МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Базы данных»

Тема: Проектирование ER модели и структуры БД по текстовому описанию предметной области

Студентка гр. 1304	Чернякова В.А.
Преподаватель	Заславский М.М.

Санкт-Петербург

Цель работы.

Научиться проектировать ER модель и структуру БД по текстовому описанию предметной области.

Задание.

Вариант 3(25).

Пусть требуется создать программную систему, предназначенную для завуча школы. Она должна обеспечивать хранение сведений о каждом учителе, о предметах, которые он преподает, номере закрепленного за ним кабинета, о расписании занятий. Существуют учителя, которые не имеют собственного кабинета. Об учениках должны храниться следующие сведения: фамилия и имя, в каком классе учится, какую оценку имеет в текущей четверти по каждому предмету. Завуч должен иметь возможность добавить сведения о новом учителе или ученике, внести в базу данных четвертные оценки учеников каждого класса по каждому предмету, удалить данные об уволившемся учителе и отчисленном из школы ученике, внести изменения в данные об учителях и учениках, в том числе поменять оценку ученика по тому или иному предмету. В задачу завуча входит также составление расписания. Завучу могут потребоваться следующие сведения:

- Какой предмет будет в заданном классе, в заданный день недели на заданном уроке?
 - Кто из учителей преподает в заданном классе?
 - В каком кабинете будет 5-й урок в среду у некоторого класса?
 - В каких классах преподает заданный предмет заданный учитель?
 - Расписание на заданный день недели для указанного класса?
 - Сколько учеников в указанном классе?

Нарисовать ER модель, структуру БД, содержащую названия полей, таблиц, связи, типы данных, ключи.

Проверить и обосновать, что реляционная модель соответствует НФБК.

Описать полученные модели, для чего нужна каждая сущность, почему такие связи и т.п.

Выполнение работы.

1. Составлена ER модель, представленная на рисунке 1.

Рисунок 1 – ER модель.

В модели созданы следующие сущности:

- Учитель. Атрибуты: фамилия, имя, отчество.
- Предмет. Атрибуты: название предмета.
- Кабинет. Атрибуты: номер кабинета.
- Ученик. Атрибуты: фамилия, имя.
- Успеваемость. Атрибуты: четверть, оценка.
- Класс. Атрибуты: номер класса, буква.
- Урок. Атрибуты: номер, время начала, время окончания.
- Расписание. Атрибуты: учебный день недели.

Связи между сущностями следующие.

- «Учитель» (1...N) и «Предмет» (1...N). Связь n:m, обязательная со всех сторон. Учитель преподает либо один предмет, либо несколько. Один и тот же предмет ведут несколько учителей, или один.
- «Учитель» (0...1) и «Кабинет» (0...1). Связь 1:1, класс принадлежности ни одной из сущности не является обязательным. Учитель может быть как закреплен за одним кабинетом, так и нет. За кабинетом либо закреплен один учитель, либо нет.
- «Ученик» (1...N) и «Класс» (1...1). Связь 1:п, класс принадлежности сущности «Ученик» является обязательным. Каждый ученик принадлежит к какому-либо классу. Класс обязательно имеет хотя бы одного ученика.
- «Ученик» (1...1) и «Успеваемость» (1...N). Связь 1:п, класс принадлежности сущности «Успеваемость» является обязательным. Успеваемость принадлежит какому-либо ученику. У ученика обязательно есть успеваемость в четверти.
- «Успеваемость» (1...N) и «Предмет» (1...1). Связь 1:п, класс принадлежности сущности «Успеваемость» является обязательным. Успеваемость соответствует предмету. Предмету обязательно соответствует хотя бы одна успеваемость учащегося в четверти.
- «Урок», «Предмет», «Учитель», «Кабинет», «Класс» для всех (1...1) и «Расписание» (1...N). Связь 1:п, класс принадлежности сущности «Расписание» является обязательным. Урок, предмет, учитель, кабинет и класс указываются в расписании. Расписание обязательно содержит следующие графы: урок, предмет, учитель, кабинет и класс.
 - 2. Разработана структура БД, представленная на рисунке 2.

Рисунок 2 – структура БД.

По правилам генерации отношений из ER-диаграмм были добавлены дополнительные сущности.

«Учитель» (1...N) и «Предмет» (1...N). Связь п:т, обязательная со всех сторон. Для такой бинарной связи независимо от класса принадлежности требуются 3 отношения (два объектных и одно связное). Теаcher subject – связная сущность предмет учителя. Какой предмет конкретно ведет каждый учитель.

«Учитель» (0...1) и «Кабинет» (0...1). Связь 1:1, класс принадлежности ни одной из сущности не является обязательным. Для такой бинарной связи требуется 3 отношения (по одному для каждой сущности — объектные, плюс еще одно - связное). Теаcher classroom — связная сущность кабинет учителя. Какому учителю принадлежит конкретный кабинет.

В таблице 1 описаны созданные в ходе проектирования БД отношения. Таблица 1 – описание отношений спроектированной БД.

Отношение	Первичный ключ(и)	Внешний ключ(и)	Другие атрибуты
Teacher	teacher_id: UNSIGNED INT		name: VARCHAR(50)
			surname: VARCHAR(50)

Отношение	Первичный ключ(и)	Внешний ключ(и)	Другие атрибуты
			patronymic:VARCHAR(50)
Subject	subject_id: UNSIGNED INT		name: VARCHAR(50)
Teacher	subject_id: UNSIGNED INT	subject_id: UNSIGNED INT	
subject	teacher_id: UNSIGNED INT	teacher_id: UNSIGNED INT	
Classroom	classroomnumber:		
	UNSIGNED INT		
Teacher	teacher_id: UNSIGNED INT	teacher_id: UNSIGNED INT	
classroom	class_number:UNSIGNED	class_number: UNSIGNED	
	INT	INT	
Student	student_id: UNSIGNED INT	class_id: UNSIGNED INT	name: VARCHAR(50)
			surname: VARCHAR(50)
Grade	grade_id:UNSIGNED INT	student_id: UNSIGNED INT	quater_number:
		subject_id: UNSIGNED INT	UNSIGNED INT
			mark: INT
Class	class_id: UNSIGNED INT		number: UNSIGNED INT
			letter: VARCHAR(1)
Lesson	lesson_number: UNSIGNED		start_time: TIME
	INT		end_time: TIME
Schedule	schedule_id: UNSIGNED	day_name: VARCHAR(20)	
	INT	lesson_number: UNSIGNED	
		INT	
		subject_id: UNSIGNED INT	
		teacher_id: UNSIGNED INT	
		classroom_number:	
		UNSIGNED INT	
		class_id: UNSIGNED INT	

3. Проверим и обоснуем, что реляционная модель соответствует НФБК. Функциональные зависимости:

• Teacher

teacher_id потенциальный ключ.

teacher_id → name, surname, patronymic

Условия задачи не ограничивают, что в школе могут работать учителя и с одинаковым ФИО.

Данное отношение находится в НФБК.

• Subject

subject_id, name потенциальный ключ.

 $subject_id \rightarrow name$

name → subject_id

Данное отношение находится в НФБК.

Условия задачи не ограничивают, что в течение учебного года название предмета может измениться, значит, name не первичным ключом.

• Teacher subject

Данное отношение исключает следующие проблемы, которые могли возникнуть.

В отношении Subject_id → teacher_id. В таком случае subject_id не является первичным ключом, теряется его уникальность. subject_id будет подходить для нескольких teacher_id.

В отношении Teacher. teacher_id → subject_id. В таком случае teacher_id не является первичным ключом, теряется его уникальность. teacher_id будет подходить для нескольких subject_id.

Таким образом, отношение Teacher subject, состоящее только из потенциальных ключей teacher_id и subject_id, находится в НФБК.

• Classroom

classroom number потенциальный ключ.

Отношение состоит только из потенциального ключа.

Данное отношение находится в НФБК.

• Teacher classroom

Данное отношение исключает следующие проблемы, которые могли возникнуть.

В отношении Classroom. classroom_number \rightarrow teacher_id. Потенциальный ключ classroom_number. Так как учитель может иметь только один класс, то возможно teacher_id \rightarrow classroom_number. Но тогда нарушается правило «Каждый атрибут, должен зависеть от ключа, полного ключа и ни от чего, кроме

ключа», и classroom_number не будет являться первичным ключом своего отношения.

В отношении Teacher. teacher_id \rightarrow classroom_number. Потенциальный ключ teacher_id. Так как учитель может иметь только один класс, то возможно classroom_number \rightarrow teacher_id, name, surname, patronymic. Но тогда нарушается правило «Каждый атрибут, должен зависеть от ключа, полного ключа и ни от чего, кроме ключа», и teacher_id не будет являться первичным ключом своего отношения.

Таким образом, отношение Teacher subject находится в НФБК.

• Student

student_id потенциальный ключ.

student_id → name, surname, class_id

Условия задачи не ограничивают, что в школе могут быть ученики с одинаковыми ФИ.

Данное отношение находится в НФБК.

Также class_id не может быть ключом, так как в одном классе учиться несколько учеников.

• Grade

grade_id, student_id, quarter_number, subject_id потенциальные ключи.
grade_id — student_id, quarter_number, subject_id, mark
student_id, quarter_number, subject_id — mark

Данное отношение находится в НФБК.

Атрибут mark в течение учебного года может изменяться, поэтому не является первичным ключом.

Hабор атрибутов student_id, quarter_number, subject_id также не может являться первичным ключом, так как quarter_number может изменяться.

Набор атрибутов student_id, subject_id также не могут быть первичными ключами, так как у одного студента отметки по разным предметам, по одному предмету у ученика может быть несколько оценок в разных четвертях, то есть отсутствует уникальная идентификация строк в таблице

• Class

class_id, number, letter потенциальные ключи.

class_id → number, letter

number, letter → class_id

Отношение находится в НФБК.

На параллели обычно несколько классов, значит, number не может быть первичным ключом. Про letter не исключено, что буква класса будет изменена, то есть также первичным ключом быть не может.

• Lesson

lesson_number, start_time потенциальный ключ.

lesson_number → start_time, end_time

start_time, end_time → lesson_number

Данное отношение находится в НФБК.

Каждый из атрибутов в отдельности, кроме lesson_number, может быть подвержен изменению. То есть первичным ключом набор данных атрибутов не может.

• Schedule.

schedule_id, day_name, lesson_number, subject_id, teacher_id, classroom_number, class_id потенциальные ключи.

schedule_id → day_name, lesson_number, subject_id, teacher_id, classroom_number, class_id

day_name, lesson_number, subject_id, teacher_id, classroom_number, class_id

→ schedule_id

Данное отношение находится в НФБК.

Каждый атрибут в отдельности, кроме schedule_id, и в совокупности не могут быть первичными ключами, так как в расписание всегда могут вносится коррективы и в один день проходит несколько уроков.

Таким образом, на основе представленных выше рассуждение можно сделать вывод, что спроектированная структура БД удовлетворяет НФБК. Так

как каждая нетривиальная и неприводимая слева функциональная зависимость имеет в качестве детерминанта некоторый потенциальный ключ.

В приложении А представлена ссылка на Pull Request с отчетом и изображениями ER модели и спроектированной БД.

Выводы.

В ходе лабораторной работы были разработаны ER модель и структура БД по текстовому описанию предметной области.

Изучены основные понятия ER-модели, изображение связей на них, правила генерации отношений из моделей.

Структура БД была проверена на соответствие НФБК – нормальной форме Бойса-Кодда. Для доказательства были рассмотрены и разобраны функциональные зависимости для каждого отношения.

ПРИЛОЖЕНИЕ А ССЫЛКИ

Ссылка на PR:

https://github.com/moevm/sql-2023-1304/pull/18