

Факультет «Компьютерной математики» Направление подготовки «Прикладная математика и информатика» 01.03.02 (бакалавр)

ОТЧЁТ

по вычислительной задаче №5 «Построение цепно-рекуррентного множества в проективном пространстве»

Работу выполнил: Студент группы ПМ-401 Воронец Владимир Олегович

Руководитель: профессор кафедры прикладной математики и информатики Осипенко Георгий Сергеевич

ОГЛАВЛЕНИЕ

ПОСТАНОВКА ЗАДАЧИ	3
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ	3
РЕШЕНИЕ ПОСТАВЛЕННОЙ ЗАДАЧИ	4
КОМПЬЮТЕРНАЯ РЕАЛИЗАЦИЯ	5
ХАРАКТЕРИСТИКА ПРОГРАММЫ	9
СПИСОК ЛИТЕРАТУРЫ	9

ПОСТАНОВКА ЗАДАЧИ

Построить цепно-рекуррентное множество в трехмерном проективном пространстве для трех различных случаев матрицы оператора линейного преобразования.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Пусть R^{n+1} — векторное пространство размерности n+1 над полем R вещественных чисел. V — множество векторов данного пространства. Непустое множество P называется проективным пространством n размерности, порожденным пространством R^{n+1} , если задано отображение $A: V/\{0\} -> P$, удовлетворяющие 2 аксиомам проективного пространства:

- 1. А-сюръективное отображение.
- 2. A(x) = A(y) тогда и только когда x и y коллинеарны.

Рассмотрим проективное пространство, порожденное трехмерным векторным пространством. На нем можно задать динамическую систему, порожденную оператором линейного преобразования A, который представим в виде матрицы, размерности 3x3. Само преобразование осуществляется по формуле: $e_{n+1} = Ae_n$

При этом каждую, кроме нулевой, точку линейного пространства можно отобразить на соответствующую точку проективного пространства, выполнив нормировку, разделив все компоненты вектора на максимальное значение компоненты в векторе.

В нашем случае проективное пространство представимо в виде 3 квадратов, так называемых локальных карт размерном [-1;1]x[-1;1] в осях (oY,oZ);(oX,oZ);(oX,oY). И можно отобразить точку на соответствующей карте при x=1,y=1,z=1 в нормированном векторе. [1]

РЕШЕНИЕ ПОСТАВЛЕННОЙ ЗАДАЧИ

Чтобы построить цепно-рекуррентное множество для данной динамической системы, необходимо построить символический образ системы, а затем выделить в получившемся графе компоненты сильной связности. Те компоненты, в которые входит по одной вершине, далее не учитываются. Все остальные вершины (входящие в остальные компоненты) являются возвратными и учитываются. Совокупность ячеек, соответствующих данным вершинам, составит окрестность искомого цепнорекуррентного множества. Чем меньше диаметр ячеек, тем меньше окрестность и тем точнее приближается цепно-рекуррентное множество. Предлагается вначале построить цепно-рекуррентное множество для начального разбиения на 4 ячейки для каждой локальной карты, а затем дробить диаметр пополам п раз и повторять все процедуры, за исключением того, что ячейки, на каком-то этапе не попавшие в окрестность цепно-рекуррентного множества, на всех последующих этапах не рассматриваются.

Отображение локализации цепно-рекуррентного множества в проективном пространстве будет зависеть от собственных чисел оператора преобразования в этом пространстве, порождающего динамическую систему, так как

 $Av = \lambda v$, и порождается возвратная вершина.

КОМПЬЮТЕРНАЯ РЕАЛИЗАЦИЯ

				-		×
Локализация	я ЦРМ в	прое	ктив	ном п	ростра	анстве
	N	Матриц	Да А			
	0.7	-0.5	0.0	-		
	0.5	0.7	0.0	-		
	1.0	2.0	5.0	_		
	роить экение			100	ующая рация	
изоора	эжение	iporpa	ММЫ	ите	рация	
Зат	раченное в	ремя (5)			
	Количеств	о ячее	к			
	Полученн	ый ша	ır			
Собо	твенные зн	начени	я			
			177			

Рисунок 1: Пользовательский интерфейс программы

Рисунок 2: Цепно-рекуррентное множество для матрицы с тремя различными действительными собственными значениями (1, 2, 3)

В данном примере собственные значения матрицы — три различных действительных числа. Конечное разбиение d достигло значения 0.015625, отображено 25 ячеек в виде двух точек: первая смещена положительно относительно oY на первой карте, вторая находится в центре локальной карты в осях (oX, oY).

Рисунок 3: Цепно-рекуррентное множество для матрицы с тремя различными собственными числами (вкл. мнимое).

В данном примере собственные значения матрицы — три различных числа, содержащие мнимую часть. Конечное разбиение d достигло значения 0.015625, отображено 345 ячеек в виде двух прямых на осях (oY, oZ) и (oX, oZ), и неподвижной точки на третьей карте. Комплексные собственные числа матрицы динамического оператора порождают не только неподвижные точки, но и прямые, которые входят в цепно-рекуррентное множество в проективном пространстве.

Рисунок 4: Цепно-рекуррентное множество для матрицы с двумя действительными собственными числами.

В данном примере собственные значения матрицы — два различных действительных числа. Конечное разбиение d достигло значения 0.0078125, отображено 1923 ячеек в виде трех прямых на трех картах.

ХАРАКТЕРИСТИКА ПРОГРАММЫ

Время выполнения программы в среднем составляло около 0-4 секунды для подсчета ячеек и около 3-8 секунд для графического отображения.

Было использовано 121 мегабайт памяти компьютера при подсчете ячеек и около 80 мегабайт при графическом построении результата.

Нагрузка на процессор (AMD Ryzen 3 3200U) доходила до 90% при подсчете ячеек и около 40% при графическом отображении.

Программа была написана самостоятельно на двух языках программирования: Python3 [2] с использованием графической библиотеки Мatplotlib [3] для графического отображения ячеек и библиотеки для создания оконных приложений Tkinter [4]; С++ использовался для выполнения операций алгоритма решения, что помогает нагрузить процессор на максимум и выполнять подсчет ячеек быстрее. Программа ориентирована на UNIX-подобные системы. Необходимо предварительно установить все вышеперечисленные Python библиотеки.

СПИСОК ЛИТЕРАТУРЫ

- 1. Осипенко Г.С., Ампилова Н.Б. Введение в символический анализ динамических систем: СПб.: Издательство Санкт-Петербургского университета, 2004. 240 с.
- 2. https://www.python.org/doc/
- 3. https://matplotlib.org/
- 4. https://docs.python.org/3/library/tkinter.html#module-tkinter