Roll Number:

CS 228 Spring 2022

18-04-2022 Total Marks: 50

- If you need to make any assumptions, state them clearly.
- If needed, you may cite results/proofs covered in class without reproducing them.

1. [10 marks]

Consider the following formula where Gtn, f, NonEmpty, L are predicates and convert it into FOL CNF.

$$\neg \exists n. \ \forall w. \ [Gtn(w) \Rightarrow$$

$$\exists x,y,z. \; (f(x,y,z) = w \land NonEmpty(y) \land \neg Gtn(f(x,y)) \land (\forall k. \; L(x,y,z,k)))]$$

2. [5+5=10 marks]

Consider a CNF formula F equivalent to $p_1 \oplus \oplus p_n$. F only contains variables $p_1,...,p_n$.

- (a) Show that the size of each clause in F is at least n.
- (b) Show that F has at least 2^{n-1} clauses.

3. /5 marks/

Write an MSO formula that captures all bipartite graphs. Remember that the signature allows only the binary relation E. Explain why your formula is correct.

4. [10 marks]

Consider the DBA given below.

- (a) What is the language accepted if q_c is the only good state?
- (b) Draw an NBA which is the complement of the DBA.

5. [3+5+2=10 marks]

Consider the transition system TS given below.

Let $\varphi = \Box(p \to \bigcirc(\Diamond\Box q))$. Does $TS \models \varphi$?. To answer this, you must

- (a) draw an NBA $A_{\neg \varphi}$ for $\neg \varphi$, (b) construct $TS' = TS \otimes A_{\neg \varphi}$,
- (c) write an appropriate persistence property P_{pers} to be checked on TS'. Finally, your answer for TS satisfying (or not) φ must be linked to TS'satisfying (or not) P_{pers} .

6. /15 marks/

Write LTL formulae φ which capture each requirement.

Requirement	Your LTL formula φ
Finitely many a's	
Infinitely many a's and finitely many b's	
Eventually a and eventually forever $\neg a$	
There is an a which is never eventually	
followed by two occurrences of b's	
There is at least one c , and	
b holds since the last occurrence of c	