Abstract

This is the Cal Poly Algebra Test Bank. Beginning with the September 2025 exam, all problems will be drawn from a public "problem bank." This bank contains two types of problems: template problems and pool problems. **Template problems** are generally computational with easily adjustable specifics. These types of problems are especially prevalent in linear algebra. **Pool problems** make up the rest of the problem bank, and include all problems that are not easily adjustable. These problems, when chosen, will usually be asked as is.

Group Theory

§ Pool Problems

Exercise 1. Let G be a group. Prove that G is non-cyclic if and only if G is the union of its proper subgroups.

Exercise 2. Let G be a group, and $G \times G$ the direct product. The set $D = \{(g,g) \mid g \in G\}$ is a subgroup of $G \times G$. Prove that if D is normal in $G \times G$ then G is abelian.

Exercise 3. The dihedral group, D_8 , is the group of eight rigid symmetries of a square. Prove that D_8 is not the internal direct product of two of its proper subgroups.

Exercise 4. Let G be a finite group and $H, K \leq G$ be normal subgroups of relatively prime order. Prove that G is isomorphic to a subgroup of $G/H \times G/K$.

Exercise 5. Suppose G is a group that contains normal subgroups $H, K \subseteq G$ with $H \cap K = \{e\}$ and HK = G. Prove that $G \cong H \times K$.

Exercise 6. Let G be the group of upper-triangular real matrices

$$\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$$

with $a, d \neq 0$, under matrix multiplication. Let S be the subset of G defined by d = 1. Show that S is normal and that $G/S \cong \mathbb{R}^{\times}$, the multiplicative group of nonzero real numbers.

Exercise 7. Let G be a group and suppose Aut(G) is trivial.

- (a) Show that G is abelian.
- (b) Show that for any abelian group H, the inversion map $\phi(h) = h^{-1}$ is an automorphism.
- (c) Use parts (a) and (b) above to show that g^2 is the identity element for every $g \in G$.

Exercise 8.

- (a) Suppose N is a normal subgroup of a group G and $\pi_N: G \to G/N$ is the usual projection homomorphism, defined by $\pi_N(g) = gN$. Prove that if $\phi: G \to H$ is any homomorphism with $N \leq \ker(\phi)$, then there exists a unique homomorphism $\psi: G/N \to H$ such that $\phi = \psi \circ \pi_N$. (You must explicitly define ψ , show it is well defined, show $\phi = \psi \circ \pi_N$, and show that ψ is uniquely determined.)
- (b) Prove the **Third Isomorphism Theorem**: if $M, N \subseteq G$ with $N \subseteq M$, then $(G/N)/(M/N) \cong G/M$.

Exercise 9. Let G be a group and $a \in G$ be an element. Let $n \in \mathbb{N}$ be the smallest positive number such that $a^n = e$, where e is the identity element. Show that the set

$$\{e, a, a^2, \dots, a^{n-1}\}$$

contains no repetitions.

Exercise 10. Let G be a finite abelian group of odd order. Let $\phi: G \to G$ be the function defined by $\phi(g) = g^2$ for all $g \in G$. Prove that ϕ is an automorphism.

Exercise 11. Let G be a group with exactly two conjugacy classes. Prove that G is abelian, and describe all such groups (with proof).

Exercise 12. Let \mathbb{Z}_n denote the cyclic group of order n. Suppose $m \in \mathbb{N}$ is relatively prime to n. Define the function $\mu_m : \mathbb{Z}_n \to \mathbb{Z}_n$ by $m[a]_n = [ma]_n$.

- (a) Prove that the map μ_m is a well-defined automorphism of \mathbb{Z}_n .
- (b) Prove that any automorphism of \mathbb{Z}_n has the form μ_m for some m.

Exercise 13. For a group G and an element $g \in G$, the centralizer of g in G is the subgroup

$$C_G(g) = \{ h \in G : hgh^{-1} = g \}.$$

We say g and g' are **conjugate in** G if there exists an element $h \in G$ such that $g' = hgh^{-1}$. Suppose S_n is a symmetric group with $n \ge 4$, and σ is one of the (n-2)-cycles in S_n .

- (a) Prove that $[S_n: C_{S_n}(\sigma)] = [A_n: C_{A_n}(\sigma)].$
- (b) Determine whether all (n-2)-cycles are conjugate in A_n .

Exercise 14. Let G be a finite group and n > 1 an integer such that $(ab)^n = a^n b^n$ for all $a, b \in G$. Let

$$G_n = \{c \in G \mid c^n = e\}, \qquad G^n = \{c^n \mid c \in G\}.$$

You may take for granted that these are subgroups. Prove that both G_n and G^n are normal in G, and $|G^n| = [G:G_n]$.

Exercise 15. Suppose G is a group, $H \leq G$ a subgroup, and $a, b \in G$. Prove that the following are equivalent:

- (a) aH = bH
- (b) $b \in aH$
- (c) $b^{-1}a \in H$

Exercise 16. Let G be a group, and let $\operatorname{Aut}(G)$ denote the group of automorphisms of G. There is a homomorphism $\gamma: G \to \operatorname{Aut}(G)$ that takes $s \in G$ to the automorphism γ_s defined by $\gamma_s(t) = sts^{-1}$.

- (a) Prove rigorously, possibly with induction, that if $\gamma_s(t) = t^b$, then $\gamma_{s^n}(t) = t^{b^n}$.
- (b) Suppose $s \in G$ has order 5, and $sts^{-1} = t^2$. Find the order of t. Justify your answer.

Exercise 17. Let G be an abelian group and G_T be the set of elements of finite order in G.

- (a) Prove that G_T is a subgroup of G.
- (b) Prove that every non-identity element of G/G_T has infinite order.
- (c) Characterize the elements of G_T when $G = \mathbb{R}/\mathbb{Z}$, where \mathbb{R} is the additive group of real numbers.

Exercise 18. Suppose G is a finite group of even order.

- (a) Prove that an element in G has order dividing 2 if and only if it is its own inverse.
- (b) Prove that the number of elements in G of order 2 is odd.
- (c) Use (b) to show G must contain a subgroup of order 2.

Exercise 19. Let N be a finite normal subgroup of G. Prove there is a normal subgroup M of G such that [G:M] is finite and nm = mn for all $n \in N$ and $m \in M$.

(Hint: You may use the fact that the centralizer $C(h) := \{g \in G \mid ghg^{-1} = h\}$ is a subgroup of G.)

Exercise 20. Show that every finite group with more than two elements has a nontrivial automorphism.

Exercise 21. Suppose G_1 and G_2 are groups, with identity elements e_1 and e_2 , respectively. Prove that if $\phi: G_1 \to G_2$ is an isomorphism, then $\phi(e_1) = e_2$.

Exercise 22. Suppose A and B are subgroups of a group G, and suppose B is of finite index in G.

- (a) Show that the index of $A \cap B \leq A$ is finite, and in fact $|A:A \cap B| \leq |G:B|$. Hint: Find a set map $A/A \cap B \to G/B$.
- (b) Prove that equality holds in (a) if and only if G = AB.

Exercise 23. Let G be a group. For each $a \in G$, let γ_a denote the automorphism of G defined by $\gamma_a(b) = aba^{-1}$ for all $b \in G$. The set $\text{Inn}(G) = \{\gamma_a : a \in G\}$ is a subgroup of the automorphism group of G, called the subgroup of **inner automorphisms**.

Prove that Inn(G) is isomorphic to G/Z(G), where Z(G) is the center of G.

Exercise 24. Let G be a group of order 2p, where p is an odd prime. Prove G contains a nontrivial, proper normal subgroup.

Exercise 25. Prove from the definition along that there are no nonabelian groups of order less than 5.

Exercise 26. Let G be a group and $H, K \subseteq G$ be normal subgroups with $H \cap K = \{e\}$. Show that each element in H commutes with every element in K.

Exercise 27. Let G be a group and N a normal subgroup of G. Let aN denote the left coset defined by $a \in G$, and consider the binary operation

$$G/N \times G/N \to G/N$$

given by $(aN, bN) \mapsto abN$.

- (a) Show the operation is well defined.
- (b) Show the operation is well defined only if the subgroup N is normal.

Exercise 28. Let G be a group, $H \leq G$ a subgroup that is not normal. Prove there exist cosets Ha and Hb such that $HaHb \neq Hab$.

Exercise 29. Let H be a subgroup of a group G. The **normalizer** of H in G is the set $\mathbb{N}_G(H) = \{g \in G \mid gH = Hg\}$.

- (a) Prove $\mathbb{N}_G(H)$ is a subgroup of G containing H.
- (b) Prove $\mathbb{N}_G(H)$ is the largest subgroup of G in which H is normal.

Exercise 30. Let G be a group and suppose $H \leq G$. The **normalizer** of H in G is defined to be $N(H) = \{g \in G \mid gH = Hg\}$ and the **centralizer** of H in G is defined to be $C(H) = \{g \in G \mid gh = hg \text{ for all } h \in H\}.$

- (a) Prove that N(H) is a subgroup of G.
- (b) Prove that C(H) is a normal subgroup of N(H) and that N(H)/C(H) is isomorphic to a subgroup of Aut(H).

Exercise 31. Suppose G is a cyclic group of order n, and $t \in G$ is a generator.

- (a) Give a positive integer d such that $t^{-1} = t^d$.
- (b) Let c be an integer and let $m = \gcd(n, c)$. Prove that the order of t^c is $\frac{n}{m}$.

Exercise 32. Let G be a finite group. Prove from the definitions that there exists a number N such that $a^N = e$ for all $a \in G$.

Exercise 33. Suppose G is a group and $N \subseteq G$ is a finite normal subgroup. Prove that if G/N contains an element of order n, then G also contains an element of order n.

Exercise 34. Suppose $\phi: G \to G'$ is a surjective homomorphism, $H \leq G$ is a subgroup containing $\ker(\phi)$, and $H' = \phi(H)$. Prove $\phi^{-1}(H') = H$, where $\phi^{-1}(H') = \{g \in G \mid \phi(g) \in H'\}$. Make sure to state explicitly where each hypothesis is used.

Exercise 35. Let G be a group, and H, K be subgroups of G. Let $HK = \{hk \mid h \in H, k \in K\}$ denote the set product. Prove that HK is a group if and only if HK = KH.

Exercise 36. Suppose G is a nontrivial finite group and $H, K \subseteq G$ are normal subgroups with gcd(|H|, |K|) = 1.

- (a) Define a nontrivial group homomorphism $\phi: G \to G/H \times G/K$
- (b) Prove G is isomorphic to a subgroup of $G/H \times G/K$.
- (c) Suppose gcd(m, n) = 1. Prove $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$.

Exercise 37. Suppose G is a group, H and K are normal subgroups of G, and $H \leq K$.

- (a) Define a group homomorphism from K to G/H.
- (b) Compute the kernel of the homomorphism in (a), and apply the First Isomorphism Theorem.

Exercise 38. Let G be a finite group and Z(G) denote its center.

- (a) Prove that if G/Z(G) is cyclic, then G is abelian.
- (b) Prove that if G is nonabelian, then $|Z(G)| \leq \frac{1}{4}|G|$.

Exercise 39. Let G be a group, $m \in \mathbb{N}$, and $g \in G$ be an element such that $g^m = e$. Prove that $o(g) \mid m$, where o(g) is the order of g.

Exercise 40.

- (a) Show that if G is any group (not necessarily finite) and H is a subgroup, then G is a disjoint union of left cosets of H.
- (b) State and prove Lagrange's Theorem for finite groups.

Exercise 41. Let G be a group and $H \leq G$ a subgroup. For each coset aH of H in G, define the set

$$G_{aH} = \{ b \in G \mid baH = aH \}.$$

- (a) Prove that G_{aH} is a subgroup of G.
- (b) Suppose that H is normal in G. Prove that $G_{aH} = H$.

Exercise 42. Let G be a group of order 2n for some positive integer n > 1.

- (a) Prove there exists a subgroup K of G of order 2.
- (b) Suppose K in (a) is a *normal* subgroup. Prove that K is contained in the center Z(G). (Recall $Z(G) = \{a \in G \mid ab = ba \text{ for all } b \in G\}$.)

Exercise 43. The additive group $\mathbb{Z} = (\mathbb{Z}, +)$ of rational integers is a subgroup of the additive group $\mathbb{Q} = (\mathbb{Q}, +)$. Show that \mathbb{Z} has infinite index in \mathbb{Q} .

§ Template Problems

Exercise 44. Let G and H be groups of order 10 and 15, respectively. Prove that if there is a nontrivial homomorphism $\phi: G \to H$, then G is abelian.

Exercise 45. Let n be a number between 0 and 10. Compute n^{111} (mod 11), expressing your answer as a number between 0 and 10. Give as detailed a proof as you can, justifying every step, no matter how trivial you think it is.

Exercise 46. Let S_n denote the symmetric group on n letters.

- (a) Is the element $(1234)(25346)(153247) \in S_7$ even or odd? Indicate your reasoning.
- (b) Find the order of $(134)(243)(134) \in S_4$. Show all work.
- (c) Write $(1523)(2134)(1523)^{-1} \in S_5$ in disjoint cycle form. Show all work.

Exercise 47. Determine with proof the automorphism group Aut(V) of the Klein 4-group $V = \{e, a, b, ab\}$. To what familiar group is it isomorphic?

Exercise 48. Determine the number of group homomorphisms ϕ between the given groups. Here K_4 denotes the Klein four-group (also known as $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$) and S_3 denotes the symmetric group on three elements.

- (a) $\phi: K_4 \to \mathbb{Z}/2\mathbb{Z}$
- (b) $\phi: \mathbb{Z}/2\mathbb{Z} \to K_4$
- (c) $\phi: S_3 \to K_4$
- (d) $\phi: K_4 \to S_3$

Exercise 49. Explicitly list all group homomorphisms $f: \mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/12\mathbb{Z}$.

Exercise 50. Let C be a (possibly infinite) cyclic group, and let Aut(C) and Inn(C) be the groups of automorphisms and inner automorphisms, respectively. (Recall an automorphism γ is **inner** if it is given by conjugation: $\gamma(b) = aba^{-1}$ for some $a \in C$.)

- (a) Describe Aut(C) and Inn(C) in familiar terms, as groups you would study in a first algebra course. Prove your result. (*Hint:* Where do generators go?)
- (b) Write $\operatorname{Aut}(\mathbb{Z}_{12})$ down explicitly, giving its generic name and computing the order of every element. Show all work.

Exercise 51. Let A_5 denote the alternating group on a 5-element set $\{1, 2, 3, 4, 5\}$. The set of automorphisms of A_5 form a group, denoted $\operatorname{Aut}(A_5)$. The group of **conjugations** of A_5 , denoted $\operatorname{Conj}(A_5)$, is the subgroup of $\operatorname{Aut}(A_5)$ consisting of automorphisms of the form $\gamma_s := s(-)s^{-1}$ where $s \in A_5$. Explicitly, $\gamma_s(x) = sxs^{-1}$ for any $x \in A_5$.

- (a) Prove that the function $\gamma: A_5 \to \operatorname{Conj}(A_5)$, taking $s \in A_5$ to γ_s , is a surjective homomorphism.
- (b) Prove that A_5 is isomorphic to $Conj(A_5)$.

Exercise 52. Suppose H is a group of order 15. Prove there does not exist a nontrivial group homomorphism $\phi: D_5 \to H$, where D_5 is the dihedral group with ten elements.

Exercise 53. Let S_7 denote the symmetric group.

- (a) Give an example of two non-conjugate elements of S_7 that have the same order.
- (b) If $g \in S_7$ has maximal order, what is the order of g?
- (c) Does the element g that you found in part (b) lie in A_7 ? Fully justify your answer.
- (d) Determine whether the set $\{h \in S_7 \mid |h| = |g|\}$ is a single conjugacy class in S_7 , where g is the element you found in part (b).

Exercise 54. Let G be the additive group \mathbb{Z}_{2020} and let $H \subseteq G$ be the subset consisting of those elements with order dividing 20.

- (a) Prove H is a subgroup of G.
- (b) Find an explicit generator for H and determine its order.

Exercise 55. Let G denote the set of invertible 2×2 matrices with values in a field. Prove G is a group by defining a group law, identity element, and verifying the axioms. Credit is based on completeness.

Ring Theory

§ Pool Problems

Exercise 56. Consider the additive group of integers **Z**.

- (a) Prove that every subgroup of **Z** is cyclic.
- (b) Prove that every homomorphic image of \mathbf{Z} is cyclic.
- (c) Consider the ring **Z**. Exhibit a prime ideal of **Z** that is not maximal.

Exercise 57. Let R be an integral domain. Suppose a and b are non-associate irreducible elements in R, and the ideal (a, b) generated by a and b is a proper ideal. Show that R is not a principal ideal domain (PID).

Exercise 58. Let R be a commutative ring with 1. Suppose that for every $a \in R$ there exists $n \ge 2$ such that $a^n = a$. Show that every prime ideal of R is maximal.

Exercise 59. Let R be a commutative ring with 1, and $\sigma: R \to R$ be a ring automorphism.

- (a) Show that $F = \{r \in R \mid \sigma(r) = r\}$ is a subring of R with 1.
- (b) Show that if σ^2 is the identity map on R, then each element of R is the root of a monic polynomial of degree 2 in F[x], where F is as in (a).

Exercise 60. Suppose R is a ring such that $r^2 = r$ for every $r \in R$.

- (a) Prove that r = -r for every $r \in R$.
- (b) Show that R must be commutative. Hint: Consider $(a + b)^2$.

Exercise 61. Let R be a commutative ring with 1. The **characteristic** char(R) of R is the unique integer $n \ge 0$ such that $\langle n \rangle \subset \mathbf{Z}$ is the kernel of the homomorphism $\theta : \mathbf{Z} \to R$ defined by

$$\theta(m) = \begin{cases} \underbrace{1_R + \dots + 1_R}, & m \ge 0 \\ \underbrace{-1_R + \dots + -1_R}, & m < 0 \end{cases}.$$

- (a) Prove that if $f: R \to S$ is a monomorphism of commutative rings with 1, then $\operatorname{char}(R) = \operatorname{char}(S)$.
- (b) Give an example showing that char(R) is not always preserved by ring homomorphisms.

- Exercise 62. (a) Prove that for every commutative ring with unity R, there is a unique ring homomorphism $\phi_R : \mathbf{Z} \to R$, and that $\ker(\phi_R) = \langle d_R \rangle$ for a unique nonnegative integer d_R . The number d_R is called the **characteristic** of R, denoted $\operatorname{char}(R)$.
 - (b) Suppose F_1 and F_2 are fields for which there exists a ring homomorphism $f: F_1 \to F_2$. Prove that $\operatorname{char}(F_1) = \operatorname{char}(F_2)$.

Exercise 63. Let A be a commutative ring with 1. The **dimension** of A is the maximal length d of a chain of prime ideals $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_d$. Prove that if A is a PID, then $\dim(A) \leq 1$.

Exercise 64. Prove that every Euclidean domain is a principal ideal domain.

Exercise 65. Let F be a field and let α generate a field extension of F of degree 5. Prove that α^2 generates the same extension.

Exercise 66. Let R be a commutative ring with 1. Use theorems in ring theory to prove:

- (a) $\langle x \rangle$ is a prime ideal in R[x] if and only if R is an integral domain.
- (b) $\langle x \rangle$ is a maximal ideal in R[x] if and only if R is a field.

Exercise 67. Let F be a field and F[x] the polynomial ring, which is a PID. Let

$$R = \{ f \in F[x] : f' \in (x) \},\$$

where $(x) \subset F[x]$ and f' is the formal derivative.

- (a) Prove that x^2 and x^3 are irreducible elements of R.
- (b) Let (x^2, x^3) be the ideal generated by x^2 and x^3 . Prove it is a proper ideal of R.
- (c) Prove that (x^2, x^3) is not a principal ideal of R.

Exercise 68. Let R be a commutative ring with 1 and $e \in R$ an idempotent element $(e^2 = e)$.

- (a) Prove that 1 e is idempotent.
- (b) If $e \neq 0, 1$, show that Re and R(1-e) are proper ideals of R.
- (c) Prove that $R \cong Re \times R(1-e)$.

Exercise 69. An element r of a ring R is idempotent if $r^2 = r$. Suppose R is commutative with 1 and contains an idempotent e.

- (a) Prove 1 e is idempotent.
- (b) Prove eR and (1-e)R are ideals and $R \cong eR \times (1-e)R$.
- (c) Prove that if R has a unique maximal ideal, the only idempotents are 0 and 1.

Exercise 70. Prove that if $\phi: R \to S$ is a surjective ring homomorphism between commutative rings with 1, then $\phi(1_R) = 1_S$.

Exercise 71. Suppose R is a PID. Prove that an ideal $I \subset R$ is maximal if and only if $I = \langle p \rangle$ for a prime $p \in R$.

Exercise 72. Let R be a commutative ring.

- (a) Prove that the set N of all nilpotent elements of R is an ideal.
- (b) Prove that R/N has no nonzero nilpotent elements.
- (c) Show that N is contained in every prime ideal of R.

Exercise 73. Let R be a commutative ring with 1. An element $n \in R$ is nilpotent if $n^k = 0$ for some $k \in \mathbb{N}$.

- (a) Show that if n is nilpotent, then 1 n is a unit.
- (b) Give an example of a commutative ring with 1 with no nonzero nilpotent elements, but not an integral domain.

Exercise 74. Let *D* be a PID. Prove that every proper nonzero prime ideal is maximal.

Exercise 75. Let $I \subseteq \mathbf{Z}[x]$ be the set of polynomials with even constant term.

- (a) Prove that I is an ideal.
- (b) Prove that I is not a principal ideal.

Exercise 76. Let R be a commutative ring with 1.

- (a) Define what it means for an element to be **prime** and **irreducible**.
- (b) Prove that if R is an integral domain, every prime element is irreducible.

Exercise 77. Let R be a commutative ring with 1, $I \subseteq R$ an ideal, and $\pi : R \to R/I$ the natural projection.

- (a) Show that if \wp is a prime ideal of R/I, then $\pi^{-1}(\wp)$ is a prime ideal of R.
- (b) Show that the map $\wp \mapsto \pi^{-1}(\wp)$ is injective on prime ideals of R/I.

Exercise 78. Let A be a commutative ring with 1. We say A is **Boolean** if $a^2 = a$ for every $a \in A$. Prove that in a Boolean ring:

- (a) 2a = 0 for all $a \in A$.
- (b) If I is a prime ideal, then A/I has two elements, so I is maximal.
- (c) If I = (a, b), then I can be generated by a + b + ab. Conclude every finitely generated ideal is principal.

Exercise 79. Let R be a commutative ring. For $X \subseteq R$ nonempty, define the **annihilator** $ann(X) = \{a \in R \mid ax = 0 \text{ for all } x \in X\}.$

- (a) Prove that ann(X) is an ideal.
- (b) Prove that $X \subseteq \operatorname{ann}(\operatorname{ann}(X))$.

Exercise 80. Suppose $\phi: R \to S$ is a ring homomorphism, and S has no nonzero zero-divisors. Prove that $\ker(\phi)$ is a prime ideal.

Exercise 81. Let R be a commutative ring with 1, and $N = \{a \in R \mid a^n = 0 \text{ for some } n\}$. Let [b] be the image of $b \in R$ in R/N. Prove that if $[a]^m = 0$ in R/N, then [a] = [0].

Exercise 82. Let R be a commutative ring. The **nilradical** of R is $N = \{r \in R \mid r^n = 0 \text{ for some } n \in \mathbb{N}\}.$

- (a) Prove that N is an ideal of R.
- (b) Prove that N is contained in the intersection of all prime ideals of R.

§ Template Problems

Exercise 83. Suppose I and J are ideals in a commutative ring R such that R = I + J.

(a) Prove that the map $f: R \to R/I \times R/J$ given by f(x) = (x+I, x+J) induces the isomorphism

$$R/IJ \cong R/I \times R/J$$
.

(b) Prove that $(\mathbb{Z}/3\mathbb{Z})[x]/(x^3 - x^2 - 1) \cong (\mathbb{Z}/3\mathbb{Z})[x]/(x^3 + x + 1)$. (*Hint: Use part (a).*)

Exercise 84. Let $\mathcal{C}([0,1])$ be the commutative ring of continuous real-valued functions on [0,1], and let

$$M = \{ f \in \mathcal{C}([0,1]) \mid f(1/2) = 0 \}.$$

Prove that M is a maximal ideal.

Exercise 85. Let $z \in \mathbb{C}$ and $\epsilon_z : \mathbb{R}[x] \to \mathbb{C}$ be the evaluation homomorphism $\epsilon_z(p) = p(z)$.

- (a) Show that $\ker(\epsilon_z)$ is a prime ideal.
- (b) Compute $\ker(\epsilon_{1+i})$, $\operatorname{im}(\epsilon_{1+i})$ and state the conclusion of the First Isomorphism Theorem applied to ϵ_{1+i} .

Exercise 86. Let $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$, and let $R \subset M_2(\mathbb{Z})$ be the ring of all 2×2 matrices of the form $\begin{bmatrix} a & b \\ 2b & a \end{bmatrix}$. Prove that $\mathbb{Z}[\sqrt{2}]$ is isomorphic to R.

Exercise 87. Let $f(x) = x^3 + x + 1 \in \mathbb{Z}_5[x]$.

- (a) Prove that f(x) is irreducible.
- (b) Prove that $\langle f(x) \rangle$ is a maximal ideal.
- (c) Determine the cardinality of $\mathbb{Z}_5[x]/\langle f(x)\rangle$ and justify.

Exercise 88. (a) Write down an irreducible cubic polynomial over \mathbb{F}_2 .

(b) Construct a field with exactly 8 elements and write its multiplication table.

Exercise 89. Let $\varepsilon : \mathbb{R}[x] \to \mathbb{C}$ be evaluation at *i*.

- (a) Prove that $ker(\varepsilon) = (x^2 + 1) \subseteq \mathbb{R}[x]$.
- (b) Prove that $(x^2 + 1)$ is a maximal ideal in $\mathbb{R}[x]$.

Exercise 90. Let $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}, i^2 = -1\}.$

(a) Prove there is no ring homomorphism $\mathbb{Z}[i] \to \mathbb{Z}_{19}$, but there is one to \mathbb{Z}_{13} .

Exercise 91. Let \mathbb{Z}_n be integers modulo n, and consider the ring homomorphism

$$\mathbb{Z}_{28} \to \mathbb{Z}_4 \times \mathbb{Z}_7, \quad [m]_{28} \mapsto ([m]_4, [m]_7),$$

which is an isomorphism by the Chinese Remainder Theorem. Let \mathbb{Z}_n^{\times} denote the group of units. Prove that $\mathbb{Z}_{28}^{\times} \cong \mathbb{Z}_4^{\times} \times \mathbb{Z}_7^{\times}$.

Exercise 92. Let $k \subset K$ be fields, and k[X] the polynomial ring. The **evaluation** at $z \in K$ is $\varepsilon : k[X] \to K$, $\varepsilon(f(X)) = f(z)$. Prove that if ε is not injective, then $\varepsilon(k[X])$ is a field.

Exercise 93. Let i be the imaginary unit, $\mathbb{Z}[i]$ the Gaussian integers, and \mathbb{Z}_2 the finite field with two elements.

- (a) Define a ring homomorphism $\mathbb{Z}[i] \to \mathbb{Z}_2$ and prove it is a homomorphism.
- (b) Find a generator for the kernel of your homomorphism with proof.

Exercise 94. Let $\mathbb{Z}[i]$ be the Gaussian integers.

- (a) Prove there exists a nonzero ring homomorphism $\mathbb{Z}[i] \to \mathbb{Z}_5$.
- (b) Compute the kernel explicitly and state the conclusion given by the First Isomorphism Theorem. (*Hint: The kernel requires two generators.*)

Exercise 95. Let $\mathbb{Z}_2[x]/\langle x^3+x+1\rangle$ be a field of 8 elements with natural projection $\pi:\mathbb{Z}_2[x]\to\mathbb{Z}_2[x]/\langle x^3+x+1\rangle$.

- (a) Write down eight distinct coset representatives.
- (b) Determine the multiplicative inverse of $\pi(x)$ in terms of your coset representatives.

Exercise 96. Let \mathbb{F}_9 be the field of nine elements.

- (a) Show that each nonzero $a \in \mathbb{F}_9$ is a root of $X^3 1 = (X 1)(X^2 + 1)(X^4 + 1) \in \mathbb{F}_3[X]$.
- (b) Use the Pigeonhole Principle to prove that \mathbb{F}_9 has an element of multiplicative order 8, including a justification for applying the principle.

Exercise 97. Let $\mathbb{Z}[X]$ be the ring of polynomials with integer coefficients, and let $K \subset \mathbb{Z}[X]$ be the kernel of the "evaluation at 1" map.

Linear Algebra

§ Pool Problems

Exercise 98.

- (a) Give an explicit example (with proof) showing that the union of two subspaces (of a given vector space) is not necessarily a subspace.
- (b) Suppose U_1 and U_2 are subspaces of a vector space V. Recall that their **sum** is defined to be the set $U_1 + U_2 = \{u_1 + u_2 \mid u_1 \in U_1, u_2 \in U_2\}$. Prove $U_1 + U_2$ is a subspace of V containing U_1 and U_2 .

Exercise 99. Suppose F is a field and A is an $n \times n$ matrix over F. Suppose further that A possesses distinct eigenvalues λ_1 and λ_2 with dim Null $(A - \lambda_1 I_n) = n - 1$. Prove A is diagonalizable.

Exercise 100. Let $\phi: V \to W$ be a surjective linear transformation of finite-dimensional linear spaces. Show that there is a $U \subseteq V$ such that $V = \ker(\phi) \oplus U$ and $\phi \mid_U : U \to W$ is an isomorphism. (Note that V is not assumed to be an inner-product space; also note that $\ker(\phi)$ is sometimes referred to as the **null space** of ϕ ; finally, $\phi \mid_U$ denotes the restriction of ϕ to U.)

Exercise 101. Suppose V is a finite-dimensional real vector space and $T: V \to V$ is a linear transformation. Prove that T has at most dim(range T) distinct nonzero eigenvalues.

Exercise 102. Let $T:V\to V$ be a linear transformation on a finite-dimensional vector space. Prove that if $T^2=T$, then

$$V = \ker(T) \oplus \operatorname{im}(T).$$

Exercise 103. Let \mathbb{R}^3 denote the 3-dimensional vector space, and let $\mathbf{v} = (a, b, c)$ be a fixed nonzero vector. The maps $C : \mathbb{R}^3 \to \mathbb{R}^3$ and $D : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $C(\mathbf{w}) = \mathbf{v} \times \mathbf{w}$ and $D(\mathbf{w}) = (\mathbf{v} \cdot \mathbf{w})\mathbf{v}$ are linear transformations.

- (a) Determine the eigenvalues of C and D.
- (b) Determine the eigenspaces of C and D as subspaces of \mathbb{R}^3 , in terms of a, b, c.
- (c) Find a matrix for C with respect to the standard basis.

Show all work and explain reasoning.

Exercise 104. Suppose A is a real $n \times n$ matrix that satisfies $A^2 \mathbf{v} = 2A\mathbf{v}$ for every $\mathbf{v} \in \mathbb{R}^n$.

- (a) Show that the only possible eigenvalues of A are 0 and 2.
- (b) For each $\lambda \in \mathbb{R}$, let E_{λ} denote the λ -eigenspace of A, i.e., $E_{\lambda} = \{ \mathbf{v} \in \mathbb{R}^n \mid A\mathbf{v} = \lambda\mathbf{v} \}$. Prove that $\mathbb{R}^n = E_0 \oplus E_2$. (*Hint:* For every vector \mathbf{v} one can write $\mathbf{v} = (\mathbf{v} \frac{1}{2}A\mathbf{v}) + \frac{1}{2}A\mathbf{v}$.)

Exercise 105. Suppose $T : \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation with distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_m$, and let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ be corresponding eigenvectors. Prove $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ are linearly independent.

Exercise 106. Let $S: V \to V$ and $T: V \to V$ be linear transformations that commute, i.e., $S \circ T = T \circ S$. Let $\mathbf{v} \in V$ be an eigenvector of S such that $T(\mathbf{v}) \neq 0$. Prove that $T(\mathbf{v})$ is also an eigenvector of S.

Exercise 107. Suppose A is a 5×5 matrix and $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are eigenvectors of A with distinct eigenvalues. Prove $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a linearly independent set. *Hint*: Consider a minimal linear dependence relation.

Exercise 108. Suppose V is a vector space, and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are in V. Prove that either $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly independent, or there exists a number $k \leq n$ such that \mathbf{v}_k is a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_{k-1}$.

Exercise 109. Let $M_4(\mathbb{R})$ denote the 16-dimensional real vector space of 4×4 matrices with real entries, in which the vectors are represented as matrices. Let $T: M_4(\mathbb{R}) \to M_4(\mathbb{R})$ be the linear transformation defined by $T(A) = A - A^{\top}$.

- (a) Determine the dimension of ker(T).
- (b) Determine the dimension of im(T).

Exercise 110. Let A be a real $n \times n$ matrix and let A^{\top} denote its transpose.

- (a) Prove that $(A\mathbf{v}) \cdot \mathbf{w} = \mathbf{v} \cdot (A^{\top}\mathbf{w})$ for all vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$. Hint: Recall that the dot product $\mathbf{u} \cdot \mathbf{v}$ equals the matrix product $\mathbf{u}^{\top}\mathbf{v}$.
- (b) Suppose now A is also symmetric, i.e., that $A^{\top} = A$. Also suppose \mathbf{v} and \mathbf{w} are eigenvectors of A with different eigenvalues. Prove that \mathbf{v} and \mathbf{w} are orthogonal.

Exercise 111. A real $n \times n$ matrix A is called **skew-symmetric** if $A^{\top} = -A$. Let V_n be the set of all skew-symmetric matrices in $M_n(\mathbb{R})$. Recall that $M_n(\mathbb{R})$ is an n^2 -dimensional \mathbb{R} -vector space with standard basis $\{e_{ij} \mid 1 \leq i, j \leq n\}$, where e_{ij} is the $n \times n$ matrix with a 1 in the (i, j)-position and zeros everywhere else.

- (a) Show V_n is a subspace of $M_n(\mathbb{R})$.
- (b) Find an ordered basis \mathcal{B} for the space V_3 of all skew-symmetric 3×3 matrices.

§ Template Problems

Exercise 112. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation that rotates counterclockwise around the z-axis by $\frac{2\pi}{3}$.

- (a) Write the matrix for T with respect to the standard basis $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$.
- (b) Write the matrix for T with respect to the basis $\left\{ \begin{bmatrix} \frac{\sqrt{3}}{2} \\ -\frac{1}{2} \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$.
- (c) Determine all (complex) eigenvalues of T.
- (d) Is T diagonalizable over \mathbb{C} ? Justify your answer.

Exercise 113. Let V denote the real vector space of polynomials in x of degree at most 3. Let $\mathcal{B} = \{1, x, x^2, x^3\}$ be a basis for V and $T: V \to V$ be the function defined by T(f(x)) = f(x) + f'(x).

- (a) Prove that T is a linear transformation.
- (b) Find $[T]_{\mathcal{B}}$, the matrix representation for T in terms of the basis \mathcal{B} .
- (c) Is T diagonalizable? If yes, find a matrix A so that $A[T]_{\mathcal{B}}A^{-1}$ is diagonal; otherwise explain why T is not diagonalizable.

Exercise 114. Let $M_n(\mathbf{R})$ be the vector space of all $n \times n$ matrices with real entries. We say that $A, B \in M_n(\mathbf{R})$ commute if AB = BA.

- (a) Fix $A \in M_n(\mathbf{R})$. Prove that the set of all matrices in $M_n(\mathbf{R})$ that commute with A is a subspace of $M_n(\mathbf{R})$.
- (b) Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \in M_2(\mathbf{R})$ and let $W \subseteq M_2(\mathbf{R})$ be the subspace of all matrices that commute with A. Find a basis of W.

Exercise 115. Let $V \subset \mathbf{R}^5$ be the subspace defined by the equation

$$x_1 - 2x_2 + 3x_3 - 4x_4 + 5x_5 = 0.$$

- (a) Find (with justification) a basis for V.
- (b) Find (with justification) a basis for V^{\perp} , the subspace of \mathbf{R}^5 orthogonal to V under the usual dot product.

Exercise 116. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x+y \\ 2z-x \\ y+2z \end{bmatrix}.$$

- (a) Find the matrix that represents T with respect to the standard basis for \mathbb{R}^3 .
- (b) Find a basis for the kernel of T.
- (c) Determine the rank of T.

Exercise 117. Let
$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$
.

- (a) Determine whether A is diagonalizable, and if so, give its diagonal form along with a diagonalizing matrix.
- (b) Compute A^{42} . Remember to show all work.

Exercise 118. Let
$$A = \begin{bmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix}$$
.

- (a) Compute the characteristic polynomial $p_A(x)$ of A.
- (b) For each eigenvalue λ of A, find a basis for the eigenspace E_{λ} .
- (c) Determine if A is diagonalizable. If so, give matrices P and B such that $P^{-1}AP = B$ and B is diagonal. If no, explain carefully why A is not diagonalizable.

Exercise 119. Let
$$A = \begin{bmatrix} 6 & -2 & -1 \\ 10 & -3 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$
.

- (a) Find bases for the eigenspaces of A.
- (b) Determine if A is diagonalizable. If so, give an invertible matrix P and diagonal matrix D such that $P^{-1}AP = D$. If not, explain why not.

Exercise 120. Let $W \subset \mathbf{R}^5$ be the subspace spanned by the set of vectors

$$\{\langle 1, -2, 0, 2, -1 \rangle, \langle -2, 4, -1, 1, 2 \rangle, \langle 0, 1, 2, -2, 1 \rangle\}.$$

- (a) Compute the dimension of W.
- (b) Determine the dimension of W^{\perp} , the perpendicular subspace in \mathbf{R}^5 .
- (c) Find a basis for W^{\perp} .

Exercise 121. Let P_3 be the real vector space of all real polynomials of degree three or less. Define $L: P_3 \to P_3$ by L(p(x)) = p(x) + p(-x).

- (a) Prove L is a linear transformation.
- (b) Find a basis for the null space of L.
- (c) Compute the dimension of the image of L.

Exercise 122. Let $V = \{a_0 + a_1\sqrt[3]{2} + a_2\sqrt[3]{4} \mid a_0, a_1, a_2 \in \mathbf{Q}\} \subseteq \mathbf{R}$. This set is a vector space over \mathbf{Q} .

- (a) Verify V is closed under product (using the usual product operation in \mathbf{R}).
- (b) Let $T: V \to V$ be the linear transformation defined by $T(v) = (\sqrt[3]{2} + \sqrt[3]{4})v$. Find the matrix that represents T with respect to the basis $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ for V.
- (c) Determine the characteristic polynomial for T.

Exercise 123. Suppose $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for \mathbf{R}^3 and $T: \mathbf{R}^3 \to \mathbf{R}^3$ is a linear transformation satisfying

$$T(\mathbf{v}_1) = 4\mathbf{v}_1 + 2\mathbf{v}_2, \quad T(\mathbf{v}_2) = 5\mathbf{v}_2, \quad T(\mathbf{v}_3) = -2\mathbf{v}_1 + 4\mathbf{v}_2 + 5\mathbf{v}_3.$$

Determine the eigenvalues of T and find a basis for each eigenspace.

Exercise 124. Let $W \subset \mathbb{R}^5$ be the space spanned by the vectors

$$\left\{ \begin{bmatrix} 1 \\ -2 \\ 0 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -2 \\ 4 \\ -1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \\ -2 \\ 1 \end{bmatrix} \right\}.$$

- (a) Compute the dimension of W.
- (b) Let $W^{\perp} = \{ \mathbf{v} \in \mathbf{R}^5 \mid \mathbf{v} \cdot \mathbf{w} = 0 \text{ for all } \mathbf{w} \in W \}$. Determine the dimension of W^{\perp} , and explain why this follows immediately from (a) using a theorem.
- (c) Find a basis for W^{\perp} .

Exercise 125. Let L be the line in \mathbb{R}^2 defined by y = -3x, and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that orthogonally projects onto L and then stretches along L by a factor of two.

- (a) Find the eigenvalues and an eigenbasis \mathcal{B} for T.
- (b) Determine the matrix for T with respect to the basis \mathcal{B} .
- (c) Determine the matrix for T with respect to the standard basis.

Exercise 126. Let $T: \mathbf{R}^3 \to \mathbf{R}^3$ be the orthogonal projection to a 1-dimensional linear subspace $L \subset \mathbf{R}^3$.

- (a) List the eigenvalues of T.
- (b) Write the characteristic polynomial $p_T(x)$ for T.
- (c) Is T diagonalizable? Justify your answer.

Exercise 127. Let L be the line parameterized by L(t) = (2t, -3t, t) for $t \in \mathbf{R}$, and let $T : \mathbf{R}^3 \to \mathbf{R}^3$ be the linear transformation that is orthogonal projection onto L.

- (a) Describe $\ker(T)$ and $\operatorname{im}(T)$, either implicitly (using equations in x, y, z) or parametrically.
- (b) List the eigenvalues of T and their geometric multiplicities.
- (c) Find a basis for each eigenspace of T.
- (d) Let A be the matrix for T with respect to the standard basis. Find a diagonal matrix B and an invertible matrix S such that $B = S^{-1}AS$. (You do not have to compute A.)

Exercise 128. Let $T: \mathbf{R}^4 \to \mathbf{R}^4$ be orthogonal projection to the 2-dimensional plane P spanned by the vectors $\mathbf{v} = (2, 0, 1, 0)$ and $\mathbf{w} = (-1, 0, 2, 0)$.

- (a) Find (with proof) all eigenvalues and eigenvectors, along with their geometric and algebraic multiplicities.
- (b) Find the matrix representing T with respect to the standard basis. Is this matrix diagonalizable? Why or why not?

Exercise 129. Let $a, b \in \mathbf{R}$ and $T : \mathbf{R}^3 \to \mathbf{R}^3$ be the linear transformation that is orthogonal projection onto the plane z = ax + by (with respect to the usual Euclidean inner-product on \mathbf{R}^3).

- (a) Find the eigenvalues of T and bases for the corresponding eigenspaces.
- (b) Is T diagonalizable? Justify.
- (c) What is the characteristic polynomial of T?

Exercise 130. Let $T: \mathbf{R}^3 \to \mathbf{R}^3$ be the orthogonal projection onto the plane z = x + y, with respect to the standard Euclidean inner product.

- (a) Write the matrix representation of T with respect to the standard basis.
- (b) Is T diagonalizable? Justify your answer.

Exercise 131. Let $T: \mathbf{R}^3 \to \mathbf{R}^3$ be the linear transformation that expands radially by a factor of three around the line parameterized by $L(t) = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix} t$, leaving the line itself fixed.

- (a) Find an eigenbasis for T and provide the matrix representation of T with respect to that basis.
- (b) Provide the matrix representation of T with respect to the standard basis.

Exercise 132. Let $a, b \in \mathbf{R}$ and $T : \mathbf{R}^3 \to \mathbf{R}^3$ be the linear transformation which is reflection across the plane z = ax + by.

- (a) Find the eigenvalues of T and for each find a basis for the corresponding eigenspace.
- (b) Is T diagonalizable? Justify.
- (c) What is the characteristic polynomial of T?
- (d) What is the minimal polynomial of T?