

SIEMENS

**SONOLINE G60 S Ultrasound Imaging System
System Reference**

SONOLINE G60 S

Ultrasound Imaging System

System Reference

Software Version 10

Siemens Medical Solutions USA, Inc.
Ultrasound Division
1230 Shorebird Way
Mountain View, CA 94043-1344
U.S.A.

(800) 498-7948
(650) 969-9112

CE Declaration

For systems affixed with a CE mark: This product is provided with a CE marking in accordance with the regulations stated in Council Directive 93/42/EEC of June 14, 1993 concerning Medical Devices. Siemens Medical Solutions USA, Inc., is certified by Notified Body 0123 to Annex II.3 – Full Quality System.

Authorized EC Representative:
Siemens Aktiengesellschaft
Medical Solutions
Henkestraße 127
D-91052 Erlangen
Germany

©2006 Siemens Medical Solutions USA, Inc.
All Rights Reserved.

February 2006
Manuals distributed from the United States of America are printed in the
United States of America.

SONOLINE G60 S, Axius, DTI, *fourSight*, SieScape, MultiHertz, DIMAQ, microCase, ErgoDynamic, SynAps, QuickSet, SuppleFlex, Crescendo, and Evolve Package are trademarks of Siemens Medical Solutions USA, Inc.

Windows, CIDEX, CIDEX Plus, CIDEX OPA, Milton, Virkon, and Gigasept FF are registered trademarks of their respective owners.

Siemens reserves the right to change system specifications at any time.

Table of Contents

System Reference

Chapter Title	Chapter Description
Chapter 1 Acoustic Output Reference	Acoustic output and MI/TI information.
Chapter 2 Accessories and Options	Listing of the available configurations of the ultrasound system.
Chapter 3 System Presets	Instructions for using the options in the Preset Main Menu to customize the system.
Chapter 4 Documentation and Storage	Information on how to use the ultrasound system with documentation and storage devices, including procedures for storing and recalling system presets and QuickSets.
Chapter 5 DIMAQ-IP	Explanation of the integrated workstation option, including storage and management of studies on the hard disk or CD.
Chapter 6 DICOM Connectivity Option	Explanation of the Digital Imaging and Communications in Medicine (DICOM) Connectivity option. This option works in conjunction with the DIMAQ-IP integrated workstation to provide digital image transfer via a DICOM network for both storage and printing
Chapter 7 Network Export Function	A description of setting up and using the network export function. This function copies patient data to a password-protected shared folder on a destination device (export host) for offline-analysis.
Chapter 8 Data Transmission Specifications	Guidelines for transmitting data from the ultrasound system through a serial port to a personal computer (PC), printer, or other device.
Chapter 9 Obstetrical References	Listing of authors and reference tables implemented for the Obstetric exam.
Chapter 10 Cardiac References	Listing of authors implemented for the Cardiac exam.
Chapter 11 Brochure	<i>Medical Ultrasound Safety</i> , American Institute of Ultrasound in Medicine.

Note: Not all features and options described in this publication are available to all users.
Please check with your Siemens representative to determine the current availability of features and options.

About This Manual

The Instructions for Use consists of two volumes:

- [1] Instructions for Use

The [1] *Instructions for Use* includes both a general overview and a technical description of the ultrasound imaging system. This manual contains detailed information on the safety and care of the ultrasound system and its transducers. A chapter is dedicated to the description of all system controls. The [1] *Instructions for Use* also includes the procedures for system setup and beginning an exam.

- [2] Instructions for Use

The [2] *Instructions for Use* includes procedures for acquiring and optimizing images. This manual provides procedures for general and exam-specific measurements and calculations.

The *System Reference* provides reference information for the ultrasound imaging system.

The *Electromagnetic Emissions and Immunity: Guidance and Manufacturer's Declaration* publication provides information regarding the electromagnetic compatibility (EMC) testing of this system.

Conventions

Conventions used throughout this manual are listed below. Take a moment to familiarize yourself with these conventions.

Cross-References

This manual provides you information by topic. When additional information exists within this or other manuals, a reference graphic and the name of the book is provided in the right column. If the information exists within the chapter, a cross-reference to the page number is listed. Otherwise, information is referenced by chapter number.

System Presets

You can use the options and settings available in the system presets menu to set up the ultrasound system with your preferences. Presets define the configuration of the system software whenever you power on the system.

A complete listing of system presets is located in the *System Reference*. Whenever a system preset is discussed in other chapters or in the User and Reference Manuals, a graphic is provided in the right column.

The graphic identifies a preset option or setting in the system presets menu that is available for you to customize your ultrasound system. The name of the category on the menu containing the system preset is listed for your convenience.

[1] Instructions for Use

Screen Saver	Ch 1
Intended Use	Ch 1

[2] Instructions for Use

Imaging Functions	Ch A1
-------------------	-------

System Reference

Accessories and Options	Ch 2
----------------------------	------

F4

Default Settings
► Automatic Freeze
Response

Warnings, Cautions, and Notes

⚠ **WARNING:** Warnings are intended to alert you to the importance of following the correct operating procedures where risk of injury to the patient or system user exists.

⚠ **Caution:** Cautions are intended to alert you to the importance of following correct operating procedures to prevent the risk of damage to the system.

Note: Notes contain information concerning the proper use of the system and/or correct execution of a procedure.

Control Panel Keys, Controls, and LCD Selections

Keys and controls located on the control panel are identified by uppercase, boldface type.

Example: Rotate the **ZOOM** control.

Function keys located on the keyboard are identified by the number of the function key.

Example: Press the **F4** key.

LCD keys are indicated by a (O) symbol with the name of the selection in boldface type.

Example: Press **ONext** to access the second page of LCD selections.

Selection of On-Screen Objects

The **SET** key on the control panel functions as a point-and-select device (similar to a computer mouse) when used with the trackball. To select an on-screen object such as a button or a ▼ symbol, roll the trackball to position the pointer (cursor) on the object and then press the **SET** key on the control panel.

In this manual, the term "select" or "click" describe the trackball and **SET** key action required to select an on-screen object. In the example below, phrases A, B, C, and D are equivalent actions.

- A. Roll the trackball to the **Search** button and then press the **SET** key.
- B. Select the **Search** button.
- C. Click the **Search** button.
- D. Click **Search**.

Special Terms and Menu Options

Special terms are indicated in boldface italics and are accompanied by a brief description on their first use in the manual.

Example: Provides on-screen anatomical graphics of **pictograms** that indicate the anatomy under evaluation.

Within a procedure, options in the system presets are identified in text as boldface type.

Example: Highlight the **Keyboard – Annotation** option.

1 Acoustic Output Reference

Transducer Technical Data and Acoustic Output.....	3
Display Resolution and Measurement Accuracy	3
Default Displayed MI and TI Values by Transducer	4
Transducers and Intended Applications.....	5
IEC 61157 Acoustic Output Reporting.....	6
Track 3, FDA 510(k) Acoustic Output Reporting.....	15
Summary Table for Acoustic Output	15
Definitions	16

Transducer Technical Data and Acoustic Output

Display Resolution and Measurement Accuracy

For any transducer capable of exceeding a mechanical or thermal index value of 1.0, the ultrasound imaging system displays indices starting from 0.4. The resolution of the display is 0.1 for all displayed values of MI. For all TI values, the resolution of the display is 0.2.

It is important to note that displayed indices are obtained through measurement, and are subject to measurement errors. Specific measurement uncertainties for acoustic power, pressure, and center frequency are 5.4%, 8.5%, and 2.1% respectively. Measurement precision for ultrasonic power, peak rarefactional pressure, and center frequency from a standard test transducer/driver combination is 8.2%, 4.6%, and 1.1% respectively. The reported values assume 90% population (P) at 90% confidence level (γ). Definitions for these parameters can be found in the 1998 AIUM/NEMA document entitled *Standard for Real-Time Display of Thermal and Mechanical Acoustic Output Indices on Diagnostic Ultrasound Equipment – Revision 1* (also known as the Output Display Standard).

Default Displayed MI and TI Values by Transducer

(Per transducer/mode that exceeds default MI or TI value of 1.0)

Note: For SONOVISTA systems only:

The 3.5C55S transducer is the equivalent of the C6-2 transducer.

The 3D-ABD transducer is the equivalent of the C6F3 transducer.

The 6.5EV13 transducer is the equivalent of the EV9-4 transducer.

Transducer	Mode									
	B		M		PwD		Color		cwD	
	MI	TI	MI	TI	MI	TI	MI	TI	MI	TI
P4-2	1.0		1.0	1.0		3.2				2.6
P9-4		1.6	1.0	1.8		2.0		1.2		2.0
L10-5						1.0				
7.5L70						1.2				
5.0L45						1.2				
VF13-5	1.1		1.1			1.2				
VF13-5SP		1.0		1.0		1.8				
CH5-2		1.4		1.4		2.4				
C6-2		1.0		1.0		1.8				
C6-3 3D/C6F3										
5.0C50+						1.6				
C8-5						1.0				
BE9-4		1.0		1.0						
EC9-4										
EV9-4		1.0		1.0		1.0				
CW2 ¹										3.0
CW5 ¹										1.8

¹ Not available for SONOVISTA systems

Transducers and Intended Applications

Only the following transducers from Siemens are compatible with the G60 S ultrasound imaging system:

Note: For SONOVISTA systems only:

The 3.5C55S transducer is the equivalent of the C6-2 transducer.

The 3D-ABD transducer is the equivalent of the C6F3 transducer.

The 6.5EV13 transducer is the equivalent of the EV9-4 transducer.

Note: Certain transducers may require features not available on your system. Refer to the Accessories and Options chapter of the *System Reference* for a list of system-specific features and options, including transducers.

EMC Note: Operating the transducer in close proximity to sources of strong electromagnetic fields, such as radio transmitter stations or similar installations, may lead to temporary degradation or interference visible on the monitor screen. A lightening of image background may be noticed while visualizing hypoechoic structures, or color spectral interference, or jitter, or horizontal lines in the image screen may occur. The transducer and the system have been designed and tested to withstand such interference and will not be permanently damaged. Refer to the *Electromagnetic Emissions and Immunity Guidance and Manufacturer's Declaration*.

TRANSDUCER NAME	OPERATING FREQUENCY	MODES OF OPERATION	INTENDED APPLICATIONS
CURVED AND LINEAR ARRAY TRANSDUCERS			
CH5-2	2 – 5 MHz	B, C, M, PW	Abdomen, Renal, Obstetrics, Gynecology, Peripheral Vascular
C6-2	2 – 6 MHz	B, C, M, PW	Abdomen, Renal, Obstetrics, Gynecology, Peripheral Vascular
C6-3 3D/C6F3	2 – 5 MHz	B, C, M, PW	Abdomen, Obstetrics, Gynecology, Pelvic
C8-5	5 – 8 MHz	B, C, M, PW	Neonatal Cephalic, Neonatal Abdomen
5.0C50+	3.5 – 7.5 MHz	B, C, M, PW	Abdomen, Obstetrics, Gynecology, Pediatric
BE9-4	TBD – TBD MHz	B, C, M, PW	Endorectal, Endovaginal
EC9-4	4 – 9 MHz	B, C, M, PW	Prostate, Early Obstetrics, Gynecology
EV9-4	4 – 8 MHz	B, C, M, PW	Early Obstetrics, Gynecology
5.0L45	3.6 – 6.0 MHz	B, C, M, PW	Peripheral Vascular, Cerebrovascular, Musculoskeletal, Breast, Thyroid
7.5L70	5 – 10 MHz	B, C, M, PW	Breast, Thyroid, Orthopedics, Musculoskeletal
L10-5	5 – 10 MHz	B, C, M, PW	Thyroid, Breast, Testis, Cerebrovascular, Orthopedics, Musculoskeletal
VF13-5	5 – 13 MHz	B, C, M, PW	Breast, Testis, Thyroid, Superficial, Musculoskeletal
VF13-5SP	5 – 13 MHz	B, C, M, PW	Intraoperative Abdominal, Intraoperative Neurological, Pediatric, Small Organ, Peripheral Vessel, Musculoskeletal, Superficial Musculoskeletal
PHASED ARRAY TRANSDUCERS			
P9-4	4 – 9 MHz	B, C, M, PW, CW	Pediatric, Cardiology, Abdomen, Neonatal Cephalic
P4-2	2 – 4 MHz	B, C, M, PW, CW	Adult Cardiology, Abdomen, Renal, Transcranial Imaging
CONTINUOUS WAVE TRANSDUCERS			
CW2 ¹	2 MHz	CW	Adult Cardiology
CW5 ^{Error! Bookmark not defined.}	5 MHz	CW	Vascular

¹ Not available for SONOVISTA systems

IEC 61157 Acoustic Output Reporting

Acoustic output information for the G60 S ultrasound imaging system.
Phased Array Transducer. Type: **P4-2**

Manufacturer: Siemens Medical Solutions USA, Inc., Ultrasound Group

Parameter	Mode	Bp	Bi	Mp	Mi	(B+C)p	(M+C)i	Dp	Di	CwD
p_{\perp} (MPa)		3.3	2.6	3.3	2.6	2.9	1.8	2.4	1.2	0.17
I_{spta} (mW/cm ²)		540	590	550	560	590	1600	1200	1600	1200
System settings		3.0 MHz	2.1 MHz	3.0 MHz	2.1 MHz					
Focus in mm		49	49	49	49	71	84	100	84	60
Output in dB		0	0	0	0	0	0	0	0	0
I_p (mm)		39	36	39	36	56	66	70	67	41
W_{pb6} (II) (mm)		2.2	2.6	2.2	2.6	2.9	3.3	4.4	2.9	3.8
(\perp) (mm)		3.6	3.6	3.6	3.6	3.4	4.0	4.1	3.5	2.9
prr (kHz)		4.5	4.5	1.0	1.0	1.0	4.1	1.3	15.2	-
srr (Hz)		118	118	-	-	-	-	-	-	-
Output beam dimensions (mm)		14 x 13	14 x 13	14 x 13	14 x 13	20 x 13	20 x 13	20 x 13	20 x 13	9.3 x 13
f_{awf} (MHz)		2.5	2.1	2.5	2.1	2.1	2.6	2.1	2.6	2.5
APF ^a (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
AIF ^b (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Maximum power (mW)		340	410	51	61	69	250	250	190	150
I_{ob} (mW/cm ²)		180	220	27	33	27	96	98	73	130
Power-up mode		B	B	B	B	B	B	B	B	B
Initialization mode		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Acoustic output freeze		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
I_{tt} (mm)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
I_{ts} (mm)		contact	contact	contact	contact	contact	contact	contact	contact	Contact
Inclusive modes		-	-	B+M	B+M	M+C, B+C+D	B+C, B+C+D	B+D, B+M+D	B+D, B+M+D	-

a Acoustic power-up fraction

b Acoustic initialization fraction

Acoustic output information for the G60 S ultrasound imaging system.

Phased Array Transducer. Type: **P9-4**

Manufacturer: Siemens Medical Solutions USA, Inc., Ultrasound Group

Parameter	Mode	Bp	Bi	Mp	Mi	(M+C)p	(M+C)i	Dp	Di	CwD
p_{\perp} (MPa)		3.7	2.5	3.7	2.5	3.5	1.7	2.8	1.9	0.19
I_{spta} (mW/cm ²)		88	190	180	260	920	1800	1300	1900	1600
System settings		8.0 MHz	4.0 MHz	8.0 MHz	4.0 MHz					
Focus in mm		19	35	19	35	35	50	42	50	29
Output in dB		0	0	0	0	0	0	0	0	0
I_p (mm)		13	26	13	26	31	43	34	43	33
W_{pb6} (II) (mm)		1.0	1.9	1.0	1.9	1.3	1.6	1.7	1.6	2.2
(\perp) (mm)		5.9	2.9	5.9	2.9	1.9	1.9	1.9	1.9	1.8
prr (kHz)		3.0	3.0	1.0	1.0	1.9	12.5	1.3	5.8	-
srr (Hz)		78	78	-	-	-	-	-	-	-
Output beam dimensions (mm)		4.6 x 8.0	6.0 x 8.0	4.6 x 8.0	6.0 x 8.0	6.7 x 8.0	7.7 x 8.0	7.7 x 8.0	7.7 x 8.0	3.6 x 8.0
f_{awf} (MHz)		5.5	4.2	5.5	4.2	5.3	5.3	5.3	5.3	5.1
APF ^a (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
AIF ^b (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Maximum power (mW)		59	79	13	18	26	66	50	69	74
I_{ob} (mW/cm ²)		160	160	36	37	48	110	81	110	260
Power-up mode		B	B	B	B	B	B	B	B	B
Initialization mode		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Acoustic output freeze		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
I_{tt} (mm)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
I_{ts} (mm)		contact	contact	contact	contact	contact	contact	contact	contact	contact
Inclusive modes		-	-	B+M	B+M	B+C,B+C +D	B+C,B+C +D	B+D,B+M +D	B+D,B+M +D	-

a Acoustic power-up fraction

b Acoustic initialization fraction

Acoustic output information is presented according to the recommendations of the International Electrotechnical Commission (IEC) as expressed in IEC 61157.

Acoustic output information for the G60 S ultrasound imaging system. Linear Array Transducer. Type: **L10-5**

Manufacturer: Siemens Medical Solutions USA, Inc., Ultrasound Group

Parameter	Mode	Bp	Bi	Mp	Mi	(B+C)p	(M+C)i	Dp	Di
p_{\perp} (MPa)		2.4	2.1	2.4	2.1	3.3	1.8	2.7	1.4
I_{spta} (mW/cm ²)		64	99	100	140	140	1300	820	1300
System settings		10.0 MHz	6.5 MHz	10.0 MHz	6.5 MHz				
Focus in mm		26	26	26	26	26	26	26	26
Output in dB		0	0	0	0	0	0	0	0
I_p (mm)		19	20	19	20	19	20	19	20
W_{pb6} (II) (mm)		1.1	1.3	1.1	1.3	1.2	1.1	1.2	1.1
(\perp) (mm)		1.3	1.7	1.3	1.7	1.6	1.1	1.6	1.1
prr (kHz)		4.5	4.5	1.0	1.0	1.3	7.6	1.3	15.2
srr (Hz)		94	94	-	-	-	-	-	-
Output beam dimensions (mm)		5.7 x 5.0	5.7 x 5.0	5.7 x 5.0	5.7 x 5.0	5.7 x 5.0	5.7 x 5.0	5.7 x 5.0	5.7 x 5.0
f_{awf} (MHz)		5.7	5.6	5.7	5.6	5.2	7.0	5.2	7.0
APF ^a (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
AIF ^b (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Maximum power (mW)		12	24	1.8	3.5	3.2	19	19	18
I_{ob} (mW/cm ²)		40	80	6.1	12	11	65	65	63
Power-up mode	B	B	B	B	B	B	B	B	B
Initialization mode	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Acoustic output freeze	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
I_{tt} (mm)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
I_{ts} (mm)	contact	contact	contact	contact	contact	contact	contact	contact	contact
Inclusive modes	-	-	B+M	B+M	M+C, B+C+D	B+C, B+C+D	B+D, B+C+D	B+D, B+M+D	B+D, B+M+D

a Acoustic power-up fraction
b Acoustic initialization fraction

Acoustic output information for the G60 S ultrasound imaging system. Linear Array Transducer. Type: **7.5L70**

Manufacturer: Siemens Medical Solutions USA, Inc., Ultrasound Group

Parameter	Mode	Bp	Bi	Mp	Mi	(M+C)p	(M+C)i	Dp	Di
p_{\perp} (MPa)		3.5	2.9	3.5	2.9	3.3	1.8	3.0	1.8
I_{spta} (mW/cm ²)		58	120	150	250	700	1500	710	1500
System settings		6.0 MHz	7.5 MHz	6.0 MHz	7.5 MHz				
Focus in mm		20	25	20	25	25	30	17	30
Output in dB		0	0	0	0	0	0	0	0
I_p (mm)		13	16	13	16	18	23	14	23
W_{pb6} (II) (mm)		1.1	1.5	1.1	1.5	1.1	1.1	1.3	1.1
(\perp) (mm)		1.4	1.1	1.4	1.1	1.0	1.1	1.2	1.1
prr (kHz)		4.5	4.5	1.0	1.0	1.3	8.7	1.3	10
srr (Hz)		94	94	-	-	-	-	-	-
Output beam dimensions (mm)		5.0 x 5.0	6.5 x 5.0	5.0 x 5.0	6.5 x 5.0	6.5 x 5.0	7.9 x 5.0	4.3 x 5.0	7.9 x 5.0
f_{awf} (MHz)		6.4	6.0	6.4	6.0	7.0	7.0	5.2	7.0
APF ^a (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
AIF ^b (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Maximum power (mW)		18	33	2.6	4.9	9.3	23	13	23
I_{ob} (mW/cm ²)		71	100	10	15	29	57	61	57
Power-up mode	B	B	B	B	B	B	B	B	B
Initialization mode	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Acoustic output freeze	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
I_{tt} (mm)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
I_{ts} (mm)	contact	contact	contact	contact	contact	contact	contact	contact	contact
Inclusive modes	-	-	B+M	B+M	B+C, B+C+D	B+C, B+C+D	B+D, B+C+D	B+D, B+M+D	B+D, B+M+D

a Acoustic power-up fraction
b Acoustic initialization fraction

Acoustic output information for the G60 S ultrasound imaging system. Linear Array Transducer. Type: **VF13-5**

Manufacturer: Siemens Medical Solutions USA, Inc., Ultrasound Group

Parameter	Mode	Bp	Bi	Mp	Mi	(B+C)p	(M+C)i	Dp	Di
p_{\perp} (MPa)		3.7	3.0	3.7	3.0	3.6	1.8	3.4	1.4
I_{spta} (mW/cm ²)		81	94	130	170	110	990	520	1000
System settings		12.0 MHz	8.0 MHz	12.0 MHz	8.0 MHz				
Focus in mm		15	12	15	12	12	21	5.0	21
Output in dB		0	0	0	0	0	0	0	0
I_p (mm)		7.0	6.0	7.0	6.0	6.0	13	4.0	13
W_{pb6} (II) (mm)		1.1	1.0	1.1	1.0	1.0	1.1	1.1	1.1
(\perp) (mm)		1.1	1.1	1.1	1.1	1.1	1.7	1.3	1.7
prr (kHz)		4.5	4.5	1.0	1.0	1.0	6.6	1.3	15.2
srr (Hz)		94	94	-	-	-	-	-	-
Output beam dimensions (mm)		4.0 x 2.5	3.2 x 2.5	4.0 x 2.5	3.2 x 2.5	3.2 x 2.5	5.6 x 2.5	1.6 x 2.5	5.6 x 2.5
f_{awf} (MHz)		7.5	7.3	7.5	7.3	7.0	7.0	7.0	7.0
APF ^a (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
AIF ^b (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Maximum power (mW)		13	15	1.9	2.2	1.4	22	8.3	22
I_{ob} (mW/cm ²)		130	190	19	27	17	160	210	160
Power-up mode	B	B	B	B	B	B	B	B	B
Initialization mode	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Acoustic output freeze	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
I_{tt} (mm)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
I_{ts} (mm)	contact	contact	contact	contact	contact	contact	contact	contact	contact
Inclusive modes	-	-	B+M	B+M	M+C, B+C+D	B+C, B+C+D	B+D, B+M+D	B+D, B+M+D	B+D, B+M+D

a Acoustic power-up fraction

b Acoustic initialization fraction

Acoustic output information for the G60 S ultrasound imaging system. Linear Array Transducer. Type: **VF13-5SP**

Manufacturer: Siemens Medical Solutions USA, Inc., Ultrasound Group

Parameter	Mode	Bp	Bi	Mp	Mi	(B+C)p	(M+C)i	Dp	Di
p_{\perp} (MPa)		3.7	3.4	3.7	3.4	3.6	1.8	3.4	1.4
I_{spta} (mW/cm ²)		81	130	130	220	110	990	520	1000
System settings		12.0 MHz	8.0 MHz	12.0 MHz	8.0 MHz				
Focus in mm		15	12	15	12	12	21	5.0	21
Output in dB		0	0	0	0	0	0	0	0
I_p (mm)		7.0	6.0	7.0	6.0	6.0	13	4.0	13
W_{pb6} (II) (mm)		1.1	1.0	1.1	1.0	1.0	1.1	1.1	1.1
(\perp) (mm)		1.1	1.1	1.1	1.1	1.1	1.7	1.3	1.7
prr (kHz)		4.5	4.5	1.0	1.0	1.0	6.6	1.3	15.2
srr (Hz)		94	94	-	-	-	-	-	-
Output beam dimensions (mm)		4.0 x 2.5	3.2 x 2.5	4.0 x 2.5	3.2 x 2.5	3.2 x 2.5	5.6 x 2.5	1.6 x 2.5	5.6 x 2.5
f_{awf} (MHz)		7.5	7.3	7.5	7.3	7.0	7.0	7.0	7.0
APF ^a (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
AIF ^b (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Maximum power (mW)		13	20	1.9	3.0	1.4	22	8.3	22
I_{ob} (mW/cm ²)		130	250	19	37	17	160	210	160
Power-up mode	B	B	B	B	B	B	B	B	B
Initialization mode	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Acoustic output freeze	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
I_{tt} (mm)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
I_{ts} (mm)	contact	contact	contact	contact	contact	contact	contact	contact	contact
Inclusive modes	-	-	B+M	B+M	M+C, B+C+D	B+C, B+C+D	B+D, B+M+D	B+D, B+M+D	B+D, B+M+D

a Acoustic power-up fraction

b Acoustic initialization fraction

Acoustic output information is presented according to the recommendations of the International Electrotechnical Commission (IEC) as expressed in IEC 61157.

Acoustic output information for the G60 S ultrasound imaging system. Curved Array Transducer. Type: **5.0L45**

Manufacturer: Siemens Medical Solutions USA, Inc., Ultrasound Group

Parameter	Mode	Bp	Bi	Mp	Mi	(M+C)p	(M+C)i	Dp	Di
p_{\perp} (MPa)		3.2	2.9	3.2	2.9	3.0	1.6	3.0	1.5
I_{spta} (mW/cm ²)		170	240	210	230	900	1500	900	1300
System settings		5.0 MHz	4.0 MHz	5.0 MHz	4.0 MHz				
Focus in mm		29	35	29	35	29	42	29	42
Output in dB		0	0	0	0	0	0	0	0
I_p (mm)		20	23	20	23	23	30	23	30
W_{pb6} (II) (mm)		1.5	1.8	1.5	1.8	1.3	1.7	1.3	1.7
(\perp) (mm)		1.5	1.5	1.5	1.5	1.1	1.4	1.1	1.4
prr (kHz)		4.5	4.5	1.0	1.0	1.3	6.9	1.3	8.6
srr (Hz)		136	136	-	-	-	-	-	-
Output beam dimensions (mm)		6.8 x 7.0	8.1 x 7.0	6.8 x 7.0	8.1 x 7.0	6.8 x 7.0	9.3 x 7.0	6.8 x 7.0	9.3 x 7.0
f_{awf} (MHz)		5.1	3.9	5.1	3.9	5.2	5.2	5.2	5.2
APF ^a (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
AIF ^b (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Maximum power (mW)		36	52	5.4	7.8	15	42	15	38
I_{ob} (mW/cm ²)		76	93	11	14	31	65	31	59
Power-up mode	B	B	B	B	B	B	B	B	B
Initialization mode	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Acoustic output freeze	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
I_{tt} (mm)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
I_{ts} (mm)	contact	contact	contact	contact	contact	contact	contact	contact	contact
Inclusive modes	-	-	B+M	B+M	B+C, B+C+D	B+C, B+C+D	B+D, B+M+D	B+D, B+M+D	B+D, B+M+D

a Acoustic power-up fraction

b Acoustic initialization fraction

Acoustic output information for the G60 S ultrasound imaging system. Curved Array Transducer. Type: **C6-2**

Manufacturer: Siemens Medical Solutions USA, Inc., Ultrasound Group

Parameter	Mode	Bp	Bi	Mp	Mi	(M+C)p	(M+C)i	Dp	Di
p_{\perp} (MPa)		2.7	2.7	2.7	2.7	2.6	1.5	2.4	1.2
I_{spta} (mW/cm ²)		100	100	180	180	720	1700	610	1200
System settings		5.0 MHz	5.0 MHz	5.0 MHz	5.0 MHz				
Focus in mm		73	73	73	73	86	73	86	73
Output in dB		0	0	0	0	0	0	0	0
I_p (mm)		44	44	44	44	57	50	57	50
W_{pb6} (II) (mm)		2.9	2.9	2.9	2.9	3.0	2.7	3.0	2.7
(\perp) (mm)		5.1	5.1	5.1	5.1	3.1	3.4	3.1	3.4
prr (kHz)		4.5	4.5	1.0	1.0	1.3	7.6	1.3	8.6
srr (Hz)		94	94	-	-	-	-	-	-
Output beam dimensions (mm)		11 x 11	11 x 11	11 x 11	11 x 11	13 x 11	11 x 11	13 x 11	11 x 11
f_{awf} (MHz)		3.3	3.3	3.3	3.3	3.5	3.5	3.5	3.5
APF ^a (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
AIF ^b (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Maximum power (mW)		210	210	32	32	79	190	66	130
I_{ob} (mW/cm ²)		180	180	27	27	55	160	47	110
Power-up mode	B	B	B	B	B	B	B	B	B
Initialization mode	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Acoustic output freeze	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
I_{tt} (mm)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
I_{ts} (mm)	contact	contact	contact	contact	contact	contact	contact	contact	contact
Inclusive modes	-	-	B+M	B+M	B+C, B+C+D	B+C, B+C+D	B+D, B+M+D	B+D, B+M+D	B+D, B+M+D

a Acoustic power-up fraction

b Acoustic initialization fraction

Acoustic output information is presented according to the recommendations of the International Electrotechnical Commission (IEC) as expressed in IEC 61157.

Acoustic output information for the G60 S ultrasound imaging system. Curved Array Transducer. Type: **CH5-2**

Manufacturer: Siemens Medical Solutions USA, Inc., Ultrasound Group

Parameter	Mode	Bp	Bi	Mp	Mi	(M+C)p	(M+C)i	Dp	Di	CwD
p_{\perp} (MPa)		2.3	1.5	2.3	1.5	2.3	1.7	2.6	1.8	2.3
I_{spta} (mW/cm ²)		140	170	200	220	710	1300	820	1300	140
System settings		5.0 MHz	4.0 MHz	5.0 MHz	4.0 MHz					5.0 MHz
Focus in mm		73	73	73	73	73	86	86	86	73
Output in dB		0	0	0	0	0	0	0	0	0
I_p (mm)		50	50	50	50	55	61	61	61	50
W_{pb6} (II) (mm)		3.2	3.6	3.2	3.6	2.8	3.2	3.2	3.2	
(\perp) (mm)		3.8	3.9	3.8	3.9	3.5	3.5	3.5	3.5	3.8
prr (kHz)		4.5	4.5	1.0	1.0	1.0	4.4	1.4	4.1	4.5
srr (Hz)		155	155	-	-	-	-	-	-	155
Output beam dimensions (mm)		13 x 14	13 x 14	13 x 14	13 x 14	13 x 14	16 x 14	13 x 14	16 x 14	13 x 14
f_{awf} (MHz)		2.7	2.1	2.7	2.1	2.6	2.6	2.6	2.6	2.7
APF ^a (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
AIF ^b (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Maximum power (mW)		190	240	29	35	83	180	110	170	190
I_{ob} (mW/cm ²)		100	130	15	19	44	80	48	73	100
Power-up mode	B	B	B	B	B	B	B	B	B	B
Initialization mode	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Acoustic output freeze	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
I_{tt} (mm)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
I_{ts} (mm)	contact	contact	contact	contact	contact	contact	contact	contact	contact	contact
Inclusive modes	-	-	B+M	B+M	B+C,B+C +D	B+C,B+C +D	B+D,B+M +D	B+D,B+M +D	-	

Acoustic output information for the G60 S ultrasound imaging system. Curved Array Transducer. Type: **C6-3 3D/C6F3**

Manufacturer: Siemens Medical Solutions USA, Inc., Ultrasound Group

Parameter	Mode	Bp	Bi	Mp	Mi	(M+C)p	(M+C)i	Dp	Di
p_{\perp} (MPa)		2.1	2.0	2.1	2.0	1.8	1.4	1.9	1.4
I_{spta} (mW/cm ²)		19	21	120	140	470	860	500	820
System settings		3.5 MHz	3.5 MHz	3.5 MHz	3.5 MHz				
Focus in mm		73	73	73	73	51	61	51	61
Output in dB		0	0	0	0	0	0	0	0
I_p (mm)		52	53	52	53	46	54	46	54
W_{pb6} (II) (mm)		2.6	2.7	2.6	2.7	2.3	2.3	2.3	2.3
(\perp) (mm)		3.1	3.1	3.1	3.1	3.0	3.0	3.0	3.0
prr (kHz)		4.5	4.5	1.0	1.0	1.3	3.3	1.3	3.3
srr (Hz)		47	47	-	-	-	-	-	-
Output beam dimensions (mm)		15 x 11	15 x 11	15 x 11	15 x 11	15 x 11	13 x 11	12 x 11	13 x 11
f_{awf} (MHz)		3.1	3.1	3.1	3.1	3.5	3.5	3.5	3.5
APF ^a (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
AIF ^b (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Maximum power (mW)		73	91	11	13	39	70	42	67
I_{ob} (mW/cm ²)		44	54	6.5	8.0	30	49	32	46
Power-up mode	B	B	B	B	B	B	B	B	B
Initialization mode	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Acoustic output freeze	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
I_{tt} (mm)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
I_{ts} (mm)	contact	contact	contact	contact	contact	contact	contact	contact	contact
Inclusive modes	-	-	B+M	B+M	B+C, B+C+D	B+C, B+C+D	B+D, B+M+D	B+D, B+M+D	B+D, B+M+D

Acoustic output information is presented according to the recommendations of the International Electrotechnical Commission (IEC) as expressed in IEC 61157.

Acoustic output information for the G60 S ultrasound imaging system. Curved Array Transducer. Type: **5.0C50+**

Manufacturer: Siemens Medical Solutions USA, Inc., Ultrasound Group

Parameter	Mode	Bp	Bi	Mp	Mi	(M+C)p	(M+C)i	Dp	Di
p_{\perp} (MPa)		3.0	3.0	3.0	3.0	2.8	1.7	2.9	1.7
I_{spta} (mW/cm ²)		100	100	250	250	1200	2800	1200	2700
System settings		3.5 MHz	3.5 MHz	3.5 MHz	3.5 MHz				
Focus in mm		51	51	51	51	61	61	61	61
Output in dB		0	0	0	0	0	0	0	0
I_p (mm)		44	44	44	44	49	49	49	51
W_{pb6} (II) (mm)		1.9	1.9	1.9	1.9	2.2	2.2	2.2	1.5
(\perp) (mm)		2.3	2.3	2.3	2.3	2.2	2.2	2.2	1.6
prr (kHz)		4.5	4.5	1.0	1.0	1.3	12.5	1.3	12.5
srr (Hz)		94	94	-	-	-	-	-	-
Output beam dimensions (mm)		12 x 11	12 x 11	12 x 11	12 x 11	13 x 11	13 x 11	13 x 11	13 x 11
f_{awf} (MHz)		4.0	4.0	4.0	4.0	3.5	5.2	3.5	5.2
APF ^a (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
AIF ^b (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Maximum power (mW)		86	86	13	13	65	160	67	79
I_{ob} (mW/cm ²)		102	102	15	15	44	110	45	53
Power-up mode		B	B	B	B	B	B	B	B
Initialization mode		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Acoustic output freeze		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
I_{tt} (mm)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
I_{ts} (mm)		contact	contact	contact	contact	contact	contact	contact	contact
Inclusive modes		-	-	B+M	B+M	B+C, B+C+D	B+C, B+C+D	B+D, B+M+D	B+D, B+M+D

a Acoustic power-up fraction

b Acoustic initialization fraction

Acoustic output information for the G60 S ultrasound imaging system. Curved Array Transducer. Type: **C8-5**

Manufacturer: Siemens Medical Solutions USA, Inc., Ultrasound Group

Parameter	Mode	Bp	Bi	Mp	Mi	(M+C)p	(M+C)i	Dp	Di
p_{\perp} (MPa)		3.4	3.4	3.4	3.4	3.0	1.4	3.0	1.3
I_{spta} (mW/cm ²)		150	150	290	290	780	1300	880	1400
System settings		5.0 MHz	5.0 MHz	5.0 MHz	5.0 MHz				
Focus in mm		23	23	23	23	19	40	27	40
Output in dB		0	0	0	0	0	0	0	0
I_p (mm)		15	15	15	15	16	30	20	30
W_{pb6} (II) (mm)		1.4	1.4	1.4	1.4	1.2	1.3	1.2	1.3
(\perp) (mm)		1.3	1.3	1.3	1.3	1.1	2.2	1.4	2.2
prr (kHz)		4.5	4.5	1.0	1.0	1.3	10.4	1.3	16.7
srr (Hz)		110	110	-	-	-	-	-	-
Output beam dimensions (mm)		6.2 x 5.0	6.2 x 5.0	6.2 x 5.0	6.2 x 5.0	5.2 x 5.0	10 x 5.0	7.1 x 5.0	10 x 5.0
f_{awf} (MHz)		4.7	4.7	4.7	4.7	5.2	5.2	5.2	5.2
APF ^a (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
AIF ^b (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Maximum power (mW)		40	40	5.9	5.9	13	44	16	48
I_{ob} (mW/cm ²)		130	130	19	19	49	85	45	92
Power-up mode		B	B	B	B	B	B	B	B
Initialization mode		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Acoustic output freeze		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
I_{tt} (mm)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
I_{ts} (mm)		contact	contact	contact	contact	contact	contact	contact	contact
Inclusive modes		-	-	B+M	B+M	B+C, B+C+D	B+C, B+C+D	B+D, B+M+D	B+D, B+M+D

a Acoustic power-up fraction

b Acoustic initialization fraction

Acoustic output information is presented according to the recommendations of the International Electrotechnical Commission (IEC) as expressed in IEC 61157.

Acoustic output information for the G60 S ultrasound imaging system. Curved Array Transducer. Type: **EC9-4**

Manufacturer: Siemens Medical Solutions USA, Inc., Ultrasound Group

Parameter	Mode	Bp	Bi	Mp	Mi	(M+C)p	(M+C)i	Dp	Di
p_{\perp} (MPa)		2.5	2.4	2.5	2.4	3.2	2.0	3.2	1.8
I_{spta} (mW/cm ²)		85	100	140	170	830	1200	860	1200
System settings		6.5 MHz	4.2 MHz	6.5 MHz	4.2 MHz				
Focus in mm		21	21	21	21	26	37	26	21
Output in dB		0	0	0	0	0	0	0	0
I_p (mm)		15	15	15	15	18	23	18	18
W_{pb6} (II) (mm)		1.6	1.5	1.6	1.5	1.6	2.3	1.6	1.1
(\perp) (mm)		1.7	1.6	1.7	1.6	1.5	1.6	1.5	1.2
prr (kHz)		4.5	4.5	1.0	1.0	1.3	3.8	1.3	7.1
srr (Hz)		155	155	-	-	-	-	-	-
Output beam dimensions (mm)		5.3 x 5.0	5.3 x 5.0	5.3 x 5.0	5.3 x 5.0	5.7 x 5.0	7.4 x 5.0	5.7 x 5.0	5.3 x 5.0
f_{awf} (MHz)		5.0	4.8	5.0	4.8	5.2	5.2	5.2	7.0
APF ^a (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
AlF ^b (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Maximum power (mW)		30	31	4.4	4.6	23	53	24	18
I_{ob} (mW/cm ²)		110	120	17	17	81	140	83	68
Power-up mode		B	B	B	B	B	B	B	B
Initialization mode		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Acoustic output freeze		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
I_{tt} (mm)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
I_{ts} (mm)		contact	contact	contact	contact	contact	contact	contact	contact
Inclusive modes		-	-	B+M	B+M	B+C, B+C+D	B+C, B+C+D	B+D, B+M+D	B+D, B+M+D

a Acoustic power-up fraction

b Acoustic initialization fraction

Acoustic output information for the G60 S ultrasound imaging system. Curved Array Transducer. Type: **EV9-4**

Manufacturer: Siemens Medical Solutions USA, Inc., Ultrasound Group

Parameter	Mode	Bp	Bi	Mp	Mi	(M+C)p	(M+C)i	Dp	Di
p_{\perp} (MPa)		3.2	2.4	3.2	2.4	3.0	1.9	3.0	1.9
I_{spta} (mW/cm ²)		91	95	220	220	900	1400	610	1400
System settings		6.5 MHz	5.5 MHz	6.5 MHz	5.5 MHz				
Focus in mm		33	23	33	23	23	27	27	27
Output in dB		0	0	0	0	0	0	0	0
I_p (mm)		21	18	21	18	20	22	22	22
W_{pb6} (II) (mm)		1.6	1.3	1.6	1.3	1.4	1.1	1.1	1.1
(\perp) (mm)		1.5	1.3	1.5	1.3	1.3	1.0	1.0	1.0
prr (kHz)		4.5	4.5	1.0	1.0	1.3	7.6	1.3	8.6
srr (Hz)		94	94	-	-	-	-	-	-
Output beam dimensions (mm)		6.8 x 6.0	5.4 x 6.0	6.8 x 6.0	5.4 x 6.0	5.4 x 6.0	6.1 x 6.0	6.1 x 6.0	6.1 x 6.0
f_{awf} (MHz)		5.2	5.2	5.2	5.2	5.2	7.0	7.0	7.0
APF ^a (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
AlF ^b (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Maximum power (mW)		39	30	5.8	4.5	19	19	8.4	19
I_{ob} (mW/cm ²)		100	90	14	14	59	50	23	51
Power-up mode		B	B	B	B	B	B	B	B
Initialization mode		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Acoustic output freeze		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
I_{tt} (mm)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
I_{ts} (mm)		contact	contact	contact	contact	contact	contact	contact	contact
Inclusive modes		-	-	B+M	B+M	B+C, B+C+D	B+C, B+C+D	B+D, B+M+D	B+D, B+M+D

a Acoustic power-up fraction

b Acoustic initialization fraction

Acoustic output information is presented according to the recommendations of the International Electrotechnical Commission (IEC) as expressed in IEC 61157.

Acoustic output information for the G60 S ultrasound imaging system. Curved Array Transducer. Type: **BE9-4**

Manufacturer: Siemens Medical Solutions USA, Inc., Ultrasound Group

Parameter	Mode	Bp	Bi	Mp	Mi	(B+C)p	(M+C)i	Dp	Di
p_{\perp} (MPa)		2.8	2.6	2.8	2.6	2.8	1.9	2.6	1.9
I_{spta} (mW/cm ²)		64	66	110	140	73	970	470	800
System settings		9.0 MHz	6.5 MHz	9.0 MHz	6.5 MHz				
Focus in mm		26	21	26	21	21	21	14	21
Output in dB		0	0	0	0	0	0	0	0
I_p (mm)		17	15	17	15	19	17	14	17
W_{pb6} (II) (mm)		1.2	1.1	1.2	1.1	1.1	1.1	1.3	1.1
(\perp) (mm)		1.7	1.6	1.7	1.6	1.5	1.7	1.9	1.7
pr (kHz)		4.5	4.5	1.0	1.0	1.3	3.4	1.3	3.3
srr (Hz)		155	155	-	-	-	-	-	-
Output beam dimensions (mm)		5.6 x 4.3	5.2 x 4.3	5.6 x 4.3	5.2 x 4.3	5.2 x 4.3	5.2 x 4.3	4.0 x 4.3	5.2 x 4.3
f_{awf} (MHz)		5.4	5.2	5.4	5.2	7.0	5.2	5.2	5.2
APF ^a (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
AlF ^b (%)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Maximum power (mW)		18	20	2.7	3.0	1.4	22	14	18
I_{ob} (mW/cm ²)		76	90	11	13	6.2	97	79	79
Power-up mode	B	B	B	B	B	B	B	B	B
Initialization mode	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Acoustic output freeze	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
I_{tt} (mm)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
I_{ts} (mm)	contact	contact	contact	contact	contact	contact	contact	contact	contact
Inclusive modes	-	-	B+M	B+M	M+C, B+C+D	B+C, B+C+D	B+D, B+C+D	B+D, B+M+D	B+D, B+M+D

a Acoustic power-up fraction

b Acoustic initialization fraction

Acoustic output information is presented according to the recommendations of the International Electrotechnical Commission (IEC) as expressed in IEC 61157.

Acoustic output information for the G60 S ultrasound imaging system.
Continuous Wave Transducer. Type: **CW2**

Manufacturer: Siemens Medical Solutions USA, Inc., Ultrasound Group

Parameter	Mode	cwD
p_- (MPa)		0.15
I_{spta} (mW/cm ²)		860
System settings		
Focus in mm		55
Output in dB		0
I_p (mm)		31
W_{pb6} (II) (mm)		6.0
(\perp) (mm)		4.8
pr (kHz)		-
srr (Hz)		-
Output beam dimensions (mm)		13φ
f_{awf} (MHz)		2.2
APF ^a (%)		n/a
AIF ^b (%)		n/a
Maximum power (mW)		290
I_{ob} (mW/cm ²)		150
Power-up mode		CW
Initialization mode		n/a
Acoustic output freeze		Yes
I_{tt} (mm)		n/a
I_{ts} (mm)		contact
Inclusive modes		-

Acoustic output information for the G60 S ultrasound imaging system.
Continuous Wave Transducer. Type: **CW5**

Manufacturer: Siemens Medical Solutions USA, Inc., Ultrasound Group

Parameter	Mode	cwD
p_- (MPa)		0.16
I_{spta} (mW/cm ²)		1000
System settings		
Focus in mm		45
Output in dB		0
I_p (mm)		29
W_{pb6} (II) (mm)		2.3
(\perp) (mm)		2.9
pr (kHz)		-
srr (Hz)		-
Output beam dimensions (mm)		10φ
f_{awf} (MHz)		5.1
APF ^a (%)		n/a
AIF ^b (%)		n/a
Maximum power (mW)		79
I_{ob} (mW/cm ²)		79
Power-up mode		CW
Initialization mode		n/a
Acoustic output freeze		Yes
I_{tt} (mm)		n/a
I_{ts} (mm)		contact
Inclusive modes		-

Acoustic output information is presented according to the recommendations
of the International Electrotechnical Commission (IEC) as expressed in
IEC 61157.

Track 3, FDA 510(k)

Acoustic Output Reporting

Data presented in Track 3 format represents the average MI/TI values for five transducers measured under worst-case acoustic output conditions. The on-screen MI/TI values are based on measurements on one transducer under worst case acoustic output conditions - rounded up to the nearest display increment. It is possible that the values displayed on screen may exceed the MI/TI values presented in the Track 3 format.

System Reference

IEC 61157

1-6

Summary Table for Acoustic Output

An "X" indicates that either the MI index or TI indices is greater than 1.0 for each transducer/mode. A Track 3 format acoustic output table is supplied for each transducer/mode combination marked with an "X".

Operating Mode	Transducer Model																
	P4-2	P9-4	L10-5	7.5L70	VF13-5	VF13-5SP	5.0L45	C6-2	CH5-2	C6-3 3D/C6F3	5.0C50+	C8-5	EC9-4	BE9-4	EV9-4	CW2	CW5
B-mode (2D)	X	X		X	X	X	X	X	X		X	X		X			
M-mode	X	X		X	X	X	X	X	X		X	X		X			
Pulsed Doppler	X	X	X	X	X	X	X	X	X	X	X	X	X	X		X	
Color Flow or Power	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
CW Doppler	X	X														X	X

The following rules apply to the summary table:

B-mode (2D)	No other mode active. Only MI (when larger than 1.0) is reported for this mode.
M-mode	Includes simultaneous B-mode.
PW-Doppler	In duplex modes, the largest displayed TIS (scanned or non-scanned) is reported if it is larger than 1.0.
Color Flow or Power	Includes simultaneous color flow M-mode, B-mode, and Doppler. In combined modes, the largest displayed TIS (scanned or non-scanned) is reported if it is larger than 1.0.
Other	The output is reported as a separate mode if the largest formulation of TIS, TIB, or TIC (if an intended use) is greater than the corresponding value reported for all constituent mode. TIC is reported if the transducer is intended for transcranial or neonatal cephalic use.

Definitions

Symbol	Definition	Units
MI	Mechanical Index	N/A
TIS Scan	Soft Tissue Thermal Index in autoscanning mode	N/A
TIS Non-scan	Soft Tissue Thermal Index in non-autoscanning mode	N/A
TIB	Bone Thermal Index	N/A
TIC	Cranial Thermal Index	N/A
Aaprt	Area of the active aperture	cm ²
Pr.3	Derated peak rarefactional pressure	MPa
W ₀	Ultrasonic power, except for TIS Scan, in which case it is the ultrasonic power passing through a one centimeter window.	mW
W ₃ (Z ₁)	Derated ultrasonic power at axial distance Z ₁	mW
I _{TA.3} (Z ₁)	Derated spatial-peak, temporal-average intensity at axial distance Z ₁ .	mW/cm ²
Z ₁	Axial distance corresponding to the location of the max [W ₃ (Z ₁), I _{TA.3} (Z) x 1 cm ²], where Z > Z _{bp} .	cm ²
Z _{bp}	1.69 (Aaprt) ^{1/2} .	cm
Z _{sp}	For MI: axial distance at which Pr.3 is measured For TIB: axial distance at which TIB is a maximum (i.e., Z _{sp} = Z _{B.3})	cm
d _{eq} (Z _{sp})	Equivalent beam diameter as a function of axial distance, and is equal to where ITA (Z) is the temporal-average intensity as a function of Z	cm
f _c	Center frequency	MHz
Dim. of Aaprt	Active aperture dimensions for the azimuth and elevational planes	cm
PD	Pulse duration	μs
PRF	Pulse repetition frequency	Hz
Pr @ PII max	Peak rarefactional pressure at the point where the free-field, spatial-peak pulse intensity integral is a maximum	MPa
d _{eq} @ PII max	Equivalent beam diameter at the point where the free-field, spatial-peak pulse intensity integral is a maximum	cm
FL	Focal Length, or azimuthal and elevational lengths, if different	cm
I _{pa.3} @ MI max	Derated pulse-average intensity at the point of global maximum	W/cm ²

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **P4-2** Operating mode: **B-mode**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.5	(a)	(a)	(a)	(a)		
Pr.3	(MPa)	2.4						
W _o	(mW)		#	#	#	#		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	3.9			#			
d _{eq} (Z _{sp})	(cm)				#			
f _c	(MHz)	2.5	#	#	#	#		
Dim. of Aaprt	X (cm)		#	#	#	#		
	Y (cm)		#	#	#	#		

Other information

PD	(μsec)	0.43				
PRF	(Hz)	4500				
Pr @ PII max	(MPa)	3.3				
d _{eq} @ PII max	(cm)				#	#
Focal Length	FLx (cm)		#	#	#	#
	FLy (cm)		#	#	#	#
I pa.3 @ MI max	(W/cm ²)	570				

Operator Control

TX-Level (dB)	0					
Focus(mm)	49					
PRF (Hz)						

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **P4-2** Operating mode: **M-mode**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.5	1.6	---	0.26	1.4		
Pr.3	(MPa)	2.4						
W _o	(mW)		350	#	26	350		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				15			
Z ₁	(cm)				2.5			
Z _{bp}	(cm)				2.5			
Z _{sp}	(cm)	3.9				3.6		
d _{eq} (Z _{sp})	(cm)					0.25		
f _c	(MHz)	2.5	2.6	#	2.6	2.1		
Dim. of Aaprt	X (cm)		1.7	#	1.7	1.4		
	Y (cm)		1.3	#	1.3	1.3		

Other information

PD	(μsec)	0.43				
PRF	(Hz)	1000				
Pr @ PII max	(MPa)	3.3				
d _{eq} @ PII max	(cm)				0.24	1.0
Focal Length	FLx (cm)		14	#	14	7.1
	FLy (cm)		5.5	#	5.5	5.5
I pa.3 @ MI max	(W/cm ²)	570				

Operator Control

TX-Level (dB)	0	0		0	0	0
Focus(mm)	49	140		140	49	71
PRF (Hz)						

a This Index is not relevant to this operating mode.

b This transducer is not intended for transcranial or neonatal cephalic uses.

c This formulation for TIS is less than that for an alternate formulation in this mode.

No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **P4-2** Operating mode: **Pulsed Doppler**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.1	---	---	1.1	3.9		
Pr.3	(MPa)	1.7						
W _o	(mW)		#	#	160	160		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				92			
Z ₁	(cm)				2.7			
Z _{bp}	(cm)				2.7			
Z _{sp}	(cm)	3.7			3.8			
d _{eq} (Z _{sp})	(cm)				0.59			
f _c	(MHz)	2.1	#	#	2.1	2.1		
Dim. of Aaprt	X (cm)		#	#	2.0	2.0		
	Y (cm)		#	#	1.3	1.3		

Other information

PD	(μsec)	1.8				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	2.0				
d eq@ PII max	(cm)				0.59	0.59
Focal Length	FLx (cm)		#	#	14	14
	FLy (cm)		#	#	5.5	5.5
I pa.3 @ MI max	(W/cm ²)	200				

Operator Control

TX-Level (dB)	0			0	0	0
Focus(mm)	27			140	140	140
PRF (Hz)				13800	13800	13800

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **P4-2** Operating mode: **Color / Power**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.3	---	---	1.3	4.5		
Pr.3	(MPa)	1.9						
W _o	(mW)		#	#	190	190		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				110			
Z ₁	(cm)				2.7			
Z _{bp}	(cm)				2.7			
Z _{sp}	(cm)	5.6			3.8			
d _{eq} (Z _{sp})	(cm)				0.55			
f _c	(MHz)	2.1	#	#	2.1	2.1		
Dim. of Aaprt	X (cm)		#	#	2.0	2.0		
	Y (cm)		#	#	1.3	1.3		

Other information

PD	(μsec)	1.8				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	3.0				
d eq@ PII max	(cm)				0.55	0.55
Focal Length	FLx (cm)		#	#	14	14
	FLy (cm)		#	#	5.5	5.5
I pa.3 @ MI max	(W/cm ²)	390				

Operator Control

TX-Level (dB)	0			0	0	0
Focus(mm)	71			140	140	140
PRF (Hz)				4000	4000	4000

- a This Index is not relevant to this operating mode.
- b This transducer is not intended for transcranial or neonatal cephalic uses.
- c This formulation for TIS is less than that for an alternate formulation in this mode.
- # No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **P4-2** Operating mode: **CW Doppler**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	0.08	---	0.49	#	2.6		
Pr.3	(MPa)	0.12				1.1		
Wo	(mW)		#	41		55		
min of [W3(Z1), lTA.3(Z1)]	(mW)				#			
Z1	(cm)				#			
Zbp	(cm)				#			
Zsp	(cm)	3.7				3.7		
d _{eq} (Zsp)	(cm)					0.27		
f _c	(MHz)	2.2	#	2.5	#	2.2		
Dim. of Aaprt	X (cm)		#	0.71	#	0.93		
	Y (cm)		#	1.3	#	1.3		

Other information

PD	(μsec)	-				
PRF	(Hz)	-				
Pr @ PII max	(MPa)	0.16				
d _{eq} @ PII max	(cm)				0.26	0.26
Focal Length	FLx (cm)		#	4.1	#	5.9
	FLy (cm)		#	5.5	#	5.5
I pa.3 @ MI max	(W/cm ²)	0.54				

Operator Control

TX-Level (dB)	0		0		0	0
Focus(mm)	59		41		59	59
PRF (Hz)						

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **P9-4** Operating mode: **B-mode**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.5	(a)	(a)	(a)	(a)		
Pr.3	(MPa)	3.4						
Wo	(mW)		#	#		#		
min of [W.3(Z1), ITA.3(Z1)]	(mW)				#			
Z1	(cm)				#			
Zbp	(cm)				#			
Zsp	(cm)	0.60				#		
d _{eq} (Zsp)	(cm)					#		
f _c	(MHz)	5.4	#	#	#	#		
Dim. of Aaprt	X (cm)		#	#	#	#		
	Y (cm)		#	#	#	#		

Other information

PD	(μsec)	0.12				
PRF	(Hz)	2900				
Pr @ PII max	(MPa)	3.4				
d _{eq} @ PII max	(cm)				#	#
Focal Length	FLx (cm)		#	#	#	#
	FLy (cm)		#	#	#	#
I pa.3 @ MI max	(W/cm ²)	800				

Operator Control

TX-Level (dB)	0					
Focus(mm)	11					
PRF (Hz)						

- a This Index is not relevant to this operating mode.
- b This transducer is not intended for transcranial or neonatal cephalic uses.
- c This formulation for TIS is less than that for an alternate formulation in this mode.
- # No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **P9-4** Operating mode: **M-mode**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.5	2.4	0.49	---	0.63		
Pr.3	(MPa)	3.4						
W _o	(mW)		57	14		6.6		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	0.60				0.56		
d _{eq} (Z _{sp})	(cm)					1.3		
f _c	(MHz)	5.4	5.4	5.4	#	5.6		
Dim. of Aaprt	X (cm)		0.77	0.77	#	0.36		
	Y (cm)		0.80	0.80	#	0.80		
						0.77		

Other information

PD	(μsec)	0.12				
PRF	(Hz)	1000				
Pr @ PII max	(MPa)	3.4				
d _{eq} @ PII max	(cm)				0.28	1.1
Focal Length	FLx (cm)		14	14	#	6.0
	FLy (cm)		3.5	3.5	#	3.5
I pa.3 @ MI max	(W/cm ²)	800				

Operator Control

TX-Level (dB)	0	0	0		0	0
Focus(mm)	11	140	140		11	60
PRF (Hz)						

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **P9-4** Operating mode: **Pulsed Doppler**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	0.82	---	1.5	---	2.6		
Pr.3	(MPa)	1.9						
W _o	(mW)		#	57		75		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	0.50				4.1		
d _{eq} (Z _{sp})	(cm)					0.25		
f _c	(MHz)	5.3	#	5.3	#	3.7		
Dim. of Aaprt	X (cm)		#	0.77	#	0.77		
	Y (cm)		#	0.80	#	0.80		
						0.77		

Other information

PD	(μsec)	1.4				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	2.0				
d _{eq} @ PII max	(cm)				0.25	0.29
Focal Length	FLx (cm)		#	10	#	6.0
	FLy (cm)		#	3.5	#	3.5
I pa.3 @ MI max	(W/cm ²)	180				

Operator Control

TX-Level (dB)	0	0	0		0	0
Focus(mm)	9.0		100		60	60
PRF (Hz)			10400		12500	10400

a This Index is not relevant to this operating mode.

b This transducer is not intended for transcranial or neonatal cephalic uses.

c This formulation for TIS is less than that for an alternate formulation in this mode.

No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **P9-4** Operating mode: **Color / Power**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.1	---	2.3	---	2.3		
Pr.3	(MPa)	2.5						
W _o	(mW)		#	55		40		
min of [W ₃ (Z ₁), I _{TIA,3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	0.60				2.8		
d _{eq} (Z _{sp})	(cm)					0.22		
f _c	(MHz)	5.3	#	5.2	#	3.7		
Dim. of Aaprt	X (cm)		#	0.77	#	0.58		
	Y (cm)		#	0.80	#	0.80		

Other information

PD	(μsec)	0.72				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	2.5				
d eq@ PII max	(cm)				0.22	0.24
Focal Length	FLx (cm)		#	10	#	6.0
	FLy (cm)		#	3.5	#	3.5
I pa.3 @ MI max	(W/cm ²)	370				

Operator Control

TX-Level (dB)	0		0		0	0
Focus(mm)	11		100		29	60
PRF (Hz)			1300		10400	1700

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **P9-4** Operating mode: **CW Doppler**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	0.06	---	0.94	#	1.9		
Pr.3	(MPa)	0.12						
W _o	(mW)		#	39		35		
min of [W ₃ (Z ₁), I _{TIA,3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	2.6				2.6		
d _{eq} (Z _{sp})	(cm)					0.21		
f _c	(MHz)	3.8	#	5.1	#	3.8		
Dim. of Aaprt	X (cm)		#	0.36	#	0.36		
	Y (cm)		#	0.80	#	0.80		

Other information

PD	(μsec)	-				
PRF	(Hz)	-				
Pr @ PII max	(MPa)	0.15				
d eq@ PII max	(cm)				0.21	0.18
Focal Length	FLx (cm)		#	2.9	#	2.9
	FLy (cm)		#	3.5	#	3.5
I pa.3 @ MI max	(W/cm ²)	0.53				

Operator Control

TX-Level (dB)	0		0		0	0
Focus(mm)	35		29		35	29
PRF (Hz)						

a This Index is not relevant to this operating mode.

b This transducer is not intended for transcranial or neonatal cephalic uses.

c This formulation for TIS is less than that for an alternate formulation in this mode.

No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **L10-5** Operating mode: **Pulsed Doppler**

Associated Acoustic Parameters

Index Label	MI	TIS		TIB	TIC	
		Scan	Non-scan			
			Aaprt ≤1	Aaprt >1		
Maximum Value	---	0.84	---	0.74	---	
Pr.3	(MPa)	1.9				
W _o	(mW)		#	23		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)			#		
Z ₁	(cm)			#		
Z _{bp}	(cm)			#		
Z _{sp}	(cm)	1.9			2.1	
d _{eq} (Z _{sp})	(cm)				0.17	
f _c	(MHz)	5.2	#	6.8	#	
Dim. of Aaprt	X (cm)		#	1.1	#	
	Y (cm)		#	0.50	#	
				0.50	0.50	

Other information

PD	(μsec)	0.73				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	2.7				
d _{eq} @ PII max	(cm)				0.17	0.25
Focal Length	FLx (cm)		#	5.1	#	
	FLy (cm)		#	2.0	#	2.0
I pa.3 @ MI max	(W/cm ²)	430				

Operator Control

TX-Level (dB)	0		0		0	0
Focus(mm)	26		51		43	51
PRF (Hz)			15200		3300	15200

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **L10-5** Operating mode: **Color / Power**

Associated Acoustic Parameters

Index Label	MI	TIS		TIB	TIC	
		Scan	Non-scan			
			Aaprt ≤1	Aaprt >1		
Maximum Value	---	1.1	---	0.79	---	
Pr.3	(MPa)	2.5				
W _o	(mW)		#	24		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)			#		
Z ₁	(cm)			#		
Z _{bp}	(cm)			#		
Z _{sp}	(cm)	1.7			2.1	
d _{eq} (Z _{sp})	(cm)				0.17	
f _c	(MHz)	4.7	#	6.8	#	
Dim. of Aaprt	X (cm)		#	1.1	#	
	Y (cm)		#	0.50	#	
				0.50	0.50	

Other information

PD	(μsec)	0.38				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	3.3				
d _{eq} @ PII max	(cm)				0.17	0.25
Focal Length	FLx (cm)		#	5.1	#	
	FLy (cm)		#	2.0	#	2.0
I pa.3 @ MI max	(W/cm ²)	750				

Operator Control

TX-Level (dB)	0		0		0	0
Focus(mm)	26		51		43	51
PRF (Hz)			12500		10400	12500

a This Index is not relevant to this operating mode.

b This transducer is not intended for transcranial or neonatal cephalic uses.

c This formulation for TIS is less than that for an alternate formulation in this mode.

No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **7.5L70**Operating mode: **B-mode**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.1	(a)	(a)	(a)	(a)		
P _{r,3}	(MPa)	2.7						
W _o	(mW)		#	#		#		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	1.3				#		
d _{eq} (Z _{sp})	(cm)					#		
f _c	(MHz)	6.4	#	#	#	#		
Dim. of Aaprt	X (cm)		#	#	#	#		
	Y (cm)		#	#	#	#		

Other information

PD	(μsec)	0.15				
PRF	(Hz)	4500				
Pr @ PII max	(MPa)	3.5				
d eq@ PII max	(cm)				#	#
Focal Length	FLx (cm)		#	#	#	#
	FLy (cm)		#	#	#	#
I pa,3 @ MI max	(W/cm ²)	500				

Operator Control

TX-Level (dB)	0					
Focus(mm)	20					
PRF (Hz)						

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **7.5L70**Operating mode: **M-mode**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.1	0.83	0.23	---	0.34		
Pr,3	(MPa)	2.7						
W _o	(mW)		84	8.1		11		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	1.3				1.3		
d _{eq} (Z _{sp})	(cm)					0.41		
f _c	(MHz)	6.4	6.0	6.0	#	6.1		
Dim. of Aaprt	X (cm)		1.7	1.7	#	2.3		
	Y (cm)		0.50	0.50	#	0.50		

Other information

PD	(μsec)	0.15				
PRF	(Hz)	1000				
Pr @ PII max	(MPa)	3.5				
d eq@ PII max	(cm)				0.39	1.3
Focal Length	FLx (cm)		7.0	7.0	#	9.8
	FLy (cm)		1.9	1.9	#	1.9
I pa,3 @ MI max	(W/cm ²)	500				

Operator Control

TX-Level (dB)	0	0	0		0	0
Focus(mm)	20	70	70		98	98
PRF (Hz)						

a This Index is not relevant to this operating mode.

b This transducer is not intended for transcranial or neonatal cephalic uses.

c This formulation for TIS is less than that for an alternate formulation in this mode.

No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **7.5L70** Operating mode: **Pulsed Doppler**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.0	---	1.0	---	1.4		
Pr.3	(MPa)	2.4				0.95		
W _o	(mW)		#	31		40		
min of [W ₃ (Z ₁), I _{TA.3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	1.2				1.7		
d _{eq} (Z _{sp})	(cm)					0.36		
f _c	(MHz)	5.4	#	6.9	#	5.4		
Dim. of Aaprt	X (cm)		#	1.7	#	1.73		
	Y (cm)		#	0.50	#	0.50		

Other information

PD	(μsec)	0.71				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	2.9				
d _{eq} @ PII max	(cm)				0.36	0.36
Focal Length	FLx (cm)		#	7.0	#	7.0
	FLy (cm)		#	1.9	#	1.9
I pa.3 @ MI max	(W/cm ²)	490				

Operator Control

TX-Level (dB)	0		0		0	0
Focus(mm)	17		70		70	70
PRF (Hz)			15200		10400	10400

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **7.5L70** Operating mode: **Color / Power**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.1	---	1.1	---	1.3		
Pr.3	(MPa)	2.5				0.94		
W _o	(mW)		#	33		39		
min of [W ₃ (Z ₁), I _{TA.3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	1.2				1.7		
d _{eq} (Z _{sp})	(cm)					0.31		
f _c	(MHz)	5.4	#	6.8	#	5.3		
Dim. of Aaprt	X (cm)		#	1.7	#	1.7		
	Y (cm)		#	0.50	#	0.50		

Other information

PD	(μsec)	0.71				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	3.0				
d _{eq} @ PII max	(cm)				0.31	0.31
Focal Length	FLx (cm)		#	7.0	#	7.0
	FLy (cm)		#	1.9	#	1.9
I pa.3 @ MI max	(W/cm ²)	530				

Operator Control

TX-Level (dB)	0		0		0	0
Focus(mm)	17		70		70	70
PRF (Hz)			4000		3300	3300

a This Index is not relevant to this operating mode.

b This transducer is not intended for transcranial or neonatal cephalic uses.

c This formulation for TIS is less than that for an alternate formulation in this mode.

No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **VF13-5** Operating mode: **B-mode**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.2	(a)	(a)	(a)	(a)		
P _r .3	(MPa)	3.4						
W _o	(mW)		#	#	#	#		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	0.50			#			
d _{eq} (Z _{sp})	(cm)				#			
f _c	(MHz)	7.7	#	#	#	#		
Dim. of Aaprt	X (cm)		#	#	#	#		
	Y (cm)		#	#	#	#		

Other information

PD	(μsec)	0.12				
PRF	(Hz)	4500				
Pr @ PII max	(MPa)	3.3				
d eq@ PII max	(cm)				#	#
Focal Length	FLx (cm)		#	#	#	#
	FLy (cm)		#	#	#	#
I pa.3 @ MI max	(W/cm ²)	830				

Operator Control

TX-Level (dB)	0					
Focus(mm)	12					
PRF (Hz)						

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **VF13-5** Operating mode: **M-mode**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.2	0.91	0.16	---	0.28		
Pr.3	(MPa)	3.4						
W _o	(mW)		47	4.5		4.2		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	0.50				0.50		
d _{eq} (Z _{sp})	(cm)					0.26		
f _c	(MHz)	7.7	7.4	7.4	#	7.2		
Dim. of Aaprt	X (cm)		1.3	1.3	#	1.3		
	Y (cm)		0.25	0.25	#	0.25		

Other information

PD	(μsec)	0.12				
PRF	(Hz)	1000				
Pr @ PII max	(MPa)	3.3				
d eq@ PII max	(cm)				0.26	1.5
Focal Length	FLx (cm)		5.1	5.1	#	5.1
	FLy (cm)		0.60	0.60	#	0.60
I pa.3 @ MI max	(W/cm ²)	830				

Operator Control

TX-Level (dB)	0	0	0		0	0
Focus(mm)	12	51	51		71	51
PRF (Hz)						

a This Index is not relevant to this operating mode.

b This transducer is not intended for transcranial or neonatal cephalic uses.

c This formulation for TIS is less than that for an alternate formulation in this mode.

No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **VF13-5** Operating mode: **Pulsed Doppler**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.2	---	1.1	---	2.5		
Pr.3	(MPa)	3.2						
W _o	(mW)		#	31		31		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	0.30				0.50		
d _{eq} (Z _{sp})	(cm)					0.24		
f _c	(MHz)	7.0	#	6.9	#	6.9		
Dim. of Aaprt	X (cm)		#	1.3	#	1.3		
	Y (cm)		#	0.25	#	0.25		

Other information

PD	(μsec)	0.54				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	3.3				
d eq@ PII max	(cm)				0.24	0.24
Focal Length	FLx (cm)		#	5.1	#	5.1
	FLy (cm)		#	0.60	#	0.60
I pa.3 @ MI max	(W/cm ²)	640				

Operator Control

TX-Level (dB)	0		0		0	0
Focus(mm)	5		51		51	51
PRF (Hz)			1900		1900	1900

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **VF13-5** Operating mode: **Color / Power**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.2	---	1.0	---	2.4		
Pr.3	(MPa)	3.2						
W _o	(mW)		#	30		30		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	0.30				0.50		
d _{eq} (Z _{sp})	(cm)					0.24		
f _c	(MHz)	7.0	#	6.9	#	6.9		
Dim. of Aaprt	X (cm)		#	1.3	#	1.3		
	Y (cm)		#	0.25	#	0.25		

Other information

PD	(μsec)	0.54				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	3.3				
d eq@ PII max	(cm)				0.24	0.24
Focal Length	FLx (cm)		#	5.1	#	5.1
	FLy (cm)		#	0.60	#	0.60
I pa.3 @ MI max	(W/cm ²)	640				

Operator Control

TX-Level (dB)	0		0		0	0
Focus(mm)	5		51		51	51
PRF (Hz)			1900		1900	1900

- a This Index is not relevant to this operating mode.
- b This transducer is not intended for transcranial or neonatal cephalic uses.
- c This formulation for TIS is less than that for an alternate formulation in this mode.
- # No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **VF13-5SP** Operating mode: **B-mode**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.2	(a)	(a)	(a)	(a)		
P _{r,3}	(MPa)	3.4						
W _o	(mW)		#	#	#	#		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	0.50			#			
d _{eq} (Z _{sp})	(cm)				#			
f _c	(MHz)	7.7	#	#	#	#		
Dim. of Aaprt	X (cm)		#	#	#	#		
	Y (cm)		#	#	#	#		

Other information

PD	(μsec)	0.12				
PRF	(Hz)	4500				
Pr @ PII max	(MPa)	3.3				
d eq@ PII max	(cm)				#	#
Focal Length	FLx (cm)		#	#	#	#
	FLy (cm)		#	#	#	#
I pa,3 @ MI max	(W/cm ²)	830				

Operator Control

TX-Level (dB)	0					
Focus(mm)	12					
PRF (Hz)						

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **VF13-5SP** Operating mode: **M-mode**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.2	1.1	0.19	---	0.38		
Pr,3	(MPa)	3.4						
W _o	(mW)		58	5.6	5.6	58		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	0.50			0.50			
d _{eq} (Z _{sp})	(cm)				0.26			
f _c	(MHz)	7.7	7.2	7.2	#	7.2		
Dim. of Aaprt	X (cm)		1.3	1.3	#	1.3		
	Y (cm)		0.25	0.25	#	0.25		

Other information

PD	(μsec)	0.12				
PRF	(Hz)	1000				
Pr @ PII max	(MPa)	3.3				
d eq@ PII max	(cm)				0.26	1.0
Focal Length	FLx (cm)		5.1	5.1	#	5.1
	FLy (cm)		0.60	0.60	#	0.60
I pa,3 @ MI max	(W/cm ²)	830				

Operator Control

TX-Level (dB)	0	0	0		0	0
Focus(mm)	12	51	51		71	51
PRF (Hz)						

- a This Index is not relevant to this operating mode.
- b This transducer is not intended for transcranial or neonatal cephalic uses.
- c This formulation for TIS is less than that for an alternate formulation in this mode.
- # No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **VF13-5SP** Operating mode: **Pulsed Doppler**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.2	---	0.88	---	2.1		
Pr.3	(MPa)	3.2						
W _o	(mW)		#	26		26		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	0.30				0.50		
d _{eq} (Z _{sp})	(cm)					0.22		
f _c	(MHz)	7.0	#	7.0	#	7.0		
Dim. of Aaprt	X (cm)		#	1.3	#	1.3		
	Y (cm)		#	0.25	#	0.25		

Other information

PD	(μsec)	0.54				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	3.3				
d eq@ PII max	(cm)				0.22	0.22
Focal Length	FLx (cm)		#	5.1	#	5.1
	FLy (cm)		#	0.60	#	0.60
I pa.3 @ MI max	(W/cm ²)	640				

Operator Control

TX-Level (dB)	0		0		0	0
Focus(mm)	5		51		51	51
PRF (Hz)			8600		8600	8600

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **VF13-5SP** Operating mode: **Color / Power**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.2	---	1.0	---	2.3		
Pr.3	(MPa)	3.2						
W _o	(mW)		#	28		28		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	0.30				0.50		
d _{eq} (Z _{sp})	(cm)					0.24		
f _c	(MHz)	7.0	#	6.9	#	6.9		
Dim. of Aaprt	X (cm)		#	1.3	#	1.3		
	Y (cm)		#	0.25	#	0.25		

Other information

PD	(μsec)	0.54				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	3.3				
d eq@ PII max	(cm)				0.24	0.24
Focal Length	FLx (cm)		#	5.1	#	5.1
	FLy (cm)		#	0.60	#	0.60
I pa.3 @ MI max	(W/cm ²)	640				

Operator Control

TX-Level (dB)	0		0		0	0
Focus(mm)	5		51		51	51
PRF (Hz)			1900		1900	1900

- a This Index is not relevant to this operating mode.
- b This transducer is not intended for transcranial or neonatal cephalic uses.
- c This formulation for TIS is less than that for an alternate formulation in this mode.
- # No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **5.0L45** Operating mode: **B-mode**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.2	(a)	(a)	(a)	(a)		
P _{r,3}	(MPa)	2.3						
W _o	(mW)		#	#	#	#		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	2.3			#			
d _{eq} (Z _{sp})	(cm)				#			
f _c	(MHz)	3.9	#	#	#	#		
Dim. of Aaprt	X (cm)		#	#	#	#		
	Y (cm)		#	#	#	#		

Other information

PD	(μsec)	0.23				
PRF	(Hz)	4500				
Pr @ PII max	(MPa)	2.9				
d eq@ PII max	(cm)				#	#
Focal Length	FLx (cm)		#	#	#	#
	FLy (cm)		#	#	#	#
I pa,3 @ MI max	(W/cm ²)	510				

Operator Control

TX-Level (dB)	0					
Focus(mm)	35					
PRF (Hz)						

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **5.0L45** Operating mode: **M-mode**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.2	1.1	0.16	---	0.30		
Pr,3	(MPa)	2.3						
W _o	(mW)		110	6.1	3.5	110		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	2.3			2.3			
d _{eq} (Z _{sp})	(cm)				0.14			
f _c	(MHz)	3.9	5.1	5.6	#	3.9		
Dim. of Aaprt	X (cm)		2.0	1.3	#	0.81		
	Y (cm)		0.70	0.70	#	0.70		

Other information

PD	(μsec)	0.23				
PRF	(Hz)	1000				
Pr @ PII max	(MPa)	2.9				
d eq@ PII max	(cm)				0.14	1.3
Focal Length	FLx (cm)		16	6.0	#	10
	FLy (cm)		2.5	2.5	#	2.5
I pa,3 @ MI max	(W/cm ²)	510				

Operator Control

TX-Level (dB)	0	0	0		0	0
Focus(mm)	35	163	60		35	100
PRF (Hz)						

a This Index is not relevant to this operating mode.

b This transducer is not intended for transcranial or neonatal cephalic uses.

c This formulation for TIS is less than that for an alternate formulation in this mode.

No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **5.0L45** Operating mode: **Pulsed Doppler**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.1	---	0.80	---	1.9		
Pr.3	(MPa)	2.0						
W _o	(mW)		#	46		52		
min of [W ₃ (Z ₁), I _{TA.3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	2.2				2.1		
d _{eq} (Z _{sp})	(cm)					0.35		
f _c	(MHz)	3.6	#	3.6	#	3.6		
Dim. of Aaprt	X (cm)		#	1.3	#	1.5		
	Y (cm)		#	0.70	#	0.70		

Other information

PD	(μsec)	1.1				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	2.6				
d _{eq} @ PII max	(cm)				0.35	0.45
Focal Length	FLx (cm)		#	6.0	#	10
	FLy (cm)		#	2.5	#	2.5
I pa.3 @ MI max	(W/cm ²)	320				

Operator Control

TX-Level (dB)	0		0		0	0
Focus(mm)	35		60		71	100
PRF (Hz)			12500		7100	7100

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **5.0L45** Operating mode: **Color / Power**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.1	---	0.72	---	1.6		
Pr.3	(MPa)	2.1						
W _o	(mW)		#	150		21		
min of [W ₃ (Z ₁), I _{TA.3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	2.2				2.2		
d _{eq} (Z _{sp})	(cm)					0.17		
f _c	(MHz)	3.6	#	3.6	#	3.6		
Dim. of Aaprt	X (cm)		#	1.3	#	0.81		
	Y (cm)		#	0.70	#	0.70		

Other information

PD	(μsec)	1.1				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	2.7				
d _{eq} @ PII max	(cm)				0.17	0.97
Focal Length	FLx (cm)		#	6.0	#	10
	FLy (cm)		#	2.5	#	2.5
I pa.3 @ MI max	(W/cm ²)	320				

Operator Control

TX-Level (dB)	0		0		0	0
Focus(mm)	35		60		35	100
PRF (Hz)			3000		8600	3000

- a This Index is not relevant to this operating mode.
- b This transducer is not intended for transcranial or neonatal cephalic uses.
- c This formulation for TIS is less than that for an alternate formulation in this mode.
- # No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **C6-2** Operating mode: **B-mode**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	0.95	(a)	(a)	(a)	(a)		
P _{r,3}	(MPa)	1.7						
W _o	(mW)		#	#	#	#		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	3.7			#			
d _{eq} (Z _{sp})	(cm)				#			
f _c	(MHz)	3.3	#	#	#	#		
Dim. of Aaprt	X (cm)		#	#	#	#		
	Y (cm)		#	#	#	#		

Other information

PD	(μsec)	0.19				
PRF	(Hz)	4500				
Pr @ PII max	(MPa)	2.4				
d eq@ PII max	(cm)				#	#
Focal Length	FLx (cm)		#	#	#	#
	FLy (cm)		#	#	#	#
I pa,3 @ MI max	(W/cm ²)	310				

Operator Control

TX-Level (dB)	0					
Focus(mm)	61					
PRF (Hz)						

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **C6-2** Operating mode: **M-mode**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	0.95	1.4	---	0.32	0.43		
Pr,3	(MPa)	1.7						
W _o	(mW)		400	#	18	400		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				13			
Z ₁	(cm)				2.7			
Z _{bp}	(cm)				2.7			
Z _{sp}	(cm)	3.7			4.2			
d _{eq} (Z _{sp})	(cm)				0.37			
f _c	(MHz)	3.3	3.1	#	3.1	3.3		
Dim. of Aaprt	X (cm)		2.3	#	2.3	1.1		
	Y (cm)		1.1	#	1.1	1.1		

Other information

PD	(μsec)	0.19				
PRF	(Hz)	1000				
Pr @ PII max	(MPa)	2.4				
d eq@ PII max	(cm)				0.36	2.6
Focal Length	FLx (cm)		17	#	17	
	FLy (cm)		6.2	#	6.2	6.2
I pa,3 @ MI max	(W/cm ²)	310				

Operator Control

TX-Level (dB)	0	0		0	0	0
Focus(mm)	61	166		166	73	166
PRF (Hz)						

a This Index is not relevant to this operating mode.

b This transducer is not intended for transcranial or neonatal cephalic uses.

c This formulation for TIS is less than that for an alternate formulation in this mode.

No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **C6-2** Operating mode: **Pulsed Doppler**

Associated Acoustic Parameters

Index Label	MI	TIS		TIB	TIC	
		Scan	Non-scan			
			Aaprt ≤1	Aaprt >1		
Maximum Value	---	0.98	---	0.66	2.1	
Pr.3	(MPa)	1.6				
W _o	(mW)		#	#	64	
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)			16		
Z ₁	(cm)			2.1		
Z _{bp}	(cm)			2.1		
Z _{sp}	(cm)	1.4			5.4	
d _{eq} (Z _{sp})	(cm)				0.29	
f _c	(MHz)	2.6	#	#	2.6	
Dim. of Aaprt	X (cm)		#	#	1.4	
	Y (cm)		#	#	1.1	
					1.1	

Other information

PD	(μsec)	1.5				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	1.5				
d _{eq} @ PII max	(cm)				0.29	0.33
Focal Length	FLx (cm)		#	#	10	10
	FLy (cm)		#	#	6.2	6.2
I pa.3 @ MI max	(W/cm ²)	90				

Operator Control

TX-Level (dB)	0			0	0	0
Focus(mm)	36			102	86	102
PRF (Hz)				8600	12500	12500

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **C6-2** Operating mode: **Color / Power**

Associated Acoustic Parameters

Index Label	MI	TIS		TIB	TIC	
		Scan	Non-scan			
			Aaprt ≤1	Aaprt >1		
Maximum Value	---	1.0	---	0.89	2.5	
Pr.3	(MPa)	1.6				
W _o	(mW)		#	#	76	
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)			22		
Z ₁	(cm)			2.1		
Z _{bp}	(cm)			2.1		
Z _{sp}	(cm)	1.4			5.4	
d _{eq} (Z _{sp})	(cm)				0.27	
f _c	(MHz)	2.6	#	#	2.6	
Dim. of Aaprt	X (cm)		#	#	1.4	
	Y (cm)		#	#	1.1	
					1.1	

Other information

PD	(μsec)	1.4				
PRF	(Hz)	1700				
Pr @ PII max	(MPa)	1.5				
d _{eq} @ PII max	(cm)				0.27	0.31
Focal Length	FLx (cm)		#	#	10	10
	FLy (cm)		#	#	6.2	6.2
I pa.3 @ MI max	(W/cm ²)	90				

Operator Control

TX-Level (dB)	0			0	0	0
Focus(mm)	29			102	86	102
PRF (Hz)				8600	7100	7100

a This Index is not relevant to this operating mode.

b This transducer is not intended for transcranial or neonatal cephalic uses.

c This formulation for TIS is less than that for an alternate formulation in this mode.

No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **CH5-2** Operating mode: **B-mode**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	0.96	(a)	(a)	(a)	(a)		
P _r .3	(MPa)	1.5						
W _o	(mW)		#	#	#	#		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	3.7			#			
d _{eq} (Z _{sp})	(cm)				#			
f _c	(MHz)	2.6	#	#	#	#		
Dim. of Aaprt	X (cm)		#	#	#	#		
	Y (cm)		#	#	#	#		

Other information

PD	(μsec)	0.48				
PRF	(Hz)	4500				
Pr @ PII max	(MPa)	2.0				
d eq@ PII max	(cm)				#	#
Focal Length	FLx (cm)		#	#	#	#
	FLy (cm)		#	#	#	#
I pa.3 @ MI max	(W/cm ²)	170				

Operator Control

TX-Level (dB)	0					
Focus(mm)	51					
PRF (Hz)						

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **CH5-2** Operating mode: **M-mode**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	0.96	1.6	---	0.26	0.61		
Pr.3	(MPa)	1.5						
W _o	(mW)		310	#	17	400		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				20			
Z ₁	(cm)				3.4			
Z _{bp}	(cm)				3.4			
Z _{sp}	(cm)	3.7			4.7			
d _{eq} (Z _{sp})	(cm)				0.31			
f _c	(MHz)	2.6	3.4	#	2.3	2.1		
Dim. of Aaprt	X (cm)		2.1	#	2.9	1.3		
	Y (cm)		1.4	#	1.4	1.1		

Other information

PD	(μsec)	0.48				
PRF	(Hz)	1000				
Pr @ PII max	(MPa)	2.0				
d eq@ PII max	(cm)				0.31	2.5
Focal Length	FLx (cm)		12	#	17	17
	FLy (cm)		5.0	#	5.0	5.0
I pa.3 @ MI max	(W/cm ²)	170				

Operator Control

TX-Level (dB)	0	0		0	0	0
Focus(mm)	51	120		166	73	166
PRF (Hz)						

a This Index is not relevant to this operating mode.

b This transducer is not intended for transcranial or neonatal cephalic uses.

c This formulation for TIS is less than that for an alternate formulation in this mode.

No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **CH5-2** Operating mode: **Pulsed Doppler**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.1	---	---	0.90	2.7	1.6	
Pr.3	(MPa)	1.7						
W _o	(mW)		#	#		87	118	
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				37			
Z ₁	(cm)				2.7			
Z _{bp}	(cm)				2.7			
Z _{sp}	(cm)	1.8				5.2		
d _{eq} (Z _{sp})	(cm)					0.33		
f _c	(MHz)	2.6	#	#	2.5	2.5	2.5	
Dim. of Aaprt	X (cm)		#	#	1.8	1.3	1.8	
	Y (cm)		#	#	1.4	1.4	1.4	

Other information

PD	(μsec)	1.0				
PRF	(Hz)	1400				
Pr @ PII max	(MPa)	1.6				
d eq@ PII max	(cm)				0.33	0.44
Focal Length	FLx (cm)		#	#	10	10
	FLy (cm)		#	#	5.0	5.0
I pa.3 @ MI max	(W/cm ²)	140				

Operator Control

TX-Level (dB)	0			0	0	0
Focus(mm)	24			102	73	102
PRF (Hz)				1600	1600	1600

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **CH5-2** Operating mode: **Color / Power**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.0	---	---	0.88	2.7	1.6	
Pr.3	(MPa)	1.6						
W _o	(mW)		#	#		100	110	
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				33			
Z ₁	(cm)				2.7			
Z _{bp}	(cm)				2.7			
Z _{sp}	(cm)	5.2				6.1		
d _{eq} (Z _{sp})	(cm)					0.33		
f _c	(MHz)	2.5	#	#	2.5	2.2	2.5	
Dim. of Aaprt	X (cm)		#	#	1.8	1.6	1.8	
	Y (cm)		#	#	1.4	1.4	1.4	

Other information

PD	(μsec)	1.0				
PRF	(Hz)	1400				
Pr @ PII max	(MPa)	2.5				
d eq@ PII max	(cm)				0.33	0.34
Focal Length	FLx (cm)		#	#	10	10
	FLy (cm)		#	#	5.0	5.0
I pa.3 @ MI max	(W/cm ²)	240				

Operator Control

TX-Level (dB)	0			0	0	0
Focus(mm)	73			102	86	102
PRF (Hz)				4800	4800	4800

- a This Index is not relevant to this operating mode.
- b This transducer is not intended for transcranial or neonatal cephalic uses.
- c This formulation for TIS is less than that for an alternate formulation in this mode.
- # No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **C6-3 3D/C6F3** Operating mode: **Pulsed Doppler**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	0.72	---	---	0.39	1.0		
Pr.3	(MPa)	1.2						
W _o	(mW)		#	#		23		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				7.9			
Z ₁	(cm)				2.5			
Z _{bp}	(cm)				2.5			
Z _{sp}	(cm)	3.8				3.8		
d _{eq} (Z _{sp})	(cm)					0.25		
f _c	(MHz)	2.8	#	#	3.3	2.8		
Dim. of Aaprt	X (cm)		#	#	2.1	1.2		
	Y (cm)		#	#	1.1	1.1		

Other information

PD	(μsec)	1.3				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	1.6				
d _{eq} @ PII max	(cm)				0.25	0.32
Focal Length	FLx (cm)		#	#	10	10
	FLy (cm)		#	#	6.5	6.5
I pa.3 @ MI max	(W/cm ²)	110				

Operator Control

TX-Level (dB)	0			0	0	0
Focus(mm)	51			102	51	102
PRF (Hz)				15200	7100	13800

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **C6-3 3D/C6F3** Operating mode: **Color / Power**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	0.69	---	---	0.40	1.0		
Pr.3	(MPa)	1.2						
W _o	(mW)		#	#		33		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				8.4			
Z ₁	(cm)				2.5			
Z _{bp}	(cm)				2.5			
Z _{sp}	(cm)	3.8				4.7		
d _{eq} (Z _{sp})	(cm)					0.24		
f _c	(MHz)	2.8	#	#	3.2	3.3		
Dim. of Aaprt	X (cm)		#	#	2.1	1.5		
	Y (cm)		#	#	1.1	1.1		

Other information

PD	(μsec)	1.3				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	1.8				
d _{eq} @ PII max	(cm)				0.24	0.31
Focal Length	FLx (cm)		#	#	10	10
	FLy (cm)		#	#	6.5	6.5
I pa.3 @ MI max	(W/cm ²)	100				

Operator Control

TX-Level (dB)	0			0	0	0
Focus(mm)	51			102	73	102
PRF (Hz)				5800	5800	5800

- a This Index is not relevant to this operating mode.
- b This transducer is not intended for transcranial or neonatal cephalic uses.
- c This formulation for TIS is less than that for an alternate formulation in this mode.
- # No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **5.0C50+** Operating mode: **B-mode**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			A _{aprt} ≤ 1	A _{aprt} > 1				
Maximum Value	---	0.89	(a)	(a)	(a)	(a)		
P _{r.3}	(MPa)	1.8						
W _o	(mW)		#	#	#	#		
min of [W ₃ (Z ₁), I _{TA.3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	4.1			#			
d _{eq} (Z _{sp})	(cm)				#			
f _c	(MHz)	4.0	#	#	#	#		
Dim. of A _{aprt}	X (cm)		#	#	#	#		
	Y (cm)		#	#	#	#		

Other information

PD	(μsec)	0.18				
PRF	(Hz)	4500				
Pr @ PII max	(MPa)	3.0				
d _{eq} @ PII max	(cm)				#	#
Focal Length	FLx (cm)		#	#	#	#
	FLy (cm)		#	#	#	#
I pa.3 @ MI max	(W/cm ²)	380				

Operator Control

TX-Level (dB)	0					
Focus(mm)	51					
PRF (Hz)						

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **5.0C50+** Operating mode: **M-mode**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			A _{aprt} ≤ 1	A _{aprt} > 1				
Maximum Value	---	0.89	1.1	---	0.18	0.26		
P _{r.3}	(MPa)	1.8						
W _o	(mW)		200	#	8	200		
min of [W ₃ (Z ₁), I _{TA.3} (Z ₁)]	(mW)				6.3			
Z ₁	(cm)				2.5			
Z _{bp}	(cm)				2.5			
Z _{sp}	(cm)	4.1			4.1			
d _{eq} (Z _{sp})	(cm)				0.21			
f _c	(MHz)	4.0	3.9	#	3.9	4.0		
Dim. of A _{aprt}	X (cm)		1.9	#	1.9	0.8		
	Y (cm)		1.1	#	1.1	1.1		

Other information

PD	(μsec)	0.18				
PRF	(Hz)	1000				
Pr @ PII max	(MPa)	3.0				
d _{eq} @ PII max	(cm)				0.20	2.2
Focal Length	FLx (cm)		17	#	17	
	FLy (cm)		4.9	#	4.9	4.9
I pa.3 @ MI max	(W/cm ²)	380				

Operator Control

TX-Level (dB)	0	0		0	0	0
Focus(mm)	51	166		166	51	166
PRF (Hz)						

a This Index is not relevant to this operating mode.
b This transducer is not intended for transcranial or neonatal cephalic uses.
c This formulation for TIS is less than that for an alternate formulation in this mode.
No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **5.0C50+** Operating mode: **Pulsed Doppler**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	0.91	---	---	0.79	2.2		
Pr.3	(MPa)	1.7						
W _o	(mW)		#	#		54		
min of [W ₃ (Z ₁), I _{TA.3} (Z ₁)]	(mW)				20			
Z ₁	(cm)				2.4			
Z _{bp}	(cm)				2.4			
Z _{sp}	(cm)	4.4				4.4		
d _{eq} (Z _{sp})	(cm)					0.22		
f _c	(MHz)	3.5	#	#	3.6	3.5		
Dim. of Aaprt	X (cm)		#	#	1.9	1.3		
	Y (cm)		#	#	1.1	1.1		

Other information

PD	(μsec)	1.1				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	2.9				
d eq@ PII max	(cm)				0.22	0.26
Focal Length	FLx (cm)		#	#	10	10
	FLy (cm)		#	#	4.9	4.9
I pa.3 @ MI max	(W/cm ²)	290				

Operator Control

TX-Level (dB)	0			0	0	0
Focus(mm)	61			102	61	102
PRF (Hz)				12500	1500	12500

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **5.0C50+** Operating mode: **Color / Power**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	0.89	---	0.94	---	1.9		
Pr.3	(MPa)	1.7						
W _o	(mW)		#	38		47		
min of [W ₃ (Z ₁), I _{TA.3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	4.0				4.4		
d _{eq} (Z _{sp})	(cm)					0.20		
f _c	(MHz)	3.5	#	5.1	#	3.6		
Dim. of Aaprt	X (cm)		#	0.90	#	1.3		
	Y (cm)		#	1.1	#	1.1		

Other information

PD	(μsec)	1.1				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	2.6				
d eq@ PII max	(cm)				0.20	0.26
Focal Length	FLx (cm)		#	3.6	#	10
	FLy (cm)		#	4.9	#	4.9
I pa.3 @ MI max	(W/cm ²)	320				

Operator Control

TX-Level (dB)	0		0		0	0
Focus(mm)	51		36		61	102
PRF (Hz)			8600		2300	8600

- a This Index is not relevant to this operating mode.
- b This transducer is not intended for transcranial or neonatal cephalic uses.
- c This formulation for TIS is less than that for an alternate formulation in this mode.
- # No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **C8-5** Operating mode: **B-mode**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.2	(a)	(a)	(a)	(a)		
P _{r,3}	(MPa)	2.7						
W _o	(mW)		#	#	#	#		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	1.5			#			
d _{eq} (Z _{sp})	(cm)				#			
f _c	(MHz)	4.7	#	#	#	#		
Dim. of Aaprt	X (cm)		#	#	#	#		
	Y (cm)		#	#	#	#		

Other information

PD	(μsec)	0.25				
PRF	(Hz)	4500				
Pr @ PII max	(MPa)	3.4				
d eq@ PII max	(cm)				#	#
Focal Length	FLx (cm)		#	#	#	#
	FLy (cm)		#	#	#	#
I pa,3 @ MI max	(W/cm ²)	600				

Operator Control

TX-Level (dB)	0					
Focus(mm)	23					
PRF (Hz)						

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **C8-5** Operating mode: **M-mode**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.2	0.84	0.11	---	0.35		
Pr,3	(MPa)	2.7						
W _o	(mW)		48	4.7		3.2		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	1.5				1.6		
d _{eq} (Z _{sp})	(cm)					0.12		
f _c	(MHz)	4.7	4.9	4.9	#	4.7		
Dim. of Aaprt	X (cm)		1.0	1.0	#	0.71		
	Y (cm)		0.50	0.50	#	0.50		

Other information

PD	(μsec)	0.25				
PRF	(Hz)	1000				
Pr @ PII max	(MPa)	3.4				
d eq@ PII max	(cm)				0.13	0.59
Focal Length	FLx (cm)		6.6	6.6	#	4.0
	FLy (cm)		1.9	1.9	#	1.9
I pa,3 @ MI max	(W/cm ²)	600				

Operator Control

TX-Level (dB)	0	0	0		0	0
Focus(mm)	23	66	66		27	40
PRF (Hz)						

- a This Index is not relevant to this operating mode.
- b This transducer is not intended for transcranial or neonatal cephalic uses.
- c This formulation for TIS is less than that for an alternate formulation in this mode.
- # No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **C8-5** Operating mode: **Pulsed Doppler**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.0	---	0.71	---	1.7		
Pr.3	(MPa)	2.3				0.85		
W _o	(mW)		#	28		27		
min of [W ₃ (Z ₁), I _{TA.3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	1.3				1.7		
d _{eq} (Z _{sp})	(cm)					0.19		
f _c	(MHz)	5.2	#	5.2	#	5.2		
Dim. of Aaprt	X (cm)		#	1.0	#	1.0		
	Y (cm)		#	0.50	#	0.50		

Other information

PD	(μsec)	0.72				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	2.9				
d eq@ PII max	(cm)				0.19	0.20
Focal Length	FLx (cm)		#	7.8	#	5.6
	FLy (cm)		#	1.9	#	1.9
I pa.3 @ MI max	(W/cm ²)	480				

Operator Control

TX-Level (dB)	0		0		0	0
Focus(mm)	15		78		47	56
PRF (Hz)			12500		8600	12500

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **C8-5** Operating mode: **Color / Power**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.0	---	0.59	---	1.4		
Pr.3	(MPa)	2.3				0.71		
W _o	(mW)		#	23		18		
min of [W ₃ (Z ₁), I _{TA.3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	1.3				2.3		
d _{eq} (Z _{sp})	(cm)					0.14		
f _c	(MHz)	5.2	#	5.2	#	5.1		
Dim. of Aaprt	X (cm)		#	1.0	#	0.87		
	Y (cm)		#	0.50	#	0.50		

Other information

PD	(μsec)	0.72				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	2.9				
d eq@ PII max	(cm)				0.14	0.15
Focal Length	FLx (cm)		#	7.8	#	4.0
	FLy (cm)		#	1.9	#	1.9
I pa.3 @ MI max	(W/cm ²)	480				

Operator Control

TX-Level (dB)	0		0		0	0
Focus(mm)	15		78		33	40
PRF (Hz)			10400		2300	10400

- a This Index is not relevant to this operating mode.
- b This transducer is not intended for transcranial or neonatal cephalic uses.
- c This formulation for TIS is less than that for an alternate formulation in this mode.
- # No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **EC9-4** Operating mode: **Pulsed Doppler**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.1	---	0.38	---	0.89		
Pr.3	(MPa)	2.5				0.36		
W _o	(mW)		#	12		13		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	1.4				1.8		
d _{eq} (Z _{sp})	(cm)					0.18		
f _c	(MHz)	5.2	#	6.8	#	5.2		
Dim. of Aaprt	X (cm)		#	1.3	#	1.3		
	Y (cm)		#	0.50	#	0.50		

Other information

PD	(μsec)	0.59				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	2.8				
d _{eq} @ PII max	(cm)				0.18	0.18
Focal Length	FLx (cm)		#	7.4	#	7.4
	FLy (cm)		#	2.2	#	2.2
I pa.3 @ MI max	(W/cm ²)	610				

Operator Control

TX-Level (dB)	0		0		0	0
Focus(mm)	17		74		74	74
PRF (Hz)			8600		12500	12500

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **EC9-4** Operating mode: **Color / Power**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.1	---	0.44	---	1.0		
Pr.3	(MPa)	2.5				0.41		
W _o	(mW)		#	13		15		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	1.4				1.8		
d _{eq} (Z _{sp})	(cm)					0.17		
f _c	(MHz)	5.2	#	6.8	#	5.2		
Dim. of Aaprt	X (cm)		#	1.3	#	1.3		
	Y (cm)		#	0.50	#	0.50		

Other information

PD	(μsec)	0.59				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	2.7				
d _{eq} @ PII max	(cm)				0.17	0.17
Focal Length	FLx (cm)		#	7.4	#	7.4
	FLy (cm)		#	2.2	#	2.2
I pa.3 @ MI max	(W/cm ²)	590				

Operator Control

TX-Level (dB)	0		0		0	0
Focus(mm)	17		74		74	74
PRF (Hz)			10400		7100	7100

- a This Index is not relevant to this operating mode.
- b This transducer is not intended for transcranial or neonatal cephalic uses.
- c This formulation for TIS is less than that for an alternate formulation in this mode.
- # No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **EV9-4**Operating mode: **Pulsed Doppler**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	0.98	---	0.71	---	1.4		
Pr.3	(MPa)	2.2				0.67		
W _o	(mW)		#	22		15		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	1.6				2.3		
d _{eq} (Z _{sp})	(cm)					0.15		
f _c	(MHz)	5.2	#	6.8	#	5.1		
Dim. of Aaprt	X (cm)		#	1.2	#	0.68		
	Y (cm)		#	0.60	#	0.60		
						0.60		

Other information

PD	(μsec)	0.74				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	2.6				
d _{eq} @ PII max	(cm)				0.15	0.24
Focal Length	FLx (cm)		#	6.6	#	6.6
	FLy (cm)		#	2.2	#	2.2
I pa.3 @ MI max	(W/cm ²)	480				

Operator Control

TX-Level (dB)	0		0		0	0
Focus(mm)	15		66		33	66
PRF (Hz)			1900		1500	1500

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **EV9-4**Operating mode: **Color / Power**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	0.96	---	0.74	---	1.4		
Pr.3	(MPa)	2.2				0.78		
W _o	(mW)		#	29		29		
min of [W ₃ (Z ₁), I _{TA,3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	1.6				2.3		
d _{eq} (Z _{sp})	(cm)					0.21		
f _c	(MHz)	5.2	#	5.2	#	5.2		
Dim. of Aaprt	X (cm)		#	1.2	#	1.2		
	Y (cm)		#	0.60	#	0.60		
						0.60		

Other information

PD	(μsec)	0.73				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	2.6				
d _{eq} @ PII max	(cm)				0.21	0.21
Focal Length	FLx (cm)		#	6.6	#	6.6
	FLy (cm)		#	2.2	#	2.2
I pa.3 @ MI max	(W/cm ²)	490				

Operator Control

TX-Level (dB)	0		0		0	0
Focus(mm)	15		66		66	66
PRF (Hz)			8600		8600	8600

- a This Index is not relevant to this operating mode.
- b This transducer is not intended for transcranial or neonatal cephalic uses.
- c This formulation for TIS is less than that for an alternate formulation in this mode.
- # No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **BE9-4** Operating mode: **B-mode**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.0	(a)	(a)	(a)	(a)		
P _{r.3}	(MPa)	2.4						
W _o	(mW)		#	#	#	#		
min of [W ₃ (Z ₁), I _{TA.3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	1.4			#			
d _{eq} (Z _{sp})	(cm)				#			
f _c	(MHz)	5.4	#	#	#	#		
Dim. of Aaprt	X (cm)		#	#	#	#		
	Y (cm)		#	#	#	#		

Other information

PD	(μsec)	0.15				
PRF	(Hz)	4500				
Pr @ PII max	(MPa)	2.7				
d eq@ PII max	(cm)				#	#
Focal Length	FLx (cm)		#	#	#	#
	FLy (cm)		#	#	#	#
I pa.3 @ MI max	(W/cm ²)	610				

Operator Control

TX-Level (dB)	0					
Focus(mm)	21					
PRF (Hz)						

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **BE9-4** Operating mode: **M-mode**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.0	0.98	0.11	---	0.19		
Pr.3	(MPa)	2.4						
W _o	(mW)		46	4.4		1.8		
min of [W ₃ (Z ₁), I _{TA.3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	1.4				1.4		
d _{eq} (Z _{sp})	(cm)					0.13		
f _c	(MHz)	5.4	5.3	5.3	#	5.4		
Dim. of Aaprt	X (cm)		1.3	1.3	#	0.52		
	Y (cm)		0.43	0.43	#	0.43		

Other information

PD	(μsec)	0.15				
PRF	(Hz)	1000				
Pr @ PII max	(MPa)	2.7				
d eq@ PII max	(cm)				#	0.14
Focal Length	FLx (cm)		7.4	7.4	#	7.4
	FLy (cm)		1.7	1.7	#	1.7
I pa.3 @ MI max	(W/cm ²)	610				

Operator Control

TX-Level (dB)	0	0	0		0	0
Focus(mm)	21	74	74		21	74
PRF (Hz)						

a This Index is not relevant to this operating mode.

b This transducer is not intended for transcranial or neonatal cephalic uses.

c This formulation for TIS is less than that for an alternate formulation in this mode.

No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **BE9-4** Operating mode: **Color / Power**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	1.2	---	0.47	---	0.85		
Pr.3	(MPa)	2.5						
W _o	(mW)		#	14		7.6		
min of [W ₃ (Z ₁), I _{TIA.3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	1.1				1.9		
d _{eq} (Z _{sp})	(cm)					0.11		
f _c	(MHz)	4.4	#	6.8	#	5.3		
Dim. of Aaprt	X (cm)		#	1.3	#	0.64		
	Y (cm)		#	0.43	#	0.43		
						0.43		

Other information

PD	(μsec)	0.36				
PRF	(Hz)	1300				
Pr @ PII max	(MPa)	2.7				
d _{eq} @ PII max	(cm)				0.11	0.27
Focal Length	FLx (cm)		#	7.4	#	7.4
	FLy (cm)		#	1.7	#	1.7
I pa.3 @ MI max	(W/cm ²)	500				

Operator Control

TX-Level (dB)	0		0		0	0
Focus(mm)	17		74		31	74
PRF (Hz)			10400		10400	10400

Acoustic Output Reporting Table – Track 3, FDA 510(k)

(Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **CW2** Operating mode: **CW Doppler**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	0.08	---	0.46	#	2.9		
Pr.3	(MPa)	0.12						
W _o	(mW)		#	60		60		
min of [W ₃ (Z ₁), I _{TIA.3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	3.1				3.1		
d _{eq} (Z _{sp})	(cm)					0.30		
f _c	(MHz)	2.2	#	2.2	#	2.2		
Dim. of Aaprt	X (cm)		#	1.4	#	1.4		
	Y (cm)		#	1.4	#	1.4		

Other information

PD	(μsec)	-				
PRF	(Hz)	-				
Pr @ PII max	(MPa)	0.15				
d _{eq} @ PII max	(cm)				0.30	0.30
Focal Length	FLx (cm)		#	5.5	#	5.5
	FLy (cm)		#	5.5	#	5.5
I pa.3 @ MI max	(W/cm ²)	0.55				

Operator Control

TX-Level (dB)	0		0		0	0
Focus(mm)						
PRF (Hz)						

- a This Index is not relevant to this operating mode.
- b This transducer is not intended for transcranial or neonatal cephalic uses.
- c This formulation for TIS is less than that for an alternate formulation in this mode.
- # No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

Acoustic Output Reporting Table – Track 3, FDA 510(k)
 (Per transducer/mode that exceeds MI or TI value of 1.0)

Transducer model: **CW5** Operating mode: **CW Doppler**

Associated Acoustic Parameters

Index Label	MI	TIS			TIB	TIC		
		Scan	Non-scan					
			Aaprt ≤1	Aaprt >1				
Maximum Value	---	0.05	---	1.2	#	1.6	1.7	
P _{r.3}	(MPa)	0.10						
W _o	(mW)		#	48		48	48	
min of [W ₃ (Z ₁), I _{TA.3} (Z ₁)]	(mW)				#			
Z ₁	(cm)				#			
Z _{bp}	(cm)				#			
Z _{sp}	(cm)	2.9				2.9		
d _{eq} (Z _{sp})	(cm)					0.24		
f _c	(MHz)	5.1	#	5.1	#	5.1	5.1	
Dim. of Aaprt	X (cm)		#	1.0	#	1.0	1.0	
	Y (cm)		#	1.0	#	1.0	1.0	

Other information

PD	(μsec)	-				
PRF	(Hz)	-				
Pr @ PII max	(MPa)	0.16				
d _{eq} @ PII max	(cm)				0.25	0.25
Focal Length	FLx (cm)		#	4.5	#	4.5
	FLy (cm)		#	4.5	#	4.5
I pa.3 @ MI max	(W/cm ²)	0.39				

Operator Control

TX-Level (dB)	0		0		0	0
Focus(mm)						
PRF (Hz)						

- a This Index is not relevant to this operating mode.
- b This transducer is not intended for transcranial or neonatal cephalic uses.
- c This formulation for TIS is less than that for an alternate formulation in this mode.
- # No data is provided for this operation condition since the maximum index value is not reported for the reason listed.

2 Accessories and Options

Accessories and Options	3
Language-Specific Operating System.....	4
Options.....	4
Transducers, Curved Array	5
Transducers, Linear Array.....	5
Transducers, Phased Array.....	5
Transducers, Continuous Wave.....	6
Transducer Accessories	6
PAL Documentation Devices.....	7
NTSC Documentation Devices	7
Consumables.....	7
Control Panel Overlays	8

Accessories and Options

Note: Not all features and options described in this publication are available to all users. Please check with your Siemens representative to determine the current availability of features and options.

The only Siemens-authorized accessories and options for the G60 S ultrasound imaging system are described in this chapter.

 WARNING: Accessory equipment connected to the analog and digital interfaces must be certified according to the respective EN and IEC standards (e.g., EN 60950 and IEC 60950 for data processing equipment and EN 60601-1 and IEC 60601-1 for medical equipment). Furthermore, all configurations shall comply with the system standard EN 60601-1-1 and IEC 60601-1-1. Anyone who connects additional equipment to the signal input or signal output ports configures a medical system and is therefore responsible that the system complies with the requirements of the system standard EN 60601-1-1 and IEC 60601-1-1. Siemens can only guarantee the performance and safety of the devices listed in the Accessories and Options chapter. If in doubt, consult Siemens service department or your local Siemens representative.

Note: To ensure compliance with the Medical Device Directive, use only the devices listed in this chapter with your ultrasound imaging system.

The ultrasound system includes an icon control panel, CD/DVD combination disk drive, Mitsubishi P93W video printer, DIMAQ-IP integrated workstation, power cord, and one bottle of coupling agent (gel).

Language-Specific Operating System

Includes the system software, a preset data disk, an overlay for the control panel, and system Operating Instructions.

- English Language Operating System
- German Language Operating System
- French Language Operating System
- Spanish Language Operating System
- Italian Language Operating System

Options

- DICOM Connectivity Option
- DICOM Modality Worklist Option (requires the DICOM Connectivity Option)
- DICOM MPPS Option (requires the DICOM Connectivity Option and DICOM Modality Worklist Option)
- DICOM Structured Reporting for Obstetrics/Gynecology
- Stress Echo Option (requires the Cardiac Imaging Option and the P4-2 transducer)
- Dual-pedal footswitch
- SieScape™ Panoramic Imaging Option
- *fourSight*™ 4D Imaging Option
- Axius™ Automated OB Calipers Option
- Additional Array Port Option
- Cardiac Imaging Option (includes ECG, steerable CW, and Cardiac measurement and report capability)
- TGO™ Tissue Grayscale Optimization Option

Transducers, Curved Array

Note: For SONOVISTA systems only:

The 3.5C55S transducer is the equivalent of the C6-2 transducer.
The 3D-ABD transducer is the equivalent of the C6F3 transducer.
The 6.5EV13 transducer is the equivalent of the EV9-4 transducer.

- BE9-4, Endorectal, Endocavity (requires the Additional Array Port Option)
- EV9-4, Endovaginal
- EC9-4, Endocavity
- C6-2
- CH5-2
- 5.0C50+
- C8-5
- C6-3 3D/C6F3 *fourSight™* 4D transducer (requires the Additional Array Port Option)

Transducers, Linear Array

- VF13-5
- L10-5
- 7.5L70
- 5.0L45
- VF13-5SP

Transducers, Phased Array

- P4-2
- P9-4

Transducers, Continuous Wave

(Requires the Cardiac Imaging Option)

(Not available for SONOVISTA systems)

- CW2
- CW5

Transducer Accessories

Note: For SONOVISTA systems only:

The 3.5C55S transducer is the equivalent of the C6-2 transducer.

The 3D-ABD transducer is the equivalent of the C6F3 transducer.

The 6.5EV13 transducer is the equivalent of the EV9-4 transducer.

- Transducer Sheaths:
 - Non-sterile, EV9-4, EC9-4, BE9-4
 - Sterile, EV9-4, EC9-4, BE9-4
- Biopsy Protective Sleeves, C8-5, C6-2, CH5-2, 5.0C50+, L10-5, 7.5L70, 5.0L45
- Standoff Gel Pad, Disposable, 7.5L70, L10-5, 5.0L45
- Universal Needle Guide Kit, Stainless Steel, C6-2, 5.0C50+, L10-5, 7.5L70, 5.0L45
- CH4-1 Needle Guide Bracket Kit, CH5-2
- 6.5EV13 Needle Guide Bracket Kit, EV9-4
- Needle Guide Bracket Kit, Disposable, BE9-4
- Needle Guide Bracket Kit, Stainless Steel, BE9-4
- Needle Guide Bracket Kit, Disposable, EC9-4
- Needle Guide Bracket Kit, Stainless Steel, EC9-4
- CW Transducer Kit

PAL Documentation Devices

- B&W Video Printer, P93W, Mitsubishi (standard equipment)
- Color Printer CP900 PAL, Mitsubishi
- VCR, S-VHS, MD3000 PAL, Mitsubishi
- DVR, BD-201ME, JVC

NTSC Documentation Devices

- B&W Video Printer, P93W, Mitsubishi (standard equipment)
- Color Printer CP900 NTSC, Mitsubishi
- VCR, S-VHS, MD3000 NTSC, Mitsubishi
- DVR, BD-201ME, JVC

Consumables

- Contact Scan Gel, 5 liter
- Contact Scan Gel, 0.25 liter
- Contact Scan Gel, Sterile Packets
- Paper, Black and White Video Printer, P93W
- Cleaning Sheets, Black and White Video Printer
- Color Paper Refill, Large Format, CP-900
- Color Paper Refill, Standard Format, CP-900
- CD-R 650MB (10)
- Disposable ECG Electrodes

Control Panel Overlays

The control panel on the ultrasound imaging system has overlays available in English, German, French, Spanish, and Italian. The language format for each labeled control or key is shown in the following table:

English	German	French	Spanish	Italian
Volume	Lautstärke	Volume	Volumen	Volume
Select-L	Auswahl-L	Sélect.-G	Selecc-I	Sel-S
Select-R	Auswahl-R	Sélect.-D	Selecc-D	Sel-D
LCD control	LCD Einstellung	Contrôle Affichage	Control LCD	LCD
Page	Seite	Page	Página	Pagina
Function Select	Funktion Auswahl	Sélect. Fonction	Selecc función	Sel-Funzioni
New Patient	Neuer Patient	Nouveau Patient	Paciente nuevo	Nuovo Paziente
Patient Data	Patienten Daten	ID Patient	ID paciente	Dati Paziente
Transducer	Schallkopf	Sonde	Transductor	Trasduttore
Video I/O	Video I/O	I/O Vidéo	Video I/O	I/O Video
Pictogram	Piktogramm	Pictogramme	Pictogramma	Pittogramma
Text	Text Eingabe	Texte	Texto	Testo
Exam	Untersuchung	Examen	Examen	Esame
Crescendo	Crescendo	Crescendo	Crescendo	Crescendo
4B	4B	4B	4B	4B
L/R	R/Я	R/Я	R/Я	R/Я
Rotate	Bilddrehung	Rotation	Girar	Ruota
Split	B+B	B+B	B+B	B+B
Dual>Select	2B/Auswahl	2B/Sélect.	2B/Alternar	2B/Selez
Invert	Umkehr	Inverser	Invertir	Inverti
Triplex	Triplex	Triple	Triplex	Triplex
PRF	PRF	PRF	PRF	PRF
Gate	Gate	Porte	Muestra	Vol Camp
Baseline	Null-Linie	Ligne de base	Línea base	Linea Base
Steer	Winkel	Diriger	Guia	Manovra
MultiHertz	MultiHertz	MultiHertz	MultiHertz	MultiHertz
Focus	Fokus	Focalisation	Foco	Fuoco
Angle	Winkel-korrektur	Angle	Ángulo	Angolo
Depth/Zoom	Bildfeld/Zoom	Profondeur/Zoom	Profundidad/Zoom	Profondità/Zoom
CW	CW	CW	CW	CW

English	German	French	Spanish	Italian
D	D	D	D	D
Power	Power	Power	Power	Power
C	C	C	C	C
2D	B	2D	2D	2D
3D/4D	3D/4D	3D/4D	3D/4D	3D/4D
M	M	M	M	M
Cine	Cine	Ciné	Cine	Cine
Digital Store	Digital Speichern	Stocker numér.	Almacén digital	Memoriz Digitale
Print/ Store 2	Drucken/ Speichern 2	Imprimer/ Stocker 2	Impresora/ Almacén 2	Stampa/ Memoriz 2
Print/ Store 1	Drucken/ Speichern 1	Imprimer/ Stocker 1	Impresora/ Almacén 1	Stampa/ Memoriz 1
Freeze	Freeze	Geler	Inmovilizar	Blocca
Review	Bildspeicher	Revoir	Revisión	Review
VCR	Video Aufnahme	Vidéo	Video	Videoreg
Update	Update	Actualiser	Actualizar	Aggiorna
Esc	Esc	Esc	Esc	Esc
Set	Set	Valider	Elegir	Imposta
Caliper	Messung	Mesure	Medida	Misura
Select	Auswahl	Sélect.	Selecc	Selez
New Patient	Neuer Patient	Nouveau Patient	Paciente nuevo	Nuovo Paziente
Report	Protokoll	Rapport	Reporte	Report
Patient Data	Patienten Daten	ID Patient	ID paciente	Dati Paziente
Preset Menu	Preset Menü	Menu	Menú del sistema	Menu Sistema
Exam	Unter-suchung	Examen	Examen	Esame
Annot	Text Liste	Liste Texte	Anot	Annot
QuickSet	QuickSet	Auto Programme	Programa Rápido	Config Rapida
Home Set	Start Position	Etablier Home	Posición Inicial	Inizio Annot
Delete Line	Zeile Löschen	Effacer Ligne	Borrar Linea	Elimina Riga
Delete Text	Text Löschen	Effacer Texte	Borrar Texto	Elimina Testo
Text	Text Eingabe	Texte	Texto	Testo
Biopsy	Punktion	Biopsie	Biopsia	Biopsia

3 System Presets

Setting General Preferences	5
Using the System Presets	5
Navigating the Menu	6
Making Screen Selections	7
Preset Main Menu.....	8
Preset Main Menu: General.....	10
Preset Main Menu: Day/Time.....	12
Preset Main Menu: Patient ID	13
Preset Main Menu: Imaging	13
Preset Main Menu: Peripheral.....	14
Preset Main Menu: Customize Keys	15
Preset Main Menu: Boot Up.....	16
Preset Main Menu: Storage.....	16
Preset Main Menu: Display	17
Preset Main Menu: Default Settings	19
Selecting Pictograms.....	21
Selecting Text Annotation	23
Preset Main Menu: QuickSet Parameters	25
Preset Main Menu: User-Defined Exam List	26
Preset Main Menu: M & R	27
Preset Main Menu: M&R: Measurement and Report Preset:	
Measurement Method	29
Preset Main Menu: M&R: Measurement and Report Preset:	
Customize General Measurement LCD.....	31
Preset Main Menu: M&R: Measurement and Report Preset:	
Measurement Order.....	32
Preset Main Menu: M&R: Measurement and Report Preset:	
Display Item	34
Preset Main Menu: M&R: Measurement and Report Preset:	
User-Defined Label.....	35
Preset Main Menu: M&R: Measurement and Report Preset:	
User-Defined Formula	36
Preset Main Menu: M&R: Measurement and Report Preset:	
Comments Library for Report.....	38

Preset Main Menu: Installation From Key Disk.....	39
Preset Main Menu: Authorization	39
Preset Main Menu: Clip Capture	41
Preset Main Menu: SieScape	41
Preset Main Menu: DIMAQ Utility.....	42
Preset Main Menu: Stress Echo.....	42
Preset Main Menu: DICOMs.....	43
Preset Main Menu: Archive	43
Preset Main Menu: Networking	43
Preset Main Menu: fourSight 4D.....	44
Preset Main Menu: Axius OB.....	45
Preset Main Menu: Service	46
Preset Main Menu: Preset/QuickSet Utility.....	46
Preset Main Menu: System/Language	47
Customizing OB and Early OB Measurements, Calculations, and Reports.....	48
Preset Main Menu: M&R: Measurement and Report Preset: Item & Reference Selection, Standard OB	48
2D/M-Mode, Doppler, and Ratio Tabs	48
EFW/USMA Tab	50
Preset Main Menu: M&R: Measurement and Report Preset: Item & Reference Selection, Early OB.....	50
Preset Main Menu: M&R: Measurement and Report Preset: Display Configuration, Standard OB/Early OB	51
Preset Main Menu: M&R: Measurement and Report Preset: Standard OB/Early OB Customize Growth Analysis Graphs	52
Preset Main Menu: M&R: Measurement and Report Preset: Standard OB/Early OB User-Defined Formulas	53
Preset Main Menu: M&R: Measurement and Report Preset: Standard OB/Early OB User-Defined Tables.....	56
Preset Main Menu: M&R: Measurement and Report Preset: Measurement Label (OB, Early OB)	59

Customizing Vascular Measurements, Calculations, and Reports	60
Preset Main Menu: M&R: Measurement and Report Preset:	
Display Item (Cerebrovascular).....	60
Preset Main Menu: M&R: Measurement and Report Preset:	
Display Item (Peripheral Vascular)	62
Preset Main Menu: M&R: Measurement and Report Preset:	
Display Item (Venous).....	63
Customizing Gynecology Measurements, Calculations, and Reports.....	65
Preset Main Menu: M&R: Measurement and Report Preset:	
Display Item (Gynecology).....	65
Customizing Cardiac Measurements, Calculations, and Reports	66
Preset Main Menu: M&R: Measurement and Report Preset:	
Measurement Order (Cardiac).....	66
Preset Main Menu: M&R: Measurement and Report Preset:	
Display Item (Cardiac).....	68
Customizing Emergency Medicine Measurements, Calculations, and Reports.....	69
Preset Main Menu: M&R: Measurement and Report Preset:	
Calculation Item (EM)	69

Setting General Preferences

When the ultrasound system is installed at your site, all system settings are factory-defined. You can use the options and settings available in the **system presets** to set up the ultrasound system with your preferences for imaging. System presets define the configuration of the system software whenever you power on the system.

System Reference

Documentation and
Storage Ch 4

Using the System Presets

You can use the system presets at any time to change the factory (default) settings or modify your own presets and QuickSets. When you exit the menu by pressing the **OSave** LCD selection or by selecting the **Save** button on the menu, the system retains your selections and definitions.

[2] Instructions for Use

QuickSets Ch A1

Note: After powering on the system, you must wait until the system completes the series of self-diagnostic and calibration tests before making any changes to the system presets. These tests last a few minutes, after which the system presets are ready for use.

It is advisable to back up your system presets and QuickSets to prevent accidental loss of your information. Presets saved on a disk also expedite the installation of a new system software release.

To access the system presets:

- Press the **F4** key on the keyboard.

The system displays the **Preset Main Menu** screen with the most recently activated menu item selected. If no menu item has been activated since the system powered on, the system automatically selects (highlights) the **General** menu item on the left of the screen and displays its selections and options on the right of the screen.

Navigating the Menu

The system organizes the system presets by menu items, selections, and options. You cannot select the heading for menu items (e.g., System Configuration). You can select an indented menu item listed below the heading (e.g., General).

To use the Preset Main Menu:

1. After accessing the menu, roll the trackball up and down the left side of the screen to highlight a menu item.
2. Activate a highlighted menu item by pressing the **SET** key.
The system displays either a new set of selections and options on the right of the **Preset Main Menu** screen or a full new screen.
3. Roll the trackball to an option or selection and then press the **SET** key.

Menu items marked with this symbol display a new screen.

To exit the Preset Main Menu:

- Save your changes by selecting the **Save** button on the screen or by pressing the **OSave** LCD selection.
The system saves any new options and selections and returns to imaging.
- Discard your changes by selecting the **Cancel** button on the screen or by pressing the **OCancel** LCD selection or the **ESC** or **F4** key on the keyboard.
The system displays a dialog box if changes were made.
 - To discard your changes and redisplay the image screen, select the **OK** button.
 - To retain your changes and stay in the current screen, select the **Cancel** button.

Making Screen Selections

Use the following techniques to make selections in the right side of the **Preset Main Menu** or in a newly-accessed screen. You can typically roll the trackball to position the trackball pointer on a menu item or setting and then press the **SET** key to complete the selection.

- Drop-down menus – To open the menu, roll the trackball to position the pointer on the arrow and then press the **SET** key. To make a selection, roll the trackball to highlight the selection and then press the **SET** key.
- Spin buttons – To set a higher or lower numeric value, roll the trackball to position the pointer on the up or down arrow and press the **SET** key until the desired value displays.
- Check boxes – The option is selected when a checkmark displays inside the box and de-selected when the box is clear. To select or clear the check box, roll the trackball to position the pointer in the box and then press the **SET** key.
- Buttons – To select a labeled button, roll the trackball to position the pointer on the button or the label and then press the **SET** key. In some places, only one button can be selected at a time.
- Text entry – Roll the trackball to position the cursor in the field and then press the **SET** key. Use the keyboard to enter text. When finished, use the **TAB** key to move to another field or roll the trackball to reposition the cursor and then press the **SET** key.

Drop-down menu.

Spin button.

Check box.

Option button.

Text entry.

Preset Main Menu

The left side of the **Preset Main Menu** screen lists the following menu items:

Menu Item	Allows you to...
System Configuration	(Heading [title] for a group of menu items.)
General	Enter the hospital name, establish date/time settings and format, designate height and weight formats, select the system beep response and trackball speed, invert the DGC curve, designate display character and arrow size, assign transmit power level units, and establish automatic responses when the system is unfrozen.
Day/Time	▷▷ Access a new screen. Set the date and time, select the time zone, and specify a time server, if used.
Patient ID	Select automatic storage of patient information to disk.
Imaging	Designate maximum image brightness, video invert, background gray level, CINE auto recall delay, and CINE catalog layout.
Peripheral	Assign connections for the RS-232C (Serial) ports. Designate the video source and hard copy video polarity.
Customize Keys	Assign functions for the VCR , PRINT/STORE 1 , PRINT/STORE 2 , DIGITAL STORE keys and the optional footswitch Pedal 2.
Boot Up	Select a transducer port to be active at boot up. Select an exam type or QuickSet to activate automatically at system boot up.
Storage	Designate image and patient report storage formats, auto recall delay, and storage destination.
Display	Activate the on-screen status display, DGC curve, time markers, and icons. Control the screen saver, playback code, character brightness, and panel LED brightness.
Exam Configuration	(Heading [title] for a group of menu items.)
Default Settings	▷▷ Access a new screen. Designate default operating features for each exam type. Select pictograms and text labels for each exam.
QuickSet Parameters	▷▷ Access a new screen if QuickSets have been defined. Edit certain parameters for QuickSets.
User-Defined Exam List ▷▷	Access a new screen. Enable or disable access to each exam type.
M&R Configuration	(Heading [title] for a group of menu items.)
M & R	Select caliper (measurement function) conventions and establish measurement and report presets for each type of exam.

Menu Item	Allows you to...
Options	(Heading [title] for a group of menu items.)
Installation From Key Disk	List installed option information, Install, Uninstall, or Update an option installed with a key disk.
Authorization	» Access a new screen. Manage accounts and passwords for access to DIMAQ study screens.
Clip Capture	» Access a new screen. Designate clip capture parameters: capture type, clip length, R-wave delay, and JPEG compression.
SieScape	Determine the scale of the SieScape image when frozen and select the display of a ruler along the SieScape image.
DIMAQ Utility	» Access a new screen. Access password-protected disk utility procedures.
Archive	» Access a new screen. Configure archive deletion and save options.
Stress Echo	» Access a new screen. Displays the Maintenance dialog box, from which allows you to configure options for the optional Stress Echo feature.
DICOM	» Access a new screen. Displays the Active Setup screen, from which you can access screens for Host Setup, DICOM Storage Server Setup, DICOM Worklist Server Setup, and DICOM Printer Setup.
Networking	» Access a new screen. Configure the host and export host.
Axius OB	Activate automatic measurements for the Early OB and Standard OB exams.
fourSight 4D	» Define the sweep angle, sweep speed, and VOI type for the 4D transducers.
Serviceability	(Heading [title] for a group of menu items.)
Preset/QuickSet Utility	» Access a new screen. Format, update, import or export Preset and Quickset files.
Service	» Access a new screen. Access password-protected service procedures.
System / Language	Upgrade the system software or change the operating language.

Preset Main Menu: General

The General item on the **Preset Main Menu** provides the following selections:

Selection	Option(s)	Allows you to...
Hospital Name	Text entry	Enter the name of your hospital or clinic using up to 60 characters. The first 20 characters display in a report. You can modify this entry at any time.
Date Format	Month/Day/Year Day/Month/Year Year/Month/Day	Select the format for the date. The date displays on the image screen, in the Patient Data form, in patient reports, and in the Disk Utility window.
Height and Weight Format	Feet/Pounds Centimeters/Kilograms	Select the format for the display of the patient's height and weight used in the Patient Data entry form.
Beep	On, Off	Select this check box to enable the beep to sound when a key is pressed.
Beep Volume	1 through 9	Set the volume of the beep. Option 1 is the quietest, Option 9 is the loudest. The Beep check box must be selected for the Beep Volume to be effective.
DGC Invert with Image Invert	On, Off	Select this check box to invert the DGC graphic on the image screen along with the image when you press the ROTATE key.
Tx Power Display Format	dB %	Determine the format of the transmit power display on the image screen. dB displays the transmit power in decibels. % displays the transmit power as a percentage.
Trackball Travel Speed	Low Medium High	Select the responsiveness of the system to trackball movement. Low repositions an object a short distance with minimal trackball movement. Medium repositions an object a moderate distance with minimal trackball movement. High repositions an object a long distance with minimal trackball movement.

Selection	Option(s)	Allows you to...
Text Character Size	8 through 18	Select the size of the font for displaying text annotation.
Arrow Size	8 through 18	Select the size of an arrow entered on the screen.
Delete Text on Unfreeze	On, Off	Select this check box to erase on-screen text annotation after an image is unfrozen.
Default Annotation Type	Anatomy Position	Select the type of text displayed when you press the TEXT key. Anatomy displays anatomy annotations. Position displays body position annotations.
Delete Pictogram on Unfreeze	On, Off	Select this check box to erase an on-screen pictogram after an image is unfrozen.

Preset Main Menu: Day/Time

Note: If a study is open, close the study before changing the date and time.

Note: This menu item accesses a standard Windows operating system date and time properties window.

The Day/Time item on the **Preset Main Menu** provides the following selections:

Selection	Option(s)	Allows you to...
Date & Time	--	(Heading [title] of tab.)
Date	--	(Heading (title) of selections.)
(Drop-down menu)	(Months)	Enter the current month.
(List)	(Years)	Enter the current year.
(Calendar tool)	(Dates)	Select the date from the calendar.
Time	--	(Heading (title) of selections.)
(List)	(24-hour clock)	Enter the current time.
Time Zone	--	(Heading [title] of tab.)
(Drop-down menu)	(GMT times zones)	Select the time zone relative to Greenwich Mean Time (GMT).
Automatically Adjust for Daylight Savings Time*	On, Off	Quickly adjust the system clock to compensate for Daylight Saving Time for applicable regions.
Internet Time	--	(Heading [title] of tab.)
Automatically synchronize with an Internet time server	On, Off	Select this check box to user the time server on the internet to update the time on the ultrasound system.
Server	(Text entry)	Indicate the name of the internet time server.
Update Now	(Button)	Immediately synchronize the ultrasound system to the Internet time server.
OK	(Button)	Applies the change(s)and closes the window.
Cancel	(Button)	Rejects the change(s)and closes the window.
Apply	(Button)	Applies the change and leaves the window open.

Preset Main Menu: Patient ID

The **Patient ID** item on the **Preset Main Menu** provides the following selections:

Selection	Option(s)	Allows you to...
AutoStore New Patient Form	On, Off	Automatically store an image of the completed New Patient Form.
Hide Patient Demographic	On, Off	Display or hide the patient demographic.

Preset Main Menu: Imaging

The **Imaging** item on the **Preset Main Menu** provides the following selections:

Selection	Option(s)	Allows you to...
Max Brightness (BW)	180 – 255	Select a brightness level for the image display. A higher number designates a brighter image.
Video Invert	Positive Negative	Select the polarity of the video display for the main image screen. Text is always white against black or black against white. Positive displays a white image area against a black background. Negative displays a black image area against a white background.
Update Frames in 2D/M	1sec, 2sec, 3sec	Reserved for future use.

Preset Main Menu: Peripheral

The **Peripheral** item in the **Preset Main Menu** provides the following selections:

Selection	Option(s)	Allows you to...
External RS-232C Port	Off VCR Laser Printer PC2 DVD	Assign functionality to the serial port on the input/output panel of the ultrasound system.
USB Printer	On, Off	Enable Patient Report printing through the USB port.
Video Format	NTSC PAL	Choose the video output format.
Video Input Source	Composite S-VHS	Assign video input functionality. Composite : Black and white video source. S-VHS : Color video source.
Hard Copy Video Polarity (Image)	Positive Negative	Select the polarity of the video output for an image. Positive displays a white image against a black background. Negative displays a black image against a white background.
Hard Copy Video Polarity (Report)	Positive Negative	Select the polarity of the video output for a report. Positive displays a white report against a black background. Negative displays a black report against a white background.

Preset Main Menu: Customize Keys

The **Customize Keys** item on the **Preset Main Menu** provides the following selections:

Selection	Option(s)	Allows you to...
VCR/DVD key	Record/Pause Record/Stop	Assign a toggle function to the VCR key on the control panel. The first selection alternates Record and Pause when the key is pressed. The second selection alternates Record and Stop when the key is pressed.
Print/Store 1 key	B/W Print Color Print Disk Store Clip Capture DICOM B/W Printer DICOM Color Printer D. Store & B/W Pr. D. Store & C. Pr. TGO	Assign a function to the PRINT/STORE 1 key.
Print/Store 2 key	B/W Print Color Print Disk Store Clip Capture DICOM B/W Printer DICOM Color Printer D. Store & B/W Pr. D. Store & C. Pr. TGO	Assign a function to the PRINT/STORE 2 key.
Digital Store key	Disk Store Clip Capture	Assign a function to the DIGITAL STORE key.
Pedal 2 function	B/W Print Color Print Disk Store Clip Capture	Assign foot pedal 2 functionality to the optional footswitch.
Zoom/Depth Direction	Clockwise Counterclockwise	Assign the direction of rotation to the DEPTH/ZOOM control for increasing the depth or increasing the magnification factor.

Preset Main Menu: Boot Up

The **Boot Up** item in the Preset Main Menu provides the following selections:

Selection	Option(s)	Allows you to...
Transducer Port Active On Boot Up	S1 LC3 LC2 LC1	Select the mechanical sector transducer port or a linear or curved array transducer port to be active when you power on the system.
Boot Up Exam & QuickSet		The Boot Up Exam & QuickSet List screen displays. Select a specific exam type or QuickSet to be active when you power on the system.

Preset Main Menu: Storage

The **Storage** item in the Preset Main Menu provides the following selections:

Selection	Option(s)	Allows you to...
Image with Caliper	Yes, No	Select the format for storing the image and patient data to the disk drive. Select whether to store caliper (measurement) information with the image.

Preset Main Menu: Display

The **Display** item in the **Preset Main Menu** provides the following selections:

Selection	Option(s)	Allows you to...
System Status Display	On, Off	Select this check box to display the parameters in the Image Parameter area at the bottom of the image screen.
Screen Saver	On, Off	Select this check box to activate or uncheck to deactivate the screen saver.
Screen Saver Type	Black SONOLINE	Select either a black background or a SONOLINE logo background.
Screen Saver Time	5min 10min 15min 20min	Select the time delay before the system activates the screen saver.
DGC Curve Display	Off Always On Time Out	Select when the DGC graphic displays on the image screen. Off prevents the DGC from displaying on the image screen. Always On displays the DGC continuously on the image screen. Time Out removes the DGC from the screen three seconds after you adjust the curve. When you adjust the DGC controls again, the curve reappears on-screen.
Time Marker Display	On, Off	Select this check box to display a time marker on the image screen.
Scan Plane Icon	On, Off	Reserved for future use.

Selection	Option(s)	Allows you to...
Playback Code	Off On Auto	Select when the encoded image displays on the screen. The encoded image information is used to make measurements on the images displayed from a video tape. Off prevents the encoded image information from displaying on the image screen. On displays the encoded imaging information continuously on the image screen. Auto displays the encoded imaging information on the image screen only when the system is recording the image on a connected VCR.
Character Brightness	1, 2, 3, 4, 5, 6, 7	Select display character brightness.
Panel LED Brightness	Dark Normal Light	Select a brightness setting for the Control and LED Panels.
Pointer	On, Off	Select to display the cursor as an arrow on the image screen.

Preset Main Menu: Default Settings

The system displays a new screen when you select **Default Settings**, presenting the choices described below:

- To reaccess the Preset Main Menu screen and retain new screen selections, roll the trackball to the **Save** button and then press the **SET** key.
- To reaccess the Preset Main Menu screen and discard new screen selections, roll the trackball to the **Cancel** button and then press the **SET** key.
- To automatically change all selections on this screen to factory defaults for the selected exam, roll the trackball to the **Default** button and then press the **SET** key. Repeat this process as required to restore defaults for other exam types.

Selection	Option(s)	Allows you to...
Exam	Abd OB Early OB Breast Thyroid Testicle GYN C-Vas P-Vas Venous Ortho Cardiac Urology Cranial Surgical EM OB(J)¹	Select an Exam for which you want to specify default settings to automatically become active when the exam is activated.
Pictogram List		Select pictograms to display as LCD selections when the PICTOGRAM key is pressed during the selected Exam. See page 3-21 for more information.
Text Annotation		Select labels for anatomy and position to display as LCD selections for the Exam. See page 3-23 for more information.
ECG	On, Off	Select this check box to display the ECG trace when the selected exam is activated.

¹ For systems sold in Japan only.

Selection	Option(s)	Allows you to...
Biopsy	On, Off	Select this check box to activate the Biopsy function automatically when the selected exam is activated.
Automatic Freeze Response	Cine Caliper Text Picto None	Select the system response when the FREEZE key is pressed. Cine activates the CINE function. Caliper activates the measurement function. Text activates the annotation function. Picto activates the Pictogram function. None activates the freeze function only.
Bypass M/D Cursor Display	On, Off	Select the system response when the M or D control is pressed. Select this check box to immediately display M-mode or Doppler. De-select the check box to initially display an M-mode or Doppler cursor in the 2D-mode image; the M or D control must then be pressed a second time for M-mode or Doppler to display.
Triplex Mode	On, Off	Select this check box to simultaneously update 2D-mode with color and Doppler.
2D/M Display Format	40/60 1/2-1/2 1/3-2/3	Specify the image screen layout when two imaging modes are active. 40/60 presents 2D-mode in the left 40% of the screen and either the M-mode sweep or the Doppler spectrum in the right 60% of the screen. 1/2-1/2 presents 2D-mode on the right side of the upper 1/2, with M-mode or Doppler in the lower 1/2. 1/3-2/3 presents 2D-mode on the right side of the upper 1/3, with M-mode or Doppler in the lower 2/3.
Doppler Search Mode	On, Off	Select this check box to activate Doppler Search Mode by pressing the D control, and audibly interrogate vessels with Doppler in 2D-mode before displaying the Doppler spectrum.
Linear Steer Color Invert	On, Off	Select this check box to automatically invert the color velocity scale when you steer the ROI.
Auto Invert of Color and Spectrum	On, Off	Select this check box to determine whether, in 2D-mode with Color/Doppler, the Doppler spectrum and the color bar invert together when the INVERT key is pressed.
2D-Mode Steer with Cursor	On, Off	Select this check box to allow the 2D-mode display to be steered by moving the Doppler cursor.

Selecting Pictograms

To begin pictogram selection, roll the trackball to the **Pictogram List** button on the **Default Settings** screen and then press the **SET** key. The system displays the **Customize Pictogram List** screen, with the full selection of available pictograms on the left. On the right, the system displays the pictogram LCD selections that will appear for this exam when the **PICTOGRAM** key is pressed.

To add pictogram selections:

1. Locate the required pictogram in the selection of available pictograms on the left. To scroll through the selection, roll the trackball to the up or down arrow on the scroll bar and then press the **SET** key.
2. Roll the trackball to the displayed pictogram on the left and then press the **SET** key.

The system displays a box around the selected pictogram.

3. Roll the trackball to the **Add** button and then press the **SET** key.

The pictogram is copied to the next available cell in the LCD Preview on the right. You can copy the same pictogram repeatedly.

To delete pictogram selections:

1. Access the required page of pictogram LCD selections on the right. Roll the trackball to the **Next** button and then press the **SET** key to access a higher page number. Roll the trackball to the **Prev** button and then press the **SET** key to access a lower page number.
2. Roll the trackball to the displayed pictogram on the right and then press the **SET** key.

The system displays a box around the selected pictogram.

3. Roll the trackball to the **Delete** button and then press the **SET** key.

The system deletes the pictogram from the LCD Preview on the right.

To rearrange pictogram selections:

1. Roll the trackball to a pictogram in the LCD Preview on the right and then press the **SET** key.
The system displays a box around the selected pictogram.
2. Roll the trackball to the **Up** or **Down** button and then press the **SET** key.
The selected pictogram moves up or down on the LCD Preview page.
3. Continue pressing the **SET** key with the trackball position on the **Up** or **Down** button to step the pictogram up or down on the page.
4. To move the pictogram to a higher page number, use only the **Up** button. To move the pictogram to a lower page number, use only the **Down** button.

To reset the pictograms to factory defaults:

- Roll the trackball to the **Default** button and then press the **SET** key.
The system displays a message asking you to confirm the action.
To discard all pictogram customization for this exam and display the factory default selections, roll the trackball to the **OK** button and then press the **SET** key. To retain your selections, roll the trackball to the **Cancel** button and then press the **SET** key.

To exit the Customize Pictogram List screen:

1. To save changes and immediately reaccess the Default Settings screen, roll the trackball to the **OK** button and then press the **SET** key.
2. You can also exit the Customize Pictogram List screen by pressing the **ESC** key on the control panel or by rolling the trackball to the **Cancel** button and then pressing the **SET** key.

If you have made changes to the pictogram selections, the system prompts you to save the changes by selecting **Yes** or to discard the changes by selecting **No**.

Selecting Text Annotation

Each exam type has labels for anatomical structures and body positions that can display as LCD selections when the exam type is active. The labels are stored in libraries that you can edit for each exam type. The text labels display as LCD selections when you press the **TEXT** key on the control panel or the **F12** key on the keyboard. To access anatomy or position annotations, rotate the **FUNCTION SELECT** control on the LCD panel to highlight the **Ana** or **Pos** tab.

To begin text editing, roll the trackball to the **Text Annotation** button on the Default Settings screen and then press the **SET** key. The system displays the Customize Annotation List screen, with the existing text annotation LCD selections on the right. Separate text selections are available for anatomy and position.

To select Anatomy or Position text:

- Roll the trackball to the **Anatomy** or **Position** button on the Customize Annotation List screen and then press the **SET** key.

The system displays the Anatomy or Position LCD text selections for the selected exam.

To access other pages in the LCD Preview:

- To access the next higher page, roll the trackball to the **Next** button and then press the **SET** key.

To add text annotation selections:

1. Roll the trackball to the text entry field below the **Anatomy** and **Position** buttons and then press the **SET** key.
2. Use the keyboard to enter in up to 24 characters.
3. Roll the trackball to the **Insert** button and then press the **SET** key.

The system inserts the text immediately above the active position in the LCD Preview on the right. The active position is surrounded by a box and initially displays in the lower right of the LCD Preview. To change the insert point, roll the trackball to any of the other text positions and then press the **SET** key. New text will then be inserted immediately above this new, boxed text position.

To delete text annotation selections:

1. Roll the trackball to one of the text positions in the LCD Preview and then press the **SET** key.

The text position becomes active and is surrounded by a box.

2. Roll the trackball to the **Delete** button and then press the **SET** key.

The active text is deleted and the text position is left blank.

To rearrange text annotation selections:

1. Roll the trackball to a text position and then press the **SET** key.
The text position becomes active and is surrounded by a box.
2. Roll the trackball to the **Up** or **Down** button and then press the **SET** key.
The selected text moves up or down on the LCD Preview page.
3. Continue pressing the **SET** key with the trackball positioned on the **Up** or **Down** button to step the text up or down on the page.
4. To move the text to a higher page number, use only the **Up** button. To move the text to a lower page number, use only the **Down** button.

To reset the text annotations to factory defaults:

- Roll the trackball to the **Default** button and then press the **SET** key.
The system displays a message asking you to confirm the action.
To discard all text customization for this exam and display the factory default selections, roll the trackball to the **OK** button and then press the **SET** key. To retain your selections, roll the trackball to the **Cancel** button and then press the **SET** key.

To exit the Customize Annotation List screen:

1. To save changes and immediately reaccess the Default Settings screen, roll the trackball to the **OK** button and then press the **SET** key.
2. You can also exit the Customize Annotation List screen by pressing the **ESC** key on the control panel or by rolling the trackball to the **Cancel** button and then pressing the **SET** key.

If you have made changes to the text annotation, the system prompts you to save the changes by selecting **Yes** or to discard the changes by selecting **No**.

Preset Main Menu: QuickSet Parameters

This selection allows you to configure a QuickSet as you would select default settings for an exam type. Text Annotation editing is not available through QuickSet Parameters.

To access a QuickSet:

1. Roll the trackball to **QuickSet Parameters** in the Preset Main Menu and then press the **SET** key.

The **QuickSet List** screen displays.

2. Roll the trackball to a QuickSet and then press the **SET** key.

3. Roll the trackball to the **OK** button and then press the **SET** key.

The Customize Presets screen displays. Refer to "Default Settings" for instructions on using this screen.

Preset Main Menu: User-Defined Exam List

Use this selection to customize items included in the exam list. You can include (**Enable**) or exclude (**Disable**) each exam type. Changes display when the exam list is accessed by pressing the **EXAM** key on the control panel or the **F5** key on the keyboard. Changes also display whenever the exam list is accessed from the Preset Main Menu or Patient Data screen.

To change the exam list:

1. On the Preset Main Menu, roll the trackball to **User-Defined Exam List** and then press the **SET** key on the control panel.
The **User-Defined Exam List** appears.
2. To include an exam in the list, roll the trackball to the **Enable** button for that exam and then press the **SET** key.
3. To exclude an exam from the list, roll the trackball to the **Disable** button for that exam and then press the **SET** key.
4. Repeat steps 2 and 3 as required to construct the required exam list.
5. Roll the trackball to the **Save** button and then press the **SET** key to store the new list. To reject the changes, roll the trackball to the **Cancel** button and then press the **SET** key.

To reset the exam list:

1. Roll the trackball to the **Default** button and then press the **SET** key.
The system asks you for confirmation.
2. Roll the trackball to the **OK** button and then press the **SET** key.
The system sets all exams to **Enable**.

Preset Main Menu: M & R

The **M&R** item in the **Preset Main Menu** provides the following selections:

Selection	Option(s)	Allows you to...
General Caliper	---	(Heading [title] for a group of selections.) Note: This group of system presets applies to all exam types.
Caliper Default Position	Center Menu Depth	Assign trackball control to the pointer or measurement marker when the measurement function is initiated. Center displays the first marker in the center of the image screen. A depth value does not display. Menu displays the trackball pointer in the Measurement Menu if a label is available. For exam types with no labels, the trackball pointer remains in the center of the image screen when Menu is selected. Depth displays the first marker in the center of the image screen, with a dotted line representing the depth from the skin line. A depth value displays in the Measured Results area of the image screen until you anchor the first marker.
Shape Pattern	x +	Specify the shape of the caliper. You can specify one shape at a time for the entire system. Multiple measurements use the same shape, but are differentiated by number.
Shape Size	Small Medium Large	Specify the size of the caliper for use by the entire system. A smaller size may make a larger number of calipers easier to view.
Measurement Results Background	Color Penetrate	Specify the background for the Measured Results section of the image screen. Color provides a solid background that hides part of the image screen and is sized to fit the available displayed values. Penetrate allows the image screen to be visible behind the displayed values.

Selection	Option(s)	Allows you to...
Measurement and Report		(Heading [title] for a group of selections.)
Report Data Auto Store	On, Off	Select the check box to automatically store the patient report and measurement data to the DIMAQ-IP integrated workstation when studies are ended.
(Drop-down menu)	Abd OB Early OB Breast Thyroid Testicle GYN C-Vas P-Vas Venous Ortho Cardiac Urology Cranial Surgical EM OB(J)	Select an exam type for customization.
Measurement and Report Preset		Customize the measurements and reports each exam type.

Preset Main Menu: M&R: Measurement and Report Preset: Measurement Method

Note: This selection is for use with the following exam types: Abd, OB, Early OB, Breast, Thyroid, Testicle, GYN, C-Vas, P-Vas, Venous, Ortho, Cardiac, Urology, Cranial, Surgical, EM.

Use this selection to establish a shortcut to a specific measurement method. The upper section of this screen allows you to select a method that will appear at the top of the Measurement Menu when the system first enters the measurement function for the specified imaging mode. This technique can eliminate one or two LCD selection steps.

The lower section of this screen allows you to select a specific method for automatic activation when a general method category is selected from the first page of the LCD selections in the measurement function. This method shortens the selection process by requiring pressing of only one LCD selection. For example, if **Ellipse** is selected in the **Area** field, pressing **OArea** on the first page of the LCD selections automatically activates the Ellipse method.

Note: The Default Measurement Method may amend the Default Measurement Method by Mode. If a general measurement method is selected by mode, a default method selected under that general method category will become the default method by mode. For example, if you select **Area** as the method by mode in the upper screen and **Ellipse** as the default for Area in the lower screen, Ellipse will appear at the top of the Measurement Menu when the system enters the measurement function for that imaging mode.

To select the Default Measurement Method by Mode:

1. For each imaging mode, roll the trackball to the arrow on the right side of the **Method** field and then press the **SET** key.

The system displays a pull-down menu of available measurement methods for this imaging mode.

2. Roll the trackball to highlight a measurement method and then press the **SET** key.

The highlighted method becomes the default for this imaging mode. This method will display at the top of the Measurement Menu when the measurement function is activated in this imaging mode.

To select the Default Measurement Method:

1. For each measurement method category, roll the trackball to the arrow on the right side of the **Method** field and then press the **SET** key.

The system displays a pull-down menu of specific methods.

2. Roll the trackball to highlight a measurement method and then press the **SET** key.

The highlighted method becomes the default for this method category. This specific method will display at the top of the Measurement Menu when the LCD selection for the general measurement category is pressed.

Preset Main Menu: M&R: Measurement and Report

Preset: Customize General Measurement LCD

Note: This selection is for use with the following exam types: Abd, OB, Early OB, Breast, Thyroid, Testicle, GYN, C-Vas, P-Vas, Venous, Ortho, Cardiac, Urology, Cranial, Surgical, EM.

Use this selection to designate the general LCD choices available when the system enters the measurement function for the selected exam type. Although some exam types present more than one page of LCD selections, you can change only the first page of selections. Change the first-page choices separately for 2D-mode, M-mode, and Doppler.

To change an LCD selection:

1. Roll the trackball to one of the three tabs (**2D-mode**, **M-mode**, or **Doppler**) and then press the **SET** key.
2. Roll the trackball to one of the eight LCD positions and then press the **SET** key.
The **LCD Select** window opens, showing names that are assignable to this LCD position.
3. Roll the trackball to one of the names and then press the **SET** key.
The system highlights the name.
4. Roll the trackball to the **OK** button and then press the **SET** key.
The highlighted name is substituted into the LCD position.
5. Repeat steps 2, 3, and 4 for the other LCD positions, as required.
6. Repeat steps 1 through 5 for the other tabs, as required.

To reset LCD selections for all three tabs back to factory defaults:

1. Roll the trackball to the **Default** button and then press the **SET** key.
The system prompts you to confirm your choice.
2. Roll the trackball to the **OK** button and then press the **SET** key to continue.

Preset Main Menu: M&R: Measurement and Report Preset: Measurement Order

Note: This selection is for use with the following exam types only: GYN, P-Vas, C-Vas.

Use this selection to add and delete labels and to rearrange the order in which labels appear in the Measurement Menu. The **Customize Measurement Order** screen presents two columns of entries:

Selectable Label on the left and **Measurement Order** on the right. Add labels from left to right or delete labels from right to left. User-defined labels initially appear on the left.

To add labels:

1. Roll the trackball to a selectable label on the left and then press the **SET** key.

The system highlights the label.

2. Roll the trackball to the **Add** button and then press the **SET** key.

The label is moved to the bottom of the measurement order list on the right.

To delete labels:

1. Roll the trackball to a label in the measurement order list on the right and then press the **SET** key.

The system highlights the label.

2. Roll the trackball to the **Delete** button and then press the **SET** key.

The label is moved to the bottom of the selectable label list on the left.

System Reference

Measurement Order: Cardiac	3-66
----------------------------------	------

To rearrange labels:

1. Roll the trackball to one of the labels in the measurement order list on the right and then press the **SET** key.
The system highlights the label.
2. Roll the trackball to the **Up** or **Down** button and then press the **SET** key.
The label moves up or down one space in the list.
3. Repeat steps 1 and 2 as required to create a restructured measurement order list.

To reset labels back to factory default positions:

1. Roll the trackball to the **Default** button and then press the **SET** key.
The system prompts you to confirm your choice.
2. Roll the trackball to the **OK** button and then press the **SET** key to continue.
The gynecology exam **Customize Measurement Order** screen contains an extra field for specifying the Follicle Measurement Method.

To select the Follicle Measurement Method (Gynecology exam):

1. Roll the trackball to the arrow on the right of the **Follicle Measurement Method** field and then press the **SET** key.
The system displays a pull-down menu of available selections.
2. Roll the trackball to highlight one of the selections and then press the **SET** key.
The highlighted selection becomes the new Follicle Measurement Method.

Preset Main Menu: M&R: Measurement and Report Preset: Display Item

Note: This selection is for use with the following exam types only: Ortho, Urology, EM.

Use this selection to control display of various items on the measurement screen and in the patient report. The Display Item screen is unique for each exam type.

System Reference

Display Item:	
OB, Early OB	3-50
GYN	3-65
Cardiac	3-68
P-Vascular	3-62
C-Vascular	3-60
Venous	3-63

Selection	Option(s)	Allows you to...
Measurement Screen	---	(Heading [title] for a group of selections.)
Abbreviated Display of Results	On, Off	Select this check box to display in the Measured Results only labels to which measurements have been assigned. De-select the check box to display in the Measured Results all the labels on the Measurement Menu.
Hip Angle Graph	On, Off	Select this check box to display the sonographic hip angle graph when an Ortho exam measurement has been completed.
Report	---	(Heading [title] for a group of selections.)
Physician ID	On, Off	Select this check box to include the Physician ID number entered in the patient data form at the bottom of the report page.
Referring MD	On, Off	Select this check box to include the Referring MD name entered in the patient data form at the bottom of the report page.

Preset Main Menu: M&R: Measurement and Report Preset: User-Defined Label

Note: This selection is for use with the following exam types only: GYN, P-Vas, C-Vas.

Use this selection to designate special measurement labels in the C-Vas, P-Vas, or GYN exam types. Use up to four characters for GYN exam labels or eight characters for C-Vas or P-Vas exams.

System Reference

Measurement Labels:	OB, Early OB	3-59
---------------------	--------------	------

To create a user-defined label:

1. Roll the trackball to the **NAME** field and then press the **SET** key.
2. Use the keyboard to type in a label name.
3. Repeat steps 1 and 2 for each label.
4. For the GYN exam type, you can also select a measurement method to associate with a 2D-mode label. Roll the trackball to the down arrow to the right of the **Method** field and then press the **SET** key.
5. Roll the trackball to one of the measurement methods and then press the **SET** key.
6. When all labels have been entered, roll the trackball to the **OK** button and then press the **SET** key.

Note: For user-defined labels to appear in the Measurement Menu, you must add them to the Measurement Order list using the **Measurement Order** screen or, for the OB and Early OB exams, the **Item and Reference Selection** screen.

Preset Main Menu: M&R: Measurement and Report Preset: User-Defined Formula

Note: This selection is for use with the following exam types only: P-Vas, C-Vas.

System Reference

User-Defined Labels:
OB, Early OB 3-53

To create a user-defined formula:

- From the **Measurement and Report Preset** screen for the C-Vas or P-Vas exam, roll the trackball to the **User-Defined Formula** button and then press the **SET** key.

The system displays the User-Defined Formula screen.

- Roll the trackball to the first field and then press the **SET** key.
- Use the keyboard to enter up to eight characters as the name for the formula.
- Enter the formula in the field below the formula name. Use the keyboard to enter any of the numbers and operators shown in the **Operator** box at the bottom of the screen.
- Roll the trackball to any of the Variable Labels on the right and then press the **SET** key to include the variable in the formula.
- Define constants by first rolling the trackball to the **Value** field to the right of the constant label letter and then pressing the **SET** key.

The system displays an entry field next to the label letter.

- Enter a numeric value of up to eight characters, including a decimal point if required, and then press the **SET** key.
- To insert a constant into a formula, roll the trackball to the appropriate letter in the **Label** column and then press the **SET** key.

The system inserts the label letter into the formula.

Note: You can use parentheses, but do not use spaces to separate elements in your formula. Do not delete any of the quote marks entered by the system. You can enter up to 64 characters in the **Formula** field. To conserve space, you can assign a letter value to a constant and enter the letter into your formula instead of the full constant.

- For additional formulas, roll the trackball to a different formula tab and then press the **SET** key. Repeat steps 2 through 8.

To delete a user-defined formula:

- Roll the trackball to the **Delete Formula** button and then press the **SET** key.

The system deletes the formula for this tab.

To exit the User-Defined Formula screen:

1. To exit and save the formula, roll the trackball to the **OK** button and then press the **SET** key.

The system informs you if there is a syntax or other error in the formula. Resolve the problem and exit again.

2. To exit and not save the formula, roll the trackball to the **Cancel** button and then press the **SET** key.

The system queries you to save changes by selecting **Yes** or discard changes by selecting **No**.

Preset Main Menu: M&R: Measurement and Report Preset: Comments Library for Report

Note: This selection is for use with the following exam types only: OB, Early OB, GYN, P-Vas, C-Vas, Venous, Ortho, Cardiac, Urology, EM.

For exam types with reports, you can enter five comments for automated inclusion into the report. A maximum of 69 characters is allowed per comment. However, since the report will only accept a total of 77 characters, it is advisable to make each of the five comments as short as possible.

Creating a library of comments for a patient report saves you time, particularly for recurring examinations. Rather than entering a phrase in the comment section of a report, you can access pre-defined comments for quick entry by rolling the trackball to the **Comments** button and then pressing the **SET** key.

To enter comments:

1. Roll the trackball to one of the comment fields and then press the **SET** key.
2. Use the keyboard to type in up to 69 alphanumeric characters.
3. Repeat steps 1 and 2 for each required comment.
4. Complete comment entry by rolling the trackball to the **OK** button and then pressing the **SET** key.

Preset Main Menu: Installation From Key Disk

This selection provides an overview of options that have been installed with the key disk procedure. Selections for installing new options, uninstalling existing options, or updating existing options are available. The key disk for the option must be installed to perform any of these operations.

Preset Main Menu: Authorization

The **Authorization** item in the **Preset Main Menu** provides the following selections:

When you access the **Authorization** screen for the first time, the system prompts you to set up the administrator account.

Note: To change these selections, you must log in with an administrator account, unless otherwise noted.

Selection	Option(s)	Description
Change Password		(Heading [title] for a group of menu items.)
Change...	---	Displays a dialog box for changing your current password. Note: This selection is available for all user accounts.
Administration		(Heading [title] for a group of menu items.)
Password...	---	Displays a login dialog box for an administrator.
Accounts		(Heading [title] for a group of menu items.)
(User defined entries)		Displays the defined user accounts when you log in to this screen as an administrator. You can change the settings for the selected user account.
Administrator	On, Off	When enabled (selected), assigns administrator privileges to the selected user account.
Disabled	On, Off	When enabled (selected), disables the selected user account. Note: Use this selection to reactivate a disabled user account.
Reset...	---	Displays a dialog box to reset the password for the selected user account.
Delete	---	Deletes the selected user account.
New	---	Displays a dialog box to create a new user account.
CD/DVD		(Heading [title] for a group of menu items.)
Import	---	Retrieves user accounts and passwords from disk media.
Export	---	Saves user accounts and passwords to disk media.

Selection	Option(s)	Description
Authorization Policy		(Heading [title] for a group of menu items.)
Login Required	On, Off	When enabled (selected), requires a user account and password to access the DIMAQ integrated workstation. Selecting this option allows you to configure the Authorization Policy section.
		When disabled (cleared) allows all users access to the DIMAQ integrated workstation without requiring a password.
Retry Limits	On, Off	When enabled (selected), causes the user account to be disabled if login attempts exceed the specified limit. An administrator must reactivate the user account.
Retry Period		Note: The retry limit does not apply to administrator accounts.
Attempts	1 to 100 attempts in increments of 1	Specifies the number of login attempts allowed before the system disables the user account.
Seconds	1 to 5 seconds in increments of 1 second	Specifies the interval of time before allowing the next login attempt.
Autologout (Screen Saver)	On, Off	When enabled (selected), automatically logs out after the user account is inactive for the specified interval of time.
Password Expire	On, Off	When enabled (selected), requires users to change passwords after the specified expiration period.
days	1 to 1000 days in increments of 1 day	Specifies the expiration period for a password.
Password Policy	On, Off	When selected (enabled), requires new passwords to conform to specified password security restrictions.
Minimum Characters	0 to 64 characters in increments of 1	Specifies the minimum number of characters a password must contain.
Lowercase Characters	0 to 64 characters in increments of 1	Specifies the minimum number of lowercase characters a password must contain.
Special Characters	0 to 64 characters in increments of 1	Specifies the minimum number of special characters a password must contain.
Uppercase Characters	0 to 64 characters in increments of 1	Specifies the minimum number of uppercase characters a password must contain.
Numeric Characters	0 to 64 characters in increments of 1	Specifies the minimum number of numeric characters a password must contain.
Login Screen Message		(Heading [title] for a group of menu items.)
Change	---	Allows you to use the keyboard to customize the login message for the DIMAQ integrated workstation.

Preset Main Menu: Clip Capture

The **Clip Capture** item in the **Preset Main Menu** provides the following selections:

Selection	Option(s)	Allows you to...
Compression	Low (8:1) High (13:1)	Select level of image resolution and file size.
Trigger Type	Time Capture Beat Capture	Select clip capture over a period of seconds or heart beat cycles.
Chronology	Prospective Retrospective	Retrospective selects a clip of previous images. Prospective selects a clip of succeeding images.
Time Trigger	1, 2, 3, 4, 8*, 60*, 120* , (User-defined)*	(Available when Time Capture is selected for Trigger Type .) Specify the duration of each clip in seconds.
Beat Trigger	1, 2, 3, 4, 8*, 60*, 120* , (User-defined)*	(Available when Beat Capture is selected for Trigger Type .) Specify the duration of each clip in heart beat cycles.
R-Wave Delay	0 to 480 in steps of 30 msec	(Available when Beat Capture is selected for Trigger Type .) Set the capture point based on a delay beyond the R-Wave.

* Available when **Prospective** is selected for **Chronology**.

Preset Main Menu: SieScape

The **SieScape** item in the **Preset Main Menu** provides the following selections:

Selection	Option(s)	Allows you to...
SieScape Scale	Off On	Automatically display a ruler along a frozen SieScape image.
SieScape Size	Best Fit, 1, 2, 3, Full Size	Determine the scale of the SieScape image when frozen. Best Fit automatically scales the image to fit the window, based on the selected rotation. Best Fit is the default image size. 1–3 incrementally scales the image size between Best Fit and Full. Full Size displays the full (actual) size of the image in the image area.

Preset Main Menu: DIMAQ Utility

The **DIMAQ Utility** item in the **Preset Main Menu** provides access to setup options for the DIMAQ integrated workstation.

This selection provides password-protected disk utility functions:

Selection	Description	System Reference
HD Defragmentation	(Heading [title] for a group of menu items.)	
Defrag Now	Defragments the system's hard disk.	
Printer	(Heading [title] for a group of menu items.)	
Install	Installs a USB printer.	[2] Instructions for Use Installing USB Printers Ch A4
Autoprint Images	When enabled (selected), automatically prints stored images to the connected USB printer. The printing occurs when you press the documentation control that stores the image to the system's hard disk.	
CD/DVD	(Heading [title] for a group of menu items.)	
Write speed	Specifies the write speed for the CD drive on the ultrasound system.	

Preset Main Menu: Stress Echo

The **Stress Echo** menu item in the **Preset Main Menu** screen displays the **Maintenance** dialog box, which allows you to configure options for the optional Stress Echo feature. Options determine system behavior during acquisition, appearance of loops in the Stress Echo screen, placement of WMS (wall-motion scoring) graphics relative to the loops they represent, type of line used for creating traces, lengths of systolic duration for specific heart rates, and available protocols.

Exiting (quitting) the Stress Echo presets screen returns the system to imaging.

The Stress Echo chapter describes the setup options in detail.

System Reference
DIMAQ-IP Ch 5

[2] Instructions for Use
Installing USB Printers Ch A4

[2] Instructions for Use
Stress Echo Ch A8

Preset Main Menu: DICOMs

You can configure the ultrasound system and connected devices (such as servers and printers) for DICOM by creating, editing, and activating aliases (DICOM configurations).

System Reference	
DICOM	Ch 6

The DICOM chapter describes the setup options in detail.

Preset Main Menu: Archive

The **Archive** item in the **Preset Main Menu** provides the following selections:

Selection	Option(s)	Description(s)
Study Archive Deletion Policy	Always Delete Study Archive History When Study is Deleted Allow Delete Study Archive History after Study is Deleted No Delete of Study Archive History	Select how the study archive is maintained after the study is deleted.
Show Deleted Studies in Study Screen	On Off	Select this check box to display the studies deleted from the system in the DIMAQ integrated workstation's Study screen.
CD/DVD	---	(Heading [title] for a group of selections.)
Burn Showcase to DICOM CD/DVD	On Off	Enable or disable automatic storage of the DICOM viewer software program with DICOM-formatted data archived to disk media.

Preset Main Menu: Networking

You can change the active setup by selecting a host or export host. You can also edit an existing host or create a new host.

System Reference	
Networking	Ch 7

The Networking chapter describes the setup options in detail.

Preset Main Menu: fourSight 4D

The **fourSight 4D** menu item in the **Preset Main Menu** screen displays the **fourSight 4D Preset Main Menu** dialog box, which allows you to configure options for the optional *fourSight 4D* imaging feature. Options assign functions to controls and determine initial settings for layout, VOI (volume of interest) display, volume rotation, toolbars, and color schemes.

The *fourSight 4D* Imaging chapter describes the setup options in detail.

[2] Instructions for Use

fourSight 4D
Imaging Ch A10

Preset Main Menu: Axius OB

The **Axius OB** item in the **Preset Main Menu** allows you to enable automatic activation of the **Auto HC**, **Auto AC**, and **Auto FL** measurements for OB exams. Use these settings in conjunction with the OB M&R Display Configuration settings for **HC with BPD/OFD** and **AC with ATD/ASD**.

Axius OB Preset	Option(s)	Description(s)
Customize Head	---	(Heading [title] for a group of selections.)
Enable Auto Head	On Off	On activates the Axius OB Caliper automatic head circumference measurement (Auto HC) when you select HC in the Measurement menu. Off activates the Ellipse measurement method when you select HC in the Measurement menu.
Caliper Placement Preference	Near OFD end points Near BPD end points	When Enable Auto Head is on, the system calculates the head circumference from the position of calipers at the OFD (occipital-frontal diameter) end points or the BPD (biparietal diameter) end points.
Customize Abdomen	---	(Heading [title] for a group of selections.)
Enable Auto Abdomen	On Off	On activates the Axius OB Caliper automatic abdominal circumference measurement (Auto AC) when you select AC in the Measurement menu. Off activates the Ellipse measurement method when you select AC in the Measurement menu.
Measurement Method	Ellipse Cross	When Enable Auto Abdomen is on, the system uses the specified measurement method to measure the abdominal circumference.
Customize Femur Length	---	(Heading [title] for a group of selections.)
Enable Auto FL	On Off	On activates the Axius OB Caliper automatic femur length measurement when you select FL in the Measurement menu. Off activates the Distance measurement method when you select FL in the Measurement menu.

Preset Main Menu: Service

This selection provides the system serial number and software version number, along with password-protected service protocols. The service function allows service personnel to confirm the correct operation of the hardware and to detect any failed circuit boards. The Service function is supported for the English language only. Exiting the Service function returns the system to imaging.

Preset Main Menu: Preset/QuickSet Utility

This selection provides a utility for importing and exporting existing system Presets and QuickSets. This allows you to maintain consistency between multiple systems.

System Reference	
Documentation and Storage	Ch 4

Selection	Option(s)	Description(s)
System	---	(Heading [title] for a group of selections.)
Preset File	All (Select from list)	Select the available presets from the File Name list or select All to select all the available presets.
CD-R/RW Write Speed	x48 x24 x12 x6 x3 x1	Selects the write speed of the drive. The correct write speed improves the efficiency of the disk write.
QuickSet File	All (Select from list)	Select the available QuickSets from the Name list or select All to select all the available QuickSets.
	System CD-R/RW	Select the view for the import or export.
	Format	Formats the disk media in the disk drive. All data on the disk is deleted.
	Update	Reloads and re-reads the external disk media.
	Import	Imports the selected presets and QuickSets to a disk.
	Export	Exports the selected presets and QuickSets to a disk.
	Exit	Exits the QuickSet Utility.

Preset Main Menu: System/Language

This selection changes the system language and upgrades system software while retaining or initializing the system presets. Changing the system language will require you to restart the system.

Selection	Option(s)	Description(s)
Select Language	English, German, French, Spanish Italian	Select the checkbox for the default system language.
Change Language	---	Initiates the language change. The system will prompt you to restart.
Preset Setting	Retain Current Preset Initialize Preset	Determines whether the system retains or returns presets to the initial settings.
Upgrade System	---	Initiates the system upgrade.

Customizing OB and Early OB Measurements, Calculations, and Reports

The Measurement and Report Presets for the OB and Early OB exams include generic and exam-specific descriptions.

Preset Main Menu: M&R: Measurement and Report Preset: Item & Reference Selection, Standard OB

Note: This selection is for use with the following exam types only: OB.

System Reference
Item & Reference Selection, Early OB

3-50

2D/M-Mode, Doppler, and Ratio Tabs

This selection allows you to edit the Measurement Item list for 2D-mode, M-mode, and ratios.

To add or delete measurement items:

1. To add a measurement item, roll the trackball to an item in the **Selectable Label** list and then press the **SET** key.
2. Roll the trackball to the **Add** button and then press the **SET** key.
The item is placed at the end of the **Measurement Item** list.
3. To delete a measurement item, roll the trackball to an item in the **Measurement Item** list and then press the **SET** key.
4. Roll the trackball to the **Delete** button and then press the **SET** key.
The item is placed at the end of the **Selectable Label** list. Any author assignment to the item is retained.

To assign an author to a measurement item:

1. Roll the trackball to the **Author** field to the right of the Measurement Item and then press the **SET** key. If the field is blank, no selections are available.
2. Roll the trackball to highlight an author and then press the **SET** key.
The author is now assigned to the measurement item.

To add all selectable labels assigned to the same author:

1. Under **Same Author Label All Selection**, roll the trackball to the **Author** field and then press the **SET** key.
2. Roll the trackball to highlight an author and then press the **SET** key.
3. Roll the trackball to the **Add** button and then press the **SET** key.

All selectable labels assigned to this author are added to the Measurement Item list.

To move between pages of measurement items:

1. Roll the trackball to the **Next** button and then press the **SET** key to access a higher page number.
2. Roll the trackball to the **Prev** button and then press the **SET** key to access a lower page number.

To select display of single or averaged measurements:

Note: This task cannot be performed with the Ratio tab.

1. For each measurement item, roll the trackball to the **Average** button (to display an average of all measurements) or the **Direct** button (to display the last measurement) and then press the **SET** key.
2. To change all measurement items on the same page, roll the trackball to the **Average** or **Direct** button in the **Parameter Selection All Label** section and then press the **SET** key.
3. Access each page of Measurement Items and repeat step 1 or 2.

To reset the Measurement Item list:

- Roll the trackball to the **Default** button and then press the **SET** key.
All measurement items and author assignments are returned to factory default settings.

EFW/USMA Tab

Use this tab to select preferred authors for two EFW formulas. Both formulas display in the worksheet and the report. The EFW1 formula displays in the Measured Results when the required measurements have been made. You can also select an average USMA to be returned as measurements are made or specify that one of Hadlock's eleven regression equations be used.

For EFW1, EFW2, and USMA selections, the required measurements are listed in the associated Based Label box.

To make an EFW or USMA selection:

1. Roll the trackball to the appropriate **Author** field and then press the **SET** key.
The system displays a pull-down menu of available authors or equations.
2. Roll the trackball to highlight an author or equation and then press the **SET** key.

Preset Main Menu: M&R: Measurement and Report Preset: Item & Reference Selection, Early OB

Note: This selection is for use with the following exam types only: Early OB.

The Item & Reference Selections for Early OB closely parallel those for Standard OB. The 2D-Mode tab has fewer system-defined labels, sharing five user-defined labels with Standard OB. The Ratio tab has no system-defined ratios, but shares five user-defined ratio labels with Standard OB. The EFW/USMA tab is the same as for Standard OB

System Reference

Item & Reference Selection, Standard OB	3-48
---	------

System Reference

Display Item: Orotho, Urology,	
EM	3-34
GYN	3-65
Cardiac	3-68
P-Vascular	3-62
C-Vascular	3-60
Venous	3-63

Preset Main Menu: M&R: Measurement and Report Preset: Display Configuration, Standard OB/Early OB

Note: This selection is for use with the following exam types only: OB, Early OB.

The Standard OB/Early OB Display Item or Display Configuration screen allows you to designate items to include on the measurement screen and in the worksheet and patient report.

Selection	Option(s)	Allows you to...
Measurement Screen	---	(Heading [title] for a group of selections.)
Abbreviated Display of Results	On, Off	Select this check box to display in the Measured Results only labels to which measurements have been assigned. De-select the check box to display in the Measured Results all the labels on the Measurement Menu.
HC with BPD/OFD measurement	On, Off	Automatically derive values for BPD and OFD from the HC measurement.
AC with ATD/ASD measurement	On, Off	Automatically derive values for ATD and ASD from the AC measurement.
Vertical Display of Doppler Measurement Results	Systole Diastole S/D RI PI	Select each check box to display the selection as a permanent, labeled item in the Measured Results for Doppler. De-select the check box to not display the selection in the Measured Results.
Report/Worksheet	---	(Heading [title] for a group of selections.)
Abbreviated Display of Results	On, Off	Select this check box to display in the 2D-Mode Measurements section of the report only labels to which measurements have been assigned. De-select the check box to display in the 2D-Mode Measurements all the labels on the Measurement Menu.
Vertical Display of Doppler Measurement Results	Systole Diastole S/D RI PI	Select each check box to display the selection as an item in the Doppler section of the report. De-select the check box to not display the selection in the Doppler section of the report.
Physician ID	On, Off	Select this check box to include at the bottom of the report page the Physician ID number entered in the patient data form.
Referring MD	On, Off	Select this check box to include at the bottom of the report page the Referring MD name entered in the patient data form.

Preset Main Menu: M&R: Measurement and Report Preset: Standard OB/Early OB Customize Growth Analysis Graphs

Note: This selection is for use with the following exam types only: OB, Early OB.

Use this selection to set up growth curves for OB and Early OB exams.

Selection	Option(s)	Allows you to...
Graph Format	Single Quad	Select Single to display one graph to a patient report page. Select Quad to display four graphs to a page. With either option, each graph displays the growth curve for a different, user-selectable growth parameter according to a user-selectable reference (author).
Graph Display	Current Previous	Select Current to display measurement values from the current exam only. Select Previous to display values from prior OB exams. Previous requires that the exams are available on the hard drive and are linked to the current study. Select both check boxes to plot current measured results with previous measurements for a parameter on a single graph.
Graph Grid	On, Off	Display vertical and horizontal lines on the graph.

Preset Main Menu: M&R: Measurement and Report Preset: Standard OB/Early OB User-Defined Formulas

Note: This selection is for use with the following exam types only: OB, Early OB.

Access a Standard OB/Early OB formula with one of the following selections from the Standard OB or Early OB Measurement and Report screen:

- EFW Formula
- Ratio Formula
- MA Data
- GA Data

To access a formula screen:

1. Roll the trackball to any of these choices and then press the **SET** key.
2. If the system displays a confirmation window, roll the trackball to the **OK** button and then press the **SET** key.
3. For MA Data and GA Data, roll the trackball to the Formula button under Data Type and then press the **SET** key.

The resulting formula screens are very similar. Basic formula-building rules apply to EFW, Ratio, MA Data, and GA Data formulas. Use the following procedure for all four formula types.

To create a user-defined formula:

1. Roll the trackball to the drop-down box at the upper left corner and then press the **SET** key.
The system displays a list of numbered User-Defined formulas.
2. Roll the trackball to highlight one of the User-Defined formula numbers and then press the **SET** key.
3. In the MA Data and GA Data screens, roll the trackball to the **Known Variable Label** field and then press the **SET** key. In the Ratio Formula screen, roll the trackball to the **Label Name** field and then press the **SET** key.
The system displays a list of labels.
4. For these three screens, roll the trackball to highlight a label and then press the **SET** key.
5. For all screens, roll the trackball to the **Reference (Author)** field and then press the **SET** key.

6. Roll the trackball to highlight an author or use the keyboard to enter the name of an author and then press the **SET** key.
7. For all screens, roll the trackball to the first field in the **Range** section and then press the **SET** key.
8. For MA Data and GA Data screens, enter the lower limit for the measurement range in millimeters, and then use the Tab key on the keyboard to move the cursor to enter millimeters for the upper limit.
9. For all screens, use the Tab key to advance to the Date area.
10. Using the Tab key between boxes, enter the week and day for the lower limit for the age range in the boxes at the left and the week and day for the upper limit in the boxes at the right.
11. For a Ratio formula screen, enter the minimum and maximum values for the ratio between the parentheses.
12. In the GA Data formula screen, roll the trackball to the **SD Type** field and then press the **SET** key.
A list of standard deviation types displays.
13. Roll the trackball to highlight one of the SD types and then press the **SET** key.
14. In the Result Unit section of the MA Data formula screen, roll the trackball to the **Days** button for a standard deviations formula or the **Weeks** button for a standard formula and then press the **SET** key.
15. For MA Data, GA Data, and EFW formula screens, roll the trackball to the upper right corner to select a conventional formula or a standard deviation limits formula.
16. Enter your formula in the field to the right of the equals sign (=). Use the keyboard to enter numbers and any of the operators listed in the **Operation** box at the bottom of the screen. Use the trackball and the **SET** key to select constants (see below) and variables (or values).
Example: "A"*LOG("BPD") + COS(ATD)-1.8327.

Note: You can use parentheses, but do not use spaces to separate elements in your formula. Do not delete any of the quote marks entered by the system. You can enter up to 64 characters in this field. To conserve space, you can assign a letter value to a constant and enter the letter into your formula instead of the full constant.

To define a constant for a user-defined formula:

Constant	
Label	Value
A	1.118303
B	R

1. Roll the trackball to the Value column parallel with the label letter to which you want to assign the value and then press the **SET** key.
The system displays an entry field next to the label letter.
2. Enter a numeric value of up to eight characters, including a decimal point if required, and then press the **SET** key.
3. To insert a constant into a formula, roll the trackball to position the pointer on the appropriate letter in the **Label** column and then press the **SET** key.
The system inserts the label letter into the formula.

To delete a user-defined formula:

1. Roll the trackball to highlight one of the **User-Defined** numbers in the upper left of the screen.
2. Roll the trackball to the **Delete Current Reference** button and then press the **SET** key.

To exit a user-defined formula screen:

1. To exit and save the formula, roll the trackball to the **OK** button and then press the **SET** key.
The system informs you if there is a syntax or other error in the formula. If necessary, resolve the problem and exit again.
2. To exit and not save the formula, roll the trackball to the **Cancel** button and then press the **SET** key.
The system queries you to save changes by selecting **OK** or discard changes by selecting **Cancel**.

Preset Main Menu: M&R: Measurement and Report Preset: Standard OB/Early OB User-Defined Tables

Note: This selection is for use with the following exam types only: OB, Early OB.

Access a Standard OB/Early OB table with one of the following selections from the Standard OB or Early OB Measurement and Report screen:

- MA Data
- GA Data

To access a table screen:

1. Roll the trackball to one of these choices and then press the **SET** key.
2. If the system displays a confirmation window, roll the trackball to the **OK** button and then press the **SET** key.
3. Roll the trackball to the **Table** button under Data Type and then press the **SET** key.

The resulting table screens are very similar for MA Data and GA Data. Basic table-building rules apply to both types. Use the following procedure for both table types.

To create a user-defined table:

1. Roll the trackball to the drop-down box at the upper left corner and then press the **SET** key.
The system displays a list of numbered User-Defined tables.
2. Roll the trackball to highlight one of the User-Defined table numbers and then press the **SET** key.
3. Roll the trackball to the **Known Variable Label** field and then press the **SET** key.
The system displays a list of labels.
4. Roll the trackball to highlight a label and then press the **SET** key.
5. Roll the trackball to the **Reference (Author)** field and then press the **SET** key.
6. Roll the trackball to highlight an author or use the keyboard to enter the name of an author and then press the **SET** key.

7. Roll the trackball to the first field in the **Range** section and then press the **SET** key.
 8. Enter the lower limit for the measurement range in millimeters, and then use the Tab key on the keyboard to move the cursor and enter the upper limit.
 9. Use the Tab key to advance to the Date area.
 10. Using the Tab key to move between boxes, enter the week and day for the lower limit for the age range in the boxes at the left and the week and day for the upper limit in the boxes at the right.
 11. In the GA Data table screen, roll the trackball to the **SD Type** field and then press the **SET** key.
- A list of standard deviation types displays.
12. Roll the trackball to highlight one of the SD types and then press the **SET** key.
 13. In the MA Data table screen, your result units of weeks and days are built into the table, so leave the default selection for the **Result Unit** field.
 14. Create your table in the box. Use the Tab key to move to each new field. Create additional lines by using the scroll bar.

The first line should contain the lower limit for the variable value and the week and day for the lower limit of the date range. The last line should contain the upper limits. The table must contain an entry for every variable value between the upper and lower limits in order for the system to display a measured value in the worksheet and the patient report. For example, if you specify a range from 10.0 to 11.0, you must create a line entry for 10.0, 10.1, 10.2...11.0. If you only create entries for 10.0, 10.2, 10.4...11.0, a measured value of 10.3 will not display.

Note: Measurements corresponding to table values that are outside the range will not be recognized. A measurement that is within the range but less than the lowest table value will only provide an MA or GA value equivalent to the lowest value. A measurement that is within the range but greater than the highest table value will only provide an MA or GA value equivalent to the highest value.

15. In the **Value** field, enter the size in mm that indicates a specific age.
16. In the **Weeks and Days** field, enter the age.
17. For MA tables, enter a number in the **SD Limits** field. The system converts the number to days for you, such as +/- 2 d.

For GA tables, enter lower and upper limits for the value in the **Lo Limit** and **Up Limit** fields.

To delete a user-defined table:

1. Roll the trackball to highlight one of the user-defined numbers in the upper left of the screen.
2. Roll the trackball to the **Delete Current Reference** button and then press the **SET** key.

To exit a user-defined table screen:

1. To exit and save the table, roll the trackball to the **OK** button and then press the **SET** key.

The system informs you if there is an error in the table. Resolve the problem and exit again.

2. To exit and not save the table, roll the trackball to the **Cancel** button and then press the **SET** key.

The system queries you to save changes by selecting **OK** or discard changes by selecting **Cancel**.

Preset Main Menu: M&R: Measurement and Report Preset: Measurement Label (OB, Early OB)

Note: This selection is for use with the following exam types only: OB, Early OB.

The OB and Early OB exams share five user-defined labels for 2D-mode and another five user-defined labels for Doppler. Access a user-defined label by selecting **Measurement Label** from the **Standard OB or Early OB Measurement and Report** screen.

System Reference

User-Defined
Labels:
GYN, C-Vas,
P-Vas

3-35

To create a user-defined label:

1. Roll the trackball to the **User-Defined Number** field in either the 2D-mode or Doppler section and then press the **SET** key.
A list of five user-defined numbers displays.
2. Roll the trackball to highlight one of the user-defined numbers and then press the **SET** key.
3. Roll the trackball to the **Label Name** field and then press the **SET** key.
4. Use the keyboard to type in a label name of up to eight characters.
5. For 2D-mode labels, roll the trackball to the **Measurement Method** field and then press the **SET** key.
A list of measurement methods displays.
6. Roll the trackball to highlight a method and then press the **SET** key.
The system assigns the appropriate unit of measure for the method.
7. For additional 2D-mode labels, repeat steps 2 through 5.
8. For Doppler labels, use steps 2 through 4 as required.

To delete a user-defined label:

1. Roll the trackball to the **User-Defined Number** field in either the 2D-mode or Doppler section and then press the **SET** key.
A list of five user-defined numbers displays.
2. Roll the trackball to highlight one of the user-defined numbers and then press the **SET** key.
3. Roll the trackball to the **Delete Current 2D-Mode Label** or the **Delete Current Doppler Label** button and then press the **SET** key.

Customizing Vascular Measurements, Calculations, and Reports

The Measurement and Report Presets for the C-Vas, P-Vas, and Venous exams include exam-specific descriptions for Display Item.

Preset Main Menu: M&R: Measurement and Report Preset: Display Item (Cerebrovascular)

Note: This selection is for use with the following exam types only: C-Vas.

The Cerebrovascular Display Item allows you to designate items to include on the measurement screen and in the patient report.

System Reference	
Display Item:	
Orotho, Urology,	
EM	3-34
OB, Early OB	3-50
GYN	3-65
Cardiac	3-68
P-Vas	3-62
Venous	3-63

Selection	Option(s)	Allows you to...
Measurement Screen	---	(Heading [title] for a group of selections.)
Abbreviated Display of Results	On, Off	Select this check box to display in the Measured Results only labels to which measurements have been assigned. De-select the check box to display in the Measured Results all the labels on the Measurement Menu.
Vertical Display of Doppler Measurement Results	Systole Diastole S/D RI PI	Select each check box to display the selection as a permanent, labeled item in the Measured Results for Doppler. De-select the check box to not display the selection in the Measured Results.
Report	---	(Heading [title] for a group of selections.)
Abbreviated Display of Results	On, Off	Select this check box to display in the 2D-Mode Measurements section of the report only labels to which measurements have been assigned. De-select the check box to display in the 2D-Mode Measurements all the labels on the Measurement Menu.
Display of Measurement Results	%Stenosis Systole Diastole S/D RI PI	Select each check box to display the selection as an item in the Doppler section of the report. De-select a check box to not display a selection in the Doppler section of the report.

Selection	Option(s)	Allows you to...
Calculation Label Display	ICA1/CCA(S) ICA1/CCA(D) ICA2/CCA(S) ICA2/CCA(D) ICA3/CCA(S) ICA3/CCA(D)	Specify calculated ratios to display in the report.
Physician ID	On, Off	Select this check box to include at the bottom of the report page the Physician ID number entered in the patient data form.
Referring MD	On, Off	Select this check box to include at the bottom of the report page the Referring MD name entered in the patient data form.

Preset Main Menu: M&R: Measurement and Report Preset: Display Item (Peripheral Vascular)

Note: This selection is for use with the following exam types only: P-Vas.

The Peripheral Vascular Display Item allows you to designate items to include on the measurement screen and in the patient report.

System Reference

Display Item: Orotho, Urology,	
EM	3-34
OB, Early OB	3-50
GYN	3-65
Cardiac	3-68
C-Vas	3-60
Venous	3-63

Selection	Option(s)	Allows you to...
Measurement Screen	---	(Heading [title] for a group of selections.)
Abbreviated Display of Results	On, Off	Select this check box to display in the Measured Results only labels to which measurements have been assigned. De-select the check box to display in the Measured Results all the labels on the Measurement Menu.
Vertical Display of Doppler Measurement Results	Peak Systole RI PI	Select each check box to display the selection as a permanent, labeled item in the Measured Results for Doppler. De-select the check box to not display the selection in the Measured Results.
Report	---	(Heading [title] for a group of selections.)
Abbreviated Display of Results	On, Off	Select this check box to display in the 2D-Mode Measurements section of the report only labels to which measurements have been assigned. De-select the check box to display in the 2D-Mode Measurements all the labels on the Measurement Menu.
Display of Measurement Results	Peak Systole RI PI	Select each check box to display the selection as an item in the Doppler section of the report. De-select a check box to not display a selection in the Doppler section of the report.
Physician ID	On, Off	Select this check box to include at the bottom of the report page the Physician ID number entered in the patient data form.
Referring MD	On, Off	Select this check box to include at the bottom of the report page the Referring MD name entered in the patient data form.

Preset Main Menu: M&R: Measurement and Report Preset: Display Item (Venous)

Note: This selection is for use with the following exam types only: Venous.

The **Customize Display** screen for the Venous exam presents two columns of entries: **Selectable Label** on the left and **Report Label Order** on the right. Add labels from left to right, or delete labels from right to left. User-defined labels initially appear on the left.

To add labels:

1. Roll the trackball to a selectable label on the left and then press the **SET** key.

The system highlights the label.

2. Roll the trackball to the **Add** button and then press the **SET** key.

The system moves the label to the bottom of the **Report Label Order** list on the right.

To delete labels:

1. Roll the trackball to a label in the **Report Label Order** list on the right and then press the **SET** key.

The system highlights the label.

2. Roll the trackball to the **Delete** button and then press the **SET** key.

The system moves the label to the bottom of the **Selectable Label** list on the left.

System Reference

Display Item:	
Orotho, Urology,	3-34
EM	3-34
OB, Early OB	3-50
GYN	3-65
Cardiac	3-68
P-Vascular	3-62
C-Vascular	3-60

To rearrange labels:

1. Roll the trackball to one of the labels in the **Report Label Order** list on the right and then press the **SET** key.
The system highlights the label.
2. Roll the trackball to the **Up** or **Down** button and then press the **SET** key.
The system moves the label up or down one space in the list.
3. Repeat steps 1 and 2 as required to create a restructured **Report Label Order** list.

To reset labels back to factory default positions:

1. Roll the trackball to the **Default** button and then press the **SET** key.
The system prompts you to confirm your choice.
2. Roll the trackball to the **OK** button and then press the **SET** key to continue.

The **Customize Display** screen for the Venous exam provides the following selections:

Selection	Option(s)	Allows you to...
Physician ID	On, Off	Select this check box to include at the bottom of the report page the Physician ID number entered in the patient data form.
Referring MD	On, Off	Select this check box to include at the bottom of the report page the Referring MD name entered in the patient data form.

Customizing Gynecology Measurements, Calculations, and Reports

The Measurement and Report Preset for the Gynecology exam includes exam-specific descriptions for Display Item.

Preset Main Menu: M&R: Measurement and Report Preset: Display Item (Gynecology)

Note: This selection is for use with the following exam types only: GYN.

The Gynecology Display Item allows you to designate items to include on the measurement screen and in the patient report.

Selection	Option(s)	Allows you to...
Measurement Screen	---	(Heading [title] for a group of selections.)
Abbreviated Display of Results	On, Off	Select this check box to display in the Measured Results only labels to which measurements have been assigned. De-select the check box to display in the Measured Results all the labels on the Measurement Menu.
Vertical Display of Doppler Measurement Results	Systole Diastole S/D RI PI	Select each check box to display the selection as a permanent, labeled item in the Measured Results for Doppler. De-select the check box to not display the selection in the Measured Results.
Enable Early OB caliper	On, Off	Select this check box to display Early OB measurement labels on the GYN Measurement Menus.
Report	---	(Heading [title] for a group of selections.)
Abbreviated Display of Results	On, Off	Select this check box to display in the 2D-Mode Measurements section of the report only labels to which measurements have been assigned. De-select the check box to display in the 2D-Mode Measurements all the labels on the Measurement Menu.
Display of Doppler Measurement Results	Systole Diastole S/D RI PI	Select each check box to display the selection as an item in the Doppler section of the report. De-select a check box to not display a selection in the Doppler section of the report.
Physician ID	On, Off	Select this check box to include at the bottom of the report page the Physician ID number entered in the patient data form.
Referring MD	On, Off	Select this check box to include at the bottom of the report page the Referring MD name entered in the patient data form.

System Reference

Display Item:	Orotho, Urology,	
EM	3-34	
OB, Early OB	3-50	
Cardiac	3-68	
P-Vascular	3-62	
C-Vascular	3-60	
Venous	3-63	

Customizing Cardiac Measurements, Calculations, and Reports

The Measurement and Report Preset for the Cardiac exam includes generic and exam-specific descriptions.

Preset Main Menu: M&R: Measurement and Report Preset: Measurement Order (Cardiac)

Note: This selection is for use with the following exam types only: Cardiac.

There are two methods for making the Measurement Order selection for Cardiac exams. The method in effect depends on the selection made in the Heading field. Cubed, Teichholz, and Gibson selections are guided measurements for assessing left ventricular function. These selections require a special procedure to establish measurement order. Since one of these selections will display first when Measurement Order is selected, the Cubed, Teichholz, and Gibson selection procedure will be described here.

Note: If any other selection in the Heading field is made, follow the standard Measurement Order procedure. Refer to Measurement Order under Measurement and Report Settings, page 3-32.

The guided measurements present eight workflow patterns. Each pattern dictates a sequence of measurements. Select a pattern that best matches your workflow. Pattern 1 for each of the three guided measurement types includes all measurement labels. These measurements appear in the Measurement Order column on the right. Other patterns present the same sequence but with fewer measurements. Measurements not included in a pattern are listed in the Selectable Label column on the left. Measurements cannot be added, deleted, or rearranged for patterns.

System Reference
Measurement Order: GYN, C-Vas, P-Vas 3-32

To select a Cardiac guided measurement type:

1. Roll the trackball to the **Heading** field and then press the **SET** key.
The system displays a pull-down menu of Cardiac measurement types.
2. Roll the trackball to highlight one of the first three selections:
Cubed(2D), **Teichholz(2D)**, or **Gibson(2D)**.

To select a Cardiac exam pattern:

1. Roll the trackball to the **Pattern** field and then press the **SET** key.
The system displays a pull-down menu of pattern selections.
2. Roll the trackball to highlight a pattern and then press the **SET** key.
The Measurement Order column displays the measurement sequence for this pattern.
3. Repeat step 2 until the system displays the pattern of labels you prefer in the Measurement Order column.
4. Roll the trackball to the **OK** button and then press the **SET** key.

System Reference

Display Item:	
Orotho, Urology,	3-34
EM	3-34
OB, Early OB	3-50
GYN	3-65
P-Vascular	3-62
C-Vascular	3-60
Venous	3-63

Preset Main Menu: M&R: Measurement and Report Preset: Display Item (Cardiac)

The Cardiac Display Item allows you to designate items to include on the measurement screen and in the patient report.

Selection	Option(s)	Allows you to...
General	---	(Heading [title] for a group of selections.)
Default Measurement Title	2D-Mode M-Mode Doppler	Select which measurement type will be active when an imaging mode is entered.
Data Averaging	Direct Average	Specify whether to display the last measurement or an average of all the measurements.
HR Measurement Method	ECG Doppler/M-mode	Select the method for measuring heart rate.
Report	---	(Heading [title] for a group of selections.)
Physician ID	On, Off	Select this check box to include at the bottom of the report page the Physician ID number entered in the patient data form.
Referring MD	On, Off	Select this check box to include at the bottom of the report page the Referring MD name entered in the patient data form.

Customizing Emergency Medicine Measurements, Calculations, and Reports

The Measurement and Report Presets for the EM exam includes exam-specific descriptions.

Preset Main Menu: M&R: Measurement and Report Preset: Calculation Item (EM)

Note: This selection is for use with the following exam types only: EM.

The EM Calculation Item allows you to designate items to include on the measurement screen and in the patient report.

System Reference		
Obstetrical References		Ch 9

Selection	Option(s)	Allows you to...
Obstetrical Reference Selection	---	(Heading [title] for a group of selections.)
Label	BPD CRL GS	(Listing of measurement labels for assignment of a reference [author].)
Author	(Drop-down menu of authors)	Assign a reference [author] to the corresponding measurement label.
Bladder Volume	---	(Heading [title] for a group of selections.)
Imaged transversely	On, Off	Select the default orientation of the image.
Imaged sagittally	On, Off	Select the default orientation of the image.

4 Documentation and Storage

Documentation and Storage Devices	3
Using the CD/DVD Drive	3
Formatting CDs	4
Storage and Retrieval of System Information	5
Storing and Retrieving System Presets and QuickSets	5
Preset File Type Descriptions.....	8
Exported File Types.....	9
Files Saved to External Disk Media	9
Printers	11
Preparing for Printing.....	11
Printing Images and Patient Reports	12
Report Printers	13
Manufacturers of Medically-Approved Isolation Transformers	14
Mitigating the Risk of Connecting a Report Printer	15
Patient Environment.....	16
USB Report Printers	17
Connecting and Installing a USB Printer.....	18
Confirming Installation.....	19
Selecting the USB Printer.....	19
Testing the USB Printer Installation.....	20
Video Recorders	21
Video Communication Set-Up	21
Recording Patient Data.....	23
Using Video Playback	24
Viss Bookmarks.....	27

Documentation and Storage Devices

Controls and keys located on the ultrasound system are used to transfer images and patient reports to a documentation device or a disk drive.

The system is configured with a CD/DVD combination disk drive for storage of system software, patient data, and images. An internal hard drive provides additional storage capacity.

You can connect a maximum of three image/report documentation devices to the system:

- Black and white video printer (standard equipment)
- Color video printer
- Videocassette recorder (VCR) or digital video recorder (DVR)

Note: Refer to the manufacturer's instructions for specific information concerning the operation of these devices.

Using the CD/DVD Drive

You can read (import) from external disk media and write (export) to external disk media using the CD/DVD drive.

To insert a disk into the CD/DVD drive on the ultrasound system:

1. Press the **REVIEW** key on the control panel to display the Study screen.
2. If the system displays the Image screen, then select the **Study Screen** button to display the Study screen.
3. Select the **Eject** button in the **CD/DVD** section of the Study screen.
The system ejects the CD/DVD tray.
4. Place the disk onto the CD/DVD tray.
5. Select the **Load** button in the **CD/DVD** section of the Study screen.
The system closes the CD/DVD tray and reads the disk.

System Reference

Accessories and Options	Ch 2
DIMAQ-IP	Ch 5
CD	Ch 5
DICOM	Ch 6

To eject an inserted disk media:

1. Press the **REVIEW** key on the control panel to display the Study screen.
2. If the system displays the Image screen, then select the **Study Screen** button to display the Study screen.
3. Select the **Eject** button in the **CD/DVD** section of the Study screen.
The system ejects the CD/DVD tray.
4. Remove the disk from the CD/DVD tray.
5. Select the **Load** button in the **CD/DVD** section of the Study screen.
The system closes the CD/DVD tray.

Formatting CDs

You can format CDs before use.

To format the inserted CD:

1. Choose a method to display the Preset/QuickSet Utility screen.
 - Press the **F4** key on the keyboard to access the system presets and then select **Preset/QuickSet Utility** on the left of the screen.
 - Press the **F8** key on the keyboard to access the **Save/Delete QuickSet** screen and then select the **Preset/QuickSet Utility** button on the lower left of the screen.
2. Select **CD-R/RW** from the drop-down list on the lower left of the **Preset/QuickSet Utility** screen to display the **Format** button.
3. Select the **Format** button at the bottom of the screen.
The system displays the **CD-RW Format** dialog box.
4. To specify quick formatting, select the **Quick Format** check box.
5. Select **OK** to begin formatting the CD.
The system removes the **CD-RW Format** dialog box from the screen, formats the CD, and then displays a status message.
6. Select **OK** to exit the status message.

Storage and Retrieval of System Information

You can save user-defined QuickSets and system presets to external disk media and then retrieve the files as needed. Each QuickSet is saved to an individual file. System presets are collectively saved to one system preset file.

System Reference

Accessing the Disk	
Utility Window	4-3
Formatting CDs	4-4
System Presets	Ch 3

Storing and Retrieving System Presets and QuickSets

A QuickSet is an optimized configuration of imaging parameter settings for a specific transducer, exam, and operating mode.

You can save user-defined QuickSets and system presets to a disk and then retrieve the files as needed. The system saves each QuickSet to an individual QuickSet file and each type of system presets to an individual Preset file. You can retrieve one Preset file at a time.

On the **Preset/QuickSet** Utility screen, the system lists the contents stored to the selected location (system's hard disk or external disk media). The system organizes Preset files by file name and file type and QuickSet files by name, exam, and transducer. When the contents of the disk are displayed, the system also lists the date and time of storage for each Preset file and QuickSet file.

Note: The date and time for Preset files stored on the system's hard disk do not match the date and time for Preset files stored on the external disk media (which represent the actual time of storage). When you display the **Preset/QuickSet Utility** screen and select the contents of the system's hard disk for display, the system updates the date and time included in the Preset file names stored on the system's hard disk.

To display the Preset/QuickSet Utility screen, choose one of the following methods:

- Press the **F4** key on the keyboard to access the system presets and then select **Preset/QuickSet Utility** on the left of the screen.
- Press the **F8** key on the keyboard to access the **Save/Delete QuickSet** screen and then select the **Preset/QuickSet Utility** button on the lower left of the screen.

[2] Instructions for Use

Creating a QuickSet	Ch A1
---------------------	-------

System Reference

System Presets	Ch 3
----------------	------

F4

Preset/QuickSet Utility

To save Presets and/or QuickSets to the inserted CD:

1. Display the **Preset/QuickSet** Utility screen.
2. Select **System** from the drop-down list on the lower left of the **Preset/QuickSet Utility** screen to display the contents of the system's hard disk.
3. To sort the displayed Preset files or QuickSet files, select the required column heading.
4. Select Preset(s) and/or QuickSet(s) for storage by selecting the check box to the left of each Preset and/or QuickSet.
5. Select the required write speed from the **CD-R/RW Write Speed** drop-down list on the upper right of the **Preset/QuickSet Utility** screen.
6. Select the **Export** button and confirm the storage operation; if overwriting, confirm the overwrite operation.

The system stores the selected Presets and QuickSets to the external disk media and then displays a status message.

7. Select **OK** to exit the status message.
The system ejects and then re-inserts the disk.
8. To close the **Preset/QuickSet Utility** screen, select the **Exit** button on the lower right of the screen.

To retrieve a Preset and/or QuickSet(s) from the inserted CD:

Note: When you retrieve a Preset, the system overwrites related settings in the system presets. When you retrieve a QuickSet, the system overwrites any existing QuickSet that has the same name.

1. Display the Preset/QuickSet Utility screen.
2. Select **CD-R/RW** from the drop-down list on the lower left of the **Preset/QuickSet Utility** screen to display the contents of the inserted disk.
3. To update the displayed list of files, select the **Update** button at the bottom of the screen.
4. To sort the displayed Preset files or QuickSet files, select the required column heading.
5. To select a Preset for retrieval:
 - a. Select the required file type from the **File Type** drop-down box on the upper right of the screen.
The system displays all Preset files of the selected type that are currently saved on the disk.
 - b. Select the required file.
The system highlights the selected file.
6. To select QuickSet(s) for retrieval, select the check box to the left of each required QuickSet file.
7. Select the **Import** button; if required, confirm the operation.
8. Select **OK** to confirm the displayed reboot operation message, if displayed.
The system reboots (cycles power).
9. If you retrieved QuickSet(s) only, then select the **Exit** button on the lower right of the screen to close the **Preset/QuickSet Utility** screen.

Preset File Type Descriptions

Each Preset file type saves a specific set of system preset settings.

System Reference

System Presets Ch 3

Preset File Type	Settings Saved	
General System Presets	Settings under the following system preset menu items: <ul style="list-style-type: none">▪ General▪ Patient ID▪ Imaging▪ Peripheral▪ Customize Keys▪ Boot Up (except for Bootup Exam & QuickSet, which is saved with the Default Settings Preset file type)▪ Storage▪ Display▪ M&R (General Caliper setting only)▪ System/Language (Select Language setting only)	 F4 M&R <ul style="list-style-type: none">▶ Measurement and Report Preset▶▶ Standard OB/ Early OB User-Defined▶▶ Item & Reference Selection
OB Tables and Formulas	All user-defined formulas and tables plus the items and references for the Obstetric measurements and reports package (under the M&R system preset menu item)	
Default Settings	Settings under the following system preset menu items: <ul style="list-style-type: none">▪ Boot Up (Bootup Exam setting only)▪ Default Settings▪ User-Defined Exam List▪ M&R (Measurement and Report Preset settings only, for all exam types)	
Network Settings	Settings under the following system preset menu items: <ul style="list-style-type: none">▪ DICOM▪ Networking	
4D Palette	All 4D color schemes (Palette dialog box)	
4D QuickSets	All <i>fourSight</i> QuickSets	
Total System Configuration	All settings that are saved for the following Preset file types: <ul style="list-style-type: none">▪ General System Presets Preset file type▪ OB Tables and Formulas Preset file type▪ Default Settings Preset file type	

Exported File Types

You can use a text editor to view data saved for a patient study, a group of preset settings, or a QuickSet, when that data was saved to a disk.

Files Saved to External Disk Media

External disk media may contain the file types listed below. You can view image and report files on the system; other files require a text editor on a personal computer.

System Reference

Note: If you plan to use the measurement function on the ultrasound system for a copied image, then you must copy the associated .CAL and .SCALE files (which are identified by the same date, time, and image number) to the same destination. These files contain image display parameters for the associated image file.

Patient folders are labeled by the related patient ID. Study folders are labeled with the date and time of the study, using the date format *MM.DD.YYYY*; where *YYYY* is the year, *MM* is the month, and *DD* is the day, and the time format *HH.MM.SS*; where *HH* is the hour, *MM* is the minute, and *SS* is the second. The date format used to name the study folders is unrelated to the date format set in the system presets.

Extension	File name*	Data Included in File	Location (within the SONOLINE STUDIES folder)
.AVI	<ID>_<date><time>_<#>	Clip	clips folder within the study folder, within the ID-labeled patient folder
.CAL	<ID>_<date><time>_<#>	Image display parameters for the image file (.TIF) or clip file (.AVI) with an identical file name	images folder or clips folder within the study folder, within the ID-labeled patient folder
.DAT	patient	Patient name, patient ID, and time at which the most recent image or patient report was saved	ID-labeled patient folder
.DAT	system	System settings for language, software version	ID-labeled patient folder
.DAT	Archive	Archival status of the related study	study folder within the ID-labeled patient folder
.DAT	Study	Patient data (name, ID, date, time, age, sex, birthdate, hospital, doctor, operator) for a specific study	study folder within the ID-labeled patient folder
.PCI	<ID><date><time>	Image calibration information for the image file (.TIF) with an identical file name	Date folder within the ID-labeled patient folder
.3PT	4DPalette_<date><time>	All 4D color schemes (Palette dialog box)	Preset folder

Extension	File name*	Data Included in File	Location (within the SONOLINE\STUDIES folder)
.3QS	<i>4DQuickSet_<date><time></i>	All fourSight QuickSets	Preset folder
.PDM	<i>Network_<date><time></i>	Network information (DICOM settings)	Preset folder
.PDS	<i>Default_<date><time></i>	Default settings	Preset folder
.PGS	<i>General_<date><time></i>	General system preset settings	Preset folder
.POB	<i>OB_<date><time></i>	OB tables and formulas	Preset folder
.PTS	<i>Total_<date><time></i>	Total system configuration settings	Preset folder
.REP	<i><ID><date><exam type></i>	Patient report data for a patient report	reports folder within the study folder, within the ID-labeled patient folder
.SCALE	<i><ID>_<date><time>_<#></i>	Image scaling factor for the image file (.TIF) with an identical file name	images folder within the study folder, within the ID-labeled patient folder
.TIF	<i><ID>_<date><time>_<#></i>	Image	images folder within the study folder, within the ID-labeled patient folder
.QIK	<i><user-generated></i>	QuickSets	QuickSet folder
.XML	StudyDB	Report data for the study	ID-labeled patient folder

* Terms in italic type and in carets (<>) indicate information used to name the file. The date format is YYYYMMDD for .REP files and MM.DD.YYYY for all other files; where YYYY is the year, MM is the month, and DD is the day (this date format is unrelated to the date format set in the system presets). The time format for all files is HH.MM.SS; where HH is the hour, MM is the minute, and SS is the second. The number sign (#) is a counter used to facilitate searching for images. The counter increments one unit for each image or clip saved.

Printers

You can print images from a current examination, a patient report, CINE data, or an image retrieved from a disk or videotape. When you print during real-time imaging, the ultrasound system momentarily freezes the image, sends a copy of the frozen image to the printer, and then resumes real-time display.

Note: Only authorized Siemens representatives are permitted to install documentation devices on the ultrasound system.

Note: Refer to the manufacturer's user manual for proper handling and operating instructions of the printer installed on your ultrasound system.

Preparing for Printing

You can configure one of the print controls to print to a connected black and white or color printer. The configured print key or foot pedal can print images and patient reports.

To configure a print control in the system presets:

1. Press the **F4** key on the keyboard to access the system presets.
The system displays the **Preset Main Menu** screen.
2. Select **Customize Keys** on the left of the screen.
3. Locate the section for the required print key (**PRINT/STORE 1** or **PRINT/STORE 2**) or the foot pedal (**Pedal 2**) and then select the black and white option or the color option.

Note: The **PRINT/STORE 1** control is associated with the **Remote Control 1** port on the system's rear panel. The **PRINT/STORE 1** control does not function if the configured system presets option for the control is different from the printer connected to this port. For example, the **PRINT/STORE 1** control does not function if it is configured to print to the color printer and the color printer is connected to the **Remote Control 2** port.

4. Select the **Save** button to store the new settings and exit the system presets.

The print control is now configured to print to the designated printer.

Printing Images and Patient Reports

You can use the **PRINT/STORE 1** key, the **PRINT/STORE 2** key, or the optional Pedal 2 of the footswitch to send examination data to a black and white or color printer.

To send an image or patient report to a black and white printer:

- Press the print control that is configured in the system presets for the black and white printer.

The system immediately sends the image or patient report to the connected documentation device for printing.

If you press the print control while the 2D image is active, the system freezes the image and then captures it for printing. When the exposure is complete, the system returns to real-time imaging.

To send an image or patient report to a color printer:

- Press the print control that is configured in the system presets for the color printer.

The system immediately places the data currently on-screen into the memory buffer of the connected recording device, and then sends a signal to the connected recording device to begin the print cycle.

If you press the print control while the system is in real-time, the system freezes, then places the data in the printer's memory buffer. When the data has been stored, the system returns to real-time imaging.

To send multiple images to a color printer:

Note: For color printers that print multiple images on one sheet, specify the desired number of images per sheet using the format setting on the printer.

- Press the print control that is configured in the system presets for the color printer.

The system stores the on-screen data in a defined location of the printer's memory.

- Continue to press the configured print control for the remaining number of images to be processed.

For example, if you select "4" as the image format on the color printer, each time you press the print control, an image is stored in the printer's memory. After you press the key a fourth time, the fourth image is stored and the system begins the print cycle.

Print/Store 1

Print/Store 2

System Reference

Configuring print controls	4-11
DICOM	Ch 6

Report Printers

⚠ WARNING: Accessory equipment connected to the analog and digital interfaces must be certified according to the respective EN and IEC standards (for example, EN 60950 and IEC 60950 for data processing equipment and EN 60601-1 and IEC 60601-1 for medical equipment). Furthermore, all configurations shall comply with the system standards EN 60601-1-1 and IEC 60601-1-1. Anyone who connects additional equipment to the signal input or signal output port configures a medical system and is therefore responsible that the system complies with the requirements of the system standards EN 60601-1-1 and IEC 60601-1-1. Siemens can only guarantee the performance and safety of the devices listed in the *System Reference*. If in doubt, consult the Siemens service department or your local Siemens representative.

System Reference

Accessories and Options	Ch 2
----------------------------	------

⚠ WARNING: Equipment connected to the ultrasound system and in the patient environment must be powered from a medically-isolated power source or must be a medically-isolated device. Equipment powered from a non-isolated source can result in chassis leakage currents exceeding safe levels. Chassis leakage current created by an accessory or device connected to a non-isolated outlet may add to the chassis leakage current of the ultrasound system.

⚠ WARNING: Non-medical grade report printers cannot be used within a patient environment,

⚠ WARNING: During use of a non-medical grade report printer or when a non-medical grade report printer is connected to the ultrasound system, the ultrasound system cannot in any way be in contact with a patient.

Relevant standards for some non-medical electrical equipment may have limits for enclosure leakage currents higher than required by medical standards. These higher standards are acceptable only outside the patient environment. It is essential to reduce enclosure leakage currents when non-medical electrical equipment is to be used within the patient environment. Measures for reducing leakage current include use of a medically-approved isolation transformer.

The ultrasound system has printer drivers compatible with non-medical grade report printers. Siemens does not guarantee the performance and safety of any non-medical grade report printer. Non-medical grade report printers do not fulfill the following safety requirements:

- EN 60601-1-1 and IEC 60601-1-1 (Medical Electrical Equipment, Part 1: General Requirements for Safety).
- EN 60601-1-2 and IEC 60601-1-2 (Electromagnetic Compatibility of Medical Devices).

If a non-medical grade report printer is to be used with the ultrasound system, then you must ensure mitigation is provided to meet all safety requirements. It is the responsibility of the user to ensure that the ultrasound system in combination with the non-medical grade report printer complies with safety requirements.

- Always use a medically-approved isolation transformer with a non-medical grade report printer.
- Mitigate risk with regard to the Electromagnetic Compatibility of Medical Devices requirement. A non-medical grade device must be designed, manufactured, and certified to meet the same EMC (electromagnetic compatibility) requirements as the ultrasound system, or other means must ensure that the overall EMC requirements are met.

Manufacturers of Medically-Approved Isolation Transformers

Manufacturer	Web Site
Tripp Lite	www.tripplite.com
Toroid Corporation of Maryland	www.toroid.com
Dale Technology Inc.	www.daletech.com

Mitigating the Risk of Connecting a Report Printer

To fulfill EN 60601-1-1 and IEC 60601-1-1 (Medical Electrical Equipment, Part 1: General Requirements for Safety) requirements for non-medical peripheral equipment:

- The non-medical peripheral equipment must be approved according to any other EN or IEC standard (EN XXXXX or IEC XXXXX, e.g., equipment complying with EN 60348 and IEC 60348, EN 60950 and IEC 60950, etc.).
- The connection of non-medical peripheral equipment to your ultrasound system must adhere to the following conditions:
 1. Connect the ultrasound system to an AC power outlet within a medically used room within the patient environment. A patient environment is defined as an area in which medical examination, monitoring, or treatment of the patient takes place. The patient environment is located 1.5 meters (1.8 meters [6 feet] in Canada and the U.S.A.) around the patient location.
 2. Connect the peripheral equipment AC power cable to medically approved isolation transformer.
 3. Connect the medically approved isolation transformer to a main AC outlet either inside or outside the patient environment. The peripheral device and medically approved isolation transformer combination can be either (a) within the same room as the ultrasound system, or (b) in a non-medically used room.

For additional information and other possible combinations, please refer to the Medical Electrical Equipment Standard EN 60601-1-1 or IEC 60601-1-1, Annex BBB.7, Scenario 3c.

Note: The above information is based on current EN 60601-1-1 and IEC 60601-1-1 standards, dated 2000-12. If your country's regulatory standards for medical equipment do not correspond to EN 60601-1 and IEC 60601-1, as well as, EN 60601-1-1 and IEC 60601-1-1, your local requirements may differ.

Patient Environment

- 1 Patient environment (represented by shading, extending exactly 1.5 meters (1.8 meters [6 feet] in Canada and the U.S.A.) around patient and ultrasound system)
- 2 Ultrasound system
- 3 Peripheral equipment (EN XXXXX and IEC XXXXX)
- 4 Peripheral equipment power
- 5 Medically-approved isolation transformer
- 6 Medically-approved isolation transformer power cord
- 7 Printer data cable
- 8 Additional protective earth
- 9 Ultrasound system power

1 2.5 meters (typical)

2 1.5 meters (1.8 meters [6 feet] in Canada and the U.S.A.)

USB Report Printers

A USB printer for printing patient reports can be connected to the ultrasound system at the USB port located on the side panel on the right side of the system. A USB port on the ultrasound system has the capability for use with a USB printer compatible with the HP PCL 3 protocol.

Use the system presets to automatically print stored images to the USB printer. When this automatic print function is enabled and you store an image to the system's hard disk, the system automatically prints the stored image to the connected USB printer. Alternatively, use the keyboard shortcut **Ctrl+U**.

You must observe all safety precautions for connecting a non-medical device to the ultrasound system.

Note: The **SET** key on the control panel functions as a point-and-select device (similar to a computer mouse) when used with the trackball. To select an on-screen object such as a button or a check box, roll the trackball to position the pointer (cursor) on the object and then press the **SET** key on the control panel.

System Reference

System Presets Ch 3

F4

DIMAQ Utility
► Printer
►► Autoprint Images

Connecting and Installing a USB Printer

Before beginning this procedure, ensure that the USB printer is disconnected from the ultrasound system.

To connect a USB printer:

1. Press the on/off (◊) switch to power on the ultrasound system.
When the power on sequence is complete, the system displays the active image screen.
2. Power on the USB printer and ensure that there is paper in the feeder tray.
3. Connect the USB cable from the printer to the USB port on the side panel on the right side of the ultrasound system.
4. Press the **F4** key.
The system displays the **Preset Main Menu**.
5. Select **DIMAQ Utility** on the left of the screen.
The system displays the **DIMAQ Utility** screen.
6. Select **Install Printer**.
The system displays the **Add Printer Wizard** dialog box.
7. Select **Next**.
8. Follow these instructions for each wizard screen presented by the **Add Printer Wizard**.

Wizard Screen	User Action
Local or Network Printer	<ol style="list-style-type: none"> 1. Select Local printer. 2. Clear (disable) the Automatically detect and install my Plug and Play printer check box. 3. Select Next.
Select the Printer Port	<ol style="list-style-type: none"> 1. Select Use the following port: 2. Select the down arrow on the right. 3. Select an available USB port (for example, USB001 (Virtual printer port for USB)). 4. Press the SET key. 5. Select Next.
Add Printer Wizard	<ol style="list-style-type: none"> 1. Select HP in the Manufacturer column. 2. Select HP DeskJet in the Printers column. 3. Select Next.

Wizard Screen	User Action
Use Existing Driver	(displays if a printer was previously installed) 1. Select Keep existing driver (recommended) 2. Select Next .
Name Your Printer	1. After Printer name: enter: USB_Printer. 2. Select Yes . 3. Select Next .
Printer Sharing	1. Select Do not share this printer . 2. Select Next .
Print Test Page	1. Select Yes . 2. Select Next .
Completing the Add Printer Wizard	1. Select Finish . 2. Select the OK button after the test page prints.

The system displays the **DIMAQ Utility** screen.

9. Select **OK**.

The system displays the active image screen.

10. Select a USB printer and then print a report to confirm the installation.

Confirming Installation

To confirm installation, select a USB printer and then print a report.

Selecting the USB Printer

Use the system presets to select a USB printer as the system's report printing device.

To select a USB printer:

1. Press the **F4** key on the keyboard.
- The system displays the **Preset Main Menu**.
2. Select **Peripheral** from the left of the screen.
 3. Select the **USB Printer** check box.
 4. Select the **Save** button.

The system displays the active image screen.

Testing the USB Printer Installation

Test the installation of the printer by printing a report.

Note: You can perform this test without actual data in a report.

To test the USB printer installation:

1. Press the **F5** key on the keyboard.
The system displays the **Exam and QuickSet** screen.
2. Select **C-Vas**.
After a pause, the system displays the active image screen.
3. Press the **F2** key.
The system displays a cerebrovascular report.
4. Select the **Send Report** button on the lower right of the screen.
The system sends the report to the selected USB printer and changes the **Send Report** button to **Cancel**.
 - a. To interrupt immediately, select the **Cancel** button.
 - b. To stop after the current page, press the **ESC** key.

Video Recorders

⚠ Caution: When the ultrasound system is expecting a video signal from a connected input/output device, a bright band displays on the screen. The screen saver on the ultrasound system does not replace this bright band. To avoid permanent damage to the screen (phosphorus burn-in), return the system to an imaging display before leaving the monitor unattended.

Note: Please refer to the manufacturer's user manual for instructions on operating your video recorder.

Note: While the ultrasound system is designed to provide the highest quality of images to a documentation or storage device, image quality during playback is dependent on the video recorder and video media being used. Always use an S-VHS videotape for a VCR.

Video Communication Set-Up

You must use the system presets to designate the RS-232C communication port and the video input port (Color or S-Video) connecting the ultrasound system and the video recorder.

Note: The RS-232C port enables remote control of the video recorder through the ultrasound system.

To designate a video connection to the RS-232C port:

1. Press the **F4** key on the keyboard to access the system presets.
The system displays the **Preset Main Menu** screen.
2. Select **Peripheral** on the left of the screen.
3. Select either the **VCR** option or the **DVD** option for the **External RS-232C Port** on the right of the screen.
4. Select the **Save** button to store the new settings and exit the system presets.

F4

Peripheral
► External RS-232C

To designate which video input port is connected to the video recorder cables:

1. Press the **F4** key on the keyboard to access the system presets.
The system displays the **Preset Main Menu** screen.
2. Select **Peripheral** on the left of the screen.
3. Select an option in the **Video Input Source** section on the right of the screen.
4. Select the **Save** button to store the new settings and exit the system presets.

F4

Peripheral
► Video Input Source

Recording Patient Data

Use the **VCR** key to send examination data to the video recorder for recording on video media. Standard video signals are provided in PAL and NTSC formats.

Use the system presets to configure the **VCR** key and to display the playback code.

F4

Customize Keys

► VCR key

Display

► Playback Code

To record patient data using a video recording device:

1. Insert the media into the video recorder and then press the **VCR** key on the control panel to begin recording.

The system increases the illumination of the **VCR** key while recording is in progress.

2. If the **VCR** key is configured in system presets to toggle the recording function with the pause function, then press the **VCR** key to pause recording. To resume recording, press the **VCR** key a second time.

While recording is paused, the system flashes the illumination of the **VCR** key.

3. If the **VCR** key is configured in system presets to toggle the recording function with the stop function, then press the **VCR** key to stop recording. To resume recording, press the **VCR** key a second time.

When recording stops, the **VCR** key is no longer illuminated.

4. To end the recording session, press the **VIDEO I/O** key to display playback selections on the LCD.

The system automatically selects **OStop** on the LCD and the recording stops.

5. To eject the video media, press **OEject** on the LCD.

The video recorder powers off when the system is turned off.

System Reference

System Presets Ch 3

F4

Customize Keys

Using Video Playback

Use the **VIDEO I/O** key to access the video recorder's selections on the LCD for playback of previously-recorded examination data.

During video playback, an image can be paused and then printed through a connected printing device. It is not possible to make measurements on images stored to DVD.

To play back a recorded image:

1. Insert the media into the video recorder and then press the **VIDEO I/O** key on the control panel.

Communication between the video recorder and the imaging system is opened. The LCD displays selections for controlling the operation of the video recorder during video playback.

2. Press **OPlay** on the LCD to play back recorded data.
3. Use the following LCD selections to control viewing of the recording:

LCD Selection	Action
ORewind	Rewinds the media.
OFast Forward	Advances the media.
OTape Search (VCR only)	Reviews video playback in a forward or backward direction.
OShuttle Search (digital video recorder only)	<p>Note: To advance, roll the trackball to the right; to rewind, roll the trackball to the left.</p> <p>Note: Your movement of the trackball controls the speed of the search. Minimal trackball movement searches at the slowest speed; to increase the speed of the search, increase trackball movement.</p>
OStep Frame	<p>Reviews individual video frames.</p> <p>Note: To advance to the next frame, roll the trackball to the right; to view the previous frame, roll the trackball to the left.</p>
OEject	Ejects the media from the video recorder.
OStop	Stops playback.
OPause	Pauses playback.
OPlay	Starts playback.

For a VCR you also have the following selections:

LCD Selection	Action
OManual Counter	If playback is stopped, displays the Manual Counter window and then resets the counter displayed on the VCR to the value you enter.
OCounter Search	If playback is stopped, displays the Counter window and then searches the tape for the counter value you enter. Displays the corresponding frame if the search is successful.
OViss Write	Writes a Viss (VHS Index Search System) relative position indicator ("bookmark") on the displayed frame of the tape. Viss position indicators remain on the tape until you record new data over them. No maximum exists for the number of Viss position indicators per tape.
OViss Search	Displays the Viss dialog box if playback is stopped. (Viss stands for VHS Index Search System.) Entry of "00" initiates the continuous search-and-playback feature. Entry of another number initiates a search for the related position indicator ("Viss bookmark"). Searches occur in the indicated direction (Rewind or Fast Forward). Valid Viss numbers (position indicators) for entry into the Viss dialog box are 00 – 39.

For a digital recording device you also have the following selections:

LCD Selection	Action
OFinalize	Adds control information to the media allowing other video players to read the media. Once the media is finalized it is read-only.
OUnFinalize	Removes the control information from the media allowing write access to the media.
OPrevious Title	Accesses the images and views for the previous title, press repeatedly to cycle through the available titles. Note: A new title is created each time you stop recording.
ONext Title	Accesses the images and views for the next title, press repeatedly to cycle through the available titles. Note: A new title is created each time you stop recording.
OPrevious Chapter	Accesses the images and views for the previous chapter, press repeatedly to cycle through the available chapters. Note: A new chapter is created each time you pause and then resume recording.
ONext Chapter	Accesses the images and views for the next chapter, press repeatedly to cycle through the available chapters. Note: A new chapter is created each time you pause and then resume recording.

4. To discontinue communication between the video recorder and the ultrasound system and resume real-time imaging, press **OStop** on the LCD and then press **VIDEO I/O** on the control panel.

Viss Bookmarks

You can create and search for Viss bookmarks on a videotape. Viss bookmarks are relative position indicators that allow you to mark a frame of interest and then redisplay the marked frame by entering a number and indicating the direction in which to search.

You can also search continuously for Viss bookmarks. When you initiate the continuous search-and-playback feature and indicate the direction in which to search, the system plays back each detected bookmark for ten seconds until the system reaches the end (or beginning) of the tape.

To create a Viss bookmark:

1. Insert a videotape into the VCR and then press the **VIDEO I/O** key on the control panel.

Communication between the VCR and the imaging system is opened. The LCD on the system displays selections for controlling the operation of the VCR.

2. Play back recorded data to locate the frame of interest.

3. Press **OViss Write** on the LCD to mark the frame of interest.

The system creates a Viss bookmark on the tape at the current frame.

To search for a Viss bookmark:

Note: The **OViss Search** LCD selection does not function unless playback is stopped.

1. Insert the videotape containing the bookmark(s) into the VCR and then press the **VIDEO I/O** key on the control panel.

Communication between the VCR and the imaging system is opened. The LCD on the system displays selections for controlling the operation of the VCR.

2. Press **OViss Search** on the LCD.

The system displays the **Viss** dialog box on the image screen.

3. Enter a number other than "00" into the dialog box and then select either the **Rewind** button or the **Fast Forward** button at the bottom of the dialog box. (For example, enter "02" and select the **Rewind** button to search for the second bookmark previous to the current frame.)

The system searches for the Viss bookmark (position indicator) relative to the current frame, in the direction indicated (**Rewind** or **Fast Forward**). When the system locates the entered position indicator, the system begins playback from the specified frame.

To search continuously for Viss bookmarks:

Note: The **OViss Search** LCD selection does not function unless playback is stopped.

1. Insert the videotape containing the bookmark(s) into the VCR and then press the **VIDEO I/O** key on the control panel.

Communication between the VCR and the imaging system is opened. The LCD on the system displays selections for controlling the operation of the VCR.

2. Press **OViss Search** on the LCD.

The system displays the **Viss** dialog box.

3. Enter "00" into the dialog box and then select either the **Rewind** button or the **Fast Forward** button at the bottom of the dialog box.

The system searches in the direction you indicated (**Rewind** or **Fast Forward**) for the next Viss bookmark (position indicator) relative to the current frame and then plays back the recorded data. After the data has played for ten seconds, the system searches for the next bookmark in the direction indicated and then plays back the recorded data for that bookmark. This search-and-playback process continues until the system reaches the end (or beginning) of the tape.

The system behavior when the end (or beginning) of the tape is reached depends on the direction indicated. If you selected the **Rewind** button, then the system automatically activates the **Stop** selection on the VCR LCD when it reaches the beginning of the tape. If you selected the **Fast Forward** button, then the system automatically rewinds the tape when it reaches the end of the tape and then activates the **Stop** selection on the VCR LCD.

5 DIMAQ-IP

About DIMAQ-IP	3
Clicking On-screen Objects and Making LCD Selections.....	3
Patient Data Protection.....	4
Logging in as an Administrator	4
Configuring User Accounts and Passwords	5
Changing Passwords.....	7
Logging Out of the DIMAQ-IP Integrated Workstation.....	7
Backing Up and Restoring User Accounts.....	7
Customizing the Login Screen.....	8
Storage of Studies on the Hard Disk or CD/DVD	9
Configuring Documentation Controls	9
Specifying the Write Speed for the CD/DVD Drive.....	10
Configuring Clip Options.....	11
Saving Clips	12
Saving Images	12
Saving Patient Reports	12
Saving Patient Data	13
Hiding Patient Information on the Screen.....	13
Completing the Current Patient Examination.....	13
Management of Studies on the Hard Disk or CD/DVD.....	14
System Management of Studies on the Hard Disk	14
Optimizing System Performance (Hard Disk Defragmentation).....	14
Searching for Studies	15
Archiving and Copying Studies	17
Archival History.....	18
Configuring the System to Retain and Display Archival History	18
Viewing and Deleting Archival History.....	19
Archiving Patient Data	20
Finalizing External Disk Media.....	20
Deleting Studies	21
Selecting Multiple Studies.....	21
Hiding Studies on the Hard Disk.....	22
Deleting Images	22

Clip and Image Display	23
Viewing Images	23
Changing Display Formats.....	24
Making Measurements on Displayed Images and Clips	25
Playing Back Clips.....	26
Enabling Simultaneous Clip Playback	28
Using the Slide Show Capability.....	28
Saving Frames from Clips.....	29
Patient Report Display	30

About DIMAQ-IP

The DIMAQ-IP feature is an integrated workstation with comprehensive on-board image and data management capabilities, including static images and digital dynamic clips. It allows you to play back clips and view images and patient reports, either during a patient examination or from saved studies for on-board exam review and quantification. You can also save clips, images, reports, and patient data to the system's hard disk or to external disk media (CD/DVD), and you can manage the saved studies.

Note: As viewed in DIMAQ-IP screens, a study consists of patient data and all saved clips, images, and reports from the time a patient is registered until the patient examination is completed. A study can contain clips, images, and reports for several exam types.

The following screens are included in the DIMAQ-IP feature:

- **Image screen** – Displays clips and images for the currently selected study; plays back clips. Also displays reports.
Note: The term "Image screen" (Upper case "I") refers to a screen with the DIMAQ-IP integrated workstation. The term "image screen" (Lower case "i") refers to a typical image screen that displays real-time images as they are acquired.
- **Study screen** – Lists studies that are saved on the selected disk (HD or CD/DVD).

[2] Instructions for Use

Stress Echo Ch A8

[1] Instructions for Use

Example of typical
"image screen" Ch 1

Clicking On-screen Objects and Making LCD Selections

To use DIMAQ-IP, you need to click or select objects on the screen, such as buttons and tabs, in addition to selections on the LCD.

To click or select an object on the screen:

- Roll the trackball to position the trackball pointer on the object and then press the **SET** key located on the control panel.

To double-click an object on the screen:

- Roll the trackball to position the trackball pointer on the object and then press the **SET** key located on the control panel twice in quick succession.

To make a selection from the LCD:

- Press the key to select the option displayed in the cell.

Patient Data Protection

You can configure the system to display a password-protected logon screen for the DIMAQ-IP integrated workstation. Passwords restrict access to patient data.

Use the system presets to configure the options available for patient data protection.

Logging in as an Administrator

You can log in as an administrator to manage user accounts and passwords on the system. An administrator can create additional administrator accounts.

The first time you select the **Password...** button on the Authorization screen, the system prompts you to create an administrator account.

To log in as an administrator:

Note: You must have the administrator password for this procedure.

1. Press the **F4** key on the keyboard, and then select **Authorization** on the left of the displayed screen.
2. Select **Password...** on the left of the screen below **Administration**.

Note: If the administrator account has not been created, the system prompts you to create the administrator account.

3. Use the keyboard to enter the user name and password for the administrator account, and then select **OK** to close the dialog box.

The system displays the options available to the administrator. The administrator account is active until you exit system presets.

4. To exit the **Authorization** screen, select the **Save** button at the bottom of the screen or press **F4**.

System Reference

About DIMAQ-IP 5-3

F4

DIMAQ Utility

► Authorization

Configuring User Accounts and Passwords

You can create user accounts and passwords, and implement security restrictions. Levels of access are:

- Standard: Provides access to the DIMAQ integrated workstation for viewing and transferring patient data. Users can also change their own passwords.
- Administrator: Provides the same access as for standard accounts plus the ability to create and manage accounts.

You must create an administrator account prior to creating user accounts. An administrator can also configure password complexity and expiration parameters.

To create and configure an user account and password:

1. Log in as an administrator.
2. Select **New** on the right of the screen.
3. Use the keyboard to enter the user account name and password in each field as indicated, entering the same password in both **Password** fields, and then select **OK** to exit the dialog box.
The system displays a status message and lists the new account in the **Accounts** list at the top of the screen.
4. To assign administrator privileges to the account, select the account and then select the **Administrator** check box on the right of the screen.
5. To exit the **Authorization** screen, press the **F4** key on the keyboard.

System Reference

Logging in as an Administrator	5-4
--------------------------------	-----

To implement security restrictions:

1. Log in as an administrator.
2. To activate password-protection, select the **Login Required** check box in the **Authorization Policy** section of the screen.
3. To configure password complexity and security restrictions, make additional selections in the **Authorization Policy** section.

System Reference	
Logging in as an Administrator	5-4

To...	Do this:
Restrict the number of login attempts and disable the user account when the limit is reached	<ol style="list-style-type: none"> 1. Select the Retry Limits Retry Period check box. 2. Use the keyboard to enter the number of allowed login attempts in the Attempts field. <p>Note: An administrator can enable (unlock) the account.</p>
Note: The retry limit does not apply to administrator accounts.	
Require a time interval between login attempts	<ol style="list-style-type: none"> 1. Select the Retry Limits Retry Period check box. 2. Use the keyboard to enter the number of seconds the user must wait before trying to log in after a failed attempt in the Seconds field.
Automatically log out of a user account	<ol style="list-style-type: none"> 1. Select the Autologout (Screen Saver) check box.
Require users to periodically reset their passwords	<ol style="list-style-type: none"> 1. Select the Password Expire check box. 2. Use the keyboard to enter the number of days before the system prompts for a password change in the days field.
Configure password complexity	<ol style="list-style-type: none"> 1. Select the Password Policy check box. 2. To require the password to be a minimum length, use the keyboard to enter the number in the Minimum Characters field. 3. To require particular types of characters in the password, use the keyboard to enter the numbers in the following fields: Lowercase Characters (lowercase alphabetic characters) Special Characters (non-alpha-numeric characters) Uppercase Characters (uppercase alphabetic characters) Numeric Characters (numerals)

4. To save changes and exit the **Authorization** screen, select the **Save** button at the bottom of the screen.

Changing Passwords

Use the system presets to change the password for an existing user account.

Note: The system rejects the password change if the new password does not meet the security restrictions specified by your administrator. Contact your administrator for assistance.

System Reference	
System Presets	Ch 3
F4	
DIMAQ Utility ►Authorization	

Logging Out of the DIMAQ-IP Integrated Workstation

You can log out of the DIMAQ-IP integrated workstation (Study screen and Image screen). Logging out prevents unauthorized access to patient data.

To log out of the DIMAQ integrated workstation:

- Use the keyboard shortcut **Ctrl+Q**.

Backing Up and Restoring User Accounts

You can back up user accounts and passwords to disk media, such as a CD, and restore them by re-loading them on the system. You can also load the user accounts and passwords onto other ultrasound imaging systems to maintain the same user accounts and passwords on multiple systems.

To prevent detection, passwords are encrypted when they are stored to the disk media.

System Reference	
Configuring User Accounts and Passwords	5-5
Logging in as an Administrator	5-4

To back up user accounts and passwords:

Note: You must have administrator access to perform this procedure.

1. Log in as an administrator.
2. Insert a disk into the disk drive on the left of the system.
3. Select **Export** on the right of the screen.
4. Select **OK** to close the confirmation dialog box.
The system displays a progress bar and ejects the media when the export is complete.
5. Remove the disk media from the open drive, and then close the drive door.
6. To exit the **Authorization** screen, press the **F4** key on the keyboard.

System Reference	
Configuring User Accounts and Passwords	5-5
Logging in as an Administrator	5-4

To restore user accounts:

1. Log in as an administrator.
2. Insert the disk media containing the user accounts and passwords into the disk drive on the left of the system.
3. Select **Import** on the right of the screen.
4. Select **OK** to close the confirmation dialog box.

The system displays a progress bar during restoration of the user accounts and passwords from the disk. The imported user accounts and passwords overwrite any existing user accounts and passwords.

5. To exit the **Authorization** screen, press the **F4** key on the keyboard.

System Reference

Logging in as an Administrator	5-4
--------------------------------	-----

Customizing the Login Screen

Use the system presets to customize the text on the login screen for the DIMAQ integrated workstation.

Note: You must have administrator access to customize the login screen.

System Reference

System Presets	Ch 3
----------------	------

F4

DIMAQ Utility	
► Authorization	

Storage of Studies on the Hard Disk or CD/DVD

With DIMAQ-IP, you can save studies to the system's hard disk (HD) or CD/DVD. Studies include patient data and saved clips, images, and patient reports.

Use the system presets to configure documentation controls for saving images and clips.

The system automatically saves patient data to the system's hard disk when you register the patient, regardless of the designated storage destination.

If the designated storage destination is either the system's hard disk or CD/DVD, then the clips, images, and reports saved during the examination are also saved to the system's hard disk. When the patient examination is completed, the system saves the complete study to the designated storage destination.

Configuring Documentation Controls

You can configure the system to save clips or images/reports when you press one of the following documentation controls located on the control panel: **PRINT/STORE 1**, **PRINT/STORE 2**, or **DIGITAL STORE**. Use the system presets to configure documentation control(s). To configure a documentation control in the system presets:

1. Press the **F4** key on the keyboard to access the system presets.
The system displays the **Preset Main Menu** screen.
2. Select **Customize Keys** on the left of the screen.
3. Locate the section for the required documentation control (**PRINT/STORE 1**, **PRINT/STORE 2**, or **DIGITAL STORE**) and then select one of the following options:
 - **Clip Capture** to save clips to the designated storage destination
 - **Disk Store** to save images and patient reports to the designated storage destination
4. Select the **Save** button to store the new settings and exit the system presets.

System Reference

System Presets Ch 3

F4

Customize Keys

System Reference

System Presets Ch 3

F4

Customize Keys

Print/Store 1

Print/Store 2

Digital Store

Storing the DICOM Viewer Software on Disks

You can enable or disable the automatic storage of the DICOM viewer software. The DICOM viewer software program can display DICOM formatted data on personal computers.

Use the system presets to enable or disable automatic storage of the DICOM viewer software program with DICOM-formatted data archived to CDs.

Note: To display the **Archive** system presets item, first select **DIMAQ Utility** or another DIMAQ item from the **Preset Main Menu** screen.

System Reference

System Presets Ch 3

F4

Archive

► CD

►► Burn Showcase to
DICOM CD

Specifying the Write Speed for the CD/DVD Drive

You can specify the write speed for the CD/DVD drive on the ultrasound system.

Use the system presets to specify the write speed for the CD/DVD drive.

To specify the write speed for the CD/DVD drive:

1. Press the **F4** key on the keyboard to display the **Preset Main Menu** and then select **DIMAQ Utility** on the left of the screen.
2. Select the speed from the **Write speed** drop-down list in the **CDR** section of the screen.
3. Select the **OK** button at the bottom of the screen to save changes and exit the **DIMAQ Utility** screen.

System Reference

System Presets Ch 3

F4

DIMAQ Utility

Configuring Clip Options

When you press the documentation control that is configured for clip capture in the system presets, the system captures a set number of image frames and then stores the image frames as a clip.

Note: You can configure multiple documentation controls for clip capture.

The clip contains the image frames acquired either before or after you press the documentation control, according to the acquisition timing option configured in the system presets. The retrospective option captures the image frames acquired before you press the documentation control. The prospective option captures the image frames acquired after you press the documentation control.

Use the system presets to configure clip options such as length and type.

Note: The number of frames in a clip is determined by the duration configured in the system presets and the number of frames to acquire per second, which is determined by system type (NTSC or PAL).

To configure options for clip capture:

1. Choose one of the following methods:
 - Select **OClip Capture** from the **2D** tab on the LCD to display the **Clip capture presets** screen.
 - Press **F4** and then select **Clip Capture** on the left of the screen to display the **Clip capture presets** screen.
2. Change options as required.
3. Select the **Save** button to store the new settings and exit the system presets.

System Reference
System Presets Ch 3

 F4
Clip Capture

[1] Instructions for Use
Technical Description Ch 6

Saving Clips

You can save (capture) a clip during a patient examination. You can also save a clip during CINE. The system saves the clip to the designated storage destination.

To save (capture) a clip:

- Press the documentation control that is configured in the system presets for clip capture.

System Reference

Configuring documentation controls 5-9

Saving Images

You can save an image during a patient examination. You can also save an image during CINE. The system saves the image to the designated storage destination.

Use the system presets to automatically print stored images to the USB printer. When this automatic print function is enabled and you store an image to the system's hard disk, the system automatically prints the stored image to the connected USB printer. Alternatively, use the keyboard shortcut **Ctrl+U**.

To save an image:

1. Freeze the image.
2. Press the documentation control that is configured in the system presets for disk storage.

System Reference

System Presets Ch 3

F4

DIMAQ Utility
► Printer
►► Autoprint Images

Saving Patient Reports

You can save a patient report during a patient examination. The system saves the patient report to the designated storage destination.

The system automatically saves patient report data and a representative image of the report each time you save a patient report. The system retains only the most recently saved patient report data for each exam type.

To save a displayed patient report:

- Press the documentation control that is configured in the system presets for disk storage.

System Reference

System Presets Ch 3

F4

DICOM
► Autostore to DICOM
DIMAQ Utility
► Autostore to Network

System Reference

Configuring documentation controls 5-9

Managing Studies 5-14

Exported File Types Ch 4

Saving Patient Data

Use the patient data form to save patient data. To save patient data:

- Register the patient.

The system stores the patient data to the system's hard disk when you select the **OK** button at the bottom of the **New Patient Data** form.

Use the system presets to enable automatic storage of the **New Patient Data** form to the related patient's study when each patient is registered.

System Reference	
System Presets	Ch 3

F4
Patient ID ► AutoStore New Patient Form

System Reference	
System Presets	Ch 3

F4
Patient ID ► Hide Patient Demographic

Hiding Patient Information on the Screen

You can hide patient information on the screen.

Use the system presets to continuously hide or display patient information.

Note: You can hide or display patient information before activating *fourSight 4D Imaging* or Stress Echo. Patient information cannot be hidden or displayed while these features are active.

To temporarily hide or display patient information on the screen:

- Press and hold the **Ctrl** key on the keyboard and then press the **P** key on the keyboard.

Completing the Current Patient Examination

When you complete the current patient examination, the system saves the study and it becomes available for copying and deleting.

To complete the patient examination, choose one of the following:

- Press the **REVIEW** key on the control panel and then select the **Close Study** button on the left of the Image screen.
- Press the **REVIEW** key and then select the **Close** or **New** button in the **Study** section of the Study screen.
- Press the **F1** key on the keyboard or the **New Patient** key on the control panel to begin a new examination. When you select the **OK** button to register the new patient, the system completes the previous patient examination.

Management of Studies on the Hard Disk or CD/DVD

You can search for, archive, copy, and delete studies using the Study screen. Studies include patient data and any saved clips, images, or reports.

Note: Active studies cannot be archived, copied, or deleted.

System Management of Studies on the Hard Disk

A warning message displays at system start-up if the hard disk is nearly full. If the hard disk is 70 percent full, the system indicates that unarchived studies may soon be deleted. If the hard disk is 80 percent full, the system indicates that unarchived studies will be immediately deleted.

When the hard disk reaches 70 percent capacity while the system is running, the system automatically deletes all studies older than 48 hours that are archived.

Optimizing System Performance (Hard Disk Defragmentation)

You can optimize system performance by routinely defragmenting the system's hard disk to increase efficient disk space.

Use the system presets to defragment the system's hard disk.

To defragment the system's hard disk:

 Caution: To avoid damage to the data on the ultrasound system's hard disk, you must follow this defragmentation procedure.

1. Press the **F4** key on the keyboard to display the **Preset Main Menu** and then select **DIMAQ Utility** on the left of the screen.
2. Select the **Defrag Now** button at the top of the screen.
The system displays the **Disk Defragmenter** screen.
3. Select the **Defragment** button at the bottom of the dialog box.
The system indicates that defragmentation is occurring and then displays a message indicating that defragmentation is complete.

System Reference

System Presets Ch 3

F4

DIMAQ Utility

4. Select the **Close** button to remove the message from the screen.
The system redisplays the **Disk Defragmenter** screen.
5. Select the **X** on the upper right of the screen to exit the **Disk Defragmenter** screen.
The system redisplays the **DIMAQ Utility** screen.
6. Press the **F4** key on the keyboard to exit the **DIMAQ Utility** screen.

Searching for Studies

You can search for studies stored on the hard disk or CD/DVD. You can view the first image of the selected study in preview format. You can also sort studies and resize the columns displayed in the Study screen.

You can sequentially view images of the selected study in preview format on the Study screen.

To search for a study:

1. Select the applicable option in the **Disk** section of the Study screen.
2. Select the **Search...** button in the middle of the Study screen.
The system displays the **Search...** dialog box.
3. Use the keyboard to enter partial or complete values for a patient name or ID, or enter the study date and then select **OK**.
The system removes the **Search...** dialog box from the screen and updates the Study screen, listing only those studies that equal the entered values.
4. To display all studies on the disk (hard disk or CD/DVD), select the **Show All** button in the middle of the Study screen.

Note: The **Show All** button is available only after a search has been completed.

To sequentially view the images of a study in preview format on the Study screen:

- Rotate the **M** control on the control panel.

Note: A limited number of clip and image previews are available for each study.

To sort the studies displayed in the Study screen:

1. Select a column heading (such as **Patient Name** or **Images**).
The system sorts the files in ascending order by the selected column header.
2. To sort the files in descending order, select the column heading again.

To resize columns displayed in the Study screen:

1. Roll the trackball over the rightmost vertical line of the column.
2. Press and hold the **SET** key on the control panel and then roll the trackball to the left or right until you achieve the desired column size.

Archiving and Copying Studies

Using DIMAQ-IP's Study screen, you can archive studies onto external disk media, such as CD or DVD. You can also import (copy) studies from disks to the system's hard disk.

When you archive data in DICOM format to external disk media, and the system is configured to store the DICOM viewer software, the system stores the study and the DICOM viewer software program to the disk. This program displays DICOM-formatted data on personal computers. For more information, refer to the operating instructions for the program.

System Reference

Exported File Types	Ch 4
---------------------	------

To archive a study onto a disk:

1. Insert the disk into the CD/DVD drive.
2. Press the **REVIEW** key on the control panel to display the Study screen.
3. If the system displays the Image screen, then select the **Study Screen** button to display the Study screen.
The system displays the Study screen.
4. Ensure that **HD** is selected in the **Disk** section of the Study screen.
5. Select a single study (or multiple studies) and then select **Export** in the **CD/DVD** section of the Study screen.

The system copies the selected study or studies to the inserted CD and updates the study's **Archived** status to **CD**.

To copy a study from the inserted disk to the system's hard disk:

1. Insert the disk into the CD/DVD drive.
2. Press the **REVIEW** key on the control panel to display the Study screen.
3. If the system displays the Image screen, then select the **Study Screen** button to display the Study screen.
The system displays the Study screen.
4. Ensure that **CD/DVD** is selected in the **Disk** section of the Study screen.
5. Select a single study (or multiple studies) and then select **Import** in the **CD/DVD** section of the Study screen.

The system copies the selected study or studies to the system's hard disk. When you select **HD** in the **Disk** section to display studies saved on the system's hard disk, the **Archived** status of the imported study is listed as **Import**.

Archival History

You can configure the ultrasound system to retain and display archival history for archived studies. You can also view and delete archival history.

Archival history lists archive devices, device identifiers, data format (such as DICOM and TIFF/AVI), and dates of archival.

Note: Device identifiers include electronic labels for CDs, AE titles for DICOM devices, IP addresses for network devices, and the ultrasound system's serial number for the system's hard disk.

Use the system presets to display deleted studies on the Study screen, to retain or delete the archive history for deleted studies, and to restrict the deletion of archived history.

The system indicates patient data existing on the system's hard disk by listing "HD" in the **Archived** column of the Study screen.

Configuring the System to Retain and Display Archival History

You can configure the ultrasound system to retain and display archival history for archived studies.

To configure the system to retain and display archival history:

Note: To select an item on the screen, roll the trackball to the item and then press the **ENTER** key on the control panel.

1. Press the **F4** key on the keyboard to display the system presets (**Preset Main Menu** screen).
2. Select **DIMAQ Utility** (or another DIMAQ item) on the left of the screen.
3. Select **Archive** on the left of the screen.
4. Select one of the following options (located below **Study Archive History Deletion Policy**) to retain archival history on the ultrasound system's hard disk:
 - **Allow Delete Study Archival History After Study is Deleted** – allows deletion of archival history.
 - **No Delete of Study Archival History** – does not allow deletion of archival history.
5. Select the **Show Deleted Studies in Study Screen** check box to display archival history.
6. Select **Save** to store the new settings and exit the system presets.

System Reference

System Presets Ch 3

F4

Archive

- Study Archive History Deletion Policy
- Show Deleted Studies in Study Screen

Viewing and Deleting Archival History

You can view and delete archival history.

Prerequisite: Use the system presets to retain and display archival history.

To view archival history:

1. Press the **REVIEW** key on the control panel.
2. If the Image screen is displayed, then select the **Study Screen** button to display the Study screen.
3. Select the required study.
4. Choose a method to display the **Archival History for...** dialog box:
 - Double-click the study (for studies deleted from the system's hard disk only).
 - Press the **F2** key on the keyboard.
 - Select **OShow Archive** on the LCD.

To delete archival history:

Note: The archival history is available for deletion after the study is deleted from the system's hard disk.

1. Press the **REVIEW** key on the control panel.
2. If the Image screen is displayed, then select the **Study Screen** button to display the Study screen.
3. Select the required study.
4. Select **Delete** on the right of the screen.

Archiving Patient Data

To facilitate location of archive media (such as CDs), mark the media with its electronic label (displayed on the Study screen) when you eject the media after archiving patient data.

Note: The electronic label remains on the screen when you eject the media. The system removes the label from the screen when you close the media drive without inserting labeled media.

When you archive (export) patient data to an unlabeled media disk, the system automatically generates an electronic media label using the DICOM standard format XXXXXXYYMMDDCCC, where XXXXXX is the system serial number, YY is the year, MM is the month, DD is the day, and CCC is an incremental counter that refreshes every day.

Finalizing External Disk Media

You can finalize external disk media to prevent storage of additional studies and to make disks readable by CD-R or DVD+R drives (read-only drives).

To finalize the inserted disk:

1. Insert the disk into the CD/DVD drive.
2. Press the **REVIEW** key on the control panel to display the Study screen.
3. If the system displays the Image screen, then select the **Study Screen** button to display the Study screen.
The system displays the Study screen.
4. Ensure that **HD** is selected in the **Disk** section of the Study screen.
5. Select the **Finalize** button in the **CD/DVD** section of the Study screen and then select **OK** to confirm the operation.
The system displays a message indicating that finalization of the disk is complete.
6. Select **OK** to remove the message from the screen.

Deleting Studies

You can remove studies from the system's hard disk.

Note: Studies on a disk cannot be deleted using the DIMAQ-IP Study screen.

To delete a study from the system's hard disk:

1. Select **HD** from the **Disk** section of the Study screen.
2. Select a single study (or multiple studies) in the Study screen and then select **Delete**.
3. Select **Yes** in the confirmation dialog box.

The system removes the study or studies from the system's hard disk.

Selecting Multiple Studies

You can select multiple studies for export, import, or deletion.

Note: For importing multiple studies, ensure that **CD\DVD** is selected in the **Disk** section of the Study screen. For exporting or deleting multiple studies, ensure that **HD** is selected.

To select multiple studies:

1. Select the first study.
2. To select additional studies, roll the trackball to each study, press and hold the **Ctrl** key on the keyboard and then press the **SET** key on the control panel.
3. To select consecutive studies, roll the trackball to the study, press and hold the **Shift** key on the keyboard, and then press the **SET** key on the control panel.

Hiding Studies on the Hard Disk

You can limit the display of studies on the Study screen.

Note: This feature is not available for studies stored on external disk media.

To limit the display of studies:

- Select the **Hide Studies** check box at the top of the Study screen and then select the required age (of the study) from the drop-down list to the right of the check box.

The system limits the display as configured and indicates the number of studies displayed (and the total number of studies) on the upper left of the screen.

Deleting Images

You can remove images from studies that are stored on the system's hard disk.

Note: Images from studies that are stored on a external disk media cannot be deleted using the DIMAQ-IP Image screen.

To delete an image from a study stored on the system's hard disk:

1. Select **HD** from the **Disk** section of the Study screen.
2. Select the required study (or studies) from the Study screen and then select the **Image Screen** button on the left of the screen.

The system displays the study's images (including clips) on the Image screen.

3. Select an image.
The system outlines the selected image in green.
4. Select the **Delete** button on the upper left of the screen and then select the **Yes** button in the confirmation message box displayed by the system.

The system deletes the image from the study and removes it from the Image screen.

Clip and Image Display

You can display clips and images during a patient examination or from completed studies that are saved to the system's hard disk or to CD/DVD. You can play back clips, view images, toggle image view display formats, and make measurements.

Viewing Images

You can view an image during a patient examination or from completed and saved studies. You can scroll through images displayed in the Image screen.

To view an image during a patient examination:

- Press the **REVIEW** key on the control panel.

The system displays the image(s) (including any clips) in the Image screen. The system indicates image selection by outlining the selected image with green lines. The last image acquired (the last image on the last page) is automatically selected.

To view an image from a completed study that is saved to the system's hard disk or to external disk media:

1. Press the **REVIEW** key on the control panel.
2. If the system displays the Image screen, then select the **Study Screen** button to display the Study screen.
3. If the image is stored on a disk, then insert the disk containing the image into the CD/DVD drive.
4. Select the required disk (**HD** or **CD/DVD**) in the **Disk** section of the Study screen.
5. Select the study and then select the **Image Screen** button (or double-click the study).

The system displays the image(s) (including any clips) in the Image screen. The system indicates image selection by outlining the selected image with green lines. The last image acquired (the last image on the last page) is automatically selected.

To scroll through the images displayed in the Image screen:

- Rotate the **SELECT** control.

Changing Display Formats

By default, the system optimizes the display format in the Image screen to fit the number of images contained in the selected study. For example, if you select a study containing five images, the system displays the images in the 9-images-per-page layout format.

In the full-screen display format, the selected image expands to the full size of the screen.

You can change the Image screen display (layout) format to display the selected number of images per page and lock the format for use when you display images from other studies. You can also toggle Image screen display format with full-screen display format.

To change the layout format for Image screen display of images or clips:

- Select the required layout format from the drop-down list on the upper left of the Image screen.

To lock the selected layout format:

- Select the lock graphic check box on the upper left of the Image screen.
The system retains the selected layout format until system shutdown.

Lock graphic check box.

To toggle Image screen display of an image (or clip) with full-screen display:

- Either press the **SELECT** control or double-click the image.
The system displays the image in full-screen display. If the image is a clip, the system automatically plays it back.

Making Measurements on Displayed Images and Clips

You can make measurements on displayed images and clips from the current study or from previous studies. You can also store or print the image with the measurements. When you activate the measurement function for a displayed clip, the system uses the most recently displayed frame from the clip.

Use the system presets to enable the system to save measurements on stored images and clip frames.

Note: The system can save measurements performed on a stored image or clip from the current study only.

To make measurements on a displayed image or clip:

1. Press the **REVIEW** key on the control panel.
2. If the system displays the Study screen, then select the required study and then select the **Image Screen** button.
3. From the Image screen, double-click an image or clip for full-screen display.
4. If the image is a clip, press the **SET** key to stop the playback motion and then either roll the trackball or use the playback controls at the bottom of the Image screen to display the required clip frame.
5. Press the **CALIPER** key to activate the measurement function and then perform the required measurements.

You can assign measurement labels to images or clip frames.

6. Press the documentation key configured in the system presets for disk storage or DICOM printing.

The system saves the image or clip frame with measurements as a new image on the system's hard disk and displays the image in the Image screen. If the documentation key used is configured for DICOM printing, the system also sends the image or clip frame to the corresponding printer layout page.

7. To exit the measurement function and display the Image screen, press the **ESC** key on the control panel.
8. To display the live image screen, double-click the image or clip to exit full-screen display, select the **Study Screen** button, and then select the **Live Screen** button.

Note: Labeled measurements (such as **HC**, or head circumference) and the following measurement LCD selections are not supported on accessed images: **PI Auto**, **Point Values**, **Average Values**, **A-Flow Volume**, and **D-Flow Volume**.

System Reference

System Presets Ch 3

F4

Storage

► Image Store Format
with Caliper

System Reference

Full-screen
display format 5-23

[2] Instructions for Use

Measurements
and Calculations Ch B1

When unsupported measurements are designated for system presets as listed below, the system uses substitute supported measurements.

System Presets Selection	Unsupported System Presets Measurement Option	Designated Substitute Measurement Option
Caliper Default Position	Depth	Center
Cardiac – HR Measurement Method	ECG	Doppler/M-Mode
Doppler*	PI Auto	PI Manual
Doppler*	Point Value	Velocity
Doppler*	Average Value	Velocity
Doppler*	A-Flow Volume	Velocity
Doppler*	D-Flow Volume	Velocity

*In Default Measurement Method by Mode.

Playing Back Clips

You can play back a clip during a patient examination or from completed and saved studies. The playback speed is adjustable. You can also review a clip frame by frame and scroll through images displayed in the Image screen.

To play back a clip during a patient examination:

1. Press the **REVIEW** key on the control panel.
The system displays the image(s) (including any clips) in the Image screen. The system indicates image selection by outlining the selected image with green lines. The last image acquired (the last image on the last page) is automatically selected. If the selected image is a clip, the system automatically plays it back.
2. Select the clip either by using the trackball and **SET** key or by rotating the **SELECT** control.
The system automatically plays back the selected clip.
3. To stop or start playback motion, use the trackball and **SET** key to select the clip again. (In full-screen display, press the **SET** key.) You can also use the clip control buttons at the bottom of the Image screen.
4. To adjust clip playback speed, use the **Clip Speed** slider control on the lower left of the Image screen.

System Reference

Searching for Studies	5-15
Changing Display Formats	5-24

To play back a clip from a completed study that is saved to the system's hard disk or to a external disk media:

1. Press the **REVIEW** key on the control panel.
2. If the system displays the Image screen, then select the **Study Screen** button to display the Study screen.
3. If the clip is stored on a disk, then insert the disk containing the clip into the CD/DVD drive.
4. Select the required disk (**HD** or **CD/DVD**) in the **Disk** section of the Study screen.
5. Select the study and then select the **Image Screen** button.

The system displays the image(s) (including any clips) in the Image screen. The system indicates image selection by outlining the selected image with green lines. The last image acquired (the last image on the last page) is automatically selected. If the selected image is a clip, the system automatically plays it back.

6. Select the clip either by using the trackball and **SET** key or by rotating the **SELECT** control.
- The system automatically plays back the selected clip.
7. To stop or start playback motion, use the trackball and **SET** key to select the clip again. In full-screen display, press the **SET** key.
 8. To adjust clip playback speed, use the **Clip Speed** slider control on the lower left of the image screen.

Displays the previous frame.

Displays the next frame.

To review a clip frame by frame:

- In Image screen display format, stop the playback motion and then select the appropriate clip control button at the bottom of the Image screen for display of the desired frame (previous frame or next frame).
- In full-screen display, slowly roll the trackball to the right or left.

To scroll through the images displayed on the Image screen:

- Rotate the **SELECT** control.

Enabling Simultaneous Clip Playback

You can enable simultaneous clip playback of all clips currently displayed in a study using the **Options** dialog box located on the (DIMAQ-IP) Image screen. Playback is possible for clips in a current patient examination or a completed study.

To enable simultaneous playback of all clips in the currently displayed study:

1. Select the **Options** button located on the left of the (DIMAQ-IP) Image screen.
2. To synchronize the display of the clips, select **Loop aligned**.
3. Select **Play All Clips** and then click **OK**.
The system redisplays the (DIMAQ-IP) Image screen with clips simultaneously in motion.
4. To disable simultaneous playback, reselect the **Options** button, select **Play Only Selected Clip**, and then click **OK**.

Using the Slide Show Capability

You can configure sequential viewing (slide show capability) of clips and images using the **Options** dialog box located on the (DIMAQ-IP) Image screen. The configuration includes the length of display for images. You can also specify the number of times each clip is played back.

View the slide show using a full-screen display format.

To configure clips and images for sequential viewing in the currently displayed study:

1. Select the **Options** button located on the left of the (DIMAQ-IP) Image screen.
2. Select the **Slideshow on** check box.
3. To define the length of display for each image, use the keyboard to enter the time (seconds) in the **Image Period (sec)** text box in a "n.nn" format.
4. To specify the number of times each clip is played back, use the keyboard to enter the number in the **Clip Play Loop** text box.
5. Click **OK**.
The system redisplays the (DIMAQ-IP) Image screen.
6. Double-click an image or clip to view the slide show using a full-screen display format.

Saving Frames from Clips

You can display a clip from the currently active study and then save one of the clip frames as a separate image in the study.

To save a clip frame from the currently active study:

1. Press the **REVIEW** key on the control panel.

The system displays the image(s) (including any clips) in the Image screen. The system indicates image selection by outlining the selected image with green lines. The last image acquired (the last image on the last page) is automatically selected.

2. Select (click) the clip.
3. Either double-click the clip or press the **SELECT** control.

The system displays the clip in full-screen format.

4. Stop the playback motion and then display the required frame.
5. Press the documentation control that is configured in the system presets for disk storage.

The system saves the displayed clip frame as a separate image in the study.

System Reference

Configuring
documentation
controls

5-9

Patient Report Display

You can view patient reports from completed studies that are saved to the system's hard disk or to a CD. You can delete patient reports from completed studies.

You can edit patient reports from completed studies that are stored on the system's hard disk (HD). Patient reports are displayed on the Image screen. The system displays a patient report icon on the upper right of each report.

Note: You cannot view patient reports when a patient examination is active.

Patient report icon.

To view a patient report:

1. Press the **REVIEW** key on the control panel.
2. If the system displays the Image screen, then select the **Study Screen** button to display the Study screen.
3. If the patient report is stored on a CD, then insert the CD containing the patient report into the CD drive.
4. Select the required disk (**HD** or **CD/DVD**) in the **Disk** section of the Study screen.
5. Select the study and then select the **Image Screen** button.
6. Select the patient report icon on the upper right of the patient report.
The system displays the selected patient report.
7. To redisplay the Study screen, select the **Return** button on the lower right of the screen or press the **ESC** key on the control panel.

To edit a patient report:

1. View the patient report.
2. Use the keyboard to enter values or comments as required.
3. Press a documentation control that is configured in the system presets for disk storage.

To delete a patient report:

- Select the patient report on the Image screen and then select the **Delete** button on the left of the screen.

6 DICOM Connectivity Option

About DICOM.....	3
Current and Previous Studies	3
Screens	4
DICOM Storing and Printing	5
Storing Studies	5
DICOM Setup	6
Configuring the System and Devices for DICOM	6
Creating and Editing Aliases	7
Activating Aliases	11
Deleting Aliases.....	11
Field Descriptions for DICOM Configuration Screens	12
Fields in the Host Setup Screen.....	12
Fields in the DICOM Storage Server Setup Screen.....	13
Fields in the Worklist Server Setup Screen	13
Fields in the DICOM Printer Setup Screen.....	14
Fields in the Storage Commitment Setup Screen	16
Fields in the MPPS Setup Screen	16
DICOM Storing and Printing.....	17
Configuring Clip Options for DICOM	17
Configuring the System for Store	18
Storing Images to DICOM Storage Servers	19
Printing Images to DICOM Printers	20
Arranging Printer Layout Pages	24
Queue Status Indicators	26

About DICOM

Important Note: Before using the DICOM Connectivity option, familiarize yourself with the functionality of the DIMAQ-IP Study and Image screens.

The DICOM (Digital Imaging and Communications in Medicine) Connectivity option works in conjunction with the DIMAQ-IP integrated workstation to provide digital image transfer via a DICOM network for both storage and printing. With the option installed, the ultrasound system is a DICOM Storage Class User and DICOM Print Class User.

System Reference

Study screen	Ch 4
Image screen	Ch 4

Current and Previous Studies

This chapter describes studies as **current** or **previous**. Since the ultrasound system allows only one patient to be registered at a time, a current study is linked to that patient. You initiate a current study (examination) by registering a patient. This study remains current until you create a new study by:

- Registering a new patient after pressing the **F1** key, or
- Re-registering the current patient by selecting the **New** button on the Study screen.

You can also end a current study without creating a new study by:

- Selecting the **Close Study** button in the Image screen or the **Close** button in the Study screen, or
- Shutting down the ultrasound system.

A current study that has been ended in any of these ways becomes a previous study. A previous study remains linked to its original patient data and can be accessed from the Study screen. Original patient data cannot be changed in a previous study.

Screens

The following screens are used with DICOM and are accessed by pressing the **REVIEW** key on the control panel:

- ***Image screen*** – Displays images for the currently selected study. When the DICOM option is installed, includes selections for sending images to DICOM printers.
- Note:** The term "Image screen" (Upper case "I") refers to a screen with the DIMAQ-IP integrated workstation. The term "image screen" (Lower case "i") refers to a typical image screen that displays real-time images as they are acquired.
- ***Study screen*** – Lists studies that are saved on the selected disk (HD or CD/DVD). When the DICOM option is installed, includes selections for sending studies to DICOM printers and storage servers.
 - ***DICOM screen*** – Displays tabs for pages that list current DICOM activity:
 - **DICOM BW Printer Layout** displays black and white images assembled according to a selected format for the **DICOM Print Queue**.
 - **DICOM Color Printer Layout** displays color images assembled according to a selected format for the **DICOM Print Queue**.
 - **DICOM Print Queue** lists images sent to the DICOM printer.
 - **DICOM Store Queue** lists images sent to the DICOM storage server.

[2] Instructions for Use

Example of typical
"image screen" Ch A2

DICOM Storing and Printing

You can send images from current or previous studies to the **DICOM Store Queue** as follows:

- You can send all images directly from the Study screen to the **DICOM Store Queue** for a previous study.
- If the **Autostore to DICOM** setting is selected in the system presets, you can automatically send all images in the Image screen to the **DICOM Store Queue** when a current study is closed.

You can print from current or previous studies to a DICOM printer as follows:

- You can assemble individual images on a printer layout page in a current or previous study.
- You can print single or multiple pages of images from a printer layout page in a current or previous study.
- You can send all images from a previous study directly to a printer queue from the Study screen.
- The following settings in the system presets also allow the ultrasound system to print automatically when certain conditions are met:
 - If the **Print When Page Is Full** setting is selected, a page is sent to the **DICOM Print Queue** as soon as the last image required by the page layout is added. An incomplete page is automatically sent to the **DICOM Print Queue** when you close a current study or select another study.
 - If the **Print At End Of Exam** setting is selected, you can assemble multiple pages prior to printing, and all pages are automatically sent to the **DICOM Print Queue** when you close a current study or select another study.

F4

-
- | |
|---------------------------|
| DICOM |
| ▶ Autostore to DICOM |
| ▶ Print When Page is Full |
| ▶ Print at End of Exam |

Storing Studies

All current and previous studies on the system's hard disk are listed in the Study screen when **HD** is selected in the **Disk** box of the Study screen. All studies stored on the system's compact disk are listed in the Study screen when **CD/DVD** is selected in the **Disk** box.

You can access images from a previous study without closing the current study.

DICOM Setup

Prerequisite: A working knowledge of Windows networking principles is necessary and beneficial for completing DICOM configuration.

Use the system presets to set up DICOM.

DICOM Setup requires the following information:

- Ultrasound system (host) host name, alias, and AE title. IP address, subnet mask, and default gateway information is required if DHCP is not used.
- Media type and duplex mode required for connection to the host (ultrasound system).
- Alias, AE title, IP address, and port number for each DICOM device.

You must check the storage server for compatibility with the ultrasound system settings.

To begin DICOM Setup, connect a network cable to the Ethernet port on the Input/Output panel of the ultrasound system.

□
F4
DICOM
Storage

Configuring the System and Devices for DICOM

You can configure the ultrasound system and connected devices (such as servers and printers) for DICOM by creating, editing, and activating aliases (DICOM configurations). You can also delete aliases.

Creating and Editing Aliases

You can create and edit aliases (DICOM configurations) for the host (ultrasound system) and other devices, such as servers and printers. An alias is a unique name that is assigned to a configured DICOM device.

To display the DICOM configuration screen for the required alias (DICOM configuration):

Note: DICOM configuration screens cannot be displayed during a patient examination. If a patient is registered, then close the study before beginning this procedure.

1. Press the **F4** key on the keyboard and then select **DICOM** on the left of the **Preset Main Menu** screen.

The system displays the **DICOM** screen.

2. To edit an existing alias, select the alias from the related drop-down list and then select the **Edit** button to the right of the selected configuration. For example, to edit the "archive1" storage server alias, select "archive1" from the **Storage Server** drop-down list and then select the **Edit** button to its right.

The system displays the DICOM configuration screen for the selected alias, containing the existing configuration.

3. To create an alias, select the **New** button to the right of the related drop-down list. For example, to create a storage server alias, select the **New** button to the right of the **Storage Server** drop-down list.

The system displays the DICOM configuration screen for the selected type of alias.

To create or edit an alias (DICOM configuration):

1. Display the required DICOM configuration screen and then use the following instructions to change configuration:
 - a. Use the keyboard to enter values for the fields in the screen.
 - b. If the alias is a device connected to the ultrasound system (such as a server or printer), then confirm successful connection and valid configuration information:
 - To verify connection, select the **Ping** button.
 - To verify connection and configuration information, select the **Echo** button.
 - c. To create a record of the configuration settings, print the screen.
Note: Siemens recommends retaining a record of the configuration settings. This information is useful in identifying incomplete or incompatible entries if a communication failure occurs or during troubleshooting.
 - d. To save configuration changes and redisplay the **DICOM** screen, select the **OK** button at the bottom of the DICOM configuration screen.
 - e. To cancel configuration changes and redisplay the **DICOM** screen, select the **Cancel** button and then select **Yes** to confirm cancellation.
2. Activate the new alias by selecting the alias from the related drop-down list on the **DICOM** screen. For example, to activate the "archive2" storage server alias, select "archive2" from the **Storage Server** drop-down list.

3. Perform the following additional configuration(s), as necessary:

Alias type	Do this:
Host	To indicate the status of network connection in the Network section of the Study screen, select the Show network status check box below the selected host alias.
Storage server	Select a queuing method listed below the selected storage server alias: <ul style="list-style-type: none"> ▪ Store During Exam adds each image to the DICOM Store Queue list when you store the image to the study. ▪ Store At End Of Exam adds all images to the DICOM Store Queue list when you close the study. <p>Note: To view the DICOM Store Queue list, press REVIEW to display the Study screen, select the required study, select DICOM Screen, and then select the DICOM Store Queue tab.</p> <p>To automatically send all stored images to the DICOM storage server, select the Autostore to DICOM check box below the selected storage server alias.</p>
Storage commitment server	Select a storage method listed below the selected storage server alias: <p>Note: Siemens recommends the After All Images are Stored selection.</p> <ul style="list-style-type: none"> ▪ After Every Image is Stored automatically sends each image when you store the image to the study. ▪ After All Images are Stored automatically sends all stored images when you close the study. Select this option if the Storage Server is set to Store At End Of Exam.

Alias type	Do this:
Worklist server	<p>To configure the system to perform a search of all procedures on the Worklist server for the next 24 hours, select the Streamlined Search check box below the selected Worklist server alias.</p> <p>Note: If performing the streamlined search from the Patient Data form, the system uses any data entered onto the form to narrow the search.</p>
DICOM printer	<p>Select a printing protocol listed below the selected DICOM printer alias:</p> <ul style="list-style-type: none"> ▪ Print When Page is Full automatically prints a page when the last image is added to the page. The maximum images-per-page value is defined by the Display Format setting in the respective DICOM Printer Setup screen. ▪ Print At End of Exam automatically prints all images when the study is closed. <p>Note: Select the more... button to display additional fields.</p>

4. To save all configuration changes and exit the system presets, select the **Save** button.
If you changed any host configuration information, then the system prompts you to reboot the ultrasound system (cycle power).
5. To cancel all configuration changes and exit the system presets, select the **Cancel** button and then select **Yes** to confirm cancellation.
6. If the system prompts you to reboot the ultrasound system, or if you added or changed a host name or IP address for any aliases, then reboot the ultrasound system (cycle power) to complete the configuration.

Activating Aliases

You can activate existing aliases (DICOM configurations) for the host (ultrasound system) and other devices, such as servers and printers.

To activate an existing alias:

Note: DICOM configuration screens cannot be displayed during a patient examination. If a patient is registered, then close the study before beginning this procedure.

1. Press the **F4** key on the keyboard and then select **DICOM** on the left of the **Preset Main Menu** screen to display the **DICOM** screen.
2. Select the alias from the related drop-down list. For example, to activate the "archive1" storage server alias, select "archive1" from the **Storage Server** drop-down list.
3. To save changes on the **DICOM** screen, select the **OK** button and then select **Yes** to confirm changes.
4. If the alias is an MPPS device, then select **Storage** on the left of the **Preset Main Menu** screen and then select the **AutoStore to DICOM** check box to activate automatic storage of studies to DICOM.
5. To save changes and exit the **Preset Main Menu**, select the **Save** button.

If you changed any host configuration information, then the system prompts you to reboot the ultrasound system (cycle power).

6. If the system prompts you to reboot the ultrasound system, or if you added or changed a host name or IP address for any aliases, then reboot the ultrasound system (cycle power) to complete configuration.

Deleting Aliases

You can delete aliases (DICOM configurations) for the host (ultrasound system) and other devices, such as servers and printers.

To delete an alias:

1. Press the **F4** key on the keyboard and then select **DICOM** on the left of the **Preset Main Menu** screen.

The system displays the **DICOM** screen.

2. Select the alias from the related drop-down list (such as the Storage Server drop-down list), select the **Delete** button to the right of the selected alias, and then select **OK** to confirm.

The system deletes the DICOM configuration.

Field Descriptions for DICOM Configuration Screens

Fields in the Host Setup Screen

Field	Settings
Alias	text entry
AE Title	text entry
Host Name	text entry
MAC Address	display only (indicates the Media Access Control address detected for the host)
Use DHCP (Use Dynamic Host Control Protocol)	on (checked) off (cleared)
IP Address	text entry
Subnet Mask	text entry
Default Gateway	text entry
Media Type	HardwareDefault AUTOSELECT 100BasetX 10Baset HardwareDefault HalfDuplex FullDuplex
Duplex Mode	

Fields in the DICOM Storage Server Setup Screen

Field	Settings
Alias	text entry
AE Title	text entry
IP Address	text entry
Port Number	text entry
Write Timeout in Seconds (timeout value for sending to the queue)	text entry
Connect Timeout in Seconds (timeout value for an attempted connection between the host and the storage server)	text entry
Image Format	<p>Automatic (for 1995 and newer ultrasound IODs)</p> <p>Old Ultrasound (for pre-1995 ultrasound IODs)</p> <p>Secondary Capture (for generic frame grabbers)</p> <p>No Monochrome conversion</p> <p>Store grayscale images as Monochrome</p> <p>Store grayscale images and clips as Monochrome</p>
Send SR	<p>on (checked)</p> <p>off (cleared)</p>
Number of Times to Retry Failure	text entry
Seconds Between Each Retry	text entry
Ping and Echo Timeout in seconds (timeout value for basic communication tests with the host)	text entry

Fields in the Worklist Server Setup Screen

Field	Settings
Alias	text entry
AE Title	text entry
IP Address	text entry
Port Number	text entry
Write Timeout in Seconds (timeout value for sending to the queue)	text entry
Connect Timeout in Seconds (timeout value for an attempted connection between the host and the storage server)	text entry
Maximum Number of worklist item (maximum number of search results displayed on the Worklist Search screen)	text entry
Ping and Echo Timeout in seconds (timeout value for basic communication tests with the host)	text entry

Fields in the DICOM Printer Setup Screen

Note: Select the **more...** button at the bottom of the screen to display all the fields.

Field	Settings	
Alias	text entry	
AE Title	text entry	
IP Address	text entry	
Port Number	text entry	
Write Timeout in Seconds (timeout value for sending to the queue)	text entry	
Connect Timeout in Seconds (timeout value for an attempted connection between the host and the DICOM printer)	text entry	
Ping and Echo Timeout in seconds (timeout value for basic communication tests with the host)	text entry	
Film Orientation	Portrait Landscape	
Number of Times to Retry Failure	text entry	
Seconds Between Each Retry	text entry	
Display Format (defines the column and row format used for assembling pages to print)	1x1 1x2 2x2 2x3 3x2	3x3 3x5 4x5 4x6 5x6
Copies (number of copies to print)	text entry	
Medium Type	paper clear film blue film transparency current (currently-loaded medium)	

Field	Settings
Min. Density	1 to 399
Note: Consult the printer manufacturer for appropriate values.	
Max. Density	1 to 399
Note: Consult the printer manufacturer for appropriate values.	
Border Density (defines the region outside of the print area on the output medium; typically black for film and white for paper)	Black White
Trim (outlines each printed image with a box)	on (checked) off (cleared)
Film Size	8in x 10in 14in x 14in 8.5in x 11in 14in x 17in 10in x 12in 24cm x 24cm 10in x 14in 24cm x 30cm 11in x 14in A3 11in x 17in A4
Print Priority	high medium low
Film Destination	magazine processor current replicate bilinear cubic none
Magnification	text entry
Smoothing Type (used with cubic magnification)	
Note: This field is not required.	
Empty Image Density	black (typically used for transparencies) white (typically used for paper)
Polarity	normal reverse
Configuration	text entry
Note: This string is sent to the printer exactly as it displays in this field.	
Note: This field is not required.	

Fields in the Storage Commitment Setup Screen

Field	Settings
Alias	text entry
AE Title	text entry
IP Address	text entry
Port Number	text entry
Number of Times to Retry Failure	text entry
Seconds Between Each Retry	text entry
Write Timeout in Seconds	text entry
Connect Timeout in Seconds	text entry
Ping and Echo Timeout in seconds	text entry

Fields in the MPPS Setup Screen

Field	Settings
Alias	text entry
AE Title	text entry
IP Address	text entry
Port Number	text entry
Number of Times to Retry Failure	text entry
Seconds Between Each Retry	text entry
Write Timeout in Seconds	text entry
Connect Timeout in Seconds	text entry
Ping and Echo Timeout in Seconds	text entry
Store Image Format	<p>Automatic (for 1995 and newer ultrasound IODs)</p> <p>Old Ultrasound (for pre-1995 ultrasound IODs)</p> <p>Secondary Capture (for generic frame grabbers)</p>

DICOM Storing and Printing

You can store and print images to DICOM devices.

Configuring Clip Options for DICOM

Use the system presets to configure clip options such as length and acquisition timing (retrospective or prospective).

With DICOM, consider the following issues when storing multiple clips:

- Multiple, longer clips can require considerable storage server memory and transfer time.
- High compression requires less storage server memory and transfer time.
- The number of clip frames in a clip is determined by two parameters: the duration, which is selected in the system presets, and the number of clip frames to acquire per second, which is determined by system type (NTSC or PAL).

F4

Customize Keys
Clip Capture

System Reference

Clip capture Ch 5

Configuring the System for Store

You can store an image to the DICOM storage server and to the hard disk when you press a documentation key.

To configure the system for store:

Note: DICOM configuration screens cannot be edited during a patient examination. If a patient is registered, then close the study before beginning this procedure.

1. Press the **F4** key on the keyboard and then select **DICOM** on the left of the **Preset Main Menu** screen.
The system displays the **DICOM** screen.
2. To store in-progress, select the **Store During Exam** option and the **Autostore to DICOM** check box below the storage server alias.
3. To store after the exam, select **Store At End of Exam** option and the **Autostore to DICOM** check box below the storage server alias.
4. Select the **Save** button to save the settings.
5. Configure one or more keys for disk storage.
 - a. Press the **F4** key on the keyboard to redisplay the **Preset Main Menu** screen.
 - b. Select **Customize Keys** on the left of the screen.
 - c. Select **Disk Store** for one or more of the documentation keys.
 - d. To save changes and exit the **Preset Main Menu**, select the **Save** button.

Storing Images to DICOM Storage Servers

You can send selected studies to a connected DICOM storage server.

You can also automatically send stored images during the current study when the system is configured for in-progress store.

System Reference

Configuring the System for In-Progress Store 6-18

To send selected studies to a connected DICOM storage server:

1. Select the image to store.
 - a. Press the **REVIEW** key on the control panel.
 - b. If the system displays the Image screen, select the **Study Screen** button.
 - c. If the study (or studies) are stored on external disk media, insert the disk into the CD/DVD drive.
 - d. Select the required disk (**HD** or **CD/DVD**) in the **Disk** section of the Study screen.
 - e. Select a study from the Study screen.
 - To select an additional study, press and hold the **Ctrl** key on the keyboard and then press the **SET** key on the control panel.
 - To select consecutive studies, press and hold the **Shift** key on the keyboard and then press the **SET** key on the control panel.
 2. Select the server from the drop-down list in the **Network** section (lower right of the screen) and then select the **Send** button.
- The system sends all images from the selected study or studies to the **DICOM Store Queue**.
3. To verify the status of the **DICOM Store Queue**, select the **DICOM Screen** button and then select the **DICOM Store Queue** tab.
 4. To display the live image screen, select the **Back** button and then select the **Live Screen** button.

Printing Images to DICOM Printers

You can send an image to a connected DICOM printer during the current study. You can also print all images or selected images from a study to a connected DICOM printer.

Note: Clips cannot be printed. You can select a clip frame for printing.

Note: The current number of images and the number of images necessary for each full page layout display in the lower left of the live image screen.

To send an image to a printer layout page in a current study:

1. Freeze the image.
2. Press the documentation key that is configured in the system presets for DICOM printing.

The system saves the image to the system's hard disk and copies the image to the Image screen and to the corresponding layout page.

3. Press the **REVIEW** key on the control panel.

The system displays the print image and any other images in the Image screen.

4. If necessary, select additional images from the Image screen for the printer layout.

The system outlines each selected image.

5. Select the **BW Print** or **Color Print** button on the left of the Image screen to copy the selection to the respective printer layout page.

Note: The current number of images and the images necessary for a full page layout display to the right of the **BW Print** or **Color Print** button in the Image screen.

6. The print image is transferred to the **DICOM Print Queue** when one of the following actions occurs:

- The **DICOM BW Printer Layout** or **DICOM Color Printer Layout** page is filled and **Print When Page Is Full** is selected in the system presets for DICOM.

Note: The **Display Format** setting for the printer determines the number of images in a full page. If display format for a printer is set to '1/1', a page fills and is sent to the **DICOM Print Queue** immediately with each press of a documentation key configured for DICOM printing.

- The **Print Page** or **Print All Pages** button is selected in the **layout page**.
- The study is closed or a previous study is selected and **Print At End of Exam** is selected for this printer in the system presets for DICOM.

A separate print queue entry is created for each page.

7. To verify the status of the **DICOM Print Queue**, select the **DICOM Screen** button from the Study screen and then select the **DICOM Print Queue** tab.
8. To change printing options for a set of printed images, select the **DICOM Screen** button from the Study screen, select the **DICOM Print Queue** tab, and then select the **Change** button at the top of the screen.
9. To display the live image screen, select the **Back** button and then select the **Live Screen** button.

To print all images from one or more studies to a DICOM printer:

1. Select the image to store.
 - a. Press the **REVIEW** key on the control panel.
 - b. If the system displays the Image screen, select the **Study Screen** button.
 - c. If the study (or studies) are stored on external disk media, insert the disk into the CD/DVD drive.
 - d. Select the required disk (**HD** or **CD/DVD**) in the **Disk** section of the Study screen.
 - e. Select a study from the Study screen.
 - To select an additional study, press and hold the **Ctrl** key on the keyboard and then press the **SET** key on the control panel.
 - To select consecutive studies, press and hold the **Shift** key on the keyboard and then press the **SET** key on the control panel.

2. Select the printer from the drop-down box in the **Network** section on the lower right of the Study screen and then select the **Send** button.

The system sends all images from the selected study to the corresponding layout page(s) and to the DICOM printer queue.

3. To confirm that the study was sent to the printer, select the **DICOM Screen** button on the left of the screen and then select the **DICOM BW Printer Layout** or **DICOM Color Printer Layout** page.

The system lists the studies that were sent to the printer.

4. To redisplay the Study screen, select the **Back** button.
5. To display the live image screen, select the **Live Screen** button.

To print individual images from a study to a DICOM printer:

1. Press the **REVIEW** key on the control panel.
The system displays the Study screen. If the system displays the Image screen, select the **Study Screen** button.
2. If the study is stored on external disk media, insert the disk into the CD/DVD drive.
3. Select the required disk (**HD** or **CD/DVD**) in the **Disk** section of the Study screen.
4. Select a study from the Study screen.
5. Select the **Image Screen** button.
The system displays all images from the selected study in the Image screen.
6. Select an image from the Image screen.
The system outlines the selected image.
7. Print a selected image by selecting the **BW Print** or **Color Print** button on the left of the Image screen.
Note: If the selected image is a clip, then the system stores a copy of the printed clip frame to the study.
The image is sent to the layout page.
8. To send the layout page(s) to the **DICOM Print Queue**, select the **Study Screen** button to display the Study screen, select the **DICOM Screen** button to display the DICOM screen, and then select the **Print Page** or **Print All Pages** button in the **DICOM BW Printer Layout** or **DICOM Color Printer Layout** page.
Note: If a layout page becomes full and **Print When Page is Full** is selected in the system presets for DICOM, the system automatically sends the page to the **DICOM Print Queue**. If **Print At End of Exam** is selected in the system presets for DICOM, multiple layout pages can be assembled prior to printing. With either selection, all pages are sent to the **DICOM Print Queue** when the current study is closed.
9. To display the live image screen, select the **Back** button and then select the **Live Screen** button.

Arranging Printer Layout Pages

Printer layout pages allow you to assemble images for printing on the same page. You can delete images from a layout page and rearrange the order of image display on printer layout pages.

When you rearrange images, the system outlines the cut image in yellow and then outlines the selected paste location in blue.

A deleted print image is removed from the printer layout page only. The image remains on the system's hard disk as a part of the study and is displayed in the Image screen. Deleting the print image from the Image screen removes the image from the system's hard disk.

To delete an image from a printer layout page:

Note: This procedure assumes that a current or previous study is open and that at least one print image has been sent to a printer layout page.

1. Select the **DICOM Screen** button from the Study screen.
The system displays the **DICOM BW Printer Layout** page.
2. Select an image from the layout page.
The system outlines the selected image.
3. Select the **Delete** button on the layout page.
The system removes the selected image from the layout page.
4. To display the live image screen, select the **Back** button and then select the **Live Screen** button.

To rearrange print images:

Note: This procedure assumes that a current or previous study is open and that several print images have been sent to at least one printer layout page.

1. Select the **DICOM Screen** button from the Study screen.
The system displays the **DICOM BW Printer Layout** page.
2. Select an image to be repositioned on the layout page.
The system outlines the selected image.
3. Select the **Cut** button.
This image (the cut image) remains in place until you complete the paste operation.
4. Select another image as the paste location.
5. Select the **Paste** button.
The system inserts the cut image in the paste location.
6. To rearrange images across pages, select the **Cut** button for an image on one page, select the **Next** or **Previous** button to select a different page, select a new paste location, and then select the **Paste** button to insert the image in the paste location on the new page.
7. To display the live image screen, select the **Back** button and then select the **Live Screen** button.

Next

Selects a higher page number.

Previous

Selects a lower page number.

Queue Status Indicators

Queue Status	Description
Queued	The queue entry has been received by the currently displayed queue. The system has not yet initiated the print/store operation.
Succeeded	The system successfully completed the print/store operation.
In Progress	The system is currently completing the print/store operation.
Suspended	Reserved for future use.
Failed	<p>The system has attempted to complete the print/store operation but has timed out. If retries are still available, then the system displays the number of remaining retries in parentheses (for example, "Failed (2)" indicates two remaining retries).</p> <p>The system continues attempts indefinitely if TCP/IP connection to the destination device cannot be initiated (for example, if the ultrasound system is temporarily located away from network connections). If TCP/IP connection can be initiated, then the system stops attempts when retries are no longer available.</p> <p>Note: If this status indicator remains and no more retries are available, then ensure that the system presets settings for the connected devices are complete and compatible and then select the Retry Job button.</p>

7 Network Export Function

Transferring Data.....	3
Network Export Presets	4
Configuring the Host.....	5
Fields in the Host Setup Screen	7
Configuring the Export Host.....	8
Fields in the Export Host Setup Screen.....	10
Sending Studies to the Export Host.....	11
Format of Export Data.....	12

Transferring Data

Prerequisite: A working knowledge of Windows networking principles is necessary and beneficial for completing configuration of the network export function.

The network export function facilitates the transfer of images and reports to an off-line workstation (remote host) for subsequent review. The host computer sends studies to the specified remote location and reports any errors that prevented this operation from succeeding.

To use the network export function, you must configure the host computer (the ultrasound system) and the remote host computer from the system presets. In addition, you must specify the appropriate shared folder and security access settings for the remote host.

This function is password-protected to support your compliance with HIPPA regulations. Further, you cannot use the ultrasound imaging system to view a list of studies on a remote shared server or PC. Content visibility and directory maintenance for the network share must be performed from the export host computer.

Export will support only Windows 2000 and Windows XP and compatible remote share access. If you attempt to export a study that was previously exported to the same network share, the previous study is deleted and rewritten. The system displays **Network** in the **Archived** column of the Study screen for any study sent to a network share.

Networking configuration errors display in English. This results from the Windows 2000 operating system in use for DIMAQ-IP.

You must move a study folder from the shared destination to a private location before you can use the files.

Network Export Presets

The **Networking** item in the **Preset Main Menu** provides the following options:

Selection	Option(s)	Description (s)
Host	(List of available hosts)	Select a network host.
Edit		Displays the Host Setup Screen for editing the selected host.
New		Displays the Host Setup Screen for configuring a new host.
Delete	---	Removes the selected host.
Show Network Status	On, Off	Configures the system to automatically indicate the status of the network connection in the Network section of the Study screen.
Export Host	(List of available hosts)	Select a network host for export.
Edit		Displays the Export Host Setup Screen for editing the selected export host.
New		Displays the Export Host Setup Screen for configuring a new export host.
Delete	---	Removes the selected export host.
Autostore to Network	On, Off	Automatically transmits the patient study to an offline workstation ("export host") when the study is ended.

Configuring the Host

To configure the host for network export:

Prerequisite: To configure the host (ultrasound system) for network export, you must know whether or not you will use dynamic IP addressing (DHCP). If you are using static IP addressing, have the following information for the ultrasound system: IP address, subnet mask, and default gateway. You must also know the media type and duplex mode required for network connection to the export host (destination).

1. Access the **Network Export** screen by pressing the **F4** key on the keyboard and then selecting **Networking** on the left of the **Preset Main Menu**.
 2. If the system has been configured for password protection and you are not currently logged in:
 - a. Select **OK** to close the information dialog box.
 - b. Enter your user name and password and then select **OK**.
 3. On the **Host** line of the **Network Export** screen, either select an existing configuration from the drop-down list and then select the **Edit** button or select the **New** button to define a new configuration.
- The system displays the **Host Setup** screen.
4. Use the keyboard to enter values for the fields on the screen.

System Reference	
Authorization	Ch 3
Protecting	
Patient Data	Ch 5

5. Exit the **Host Setup** screen and display the **Network Export** screen in one of three ways:

- Select the **OK** button (if field values have been changed) to save changes; the system prompts you to verify this action and then displays the **Network Export** screen.
- Select the **Cancel** button if field values have not been changed (or to reset all fields to former values) and display the **Network Export** screen.
- Select the **Delete** button to erase all field values; the system prompts you to verify this action and then displays the **Network Export** screen.

6. Select the **OK** button from the **Network Export** screen and then (if field values have been changed) select the **Yes** button in the confirmation box.

The system exits the **Network Export** screen and displays the live image screen.

7. If you have changed any host configuration information, you must reboot the ultrasound system as follows:

- From the live image screen, power off (Ø) the ultrasound system.
- Wait approximately 20 seconds before powering on (Ø) the ultrasound system.

Fields in the Host Setup Screen

Field	Description
Alias	User-designed name for host
AE Title	Application Entity Title as configured for DICOM Note: Disregard this field. The system automatically populates this field if the ultrasound system is configured for DICOM (using the DICOM category in the Preset Main Menu). Otherwise, the system does not use this field.
Host Name	User-designed name for host (you can use the value entered for Alias)
MAC Address	The system-defined Media Access Control address that uniquely identifies the system as a node on the network.
Use DHCP	When checked (enabled), activates Dynamic Host Control Protocol for the host (ultrasound system) Note: Do not configure the host to use DHCP if DICOM is installed. DHCP is not compatible with DICOM.
IP Address	IP address for the host (ultrasound system) Note: Disregard this field if DHCP is enabled.
Subnet Mask	Subnet mask for the host (ultrasound system) Note: Disregard this field if DHCP is enabled.
Default Gateway	Default gateway for the host (ultrasound system) Note: Disregard this field if DHCP is enabled.
Media Type	HardwareDefault AUTOSELECT 100BASETX 10BASET
Duplex Mode	HardwareDefault HalfDuplex FullDuplex

Configuring the Export Host

Use the setup screen to identify the Export Host (destination) of shared files, such as a server or personal computer (PC). Ensure that the destination has shared folders for either Windows 2000 or Windows XP.

The password field is case sensitive. All other fields are not case sensitive. An indicator displays on the right of the screen to identify the status (on/off) of the **Caps Lock** key on the keyboard.

To configure the export host:

Prerequisite: To configure an export host (destination for shared files), you must have the following information for the export host: IP address, account and password for the export host, and the exact name of the shared folder.

Note: You must configure the Windows share by creating an appropriate remote shared folder and security access settings on the export host.

1. Access the **Network Export** screen by pressing the **F4** key on the keyboard and then selecting **Networking** on the left of the **Preset Main Menu**.
 2. If the system has been configured for password protection and you are not currently logged in:
 - a. Select **OK** to close the information dialog box.
 - b. Enter your user name and password and then select **OK**.
 3. On the **Export Host** line of the **Network Export** screen, either select an existing configuration from the drop-down list and then select the **Edit** button or select the **New** button to define a new configuration.
- The system displays the **Export Host Setup** screen.
4. Use the keyboard to enter values for the fields on the screen.
 5. After completing the configuration settings, you can use the **Ping** and **TestWrite** buttons as follows:
 - Select the **Ping** button to verify successful connection to the remote host.
 - Select the **TestWrite** button to test writing to the specified remote share.

System Reference	
Authorization	Ch 3
Protecting	
Patient Data	Ch 5

6. Exit the **Export Host Setup** screen and display the **Network Export** screen in one of three ways:

- Select the **OK** button (if field values have been changed) to save changes; the system prompts you to verify this action and then displays the **Network Export** screen.
- Select the **Cancel** button if field values have not been changed (or to reset all fields to former values) and display the **Network Export** screen.
- Select the **Delete** button to erase all field values; the system prompts you to verify this action and then displays the **Network Export** screen.

7. Select the **OK** button from the **Network Export** screen and then (if field values have been changed) select the **Yes** button in the confirmation box.

The system exits the **Network Export** screen and displays the **Preset Main Menu**.

8. Select the **Save** button from the **Preset Main Menu**.

The system exits the **Preset Main Menu** and displays the live image screen.

Fields in the Export Host Setup Screen

Field	Description
Alias	System-defined "computer name" or user-defined name for the export host
IP Address	IP address of the export host Note: If DHCP is used for the export host, then reconfigure this field when the IP address changes.
Shared Folder	Shared folder name, following standard MS Windows conventions for specifying access
Account	Account name with remote write access credentials to the shared folder, following standard MS Windows conventions for specifying access Examples: "archive1\jsmith" (export host name and user name for local account on export host) "jsmith" (user name for local account on export host) "domain1\jsmith" (domain and user name)
Password	Password for the account defined in the Account field
Ping Timeout in Seconds	Number of seconds after which to stop confirming successful connection
Ping	Confirm successful connection
TestWrite	Attempt storing "test" files to the export host

Sending Studies to the Export Host

You can send studies from the system's hard disk to the configured export host. The system sends all the contents of the selected studies, including any images and reports. You can also automatically send a study to the export host when the study is closed.

Use the system presets to select and configure the export host.

To send one or more studies to a device on the network:

1. Press the **REVIEW** key on the control panel to display the Study screen.
 2. If the system displays the Image screen, then select the **Study Screen** button to display the Study screen.
- The system displays the Study screen.
3. Ensure that **HD** is selected in the **Disk** section of the Study screen.
 4. Select the destination device from the drop-down list in the **Network** section of the Study screen.
 5. Select a single study (or multiple studies) and then select **Send** in the **Network** section of the Study screen.

The system sends the selected study or studies to the configured export host and updates the study's **Archived** status to **Network**.

To automatically send a study to the network as the study is closed:

1. Ensure that **Autostore to Network** is selected under **Networking** (Network Export) in the system presets.
2. Close the study by defining a new patient or selecting another study.

The study is closed and sent to the configured export host. The study's **Archived** status is set to **Network**.

System Reference	
System Presets	Ch 3
	F4
Networking	

Format of Export Data

Images and reports are transferred in files to the hard disk of a remotely hosted shared folder. Files containing stress echo data can be automatically exported to a remotely hosted workstation, such as the TomTec Image Arena workstation, for off-line analysis. The export format mirrors the hard disk (HD) format of the ultrasound imaging system. Standard Windows 2000 and compatible remote share access file formats are supported.

The remote host maintains a folder for each patient (named by patient ID). Study folders within the patient folder are labeled with the date and time of the study, using the date format *MM.DD.YYYY*, where *YYYY* is the year, *MM* is the month, and *DD* is the day, and the time format *HH.MM.SS*, where *HH* is the hour, *MM* is the minute, and *SS* is the second. The date format used to name the study folders is unrelated to the date format set in the system presets. Within each study folder are subsequent folders for images and reports. Images have subfolders to hold contents of application proprietary data for re-launch.

- Single frame images are stored in the images folder as .TIF files.
- Reports are stored in the reports folder. The format is provided by the host software.
- To retain measurement accuracy, measurements must include a calibration (.CAL) file of the same name in each corresponding image folder. The calibration file specifies video format (NTSC, PAL, or SVGA) and pixel spacing. (Pixel aspect is not always 1:1.)

8 Data Transmission Specifications

RS-232C Serial Port	3
Configuring the Port	4
RS-232C Settings	5
Serial Port Pin Assignments	5
Transmitting OB Report Data.....	6

RS-232C Serial Port

The system has a serial port for connecting to a PC or to a serial (and parallel) printer(s). Parallel printers require a serial-to-parallel converter.

 WARNING: Accessory equipment connected to the analog and digital interfaces must be certified according to the respective EN and IEC standards (for example, EN 60950 and IEC 60950 for data processing equipment and EN 60601-1 and IEC 60601-1 for medical equipment). Furthermore, all configurations shall comply with the system standards EN 60601-1-1 and IEC 60601-1-1. Anyone who connects additional equipment to the signal input or signal output ports configures a medical system and is therefore responsible that the system complies with the requirements of the system standards EN 60601-1-1 and IEC 60601-1-1. Siemens can only guarantee the performance and safety of the devices listed in the Accessories and Options chapter. If in doubt, consult Siemens service department or your local Siemens representative.

Note: Siemens does not support or service any external devices connected to the RS-232C interface. Siemens does not assume responsibility for functionality beyond the scope of this specification.

System Reference

Accessories
and Options Ch 2

Configuring the Port

Use the system presets to select the destination for data sent through serial ports.

Note: Siemens does not specifically recommend any particular communication or analysis software; please contact a local vendor for assistance with interpretation and analysis of the data transmitted by the ultrasound imaging system.

System Reference	
System Presets	Ch 3
<hr/>	
F4	
<hr/>	
Peripheral	
► External RS-232C Port	

Peripheral Menu Selection:	Options	Allows you to:
External RS-232C Port	PC2	Send OB report data through the ultrasound system's serial port to a PC.
	Laser Printer	Send report data through the ultrasound system's RS-232C port to a laser printer, using the HP PCL 3 protocol. This option includes the graphics (such as pictograms or growth graphs) contained in a report. <ul style="list-style-type: none"> ▪ The square symbol is converted to a standard numeric number "2" (cm² becomes cm2). ▪ The Greek alpha symbol is converted to a standard character (α becomes A).
	VCR	Control the main VCR functions from the control panel.
	DVD	Control the main DVR functions from the control panel.
	Off	Disables the RS-232C Serial port.

RS-232C Settings

- 1 start bit
- 8 data bits
- 1 stop bit
- Parity, none
- 9600 baud rate

Serial Port Pin Assignments

The following table indicates the pins used on a 9-pin D-Sub female connector on the ultrasound imaging system and the PC or printer, and a 9-pin D-Sub male connector on a connecting cable.

Ultrasound System Pin Number	Ultrasound System Signal Name
1	N/A
2	RXD (received data)
3	TXD (transmitted data)
4	DTR (data terminal ready)
5	SG (signal ground)
6	DSR (data set ready)
7	RTS (request to send)
8	CTS (clear to send)
9	N/A

Transmitting OB Report Data

Note: You must use the system presets to select the **Peripheral** item and then the **PC2** setting for the **External RS-232C Port** setup option. You cannot transmit growth graphs with the **PC2** setting.

To begin transmitting data from the ultrasound imaging system, access the OB report by pressing the **F2 Report** key and then press the **Send Report** button on the report screen.

The ultrasound system transmits the report to the destination device, including patient information (from the patient registration form) and the report measurement data. The layout of the transmitted data is similar to a report sent to a laser printer.

System Reference

System Presets Ch 3

F4

Peripheral
► External RS-232C Port

9 Obstetrical References

Parameter, author	
Mean Gestational Sac Diameter, Hellman.....	3
Mean Gestational Sac Diameter, Rempen	3
Gestational Sac, Tokyo	3
Crown Rump Length, Hadlock	4
Crown Rump Length, Robinson	4
Crown Rump Length, Hansmann	4
Crown Rump Length, Lasser.....	5
Crown Rump Length, Tokyo.....	5
Crown Rump Length, Osaka	5
Crown Rump Length, JSUM	5
Crown Rump Length, ASUM.....	5
Biparietal Diameter, Hadlock	6
Biparietal Diameter, Merz.....	7
Biparietal Diameter, Lasser	7
Biparietal Diameter, Rempen	7
Biparietal Diameter, Tokyo	7
Biparietal Diameter, Osaka	7
Biparietal Diameter, JSUM	8
Biparietal Diameter, ASUM	8
Occipital Frontal Diameter, Merz.....	8
Occipital Frontal Diameter, ASUM	8
Abdominal Transverse Diameter, Merz.....	8
Abdominal Sagittal Diameter, Merz.....	8
Fractional Shortening, Cyr	8
Fetal Weight Estimation, Osaka	9
Fetal Weight Estimation, JSUM	9
Fetal Weight Estimation, Tokyo.....	9
Head Circumference, Hadlock.....	10
Head Circumference, Merz	11
Head Circumference, Lasser	11
Abdominal Circumference, Hadlock	12
Abdominal Circumference, Merz.....	13
Abdominal Circumference, Lasser	13
Abdominal Circumference, JSUM	13
AXT, Tokyo.....	13
Fetal Trunk Area, Osaka	14
Femur Length, Hadlock	14
Femur Length, Merz.....	15
Femur Length, Jeanty.....	15
Femur Length, Tokyo.....	16
Femur Length, Osaka	16
Femur Length, JSUM	16
Humerus Length, Jeanty	17
Humerus Length, Osaka.....	18
Ulna Length, Jeanty	18
Binocular Distance, Jeanty.....	19
Binocular Distance, Tongsong	19
Tibia Length, Jeanty.....	20
Foot Length, Mercer	21
Growth Analysis Ratios and Indexes.....	22
Head Circumference/Abdominal Circumference Ratio, Campbell.....	22
Femur Length/Abdominal Circumference Ratio, Hadlock	22
Femur Length/Biparietal Diameter Ratio, Hohler	22
Cephalic Index, Hadlock	22
Cephalic Index, Chitty	23
Fetal Weight Estimation, Hadlock.....	23
Fetal Weight Estimation, Shepard	24
Fetal Weight Estimation, Schuhmacher	24
Fetal Weight Estimation, Hansmann	24
Fetal Weight Estimation, Merz	24
Menstrual Age by Ultrasound and Estimated Date of Confinement.....	24
CLINICAL MA - Clinical Menstrual Age.....	24
US MA - Composite Menstrual Age Estimation by Ultrasound.....	24
Simple Average - US MA(ave)	24
Regression Equations, Hadlock	24
CLINICAL EDC - Estimated Date of Confinement by Last Menstrual Period	24
US EDC Estimated Date of Confinement by Ultrasound.....	24

Parameters for Growth Analysis	
Graphs	25
Mean Gestational Sac Diameter, Rempen ...	25
Gestational Sac, Tokyo	25
Crown Rump Length, Hadlock	25
Crown Rump Length, Rempen	26
Crown Rump Length, Robinson	26
Crown Rump Length, Hansmann	26
Crown Rump Length, Tokyo.....	26
Crown Rump Length, Osaka	27
Crown Rump Length, JSUM	27
Crown Rump Length, ASUM.....	27
Biparietal Diameter, Hadlock	28
Biparietal Diameter, Lasser	28
Biparietal Diameter, Merz.....	29
Biparietal Diameter, Rempen	29
Biparietal Diameter, Hansmann.....	30
Biparietal Diameter, Tokyo	30
Biparietal Diameter, Osaka	31
Biparietal Diameter, JSUM	31
Biparietal Diameter, ASUM	32
Biparietal Diameter (Outer to Inner), Chitty	32
Biparietal Diameter (Outer to Outer), Chitty	33
Occipital Frontal Diameter, Hansmann.....	33
Occipital Frontal Diameter, Chitty.....	34
Occipital Frontal Diameter, ASUM	34
Head Circumference, Hadlock.....	35
Head Circumference, Merz	35
Head Circumference, Hansmann	36
Head Circumference (Plotted), Chitty.....	36
Head Circumference, ASUM	37
Abdominal Circumference, Hadlock	37
Abdominal Circumference, Merz.....	38
Abdominal Circumference, Jeanty	38
Abdominal Circumference, JSUM	39
Abdominal Circumference, ASUM	39
Abdominal Circumference (Plotted), Chitty	40
AXT, Tokyo.....	40
Fetal Trunk Area, Osaka	41
Femur Length, Hadlock	41
Femur Length, Merz.....	42
Femur Length, Jeanty	42
Femur Length, Hansmann.....	43
Femur Length, Tokyo	43
Femur Length, Osaka	44
Femur Length, JSUM	44
Femur Length, ASUM.....	45
Humerus Length, Jeanty	45
Humerus Length, Merz.....	46
Humerus Length, Hansmann.....	46
Humerus Length, Osaka.....	47
Humerus Length, ASUM	47
Ulna Length, Jeanty	48
Ulna Length, Merz	48
Ulna Length, Hansmann	49
Tibia Length, Jeanty.....	49
Tibia Length, Merz	50
Tibia Length, Hansmann	50
Foot Length, Mercer	51
Thoracic Circumference, Chitkara	51
Clavicle Length, Yarkoni.....	52
Renal Length, Bertagnoli.....	52
Renal Length, Hansmann.....	53
Renal Anterior Posterior, Bertagnoli	53
Renal Anterior Posterior, Hansmann	54
Umbilical Artery (Resistive Index), JSUM	54
Umbilical Artery (Pulsatility Index), JSUM	55
Middle Cerebral Artery (Resistive Index), JSUM	55
Middle Cerebral Artery (Pulsatility Index), JSUM	56
Estimated Fetal Weight (EFW) for Growth Analysis Graphs.....	56
EFW, Hadlock	56
EFW, Jeanty.....	57
EFW, Hansmann	57
EFW, Yarkoni	58
EFW, Tokyo.....	58
EFW, Osaka	59
EFW, JSUM	59
Ratios and Indices for Growth Analysis Graphs	60
AFI Amniotic Fluid Index, Moore	60
LVW/HW (Lateral Ventricular Width/Hemispheric Width) Ratio, Johnson	60
TCD/AC Ratio, Meyer.....	61
Other Calculations	61
Corrected BPD, Douillet	61

Mean Gestational Sac Diameter, Hellman

Hellman LM, Kobayashi M, Fillisti L, Lavenhar M, Cromb E. "Growth and development of the human fetus prior to the twentieth week of gestation." *American Journal of Obstetrics and Gynecology* 103(6):789, 1969.

$$MA(MSD_{mm}) = (MSD + 25.43)/7.02$$

MSD mm	wks	days	\pm $2SD$																
17.0	06	00	0	24.2	07	00	0	31.3	08	01	0	39.2	09	01	0	46.3	10	02	0
17.1	06	00	0	24.3	07	01	0	32.2	08	01	0	39.3	09	02	0	47.2	10	02	0
17.2	06	01	0	25.2	07	01	0	32.3	08	02	0	40.2	09	02	0	47.3	10	03	0
18.1	06	01	0	25.3	07	02	0	33.2	08	02	0	40.3	09	03	0	48.2	10	03	0
18.2	06	02	0	26.2	07	02	0	33.3	08	03	0	41.2	09	03	0	48.3	10	04	0
19.1	06	02	0	26.3	07	03	0	34.2	08	03	0	41.3	09	04	0	49.2	10	04	0
19.2	06	03	0	27.2	07	03	0	34.3	08	04	0	42.2	09	04	0	49.3	10	05	0
20.1	06	03	0	27.3	07	04	0	35.2	08	04	0	42.3	09	05	0	50.2	10	05	0
20.2	06	04	0	28.2	07	04	0	35.3	08	05	0	43.2	09	05	0	50.3	10	06	0
21.2	06	04	0	28.3	07	05	0	36.2	08	05	0	43.3	09	06	0	51.2	10	06	0
21.3	06	05	0	29.2	07	05	0	36.3	08	06	0	44.2	09	06	0	51.3	11	00	0
22.2	06	05	0	29.3	07	06	0	37.2	08	06	0	44.3	10	00	0	52.2	11	00	0
22.3	06	06	0	30.2	07	06	0	37.3	09	00	0	45.2	10	00	0	52.3	11	01	0
23.2	06	06	0	30.3	08	00	0	38.2	09	00	0	45.3	10	01	0	53.2	11	01	0
23.3	07	00	0	31.2	08	00	0	38.3	09	01	0	46.2	10	01	0	53.3	11	02	0

Mean Gestational Sac Diameter, Rempen

Rempen A. "Biometrie in der Frühgravidität (I. Trimenon) (Biometry in Early Pregnancy (1st Trimester))." *Der Frauenarzt* 32:425, 1991.

MSD mm	wks	days	\pm $2SD$																
02.0	04	06	12	14.0	06	02	12	26.0	07	04	12	38.0	09	01	12	50.0	10	05	12
03.0	05	00	12	15.0	06	02	12	27.0	07	05	12	39.0	09	02	12	51.0	10	06	12
04.0	05	01	12	16.0	06	03	12	28.0	07	06	12	40.0	09	03	12	52.0	11	00	12
05.0	05	02	12	17.0	06	04	12	29.0	08	00	12	41.0	09	04	12	53.0	11	01	12
06.0	05	02	12	18.0	06	05	12	30.0	08	01	12	42.0	09	05	12	54.0	11	02	12
07.0	05	03	12	19.0	06	06	12	31.0	08	02	12	43.0	09	06	12	55.0	11	03	12
08.0	05	04	12	20.0	06	06	12	32.0	08	03	12	44.0	09	06	12	56.0	11	04	12
09.0	05	05	12	21.0	07	00	12	33.0	08	03	12	45.0	10	00	12	57.0	11	05	12
10.0	05	05	12	22.0	07	01	12	34.0	08	04	12	46.0	10	01	12	58.0	11	06	12
11.0	05	06	12	23.0	07	02	12	35.0	08	05	12	47.0	10	02	12	59.0	12	00	12
12.0	06	00	12	24.0	07	03	12	36.0	08	06	12	48.0	10	03	12	60.0	12	01	12
13.0	06	01	12	25.0	07	04	12	37.0	09	00	12	49.0	10	04	12	61.0	12	02	12

Gestational Sac, Tokyo

Masuda H, Shinozuka N, Okai T, Mizuno M. "Diagnosis of the Week of Pregnancy and Prognosis." *Perinatal Care* 8:719-726.

GS mm	mean days	\pm days																		
10.0	28	7	20.0	41	14	30.0	52	14	40.0	62	—	50.0	72	—	60.0	79	—	61.0	80	—
11.0	29	7	21.0	42	14	31.0	54	14	41.0	63	—	51.0	72	—	62.0	81	—	63.0	82	—
12.0	30	7	22.0	43	14	32.0	55	14	42.0	64	—	52.0	73	—	64.0	82	—	65.0	83	—
13.0	32	14	23.0	45	14	33.0	56	—	43.0	65	—	53.0	74	—	63.0	82	—	64.0	82	—
14.0	33	14	24.0	46	14	34.0	57	—	44.0	66	—	54.0	75	—	64.0	82	—	65.0	83	—
15.0	34	14	25.0	47	14	35.0	58	—	45.0	67	—	55.0	76	—	66.0	83	—	67.0	84	—
16.0	36	14	26.0	48	14	36.0	59	—	46.0	68	—	56.0	76	—	66.0	83	—	67.0	84	—
17.0	37	14	27.0	49	14	37.0	60	—	47.0	69	—	57.0	77	—	67.0	84	—	68.0	84	—
18.0	38	14	28.0	50	14	38.0	61	—	48.0	70	—	58.0	78	—	68.0	84	—	69.0	85	—
19.0	40	14	29.0	51	14	39.0	62	—	49.0	71	—	59.0	79	—	69.0	85	—	70.0	85	—

Crown Rump Length, Hadlock

Hadlock FP, Shah YP, Kanon DJ, Lindsey JV. "Fetal Crown-Rump Length: Reevaluation of Relation to Menstrual Age (5-18 weeks) with High-Resolution Real-Time US." *Radiology* 182(2):501, 1992.

$$\text{LN (MA)} = 1.684969 + (0.315646 * \text{CRL}) - (0.049306 * \text{CRL}^2) + (0.004057 * \text{CRL}^3) - (0.000120456 * \text{CRL}^4)$$

± 2 Standard Deviations = 8.826%

CRL mm wks days ± 2SD				CRL wks days ± 2SD															
2.0	05	05	04	14.6	07	06	05	30.7	10	00	06	54.5	12	01	07	81.0	14	01	09
2.3	05	05	04	15.5	07	06	05	31.9	10	00	06	55.3	12	01	07	82.6	14	01	09
2.4	05	06	04	15.6	08	00	05	32.0	10	01	06	55.4	12	01	08	82.7	14	02	09
3.1	05	06	04	16.4	08	00	05	33.2	10	01	06	56.3	12	01	08	84.3	14	02	09
3.9	06	00	04	16.5	07	01	05	33.3	10	02	06	56.4	12	02	08	84.4	14	03	09
3.9	06	00	04	17.4	08	01	05	34.6	10	02	06	58.3	12	02	08	85.9	14	03	09
4.0	06	01	04	17.5	08	02	05	34.7	10	03	06	58.4	12	03	08	86.0	14	04	09
4.8	06	01	04	18.4	08	02	01	36.0	10	03	06	60.2	12	03	08	87.5	14	04	09
4.9	06	02	04	18.5	08	03	05	36.1	10	04	06	60.3	12	04	08	87.6	14	05	09
5.6	06	02	04	19.4	08	03	05	36.2	10	04	06	62.2	12	04	08	89.1	14	05	09
5.7	06	03	04	19.5	08	04	05	36.3	10	04	07	62.3	12	05	08	89.2	14	06	09
6.5	06	03	04	20.4	08	04	05	37.4	10	04	07	64.2	12	05	08	90.6	14	06	09
6.6	06	04	04	20.5	08	05	05	37.5	10	05	07	64.3	12	06	08	90.7	15	00	09
7.4	06	04	04	21.4	08	05	05	38.9	10	05	07	66.2	12	06	08	92.1	15	00	09
7.5	06	05	04	21.5	08	06	05	39.0	10	06	07	66.3	13	00	08	92.2	15	01	09
8.2	06	05	04	22.3	08	06	05	40.4	10	06	07	68.1	13	00	08	93.6	15	01	09
8.3	06	06	04	22.4	08	06	06	40.5	11	00	07	68.2	13	01	08	93.7	15	02	09
9.1	06	06	04	22.5	08	06	06	42.0	11	00	07	70.0	13	01	08	95.0	15	02	09
9.2	07	00	04	22.6	09	00	06	42.1	11	01	07	70.1	13	02	08	95.1	15	03	09
10.0	07	00	04	23.6	09	00	06	43.6	11	01	07	71.9	13	02	08	95.2	15	03	09
10.1	07	01	04	23.7	09	01	06	43.7	11	02	07	72.0	13	03	08	95.3	15	03	10
10.9	07	01	04	24.7	09	01	06	45.3	11	02	07	73.8	13	03	08	96.5	15	03	10
11.0	07	02	04	24.8	09	02	06	45.4	11	03	07	73.9	13	04	08	96.6	15	04	10
11.3	07	02	04	25.8	09	02	06	47.0	11	03	07	75.6	13	04	08	97.9	15	04	10
11.4	07	02	05	25.9	09	03	06	47.1	11	04	07	75.7	13	05	08	98.0	15	05	10
11.8	07	02	05	27.0	09	03	06	48.8	11	04	07	77.1	13	05	08	99.3	15	05	10
11.9	07	03	05	27.1	09	04	06	48.9	11	05	07	77.2	13	05	09	100.7	15	06	10
12.7	07	03	05	28.1	09	04	06	50.6	11	05	07	77.4	13	05	09	100.7	15	06	10
12.8	07	04	05	28.2	09	05	06	50.7	11	06	07	77.5	13	06	09	100.8	16	00	10
13.6	07	04	05	29.4	09	05	06	52.5	11	06	07	79.2	13	06	09	102.1	16	00	10
13.7	07	05	05	29.5	09	06	06	52.6	12	00	07	79.3	14	00	09	102.2	16	01	10
14.5	07	05	05	30.6	09	06	06	54.4	12	00	07	80.9	14	00	09	103.4	16	01	10

Crown Rump Length, Robinson

Robinson HP and Fleming JEE. "A critical evaluation of sonar 'crown-rump length' measurements." *British Journal of Obstetrics and Gynaecology* 82:702, 1975.

$$\text{MA} = (8.052 * \text{CRL}^{1/2} + 23.73)/7$$

CRL mm wks days ± 2SD																			
6.7	06	03	05	13.7	07	05	05	23.2	09	00	05	35.2	10	02	05	49.8	11	04	05
7.3	06	03	05	14.6	07	05	05	24.3	09	00	05	36.6	10	02	05	51.4	11	04	05
7.4	06	04	05	14.7	07	06	05	24.4	09	01	05	36.7	10	03	05	51.5	11	05	05
7.9	06	04	05	15.5	07	06	05	25.6	09	01	05	38.2	10	03	05	53.2	11	05	05
8.0	06	05	05	15.6	08	00	05	25.7	09	02	05	38.3	10	04	05	53.3	11	06	05
8.7	06	05	05	16.5	08	00	05	26.9	09	02	05	39.7	10	04	05	55.1	11	06	05
8.8	06	06	05	16.6	08	01	05	27.0	09	03	05	39.8	10	05	05	55.2	12	00	05
9.4	06	06	05	17.5	08	01	05	28.2	09	03	05	41.3	10	05	05	56.9	12	00	05
9.5	07	00	05	17.6	08	02	05	28.3	09	04	05	41.4	10	06	05	57.0	12	01	05
10.2	07	00	05	18.6	08	02	05	29.5	09	04	05	42.9	10	06	05	58.8	12	01	05
10.3	07	01	05	18.7	08	03	05	29.6	09	05	05	43.0	11	00	05	58.9	12	02	05
11.0	07	01	05	19.7	08	03	05	30.9	09	05	05	44.5	11	00	05	60.7	12	02	05
11.1	07	02	05	19.8	08	04	05	31.0	09	06	05	44.6	11	01	05	60.8	12	03	05
11.8	07	02	05	20.8	08	04	05	32.3	09	06	05	46.2	11	01	05	62.7	12	03	05
11.9	07	03	05	20.9	08	05	05	32.4	10	00	05	46.3	11	02	05	62.8	12	04	05
12.7	07	03	05	22.0	08	05	05	33.7	10	00	05	47.9	11	02	05	64.7	12	04	05
12.8	07	04	05	22.1	08	06	05	33.8	10	01	05	48.0	11	03	05	64.8	12	05	05
13.6	07	04	05	23.1	08	06	05	35.1	10	01	05	49.7	11	03	05	66.7	12	05	05

Crown Rump Length, Hansmann

Hansmann M, Hackelöer B-J, Staudach A. *Ultrasound Diagnosis in Obstetrics and Gynecology*. New York: Springer-Verlag, 1985, p. 439.

CRL mm wks days ± 2SD																			
6.0	06	01	06	17.0	08	03	06	32.0	10	03	08	54.0	12	03	09	86.0	14	04	12
7.0	06	02	07	18.0	08	04	07	34.0	10	05	07	56.0	12	04	09	90.0	14	06	12
8.0	06	04	06	19.0	08	05	07	36.0	10	06	08	58.0	12	05	09	93.0	15	01	12
9.0	06	06	07	20.0	08	06	07	38.0	11	01	08	60.0	12	06	09	96.0	15	03	12
10.0	07	00	07	21.0	09	00	07	40.0	11	02	08	63.0	13	00	10	100.0	15	05	12
11.0	07	02	06	22.0	09	01	07	42.0	11	03	08	66.0	13	02	10	103.0	16	00	13
12.0	07	0																	

Crown Rump Length, Lasser

Lasser DM, Peisner DB, Vollebergh J, Timor-Tritsch I. "First-trimester fetal biometry using transvaginal sonography." *Ultrasound in Obstetrics and Gynecology* 3:104, 1993.

CRL mm	wks	days	\pm 2SD																
02.3	06	00	04	11.1	07	03	04	21.7	08	06	04	34.1	10	02	04	48.4	11	05	04
03.1	06	01	04	12.0	07	04	04	22.8	09	00	04	35.4	10	03	04	49.4	11	06	04
03.9	06	02	04	13.0	07	05	04	24.0	09	01	04	36.8	10	04	04	51.5	12	00	04
04.7	06	03	04	14.0	07	06	04	25.2	09	02	04	38.2	10	05	04	53.0	12	01	04
05.6	06	04	04	15.1	08	00	04	26.4	09	03	04	39.6	10	06	04	54.6	12	02	04
06.4	06	05	04	16.2	08	01	04	27.7	09	04	04	41.0	11	00	04	56.2	12	03	04
07.3	06	06	04	17.2	08	02	04	28.9	09	05	04	42.5	11	01	04	57.9	12	04	04
08.2	07	00	04	18.3	08	03	04	30.2	09	06	04	43.9	11	02	04	59.5	12	05	04
09.1	07	01	04	19.4	08	04	04	31.5	10	00	04	45.4	11	03	04	61.1	12	06	04
10.1	07	02	04	20.5	08	05	04	32.8	10	01	04	46.9	11	04	04	62.8	13	00	04

Crown Rump Length, Tokyo

Masuda H, Shinozuka N, Okai T, Mizuno M. "Diagnosis of the Week of Pregnancy and Prognosis." *Perinatal Care* 8:719-726.

CRL mm	mean days	\pm days															
12.0	49	—	25.0	68	7	38.0	77	7	51.0	87	7	64.0	94	7	77.0	100	14
13.0	52	—	26.0	69	7	39.0	78	7	52.0	87	7	65.0	95	7	78.0	100	14
14.0	54	—	27.0	70	7	40.0	79	7	53.0	88	7	66.0	95	7	79.0	101	14
15.0	56	14	28.0	71	7	41.0	80	7	54.0	89	7	67.0	96	7	80.0	101	14
16.0	58	14	29.0	71	7	42.0	81	7	55.0	89	7	68.0	96	14	81.0	102	14
17.0	60	14	30.0	72	7	43.0	81	7	56.0	90	7	69.0	97	14	82.0	102	14
18.0	61	14	31.0	73	7	44.0	82	7	57.0	90	7	70.0	97	14	83.0	103	14
19.0	62	14	32.0	74	7	45.0	83	7	58.0	91	7	71.0	98	14	84.0	103	14
20.0	63	7	33.0	74	7	46.0	84	7	59.0	92	7	72.0	98	14	85.0	104	14
21.0	64	7	34.0	75	7	47.0	84	7	60.0	92	7	73.0	98	14	86.0	104	14
22.0	65	7	35.0	75	7	48.0	85	7	61.0	93	7	74.0	99	14	87.0	105	14
23.0	66	7	36.0	76	7	49.0	86	7	62.0	93	7	75.0	99	14	88.0	105	14
24.0	67	7	37.0	76	7	50.0	86	7	63.0	94	7	76.0	100	14			

Crown Rump Length, Osaka

Aoki M, Yamada M. "Examining Fetal Growth." *Obstetrics and Gynecology* 47:547-556, 1983.

CRL mm	mean days	\pm days															
8.0	48	7	18.0	61	7	28.0	69	7	38.0	75	7	48.0	81	7	58.0	87	7
9.0	50	7	19.0	62	7	29.0	69	7	39.0	76	7	49.0	82	7	59.0	87	7
10.0	52	7	20.0	63	7	30.0	70	7	40.0	76	7	50.0	82	7	60.0	88	7
11.0	53	7	21.0	64	7	31.0	71	7	41.0	77	7	51.0	83	7	61.0	89	7
12.0	55	7	22.0	64	7	32.0	71	7	42.0	78	7	52.0	83	7	62.0	89	7
13.0	56	7	23.0	65	7	33.0	72	7	43.0	78	7	53.0	84	7	63.0	90	7
14.0	57	7	24.0	66	7	34.0	72	7	44.0	79	7	54.0	85	7	64.0	91	7
15.0	58	7	25.0	67	7	35.0	73	7	45.0	79	7	55.0	85	7			
16.0	59	7	26.0	67	7	36.0	74	7	46.0	80	7	56.0	86	7			
17.0	60	7	27.0	68	7	37.0	74	7	47.0	81	7	57.0	86	7			

Crown Rump Length, JSUM

Japan Society of Ultrasonics in Medicine. "Standardization of Fetometry and Official Announcement of Diagnostic Guidelines." *J. Med. Ultrasonics* 28:844-872, 2001.

CRL mm	- 1SD	days	+	1SD	CRL mm	- 1SD	days	+	1SD	CRL mm	- 1SD	days	+	1SD	CRL mm	- 1SD	days	+	1SD	
14.0	3	57	5	19.0	3	62	5	24.0	3	66	5	29.0	3	70	5	34.0	3	74	4	39.0
15.0	3	58	5	20.0	3	63	5	25.0	3	67	5	30.0	3	71	5	35.0	3	75	4	40.0
16.0	3	59	5	21.0	3	64	5	26.0	3	68	5	31.0	3	72	4	36.0	3	75	4	41.0
17.0	3	60	5	22.0	4	65	5	27.0	3	69	5	32.0	3	73	4	37.0	3	76	4	42.0
18.0	3	61	5	23.0	3	65	5	28.0	4	70	4	33.0	3	73	5	38.0	3	77	4	43.0

Crown Rump Length, ASUM

Westerway SC. "Ultrasonic Fetal Measurements: New Australian Standards for the New Millennium." *Aust NZ J Obstet Gynaecol* 40:3:297-302, 2000.

CRL mm	days										
0.1	37	15.0	53	30.0	66	45.0	77	60.0	86	75.0	93
1.0	38	16.0	53	31.0	67	46.0	78	61.0	86	76.0	93
2.0	39	17.0	54	32.0	67	47.0	78	62.0	87	77.0	93
3.0	40	18.0	55	33.0	68	48.0	79	63.0	87	78.0	94
4.0	41	19.0	56	34.0	69	49.0	80	64.0	88	79.0	94
5.0	42	20.0	57	35.0	70	50.0	80	65.0	88	80.0	94
6.0	43	21.0	58	36.0	71	51.0	81	66.0	89	81.0	95
7.0	45	22.0	59	37.0	71	52.0	81	67.0	89	82.0	95
8.0	46	23.0	60	38.0	72	53.0	82	68.0	90	83.0	95
9.0	47	24.0	61	39.0	73	54.0	83	69.0	90	84.0	96
10.0	48	25.0	62	40.0	74	55.0	83	70.0	91	85.0	96
11.0	49	26.0	63	41.0	74	56.0	84	71.0	91	86.0	96
12.0	50	27.0	63	42.0	75	57.0	84	72.0	91	87.0	96
13.0	51	28.0	64	43.0	76	58.0	85	73.0	92		
14.0	52	29.0	65	44.0	76	59.0	85	74.0	92		

Biparietal Diameter, Hadlock

Hadlock FP, Deter RL, Harrist RB, Park SK. "Estimating Fetal Age: Computer-Assisted Analysis of Multiple Fetal Growth Parameters." *Radiology* 152:497, 1984.

$$MA = 9.54 + 1.482 * (BPD) + 0.1676 * (BPD^2)$$

± 2 Standard Deviations: 12-18 wk \pm 1.19 wk (8 days) 30-36 wk \pm 3.08 wk (22 days)
 18-24 wk \pm 1.73 wk (12 days) 36-42 wk \pm 3.20 wk (22 days)
 24-30 wk \pm 2.18 wk (15 days)

BPD mm	wks	days	\pm $\pm 2SD$	BPD mm	wks	days	\pm $\pm 2SD$	BPD mm	wks	days	\pm $\pm 2SD$	BPD mm	wks	days	\pm $\pm 2SD$	BPD mm	wks	days	\pm $\pm 2SD$				
15.0	12	01	08	36.6	17	01	08	53.4	22	02	12	67.9	27	02	15	80.6	32	03	22	92.3	37	03	22
15.3	12	01	08	36.7	17	02	08	53.7	22	02	12	68.0	27	03	15	80.9	32	03	22	92.4	37	04	22
15.4	12	02	08	37.1	17	02	08	53.8	22	03	12	68.3	27	03	15	81.0	32	04	22	92.6	37	04	22
16.0	12	02	08	37.2	17	03	08	54.2	22	03	12	68.4	27	04	15	81.2	32	04	22	92.7	37	05	22
16.1	12	03	08	37.6	17	03	08	54.3	22	04	12	68.7	27	04	15	81.3	32	05	22	92.9	37	05	22
16.7	12	03	08	37.7	17	04	08	54.6	22	04	12	68.8	27	05	15	81.5	32	05	22	93.0	37	06	22
16.8	12	04	08	38.1	17	04	08	54.7	22	05	12	69.1	27	05	15	81.6	32	06	22	93.2	37	06	22
17.4	12	04	08	38.2	17	05	08	55.0	22	05	12	69.2	27	06	15	81.9	32	06	22	93.3	38	00	22
17.5	12	05	08	38.7	17	05	08	55.1	22	06	12	69.4	27	06	15	82.0	33	00	22	93.5	38	00	22
18.1	12	05	08	38.8	17	06	08	55.5	22	06	12	69.5	28	00	15	82.2	33	00	22	93.6	38	01	22
18.2	12	06	08	39.2	17	06	08	55.6	23	00	12	69.8	28	00	15	82.3	33	01	22	93.8	38	01	22
18.8	12	06	08	39.3	18	00	12	55.9	23	00	12	69.9	28	01	15	82.5	33	01	22	93.9	38	02	22
18.9	13	00	08	39.7	18	00	12	56.0	23	01	12	70.2	28	01	15	82.6	33	02	22	94.1	38	02	22
19.5	13	00	08	39.8	18	01	12	56.3	23	01	12	70.3	28	02	15	82.9	33	02	22	94.2	38	03	22
19.6	13	01	08	40.2	18	01	12	56.4	23	02	12	70.6	28	02	15	83.0	33	03	22	94.4	38	03	22
20.1	13	01	08	40.3	18	02	12	56.7	23	02	12	70.7	28	03	15	83.2	33	03	22	94.5	38	04	22
20.2	13	02	08	40.7	18	02	12	56.8	23	03	12	70.9	28	03	15	83.3	33	04	22	94.7	38	04	22
20.8	13	02	08	40.8	18	03	12	57.1	23	03	12	71.0	28	04	15	83.5	33	04	22	94.8	38	05	22
20.9	13	03	08	41.2	18	03	12	57.2	23	04	12	71.3	28	04	15	83.6	33	05	22	95.0	38	05	22
21.4	13	03	08	41.3	18	04	12	57.6	23	04	12	71.4	28	05	15	83.9	33	05	22	95.1	38	06	22
21.5	13	04	08	41.7	18	04	12	57.7	23	05	12	71.7	28	05	15	84.0	33	06	22	95.3	38	06	22
22.1	13	04	08	41.8	18	05	12	58.0	23	05	12	71.8	28	06	15	84.2	33	06	22	95.4	39	00	22
22.2	13	05	08	42.2	18	05	12	58.1	23	06	12	72.0	28	06	15	84.3	34	00	22	95.6	39	00	22
22.7	13	05	08	42.3	18	06	12	58.4	23	06	12	72.1	29	00	15	84.5	34	00	22	95.7	39	01	22
22.8	13	06	08	42.7	18	06	12	58.5	24	00	15	72.4	29	00	15	84.6	34	01	22	96.0	39	01	22
23.4	13	06	08	42.8	19	00	12	58.8	24	00	15	72.5	29	01	15	84.9	34	01	22	96.1	39	02	22
23.5	14	00	08	43.2	19	00	12	58.9	24	01	15	72.8	29	01	15	85.0	34	02	22	96.3	39	02	22
24.0	14	00	08	43.3	19	01	12	59.2	24	01	15	72.9	29	02	15	85.2	34	02	22	96.4	39	03	22
24.1	14	01	08	43.6	19	01	12	59.3	24	02	15	73.1	29	02	15	85.3	34	03	22	96.6	39	03	22
24.6	14	01	08	43.7	19	02	12	59.6	24	02	15	73.2	29	03	15	85.5	34	03	22	96.7	39	04	22
24.7	14	02	08	44.1	19	02	12	59.7	24	03	15	73.5	29	03	15	85.6	34	04	22	96.9	39	04	22
25.2	14	02	08	44.2	19	03	12	60.0	24	03	15	73.6	29	04	15	85.9	34	04	22	97.0	39	05	22
25.3	14	03	08	44.6	19	03	12	60.1	24	04	15	73.8	29	04	15	86.0	34	05	22	97.2	39	05	22
25.8	14	03	08	44.7	19	04	12	60.5	24	04	15	73.9	29	05	15	86.2	34	05	22	97.3	39	06	22
25.9	14	04	08	45.1	19	04	12	60.6	24	05	15	74.2	29	05	15	86.3	34	06	22	97.5	39	06	22
26.4	14	04	08	45.2	19	05	12	60.9	24	05	15	74.3	29	06	15	86.5	34	06	22	97.6	40	00	22
26.5	14	05	08	45.6	19	05	12	61.0	24	06	15	74.6	29	06	15	86.6	35	00	22	97.8	40	00	22
27.0	14	05	08	45.7	19	06	12	61.3	24	06	15	74.7	30	00	22	86.8	35	00	22	97.9	40	01	22
27.1	14	06	08	46.0	19	06	12	61.4	25	00	15	74.9	30	00	22	86.9	35	01	22	98.1	40	01	22
27.6	14	06	08	46.1	20	00	12	61.7	25	00	15	75.0	30	01	22	87.2	35	01	22	98.2	40	02	22
27.7	15	00	08	46.5	20	00	12	61.8	25	01	15	75.3	30	01	22	87.3	35	02	22	98.4	40	02	22
28.2	15	00	08	46.6	20	01	12	62.1	25	01	15	75.4	30	02	22	87.5	35	02	22	98.5	40	03	22
28.3	15	01	08	47.0	20	01	12	62.2	25	02	15	75.6	30	02	22	87.6	35	03	22	98.7	40	03	22
28.8	15	01	08	47.1	20	02	12	62.5	25	02	15	75.7	30	03	22	87.8	35	03	22	98.8	40	04	22
28.9	15	02	08	47.4	20	02	12	62.6	25	03	15	76.0	30	03	22	87.9	35	04	22	99.0	40	04	22
29.4	15	02	08	47.5	20	03	12	62.9	25	03	15	76.1	30	04	22	88.1	35	04	22	99.1	40	05	22
29.5	15	03	08	47.9	20	03	12	63.0	25	04	15	76.3	30	04	22	88.2	35	05	22	99.3	40	05	22
30.0	15	03	08	48.0	20	04	12	63.3	25	04	15	76.4	30	05	22	88.5	35	05	22	99.4	40	06	22
30.1	15	04	08	48.4	20	04	12	63.4	25	05	15	76.7	30	05	22	88.6	35	06	22	99.6	40	06	22
30.5	15	04	08	48.5	20	05	12	63.7	25	05	15	76.8	30	06	22	88.8	35	06	22	99.7	41	00	22
30.6	15	05	08	48.8	20	05	12	63.8	25	06	15	77.0	30	06	22	88.9	36	00	22	99.8	41	00	22
31.1	15	05	08	48.9	20	06	12	64.1	25	06	15	77.1	31	00	22	89.1	36	00	22	99.9	41	01	22
31.2	15	06	08	49.3	20	06	12	64.2	26	00	15	77.4	31	00	22	89.2	36	01	22	100.1	41	01	22
31.7	15	06	08	49.4	21	00	12	64.4	26	00	15	77.5	31	01	22	89.4	36	01	22	100.2	41	02	22
31.8	16	00	08	49.7	21	00	12	64.5	26	01	15	77.7	31	01	22	89.5	36	02	22	10			

Biparietal Diameter, MerzMerz E. *Ultrasound in Gynecology and Obstetrics*. Stuttgart and New York: Thieme Medical Publishers, Inc., 1991, p. 326.

Standard Deviation derived from 5 and 95% Confidence Interval

BPD																			
mm	wks	days	± 2SD	mm	wks	days	± 2SD	mm	wks	days	± 2SD	mm	wks	days	± 2SD	mm	wks	days	± 2SD
21.0	12	01	13	35.0	16	00	15	49.0	20	00	16	63.0	24	04	17	77.0	29	03	18
22.0	12	03	12	36.0	16	02	15	50.0	20	03	15	64.0	24	06	17	78.0	29	06	18
23.0	12	05	12	37.0	16	04	13	51.0	20	05	16	65.0	25	01	17	79.0	30	01	18
24.0	13	00	13	38.0	16	06	15	52.0	21	00	16	66.0	25	04	17	80.0	30	04	18
25.0	13	01	13	39.0	17	01	15	53.0	21	02	16	67.0	25	06	17	81.0	30	06	19
26.0	13	04	12	40.0	17	03	15	54.0	21	04	17	68.0	26	01	18	82.0	31	02	19
27.0	13	06	13	41.0	17	05	16	55.0	21	06	17	69.0	26	04	17	83.0	31	05	18
28.0	14	01	13	42.0	18	00	16	56.0	22	01	17	70.0	26	06	17	84.0	32	01	18
29.0	14	02	13	43.0	18	02	16	57.0	22	04	16	71.0	27	01	18	85.0	32	04	18
30.0	14	04	13	44.0	18	04	16	58.0	22	06	16	72.0	27	04	18	86.0	32	06	19
31.0	14	06	15	45.0	18	06	16	59.0	23	01	17	73.0	27	06	18	87.0	33	02	19
32.0	15	01	15	46.0	19	01	16	60.0	23	04	17	74.0	28	02	18	88.0	33	06	19
33.0	15	03	13	47.0	19	03	15	61.0	23	06	17	75.0	28	04	18	89.0	34	01	21
34.0	15	05	15	48.0	19	05	16	62.0	24	01	17	76.0	29	00	18	90.0	34	04	19

Biparietal Diameter, LasserLasser DM, Peisner DB, Vollebergh J, Timor-Tritsch I. "First-trimester fetal biometry using transvaginal sonography." *Ultrasound in Obstetrics and Gynecology* 3:104, 1993.

BPD				BPD				BPD				BPD				BPD			
mm	wks	days	± 2SD	mm	wks	days	± 2SD	mm	wks	days	± 2SD	mm	wks	days	± 2SD	mm	wks	days	± 2SD
4.7	07	00	05	6.9	08	02	05	10.2	09	04	05	15.0	10	06	05	22.0	12	01	05
4.9	07	01	05	7.2	08	03	05	10.6	09	05	05	15.6	11	00	05	23.0	12	02	05
5.1	07	02	05	7.5	08	04	05	11.1	09	06	05	16.3	11	01	05	24.0	12	03	05
5.3	07	03	05	7.9	08	05	05	11.6	10	00	05	17.0	11	02	05	25.1	12	04	05
5.6	07	04	05	8.2	08	06	05	12.1	10	01	05	17.8	11	03	05	26.2	12	05	05
5.8	07	05	05	8.6	09	00	05	12.6	10	02	05	18.6	11	04	05	27.3	12	06	05
6.1	07	06	05	8.9	09	01	05	13.2	10	03	05	19.4	11	05	05	28.5	13	00	05
6.3	08	00	05	9.3	09	02	05	13.7	10	04	05	20.2	11	06	05	29.8	13	01	05
6.6	08	01	05	9.7	09	03	05	14.3	10	05	05	21.1	12	00	05	31.1	13	02	05

Biparietal Diameter, RempenRempen A. "Biometrie in der Frühgravidität (I. Trimenon) (Biometry in Early Pregnancy (1st Trimester))." *Der Frauenarzt* 32:425, 1991.

BPD				BPD				BPD				BPD				BPD			
mm	wks	days	± 2SD	mm	wks	days	± 2SD	mm	wks	days	± 2SD	mm	wks	days	± 2SD	mm	wks	days	± 2SD
3.0	06	06	10	8.0	08	02	10	13.0	09	05	10	18.0	11	01	10	23.0	12	04	10
4.0	07	01	10	9.0	08	04	10	14.0	10	00	10	19.0	11	03	10	24.0	12	06	10
5.0	07	03	10	10.0	08	06	10	15.0	10	02	10	20.0	11	05	10	25.0	13	01	10
6.0	07	05	10	11.0	09	01	10	16.0	10	04	10	21.0	12	00	10	26.0	13	03	10
7.0	08	00	10	12.0	09	03	10	17.0	10	06	10	22.0	12	02	10	27.0	13	05	10

Biparietal Diameter, TokyoMasuda H, Shinozuka N, Okai T, Mizuno M. "Diagnosis of the Week of Pregnancy and Prognosis." *Perinatal Care* 8:719-726.

BPD				BPD				BPD				BPD				BPD			
mm	mean days	± days	BPD mm	mean days	± days	BPD mm	mean days	± days	BPD mm	mean days	± days	BPD mm	mean days	± days	BPD mm	mean days	± days	BPD mm	mean days
20.0	85	7	33.0	112	7	46.0	139	14	59.0	169	14	72.0	201	21	85.0	241	21		
21.0	87	7	34.0	114	7	47.0	141	14	60.0	171	14	73.0	204	21	86.0	245	21		
22.0	89	7	35.0	116	7	48.0	144	14	61.0	173	14	74.0	207	21	87.0	249	21		
23.0	91	7	36.0	118	7	49.0	146	14	62.0	176	14	75.0	209	21	88.0	253	21		
24.0	93	7	37.0	120	7	50.0	148	14	63.0	178	14	76.0	212	21	89.0	257	21		
25.0	95	7	38.0	122	7	51.0	150	14	64.0	181	14	77.0	215	21	90.0	262	28		
26.0	97	7	39.0	124	7	52.0	152	14	65.0	183	14	78.0	218	21	91.0	267	28		
27.0	99	7	40.0	126	14	53.0	155	14	66.0	186	14	79.0	221	21	92.0	273	28		
28.0	101	7	41.0	128	14	54.0	157	14	67.0	188	14	80.0	224	21	93.0	279	28		
29.0	103	7	42.0	131	14	55.0	159	14	68.0	191	14	81.0	227	21	94.0	287	28		
30.0	105	7	43.0	133	14	56.0	162	14	69.0	193	14	82.0	231	21					
31.0	107	7	44.0	135	14	57.0	164	14	70.0	196	21	83.0	234	21					
32.0	110	7	45.0	137	14	58.0	166	14	71.0	198	21	84.0	237	21					

Biparietal Diameter, OsakaAoki M, Yamada M. "Examining Fetal Growth." *Obstetrics and Gynecology* 47:547-556, 1983.

BPD				BPD				BPD				BPD				BPD			
mm	mean days	± days	BPD mm	mean days	± days	BPD mm	mean days	± days	BPD mm	mean days	± days	BPD mm	mean days	± days	BPD mm	mean days	± days	BPD mm	mean days
14.0	71	7	28.0	98	7	42.0	126	7	56.0	157	14	70.0	190	14	84.0	230	--		
15.0	73	7	29.0	99	7	43.0	128	7	57.0	159	14	71.0	193	--	85.0	234	--		
16.0	75	7	30.0	101	7	44.0	130	7	58.0										

Biparietal Diameter, JSUM

Japan Society of Ultrasonics in Medicine. "Standardization of Fetometry and Official Announcement of Diagnostic Guidelines." *J. Med. Ultrasonics* 28:844-872, 2001.

BPD mm	- 1SD	days	+	BPD mm	- 1SD	days	+																
13.0	4	71	4	26.0	5	98	5	39.0	6	125	6	52.0	7	153	7	65.0	9	183	9	78.0	12	219	12
14.0	4	73	4	27.0	5	100	5	40.0	6	127	6	53.0	8	155	8	66.0	10	185	10	79.0	12	222	12
15.0	4	75	4	28.0	5	102	5	41.0	6	129	6	54.0	8	157	8	67.0	10	188	10	80.0	12	225	12
16.0	4	77	4	29.0	5	104	5	42.0	6	131	6	55.0	8	159	8	68.0	10	191	10	81.0	12	229	12
17.0	4	79	4	30.0	5	106	5	43.0	6	133	6	56.0	8	162	8	69.0	10	193	10	82.0	13	232	13
18.0	4	81	4	31.0	5	108	5	44.0	6	135	6	57.0	8	164	8	70.0	10	196	10	83.0	13	236	13
19.0	4	83	4	32.0	5	110	5	45.0	6	137	6	58.0	8	166	8	71.0	10	199	10	84.0	13	240	13
20.0	4	85	4	33.0	5	112	5	46.0	7	140	7	59.0	8	169	8	72.0	11	201	11	85.0	13	244	13
21.0	4	87	4	34.0	5	114	5	47.0	7	142	7	60.0	9	171	9	73.0	11	204	11	86.0	14	248	14
22.0	4	90	4	35.0	5	116	5	48.0	7	144	7	61.0	9	173	9	74.0	11	207	11	87.0	14	252	14
23.0	5	92	5	36.0	6	118	6	49.0	7	146	7	62.0	9	176	9	75.0	11	210	11	88.0	14	257	14
24.0	5	94	5	37.0	6	120	6	50.0	7	148	7	63.0	9	178	9	76.0	11	213	11	89.0	14	263	14
25.0	5	96	5	38.0	6	123	6	51.0	7	150	7	64.0	9	180	9	77.0	12	216	12	90.0	15	269	15

Biparietal Diameter, ASUM

Westerway SC. "Ultrasonic Fetal Measurements: New Australian Standards for the New Millennium." *Aust NZ J Obstet Gynaecol* 40:3:297-302, 2000.

BPD mm	days										
14.0	77	29.0	100	44.0	130	59.0	165	74.0	205	89.0	251
15.0	78	30.0	102	45.0	132	60.0	167	75.0	208	90.0	255
16.0	80	31.0	104	46.0	134	61.0	170	76.0	211	91.0	258
17.0	81	32.0	106	47.0	136	62.0	172	77.0	214	92.0	261
18.0	83	33.0	108	48.0	138	63.0	175	78.0	217	93.0	265
19.0	84	34.0	110	49.0	141	64.0	177	79.0	220	94.0	268
20.0	86	35.0	111	50.0	143	65.0	180	80.0	223	95.0	271
21.0	87	36.0	113	51.0	145	66.0	183	81.0	226	96.0	275
22.0	89	37.0	115	52.0	148	67.0	186	82.0	229	97.0	278
23.0	90	38.0	117	53.0	150	68.0	188	83.0	232	98.0	282
24.0	92	39.0	119	54.0	152	69.0	191	84.0	235	99.0	285
25.0	94	40.0	121	55.0	155	70.0	194	85.0	238	99.5	287
26.0	95	41.0	123	56.0	157	71.0	197	86.0	242		
27.0	97	42.0	125	57.0	160	72.0	199	87.0	245		
28.0	99	43.0	128	58.0	162	73.0	202	88.0	248		

Occipital Frontal Diameter, Merz

Merz E, Wellek S. "Normal Fetal Growth Profile – A Uniform Model for Calculating Normal Current Head and Abdomen Parameters and Long Limb Bones." *Ultraschall in der Medizin* 17(4):153-162, 1996.

Range: 13 – 40 weeks, 31.8 – 114.4 mm

Occipital Frontal Diameter, ASUM

Westerway SC. "Ultrasonic Fetal Measurements: New Australian Standards for the New Millennium." *Aust NZ J Obstet Gynaecol* 40:3:297-302, 2000.

OFD mm	days										
13.0	77	32.0	94	51.0	118	70.0	150	89.0	190	108.0	237
14.0	78	33.0	95	52.0	120	71.0	152	90.0	192	109.0	240
15.0	79	34.0	96	53.0	121	72.0	154	91.0	194	110.0	242
16.0	80	35.0	97	54.0	123	73.0	156	92.0	197	111.0	245
17.0	80	36.0	99	55.0	125	74.0	158	93.0	199	112.0	248
18.0	81	37.0	100	56.0	126	75.0	160	94.0	201	113.0	251
19.0	82	38.0	101	57.0	128	76.0	162	95.0	204	114.0	253
20.0	83	39.0	102	58.0	129	77.0	164	96.0	206	115.0	256
21.0	84	40.0	103	59.0	131	78.0	166	97.0	209	116.0	259
22.0	84	41.0	105	60.0	133	79.0	168	98.0	211	117.0	262
23.0	85	42.0	106	61.0	134	80.0	170	99.0	214	118.0	265
24.0	86	43.0	107	62.0	136	81.0	172	100.0	216	119.0	268
25.0	87	44.0	109	63.0	138	82.0	174	101.0	219	120.0	271
26.0	88	45.0	110	64.0	139	83.0	177	102.0	221	121.0	273
27.0	89	46.0	111	65.0	141	84.0	179	103.0	224	122.0	276
28.0	90	47.0	113	66.0	143	85.0	181	104.0	226	123.0	279
29.0	91	48.0	114	67.0	145	86.0	183	105.0	229	124.0	282
30.0	92	49.0	116	68.0	147	87.0	185	106.0	232	125.0	285
31.0	93	50.0	117	69.0	148	88.0	188	107.0	234	125.5	287

Abdominal Transverse Diameter, Merz

Merz E, Wellek S. "Normal Fetal Growth Profile – A Uniform Model for Calculating Normal Current Head and Abdomen Parameters and Long Limb Bones." *Ultraschall in der Medizin* 17(4):153-162, 1996.

Range: 12 – 40 weeks, 18.7 – 107.1 mm

Abdominal Sagittal Diameter, Merz

Merz E, Wellek S. "Normal Fetal Growth Profile – A Uniform Model for Calculating Normal Current Head and Abdomen Parameters and Long Limb Bones." *Ultraschall in der Medizin* 17(4):153-162, 1996.

Range: 12 – 40 weeks, 17.4 – 105.6 mm

Fractional Shortening, Cyr

Cyr DR, Guntheroth WG, Mack LA. "Fetal Echocardiography." In: Berman MC (ed.) *Diagnostic Medical Sonography*, Vol I: Obstetrics and Gynecology, 249-271, 1991.

FS%=(LVIDd - LVIDs)/LVIDd*100

Fetal Weight Estimation, OsakaAoki M, Yamada M. "Examining Fetal Growth." *Obstetrics and Gynecology* 47:547-556, 1983.

EFW grams	days								
365.0	140	707.0	165	1,166.0	190	1,716.0	215	2,314.0	240
376.0	141	723.0	166	1,187.0	191	1,739.0	216	2,338.0	241
388.0	142	740.0	167	1,208.0	192	1,762.0	217	2,363.0	242
399.0	143	756.0	168	1,228.0	193	1,786.0	218	2,387.0	243
411.0	144	773.0	169	1,249.0	194	1,809.0	219	2,411.0	244
423.0	145	790.0	170	1,270.0	195	1,833.0	220	2,436.0	245
435.0	146	807.0	171	1,292.0	196	1,857.0	221	2,460.0	246
448.0	147	825.0	172	1,313.0	197	1,880.0	222	2,484.0	247
461.0	148	842.0	173	1,334.0	198	1,904.0	223	2,509.0	248
474.0	149	860.0	174	1,356.0	199	1,928.0	224	2,533.0	249
487.0	150	878.0	175	1,378.0	200	1,952.0	225	2,557.0	250
500.0	151	896.0	176	1,399.0	201	1,976.0	226	2,582.0	251
513.0	152	914.0	177	1,421.0	202	2,000.0	227	2,606.0	252
527.0	153	933.0	178	1,443.0	203	2,024.0	228	2,630.0	253
541.0	154	951.0	179	1,465.0	204	2,048.0	229	2,654.0	254
555.0	155	970.0	180	1,488.0	205	2,072.0	230	2,678.0	255
569.0	156	989.0	181	1,510.0	206	2,096.0	231	2,702.0	256
584.0	157	1,008.0	182	1,533.0	207	2,120.0	232	2,727.0	257
599.0	158	1,027.0	183	1,555.0	208	2,144.0	233	2,751.0	258
613.0	159	1,047.0	184	1,578.0	209	2,168.0	234	2,775.0	259
628.0	160	1,066.0	185	1,601.0	210	2,193.0	235	2,799.0	260
644.0	161	1,086.0	186	1,623.0	211	2,217.0	236	2,823.0	261
659.0	162	1,106.0	187	1,646.0	212	2,241.0	237	2,847.0	262
675.0	163	1,126.0	188	1,669.0	213	2,265.0	238	2,870.0	263
691.0	164	1,146.0	189	1,693.0	214	2,290.0	239	2,894.0	264

Fetal Weight Estimation, JSUMJapan Society of Ultrasonics in Medicine. "Standardization of Fetometry and Official Announcement of Diagnostic Guidelines." *J. Med. Ultrasonics* 28:844-872, 2001.

EFW grams	days								
187.0	126	469.0	154	892.0	182	1,470.0	210	2,156.0	238
196.0	127	482.0	155	911.0	183	1,494.0	211	2,181.0	239
204.0	128	495.0	156	929.0	184	1,517.0	212	2,207.0	240
213.0	129	508.0	157	948.0	185	1,541.0	213	2,232.0	241
221.0	130	521.0	158	967.0	186	1,564.0	214	2,257.0	242
230.0	131	534.0	159	986.0	187	1,588.0	215	2,282.0	243
238.0	132	547.0	160	1,004.0	188	1,611.0	216	2,308.0	244
247.0	133	560.0	161	1,023.0	189	1,635.0	217	2,333.0	245
256.0	134	574.0	162	1,043.0	190	1,659.0	218	2,358.0	246
266.0	135	589.0	163	1,063.0	191	1,684.0	219	2,383.0	247
275.0	136	603.0	164	1,083.0	192	1,708.0	220	2,408.0	248
285.0	137	617.0	165	1,103.0	193	1,732.0	221	2,432.0	249
294.0	138	631.0	166	1,123.0	194	1,756.0	222	2,457.0	250
304.0	139	646.0	167	1,143.0	195	1,781.0	223	2,482.0	251
313.0	140	660.0	168	1,163.0	196	1,805.0	224	2,507.0	252
324.0	141	676.0	169	1,184.0	197	1,830.0	225	2,531.0	253
334.0	142	692.0	170	1,206.0	198	1,855.0	226	2,555.0	254
345.0	143	708.0	171	1,227.0	199	1,880.0	227	2,579.0	255
355.0	144	723.0	172	1,249.0	200	1,905.0	228	2,604.0	256
366.0	145	739.0	173	1,270.0	201	1,930.0	229	2,628.0	257
376.0	146	755.0	174	1,292.0	202	1,955.0	230	2,652.0	258
387.0	147	771.0	175	1,313.0	203	1,980.0	231	2,676.0	259
399.0	148	788.0	176	1,335.0	204	2,005.0	232	2,699.0	260
410.0	149	806.0	177	1,358.0	205	2,030.0	233	2,722.0	261
422.0	150	823.0	178	1,380.0	206	2,055.0	234	2,745.0	262
434.0	151	840.0	179	1,403.0	207	2,081.0	235	2,769.0	263
446.0	152	857.0	180	1,425.0	208	2,106.0	236	2,792.0	264
457.0	153	875.0	181	1,448.0	209	2,131.0	237	2,815.0	265

Fetal Weight Estimation, TokyoMasuda H, Shinozuka N, Okai T, Mizuno M. "Diagnosis of the Week of Pregnancy and Prognosis." *Perinatal Care* 8:719-726.

EFW grams	days								
216.0	140	579.0	165	991.0	190	1,553.0	215	2,251.0	240
232.0	141	594.0	166	1,010.0	191	1,579.0	216	2,280.0	241
247.0	142	608.0	167	1,030.0	192	1,605.0	217	2,309.0	242
263.0	143	623.0	168	1,050.0	193	1,631.0	218	2,339.0	243
278.0	144	638.0	169	1,070.0	194	1,658.0	219	2,367.0	244
293.0	145	653.0	170	1,090.0	195	1,684.0	220	2,396.0	245
307.0	146	668.0	171	1,111.0	196	1,711.0	221	2,425.0	246
322.0	147	684.0	172	1,131.0	197	1,738.0	222	2,454.0	247
337.0	148	699.0	173	1,153.0	198	1,766.0	223	2,482.0	248
351.0	149	715.0	174	1,174.0	199	1,793.0	224	2,511.0	249
366.0	150	730.0	175	1,196.0	200	1,821.0	225	2,539.0	250
380.0	151	746.0	176	1,218.0	201	1,849.0	226	2,567.0	251
394.0	152	762.0	177	1,240.0	202	1,877.0	227	2,595.0	252
409.0	153	779.0	178	1,262.0	203	1,905.0	228	2,623.0	253
423.0	154	795.0	179	1,285.0	204	1,934.0	229	2,650.0	254
437.0	155	812.0	180	1,308.0	205	1,962.0	230	2,677.0	255
451.0	156	829.0	181	1,331.0	206	1,991.0	231	2,704.0	256
465.0	157	846.0	182	1,355.0	207	2,019.0	232	2,730.0	257
479.0	158	863.0	183	1,379.0	208	2,048.0	233	2,756.0	258
493.0	159	881.0	184	1,403.0	209	2,077.0	234	2,782.0	259
508.0	160	899.0	185	1,427.0	210	2,106.0	235	2,807.0	260
522.0	161	917.0	186	1,452.0	211	2,135.0	236	2,832.0	261
536.0	162	935.0	187	1,477.0	212	2,164.0	237	2,857.0	262
550.0	163	953.0	188	1,502.0	213	2,193.0	238	2,881.0	263
565.0	164	972.0	189	1,527.0	214	2,222.0	239	2,905.0	264

Head Circumference, Hadlock

Hadlock FP, Deter RL, Harrist RB, Park SK. "Estimating Fetal Age: Computer-Assisted Analysis of Multiple Fetal Growth Parameters." *Radiology* 152:497, 1984.

$$\text{MA} = 8.96 + 0.540 *(\text{HC}) + 0.0003 *(\text{HC}^3)$$

± 2 Standard Deviations 12-18 wk \pm 1.19 wk (8 days) 30-36 wk \pm 2.98 wk (21 days)
 18-24 wk \pm 1.48 wk (10 days) 36-42 wk \pm 2.70 wk (19 days)
 24-30 wk \pm 2.06 wk (14 days)

HC mm	wks	days	\pm 2SD																
56.0	12	00	08	136.1	17	00	08	199.1	22	01	10	250.6	27	01	14	292.2	32	02	21
56.6	12	00	08	136.2	17	01	08	200.6	22	01	10	250.7	27	02	14	293.2	32	02	21
56.7	12	01	08	138.1	17	01	08	200.7	22	02	10	251.8	27	02	14	293.3	32	03	21
59.1	12	01	08	138.2	17	02	08	202.1	22	02	10	251.9	27	03	14	294.3	32	03	21
59.2	12	02	08	140.1	17	02	08	202.2	22	03	10	253.1	27	03	14	294.4	32	04	21
61.6	12	02	08	140.2	17	03	08	203.7	22	03	10	253.2	27	04	14	295.3	32	04	21
61.7	12	03	08	142.1	17	03	08	203.8	22	04	10	254.4	27	04	14	295.4	32	05	21
64.0	12	03	08	142.2	17	04	08	205.3	22	04	10	254.5	27	05	14	296.4	32	05	21
64.1	12	04	08	144.1	17	04	08	205.4	22	05	10	255.7	27	05	14	296.5	32	06	21
66.5	12	04	08	144.2	17	05	08	206.8	22	05	10	255.8	27	06	14	297.5	32	06	21
66.6	12	05	08	146.1	17	05	08	206.9	22	06	10	256.9	27	06	14	297.6	33	00	21
69.0	12	05	08	146.2	17	06	08	208.3	22	06	10	257.0	28	00	14	298.5	33	00	21
69.1	12	06	08	148.0	17	06	08	208.4	23	00	10	258.2	28	00	14	298.6	33	01	21
71.4	12	06	08	148.1	18	00	10	209.9	23	00	10	258.3	28	01	14	299.6	33	01	21
71.5	13	00	08	149.9	18	00	10	210.0	23	01	10	259.4	28	01	14	299.7	33	02	21
73.8	13	00	08	150.0	18	01	10	211.4	23	01	10	259.5	28	02	14	300.7	33	02	21
73.9	13	01	08	151.9	18	01	10	211.5	23	02	10	260.7	28	02	14	300.8	33	03	21
76.3	13	01	08	152.0	18	02	10	212.9	23	02	10	260.8	28	03	14	301.7	33	03	21
76.4	13	02	08	153.8	18	02	10	213.0	23	03	10	261.9	28	03	14	301.8	33	04	21
78.7	13	02	08	153.9	18	03	10	214.4	23	03	10	262.0	28	04	14	302.8	33	04	21
78.8	13	03	08	155.6	18	03	10	214.5	23	04	10	263.2	28	04	14	302.9	33	05	21
81.1	13	03	08	155.7	18	04	10	215.9	23	04	10	263.3	28	05	14	303.8	33	05	21
81.2	13	04	08	157.5	18	04	10	216.0	23	05	10	264.4	28	05	14	303.9	33	06	21
83.4	13	04	08	157.6	18	05	10	217.4	23	05	10	264.5	28	06	14	304.9	33	06	21
83.5	13	05	08	159.4	18	05	10	217.5	23	06	10	265.6	28	06	14	305.0	34	00	21
85.8	13	05	08	159.5	18	06	10	218.9	23	06	10	265.7	29	00	14	305.9	34	00	21
85.9	13	06	08	161.2	18	06	10	219.0	24	00	14	266.8	29	00	14	306.0	34	01	21
88.1	13	06	08	161.3	19	00	10	220.3	24	00	14	266.9	29	01	14	306.9	34	01	21
88.2	14	00	08	163.1	19	00	10	220.4	24	01	14	268.0	29	01	14	307.0	34	02	21
90.5	14	00	08	163.2	19	01	10	221.8	24	01	14	268.1	29	02	14	307.9	34	02	21
90.6	14	01	08	164.9	19	01	10	221.9	24	02	14	269.2	29	02	14	308.0	34	03	21
92.8	14	01	08	165.0	19	02	10	223.2	24	02	14	269.3	29	03	14	309.0	34	03	21
92.9	14	02	08	166.7	19	02	10	223.3	24	03	14	270.4	29	03	14	309.1	34	04	21
95.1	14	02	08	166.8	19	03	10	224.7	24	03	14	270.5	29	04	14	310.0	34	04	21
95.2	14	03	08	168.5	19	03	10	224.8	24	04	14	271.6	29	04	14	310.1	34	05	21
97.4	14	03	08	168.6	19	04	10	226.1	24	04	14	271.7	29	05	14	311.0	34	05	21
97.5	14	04	08	170.3	19	04	10	226.2	24	05	14	272.8	29	05	14	311.1	34	06	21
99.7	14	04	08	170.4	19	05	10	227.5	24	05	14	272.9	29	06	14	312.0	34	06	21
99.8	14	05	08	172.1	19	05	10	227.6	24	06	14	274.0	29	06	14	312.1	35	00	21
101.9	14	05	08	172.2	19	06	10	228.9	24	06	14	274.1	30	00	21	313.0	35	00	21
102.0	14	06	08	173.9	19	06	10	229.0	25	00	14	275.1	30	00	21	313.1	35	01	21
104.2	14	06	08	174.0	20	00	10	230.4	25	00	14	275.2	30	01	21	314.0	35	01	21
104.3	15	00	08	175.6	20	00	10	230.5	25	01	14	276.3	30	01	21	314.1	35	02	21
106.4	15	00	08	175.7	20	01	10	231.8	25	01	14	276.4	30	02	21	315.0	35	02	21
106.5	15	01	08	177.3	20	01	10	231.9	25	02	14	277.5	30	02	21	315.1	35	03	21
108.6	15	01	08	177.4	20	02	10	233.1	25	02	14	277.6	30	03	21	316.0	35	03	21
108.7	15	02	08	179.1	20	02	10	233.2	25	03	14	278.6	30	03	21	316.1	35	04	21
110.8	15	02	08	179.2	20	03	10	234.5	25	03	14	278.7	30	04	21	317.0	35	04	21
110.9	15	03	08	180.8	20	03	10	234.6	25	04	14	279.8	30	04	21	317.1	35	05	21
113.0	15	03	08	180.9	20	04	10	235.9	25	04	14	279.9	30	05	21	318.0	35	05	21
113.1	15	04	08	182.5	20	04	10	236.0	25	05	14	280.9	30	05	21	318.1	35	06	21
115.2	15	04	08	182.6	20	05	10	237.3	25	05	14	281.0	30	06	21	319.0	35	06	21
115.3	15	05	08	184.2	20	05	10	237.4	25	06	14	282.1	30	06	21	319.1	36	00	19
117.4	15	05	08	184.3	20	06	10	238.6	25	06	14	282.2	31	00	21	320.0	36	00	19
117.5	15	06	08	185.9	20	06	10	238.7	26	00	14	283.2	31	00	21	320.1	36	01	19
119.5	15	06	08	186.0	21	00	10	240.0	26	00	14	283.3	31	01	21	320.9	36	01	19
119.6	16	00	08	187.6	21	00	10	240.1	26	01	14	284.3	31	01	21	321.0	36	02	19
121.6	16	00	08	187.7	21	01	10	241.3	26	01	14	284.4	31	02	21	321.9	36	02	19
121.7	16	01	08	189.2	21	01	10	241.4	26	02	14	285.4	31	02	21	322.0	36	03	19
123.7	16	01	08	189.3	21	02	10	242.7	26	02	14	285.5	31	03	21	322.9	36	03	19
123.8	16	02	08	190.9	21	02	10	242.8	26	03	14	286.6	31	03	21	323.0	36	04	19
125.8	16	02	08	191.0	21	03	10	244.0	26	03	14	286.7	31	04	21	323.8	36	04	19
125.9	16	03	08	192.5	21	03	10	244.1	26	04	14	287.7	31	04	21	323.9	36	05	19
127.9	16	03	08	192.6	21	04	10	245.3	26	04	14	287.8	31	05	21	324.8	36	05	19
128.0																			

Head Circumference, MerzMerz E. *Ultrasound in Gynecology and Obstetrics*. Stuttgart and New York: Thieme Medical Publishers, Inc., 1991, p. 326.

HC mm	wks	days	\pm 2SD																
72.0	12	01	09	122.0	15	04	12	172.0	19	02	13	222.0	23	04	15	272.0	28	02	16
74.0	12	02	11	124.0	15	05	12	174.0	19	03	12	224.0	23	04	15	274.0	28	04	16
76.0	12	03	10	126.0	15	06	11	176.0	19	04	13	226.0	23	06	15	276.0	28	05	16
78.0	12	04	10	128.0	16	00	12	178.0	19	06	13	228.0	24	00	16	278.0	28	06	17
80.0	12	05	10	130.0	16	01	12	180.0	19	06	15	230.0	24	01	16	280.0	29	01	16
82.0	12	06	10	132.0	16	02	12	182.0	20	01	13	232.0	24	03	15	282.0	29	02	16
84.0	12	06	11	134.0	16	03	12	184.0	20	01	15	234.0	24	04	15	284.0	29	04	17
86.0	13	01	10	136.0	16	04	12	186.0	20	03	13	236.0	24	05	16	286.0	29	06	16
88.0	13	01	11	138.0	16	05	12	188.0	20	04	13	238.0	24	06	16	288.0	30	00	16
90.0	13	02	11	140.0	16	06	12	190.0	20	05	13	240.0	25	01	15	290.0	30	01	17
92.0	13	04	10	142.0	17	00	12	192.0	20	06	15	242.0	25	02	16	292.0	30	04	16
94.0	13	04	11	144.0	17	01	12	194.0	21	01	13	244.0	25	04	15	294.0	30	05	16
96.0	13	05	10	146.0	17	02	12	196.0	21	01	15	246.0	25	05	16	296.0	30	06	17
98.0	13	06	11	148.0	17	04	12	198.0	21	03	13	248.0	25	06	16	298.0	31	01	16
100.0	14	00	10	150.0	17	04	13	200.0	21	04	15	250.0	26	00	16	300.0	31	03	17
102.0	14	01	12	152.0	17	06	12	202.0	21	05	15	252.0	26	01	16	302.0	31	04	17
104.0	14	02	11	154.0	17	06	13	204.0	21	06	15	254.0	26	03	15	304.0	31	06	17
106.0	14	03	11	156.0	18	01	12	206.0	22	01	15	256.0	26	04	16	306.0	32	01	17
108.0	14	04	11	158.0	18	01	13	208.0	22	01	15	258.0	26	06	15	308.0	32	02	17
110.0	14	05	11	160.0	18	03	12	210.0	22	03	15	260.0	27	00	16	310.0	32	04	17
112.0	14	06	11	162.0	18	04	12	212.0	22	04	15	262.0	27	01	16	312.0	32	06	17
114.0	15	00	11	164.0	18	05	12	214.0	22	05	15	264.0	27	03	15	314.0	33	01	17
116.0	15	01	11	166.0	18	06	12	216.0	22	06	15	266.0	27	04	16	316.0	33	03	17
118.0	15	02	11	168.0	19	00	13	218.0	23	01	15	268.0	27	06	15	318.0	33	04	17
120.0	15	03	11	170.0	19	01	12	220.0	23	02	13	270.0	28	01	16	320.0	33	06	18

Head Circumference, LasserLasser DM, Peisner DB, Vollebergh J, Timor-Tritsch I. "First-trimester fetal biometry using transvaginal sonography." *Ultrasound in Obstetrics and Gynecology* 3:104, 1993.

HC mm	wks	days	\pm 2SD																
35.3	08	05	05	45.6	09	05	05	56.0	10	05	05	64.9	11	04	05	75.2	12	04	05
36.8	08	06	05	47.1	09	06	05	57.5	10	06	05	66.4	11	05	05	76.7	12	05	05
38.2	09	00	05	48.6	10	00	05	59.0	11	00	05	67.8	11	06	05	78.2	12	06	05
39.7	09	01	05	50.0	10	01	05	60.4	11	01	05	69.3	12	00	05	79.7	13	00	05
41.2	09	02	05	51.6	10	02	05	61.9	11	02	05	70.8	12	01	05	81.2	13	01	05
42.7	09	03	05	53.0	10	03	05	63.4	11	03	05	72.3	12	02	05	82.6	13	02	05
44.2	09	04	05	54.5	10	04	05	64.0	11	03	05	73.8	12	03	05	84.1	13	03	05

Abdominal Circumference, Hadlock

Hadlock FP, Deter RL, Harrist RB, Park SK. "Estimating Fetal Age: Computer-Assisted Analysis of Multiple Fetal Growth Parameters." *Radiology* 152:497, 1984.

$$\text{MA} = 8.14 + 0.753 * \text{AC} + 0.0036 * (\text{AC}^2)$$

± 2 Standard Deviations 12-18 wk \pm 1.66 wk (12 days) 30-36 wk \pm 2.96 wk (21 days)
 18-24 wk \pm 2.06 wk (14 days) 36-42 wk \pm 3.04 wk (21 days)
 24-30 wk \pm 2.18 wk (15 days)

AC mm	wks	days	\pm 2SD																
50.0	12	00	12	112.5	17	00	12	171.1	22	01	14	228.3	27	01	15	281.8	32	02	21
50.9	12	00	12	112.6	17	01	12	172.6	22	01	14	228.4	27	02	15	283.2	32	02	21
51.0	12	01	12	114.2	17	01	12	172.7	22	02	14	229.9	27	02	15	283.3	32	03	21
52.7	12	01	12	114.3	17	02	12	174.2	22	02	14	230.0	27	03	15	284.7	32	03	21
52.8	12	02	12	115.9	17	02	12	174.3	22	03	14	231.4	27	03	15	284.8	32	04	21
54.5	12	02	12	116.0	17	03	12	175.9	22	03	14	231.5	27	04	15	286.2	32	04	21
54.6	12	03	12	117.6	17	03	12	176.0	22	04	14	233.0	27	04	15	286.3	32	05	21
56.3	12	03	12	117.7	17	04	12	177.5	22	04	14	233.1	27	05	15	287.7	32	05	21
56.4	12	04	12	119.3	17	04	12	177.6	22	05	14	234.5	27	05	15	287.8	32	06	21
58.1	12	04	12	119.4	17	05	12	179.1	22	05	14	234.6	27	06	15	289.2	32	06	21
58.2	12	05	12	121.0	17	05	12	179.2	22	06	14	236.1	27	06	15	289.3	33	00	21
59.9	12	05	12	121.1	17	06	12	180.7	22	06	14	236.2	28	00	15	290.6	33	00	21
60.0	12	06	12	122.7	17	06	12	180.8	23	00	14	237.6	28	00	15	290.7	33	01	21
61.7	12	06	12	122.8	18	00	14	182.3	23	00	14	237.7	28	01	15	292.1	33	01	21
61.8	13	00	12	124.4	18	00	14	182.4	23	01	14	239.2	28	01	15	292.2	33	02	21
63.5	13	00	12	124.5	18	01	14	184.0	23	01	14	239.3	28	02	15	293.6	33	02	21
63.6	13	01	12	126.1	18	01	14	184.1	23	02	14	240.7	28	02	15	293.7	33	03	21
65.3	13	01	12	126.2	18	02	14	185.6	23	02	14	240.8	28	03	15	295.1	33	03	21
65.4	13	02	12	127.8	18	02	14	185.7	23	03	14	242.3	28	03	15	295.2	33	04	21
67.1	13	02	12	127.9	18	03	14	187.2	23	03	14	242.4	28	04	15	296.6	33	04	21
67.2	13	03	12	129.5	18	03	14	187.3	23	04	14	243.8	28	04	15	296.7	33	05	21
68.9	13	03	12	129.6	18	04	14	188.8	23	04	14	243.9	28	05	15	298.0	33	05	21
69.0	13	04	12	131.2	18	04	14	188.9	23	05	14	245.3	28	05	15	298.1	33	06	21
70.6	13	04	12	131.3	18	05	14	190.4	23	05	14	245.4	28	06	15	299.5	33	06	21
70.7	13	05	12	132.9	18	05	14	190.5	23	06	14	246.9	28	06	15	299.6	34	00	21
72.4	13	05	12	133.0	18	06	14	192.0	23	06	14	247.0	29	00	15	301.0	34	00	21
72.5	13	06	12	134.6	18	06	14	192.1	24	00	15	248.4	29	00	15	301.1	34	01	21
74.2	13	06	12	134.7	19	00	14	193.6	24	00	15	248.5	29	01	15	302.5	34	01	21
74.3	14	00	12	136.2	19	00	14	193.7	24	01	15	249.9	29	01	15	302.6	34	02	21
76.0	14	00	12	136.3	19	01	14	195.2	24	01	15	250.0	29	02	15	303.9	34	02	21
76.1	14	01	12	137.9	19	01	14	195.3	24	02	15	251.5	29	02	15	304.0	34	03	21
77.7	14	01	12	138.0	19	02	14	196.8	24	02	15	251.6	29	03	15	305.4	34	03	21
77.8	14	02	12	139.6	19	02	14	196.9	24	03	15	253.0	29	03	15	305.5	34	04	21
79.5	14	02	12	139.7	19	03	14	198.4	24	03	15	253.1	29	04	15	306.9	34	04	21
79.6	14	03	12	141.3	19	03	14	198.5	24	04	15	254.5	29	04	15	307.0	34	05	21
81.3	14	03	12	141.4	19	04	14	200.0	24	04	15	254.6	29	05	15	308.3	34	05	21
81.4	14	04	12	142.9	19	04	14	200.1	24	05	15	256.1	29	05	15	308.4	34	06	21
83.0	14	04	12	143.0	19	05	14	201.6	24	05	15	256.2	29	06	15	309.8	34	06	21
83.1	14	05	12	144.6	19	05	14	201.7	24	06	15	257.6	29	06	15	309.9	35	00	21
84.8	14	05	12	144.7	19	06	14	203.2	24	06	15	257.7	30	00	21	311.3	35	00	21
84.9	14	06	12	146.3	19	06	14	203.3	25	00	15	259.1	30	00	21	311.4	35	01	21
86.5	14	06	12	146.4	20	00	14	204.8	25	00	15	259.2	30	01	21	312.7	35	01	21
86.6	15	00	12	147.9	20	00	14	204.9	25	01	15	260.6	30	01	21	312.8	35	02	21
88.3	15	00	12	148.0	20	01	14	206.3	25	01	15	260.7	30	02	21	314.2	35	02	21
88.4	15	01	12	149.6	20	01	14	206.4	25	02	15	262.1	30	02	21	314.3	35	03	21
90.0	15	01	12	149.7	20	02	14	207.9	25	02	15	262.2	30	03	21	315.6	35	03	21
90.1	15	02	12	151.3	20	02	14	208.0	25	03	15	263.7	30	03	21	315.7	35	04	21
91.8	15	02	12	151.4	20	03	14	209.5	25	03	15	263.8	30	04	21	317.1	35	04	21
91.9	15	03	12	152.9	20	03	14	209.6	25	04	15	265.2	30	04	21	317.2	35	05	21
93.5	15	03	12	153.0	20	04	14	211.1	25	04	15	265.3	30	05	21	318.6	35	05	21
93.6	15	04	12	154.6	20	04	14	211.2	25	05	15	266.7	30	05	21	318.7	35	06	21
95.2	15	04	12	154.7	20	05	14	212.7	25	05	15	266.8	30	06	21	320.0	35	06	21
95.3	15	05	12	156.2	20	05	14	212.8	25	06	15	268.2	30	06	21	320.1	36	00	21
97.0	15	05	12	156.3	20	06	14	214.2	25	06	15	268.3	31	00	21	321.5	36	00	21
97.1	15	06	12	157.9	20	06	14	214.3	26	00	15	269.7	31	00	21	321.6	36	01	21
98.7	15	06	12	158.0	21	00	14	215.8	26	00	15	269.8	31	01	21	322.9	36	01	21
98.8	16	00	12	159.5	21	00	14	215.9	26	01	15	271.2	31	01	21	323.0	36	02	21
100.5	16	00	12	159.6	21	01	14	217.4	26	01	15	271.3	31	02	21	324.4	36	02	21
100.6	16	01	12	161.2	21	01	14	217.5	26	02	15	272.7	31	02	21	324.5	36	03	21
102.2	16	01	12	161.3	21	02	14	218.9	26	02	15	272.8	31	03	21	325.8	36	03	21
102.3	16	02	12	162.8	21	02	14	219.0	26	03	15	274.2	31	03	21	325.9	36	04	21
103.9	16	02	12	162.9	21	03	14	220.5	26	03	15	274.3	31	04	21	327.3	36	04	21
104.0	16	03	12	164.4	21	03	14	220.6	26	04	15	275.7	31	04	21	327.4	36	05	21
105.6	16	03	12	164.5	21	04	14	222.1	26	04	15	275.8	31	05	21	328.7	36	05	21
105.7	16	04	1																

Abdominal Circumference, Merz

Merz E. *Ultrasound in Gynecology and Obstetrics*. Stuttgart and New York: Thieme Medical Publishers, Inc., 1991, p. 326.

AC mm	wks	days	\pm	2SD	AC mm	wks	days	\pm	2SD	AC mm	wks	days	\pm	2SD	AC mm	wks	days	\pm	2SD	AC mm	wks	days	\pm	2SD
56.0	12	01	10		106.0	16	06	12		156.0	21	04	13		206.0	26	03	15		256.0	31	01	17	
58.0	12	02	11		108.0	17	01	11		158.0	21	06	13		208.0	26	04	15		258.0	31	02	17	
60.0	12	04	10		110.0	17	02	11		160.0	22	00	13		210.0	26	06	15		260.0	31	04	17	
62.0	12	05	10		112.0	17	03	12		162.0	22	01	15		212.0	27	00	15		262.0	31	05	17	
64.0	12	06	11		114.0	17	04	12		164.0	22	03	13		214.0	27	01	15		264.0	31	06	17	
66.0	13	01	10		116.0	17	06	11		166.0	22	04	13		216.0	27	02	16		266.0	32	01	17	
68.0	13	02	11		118.0	18	00	12		168.0	22	06	13		218.0	27	04	15		268.0	32	02	17	
70.0	13	04	10		120.0	18	01	12		170.0	23	00	13		220.0	27	05	16		270.0	32	04	17	
72.0	13	04	11		122.0	18	03	12		172.0	23	01	15		222.0	27	06	16		272.0	32	05	17	
74.0	13	06	11		124.0	18	04	12		174.0	23	02	15		224.0	28	01	15		274.0	32	06	17	
76.0	14	00	11		126.0	18	06	11		176.0	23	04	13		226.0	28	02	16		276.0	33	00	18	
78.0	14	01	12		128.0	19	00	12		178.0	23	05	15		228.0	28	04	15		278.0	33	01	18	
80.0	14	03	11		130.0	19	01	12		180.0	23	06	15		230.0	28	05	16		280.0	33	03	18	
82.0	14	04	11		132.0	19	02	13		182.0	24	01	15		232.0	28	06	16		282.0	33	04	18	
84.0	14	06	11		134.0	19	04	12		184.0	24	02	15		234.0	29	00	16		284.0	33	06	17	
86.0	15	00	11		136.0	19	05	12		186.0	24	04	13		236.0	29	01	17		286.0	34	00	18	
88.0	15	01	12		138.0	19	06	13		188.0	24	05	15		238.0	29	03	16		288.0	34	01	18	
90.0	15	03	11		140.0	20	01	12		190.0	24	06	15		240.0	29	04	17		290.0	34	03	18	
92.0	15	04	11		142.0	20	02	13		192.0	25	00	16		242.0	29	06	16		292.0	34	04	18	
94.0	15	05	12		144.0	20	04	12		194.0	25	01	16		244.0	30	00	16		294.0	34	05	18	
96.0	15	06	12		146.0	20	05	12		196.0	25	03	15		246.0	30	01	17		296.0	34	06	19	
98.0	16	01	12		148.0	20	06	13		198.0	25	04	16		248.0	30	03	16		298.0	35	01	17	
100.0	16	02	12		150.0	21	01	12		200.0	25	06	15		250.0	30	04	17		300.0	35	02	18	
102.0	16	04	11		152.0	21	01	15		202.0	26	00	16		252.0	30	06	16		302.0	35	04	17	
104.0	16	05	12		154.0	21	03	13		204.0	26	01	15		254.0	30	06	17		304.0	35	05	18	

Abdominal Circumference, Lasser

Lasser DM, Peisner DB, Vollebergh J, Timor-Tritsch I. "First-trimester fetal biometry using transvaginal sonography." *Ultrasound in Obstetrics and Gynecology* 3:104, 1993.

AC mm	wks	days	\pm	2SD	AC mm	wks	days	\pm	2SD	AC mm	wks	days	\pm	2SD	AC mm	wks	days	\pm	2SD
30.9	08	05	06		36.4	09	05	06		42.7	10	05	06		50.2	11	05	06	
31.7	08	06	06		37.2	09	06	06		43.7	10	06	06		51.4	11	06	06	
32.4	09	00	06		38.1	10	00	06		44.8	11	00	06		52.6	12	00	06	
33.2	09	01	06		39.0	10	01	06		45.8	11	01	06		53.8	12	01	06	
34.0	09	02	06		39.9	10	02	06		46.9	11	02	06		55.1	12	02	06	
34.7	09	03	06		40.8	10	03	06		48.0	11	03	06		56.4	12	03	06	
35.6	09	04	06		41.8	10	04	06		49.1	11	04	06		57.7	12	04	06	

Abdominal Circumference, JSUM

Japan Society of Ultrasonics in Medicine. "Standardization of Fetometry and Official Announcement of Diagnostic Guidelines." *J. Med. Ultrasonics* 28:844-872, 2001.

AC mm	-	1SD	days	+	AC mm	-	1SD	days	+	AC mm	-	1SD	days	+	AC mm	-	1SD	days	+				
100.0	8	108	8		140.0	9	137	9		180.0	11	164	11		220.0	12	192	12		260.0	13	223	13
105.0	8	112	8		145.0	9	140	9		185.0	11	167	11		225.0	12	196	12		265.0	13	227	13
110.0	8	116	8		150.0	10	143	10		190.0	11	171	11		230.0	12	200	12		270.0	13	232	13
115.0	8	119	8		155.0	10	147	10		195.0	11	174	11		235.0	12	203	12		275.0	14	236	14
120.0	9	123	9		160.0	10	150	10		200.0	11	178	11		240.0	13	207	13		280.0	14	240	14
125.0	9	126	9		165.0	10	154	10		205.0	11	181	11		245.0	13	211	13		285.0	14	245	14
130.0	9	130	9		170.0	10	157	10		210.0	12	185	12		250.0	13	215	13		290.0	14	249	14
135.0	9	133	9		175.0	10	160	10		215.0	12	189	12		255.0	13	219	13		295.0	14	254	14

AXT, Tokyo

Masuda H, Shinozuka N, Okai T, Mizuno M. "Diagnosis of the Week of Pregnancy and Prognosis." *Perinatal Care* 8:719-726.

AXT = APTD * TTD

Anteroposterior Trunk Diameter multiplied by Transverse Trunk Diameter

AXT cm ²	mean days	\pm																		
21.0	141	14	34.0	173	14	47.0	200	21	60.0	224	21	73.0	247	21	86.0	270	28	100.0	270	28
22.0	144	14	35.0	176	21	48.0	202	21	61.0	226	21	74.0	249	21	87.0	272	28	101.0	272	28
23.0	147	14	36.0	178	21	49.0	204	21	62.0	228	21	75.0	251	28	88.0	274	28	102.0	274	28
24.0	150	14	37.0	180	21	50.0	206	21	63.0	229	21	76.0	252	28	89.0	276	28	103.0	276	28
25.0	152	14	38.0	182	21	51.0	208	21	64.0	231	21	77.0	254	28	90.0	278	28	104.0	278	28
26.0	155	14	39.0	184	21	52.0	209	21	65.0	233	21	78.0	256	28	91.0	280	28	105.0	280	28
27.0	157	14	40.0	186	21	53.0	211	21	66.0	235	21	79.0	258	28	92.0	282	28	106.0	282	28
28.0	160	14	41.0	188	21	5														

Fetal Trunk Area, OsakaAoki M, Yamada M. "Examining Fetal Growth." *Obstetrics and Gynecology* 47:547-556, 1983.

FTA cm ²	days										
6.0	100	20.0	144	34.0	177	48.0	205	62.0	231	76.0	258
7.0	104	21.0	147	35.0	179	49.0	207	63.0	233	77.0	260
8.0	108	22.0	149	36.0	181	50.0	209	64.0	235	78.0	262
9.0	111	23.0	152	37.0	183	51.0	210	65.0	236	79.0	264
10.0	115	24.0	154	38.0	185	52.0	212	66.0	238	80.0	266
11.0	118	25.0	157	39.0	187	53.0	214	67.0	240	81.0	268
12.0	121	26.0	159	40.0	189	54.0	216	68.0	242	82.0	270
13.0	124	27.0	161	41.0	191	55.0	218	69.0	244	83.0	272
14.0	127	28.0	164	42.0	193	56.0	220	70.0	246	84.0	274
15.0	130	29.0	166	43.0	195	57.0	222	71.0	248	85.0	276
16.0	133	30.0	168	44.0	197	58.0	223	72.0	250	86.0	279
17.0	136	31.0	170	45.0	199	59.0	225	73.0	252		
18.0	139	32.0	173	46.0	201	60.0	227	74.0	254		
19.0	142	33.0	175	47.0	203	61.0	229	75.0	256		

Femur Length, HadlockHadlock FP, Deter RL, Harrist RB, Park SK. "Estimating Fetal Age: Computer-Assisted Analysis of Multiple Fetal Growth Parameters." *Radiology* 152:497, 1984.

$$MA = 10.35 + 2.460 * (FL) + 0.170 * (FL^2)$$

± 2 Standard Deviations

12-18 wk ± 1.38 wk (10 days)

30-36 wk ± 2.96 wk (21 days)

18-24 wk ± 1.80 wk (13 days)

36-42 wk ± 3.12 wk (22 days)

24-30 wk ± 2.08 wk (15 days)

FL mm	wks	days	± 2SD	FL mm	wks	days	± 2SD	FL mm	wks	days	± 2SD	FL mm	wks	days	± 2SD
7.0	12	01	10	23.6	17	01	10	37.8	22	01	13	50.5	27	01	15
7.2	12	01	10	23.9	17	01	10	38.1	22	01	13	50.7	27	01	15
7.3	12	02	10	24.0	17	02	10	38.2	22	02	13	50.8	27	02	15
7.7	12	02	10	24.3	17	02	10	38.5	22	02	13	51.0	27	02	15
7.8	12	03	10	24.4	17	03	10	38.6	22	03	13	51.1	27	03	15
8.2	12	03	10	24.8	17	03	10	38.9	22	03	13	51.4	27	03	15
8.3	12	04	10	24.9	17	04	10	39.0	22	04	13	51.5	27	04	15
8.7	12	04	10	25.2	17	04	10	39.2	22	04	13	51.7	27	04	15
8.8	12	05	10	25.3	17	05	10	39.3	22	05	13	51.8	27	05	15
9.3	12	05	10	25.6	17	05	10	39.6	22	05	13	52.1	27	05	15
9.4	12	06	10	25.7	17	06	10	39.7	22	06	13	52.2	27	06	15
9.8	12	06	10	26.0	17	06	10	40.0	22	06	13	52.4	27	06	15
9.9	13	00	10	26.1	18	00	13	40.1	23	00	13	52.5	28	00	15
10.3	13	00	10	26.5	18	00	13	40.4	23	00	13	52.7	28	00	15
10.4	13	01	10	26.6	18	01	13	40.5	23	01	13	52.8	28	01	15
10.8	13	01	10	26.9	18	01	13	40.7	23	01	13	53.1	28	01	15
10.9	13	02	10	27.0	18	02	13	40.8	23	02	13	53.2	28	02	15
11.3	13	02	10	27.3	18	02	13	41.1	23	02	13	53.4	28	02	15
11.4	13	03	10	27.4	18	03	13	41.2	23	03	13	53.5	28	03	15
11.8	13	03	10	27.7	18	03	13	41.5	23	03	13	53.7	28	03	15
11.9	13	04	10	27.8	18	04	13	41.6	23	04	13	53.8	28	04	15
12.3	13	04	10	28.2	18	04	13	41.9	23	04	13	54.1	28	04	15
12.4	13	05	10	28.3	18	05	13	42.0	23	05	13	54.2	28	05	15
12.8	13	05	10	28.6	18	05	13	42.2	23	05	13	54.4	28	05	15
12.9	13	06	10	28.7	18	06	13	42.3	23	06	13	54.5	28	06	15
13.3	13	06	10	29.0	18	06	13	42.6	23	06	13	54.7	28	06	15
13.4	14	00	10	29.1	19	00	13	42.7	24	00	15	54.8	29	00	15
13.8	14	00	10	29.4	19	00	13	43.0	24	00	15	55.1	29	00	15
13.9	14	01	10	29.5	19	01	13	43.1	24	01	15	55.2	29	01	15
14.2	14	01	10	29.8	19	01	13	43.3	24	01	15	55.4	29	01	15
14.3	14	02	10	29.9	19	02	13	43.4	24	02	15	55.5	29	02	15
14.7	14	02	10	30.2	19	02	13	43.7	24	02	15	55.7	29	02	15
14.8	14	03	10	30.3	19	03	13	43.8	24	03	15	55.8	29	03	15
15.2	14	03	10	30.6	19	03	13	44.0	24	03	15	56.0	29	03	15
15.3	14	04	10	30.7	19	04	13	44.1	24	04	15	56.1	29	04	15
15.7	14	04	10	31.0	19	04	13	44.4	24	04	15	56.4	29	04	15
15.8	14	05	10	31.1	19	05	13	44.5	24	05	15	56.5	29	05	15
16.2	14	05	10	31.4	19	05	13	44.8	24	05	15	56.7	29	05	15
16.3	14	06	10	31.5	19	06	13	44.9	24	06	15	56.8	29	06	15
16.6	14	06	10	31.9	19	06	13	45.1	24	06	15	57.0	29	06	15
16.7	15	00	10	32.0	20	00	13	45.2	25	00	15	57.1	30	00	21
17.1	15	00	10	32.3	20	00	13	45.5	25	00	15	57.3	30	00	21
17.2	15	01	10	32.4	20	01	13	45.6	25	01	15	57.4	30	01	21
17.6	15	01	10	32.7	20	01	13	45.8	25	01	15	57.7	30	01	21
17.7	15	02	10	32.8	20	02	13	45.9	25	02	15	57.8	30	02	21
18.0	15	02	10	33.1	20	02	13	46.2	25	02	15	58.0	30	02	21
18.1	15	03	10	33.2	20	03	13	46.3	25	03	15	58.1	30	03	21
18.5	15	03	10	33.5	20	03	13	46.5	25	03	15	58.3	30	03	21
18.6	15	04	10	33.6	20	04	13	46.6	25	04	15	58.4	30	04	21
19.0	15	04	10	33.8	20	04	13	46.9	25	04	15	58.6	30	04	21
19.1	15	05	10	33.9	20	05	13	47.0	25	05	15	58.7	30	05	21
19.4	15	05	10	34.2	20	05	13	47.2	25	05	15	59.0	30	05	21
19.5	15	06	10	34.3	20	06	13	47.3	25	06	15	59.1	30	06	21
19.9	15	06	10	34.6	20	06	13	47.6	25	06	15	59.3	30	06	21
20.0	16	00	10	34.7	21	00	13	47.7	26	00	15	59.4	31	00	21
20.3	16	00	10	35.0	21	00	13	47.9	26	00	15	59.6	31	00	21
20.4	16	01	10	35.1	21	01	13	48.0	26	01	15	59.7	31	01	21
20.8	16	01	10	35.4	21	01	13	48.3	26	01	15	59.9	31	01	21
20.9	16	02	10	35.5	21	02	13	48.4	26	02	15	60.0	31	02	21
21.2	16	02	10	35.8	21	02	13	48.6	26	02	15	60.2	31	02	21
21.3	16	03	10	35.9	21	03	13	48.7	26	03	15	60.3	31	03	21
21.7	16	03	10	36.2	21	03	13	49.0	26	03	15	60.5	31	03	21
21.8	16	04	10	36.3	21	04	13	49.1	26	04	15	60.6	31	04	21
22.1	16	04	10	36.6	21	04	13	49.3	26	04	15	60.9	31	04	21
22.2	16	05	10	36.7	21	05	13	49.4	26	05	15	61.0	31	05	21
22.6	16	05	10	37.0	21	05	13	49.7	26</td						

Femur Length, MerzMerz E. *Ultrasound in Gynecology and Obstetrics*. Stuttgart and New York: Thieme Medical Publishers, Inc., 1991, p. 326.

FL mm	wks	days	\pm 2SD																
10.0	12	02	11	22.0	16	04	11	34.0	20	06	13	46.0	25	03	15	58.0	30	01	17
11.0	12	05	10	23.0	16	06	11	35.0	21	01	15	47.0	25	06	15	59.0	30	04	17
12.0	13	02	10	24.0	17	01	12	36.0	21	04	13	48.0	26	01	16	60.0	31	00	17
13.0	13	04	11	25.0	17	04	13	37.0	21	06	15	49.0	26	04	15	61.0	31	04	17
14.0	13	05	11	26.0	17	06	13	38.0	22	02	13	50.0	26	6	16	62.0	31	06	17
15.0	14	00	11	27.0	18	02	13	39.0	22	05	15	51.0	27	02	16	63.0	32	02	17
16.0	14	03	11	28.0	18	04	13	40.0	23	01	15	52.0	27	05	16	64.0	32	06	17
17.0	14	05	11	29.0	19	00	13	41.0	23	03	15	53.0	28	01	16	65.0	33	01	17
18.0	15	01	11	30.0	19	03	12	42.0	23	06	15	54.0	28	04	17	66.0	33	04	17
19.0	15	03	11	31.0	19	05	12	43.0	24	01	15	55.0	29	00	17	67.0	34	01	17
20.0	15	06	11	32.0	20	01	12	44.0	24	04	16	56.0	29	03	17	68.0	34	04	17
21.0	16	01	11	33.0	20	04	13	45.0	25	00	16	57.0	29	06	17	69.0	35	00	18

Femur Length, JeantyJeanty P, Rodesch F, Delbeke D, Dumont JE. "Estimation of Gestational Age from Measurements of Fetal Long Bones." *Journal of Ultrasound in Medicine* 3:75, 1984.

$$MA = (9.5411757 + 0.2977451 * FL) + (0.0010388013 * FL^2)$$

FL mm	wks	days	\pm 2SD																
10.0	12	04	19	23.8	17	02	19	36.8	21	06	19	48.7	26	04	19	60.1	31	01	19
10.1	12	05	19	24.2	17	02	19	36.9	22	00	19	49.0	26	04	19	60.2	31	02	19
10.5	12	05	19	24.3	17	03	19	37.2	22	00	19	49.1	26	05	19	60.5	31	02	19
10.6	12	06	19	24.6	17	03	19	37.3	22	01	19	49.4	26	05	19	60.6	31	03	19
10.9	12	06	19	24.7	17	04	19	37.6	22	01	19	49.5	26	06	19	60.8	31	03	19
11.0	13	00	19	25.0	17	04	19	37.7	22	02	19	49.7	26	06	19	60.9	31	04	19
11.4	13	00	19	25.1	17	05	19	38.0	22	02	19	49.8	27	00	19	61.1	31	04	19
11.5	13	01	19	25.4	17	05	19	38.1	22	03	19	50.1	27	00	19	61.2	31	05	19
11.8	13	01	19	25.5	17	06	19	38.3	22	03	19	50.2	27	01	19	61.5	31	05	19
11.9	13	02	19	25.8	17	06	19	38.4	22	04	19	50.4	27	01	19	61.6	31	06	19
12.2	13	02	19	25.9	18	00	19	38.7	22	04	19	50.5	27	02	19	61.8	31	06	19
12.3	13	03	19	26.2	18	00	19	38.8	22	05	19	50.8	27	02	19	61.9	32	00	19
12.7	13	03	19	26.3	18	01	19	39.1	22	05	19	50.9	27	03	19	62.1	32	00	19
12.8	13	04	19	26.6	18	01	19	39.2	22	06	19	51.1	27	03	19	62.2	32	01	19
13.1	13	04	19	26.7	18	02	19	39.5	22	06	19	51.2	27	04	19	62.5	32	01	19
13.2	13	05	19	27.0	18	02	19	39.6	23	00	19	51.5	27	04	19	62.6	32	02	19
13.6	13	05	19	27.1	18	03	19	39.8	23	00	19	51.6	27	05	19	62.8	32	02	19
13.7	13	06	19	27.4	18	03	19	39.9	23	01	19	51.8	27	05	19	62.9	32	03	19
14.0	13	06	19	27.5	18	04	19	40.2	23	01	19	51.9	27	06	19	63.1	32	03	19
14.1	14	00	19	27.8	18	04	19	40.3	23	02	19	52.2	27	06	19	63.2	32	04	19
14.4	14	00	19	27.9	18	05	19	40.6	23	02	19	52.3	28	00	19	63.8	32	04	19
14.5	14	01	19	28.2	18	05	19	40.7	23	03	19	52.5	28	00	19	63.6	32	05	19
14.9	14	01	19	28.3	18	06	19	41.0	23	03	19	52.6	28	01	19	63.8	32	05	19
15.0	14	02	19	28.6	18	06	19	41.1	23	04	19	52.9	28	01	19	63.9	32	06	19
15.3	14	02	19	28.7	19	00	19	41.3	23	04	19	53.0	28	02	19	64.1	32	06	19
15.4	14	03	19	29.0	19	00	19	41.4	23	05	19	53.2	28	02	19	64.2	33	00	19
15.7	14	03	19	29.1	19	01	19	41.7	23	05	19	53.3	28	03	19	64.5	33	00	19
15.8	14	04	19	29.4	19	01	19	41.8	23	06	19	53.6	28	03	19	64.6	33	01	19
16.2	14	04	19	29.5	19	02	19	42.1	23	06	19	53.7	28	04	19	64.8	33	01	19
16.3	14	05	19	29.8	19	02	19	42.2	24	00	19	53.9	28	04	19	64.9	33	02	19
16.6	14	05	19	29.9	19	03	19	42.4	24	00	19	54.0	28	05	19	65.1	33	02	19
16.7	14	06	19	30.2	19	03	19	42.5	24	01	19	54.3	28	05	19	65.2	33	03	19
17.0	14	06	19	30.3	19	04	19	42.8	24	01	19	54.4	28	06	19	65.4	33	03	19
17.1	15	00	19	30.6	19	04	19	42.9	24	02	19	54.6	28	06	19	65.5	33	04	19
17.5	15	00	19	30.7	19	05	19	43.2	24	02	19	54.7	29	00	19	65.8	33	04	19
17.6	15	01	19	31.0	19	05	19	43.3	24	03	19	55.0	29	00	19	65.9	33	05	19
17.9	15	01	19	31.1	19	06	19	43.6	24	03	19	55.1	29	01	19	66.1	33	05	19
18.0	15	02	19	31.4	19	06	19	43.7	24	04	19	55.3	29	01	19	66.2	33	06	19
18.3	15	02	19	31.5	20	00	19	43.9	24	04	19	55.4	29	02	19	66.4	33	06	19
18.4	15	03	19	31.8	20	00	19	44.0	24	05	19	55.7	29	02	19	66.5	34	00	19
18.7	15	03	19	31.9	20	01	19	44.3	24	05	19	55.8	29	03	19	66.8	34	00	19
18.8	15	04	19	32.2	20	01	19	44.4	24	06	19	56.0	29	03	19	66.9	34	01	19
19.2	15	04	19	32.3	20	02	19	44.7	24	06	19	56.1	29	04	19	67.1	34	01	19
19.3	15	05	19	32.6	20	02	19	44.8	25	00	19	56.4	29	04	19	67.2	34	02	19
19.6	15	05	19	32.7	20	03	19	45.0	25	00	19	56.5	29	05	19	67.4	34	02	19
19.7	15	06	19	33.0	20	03	19	45.1	25	01	19	56.7	29	05	19	67.5	34	03	19
20.0	15	06	19	33.1	20	04	19	45.4	25	01	19	56.8	29	06	19	67.7	34	03	19
20.1	16	00	19	33.3	20	04	19	45.5	25	02	19	57.0	29	06	19	67.8	34	04	19
20.4	16	00	19	33.4	20	05	19	45.8	25	02	19	57.1	30	00	19	68.1	34	04	19
20.5	16	01	19	33.7	20	05	19	45.9	25	03	19	57.4	30	00	19	68.2	34	05	19
20.8	16	01	19	33.8	20	06	19	46.1</											

Femur Length, TokyoMasuda H, Shinozuka N, Okai T, Mizuno M. "Diagnosis of the Week of Pregnancy and Prognosis." *Perinatal Care* 8:719-726.

FL mm	mean days	± days	FL mm	mean days	± days	FL mm	mean days	± days	FL mm	mean days	± days	FL mm	mean days	± days	FL mm	mean days	± days
33.0	142	7	40.0	165	14	47.0	187	21	54.0	210	28	61.0	234	28	68.0	265	28
34.0	146	7	41.0	168	14	48.0	190	21	55.0	213	28	62.0	238	28	69.0	271	28
35.0	149	7	42.0	171	14	49.0	194	21	56.0	217	28	63.0	242	28	70.0	278	28
36.0	152	7	43.0	175	14	50.0	197	21	57.0	220	28	64.0	246	28	71.0	285	28
37.0	155	7	44.0	178	14	51.0	200	21	58.0	223	28	65.0	251	28			
38.0	159	14	45.0	181	14	52.0	203	28	59.0	227	28	66.0	255	28			
39.0	162	14	46.0	184	21	53.0	206	28	60.0	231	28	67.0	260	28			

Femur Length, OsakaAoki M, Yamada M. "Examining Fetal Growth." *Obstetrics and Gynecology* 47:547-556, 1983.

FL mm	mean days	± days	FL mm	mean days	± days	FL mm	mean days	± days	FL mm	mean days	± days	FL mm	mean days	± days	FL mm	mean days	± days
10.0	92	7	21.0	117	14	32.0	144	14	43.0	174	14	54.0	209	--	65.0	251	--
11.0	95	7	22.0	119	14	33.0	147	14	44.0	177	14	55.0	212	--	66.0	255	--
12.0	97	7	23.0	122	14	34.0	149	14	45.0	180	14	56.0	216	--	67.0	259	--
13.0	99	7	24.0	124	14	35.0	152	14	46.0	183	14	57.0	219	--	68.0	264	--
14.0	101	7	25.0	127	14	36.0	155	14	47.0	186	14	58.0	223	--	69.0	269	--
15.0	103	7	26.0	129	14	37.0	157	14	48.0	189	--	59.0	227	--	70.0	274	--
16.0	106	14	27.0	132	14	38.0	160	14	49.0	193	--	60.0	231	--	71.0	279	--
17.0	108	14	28.0	134	14	39.0	163	14	50.0	196	--	61.0	234	--			
18.0	110	14	29.0	137	14	40.0	166	14	51.0	199	--	62.0	239	--			
19.0	112	14	30.0	139	14	41.0	169	14	52.0	202	--	63.0	243	--			
20.0	115	14	31.0	142	14	42.0	171	14	53.0	206	--	64.0	246	--			

Femur Length, JSUMJapan Society of Ultrasonics in Medicine. "Standardization of Fetometry and Official Announcement of Diagnostic Guidelines." *J. Med. Ultrasonics* 28:844-872, 2001.

FL mm	mean days	± days	FL mm	mean days	± days	FL mm	mean days	± days	FL mm	mean days	± days	FL mm	mean days	± days	FL mm	mean days	± days
20.0	113	6	29.0	134	7	38.0	159	9	47.0	187	10	56.0	219	11	65.0	254	12
21.0	115	6	30.0	137	8	39.0	162	9	48.0	191	10	57.0	223	11	66.0	259	12
22.0	118	6	31.0	140	8	40.0	165	9	49.0	194	10	58.0	227	11	67.0	263	13
23.0	120	7	32.0	142	8	41.0	168	9	50.0	198	10	59.0	231	12	68.0	267	13
24.0	122	7	33.0	145	8	42.0	171	9	51.0	201	10	60.0	234	12	69.0	271	13
25.0	125	7	34.0	148	8	43.0	174	9	52.0	205	11	61.0	238	12	70.0	276	13
26.0	127	7	35.0	150	8	44.0	178	9	53.0	208	11	62.0	242	12			
27.0	129	7	36.0	153	8	45.0	181	10	54.0	212	11	63.0	246	12			
28.0	132	7	37.0	156	9	46.0	184	10	55.0	215	11	64.0	250	12			

Humerus Length, Jeanty

Jeanty P, Rodesch F, Delbeke D, Dumont JE. "Estimation of Gestational Age from Measurements of Fetal Long Bones." *Journal of Ultrasound in Medicine* 3:75, 1984.

$$\text{MA} = 9.6519438 + (0.26200391 * \text{HL}) + (0.0026105367 * \text{HL}^2)$$

±2 Standard Deviations = ±3.3104 wks

HL mm	wks	days	± 2SD																
9.0	12	02	23	22.7	17	00	23	34.2	21	05	23	44.3	26	03	23	53.4	31	01	23
9.4	12	02	23	23.0	17	00	23	34.4	21	05	23	44.5	26	03	23	53.6	31	01	23
9.5	12	03	23	23.1	17	01	23	34.5	21	06	23	44.6	26	04	23	53.7	31	02	23
9.8	12	03	23	23.4	17	01	23	34.7	21	06	23	44.8	26	04	23	53.8	31	02	23
9.9	12	04	23	23.5	17	02	23	34.8	22	00	23	44.9	26	05	23	53.9	31	03	23
10.3	12	04	23	23.7	17	02	23	35.1	22	00	23	45.1	26	05	23	54.1	31	03	23
10.4	12	05	23	23.8	17	03	23	35.2	22	01	23	45.2	26	06	23	54.2	31	04	23
10.7	12	05	23	24.1	17	03	23	35.4	22	01	23	45.4	26	06	23	54.4	31	04	23
10.8	12	06	23	24.2	17	04	23	35.5	22	02	23	45.5	27	00	23	54.5	31	05	23
11.2	12	06	23	24.5	17	04	23	35.7	22	02	23	45.6	27	00	23	54.6	31	05	23
11.3	13	00	23	24.6	17	05	23	35.8	22	03	23	45.7	27	01	23	54.7	31	06	23
11.6	13	00	23	24.8	17	05	23	36.0	22	03	23	45.9	27	01	23	54.9	31	06	23
11.7	13	01	23	24.9	17	06	23	36.1	22	04	23	46.0	27	02	23	55.0	32	00	23
12.1	13	01	23	25.2	17	06	23	36.3	22	04	23	46.2	27	02	23	55.2	32	00	23
12.2	13	02	23	25.3	18	00	23	36.4	22	05	23	46.3	27	03	23	55.3	32	01	23
12.5	13	02	23	25.6	18	00	23	36.7	22	05	23	46.5	27	03	23	55.4	32	01	23
12.6	13	03	23	25.7	18	01	23	36.8	22	06	23	46.6	27	04	23	55.5	32	02	23
13.0	13	03	23	25.9	18	01	23	37.0	22	06	23	46.8	27	04	23	55.7	32	02	23
13.1	13	04	23	26.0	18	02	23	37.1	23	00	23	46.9	27	05	23	55.8	32	03	23
13.4	13	04	23	26.3	18	02	23	37.3	23	00	23	47.1	27	05	23	55.9	32	03	23
13.5	13	05	23	26.4	18	03	23	37.4	23	01	23	47.2	27	06	23	56.0	32	04	23
13.8	13	05	23	26.6	18	03	23	37.6	23	01	23	47.3	27	06	23	56.2	32	04	23
13.9	13	06	23	26.7	18	04	23	37.7	23	02	23	47.4	28	00	23	56.3	32	05	23
14.2	13	06	23	27.0	18	04	23	37.9	23	02	23	47.6	28	00	23	56.4	32	05	23
14.3	14	00	23	27.1	18	05	23	38.0	23	03	23	47.7	28	01	23	56.5	32	06	23
14.7	14	00	23	27.3	18	05	23	38.2	23	03	23	47.9	28	01	23	56.7	32	06	23
14.8	14	01	23	27.4	18	06	23	38.3	23	04	23	48.0	28	02	23	56.8	33	00	23
15.1	14	01	23	27.7	18	06	23	38.5	23	04	23	48.2	28	02	23	57.0	33	00	23
15.2	14	02	23	27.8	18	00	23	38.6	23	05	23	48.3	28	03	23	57.1	33	01	23
15.5	14	02	23	28.0	19	00	23	38.8	23	05	23	48.5	28	03	23	57.2	33	01	23
15.6	14	03	23	28.1	19	01	23	38.9	23	06	23	48.6	28	04	23	57.3	33	02	23
15.9	14	03	23	28.4	19	01	23	39.1	23	06	23	48.7	28	04	23	57.5	33	02	23
16.0	14	04	23	28.5	19	02	23	39.2	24	00	23	48.8	28	05	23	57.6	33	03	23
16.3	14	04	23	28.7	19	02	23	39.4	24	00	23	49.0	28	05	23	57.7	33	03	23
16.4	14	05	23	28.8	19	03	23	39.5	24	01	23	49.1	28	06	23	57.8	33	04	23
16.7	14	05	23	29.1	19	03	23	39.7	24	01	23	49.3	28	06	23	58.0	33	04	23
16.8	14	06	23	29.2	19	04	23	39.8	24	02	23	49.4	29	00	23	58.1	33	05	23
17.1	14	06	23	29.4	19	04	23	40.1	24	02	23	49.6	29	00	23	58.2	33	05	23
17.2	15	00	23	29.5	19	05	23	40.2	24	03	23	49.7	29	01	23	58.3	33	06	23
17.5	15	00	23	29.8	19	05	23	40.4	24	03	23	49.8	29	01	23	58.5	33	06	23
17.6	15	01	23	29.9	19	06	23	40.5	24	04	23	49.9	29	02	23	58.6	34	00	23
18.0	15	01	23	30.1	19	06	23	40.7	24	04	23	50.1	29	02	23	58.7	34	00	23
18.1	15	02	23	30.2	20	00	23	40.8	24	05	23	50.2	29	03	23	58.8	34	01	23
18.4	15	02	23	30.4	20	00	23	41.0	24	05	23	50.4	29	03	23	59.0	34	01	23
18.5	15	03	23	30.5	20	01	23	41.1	24	06	23	50.5	29	04	23	59.1	34	02	23
18.7	15	03	23	30.8	20	01	23	41.3	24	06	23	50.6	29	04	23	59.2	34	02	23
18.8	15	04	23	30.9	20	02	23	41.4	25	00	23	50.7	29	05	23	59.3	34	03	23
19.1	15	04	23	31.1	20	02	23	41.6	25	00	23	50.9	29	05	23	59.5	34	03	23
19.2	15	05	23	31.2	20	03	23	41.7	25	01	23	51.0	29	06	23	59.6	34	04	23
19.5	15	05	23	31.5	20	03	23	41.9	25	01	23	51.2	29	06	23	59.7	34	04	23
19.6	15	06	23	31.6	20	04	23	42.0	25	02	23	51.3	30	00	23	59.8	34	05	23
19.9	15	06	23	31.8	20	04	23	42.1	25	02	23	51.5	30	00	23	60.0	34	05	23
20.0	16	00	23	31.9	20	05	23	42.2	25	03	23	51.6	30	01	23	60.1	34	06	23
20.3	16	00	23	32.1	20	05	23	42.4	25	03	23	51.7	30	01	23	60.2	34	06	23
20.4	16	01	23	32.2	20	06	23	42.5	25	04	23	51.8	30	02	23	60.3	35	00	23
20.7	16	01	23	32.5	20	06	23	42.7	25	04	23	52.0	30	02	23	60.5	35	00	23
20.8	16	02	23	32.6	21	00	23	42.8	25	05	23	52.1	30	03	23	60.6	35	01	23
21.1	16	02	23	32.8	21	00	23	43.0	25	05	23	52.3	30	03	23	60.7	35	01	23
21.2	16	03	23	32.9	21	01	23	43.1	25	06	23	52.4	30	04	23	60.8	35	02	23
21.5	16	03	23	33.1	21	01	23	43.3	25	06	23	52.5	30	04	23	61.0	35	02	23
21.6	16	04	23	33.2	21	02	23	43.4	26	00	23	52.6	30	05	23	61.1	35	03	23
21.9	16	04	23	33.4	21	02	23	43.6	26	00	23	52.8	30	05	23	61.2	35	03	23
22.0	16	05	23	33.5	21	03	23	43.7	26	01	23	52.9	30	06	23	61.3	35	04	23
22.2	16	05	23	33.8	21	03	23	43.9	26	01	23	53.1	30	06	23	61.5	35	04	23
22.3	16	06	23	33.9	21	04	23	44.0	26	02	23	53.2	31	00	23	61.6	35	05	23
22.6	16	06	23	34.1	21	04	23	44.2	26	02	23	53.3	31	00	23	61.7	35	05	23

Humerus Length, OsakaAoki M, Yamada M. "Examining Fetal Growth." *Obstetrics and Gynecology* 47:547-556, 1983.

HL mm	mean days	± days															
10.0	91	7	19.0	113	7	28.0	137	14	37.0	164	—	46.0	196	—	55.0	236	—
11.0	93	7	20.0	115	7	29.0	140	14	38.0	167	—	47.0	200	—	56.0	242	—
12.0	95	7	21.0	118	7	30.0	142	14	39.0	171	—	48.0	204	—	57.0	247	—
13.0	98	7	22.0	121	14	31.0	145	14	40.0	174	—	49.0	208	—	58.0	254	—
14.0	100	7	23.0	123	14	32.0	148	14	41.0	177	—	50.0	212	—	59.0	260	—
15.0	103	7	24.0	126	14	33.0	151	14	42.0	181	—	51.0	217	—	60.0	267	—
16.0	105	7	25.0	128	14	34.0	154	14	43.0	185	—	52.0	221	—	61.0	275	—
17.0	108	7	26.0	131	14	35.0	158	14	44.0	188	—	53.0	226	—	62.0	283	—
18.0	110	7	27.0	134	14	36.0	161	14	45.0	192	—	54.0	231	—	63.0	291	—

Ulna Length, JeantyJeanty P, Rodesch F, Delbeke D, Dumont JE. "Estimation of Gestational Age from Measurements of Fetal Long Bones." *Journal of Ultrasound in Medicine* 3:75, 1984.

$$\text{MAwks(ULmm)} = 10.034368 + (0.28625722 * \text{UL}) + (0.002912470 * \text{UL}^2)$$

2 Standard Deviations = ±3.6874 wks

UL mm	wks	days	± 2SD																
9.0	12	06	26	21.8	17	05	26	32.7	22	04	26	42.4	27	03	26	51.1	32	02	26
9.2	12	06	26	22.1	17	05	26	32.9	22	04	26	42.5	27	03	26	51.2	32	02	26
9.3	13	00	26	22.2	17	06	26	33.0	22	05	26	42.6	27	04	26	51.3	32	03	26
9.6	13	00	26	22.4	17	06	26	33.2	22	05	26	42.8	27	04	26	51.4	32	03	26
9.7	13	01	26	22.5	18	00	26	33.3	22	06	26	42.9	27	05	26	51.5	32	04	26
10.0	13	01	26	22.7	18	00	26	33.5	22	06	26	43.1	27	05	26	51.7	32	04	26
10.1	13	02	26	22.8	18	01	26	33.6	23	00	26	43.2	27	06	26	51.8	32	05	26
10.4	13	02	26	23.1	18	01	26	33.8	23	00	26	43.3	27	06	26	51.9	32	05	26
10.5	13	03	26	23.2	18	02	26	33.9	23	01	26	43.4	28	00	26	52.0	32	06	26
10.8	13	03	26	23.4	18	02	26	34.1	23	01	26	43.6	28	00	26	52.2	32	06	26
10.9	13	04	26	23.5	18	03	26	34.2	23	02	26	43.7	28	01	26	52.3	33	00	26
11.3	13	04	26	23.8	18	03	26	34.4	23	02	26	43.9	28	01	26	52.4	33	00	26
11.4	13	05	26	23.9	18	04	26	34.5	23	03	26	44.0	28	02	26	52.5	33	01	26
11.7	13	05	26	24.1	18	04	26	34.7	23	03	26	44.1	28	02	26	52.7	33	01	26
11.8	13	06	26	24.2	18	05	26	34.8	23	04	26	44.2	28	03	26	52.8	33	02	26
12.1	13	06	26	24.4	18	05	26	35.0	23	04	26	44.4	28	03	26	52.9	33	02	26
12.2	14	00	26	24.5	18	06	26	35.1	23	05	26	44.5	28	04	26	53.0	33	03	26
12.5	14	00	26	24.8	18	06	26	35.3	23	05	26	44.6	28	04	26	53.1	33	03	26
12.6	14	01	26	24.9	19	00	26	35.4	23	06	26	44.7	28	05	26	53.2	33	04	26
12.9	14	01	26	25.1	19	00	26	35.6	23	06	26	44.9	28	05	26	53.4	33	04	26
13.0	14	02	26	25.2	19	01	26	35.7	24	00	26	45.0	28	06	26	53.5	33	05	26
13.3	14	02	26	25.4	19	01	26	35.9	24	00	26	45.2	28	06	26	53.6	33	05	26
13.4	14	03	26	25.5	19	02	26	36.0	24	01	26	45.3	29	00	26	53.7	33	06	26
13.6	14	03	26	25.7	19	02	26	36.2	24	01	26	45.4	29	00	26	53.9	33	06	26
13.7	14	04	26	25.8	19	03	26	36.3	24	02	26	45.5	29	01	26	54.0	34	00	26
14.0	14	04	26	26.1	19	03	26	36.4	24	02	26	45.7	29	01	26	54.1	34	00	26
14.1	14	05	26	26.2	19	04	26	36.5	24	03	26	45.8	29	02	26	54.2	34	01	26
14.4	14	05	26	26.4	19	04	26	36.7	24	03	26	45.9	29	02	26	54.3	34	01	26
14.5	14	06	26	26.5	19	05	26	36.8	24	04	26	46.0	29	03	26	54.4	34	02	26
14.8	14	06	26	26.7	19	05	26	37.0	24	04	26	46.2	29	03	26	54.6	34	02	26
14.9	15	00	26	26.8	19	06	26	37.1	24	05	26	46.3	29	04	26	54.7	34	03	26
15.2	15	00	26	27.0	19	06	26	37.3	24	05	26	46.5	29	04	26	54.8	34	03	26
15.3	15	01	26	27.1	20	00	26	37.4	24	06	26	46.6	29	05	26	54.9	34	04	26
15.6	15	01	26	27.4	20	00	26	37.6	24	06	26	46.7	29	05	26	55.0	34	04	26
15.7	15	02	26	27.5	20	01	26	37.7	25	00	26	46.8	29	06	26	55.1	34	05	26
15.9	15	02	26	27.7	20	01	26	37.9	25	00	26	47.0	29	06	26	55.3	34	05	26
16.0	15	03	26	27.8	20	02	26	38.0	25	01	26	47.1	30	00	26	55.4	34	06	26
16.3	15	03	26	28.0	20	02	26	38.1	25	01	26	47.2	30	00	26	55.5	34	06	26
16.4	15	04	26	28.1	20	03	26	38.2	25	02	26	47.3	30	01	26	55.6	35	00	26
16.7	15	04	26	28.3	20	03	26	38.4	25	02	26	47.5	30	01	26	55.7	35	00	26
16.8	15	05	26	28.4	20	04	26	38.5	25	03	26	47.6	30	02	26	55.8	35	01	26
17.1	15	05	26	28.6	20	04	26	38.7	25	03	26	47.7	30	02	26	56.0	35	01	26
17.2	15	06	26	28.7	20	05	26	38.8	25	04	26	47.8	30	03	26	56.1	35	02	26
17.4	15	06	26	29.0	20	05	26	39.0	25	04	26	48.0	30	03	26	56.2	35	02	26
17.5	16	00	26	29.1	20	06	26	39.1	25	05	26	48.1	30	04	26	56.3	35	03	26
17.8	16	00	26	29.3	20	06	26	39.3	25	05	26	48.2	30	04	26	56.4	35	03	26
17.9	16	01	26	29.4	21	00	26	39.4	25	06	26	48.3	30	05	26	56.5	35	04	26
18.2	16	01	26	29.6	21	00	26	39.5	25	06	26	48.5	30	05	26	56.7	35	04	26
18.3	16	02	26	29.7	21	01	26	39.6	26	00	26	48.6	30	06	26	56.8	35	05	26
18.5	16	02	26	29.9	21	01	26	39.8	26	00	26	48.7	30	06	26	56.9	35	05	26
18.6	16	03	26	30.0	21	02	26	39.9	26	01	26	48.8	31	00	26	57.0	35	06	26
18.9	16	03	26	30.2	21	02	26	40.1	26	01	26	49.0	31	00	26	57.1	35	06	26
19.0	16	04	26	30.3	21	03	26	40.2	26	02	26	49.1	31	01	26	57.2	36	00	26
19.2	16	04	26	30.5	21	03	26	40.4	26	02	26	49.2	31	01	26	57.4	36	00	26
19.3	16																		

Binocular Distance, Jeanty

Jeanty P, Cantraine F, Cousaert E, Romero R, Hobbins JC. "The Binocular Distance: A New Way to Estimate Fetal Age." *Journal of Ultrasound in Medicine* 3:241, 1984.

BN mm	wks	days	\pm 2SD																
15	10	3	29	24	15	6	28	33	21	1	29	42	26	1	28	51	31	6	28
16	11	0	29	25	16	3	28	34	21	5	29	43	27	6	28	52	32	4	28
17	11	4	29	26	17	0	28	35	22	2	29	44	27	5	28	53	33	0	29
18	12	1	29	27	17	4	28	36	22	6	29	45	28	2	28	54	33	4	29
19	12	6	28	28	18	1	29	37	23	4	28	46	28	6	28	55	34	1	29
20	13	3	28	29	18	6	28	38	24	1	28	47	29	4	28	56	34	6	28
21	14	0	28	30	19	3	28	39	24	5	28	48	30	1	28	57	35	3	28
22	14	4	28	31	20	0	28	40	25	5	28	49	30	5	28	58	36	0	28
23	15	1	29	32	20	4	28	41	25	2	28	50	31	2	28	59	36	4	28

Binocular Distance, Tongsong

Tongsong T, Wanapirak C, Jesadapornchai S, Tathayathikom E. "Fetal binocular distance as a predictor of menstrual age." *International Journal of Gynecology and Obstetrics* 38:87, 1992.

$$\text{MAwks(BNcm)} = 6.54398 + 3.4659 * (\text{BN}) + 0.30682 * (\text{BN}^2)$$

\pm Standard Deviation 14 - 27 wk \pm 14 days 29 - 40 wks \pm 24 days

BN mm	wks	days	\pm 2SD																
16.0	12	06	00	25.6	17	03	14	34.4	22	01	24	42.4	26	05	24	49.8	31	03	24
16.1	12	06	00	25.7	17	04	14	34.6	22	01	24	42.5	26	06	24	49.9	31	03	24
16.2	13	00	00	26.0	17	04	14	34.7	22	02	24	42.6	26	06	24	50.0	31	04	24
16.4	13	00	00	26.1	17	05	14	34.8	22	02	24	42.7	27	00	24	50.1	31	04	24
16.5	13	01	00	26.3	17	05	14	34.9	22	03	24	42.9	27	00	24	50.2	31	05	24
16.7	13	01	00	26.4	17	06	14	35.1	22	03	24	43.0	27	01	24	50.3	31	05	24
16.8	13	02	00	26.5	17	06	14	35.2	22	04	24	43.1	27	01	24	50.4	31	06	24
17.0	13	02	00	26.6	18	00	24	35.3	22	04	24	43.2	27	02	24	50.5	31	06	24
17.1	13	03	00	26.8	18	00	24	35.4	22	05	24	43.3	27	02	24	50.6	32	00	24
17.3	13	03	00	26.9	18	01	24	35.6	22	05	24	43.4	27	03	24	50.8	32	00	24
17.4	13	04	00	27.1	18	01	24	35.7	22	06	24	43.6	27	03	24	50.9	32	01	24
17.7	13	04	00	27.2	18	02	24	35.8	22	06	24	43.7	27	04	24	51.0	32	01	24
17.8	13	05	00	27.4	18	02	24	35.9	23	00	24	43.8	27	04	24	51.1	32	02	24
18.0	13	05	00	27.5	18	03	24	36.1	23	00	24	43.9	27	05	24	51.2	32	02	24
18.1	13	06	00	27.7	18	03	24	36.2	23	01	24	44.0	27	05	24	51.3	32	03	24
18.3	13	06	00	27.8	18	04	24	36.3	23	01	24	44.1	27	06	24	51.4	32	03	24
18.4	14	00	14	27.9	18	04	24	36.4	23	02	24	44.3	27	06	24	51.5	32	04	24
18.6	14	00	14	28.0	18	05	24	36.6	23	02	24	44.4	28	00	24	51.6	32	04	24
18.7	14	01	14	28.2	18	05	24	36.7	23	03	24	44.5	28	00	24	51.7	32	05	24
18.9	14	01	14	28.3	18	06	24	36.8	23	03	24	44.6	28	01	24	51.8	32	05	24
19.0	14	02	14	28.5	18	06	24	36.9	23	04	24	44.7	28	01	24	51.9	32	06	24
19.2	14	02	14	28.6	19	00	24	37.1	23	04	24	44.8	28	02	24	52.0	32	06	24
19.3	14	03	14	28.8	19	00	24	37.2	23	05	24	45.0	28	02	24	52.1	33	00	24
19.5	14	03	14	28.9	19	01	24	37.3	23	05	24	45.1	28	03	24	52.3	33	00	24
19.6	14	04	14	29.0	19	01	24	37.4	23	06	24	45.2	28	03	24	52.4	33	01	24
19.8	14	04	14	29.1	19	02	24	37.6	23	06	24	45.3	28	04	24	52.5	33	01	24
19.9	14	05	14	29.3	19	02	24	37.7	24	00	24	45.4	28	04	24	52.6	33	02	24
20.1	14	05	14	29.4	19	03	24	37.8	24	00	24	45.5	28	05	24	52.7	33	02	24
20.2	14	06	14	29.6	19	03	24	37.9	24	01	24	45.6	28	05	24	52.8	33	03	24
20.4	14	06	14	29.7	19	04	24	38.1	24	01	24	45.7	28	06	24	52.9	33	03	24
20.5	15	00	14	29.8	19	04	24	38.2	24	02	24	45.9	28	06	24	53.0	33	04	24
20.7	15	00	14	29.9	19	05	24	38.3	24	02	24	46.0	29	00	24	53.1	33	04	24
20.8	15	01	14	30.1	19	05	24	38.4	24	03	24	46.1	29	00	24	53.2	33	05	24
21.0	15	01	14	30.2	19	06	24	38.6	24	03	24	46.2	29	01	24	53.3	33	05	24
21.1	15	02	14	30.4	19	06	24	38.7	24	04	24	46.3	29	01	24	53.4	33	06	24
21.3	15	02	14	30.5	20	00	24	38.8	24	04	24	46.4	29	02	24	53.5	33	06	24
21.4	15	03	14	30.6	20	00	24	38.9	24	05	24	46.5	29	02	24	53.6	34	00	24
21.6	15	03	14	30.7	20	01	24	39.0	24	05	24	46.6	29	03	24	53.8	34	00	24
21.7	15	04	14	30.9	20	01	24	39.1	24	06	24	46.8	29	03	24	53.9	34	01	24
21.9	15	04	14	31.0	20	02	24	39.3	24	06	24	46.9	29	04	24	54.0	34	01	24
22.0	15	05	14	31.2	20	02	24	39.4	25	00	24	47.0	29	04	24	54.1	34	02	24
22.2	15	05	14	31.3	20	03	24	39.5	25	00	24	47.1	29	05	24	54.2	34	02	24
22.3	15	06	14	31.4	20	03	24	39.6	25	01	24	47.2	29	05	24	54.3	34	03	24
22.5	15	06	14	31.5	20	04	24	39.8	25	01	24	47.3	29	06	24	54.4	34	03	24
22.6	16	00	14	31.7	20	04	24	39.9	25	02	24	47.4	29	06	24	54.5	34	04	24
22.8	16	00	14	31.8	20	05	24	40.0	25	02	24	47.5	30	00	24	54.6	34	04	24
22.9	16	01	14	32.0	20	05	24	40.1	25	03	24	47.7	30	00	24	54.7	34	05	24
23.1	16	01	14	32.1	20	06	24	40.3	25	03	24	47.8	30	01	24	54.8	34	05	24
23.2	16	02	14	32.2	20	06	24	40.4	25	04	24	47.9	30	01	24	54.9	34	06	24
23.4	16	02	14	32.3	21	00	24	40.5	25	04	24	48.0	30	02	24	55.0	34	06	24
23.5	16	03	14	32.5	21	00	24	40.6	25	05	24	48.1	30	02	24	55.1	35	00	24
23.7	16	03	14	32.6	21	01	24	40.7	25	05	24	48.2	30	03	24	55.2	35	00	24
23.8	16	04	14	32.8	21	01	24	40.8	25	06	24	48.3	30	03	24	55.3	35	01	24
24.0	16	04	14	32.9	21	02	24	41.0											

Tibia Length, Jeanty

Jeanty P, Rodesch F, Delbeke D, Dumont JE. "Estimation of Gestational Age from Measurements of Fetal Long Bones." *Journal of Ultrasound in Medicine* 3:75, 1984.

$$\text{MAwks(TLmm)} = 10.055043 + 0.31317668 (\text{TL}) + (0.001681 * \text{TL}^2)$$

2 Standard Deviations = ± 3.4992 wks (24 days)

TL mm	± wks	days	2SD	TL mm															
				wks	days	2SD		wks	days	2SD		wks	days	2SD		wks	days	2SD	
9.0	13	00	24	21.4	17	04	24	32.6	22	00	24	42.8	26	04	24	52.3	31	00	24
9.1	13	00	24	21.7	17	04	24	32.7	22	01	24	43.0	26	04	24	52.4	31	01	24
9.2	13	01	24	21.8	17	05	24	32.9	22	01	24	43.1	26	05	24	52.6	31	01	24
9.5	13	01	24	22.0	17	05	24	33.0	22	02	24	43.3	26	05	24	52.7	31	02	24
9.6	13	02	24	22.1	17	06	24	33.3	22	02	24	43.4	26	06	24	52.9	31	02	24
10.0	13	02	24	22.4	17	06	24	33.4	22	03	24	43.6	26	06	24	53.0	31	03	24
10.1	13	03	24	22.5	18	00	24	33.6	22	03	24	43.7	27	00	24	53.2	31	03	24
10.4	13	03	24	22.8	18	00	24	33.7	22	04	24	43.9	27	00	24	53.3	31	04	24
10.5	13	04	24	22.9	18	01	24	33.9	22	04	24	44.0	27	01	24	53.5	31	04	24
10.8	13	04	24	23.1	18	01	24	34.0	22	05	24	44.2	27	01	24	53.6	31	05	24
10.9	13	05	24	23.2	18	02	24	34.3	22	05	24	44.3	27	02	24	53.8	31	05	24
11.2	13	05	24	23.5	18	02	24	34.4	22	06	24	44.5	27	02	24	53.9	31	06	24
11.3	13	06	24	23.6	18	03	24	34.6	22	06	24	44.6	27	03	24	54.1	31	06	24
11.6	13	06	24	23.8	18	03	24	34.7	23	00	24	44.8	27	03	24	54.2	32	00	24
11.7	14	00	24	23.9	18	04	24	34.9	23	00	24	44.9	27	04	24	54.4	32	00	24
12.0	14	00	24	24.2	18	04	24	35.0	23	01	24	45.1	27	04	24	54.5	32	01	24
12.1	14	01	24	24.3	18	05	24	35.3	23	01	24	45.2	27	05	24	54.6	32	01	24
12.4	14	01	24	24.6	18	05	24	35.4	23	02	24	45.5	27	05	24	54.7	32	02	24
12.5	14	02	24	24.7	18	06	24	35.6	23	02	24	45.6	27	06	24	54.9	32	02	24
12.8	14	02	24	24.9	18	06	24	35.7	23	03	24	45.8	27	06	24	55.0	32	03	24
12.9	14	03	24	25.0	19	00	24	35.9	23	03	24	45.9	28	00	24	55.2	32	03	24
13.2	14	03	24	25.3	19	00	24	36.0	23	04	24	46.1	28	00	24	55.3	32	04	24
13.3	14	04	24	25.4	19	01	24	36.3	23	04	24	46.2	28	01	24	55.5	32	04	24
13.6	14	04	24	25.7	19	01	24	36.4	23	05	24	46.4	28	01	24	55.6	32	05	24
13.7	14	05	24	25.8	19	02	24	36.6	23	05	24	46.5	28	02	24	55.8	32	05	24
14.0	14	05	24	26.0	19	02	24	36.7	23	06	24	46.7	28	02	24	55.9	32	06	24
14.1	14	06	24	26.1	19	03	24	36.9	23	06	24	46.8	28	03	24	56.1	32	06	24
14.4	14	06	24	26.4	19	03	24	37.0	24	00	24	47.0	28	03	24	56.2	33	00	24
14.5	15	00	24	26.5	19	04	24	37.2	24	00	24	47.1	28	04	24	56.4	33	00	24
14.8	15	01	24	26.7	19	04	24	37.3	24	01	24	47.3	28	04	24	56.6	33	01	24
15.2	15	01	24	26.8	19	05	24	37.6	24	01	24	47.4	28	05	24	56.6	33	01	24
15.3	15	02	24	27.1	19	05	24	37.7	24	02	24	47.6	28	05	24	56.7	33	02	24
15.6	15	02	24	27.2	19	06	24	37.9	24	02	24	47.7	28	06	24	56.9	33	02	24
15.7	15	03	24	27.4	19	06	24	38.0	24	03	24	47.9	28	06	24	57.0	33	03	24
16.0	15	03	24	27.5	20	00	24	38.2	24	03	24	48.0	29	00	24	57.2	33	04	24
16.1	15	04	24	27.8	20	00	24	38.3	24	04	24	48.2	29	00	24	57.3	33	04	24
16.3	15	04	24	27.9	20	01	24	38.5	24	04	24	48.3	29	01	24	57.5	33	04	24
16.4	15	04	24	28.1	20	01	24	38.6	24	05	24	48.5	29	01	24	57.6	33	05	24
16.7	15	05	24	28.2	20	02	24	38.9	24	05	24	48.6	29	02	24	57.8	33	05	24
16.8	15	06	24	28.5	20	02	24	39.0	24	06	24	48.8	29	02	24	57.9	33	06	24
17.1	15	06	24	28.6	20	03	24	39.2	24	06	24	48.9	29	03	24	58.1	33	06	24
17.2	16	00	24	28.8	20	03	24	39.3	25	00	24	49.1	29	03	24	58.2	34	00	24
17.5	16	00	24	28.9	20	04	24	39.5	25	00	24	49.2	29	04	24	58.3	34	00	24
17.6	16	01	24	29.2	20	04	24	39.6	25	01	24	49.4	29	04	24	58.4	34	01	24
17.9	16	01	24	29.3	20	05	24	39.8	25	01	24	49.5	29	05	24	58.6	34	01	24
18.0	16	02	24	29.5	20	05	24	39.9	25	02	24	49.7	29	05	24	58.7	34	02	24
18.3	16	02	24	29.6	20	06	24	40.1	25	02	24	49.8	29	06	24	58.9	34	02	24
18.4	16	03	24	29.9	20	06	24	40.2	25	03	24	50.0	29	06	24	59.0	34	03	24
18.7	16	03	24	30.0	21	00	24	40.5	25	03	24	50.1	30	00	24	59.2	34	03	24
18.8	16	04	24	30.2	21	00	24	40.6	25	04	24	50.3	30	00	24	59.3	34	04	24
19.0	16	04	24	30.3	21	01	24	40.8	25	04	24	50.4	30	01	24	59.5	34	04	24
19.1	16	05	24	30.6	21	01	24	40.9	25	05	24	50.6	30	01	24	59.6	34	05	24
19.4	16	05	24	30.7	21	02	24	41.1	25	05	24	50.7	30	02	24	59.7	34	05	24
19.5	16	06	24	30.9	21	02	24	41.2	25	06	24	50.9	30	02	24	59.8	34	06	24
19.8	16	06	24	31.0	21	03	24	41.4	25	06	24	51.0	30	03	24	60.0	34	06	24
19.9	17	00	24	31.2	21	03	24	41.5	26	00	24	51.2	30	03	24	60.1	35	00	24
20.2	17	00	24	31.3	21	04	24	41.7	26	00	24	51.3	30	04	24	60.3	35	00	24
20.3	17	01	24	31.6	21	04	24	41.8	26	01	24	51.4	30	04	24	60.4	35	01	24
20.5	17	01	24	31.7	21	05	24	42.0	26	01	24	51.5	30	05	24	60.6	35	01	24
20.6	17	02	24	31.9	21	05	24	42.1	26	02	24	51.7	30	05	24	60.7	35	02	24
20.9	17	02	24	32.0	21	06	24	42.4	26	02	24	51.8	30	06	24	60.8	35	02	24
21.0	17	03	24	32.3	21	06	24	42.5	26	03	24	52.0	30	06	24	60.9	35	03	24
21.3	17	03	24	32.4	22	00	24	42.7	26	03	24	52.1	31	00	24	61.1	35	03	24

Foot Length, Mercer

Mercer BM, Sklar S, Shariamadar A, Gillieson MS, Dalton ME. "Fetal foot length as a predictor of gestational age." *American Journal of Obstetrics and Gynecology* 156(2):350, 1987.

$$\text{MAwks(FTmm)} = 0.0007745 * (\text{FT}^2) + 0.3004 (\text{FT}) + 9.397$$

2 Standard Deviations = 0.0797*MA (in weeks)

FT mm	wks	days	± 2SD	FT mm wks days 2SD															
				FT mm	wks	days	2SD												
10.0	12	03	07	24.1	17	01	10	38.3	22	00	12	51.1	26	05	15	63.6	31	04	18
10.1	12	04	07	24.4	17	01	10	38.4	22	01	12	51.2	26	06	15	63.7	31	05	18
10.5	12	04	07	24.5	17	02	10	38.7	22	01	12	51.5	26	06	15	63.9	31	05	18
10.6	12	05	07	24.8	17	02	10	38.8	22	02	12	51.6	27	00	15	64.0	31	06	18
10.9	12	05	07	24.9	17	03	10	39.1	22	02	12	51.8	27	00	15	64.3	31	06	18
11.0	12	06	07	25.3	17	03	10	39.2	22	03	12	51.9	27	01	15	64.4	32	00	18
11.4	12	06	07	25.4	17	04	10	39.3	22	03	12	52.2	27	01	15	64.6	32	00	18
11.5	13	00	07	25.7	17	04	10	39.4	22	03	13	52.3	27	02	15	64.7	32	01	18
11.8	13	00	07	25.8	17	05	10	39.5	22	03	13	52.6	27	02	15	65.0	32	01	18
11.9	13	01	07	26.1	17	05	10	39.6	22	04	13	52.7	27	03	15	65.1	32	02	18
12.3	13	01	07	26.2	17	06	10	39.9	22	04	13	53.0	27	03	15	65.4	32	02	18
12.4	13	02	07	26.5	17	06	10	40.0	22	05	13	53.1	27	04	15	65.5	32	03	18
12.7	13	02	07	26.6	18	00	10	40.3	22	05	13	53.3	27	04	15	65.7	32	03	18
12.8	13	03	07	26.9	18	00	10	40.4	22	06	13	53.4	27	05	15	65.8	32	04	18
13.0	13	03	07	27.0	18	01	10	40.7	22	06	13	53.7	27	05	15	66.1	32	04	18
13.1	13	03	08	27.4	18	01	10	40.8	23	00	13	53.8	27	06	16	66.2	32	05	18
13.2	13	03	08	27.5	18	02	10	41.1	23	00	13	54.1	27	06	16	66.4	32	05	18
13.3	13	04	08	27.8	18	02	10	41.2	23	01	13	54.2	28	00	16	66.5	32	06	18
13.6	13	04	08	27.9	18	03	10	41.5	23	01	13	54.5	28	00	16	66.8	32	06	18
13.7	13	05	08	28.2	18	03	10	41.6	23	02	13	54.6	28	01	16	66.9	33	00	18
14.0	13	05	08	28.3	18	04	10	41.9	23	02	13	54.8	28	01	16	67.1	33	00	18
14.1	13	06	08	28.6	18	04	10	42.0	23	03	13	54.9	28	02	16	67.2	33	01	18
14.5	13	06	08	28.7	18	05	10	42.3	23	03	13	55.2	28	02	16	67.3	33	01	18
14.6	14	00	08	29.0	18	05	10	42.4	23	04	13	55.3	28	03	16	67.4	33	01	19
14.9	14	00	08	29.1	18	06	10	42.7	23	04	13	55.6	28	03	16	67.5	33	01	19
15.0	14	01	08	29.2	18	06	11	42.8	23	05	13	55.7	28	04	16	67.6	33	02	19
15.4	14	01	08	29.4	18	06	11	43.1	23	05	13	55.9	28	04	16	67.8	33	02	19
15.5	14	02	08	29.5	19	00	11	43.2	23	06	13	56.0	28	05	16	67.9	33	03	19
15.8	14	02	08	29.9	19	00	11	43.4	23	06	13	56.3	28	05	16	68.2	33	03	19
15.9	14	03	08	30.0	19	01	11	43.5	24	00	13	56.4	28	06	16	68.3	33	04	19
16.3	14	03	08	30.3	19	01	11	43.8	24	00	13	56.7	28	06	16	68.5	33	04	19
16.4	14	04	08	30.4	19	02	11	43.9	24	01	13	56.8	29	00	16	68.6	33	05	19
16.7	14	04	08	30.7	19	02	11	44.2	24	01	14	57.0	29	00	16	68.9	33	05	19
16.8	14	05	08	30.8	19	03	11	44.3	24	02	14	57.1	29	01	16	69.0	33	06	19
17.1	14	05	08	31.1	19	03	11	44.6	24	02	14	57.4	29	01	16	69.2	33	06	19
17.6	14	06	08	31.2	19	04	11	44.7	24	03	14	57.5	29	02	16	69.3	34	00	19
17.7	14	06	08	31.5	19	04	11	45.0	24	03	14	57.8	29	02	16	69.6	34	00	19
17.8	15	00	08	31.6	19	05	11	45.1	24	04	14	57.9	29	03	16	69.7	34	01	19
18.0	15	00	08	31.9	19	05	11	45.4	24	04	14	58.1	29	03	16	69.9	34	01	19
18.1	15	01	08	32.0	19	06	11	45.5	24	05	14	58.2	29	04	16	70.0	34	02	19
18.4	15	01	08	32.3	19	06	11	45.8	24	05	14	58.3	29	04	16	70.3	34	02	19
18.5	15	02	08	32.4	20	00	11	45.9	24	06	14	58.4	29	04	17	70.4	34	03	19
18.6	15	02	08	32.7	20	00	11	46.1	24	06	14	58.5	29	04	17	70.6	34	03	19
18.9	15	02	08	32.8	20	01	11	46.2	25	00	14	58.6	29	05	17	70.7	34	04	19
19.0	15	03	09	33.1	20	01	11	46.5	25	00	14	58.9	29	05	17	71.0	34	04	19
19.3	15	03	09	33.2	20	02	11	46.6	25	01	14	59.0	29	06	17	71.1	34	05	19
19.4	15	04	09	33.5	20	02	11	46.9	25	01	14	59.2	29	06	17	71.3	34	05	19
19.7	15	04	09	33.6	20	03	11	47.0	25	02	14	59.3	30	00	17	71.4	34	06	19
19.8	15	05	09	33.9	20	03	11	47.3	25	02	14	59.6	30	00	17	71.7	34	06	19
20.2	15	05	09	34.0	20	04	11	47.4	25	03	14	59.7	30	01	17	71.8	35	00	20
20.3	15	06	09	34.3	20	04	11	47.7	25	03	14	60.0	30	01	17	72.0	35	00	20
20.6	15	06	09	34.4	20	05	12	47.8	25	04	14	60.1	30	02	17	72.1	35	01	20
20.7	16	00	09	34.7	20	05	12	48.1	25	04	14	60.3	30	02	17	72.4	35	01	20
21.0	16	00	09	34.8	20	06	12	48.2	25	05	14	60.4	30	03	17	72.5	35	02	20
21.1	16	01	09	35.1	20	06	12	48.4	25	05	14	60.7	30	03	17	72.7	35	02	20
21.5	16	01	09	35.2	21	00	12	48.5	25	06	14	60.8	30	04	17	72.8	35	03	20
21.6	16	02	09	35.5	21	00	12	48.8	25	06	14	61.1	30	04	17	73.1	35	03	20
21.9	16	02	09	35.6	21	01	12	48.9	26	00	14	61.2	30	05	17	73.2	35	04	20
22.0	16	03	09	35.9	21	01	12	49.0	26	00	14	61.4	30	05	17	73.4	35	04	20
22.3	16	03	09	36.0	21	02	12	49.1	26	00	15	61.5	30	06	17	73.5	35	05	20
22.4	16	04	09	36.3	21	02	12	49.2	26	00	15	61.8	30	06	17	73.8	35	05	20
22.6	16	04	09	36.4	21	03	12	49.3	26	01	15	61.9	31	00	17	73.9	35	06	20
22.7	16	04	09	36.7	21	03	12	49.6	26	01	15	62.1	31	00	17	74.1	35	06	20
22.8	16	05	09	36.8	21	04	12	49.7	26	02	15	62.2	31	01	17	74.2	36	00	20
23.2	16	05	09	37.1	21	04	12	50.0	26	02	15	62.5	31	01	17				

Growth Analysis Ratios and Indexes

Head Circumference/Abdominal Circumference Ratio, Campbell

Campbell S, Thoms A. "Ultrasound measurement of the fetal head to abdomen circumference ratio in the assessment of growth retardation." *British Journal of Obstetrics and Gynaecology*, 84:165, 1977.

HC/AC Ratio = HC/AC

5th and 95th percentile

MA (weeks)	-2SD	Mean	+2SD
13-14 wk	1.12	1.23	1.33
15-16 wk	1.01	1.22	1.43
17-18 wk	1.05	1.18	1.31
19-20 wk	1.07	1.18	1.28
21-22 wk	1.04	1.15	1.27
23-24 wk	1.03	1.13	1.23
25-26 wk	1.02	1.13	1.24
27-28 wk	1.03	1.13	1.24

MA (weeks)	-2SD	Mean	+2SD
29-30 wk	0.97	1.10	1.23
31-32 wk	0.94	1.07	1.19
33-34 wk	0.94	1.04	1.13
35-36 wk	0.91	1.02	1.13
37-38 wk	0.91	0.98	1.07
39-40 wk	0.85	0.97	1.08
41-42 wk	0.92	0.96	1.00

Femur Length/Abdominal Circumference Ratio, Hadlock

Hadlock FP, Deter RL, Harrist RB, Roecker E, Park SK. "A Date-Independent Predictor of Intrauterine Growth Retardation: Femur Length/Abdominal Circumference Ratio." *American Journal of Roentgenology* 141: 979, 1983.

Valid for 21 to 42 weeks

FL/AC Ratio = FL/AC * 100

Mean = 22

±2 Standard Deviations = 2

Femur Length/Biparietal Diameter Ratio, Hohler

Hohler CW, Quetel TA. "Comparison of ultrasound femur length and biparietal diameter in late pregnancy." *American Journal of Obstetrics and Gynecology* 141(7):759, 1981.

Valid for 23 to 40 weeks

FL/BPD Ratio = FL/BPD * 100

Mean = (mean of FL)/(mean of BPD) * 100

Norm of the ratio = (0.002 * MA(wks) + 0.73) * 100

±1 Standard Deviation = 0.05

±2 Standard Deviation = 0.10

Cephalic Index, Hadlock

Hadlock FP, Deter RL, Carpenter RJ, Park SK. "Estimating Fetal Age: Effect of Head Shape on BPD." *American Journal of Roentgenology* 137:83, 1981.

Valid for 14 to 40 weeks

CI = short axis/long axis * 100

Mean = 78.3

±1 Standard Deviation = 74-83

±2 Standard Deviations = 70-86

Cephalic Index, Chitty

Chitty, LS, Altman, DG, "Charts of Fetal Size: 2. Head Measurements," *British Journal of Obstetrics & Gynaecology* 101:35-43, 1994.

CI Days	CI																
	5%	mean	95%	Days	5%												
84	75.5	81.5	87.6	127	73.3	79.3	85.3	170	72.2	78.2	84.3	213	72.2	78.3	84.3	256	73.5
85	75.4	81.5	87.5	128	73.2	79.3	85.3	171	72.2	78.2	84.2	214	72.3	78.3	84.3	257	73.5
86	75.4	81.4	87.5	129	73.2	79.2	85.3	172	72.1	78.2	84.2	215	72.3	78.3	84.4	258	73.5
87	75.3	81.4	87.4	130	73.1	79.2	85.2	173	72.1	78.2	84.2	216	72.3	78.3	84.4	259	73.6
88	75.2	81.3	87.3	131	73.1	79.2	85.2	174	72.1	78.2	84.2	217	72.3	78.3	84.4	260	73.6
89	75.2	81.2	87.3	132	73.1	79.1	85.2	175	72.1	78.2	84.2	218	72.3	78.4	84.4	261	73.7
90	75.1	81.2	87.2	133	73.0	79.1	85.1	176	72.1	78.2	84.2	219	72.3	78.4	84.4	262	73.7
91	75.1	81.1	87.1	134	73.0	79.0	85.1	177	72.1	78.1	84.2	220	72.4	78.4	84.4	263	73.8
92	75.0	81.0	87.1	135	73.0	79.0	85.1	178	72.1	78.1	84.2	221	72.4	78.4	84.5	264	73.8
93	74.9	81.0	87.0	136	72.9	79.0	85.0	179	72.1	78.1	84.2	222	72.4	78.4	84.5	265	73.9
94	74.9	80.9	87.0	137	72.9	78.9	85.0	180	72.1	78.1	84.2	223	72.4	78.5	84.5	266	73.9
95	74.8	80.9	86.9	138	72.9	78.9	85.0	181	72.1	78.1	84.2	224	72.4	78.5	84.5	267	74.0
96	74.8	80.8	86.8	139	72.8	78.9	84.9	182	72.1	78.1	84.2	225	72.5	78.5	84.5	268	74.0
97	74.7	80.7	86.8	140	72.8	78.9	84.9	183	72.1	78.1	84.2	226	72.5	78.5	84.6	269	74.1
98	74.6	80.7	86.7	141	72.8	78.8	84.9	184	72.1	78.1	84.2	227	72.5	78.6	84.6	270	74.1
99	74.6	80.6	86.7	142	72.7	78.8	84.8	185	72.1	78.1	84.1	228	72.5	78.6	84.6	271	74.2
100	74.5	80.6	86.6	143	72.7	78.8	84.8	186	72.1	78.1	84.1	229	72.6	78.6	84.6	272	74.2
101	74.5	80.5	86.6	144	72.7	78.7	84.8	187	72.1	78.1	84.1	230	72.6	78.6	84.7	273	74.3
102	74.4	80.5	86.5	145	72.7	78.7	84.7	188	72.1	78.1	84.1	231	72.6	78.7	84.7	274	74.3
103	74.4	80.4	86.5	146	72.6	78.7	84.7	189	72.1	78.1	84.1	232	72.6	78.7	84.7	275	74.4
104	74.3	80.4	86.4	147	72.6	78.7	84.7	190	72.1	78.1	84.1	233	72.7	78.7	84.7	276	74.4
105	74.3	80.3	86.3	148	72.6	78.6	84.7	191	72.1	78.1	84.1	234	72.7	78.7	84.8	277	74.5
106	74.2	80.3	86.3	149	72.6	78.6	84.6	192	72.1	78.1	84.1	235	72.7	78.8	84.8	278	74.5
107	74.2	80.2	86.2	150	72.5	78.6	84.6	193	72.1	78.1	84.1	236	72.8	78.8	84.8	279	74.6
108	74.1	80.2	86.2	151	72.5	78.6	84.6	194	72.1	78.1	84.2	237	72.8	78.8	84.9	280	74.7
109	74.1	80.1	86.1	152	72.5	78.5	84.6	195	72.1	78.1	84.2	238	72.8	78.9	84.9	281	74.7
110	74.0	80.1	86.1	153	72.5	78.5	84.5	196	72.1	78.1	84.2	239	72.8	78.9	84.9	282	74.8
111	74.0	80.0	86.0	154	72.4	78.5	84.5	197	72.1	78.1	84.2	240	72.9	78.9	85.0	283	74.8
112	73.9	80.0	86.0	155	72.4	78.5	84.5	198	72.1	78.1	84.2	241	72.9	78.9	85.0	284	74.9
113	73.9	79.9	85.9	156	72.4	78.4	84.5	199	72.1	78.1	84.2	242	72.9	79.0	85.0	285	74.9
114	73.8	79.9	85.9	157	72.4	78.4	84.5	200	72.1	78.1	84.2	243	73.0	79.0	85.1	286	75.0
115	73.8	79.8	85.9	158	72.4	78.4	84.4	201	72.1	78.1	84.2	244	73.0	79.0	85.1	287	75.1
116	73.7	79.8	85.8	159	72.3	78.4	84.4	202	72.1	78.2	84.2	245	73.0	79.1	85.1	288	75.1
117	73.7	79.7	85.8	160	72.3	78.4	84.4	203	72.1	78.2	84.2	246	73.1	79.1	85.2	289	75.2
118	73.6	79.7	85.7	161	72.3	78.3	84.4	204	72.1	78.2	84.2	247	73.1	79.2	85.2	290	75.3
119	73.6	79.6	85.7	162	72.3	78.3	84.4	205	72.1	78.2	84.2	248	73.1	79.2	85.2	291	75.3
120	73.5	79.6	85.6	163	72.3	78.3	84.4	206	72.1	78.2	84.2	249	73.2	79.2	85.3	292	75.4
121	73.5	79.5	85.6	164	72.3	78.3	84.3	207	72.2	78.2	84.2	250	73.2	79.3	85.3	293	75.4
122	73.5	79.5	85.5	165	72.2	78.3	84.3	208	72.2	78.2	84.3	251	73.3	79.3	85.3	294	75.5
123	73.4	79.5	85.5	166	72.2	78.3	84.3	209	72.2	78.2	84.3	252	73.3	79.3	85.4		
124	73.4	79.4	85.5	167	72.2	78.3	84.3	210	72.2	78.2	84.3	253	73.3	79.4	85.4		
125	73.3	79.4	85.4	168	72.2	78.2	84.3	211	72.2	78.3	84.3	254	73.4	79.4	85.5		
126	73.3	79.3	85.4	169	72.2	78.2	84.3	212	72.2	78.3	84.3	255	73.4	79.5	85.5		

Fetal Weight Estimation, Hadlock

Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. "Estimation of fetal weight with the use of head, body, and femur measurements—A prospective study." *American Journal of Obstetrics and Gynecology* 151:333, 1985.

1Hadlock

Valid for EFW US MA display 20 to 42 weeks

$$\text{EFWgm(ACcm, FLcm)} = 10^{\wedge}(1.304 + 0.05281 * \text{AC} + 0.1938 * \text{FL} - 0.004 * \text{AC} * \text{FL})$$

± 2 Standard Deviations = 16.0%

2Hadlock

Valid for EFW US MA display 20 to 42 weeks

$$\text{EFWgm(BPDcm, ACcm, FLcm)} = 10^{\wedge}(1.335 - 0.0034 * \text{AC} * \text{FL} + 0.0316 * \text{BPD} + 0.0457 * \text{AC} + 0.1623 * \text{FL})$$

± 2 Standard Deviations = 15.0%

3Hadlock

Valid for EFW US MA display 20 to 42 weeks

$$\text{EFWgm(HCcm, ACcm, FLcm)} = 10^{\wedge}(1.326 - 0.00326 * \text{AC} * \text{FL} + 0.0107 * \text{HC} + 0.0438 * \text{AC} + 0.158 * \text{FL})$$

± 2 Standard Deviations = 15.0%

4Hadlock

Valid for EFW US MA display 20 to 42 weeks

$$\text{EFWgm(BPDcm, HCcm, ACcm, FLcm)} = 10^{\wedge}(1.3596 - 0.00386 * \text{AC} * \text{FL} + 0.0064 * \text{HC} + 0.00061 * \text{BPD} * \text{AC} + 0.0424 * \text{AC} + 0.174 * \text{FL})$$

± 1 Standard Deviation = 7.4%

± 2 Standard Deviations = 14.8%

Fetal Weight Estimation, Shepard

Shepard MJ, Richards VA, Berkowitz RL, Warsof SL, Hobbins JC. "An evaluation of two equations for predicting fetal weight by ultrasound." *American Journal of Obstetrics and Gynecology*. 142(1):47, 1982.

Valid for BPD 31 to 100 mm and AC 155 to 400 mm

$$\text{EFWkg(BPDcm, ACcm)} = 10^{\wedge}(-1.7492 + 0.166 * \text{BPD} + 0.046 * \text{AC} - 2.646 * (\text{AC} * \text{BPD})/1000)$$

$\pm 2 \text{ SD} = \pm 212.0 \text{ gms per Kg of EFW}$

$\pm 1 \text{ SD} = \pm 106.0 \text{ gms per Kg of EFW}$

Fetal Weight Estimation, Schuhmacher

Hansmann M, Hackelöer B-J, Staudach A. *Ultrasound Diagnosis in Obstetrics and Gynecology*. New York: Springer-Verlag, 1986.

Valid: $45 \leq \text{TAD} \leq 150 \text{ mm}$ $66 \leq \text{BPD} \leq 110 \text{ mm}$ $30 \leq \text{MA} \leq 44 \text{ weeks}$

$W(g) =$

$$-0.001666958 * \text{TAD(mm)}^3 + 0.4133629 * \text{TAD(mm)}^2 - 0.5580294 * \text{TAD(mm)} - 0.01231535 * \text{BPD(mm)}^3 + 3.702 * \text{BPD(mm)}^2 - 330.1811 * \text{BPD(mm)} - 0.4937199 * \text{MA(wks)}^3 + 55.958061 * \text{MA(wks)}^2 - 2034.3901 * \text{MA(wks)} + 32768.19$$

$\pm 3,2,1$ Standard Deviations for MA: 29 – 41 wks

Fetal Weight Estimation, Hansmann

Hansmann M, Hackelöer B-J, Staudach A. *Ultrasound Diagnosis in Obstetrics and Gynecology*. New York: Springer-Verlag, 1986.

$W(g) =$

$$0.515263 - (0.105775 * \text{BPD}) + (0.000930707 * [\text{BPD}]^2) + (0.0649145 * \text{TAD}) - (0.00020562 * \text{TAD}[mm]^2)$$

± 2 Standard Deviations

Fetal Weight Estimation, Merz

Merz E. *Ultrasound in Gynecology and Obstetrics*. Stuttgart and New York: Thieme Medical Publishers, Inc., 1991, p. 157.

Valid: $70.0 \text{ mm} \leq \text{BPD} \leq 105.0 \text{ mm}$; $218.0 \text{ cm} \leq \text{AC} \leq 365.0 \text{ cm}$ $28 \text{ weeks } 1 \text{ day} \leq \text{MA} \leq 42 \text{ weeks}$

$W(g) =$

$$-03200.40479 + 157.07186 * \text{AC} + 15.90391 * \text{BPD}^2$$

Menstrual Age by Ultrasound and Estimated Date of Confinement

CLINICAL MA - Clinical Menstrual Age

Source data for Clinical MA is determined by the user during the Patient ID operation calculated weeks and days since LMP.

US MA - Composite Menstrual Age Estimation by Ultrasound

Simple Average - US MA(ave)

The sum of all menstrual ages determined by single parameter tables/formulas, divided by the number of parameters summed.

Regression Equations, Hadlock

Hadlock FP, Deter RL, Harrist RB, Park SK. "Estimating Fetal Age: Computer-Assisted Analysis of Multiple Fetal Growth Parameters." *Radiology* 152:497, 1984.

$$\text{US MA wks(BPDcm, ACcm)} = 9.57 + 0.524 * \text{AC} + 0.1220 * \text{BPD}^2$$

$$\text{US MA wks(BPDcm, HCcm)} = 10.32 + 0.009 * \text{HC}^2 + 1.3200 * \text{BPD} + 0.00012 * \text{HC}^3$$

$$\text{US MA wks(BPDcm, FLcm)} = 10.5 + 0.197 * \text{BPD} * \text{FL} + 0.9500 * \text{FL} + 0.7300 * \text{BPD}$$

$$\text{US MA wks(HCcm, ACcm)} = 10.31 + 0.012 * \text{HC}^2 + 0.3850 * \text{AC}$$

$$\text{US MA wks(HCcm, FLcm)} = 11.19 + 0.070 \text{ HC} * \text{FL} + 0.2630 * \text{HC}$$

$$\text{US MA wks(ACcm, FLcm)} = 10.47 + 0.442 * \text{AC} + 0.3140 * \text{FL}^2 - 0.0121 \text{ FL}^3$$

$$\text{US MA wks(BPDcm, ACcm, FLcm)} = 10.61 + 0.175 * \text{BPD} * \text{FL} + 0.2970 * \text{AC} + 0.7100 * \text{FL}$$

$$\text{US MA wks(HCcm, BPDcm, FLcm)} = 11.38 + 0.70 * \text{HC} * \text{FL} + 0.9800 * \text{BPD}$$

$$\text{US MA wks(HCcm, ACcm, FLcm)} = 10.33 + 0.031 * \text{HC} * \text{FL} + 0.3610 * \text{HC} + 0.0298 * \text{AC} * \text{FL}$$

$$\text{US MA wks(HCcm, ACcm, BPDcm)} = 10.58 + 0.005 \text{ HC}^2 + 0.3635 * \text{AC} + 0.02864 * \text{BPD} * \text{AC}$$

$$\text{US MA wks(BPDcm, HCcm, ACcm, FLcm)} = 10.85 + 0.060 * \text{HC} * \text{FL} + 0.6700 * \text{BPD} + 0.1680 * \text{AC}$$

CLINICAL EDC - Estimated Date of Confinement by Last Menstrual Period

280 days added to date of LMP date.

US EDC Estimated Date of Confinement by Ultrasound

280 days - today's US MA (in days), add to today's date = US EDC

Parameters for Growth Analysis Graphs

The references in this section are used to analyze fetal growth by plotting a measured parameter against clinical menstrual age. The plotted points are displayed on a graph that indicates the 5%, 50%, and 95% for an expected parameter measurement determined by a function using menstrual age.

Mean Gestational Sac Diameter, Rempen

Rempen A. "Biometrie in der Frühgravidität (I. Trimenon) (Biometry in Early Pregnancy (1st Trimester))." *Der Frauenarzt* 32:425, 1991.

5 & 95%: ±10.5 mm

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
4	4	0	.5	11.0	6	3	6.6	17.1	27.6	8	2	21.1	31.6	42.1	10	1	33.5	44.0	54.5	12	0	43.8	54.3	64.8
4	5	0	1.8	12.3	6	4	7.8	18.3	28.8	8	3	22.1	32.6	43.1	10	2	34.4	44.9	55.4	12	1	44.6	55.1	65.6
4	6	0	3.2	13.7	6	5	8.9	19.4	29.9	8	4	23.1	33.6	44.1	10	3	35.2	45.7	56.2	12	2	45.3	55.8	66.3
5	0	0	4.5	15.0	6	6	10.1	20.6	31.1	8	5	24.1	34.6	45.1	10	4	36.1	46.6	57.1	12	3	45.9	56.4	66.9
5	1	0	5.8	16.3	7	0	11.2	21.7	32.2	8	6	25.1	35.6	46.1	10	5	36.9	47.4	57.9	12	4	46.6	57.1	67.6
5	2	0	7.1	17.6	7	1	12.4	22.9	33.4	9	0	26.1	36.6	47.1	10	6	37.7	48.2	58.7	12	5	47.3	57.8	68.3
5	3	0	8.4	18.9	7	2	13.5	24.0	34.5	9	1	27.1	37.6	48.1	11	0	38.5	49.0	59.5	12	6	47.9	58.4	68.9
5	4	0	9.7	20.2	7	3	14.6	25.1	35.6	9	2	28.0	38.5	49.0	11	1	39.3	49.8	60.3	13	0	48.6	59.1	69.6
5	5	0.4	10.9	21.4	7	4	15.7	26.2	36.7	9	3	29.0	39.5	50.0	11	2	40.1	50.6	61.1	13	1	49.2	59.7	70.2
5	6	1.7	12.2	22.7	7	5	16.8	27.3	37.8	9	4	29.9	40.4	50.9	11	3	40.9	51.4	61.9	13	2	49.8	60.3	70.8
6	0	2.9	13.4	23.9	7	6	17.9	28.4	38.9	9	5	30.8	41.3	51.8	11	4	41.6	52.1	62.6					
6	1	4.1	14.6	25.1	8	0	19.0	29.5	40.0	9	6	31.7	42.2	52.7	11	5	42.4	52.9	63.4					
6	2	5.4	15.9	26.4	8	1	20.0	30.5	41.0	10	0	32.6	43.1	53.6	11	6	43.1	53.6	64.1					

Gestational Sac, Tokyo

Masuda H, Shinozuka N, Okai T, Mizuno M. "Diagnosis of the Week of Pregnancy and Prognosis." *Perinatal Care* 8:719-726.

GS Days	- 1.5SD	mean mm	+- 1.5SD																
28	6.4	10.0	16.3	40	13.5	19.4	27.9	52	21.4	29.6	41.4	64	30.2	41.6	56.7	76	40.0	55.6	76.3
29	7.0	10.8	17.4	41	14.1	20.2	28.9	53	22.1	30.5	42.7	65	31.0	42.7	58.0	77	40.9	56.9	78.6
30	7.6	11.6	18.3	42	14.7	21.0	30.0	54	22.8	31.5	43.9	66	31.8	43.8	59.4	78	41.8	58.2	81.0
31	8.1	12.4	19.3	43	15.3	21.8	31.1	55	23.5	32.4	45.1	67	32.6	44.9	60.8	79	42.8	59.6	83.6
32	8.7	13.2	20.2	44	16.0	22.6	32.1	56	24.2	33.4	46.4	68	33.3	46.0	62.3	80	43.8	61.0	86.4
33	9.3	14.0	21.2	45	16.6	23.4	33.3	57	25.0	34.4	47.6	69	34.1	47.1	63.8	81	44.8	62.4	89.4
34	9.9	14.8	22.1	46	17.3	24.3	34.4	58	25.7	35.4	48.9	70	34.9	48.3	65.3	82	45.8	63.9	92.6
35	10.5	15.5	23.0	47	17.9	25.1	35.5	59	26.5	36.4	50.2	71	35.8	49.5	66.9	83	46.9	65.4	96.1
36	11.0	16.3	24.0	48	18.6	26.0	36.7	60	27.2	37.4	51.4	72	36.6	50.6	68.6	84	48.0	67.0	100.0
37	11.6	17.1	25.0	49	19.3	26.9	37.8	61	27.9	38.4	52.7	73	37.4	51.9	70.4				
38	12.2	17.8	25.9	50	20.0	27.8	39.0	62	28.7	39.5	54.0	74	38.3	53.1	72.3				
39	12.8	18.6	26.9	51	20.7	28.7	40.2	63	29.5	40.5	55.3	75	39.1	54.3	74.2				

Crown Rump Length, Hadlock

Hadlock FP, Shah YP, Kanon DJ, Lindsey JV. "Fetal Crown-Rump Length: Reevaluation of Relation to Menstrual Age (5-18 weeks) with High-Resolution Real-Time US." *Radiology* 182(2):501, 1992.

$$\text{LN(CRLcm)} = -6.983 + 1.4498 * \text{MA(wks)} - 0.078345 * \text{MA}^2 + 0.001501 * \text{MA}^3$$

5 & 95%: 0.217 cm * CRL 1 SD: 0.132cm * CRL

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%					
4	6	2.0	1.6	2.4	7	4	11.7	9.1	14.2	10	2	35.8	28.0	43.5	13	0	68.3	53.5	83.2	15	5	97.5	76.4	118.7
5	0	2.2	1.7	2.7	7	5	12.6	9.8	15.3	10	3	37.4	29.3	45.5	13	1	70.0	54.8	85.2	15	6	98.9	77.5	120.4
5	1	2.5	1.9	3.0	7	6	13.5	10.6	16.4	10	4	39.0	30.5	47.5	13	2	71.7	56.1	87.3	16	0	100.3	78.5	122.1
5	2	2.8	2.2	3.4	8	0	14.5	11.3	17.6	10	5	40.7	31.8	49.5	13	3	73.4	57.4	89.3	16	1	101.7	79.6	123.7
5	3	3.1	2.4	3.7	8	1	15.5	12.1	18.9	10	6	42.4	33.2	51.5	13	4	75.0	58.7	91.3	16	2	103.0	80.7	125.4
5	4	3.4	2.7	4.1	8	2	16.6	13.0	20.2	11	0	44.1	34.5	53.6	13	5	76.6	60.0	93.3	16	3	104.4	81.7	127.0
5	5	3.8	2.9	4.6	8	3	17.7	13.8	21.5	11	1	45.8	35.8	55.7	13	6	78.2	61.3	95.2	16	4	105.7	82.8	128.7
5	6	4.2	3.3	5.1	8	4	18.8	14.7	22.9	11	2	47.5	37.2	57.8	14	0	79.8	62.5	97.2	16	5	107.1	83.9	130.3
6	0	4.6	3.6	5.6	8	5	20.0	15.7	24.4	11	3	49.2	38.5	59.9	14	1	81.4	63.7	99.1	16	6	108.5	84.9	132.0
6	1	5.0	3.9	6.1	8	6	21.3	16.7	25.9	11	4	51.0	39.9	62.0	14	2	83.0	65.0	101.0	17	0	109.8	86.0	133.7
6	2	5.5	4.3	6.7	9	0	22.6	17.7	27.5	11	5	52.7	41.3	64.2	14	3	84.5	66.2	102.8	17	1	111.2	87.1	135.3
6	3	6.1	4.7	7.4	9	1	23.9	18.7	29.1	11	6	54.5	42.6	66.3	14	4	86.0	67.3	104.7	17	2	112.6	88.2	137.0
6	4	6.6	5.2	8.1	9	2	25.2	19.8	30.7	12	0	56.2	44.0	68.4	14	5	87.5	68.5	106.5	17	3	114.0	89.3	138.7
6	5	7.2	5.7	8.8	9	3	26.6	20.9	32.4	12	1	58.0	45.4	70.5	14	6	89.0	69.7	108.3	17	4	115.4	90.4	140.5
6	6	7.9	6.2	9.6	9	4	28.1	22.0	34.2	12	2	59.7	46.8	72.7	15	0	90.5	70.8	110.1	17	5	116.9	91.5	142.2
7	0	8.5	6.7	10.4	9	5	29.6	23.1	36.0	12	3	61.5	48.1	74.8	15	1	91.9	72.0	111.8	17	6	118.3	92.7	144.0
7	1	9.3	7.2	11.3	9	6	31.1	24.3	37.8	12	4	63.2	49.5	76.9	15	2	93.3	73.1	113.6	18	0	119.8	93.8	145.8
7	2	10.0	7.8	12.2	10	0	32.6	25.5	39.7	12	5	64.9	50.8	79.0	15	3	94.7	74.2	115.3					
7	3	10.8	8.5	13.2	10	1	34.2	26.7	41.6	12	6	66.6	52.2	81.1	15	4	96.2	75.3	117.0					

Crown Rump Length, Rempen

Rempen A. "Biometrie in der Frühgravidität (I. Trimenon) (Biometry in Early Pregnancy (1st Trimester))." *Der Frauenarzt* 32:425, 1991, p. 427.

5 & 95%: ± 7.8 mm

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
5	5	0	1.2	9.0	7	2	3.7	11.5	19.3	8	6	15.7	23.5	31.3	10	3	29.4	37.2	45.0	12	0	44.9	52.7	60.5
5	6	0	2.1	9.9	7	3	4.7	12.5	20.3	9	0	16.8	24.6	32.4	10	4	30.7	38.5	46.3	12	1	46.4	54.2	62.0
6	0	0	3.0	10.8	7	4	5.7	13.5	21.3	9	1	18.0	25.8	33.6	10	5	32.1	39.9	47.7	12	2	47.9	55.7	63.5
6	1	0	3.8	11.6	7	5	6.8	14.6	22.4	9	2	19.2	27.0	34.8	10	6	33.5	41.3	49.1	12	3	49.5	57.3	65.1
6	2	0	4.7	12.5	7	6	7.8	15.6	23.4	9	3	20.5	28.3	36.1	11	0	34.8	42.6	50.4	12	4	51.0	58.8	66.6
6	3	0	5.7	13.5	8	0	8.9	16.7	24.5	9	4	21.7	29.5	37.3	11	1	36.2	44.0	51.8	12	5	52.5	60.3	68.1
6	4	0	6.6	14.4	8	1	10.0	17.8	25.6	9	5	22.9	30.7	38.5	11	2	37.6	45.4	53.2	12	6	54.1	61.9	69.7
6	5	0	7.5	15.3	8	2	11.1	18.9	26.7	9	6	24.2	32.0	39.8	11	3	39.1	46.9	54.7	13	0	55.7	63.5	71.3
6	6	0.7	8.5	16.3	8	3	12.2	20.0	27.8	10	0	25.5	33.3	41.1	11	4	40.5	48.3	56.1	13	1	57.3	65.1	72.9
7	0	1.7	9.5	17.3	8	4	13.3	21.1	28.9	10	1	26.8	34.6	42.4	11	5	42.0	49.8	57.6	13	2	58.9	66.7	74.5
7	1	2.7	10.5	18.3	8	5	14.5	22.3	30.1	10	2	28.1	35.9	43.7	11	6	43.4	51.2	59.0					

Crown Rump Length, Robinson

Robinson HP and Fleming JEE. "A critical evaluation of sonar 'crown-rump length' measurements." *British Journal of Obstetrics and Gynaecology* 82:702, 1975.

CRL(mm)=0.0144 * MA(days)² - 0.6444 * MA + 7.295

5 & 95%: (2SD/2*1.645)

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
6	2	6.8	4.4	9.3	7	6	15.4	11.7	19.1	9	3	27.5	22.5	32.5	11	0	43.1	36.8	49.3	12	4	62.1	54.6	69.6
6	3	7.5	4.9	10.0	8	0	16.4	12.6	20.2	9	4	28.8	23.7	33.8	11	1	44.6	38.3	51.0	12	5	64.0	56.4	71.6
6	4	8.1	5.5	10.8	8	1	17.3	13.4	21.3	9	5	30.1	24.9	35.3	11	2	46.3	39.8	52.7	12	6	65.9	58.2	73.7
6	5	8.8	6.0	11.6	8	2	18.4	14.3	22.4	9	6	31.4	26.1	36.7	11	3	47.9	41.3	54.5	13	0	67.9	60.1	75.7
6	6	9.5	6.6	12.4	8	3	19.4	15.2	23.6	10	0	32.7	27.3	38.2	11	4	49.6	42.9	56.3	13	1	69.9	61.9	77.9
7	0	10.3	7.3	13.3	8	4	20.5	16.2	24.7	10	1	34.1	28.6	39.7	11	5	51.3	44.5	58.1	13	2	71.9	63.8	80.0
7	1	11.1	7.9	14.2	8	5	21.6	17.2	26.0	10	2	35.5	29.9	41.2	11	6	53.0	46.1	59.9	13	3	74.0	65.8	82.2
7	2	11.9	8.6	15.1	8	6	22.7	18.2	27.2	10	3	37.0	31.2	42.8	12	0	54.8	47.7	61.8	13	4	76.0	67.7	84.3
7	3	12.7	9.4	16.1	9	0	23.9	19.2	28.5	10	4	38.5	32.6	44.4	12	1	56.6	49.4	63.7	13	5	78.1	69.7	86.6
7	4	13.6	10.1	17.1	9	1	25.0	20.3	29.8	10	5	40.0	34.0	46.0	12	2	58.4	51.1	65.6	13	6	80.3	71.7	88.8
7	5	14.5	10.9	18.1	9	2	26.2	21.4	31.1	10	6	41.5	35.4	47.6	12	3	60.2	52.8	67.6	14	0	82.4	73.8	91.1

Crown Rump Length, Hansmann

Hansmann M, Hackelöer B-J, Staudach A. *Ultrasound Diagnosis in Obstetrics and Gynecology*. New York: Springer-Verlag, 1985.

5 & 95%: (2SD/2*1.645)

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
6	1	3.1	6.9	10.7	9	0	13.4	21.5	29.5	11	6	37.9	50.2	62.5	14	5	70.7	87.2	103.6	17	4	94.4	115.1	135.9
6	2	3.7	7.6	11.6	9	1	14.3	22.6	30.8	12	0	39.6	52.0	64.5	14	6	72.2	88.9	105.6	17	5	95.2	116.2	137.2
6	3	4.1	8.3	12.5	9	2	15.1	23.6	32.1	12	1	41.1	53.8	66.5	15	0	73.7	90.6	107.5	17	6	96.1	117.2	138.3
6	4	4.6	9.0	13.4	9	3	16.1	24.8	33.4	12	2	42.8	55.6	68.5	15	1	75.1	92.2	109.4	18	0	96.8	118.1	139.5
6	5	4.9	9.6	14.2	9	4	17.0	25.9	34.7	12	3	44.4	57.5	70.6	15	2	76.5	93.9	111.3	18	1	97.5	119.1	140.6
6	6	5.3	10.2	15.1	9	5	18.1	27.1	36.1	12	4	46.1	59.4	72.6	15	3	78.0	95.5	113.1	18	2	98.2	120.0	141.8
7	0	5.8	10.8	15.8	9	6	19.0	28.3	37.6	12	5	47.7	61.3	74.8	15	4	80.7	98.6	116.6	18	3	98.9	121.0	143.0
7	1	6.1	11.4	16.7	10	0	20.2	29.7	39.2	12	6	49.4	63.1	76.8	15	5	80.7	98.6	116.6	18	4	99.6	121.9	144.1
7	2	6.6	12.1	17.5	10	1	21.3	31.0	40.7	13	0	51.0	65.0	79.0	15	6	81.9	100.1	118.3	18	5	100.3	122.8	145.3
7	3	7.0	12.7	18.4	10	2	22.4	32.4	42.3	13	1	52.8	66.9	81.0	16	0	83.2	101.5	119.9	18	6	101.1	123.7	146.3
7	4	7.5	13.3	19.2	10	3	23.7	33.9	44.0	13	2	54.4	68.8	83.2	16	1	84.3	103.0	121.6	19	0	101.8	124.6	147.5
7	5	7.9	14.0	20.1	10	4	24.9	35.3	45.7	13	3	56.6	70.7	85.3	16	2	85.6	104.4	123.2	19	1	102.5	125.5	148.6
7	6	8.4	14.7	21.0	10	5	26.3	36.8	47.4	13	4	58.6	72.6	87.4	16	3	86.7	105.7	124.8	19	2	103.2	126.5	149.8
8	0	8.9	15.4	22.0	10	6	27.5	38.3	49.1	13	5	59.9	74.5	89.5	16	4	87.8	107.0	126.2	19	3	104.0	127.4	150.9
8	1	9.5	16.2	22.9	11	0	29.0	39.9	50.9	13	6	61.1	76.3	91.5	16	5	88.8	108.3	127.7	19	4	104.7	128.4	152.2
8	2	10.1	17.0	24.0	11	1	30.3	41.6	52.8	14	0	62.7	78.1	93.6	16	6	89.8	109.5	129.2	19	5	105.5	129.4	153.3
8	3	10.6	17.8	25.0	11	2	31.8	43.2	54.6	14	1	64.3	80.0	95.6	17	0	90.8	110.7	130.5	19	6	106.4	130.5	154.7
8	4	11.3	18.7	26.1	11	3	33.3	44.9	56.7	14	2	65.9	81.8	97.7	17	1	91.7	111.8	132.0	20	0	107.3	131.6	155.9
8	5	12.0	19.6	27.2	11	4	34.8	46.6	58.7	14	3	67.6	83.6	99.7	17	2	92.7	113.0	133.3	20	1	108.2	132.8	157.3
8	6	12.7	20.6	28.3	11	5	36.4	48.4	60.6	14	4	69.1	85.4	101.7	17	3	93.5	114.1	134.7	20	2	109.3	134.0	158.8

Crown Rump Length, Tokyo

Masuda H, Shinozuka N, Okai T, Mizuno M. "Diagnosis of the Week of Pregnancy and Prognosis." *Perinatal Care* 8:719-726.

CRL Days	-	mean mm	+	1.5SD	CRL Days	-	mean mm	+	1.5SD	CRL Days	-	mean mm	+	1.5SD	CRL Days	-	mean mm	+	1.5SD	CRL Days	-	mean mm	+	1.5SD
<tbl_info cols="

Crown Rump Length, Osaka

Aoki M, Yamada M. "Examining Fetal Growth." *Obstetrics and Gynecology* 47:547-556, 1983.

CRL Days	- 1.5SD	mean mm	+ 1.5SD	CRL Days	- 1.5SD	mean mm	+ 1.5SD	CRL Days	- 1.5SD	mean mm	+ 1.5SD	CRL Days	- 1.5SD	mean mm	+ 1.5SD	CRL Days	- 1.5SD	mean mm	+ 1.5SD
49	6.3	8.7	11.1	58	10.6	14.9	19.3	67	19.3	25.7	32.2	76	31.0	39.5	48.1	85	44.3	54.8	65.3
50	6.6	9.1	11.7	59	11.3	15.9	20.6	68	20.4	27.1	33.9	77	32.5	41.2	49.9	86	45.7	56.5	67.3
51	6.8	9.6	12.5	60	12.1	16.9	21.7	69	21.6	28.5	35.4	78	33.8	42.8	51.8	87	47.3	58.2	69.2
52	7.2	10.2	13.2	61	12.9	18.0	23.1	70	22.8	30.0	37.2	79	35.4	44.5	53.7	88	48.7	59.9	71.2
53	7.5	10.8	14.1	62	14.0	19.2	24.5	71	24.2	31.5	38.9	80	36.8	46.2	55.7	89	50.2	61.6	73.0
54	8.1	11.5	15.0	63	14.9	20.4	26.0	72	25.5	33.1	40.8	81	38.3	47.9	57.5	90	51.5	63.2	74.9
55	8.5	12.2	16.0	64	15.9	21.6	27.3	73	26.9	34.7	42.5	82	39.7	49.6	59.5				
56	9.1	13.0	16.9	65	16.9	22.9	28.9	74	28.2	36.3	44.4	83	41.3	51.3	61.4				
57	9.7	13.9	18.1	66	18.2	24.3	30.5	75	29.7	37.9	46.2	84	42.7	53.0	63.4				

Crown Rump Length, JSUM

Japan Society of Ultrasonics in Medicine. "Standardization of Fetometry and Official Announcement of Diagnostic Guidelines." *J. Med. Ultrasonics* 28:844-872, 2001.

CRL Days	- 1.5SD	mean mm	+ 1.5SD	CRL Days	- 1.5SD	mean mm	+ 1.5SD	CRL Days	- 1.5SD	mean mm	+ 1.5SD	CRL Days	- 1.5SD	mean mm	+ 1.5SD	CRL Days	- 1.5SD	mean mm	+ 1.5SD
49	6.2	10.1	17.0	58	10.2	14.8	20.2	67	17.6	25.0	32.5	76	27.8	37.1	46.9	85	39.5	47.6	56.6
50	6.5	10.2	16.6	59	10.9	15.8	21.2	68	18.7	26.3	34.1	77	29.1	38.4	48.4	86	40.9	48.5	57.0
51	6.8	10.5	16.6	60	11.5	16.8	22.3	69	19.8	27.6	35.8	78	30.2	39.7	49.7	87	42.3	49.3	57.4
52	7.2	10.9	16.5	61	12.3	17.8	23.5	70	20.8	29.0	37.4	79	31.6	40.9	51.1	88	43.7	50.1	57.5
53	7.6	11.3	16.8	62	13.2	18.9	24.9	71	21.9	30.3	39.1	80	32.9	42.1	52.3	89	45.1	50.8	57.3
54	7.9	11.9	17.2	63	14.0	20.0	26.3	72	23.1	31.7	40.7	81	34.2	43.3	53.3	90	46.5	51.4	57.1
55	8.4	12.5	17.8	64	14.9	21.2	27.7	73	24.1	33.1	42.3	82	35.5	44.5	54.3				
56	9.0	13.2	18.3	65	15.7	22.5	29.3	74	25.3	34.4	44.0	83	36.9	45.5	55.2				
57	9.6	14.0	19.1	66	16.7	23.7	30.8	75	26.6	35.8	45.5	84	38.2	46.6	55.9				

Crown Rump Length, ASUM

Westerway SC. "Ultrasonic Fetal Measurements: New Australian Standards for the New Millennium." *Aust NZ J Obstet Gynaecol* 40:3:297-302, 2000.

CRL Day	mean mm	CRL Days	mean mm								
37	1.0	51	12.0	65	26.0	79	47.0	93	72.0		
38	2.0	52	12.0	66	27.0	80	48.0	94	74.0		
39	3.0	53	13.0	67	28.0	81	52.0	95	76.0		
40	3.0	54	14.0	68	29.0	82	55.0	96	77.0		
41	4.0	55	15.0	69	31.0	83	56.0	97	80.0		
42	4.0	56	17.0	70	34.0	84	57.0	98	81.0		
43	5.0	57	18.0	71	36.0	85	58.0	99	84.0		
44	6.0	58	19.0	72	37.0	86	60.0	100	85.0		
45	7.0	59	20.0	73	38.0	87	61.0	101	86.0		
46	8.0	60	21.0	74	39.0	88	63.0	102	87.0		
47	9.0	61	22.0	75	39.0	89	64.0				
48	10.0	62	22.0	76	40.0	90	65.0				
49	11.0	63	23.0	77	44.0	91	68.0				
50	11.0	64	24.0	78	45.0	92	70.0				

Biparietal Diameter, Hadlock

Hadlock FP, Deter RL, Harrist RB, Park SK. "Estimating Fetal Age: Computer-Assisted Analysis of Multiple Fetal Growth Parameters." *Radiology* 152:497, 1984.

$$\text{BPD(cm)} = -3.08 + 0.41 * \text{MA(wks)} - 0.000061 * \text{MA(wks)}^3$$

1 Standard Deviation = ± 3 mm5 & 95%: ± 4.9 mm

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
12	0	17.3	12.4	22.2	18	1	39.9	35.0	44.8	24	2	60.0	55.1	64.9	30	3	76.8	71.9	81.7
12	1	17.9	13.0	22.8	18	2	40.4	35.5	45.3	24	3	60.5	55.6	65.4	30	4	77.1	72.2	82.0
12	2	18.4	13.5	23.3	18	3	40.9	36.0	45.8	24	4	60.9	56.0	65.8	30	5	77.5	72.6	82.4
12	3	19.0	14.1	23.9	18	4	41.4	36.5	46.3	24	5	61.3	56.4	66.2	30	6	77.8	72.9	82.7
12	4	19.5	14.6	24.4	18	5	41.9	37.0	46.8	24	6	61.7	56.8	66.6	31	0	78.1	73.2	83.0
12	5	20.1	15.2	25.0	18	6	42.4	37.5	47.3	25	0	62.2	57.3	67.1	31	1	78.5	73.6	83.4
12	6	20.6	15.7	25.5	19	0	42.9	38.0	47.8	25	1	62.6	57.7	67.5	31	2	78.8	73.9	83.7
13	0	21.2	16.3	26.1	19	1	43.4	38.5	48.3	25	2	63.0	58.1	67.9	31	3	79.1	74.2	84.0
13	1	21.7	16.8	26.6	19	2	43.9	39.0	48.8	25	3	63.4	58.5	68.3	31	4	79.4	74.5	84.3
13	2	22.2	17.3	27.1	19	3	44.4	39.5	49.3	25	4	63.8	58.9	68.7	31	5	79.8	74.9	84.7
13	3	22.8	17.9	27.7	19	4	44.9	40.0	49.8	25	5	64.3	59.4	69.2	31	6	80.1	75.2	85.0
13	4	23.3	18.4	28.2	19	5	45.4	40.5	50.3	25	6	64.7	59.8	69.6	32	0	80.4	75.5	85.3
13	5	23.9	19.0	28.8	19	6	45.8	40.9	50.7	26	0	65.1	60.2	70.0	32	1	80.7	75.8	85.6
13	6	24.4	19.5	29.3	20	0	46.3	41.4	51.2	26	1	65.5	60.6	70.4	32	2	81.0	76.1	85.9
14	0	24.9	20.0	29.8	20	1	46.8	41.9	51.7	26	2	65.9	61.0	70.8	32	3	81.4	76.5	86.3
14	1	25.5	20.6	30.4	20	2	47.3	42.4	52.2	26	3	66.3	61.4	71.2	32	4	81.7	76.8	86.6
14	2	26.0	21.0	30.9	20	3	47.8	42.9	52.7	26	4	66.7	61.8	71.6	32	5	82.0	77.1	86.9
14	3	26.5	21.6	31.4	20	4	48.2	43.3	53.1	26	5	67.1	62.2	72.0	32	6	82.3	77.4	87.2
14	4	27.1	22.2	32.0	20	5	48.7	43.8	53.6	26	6	67.5	62.6	72.4	33	0	82.6	77.7	87.5
14	5	27.6	22.7	32.5	20	6	49.2	44.3	54.1	27	0	67.9	63.0	72.8	33	1	82.9	78.0	87.8
14	6	28.1	23.2	33.0	21	0	49.7	44.8	54.6	27	1	68.3	63.4	73.2	33	2	83.2	78.3	88.1
15	0	28.6	23.7	33.5	21	1	50.1	45.2	55.0	27	2	68.7	63.8	73.6	33	3	83.5	78.6	88.4
15	1	29.2	24.3	34.1	21	2	50.6	45.7	55.5	27	3	69.1	64.2	74.0	33	4	83.8	78.9	88.7
15	2	29.7	24.8	34.6	21	3	51.1	46.2	56.0	27	4	69.5	64.6	74.4	33	5	84.1	79.2	89.0
15	3	30.2	25.3	35.1	21	4	51.5	46.6	56.4	27	5	69.8	64.9	74.7	33	6	84.3	79.4	89.2
15	4	30.7	25.8	35.6	21	5	52.0	47.1	56.9	27	6	70.2	65.3	75.1	34	0	84.6	79.7	89.5
15	5	31.3	26.4	36.2	21	6	52.4	47.5	57.3	28	0	70.6	65.7	75.5	34	1	84.9	80.0	89.8
15	6	31.8	26.9	36.7	22	0	52.9	48.0	57.8	28	1	71.0	66.1	75.9	34	2	85.2	80.3	90.1
16	0	32.3	27.4	37.2	22	1	53.4	48.5	58.3	28	2	71.4	66.5	76.3	34	3	85.5	80.6	90.4
16	1	32.8	27.9	37.7	22	2	53.8	48.9	58.7	28	3	71.7	66.8	76.6	34	4	85.7	80.8	90.6
16	2	33.3	28.4	38.2	22	3	54.3	49.4	59.2	28	4	72.1	67.2	77.0	34	5	86.0	81.1	90.9
16	3	33.9	29.0	38.8	22	4	54.7	49.8	59.6	28	5	72.5	67.6	77.4	34	6	86.3	81.4	91.2
16	4	34.4	29.5	39.3	22	5	55.2	50.3	60.1	28	6	72.9	68.0	77.8	35	0	86.5	81.6	91.4
16	5	34.9	30.0	39.8	22	6	55.6	50.7	60.5	29	0	73.2	68.3	78.1	35	1	86.8	81.9	91.7
16	6	35.4	30.5	40.3	23	0	56.1	51.2	61.0	29	1	73.6	68.7	78.5	35	2	87.1	82.2	92.0
17	0	35.9	31.0	40.8	23	1	56.5	51.6	61.4	29	2	74.0	69.1	78.9	35	3	87.3	82.4	92.2
17	1	36.4	31.5	41.3	23	2	57.0	52.1	61.9	29	3	74.3	69.4	79.2	35	4	87.6	82.7	92.5
17	2	36.9	32.0	41.8	23	3	57.4	52.5	62.3	29	4	74.7	69.8	79.6	35	5	87.8	82.9	92.7
17	3	37.4	32.5	42.3	23	4	57.9	53.0	62.8	29	5	75.0	70.1	79.9	35	6	88.1	83.2	93.0
17	4	37.9	33.0	42.8	23	5	58.3	53.4	63.2	29	6	75.4	70.5	80.3	36	0	88.3	83.4	93.2
17	5	38.4	33.5	43.3	23	6	58.7	53.8	63.6	30	0	75.7	70.8	80.6	36	1	88.6	83.7	93.5
17	6	38.9	34.0	43.8	24	0	59.2	54.3	64.1	30	1	76.1	71.2	81.0	36	2	88.8	83.9	93.7
18	0	39.4	34.5	44.3	24	1	59.6	54.7	64.5	30	2	76.4	71.5	81.3	36	3	89.1	84.2	94.0

Biparietal Diameter, Lasser

Lasser DM, Peisner DB, Vollebergh J, Timor-Tritsch I. "First-trimester fetal biometry using transvaginal sonography." *Ultrasound in Obstetrics and Gynecology* 3:104, 1993.

$$\text{BPD(mm)} = 7.589 * \log \text{MA(days)} - 12.68$$

95% Confidence Interval ± 0.164 cm5 & 95%: ± 0.138 mm

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
7	0	.1	1.5	2.8	8	3	6.2	7.6	9.0	9	6	11.4	12.8	14.1	11	2	15.8	17.2	18.6
7	1	.8	2.1	3.5	8	4	6.8	8.1	9.5	10	0	11.8	13.2	14.6	11	3	16.2	17.6	19.0
7	2	1.4	2.8	4.2	8	5	7.3	8.7	10.1	10	1	12.3	13.7	15.1	11	4	16.7	18.0	19.4
7	3	2.0	3.4	4.8	8	6	7.8	9.2	10.6	10	2	12.8	14.2	15.5	11	5	17.1	18.4	19.8
7	4	2.7	4.1	5.4	9	0	8.4	9.8	11.1	10	3	13.2	14.6	16.0	11	6	17.5	18.8	20.2
7	5	3.3	4.7	6.1	9	1	8.9	10.3	11.7	10	4	13.7	15.1	16.4	12	0	17.9	19.2	20.6
7	6	3.9	5.3	6.7	9	2	9.4	10.8	12.2	10	5	14.1	15.5	16.9	12	1	18.2	19.6	21.0
8	0	4.5	5.9	7.2	9	3	9.9	11.3	12.7	10	6	14.6	15.9	17.3	12	2	18.6	20.0	21.4
8	1	5.1	6.5	7.8	9	4	10.4	11.8	13.2	11	0	15.0	16.4	17.7	12	3	19.0	20.4	21.8
8	2	5.6	7.0	8.4	9	5	10.9	12.3	13.6	11	1	15.4	16.8	18.2	12	4	19.4	20.8	22.1

Biparietal Diameter, Merz

Merz E, Kim-Kern M-S, Pehl S. "Ultrasonic Mensuration of Fetal Limb Bones in the Second and Third Trimesters." *Journal of Clinical Ultrasound* 15:175, March/April 1987.

5 & 95%: (2SD/2 * 1.645)

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
13	0	20.5	23.0	25.5	18	6	40.3	43.7	47.1	24	5	59.0	63.1	67.2	30	4	74.4	79.9	85.3	36	3	85.4	91.9	98.3
13	1	21.1	23.6	26.1	19	0	40.7	44.0	47.3	24	6	59.5	63.6	67.7	30	5	75.6	80.6	86.1	36	4	85.4	92.1	98.9
13	2	21.6	24.1	26.6	19	1	41.1	44.4	47.7	25	0	59.9	64.0	68.1	30	6	76.2	81.3	87.0	36	5	85.5	92.4	99.4
13	3	22.2	24.7	27.2	19	2	41.6	44.9	48.2	25	1	60.5	64.6	68.7	31	0	76.2	82.0	87.8	36	6	85.5	92.7	99.9
13	4	22.8	25.3	27.8	19	3	42.0	45.3	48.6	25	2	61.0	65.1	69.2	31	1	76.8	82.4	88.1	37	0	85.6	93.0	100.4
13	5	23.4	25.9	28.4	19	4	42.4	45.7	49.0	25	3	61.6	65.7	69.8	31	2	77.3	82.9	88.4	37	1	86.2	93.3	100.3
13	6	23.9	26.4	28.9	19	5	42.8	46.1	49.4	25	4	62.2	66.3	70.4	31	3	77.9	83.3	88.7	37	2	86.9	93.6	100.3
14	0	24.5	27.0	29.5	19	6	43.3	46.6	49.9	25	5	62.8	66.9	71.0	31	4	78.4	83.7	89.0	37	3	87.5	93.9	100.2
14	1	25.2	27.4	29.7	20	0	43.7	47.0	50.3	25	6	63.3	67.4	71.5	31	5	79.0	84.1	89.3	37	4	88.2	94.1	100.1
14	2	25.8	27.9	29.9	20	1	44.0	47.4	50.8	26	0	63.9	68.0	72.1	31	6	79.5	84.6	89.6	37	5	88.8	94.4	100.0
14	3	26.5	28.3	30.1	20	2	44.3	47.9	51.4	26	1	64.4	68.3	72.2	32	0	80.1	85.0	89.9	37	6	89.5	94.7	100.0
14	4	27.2	28.7	30.2	20	3	44.6	48.3	51.9	26	2	64.9	68.6	72.2	32	1	80.5	85.1	89.8	38	0	90.1	95.0	99.9
14	5	27.9	29.1	30.4	20	4	45.0	48.7	52.5	26	3	65.4	68.9	72.3	32	2	80.8	85.3	89.7	38	1	90.1	95.0	99.9
14	6	28.5	29.6	30.6	20	5	45.3	49.1	53.0	26	4	66.0	69.1	72.3	32	3	81.2	85.4	89.6	38	2	90.1	95.0	99.9
15	0	29.2	30.0	30.8	20	6	45.6	49.6	53.6	26	5	66.5	69.4	72.4	32	4	81.6	85.6	89.6	38	3	90.1	95.0	99.9
15	1	29.5	30.4	31.3	21	0	45.9	50.0	54.1	26	6	67.0	69.7	72.4	32	5	82.0	85.7	89.5	38	4	90.1	95.0	99.9
15	2	29.8	30.9	31.9	21	1	46.6	50.7	54.8	27	0	67.5	70.0	72.5	32	6	82.3	85.9	89.4	38	5	90.1	95.0	99.9
15	3	30.1	31.3	32.4	21	2	47.3	51.4	55.5	27	1	67.7	70.4	73.2	33	0	82.7	86.0	89.3	38	6	90.1	95.0	99.9
15	4	30.5	31.7	33.0	21	3	48.0	52.1	56.2	27	2	67.9	70.9	73.8	33	1	83.0	86.4	89.8	39	0	90.1	95.0	99.9
15	5	30.8	32.1	33.5	21	4	48.8	52.9	57.0	27	3	68.1	71.3	74.5	33	2	83.3	86.9	90.4	39	1	90.4	95.6	100.7
15	6	31.1	32.6	34.1	21	5	49.5	53.6	57.7	27	4	68.3	71.7	75.1	33	3	83.6	87.3	90.9	39	2	90.8	96.1	101.5
16	0	31.4	33.0	34.6	21	6	50.2	54.3	58.4	27	5	68.8	72.1	75.8	33	4	84.0	87.7	91.5	39	3	91.1	96.7	102.3
16	1	31.8	33.6	35.3	22	0	50.9	55.0	59.1	27	6	68.7	72.6	76.4	33	5	84.3	88.1	92.0	39	4	91.4	97.3	103.2
16	2	32.3	34.1	36.0	22	1	51.3	55.4	59.5	28	0	68.9	73.0	77.1	33	6	84.6	88.6	92.6	39	5	91.7	97.9	104.0
16	3	32.7	34.7	36.7	22	2	51.8	55.9	60.0	28	1	69.3	73.4	77.5	34	0	84.9	89.0	93.1	39	6	92.1	98.4	104.8
16	4	33.2	35.3	37.4	22	3	52.2	56.3	60.4	28	2	69.8	73.9	78.0	34	1	84.7	89.0	93.3	40	0	92.4	99.0	105.6
16	5	33.6	35.9	38.1	22	4	52.6	56.7	60.8	28	3	70.2	74.3	78.4	34	2	84.4	89.0	93.6	40	1	92.4	98.7	105.1
16	6	34.1	36.4	38.8	22	5	53.0	57.1	61.2	28	4	70.6	74.7	78.8	34	3	84.2	89.0	93.8	40	2	92.3	98.4	104.5
17	0	34.5	37.0	39.5	22	6	53.5	57.6	61.7	28	5	71.0	75.1	79.2	34	4	83.9	89.0	94.1	40	3	92.3	98.1	104.0
17	1	35.0	37.7	40.4	23	0	53.9	58.0	62.1	28	6	71.5	75.6	79.7	34	5	83.7	89.0	94.3	40	4	92.2	97.9	103.5
17	2	35.5	38.4	41.4	23	1	54.3	58.4	62.5	29	0	71.9	76.0	80.1	34	6	84.3	89.0	94.6	40	5	92.2	97.6	103.0
17	3	36.0	39.1	42.3	23	2	54.8	58.9	63.0	29	1	71.9	76.1	80.4	35	0	83.2	89.0	94.8	40	6	92.1	97.3	102.4
17	4	36.4	39.9	43.3	23	3	55.2	59.3	63.4	29	2	72.0	76.3	80.6	35	1	83.5	89.3	95.1	41	0	92.1	97.0	101.9
17	5	36.9	40.6	44.2	23	4	55.6	59.7	63.8	29	3	72.0	76.4	80.9	35	2	83.8	89.6	95.4	41	1	92.6	97.4	102.2
17	6	37.4	41.3	45.2	23	5	56.0	60.1	64.2	29	4	72.0	76.6	81.1	35	3	84.1	89.9	95.7	41	2	93.2	97.9	102.5
18	0	37.9	42.0	46.1	23	6	56.5	60.6	64.7	29	5	72.0	76.7	81.4	35	4	84.3	89.1	95.9	41	3	93.7	98.3	102.8
18	1	38.3	42.3	46.3	24	0	56.9	61.0	65.1	29	6	72.1	76.9	81.6	35	5	84.6	90.4	96.2	41	4	94.3	98.7	103.2
18	2	38.7	42.6	46.4	24	1	57.3	61.4	65.5	30	0	72.1	77.0	81.9	35	6	84.9	90.7	96.5	41	5	94.8	99.1	103.5
18	3	39.1	42.9	46.6	24	2	57.8	61.9	66.0	30	1	72.7	77.7	82.7	36	0	85.2	91.0	96.8	41	6	95.4	99.6	103.8
18	4	39.5	43.1	46.8	24	3	58.2	62.3	66.4	30	2	73.3	78.4	83.6	36	1	85.3	91.3	97.3	42	0	95.9	100.0	104.1
18	5	39.9	43.4	47.0	24	4	58.6	62.7	66.8	30	3	73.9	79.1	84.4	36	2	85.3	91.6	97.8					

Biparietal Diameter, Rempen

Rempen A. "Biometrie in der Frühgravidität (I. Trimenon) (Biometry in Early Pregnancy (1st Trimester))." *Der Frauenarzt* 32:425, 1991, p. 427.

5 & 95%: ±3.7 mm

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
6	2	0	2.0	5.7	7	6	3.4	7.1	10.8	9	3	8.4	12.1	15.8	11	0	13.3	17.0	20.7	12	4	18.1	21.8	25.5
6	3	0	2.5	6.2	8	0	3.9	7.6	11.3	9	4	8.8	12.5	16.2	11	1	13.7	17.4	21.1	12	5	18.5	22.2	25.9
6	4	0	3.0	6.7	8	1	4.3	8.0	11.7	9	5	9.3	13.0	16.7	11	2	14.2	17.9	21.6	12	6	18.9	22.6	26.3
6	5	0	3.4	7.1	8	2	4.8	8.5	12.2	9	6	9.7	13.4	17.1	11	3	14.6	18.3	22.0	13	0	19.4	23.1	26.8
6	6	.2	3.9	7.6	8	3	5.2	8.9	12.6	10	0	10.2	13.9	17.6	11	4	15.0	18.7	22.4	13	1	19.8	23.5	27.2
7	0	.6	4.3	8.0	8	4	5.7	9.4	13.1	10	1	10.6	14.3	18.0	11	5	15.5	19.2	22.9	13	2	20.2	23.9	27.6
7	1	1.1	4.8	8.5	8	5	6.1	9.8	13.5	10	2	11.1</td												

Biparietal Diameter, Hansmann

Hansmann M, Hackelöer B-J, Staudach A. *Ultrasound Diagnosis in Obstetrics and Gynecology*. New York: Springer-Verlag, 1985, p. 176.

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
10	0	9.0	14.0	18.0	16	1	30.6	35.4	39.6	22	2	50.9	55.9	59.9	28	3	68.9	73.3	77.9	34	4	82.1	86.6	91.1
10	1	9.6	14.4	18.6	16	2	31.1	35.9	40.1	22	3	51.3	56.3	60.3	28	4	69.1	73.7	78.1	34	5	82.4	86.7	91.4
10	2	10.1	14.9	19.1	16	3	31.7	36.3	40.7	22	4	51.7	56.7	60.7	28	5	69.4	74.1	78.4	34	6	82.7	86.9	91.7
10	3	10.7	15.3	19.7	16	4	32.3	36.7	41.3	22	5	52.1	57.1	61.1	28	6	69.7	74.6	78.7	35	0	83.0	87.0	92.0
10	4	11.3	15.7	20.3	16	5	32.9	37.1	41.9	22	6	52.6	57.6	61.6	29	0	70.0	75.0	79.0	35	1	83.1	87.3	92.1
10	5	11.9	16.1	20.9	16	6	33.4	37.6	42.4	23	0	53.0	58.0	62.0	29	1	70.4	75.3	79.4	35	2	83.3	87.6	92.3
10	6	12.4	16.6	21.4	17	0	34.0	38.0	43.0	23	1	53.4	58.4	62.4	29	2	70.9	75.6	79.9	35	3	83.4	87.9	92.4
11	0	13.0	17.0	22.0	17	1	34.4	38.6	43.4	23	2	53.9	58.9	62.9	29	3	71.3	75.9	80.3	35	4	83.6	88.1	92.6
11	1	13.4	17.6	22.4	17	2	34.9	39.1	43.9	23	3	54.3	59.3	63.3	29	4	71.7	76.1	80.7	35	5	83.7	88.4	92.7
11	2	13.9	18.1	22.9	17	3	35.3	39.7	44.3	23	4	54.7	59.7	63.7	29	5	72.1	76.4	81.1	35	6	83.9	88.7	92.9
11	3	14.3	18.7	23.3	17	4	35.7	40.3	44.7	23	5	55.1	60.1	64.1	29	6	72.6	76.7	81.6	36	0	84.0	89.0	93.0
11	4	14.7	19.3	23.7	17	5	36.1	40.9	45.1	23	6	55.6	60.6	64.6	30	0	73.0	77.0	82.0	36	1	84.3	89.1	93.3
11	5	15.1	19.9	24.1	17	6	36.6	41.4	45.6	24	0	56.0	61.0	65.0	30	1	73.3	77.3	82.3	36	2	84.6	89.3	93.6
11	6	15.6	20.4	24.6	18	0	37.0	42.0	46.0	24	1	56.4	61.4	65.4	30	2	73.6	77.6	82.6	36	3	84.9	89.4	93.9
12	0	16.0	21.0	25.0	18	1	37.4	42.4	46.4	24	2	56.9	61.9	65.9	30	3	73.9	77.9	82.9	36	4	85.1	89.6	94.1
12	1	16.6	21.4	25.6	18	2	37.9	42.9	46.9	24	3	57.3	62.3	66.3	30	4	74.1	78.1	83.1	36	5	85.4	89.7	94.4
12	2	17.1	21.9	26.1	18	3	38.3	43.3	47.3	24	4	57.7	62.7	66.7	30	5	74.4	78.4	83.4	36	6	85.7	89.9	94.7
12	3	17.7	22.3	26.7	18	4	38.7	43.7	47.7	24	5	58.1	63.1	67.1	30	6	74.7	78.7	83.7	37	0	86.0	90.0	95.0
12	4	18.3	22.7	27.3	18	5	39.1	44.1	48.1	24	6	58.6	63.6	67.6	31	0	75.0	79.0	84.0	37	1	86.1	90.1	95.1
12	5	18.9	23.1	27.9	18	6	39.6	44.6	48.6	25	0	59.0	64.0	68.0	31	1	75.3	79.4	84.3	37	2	86.3	90.3	95.3
12	6	19.4	23.6	28.4	19	0	40.0	45.0	49.0	25	1	59.4	64.4	68.4	31	2	75.6	79.9	84.6	37	3	86.4	90.4	95.4
13	0	20.0	24.0	29.0	19	1	40.6	45.4	49.6	25	2	59.9	64.9	68.9	31	3	75.9	80.3	84.9	37	4	86.6	90.6	95.6
13	1	20.4	24.6	29.4	19	2	41.1	45.9	50.1	25	3	60.3	65.3	69.3	31	4	76.1	80.7	85.1	37	5	86.7	90.7	95.7
13	2	20.9	25.1	29.9	19	3	41.7	46.3	50.7	25	4	60.7	65.7	69.7	31	5	76.4	81.1	85.4	37	6	86.9	90.9	95.9
13	3	21.3	25.7	30.3	19	4	42.3	46.7	51.3	25	5	61.1	66.1	70.1	31	6	76.7	81.6	85.7	38	0	87.0	91.0	96.0
13	4	21.7	26.3	30.7	19	5	42.9	47.1	51.9	25	6	61.6	66.6	70.6	32	0	77.0	82.0	86.0	38	1	87.1	91.3	96.1
13	5	22.1	26.9	31.1	19	6	43.4	47.6	52.4	26	0	62.0	67.0	71.0	32	1	77.3	82.3	86.3	38	2	87.3	91.6	96.3
13	6	22.6	27.4	31.6	20	0	44.0	48.0	53.0	26	1	62.4	67.4	71.4	32	2	77.6	82.6	86.6	38	3	87.4	91.9	96.4
14	0	23.0	28.0	32.0	20	1	44.4	48.4	53.4	26	2	62.9	67.9	71.9	32	3	77.9	82.9	86.9	38	4	87.6	92.1	96.6
14	1	23.6	28.4	32.6	20	2	44.9	48.9	53.9	26	3	63.3	68.3	72.3	32	4	78.1	83.1	87.1	38	5	87.7	92.4	96.7
14	2	24.1	28.9	33.1	20	3	45.3	49.3	54.3	26	4	63.7	68.7	72.7	32	5	78.4	83.4	87.4	38	6	87.9	92.7	96.9
14	3	24.7	29.3	33.7	20	4	45.7	49.7	54.7	26	5	64.1	69.1	73.1	32	6	78.7	83.7	87.7	39	0	88.0	93.0	97.0
14	4	25.3	29.7	34.3	20	5	46.1	50.1	55.1	26	6	64.6	69.6	73.6	33	0	79.0	84.0	88.0	39	1	88.1	93.0	97.1
14	5	25.9	30.1	34.9	20	6	46.6	50.6	55.6	27	0	65.0	70.0	74.0	33	1	79.3	84.3	88.3	39	2	88.3	93.0	97.3
14	6	26.4	30.6	35.4	21	0	47.0	51.0	56.0	27	1	65.4	70.3	74.4	33	2	79.6	84.6	88.6	39	3	88.4	93.0	97.4
15	0	27.0	31.0	36.0	21	1	47.4	51.6	56.4	27	2	65.9	70.6	74.9	33	3	79.9	84.9	88.9	39	4	88.6	93.0	97.6
15	1	27.4	31.4	36.4	21	2	47.9	52.1	56.9	27	3	66.3	70.9	75.3	33	4	80.1	85.1	89.1	39	5	88.7	93.0	97.7
15	2	27.9	32.1	36.9	21	3	48.3	52.7	57.3	27	4	66.7	71.1	75.7	33	5	80.4	85.4	89.4	39	6	88.9	93.0	97.9
15	3	28.3	32.7	37.3	21	4	48.7	53.3	57.7	27	5	67.1	71.4	76.1	33	6	80.7	85.7	89.7	40	0	89.0	93.0	98.0
15	4	28.7	33.3	37.7	21	5	49.1	53.9	58.1	27	6	67.6	71.7	76.6	34	0	81.0	86.0	90.0					
15	5	29.1	33.9	38.1	21	6	49.6	54.4	58.6	28	0	68.0	72.0	77.0	34	1	81.3	86.1	90.3					
15	6	29.6	34.4	38.6	22	0	50.0	55.0	59.0	28	1	68.3	72.4	77.3	34	2	81.6	86.3	90.6					
16	0	30.0	35.0	39.0	22	1	50.4	55.4	59.4	28	2	68.6	72.9	77.6	34	3	81.9	86.4	90.9					

Biparietal Diameter, Tokyo

Masuda H, Shinozuka N, Okai T, Mizuno M. "Diagnosis of the Week of Pregnancy and Prognosis." *Perinatal Care* 8:719-726.

BPD Days	- 1.5SD	mean mm	+ 1.5SD	BPD Days	- 1.5SD	mean mm	+ 1.5SD	BPD Days	- 1.5SD	mean mm	+ 1.5SD	BPD Days	- 1.5SD	mean mm	+ 1.5SD	BPD Days	- 1.5SD	mean mm	+ 1.5SD	BPD Days	- 1.5SD	mean mm	+ 1.5SD	
84	14.4	19.5	24.1	125	34.9	39.4	43.1	166	52.7	57.9	62.7	207	67.5	74.2	79.9	248	79.3	86.8	92.5					
85	14.9	20.0	24.5	126	35.4	39.9	43.6	167	53.1	58.4	63.1	208	67.9	74.6	80.2	249	79.6	87.1	92.8					
86	15.4	20.5	25.0	127	35.9	40.3	44.1	168	53.5	58.8	63.6	209	68.2	74.9	80.6	250	79.8	87.3	93.0					
87	16.0	21.0	25.4	128	36.3	40.8	44.6	169	53.9	59.2	64.0	210	68.5	75.3	81.0	251	80.1	87.6	93.2					
88	16.5	21.5	25.9	129	36.8	41.3	45.1	170	54.3	59.7	64.5	211	68.8	75.6	81.3	252	80.3	87.8	93.5					

Biparietal Diameter, OsakaAoki M, Yamada M. "Examining Fetal Growth." *Obstetrics and Gynecology* 47:547-556, 1983.

BPD Days	- 1.5SD	mean mm	+ 1.5SD																
70	10.5	13.3	16.2	113	32.0	35.7	39.5	156	51.2	55.7	60.2	199	68.3	73.4	78.5	242	81.8	87.3	92.9
71	11.0	13.8	16.7	114	32.5	36.2	40.0	157	51.6	56.1	60.6	200	68.6	73.8	79.1	243	82.0	87.5	93.1
72	11.6	14.4	17.3	115	33.0	36.7	40.5	158	52.0	56.6	61.3	201	69.0	74.2	79.5	244	82.3	87.8	93.4
73	12.2	15.0	17.9	116	33.5	37.2	41.0	159	52.4	57.0	61.7	202	69.3	74.5	79.8	245	82.5	88.0	93.6
74	12.7	15.5	18.4	117	33.8	37.7	41.6	160	52.8	57.4	62.1	203	69.7	74.9	80.2	246	82.6	88.3	94.0
75	13.3	16.1	19.0	118	34.2	38.1	42.0	161	53.3	57.9	62.6	204	70.1	75.3	80.6	247	82.8	88.5	94.2
76	13.6	16.6	19.6	119	34.7	38.6	42.5	162	53.7	58.3	63.0	205	70.4	75.6	80.9	248	83.0	88.7	94.4
77	14.2	17.2	20.2	120	35.2	39.1	43.0	163	54.1	58.7	63.4	206	70.8	76.0	81.3	249	83.3	89.0	94.7
78	14.7	17.7	20.7	121	35.7	39.6	43.5	164	54.6	59.2	63.9	207	71.2	76.4	81.7	250	83.5	89.2	94.9
79	15.3	18.3	21.3	122	36.2	40.1	44.0	165	55.0	59.6	64.3	208	71.5	76.7	82.0	251	83.7	89.4	95.1
80	15.8	18.8	21.8	123	36.6	40.5	44.4	166	55.4	60.0	64.7	209	71.9	77.1	82.4	252	83.9	89.6	95.3
81	16.3	19.3	22.3	124	37.0	41.0	45.1	167	55.7	60.5	65.3	210	72.2	77.4	82.7	253	84.1	89.8	95.5
82	16.8	19.9	23.1	125	37.5	41.5	45.6	168	56.1	60.9	65.7	211	72.6	77.8	83.1	254	84.3	90.0	95.7
83	17.3	20.4	23.6	126	38.0	42.0	46.1	169	56.5	61.3	66.1	212	72.9	78.1	83.4	255	84.5	90.2	95.9
84	17.8	20.9	24.1	127	38.4	42.4	46.5	170	56.9	61.7	66.5	213	73.1	78.5	83.9	256	84.7	90.4	96.1
85	18.4	21.5	24.7	128	38.9	42.9	47.0	171	57.4	62.2	67.0	214	73.4	78.8	84.2	257	84.9	90.6	96.3
86	18.9	22.0	25.2	129	39.4	43.4	47.5	172	57.8	62.6	67.4	215	73.8	79.2	84.6	258	85.1	90.8	96.5
87	19.4	22.5	25.7	130	39.9	43.9	48.0	173	58.2	63.0	67.8	216	74.1	79.5	84.9	259	85.3	91.0	96.7
88	20.0	23.1	26.3	131	40.3	44.3	48.4	174	58.6	63.4	68.2	217	74.4	79.8	85.2	260	85.5	91.2	96.9
89	20.3	23.6	26.9	132	40.6	44.8	49.0	175	59.1	63.9	68.7	218	74.8	80.2	85.6	261	85.7	91.4	97.1
90	20.8	24.1	27.4	133	41.1	45.3	49.5	176	59.5	64.3	69.1	219	75.1	80.5	85.9	262	85.8	91.5	97.2
91	21.3	24.6	27.9	134	41.5	45.7	49.9	177	59.8	64.7	69.7	220	75.4	80.8	86.2	263	86.0	91.7	97.4
92	21.9	25.2	28.5	135	42.0	46.2	50.4	178	60.2	65.1	70.1	221	75.8	81.2	86.6	264	86.1	91.8	97.5
93	22.4	25.7	29.0	136	42.5	46.7	50.9	179	60.6	65.5	70.5	222	76.1	81.5	86.9	265	86.3	92.0	97.7
94	22.9	26.2	29.5	137	42.9	47.1	51.3	180	61.0	65.9	70.9	223	76.4	81.8	87.2	266	86.4	92.1	97.8
95	23.3	26.7	30.2	138	43.4	47.6	51.8	181	61.4	66.3	71.3	224	76.7	82.1	87.5	267	86.6	92.3	98.0
96	23.8	27.2	30.7	139	43.8	48.0	52.2	182	61.8	66.7	71.7	225	77.0	82.4	87.8	268	86.7	92.4	98.1
97	24.3	27.7	31.2	140	44.2	48.5	52.9	183	62.2	67.1	72.1	226	77.3	82.7	88.1	269	86.8	92.6	98.5
98	24.8	28.2	31.7	141	44.7	49.0	53.4	184	62.6	67.5	72.5	227	77.7	83.1	88.5	270	86.9	92.7	98.6
99	25.3	28.7	32.2	142	45.1	49.4	53.8	185	63.1	68.0	73.0	228	77.9	83.4	89.0	271	87.0	92.8	98.7
100	25.9	29.3	32.8	143	45.6	49.9	54.3	186	63.5	68.4	73.4	229	78.2	83.7	89.3	272	87.1	92.9	98.8
101	26.4	29.8	33.3	144	46.0	50.3	54.7	187	63.9	68.8	73.8	230	78.5	84.0	89.6	273	87.2	93.0	98.9
102	26.7	30.3	33.9	145	46.5	50.8	55.2	188	64.1	69.2	74.3	231	78.8	84.3	89.9	274	87.3	93.1	99.0
103	27.2	30.8	34.4	146	46.9	51.2	55.6	189	64.4	69.5	74.6	232	79.1	84.6	90.2	275	87.4	93.2	99.1
104	27.7	31.3	34.9	147	47.4	51.7	56.1	190	64.8	69.9	75.0	233	79.3	84.8	90.4	276	87.5	93.3	99.2
105	28.2	31.8	35.4	148	47.8	52.1	56.5	191	65.2	70.3	75.4	234	79.6	85.1	90.7	277	87.6	93.4	99.3
106	28.7	32.3	35.9	149	48.1	52.6	57.1	192	65.6	70.7	75.8	235	79.9	85.4	91.0	278	87.7	93.5	99.4
107	29.2	32.8	36.4	150	48.5	53.0	57.5	193	66.0	71.1	76.2	236	80.2	85.7	91.3	279	87.8	93.6	99.5
108	29.7	33.3	36.9	151	49.0	53.5	58.0	194	66.4	71.5	76.6	237	80.5	86.0	91.6	280	87.8	93.6	99.5
109	30.1	33.8	37.6	152	49.4	53.9	58.4	195	66.8	71.9	77.0	238	80.7	86.2	91.8				
110	30.5	34.2	38.0	153	49.9	54.4	58.9	196	67.2	72.3	77.4	239	81.0	86.5	92.1				
111	31.0	34.7	38.5	154	50.3	54.8	59.3	197	67.6	72.7	77.8	240	81.3	86.8	92.4				
112	31.5	35.2	39.0	155	50.7	55.2	59.7	198	67.9	73.0	78.1	241	81.5	87.0	92.6				

Biparietal Diameter, JSUMJapan Society of Ultrasonics in Medicine. "Standardization of Fetometry and Official Announcement of Diagnostic Guidelines." *J. Med. Ultrasonics* 28:844-872, 2001.

BPD Days	- 1.5SD	mean mm	+ 1.5SD																
70	9.2	12.6	16.0	115	30.4	34.4	38.4	160	50.8	55.3	59.8	205	68.3	73.3	78.4	250	80.9	86.4	92.0
71	9.6	13.1	16.5	116	30.9	34.8	38.9	161	51.2	55.7	60.3	206	68.6	73.7	78.7	251	81.1	86.7	92.3
72	10.1	13.5	17.0	117	31.3	35.3	39.4	162	51.6	56.1	60.7	207	69.0	74.0	79.1	252	81.3	86.9	92.5
73	10.6	14.0	17.5	118	31.8	35.8	39.9	163	52.0	56.6	61.2	208	69.3	74.4	79.5	253	81.5	87.1	92.7
74	11.0	14.5	17.9	119	32.3	36.3	40.4	164	52.5	57.0	61.6	209	69.7	74.7	79.8	254	81.7	87.3	92.9
75	11.5	15.0	18.4	120	32.7	36.8	40.8	165	52.9	57.5	62.0	210	70.0	75.1	80.2	255	81.8	87.5	93.2
76	12.0	15.4	18.9	121	33.2	37.2	41.3	166	53.3	57.9	62.5	211	70.3	75.4	80.5	256	82.0	87.7	93.4
77	12.5	15.9	19.4	122	33.7	37.7	41.8	167	53.7	58.4	62.9	212	70.6	75.8	80.9	257	82.2	87.9	93.6
78	12.9	16.4	19.9	123	34.1	38.2	42.3	168	54.2	58.8	63.4	213	71.0	76.1	81.2	258	82.4	88.1	93.8
79	13.4	16.9	20.4	124	34.6	38.7	42.8	169	54.6	59.2	63.8	214	71.3	76.4	81.6	259	82.6	88.3	94.0
80	13.8	17.4	20.9	125	35.1	39.1	43.2	170	55.0	59.6	64.2	215	71.6	76.7	81.9	260	82.8	88.5	94.2
81	14.3	17.8	21.4																

Biparietal Diameter, ASUM

Westerway SC. "Ultrasonic Fetal Measurements: New Australian Standards for the New Millennium." *Aust NZ J Obstet Gynaecol* 40:3:297-302, 2000.

BPD Days	5%	mean mm	95%																
77	14.4	16.0	17.6	120	35.4	39.4	43.4	163	53.5	57.9	62.2	206	72.1	75.4	78.7	249	84.0	89.1	94.3
78	14.7	16.6	18.5	121	36.0	39.9	43.7	164	53.8	58.3	62.8	207	72.3	75.6	78.9	250	84.4	89.4	94.5
79	15.0	17.1	19.3	122	36.5	40.3	44.0	165	54.1	58.7	63.3	208	72.4	75.7	79.0	251	84.7	89.7	94.7
80	15.4	17.7	20.1	123	37.1	40.7	44.4	166	54.4	59.1	63.8	209	72.6	75.9	79.1	252	85.1	90.0	94.9
81	15.7	18.3	20.9	124	37.6	41.1	44.7	167	54.8	59.6	64.4	210	72.7	76.0	79.3	253	85.3	90.3	95.3
82	16.0	18.9	21.7	125	38.2	41.6	45.0	168	55.1	60.0	64.9	211	73.0	76.6	80.1	254	85.5	90.6	95.6
83	16.4	19.4	22.5	126	38.7	42.0	45.3	169	55.6	60.6	65.5	212	73.4	77.1	80.9	255	85.7	90.9	96.0
84	16.7	20.0	23.3	127	39.0	42.4	45.8	170	56.2	61.1	66.1	213	73.7	77.7	81.7	256	86.0	91.1	96.3
85	17.3	20.6	23.9	128	39.3	42.9	46.4	171	56.8	61.7	66.6	214	74.1	78.3	82.5	257	86.2	91.4	96.7
86	17.9	21.1	24.4	129	39.6	43.3	46.9	172	57.4	62.3	67.2	215	74.4	78.9	83.3	258	86.4	91.7	97.0
87	18.4	21.7	25.0	130	40.0	43.7	47.5	173	57.9	62.9	67.8	216	74.7	79.4	84.1	259	86.7	92.0	97.3
88	19.0	22.3	25.6	131	40.3	44.1	48.0	174	58.5	63.4	68.4	217	75.1	80.0	84.9	260	86.9	92.1	97.4
89	19.6	22.9	26.1	132	40.6	44.6	48.6	175	59.1	64.0	68.9	218	75.4	80.1	84.8	261	87.1	92.3	97.5
90	20.1	23.4	26.7	133	40.9	45.0	49.1	176	59.7	64.4	69.1	219	75.8	80.3	84.8	262	87.3	92.4	97.6
91	20.7	24.0	27.3	134	41.3	45.3	49.3	177	60.4	64.9	69.3	220	76.2	80.4	84.7	263	87.5	92.6	97.7
92	21.3	24.6	27.9	135	41.7	45.6	49.4	178	61.1	65.3	69.5	221	76.6	80.6	84.6	264	87.7	92.7	97.8
93	21.9	25.1	28.4	136	42.1	45.9	49.6	179	61.7	65.7	69.7	222	77.0	80.7	84.5	265	87.9	92.9	97.9
94	22.4	25.7	29.0	137	42.5	46.1	49.8	180	62.4	66.1	69.9	223	77.3	80.9	84.4	266	88.1	93.0	97.9
95	23.0	26.3	29.6	138	42.9	46.4	50.0	181	63.0	66.6	70.1	224	77.7	81.0	84.3	267	88.1	93.3	98.5
96	23.6	26.9	30.1	139	43.3	46.7	50.1	182	63.7	67.0	70.3	225	77.9	81.4	85.0	268	88.2	93.6	99.0
97	24.1	27.4	30.7	140	43.7	47.0	50.3	183	63.7	67.1	70.6	226	78.1	81.9	85.6	269	88.2	93.9	99.5
98	24.7	28.0	31.3	141	44.0	47.3	50.6	184	63.8	67.3	70.8	227	78.3	82.3	86.3	270	88.3	94.1	100.0
99	25.1	28.4	31.7	142	44.3	47.6	50.9	185	63.8	67.4	71.1	228	78.5	82.7	86.9	271	88.3	94.4	100.5
100	25.6	28.9	32.1	143	44.6	47.9	51.1	186	63.8	67.6	71.3	229	78.7	83.1	87.6	272	88.4	94.7	101.1
101	26.0	29.3	32.6	144	44.9	48.1	51.4	187	63.8	67.7	71.6	230	78.9	83.6	88.3	273	88.4	95.0	101.6
102	26.4	29.7	33.0	145	45.1	48.4	51.7	188	63.9	67.9	71.9	231	79.1	84.0	88.9	274	88.6	95.1	101.7
103	26.9	30.1	33.4	146	45.4	48.7	52.0	189	63.9	68.0	72.1	232	79.4	84.3	89.2	275	88.7	95.3	101.9
104	27.3	30.6	33.9	147	45.7	49.0	52.3	190	64.6	68.6	72.6	233	79.6	84.6	89.5	276	88.8	95.4	102.0
105	27.7	31.0	34.3	148	46.0	49.4	52.8	191	65.3	69.1	73.0	234	79.9	84.9	89.8	277	89.0	95.6	102.2
106	28.3	31.7	35.1	149	46.3	49.9	53.4	192	66.0	69.7	73.5	235	80.2	85.1	90.1	278	89.1	95.7	102.3
107	28.9	32.4	36.0	150	46.6	50.3	53.9	193	66.6	70.3	73.9	236	80.5	85.4	90.4	279	89.3	95.9	102.4
108	29.5	33.1	36.8	151	47.0	50.7	54.5	194	67.3	70.9	74.4	237	80.8	85.7	90.6	280	89.4	96.0	102.6
109	30.1	33.9	37.6	152	47.3	51.1	55.0	195	68.0	71.4	74.8	238	81.1	86.0	90.9	281	89.7	96.3	102.9
110	30.7	34.6	38.4	153	47.6	51.6	55.6	196	68.7	72.0	75.3	239	81.3	86.3	91.3	282	90.0	96.6	103.2
111	31.3	35.3	39.3	154	47.9	52.0	56.1	197	69.1	72.4	75.7	240	81.5	86.6	91.6	283	90.3	96.9	103.4
112	31.9	36.0	40.1	155	48.6	52.7	56.8	198	69.6	72.9	76.1	241	81.7	86.9	92.0	284	90.6	97.1	103.7
113	32.3	36.4	40.5	156	49.3	53.4	57.5	199	70.0	73.3	76.6	242	82.0	87.1	92.3	285	90.8	97.4	104.0
114	32.7	36.9	41.0	157	50.0	54.1	58.3	200	70.4	73.7	77.0	243	82.2	87.4	92.7	286	91.1	97.7	104.3
115	33.2	37.3	41.4	158	50.7	54.9	59.0	201	70.9	74.1	77.4	244	82.4	87.7	93.0	287	91.4	98.0	104.6
116	33.6	37.7	41.8	159	51.5	55.6	59.7	202	71.3	74.6	77.9	245	82.7	88.0	93.3				
117	34.0	38.1	42.3	160	52.2	56.3	60.4	203	71.7	75.0	78.3	246	83.0	88.3	93.6				
118	34.5	38.6	42.7	161	52.9	57.0	61.1	204	71.9	75.1	78.4	247	83.3	88.6	93.8				
119	34.9	39.0	43.1	162	53.2	57.4	61.7	205	72.0	75.3	78.6	248	83.7	88.9	94.0				

Biparietal Diameter (Outer to Inner), Chitty

Chitty, LS, Altman, DG, "Charts of Fetal Size: 2. Head Measurements," *British Journal of Obstetrics & Gynaecology* 101:35-43, 1994.

BPD (O-I) Days	5%	mean mm	95%	BPD (O-I) Days	5%	mean mm	95%	BPD (O-I) Days	5%	mean mm	95%	BPD (O-I) Days	5%	mean mm	95%	BPD (O-I) Days	5%	mean mm	95%
84	14.9	18.3	21.7	127	36.2	40.3	44.4	170	55.3	60.0	64.8	213	71.3	76.7	82.2	256	83.5	89.6	95.8
85	15.4	18.8	22.2	128	36.7	40.8	44.9	171	55.7	60.5	65.2	214	71.6	77.1	82.6	257	83.7	89.9	96.0
86	15.9	19.3	22.8	129	37.2	41.3	45.4	172	56.1	60.9	65.7	215	71.9	77.4	82.9	258	83.9	90.1	96.3
87	16.5	19.9	23.3	130	37.6	41.8	45.9	173	56.5	61.3	66.1	216	72.3	77.8	83.3	259	84.1	90.3	96.5
88	17.0	20.4	23.8	131	38.1	42.2	46.4	174	56.9	61.7	66.6	217	72.6	78.1	83.6	260	84.4	90.6	96.8
89	17.5	20.9	24.4	132	38.6	42.7	46.9	175	57.3	62.2	67.0	218	72.9	78.4	84.0	261	84.6	90.8	97.1
90	18.0	21.5	24.9	133	39.0	43.2	47.4	176	57.7	62.6	67.4	219	73.2	78.8	84.3	262	84.8	91.1	97.3
91	18.5	22.0	25.5	134	39.5	43.7	47.9	177	58.1	63.0	67.9	220	73.5	79.1	84.7	263	85.0	91.3	97.6
92	19.0	22.5	26.0	135	40.0	44.2	48.4	178	58.5	63.4	68.3	221	73.9	79.4	85.0	264	85.2	91.5	97.8
93	19.5	23.0	26.6	136	40.4	44.6	48.9	179	58.9	63.8	68.7	222	74.2	79.8	85.4	265	85.4	91.7	98.0
94	20.0	23.6	27.1	137	40.9	45.1	49.4	180	59.3	64.2	69.2	223	74.5	80.1	85.7	266	85.7	92.0	98.3
95	20.5	24.1	27.6	138	41.4	45.6	49.8	181	59.7	64.6	69.6	224	74.8	80.4	86.1	267	85.9		

Biparietal Diameter (Outer to Outer), Chitty

Chitty, LS, Altman, DG, "Charts of Fetal Size: 2. Head Measurements," *British Journal of Obstetrics & Gynaecology* 101:35-43, 1994.

BPD (O-O) Days	mean mm	5% mm																	
84	16.0	19.7	23.4	127	38.1	42.4	46.7	170	57.8	62.7	67.5	213	74.2	79.6	85.1	256	86.4	92.4	98.5
85	16.6	20.2	23.9	128	38.6	42.9	47.2	171	58.2	63.1	68.0	214	74.5	80.0	85.4	257	86.6	92.7	98.7
86	17.1	20.8	24.5	129	39.1	43.4	47.7	172	58.6	63.5	68.4	215	74.8	80.3	85.8	258	86.9	92.9	99.0
87	17.6	21.3	25.1	130	39.6	43.9	48.2	173	59.1	64.0	68.8	216	75.2	80.6	86.1	259	87.1	93.2	99.3
88	18.2	21.9	25.6	131	40.1	44.4	48.7	174	59.5	64.4	69.3	217	75.5	81.0	86.5	260	87.3	93.4	99.5
89	18.7	22.4	26.2	132	40.6	44.9	49.2	175	59.9	64.8	69.7	218	75.8	81.3	86.9	261	87.5	93.6	99.7
90	19.2	23.0	26.7	133	41.0	45.4	49.7	176	60.3	65.2	70.2	219	76.1	81.7	87.2	262	87.7	93.9	100.0
91	19.8	23.5	27.3	134	41.5	45.9	50.2	177	60.7	65.7	70.6	220	76.5	82.0	87.6	263	87.9	94.1	100.2
92	20.3	24.1	27.8	135	42.0	46.4	50.8	178	61.1	66.1	71.0	221	76.8	82.3	87.9	264	88.2	94.3	100.5
93	20.8	24.6	28.4	136	42.5	46.9	51.3	179	61.5	66.5	71.5	222	77.1	82.7	88.2	265	88.4	94.5	100.7
94	21.3	25.2	29.0	137	43.0	47.4	51.8	180	61.9	66.9	71.9	223	77.4	83.0	88.6	266	88.6	94.7	100.9
95	21.9	25.7	29.5	138	43.4	47.8	52.3	181	62.3	67.3	72.3	224	77.7	83.3	88.9	267	88.8	95.0	101.2
96	22.4	26.2	30.1	139	43.9	48.3	52.8	182	62.7	67.8	72.8	225	78.0	83.6	89.3	268	89.0	95.2	101.4
97	22.9	26.8	30.6	140	44.4	48.8	53.3	183	63.1	68.2	73.2	226	78.3	84.0	89.6	269	89.2	95.4	101.6
98	23.4	27.3	31.2	141	44.9	49.3	53.8	184	63.5	68.6	73.6	227	78.6	84.3	89.9	270	89.4	95.6	101.8
99	24.0	27.8	31.7	142	45.3	49.8	54.3	185	63.9	69.0	74.0	228	78.9	84.6	90.3	271	89.5	95.8	102.1
100	24.5	28.4	32.3	143	45.8	50.3	54.8	186	64.3	69.4	74.5	229	79.2	84.9	90.6	272	89.7	96.0	102.3
101	25.0	28.9	32.8	144	46.3	50.7	55.2	187	64.7	69.8	74.9	230	79.5	85.2	90.9	273	89.9	96.2	102.5
102	25.5	29.4	33.4	145	46.7	51.2	55.7	188	65.1	70.2	75.3	231	79.8	85.5	91.2	274	90.1	96.4	102.7
103	26.0	30.0	33.9	146	47.2	51.7	56.2	189	65.5	70.6	75.7	232	80.1	85.8	91.6	275	90.3	96.6	102.9
104	26.6	30.5	34.5	147	47.6	52.2	56.7	190	65.9	71.0	76.1	233	80.4	86.1	91.9	276	90.5	96.8	103.1
105	27.1	31.0	35.0	148	48.1	52.7	57.2	191	66.2	71.4	76.5	234	80.7	86.4	92.2	277	90.6	97.0	103.3
106	27.6	31.6	35.5	149	48.6	53.1	57.7	192	66.6	71.8	77.0	235	81.0	86.7	92.5	278	90.8	97.1	103.5
107	28.1	32.1	36.1	150	49.0	53.6	58.2	193	67.0	72.2	77.4	236	81.3	87.0	92.8	279	91.0	97.3	103.7
108	28.6	32.6	36.6	151	49.5	54.1	58.7	194	67.4	72.6	77.8	237	81.6	87.3	93.1	280	91.1	97.5	103.9
109	29.1	33.1	37.2	152	49.9	54.5	59.1	195	67.8	73.0	78.2	238	81.8	87.6	93.4	281	91.3	97.7	104.1
110	29.6	33.7	37.7	153	50.4	55.0	59.6	196	68.1	73.4	78.6	239	82.1	87.9	93.7	282	91.4	97.9	104.3
111	30.2	34.2	38.2	154	50.8	55.5	60.1	197	68.5	73.7	79.0	240	82.4	88.2	94.0	283	91.6	98.0	104.4
112	30.7	34.7	38.8	155	51.3	55.9	60.6	198	68.9	74.1	79.4	241	82.6	88.5	94.3	284	91.8	98.2	104.6
113	31.2	35.2	39.3	156	51.7	56.4	61.0	199	69.2	74.5	79.8	242	82.9	88.8	94.6	285	91.9	98.4	104.8
114	31.7	35.8	39.8	157	52.2	56.8	61.5	200	69.6	74.9	80.2	243	83.2	89.0	94.9	286	92.1	98.5	105.0
115	32.2	36.3	40.4	158	52.6	57.3	62.0	201	70.0	75.3	80.5	244	83.4	89.3	95.2	287	92.2	98.7	105.1
116	32.7	36.8	40.9	159	53.0	57.8	62.5	202	70.3	75.6	80.9	245	83.7	89.6	95.5	288	92.3	98.8	105.3
117	33.2	37.3	41.4	160	53.5	58.2	62.9	203	70.7	76.0	81.3	246	84.0	89.9	95.8	289	92.5	99.0	105.5
118	33.7	37.8	42.0	161	53.9	58.7	63.4	204	71.0	76.4	81.7	247	84.2	90.1	96.1	290	92.6	99.1	105.6
119	34.2	38.3	42.5	162	54.4	59.1	63.9	205	71.4	76.7	82.1	248	84.5	90.4	96.3	291	92.7	99.3	105.8
120	34.7	38.9	43.0	163	54.8	59.6	64.3	206	71.8	77.1	82.5	249	84.7	90.7	96.6	292	92.9	99.4	106.0
121	35.2	39.4	43.5	164	55.2	60.0	64.8	207	72.1	77.5	82.8	250	85.0	90.9	96.9	293	93.0	99.6	106.1
122	35.7	39.9	44.1	165	55.7	60.5	65.2	208	72.5	77.8	83.2	251	85.2	91.2	97.2	294	93.1	99.7	106.3
123	36.2	40.4	44.6	166	56.1	60.9	65.7	209	72.8	78.2	83.6	252	85.5	91.4	97.4				
124	36.7	40.9	45.1	167	56.5	61.3	66.2	210	73.1	78.6	84.0	253	85.7	91.7	97.7				
125	37.2	41.4	45.6	168	56.9	61.8	66.6	211	73.5	78.9	84.3	254	85.9	92.0	98.0				
126	37.7	41.9	46.1	169	57.4	62.2	67.1	212	73.8	79.3	84.7	255	86.2	92.2	98.2				

Occipital Frontal Diameter, Hansmann

Hansmann M, Hackelöer B-J, Staudach A. *Ultrasound Diagnosis in Obstetrics and Gynecology*. New York: Springer-Verlag, 1985, p. 176.

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%					
10	0	7.0	14.0	21.0	16	1	33.6	40.6	47.6	22	2	59.1	66.1	73.1	28	3	81.3	88.3	95.3	34	4	98.1	105.1	112.1
10	1	7.6	14.6	21.6	16	2	34.1	41.1	48.1	22	3	59.7	66.7	73.7	28	4	81.7	88.7	95.7	34	5	98.4	105.4	112.4
10	2	8.1	15.1	22.1	16	3	34.7	41.7	48.7	22	4	60.3	67.3	74.3	28	5	82.1	89.1	96.1	34	6	98.7	105.7	112.7
10	3	8.7	15.7	22.7	16	4	35.3	42.3	49.3	22	5	60.9	67.9	74.9	28	6	82.6	89.6	96.6	35	0	99.0	106.0	113.0
10	4	9.3	16.3	23.3	16	5	35.9	42.9	49.9	22	6	61.4	68.4	75.4	29	0	83.0	90.0	97.0	35	1	99.4	106.4	113.4
10	5	9.9	16.9	23.9	16	6	36.4	43.4	50.4	23	0	62.0	69.0	76.0	29	1	83.4	90.4	97.4	35	2	99.9	106.9	113.9
10	6	10.4	17.4	24.4	17	0	37.0	44.0	51.0	23	1	62.4	69.4	76.4	29	2	83.9	90.9	97.9	35	3	100.3	107.3	114.3
11	0	11.0	18.0	25.0	17	1	37.6	44.6	51.6	23	2	62.9												

Occipital Frontal Diameter, Chitty

Chitty, LS, Altman, DG, "Charts of Fetal Size: 2. Head Measurements," *British Journal of Obstetrics & Gynaecology* 101:35-43, 1994.

OFD Days	5%	mean mm	95%	OFD Days	5%	mean mm	95%	OFD Days	5%	mean mm	95%	OFD Days	5%	mean mm	95%	OFD Days	5%	mean mm	95%
84	18.4	23.4	28.5	127	48.7	53.7	58.6	170	74.5	80.1	85.8	213	94.3	101.5	108.8	256	106.9	116.7	126.4
85	19.1	24.2	29.2	128	49.4	54.3	59.2	171	75.0	80.7	86.3	214	94.7	102.0	109.3	257	107.1	116.9	126.8
86	19.9	24.9	29.9	129	50.1	55.0	59.9	172	75.5	81.2	86.9	215	95.0	102.4	109.8	258	107.3	117.2	127.1
87	20.6	25.6	30.7	130	50.7	55.6	60.6	173	76.1	81.8	87.5	216	95.4	102.8	110.2	259	107.5	117.5	127.4
88	21.4	26.4	31.4	131	51.3	56.3	61.2	174	76.6	82.3	88.1	217	95.8	103.2	110.7	260	107.7	117.7	127.7
89	22.1	27.1	32.1	132	52.0	56.9	61.9	175	77.1	82.9	88.7	218	96.2	103.7	111.2	261	107.9	118.0	128.1
90	22.8	27.8	32.8	133	52.6	57.6	62.6	176	77.6	83.4	89.3	219	96.5	104.1	111.6	262	108.1	118.2	128.4
91	23.6	28.6	33.5	134	53.3	58.3	63.2	177	78.1	84.0	89.8	220	96.9	104.5	112.1	263	108.2	118.5	128.7
92	24.3	29.3	34.3	135	53.9	58.9	63.9	178	78.6	84.5	90.4	221	97.2	104.9	112.5	264	108.4	118.7	129.0
93	25.1	30.0	35.0	136	54.6	59.5	64.5	179	79.1	85.1	91.0	222	97.6	105.3	113.0	265	108.5	118.9	129.3
94	25.8	30.7	35.7	137	55.2	60.2	65.2	180	79.7	85.6	91.5	223	97.9	105.7	113.4	266	108.7	119.2	129.6
95	26.5	31.5	36.4	138	55.8	60.8	65.8	181	80.2	86.1	92.1	224	98.3	106.1	113.9	267	108.9	119.4	129.9
96	27.2	32.2	37.1	139	56.4	61.5	66.5	182	80.6	86.7	92.7	225	98.6	106.5	114.3	268	109.0	119.6	130.2
97	28.0	32.9	37.8	140	57.1	62.1	67.1	183	81.1	87.2	93.2	226	98.9	106.8	114.8	269	109.1	119.8	130.5
98	28.7	33.6	38.5	141	57.7	62.7	67.8	184	81.6	87.7	93.8	227	99.3	107.2	115.2	270	109.3	120.0	130.8
99	29.4	34.3	39.2	142	58.3	63.4	68.4	185	82.1	88.2	94.3	228	99.6	107.6	115.6	271	109.4	120.2	131.1
100	30.1	35.0	39.9	143	58.9	64.0	69.1	186	82.6	88.7	94.9	229	99.9	108.0	116.1	272	109.5	120.4	131.3
101	30.9	35.8	40.6	144	59.5	64.6	69.7	187	83.1	89.3	95.4	230	100.2	108.4	116.5	273	109.7	120.6	131.6
102	31.6	36.5	41.4	145	60.1	65.3	70.4	188	83.6	89.8	96.0	231	100.5	108.7	116.9	274	109.8	120.8	131.9
103	32.3	37.2	42.1	146	60.8	65.9	71.0	189	84.0	90.3	96.5	232	100.8	109.1	117.3	275	109.9	121.0	132.2
104	33.0	37.9	42.8	147	61.4	66.5	71.6	190	84.5	90.8	97.1	233	101.1	109.4	117.8	276	110.0	121.2	132.4
105	33.7	38.6	43.5	148	62.0	67.1	72.3	191	85.0	91.3	97.6	234	101.4	109.8	118.2	277	110.1	121.4	132.7
106	34.4	39.3	44.2	149	62.6	67.7	72.9	192	85.4	91.8	98.1	235	101.7	110.2	118.6	278	110.2	121.6	132.9
107	35.1	40.0	44.9	150	63.2	68.4	73.5	193	85.9	92.3	98.7	236	102.0	110.5	119.0	279	110.3	121.7	133.2
108	35.8	40.7	45.6	151	63.8	69.0	74.2	194	86.3	92.8	99.2	237	102.3	110.9	119.4	280	110.4	121.9	133.4
109	36.5	41.4	46.3	152	64.3	69.6	74.8	195	86.8	93.3	99.7	238	102.6	111.2	119.8	281	110.5	122.1	133.7
110	37.2	42.1	47.0	153	64.9	70.2	75.4	196	87.2	93.8	100.3	239	102.9	111.5	120.2	282	110.6	122.2	133.9
111	37.9	42.8	47.6	154	65.5	70.8	76.1	197	87.7	94.2	100.8	240	103.1	111.9	120.6	283	110.6	122.4	134.2
112	38.6	43.5	48.3	155	66.1	71.4	76.7	198	88.1	94.7	101.3	241	103.4	112.2	121.0	284	110.7	122.5	134.4
113	39.3	44.2	49.0	156	66.7	72.0	77.3	199	88.6	95.2	101.8	242	103.7	112.5	121.4	285	110.8	122.7	134.6
114	40.0	44.9	49.7	157	67.3	72.6	77.9	200	89.0	95.7	102.3	243	103.9	112.8	121.7	286	110.8	122.8	134.8
115	40.7	45.5	50.4	158	67.8	73.2	78.5	201	89.4	96.1	102.9	244	104.2	113.2	122.1	287	110.9	123.0	135.1
116	41.4	46.2	51.1	159	68.4	73.8	79.1	202	89.8	96.6	103.4	245	104.4	113.5	122.5	288	110.9	123.1	135.3
117	42.0	46.9	51.8	160	69.0	74.4	79.8	203	90.3	97.1	103.9	246	104.7	113.8	122.9	289	111.0	123.2	135.5
118	42.7	47.6	52.5	161	69.5	74.9	80.4	204	90.7	97.5	104.4	247	104.9	114.1	123.3	290	111.0	123.4	135.7
119	43.4	48.3	53.2	162	70.1	75.5	81.0	205	91.1	98.0	104.9	248	105.2	114.4	123.6	291	111.0	123.5	135.9
120	44.1	49.0	53.8	163	70.6	76.1	81.6	206	91.5	98.5	105.4	249	105.4	114.7	124.0	292	111.1	123.6	136.1
121	44.8	49.6	54.5	164	71.2	76.7	82.2	207	91.9	98.9	105.9	250	105.6	115.0	124.3	293	111.1	123.7	136.3
122	45.4	50.3	55.2	165	71.8	77.3	82.8	208	92.3	99.4	106.4	251	105.9	115.3	124.7	294	111.1	123.8	136.5
123	46.1	51.0	55.9	166	72.3	77.8	83.4	209	92.7	99.8	106.9	252	106.1	115.6	125.1				
124	46.8	51.7	56.5	167	72.8	78.4	84.0	210	93.1	100.2	107.4	253	106.3	115.9	125.4				
125	47.4	52.3	57.2	168	73.4	79.0	84.6	211	93.5	100.7	107.8	254	106.5	116.1	125.7				
126	48.1	53.0	57.9	169	73.9	79.5	85.2	212	93.9	101.1	108.3	255	106.7	116.4	126.1				

Occipital Frontal Diameter, ASUM

Westerway SC, "Ultrasonic Fetal Measurements: New Australian Standards for the New Millennium," *Aust NZ J Obstet Gynaecol* 40:3:297-302, 2000.

OFD Days	5%	mean mm	95%	OFD Days	5%	mean mm	95%	OFD Days	5%	mean mm	95%	OFD Days	5%	mean mm	95%	OFD Days	5%	mean mm	95%
77	19.4	21.0	22.6	120	48.0	50.6	53.1	163	73.6	76.9	80.1	206	92.9	97.4	102.0	249	106.2	110.7	115.2
78	19.8	21.4	23.1	121	48.6	51.1	53.7	164	74.0	77.3	80.6	207	93.0	97.6	102.1	250	106.6	111.1	115.7
79	20.2	21.9	23.5	122	49.1	51.7	54.4	165	74.4	77.7	81.0	208	93.2	97.7	102.2	251	107.0	111.6	116.1
80	20.6	22.3	23.9	123	49.6	52.3	55.0	166	74.9	78.1	81.4	209	93.3	97.9	102.4	252	107.5	112.0	116.5
81	21.1	22.7	24.4	124	50.1	52.9	55.6	167	75.3	78.6	81.9	210	93.5	98.0	102.5	253	107.6	112.1	116.7
82	21.5	23.1	24.8	125	50.6	53.4	56.2	168	75.7	79.0	82.3	211	94.0	98.4	102.9	254	107.6	112.3	116.9
83	21.9	23.6	25.2	126	51.1	54.0	56.9	169	76.1	79.4	82.8	212	94.5	98.9	103.3	255	107.7	112.4	117.1
84	22.4	24.0	25.6	127	51.5	54.4	57.3	170	76.4	79.9	83.3	213	94.9	99.3	103.6	256	107.8	112.6	117.3
85	23.0	24.7	26.5	128	52.0	54.9	57.7	171	76.8	80.3	83.8	214	95.4	99.7	104.0	257	107.9	112.7	117.5
86	23.5	25.4	27.3	129	52.4	55.3	58.2	172	77.2	80.7	84.2	215	95.9	100.1	104.4	258	108.0	112.9	117.7
87	24.1	26.1	28.1	130	52.8	55.7	58.6	173	77.6	81.1	84.7	216	96.4	100.6	104.7	259	108.1</		

Head Circumference, Hadlock

Hadlock FP, Deter RL, Harrist RB, Park SK. "Estimating Fetal Age: Computer-Assisted Analysis of Multiple Fetal Growth Parameters." *Radiology* 152:497, 1984.

$$\text{HC(cm)} = -11.48 + 1.56 * \text{MA(wks)} - 0.0002548 \text{ MA(wks)}^3$$

Standard Deviation = 10 mm

5 & 95%: ±16.45 mm

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
12	0	51.5	68.0	84.4	18	1	136.6	153.0	169.5	24	2	211.1	227.6	244.0	30	3	271.6	288.1	304.5
12	1	53.6	70.1	86.5	18	2	138.4	154.9	171.3	24	3	212.7	229.1	245.6	30	4	272.9	289.3	305.8
12	2	55.7	72.1	88.6	18	3	140.3	156.7	173.2	24	4	214.3	230.7	247.2	30	5	274.1	290.5	307.0
12	3	57.7	74.2	90.6	18	4	142.1	158.6	175.0	24	5	215.8	232.3	248.7	30	6	275.3	291.7	308.2
12	4	59.8	76.3	92.7	18	5	144.0	160.4	176.9	24	6	217.4	233.8	250.3	31	0	276.4	292.9	309.3
12	5	61.9	78.3	94.8	18	6	145.8	162.3	178.7	25	0	218.9	235.4	251.8	31	1	277.6	294.1	310.5
12	6	63.9	80.4	96.8	19	0	147.7	164.1	180.6	25	1	220.5	236.9	253.4	31	2	278.8	295.2	311.7
13	0	66.0	82.4	98.9	19	1	149.5	166.0	182.4	25	2	222.0	238.5	254.9	31	3	279.9	296.4	312.8
13	1	68.0	84.4	100.9	19	2	151.3	167.8	184.2	25	3	223.5	240.0	256.4	31	4	281.1	297.5	314.0
13	2	70.0	86.5	102.9	19	3	153.1	169.6	186.0	25	4	225.1	241.5	258.0	31	5	282.2	298.7	315.1
13	3	72.1	88.5	105.0	19	4	155.0	171.4	187.9	25	5	226.6	243.0	259.5	31	6	283.3	299.8	316.2
13	4	74.1	90.5	107.0	19	5	156.8	173.2	189.7	25	6	228.1	244.5	261.0	32	0	284.5	300.9	317.4
13	5	76.1	92.6	109.0	19	6	158.6	175.0	191.5	26	0	229.6	246.0	262.5	32	1	285.6	302.0	318.5
13	6	78.1	94.6	111.0	20	0	160.4	176.8	193.3	26	1	231.1	247.5	264.0	32	2	286.7	303.1	319.6
14	0	80.2	96.6	113.1	20	1	162.2	178.6	195.1	26	2	232.5	249.0	265.4	32	3	287.7	304.2	320.6
14	1	82.2	98.6	115.1	20	2	163.9	180.4	196.8	26	3	234.0	250.5	266.9	32	4	288.8	305.3	321.7
14	2	84.2	100.6	117.1	20	3	165.7	182.2	198.6	26	4	235.6	251.9	268.4	32	5	289.9	306.3	322.8
14	3	86.2	102.6	119.1	20	4	167.5	183.9	200.4	26	5	236.9	253.4	269.8	32	6	290.9	307.4	323.8
14	4	88.2	104.6	121.1	20	5	169.2	185.7	202.1	26	6	238.4	254.8	271.3	33	0	292.0	308.4	324.9
14	5	90.2	106.6	123.1	20	6	171.0	187.5	203.9	27	0	239.8	256.2	272.7	33	1	293.0	309.5	325.9
14	6	92.2	108.6	125.1	21	0	172.8	189.2	205.7	27	1	241.2	257.7	274.1	33	2	294.0	310.5	326.9
15	0	94.2	110.6	127.1	21	1	174.5	190.9	207.4	27	2	242.6	259.1	275.5	33	3	295.1	311.5	328.0
15	1	96.1	112.6	129.0	21	2	176.2	192.7	209.1	27	3	244.1	260.5	277.0	33	4	296.1	312.5	329.0
15	2	98.1	114.6	131.0	21	3	178.0	194.4	210.9	27	4	245.5	261.9	278.4	33	5	297.0	313.5	329.9
15	3	100.1	116.5	133.0	21	4	179.7	196.1	212.6	27	5	246.9	263.3	279.8	33	6	298.0	314.5	330.9
15	4	102.0	118.5	134.9	21	5	181.4	197.9	214.3	27	6	248.2	264.7	281.1	34	0	299.0	315.5	331.9
15	5	104.0	120.5	136.9	21	6	183.1	199.6	216.0	28	0	249.6	266.1	282.5	34	1	300.0	316.4	332.9
15	6	106.0	122.4	138.9	22	0	184.8	201.3	217.7	28	1	251.0	267.4	283.9	34	2	300.9	317.4	333.8
16	0	107.9	124.4	140.8	22	1	186.5	203.0	219.4	28	2	252.3	268.8	285.2	34	3	301.9	318.3	334.8
16	1	109.9	126.3	142.8	22	2	188.2	204.7	221.1	28	3	253.7	270.1	286.6	34	4	302.8	319.2	335.7
16	2	111.8	128.3	144.7	22	3	189.9	206.3	222.8	28	4	255.0	271.5	287.9	34	5	303.7	320.2	336.6
16	3	113.7	130.2	146.6	22	4	191.6	208.0	224.5	28	5	256.4	272.8	289.3	34	6	304.6	321.1	337.5
16	4	115.7	132.1	148.6	22	5	193.2	209.7	226.1	28	6	257.7	274.1	290.6	35	0	305.5	322.0	338.4
16	5	117.6	134.0	150.5	22	6	194.9	211.3	227.8	29	0	259.0	275.5	291.9	35	1	306.4	322.8	339.3
16	6	119.5	136.0	152.4	23	0	196.5	213.0	229.4	29	1	260.3	276.8	293.2	35	2	307.3	323.7	340.2
17	0	121.4	137.9	154.3	23	1	198.2	214.6	231.1	29	2	261.6	278.1	294.5	35	3	308.1	324.6	341.0
17	1	123.3	139.8	156.2	23	2	199.8	216.3	232.7	29	3	262.9	279.3	295.8	35	4	309.0	325.4	341.9
17	2	125.2	141.7	158.1	23	3	201.5	217.9	234.4	29	4	264.2	280.6	297.1	35	5	309.8	326.3	342.7
17	3	127.1	143.6	160.0	23	4	203.1	219.5	236.0	29	5	265.4	281.9	298.3	36	0	310.7	327.1	343.6
17	4	129.0	145.5	161.9	23	5	204.7	221.2	237.6	29	6	266.7	283.2	299.6	36	0	311.5	327.9	344.4
17	5	130.9	147.4	163.8	23	6	206.3	222.8	239.2	30	0	268.0	284.4	300.9	36	1	312.3	328.7	345.2
17	6	132.8	149.3	165.7	24	0	207.9	224.4	240.8	30	1	269.2	285.6	302.1	36	2	313.1	329.5	346.0
18	0	134.7	151.1	167.6	24	1	209.5	226.0	242.4	30	2	270.4	286.9	303.3	36	3	313.9	330.3	346.8

Head Circumference, Merz

Merz E. *Ultrasound in Gynecology and Obstetrics*. Stuttgart and New York: Thieme Medical Publishers, Inc., 1991, p. 312.

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
12	0	63.0	76.0	90.0	17	5	138.6	153.3	168.3	23	3	205.7	221.7	238.1	29	1	263.3	280.3	297.4
12	1	65.0	78.0	92.0	17	6	140.3	155.1	170.1	23	4	207.3	223.3	239.9	29	2	264.6	281.6	298.9
12	2	67.0	80.0	94.0	18	0	142.0	157.0	172.0	23	5	208.9	224.9	241.6	29	3	265.9	282.9	300.3
12	3	69.0	82.0	96.0	18	1	143.9	158.7	173.9	23	6	210.4	226.4	243.3	29	4	267.1	284.1	301.7
12	4	71.0	84.0	98.0	18	2	145.7	160.4	175.7	24	0	212.0	228.0	245.0	29	5	268.4	285.4	303.1
12	5	73.0	86.0	100.0	18	3	147.6	162.1	177.6	24	1	213.6	229.6	246.6	29	6	269.7	286.7	304.6
12	6	75.0	88.0	102.0	18	4	149.4	163.9	179.4	24	2	215.1	231.1	248.1	30	0	271.0	288.0	306.0
13	0	77.0	90.0	104.0	18	5	151.3	165.6	181.3	24	3	216.7	232.7	249.7	30	1	272.1	289.1	307.3
13	1	78.9	92.0	106.0	18	6	153.1	167.3	183.1	24	4	218.3	234.3	251.3	30	2	273.3	290.3	308.6
13	2	80.7	94.0	108.0	19	0	155.0	169.0	185.0	24	5	219.9	235.9	252.9	30	3	274.4	291.4	309.9
13	3	82.6	96.0	110.0	19	1	156.7	170.9	186.7	24	6	221.4	237.4	254.4	30	4	275.6	292.6	311.1
13	4	84.4	98.0	112.0	19	2	158.4	172.7	188.4	25	0	223.0	239.0	256.0	30	5	276.7	293.7	312.4
13	5	86.3	100.0	114.0	19	3	160.1	174.6	190.1	25	1	224.4	240.4						

Head Circumference, Hansmann

Hansmann M, Hackelöer B-J, Staudach A. *Ultrasound Diagnosis in Obstetrics and Gynecology*. New York: Springer-Verlag, 1985, p. 176.

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
10	0	26.0	50.0	74.0	16	1	102.9	127.7	151.9	22	2	177.1	201.4	226.1	28	3	241.9	265.9	290.3	34	4	291.4	316.0	340.0
10	1	27.7	51.9	75.9	16	2	104.7	129.4	153.7	22	3	178.7	203.1	227.7	28	4	243.1	267.1	291.7	34	5	292.3	317.0	341.0
10	2	29.4	53.7	77.7	16	3	106.6	131.1	155.6	22	4	180.3	204.9	229.3	28	5	244.4	268.4	293.1	34	6	293.1	318.0	342.0
10	3	31.1	55.6	79.6	16	4	108.4	132.9	157.4	22	5	181.9	206.6	230.9	28	6	245.7	269.7	294.6	35	0	294.0	319.0	343.0
10	4	32.9	57.4	81.4	16	5	110.3	134.6	159.3	22	6	183.4	208.3	232.4	29	0	247.0	271.0	296.0	35	1	294.9	319.9	343.9
10	5	34.6	59.3	83.3	16	6	112.1	136.3	161.1	23	0	185.0	210.0	234.0	29	1	248.3	272.4	297.3	35	2	295.7	320.7	344.7
10	6	36.3	61.1	85.1	17	0	114.0	138.0	163.0	23	1	186.6	211.6	235.6	29	2	249.6	273.9	298.6	35	3	296.6	321.6	345.6
11	0	38.0	63.0	87.0	17	1	115.7	139.9	164.7	23	2	188.1	213.1	237.1	29	3	250.9	275.3	299.9	35	4	297.4	322.4	346.4
11	1	39.9	64.7	88.9	17	2	117.4	141.7	166.4	23	3	189.7	214.7	238.7	29	4	252.1	276.7	301.1	35	5	298.3	323.3	347.3
11	2	41.7	66.4	90.7	17	3	119.1	143.6	168.1	23	4	191.3	216.3	240.3	29	5	253.4	278.1	302.4	35	6	299.1	324.1	348.1
11	3	43.6	68.1	92.6	17	4	120.9	145.4	169.9	23	5	192.9	217.9	241.9	29	6	254.7	279.6	303.7	36	0	300.0	325.0	349.0
11	4	45.4	69.9	94.4	17	5	122.6	147.3	171.6	23	6	194.4	219.4	243.4	30	0	256.0	281.0	305.0	36	1	300.9	325.7	349.9
11	5	47.3	71.6	96.3	17	6	124.3	149.1	173.3	24	0	196.0	221.0	245.0	30	1	257.3	282.1	306.1	36	2	301.7	326.4	350.7
11	6	49.1	73.3	98.1	18	0	126.0	151.0	175.0	24	1	197.6	222.6	246.6	30	2	258.6	283.3	307.3	36	3	302.6	327.1	351.6
12	0	51.0	75.0	100.0	18	1	127.7	152.7	176.7	24	2	199.1	224.1	248.1	30	3	259.9	284.4	308.4	36	4	303.4	327.9	352.4
12	1	52.9	76.9	101.7	18	2	129.4	154.4	178.4	24	3	200.7	225.7	249.7	30	4	261.1	285.6	309.6	36	5	304.3	328.6	353.3
12	2	54.7	78.7	103.4	18	3	131.1	156.1	180.1	24	4	202.3	227.3	251.3	30	5	262.4	286.7	310.7	36	6	305.1	329.3	354.1
12	3	56.6	80.6	105.1	18	4	132.9	157.9	181.9	24	5	203.9	228.9	252.9	30	6	263.7	287.9	311.9	37	0	306.0	330.0	355.0
12	4	58.4	82.4	106.9	18	5	134.6	159.6	183.6	24	6	205.4	230.4	254.4	31	0	265.0	289.0	313.0	37	1	306.7	330.7	355.6
12	5	60.3	84.3	108.6	18	6	136.3	161.3	185.3	25	0	207.0	232.0	256.0	31	1	266.1	291.0	314.3	37	2	307.4	331.4	356.1
12	6	62.1	86.1	110.3	19	0	138.0	163.0	187.0	25	1	208.6	233.4	257.4	31	2	267.3	291.3	315.6	37	3	308.1	332.1	356.7
13	0	64.0	88.0	112.0	19	1	139.7	164.7	188.7	25	2	210.1	234.9	258.9	31	3	268.4	292.4	316.9	37	4	308.9	332.9	357.3
13	1	65.7	89.9	113.9	19	2	141.4	166.4	190.4	25	3	211.7	236.3	260.3	31	4	269.6	293.6	318.1	37	5	309.6	333.6	357.9
13	2	67.4	91.7	115.7	19	3	143.1	168.1	192.1	25	4	213.3	237.7	261.7	31	5	270.7	294.7	319.4	37	6	310.3	334.3	358.4
13	3	69.1	93.6	117.6	19	4	144.9	169.9	193.9	25	5	214.9	239.1	263.1	31	6	271.9	295.9	320.7	38	0	311.0	335.0	359.0
13	4	70.9	95.4	119.4	19	5	146.6	171.6	195.6	25	6	216.4	240.6	264.6	32	0	273.0	297.0	322.0	38	1	311.6	335.6	359.7
13	5	72.6	97.3	121.3	19	6	148.3	173.3	197.3	26	0	218.0	242.0	266.0	32	1	274.1	298.1	323.0	38	2	312.1	336.1	360.4
13	6	74.3	99.1	123.1	20	0	150.0	175.0	199.0	26	1	219.4	243.4	267.6	32	2	275.3	299.3	324.0	38	3	312.7	336.7	361.1
14	0	76.0	101.0	125.0	20	1	151.7	176.7	200.7	26	2	220.9	244.9	269.1	32	3	276.4	300.4	325.0	38	4	313.3	337.3	361.9
14	1	77.9	102.7	126.9	20	2	153.4	178.4	202.4	26	3	222.3	246.3	270.7	32	4	277.6	301.6	326.0	38	5	313.9	337.9	362.6
14	2	79.7	104.4	128.7	20	3	155.1	180.1	204.1	26	4	223.7	247.7	272.3	32	5	278.7	302.7	327.0	38	6	314.4	338.4	363.3
14	3	81.6	106.1	130.6	20	4	156.9	181.9	205.9	26	5	225.1	249.1	273.9	32	6	279.9	303.9	328.0	39	0	315.0	339.0	364.0
14	4	83.4	107.9	132.4	20	5	158.6	183.6	207.6	26	6	226.6	250.6	275.4	33	0	281.0	305.0	329.0	39	1	315.6	339.6	364.4
14	5	85.3	109.6	134.3	20	6	160.3	185.3	209.3	27	0	228.0	252.0	277.0	33	1	282.0	306.0	330.0	39	2	316.1	340.1	364.9
14	6	87.1	111.3	136.1	21	0	162.0	187.0	211.0	27	1	229.4	253.4	278.3	33	2	283.0	307.0	331.0	39	3	316.7	340.7	365.3
15	0	89.0	113.0	138.0	21	1	163.7	188.6	212.7	27	2	230.9	254.9	279.6	33	3	284.0	308.0	332.0	39	4	317.3	341.3	365.7
15	1	90.7	114.9	139.7	21	2	165.4	190.1	214.4	27	3	232.3	256.3	280.9	33	4	285.0	309.0	333.0	39	5	317.9	341.9	366.1
15	2	92.4	116.7	141.4	21	3	167.1	191.7	216.1	27	4	233.7	257.7	282.1	33	5	286.0	310.0	334.0	39	6	318.4	342.4	366.6
15	3	94.1	118.6	143.1	21	4	168.9	193.3	217.9	27	5	235.1	259.1	283.4	33	6	287.0	311.0	335.0	40	0	319.0	343.0	367.0
15	4	95.9	120.4	144.9	21	5	170.6	194.9	219.6	27	6	236.6	260.6	284.7	34	0	288.0	312.0	336.0					
15	5	97.6	122.3	146.6	21	6	172.3	196.4	221.3	28	0	238.0	262.0	286.0	34	1	288.9	313.0	337.0					
15	6	99.3	124.1	148.3	22	0	174.0	198.0	223.0	28	1	239.3	263.3	287.4	34	2	289.7	314.0	338.0					
16	0	101.0	126.0	150.0	22	1	175.6	199.7	224.6	28	2	240.6	264.6	288.9	34	3	290.6	315.0	339.0					

Head Circumference (Plotted), Chitty

Chitty, LS, Altman, DG, "Charts of Fetal Measurements," *British Journal of Obstetrics & Gynaecology* 101:35-43, 1994.

HC Days	5%	mean mm	95%	HC Days	5%	mean mm	95%	HC Days	5%	mean mm	95%	HC Days	5%	mean mm	95%	HC Days	5%	mean mm	95%	HC Days	5%	mean mm	95%
84	58.9	69.5	80.0	131	147.5	160.7	173.8	178	224.1	239.8	255.5	225	284.4	302.6	320.8	272	323.9	344.7	365.5				
85	60.9	71.5	82.1	132	149.3	162.5	175.6	179	225.6	241.3	257.0	226	285.5	303.7	322.0	273	324.5	345.3	366.2				
86	62.9	73.5	84.2	133	151.1	164.3	177.5	180	227.1	242.8	258												

Head Circumference, ASUM

Westerway SC. "Ultrasonic Fetal Measurements: New Australian Standards for the New Millennium." *Aust NZ J Obstet Gynaecol* 40:3:297-302, 2000.

HC Days	5%	mean mm	95%																
77	46.7	59.0	71.3	120	129.5	142.4	155.4	163	196.4	212.9	229.3	206	250.6	271.1	291.7	249	293.4	314.0	334.6
78	48.2	60.6	72.9	121	130.3	143.9	157.4	164	197.8	214.3	230.7	207	251.3	271.9	292.4	250	294.4	315.0	335.6
79	49.8	62.1	74.5	122	131.2	145.3	159.4	165	199.3	215.7	232.2	208	252.0	272.6	293.1	251	295.4	316.0	336.6
80	51.4	63.7	76.1	123	132.0	146.7	161.4	166	200.7	217.1	233.6	209	252.7	273.3	293.8	252	296.4	317.0	337.6
81	52.9	65.3	77.6	124	132.9	148.1	163.4	167	202.1	218.6	235.0	210	253.4	274.0	294.6	253	297.0	317.6	338.1
82	54.5	66.9	79.2	125	133.7	149.6	165.4	168	203.6	220.0	236.5	211	254.9	275.4	296.0	254	297.6	318.1	338.7
83	56.1	68.4	80.8	126	134.6	151.0	167.5	169	205.1	221.6	238.0	212	256.3	276.9	297.4	255	298.2	318.7	339.3
84	57.7	70.0	82.3	127	135.8	152.3	168.7	170	206.7	223.1	239.6	213	257.7	278.3	298.8	256	298.7	319.3	339.8
85	59.7	72.0	84.3	128	137.1	153.6	170.0	171	208.3	224.7	241.2	214	259.2	279.7	300.3	257	299.3	319.9	340.4
86	61.7	74.0	86.3	129	138.4	154.9	171.3	172	209.8	226.3	242.7	215	260.6	281.1	301.7	258	299.9	320.4	341.0
87	63.7	76.0	88.3	130	139.7	156.1	172.6	173	211.4	227.9	244.3	216	262.0	282.6	303.1	259	300.4	321.0	341.6
88	65.7	78.0	90.3	131	141.0	157.4	173.9	174	213.0	229.4	245.9	217	263.4	284.0	304.6	260	301.4	322.0	342.6
89	67.7	80.0	92.3	132	142.3	158.7	175.2	175	214.6	231.0	247.5	218	264.0	284.6	305.1	261	302.4	323.0	343.6
90	69.7	82.0	94.3	133	143.6	160.0	176.5	176	215.6	232.0	248.5	219	264.6	285.1	305.7	262	303.4	324.0	344.6
91	71.7	84.0	96.3	134	145.0	161.4	177.9	177	216.6	233.0	249.5	220	265.2	285.7	306.3	263	304.4	325.0	345.6
92	73.4	85.7	98.1	135	146.4	162.9	179.3	178	217.6	234.0	250.5	221	265.7	286.3	306.8	264	305.4	326.0	346.6
93	75.1	87.4	99.8	136	147.8	164.3	180.7	179	218.6	235.0	251.5	222	266.3	286.9	307.4	265	306.4	327.0	347.6
94	76.8	89.1	101.5	137	149.3	165.7	182.2	180	219.6	236.0	252.5	223	266.9	287.4	308.0	266	307.4	328.0	348.6
95	78.5	90.9	103.2	138	150.7	167.1	183.6	181	220.6	237.0	253.5	224	267.4	288.0	308.6	267	308.6	329.1	349.7
96	80.2	92.6	104.9	139	152.1	168.6	185.0	182	221.6	238.0	254.5	225	269.2	289.7	310.3	268	309.7	330.3	350.8
97	81.9	94.3	106.6	140	153.6	170.0	186.5	183	223.3	239.7	256.2	226	270.9	291.4	312.0	269	310.9	331.4	352.0
98	83.7	96.0	108.3	141	154.4	170.9	187.3	184	225.0	241.4	257.9	227	272.6	293.1	313.7	270	312.0	332.6	353.1
99	85.4	97.7	110.1	142	155.3	171.7	188.2	185	226.7	243.1	259.6	228	274.3	294.9	315.4	271	313.2	333.7	354.3
100	87.1	99.4	111.8	143	156.1	172.6	189.0	186	228.4	244.9	261.3	229	276.0	296.6	317.1	272	314.3	334.9	355.4
101	88.8	101.1	113.5	144	157.0	173.4	189.9	187	230.1	246.6	263.0	230	277.7	298.3	318.8	273	315.4	336.0	356.6
102	90.5	102.9	115.2	145	157.8	174.3	190.7	188	231.8	248.3	264.7	231	279.4	300.0	320.6	274	316.0	336.6	357.1
103	92.2	104.6	116.9	146	158.7	175.1	191.6	189	233.6	250.0	266.5	232	280.2	300.7	321.3	275	316.6	337.1	357.7
104	93.9	106.3	118.6	147	159.6	176.0	192.5	190	235.4	251.9	268.3	233	280.9	301.4	322.0	276	317.2	337.7	358.3
105	95.7	108.0	120.3	148	161.3	177.7	194.2	191	237.3	253.7	270.2	234	281.6	302.1	322.7	277	317.7	338.3	358.8
106	98.5	110.9	123.2	149	163.0	179.4	195.9	192	239.1	255.6	272.0	235	282.3	302.9	323.4	278	318.3	338.9	359.4
107	101.4	113.7	126.1	150	164.7	181.1	197.6	193	241.0	257.4	273.9	236	283.0	303.6	324.1	279	318.9	339.4	360.0
108	104.2	116.6	128.9	151	166.4	182.9	199.3	194	242.8	259.3	275.7	237	283.7	304.3	324.8	280	319.4	340.0	360.6
109	107.1	119.4	131.8	152	168.1	184.6	201.0	195	244.7	261.1	277.6	238	284.4	305.0	325.6	281	320.0	340.6	361.1
110	109.9	122.3	134.6	153	169.8	186.3	202.7	196	246.6	263.0	279.5	239	285.2	305.7	326.3	282	320.6	341.1	361.7
111	112.8	125.1	137.5	154	171.6	188.0	204.5	197	246.8	263.9	280.9	240	285.9	306.4	327.0	283	321.2	341.7	362.3
112	115.7	128.0	140.3	155	174.7	191.1	207.6	198	247.1	264.7	282.3	241	286.6	307.1	327.7	284	321.7	342.3	362.8
113	117.5	129.9	142.2	156	177.8	194.3	210.7	199	247.4	265.6	283.8	242	287.3	307.9	328.4	285	322.3	342.9	363.4
114	119.4	131.7	144.1	157	181.0	197.4	213.9	200	247.6	266.4	285.2	243	288.0	308.6	329.1	286	322.9	343.4	364.0
115	121.2	133.6	145.9	158	184.1	200.6	217.0	201	247.9	267.3	286.7	244	288.7	309.3	329.8	287	323.4	344.0	364.6
116	123.1	135.4	147.8	159	187.3	203.7	220.2	202	248.2	268.1	288.1	245	289.4	310.0	330.6				
117	124.9	137.3	149.6	160	190.4	206.9	223.3	203	248.4	269.0	289.6	246	290.4	311.0	331.6				
118	126.8	139.1	151.5	161	193.6	210.0	226.5	204	249.2	269.7	290.3	247	291.4	312.0	332.6				
119	128.7	141.0	153.3	162	195.0	211.4	227.9	205	249.9	270.4	291.0	248	292.4	313.0	333.6				

Abdominal Circumference, Hadlock

Hadlock FP, Deter RL, Harrist RB, Park SK. "Estimating Fetal Age: Computer-Assisted Analysis of Multiple Fetal Growth Parameters." *Radiology* 152:497, 1984.

AC(cm) = -13.3 + 1.61 * MA(wks) - 0.00998 * MA(wks) ²	Standard Deviation = ± 13.4 mm												5 & 95%: ± 22 mm						
Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
12	0	23.8	45.8	67.8	18	1	104.2	126.2	148.2	24	2	177.1	199.1	221.1	30	3	242.5	264.5	286.5
12	1	25.8	47.8	69.8	18	2	106.0	128.0	150.0	24	3	178.7	200.7	222.7	30	4	243.9	265.9	287.9
12	2	27.7	49.7	71.7	18	3	107.8	129.1	151.8	24	4	180.3	202.3	224.3	30	5	245.4	267.4	289.4
12	3	29.7	51.7	73.7	18	4	109.6	131.6	153.6	24	5	181.9	203.9	225.9	30	6	246.8	268.8	290.8
12	4	31.6	53.6	75.6	18	5	111.3	133.3	155.3	24	6	183.5	205.5	227.5	31	1	249.6	271.6	293.6
12	5	33.6	55.6	77.6	18	6	113.1	135.1	157.1	25	0	185.1	207.1	229.1	31	1	249.6	271.6	293.6
12	6	35.5	57.5	79.5	19	0	114.9	136.9	158.9	25	1	186.7	208.7	230.7	31	2	251.0	273.0	295.0
13	0	37.4	59.4	81.4	19	1	116.6	138.6	160.6	25	2	188.3	210.3	232.3	31	3	252.4	2	

Abdominal Circumference, MerzMerz E. *Ultrasound in Gynecology and Obstetrics*. Stuttgart and New York: Thieme Medical Publishers, Inc., 1991, p. 312.

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
12	0	40.0	58.0	76.0	17	5	96.1	117.1	137.9	23	3	152.3	175.7	199.3	29	1	208.4	234.4	260.6
12	1	41.4	59.4	77.6	17	6	97.6	118.6	139.4	23	4	153.7	177.3	200.7	29	2	209.9	235.9	262.1
12	2	42.9	60.9	79.1	18	0	99.0	120.0	141.0	23	5	155.1	178.9	202.1	29	3	211.3	237.3	263.7
12	3	44.3	62.3	80.7	18	1	100.3	121.4	142.6	23	6	156.6	180.4	203.6	29	4	212.7	238.7	265.3
12	4	45.7	63.7	82.3	18	2	101.6	122.9	144.1	24	0	158.0	182.0	205.0	29	5	214.1	240.1	266.9
12	5	47.1	65.1	83.9	18	3	102.9	124.3	145.7	24	1	159.3	183.4	206.6	29	6	215.6	241.6	268.4
12	6	48.6	66.6	85.4	18	4	104.1	125.7	147.3	24	2	160.6	184.9	208.1	30	0	217.0	243.0	270.0
13	0	50.0	68.0	87.0	18	5	105.4	127.1	148.9	24	3	161.9	186.3	209.7	30	1	218.4	244.4	271.4
13	1	51.4	69.6	88.6	18	6	106.7	128.6	150.4	24	4	163.1	187.7	211.3	30	2	219.9	245.9	272.9
13	2	52.9	71.1	90.1	19	0	108.0	130.0	152.0	24	5	164.4	189.1	212.9	30	3	221.3	247.3	274.3
13	3	54.3	72.7	91.7	19	1	109.4	131.4	153.4	24	6	165.7	190.6	214.4	30	4	222.7	248.7	275.7
13	4	55.7	74.3	93.3	19	2	110.9	132.9	154.9	25	0	167.0	192.0	216.0	30	5	224.1	250.1	277.1
13	5	57.1	75.9	94.9	19	3	112.3	134.3	156.3	25	1	168.4	193.4	217.6	30	6	225.6	251.6	278.6
13	6	58.6	77.4	96.4	19	4	113.7	135.7	157.7	25	2	169.9	194.9	219.1	31	0	227.0	253.0	280.0
14	0	60.0	79.0	98.0	19	5	115.1	137.1	159.1	25	3	171.3	196.3	220.7	31	1	228.4	254.6	281.6
14	1	61.3	80.4	99.6	19	6	116.6	138.6	160.6	25	4	172.7	197.7	222.3	31	2	229.9	256.1	283.1
14	2	62.6	81.9	101.1	20	0	118.0	140.0	162.0	25	5	174.1	199.1	223.9	31	3	231.3	257.7	284.7
14	3	63.9	83.3	102.7	20	1	119.4	141.6	163.6	25	6	175.6	200.6	225.4	31	4	232.7	259.3	286.3
14	4	65.1	84.7	104.3	20	2	120.9	143.1	165.1	26	0	177.0	202.0	227.0	31	5	234.1	260.9	287.9
14	5	66.4	86.1	105.9	20	3	122.3	144.7	166.7	26	1	178.4	203.4	228.6	31	6	235.6	262.4	289.4
14	6	67.7	87.6	107.4	20	4	123.7	146.3	168.3	26	2	179.9	204.9	230.1	32	0	237.0	264.0	291.0
15	0	69.0	89.0	109.0	20	5	125.1	147.9	169.9	26	3	181.3	206.3	231.7	32	1	238.3	265.4	292.6
15	1	70.4	90.4	110.4	20	6	126.6	149.4	171.4	26	4	182.7	207.7	233.3	32	2	239.6	266.9	294.1
15	2	71.9	91.9	111.9	21	0	128.0	151.0	173.0	26	5	184.1	209.1	234.9	32	3	240.9	268.3	295.7
15	3	73.3	93.3	113.3	21	1	129.4	152.4	174.6	26	6	185.6	210.6	236.4	32	4	242.1	269.7	297.3
15	4	74.7	94.7	114.7	21	2	130.9	153.9	176.1	27	0	187.0	212.0	238.0	32	5	243.4	271.1	298.9
15	5	76.1	96.1	116.1	21	3	132.3	155.3	177.7	27	1	188.4	213.6	239.4	32	6	244.7	272.6	300.4
15	6	77.6	97.6	117.6	21	4	133.7	156.7	179.3	27	2	189.9	215.1	240.9	33	0	246.0	274.0	302.0
16	0	79.0	99.0	119.0	21	5	135.1	158.1	180.9	27	3	191.3	216.7	242.3	33	1	247.4	275.4	303.4
16	1	80.4	100.6	120.6	21	6	136.6	159.6	182.4	27	4	192.7	218.3	243.7	33	2	248.9	276.9	304.9
16	2	81.9	102.1	122.1	22	0	138.0	161.0	184.0	27	5	194.1	219.9	245.1	33	3	250.5	278.3	306.3
16	3	83.3	103.7	123.7	22	1	139.4	162.4	185.6	27	6	195.6	221.4	246.6	33	4	251.7	279.7	307.7
16	4	84.7	105.3	125.3	22	2	140.9	163.9	187.1	28	0	197.0	223.0	248.0	33	5	253.1	281.1	309.1
16	5	86.1	106.9	126.9	22	3	142.3	165.3	188.7	28	1	198.4	224.4	249.6	33	6	254.6	282.6	310.6
16	6	87.6	108.4	128.4	22	4	143.7	166.7	190.3	28	2	199.9	225.9	251.1	34	0	256.0	284.0	312.0
17	0	89.0	110.0	130.0	22	5	145.1	168.1	191.9	28	3	201.3	227.3	252.7	34	1	257.4	285.6	313.6
17	1	90.4	111.4	131.6	22	6	146.6	169.6	193.4	28	4	202.7	228.7	254.3	34	2	258.9	287.1	315.1
17	2	91.9	112.9	133.1	23	0	148.0	171.0	195.0	28	5	204.1	230.1	255.9	34	3	260.3	288.7	316.7
17	3	93.3	114.3	134.7	23	1	149.4	172.6	196.4	28	6	205.6	231.6	257.4	34	4	261.7	290.3	318.3
17	4	94.7	115.7	136.3	23	2	150.9	174.1	197.9	29	0	207.0	233.0	259.0	34	5	263.1	291.9	319.9

Abdominal Circumference, JeantyJeanty P, Cousaert E, Cantraine F. "Normal growth of the abdominal perimeter." *American Journal of Perinatology* 1:136, 1984, p. 133.

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
12	0	35.0	57.0	80.0	17	5	93.9	116.1	138.9	23	3	155.7	177.7	200.3	29	1	214.3	236.3	258.4
12	1	36.4	58.4	81.4	17	6	95.4	117.6	140.4	23	4	157.3	179.3	201.7	29	2	215.6	237.6	259.9
12	2	37.9	59.9	82.9	18	0	97.0	119.0	142.0	23	5	158.9	180.9	203.1	29	3	216.9	238.9	261.3
12	3	39.3	61.3	84.3	18	1	98.6	120.6	143.4	23	6	160.4	182.4	204.6	29	4	218.1	241.0	262.7
12	4	40.7	62.7	85.7	18	2	100.1	122.1	144.9	24	0	162.0	184.0	206.0	29	5	219.4	241.4	264.1
12	5	42.1	64.1	87.1	18	3	101.7	123.7	146.3	24	1	163.4	185.6	207.6	29	6	220.7	242.7	265.6
12	6	43.6	65.6	88.6	18	4	103.3	125.3	147.7	24	2	164.9	187.1	209.1	30	0	222.0	244.0	267.0
13	0	45.0	67.0	90.0	18	5	104.9	126.9	149.1	24	3	166.3	188.7	210.7	30	1	223.3	245.4	268.3
13	1	46.4	68.4	91.4	18	6	106.4	128.4	150.6	24	4	167.7	190.3	212.3	30	2	224.6	246.9	269.6
13	2	47.9	69.9	92.9	19	0	108.0	130.0	152.0	24	5	169.1	191.9	213.9	30	3	225.9	248.3	270.9
13	3	49.3	71.3	94.3	19	1	109.6	131.6	153.6	24	6	170.6	193.4	215.4	30	4	227.1	249.7	272.1
13	4	50.7	72.7	95.7	19	2	111.1	133.1	155.1	25	0	172.0	195.0	217.0	30	5	228.4	251.1	273.4
13	5	52.1	74.1	97.1	19	3	112.7	134.7	156.7	25	1	173.6	196.4	218.4	30	6	229.7	252.6	274.7
13	6	53.6	75.6	98.6	19	4	114.3	136.3	158.3	25	2	175.1	197.9	219.9	31	0	231.0	254.0	276.0
14	0	55.0	77.0	100.0	19	5	115.9	137.9	159.9	25	3	176.7	199.3	221.3	31	1	232.3	255.1	277.3
14	1	56.4	78.6	101.4	19	6	117.4	139.4	161.4	25	4	178.3	200.7	222.7	31	2	233.6	256.3	278.6
14	2	57.9	80.1	102.9	20	0	119.0	141.0	163.0	25	5	179.9	202.1	224.1	31	3	234.9	257.4	279.9
14	3</td																		

Abdominal Circumference, JSUM

Japan Society of Ultrasonics in Medicine. "Standardization of Fetometry and Official Announcement of Diagnostic Guidelines." *J. Med. Ultrasonics* 28:844-872, 2001.

AC Days	- 1.5SD	mean mm	+ 1.5SD	AC Days	- 1.5SD	mean mm	+ 1.5SD	AC Days	- 1.5SD	mean mm	+ 1.5SD	AC Days	- 1.5SD	mean mm	+ 1.5SD	AC Days	- 1.5SD	mean mm	+ 1.5SD
112	89.8	104.0	118.3	149	140.4	157.9	176.1	186	188.4	210.1	232.0	223	232.5	257.9	283.9	260	270.6	300.0	329.4
113	91.1	105.4	119.8	150	141.7	159.3	177.6	187	189.7	211.4	233.5	224	233.5	259.0	285.3	261	271.5	301.0	330.5
114	92.4	106.9	121.3	151	143.0	160.7	179.1	188	191.0	212.7	235.0	225	234.7	260.3	286.5	262	272.4	302.0	331.6
115	93.7	108.3	122.9	152	144.4	162.1	180.7	189	192.3	214.0	236.5	226	235.9	261.6	287.8	263	273.3	303.0	332.7
116	95.0	109.7	124.4	153	145.7	163.6	182.2	190	193.5	215.4	237.9	227	237.0	262.9	289.1	264	274.2	304.0	333.8
117	96.4	111.1	125.9	154	147.0	165.0	183.8	191	194.7	216.9	239.4	228	238.2	264.1	290.4	265	275.1	305.0	334.9
118	97.7	112.6	127.5	155	148.3	166.4	185.3	192	195.9	218.3	240.8	229	239.4	265.4	291.7	266	276.0	306.0	336.0
119	99.0	114.0	129.0	156	149.6	167.9	186.8	193	197.1	219.7	242.2	230	240.6	266.7	293.0	267	276.9	307.0	337.1
120	100.5	115.6	130.7	157	151.0	169.3	188.4	194	198.3	221.1	243.6	231	241.8	268.0	294.3	268	277.8	308.0	338.2
121	101.9	117.1	132.4	158	152.3	170.7	189.9	195	199.5	222.6	245.1	232	242.8	269.1	295.5	269	278.7	309.0	339.3
122	103.4	118.7	134.0	159	153.6	172.1	191.4	196	200.8	224.0	246.5	233	243.8	270.3	296.8	270	279.6	310.0	340.4
123	104.9	120.3	135.7	160	154.9	173.6	193.0	197	202.0	225.3	247.9	234	244.9	271.4	298.0	271	280.5	311.0	341.5
124	106.3	121.9	137.4	161	156.3	175.0	194.5	198	203.3	226.6	249.3	235	245.9	272.6	299.3	272	281.4	312.0	342.6
125	107.8	123.4	139.1	162	157.6	176.4	196.0	199	204.6	227.9	250.7	236	246.9	273.7	300.5	273	282.3	313.0	343.8
126	109.3	125.0	140.8	163	158.9	177.9	197.6	200	205.9	229.1	252.1	237	248.0	274.9	301.8	274	283.0	313.9	344.7
127	110.6	126.4	142.3	164	160.2	179.3	199.1	201	207.2	230.4	253.5	238	249.0	276.0	303.0	275	283.8	314.7	345.7
128	111.9	127.9	143.8	165	161.5	180.7	200.6	202	208.5	231.7	254.9	239	250.0	277.1	304.3	276	284.5	315.6	346.6
129	113.2	129.3	145.4	166	162.9	182.1	202.2	203	209.8	232.0	256.3	240	251.1	278.3	305.5	277	285.3	316.4	347.6
130	114.5	130.7	146.9	167	164.2	183.6	203.7	204	210.9	234.3	257.6	241	252.1	279.4	306.8	278	286.0	317.3	348.6
131	115.9	132.1	148.4	168	165.5	185.0	205.3	205	212.1	235.6	259.0	242	253.1	280.6	308.0	279	286.8	318.1	349.5
132	117.2	133.6	150.0	169	166.8	186.4	206.8	206	213.3	236.9	260.4	243	254.2	281.7	309.3	280	287.5	319.0	350.5
133	118.5	135.0	151.5	170	168.1	187.9	208.3	207	214.5	238.1	261.8	244	255.2	282.9	310.5	281	288.3	319.9	351.5
134	119.8	136.4	153.0	171	169.5	189.3	209.9	208	215.6	239.4	263.2	245	256.3	284.0	311.8	282	289.0	320.7	352.4
135	121.1	137.9	154.6	172	170.8	190.7	211.4	209	216.8	240.7	264.6	246	257.3	285.1	313.0	283	289.8	321.6	353.4
136	122.5	139.3	156.1	173	172.1	192.1	212.9	210	218.0	242.0	266.0	247	258.3	286.3	314.3	284	290.5	322.4	354.4
137	123.8	140.7	157.6	174	173.4	193.6	214.5	211	219.2	243.3	267.4	248	259.4	287.4	315.5	285	291.3	323.3	355.3
138	125.1	142.1	159.2	175	174.8	195.0	216.0	212	220.4	244.6	268.8	249	260.4	288.6	316.8	286	292.0	324.1	356.3
139	126.4	143.6	160.7	176	176.0	196.4	217.4	213	221.5	245.9	270.2	250	261.4	289.7	318.0	287	292.8	325.0	357.3
140	127.8	145.0	162.3	177	177.2	197.9	218.9	214	222.7	247.1	271.6	251	262.5	290.9	319.3	288	293.5	325.9	358.2
141	129.2	146.4	163.8	178	178.4	199.3	220.3	215	223.9	248.4	273.0	252	263.5	292.0	320.5	289	294.3	326.7	359.2
142	130.6	147.9	165.3	179	179.6	200.7	221.7	216	225.1	249.7	274.4	253	264.4	293.0	321.6	290	295.0	327.6	360.1
143	132.0	149.3	166.9	180	180.8	202.1	223.1	217	226.3	251.0	275.8	254	265.3	294.0	322.7	291	295.8	328.4	361.1
144	133.5	150.7	168.4	181	182.0	203.6	224.6	218	227.3	252.1	277.1	255	266.2	295.0	323.8	292	296.5	329.3	362.1
145	134.9	152.1	169.9	182	183.3	205.0	226.0	219	228.3	253.3	278.5	256	267.1	296.0	324.9	293	297.3	330.1	363.0
146	136.3	153.6	171.5	183	184.5	206.3	227.5	220	229.4	254.4	279.8	257	268.0	297.0	326.0	294	298.0	331.0	364.0
147	137.8	155.0	173.0	184	185.8	207.6	229.0	221	230.4	255.6	281.2	258	268.9	298.0	327.1				
148	139.1	156.4	174.5	185	187.1	208.9	230.5	222	231.4	256.7	282.5	259	269.8	299.0	328.3				

Abdominal Circumference, ASUM

Westerway SC. "Ultrasonic Fetal Measurements: New Australian Standards for the New Millennium." *Aust NZ J Obstet Gynaecol* 40:3:297-302, 2000.

AC Days	5%	mean mm	95%	AC Days	5%	mean mm	95%	AC Days	5%	mean mm	95%	AC Days	5%	mean mm	95%	AC Days	5%	mean mm	95%
77	43.8	52.0	60.2	120	109.2	121.6	133.9	163	173.8	190.3	206.7	206	239.7	260.3	280.8	249	293.7	320.7	347.7
78	45.3	53.6	61.8	121	110.8	123.1	135.5	164	176.0	192.4	208.9	207	240.2	260.7	281.3	250	294.5	322.1	349.8
79	46.9	55.1	63.4	122	112.4	124.7	137.1	165	178.1	194.6	211.0	208	240.6	261.1	281.7	251	295.4	323.6	351.8
80	48.5	56.7	64.9	123	113.9	126.3	138.6	166	180.3	196.7	213.2	209	241.0	261.6	282.1	252	296.2	325.0	353.8
81	50.1	58.3	66.5	124	115.5	127.9	140.2	167	182.4	198.9	215.3	210	241.4	262.0	282.6	253	297.4	326.1	354.9
82	51.6	59.9	68.1	125	117.1	129.4	141.8	168	184.6	201.0	217.5	211	242.3	263.4	284.6	254	298.5	327.3	356.1
83	53.2	61.4	69.7	126	118.7	131.0	143.3	169	186.1	202.6	219.0	212	243.1	264.9	286.6	255	299.6	328.4	357.2
84	54.8	63.0	71.2	127	119.9	132.3	144.6	170	187.7	204.1	220.6	213	244.0	266.3	288.6	256	300.8	329.6	358.4
85	56.3	64.6	72.8	128	121.2	133.6	145.9	171	189.3	205.7	222.2	214	244.8	267.7	290.6	257	301.9	330.7	359.5
86	57.9	66.1	74.4	129	122.5	134.9	147.2	172	190.8	207.3	223.7	215	245.6	269.1	292.6	258	303.1	331.9	360.6
87	59.5	67.7	75.9	130	123.8	136.1	148.5	173	192.4	208.9	225.3	216	246.5	270.6	294.7	259	304.2	333.0	361.8
88	61.1	69.3	77.5	131	125.1	137.4	149.8	174	194.0	210.4	226.9	217	247.3	272.0	296.7	260	305.5	334.3	363.1
89	62.6	70.9	79.1	132	126.4	138.7	151.1	175	195.6	212.0	228.5	218	248.9	273.6	298.2	261	306.8	335.6	364.4
90	64.2	72.4	80.7	133	127.7	140.0	152.3	176	196.5	213.6	230.6	219	250.5	275.1	299.8	262	308.1	336.9	365.6

Abdominal Circumference (Plotted), Chitty

Chitty, LS, Altman, DG, "Charts of Fetal Size: 2. Head Measurements," *British Journal of Obstetrics & Gynaecology* 101:35-43, 1994.

AC Days	5%	mean mm	95%	AC Days	5%	mean mm	95%	AC Days	5%	mean mm	95%	AC Days	5%	mean mm	95%	AC Days	5%	mean mm	95%
84	49.1	58.9	68.8	127	116.4	130.9	145.4	170	180.5	199.6	218.7	213	240.1	263.8	287.5	256	294.1	322.5	350.8
85	50.7	60.6	70.6	128	118.0	132.6	147.1	171	181.9	201.1	220.3	214	241.4	265.3	289.1	257	295.3	323.8	352.2
86	52.3	62.3	72.4	129	119.5	134.2	148.9	172	183.4	202.7	222.0	215	242.8	266.7	290.6	258	296.5	325.1	353.6
87	53.9	64.0	74.2	130	121.0	135.8	150.6	173	184.8	204.2	223.6	216	244.1	268.1	292.2	259	297.7	326.3	355.0
88	55.4	65.7	76.0	131	122.6	137.5	152.4	174	186.3	205.8	225.3	217	245.4	269.5	293.7	260	298.8	327.6	356.4
89	57.0	67.4	77.8	132	124.1	139.1	154.1	175	187.7	207.3	226.9	218	246.7	271.0	295.2	261	300.0	328.9	357.8
90	58.6	69.1	79.6	133	125.6	140.7	155.8	176	189.1	208.8	228.6	219	248.0	272.4	296.7	262	301.2	330.2	359.1
91	60.2	70.8	81.4	134	127.1	142.4	157.6	177	190.5	210.4	230.2	220	249.3	273.8	298.3	263	302.3	331.4	360.5
92	61.8	72.5	83.2	135	128.6	144.0	159.3	178	192.0	211.9	231.9	221	250.6	275.2	299.8	264	303.5	332.7	361.9
93	63.4	74.2	85.0	136	130.2	145.6	161.0	179	193.4	213.4	233.5	222	251.9	276.6	301.3	265	304.6	334.0	363.3
94	65.0	75.9	86.8	137	131.7	147.2	162.8	180	194.8	215.0	235.1	223	253.2	278.0	302.8	266	305.8	335.2	364.6
95	66.6	77.6	88.6	138	133.2	148.8	164.5	181	196.2	216.5	236.8	224	254.5	279.4	304.3	267	306.9	336.5	366.0
96	68.1	79.3	90.4	139	134.7	150.5	166.2	182	197.6	218.0	238.4	225	255.8	280.8	305.8	268	308.1	337.7	367.3
97	69.7	81.0	92.2	140	136.2	152.1	167.9	183	199.0	219.5	240.0	226	257.1	282.2	307.3	269	309.2	339.0	368.7
98	71.3	82.7	94.0	141	137.7	153.7	169.7	184	200.5	221.0	241.6	227	258.4	283.6	308.8	270	310.3	340.2	370.0
99	72.9	84.3	95.8	142	139.2	155.3	171.4	185	201.9	222.6	243.3	228	259.6	285.0	310.3	271	311.5	341.4	371.4
100	74.5	86.0	97.6	143	140.7	156.9	173.1	186	203.3	224.1	244.9	229	260.9	286.4	311.8	272	312.6	342.7	372.7
101	76.0	87.7	99.4	144	142.2	158.5	174.8	187	204.7	225.6	246.5	230	262.2	287.7	313.3	273	313.7	343.9	374.1
102	77.6	89.4	101.2	145	143.7	160.1	176.5	188	206.1	227.1	248.1	231	263.5	289.1	314.8	274	314.8	345.1	375.4
103	79.2	91.1	103.0	146	145.2	161.7	178.2	189	207.5	228.6	249.7	232	264.7	290.5	316.3	275	316.0	346.3	376.7
104	80.7	92.7	104.7	147	146.7	163.3	180.0	190	208.8	230.1	251.3	233	266.0	291.9	317.7	276	317.1	347.6	378.0
105	82.3	94.4	106.5	148	148.2	164.9	181.7	191	210.2	231.6	252.9	234	267.3	293.2	319.2	277	318.2	348.8	379.4
106	83.9	96.1	108.3	149	149.7	166.5	183.4	192	211.6	233.1	254.5	235	268.5	294.6	320.7	278	319.3	350.0	380.7
107	85.5	97.8	110.1	150	151.2	168.1	185.1	193	213.0	234.6	256.1	236	269.8	296.0	322.2	279	320.4	351.2	382.0
108	87.0	99.4	111.9	151	152.7	169.7	186.8	194	214.4	236.1	257.7	237	271.0	297.3	323.6	280	321.5	352.4	383.3
109	88.6	101.1	113.6	152	154.2	171.3	188.5	195	215.8	237.6	259.3	238	272.3	298.7	325.1	281	322.6	353.6	384.6
110	90.1	102.8	115.4	153	155.6	172.9	190.2	196	217.1	239.0	260.9	239	273.5	300.0	326.5	282	323.6	354.8	385.9
111	91.7	104.5	117.2	154	157.1	174.5	191.9	197	218.5	240.5	262.5	240	274.8	301.4	328.0	283	324.7	356.0	387.2
112	93.3	106.1	119.0	155	158.6	176.1	193.6	198	219.9	242.0	264.1	241	276.0	302.7	329.5	284	325.8	357.2	388.5
113	94.8	107.8	120.7	156	160.1	177.7	195.3	199	221.3	243.5	265.7	242	277.2	304.1	330.9	285	326.9	358.3	389.8
114	96.4	109.4	122.5	157	161.6	179.2	196.9	200	222.6	244.9	267.3	243	278.5	305.4	332.3	286	327.9	359.5	391.1
115	97.9	111.1	124.3	158	163.0	180.8	198.6	201	224.0	246.4	268.8	244	279.7	306.7	333.8	287	329.0	360.7	392.4
116	99.5	112.8	126.1	159	164.5	182.4	200.3	202	225.3	247.9	270.4	245	280.9	308.1	335.2	288	330.1	361.9	393.6
117	101.0	114.4	127.8	160	166.0	184.0	202.0	203	226.7	249.3	272.0	246	282.1	309.4	336.7	289	331.1	363.0	394.9
118	102.6	116.1	129.6	161	167.4	185.8	203.7	204	228.1	250.8	273.6	247	283.4	310.7	338.1	290	332.2	364.2	396.2
119	104.1	117.7	131.3	162	168.9	187.1	205.4	205	229.4	252.3	275.1	248	284.6	312.0	339.5	291	333.2	365.3	397.4
120	105.7	119.4	133.1	163	170.3	188.7	207.0	206	230.8	253.7	276.7	249	285.8	313.4	341.0	292	334.3	366.5	398.7
121	107.2	121.0	134.9	164	171.8	190.3	208.7	207	232.1	255.2	278.2	250	287.0	314.7	342.4	293	335.3	367.6	400.0
122	108.8	122.7	136.6	165	173.3	191.8	210.4	208	233.4	256.6	279.8	251	288.2	316.0	343.8	294	336.4	368.8	401.2
123	110.3	124.3	138.4	166	174.7	193.4	212.0	209	234.8	258.1	281.4	252	289.4	317.3	345.2				
124	111.8	126.0	140.1	167	176.2	194.9	213.7	210	236.1	259.5	282.9	253	290.6	318.6	346.6				
125	113.4	127.6	141.9	168	177.6	196.5	215.4	211	237.5	261.0	284.5	254	291.8	319.9	348.0				
126	114.9	129.3	143.6	169	179.1	198.0	217.0	212	238.8	262.4	286.0	255	293.0	321.2	349.4				

AXT, Tokyo

Masuda H, Shinozuka N, Okai T, Mizuno M. "Diagnosis of the Week of Pregnancy and Prognosis." *Perinatal Care* 8:719-726.

AXT = APTD * TTD

Anteroposterior Trunk Diameter multiplied by Transverse Trunk Diameter

AXT Days	- 1.5SD	mean cm ²	+ 1.5SD	AXT Days	- 1.5SD	mean cm ²	+ 1.5SD	AXT Days	- 1.5SD	mean cm ²	+ 1.5SD	AXT Days	- 1.5SD	mean cm ²	+ 1.5SD	AXT Days	- 1.5SD	mean cm ²	+ 1.5SD
140	16.4	20.6	27.1	170	24.7	32.5	41.3	200	38.2	47.0	58.4	230	51.4	63.3	77.5	260	64.7	80.3	96.8
141	16.4	20.9	27.5	171	25.1	32.9	41.8	201	38.7	47.5	59.1	231	51.8	63.9	78.1	261	65.2	80.8	97.4
142	16.5	21.3	27.9	172	25.5	33.4	42.3	202	39.2	48.1	59.7	232	52.3	64.5	78.8	262	65.7	81.4	98.0
143	16.7	21.6	28.3	173	25.9	33.8	42.9	203	39.6	48.6	60.3	233	52.7	65.0	79.4	263	66.2	81.9	98.6
144	16.8	22.0	28.8	174	26.3	34.3	43.4	204	40.1	49.1	60.9	234	53.1	65.6	80.1	264	66.7	82.5	99.3
145	16.9	22.4	29.2	175	26.8	34.7	44.0	205	40.5	49.6	61.5	235	53.5	66.2	80.7	265	67.3	83.0	99.9
146	17.1	22.7	29.6	176	27.2	35.2	44.5	206	41.0	50.2	62.1	236	53.9	66.7	81.4	266	67.8	83.6	100.5
147	17.3	23.1	30.1	177	27.7	35.7	45.1	207	41.4	50.7	62.8	237	54.4	67.3	82.0	267	68.4	84.1	101.1
148	17.5	23.5	30																

Fetal Trunk Area, OsakaAoki M, Yamada M. "Examining Fetal Growth." *Obstetrics and Gynecology* 47:547-556, 1983.

FTA Days	- mean cm ²	+ 1.5SD																	
98	3.8	5.6	7.4	135	13.2	16.6	20.1	172	25.9	31.7	37.6	209	41.5	50.2	58.9	246	58.1	70.1	82.1
99	4.0	5.8	7.6	136	13.3	16.9	20.5	173	26.4	32.2	38.1	210	42.1	50.8	59.5	247	58.5	70.6	82.8
100	4.2	6.0	7.8	137	13.7	17.3	20.9	174	26.6	32.6	38.6	211	42.5	51.3	60.2	248	58.8	71.1	83.4
101	4.4	6.3	8.3	138	13.9	17.6	21.4	175	27.1	33.1	39.1	212	43.0	51.8	60.7	249	59.3	71.6	83.9
102	4.6	6.5	8.5	139	14.3	18.0	21.8	176	27.5	33.6	39.8	213	43.4	52.4	61.4	250	59.8	72.2	84.7
103	4.9	6.8	8.8	140	14.7	18.4	22.2	177	28.0	34.1	40.3	214	43.8	52.9	62.1	251	60.1	72.7	85.3
104	5.2	7.1	9.1	141	14.8	18.7	22.6	178	28.2	34.5	40.8	215	44.3	53.4	62.6	252	60.6	73.2	85.8
105	5.2	7.3	9.4	142	15.2	19.1	23.0	179	28.7	35.0	41.3	216	44.7	54.0	63.3	253	61.0	73.7	86.5
106	5.5	7.6	9.7	143	15.6	19.5	23.4	180	29.1	35.5	42.0	217	45.2	54.5	63.8	254	61.3	74.2	87.1
107	5.7	7.8	9.9	144	15.9	19.9	24.0	181	29.6	36.0	42.5	218	45.6	55.0	64.5	255	61.8	74.7	87.6
108	5.9	8.1	10.4	145	16.2	20.2	24.3	182	29.9	36.5	43.1	219	46.0	55.6	65.2	256	62.2	75.2	88.3
109	6.2	8.4	10.7	146	16.4	20.6	24.8	183	30.3	36.9	43.5	220	46.5	56.1	65.7	257	62.5	75.7	88.9
110	6.5	8.7	11.0	147	16.8	21.0	25.2	184	30.7	37.4	44.2	221	47.0	56.7	66.5	258	63.0	76.2	89.4
111	6.7	8.9	11.2	148	17.2	21.4	25.6	185	31.2	37.9	44.7	222	47.5	57.2	67.0	259	63.5	76.8	90.2
112	6.8	9.2	11.6	149	17.5	21.8	26.2	186	31.5	38.4	45.3	223	47.8	57.7	67.6	260	63.8	77.3	90.8
113	7.1	9.5	11.9	150	17.9	22.2	26.6	187	32.0	38.9	45.8	224	48.3	58.3	68.4	261	64.1	77.7	91.4
114	7.4	9.8	12.2	151	18.1	22.6	27.1	188	32.4	39.4	46.5	225	48.8	58.8	68.9	262	64.6	78.2	91.9
115	7.6	10.1	12.7	152	18.5	23.0	27.5	189	32.9	39.9	47.0	226	49.2	59.4	69.6	263	64.9	78.7	92.5
116	7.9	10.4	13.0	153	18.9	23.4	27.9	190	33.2	40.4	47.6	227	49.7	59.9	70.1	264	65.3	79.2	93.2
117	8.2	10.7	13.3	154	19.2	23.8	28.5	191	33.7	40.9	48.1	228	50.1	60.4	70.8	265	65.8	79.7	93.7
118	8.3	11.0	13.7	155	19.6	24.2	28.9	192	34.1	41.4	48.8	229	50.5	61.0	71.5	266	66.1	80.2	94.3
119	8.6	11.3	14.0	156	19.9	24.7	29.5	193	34.6	41.9	49.3	230	51.0	61.5	72.0	267	66.5	80.7	95.0
120	8.9	11.6	14.3	157	20.3	25.1	29.9	194	34.9	42.4	49.9	231	51.5	62.1	72.8	268	66.7	81.1	95.5
121	9.1	11.9	14.8	158	20.6	25.5	30.5	195	35.4	42.9	50.4	232	52.0	62.6	73.3	269	67.2	81.6	96.0
122	9.4	12.2	15.1	159	21.0	25.9	30.9	196	35.8	43.4	51.1	233	52.3	63.1	73.9	270	67.6	82.1	96.7
123	9.7	12.5	15.4	160	21.5	26.4	31.4	197	36.4	44.0	51.7	234	52.8	63.7	74.7	271	67.9	82.6	97.3
124	9.8	12.8	15.8	161	21.7	26.8	31.9	198	36.7	44.5	52.3	235	53.3	64.2	75.2	272	68.3	83.0	97.7
125	10.2	13.2	16.2	162	22.1	27.2	32.3	199	37.2	45.0	52.8	236	53.6	64.7	75.8	273	68.7	83.5	98.4
126	10.5	13.5	16.5	163	22.5	27.7	33.0	200	37.6	45.5	53.5	237	54.1	65.3	76.6	274	68.9	83.9	98.9
127	10.7	13.8	17.0	164	22.9	28.1	33.4	201	38.1	46.0	54.0	238	54.6	65.8	77.1	275	69.3	84.4	99.6
128	11.0	14.1	17.3	165	23.1	28.5	33.9	202	38.5	46.6	54.7	239	55.0	66.4	77.8	276	69.7	84.8	100.0
129	11.4	14.5	17.7	166	23.6	29.0	34.4	203	39.0	47.1	55.2	240	55.5	66.9	78.3	277	70.0	85.3	100.6
130	11.5	14.8	18.1	167	23.9	29.4	35.0	204	39.4	47.6	55.9	241	55.9	67.4	79.0	278	70.3	85.7	101.2
131	11.9	15.2	18.5	168	24.4	29.9	35.5	205	39.7	48.1	56.5	242	56.2	67.9	79.6	279	70.5	86.1	101.7
132	12.2	15.5	18.8	169	24.8	30.3	35.9	206	40.3	48.7	57.1	243	56.8	68.5	80.2	280	71.0	86.6	102.2
133	12.4	15.8	19.3	170	25.1	30.8	36.5	207	40.7	49.2	57.8	244	57.2	69.0	80.9				
134	12.8	16.2	19.7	171	25.6	31.3	37.0	208	41.2	49.7	58.3	245	57.5	69.5	81.5				

Femur Length, HadlockHadlock FP, Deter RL, Harrist RB, Park SK. "Estimating Fetal Age: Computer-Assisted Analysis of Multiple Fetal Growth Parameters." *Radiology* 152:497, 1984

$$\text{FL(cm)} = -3.91 + 0.427 * \text{MA(wks)} - 0.0034 * \text{MA(wks)}^2$$

1 Standard Deviation: $\pm 3 \text{ mm}$ 5 & 95%: $\pm 4.94 \text{ mm}$

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
12	0	2.3	7.2	12.2	18	1	22.2	27.2	32.1	24	2	39.6	44.5	49.5	30	3	54.4	59.3	64.3
12	1	2.8	7.7	12.7	18	2	22.7	27.6	32.6	24	3	40.0	44.9	49.9	30	4	54.7	59.7	64.6
12	2	3.3	8.2	13.2	18	3	23.1	28.0	33.0	24	4	40.4	45.3	50.2	30	5	55.0	60.0	64.9
12	3	3.8	8.7	13.7	18	4	23.5	28.5	33.4	24	5	40.7	45.7	50.6	30	6	55.3	60.3	65.2
12	4	4.3	9.2	14.1	18	5	24.0	28.9	33.8	24	6	41.1	46.0	51.0	31	0	55.7	60.6	65.5
12	5	4.8	9.7	14.6	18	6	24.4	29.3	34.3	25	0	41.5	46.4	51.3	31	1	56.0	60.9	65.8
12	6	5.2	10.2	15.1	19	0	24.8	29.8	34.7	25	1	41.8	46.8	51.7	31	2	56.3	61.2	66.2
13	0	5.7	10.7	15.6	19	1	25.2	30.2	35.1	25	2	42.2	47.1	52.1	31	3	56.6	61.5	66.5
13	1	6.2	11.1	16.1	19	2	25.7	30.6	35.5	25	3	42.6	47.5	52.4	31	4	56.9	61.8	66.8
13	2	6.7	11.6	16.6	19	3	26.1	31.0	36.0	25	4	42.9	47.9	52.8	31	5	57.2	62.1	67.1
13	3	7.2	12.1	17.0	19	4	26.5	31.4	36.4	25	5	43.3	48.2	53.2	31	6	57.5	62.4	67.4
13	4	7.6	12.6	17.5	19	5	26.9	31.9	36.8	25	6	43.6	48.6	53.5	32	0	58.1	63.0	68.0
13	6	8.6	13.5	18.5	20	0	27.8	32.7	37.6	26	1	44.4	49.3	54.2	32	2	58.4	63.3	68.3
14	0	9.1	14.0	19.0	20	1	28.2	33.1	38.1	26	2	44.7	49.6	54.6	32	3	58.7	63.6	68.6
14	1	9.5	14.5	19.4	20	2	28.6	33.5	38.5	26	3	45.1	50.0	54.9	32	4	59.0	63.9	68.8
14	2	10.0	15.0	19.9	20	3	29.0	33.9	38.9	26	4	45.4	50.4	55.3	32	5	59.3	64.2	69.1
14	3	10.5	15.4	20.4	20	4	29.4	34.4	39.3	26	5	45.8	50.7	55.6	32	6	59.6	64.5	69.4
14	4	11.0	15.9	20.8	20	5	29.8	34.8	39.7	26	6	46.1	51.1	56.0	33	0	59.8	64.8	69.7
14	5	11.4	16.4	21.3	20														

Femur Length, Merz

Merz E, Kim-Kern M-S, Pehl S. " Ultrasonic Mensuration of Fetal Limb Bones in the Second and Third Trimesters." *Journal of Clinical Ultrasound* 15:175, March/April 1987.

5 & 95%: (2SD/2 * 1.645)

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
13	0	9.4	11.0	12.6	18	6	25.1	27.6	30.1	24	5	42.4	44.9	47.4	30	4	54.4	58.3	62.2
13	1	9.7	11.3	12.9	19	0	25.5	28.0	30.5	24	6	42.9	45.4	47.9	30	5	54.6	58.9	63.1
13	2	10.0	11.6	13.2	19	1	25.9	28.4	30.9	25	0	43.5	46.0	48.5	30	6	54.9	59.4	64.0
13	3	10.3	11.9	13.5	19	2	26.4	28.9	31.4	25	1	43.7	46.3	48.9	31	0	55.1	60.0	64.9
13	4	10.5	12.1	13.7	19	3	26.8	29.3	31.8	25	2	43.8	46.6	49.3	31	1	55.2	60.1	65.0
13	5	10.8	12.4	14.0	19	4	27.2	29.7	32.2	25	3	44.0	46.9	49.7	31	2	55.4	60.3	65.2
13	6	11.1	12.7	14.3	19	5	27.6	30.1	32.6	25	4	44.2	47.1	50.1	31	3	55.5	60.4	65.3
14	0	11.4	13.0	14.6	19	6	28.1	30.6	33.1	25	5	44.4	47.4	50.5	31	4	55.7	60.6	65.5
14	1	11.7	13.3	14.9	20	0	28.5	31.0	33.5	25	6	44.5	47.7	50.9	31	5	55.8	60.7	65.6
14	2	12.0	13.6	15.2	20	1	29.0	31.6	34.2	26	0	44.7	48.0	51.3	31	6	56.0	60.9	65.8
14	3	12.3	13.9	15.5	20	2	29.4	32.1	34.9	26	1	45.0	48.1	51.3	32	0	56.1	61.0	65.9
14	4	12.5	14.1	15.7	20	3	29.9	32.7	35.6	26	2	45.2	48.3	51.4	32	1	56.6	61.4	66.2
14	5	12.8	14.4	16.0	20	4	30.3	33.3	36.2	26	3	45.5	48.4	51.4	32	2	57.2	61.9	66.5
14	6	13.1	14.7	16.3	20	5	30.8	33.9	36.9	26	4	45.7	48.6	51.4	32	3	57.7	62.3	66.8
15	0	13.4	15.0	16.6	20	6	31.2	34.4	37.6	26	5	46.0	48.7	51.4	32	4	58.3	62.7	67.2
15	1	13.8	15.6	17.3	21	0	31.7	35.0	38.3	26	6	46.2	48.9	51.5	32	5	58.8	63.1	67.5
15	2	14.3	16.1	18.0	21	1	32.0	35.1	38.3	27	0	46.5	49.0	51.5	32	6	59.4	63.6	67.8
15	3	14.7	16.7	18.7	21	2	32.2	35.3	38.4	27	1	46.8	49.6	52.3	33	0	59.9	64.0	68.1
15	4	15.2	17.3	19.4	21	3	32.5	35.4	38.4	27	2	47.2	50.1	53.1	33	1	60.1	64.3	68.5
15	5	15.6	17.9	20.1	21	4	32.7	35.6	38.4	27	3	47.5	50.7	53.9	33	2	60.2	64.6	68.9
15	6	16.1	18.4	20.8	21	5	33.0	35.7	38.4	27	4	47.9	51.3	54.7	33	3	60.4	64.9	69.3
16	0	16.5	19.0	21.5	21	6	33.2	35.9	38.5	27	5	48.2	51.9	55.5	33	4	60.6	65.1	69.7
16	1	16.9	19.4	21.9	22	0	33.5	36.0	38.5	27	6	48.6	52.4	56.3	33	5	60.8	65.4	70.1
16	2	17.4	19.9	22.4	22	1	34.0	36.6	39.2	28	0	48.9	53.0	57.1	33	6	60.9	65.7	70.5
16	3	17.8	20.3	22.8	22	2	34.4	37.1	39.9	28	1	48.9	53.0	57.1	34	0	61.1	66.0	70.9
16	4	18.2	20.7	23.2	22	3	34.9	37.7	40.6	28	2	48.9	53.0	57.1	34	1	61.2	66.1	71.0
16	5	18.6	21.1	23.6	22	4	35.3	38.3	41.2	28	3	48.9	53.0	57.1	34	2	61.4	66.3	71.2
16	6	19.1	21.6	24.1	22	5	35.8	38.9	41.9	28	4	48.9	53.0	57.1	34	3	61.5	66.4	71.3
17	0	19.5	22.0	24.5	22	6	36.2	39.4	42.6	28	5	48.9	53.0	57.1	34	4	61.7	66.6	71.5
17	1	19.9	22.4	24.9	23	0	36.7	40.0	43.3	28	6	48.9	53.0	57.1	34	5	61.8	66.7	71.6
17	2	20.4	22.9	25.4	23	1	37.1	40.3	43.5	29	0	48.9	53.0	57.1	34	6	62.0	66.9	71.8
17	3	20.8	23.3	25.8	23	2	37.5	40.6	43.6	29	1	49.6	53.4	57.3	35	0	62.1	67.0	71.9
17	4	21.2	23.7	26.2	23	3	37.9	40.9	43.8	29	2	50.2	53.9	57.5	35	1	62.4	67.4	72.5
17	5	21.6	24.1	26.6	23	4	38.3	41.1	44.0	29	3	50.9	54.3	57.7	35	2	62.7	67.9	73.0
17	6	22.1	24.6	27.1	23	5	38.7	41.4	44.2	29	4	51.5	54.7	57.9	35	3	63.0	68.3	73.6
17	7	22.5	25.0	27.5	23	6	39.1	41.7	44.3	29	5	52.2	55.1	58.1	35	4	63.6	68.7	74.1
17	8	22.9	25.4	27.9	24	0	39.5	42.0	44.5	29	6	52.8	55.6	58.3	35	5	63.6	69.1	74.7
17	9	23.4	25.9	28.4	24	1	40.1	42.6	45.1	30	0	53.5	56.0	58.5	35	6	63.9	69.6	75.2
18	0	23.8	26.3	28.8	24	2	40.6	43.1	45.6	30	1	53.7	56.6	59.4	36	0	64.2	70.0	75.8
18	1	24.2	26.7	29.2	24	3	41.2	43.7	46.2	30	2	54.0	57.1	60.3	36	1	64.8	70.3	75.7
18	2	24.6	27.1	29.6	24	4	41.8	44.3	46.8	30	3	54.2	57.7	61.2	36	2	65.5	70.6	75.7

Femur Length, Jeanty

Jeanty P, Dramaix-Wilmet M, van Kerkem J, Petroons P, Schwers J. "Ultrasonic Evaluation of Fetal Limb Growth, Part II" *Radiology* 143:751, 1982.

$$FL(mm) = -36.040470 + 4.1626390 * MA(wk) - 0.0346367 * MA^2$$

5 & 95%: (1 SD * 1.645)

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
13	0	5.6	12.2	18.8	18	3	24.5	28.9	33.3	23	6	37.3	43.6	49.8	29	2	49.7	56.2	62.7
13	1	6.1	12.7	19.3	18	4	24.9	29.3	33.7	24	0	37.6	43.9	50.2	29	3	50.0	56.5	63.0
13	2	6.6	13.1	19.7	18	5	25.3	29.7	34.2	24	1	38.0	44.3	50.5	29	4	50.3	56.8	63.3
13	3	7.0	13.6	20.2	18	6	25.7	30.1	34.6	24	2	38.4	44.6	50.9	29	5	50.6	57.1	63.6
13	4	7.5	14.1	20.7	19	0	22.7	30.5	38.4	24	3	38.7	45.0	51.2	29	6	50.9	57.4	63.9
13	5	8.0	14.5	21.1	19	1	23.1	31.0	38.8	24	4	39.1	45.3	51.6	30	0	51.2	57.7	64.2
13	6	8.4	15.0	21.6	19	2	23.5	31.4	39.2	24	5	39.4	45.7	52.0	30	1	51.5	58.0	64.5
14	0	8.9	15.4	22.0	19	3	23.9	31.8	39.6	24	6	39.8	46.0	52.3	30	2	51.8	58.3	64.8
14	1	9.3	15.9	22.5	19	4	24.3	32.2	40.0	25	0	38.4	46.4	54.4	30	3	52.1	58.6	65.0
14	2	9.8	16.4	22.9	19	5	24.7	32.6	40.4	25	1	38.7	46.7	54.7	30	4	52.3	58.8	65.3
14	3	10.2	16.8	23.4	19	6	25.1	32.1	39.8	25	2	39.0	47.1	55.1	30	5	52.6	59.1	65.6
14	4	10.7	17.3	23.8	20	0	25.5	33.4	41.2	25	3	39.4	47.4	55.4	30	6	52.9	59.4	65.9
14	5	11.1	17.7	24.3	20	1	25.9	33.8	41.6	25	4	39.7	47.8	55.8	31	0	52.8	59.7	66.7
14	6	11.6	18.2	24.7	20	2	26.3	34.1	42.0	25	5	40.1	48.1	56.1	31	1	53.1	60.0	67.0
15	0	11.3	18.6	26.0	20	3	26.7	34.5	42.4	25	6	40.4	48.4	56.5	31	2	53.3	60.3	67.2
15	1	11.7	19.1	26.4	20	4	27.1	34.9	42.8	26	0	40.8	48.8	56.8	31	3	53.6	60.6	67.5
15	2	12.1	19.5	26.8	20	5	27.5	35.3	43.2	26	1	41.1	49.1	57.1	31	4	53.9	60.9	67.8
15	3	12.6	19.9	27.3	20	6	27.9	35.7	43.6	26	2	41.4	49.4	57.5	31	5	54.2	61.1	68.1
15	4																		

Femur Length, Hansmann

Hansmann M, Hackelöer B-J, Staudach A. *Ultrasound Diagnosis in Obstetrics and Gynecology*. New York: Springer-Verlag, 1985.

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
12	0	4.0	8.0	13.0	17	5	20.1	24.4	29.1	23	3	35.9	40.3	44.9	29	1	50.3	54.3	59.3	34	6	61.7	66.7	70.7
12	1	4.3	8.4	13.4	17	6	20.6	24.7	29.6	23	4	36.1	40.7	45.1	29	2	50.6	54.6	59.6	35	0	62.0	67.0	71.0
12	2	4.6	8.9	13.9	18	0	21.0	25.0	30.0	23	5	36.4	41.1	45.4	29	3	50.9	54.9	59.9	35	1	62.3	67.1	71.3
12	3	4.9	9.3	14.3	18	1	21.4	25.4	30.4	23	6	36.7	41.6	45.7	29	4	51.1	55.1	60.1	35	2	62.6	67.3	71.6
12	4	5.1	9.7	14.7	18	2	21.9	25.9	30.9	24	0	37.0	42.0	46.0	29	5	51.4	55.4	60.4	35	3	62.9	67.4	71.9
12	5	5.4	10.1	15.1	18	3	22.3	26.3	31.3	24	1	37.4	42.3	46.4	29	6	51.7	55.7	60.7	35	4	63.1	67.6	72.1
12	6	5.7	10.6	15.6	18	4	22.7	26.7	31.7	24	2	37.9	42.6	46.9	30	0	52.0	56.0	61.0	35	5	63.4	67.7	72.4
13	0	6.0	11.0	16.0	18	5	23.1	27.1	32.1	24	3	38.3	42.9	47.3	30	1	52.3	56.4	61.3	35	6	63.7	67.9	72.7
13	1	6.4	11.4	16.3	18	6	23.6	27.6	32.6	24	4	38.7	43.1	47.7	30	2	52.6	56.9	61.6	36	0	64.0	68.0	73.0
13	2	6.9	11.9	16.6	19	0	24.0	28.0	33.0	24	5	39.1	43.4	48.1	30	3	52.9	57.3	61.9	36	1	64.1	68.3	73.1
13	3	7.3	12.3	16.9	19	1	24.3	28.4	33.4	24	6	39.6	43.7	48.6	30	4	53.1	57.7	62.1	36	2	64.3	68.6	73.3
13	4	7.7	12.7	17.1	19	2	24.6	28.9	33.9	25	0	40.0	44.0	49.0	30	5	53.4	58.1	62.4	36	3	64.4	68.9	73.4
13	5	8.1	13.1	17.4	19	3	24.9	29.3	34.3	25	1	40.3	44.4	49.3	30	6	53.7	58.6	62.7	36	4	64.6	69.1	73.6
13	6	8.6	13.6	17.7	19	4	25.1	29.7	34.7	25	2	40.6	44.9	49.6	31	0	54.0	59.0	63.0	36	5	64.7	69.4	73.7
14	0	9.0	14.0	18.0	19	5	25.4	30.1	35.1	25	3	40.9	45.3	49.9	31	1	54.3	59.3	63.3	36	6	64.9	69.7	73.9
14	1	9.4	14.4	18.4	19	6	25.7	30.6	35.6	25	4	41.1	45.7	50.1	31	2	54.6	59.6	63.6	37	0	65.0	70.0	74.0
14	2	9.9	14.9	18.9	20	0	26.0	31.0	36.0	25	5	41.4	46.1	50.4	31	3	54.9	59.9	63.9	37	1	65.3	70.1	74.3
14	3	10.3	15.3	19.3	20	1	26.4	31.4	36.3	25	6	41.7	46.6	50.7	31	4	55.1	60.1	64.1	37	2	65.6	70.3	74.6
14	4	10.7	15.7	19.7	20	2	26.9	31.9	36.6	26	0	42.0	47.0	51.0	31	5	55.4	60.4	64.4	37	3	65.9	70.4	74.9
14	5	11.1	16.1	20.1	20	3	27.3	32.3	36.9	26	1	42.4	47.3	51.4	31	6	55.7	60.7	64.7	37	4	66.1	70.6	75.1
14	6	11.6	16.6	20.6	20	4	27.7	32.7	37.1	26	2	42.9	47.6	51.9	32	0	56.0	61.0	65.0	37	5	66.4	70.7	75.4
15	0	12.0	17.0	21.0	20	5	28.1	33.1	37.4	26	3	43.3	47.9	52.3	32	1	56.3	61.3	65.3	37	6	66.7	70.9	75.7
15	1	12.4	17.4	21.4	20	6	28.6	33.6	37.7	26	4	43.7	48.1	52.7	32	2	56.6	61.6	65.6	38	0	67.0	71.0	76.0
15	2	12.9	17.9	21.9	21	0	29.0	34.0	38.0	26	5	44.1	48.4	53.1	32	3	56.9	61.9	65.9	38	1	67.1	71.3	76.1
15	3	13.3	18.3	22.3	21	1	29.4	34.3	38.4	26	6	44.6	48.7	53.6	32	4	57.1	62.1	66.1	38	2	67.3	71.6	76.3
15	4	13.7	18.7	22.7	21	2	29.9	34.6	38.9	27	0	45.0	49.0	54.0	32	5	57.4	62.4	66.4	38	3	67.4	71.9	76.4
15	5	14.1	19.1	23.1	21	3	30.3	34.9	39.3	27	1	45.3	49.4	54.3	32	6	57.7	62.7	66.7	38	4	67.6	72.1	76.6
15	6	14.6	19.6	23.6	21	4	30.7	35.1	39.7	27	2	45.6	49.9	54.6	33	0	58.0	63.0	67.0	38	5	67.7	72.4	76.7
16	0	15.0	20.0	24.0	21	5	31.1	35.4	40.1	27	3	45.9	50.3	54.9	33	1	58.3	63.3	67.3	38	6	67.9	72.7	76.9
16	1	15.4	20.4	24.4	21	6	31.6	35.7	40.6	27	4	46.1	50.7	55.1	33	2	58.6	63.6	67.6	39	0	68.0	73.0	77.0
16	2	15.9	20.9	24.9	22	0	32.0	36.0	41.0	27	5	46.4	51.1	55.4	33	3	58.9	63.9	67.9	39	1	68.3	73.1	77.3
16	3	16.3	21.3	25.3	22	1	32.4	36.4	41.4	27	6	46.7	51.6	55.7	33	4	59.1	64.1	68.1	39	2	68.6	73.3	77.6
16	4	16.7	21.7	25.7	22	2	32.9	36.9	41.9	28	0	47.0	52.0	56.0	33	5	59.4	64.4	68.4	39	3	68.9	73.4	77.9
16	5	17.1	22.1	26.1	22	3	33.3	37.3	42.3	28	1	47.4	52.3	56.4	33	6	59.7	64.7	68.7	39	4	69.1	73.6	78.1
16	6	17.6	22.6	26.6	22	4	33.7	37.7	42.7	28	2	47.9	52.6	56.9	34	0	60.0	65.0	69.0	39	5	69.4	73.7	78.4
17	0	18.0	23.0	27.0	22	5	34.1	38.1	43.1	28	3	48.3	52.9	57.3	34	1	60.3	65.3	69.3	39	6	69.7	73.9	78.7
17	1	18.4	23.3	27.4	22	6	34.6	38.6	43.6	28	4	48.7	53.1	57.7	34	2	60.6	65.6	69.6	40	0	70.0	74.0	79.0
17	2	18.9	23.6	27.9	23	0	35.0	39.0	44.0	28	5	49.1	53.4	58.1	34	3	60.9	65.9	69.9					
17	3	19.3	23.9	28.3	23	1	35.3	39.4	44.3	28	6	49.6	53.7	58.6	34	4	61.1	66.1	70.1					
17	4	19.7	24.1	28.7	23	2	35.6	39.9	44.6	29	0	50.0	54.0	59.0	34	5	61.4	66.4	70.4					

Femur Length, Tokyo

Masuda H, Shinozuka N, Okai T, Mizuno M. "Diagnosis of the Week of Pregnancy and Prognosis." *Perinatal Care* 8:719-726.

FL Days	mean mm	+ 1.5SD																		
140	27.2	32.3	170	36.6	41.6	46.4	200	45.3	51.0	57.0	230	53.3	59.8	65.7	260	60.6	67.0	72.4		
141	27.5	32.6	171	36.9	41.9	46.8	201	45.6	51.3	57.3	231	53.6	60.1	65.9	261	60.8	67.2	72.6		
142	27.8	32.9	172	37.2	42.2	47.2	202	45.9	51.6	57.6	232	53.8	60.4	66.2	262	61.0	67.4	72.7		
143	28.1	33.2	173	37.5	42.5	47.6	203	46.1	51.9	57.9	233	54.1	60.6	66.4	263	61.3	67.6	72.9		
144	28.4	33.5	174	37.8	42.8	47.9	204	46.4	52.2	58.3	234	54.4	60.9	66.7	264	61.5	67.8	73.1		
145	28.8	33.8	175	38.1	43.1	48.3	205	46.7	52.5	58.6	235	54.6	61.2	66.9	265	61.7	68.0	73.3		
146	29.1	34.1	176	38.4	43.5	48.7	206	47.0	52.9	58.9	236	54.9	61.4	67.2	266	61.9	68.2	73.5		
147	29.4	34.4	177	38.7	43.8	49.1	207	47.2	53.2	59.2	237	55.1	61.7	67.4	267	62.1	68.3	73.6		
148	29.7	34.7	178	38.9	44.1	49.4	208	47.5	53.5	59.5	238	55.3	61.9	67.7	268	62.4	68.5	73.8	</	

Femur Length, OsakaAoki M, Yamada M. "Examining Fetal Growth." *Obstetrics and Gynecology* 47:547-556, 1983.

FL Days	- 1.5SD	mean mm	+ 1.5SD																
91	6.3	9.4	12.6	129	22.5	25.9	29.4	167	36.7	40.4	44.2	205	48.6	52.8	57.0	243	58.6	63.1	67.6
92	6.7	9.8	13.0	130	22.9	26.3	29.8	168	37.1	40.8	44.6	206	48.9	53.1	57.3	244	58.9	63.4	67.9
93	7.2	10.3	13.5	131	23.3	26.7	30.2	169	37.2	41.1	45.0	207	49.2	53.4	57.6	245	59.1	63.6	68.1
94	7.6	10.7	13.9	132	23.7	27.1	30.6	170	37.6	41.5	45.4	208	49.5	53.7	57.9	246	59.4	63.9	68.4
95	8.1	11.2	14.4	133	23.9	27.5	31.1	171	37.9	41.8	45.7	209	49.8	54.0	58.2	247	59.6	64.1	68.6
96	8.6	11.7	14.9	134	24.3	27.9	31.5	172	38.3	42.2	46.1	210	50.1	54.3	58.5	248	59.8	64.3	68.8
97	8.8	12.1	15.4	135	24.7	28.3	31.9	173	38.6	42.5	46.4	211	50.4	54.6	58.8	249	60.1	64.6	69.1
98	9.3	12.6	15.9	136	25.1	28.7	32.3	174	38.9	42.8	46.7	212	50.7	54.9	59.1	250	60.3	64.8	69.3
99	9.7	13.0	16.3	137	25.5	29.1	32.7	175	39.3	43.2	47.1	213	51.0	55.2	59.4	251	60.5	65.0	69.5
100	10.2	13.5	16.8	138	25.9	29.5	33.1	176	39.6	43.5	47.4	214	51.2	55.4	59.6	252	60.8	65.3	69.8
101	10.6	13.9	17.2	139	26.3	29.9	33.5	177	40.0	43.9	47.8	215	51.5	55.7	59.9	253	61.0	65.5	70.0
102	11.1	14.4	17.7	140	26.7	30.3	33.9	178	40.3	44.2	48.1	216	51.8	56.0	60.2	254	61.2	65.7	70.2
103	11.5	14.8	18.1	141	27.1	30.7	34.3	179	40.6	44.5	48.4	217	52.1	56.3	60.5	255	61.5	66.0	70.5
104	12.0	15.3	18.6	142	27.5	31.1	34.7	180	41.0	44.9	48.8	218	52.4	56.6	60.8	256	61.7	66.2	70.7
105	12.4	15.7	19.0	143	27.9	31.5	35.1	181	41.3	45.2	49.1	219	52.7	56.9	61.1	257	61.9	66.4	70.9
106	12.8	16.1	19.4	144	28.3	31.9	35.5	182	41.7	45.6	49.5	220	52.9	57.1	61.3	258	62.1	66.6	71.1
107	13.3	16.6	19.9	145	28.7	32.3	35.9	183	42.0	45.9	49.8	221	53.2	57.4	61.6	259	62.3	66.9	71.6
108	13.7	17.0	20.3	146	29.1	32.7	36.3	184	42.3	46.2	50.1	222	53.5	57.7	61.9	260	62.5	67.1	71.8
109	14.2	17.5	20.8	147	29.4	33.0	36.6	185	42.6	46.5	50.4	223	53.7	58.0	62.4	261	62.7	67.3	72.0
110	14.6	17.9	21.2	148	29.8	33.4	37.0	186	43.0	46.9	50.8	224	53.9	58.2	62.6	262	62.9	67.5	72.2
111	15.0	18.3	21.6	149	30.2	33.8	37.4	187	43.2	47.2	51.3	225	54.2	58.5	62.9	263	63.1	67.7	72.4
112	15.5	18.8	22.1	150	30.6	34.2	37.8	188	43.5	47.5	51.6	226	54.5	58.8	63.2	264	63.3	67.9	72.6
113	15.9	19.2	22.5	151	30.9	34.6	38.4	189	43.8	47.8	51.9	227	54.7	59.0	63.4	265	63.6	68.2	72.9
114	16.3	19.6	22.9	152	31.2	34.9	38.7	190	44.2	48.2	52.3	228	55.0	59.3	63.7	266	63.8	68.4	73.1
115	16.7	20.1	23.6	153	31.6	35.3	39.1	191	44.5	48.5	52.6	229	55.3	59.6	64.0	267	64.0	68.6	73.3
116	17.1	20.5	24.0	154	32.0	35.7	39.5	192	44.8	48.8	52.9	230	55.5	59.8	64.2	268	64.2	68.8	73.5
117	17.5	20.9	24.4	155	32.4	35.1	39.9	193	45.1	49.1	53.2	231	55.8	60.1	64.5	269	64.4	69.0	73.7
118	17.9	21.3	24.8	156	32.7	36.4	40.2	194	45.4	49.4	53.5	232	56.1	60.4	64.8	270	64.6	69.2	73.9
119	18.4	21.8	25.3	157	33.1	36.8	40.6	195	45.7	49.7	53.8	233	56.3	60.6	65.0	271	64.8	69.4	74.1
120	18.8	22.2	25.7	158	33.5	37.2	41.0	196	46.1	50.1	54.2	234	56.6	60.9	65.3	272	65.0	69.6	74.3
121	19.2	22.6	26.1	159	33.8	37.5	41.3	197	46.4	50.4	54.5	235	56.8	61.1	65.5	273	65.2	69.8	74.5
122	19.6	23.0	26.5	160	34.2	37.9	41.7	198	46.7	50.7	54.8	236	57.1	61.4	65.8	274	65.4	70.0	74.7
123	20.0	23.4	26.9	161	34.6	38.3	42.1	199	47.0	51.0	55.1	237	57.3	61.6	66.0	275	65.6	70.2	74.9
124	20.5	23.9	27.4	162	34.9	38.6	42.4	200	47.3	51.3	55.4	238	57.6	61.9	66.3	276	65.8	70.4	75.1
125	20.9	24.3	27.8	163	35.3	39.0	42.8	201	47.6	51.6	55.7	239	57.8	62.1	66.5	277	65.8	70.6	75.4
126	21.3	24.7	28.2	164	35.6	39.3	43.1	202	47.9	51.9	56.0	240	58.1	62.4	66.8	278	66.0	70.8	75.6
127	21.7	25.1	28.6	165	36.0	39.7	43.5	203	48.2	52.2	56.3	241	58.1	62.6	67.1	279	66.2	71.0	75.8
128	22.1	25.5	29.0	166	36.4	40.1	43.9	204	48.5	52.5	56.6	242	58.4	62.9	67.4	280	66.4	71.2	76.0

Femur Length, JSUMJapan Society of Ultrasonics in Medicine. "Standardization of Fetometry and Official Announcement of Diagnostic Guidelines." *J. Med. Ultrasonics* 28:844-872, 2001.

FL Days	- 1.5SD	mean mm	+ 1.5SD																
112	16.2	20.1	24.1	149	29.4	33.6	37.8	186	41.8	46.3	50.8	223	52.7	57.5	62.2	260	61.2	66.2	71.2
113	16.6	20.5	24.4	150	29.7	34.0	38.2	187	42.2	46.6	51.1	224	53.0	57.8	62.5	261	61.4	66.4	71.4
114	16.9	20.8	24.8	151	30.1	34.3	38.6	188	42.5	47.0	51.5	225	53.3	58.1	62.8	262	61.5	66.6	71.6
115	17.3	21.2	25.2	152	30.4	34.7	38.9	189	42.8	47.3	51.8	226	53.5	58.3	63.1	263	61.7	66.8	71.8
116	17.6	21.6	25.6	153	30.8	35.0	39.3	190	43.1	47.6	52.1	227	53.8	58.6	63.4	264	61.9	67.0	72.0
117	18.0	22.0	25.9	154	31.1	35.4	39.7	191	43.4	48.0	52.5	228	54.0	58.8	63.6	265	62.1	67.2	72.2
118	18.4	22.3	26.3	155	31.5	35.8	40.0	192	43.8	48.3	52.8	229	54.3	59.1	63.9	266	62.3	67.4	72.4
119	18.7	22.7	26.7	156	31.8	36.1	40.4	193	44.1	48.6	53.1	230	54.5	59.3	64.2	267	62.5	67.6	72.6
120	19.1	23.1	27.1	157	32.2	36.5	40.7	194	44.4	48.9	53.4	231	54.8	59.6	64.5	268	62.6	67.7	72.8
121	19.4	23.4	27.4	158	32.5	36.8	41.1	195	44.7	49.3	53.8	232	55.0	59.9	64.7	269	62.8	67.9	73.0
122	19.8	23.8	27.8	159	32.9	37.2	41.5	196	45.0	49.6	54.1	233	55.3	60.1	65.0	270	62.9	68.1	73.2
123	20.1	24.2	28.2	160	33.2	37.5	41.8	197	45.3	49.9	54.4	234	55.5	60.4	65.2	271	63.1	68.3	73.3
124	20.5	24.6	28.6	161	33.6	37.9	42.2	198	45.6	50.2	54.7	235	55.8	60.6	65.5	272	63.3	68.4	73.5
125	20.8	24.9	29.0	162	33.9	38.2	42.5	199	45.9	50.5	55.1	236	56.0	60.9	65.8	273	63.4	68.6	73.7
126	21.2	25.3	29.4	163	34.2	38.6	42.9	200	46.2	50.8	55.4	237	56.3	61.1	66.0	274	63.6	68.7	73.9
127	21.5	25.7	29.7	164	34.6	38.9	43.2	201	46.5	51.1	55.7	238	56.						

Femur Length, ASUM

ASUM; Australian Society of Ultrasound Medicine (ASUM) - Policy on Obstetric Exams, 1998.

FL Days	5%	mean mm	95%	FL Days	5%	mean mm	95%	FL Days	5%	mean mm	95%	FL Days	5%	mean mm	95%	FL Days	5%	mean mm	95%
77	6.4	8.0	9.6	120	22.0	25.4	28.8	163	39.7	43.6	47.4	206	51.6	56.3	61.0	249	63.2	68.1	73.1
78	6.6	8.3	10.0	121	22.3	25.9	29.4	164	40.1	43.9	47.6	207	52.0	56.7	61.5	250	63.5	68.4	73.4
79	6.8	8.6	10.3	122	22.6	26.3	29.9	165	40.5	44.1	47.8	208	52.3	57.1	62.0	251	63.8	68.7	73.6
80	7.0	8.9	10.7	123	23.0	26.7	30.5	166	40.9	44.4	48.0	209	52.7	57.6	62.4	252	64.1	69.0	73.9
81	7.3	9.1	11.0	124	23.3	27.1	31.0	167	41.3	44.7	48.1	210	53.1	58.0	62.9	253	64.6	69.4	74.2
82	7.5	9.4	11.4	125	23.6	27.6	31.6	168	41.7	45.0	48.3	211	53.3	58.1	63.0	254	65.2	69.9	74.6
83	7.7	9.7	11.7	126	23.9	28.0	32.1	169	42.0	45.4	48.8	212	53.5	58.3	63.1	255	65.7	70.3	74.9
84	7.9	10.0	12.1	127	24.2	28.3	32.4	170	42.3	45.9	49.4	213	53.7	58.4	63.2	256	66.2	70.7	75.2
85	8.1	10.1	12.2	128	24.5	28.6	32.7	171	42.6	46.3	49.9	214	53.9	58.6	63.3	257	66.8	71.1	75.5
86	8.2	10.3	12.3	129	24.7	28.9	33.0	172	43.0	46.7	50.5	215	54.1	58.7	63.4	258	67.3	71.6	75.8
87	8.4	10.4	12.5	130	25.0	29.1	33.3	173	43.3	47.1	51.0	216	54.3	58.9	63.4	259	67.9	72.0	76.1
88	8.5	10.6	12.6	131	25.3	29.4	33.5	174	43.6	47.6	51.6	217	54.5	59.0	63.5	260	68.0	72.1	76.3
89	8.7	10.7	12.8	132	25.6	29.7	33.8	175	43.9	48.0	52.1	218	54.8	59.4	64.0	261	68.1	72.3	76.5
90	8.8	10.9	12.9	133	25.9	30.0	34.1	176	44.0	48.1	52.3	219	55.2	59.9	64.5	262	68.1	72.4	76.7
91	8.9	11.0	13.1	134	26.1	30.3	34.5	177	44.2	48.3	52.4	220	55.6	60.3	65.0	263	68.2	72.6	76.9
92	9.5	11.6	13.7	135	26.2	30.6	34.9	178	44.3	48.4	52.5	221	56.0	60.7	65.5	264	68.3	72.7	77.1
93	10.0	12.1	14.3	136	26.4	30.9	35.3	179	44.5	48.6	52.7	222	56.3	61.1	66.0	265	68.4	72.9	77.3
94	10.5	12.7	14.9	137	26.6	31.1	35.7	180	44.6	48.7	52.8	223	56.7	61.6	66.4	266	68.5	73.0	77.5
95	11.0	13.3	15.6	138	26.7	31.4	36.1	181	44.7	48.9	53.0	224	57.1	62.0	66.9	267	68.7	73.3	77.9
96	11.5	13.9	16.2	139	26.9	31.7	36.5	182	44.9	49.0	53.1	225	57.7	62.4	67.1	268	68.9	73.6	78.2
97	12.0	14.4	16.8	140	27.1	32.0	36.9	183	45.0	49.1	53.3	226	58.4	62.9	67.3	269	69.2	73.9	78.6
98	12.5	15.0	17.5	141	27.4	32.3	37.2	184	45.2	49.3	53.4	227	59.1	63.3	67.5	270	69.4	74.1	78.9
99	12.8	15.3	17.8	142	27.6	32.6	37.5	185	45.3	49.4	53.5	228	59.7	63.7	67.7	271	69.6	74.4	79.2
100	13.0	15.6	18.2	143	27.9	32.9	37.8	186	45.5	49.6	53.7	229	60.4	64.1	67.9	272	69.8	74.7	79.6
101	13.2	15.9	18.5	144	28.2	33.1	38.1	187	45.6	49.7	53.8	230	61.0	64.6	68.1	273	70.1	75.0	79.9
102	13.4	16.1	18.8	145	28.5	33.4	38.4	188	45.7	49.9	54.0	231	61.7	65.0	68.3	274	70.4	75.1	79.8
103	13.7	16.4	19.2	146	28.8	33.7	38.6	189	45.9	50.0	54.1	232	61.9	65.1	68.4	275	70.8	75.3	79.8
104	13.9	16.7	19.5	147	29.1	34.0	38.9	190	46.6	50.6	54.6	233	62.0	65.3	68.6	276	71.2	75.4	79.7
105	14.1	17.0	19.9	148	29.6	34.4	39.2	191	47.3	51.1	55.0	234	62.1	65.4	68.7	277	71.6	75.6	79.6
106	14.8	17.7	20.7	149	30.2	34.9	39.6	192	48.0	51.7	55.5	235	62.3	65.6	68.9	278	72.0	75.7	79.5
107	15.4	18.4	21.4	150	30.7	35.3	39.9	193	48.6	52.3	55.9	236	62.4	65.7	69.0	279	72.3	75.9	79.4
108	16.1	19.1	22.2	151	31.2	35.7	40.2	194	49.3	52.9	56.4	237	62.6	65.9	69.1	280	72.7	76.0	79.3
109	16.7	19.9	23.0	152	31.8	36.1	40.5	195	50.0	53.4	56.8	238	62.7	66.0	69.3	281	72.7	76.1	79.6
110	17.4	20.6	23.7	153	32.3	36.6	40.8	196	50.7	54.0	57.3	239	62.6	66.1	69.7	282	72.8	76.3	79.8
111	18.1	21.3	24.5	154	32.9	37.0	41.1	197	50.7	54.1	57.6	240	62.5	66.3	70.0	283	72.8	76.4	80.1
112	18.7	22.0	25.3	155	33.7	37.9	42.0	198	50.6	54.3	57.9	241	62.4	66.4	70.4	284	72.8	76.6	80.3
113	19.1	22.4	25.7	156	34.6	38.7	42.8	199	50.6	54.4	58.2	242	62.3	66.6	70.8	285	72.8	76.7	80.6
114	19.6	22.9	26.1	157	35.5	39.6	43.7	200	50.6	54.6	58.6	243	62.2	66.7	71.2	286	72.9	76.9	80.9
115	20.0	23.3	26.6	158	36.3	40.4	44.5	201	50.5	54.7	58.9	244	62.2	66.9	71.6	287	72.9	77.0	81.1
116	20.4	23.7	27.0	159	37.2	41.3	45.4	202	50.5	54.9	59.2	245	62.1	67.0	71.9				
117	20.9	24.1	27.4	160	38.0	42.1	46.3	203	50.5	55.0	59.5	246	62.4	67.3	72.2				
118	21.3	24.6	27.9	161	38.9	43.0	47.1	204	50.8	55.4	60.0	247	62.6	67.6	72.5				
119	21.7	25.0	28.3	162	39.3	43.3	47.3	205	51.2	55.9	60.5	248	62.9	67.9	72.8				

Humerus Length, Jeanty

Jeanty P, Dramaix-Wilmet M, van Kerckhoven J, Petroons P, Schwers J. "Ultrasonic Evaluation of Fetal Limb Growth, Part II" Radiology 143:751, 1982.

$$HL(mm) = -33.895341 + 4.1233654 * MA(wks) - 0.042461521 * MA(wk)^2$$

5 & 95%: (1SD/2 * 1.645)

Wk Day	5%	Mean	95%	Wk Day	5%	Mean	95%	Wk Day	5%	Mean	95%	Wk Day	5%	Mean	95%	Wk Day	5%	Mean	95%
13	0	4.9	12.5	20.2	18	3	22.6	27.7	32.8	23	6	34.2	40.3	46.5	29	2	44.4	50.4	56.5
13	1	5.3	13.0	20.6	18	4	22.9	28.0	33.1	24	0	34.5	40.6	46.7	29	3	44.6	50.7	56.8
13	2	5.8	13.4	21.0	18	5	23.3	28.4	33.5	24	1	34.8	40.9	47.0	29	4	44.8	50.9	57.0
13	3	6.2	13.8	21.4	18	6	23.7	28.8	33.9	24	2	35.1	41.2	47.3	29	5	45.1	51.1	57.2
13	4	6.6	14.2	21.9	19	0	21.7	29.1	36.5	24	3	35.4	41.5	47.6	29	6	45.3	51.4	57.4
13	5	7.0	14.7	22.3	19	1	22.1	29.5	36.9	24	4	35.6	41.8	47.9	30	0	45.5	51.6	57.7
13	6	7.5	15.1	22.7	19	2	22.4	29.8	37.2	24	5	35.9	42.1	48.2	30	1	45.7	51.8	57.9
14	0	7.9	15.5	23.1	19	3	22.8	30.2	37.6	24	6	36.2	42.4	48.5	30	2	46.0	52.0	58.1
14	1	8.3	15.9	23.5	19	4	23.1	30.5	37.9	25	0	34.7	42.7	50.6	30	3	46.2	52.3	58.3
14	2	8.7	16.3	24.0	19	5	23.5	30.9	38.3	25	1	35.0	42.9	50.9	30	4	46.4	52.5	58.6
14	3	9.1	16.8	24.4	19	6	23.8	31.2	38.6	25	2	35.3	43.2	51.2	30	5	46.6	52.7	58.8
14	4	9.6	17.2	24.8	20	0	24.2	31.6	39.0	25	3	35.5	43.5	51.5	30	6	48.2	52.9	59.0
14	5	10.0	17.6	25.2	20	1	24.5	31.9	39.3	25	4	35.8	43.8	51.7	31	0	48.9	53.1	59.3
14	6	10.4	18.0	25.6	20	2	24.9</td												

Humerus Length, Merz

Merz E, Kim-Kern M-S, Pehl S. "Ultrasonic Mensuration of Fetal Limb Bones in the Second and Third Trimesters." *Journal of Clinical Ultrasound* 15:175, March/April 1987.

5 & 95%: (2SD/2 * 1.645)

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
13	0	8.4	10.0	11.6	18	6	23.1	25.6	28.1	24	5	37.6	40.9	44.2	30	4	48.1	51.7	55.4
13	1	8.7	10.3	11.9	19	0	23.5	26.0	28.5	24	6	38.1	41.4	44.7	30	5	48.6	52.1	55.7
13	2	9.0	10.6	12.2	19	1	23.9	26.4	28.9	25	0	38.7	42.0	45.3	30	6	49.2	52.6	56.0
13	3	9.3	10.9	12.5	19	2	24.4	26.9	29.4	25	1	39.0	42.1	45.3	31	0	49.7	53.0	56.3
13	4	9.5	11.1	12.7	19	3	24.8	27.3	29.8	25	2	39.2	42.3	45.4	31	1	49.8	53.1	56.4
13	5	9.8	11.4	13.0	19	4	25.2	27.7	30.2	25	3	39.5	42.4	45.4	31	2	50.0	53.3	56.6
13	6	10.1	11.7	13.3	19	5	25.6	28.1	30.6	25	4	39.7	42.6	45.4	31	3	50.1	53.4	56.7
14	0	10.4	12.0	13.6	19	6	26.1	28.6	31.1	25	5	40.0	42.7	45.4	31	4	50.3	53.6	56.9
14	1	10.7	12.3	13.9	20	0	26.5	29.0	31.5	25	6	40.2	42.9	45.5	31	5	50.4	53.7	57.0
14	2	11.0	12.6	14.2	20	1	26.8	29.4	32.0	26	0	40.5	43.0	45.5	31	6	50.6	53.9	57.2
14	3	11.3	12.9	14.5	20	2	27.1	29.9	32.6	26	1	40.9	43.3	45.7	32	0	50.7	54.0	57.3
14	4	11.5	13.1	14.7	20	3	27.4	30.3	33.1	26	2	41.3	43.6	45.8	32	1	50.9	54.3	57.7
14	5	11.8	13.4	15.0	20	4	27.8	30.7	33.7	26	3	41.7	43.9	46.0	32	2	51.0	54.6	58.1
14	6	12.1	13.7	15.3	20	5	28.1	31.1	34.2	26	4	42.2	44.1	46.1	32	3	51.2	54.9	58.5
15	0	12.4	14.0	15.6	20	6	28.4	31.6	34.8	26	5	42.6	44.4	46.3	32	4	51.4	55.1	58.9
15	1	12.8	14.4	16.0	21	0	28.7	32.0	35.3	26	6	43.0	44.7	46.4	32	5	51.6	55.4	59.3
15	2	13.3	14.9	16.5	21	1	29.0	32.1	35.3	27	0	43.4	45.0	46.6	32	6	51.7	55.7	59.7
15	3	13.7	15.3	16.9	21	2	29.2	32.3	35.4	27	1	43.4	45.3	47.1	33	0	51.9	56.0	60.1
15	4	14.1	15.7	17.3	21	3	29.5	32.4	35.4	27	2	43.5	45.6	47.7	33	1	52.2	56.3	60.4
15	5	14.5	16.1	17.7	21	4	29.7	32.6	35.4	27	3	43.5	45.9	48.2	33	2	52.5	56.6	60.7
15	6	15.0	16.6	18.2	21	5	30.0	32.7	35.4	27	4	43.6	46.1	48.7	33	3	52.8	56.9	61.0
16	0	15.4	17.0	18.6	21	6	30.2	32.9	35.5	27	5	43.6	46.4	49.2	33	4	53.0	57.1	61.2
16	1	15.6	17.4	19.3	22	0	30.5	33.0	35.5	27	6	43.7	46.7	49.8	33	5	53.3	57.4	61.5
16	2	15.8	17.9	19.9	22	1	31.1	33.6	36.1	28	0	43.7	47.0	50.3	33	6	53.6	57.7	61.8
16	3	16.0	18.3	20.6	22	2	31.6	34.1	36.6	28	1	43.8	47.1	50.4	34	0	53.9	58.0	62.1
16	4	16.1	18.7	21.3	22	3	32.2	34.7	37.2	28	2	44.0	47.3	50.6	34	1	53.9	58.1	62.4
16	5	16.3	19.1	22.0	22	4	32.8	35.3	37.8	28	3	44.1	47.4	50.7	34	2	54.0	58.3	62.6
16	6	16.5	19.6	22.6	22	5	33.4	35.9	38.4	28	4	44.3	47.6	50.9	34	3	54.0	58.4	62.9
17	0	16.7	20.0	23.3	22	6	33.9	36.4	38.9	28	5	44.4	47.7	51.0	34	4	54.0	58.6	63.1
17	1	17.2	20.4	23.6	23	0	34.5	37.0	39.5	28	6	44.6	47.9	51.2	34	5	54.0	58.7	63.4
17	2	17.8	20.9	23.9	23	1	34.5	37.1	39.8	29	0	44.7	48.0	51.3	34	6	54.1	58.9	63.6
17	3	18.3	21.3	24.2	23	2	34.6	37.3	40.0	29	1	44.9	48.3	51.7	35	0	54.1	59.0	63.9
17	4	18.9	21.7	24.6	23	3	34.6	37.4	40.3	29	2	45.0	48.6	52.1	35	1	54.2	59.1	64.0
17	5	19.4	22.1	24.9	23	4	34.6	37.6	40.5	29	3	45.2	48.9	52.5	35	2	54.4	59.3	64.2
17	6	20.0	22.6	25.2	23	5	34.6	37.7	40.8	29	4	45.4	49.1	52.9	35	3	54.5	59.4	64.3
18	0	20.5	23.0	25.5	23	6	34.7	37.9	41.0	29	5	45.6	49.4	53.3	35	4	54.7	59.6	64.5
18	1	20.9	23.4	25.9	24	0	34.7	38.0	41.3	29	6	45.7	49.7	53.7	35	5	54.8	59.7	64.6
18	2	21.4	23.9	26.4	24	1	35.3	38.6	41.9	30	0	45.9	50.0	54.1	35	6	55.0	59.9	64.8
18	3	21.8	24.3	26.8	24	2	35.8	39.1	42.4	30	1	46.4	50.4	54.4	36	0	55.1	60.0	64.9
18	4	22.2	24.7	27.2	24	3	36.4	39.7	43.0	30	2	47.0	50.9	54.7	36	1	55.5	60.1	64.8
18	5	22.6	25.1	27.6	24	4	37.0	40.3	43.6	30	3	47.5	51.3	55.0	36	2	55.8	60.3	64.7

Humerus Length, Hansmann

Hansmann M, Hackelöer B-J, Staudach A. *Ultrasound Diagnosis in Obstetrics and Gynecology*. New York: Springer-Verlag, 1985.

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
12	0	0	9.0	0	17	5	19.4	24.1	29.1	23	3	33.9	38.9	43.3	29	1	45.3	50.1	55.1
12	1	0	9.3	0	17	6	19.7	24.6	29.6	23	4	34.1	39.1	43.7	29	2	45.6	50.3	55.3
12	2	0	9.6	0	18	0	20.0	25.0	30.0	23	5	34.4	39.4	44.1	29	3	45.9	50.4	55.4
12	3	0	9.9	0	18	1	20.4	25.4	30.4	23	6	34.7	39.7	44.6	29	4	46.1	50.6	55.6
12	4	0	10.1	0	18	2	20.9	25.9	30.9	24	0	35.0	40.0	45.0	29	5	46.4	50.7	55.7
12	5	0	10.4	0	18	3	21.3	26.3	31.3	24	1	35.3	40.3	45.3	29	6	46.7	50.9	55.9
12	6	0	10.7	0	18	4	21.7	26.7	31.7	24	2	35.6	40.6	45.6	30	0	47.0	51.0	56.0
13	0	6.0	11.0	16.0	18	5	22.1	27.1	32.1	24	3	35.9	40.9	45.9	30	1	47.1	51.3	56.3
13	1	6.4	11.4	16.4	18	6	22.6	27.6	32.6	24	4	36.1	41.1	46.1	30	2	47.3	51.6	56.6
13	2	6.9	11.9	16.9	19	0	23.0	33.0	37.0	24	5	36.4	41.4	46.4	30	3	47.4	51.9	56.9
13	3	7.3	12.3	17.3	19	1	23.3	28.3	33.3	24	6	36.7	41.7	46.7	30	4	47.6	52.1	57.1
13	4	7.7	12.7	17.7	19	2	23.6	28.6	33.6	25	0	37.0	42.0	47.0	30	5	47.7	52.4	57.4
13	5	8.1	13.1	18.1	19	3	23.9	28.9	33.9	25	1	37.3	42.3	47.3	30	6	47.9	52.7	57.7
13	6	8.6	13.6	18.6	19	4	24.1	29.1	34.1	25	2	37.6	42.6	47.6	31	0	48.0	53.0	58.0
14	0	9.0	14.0	19.0	19	5	24.4	29.4	34.4	25	3	37.9	42.9	47.9	31	1	48.3	53.3	58.3
14	1	9.4	14.4	19.4	19	6	24.7	29.7	34.7	25	4	38.1	43.1	48.1	31	2	48.6	53.6	58.6
14	2	9.9	14.9	19.9	20	0	25.0	30.0	35.0	25	5	38.4	43.4	48.4	31	3	48.9	53.9	58.9
14	3	10.3	15.3	20.3	20	1	25.4	30.4	35.4	25	6	38.7	43.7	48.7	31	4	49.1	54.1	59.1
14	4	10.7	15.7	20.7	20	2	25.9	30.9	35.9	26	0	39.0	44.0	49.0	31	5	49.4	54.4	59.4
14	5	11.1	16.1	21.1	20	3	2												

Humerus Length, OsakaAoki M, Yamada M. "Examining Fetal Growth." *Obstetrics and Gynecology* 47:547-556, 1983.

HL Days	- 1.5SD	mean mm	+ 1.5SD																
91	7.1	10.1	13.1	129	21.9	25.2	28.5	167	34.3	37.9	41.5	205	44.4	48.3	52.2	243	52.2	56.2	60.3
92	7.5	10.5	13.5	130	22.3	25.6	28.9	168	34.6	38.2	41.8	206	44.6	48.5	52.4	244	52.4	56.4	60.5
93	7.9	10.9	13.9	131	22.6	25.9	29.2	169	34.9	38.5	42.1	207	44.8	48.7	52.6	245	52.3	56.5	60.7
94	8.4	11.4	14.4	132	23.0	26.3	29.6	170	35.2	38.8	42.4	208	45.1	49.0	52.9	246	52.5	56.7	60.9
95	8.8	11.8	14.8	133	23.4	26.7	30.0	171	35.5	39.1	42.7	209	45.3	49.2	53.1	247	52.7	56.9	61.1
96	9.2	12.2	15.2	134	23.7	27.0	30.3	172	35.8	39.4	43.0	210	45.5	49.4	53.3	248	52.9	57.1	61.3
97	9.5	12.6	15.8	135	24.1	27.4	30.7	173	36.1	39.7	43.3	211	45.8	49.7	53.6	249	53.0	57.2	61.4
98	10.0	13.1	16.3	136	24.4	27.7	31.0	174	36.4	40.0	43.6	212	46.0	49.9	53.8	250	53.2	57.4	61.6
99	10.4	13.5	16.7	137	24.8	28.1	31.4	175	36.7	40.3	43.9	213	46.2	50.1	54.0	251	53.4	57.6	61.8
100	10.8	13.9	17.1	138	25.1	28.4	31.7	176	37.0	40.6	44.2	214	46.5	50.4	54.3	252	53.5	57.7	61.9
101	11.2	14.3	17.5	139	25.4	28.8	32.3	177	37.3	40.9	44.5	215	46.7	50.6	54.5	253	53.7	57.9	62.1
102	11.6	14.7	17.9	140	25.7	29.1	32.6	178	37.6	41.2	44.8	216	46.9	50.8	54.7	254	53.8	58.0	62.2
103	12.0	15.1	18.3	141	26.1	29.5	33.0	179	37.8	41.4	45.0	217	47.1	51.0	54.9	255	54.0	58.2	62.4
104	12.4	15.5	18.7	142	26.4	29.8	33.3	180	38.1	41.7	45.3	218	47.3	51.2	55.1	256	54.2	58.4	62.6
105	12.8	15.9	19.1	143	26.8	30.2	33.7	181	38.4	42.0	45.6	219	47.6	51.5	55.4	257	54.3	58.5	62.7
106	13.2	16.3	19.5	144	27.1	30.5	34.0	182	38.6	42.3	46.1	220	47.8	51.7	55.6	258	54.5	58.7	62.9
107	13.6	16.7	19.9	145	27.5	30.9	34.4	183	38.9	42.6	46.4	221	48.0	51.9	55.8	259	54.6	58.8	63.0
108	14.0	17.1	20.3	146	27.8	31.2	34.7	184	39.1	42.8	46.6	222	48.2	52.1	56.0	260	54.8	59.0	63.2
109	14.4	17.5	20.7	147	28.1	31.5	35.0	185	39.4	43.1	46.9	223	48.4	52.3	56.2	261	54.9	59.1	63.3
110	14.8	17.9	21.1	148	28.5	31.9	35.4	186	39.7	43.4	47.2	224	48.5	52.5	56.6	262	55.1	59.3	63.5
111	15.2	18.3	21.5	149	28.8	32.2	35.7	187	40.0	43.7	47.5	225	48.7	52.7	56.8	263	55.2	59.4	63.6
112	15.6	18.7	21.9	150	29.1	32.5	36.0	188	40.2	43.9	47.7	226	48.9	52.9	57.0	264	55.3	59.5	63.7
113	16.0	19.1	22.3	151	29.5	32.9	36.4	189	40.5	44.2	48.0	227	49.1	53.1	57.2	265	55.5	59.7	63.9
114	16.4	19.5	22.7	152	29.8	33.2	36.7	190	40.8	44.5	48.3	228	49.3	53.3	57.4	266	55.5	59.8	64.2
115	16.8	19.9	23.1	153	30.1	33.5	37.0	191	41.0	44.7	48.5	229	49.5	53.5	57.6	267	55.7	60.0	64.4
116	17.2	20.3	23.5	154	30.4	33.8	37.3	192	41.3	45.0	48.8	230	49.7	53.7	57.8	268	55.8	60.1	64.5
117	17.6	20.7	23.9	155	30.8	34.2	37.7	193	41.6	45.3	49.1	231	49.9	53.9	58.0	269	55.9	60.2	64.6
118	17.8	21.1	24.4	156	31.1	34.5	38.0	194	41.8	45.5	49.3	232	50.1	54.1	58.2	270	56.1	60.4	64.8
119	18.2	21.5	24.8	157	31.4	34.8	38.3	195	42.1	45.8	49.6	233	50.3	54.3	58.4	271	56.2	60.5	64.9
120	18.5	21.8	25.1	158	31.7	35.1	38.6	196	42.3	46.0	49.8	234	50.5	54.5	58.6	272	56.3	60.6	65.0
121	18.9	22.2	25.5	159	32.0	35.4	38.9	197	42.6	46.3	50.1	235	50.7	54.7	58.8	273	56.5	60.8	65.2
122	19.3	22.6	25.9	160	32.2	35.8	39.4	198	42.8	46.5	50.3	236	50.9	54.9	59.0	274	56.6	60.9	65.3
123	19.7	23.0	26.3	161	32.5	36.1	39.7	199	43.1	46.8	50.6	237	51.1	55.1	59.2	275	56.7	61.0	65.4
124	20.1	23.4	26.7	162	32.8	36.4	40.0	200	43.3	47.0	50.8	238	51.3	55.3	59.4	276	56.8	61.1	65.5
125	20.4	23.7	27.0	163	33.1	36.7	40.3	201	43.6	47.3	51.1	239	51.5	55.5	59.6	277	57.0	61.3	65.7
126	20.8	24.1	27.4	164	33.4	37.0	40.6	202	43.8	47.5	51.3	240	51.7	55.7	59.8	278	57.1	61.4	65.8
127	21.2	24.5	27.8	165	33.7	37.3	40.9	203	43.9	47.8	51.7	241	51.8	55.8	59.9	279	57.2	61.5	65.9
128	21.5	24.8	28.1	166	34.0	37.6	41.2	204	44.1	48.0	51.9	242	52.0	56.0	60.1	280	57.3	61.6	66.0

Humerus Length, ASUMWesterway SC. "Ultrasonic Fetal Measurements: New Australian Standards for the New Millennium." *Aust NZ J Obstet Gynaecol* 40:3:297-302, 2000.

HL Days	5%	mean mm	95%	HL Days	5%	mean mm	95%	HL Days	5%	mean mm	95%	HL Days	5%	mean mm	95%	HL Days	5%	mean mm	95%
77	5.5	8.0	10.5	120	21.1	25.3	29.5	163	34.8	38.6	42.3	206	47.3	51.4	55.5	249	56.7	61.1	65.6
78	5.8	8.1	10.5	121	21.3	25.6	29.8	164	34.9	38.9	42.9	207	47.5	51.6	55.7	250	57.1	61.4	65.8
79	6.1	8.3	10.5	122	21.6	25.9	30.1	165	34.9	39.1	43.4	208	47.6	51.7	55.8	251	57.5	61.7	65.9
80	6.3	8.4	10.5	123	21.8	26.1	30.5	166	35.0	39.4	43.9	209	47.7	51.9	56.0	252	57.9	62.0	66.1
81	6.6	8.6	10.6	124	22.0	26.4	30.8	167	35.0	39.7	44.4	210	47.9	52.0	56.1	253	57.9	62.1	66.4
82	6.8	8.7	10.6	125	22.2	26.7	31.2	168	35.1	40.0	44.9	211	48.2	52.3	56.4	254	57.9	62.3	66.6
83	7.1	8.9	10.6	126	22.5	27.0	31.5	169	35.6	40.4	45.2	212	48.5	52.6	56.7	255	58.0	62.4	66.9
84	7.4	9.0	10.6	127	22.8	27.3	31.8	170	36.2	40.9	45.6	213	48.7	52.9	57.0	256	58.0	62.6	67.2
85	7.5	9.3	11.0	128	23.2	27.6	32.0	171	36.7	41.3	45.9	214	49.0	53.1	57.3	257	58.0	62.7	67.4
86	7.7	9.6	11.5	129	23.5	27.9	32.2	172	37.2	41.7	46.2	215	49.3	53.4	57.5	258	58.0	62.9	67.7
87	7.9	9.9	11.9	130	23.9	28.1	32.4	173	37.8	42.1	46.5	216	49.6	53.7	57.8	259	58.1	63.0	67.9
88	8.0	10.1	12.3	131	24.2	28.4	32.7	174	38.3	42.6	46.8	217	49.9	54.0	58.1	260	58.2	63.1	68.1
89	8.2	10.4	12.7	132	24.5	28.7	32.9	175	38.9	43.0	47.1	218	50.2	54.3	58.4	261	58.4	63.3	68.2
90	8.4	10.7	13.1	133	24.9	29.0	33.1	176	39.1	43.1	47.1	219	50.5	54.6	58.7	262	58.5	63.4	68.4
91	8.5	11.0	13.5	134	25.2	29.3	33.4	177	39.4	43.3	47.2	220	50.7	54.9	59.0	263	58.6	63.6	68.5
92	8.8	11.4	14.0	135	25.5	29.6	33.7	178	39.7	43.4	47.2	221	51.0	55.1	59.3	264	58.8	63.7	68.6
93	9.2	11.9	14.6	136	25.7	29.9	34.0	179	39.9</td										

Ulna Length, Jeanty

Jeanty P, Dramaix-Wilmet M, van Kerkem J, Petroons P, Schwers J. "Ultrasonic Evaluation of Fetal Limb Growth, Part II" *Radiology* 143:751, 1982.

$$\text{Ulna(mm)} = 3.8984839 * \text{MA(wk)} - 0.040382251 * \text{MA(wk)}^2 - 33.169956$$

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
11	0	3.2	4.8	6.5	16	6	15.1	21.1	27.1	22	5	29.1	34.5	40.0	28	4	39.9	45.3	50.6	34	3	44.8	53.2	61.6
11	1	3.6	5.3	6.9	17	0	11.1	21.4	31.7	22	6	29.4	34.8	40.3	28	5	40.2	45.5	50.8	34	4	44.9	53.3	61.8
11	2	4.0	5.7	7.3	17	1	11.5	21.8	32.1	23	0	27.6	35.1	42.7	28	6	40.4	45.7	51.0	34	5	45.1	53.5	61.9
11	3	4.5	6.1	7.8	17	2	11.9	22.2	32.4	23	1	27.8	35.4	43.0	29	0	40.3	45.9	51.5	34	6	45.2	53.7	62.1
11	4	4.9	6.5	8.2	17	3	12.2	22.5	32.8	23	2	28.1	35.7	43.3	29	1	40.6	46.1	51.7	35	0	46.6	53.8	61.0
11	5	5.3	7.0	8.6	17	4	12.6	22.9	33.1	23	3	28.4	36.0	43.6	29	2	40.8	46.4	52.0	35	1	46.8	54.0	61.2
11	6	5.7	7.4	9.0	17	5	12.9	23.2	33.5	23	4	28.7	36.3	43.9	29	3	41.0	46.6	52.2	35	2	46.9	54.1	61.3
12	0	6.2	7.8	9.4	17	6	13.3	23.6	33.9	23	5	29.0	36.6	44.2	29	4	41.2	46.8	52.4	35	3	47.1	54.3	61.5
12	1	6.6	8.2	9.9	18	0	13.6	23.9	34.2	23	6	29.3	36.9	44.4	29	5	41.4	47.0	52.6	35	4	47.2	54.4	61.6
12	2	7.0	8.6	10.3	18	1	14.0	24.3	34.6	24	0	29.6	37.1	44.7	29	6	41.6	47.2	52.8	35	5	47.3	54.6	61.8
12	3	7.4	9.0	10.7	18	2	14.3	24.6	34.9	24	1	29.8	37.4	45.0	30	0	41.9	47.4	53.0	35	6	47.5	54.7	61.9
12	4	7.8	9.5	11.1	18	3	14.7	25.0	35.2	24	2	30.1	37.7	45.3	30	1	42.1	47.7	53.2	36	0	47.6	54.8	62.1
12	5	8.2	9.9	11.5	18	4	15.0	25.3	35.6	24	3	30.4	38.0	45.5	30	2	42.3	47.9	53.4	36	1	47.8	55.0	62.2
12	6	8.6	10.3	11.9	18	5	15.4	25.6	35.9	24	4	30.7	38.2	45.8	30	3	42.5	48.1	53.7	36	2	47.9	55.1	62.3
13	0	3.4	10.7	17.9	18	6	15.7	26.0	36.3	24	5	30.9	38.5	46.1	30	4	42.7	48.3	53.9	36	3	48.0	55.3	62.5
13	1	3.8	11.1	18.3	19	0	20.1	26.3	32.5	24	6	31.2	38.8	46.4	30	5	42.9	48.5	54.1	36	4	48.2	55.4	62.6
13	2	4.2	11.5	18.7	19	1	20.5	26.7	32.8	25	0	34.4	39.1	43.7	30	6	43.1	48.7	54.3	36	5	48.3	55.5	62.7
13	3	4.6	11.9	19.2	19	2	20.8	27.0	33.2	25	1	34.7	39.3	43.9	31	0	39.0	48.9	58.7	36	6	48.4	55.7	62.9
13	4	5.0	12.3	19.6	19	3	21.1	27.3	33.5	25	2	35.0	39.6	44.2	31	1	39.2	49.1	58.9	37	0	49.3	55.8	62.2
13	5	5.4	12.7	20.0	19	4	21.5	27.7	33.8	25	3	35.2	39.9	44.5	31	2	39.4	49.3	59.1	37	1	49.5	55.9	62.4
13	6	5.8	13.1	20.3	19	5	21.8	28.0	34.2	25	4	35.5	40.1	44.7	31	3	39.6	49.5	59.3	37	2	49.6	56.0	62.5
14	0	6.2	13.5	20.7	19	6	22.1	28.3	34.5	25	5	35.8	40.4	45.0	31	4	39.8	49.7	59.5	37	3	49.7	56.2	62.6
14	1	6.6	13.9	21.1	20	0	22.5	28.6	34.8	25	6	36.0	40.6	45.2	31	5	40.0	49.9	59.7	37	4	49.9	56.3	62.7
14	2	7.0	14.3	21.5	20	1	22.8	29.0	35.2	26	0	36.3	40.9	45.5	31	6	40.2	50.0	59.9	37	5	50.0	56.4	62.9
14	3	7.4	14.7	21.9	20	2	23.1	29.3	35.5	26	1	36.5	41.1	45.8	32	0	40.4	50.2	60.1	37	6	50.1	56.5	63.0
14	4	7.8	15.1	22.3	20	3	23.4	29.6	35.8	26	2	36.8	41.4	46.0	32	1	40.6	50.4	60.3	38	0	50.2	56.7	63.1
14	5	8.2	15.5	22.7	20	4	23.8	29.9	36.1	26	3	37.0	41.7	46.3	32	2	40.7	50.6	60.5	38	1	50.3	56.8	63.2
14	6	8.6	15.8	23.1	20	5	24.1	30.3	36.4	26	4	37.3	41.9	46.5	32	3	40.9	50.8	60.6	38	2	50.4	56.9	63.3
15	0	10.2	16.2	22.2	20	6	24.4	30.6	36.8	26	5	37.5	42.2	46.8	32	4	41.1	51.0	60.8	38	3	50.6	57.0	63.5
15	1	10.6	16.6	22.6	21	0	25.4	30.9	36.4	26	6	37.8	42.4	47.0	32	5	41.3	51.1	61.0	38	4	50.7	57.1	63.6
15	2	11.0	17.0	23.0	21	1	25.7	31.2	36.7	27	0	37.3	42.7	48.0	32	6	41.5	51.3	61.2	38	5	50.8	57.2	63.7
15	3	11.4	17.4	23.3	21	2	26.1	31.5	37.0	27	1	37.6	42.9	48.2	33	0	43.1	51.5	59.9	38	6	50.9	57.3	63.8
15	4	11.8	17.7	23.7	21	3	26.4	31.8	37.3	27	2	37.8	43.1	48.5	33	1	43.3	51.7	60.1	39	0	48.6	57.4	66.3
15	5	12.1	18.1	24.1	21	4	26.7	32.1	37.6	27	3	38.1	43.4	48.7	33	2	43.4	51.9	60.3	39	1	48.7	57.6	66.4
15	6	12.5	18.5	24.5	21	5	27.0	32.4	37.9	27	4	38.3	43.6	48.9	33	3	43.6	52.0	60.4	39	2	48.9	57.7	66.5
15	0	12.9	18.9	24.8	21	6	27.3	32.7	38.2	27	5	38.5	43.9	49.2	33	4	43.8	52.2	60.6	39	3	49.0	57.8	66.6
15	1	13.3	19.2	25.2	22	0	27.6	33.1	38.5	27	6	38.8	44.1	49.4	33	5	43.9	52.4	60.8	39	4	49.1	57.9	66.7
15	2	13.6	19.6	25.6	22	1	27.9	33.4	38.8	28	0	39.0	44.3	49.6	33	6	44.1	52.5	61.0	39	5	49.2	58.0	66.8
15	3	14.0	20.0	26.0	22	2	28.2	33.7	39.1	28	1	39.2	44.6	49.9	34	0	44.3	52.7	61.1	39	6	49.3	58.1	66.9
15	4	14.4	20.3	26.3	22	3	28.5	34.0	39.4	28	2	39.5	44.8	50.1	34	1	44.4	52.9	61.3	40	0	49.4	58.2	67.0
15	5	14.7	20.7	26.7	22	4	28.8	34.3	39.7	28	3	39.7	45.0	50.3	34	2	44.6	53.0	61.4					

Ulna Length, Merz

Merz E, Kim-Kern M-S, Pehl S. "Ultrasonic Mensuration of Fetal Limb Bones in the Second and Third Trimesters." *Journal of Clinical Ultrasound* 15:175, March/April 1987.

5 & 95%: (2SD/2 * 1.645)

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
13	0	5.5	8.0	10.5	18	6	21.2	23.7	26.2	24	5	34.8	38.1	41.4	30	4	45.2	48.1	51.1	36	3	52.6	55.4	58.3
13	1	5.9	8.3	10.7	19	0	21.5	24.0	26.5	24	6	35.3	38.6	41.9	30	5	45.4	48.4	51.5	36	4	52.6	55.6	58.5
13	2	6.3	8.6	10.8	19	1	21.9	24.4	26.9	25	0	35.7	39.0	42.3	30	6	45.5	48.7	51.9	36	5	52.6	55.7	58.8
13	3	6.7	8.9	11.0	19	2	22.4	24.9	27.4	25	1	36.0	39.1	42.3	31	0	45.7	49.0	52.3	36	6	52.7	55.9	59.0
13	4	7.2	9.1	11.1	19	3	22.8	25.3	27.8	25	2	36.2	39.3	42.4	31	1	45.6	49.1	52.7	37	0	52.7	56.0	59.3
13	5	7.6	9.4	11.3	19	4	23.2	25.7	28.2	25	3	36.5	39.4	42.4	31	2	45.5	49.3	53.0	37	1	52.8	56.3	59.8
13	6	8.0	9.7	11.4	19	5	23.6	26.1	28.6															

Ulna Length, Hansmann

Hansmann M, Hackelöer B-J, Staudach A. *Ultrasound Diagnosis in Obstetrics and Gynecology*. New York: Springer-Verlag, 1985.

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
12	0	7.0	0	0	17	5	23.1	18.1	28.1	23	3	36.9	31.9	41.9	29	1	48.1	43.1	53.1	34	6	56.9	51.9	61.9
12	1	7.4	0	0	17	6	23.6	18.6	28.6	23	4	37.1	32.1	42.1	29	2	48.3	43.3	53.3	35	0	57.0	52.0	62.0
12	2	7.9	0	0	18	0	24.0	19.0	29.0	23	5	37.4	32.4	42.4	29	3	48.4	43.4	53.4	35	1	57.1	52.1	62.1
12	3	8.3	0	0	18	1	24.3	19.3	29.3	23	6	37.7	32.7	42.7	29	4	48.6	43.6	53.6	35	2	57.3	52.3	62.3
12	4	8.7	0	0	18	2	24.6	19.6	29.6	24	0	38.0	33.0	43.0	29	5	48.7	43.7	53.7	35	3	57.4	52.4	62.4
12	5	9.1	0	0	18	3	24.9	19.9	29.9	24	1	38.3	33.3	43.3	29	6	48.9	43.9	53.9	35	4	57.6	52.6	62.6
12	6	9.6	0	0	18	4	25.1	20.1	30.1	24	2	38.6	33.6	43.6	30	0	49.0	44.0	54.0	35	5	57.7	52.7	62.7
13	0	10.0	5.0	15.0	18	5	25.4	20.4	30.4	24	3	38.9	33.9	43.9	30	1	49.3	44.3	54.3	35	6	57.9	52.9	62.9
13	1	10.4	5.4	15.4	18	6	25.7	20.7	30.7	24	4	39.1	34.1	44.1	30	2	49.6	44.6	54.6	36	0	58.0	53.0	63.0
13	2	10.9	5.9	15.9	19	0	26.0	21.0	31.0	24	5	39.4	34.4	44.4	30	3	49.8	44.9	54.9	36	1	58.3	53.3	63.3
13	3	11.3	6.3	16.3	19	1	26.4	21.4	31.4	24	6	39.7	34.7	44.7	30	4	50.1	45.1	55.1	36	2	58.6	53.6	63.6
13	4	11.7	6.7	16.7	19	2	26.9	21.9	31.9	25	0	40.0	35.0	45.0	30	5	50.4	45.4	55.4	36	3	58.9	53.9	63.9
13	5	12.1	7.1	17.1	19	3	27.3	22.3	32.3	25	1	40.3	35.3	45.3	30	6	50.7	45.7	55.7	36	4	59.1	54.1	64.1
13	6	12.6	7.6	17.6	19	4	27.7	22.7	32.7	25	2	40.6	35.6	45.6	31	0	51.0	46.0	56.0	36	5	59.4	54.4	64.4
14	0	13.0	8.0	18.0	19	5	28.1	23.1	33.1	25	3	40.9	35.9	45.9	31	1	51.3	46.3	56.3	36	6	59.7	54.7	64.7
14	1	13.4	8.4	18.4	19	6	28.6	23.6	33.6	25	4	41.1	36.1	46.1	31	2	51.6	46.6	56.6	37	0	60.0	55.0	65.0
14	2	13.9	8.9	18.9	20	0	29.0	24.0	34.0	25	5	41.4	36.4	46.4	31	3	51.9	46.9	56.9	37	1	60.1	55.1	65.1
14	3	14.3	9.3	19.3	20	1	29.3	24.3	34.3	25	6	41.7	36.7	46.7	31	4	52.1	47.1	57.1	37	2	60.3	55.3	65.3
14	4	14.7	9.7	19.7	20	2	29.6	24.6	34.6	26	0	42.0	37.0	47.0	31	5	52.4	47.4	57.4	37	3	60.4	55.4	65.4
14	5	15.1	10.1	20.1	20	3	29.9	24.9	34.9	26	1	42.3	37.3	47.3	31	6	52.7	47.7	57.7	37	4	60.6	55.6	65.6
14	6	15.6	10.6	20.6	20	4	30.1	25.1	35.1	26	2	42.6	37.6	47.6	32	0	53.0	48.0	58.0	37	5	60.7	55.7	65.7
15	0	16.0	11.0	21.0	20	5	30.4	25.4	35.4	26	3	42.9	37.9	47.9	32	1	53.1	48.1	58.1	37	6	60.9	55.9	65.9
15	1	16.3	11.3	21.3	20	6	30.7	25.7	35.7	26	4	43.1	38.1	48.1	32	2	53.3	48.3	58.3	38	0	61.0	56.0	66.0
15	2	16.6	11.6	21.6	21	0	31.0	26.0	36.0	26	5	43.4	38.4	48.4	32	3	53.4	48.4	58.4	38	1	61.1	56.1	66.1
15	3	16.9	11.9	21.9	21	1	31.3	26.3	36.3	26	6	43.7	38.7	48.7	32	4	53.6	48.6	58.6	38	2	61.3	56.3	66.3
15	4	17.1	12.1	22.1	21	2	31.6	26.6	36.6	27	0	44.0	39.0	49.0	32	5	53.7	48.7	58.7	38	3	61.4	56.4	66.4
15	5	17.4	12.4	22.4	21	3	31.9	26.9	36.9	27	1	44.3	39.3	49.3	32	6	53.9	48.9	58.9	38	4	61.6	56.6	66.6
15	6	17.7	12.7	22.7	21	4	32.1	27.1	37.1	27	2	44.6	39.6	49.6	33	0	54.0	49.0	59.0	38	5	61.7	56.7	66.7
16	0	18.0	13.0	23.0	21	5	32.4	27.4	37.4	27	3	44.9	39.9	49.9	33	1	54.3	49.3	59.3	38	6	61.9	56.9	66.9
16	1	18.4	13.4	23.4	21	6	32.7	27.7	37.7	27	4	45.1	40.1	50.1	33	2	54.6	49.6	59.6	39	0	62.0	57.0	67.0
16	2	18.9	13.9	23.9	22	0	33.0	28.0	38.0	27	5	45.4	40.4	50.4	33	3	54.9	49.9	59.9	39	1	62.1	57.1	67.1
16	3	19.3	14.3	24.3	22	1	33.4	28.4	38.4	27	6	45.7	40.7	50.7	33	4	55.1	50.1	60.1	39	2	62.3	57.3	67.3
16	4	19.7	14.7	24.7	22	2	33.9	28.9	38.9	28	0	46.0	41.0	51.0	33	5	55.4	50.4	60.4	39	3	62.4	57.4	67.4
16	5	20.1	15.1	25.1	22	3	34.3	29.3	39.3	28	1	46.3	41.3	51.3	33	6	55.7	50.7	60.7	39	4	62.6	57.6	67.6
16	6	20.6	15.6	25.6	22	4	34.7	29.7	39.7	28	2	46.6	41.6	51.6	34	0	56.0	51.0	61.0	39	5	62.7	57.7	67.7
17	0	21.0	16.0	26.0	22	5	35.1	30.1	40.1	28	3	46.9	41.9	51.9	34	1	56.1	51.1	61.1	39	6	62.9	57.9	67.9
17	1	21.4	16.4	26.4	22	6	35.6	30.6	40.6	28	4	47.1	42.1	52.1	34	2	56.3	51.3	61.3	40	0	63.0	58.0	68.0
17	2	21.9	16.9	26.9	23	0	36.0	31.0	41.0	28	5	47.4	42.4	52.4	34	3	56.4	51.4	61.4					
17	3	22.3	17.3	27.3	23	1	36.3	31.3	41.3	28	6	47.7	42.7	52.7	34	4	56.6	51.6	61.6					
17	4	22.7	17.7	27.7	23	2	36.6	31.6	41.6	29	0	48.0	43.0	53.0	34	5	56.7	51.7	61.7					

Tibia Length, Jeanty

Jeanty P, Dramaix-Wilmet M, van Kerkem J, Petroons P, Schwers J. "Ultrasonic Evaluation of Fetal Limb Growth, Part II" *Radiology* 143:751, 1982.

$$\text{Tibia(mm)} = 3.8822362 * \text{MA(wk)} - 0.03519398 * \text{MA(wk)}^2 - 34.226237$$

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
11	0	0	4.2	9.9	16	6	10.3	21.2	32.1	22	5	28.1	35.8	43.5	28	4	41.8	48.0	54.1	34	3	51.1	57.7	64.3
11	1	0	4.7	10.4	17	0	14.6	21.6	28.6	22	6	28.5	36.1	43.8	28	5	41.2	48.2	54.4	34	4	51.3	57.9	64.5
11	2	0	5.1	10.8	17	1	15.0	22.0	29.0	23	0	29.8	36.4	43.1	28	6	42.4	48.5	54.6	34	5	51.5	58.1	64.7
11	3	0	5.5	11.3	17	2	15.3	22.4	29.4	23	1	30.1	36.8	43.5	29	0	40.1	48.8	57.5	34	6	51.7	58.3	64.9
11	4	0.3	6.0	11.7	17	3	15.7	22.7	29.8	23	2	30.4	37.1	43.8	29	1	49.1	49.0	57.7	35	0	48.4	58.5	68.7
11	5	0.7	6.4	12.1	17	4	16.1	23.1	30.2	23	3	30.7	37.4	44.1	29	2	40.6	49.3	58.0	35	1	48.6	58.7	68.9
11	6	1.1	6.9	12.6	17	5	16.5	23.5	30.5	23	4	31.0	37.7	44.4	29	3	40.9	49.5	58.2	35	2	48.8	58.9	69.1
12	0	1.6	7.3	13.0	17	6	16.8	23.9	30.9	23	5	31.4	38.0	44.7	29	4	41.1	49.8	58.5	35	3	49.0	59.1	69.3
12	1</																							

Tibia Length, Merz

Merz E, Kim-Kern M-S, Pehl S. "Ultrasonic Mensuration of Fetal Limb Bones in the Second and Third Trimesters." *Journal of Clinical Ultrasound* 15:175, March/April 1987.

5 & 95%: (2SD/3 * 1.645)

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
13	0	7.4	9.0	10.6	18	6	22.1	24.6	27.1	24	5	36.6	39.1	41.6	30	5	47.2	50.1	53.1
13	1	7.5	9.1	10.7	19	0	22.5	25.0	27.5	24	6	37.1	39.6	42.1	30	6	47.8	50.6	53.3
13	2	7.7	9.3	10.9	19	1	22.9	25.3	27.7	25	0	37.5	40.0	42.5	31	0	48.5	51.0	53.5
13	3	7.8	9.4	11.0	19	2	23.3	25.6	27.8	25	1	37.8	40.3	42.8	31	1	48.5	51.1	53.8
13	4	8.0	9.6	11.2	19	3	23.7	25.9	28.0	25	2	38.1	40.6	43.1	31	2	48.6	51.3	54.0
13	5	8.1	9.7	11.3	19	4	24.2	26.1	28.1	25	3	38.4	40.9	43.4	31	3	48.6	51.4	54.3
13	6	8.3	9.9	11.5	19	5	24.6	26.4	28.3	25	4	38.6	41.1	43.6	31	4	48.6	51.6	54.5
14	0	8.4	10.0	11.6	19	6	25.0	26.7	28.4	25	5	38.9	41.4	43.9	31	5	48.6	51.7	54.8
14	1	8.8	10.4	12.0	20	0	25.4	27.0	28.6	25	6	39.2	41.7	44.2	31	6	48.7	51.9	55.0
14	2	9.3	10.9	12.5	20	1	25.6	27.4	29.3	26	0	39.5	42.0	44.5	32	0	48.7	52.0	55.3
14	3	9.7	11.3	12.9	20	2	25.8	27.9	29.9	26	1	39.8	42.3	44.8	32	1	48.9	52.3	55.7
14	4	10.1	11.7	13.3	20	3	26.0	28.3	30.6	26	2	40.1	42.6	45.1	32	2	49.0	52.6	56.1
14	5	10.5	12.1	13.7	20	4	26.1	28.7	31.3	26	3	40.4	42.9	45.4	32	3	49.2	52.9	56.5
14	6	11.0	12.6	14.2	20	5	26.3	29.1	32.0	26	4	40.6	43.1	45.6	32	4	49.4	53.1	56.9
15	0	11.4	13.0	14.6	20	6	26.5	29.6	32.6	26	5	40.9	43.4	45.9	32	5	49.6	53.4	57.3
15	1	11.7	13.4	15.2	21	0	26.7	30.0	33.3	26	6	41.2	43.7	46.2	32	6	49.7	53.7	57.7
15	2	12.0	13.9	15.7	21	1	27.1	30.3	33.5	27	0	41.5	44.0	46.5	33	0	49.9	54.0	58.1
15	3	12.3	14.3	16.3	21	2	27.5	30.6	33.6	27	1	41.5	44.1	46.8	33	1	50.3	54.4	58.5
15	4	12.6	14.7	16.8	21	3	27.9	30.9	33.8	27	2	41.6	44.3	47.0	33	2	50.8	54.9	59.0
15	5	12.9	15.1	17.4	21	4	28.3	31.1	34.0	27	3	41.6	44.4	47.3	33	3	51.2	55.3	59.4
15	6	13.2	15.6	17.9	21	5	28.7	31.4	34.2	27	4	41.6	44.6	47.5	33	4	51.6	55.7	59.8
16	0	13.5	16.0	18.5	21	6	29.1	31.7	34.3	27	5	41.6	44.7	47.8	33	5	52.0	56.1	60.2
16	1	13.8	16.3	18.8	22	0	29.5	32.0	34.5	27	6	41.7	44.9	48.0	33	6	52.5	56.6	60.7
16	2	14.1	16.6	19.1	22	1	30.2	32.6	34.9	28	0	41.7	45.0	48.3	34	0	52.9	57.0	61.1
16	3	14.4	16.9	19.4	22	2	30.9	33.1	35.4	28	1	42.0	45.1	48.3	34	1	53.2	57.1	61.1
16	4	14.6	17.1	19.6	22	3	31.6	33.7	35.8	28	2	42.2	45.3	48.4	34	2	53.4	57.3	61.2
16	5	14.9	17.4	19.9	22	4	32.3	34.3	36.3	28	3	42.5	45.4	48.4	34	3	53.7	57.4	61.2
16	6	15.2	17.7	20.2	22	5	33.0	34.9	36.7	28	4	42.7	45.6	48.4	34	4	53.9	57.6	61.2
17	0	15.5	18.0	20.5	22	6	33.7	35.4	37.2	28	5	43.0	45.7	48.4	34	5	54.2	57.7	61.2
17	1	16.1	18.6	21.1	23	0	34.4	36.0	37.6	29	0	43.5	46.0	48.5	34	6	54.4	57.9	61.3
17	2	16.6	19.1	21.6	23	1	34.4	36.1	37.9	29	1	43.6	46.3	49.0	35	0	54.7	58.0	61.3
17	3	17.2	19.7	22.2	23	2	34.4	36.3	38.1	29	2	43.6	46.6	49.5	35	1	54.8	58.3	61.8
17	4	17.8	20.3	22.8	23	3	34.4	36.4	38.4	29	3	43.7	46.9	50.0	35	2	54.8	58.6	62.3
17	5	18.4	20.9	23.4	23	4	34.5	36.6	38.7	29	4	43.7	47.1	50.6	35	3	54.9	58.9	62.8
17	6	18.9	21.4	23.9	23	5	34.5	36.7	39.0	29	5	43.8	47.4	51.1	35	4	54.9	59.1	63.4
18	0	19.5	22.0	24.5	23	6	34.5	36.9	39.2	29	6	43.8	47.7	51.6	35	5	55.0	59.4	63.9
18	1	19.9	22.4	24.9	24	0	34.5	37.0	39.5	30	0	43.9	48.0	52.1	35	6	55.0	59.7	64.4
18	2	20.4	22.9	25.4	24	1	34.9	37.4	39.9	30	1	44.6	48.4	52.3	36	0	55.1	60.0	64.9
18	3	20.8	23.3	25.8	24	2	35.4	37.9	40.4	30	2	45.2	48.9	52.5	36	1	55.6	60.1	64.8
18	4	21.2	23.7	26.2	24	3	35.8	38.3	40.8	30	3	45.9	49.3	52.7	36	2	55.8	60.3	64.7
18	5	21.6	24.1	26.6	24	4	36.2	38.7	41.2	30	4	46.5	49.7	52.9	36	3	56.2	60.4	64.6

Tibia Length, Hansmann

Hansmann M, Hackelöer B-J, Staudach A. *Ultrasound Diagnosis in Obstetrics and Gynecology*. New York: Springer-Verlag, 1985.

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
12	0	0	7.0	0	17	5	16.4	21.4	26.4	23	3	30.9	35.9	40.9	29	1	43.3	48.3	53.3
12	1	0	7.4	0	17	6	16.7	21.7	26.7	23	4	31.1	36.1	41.1	29	2	43.6	48.6	53.6
12	2	0	7.9	0	18	0	17.0	22.0	27.0	23	5	31.4	36.4	41.4	29	3	43.9	48.9	53.9
12	3	0	8.3	0	18	1	17.4	22.4	27.4	23	6	31.7	36.7	41.7	29	4	44.1	49.1	54.1
12	4	0	8.7	0	18	2	17.9	22.9	27.9	24	0	32.0	37.0	42.0	29	5	44.4	49.4	54.4
12	5	0	9.1	0	18	3	18.3	23.3	28.3	24	1	32.3	37.4	42.4	29	6	44.7	49.7	54.7
12	6	0	9.6	0	18	4	18.7	23.7	28.7	24	2	32.6	37.9	42.9	30	0	45.0	50.0	55.0
13	0	0	10.0	0	18	5	19.1	24.1	29.1	24	3	32.9	38.3	43.3	30	1	45.3	50.3	55.3
13	1	0	10.3	0	18	6	19.6	24.6	29.6	24	4	33.1	38.7	43.7	30	2	45.6	50.6	55.6
13	2	0	10.6	0	19	0	20.0	25.0	30.0	24	5	33.4	39.1	44.1	30	3	45.9	50.9	55.9
13	3	0	10.9	0	19	1	20.3	25.3	30.4	24	6	33.7	39.6	44.6	30	4	46.1	51.1	56.1
13	4	0	11.1	0	19	2	20.6	25.6	30.9	25	0	34.0	40.0	45.0	30	5	46.4	51.4	56.4
13	5	0	11.4	0	19	3	20.9	25.9	31.3	25	1	34.4	40.3	45.3	30	6	46.7	51.7	56.7
13	6	0	11.7	0	19	4	21.1	26.1	31.7	25	2	34.9	40.6	45.6	31	0	47.0	52.0	57.0
14	0	7.0	12.0	17.0	19	5	21.4	26.4	32.1	25	3	35.3	40.9	45.9	31	1	47.1	52.3	57.3
14	1	7.3	12.4	17.4	19	6	21.7	26.7	32.6	25	4	35.7	41.1	46.4	31	2	47.3	52.6	57.6
14	2	7.6	12.9	17.9	20	0	22.0	27.0	33.0	25	5	36.1	41.4	46.4	31	3	47.4	52.9	57.9
14	3	7.9	13.3	18.3	0	1	22.4	27.4	33.3	25	6	36.6	41.7	46.7	31	4	47.6	53.1	58.1
14	4	8.1	13.7	18.7	20	2	22.9	27.9	33.6	26	0	37.0	42.0	47.0	31	5	47.7	53.4	58.4
14	5	8.4	14.1	19.1	20	3	23.3	28.3	33.9	26	1	37.3	42.3						

Foot Length, Mercer

Mercer BM, Sklar S, Shariamadar A, Gillieson MS, Dalton ME. "Fetal foot length as a predictor of gestational age." *American Journal of Obstetrics and Gynecology* 156(2):350, 1987.

Wk Day	5%	Mean	95%	Wk Day	5%	Mean	95%	Wk Day	5%	Mean	95%	Wk Day	5%	Mean	95%	Wk Day	5%	Mean	95%
12 0	7.2	8.0	8.8	17 5	23.9	26.1	28.6	23 3	39.2	43.3	46.9	29 1	52.6	58.3	63.3	34 6	65.0	70.7	77.3
12 1	7.6	8.4	9.3	17 6	24.2	26.6	29.0	23 4	39.6	43.7	47.5	29 2	53.0	58.6	63.7	35 0	65.2	71.0	77.6
12 2	8.0	8.9	9.7	18 0	24.5	27.0	29.5	23 5	40.0	44.1	48.0	29 3	53.5	58.9	64.1	35 1	65.6	71.4	78.0
12 3	8.5	9.3	10.1	18 1	25.0	27.4	30.0	23 6	40.5	44.6	48.6	29 4	53.9	59.1	64.5	35 2	65.9	71.9	78.4
12 4	8.9	9.7	10.5	18 2	25.4	27.9	30.6	24 0	40.9	45.0	49.1	29 5	54.3	59.4	65.0	35 3	66.2	72.3	78.9
12 5	9.3	10.1	11.0	18 3	25.8	28.3	31.1	24 1	41.2	45.3	49.5	29 6	54.7	59.7	65.4	35 4	66.5	72.7	79.3
12 6	9.7	10.6	11.4	18 4	26.2	28.7	31.7	24 2	41.5	45.6	49.9	30 0	55.1	60.0	65.8	35 5	66.8	73.1	79.7
13 0	10.2	11.0	11.8	18 5	26.7	29.1	32.2	24 3	41.7	45.9	50.3	30 1	55.4	60.3	65.9	35 6	67.1	73.6	80.2
13 1	10.6	11.6	12.4	18 6	27.1	29.6	32.7	24 4	42.0	46.1	50.7	30 2	55.6	60.6	66.1	36 0	67.4	74.0	80.6
13 2	11.1	12.1	13.0	19 0	27.5	30.0	33.3	24 5	42.3	46.4	51.1	30 3	55.9	60.9	66.3	36 1	67.6	74.3	80.9
13 3	11.5	12.7	13.5	19 1	28.0	30.4	33.7	24 6	42.6	46.7	51.5	30 4	56.2	61.1	66.4	36 2	67.8	74.6	81.2
13 4	12.0	13.3	14.1	19 2	28.4	30.9	34.1	25 0	42.9	47.0	51.9	30 5	56.5	61.4	66.6	36 3	67.9	74.9	81.4
13 5	12.4	13.9	14.7	19 3	28.8	31.3	34.6	25 1	43.3	47.4	52.2	30 6	56.8	61.7	66.8	36 4	68.1	75.1	81.7
13 6	12.9	14.4	15.3	19 4	29.2	31.7	35.0	25 2	43.7	47.9	52.6	31 0	57.1	62.0	66.9	36 5	68.3	75.4	82.0
14 0	13.4	15.0	15.8	19 5	29.7	32.1	35.4	25 3	44.2	48.3	52.9	31 1	57.4	62.4	67.5	36 6	68.4	75.7	82.3
14 1	13.8	15.4	16.4	19 6	30.1	32.6	35.9	25 4	44.6	48.7	53.2	31 2	57.7	62.9	68.0	37 0	68.6	76.0	82.6
14 2	14.2	15.9	16.9	20 0	30.5	33.0	36.3	25 5	45.0	49.1	53.5	31 3	58.0	63.3	68.6	37 1	68.9	76.3	82.9
14 3	14.6	16.3	17.5	20 1	30.8	33.4	36.7	25 6	45.5	49.6	53.8	31 4	58.3	63.7	69.1	37 2	69.2	76.6	83.2
14 4	15.1	16.7	18.0	20 2	31.2	33.9	37.1	26 0	45.9	50.0	54.1	31 5	58.6	64.1	69.7	37 3	69.5	76.9	83.4
14 5	15.5	17.1	18.6	20 3	31.5	34.3	37.6	26 1	46.2	50.4	54.5	31 6	58.9	64.6	70.2	37 4	69.7	77.1	83.7
14 6	15.9	17.6	19.1	20 4	31.8	34.7	38.0	26 2	46.5	50.9	55.0	32 0	59.2	65.0	70.8	37 5	70.0	77.4	84.0
15 0	16.4	18.0	19.6	20 5	32.1	35.1	38.4	26 3	46.8	51.3	55.4	32 1	59.5	65.3	71.0	37 6	70.3	77.7	84.3
15 1	16.8	18.4	20.1	20 6	32.4	35.6	38.9	26 4	47.1	51.7	55.8	32 2	59.8	65.6	71.3	38 0	70.6	78.0	84.6
15 2	17.2	18.9	20.5	21 0	32.7	36.0	39.3	26 5	47.4	52.1	56.3	32 3	60.1	65.9	71.6	38 1	70.9	78.3	84.9
15 3	17.6	19.3	20.9	21 1	33.1	36.4	39.7	26 6	47.8	52.6	56.7	32 4	60.4	66.1	71.9	38 2	71.2	78.6	85.2
15 4	18.1	19.7	21.4	21 2	33.6	36.9	40.1	27 0	48.1	53.0	57.1	32 5	60.7	66.4	72.2	38 3	71.5	78.9	85.4
15 5	18.5	20.1	21.8	21 3	34.0	37.3	40.6	27 1	48.4	53.3	57.5	32 6	61.0	66.7	72.5	38 4	71.7	79.1	85.7
15 6	18.9	20.6	22.2	21 4	34.4	37.7	41.0	27 2	48.6	53.6	57.9	33 0	61.2	67.0	72.8	38 5	72.0	79.4	86.0
16 0	19.4	21.0	22.6	21 5	34.9	38.1	41.4	27 3	48.9	53.9	58.3	33 1	61.5	67.3	73.2	38 6	72.3	79.7	86.3
16 1	19.8	21.4	23.2	21 6	35.3	38.6	41.9	27 4	49.2	54.1	58.7	33 2	61.8	67.6	73.6	39 0	72.6	80.0	86.6
16 2	20.2	21.9	23.7	22 0	35.7	39.0	42.3	27 5	49.5	54.4	59.1	33 3	62.1	67.9	74.0	39 1	72.7	80.1	86.8
16 3	20.6	22.3	24.3	22 1	36.0	39.4	42.7	27 6	49.8	54.7	59.5	33 4	62.4	68.1	74.4	39 2	72.9	80.3	87.1
16 4	21.1	22.7	24.8	22 2	36.3	39.9	43.1	28 0	50.1	55.0	59.9	33 5	62.7	68.4	74.8	39 3	73.0	80.4	87.4
16 5	21.5	23.1	25.4	22 3	36.6	40.3	43.6	28 1	50.4	55.4	60.4	33 6	63.0	68.7	75.2	39 4	73.2	80.6	87.6
16 6	21.9	23.6	25.9	22 4	37.0	40.7	44.0	28 2	50.7	55.9	60.8	34 0	63.2	69.0	75.6	39 5	73.3	80.7	87.9
17 0	22.4	24.0	26.5	22 5	37.3	41.1	44.4	28 3	51.0	56.3	61.2	34 1	63.5	69.3	75.9	39 6	73.5	80.9	88.1
17 1	22.7	24.4	26.9	22 6	37.6	41.6	44.9	28 4	51.3	56.7	61.6	34 2	63.8	69.6	76.2	40 0	73.6	81.0	88.4
17 2	23.0	24.9	27.3	23 0	37.9	42.0	45.3	28 5	51.6	57.1	62.1	34 3	64.1	69.9	76.4				
17 3	23.3	25.3	27.8	23 1	38.3	42.4	45.8	28 6	51.9	57.6	62.5	34 4	64.4	70.1	76.7				
17 4	23.6	25.7	28.2	23 2	38.7	42.9	46.4	29 0	52.2	58.0	62.9	34 5	64.7	70.4	77.0				

Thoracic Circumference, Chitkara

Chitkara U, Rosenberg J, Chervenak FA, Berkowitz GS, Levine R, Fagerstrom RM, Walker B, Berkowitz RL. "Prenatal sonographic assessment of the fetal thorax: Normal values." *American Journal of Obstetrics and Gynecology* 156:1069, 1987.

Wk Day	5%	Mean	95%	Wk Day	5%	Mean	95%	Wk Day	5%	Mean	95%	Wk Day	5%	Mean	95%	Wk Day	5%	Mean	95%
16 0	6.4	9.1	11.9	20 6	10.9	13.6	16.3	25 5	15.2	17.9	20.7	30 4	19.6	22.4	25.1	35 3	24.1	26.8	29.5
16 1	6.5	9.2	12.0	21 0	11.0	13.7	16.4	25 6	15.4	18.1	20.9	30 5	19.7	22.5	25.2	35 4	24.2	26.9	29.6
16 2	6.7	9.4	12.2	21 1	11.1	13.8	16.5	26 0	15.5	18.2	21.0	30 6	19.9	22.7	25.4	35 5	24.3	27.0	29.7
16 3	6.8	9.5	12.3	21 2	11.3	14.0	16.7	26 1	15.6	18.3	21.1	31 0	20.0	22.8	25.5	35 6	24.5	27.2	29.9
16 4	6.9	9.6	12.4	21 3	11.4	14.1	16.8	26 2	15.8	18.5	21.3	31 1	20.1	22.9	25.6	36 0	24.6	27.3	30.0
16 5	7.0	9.7	12.5	21 4	11.5	14.2	16.9	26 3	15.9	18.6	21.4	31 2	20.3	23.1	25.8	36 1	24.7	27.4	30.1
16 6	7.2	9.9	12.7	21 5	11.6	14.3	17.0	26 4	16.0	18.7	21.5	31 3	20.4	23.2	25.9	36 2	24.9	27.6	30.3
17 0	7.3	10.0	12.8	21 6	11.8	14.5	17.2	26 5	16.1	18.8	21.6	31 4	20.5	23.3	26.0	36 3	25.0	27.7	30.4
17 1	7.4	10.1	12.9	22 0	11.9	14.6	17.3	26 6	16.3	19.0	21.8	31 5	20.6	23.4	26.1	36 4	25.1	27.8	30.5
17 2	7.7	10.4	13.2	22 2	12.2	14.9	17.6	27 1	16.5	19.2	22.0	32 0	20.9	23.7	26.4	36 6	25.4	28.1	30.8
17 4	7.8	10.6	13.3	22 3	12.3	15.0	17.7	27 2	16.7	19.4	22.2	32 1	21.0	23.8	26.5	37 0	25.5	28.2	30.9
17 5	7.9	10.7	13.4	22 4	12.4	15.1	17.8	27 3	16.8	19.5	22.3	32 2	21.2	24.0	26.7	37 1	25.6	28.3	31.0
17 6	8.1	10.9	13.6	22 5	12.5	15.2	17.9	27 4	16.9	19.6	22.4	32 3	21.3	24.1	26.8	37 2	25.8	28.5	31.2
18 0	8.2	11.0	13.7	22 6	12.7	15.4	18.1	27 5	17.0	19.7	22.5	32 4	21.4	24.2	26.9	37 3	25.9</		

Clavicle Length, Yarkoni

Yarkoni S, Schmidt W, Jeanty P, Reece EA, Hobbins JC. "Clavicular Measurement: A New Biometric Parameter for Fetal Evaluation." *Journal of Ultrasound in Medicine* 4:467, 1985.

$$CL(mm) = 1.118303 + 0.9788639 * MA(wks)$$

± Standard Deviation = 2.92 mm

5th & 95%: ±4.8 mm

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
15	0	11.0	15.8	20.6	20	1	16.0	20.8	25.6	25	2	21.1	25.9	30.7	30	3	26.1	30.9	35.7
15	1	11.1	15.9	20.7	20	2	16.2	21.0	25.8	25	3	21.2	26.0	30.8	30	4	26.2	31.0	35.8
15	2	11.3	16.1	20.9	20	3	16.3	21.1	25.9	25	4	21.3	26.1	30.9	30	5	26.4	31.2	36.0
15	3	11.4	16.2	21.0	20	4	16.5	21.3	26.1	25	5	21.5	26.3	31.1	30	6	26.5	31.3	36.1
15	4	11.6	16.4	21.2	20	5	16.6	21.4	26.2	25	6	21.6	26.4	31.2	31	0	26.7	31.5	36.3
15	5	11.7	16.5	21.3	20	6	16.7	21.5	26.3	26	0	21.8	26.6	31.4	31	1	26.8	31.6	36.4
15	6	11.8	16.6	21.4	21	0	16.9	21.7	26.5	26	1	21.9	26.7	31.5	31	2	26.9	31.7	36.5
16	0	12.0	16.8	21.6	21	1	17.0	21.8	26.6	26	2	22.0	26.8	31.6	31	3	27.1	31.9	36.7
16	1	12.1	16.9	21.7	21	2	17.2	22.0	26.8	26	3	22.2	27.0	31.8	31	4	27.2	32.0	36.8
16	2	12.3	17.1	21.9	21	3	17.3	22.1	26.9	26	4	22.3	27.1	31.9	31	5	27.4	32.2	37.0
16	3	12.4	17.2	22.0	21	4	17.4	22.2	27.0	26	5	22.5	27.3	32.1	31	6	27.5	32.3	37.1
16	4	12.5	17.3	22.1	21	5	17.6	22.4	27.2	26	6	22.6	27.4	32.2	32	0	27.6	32.4	37.2
16	5	12.7	17.5	22.3	21	6	17.7	22.5	27.3	27	0	22.7	27.5	32.3	32	1	27.8	32.6	37.4
16	6	12.8	17.6	22.4	22	0	17.9	22.7	27.5	27	1	22.9	27.7	32.5	32	2	27.9	32.7	37.5
17	0	13.0	17.8	22.6	22	1	18.0	22.8	27.6	27	2	23.0	27.8	32.6	32	3	28.1	32.9	37.7
17	1	13.1	17.9	22.7	22	2	18.1	22.9	27.7	27	3	23.2	28.0	32.8	32	4	28.2	33.0	37.8
17	2	13.2	18.0	22.8	22	3	18.3	23.1	27.9	27	4	23.3	28.1	32.9	32	5	28.3	33.1	37.9
17	3	13.4	18.2	23.0	22	4	18.4	23.2	28.0	27	5	23.4	28.2	33.0	32	6	28.5	33.3	38.1
17	4	13.5	18.3	23.1	22	5	18.6	23.4	28.2	27	6	23.6	28.4	33.2	33	0	28.6	33.4	38.2
17	5	13.7	18.5	23.3	22	6	18.7	23.5	28.3	28	0	23.7	28.5	33.3	33	1	28.8	33.6	38.4
17	6	13.8	18.6	23.4	23	0	18.8	23.6	28.4	28	1	23.9	28.7	33.5	33	2	28.9	33.7	38.5
18	0	13.9	18.7	23.5	23	1	19.0	23.8	28.6	28	2	24.0	28.8	33.6	33	3	29.0	33.8	38.6
18	1	14.1	18.9	23.7	23	2	19.1	23.9	28.7	28	3	24.1	28.9	33.7	33	4	29.2	34.0	38.8
18	2	14.2	19.0	23.8	23	3	19.3	24.1	28.9	28	4	24.3	29.1	33.9	33	5	29.3	34.1	38.9
18	3	14.4	19.2	24.0	23	4	19.4	24.2	29.0	28	5	24.4	29.2	34.0	33	6	29.5	34.3	39.1
18	4	14.5	19.3	24.1	23	5	19.5	24.3	29.1	28	6	24.6	29.4	34.2	34	0	29.6	34.4	39.2
18	5	14.6	19.4	24.2	23	6	19.7	24.5	29.3	29	0	24.7	29.5	34.3	34	1	29.7	34.5	39.3
18	6	14.8	19.6	24.4	24	0	19.8	24.6	29.4	29	1	24.8	29.6	34.4	34	2	29.9	34.7	39.5
19	0	14.9	19.7	24.5	24	1	20.0	24.8	29.6	29	2	25.0	29.8	34.6	34	3	30.0	34.8	39.6
19	1	15.1	19.9	24.7	24	2	20.1	24.9	29.7	29	3	25.1	29.9	34.7	34	4	30.2	35.0	39.8
19	2	15.2	20.0	24.8	24	3	20.2	25.0	29.8	29	4	25.3	30.1	34.9	34	5	30.3	35.1	39.9
19	3	15.3	20.1	24.9	24	4	20.4	25.2	30.0	29	5	25.4	30.2	35.0	34	6	30.4	35.2	40.0
19	4	15.5	20.3	25.1	24	5	20.5	25.3	30.1	29	6	25.5	30.3	35.1	35	0	30.6	35.4	40.2
19	5	15.6	20.4	25.2	24	6	20.7	25.5	30.3	30	0	25.7	30.5	35.3	35	1	30.7	35.5	40.3
19	6	15.8	20.6	25.4	25	0	20.8	25.6	30.4	30	1	25.8	30.6	35.4	35	2	30.9	35.7	40.5
20	0	15.9	20.7	25.5	25	1	20.9	25.7	30.5	30	2	26.0	30.8	35.6	35	3	31.0	35.8	40.6

Renal Length, Bertagnoli

Bertagnoli L, Lalatta F, Galicchio R, Fantuzzi M, Rusca M, Zorzoli A, Deter RL. "Quantitative Characterization of the Growth of the Fetal Kidney." *Journal of Clinical Ultrasound* 11:349, 1983.

$$RL(mm) = 16.8933 + 0.0132 * MA^2(wks)$$

1 Standard Deviation = 1.259 mm

5 & 95%: 2.07 mm

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
24	0	22.4	24.5	26.6	27	5	25.0	27.0	29.1	31	3	27.9	29.9	32.0	35	1	31.1	33.2	35.3
24	1	22.5	24.6	26.7	27	6	25.1	27.1	29.2	31	4	28.0	30.1	32.1	35	2	31.3	33.3	35.4
24	2	22.6	24.7	26.7	28	0	25.2	27.2	29.3	31	5	28.1	30.2	32.2	35	3	31.4	33.5	35.5
24	3	22.7	24.8	26.8	28	1	25.3	27.3	29.4	31	6	28.2	30.3	32.4	35	4	31.5	33.6	35.7
24	4	22.8	24.9	26.9	28	2	25.4	27.5	29.5	32	0	28.3	30.4	32.5	35	5	31.7	33.7	35.8
24	5	22.9	25.0	27.0	28	3	25.5	27.6	29.6	32	1	28.5	30.5	32.6	35	6	31.8	33.9	35.9
24	6	23.0	25.0	27.1	28	4	25.6	27.7	29.7	32	2	28.6	30.7	32.7	36	0	31.9	34.0	36.1
25	0	23.1	25.1	27.2	28	5	25.7	27.8	29.8	32	3	28.7	30.8	32.8	36	1	32.1	34.1	36.2
25	1	23.2	25.2	27.3	28	6	25.8	27.9	30.0	32	4	28.8	30.9	33.0	36	2	32.2	34.3	36.3
25	2	23.3	25.3	27.4	29	0	25.9	28.0	30.1	32	5	29.0	31.0	33.1	36	3	32.3	34.4	36.5
25	3	23.4	25.4	27.5	29	1	26.0	28.1	30.2	32	6	29.1	31.1	33.2	36	4	32.5	34.5	36.6
25	4	23.5	25.5	27.6	29	2	26.1	28.2	30.3	33	0	29.2	31.3	33.3	36	5	32.6	34.7	36.8
25	5	23.6	25.6	27.7	29	3	26.3	28.3	30.4	33	1	29.3	31.4	33.5	36	6	32.8	34.8	36.9
25	6	23.6	25.7	27.8	29	4	26.4	28.4	30.5	33	2	29.4	31.5	33.6	37	0	32.9	35.0	37.0
26	0	23.7	25.8	27.9	29	5	26.5	28.5	30.6	33	3	29.6	31.6	33.7	37	1	33.0	35.1	37.2
26	1	23.8	25.9	28.0	29	6	26.6	28.7	30.7	33	4	29.7	31.8	33.8	37	2	33.2	35.2	37.3
26	2	23.9	26.0	28.1	30	0	26.7	28.8	30.8	33	5	29.8	31.9	34.0	37	3	33.3	35.4	37.5
26	3	24.0	26.1	28.2	30	1	26.8	28.9	31.0	33	6	30.0	32.0	34.1	37	4	33.5	35.5	37.6
26	4	24.1	26.2	28.3	30	2	26.9	29.0	31.1	34	0	30.1	32.2	34.2	37	5	33.6	35.7	37.7
26	5	24.2	26.3	28.4	30	3	27.0	29.1	31.2	34	1	30.2	32.3	34.4	37	6	33.7	35.8	37.9
26	6	24.3	26.4	28.5	30	4	27.2	29.2	31.3	34	2	30.3	32.4	34.5	38	0	33.9	36.0	38.0
27	0	24.4	26.5	28.6	30	5	27.3	29.3	31.4	34	3	30.5	32.5	34.6	38	1	34.0	36.1	38.2
27	1	24.5	26																

Renal Length, Hansmann

Hansmann M, Hackelöer B-J, Staudach A. *Ultrasound Diagnosis in Obstetrics and Gynecology*. New York: Springer-Verlag, 1985.

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
20	0	21.0	28.0	36.0	24	1	24.0	31.0	38.1	28	2	26.3	33.3	40.3	32	3	29.0	36.0	43.0	36	4	31.6	38.6	45.6
20	1	21.1	28.1	36.0	24	2	24.0	31.0	38.3	28	3	26.4	33.4	40.4	32	4	29.0	36.0	43.0	36	5	31.7	38.7	45.7
20	2	21.3	28.3	36.0	24	3	24.0	31.0	38.4	28	4	26.6	33.6	40.6	32	5	29.0	36.0	43.0	36	6	31.9	38.9	45.9
20	3	21.4	28.4	36.0	24	4	24.0	31.0	38.6	28	5	26.7	33.7	40.7	32	6	29.0	36.0	43.0	37	0	32.0	39.0	46.0
20	4	21.6	28.6	36.0	24	5	24.0	31.0	38.7	28	6	26.9	33.9	40.9	33	0	29.0	36.0	43.0	37	1	32.0	39.0	46.1
20	5	21.7	28.7	36.0	24	6	24.0	31.0	38.9	29	0	27.0	34.0	41.0	33	1	29.1	36.1	43.1	37	2	32.0	39.0	46.3
20	6	21.9	28.9	36.0	25	0	24.0	31.0	39.0	29	1	27.0	34.0	41.1	33	2	29.3	36.3	43.3	37	3	32.0	39.0	46.4
21	0	22.0	29.0	36.0	25	1	24.1	31.1	39.0	29	2	27.0	34.0	41.3	33	3	29.4	36.4	43.4	37	4	32.0	39.0	46.6
21	1	22.0	29.1	36.1	25	2	24.3	31.3	39.0	29	3	27.0	34.0	41.4	33	4	29.6	36.6	43.6	37	5	32.0	39.0	46.7
21	2	22.0	29.3	36.3	25	3	24.4	31.4	39.0	29	4	27.0	34.0	41.6	33	5	29.7	36.7	43.7	37	6	32.0	39.0	46.9
21	3	22.0	29.4	36.4	25	4	24.6	31.6	39.0	29	5	27.0	34.0	41.7	33	6	29.9	36.9	43.9	38	0	32.0	39.0	47.0
21	4	22.0	29.6	36.6	25	5	24.7	31.7	39.0	29	6	27.0	34.0	41.9	34	0	30.0	37.0	44.0	38	1	32.1	39.1	47.0
21	5	22.0	29.7	36.7	25	6	24.9	31.9	39.0	30	0	27.0	34.0	42.0	34	1	30.0	37.1	44.1	38	2	32.3	39.3	47.0
21	6	22.0	29.9	36.9	26	0	25.0	32.0	39.0	30	1	27.1	34.1	42.0	34	2	30.0	37.3	44.3	38	3	32.4	39.4	47.0
22	0	22.0	30.0	37.0	26	1	25.1	32.1	39.1	30	2	27.3	34.3	42.0	34	3	30.0	37.4	44.4	38	4	32.6	39.6	47.0
22	1	22.1	30.0	37.0	26	2	25.3	32.3	39.3	30	3	27.4	34.4	42.0	34	4	30.0	37.6	44.6	38	5	32.7	39.7	47.0
22	2	22.3	30.0	37.0	26	3	25.4	32.4	39.4	30	4	27.6	34.6	42.0	34	5	30.0	37.7	44.7	38	6	32.9	39.9	47.0
22	3	22.4	30.0	37.0	26	4	25.6	32.6	39.6	30	5	27.7	34.7	42.0	34	6	30.0	37.9	44.9	39	0	33.0	40.0	47.0
22	4	22.6	30.0	37.0	26	5	25.7	32.7	39.7	30	6	27.9	34.9	42.0	35	0	30.0	38.0	45.0	39	1	33.0	40.1	47.1
22	5	22.7	30.0	37.0	26	6	25.9	32.9	39.9	31	0	28.0	35.0	42.0	35	1	30.1	38.0	45.0	39	2	33.0	40.3	47.3
22	6	22.9	30.0	37.0	27	0	26.0	33.0	40.0	31	1	28.1	35.1	42.1	35	2	30.3	38.0	45.0	39	3	33.0	40.4	47.4
23	0	23.0	30.0	37.0	27	1	26.0	33.0	40.0	31	2	28.3	35.3	42.3	35	3	30.4	38.0	45.0	39	4	33.0	40.6	47.6
23	1	23.1	30.1	37.1	27	2	26.0	33.0	40.0	31	3	28.4	35.4	42.4	35	4	30.6	38.0	45.0	39	5	33.0	40.7	47.7
23	2	23.3	30.3	37.3	27	3	26.0	33.0	40.0	31	4	28.6	35.6	42.6	35	5	30.7	38.0	45.0	39	6	33.0	40.9	47.9
23	3	23.4	30.4	37.4	27	4	26.0	33.0	40.0	31	5	28.7	35.7	42.7	35	6	30.9	38.0	45.0	40	0	33.0	41.0	48.0
23	4	23.6	30.6	37.6	27	5	26.0	33.0	40.0	31	6	28.9	35.9	42.9	36	0	31.0	38.0	45.0					
23	5	23.7	30.7	37.7	27	6	26.0	33.0	40.0	32	0	29.0	36.0	43.0	36	1	31.1	38.1	45.1					
23	6	23.9	30.9	37.9	28	0	26.0	33.0	40.0	32	1	29.0	36.0	43.0	36	2	31.3	38.3	45.3					
24	0	24.0	31.0	38.0	28	1	26.1	33.1	40.1	32	2	29.0	36.0	43.0	36	3	31.4	38.4	45.4					

Renal Anterior Posterior, Bertagnoli

Bertagnoli L, Lalatta F, Gallicchio R, Fantuzzi M, Rusca M, Zorzoli A, Deter RL. "Quantitative Characterization of the Growth of the Fetal Kidney." *Journal of Clinical Ultrasound* 11:349, 1983.

$$\text{RAP(mm)} = 8.457278951 + 0.00026630314 * \text{MA(wks)}^3 \quad \text{1 Standard Deviation} = 1.209 \text{ mm} \quad \text{5 \& 95\%: 1.99 mm}$$

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
22	0	9.3	11.3	13.3	25	5	11.0	13.0	15.0	29	3	13.3	15.2	17.2	33	1	16.2	18.2	20.1	36	6	19.8	21.8	23.8
22	1	9.4	11.3	13.3	25	6	11.1	13.1	15.1	29	4	13.4	15.3	17.3	33	2	16.3	18.3	20.3	37	0	20.0	21.9	23.9
22	2	9.4	11.4	13.4	26	0	11.1	13.1	15.1	29	5	13.5	15.4	17.4	33	3	16.4	18.4	20.4	37	1	20.1	22.1	24.1
22	3	9.5	11.5	13.5	26	1	11.2	13.2	15.2	29	6	13.6	15.5	17.5	33	4	16.5	18.5	20.5	37	2	20.3	22.3	24.3
22	4	9.5	11.5	13.5	26	2	11.3	13.3	15.3	30	0	13.7	15.6	17.6	33	5	16.7	18.7	20.7	37	3	20.4	22.4	24.4
22	5	9.6	11.6	13.6	26	3	11.4	13.4	15.4	30	1	13.8	15.8	17.7	33	6	16.8	18.8	20.8	37	4	20.6	22.6	24.6
22	6	9.6	11.6	13.6	26	4	11.5	13.5	15.4	30	2	13.9	15.9	17.8	34	0	16.9	18.9	20.9	37	5	20.8	22.7	24.7
23	0	9.7	11.7	13.7	26	5	11.5	13.5	15.5	30	3	14.0	16.0	18.0	34	1	17.1	19.1	21.0	37	6	20.9	22.9	24.9
23	1	9.8	11.8	13.7	26	6	11.6	13.6	15.6	30	4	14.1	16.1	18.1	34	2	17.2	19.2	21.2	38	0	21.1	23.1	25.1
23	2	9.8	11.8	13.8	27	0	11.7	13.7	15.7	30	5	14.2	16.2	18.2	34	3	17.3	19.3	21.3	38	1	21.2	23.2	25.2
23	3	9.9	11.9	13.9	27	1	11.8	13.8	15.8	30	6	14.3	16.3	18.3	34	4	17.5	19.5	21.5	38	2	21.4	23.4	25.4
23	4	10.0	11.9	13.9	27	2	11.9	13.9	15.9	31	0	14.4	16.4	18.4	34	5	17.6	19.6	21.6	38	3	21.6	23.6	25.6
23	5	10.0	12.0	14.0	27	3	12.0	14.0	16.0	31	1	14.5	16.5	18.5	34	6	17.7	19.7	21.7	38	4	21.7	23.7	25.7
23	6	10.1	12.1	14.1	27	4	12.0	14.0	16.0	31	2	14.6	16.6	18.6	35	0	17.9	19.9	21.9	38	5	21.9	23.9	25.9
24	0	10.1	12.1	14.1	27	5	12.1	14.1	16.1	31	3	14.7	16.7	18.7	35	1	18.0	20.0	22.0	38	6	22.1	24.1	26.1
24	1	10.2	12.2	14.2	27	6	12.2	14.2	16.2	31	4	14.8	16.8	18.8	35	2	18.2	20.2	22.2	39	0	22.3	24.3	26.2
24	2	10.3	12.3	14.3	28	0	12.3	14.3	16.3	31	5	15.0	17.0	18.9	35	3	18.3	20.3	22.3	39	1	22.4	24.4	26.4
24	3	10.3	12.3	14.3	28	1	12.4	14.4	16.4	31	6	15.1	17.1	19.1	35	4	18.5	20.4	22.4	39	2	22.6	24.6	26.6
24	4	10.4	12.4	14.4	28	2	12.5	14.5	16.5	32	0	15.2	17.2	19.2										

Renal Anterior Posterior, HansmannHansmann M, Hackelöer B-J, Staudach A. *Ultrasound Diagnosis in Obstetrics and Gynecology*. New York: Springer-Verlag, 1985.

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
20	0	11.0	15.0	19.0	24	1	13.0	17.0	21.0	28	2	14.3	18.3	22.3	32	3	16.4	20.4	24.4	36	4	18.0	22.0	26.0
20	1	11.0	15.0	19.0	24	2	13.0	17.0	21.0	28	3	14.4	18.4	22.4	32	4	16.6	20.6	24.6	36	5	18.0	22.0	26.0
20	2	11.0	15.0	19.0	24	3	13.0	17.0	21.0	28	4	14.6	18.6	22.6	32	5	16.7	20.7	24.7	36	6	18.0	22.0	26.0
20	3	11.0	15.0	19.0	24	4	13.0	17.0	21.0	28	5	14.7	18.7	22.7	32	6	16.9	20.9	24.9	37	0	18.0	22.0	26.0
20	4	11.0	15.0	19.0	24	5	13.0	17.0	21.0	28	6	14.9	18.9	22.9	33	0	17.0	21.0	25.0	37	1	18.1	22.1	26.1
20	5	11.0	15.0	19.0	24	6	13.0	17.0	21.0	29	0	15.0	19.0	23.0	33	1	17.0	21.0	25.0	37	2	18.3	22.3	26.3
20	6	11.0	15.0	19.0	25	0	13.0	17.0	21.0	29	1	15.0	19.0	23.0	33	2	17.0	21.0	25.0	37	3	18.4	22.4	26.4
21	0	11.0	15.0	19.0	25	1	13.1	17.1	21.1	29	2	15.0	19.0	23.0	33	3	17.0	21.0	25.0	37	4	18.6	22.6	26.6
21	1	11.1	15.1	19.1	25	2	13.3	17.3	21.3	29	3	15.0	19.0	23.0	33	4	17.0	21.0	25.0	37	5	18.7	22.7	26.7
21	2	11.3	15.3	19.3	25	3	13.4	17.4	21.4	29	4	15.0	19.0	23.0	33	5	17.0	21.0	25.0	37	6	18.9	22.9	26.9
21	3	11.4	15.4	19.4	25	4	13.6	17.6	21.6	29	5	15.0	19.0	23.0	33	6	17.0	21.0	25.0	38	0	19.0	23.0	27.0
21	4	11.6	15.6	19.6	25	5	13.7	17.7	21.7	29	6	15.0	19.0	23.0	34	0	17.0	21.0	25.0	38	1	19.0	23.0	27.0
21	5	11.7	15.7	19.7	25	6	13.9	17.9	21.9	30	0	15.0	19.0	23.0	34	1	17.0	21.0	25.0	38	2	19.0	23.0	27.0
21	6	11.9	15.9	19.9	26	0	14.0	18.0	22.0	30	1	15.1	19.1	23.1	34	2	17.0	21.0	25.0	38	3	19.0	23.0	27.0
22	0	12.0	16.0	20.0	26	1	14.0	18.0	22.0	30	2	15.3	19.3	23.3	34	3	17.0	21.0	25.0	38	4	19.0	23.0	27.0
22	1	12.0	16.0	20.0	26	2	14.0	18.0	22.0	30	3	15.4	19.4	23.4	34	4	17.0	21.0	25.0	38	5	19.0	23.0	27.0
22	2	12.0	16.0	20.0	26	3	14.0	18.0	22.0	30	4	15.6	19.6	23.6	34	5	17.0	21.0	25.0	38	6	19.0	23.0	27.0
22	3	12.0	16.0	20.0	26	4	14.0	18.0	22.0	30	5	15.7	19.7	23.7	34	6	17.0	21.0	25.0	39	0	19.0	23.0	27.0
22	4	12.0	16.0	20.0	26	5	14.0	18.0	22.0	30	6	15.9	19.9	23.9	35	0	17.0	21.0	25.0	39	1	19.0	23.0	27.0
22	5	12.0	16.0	20.0	26	6	14.0	18.0	22.0	31	0	16.0	20.0	24.0	35	1	17.1	21.1	25.1	39	2	19.0	23.0	27.0
22	6	12.0	16.0	20.0	27	0	14.0	18.0	22.0	31	1	16.0	20.0	24.0	35	2	17.3	21.3	25.3	39	3	19.0	23.0	27.0
23	0	12.0	16.0	20.0	27	1	14.0	18.0	22.0	31	2	16.0	20.0	24.0	35	3	17.4	21.4	25.4	39	4	19.0	23.0	27.0
23	1	12.1	16.1	20.1	27	2	14.0	18.0	22.0	31	3	16.0	20.0	24.0	35	4	17.6	21.6	25.6	39	5	19.0	23.0	27.0
23	2	12.3	16.3	20.3	27	3	14.0	18.0	22.0	31	4	16.0	20.0	24.0	35	5	17.7	21.7	25.7	39	6	19.0	23.0	27.0
23	3	12.4	16.4	20.4	27	4	14.0	18.0	22.0	31	5	16.0	20.0	24.0	35	6	17.9	21.9	25.9	40	0	19.0	23.0	27.0
23	4	12.6	16.6	20.6	27	5	14.0	18.0	22.0	31	6	16.0	20.0	24.0	36	0	18.0	22.0	26.0					
23	5	12.7	16.7	20.7	27	6	14.0	18.0	22.0	32	0	16.0	20.0	24.0	36	1	18.0	22.0	26.0					
23	6	12.9	16.9	20.9	28	0	14.0	18.0	22.0	32	1	16.1	20.1	24.1	36	2	18.0	22.0	26.0					
24	0	13.0	17.0	21.0	28	1	14.1	18.1	22.1	32	2	16.3	20.3	24.3	36	3	18.0	22.0	26.0					

Umbilical Artery (Resistive Index), JSUMJapan Society of Ultrasonics in Medicine. "Standardization of Fetometry and Official Announcement of Diagnostic Guidelines." *J. Med. Ultrasonics* 28:844-872, 2001.

Umb A RI Days	10%	Mean	90%	Umb A RI Days	10%	Mean	90%	Umb A RI Days	10%	Mean	90%	Umb A RI Days	10%	Mean	90%	Umb A RI Days	10%	Mean	90%	Umb A RI Days	10%	Mean	90%
140	0.715	0.779	0.827	170	0.649	0.718	0.782	200	0.593	0.668	0.743	230	0.548	0.629	0.708	260	0.512	0.600	0.677	290	0.503	0.593	0.669
141	0.713	0.776	0.825	171	0.647	0.716	0.781	201	0.592	0.666	0.741	231	0.546	0.627	0.706	261	0.511	0.599	0.676	291	0.502	0.593	0.668
142	0.710	0.774	0.824	172	0.645	0.714	0.780	202	0.590	0.665	0.740	232	0.545	0.626	0.705	262	0.510	0.598	0.675	292	0.501	0.592	0.667
143	0.708	0.772	0.822	173	0.643	0.712	0.778	203	0.588	0.663	0.739	233	0.544	0.625	0.704	263	0.509	0.598	0.674	293	0.500	0.592	0.666
144	0.706	0.770	0.820	174	0.641	0.711	0.777	204	0.587	0.662	0.738	234	0.542	0.624	0.703	264	0.508	0.597	0.673	294	0.501	0.592	0.665
145	0.703	0.768	0.819	175	0.639	0.709	0.775	205	0.585	0.661	0.736	235	0.541	0.623	0.702	265	0.507	0.596	0.673	295	0.500	0.591	0.664
146	0.701	0.766	0.817	176	0.637	0.707	0.774	206	0.583	0.659	0.735	236	0.540	0.622	0.701	266	0.506	0.595	0.672	296	0.500	0.591	0.665
147	0.699	0.764	0.816	177	0.635	0.708	0.773	207	0.582	0.658	0.734	237	0.538	0.621	0.700	267	0.505	0.595	0.671	297	0.500	0.591	0.665
148	0.696	0.761	0.814	178	0.633	0.704	0.771	208	0.580	0.656	0.733	238	0.537	0.620	0.699	268	0.504	0.594	0.670	298	0.500	0.591	0.667
149	0.694	0.759	0.813	179	0.631	0.702	0.770	209	0.579	0.655	0.732	239	0.536	0.619	0.698	269	0.503	0.593	0.669	299	0.500	0.591	0.668
150	0.692	0.757	0.811	180	0.629	0.700	0.769	210	0.577	0.654	0.730	240	0.535	0.618	0.697	270	0.502	0.593	0.668	300	0.500	0.591	0.667
151	0.690	0.755	0.810	181	0.628	0.698	0.767	211	0.575	0.652	0.729	241	0.533	0.617	0.696	271	0.501	0.592	0.667	301	0.500	0.591	0.666
152	0.687	0.753	0.808	182	0.626	0.697	0.766	212	0.574	0.651	0.728	242	0.532	0.616	0.695	272	0.500	0.591	0.666	302	0.500	0.591	0.665
153	0.685	0.751	0.807	183	0.624	0.695	0.765	213	0.572	0.650	0.727	243	0.531	0.615	0.694	273	0.500	0.591	0.665	303	0.500	0.591	0.664
154	0.683	0.749	0.805	184	0.622	0.693	0.763	214	0.571	0.648	0.726	244	0.530	0.614	0.693	274	0.499	0.590	0.665	304	0.498	0.589	0.664
155	0.681	0.747	0.804	185	0.620	0.692	0.762	215	0.569	0.647	0.724	245	0.529	0.613	0.692	275	0.498	0.589	0.664	305	0.497	0.589	0.663
156	0.679	0.745	0.802	186	0.618	0.690	0.761	216	0.568	0.646	0.723	246	0.527	0.612	0.691	276							

Umbilical Artery (Pulsatility Index), JSUM

Japan Society of Ultrasonics in Medicine. "Standardization of Fetometry and Official Announcement of Diagnostic Guidelines." *J. Med. Ultrasonics* 28:844-872, 2001.

Umb A PI Days	Umb A PI 10% Mean 90%			Umb A PI Days 10% Mean 90%			Umb A PI Days 10% Mean 90%			Umb A PI Days 10% Mean 90%			Umb A PI Days 10% Mean 90%			Umb A PI Days 10% Mean 90%			
	140	1.133	1.388	1.628	170	0.978	1.193	1.420	200	0.855	1.046	1.261	230	0.765	0.946	1.151	260	0.707	0.895
141	1.127	1.380	1.621	171	0.973	1.187	1.414	201	0.851	1.041	1.256	231	0.762	0.944	1.149	261	0.705	0.894	1.090
142	1.121	1.373	1.613	172	0.968	1.181	1.408	202	0.848	1.037	1.252	232	0.760	0.941	1.146	262	0.704	0.893	1.089
143	1.116	1.366	1.605	173	0.964	1.176	1.402	203	0.844	1.033	1.248	233	0.757	0.939	1.143	263	0.703	0.892	1.088
144	1.110	1.359	1.598	174	0.959	1.170	1.396	204	0.841	1.030	1.243	234	0.755	0.937	1.140	264	0.701	0.891	1.087
145	1.105	1.352	1.590	175	0.955	1.165	1.390	205	0.838	1.026	1.239	235	0.753	0.934	1.138	265	0.700	0.891	1.086
146	1.099	1.345	1.583	176	0.950	1.159	1.384	206	0.834	1.022	1.235	236	0.750	0.932	1.135	266	0.699	0.890	1.085
147	1.094	1.338	1.575	177	0.946	1.154	1.378	207	0.831	1.018	1.231	237	0.748	0.930	1.133	267	0.698	0.890	1.084
148	1.088	1.331	1.568	178	0.942	1.149	1.373	208	0.828	1.014	1.227	238	0.746	0.928	1.130	268	0.697	0.889	1.084
149	1.083	1.324	1.561	179	0.937	1.144	1.367	209	0.824	1.011	1.223	239	0.744	0.926	1.128	269	0.696	0.889	1.083
150	1.078	1.317	1.553	180	0.933	1.138	1.361	210	0.821	1.007	1.219	240	0.742	0.924	1.126	270	0.695	0.888	1.082
151	1.072	1.311	1.546	181	0.929	1.133	1.356	211	0.818	1.004	1.215	241	0.740	0.922	1.124	271	0.693	0.888	1.082
152	1.067	1.304	1.539	182	0.925	1.128	1.350	212	0.815	1.000	1.211	242	0.737	0.920	1.121	272	0.693	0.888	1.081
153	1.062	1.297	1.532	183	0.920	1.123	1.345	213	0.812	0.997	1.207	243	0.735	0.918	1.119	273	0.692	0.887	1.081
154	1.056	1.291	1.525	184	0.916	1.118	1.340	214	0.809	0.993	1.204	244	0.733	0.916	1.117	274	0.691	0.887	1.080
155	1.051	1.284	1.518	185	0.912	1.113	1.334	215	0.806	0.990	1.200	245	0.731	0.915	1.115	275	0.690	0.887	1.080
156	1.046	1.278	1.511	186	0.908	1.108	1.329	216	0.803	0.987	1.196	246	0.730	0.913	1.113	276	0.689	0.887	1.079
157	1.041	1.271	1.504	187	0.904	1.103	1.324	217	0.800	0.983	1.193	247	0.728	0.911	1.111	277	0.688	0.887	1.079
158	1.036	1.265	1.497	188	0.900	1.099	1.319	218	0.797	0.980	1.189	248	0.726	0.910	1.109	278	0.687	0.887	1.079
159	1.031	1.259	1.491	189	0.896	1.094	1.313	219	0.794	0.977	1.186	249	0.724	0.908	1.108	279	0.687	0.887	1.079
160	1.026	1.252	1.484	190	0.892	1.089	1.308	220	0.791	0.974	1.182	250	0.722	0.907	1.106	280	0.686	0.887	1.079
161	1.021	1.246	1.477	191	0.888	1.085	1.303	221	0.788	0.971	1.179	251	0.721	0.905	1.104	281	0.685	0.887	1.079
162	1.016	1.240	1.471	192	0.884	1.080	1.298	222	0.785	0.968	1.176	252	0.719	0.904	1.102	282	0.685	0.887	1.079
163	1.011	1.234	1.464	193	0.881	1.076	1.294	223	0.783	0.965	1.172	253	0.717	0.902	1.101	283	0.684	0.888	1.079
164	1.006	1.228	1.458	194	0.877	1.071	1.289	224	0.780	0.962	1.169	254	0.716	0.901	1.099	284	0.684	0.888	1.079
165	1.001	1.222	1.451	195	0.873	1.067	1.284	225	0.777	0.959	1.166	255	0.714	0.900	1.098	285	0.683	0.888	1.079
166	0.996	1.216	1.445	196	0.869	1.062	1.279	226	0.775	0.957	1.163	256	0.712	0.899	1.096	286	0.683	0.889	1.079
167	0.992	1.210	1.439	197	0.866	1.058	1.275	227	0.772	0.954	1.160	257	0.711	0.898	1.095	287	0.682	0.889	1.079
168	0.987	1.204	1.432	198	0.862	1.054	1.270	228	0.770	0.951	1.157	258	0.709	0.897	1.094				
169	0.982	1.198	1.426	199	0.858	1.050	1.265	229	0.767	0.949	1.154	259	0.708	0.896	1.092				

Middle Cerebral Artery (Resistive Index), JSUM

Japan Society of Ultrasonics in Medicine. "Standardization of Fetometry and Official Announcement of Diagnostic Guidelines." *J. Med. Ultrasonics* 28:844-872, 2001.

MCA RI Days	MCA RI 10% Mean 90%			MCA RI Days 10% Mean 90%															
	140	0.713	0.768	0.838	170	0.766	0.825	0.890	200	0.782	0.848	0.913	230	0.761	0.837	0.905	260	0.703	0.793
141	0.715	0.770	0.840	171	0.767	0.826	0.892	201	0.782	0.848	0.913	231	0.760	0.836	0.905	261	0.701	0.791	0.866
142	0.717	0.773	0.843	172	0.768	0.827	0.893	202	0.782	0.848	0.913	232	0.759	0.835	0.904	262	0.698	0.789	0.865
143	0.720	0.775	0.845	173	0.769	0.829	0.894	203	0.782	0.848	0.913	233	0.757	0.834	0.903	263	0.695	0.787	0.863
144	0.722	0.777	0.847	174	0.770	0.830	0.895	204	0.782	0.849	0.914	234	0.756	0.833	0.902	264	0.693	0.784	0.861
145	0.724	0.780	0.849	175	0.771	0.831	0.896	205	0.781	0.849	0.914	235	0.754	0.832	0.901	265	0.690	0.782	0.859
146	0.726	0.782	0.851	176	0.772	0.832	0.897	206	0.781	0.849	0.914	236	0.753	0.831	0.900	266	0.687	0.780	0.857
147	0.728	0.784	0.853	177	0.773	0.833	0.898	207	0.781	0.849	0.914	237	0.751	0.830	0.899	267	0.684	0.778	0.855
148	0.730	0.786	0.855	178	0.774	0.834	0.899	208	0.780	0.848	0.914	238	0.750	0.829	0.898	268	0.681	0.775	0.853
149	0.733	0.789	0.857	179	0.775	0.835	0.900	209	0.780	0.848	0.914	239	0.748	0.828	0.897	269	0.679	0.773	0.851
150	0.735	0.791	0.859	180	0.776	0.836	0.901	210	0.780	0.848	0.914	240	0.746	0.826	0.896	270	0.676	0.771	0.849
151	0.736	0.793	0.861	181	0.776	0.837	0.902	211	0.779	0.848	0.914	241	0.744	0.825	0.895	271	0.673	0.768	0.847
152	0.738	0.795	0.863	182	0.777	0.838	0.903	212	0.778	0.848	0.913	242	0.743	0.824	0.894	272	0.670	0.766	0.845
153	0.740	0.797	0.864	183	0.778	0.839	0.904	213	0.778	0.848	0.913	243	0.741	0.822	0.893	273	0.666	0.763	0.843
154	0.742	0.799	0.866	184	0.778	0.840	0.905	214	0.777	0.847	0.913	244	0.739	0.821	0.892	274	0.663	0.761	0.840
155	0.744	0.801	0.868	185	0.779	0.841	0.905	215	0.777	0.847	0.913	245	0.737	0.819	0.890	275	0.660	0.758	0.838
156	0.746	0.802	0.870	186	0.779	0.841	0.906	216	0.776	0.847	0.913	246	0.735	0.818	0.889	276	0.657	0.755	0.836
157	0.747	0.804	0.871	187															

Middle Cerebral Artery (Pulsatility Index), JSUM

Japan Society of Ultrasonics in Medicine. "Standardization of Fetometry and Official Announcement of Diagnostic Guidelines." *J. Med. Ultrasonics* 28:844-872, 2001.

MCA PI Days																			
	10%	Mean	90%																
140	1.274	1.450	1.859	170	1.475	1.796	2.224	200	1.540	1.951	2.386	230	1.468	1.916	2.344	260	1.260	1.691	2.099
141	1.283	1.464	1.874	171	1.479	1.804	2.233	201	1.539	1.953	2.388	231	1.463	1.912	2.339	261	1.251	1.680	2.087
142	1.292	1.479	1.890	172	1.484	1.812	2.242	202	1.539	1.955	2.390	232	1.458	1.907	2.334	262	1.241	1.669	2.075
143	1.300	1.493	1.905	173	1.488	1.820	2.250	203	1.539	1.956	2.391	233	1.453	1.902	2.329	263	1.232	1.658	2.063
144	1.309	1.507	1.919	174	1.492	1.827	2.258	204	1.538	1.957	2.392	234	1.448	1.897	2.323	264	1.222	1.646	2.051
145	1.317	1.521	1.934	175	1.495	1.835	2.266	205	1.537	1.958	2.393	235	1.443	1.892	2.318	265	1.212	1.634	2.038
146	1.325	1.534	1.948	176	1.499	1.842	2.273	206	1.536	1.959	2.394	236	1.437	1.886	2.312	266	1.202	1.623	2.025
147	1.333	1.548	1.962	177	1.502	1.849	2.280	207	1.535	1.960	2.395	237	1.432	1.880	2.305	267	1.192	1.611	2.012
148	1.341	1.561	1.976	178	1.506	1.856	2.288	208	1.534	1.960	2.395	238	1.426	1.874	2.299	268	1.181	1.598	1.999
149	1.349	1.574	1.990	179	1.509	1.862	2.294	209	1.532	1.961	2.395	239	1.420	1.868	2.292	269	1.171	1.586	1.985
150	1.356	1.586	2.003	180	1.512	1.869	2.301	210	1.531	1.961	2.395	240	1.414	1.862	2.285	270	1.160	1.573	1.972
151	1.364	1.599	2.017	181	1.515	1.875	2.307	211	1.529	1.960	2.395	241	1.407	1.855	2.278	271	1.150	1.560	1.958
152	1.371	1.611	2.030	182	1.517	1.881	2.314	212	1.527	1.960	2.394	242	1.401	1.849	2.271	272	1.139	1.547	1.943
153	1.378	1.623	2.042	183	1.520	1.886	2.320	213	1.525	1.959	2.393	243	1.395	1.842	2.263	273	1.127	1.534	1.929
154	1.385	1.635	2.055	184	1.522	1.892	2.325	214	1.523	1.958	2.392	244	1.388	1.834	2.255	274	1.116	1.520	1.914
155	1.392	1.647	2.067	185	1.524	1.897	2.331	215	1.521	1.957	2.391	245	1.381	1.827	2.247	275	1.105	1.506	1.900
156	1.398	1.658	2.079	186	1.526	1.902	2.336	216	1.518	1.956	2.389	246	1.374	1.819	2.239	276	1.093	1.492	1.884
157	1.405	1.669	2.091	187	1.528	1.907	2.341	217	1.516	1.955	2.388	247	1.367	1.812	2.230	277	1.082	1.478	1.869
158	1.411	1.680	2.103	188	1.530	1.912	2.346	218	1.513	1.953	2.386	248	1.359	1.804	2.221	278	1.070	1.464	1.854
159	1.417	1.691	2.114	189	1.532	1.916	2.351	219	1.510	1.951	2.383	249	1.352	1.795	2.212	279	1.058	1.449	1.838
160	1.423	1.702	2.125	190	1.533	1.920	2.355	220	1.507	1.949	2.381	250	1.344	1.787	2.203	280	1.046	1.435	1.822
161	1.429	1.712	2.136	191	1.535	1.924	2.359	221	1.504	1.946	2.378	251	1.337	1.778	2.194	281	1.033	1.419	1.806
162	1.435	1.722	2.147	192	1.536	1.928	2.363	222	1.500	1.944	2.375	252	1.329	1.769	2.184	282	1.021	1.404	1.789
163	1.440	1.732	2.157	193	1.537	1.932	2.367	223	1.497	1.941	2.372	253	1.321	1.760	2.174	283	1.008	1.389	1.772
164	1.446	1.742	2.168	194	1.538	1.935	2.370	224	1.493	1.938	2.369	254	1.312	1.751	2.164	284	0.995	1.373	1.756
165	1.451	1.751	2.178	195	1.538	1.938	2.373	225	1.489	1.935	2.366	255	1.304	1.741	2.154	285	0.983	1.357	1.738
166	1.456	1.761	2.188	196	1.539	1.941	2.377	226	1.485	1.932	2.362	256	1.296	1.732	2.143	286	0.969	1.341	1.721
167	1.461	1.770	2.197	197	1.539	1.944	2.379	227	1.481	1.928	2.358	257	1.287	1.722	2.132	287	0.956	1.325	1.703
168	1.466	1.779	2.206	198	1.540	1.947	2.382	228	1.477	1.924	2.354	258	1.278	1.712	2.121				
169	1.471	1.787	2.216	199	1.540	1.949	2.384	229	1.473	1.920	2.349	259	1.269	1.701	2.110				

Estimated Fetal Weight (EFW) for Growth Analysis Graphs

EFW, Hadlock

Hadlock FP, Harrist RB, Martinez-Poyer J. "In Utero Analysis of Fetal Growth: A Sonographic Weight Standard." *Radiology* 181:129, 1991.

$$\text{LN EFW(grams)} = 0.578 + 0.332 \text{ MA(wk)} - 0.00354 * \text{MA}^2(\text{wk})$$

±1 Standard Deviation = 0.12

5 & 95%: ± (0.2089 * EFW)

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
10	0	27	35	42	16	2	123	155	188	22	4	417	528	638	28	6	1071	1354	1637
10	1	28	36	43	16	3	127	160	194	22	5	428	541	654	29	0	1091	1379	1667
10	2	29	37	45	16	4	131	165	200	22	6	438	554	670	29	1	1100	1404	1697
10	3	31	39	47	16	5	135	170	206	23	0	449	568	686	29	2	1131	1429	1728
10	4	32	40	49	16	6	139	176	212	23	1	460	581	703	29	3	1151	1455	1758
10	5	33	42	50	17	0	143	181	219	23	2	471	595	720	30	0	1221	1480	1790
10	6	34	43	52	17	1	148	187	226	23	3	482	610	737	29	5	1192	1506	1821
11	0	35	45	54	17	2	152	192	232	23	4	494	624	755	29	6	1213	1533	1853
11	1	37	46	56	17	3	157	198	240	23	5	506	639	773	30	0	1234	1559	1885
11	2	38	48	58	17	4	161	204	247	23	6	518	654	791	30	1	1255	1586	1917
11	3	39	50	60	17	5	166	210	254	24	0	530	670	810	30	2	1276	1613	1950
11	4	41	52	63	17	6	171	217	262	24	1	542	685	829	30	3	1298	1640	1983
11	5	42	54	65	18	0	176	223	270	24	2	555	701	848	30	4	1319	1668	2016
11	6	44	56	67	18	1	182	230	278	24	3	568	717	867	30	5	1341	1695	2049
12	0	46	58	70	18	2	187	236	286	24	4	581	734	887	30	6	1363	1723	2083
12	1	47	60	72	18	3	192	243	294	24	5	594	751	907	31	0	1385	1751	2117
12	2	49	62	75	18	4	198	250	303	24	6	607	768	928	31	1	1408	1779	2151
12	3	51	64	77	18	5	204	258	311	25	0	621	785	949	31	2	1430	1808	2186
12	4	52	66	80	18	6	210	265	320	25	1	635	802	970	31	3	1453	1837	2220
12	5	54	69	83	19	0	216	273	330	25	2	649	820	991	31	4	1476	1865	2255
12	6	56	71	86	19	1	222	280	339	25	3	663	838	1013	31	5	1499	1894	2290
13	0	58	73	89	19	2	228	288	349	25	4	678	857	1035	31	6	1522	1924	2325
13	1	60	76	92	19	3	235	296	358	25	5	692	875	1058	32	0	1545	1953	2361
13	2	62	79	95	19	4	241	305	369	25									

EFW, Jeanty

(using Shepard formula for weight determination)

Jeanty P, Cantraine F, Romero R, Cousaert E, Hobbins JC. "A Longitudinal Study of Fetal Weight Growth." *Journal of Ultrasound in Medicine* 3:321, 1984.

5 & 95%: 1.6 S.D.

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
9	0	44	45	46	15	2	104	131	159	21	4	361	507	653	27	6	884	1267	1649	34	1	1660	2396	3131
9	1	44	45	46	15	3	107	136	165	21	5	370	520	670	28	0	899	1288	1677	34	2	1679	2423	3167
9	2	45	46	47	15	4	110	141	172	21	6	378	532	686	28	1	915	1311	1707	34	3	1697	2450	3202
9	3	45	46	48	15	5	113	146	178	22	0	387	545	703	28	2	930	1334	1737	34	4	1716	2476	3237
9	4	45	47	48	15	6	117	150	184	22	1	397	559	721	28	3	946	1357	1767	34	5	1734	2503	3272
9	5	45	47	49	16	0	120	155	190	22	2	407	573	740	28	4	962	1379	1797	34	6	1753	2530	3308
9	6	46	48	49	16	1	124	161	198	22	3	417	587	758	28	5	978	1402	1827	35	0	1771	2557	3343
10	0	46	48	50	16	2	128	167	206	22	4	426	602	777	28	6	993	1425	1857	35	1	1788	2582	3376
10	1	47	49	51	16	3	132	173	214	22	5	436	616	795	29	0	1009	1448	1887	35	2	1806	2608	3410
10	2	47	50	52	16	4	136	179	222	22	6	446	630	814	29	1	1026	1472	1919	35	3	1823	2633	3443
10	3	48	51	53	16	5	140	185	230	23	0	456	644	832	29	2	1042	1497	1951	35	4	1840	2658	3476
10	4	48	51	55	16	6	144	191	238	23	1	467	660	852	29	3	1059	1521	1983	35	5	1857	2683	3509
10	5	49	52	56	17	0	148	197	246	23	2	477	675	873	29	4	1076	1545	2014	35	6	1875	2709	3543
10	6	49	53	57	17	1	153	204	255	23	3	488	691	893	29	5	1093	1569	2046	36	0	1892	2734	3576
11	0	50	54	58	17	2	158	211	265	23	4	499	706	914	29	6	1109	1594	2078	36	1	1907	2756	3605
11	1	51	55	60	17	3	163	218	274	23	5	510	722	934	30	0	1126	1618	2110	36	2	1923	2779	3635
11	2	52	57	61	17	4	167	226	284	23	6	520	730	955	30	1	1144	1644	2144	36	3	1938	2801	3664
11	3	53	58	63	17	5	172	233	293	24	0	531	753	975	30	2	1161	1669	2177	36	4	1953	2823	3693
11	4	53	59	65	17	6	177	240	303	24	1	543	770	997	30	3	1179	1695	2211	36	5	1968	2845	3722
11	5	54	60	67	18	0	182	247	312	24	2	554	787	1019	30	4	1197	1721	2245	36	6	1984	2868	3752
11	6	55	62	68	18	1	188	256	323	24	3	566	804	1041	30	5	1215	1747	2279	37	0	1999	2890	3781
12	0	56	63	70	18	2	194	264	334	24	4	577	820	1064	30	6	1232	1772	2312	37	1	2011	2908	3805
12	1	57	65	73	18	3	200	273	345	24	5	589	837	1086	31	0	1250	1798	2346	37	2	2023	2926	3829
12	2	59	67	75	18	4	206	281	357	24	6	600	854	1108	31	1	1268	1825	2381	37	3	2035	2944	3853
12	3	60	69	78	18	5	212	290	368	25	0	612	871	1130	31	2	1287	1851	2416	37	4	2046	2962	3878
12	4	62	71	80	18	6	218	298	379	25	1	625	889	1154	31	3	1305	1878	2451	37	5	2058	2980	3902
12	5	63	73	83	19	0	224	307	390	25	2	637	908	1178	31	4	1323	1904	2485	37	6	2070	2998	3926
12	6	65	75	85	19	1	231	317	403	25	3	650	926	1202	31	5	1341	1931	2520	38	0	2082	3016	3950
13	0	66	77	88	19	2	238	327	416	25	4	663	945	1227	31	6	1360	1957	2555	38	1	2089	3028	3967
13	1	68	80	92	19	3	245	337	429	25	5	676	963	1251	32	0	1378	1984	2590	38	2	2096	3040	3983
13	2	70	82	95	19	4	251	347	443	25	6	688	982	1275	32	1	1397	2011	2626	38	3	2103	3052	4000
13	3	72	85	99	19	5	258	357	456	26	0	701	1000	1299	32	2	1415	2039	2662	38	4	2110	3063	4017
13	4	73	88	102	19	6	265	367	469	26	1	715	1020	1325	32	3	1434	2066	2698	38	5	2117	3075	4034
13	5	75	91	106	20	0	272	377	482	26	2	728	1040	1351	32	4	1453	2094	2735	38	6	2124	3087	4050
13	6	77	93	109	20	1	280	388	497	26	3	742	1060	1377	32	5	1472	2121	2771	39	0	2131	3099	4067
14	0	79	96	113	20	2	287	400	512	26	4	756	1079	1403	32	6	1490	2149	2807	39	1	2132	3104	4075
14	1	82	100	118	20	3	295	411	527	26	5	770	1099	1429	33	0	1509	2176	2843	39	2	2132	3108	4084
14	2	84	103	123	20	4	303	422	541	26	6	783	1119	1455	33	1	1528	2204	2879	39	3	2133	3113	4092
14	3	87	107	128	20	5	311	433	556	27	0	797	1139	1481	33	2	1547	2231	2915	39	4	2134	3117	4101
14	4	89	111	132	20	6	318	445	571	27	1	812	1160	1509	33	3	1566	2259	2951	39	5	2135	3122	4109
14	5	92	115	137	21	0	326	456	586	27	2	826	1182	1537	33	4	1585	2286	2988	39	6	2135	3126	4118
14	6	94	118	142	21	1	335	469	603	27	3	841	1203	1565	33	5	1604	2314	3024	40	0	2136	3131	4126
15	0	97	122	147	21	2	343	481	619	27	4	855	1224	1593	33	6	1623	2341	3060					
15	1	100	127	153	21	3	352	494	636	27	5	870	1245	1621	34	0	1642	2369	3096					

EFW, HansmannHansmann M, Hackelöer B-J, Staudach A. *Ultrasound Diagnosis in Obstetrics and Gynecology*. New York: Springer-Verlag, 1985.

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
9	0	44	45	46	15	2	102	131	161	21	4	357	507	657	27	6	874	1267	1660	34	1	1640	2396	3152
9	1	44	45	46	15	3	106	136	167	21	5	366	520	673	28	0	888	1288	1688	34	2	1658	2423	3188
9	2	45	46	47	15	4	109	141	173	21	6	374	532	690	28	1	904	1311	1718	34	3	1676	2450	3223
9	3	45	46	48	15	5	112	146	179	22	0	383	545	707	28	2	919	1334	1748	34	4	1694	2476	3258
9	4	45	47	48	15	6	116	150	185	22	1	436	559	726	28	3	935	1357	1779	34	5	1713	2503	3294
9	5	45	47	49	16	0	119	155	191	22	2	438	573	744	28	4	950	1379	1809	34	6	1731	2530	3329
9	6	45	48	50	16	1	123	161	199	22	3	441	587	763</										

EFW, Yarkoni

Yarkoni S, Reece EA, Holford T, O'Connor TZ, Hobbins JC. "Estimated Fetal Weight in the Evaluation of Growth in Twin Gestations: A Prospective Longitudinal Study." *Obstetrics and Gynecology* 69:636, 1987.

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
16	0	132	154	207	20	3	250	370	607	24	6	524	773	1,085	29	2	932	1,438	1,914	33	5	1567	2,169	3,149
16	1	138	163	213	20	4	257	386	632	25	0	549	793	1,118	29	3	948	1,460	1,930	33	6	1582	2,197	3,178
16	2	144	171	219	20	5	263	401	656	25	1	574	813	1,151	29	4	963	1,481	1,945	34	0	1597	2,224	3,208
16	3	150	180	225	20	6	269	417	681	25	2	598	832	1,185	29	5	979	1,503	1,961	34	1	1612	2,253	3,226
16	4	155	189	231	21	0	275	432	705	25	3	623	852	1,218	29	6	995	1,524	1,976	34	2	1627	2,282	3,245
16	5	161	198	237	21	1	281	447	729	25	4	648	872	1,252	30	0	1011	1,546	1,992	34	3	1642	2,311	3,263
16	6	167	206	243	21	2	288	463	754	25	5	673	892	1,285	30	1	1038	1,567	2,049	34	4	1658	2,340	3,281
17	0	173	215	249	21	3	294	478	778	25	6	697	911	1,319	30	2	1064	1,588	2,106	34	5	1673	2,369	3,299
17	1	179	224	255	21	4	300	494	803	26	0	722	931	1,352	30	3	1091	1,609	2,163	34	6	1688	2,398	3,318
17	2	185	232	261	21	5	306	509	827	26	1	727	953	1,382	30	4	1118	1,630	2,221	35	0	1703	2,427	3,336
17	3	191	241	267	21	6	313	525	852	26	2	731	976	1,412	30	5	1145	1,651	2,278	35	1	1718	2,456	3,354
17	4	196	250	273	22	0	319	540	876	26	3	736	998	1,442	30	6	1171	1,672	2,335	35	2	1733	2,485	3,373
17	5	202	259	279	22	1	323	548	877	26	4	741	1020	1,473	31	0	1198	1,693	2,392	35	3	1748	2,514	3,391
17	6	208	267	285	22	2	327	557	877	26	5	746	1042	1,503	31	1	1225	1,714	2,449	35	4	1764	2,544	3,410
18	0	214	276	291	22	3	331	565	878	26	6	750	1065	1,533	31	2	1251	1,735	2,507	35	5	1779	2,573	3,428
18	1	215	279	308	22	4	335	573	878	27	0	755	1087	1,563	31	3	1278	1,756	2,564	35	6	1794	2,602	3,447
18	2	217	283	326	22	5	339	581	879	27	1	760	1109	1,593	31	4	1305	1,777	2,621	36	0	1809	2,631	3,465
18	3	218	286	343	22	6	343	590	879	27	2	765	1132	1,623	31	5	1332	1,798	2,678	36	1	1870	2,659	3,496
18	4	219	290	360	23	0	347	598	880	27	3	770	1154	1,653	31	6	1358	1,819	2,736	36	2	1932	2,686	3,526
18	5	220	293	377	23	1	351	606	881	27	4	774	1177	1,684	32	0	1385	1,840	2,793	36	3	1993	2,714	3,557
18	6	222	297	395	23	2	355	615	881	27	5	779	1199	1,714	32	1	1400	1,867	2,823	36	4	2055	2,741	3,587
19	0	223	300	412	23	3	359	623	882	27	6	784	1222	1,744	32	2	1415	1,895	2,852	36	5	2116	2,769	3,618
19	1	224	303	429	23	4	364	631	883	28	0	789	1244	1,774	32	3	1430	1,922	2,882	36	6	2178	2,796	3,648
19	2	226	307	447	23	5	368	639	884	28	1	805	1266	1,790	32	4	1446	1,950	2,911	37	0	2239	2,824	3,679
19	3	227	310	464	23	6	372	648	884	28	2	821	1287	1,805	32	5	1461	1,977	2,941	37	1	2300	2,852	3,710
19	4	228	314	482	24	0	376	656	885	28	3	837	1309	1,821	32	6	1476	2,005	2,970	37	2	2362	2,879	3,740
19	5	229	317	499	24	1	401	676	918	28	4	852	1330	1,836	33	0	1491	2,032	3,000	37	3	2423	2,907	3,771
19	6	231	321	517	24	2	425	695	952	28	5	868	1352	1,852	33	1	1506	2,059	3,030	37	4	2485	2,934	3,802
20	0	232	324	534	24	3	450	715	985	28	6	884	1373	1,867	33	2	1521	2,087	3,059	37	5	2546	2,962	3,833
20	1	238	339	558	24	4	475	734	1018	29	0	900	1395	1,883	33	3	1536	2,114	3,089	37	6	2608	2,989	3,863
20	2	244	345	583	24	5	500	754	1051	29	1	916	1417	1,899	33	4	1552	2,142	3,119	38	0	2669	3,017	3,894

EFW, Tokyo

Masuda H, Shinozuka N, Okai T, Mizuno M. "Diagnosis of the Week of Pregnancy and Prognosis." *Perinatal Care* 8:719-726.

EFW Days	- 1.5SD	mean grams	+	1.5SD	EFW Days	- 1.5SD	mean grams	+	1.5SD	EFW Days	- 1.5SD	mean grams	+	1.5SD	EFW Days	- 1.5SD	mean grams	+	1.5SD	EFW Days	- 1.5SD	mean grams	+	1.5SD
140	81.0	216.0	397.0	177	537.0	762.0	1,042.0	214	1,113.0	1,527.0	1,969.0	251	1,959.0	2,567.0	3,192.0									
141	86.0	232.0	414.0	178	552.0	779.0	1,062.0	215	1,131.0	1,553.0	2,000.0	252	1,986.0	2,595.0	3,223.0									
142	92.0	247.0	432.0	179	567.0	795.0	1,082.0	216	1,149.0	1,579.0	2,031.0	253	2,013.0	2,623.0	3,254.0									
143	98.0	263.0	449.0	180	582.0	812.0	1,102.0	217	1,167.0	1,605.0	2,062.0	254	2,041.0	2,650.0	3,285.0									
144	106.0	278.0	467.0	181	597.0	829.0	1,123.0	218	1,186.0	1,631.0	2,094.0	255	2,068.0	2,677.0	3,315.0									
145	114.0	293.0	484.0	182	612.0	846.0	1,143.0	219	1,205.0	1,658.0	2,126.0	256	2,095.0	2,704.0	3,345.0									
146	122.0	307.0	501.0	183	626.0	863.0	1,165.0	220	1,224.0	1,684.0	2,158.0	257	2,123.0	2,730.0	3,374.0									
147	131.0	322.0	518.0	184	641.0	881.0	1,186.0	221	1,244.0	1,711.0	2,190.0	258	2,150.0	2,756.0	3,402.0									
148	141.0	337.0	535.0	185	656.0	899.0	1,208.0	222	1,263.0	1,738.0	2,222.0	259	2,177.0	2,782.0	3,430.0									
149	151.0	351.0	551.0	186	671.0	917.0	1,229.0	223	1,283.0	1,766.0	2,255.0	260	2,205.0	2,807.0	3,458.0									
150	162.0	366.0	568.0	187	686.0	935.0	1,252.0	224	1,304.0	1,793.0	2,288.0	261	2,232.0	2,832.0	3,485.0									
151	173.0	380.0	585.0	188	701.0	953.0	1,274.0	225	1,324.0	1,821.0	2,321.0	262	2,258.0	2,857.0	3,511.0									
152	185.0	394.0	602.0	189	715.0	972.0	1,297.0	226	1,345.0	1,849.0	2,354.0	263	2,285.0	2,881.0	3,536.0									
153	197.0	409.0	618.0	190	730.0	991.0	1,320.0	227	1,366.0	1,877.0	2,388.0	264	2,311.0	2,905.0	3,561.0									
154	209.0	423.0	635.0	191	745.0	1,010.0	1,343.0	228	1,388.0	1,905.0	2,421.0	265	2,337.0	2,928.0	3,584.0									
155	222.0	437.0	652.0	192	760.0	1,030.0	1,367.0	229	1,410.0	1,934.0	2,455.0	266	2,363.0	2,950.0	3,607.0									
156	235.0	451.0	668.0	193	775.0	1,050.0	1,391.0																	

EFW, OsakaAoki M, Yamada M. "Examining Fetal Growth." *Obstetrics and Gynecology* 47:547-556, 1983.

$$\text{EFW} = 1.25647 * \text{BPD}^3 + 3.50665 * \text{FTA} * \text{FL} + 6.3$$

EFW	-	mean	+	EFW	-	mean	+	EFW	-	mean	+	EFW	-	mean	+
Day	1.5SD	grams	1.5SD	Days	1.5SD	grams	1.5SD	Days	1.5SD	grams	1.5SD	Days	1.5SD	grams	1.5SD
112	93.5	137.0	180.5	155	416.5	526.0	635.5	198	1,056.0	1,296.0	1,536.0	241	1,931.5	2,329.0	2,726.5
113	98.5	142.0	185.5	156	429.0	540.0	651.0	199	1,075.0	1,318.0	1,561.0	242	1,952.0	2,354.0	2,756.0
114	103.5	147.0	190.5	157	439.0	553.0	667.0	200	1,094.0	1,340.0	1,586.0	243	1,972.5	2,379.0	2,785.5
115	109.5	153.0	196.5	158	451.0	568.0	685.0	201	1,112.5	1,363.0	1,613.5	244	1,992.0	2,403.0	2,814.0
116	113.0	158.0	203.0	159	462.0	582.0	702.0	202	1,131.5	1,385.0	1,638.5	245	2,014.0	2,428.0	2,842.0
117	119.0	164.0	209.0	160	474.5	596.0	717.5	203	1,150.5	1,407.0	1,663.5	246	2,034.5	2,453.0	2,871.5
118	125.0	170.0	215.0	161	486.5	611.0	735.5	204	1,169.0	1,430.0	1,691.0	247	2,055.0	2,478.0	2,901.0
119	129.5	176.0	222.5	162	498.5	626.0	753.5	205	1,189.0	1,453.0	1,717.0	248	2,074.5	2,502.0	2,929.5
120	135.5	182.0	228.5	163	510.5	641.0	771.5	206	1,209.0	1,476.0	1,743.0	249	2,095.0	2,527.0	2,959.0
121	140.0	188.0	236.0	164	522.5	656.0	789.5	207	1,227.5	1,499.0	1,770.5	250	2,116.0	2,551.0	2,986.0
122	145.5	195.0	244.5	165	535.5	672.0	808.5	208	1,247.5	1,522.0	1,796.5	251	2,136.5	2,576.0	3,015.5
123	152.5	202.0	251.5	166	550.0	688.0	826.0	209	1,267.5	1,545.0	1,822.5	252	2,156.0	2,600.0	3,044.0
124	158.0	209.0	260.0	167	563.0	704.0	845.0	210	1,286.0	1,568.0	1,850.0	253	2,175.5	2,624.0	3,072.5
125	163.5	216.0	268.5	168	576.0	720.0	864.0	211	1,307.0	1,592.0	1,877.0	254	2,195.0	2,648.0	3,101.0
126	170.5	223.0	275.5	169	589.0	736.0	883.0	212	1,327.0	1,615.0	1,903.0	255	2,214.5	2,672.0	3,129.5
127	177.0	231.0	285.0	170	603.0	753.0	903.0	213	1,346.5	1,639.0	1,931.5	256	2,234.0	2,696.0	3,158.0
128	182.5	238.0	293.5	171	617.0	770.0	923.0	214	1,367.5	1,663.0	1,958.5	257	2,253.5	2,720.0	3,186.5
129	189.0	246.0	303.0	172	631.0	787.0	943.0	215	1,387.0	1,687.0	1,987.0	258	2,273.0	2,744.0	3,215.0
130	195.5	254.0	312.5	173	645.0	804.0	963.0	216	1,408.0	1,711.0	2,014.0	259	2,291.5	2,767.0	3,242.5
131	203.0	263.0	323.0	174	660.0	822.0	984.0	217	1,429.0	1,735.0	2,041.0	260	2,311.0	2,791.0	3,271.0
132	209.5	271.0	322.5	175	674.0	839.0	1,004.0	218	1,448.5	1,759.0	2,069.5	261	2,329.5	2,814.0	3,298.5
133	217.0	280.0	343.0	176	689.0	857.0	1,025.0	219	1,469.5	1,783.0	2,096.5	262	2,348.0	2,837.0	3,326.0
134	224.5	289.0	353.5	177	704.0	875.0	1,046.0	220	1,490.0	1,808.0	2,126.0	263	2,366.5	2,860.0	3,353.5
135	232.0	298.0	364.0	178	719.0	893.0	1,067.0	221	1,511.0	1,832.0	2,153.0	264	2,385.0	2,883.0	3,381.0
136	240.5	308.0	375.5	179	735.0	912.0	1,089.0	222	1,531.5	1,857.0	2,182.5	265	2,403.5	2,906.0	3,408.5
137	248.0	317.0	386.0	180	750.0	930.0	1,110.0	223	1,552.5	1,881.0	2,209.5	266	2,419.5	2,928.0	3,436.5
138	255.0	327.0	399.0	181	764.5	949.0	1,133.5	224	1,573.0	1,906.0	2,239.0	267	2,437.0	2,950.0	3,463.0
139	263.5	337.0	410.5	182	780.5	968.0	1,155.5	225	1,594.0	1,930.0	2,266.0	268	2,455.5	2,973.0	3,490.5
140	272.0	347.0	422.0	183	796.5	987.0	1,177.5	226	1,614.5	1,955.0	2,295.5	269	2,473.0	2,995.0	3,517.0
141	281.5	358.0	434.5	184	813.5	1,007.0	1,200.5	227	1,636.5	1,980.0	2,323.5	270	2,488.0	3,016.0	3,544.0
142	288.5	368.0	447.5	185	829.5	1,026.0	1,222.5	228	1,657.0	2,005.0	2,353.0	271	2,505.5	3,038.0	3,570.5
143	298.0	379.0	460.0	186	846.5	1,046.0	1,245.5	229	1,678.0	2,029.0	2,380.0	272	2,522.0	3,059.0	3,596.0
144	306.0	390.0	474.0	187	863.5	1,066.0	1,268.5	230	1,698.5	2,054.0	2,409.5	273	2,537.0	3,080.0	3,623.0
145	315.5	401.0	486.5	188	879.0	1,086.0	1,293.0	231	1,720.5	2,079.0	2,437.5	274	2,553.5	3,101.0	3,648.5
146	326.0	413.0	500.0	189	896.0	1,106.0	1,316.0	232	1,741.0	2,104.0	2,467.0	275	2,567.5	3,121.0	3,674.5
147	335.0	425.0	515.0	190	914.0	1,127.0	1,340.0	233	1,763.0	2,129.0	2,495.0	276	2,584.0	3,142.0	3,700.0
148	344.5	436.0	527.5	191	931.0	1,147.0	1,363.0	234	1,783.5	2,154.0	2,524.5	277	2,598.0	3,162.0	3,726.0
149	354.5	449.0	543.5	192	949.0	1,168.0	1,387.0	235	1,804.0	2,179.0	2,554.0	278	2,613.5	3,182.0	3,750.5
150	363.5	461.0	558.5	193	965.5	1,189.0	1,412.5	236	1,826.0	2,204.0	2,582.0	279	2,626.5	3,201.0	3,775.5
151	375.0	474.0	573.0	194	983.5	1,210.0	1,436.5	237	1,846.5	2,229.0	2,611.5	280	2,639.5	3,220.0	3,800.5
152	384.0	486.0	588.0	195	1,002.5	1,232.0	1,461.5	238	1,868.5	2,254.0	2,639.5				
153	395.5	499.0	602.5	196	1,020.5	1,253.0	1,485.5	239	1,889.0	2,279.0	2,669.0				
154	406.5	513.0	619.5	197	1,038.0	1,275.0	1,512.0	240	1,909.5	2,304.0	2,698.5				

EFW, JSUMJapan Society of Ultrasonics in Medicine. "Standardization of Fetometry and Official Announcement of Diagnostic Guidelines." *J. Med. Ultrasonics* 28:844-872, 2001.

EFW	-	mean	+												
Days	1.5SD	grams	1.5SD												
126	141.3	187.0	232.0	167	499.1	645.7	792.2	208	1,152.8	1,425.1	1,697.3	249	2,009.3	2,432.4	2,854.8
127	147.7	195.6	242.8	168	510.8	660.0	809.3	209	1,171.9	1,447.6	1,723.1	250	2,030.2	2,457.3	2,883.6
128	154.1	204.1	253.6	169	523.8	675.9	827.9	210	1,191.0	1,470.0	1,749.0	251	2,051.1	2,482.1	2,912.4
129	160.5	212.7	264.5	170	536.9	691.7	846.5	211	1,211.1	1,493.6	1,776.0	252	2,072.0	2,507.0	2,941.3
130	167.0	221.3	275.3	171	550.0	707.6	865.2	212	1,231.3	1,517.1	1,803.0	253	2,092.2	2,531.1	2,969.6
131	173.4	229.9	286.1	172	563.0	723.4	883.8	213	1,251.4	1,540.7	1,830.0	254	2,112.4	2,555.3	2,997.9
132	179.8	238.4	296.9	173	576.1	739.3	902.5	214	1,271.6	1,564.3	1,857.0	255	2,132.5	2,579.4	3,026.2
133	186.3	247.0	307.8	174	589.2	755.1	921.1	215	1,291.7	1,587.9	1,884.0	256	2,152.7	2,603.6	3,054.5
134	193.4	256.4	319.5	175	602.3	771.0	939.8	216	1,311.9	1,611.4	1,911.0	257	2,172.9	2,627.7	3,082.9
135	200.6	265.9	313.1	176	616.5	788.3	959.9	217	1,332.0	1,635.0	1,938.0	258	2,193.1	2,651.9	3,111.2
136	207.8	275.3	343.1	177	630.8	805									

Ratios and Indices for Growth Analysis Graphs

AFI Amniotic Fluid Index, Moore

Moore TR, Cayle JE. "The amniotic fluid index in normal human pregnancy." *American Journal of Obstetrics and Gynecology* 162:1168, 1990.

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
16	0	79.0	121.0	185.0	21	2	95.6	143.6	214.6	26	4	95.9	146.4	224.7	31	6	86.3	144.0	241.4
16	1	79.6	121.9	186.3	21	3	95.9	143.9	214.9	26	5	95.6	146.3	225.1	32	0	86.0	144.0	242.0
16	2	80.1	122.7	187.6	21	4	96.1	144.1	215.1	26	6	95.3	146.1	225.6	32	1	85.6	143.9	242.4
16	3	80.7	123.6	188.9	21	5	96.4	144.4	215.4	27	0	95.0	146.0	226.0	32	2	85.1	143.7	242.9
16	4	81.3	124.4	190.1	21	6	96.7	144.7	215.7	27	1	94.9	146.0	226.3	32	3	84.7	143.6	243.3
16	5	81.9	125.3	191.4	22	0	97.0	145.0	216.0	27	2	94.7	146.0	226.6	32	4	84.3	143.4	243.7
16	6	82.4	126.1	192.7	22	1	97.1	145.1	216.3	27	3	94.6	146.0	226.9	32	5	83.9	143.3	244.1
17	0	83.0	127.0	194.0	22	2	97.3	145.3	216.6	27	4	94.4	146.0	227.1	32	6	83.4	143.1	244.6
17	1	83.6	127.9	195.1	22	3	97.4	145.4	216.9	27	5	94.3	146.0	227.4	33	0	83.0	143.0	245.0
17	2	84.1	128.7	196.3	22	4	97.6	145.6	217.1	27	6	94.1	146.0	227.7	33	1	82.7	142.9	245.4
17	3	84.7	129.6	197.4	22	5	97.7	145.7	217.4	28	0	94.0	146.0	228.0	33	2	82.4	142.7	245.9
17	4	85.3	130.4	198.6	22	6	97.9	145.9	217.7	28	1	93.7	145.9	228.4	33	3	82.1	142.6	246.3
17	5	85.9	131.3	199.7	23	0	98.0	146.0	218.0	28	2	93.4	145.7	228.9	33	4	81.9	142.4	246.7
17	6	86.4	132.1	200.9	23	1	98.0	146.1	218.1	28	3	93.1	145.6	229.3	33	5	81.6	142.3	247.1
18	0	87.0	133.0	202.0	23	2	98.0	146.3	218.3	28	4	92.9	145.4	229.7	33	6	81.3	142.1	247.6
18	1	87.4	133.6	202.7	23	3	98.0	146.4	218.4	28	5	92.6	145.3	230.1	34	0	81.0	142.0	248.0
18	2	87.9	134.1	203.4	23	4	98.0	146.5	218.6	28	6	92.3	145.1	230.6	34	1	80.7	141.7	248.1
18	3	88.3	134.7	204.1	23	5	98.0	146.7	218.7	29	0	92.0	145.0	231.0	34	2	80.4	141.4	248.3
18	4	88.7	135.3	204.9	23	6	98.0	146.9	218.9	29	1	91.7	145.0	231.4	34	3	80.1	141.1	248.4
18	5	89.1	135.9	205.6	24	0	98.0	147.0	219.0	29	2	91.4	145.0	231.9	34	4	79.9	140.9	248.6
18	6	89.6	136.4	206.3	24	1	97.9	147.0	219.3	29	3	91.1	145.0	232.3	34	5	79.6	140.6	248.7
19	0	90.0	137.0	207.0	24	2	97.7	147.0	219.6	29	4	90.9	145.0	232.7	34	6	79.3	140.3	248.9
19	1	90.4	137.6	207.7	24	3	97.6	147.0	219.9	29	5	90.6	145.0	233.1	35	0	79.0	140.0	249.0
19	2	90.9	138.1	208.4	24	4	97.4	147.0	220.1	29	6	90.3	145.0	233.6	35	1	78.7	139.7	249.0
19	3	91.3	138.7	209.1	24	5	97.3	147.0	220.4	30	0	90.0	145.0	234.0	35	2	78.4	139.4	249.0
19	4	91.7	139.3	209.9	24	6	97.1	147.0	220.7	30	1	89.7	144.9	234.6	35	3	78.1	139.1	249.0
19	5	92.1	139.9	210.6	25	0	97.0	147.0	221.0	30	2	89.4	144.7	235.1	35	4	77.9	138.9	249.0
19	6	92.6	140.4	211.3	25	1	97.0	147.0	221.3	30	3	89.1	144.6	235.7	35	5	77.6	138.6	249.0
20	0	93.0	141.0	212.0	25	2	97.0	147.0	221.6	30	4	88.9	144.4	236.3	35	6	77.3	138.3	249.0
20	1	93.3	141.3	212.3	25	3	97.0	147.0	221.9	30	5	88.6	144.3	236.9	36	0	77.0	138.0	249.0
20	2	93.6	141.6	212.6	25	4	97.0	147.0	222.1	30	6	88.3	144.1	237.4	36	1	76.7	137.6	248.3
20	3	93.9	141.9	212.9	25	5	97.0	147.0	222.4	31	0	88.0	144.0	238.0	36	2	76.4	137.1	247.6
20	4	94.1	142.1	213.1	25	6	97.0	147.0	222.7	31	1	87.7	144.0	238.6	36	3	76.1	136.7	246.9
20	5	94.4	142.4	213.4	26	0	97.0	147.0	223.0	31	2	87.4	144.0	239.1	36	4	75.9	136.3	246.1
20	6	94.7	142.7	213.7	26	1	96.7	146.9	223.4	31	3	87.1	144.0	239.7	36	5	75.6	135.9	245.4
21	0	95.0	143.0	214.0	26	2	96.4	146.7	223.9	31	4	86.9	144.0	240.3	36	6	75.3	135.4	244.7
21	1	95.3	143.3	214.3	26	3	96.1	146.6	224.3	31	5	86.6	144.0	240.9	37	0	75.0	135.0	244.0

LVW/HW (Lateral Ventricular Width/Hemispheric Width) Ratio, Johnson

Johnson ML, Dunne MG, Mack LA, Rashbaum CL. "Evaluation of Fetal Intracranial Anatomy by Static and Real-Time Ultrasound." *Journal of Clinical Ultrasound* 8:311, 1980.

LVW/HW Ratio = LVW/HW * 100

MA	-2SD, Mean, +2SD								
15	wk {40,56,71}	21	wk {27,35,43}	27	wk {23,28,34}	33	wk {25,31,37}	39	wk {24,29,34}
16	wk {45,57,69}	22	wk {26,32,38}	28	wk {18,32,45}	34	wk {23,28,33}	40	wk {22,28,33}
17	wk {42,52,62}	23	wk {24,33,42}	29	wk {22,30,37}	35	wk {26,29,31}	41	wk {22,28,33}
18	wk {40,46,52}	24	wk {23,31,39}	30	wk {26,30,34}	36	wk {23,29,34}	42	wk {22,28,33}
19	wk {40,46,52}	25	wk {26,34,42}	31	wk {23,30,36}	37	wk {24,29,34}	42	wk {22,28,33}
20	wk {29,43,57}	26	wk {24,30,36}	32	wk {26,31,36}	38	wk {24,29,34}	42	wk {22,28,33}

TCD/AC Ratio, Meyer

Meyer WJ, Gauthier DW, Goldenberg B, Santolaya J, Sipos J, Cattledge F. "The Fetal Transverse Cerebellar Diameter/Abdominal Circumference Ratio: A Gestational Age-Independent Method of Assessing Fetal Size." *Journal of Ultrasound in Medicine* 12:379, 1993.

TCD/AC Ratio: TCD/AC *100

Mean of the ratio = (mean of TCD)/(mean of AC) * 100

Normal Range: 12.50 \leq (TCD/AC * 100) \leq 14.86

Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%	Wk	Day	5%	Mean	95%
14	0	12.5	13.7	14.9	19	5	12.5	13.7	14.9	25	3	12.5	13.7	14.9	31	1	12.5	13.7	14.9
14	1	12.5	13.7	14.9	19	6	12.5	13.7	14.9	25	4	12.5	13.7	14.9	31	2	12.5	13.7	14.9
14	2	12.5	13.7	14.9	20	0	12.5	13.7	14.9	25	5	12.5	13.7	14.9	31	3	12.5	13.7	14.9
14	3	12.5	13.7	14.9	20	1	12.5	13.7	14.9	25	6	12.5	13.7	14.9	31	4	12.5	13.7	14.9
14	4	12.5	13.7	14.9	20	2	12.5	13.7	14.9	26	0	12.5	13.7	14.9	31	5	12.5	13.7	14.9
14	5	12.5	13.7	14.9	20	3	12.5	13.7	14.9	26	1	12.5	13.7	14.9	31	6	12.5	13.7	14.9
14	6	12.5	13.7	14.9	20	4	12.5	13.7	14.9	26	2	12.5	13.7	14.9	32	0	12.5	13.7	14.9
15	0	12.5	13.7	14.9	20	5	12.5	13.7	14.9	26	3	12.5	13.7	14.9	32	1	12.5	13.7	14.9
15	1	12.5	13.7	14.9	20	6	12.5	13.7	14.9	26	4	12.5	13.7	14.9	32	2	12.5	13.7	14.9
15	2	12.5	13.7	14.9	21	0	12.5	13.7	14.9	26	5	12.5	13.7	14.9	32	3	12.5	13.7	14.9
15	3	12.5	13.7	14.9	21	1	12.5	13.7	14.9	26	6	12.5	13.7	14.9	32	4	12.5	13.7	14.9
15	4	12.5	13.7	14.9	21	2	12.5	13.7	14.9	27	0	12.5	13.7	14.9	32	5	12.5	13.7	14.9
15	5	12.5	13.7	14.9	21	3	12.5	13.7	14.9	27	1	12.5	13.7	14.9	32	6	12.5	13.7	14.9
15	6	12.5	13.7	14.9	21	4	12.5	13.7	14.9	27	2	12.5	13.7	14.9	33	0	12.5	13.7	14.9
16	0	12.5	13.7	14.9	21	5	12.5	13.7	14.9	27	3	12.5	13.7	14.9	33	1	12.5	13.7	14.9
16	1	12.5	13.7	14.9	21	6	12.5	13.7	14.9	27	4	12.5	13.7	14.9	33	2	12.5	13.7	14.9
16	2	12.5	13.7	14.9	22	0	12.5	13.7	14.9	27	5	12.5	13.7	14.9	33	3	12.5	13.7	14.9
16	3	12.5	13.7	14.9	22	1	12.5	13.7	14.9	27	6	12.5	13.7	14.9	33	4	12.5	13.7	14.9
16	4	12.5	13.7	14.9	22	2	12.5	13.7	14.9	28	0	12.5	13.7	14.9	33	5	12.5	13.7	14.9
16	5	12.5	13.7	14.9	22	3	12.5	13.7	14.9	28	1	12.5	13.7	14.9	33	6	12.5	13.7	14.9
16	6	12.5	13.7	14.9	22	4	12.5	13.7	14.9	28	2	12.5	13.7	14.9	34	0	12.5	13.7	14.9
17	0	12.5	13.7	14.9	22	5	12.5	13.7	14.9	28	3	12.5	13.7	14.9	34	1	12.5	13.7	14.9
17	1	12.5	13.7	14.9	22	6	12.5	13.7	14.9	28	4	12.5	13.7	14.9	34	2	12.5	13.7	14.9
17	2	12.5	13.7	14.9	23	0	12.5	13.7	14.9	28	5	12.5	13.7	14.9	34	3	12.5	13.7	14.9
17	3	12.5	13.7	14.9	23	1	12.5	13.7	14.9	28	6	12.5	13.7	14.9	34	4	12.5	13.7	14.9
17	4	12.5	13.7	14.9	23	2	12.5	13.7	14.9	29	0	12.5	13.7	14.9	34	5	12.5	13.7	14.9
17	5	12.5	13.7	14.9	23	3	12.5	13.7	14.9	29	1	12.5	13.7	14.9	34	6	12.5	13.7	14.9
17	6	12.5	13.7	14.9	23	4	12.5	13.7	14.9	29	2	12.5	13.7	14.9	35	0	12.5	13.7	14.9
18	0	12.5	13.7	14.9	23	5	12.5	13.7	14.9	29	3	12.5	13.7	14.9	35	1	12.5	13.7	14.9
18	1	12.5	13.7	14.9	23	6	12.5	13.7	14.9	29	4	12.5	13.7	14.9	35	2	12.5	13.7	14.9
18	2	12.5	13.7	14.9	24	0	12.5	13.7	14.9	29	5	12.5	13.7	14.9	35	3	12.5	13.7	14.9
18	3	12.5	13.7	14.9	24	1	12.5	13.7	14.9	29	6	12.5	13.7	14.9	35	4	12.5	13.7	14.9
18	4	12.5	13.7	14.9	24	2	12.5	13.7	14.9	30	0	12.5	13.7	14.9	35	5	12.5	13.7	14.9
18	5	12.5	13.7	14.9	24	3	12.5	13.7	14.9	30	1	12.5	13.7	14.9	35	6	12.5	13.7	14.9
18	6	12.5	13.7	14.9	24	4	12.5	13.7	14.9	30	2	12.5	13.7	14.9	36	0	12.5	13.7	14.9
19	0	12.5	13.7	14.9	24	5	12.5	13.7	14.9	30	3	12.5	13.7	14.9	36	1	12.5	13.7	14.9
19	1	12.5	13.7	14.9	24	6	12.5	13.7	14.9	30	4	12.5	13.7	14.9	36	2	12.5	13.7	14.9
19	2	12.5	13.7	14.9	25	0	12.5	13.7	14.9	30	5	12.5	13.7	14.9	36	3	12.5	13.7	14.9
19	3	12.5	13.7	14.9	25	1	12.5	13.7	14.9	30	6	12.5	13.7	14.9	36	4	12.5	13.7	14.9
19	4	12.5	13.7	14.9	25	2	12.5	13.7	14.9	31	0	12.5	13.7	14.9	36	5	12.5	13.7	14.9

Other Calculations

Corrected BPD, Doubilet

Doubilet PM, Greenes RA. "Improved Prediction of Gestational Age from Fetal Head Measurements." *American Journal of Roentgenology* 142:797, 1984.

Corrected BPD = (BPD * OFD/1.265)^{1/2}

Valid Range: 13 to 41 weeks

10 Cardiac References

Body Surface Area.....	3
2D-Mode Measurements and Calculations	3
Cardiac Index	3
Cardiac Output.....	3
Left Ventricular End-Diastolic Volume and Left Ventricular End-Systolic Volume.....	3
Cubed Formula.....	3
Teichholz Formula	3
Bullet Formula	3
Modified Simpson's Rule Formula	3
Single Plane Ellipse Formula.....	3
Bi-Plane Ellipse Formula	4
Simpson Single Plane Formula	4
Simpson Bi-Plane	4
Ejection Fraction	4
Fractional Shortening.....	4
Stroke Index	4
Stroke Volume	4
Volume	4
M-Mode Measurements and Calculations	5
Cardiac Index	5
Cardiac Output.....	5
Left Ventricular End-Diastolic Volume and Left Ventricular End-Systolic Volume.....	5
Cubed Formula.....	5
Teichholz Formula	5
Ejection Fraction	5
Fractional Shortening.....	5
AO/LA (Aorta/Left Atrium) Ratio	6
Heart Rate	6
Stroke Index	6
Stroke Volume	6
Doppler Mode Measurements and Calculations	7
Doppler References.....	7
Acceleration Slope/Time	7
Deceleration Slope/Time.....	7
Pressure Half-Time	7
MVA (Mitral Valve Area Continuity Equation).....	7
AVA (Aortic Valve Area)	7
Heart Rate	7
CO (Cardiac Output)	8
MV E/A (Mitral Valve, E point to A point Ratio).....	8
MV A/E (Mitral Valve, A point to E point Ratio).....	8

MV CA/CE (Mitral Valve, CA amplitude to CE amplitude Ratio).....	8
IVRT (Isovolumic Relaxation Time).....	8
LVIMP (Left Ventricular Index of Myocardial Performance)	8
RVIMP (Right Ventricular Index of Myocardial Performance).....	8
Right Ventricular Systolic Pressure (RVSP).....	8
TR V max (Tricuspid Regurgitant Jet Plus Right Atrial Pressure)	9
Max PG (Maximum Pressure Gradient)	9
Mean PG (Mean Pressure Gradient).....	9
AV PG max (Aortic Valve maximum Pressure Gradient)	9
AV PG mean (Aortic Valve mean Pressure Gradient)	9
MV PG max (Mitral Valve maximum Pressure Gradient)	9
MV PG mean (Mitral Valve mean Pressure Gradient)	10
MR PG max (Mitral Regurgitation maximum Pressure Gradient)	10
PV PG max (Pulmonary Valve maximum Pressure Gradient).....	10
PV PG mean (Pulmonary Valve mean Pressure Gradient).....	10
TR PG max (Tricuspid Regurgitation maximum Pressure Gradient).....	10
TR PG mean (Tricuspid Regurgitation mean Pressure Gradient)	10
TV PG max (Tricuspid Valve maximum Pressure Gradient)	10
TV PG mean (Tricuspid Valve mean Pressure Gradient)	10
LVOT PG max (Left Ventricular Outflow Tract maximum Pressure Gradient).....	11
LVOT PG mean (Left Ventricular Outflow Tract mean Pressure Gradient).....	11
AR PG max (Aortic Regurgitation maximum Pressure Gradient)	11
MS PG max (Mitral Stenosis maximum Pressure Gradient)	11
VSD PG max (Ventricular Septal Defect maximum Pressure Gradient).....	11

Body Surface Area

Du Bois D, Du Bois EF. "A Formula to Estimate the Approximate Surface Area if Height and Weight Be Known." *Archives of Internal Medicine* 17:863, 1916, as reprinted in *Nutrition* 5(5):303-311, 1989.

2D-Mode Measurements and Calculations

Cardiac Index

Berkow R, Editor. *The Merck Manual of Diagnosis and Therapy, 16th Edition*. Rahway, New Jersey: Merck and Co., 1992, p. 378.

Schiller NB, Shah PM, Crawford M, et al. "Recommendations for Quantitation of the Left Ventricle by Two-Dimensional Echocardiography." *Journal of the American Society of Echocardiography* 2(5):364, 1989.

Cardiac Output

Belenkie I, Nutter DO, Clark DW, McCraw DB, Raizner AE. "Assessment of Left Ventricular Dimensions and Function by Echocardiography." *American Journal of Cardiology* 31:755-762, June 1973.

Haines NE, McLennan FM, Mowat DHR, Rawles JM. "Assessment of Cardiac Output by Ultrasound Technique Alone." *British Heart Journal* 53:123-129, 1985.

Huntsman LL, Stewart DK, Barnes SR, Franklin SB, Colocousis JS, Hessel EA. "Noninvasive Doppler Determination of Cardiac Output in Man." *Circulation* 67(3):593-602, 1983.

Ihlen H, Amlie JP, Dale J, et. al. "Determination of cardiac output by Doppler echocardiography." *British Heart Journal* 51:54-60, 1984.

Left Ventricular End-Diastolic Volume and Left Ventricular End-Systolic Volume

Cubed Formula

Dodge HT, Sandler H, Ballew DW, Lord JD. "The Use of Biplane Angiocardiography for the Measurement of Left Ventricular Volume in Man." *American Heart Journal* 60(5):762-776, 1960.

Teichholz Formula

Teichholz LE, Kreulen T, Herman MV, Gorlin R. "Problems in Echocardiographic Volume Determinations: Echocardiographic-Angiographic Correlations in the Presence or Absence of Asynergy." *American Journal of Cardiology* 37(1):7-11, 1976.

Bullet Formula

Folland ED, Parisi AF, Moynihan PF, Jones DR, Feldman CL, Tow DE. "Assessment of Left Ventricular Ejection Fraction and Volumes by Real-time, Two-dimensional Echocardiography." *Circulation* 60(4):760-766, October 1979.

Modified Simpson's Rule Formula

Folland ED, Parisi AF, Moynihan PF, Jones DR, Feldman CL, Tow DE. "Assessment of Left Ventricular Ejection Fraction and Volumes by Real-time, Two-dimensional Echocardiography." *Circulation* 60(4):760-766, 1979.

Beyer WH, Editor. CRC Standard Mathematical Tables, 27th edition. Boca Raton, Florida: CRC Press, 1984, p. 125.

Single Plane Ellipse Formula

Folland ED, Parisi AF, Moynihan PF, Jones DR, Feldman CL, Tow DE. "Assessment of Left Ventricular Ejection Fraction and Volumes by Real-time, Two-dimensional Echocardiography." *Circulation* 60(4):760-766, 1979.

Bi-Plane Ellipse Formula

Folland ED, Parisi AF, Moynihan PF, Jones DR, Feldman CL, Tow DE. "Assessment of Left Ventricular Ejection Fraction and Volumes by Real-time, Two-dimensional Echocardiography." *Circulation* 60(4):760-766, 1979.

Simpson Single Plane Formula

Schiller NB, Shah PM, Crawford M, et al. "Recommendations for Quantitation of the Left Ventricle by Two-Dimensional Echocardiography." *Journal of the American Society of Echocardiography* 2(5):364, 1989.

Simpson Bi-Plane

Schiller NB, Shah PM, Crawford M, et al. "Recommendations for Quantitation of the Left Ventricle by Two-Dimensional Echocardiography." *Journal of the American Society of Echocardiography* 2(5):364, 1989.

Ejection Fraction

Pombo JF, Troy BL, Russell RO. "Left Ventricular Volumes and Ejection Fraction by Echocardiography." *Circulation* 43:480-490, 1971.

Fractional Shortening

Belenkie I, Nutter DO, Clark DW, McCraw DB, Raizner AE. "Assessment of Left Ventricular Dimensions and Function by Echocardiography." *American Journal of Cardiology* 31:755-762, June 1973.

Stroke Index

Görge G, Erbel R, Brennecke R, Rupprecht HJ, Todt M, Meyer J. "High-Resolution Two-dimensional Echocardiography Improves the Quantification of Left Ventricular Function." *Journal of the American Society of Echocardiography* 5(2):125-134, 1992.

Stroke Volume

Görge G, Erbel R, Brennecke R, Rupprecht HJ, Todt M, Meyer J. "High-Resolution Two-dimensional Echocardiography Improves the Quantification of Left Ventricular Function." *Journal of the American Society of Echocardiography* 5(2):125-134, 1992.

Roelandt J. *Practical Echocardiography* Ultrasound in Biomedicine, No. 1. Research Studies Press (a division of John Wiley & Sons Ltd), 1977, p. 270.

Volume

Schiller NB, Shah PM, Crawford M, et al. "Recommendations for Quantitation of the Left Ventricle by Two-Dimensional Echocardiography." *Journal of the American Society of Echocardiography* 2(5):364, 1989.

M-Mode Measurements and Calculations

Cardiac Index

Berkow, R, Editor. *The Merck Manual of Diagnosis and Therapy, 16th Edition*. Rahway, New Jersey: Merck and Co., 1992, p. 378.

Schiller NB, Shah PM, Crawford M, et al. "Recommendations for Quantitation of the Left Ventricle by Two-Dimensional Echocardiography." *Journal of the American Society of Echocardiography* 2(5):364, 1989.

Cardiac Output

Belenkie I, Nutter DO, Clark DW, McCraw DB, Raizner AE. "Assessment of Left Ventricular Dimensions and Function by Echocardiography." *American Journal of Cardiology* 31:755-762, June 1973.

Haines NE, McLennan FM, Mowat DHR, Rawles JM. "Assessment of Cardiac Output by Ultrasound Technique Alone." *British Heart Journal* 53:123-129, 1985.

Huntsman LL, Stewart DK, Barnes SR, Franklin SB, Colocousis JS, Hessel EA. "Noninvasive Doppler Determination of Cardiac Output in Man." *Circulation* 67(3):593-602, 1983.

Ihlen H, Amlie JP, Dale J, et. al. "Determination of cardiac output by Doppler echocardiography." *British Heart Journal* 51:54-60, 1984.

Left Ventricular End-Diastolic Volume and Left Ventricular End-Systolic Volume

Cubed Formula

Dodge HT, Sandler H, Ballew DW, Lord JD. "The Use of Biplane Angiocardiography for the Measurement of Left Ventricular Volume in Man." *American Heart Journal* 60(5):762-776, 1960.

Teichholz Formula

Teichholz LE, Kreulen T, Herman MV, Gorlin R. "Problems in Echocardiographic Volume Determinations: Echocardiographic-Angiographic Correlations in the Presence or Absence of Asynergy." *American Journal of Cardiology* 37(1):7-11, 1976.

Ejection Fraction

Pombo JF, Troy BL, Russell RO. "Left Ventricular Volumes and Ejection Fraction by Echocardiography." *Circulation* 43:480-490, 1971.

Fractional Shortening

Belenkie I, Nutter DO, Clark DW, McCraw DB, Raizner AE. "Assessment of Left Ventricular Dimensions and Function by Echocardiography." *American Journal of Cardiology* 31:755-762, June 1973.

AO/LA (Aorta/Left Atrium) Ratio

Schiller NB, Shah PM, Crawford M, et al. "Recommendations for Quantitation of the Left Ventricle by Two-Dimensional Echocardiography." *Journal of the American Society of Echocardiography* 2(5):364, 1989.

Roelandt J. Practical Echocardiography in Ultrasound in Biomedicine, No. 1. Letchworth, Herts, England: Research Studies Press (a division of John Wiley & Sons Ltd), 1977, p. 270.

Heart Rate

Urdang, L Ed. *Mosby's Medical & Nursing Dictionary*. St. Louis, Missouri: The C.V. Mosby Company, 1983, p. 492.

Stroke Index

Görge G, Erbel R, Brennecke R, Rupprecht HJ, Todt M, Meyer J. "High-Resolution Two-dimensional Echocardiography Improves the Quantification of Left Ventricular Function." *Journal of the American Society of Echocardiography* 5(2):125-134, 1992.

Stroke Volume

Görge G, Erbel R, Brennecke R, Rupprecht HJ, Todt M, Meyer J. "High-Resolution Two-dimensional Echocardiography Improves the Quantification of Left Ventricular Function." *Journal of the American Society of Echocardiography* 5(2):125-134, 1992.

Roelandt J. Practical Echocardiography in Ultrasound in Biomedicine, No. 1. Letchworth, Herts, England: Research Studies Press (a division of John Wiley & Sons Ltd), 1977, p. 270.

Doppler Mode Measurements and Calculations

Doppler References

Burns PN. "The Physical Principles of Doppler and Spectral Analysis." *Journal of Clinical Ultrasound*, 15:567-590, 1987.

Acceleration Slope/Time

Gardin JM, Burn CS, Childs WJ, Henry WL. "Evaluation of blood flow velocity in the ascending aorta and main pulmonary artery of normal subjects by Doppler echocardiography." *American Heart Journal*, 107(2):310-319, 1984.

Deceleration Slope/Time

Gardin JM, Burn CS, Childs WJ, Henry WL. "Evaluation of blood flow velocity in the ascending aorta and main pulmonary artery of normal subjects by Doppler echocardiography." *American Heart Journal*, 107(2):310-319, 1984.

Pressure Half-Time

Hatle L, Angelsen B, Tromsdal A. "Noninvasive Assessment of Atrioventricular Pressure Half-time by Doppler Ultrasound" *Circulation* 60(5):1096-1103, 1979.

MVA (Mitral Valve Area Continuity Equation)

Hatle L, Angelsen B, Tromsdal A. "Noninvasive Assessment of Atrioventricular Pressure Half-time by Doppler Ultrasound" *Circulation* 60(5):1096-1103, 1979.

AVA (Aortic Valve Area)

Oh JK, Taliercio CP, Holmes DR, et. al. "Prediction of the Severity of Aortic Stenosis by Doppler Aortic Valve Area Determination: Prospective Doppler-Catheterization Correlation in 100 Patients." *Journal of the American College of Cardiology* 11(6):1227-1234, 1988.

Richards KL, Cannon SR, Miller JF, Crawford MH. "Calculation of aortic valve area by Doppler echocardiography: a direct application of the continuity equation." *Circulation* 73(5):964-969, 1986.

Heart Rate

Urdang, L Ed. *Mosby's Medical & Nursing Dictionary*. St. Louis, Missouri: The C.V. Mosby Company, 1983, p. 492.

Cohn PF, Brown EJ, Vlay SC. *Clinical Cardiovascular Physiology*. Philadelphia, Pennsylvania: W.B. Saunders Company, 1985, pp. 85-86.

CO (Cardiac Output)

Calafiore P, Stewart WJ. "Doppler Echocardiographic Quantitation of Volumetric Flow Rate." *Cardiology Clinics* 8(2):191-202, 1990.

Haines NE, McLennan FM, Mowat DHR, Rawles JM. "Assessment of Cardiac Output by Ultrasound Technique Alone." *British Heart Journal* 53:123-129, 1985.

Huntsman LL, Stewart DK, Barnes SR, Franklin SB, Colocousis JS, Hessel EA. "Noninvasive Doppler Determination of Cardiac Output in Man." *Circulation* 67(3):593-602, 1983.

Ihlen H, Amlie JP, Dale J, et. al. "Determination of cardiac output by Doppler echocardiography." *British Heart Journal* 51:54-60, 1984.

Magnin PA, Stewart JA, Myers S, von Ramm O, Kisslo JA. "Combined Doppler and Phased-array Echocardiographic Estimation of Cardiac Output." *Circulation* 63(2):388-392, 1981.

MV E/A (Mitral Valve, E point to A point Ratio)

Maron BJ, Spirito P, Green KJ, Wesley YE, Bonow RO, Arce J. "Noninvasive Assessment of Left Ventricular Diastolic Function by Pulsed Doppler Echocardiography in Patients with Hypertrophic Cardiomyopathy." *Journal of the American College of Cardiology* 10(4):733-742, 1987.

MV A/E (Mitral Valve, A point to E point Ratio)

Maron BJ, Spirito P, Green KJ, Wesley YE, Bonow RO, Arce J. "Noninvasive Assessment of Left Ventricular Diastolic Function by Pulsed Doppler Echocardiography in Patients with Hypertrophic Cardiomyopathy." *Journal of the American College of Cardiology* 10(4):733-742, 1987.

MV CA/CE (Mitral Valve, CA amplitude to CE amplitude Ratio)

Maron BJ, Spirito P, Green KJ, Wesley YE, Bonow RO, Arce J. "Noninvasive Assessment of Left Ventricular Diastolic Function by Pulsed Doppler Echocardiography in Patients with Hypertrophic Cardiomyopathy." *Journal of the American College of Cardiology* 10(4):733-742, 1987.

IVRT (Isovolumic Relaxation Time)

Hatle L, Angelsen B, Tromsdal A. "Non-invasive estimation of pulmonary artery systolic pressure with Doppler ultrasound" *British Heart Journal* 45:157-165, 1981.

Stevenson, JG. "Comparison of Several Noninvasive Methods for Estimation of Pulmonary Artery Pressure." *Journal of the American Society of Echocardiography*, 2(3):157-166, 1989.

LVIMP (Left Ventricular Index of Myocardial Performance)

Tei C, Ling LH, Hodge DO, Bailey KR, Oh JK, Rodeheffer RJ, Tajik AJ, Seward JB. "New Index of Combined Systolic and Diastolic Myocardial Performance: A Simple and Reproducible Measure of Cardiac Function – A Study in Normals and Dilated Cardiomyopathy." *Journal of Cardiology*, 26:357-366, 1995.

RVIMP (Right Ventricular Index of Myocardial Performance)

Tei C, Dujardin KS, Hodge DO, et al. "Doppler echocardiographic index for assessment of global right ventricular function." *Journal American Society of Echocardiography*, 9:838-847, 1996.

Right Ventricular Systolic Pressure (RVSP)

Yock PG, Popp RL. "Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation." *Circulation* 70(4):657-662, 1984.

TR V max (Tricuspid Regurgitant Jet Plus Right Atrial Pressure)

Yock PG, Popp RL. "Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation." *Circulation* 70(4):657-662, 1984.

Max PG (Maximum Pressure Gradient)

Yoganathan AP, Cape EG, Sung H, Williams FP, Jimoh A. "Review of Hydrodynamic Principles for the Cardiologist: Applications to the Study of Blood Flow and Jets by Imaging Techniques." *Journal of the American College of Cardiology*, 12(5):1344-1353, 1988.

Mean PG (Mean Pressure Gradient)

Yoganathan AP, Cape EG, Sung H, Williams FP, Jimoh A. "Review of Hydrodynamic Principles for the Cardiologist: Applications to the Study of Blood Flow and Jets by Imaging Techniques." *Journal of the American College of Cardiology*, 12(5):1344-1353, 1988.

AV PG max (Aortic Valve maximum Pressure Gradient)

Yoganathan AP, Cape EG, Sung H, Williams FP, Jimoh A. "Review of Hydrodynamic Principles for the Cardiologist: Applications to the Study of Blood Flow and Jets by Imaging Techniques." *Journal of the American College of Cardiology*, 12(5):1344-1353, 1988.

AV PG mean (Aortic Valve mean Pressure Gradient)

Yoganathan AP, Cape EG, Sung H, Williams FP, Jimoh A. "Review of Hydrodynamic Principles for the Cardiologist: Applications to the Study of Blood Flow and Jets by Imaging Techniques." *Journal of the American College of Cardiology*, 12(5):1344-1353, 1988.

MV PG max (Mitral Valve maximum Pressure Gradient)

Yoganathan AP, Cape EG, Sung H, Williams FP, Jimoh A. "Review of Hydrodynamic Principles for the Cardiologist: Applications to the Study of Blood Flow and Jets by Imaging Techniques." *Journal of the American College of Cardiology*, 12(5):1344-1353, 1988.

MV PG mean (Mitral Valve mean Pressure Gradient)

Yoganathan AP, Cape EG, Sung H, Williams FP, Jimoh A. "Review of Hydrodynamic Principles for the Cardiologist: Applications to the Study of Blood Flow and Jets by Imaging Techniques." *Journal of the American College of Cardiology*, 12(5):1344-1353, 1988.

MR PG max (Mitral Regurgitation maximum Pressure Gradient)

Yoganathan AP, Cape EG, Sung H, Williams FP, Jimoh A. "Review of Hydrodynamic Principles for the Cardiologist: Applications to the Study of Blood Flow and Jets by Imaging Techniques." *Journal of the American College of Cardiology*, 12(5):1344-1353, 1988.

PV PG max (Pulmonary Valve maximum Pressure Gradient)

Yoganathan AP, Cape EG, Sung H, Williams FP, Jimoh A. "Review of Hydrodynamic Principles for the Cardiologist: Applications to the Study of Blood Flow and Jets by Imaging Techniques." *Journal of the American College of Cardiology*, 12(5):1344-1353, 1988.

PV PG mean (Pulmonary Valve mean Pressure Gradient)

Yoganathan AP, Cape EG, Sung H, Williams FP, Jimoh A. "Review of Hydrodynamic Principles for the Cardiologist: Applications to the Study of Blood Flow and Jets by Imaging Techniques." *Journal of the American College of Cardiology*, 12(5):1344-1353, 1988.

TR PG max (Tricuspid Regurgitation maximum Pressure Gradient)

Yoganathan AP, Cape EG, Sung H, Williams FP, Jimoh A. "Review of Hydrodynamic Principles for the Cardiologist: Applications to the Study of Blood Flow and Jets by Imaging Techniques." *Journal of the American College of Cardiology*, 12(5):1344-1353, 1988.

TR PG mean (Tricuspid Regurgitation mean Pressure Gradient)

Yoganathan AP, Cape EG, Sung H, Williams FP, Jimoh A. "Review of Hydrodynamic Principles for the Cardiologist: Applications to the Study of Blood Flow and Jets by Imaging Techniques." *Journal of the American College of Cardiology*, 12(5):1344-1353, 1988.

TV PG max (Tricuspid Valve maximum Pressure Gradient)

Yoganathan AP, Cape EG, Sung H, Williams FP, Jimoh A. "Review of Hydrodynamic Principles for the Cardiologist: Applications to the Study of Blood Flow and Jets by Imaging Techniques." *Journal of the American College of Cardiology*, 12(5):1344-1353, 1988.

TV PG mean (Tricuspid Valve mean Pressure Gradient)

Yoganathan AP, Cape EG, Sung H, Williams FP, Jimoh A. "Review of Hydrodynamic Principles for the Cardiologist: Applications to the Study of Blood Flow and Jets by Imaging Techniques." *Journal of the American College of Cardiology*, 12(5):1344-1353, 1988.

LVOT PG max (Left Ventricular Outflow Tract maximum Pressure Gradient)

Yoganathan AP, Cape EG, Sung H, Williams FP, Jimoh A. "Review of Hydrodynamic Principles for the Cardiologist: Applications to the Study of Blood Flow and Jets by Imaging Techniques." *Journal of the American College of Cardiology*, 12(5):1344-1353, 1988.

LVOT PG mean (Left Ventricular Outflow Tract mean Pressure Gradient)

Yoganathan AP, Cape EG, Sung H, Williams FP, Jimoh A. "Review of Hydrodynamic Principles for the Cardiologist: Applications to the Study of Blood Flow and Jets by Imaging Techniques." *Journal of the American College of Cardiology*, 12(5):1344-1353, 1988.

AR PG max (Aortic Regurgitation maximum Pressure Gradient)

Yoganathan AP, Cape EG, Sung H, Williams FP, Jimoh A. "Review of Hydrodynamic Principles for the Cardiologist: Applications to the Study of Blood Flow and Jets by Imaging Techniques." *Journal of the American College of Cardiology*, 12(5):1344-1353, 1988.

MS PG max (Mitral Stenosis maximum Pressure Gradient)

Yoganathan AP, Cape EG, Sung H, Williams FP, Jimoh A. "Review of Hydrodynamic Principles for the Cardiologist: Applications to the Study of Blood Flow and Jets by Imaging Techniques." *Journal of the American College of Cardiology*, 12(5):1344-1353, 1988.

VSD PG max (Ventricular Septal Defect maximum Pressure Gradient)

Yoganathan AP, Cape EG, Sung H, Williams FP, Jimoh A. "Review of Hydrodynamic Principles for the Cardiologist: Applications to the Study of Blood Flow and Jets by Imaging Techniques." *Journal of the American College of Cardiology*, 12(5):1344-1353, 1988.

Medical Ultrasound Safety

Part One: Bioeffects and Biophysics
Part Two: Prudent Use
Part Three: Implementing ALARA

American Institute of Ultrasound in Medicine

Copyright 1994 by the American Institute of Ultrasound in Medicine.

No part of this publication may be reproduced or transmitted in any form by any means including photo-copying or recording without written permission of the copyright owner. Printed in the U.S.A.

The A.I.U.M. Executive Office is located at 14750 Sweitzer Lane, Suite 100, Laurel, MD 20707-5906.

Table of Contents

Preface	iv
Introduction	v
Acknowledgements	vi
Part One: Bioeffects and Biophysics	1
Chapter One: Is It Safe?.....	3
Chapter Two: Thermal Bioeffects	7
Chapter Three: Nonthermal Bioeffects.....	14
Part Two: Prudent Use	17
Chapter Four: Benefits and Risks	19
Chapter Five: ALARA	23
Part Three: Implementing ALARA	25
Chapter Six: Knobology	27
Chapter Seven: The Output Display	33
Conclusion	40

Preface

With the availability of an output display in some present and in future diagnostic ultrasound equipment and the potential for higher output capabilities within these devices, it is incumbent upon the user to be knowledgeable of the uses of this equipment and the potential for ultrasound-induced bioeffects. The responsibility for patient safety is falling more heavily upon the ultrasound equipment user's shoulders and the need for an educational background in these uses and bioeffects is evident. In other words, there is a shift in responsibility for patient safety from the manufacturer to the user. In this regard, this tripartite brochure has been generated to provide the user with a working background and general principles that will provide for the understanding of the purpose and use of the Output Display Standard and how this display can be used to obtain diagnostic information with ultrasound exposure as low as reasonably achievable. The user education requirement represents a new level of responsibility that will permit increased ultrasound diagnostic capabilities within the context of user controlled ultrasound exposure. Information regarding ALARA and possible ultrasound bioeffects described in this brochure also applies to equipment without an output display.

—Michael S. Tenner, M.D.
AIUM President

Introduction

A new feature, called an output display, is becoming available on some recently introduced and future diagnostic ultrasound equipment. The output display provides the user an indication of the potential for bioeffects that might be caused by the ultrasound energy being emitted. With this information, users can better control the diagnostic ultrasound equipment and examination to assure that needed diagnostic information is obtained with a minimum of risk to the patient.

To get the most benefit from the output display, the user should have a basic understanding of the nature of ultrasound-induced bioeffects, how to conduct an exam that minimizes the potential for bioeffects, and how to operate the controls of the equipment used in the exam.

This brochure is divided into three parts. Part One describes ultrasound-induced bioeffects and why we should be concerned about them. Part Two describes the risks and benefits of conducting diagnostic examinations and introduces the concept of ALARA, that is, ultrasound exposure As Low As Reasonably Achievable. Using ALARA, we can obtain needed diagnostic information with minimum risk to the patient. Part Three describes how to implement ALARA on equipment with and without an output display. With an output display, we have the best information about the potential for bioeffects and can make the best decisions.

Each manufacturer's equipment has somewhat different control features. This brochure can only provide general principles about ALARA and diagnostic ultrasound equipment. Please refer to the user documentation for your particular equipment to learn the details of its particular controls and output displays.

Acknowledgements

The development of this Ultrasound Education Program brochure went through a number of style and format changes and involved dedicated professionals from a number of organizations over the past three years. Initially, three videotapes were planned with the creation of three scripts. What finally emerged is this brochure. There are many individuals to thank. Special recognition is given to Mr. Chas Burr for his extensive revisions to the final content of the text. Without their assistance, this brochure would not have been possible.

American College of Cardiology

Betty Halloway, MD
Jannet Lewis, MD

American College of Obstetricians and Gynecologists

Michael Greene, MD
Harold Kaminetsky, MD
Federico Mariona, MD

American College of Radiology

Albert Goldstein, PhD
Marvin Ziskin, MD

American Institute of Ultrasound in Medicine

Peter Doubilet, MD
Christopher Merritt, MD
William D. O'Brien, Jr., PhD
Samuel Ritter, MD

American Society of Echocardiology

Steve Goldstein, MD
Mary-Etta King, MD

Food and Drug Administration

Mel Greberman, MD
Jerry Harris, PhD
Hector Lopez, PhD
Robert Phillips, PhD
Robert Sibley
Mel Stratmeyer, PhD

National Electrical Manufacturers Association

Robert Britain
Chas Burr
Chuck Hottinger, PhD
Sheila Pickering, PhD
Ray Powis, PhD
Mark Schafer, PhD
Terry Sweeney
Kai Thomenius, PhD
Sandy Warner, RDMS

Society of Diagnostic Medical Sonographers

Kari Boyce, RDMS
Kristin LaConte, RDMS, RVT

Society of Vascular Technology

Phil Bendick, PhD
Marsha Neumyer, RVT

— William D. O'Brien, Jr., PhD

— Terrence J. Sweeney

Co-Editors

September 1994

Part One

Bioeffects and Biophysics

“Diagnostic ultrasound has proven to be a valuable tool in medical practice. An excellent safety record exists in that, after decades of clinical use, there is no known instance of human injury as a result of exposure to diagnostic ultrasound. Evidence exists, however, to indicate that at least a hypothetical risk for clinical diagnostic ultrasound must be presumed.”

Radiological Health Bulletin,
Vol XXIV, No. 8,
August 1990

Chapter One

Is It Safe?

Issues Addressed:

- Why it is important to know ultrasound physics
- What dose-effect studies tell us
- Mechanisms of ultrasound-induced biological effects
- History of ultrasound
- Prudent use

- Q. Everyone thinks that ultrasound is safe. We keep hearing, “no known instance of human injury as a result of exposure to diagnostic ultrasound.” So why do we have to learn about biophysics and bioeffects? Everyone thinks ultrasound is safe.
- A. When ultrasound propagates through human tissue, there is a potential for tissue damage. There has been much research aimed at understanding and evaluating the potential for ultrasound to cause tissue injury. Through these studies, we are trying to learn what causes ultrasonic bioeffects and apply that information to diagnostic ultrasound. Many studies are dose-effect studies. These laboratory studies give us two things: First, they provide an opportunity to use much higher dosage levels than those currently used in a diagnostic ultrasound exam to really test the safety of ultrasound, and second, they permit a detailed study of mechanisms thought to be responsible for bioeffects. There is a potential risk.
- Q. So dose-effect studies are performed at higher intensities than diagnostic ultrasound? Dose-effect studies
- A. Much higher levels. In fact, virtually all ultrasonically induced adverse biological effects have occurred at these higher intensity levels.
- Q. What's been learned from the dose-effect studies?
- A. So far, we've deduced that two mechanisms are known to alter biological systems. One, called the “Thermal Mechanism,” refers to heating of soft tissue and bone. The other, “Nonthermal,” involves mechanical phenomena such as cavitation, although nonthermal mechanisms are more than cavitation alone. You can think of cavitation as the interaction of ultrasound with tiny bubbles in tissue and liquids. Thermal Mechanism
Nonthermal Mechanism

Q. How long have we known of the potential hazards of ultrasound?

- A. In 1880, two French scientists, Jacques and Pierre Curie, discovered piezoelectricity, the basis for ultrasonic transducers. About thirty-five years later, another French scientist named Paul Langevin developed one of the first uses of ultrasound, underwater sound-ranging of submerged objects known today as sonar. In the process he discovered and reported that very high intensity ultrasonic levels could have a detrimental effect on small aquatic animals.

Ten years later, scientists Wood and Loomis conducted experiments that substantiated Langevin's observation. Then, in 1930, Harvey published a paper about the physical, chemical, and biological effects of ultrasound, reporting that alterations were produced in a variety of organisms, cells, tissue, and organs. Long before anyone even thought of using ultrasound to produce images of the human body, it was already known that high levels of ultrasound were hazardous. With this in mind, early pioneering engineers and clinicians who were designing ultrasound imaging devices knew about the potential for disrupting biological tissue.

Thus, there has been concern about potential harmful effects throughout the entire period of diagnostic instrumentation development.

If there's a potential for bioeffects . . .

No patient injury has ever been reported from diagnostic ultrasound.

Diagnostic ultrasound equipment is regulated by the FDA.

Q. If there's a potential for bioeffects, why do we use ultrasound?

- A. Most important, we use ultrasound because of its many diagnostic uses and benefits. Although there may be a risk, there has never been a documented instance of a patient being injured from this diagnostic modality.

Q. If there is a potential for ultrasound-caused bioeffects, why has there been such a good safety record?

- A. As the uses of medical devices have grown and more application areas and equipment have been developed, regulations have been enacted to provide for patient safety concurrent with equipment development. In 1976, the Medical Device Amendments to the Food, Drug, and Cosmetic Act were enacted requiring the Food and Drug Administration (FDA) to regulate all medical devices, including diagnostic ultrasound equipment. The FDA has required manufacturers of diagnostic ultrasound equipment to keep acoustic output below that of machines on the market before 1976, the year the amendments were enacted. Manufacturers bringing new products to market must compare the various performance characteristics of ultrasound equipment, including acoustic output, to devices previously approved for marketing.

Within these “limits,” ultrasound has shown itself to be a safe and effective diagnostic tool for medical application. But it is important to remember that the pre-1976 output levels are based in history, not on scientific safety evaluations.

In March 1993, the American Institute of Ultrasound in Medicine approved the Official Statement on Clinical Safety:

“Diagnostic ultrasound has been in use since the late 1950s. Given its known benefits and recognized efficacy for medical diagnosis, including use during human pregnancy, the American Institute of Ultrasound in Medicine herein addresses the clinical safety of such use: No confirmed biological effects on patients or instrument operators caused by exposure at intensities typical of present diagnostic ultrasound instruments have ever been reported. Although the possibility exists that such biological effects may be identified in the future, current data indicate that the benefits to patients of the prudent use of diagnostic ultrasound outweigh the risks, if any, that may be present.”

(From *Bioeffects and Safety of Diagnostic Ultrasound*, published in 1993 by the American Institute of Ultrasound in Medicine)

Q. Why is there more discussion of ultrasound safety now than in the past?

A. The question of safety is being discussed more because more and more applications are being found, and the industry is producing technically sophisticated devices that provide more diagnostic information. Current dialogue among the medical community, manufacturers, and the FDA suggests that new standards recently developed should allow higher outputs for greater diagnostic capability. This will improve some imaging and Doppler situations, but with greater risk and greater operator responsibility.

Just because we haven't detected bioeffects on humans at diagnostic levels, doesn't mean that they don't exist. We know the potential for risk exists. It's important for ultrasound users to know about biophysics and bioeffects so they can make informed decisions about the use of ultrasound and can reduce the chances of bioeffects occurring. In the future, more and more decisions about the use of ultrasound output levels will be made by equipment operators.

The use of ultrasound in medicine began in the 1950s. At that time, the number of applications was rather limited. The uses for ultrasound grew in the 1950s, adding applications such as cardiology, obstetrics, gynecology, vascular, ophthalmic, and the imaging of regions of the

**BIOEFFECTS & SAFETY
of Diagnostic Ultrasound**

“ . . . the benefits to patients of the prudent use of diagnostic ultrasound outweigh the risks, if any, that may be present.”

History of ultrasound in medicine

Higher outputs bring potentially greater risk.

Prudent use

body, such as the female breast and male pelvis. By the early 1960s most of the basic ultrasound applications used today had been attempted, although with much less diagnostic content than today. Clinical use continued to grow during the 1970s with the introduction of real-time scanning.

Early exams were conducted entirely through the skin surface, but intracavitory and intraoperative applications have undergone a recent surge as manufacturers and clinicians seek to expand the diagnostic potential of ultrasound. Today, the clinical uses for ultrasound are many and varied, and diagnostic ultrasound is one of the fastest growing imaging techniques in medicine. Surveys in the United States indicate that a very high percentage of pregnant women are scanned to obtain fetal health information. There are about 100 thousand medical ultrasound scanners in use worldwide. This equipment handles millions of examinations each year. And, the number continues to grow.

Chapter Two

Thermal Bioeffects

Issues Addressed:

- Focused and unfocused ultrasound fields
- Spatial and temporal considerations
- Attenuation, absorption, and scattering
- Soft tissue, layered and fetal bone models
- Soft tissue, layered and fetal bone heating
- Axial temperature increase profiles

Q. If ultrasound causes tissue temperature to rise, where is the largest temperature rise found?

A. The highest temperatures tend to occur in tissue in the region between where the ultrasound beam enters tissue and the focal region.

Because the temperature elevation is related to both ultrasonic power and the volume of exposed tissue, we need to keep in mind whether the beam is scanned or unscanned, in other words, whether the equipment moves the beam or keeps it stationary. Scanned modes, such as B-mode imaging and color flow Doppler, distribute the energy over a large volume. In scanned modes, the highest temperature is frequently at the surface where the ultrasound enters the body.

Unscanned modes, such as spectral Doppler and M-mode, concentrate the power along a single line in the patient and deposit energy along the stationary ultrasound beam. Energy is distributed over a much smaller volume of tissue than in the scanned case. In unscanned modes, the highest temperature increase is found between the surface and the focus. In other words, the hottest point is along the center axis of the beam and proximal to the focal point, but not at the focal point. The exact location depends on the tissue attenuation and absorption properties and the beam's focal length. For long focal lengths, the location of the maximum temperature elevation may lie closer to the surface, but for short focal lengths, it is generally closer to the focus.

Q. Focusing the ultrasound beam increases the temperature?

Unfocused and focused ultrasound fields.

A. Focusing concentrates the power in the beam on a small area, thereby improving image lateral resolution, but also causing higher intensities and the potential for higher temperatures.

Spatial considerations

$$\text{Intensity} = \frac{\text{Power}}{\text{Area}}$$

Q. What other aspects of the ultrasound beam affect the temperature?

Temporal considerations

Temporal-average (TA)
and temporal-peak (TP)
intensities

Ultrasound exposure duration

Attenuation

1. Absorption = energy converted to heat
2. Scattering = redirection of ultrasound

A. An important aspect is time.

Ultrasonic waves can be emitted in pulsed wave form. There's a burst of energy, then, there's a period of silence. Then, there's another pulse and more silence, and on and on. During the pulse the acoustic intensity is high, but during the silence the intensity is zero.

If we take the entire repeating time period, both the pulse and the silence, and average the intensity of the ultrasound over time, we come up with a temporal-average intensity that may be a thousand times smaller than the instantaneous or temporal-peak intensity that occurs once during the pulse. Bioeffects resulting from temperature increases depend, in part, on the temporal-average intensity.

The intensity at the location of the greatest temporal-average intensity is referred to as the spatial-peak temporal-average intensity: SPTA. The SPTA is often used as a specification of ultrasound output.

In addition to time averaging, there's another time concept that affects temperature increase: duration of the ultrasound exposure, or how long one location is imaged during an examination. It takes time for tissue temperature to rise, and the longer the exposure duration, the greater the possibility of a biological effect.

Q. What causes the temperature rise in tissue during ultrasonic exposure?

- A. The absorption of energy. During an exam, much of the ultrasound energy is absorbed by body tissue. If the rate of energy deposition in a particular region exceeds the body's ability to dissipate the heat, the local temperature will rise.

Absorption and attenuation are often confused. Attenuation is the loss of energy from the propagated ultrasound wave. There are two causes for attenuation: Absorption and scattering. Absorption is the conversion of ultrasonic energy into heat; whereas, scattering is the redirection of the ultrasound away from the direction it was originally traveling.

Absorption of acoustic energy by tissue results in the generation of heat in the tissue. This is what is referred to as the thermal mechanism. There are a number of physical and physiological variables that play a role in absorption and the generation of temperature increases. Some, of course, are the operating characteristics of the equipment. For now, let's concentrate on physical parameters.

Q. What are some of the physical parameters that affect absorption?

- A. The ultrasound energy is absorbed by tissue, at least to some extent.

The extent depends on the tissue, on what we call tissue absorption characteristics.

A specific way in which tissue absorption characteristics are quantified is with the “Absorption Coefficient.” The absorption coefficient is expressed in decibels per centimeter. Since absorption coefficient is directly proportional to ultrasonic frequency, the coefficient is often normalized to frequency and represented as decibels per centimeter per megahertz. Absorption coefficients are very dependent on the organ or tissue type that is being imaged.

Attenuation coefficient and absorption coefficient have the same units—dB/cm or dB/cm-MHz

Increasing Attenuation Coefficient

Water
Biological fluids
Soft tissues
Skin and cartilage
Fetal bone
Adult bone

Q. Let's get some examples. What's the absorption coefficient of, say, fluids, like amniotic fluid, blood, and urine?

A. Almost zero. These fluids absorb very little ultrasonic energy. That means the ultrasound goes through the fluid with very little decrease. And there's little temperature elevation in the fluid.

Q. Which body tissue absorbs the most energy?

A. Bone. Its absorption coefficient is very high. Dense bone absorbs the energy very quickly and causes the temperature to rise rapidly. Adult bone absorbs nearly all of the acoustic energy impinging on it. Fetal bone absorption coefficients vary greatly depending on the degree of ossification.

Q. Now what's between fluid and bone?

A. Soft tissue. Tissues vary in density depending on the particular organ, but the density doesn't vary much within a organ. We call it soft to distinguish it from hard tissue such as bone. It's also true that the tissue density within a particular organ is not always the same. But, for our purposes we assume that attenuation and absorption are uniform throughout the organ. We call this a homogeneous soft tissue model.

Homogeneous soft tissue model

Q. How does frequency affect absorption?

A. The higher the frequency, the higher the absorption. What that means to operators is that a higher-frequency transducer will not allow us to “see” as far into the body.

Q. Does that mean that higher-frequency transducers create more heat?

A. Not necessarily. There are many factors that contribute to creating heat. However, if all other factors are equal, the ultrasound energy of higher-frequency transducers is absorbed more rapidly than that of

Higher Frequency = Increased Absorption, Reduced Penetration, Possible Near Surface Heating

lower-frequency transducers, thereby causing reduced penetration. In some cases, this may introduce increased heating near the skin surface.

However, due to the rapid absorption of higher-frequency ultrasound, there's another indirect effect that might occur. If we're not getting deep enough, we might choose to increase the output, and the increased intensity could also increase temperature.

Q. Now let's talk about what all this means in practical terms. What is the situation of most interest?

A. The situation of greatest interest involves the fetus with ossified bone (second and third trimester) and a mother with a thin abdominal wall. Because there would be little absorption of energy between the transducer and the fetus, nearly all of the energy would be absorbed by a fetal bone, if the beam is focused on or close to it.

Q. What can we as operators do to minimize temperature rise?

A. First, temperature increases depend on intensity, duration of exposure at the same location, transducer focal point size and location, and absorption of the energy by the tissue. In general, intensity is alterable, and depends on the particular equipment we're using. As the operator, we can also control duration, or exposure time. The transducer is typically moved frequently during the exam, which will naturally reduce the exposure duration at a specific tissue location.

Let's look at the other two factors: transmit focal point and absorption. A highly focused beam whose focal point is in the amniotic fluid will not cause significant heating of the fluid, because its absorption coefficient is low. If the focus is in tissue, all things being the same, the temperature rise is a little higher. However, the same beam will cause an even higher temperature rise time if it focuses on bone, which has a much higher absorption coefficient. Be aware that there are fixed-focused transducers whose focus we can't change and multi-element array transducers whose focus we can change.

The other important determinant of local temperature rise is absorption of ultrasound energy in tissue layers in front of the point of interest. Increased absorption in these layers decreases the ultrasound energy available at the point of interest. For example, an obstetrical examination of a patient with a thick abdominal wall is less likely to cause a significant temperature increase in the fetus than an examination through a thin abdominal wall.

Q. What are some examples of temperature increase calculations?

Fixed-focus transducer

Multi-element array transducer

- A. We have computer models that predict the relationship between transducer focus and changes in the temperature curve.

Computer Tissue Models

- Homogeneous Soft Tissue Model
- Layered Tissue (Fluid-filled Bladder) Model
- Fetal Bone Model

Assumptions

- Speed of Sound Is Uniform Throughout
- Attenuation Is Uniform Throughout
- Absorption Is Uniform Throughout
- Absorption Equals Attenuation (Scattering is negligible)

Modeling various tissue layers is difficult since there are so many. We focused on two simplified models. In the first, ultrasound travels through homogeneous soft tissue. In the second, ultrasound travels through a fluid-filled bladder. We assumed that the speed of sound, acoustic impedance, attenuation, and absorption are uniform throughout the volume of interest.

Transducer

- 3.0 MHz
- 19 mm diameter
- 6 cm transmit focal length
- 100 mW output ultrasonic power

We also selected a 3.0 MHz, 19 mm diameter transducer with a 6 cm transmit focal length. For convenience, we have used an ultrasonic output of 100 mW for our example. This is a relatively high output level for today's diagnostic equipment, only found in some Doppler and color Doppler modes. Keep in mind, these models are for educational purposes and may not reflect actual clinical situations.

Homogeneous Tissue Model: Abdominal Exam

First, let's look at the homogeneous tissue model. This model is similar to the situation in an abdominal exam involving soft tissue only. The temperature increase in degrees Celsius goes up the left side of the figure. The range in centimeters goes across the bottom of the figure.

We'll see that the temperature increase exhibits a maximum at about five centimeters.

For the next scenario, all we'll change is the focal point location. We just saw the 6 cm focal length. Now, let's see what the same transducer does in the same tissue with a 10 cm focal length. It flattens out quite a bit, doesn't it?

Homogeneous soft tissue model: axial temperature increase profile for a transmit focal length of 6 cm

Homogeneous soft tissue model: axial temperature increase profile for a transmit focal length of 6 and 10 cm

Homogeneous soft tissue model: axial temperature increase profiles for transmit focal lengths of 2, 6, and 10 cm

Layered tissue model: axial temperature increase profile for a transmit focal length of 6 cm

Layered tissue model: axial temperature increase profile for transmit focal lengths of 6 and 10 cm.

Layered tissue model: axial temperature increase profile for transmit focal lengths of 4, 6 and 10 cm.

But look at what happens if the focal length is 2 cm. The temperature goes way up to about 1.3°C at a range of about 2 cm. What does that mean? It means that a significant increase in temperature near the beam's focus is more likely with shorter focal lengths because less overall attenuation of the beam has occurred.

Now, let's look at this in a situation similar to an obstetrical exam.

Layered Tissue Model: Obstetrical Scan

- Abdominal wall thickness = 1 cm
- Bladder fluid path = 5 cm

For this situation, we have a layered tissue model based on an obstetrical scan through the abdominal wall and through the fluid-filled bladder to the fetus. For the scenario, we assumed a patient with a thin abdominal wall of 1 cm and a 5 cm fluid path. The transducer and its ultrasonic power are the same as those used in the homogeneous tissue cases. The transmit focal length of 6 cm is at the location of the far side of the bladder and note that the temperature goes up to about 0.8°C at this range. Also note, the increase in temperature in the abdominal wall is about 0.4°C. There's almost no absorption of ultrasound in the bladder fluid, so little heat is produced there.

Now here's the axial temperature increase profile in the layered tissue model for a longer focal length of 10 cm. The temperature rise at the far side of the bladder is about 0.5°C, a drop from when the ultrasound beam was focused at that location.

Let's look at a situation where the beam focuses in front of the far side of the bladder, at a 4 cm transmit focal length. The temperature rise at the far side of the bladder is about 0.3°C, also a drop from when the ultrasound beam is focused at that location. Note that the increase in temperature in the abdominal wall is about 0.4°C for all three focal length conditions.

That means if the transmit focus location occurs before the target, then the temperature rise at the far side of the bladder, at a range of 6 cm for this layered tissue model, is less than if the focus is at or beyond the target, where the temperature elevation at the target is higher.

Fetal Bone Model

- Homogeneous Soft Tissue Parameters
- Bone Location at 6 cm in Range
- 100 mW Output Ultrasonic Power

Let's see what happens when we focus near bone. For this model, we'll use the homogeneous soft tissue parameters for the tissues through which the beam passes, but our reflective surface is bone that is perpendicular to the beam at a range of 6 cm. We will also use the same output ultrasonic power of 100 mW. When the transmit focal range is beyond the location of bone, focal range of 10 cm, there is a peak in the temperature increase to about 1.9°C at the bone location.

Here's what happens with a transmit focal length of 6 cm, that is, the ultrasound beam is focused on the bone surface: a theoretical temperature rise of about 4.2°C.

- Q. How does all this apply to actually scanning a patient? Is this dangerous?
- A. Potentially dangerous. The examples we looked at are for educational purposes and do not necessarily occur in clinical situations. For example, the output power used for the calculation would not be commonly used, but it is within the capability of many systems.

Temperature rise during an actual examination depends on many factors. For example, very few patients have as thin an abdominal wall as we assumed in this model. In addition, the exposure to bone must be continuous over time for local temperatures to rise. That seldom happens in actual exams. Plus, some heating is lost due to the cooling effect of local blood flow. To date, there is no evidence of any harm in humans from thermal effects at the output levels of current ultrasonic devices.

- Q. But if it's potentially dangerous, why hasn't there been an incident?
- A. The combined conditions required to produce these heating effects are unlikely to occur. In addition, the control parameters on current equipment are designed to limit the temporal-average intensity. By minimizing temporal-average intensity, significant thermal effects in the body are not likely to occur. However, it is unclear what output levels will be used in future applications and equipment.

The goal is to get an image that provides necessary diagnostic information. If we are overly cautious, we may end up with poor image quality or inadequate Doppler signals. For operators to minimize the risk, we need to understand the factors that contribute to temperature rise, for example, the thickness of the mother's abdominal wall, the beam focal length and location, exposure duration, and the attenuation and absorption characteristics of tissue and bone.

Fetal bone model: axial temperature increase profile for a transmit focal length of 10 cm

Fetal bone model: axial temperature increase profile for transmit focal lengths of 6 and 10 cm

Abdominal wall thickness, Focal length and location, Exposure duration, Bone attenuation, Tissue attenuation, Bone absorption, and Tissue absorption

The goal is to get an image that provides necessary diagnostic information.

Chapter Three

Nonthermal Bioeffects

Issues Addressed:

- Onset of cavitation
- Peak compressional pressure
- Peak rarefactional pressure
- Stable cavitation and transient cavitation
- Microstreaming
- Nucleation site
- Threshold phenomenon

- Q. Nonthermal bioeffects means bioeffects not caused by temperature rise. That tells us what they are not. Exactly what are nonthermal bioeffects?
- A. Nonthermal bioeffects are not as well understood as thermal effects. They are sometimes referred to as mechanical bioeffects because they seem to be caused by the motion of tissue induced when ultrasound pressure waves pass through or near gas. The majority of the nonthermal interactions deal with the generation, growth, vibration, and possible collapse of microbubbles within the tissue. This behavior is referred to as cavitation.

Cavitation was first discovered around the turn of the century, not in tissues, but at the surface of a ship's propellers. Researchers found that the low-pressure region immediately behind a ship's propellers caused bubbles to be produced in the water. The collapsing bubbles damaged the propellers. The bubbles collapsed violently, generating shock waves that eroded the propeller blades.

What is cavitation—bubbles? Q. So cavitation is bubbles?

- A. With diagnostic ultrasound, cavitation refers to ultrasonically induced activity occurring in tissues or body liquids that contain bubbles or pockets containing gas or vapor. These bubbles originate within materials at locations termed "nucleation sites," the exact nature and source of which are not well understood in a complex medium such as tissue or blood.

Positive pressure =
Compressional pressure

Negative pressure =
Rarefactional pressure

A sound wave has positive pressure and negative pressure. Positive pressure is also called compressional pressure; negative pressure is also called rarefactional pressure. If the rarefactional pressure is sufficiently large, microbubbles may be produced, or existing microbubbles may be enlarged.

Q. When does cavitation occur?

- A. The occurrence of cavitation and its behavior depend on many factors, including the ultrasonic pressure and frequency, the focused or unfocused and pulsed or continuous ultrasonic field, the degree of standing waves, and the nature and state of the material and its boundaries.

Q. Is cavitation related to SPTA intensity?

- A. No. The correlation is not with temporal-average intensities, but rather with pressure. Cavitation is most closely related to peak negative pressure, or peak rarefactional pressure, during the pulse.

Peak negative pressure is roughly related to the pulse-average intensity. So, the spatial-peak pulse-average intensity, the SPPA intensity, is loosely related to cavitation. This relationship is useful to us because many existing ultrasound systems use SPPA intensity as a specification or control.

Q. Are there different types of cavitation?

- A. Cavitation can be discussed in terms of two categories: stable cavitation and inertial (or transient) cavitation.

Stable cavitation is associated with vibrating gaseous bodies. In stable cavitation a gaseous body remains stabilized and, because of the ultrasonic field, oscillates or pulsates. As the oscillations become established, the liquid-like medium around the gas bubble begins to flow or stream; we call this “microstreaming.” Microstreaming has been shown to produce stress sufficient to disrupt cell membranes.

During inertial cavitation, pre-existing bubbles or cavitation nuclei expand from the pressure of the ultrasonic field and then collapse in a violent implosion. The whole process takes place in a very short time span that is on the order of microseconds. The implosion can produce huge local temperature rises that may be thousands of degrees Celsius, and pressures equal to hundreds of atmospheres all in an area that is less than one square micrometer. The implosion can damage cells and tissue, ultimately leading to cell death. In addition, bubble implosion can generate highly reactive chemical species. All of these effects, microstreaming, implosion, and reactive chemicals occur in a very small space around the bubble, affecting only a few cells.

Q. Is it really possible for cavitation to occur at the amplitudes and frequencies used for diagnostic ultrasound?

Peak compressional pressure (p_c) and peak rarefactional pressure (p_r)

Cavitation depends on

- frequency
- pressure
- focused/unfocused beams
- pulsed/continuous ultrasound
- degree of standing waves
- nature and state of material
- boundaries

Cavitation is related to the peak rarefactional pressure.

Cavitation

1. Stable
2. Inertial (or Transient)

Oscillating bubble and microstreaming

Can cavitation be produced by diagnostic ultrasound equipment?

- A. Perhaps, if nuclei sites are available. There is ample theoretical and some experimental evidence to support this conclusion, and that biological alterations can occur. We are fortunate to have this evidence because it documents the levels above which cavitation is thought to occur, and because there is a lot of scientific evidence to suggest that the onset of transient cavitation is a threshold phenomenon.

There's a combination of rarefactional pressure values, ultrasonic frequency, and cavitation nuclei that are required for cavitation to occur. If, as evidence suggests, cavitation is a threshold phenomenon, then exposure to pressure levels below the threshold for cavitation will never induce cavitation, no matter how long the exposure lasts.

- Q. Do we know of any incidence of cavitation occurring in human tissue or fluids resulting from diagnostic ultrasonic exposure?

- A. Currently, there is no evidence that diagnostic ultrasound exposure has caused cavitation in humans.

In addition, the control parameters on current equipment limit the peak output. However, limits may be raised or eliminated in future equipment.

- Q. But, theoretically, it can happen?

- A. Yes. But since cavitation would probably affect only a single cell, or a few cells, it is extremely difficult to detect an adverse biological effect, unless the cavitation events were widespread among a large volume of tissue.

Part Two

Prudent Use

“Although the possibility exists that such biological effects may be identified in the future, current data indicate that the benefits to the patient of the *prudent use* of diagnostic ultrasound outweigh the risks, if any, that may be present.”

American Institute of Ultrasound in Medicine
Official Statement On Clinical Safety
March 1993

Chapter Four

Benefits And Risks

Issues Addressed:

- Risks versus benefits
- Diagnostic ultrasound benefits
- Risk of not performing the study
- Prudent use
- New technology and applications
- High output, potentially greater risk
- High output, potentially greater diagnostic capability
- Shifting responsibility

Q. “Risks versus benefits.” What do we mean by that in terms of ultrasound?

Risks vs. benefits

A. The risks are the potential for adverse bioeffects caused by heating or cavitation. Although there has not been a reported incident of serious bioeffects on humans at diagnostic ultrasound levels, we do know that heating of the tissue may occur and there may be the potential for cavitation to occur.

The benefit is the diagnostic information ultrasound provides. And ultrasound imaging provides very good data, data that allow physicians to make clinical decisions. With information from an ultrasound exam, physicians can weigh alternative courses of action and select the best method for helping the patient.

Ultrasound imaging is popular first and foremost because it's a superb diagnostic modality. It provides tremendous diagnostic information with great sensitivity and specificity. But it's also a favorite imaging technique because it appears safe, is widely accepted by patients, is portable, and is relatively low in cost compared to other diagnostic imaging modalities. Physicians must weigh the expected benefit from a diagnostic ultrasound procedure against the potential risks of that procedure.

Q. What are some examples of the benefits of diagnostic ultrasound?

Examples of benefits from diagnostic ultrasound: Cardiac studies

A. Let's look at ultrasound in cardiac studies. The use of diagnostic ultrasound for cardiac applications has increased dramatically over the past ten years. From M-mode scans to transesophageal echocardiography, ultrasound gives us the ability to image the structure and function of the heart and great vessels in exquisite detail. Ultrasound also has the ability to follow the normal and abnormal course of blood flow within the heart.

- It's a real risk not to perform the study.
- Example of benefits from diagnostic ultrasound:
Obstetrical exams
- Balancing benefits and risks
- Prudent use
- Q. How about potential bioeffects with some of the new cardiac applications?
- A. Diagnostic ultrasound has an excellent safety record over the years that it's been used to study the heart. The nature of many cardiac ultrasound techniques, the variety of imaging windows, and the fact that the heart is filled with moving blood means that the duration of the exposure of any one area of the heart is reduced.
- Newer applications of ultrasound through the esophagus and within the vascular space may result in bioeffects we've not previously known about. We need more research before we can define all the risks. But remember, the physician should weigh potential bioeffects against the real risks of not doing the study and missing important timely diagnostic information.
- Q. What other medical specialties benefit from ultrasound?
- A. Ultrasound has had a huge impact on the area of obstetrics. The use of ultrasound examinations during pregnancy has increased dramatically since the 1970s. The use of ultrasound in obstetrics is a principal area of concern for potential bioeffects. Ongoing studies may provide accurate information related to potential effects of ultrasound on the embryo-fetus. In fact, the combination of the increase in use and the concern for safety led to the National Institutes of Health consensus development conference in the early 1980s. The conference discussed the use of diagnostic ultrasound in pregnancy. The committee did not recommend routine ultrasound examinations during pregnancy, but they did suggest a number of appropriate clinical indications for the use of ultrasound imaging during pregnancy.
- Q. How do you balance the benefits and risks?
- A. Ultrasound imaging during pregnancy is important because it provides a considerable amount of information. On the one hand, ultrasound offers lots of diagnostic uses, may be used to replace some procedures, can be used in conjunction with other procedures, is cost effective, is accepted by patients, and provides a great deal of high quality clinical information.
- On the other hand, we have the risks: thermal and nonthermal bioeffects. But there's another risk that must be considered: the risk of not doing the ultrasound exam and either not having the information or having to get it in a less desirable or invasive way. As the American Institute of Ultrasound in Medicine statement says, ". . . *the benefits to patients of the prudent use of diagnostic ultrasound outweigh the risks, if any, that may be present.*"

Q. What about the benefits of new ultrasound technology and applications?

New technology and applications

A. There has been a virtual explosion of technology and applications over the past few years: new manufacturers, new products, new medical specialties, and more and more medical applications. Now we have everything from small hand-held Doppler systems that follow blood flow in peripheral vessels to more general imaging systems that display nearly all of the body's soft tissues in detail.

But it's more than technology; it's what that technology gives us; for instance, better quality images and more diagnostic information. Still, all the operating modes and the varying output levels mean that more responsibility must be assumed by the users.

Users assume more responsibility

Diagnostic ultrasound is widely accepted because it is a superb diagnostic tool with an excellent history of safety. We want to keep it that way. But with more and different types of equipment, larger numbers of patients, and all the new applications, there's increased concern about potential bioeffects.

Q. Now that we understand the potential for ultrasound-induced bioeffects, should we change how we use the equipment?

A. We must learn to balance the risks and the benefits. We have learned about bioeffects: thermal effects, or tissue heating; and mechanical effects, such as cavitation. We learned how intensity, exposure time, focal properties, and pressure are associated with the risk for bioeffects. Using too much intensity can increase the risks, but using too little intensity for the clinical situation can lead to poor images and the loss of essential information.

When we use ultrasonic devices, we should remember the safety concerns. Ultrasound should neither be used as a "toy" or without clinical need, nor should it be considered as "perfectly safe." We know and have known for more than 75 years that ultrasound, at certain levels, can alter biological systems. There will always be a need for continued awareness of future research findings. But we also know that one should not hesitate to have a diagnostic ultrasound examination when there is clinical benefit to be derived.

Q. In the future, might there be increased risk as well as increased benefit?

Future benefit vs. risk

A. The future may be quite different. If existing acoustic output limits were removed, the primary responsibility for the safety of acoustic output would shift from design restrictions, as on current diagnostic

ultrasound devices, to the judgement of the users. In return for potentially enhanced diagnostic capabilities, we will have to balance the clinical need against the risk of an adverse bioeffect. We will need a knowledge of the thermal and mechanical mechanisms, the bioeffects of ultrasound, the ultrasound output levels being used, and the relationship of output level to image quality.

Chapter Five

ALARA

Issues Addressed:

- The ALARA principle
- Controlling ultrasonic energy
- Controlling exposure time
- System capability and ALARA
- Operating mode and ALARA
- Transducer capability and ALARA
- System setup and ALARA
- Scanning technique and ALARA

Q. Knowing that ultrasound energy is related to potential bioeffects, how can we reduce the risks?

A. We have a simple principle that we can apply to the use of ultrasound energy. It's called ALARA, which stands for "As Low As Reasonably Achievable." Following the ALARA principle means that we keep total ultrasound exposure as low as reasonably achievable, while optimizing diagnostic information.

ALARA, or As Low As Reasonably Achievable

With new ultrasound equipment, the output display lets us determine the exposure level in terms of the potential for bioeffects. For equipment that does not have an output display, we depend on whatever output information, such as intensity, dB, or percentage of power that the system provides.

Users control the total exposure to the patient.

Because the threshold for diagnostic ultrasound bioeffects is undetermined, it becomes our responsibility to control the total exposure to the patient. Controlling the total exposure depends on output level and exposure time. The output level required for an exam depends on the patient and the clinical need. Not all diagnostic exams can be performed at very low levels. In fact, using too low a level may result in poor data and the need to repeat the examination. Using too high a level may not increase the quality of the information, but it will expose the patient to unneeded ultrasound energy.

Q. If output level depends on the patient and the clinical need, what determines exposure time?

What determines exposure time?

A. Ultimately, the exposure time depends on the person conducting the exam. Primarily, it's our training, education, and experience that determine how quickly we can obtain a useful image, and thus, the length of the exam and the amount of exposure. So, the question is, "How much time do we need to obtain the desired diagnostic information?"

System Capabilities:
Operating mode
Transducer capabilities
System setup
Scanning techniques
Knowledge and experience

Operating mode:
B-mode
M-mode
Doppler
Color flow Doppler

Transducer capabilities:
Frequency
Penetration
Resolution
Field of view

System setup:
Starting output power
Starting intensity outputs
Scanning results

Scanning techniques:
Anatomy and pathology
Ultrasound physics
Signal processing features
Recording and playback features

But there are also some other factors that might affect the length of time that any particular tissue is exposed. One is the mode, whether it's a moving or a stationary beam; and another is the choice of transducer. Other factors include the patient's body characteristics, the operator's understanding of the controls on the system and how they affect output levels, and whether it's continuous wave or pulsed Doppler, or color flow Doppler. To achieve ALARA, we need a thorough knowledge of the imaging mode, transducer capabilities, system setup, and operator scanning techniques.

System capabilities include the following: mode, transducer capabilities, system setup, and scanning techniques. Let's talk about each. First, the mode we select, such as M-mode, B-mode, or Doppler, depends on what we're looking for. B-mode imaging gives anatomical information while Doppler and color flow Doppler modes give information about blood flow through vessels. M-mode gives information about how anatomical structures move in time.

Second, transducer capabilities relate to penetration at the frequency chosen, resolution, and the field of view that we can obtain with the selected transducer.

Third, system setup and control settings depend on where we start on the output scale and on our knowledge of which combination of controls gets the best results.

Fourth, the scanning technique we use is based on our knowledge of anatomy and pathology, of ultrasound physics, and of the equipment's signal processing features, plus our experience with a given scanning modality, such as sector, linear, and so forth. A system's recording and playback features let us reduce exposure time to just the time necessary to obtain a useful image. Analysis and diagnosis can be performed using recorded images rather than lengthy live imaging sessions.

ALARA is a simple concept and easy to understand. Implementing ALARA well, however, requires all of our knowledge and skills as diagnostic ultrasound users. In Part Three we will learn how many of the controls found on diagnostic ultrasound equipment can affect ultrasound output. Without an output display standard we must rely on that knowledge to estimate a patient's ultrasound exposure. With an output display standard we have a real-time indication of the exposure in terms of the potential for bioeffects. Either way, we implement ALARA by minimizing the exposure level and duration while being sure to obtain the necessary diagnostic information.

Part Three

Implementing ALARA

Chapter Six

Knobology

Issues Addressed:

- Basis of knobology
- Tradeoff between *in situ intensity* and image depth
- Operator controls and ALARA
- Prudent use
- Know the user's guide
- An example of implementing ALARA

Q. What should we know about equipment control features, “knobology”, to implement ALARA?

A. Whether or not a diagnostic ultrasound system has an output display, the same types of controls are used to obtain the needed diagnostic images. We should understand how these controls affect acoustic output levels so we can use them to get the best image with the least exposure. In this chapter, we will learn about types of controls that are available on most ultrasound imaging equipment.

Q. How can the operator control ultrasound output?

Operator controls and ALARA

A. There are several external system controls the operator can adjust to improve the quality of the image and to minimize the output intensity. To understand how these controls are related to ALARA, let's divide them into three broad categories: First, controls that directly affect intensity. Second, controls that indirectly affect intensity. These are controls such as Mode, Pulse Repetition Frequency and others. When you change the setting for one of these controls, you may also be changing the intensity. Third, controls that do not affect intensity. We can think of the third category as “receiver controls.” These are controls that affect the processing of ultrasonic echoes returned from the body.

These aren't “official” categories, but they help us understand how the knobs affect ALARA. In fact, each equipment manufacturer provides somewhat different sets of controls. By reviewing the user's guide for the equipment, we can determine the particular controls that perform the functions described here.

Let's look at controls that directly affect intensity. They are application selection and output intensity.

Controls directly affecting intensity
Application selection
Output intensity

Application selection	<p>With application selection, we may choose from applications such as peripheral vessel, cardiac, ophthalmic, fetal imaging, and others. There may be different “ranges” of intensity output based on these applications. Selecting the right application range is the first thing you can do. For example, cardiac intensity levels are not generally recommended for performing a fetal scan. Some systems automatically select the proper range for a particular application, while others require a manual selection.</p> <p>For equipment that does not have an output display, the maximum intensity for each application is regulated by the FDA. The FDA regulation is meant to limit ultrasonic output levels to ranges historically used for each application. But users have some choice in the matter; we are responsible for the proper selection of an application range.</p> <p>For equipment with an output display, FDA currently regulates only the maximum output for the system. Manufacturers establish intensity ranges appropriate for typical patient examinations. However, within the system limits, users may override the application specific limits. We are responsible for being aware of the output level that is being used. We know the output level from the system’s real-time output display.</p>
Output intensity or power	<p>Another control that has a direct effect on intensity is, of course, output intensity. This control also may be called transmit, power, or output. Once the appropriate application range has been selected, the transmit intensity control increases or decreases the output intensity within the range. Most equipment allows you to select intensity levels less than maximum, say 25 or 50 percent. ALARA implies that you select the lowest output intensity that is consistent with good image quality.</p>
Controls indirectly affecting intensity:	<p>Q. Which controls indirectly affect intensity?</p>
System mode Pulse repetition frequency Focusing depth Pulse length Transducer choice	<p>A. The second group of controls is intended to change aspects of the transmitted ultrasonic field other than the intensity. However, because they change the field, the intensity is affected. Whether the intensity increases or decreases and by how much is difficult to predict.</p>
System mode	<p>The choice of B-mode, M-mode, or Doppler, for example, determines whether or not the ultrasound beam is stationary or in motion, which greatly affects the energy absorbed by the tissue. If the beam is moving, then each targeted tissue volume experiences the beam only for a fraction of the time, except near the transducer for sector scans. If the beam is stationary, then the period of time a targeted tissue volume in the beam receives ultrasound is increased.</p>

Q. What about the pulse repetition frequency—PRF?

- A. The number of ultrasound pulses in one second is referred to as the pulse repetition frequency. The higher the pulse repetition frequency, the more output pulses per second, increasing the temporal average intensity. There are several controls which have an effect on the pulse repetition frequency. For example, with some diagnostic ultrasound systems, if we decrease the focal range, then the system may automatically increase the PRF.

Pulse repetition frequency
(PRF)

Q. Next on the list is focusing. How would focusing affect intensity?

- A. In focusing, the beam is narrowed in order to get a better lateral resolution, increasing the temporal average intensity. Most systems adjust their output to offset the effects of focusing, so they tend to maintain the same intensities. As an operator, we need to set the transducer focus at the depth of the structure we're examining. Different exams require different focal depths. Setting the transducer focus at the proper depth improves the resolution of that structure, and we don't need to increase intensity to see it better.

Focusing depth

Q. What about pulse length?

Pulse length

- A. Pulse length, sometimes called burst length or pulse duration, is the time the pulse is on. Often the longer the pulse, the greater the temporal-average intensity value, which both raises the temperature in the tissue and slightly increases the likelihood for cavitation. In pulsed Doppler, increasing the Doppler sample volume length usually increases the pulse length.

Q. Transducer choice is another factor that indirectly affects intensity. How?

Transducer choice

- A. Tissue attenuation increases with transducer frequency. The higher the frequency, the higher the attenuation. That is, a higher-frequency transducer requires more output intensity to 'see' at a greater depth. In order to scan deeper at the same output intensity, a lower transducer frequency must be used. So, for deeper structures, if we find ourselves maximizing output and gain without obtaining good image quality, we may have to switch to a lower frequency.

Q. We are calling the third category Receiver Controls. We use these to improve image quality. They have no effect on output; they only affect how the ultrasound echo is received and processed. The controls include gain, TGC, video dynamic range, and post processing. Let's just look at one of these . . . system gain. How can we use receiver gain to implement ALARA?

Receiver Controls that affect
the image only
Receiver gain
TGC
Video dynamic range
Post processing

- Always increase the receiver gain first.
- A. The receiver gain controls amplification of the return echo signal. To obtain good diagnostic information, we need a high return signal amplitude. This can be attained either by higher output, similar to talking louder, or by higher receiver gain, similar to a hearing aid with volume control. The need for gain is determined by tissue attenuation, that is, how much of the ultrasound is lost as it passes to the reflective surface and back to the transducer. In some cases, we control the receiver gain by setting the gain control or TGC. But in other cases, gain is automatically adjusted by the system when the user adjusts the output control. If the equipment has a receiver gain control, and we are searching for a weak signal, we should always increase the system's receiver gain first, then increase the power output. That way, we reduce the output required and make it less likely to use high acoustic intensities in the patient's body tissue. Remember, a low receiver gain may necessitate using a higher output, or result in suboptimal image quality.

Q. What is an example of the use of ALARA in a clinical exam?

- A. Imagine we are getting ready to do a liver scan. It will involve the use of B-mode, color, and Doppler. Let's see how we would follow the ALARA principle to set up and conduct the exam.

Select transducer
Check output transmit setting
Adjust focus
Increase receiver gain
Adjust output transmit again

The first thing we need to do is select the appropriate transducer frequency. Next, we adjust the output intensity (or power) transmit setting. We check to make sure it is positioned at the lowest possible setting to produce an image. We adjust the focus to the area of interest, then increase the receiver gain to produce a uniform representation of the tissue. If we can obtain a good image by increasing the gain, we can lower the output and continue to increase the gain. Only after making these adjustments and if tissue penetration or echo amplitude levels are inadequate should we increase the output to the next higher level.

Minimize exposure time

After we have achieved a good B-mode image, then we can use color to localize the blood flow so we can position the Doppler sample volume. This allows us to locate the vessel of interest faster and that minimizes exposure time. Now that we have an image of the vessel, we position the range gate (or sample volume gate) over the vessel.

Adjust output transmit setting again

Now we check the Doppler trace. We adjust the power setting by setting the Doppler transmit intensity at the lowest possible level to produce a clear signal. We will make a few more adjustments, for example, adjusting the velocity scale. Now we increase the receiver gain to get a diagnostic signal. If maximum gain adjustments are inadequate, then we raise the output to the next higher level.

That basically is how we implement ALARA. Select the right transducer, start with a low output level, and obtain the best image possible by using focusing, receiver gain, and other imaging controls. If that is not adequate for diagnostic purposes, then increase the output level.

We can further implement ALARA by reducing total ultrasonic exposure time. That is, using our skill, experience, and knowledge of the patient, we can structure the exam to find and obtain useful images quickly. Recording and playing back parts or all of the exam for later measurement and analysis can further minimize the duration of the exposure.

Q. There are many different types of ultrasound systems with different controls and displays. Does ALARA change from system to system?

A. ALARA remains the same. Keep ultrasound output “As Low As Reasonably Achievable.” How we do that will change somewhat from system to system. For example, virtually all medical diagnostic ultrasound equipment has some type of acoustic output control. However, we may occasionally see a single purpose device that doesn’t have an output adjustment. In this case, we practice ALARA by minimizing exposure time.

If the machine has an output control, we use it and the other controls to achieve ALARA. But remember, there are a variety of different types of intensity settings on ultrasound equipment, depending on the manufacturer’s design. For example, some equipment may have a separate control on the keyboard or console that has discrete increments. Other equipment may have the intensity level adjustment accessed through the system presets. And, output settings may be displayed in a variety of different ways. For example, acoustic output may be expressed as a percentage of total power, in decibels, in intensity units of milliwatts per square centimeter, or in thermal or mechanical indices.

Some systems do not have an output control.
Different systems have different controls and displays.

Acoustic output control:
percentage
decibel (dB)
Direct unit
(mW/cm² or mW)
Thermal index
Mechanical index

In addition to the technical aspect of ALARA, there’s the philosophical aspect. This includes minimizing scan time, performing only required scans, and never compromising quality by rushing through an examination.

Q. We’re responsible for patient care, and we must use diagnostic ultrasound prudently. What’s the rule for prudent use?

A. We want the best diagnostic information with minimal exposure to the patient. And because the threshold at which ultrasound energy causes bioeffects is not known, our goal must be to adjust the intensity output of the equipment so as to get the most information at the lowest possible output level.

That's what we mean by ALARA. Using settings that are "As Low As Reasonably Achievable" allow for the best quality ultrasound data for diagnosis.

Chapter Seven

The Output Display Standard

Issues addressed:

- Purpose of the Output Display Standard
- Mechanical Index (MI)
- Thermal Index (TI)
- Soft Tissue Thermal Index (TIS)
- Cranial Bone Thermal Index (TIC)
- Bone Thermal Index (TIB)
- When an Index is displayed
- What the Indices mean
- How to implement ALARA by using the Indices

Q. What is the output display standard?

A. One of many advances now being made in ultrasound equipment technology is the introduction of output display indices that relate to the potential for ultrasound bioeffects. These indices are specified in a standard developed in a cooperative effort by the National Electrical Manufacturers Association, the U.S. Food and Drug Administration, the American Institute of Ultrasound in Medicine, and many other medical and basic science societies.

Q. What is displayed?

A. Two types of indices may be displayed: a Thermal Index, or TI, which provides an estimate of the temperature increase; and a Mechanical Index, or MI, which provides an indication of the potential of nonthermal or mechanical bioeffects, such as cavitation.

Output Display
• Thermal Index (TI)
• Mechanical Index (MI)

Q. What is the purpose of the output display standard?

A. The goal of the output display standard is to make users aware of the actual output of their ultrasound equipment as it is being used. The TI and MI provide real-time information about the potential for bioeffects that can be used to help implement ALARA easily and efficiently. As users, we can quickly learn how different control settings change the indices. *We implement ALARA by obtaining needed information while keeping the indices, the potential for bioeffects, “as low as reasonably achievable.”*

MI is a relative indicator of the potential for mechanical effects

Q. What is the Mechanical Index?

- A. Scientific evidence suggests that mechanical, or nonthermal, bioeffects, like cavitation, are a threshold phenomenon, occurring only when a certain level of output is exceeded. However, the threshold level varies, depending on the tissue. The potential for mechanical effects is thought to increase as peak pressure increases, but to decrease as the ultrasound frequency increases. The Mechanical Index automatically accounts for both pressure and frequency. When interpreting the Mechanical Index, remember that it is intended to estimate the potential for mechanical bioeffects. The higher the index reading, the larger the potential. However, neither MI = 1, nor any other level, indicates that a bioeffect is actually occurring. We should not be alarmed by the reading, but we should use it to implement the ALARA principle.

Q. What is the Thermal Index?

	Scanned Mode	Unscanned Mode
Soft Tissue	TIS at Surface	TIS Small Aperture Large Aperture
Bone at Focus	TIS at Surface	TIB
Bone at Surface	TIC	TIC

Three Thermal Indices

- Soft Tissue Thermal Index (TIS)
- Cranial Bone Thermal Index (TIC)
- Bone Thermal Index (TIB)

TI is a relative indicator of temperature increase

- A. Actually, there are three Thermal Indices that are used for different combinations of soft tissue and bone in the area to be examined. The purpose of the Thermal Indices is to keep us aware of conditions that may lead to a temperature rise whether at the surface, within the tissues, or at the point where the ultrasound is focusing on bone. Each Thermal Index estimates temperature rise under certain assumptions.

The Soft Tissue Thermal Index, known as TIS, provides information on temperature increase within soft homogeneous tissue. The Cranial Bone Thermal Index, called TIC, indicates temperature increase of bone at or near the surface, such as may occur during a cranial exam. The Bone Thermal Index, or TIB, provides information on temperature increase of bone at or near the focus after the beam has passed through soft tissue. For example, TIB is appropriate when focusing near fetal bone during a second or third trimester exam.

The Thermal Index is a relative indicator of temperature rise. Thus, a TI reading of 2 represents a higher temperature rise than a TI reading of 1. However, a TI of 1 should not be taken literally to mean an actual increase in temperature of 1°C, nor should a TI of 2 be taken to mean an increase of 2°C. The actual increase in temperature in the patient is influenced by a number of factors such as tissue type, blood perfusion, mode of operation, and exposure time. Those who developed the standard deliberately chose the term “Index” to avoid a literal association between the TI reading and actual temperature increase. The TI does, however, provide important information to the user: it indicates that the possibility for an increase in temperature exists, and it provides a relative magnitude that can be used to implement ALARA.

Q. How and when are the output indices displayed?

- A. The output display must be located so as to be easily seen by the operator during an exam. An output display is not required if the transducer and system are not capable of exceeding an MI or TI of 1. However, if the transducer and system are capable of exceeding an MI or TI of 1, then it must display values as low as 0.4 to help the user implement ALARA.

No display of any index value is required if the transducer and system are not capable of exceeding an MI or TI of 1

The standard only requires that a single index be displayed at any one time. For some modes and application presets the user may be able to choose which index shall be displayed. For example, the Mechanical Index will appear for B-mode imaging if no other mode is active. A Thermal Index will be shown for all other modes, including modes where B-mode imaging is combined with something else such as M-mode, Doppler, or color flow imaging. The standard makes an exception for transducers that have no B-mode imaging. In that case, the Mechanical Index must be available in the Doppler mode.

The Mechanical Index is required for B-mode imaging because the mechanical effects, such as cavitation, are more likely to be significant than thermal effects. Similarly the rationale for using a Thermal Index in the other modes is that the potential for heating is the greater concern.

Q. Are there other system features required by the output display standard?

- A. The output display standard requires manufacturers to provide default settings on their equipment. These settings establish the output level that will be used automatically at power-up, entry of new patient information, and a change from nonfetal to fetal application presets. Once the exam is under way, the user should adjust the output level as needed to achieve clinically adequate images while keeping the output index as low as possible.

Manufacturers are required to provide default settings

Q. Is it really that simple? All we need to know is the output index value?

- A. Yes and no. A high index value does not always mean high risk, nor does it mean that bioeffects are actually occurring. There may be modifying factors which the index cannot take into account. But, high readings should always be taken seriously. Attempts should be made to reduce index values but not to the point that diagnostic quality is reduced.

The indices do not take *time* into account. Exposure time is an important factor users must keep in mind, especially if the index is in a

Minimizing exposure time will help reduce risk

A display of an index value as low as 0.4 is required if the transducer and system are capable of exceeding an MI or TI of 1.

range that might be considered high. Exposure time is the ultrasound exposure time at a particular tissue region. In all cases, minimizing ultrasound exposure time will help reduce risk.

Every patient is different. The tissue characteristics assumed in the formulas for the output display indices may differ significantly from the characteristics of the patient or exam type. Important characteristics we should consider include

- body size
- blood flow (or perfusion)
- the distance the organ of interest is from the surface
- where the bone is in relation to the beam axis and focal point, and
- factors, such as the presence or absence of fluid, that affect the attenuation of ultrasound.

- Q. Tell us in more detail how to use the output display to help implement ALARA.
- A. Let's look at the basic principles to follow. To begin, we determine if we are displaying the appropriate index. The Mechanical Index and Thermal Index are mode-specific, so that index selection is automatic. However, there may be cases when we can override the system's choice. When displaying a Thermal Index, we should ask four questions.

Thermal Index	Tissues	Typical Examinations
TIS	Soft tissue	Cardiac, first trimester fetal
TIB	Bone near focus	Second and third trimester fetal
TIC	Bone near surface	Transcranial

First, “Which Thermal Index is appropriate for the study we are performing—TIS, TIC, or TIB?” TIS is appropriate when imaging soft tissue and is used, for example, during first trimester fetal exams or in cardiac color flow imaging exams. TIC is used during transcranial examinations. And TIB is used when the focus is at or near bone and may be appropriate for second and third trimester fetal exams or certain neonatal cephalic exams.

The second question to ask is, “Are there modifying factors that might create either an artificially high or low reading?” These modifying factors include the location of fluid or bone and blood flow. For example, is there a low attenuation path so that the actual potential for local heating is greater than the TI display? This could be caused by an unusually long distance of amniotic, or other fluid through which the ultrasound must travel. Another example is that a highly perfused tissue area may have a lower temperature than indicated because blood flow transports heat away from the tissue.

Third, even if the index value is low, we should ask, “Can I bring it down?” Because there is uncertainty about how high is “too high,” we should always be alert to ways to adjust the system to reduce the indices. In many cases, an index reading can be reduced without decreasing the quality of the image.

Finally, we should ask, “How can we minimize ultrasound exposure time without compromising diagnostic quality?” This does not mean that we rush through the exam and take the chance of not getting information necessary for an accurate diagnosis. It means that we should get the best image possible with as little exposure time as necessary. There are a number of ways to reduce exposure time. For example, if the system does not disable pulsing during freeze frame, remove the transducer from the patient while working with a frozen image on the ultrasound display. Don’t scan obstetrical patients twice, once to obtain necessary diagnostic information and again to show images to the patient’s family and friends. Only scan areas of the body that are necessary to the diagnosis. And don’t use additional modes, such as Doppler or color, unless they benefit the diagnosis.

Q. Please give us some examples that show how the indices can be used to implement ALARA.

A. We will look at several examples. When we consider the Mechanical Index, the MI might be reduced by selection of appropriate transducer type, ultrasonic frequency, focal zone, and receiver gain.

Because there are three Thermal Indices, it is not so simple. As we go through the examples, remember the four questions we should ask related to the Thermal Index:

- Which TI?
- Are there modifying factors?
- Can we reduce the index value?
- Can we reduce the exposure time?

Implementation of ALARA by using the Indices

The first example is a color flow scan of the portal vein of the liver. TIS is the appropriate selection for nonobstetrical abdominal examinations. Possible modifying factors include capillary perfusion and body size. High perfusion in the imaged tissue will reduce thermal effects while conversely, a lack of perfusion may increase them. With increasing body size, extra tissue attenuation decreases mechanical and thermal effects at the focus. Also, when considering the focus for a soft tissue exam, remember that the potential for maximum heating might occur at the surface, at the focal point, or somewhere in between. For scanned modes, such as B-mode imaging and color flow, and for sector transducers, the maximum heating is usually close to the surface.

The second example is a pulsed Doppler cardiac exam. Again, TIS is the appropriate thermal index. The cooling effect of cardiac blood flow is a very important modifying factor. Actual increase in cardiac temperature is almost certainly less than the TIS indicates.

The next example is a second trimester pulsed Doppler fetal exam. In most cases with unscanned modes, like pulsed Doppler, the Thermal Index indicates heating near the surface. If bone is not present, maximum heating is likely to occur between the surface and the focus or sample volume, and the TIS is the relevant index. But, if bone is present, maximum heating will occur at the location of the bone. In this example, the TIB is the relevant index, although it will overestimate the actual temperature rise, unless the bone is located within the focal zone or sample volume.

The presence of fetal bone near the focal zone is the important factor. If the pulsed Doppler is used to measure umbilical blood flow, and we are sure there is no bone near the sample volume, the TIS is appropriate. However, because the transducer may be moved, it is usually best to make the more conservative choice and select TIB for all second and third trimester exams. Of direct concern are the fetus's developing neural tissues, such as the brain and spinal cord, that may be in a region of heated bone.

Other modifying factors include the type of overlying tissue, whether fluid or soft tissue, and the exposure time at the particular tissue region. The presence of fluid is important, because if more than half of the path is fluid-filled then the actual temperature rise may be higher than the TIB value displayed. To reduce the potential temperature rise, consider aiming the transducer to miss most of the bone structure without losing the region of interest, if possible, and optimize receiver gain and sample volume controls.

An additional consideration is whether heating is likely to be near the surface (in the mother's tissues) or deeper (in the fetal tissues). This depends mostly on whether we are using a scanned (2D or color) or unscanned (M-Mode or Doppler) mode. For scanned modes, heating tends to be near the surface; for unscanned modes, closer to the focal zone. However, in most cases where bone is along the beam axis, maximum heating occurs at the location of the bone.

Another example is a transcranial examination, where TIC is the appropriate Thermal Index. The presence of bone near the surface is the important factor in this case. To reduce the TIC reading, consider scanning through a thinner part of the skull, so that a lower output setting can be used.

The final example is a neonatal cephalic exam. The choice of Thermal Index depends on the location of bone. Generally, in an exam through the fontanelle TIB is the appropriate index because of the chance of focusing near the base of the skull. TIS might be appropriate if the focal zone will always be above the base of the skull. If the exam is through the temporal lobe, the temporal bone near the surface makes the TIC the appropriate index.

Conclusion

In more than three decades of use, there has been no report of injury to patients or to operators from medical ultrasound equipment. We in the ultrasound community want to keep that level of safety.

In the past, application-specific output limits and the user's knowledge of equipment controls and patient body characteristics have been the means of minimizing exposure. Now, more information is available. The Mechanical and Thermal Indices provide users with information that can be specifically applied to ALARA. Mechanical and Thermal Indices values eliminate some of the guesswork and provide both an indication of what may actually be happening within the patient and what occurs when control settings are changed. These make it possible for the user to get the best image possible while following the ALARA principle and, thus, to maximize the benefits/risk ratio.