# Convex Optimization Lecture 13 - Interior-Point Methods

Instructor: Yuanzhang Xiao

University of Hawaii at Manoa

Fall 2017

# Today's Lecture

- Basic Concepts
- The Barrier Method
- 3 Phase I Method For Infeasible Start
- 4 Problems With Generalized Inequalities
- 5 Primal-Dual Interior-Point Methods
- 6 Implementation Issues

## Outline

Basic Concepts

•000000000

- 1 Basic Concepts
- The Barrier Method
- 3 Phase I Method For Infeasible Start
- Problems With Generalized Inequalities
- **6** Primal-Dual Interior-Point Methods
- 6 Implementation Issues

0000000000

# Inequality Constrained Optimization Problems

inequality constrained minimization problem:

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \le 0, i = 1, ..., m$   
 $Ax = b$ 

- $f_0, f_1, \ldots, f_m$  convex, twice continuously differentiable
- $A \in \mathbb{R}^{p \times n}$  with rank A = p < n
- $p^* = f_0(x^*)$  attained and finite
- problem is strictly feasible: there exists x such that

$$x \in \text{dom} f_0, f_i(x) < 0, i = 1, ..., m, Ax = b$$

strong duality holds, KKT conditions are sufficient and necessary

000000000

# "Hierarchy" of Convex Optimization Algorithms

#### equality constrained quadratic problem:

solve a linear system analytically or in one shot

#### equality constrained general problem:

- Newton's method
- a series of equality constrained quadratic problems

#### inequality constrained general problem:

- interior-point methods
- a series of equality constrained general problems

000000000

# Equivalent Reformulation Using Indicator Function

equivalent reformulation using indicator functions:

minimize 
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x))$$
  
subject to  $Ax = b$ 

where  $I_{-}: \mathbb{R} \to \mathbb{R}$  is the indicator function

$$I_{-}(u) = \begin{cases} 0, & u \leq 0 \\ \infty, & u > 0 \end{cases}$$

equality constrained problem with undesirable objective functions

0000000000

# Logarithmic Barrier Function

approximate the indicator function by:

$$\widehat{I}_{-}(u) = -(1/t)\log(-u), \quad \operatorname{dom}\widehat{I}_{-} = -\mathbb{R}_{++}$$



approximation is more accurate as  $t \to \infty$ 

## Logarithmic Barrier Function

Basic Concepts

0000000000

equality constrained problem with nice objective functions

minimize 
$$f_0(x) - (1/t) \sum_{i=1}^m \log(-f_i(x))$$
  
subject to  $Ax = b$ 

#### logarithmic barrier function:

$$\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x)), \quad \mathbf{dom}\phi = \{x \mid f_i(x) < 0, \ i = 1, \dots, m\}$$

convex and twice continuously differentiable

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x)$$

$$\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{f_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla^2 f_i(x)$$

### Central Path

Basic Concepts

000000000

consider the problem

minimize 
$$tf_0(x) + \phi(x)$$
  
subject to  $Ax = b$ 

- denote the solution by x\*(t)
- central path: a sequence of points  $x^*(t)$  as  $t \to \infty$

properties of points on the central path:

strictly feasible:

$$f_i(x^*(t)) < 0, \ i = 1, \dots, m, \ Ax^*(t) = b$$

• KKT condition: there exists  $\hat{\nu} \in \mathbb{R}^p$  such that

$$0 = t \nabla f_0(x^*(t)) + \nabla \phi(x^*(t)) + A^T \hat{\nu}$$
  
= 
$$t \nabla f_0(x^*(t)) + \sum_{i=1}^m \frac{1}{-f_i(x^*(t))} \nabla f_i(x^*(t)) + A^T \hat{\nu}$$

#### Illustration of Central Path

Basic Concepts

000000000

when there is no equality constraint:

$$0 = t \nabla f_0(x^*(t)) + \sum_{i=1}^m \frac{1}{-f_i(x^*(t))} \nabla f_i(x^*(t))$$

at  $x^*(t)$ , gradient of  $f_0$  is parallel to gradient of  $\phi$ 

LP in inequality form

minimize 
$$c^T x$$
  
subject to  $Ax \le b$ 



#### **Dual Points on Central Path**

recall:

Basic Concepts

000000000

$$0 = \nabla f_0(x^*(t)) + (1/t) \sum_{i=1}^m \frac{1}{-f_i(x^*(t))} \nabla f_i(x^*(t)) + (1/t)A^T \hat{\nu}$$

define dual variables

$$\lambda_i^{\star}(t) = \frac{1}{-tf_i(x^{\star}(t))}, \ i = 1, \dots, m, \ \nu^{\star}(t) = \hat{\nu}/t$$

 $x^*(t)$  minimizes Lagrangian  $L(x,\lambda,\nu)$  at  $\lambda_i^*(t),\nu^*(t)$ , because

$$0 = \nabla f_0(x^*(t)) + \sum_{i=1}^m \lambda_i^*(t) \nabla f_i(x^*(t)) + A^T \nu^*(t)$$

dual function

$$g(\lambda_i^*(t), \nu^*(t))$$
=  $f_0(x^*(t)) + \sum_{i=1}^m \lambda_i^*(t) f_i(x^*(t)) + \nu^*(t)^T (Ax^*(t) - b)$   
=  $f_0(x^*(t)) - m/t$ 

we have  $f_0(x^*(t)) - p^* \leq = m/t$ 

000000000

# Interpretation Via KKT Conditions

 $x^*(t)$  and  $\lambda^*(t)$ ,  $\nu^*(t)$  defined above satisfy:

$$Ax^{*}(t) = b, \ f_{i}(x^{*}(t)) \leq 0, \ i = 1, ..., m$$
  $\lambda^{*}(t) \geq 0$   $\forall f_{0}(x^{*}(t)) + \sum_{i=1}^{m} \lambda_{i}^{*}(t) \forall f_{i}(x^{*}(t)) + A^{T} \nu^{*}(t) = 0$   $\lambda_{i}^{*}(t) f_{i}(x^{*}(t)) = -1/t, \ i = 1, ..., m$ 

"almost" satisfy KKT conditions, except complementary slackness

as  $t \to \infty$ ,  $x^*(t)$ ,  $\lambda^*(t)$ ,  $\nu^*(t)$  satisfy KKT conditions

## Outline

Basic Concepts

- Basic Concepts
- The Barrier Method
- 3 Phase I Method For Infeasible Start
- 4 Problems With Generalized Inequalities
- **6** Primal-Dual Interior-Point Methods
- 6 Implementation Issues

## The Barrier Method

Basic Concepts

the barrier method with strictly feasible starting point:

- strictly feasible starting point x, t > 0,  $\mu > 1$ , tolerance  $\epsilon > 0$
- repeat the following steps
  - ① centering step:

compute  $x^*(t)$  by minimizing  $tf_0 + \phi$  subject to Ax = b, starting at x

- 2 update  $x := x^*(t)$
- **4** increase  $t := \mu t$

#### features:

- use  $x^*(t^k)$  as starting point for solving for.  $x^*(t^{k+1})$
- outer iterations: centering steps
- inner iterations: Newton iterations in one centering step

# Implementation Issues

#### accuracy of centering:

• computing  $x^*(t)$  exactly or with reasonable accuracy

#### choice of $\mu$

Basic Concepts

trade-off in the numbers of inner and outer iterations

#### choice of initial $t^{(0)}$

• small  $t^{(0)} \rightarrow$  fewer inner iterations in the first outer iteration, but more outer iterations

#### using infeasible start Newton method

- starting point  $x^{(0)}$  do not necessarily satisfy  $Ax^{(0)} = b$
- still need to satisfy  $f_i(x^{(0)}) < 0, i = 1, ..., m$

# Examples – LP in Inequality Form

LP in inequality form

Basic Concepts

minimize 
$$c^T x$$
  
subject to  $Ax \le b$ 

with  $A \in \mathbb{R}^{100 \times 50}$ 





# Convergence Results

Basic Concepts

number of outer iterations is exactly:

$$1 + \left\lceil \frac{\log m / (\epsilon t^{(0)})}{\log \mu} \right\rceil$$

#### number of inner iterations

- Newton's methods: quadratic convergence
- as t increases, the number of inner iterations nearly constant

## Outline

Basic Concepts

- Basic Concepts
- The Barrier Method
- 3 Phase I Method For Infeasible Start
- Problems With Generalized Inequalities
- **5** Primal-Dual Interior-Point Methods
- 6 Implementation Issues

## Phase I Methods For Infeasible Start

what if we do not know which x is feasible?

- Phase I: compute a strictly feasible point
- Phase II: barrier methods

basic phase I method:

minimize 
$$s$$
  
subject to  $f_i(x) \le s, i = 1, ..., m$   
 $Ax = b$ 

with optimization variables  $x \in \mathbb{R}^n$  and  $s \in \mathbb{R}$ 

- get a strictly feasible starting point (by making s large)
- use barrier methods

## Basic Phase I Method

Basic Concepts

basic phase I method:

minimize 
$$s$$
  
subject to  $f_i(x) \le s, i = 1, ..., m$   
 $Ax = b$ 

with optimization variables  $x \in \mathbb{R}^n$  and  $s \in \mathbb{R}$ 

suppose that the optimal value is  $\bar{p}^*$ 

- $\bar{p}^* < 0$ : exists a strictly feasible point
  - strictly feasible x found in the process (early termination)
- $\bar{p}^* > 0$ : original problem is infeasible
- $\bar{p}^* = 0$ : exists no strictly feasible point

## Sum of Infeasibilities Phase I Method

sum of infeasibilities phase I method:

minimize 
$$\mathbf{1}^{I} s$$
  
subject to  $f_{i}(x) \leq s_{i}, i = 1, ..., m$   
 $s \geq 0$   
 $Ax = b$ 

with optimization variables  $x \in \mathbb{R}^n$  and  $s \in \mathbb{R}^m$ 

for infeasible problems, finds solutions satisfying more inequalities



# Feasibility Via Infeasible Start Newton Method

#### equivalent problem:

Basic Concepts

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \le s$ ,  $i = 1, ..., m$   
 $Ax = b$ ,  $s = 0$ 

use infeasible start Newton method to solve

minimize 
$$tf_0(x) - \sum_{i=1}^m \log(s - f_i(x))$$
  
subject to  $Ax = b, s = 0$ 

initialize with a starting point (x, s) that :

- satisfies  $f_i(x) < s, i = 1, ..., m$
- not necessarily satisfies Ax = b or s = 0

# Example - Phase I Method

#### linear feasibility problems:

$$Ax \leq b + \gamma \Delta b$$

- $A \in \mathbb{R}^{50 \times 20}$
- strictly feasible for  $\gamma > 0$ , not for  $\gamma \leq 0$



# Example - Phase I Method

linear feasibility problems:

$$Ax \leq b + \gamma \Delta b$$

- $A \in \mathbb{R}^{50 \times 20}$
- strictly feasible for  $\gamma > 0$ , not for  $\gamma \leq 0$



number of iterations roughly proportional to  $\log(1/|\gamma|)$ 

# Example - Infeasible Start Newton Method

infeasible start Newton method for the following problem:

minimize 
$$\sum_{i=1}^{m} \log s_i$$
 subject to 
$$Ax + s = b + \gamma \Delta b$$



# of iterations roughly proportional to  $1/|\gamma|$  (worse than Phase I)

## Outline

Basic Concepts

- Basic Concepts
- The Barrier Method
- B Phase I Method For Infeasible Start
- 4 Problems With Generalized Inequalities
- 6 Primal-Dual Interior-Point Methods
- 6 Implementation Issues

# Problems With Generalized Inequalities

problems with generalized inequalities:

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \leq_{K_i} 0, i = 1, ..., m$   
 $Ax = b$ 

- same assumptions as before
- examples of great interests
  - *K<sub>i</sub>* is second-order cone: SOCP
  - *K<sub>i</sub>* is positive semidefinite cone: SDP

# Generalized Logarithms

Basic Concepts

(standard) logarithm for nonnegative orthant  $K = \mathbb{R}^n_+$ :

$$\psi(x) = \sum_{i=1}^{n} \log x_i$$

generalized logarithm for positive semidefinite cone  $K = \mathbb{S}^n_+$ :

$$\psi(X) = \log \det X$$

for second-order cone  $K = \left\{ x \in \mathbb{R}^{n+1} \mid \left( \sum_{i=1}^n x_i^2 \right)^{1/2} \le x_{n+1} \right\}$ :

$$\psi(x) = \log\left(x_{n+1}^2 - \sum_{i=1}^n x_i^2\right)$$

# Properties of Generalized Logarithms

general properties:

Basic Concepts

$$\nabla^2 \psi(x) \prec 0, \quad \nabla \psi(x) \succeq_{K^*} 0, \quad x^T \nabla \psi(x) = \theta$$

nonnegative orthant 
$$K = \mathbb{R}^n_+$$
:  $\psi(x) = \sum_{i=1}^n \log x_i$ 

$$\nabla \psi(\mathbf{x}) = (1/\mathbf{x}_1, \dots, 1/\mathbf{x}_n), \quad \mathbf{x}^T \nabla \psi(\mathbf{x}) = \theta$$

positive semidefinite cone 
$$K = \mathbb{S}^n_+$$
:  $\psi(X) = \log \det X$ 

$$\nabla \psi(X) = X^{-1}, \quad \operatorname{tr}(X \nabla \psi(X)) = n$$

second-order cone 
$$K = \left\{ x \in \mathbb{R}^{n+1} \mid \left( \sum_{i=1}^{n} x_i^2 \right)^{1/2} \le x_{n+1} \right\}$$
:

$$\nabla \psi(x) = \frac{2}{x_{n+1}^2 - \sum_{i=1}^n x_i^2} \begin{vmatrix} -x_1 \\ \dots \\ -x_n \\ x_{n+1} \end{vmatrix}, \quad x^T \nabla \psi(x) = 2$$

# Logarithmic Barrier and Central Path

logarithmic barrier for  $f_i(x) \leq_{K_i} 0, i = 1, ..., m$ :

$$\phi(x) = -\sum_{i=1}^{m} \psi_i(-f_i(x)), \ \mathbf{dom}\phi = \{x \mid f_i(x) \prec_{K_i} 0, \ i = 1, \dots, m\}$$

- $\psi_i$  is generalized logarithm for  $K_i$
- $\phi$  convex, twice continuously differentiable

central path:  $\{x^*(t) \mid t > 0\}$  where  $x^*(t)$  is the solution to

minimize 
$$tf_0(x) + \phi(x)$$
  
subject to  $Ax = b$ 

## **Dual Points on Central Path**

 $x^*(t)$  satisfies

Basic Concepts

$$t \nabla f_0(x) + \sum_{i=1}^m Df_i(x)^T \nabla \psi(-f_i(x)) + A^T \hat{\nu} = 0$$

dual variables:

$$\lambda^{\star}(t) = \frac{1}{t} \nabla \phi_i(-f_i(x^{\star}(t))), \quad \nu^{\star}(t) = \frac{\hat{\nu}}{t}$$

duality gap:

$$f_0(x^*(t)) - g(\lambda^*(t), \nu^*(t)) = \frac{\sum_{i=1}^m \theta_i}{t}$$

# Barrier Method For Generalized Inequalities

the barrier method with strictly feasible starting point:

- strictly feasible starting point x, t > 0,  $\mu > 1$ , tolerance  $\epsilon > 0$
- repeat the following steps
  - 1 centering step: find  $x^*(t)$  by minimizing  $tf_0 + \phi$  s.t. Ax = b
  - 2 update  $x := x^*(t)$
  - 3 quit if  $(\sum_{i=1}^m \theta_i)/t < \epsilon$
  - **4** increase  $t := \mu t$

#### features:

Basic Concepts

- only difference is duality gap  $(\sum_{i=1}^{m} \theta_i)/t$  (instead of m/t)
- number of outer iterations

$$1 + \left\lceil \frac{\log\left(\sum_{i=1}^{m} \theta_{i}\right) / (\epsilon t^{(0)})}{\log \mu} \right\rceil$$

- convergence analysis similar
- same phase I method for finding strictly feasible points

# Examples – SOCP

#### SOCP:

Basic Concepts

$$\label{eq:minimize} \begin{array}{ll} \text{minimize} & f^Tx \\ \text{subject to} & \|A_ix+b_i\|_2 \leq c_i^Tx+d_i, \ i=1,\ldots,m \\ \\ \text{with} \ m=50, \ x \in \mathbb{R}^{50}, \ A_i \in \mathbb{R}^{5\times 50} \end{array}$$





# Examples – SDP

SDP:

Basic Concepts

minimize 
$$c^T x$$
  
subject to  $x_1 F_1 + \cdots + x_n F_n + G \leq 0$ 

with  $x \in \mathbb{R}^{100}$ ,  $F_i$ ,  $G \in \mathbb{S}^{100}$ 





# Examples – Scalability

a special SDP:

Basic Concepts

minimize 
$$\mathbf{1}^T x$$
  
subject to  $A + \mathbf{diag}(x) \succeq 0$ 

with  $x \in \mathbb{R}^n$ ,  $A \in \mathbb{S}^n$ 





## Outline

Basic Concepts

- Basic Concepts
- The Barrier Method
- B Phase I Method For Infeasible Start
- Problems With Generalized Inequalities
- **6** Primal-Dual Interior-Point Methods
- 6 Implementation Issues

#### Primal-Dual Interior-Point Methods

#### advantages over barrier methods:

- more efficient no distinction between outer / inner iterations
- primal and dual variables updated at each iteration
- can start at infeasible points (for equality constraints)
- converge faster (empirically observed)

Basic Concepts

### Primal-Dual Search Directions

recall the modified KKT conditions:

$$\nabla f_0(x) + \sum_{i=1}^{m} \lambda_i \nabla f_i(x) + A^T \nu = 0$$
$$-\lambda_i f_i(x) = 1/t, \ i = 1, \dots, m$$
$$Ax = b$$

n+m+p equations in variables  $(x,\lambda,\nu)\in\mathbb{R}^n\times\mathbb{R}^m\times\mathbb{R}^p$ 

#### Primal-Dual Search Directions

residual  $r_t(x, \lambda, \nu) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p$ :

$$r_t(x, \lambda, \nu) = \begin{bmatrix} \nabla f_0(x) + Df(x)^T \lambda + A^T \nu \\ -\mathbf{diag}(\lambda)f(x) - (1/t)\mathbf{1}_m \\ Ax - b \end{bmatrix} \triangleq \begin{bmatrix} r_{\mathsf{dual}} \\ r_{\mathsf{cent}} \\ r_{\mathsf{pri}} \end{bmatrix}$$

where we have

Basic Concepts

$$f(x) = \begin{bmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{bmatrix}, \quad Df(x) = \begin{bmatrix} \nabla f_1(x)^T \\ \vdots \\ \nabla f_m(x)^T \end{bmatrix}$$

$$(x^{\star}(t), \lambda^{\star}(t), \nu^{\star}(t))$$
 satisfy

$$r_t(x^*(t), \lambda^*(t), \nu^*(t))) = 0, \quad f_i(x^*(t)) < 0, \quad i = 1, \dots, m$$

with duality gap m/t

Basic Concepts

### Primal-Dual Search Directions

solve  $r_t(x, \lambda, \nu) = 0$  through first-order Taylor approximation

given 
$$y = (x, \lambda, \nu)$$
, find  $\Delta y = (\Delta x, \Delta \lambda, \Delta \nu)$  such that

$$r_t(y + \Delta y) \approx r_t(y) + Dr_t(y)\Delta y = 0$$

specifically, we have

$$\begin{bmatrix} \nabla^2 f_0(x) + \sum_{i=1}^m \lambda_i \nabla^2 f_i(x) & Df(x)^T & A^T \\ -\mathbf{diag}(\lambda)Df(x) & -\mathbf{diag}(f(x)) & 0 \\ A & 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \lambda \\ \Delta \nu \end{bmatrix} = -\begin{bmatrix} r_{\mathsf{dual}} \\ r_{\mathsf{cent}} \\ r_{\mathsf{pri}} \end{bmatrix}$$

primal-dual search directions  $\Delta y_{pd}$ : solution to the above

main difference from barrier method: update  $\Delta \lambda$ 

#### Primal-Dual Interior-Point Method

#### surrogate duality gap

Basic Concepts

$$\hat{\eta}(x,\lambda) = -f(x)^T \lambda$$

equal to true duality gap when x and  $\lambda$  are primal and dual feasible

primal-dual interior-point method:

- given x with f(x) < 0,  $\lambda > 0$ ,  $\mu > 1$ , tolerance  $\epsilon_{\text{feas}}$ ,  $\epsilon > 0$
- repeat the following steps
  - $\mathbf{1}$  set  $t := \mu m/\hat{\eta}$
  - 2 compute primal-dual search direction  $\Delta y_{\rm pd}$
  - 3 backtracking line search on  $\lambda$ , f(x), and  $||r_t||_2$ 
    - 1 start with  $s := 0.99 \cdot \sup\{s \in [0,1] \mid \lambda + s\Delta\lambda > 0\}$
    - 2 continue  $s := \beta s$  until  $f(x + s\Delta x) < 0$
    - 3 continue  $s := \beta s$  until  $||r_t(y + s\Delta y_{pd})||_2 > (1 \alpha s)||r_t(y)||_2$ ,
  - 4 update  $y := y + s\Delta y_{pd}$
- until  $||r_{pri}||_2 \le \epsilon_{feas}$ ,  $||r_{dual}||_2 \le \epsilon_{feas}$ , and  $\hat{\eta} \le \epsilon$

# Examples – LP in Inequality Form

LP in inequality form

Basic Concepts

minimize 
$$c^T x$$
  
subject to  $Ax \le b$ 

with  $A \in \mathbb{R}^{100 \times 50}$ 

barrier method:



# Examples – LP in Inequality Form

#### LP in inequality form

Basic Concepts

minimize 
$$c^T x$$
  
subject to  $Ax \le b$ 

with  $A \in \mathbb{R}^{100 \times 50}$ 

#### primal-dual interior-point method:



# Examples – Scalability

Basic Concepts

for the LP, fix n = 2m and let m increase



### Outline

Basic Concepts

- Basic Concepts
- The Barrier Method
- 3 Phase I Method For Infeasible Start
- Problems With Generalized Inequalities
- **5** Primal-Dual Interior-Point Methods
- 6 Implementation Issues

## Implementation Issues

main effort in barrier method:

$$\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{nt} \\ \nu_{nt} \end{bmatrix} = - \begin{bmatrix} g \\ 0 \end{bmatrix}$$

where

Basic Concepts

$$H = t \nabla^2 f_0(x) + \sum_{i=1}^m \frac{1}{f_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^m \frac{1}{-f_i(x)} \nabla^2 f_i(x)$$

and

$$g = t \nabla f_0(x) + \sum_{i=1}^m \frac{1}{-f_i(x)} \nabla f_i(x)$$

solve a linear system of size (n + p)

complexity  $O((n+p)^3)$  in general

# Exploit Structures to Reduce Complexity

#### sparse problem:

- objective and constraint functions depend on a few variables
- H is likely to be sparse if m small
- A is sparse

use the structure to reduce complexity

customize the method for independent problems

# Examples – Standard Form LP

#### IP in standard form:

Basic Concepts

minimize 
$$c^T x$$
  
subject to  $Ax = b$   
 $x \ge 0$ 

#### centering problem:

minimize 
$$tc^T x - \sum_{i=1}^n \log x_i$$
  
subject to  $Ax = b$ 

#### Newton steps:

$$\begin{bmatrix} \operatorname{diag}(x)^{-2} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\mathsf{nt}} \\ \nu_{\mathsf{nt}} \end{bmatrix} = - \begin{bmatrix} -tc + \operatorname{diag}(x)^{-1} \mathbf{1} \\ 0 \end{bmatrix}$$

## Examples – Standard Form LP

solving Newton steps:

Basic Concepts

$$\begin{bmatrix} \operatorname{diag}(x)^{-2} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\mathsf{nt}} \\ \nu_{\mathsf{nt}} \end{bmatrix} = \begin{bmatrix} -tc + \operatorname{diag}(x)^{-1} \mathbf{1} \\ 0 \end{bmatrix}$$

determine  $\Delta x_{\rm nt}$  analytically from  $\nu_{\rm nt}$ :

$$\Delta x_{\rm nt} = \operatorname{diag}(x)^{2} \left( -tc + \operatorname{diag}(x)^{-1} \mathbf{1} - A^{T} \nu_{\rm nt} \right)$$
$$= -t \operatorname{diag}(x)^{2} c + x - \operatorname{diag}(x)^{2} A^{T} \nu_{\rm nt}$$

solve  $\nu_{\rm nt}$ :

$$A \operatorname{diag}(x)^2 A^T \nu_{\rm nt} = -t A \operatorname{diag}(x)^2 c + b$$

# Examples – $\ell_1$ -Norm Approximation

 $\ell_1$ -norm approximation problem:

minimize 
$$||Ax - b||_1$$

with  $A \in \mathbb{R}^{m \times n}$ 

Basic Concepts

equivalent LP:

minimize 
$$\mathbf{1}^T y$$
  
subject to  $\begin{bmatrix} A & -I \\ -A & -I \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \le \begin{bmatrix} b \\ -b \end{bmatrix}$ 

with optimization variables  $x \in \mathbb{R}^n$  and  $y \in \mathbb{R}^m$ 

## Examples – $\ell_1$ -Norm Approximation

Newton steps:

Basic Concepts

$$\begin{bmatrix} A^{T}(D_1 + D_2)A & -A^{T}(D_1 - D_2) \\ -(D_1 - D_2)A & D_1 + D_2 \end{bmatrix} \begin{bmatrix} \Delta x_{nt} \\ \Delta y_{nt} \end{bmatrix} = -\begin{bmatrix} A^{T}g_1 \\ g_2 \end{bmatrix}$$

where  $D_1$  and  $D_2$  are diagonal matrices (expressions omitted)

by eliminating  $\Delta y_{\rm nt}$ , we have

$$A^T DA \Delta x_{nt} = -A^T g$$

with

$$D = 4D_1D_2(D_1 + D_2)^{-1}$$

and

$$g = g_1 + (D_1 - D_2)(D_1 + D_2)^{-1}g_2$$

then get  $\Delta y_{nt}$  through

$$\Delta y_{\rm nt} = (D_1 + D_2)^{-1} (-g_2 + (D_1 - D_2)A\Delta x_{\rm nt})$$

Basic Concepts

## Examples – Network Rate Optimization

network rate optimization problem:

- n flows (e.g., traffic, commodity)
- L links with capacities

optimization problem:

maximize 
$$U(x) = U_1(x_1) + \cdots + U_n(x_n)$$
  
subject to  $Ax \le c, x \ge 0$ 

with  $A \in \{0,1\}^{m \times n}$  is the incident matrix

$$A_{ij} = \begin{cases} 1 & \text{flow } j \text{ pass through link } i \\ 0 & \text{otherwise} \end{cases}$$

## Examples – Network Rate Optimization

centering problem:

Basic Concepts

minimize 
$$-tU(x) - \sum_{i=1}^{L} \log(c - Ax)_i - \sum_{j=1}^{n} \log x_j$$

Newton steps:

$$\left(D_0 + A^T D_1 A + D_2\right) \Delta x_{\mathsf{nt}} = -g$$

where  $D_0$ ,  $D_1$  and  $D_2$  are diagonal matrices (expressions omitted)

$$\left(D_0 + A^T D_1 A + D_2\right)_{ij} \neq 0$$

if and only if flows i and j share a link