Ориентация

Матрица на прехода между базиси (припомняне от алгебрата)

Нека V е n-мерно реално линейно пространство, $n>0, e=(e_1,\ldots,e_n)$ е базис на V и $f=(f_1,\ldots,f_n)$ е n-орка вектори от V. Тогава всеки от f_1,\ldots,f_n е линейна комбинация на e_1,\ldots,e_n , тоест съществуват числа $t_{ij}\in\mathbb{R}$, такива че

тоест

(2)
$$f_j = \sum_{i=1}^n t_{ij} e_i, \quad j = 1, \dots, n.$$

Означаваме $T = (t_{ij})_{i,j=1,\dots,n}$, тоест T е матрицата $n \times n$, чиито стълбове са координатните вектори на f_1,\dots,f_n спрямо базиса e, тоест (i,j)-тият елемент на T е i-тата координата на f_i спрямо базиса e.

Разглеждайки $e = (e_1, \ldots, e_n)$ и $f = (f_1, \ldots, f_n)$ като вектор-редове и считайки, че вектор може да се умножава с число отдясно, получаваме, че (1) (и еквивалентното му (2)) се записва в матричен вид като

$$(3) f = e.T.$$

Твърдение 1 f е базис на V тогава и само тогава, когато матрицата T е обратима (тоест $\det T \neq 0$).

Когато f също е базис, T се нарича матрица на прехода от базиса e към базиса f. По Твърдение 1 матрицата на прехода е обратима матрица.

Твърдение 2 1. Матрицата на прехода от базиса е към същия базис е е единичната матрица E, тоест e = e.E.

- 2. Ако матрицата на прехода от базиса е към базиса f е T, то матрицата на прехода от f към е е T^{-1} (тоест матрицата на прехода в обратната посока е обратната матрица), тоест $f = e.T \Rightarrow e = f.T^{-1}$.
- 3. Ако матрицата на прехода от базиса е към базиса f е S, а матрицата на прехода от f към базиса g е T, то матрицата на прехода от e към g е ST, тоест f = e.S, $g = f.T \Rightarrow g = e.ST$.

Забележка 1 В горните неща никъде не се използват някакви специфични свойства на полето на реалните числа, така че всичко важи без промяна и ако вместо $\mathbb R$ се вземе произволно поле F, тоест ако V е линейно пространство над произволно поле. В нещата за ориентация по-долу обаче е важно, че линейното пространство е над $\mathbb R$, защото се използва, че в $\mathbb R$ има наредба, която има хубави свойства по отношение на умножението (произведението на две положителни числа е положително и произведението на две отрицателни числа е положително). В произволно поле такава наредба няма.

Ориентация

Нека V е n-мерно реално линейно пространство, n > 0.

Определение 1 Нека $e = (e_1, \ldots, e_n)$ и $f = (f_1, \ldots, f_n)$ са два базиса на V и матрицата на прехода от e към f е T. Казваме, че e е eднакво ориентиран c f, и пишем $e \sim f$, ако $\det T > 0$. Казваме, че e е e противоположно ориентиран на f, и пишем $e \not\sim f$, ако e не e еднакво ориентиран c f, тоест ако $\det T < 0$. (Тъй като f е обратима, $\det T \neq 0$.)

Пример 1 Ако $e = (e_1, \ldots, e_n)$ е базис и $\lambda \in \mathbb{R}$, $\lambda \neq 0$, то и $f = (\lambda e_1, e_2, \ldots, e_n)$ е базис и e е еднакво ориентиран с f при $\lambda > 0$ и противоположно ориентиран на f при $\lambda < 0$. Същото заключение е в сила, ако вместо e_1 с λ се умножи който и да е e_i . В частност, ако се смени знака на един от базисните вектори, то първоначалният базис е противоположно ориентиран на новополучения.

Пример 2 Ако $e = (e_1, \ldots, e_n)$ е базис, то и $f = (e_2, e_1, e_3, \ldots, e_n)$ е базис и e е противоположно ориентиран на f. Същото заключение е в сила, ако вместо e_1 и e_2 се разменят местата на които и да е e_i и e_j .

Пример 3 Ако n=3 и $e=(e_1,e_2,e_3)$ е базис, то и $f=(e_2,e_3,e_1)$ е базис и e е еднакво ориентиран с f.

Теорема 1 1. Релацията еднаква ориентираност на базиси е релация на еквивалентност в множеството на всички базиси на V.

2. Класовете на еквивалентност относно тая релация са два: ако f е един базис на V, то те са $\{e: e \sim f\}$ и $\{e: e \not\sim f\}$.

Забележка 2 Поради горната теорема в релацията ориентираност на базиси двата базиса играят симетрична роля, така че вместо e е еднакво ориентиран с f можем да казваме e и f са еднакво ориентирани, а вместо e е противоположно ориентиран на f — e и f са противоположно ориентирани.

Определение 2 1. *Ориентация* в крайномерно реално линейно пространство е клас на еквивалентност относно релацията еднаква ориентираност на базиси.

2. Казваме, че крайномерно реално линейно пространство е *ориентирано*, ако е избрана едната от двете възможни ориентации. Избраната ориентация се нарича *положителна*, а другата – *отрицателна*.

Забележка 3 Избор на ориентация може да се зададе чрез избор на базис: взима се класът на еквивалентност на базиса.

Определение 3 Базис в ориентирано линейно пространство се нарича *положително ориентиран* (съответно *отрицателно ориентиран*), ако задава положителната (съответно отрицателната) ориентация.

Пример 4 Дефинираната от стандартния базис на \mathbb{R}^n ориентация се нарича *стандартна ориентация* в \mathbb{R}^n . По подразбиране \mathbb{R}^n се счита ориентирано по тоя начин.

Твърдение 3 Във всяко крайномерно ориентирано евклидово линейно пространство съществува положително (съответно отрицателно) ориентиран ортонормиран базис.

Пример 5 Стандартният базис на \mathbb{R}^n е положително ориентиран ортонормиран базис.