Inteligência artificial Prof. Allan Rodrigo Leite

Abordagens da inteligência artificial

- Abordagem simbólica
 - Baseada em lógica proposicional
 - Representação por regras e predicados
- Modelos conexionistas
 - Baseado no modelo cerebral
 - Redes neurais artificiais
- Modelos evolutivos
 - Baseado na natureza
 - Algoritmos genéticos, evolutivos e enxame

Abordagens da inteligência artificial

- Abordagem estatística
 - Baseada em probabilidade
 - Redes Bayesianas, vizinhos mais próximos
- Abordagem híbrida
 - Unem dois ou mais abordagens

Abordagem simbólica

- Objetiva a resolução de problemas a partir da lógica de predicados
- Requer
 - Identificar o conhecimento do domínio
 - Formalizar o conhecimento em uma representação lógica
 - o Implementar um mecanismo de inferência

Conhecimento

- Sócrates é um humano (fato)
- Todo humano é mortal (predicado)

humano(socrates). $\forall X [humano(X) \rightarrow mortal(X)].$

Conhecimento inferido

• Sócrates é mortal (novo fato)

mortal(socrates).

Abordagem conexionista

- Resolução por aproximação de funções por regressão não linear
- Inspirado no cérebro humano
 - Neurônios estão conectados em rede
 - São capazes de aprender e generalizar a partir de aproximações

Abordagem evolutiva

- Resolução a partir da geração aleatória de soluções baseadas em
 - Seleção, cruzamento e mutação
 - Visa a propagação de características genéticas
- Inspirado na teoria de seleção natural
 - Os indivíduos mais bem adaptados ao meio são os mais aptos

Abordagem estatística

0.5

0.5

Resolução por meio da probabilidade de solução

F

F

0

Abordagem híbrida

- Unem característica de um ou mais abordagens
 - Visa potenciar os resultados e minimizar algumas limitações
- Contudo, esta combinação pode resultar em um modelo demasiadamente complexo
 - Raciocínio de incertezas (modelo probabilístico)
 - Regras de produção (modelo simbólico)

- Definição de conhecimento
 - Termo utilizado para capturar a compreensão de um indivíduo sobre um determinado domínio
- Tipos de conhecimento
 - Dados
 - Cadeias numéricas ou alfanuméricas que não têm significado isoladamente
 - Informação
 - Dados organizados que possuem um significado
 - Conhecimento
 - Informação que permite um raciocínio por um ser humano ou uma máquina
 - Representa objetos de algum domínio, suas propriedades e relações

- Tipos de conhecimento (cont.)
 - Estático ou dinâmico
 - Do problema ou meta-conhecimento (aprender como aprender)
 - Diagnóstico ou causal
 - Dedutivo ou terminológico
 - Certo ou incerto
 - Preciso ou vago
 - Senso comum ou especializado
 - Explicito ou implícito

- Tipos de conhecimento (cont.)
 - Conhecimento em intenção
 - Definição do conceito ou ação
 - Normalmente usa regras em termos de sua função, estrutura ou definição
 - Exemplo: ∀X [dengue(X) → dores(X) ∧ febre(X)].
 - Quem está com dengue tem febre e dores
 - Conhecimento em extensão
 - Instâncias do conceito ou de um evento
 - Descrevem ocorrências passadas envolvendo o domínio do problema
 - Exemplo: os sintomas de dengue do João foram dores e febre

- Representação do conhecimento
 - Conjunto de convenções e regras sintáticas e semânticas utilizadas para descrever objetos e comportamentos
 - Buscam reproduzir características do raciocínio humano
 - Como um humano tipicamente representa seu conhecimento?
 - Como é usado este conhecimento?
 - Como é gerado um novo conhecimento?
- Objetivos da representação do conhecimento
 - o Descrever o conhecimento de um especialista em um domínio específico
 - Facilitar a recuperação, inferência e validação sobre o conhecimento

- As linguagens de representação são definida por
 - Sintaxe
 - Descreve configurações que podem constituir sentenças daquela linguagem
 - Semântica
 - Conecta cada sentença aos fatos do domínio que ela representa
 - Cada sentença faz uma afirmação a respeito do domínio
 - O sistema acredita nas sentenças estabelecidas
- A linguagem deve ter uma máquina de inferência associado
 - o Em outras palavras, o mecanismo de raciocínio

- Linguagens de programação
 - São precisas, porém não são suficientemente expressivas
- Linguagens naturais
 - São muito expressivas, porém são ambíguas
- Linguagens de representação de conhecimento
 - Utilizadas para expressar as sentenças das bases de conhecimento
 - Existem três grandes categorias
 - Linguagens declarativas
 - Linguagens procedimentais
 - Linguagens híbridas

- Programação declarativa
 - Representação descritiva dos fatos, relacionamentos e regras
 - Em geral refere-se ao "o que"
 - Exemplo: as partes de uma bicicleta e seus relacionamentos
- Programação procedimental
 - Fatos e sequências de instruções para manipular esses fatos
 - Em geral refere-se ao "como"
 - Exemplo: etapas para desmontar e montar uma bicicleta

- Alguns principais formalismos para representação do conhecimento
 - Cálculo de predicados
 - Redes semânticas
 - Sistemas de produção
 - Programação por restrição

- Sistemas formais simbólicos compostos por
 - Objetos ou fatos
 - Predicados
 - Conectivos lógicos
 - ¬: não
 - \ \:e
 - V: ou
 - →: implica
 - Variáveis
 - Quantificadores
 - ∀: universal (para todo)
 - ∃: existencial (existe)

Objetos

- A noção de objeto tem um significado amplo no cálculo de predicados
- Objetos podem ser
 - Concretos: um livro, uma pessoa
 - Abstratos: um conjunto vazio, o infinito
 - Imaginários: um personagem,

Predicados

- É uma relação entre objetos sobre um determinado contexto de discurso
 - Também conhecido como universo de discurso
- Um predicado é descrito por um símbolo de função seguido por seus argumentos
 - Os argumentos são elementos do domínio de um predicado
 - O número de argumentos é chamado de aridade

- Conectivos lógicos
 - Permitem formar sentenças complexas a partir de sentenças simples
 - Permite combinar sentenças envolvendo variáveis e quantificadores
- Variáveis
 - Estabelecem fatos a respeito de objetos sobre um contexto de discurso
- Quantificadores
 - Universal
 - Descreve fatos a respeito de todos os objetos de um contexto, porém, sem a necessidade de enumerá-los explicitamente
 - Existencial
 - Descreve a existência de um objeto, porém, sem identificá-lo explicitamente

Torre de Hanoi

```
disco(a).
disco(b).
disco(c).
sobre(c,mesa,pino1).
sobre(b,c,pino1).
sobre(a,b,pino1).
sobre(a,b,pino1) ^
sobre(b,c,pino1) ^
sobre(c,mesa,pino1).
\forall X [disco(X) \rightarrow \exists Y [sobre(X,Y,\_)]].
```


- Benefícios
 - Grande expressividade para representar diferentes universo de discurso
 - As sentenças são demonstráveis e de simples compreensão
- Limitações
 - Não lidam com incertezas ou crenças
 - Apresentam dificuldades para formalizar linguagem natural

- Representa o conhecimento por meio de grafos direcionados
 - Os nós representam objetos e suas respectivas propriedades e valores
 - As arestas representam relações entre os nós
 - As relações também representam conhecimento
 - Também podem expressar isa (is a) ou ako (a kind of)
- É possível realizar inferências por meio das ligações do grafo
 - O objetivo de um motor de inferência é buscar e casar padrões
 - o O processo de inferência baseia-se em buscas sobre o grafo

- Motor de inferência
 - A busca é guiada por uma questão objetivo
 - Usa-se as ligações para validar o casamento de uma questão com um nó
 - Se não existir, são validados os nós vizinhos a partir de ligações isa e ako

- Motor de inferência (cont.)
 - Ao submeter a questão "Snoopy come?", valida-se a hipotese por
 - Snoopy é um cão
 - Cão é um mamífero
 - Mamífero é um animal
 - Animal come
 - Logo, a hipótese "Snoopy come" é confirmada
 - É possível também descrever todo conhecimento mapeado sobre Snoopy por meio de uma busca exaustiva
 - Uma busca em largura sobre o grafo a partir o nó "Snoopy" pode prover isto

Benefícios

- Representação do conhecimento simples e eficiente
- Similar à orientação a objetos em relação às classes e relacionamentos
- Desempenho no processo de inferência (busca)

Limitações

- Conflitos entre características herdadas com ligações ako
- Menos expressiva que o calculo de predicados
- Inferências sobre redes complexas podem ser um desafio

- Sistema de representação procedimental
 - Regras de produção representam conhecimento por meio de um conjunto de regras do tipo se <condição> então <ação>
 - A ação corresponde a algum procedimento
 - Este procedimento leva a uma conclusão ou mudança no estado corrente
- Regras de produção
 - Contém um fragmento independente do conhecimento
 - Cujo conhecimento pode ser refinado com a adição de uma nova regra

- Um sistema de produção é formado por
 - Base de conhecimento composta por regras e fatos
 - Regras são declarações sobre classes e objetos se então
 - Fatos são declarações sobre objetos específicos
 - Memória de trabalho
 - Representa o estado do problema em um dado momento
 - Manipula dados transientes e de curta duração
 - Existem enquanto uma dada regra estiver sendo interpretada
 - Máquina de inferência
 - É acionada ao ser especificado um estado meta
 - Executa regras e determina quais são relevantes a partir de ciclos

- Um ciclo da máquina de estados pode ser dividido em três etapas
 - Seleção de regras (casamento)
 - Busca as regras que são satisfeitas pelo conteúdo da memória de trabalho
 - Resolução de conflitos
 - Usa estratégias para resolver conflitos no casamento das regras
 - As principais são raciocínio orientado a regras (frente) ou a metas (trás)
 - Ação
 - Procedimento a ser realizado após o casamento e resolução de conflitos
 - Normalmente altera o estado da memória de trabalho

- Benefícios
 - Habilidade cresce proporcional ao tamanho da base de conhecimento
 - Resolve vários problemas complexos utilizando regras simples
 - Ao combinar os resultados de maneira apropriada
 - Simplicidade para explicar as conclusões alcançadas
 - Segue uma linha de raciocínio normalmente usada em linguagem natural
- Limitações
 - Dificuldade para introduzir modificações na base de conhecimento
 - Desafio para localizar informações desejadas

- São sistemas computacionais baseados em restrições
 - Visa a resolução de problemas por restrições definidas sobre o domínio
 - Descreve o universo de discurso por meio de variáveis e restrições
- Definição de restrição
 - Relação lógica entre uma ou mais variáveis
 - Cada variável possui um domínio discreto e finito
 - As relações visam restringir os valores que as variáveis podem assumir
 - Cada restrição define parte das informações de um dado problema
 - São declarativas e raramente são independentes

- O CSP é uma principais técnicas para programação por restrição
 - Problema de satisfação de restrição (Constraint Satisfation Problem)
 - Visa encontrar um conjunto de atribuições sem violar nenhuma restrição
- Um CSP é composto por <X,D,R>
 - \circ \mathcal{X} é o conjunto de variáveis
 - \circ \mathcal{D} é um conjunto de domínios para cada variável
 - Domínios discretos e finito
 - \circ \mathcal{R} é um conjunto de restrições entre as variáveis
 - Envolvendo uma ou mais variáveis
 - Em geral são restrições binárias

- Algoritmos de busca (CSP solvers)
 - São métodos inteligentes para resolução de CSP
 - o Implementam heurísticas para acelerar a busca pela solução

- Benefícios
 - Potencial para modelar naturalmente diversos problemas do mundo real
 - Existência de inúmeros métodos de resolução de CSP
- Limitações
 - Requer métodos complexos para resolução de CSP
 - Este formalismo pertence a classe de complexidade NP-completo
 - Trata com problemas de natureza combinatória
 - Modelagem do problema como um CSP não é uma tarefa trivial

Engenharia do conhecimento

- Disciplina que estuda estratégias para construção de uma base de conhecimento adequada
 - Nível do conhecimento
 - Aquisição de conhecimento
 - Conhecimento em estado puro, isto é, em linguagem natural
 - Nível lógico
 - Formalização e definição de um banco de conhecimento
 - Conhecimento codificado em sentenças em uma linguagem formal
 - Nível de máquina
 - Implementação final do programa de computador
 - Estrutura de dados representando as sentenças do nível lógico

Engenharia do conhecimento

Aquisição Nível de conhecimento Linguagem natural Formalização Nível lógico Linguagem de representação do conhecimento Implementação Nível de implementação Linguagem de programação Refinamento Base de conhecimento

Exercícios

- 1. Formalize as sentenças a seguir a partir do cálculo de predicados
 - Tudo que sobe, desce.
 - Nenhum leão é manso.
 - Todo circo tem palhaço.
 - Toda pedra preciosa é cara.
 - Nenhum homem é infalível.
 - Ninguém gosta de impostos.
 - Existem impostos que não são bem empregados.
- 2. Descreva seu quarto utilizando redes semânticas. Em seguida, valide a expressividade da rede realizando inferências a partir de algumas questões como
 - Onde está localizado o objeto X?
 - Onde se localiza o acesso ao cômodo?
 - Quantos pontos elétricos existem no total e quantos ainda estão disponíveis?

Inteligência artificial Prof. Allan Rodrigo Leite