Introduction to Data Mining

Data Mining (2018, Fall Semester)

Why Mine Data? Commercial Viewpoint

- Lots of data is being collected and warehoused
 - Web data, e-commerce
 - purchases at department/ grocery stores
 - Bank/Credit Card transactions

- Computers have become cheaper and more powerful
- Competitive Pressure is Strong
 - Provide better, customized services for an edge
 - e.g., Customer Relationship Management (CRM)

Why Mine Data? Scientific Viewpoint

- Data collected and stored at enormous speeds (GB/hour)
 - remote sensors on a satellite
 - telescopes scanning the skies
 - microarrays generating gene expression data
 - scientific simulations generating terabytes of data
- Traditional techniques infeasible for raw data
- Data mining may help scientists
 - in classifying and segmenting data
 - in Hypothesis Formation

Mining Large Data Sets - Motivation

- There is often information "hidden" in the data that is not readily evident
- Human analysts may take weeks to discover useful information
- Much of the data is never analyzed at all

From: R. Grossman, C. Kamath, V. Kumar, "Data Mining for Scientific and Engineering Applications"

What is Data Mining?

Many Definitions

- Non-trivial extraction of implicit, previously unknown and potentially useful information from data
- Exploration & analysis, by automatic or semi-automatic means, of large quantities of data in order to discover meaningful patterns

What is (not) Data Mining?

- What is not Data Mining?
 - Look up phone number in phone directory
 - Query a Websearch engine forinformation about"Amazon"

• What is Data Mining?

- Certain names are more prevalent in certain US locations (O'Brien, O'Rurke, O'Reilly... in Boston area)
- Group together similar documents returned by search engine according to their context (e.g. Amazon rainforest, Amazon.com,)

Origins of Data Mining

- Draws ideas from machine learning/AI, pattern recognition, statistics, and database systems
- Traditional Techniques may be unsuitable due to
 - Enormity of data
 - High dimensionality of data
 - Heterogeneous, distributed nature of data

Data Mining Tasks

Prediction Methods

Use some variables to predict unknown or future values of other variables.

Description Methods

Find human-interpretable patterns that describe the data.

Data Mining Tasks...

- Classification [Predictive]
- Clustering [Descriptive]
- Association Rule Discovery [Descriptive]
- Regression [Predictive]
- Deviation Detection [Predictive]

Classification: Definition

- Given a collection of records (training set)
 - Each record contains a set of attributes, one of the attributes is the class.
- Find a *model* for class attribute as a function of the values of other attributes.
- Goal: <u>previously unseen</u> records should be assigned a class as accurately as possible.
 - A test set is used to determine the accuracy of the model. Usually, the given data set is divided into training and test sets, with training set used to build the model and test set used to validate it.

Classification Example

categorical categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Refund	Marital Status	Taxable Income	Cheat	
No	Single	75K	?	
Yes	Married	50K	?	
No	Married	150K	?	\ \
Yes	Divorced	90K	?	
No	Single	40K	?	
No	Married	80K	?	Test
				Set
ining Set		Learn Classifie	er -	Model

Classification: Application

Fraud Detection

- Goal: Predict fraudulent cases in credit card transactions.
- Approach:
 - Use credit card transactions and the information on its accountholder as attributes.
 - □ When does a customer buy, what does he buy, how often he pays on time, etc
 - Label past transactions as fraud or fair transactions. This forms the class attribute.
 - Learn a model for the class of the transactions.
 - Use this model to detect fraud by observing credit card transactions on an account.

Classification: Application

Sky Survey Cataloging

- Goal: To predict class (star or galaxy) of sky objects, especially visually faint ones, based on the telescopic survey images (from Palomar Observatory).
 - \square 3000 images with 23,040 x 23,040 pixels per image.

Approach:

- Segment the image.
- ▶ Measure image attributes (features) 40 of them per object.
- Model the class based on these features.
- Success Story: Could find 16 new high red-shift quasars, some of the farthest objects that are difficult to find!

Classifying Galaxies

Courtesy: http://aps.umn.edu

Class:

• Stages of Formation

Intermediate

Attributes:

- Image features,
- Characteristics of light waves received, etc.

Late

Data Size:

- 72 million stars, 20 million galaxies
- Object Catalog: 9 GB
- Image Database: 150 GB

Clustering Definition

- Given a set of data points, each having a set of attributes, and a similarity measure among them, find clusters such that
 - Data points in one cluster are more similar to one another.
 - Data points in separate clusters are less similar to one another.
- Similarity Measures:
 - Euclidean Distance if attributes are continuous.
 - Other Problem-specific Measures.

Illustrating Clustering

Intracluster distances are minimized

Intercluster distances are maximized

Clustering: Application

Document Clustering:

- Goal: To find groups of documents that are similar to each other based on the important terms appearing in them.
- Approach: To identify frequently occurring terms in each document. Form a similarity measure based on the frequencies of different terms. Use it to cluster.
- Gain: Information Retrieval can utilize the clusters to relate a new document or search term to clustered documents.

Illustrating Document Clustering

- Clustering Points: 3204 Articles of Los Angeles Times.
- Similarity Measure: How many words are common in these documents (after some word filtering).

Category	Total Articles	Correctly Placed
Financial	555	364
Foreign	341	260
National	273	36
Metro	943	746
Sports	738	573
Entertainment	354	278

Clustering of S&P 500 Stock Data

- **36** Observe Stock Movements every day.
- Clustering points: Stock-{UP/DOWN}
- Similarity Measure: Two points are more similar if the events described by them frequently happen together on the same day.
 We used association rules to quantify a similarity measure.

	Discovered Clusters	Industry Group
1	Applied-Matl-DOW N, Bay-Network-Down, 3-COM-DOWN, Cabletron-Sys-DOWN, CISCO-DOWN, HP-DOWN, DSC-Comm-DOW N, INTEL-DOWN, LSI-Logic-DOWN, Micron-Tech-DOWN, Texas-Inst-Down, Tellabs-Inc-Down, Natl-Semiconduct-DOWN, Oracl-DOWN, SGI-DOWN, Sun-DOWN	Technology1-DOWN
2	Apple-Comp-DOW N, Autodesk-DOW N, DEC-DOW N, ADV-Micro-Device-DOW N, Andrew-Corp-DOW N, Computer-Assoc-DOW N, Circuit-City-DOW N, Compaq-DOW N, EMC-Corp-DOW N, Gen-Inst-DOW N, Motorola-DOW N, Microsoft-DOW N, Scientific-Atl-DOW N	Technology2-DOWN
3	Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, MBNA-Corp-DOWN,Morgan-Stanley-DOWN	Financial-DOWN
4	Baker-Hughes-UP, Dresser-Inds-UP, Halliburton-HLD-UP, Louisiana-Land-UP, Phillips-Petro-UP, Unocal-UP, Schlumberger-UP	Oil-UP

Association Rule Discovery: Definition

- Given a set of records each of which contain some number of items from a given collection;
 - Produce dependency rules which will predict occurrence of an item based on occurrences of other items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Rules Discovered: {Milk} --> {Coke} {Diaper, Milk} --> {Beer}

Association Rule Discovery: Application 1

- Marketing and Sales Promotion:
 - Let the rule discovered be {Bagels, ... } -> {Potato Chips}
 - Potato Chips as consequent => Can be used to determine what should be done to boost its sales.
 - <u>Bagels in the antecedent</u> => Can be used to see which products would be affected if the store discontinues selling bagels.
 - Bagels in antecedent and Potato chips in consequent => Can be used to see what products should be sold with Bagels to promote sale of Potato chips!

Regression

- Predict a value of a given continuous valued variable based on the values of other variables, assuming a linear or nonlinear model of dependency.
- Greatly studied in statistics, neural network fields.
- Examples:
 - Predicting sales amounts of new product based on advetising expenditure.
 - Predicting wind velocities as a function of temperature, humidity, air pressure, etc.
 - ▶ Time series prediction of stock market indices.

Deviation/Anomaly Detection

- Detect significant deviations from normal behavior
- Applications:
 - Credit Card Fraud Detection

Network IntrusionDetection

Typical network traffic at University level may reach over 100 million connections per day

Topics of Data Mining

- Types of Data, Exploring Data
- Concept Learning, Decision Tree Learning
- Linear Models for Classification and Regression
- Learning Algorithms, Artificial Neural Networks
- Evaluation Methods
- Clustering Methods
- Association Analysis
- Probabilistic Models
- Committee Machines, Deep Networks

