Partie 4 Biochimie structurale et intérêts industriels des macromolécules biologiques

Chapitre 1 : Les glucides

1. Les monosaccharides

Squelette carboné constitué de 3 à 7 carbones (C).

Les plus courants ont 5C ou 6C

Aldoses

Cétoses

aldotriose

1 C * : 2¹ = 2 stéréoisomères

stéréoisomères?

Exercice: cétoses à 6 C

S- (-)glycéraldéhyde

R- (+) glycéraldéhyde

On a montré ensuite que le composé D est dextrogyre (+) et le L lévogyre (-).

D- (+) glycéraldéhyde nomenclature des biologistes!:

L- (-) glycéraldéhyde

le - OH figure à droite, c'est le stéréoisomère D le – OH figure à gauche, c'est le stéréoisomère L

Par convention, lorsque dans les projections de FISCHER,

Aldoses

Cétoses

4

Les monosaccharides existent sous formes linéaire et cyclique Ex : le glucose

Nomenclature des ETHERS

Formule générale : R-O-R (éther symétrique) R-O-R' (éther asymétrique)

nomenclature systématique :

- nom de base qui est celui du composé RH correspondant au groupe R prioritaire (le plus de carbone, une insaturation, une fonction);
- groupe RO-, appelé alkoxy (ou alkyloxy pour les groupes comportant plus de 5 carbones), qui contient l'autre partie est considéré comme un substituant du composé de base et est donc ajouté en préfixe.

autres nomenclature :

- alkylalkyléther
- oxyde d'alkyle et d'aryle

CH₃-O-CH₂-CH₃ CH₃-CH₂-O-CH=CH-CH₃ méthoxyéthane 1-éthoxyprop-1-ène

CH3-CH2-O-CH2-CH3 oxyde de diéthyle (éthoxyéthane) ou éther ordinaire

K⁺

Le D- glucose

<u>La cyclisation : les anomères α et β du D- glucose.</u>

 α -D-glucopyranose

 $T_{fus} = 146$ °C

 $[\alpha] = +112^{\circ}$

 β -D-glucopyranose

T_{fus}=150°C

 $[\alpha] = +18,7^{\circ}$

Propriétés différentes :

Diastéréoisomères

Epimères

La mutarotation du glucose.

2. LES HYDROCARBURES SATURÉS CYCLIQUES

Isomérie plane (de structure)

Stéréoisomérie : isomères de conformation

Hypothèse : si les dérivés cycliques sont plans : - tension angulaire 109°28′

cyclopropane cyclobutane cyclopentane cyclohexane cycloheptane

$$\alpha$$
 = 60°

$$\alpha = 90^{\circ}$$

$$\alpha = 108^{\circ}$$

$$\alpha$$
 = 120°

$$\alpha$$
 = 128°

les 6 liaisons C-H sont toutes éclipsées

Structures planes : Tension angulaire + énergie de torsion

= très défavorables car déstabilisation

= tendance à réagir en ouvrant le cycle diminue de

Les structures ne sont pas planes si possible

Cyclobutane : structure non plane

Cyclopentane: structure non plane

Cyclohexane: structure non plane conformation chaise

Hypothèse d'une structure plane:

- 12 H éclipsés
- 6 contraintes angulaires (120°)

Conformation libre de contrainte : chaise

- 12 H décalées
- angles de liaison quasi tétraédrique

Tous les H sont en position décalée : grande stabilité

Les six atomes de carbone de la conformation chaise se répartissent en deux plans parallèles. Les douze liaisons C-H se divisent alors en deux groupes :

- 6 liaisons axiales, perpendiculaires aux deux plans. Les hydrogènes ou substituants correspondants sont dits en position axiale;
- 6 liaisons équatoriales, faisant un angle de 15° avec ces plans. Les atomes d'hydrogène correspondant sont les hydrogènes équatoriaux.

Conformation moins stable du cyclohexane = bateau

- angles de liaison quasi tétraédrique

 \Rightarrow E_{θ} minimale

-8 liaisons C-H sont éclipsées 2 à 2

 \Rightarrow E_{τ} non minimale

 \Rightarrow E_{VDW} non minimale

Conformation bateau

Différence de stabilité :

27.2 kJ/mol -

1% des molécules à T ambiante en bateau

Equilibre conformationnel:

environ 100'000 / sec à 300K

Avec conformation bateau = état de transition

Dans l'interconversion chaise-chaise, tous les H_{eq} deviennent H_{ax} et vice-versa.

Morceau du réseau du diamant

- -Réseau continu de cycles hexaniques sous forme chaise accolés.
- -C hybridés sp 3 , 4 liaisons σ
- -Structure très rigide
- -Application industrielle dans outil foreuse, scie...
- -Pierre précieuse car réflexion de la lumière sur multiples facettes

Morceau de la structure du graphite

Un morceau de la structure du graphite

- -Constitué par la fusion de squelettes benzéniques
- -C hybridés sp²
- -Polymère aromatique constitué en couches maintenues par des forces électriques faibles

-Mollesse

Cyclohexanes substitués

Cas du conformère équatorial : le groupe méthyle s'étend dans l'espace loin du reste de la molécule.

Cas du conformère axial : encombrement stérique

équatorial - équatorial

axial - axial

A T = 300 K:

Si Y = CH_3 : 1 molécule sur 20 avec CH_3 en axial Si Y = $C(CH_3)_3$ = 1 molécule sur 5000 en axial

Stéréoisomérie: cis-trans cyclanique

> Hydrocarbures saturés cycliques disubstitués :

- on a la configuration CIS quand les deux substituants sont du même côté du plan

- on a la configuration TRANS quand les deux substituants sont de part et d'autre du plan.

1,4-diméthylcyclohexane

Conformations planes hypothétiques = fausses mais utiles

configuration CIS

équatorial - axial

axial - équatorial

!! 2 conformations

configuration TRANS

axial - axial

équatorial - équatorial

CH₃

 CH_3

!! 2 conformations

configuration CIS

!! 2 conformations

équatorial - axial

axial - équatorial

configuration TRANS

!! 2 conformations

équatorial - équatorial

axial - axial

Quand cyclohexane disubstitué: l'équilibre conformationnel sera déplacé vers la conformation avec le plus gros substituant en position équatoriale.

Stéréoisomérie : activité optique

⇒ Hydrocarbures saturés cycliques non substitués ou mono substitués : pas de C stéréogénique

Pas chiraux et Pas d'activité optique

⇒ Hydrocarbures saturés cycliques disubstitués ??

A et B sont deux énantiomères

C et D sont deux énantiomères

A et C et A et D sont des diastéréoisomères

B et C et B et D sont des diastéréoisomères

pour être optiquement actifs présence

- r au moins un carbone stéréogénique
- pas de plan ni de centre de symétrie

En général si X = Y:

Le D- glucose

Configuration β moins d'encombrement stérique

anomère
$$\alpha$$
 (I) \longleftarrow forme acyclique (II) \longleftarrow anomère β (III) (36,0 %) (< 0,1 %) (64,0 %)

Le D- FRUCTOSE

Structure cyclique type furanose

Structure acyclique

Le D-ribose et D-désoxyribose

3. LES DIHOLOSIDES

Différences constitutives et stéréochimiques entre les diholosides :

- 1) La nature des 2 constituants monosaccharidiques (glucose, fructose,)
- 2) Le type de cycle de chaque ose (pyranose ou furanose).
- 3) La position (constitution) de la liaison glycosidique (entre les 2 cycles).

$$1 \rightarrow 4, 1 \rightarrow 6, 1 \rightarrow 2.$$

4) La configuration anomérique (α ou β) de cette liaison glycosidique.

La position et la configuration de la liaison glycosidique sont très importantes au niveau de l'action enzymatique (hydrolyse).

Liaison osidique

le saccharose (sucre de table, fréquent chez les végétaux)

Fructose

= glucose + fructose

Glucose-
$$\alpha$$
-1,2(β)-fructose

Saccharose

Glucose

Remarque: sucre inverti

Le sucre inverti possède un pouvoir sucrant plus élevé que le saccharose de départ, ceci grâce au fructose formé.

le lactose (Glucide constituant le lait des mammifères)

$$\beta$$
-D-galactopyranosyl(1 \rightarrow 4)- β -D-glucopyranose
Galactose- β -1,4-glucose

LE MALTOSE : provient de l'hydrolyse partielle de l'amidon

 α -D-glucopyranosyl(1 \rightarrow 4)D-glucopyranose

Glucose- α -1,4-glucose

Résulte de l'action d'une enzyme, l'amylase sur l'amidon = polymère de l' α -D-glucose produit par les plantes.

Maltose s'utilise dans la fabrication de certaines boissons, il est facilement fermenté par la levure de bière.

4. LES POLYSACCHARIDES

liaison d'un grand nombre de monosaccharides

Plusieurs rôles capitaux dans les cellules :

- •Réserve énergétique : sous forme polymérisée (amidon, glycogène).
- •structural : la cellulose chez les végétaux.
- Composition de macromolécules biologiques.

Amidon Stockage du glucose chez les plantes

Glycogène Stockage du glucose chez les animaux

Cellulose — Rôle structural chez les plantes

Amidon Glycogène

= forme de stockage du glucose chez les plantes

•Présent dans les organes de réserve des plantes.

Sacs remplis d'amidon dans les cellules de pomme de terre.

2 polysaccharides de structures différentes :

L'amylose : assemblage « linéaire» de motifs glucose (1 α 4).

L'amylopectine de structure ramifiée ($1\alpha4$) et ($1\alpha6$) tous les 12 à 30 résidus.

Par exemple, dans la pomme de terre et le maïs, on observe la répartition suivante: amylopectine (75 – 80 %), amylose (25 - 20 %)

AMYLOSE:

AMYLOPECTINE

Amidon

Glycogène

= forme de **stockage du glucose** chez les animaux

Cellulose

glu + glu + glu +...+glu glycogène

sang

foie muscles

Amylopectine plus ramifiée

Amidon Glycogène

Cellulose

LE CELLOBIOSE

Glucose- β -1,4-glucose

Conformation étirée, avec un retournement alterné de 180° des unités glucose. Des multiples liaisons H se forment et sont à

l'origine de la résistance des matières à base de cellulose.

Papier, bois, coton = cellulose

Les animaux ne peuvent pas digérer la cellulose car ne peuvent pas briser les liaisons osidiques beta.

5. Intérêts industriels

LA FERMENTATION ALCOOLIQUE

Des levures, essentiellement des souches Saccharomyces cerevisiae, réalisent en l'absence d'oxygène, la fermentation du sucre en alcool et en CO₂ selon l'équation de LAVOISIER

$$C_6H_{12}O_6$$
 Fermentation $C_6H_{12}O_6$ $C_6H_{$

Selon l'origine du sucre, le procédé de fabrication et la teneur finale en alcool, on classe les boissons alcoolisées en

3 grandes catégories :

PRODUITFINAL	MATIERES	PRINCIPALES ETAPES DE
	PREMIERES	FABRICATION
Bière	moût d'orge germé	maltage, macération, brassage.
	houblon	fermentation, maturation
Vin	jus de raisin	fermentation, stabilisation,
		vieillissement
Spiritueux	moût de céréales	fermentation, distillation,
		vieillissement (en fût de chêne par
(cognac, whisky)		exemple)

fabrication de la bière

Matières premières

Eau

Malt : issu de céréales comme orge, blé, maïs, riz = source d'amidon

Enzyme : amylase (protéine) produite naturellement lors de la germination de l'orge

 $amidon \rightarrow glucose$

Levure : champignon unicellulaire, anaérobie

Houblon + épices : plante qui donne l'amertume (secret gardé du brasseur)

Schéma de fabrication

Dégradation de l'amidon

Amylose

Schéma de fabrication de la bière

OBJETS et DISCIPLINES des BIOTECHNOLOGIES

Définition formelle : ensemble des méthodes et des techniques qui utilisent comme outils des organismes vivants (cellules animales et végétales, microorganismes...) ou des parties de ceux-ci (gènes, enzymes, ...) pour des applications environnementales, agro-alimentaires ou biomédicales »

Domaines d'activité :

- Agroalimentaire (fermentation alcoolique, lactique, émulsifiants, additifs,...)
- Production d'énergie (éthanol, méthane, hydrogène,...)
- Environnement (épuration biologique de l'eau, extraction de minerais, biolixiviation,...)
- Production de solvants et biomatériaux (acétone, butanol, polymères,...)
- Agriculture (OGM, herbicides, insecticides,...)
- Industrie pharmaceutique (antibiotique, vitamines, hormones de croissances, insuline, vaccins ...)

Intérêts de l'utilisation des microorganismes :

- Coût plus faible que les procédés par voies chimiques
- Spécificité de la réaction et stéréospécificité
- Sécurité accrue

Conversion biochimique de la biomasse

Saccharigènes

Un biocarburant est un carburant produit à partir de matériaux organiques non fossiles, provenant de la biomasse et

qui vient en complément ou en substitution du combustible fossile.

Source : Jean Hladik (directeur de l'ouvrage) - Les énergies renouvelables aujourd'hui et demain - ellipses, 2011

1 tonne betterave = 85 L éthanol

Principe de fabrication de l'éthanol à partir de plantes amylacées

amylacés

plantes amylacées

nettoyage - broyage

liquéfaction

hydrolyse enzymatique

fermentation

distillation

effluents aqueux

concentration:

centrifugation

séchage

drêches

glucose

éthanol < 12 %

distillation

déshydratation

éthanol pur 99,8 %

Conversion biochimique de la biomasse amylacés, saccharigènes et lignocellulosiques

ETBE = **Ethyl-tertiobutyl-éther** additif remplace le pb

LA CONVERSION CHIMIQUE

Le bio-plastique PLA obtenu à partir de l'amidon

(voir partie des polymères)

Chapitre 2 : Les lipides

Réserve énergétique la plus importante dans notre organisme. Constituants principaux des membranes biologiques.

CARACTERISTIQUES GENERALES DES LIPIDES

- >solubles dans les solvants organiques peu polaires
- >grande diversité sur le plan chimique
- >contiennent les éléments C, H, O
- \gt Soit hydrophobes soit amphipathiques \Rightarrow fonction de barrière efficace, membrane cellulaire
- \blacktriangleright Leur oxydation durant le métabolisme libère une grande quantité d'énergie \Rightarrow molécule de choix pour la mise en réserve

On distingue:

- Les lipides simples constitués à partir d'acides gras :
 - -triglycérides (graisses et huiles)
 - -phospholipides
- · Les lipides complexes:
 - -stéroïdes, stérols, cérides, terpènes

1. Les acides gras

= Chaînes carbonées linéaires à nombre pair de carbone avec une fonction acide (-COOH).

•AG saturés: [CH3 -(CH2)n - COOH]

Fonction acide

• AG insaturés: une (monoinsaturés) ou plusieurs (polyinsaturés) double liaison.

Nomenclature des acides carboxyliques Formule générale : R-COOH

- En **série acyclique**, les acides sont nommés en faisant suivre le nom de l'hydrocarbure (éventuellement substitué) de la terminaison -oïque et en le faisant précéder du terme acide.

- Par ailleurs, de nombreux acides portent des noms usuels.

43

Acides gras saturés

FORMULE	NOMENCLATURE
CH ₃ -(CH ₂) ₁₂ -COOH	Acide myristique
	Acide tetradécanoïque
CH ₃ -(CH ₂) ₁₄ -COOH	Acide palmitique
	Acide hexadécanoïque
CH ₃ -(CH ₂) ₁₆ -COOH	Acide stéarique
	Acide octadécanoïque

- matières grasses d'origine animale, huile de palme.
- L'excès est mauvais pour la santé (augmentent le risque de maladies cardio-vasculaires)

Solides à T.A

Acides gras insaturés

Insaturation => flexibilité,fluidité

FORMULE	NOMENCLATURE
H ₃ C —— (CH ₂) ₅ —— COOH	Acide <u>palmitoléique</u>
н с н	Acide 9-Z-hexadécènoïque
H ₃ C——(CH ₂) ₄ CH ₂ (CH ₂) ₇ ——COOH	Acide linoléique
H C H	Acide 9(Z), 12(Z)-
	octadécadiènoïque

- Monoinsaturés : huile d'olive et de colza
- Polyinsaturés: huile de tournesol, arachide, maïs...

➤ Double liaison en CIS

Acides gras TRANS (transformé); provenant des huiles végétales ou de poisson partiellement hydrogénées ont des effets néfastes sur la santé (élève le taux du LDL et baisse le taux HDL)

2. Les glycérides = molécules formées de 1 glycérol lié à 1, 2 ou 3 acides gras (triglycéride).

➤ La plus importante réserve énergétique chez l'animal :

L'oxydation 1g de triglycéride libère 38 kJ

L'oxydation 1g de glucide ou de protéine libère 17 kJ

- > Protection du froid : «Les graisses » sont emmagasinées dans les cellules adipeuses qui se gonflent ou rétrécissent.
- Résultent de l'estérification d'une molécule de glycérol par trois molécule d'acides gras

•Stockage des acides gras sous forme de triglycérides (trois chaînes d'AG liées à 1 glycérol)

3 fonctions alcools

Fonction ester

Nomenclature des esters

Formule générale:

a) On remplace dans le nom de l'acide la terminaison -oïque par **ate** et on fait suivre par le nom du groupe R' lié par la préposition de.

$$CH_3-C$$
 OC_2H_5

benzoate d'isopropyle

Intérêts industriels

triglycérides (graisses ou huiles)

hydrogénation catalytique d'huile végétale (soja...) : graisse = durcissement des huiles (margarine)

NB limite le rancissement (oxydation lente par l'oxygène de l'air au niveau des C=C)

- Graisses (saturées): athérosclérose (durcissement des artères)
- utilisation des huiles végétales polyinsaturées

48

Réduction catalytique : addition d'hydrogène : PREPARATION DES ALCANES

- addition d'hydrogène sur une double liaison pour former l'alcane correspondant.
- vitesse raisonnable qu'en présence d'un catalyseur métallique, souvent du Ni.
- réaction se produit à la surface du catalyseur métallique et réaction stéréospécifique en SYN.

Application: fabrication de la margarine

réactions d'hydrogénation catalytique \Leftrightarrow analyse structurale

Exemple:

6.8 grammes de cette molécule absorbe 2240 ml d' H_2 (P atm et T = 300K)

$$M_r$$
= 68 grammes/mole \rightarrow 6.8 grammes = 0.1 mole de C_5H_8

2240 ml
$$H_2 \rightarrow 0.1$$
 mole de H_2

Sur les deux NS, une seule est hydrogénable : une double liaison et un cycle :

Saponification des triglycérides

triglycérides (graisses ou huiles)

hydrolyse saponification NaOH (KOH) NaOH (KOH) Molécule amphiphile

CH₂OH

Action détergente d'un savon sur une tache de graisse : formation d'une micelle «soulevant» la saleté.

Agents tensioactifs, savons

- Partie hydrophile
- Partie lipophile

- -Agents tensioactifs : faible concentration : à la surface eau/air
- micelles : grande concentration (10 à 100 molécules)
- savons : particules solubles dans eau et chargées négativement (répulsion)
- Précipitation avec Ca²⁺: détergents de synthèse

les détergents

52

Conversion biochimique de la biomasse oléagineuse

Source : Jean Hladik (directeur de l'ouvrage) - Les énergies renouvelables aujourd'hui et demain - ellipses, 2011

Conversion biochimique de la biomasse oléagineuse

Transestérification:

ECAM 2018

2. Les phospholipides

Formé de :

- 1 glycérol
- 2 acides gras
- 1 groupement phosphate

Principaux constituants des membranes cellulaires.

Molécule **amphiphile**: 2 comportements différents face à l'eau

Capacité des phospholipides à former des **membranes** = organisation en **double couche**

Membrane cellulaire = **Bicouche** lipidique

ECAM 2018

3. Les cérides. Cires animales et végétales

Rayons de miel dans une ruche.

Gouttes d'eau perlant sur la tôle cirée d'une auto.

> pratiquement insolubles dans l'eau confèrent un caractère hydrophobe à la peau des animaux, aux feuilles de certaines plantes et aux plumes d'oiseaux. L'aspect brillant de certaines variétés de pommes provient de la couche superficielle de cire.

4. Les Terpènes

CH₃
CH
CH

- ➤ Combinaison d'au moins 2 molécules C₅H₈ ISOPRENE: 2-méthyl-1,3-butadiène
- retrouve dans les plantes: arômes alimentaires, parfum.

Ex: limonène des citrons menthol de la menthe

CAOUTCHOUC NATUREL:

Le caoutchouc naturel est une macromolécule (M_r environ 400 000) de

1,4 cis (Z)-POLYISOPRENE

Le caoutchouc brut, à partir du latex de divers végétaux (hévéa, ficus) doit être vulcanisé pour augmenter sa résistance. Cette opération se réalise par chauffage en présence de 1 à 8 % de soufre. Il s'établit ainsi des ponts disulfures.

Voir chapitre polymères

5. Les stéroïdes

= molécules formées d'un squelette de 4 cycles de carbone (noyau stérol).

+ groupements fonctionnels attachés à ce noyau.

➤ Participes à de nombreuses fonctions cellulaires

Non saponifiable

Rappel structure ALCANE POLYCYCLIQUE

La décaline

La décaline ou décalane résulte de la fusion de 2 cyclohexanes :

Formule brute : C₁₀H₁₈

Décaline TRANS:

Décaline CIS:

Il existe deux conformations CIS:

Exemples:

 Entrent dans la composition des membranes cellulaires (cholestérol).

•8 carbones chiraux différents donc 28 = 256 stéréoisomères dont un seul est le véritable cholestérol.

 Leur rôle le plus important est celui d'hormones dérivées du cholestérol (hormones stéroïdes : testostérone et oestrogènes...).

Limites de la première génération de biocarburants

- Economie d'énergies fossiles et réductions des émissions de CO₂ de 35 à 70% (pour un carburant 100% bio). Actuellement diminution de 2 à 4%
- Concurrence alimentaire, limitation en termes d'approvisionnement
- Coût 1,5 à 2 fois plus cher (100% bio)
- Autonomie des véhicule réduite de 3 à 1%

2ème génération :

Biomasse lignocellulosique

Matériau composite : 3 polymères à base d'oses constituants de la paroi cellulaire végétale

LA CONVERSION BIOCHIMIQUE

La matrice lignocellulosique doit être prétraitée pour la déstructurer et permettre l'accès aux parties sucrées

Source : IFPEN

LA CONVERSION THERMOCHIMIQUE

la biomasse lignocellulosiques

<u>Source :</u> http://www.rtflash.fr/biocarburants-deuxieme-generation-voie-lignocellulosique/article

- Gazéifier l'hémicellulose à haute température
- Processus Fischer-Tropsch:
 - Avec un catalyser fer : $n (2 H_2 + CO) \rightarrow CnH_{2n} + n H_2O$ • Avec un catalyseur cobalt : $(2n + 1) H_2 + n CO \rightarrow CnH_{2n+2} + n H_2O$

Obtention de biodiesel

