Contents

<u>About</u>	1
Chapter 1: Getting started with algorithms	2
Section 1.1: A sample algorithmic problem	2
Section 1.2: Getting Started with Simple Fizz Buzz Algorithm in Swift	2
Chapter 2: Algorithm Complexity	5
Section 2.1: Big-Theta notation	5
Section 2.2: Comparison of the asymptotic notations	6
Section 2.3: Big-Omega Notation	6
<u>Chapter 3: Big-O Notation</u>	8
Section 3.1: A Simple Loop	9
Section 3.2: A Nested Loop	9
Section 3.3: O(log n) types of Algorithms	10
Section 3.4: An O(log n) example	12
Chapter 4: Trees	14
Section 4.1: Typical anary tree representation	14
Section 4.2: Introduction	14
Section 4.3: To check if two Binary trees are same or not	15
<u>Chapter 5: Binary Search Trees</u>	18
Section 5.1: Binary Search Tree - Insertion (Python)	18
Section 5.2: Binary Search Tree - Deletion(C++)	20
Section 5.3: Lowest common ancestor in a BST	21
Section 5.4: Binary Search Tree - Python	22
Chapter 6: Check if a tree is BST or not	24
Section 6.1: Algorithm to check if a given binary tree is BST	24
Section 6.2: If a given input tree follows Binary search tree property or not	25
<u>Chapter 7: Binary Tree traversals</u>	26
Section 7.1: Level Order traversal - Implementation	26
Section 7.2: Pre-order, Inorder and Post Order traversal of a Binary Tree	27
Chapter 8: Lowest common ancestor of a Binary Tree	29
Section 8.1: Finding lowest common ancestor	
Chapter 9: Graph	30
Section 9.1: Storing Graphs (Adjacency Matrix)	30
Section 9.2: Introduction To Graph Theory	33
Section 9.3: Storing Graphs (Adjacency List)	37
Section 9.4: Topological Sort	39
Section 9.5: Detecting a cycle in a directed graph using Depth First Traversal	40
Section 9.6: Thorup's algorithm	41
Chapter 10: Graph Traversals	43
Section 10.1: Depth First Search traversal function	43
Chapter 11: Dijkstra's Algorithm	44
Section 11.1: Dijkstra's Shortest Path Algorithm	44
Chapter 12: A* Pathfinding	49
Section 12.1: Introduction to A*	
Section 12.2: A* Pathfinding through a maze with no obstacles	49
Section 12.3: Solving 8-puzzle problem using A* algorithm	

Chapter 13: A* Pathfinding Algorithm	59
Section 13.1: Simple Example of A* Pathfinding: A maze with no obstacles	59
Chapter 14: Dynamic Programming	66
Section 14.1: Edit Distance	66
Section 14.2: Weighted Job Scheduling Algorithm	66
Section 14.3: Longest Common Subsequence	70
Section 14.4: Fibonacci Number	71
Section 14.5: Longest Common Substring	72
Chapter 15: Applications of Dynamic Programming	73
Section 15.1: Fibonacci Numbers	73
Chapter 16: Kruskal's Algorithm	76
Section 16.1: Optimal, disjoint-set based implementation	
Section 16.2: Simple, more detailed implementation	77
Section 16.3: Simple, disjoint-set based implementation	77
Section 16.4: Simple, high level implementation	77
Chapter 17: Greedy Algorithms	79
Section 17.1: Huffman Coding	
Section 17.2: Activity Selection Problem	
Section 17.3: Change-making problem	84
Chapter 18: Applications of Greedy technique	86
Section 18.1: Offline Caching	
Section 18.2: Ticket automat	
Section 18.3: Interval Scheduling	
Section 18.4: Minimizing Lateness	
Chapter 19: Prim's Algorithm	105
Section 19.1: Introduction To Prim's Algorithm	
Chapter 20: Bellman-Ford Algorithm	
Section 20.1: Single Source Shortest Path Algorithm (Given there is a negative cycle in a graph)	
Section 20.2: Detecting Negative Cycle in a Graph	
Section 20.3: Why do we need to relax all the edges at most (V-1) times	
Chapter 21: Line Algorithm	
Section 21.1: Bresenham Line Drawing Algorithm	
Chapter 22: Floyd-Warshall Algorithm	
Section 22.1: All Pair Shortest Path Algorithm	
Chapter 23: Catalan Number Algorithm	
Section 23.1: Catalan Number Algorithm Basic Information	
<u>Chapter 24: Multithreaded Algorithms</u>	
Section 24.1: Square matrix multiplication multithread	
Section 24.2: Multiplication matrix vector multithread	
Section 24.3: merge-sort multithread	
Chapter 25: Knuth Morris Pratt (KMP) Algorithm	
Section 25.1: KMP-Example	
Chapter 26: Edit Distance Dynamic Algorithm	133
Section 26.1: Minimum Edits required to convert string 1 to string 2	133
<u>Chapter 27: Online algorithms</u>	136
Section 27.1: Paging (Online Caching)	137
Chapter 28: Sorting	143
Section 28.1: Stability in Sorting	143

<u>Chapter 29: Bubble Sort</u>	144
Section 29.1: Bubble Sort	
Section 29.2: Implementation in C & C++	144
Section 29.3: Implementation in C#	
Section 29.4: Python Implementation	
Section 29.5: Implementation in Java	
Section 29.6: Implementation in Javascript	147
Chapter 30: Merge Sort	149
Section 30.1: Merge Sort Basics	149
Section 30.2: Merge Sort Implementation in Go	150
Section 30.3: Merge Sort Implementation in C & C#	
Section 30.4: Merge Sort Implementation in Java	152
Section 30.5: Merge Sort Implementation in Python	153
Section 30.6: Bottoms-up Java Implementation	154
<u>Chapter 31: Insertion Sort</u>	156
Section 31.1: Haskell Implementation	156
Chapter 32: Bucket Sort	157
Section 32.1: C# Implementation	157
Chapter 33: Quicksort	158
Section 33.1: Quicksort Basics	158
Section 33.2: Quicksort in Python	160
Section 33.3: Lomuto partition java implementation	160
Chapter 34: Counting Sort	162
Section 34.1: Counting Sort Basic Information	
Section 34.2: Psuedocode Implementation	
Chapter 35: Heap Sort	164
Section 35.1: C# Implementation	
Section 35.2: Heap Sort Basic Information	
Chapter 36: Cycle Sort	
Section 36.1: Pseudocode Implementation	
Chapter 37: Odd-Even Sort	
Section 37.1: Odd-Even Sort Basic Information	
Chapter 38: Selection Sort	
Section 38.1: Elixir Implementation	
Section 38.2: Selection Sort Basic Information	
Section 38.3: Implementation of Selection sort in C#	
Chapter 39: Searching	
Section 39.1: Binary Search	
Section 39.2: Rabin Karp	
Section 39.3: Analysis of Linear search (Worst, Average and Best Cases)	
Section 39.4: Binary Search: On Sorted Numbers	
Section 39.5: Linear search	
Chapter 40: Substring Search	
Section 40.1: Introduction To Knuth-Morris-Pratt (KMP) Algorithm	
Section 40.2: Introduction to Rabin-Karp Algorithm	
Section 40.3: Python Implementation of KMP algorithm	
Section 40.4: KMP Algorithm in C	
<u>Chapter 41: Breadth-First Search</u>	190

Section 41.1: Finding the Shortest Path from Source to other Nodes	190
Section 41.2: Finding Shortest Path from Source in a 2D graph	
Section 41.3: Connected Components Of Undirected Graph Using BFS	197
Chapter 42: Depth First Search	202
Section 42.1: Introduction To Depth-First Search	202
Chapter 43: Hash Functions	207
Section 43.1: Hash codes for common types in C#	207
Section 43.2: Introduction to hash functions	208
Chapter 44: Travelling Salesman	210
Section 44.1: Brute Force Algorithm	210
Section 44.2: Dynamic Programming Algorithm	210
Chapter 45: Knapsack Problem	212
Section 45.1: Knapsack Problem Basics	212
Section 45.2: Solution Implemented in C#	212
Chapter 46: Equation Solving	214
Section 46.1: Linear Equation	
Section 46.2: Non-Linear Equation	216
Chapter 47: Longest Common Subsequence	220
Section 47.1: Longest Common Subsequence Explanation	220
Chapter 48: Longest Increasing Subsequence	225
Section 48.1: Longest Increasing Subsequence Basic Information	
Chapter 49: Check two strings are anagrams	
Section 49.1: Sample input and output	
Section 49.2: Generic Code for Anagrams	
Chapter 50: Pascal's Triangle	231
Section 50.1: Pascal triangle in C	
Chapter 51: Algo:- Print a m*n matrix in square wise	
Section 51.1: Sample Example	
Section 51.2: Write the generic code	
Chapter 52: Matrix Exponentiation	
Section 52.1: Matrix Exponentiation to Solve Example Problems	
Chapter 53: polynomial-time bounded algorithm for Minimum Vertex Cover	
Section 53.1: Algorithm Pseudo Code	
Chapter 54: Dynamic Time Warping	
Section 54.1: Introduction To Dynamic Time Warping	
Chapter 55: Fast Fourier Transform	
Section 55.1: Radix 2 FFT	
Section 55.2: Radix 2 Inverse FFT	
Appendix A: Pseudocode	
Section A.1: Variable affectations	
Section A.2: Functions	
Credits	
You may also like	
100 Hug diso like	252

Please feel free to share this PDF with anyone for free, latest version of this book can be downloaded from:

https://goalkicker.com/AlgorithmsBook

This Algorithms Notes for Professionals book is compiled from Stack Overflow

Documentation, the content is written by the beautiful people at Stack Overflow.

Text content is released under Creative Commons BY-SA, see credits at the end of this book whom contributed to the various chapters. Images may be copyright of their respective owners unless otherwise specified

This is an unofficial free book created for educational purposes and is not affiliated with official Algorithms group(s) or company(s) nor Stack Overflow. All trademarks and registered trademarks are the property of their respective company owners

The information presented in this book is not guaranteed to be correct nor accurate, use at your own risk

Please send feedback and corrections to web@petercv.com