

Structured Massive Access for Scalable Cell-Free Massive MIMO Systems

Shuaifei Chen*, Jiayi Zhang, Jing Zhang, Emil Björnson, Bo Ai

School of Electronic and Information Engineering,
Beijing Jiaotong University

November 26, 2021

- Introduction
- Scalable Access
- **Numerical Results**
- **Conclusions**

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 4, APRIL 2022

Structured Massive Access for Scalable Cell-Free Massive MIMO Systems

Shuaifei Chen[©], Graduate Student Member, IEEE, Jiayi Zhang[©], Senior Member, IEEE, Emil Björnson[©], Senior Member, IEEE, Jing Zhang, and Bo Ai[©], Senior Member, IEEE

Abstract-How to meet the demand for increasing number of users, higher data rates, and stringent quality-of-service (QoS) in the beyond fifth-generation (B5G) networks? Cell-free massive multiple-input multiple-output (MIMO) is considered as a promising solution, in which many wireless access points cooperate to jointly serve the users by exploiting coherent signal processing. However, there are still many unsolved practical issues in cell-free massive MIMO systems, whereof scalable massive access implementation is one of the most vital. In this paper, we propose a new framework for structured massive access in cell-free massive MIMO systems, which comprises one initial access algorithm, a partial large-scale fading decoding (P-LSFD) strategy, two pilot assignment schemes, and one fractional power control policy. New closed-form spectral efficiency (SE) expressions with maximum ratio (MR) combining are derived. The simulation results show that our proposed framework provides high SE when using local partial minimum mean-square error (LP-MMSE) and MR combining. Specifically, the proposed initial access algorithm and pilot assignment schemes outperform their corresponding benchmarks, P-LSFD achieves scalability with a negligible performance loss compared to the conventional optimal large-scale fading decoding (LSFD), and scalable fractional power control provides a controllable trade-off between user fairness and the average SE.

Index Tenns-Beyond 5G network, cell-free massive MIMO, massive access, AP selection, pilot assignment, user-centric

I. INTRODUCTION

►ELLULAR massive multiple-input multiple-output (MIMO) is recognized as a component of the fifthgeneration (5G) networks [1]-[5]. Looking into the future, beyond 5G networks are expected to handle a significantly larger number of accessing users and deliver higher data rates, while providing a more uniform quality-of-service (QoS) throughout the entire network [6]. These goals can be potentially be achieved by cell-free massive MIMO [7]-[10], which inherits several virtues from cellular massive MIMO (in particularly favorable propagation) while being capable of reaching the beyond 5G requirements.

The basic idea of cell-free massive MIMO is to deploy a large number of access points (APs), which are arbitrarily distributed in the coverage area and connected to a central processing unit (CPU). Under the coordination and computational assistance from the CPU, the APs jointly serve all user equipments (UEs) on the same time-frequency resource by coherent joint transmission and reception [11]-[13]. Hence, cell-free massive MIMO can be viewed as a structured approach to massive access. Firstly, its macro-diversity can greatly improve the coverage probability compared to cellular

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 4, APRIL 2021

State Key Laboratory of Integrated Services Networks under Grant ISN20-04; in part by the Science and Technology Key Project of Guangdong Province,

The pilot resources are limited due to the natural channel

Shuaifei Chen¹⁰, Graduate Student Member, IEEE, Jiayi Zhang¹⁰, Senior Member, IEEE, Emil Björnson¹⁰, Senior Member, IEEE, Jing Zhang, and Bo Ai¹⁰, Senior Member, IEEE

While the benefits of cell-free massive MIMO over

cellular massive MIMO are well established, it will

be very challenging to achieve a practically feasible

sive MIMO [7]-[9] vr. This phenomenon ality, which makes makes it harder to UEs [17]. To limit enment is critical in cularly in a massive

s K is roughly the

Color versions of one or more of the figures in this article are available

Digital Object Identifier 10.1109/JSAC.2020.3018836

0733-8716 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information

Authorized licensed use limited to: KTH Royal Institute of Technology, Downloaded on November 27,2021 at 09 49:55 UTC from IEEE Xplore. Restrictions apply

Email: shuaifeichen@bjtu.edu.cn

- Introduction

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 4, APRIL 2022

Structured Massive Access for Scalable Cell-Free Massive MIMO Systems

Shuaifei Chen[©], Graduate Student Member, IEEE, Jiayi Zhang[©], Senior Member, IEEE, Emil Björnson[©], Senior Member, IEEE, Jing Zhang, and Bo Ai[©], Senior Member, IEEE

Abstract-How to meet the demand for increasing number of users, higher data rates, and stringent quality-of-service (QoS) in the beyond fifth-generation (B5G) networks? Cell-free massive multiple-input multiple-output (MIMO) is considered as a promising solution, in which many wireless access points cooperate to jointly serve the users by exploiting coherent signal processing. However, there are still many unsolved practical issues in cell-free massive MIMO systems, whereof scalable massive access implementation is one of the most vital. In this paper, we propose a new framework for structured massive access in cell-free massive MIMO systems, which comprises one initial access algorithm, a partial large-scale fading decoding (P-LSFD) strategy, two pilot assignment schemes, and one fractional power control policy. New closed-form spectral efficiency (SE) expressions with maximum ratio (MR) combining are derived. The simulation results show that our proposed framework provides high SE when using local partial minimum mean-square error (LP-MMSE) and MR combining. Specifically, the proposed initial access algorithm and pilot assignment schemes outperform their corresponding benchmarks, P-LSFD achieves scalability with a negligible performance loss compared to the conventional optimal large-scale fading decoding (LSFD), and scalable fractional power control provides a controllable trade-off between user fairness and the average SE.

Index Tenns-Beyond 5G network, cell-free massive MIMO, massive access, AP selection, pilot assignment, user-centric

I. INTRODUCTION

▼ELLULAR massive multiple-input multiple-output (MIMO) is recognized as a component of the fifthgeneration (5G) networks [1]-[5]. Looking into the future, beyond 5G networks are expected to handle a significantly larger number of accessing users and deliver higher data rates, while providing a more uniform quality-of-service (QoS) throughout the entire network [6]. These goals can be potentially be achieved by cell-free massive MIMO [7]-[10], which inherits several virtues from cellular massive MIMO (in particularly favorable propagation) while being capable of reaching the beyond 5G requirements.

The basic idea of cell-free massive MIMO is to deploy a large number of access points (APs), which are arbitrarily distributed in the coverage area and connected to a central processing unit (CPU). Under the coordination and computational assistance from the CPU, the APs jointly serve all user equipments (UEs) on the same time-frequency resource by coherent joint transmission and reception [11]-[13]. Hence, cell-free massive MIMO can be viewed as a structured approach to massive access. Firstly, its macro-diversity can greatly improve the coverage probability compared to cellular

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 4, APRIL 2021

2

State Key Laboratory of Integrated Services Networks under Grant ISN20-04, in part by the Science and Technology Key Project of Grangford Province,

The pilot resources are limited due to the natural channel Chan state Circles and Control 2018/01/01/01/01 and in our the ZTE Convention

variations in time and freemency domain, thus pilots must

ssive MIMO [7]-[9], vr. This phenomenon ality, which makes makes it harder to UEs [17]. To limit gnment is critical in cularly in a massive

s K is roughly the

Shuaifei Chen¹⁰, Graduate Student Member, IEEE, Jiayi Zhang¹⁰, Senior Member, IEEE, Emil Björnson[©], Senior Member, IEEE, Jing Zhang, and Bo Ai[©], Senior Member, IEEE

Color versions of one or more of the figures in this article are available

Digital Object Identifier 10.1109/JSAC.2020.3018836

0733-8716 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information

Authorized licensed use limited to: KTH Royal Institute of Technology, Downloaded on November 27,2021 at 09 49:55 UTC from IEEE Xplore. Restrictions apply

Email: shuaifeichen@bjtu.edu.cn

S Chen

While the benefits of cell-free massive MIMO over

cellular massive MIMO are well established, it will

be very challenging to achieve a practically feasible

1. Why Do We Fail to Access?

Spectral Efficiency (SE) [bit/s/Hz]

SE indicates how **FAST** it can reliably transmit over the wireless channel [1].

$$SE \propto \log_2 \left(1 + \frac{\text{Signal}}{\text{Interference + Noise}} \right)$$

[1] E. Björnson, et al, "Massive MIMO networks: Spectral, energy, and hardware efficiency," Foundations and Trends® in Signal Processing, 2017.

1. Cell-free versus Small Cells

[2] Z. Pan, et al, "Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts, " SCIC, 2020.

1. Flexible Application and Deployment

Can be implemented at

- Campuses
- Railway stations
- Stadiums, etc.

Prof. Emil Björnson (IEEE Fellow) demonstrating a prototype

[3] Shuaifei Chen, Jiayi Zhang, Jing Zhang, E. Björnson, Bo Ai, "A Survey on User-Centric Cell-Free Massive MIMO Systems," *DCN*, 2021.

5

1. Structured Massive Access for CF mMIMO

Scientific issues

- Limited access resources vs. numerous UEs
- UEs reuse pilot sequences and cause pilot contamination

Challenges

- Interferences among different AP-UE pairs are coupled
- Conventional distributed schemes cannot suppress interference effectively
- Centralized schemes are with heavy computation complexities, which increase as the network scales, and thus are not scalable

Contributions

- Quantify interferences among the UEs by considering the spatial differences of the communication devices in the network
- Propose a novel access scheme for joint AP selection and pilot assignment by exploiting the sparsity of the AP-UE association

- Scalable Access

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 4, APRIL 2022

Structured Massive Access for Scalable Cell-Free Massive MIMO Systems

Shuaifei Chen[©], Graduate Student Member, IEEE, Jiayi Zhang[©], Senior Member, IEEE, Emil Björnson[©], Senior Member, IEEE, Jing Zhang, and Bo Ai[©], Senior Member, IEEE

Abstract-How to meet the demand for increasing number of users, higher data rates, and stringent quality-of-service (QoS) in the beyond fifth-generation (B5G) networks? Cell-free massive multiple-input multiple-output (MIMO) is considered as a promising solution, in which many wireless access points cooperate to jointly serve the users by exploiting coherent signal processing. However, there are still many unsolved practical issues in cell-free massive MIMO systems, whereof scalable massive access implementation is one of the most vital. In this paper, we propose a new framework for structured massive access in cell-free massive MIMO systems, which comprises one initial access algorithm, a partial large-scale fading decoding (P-LSFD) strategy, two pilot assignment schemes, and one fractional power control policy. New closed-form spectral efficiency (SE) expressions with maximum ratio (MR) combining are derived. The simulation results show that our proposed framework provides high SE when using local partial minimum mean-square error (LP-MMSE) and MR combining. Specifically, the proposed initial access algorithm and pilot assignment schemes outperform their corresponding benchmarks, P-LSFD achieves scalability with a negligible performance loss compared to the conventional optimal large-scale fading decoding (LSFD), and scalable fractional power control provides a controllable trade-off between user fairness and the average SE.

Index Terms-Beyond 5G network, cell-free massive MIMO, massive access, AP selection, pilot assignment, user-centric

I. INTRODUCTION

►ELLULAR massive multiple-input multiple-output (MIMO) is recognized as a component of the fifthgeneration (5G) networks [1]-[5]. Looking into the future, beyond 5G networks are expected to handle a significantly larger number of accessing users and deliver higher data rates, while providing a more uniform quality-of-service (QoS) throughout the entire network [6]. These goals can be potentially be achieved by cell-free massive MIMO [7]-[10], which inherits several virtues from cellular massive MIMO (in particularly favorable propagation) while being capable of reaching the beyond 5G requirements.

The basic idea of cell-free massive MIMO is to deploy a large number of access points (APs), which are arbitrarily distributed in the coverage area and connected to a central processing unit (CPU). Under the coordination and computational assistance from the CPU, the APs jointly serve all user equipments (UEs) on the same time-frequency resource by coherent joint transmission and reception [11]-[13]. Hence, cell-free massive MIMO can be viewed as a structured approach to massive access. Firstly, its macro-diversity can greatly improve the coverage probability compared to cellular

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 4, APRIL 2021

7

State Key Laboratory of Integrated Services Networks under Grant ISN20-04, in part by the Science and Technology Key Project of Grangford Province,

The pilot resources are limited due to the natural channel Chan state Circles and Control 2018/01/01/01/01 and in our the ZTE Convention

variations in time and freemency domain, thus pilots must

sive MIMO [7]-[9] vr. This phenomenon ality, which makes makes it harder to UEs [17]. To limit gnment is critical in cularly in a massive

While the benefits of cell-free massive MIMO over

cellular massive MIMO are well established, it will

be very challenging to achieve a practically feasible

s K is roughly the

Shuaifei Chen, Graduate Student Member, IEEE, Jiayi Zhang, Senior Member, IEEE, Emil Björnson[©], Senior Member, IEEE, Jing Zhang, and Bo Ai[©], Senior Member, IEEE

Color versions of one or more of the figures in this article are available

Digital Object Identifier 10.1109/JSAC.2020.3018836

0733-8716 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information

Authorized licensed use limited to: KTH Royal Institute of Technology, Downloaded on November 27,2021 at 09 49:55 UTC from IEEE Xplore. Restrictions apply

Email: shuaifeichen@bjtu.edu.cn

2. Initial Access and AP Selection

Start → Initial access and AP selection → Pilot assignment → End

Constraints should be met

- Each UE is associated with at least one AP
- Each AP serves at most one UE per pilot

Basic Ideas

- Each UE accesses more APs as possible
- UEs compete when an AP is about to serve more than one UE per pilot
- UE with strong channel condition wins the competition
- A UE is protected from competition when it has lost all competitions it participated

2. Pilot assignment

_	UE_1	$\mathbf{UE_2}$	UE_3	$\mathbf{UE_4}$	UE_5
AP_1	1	1	0	0	0
AP_2	0	1	0	1	0
AP_3	0	0	1	0	0
AP_4	0	0	0	1	1
AP_5	1	1	0	0	0
AP_6	0	0	1	0	0
AP_7	0	1	0	0	1
AP_8	0	0	1	0	1
AP ₉	1	0	0	0	0

Sparse AP-UE association

Each AP serves at most one UE per pilot

Metric for mutual interference

$$\operatorname{Dis}_{ik} = \|\operatorname{diag}(\mathbf{d}_i) \mathbf{A}_{\cdot i} - \operatorname{diag}(\mathbf{d}_k) \mathbf{A}_{\cdot k}\|_2^2$$

9

2. Pilot assignment

Constraints should be met

Each AP serves at most one UE per pilot

Basic Ideas

- UEs unlikely generate interference are clustered and share the same pilot
- Pilots are reused across the clusters
- UEs with the minimum intersections of serving APs will generate least interference if the share one pilot
- Dynamically form UE clusters

_	UE_1	UE_2	UE_3	UE_4	UE_5
AP_1	1	1	0	0	0
AP_2	0	1	0	1	0
AP_3	0	0	1	0	0
AP_4	0	0	0	1	1
AP_5	1	1	0	0	0
AP_6	0	0	1	0	0
AP_7	0	1	0	0	1
AP_8	0	0	1	0	1
AP ₉	1	0	0	0	0

Sparse AP-UE association

[4] Shuaifei Chen, Jiayi Zhang, E. Björnson, Jing Zhang, Bo Ai, "Structured massive access for scalable cell-free massive MIMO systems," *IEEE JSAC*, 2021.

- **Numerical Results**

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 4, APRIL 2022

Structured Massive Access for Scalable Cell-Free Massive MIMO Systems

Shuaifei Chen[©], Graduate Student Member, IEEE, Jiayi Zhang[©], Senior Member, IEEE, Emil Björnson[©], Senior Member, IEEE, Jing Zhang, and Bo Ai[©], Senior Member, IEEE

Abstract-How to meet the demand for increasing number of users, higher data rates, and stringent quality-of-service (QoS) in the beyond fifth-generation (B5G) networks? Cell-free massive multiple-input multiple-output (MIMO) is considered as a promising solution, in which many wireless access points cooperate to jointly serve the users by exploiting coherent signal processing. However, there are still many unsolved practical issues in cell-free massive MIMO systems, whereof scalable massive access implementation is one of the most vital. In this paper, we propose a new framework for structured massive access in cell-free massive MIMO systems, which comprises one initial access algorithm, a partial large-scale fading decoding (P-LSFD) strategy, two pilot assignment schemes, and one fractional power control policy. New closed-form spectral efficiency (SE) expressions with maximum ratio (MR) combining are derived. The simulation results show that our proposed framework provides high SE when using local partial minimum mean-square error (LP-MMSE) and MR combining. Specifically, the proposed initial access algorithm and pilot assignment schemes outperform their corresponding benchmarks, P-LSFD achieves scalability with a negligible performance loss compared to the conventional optimal large-scale fading decoding (LSFD), and scalable fractional power control provides a controllable trade-off between user fairness and the average SE.

Index Terms-Beyond 5G network, cell-free massive MIMO, massive access, AP selection, pilot assignment, user-centric

I. INTRODUCTION

►ELLULAR massive multiple-input multiple-output (MIMO) is recognized as a component of the fifthgeneration (5G) networks [1]-[5]. Looking into the future, beyond 5G networks are expected to handle a significantly larger number of accessing users and deliver higher data rates, while providing a more uniform quality-of-service (QoS) throughout the entire network [6]. These goals can be potentially be achieved by cell-free massive MIMO [7]-[10], which inherits several virtues from cellular massive MIMO (in particularly favorable propagation) while being capable of reaching the beyond 5G requirements.

The basic idea of cell-free massive MIMO is to deploy a large number of access points (APs), which are arbitrarily distributed in the coverage area and connected to a central processing unit (CPU). Under the coordination and computational assistance from the CPU, the APs jointly serve all user equipments (UEs) on the same time-frequency resource by coherent joint transmission and reception [11]-[13]. Hence, cell-free massive MIMO can be viewed as a structured approach to massive access. Firstly, its macro-diversity can greatly improve the coverage probability compared to cellular

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 4, APRIL 2021

State Key Laboratory of Integrated Services Networks under Grant ISN20-04, in part by the Science and Technology Key Project of Grangford Province,

The pilot resources are limited due to the natural channel Chan state Circles and Control 2018/01/01/01/01 and in our the ZTE Convention

variations in time and freemency domain, thus pilots must

While the benefits of cell-free massive MIMO over

cellular massive MIMO are well established, it will

be very challenging to achieve a practically feasible

Shuaifei Chen, Graduate Student Member, IEEE, Jiayi Zhang, Senior Member, IEEE, Emil Björnson[©], Senior Member, IEEE, Jing Zhang, and Bo Ai[©], Senior Member, IEEE

sive MIMO [7]-[9] vr. This phenomenon ality, which makes makes it harder to UEs [17]. To limit gnment is critical in cularly in a massive s K is roughly the

Color versions of one or more of the figures in this article are available

Digital Object Identifier 10.1109/JSAC.2020.3018836

0733-8716 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information

Authorized licensed use limited to: KTH Royal Institute of Technology, Downloaded on November 27,2021 at 09 49:55 UTC from IEEE Xplore. Restrictions apply

Email: shuaifeichen@bjtu.edu.cn

3. Proposed Access Scheme Increases SE

Competition-based initial access increases SE

Cluster-based pilot assignment increases SE

[5] E. Björnson, et al, "Scalable cell-free massive MIMO systems," IEEE TCOM, 2020.

[6] M. Attarifar, et al, "Random vs structured pilot assignment in cell-free massive MIMO wireless networks," IEEE ICC, 2018.

- **Conclusions**

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 4, APRIL 2022

Structured Massive Access for Scalable Cell-Free Massive MIMO Systems

Shuaifei Chen[©], Graduate Student Member, IEEE, Jiayi Zhang[©], Senior Member, IEEE, Emil Björnson[©], Senior Member, IEEE, Jing Zhang, and Bo Ai[©], Senior Member, IEEE

Abstract-How to meet the demand for increasing number of users, higher data rates, and stringent quality-of-service (QoS) in the beyond fifth-generation (B5G) networks? Cell-free massive multiple-input multiple-output (MIMO) is considered as a promising solution, in which many wireless access points cooperate to jointly serve the users by exploiting coherent signal processing. However, there are still many unsolved practical issues in cell-free massive MIMO systems, whereof scalable massive access implementation is one of the most vital. In this paper, we propose a new framework for structured massive access in cell-free massive MIMO systems, which comprises one initial access algorithm, a partial large-scale fading decoding (P-LSFD) strategy, two pilot assignment schemes, and one fractional power control policy. New closed-form spectral efficiency (SE) expressions with maximum ratio (MR) combining are derived. The simulation results show that our proposed framework provides high SE when using local partial minimum mean-square error (LP-MMSE) and MR combining. Specifically, the proposed initial access algorithm and pilot assignment schemes outperform their corresponding benchmarks, P-LSFD achieves scalability with a negligible performance loss compared to the conventional optimal large-scale fading decoding (LSFD), and scalable fractional power control provides a controllable trade-off between user fairness and the average SE.

Index Terms-Beyond 5G network, cell-free massive MIMO, massive access, AP selection, pilot assignment, user-centric

I. INTRODUCTION

▼ELLULAR massive multiple-input multiple-output (MIMO) is recognized as a component of the fifthgeneration (5G) networks [1]-[5]. Looking into the future, beyond 5G networks are expected to handle a significantly larger number of accessing users and deliver higher data rates, while providing a more uniform quality-of-service (QoS) throughout the entire network [6]. These goals can be potentially be achieved by cell-free massive MIMO [7]-[10], which inherits several virtues from cellular massive MIMO (in particularly favorable propagation) while being capable of reaching the beyond 5G requirements.

The basic idea of cell-free massive MIMO is to deploy a large number of access points (APs), which are arbitrarily distributed in the coverage area and connected to a central processing unit (CPU). Under the coordination and computational assistance from the CPU, the APs jointly serve all user equipments (UEs) on the same time-frequency resource by coherent joint transmission and reception [11]-[13]. Hence, cell-free massive MIMO can be viewed as a structured approach to massive access. Firstly, its macro-diversity can greatly improve the coverage probability compared to cellular

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 4, APRIL 2021

State Key Laboratory of Integrated Services Networks under Grant ISN20-04, in part by the Science and Technology Key Project of Grangford Province,

The pilot resources are limited due to the natural channel Chan state Circles and Control 2018/01/01/01/01 and in our the ZTE Convention

variations in time and freemency domain, thus pilots must

While the benefits of cell-free massive MIMO over

cellular massive MIMO are well established, it will

Shuaifei Chen, Graduate Student Member, IEEE, Jiayi Zhang, Senior Member, IEEE, Emil Björnson[©], Senior Member, IEEE, Jing Zhang, and Bo Ai[©], Senior Member, IEEE

sive MIMO [7]-[9] vr. This phenomenon ality, which makes makes it harder to UEs [17]. To limit gnment is critical in cularly in a massive s K is roughly the

Color versions of one or more of the figures in this article are available

Digital Object Identifier 10.1109/JSAC.2020.3018836 be very challenging to achieve a practically feasible

0733-8716 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information

Authorized licensed use limited to: KTH Royal Institute of Technology, Downloaded on November 27,2021 at 09 49:55 UTC from IEEE Xplore. Restrictions apply

Email: shuaifeichen@bjtu.edu.cn

4. Conclusions

In this work, we investigated the massive access in a CF mMIMO system, mainly

- Proposed a massive access scheme for joint AP selection and pilot assignment
- Quantified the interferences among the UEs
- Revealed the sparse feature of the AP-UE association
- Developed algorithms for the AP selection and pilot assignment by exploiting the spatial differences and sparsity feature
- Validated the advantages of our proposed access scheme with numerical results

14

End

Shuaifei Chen (陈帅飞)

PhD candidate, <u>Beijing Jiaotong University</u> 在 bjtu.edu.cn 的电子邮件经过验证

Cell-Free Networks Massive MIMO

文章	引用次数	可公开访问的出	版物数量 合著作
		总计	2016 年至今
引用		331	329
h 指数		7	7
i10 指数		7	7
			160
			120
		_	80
			40
		2018 20	019 2020 2021 0

Google Scholar:

https://scholar.google.com/citations?user=hikpVewAAAAJ&hl=zh-CN

Email: shuaifeichen@bjtu.edu.cn

