Bazy danych 2022

(częściowo) na podstawie slajdów Przemysławy Kanarek

4 kwietnia 2022

Dobry projekt bazy danych

```
NULL-e — krotki powinny pasować do schematu tabeli,
```

Redundancja — informacja nie powinna być zapisywana wielokrotnie,

Kontrola więzów — sprawdzanie własności klucza, unikalności i innych więzów powinno być łatwe,

Obliczanie złączeń — jest trudne, więc nie należy rozdrabniać zbytnio bazy.

Dobry projekt bazy danych - anomalie

```
Rozważmy tabelę: GR(idg, idk, prow_nazwisko, prow_biuro, lista_zapisanych_w_json)
złożone typy — lista_zapisanych_w_json → Zapisy(ids, idg, data_zapisu) 1NF
Codd: to permit data to be queried and manipulated using a "universal data sub-language"
anomalia UPDATE — zmiana biura prowadzącego → zmiana wielu krotek (redundacja, niejednoznaczność)
anomalia INSERT — jak dodać nowego prowadzącego (bez grup)? Null?
anomalia DELETE — co po usunięciu ostatniej grupy prowadzącego?
```

Definicja i przykład

Definition (Zależność funkcyjna)

Dla relacji $R=A_1A_2\dots A_k$ oraz zbiorów jej atrybutów $\alpha,\beta\subseteq\{A_1A_2\dots A_k\}$ zachodzi zależność funkcyjna $\alpha\to\beta$, jeżeli dla każdego stanu r relacji R zachodzi:

$$(\forall t_1, t_2 \in r)((t_1.\alpha = t_2.\alpha) \Rightarrow (t_1.\beta = t_2.\beta))$$

 $W\ relacjach\ PR(ido,tytuł,nazwisko,adres),\ ST(ido,indeks,nazwisko,adres)\ i\ GR(idg,idk,idp,limit),\ TS(idg,termin,sala)\ zachodzą\ zależności$

- ullet w PR: ido o nazwisko,adres,tytuł,
- w ST: ido → nazwisko,adres,indeks oraz indeks→ ido,nazwisko,adres;
- \bullet w GR: idg \rightarrow idk,idp,limit
- ullet w TS: termin,salao idg

Spostrzeżenie: Jeśli K jest kluczem R, to $K \rightarrow R$.

Klucz relacji

Definition (Klucz relacji)

Kluczem relacji R nazywamy taki podzbiór K jej atrybutów, który:

- ullet wyznacza funkcyjnie wszystkie atrybuty R, czyli K o R oraz
- ullet jest minimalnym zbiorem o tej własności, czyli $(orall L \subsetneq K)
 eg (L o R)$

Definition

Nadklucz relacji — dowolny zbiór atrybutów zawierający klucz relacji,

Klucz główny — jeden z kluczy relacji,

Klucz alternatywny — klucz relacji inny niż klucz główny,

Atrybut główny — atrybut (dowolnego) klucza relacji.

W relacji ST(ido,indeks,nazwisko,adres) w relacji TS(idg,termin,sala)

- Kluczem jest indeks i kluczem jest ido,
- Nadkluczami są: {indeks, nazwisko} lub {ido, indeks, adres},
- Jako klucz główny możemy wybrać indeks,
- Atrybuty główne to {ido, indeks}
- W relacji TS kluczem jest {termin, sala}

Przykład

- Mafia(Miasto, Gang, Proceder)
- ullet $\xi_1 \colon \mathtt{Gang} o \mathtt{Miasto} \ \mathtt{oraz} \ \xi_2 \colon \mathtt{Miasto}, \ \mathtt{Proceder} o \mathtt{Gang}.$
- Jakie są klucze relacji Mafia?
- Anomalie?
- Podaj odwracalny rozkład relacji Mafia do postaci BCNF(!?).
- Rozkład?
- Odwracalny?
- BCNF?
- Czy rozkład ten zachowuje zależności?
- Jakie rodzi to problemy?

Reguły dla zależności funkcyjnych

Definition (Aksjomaty Armstronga i in.)

Dla relacji R i zbiorów jej atrybutów $\alpha, \beta, \gamma \subseteq R$ zachodzi:

Zwrotność (
$$\beta \subseteq \alpha$$
) \Rightarrow ($\alpha \to \beta$) (zależności trywialne)

Rozszerzanie
$$(\alpha \to \beta) \Rightarrow (\alpha \gamma \to \beta \gamma)$$

Przechodniość
$$(\alpha \to \beta \land \beta \to \gamma) \Rightarrow (\alpha \to \gamma)$$

Sumowanie
$$(\alpha \to \beta \land \alpha \to \gamma) \Rightarrow (\alpha \to \beta \gamma)$$

Rozkładanie
$$(\alpha \to \beta \gamma) \Rightarrow (\alpha \to \beta \land \alpha \to \gamma)$$

Definition (Domknięcie zbioru zależności i zbioru atrybutów)

Dla relacji R i jej zbioru zależności funkcyjnych F:

- F⁺ **domknięciem zbioru zależności** F nazywamy zbiór wszystkich zależności wyprowadzalnych z F.
- $(\alpha)_F^+$ **domknięciem zbioru atrybutów** $\alpha \subseteq R$ **względem** F nazywamy zbiór atrybutów, które można wyprowadzić z α za pomoca F.

Twierdzenie o znaczeniu Aksjomatów Armstronga

Definition (Aksjomaty Armstronga)

Dla relacji R i zbiorów jej atrybutów $\alpha, \beta, \gamma \subseteq R$ zachodzi:

Zwrotność (
$$\beta \subseteq \alpha$$
) \Rightarrow ($\alpha \to \beta$) (zależności trywialne)

Rozszerzanie
$$(\alpha \to \beta) \Rightarrow (\alpha \gamma \to \beta \gamma)$$

Przechodniość
$$(\alpha \to \beta \land \beta \to \gamma) \Rightarrow (\alpha \to \gamma)$$

Theorem

Aksjomaty Armstronga stanowią zupełny, niesprzeczny i minimalny zbiór reguł pozwalający wyprowadzić ze zbioru zależności F każdą zależność funkcyjną prawdziwą w każdym stanie relacji, w którym spełnione są reguły F.

Wniosek

Tym samym zależności dowodliwe za pomocą aksjomatów Armstronga to zależności prawdziwe.

Uwagi ad. domknięcia zbiorów zależności i atrybutów

- ullet Zazwyczaj nie wyznaczamy F^+ to zbiór duży i zawierający dużo nieciekawych informacji (np. zależności trywialne).
- **3** Efektywne wyznaczanie $(\alpha)_F^+$ jest potrzebne pozwala zadecydować, co jest kluczem, czy w relacji jest redundancja itp.
- **1** Mamy algorytm, który pozwala wyznaczać $\chi = (\alpha)_F^+$:
 - $\lambda \leftarrow \alpha$ (zwrotność)
 - dopóki χ zmienia się:
 - znajdź $\beta \in \chi$ taki, że istnieje $\beta \to \gamma \in F$ oraz $\gamma \setminus \chi \neq \emptyset$
 - γ ← γ ∪ γ (zastosui rozszerzanie i przechodniość)
 - zwróć γ jako wynik
- ullet Mamy sposób, by porównywać zbiory zależności F i G dla tej samej relacji. Sprawdzamy, czy $F^+ = G^+$:
 - ightharpoonup dla każdej zależności $\alpha \to \beta \in F$:
 - oblicz $\chi = (\alpha)_c^+$
 - jeśli $\beta \subset \chi$, to $\alpha \to \beta \in G^+$, w przeciwnym wypadku $F^+ \neq G^+$
 - powtórz to dla każdej zależności $\alpha \to \beta \in G$ i zbioru F
- **3** Zależności funkcyjne powinny być kontrolowane przez SZBD. Dlatego dobrze, by było ich mało. Zbiór F_{min} nazwiemy minimalnym pokryciem F jeśli jest równoważny F i nie zawiera zależności "nadmiarowych".

Postać normalna Bovce-Codda

Definition (Postać normalna Boyce-Codda, BCNF)

Relacja R ze zbiorem zależności funkcyjnych F jest w postaci normalnej Boyce-Codda, jeśli dla każdej nietrywialnej zależności $\alpha \to \beta$ ($\alpha \cap \beta = \emptyset$) zbiór α jest nadkluczem.

Uwagi:

- 1 Relacja w BCNF ma tylko zależności trywialne i wynikające z nadklucza.
- 2 Kontrola zależności funkcyjnych w relacji w BCNF sprowadza sie do kontroli własności klucza.

Przykłady:

- Mafia (Miasto, Gang, Proceder),
- 2 Gang \rightarrow Miasto, Miasto, Proceder \rightarrow Gang
- 3 Lokalizacje (Miasto, Gang), Procedery (Gang, Proceder) są w BCNF

9/15

Rozkład relacji

- Rozkładem relacji R nazywamy zbiór relacji $\{R_1, \ldots, R_k\}$ taki, że $R = R_1 \cup \ldots \cup R_k$.
- Dla F zbioru zależności R, rzutem F na R_i jest $F_i = \{\alpha \to \beta \in F^+ \mid \alpha, \beta \in R_i\}$.
- Dla r stanu relacji R, stanem R_i jest $r_i = \pi_{R_i}(r)$.
- Złaczenie naturalne jest operacja przeciwna do rozkładu.
- Rozkład R na R_1, \ldots, R_k jest odwracalny, jeśli dla każdego poprawnego stanu r (spełniającego zależności F) zachodzi:

$$r = r_1 \bowtie r_2 \bowtie \cdots \bowtie r_k$$

• Rozkład R na R_1, \ldots, R_k zachowuje zależności, jeśli:

$$F^+ = (F_1 \cup F_2 \cup \ldots \cup F_k)^+$$

Rozkład relacji na składowe MUSI być odwracalny i POWINIEN zachowywać zależności.

Rozkład relacji do BCNF

Lemma

Niech R będzie relacją i F jej zbiorem zależności funkcyjnych. Jeżeli $\alpha \to \beta \in F^+$ jest nietrywialna ($\alpha \cap \beta = \emptyset$), to rozkład R na $R_1 = \alpha \beta$ i $R_2 = R \setminus \beta$ jest odwracalny.

Lemma

Każda relacja ma odwracalny rozkład na składowe w BCNF.

Lemma

Istnieją relacje, które nie mają odwracalnego i zachowującego zależności rozkładu na składowe w BCNF.

Przykład

Lokalizacje (Miasto, Gang), Zajecia (Gang, Proceder) vs. Miasto, Proceder \rightarrow Gang

Przykład rozkładu do BCNF

Dane:

- \bullet R = KNGSUO
- $F = \{K \rightarrow N, KU \rightarrow O, GS \rightarrow K, GU \rightarrow S, NG \rightarrow S\}$
- klucz R to GU

Rozkład:

R: R nie jest w BCNF. Rozkładamy wg $KU \rightarrow O$ na $R_1 = KUO$ i $R_2 = KNGSU$;

$$R_1: R_1 = \underline{KU}O, F_1 = \{KU \rightarrow O\} \text{ (BCNF)}$$

$$R_2$$
: $R_2 = KN\underline{G}S\underline{U}$, $F_2 = \{\underline{K \to N}, NG \to S, GS \to K, GU \to S\}$ (Nie-BCNF)

$$R_{21}$$
: $R_{21} = K\underline{G}S\underline{U}$, $F_{21} = \{\underline{KG} \rightarrow S, GS \rightarrow K, GU \rightarrow S\}$. (Nie-BCNF)

$$R_{211}$$
: $R_{211} = KGS$, $F_{211} = \{KG \rightarrow S, GS \rightarrow K\}$, klucze: KG i GS . (BCNF)

$$R_{212}$$
: $R_{212} = K\underline{GU}$, $F_{212} = \{GU \to K\}$. (BCNF)

$$R_{22}$$
: $R_{22} = \underline{K}N$, $F_{22} = \{K \to N\}$ (BCNF).

Wynik rozkładu: $R = KUO \cup KGS \cup KGU \cup KN$ i $\{KU \rightarrow O, KG \rightarrow S, GS \rightarrow K, GU \rightarrow K, K \rightarrow N\}$

Trzecia postać normalna

Definition (Trzecia postać normalna, 3NF)

Relacja R z zależnościami funkcyjnymi F jest w trzeciej postaci normalnej, jeśli każda zależność $lpha o B \in F$

- jest trywialna ($B \in \alpha$) albo
- wynika z nadklucza $((\alpha)_E^+ = R)$ albo
- ma po prawej stronie atrybut główny (B należy do jakiegoś klucza).

Lemma

Każda relacja ma odwracalny i zachowujący zależności rozkład na składowe w postaci 3NF.

3NF

Algorytm rozkładu do 3NF

Definition (F_{min})

Minimalnym pokryciem zbioru zależności funkcyjnych F nazwiemy równoważny F zbiór F_{min} , w którym:

- nie ma zależności trywialnych, np. $AB \rightarrow AC$
- nie ma zależności nadmiarowych, czyli wynikających z pozostałych zależności F_{min} , np. $A \to B$, $B \to C$, $A \to C$
- nie ma atrybutów lewostronnie nadmiarowych $AB \rightarrow C, A \rightarrow B$.

Algorytm rozkładu do 3NF

- Wyznacz Fmin.
- Dla każdej zależności $\alpha \to \beta \in F_{min}$ utwórz składowa $R_i = \alpha \beta$. Usuń składowe zawierające się w innych.
- Jeśli żadna z utworzonych składowych nie zawiera klucza R, to dodaj do rozkładu składowa K dla pewnego klucza K relacji R.

3NF

Przykład c.d.

- Mafia(Miasto, Gang, Proceder, Szef)
- ξ_1 : Gang \rightarrow Miasto, ξ_2 : Miasto, Proceder \rightarrow Gang, ξ_3 : Gang \rightarrow Szef
- Jakie sa klucze relacji Mafia?
- Podaj odwracalny i zachowujący zależności rozkład relacji Mafia do postaci 3NF.
- Miasta(Gang, Miasto), Mafia(Miasto, Gang, Proceder), Szefowie(Gang, Szef)
- Dlaczego zachowuje zależności?
- Dlaczego jest odwracalny? Wskazówka: Zacznij od krotki z relacji z kluczem
- cf. BCNF: Miasta(Miasto, Gang), Procedery(Gang, Proceder), Szefowie(Gang, Szef)