

سلطنة عمان وزارة التربية والتعليم المديرية العامة للتربية والتعليم بمحافظة الداخلية

الوحدة الثامنة :فيزياء الكم

أ.منى الحاتمية .

1-الشكل يوضح العلاقة بين طاقة الحركة القصوى للالكترونات الضوئية المتحررة من سطح فلز الصوديوم وتردد الضوء الساقط على الفلز:

$f/10^{14} \text{ Hz}$
أ - لماذا لم يحدث انبعاث للالكترونات عندما كان تردد الضوء اقل من $10^{14} m{Hz}$ ؟
${ m eV}$ احسب دالة الشغل للفلز بوحدة ال ${ m eV}$
•••••••••••••••••••••••••••••••••••••••
- كيف يمكن استخدام المنحنى لايجاد قيمة ثابت بلانك
ـ ارسم في نفس المنحنى خطا يمثل طاقة الحركة القصوى لالكترونات ضوئية تنبعث من فلز دالة الشغل له أكبر من دالة شغل لفلز الصوديوم
ـ احسب طول موجة العتبة لفلز دالة الشغل له تساوي 6.2eV
3- يسقط ضوء طوله الموجي 215mm على فلز خلية كهروضوئية دالة الشغل له تساوي 2.26eV
${ m eV}$ احسب طاقة الفوتون الساقط بال ${ m eV}$
ب-احسب طاقة الحركة القصوى للالكترونات المنبعثة بوحدة ال eV

ال يوضح العلاقة بين طاقة الحركة القصوى للالكترونات الضونية المتحررة من سطح فلز وتردد الضوء العربي العلاقة بين طاقة الحركة القصوى للالكترونات الضونية المتحررة من سطح فلز وتردد الضوء العربي ال	19J .0 .0 .0 .0 .0 .0 .0 .0 .12.0	كل يوضح العلاقة بين طاقة الحركة القصوى للالكترونات الضوئية المتحررة من سطح فلز وتردد الضوء السالات المتحررة من سطح فلز وتردد المتحررة المتحررة من سطح فلز وتردد المتحررة ال	•••••	•••••	•••••	••••	••••	•••	••••	•••	••••	••••	•••	•••	••••	••••	••••	•••	••••	•••	••••	•••	••••	•••	•••	•••	•••	•••	••••	•••	•••	•••	•••	••••	•••	••••	•••	••••	••••	••••
2.0	19J .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	2.0										لاز	الة	ح	بط	" (من 	ت	ناد 	زو	لکت	וצו	ث ا	بعد	ی ا	<u>, 1</u> 1	.ي	<u>ؤ</u> د	لا بـ	به	عتب	. 11	ردد	، تر ۔۔۔۔	من 	ل	Z.	ء ا	ئىو	الد
2.0	19J .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -	•••••	•••••	•••••	••••	••••	••••	••••	•••	••••	••••	•••	•••	••••	•••	••••	•••	••••	•••	••••	•••	••••	•••	•••	•••	•••	•••	••••	•••	•••	•••	•••	••••	•••	•••	•••	••••	••••	••••
2.0	19J .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -	äl ti	ti .			tå .	- t-	••••	•••	••••	•••	•••	••• • †1	 ت		••••		٠	•••		•••		•••	•••	•••	 . tı	 : e	••••	•••	 731	····	•••		٠		••••			,
2.0 2.0 2.0 2.0 4.0 5/10 ¹⁴ Hz	.0 2.0 440 60 80 10.0 12.0 ### ### ### ### ### ### ### ### ### #	2.0	وء اساد	د (نص	برد	ر و) كتر	عح		ں	٥٥,	نرر		الم	۳.	ָרָי	صو	1 1)	–	وب	ىرو	رحد	ىد	ی	بو.	ىص	1 1)	~_	حر	- 1)	~=	_	ب	۔ بن	رف	_ح	י כ	عت	يود	یں
2.0 2.0 2.0 2.0 4.0 5/10 ¹⁴ Hz	.0 2.0 440 60 80 10.0 12.0 ### ### ### ### ### ### ### ### ### #	2.0																																						
2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 #/10 ¹⁴ Hz	20 4.0 6.0 8.0 10.0 12.0 #/10 ¹⁴ Hz	2.0	$7/10^{-19}$ J					П		Ŧ		П	П	H	П	Ŧ	H			П	Ŧ		Ŧ			Ŧ		T		П	\blacksquare	Ŧ	П		Ŧ	П	Ŧ	Ŧ	J	7
2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 #/10 ¹⁴ Hz	20 4.0 6.0 8.0 10.0 12.0 #/10 ¹⁴ Hz	2.0	4.0-							#						+					#		+															1	1	\sharp
0.0 2.0 4.0 6.0 8.0 10.0 12.0 #/10 ¹⁴ Hz	2.0 4.0 6.0 8.0 10.0 12.0 #/10 ¹⁴ Hz	0.0 - 2.0 4.0 6.0 8.0 10.0 12.0 -2.0						Ħ		#			H			#	Ħ				+		+									1			1	1	+		#	\sharp
0.0 2.0 4.0 6.0 8.0 10.0 12.0 #/10 ¹⁴ Hz	2.0 4.0 6.0 8.0 10.0 12.0 \$\forall 10^{14} \text{Hz}\$	0.0 - 2.0 410 6.0 8.0 10.0 12.0 -2.0 - 10.0 12.0											H			+																\downarrow	4	1			\pm	\pm	\pm	\pm
0.0 2.0 4.0 6.0 8.0 10.0 12.0 #/10 ¹⁴ Hz	2.0 4.0 6.0 8.0 10.0 12.0 \$\forall 10^{14} \text{Hz}\$	0.0 - 2.0 410 6.0 8.0 10.0 12.0 -2.0 - 10.0 12.0			+	+	+	H		+		+	H	H	\parallel	+	H			H	+		+		+	#	\parallel	+		7	1	+		+	+	\forall	\pm	+	#	#
20 40 60 80 100 120 #10 ¹⁴ Hz	20 410 610 810 10.0 12.0 ### ### ############################	-2.0 - 4.0 6.0 8.0 10.0 12.0 #/10 ¹⁴ Hz	2.0-				H	H		Ŧ		H	H	H		+					Ŧ		Ŧ		\blacksquare			1			\mp	7		\blacksquare	Ŧ	H	Ŧ	Ŧ	Ħ	\mp
20 40 60 80 100 120 #10 ¹⁴ Hz	20 410 610 810 10.0 12.0 #/10 ¹⁴ Hz	-2.0 - 4.0 6.0 8.0 10.0 12.0 -2.0					\blacksquare			+						+					+				/	1					\mp	1					\mp		#	\mp
20 40 60 80 100 120 #10 ¹⁴ Hz	20 410 610 810 10.0 12.0 ### ### ############################	-2.0 - 4.0 6.0 8.0 10.0 12.0 #/10 ¹⁴ Hz					\Box	Ħ		#			Ħ			#						7	1								\pm	#					Ŧ		#	\pm
20 40 60 80 100 120 #10 ¹⁴ Hz	20 410 610 810 10.0 12.0 #/10 ¹⁴ Hz	-2.0 - 4.0 6.0 8.0 10.0 12.0 #/10 ¹⁴ Hz	0.0-													\pm				ł	1																\pm		\pm	\pm
-2.0			0.0				-	20		+		H	4	0		Ŧ	H		6	0			+			81	0	+			_	0	0			H	$\frac{1}{1}$	1	0	\blacksquare
-2.0 -										+						+					Ŧ		Ŧ								\perp						Ŧ	1	\blacksquare	Ħ
-2.0							H			Ŧ		H	H	H		Ŧ					Ŧ		Ŧ			\blacksquare		Ŧ			\mp	1			J	f /	0	14	Hz	#
	.0-	-4.0	-2.0				H	H		+						+					+		+								\pm	+					#		#	\pm
	.0-	-4.0						Ħ		#			Ħ			#					\pm										\pm	#					\pm	\pm	\pm	\sharp
	.0-	-4.0				\forall	+	Ħ		+		H	H			+	H			H	+		+			#		+			+	+				\parallel	\pm	\dagger	#	\pm
	.07	_4.0	4.0			\parallel	+			+		H	H	H		+	H				+		+		+	+		+			+	+			+	H	\mp		#	+
4.0			-4.0 -					H		\mp			H	Ħ		\mp					Ŧ		Ŧ		\blacksquare	\mp					\mp	1		\blacksquare			Ŧ	\blacksquare	\prod	\blacksquare
										1																						1					Ξ		<u> </u>	\pm
	and the second of the second o																									•	زنك	بلا	بت	تار	مه	ڡي	ب	سا	لد	ی	حد	لمد	.م ا	بخد
خدم المنحنى لحساب قيمة ثابت بلانك	تخدم المنحنى لحساب قيمة ثابت بلانك	تخدم المنحنى لحساب قيمة ثابت بلانك	••••	•••••	••••	••••	••••	•••	••••	•••	•••	•••	•••	•••	•••	•••	•••	•••	••••	•••	•••	•••	••••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	••••	•••	•••	•••	••••	••••	•••
خدم المنحنى لحساب قيمة ثابت بلانك	تخدم المنحنى لحساب قيمة ثابت بلانك	تخدم المنحنى لحساب قيمة ثابت بلانك	•••••	•••••	••••	••••	••••	•••	••••	•••	•••	•••	•••	•••	•••	•••	•••	•••	••••	•••	•••	•••	••••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	••••	•••	•••	•••	••••	••••	•••
خدم المنحنى لحساب قيمة ثابت بلانك	تخدم المنحنى لحساب قيمة ثابت بلانك	تخدم المنحنى لحساب قيمة ثابت بلانك	•••••	•••••	••••	••••	••••	•••	••••	•••	•••	•••	•••	•••	•••	•••	•••	•••	••••	•••	•••	•••	••••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	••••	•••	•••	•••	••••	••••	•••
خدم المنحنى لحساب قيمة ثابت بلانك	تخدم المنحنى لحساب قيمة ثابت بلانك	تخدم المنحنى لحساب قيمة ثابت بلانك	•••••	•••••	••••	••••	••••	•••	••••	•••	•••	•••	•••	•••	•••	•••	•••	•••	••••	•••	•••	•••	••••	•••	***	•••	•••	••• • †ı	لة		1	····	.1	••••	•••	•••	•••	••••	••••	•

تم تسليط ضوء من مصدر Λ على فلز وعلى نفس الفلز ولم تنبعث الكترونات . الاس على نفس الفلز ولم تنبعث الكترونات .	ث الكترونات من سطح الفلز ثم تم تسليط ضوء آخر من مصدر { يح هو :
) الضوء المنبعث من المصدر B أقل شدة مرا الضوء المنبعث من المصدر B له سعة أكبر الضوء المنبعث من المصدر B له تردد أقل المصدر B قريب جدا من الفلز	
	ضوء المسلط على الفلز الى : دد الالكترونات المنبعثة ردد الازم لتحرير الالكترونات
	3 على سطح فلز فتنبعث الكترونات من سطح الفلز بطاقة حركة
قصوى تساوي 1.7×10 ⁻¹⁸ J أـ فسر لماذا تملك الالكترونات المتحررة طا	ىم ي
••••••	
ب- احسب دالة الشغل للفلز بوحدة ال eV	
••••••	
•••••••••••••••••••••••••••••••••••••••	
ج- احسب تردد العتبة للفلز	
ج- احسب تردد العتبة للفاز	
ج- احسب تردد العتبة للفلز	
	لضعف على الالكترونات المتحررة مع بقاء تردد الضوء ثابت
ـــ اشرح تأثير زيادة شدة الإضاءة للضوء ا	لضعف على الالكترونات المتحررة مع بقاء تردد الضوء ثابت
د - اشرح تأثير زيادة شدة الإضاءة للضوء الصوء المحدول التالي يمثل قيم دالة الشغل لمجد	لضعف على الالكترونات المتحررة مع بقاء تردد الضوء ثابت
د- اشرح تأثير زيادة شدة الإضاءة للضوء ا	لضعف على الالكترونات المتحررة مع بقاء تردد الضوء ثابت
د- اشرح تأثير زيادة شدة الإضاءة للضوء ا 9- الجدول التالي يمثل قيم دالة الشغل لمجه الفلز الذهب الزنك	لضعف على الالكترونات المتحررة مع بقاء تردد الضوء ثابت المتحررة مع بقاء تردد المتحرونات المتحررة مع بقاء تردد المتحرونات المتحررة مع بقاء تردد المتحرونات
9- الجدول التالي يمثل قيم دالة الشغل لمجه الفلز الذهب الزنك الكالسيوم	لضعف على الالكترونات المتحررة مع بقاء تردد الضوء ثابت المزات الله الشغل (10 ⁻¹⁹ J) دالة الشغل (7.8 6.9 6.9 4.3
د- اشرح تأثير زيادة شدة الإضاءة للضوء ا 9- الجدول التالي يمثل قيم دالة الشغل لمجه الفلز الذهب الزنك	الضعف على الالكترونات المتحررة مع بقاء تردد الضوء ثابت المرادة مع بقاء تردد الضوء ثابت المرادة مع بقاء تردد الضوء ثابت المرادة الشغل (10-10×) ا دالة الشغل (10-10×) 7.8
د- اشرح تأثير زيادة شدة الإضاءة للضوء ا 9- الجدول التالي يمثل قيم دالة الشغل لمجه الفلز الذهب الزنك الكالسيوم	اضعف على الالكترونات المتحررة مع بقاء تردد الضوء ثابت فلزات دالة الشغل (10 ⁻¹⁹ J) 7.8 6.9 4.3 3.2
د- اشرح تأثير زيادة شدة الإضاءة للضوء ا 9- الجدول التالي يمثل قيم دالة الشغل لمجه الفلز الذهب الزنك الكالسيوم البوتاسيوم	اضعف على الالكترونات المتحررة مع بقاء تردد الضوء ثابت فلزات دالة الشغل (10 ⁻¹⁹ J) 7.8 6.9 4.3 3.2

ج- اذا اسقط ضوء تردده 10¹⁴Hz على فلز الكالسيوم احسب:

طاقة الفوتون الساقط
طاقة الحركة القصوى للالكترونات المنبعثة

سرعة الالكترونات المتحررة من سطح الفلز

10- الشكل التالي يوضح العلاقة بين طاقة الحركة القصوى للالكترونات المتحررة وتردد الضوء الساقط

أي البدائل التالية صحيحة:

الجزء المقطوع من محور	الجزء المقطوع من محور	
الصادات السالب	السينات الموجب	
دالة الشغل	ثابت بلانك	
ثابت بلانك	تردد العتبة	
دالة الشغل	تردد العتبة	
تردد العتبة	دالة الشغل	

11 ـ يوضح المنحنى التالي العلاقة بين طاقة الحركة العظمى للالكترونات المنبعثة من سطح فلز البوتاسيوم والتردد

أي الاشكال التالية توضح المقارنة الصحيحة عند استبدال البوتاسيوم بالفضة والذي دالة الشغل له تساوي 4.73eV:

 kE_{max} على سطح معدن دالة الشغل له ϕ وابعثت الكترونات بطاقة حركة عظمى kE_{max} فاذا تم مضاعفة تردد الضوء الساقط فأى البدائل التالية صحيحة :

kE_{max} طاقة الحركة العظمى للالكترونات	دالة الشغل ф	
تزید	ילעג	
تزید	ثابتة	
ثابتة	تزيد	
ثابتة	ثابتة	

الشكل على أسطح المعادن الموضحة في الشكل 13^{14} Hz على أسطح المعادن الموضحة في الشكل

المعدن الذي لن تنبعث من سطحه الكترونات هو:

 $\mathbf{D} \quad \Box \qquad \qquad \mathbf{C} \ \Box \qquad \qquad \mathbf{B} \ \Box \qquad \quad \mathbf{A} \ \Box$

20- الشكل يوضح العلاقة بين طاقة الحركة العظمى للالكترونات المنبعثة وتردد الضوء الساقط

لتالية لا تتغير:	. على سطح فلز . أي الكميات اا	21- اذا زاد تردد الفوتون الساقط
ث	🗆 سرعة الالكترون المنبع	🗖 طاقة الفوتون الساقط
	 طاقة الالكترون المنبعث 	\Box سرعة الفوتون الساقط
رونات ومقلوب الطول الموجي للضوء	ين طاقة الحركة العظمى للالكتر	22-الشكل التالي يوضح العلاقة ب الساقط على سطح فلز
		3.0 3.5 4.0 1/ ₂ /10 ⁶ m ⁻¹ 1 استخدم الشكل لايجاد قيمة أكبر الفلز ؟
	ابت بلانك	ب- من خلال الشكل احسب قيمة ث
م معدن وقدرة الاشعاع تساوي ي ي 2.1×10 ⁻¹⁹ J .	دده 10 ¹⁴ Hz على سطح وئية بطاقة حركة عظمى تساو على سطح الفلز كل ثانية	23-يسقط ضوء فوق بنفسجي تر 23-يسقط ضوء فوق بنفسجي تر 9.45mW أ- احسب عدد الفوتونات الساقطة ب- احسب دالة الشغل للمعدن

مستوى طاقته 13.6eV- في ذرة	~	ئار يقع في مستوى طا ثا فوتون واحد طاقة ه	
13.06eV □	12.09eV □	0.54eV □	0.31eV □
	الطاقة لذرة الزئبق	تالي يوضح مستويات	25- الشكل الن
	0	تأين ــــــــــــــــــــــــــــــــــــ	
	-1.6		
Energy/eV	-3.7 		
كترون من الذرة) لالكترون في مستوى	-	-1	الطاقة 0.4eV
في المستوى 1.6eV- لكي ينتقل الى	لطرق انتقال الكترون مثار	الشكل جميع احتمالات .10-	ب- ارسم على المستوى 4eV
طوله الموجي 600nm	پ يؤدي الى انبعاث فوتون	ال في درة الزئبق الدي	ج- ما هو الانتق
••••••	•••••		••••••••••

	26- الشكل التالي يوضح مستويات الطاقة لذرة الهيدروجين أ- لماذا يسمى مستوى الطاقة \13.6eV بالحالة الأرضية
	ب_حدد الانتقال الذي يؤدي الى انبعاث فوتون طوله الموجي 660nm
–13.6 eV ببعث الهيدروجين طيف الانبعاث	27- انبوبة تفريغ تحتوي على الهيدروجين تحت ضغط عالي يا للهيدروجين كما في الشكل التالي
410 430 486	656
0 0.54 eV 0.85 eV	wavelength λ / nm واستخدم هذا الطيف لمعرفة بعض مستويات الطاقة للهيدروجين كما في الشكل التالي
- 0.65 eV - 1.51 eV - 3.40 eV	أ-احسب طاقة الفوتون ذو أقل تردد بوحدة eV في طيف الانبعاث الخطي للهيدروجين
	ب-ماذا يسمى مستوى الطاقة الذي طاقته 13.6eV-
	ج_فسر الإشارة السالبة لطاقة مستويات الطاقة
- 13.6 eV	

لالكترون من مستوى طاقة ـ		الى مستوى طاقة 13.6E _v	1.51eV
		ل التالي يوضح مستويات ا	••••••
	E ₂	0.85 1.51	to scale
منطقة الضوء المرئي . ما هو	E_0 بستوى E_1 يبعث فوتون يقع في في في في في في في في في منطقة الفوق البنفسجية :		
	. عي المولى المسابي . E المي E المي E المي الم	.ي يو-ي عن البعد عودور 12 الى E3	_
	\mathbf{E}_0 من \mathbf{E}_1 الى \Box	E ₁ الى E ₂	□ من 2
طول موجة دي برولي لجسيم ألفا	λ موجة دي برولي له λ . ما هو	ك بروتون بسرعة $_{f v}$ وطوا $_{f w}$	
$\frac{\lambda}{4}$	4λ 🖂	2λ 🗆	λ 🗆
7	طاقة في ذرة الهيدروجين	، التالي يوضح مستويات ال	30-الشكل
		0 eV	
		-3.4 eV	
	ground state	13.6 eV	
-3.4eV	جين فأثيرت الذرة الى المستوى T	نرون حر مع ذرة الهيدرو.	تصادم الكن
الحالة الأرضية	بعث بعد عودة الذرة الى مستوى	طول الموجي للفوتون المن	احسب الد
•••••	•••••	•••••	

	. يتم تسليط اشعاع فوف بنفسجي على لوح مغنيسيو .ة مساحة مقدارها ²⁰ m ²⁻ 3×3 على سطح اللوح .
	ب الزمن الذي تستغرقه ذرة المغنيسيوم لامتصاص
<i>i</i>	الشكل التالي يوضح مستويات الطاقة لذرة التنغستن
	Ionisation
-1.8 -3.0	
-11.4	
-69.6 ——	
Energy / keV	
	ب الطول الموجي للفوتون المنبعث عند سقوط
	ترون من المستوى 1.8keV- الى المستوى
	-69.6k
••••••	••••••
••••••	•••••

33-الشكل التالي يوضح جهاز كلومبميتر (جهاز قياس الشحنة) يستخدم لدراسة ظاهرة التأثير الكهروضوئي:

يشحن لوح الزنك في البداية بشحنة سالبة وعند تسليط ضوء فوق بنفسجي على لوح الزنك المشحون بشحنة سالبة لوحظ ان قراءة جهز الكلومبميتر تقل الى ان تصل الى الصفر بينما لم يتم ملاحظة أي تغيير على القراءة عند تسليط ضوء أحمر

لماذا تعتبر التجربة اثباتا للطبيعة الجسيمية للضوع
ب-ماذا سيحدث لقراءة جهاز قياس الشحنة ولوح الزنك المشحون بالسالب في الحالات التالية:
 عند تسليط ضوء أحمر عالي الشدة
 عند تسلیط ضوء فوق بنفسجي ذو شدة أعلى
ج- دالة الشغل للزنك 3.6eV . احسب طاقة الحركة القصوى للالكترونات الضوئية عندما يسقط ضو فوق بنفسجي طوله الموجي 250nm على سطح فلز الزنك

34- الشكل التالي يوضح مستويات الطاقة لذرة الليثيوم	4
Energy / eV	
-1.85	
-3.84	
-4.53	
-5.02	
ـ ارسم على الشكل جميع الاحتمالات الممكنة للانتقالات التي يمكن ان تحدث عند انتقال الالكترون من المستوى 3.84eV الى المستوى 5.02eV .	11
ب-اذا سلط فوتون طاقته 3.17eV على بخار الليثيوم ارسم على الشكل الانتقال الذي يمكن حدوثه إرمز له بالرمز T	Ļ
35- الشكل التالي يوضح مستويات الطاقة لذرة الهيدروجين	5
-0.85 eV	
$-1.5 \mathrm{eV}$ ارسم الانتقال الذي يؤدي الى انبعاث فوتون له أكبر طول $-1.5 \mathrm{eV}$ حوجي وارمز له بالرمز $\mathbf R$	
−3.4 eV	
ـ ارسم الانتقال الذي يحدث عند امتصاص فوتون له أقل طول وجي	
-13.6 eV	

36- الشكل التالي يوضح أدوات لدراسة ظاهرة التأثير الكهروضوئى

عند تسليط ضوء فوق بنفسجي على لوح الزنك المشحون بالسالب لوحظ ان انفراج ورقتين الكشاف قل وترجع الى الوضع الرأسي وعند تسليط ضوء أحمر لا يتأثر انفراج ورقتي الكشاف

أ-فسر كيف يفسر النموذج الجسيمي للضوء ملاحظات التجربة

ب-ما الملاحظة التي يمكن ملاحظتها اذا تم ابعاد مصدر الضوء عن اللوح المشحون وتسليط ضوء فوق

بنفسجي على اللوح

ج-اذا كان لوح الزنك مشحون بشحنة موجبة ما الذي يمكن ملاحظته على اللوح المشحون وعلى الكشاف
الكهرباني عند تسليط ضوء فوق بنفسجي على اللوح

الكهرباني عند تسليط ضوء فوق بنفسجي على اللوح

محادث ان الجسيم يتحرك بسرعة تساوي 11% من سرعة الضوء

		و و د از	a a a a a a a a a a a a a a a a a a a	ati at 20
	kg m²s □ kg m		عدات التالية هي و ح □ N m s	ا الود اي الود N m ⁻¹ s ⁻¹
		- ميمكن ان تحدث للال		
	•		-	
	n=3			-
	n=2	1	+	-
	ground state $n = 1$	A B	$\begin{array}{c c} & \downarrow & \downarrow \\ \hline C & D & \end{array}$	-
	له أعلى طول موجي :	تبعث الذرة اشعاع ل	ان ان يحدث عندما	أي انتقال يمك
D 🗆	С□		$_{ m B}\square$	$_{\mathbf{A}}$ \square
	عينة	تويات الطاقة لذرة م	المقابل يوضح مس	40 الشكل
	Energy	/ 10 ⁻¹⁹ J		
	Level 4	0	Not to	scale
	Level 3 Level 2			
			1	
		-6.4 Gro		
	، لها نفس التردد .	لهما انبعاث فوتونات	ن مختلفین ینتج عا	ارسم انتقالي

5 4 3 2			41- الشكل المقابل يمثل مستويات اذا تم اسقاط اشعة كهرومغناطيسية يمتص فيها فوتون ذو أقل تردد: □ من 1 الى 5 □ من 4 الى 5
	V A ∧ B	طاقة لذرة الزنبق VC AD	42 - الشكل التالي يمثل مستويات الد - 0 1.6 5.5 Energy / eV
D 🗆	:	ن له افصر طول موجي هو C □	الانتقال الذي يؤدي الى انبعاث فوتور ${f A} \ \Box$
			-13.6eV

الجدول التالي يوضح الاطوال الموجية لاشعاع الطيف المرئي.

violet	blue	green	yellow	orange	red
380–450 nm	450–495 nm	495–570 nm	570–590 nm	590–620 nm	620–750 nm

الشكل السابق ؟	تقال الموضح في	متصاصها في الان	الجدول يتسبب ا	ت الموضحة ف <i>ي</i>	أي الاشعاعا

44 يستخدم الانبوب المفرغ التالي لدراسة طبيعة الالكترون

	وعلى الشاشة الفسفورية	نتيجة تأثير الالكترونات	قات لامعة متحدة المركز	تظهر حا
ن طبيعة الالكترونات	وما الذي يثبته تكون النمط ع	ن هذا النمط من الحلقات	بشكل مختصر سبب تكور	أ-اشرح
•••••	•••••	•••••	•••••	•••••
•••••	••••••••••••			
••••••	••••••		•••••	••••••
	ق الجهد بين المهبط والمصعد			
••••••	••••••			

45-العلاقة بين كمية التحرك والطول الموجي للفوتون يمثلها المنحنى

46-المنحنى التالي يمثل العلاقة بين طاقة الحركة العظمى للالكترونات الضوئية المنبعثة من سطح فلز ما وتردد الضوء الساقط

أي منحنى يمثل العلاقة بين طاقة الحركة العظمى للالكترونات والتردد لفلز له دالة شغل أكبر من دالة الشغل للفلز السابق:

الفوتون فتكون سرعته	وطاقته نفس طاقة	يم كتاته 0.03kg	. 1×10 ¹⁸ eV	طاقته الحركية	4 <mark>7</mark> - فوتون :
30 m s ⁻¹ □	1	0 m s ⁻¹ □	3 m s ⁻¹	— 1:	m s ⁻¹ □
		اقة لذرة ما	بعة مستويات للط	التالي يوضح أر	48- الشكل
drawn t	o scale			er	nergy
	ground st	ate			
			لاحظته من هذه الم	<i>ـ خطي</i> يمكن مـ	أي نمط طيف
Α					
		ine	creasing wavele	ength ——	→
В					
		inc	creasing wavele	ength ——	<u>→</u>
c .					
		ind	creasing wavele	ength —	\longrightarrow
D .					
		ine	creasing wavele	ength ——	\longrightarrow

ة دي برولي اذا	ولي له χ . ما هو طول موجاً	لول موجة دي برو		49 جسيم لديه طاقة أصبح للجسيم طاقة ح
2 λ □	$\frac{\lambda}{2}$	$rac{\pmb{\lambda}}{\sqrt{f 2}}$ [$\sqrt{2} \lambda \square$
	ي وسرعة الالكترون:	ل موجة د <i>ي</i> بروا	يوضح العلاقة بين طو	50- الجدول التالي
	v	/ 10 ⁷ m s ⁻¹	λ / 10 ⁻¹¹ m	
		1.5	4.9	
		2.5	2.9	
		3.5	2.1	
•••••••••••••••••••••••••••••••••••••••	ن التي يمكن استنتاجها من	مة ثابت بلانك	ات الجدول الستنتاج قيد	في التجربة ب- استخدم بيانا
بيه:	لاك الالكترون خصائص موج و مناسب عليه		ارات التالية يمكن ان تك ات من سطح الفلز عند	
	* *		ت في التيار الكهربائي	
			في انبوبة التفريغ	🗆 حيود الالكترون
			ين بالبوزيترون واطلاق	,
لساقط الى	بة. عند زيادة شدة الضوء ا		ء على سطح فلز بتردد تردده أي الملاحظات ال	
يثة لكل		ثانب		المنبعثة
	ں ثابت ں ثابت		ت ا	تبقى ثاب
	ىاع ف ماعف	يتض		تبقى ثاب

	ويات الطاقة لذرة ما	<mark>53</mark> -الشكل يوضح مستو
	E_4 E_3 E_2	
energy	E ₁	
	ground state	
يتون ضوء أخضر . أي الانتقالات التالية	ى المستوى \mathbf{E}_2 يؤدي الى اطلاق فو وء أحمر :	الانتقال من المستوى ${f E}_4$ ال ${f E}_4$ تؤدي الى اطلاق فوتون ض
بتون ضوء أخضر . أي الانتقالات التالية	وء أحمر :	الانتقال من المستوى \mathbf{E}_4 الانتقال من المستوى \mathbf{E}_1 الى \mathbf{E}_1 من \mathbf{E}_2 الى \mathbf{E}_2 من \mathbf{E}_3 الى \mathbf{E}_2 من \mathbf{E}_3 الى \mathbf{E}_2
بتون ضوء أخضر . أي الانتقالات التالية	\mathbf{E}_1 وء أحمر $\qquad oxdot \mathbf{E}_3$ الى $\qquad oxdot$	تؤدي الى اطلاق فوتون ض $oxdot{ extbf{E}}_1$ من $oxdot{ extbf{E}}_2$ الى
بتون ضوء أخضر . أي الانتقالات التالية	\mathbf{E}_1 وء أحمر $\qquad oxdot \mathbf{E}_3$ الى $\qquad oxdot$	تؤدي الى اطلاق فوتون ض $oxdot{oxdot}$ من $oxdot{oxdot}_2$ الى $oxdot$
بتون ضوء أخضر . أي الانتقالات التالية	\mathbf{E}_1 وء أحمر $\qquad oxdot \mathbf{E}_3$ الى $\qquad oxdot$	تؤدي الى اطلاق فوتون ض $oxdot{oxdot}$ من $oxdot{oxdot}_2$ الى $oxdot$

-النجاح لا يُعطى، بليُكتسَب.

MJCODEZ.TUMBLR.COM