Sets

1ST WEEK

Outline

- Definition of sets
- Describing Sets
 - Roster Method
 - Set-Builder Notation
 - Interval Notation
- Some Important Sets in Mathematics
- Empty Set and Universal Set
- Subsets and Set Equality
- Cardinality of Sets
- Tuples
- Cartesian Product

Introduction

- Sets are one of the basic building blocks for the types of objects considered in discrete mathematics.
 - Important for counting unordered collection of objects
 - Programming languages have set operations.
 - Relations, set of ordered pairs representing relationships between objects
 - Graphs, sets of vertices and edges that connect vertices

Sets

- A set is an unordered collection of objects.
 - A pack of cards
 - A crowd of people
 - A basketball team
 - The students in this class
 - The chairs in this room
- The objects in a set are called the *elements*, or *members* of the set. A
 set is said to *contain* its elements.
- The notation $a \in A$ denotes that a is an element of the set A.
- If a is not a member of A, write $a \notin A$

Describing a Set: Roster/Tabular Method

 In roster form, all elements are listed and being separated by commas and enclosed within braces {}

$$S = \{a,b,c,d\}$$

Order is not important

$$S = \{a,b,c,d\} = \{b,c,a,d\}$$

 Each distinct object is either a member or not; listing more than once does not change the set.

$$S = \{a,b,c,d\} = \{a,b,c,b,c,d\}$$

• Elipses (...) may be used to describe a set without listing all of the members when the pattern is clear.

$$S = \{a,b,c,d,,z\}$$

Roster Method

Set of all vowels in the English alphabet:

$$V = \{a,e,i,o,u\}$$

Set of all odd positive integers less than 10:

$$0 = \{1,3,5,7,9\}$$

Set of all positive integers less than 100:

$$S = \{1,2,3,....,99\}$$

Set of all integers less than 0:

$$S = \{...., -3, -2, -1\}$$

Some Important Sets

```
N = set of natural numbers = \{0, 1, 2, 3, ....\}
```

$$Z = set of integers = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

$$Z^+$$
 = set of *positive integers* = {1,2,3,....}

R = set of *real numbers*

 R^+ = set of *positive real numbers*

C = set of complex numbers

Q = set of *rational numbers*

Set-Builder Notation

Specify the property or properties that all members must satisfy:

```
S = \{x \mid x \text{ is a positive integer less than } 100\}

O = \{x \mid x \text{ is an odd positive integer less than } 10\}
```

$$0 = \{x \in Z^+ \mid x \text{ is odd and } x < 10\}$$

A predicate may be used:

$$S = \{x \mid P(x)\}$$

Positive rational numbers:

$$Q^+ = \{x \in \mathbb{R} \mid x = p/q, \text{ for some positive integers p,q}\}$$

Interval Notation

$$[a,b] = \{x \mid a \le x \le b\}$$

$$[a,b) = \{x \mid a \le x < b\}$$

$$(a,b] = \{x \mid a < x \le b\}$$

$$(a,b) = \{x \mid a < x < b\}$$

closed interval [a,b]
open interval (a,b)

Type of Sets

- Universal sets
- Empty sets
- Equal sets
- Subsets
- Power set
- Finite & Infinite set

Universal Set and Empty Set

- The universal set U is the set containing everything currently under consideration.
 - Sometimes implicit
 - Sometimes explicitly stated.
 - Contents depend on the context.
- The empty set is the set with no elements. Symbolized Ø, but {} also used.

Venn Diagram

John Venn (1834-1923) Cambridge, UK

Some things to remember

Sets can be elements of sets.

```
{N,Z,Q,R}
{{1,2,3},a, {b,c}}
```

The empty set is different from a set containing the empty set.

```
\emptyset \neq \{\emptyset\}
```

Set Equality

Definition: Two sets are *equal* if and only if they have the same elements.

- Therefore if A and B are sets, then A and B are equal if and only if $\forall x (x \in A \leftrightarrow x \in B)$
- We write A = B if A and B are equal sets.

$$\{1,3,5\} = \{3,5,1\}$$

 $\{1,5,5,5,3,3,1\} = \{1,3,5\}$

Subsets

Definition: The set A is a *subset* of B, if and only if every element of A is also an element of B.

- The notation $A \subseteq B$ is used to indicate that A is a subset of the set B.
- $A \subseteq B$ holds if and only if $\forall x (x \in A \rightarrow x \in B)$ is true.
 - 1. Because $a \in \emptyset$ is always false, $\emptyset \subseteq S$, for every set S.
 - 2. Because $a \in S \rightarrow a \in S$, $S \subseteq S$, for every set S.

Showing a Set is or is not a Subset of Another Set

- Showing that A is a Subset of B: To show that $A \subseteq B$, show that if x belongs to A, then x also belongs to B.
- Showing that A is not a Subset of B: To show that A is not a subset of B, $A \nsubseteq B$, find an element $x \in A$ with $x \notin B$. (Such an x is a counterexample to the claim that $x \in A$ implies $x \in B$.)

Examples:

- 1. The set of all computer science majors at your school is a subset of all students at your school.
- 2. The set of integers with squares less than 100 is not a subset of the set of nonnegative integers.

Another look at Equality of Sets

Recall that two sets A and B are equal, denoted by

$$A = B$$
, iff $\forall x (x \in A \leftrightarrow x \in B)$

• Using logical equivalences we have that A = B iff

$$\forall x[(x \in A \to x \in B) \land (x \in B \to x \in A)]$$

This is equivalent to

$$A \subseteq B$$
 and $B \subseteq A$

Proper Subsets

Definition: If $A \subseteq B$, but $A \neq B$, then we say A is a *proper subset* of B, denoted by $A \subset B$. If $A \subset B$, then

$$\forall x (x \in A \to x \in B) \land \exists x (x \in B \land x \not\in A)$$

is true.

Venn Diagram

Set Cardinality

Definition: If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is *finite*. Otherwise it is *infinite*.

Definition: The *cardinality* of a finite set A, denoted by |A|, is the number of (distinct) elements of A.

Examples:

- 1. $|\emptyset| = 0$
- 2. Let S be the letters of the English alphabet. Then |S| = 26
- 3. $|\{1,2,3\}| = 3$
- 4. $|\{\emptyset\}| = 1$
- 5. The set of integers is infinite.

Power Sets

Definition: The set of all subsets of a set A, denoted P(A), is called the power set of A.

Example: If
$$A = \{a,b\}$$
 then $P(A) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$

• If a set has n elements, then the cardinality of the power set is 2^n

Tuples

- The *ordered n-tuple* $(a_1,a_2,....,a_n)$ is the ordered collection that has a_1 as its first element and a_2 as its second element and so on until a_n as its last element.
- Two n-tuples are equal if and only if their corresponding elements are equal.
- 2-tuples are called ordered pairs.
- The ordered pairs (a,b) and (c,d) are equal if and only if a = c and b = d.

Cartesian Product

René Descartes (1596-1650)

Definition: The *Cartesian Product* of two sets A and B, denoted by $A \times B$ is the set of ordered pairs (a,b) where $a \in A$ and $b \in B$.

$$A \times B = \{(a,b) | a \in A \land b \in B\}$$

Example:

$$A = \{a,b\}$$
 $B = \{1,2,3\}$
 $A \times B = \{(a,1),(a,2),(a,3), (b,1),(b,2),(b,3)\}$

• **Definition**: A subset R of the Cartesian product $A \times B$ is called a *relation* from the set A to the set B.

Cartesian Product

Definition: The cartesian products of the sets A_1, A_2, \dots, A_n , denoted by $A_1 \times A_2 \times \dots \times A_n$, is the set of ordered *n*-tuples (a_1, a_2, \dots, a_n) where a_i belongs to A_i for $i = 1, \dots, n$.

$$A_1 \times A_2 \times \dots \times A_n = \{(a_1, a_2, \dots, a_n) | a_i \in A_i \text{ for } i = 1, 2, \dots n\}$$

Example: What is $A \times B \times C$ where $A = \{0,1\}$, $B = \{1,2\}$ and $C = \{0,1,2\}$ **Solution**: $A \times B \times C = \{(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,1,2)\}$

Union

Definition: Let A and B be sets. The union of the sets A and B, denoted by A U B, is the set:

$$\{x|x\in A\vee x\in B\}$$

• **Example**: What is {1,2,3} U {3, 4, 5}?

Solution: {1,2,3,4,5}

Venn Diagram for AUB

Intersection

- **Definition**: The *intersection* of sets A and B, denoted by $A \cap B$, is $\{x | x \in A \land x \in B\}$
- Note if the intersection is empty, then A and B are said to be disjoint.
- Example: What is? {1,2,3} ∩ {3,4,5}?
 Solution: {3}
- Example: What is?

$$\{1,2,3\} \cap \{4,5,6\}$$
?

Solution: Ø

Venn Diagram for $A \cap B$

Complement

Definition: If A is a set, then the complement of the A (with respect to U), denoted by \bar{A} is the set U - A

$$\bar{A} = \{x \in U \mid x \notin A\}$$

(The complement of A is sometimes denoted by A^c .)

Example: If *U* is the positive integers less than 100, what is the complement of $\{x \mid x > 70\}$

Solution: $\{x \mid x \le 70\}$

Venn Diagram for Complement

Difference

Definition: Let A and B be sets. The difference of A and B, denoted by A - B, is the set containing the elements of A that are not in B. The difference of A and B is also called the complement of B with respect to A.

$$A - B = \{x \mid x \in A \land x \notin B\} = A \cap \overline{B}$$

Venn Diagram for A − B

Symmetric Difference (optional)

Definition: The symmetric difference of **A** and **B**,

denoted by $A \oplus B$ is the set

$$(A - B) \cup (B - A)$$

Example:

$$U = \{0,1,2,3,4,5,6,7,8,9,10\}$$

$$A = \{1,2,3,4,5\}$$
 $B = \{4,5,6,7,8\}$

What is:

- **Solution**: {1,2,3,6,7,8}

Venn Diagram

Set Identities

Identity laws

$$A \cup \emptyset = A$$

$$A \cap U = A$$

Domination laws

$$A \cup U = U$$

$$A \cap \emptyset = \emptyset$$

Idempotent laws

$$A \cup A = A$$

$$A \cup A = A$$
 $A \cap A = A$

Complementation law

$$\overline{(\overline{A})} = A$$

Set Identities

Commutative laws

$$A \cup B = B \cup A$$
 $A \cap B = B \cap A$

Associative laws

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

Distributive laws

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Exercises

List the members of these sets.

- a) $\{x \mid x \text{ is a real number such that } x^2 = 1\}$
- b) {x | x is a positive integer less than 12}
- c) $\{x \mid x \text{ is the square of an integer and } x < 100\}$
- d) $\{x \mid x \text{ is an integer such that } x^2 = 2\}$

Use set builder notation to give a description of each of these sets.

- a) {0, 3, 6, 9, 12}
- b) $\{-3, -2, -1, 0, 1, 2, 3\}$
- c) {m, n, o, p}

For each of these pairs of sets, determine whether the first is a subset of the second, the second is a subset of the first, or neither is a subset of the other.

- a) the set of airline flights from New York to New Delhi, the set of nonstop airline flights from New York to New Delhi
- b) the set of people who speak English, the set of people who speak Chinese
- c) the set of flying squirrels, the set of living creatures that can fly

Exercises

Determine whether each of these pairs of sets are equal

- a) {1, 3, 3, 3, 5, 5, 5, 5, 5},{5, 3, 1}
- b) {{1}},{1,{1}}}
- c) \emptyset , $\{\emptyset\}$

Determine whether each of these statements is true or false.

- a) $0 \in \emptyset$
- b) $\emptyset \in \{0\}$
- c) {0}⊂Ø
- d) $\emptyset \subset \{0\}$
- e) $\{0\} \in \{0\}$
- f) $\{0\}\subset\{0\}$
- g) $\{\emptyset\} \subseteq \{\emptyset\}$

What is the Cartesian product $A \times B$, where A is the set of courses offered by the mathematics department at a university and B is the set of mathematics professors at this university? Give an example of how this Cartesian product can be used.

Exercises

Suppose that A is the set of sophomores at your school and B is the set of students in discrete mathematics at your school. Express each of these sets in terms of A and B.

- a) the set of sophomores taking discrete mathematics in your school
- b) the set of sophomores at your school who are not taking discrete mathematics
- c) the set of students at your school who either are sophomores or are taking discrete mathematics
- d) the set of students at your school who either are not sophomores or are not taking discrete mathematics

$$U = \{0,1,2,3,4,5,6,7,8,9,10\}, A = \{1,2,3,4,5\}, B = \{4,5,6,7,8\}$$

Determine:

- a) AUB
- b) $A \cap B$
- c) Ā
- d) A B
- e) B-A
- f) $A \oplus B$