Øving 8 IFYX1000

Oppgave 1

En terning har sidekant $10~\rm cm$. Materialet er av tre med tetthet $700~\rm kg/m^3$. Terningen står fullstendig neddykka i vannet slik at sidekantene er enten horisontale eller vertikale. Et tau som er festet i bunnen og midt på ene sidekanten av terningen, holder terningen i ro.

- a) Regn ut oppdrifta på terningen.
- b) Regn ut snordraget T i snøret. [Hint: Lag aller først en figur som viser alle kreftene på terningen.]

Oppgave 2

Du skal bestemme massetettheten til en ukjent væske ved hjelp av en prismeformet flottør av homogent materiale, samt et beger ferskvann med kjent tetthet $1000~{\rm kg/m^3}$.

Når flottøren flyter fritt i vann er $58~\mathrm{mm}$ av sidekanten under vann. Når flottøren flyter fritt i den ukjente væska er $46~\mathrm{mm}$ av sidekanten under vann. Flottøren flyter slik at sidekantene er vertikale eller horisontale.

Bestem massetettheten ρ til den ukjente væska.

Oppgave 3

En sugekopp har sirkelform med diameter $100~\mathrm{mm}$. Sugekoppen blir pressa opp mot ei glatt takflate og vi antar at all luft mellom sugekopp og tak blir pressa ut. Se figuren under.

Hva er den maksimale massen M sugekoppen kan holde uten å falle ned dersom lufttrykket er $1,00~\mathrm{atm}$? Vi kan neglisjere vekta av selve sugekoppen.

Oppgave 4

En hydraulisk løfter er fylt med olje med tetthet $900~{\rm kg/m^3}$. Bilen har en masse på $M=1300~{\rm kg}$ og hviler på et sirkelformet stempel med diameter $d_2=250~{\rm mm}$. Til å løfte bilen bruker man trykkluft som presser ned det minste stempelet, som er sirkelforma med diameter $d_1=60~{\rm mm}$. Vi kan anse oljen som inkompressibel, og vi ser bort fra massen til stemplene. Se figuren under.

- a) Til å begynne med er begge stemplene i samme høyde over "bunnen", som vist på figuren. Hvor stort lufttrykk må vi ha over det minste stempelet i dette tilfellet?
- b) I stedet for trykkluft plasserer vi et menneske på det minste stempelet. Hvor stor masse må personen ha for at begge stemplene skal være i samme høyde over "bunnen"?
- c) Hvor stort luftrykk må vi ha over det minste stemplet for at det store stempelet skal stå $2,0~\mathrm{m}$ høyere enn det minste?

Oppgave 5

Vann strømmer ut av en åpen tank gjennom et tapperør. Tanken har sirkulært tverrsnitt med diameter på $d_1=3,0~\mathrm{m}$ og vannspeilet ligger i høyde $h_1=5,0~\mathrm{m}$ over bunnen, mens tapperøret har en diameter på $d_2=3,0~\mathrm{cm}$ og rørets senter ligger i en høyde $h_2=0,50~\mathrm{m}$ over bunnen. Se figuren under.

Bestem volumstrømmen ut av tanken idet tømmingen starter. [Hint: Overbevis deg om at vannspeilets hastighet er neglisjerbar i dette tilfellet.]