6.2 Factoring Trinomials with Leading Coefficient 1

If we have a polynomial of the form $x^2 + bx + c$, we can try to factor it using the "product-sum" method.

Say that we have a factored polynomial written as $(x + r_1)(x + r_2)$. We can FOIL this product and make a comparison with $x^2 + bx + c$.

$$(x + r_1)(x + r_2) = x^2 + r_2x + r_1x + r_1r_2$$

= $x^2 + (r_1 + r_2)x + r_1r_2$
= $x^2 + bx + c$

Looking at the above work, we can determine that $b = r_1 + r_2$ and $c = r_1 r_2$. This gives us the "product-sum" method of factoring.

Factoring with "Product-Sum"

- 1. Find two numbers that multiply to c and that add to b.
- 2. Determine the signs of each.
- 3. Write as the product of two binomials.

Example 6.2.1

Factor $x^2 + 5x + 6$

Example 6.2.2 Factor $x^2 - 6x + 8$

Math 0097 Page 1 of 3

Example 6.2.3 Factor $x^2 + 3x - 10$

Example 6.2.4 Factor $x^2 + x - 7$

Example 6.2.5 Factor $x^2 - 4xy + 3y^2$

Multiple types of factoring can be combined. In almost every case of factoring, you should attempt the GCF method first and then apply some other method.

Example 6.2.6

Factor completely: $2x^3 + 6x^2 - 56x$

Example 6.2.7 Factor completely: $-2y^2 - 10y + 28$

Math 0097 Page 3 of 3