

LES PROBABILITÉS Fiche de cours – Classe de 1ère S

I. Probabilités : vocabulaire et définitions

<u>Univers</u>

- L'univers Ω représente l'ensemble des résultats possibles lors d'une expérience.
- On appelle cardinal de Ω le nombre d'éléments de l'univers. On le note card (Ω) .

Par exemple, si on lance un dé, il y a 6 résultats possibles. L'univers est donc égal à : $\Omega = \{1,2,3,4,5,6\}$.

Evènement élémentaire

• Un évènement élémentaire est une partie de l'univers Ω , comportant un et un seul élément. On le note e_i .

Evènement

- Un évènement est une partie de l'univers Ω .
- Ø est l'évènement impossible.
- Ω est l'évènement certain.
- $A \cup B$ est l'évènement « A ou B ».
- $A \cap B$ est l'évènement « A et B ».
- \overline{A} est l'évènement contraire de A.

Probabilité

• On définit une loi de probabilité p sur $\Omega = \{e_1; e_2; ...; e_n\}$ en associant à chaque évènement élémentaire $\{e_i\}$ un nombre réel p tel que, pour tout $i \in \{1; 2; ...; n\}, 0 \le p \le 1$:

$$p_1 + p_2 + \dots + p_n = 1$$
 ou $\sum_{i=1}^n p_i = 1$.

 p_i est la probabilité de l'évènement élémentaire $\{e_i\}$: $p_i = p(e_i)$

- Lorsque les évènements élémentaires possèdent tous la même probabilité (équiprobabilité), on dit que la probabilité p est équirépartie.
- Dans le cas d'une loi équirépartie, la probabilité p d'un évènement A dans l'univers Ω s'écrit :

$$p(A) = \frac{card(A)}{card(\Omega)} = \frac{\text{nombre d'éléments de } A}{\text{nombre d'élément de } \Omega}$$

• Pour tout évènement $A = \{a_1; a_2; ...; a_k\}$:

$$p(A) = p(a_1) + p(a_2) + \dots + p(a_k)$$

Propriétés

- Pour tout évènement A, $0 \le p(A) \le 1$.
- Si $A \cap B = \emptyset$, on dit que A et B sont incompatibles ou disjoints. Dans ce cas, $p(A \cup B) = p(A) + p(B)$.
- Si A et B sont quelconques, $p(A \cup B) = p(A) + p(B) - p(A \cap B).$
- \overline{A} étant l'évènement contraire de A, $\overline{p(\overline{A})} = 1 p(A)$.

II. Variables aléatoires

Définition

- Une variable aléatoire est une application X de l'univers Ω dans \mathbb{R} .
- La loi de probabilité d'une variable aléatoire X est la fonction définie sur I qui, à chaque x_i , associe le nombre $p_i = p(X = x_i)$.
- La somme de ces probabilités est égale à 1.

Espérance de X

L'espérance de la variable aléatoire X, appelée également moyenne, est le nombre réel :

$$\mu = E(X) = \sum_{i=1}^{n} x_i . p_i$$

Variance de X

La variance de la variable aléatoire X est le nombre réel positif :

$$V(X) = \left(\sum_{i=1}^{n} p_i . x_i^2\right) - \mu^2 = \sum_{i=1}^{n} p_i (x_i^2 - \mu)^2$$

Écart-type de X

• L'écart-type est le nombre réel positif :

$$\sigma(X) = \sqrt{V(X)}$$