# Machine Learning Basics

- Supervised Learning
- Unsupervised Learning

## Data an Algorithm Understands

#### Columns



Rows

## Data an Algorithm Understands



Rows

Rows can go into **Billions** with H<sub>2</sub>O

## Supervised Learning

**Historical Predicted Data Inputs** Value **Value** 

**Learn the Pattern** 



## Supervised Learning Example

#### **Machine Learning:**

Learn Patterns from Data



**Historical Data:** 

No. of Rooms Crime Rate Pupil-Teacher Ratio

• • •



**Target:** House Value



Predicted Value (for evaluation)



## Supervised Learning Example

## **Patterns Learned** from Historical Data

 ${f X}$ 

**New Data:** 

No. of Rooms Crime Rate Pupil-Teacher Ratio

• • •



**Target:** Unknown



**Predicted Value** (for decision making)



## Current Algorithm Overview

#### Statistical Analysis

- Linear Models (GLM)
- Naïve Bayes

#### Ensembles

- Random Forest
- Distributed Trees
- Gradient Boosting Machine
- Stacking / Super Learner

#### **Deep Neural Networks**

- MLP
- Autoencoder
  - Anomaly Detection
  - Deep Features

#### Clustering

K-Means (Auto-K)

#### **Dimension Reduction**

- Principal Component Analysis
- Generalized Low Rank Models

#### Word Embedding

Word2Vec

#### Time Series

iSAX

#### Machine Learning Tuning

- Hyperparameter Search
- Early Stopping

## H2O's Supervised Algorithms

### Supervised Algorithms

#### Statistical Analysis

- Linear Models (GLM)
- Naïve Bayes

#### **Ensembles**

- Random Forest
- Distributed Trees
- Gradient Boosting Machine
- Stacking / Super Learner

#### **Deep Neural Networks**

MLP

## Supervised Learning Algorithms

#### Regression:

How much will a claim cost?



#### H<sub>2</sub>O algos:

Penalized Linear Models
Random Forest
Gradient Boosting
Neural Networks
Stacked Ensembles

#### Classification:

Will a physician commit fraud? Yes or No



#### H<sub>2</sub>O algos:

Penalized Linear Models
Naïve Bayes
Random Forest
Gradient Boosting
Neural Networks
Stacked Ensembles

## H2O's Unsupervised Algorithms

# Unsupervised Algorithms

#### Clustering

K-Means (Auto-K)

#### **Dimension Reduction**

- Principal Component Analysis
- Generalized Low Rank Models

#### Word Embedding

Word2Vec

#### Time Series

iSAX

## How to Group Customer Claims?



## Unsupervised Learning Algorithms







## Distributed Algorithms

# Parallel Parse into **Distributed Rows**



**Fine Grain Map Reduce** Illustration: Scalable Distributed Histogram Calculation for GBM

#### **Advantageous Foundation**

- Foundation for In-Memory Distributed Algorithm
   Calculation Distributed Data Frames and columnar compression
- All algorithms are distributed in H<sub>2</sub>O: GBM, GLM, DRF, Deep Learning and more. Fine-grained map-reduce iterations.
- Only enterprise-grade, open-source distributed algorithms in the market

#### **User Benefits**

- "Out-of-box" functionalities for all algorithms (NO MORE SCRIPTING) and uniform interface across all languages: R, Python, Java
- Designed for all sizes of data sets, especially large data
- Highly optimized Java code for model exports
- In-house expertise for all algorithms

