Техническое задание на разработку системы автоматизации прочностных расчетов стержневых систем, испытывающих растяжение-сжатие

1. Требования к конструкции

Конструкция должна представлять собой плоскую стержневую систему, составленную из прямолинейных стержней, последовательно соединенных друг с другом вдоль общей оси.

Каждый стержень i характеризуются длиной L_i , площадью поперечного сечения A_i . Материал стержней должен характеризоваться модулем упругости E_i , допускаемым напряжением $[\sigma]_i$.

2. Требования к нагрузкам

На любое сечение конструкции могут быть наложены нулевые кинематические граничные условия (жесткие опоры), запрещающие перемещения и повороты этих сечений во всех направлениях.

Конструкция может быть нагружена в глобальных узлах j статическими сосредоточенными продольными усилиями \boldsymbol{F}_{i} .

Каждый стержень конструкции может быть нагружен постоянной вдоль его оси статической погонной нагрузкой q_i .

3. Требования к задачам

Система должна обеспечивать решение линейной задачи статики для плоских стержневых конструкций.

4. Общесистемные требования

Система должна работать на персональных компьютерах, работающих под управлением 32разрядной версии операционной системы Windows XP/7.

5. Требования к системе

5.1. Требования к препроцессору

Препроцессор системы должен обеспечивать:

- ввод массивов данных, описывающих конструкцию и внешние воздействия;
- формальную диагностику данных, описывающих конструкцию и внешние воздействия;
- визуализацию конструкции и нагрузок.

5.2. Требования к процессору

Процессор системы должен обеспечивать расчет компонент напряженно-деформированного состояния конструкции (продольные силы $N_{_{X}}$, нормальные напряжения $\sigma_{_{X}}$, перемещения $u_{_{X}}$).

5.3. Требования к постпроцессору

Постпроцессор системы должен обеспечивать:

- отображение результатов расчета в табличном виде;
- отображение результатов расчета в виде графиков, на оси ординат которых отложены интересующие пользователя компоненты напряженно-деформированного состояния конструкции, а на оси абсцисс локальные координаты стержней;
- формирование файла результатов расчета;
- * отображение результатов расчета в виде эпюр компонент напряженнодеформированного состояния на конструкции.

^{* –} необязательное требование.