Ex 1 (4 pts). Logistic Regression

$$\begin{aligned} x &= 2 \; ; \; w = \begin{bmatrix} 0 \; 0 \end{bmatrix} \; ; \; b = 0 \\ & \frac{y_1 \; GPM_1}{1 + e^y_1 \; WT_1} \; ; \; & \text{fot} \; \; \pi : \begin{bmatrix} 1 \; 1 \end{bmatrix} \; ; \; \frac{(1)(1)}{1 + e^o} = 0.5 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.9 \; 1 \end{bmatrix} \; ; \; \frac{(1)(0.9)}{1 + e^o} = 0.45 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.9 \; 0.875 \end{bmatrix} \; ; \; \frac{(1)(0.9)}{1 + e^o} = 0.45 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.9 \; 0.875 \end{bmatrix} \; ; \; \frac{(-1)(0.9)}{1 + e^o} = -0.35 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.9 \; 1 \end{bmatrix} \; ; \; \frac{(1)(1)}{1 + e^o} = 0.5 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.9 \; 1 \end{bmatrix} \; ; \; \frac{(1)(1)}{1 + e^o} = 0.5 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.9 \; 1 \end{bmatrix} \; ; \; \frac{(1)(1)}{1 + e^o} = 0.4375 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.9 \; 0.875 \end{bmatrix} \; ; \; \frac{(1)(0.875)}{1 + e^o} = -0.395 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.9 \; 0.875 \end{bmatrix} \; ; \; \frac{(-1)(0.75)}{1 + e^o} = -0.395 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.9 \; 0.875 \end{bmatrix} \; ; \; \frac{(-1)(0.75)}{1 + e^o} = -0.3975 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.9 \; 0.875 \end{bmatrix} \; ; \; \frac{(-1)(0.75)}{1 + e^o} = -0.4375 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.6 \; 0.875 \end{bmatrix} \; ; \; \frac{(-1)(0.75)}{1 + e^o} = -0.4375 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.6 \; 0.875 \end{bmatrix} \; ; \; \frac{(-1)(0.75)}{1 + e^o} = -0.4375 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.6 \; 0.875 \end{bmatrix} \; ; \; \frac{(-1)(0.75)}{1 + e^o} = -0.4375 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.6 \; 0.875 \end{bmatrix} \; ; \; \frac{(-1)(0.75)}{1 + e^o} = -0.4375 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.6 \; 0.875 \end{bmatrix} \; ; \; \frac{(-1)(0.75)}{1 + e^o} = -0.4375 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.6 \; 0.875 \end{bmatrix} \; ; \; \frac{(-1)(0.75)}{1 + e^o} = -0.4375 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.6 \; 0.875 \end{bmatrix} \; ; \; \frac{(-1)(0.75)}{1 + e^o} = -0.4375 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.6 \; 0.875 \end{bmatrix} \; ; \; \frac{(-1)(0.75)}{1 + e^o} = -0.4375 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.6 \; 0.875 \end{bmatrix} \; ; \; \frac{(-1)(0.75)}{1 + e^o} = -0.4375 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.6 \; 0.875 \end{bmatrix} \; ; \; \frac{(-1)(0.75)}{1 + e^o} = -0.4375 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.6 \; 0.875 \end{bmatrix} \; ; \; \frac{(-1)(0.75)}{1 + e^o} = -0.4375 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.6 \; 0.875 \end{bmatrix} \; ; \; \frac{(-1)(0.75)}{1 + e^o} = -0.4375 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.6 \; 0.875 \end{bmatrix} \; ; \; \frac{(-1)(0.75)}{1 + e^o} = -0.4375 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.6 \; 0.875 \end{bmatrix} \; ; \; \frac{(-1)(0.75)}{1 + e^o} = -0.4375 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.6 \; 0.875 \end{bmatrix} \; ; \; \frac{(-1)(0.75)}{1 + e^o} = -0.4375 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.6 \; 0.875 \end{bmatrix} \; ; \; \frac{(-1)(0.75)}{1 + e^o} = -0.4375 \\ & \text{fot} \; \; \chi = \begin{bmatrix} 0.6 \; 0.8$$

E.= In (1+e<sup>-\frac{1}{1} \text{M*i}):

for
$$z = [1 \ i]$$
, $E = In(1+e^{-iY_0}) = 0.693$
 $x = [0.9 \ 0.875]$, $E = 0.693$
 $x = [0.7 \ 0.76]$, $E = 0.693$
 $x = [0.7 \ 0.775]$, $E = 0.693$
 $x = [0.6 \ 0.275]$, $E = 0.693$
 $x = [0.7 \ 0.775]$, $E = 0.693$
 $x = [0.7 \ 0.775]$, $E = 0.693$
 $x = [0.7 \ 0.775]$, $E = 0.693$
 $x = [0.7 \ 0.775]$, $x = [0.7 \ 0.775]$</sup>

$$M_1 = mean \left(\frac{yGPA}{1+e^{yW7}} \right) = \frac{0.5+0.45+0.45-0.35-0.3}{5} = \frac{0.15}{5}$$
 $M_2 = mean \left(\frac{yGRE}{1+e^{yW7}} \right) = \frac{0.5+0.5+0.4375-0.375-0.4375}{5}$
 $b = mean \left(\frac{yDummy}{1+e^{yW7}} \right) = \frac{0.5+0.5+0.5-0.5-0.5}{5} = \frac{0.1}{5}$

		y, GPA;	y; GRE; Hey; W7;	y. Dunmy;	E=In(I+e)
3',=[1	j	0.5	o ·5	0.5	0.693
7:=[0.9	7	0:45	0.5	0.5	0.693
7:=[0.9	6.875	0.45	0.4375	0.5	0.693
7;=[0.7 (- 0.3\$5	-0.375	-0.5	0.693
	0.875]	- 0.3	- 0.4395	-0.5	0.693

$$W_{u} = N + M_{1} + k$$
 $W_{u} = N + M_{1} + k$
 $W_{u} = 0 + (0.15)(2) = 0.3$
 $W_{u}^{2} = 0 + (0.125)(2) = 0.25$
 $W_{u} = 0 + (0.125)(2) = 0.2$

After 1st iteration:

 $W = \begin{cases} 0.5 & 0.25 \end{cases}$