Università degli Studi Roma Tre Collegio Didattico di Ingegneria Informatica

Ricerca Operativa - Terzo appello

27 gennaio 2015

Nome:	Selezionare ☐ 3 febbraio ore 9:00 aula N3
Cognome:	data orale: 🔲 5 febbraio ore 9:00 aula N3
Matricola:	☐ 20 febbraio ore 9:00 aula N3

Esercizio 1

Si vuole determinare la lunghezza massima del piede di Ercole basandosi sulle seguenti osservazioni. Achille impiega 6 minuti per raggiungere la tartaruga a partire da una distanza iniziale di 20 stadi. A partire dalla stessa distanza un leone impiega non più del doppio per raggiungere Achille. Tutti corrono a velocità costante lungo una retta e nello stesso verso, la velocità del leone è il 50% maggiore di quella di Achille e quest'ultima è 1000 volte quella della tartaruga. La tartaruga percorre non più di 8 metri prima di essere raggiunta da Achille. Uno stadio misura 600 piedi di

- 1. Formulare il problema di PL precisando le unità di misura
- 2. Impostare il problema duale
- 3. Facendo uso delle condizioni di ortogonalità, dimostrare o confutare che la lunghezza massima del piede di Ercole è $^{1}/_{3}$ m e che la corrispondente velocità di Achille è $^{100}/_{9}$ m/s.

Esercizio 2

In tabella sono riportati gli archi di una rete di flusso composta da 8 nodi 1...8.

Per ogni arco sono dati il valore della sua capacità massima e un flusso iniziale. In particolare, 3 è il nodo sorgente e 7 è il nodo pozzo.

- 1. Partendo dai dati in tabella, determinare se la distribuzione di flusso iniziale data è ammissibile, e spiegarne il motivo. In caso affermativo, mostrare il flusso iniziale e determinare una soluzione ottima al problema del massimo flusso utilizzando l'algoritmo di Ford e Fulkerson. Altrimenti, scaricare il flusso iniziale e risolvere il problema del massimo flusso utilizzando Ford e Fulkerson.
- 2. Individuare un taglio di capacità minima tra i nodi 3 e 7. Evidenziare il taglio ottimo trovato.
- 3. Partendo dalla soluzione ottima trovata al punto 1, si determini il nuovo flusso massimo se:
- a. la nuova capacità dell'arco (1,2) è uguale a 0
- b. la nuova capacità dell'arco (5,4) è uguale a 6
- c. la nuova capacità dell'arco (5,8) è uguale a 3

Archi	6,3	3,4	3,5	6,1	4,2	5,8	1,7	2,7	8,7	5,4	2,8	2,6	2,1	1,2
Flussi	2	2	2	0	4	1	1	1	1	2	0	2	1	0
Capacità	2	8	9	7	12	2	6	5	5	5	3	4	5	6