

Map Generation in Games

Ain't no mountain high enough!

Map Generation

Maps in video games were generated using different methods

- Manually designing the terrains (time-consuming and challenging)
- Automated generation (The game generates it)

We came across an idea to use a popular "Cellular automation", i.e., Conway's game of life and tried to generate random terrains.

Conway's Game of Life

Conway's Game of Life

Rules:

- 1. Any live cell with fewer than two live neighbours dies, as if by underpopulation.
- 2. Any live cell with two or three live neighbours lives on to the next generation.
- 3. Any live cell with more than three live neighbours dies, as if by overpopulation.
- 4. Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction.

Rule 1

Rule 2

Rule 3

Rule 4

Conway's Game of Life - Output

When all these rules are applied, we get this:

Map Generation in Video games

Two ways

Used in games that require continuous map generation. Eg: Minecraft, Terraria.

Pre-designed:

Used in games that have a constant map. Eg: CS:GO, GTA.

We ran 100 different independent simulations of Conway's game of life.

- We ran 100 different independent simulations of Conway's game of life.
- Each simulation ran for a 100 epochs / iterations (generations).

- We ran 100 different independent simulations of Conway's game of life.
- Each simulation ran for a 100 epochs / iterations (generations).
- Then, we added these 100 different final outputs.

- We ran 100 different independent simulations of Conway's game of life.
- Each simulation ran for a 100 epochs / iterations.
- Then, we added these 100 different final outputs.
- This is what we used to generate our map
 - The higher numbers represented peaks / mountains
 - The lower numbers represented the valleys / trenches
 - The middle-ranged numbers represented plains / middle ground

- We ran 100 different independent simulations of Conway's game of life.
- Each simulation ran for a 100 epochs / iterations.
- Then, we added these 100 different final outputs.
- This is what we used to generate our map
 - The higher numbers represented peaks / mountains
 - The lower numbers represented the valleys / trenches
 - The middle-ranged numbers represented plains / middle ground

- You may notice that there are a lot of irregular peaks and trenches. This
 looked a bit weird to us as well, so we decided to look into ways to smoothen
 the generated terrain.
- We looked online and found a mathematical technique called Gaussian
 Smoothening that helped us achieve this exact outcome.

Maps generated after smoothening

Demostration of the map

Resources

- https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
- https://www.8bitmen.com/procedural-generation-a-comprehensive-guide-insimple-words/
- Find the code here: https://github.com/MEC-Enigma/map-game-of-life
- https://github.com/IceCereal/The-Game-Of-Life

Thanks for tuning in!