МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА

БИОЛОГИЧЕСКИЙ ФАКУЛЬТЕТ Кафедра биоинженерии

ПОСТРОЕНИЕ И АНАЛИЗ ИНТЕРАКТОМА НУКЛЕОСОМ И БЕЛКОВ ХРОМАТИНА

Грибкова Анна Кирилловна

Научный руководитель: канд. физ.-мат. наук, вед. науч. сотр. А.К. Шайтан

Экспериментальные методы

(Snider et al., 2015)

Предсказательные методы

(A) Domain Fusion/Rosetta Stone

(C) Phylogenetic Profiles

(Raman, 2010)

Гистоны, нуклеосома

Тип и класс каноничности гистона	Н2А кан.	H2B кан.	Н3 кан.	Н4 кан.	Н2А вар.	H2B вар.	Н3 вар.
Количество белок- кодирующих генов	14	17	13	15	13	4	5
Абсолютная консервативность последовательностей, %	91,5	91,3	99,3	100			

Диадная ось симметрии

Постановка задачи

Цель работы

Построение нуклеосомного интерактома человека по информации из трех баз данных (STRING, BioGrid, IntAct), и его анализ на основе разработанной иерархической классификации белков хроматина.

Задачи

- 1. Создать обновленный список гистонов человека.
- Загрузить и обработать информацию о белок-белковых взаимодействиях из баз данных STRING, IntAct, BioGrid. Выбрать порог вероятностной оценки для БД STRING.
- 3. Разработать иерархическую функциональную классификацию белков, взаимодействующих с нуклеосомой.
- 4. Провести качественный и количественный анализ полученного интерактома.

Методы. Базы данных ББВ. <u>**</u>string

- Экспериментальные данные
- БД сигнальных путей (KEGG, Reactome)
- Интеллектуальный анализ текстов •
- Ко-экспрессия (ДНК- и РНКмикрочипы)

Анализ геномного контекста:

- Поиск совместно расположенных генов (neighbourhood)
- Поиск слияния генов (фьюжнсобытий)
- Сравнение филогенетических профилей белков (coocurence)
- + Перенесенные взаимодействия

Методы. Базы данных ББВ. BioGrid и IntAct

Результаты. Список гистоновых генов

- Количество белок-кодирующих генов 93 (включая Н1)
- Количество псевдогенов 30
- Сплайс-изоформы для 23 белок-кодирующих гистоновых генов

Histone type	HGNC Symbol	NCBI gene ID	ENSG	ENST	ENSP	Uniprot	Biotype	Canonicity	Function
H1	HIST1H1A	3024	ENSG00000124610	ENST00000244573	ENSP00000244573	Q02539	Protein coding	canonical	COD
H1	HIST1H1C	3006	ENSG00000187837	ENST00000343677	ENSP00000339566	P16403	Protein coding	canonical	COD
H1	HIST1H1D	3007	ENSG00000124575	ENST00000244534	ENSP00000244534	P16402	Protein coding	canonical	COD
H1	HIST1H1E	3008	ENSG00000168298	ENST00000304218	ENSP00000307705	P10412	Protein coding	canonical	COD

Результаты. Построение интерактома

- 15402 экспериментальных/ предсказанных свидетельств
- 13887 взаимодействий (96 % из них уникальны для одной из БД)
- 85 коровых гистонов (3 псевдогена)
- 2333 взаимодействующих с гистонами партнера

class_new_new	Canonicity	Histone type	protein2	protein1	Throughput	Source	Score	Method	DB
[Histone chaperones, Replication associated, G	variant	H2B	NAP1L1	HIST1H2BA	High Throughput	BioGrid	0.953827695	Affinity Capture- MS	BIOGRID
[Hist mod: PTM writers, Chromatin remodellers,	variant	H2B	RUVBL1	HIST1H2BA	High Throughput	BioGrid	0.981664185	Affinity Capture- MS	BIOGRID
[TF]	variant	H2B	MIER1	HIST1H2BA	High Throughput	BioGrid	0.99999993	Affinity Capture- MS	BIOGRID
[Hist mod: PTM erasers, PTM readers, Chromatin	variant	H2B	HDAC1	HIST1H2BA	High Throughput	BioGrid	0.918775418	Affinity Capture- MS	BIOGRID

Результаты

Анализ содержания баз данных (STRING, BioGrid, IntAct)

Количество белковых партнеров для канонических гистонов НЗ из разных БД

Количество белковых партнеров для всех гистонов в интерактоме

Учет мультигенности семейств канонических гистонов

После учета количество взаимодействующих партнеров для канонических Н2А - 560, для Н2В - 1154, для Н3 - 793 и 350 для Н4.

Иерархическая функциональная классификация белков-партнеров

Классификация гистоновых белков-партнеров

Функциональная категория	Количество генов по данным литературных источников	Количество пересечений с интерактомом	%
Гистоновые шапероны	36	34	94
Хроматиновые ремоделеры	82	69	84
Белки, удаляющие ПТМ	63	50	79
Белки, считывающие ПТМ	142	111	78
Белки, наносящие ПТМ	118	85	72
Транскрипционные факторы	795	292	37
Архитектурные белки хроматина	36	7	19

Количество белков определенных функциональных категорий, взаимодействующих с гистонами одного типа и класса каноничности

Результаты. Мотивы и домены

Процентное количество белков определенных функциональных категорий, содержащих рассматриваемые мотивы

CENP-C - 8 AT-hook - 108 SPKK - 176

Лидирующие доменные кланы в хроматиновых ремоделерах

Клан по PFAM	Расшифровка клана	частота встречаемости доменов клана*, %
CL0023	P-loop containing nucleoside triphosphate hydrolase superfamily	16,7
CL0049	Tudor domain 'Royal family'	5
CL0123	Helix-turn-helix clan	5
CL0390	FYVE/PHD zinc finger superfamily	4
-	Bromodomain**	3,5
CL0167	Zinc beta-ribbon	3

Выводы

- 1. Разработан полуавтоматизированный программный код на языке Python, позволяющий загружать и анализировать данные ББВ из открытых БД.
- 2. Построен нуклесомный интерактом по материалам баз данных STRING, IntAct и BioGrid, включающий в себя 85 коровых гистона, 2333 белковых партнера, 15402 экспериментальных/предсказательных свидетельства о 13887 уникальных взаимодействия.
- 3. Показано, что 96 % взаимодействий уникально для одной из БД, и только 0,19 % встречаются в трех БД. После проведения разработанного учета мультигенности семейств канонических гистонов, количество общих для трех БД взаимодействий составило 1,27 %.
- 4. Разработана иерархическая функциональная классификация белков, взаимодействующих с нуклеосомой, для 67 % белков интерактома определены функциональные категории. В интерактоме содержится 72-94% белков основных функциональных категорий, описанных в проанализированных литературных источниках.
- 5. Проведен поиск мотивов CENP-C, AT-hook, SPKK в последовательностях белков интерактома. Количество белков с мотивом CENP-C 8, AT-hook 108, SPKK 176.
- 6. Проведен анализ доменной организации белков, относящихся к хроматиновым ремоделерам. По частоте встречаемости лидируют доменные кланы шапероноподобных АТФаз, Тюдор домены, спираль-поворот-спираль.

Благодарности

Выражаю благодарность научному руководителю в.н.с А.К. Шайтану и м.н.с. Г.А. Армееву за постановку задач, обсуждение результатов и помощь в выполнении работы

Дополнительные слайды

neighborhood, fusion, db_transf = None

Фрагмент выравнивания (1-100 АК) для вариантных гистнов Н2А, закрашенный фон – консервативность > 80 %

Пересечения взаимодействующих с нуклеосомой белков, А) с каноническими гистонами, Б) с гистоновыми вариантами.