КиМ. Лекция

Dead guy

21 ноября 2024 г.

<u>def</u> Кольцо R наз-ся полупервичным, если оно не содержит ненулевых нильпотентных идеалов ($∄ 0 ≠ I \triangleleft R \mid I^n = 0$)

Note B полупервичном кольцо нет ненулевых нильпотентных правых идеалов если $J^n=0$ для нек-го $0\neq J$ - правый идеал, то $0\neq RJR\lhd R$ $RJR=I,\ I^{n+1}=RJR\cdot RJR\cdots RJR\subset J^n=0$

Def Кольцо R называется классически полупростым справа, если оно полупервично и артиново справа

<u>Тh</u> Для кольца R эквивалентно:

- 1) $\forall R$ модуль вполне приводим
- 2) R_R вп. пирводим
- 3) R классически п/пр

 $\underline{\text{Proof}}\ 1) \implies 2)$ Ясно

 $(2) \implies 1) \ R_R$ - вп. приводим $\iff R_R =$ прямая сумма простых модулей

любой свободный R - модуль $F\cong \bigoplus R_R \implies F=$ прямая сумма простых R - модулей $\implies F$ - вп. приводим. Если M - R - модуль, то M - эпиморфный образ некоторого свободного R - модуля F (доказывали)

Ранее доказывали, что гомо образ вполне пирводимого модуля вполне приводим $\Longrightarrow M$ - вп. приводим 2) $\Longrightarrow 3$) R_R - вполне приводим $\Longrightarrow R_R = \bigoplus_{i \in I} M_i$, где M_i - простые $\Longrightarrow 1 \in M_1 \oplus \cdots \oplus M_n \Longrightarrow 1 \cdot R \subset (M_1 \oplus \cdots \oplus M_n) R \subset M_1 \oplus \cdots \oplus M_n \Longrightarrow R = M_1 \oplus \cdots \oplus M_n \Longrightarrow R_R$ - артиново справа

Пусть $J\neq 0,\ J\lhd R\wedge J^n=0.$ Т.к. R_R - вп. приводим, то $R=J\oplus J'\iff J=eR\ e^2=e\implies (eR)^n=0\implies e^n=e=0$

3) \implies 2) Покажем, что любой правый идеал кольца R вполне приводим \iff \forall правый идеал = прямая сумма минимальных правых идеалов

простые подмодули в R_R

Против: существует правые идеалы $\neq \bigoplus$ min правых идеалов

 \Longrightarrow \exists min правый идеал J с этим св-вом R - артиново справа \Longrightarrow J содержит мин идеал I \Longrightarrow $I^2=0 \lor I=eR$ \Longrightarrow $R=I\oplus I'$

 $J = J \cap R \implies J \cap (I \oplus I') \stackrel{I \subseteq J}{=} I \oplus (J \cap I')$

 $J\cap I'\subsetneqq J\stackrel{\mathrm{J-min}}{\Longrightarrow} J\cap I'=\oplus$ min правых идеалов $\Longrightarrow J=\oplus$ min правых идеалов. Противоречие \Longrightarrow \forall правый идеал - вп. приводим

Th M, N - R - модули

- 1) если $M = \bigoplus_{i=1}^n M_i$, то $\hom_R(\bigoplus M_i, N) \cong \bigoplus \hom_R(M_i, N)$
- 2) если $N = \bigoplus_{j=1}^{m-1} N_j \implies \hom_R(M, \bigoplus N_j) \cong \bigoplus \hom_R(M, N_j)$

<u>Proof</u> 1) $\forall \alpha \in \text{hom}_R(\bigoplus M_i, N)$ определяет послед-ть $(\alpha_1, \ldots, \alpha_n)$, где $\alpha_i = \alpha|_{M_i}$

Обратно, ∀ посл-ть определяет α

$$\forall m = m_1 + \dots + m_n \in M$$

$$\alpha(m) = \alpha(m_1 + \dots + m_n) = \alpha(m_1) + \dots + \alpha(m_n) = \alpha_1(m_1) + \dots + \alpha_n(m_n)$$

Значит, $f: \hom_R(\bigoplus M_i, N) \to \bigoplus \hom_R(M_i, N) : \alpha \mapsto (\alpha_1, \dots, \alpha_n)$ - биекция

$$f(\alpha + \beta) = (\alpha_1 + \beta_1, \dots \alpha_n + \beta_n) = (\alpha_1, \dots, \alpha_n) + (\beta_1, \dots, \beta_n) = f(\alpha) + f(\beta)$$

Т.о. f - изо-зм абелевых групп