STAT 201: Week 3

Estimating the Sampling Distribution with the Bootstrap

Vincenzo Coia Monday, January 25, 2021

Summary of what we've learned so far

A central goal of this course:

Estimate a population parameter, along with how certain you are.

The sampling distribution shows us:

- What point estimates are possible (even more: their probabilities of occurring, too)
- 2. Where the true parameter is (in most cases, lies at the mean of the sampling distribution)
 - More on this in a future week.

Summary of what we've learned so far

True or False:

Given a population and a sample size *n*, there is only one possible sampling distribution of a point estimator (e.g., doesn't depend on the actual sample drawn).

Summary of what we've learned so far

True or False:

Given a population and a sample size *n*, there is only one possible sampling distribution of a point estimator (e.g., doesn't depend on the actual sample drawn).

True!

Larger *n* implies:

- 1. narrower sampling distribution, and
- 2. for most point estimators (mean, median, variance, quantiles, etc.), the sampling distribution becomes more bell-shaped.

Motivation for Today's Topic

- The sampling distribution is never known in practice, just as the population parameter is unknown.
- If we knew the sampling distribution, there would be no need to estimate the population parameter. Why?

Motivation for Today's Topic

- The sampling distribution is never known in practice, just as the population parameter is unknown.
- If we knew the sampling distribution, there would be no need to estimate the population parameter. Why?
- ...Because we can extract the population parameter from the sampling distribution, and report 100% certainty.
- Today: estimate the sampling distribution, and interpret it differently from the actual sampling distribution.

Point Estimation

Sample

Point Estimation vs. Sampling Distribution Estimation

Point Estimation vs. Sampling Distribution Estimation

Sampling distribution estimate

Bootstrap Estimation Procedure

Sample (size n)

Sampling distribution estimate

Bootstrap Estimation Procedure

Bootstrap Estimation Procedure

Specifically: **Bootstrap distribution**(when Method 1 is used)

Compare: Sampling Distribution Procedure

Justification for the Bootstrap Procedure

Sample

Repeat many times...

Draw 1 at random... that item's probability of being selected again still remains approximately the same!

Do not repeat the sample in practice.

Just use sampling with replacement!

Interpreting a Sampling Distribution Estimate

Not bootstrap-specific -- more on this next week!

	What the Sampling distribution tells us (unachievable in practice)	What the Sampling distribution estimate tells us
On point estimates:	Tells us what point estimates are most likely to occur.	Nothing / not useful!
On the population parameter:	Tells us where the population parameter is (usually near the middle, and often the distribution's mean)	The sampling distribution will realistically "cover" the population parameter.

Interpreting a Sampling Distribution Estimate

(Preview of Worksheet 4)

n = 24 (True Sampling Distribution)

1500 -

1000 -

500 -