FIS01-00569 Obrigatória

Física Matemática III

Objetivos Fundamentais

Fornecer o alicerce matemático básico a ser utilizado em estudos avançados de: Mecânica Quântica, Física Estatística, Teoria Quântica de Campos, Física das Partículas Elementares, entre outras áreas das ciências físicas.

Professor: Rafael Aranha

Sala 3001-D

rafael.aranha@uerj.br

Horários: Ter & Qui - M3/M4

Local de Aula: 3088F

Carga Horária: 60h (30 aulas de 2h cada)

Pré-requisitos:

Física Matemática II

Disciplinas Correlacionadas:

- Complementos de Equações Diferenciais
- Álgebra Linear

Ementa:

- Cap 01: Espaços de Hilbert de Dimensão Finita
- Cap 02: Espaços de Hilbert de Dimensão Infinita
- Cap 03: Formalismo de Sturm-Liouville
- Cap 04: Funções de Green

UER]-DFT 2025-2

FIS01-00569 Obrigatória

Bibliografia:

- S. Hassani, Mathematical Physics, Springer (1999).
- K. F. Riley, M. P. Hobson, S. J. Bence, Mathematical Methods for Physics and Engineering: A Comprehensive Guide, Cambridge University Press (2006).
- K. Cahill, Physical Mathematics, Cambridge University Press (2013).
- E. Kreyszig, Introductory Functional Analysis with Applications, Wiley (1991).
- C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics, vol. 1, Wiley (1991).

Avaliação:

- A avaliação do curso dar-se-á através de duas provas de conteúdo dividido e uma prova de conteúdo completo. Estas provas serão denominadas de P1, P2 e PR (reposição) e receberão notas de 0 (zero) a 10 (dez). A prova P1 conterá a matéria da primeira metade do curso e a prova P2 compreenderá a segunda metade do curso. A prova de reposição, PR, terá o conteúdo completo do curso e servirá para substituir uma das provas de conteúdo dividido, P1 ou P2 em regime fechado. Ou seja, caso o aluno falte a uma das provas de conteúdo dividido.
- Se a média aritmética, M1, entre P1 (ou PR) e P2 (ou PR) for maior ou igual a 7.0 (sete), o aluno estará automaticamente aprovado.
- Caso o aluno obtenha uma média abaixo de 7.0 (sete) e acima de 3,9, deverá realizar uma prova final, denominada de PF. Uma segunda média aritmética, M2, será calculada com os valores de M1 e PF. Se o aluno obtiver uma nota de M2 acima ou igual a 5.0 (cinco), estará aprovado. Caso contrário, será reprovado por nota.
- O aluno que não estiver presente em, pelo menos, 75% das aulas, será reprovado por falta.

Cronograma:

Ter Qui

	Ago 14
Espaços Vetoriais de Dimensão Finita	Espaços Normados
Ago 19	Ago 21
Espaços de Banach	Notação de Dirac
Ago 26	Ago 28
Espaços de Hilbert	Procedimento de Gram-Schmidt

UER]-DFT 2025-2

FIS01-00569 Obrigatória

Set 02 Operadores Lineares	Set 04 Autovalores e autovetores
Set 09 Diagonalização de Operadores	Set 11 Produto Tensorial
Set 16 Aplicações do Produto Tensorial	Set 18 Espaços Vetoriais de Dimensão Infinita
Set 23 Espaços de Hilbert de Dimensão Infinita	Set 25 Ortogonalidade de Funções
Set 30 O Espaço L² e o Teorema de Riesz-Fischer	Out 02 Espaço de Hilbert Manipulado (Rigged)
Out 07 Gram-Schmidt e Polinômios de Legendre	Out 09 Operadores Diferenciais
Out 14 Operadores Hermitianos Conjugados	Out 16 Produto Tensorial no Espaço Contínuo
Out 21 P1	Out 23 Formalismo de Sturm-Liouville
Out 28 Hermiticidade de Sturm-Liouville	Out 30 Polinômios de Legendre
Nov 04 Polinômios de Associados de Legendre	Nov 06 Harmônicos Esféricos
Nov 11 Funções de Bessel	Nov 13 Funções Esféricas de Bessel
Nov 18 O Método Geral da Função de Green	Nov 20 Método Direto
Nov 25 Método de Sturm-Liouville	Nov 27 Método da Transformada de Fourier
Dez 02 Função de Green do Operador de Onda	Dez 04 Função de Green de Helmholtz
Dez 09 Propagador de Feynman	Dez 11 P2
Dez 16 PR	Dez 18 PF

UERJ-DFT 2025-2