# Setting up two-box model for CH<sub>4</sub>

Naveen Chandra

naveennegi@jamstec.go.jp; nav.phy09@gmail.com

#### **Atmospheric Models: Testing Theory with Reality**

- ✓ Understand processes
- ✓ Interpret observations

Processes - Transport
Chemistry



SH NH

#### **Setting Up the Box Model Framework**

#### Predicting atmospheric mixing ratio of CH<sub>4</sub>



$$k = \frac{1}{\tau_{IH}}$$

#### Mass balance equations:

Interhemispheric Exchange time  $(\tau_{IH} \sim 1yr)$ 

$$\frac{dB_{NH}}{dt} = \sum S_{NH} - \sum L_{NH} + k_{SN} B_{SH}$$

$$\frac{dB_{SH}}{dt} = \sum S_{SH} - \sum L_{SH} + k_{NS} B_{NH}$$

## Sources (S): Anthropogenic Sources

# Bottom-up emission inventories: Activity x Emission factor

|                             | ~ " '                                                         |                                                            | ~               |                                                                       |
|-----------------------------|---------------------------------------------------------------|------------------------------------------------------------|-----------------|-----------------------------------------------------------------------|
| BU models and inventories   | Contribution                                                  | Time period (resolution)                                   | Gridded         | References                                                            |
| CEDS (country-based)        | fossil fuels, agriculture and waste, biofuel                  | 1970–2019<br>(yearly)                                      | no              | Hoesly et al. (2018)                                                  |
| CEDS (gridded) <sup>a</sup> | fossil fuels, agriculture and waste, biofuel                  | 1970–2020<br>(monthly)                                     | 0.5 × 0.5°      | Hoesly et al. (2018),<br>O'Rourke et al. (2021)                       |
| EDGARv6                     | fossil fuels, agriculture and waste, biofuel                  | 1990–2018 <sup>b</sup> (yearly, monthly for some sectors)  | 0.1 × 0.1°      | Oreggioni et al. (2021),<br>Crippa et al. (2021)                      |
| EDGARv7                     | fossil fuels, agriculture and waste, biofuel                  | 1990–2021<br>(yearly)                                      | 0.1 × 0.1°      | Crippa et al. (2023)                                                  |
| IIASA GAINS v4.0            | fossil fuels, agriculture and waste, biofuel                  | 1990–2020<br>(yearly)                                      | 0.5 × 0.5°      | Höglund-Isaksson et al. (2020)                                        |
| USEPA                       | fossil fuels, agriculture and waste, biofuel, biomass burning | 1990–2030<br>(10-year interval,<br>interpolated to yearly) | no              | USEPA (2019)                                                          |
| FAO-CH <sub>4</sub>         | agriculture, biomass<br>burning                               | 1961–2020<br>1990–2020<br>(yearly)                         | no              | Federici et al. (2015),<br>Tubiello et al. (2013),<br>Tubiello (2019) |
| FINNv2.5                    | biomass burning                                               | 2002–2020<br>(daily)                                       | 1 km resolution | Wiedinmyer et al. (2023)                                              |
| GFASv1.3                    | biomass burning                                               | 2003–2020<br>(daily)                                       | 0.1 × 0.1°      | Kaiser et al. (2012)                                                  |
| GFEDv4.1s                   | biomass burning                                               | 1997–2020<br>(monthly)                                     | 0.25 × 0.25°    | Giglio et al. (2013),<br>van der Werf et<br>al. (2017)                |
| QFEDv2.5                    | biomass burning                                               | 2000–2020<br>(daily)                                       | 0.1 × 0.1°      | Darmenov and da Silva (2015)                                          |

### Source (S): Wetland Emissions: Process-based Models

| Model                                  | Institution                                              |     | Prognostic |     | Diagnostic | References                                                          |
|----------------------------------------|----------------------------------------------------------|-----|------------|-----|------------|---------------------------------------------------------------------|
|                                        |                                                          | CRU | GSWP3-W5E5 | CRU | GSWP3-W5E5 |                                                                     |
| CH <sub>4</sub> MOD <sub>wetland</sub> | Institute of<br>Atmospheric Physics,<br>CAS              | n   | n          | у   | у          | Li et al. (2010)                                                    |
| CLASSIC                                | Environment and<br>Climate Change<br>Canada              | у   | у*         | у   | y*         | Arora et al. (2018);<br>Melton and Arora<br>(2016)                  |
| DLEM                                   | Boston College                                           | у   | у          | у   | у          | Tian et al. (2015, 2023)                                            |
| ELM-ECA                                | Lawrence Berkeley<br>National Laboratory                 | у   | у          | у   | у          | Riley et al. (2011)                                                 |
| ISAM                                   | University of Illinois,<br>Urbana-Champaign              | у   | у          | у   | у          | Shu et al. (2020)<br>Xu et al. (2021)                               |
| JSBACH                                 | MPI                                                      | у   | у          | у   | у          | Kleinen et al. (2020, 2021, 2023)                                   |
| JULES                                  | UKMO                                                     | у   | у          | у   | у          | Gedney et al. (2019)                                                |
| LPJ-GUESS                              | Lund University                                          | n   | n          | у   | у          | McGuire et al. (2012)                                               |
| LPJ-MPI                                | MPI                                                      | у   | у          | у   | У          | Kleinen et al. (2012)                                               |
| LPJ-WSL                                | NASA GSFC                                                | у   | у          | у   | у          | Zhang et al. (2016b)                                                |
| LPX-Bern                               | University of Bern                                       | у   | у          | у   | у          | Spahni et al. (2011),<br>Stocker et al. (2014)                      |
| ORCHIDEE                               | LSCE                                                     | у   | у          | y   | у          | Ringeval et al. (2011)                                              |
| SDGVM                                  | University of Birming-<br>ham/University of<br>Sheffield | у   | у          | у   | у          | Beerling and<br>Woodward (2001),<br>Hopcroft et al. (2011,<br>2020) |
| TEM-MDM                                | Purdue University                                        | n   | n          | y   | у          | Zhuang et al. (2004)                                                |
| TRIPLEX-GHG                            | UQAM                                                     | n   | n          | y   | у          | Zhu et al. (2014, 2015)                                             |
| VISIT                                  | NIES                                                     | у   | у          | y   | у          | Ito and Inatomi (2012)                                              |

# **Spatial Maps**





# **Total CH<sub>4</sub> emissions**



#### **Total Loss**

Loss due to OH = 
$$k_{CH_4+OH} \times [OH] \times$$

 $\boldsymbol{B}$ 

Global average [OH] =  $1 \times 10^6$  molec/cm<sup>3</sup>

Reaction rate  $(k_{CH_4+OH})$ = 3.4 x 10<sup>-15</sup> cm<sup>3</sup>/molec/s

1 ppb =  $2.78 \text{ TgCH}_4$ 

B = Burden = Mixing Ratios (ppb) x 2.78 Tg/ppb

#### Aggregate observations in two hemispheric bands for comparisons





Download from →

ObsPack: https://gml.noaa.gov/ccgg/obspack/

WDCGG: https://gaw.kishou.go.jp/

#### **Exercise**

#### Mass balance equations:

$$\frac{dB_{NH}}{dt} = \sum S_{H} - \sum L_{NH} + k_{SN} B_{SH}$$

$$\frac{dB_{SH}}{dt} = \sum S_{H} - \sum L_{SH} + k_{NS} B_{NH}$$

How Will Atmospheric CH<sub>4</sub> Respond if Emissions Are Stopped?

(Understanding the impact of policy actions)

- What will be the atmospheric lifetime of CH<sub>4</sub> in this scenario?
- How will the CH<sub>4</sub> burden change over time?