[i] = s, or 0 if no such index exist).

Begin

Position := Find(s, 1, n);

End
```

```
Binary_Search(L, n, s)
  I/P: L (a sorted array in the range 1 to n), and z (the search key).
  O/P: Position (an index i such that L[i] = s, or 0 if no such index exist).
  Begin
    Position := Find(s, 1, n);
  End
  function Find(s, Left, Right): integer
    Begin
       If (Left = Right)
         If (L[Left] = s)
           return Left;
         else
           return 0;
       else
         Middle := \lceil 1/2(Left + Right) \rceil;
         If (s < L[Middle])
           return Find(z, Left, Middle -1);
         else
           return Find(z, Middle, Right);
    End
```

```
Binary_Search(L, n, s)
  I/P: L (a sorted array in the range 1 to n), and z (the search key).
  O/P: Position (an index i such that L[i] = s, or 0 if no such index exist).
  Begin
    Position := Find(s, 1, n);
  End
  function Find(s, Left, Right): integer
    Begin
       If (Left = Right)
         If (L[Left] = s)
           return Left;
         else
           return 0:
       else
         Middle := \lceil 1/2(Left + Right) \rceil;
         If (s < L[Middle])
           return Find(z, Left, Middle -1);
         else
           return Find(z, Middle, Right);
    End
```

Homework: Implement BinarySearch in C.

• After one search the size of the search space is reduced by *half*, i.e., becomes n/2.

- After one search the size of the search space is reduced by *half*, i.e., becomes n/2.
- After each subsequent search the list size becomes $\frac{n}{2^2}, \frac{n}{2^3}, \ldots$
- Successful search: k comparisons, where

$$\frac{n}{2^k} = 1 \quad \Rightarrow \quad k = \lceil \log_2 n \rceil.$$

- After one search the size of the search space is reduced by *half*, i.e., becomes n/2.
- After each subsequent search the list size becomes $\frac{n}{2^2}, \frac{n}{2^3}, \ldots$
- Successful search: k comparisons, where

$$\frac{n}{2^k} = 1 \quad \Rightarrow \quad k = \lceil \log_2 n \rceil.$$

• Unsuccessful search: $\lceil \log_2 n \rceil$ comparisons.

- After one search the size of the search space is reduced by *half*, i.e., becomes n/2.
- After each subsequent search the list size becomes $\frac{n}{2^2}, \frac{n}{2^3}, \ldots$
- Successful search: k comparisons, where

$$\frac{n}{2^k} = 1 \quad \Rightarrow \quad k = \lceil \log_2 n \rceil.$$

- Unsuccessful search: $\lceil \log_2 n \rceil$ comparisons.
- Worst-case time complexity: $\lceil \log_2 n \rceil$ comparisons.

- After one search the size of the search space is reduced by *half*, i.e., becomes n/2.
- After each subsequent search the list size becomes $\frac{n}{2^2}, \frac{n}{2^3}, \ldots$
- Successful search: k comparisons, where

$$\frac{n}{2^k} = 1 \quad \Rightarrow \quad k = \lceil \log_2 n \rceil.$$

- Unsuccessful search: $\lceil \log_2 n \rceil$ comparisons.
- Worst-case time complexity: $\lceil \log_2 n \rceil$ comparisons.
- Average-case time complexity: $\lceil \log_2 n \rceil$ comparisons.

- After one search the size of the search space is reduced by *half*, i.e., becomes n/2.
- After each subsequent search the list size becomes $\frac{n}{2^2}, \frac{n}{2^3}, \ldots$
- Successful search: k comparisons, where

$$\frac{n}{2^k} = 1 \quad \Rightarrow \quad k = \lceil \log_2 n \rceil.$$

- Unsuccessful search: $\lceil \log_2 n \rceil$ comparisons.
- Worst-case time complexity: $\lceil \log_2 n \rceil$ comparisons.
- : # steps in the worst case = $c_2 \times \lceil \log_2 n \rceil$, $c_2 = \text{constant}$.

- After one search the size of the search space is reduced by *half*, i.e., becomes n/2.
- After each subsequent search the list size becomes $\frac{n}{2^2}, \frac{n}{2^3}, \ldots$
- Successful search: k comparisons, where

$$\frac{n}{2^k} = 1 \quad \Rightarrow \quad k = \lceil \log_2 n \rceil.$$

- Unsuccessful search: $\lceil \log_2 n \rceil$ comparisons.
- Worst-case time complexity: $\lceil \log_2 n \rceil$ comparisons.
- :. # steps in the worst case = $c_2 \times \lceil \log_2 n \rceil$, $c_2 = \text{constant}$.
- Clearly, BinarySearch is "better" than LinearSearch.

- After one search the size of the search space is reduced by *half*, i.e., becomes n/2.
- After each subsequent search the list size becomes $\frac{n}{2^2}, \frac{n}{2^3}, \ldots$
- Successful search: k comparisons, where

$$\frac{n}{2^k} = 1 \quad \Rightarrow \quad k = \lceil \log_2 n \rceil.$$

- Unsuccessful search: $\lceil \log_2 n \rceil$ comparisons.
- Worst-case time complexity: $\lceil \log_2 n \rceil$ comparisons.
- :. # steps in the worst case = $c_2 \times \lceil \log_2 n \rceil$, c_2 = constant.
- Clearly, BinarySearch is "better" than LinearSearch.
- Question: Which is the "best" possible algorithm for a given 'problem'?

Comparing Algorithms

Consider a problem Π .

ullet Any algorithm which solves Π will take as input an instance of the problem and return the correct answer.

Comparing Algorithms

Consider a problem Π .

- Any algorithm which solves Π will take as input an instance of the problem and return the correct answer.
- Two algorithms for the same problem can be compared by comparing their time complexities.
- More generally, one can ask for the best possible algorithm to solve Π or to show that Π cannot be solved efficiently.

Comparing Algorithms

Consider a problem Π .

- Any algorithm which solves Π will take as input an instance of the problem and return the correct answer.
- Two algorithms for the same problem can be compared by comparing their time complexities.
- More generally, one can ask for the best possible algorithm to solve Π or to show that Π cannot be solved efficiently.
- Answering such questions form the motivation for the rich area of algorithm design and analysis (ADA).

• Measure of performance: Worst-case complexity.

- Measure of performance: Worst-case complexity.
 - LinearSearch: $t(n) = c_1 n$.
 - BinarySearch: $t(n) = c_2 \times \lceil \log_2 n \rceil$.

- Measure of performance: Worst-case complexity.
 - LinearSearch: $t(n) = c_1 n$.
 - BinarySearch: $t(n) = c_2 \times \lceil \log_2 n \rceil$.
 - **Note:** The constants c_1 and c_2 depends upon many things including implementation details.

- Measure of performance: Worst-case complexity.
 - LinearSearch: $t(n) = c_1 n$.
 - BinarySearch: $t(n) = c_2 \times \lceil \log_2 n \rceil$.
 - **Note:** The constants c_1 and c_2 depends upon many things including implementation details.
 - Would be convenient to have a method which does not involve these constants.

Big-oh Notation

Figure: Binary Search (Courtesy: Wikipedia)

Big-oh Notation (Cont.)

Definition (\mathcal{O} -notation)

Let g and f be functions from the set of natural numbers to itself. The function f is said to be $\mathcal{O}(g)$ (read big-oh of g), if there is a constant c and a natural n_0 such that

$$f(n) \leq cg(n)$$
 for all $n > n_0$.

Big-oh Notation (Cont.)

Definition (\mathcal{O} -notation)

Let g and f be functions from the set of natural numbers to itself. The function f is said to be $\mathcal{O}(g)$ (read big-oh of g), if there is a constant c and a natural n_0 such that

$$f(n) \leq cg(n)$$
 for all $n > n_0$.

- LinearSearch = $\mathcal{O}(n)$ (both cases)
- BinarySearch = $\mathcal{O}(\log n)$ (both cases)
 - **Homework:** Derive the average-case complexity of BinarySearch with early termination.

Big-oh Notation (Cont.)

Definition (\mathcal{O} -notation)

Let g and f be functions from the set of natural numbers to itself. The function f is said to be $\mathcal{O}(g)$ (read big-oh of g), if there is a constant c and a natural n_0 such that

$$f(n) \leq cg(n)$$
 for all $n > n_0$.

- LinearSearch = $\mathcal{O}(n)$ (both cases)
- BinarySearch = $\mathcal{O}(\log n)$ (both cases)
 - **Homework:** Derive the average-case complexity of BinarySearch with early termination.
- Caveat:
 - We lose a lot of details.
 - 2 Details can be important in actual practice.

Note: $\mathcal{O}(g)$ is a set!

Note: $\mathcal{O}(g)$ is a set!

Abuse of notation: We write $f = \mathcal{O}(g)$ to mean $f \in \mathcal{O}(g)$.

Note: $\mathcal{O}(g)$ is a set!

Abuse of notation: We write $f = \mathcal{O}(g)$ to mean $f \in \mathcal{O}(g)$.

Examples:

• $5n^2 + 15 = \mathcal{O}(n^2)$ [:: $5n^2 + 15 \le 6n^2$ for n > 4].

Note: $\mathcal{O}(g)$ is a set!

Abuse of notation: We write $f = \mathcal{O}(g)$ to mean $f \in \mathcal{O}(g)$.

Examples:

- $5n^2 + 15 = \mathcal{O}(n^2)$ [:: $5n^2 + 15 \le 6n^2$ for n > 4].
- $5n^2 + 15 = \mathcal{O}(n^3)$ [: $5n^2 + 15 \le n^3$ for all n > 6].

Note: $\mathcal{O}(g)$ is a set!

Abuse of notation: We write $f = \mathcal{O}(g)$ to mean $f \in \mathcal{O}(g)$.

Examples:

- $5n^2 + 15 = \mathcal{O}(n^2)$ [:: $5n^2 + 15 \le 6n^2$ for n > 4].
- $5n^2 + 15 = \mathcal{O}(n^3)$ [: $5n^2 + 15 \le n^3$ for all n > 6].
- $\mathcal{O}(1)$ denote a constant.

Note: $\mathcal{O}(g)$ is a set!

Abuse of notation: We write $f = \mathcal{O}(g)$ to mean $f \in \mathcal{O}(g)$.

Examples:

- $5n^2 + 15 = \mathcal{O}(n^2)$ [:: $5n^2 + 15 \le 6n^2$ for n > 4].
- $5n^2 + 15 = \mathcal{O}(n^3)$ [: $5n^2 + 15 \le n^3$ for all n > 6].
- $\mathcal{O}(1)$ denote a constant.
- ullet One can include constants within the ${\cal O}$ notation.
- But there is no reason to do it.
- We therefore write $\mathcal{O}(n)$ instead of $\mathcal{O}(5n+4)$.

Poly-time vs. Exponential Algorithm

Poly-time:

- $\mathcal{O}(n^c)$.
- Identified with *efficient* algorithms.

Poly-time vs. Exponential Algorithm

Poly-time:

- $\mathcal{O}(n^c)$.
- Identified with *efficient* algorithms.

Exponential-time:

- $\mathcal{O}(2^n)$.
- Identified with *inefficient* algorithms.

Poly-time vs. Exponential Algorithm

Poly-time:

- $\mathcal{O}(n^c)$.
- Identified with *efficient* algorithms.

Exponential-time:

- $\mathcal{O}(2^n)$.
- Identified with *inefficient* algorithms.

For any given problem, it is of interest to be able to design a polynomial time algorithm to solve it.

Monotonically growing function: If $n_1 > n_2 \implies f(n_1) \ge f(n_2)$.

Monotonically growing function: If $n_1 > n_2 \implies f(n_1) \ge f(n_2)$.

Theorem

For all constants c > 0 and a > 1, and for all monotonically growing functions f(n),

$$(f(n))^c = \mathcal{O}(a^{f(n)}).$$

In other words, an exponential function grows faster than does a polynomial function.

Monotonically growing function: If $n_1 > n_2 \implies f(n_1) \ge f(n_2)$.

Theorem

For all constants c > 0 and a > 1, and for all monotonically growing functions f(n),

$$(f(n))^c = \mathcal{O}(a^{f(n)}).$$

In other words, an exponential function grows faster than does a polynomial function.

Proof: Home Work!

Monotonically growing function: If $n_1 > n_2 \implies f(n_1) \ge f(n_2)$.

Theorem

For all constants c > 0 and a > 1, and for all monotonically growing functions f(n),

$$(f(n))^c = \mathcal{O}(a^{f(n)}).$$

In other words, an exponential function grows faster than does a polynomial function.

Proof: Home Work!

Corollaries:

- Putting f(n) = n, we get $n^c = \mathcal{O}(a^n)$.
- Putting $f(n) = \log_a n$, we get $(\log_a n)^c = \mathcal{O}(a^{\log_a n}) = \mathcal{O}(n)$.

Lemma

• If $f(n) = \mathcal{O}(s(n))$ and $g(n) = \mathcal{O}(r(n))$ then

$$f(n) + g(n) = \mathcal{O}(s(n) + r(n)).$$

② If $f(n) = \mathcal{O}(s(n))$ and $g(n) = \mathcal{O}(r(n))$ then

$$f(n).g(n) = \mathcal{O}(s(n).r(n)).$$

Lemma

• If $f(n) = \mathcal{O}(s(n))$ and $g(n) = \mathcal{O}(r(n))$ then

$$f(n) + g(n) = \mathcal{O}(s(n) + r(n)).$$

2 If $f(n) = \mathcal{O}(s(n))$ and $g(n) = \mathcal{O}(r(n))$ then

$$f(n).g(n) = \mathcal{O}(s(n).r(n)).$$

Proof: Home Work!

Note:

• It is not possible to *subtract* or *divide*.

Note:

- It is not possible to <u>subtract</u> or <u>divide</u>.
- That is, it is not true in general that $f(n) = \mathcal{O}(s(n))$ and $g(n) = \mathcal{O}(r(n))$ imply that

$$f(n) - g(n) = \mathcal{O}(s(n) - r(n))$$

or that

$$f(n)/g(n) = \mathcal{O}(s(n)/r(n)).$$

Note:

- It is not possible to <u>subtract</u> or <u>divide</u>.
- That is, it is not true in general that $f(n) = \mathcal{O}(s(n))$ and $g(n) = \mathcal{O}(r(n))$ imply that

$$f(n) - g(n) = \mathcal{O}(s(n) - r(n))$$

or that

$$f(n)/g(n) = \mathcal{O}(s(n)/r(n)).$$

(Show it!)

Better Processors vs. Efficient Algorithms

running times	$time_1$	$time_2$	time ₃	time ₄
	1000 steps/sec	2000 steps/sec	4000 steps/sec	8000 steps/sec
$\log_2 n$	0.010	0.005	0.003	0.001
n	1	0.5	0.25	0.125
$n \log_2 n$	10	5	2.5	1.25
$n^{1.25}$	32	16	8	4
n^2	1,000	500	250	125
n^3	1,000,000	500,000	250,000	125,000
1.1 ⁿ	10 ³⁹	10 ³⁹	10 ³⁸	10^{38}

Table: Running times (in seconds) under different assumptions (n = 1000).

Books Consulted

Chapter 2 of A Course on Cooperative Game Theory by Satya
 R. Chakravarty, Palash Sarkar and Manipushpak Mitra.

Introduction to Algorithms: A Creative Approach by Udi Manber. Thank You for your kind attention!