Monte Carlo tree search

and the AlphaZero algorithm

Introduction - Search

- Can be used to solve many problems
- Often the search space is too large
- Monte Carlo tree search algorithm is a heuristic search algorithm
- Allows making decisions by observing only a small part of the search space
- Often MCTS used in software playing board games
- So I will focus mostly on board games

Introduction - Board games

- Zero-sum games
- Deterministic transition function
- Alternating players
- E.g. Chess or Go

$$v^*(s) = \left\{egin{array}{ll} r(s), & ext{if s is terminal} \ \max_{a \in A_s} -v^*(f(s,a)), & ext{otherwise} \end{array}
ight.$$

- Operates on a search tree
- Statistics for each edge: Q(s, a), N(s, a)

- Operates on a search tree
- Statistics for each edge: Q(s, a), N(s, a)

- Operates on a search tree
- Statistics for each edge: Q(s, a), N(s, a)

- Operates on a search tree
- Statistics for each edge: Q(s, a), N(s, a)

- Operates on a search tree
- Statistics for each edge: Q(s, a), N(s, a)

Pure MCTS - Selection

- Start at root node
- Select one child node until leaf node is reached
- Prefer more promising actions

Pure MCTS - Selection - UCT

- Upper Confidence Bound 1 for Trees
- The constant controls the balances between the exploitation and exploration

$$a = rg \max_{a \in A_s} \left(Q(s,a) + c_{ ext{utc}} \sqrt{rac{\ln N(s)}{N(s,a)}}
ight)$$

$$N(s) = \sum_{a \in A_s} N(s,a)$$

$$c_{
m utc}=\sqrt{2}$$

Pure MCTS - Node expansion

- Add child nodes for the legal actions
- After every round or after the number of rollouts
- Statistics for new edges are initialized to zero

Pure MCTS - Rollout/Simulation

- Play until the end of the game
- Choose random actions
- Observe final value of the game

Pure MCTS - Backpropagation

- Update statistics for all edges on the search path
- Increase visit count N(s, a)
- Update expected value Q(s, a)

Pure MCTS - Finishing the search

- Stop after a fixed number of rounds, or until time runs out
- Make decision based on statistics from root node
- Maximum visit count or maximum estimated value
- Using visit counts is more stable

$$a = rg \max_{a \in A_{s_0}} N(s_0, a)$$

MCTS - Advantages

- Prunes large parts of the search space
- Useful for large search spaces
- Focusing on most promising actions
- Pure MCTS requires only the game mechanics

MCTS - Disadvantages

- Prunes large parts of the search space
- Might miss subtle strategy due to pruning
- Performance depends on the problem domain

MCTS improvements - Selection with predictor

- Predict value of each actions to expand
- Use predicted value to influence selection
- MCTS can still correct if predictions are wrong
- Improves efficiency by focusing on better actions
- PUCT (Predictor + UCT) algorithms
- Predictor can use handcrafted heuristics or machine learning

MCTS improvements - Stronger rollout policy

- MCTS performance depends on rollout results
- Better policy during rollout can lead to better overall estimates
- Rollout policy should be fast
- Can use handcrafted heuristics or machine learning

MCTS improvements - Evaluation function

- Replace rollouts with an evaluation function
- Predicts the outcome of the game without rollout
- Can be more efficient if games are long
- Can use handcrafted heuristics or machine learning
- Can be combined with random playouts

MCTS improvements - Concurrent execution

Leaf Parallelization

Root Parallelization

Tree Parallelization

AlphaZero - Overview

Reinforcement learning algorithm

Uses MCTS during play

AlphaZero - Model architecture

AlphaZero - Search algorithm

- Keep for each edge: Q(s, a), N(s, a), P(s, a)
- Use policy output of network to set R(s, a) during expansion
- Use value output of network for backpropagation

AlphaZero - Search algorithm - PUCT

- Selection using a different formula
- Selection incorporates P(s, a) values
- Prefer exploring actions with high P(s, a)

$$a = rg \max_{a \in A_s} \left(Q(s,a) + c_{ ext{putc}} P(s,a) rac{\sqrt{N(s)}}{1 + N(s,a)}
ight)$$

$$N(s) = \sum_{a \in A_s} N(s,a)$$

AlphaZero - Self-Play

- Games are played using the latest network parameters
- Each action is selected by using MCTS to obtain action probabilities π
- π is stronger than the raw network output p
- Game outcome z is determined
- (s, π, z) saved for each step in the game

AlphaZero - Training

- Uses data generated by the self-play process
- Sample from the most recent games (s, π, z)
- Train network parameter Θ so that $(p, v) = f_{\Theta}(s)$ matches (π, z) more closely
- Weights are saved every few steps to use them in self-play

Demo - What I tested

I Implemented different algorithms for solving the Connect 4 game

- Simple Minimax
- Pure Monte Carlo tree search
- AlphaZero

I trained an AlphaZero deep neural network for 200000 iterations:

Demo - Results

