COMP7990

Exam Details

• Date: 12-12-2024

• Time: 19:00 - 22:00

• Venue: SHSH

- Format: closed-book. No note, no paper
 - Formula sheet is given.
- Listed calculators are allowed.
- Steps carry marks.
- Rulers, Eraser, Pen, Pencils, a calculator are useful

Exam Content

- Data Mining (~27%)
- Statistics (~30%)
- Visualization (~5%)
- Security and Privacy (~8%)
- Database (~30%)

Tips

- Don't be late. No enter after 30 minutes.
- Sleep well before the exam
- Have just enough food before the exam
- Remember the algorithms/computational procedures
- Do revision on your quiz again
- Calculator list https://www.hkeaa.edu.hk/DocLibrary/IPE/cal/CAL2019.pdf
- For calculator that is not from the list, you should consult the lecturer in advanced.

Included and Not Included

- Exam covers topics in the lecture notes only. Labs are excluded.
- Notes stated with [Option] / [Extra] are excluded.
 - e.g. SVM: Solving the Optimization Problem (option)
 - The optimization problem is

$$\begin{aligned} & \min \ \frac{\|\mathbf{w}\|^2}{2} \\ & \text{subject to} \quad y_i(\mathbf{w}^T\mathbf{x}_i + b) \geq 1, i = 1, \dots, m \end{aligned}$$

• Introducing Lagrange Multipliers α_i , one for each constraint, leads to the primal Lagrangian:

$$\min L_p = \frac{\|\mathbf{w}\|^2}{2} + \sum_{i=1}^m \alpha_i (1 - y_i(\mathbf{w}^T \mathbf{x}_i + b))$$
subject to $\alpha_i \ge 0, i = 1, ..., m$

Kernel as high dimensional feature mapping (optional)

- Consider two samples \mathbf{x} : $[x_1, x_2]$ and \mathbf{z} : $[z_1, z_2]$
- Let us assume there is a kernel function k that takes inputs x and z

```
k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}\mathbf{z})^2 \\ = (x_1z_1 + x_2z_2)^2 \\ = x_1^2z_1^2 + x_2^2z_2^2 + 2x_1x_2z_1z_2 \\ = (x_1^2, \sqrt{2}x_1x_2, x_2^2)(z_1^2, \sqrt{2}z_1z_2, z_2^2) \\ = \phi(\mathbf{x})\phi(\mathbf{z})
\phi(\mathbf{x})\phi(\mathbf{z}) \text{ is computed}
efficiently in original input space.
```

• This kernel function k implicitly defines a mapping ϕ to a higher dimensional space

$$\phi(\mathbf{x}) = [x_1^2, \sqrt{2}x_1x_2, x_2^2]$$

• Note that we do not have to define/compute this mapping. Simple defining the kernel is a certain way to give a higher dimensional mapping ϕ

• Equations on formulasheet.pdf are provided.

Review

Review for data mining

- How to Handle Noisy Data
- Normalization
 - Min-Max Normalization
 - Decimal Scaling
 - Z-score Normalization
- Supervised and Unsupervised Learning
- Classification and Regression
- Linear model (one variable and multiple variables)
- Perceptron
- Multi-Layer Perceptron
- SVM
- KNN
- Clustering

How to Handle Noisy Data

- Binning
 - First sort data and partition into bins
 - Smooth by bin mean/median/boundaries

- Regression
 - Smooth by fitting the data into regression functions

- Clustering
 - Detect and remove outliers

Simple Discretization Methods: Binning

- Equal-width (distance) Partitioning
 - Divides the range into N intervals of equal size: uniform grid
 - Suppose min and max are the lowest and highest values of the attribute, the width of intervals should be: w = (max min)/N
 - The most straight-forward method
 - Outliers may dominate presentation
 - Skewed data is not handled well
- Equal-depth (frequency) partitioning
 - Divides the range into N intervals, each containing approximately same the number of samples
 - Skewed data is also handled well

Normalization

• For distance-based methods, normalization helps to prevent that attributes with large ranges out-weight attributes with small ranges

Scale the attribute values to a small specified range

- Normalization Methods
 - Normalization by decimal scaling
 - Min-Max normalization (normalized by range)
 - Z-score normalization

Normalization: min-max Normalization

- Min-max normalization
 - Performs a linear transformation on the original data.
 - Suppose min, max are the minimum and maximum values of an attribute and we want to normalize the attribute value to $[min_{new}, max_{new}]$, min-max normalization maps a value x_i to x_i' by

$$x_i' = \frac{(x_i - min)}{max - min}(max_{new} - min_{new}) + min_{new}$$

• E.g., suppose that the minimum and maximum values for the feature income are \$12,000 and \$98,000. We would like to map income to the range [0.0, 1.0]. By min-max normalization, what is the mapped value for \$73,600?

$$\frac{(73,600 - 12,000)}{98,000 - 12,000}(1.0 - 0.0) + 0.0 = 0.716$$

Normalization: Decimal Scaling

- Decimal Scaling
 - The values of an attribute are normalized by moving the decimal point.
 - The number of decimal points moved depends on the maximum absolute value of the attribute.
 - Decimal scaling maps a value x_i to x_i' by

$$x_i' = \frac{x_i}{10^j}$$
 j is the smallest integer such that max(|x_i|) < 1

• E.g., suppose that the recorded values of an attribute range from -986 to 917. The maximum absolute value is 986. To normalize by decimal scaling, we therefore divide each value by 1,000 (i.e., j = 3) so that -986 normalizes to -0.986 and 917 normalizes to 0.917.

Normalization: Z-score normalization

- Z-score normalization
 - The values of an attribute are normalized to a scale with a mean value of 0 and standard deviation of 1.
 - Z-score normalization maps a value x_i to x_i' by

$$x_i' = \frac{(x_i - \bar{x})}{S_x}$$
 mean of an original x standard deviation of original x

• E.g., suppose that the mean and standard deviation for income are \$54,000 and \$16,000. What is the mapped value for \$73,600?

$$\frac{(73,600 - 54,000)}{16,000} = 1.225$$

Different Types of Learning Tasks

- Supervised Learning
 - Data with labels

- Unsupervised Learning
 - Data without labels

An Example of Classification Problem

Learn to recognize apple or banana

Test Data

An Example of Regression Problem

Test Data

Test Data

To predict its weight (quantitative feature)

Linear model representation

How do we represent *h* ?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Linear regression with one variable. Univariate linear regression.

Residual

Linear Regression one variable

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:
$$\theta_0, \theta_1$$

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:
$$\min_{\theta_0, \theta_1} \text{minimize } J(\theta_0, \theta_1)$$

Derive the Solution for Linear Regression on One-Dimensional Data

$$\theta_{1} = \frac{\sum (x^{(i)} - \bar{x})(y^{(i)} - \bar{y})}{\sum (x^{(i)} - \bar{x})^{2}}$$
$$\theta_{0} = \bar{y} - \theta_{1} * \bar{x}$$

Linear Regression multiple variables

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

```
Repeat \{ \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n) \{ simultaneously update for every j = 0, \dots, n \}
```

Normal equation

Gradient Descent:

Method to solve for θ numerically.

Normal equation:

Method to solve for θ analytically.

Gradient descent:

Repeat
$$\left\{ \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n) \right\}$$

$$\theta = (X^T X)^{-1} X^T y$$

Gradient descent and normal equation m training cases, n variables.

Gradient Descent

- Need to choose α .
- Needs many iterations.
- Works well even when n is large.

Normal Equation

- No need to choose α .
- Don't need to iterate.
- Need to compute $(X^TX)^{-1}$
- Slow if n is very large.

Introduction to Perceptron Algorithm

Problem Definition

- Given a training dataset $\{\mathbf{x}_i, y_i\}_{i=1}^m$, where \mathbf{x}_i is a n dimensional input feature vector, $y_i \in \{-1,1\}$ is the corresponding class label.
- Objective: Train a linear classifier that can separate positive and negative samples.
- Training: Learn a linear classification function $f(\mathbf{x}) = \sum_{j=1}^n w_j x_j + b$ from training data
 - y = 1 if $f(\mathbf{x}) = \sum_{j=1}^{n} w_j x_j + b > 0$
 - y = -1 if $f(\mathbf{x}) = \sum_{j=1}^{n} w_j x_j + b < 0$
 - w_i, b are the model parameters that we need to learn from training data
- **Prediction:** for any new input x, predict its class label as y = sign(f(x))
- Simplify the notation
 - By introducing an artificial feature $\mathbf{x}_0 = 1$, $\mathbf{x} \to [x_0, x_1, ..., x_n]$, $f(\mathbf{x})$ can be rewritten in vector form as $f(\mathbf{x}) = \sum_{j=1}^n w_j x_j + b = \sum_{j=1}^n w_j x_j + b x_0 = \sum_{j=0}^n w_j x_j = \mathbf{w}^T \mathbf{x}$

Introduction to Perceptron Algorithm

Initialize $\mathbf{w} = \mathbf{0}$

Repeat

if
$$y_i(\mathbf{w}^T\mathbf{x}_i) \leq 0$$
 then $\mathbf{w} \leftarrow \mathbf{w} + y_i\mathbf{x}_i$

end if

 $y_i(\mathbf{w}^T\mathbf{x}_i) \leq 0$ means the training data point \mathbf{x}_i is misclassified.

- true label $y_i = 1$, but the prediction $sign(\mathbf{w}^T\mathbf{x}) = -1$, or
- true label $y_i = -1$, but the prediction $sign(\mathbf{w}^T\mathbf{x}) = 1$

Perceptron: Nonlinear separable problems

x_I	x_2	у
1	-1	1
1	1	-1
-1	1	1
-1	-1	-1

Perceptron:

- Perceptron can not solve nonlinear separable problems
- Nonlinear separable problems can be solved by
 - Using multiple layers perceptron (Artificial Neural Networks)
 - Making it linearly separable using kernel (Support Vector Machine)

Multi-Layer Perceptron for Nonlinear Classification

x_{I}	x_2	У
1	-1	1
1	1	-1
-1	1	1
-1	-1	-1

This multi-layer perceptron can solve this nonlinear classification problem.

How to learn the model parameter (i.e., weights on the edge) from data?

Underfitting/Overfitting and Model Complexity

Support Vector Machine (SVM)

- Probably the most popular/influential classification algorithm
- Backed by solid theoretical groundings
- A hyperplane based classifier (like the Perceptron)
- Additionally uses the maximum margin Principle
 - Finds the hyperplane with maximum separation margin on the training data

Kernel SVM for Nonlinear Classification

 Key idea: Projecting the input to a high dimensional feature space so that non-linear classification problem becomes linearly separable again!

Kernels

- Kernels: Make linear models works in nonlinear settings
 - By mapping data to higher dimensions where it exhibits linear patterns.
 - Apply the linear model in the new input space
 - Mapping means changing the feature representation

k-Nearest Neighbors Example (k=3)

Training Data:

x_{I}	x_2	label
1	3	1
1	1	1
-1	-1	-1
-2	1	-1

x_1	x_2	label
-1	4	1

	X _{test}			X _{test}
\mathbf{x}_1	$\sqrt{5}$	Sort	\mathbf{x}_1	$\sqrt{5}$
x ₂	$\sqrt{13}$		\mathbf{x}_4	$\sqrt{10}$
x ₃	$\sqrt{25}$,	\mathbf{x}_2	$\sqrt{13}$
\mathbf{x}_4	$\sqrt{10}$		X ₃	$\sqrt{25}$ 33

K-means Algorithm

- Input: Samples $\{\mathbf x_i\}_{i=1}^m$, parameter K (i.e., number of clusters)
- Initialize: K cluster centers (means) \mathbf{c}_1 , ..., \mathbf{c}_k . Several initialization options:
 - Randomly initialized anywhere in the input space
 - Randomly choose K samples from the data as the cluster centers
- Iterate:
 - Assign each sample \mathbf{x}_i to its closest cluster center $k = \arg\min_{k} ||\mathbf{x}_i \mathbf{c}_k||$
 - Re-compute the cluster center \mathbf{c}_k for every new cluster

$$\mathbf{c}_k = \frac{1}{|C_k|} \sum_{\mathbf{x}_i \in C_k} \mathbf{x}_i \longleftarrow$$

Repeat while not converged

 C_k is the set of samples in cluster k $|C_k|$ denotes the number of samples in C_k

Converge criteria: Cluster centers do not change anymore

Hierarchical Clustering: (Dis)similarity Between Clusters

Single Linkage

• **Smallest** distances between samples, where each one is taken from one of the two groups

Complete Linkage

• Largest distances between samples, where each one is taken from one of the two groups

Average linkage

 Average distance between all samples in one cluster to all points in another cluster

Centroid linkage

Distance between their centroids.

Single Linkage

Complete Linkage

Average Linkage

Centroid Linkage

Example: Hierarchical Clustering (with Centroid Linkage)

x ₁	<i>X</i> ₂
0	0
1	2
2	1
4	1
5	0
5	3

Data:

o ... data point

Data:

o ... data point

Data:

o ... data point x ... centroid

Data:

o ... data point

Data:

o ... data point

Data:

o ... data point

Statistics

Revision Guide

- Summary Statistics
 - Center: mean, median
 - Spread: standard deviation, range, IQR
 - Five number summary
 - Shape: symmetric, skewed, bell-shaped
 - Outliers, resistance
- Statistics
 - Standard error
 - Confidence interval

Variables – Categorical and Quantitative Variables

- A qualitative / categorical variable divides the cases into *groups*, placing each case into exactly one of two or more categories.
- A quantitative /numerical variable measures or records a numerical quantity for each case. Numerical operations like adding and averaging make sense for quantitative variables.

For example, "gender" is categorical even if we choose to record the results as 1 for male and 2 for female.

Random Sampling

- ➤ How do we get a sample that looks like the population?
- ➤ The key is random sampling!!!
- >A random sample will resemble the population!
- ➤ Random sampling avoids sampling bias!

Example of Biased Sampling

• CFQ

- Only students who extremely like this course or dislike this course will go to do the CFQ.
- The CFQ result is heavily biased to two ends!

Students can visit the Course Feedback
 Questionnaire System (CFQ) at https://cfq-student.hkbu.edu.hk to provide feedback.
 The evaluation period will end on Tuesday,
 3rd December 2024, 23:59:59.

Distribution

➤In describing a single quantitative variable, we generally consider these questions as shown in the right graph.

Shape

Center

Graph the distribution of a quantitative variable. Describe: Overall pattern Deviations from the pattern

Outliers

Spread

Other measures of location and spread

- ➤ Maximum = the largest value
- ➤ Minimum = the smallest value
- ➤ Mode: The value that has the highest frequency.
- **>**Quartiles:
 - Q_1 = median of the values below m
 - Q_3 = median of the values above m
- ➤ Five Number Summary

- ➤ Range = Max Min; Is the range resistant to outliers? No!
- \triangleright Interquartile Range (IQR) = Q₃-Q₁; Is the IQR resistant to outliers? Yes!

Standard Deviation

The standard deviation for a quantitative variable measures the spread of the data in a sample.

The standard deviation of a sample is denoted s, and measures how spread out the data are from the sample mean \bar{x} .

$$s = \sqrt{\frac{\sum_{i} (x_i - \bar{x})^2}{n - 1}}$$

The standard deviation of a population is denoted σ , which is the Greek letter "sigma" and measures how spread out the data are from the population mean μ .

$$\sigma = \sqrt{\frac{\sum_{i} (x_{i} - \mu)^{2}}{n}}$$

Standard Error

- The standard error of a statistics, denoted SE, is the standard deviation of the sample statistic
- The standard error can be calculated as the standard deviation of the sampling distribution
 - The standard error measures how much the statistic varies from sample to sample
 - The more the statistic varies from sample to sample, the higher the standard error
 - Lower SE means statistic closer to true parameter value
 - SE measures 'typical' distance between parameter and statistic

Confidence Intervals

- Confidence Interval
 - ❖ A Confidence Interval is a range of values we are sure our true value lies in.
 - The success rate (proportion of all samples falls into the confidence interval) is known as the confidence level.
- > Calculation of 95% Confidence Interval Using the Standard Error
 - ❖ If we can estimate the standard error and the sampling distribution is relatively symmetric and bell-shaped, a 95% confidence interval can be estimated using

Statistic±2 * SE

95% confidence interval

Confidence Intervals Confidence Interval statistic ± ME Sample **Population Sample** Sample Margin of Error (ME) **Sample** Sample $(95\% \text{ CI: ME} = 2 \times \text{SE})$ **Sampling Distribution** Calculate statistic for each sample Standard Error (SE): standard deviation of sampling distribution

Construction of confidence interval (an interval estimate) for a sample of size at least 30:

Step1:Compute the sample mean χ of the random sample. Suppose we know the population standard deviation σ . Compute the standard error: $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$

where n is the sample size

> Step2: Construct the 95% confidence interval

$$[\bar{x}-2\sigma_{\bar{x}},\bar{x}+2\sigma_{\bar{x}}]$$

Here 2 is chosen according to the confidence level 95%

 \blacktriangleright If σ is unknown, then we use s to estimate σ

$$s_{\bar{x}} = \frac{s}{\sqrt{n}}$$

> Then the 95% confidence interval is

$$[\bar{x}-2s_{\bar{x}},\bar{x}+2s_{\bar{x}}]$$

Parametric and Non-Parametric Tests

- Parametric Tests:
 assume the distribution
 of sample data (i.e.
 normality)
- Non-Parametric Tests:
 do not assume data are
 drawn from any
 particular distribution

T-test assumption 1 - normality Assumption 1: The sampling distribution is normally distributed

T-test assumption 2-No extreme scores

normal plus outliers: use non-parametric

There should not include *extreme* scores or outliers, because these have a disproportionate influence on the mean and the variance

Types of *T-test*

- ➤ Single sample t
 - One sample, compared with <u>known</u> population mean
 - Goal: Is current sample different from population?
- ➤ Independent samples t
 - Different (independent) samples of participants
 - Are our samples from different populations?
- ➤ Paired/Dependent Samples t
 - Same or related (dependent) samples
 - Are our samples from different populations?

General Form of t-test

	Single sample, Paired/Dependent Samples t	Independent Samples t (same variance)
Statistic	$t = \frac{\overline{x} - \mu}{S_{\overline{x}}}$	$t = \frac{\bar{x} - \bar{y} - (\mu_x - \mu_y)}{s_{Difference}} = \frac{\bar{x} - \bar{y}}{\sqrt{s_{Pooled}^2 (\frac{1}{m} + \frac{1}{n})}}$ $s_{Pooled}^2 = \frac{df_x s_x^2 + df_y s_y^2}{df_{Total}} = (\frac{df_x}{df_{Total}}) s_x^2 + (\frac{df_y}{df_{Total}}) s_y^2$
Critical value	$t_{\alpha,n-1}$	$t_{\alpha,m+n-2}$

One Tailed vs. Two Tailed Tests

H0: A=B

Ha: A>B

Ha: A<B

H0: A=B

Ha: A≠B

From two tailed test, you can only draw the conclusion that $\mathbf{A} \neq \mathbf{B}$, instead of A>B or A<B due to significant level.

Class Activity: Six Steps for Hypothesis Testing

- 1. Identify
- 2. State the hypotheses
- 3. Characteristics of the comparison distribution
- 4. Critical values
- 5. Calculate
- 6. Decide

One-Way ANOVA F-Test Hypotheses

 \triangleright Tests the equality of 2 or more population means (μ)

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = ... = \mu_p$

- All population means are equal
- No treatment effect

H_a : Not All μ_j Are Equal

- At least 1 population mean is Different
- Treatment Effect
- NOT $\mu_1 = \mu_2 = ... = \mu_p$
- Or $\mu_i \neq \mu_i$ for some i, j.
- Treatment variation between groups could be significantly greater than the in group variation
- ➤ Variation measures are obtained by 'Partitioning' total variation

One-Way ANOVA F-Test: Test Statistic

1. Test Statistic

$$F = MST / MSE$$
 = $\frac{SST/(p-1)}{SSE/(n-p)}$

- **❖** *MST* : mean square for treatment
- **❖** *MSE* : mean square for error

2. Degrees of Freedom

$$> v_1 = p - 1$$

$$\triangleright v_2 = n - p$$

- p = Populations, Groups, or Levels
- n = Total Sample Size

Always One-Tail!

Post Hoc Tests

➤If the t-test is significant, you have a difference in population means. You know where.

➤ If the F-test is significant, you have a difference in population means. But you don't know where.

- ➤ With 3 means, could be A=B>C or A>B>C or A>B=C.
 - We need a test to tell which means are different.

Tukey HSD(Honestly Significant Difference) The sizes of three groups should be the same

>Step1: compute all possible absolute differences between means

$$\overline{Y_1} = 24.93$$
 $\overline{Y_1} - \overline{Y_2} = 24.93 - 22.61 = 2.32$
 $\overline{Y_2} = 22.61$
 $\overline{Y_1} - \overline{Y_3} = 24.93 - 20.59 = 4.34$
 $\overline{Y_3} = 20.59$
 $\overline{Y_2} - \overline{Y_3} = 22.61 - 20.59 = 2.02$

- ➤ Step2: find the critical value q
- ➤ Step3: compute HSD

$$> HSD = \frac{\overline{Y}_i - \overline{Y}_j}{\sqrt{\frac{MSE}{n}}} = \frac{\overline{Y}_i - \overline{Y}_j}{\sqrt{\frac{0.9211}{5}}} = \frac{\overline{Y}_i - \overline{Y}_j}{0.43} (\overline{Y}_i \text{ is always larger than } \overline{Y}_j)$$

- ➤ Step4: compare absolute differences with HSD
 - ☐ HSD(G1 to G2): 5.39>3.77 different each other
 - ☐ HSD(G1 to G3): 10.09>3.77 different each other
 - ☐ HSD(G2 to G3): 4.70>3.77 different each other

Critical Values for the Tukey Q Test

d.f. = N – K (ANOVA Error or Within d.f.) for ANOVA: Single Factor d.f. = N – R*C (ANOVA Within d.f.) for ANOVA: Two-Factor With Replication d.f. = (R – 1)*(C – 1) (ANOVA Error d.f.) for ANOVA: Two-Factor Without Replication

Number of Groups (Treatments) = K

Error	Number of Groups (Treatments)								
df	2	3	4	5	6	7	8	9	10
1	17.97	26.98	32.82	37.08	40.41	43.12	45.40	47.36	49.07
2	6.08	8.33	9.80	10.88	11.74	12.44	13.03	13.54	13.99
2	4.50	5.91	6.82	7.50	8.04	8.48	8.85	9.18	9.46
4	3.93	5.04	5.76	6.29	6.71	7.05	7.35	7.60	7.83
5	3.64	4.60	5.22	5.67	6.03	6.33	6.58	6.80	6.99
6	3.46	4.34	4.90	5.30	5.63	5.90	6.12	6.32	6.49
7	3.34	4.16	4.68	5.06	5.36	5.61	5.82	6.00	6.16
8	3.26	4.04	4.53	4.89	5.17	5.40	5.60	5.77	5.92
9	3.20	3.95	4.41	4.76	5.02	5.24	5.43	5.59	5.74
10	3.15	3.88	4.33	4.65	4.91	5.12	5.30	5.46	5.60
11	3.11	3.82	4.26	4.57	4.82	5.03	5.20	5.35	5.49
12	3.08	3.77	4.20	4.51	4.75	4.95	5.12	5.27	5.39
13	3.06	3.73	4.15	4.45	4.69	4.88	5.05	5.19	5.3
14	3.03	3.70	4.11	4.41	4.64	4.83	4.99	5.13	5.2
15	3.01	3.67	4.08	4.37	4.59	4.78	4.94	5.08	5.20
16	3.00	3.65	4.05	4.33	4.56	4.74	4.90	5.03	5.15
17	2.98	3.63	4.02	4.30	4.52	4.70	4.86	4.99	5.11
18	2.97	3.61	4.00	4.28	4.49	4.67	4.82	4.96	5.0
19	2.96	3.59	3.98	4.25	4.47	4.65	4.79	4.92	5.0
20	2.95	3.58	3.96	4.23	4.45	4.62	4.77	4.90	5.0
24	2.92	3.53	3.90	4.17	4.37	4.54	4.68	4.81	4.9
30	2.89	3.49	3.85	4.10	4.30	4.46	4.60	4.72	4.8
40	2.86	3.44	3.79	4.04	4.23	4.39	4.52	4.63	4.7
60	2.83	3.40	3.74	3.98	4.16	4.31	4.44	4.55	4.6
120	2.80	3.36	3.68	3.92	4.10	4.24	4.36	4.47	4.5
00	2.77	3.31	3.63	3.86	4.03	4.17	4.29	4.39	4.4

Rationale of Mann-Whitney U

- ➤ Imagine two samples of scores drawn at random from the **same population**
- The two samples are combined into one larger group and then ranked from lowest to highest
- In this case there should be a **similar number** of high and low ranked scores in each original group
- If however, the two samples are from <u>different populations</u> with different <u>medians</u> then most of the scores from one sample will be lower in the ranked list than most of the scores from the other sample
 - the sum of ranks in each group will differ

Wilcoxon signed ranks test

- ➤ Use this when the same participants perform both conditions of your study:
 - □i.e., it is appropriate for analyzing the data from a repeated-measures design with two conditions.
- >Use it when the data do not meet the requirements for a parametric test
 - ☐ if the data are not **normally distributed**
 - ☐ if the variances for the two conditions are markedly different
 - ☐ if the data are measurements on an **ordinal scale**

Logic behind the Wilcoxon test

- The data are ranked to produce two rank totals, one for each condition.
- If there is a systematic difference between the two conditions, then most of the *high ranks* will belong to one condition and most of the *low ranks* will belong to the other one.
 - > the rank totals will be quite different and one of the rank totals will be quite small.
 - if the two conditions are similar, then high and low ranks will be **distributed evenly** between the two conditions and the rank totals will be fairly similar and quite large.
- The Wilcoxon test statistic "W" is simply the smaller of the rank totals.
 - The SMALLER it is (taking into account how many participants you have) then the less likely it is to have occurred by chance.
 - ➤ A table of critical values of W shows you how likely it is to obtain your particular value of W purely by chance.

Linear regression and Correlation

- Correlation coefficient: measure of the strength and direction of linear relationship between two quantitative variables
- Linear regression fits a model predicting a quantitative response (dependent) variable (y) based on a quantitative explanatory (independent) variable (x)

Pearson Correlation Coefficient

 The correlation coefficient (r) is a numeric measure of the strength and direction of a linear relationship between two quantitative variables

$$r_{XY} = rac{\sum_{i=1}^{n}(X_{i}-\overline{X})(Y_{i}-\overline{Y})}{\sqrt{\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}}\sqrt{\sum_{i=1}^{n}(Y_{i}-\overline{Y})^{2}}}$$

Steps To Calculate Spearman's Rank Correlation Coefficient

- ➤ Step1: Assign ranks 1, 2, 3, ..., n to the value of each variable.
 - Ranking can be descending in order or ascending in order.
 - ❖ However, both data sets should use the same ordering.
- \triangleright Step2: For each pair of values (x, y), we will calculate

$$d = rank(x) - rank(y)$$

- ❖ We call the difference d.
- > Step3:We calculate Spearman's Rank Order Correlation Coefficient as follows:

Spearman's Rank Table

Sample size (n)	p = 0.05	p = 0.025	p = 0.01	
4	1.0000	-	-	
5	0.9000	1.0000	1.0000	
6	0.8286	0.8857	0.9429	
7	0.7143	0.7857	0.8929	
8	0.6429	0.7381	0.8333	
9	0.6000	0.7000	0.7833	
10	0.5636	0.6485	0.7455	
11	0.5364	0.6182	0.7091	
12	0.5035	0.5874	0.6783	
13	0.4825	0.5604	0.6484	
14	0.4637	0.5385	0.6264	
15	0.4464	0.5214	0.6036	

 $r_s = 1 - \frac{6\sum_{n}d^2}{n(n^2 - 1)}$ with the values in the Spearman's Rank Table. The values in this table are the minimum values of r from a sample that need to be reached for Spearman's Rank Correlation Coefficient value to be significant at the level shown.

Revision Guide

Design of Visualization

- Workflow of data visualization
- Color, Size, Text, Titles, Labels
- Choosing the right chart

Needs-Driven Workflow

Börner (2014) – *Visual Insights*

Shneiderman's Mantra

- User-Interface Interaction
 - Immediate interaction not only allows direct manipulation of the visual objects displayed but also allows users to select what to be displayed (Card et al., 1999)
 - Shneiderman (1996) summarizes six types of interface functionality
 - Overview
 - Zoom
 - Filtering
 - Details on demand
 - Relate
 - History
 - "Overview first, zoom and filter, then details-on-demand."

Color Blind Friendly - Accessibility

Left: Normal vision, Right: Deuteranopia

- 1. Avoiding **problematic** color combinations, e.g., red & green / green & brown / green & blue...
- 2. Selecting color-blind-friendly palettes
- 3. Using different **textures** and patterns to highlight important information—not just color
- 4. Using **symbols and icons** to supplement color-coded messages, warnings and alerts
- 5. Using highly **contrasted** color combinations
- 6. Adopting **minimalistic** design to help avoid unnecessary confusion.

Choosing the Right Chart

- When a single number is important
- How two or more numbers are alike or different
- How we are better or worse than a benchmark
- When there are parts of a whole
- How things change over time

Displaying a Single Number

Simple text with a single large number

Icon Array

• Donut or Pie Graph

• Bar

Visualizing Comparisons

- Side by Side Column or Bar Charts
- Slopegraph
- Back-To-Back Bars
- Dot Plot
- Dumbbell Dot
- Small Multiples

Displaying Relative Performance

- Benchmark Line
- Combo chart
- Bullet Chart
- Indicator Dots

Visualize The Parts of a Whole

Pie/Donut

Stacked Bar

Histogram

Tree Map

Map

Visualize How Things Changed Over Time

- Line Graph
- Area Graph
- Stacked Column
- Deviation Bar
- Slopegraph
- Dot Plot

Database

Revision Guide

Understand Foreign Key and Primary Key

Familiar with CREATE table

- Common Data Type: Char/varchar/integer/decimal/date
- NOT NULL
- CONSTRAINT
- PRIMARY KEY/FOREIGN KEY

Familiar with

- INSERT data
 - INSERT INTO....
- UPDATE data
 - UPDATE ... SET
- DELETE data
 - DELETE FROM ...

Revision Guide

- Simple Select Syntax
 - AND/OR
 - LIKE, IN
 - ORDER BY
 - COUNT/MIN/MAX/SUM

SQL for Data Retrieval: AND/OR examples

SELECT FROM WHERE empId, empName Employee

empId < 7 OR empId > 12;

5	Dan
19	Sheldon

SELECT FROM WHERE empId, empName Employee

deptId = 9 AND salaryCode <= 3;</pre>

Emplo	yee
--------------	-----

<u>empld</u>	empName	salaryCode	deptld
5	Dan	3	9
9	Penny	4	9
19	Sheldon	5	10

5 Dan

SQL for Data Retrieval: Wildcard Searches

- The SQL LIKE keyword allows for searches on partial data values
- LIKE can be paired with wildcards to find rows that partially match a string value
 - The multiple character wildcard character is a percent sign (%)
 - The single character wildcard character is an underscore (_)

SELECT FROM WHERE	empId Employee empName LIKE 'Da%';	18
VVIILIXL	cimpitatiic Like Da 70 ,	29
SELECT FROM	empId Employee	
WHERE	phone LIKE '3411 ';	29

Employee

<u>empld</u>	empName	phone
18	Dan	69981245
29	Danny	34111001

SQL for Data Retrieval: Sorting the Result

- Querying results may be sorted using the ORDER BY clause
 - Ascending vs. descending sorts

SELECT *

FROM Employee ORDER BY empName;

SELECT *

FROM Employee

ORDER BY empName ASC;

SELECT *

FROM Employee

ORDER BY empName DESC;

<u>empld</u>	empName
1	Dan
2	Penny
3	Sheldon

	1
<u>empld</u>	empName
3	Sheldon
2	Penny
1	Dan

SQL for Data Retrieval: Built-in Function Examples

SELECT COUNT(*) FROM Employee;

SELECT MIN(hours) AS minimumHours, MAX(hours) AS maximumHours, AVG(hours) AS averageHours

FROM Project

WHERE ProjectId > 7;

minimumHours	maximumHours	averageHours
2	8	5

Employee

<u>empld</u>	empName
10	Dan
15	Penny
29	Sheldon

GROUP BY and HAVING

- Familiar with the syntax of GROUP BY
- Make sure GROUP BY appear after WHERE, HAVING after GROUP BY
- Knowing the different between HAVING and WHERE

SUB-QUERY

- Most problem that can be solved by SUB-QUERY can also be solved by joining table.
- Use join table instead!

JOIN TABLE

- Understand how the simple inner join works
- How to cross reference two or more tables
- Knowing the differences between inner join, left outer join, right outer join, full outer join.

Join ... ON Example

SELECT FROM

WHERE

empName, deptName
Employee e INNER JOIN Department d
ON e.deptId = d.deptId
d.deptName NOT LIKE 'Account%';

Employee

<u>empld</u>	empName	deptld
1	Dan	102
2	Penny	101
3	Sheldon	

empName	deptName
Dan	Customer Service
Penny	Account Service

Department

<u>deptld</u>	deptName
101	Account Service
102	Customer Service

Customer Service

Quick Question

- Suppose deptID in Employee table now becomes a foreign key. i.e., must have a value and that value must appear in the table Department
- Which of the following table joining are equivalent?
- a) Employee inner join Department
- b) Employee left outer join Department
- c) Department left outer join Employee
- d) Employee right outer join Department
- e) Employee full outer join Department

Department

Employee

<u>deptld</u>	deptName
101	Research
102	Customer Service
103	Marketing

<u>empld</u>	empName	deptld
1	Dan	102
2	Penny	101
3	Sheldon	103

Security and Privacy

Revision Guide

- Knowing the different between public key encryption and private key encryption
- Understanding the logic behind SQL injection
- Familiar with the four different types of indirection questioning techniques
- Able to identify EI/QI/SD/NSD
- Understand the basic concept of K-Anonymity.
 - Be able to identify a given data set is or isn't K-Anonymous.