COMM 475 – Investment Policy Introduction, Review, and Preview

Lorenzo Garlappi*

UBC SAUDER

^{*}I am grateful to Rob Heinkel and Bill Tilford for sharing their COMM475 lecture notes with me. These notes are largely based on the material they developed.

Instructor

- Instructor: Lorenzo Garlappi
- **Email:** lorenzo.garlappi@sauder.ubc.ca
- Office: Henry Angus 870
- **Phone:** (604) 822-8848
- Web: https://sites.google.com/site/lorenzogarlappi/
- Office Hours:
 - Tuesdays/Thursdays 12:30PM-1:30PM or by appointment

Course Description

This course provides tools for the portfolio construction process, beginning with establishing objectives, whether for an individual investor or an institutional investor.

- Demonstrate techniques to set strategic allocation of funds across broad asset classes
- Explore dynamic, tactical strategies that may be added on to the strategic allocation
- Determine how to assess the success of strategies in meeting objectives

Common theme – Factors

- The two most important words for an investor are **bad times**
- "Factor risks" is the set of bad times that span asset classes
- Focusing on asset classes (bonds/stocks/private equity etc.) is too crude and misses why assets earn returns
- Assets are a bundle of factors
- On average you earn a risk premium for holding factor risk to compensate for the fact that factors do bad in bad times!
- In sum
 - Asset owners need to know their bad times
 - 2. Factors carry a premium to reward losses in bad times. Factors, not asset classes is what matter!

Evaluation

Component	Weight				
Assignment #1	10%				
Assignment #2	10%				
Midterm Exam #1	20%				
Midterm Exam #2	20%				
Participation	15%				
Final Exam	25%				
Total	100%				

■ Teams will present course material through the class. Same teams will work together on Assignments as the presentations

Materials

Canvas

- Syllabus
- Course Notes (Jupyter notebooks)
- Lecture notes, Python code, readings (limited use of Excel)
- Industry materials

Jupyter notebooks

- Google Colab (cloud)
 - https://colab.research.google.com/?utm_source=scs-index
- Anaconda (local)
 - https://www.anaconda.com/download

Review – The Mean-Variance Efficient Frontier

- Harry Markowitz (diversification). We should invest in the efficient frontier, but does not specify where
- Bill Sharpe (CAPM) tells us where in the frontier we should invest

Review – Capital Asset Pricing Model (CAPM)

$$\mathbb{E}[r_s] = r_f + \beta_s(\mathbb{E}[r_m] - r_f) \quad \beta_s = \frac{\mathsf{Cov}(r_s, r_m)}{\mathsf{Var}(r_m)}$$

- r_s Return of stock, asset or portfolio s
- r_f Return of risk-free asset
- r_m Return of the Market
- CAPM states that in the mean-variance asset allocation problem with a risk-free asset, all investors hold some combination of the risk-free asset and the tangency portfolio, which must be the market portfolio
- 2. So the "risk" of any individual asset, and its expected return "reward" depends on its covariance with the market portfolio

Review – Capital Asset Pricing Model (CAPM)

- Tool for consensus expected returns of stocks, assets, investments within companies
- Allows for the separation of returns
 - Unsystematic, stock-specific returns
 - Systematic returns (market)
- Despite its simplicity and flaws, it is the workhorse in finance for CFOs, investment managers, investment bankers, academics

Review – Revisit the Capital Asset Pricing Model (CAPM)

- The CAPM is a theory about "expected returns", $\mathbb{E}[r_s]$
- Empirically, we state the CAPM model as a "regression" equation

$$r_s = r_f + \beta_s(r_m - r_f) + e_s \tag{1}$$

Taking the variance of the return equation:

$$Var(r_s) = \beta_s^2 \sigma_m^2 + \sigma_{e_s}^2$$

- A measure of the systematic risk of an investment through its **beta** (β_s)
- Unsystematic risk component $\sigma_{e_s}^2$
- Total risk is the sum of the two components
- Unsystematic risk can be diversified away in a well-diversified portfolio of individual stocks

Review – Revisit the Capital Asset Pricing Model (CAPM)

Investors demand a high **expected return** ($\mathbb{E}[r_S]$) for high **systematic risk** (β_S):

$$\mathbb{E}[r_s] = r_f + \beta_s(\underbrace{\mathbb{E}[r_m] - r_f}_{\equiv \lambda})$$

Where $\lambda = \mathbb{E}[r_m] - r_f$ is the "market price of risk"

■ Above equation describes the **Security Market Line** in the $(\beta_s, \mathbb{E}[r_s])$ -space

Review – From CAPM to Multi-Risk Factor Model

Start from

$$r_s = r_f + \beta_s(r_m - r_f) + e_s$$

Add and subtract $\beta_s \mathbb{E}[r_m]$ on the right-hand-side:

$$r_{\mathcal{S}} = \underbrace{r_f + eta_{\mathcal{S}} \left(\mathbb{E}[r_m] - r_f \right)}_{=\mathbb{E}[r_{\mathcal{S}}] \text{ from CAPM}} + eta_{\mathcal{S}} \underbrace{\left(r_m - \mathbb{E}[r_m] \right)}_{\mathsf{Market Risk factor shock}} + eta_{\mathcal{S}}$$

So

$$r_s = \mathbb{E}[r_s] + \beta_s I_m + e_s$$

- For the CAPM, a stock's actual (ex-post) realized return is decomposed into:
 - The **expected** return, $\mathbb{E}[r_s]$
 - Stock's actual return due to an unexpected return on the market portfolio
 - Stock's idiosyncratic return

Review – From CAPM to Multi-Risk Factor Model

$$r_s = \mathbb{E}[r_s] + \beta_s I_m + e_s$$

- Unexpected return (surprise) comes from
 - unexpected return on the whole market $I_m \neq 0$
 - unexpected firm-specific news, $e_s \neq 0$.
- Do we believe that the **only** systematic risk factor is the unexpected return (shock) to the whole market portfolio (β_s)?
- Macroeconomic activity? GDP? Interest rates?
- A Multi-Risk Factor (MRF) model allows many risk factors not just the market, as in the CAPM.
- The origin of MRF are in Ross (1976)'s Arbitrage Pricing Theory (APT).

Preview – Investment Policy

- Pensions, DB (defined benefit)
- Sovereign wealth funds (e.g. Norway)
- Success of investment policy determines peoples' retirement standard of living
- Size of portfolios, billions
- Do professional, "active" managers beat a well-diversified index?

Preview – Portfolio Management Process

- Client Objectives (preferences)
- Asset Class Choices (factors exposure)
- Strategic Asset Allocation (SAA)
- Portfolio Construction
- Risk Management
- Performance Objectives and Measurement

Institutional Investment

- Institutional Investment is important. Pension earnings determine retirement income!
- Example: Assume a 35-year old will save \$5,000 per year for 30 years, then buy a 15-year annuity (they die at 80)

Age	35	36	37	 64	65	66	67	 79	80
Cash Flow	+ c	+ <i>c</i>	+ <i>c</i>	 + c	+ <i>c</i>	-w	-w	-w	w

■ Where c = \$5,000 and w depends upon our pension earnings from age 36 to 65

Institutional Investment

- Case A: suppose the pension earns 3% per year
 - $FV = 5,000 \times \frac{1.03^{30}-1}{0.03} = \$237,877$ is the accumulated account at age 65
- Invest the lump sum and draw down an annuity *w* for 15 years (from age 66 to 80)
- Assuming a 5% return in retirement, this yields
 - $-\$237,877 = w \times \frac{1-1.05^{-15}}{0.05} \implies \$22,918$ per year in retirement

Institutional Investment

- Case B: suppose the pension earns 10% per year
 - $\ F = 5,000 \times \frac{1.10^{30} 1}{0.10} = \$822,470$ is the accumulated account at age 65
- Invest the lump sum and draw down an annuity *w* for 15 years (from age 66 to 80)
- Assuming a 5% return in retirement, this yields
 - \$822, 470 = $w \times \frac{1-1.05^{-15}}{0.05} \implies$ \$79,239 per year in retirement
- Earning 10% vs 3% allows us to triple the retirement annuity
- Institutional Investment matters!