Greedy Algorithms

Make the best choice each time			//		
	Make	the	pest	choice	each time

Interval Scheduling—	
Input: intervals (S.f.),, (Sn.f.)	(2n numbers [51,-,5n,f1,-,fn) different
Output : choose max . # of pairvius	e-disjoint intervals

Scheduling"
Problems.

DP approach: Imagine a directed graph $D=(V_1A)$ s.t. $V=\{intervals\}$ and $(S_i,f_i) \rightarrow (S_j,f_j)$ when $f_i < S_j$.

D is DAG.

Then, Interval Scheduling = Longest Path!

So, can be solved in time $O(|V|^2) = \Omega(n^2)$

Several natural choices for "best"

- "Shortest"

- "Eartiest Si /fi"

- "Latest Si/fi"

Magically, will choose "earliest fi"

IS-Greedy-Earliest fi-

While Fintervals that can be added to I

Add the one with earliest fi.

Output I.

Running time: O(n log n) to sort st. fi < < fn.
Running time: $O(n \log n)$ to sort s.t. $f_1 \leq \cdots \leq f_n$. and $O(n)$ for the while loop.
\
$I = \emptyset, f = 0$
For i=1 to n
If f < S ₇
I=IU {(5-, f-)}
f= f=.
Return I

IS-Optimality

```
Correctness,
Let ALG be the set of Intervals output by our algo.
Let OPT be the optimal solution.
FTrst, ALG is a "valid" (i.e., all intervals are disjoint).
So [ALGI = lopt]
WTS IALGI > LOPTI.
HSsume intervals are sorted: fi ≤--- ≤ fn
  ALG: = ALG (1 f (S,f1), ..., (Sr,f1))]
  OPT = OPT ()
  f (ALGi) = max fj. f(OPTi) similarly.
Claim, VI \ i \in n, either IALGil > 10PTil or
                              IALGIT=(OPTI) and f(ALGI) < f (OPTI)
Proof Induction on i. When i=1, easy to see.
When Tj holds for j=1, --, 7-1,
  OPTi $ (Si,fi): OPTi=OPTi-1 and Ti-1 is true, so is Ti.
   (ALGI-1 dominates OPTI-1=OPTI and
     ALG. dominates ALGI-1)
```

2 OPT; 3 (Si,fi): Let i' be largest inde	ex st. fi' < Si.
Then OPTi= (Si,fi) U	OPTT'.
Ti'is true, so is	Ti.
ALGI duminotes OPTi	
(i) If ALG=1 > 10PT=1+1 = 10PT=1, then	IALET I dominates OPT.
(ii) Other use,	
	: OPT
	-: ALG;
τ'	
	_
•	
After ALGI' also must he	nne added
After AlGi', algo. must he Either (Si, Ji) or an ear	lse Totage 1
or free (or free or or or or	THE MILE NO. L

Minimizing number of rooms

Vew probl	.en: Some ?	rput, but	nau sch	edule	all int	iervals ir	16
	s malles	+ # +	"Nom"	s .t .	intervals	in each	
	room	are disjal	nt				
			•				
	1		(
	- !		1				
	!	_	((_		_	
	-f(x)=J	flx	' <u> </u>				
Run pr	evious also	repeatedly	\ until	all 7	nteruls	are so	rdakel?
_	00ms) = (± -						
•	R, let fix			0)		
	value > mox	<u> </u>		0			
•	ind a soluti		ue = k?				
			_				
	•		; ₂				
	_		- (s				
Submer L	=4, take	aw. 4 7	Marcual C	that h		140010.\-4 1 4	Viter-e
repore F	-i, iare	sing -1	יווצו יייט	······	me a n	wented (nc · Sect

Is it possible that greedy also chooses none of Typicia?
- If NOT true, k is decreased by 1 in each room, and well be
done using t rooms.
-But it is possible! Als chooses —'s.
New Greedy (one room).
Sort intervals s.t. Si≤ ··· ≤ Sn.
$S \leftarrow \phi$.
For i=1,,n
Add (S., fi) to S if it fits.
Schedule intervals of S in one room.
Claim, Let (Si, fi) (Sig. fig) be interval set. (Sij, fig)=[a,6]
Then the new greedy also. takes at least one of than.
Pf. WLOG, let Si=a. Assure for contradiction that
the algorithm chose none of (Si, fi,) (Sit. fix).
Since (Si, fi,) is not taken by the alg, alg must have
token some interval (s.f) s.t. S<5; and
£>57.
But, it means [s,f] ∋a s.t. f(a) ≥ k+1 ==