Introduction to Communications Engineering

Đỗ Công Thuần, Ph.D.

Dept. of CE, SoICT, HUST

Email: thuandc@soict.hust.edu.vn

IT4593E

ONE LOVE. ONE FUTURE.

Thông tin chung

- Tên học phần: Nhập môn kỹ thuật truyền thông
- Mã học phần: IT4593E
- Khối lượng: 2 TC (2-1-0-4)
- Lý thuyết và bài tập: 10 buổi lý thuyết, 5 buổi bài tập
- Đánh giá học phần:

```
30% QT (kiểm tra + bài tập/project + chuyên cần-quiz )
70% CK (trắc nghiệm + tự luận)
```

- Tài liệu tham khảo:
 - Lecture slides
 - Lecture notes
 - Textbooks, ví dụ Communication Systems Engineering, 2nd Edition, by John G. Proakis Masoud Salehi
 - Internet

Lec 03: Digital Communication Systems

1. Basic Concepts of Digital Communication Systems

Digital communication systems transmit sequences of symbols belonging to a discrete "alphabet.".

Examples:

- Human writing
- Morse code telegraphy
- GSM
- CD/DVD

We will focus on systems characterized by two features:

- 1. Discrete alphabet = binary alphabet {0,1}
- → binary data sequences
- 2. Transmission channel = wired or wireless

If analog information needs to be transmitted (e.g., voice, video),

it must go through sampling and quantization (source coding),

resulting in binary data sequences.

Examples of digital communication systems:

- GSM/UMTS
- Telephone Modem
- Optical Fibers
- Wired and Wireless LAN
- GPS/Galileo
- •

Key parameters of digital communications systems

- Bit-rate
- Bandwidth
- Power
- Error probability
- Complexity

Bit-rate

Binary data sequences are characterized by their bit-rates.

BIT-RATE R_b [bps]

= number of bits transmitted per second

Bandwidth

Binary data sequences

in order to be transmitted through either a wired or wireless channel, must be converted into a waveform s(t).

Bandwidth

The waveform s(t) is characterized by its power spectral density (PSD) – $G_s(f)$.

BANDWIDTH B [Hz] = frequency range containing the essential part of $G_s(f)$

Power

The received signal power S [W] [dBm]

depends on the transmitted signal power

characterized by the Signal-to-Noise Ratio (SNR) at the receiver side.

Error probability

The transmitted binary data sequences $u_T = (u_T[i])$

The transmitted waveform s(t)

The received waveform $r(t) \neq s(t)$ (in practical, non-ideal channels)

The received binary data sequences

$$u_R = (u_R[i])$$

Error probability

The transmitted binary data sequences $u_T = (u_T[i])$ The received binary data sequences $u_R = (u_R[i])$

Bit error probability

$$P(u_R[i] \neq u_T[i])$$

Complexity

COMPLEXITY = implementation difficulty and cost

Delay

Delay D [s]

difference between transmission and reception times

Input (transmitter - TX) Output (receiver, RX)

Example of System Design

- Design a digital communication system under the following conditions:
 - BIT-RATE R_b = 34 Mbps
 - BANDWIDTH B = 20MHz, centered at $f_0 = 18$ GHz
 - Minimum BER = 10⁻⁷ with received POWER S = 40dBm
 - Maximum DELAY D = 500 ms
 - Minimum COMPLEXITY (cost)

2. Signal Sets, Labeling, and Transmitted Waveforms

Binary data sequences: Concept

Binary alphabet $Z_2 = \{0, 1\}$

A binary data sequence:

$$\underline{\mathbf{u}}_{\mathrm{T}} = (u_{T}[0], u_{T}[1], ..., u_{T}[i], ...) \qquad i \in \mathbb{N} \qquad u_{T}[i] \in \mathbb{Z}_{2}$$

Example: $\underline{u}_T = (1101001...)$

$$\underline{\mathbf{u}}_{\mathsf{T}} = (u_T[0], u_T[1], ..., u_T[i], ...)$$

Bit rate R_b [bps]

Bit duration: $T_b=1/R_b$ seconds. Each bit $u_T[i]$ exists in the interval ($iT_b \le t < (i+1)T_b$)

A binary data sequence \underline{u}_T is characterized as follows::

- Its data bits $U_T[i]$
- The transmission clock pulse, with frequency R_b

Example:

$$\underline{\mathbf{u}}_{\mathsf{T}} = (u_{\mathsf{T}}[0], u_{\mathsf{T}}[1], ..., u_{\mathsf{T}}[i], ...)$$

Random binary data sequences are assumed statistically independent with equal probability of 0s and 1s.

- $P(u_{\tau}[i] \mid (u_{\tau}[j]) = P(u_{\tau}[i])$
- $P(u_T[i] = 0) = P(u_T[i] = 1) \ \forall i$

Transmitted Waveforms

Binary data sequence: \underline{U}_{T}

The transmitted signal s(t)

is a real-valued function of time derived from the binary data sequence.

Example:

Example:

A rectangular pulse within the time interval T_b

Two signals exist:

$$u_T[i] = 1 \rightarrow +VP_{T_b}(t - iT_b)$$

$$u_T[i] = 0 \to -VP_{T_b}(t - iT_b)$$

Signal Sets

A signal set M

$$M = \{s_1(t), ..., s_i(t), ..., s_m(t)\}$$

contains: $|M| = m = 2^k$ waveforms

$$M = \{s_1(t), ..., s_i(t), ..., s_m(t)\}$$

Assume: Each signal $s_i(t)$ has finite duration

$$0 \le t < T = kT_b$$

Example:

$$M = \{s_1(t) = +VP_T(t), s_2(t) = -VP_T(t)\}$$
 $m = 2$

$$M = \{s_1(t) = VP_T(t)\cos(2\pi f_0 t), s_2(t) = VP_T(t)\sin(2\pi f_0 t),$$

$$s_3(t) = -VP_T(t)\cos(2\pi f_0 t), s_4(t) = -VP_T(t)\sin(2\pi f_0 t)\}$$

m=4

Hamming Space

A k-bit binary vector

$$\underline{v} = (u_0, ..., u_i, ... u_{k-1}) \ u_i \in Z_2$$

Hamming Space

$$H_k = \{ \underline{v} = (u_0, ..., u_i, ..., u_{k-1}) \mid u_i \in Z_2 \}$$

contains: $|H_k| = 2^k$ vectors

Example:

$$H_1 = \{ (0) (1) \} = \mathbb{Z}_2$$

$$H_2 = \{ (00) (01) (10) (11) \}$$

$$H_3 = \{ (000) (001) (010) (011) (100) (101) (110) (111) \}$$

Binary Labeling

A signal set M contains 2^k signals.

A Hamming space H_k contains 2^k vectors.

1-1 mapping

Binary Labeling

$$e: H_k \leftrightarrow M$$

$$\underline{v} \in H_k \leftrightarrow s(t) = e(\underline{v}) \in M$$

Example:

$$M = \{s_1(t) = +VP_T(t), s_2(t) = -VP_T(t)\}$$

$$m=2 \rightarrow k=1$$

$$H_1 = \{(0), (1)\}$$

$$e: H_1 \leftrightarrow M$$

$$(0) \leftrightarrow s_1(t)$$

$$(1) \leftrightarrow s_2(t)$$

Example:

$$M = \{s_1(t) = VP_T(t)\cos(2\pi f_0 t), s_2(t) = VP_T(t)\sin(2\pi f_0 t),$$

$$s_3(t) = -VP_T(t)\cos(2\pi f_0 t), s_4(t) = -VP_T(t)\sin(2\pi f_0 t)\}$$

$$m = 4 \implies k = 2$$

$$H_2 = \{(00), (01), (11), (10)\}$$

$$e: H_2 \longleftrightarrow M$$

$$(00) \longleftrightarrow s_1(t)$$

$$(01) \longleftrightarrow s_2(t)$$

$$(10) \longleftrightarrow s_3(t)$$

$$(11) \longleftrightarrow s_4(t)$$

Transmitted Waveforms

Assume:

- Binary data sequence: <u>u</u>T
- Signal set: M
- Binary labeling: e

Constructing the transmitted waveform s(t) is a fairly straightforward task.

M contains 2^k vectors \Longrightarrow $e: H_k \leftrightarrow M$

Split \underline{u}_T into k-bit vectors

$$\underline{\boldsymbol{u}}_T = (u_T[0], u_T[1], ..., u_T[i], ...)$$

Vector [0]
$$\underline{v}_T[0] = (u_T[0], \dots, u_T[k-1])$$

Vector [n]
$$\underline{v}_T[n] = (u_T[nk], \dots, u_T[(n+1)k-1])$$

Each bit exists in T_b seconds Each k-bit vector exists in kT_b =T seconds

$$\underline{\boldsymbol{u}}_{T} = (\underline{v_{T}[0]}, \underline{v_{T}[1]}, \dots, \underline{v_{T}[n]}, \dots)$$

$$T \qquad T$$

Each signal $s_i(t) \in M$ exists in T seconds

$$0 \le t < T = kT_b$$

Transmitted waveform

Binary labeling $e: H_k \leftrightarrow M$

$$\underline{\boldsymbol{u}}_{T} = (\underbrace{\boldsymbol{v}_{T}[0]}, \underbrace{\boldsymbol{v}_{T}[1]}, \dots, \underbrace{\boldsymbol{v}_{T}[n]}, \dots)$$

$$e(\underbrace{\boldsymbol{T}}, e(\underbrace{\boldsymbol{T}}, e(\underbrace{\boldsymbol{T}}, \dots, e(\underbrace{\boldsymbol{T}}, \dots)))$$

$$s(t) = (\underbrace{\boldsymbol{s}[0](t)}, \underbrace{\boldsymbol{s}[1](t)}, \dots, \underbrace{\boldsymbol{s}[n](t)}, \dots)$$

Correct alignment: $s[n](t) = e(\underline{v}_T[n])$???

Problem: The signal set

$$M = \{ s_1(t), ..., s_i(t), ..., s_m(t) \}$$

is defined in the interval

$$0 \le t < T = kT_b$$

but only the first binary vector is represented (mapped) during this interval.

$$\underline{\boldsymbol{u}}_{T} = (\underbrace{\boldsymbol{v}}_{T}[0], \underbrace{\boldsymbol{v}}_{T}[1], \dots, \underbrace{\boldsymbol{v}}_{T}[n], \dots)$$

$$e^{\sqrt[3]{T}} \quad e^{\sqrt[3]{T}} \quad e^{\sqrt[3]{T}} \quad e^{\sqrt[3]{T}}$$

$$s(t) = (\underbrace{s[0](t)}, \underbrace{s[1](t)}, \dots, \underbrace{s[n](t)}, \dots)$$

Correct alignment is achieved: $s[n](t) = T_n(e(\underline{v}_T[n]))$

if

$$T_n(y(t)) = y(t - nT)$$

Binary labeling $e: H_k \leftrightarrow M$

$$\underline{u}_{T} = (\underbrace{v_{T}[0]}, \underbrace{v_{T}[1]}, \dots, \underbrace{v_{T}[n]}, \dots)$$

$$\underline{s}(t) = (\underbrace{s[0](t)}, \underbrace{s[1](t)}, \dots, \underbrace{s[n](t)}, \dots)$$

Correct alignment: $s[n](t) = T_n(e(\underline{v}_T[n])$

Example:

Exercise

$$\underline{u}_{T}$$
=(10011100...) R_{b} =1 Mbps

$$M = \{s_1(t) = VP_T(t)\cos(2\pi f_0 t), s_2(t) = VP_T(t)\sin(2\pi f_0 t),$$

$$s_3(t) = -VP_T(t)\cos(2\pi f_0 t), s_4(t) = -VP_T(t)\sin(2\pi f_0 t)\}$$

$$(f_0 = 1 \text{MHz})$$

Draw the transmitted waveform s(t).

Examples of signal sets in practice

Bipolar Non Return to Zero

$$M = \{s_1(t) = +VP_T(t), s_2(t) = -VP_T(t)\}$$

$$m=2 \rightarrow k=1 \rightarrow T=T_h$$

Unipolar Non Return to Zero

$$M = \{s_1(t) = +VP_T(t), s_2(t) = 0\}$$

$$m = 2 \rightarrow k = 1 \rightarrow T = T_b$$

Bipolar Return to Zero

$$M = \{s_1(t) = +VP_{T/2}(t), s_2(t) = -VP_{T/2}(t)\}$$

$$m = 2 \rightarrow k = 1 \rightarrow T = T_b$$

Unipolar Return to Zero

$$M = \{s_1(t) = +VP_{T/2}(t), s_2(t) = 0\}$$

$$m=2 \rightarrow k=1 \rightarrow T=T_b$$

m-PAM (Pulse Amplitude Modulation)

Example: 4-PAM

$$M = \left\{ s_1(t) = +3VP_T(t), s_2(t) = +VP_T(t), s_3(t) = -VP_T(t), s_4(t) = -3VP_T(t) \right\}$$

$$m = 4 \rightarrow k = 2 \rightarrow T = 2T_b$$

m-ASK (Amplitude Shift Keying)

Example: 4-ASK

$$M = \left\{ s_1(t) = +3VP_T(t)\cos(2\pi f_0 t), s_2(t) = +VP_T(t)\cos(2\pi f_0 t), s_3(t) = -VP_T(t)\cos(2\pi f_0 t), s_4(t) = -3VP_T(t)\cos(2\pi f_0 t) \right\}$$

$$m = 4 \rightarrow k = 2 \rightarrow T = 2T_b$$

4-ASK

$$f_0 = 2R_b$$

m-PSK (Phase Shift Keying)

Example: 2-PSK

$$M = \{s_1(t) = +VP_T(t)\cos(2\pi f_0 t), s_2(t) = -VP_T(t)\cos(2\pi f_0 t)\} =$$

$$= \{s_1(t) = +VP_T(t)\cos(2\pi f_0 t), s_2(t) = +VP_T(t)\cos(2\pi f_0 t - \pi)\}\$$

$$m = 2 \rightarrow k = 1 \rightarrow T = T_b$$

2-PSK

$$f_0 = 2R_b$$

Example: 4-PSK

$$M = \begin{cases} s_1(t) = +VP_T(t)\cos(2\pi f_0 t), s_2(t) = +VP_T(t)\sin(2\pi f_0 t), \\ s_3(t) = -VP_T(t)\cos(2\pi f_0 t), s_4(t) = -VP_T(t)\sin(2\pi f_0 t) \end{cases} =$$

$$= \begin{cases} s_1(t) = +VP_T(t)\cos\left(2\pi f_0 t\right), s_2(t) = +VP_T(t)\cos\left(2\pi f_0 t - \frac{\pi}{2}\right), \\ s_3(t) = +VP_T(t)\cos\left(2\pi f_0 t - \pi\right), s_4(t) = VP_T(t)\cos\left(2\pi f_0 t - \frac{3\pi}{2}\right) \end{cases}$$

$$m = 4 \rightarrow k = 2 \rightarrow T = 2T_b$$

4-PSK

$$f_0 = 2R_b$$

m-FSK (Frequency Shift Keying)

Example: 2-FSK

$$M = \{s_1(t) = +VP_T(t)\cos(2\pi f_1 t), s_2(t) = +VP_T(t)\cos(2\pi f_2 t)\}$$

$$m = 2 \to k = 1 \to T = T_b$$

2-FSK

$$f_1 = 2R_b$$

$$f_2 = 3R_b$$

Exercise

$$\underline{u}_{T}$$
=(10011100...) R_{b} =1 Mbps

Draw the waveform of all the signal sets listed above.

