HW5

Alberc Ej Salcedo

April 8, 2019

1 Complexity Analysis

1. A: O(1)

The only runs one function which is do Nothing, making the order 1.

2. A:O(n)

This has only "n" function it runs.

3. A:O $(n^2 + n)$

This is a nested for loop and one comparison if statement.

2 Order of Complexity

- 1. f(n) = 3n + 2O(n)
 - A: f(n) = 3n + 2O(n)

$$Cn \ge 3n + 2 \forall n > n_0$$

$$5n \ge 3n + 2\forall n > n_0$$

$$3n + 2n \ge 3n + 2\forall n > n_0$$

$$2n \ge 2\forall n > 0$$

2. q(n) = 7O(1)

A:O(1) is simply just a constant $k = n_0$

3. $h(n) = n^2 + 2n + 4O(n^2)$

A: Let Letk = 4 and we must find $n^2 + 2n + 4c * n^2$

 $(n^2 + 2n + 4)/n^2 < (n^2 + 2n^2 + 4n)/n^2 < (n^2 + 2n + 4n)/n^2 = (7n^2)/n^2$

c=7 since we are assuming $n \ge 1$, $c*n^2 = 7n^2$. $7n^2 \ge 1$ is true

3 Order of Complexity

- 1. A: Let n = 1so that L.H.S. = 1 and R.H.S. = (n(n+1))/2plugging everything in yields: 1 = (1(1+1))/2 = 1, this statement is true.
- 2. A: Let n=1 so that L.H.S. = 2 and R.H.S. = $2^{n+1}-2$ plugging everything in yields: $2^{1+1}-2=2^2-2=2$, this statement is true.