

FACULTY OF ELECTRICAL ENGINEERING & TECHNOLOGY

Exploring CircuitPython on Raspberry Pi Pico-W with Thonny IDE

AZRALMUKMIN AZMI azralmukmin@unimap.edu.my 019-3867034

What you will learn

- Raspberry Pi Pico-W
- CircuitPython
- Installing CircuitPython
- Thonny IDE
- Thonny IDE Setup CircuitPython
- Blink build-in LED
- Digital Output
- Digital Input
- Analog Input
- ▶ PWM fixed frequency
- ▶ PWM variable frequency

- CircuitPython Libraries
- ▶ DHT22

Raspberry Pi Pico-W

- ▶ RP2040 microcontroller chip
- ▶ Dual-core Arm Cortex M0+ processor up to 133 MHz
- Memory 264kB SRAM
- Storage 2MBytes
- ▶ 26 multi-function GPIO pins
- ▶ 2 × SPI
- ▶ 2 × I2C
- ▶ 2 × UART
- ▶ 4 × 12-bit ADC
- ▶ 16 × controllable PWM channels
- Wireless (802.11n), single-band (2.4 GHz)
- ▶ Bluetooth 5.2

Raspberry Pi Pico-W (cont)

CircuitPython

- Python based language designed to simplify experimenting and learning to code on low-cost microcontroller boards
- No upfront desktop downloads needed
- ▶ Simple set board, open text editor and start code

Quick and Easy

Create a file, edit your code, save the file, and it runs immediately. There is no compiling or uploading needed.

Serial Console + REPL

These features allow for live feedback from your code and interactive programming.

Beginner Friendly

CircuitPython is designed with education in mind. It's an easy way to start learning how to code and you get immediate feedback from the board.

File Storage

The internal storage for CircuitPython makes it great for data-logging, playing audio clips, and otherwise interacting with files.

Easy Code Updates

Since your code lives on the disk drive, you can edit it whenever you like. You can even keep multiple files around for easy experimentation.

Strong Hardware Support

There are many libraries and drivers for sensors, breakout boards and other external components.

Download .uf2 bootloader files latest version CircuitPython 9.2.4 at https://circuitpython.org/board/raspberry_pi_pico_w/

Hold down BOOTSEL button and plug Pico W into USB

New drive appear called RPI-RP2

Installing CircuitPython (cont)

- Drag or copy/paste .uf2 file to RPI-RP2 drive
- ▶ PI-RP2 drive will disappear, and new disk drive CIRCUITPY will appear

Thonny IDE

Download, install and run. https://thonny.org

```
Thonny - <untitled> @ 1:24
File Edit View Run Tools Help
<untitled> *>
                                                                    Variables
                                                                               Value
   1 print("Hello World!!!")
                                                                    Assistant
Shell
>>> %Run -c $EDITOR CONTENT
 Hello World!!!
>>>
                                                               Local Python 3 • Thonny's Python ≡
```

Thonny IDE – Setup CircuitPython

Click Run > Configure interpreter...

In Interpreter Tab, set:

Interpreter:

CircuitPython (generic)

Port:

CircuitPython CDC Control

@ COMxx

Click OK

Thonny IDE – Setup CircuitPython (cont)

Blink build-in LED

```
1. import time
2. import board
3. from digitalio import DigitalInOut, Direction
4.
5. led = DigitalInOut(board.LED)
6. led.direction = Direction.OUTPUT
7.
8. while True:
9. led.value = True
10. time.sleep(1)
11. led.value = False
12. time.sleep(1)
```


Digital Output

```
1. import time
 2. import board
 3. from digitalio import DigitalInOut, Direction
 4.
 5. led = DigitalInOut(board.GP0)
                                                                                    Pico-W
                                                     LED
                                                               330Ω
 6. led.direction = Direction.OUTPUT
                                                                          GPI00
 7.
                                                                          GPIO1 Raspberry Pi Pico VSYS
8. while True:
                                                                          GND
                                                                                                 GND
9.
        led.value = True
                                                                          GPI02
                                                                                              3V3 EN
10.
        print("ON")
                                                GND
                                                                         GPI03
11.
        time.sleep(1)
                                                                         GPI04
                                                                                            ADC_VREF
12.
                                                                          GPI05
                                                                                         GPI028_ADC2
13.
        led.value = False
                                                                         GND
                                                                                                AGND
14.
        print("OFF")
                                                                                         GPI027_ADC1
                                                                         GPI06
                                                                       10 GPI07
15.
        time.sleep(1)
                                                                                         GPI026_ADC0
                                                                          GPI08
                                                                          GPI09
                                                                                              GPI022
                                                                                                 GND
                                                                          GPI010
                                                                                              GPI021
                                                                          GPI011
                                                                          GPI012
                                                                          GPI013
                                                                          GPI014
                                                                                              GPI017
                                                                          GPI015
                                                                                              GPI016
```

Digital Input

```
1. import time
 2. import board
 3. from digitalio import DigitalInOut, Direction, Pull
4.
 5. led = DigitalInOut(board.GP0)
 6. led.direction = Direction.OUTPUT
 7.
 8. switch = DigitalInOut(board.GP4)
9. switch.direction = Direction.INPUT
10. switch.pull = Pull.UP
11.
12. while True:
13.
        if switch.value:
14.
            led.value = False
15.
            print("OFF")
16.
        else:
17.
            led.value = True
18.
            print("ON")
19.
20.
        time.sleep(0.01)
```


Analog Input

```
1. import time
 2. import board
 3. from analogio import AnalogIn
4.
 5. analog in = AnalogIn(board.A0)
6.
 7. def get_voltage(value):
8.
9.
        Count up from 0 to 65535
10.
        - 12 bit ADC however micropython
11.
        scale to 16 bit
        .....
12.
13.
        return (value * 3.3) / 65536
14.
15. while True:
16.
        analogIn = analog in.value
17.
        print(f"adc = {analogIn}")
18.
19.
        voltage = get voltage(analogIn)
20.
        print(f"volt = {voltage} V")
21.
22.
        time.sleep(0.1)
```


Analog Output – N/A

```
    import board
    from analogio import AnalogOut
    analog_out = AnalogOut(board.A0)
    while True:
    # Count up from 0 to 65535
    for i in range(0, 65536):
    analog_out.value = i
```

PWM – fixed frequency

```
1. import board
 2. from pwmio import PWMOut
 3.
 4. led = PWMOut(board.GP0, frequency=5000, duty cycle=0)
 5.
 6. while True:
        for i in range(100):
 7.
 8.
            # PWM LED up and down
            if i < 50:
9.
                led.duty cycle = int(i * 2 * 65535 / 100) # Up
10.
11.
            else:
12.
                led.duty cycle = 65535 - int((i - 50) * 2 * 65535 / 100) # Down
13.
            time.sleep(0.01)
                                                                                   Pico-W
                                                     LED
                                                              330Ω
                                                                         GPI00
                                                                        GPIO1 Raspberry Pi Pico VSYS
                                                                         GPI02
                                                                     6 GP103
GP104
                                               GND
                                                                        GPI05
                                                                                        GPI028_ADC2
                                                                         GND
                                                                                               AGND
                                                                      GPI06
                                                                                        GPI027_ADC1
                                                                      10 GPI07
                                                                                        GPI026_ADC0
                                                                      11 GPI08
```

PWM – variable frequency

```
1. import time
 2. import board
 3. import pwmio
4.
 5. piezo = pwmio.PWMOut(board.A0, duty cycle=0, frequency=440, variable frequency=True)
6.
7. while True:
        for f in (262, 294, 330, 349, 392, 440, 494, 523):
8.
            piezo.frequency = f
9.
10.
            piezo.duty cycle = 65536 // 2 # On 50%
11.
            time.sleep(0.25) # On for 1/4 second
12.
            piezo.duty cycle = 0 # Off
                                                                        GND
13.
            time.sleep(0.05) # Pause between notes
       time.sleep(0.5)
14.
                                                                                          SWDIC
                                                Raspberry
                                                                                          SWCLI
```


- Contains all current libraries available
- provide additional functionality and support external devices
- Stored on **CIRCUITPY drive** in a folder called **lib**
- Download at https://circuitpython.org/libraries

Bundles

Bundle for Version 9.x

This bundle is built for use with CircuitPython 9.x.x. If you are using CircuitPython 9, please download this bundle. The .mpy format changed as of CircuitPython 9: 8.x libraries are not compatible.

adafruit-circuitpython-bundle-9.x-mpy-20250319.zip 🕹

DHT22

```
1. import time
2. import board
3. import adafruit dht
4.
5. dhtDevice = adafruit dht.DHT22(board.GP22)
6.
7. while True:
8.
       try:
9.
           # Print the values to the serial port
10.
           temperature c = dhtDevice.temperature
11.
           humidity = dhtDevice.humidity
12.
           13.
       except RuntimeError as error:
14.
15.
           # Errors happen fairly often, DHT's are hard to read, just keep going
           print(error.args[0])
16.
                                                                      DHT22
17.
           time.sleep(2.0)
18.
           continue
                                                                    VCC GND
19.
       except Exception as error:
20.
           dhtDevice.exit()
21.
           raise error
22.
                                                                                 GND
23.
       time.sleep(2.0)
                                                 VBUS
                                                                   6_ADC0
RUN
GPI022
GND
  azralmukminazmi
```