

Problem 01. "Find k and Ea"

2 PFR sets were used: SS 1 with Sch. 40, 4 long, $\frac{m \log_{100} \log_$

Basis: 1000 gr of the mixture feed gr H20 , 1 = 27.755 mol H20

500 r C3H60 , 18.0159 = 27.755 mol C3H60 Limiting component

58.0303

Me stoichiomet	L. table:		*ANA.	N	W
~	A (C3H60)	FF 8.609	-0.43045	8.179	475.036
(case [.)	B (H2O)		-0.43045		
xA=0.05	C (C3H802)	0	+ 0.43.045	0.43	32.721 ,→ 32.704

\(\times = 1000\)
(constraint)

la CB. CAO = (CBO-CAO	kt				
CBo CA		No	RANAO	N	W
(case I.)	A	8.609	-0.516	8.093	470.091
	В	27.755	-0,516	27.239	490.712
η _A = 0.06	C	0	+0.516	0.516	39.266 39.247

s.a.m

2 1 1 Date: / / Subject: ln CB CAO = (CBO-CAO)kt

ln NB.NAO = (NBO-NAO) kt

NA.NBO V for case I & IL for case I & II $\begin{bmatrix} \ln \left(\frac{N_{B} - N_{Ac}}{N_{A} \cdot N_{Bc}} \right) \\ \ln \left(\frac{N_{B} - N_{Ac}}{N_{A} \cdot N_{Bc}} \right) \end{bmatrix} = \begin{bmatrix} \ln \left(\frac{N_{B} \cdot N_{Ac}}{N_{A} \cdot N_{Bc}} \right) \\ \ln \left(\frac{N_{Bc} - N_{Ac}}{N_{Ac}} \right) \end{bmatrix}$ $= \begin{bmatrix} \ln \left(\frac{N_{B} \cdot N_{Ac}}{N_{A} \cdot N_{Bc}} \right) \\ \ln \left(\frac{N_{Bc} - N_{Ac}}{N_{Ac}} \right) \end{bmatrix}$ $= \begin{bmatrix} \ln \left(\frac{N_{B} \cdot N_{Ac}}{N_{A} \cdot N_{Bc}} \right) \\ \ln \left(\frac{N_{Bc} - N_{Ac}}{N_{Ac}} \right) \end{bmatrix}$ $= \begin{bmatrix} \ln \left(\frac{N_{B} \cdot N_{Ac}}{N_{A} \cdot N_{Bc}} \right) \\ \ln \left(\frac{N_{Bc} - N_{Ac}}{N_{Ac}} \right) \end{bmatrix}$ $= \begin{bmatrix} \ln \left(\frac{N_{Bc} \cdot N_{Ac}}{N_{Ac}} \right) \\ \ln \left(\frac{N_{Bc} - N_{Ac}}{N_{Ac}} \right) \end{bmatrix}$ $= \begin{bmatrix} \ln \left(\frac{N_{Bc} \cdot N_{Ac}}{N_{Ac}} \right) \\ \ln \left(\frac{N_{Bc} - N_{Ac}}{N_{Ac}} \right) \end{bmatrix}$ $= \begin{bmatrix} \ln \left(\frac{N_{Bc} \cdot N_{Ac}}{N_{Ac}} \right) \\ \ln \left(\frac{N_{Bc} - N_{Ac}}{N_{Ac}} \right) \end{bmatrix}$ $k = k_0 \cdot exp(\frac{-E_a}{RT})$ $ln(\frac{N_B \cdot N_{Ao}}{N_A \cdot N_{Bc}})$ $\frac{\ln\left(\frac{N_{B}.N_{Ao}}{N_{A}.N_{Bc}}\right)}{(N_{B_{c}}-N_{Ac}).k_{o} \exp\left(\frac{-E_{a}}{RT}\right)} = \frac{\ln\left(\frac{N_{B}.N_{Ao}}{N_{R}.N_{Bo}}\right)}{(N_{B_{c}}-N_{Ac}).k_{o} \exp\left(\frac{-E_{a}}{RT}\right)} \cos I$ **1** In (27.325 x 8.609) substitution $(27.755-8.609) k_0 \cdot exp(\frac{-E_0}{82.06 \times 10^{-6}} \frac{-E_0}{82.06 \times 10^{-6}}) (27.755-8.609) k_0 \cdot exp(\frac{-E_0}{82.10^{-6}} \frac{-E_0}{82.10^{-6}})$ $0.0356 \exp\left(\frac{E_{\alpha}}{32.0.0265}\right) = 0.0430 \exp\left(\frac{E_{\alpha}}{0.0273}\right) = 1.208 = \exp\left(\frac{E_{\alpha}}{0.0265} - \frac{E_{\alpha}}{0.0273}\right)$ $V = \frac{\pi d_{in}^{2} L}{4} = \frac{\pi}{4} \left(1.049^{in} \times 0.0254^{in} \right)^{2} \times 4^{in} = 0.00223^{in}$ $u = 2^{m/s}$ \longrightarrow $u = \frac{L}{t}$ \longrightarrow $t = \frac{L}{t}$ $= \frac{4^{m}}{2^{m/s}}$ $= \frac{2^{s}}{2^{s}}$ $\begin{array}{c|c}
\hline
\hline
 & ln\left(\frac{N_{B} \cdot N_{Ac}}{N_{A} \cdot N_{Bo}}\right) \\
\hline
 & (N_{Bo} - N_{Ao})k_{o} \cdot exp\left(\frac{-\epsilon_{a}}{RT}\right) \\
\hline
 & (N_{Bo} - N_{Ao})k_{o$ $\frac{1.1753}{k_o} = 0.2491 \implies k_o = 4.7182$ A=1.7e13 En = 3.24e4 btu/but

Problem 02. what is the mass flow rate of water, B?

Basis = 1 hr , C3H60 = 2759 kg | kml | 47.417 kmol C3 H60

for C3H6O to be the limiting component there should be: B 37.417 - B> 854.217

Problem 03. Compute Equilibrium constant of the reaction. C3HBO + H2O ___ C3HBO2

Due to the given rate of reaction, (-ra-kRACB) A B C

there is no reverse path for reaction to take place. Thus, keg = kf = 00