Mémoire de Fin d'Études d'Ingénieur du Génie Electrique

Thème:

CHOIX DES POINTS D'INTERCONNECTION DE DEUX RESEAUX ELECTRIQUEMENT ISOLES PAR LE CRITERE DU MINIMUM DE PUISSANCE: CAS DU RIS ET DU RIN ET CONCEPTION DE LA LIGNE D'INTERCONNEXION

Mémoire présenté et soutenu par :

MBUA CLAUDE LEWIS NDI

Devant le Jury composé de :

Président: Pr. THOMAS BOUETOU

Rapporteur: Pr. TCHUIDJAN ROGER

Examinateur: Dipl.-Ing. TABE N. MOSES, MBA

SOMMAIRE

INTRODUCTION

CONTEXTE ET PROBLEMATIQUE

METHODOLOGIE

RESULTATS ANALYSES ET COMMENTAIRES

CONCLUSION ET PERSPECTIVES

SOMMAIRE

INTRODUCTION

CONTEXTE ET PROBLEMATIQUE

METHODOLOGIE

RESULTATS ANALYSES ET COMMENTAIRES

CONCLUSION ET PERSPECTIVES

RESULTATS
ANALYSES ET
COMMENTAIRES

CONCLUSION ET PERSPECTIVES

Présentation du système électrique Camerounais

Exigences d'une interconnexion

Inconvénients et avantages de l'interconnexion

Graphe de production consommation RIS RIN

Problématique

PRÉSENTATION DU SYSTÈME ÉLECTRIQUE CAMEROUNAIS

Présentation du système électrique Camerounais

Exigences d'une interconnexion

Inconvénients et avantages de l'interconnexion

Graphe de production consommation RIS RIN

Problématique

PRÉSENTATION DU SYSTÈME ÉLECTRIQUE CAMEROUNAIS

LE RESEAU INTERCONNECTE NORD (RIN)

RESULTATS ANALYSES ET COMMENTAIRES

CONCLUSION ET PERSPECTIVES

Présentation du système électrique Camerounais

Exigences d'une interconnexion

Inconvénients et avantages de l'interconnexion

Graphe de production consommation RIS RIN

Problématique

PRÉSENTATION DU SYSTÈME ÉLECTRIQUE CAMEROUNAIS

Centrales thermiques

RESULTATS
ANALYSES ET
COMMENTAIRES

CONCLUSION ET PERSPECTIVES

Présentation du système électrique Camerounais

Exigences d'une interconnexion

Inconvénients et avantages de l'interconnexion

Graphe de production consommation RIS RIN

Problématique

PRÉSENTATION DU SYSTÈME ÉLECTRIQUE CAMEROUNAIS

METHODOLOGIE

RESULTATS
ANALYSES ET
COMMENTAIRES

CONCLUSION ET PERSPECTIVES

Présentation du système électrique Camerounais

Exigences d'une interconnexion

Inconvénients et avantages de l'interconnexion

Graphe de production consommation RIS RIN

Problématique

EXIGENCES D'UNE INTERCONNEXION

Exigences d'une interconnexion

Inconvénients et avantages de l'interconnexion

Graphe de production consommation RIS RIN

Problématique

AVANTAGES ET INCONVENIENTS D'UNE INTERCONNEXION

Interconnexion

Inconvénients de l'interconnexion

Courant de court-circuit élevé

Chute de tension et coupure en cascade

Avantages de l'interconnexion

Augmente la capacité de fourniture

Il permet d'assurer l'utilisation économique des ressources

Il permet de faciliter les délestages programmés pour la maintenance

Favorise le développement des sources de production

Favorise le développement des infrastructures et du tissu industriel sur l'ensemble du territoire

Graphe de production consommation RIS RIN

Problématique

SOMMAIRE

INTRODUCTION

CONTEXTE ET PROBLEMATIQUE

METHODOLOGIE

RESULTATS ANALYSES ET COMMENTAIRES

CONCLUSION ET PERSPECTIVES

Méthode d'interconnexion

Présentation de l'application

METHODE DE PERTES DE PUISSANCE MINIMUM

Explication de la solution

Méthode d'interconnexion

Méthode de Load Flow Calcul des pertes de puissance pour tous les cas d'interconnexion possible Le couple de points choisis sera celui offrant le minimum de pertes de puissances

Méthode d'interconnexion

Présentation de l'application

METHODE D'INTERCONNEXION

Présentation de l'application

5-Considérant la puissance à transiter déterminer les paramètres de la ligne

4-Sur un logiciel de cartographie comme google map on détermine les distances entre les nœuds choisit

6-Le réseau interconnecté étant constitué, on calcule et on enregistre les pertes de puissances pour chaque cas

7-On effectue le choix des points d'interconnexion sur la base du critère de minimum de puissance

Méthode d'interconnexion

Présentation de l'application

PRESENTATION DE L'APPLICATION

PAGE D'ACCUEIL

welcome

CETTE APPLICATION EST UN OUTIL D'AIDE A LA DECISION

QUI AIDE L'INGENIEUR QUI VEUT REALISER L'INTERCONNEXION DE DEUX RESEAUX ELECTRIQUES A :

- --- EFFECTUER LE LOAD FLOW DES RESEAUX
- ---FAIRE LE CHOIX DES POINTS D'INTERCONNECTION
- --- DETERMINER LES ELEMENTS ET LE COUT DE LA LIGNE

COMMENCER

QUITTER

PRESENTATION DE L'APPLICATION

PAGE D'INTERCONNEXION

Méthode d'interconnexion

Présentation de l'application

	INTERCONNECT POWER G	RIDS		
- ETAPES A SUIVRE DANS L' APPLICATION ETAPE 1 Tension □conomique, param□tres lin□iques ETAPE 2 Load Flow du r□seau 1 (p□re)	TENSION ECONOMIQUE<>SECTION DES CONDUCTEURS Cliquez sur le bouton suivant pour avoir:Tension ©conomiquesection des conducteursparam©tres lin ©iques de la ligne	Tension □conomique et section des conducteurs		
ETAPE 3 Load Flow du r⊡seau 2 (fils) ETAPE 3 Choix des points d'interconnexion	PARAMETRES INITIAUX	PARAMETRES INITIAUX		
ETAPE 4 Dimensionnement et cout de la ligne Quelques projets	PARAMETRES GENERATEURS PARAMETRES CHARGES	PARAMETRES GENERATEURS PARAMETRES CHARGES		
IEEE_5_Noeuds-IEEE_5_Noeuds Reseau1 Reseau2 Interconnexion	PARAMETRES LIGNES VISUALISER LES RESULTATS	PARAMETRES LIGNES VISUALISER LES RESULTATS		
IEEE_14_Noeuds - IEEE_5_Noeuds	INTERCONNEXION RESEAU1-RESEAU2 Cliquez sur le bouton ci-dessous et entrer: les distances entre les noeuds choisis	DECULTATO DULI O AD EL ONATE DONTE DINTERDONNESVON		
RIS-RIN	les paramūtres linūiques de la ligne d'interconnexion PARAMETRES DES LIGNES D'INTERCONNEXION ELEMENTS ET COUT DE LA LIGNE D'INTERCONNEXION	RESULTATS DU LOAD FLOW ET POINTS D'INTERCONNEXION		
RIS RIN interconnexion	Longueur de la ligne d'interconnexion (en Km) Cout de la ligne en milliards de Fcfa en alternatif	El⊡ments de la ligne		
	en continu			

Méthode d'interconnexion

Présentation de l'application

PRESENTATION DE L'APPLICATION

PAGE DES ELEMENTS DE LA LIGNE

all element								– u х
PORTEE			FLECH	F				
	Niveau de Tension U	Portée (x)	Poids d	u conducteur	port□e (m)	Tension du conducteur (Ka/m)		FI□che (m)
	30kV	100 – 200 m		(Kg/m)		conducted (Ng/III)	Cliquer ici	
	60 kV	160 - 240 m						Pour 400 kV
	110kv	220 - 380 m						FI□che=9m
Pour 400 kV port⊟e=450m	220kV	300 – 400 m	□D□term	inerle d□gager	ment (□loignem	ent des conducteurs	des routes, imme	ubles) le choix
portile-400m	380kV	350 - 450 m	de l'arme	de l'armement (nappe voute,nappe horizontale, triangle, drapeau)voir documentation appro				
Pour 400 kV: DEGA	GEMENT: haute	ur des pylones	entre 30 et 50 m	armement N	APPE HORI	ZONTALEcab	le de garde ALI	MELEC ACIEF
ECARTEMENT DES								
Coefficient d□pendant de la nature des conducteurs	F 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.							
				Clic	quer ici			
NOMBRE DE PYLONES	6							
Longueur de la	a ligne		Cliquer ici	Nbre de pyl	one TREILLIS	en ACIER		
	, <u>-</u>					Source: ENEO (415	pylones pour 168 Km)	
DETERMINATION DE	S PARAMETRES							
Resistivit□ □lectrique (Ohm.mm2/Km)			efficient de temp□rature e la r⊡sistance (1/□C)	Temp@rature du conducteur(@C		conducteur (m)	Perm□abilit□ magnetique du mat□riau	Nombre de conducteurs par phase
			ativo do	RDactan	ce de la		Conductibilit]
		Rosistance active de la ligne(ohm)		ligne(ohm)			capacitive de la	
Cliquez ici							ligne (ohm)	

Méthode d'interconnexion

Présentation de l'application et calculs

PRESENTATION DE L'APPLICATION

RESULTATS ANALYSES ET COMMENTAIRES

CONCLUSION ET PERSPECTIVES

Etat de l'art sur les méthodes d'interconnexion

Méthode d'interconnexion

Présentation de l'application et calculs

LOAD FLOW DU RIN

Méthode d'interconnexion

Présentation de l'application et calculs

LOAD FLOW DU RIS

Choix des points d'interconnexion RIS et RIN

Présentation des résultats

Analyses et commentaires

L'interconnexion optimale doit se faire entre:

le noeud (du réseau1)

17

et le noeud (du réseau2)

3

7. <u>Choix des points</u> <u>d'interconnexion suivant le</u> <u>critère de minimum de pertes :</u> Interconnexion entre: les jeux de barres d'Oyom abang 225 kV et de Ngaoundéré 110 kV.

Comme solution secondaire: Songloulou 225 et Ngaoundéré.

Méthode d'interconnexion

Présentation de l'application et calculs

CALCULS

SOMMAIRE

INTRODUCTION

CONTEXTE ET PROBLEMATIQUE

METHODOLOGIE

RESULTATS ANALYSES ET COMMENTAIRES

CONCLUSION ET PERSPECTIVES

DESIGNATION	VALEUR		
TRAJET	Yaoundé-Ngaoundéré		
TENSION DE TRANSMISSION	400kV		
TYPE DE CONDUCTEUR	almélec double terne de section 240mm²		
ISOLATEURS	chaine d'isolateurs en porcelaine de 18 éléments		
ARMEMENT	arment en nappe voute horizontal		
PORTEE	450m		
FLECHE	9m		
DEGAGEMENT	5m		
CABLE DE GARDE	almélec-acier		
ECARTEMENT DES CONDUCTEURS	5m		
SUPPORTS	1700 pylônes en acier		
PARAMETRE LINEIQUES	r0= 0,08Ω/km		
	x0=0,202Ω/km		
	b0=2,824μΩ/km		
	C0=0,0089μF/km		
TRANSFORMATEURS	2 transformateur 350MVA de 400/110kV et 400/220kV		

RESULTATS ANALYSES ET COMMENTAIRES

CONCLUSION ET PERSPECTIVES

Choix des points d'interconnexion RIS PRESENTATION DES RESULTATS

1

Présentation des résultats

et RIN

Analyses et commentaires

Cette solution est

92,466
MILLIARDS
DE FRANCS
CFA moins
couteuses que les

Avec les dispositifs de compensation le système interconnect

est plus stable(δ)

études

On a le meilleur profil de tension possible

Vu que la distance Oyomabang-Ngaoundéré est de **670 Km** <800 Km l'interconnexion se fait **en alternatif**

SOMMAIRE

INTRODUCTION

CONTEXTE ET PROBLEMATIQUE

METHODOLOGIE

RESULTATS ANALYSES ET COMMENTAIRES

CONCLUSION ET PERSPECTIVES

MERCI POUR VOTRE AIMABLE ATTENTION

