

고정식 압축도시가스 이동식충전차량 충전의 시설·기술·검사 기준

Facility/Technical/Inspection Code for Stationary Compressed
Urban Gas Transportation Vehicle Refueling

가스기술기준위원회 심의·의결: 2021년 9월 10일

산업통상자원부 슝인 : 2021년 10월 8일

가 스 기 술 기 준 위 원 회

위 원 장 최 병 학 : 강릉원주대학교 교수

부위원장 장 기 현 : 귀뚜라미 전무

당 연 직 홍 순 파 : 산업통상자워부 에너지안전과장

곽 채 식 : 한국가스안전공사 안전관리이사

고압가스분야 최 병 학 : 강릉워주대학교 교수

송 성 진 : 성균관대학교 부총장 이 범 석 : 경희대학교 교수

윤 춘 석 : (주)한울이앤알 대표이사

안 영 훈 : (주)한양 부사장

액화석유가스분야 안 형 환 : 한국교통대학교 교수

권 혁 면 : 연세대학교 연구교수 천 정 식 : (주)E1 대표이사

강 경 수 : 한국에너지기술연구원 책임

이 용 권: (주)대연 부사장

도시가스분야 신 동 일 : 명지대학교 교수

김 정 훈 : 한국기계전기전자시험연구원 수석

정 인 철 : (주)예스코 이사 장 기 현 : 귀뚜라미 전무

도시가스분야 이 광 원 : 호서대학교 교수

정 호 영 : 전남대학교 교수

강 인 용 : 에이치앤파워(주) 대표 백 운 봉 : 한국표준과학연구원 책임

이 기준은 「고압가스 안전관리법」 제22조의2, 「액화석유가스의 안전관리 및 사업법」 제27조의2 및 「도시가스사업법」 제17조의5에 따라 가스기술기준 위원회에서 정한 상세기준으로, 이 기준에 적합하면 동 법령의 해당 기준에 적합한 것으로 보도록 하고 있으므로 이 기준은 반드시 지켜야 합니다.

	Korea Gas Safety Code

KGS Code 제·개정 이력		
종목코드번호	KGS FP653 ²⁰²¹	
코 드 명	고정식 압축도시가스 이동식충전차량 충전의 시설· 기술·검사 기준	

제 · 개 정 일 자	내 8
2010. 9.24	제 정 (지식경제부 공고 제2010-374호)
2010. 9.24	개 정 (지식경제부 공고 제2010-374호)
2012. 1. 5	개 정 (지식경제부 공고 제2011-635호)
2014.11.17	개 정 (산업통상자원부 공고 제2014-589호)
2015. 7. 3	개 정 (산업통상자원부 공고 제2015-372호)
2015. 8. 7	개 정 (산업통상자원부 공고 제2015-436호)
2016. 1. 8	개 정 (산업통상자원부 공고 제2016-006호)
2017. 9.29	개 정 (산업통상자원부 공고 제2017-475호)
2018. 8.10	개 정 (산업통상자원부 공고 제2018-419호)
2018.10.16	개 정 (산업통상자원부 공고 제2018-512호)
2019. 4. 5	개 정 (산업통상자원부 공고 제2019-218호)
2019. 5.21	개 정 (산업통상자원부 공고 제2019-317호)
2019. 6.14	개 정 (산업통상자원부 공고 제2019-375호)
2019. 7.16	개 정 (산업통상자원부 공고 제2019-434호)

제 · 개 정 일 자	내 용
2020. 3.18	개 정 (산업통상자원부 공고 제2020-169호)
2020. 9. 4	개 정 (산업통상자원부 공고 제2020-523호)
2021. 1.12	개 정 (산업통상자원부 공고 제2021-012호)
2021. 6. 8	개 정 (산업통상자원부 공고 제2021-448호)
2021.10. 8	개 정 (산업통상자원부 공고 제2021-699호)
	— 이 하 여 백 —

<u>목 차</u>

1. 일반사항	1
1.1 적용범위	1
1.2 기준의 효력	
1.3 용어정의	
1.4 기준의 준용(내용 없음)	
1.5 경과조치	
1.5.1 필터 설치에 관한 경과조치	
1.5.2 보호대 설치에 관한 경과조치 <신설 19.4.5>	
1.6 용품 사용제한	·····4
2. 시설기준	
2.1 배치기준	
2.1.1 보호시설과의 거리	
2.1.2 화기와의 거리	
2.1.3 다른 설비와의 거리	
2.1.4 사업소경계와의 거리	
2.1.5 도로경계와의 거리	
2.1.6 철도와의 거리	
2.1.7 공지의 확보	
2.2 기초기준	
2.2.1 지반조사	
2.2.2 기초공사	
2.2.3 저장탱크 고정	10
2.3 저장설비기준	
2.3.1 저장설비 재료	
2.3.2 저장설비 구조	
2.3.3 저장설비 설치	
2.4 가스설비기준	
2.4.1 가스설비 재료	
2.4.2 가스설비 구조(내용 없음)	
2.4.3 가스설비 두께 및 강도(내용 없음)	17
2.4.4 가스설비 설치	17

2.4.5 가스설비 성능	19
2.5 배관설비기준	19
2.5.1 배관설비 재료	19
2.5.2 배관설비 구조(내용 없음)	20
2.5.3 배관설비 두께	20
2.5.4 배관설비 접합	
2.5.5 배관설비 신축흡수조치	20
2.5.6 배관설비 절연조치(내용 없음)	
2.5.7 배관 설치	20
2.5.8 배관부대설비 설치	22
2.5.9 배관설비 성능	
2.5.10 배관설비 표시	22
2.6 사고예방설비기준	
2.6.1 과압안전장치 설치	
2.6.2 가스누출 경보 및 자동차단장치 설치	33
2.6.3 긴급차단장치 설치	
2.6.4 역류방지장치 설치	36
2.6.5 역화방지장치 설치(내용 없음)	
2.6.6 위험감시 및 제어장치 설치(내용 없음)	
2.6.7 오발진 방지장치 설치	
2.6.8 전기방폭설비 설치	
2.6.9 환기설비 설치(해당 없음)	
2.6.10 부식방지설비 설치	
2.6.11 정전기제거설비 설치	
2.6.12 전도방지설비 설치(해당 없음)	
2.6.13 절연설비 설치(내용 없음)	
2.6.14 긴급분리장치 설치	
2.6.15 충전기 보호설비 설치	39
2.7 피해저감설비기준	
2.7.1 방류둑 설치(해당 없음)	
2.7.2 방호벽 설치	
2.7.3 살수장치 설치(해당 없음)	
2.7.4 제독설비 설치(해당 없음)	
975 주하 · 이숙석비 석치(해단 없은)	

Korea Gas Safety Code

	2.7.6 풍향계 설치(해당 없음)	44
	2.7.7 소화설비 설치	
	2.7.8 통행시설 설치(해당 없음)	44
	2.7.9 온도상승방지설비 설치	44
	2.8 부대설비 기준	
	2.8.1 계측설비 설치	
	2.8.2 비상전력설비 설치	
	2.8.3 통신설비 설치	…47
	2.8.4 운영시설물 설치	…47
	2.9 표시기준	
	2.9.1 경계표시	…47
	2.9.2 식별표지 및 위험표지(해당 없음)	
	2.9.3 경계책	49
3.	. 기술기준	50
	3.1 안전유지기준	50
	3.1.1 기초 유지관리(내용 없음)	
	3.1.2 저장설비 유지관리	50
	3.1.3 가스설비 유지관리	52
	3.1.4 배관 유지관리(내용 없음)	53
	3.1.5 사고예방설비 유지관리	53
	3.1.6 피해저감설비 유지관리(내용 없음)	
	3.1.7 부대설비 유지관리	53
	3.2 제조 및 충전기준	53
	3.2.1 제조 및 충전 준비(내용 없음)	53
	3.2.2 제조 및 충전 작업	53
	3.2.3 제조 및 충전 사후조치	
	3.3 점검기준	54
	3.3.1 전체시설 점검(내용 없음)	54
	3.3.2 기초 점검(내용 없음)	54
	3.3.3 저장설비 점검(내용 없음)	54
	3.3.4 가스설비 점검	
	3.4 수리·청소 및 철거기준	56
	3.4.1 수리·청소 및 철거 준비 ······	56

	3.4.2 수리 · 청소 및 철거 작업	·57
	3.4.3 수리 및 청소 시후조치	.58
4.	검사기준	.58
4	.1 검사항목	.58
	4.1.1 중간검사	•59
	4.1.2 완성검사	•59
	4.1.3 정기검사	.59
	4.1.4 수시검사	•59
4	.2 검사방법 <개정 20.3.18>	•59
	4.2.1 중간검사	-60
	4.2.2 완성검사 및 정기검사	·62

고정식 압축도시가스 이동식충전차량 충전의 시설·기술·검사 기준

(Facility/Technical/Inspection Code for Stationary Compressed Urban Gas Transportation Vehicle Refueling)

1. 일반사항

1.1 적용범위

이 기준은 「도시가스시업법 시행규칙」(이하 "규칙"이라 한다) 제2조제4항제3호에 따른 가스충전시설 중 고정식 압축도시가스 이동충전치량 충전시설(배관 또는 저장탱크를 통하여 공급받은 도시가스를 압축하여 이동충전치량에 충전하는 시설, 이하 "충전시설"이라 한다)의 시설·기술·검사에 대하여 적용한다. <개정 12.1.5>

1.2 기준의 효력

1.2.1 이 기준은 「도시가스시업법」(이하 "법" 이라 한다) 제17조의5제2항에 따라 「고압가스 안전관리법」 제33조의2에 따른 가스기술기준위원회의 심의 · 의결(안전번호 제2021-7호, 2021년 9월 10일)을 거쳐 산업통상자원부장관의 승인(산업통상자원부 공고 제2021-699호, 2021년 10월 8일)을 받은 것으로 법 제17조의5제1항에 따른 상세기준으로서의 효력을 가진다.

1.2.2 이 기준을 지키고 있는 경우에는 법 제17조의5제4항에 따라 규칙 별표 6의2 제3호에 적합한 것으로 본다. <개정 15.8.7 18.8.10>

1.3 용어정의

- 이 기준에서 사용하는 용어의 뜻은 다음과 같다.
- 1.3.1 "기연성가스" 란 이크릴로니트릴 · 이크릴알데히드 · 아세트알데히드 · 아세틸렌 · 암모니아 · 수소 · 황화수소 · 시안화수소 · 일산화탄소 · 이황화탄소 · 메탄 · 염화메탄 · 브롬화메탄 · 에탄 · 염화에탄 · 염화메탄 · 에탈 · 연화비닐 · 에틸렌 · 산화에틸렌 · 프로판 · 싸이크로프로판 · 프로필렌 · 산화프로필렌 · 부탄 · 부타디엔 · 부틸렌 · 메틸에테르 · 모노메틸아민 · 디메틸아민 · 트리메틸아민 · 에틸아민 · 베젠 · 에틸 벤젠 그 밖에 공기 중에서 연소하는 가스로서 폭발한계(공기와 혼합된 경우 연소를 일으킬 수 있는 공기 중의 가스의 농도의 한계를 말한다. 이하 같다)의 하한이 10퍼센트 이하인 것과 폭발한계의 상한과 하한의 차가 20퍼센트 이상인 것을 말한다.
- 1.3.2 "압축가스" 란 일정한 압력으로 압축되어 있는 도시가스를 말한다.

- 1.3.3 "저장설비" 란 도시가스를 저장하기 위한 설비로서 저장탱크 및 충전용기 보관실을 말한다.
- 1.3.4 "가스설비" 란 충전시설 중 도시가스가 통하는 부분을 말한다.
- 1.3.5 "고압설비" 란 고압의 도시가스가 통하는 부분을 말한다.
- 1.3.6 "처리설비"란 압축·액화 그 밖의 방법으로 도시가스를 처리할 수 있는 설비로서 도시가스의 충전에 필요한 압축기, 기화기 및 펌프를 말한다.
- 1.3.7 "감압설비" 란 도시가스의 압력을 낮추는 설비를 말한다.
- 1.3.8 "처리능력" 이란 처리설비 또는 감압설비에 따라 압축·액화나 그 밖의 방법으로 1일에 처리할 수 있는 도시가스의 양(온도 섭씨 0도, 게이지압력 0파스칼의 상태를 기준으로 한다.이하 같다)을 말한다.
- 1.3.9 "불연재료" 란 「건축법시행령」 제2조제1항제10호에 따른 불연재료를 말한다.
- 1.3.10 "방호벽" 이란 높이 2미터 이상, 두께 12센티미터 이상의 철근콘크리트 또는 이와 동등 이상의 강도를 가지는 것으로서 2.7.2에서 정하는 벽을 말한다.
- 1.3.11 "보호시설" 이란 다음의 제1종보호시설 및 제2종보호시설을 말한다.

1.3.11.1 제1종보호시설

- (1) 다음 중 어느 하나에 해당하는 건축물((1-4)의 경우에는 건축물 또는 공작물) <개정 20.9.4>
- (1-1) 「초·중등교육법」제2조에 따른 학교 및 「고등교육법」제2조에 따른 학교 <신설 20.9.4>
- (1-2) 「유이교육법」제2조제2호에 따른 유치원 <신설 20.9.4>
- (1-3) 「영유아보육법」제2조제3호에 따른 어린이집 <신설 20.9.4>
- (1-4) 「어린이놀이시설 안전관리법」제2조제2호에 따른 어린이놀이시설 <신설 20.9.4>
- (1-5) 「노인복지법」제36조제1항제2호에 따른 경로당 <신설 20.9.4>
- (1-6) 「청소년활동진흥법」제10조제1호에 따른 청소년수련시설 <신설 20.9.4>
- (1-7) 「학원의 설립·운영 및 과외교습에 관한 법률」제2조제1호에 따른 학원 <신설 20.9.4>
- (1-8) 「의료법」제3조제2항제1호 및 제3호에 따른 병원급 의료기관 및 의원급 의료기관 <신설 20.9.4>
- (1-9) 「도서관법」제2조제1호에 따른 도서관 <신설 20.9.4>
- (1-10) 「전통시장 및 상점가 육성을 위한 특별법」제2조제1호에 따른 전통시장 <신설 20.9.4>
- (1-11) 「공중위생관리법」 제2조제1항제2호 및 제3호에 따른 숙박업 및 목욕장업의 시설 <신설 20.9.4>
- (1-12) 「영화 및 비디오물의 진흥에 관한 법률」 제2조제10호에 따른 영화상영관 <신설 20.9.4>
- (1-13) 「건축법 시행령」 별표 1 제6호에 따른 종교시설 <신설 20.9.4>
- (1-14) 「장사 등에 관한 법률」 제29조제1항에 따른 장례식장 <신설 20.9.4>
- (2) 사람을 수용하는 건축물(「건축법」제2조제1항제2호에 따른 건축물을 말하며, 가설건축물과 「건축법 시행령」 별표 1 제18호가목에 따른 창고는 제외한다)로서 사실상 독립된 부분의 연면적이 1천 m²

- 이상인 것 <개정 20.9.4>
- (3) 「건축법 시행령」 별표 1 제5호가목・나목 및 라목에 따른 공연장・예식장・전시장에 해당하는 건축물, 그 밖에 이와 유사한 시설로서 「소방시설 설치유지 및 안전관리에 관한 법률 시행령」 별표 4에 따라 산정된 수용인원이 300명 이상인 건축물 <개정 20.9.4>
- (4) 「사회복지사업법」제2조제4호에 따른 사회복지시설로서 사회복지시설 신고증에 따른 수용 정원이 20명 이상인 건축물 <개정 20.9.4>
- (5) 「문화재보호법」제2조제2항에 따른 지정문화재로 지정된 건축물 <개정 20.9.4>

1.3.11.2 제2종보호시설

- (1) 「건축법 시행령」 별표 1제1호 및 제2호에 따른 단독주택 및 공동주택 <개정 20.9.4>
- (2) 사람을 수용하는 건축물(「건축법」제2조제1항제2호에 따른 건축물을 말하며, 가설건축물과 「건축법 시행령」 별표 1 제18호가목에 따른 창고는 제외한다)로서 사실상 독립된 부분의 연면적이 100 m² 이상 1000 m² 미만인 것 <개정 20.9.4>
- 1.3.12 "충전설비" 란 용기, 고압가스용기가 적재된 바퀴가 달린 자동차(이하 "이동충전차량" 이라 한다) 또는 차량에 고정된 탱크에 도시가스를 충전하기 위한 설비로서 충전기 및 부속설비를 말한다.
- 1.3.13 "압축가스설비" 라 압축기를 통해 압축된 가스를 저장하기 위한 설비로서 압력용기를 말하다.
- 1.3.14 "이동충전차량" 이란 압축도시가스를 운송하기 위하여 용기가 적재된 비퀴가 있는 트레일러를 말한다.
- 1.3.15 "설계압력" 이란 용기 등의 각부의 계산두께 또는 기계적 강도를 결정하기 위하여 설계된 압력을 말하다.
- 1.3.16 "상용압력" 이란 내압시험입력 및 기밀시험입력의 기준이 되는 압력으로서 사용상태에서 해당설비 등의 각부에 작용하는 최고사용압력을 말한다.
- 1.3.17 "설정압력(set pressure)" 이란 안전밸브의 설계상 정한 분출압력 또는 분출개시압력으로서 명판에 표시된 압력을 말한다.
- 1.3.18 "축적압력(accumulated pressure)" 이란 내부유체가 배출될 때 안전밸브에 의하여 축적되는 압력으로서 그 설비 안에서 허용될 수 있는 최대압력을 말한다.
- 1.3.19 "초과압력(over pressure)" 이란 안전밸브에서 내부유체가 배출될 때 설정압력 이상으로 올라가는 압력을 말한다.
- 1.3.20 "평형 벨로우즈형 안전밸브(balanced bellows safety valve)" 란 밸브의 토출측 배압의 변화에 따라 성능특성에 영향을 받지 아니하는 안전밸브를 말한다.
- 1.3.21 "일반형 안전밸브(conventional safety valve)" 라 밸브의 토출측 배압의 변화에 따라 직접적으

로 성능특성에 영향을 받는 안전밸브를 말한다.

1.3.22 "배압(back pressure)" 이란 배출물 처리설비 등으로부터 안전밸브의 토출측에 걸리는 압력을 말한다.

1.4 기준의 준용(내용 없음)

1.5 경과조치

1.5.1 필터 설치에 관한 경과조치

2.4.4.2.2(5)에 따른 필터는 이 기준 시행일 부터 6월 이내에 이 기준에 적합하게 설치한다.

1.5.2 보호대 설치에 관한 경과조치 <신설 19.4.5>

2019년 4월 5일(시행일) 이전에 검사 또는 기술검토를 받은 시설에 대해서는 2.6.15의 개정 기준에 도 불구하고 종전의 기준에 따를 수 있다.

1.5.3 강판제 방호벽 설치에 대한 경과조치 <신설 21.1.12>

2021년 1월 12일 이전에 허가 · 검사 또는 기술검토를 받은 시설은 2.7.2.3.1의 개정 기준에도 불구하고 종전 기준을 따를 수 있다.

1.5.4 제조소의 저장탱크실 방수조치에 관한 경과조치 <신설 21. 6. 8>

2021년 6월 8일 이전에 설치된 저장탱크실은 2.3.3.1의 개정기준에 적합한 것으로 본다.

1.6 용품 시용제한

충전시설에 설치·사용하는 제품이 「고압가스 안전관리법」제17조 또는 「액화석유가스의 안전관리 및 사업법」 제20조에 따라 검사를 받아야 하는 것인 경우에는 그 검사에 합격한 것으로 한다. <개정 12.1.5>

2. 시설기준

2.1 배치기준

2.1.1 보호시설과의 거리

처리설비 · 압축가스설비로부터 30 m 이내에 보호시설(사업소 안에 있는 보호시설 및 전용공업지역 안에 있는 보호시설을 제외한다)이 있는 경우에는 처리설비 및 압축가스설비의 주위에 2.7.2.1에 따른 방호벽을 설치한다. 다만, 처리설비 주위에 방류둑을 설치한 경우에는 방호벽을 설치하지 아니할 수

있다.

2.1.2 화기외의 거리

처리설비 · 압축가스설비 및 충전설비의 외면과 전선, 화기(그 설비안의 것을 제외한다)를 취급하는 장소 및 인화성물질 또는 가연성물질 저장소와의 사이에는 그 화기가 저장설비 · 처리설비 · 압축가스설비 및 충전설비에 악영향을 미치지 아니하도록 다음 기준에 따른 거리를 유지한다.

- 2.1.2.1 처리설비 · 압축가스설비 및 충전설비는 고압전선(직류의 경우에는 750 V를 초과하는 전선을, 교류의 경우에는 600 V를 초과하는 전선을 말한다)까지 수평거리 5 m, 저압전선(직류의 경우에는 750 V 이하의 전선을, 교류의 경우에는 600 V 이하의 전선을 말한다)까지 1 m 이상의 거리를 유지한다.
- 2.1.2.2 처리설비 · 입축가스설비 및 충전설비의 외면으로부터 화기(그 설비 안의 것을 제외한다)를 취급하는 장소까지는 8 m 이상의 우회거리를 유지한다.
- 21.23 처리설비 · 압축가스설비 및 충전설비는 인화성물질 또는 가연성물질의 저장소로부터 8 m 이상의 거리를 유지한다.

2.1.3 다른 설비와의 거리

이동충전차량 충전설비 사이에는 8 m 이상의 거리를 유지한다. 다만, 이동충전차량 충전설비 사이에 방호벽을 설치한 경우에는 그러하지 아니하다.

2.1.4 시업소경계외의 거리

처리설비(충전설비를 제외한다. 이하 같다), 입축가스설비 및 충전설비는 그 외면으로부터 시업소경계(버스차고지 안에 설치한 경우 차고지경계를 사업소경계로 보며, 사업소경계가 바다 · 호수 · 하천 · 도로 등의 경우에는 그 반대편 끝을 경계로 본다)까지 $10 \, \mathrm{m}$ 이상의 안전거리를 유지한다. 다만, 처리설비(액확산 방지시설 안에 설치된 처리설비를 제외한다) 및 입축가스설비의 주위에 $2.7.2.1 \, \mathrm{d}$ 때른 방호벽을 설치하는 경우에는 $5 \, \mathrm{m}$ 이상의 안전거리를 유지할 수 있다.

2.1.5 도로경계와의 거리

충전설비는 2.1.4에 불구하고 「도로법」에 따른 도로경계까지 5m 이상의 거리를 유지한다.

2.1.6 철도외의 거리

저장설비·처리설비·압축가스설비 및 충전설비는 철도까지 30m 이상의 거리를 유지한다.

2.1.7 공지의 확보

- 21.7.1 이동충전치량 충전기 수량에 1을 더한 수량의 이동충전치량을 주·정치할 수 있는 충분한 부지공간을 확보하다.
- 2.1.7.2 이동충전차량의 원활한 충전 및 운행을 위하여 이동충전차량 충전설비는 그 외면으로부터 이동충전차량의 진입구 및 진출구까지 12m 이상의 거리를 유지한다.

2.2 기초기준

압축가스설비 및 그 부속품의 기초는 지반침하로 인하여 그 설비에 유해한 영향을 끼치지 아니하도록 하기 위하여 견고한 철근콘크리트로 하고 다음 기준에 따라 설치한다.

2.2.1 지반조사

- 221.1 고압설비(저장능력이 압축가스는 100㎡, 액화가스는 1톤 미만인 저장탱크, 배관, 펌프 및 압축가는 제외한다. 이하 같다)를 설치하려는 경우에는 그 설치장소에 대하여 고압설비에 유해한 영향을 미치는 부등침하 등의 원인 유무에 대하여 제1차 지반조사를 한다.
- 2.21.2 제1차 지반조시는 해당 장소에서 과거의 부등침하 등의 실적조사, 보링 등의 방법으로 실시한다.
- 2.2.1.3 제1차 지반조사 결과 그 장소가 습윤한 토지, 매립지로서 지반이 연약한 토지, 급경사지로서 붕괴의 우려가 있는 토지, 그 밖에 사태(沙汰), 부등침하 등이 일어나기 쉬운 토지인 경우에는 그 정도에 따라 성토, 지반개량, 옹벽설치 등의 조치를 강구한다.
- 221.4 2.2.1.3의 조치를 강구한 후 그 지반의 허용지지력도 또는 기초파일첨단(尖端)의 지반허용지지력을 구하기 위하여 필요에 따라 다음 방법에 따라 제2차 지반조사를 한다.
- 2.2.1.4.1 보링(boring)조사에 의하여 지반의 종류에 따라 필요한 깊이까지 굴착한다.
- **2.2.1.4.2** 표준관입시험(標準貫入試驗)은 KS F 2307 흙의 표준 관입 시험 방법(2007.9.10)에 따라 N값을 구한다.
- 2.2.1.4.3 배인(vane)시험은 배인시험용 배인을 흙속으로 밀어 넣고 이를 회전시켜 최대 토오크(torque) 또는 모멘트를 구한다.
- 2.2.1.4.4 토질시험은 KS F 2314(흙의 일축 압축시험)에 따라지반의 점착력, 지반의 단위 체적중량 및 1축 압축강도를 구하거나 3축 압축시험(원통형 시료에 고무 막을 씌운 것을 액체 속으로 넣어 측압 및 수직압을 가한 상태에서 시료의 용적변화를 측정하는 방법으로 한다) 또는 직접전단(剪點)시험(시료를 상하로 분리된 전단상자에 넣어 전단시험기로 전단력을 가하려는 방향과 직각의 방향으로 압축력을 가한 후 전단력을 가하여 전단하는 것으로 한다)에 따라 지반의 점착력 또는 내부 마찰력을 구한다.
- 2.2.1.4.5 평판 재하시험(評判載荷試驗)은 KS F 2310(도로의 평판재하시험방법)에서 정하는 방법에 준해서 시험하여 항복하중(降伏荷重) 및 극한하중(極限荷重)을 구한다.
- 221.46 파일재하시험은 수직으로 박은 파일에 수직정하중(垂直新時重)을 걸어 그 때의 하중과 침하량을 측정하는 방법으로 항복하중 및 극한하중을 구한다.

2.21.5 2.2.1.4의 제2차 지반조사결과를 기초로 식(2.1)이나 식(2.2)에 따라 그 지반의 허용지지력도를 구한다. 다만, 지반의 종류가 확인된 경우의 지반 허용지지력도는 그 지반의 종류에 따라 각각 표 2.21.5①의 값(2가지 이상의 종류로 된 지반은 가장 작은 값)으로 한다.

표 2.2.1.5① 지반의 종류에 따른 허용지지력도

지반의 종류	허용지지력도(MPa)	지반의 종류	허용지지력도(MPa)
암반	1	조밀한 모래질 지반	0.2
단단히응결된모래층	0.5	단단한 점토질 지반	0.1
황토흙	0.3	점토질 지반	0.02
조밀한 자갈층	0.3	단단한 롬(loam)층	0.1
모래질 지반	0.05	롬(loam)층	0.05

$$q_{a} = \frac{1}{3} \left(\alpha C N_{c} + \frac{1}{10^{6}} \beta \gamma_{1} B N_{r} + \frac{1}{10^{6}} \gamma_{2} D_{f} N_{q} \right) \cdots (2.1)$$

$$q_{a} = \frac{1}{3} N' \gamma_{2} D_{f} + q_{t} \cdots (2.2)$$

여기에서

qa: 지반의 허용지지력도(MPa)

 α 및 β : 기초하중면의 형상에 따른 표 2.2.1.52에 기재하는 형상계수

표 2.2.1.5② 기초하중면의 형상계수

계수	フ]さ	초하중면의 형상
	원형	원형이외의 형상
α	1.3	1.0+0.3 B/L
β	0.3	0.5-0.1 B/L

[비고] 위 표에서 B 및 L은 각각 기초하중면의 짧은 변 또는 지름 및 긴 변 또는 긴 지름의 길이(m)를 표시한다.

C: 기초하중면 아래에 있는 지반의 점착력(MPa)으로서 3축 압축시험 결과[모오어의 응력원(mohr's circle)을 그려서 구한 값, 1축 압축시험의 결과(흐트러지지 아니하는 시료의 1축 압축시험 강도의 1/2) 또는 식(2.3)에 따라 얻는 값

$$\frac{0.06M}{\pi D^2(3H+D)}$$
··· (2.3)

여기에서

M: 배인시험에서 최대 토오크 또는 모멘트 $(N \cdot cm)$

D: 배인의 직경(cm)

H: 배인의 축방향의 길이(cm)

B: 기초하중면의 짧은 변 또는 지름(m)

 N_c , N_r 및 N_q : 지반의 내부 마찰력에 따른 표 2.2.1.53에 기재하는 지지력 계수

내 부 마 각 도 지지력 계수 40 이상 0 5 10 15 20 25 28 32 36 5.3 5.3 5.3 6.5 7.9 9.9 20.9 42.2 95.7 Nc 11.4 Nr 0 0 0 1.2 2.0 3.3 4.4 10.6 30.5 114.0 3.0 3.4 3.9 4.7 5.9 7.6 9.1 16.1 33.6 83.2 Nq

표 2.2.1.5③ 지지력계수

[비고]

- 1. 내부마찰각은 직접전단시험의 결과(수직응력 : 전단응력선도의 경사각으로부터 구한 값) 또는 3축 압축시험의 결과(모오어의 응력원을 그려서 구한 값)로 구한 값 또는 $\sqrt{15\mathrm{N}}+15$ (N은 표준관입시험에 의한 30 cm 당 타격화수)로 한다.
- 2. 표 2.21.53에 기재한 내부마찰각 이외의 내부 마찰각에 따른 N_c , N_c 는 동표에 기재한 수치를 각각 직선적으로 보간(補間) 한 수치로 한다.
 - γ_1 : 기초하중면 이래에 있는 지반의 단위체적중량 또는 지하수면 이래에 있는 경우에는 수중단위체적중 량 (N/m^3)
 - γ_2 : 기초하중면보다 윗 쪽에 있는 지반의 평균 단위체적중량 또는 지하수면 아래에 있는 경우에는 수중 단위체적중량(\mathbb{N}' m')
 - D; : 기초에 근접한 최저 지반면으로부터 기초하중면까지의 깊이(m)
 - qt: 평판재하시험에 의한 항복하중도의 1/2의 수치 또는 극한응력도의 1/3의 수치 중 작은 것(N/IPa)
 - N': 기초하중면 이래의 지반의 종류에 따른 표 2.2.1.54에 기재한 계수

계수N	지 반 의 종 류
12	단단히 응결된 모래 또는 이와 유사한 지반
9	조밀한 모래질 지반 또는 이와 유사한 지반
6	단단한 점토질 지반 또는 이와 유사한 지반
3	모래질 지반 또는 이와 유사한 지반
3	점토질 지반 또는 이와 유사한 지반

표 2.2.1.5④ 지반의 종류에 따른 계수

2.2.2 기초공사

2.2.2.1 기초는 2.2.1.5의 식(2.1) 또는 (2.2)에 따라 구한 지반의 허용지지력도의 값이 해당 가스설비등, 그 내용물 및 그 기초에 의한 단위면적당 하중을 초과하도록 공사한다.

2.2.2.2 2.2.1.3의 방법을 따르는 것이 안전확보상 곤란한 지반에서는 기초파일로 보강한 후 기초공사를 한다. 이 경우 2.2.2.2.1이나 2.2.2.2.2에서 정하는 기초파일 첨단의 지반허용지지력, 기초파일과 그주위의 지반과의 마찰력 또는 기초파일의 허용지지력의 값이 해당 가스설비등 그 내용물 및 기초의 하중을 초과하도록 공사한다. 다만, 저장능력이 압축가스는 100 ㎡, 액화가스는 1톤 미만인 저장탱크의 경우에는 콘크리트 기초로 공사할 수 있다.

2.2.2.1 지지파일은 다음 식에 따라 계산한 기초파일 첨단의 지반허용지지력 또는 기초파일의 허용응력 (주로 압축응력으로 하고, 필요에 따라 굽힘응력 또는 전단응력을 고려한 것으로 한다) 중에서 작은 값으로 한다.

$$R_a = q_a A_P$$

$$R_a = Q_t$$

$$R_a = \frac{F}{5S + 0.1}$$

$$R_a = \frac{30}{3} NA_p$$

여기에서

Ra: 기초파일첨단의 지반허용지지력(N)

qa: 식(2.1)이나 식(2.2)에 따라 계산한 지반의 허용지지력도(N/m²)

A。: 기초파일첨단의 유효 단면적(m²)

Q : 파일재하시험에 의한 항복하중의 1/2의 수치 또는 극한응력의 1/3의 수치 중 작은 값(N)

F: 해머 타격에너지(J)

S: 기초파일의 최종 관입량(m)

N: 기초파일첨단 지반의 표준관입시험에 의한 타격회수(15를 초과할 때는 식(2.4)의 N값으로 한다)

$$N' = 15 + \frac{1}{2}(N - 15) \cdots (2.4)$$

여기에서

N : 실 타격회수

N': 수정 N값

2.2.2.2 마찰파일은 다음 식에 따라 계산한 기초파일과 주위의 지반과의 마찰력 또는 기초파일의 허용지지력 중 작은 값으로 한다.

$$R_a = Qt$$

$$R_a = \frac{1}{3}\psi LC_a$$

여기에서

Ra: 기초파일과 그 주위의 지반과의 마찰력(N)

Q: 가목의 Q와 같음

 ϕ : 기초파일의 둘레길이(m)

L : 기초파일의 매립깊이(m)

Ca : 지반의 1축 압축강도의 1/2(3을 초과할 때는 3으로 한다) (N/m²)

2.2.2.3 저장탱크(저장능력이 압축가스는 100 ㎡, 액화가스는 1톤 이상의 것에만 적용한다)의 지주(지주가 없는 저장탱크는 이랫부분)는 부등침하로 그 설비에 유해한 영향을 끼치지 아니하도록 그림 2.2.2.3과 같이 동상(同上)의 수평기초면(2.2.1.4 및 2.2.1.5의 방법을 따르는 것이 안전확보상 지장이 있는 지반은

구형의 예 수평원통형의 예 명저원통형의 예 명저원통형의 예 대표 기계 기계 대표 기계

기초파일로 보강한 것)에 설치하고 지주 상호간은 단단히 연결한다.

그림 2.2.2.3 저장탱크의 수평기초면

2.2.3 저장탱크 고정

저장탱크(저장능력이 압축가스는 100 m², 액화가스는 1톤 미만인 저장탱크는 제외)를 기초에 고정하는 방법은 다음 기준에 따른다. <개정 21. 6. 8>

2.2.3.1 저장탱크를 기초에 고정할 때는 앵커볼트(기초 중의 철근에 용접하거나, 콘크리트로 기초에 고정한 것에만 적용한다) 또는 앵커스트랩(anchor strap)(기초 중의 철근에 용접하거나 콘크리트로 기초에 고정한 것 또는 기초를 관통시켜 기초의 비닥면에 고정한 것에만 적용한다)에 따라 고정시킨다.

2.2.3.2 앵커볼트 · 너트 · 평와셔 및 앵커스트랩의 재료는 그 사용온도에 따라 다음 규격에 적합한 것 또는 이들과 동등이상의 강도를 가진 것 중 적당한 것으로 한다.

- (1) KS B 1012(6각 너트)
- **(2)** KS B 1326(평와셔)
- (3) KS D 3503(일반구조용 압연강재)
- (4) KS D 3504(철근콘크리트 봉강)
- (5) KS D 3541(저온압력용기용 탄소강강판)
- (6) KS D 3586(저온압력용기용 니켈강판)
- (7) KS D 3705(열간압연 스테인레스강판 및 강대)

- (8) KS D 3706(스테인레스 강봉)
- (9) KS D 3867(기계구조용 합금강 강재) <개정 14.11.17>
- (10) SPS-KOSA0028-D3723-5093(특수 볼트용 합금봉강)¹⁾ <개정 16.1.8>

2.2.3.3 앵커볼트의 모양, 치수 및 소요수량의 예는 표 2.2.3.3 및 그림 2.2.3.3와 같다. 다만, 그 치수 및 소요수량은 앵커볼트의 지름 및 강도(인장강도 및 전단강도)와 이에 작용하는 하중과의 관계에 대하여 강도를 계신하여 구한 경우에는 그 구한 치수 및 수량으로 할 수 있다.

	저장능력(T)별 앵커볼트의 호칭지름별 소요수량												
중키키ㄹ	호칭지름 나사길이	전길이	1	6	10	15	20	30	40	50	60	70	80
오성시금			Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
20	50	250	4	8	_	-	-	_	_	_	_	_	_
24	63	315	_	8	8	_	_	_	_	_	_	_	_
30	80	400	_	_	_	8	8	8	8	_	_	_	_
36	90	500	_	_	_	_	_	_	_	8	8	8	8

표 2.2.3.3 앵커볼트의 치수 및 소요수량

그림 2.2.3.3 앵커볼트의 치수표시

2.2.3.4 수평원통형(水平圓筒形) 저장탱크의 안쪽 앵커볼트는 그림 2.2.3.4의 의 예와 같이 고정한다.

¹⁾ 국가기술표준원의 국가표준 민간 이양 정책 추진에 따라 한국철강협회의 단체표준으로 변경

그림 2.2.3.4 앵커볼트의 고정방법

2.23.5 수평원통형 저장탱크의 가대(架臺)의 지지간격(span)이 5 m 이상인 저장탱크의 유동 측 가대에 대하는 기초설치면과 가대바닥면과의 사이에는 다음 기준에 따라 미끄럼판을 설치한다.(그림 2.2.3.5참조)

2.2.3.5.1 미끄럼판은 기초에 튼튼하게 고정시키고 가대가 저장탱크의 전후 방향으로 용이하게 미끄러질 수 있는 구조로 한다. 다만, 이 경우 미끄럼판은 가대의 바닥면보다 작지 아니한 것으로 한다.

2.2.3.5.2 미끄럼판(저온저장탱크의 것은 제외한다)의 재료는 KS D 3503(일반 구조용 압연강재)으로 하고, 두께 12 mm 또는 16 mm를 표준으로 한다.

2.2.3.5.3 미끄럼 판의 미끄럼 면은 휨 또는 끝 굽힘이 없는 것으로 한다.

그림 2.2.3.5 미끄럼판의 설치방법

22.3.6 구형저장탱크의 앵커볼트는 그림 2.2.3.6 또는 이와 동등 이상의 효과를 갖는 방법으로 설치한다.

그림 2.2.3.6 구형저장탱크 지주와 기초에 앵커볼트 체결방법

22.3.7 평저원통형(平成圓筒型) 저장탱크의 앵커스트랩은 그림 2.2.3.7 또는 이들과 동등 이상의 효과를 갖는 방법으로 설치한다.

그림 2.2.3.7 평저형 저장탱크의 앵커스트립 설치방법

2.3 저장설비기준

2.3.1 저장설비 재료

저장탱크(가스홀더를 포함한다)의 재료는 그 저장탱크를 보호하고 그 저장탱크로부터의 가스누출을 방지하기 위하여 사용조건에 적합한 것을 사용한다.

2.3.2 저장설비 구조

저장탱크(가스홀더를 포함한다)는 그 저장탱크를 보호하고 그 저장탱크로부터의 가스누출을 방지하며, 지진발생 시 저장탱크를 보호하기 위하여 다음 기준에 적합한 구조로 설치한다. 2.3.2.1 저장탱크 및 가스홀더는 가스가 누출하지 아니하는 구조로 하고, 5 m² 이상의 가스를 저장하는 것에는 가스방출장치를 설치한다.

23.2.2 저장능력이 5톤 또는 500 ㎡ 이상인 저장탱크 및 입력용기(반응 · 분리 · 정제 · 증류 등을 행하는 탑류로서 높이 5 m 이상인 것에만 적용함)와 저장탱크 및 압력용기의 지지구조물 및 기초는 KGS GC203(가스시설 및 지상 가스배관 내진설계 기준)에 따라 지진의 영향에 대하여 안전한 구조로 설계 · 제작 및 설치하고, 그 성능을 유지한다. <개정 18.10.16>

2.3.3 저장설비 설치

2.3.3.1 저장탱크 설치

2.3.3.1.1 설치위치

저장설비는 지상에 설치하는 것을 원칙으로 한다.

2.3.3.1.2 저장탱크간 거리

- (1) 기연성가스의 저장탱크(저장능력이 $300 \, \mathrm{m}^4$ 또는 3톤 이상의 것에만 적용한다)와 다른 기연성가스 또는 산소의 저장탱크와의 사이에는 두 저장탱크의 최대지름을 합산한 길이의 4분의 1 이상에 해당하는 거리(두 저장탱크의 최대지름을 합산한 길이의 4분의 1이 $1 \, \mathrm{m}$ 미만인 경우에는 $1 \, \mathrm{m}$ 이상의 거리)를 유지한다.
- (2) (1)에 따른 거리를 유지하지 못하는 경우에는 다음 기준에 따라 물분무장치를 설치한다.
- (2-1) 가연성가스 저장탱크가 상호 인접한 경우 또는 산소저장탱크와 인접된 경우로서 인접한 저장탱크간의 거리가 1 m 또는 인접한 저장탱크의 최대 지름의 $4분의 1을 \text{ m단위로 표시한 거리 중 큰 쪽 거리를 유지하지 못한 경우에는 <math>(2-1-1)$ 이나 (2-1-2)에 따른 물분무장치 또는 (2-1-1)와 (2-1-2)를 혼합한 물분무장치를 설치한다.
- (2-1-1) 물분무장치는 저장탱크의 표면적 1 m^2 당 8 L/min을 표준으로 하여 계산된 수량을 저장탱크 전 표면에 균일하게 방사할 수 있는 것으로 한다. 이 경우 보냉을 위한 단열재가 사용된 저장탱크는 다음과 같이 한다.
- (2-1-1-1) 그 단열재의 두께가 해당 저장탱크의 주변 화재를 고려하여 충분한 내화성능을 가진 것[이하 (2)에서 "내화구조 저장탱크"라 한대은 그 수량을 4 L/min을 표준으로 하여 계산한 수량으로 한다.
- (2-1-1-2) 저장탱크가 두께 25 ㎜ 이상의 암면 또는 이와 동등 이상의 내화성능을 가진 단열재로 피복되고, 그 외측을 두께 0.35 ㎜ 이상의 KS D 3506(용융 이연도금 강판 및 강대)에서 정한 SBHG2 또는 이와 동등 이상의 강도 및 내화성능을 가진 재료로 피복한 것[이하 (2)에서 "준내화구조 저장탱크"라한대은 그 수량을 6.5 L/min을 표준으로 하여 계산한 수량으로 한다.
- (2-1-2) 소화전[호스 끝 압력이 0.3 ㎞ 이상으로서 방수능력 400 L/min 이상의 물을 방수할 수 있는 것을 말한다. 이하 (2)에서 같대을 설치하는 경우에는 저장탱크 외면으로부터 40 m이나에서 저장탱크에 대하여 어느 방향에서도 방사할 수 있는 것으로 하고, 해당 저장탱크의 표면적 30 m²당 1개의 비율로 계산된 수 이상으로 한다. 다만, 내화구조 저장탱크에 대하여는 해당 저장탱크의 표면적 60 m²당 준내화구조 저장탱크는 표면적 38 m² 당 1개의 비율로 계산된 수로 할 수 있다.

- (2-2) 기연성가스 저장탱크가 상호 인접된 경우 또는 산소 저장탱크와 인접한 경우로서 인접한 저장탱크간 의 거리가 두 저장탱크의 최대 직경을 합산한 길이의 4분의 1을 유지하지 못한 경우[(2-1)의 경우를 제외한다]에는 (2-2-1)이나 (2-2-2)에 따른 물분무장치 또는 (2-2-1)과 (2-2-2)의 기준을 혼합한 물분무장치를 설치한다.
- (2-2-1) 물분무장치는 저장탱크의 표면적 1 m'당 7 L/min을 표준으로 계산된 수량을 저장탱크의 전 표면에 균일하게 방사할 수 있도록 한다. 다만, 내화구조 저장탱크는 2 L/min을, 준내화구조 저장탱크는 4.5 L/min을 표준으로 계산된 수량으로 한다.
- (2-2-2) 소화전을 설치하는 경우에는 저장탱크 외면으로부터 $40 \,\mathrm{m}$ 이내에서 저장탱크에 대하여 어느 방향에서도 방사되는 것으로서 저장탱크의 표면적 $35 \,\mathrm{m}$ 당 1개의 비율로 계산된 수 이상으로 한다. 다만, 내화구조 저장탱크는 그 저장탱크 표면적 $125 \,\mathrm{m}$, 준내화구조 저장탱크는 그 저장탱크 표면적 $55 \,\mathrm{m}$ 당 1개의 비율로 계산된 수 이상으로 한다.
- (2-3) 물분무장치등은 해당 저장탱크의 외면에서 15 m 이상 떨어진 안전한 위치에서 조작할 수 있어야 하고, 방류둑을 설치한 저장탱크에는 그 방류둑 밖에서 조작할 수 있도록 한다. 다만, 저장탱크의 주위에 예상되는 화재에 대비하여 유효하고 안전한 차단장치를 설치한 경우에는 본문의 물분무장치 조작기준을 적용하지 아니할 수 있다.
- (2-4) 물분무장치등은 동시에 방사할 수 있는 최대수량을 30분 이상 연속하여 방사할 수 있는 수원에 접속된 것으로 한다.

2.3.3.1.3 저장탱크의 지하설치

지하에 설치하는 저장탱크는 다음 기준에 따라 설치한다.

- (1) 저장탱크의 외면에는 부식방지코팅과 전기적 부식방지를 위한 조치를 한다.
- (2) 저장탱크는 천정·벽 및 바닥의 두께가 각각 30 cm 이상인 방수조치를 한 철근콘크리트로 만든 곳(이하 "저장탱크실"이라 한다)에 설치한다.
- (3) 저장탱크실은 표 2.3.3.1.3의 레디믹스트 콘크리트(ready-mixed concreate)를 사용하여 수밀(水密) 콘크리트로 시공한다. <개정 21. 6. 8>

항 목	규 격
굵은 골재의 최대치수	25 mm
설계강도	(20.6—23.5) MPa
슬럼크(slump)	(120—150) mm
공기량	4 %
물—결합재비	50 % 이하
기타	KS F 4009(레디믹스트 콘크리트)에 따른 규정

표 2.3.3.1.3 레디믹스트 콘크리트 규격

[비고] 수밀콘크리트의 시공기준은 국토교통부가 제정한 "콘크리트표준 시방서"를 준용한다.

- (4) 지하수위가 높은 곳 또는 누수의 우려가 있는 경우에는 콘크리트를 친 후 저장탱크실의 내면에 무기질계 침투성 도포방수제로 방수하고, 먼저 타설된 콘크리트와 나중에 타설된 콘크리트 사이에는 지수판 등으로 물이 저장탱크실 안으로 흐르지 않도록 조치한다. <개정 21. 6. 8>
- (5) 저장탱크실의 콘크리트제 천정으로부터 맨홈 · 돔 · 노즐 등(이하 "돌기물" 이라 한다)을 돌출시키기

위한 구멍부분은 콘크리트제 천장과 돌기물이 접하므로 인하여 저장탱크본체와 부착 부에 응력집중이 발생하지 아니하도록 돌기물의 주위에 돌기물의 부식방지 조치를 한 외면(이하 "외면보호면"이라 한다)으로부터 10 mm 이상의 사이를 두고 강판 등으로 만든 프로텍터를 설치한다. 또한, 프로텍터와 돌기물의 외면 보호면 사이에는 빗물의 침입을 방지하기 위하여 피치, 아스팔트 등을 채운다.

- (6) 저장탱크실에 물이 침입한 경우 및 기온변화로 인하여 생성된 이슬방울의 굄 등에 대하여 저장탱크실의 바닥은 물이 빠지도록 구배를 갖도록 하고 집수구를 설치한다. 이 경우 집수구에 고인 물은 쉽게 배수할 수 있도록 한다.
- (7) 지면과 거의 같은 높이에 있는 가스검지관, 집수관 등의 입구에는 빗물 및 지면에 고인 물 등이 저장탱크실내로 침입하지 아니하도록 덮개를 설치한다.
- (8) 저장탱크의 주위에는 마른모래를 채운다.
- (9) 지면으로부터 저장탱크의 정상부까지의 깊이는 60 cm 이상으로 한다.
- (10) 저장탱크를 2개 이상 인접하여 설치하는 경우에는 상호간에 1m 이상의 거리를 유지한다.
- (11) 저장탱크를 매설한 곳의 주위에는 지상에 경계표지를 설치한다.
- (12) 저장탱크에 설치한 안전밸브에는 지면에서 5m 이상의 높이에 방출구가 있는 기스방출관을 설치한다.

2.3.3.1.4 저장탱크(처리설비)의 실내설치

저장탱크 및 처리설비를 실내에 설치하는 경우에는 다음 기준에 따른다.

- (1) 저장탱크실과 처리설비실은 각각 구분하여 설치하고 기계환기시설을 갖춘다.
- (2) 저장탱크실 및 처리설비실은 천정·벽 및 바닥의 두께가 30 cm 이상인 철근콘크리트로 만든 실로서 방수처리가 된 것으로 한다.
- (3) 가연성가스 또는 독성가스의 저장탱크실과 처리설비실에는 가스누출검지경보장치를 설치한다.
- (4) 저장탱크의 정상부와 저장탱크실 천정과의 거리는 60 cm 이상으로 한다.
- (5) 저장탱크를 2개 이상 설치하는 경우에는 저장탱크실을 각각 구분하여 설치한다.
- (6) 저장탱크 및 그 부속시설에는 부식방지도장을 한다.
- (7) 저장탱크실 및 처리설비실의 출입문은 각각 따로 설치하고, 외부인이 출입할 수 없도록 자물쇠 채움 등의 조치를 한다.
- (8) 저장탱크실 및 처리설비실을 설치한 주위에는 경계표지를 한다.
- (9) 저장탱크에 설치한 안전밸브는 지상 5 m 이상의 높이에 방출구가 있는 가스 방출관을 설치한다.

2.3.3.2 저장실 설치(해당 없음)

2.3.3.3 저장탱크 부압파괴방지 조치

가연성가스저온저장탱크에는 그 저장탱크의 내부압력이 외부압력 보다 낮아짐에 따라 그 저장탱크가 파괴되는 것을 방지하기 위하여 다음의 부압파괴방지 설비를 설치한다.

- **(1)** 압력계
- (2) 압력경보설비
- (3) 그 밖에 다음 중 어느 하나 이상의 설비
- (3-1) 진공안전밸브
- (3-2) 다른 저장탱크 또는 시설로부터의 가스도입배관(균압관)
- (3-3) 압력과 연동하는 긴급차단장치를 설치한 냉동제어설비
- (3-4) 압력과 연동하는 긴급차단장치를 설치한 송액설비

2.3.3.4 저장탱크 괴충전 방지 조치(해당 없음)

2.3.3.5 저장설비 보호조치

저장설비는 충전소에 출입하는 자동차의 진·출입로 이외의 장소에 설치하며, 자동차로 인한 충격 등으로부터 저장설비를 보호할 수 있는 조치를 한다. 다만, 2.7.2.1에 따른 방호벽 또는 방류둑을 설치한 경우에는 자동차로 인한 충격 등으로부터 저장설비를 보호할 수 있는 조치를 하지 아니할 수 있다.

2.4 기스설비기준

2.4.1 기스설비 재료

처리설비 · 압축가스설비 및 충전설비의 재료는 도시가스의 취급에 적합한 기계적 성질 및 화학적 성분을 가진 것을 사용한다.

2.4.2 기스설비 구조(내용 없음)

2.4.3 기스설비 두께 및 강도(내용 없음)

2.4.4 기스설비 설치

2.4.4.1 기스설비 설치위치

처리설비·압축가스설비 및 충전설비는 지상에 설치하는 것을 원칙으로 한다.

2.4.4.2 기스설비 설치방법

충전시설에 설치하는 처리설비 · 입축가스설비 · 충전설비 · 입축장치 · 기화장치 및 고정식펌프 등은 그 충전시설의 안전성 및 충전작업의 안정성을 확보할 수 있도록 다음 기준에 따라 설치한다.

2.4.4.2.1 처리설비 및 압축가스설비

- (1) 압축가스설비의 모든 밸브와 배관부속품의 주위에는 안전한 작업을 위하여 1 m 이상의 공간을 확보한다. 다만, 압축가스설비가 밀폐형 구조물 안에 설치된 경우로서 유지 · 보수를 위한 문 또는 창문이 설치된 경우에는 1 m 이상의 공간을 확보하지 아니할 수 있다.
- (2) 처리설비 및 압축가스설비는 불연재료로 격리된 구조물 안에 설치한다. 다만, 27.2.1에 따른 방호벽을 설치한 경우 또는 방류둑을 설치한 경우에는 불연재료로 격리된 구조물 안에 설치하지 아니할 수 있다.
- (3) 처리설비 및 압축가스설비는 충분한 환기(환기구의 환기가능면적 합계가 바닥면적 1㎡마다 300 cm²이상)를 유지할 수 있도록 한다. 다만, 충분한 환기를 유지할 수 없을 경우에는 기계환기설비(환기능력이 바닥면적 1㎡마다 0.5㎡/분 이상)를 갖추도록 한다.
- (4) 처리설비 및 압축가스설비는 충전소에 출입하는 자동차의 진 · 출입로 이외의 장소에 설치하며, 자동차로 인한 충격 등으로부터 처리설비 및 압축가스설비를 보호할 수 있는 조치를 한다. 다만, 2.7.2.1에 따른 방호벽 또는 방류둑을 설치한 경우에는 자동차로 인한 충격 등으로부터 처리설비 및 압축가스설비를

보호할 수 있는 조치를 하지 아니할 수 있다.

2.4.4.2.2 압축장치

- (1) 압축장치에는 흡입측 가스압력맥동이 가스배관으로 전파되는 것을 방지하기 위한 완충탱크 등을 설치한다. 이 경우 완충탱크용량은 가스가 노즐장치 등으로부터 완충탱크로 회수될 때의 회수압력이 흡입완충탱크의 안전장치 개방압력에 도달하지 아니하는 용량으로 한다.
- (2) 압축장치의 입구측에는 공기가 흡입되는 것을 방지하는 장치를 설치한다.
- (3) 압축장치에는 입·출구측의 압력이 설정압력 이상 도달할 경우에는 압력조절장치 및 압축장치를 자동으로 정지시키는 장치를 설치한다.
- (4) 압축장치에는 압축장치의 출구측 온도가 설정온도 이상 도달할 경우 압축장치를 자동으로 정지시키는 장치를 설치한다.
- (5) 압축장치에서 발생하는 오일을 제거하기 위하여 압축장치의 출구측에는 유분리기와 필터를 설치하고, 우선순위 패널(전단이나 후단)과 충전기(전단이나 내부)에는 필터를 설치한다. 다만, 무급유식 압축기의 경우에는 그러하지 아니하다.
- (6) 동절기용 압축기 오일의 유동점은 -18℃ 이하인 것을 사용한다.

2.4.4.2.3 충전설비

- (1) 충전설비는 지상에 고정하여 설치한다.
- (2) 충전설비에는 충전중인 압축도시가스 자동차용기가 최고충전압력에 도달하면 가스공급이 자동으로 차단하도록 하는 장치를 설치한다.
- (3) 가스충전구는 완전한 접속이 이루어지지 아니할 경우 가스의 흐름을 차단하는 구조로 한다.

2.4.4.3 고정식펌프 설치(해당 없음)

2.4.4.4 기회장치 설치(해당 없음)

2.4.4.5 압력조정기 설치

충전소에는 충전소에서 긴급사태가 발생하는 것을 방지하기 위하여 다음 기준에 따라 압력조정기를 설치한다.

- 2.4.4.5.1 압력조정기의 접속부와 각 압력실은 안전율이 최소한 4 이상 되도록 설계한다.
- 2.4.4.5.2 압력조정기의 파손을 방지하기 위하여 저압실에 안전장치를 부착하거나 저압실의 강도를 인입측 압력실의 사용압력(온도가 21 ℃인 가스를 설비에 완전히 채운 상태에서 측정한 압력을 말한다. 이하 같다)에 견딜 수 있도록 설계하다.
- 2.4.4.5.3 압력조정기는 빗물의 결빙, 눈, 진눈깨비 등으로 인하여 작동에 영향 받지 아니하는 장소에 설치하거나 보호조치를 한다.

2.4.4.6 호스설치

- 2.4.4.6.1 충전설비에 사용하는 호스(금속호스를 포함한다)는 도시가스의 침식작용에 견딜 수 있는 것으로 한다.
- 2.4.4.6.2 호스는 팽창·수축·충격 및 진동을 고려하여 고정 설치한다.
- 2.4.4.6.3 호스는 다음 용도 또는 장소 외에는 사용 또는 설치하지 아니한다.
- (1) 자동차주입호스(길이가 8 m 이하인 것에 한정한다)
- (2) 압축장치 인입 접속부
- (3) 배관의 길이가 1 m를 초과하지 아니하는 곳으로서 유연성이 요구되는 장소

2.4.5 기스설비 성능

2.4.5.1 기스설비 기밀성능

배관·튜브·호스 및 배관계 등은 도시가스를 안전하게 수송할 수 있도록 하기 위하여 설치 후 상용입력 이상의 압력으로 기밀시험을 실시하여 이상이 없는 것으로 한다.

2.5 배관설비기준

2.5.1 배관설비 재료

배관의 재료는 도시가스의 취급에 적합한 기계적 성질 및 화학적 성질을 가진 것으로 한다.

2.5.1.1 배관설비 재료 선정

- **2.5.1.1.1** 배관(밸브를 포함한다. 이하 같다), 튜브, 피팅, 가스켓 및 패킹재료는 도시가스에 적합한 것으로 한다. 이 경우 압축장치 후단에 설치하는 것은 설계온도를 영하 40 ℃ 이하로 한다.
- 2.5.1.1.2 배관은 한국산업규격 또는 관련규격에 적합한 것으로 한다.
- 2.5.1.1.3 스트레이너 · 완충장치 · 신축이음매는 사용압력등급이 표시된 것으로 한다.

2.5.2 배관설비 구조(내용 없음)

2.5.3 배관설비 두께

배관(튜브 · 피팅 및 배관요소를 포함한다)은 안전율이 4 이상 되도록 설계한다.

2.5.4 배관설비 접합

배관의 접합은 용접을 원칙으로 하고, 지하매설배관은 나사로 접합하지 아니한다.

2.5.5 배관설비 신축흡수조치

배관에는 온도의 변화로 인한 길이의 변화에 따른 신축을 흡수하기 위하여 다음 기준에 따라 조치를 한다.

2.5.5.1 시업소 인의 배관

25.5.1.1 배관을 지하에 매설하는 경우에는 되메울 때 충분히 다지고, 배관은 군일하며, 적당한 마찰력을 가진 흙중에 지지되도록 한다.

2.5.5.1.2 배관을 지상에 설치하는 경우에는 아래의 계산식에 의해 신축량을 계산하고, 굽힘관, 루우프 또는 벨로즈형이나 슬라이드형 신축이음매를 사용하는 등의 방법으로 신축량을 흡수할 수 있도록 한다. 신축량 = 선팽창계수×온도차×배관길이

여기에서 온도치는 예상되는 최고 또는 최저의 사용온도와 주위 평균온도와의 차를 고려한다. 또한 선팽창계수는 탄소강에 적용할 때는 11.7×10^{-6} 으로 하고, 탄소강 이외의 재료에 적용할 때는 공인되는 값을 사용한다.

2.5.5.1.3 지상에 설치한 배관을 지지하는 행거, 서포트등은 배관의 신축을 저해하지 아니하도록 배관을 지지하는 것일 것. 다만, 배관을 고정함으로써 배관에 과대한 응력이 발생할 우려가 없는 것이 명확한 경우에는 그러하지 아니한다.

2.5.6 배관설비 절연조치(내용 없음)

2.5.7 배관 설치

배관은 수송하는 가스의 특성 및 설치 환경조건을 고려하여 위해의 우려가 없도록 다음 기준에 따라설치한다.

2.5.7.1 배관 설치장소 선정

2.5.7.1.1 배관은 건축물의 내부 또는 기초의 밑에 설치하지 아니한다. 다만, 그 건축물에 가스를 공급하기 위한 배관은 건축물의 내부에 설치할 수 있다.

- 2.5.7.1.2 도시가스충전사업소 안 배관은 자동차의 진 · 출입시 영향을 받지 아니하도록 다음 기준에 적합하게 설치(가스미터, 주밸브 등은 제외)한다. 이 경우 주밸브로부터 압축장치까지의 배관은 피트내에 설치할 수 있다.
- (1) 배관은 과거의 실적이나 환경조건의 변화(토지조성 등으로 인하여 지형의 변경이나 배수의 변화 등)를 고려하여 땅의 붕괴, 산사태 등의 발생이 예상되는 곳을 통과하지 아니하도록 한다.
- (2) 배관은 지반참하가 현저하게 진행 중인 곳이나 과거의 실적으로 미루어 지반참하의 우려가 추정되는 곳을 통과하지 아니하도록 한다.

2.5.7.2 배관 매몰설치

2.5.7.2.1 시업소 안 배관의 매몰설치

배관은 그 배관의 유지관리에 지장이 없고, 그 배관에 대한 위해의 우려가 없도록 다음 기준에 따라

설치한다.

- (1) 배관은 지면으로부터 최소한 1 m 이상의 깊이에 매설한다. 이 경우 공도(公道)의 지하에는 그 위를 통과하는 차량의 교통량 및 배관의 관경 등을 고려하여 더 깊은 곳에 매설한다.
- (2) 도로폭이 8m 이상인 공도의 횡단부 지하에는 지면으로부터 1.2m 이상인 곳에 매설한다.
- (3) (1) 또는 (2)에서 정한 매설깊이를 유지할 수 없을 경우에는 키바플레이트, 케이싱 등을 사용하여 보호한다.
- (4) 철도 등의 횡단부 지하에는 지면으로부터 $1.2 \, \mathrm{m}$ 이상인 곳에 매설하고 또는 강제의 케이싱을 사용하여 보호한다.
- (5) 지하철도(전철) 등을 횡단하여 매설하는 배관에는 전기방식조치를 강구한다.

2.5.7.3 배관 노출설치

2.5.7.3.1 시업소 안 배관의 노출설치

배관은 그 배관의 유지관리에 지장이 없고, 그 배관에 대한 위해의 우려가 없도록 다음 기준에 따라설치한다.

- (1) 배관의 부식방지와 검사 및 보수를 위하여 지면으로부터 30 cm 이상의 거리를 유지한다.
- (2) 배관의 손상방지를 위하여 주위 상황에 따라 방책이나 가드레일 등의 방호조치를 한다.
- (3) 압축가스설비를 상호연결하는 부분은 진동을 최소화하도록 조립한다.
- (4) 배관 또는 튜브를 굽힘으로써 배관이나 튜브의 강도가 약화될 우려가 있는 곳에서는 굽힘작업을 하지 아니한다.
- (5) 배관의 단열재료는 불연성 또는 난연성 재료를 사용하고, 화재나 열·냉기·물 등에 노출될 때 그 특성이 변하지 아니하는 것으로 한다.
- (6) 배관지지물은 화재나 초저온 액체의 유출 등을 충분히 견딜 수 있고 과다한 열전달을 예방하도록 설계한다.

2.5.7.4 배관의 수중설치

배관은 그 배관의 유지관리에 지장이 없고, 그 배관에 대한 위해의 우려가 없도록 다음 기준에 따라 석치하다

- (1) 배관을 선박이 항해하는 수역의 해저에 설치하려는 경우에는 선박의 닻으로 인한 손상을 방지하기 위하여 선박의 크기와 해저토질을 감안하여 필요하다고 인정되는 깊이 이상의 깊이에 매설한다.
- (2) 해저 · 하천 등 물의 유동으로 인하여 뻘 상태로 될 수 있는 토양 중에 배관을 설치하려는 경우에는 사용하지 아니할 때의 배관의 비중을 사질토의 경우에는 물(해저의 경우는 해수)의 비중 이상, 점질토의 경우에는 액상 한계에서 토양의 단위 체적 중량 이상으로 하고 또는 앵커 등으로 배관의 부상이나 이동을 방지하는 조치를 한다.
- (3) 배관을 파도의 영향을 받는 접안부에 설치하려는 경우에는 파도나, 부유물 등으로 인한 배관의 손상을 방지하기 위하여 케이싱, 콘크리트 방호벽 또는 방파책 등으로 방호조치를 한다.
- (4) 배관을 하천에 설치하려는 경우에는 흐르는 물로 인하여 토사가 유실되지 아니하는 깊이 이상의 곳에 매설하다.
- (5) 배관을 수로가 불안정한 강바닥에 매설하려는 경우에는 수로가 얕은 부분에서도 깊은 부분의 배관과 수평으로 되도록 매설한다.

2.5.8 배관부대설비 설치

2.5.8.1 수취기 설치

천연메탄을 수송하기 위한 배관과 이에 접속하는 압축기와의 사이에는 수취기를 설치한다.

2.5.8.2 압력계 및 온도계 설치

배관은 그 배관에 대한 위해의 우려가 없도록 배관의 적당한 곳에 압축가스배관의 경우에는 압력계를, 액화가스배관의 경우에는 압력계 및 온도계를 설치한다. 다만, 초저온 또는 저온의 액화가스배관의 경우에는 온도계 설치를 생략할 수 있다.

2.5.9 배관설비 성능

2.5.9.1 배관·튜브·호스 및 배관계 등은 도시가스를 안전하게 수송할 수 있도록 하기 위하여 설치 후 상용압력 이상의 압력으로 기밀시험을 실시하여 이상이 없는 것으로 한다.

2.5.10 배관설비 표시

배관의 안전을 확보하기 위하여 그 배관의 외부에는 도시가스를 사용하는 배관임을 명확하게 식별할 수 있도록 표시를 하고 매설된 배관의 주위에는 그 배관이 매설되어 있음을 명확하게 알 수 있도록 다음 기준에 따라 표시한다.

2.5.10.1 배관을 지상에 설치하는 경우에는 지면으로부터 떨어져 설치하고 보기 쉬운 곳에 도시가스의 배관임을 표시하며, 배관의 이상을 발견한 자는 연락처에 연락하여 줄 것을 부탁하는 내용의 표지판을 2.9.1.3에 따라 설치한다.

25.10.2 배관을 지하에 매설하는 경우에는 지면으로부터 1 m 이상의 깊이에 매설하고 보기 쉬운 장소에 도시가스의 배관을 매설하였음을 2.9.1.3에 따라 .표시한다.

2.5.10.3 표지판에는 배관의 이상을 발견한 경우 연락처에 연락하여 줄 것을 부탁하는 내용을 포함한다.

2.6 시교예방설비기준

2.6.1 괴입인전장치 설치

저장설비 · 완충탱크 · 처라설비 · 압축장치의 각 단계의 출구측 및 압축가스설비에는 그 설비의 압력이 상용압력을 초과하는 경우 즉시 그 압력을 상용압력 이하로 되돌릴 수 있도록 하기 위하여 다음 기준에 따라 과압안전장치를 설치한다.

2.6.1.1 괴입인전장치 선정

가스설비 등에서의 압력상승 특성에 따라 다음 기준에 따라 과압안전장치를 선정한다.

(1) 기체 및 증기의 압력상승을 방지하기 위하여 설치하는 안전밸브

- (2) 급격한 압력상승, 독성기스의 누출, 유체의 부식성 또는 반응생성물의 성상 등에 따라 안전밸브를 설치하는 것이 부적당한 경우에 설치하는 파열판
- (3) 펌프 및 배관에서 액체의 압력상승을 방지하기 위하여 설치하는 릴리프밸브 또는 안전밸브
- (4) (1)부터 (3)까지의 안전장치와 병행 설치할 수 있는 자동압력제어장치(고압설비 등의 내압이 상용의 압력을 초과한 경우 해당 고압설비 등으로의 가스유입량을 감소시키는 방법 등으로 해당 고압설비 등 내의 압력을 자동적으로 제어하는 장치)

2.6.1.2 괴압치단장치 설치위치

과압안전장치는 고압설비 중 압력이 최고허용압력 또는 설계압력을 초과할 우려가 있는 다음 구역마다 설치한다.

- (1) 내 · 외부 요인으로 인한 압력상승이 설계압력을 초과할 우려가 있는 압력용기 등
- (2) 토출측의 막힘으로 인한 압력상승이 설계압력을 초과할 우려가 있는 압축기(다단 압축기의 경우에는 각 단) 또는 펌프의 출구측
- (3) 배관 안의 액체가 2개 이상의 밸브로 차단되어 외부열원에 의한 액체의 열팽창으로 파열이 우려되는 배관
- (4) (1)부터 (3)까지 이외에 압력조절실패, 이상반응, 밸브의 막힘 등으로 인한 압력상승이 설계압력을 초과 할 우려가 있는 고압설비 또는 배관 등

2.6.1.3 괴입인전장치 구조 및 재질

2.6.1.3.1 안전장치는 한국산업규격 또는 관련규격에 적합한 것으로 한다.

261.32 과압안전장치의 구조 및 재질은 그 과압안전장치가 설치되는 가스설비 등의 안에 있는 도시가스의 압력 및 온도에 견딜 수 있고, 그 도시가스에 내식성이 있는 것으로 한다.

2.6.1.4 괴입인전장치 분출면적

안전밸브·파열판 또는 릴리프밸브의 분출면적이나 유출면적은 다음 계산식에 따라 계산한 면적 이상으로 한다.

- (1) 기체 또는 증기로 분출되는 경우
- (1-1) 임계흐름압력이 배압보다 크거나 같은 경우(음속흐름)

$$A = \frac{13160W \sqrt{TZ}}{CK_{d}K_{b}K_{c}P_{1}\sqrt{M}} \cdots (2.5)$$

$$A = \frac{35250V \sqrt{TZM}}{CK_{d}K_{b}K_{c}P_{1}} \cdots (2.6)$$

$$A = \frac{189750V \sqrt{TZG}}{CK_{d}K_{b}K_{c}P_{1}} \cdots (2.7)$$

(1-2) 임계흐름압력이 배압보다 작은 경우(아음속흐름)

$$A = \frac{17.9W}{F_2 K_b K_c} \sqrt{\frac{ZT}{MP_1 (P_1 - P_2)}} \cdots (2.8)$$

$$A = \frac{47.95V}{F_2 K_b K_c} \sqrt{\frac{ZTM}{P_1 (P_1 - P_2)}} \cdots (2.9)$$

$$A = \frac{258V}{F_2 K_b K_c} \sqrt{\frac{ZTG}{P_1 (P_1 - P_2)}} \cdots (2.10)$$

식(2.5)부터 식(2.10)까지에서 k, P_1 , P_2 , A, W, V, G, C, T, M, Z 및 K는 각각 다음 수치를 나타내는 것으로 한다.

P1 : 분출량 결정압력(절대압력으로 설정압력과 초과압력의 합)(kh)

$$\frac{P_{cf}}{P_1} = \left[\frac{2}{k+1}\right]^{\frac{k}{k-1}} \cdots (2.11)$$

여기에서

 P_{cf} : 임계흐름압력(절대압력을 말한다)(kPa(a))

 \mathbf{k} : 비열비($\frac{C_{_{P}}}{C_{..}}$)의 수치

C₂: 정압비열, C₃: 정적비열

P2: 대기압을 포함하는 배압(절대압력을 말한다)(kPa)

A: 필요분출면적(mm)

W: 2.6.1.6에서 정한 필요분출량(kg/h)

C: 비열용량계수로서 그림 2.6.1.4① 또는 표 2.6.1.4①에서 정한 값

T: 분출량 결정압력에서 가스의 절대온도(°K)

M: 가스의 분자량

 K_d : 분출계수(제작자의 설계분출계수)로서 안전밸브는 0.975, 파열판은 0.62로 한다.

표 2.6.1.4① 비열용량계수

1		1		1		1	0
k	С	k	С	k	С	k	С
1.00	315	1.26	343	1.52	366	1.78	386
1.01	317	1.27	344	1.53	367	1.79	386
1.02	318	1.28	345	1.54	368	1.80	387
1.03	319	1.29	346	1.55	369	1.81	388
1.04	320	1.30	347	1.56	369	1.82	389
1.05	321	1.31	348	1.57	370	1.83	389
1.06	322	1.32	349	1.58	371	1.84	390
1.07	323	1.33	350	1.59	372	1.85	391
1.08	325	1.34	351	1.60	373	1.86	391
1.09	326	1.35	352	1.61	373	1.87	392
1.10	327	1.36	353	1.62	374	1.88	393
1.11	328	1.37	353	1.63	375	1.89	393
1.12	329	1.38	354	1.64	376	1.90	394
1.13	330	1.39	355	1.65	376	1.91	395
1.14	331	1.40	356	1.66	377	1.92	395
1.15	332	1.41	357	1.67	378	1.93	396
1.16	333	1.42	358	1.68	379	1.94	397
1.17	334	1.43	359	1.69	379	1.95	397
1.18	335	1.44	360	1.70	380	1.96	398
1.19	336	1.45	360	1.71	381	1.97	398
1.20	337	1.46	361	1.72	382	1.98	399
1.21	338	1.47	362	1.73	382	1.99	400
1.22	339	1.48	363	1.74	383	2.00	400

1.23	340	1.49	364	1.75	384	
1.24	341	1.50	365	1.76	384	
1.25	342	1.51	365	1.77	385	

 K_b : 배압보정계수로서 대기압이면 1, 평형벨로우즈형(balanced bellows type)은 그림 2.6.1.4②, 일반형(conventional type)의 경우 그림 2.6.1.4③에서 구한 값

Kc: 안전밸브와 파열판을 함께 설치한 경우 0.9, 안전밸브만 설치한 경우 1.0

Z : 그림 2.6.1.4④에서 나타낸 압축계수의 값. 단. 명확하지 않은 경우는 Z=1.0

V : 2.6.1.6에서 규정하는 필요분출량 [Nm³/min(0 ℃, 101.325kh(a))]

G: 표준상태에서의 가스비중[0°C, 101.325kh(a))]으로 공기 1을 기준으로 한다.

 F_2 : 아음속계수로서 그림 2.6.1.45에서 구한 값 또는 다음 식 (2.12)에 따라 계산한 값

$$F_{2} = \sqrt{\left(\frac{k}{k-1}\right)r^{\frac{2}{k}}\left[\frac{1-r^{\frac{(k-1)}{k}}}{1-r}\right]} \quad \cdots \quad (2.12)$$

여기에서

 $r: P_2/P_1$

(2) 액체로 분출되는 경우

식(2.13)에 따라 분출면적을 산출한다. 다만, 산업통상자원부장관이 그 성능을 인정하는 경우에는 식(2.14)에 따라 분출면적을 산출할 수 있다. <개정 17.9.29>

$$A = \frac{11.78Q}{K_d K_w K_c K_v K_p} \sqrt{\frac{G}{(1.25P - P_b)}} \cdots (2.13)$$

$$A = \frac{11.78Q}{K_d K_w K_c K_v} \sqrt{\frac{G}{(P_1 - P_2)}} \cdots (2.14)$$

식(2.13) 및 식(2.14)식에서

A: 필요분출면적(mm)

Q: 필요분출량(L/min)

K: 안전밸브와 파열판을 함께 설치한 경우 0.9, 안전밸브만 설치한 경우 1.0으로 한다.

Ka: 분출계수(제작자의 설계분출계수)로서 안전밸브는 0.65, 파열판은 0.62로 한다

 K_w : 배압보정계수로서 대기압이면 1, 평형벨로우즈형(balanced bellows type)은 그림 2.6.1.4⑥에서 구한 값으로 하며, 일반형(conventional type)의 경우 특별히 보정하지 아니한다.

K,: 점도보정계수로서 그림 2.6.1.4⑦에서 구한 값 또는 다음 식에 따라 계산한 값으로 한다.

$$\begin{split} & K_{v} = (0.9935 + \frac{2.878}{R^{0.5}} + \frac{342.75}{R^{1.5}})^{-1.0} \\ & R = \frac{Q \left(18800 \times G\right)}{\mu \sqrt{A}} \\ & R = \frac{85220 \times Q}{U \sqrt{A}} \end{split}$$

여기에서

R: 레이놀드수(reynold's number)

 μ : 분출온도에서의 절대점도(centipoise)

U: 분출온도에서의 절대점도(saybolt universal seconds, SSU)

K_o: 과압보정계수로서 **그림** 2.6.1.48에서 구한 값

P : 설정압력[kPa(g)]

P_b : 총배압[kPa(g)]

P1 : 분출량 결정입력(설정압력과 초과압력의 합) [kPa(g)]

P₂: 배압[kPa(g)]

G: 분출온도에서의 비중으로 표준상태에서 물을 기준으로 한다.

(3) 수증기(Steam)로 분출되는 경우

$$A = \frac{190.4 W}{P_1 K_\text{d} K_\text{b} K_\text{c} K_\text{N} K_{_{\text{Sh}}}} \label{eq:alpha}$$

여기에서

A : 필요분출면적(mm)

W : 필요분출량(kg/h)

 K_b : 배압보정계수로서 대기압이면 1, 평형벨로우즈형(balanced bellows type)은 그림2.6.1.4②, 일반형(conventional type)은 그림 2.6.1.4③에서 구한 값

 K_c : 안전밸브와 파열판을 함께 설치한 경우 0.9, 안전밸브만 설치한 경우 1.0으로 한다

K_d: 분출계수(제작자의 설계분출계수)로서 안전밸브는 0.975, 파열판은 0.62로 한다

K_n: Napier 방정식에 의한 보정계수로서 P1이 10339 kh(a) 이하인 경우 1, P1이 10339 kh(a) 초과 22057 kh(a) 이하인 경우에는 다음 식에서 구한 값

$$K_n = \frac{0.02764 P_1 - 1000}{0.03324 P_1 - 1061}$$

 K_{sh} : 과열수증기 보정계수로서 표 2.6.1.42에서 구한 값

표 2.6.1.4② 과열 수증기 보정계수

설정압력						온면	E(℃/°F)				
MD.	•	149/	204/	260/	316/	371/	427/	482/	538/	593/	649/
MPa	psig	300	400	500	600	700	800	900	1000	1100	1200
0.10	15	1.00	0.98	0.93	0.88	0.84	0.80	0.77	0.74	0.72	0.70
0.14	20	1.00	0.98	0.93	0.88	0.84	0.80	0.77	0.74	0.72	0.70
0.28	40	1.00	0.99	0.93	0.88	0.84	0.81	0.77	0.74	0.72	0.70
0.41	60	1.00	0.99	0.93	0.88	0.84	0.81	0.77	0.75	0.72	0.70
0.55	80	1.00	0.99	0.93	0.88	0.84	0.81	0.77	0.75	0.72	0.70
0.69	100	1.00	0.99	0.93	0.88	0.84	0.81	0.77	0.75	0.72	0.70
0.83	120	1.00	0.99	0.94	0.89	0.84	0.81	0.78	0.75	0.72	0.70
0.90	140	1.00	0.99	0.94	0.89	0.85	0.81	0.78	0.75	0.72	0.70
1.10	160	1.00	0.99	0.94	0.89	0.85	0.81	0.78	0.75	0.72	0.70
1.24	180	1.00	0.99	0.94	0.89	0.85	0.81	0.78	0.75	0.72	0.70
1.38	200	1.00	0.99	0.95	0.89	0.85	0.81	0.78	0.75	0.72	0.70
1.52	220	1.00	0.99	0.95	0.89	0.85	0.81	0.78	0.75	0.72	0.70
1.66	240	_	1.00	0.96	0.90	0.85	0.81	0.78	0.75	0.72	0.70
1.79	260	_	1.00	0.96	0.90	0.85	0.81	0.78	0.75	0.72	0.70
1.93	280	_	1.00	0.96	0.90	0.85	0.81	0.78	0.75	0.72	0.70
2.07	300	_	1.00	0.96	0.90	0.85	0.81	0.78	0.75	0.72	0.70
2.41	350	_	1.00	0.96	0.90	0.86	0.82	0.78	0.75	0.72	0.70
2.76	400	_	1.00	0.96	0.91	0.86	0.82	0.78	0.75	0.72	0.70
3.45	500	_	1.00	0.96	0.92	0.86	0.82	0.78	0.75	0.73	0.70
4.14	600	_	1.00	0.97	0.92	0.87	0.82	0.79	0.75	0.73	0.70
5.52	800	_	_	1.00	0.95	0.88	0.83	0.79	0.76	0.73	0.70
6.90	1000	_	_	1.00	0.96	0.89	0.84	0.78	0.76	0.73	0.71
8.61	1250	_	_	1.00	0.97	0.91	0.85	0.80	0.77	0.74	0.71
10.30	1500	_	_	_	1.00	0.93	0.86	0.81	0.77	0.74	0.71
12.10	1750	_	_	_	1.00	0.94	0.86	0.81	0.77	0.73	0.70
13.79	2000	_	_	_	1.00	0.95	0.85	0.80	0.76	0.72	0.69
17.19	2500	_	_	_	1.00	0.95	0.82	0.78	0.73	0.69	0.66
20.69	3000	_	_	_	_	1.00	0.82	0.74	0.69	0.65	0.62

그림 2.6.1.4② 밸런스 밸로우즈형 안전밸브 배압보정계수

그림 2.6.1.4③ 일반형(conventional) 안전밸브 배압조정계수

그림 2.6.1.4④ 압축계수

그림 2.6.1.4⑥ 밸런스 벨로우즈형 안전밸브 배압보정계수

그림 2.6.1.4⑦ 점도로 인한 용량보정계수

그림 2.6.1.4⑧ 과압보정계수

2.6.1.5 괴입인전장치 축적입력

안전밸브 · 파열판 또는 릴리프밸브(이하 2.6.1.5에서 "안전밸브"라 한다)의 축적압력은 다음 기준에 적합한 것으로 한다. 이 경우 안전밸브의 축적압력 · 설정압력 및 초과압력의 예는 표 2.6.1.5와 같다. (1) 분출원인이 화재가 아닌 경우

- (1-1) 안전밸브를 1개 설치한 경우의 안전밸브의 축적압력은 최고허용압력(MAWP : maximum allowable working pressure. 이하 같다)의 110% 이하로 한다.
- (1-2) 안전밸브를 2개 이상 설치한 경우의 안전밸브의 축적압력은 최고허용압력의 116% 이하로 한다.
- (2) 분출원인이 화재인 경우 안전밸브의 축적압력은 안전밸브의 수량에 관계없이 최고허용압력의 121 % 이하로 한다.

안전밸브 1개 설치 안전밸브 2개 이상 설치 원 인 최대 최대 초과 최대 최대 초과 설정압력 축적압력 압력 설정압력 축적압력 압력 화재 시가 아닌 첫번째 밸브 100% 100 % 116% 16% 110 % 10% 경우 추가된 밸브 105 % 116% 11 % 첫번째 밸브 121 % 21% 100% 121 % 21 % 100 % 화재 시인 경우 추가된 밸브 105 % 121 % 16% 나머지 밸브 110% 121 % 11% [보기] 모든 수치는 최대허용압력의 %임

표 2.6.1.5 안전밸브의 축적압력, 설정압력 및 초과압력

2.6.1.6 괴입인전장치 분출량

안전밸브 또는 파열판의 필요분출량은 다음 (1)이나 (2)에서 규정한 계산식이나 (3)에 의해 구한 값 [다음 (1) 또는 (2)에서 규정한 계산식에 의해 구한 양이 해당 설비내의 도시가스 량을 초과하는 경우에는 해당 설비 내의 도시가스 령 이상으로 한다.

(1) 액화가스의 고압설비 등이 외부화재에 노출되어 분출되는 경우[다음 (3)에서 정한 경우를 제외한다 (1-1) 압력용기 등의 하부지면에 배수구 및 소화설비가 있는 경우

$$W = \frac{37,140A^{0.82}F}{I} \cdots (2.15)$$

(1-2) 압력용기 등의 하부지면에 배수구 및 소화설비가 없는 경우

$$W = \frac{61,000A^{0.82}F}{L} \cdots (2.16)$$

식(2.15) 및 식(2.16)에서

W: 시간당 필요분출량(kg/h)

A: 내부 액화가스가 접촉하고 있는 압력용기 등의 면적(m²)으로 화재 시 지면으로부터 수직높이 7.6 m까지 내부 액화가스가 접촉한 면적을 계산한다.

F: 환경계수로서 압력용기 등에 단열재를 사용하는 경우에는 표 2.6.1.6 또는 다음 식(2.17)에 따른다. 다만, 단열재의 재질은 화재 시 화염에 충분히 견딜 수 있는 것으로 한정한다.

$$F = \frac{\kappa (904^{\circ}C - T_f)}{57,000t} \cdots (2.17)$$

여기에서

κ : Τ¡와 940 ℃의 평균온도로 계산된 열전도도(kal·m/mh℃) 다만, 암면과 칼슘실리게이트(calcium silicate)의 경우에는 다음 식으로 산정할 수 있다.

$$\kappa = 0.03 + (2 \times 10^{-4} \text{ T}_{\text{f}})$$

T_f: 유체온도(℃)

t: 단열두께(m)

L : 분출량 결정압력에서의 액화가스 증발잠열(kcal/kg)

F: 표 2.6.1.6의 환경계수

표 2.6.1.6 환경계수

구분	압력용기 등의 환경	F값
1	노출(bare)된 압력용기등	1
	단열된 압력용기등(단열재의 전열계수=κ/t, 분출 시 유체	
	온도=15℃)	
	1)19.5 kal/m²h°C	0.3
	2) 9.8 km/m²h℃	0.15
2	3) 4.9 km/m²h℃	0.075
	4) 3.3 km/m²h℃	0.05
	5) 2.4 km/m²h°C	0.0376
	6) 2.0 km/m²h℃	0.03
	7) 1.6 km/m²h°C	0.026
3	물분무장치가 설치된 경우	1
4	감압시설 및 액이송설비가 설치된 경우	1
5	지상에 설치하고 흙으로 덮은 저장탱크	0.03
6	지하매설 저장탱크	0.00

(2) 압축가스의 고압설비등[다음 (3)에서 정한 경우를 제외한다]

 $W = 0.28V \gamma d^2$

여기에서

W: 시간당 소요분출량(kg/h)

V: 도입관내의 압축가스유속(m/sec)

 γ : 안전장치의 입구측의 가스밀도(kg/m²)

d : 도입관의 내경(cm)

(3) 펌프 또는 압축기에서 시간당의 토출량(kg/h)을 시간당의 소요 분출량으로 한다.

(4) 고압설비 안의 기체 및 증기가 외부화재에 노출되어 분출되는 경우

$$W = 0.277 (MP_1)^{0.5} \frac{(T_w - T_1)^{1.25} A}{T_1^{1.1506}}$$

여기에서

W : 필요 분출량(kg/h)

A: 용기의 노출표면적(m²)

P1: 분출량 결정압력(절대압력으로 설정압력과 초과압력의 합을 말한다) [kh(a)]

M: 기체 또는 증기의 분자량

 T_w : 용기표면온도(탄소강의 최대용기표면온도를 865 $^{\circ}$ K로 권장되며, 그 외의 합금강의 경우 좀 더 높은 온도를 권장), K

T1: 분출시 온도로서 다음 식에 의해 계산된 값으로 한다.

$$T_1 = T_n \left(\frac{P_1}{P_n} \right)$$

여기에서

 P_n : 정상운전압력[kPa(a)] T_n : 정상운전온도(K)

2.6.1.7 괴입인전장치 작동압력

안전장치의 설정압력은 최고허용압력 또는 설계압력을 초과하지 아니하는 압력으로 한다.

2.6.1.8 기스방출관 설치

완충탱크 · 처리설비 및 압축가스설비의 안전장치에는 방출관을 설치하고, 방출관의 높이는 지상으로부터 $5 \, \mathrm{m}$ 이상 수직으로 설치하며, 방출관에는 적절한 빗물방지용캡을 설치한다. 다만, 저장설비 및 완충탱크 안전장치의 방출관은 지상으로부터 $5 \, \mathrm{m}$ 의 높이 또는 저장설비 및 완충탱크의 정상부로부터 $2 \, \mathrm{m}$ 의 높이 중 높은 위치로 한다.

2.6.1.9 국제공인기준적용 특례

안전밸브 또는 파열판의 분출량결정 및 설치는 API, ASME, ISO 공인기준을 적용한 경우와 그 밖에 산업통상자원부장관과 한국가스안전공사가 협의하여 인정하는 국제적인 공인기준을 적용한 경우에는 2.6.1.1부터 2.6.1.8까지에도 불구하고 적합한 것으로 본다. <개정 17.9.29>

2.6.2 기스누출 경보 및 자동차단장치 설치

충전시설에는 가스가 누출될 경우 이를 신속히 검지하여 효과적으로 대응할 수 있도록 하기 위하여 다음 기준에 따라 가스누출검지경보장치(이하 "검지경보장치"라 한다)를 설치한다.

2.6.2.1 기스누출경보 및 자동차단장치 기능

검지경보장치는 누출된 가스를 검지하여 경보를 울리면서 자동으로 가스통로를 차단하는 것으로서 다음 기능을 가진 것으로 한다.

2.6.2.1.1 경보는 접촉연소방식, 격막갈바니전지방식, 반도체방식, 그 밖의 방식에 따라 검지엘리먼트의 변화를 전기적 신호에 의해 이미 설정하여 놓은 가스농도(이하 "경보농도"라 한다)에서 자동적으로 울리는 것으로 한다. 이 경우 가연성가스 경보기는 담배연기 등에, 독성가스용 경보기는 담배연기, 기계세척 유 가스, 등유의 증발가스, 배기가스 및 탄화수소계 가스 등 잡가스에는 경보하지 아니하는 것으로 한다.

2.6.2.1.2 경보농도는 검지경보장치의 설치장소, 주위 분위기 온도에 따라 가연성가스는 폭발하한계의 1/4 이하, 독성가스는 TLV-TWA(threshold limit value—time weight average, 정상인이 1일8시간 또는 주 40시간 통상적인 작업을 수행함에 있어 건강상 나쁜 영향을 미치지 아니하는 정도의 공기 중 가스농도를 말한다. 이하같다)기준 농도 이하로 한다.(다만, 암모나이를 실내에서 사용하는 경우에는 50 ppm으로 할 수 있다)

26.21.3 경보기의 정밀도는 경보농도 설정치에 대해 가연성가스용일 경우는 $\pm 25\%$ 이하, 독성가스용일 경우는 $\pm 30\%$ 이하로 한다.

2.6.2.1.4 검지에서 발신까지 걸리는 시간은 경보농도의 1.6배 농도에서 보통 30초 이내로 한다. 다만, 검지경보장치의 구조상 또는 이론상 30초가 넘게 걸리는 가스(암모니아, 일산화탄소 또는 이와 유시한 가스)일 경우에는 1분 이내로 할 수 있다.

- 2.6.2.1.5 검지경보장치의 경보정밀도는 전원의 전압 등 변동이 $\pm 10\%$ 정도일 때에도 저하되지 않토록한다.
- 2.6.2.1.6 지시계의 눈금은 기연성가스용은 0~폭발 하한계 값, 독성가스는 0~TLV-TWA기준 농도의 3배 값(암모니아를 실내에서 사용하는 경우에는 150 ppm)을 명확하게 지시하는 것으로 한다.
- 2.6.2.1.7 경보를 발신한 후에는 원칙적으로 분위기중 가스농도가 변화하여도 계속 경보를 울리고, 그 확인 또는 대책을 강구함에 따라 경보가 정지되는 것으로 한다.
- 2.6.2.1.8 자동적으로 긴급차단 신호를 발하는 농도 설정치는 1.25퍼센트 이하의 값으로 한다.

2.6.2.2 기스누출검지경보장치 구조

검지경보장치의 구조는 다음 기준에 적합한 것으로 한다.

- 2.6.2.2.1 충분한 강도(특히 검지엘리먼트 및 발신회로는 내구성을 갖는 것일 것)를 갖고, 취급 및 정비(특히 검지엘리먼트의 교체등)가 쉬운 것으로 한다.
- 2.6.2.2.2 가스에 접촉하는 부분은 내식성의 재료 또는 충분한 부식방지 처리를 한 재료를 사용하고 그 외의 부분은 도장이나 도금처리가 양호한 재료로 한다.
- 2.6.2.2.3 가연성가스(암모니아를 제외한다)의 검지경보장치는 방폭성능을 가진 것으로 한다.
- 2.6.2.2.4 2개 이상의 검출부에서 검지신호를 수신하는 경우 수신회로는 경보를 울리는 다른 회로가 작동하고 있을 때에도 해당 검지경보장치가 작동하여 경보를 울릴 수 있는 것으로서 경보를 울리는 장소를 식별할 수 있는 것으로 한다.
- 2.6.2.2.5 수신회로가 작동상태에 있는 것을 쉽게 식별할 수 있는 것으로 한다.
- 2.6.2.2.6 경보는 램프의 점등 또는 점멸과 동시에 경보를 울리는 것으로 한다.

2.6.2.3 기스누출검지경보장치 설치장소 및 설치개수

- 2.6.2.3.1 검지경보장치는 다음 장소에 설치한다.
- (1) 압축설비 주변
- (2) 압축가스설비 주변
- (3) 개별 충전설비 본체 내부
- (4) 밀폐형 피트내부에 설치된 배관접속(용접접속을 제외한다)부 주위
- (5) 펌프 주변
- 2.6.2.3.2 검지경보장치는 다음에서 정한 수 이상으로 설치한다.
- (1) 압축설비 주변 또는 충전설비 내부에는 1개 이상

- (2) 압축가스설비 주변에는 2개
- (3) 배관접속부마다 10m 이내에 1개
- (4) 펌프주변에는 1개 이상
- 2.6.2.3.3 제조설비에 있어 검지경보장치의 검출부 설치장소 및 개수는 다음 기준에 따른다.
- (1) 건축물 안에 설치되어 있는 압축기, 펌프, 반응설비, 저장탱크((5)에 기재한 것을 제외한다) 등 가스가 누출하기 쉬운 고압설비 등((3)에 기재한 것을 제외한다)이 설치되어 있는 장소의 주위에는 누출한 가스가 체류하기 쉬운 곳에 이들 설비군의 비닥면 둘레 10 m에 대하여 1개 이상의 비율로 계산한 수
- (2) 건축물밖에 설치되어 있는 (1)에 기재한 고압설비가 다른 고압설비, 벽이나 그 밖의 구조물에 인접하여 설치된 경우, 피트 등의 내부에 설치되어 있는 경우 및 누출한 가스가 체류할 우려가 있는 장소에 설치되어 있는 경우에는 누출한 가스가 체류할 우려가 있는 장소에 그 설비군의 비닥면 둘레 20m마다 1개 이상의 비율로 계산한 수. 다만, (5)에 기재한 것은 제외한다.
- (3) 기열로 등 발화원이 있는 제조설비가 누출한 가스가 체류하기 쉬운 장소에 설치되는 경우에는 그 장소의 바닥면 둘레 20m마다 1개 이상의 비율로 계산한 수
- (4) 계기실 내부에는 1개 이상
- (5) 방류둑(2기 이상의 저장탱크를 집합방류둑 안에 설치한 경우에는 저장탱크 칸막이를 설치한 경우에만 적용한다) 안에 설치된 저장탱크의 경우에는 해당 저장탱크마다 1개 이상
- 2.6.2.3.4 다음의 배관부분에는 검지경보장치의 검출부를 설치한다.
- (1) 긴급차단 장치의 부분(밸브피트를 설치한 곳에는 해당 밸브 피트 안)
- (2) 슬리이브관, 2중관 또는 방호구조물 등으로 밀폐되어 설치(매설을 포함한다)되는 부분
- (3) 누출된 가스가 체류하기 쉬운 구조인 부분
- 2.6.2.3.5 검지경보장치의 검출부는 가스비중, 주위상황, 가스설비 높이 등 조건에 따라 적절한 높이에 설치한다.
- 2.6.2.3.6 검지경보장치의 경보부, 램프의 점등 또는 점멸부는 관계자가 상주하는 곳으로 경보가 울린 후 각종 조치를 하기에 적합한 장소에 설치한다.

2.6.3 긴급차단장치 설치

2.6.3.1 긴급차단장치 설치

충전시설에는 이동충전차량 충전설비 근처 및 이동충전차량 충전설비로부터 5 m 이상 떨어진 장소에 긴급 시 가스의 누출을 효과적으로 차단할 수 있도록 하기 위하여 긴급차단장치를 다음 기준에 따라 설치한다.

- 2.6.3.1.1 충전설비 근처 및 충전설비로부터 5 m 이상 떨어진 장소에는 수동 긴급차단장치를 각각설치하고, 이 장치가 작동될 경우에는 압축기 \cdot 펌프 및 충전설비에 공급되는 전원과 가스공급이 자동으로 차단되도록 한다.
- 26.3.1.2 긴급차단장치가 작동되거나 전원이 차단된 경우에는 입축장치가 정지되며, 이 경우 압축장치를

수동으로 조작하거나 재조정할 경우에만 압축장치가 작동될 수 있는 구조로 한다.

2.6.3.1.3 압축기의 인입구에는 다음 중 어느 하나에 해당하는 경우 압축기에 가스의 공급을 차단시키는 자동밸브를 설치한다.

- (1) 긴급차단장치가 작동된 경우
- (2) 전원공급장치가 고장난 경우
- (3) 압축기로 공급되는 전원이 차단된 경우
- (4) 압축기의 인입구 압력이 설정압력 이하로 떨어진 경우

26.3.1.4 압축가스설비와 충전설비사이의 배관에는 다음 중 어느 하나에 해당하는 경우 자동으로 닫히는 밸브를 설치하다.

- (1) 충전설비의 전원이 차단된 경우
- (2) 충전시설의 긴급차단장치가 작동된 경우

2.6.3.2 수동조작밸브 설치

압축가스설비에는 수동조작밸브를 설치하고, 수동조작밸브의 위치는 2.6.4에서 정한 역류방지밸브의 후단으로 한다.

2.6.4 역류방지장치 설치

압축가스설비의 인입배관 및 입축장치의 입구측 배관 등 위험성이 높은 고압설비사이에는 긴급 시가스가 역류되는 것을 효과적으로 차단할 수 있도록 하기 위하여 다음 기준에 따라 역류방지밸브를 설치한다.

2.6.4.1 압축가스설비의 인입배관에는 배관·호스 등의 파손 시 가스가 압축가스설비로부터 방출되는 것을 방지하기 위하여 역류방지밸브를 설치한다.

2.6.4.2 압축장치의 입구측 배관에는 역류방지밸브 등의 장치를 설치한다.

2.6.5 역외방지장치 설치(내용 없음)

2.6.6 위험감시 및 제어장치 설치(내용 없음)

2.6.7 오발진 방지장치 설치

충전시설에는 자동차의 오발진으로 인한 사고를 방지할 수 있는 조치를 취한다.

2.6.8 전기방폭설비 설치

충전시설에 설치·사용하는 전기설비는 누출된 가스의 점화원이 되는 것을 방지하기 위하여 KGS GC101 (가스시설의 폭발위험장소 종류 구분 및 범위 산정에 관한 기준) 및 KGS GC102(방폭전기기기의 설계, 선정 및 설치에 관한 기준)에 따라 방폭성능을 갖도록 설치한다. <개정 19.6.14>

2.6.9 환기설비 설치(해당 없음)

2.6.10 부식방지설비 설치

2.6.10.1 저장설비 부식방지설비 설치

충전소에는 충전소에서 긴급사태가 발생하는 것을 방지하기 위하여 다음 기준에 따라 부식방지조치를 강구한다.

26.10.1.1 압축가스설비의 외면에는 부식방지를 위하여 도장을 한다. 다만, 저장탱크를 지하에 매설하려는 경우에는 그 외면에 부식방지코팅 및 KGS GC202 (가스시설 전기방식 기준)에 따른 전기 부식방지조치를 한다.

2.6.10.2 배관 부식방지설비 설치

지상 또는 지하에 설치하는 배관에는 부식을 방지하기 위하여 다음 기준에 따라 부식방지조치를 한다.

2.6.10.2.1 배관을 지상에 설치하는 경우에는 그 외면에 녹이 슬지 아니하도록 도장을 한다.

2.6.10.2.2 부식성이 있는 가스의 수송용 배관에는 해당 가스에 침식되지 아니하는 재료를 사용하며 배관내면의 부식정도에 따른 부식여유를 두거나 코팅 등의 방법으로 내면부식방지조치를 한다.

2.6.10.2.3 수송되는 가스나 배관재료에 대하여 부식성이 없다고 인정되는 경우(실용상 충분히 탈수한 경우에도 포함한다)에는 워칙적으로 부식여유를 고려하지 아니할 수 있다.

26.10.2.4 배관을 지하에 매설하는 경우에는 아스팔트 또는 콜타르, 에나멜 등의 도장재와 주우트(jute : 황마), 비닐론크로스, 글래스매트 또는 글래스크로스 등의 피복재와의 조합에 의한 도복장(塗覆裝) 또는 이들과 동등 이상의 성능을 가지는 합성수지나 아스팔트마스틱 등의 도장처리로 배관의 외면을 보호한다.

2.6.10.2.5 지하에 설치하는 배관에는 KGS GC202(가스시설 전기방식 기준)에 따라 전기부식방지 조치를 하다.

2.6.10.2.6 보온 · 보냉된 배관 중 빗물유입, 누수, 살수설비 등에 노출되어 있는 부분 및 응축 등에 의한 국부부식이나 응력부식균열이 발생 할 수 있는 부분에는 부식방지조치를 한다.

2.6.10.2.7 보온 · 보냉된 배관에는 다음 기준에 따라 부식진행 여부 등을 확인할 수 있는 조치를 하고, 점검주기, 점검방법 및 판정기준 등을 종합적 안전관리규정에 명시한다.

- (1) 점검구의 설치
- (2) 그 밖의 점검 가능한 방법

2.6.11 정전기제거설비 설치

충전시설에는 그 시설에서 발생한 정전기가 점화되는 것을 방지하기 위하여 다음 기준에 따라 정전기 제거조치를 한다.

2.6.11.1 제조설비의 정전기 제거설비 설치

가연성가스 제조설비[2.6.11.2에 따른 것과 접지저항치의 총합이 100Ω (피뢰설비를 설치한 것은 총합 10Ω) 이하의 것을 제외한다! 등에서 발생하는 정전기를 제거하는 설비는 다음 기준에 따라 설치한다. (1) 탑류, 저장탱크, 열교환기, 회전기계, 벤트스택 등은 단독으로 접지한다. 다만, 기계가 복잡하게 연결되어 있는 경우 및 배관 등으로 연속되어 있는 경우에는 본당용 접속선으로 접속하여 접지할 수 있다.

- (2) 본딩용 접속선 및 접지접속선은 단면적 5.5 m² 이상의 것(단선은 제외한다)을 사용하고 경납붙임, 용접, 접속금구 등을 사용하여 확실히 접속한다.
- (3) 접지 저항치는 총합 100Ω (피뢰설비를 설치한 것은 총합 10Ω) 이하로 한다.

2.6.11.2 이입·송출설비의 정전기 제거설비 설치

가연성가스를 용기, 저장탱크 또는 제조설비(이하 "용기등"이라 한다)에 이충전하거나 가연성가스를 용기등으로부터 충전할 때에는 해당 용기등에 대하여 정전기를 제거하는 설비를 다음 기준에 따라 설치한다. 이 경우 접지저항치의 총합이 100Ω (피뢰설비를 설치한 것은 총합 10Ω) 이하의 것은 정전기 제거설비를 설치하지 아니할 수 있다.

- (1) 충전용으로 사용하는 저장탱크 및 제조설비는 접지한다. 이 경우 접지접속선은 단면적 5.5 m² 이상의 것(단선은 제외한다)을 사용하고, 경납붙임, 용접, 접속금구 등을 사용하여 확실히 접속한다.
- (2) 차량에 고정된 탱크(용기집합장치류를 포함한다) 및 충전에 사용하는 배관은 반드시 충전하기 전에 접지하며, 이때 접지 접속선은 단면적 5.5㎡ 이상의 것(단선은 제외한다)을 사용하고, 접속금구를 사용하여 확실히 접속함과 동시에 용기 등으로부터 떨어진 안전한 위치에 접지한다.
- (3) 접지 저항치는 총합 100Ω (피뢰설비를 설치한 것은 총합 10Ω) 이하로 한다.

2.6.12 전도방지설비 설치(해당 없음)

2.6.13 절연설비 설치(내용 없음)

2.6.14 긴급분리장치 설치

충전호스에는 충전 중 자동차의 오발진으로 인한 충전기 및 충전호스의 피손을 방지하기 위하여 다음 기준에 따라 긴급분리장치를 설치한다.

26.14.1 자동차가 충전호스와 연결된 상태로 출발할 경우 기스의 흐름이 차단될 수 있도록 긴급분리장치를 지면 또는 지지대에 고정 설치한다.

- 2.6.14.2 기급분리장치는 각 충전설비마다 설치한다.
- 2.6.14.3 긴급분리장치는 수평방향으로 당길 때 666.4 N(68 kg) 미만의 힘으로 분리되는 것으로 한다.
- 2.6.14.4 긴급분리장치와 충전설비사이에는 충전자가 접근하기 쉬운 위치에 90° 회전의 수동밸브를 설치한다.

2.6.15 충전기 보호설비 설치

충전설비의 주위에는 자동차의 충돌로부터 충전기를 보호하기 위하여 다음 기준에 따라 방호조치를 한다. <개정 19.4.5>

- (1) 보호대는 다음 중 어느 하나를 만족하는 것으로 한다. 〈신설 19.4.5〉
- (1-1) 두께 12 cm 이상의 철근콘크리트
- (1-2) 호칭지름 100 A 이상의 KS D 3507(배관용 탄소 강관) 또는 이와 동등 이상의 기계적 강도를 가진 강관
- (2) 보호대의 높이는 80 cm 이상으로 한다. <신설 19.4.5>
- (3) 보호대는 차량의 충돌로부터 충전기를 보호할 수 있는 형태로 한다. 다만, 말뚝형태일 경우 말뚝은 2개 이상을 설치하고, 간격은 1.5 m 이하로 한다. <신설 19.4.5><개정 19.5.21>
- (4) 보호대의 기초는 다음 중 어느 하나를 만족하는 것으로 한다. 〈신설 19.4.5〉
- (4-1) 철근콘크리트제 보호대는 콘크리트 기초에 25 cm 이상의 깊이로 묻고, 바닥과 일체가 되도록 콘크리트를 타설한다.
- (4-2) 강관제 보호대는 (4-1)과 같이 콘크리트 기초에 문거나, KS B 1016(기초볼트)에 따른 앵커볼트를 사용하여 표 2.6.15(4-2) 및 그림2.6.15(4-2)와 같이 콘크리트 기초에 고정한다.

표 2.6.15(4-2) 강관제 보호대의 받침대 치수

보호대 관지름	받침대	치수(mm)
D	a, b	Т
100 A 이상	D+100 이상	6 ± 0.5 이상
[-1] -1 11 11 11 A1	National Property and Alberta	- 0 Alalal W 11Al

[비고] 받침대의 재료는 KS D 3503(일반구조용 압연강재) 또는 이와 동등 이상의 기계적 강도를 갖는 것으로 한다.

그림 2.6.15(4-2) 강관제 보호대의 받침대 설치 방법

(5) 보호대의 외면에는 야간식별이 가능하도록 야광 페인트로 도색하거나 야광 테이프 또는 반사지 등으로 표시한다. <신설 19.4.5>

2.7 피애저김설비기준

2.7.1 방류둑 설치(해당 없음)

2.7.2 방호벽 설치

압축장치와 이동충전차량 충전설비사이, 압축가스설비와 이동충전차량 충전설비사이에는 가스폭발에 따른 충격에 견딜 수 있고 한 쪽에서 발생하는 위해요소가 다른 쪽으로 전이되는 것을 방지하기 위하여 다음 기준에 따라 방호벽을 설치한다. 다만, 압축장치와 충전설비사이 및 압축가스설비와 충전설비사이에 2.1.4의 단서에 따라 방호벽을 설치한 경우에는 압축장치와 충전설비사이 및 압축가스설비와 충전설비사이에 방호벽을 설치하지 아니할 수 있다.

2.7.2.1 철근콘크리트제 방호벽 설치

철근콘크리트 방호벽은 그림 2.7.2.1.2① 및 그림 2.7.2.1.2②와 같이 처리설비, 압축가스설비 외면으로부터 방호벽 상단 및 양쪽끝을 지나는 직선이 보호시설과 만나지 않도록 다음 기준에 따라 설치한다.

2.7.2.1.1 직경 9 mm 이상의 철근을 가로 · 세로 400 mm 이하의 간격으로 배근하고 모서리 부분의 철근을 확실히 결속한 두께 120 mm 이상, 높이 2 000 mm 이상으로 한다.

2.7.2.1.2 기초는 다음 기준에 적합한 것으로 한다.

- (1) 일체로 된 철근콘크리트 기초로 한다.
- (2) 그림 2.7.2.1.2와 같이 높이는 350 mm 이상, 되메우기 깊이는 300 mm 이상으로 한다.
- (3) 기초의 두께는 방호벽 최하부 두께의 120% 이상으로 한다.

그림 2.7.2.1.2① 방호벽 설치예(측면도)

그림 2.7.2.1.2② 방호벽 설치예(평면도)

그림 2.7.2.1.2 철근콘크리트제 방호벽 설치 예

2.7.2.2 콘크리트블럭제 방호벽 설치

콘크리트블럭제 방호벽은 다음 기준에 따라 설치한다.

2.7.2.2.1 철근을 2.7.2.1에 따라 배근 · 결속하고 블럭공동부는 콘크리트 몰탈을 채운 두께는 $150\,\mathrm{mm}$ 이상, 높이는 $2\,000\,\mathrm{mm}$ 이상으로 한다.

2.7.2.2.2 두께 150 mm 이상, 간격 3 200 mm 이하의 보조벽을 그림 2.7.2.2.2와 같이 본체와 직각으로 설치한다.

2.7.2.2.3 보조벽은 그림 2.7.2.2.3와 같이 방호벽면으로부터 400 mm 이상 돌출한 것으로 하고, 그 높이는 방호벽의 높이보다 400 mm 이상 아래에 있지 아니하게 한다.

그림 2.7.2.2.3 보조벽의 높이

2.7.2.2.4 기초는 일체로 된 철근콘크리트 기초이고, 기초의 높이는 350 mm 이상으로 하되, 되메우기 깊이는 300 mm 이상으로 한다.

2.7.2.3 강판제 방호벽 설치

강판제 방호벽은 다음 기준에 따라 설치한다.

2.7.2.3.1 방호벽은 두께 $6^{+0.8}_{-0.4}$ mm 이상의 강판 또는 두께 $3.2^{+0.8}_{-0.4}$ mm 이상의 강판에 30 mm $\times 30$ mm 이상의 앵글강을 가로 · 세로 400 mm 이하의 간격으로 용접 보강한 강판을 $1\,800$ mm 이하의 간격으로 세운 지주와 용접 결속하여 높이 $2\,000$ mm 이상으로 한다. <개정 21.1.12>

2.7.2.3.2 앵글강의 보강은 그림 2.7.2.3.2와 같이 한다.

그림 2.7.2.3.2 강판제방호벽의 앵글강 보강

2.7.2.3.3 지주는 1800 🖿 이하의 간격으로 하되 벽면과 모서리 및 벽면 양쪽 끝에도 설치한다.

2.7.2.3.4 지주와 벽면은 그림 2.7.2.3.4와 같이 필렛용접으로 결속하고, 모서리 부의 지주는 모서리의 인쪽에, 벽부의 지주는 벽면의 바깥쪽(바깥쪽에 설치하기 곤란한 경우에는 안쪽에 설치할 수 있다)에 설치한다.

그림 2.7.2.3.4 지주의 설치방법

2.7.2.3.5 지주 규격은 표 2.7.2.3.5의 치수 이상으로 한다.

표 2.7.2.3.5 지주로 사용하는 형강의 치수(단위 : mm)

등변	٦	강	100×100
I	형	강	100×75
Н	형	강	100×100
C	형	강	100×50

2.7.2.3.6 기초는 다음 기준에 적합한 것으로 한다.

- (1) 일체로 된 철근콘크리트 기초로 한다.
- (2) 높이는 350㎜ 이상, 되메우기 깊이는 300㎜ 이상으로 한다.
- (3) 지주는 그림 2.7.2.3.6의 보기와 같이 기초에 400 mm 이상의 깊이로 묻거나, M20 이상의 앵커볼트를 사용하여 고정시킨다.

(지주를 기초에 묻는 구조) (지주를 기초에 앵커볼트로 고정하는 구조)

그림 2.7.2.3.6 강판제 방호벽의 고정방법 보기

2.7.3 실수장치 설치(해당 없음)

2.7.4 제독설비 설치(해당 없음)

2.7.5 중화·이송설비 설치(해당 없음)

2.7.6 풍향계 설치(해당 없음)

2.7.7 소화설비 설치

충전시설의 주변에는 등급 20-B:C 이상의 소화기를 비치한다.

2.7.8 퉁행시설 설치(해당 없음)

2.7.9 온도상승방지설비 설치

2.7.9.1 저장탱크의 온도상승방지설비 설치

온도상승방지방치를 설치하여야 하는 저장탱크(지주를 포함한다)는 기연성가스 및 독성가스의 저장탱크 와 그 밖의 저장탱크로서 가연성가스 저장탱크 또는 기연성 물질을 취급하는 설비와 (1)부터 (3)까지의 거리 이내에 있는 저장탱크로 한다.

- (1) 방류둑을 설치한 가연성가스저장탱크의 경우 해당 방류둑 외면으로부터 10 m 이내
- (2) 방류둑을 설치하지 아니한 가연성가스저장탱크의 경우 해당 저장탱크 외면으로부터 20m 이내
- (3) 가연성물질을 취급하는 설비의 경우 그 외면으로부터 20 m 이내

2.7.9.1.2 액화기스 저장탱크 온도상승방지설비 설치

액화가스저장탱크(저장탱크에 부속하는 액면계, 밸브류를 포함한다. 이하 같다)는 (1), (2) 또는 이들의 혼합에 의하며, 지주는 (3)에 따른다. 이 경우 보냉을 위하여 단열재를 사용한 초저온 · 저온 저장탱크[2중작(二重殼)단열구조를 말한다]로서 해당 단열재의 두께가 주변의 화재를 고려하여 충분한 내화성을 갖고 있을 때에는 그 상태에서 저장탱크 온도상승방지조치를 한 것으로 본다.

- (1) 저장탱크 표면적 1 m'당 5L/분 이상의 비율로 계산된 수량을 저장탱크 전 표면에 분무[살수(撒水)를 포함한다. 이하 같대 할 수 있도록 고정된 장치를 설치한다. 이 경우 저장탱크가 암면두께 25 mm 이상 또는 이와 동등 이상의 내화성능을 가지는 단열재로 피복 되고 그 외측을 두께 0.35 mm이상의 KS D 3506(용융 아연도금 강판 및 강대) SBHG2 또는 이와 동등 이상의 강도 및 내화성능을 가진 재료로 피복한 것(이하 "준내화구조저장탱크"라 한다)에는 그 표면적 1 m'당 2.5L/분 이상의 비율로 계산된 수량을 분무시킬 수 있는 고정된 장치를 설치한다.
- (2) 저장탱크 외면으로부터의 거리가 40 m 이내인 위치에, 저장탱크를 항하여 어느 방향에서도 방수할 수 있는 소화전(호스끝 수압 0.3 া에 이상, 방수능력 400L/분 이상의 것을 말한다. 이하 같다)을 해당 저장탱크 표면적 50 m²당 1개의 비율로 계산된 수 이상 설치한다. 이 경우 준내화구조저장탱크에는 해당 저장탱크의 표면적 100 m²당 소화전 1개의 비율로 계산된 수 이상의 소화전을 설치한다.
- (3) 높이 1 m 이상의 지주(구조물 위에 설치된 저장탱크에는 해당 구조물의 지주를 말한다)에는 두께 50 mm 이상의 내화콘크리트 또는 이와 동등 이상의 내화성능을 가지는 불연성의 단열재로 피복한다. 다만, (1) 또는 (2)에서 정한 물분무장치나 소화전을 지주에 살수시킬 수 있도록 설치한 경우에는 해당조치를 한 것으로 볼 수 있다.

2.7.9.1.3 압축가스 저장탱크 온도상승방지설비 설치

압축가스저장탱크 및 그 지주는 다음 기준에 따라 온도상승 방지조치를 한다.

- (1) 저장탱크 및 그 지주의 어느 부분에 대해서도 방수할 수 있도록 안전한 장소에 소화전을 설치한다.
- (2) (1)의 성능과 동등 이상의 수량을 방수할 수 있는 소방펌프 자동차를 갖춘다.

2.7.9.1.4 온도상승방지설비의 수원

- (1) 분무장치와 소화전 등은 해당 설비를 30분 이상 연속하여 동시에 방수할 수 있는 수량을 가지는 수원에 접속한다.
- (2) 4기 이상의 저장탱크가 상호 인접하여 설치되어 있는 경우에는 2.7.9.1.2(1)이나 2.7.9.1.2(2)에 따른 분무 또는 방수용 펌프의 능력 및 수원의 수량은 그림 2.7.9.1.4와 같이 임의의 저장탱크와 인접하는 저장탱크의 조합을 저장탱크 군으로 분류할 때 합계 표면적이 최대로 되는 저장탱크군의 표면적에 따라 계산하는 것으로 한다.

주) 사선 친 부분의 저장탱크가 대상표면적이 됨.

그림 2.7.9.1.4 온도상승방지설비 능력 산정 기준

2.7.9.2 배관의 온도상승방지조치

배관에는 다음 기준에 따라 그 온도를 40° C 이하로 유지할 수 있는 조치를 한다. 다만, 열팽창안전밸브의 설치 등 안전조치를 한 경우에는 온도를 40° C 이하로 유지할 수 있는 조치를 하지 아니할 수 있다. (1) 배관에 가스를 공급하는 설비에는 상용온도를 초과한 가스가 배관에 송입되지 아니하도록 필요한 조치

- (2) 배관을 지상에 설치하는 경우 온도의 이상상승을 방지하기 위하여 부식방지도료를 칠한 후 은백색도료로 재도장하는 등의 조치. 다만, 지상설치 부분의 길이가 짧은 경우에는 그러하지 아니하다.
- (3) 배관을 교량 등에 설치할 경우에는 가능하면 교량 하부에 설치하여 직사광선을 피하도록 하는 조치

2.8 부대설비 기준

2.8.1 계측설비 설치

2.8.1.1 압력계 설치

28.1.1.1 충전소에는 충전소에서 긴급사태가 발생하는 것을 방지하기 위하여 다음 기준에 따라 압력계를 설치한다.

- (1) 충전소에는 표준이 되는 압력계를 2개 이상 비치한다.
- (2) 압축장치 및 펌프의 토출압력, 저장설비 및 압축가스설비의 저장압력, 충전설비의 충전압력을 지시하기 위한 압력계를 각각 설치한다.
- (3) 압력계의 지시눈금은 압력계가 부착되는 설비의 설계압력의 최소 150% 까지 지시할 수 있는 것으로 한다.

2.8.1.2 액면계 설치(해당 없음)

2.8.1.3 온도계 설치(해당 없음)

2.8.2 비상전력설비 설치

정전 등으로 인하여 충전설비 등의 기능이 상실되지 아니하도록 다음 기준에 따라 비상전력설비를 설치한다.

2.8.2.1 충전시설의 비상전력설비

충전시설에는 다음 기준에 따라 비상전력설비를 설치한다.

- (1) 비상전력등이라 함은 정전 등의 경우에 충전설비 등을 안전하게 유지하고 안전하게 정지시키기 위하여 필요한 최소용량을 갖춘 전력 및 공기등 또는 이와 동등 이상인 것을 말한다.
- (2) 비상전력등은 정전 등으로 인하여 그 충전설비 등의 기능이 상실되지 아니하도록 지체 없이 전환될 수 있는 방식이고 안전에 필요한 설비는 표 2.8.2.1에 게기한 것 또는 이들과 동등 이상으로 인정되는 것 중 같은 종류를 포함하여 두 가지 이상(평상시에 사용되는 전력을 포함한다)을 보유하도록 조치한다.

비상전력등 설비	타처 공급전력	자가 발전	축전지장치	엔진구동발전	스팀터빈구동 발전	공기 또는 질소설비
자동제어장치	0	0	0			Δ
긴급차단장치	0	0	0			Δ
살수장치	0	0	0	0	0	
방소화설비	0	0	0	0	0	
냉각수펌프	0	0	0	0	0	
물분무장치	0	0	0	0	0	
독성가스제해설비	0	0	0	0	0	
비상조명설비	0	0	0			
가스누설검지경보설비	0	0	0			
통신시설	0	0	0			

표 2.8.2.1 충전시설에서의 비상전력 종류

[비고]

- 1. 위 표에서 ○표는 비상전력 중에서 두 가지 이상 보유하는 것을 표시하며, △표는 공기를 사용하는 자동제어장치 또는 긴급차단장치에 반드시 보유하도록 조치할 것을 표시한다.
- 2. 자기발전은 항상 가동되는 것으로서 동일선로에 타처로부터 공급되는 전력 또는 별도의 자기발전설비와 병렬로 수전할 수 있는 것으로 한다.
- 3. 살수장치, 방소화설비, 냉각수펌프, 물분무장치 등에서 엔진 또는 스탐터빈 구동 시 펌프를 사용하는 경우에는
- 이 표의 비상전력등을 보유하는 조치를 아니하여도 된다.
- 4. 자동제어장치 또는 긴급차단장치는 정전 등의 경우 1 또는 2에서 정한 바에 관계없이 자동 또는 원격수동으로

즉시 안전하게 작동될 수 있는 것을 갖춤으로서 갈음할 수 있다.

5. (5-1), (5-2)는 비상전력등을 보유한 것으로 본다.

(5-1) 정전 시에 그 기능이 상실되지 아니하는 것

(5-1-1) 긴급차단장치 중 와이어 등으로 작동되는 것

(5-1-2) 물분무장치, 방소화설비 및 실수장치 중 항상 필요한 용수량을 필요한 수두압으로 유지할 수 있는 물탱크 또는 저수지 등을 확보하고 있는 상태에서 펌프를 사용하지 아니하는 경우

(5-1-3) 통신시설 중 메가폰

(5-2) 비상조명 또는 통신시설로서 전지를 사용하는 것은 항상 사용할 수 있는 예비전지를 보유하고 있거나 충전식 전지일 것

2.8.3 통신설비 설치

충전소 안에는 긴급사태가 발생할 때 이를 신속히 통보할 수 있도록 시업소 규모·구조에 적합한 통신설비를 설치한다.

2.8.4 운영시설물 설치

2.8.4.1 계기실설치(내용 없음)

2.8.4.2 건축물 설치

충전소구역의 건축물의 창 등의 유리는 망입유리 또는 안전유리로 한다.

2.8.4.3 조명등 설치

충전시설의 방류둑 근처에는 조명등을 설치한다.

2.9 표시기준

시업소·처리설비 및 압축가스설비의 안전을 확보하기 위하여 필요한 곳에는 도시가스를 취급하는 시설 또는 일반인의 출입을 제한하는 시설이라는 것을 명확하게 알아볼 수 있도록 다음 가준에 따라 경계표지를 설치하고, 외부인의 출입을 통제할 수 있도록 경계책을 설치한다. 다만, 2.7.2.1에 따른 방호벽을 설치하거나 처리설비 및 압축가스설비가 밀폐형 구조물 안에 설치된 경우 또는 처리설비가 방류둑 안에 설치된 경우에는 해당 처리설비 및 압축가스설비의 외부에 경계책을 설치하지 아니할 수 있다.

2.9.1 경계표시

도시가스 충전시설의 안전을 확보하기 위하여 필요한 곳에는 도시가스를 취급하는 시설 또는 일반인의 출입을 제한하는 시설이라는 것을 명확하게 식별할 수 있도록 다음 기준에 따라 경계표지를 설치한다.

2.9.1.1 도시기스 충전시업소 경계표지

도시가스 충전사업소에 설치하는 경계표지는 다음 기준에 따라 설치한다.

2.9.1.1.1 사업소의 경계표지는 해당 사업소의 출입구 (경계울타리, 담 등에 설치되어 있는 것) 등 외부에서 보기 쉬운 곳에 게시한다.

2.9.1.1.2 사업소 안 시설 중 일부만이 법의 적용을 받을 때에는 해당 시설이 설치되어 있는 구획, 건축물 또는 건축물 내에 구획된 출입구 등 외부로부터 보기 쉬운 장소에 게시한다. 이 경우 해당 시설에 출입 또는 접근할 수 있는 장소가 여러 방향일 때에는 그 장소마다 게시하고, 냉동설비, 저온액화탄산가스 저장설비 중에서 단체설비(유니트형 냉동설비) 등을 말한다) 또는 이동식 냉동설비에 대해서는 그 설비외면의 보기 쉬운 장소에 표시할 수 있다.

2.9.1.1.3 경계표지는 법의 적용을 받고 있는 사업소 또는 시설임을 외부 사람이 명확하게 식별할 수 있는 크기로 한다. 또한 해당 사업소에서 준수하여야 할 안전확보에 필요한 주의사항을 부기할 수 있다.

○ ○ 가 스 지하저장소
고압가스제조사업소
○ ○ 가스 충 전 소
출 입 금 지
화 기 절 대 엄 금
○ ○ 가스 저 장 소
○ ○ 가스 기 계 실

2.9.1.2 기스충전 또는 이입장소 경계표지

용기에 가스를 충전하거나, 저장탱크 또는 용기 상호간에 가스를 이입하는 장소에는 다음 기준에 따라 경계표지를 설치한다.

2.9.1.2.1 가스를 충전하거나 이입하는 작업을 하고 있는 고압설비 주변에 제3자가 보기 쉬운 장소에 경계표지를 게시한다. 이 경우 해당 설비에 접근할 수 있는 방향이 여러 곳일 경우에는 각각의 방향에 대하여 게시한다.

2.9.1.2.2 표지에는 도시가스를 충전 또는 이입 작업 중이라는 것 및 그 부근에서 화기사용을 절대 금지한다는 주의 문구를 명확히 알 수 있도록 기재한다.

2.9.1.2.3 이동충전차량 충전설비에는 그 설비가 이동충전차량 충전설비임을 알 수 있도록 표시하고, 이동충전차량 충전장소에는 지면에 정차위치와 진입 및 진출의 방향을 표시한다.

2.9.1.3 배관의 경계표지

배관의 경계표지는 다음 기준에 따라 설치한다.

2.9.1.3.1 표지판은 배관이 설치되어 있는 경로에 따라 배관의 위치를 정확히 알 수 있도록 설치한다. 다만, 표지판의 설치로 인하여 교통 등의 장해가 우려되는 경우에는 배관으로부터 가장 가까우며, 일반인이 보기 쉬운 장소를 선택하여 설치할 수 있다.

29.1.3.2 지하에 설치된 배관은 500 m 이하의 간격으로, 지상에 설치된 배관은 1000 m 이하의 간격으로 설치하며, 배관의 위치를 알기 어려운 곳(굽어지는 곳, 분리되는 곳, 다른 가스배관과 교차되는 곳 등)에 대해서는 표지판을 추가로 설치한다. 다만, 지상에 설치한 배관의 경우 배관의 표면에 가스의 종류, 연락처 등을 표시한 때에는 이를 표지판에 갈음할 수 있다.

2.9.1.3.3 하나의 도로에 2개 이상의 도시가스배관이 함께 설치되어 있는 경우에는 사업자간에 협의하여 공동표지판을 2.9.1.3.1 및 2.9.1.3.2에 따라 설치한다.

2.9.1.3.4 표지판에는 도시가스의 종류, 설치구역 명, 배관설치(매설)위치, 신고 처, 회사명 및 연락처등을 명확하게 기재한다.

제○○구역 도시가스배관의 표지판

이 지역에는 아래와 같이 도시가스배관이 설치(매설)되어 있습니다. 가스누출이나 그 밖의 이상을 발견하신 분은 즉시 신고 또는 연락하여 주시기 바랍니다.

신고처: 한국가스안전공사(지역국번-0019) 또는 소방서(119)

도시가스의 종류	표지판에서 본 배관위치	회사명 및 연락처	
\sim	○방향	(주)〇〇	
	○m지점	2 00-0000	
	○방향	(취)	
	○m지점	2 00-0000	
\sim	○방향	(주)○○	
	○m지점	5 00-0000	

2.9.2 식별표지 및 위험표지(해당 없음)

2.9.3 경계책

도시가스시설의 안전을 확보하기 위하여 저장설비, 처리설비 및 감압설비를 설치한 장소 주위에는 외부인의 출입을 통제할 수 있도록 다음 기준에 따라 경계책을 설치한다. 다만, 저장설비, 처리설비 및 감압설비가 건축물 안에 설치된 경우 또는 차량의 통행 등 조업시행이 현저히 곤란하여 위해 요인이 가중될 우려가 있는 경우에는 경계책을 설치하지 아니할 수 있다.

- 2.9.3.1 경계책 높이는 1.5 m 이상으로 한다.
- 2.9.3.2 경계책의 재료는 철책 또는 철망 등으로 한다.
- 2.9.3.3 경계책 주위에는 외부사람이 무단출입을 금하는 내용의 경계표지를 보기 쉬운 장소에 부착한다.

2.9.3.4 경계책 안에는 누구도 화기, 발화 또는 인화하기 쉬운 물질을 휴대하고 들어갈 수 없도록 필요한 조치를 강구한다. 다만, 해당 설비의 정비수리 등 불기피한 사유가 발생한 경우에 한정하여 안전관리책임자의 감독 하에 휴대 조치할 수 있다.

3. 기술기준

3.1 인전유지기준

3.1.1 기초 유지관리(내용 없음)

3.1.2 저장설비 유지관리

저장설비의 안전성 및 작동성을 확보하고 저장설비 주위에서의 위해요소 발생을 방지하기 위하여 다음 기준에 따라 필요한 조치를 강구한다.

3.1.2.1 저장탱크

도시가스 저장탱크는 도시가스를 안전하게 저장하기 위하여 다음 기준에 따라 유지 · 관리한다.

3.1.2.1.1 저장탱크 용량 감시

압축기 운전실에는 그 운전실에서 항상 그 저장탱크 안에 들어있는 가스의 용량을 알 수 있도록 한다.

3.1.2.1.2 저장탱크 침이방지조치

저장탱크(저장능력이 입축가스는 100 m², 액화가스는 1톤 미만인 저장탱크는 제외)의 침하로 인한 위해를 예방하기 위해 다음 기준에 따라 주기적으로 침하상태를 측정한다.

- **(1)** 저장탱크(계단, 사다리, 배관 등의 부속품을 포함한다. 이하 3.1.21.2에서 같다)의 침하상태 측정주기는 1년에 1회 이상으로 한다.
- **(2)** 저장탱크의 침하상태 측정방법은 다음과 같이 한다. 이 경우 저장능력이 100톤 이하인 저장탱크는 (2-1)부터 (2-5)까지에 따른 조치를 생략할 수 있다.
- (2-1) 벤치마크(bench mark: 수준점)나 가(仮) 벤치마크를 다음 기준과 같이 설정한다. 다만, 해당 저장탱크로부터 2km 이내에 국토정보지리원의 일등수준점이 있는 경우에는 벤치마크 나 가벤치마크를 설정하지 아니할 수 있다.
- (2-1-1) 벤치마크는 그림 3.1.2.1.2①의 예와 같이 지진, 사태(沙汰), 침하 기타 외력에 의해 변형이 일어나지 않는 구조로 한다.

그림 3.1.2.1.2① 벤치마크의 구조

(2-1-2) 가벤치마크는 그림 3.1.2.1.22의 예와 같이 설정 한다.

그림 3.1.2.1.2② 가벤치마크의 설정 예

- (2-1-3) 벤치마크는 해당 사업소내의 면적 50만 m'당 1개소 이상 설치한다.
- (2-1-4) 벤치마크 또는 가벤치마크는 차량의 통행 등으로 인해 파손되지 않은 위치이고 또한 관측하기 쉬운 위치에 설치한다.
- (2-2) 해당 저장탱크의 기초를 관측하기 쉬운 곳에는 레벨차를 측정할 수 있도록 레벨측정기를 설치한다. (2-3) 참하상태측정은 해당 저장탱크의 기초면이나 밑판의 측정점과 벤치마크 또는 가벤치마크와의 레벨차를 측정한다.
- (2-4) 측정의 결과에 따라 해당 저장탱크의 기초면이나 밑판의 침하로 인한 기울기가 최대로 되는 기초면 또는 밑판에 2점을 정하고 그 2점간의 레벨차(단위 : mm, 기호 : h) 및 그 2점간의 수평거리(단위 : mm, 기호 : ℓ)를 측정한다.
- (2-5) (2-4)에서 측정한 결과로 침하량(h/ℓ)을 계산한다.

3.1.2.1.3 저장탱크 침이상태에 따른 조치

저장탱크의 침하상태에 따라 다음과 같이 안전조치를 한다.

- (1) 침하량(h/ℓ)이 0.5%를 초과한 경우
- (1-1) 3.1.2.1.2에 따라 침하량을 1년간 매월(저장탱크 내부를 개방하여 부분적인 침하량을 측정하는

경우에는 6개월마다)측정하여 기록하다.

- (1-2) (1-1)의 측정결과, 침하가 진행되고 있는 경우로서 다음 1년 동안의 침하량이 1%를 초과할 것으로 판단되는 경우에는 (1-1)의 측정을 계속한다.
- (2) 침하량 h/ℓ이 1 %를 초과한 경우
- (2-1) 저장탱크의 사용을 중지하고 저장탱크의 형상, 구조, 용량 및 제조후의 경과 년 수 등에 따라 다음 중 어느 하나의 조치 나 이에 준하는 유효한 조치를 한다.
- (2-1-1) 앵커볼트를 분리한 후 저장탱크에 무리한 하중이 걸리지 아니하도록 지지하면서 저장탱크를 기초로부터 들어 올리고 해당 기초의 경시나 침하량에 따라 필요한 두께의 라이너를 삽입하거나 무수축 콘크리트를 충전한다.
- (2-1-2) 저장탱크를 들어 올리고 침하되지 않은 쪽 아래의 토사를 수평이 될 때까지 깎아낸다.
- (2-1-3) 저장탱크를 들어 올려 밑판을 떼어내고 기초면을 수평으로 한 후 밑판을 설치한다.
- (2-2) 기초를 수정한 경우에는 저장탱크를 들어 올릴 때 특별히 응력이 발생한 것으로 추정되는 부분에 대해서 다음의 방법 중 적절한 방법으로 시험을 하고 균열 등의 유해한 결함이 없음을 확인한다. 다만, 저온 및 초저온 저장탱크는 시험을 하지 않을 수 있고, 균열 등의 유해한 결함이 없음을 확인하지 아니할 수 있다.
- (2-2-1) KS D 0213(강자성 재료의 자분탐상검사 방법 및 자분 모양 분류)에 따른 자분탐상시험 <개정 14.11.17., 21.10.08.>
- (2-2-2) KS B 0816(침투 탐상 시험 방법 및 침투 지시 모양의 분류)에 따른 침투탐상시험
- (2-2-3) KS B 0896(페라이트계 강용접 이음부에 대한 초음파 탐상검사)에 따른 초음파탐상시험 <개정 21.10.08.>
- (2-2-4) KS B 0845(강 용접 이음부의 방사선투과검사)에 따른 방사선투과시험 <개정 21.10.08.> (2-3) 기초를 수정한 경우[(2-2)에 따른 검사를 한 것은 그 검사를 한 휘에는 저장탱크에 대한 외관검사 및 충수(充水)시험에 병행하여 기초의 침하상태를 측정하여 이상이 없고 기초의 침하량이 설정치 이하인 것을 확인한다.
- (2-4) 기초를 수정한 후에는 적어도 3개월에 2회, 그 후에는 6개월마다 1회씩 부등침하량을 측정하고 이상이 없음을 확인한다.

3.1.3 기스설비 유지관리

충전시설의 안전성 및 작동성을 확보하고 충전설비 주위에서의 위해요소 발생을 방지하기 위하여 다음 기준에 따라 상응하는 조치를 강구한다.

3.1.3.1 진동방지조치

고압설비 중 진동이 심한 곳에는 진동을 최소한도로 줄일 수 있는 조치를 한다.

3.1.3.2 기스설비 접속

고압설비를 이음쇠로 접속할 때에는 그 이음쇠와 접속되는 부분에 잔류응력이 남지 아니하도록 조립하고 이음쇠 밸브류를 나사로 조일 때에는 무리한 하중이 걸리지 아니하도록 하며, 상용의 압력이 19.6 MB 이상이 되는 곳의 나사는 나사게이지로 검사한 것으로 한다.

3.1.3.3 스톱밸브의 유지관리

안전밸브 또는 방출밸브에 설치된 스톱밸브는 항상 완전히 열어 놓는다. 다만, 안전밸브 또는 방출밸브의

수리 등을 위하여 특히 필요한 경우에는 그러하지 아니하다.

3.1.3.4 기연성물질 취급

가스설비주위에는 가연성 액체 등의 위험물을 두지 아니한다.

3.1.3.5. 충전직업 금지

화기를 취급하는 곳이나 인화성의 물질 또는 발화성의 물질이 있는 곳 및 그 부근에서는 가연성가스를 용기에 충전하지 아니한다.

- 3.1.3.6. 가스충전소에는 휴대용 가스누출검지기를 비치한다.
- 3.1.4 배관 유지관리(내용 없음)
- 3.1.5 시고예방설비 유지관리
- 3.1.5.1 긴급차단장치(내용 없음)

3.1.5.2 정전기제거설비

정전기 제거설비를 정상상태로 유지하기 위하여 다음 사항을 확인한다.

- (1) 지상에서 접지 저항치
- (2) 지상에서의 접속부의 접속상태
- (3) 지상에서의 절선 그 밖에 손상부분의 유무
- 3.1.6 피해저김설비 유지관리(내용 없음)
- 3.1.7 부대설비 유지관리

3.1.7.1 비상전력설비

비상전력등은 그 기능을 정기적으로 검사하여 사용상 지장이 없게 한다.

3.2 제조 및 충전기준

3.2.1 제조 및 충전 준비(내용 없음)

3.2.2 제조 및 충전 작업

압축도시가스 충전작업의 안전확보를 위하여 필요한 안전수칙을 준수하고, 압축도시가스의 안전성 유지를 위하여 다음 기준에 따른 충전기준을 기준을 준수한다.

3221 이동충전차량은 충전소 안 지정된 장소에 정치하며, 충전 중에는 정지목 등을 설치하여 이동충전차량

- 이 움직이지 아니하도록 고정한다.
- 3.2.2.2 이동충전차량으로 하는 이송작업 또는 충전작업은 반드시 충전소 안에서 실시하고, 이동하는 경우를 제외하고는 이동충전차량을 충전소 밖의 지역에 주정차하지 아니한다.
- 3.22.3 자동차 또는 이동충전차량에 입축도시기스를 충전할 때에는 엔진을 정지시키고, 자동차의 수동브레이크를 채우도록 한다.
- 3.2.2.4 이동충전차량의 용기 및 압축도시가스 자동차의 용기는 통상온도에서 설계압력 이상으로 충전되어서는 아니되며, 용기의 사용압력에 적합하게 충전한다.
- 3.2.2.5 이동충전차량의 충전장소 외에서 이동충전차량의 충전을 하지 않는다.

3.2.3 제조 및 충전 사후조치

충전완료 후 충전설비를 분리할 경우에는 충전호스 안의 가스를 제거하는 조치를 한다.

3.3 점검기준

충전시설의 안전 확보에 필요하여 설치한 설비에 대해서는 다음 기준에 따라 주기적으로 작동상황을 점검하고 그 결과 이상이 있을 때에는 그 설비가 정상적으로 작동할 수 있도록 필요한 조치를 강구한다.

- 3.3.1 전체시설 점검(내용 없음)
- 3.3.2 기초 점검(내용 없음)
- 3.3.3 저장설비 점검(내용 없음)

3.3.4 기스설비 점검

충전시설의 사용개시 전 및 사용종료 후에는 반드시 그 충전시설에 속하는 설비의 이상 유무를 점검하는 것 외에 1일 1회 이상 충전설비의 작동상황에 대하여 점검 · 확인을 하고 이상이 있을 때에는 그 설비의 보수 등 필요한 조치를 한다.

3.3.4.1 사용 전·후 점검

가스설비의 사용개시 및 종료 시에는 다음 작업 수칙에 따라 해당 설비의 이상 유무를 점검한다.

- (1) 점검작업 준비
- (1-1) 안전관리총괄자는 사전에 안전관리담당자와 협의하여 점검계획을 정하고 이를 각각의 안전관리 부문 담당자에게 철저히 주지시킨다. 이를 변경한 때에도 또한 같다.
- (1-2) 점검계획을 기준으로 점검표를 작성하고 점검원에게 실시요령 및 주의 시항을 철저히 주지시킨다.
- (1-3) 점검계획에는 지시 및 보고체계를 명시한다.
- (1-4) 점검에 사용하는 공구, 측정기구, 보호구 등을 준비하고 이를 확인한다.

- (2) 사용개시 전 점검사항
- (2-1) 가스설비에 있는 내용물의 상황
- (2-2) 계기류의 기능 특히 인터록(interlock), 긴급용시켄스, 경보 및 자동제어장치의 기능
- (2-3) 긴급치단 및 긴급빙출장치, 통신설비, 제어설비, 정전기방지 및 제거설비 그 밖에 안전설비의 기능
- (2-4) 각 배관계통에 부착된 밸브 등의 개폐상황 및 맹판의 탈착 · 부착 상항
- (2-5) 회전기계의 윤활유 보급상황 및 회전구동상황
- (2-6) 가스설비의 전반적인 누출 유무
- (2-7) 가연성가스 및 독성가스가 체류하기 쉬운 곳의 해당 가스농도
- (2-8) 전기, 물, 증기, 공기 등 유틸리티시설의 준비상황
- (2-9) 안전용 불활성가스 등의 준비상황
- (2-10) 비상전력 등의 준비상황
- (2-11) 그 밖에 필요한 사항의 이상 유무
- (3) 사용종료 시 점검사항
- (3-1) 사용종료 직전에 각 설비의 운전상황
- (3-2) 사용종료 후에 가스설비에 있는 잔유물의 상황
- (3-3) 충전설비 안의 가스, 액등의 불활성가스 등에 의한 치환상황, 특히 수리점검 작업상 설비 내에 사람이 들어갈 경우에는 공기로의 치환상황
- (3-4) 개방하는 가스설비와 다른 가스설비와의 차단상황
- (3-5) 가스설비의 전반에 대하여 부식, 마모, 손상, 폐쇄, 결합부의 풀림, 기초의 경사 및 침하, 그 밖의 이상 유무

3.3.4.2 일일점검

운전 중인 가스설비에 대해서는 1일 1회 이상 다음 기준에 따라 해당 설비 등의 작동상황에 대하여 이상 유무를 점검한다.

- **(1)** 점검기준
- (1-1) 점검하는 설비, 부문, 항목, 점검방법, 판정기준, 조치 등을 기재한 점검표를 작성한다.
- (1-2) 점검표에 지시, 보고체계 등을 정한다.
- (1-3) 점검에 사용하는 공구, 측정기구, 보호구 등의 준비상황을 확인한다.
- (2) 운전 중의 점검사항
- (2-1) 가스설비로부터의 누출
- (2-2) 계기류의 지시, 경보, 제어의 상태
- (2-3) 가스설비의 온도, 압력, 유량 등 조업조건의 변동상황
- (2-4) 가스설비의 외부부식, 마모, 균열, 그 밖의 손상유무
- (2-5) 회전기계의 진동, 이상음, 이상온도상승, 그 밖의 작동상황
- (2-6) 탑류. 배관 등의 진동 및 이상음
- (2-7) 가스누출 경보장치 및 가스경보기의 상태
- (2-8) 접지접속선의 단선, 그 밖의 손상유무
- (2-9) 그 밖에 필요한 사항의 이상 유무
- (3) 기타 점검사항
- (3-1) 압축기오일의 주입량과 회수량을 측정 관리할 것
- (3-2) 1일 2회 이상 압축기 및 필터 오일 배출을 실시 할 것

3.3.4.3 점검결과 조치

운전 중인 가스설비에 대한 점검결과 이상이 발견되었을 때에는 다음 기준에 따라 해당 설비의 보수 그 밖에 위험방지조치를 강구하고, 또한 가스설비에서 일어날 수 있는 이상사태를 가상해 미리 각각의 조치에 대한 작업 기준 등을 작성 비치하여 긴급 시에 지시, 보고 및 연락계통 그 밖에 필요한 조치에 관한 비상연락망체계를 정한다.

3.3.4.3.1 가스설비에서 발생한 이상의 정도에 따라 다음 중 어느 하나 이상의 조치를 강구하여 위험을 방지한다.

- (1) 이상이 발견된 설비에 대한 원인의 규명과 제거
- (2) 예비기로 교체
- (3) 부하의 저하
- (4) 이상을 발견한 설비 또는 공정의 운전정지 후 보수

3.3.4.3.2 이상상태로 인하여 가스설비의 운전을 정지한 경우에는 이상 원인을 규명하여 적절한 조치를 하고 안전을 확인한 후 운전을 재개한다.

3.3.4.4 점검기록

운전 중인 가스설비의 점검결과에 따른 보수 등 실시기록을 작성 및 비치하고 이를 검토하여 설비의 열화경향 그 밖의 특성을 파악하고 차기 점검, 보수 등의 계획과 설비개선 등에 활용한다.

3.4 수리·청소 및 철거기준

가스설비를 수리·청소 및 철거하는 때에는 그 작업의 안전 확보와 그 설비의 작동성 유지를 위하여 다음 작업 안전수칙에 따라 수리 및 청소를 한다.

3.4.1 수리·청소 및 철거 준비

3.4.1.1 직업계획 수립

가스설비의 수리·청소 및 철거(이하 "수리등"이라 한다)를 할 때에는 해당 수리등의 작업내용, 일정, 책임자 그 밖의 작업담당구분, 지휘체제, 안전상의 조치, 소요자재 등을 정한 작업계획을 미리 해당 작업의 책임자 및 관계자에게 주지시키는 동시에 그 작업계획에 따라 해당 책임자의 감독 하에 실시한다.

3.4.1.2 기스의 치환

가연성가스설비의 수리등을 할 때에는 다음 기준에 따라 미리 그 내부의 가스를 불활성가스 또는 물 등 해당 가스와 반응하지 아니하는 가스 또는 액체로 치환한다.

3.4.1.2.1 가스설비의 내부가스를 그 압력이 대기압 가까이 될 때까지 다른 저장탱크 등에 회수한 후 잔류가스를 서서히 안전하게 방출하거나 연소장치에 유도하여 연소시키는 방법으로 대기압이 될 때까지 방출한다.

- 3.4.1.2.2 3.4.1.2.1의 처리를 한 후에는 잔류가스를 불활성가스 또는 물이나 스팀 등 해당 가스와 반응하지 아니하는 가스 또는 액체로 서서히 치환한다. 이 경우에 가스방출 방법은 3.4.1.2.1을 따른다.
- 3.4.1.2.3 3.4.1.2.1 및 3.4.1.2.2의 잔류가스를 대기 중에 방출할 경우에는 방출한 가스의 착지농도가 해당 가연성가스의 폭발하한계의 1/4 이하가 되도록 방출관으로부터 서서히 방출시킨다. 이 농도확인은 가스검지기 그밖에 해당 가스농도식별에 적합한 분석방법(이하 "가스검지기등" 이라 한다)으로 한다.
- 3.4.1.2.4 치환 결과를 가스검지기등으로 측정하고 해당 가연성가스의 농도가 그 가스의 폭발하한계의 1/4 이하가 될 때까지 치환을 계속한다.
- **3.4.1.2.5** 수리등의 작업 대상 및 작업내용이 다음 기준에 해당하는 것은 3.4.1.2.1부터 3.4.1.2.4까지 에 불구하고 가스치환 작업을 하지 아니할 수 있다.
- (1) 가스설비의 내용적이 1 m³ 이하인 것
- (2) 출입구의 밸브가 확실히 폐지되어 있고 내용적이 5 m² 이상의 가스설비에 이르는 시이에 2개 이상의 밸브를 설치한 것
- (3) 사람이 그 설비의 밖에서 작업하는 것
- (4) 화기를 사용하지 아니하는 작업인 것
- (5) 설비의 간단한 청소 또는 가스켓의 교환 그 밖에 이들에 준비하는 경미한 작업인 것

3.4.2 수리·청소 및 철거 직업

3.4.2.1 기스 재치환

가스설비의 수리등을 위하여 직업원이 그 가스설비 안에 들어갈 때에는 3.4.1.2의 치환작업에 사용된 가스 또는 액체를 다음 기준에 따라 공기로 재치환하고 수리등을 하는 중에는 산소의 농도를 수시로 확인한다. 이 경우 3.4.1.2에 따른 치환을 불활성가스 등으로 하는 경우에는 특히 주의한다.

- 3.4.2.1.1 기연성 가스설비의 재치환작업은 가스설비 내부에 남아있는 가스 또는 액체가 공기와 충분히 혼합되어 혼합된 가스가 방출관, 맨홀 등으로부터 대기 중에 방출되어도 유해한 영향을 끼칠 염려가 없는 것을 확인한 후 3.4.1.2의 치환방법에 따라 실시한다.
- **3.4.2.1.2** 공기로 재치환 한 결과를 산소측정기 등으로 측정하여 산소의 농도가 18 % 부터 22 %까지로 된 것이 확인될 때까지 공기로 반복하여 치환한다.

3.4.2.2 기스 누출방지 조치

기스설비를 개방하여 수리등을 할 경우에는 다음 기준에 따라 기스가 누출되지 아니하도록 조치를 강구한다.

3.4.2.2.1 3.4.1.2에 따른 가스치환 조치(불활성가스의 경우에는 이에 준한 조치)가 완료된 후(해당 개방한 부분에 설치한 회수용 배관 등으로부터 직접 가스를 회수하는 경우에는 3.4.1.2의 조치를 하기 전)에는 개방하는 가스설비의 전후 밸브를 확실히 닫고 개방하는 부분의 밸브 또는 배관의 이음매에 맹판을 설치한다. 다만, 3.4.1.2.5에 해당하는 경우에는 맹판을 설치하지 아니할 수 있다.

- 3.4.2.2.2 설비의 기능상 또는 작업상 수시로 개방할 필요가 있는 가스설비에 대한 작업(3.4.1.2.5에 따른 작업에만 적용한다)은 3.4.2.2.1 또는 다음 기준 중 어느 하나의 기준에 따라 실시한다. 다만, 다음 기준에 따라 작업하는 경우에는 그 작업 기준을 안전관리 규정에 명확하게 규정한다.
- (1) 개방하는 가스설비에 접속하는 배관 출입구에 2중으로 밸브를 설치하고, 2중 밸브 중간에 가스를 회수 또는 방출 할 수 있는 회수용 배관 등을 설치하여 그 회수용 배관 등을 통하여 가스를 회수 또는 방출하여 개방한 부분에 가스의 누출이 없음을 확인한다. 이 경우에 대기압 이하의 가스는 회수 또는 방출하지 아니할 수 있다.
- (2) 개방하는 가스설비의 부분 및 그 전후부분의 상용입력이 대기압에 가까운 설비(독성가스 이외의 가스설비로서 압력계를 설치한 것에 한정한다)는 그 설비에 접속하는 배관의 밸브를 확실히 닫고 해당 부분에 가스의 누출이 없음을 확인하다.
- 3.4.2.2.3 3.4.2.2.1나 3.4.2.2.2의 조치를 하였을 때에는 밸브의 닫힌 부분이나 맹판의 설치부분에 밸브조작 또는 맹판 제거의 금지표시를 하고, 자물쇠 채움 또는 봉인을 하거나 감시원을 배치하는 등의 조치를 한다. 이 경우 계기판 등에 설치된 조작 스위치 및 핸들 등에도 동일한 조치를 한다.

3.4.3 수리 및 청소 사후조치

가스설비의 수리 등을 완료한 때에는 다음 기준에 따라 그 가스설비가 정상으로 작동하는지를 확인한다.

- 3.4.3.1 내압강도에 관계가 있는 부분으로 용접에 의한 보수의 실시 또는 부식 등으로 인하여 내압강도가 저하되었다고 인정될 경우에는 비피괴검사, 내압시험 등으로 내압강도를 확인한다.
- 3.4.3.2 기밀시험을 실시하여 누출이 없는 것을 확인한다.
- 3.4.3.3 계기류가 소정의 위치에서 정상으로 작동하는 것을 확인한다.
- 3.4.3.4 수라등을 위하여 개방된 부분의 밸브 등은 개폐상태가 정상으로 복구되고 설치한 맹판 및 표시등이 제거되어 있는지 확인한다.
- 3.4.3.5 안전밸브, 역류방지밸브, 긴급차단장치 그 밖의 안전장치가 소정의 위치에서 이상 없이 작동하는지확인한다.
- 3.4.3.6 회전기계 내부에 이물질이 없고 구동상태의 정상 여부 및 이상 진동, 이상 음이 없는지 확인한다.
- 3.4.3.7 기연성가스의 가스설비는 그 내부가 불활성가스 등으로 치환되어 있는기를 확인한다.

4. 검사기준

4.1 검사항목

4.1.1 중간검사

고정식 압축도시가스 이동충전차량 충전시설의 중간검사 항목은 다음과 같다.

- (1) 2.5.7에 따른 배관 지하매설 공정
- (2) 2.5.9에 따른 배관등의 기밀능력
- (3) 2.7.2에 따른 방호벽의 기초설치 공정

4.1.2 완성검사

4.1.2.1 고정식 압축도시가스 이동충전차량 충전시설의 완성검사 항목은 2에서 정한 항목으로 한다. 다만, 중간검사에서 확인된 검사항목은 제외할 수 있다.

4.1.2.2 법 제16조제1항에 따라 공급시설의 전부가 완성도기 전이라 함은 다음에 해당하는 경우를 막하다.

- (1) 배관을 지상에 설치하는 경우 보기 쉬운 곳에 도시가스 배관임을 표시해야 하는 것 중 배관의 이상을 발견한 자에게 연락처로 연락하여 줄 것을 부탁하는 내용의 표지판을 설치하지 않은 경우
- (2) 사업소 및 처리설비에 적절한 경계표지와 경계책을 설치하지 않은 경우
- (3) 충전소에 표준이 되는 압력계를 2개 이상 갖춰두지 않은 경우
- (4) 가스설비 주위에 가연성 액체 등의 위험물을 둔 경우

4.1.3 정기검사

고정식 압축도시가스 이동충전차량 충전시설의 정기검사 항목은 2 및 3(3.1.3.2와 3.1.3.6은 제외)에 정한 항목으로 한다.

4.1.4 수시검사

수시검시는 4.1.3에서 정한 정기검사 항목 가운데 다음에 열거하는 안전장치의 유지 · 관리상태 중 필요한 사항과 법 제26조에 따른 안전관리규정 이행실태에 대하여 실시한다.

- (1) 2.6.1에 따른 안전밸브
- (2) 2.6.3에 따른 긴급차단장치
- (3) 2.6.2에 따른 가스누출검지경보장치
- **(4)** 2.6.14에 따른 안전제어장치
- (5) 2.6.8에 따른 안전용 접지 및 방폭 전기기기
- (6) 그 밖에 안전관리상 필요한 사항

4.2 검사방법 <개정 20.3.18>

중간검사, 완성검사, 정기검사 및 수시검사는 그 검사대상시설이 그 종류별 대상항목의 시설기준 및 기술기준에 적합한지 명확하게 판정할 수 있도록 다음 기준에 따른 방법으로 실시하고, 세부적 인 방법은 한국가스안전공사 사장이 정하는 바에 따른다.

4.2.1 중간검사

중간검사는 다음 검사방법에 따라 실시한다.

4.2.1.1 중간검사 대상지정

중간검사를 받아야할 공정 가운데 비파괴시험 및 배관의 매설깊이 확인을 위한 공정은 다음 방법에 따라 지정한다.

4.2.1.1.1 사업소내의 배관일 경우 중간검사 대상의 지정개소는 검사대상의 배관(법 제15조제6항에 따른 완성검사대상의 배관을 말한다. 이하 같다) 길이 $500\,\mathrm{mPr}$ 다 1개소 이상으로 하고, 지정한 부분의 길이의 합은 검사대상 배관길이의 $10\,\%$ 이상이 되도록 한다.

4.21.1.2 4.2.1.1.1에 해당하는 배관 이외의 검사대상 배관의 경우, 중간검사대상의 지정개소는 검사대상 배관길이 500 m마다 1개소 이상으로 하고, 지정한 부분의 길이의 합은 검사대상 배관길이의 20 % 이상이 되도록 한다.

4.2.1.2 기초의 확인

기초설치를 필요로 하는 공정의 경우 보오링 조사, 표준관입시험, 배인시험, 토질시험, 평판재하시험, 파일재하시험 등을 하였는지와, 그 결과의 적합 여부를 문서 등으로 확인한다. 검사신청자는 그 시험한 기관의 서명이 된 보고서를 첨부하여야 하며 같은 서류를 첨부하지 아니하는 경우 부적합한 것으로 처리한다.

4.2.1.3 배관의 확인

배관을 지하에 설치하는 경우 법에서 정한 시설기준 및 기술기준에 적합하여야 하며 배관을 매설하기 위한 공정별 진행은 검사원이 확인 후 진행한다. 검사원이 확인하기 전에 설치자가 임의로 공정을 진행한 경우에는 불합격 처리한다. <개정 19.7.16>

4.2.1.4 용접 및 비파괴 성능 확인

- 4.2.1.4.1 용접기구 및 용접재료는 KS D 7004(연강용피복아크용접봉) 등 관련규격에 규정된 용접에 적합한 기구 및 재료가 사용되는지 확인한다.
- 4.2.1.4.2 용접시공은 적합한 용접절차서(W.P.S)에 따라 진행하고, 고압가스특정제조시설의 경우 그용접절차서의 적합 여부는 검사원이 판단한다.
- 4.2.1.4.3 용접부의 비파괴시험방법이 관련기준에 적합한지 확인하고, 비파괴검사를 실시한자가 서명한 결과보고서 및 필름을 첨부 받아 적합 여부를 확인하여 처리한다.
- 421.44 그 밖에 작업공정은 검사원의 확인 없이 제작자 또는 설치지가 임의로 진행한 경우 불합격처리한다.

4.2.1.5 내압 및 기밀시험

내압 및 기밀시험은 가스설비 또는 배관의 설치가 완료되어 시험을 실시할 수 있는 상태의 공정에서 다음 기준에 따라 실시한다.

4.2.1.5.1 내압시험방법

- (1) 내압시험은 원칙적으로 수압으로 실시한다. 다만, 부득이한 이유로 물을 채우는 것이 부적당한 경우에는 공기 또는 위험성이 없는 기체의 압력으로 할 수 있다.
- (2) 고압설비와 사업소 안에 설치되는 배관에 대하여 공기 등의 기체의 압력으로 내압시험을 실시하는 경우에는 작업을 안전하게 하기 위하여 그 설비의 길이이음매, 원주이음매(배관은 그 설치장소에서 용접을 한 것으로써 바깥지름 160 mm를 넘는 관의 원주이음매에만 적용한다) 및 경판의 제작을 위한 이음매 중 맞대기 용접한 강관용접부의 전 길이(관은 용접부 전 길이의 20% 이상)에 대해서는 내압시험 전에 KS B 0845(강 용접 이음부의 방사선투과검사)에 따라 방사선투과 시험을 하고 그 등급분류가 2류(범주2) 이상임을 확인한다. 다만, 완성검사의 경우 배관의 길이 이음매에 대해서는 해당 배관을 제조한 사업소에서 내압시험을 실시한 시험성적서 등으로 확인할 수 있는 것은 그러하지 아니하다. 또한 다음에 기재하는 용접부에 대해서는 KS D 0213(강자성 재료의 자분탐상검사 방법 및 자분 모양분류) 또는 KS B 0816(침투 탐상 시험 방법 및 침투 지시모양의 분류)에 따라 탐상시험을 하고 표면 및 그 밖의 부분에 유해한 결함이 없음을 확인한다. <개정 21.10.08.>
- (2-1) 인장강도 규격값의 최소값이 568 N/m² 이상인 탄소강강판을 사용한 고압설비의 용접부
- (2-2) 판두께가 25 ㎜ 이상인 탄소강강판을 사용한 고압설비의 용접부
- (2-3) 개구부, 노즐부(nozzle stub), 보강재 등의 부착물을 고압설비에 부착한 부분의 용접부(배관에 관한 것은 제외한다)
- (2-4) 배관의 원주이음매에 관한 용접부로서 그 설치장소에서 용접을 한 것 중 방사선투과시험을 하지 아니한 것
- (3) 내압시험은 해당설비가 취성파괴를 일으킬 우려가 없는 온도에서 실시한다.
- (4) 내압시험은 상용압력의 1.5배(공기 등 기체의 압력에 의한 내압시험은 상용압력의 1.25배) 이상으로 하고, 규정압력을 유지하는 시간은 5분에서 20분간을 표준으로 한다. 다만, 초고압(압력을 받는 금속부의 온도가 -50 °C 이상 350 °C 이하인 고압설비의 상용압력 98 짜를 말한다. 이하 같다)의 고압설비와 초고압의 배관에 대해서는 1.25배(운전압력이 충분히 제어 될 수 있는 경우에는 공기 등 기체에 의한 상용압력의 1.1배) 이상의 압력으로 실시할 수 있다.
- (5) 내압시험에 종사하는 사람의 수는 작업에 필요한 최소인원으로 하고, 관측 등을 하는 경우에는 적절한 방호시설을 설치하고 그 뒤에서 한다.
- (6) 내압시험을 하는 장소 및 그 주위는 잘 정돈하여 긴급한 경우 대피하기 좋도록 하고 2차적으로 인체에 피해가 발생하지 아니하도록 한다.
- (7) 내압시험은 내압시험압력에서 팽창. 누설 등의 이상이 없을 때 합격으로 한다.
- (8) 내압시험을 공기 등 기체의 압력으로 하는 경우에는 먼저 상용압력의 50 %까지 승압하고 그 후에는 상용압력의 10 %씩 단계적으로 승압하여 내압시험압력에 달하였을 때 누설 등의 이상이 없고, 그 후 압력을 내려 상용압력으로 하였을 때 팽창, 누설 등의 이상이 없으면 합격으로 한다.
- (9) 내압시험에 필요한 준비는 검사 신청인이 한다. 〈신설 15.7.3〉

4.2.1.5.2 내압시험 생략(해당 없음)

4.2.1.5.3 기밀시험방법

고압설비와 배관의 기밀시험은 다음 기준에 따라 실시한다.

- (1) 기밀시험은 원칙적으로 공기 또는 위험성이 없는 기체의 압력으로 실시한다.
- (2) 기밀시험은 그 설비가 취성 파괴를 일으킬 우려가 없는 온도에서 한다.
- (3) 기밀시험압력은 상용압력 이상으로 하되, 0.7 IPB를 초과하는 경우 0.7 IPB 압력 이상으로 한다. 이경우 표 4.2.1.5.3와 같이 시험할 부분의 용적에 대응한 기밀유지시간 이상을 유지하고 처음과 미지막시험의 측정압력차가 압력측정기구의 허용오차 내에 있는 것을 확인한다. (처음과 마지막시험의 온도차가 있는 경우에는 압력차에 대해 보정한다)

압력측정기구	용 적	기밀유지시간			
	1 m³ 미만	48분			
압력계 또는	1 m³ 이상 10 m³ 미만	480분 48×V분(다만, 2880분을 초과한 경우는 2			
자기압력기록계	10 m³ 이상				
	10 111 01.8	880분으로 할 수 있다)			
[비고] V는 피시험부분의 용적(단위: m²)이다.					

표 4.2.1.5.3 기밀유지시간

- (4) 검사의 상황에 따라 위험이 없다고 판단되는 경우에는 해당 고압설비로 저장 또는 처리되는 가스를 사용하여 기밀시험을 할 수 있다. 이 경우 압력은 단계적으로 올려 이상이 없음을 확인하면서 승압한다.
- (5) 기밀시험은 기밀시험압력에서 누설 등의 이상이 없을 때 합격으로 한다.
- (6) 기밀시험에 종사하는 인원은 작업에 필요한 최소인원으로 하고, 관측 등은 적절한 장해물을 설치하고 그 뒤에서 한다.
- (7) 기밀시험을 하는 장소 및 그 주위는 잘 정돈하여 긴급한 경우 대피하기 좋도록 하고 2차적으로 인체에 피해가 발생하지 아니하도록 한다.
- (8) 기밀시험 및 누출검사에 필요한 준비는 검사 신청인이 한다. 〈신설 15.7.3〉

4.2.2 완성검사 및 정기검사

완성검사 · 정기검사 및 수시검사의 항목별 검사방법은 다음과 같고, 시설검사 시 용기등의 검사품 여부를 확인하여야 한다.

4.2.2.1 인전거리

도시가스 처리설비 및 저장설비 외면과 제1, 2종 보호시설과 안전거리 유지 여부를 실측한다.

4.2.2.2 설비사이의 거리

설비사이의 거리를 도면으로 확인 및 실측한다.

4.2.2.3 기스누출검지경보장치

가연성가스 · 독성가스 제조시설에 가스누출검지경보장치의 설치 여부와 성능 등을 확인한다.

4.2.2.4 긴급차단장치

- (1) 특수반응설비 또는 고압설비(가연성가스·독성가스·산소에 한정함)에 설치한 긴급차단장치의 설치상황은 도면으로 확인한다.
- (2) 검시품인지를 확인하고, 작동기능을 작동시험 또는 기록으로 확인한다.
- (3) 밸브시트의 누설 여부는 기록으로 확인한다.

4.2.2.5 배관등

사업소 안의 배관 검사는 다음 기준에 따라 실시한다.

- (1) 배관의 적정설치 여부를 측정·확인한다.
- (2) 배관의 지상 또는 지하에 매설한 경우에는 보기쉬운 곳에 연락처등 필요한 사항을 기록한 표지판이 설치되어 있는지 육안으로 확인한다.
- (3) 배관을 수중에 설치하는 경우 적합하게 설치하였는지 도면 또는 기록에 의해 확인한다.
- (4) 배관에는 부식을 방지하는 조치를 하였는지 확인하고 도면과 일치 여부를 실측한다.
- (5) 배관을 지하에 매설하는 경우 적합하게 설치하였는지 관련서류, 육안확인 및 실측한다.
- (6) 배관을 지상에 설치하는 경우 도면 및 기록에 의해 적합하게 설치하였는지 육안 확인 및 실측한다.

4.2.2.6 인전제어장치

안전제어장치가 설치되어 있는지 도면 또는 기록으로 확인하고 작동상태에서 성능을 확인한다.

4.2.2.7 인전용 접지

안전용 접지 등의 상태를 확인 및 계측한다.

4.2.2.8 비상전력

- (1) 배관장치의 안전을 위한 설비에는 비상전력을 공급할 수 있도록 조치하였는지 확인한다.
- (2) 정전 등에 대비한 비상전력은 작동시험으로 확인한다.

4.2.2.9 방호벽

방호벽 적정설치 여부를 실측으로 확인한다.

4.2.2.10 충전시설의 규모 등

허가사항(충전시설 규모, 저장탱크능력) 및 기타시설 등을 확인한다.

4.2.2.11 화기와의 거리

가스설비 및 저장설비 주위의 화기취급상황에 대한 도면과 일치 여부 확인 및 거리 등을 실측한다.

4.2.2.12 경계표지

경계표지 및 경계책 설치장소의 도면과 일치 여부 확인과 적정설치 여부를 측정 · 확인한다.

4.2.2.13 도시가스설비의 기초

고압설비의 기초에 대하여 관련서류 또는 도면으로 확인 및 측정한다.

4.2.2.14 기스설비의 재료

가스설비의 재료는 제조자의 시험성적서로 확인한다.

4.2.2.15 기스설비의 구조

가스설비는 가스누출여부에 대하여 기밀시험을 실시하고, 내압시험을 기체로 실시한 경우에는 기밀시험을 생략한다. 다만, 정기검사 시 다음과 같은 경우에는 발포액, 누설검지기 또는 디지털압력계 등으로 누출검사

를 실시하다.

- (1) 고압설비 또는 배관이 가동 중에 있는 경우
- (2) 고압설비 또는 배관 안에 촉매가 충전되어 있는 경우
- (3) 그 밖에 기밀시험을 실시하는 것이 현저히 곤란한 경우

4.2.2.16 방폭구조

방폭지역을 도면으로 확인하고 전기설비의 방폭성능을 성적서, 명판 등으로 확인한다.

4.2.2.17 불연재료 등

배관에 설치된 불연성의 재료 또는 난연성 재료의 설치상황이 도면과 일치 여부 및 재료의 시험성적서를 확인하다.

4.2.2.18 고압설비의 내압능력

- (1) 고압설비의 내압·기밀시험 기준은 4.2.1.5.1부터 4.2.1.5.2까지를 준용하고, 동 검시방법은 자기압력 기록계 등을 사용하여 계측 및 확인한다.
- (2) 「고입가스 안전관리법」제17조제1항 및 제2항에 따라 검사에 합격한 용기·냉동기·특정설비에 대한 내압시험은 합격증명서 확인으로, 펌프·압축기 등에 대한 내압시험은 제조자의 시험성적서 확인으로 갈음한다.
- (3) 튜브 및 호스로 설치된 배관계로서 상용압력이상으로 기밀시험을 실시한 경우에는 내압시험을 생략한다.

4.2.2.19 고압설비의 강도 등

고압설비의 두께 및 강도는 제조자의 KS표시 허가제품 또는 이와 동등 이상의 재료인지 여부를 시험성적서 또는 규격에 따른 서류로 확인하고, 확인이 불가능한 경우는 두께 및 강도를 계측한다.

4.2.2.20 압력계

고압설비에 적합한 규격(눈금범위)의 압력계를 도면과 맞게 설치되었는지 여부를 확인한다.

4.2.2.21 인전장치 등

고압설비에 안전장치 및 안전밸브가 적정하게 설치되어 있는지 여부 및 검사품 여부를 확인한다.

4.2.2.22 역류방지밸브

역류방지밸브의 규격 및 설치장소가 도면과 일치하는지 여부를 확인한다.

4.2.2.23 기스설비실 저장설비실

가스설비실 · 저장설비실의 환기구조, 구분설치상황이 도면과 일치 여부 확인하고 성능시험을 실시한다.

4.2.2.24 정전기 제거

정전기 제거조치가 적정하게 설치되어 있는지 다음 사항을 확인 및 계측한다.

- (1) 지상에서 접지 저항치
- (2) 지상에서의 접속부의 접속상태

(3) 지상에서의 절선 그 밖에 손상부분의 유무

4.2.2.25 통신시설

통신시설의 구비상황을 확인하고, 작동시험을 실시하여 성능을 확인한다.

4.2.2.26 표준압력계

표준압력계의 비치사항과 주기적인 검 · 교정검사 실시 여부를 확인한다.

4.2.2.27 그 밖의 검사 <개정 20.3.18>

그 밖의 검사방법은 한국가스안전공사 사장이 정하는 바에 따른다.

KGS Code 기호 및 일련번호 체계

KGS(Korea Gas Safety) Code는 가스관계법령에서 정한 시설·기술·검사 등의 기술적인 사항을 상세기준으로 정하여 코드화한 것으로 가스기술기준위원회에서 심의·의결하고 산업통상자원부에서 승인한 가스안전 분야의 기술기준입니다.

분	류	종류 및 첫째 자리	번호	분류		종류 및 첫째 자리 번호	
		냉동장치류 배관장치류	1 2		제조・충전	고압가스 제조시설 고압가스 충전시설	1 2
	기구(A)	밸브류	3		(P)	LP가스 충전시설	3
		압력조정장치류	4		(Productio	도시가스 도매 제조시설	4
	(Appliances)	호스류	5		n)	도시가스 일반 제조시설	5
		경보차단장치류	6			도시가스 충전시설	6
		기타 기구류	9			고압가스 판매시설	1
	연소기	보일러류	1	시설	판매・공급	LP가스 판매시설	2
	(B) (Burners)	히터류	2	(F) (Facilities)	(S) (Supply)	LP가스 집단공급시설	3
제품		레인지류	3			도시가스 도매 공급시설	4
(A)		기타 연소기류	9			도시가스 일반 공급시설	5
(Apparatus)	용기(C) (Containers)	탱크류	1			고압가스 저장시설	1
(дррагація)		실린더류	2		저장 • 사용	고압가스 사용시설	2
		캔류	3		(U) (Use)	LP가스 저장시설	3
		복합재료 용기류	4			LP가스 사용시설	4
		기타 용기류	9			도시가스 사용시설	5
	수소	수소추출기류	1			수소 연료 사용시설	6
		수전해장치류	2	일반	공통	기본사항	1
	(H)	연료전지	3	(G)	(C)	공통사항	2
	(Hydrogen)			(General)	(Common)	3 3 7 0	

