Make Up Your Mind: The Price of Online Queries in Differential Privacy

or: An Excuse to Survey Differential Privacy Lower Bounds

Taiwan Theory Day May 17, 2016

Mark Bun Harvard U.

Thomas Steinke Harvard U.

Jonathan Ullman Northeastern U.

The Challenge of Data Privacy

Privacy-Preserving Data Analysis

Privacy-Preserving Data Analysis

How Should We Model Interaction?

- "Offline": Analyst chooses all of her queries in advance and receives answers together
- "Adaptive": Analyst chooses/asks queries one at a time

...or another possibility?

 This work: How does changing the model of interaction affect what can be accomplished with differential privacy?

Why Might This Matter?

 Rich theory of differential privacy – sophisticated algorithms matched by strong lower bounds

 Differential privacy prevents false discovery, even in adaptive data analysis

[Dwork-Feldman-Hardt-Pitassi-Reingold-Roth14, Hardt-Ullman14]

Does handling adaptivity in DP really come for free?

Differential Privacy

Dinur-Nissim03+Dwork, Dwork-Nissim04, Blum-Dwork-McSherry-Nissim05, **Dwork-McSherry-Nissim-Smith06**, **Dwork-Kenthapadi-McSherry-Mironov-Naor06**

D and D' are **neighbors** if they differ on one row

 \mathcal{M} is **differentially private** if for all neighbors D, D':

 $\mathcal{M}(D) \approx \mathcal{M}(D')$

Differential Privacy

Dinur-Nissim03+Dwork, Dwork-Nissim04, Blum-Dwork-McSherry-Nissim05, **Dwork-McSherry-Nissim-Smith06**, **Dwork-Kenthapadi-McSherry-Mironov-Naor06**

Counting Queries

"What fraction of the rows of D satisfy some property q?"

E.g. attribute means q = HasMouth? q(D) = 2/4

x ₁ x ₂	$ \begin{array}{c} $
x _n	

 \mathcal{M} is accurate for kqueries from \mathbb{Q} if $|a_i - q_i(D)| < 0.05$ for every i (with high probability)

Clothed?

OnJet?

1

1

Bakes?

0

0

1

[DN03, DN04, BDMN05, DMNS06]

d binary attributes

	HasMouth?	Bakes?	Clothed?	OnJet?
1	0	1	1	1
3	1	0	1	1
	1	0	0	1
	0	1	1	1

1/2 + Noise(

[DN03, DN04, BDMN05, DMNS06]

d binary attributes

n people

	HasMouth?	Bakes?	Clothed?	OnJet?
\$	0	1	1	1
3	1	0	1	1
	1	0	0	1
)	0	1	1	1

1/2 + Noise(O(1/*n*))

[DN03, DN04, BDMN05, DMNS06]

d binary attributes

	HasMouth?	Bakes?	Clothed?	OnJet?
	0	1	1	1
<i>n</i> people	1	0	1	1
people	1	0	0	1
	0	1	1	1
	 1/2	1/2	3/4	1
	Noise()	+ Noise()	+ Noise()	Noise()

Disclaimer: This talk hides

all polylogs

[DN03, DN04, BDMN05, DMNS06]

d binary attributes

	HasMouth?	Bakes?	Clothed?	OnJet?
	0	1	1	1
<i>n</i> people	1	0	1	1
реоріс	1	0	0	1
	0	1	1	1
	 1/2	1/2	3/4	1
	+ Noise(O(d ^{1/2} / n))			

Non-trivial accuracy requires $d < n^2$

 \Rightarrow can answer $k = d = \Omega(n^2)$ queries

Disclaimer: This talk hides all polylogs

Not Just Attribute Means

[DN03, DN04, BDMN05, DMNS06]

Can answer $k = \Omega(n^2)$ adaptively chosen counting queries

...And Not Just n² Queries

[Blum-Ligett-Roth08, Roth-Roughgarden10, Hardt-Rothblum10]

"Private Multiplicative Weights" [Hardt-Rothblum10] Can answer $\mathbf{k} = \exp(\Omega(\mathbf{n}/\mathbf{d}^{1/2}))$ adaptively chosen counting queries (= exponentially many queries when $\mathbf{n} >> \mathbf{d}^{1/2}$)

(Counting)

How Many Queries Can We Answer?

```
(\epsilon = 0.1, \delta = o(1/n)) - differential privacy
```

Upper bound: $n \ll d^{1/2}$ (Independent Noise)

Upper bound: $n \gg d^{1/2}$ ("Advanced Algorithms")

Adaptive

 $\forall \mathbf{Q}: \quad \mathbf{k} = \Omega(\mathbf{n}^2)$ [...DMNS06]

 $\forall \mathbf{Q}: \exp(\Omega(n/d^{1/2}))$

Matching Lower Bounds

• Can't answer more than $k = \exp(O(n))$ queries

[Dinur-Nissim03]

"Reconstruction Attack"

log *n* bits

1 bit

	Public "ID"		Sensitive "b"
	0	0	1
n	0	1	0
ppl	1	0	0
	1	1	1

Ask all 2^n counting queries of the form: $q_S(x) = (x_{ID} \in S) \land x_b$ where $S \subseteq \{0,1\}^{\log n}$

Reconstruct any database D' with $|q_s(D') - q_s(D)| < 0.05$ for all q_s

Claim: (0.05)-accurate answers ⇒ b' agrees with b in 80% of entries

Proof: If $|b' - b|_1 > 0.2$, then $|q_S(D') - q_S(D)| > 0.1$ for either $S^2 = \{i : b_i > b_i'\}$ or $S^2 = \{i : b_i < b_i'\}$

Matching Lower Bounds

Can't answer more than k = exp(O(n)) queries
 [Dinur-Nissim03]

• • •

- Independent noise is tight for attribute means:
 Can only answer O(n²) queries [B.-Ullman-Vadhan14]
- Private mult. weights is tight for conjunctions: Can only answer $\exp(O(n/d^{1/2}))$ queries [B.-Ullman-Vadhan14]

All lower bounds apply to a fixed set of queries

(Counting)

How Many Queries Can We Answer?

 $(\epsilon = 0.1, \delta = o(1/n))$ differential privacy Offline

Adaptive

 $n << d^{1/2}$ Upper bound: (Independent Noise)

 $n >> d^{1/2}$ Upper bound: ("Advanced Algorithms")

$\forall \mathbf{Q}: \mathbf{k} = \Omega(\mathbf{n}^2)$
[DMNS06]
$\forall \mathbf{Q}$: $\exp(\Omega(n/d^{1/2}))$
[HR10]

 $n << d^{1/2}$ Lower bound: (Attribute Means)

 $n >> d^{1/2}$ Lower bound: (Conjunctions)

 $\exists \mathbf{Q}: O(n^2)$ [BUV14] $\exists Q: \exp(O(n/d^{1/2}))$ [BUV14]

Question: Are these models equivalent?

The **OFFline** Model

1. \mathcal{A} chooses k queries $q_1, ..., q_k$ from \mathbb{Q}

2. \mathcal{A} gives queries to \mathcal{M} in a single batch

3. \mathcal{M} releases answers $a_1,...,a_k$

The **Adaptive** Model

In each round j = 1,...,k:

1. \mathcal{A} chooses a query q_j (depending on $q_1, a_1, ..., q_{j-1}, a_{j-1}$)

2. \mathcal{M} must release a_j before seeing q_{i+1}

The **ONline** Model

(Non-adaptive)

1. \mathcal{A} chooses k queries $q_1, ..., q_k$ from \mathbb{Q}

2. In each round j = 1,...,k:

 \mathcal{M} must release a_{j} before seeing q_{j+1}

Our Results

All three models are distinct

Offline ≠ Online

Family Q_{prefix} of counting queries

Offline: Can answer $k = \exp(\Omega(n^{1/2}))$ queries

Online: Can only answer $k = O(n^2)$ queries

Online ≠ Adaptive

Family Q_{corr} of "search" queries

Online: $k = \exp(\Omega(n))$ queries Adaptive: k = O(1) queries

Offline vs. Online

"Prefix queries"

```
Q_{prefix} = \{ q_S : \{0,1\}^d \rightarrow \{0,1\} \}
For S = \{y_1,...,y_m \in \{0,1\}^{\leq d} : m \leq d \} and x∈\{0,1\}^{\leq d} :
Define q_S(x) = 1 iff \exists y \in S that is a prefix of x
```

<u>Example</u>

```
S = \{0, 10, 001, 110\} \subseteq \{0,1\}^{\leq 4}

x = 1010 \in \{0,1\}^{\leq 4}
```

Offline vs. Online

"Prefix queries"

$$Q_{\text{prefix}} = \{ q_S : \{0,1\}^d \to \{0,1\} \}$$
For S = $\{y_1,...,y_m \in \{0,1\}^{\leq d} : m \leq d \}$ and $x \in \{0,1\}^{\leq d} :$
Define $q_S(x) = 1$ iff $\exists y \in S$ that is a prefix of x

<u>Example</u>

$$S = \{0, 10, 001, 110\} \subseteq \{0,1\}^{\leq 4}$$

 $x = 1010 \in \{0,1\}^{\leq 4}$ \Rightarrow $q_S(x) = 1$

Offline vs. Online

"Prefix queries"

```
Q_{prefix} = \{ q_S : \{0,1\}^d \rightarrow \{0,1\} \}
For S = \{y_1,...,y_m \in \{0,1\}^{\leq d} : m \leq d \} and x∈\{0,1\}^{\leq d} :
Define q_S(x) = 1 iff \exists y \in S that is a prefix of x
```

Intuition for separation

Offline: Structure of queries enables dimensionality reduction

Online: As hard as attribute means

Algorithm \mathcal{M}

- 1. Let $S = S_1 \cup S_2 \cup ... \cup S_k$
- 2. Replace each x_i with longest $y_i \subseteq S$ which is a prefix of x_i
- 3. Run your favorite "advanced algorithm" on $(y_1,...,y_n)$

Algorithm \mathcal{M}

- 1. Let $S = S_1 \cup S_2 \cup ... \cup S_k$
- 2. Replace each x_i with longest $y_i \subseteq S$ which is a prefix of x_i
- 3. Run your favorite "advanced algorithm" on $(y_1,...,y_n)$

Algorithm ${\mathcal M}$

- 1. Let $S = S_1 \cup S_2 \cup ... \cup S_k$
- 2. Replace each x_i with longest $y_i \subseteq S$ which is a prefix of x_i
- 3. Run your favorite "advanced algorithm" on $(y_1,...,y_n)$

Example:

$$x_{1} = 1110$$

$$x_{2} = 0010$$

$$x_{3} = 0101$$

$$x_{4} = 0110$$

$$(\{0,1\}^{\leq 4})^{4}$$

Algorithm ${\mathcal M}$

- 1. Let $S = S_1 \cup S_2 \cup ... \cup S_k$
- 2. Replace each x_i with longest $y_i \subseteq S$ which is a prefix of x_i
- 3. Run your favorite "advanced algorithm" on $(y_1,...,y_n)$

$$S_1 = \{1\}$$

 $S_2 = \{01, 10\}$
 $S_3 = \{001, 011\}$

Example:

$$x_{1} = 1110$$

$$x_{2} = 0010$$

$$x_{3} = 0101$$

$$x_{4} = 0110$$

$$(\{0,1\}^{\leq 4})^{4}$$

Algorithm ${\mathcal M}$

- 1. Let $S = S_1 \cup S_2 \cup ... \cup S_k$
- 2. Replace each x_i with longest $y_i \subseteq S$ which is a prefix of x_i
- 3. Run your favorite "advanced algorithm" on $(y_1,...,y_n)$

$$S_1 = \{1\}$$

 $S_2 = \{01, 10\}$
 $S_3 = \{001, 011\}$
 $\Rightarrow S = \{1, 01, 10, 001, 011\}$

Algorithm ${\mathcal M}$

Input: queries $q_1,...,q_k$ corresponding to sets $S_1,...,S_k$

- 1. Let $S = S_1 \cup S_2 \cup ... \cup S_k$
- 2. Replace each x_i with longest $y_i \subseteq S$ which is a prefix of x_i
- 3. Run your favorite "advanced algorithm" on $(y_1,...,y_n)$

Example:

$$y_1 = 1$$
 $y_2 = 001$
 $y_3 = 01$
 $y_4 = 011$

$$S_1 = \{1\}$$

 $S_2 = \{01, 10\}$
 $S_3 = \{001, 011\}$

$$\Rightarrow$$
 S = {1, 01, 10, 001, 011}

Algorithm ${\mathcal M}$

Input: queries $q_1,...,q_k$ corresponding to sets $S_1,...,S_k$

- 1. Let $S = S_1 \cup S_2 \cup ... \cup S_k$
- 2. Replace each x_i with longest $y_i \subseteq S$ which is a prefix of x_i
- 3. Run your favorite "advanced algorithm" on $(y_1,...,y_n)$

Fact 1: All $q_i(y_i) = q_i(x_i)$ (since $z \in S$ is a prefix of x_i iff z is a prefix of y_i)

Fact 2: y_i 's come from a universe of size only kd (i.e. dimension log(kd)) \Rightarrow Private Mult. Weights can answer $k = exp(\Omega(n/log^{1/2}(kd)))$ queries For d = poly(n), solve to get $k = exp(\Omega(n^{1/2}))$

Our Results

All three models are distinct

Offline ≠ Online

Family Q_{prefix} of counting queries

Offline: Can answer $k = \exp(\Omega(n^{1/2}))$ queries

Online: Can only answer $k = O(n^2)$ queries

Online ≠ Adaptive

Family Q_{corr} of "search" queries

Online: $k = \exp(\Omega(n))$ queries Adaptive: k = O(1) queries

An Online Lower Bound

 Lower bound for attribute means via fingerprinting codes [B.-Ullman-Vadhan14]

"Embed" attribute means into online prefix queries

See: [Bassily-Smith-Thakurta15, Dwork-Talwar-Thakurta-Zhang15, Steinke-Ullman15, B.-Nissim-Stemmer16]

Fingerprinting Codes [Boneh-Shaw95]

I want to distribute my new movie

Gradient Descent

Pirate

Trace

Algorithm

...but Sanriotown is full of pirates!

..........

Fingerprinting Codes [Boneh-Shaw95]

...but Sanriotown is full of pirates!

Who collude against me!

Fingerprinting Codes [Boneh-Shaw95]

Fingerprinting Codes [Boneh-Shaw95]

FP Codes vs. Diff. Privacy

Coalition of *n* pirates

FP Codes vs. Diff. Privacy

Coalition of *n* pirates

FP Codes vs. Diff. Privacy

Trace behaves very differently depending on whether \Re is in the coalition

Fingerprinting codes are the "opposite" of differential privacy!

Database of *n* users

Suppose (for contradiction) we have

- A FP code of length k for (n+1) users
- A diff. private \mathcal{M} that is accurate for k attribute means

Reduction: Use \mathcal{M} to break security of the FP code

Database of n users = Coalition of n pirates

Suppose (for contradiction) we have

- A FP code of length k for (n+1) users
- A diff. private \mathcal{M} that is accurate for k attribute means

Reduction: Use \mathcal{M} to break security of the FP code

Database of n users = Coalition of n pirates

- ∃ FP code for *n* users with length *k* ⇒ *n* samples enables < *k* attribute means
- [Tardos03] ∃FP code for n users of length k = O(n²)
 ∴ attribute means require k ≤ O(n²)

Next: How to embed attribute means into online prefix queries

Database of *n* users

Suppose \mathcal{M} can answer k prefix queries presented online

Reduction: Use \mathcal{M} to answer k attribute mean queries

Queries:

Queries:

$$S_1 = \{1, 1, ..., 1\}$$

Queries:

$$S_1 = \{1, 1, ..., 1\}$$

 $S_2 = \{11, 01, ..., 01\}$

Queries:

$$S_1 = \{1, 1, ..., 1\}$$

 $S_2 = \{11, 01, ..., 01\}$
 $S_3 = \{111, 001, ..., 011\}$

Queries:

$$S_1 = \{1, 1, ..., 1\}$$

 $S_2 = \{11, 01, ..., 01\}$
 $S_3 = \{111, 001, ..., 011\}$
 $S_4 = \{1111, 0011, ..., 0111\}$

Queries:

```
S_1 = \{1, 1, ..., 1\}

S_2 = \{11, 01, ..., 01\}

S_3 = \{111, 001, ..., 011\}

S_4 = \{1111, 0011, ..., 0111\}

S_5 = \{11101, 00101, ..., 01101\}
```


Queries:

Recall $q_S(x) = 1$ iff $\exists y \in S$ that is a prefix of x

$$S_{1} = \{1, 1, ..., 1\}$$

$$S_{2} = \{C_{1,1}1, ..., C_{n+1,1}1\}$$

$$S_{3} = \{C_{1,1}C_{1,2}1, ..., C_{n+1,1}C_{n+1,2}1\}$$

$$S_{4} = \{C_{1,1}C_{1,2}C_{1,3}1, ...\}$$

Fact 1: $q_j(D) = j^{th}$ attribute mean Fact 2: q_1 , ..., q_{j-1} reveal nothing about q_j (But q_j reveals answers to q_1 , ..., q_{i-1} !)

- n samples suffice for k online prefix queries $\Rightarrow n$ samples suffice for k attribute means*
- Attribute mean lower bound k = O(n²)
 ∴ online prefix queries require k ≤ O(n²)
 (Even for d = O(n²))

^{*}Not quite black-box use of FPCs / attribute mean lower bound, but follows from FP code analysis of [Steinke-Ullman15, Dwork-Smith-Steinke-Ullman-Vadhan15]

Our Results

All three models are distinct

Offline ≠ Online

Family Q_{prefix} of counting queries

Offline: Can answer $k = \exp(\Omega(n^{1/2}))$ queries

Online: Can only answer $k = O(n^2)$ queries

Online ≠ Adaptive

Family Q_{corr} of "search" queries

Online: $k = \exp(\Omega(n))$ queries Adaptive: k = O(1) queries

Online vs. Adaptive (Idea)

```
\mathbf{Q}_{corr} = \{ \ q_{S} : \{0,1\}^{n} \ \rightarrow \ \{0,1\} \ \}  *Not counting queries* For S = \{y_{1},...,y_{m} \in \{0,1\}^{n}\} and \mathbf{x} \in \{0,1\}^{n}: "Find me a vector \mathbf{z} \in \{0,1\}^{n} that is highly correlated with \mathbf{x}, but not too correlated with any \mathbf{y}_{j}"
```

Intuition

Online: Randomized response [Warner65] – Choose z once and for all with z_i = Round(x_i + Noise(1/ ϵ))

Adaptive: Picking queries strategically enables a reconstruction attack

Conclusions

- To answer many queries with differential privacy, it can help to "make up your mind"
- Open questions:
 - Can counting queries separate online vs. adaptive?
 - Are there natural tasks that separate these models?
 Some evidence for one-dimensional thresholds

Thank you!