

Réseaux mobiles 2G et 3G

Xavier Lagrange dép. RSM ENST Bretagne

12/04

Sommaire

1.	Réseaux cellulaires et systèmes sans fils	1
2.	La Ressource radio	3
3.	Concept cellulaire	13
4.	Caractéristiques d'une interface radio	21
5.	Les fonctions cellulaires	33
6.	Système GSM	42
7.	Généralités sur GPRS	51
8.	Les systèmes de troisième génération	63
9.	Bibliographie	75

1. Réseaux cellulaires et systèmes sans fils

Réseau cellulaire => couverture continue d'un large territoire avec des stations de base

Systèmes sans fils => couverture d'îlots (moins complexe)

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

1

Fonctions essentielles dans un réseau radio-mobile

Itinérance ou *Roaming* : capacité à utiliser le réseau en tout point de la zone de service (pouvoir appeler et être appelé).

- = gestion de la délocalisation
- => gérée par le sous-réseau fixe

Itinérance internationale ou *International Roaming* : capacité à utiliser un autre réseau que celui auquel on est abonné.

Mobilité radio : possibilité de déplacer le terminal en **gardant** la communication.

= gestion du **handover** ou du transfert intercellulaire automatique

(handover = hand-off)

2. La Ressource radio

2.1. Propagation

- réflexion sur les parois lisses grandes devant la longueur d'onde du signal
- diffraction sur les arêtes grandes devant la longueur d'onde du signal
 permet une couverture de zones masquées
- diffusion sur les surfaces avec des irrégularités de la taille de la longueur d'onde (feuillage, lampadaires,...)

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

Caractéristiques des multitrajets

- · Absence fréquente du trajet direct
- Les obstacles ou réflecteur peuvent être mobiles : réponse impulsionnelle du canal variable au cours du temps

Définition de réponses impulsionnelles typiques

4

Effets des multitrajets

- pour un signal à bande étroite, variations subites de l'amplitude du signal
 - modélisation par une loi de Rayleigh (ou de Rice)
 - Evanouissements à petite échelle ou Fading ou Fading de Rayleigh, souvent appelé Fast Fading ou Fading rapide
- pour un signal à bande large, en fréquence, => modification du spectre du signal en temps => interférence intersymbole

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

Phénomène d'évanouissement

• évanouissement environ tous les $\lambda/2$ (affaiblissement important tous les 10λ)

Variation du signal en fonction de la distance

• la puissance médiane $p_{
m médiane}$ varie en $1/r^{lpha}$: $p_{
m médiane}$ = p k λ^2/r^{lpha}

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

Le modèle à trois étages

• Puissance utile reçue : $p_r = p_e k \frac{\lambda^2}{r\alpha} a_{shadow} a_{fading}$

formule qui s'applique pour des antennes isotropiques (rayonnement uniforme dans toutes les directions)

Gain de parcours fonction de la distance r
 α : coefficient d'atténuation entre 2 et 4 (typ. 3,5)

$$k \frac{\lambda^2}{r^{\alpha}}$$

(On considère souvent l'atténuation ou path loss : $r^{\alpha}/(k\lambda^2)$ exprimée en dB)

Loi aléatoire modélisant l'effet de masque
 Loi log-normale centrée sur 0dB d'écart type 5 à 7 dB

ashadow

Loi aléatoire modélisant l'évanouissement
 \(\square a_{fading} \) : loi de Rayleigh (\(a_{fading} \) suit une loi exponentielle)

afading

Synthèse

- Le canal radio est un medium de transmission diffusif, de qualité médiocre, fluctuant
- · Nécessité du chiffrement pour assurer une confidentialité
- Importance du traitement de signal : transmission numérique codes correcteurs d'erreur égalisation
- Difficulté de prévoir la qualité d'une liaison radio en un point donné => qualité réseau mobile < qualité réseau fixe

=> marges

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

9

2.2. Couverture

Grandeurs principales

C : Puissance du signal utile N : Bruit propre du récepteur

Seuil de fonctionnement : C/N minimum

Caractéristique fondamentale d'un récepteur : sensibilité S

Sensibilité S

niveau minimal $S: S = (C/N)_{seuil} + N$.

Puissance d'émission + sensibilité détermine le rayon *R* de couverture.

2.3. Interférence co-canal

On utilise la même fréquence sur deux sites éloignés => interférences co-canal

Grandeurs principales

C : Puissance du signal utile

I : Ensemble des interférences (réduites souvent à l'interférence co-canal)

N: Bruit

Le rapport Signal sur Bruit s'exprime ici comme un rapport C/(I+N)

Du fait de la réutilisation des fréquences : N<</

On parle couramment de rapport C/I

Chaque système a un certain C/I de fonctionnement

11

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

Principe de calcul de l'interférence co-canal

 $\sum_{j \square J_i} I_j$ est l'interférence co-

$$\frac{C}{I} = \frac{C}{\sum_{j \in J} I_j}$$

3. Concept cellulaire

3.1. Définition

Le territoire est divisé en "cellules", desservies chacune par une station de base, l'ensemble de ces cellules formant un seul réseau.

L'opérateur affecte une ou plusieurs fréquences à chaque station de base. Les mêmes canaux de fréquence sont réutilisés dans plusieurs cellules selon la capacité du système à résister aux interférences.

Couverture d'une cellule isolée

- Dépend de la sensibilité (liée au rapport *C/N* tolérable)
- Dépend de la puissance d'émission

Couverture d'un réseau

- Dépend du seuil C/I
- Dépend de la distance de réutilisation (plus petite distance entre deux cellules de même fréquence)

13

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

3.2. Motif de réutilisation dans un réseau régulier

Définition

Un motif cellulaire est l'ensemble des cellules dans lequel chaque fréquence de la bande est utilisée une fois et une seule fois.

Avec le modèle hexagonal

On peut montrer que les motifs optimaux sont de taille K tel que :

$$K = i^2 + ij + j^2$$
 avec $i, j \in \mathbf{N}$

i = 0: forme de losange

 $i \neq 0$: invariant par rotation de 120°

Distance de réutilisation

La plus proche distance de réutilisation d'une fréquence est alors :

$$D = \sqrt{3 K} R$$

où D est la distance de réutilisation

R, le rayon d'une cellule (cercle circonscrit à l'hexagone)

Exemple de motifs

Il existe d'autres configurations régulières à K = 9, 12, 13, 16, 19, 21, 27, ...

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

Exemple de répartition de 10 fréquences suivant un motif

Motif de taille 3

Motif de taille 4

16

3.3. Lien entre C/I et motif de réutilisation

Une interface radio est définie avec une certaine capacité à résister aux interférences :

$$\frac{C}{I(+N)}$$
 \geq seuil => fonctionnement correct

Remarques

- Indépendance de la puissance de transmission (si toutes les puissances sont égales)
- Le motif est seulement fonction du seuil de C/I
 Notion de capacité intrinsèque d'un système
- Pour GSM, on considère un motif de référence à 12

17

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

 α = 3,5

 σ = 6 dB

Taille des motifs : *K* (avec tri sectorisation)

fonction de répartition du C/I pour différents motifs

3.4. Planification non régulière

Taille des cellules fonction du trafic à écouler

=> Détermination des zones d'interférence et utilisation de la théorie des graphes

19

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

3.5. Bilan sur le concept cellulaire

Avantages:

- permet de desservir de façon continue un très large territoire,
- permet d'utiliser des puissances d'émission moins importantes,
- permet en diminuant la taille des cellules de réutiliser les fréquences à des emplacements plus proches
 - => augmentation de la capacité.

Inconvénients

• travail de planification fastidieux et délicat (fait par l'opérateur)

4. Caractéristiques d'une interface radio

4.1. Duplexage

deux sens de transmission sens descendant (downlink) (forward) sens montant (uplink) (reverse)

FDD (frequency division duplex)

- sens montant et sens descendant sur des fréquences différentes
- bien adapté aux cellules de grande dimension

TDD (time division duplex)

- sens montant et sens descendant à des instants différents sur la même fréquence
- possibilité d'allocation dissymétrique
- bien adapté aux cellules de petite dimension

21

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

4.2. Multiplexage

Techniques d'accès multiple

Répartition en fréquence (AMRF) : (frequency division multiple access: FDMA)

• un canal physique simplex : 1 fréquence

Répartition en temps (AMRT) : (time division multiple access: TDMA)

• un canal physique simplex : 1 slot (intervalle de temps) sur 1 fréquence

Répartition par les codes (AMRC) : (code division multiple access: CDMA)

• un canal physique simplex : 1 code

FDMA, Frequency Division Multiple Access

partage de la ressource hertzienne en fréquences (ou porteuses) 1 utilisateur par fréquence (ou couple de fréquences)

1 canal physique simplex = 1 fréquence

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

23

TDMA, Time Division Multiple Access

Partage FDMA du spectre en porteuses

Partage TDMA d'une porteuse en intervalles de temps ou slots

Les systèmes TDMA sont de fait FDMA/TDMA

Intérêt du TDMA

- Transmission 1 fois par trameTemps disponible pour faire autre chose (surveillance stations voisines)
- Possibilité de débits différents (transmission pendant plus d'un *slot* par trame)

Problèmes liées au TDMA

- Augmentation du débit : Interférence entre symboles due aux trajets multiples
 Egalisation
- Harmoniques dues à la transmission 1 fois par trame TDMA.

Période trame : 4,615 ms => fréquence 217 Hz

25

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

Exemples d'utilisation du TDMA

GSM : porteuses espacées de 200 kHz (modulation à 271 kbauds) trame TDMA à 8 intervalles de temps (577 μ s par intervalle de temps) duplex de type FDD

DECT : porteuses espacées de 1,728 MHz (modulation à 1152 kbauds) trame TDMA à 24 intervalles de temps (≈417 μ s par intervalle de temps) durée de garde ≈49 μ s. duplex de type TDD

CDMA, Code Division Multiple Access

Principe de l'étalement par séquence directe

Pour un bit, transmission d'une séquence de *chips* de longueur *n*

- séquence propre à chaque utilisateur = multiplexage de codes
- tous les utilisateurs transmettent sur la même fréquence
- Exemple : 1 bit => 1 séquence de 64 chips

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

27

Etalement de spectre

Débit en bits : b bit/s (durée d'un bit T_b)

Rythme *chips*: *nb* chips/s (durée d'un chip $T_c = T_b/n$)

=> Etalement de spectre

Utilisation de codes orthogonaux

$$S_1$$
 -1 -1 +1 +1 -1 +1 +1 S_2 -1 -1 +1 -1 +1 +1 -1 S_3 -1 +1 -1 +1 +1 -1 S_4 -1 +1 -1 -1 -1 +1 -1 -1

$$\forall i, \forall j, S_i \cdot S_j = 0 \text{ si } i \neq j S_i \cdot S_i = n$$

Soit un utilisateur i, séquence binaire $b_i(kT)$ ($b_i(kT) \in \{+1 ; -1\}$) séquence de *chips* $b_i(kT)S_i$

A l'émission, transmission pour l'ensemble des utilisateurs de $S(kT) = \sum_{j} b_{j}(kT)S_{j}$

A la réception de l'utilisateur
$$i$$
, calcul de $S_i \bullet S(kT)$ soit $S_i \bullet S(kT) = \sum_j b_j(kT) S_i \bullet S_j = b_i(kT) n$

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

29

Gain d'étalement

Raisonnement en puissance : Raisonnement en énergie :

- Puissance du signal reçu : C
- Puissance du bruit et des interférences : *I*
- Energie d'un bit : E_b
- Densité spectrale de puissance : I₀
- le taux d'erreur bit dépend du rapport E_b/I_0
- grâce à l'étalement de spectre, on cumule l'énergie sur chaque chip composant le bit

$$C = E_c/T_c$$
 $I = I_0^* (1/T_c)$ donc $C/I = E_c/I_0$
or $E_b = n E_c$ donc $E_b/I_0 = n C/I$

n est appelé gain d'étalement

Exemple

Seuil E_b/N_0 =6 dB, un étalement de 128 permet de fonctionner à C/I=-13 dB!

Intérêt du CDMA

Combiné avec l'utilisation de codes correcteurs, le CDMA permet d'avoir un très faible *C/I* de fonctionnement.

=> Les mêmes fréquences peuvent être utilisées sur toutes les cellules : planification simple

Problèmes:

Contrôle de puissance Séquences pseudo aléatoires sur la voie montante Interférences entre différents canaux dans une même cellule

Utilisation du CDMA

Système américain IS 95, UMTS

31

Exemples d'utilisation des techniques de duplexage et d'accès multiple

	FDMA	(FDMA-) TDMA	(FDMA-) CDMA	(FDMA-) TDMA-CDMA
FDD	AMPS, R2000, NMT,	GSM	UTRA-FDD CDMA 2000	
TDD	CT2-CAI	DECT		UTRA-TDD

UTRA = Universal Terrestrial Radio Access (interface radio UMTS)

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

5. Les fonctions cellulaires

5.1. Gestion de l'itinérance

Mise à jour de localisation et Paging

Deux principes de bases opposés pour appeler un abonné mobile

- émettre les appels sur toutes les cellules du système = paging
- connaître à tout moment la localisation du mobile grâce à une procédure de mise à jour de localisation (location updating procedure)
 - -> possible grâce à une voie balise

Combinaison des deux méthodes : => zone de localisation (*location area*)

33

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

Zone de localisation

Une **Zone de localisation** est un ensemble de cellules à l'intérieur duquel un mobile peut se déplacer sans se signaler au réseau. Lorsque le mobile entre dans une nouvelle zone de localisation, il le signale au réseau.

Gestion des abonnés

- le HLR (Home Location Register) ou enregistreur de localisation nominal :
 - profil de l'abonné identité, services souscrits, restrictions,...
 - localisation (grossière) de l'abonné numéro de VLR où se trouve l'abonné
- le VLR (Visitor Location Register) ou enregistreur de localisation d'accueil :
 - liste des abonnés gérés par le VLR
 - profil de chaque abonné géré par le VLR identité, services souscrits, restrictions,...
 => image d'une partie du HLR (principe de la mémoire cache)
 - zone de localisation de chaque abonné géré par le VLR numéro de la zone de localisation où se trouve l'abonné

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

35

MSC: Mobile-Services Switching Center (Commutateur de service mobile)

VLR: Visitor Location Register HLR: Home Location Register

LA: Location Area, zone de localisation

Déroulement d'une mise à jour de localisation

Nécessité d'un canal en émission périodique avec identification de la zone de localisation :

Voie balise (ou beacon channel, Broadcast Control Channel)

Phases:

- écoute d'une voie balise
- lecture de la zone de localisation
- comparaison avec la précédente zone mémorisé

Si la zone est différente :

- envoi d'un message de mise à jour de localisation
 mise à jour des VLR et HLR (si nécessaire)
- retour sur la voie balise en attente de possibles appels

37

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

Conséquences de la gestion de l'itinérance

- augmentation considérable de la signalisation dans le réseau fixe
- base de données à intégrer dans le réseau
 signalisation sémaphore CCITT n°7 et réseaux intelligents

5.2. Le handover

Principes généraux

- Mesures par le mobile sur la station de base courante et les stations de bases voisines (niveau de puissance, d'interférences, etc.)
- Transmission régulière ou sur critère des mesures vers l'infrastructure
- Mesures par l'infrastructure
- Dès nécessité de faire un handover
 - réservation des ressources par le réseau
 - envoi de la commande de handover

39

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

Hard Handover

quelques centaines ms

Soft Handover

quelques secondes à ?

Hard-handover

- · simplicité et faibles ressources consommées dans le réseau
- micro-coupure de la communication
- mobile pas toujours connecté à la meilleure cellule (hystérésis pour éviter un effet ping-pong)

Soft-handover

- continuité de la communication (seamless handover)
 - confort d'utilisation pour les communications vocales
 - absence de perte d'information pour les transmissions de données en mode circuit
 - mais non utilisé dans le mode paquet (cf. IS 95 HDR, High Data Rate)
- Mobile est connecté à plusieurs stations de base :
 - le mobile est connecté à la meilleure station de base même en cas de variation rapide du signal
- Consommation de ressources dans le réseau d'accès

41

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

6. Système GSM

6.1. Objectifs de GSM

Situation initiale

- Grand nombre de standards incompatibles : **AMPS**, R2000, NMT, TACS, C-NETZ
- Service limité aux territoires nationaux et pas d'économie d'échelle pour les constructeurs

Objectifs de GSM

Service de téléphonie mobile de voix et de données compatible avec les réseaux fixes sur l'ensemble du territoire européen.

- Efficacité => transmission numérique
- Souplesse pour convenir aux zones rurales et urbaines
- Protection (confidentialité pour usagers et sécurité pour les opérateurs)

Interface radio

- bandes principales : 880-915 MHz et 925-960 MHz (2imes35 MHz avec bande

étendue)

1710-1785 MHz et 1805-1880 MHz (2×75 MHz)

- découpage de la bande en FDMA/TDMA avec duplexage FDD porteuses duplex espacées de 200 kHz avec 8 intervalles de temps (C/I seuil 9dB)
- puissances typiques d'émission des mobiles : en 900 MHz, 2 W en 1800 MHz, 1W
- débit brut : 271 kbit/s
- interface radio élaborée
 codage correcteur d'erreur, contrôle de puissance, saut de fréquence...

Réseau fixe

- utilisation de la signalisation sémaphore CCITT n°7
- utilisation des concepts de réseau intelligent

43

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

6.2. Services

- Services de téléphonie compatibles du RNIS (renvoi d'appel, double appel...)
- Appel d'urgence
- Transmission de données à au plus 14,4 kbit/s (en général 9,6 kbit/s)
- Service de message courts (160 caractères)
- GPRS : General Packet Radio Service
 Réseau mobile de données par paquets avec débit jusqu'à 40 kbit/s
- EDGE : Enhanced Data rate for the Global Evolution Augmentation des débits jusqu'à une centaine de kbit/s

Nouveautés de GSM

- Carte SIM (Subscriber Identity Module) matérialisant l'abonnement et indépendante du terminal
 - => on peut changer de réseau (en restant dans une réseau qui utilise la même bande de fréquence) sans changer de terminal
- Sécurisation (imparfaite) du réseau
 - => Intrusion difficile dans le réseau
 - => Chiffrement des communications

6.3. Adressage/Numérotation

- MSISDN (Mobile Station ISDN Number)
 numéro d'annuaire par lequel on appelle l'abonné mobile
- IMSI (International Mobile Subscriber Identity)
 identité utilisée par le réseau pour désigner l'abonné.
- TMSI (Temporary Mobile Subscriber Identity)
 identité temporaire allouée au mobile pour éviter le clonage et le pistage

45

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

6.4. Architecture

- MS: Mobile Station, terminal muni d'une carte SIM
- BTS : Base Transceiver Station, ensemble d'émetteurs-récepteurs gérant la transmission radio
 Possibilité de sectoriser : 3 cellules gérés sur un même site
- BSC: Base Station Controller, commutateur gérant la ressource radio (allocation canal radio, décision du hand-over,...)
- MSC/VLR: Mobile-services Switching Centre, Visitor Location Register commutateur téléphonique associé à une base de données qui gère les communications sur une zone (correspondant à quelques centaines de cellules)
- HLR: Home Location Register, base de données contenant le profil et la localisation grossière des abonnés, en général couplé avec l'AuC, Authentication Center
- EIR: *Equipment Identity Register,* base de données des terminaux (liste noire ou blanche)

BTS : Base Transceiver Station

BSC : Base Station Controller

MSC : Mobile-services Switching Centre

HLR : Home Location Register

VLR: Visitor Location Register

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

Mise à jour de localisation

- Aucune signalisation si le mobile change de cellule mais reste dans la même zone de localisation
- Mise à jour locale au MSC/VLR si le mobile passe d'une zone de localisation à une autre zone gérée par le même MSC/VLR
- Signalisation à travers le réseau coeur en cas de changement de MSC/VLR
- Allocation éventuelle d'un TMSI, Temporary Mobile Subscriber Identity

48

Mise en œuvre de l'appel sortant

- Identification du mobile par son TMSI
- Vérification locale au MSC/VLR du profil (et récupération du MSISDN)
- Traitement de l'appel comme un appel fixe-fixe (pas de pb de routage)

49

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

Mise en œuvre de l'appel entrant

- Transfert de l'appel vers le plus proche MSC de l'opérateur de l'abonné appelé qui agit en tant que passerelle : GMSC, Gateway MSC.
- Consultation du HLR pour connaître la localisation de l'abonné mobile
- Allocation d'un numéro dont les premiers chiffres sont liés à la localisation du demandé : MSRN, Mobile Station Roaming Number
- Problème d'effet trombone dans les appels internationaux

7. Généralités sur GPRS

7.1. Contexte

- Forte utilisation des messages courts mais limitation à 160 caractères sans compression
- Faible utilisation de la transmission de données en mode circuit
 - débits limités, débit réel ≤ 7 kbit/s
 - facturation (élevée) à la durée
- Trafic sporadique pour les applications de données Consultation de bases de données, interactifs, ...
- Besoin de débits instantanés importants mais débits moyens modérés
- Protocole réseau le plus répandu : IP, Internet Protocol

51

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

7.2. Principes généraux de GPRS

GPRS: General Packet Radio Service ≈ IP sur voie radio

- Réseau GPRS = réseau IP où l'abonné peut être mobile
 Terminal GSM : adresse IP qui peut être allouée dynamiquement
- Accès paquet sur la voie radio à un débit inférieur ou égal à 171,2 kbit/s (au mieux)
- Infrastructure : reprise du BSS mais pas du NSS
- Architecture en couches permettant une compatibilité avec de multiples protocoles IP V4, IP V6, X25
- GPRS n'est pas IP mobile car il définit un réseau particulier et des mécanismes particuliers au sein de ce réseau

7.3. Services

- Service de transmission point à point (PTP, Point-To-Point)
 PTP-CONS, PTP Connection Oriented Network Service
 PTP-CLNS, PTP ConnectionLess Network Service
- Possibilité d'accès anonyme
- Service de messages courts

Dans une phase ultérieure

Service de transmission point à multi-point (PTM, Point-To-Multipoint)
 PTM-M, Point-To-Multipoint Multicast
 PTM-G, Point-To-Multipoint Group

Qualités de service

- · priorité
- · fiabilité
- délai
- débit

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

53

7.4. Architecture physique de référence

- SGSN: Serving GPRS Support Node, Routeur IP gérant les terminaux pour une zone
 - Equivalent du MSC dans l'architecture circuit
- GGSN: Gateway GPRS Support Node, Routeur IP s'interfaçant avec les autres réseaux
 - Equivalent du GMSC dans l'architecture circuit (mais on passe toujours par la passerelle)

55

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

Principe généraux de l'architecture

- Les bases de données de GSM-circuit sont réutilisées (HLR, EIR)
- Evolution du réseau d'accès BSS
- Déploiement d'un réseau fixe spécifique : réseau fédérateur GPRS
- Le réseau fédérateur GPRS est un réseau IP
- Deux niveaux d'existence d'un terminal
 - existence au niveau GSM: gestion de localisation par l'IMSI dans le HLR
 - existence(s) au niveau PDP : adresse(s) PDP, qualité de service négociée,...=> gestion d'un contexte

Etats d'un mobile

- Mobile non attaché au réseau GPRS <=> Mobile éteint
- Mobile attaché au réseau GPRS <=> Mobile localisé par le réseau
 à la précision d'une zone de routage
 d'une cellule,
- Mobile attaché avec contexte activé <=> Mobile existant au niveau du réseau PDP

Fonctions des équipements

SGSN, Serving GPRS Support Node,

- Routeur IP commutant les paquets vers le BSS et vers le réseau fédérateur
- Gestion de l'itinérance des mobiles GPRS en visite,
 Dialogue éventuel avec MSC/VLR pour gestion coordonnée de l'itinérance
- Gestion d'un contexte PDP permettant de mémoriser les paramètres réseaux principaux du mobile

GGSN, Gateway GPRS Support Node,

- Routeur IP commutant les paquets vers le réseau fédérateur et vers le réseau externe
- Gestion d'un contexte PDP permettant de mémoriser les paramètres réseaux principaux du mobile

HLR, Home Location Register

- Profil GPRS de l'abonné identifié par son IMSI
- · Localisation de l'abonné

57

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

Mise en tunnel

- Activation d'un contexte PDP
 Le SGSN connaît le réseau PDP utilisé, l'adresse PDP du mobile, ...
 Le GGSN connaît l'adresse du SGSN où le mobile se trouve
- Les données venant des réseaux fixes sont encapsulées par le GGSN pour les envoyer vers le SGSN.

7.5. Evolutions de l'interface radio

- Un canal physique peut-être configuré dynamiquement soit en mode circuit, soit en mode paquet
- Découpage d'un canal physique en blocs de 4 bursts (4 bursts = 1 unité de données après codage correcteur)
- Partage d'un canal physique entre plusieurs utilisateurs, allocation définie par le réseau
- · Principe général d'accès dans GSM conservé
- Augmentation des débits par réduction du codage

59

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

Augmentation des débits par modification du taux de codage

Augmentation des débits et couverture

- · Réduction de la protection des données utilisateurs
- Débit fonction du C/I => Débit max non disponible sur toute la couverture

- Développement de terminaux multi-slot
- Définition de nouvelles modulations pour GSM : E-GPRS (EDGE, Enhanced Data Rates for the GSM Evolution)

61

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

7.6. EDGE

Enhanced Data rates for the GSM Evolution

- Utilisation d'une modulation plus efficace (8-PSK)
- Multiplication du débit par 3 mais sur une couverture plus réduite (69,2kbit/s par intervalle de temps au lieu de 22,8)
- Débits prévus : jusqu'à 384 kbit/s pour piétons (microcellules) et véhicules lents jusqu'à 144 kbit/s pour véhicules rapides
- EDGE est de plus en plus présenté comme la convergence entre IS 136 et GSM

8. Les systèmes de troisième génération

8.1. Convergence vers la troisième génération

Vision initiale de la 3G

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

UMTS, un système universel de 3ème génération?

UMTS: Universal Mobile Telephone System

- UMTS : solution européo-japonaise pour les systèmes 3G
 - une interface radio basée sur le WCDMA avec du FDD : UTRA-FDD
 - une interface radio basée sur le TDMA-CDMA avec du TDD : UTRA-TDD
- CDMA2000 : solution américaine dérivée d'IS-95
- UWC136: évolution de GSM (EDGE, Enhanced data for the Global Evolution) choisie par les opérateurs qui ont numérisé leur réseau analogique AMPS (D-AMPS)

64

8.2. Services UMTS

Classification des services en fonction de la QoS

	Conversationnel (délai<<1 s)	Interactif (délai~1 s)	Streaming (délai<10 s)	Arrière-Plan (<i>Background</i>) (délai>10 s)
Tolérant aux erreurs	Téléphonie et Visiophonie	Messagerie vocal	Streaming audio et Vidéo	Télécopie
Non tolérant aux erreurs	Telnet, Jeux interactifs	Commerce électronique, Web	FTP, images fixes, messagerie unilatérale	Notification d'arrivée de courrier électronique

Source [22.105]

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

Exemples de services conversationnels et interactifs

Classe	Application	Symétrie	Débit	Délai de bout en bout	Variation du délai	Perte d'info.
CONVER	Téléphonie	Bi-directionnel	4-25 kbit/s	<150 ms (<400 ms)	< 1 ms	< 3% FER
SA	Visiophonie	Bi-directionnel	32-384 kbit/s	<150 ms (<400 ms)		< 1% FER
TION	Télémétrie	Bi-directionnel	28,8 kbit/s	<250 ms		0
NEL	Telnet	Bi-directionnel	1 kbit/s	<250 ms		0
IN	Messagerie vocale	Principalement uni-directionnel	4-13 kbit/s	<1 s (écoute) <2 s (enreg.)	< 1 ms	< 3% FER
TER	Consultation web	Principalement uni-directionnel		<4 s/page		
ACTIF	Services de transaction	Bi-directionnel		< 4 s		0

Source [22.105]

Exemples de services streaming

Classe	Application	Symétrie	Débit	Délai de bout en bout	Variation du délai	Perte d'info.
S T R	Audio de haute qualité	Uni-directionnel	32-128 kbit/s	<10 s	< 1 ms	< 1% FER
E A M	Vidéo	Uni-directionnel	32-384 kbit/s	<10 s		< 1% FER
I N G	Transfert de blocs de données	Principalement uni-directionnel	28,8 kbit/s	<10 s		0

Source [22.105]

67

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

8.3. Aspects architecturaux de la 3^{ème} génération

Principes de base

 Séparation poussée entre réseau d'accès (UTRAN, Universal Terrestrial Access Network)

et réseau cœur (CN, Core Network)

Dialogues « directs » entre le terminal et le réseau cœur pour l'établissement des services : NAS, Non Access Stratum

Dialogues entre le terminal et le réseau d'accès pour l'établissement des capacités de transmission (bearer) sur la voie radio et dans le réseau d'accès

- Réutilisation des réseaux cœurs GSM et GPRS
- · Définition d'un nouveau réseau d'accès
- Définition d'une interface radio totalement nouvelle

Architecture physique du réseau d'accès

- Node B : équivalent de la BTS
- RNC : équivalent du BSC
- Utilisation d'un réseau de transport dans le réseau d'accès : ATM dans un premier temps, IP dans un second temps

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

69

Interfaces dans le réseau d'accès

- · Interface lub entre le Noeud B et le RNC
- **Nouvelle** Interface lur entre les RNC (permet le soft-handover)
- Interface lu entre le RNC et le réseau coeur

Réseaux coeurs et réseau d'accès

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

72

8.4. Grande lignes de l'interface radio UMTS

UTRA = UMTS Terrestrial Radio Access

- UTRA-FDD:
 - système CDMA à étalement de spectre
 - sans multiplexage temporel
 - duplexage fréquentiel (FDD, Frequency Division Duplex)
- UTRA-TDD:
 - système CDMA à étalement de spectre
 - avec multiplexage temporel
 - duplexage temporel (TDD, Time Division Duplex)
- Débit chip de 3,84 Mchip/s dans une bande de 5 MHz
- Etalement variable de 4 à 512 en FDD et de 1 à 16 en TDD
- Pour 384 kbit/s en FDD, on utilise un étalement de 8

73

Principaux paramètres

Caractéristique	UTRA-FDD	UTRA-TDD	
Multiplexage	CDMA (FDMA inhérent)	TDMA et CDMA (FDMA inhérent)	
Duplexage	FDD	TDD	
Largeur de bande	5 MHz	5 MHz	
Rapidité de modulation	3,84 Mchip/s	3,84 Mchip/s	
Time slot	666,66 μs	666,66 μs	
Etalement	Orthogonal, de 4 à 512 chips/symbol	Orthogonal, de 1 à 16 chips/symbol	
Modulation	QPSK	QPSK	
Contrôle dyn. de puis.	Oui	Oui	
Handover	soft ou hard handover (mobile assisted)	mobile assisted hard handover	
Allocation de canal		DCA rapide et/ou lent	

X. Lagrange, ENST Bretagne, Ecotel, Cours sur les Réseaux mobiles 2 G et 3G, déc 2004

9. Bibliographie

[Lag]	X. Lagrange.	Réseaux	radiomobiles.	Collection IC2	. Editions I	Hermès, 2000.

[Les] P. Lescuyer, *UMTS*: les origines, l'architecture et la norme, Editions Dunod, 2000, Paris.

[LGT] X. Lagrange, P. Godlewski, S. Tabbane, *Réseaux GSM*, Editions Hermès, 2000

[SaT] J. Sanchez, M. Thioune, UMTS: Services, architecture et WCDMA, 2ème édition, Editions Hermès, 2004.

[Tab] S. Tabbane, *Ingénierie des réseaux cellulaires*, Editions Hermès, 2002.

[Tab] S. Tabbane, *Réseaux mobiles*, Editions Hermès, 1997.