9. Compute the actual CD

$$CD = \frac{1}{4} \left[L_C - \frac{N_2 + N_1}{2} + \sqrt{\left(L_C - \frac{N_2 + N_1}{2}\right)^2 - \frac{8(N_2 - N_1)^2}{4\pi^2}} \right]$$

10. Compute the angle of wrap for each sprocket. The minimum angle of wrap should be 120°

$$\theta_1 = 180^{\circ} - 2\sin^{-1}\left[\frac{PD_2 - PD_1}{2CD}\right]$$
$$\theta_2 = 180^{\circ} + 2\sin^{-1}\left[\frac{PD_2 - PD_1}{2CD}\right]$$

11. Compute factor of safety

$$FS = P_{allowed}/P_{des}$$

 $P_{allowed}$ is the number you got from the table in step 3 times the strand factor

1.7 Wire Rope

1.7.1Anatomy

There's two types of rope winding:

(a) Regular lay

(b) Lang lay

- Regular-lay ropes have the wires in the strand twisted in one direction and the strands in the rope twisted in the opposite direction
- Lang-lay ropes have the wires in the strand and the strands in the rope twisted in the same direction. Lang lay is more flexible than regular lay.

1.7.2 Nomenclature

F = tensile force on rope (lbf)

W = weight at the end of the rope (load) (lbf)

m = number of ropes supporting load

w = weight/foot supporting load (lbf/ft)

l = maximum suspended length of rope (ft) $a = \text{maximum acceleration/deceleration } (ft/s^2)$ $g = \text{acceleration of gravity } (32.17 \ ft/s^2)$ $p/S_u = \text{specified life}$ $S_u = \text{ultimate tensile strength (psi)}$ D = sheave or which drum diameter (in) d = nominal wire rope size (in) $E_r = \text{Young's modulus (psi)}$ $d_w = \text{diameter of the wire (in)}$ $A_m = \text{metal cross-sectional area } (in^2)$

1.7.3 Formulae

rope tension:
$$F_t = \left(\frac{W}{m} + wl\right) \left(1 + \frac{a}{g}\right)$$
 ultimate strength of wire:
$$S_u = \frac{2000F}{Dd}$$
 fatigue tension:
$$F_f = \frac{(p/S_u)S_uDd}{2}$$
 equivalent bending load:
$$F_b = \frac{E_r d_w A_m}{D}$$
 fatigue factor of safety:
$$n_f = \frac{F_f - F_b}{F_t}$$
 factor of safety for static loading:
$$n_s = \frac{F_u - F_b}{F_t}$$
 bearing pressure:
$$P = \frac{2F}{dD}$$

1.7.4 Useful Tables

Table 17-24 Wire-Rope Data

Rope	Weight per Foot, lbf	Minimum Sheave Diameter, in	Standard Sizes d, in	Material	Size of Outer Wires	Modulus of Elasticity,* Mpsi	Strength, [†] kpsi
6 × 7 haulage	$1.50d^2$	42 <i>d</i>	$\frac{1}{4}$ – $1\frac{1}{2}$	Monitor steel Plow steel Mild plow steel	d/9 d/9 d/9	14 14 14	100 88 76
6 × 19 standard hoisting	$1.60d^2$	26 <i>d</i> –34 <i>d</i>	$\frac{1}{4}$ – $2\frac{3}{4}$	Monitor steel Plow steel Mild plow steel	d/13-d/16 d/13-d/16 d/13-d/16	12 12 12	106 93 80
6 × 37 special flexible	$1.55d^2$	18 <i>d</i>	$\frac{1}{4}$ – $3\frac{1}{2}$	Monitor steel Plow steel	d/22 d/22	11 11	100 88
8 × 19 extra flexible	$1.45d^2$	21 <i>d</i> –26 <i>d</i>	$\frac{1}{4}$ – $1\frac{1}{2}$	Monitor steel Plow steel	d/15-d/19 d/15-d/19	10 10	92 80
7 × 7 aircraft	1.70 <i>d</i> ²	_	$\frac{1}{16} - \frac{3}{8}$	Corrosion-resistant steel Carbon steel			124 124
7 × 9 aircraft	$1.75d^2$	_	$\frac{1}{8}$ $-1\frac{3}{8}$	Corrosion-resistant steel Carbon steel			135 143
19-wire aircraft	$2.15d^2$	_	$\frac{1}{32} - \frac{5}{16}$	Corrosion-resistant steel Carbon steel	_	_	165 165

Table 17–27 Some Useful Properties of 6 \times 7, 6 \times 19, and 6 \times 37 Wire Ropes

Wire Rope	Weight per Foot w, lbf/ft	Weight per Foot Including Core w, lbf/ft	Minimum Sheave Diameter D , in	Better Sheave Diameter D, in	Diameter of Wires d_w , in	Area of Metal A_m , in ²	Rope Young's Modulus E_r , psi
6×7	$1.50d^{2}$		42 <i>d</i>	72 <i>d</i>	0.111 <i>d</i>	$0.38d^{2}$	13×10^{6}
6 × 19	$1.60d^2$	$1.76d^{2}$	30 <i>d</i>	45 <i>d</i>	0.067 <i>d</i>	$0.40d^2$	12×10^{6}
6 × 37	$1.55d^{2}$	$1.71d^2$	18 <i>d</i>	27 <i>d</i>	0.048 <i>d</i>	$0.40d^{2}$	12×10^{6}

Table 17-26 Maximum Allowable Bearing Pressures of Ropes on Sheaves (in psi)

	Sheave Material					
Rope	Wood ^a	Cast Iron ^b	Cast Steel ^c	Chilled Cast Irons ^d	Manganese Steel ^e	
Regular lay:						
6×7	150	300	550	650	1470	
6 × 19	250	480	900	1100	2400	
6×37	300	585	1075	1325	3000	
8 × 19	350	680	1260	1550	3500	
Lang lay:						
6×7	165	350	600	715	1650	
6 × 19	275	550	1000	1210	2750	
6 × 37	330	660	1180	1450	3300	

S_u ranges:

Improved plow steel (monitor) $240 < S_u < 280 \text{ kpsi}$ Plow steel $210 < S_u < 240 \text{ kpsi}$ Mild plow steel $180 < S_u < 210 \text{ kpsi}$

No idea how to use this but here it is in case it's relevant:

