СОДЕРЖАНИЕ

ВВЕДЕНИЕ				2
1	Аналитическая часть			3
	1.1	Причи	ины появления шумов в изображениях	3
	1.2	Класс	ификация шумов	4
		1.2.1	Гауссов шум	4
		1.2.2	Шум соли и перца	5
		1.2.3	Спекл-шум	5
	1.3 Существующие методы обнаружения и устранения		ствующие методы обнаружения и устранения шумов	6
		1.3.1	Общий алгоритм работы фильтров	6
		1.3.2	Медианный фильтр	7
		1.3.3	Гауссовский фильтр	9
		1.3.4	Двухсторонняя фильтрация	10
		1.3.5	Алгоритм Цзяньвэй	11
CI	ТИС	ок ис	ПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	13

ВВЕДЕНИЕ

Цифровой шум в изображениях появляется вследствие физических свойств фотона света или вмешательства человека. Он оказывает огромное влияние на восприятие человеком качества картинки, а также ухудшает результаты работы алгоритмов, анализирующих изображения. Нейросети плохо справляются с определением объектов на фотографии, если внести на неё шум, причём человеческий глаз не всегда в состоянии распознать, что на картинке присутствуют помехи.

Актуальность работы состоит в том, что многие существующие алгоритмы предполагают вмешательство человека в процесс шумоподавления, в то время как этот процесс может быть автоматизирован.

Цель работы — проанализировать существующие методы борьбы с шумами в изображениях.

Для достижения поставленной цели потребуется:

- Описать термин шума, причины его появления и классифицировать его типы;
- Описать существующие методы обнаружения шума в изображениях и способы его устранения;
- Сформулировать критерии сравнения рассмотренных методов;
- Классифицировать существующие алгоритмы борьбы с шумами.

1. Аналитическая часть

В данном разделе описываются причины возникновения шумов в изображениях. Рассматриваются алгоритмы определения наличия шума на фотографиях. Даётся описание существующих методов удаления шумов из картинки, классификации существующих алгоритмов и критериев их сравнения.

1.1 Причины появления шумов в изображениях

Шум – дефект изображения, в основе которого лежит эффект появления на фотографии пикселей случайного цвета и яркости по всему изображению [1].

Причины возникновения такого эффекта делятся на два типа: естественные и искусственные. Основных источником естественных помех на изображениях является фотосенсор [1]. Существует несколько физических объяснений появления шума на изображении [2]:

- 1) При дефектах потенциального барьера происходит утечка заряда. В этом случае шум на изображениях проявляется в виде тёмных точек на светлом фоне.
- 2) При подаче потенциала на электрод может возникнуть темновой ток, который отображается на картинке в виде светлых точек на тёмном фоне. Основная причина возникновения темнового тока это примеси в кремниевой пластине или повреждение кристаллической решётки кремния.
- 3) Взаимодействие фотонов света с атомами фотодиодов сенсора несёт случайный характер, нельзя точно описать, какие квантовые эффекты при этом возникают.
- 4) При производстве фотоаппаратов случается брак, и некоторые пиксели являются дефектными.

Также шум на изображениях может быть вызван умышленным вмешательством человека или состязательной атакой. Состязательная атака — это манипуляция обучающими данными, архитектурой модели или манипулирование тестовыми данными таким образом, что это приведёт к неправильному выходу из модели машинного обучения [3].

Одним из способов такой атаки является изменения на картине некоторых пикселей до такого состояния, что алгоритмы анализа изображения перестают выдавать адекватный результат.

1.2 Классификация шумов

Существует несколько основных типов шумов, возникающих на фотографиях [4]. От точного определения характеристики шума зависит то, какой метод требуется выбрать для автоматического определения дефектных пикселей на изображении и последующего его устранения.

1.2.1 Гауссов шум

Так как квантовым процессам свойственна случайность, то такие процессы можно отнести к Гауссовым, следовательно, они обладают следующим свойством: распределение суммы независимых случайных величин сходится к нормальному, вне зависимости от характера распределения слагаемых [5].

Пусть I — интенсивность изначального пикселя, а ν — интенсивность шума, распределённая по нормальному распределению. Тогда интенсивность загрязнённого пикселя можно представить по формуле 1 [4]:

$$I_f = I + \nu, \nu \sim N(0, \sigma^2) \tag{1}$$

Вид гауссова шума представлен на рисунке 1.1

Рисунок 1.1: Вид гауссова шума

Именно этот вид шумов на практике встречается чаще всего.

1.2.2 Шум соли и перца

Шум соли и перца проявляется в том, что на изображениях в случайных местах появляются чёрные и белые пиксели [6]. Основной причиной их возникновения является темновой ток и утечка заряда в фотосенсоре, а также наличие пикселей с дефектами [1].

Пусть S — исходное изображение, а i, j — координаты пикселя. Тогда математически описать появление такого шума можно по формуле 2:

$$P(S_{i,j}=1)=p (2)$$

Вид шума соли и перца представлен на рисунке 1.2

Рисунок 1.2: Общая схема работы всех алгоритмов

Основным методом борьбы с таким видом шумов является медианный фильтр.

1.2.3 Спекл-шум

Спекл-шум часто встречается в медицинских методах визуализации, которые основаны на ультразвуке и лазерных технологиях: КТ, ОКТ. Сложность борьбы с такими помехами состоит в том, вероятность их возникновения описывается не нормальным распределением, а другими, например Гамма-распределении или распределением Релея.

Пусть I — интенсивность изначального пикселя, а ν — интенсивность шума, распределённая по нормальному распределению. Тогда интенсивность за-

грязнённого пикселя можно представить по формуле 3:

$$I_f = I * \nu \tag{3}$$

Таким образом, влияние спекл-шума может быть значительным, а линейные методы решения таких задач не подходят для того, что исключить шумы из исходного изображения.

1.3 Существующие методы обнаружения и устранения шумов

Шумы искажают исходную картинку и портят её качество так, что это способен распознать человеческий глаз. Однако могут возникнуть трудности в обнаружении помех, поскольку они трудно различимы при совпадении цвета фона и цвета пиксела, например, светлые точки будут плохо заметны на ярком фоне.

Было разработано несколько алгоритмов, которые производят бинарную классификацию пикселей и определяют, какие из них можно идентифицировать как шумы и затем их устранить.

В качестве классификации алгоритмы можно разделить на два типа:

- 1) **Изотропная фильтрация** такие методы устраняют помехи, но не учитывают детали пикселя и увеличивают размытость.
- 2) **Анизотропная фильтрация** алгоритмы устраняют эффекты сглаживания, уменьшают размытость и сохраняют детали пикселя, устраняя при этом непосредственно шум из изображения.

1.3.1 Общий алгоритм работы фильтров

Алгоритмы, анализирующие наличие шумов в изображениях, имеют дело с различными характеристиками одного пикселя. Например, цвет пикселя можно разбить на три составляющие – синюю, красную и зелёную.

В таком случае метод работает с каждой из составляющих пикселя, вычисляя новое значение для каждой характеристики. Результат работы в этом случае является объединением подсчётов по всем характеристикам.

Общая схема работы алгоритмов представлена на рисунке 1.3:

Рисунок 1.3: Общая схема работы всех алгоритмов

Каждый из фильтров, перечисленный ниже, работает с каждым из параметров пикселя одинаково, поэтому для корректной работы алгоритмов требуется вычислить значение каждого свойства для результирующего пиксела.

1.3.2 Медианный фильтр

Под медианным фильтром понимается семейство однотипных алгоритмов, относящихся к классу нелинейных фильтров.

Метод работает в цикле с каждым пикселем изображения. В окрестности каждого пикселя находится восемь соседних, каждый обладает собственными свойствами. На рисунке 1.4 изображена сетка, с которой работает алгоритм:

Рисунок 1.4: Рассматриваемая сетка пикселей при работе алгоритма

Пусть $C_{i,j}$ — один из параметров рассматриваемого пикселя, а Ω — все пиксели сетки. Алгоритм подсчитывает медиану от такого же параметра соседних клеток и заменяет параметр пикселя на значение этой медианы. Итоговое значение можно посчитать по формуле 4:

$$C_{i,j} = median(\Omega_i) \tag{4}$$

Схема работы алгоритма изображена на рисунке 1.5:

Рисунок 1.5: Схема работы алгоритма медианного фильтра

К преимуществам данного метода можно отнести то, что он применяется к любым типам шумов, появившимся в изображении. Из недостатков – алгоритм может убрать значительные детали из изображения, посчитав их за шум.

Медианный фильтр используется в алгоритмах ПО компании Kodak.

1.3.3 Гауссовский фильтр

Работа алгоритма гауссовского фильтра также зависит от значений свойств пикселей в сетке, рассмотренной на рисунке 1.4.

В этом случае для каждого соседнего рассчитывается вес, с которым он влияет на новое значение рассматриваемого пикселя. Пусть d – расстояние до центрального пикселя сетки, σ – стандартное отклонение, подсчитанное для всех значений определённого параметра текущей сетки. Тогда вес w пикселя рассчитывается по формуле 5:

$$w_{ij} = \exp(\frac{-d^2}{2\sigma^2}) \tag{5}$$

Подсчитав вес для каждого пикселя в сетки, можно рассчитать новое значение свойства рассматриваемого пикселя по формуле 6:

$$p_i = \frac{1}{\sum_{j \in \Omega} w_{ij}} * \sum_{j \in \Omega} w_{ij} * p_j \tag{6}$$

Схема алгоритма гауссовского фильтра представлена на рисунке 1.6:

Рисунок 1.6: Схема работы алгоритма гауссовского фильтра

1.3.4 Двухсторонняя фильтрация

Алгоритм двухсторонней фильтрации является улучшением метода Гауссовского фильтра.

Для каждого пикселя сетки соседних пикселей используется сразу два веса: один аналогичный параметру из исходного алгоритма, а второй отвечает за анизотропную составляющую. В методе рассчитывается разница в определённой компоненте между соседними пикселями. Если она получилось большой, то это означает, что пиксель содержит какие-то важные детали по изображению, соответственно, фильтрация приведёт к минимальным изменениям фотографии. Чем меньше разница между соседними пикселями, тем большим будет эффект от фильтрации на рассматриваемой сетке.

Расчёт веса w_s , отвечающего за изотропную составляющую, происходит по формуле 5. Коэффициент, регулирующий анизотропные свойства фильтрации, рассчитывается по формуле 7:

$$w_r = \exp(\frac{-|p_i - p_j|}{2\sigma^2}) \tag{7}$$

В таком случае результат работы некоторого пикселя можно посчитать по формуле 8:

$$p_i = \frac{1}{\sum_{j \in \Omega} w_s w_r} * \sum_{j \in \Omega} w_s w_r p_j \tag{8}$$

Схема работы алгоритма двухсторонней фильтрации представлена на рисунке 1.7:

Рисунок 1.7: Схема работы алгоритма двухсторонней фильтрации

1.3.5 Алгоритм Цзяньвэй

Этот алгоритм был описан в 2014 году индонезийским учёным Ван Цзяньвэй [7] Алгоритм позволяет эффективно убирать шумы соли и перца даже в слу-

чае сильной загрязнённости изображения. Метод предполагает, что для каждого пикселя помехи будут удалены по всем цветовым составляющим.

Процедура заключается в обходе всех пикселей фотографии в заданном порядке и определении того, соответствуют ли значения пикселей функции плотности вероятности импульсного шума или нет. Если пиксель на первом классифицируется как шум, то подсчитывается количество импульсного шума в маске определенной формы. Если это число меньше чем заданный порог, то пиксель рассматривается как возможный шум. Результатом операции маски является замена значения пикселя. В противном случае это не рассматривается как шум, значение пикселя остается неизменным.

Схема алгоритма Цзяньвэй представлена на рисунке 1.8

Рисунок 1.8: Схема работы алгоритма Цзяньвэй

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Список литературы

- 1. Image Noise Removal Method Based on Thresholding and Regularization Techniques / Nguyen Hien, Dang Thanh, Uğur Erkan [и др.] // IEEE Access. 2022. 07. Т. 10. С. 71584–71597.
- 2. Вячеславович Зотов Павел. Цифровой шум изображения и его прикладное значение в криминалистике // Вестник СГЮА. 2015. 06. Т. 12.
- 3. Голдобин И.А. Климова Е.И. Влияние шумов на алгоритмы цифровой обработки изображений // АКТУАЛЬНЫЕ ВОПРОСЫ РАЗВИТИЯ СОВРЕМЕННОЙ ЦИФРОВОЙ СРЕДЫ. 2021. 04. Т. 11. С. 396–402.
- 4. Abdalla Mohamed Hambal Dr. Zhijun Pei Faustini Libent Ishabailu. Image Noise Reduction and Filtering Techniques // International Journal of Science and Research (IJSR). 2017. 03. C. 2033–2037.
- 5. Ćeranić Škorić Tamara, Bajic Dragana. Noise reduction quality test for two-photon laser scanning microscopic images. 2022. 03.
- Ganesan G.Maragatham, Roomi Mansoor, Perumal Vasuki. Noise Detection in Images using Moments // Research Journal of Applied Sciences, Engineering and Technology. 2015. 05. T. 10. C. 307–314.
- 7. Jianwei Wang. A Noise Removal Algorithm of Color Image // TELKOMNIKA Indonesian Journal of Electrical Engineering. 2014. 07. T. 12.