

FCC PART 15.247 TEST REPORT

For

Compumax Computer S.A.S

Calle 41 N 35-47 Bucaramanga, Santander, Colombia

FCC ID: 2AHF7-TW10

Report Type: **Product Type:** Original Report COMPUMAX BLUE TW10 David Lee **Test Engineer:** David Lee

Report Number: RSZ160308003-00B

Report Date: 2016-03-28

Candy Li

Reviewed By: RF Engineer

Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F, the 3rd Phase of WanLi Industrial Building **Prepared By:**

Candy, Li

ShiHua Road, FuTian Free Trade Zone

Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
Related Submittal(s)/Grant(s) Test Methodology	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	
BLOCK DIAGRAM OF TEST SETUP	7
SUMMARY OF TEST RESULTS	8
FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE	9
APPLICABLE STANDARD	
FCC §15.203 – ANTENNA REQUIREMENT	10
APPLICABLE STANDARD	
Antenna Connector Construction	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUPEMI TEST RECEIVER SETUP	
TEST PROCEDURE	
TEST FROEEDORE TEST EQUIPMENT LIST AND DETAILS.	
CORRECTED FACTOR & MARGIN CALCULATION	12
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS	
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTYEUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	10
Test Procedure	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST EQUIPMENT LIST AND DETAILS	
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.247(a) (1)-CHANNEL SEPARATION TEST	
APPLICABLE STANDARD	
TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH	28
APPLICABLE STANDARD	
TEST PROCEDURE	28

Report No.: RSZ160308003-00B

Report No.: RSZ160308003-00B

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The Computar S.A.S's product, model number: 6034-802-0000 (FCC ID: 2AHF7-TW10) or the "EUT" in this report was a COMPUMAX BLUE TW10, which was measured approximately: 260 mm (L) \times 171 mm (W) \times 9 mm (H), rated with input voltage: DC 3.8V rechargeable Li-ion battery or DC 5V from adapter.

Report No.: RSZ160308003-00B

Adapter Information:

Model: TEKA018-0502500UK Input AC: 100-240V, 50/60Hz, 0.5A

Output: DC 5V, 2.5A

Note: The serial models 6034-802-0000, 6034-100-0000, 6034-100-0001, 6034-200-0000, 6034-200-0001, 6034-300-0000, 6034-300-0001, 6034-400-0000, 6034-400-0001, 6034-500-0000, 6034-500-0001, 6034-500-0001, 6034-500-0001, 6034-500-0001, 6034-500-0001, 6034-801-000

Objective

This test report is prepared on behalf of *Compumax Computer S.A.S* in accordance with Part 2-Subpart J, Part 15-Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

FCC Part 15.247 DTS and Part 15B JBC submissions with FCC ID: 2AHF7-TW10.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement uncertainty with radiated emission is 5.81 dB for 30MHz-1GHz, and 4.88 dB for above 1GHz, 1.95dB for conducted measurement.

FCC Part 15.247 Page 4 of 60

^{*}All measurement and test data in this report was gathered from production sample serial number: 1601552 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2016-03-08.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Report No.: RSZ160308003-00B

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on October 31, 2013. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.10-2013.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 15.247 Page 5 of 60

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in engineering mode.

EUT Exercise Software

CMD command was used for engineering mode.

Special Accessories

No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
/	/	/	/

Report No.: RSZ160308003-00B

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielding Un-Detachable DC Power Cable	1.1	EUT	Adapter

FCC Part 15.247 Page 6 of 60

Block Diagram of Test Setup

For conducted emission

Report No.: RSZ160308003-00B

FCC Part 15.247 Page 7 of 60

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
\$15.205, \$15.209 & \$15.247(d)	Radiated Emissions	Compliance
§15.247(a)(1)	20 dB Emission Bandwidth	Compliance
§15.247(a)(1)	Channel Separation Test	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance
§15.247(b)(1)	Peak Output Power Measurement	Compliance
§15.247(d)	Band edges	Compliance

Report No.: RSZ160308003-00B

FCC Part 15.247 Page 8 of 60

FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

Report No.: RSZ160308003-00B

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- 1. f(GHz) is the RF channel transmit frequency in GHz.
- 2. Power and distance are rounded to the nearest mW and mm before calculation.
- 3. The result is rounded to one decimal place for comparison.
- 4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

For worst case:

Frequency	Maximum couducted Tune-up power		Calculated Distance	Distance Calculated		SAR Test
(MHz)	Power (dBm)	Power (mW)	(mm)	value		Exclusion
2480	7.10	5.13	5	1.6	3.0	Yes

Result: No SAR test is required

FCC Part 15.247 Page 9 of 60

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Report No.: RSZ160308003-00B

Antenna Connector Construction

The EUT has one internal antenna arrangement for bluetooth which was permanently attached and the antenna gain is 1.0dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

FCC Part 15.247 Page 10 of 60

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

Measurement Uncertainty

Input quantities to be considered for conducted disturbance measurements maybe receiver reading, attenuation of the connection between LISN and receiver, LISN voltage division factor, LISN VDF frequency interpolation and receiver related input quantities, etc.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of conducted disturbance test at Bay Area Compliance Laboratories Corp. (Shenzhen) is shown as below. And the uncertainty will not be taken into consideration for the test data recorded in the report.

Report No.: RSZ160308003-00B

Port	Expanded Measurement uncertainty
AC Mains	3.34 dB (k=2, 95% level of confidence)
CAT 3	3.72 dB (k=2, 95% level of confidence)
CAT 5	3.74 dB (k=2, 95% level of confidence)
CAT 6	4.54 dB (k=2, 95% level of confidence)

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

FCC Part 15.247 Page 11 of 60

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Report No.: RSZ160308003-00B

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2015-06-01	2016-05-31
Rohde & Schwarz	LISN	ENV216	3560.6650.12- 101613-Yb	2015-12-15	2016-12-14
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2015-05-14	2016-05-14
Ducommun technologies	Conducted Emission Cable	RG-214	CB031	2015-06-15	2016-06-15
Rohde & Schwarz	CE Test software	EMC 32	V8.53	NCR	NCR

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

FCC Part 15.247 Page 12 of 60

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Part 15.207</u>, the worst margin reading as below:

Report No.: RSZ160308003-00B

7.4 dB at 0.509530 MHz in the Line conducted mode

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

$$L_{\rm m} + U_{(L{\rm m})} \leq L_{\rm lim} + U_{\rm cispr}$$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	23 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by David Lee on 2016-03-25.

EUT operation mode: Transmitting & Charging

FCC Part 15.247 Page 13 of 60

AC 120V/60 Hz, Line:

EMI Auto Test L

Report No.: RSZ160308003-00B

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.509530	48.4	19.9	56.0	7.6	QP
0.509530	38.6	19.9	46.0	7.4	Ave.
0.518230	46.1	19.9	56.0	9.9	QP
0.518230	35.7	19.9	46.0	10.3	Ave.
0.557630	46.2	19.9	56.0	9.8	QP
0.557630	35.6	19.9	46.0	10.4	Ave.
0.663890	41.2	19.9	56.0	14.8	QP
0.663890	30.9	19.9	46.0	15.1	Ave.
1.002970	43.9	20.0	56.0	12.1	QP
1.002970	35.4	20.0	46.0	10.6	Ave.
1.042430	42.0	20.0	56.0	14.0	QP
1.042430	35.2	20.0	46.0	10.8	Ave.

FCC Part 15.247 Page 14 of 60

AC 120V/60 Hz, Neutral:

EMI Auto Test N

Report No.: RSZ160308003-00B

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.569510	40.4	19.9	56.0	15.6	QP
0.569510	26.9	19.9	46.0	19.1	Ave.
23.067950	45.3	20.1	60.0	14.7	QP
23.067950	30.8	20.1	50.0	19.2	Ave.
23.736890	44.8	20.1	60.0	15.2	QP
23.736890	28.7	20.1	50.0	21.3	Ave.
24.071850	45.3	20.1	60.0	14.7	QP
24.071850	29.8	20.1	50.0	20.2	Ave.
24.746930	47.2	20.1	60.0	12.8	QP
24.746930	30.4	20.1	50.0	19.6	Ave.
26.756750	42.5	20.2	60.0	17.5	QP
26.756750	27.9	20.2	50.0	22.1	Ave.

Note:

- 1) Correction Factor =LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter Attenuation
 2) Corrected Amplitude = Reading + Correction Factor
 3) Margin = Limit Corrected Amplitude

FCC Part 15.247 Page 15 of 60

FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard

FCC §15.205; §15.209; §15.247(d)

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Report No.: RSZ160308003-00B

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of radiation emissions at Bay Area Compliance Laboratories Corp. (Shenzhen) is 5.81 dB for 30MHz-1GHz, and 4.88 dB for above 1GHz. And this uncertainty will not be taken into consideration for the test data recorded in the report.

EUT Setup

Below 1 GHz:

FCC Part 15.247 Page 16 of 60

Above 1GHz:

Report No.: RSZ160308003-00B

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI ANSI C63.10-2013. The specification used was the FCC 15.209, 205 and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Abovo 1 CIIa	1 MHz	3 MHz	/	PK
Above 1 GHz	1 MHz	10 Hz	/	Ave.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

FCC Part 15.247 Page 17 of 60

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Report No.: RSZ160308003-00B

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
HP	Amplifier	HP8447E	1937A01046	2015-05-06	2016-05-06
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2015-12-15	2016-12-14
Sunol Sciences	Bi-log Antenna	JB1	A040904-2	2014-12-07	2017-12-06
Mini	Amplifier	ZVA-183-S+	5969001149	2015-04-23	2016-04-23
A.H. System	Horn Antenna	SAS-200/571	135	2015-08-18	2018-08-17
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2015-12-11	2016-12-11
the electro- Mechanics Co.	Horn Antenna	3116	9510-2270	2013-10-14	2016-10-13
TDK	Chamber	Chamber A	2#	2013-10-15	2016-10-15
TDK	Chamber	Chamber B	1#	2015-07-23	2016-07-22
DUCOMMUN	Pre-amplifier	ALN- 22093530-01	991373-01	2015-08-03	2016-08-03
R&S	Auto test Software	EMC32	V9.10	NCR	NCR
Ducommun technologies	RF Cable	UFA210A-1- 4724-30050U	MFR64369 223410-001	2015-06-15	2016-06-15
Ducommun technologies	RF Cable	104PEA	218124002	2015-06-15	2016-06-15
Ducommun technologies	RF Cable	RG-214	1	2015-06-15	2016-06-15
Ducommun technologies	RF Cable	RG-214	2	2015-06-15	2016-06-15

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC Part 15.247 Page 18 of 60

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247</u>.

8.48 dB at 452.4 MHz in the Vertical polarization for Middle Channel

Report No.: RSZ160308003-00B

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

$$L_{\rm m} + + \ U_{\rm (Lm\,)} \le L_{\rm lim} + + \ U_{\rm cispr}$$
 In BACL, $U_{\rm (Lm\,)}$ is less than + $U_{\rm cispr}$, if $L_{\rm m}$ is less than $L_{\rm lim}$, it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	22 ℃	
Relative Humidity:	54 %	
ATM Pressure:	101.0 kPa	

The testing was performed by David Lee on 2016-03-21.

EUT operation mode: Transmitting

30 MHz -25 GHz: (Scan with GFSK, $\pi/4$ -DQPSK, 8-DPSK mode, the worst case as below)

Frequency	Re	eceiver	Turntable	Rx An	itenna	Corrected Factor (dB)		15.247	C Part 7/205/209
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Degree	Height (m)	Polar (H/V)		Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Low Ch	annel (2	2402 M	Hz)			
452.4	40.06	QP	153	1.5	V	-3.5	36.56	46	9.44
2402.0	104.30	PK	136	2.0	Н	-6.46	97.84	/	/
2402.0	93.98	Ave.	136	2.0	Н	-6.46	87.52	/	/
2402.0	102.31	PK	173	1.6	V	-6.46	95.85	/	/
2402.0	92.11	Ave.	173	1.6	V	-6.46	85.65	/	/
2350.1	43.43	PK	183	2.3	Н	-6.46	36.97	74	37.03
2350.1	30.60	Ave.	183	2.3	Н	-6.46	24.14	54	29.86
2379.0	43.53	PK	76	2.4	Н	-6.46	37.07	74	36.93
2379.0	31.39	Ave.	76	2.4	Н	-6.46	24.93	54	29.07
2485.1	42.52	PK	81	2.0	V	-4.74	37.78	74	36.22
2485.1	30.58	Ave.	81	2.0	V	-4.74	25.84	54	28.16
4804.0	41.24	PK	206	1.5	Н	3.79	45.03	74	28.97
4804.0	31.76	Ave.	206	1.5	Н	3.79	35.55	54	18.45
7206.0	36.59	PK	141	1.6	Н	9.79	46.38	74	27.62
7206.0	25.44	Ave.	141	1.6	Н	9.79	35.23	54	18.77
9608.0	36.17	PK	222	1.1	V	11.85	48.02	74	25.98
9608.0	24.94	Ave.	222	1.1	V	11.85	36.79	54	17.21

Page 19 of 60 FCC Part 15.247

Frequency	R	eceiver	Turntable	Rx An	Rx Antenna Corrected			15.247	C Part /205/209
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Degree	Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)		Margin (dB)
	Middle Channel (2441 MHz)								
452.4	41.02	QP	325	1.5	V	-3.5	37.52	46	8.48
2441.0	104.19	PK	237	2.5	Н	-6.46	97.73	/	/
2441.0	94.00	Ave.	237	2.5	Н	-6.46	87.54	/	/
2441.0	102.64	PK	319	1.8	V	-6.46	96.18	/	/
2441.0	92.83	Ave.	319	1.8	V	-6.46	86.37	/	/
2344.3	42.89	PK	298	2.3	Н	-6.65	36.24	74	37.76
2344.3	31.22	Ave.	298	2.3	Н	-6.65	24.57	54	29.43
2383.4	42.78	PK	57	1.7	V	-6.46	36.32	74	37.68
2383.4	31.16	Ave.	57	1.7	V	-6.46	24.70	54	29.30
2499.1	43.50	PK	82	2.0	Н	-4.74	38.76	74	35.24
2499.1	31.22	Ave.	82	2.0	Н	-4.74	26.48	54	27.52
4882.0	41.25	PK	30	1.3	Н	3.56	44.81	74	29.19
4882.0	31.18	Ave.	30	1.3	Н	3.56	34.74	54	19.26
7323.0	37.90	PK	272	1.4	V	10.11	48.01	74	25.99
7323.0	24.71	Ave.	272	1.4	V	10.11	34.82	54	19.18
9764.0	37.91	PK	157	1.6	Н	13.21	51.12	74	22.88
9764.0	24.51	Ave.	157	1.6	Н	13.21	37.72	54	16.28
	•		High Ch	annel (2	2480 M	Hz)			
452.4	40.50	QP	293	1.2	V	-3.5	37.00	46	9.00
2480.0	101.30	PK	263	1.3	Н	-4.74	96.56	/	/
2480.0	91.80	Ave.	263	1.3	Н	-4.74	87.06	/	/
2480.0	100.70	PK	140	1.2	V	-4.74	95.96	/	/
2480.0	90.06	Ave.	140	1.2	V	-4.74	85.32	/	/
2346.4	42.63	PK	66	2.1	Н	-6.65	35.98	74	38.02
2346.4	30.84	Ave.	66	2.1	Н	-6.65	24.19	54	29.81
2387.7	42.42	PK	151	2.0	V	-6.46	35.96	74	38.04
2387.7	31.48	Ave.	151	2.0	V	-6.46	25.02	54	28.98
2485.9	42.03	PK	205	2.0	Н	-4.74	37.29	74	36.71
2485.9	31.16	Ave.	205	2.0	Н	-4.74	26.42	54	27.58
4960.0	42.95	PK	141	2.1	Н	3.19	46.14	74	27.86
4960.0	31.19	Ave.	141	2.1	Н	3.19	34.38	54	19.62
7440.0	37.38	PK	306	2.3	Н	8.17	45.55	74	28.45
7440.0	25.18	Ave.	306	2.3	Н	8.17	33.35	54	20.65
9920.0	36.16	PK	340	1.1	V	13.21	49.37	74	24.63
9920.0	25.37	Ave.	340	1.1	V	13.21	38.58	54	15.42

Report No.: RSZ160308003-00B

Note:

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor Corrected Amplitude = Corrected Factor + Reading Margin = Limit - Corrected. Amplitude

FCC Part 15.247 Page 20 of 60

FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

Report No.: RSZ160308003-00B

Test Procedure

- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2015-12-11	2016-12-11
Ducommun technologies	RF Cable	RG-214	3	2015-06-15	2016-06-15
WEINSCHEL	3dB Attenuator	5321	AU0709	2015-06-18	2016-06-18

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25 ℃	
Relative Humidity:	50 %	
ATM Pressure:	101.0 kPa	

The testing was performed by David Lee on 2016-03-18.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following table and plots

FCC Part 15.247 Page 21 of 60

Report No.: RSZ160308003-00B

Note: Limit = 20 dB bandwidth *2/3

FCC Part 15.247 Page 22 of 60

BDR (GFSK): Low Channel

Report No.: RSZ160308003-00B

BDR (GFSK): Middle Channel

FCC Part 15.247 Page 23 of 60

BDR (GFSK): High Channel

Report No.: RSZ160308003-00B

EDR ($\pi/4$ -DQPSK): Low Channel

FCC Part 15.247 Page 24 of 60

EDR (π/4-DQPSK): Middle Channel

Report No.: RSZ160308003-00B

EDR ($\pi/4$ -DQPSK): High Channel

FCC Part 15.247 Page 25 of 60

EDR (8DPSK): Low Channel

Report No.: RSZ160308003-00B

EDR (8DPSK): Middle Channel

FCC Part 15.247 Page 26 of 60

EDR (8DPSK): High Channel

Report No.: RSZ160308003-00B

FCC Part 15.247 Page 27 of 60

FCC $\S15.247(a)$ (1) – 20 dB EMISSION BANDWIDTH

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Report No.: RSZ160308003-00B

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2015-12-11	2016-12-11
Ducommun technologies	RF Cable	RG-214	3	2015-06-15	2016-06-15
WEINSCHEL	3dB Attenuator	5321	AU0709	2015-06-18	2016-06-18

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25 ℃	
Relative Humidity:	50 %	
ATM Pressure:	101.0 kPa	

The testing was performed by David Lee on 2016-03-18.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following table and plots.

FCC Part 15.247 Page 28 of 60

Mode	Channel	Frequency (MHz)	20 dB Emission Bandwidth (MHz)
	Low	2402	1.06
BDR (GFSK)	Middle	2441	1.06
(GI SIK)	High	2480	1.06
	Low	2402	1.35
EDR (π/4-DQPSK)	Middle	2441	1.35
(, 1 2 (1 2 12)	High	2480	1.29
EDR (8DPSK)	Low	2402	1.34
	Middle	2441	1.33
(021011)	High	2480	1.33

Report No.: RSZ160308003-00B

BDR (GFSK): Low Channel

FCC Part 15.247 Page 29 of 60

BDR (GFSK): Middle Channel

Report No.: RSZ160308003-00B

BDR (GFSK): High Channel

FCC Part 15.247 Page 30 of 60

EDR ($\pi/4$ -DQPSK): Low Channel

Report No.: RSZ160308003-00B

EDR ($\pi/4$ -DQPSK): Middle Channel

FCC Part 15.247 Page 31 of 60

EDR (π/4-DQPSK): High Channel

Report No.: RSZ160308003-00B

EDR (8DPSK): Low Channel

FCC Part 15.247 Page 32 of 60

EDR (8DPSK): Middle Channel

Report No.: RSZ160308003-00B

EDR (8DPSK): High Channel

FCC Part 15.247 Page 33 of 60

FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Report No.: RSZ160308003-00B

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2015-12-11	2016-12-11
Ducommun technologies	RF Cable	RG-214	3	2015-06-15	2016-06-15
WEINSCHEL	3dB Attenuator	5321	AU0709	2015-06-18	2016-06-18

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25 ℃	
Relative Humidity:	50 %	
ATM Pressure:	101.0 kPa	

The testing was performed by David Lee on 2016-03-18.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following table and plots.

FCC Part 15.247 Page 34 of 60

Mode	Frequency Range (MHz)	Number of Hopping Channel (CH)	Limit (CH)
BDR (GFSK)	2400-2483.5	79	≥15
EDR (π/4-DQPSK)	2400-2483.5	79	≥15
EDR (8DPSK)	2400-2483.5	79	≥15

Report No.: RSZ160308003-00B

BDR (GFSK): Number of Hopping Channels

FCC Part 15.247 Page 35 of 60

EDR ($\pi/4$ -DQPSK): Number of Hopping Channels

Report No.: RSZ160308003-00B

EDR (8DPSK): Number of Hopping Channels

FCC Part 15.247 Page 36 of 60

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Report No.: RSZ160308003-00B

Test Procedure

The EUT was worked in channel hopping; Spectrum SPAN was set as 0. Sweep was set as 0.4 X channel no. (s), the quantity of pulse was get from single sweep. In addition, the time of single pulses was tested.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2015-12-11	2016-12-11
Ducommun technologies	RF Cable	RG-214	3	2015-06-15	2016-06-15
WEINSCHEL	3dB Attenuator	5321	AU0709	2015-06-18	2016-06-18

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by David Lee on 2016-03-18.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following table and plots.

FCC Part 15.247 Page 37 of 60

Mod	e	Channel	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Result		
		Low	0.427	0.137	0.4	Pass		
	DII 1	Middle	0.427	0.137	0.4	Pass		
	DH 1	High	0.427	0.137	0.4	Pass		
		Note: DH1:Dwell time = Pulse time*(1600/2/79)*31.6S						
		Low	1.698	0.272	0.4	Pass		
BDR	DII 2	Middle	1.698	0.272	0.4	Pass		
(GFSK)	DH 3	High	1.698	0.272	0.4	Pass		
		Note:	DH3:Dwell time = P	Pulse time*(1600/	4/79)*31.6S	•		
		Low	2.951	0.315	0.4	Pass		
	DIL 5	Middle	2.951	0.315	0.4	Pass		
	DH 5	High	2.951	0.315	0.4	Pass		
	-	Note:	DH5:Dwell time = P	Pulse time*(1600/	6/79)*31.6S	•		
	2DH 1	Low	0.431	0.138	0.4	Pass		
		Middle	0.431	0.138	0.4	Pass		
		High	0.431	0.138	0.4	Pass		
		Note: 2DH1:Dwell time = Pulse time*(1600/2/79)*31.6S						
	2D11.2	Low	1.698	0.272	0.4	Pass		
EDR		Middle	1.698	0.272	0.4	Pass		
$(\pi/4\text{-DQPSK})$	2DH 3	High	1.698	0.272	0.4	Pass		
	-	Note: 2DH3:Dwell time = Pulse time*(1600/4/79)*31.6S						
	2DV 5	Low	2.951	0.315	0.4	Pass		
		Middle	2.951	0.315	0.4	Pass		
	2DH 5	High	2.951	0.315	0.4	Pass		
		Note:2DH5:Dwell time = Pulse time*(1600/6/79)*31.6S						
	3DH 1	Low	0.431	0.138	0.4	Pass		
		Middle	0.431	0.138	0.4	Pass		
EDR (8DPSK)		High	0.431	0.138	0.4	Pass		
		Note: 3DH1:Dwell time = Pulse time*(1600/2/79)*31.6S						
	30113	Low	1.698	0.272	0.4	Pass		
		Middle	1.698	0.272	0.4	Pass		
	3DH 3	High	1.698	0.272	0.4	Pass		
		Note: 3DH3:Dwell time = Pulse time*(1600/4/79)*31.6S						
		Low	2.951	0.315	0.4	Pass		
	2011.5	Middle	2.951	0.315	0.4	Pass		
	3DH 5	High	2.951	0.315	0.4	Pass		
		Note: 3	3DH5:Dwell time = 1	Pulse time*(1600	/6/79)*31.6S	•		

Report No.: RSZ160308003-00B

FCC Part 15.247 Page 38 of 60

BDR (GFSK): Pulse time, Low Channel, DH1

Report No.: RSZ160308003-00B

Pulse time, Middle Channel, DH1

FCC Part 15.247 Page 39 of 60

Pulse time, High Channel, DH1

Report No.: RSZ160308003-00B

Pulse time, Low Channel, DH3

FCC Part 15.247 Page 40 of 60

Pulse time, Middle Channel, DH3

Report No.: RSZ160308003-00B

Pulse time, High Channel, DH3

FCC Part 15.247 Page 41 of 60

Pulse time, Low Channel, DH5

Report No.: RSZ160308003-00B

Pulse time, Middle Channel, DH5

FCC Part 15.247 Page 42 of 60

Pulse time, High Channel, DH5

Report No.: RSZ160308003-00B

EDR ($\pi/4$ -DQPSK): Pulse time, Low Channel, 2DH1

FCC Part 15.247 Page 43 of 60

Pulse time, Middle Channel, 2DH1

Report No.: RSZ160308003-00B

Pulse time, High Channel, 2DH1

FCC Part 15.247 Page 44 of 60

Pulse time, Low Channel, 2DH3

Report No.: RSZ160308003-00B

Pulse time, Middle Channel, 2DH3

FCC Part 15.247 Page 45 of 60

Pulse time, High Channel, 2DH3

Report No.: RSZ160308003-00B

Pulse time, Low Channel, 2DH5

FCC Part 15.247 Page 46 of 60

Pulse time, Middle Channel, 2DH5

Report No.: RSZ160308003-00B

Pulse time, High Channel, 2DH5

FCC Part 15.247 Page 47 of 60

EDR (8DPSK): Pulse time, Low Channel, 3DH1

Report No.: RSZ160308003-00B

Pulse time, Middle Channel, 3DH1

FCC Part 15.247 Page 48 of 60

Pulse time, High Channel, 3DH1

Report No.: RSZ160308003-00B

Pulse time, Low Channel, 3DH3

FCC Part 15.247 Page 49 of 60

Pulse time, Middle Channel, 3DH3

Report No.: RSZ160308003-00B

Pulse time, High Channel, 3DH3

FCC Part 15.247 Page 50 of 60

Pulse time, Low Channel, 3DH5

Report No.: RSZ160308003-00B

Pulse time, Middle Channel, 3DH5

FCC Part 15.247 Page 51 of 60

Pulse time, High Channel, 3DH5

Report No.: RSZ160308003-00B

FCC Part 15.247 Page 52 of 60

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Report No.: RSZ160308003-00B

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
НР	Power Meter	N1912A	MY5000448	2015-11-03	2016-11-03
НР	Power Sensor	N1921A	MY54210016	2015-11-03	2016-11-03
Ducommun technologies	RF Cable	RG-214	3	2015-06-15	2016-06-15
WEINSCHEL	3dB Attenuator	5321	AU0709	2015-06-18	2016-06-18

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by David Lee on 2016-03-18.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following table.

FCC Part 15.247 Page 53 of 60

Mode	Channel	Frequency (MHz)	Reading Power (dBm)	Peak Output Power (mw)	Limit (dBm)
	Low	2402	6.81	4.80	30
BDR (GFSK)	Middle	2441	7.06	5.08	30
	High	2480	6.06	4.04	30
	Low	2402	4.73	2.97	30
EDR (π/4-DQPSK)	Middle	2441	4.98	3.15	30
(1.1.1.2 (21.0.12)	High	2480	3.70	2.34	30
	Low	2402	5.12	3.25	30
EDR (8DPSK)	Middle	2441	5.39	3.46	30
(021011)	High	2480	4.11	2.58	30

Report No.: RSZ160308003-00B

FCC Part 15.247 Page 54 of 60

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Report No.: RSZ160308003-00B

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2015-12-11	2016-12-11
Ducommun technologies	RF Cable	RG-214	3	2015-06-15	2016-06-15
WEINSCHEL	3dB Attenuator	5321	AU0709	2015-06-18	2016-06-18

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC Part 15.247 Page 55 of 60

Test Data

Environmental Conditions

Temperature:	25 ℃	
Relative Humidity:	50 %	
ATM Pressure:	101.0 kPa	

The testing was performed by David Lee on 2016-03-18.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following plots.

BDR (GFSK): Band Edge-Left Side

Report No.: RSZ160308003-00B

FCC Part 15.247 Page 56 of 60

BDR (GFSK): Band Edge-Right Side

Report No.: RSZ160308003-00B

EDR ($\pi/4$ -DQPSK): Band Edge-Left Side

FCC Part 15.247 Page 57 of 60

EDR (π/4-DQPSK): Band Edge-Right Side

Report No.: RSZ160308003-00B

EDR (8DPSK): Band Edge-Left Side

FCC Part 15.247 Page 58 of 60

BDR (8DPSK): Band Edge-Right Side

Report No.: RSZ160308003-00B

FCC Part 15.247 Page 59 of 60

PRODUCT SIMILARITY DECLARATION LETTE

Compumax Computer S.A.S Address: Calle 41 N 35-47 Bucaramanga, Santander, Colombia Tel: (057)14013333 ext 209 Fax: 5776917000

Report No.: RSZ160308003-00B

Product Similarity Declaration

March 24, 2016

To Whom It May Concern,

We, Compumax Computer S.A.S. hereby declare that we have a product named as COMPUMAX BLUE TW10 (Model number: 6034-802-0000) was tested by BACL, meanwhile, for our marketing purpose, we would like to list a series models (6034-100-0000, 6034-100-0001, 6034-200-0000, 6034-200-0001, 6034-300-0000, 6034-300-0001, 6034-400-0000, 6034-400-0001, 6034-500-0000, 6034-500-0001, 6034-500-0001, 6034-800-0001, 6034-800-0001, 6034-800-0001, 6034-801-0000, 6034-801-0001, 6034-802-0001, 6034-803-0001, 6034-803-0001, 6034-804-0000, 6034-804-0001, 6034-805-

We confirm that all information above is true, and we'll be responsible for all the consequences. Please contact me if you have any question.

Angela P. Jurado

Sincerely,

Signature

Angela Patricia Jurado Arenales

Business Development Manager

***** END OF REPORT *****

FCC Part 15.247 Page 60 of 60