

(* Rotation function around y-axis using GeometricTransformation *)

(* Graphics function to display the rotated object *)

(* Manipulate to animate the rotation $0-2\pi$ *)

Manipulate[displayRotated1[a], {a, 0, 2*Pi}]

(*

Problem 1.2: Create a dynamic scene with:

- a) A table of 8 arrows pointing outward from origin (with random color)
- b) A torus at the origin
- c) Animate to rotate the arrows around the x-axis while keeping the torus static (don't move)

*)

(* Create table *)

(* Create 8 arrows pointing outward from origin *)

(* Rotation function for just the arrows *)

(* Manipulate to animate the rotation *)

Manipulate[displayScene1[a], {a, 0, 2 Pi}]

(*
Problem 1.3: Load an external STL file (CubCr.stl)
 a) Import the STL file and display it in 3D space
 b) Create a function to rotate the model around an anchor point {5, 0, 0}
 c) Implement a geometric transformation that combines translation and rotation
 d) Visualize the rotation with a yellow sphere (radius = 1) showing the anchor point
 e) Create an animation that rotates the model around the x-axis
*)

SetDirectory["

"]

(* Import the STL file as polygon objects *)

(* Check *)

Paround1 = {5, 0, 0};

RR1 = $\{0, 0, 5.5\}$;

(* Create a function that applies geometric transformations to rotate the object *)

(* Create a visualization function that displays both rotated object *)

(* Manipulate *)

${\tt Manipulate[displayAnchoredRotation[a], \{a, 0, 2*Pi\}]}$

