Problem R-08I ($C_4H_6O_5$). The 100 MHz NMR spectrum of malic acid in D_2O is shown below.

(a) Do a mathematically accurate analysis of this spectrum. If there are two solutions, report them both. Show a coupling tree.

(b) If you are proposing two solutions, suggest at least one criterion which allows you to identify the correct one.

Problem R-08I ($C_4H_6O_5$). The 100 MHz NMR spectrum of malic acid in D_2O is shown below.

(a) Do a mathematically accurate analysis of this spectrum. If there are two solutions, report them both. Show 241.9

a coupling tree.

15

$c_{+}=(6+4)/2$ $\Delta v_{ab}+=\delta_{+}=s$ $c_{+}\pm \Delta \delta_{+}/2=s$	qrt((8-2)(= 6.6
$c_{-}=(5+3)/2 = 2$ $\Delta v_{ab}^{-} = \delta_{-} = sc$ $c_{-} \pm \Delta \delta / 2 = 2$	qrt((7-1)(5	 = 3.8

	Solution 1	Solution 2
J_{AB}	16.7	16.7
J_{AX}	4.2	0.4
J_{BX}	7.0	10.8
ν_{A}	264.8	262.9
ν_{B}	259.6	261.5
Δv_{AB}	5.2	1.4
δ_{A}	2.65	2.63
δ_{B}	2.59	2.61

Intensity Calculation

Solution 1

Φ 1+ = 0.5 arcsin(J_{AB}/2D+) = 34.2

$$\Phi$$
1- = 0.5 arcsin(J_{AB}/2D-) = 38.6
 $i_{10} = i_{11} = 0.994$

$$i_{14} = i_{15} = 0.006$$

Solution 2

$$\Phi_2$$
+ = Φ 1 = 34.2

$$\Phi_2$$
- = 90 - Φ 1- = 51.4

$$i_{10} = i_{11} = 0.913$$

$$i_{14} = i_{15} = 0.087$$

(b) If you are proposing two solutions, suggest at least one criterion which allows you to identify the correct one.

In both solutions the $J_{\rm AX}$ and $J_{\rm BX}$ couplings are both positive, thus appropriate for a 3J , although magnitude is better for solution 1 (vicinal couplings of 0.4 Hz in an acyclic CH-CH₂ system probably are never seen).

The intensity calculation predicts 9% size for the extra peaks 14 and 15 in the X part for Solution 2, and these should have been clearly visible in the spectrum

So solution 1 is probably correct.

5