PROGRAMACION LINEAL: METODO SIMPLEX

Programación Lineal : Método Simplex

Sergio Esteban Legitime Davila -20172020010

Gonzalo Alejandro Malagon Quiroga-20201020002

Jose David Sanabria Aponte-201720044

Universidad Distrital Francisco José de Caldas

TABLA DE CONTENIDOS

- <u>RESUMEN</u>
- <u>HISTORIA</u>
- <u>DESARROLLO</u>
- <u>REFERENCIAS BIBLIOGRAFÍA</u>

Resumen

Dentro del desarrollo de los problemas de programación lineal, podemos encontrar diferentes métodos de solución para los mismos, dentro de estos métodos podemos encontrar uno muy conocido como lo es el método simplex, el cual nos permite una solución eficiente para diversos problemas dentro del campo de la programación lineal

Programación lineal: Método simplex [1]

Historia:

Dentro del marco de la segunda guerra mundial, era necesario el desarrollo de estrategias que permitieran la eficiencia del transporte, la movilización y resolución de problemas dentro del campo de batalla, es pues allí donde se da inicio al desarrollo de la investigación de operaciones utilizando el método simplex, ya que en ocasiones estos problemas tenían tres o más variables.

Es aquí donde el matemático George Dantzing desarrolla el método simplex, este método como anteriormente se menciona, es un método mucho más eficiente que el método gráfico, ya que este permite la introducción de dos o más variables permitiendo así la solución de problemas más complejos dentro del campo de la investigación de operaciones, cabe destacar que esta rama fue una parte importante dentro del desarrollo de la segunda gran guerra, ya que permitió una mayor eficacia dentro del campo para los ejércitos que hacían uso de la misma . [2]

Desarrollo:

El método simplex, se toma a partir de llevar el método gráfico a una forma algebraica

METODO SIMPLEX	MÉTODO GRÁFICO
1. Se grafican todas las restricciones, incluida la no negatividad -> generan un espacio de solución con infinidad de puntos factibles	1. Representar el espacio de soluciones por ecuaciones en n variables y limite las variables no negativas, m <n.< td=""></n.<>
2. Identificar los puntos de esquina factibles en la región factible -> Tomamos los vértices para candidatos solución óptima	2. Determinar las soluciones básicas factibles de la ecuación -> se generan una cantidad finita de soluciones factibles que generan candidatos para solución óptima
3.Usar la función objetivo para determinar el punto de esquina óptimo entre los candidatos	3.Usar la función para determinar la solución factible básica óptima de entre todas las candidatas

Figura 1.0 (Comparación método simplex-método grafico)

• ¿Cómo aplicar el método simplex para un problema de programación lineal ?

A continuación tenemos un problema de método simplex para producción el cual vamos a resolver y vamos a observar como aplicar el método simplex al mismo

1-Problema Aplicado [3]

La empresa el SAMAN Ltda. Dedicada a la fabricación de muebles, ha ampliado su producción en dos líneas mas. Por lo tanto, actualmente fabrica mesas, sillas, camas y bibliotecas. Cada mesa requiere de 1 pieza rectangular de 8 pines y 2 piezas cuadradas de 4 pines. Cada silla requiere de 1 pieza rectangular de 8 pines y 2 piezas cuadradas de 4 pines, cada cama requiere 1 pieza rectangular de 8 pines , 1 cuadrada de 4 pines y 2 bases trapezoides de 2 pines y finalmente cada biblioteca requiere de 2 piezas rectangulares de 8 pines, 2 bases trapezoides de 2 pines y 4 piezas rectangulares de 2 pines . Cada mesa cuesta producirla \$ 10000 y se vende en \$ 30000 , cada silla producirla cuesta \$ 8000 y se vende en \$ 28000, cada cama cuesta producirla \$ 20000 y se vende en \$ 40000, cada biblioteca cuesta producirla \$ 40000 y se vende en \$ 60000 . El objetivo de la fábrica es maximizar las utilidades.

	0000	0 0		0
MESAS	2	2	0	0
SILLAS	1	2	0	0
CAMAS	1	1	2	0
BIBLIOTECAS	2	0	2	4
INVENTARIO	24	20	20	16

Figura 2.0 (Modelo planteado para cada elemento a fabricar)

PASO #1 A partir de aquí podemos comenzar a realizar nuestro modelo

Aquí tenemos que las variables entonces serán:

 X_1 = Cantidad de mesas a producir

 X_2 = Cantidad de sillas a producir

 X_3 = Cantidad de camas a producir

 X_4 = Cantidad de bibliotecas a producir

Nuestra función objetivo será entonces:

$$Max Z = 20000 X_1 + 20000 X_2 + 20000 X_3 + 20000 X_4$$

Sujeto a las condiciones:

$$2 X_1 + 1 X_2 + 1 X_3 + 2 X_4 \le 24$$

$$2 X_1 + 2 X_2 + 1 X_3 \le 20$$

$$2 X_3 + 2 X_4 \le 20$$

$$4 X_4 <= 16$$

PASO#2

Procedemos a estandarizar el problema, agregando variables de holgura, para que las restricciones queden a manera de igualdad.

Nuestra función objetivo será entonces:

$$Max\ Z = 20000\ X_1 + 20000\ X_2 + 20000\ X_3 + 20000\ X_4$$

Sujeto a las condiciones:

$$2 X_1 + 1 X_2 + 1 X_3 + 2 X_4 + 1 X_1 = 24$$

$$2 X_1 + 2 X_2 + 1 X_3 + 1 S_2 = 20$$

$$2 X_3 + 2 X_4 + 1S_3 = 20$$

$$4 X_4 + 1S_4 = 16$$

PASO #3

Definimos la solución inicial básica

El método simplex, genera su solución a partir de una solución inicial básica la cual tiene como base para realizar sus iteraciones, esta solución inicial se forma con las variables de coeficiente diferente de (0) en la matriz identidad.

$$1S_1 = 24$$

$$1S_2 = 20$$

 $1S_3 = 20$

 $1S_4 = 16$

Solución (Segundo término): En esta fila se consigna el segundo término de la solución, es decir las variables, lo más adecuado es que estas se consignen de manera ordenada, tal cual se escribieron en la definición de restricciones.

Cj : la fila 'Cj' hace referencia al coeficiente que tiene cada una de las variables de la fila 'solución' en la función objetivo.

Variable Solución : En esta columna se consigna la solución básica inicial y a partir de esta en cada iteración se van incluyendo las variables que formaran parte de la solución final.

Cb : En esta fila se consigna el valor que tiene la variable que se encuentra a su derecha, 'variable solución' en la función objetivo.

Zj : En esta fila se consigna la contribución total, es decir la suma de los productos entre términos y Cb.

Cj - Zj: En esta fila se realiza la diferencia entre la fila Cj y Zj, su significado es la utilidad que deja de recibir por cada unidad de la variable correspondiente que no forme parte de la solución.

	CJ		20000	20000	20000	20000	0	0	0	0
Cb	Variable solución	Solución	X_1	X_2	X_3	X_4	S_1	S_2	S_3	S ₄
0	S_1	24	2	1	1	2	1	0	0	0
0	S_2	20	2	2	1	0	0	1	0	0
0	S ₃	20	0	0	2	2	0	0	1	0
0	S ₄	16	0	0	0	4	0	0	0	1
	Zj	0	0	0	0	0	0	0	0	0
	Cj-Zj		20000	20000	20000	20000	0	0	0	0

S_1	24
S ₂	20
S_3	20
S ₄	16

Solución Básica inicial

1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

Matriz identidad

	CJ	20000	20000	20000	20000	0	0	0	0
--	----	-------	-------	-------	-------	---	---	---	---

Función Objetivo Max $Z = 20000 X_1 + 20000 X_2 + 20000 X_3 + 20000 X_4$

2	1	1	2	1	0	0	0
2	2	1	0	0	1	0	0
0	0	2	2	0	0	1	0
0	0	0	4	0	0	0	1

Restricciones en orden según la formulación

Cb	Variable Solución
0	S_1
0	S_2
0	S_3
0	S ₄

Coeficiente de las variables junto a la función objetivo

Maximizar	Minimizar
-----------	-----------

Variable que entra	La más positiva de los Cj-Zj	La más negativa de los Cj-Zj
Variable que sale	Siendo b los valores bajo la celda solución y a el valor correspondiente a la intersección entre b y la variable que entra. La menos positiva de los b / a	Siendo b los valores bajo la celda solución y a el valor correspondiente a la intersección entre b y la variable que entra. La mas positiva de los b/a

	CJ		20000	20000	20000	20000	0	0	0	0	
Cb	Variable solución	Solución	X_1	X_2	X_3	X_4	S_1	S_2	S_3	S ₄	b/a
0	S_1	24	2	1	1	2	1	0	0	0	24/2=12
0	S_2	20	2	2	1	0	0	1	0	0	
0	S ₃	20	0	0	2	2	0	0	1	0	20/2=10
0	S ₄	16	0	0	0	4	0	0	0	1	16/4=4
	Zj	0	0	0	0	0	0	0	0	0	
	Cj-Zj		20000	20000	20000	20000	0	0	0	0	

X₄2024

En este caso todos los Cj-Zj son iguales, por lo que la decisión se tomara aleatoriamente siendo X_4 , por lo que los valores de **a** son los que establecen la columna X_4 , es decir, 2-0-2 y 4.

Respectivamente los valores de b/a se fijan de su respectiva operación, siendo el 4 menos positivo, por lo que la variable que sale es S₄ (Color a/b)

Iteración #1

	CJ		20000	20000	20000	20000	0	0	0	0
Cb	Variable solución	Solución	X_1	X_2	X_3	X_4	S_1	S_2	S_3	S_4
0	X_1	6	1	0	1/2	0	1	-1/2	0	-1/2
0	X_2	4	0	1	0	0	-1	1	0	1/2
0	S_3	12	0	0	2	0	0	0	1	-1/2
0	X_4	4	0	0	0	1	0	0	0	1/4
	Zj	280000	0	20000	0	20000	-20000	20000	0	15000
	Cj-Zj		20000	0	20000	0	20000	-20000	0	-15000

Iteración #2

	CJ		20000	20000	20000	20000	0	0	0	0
Cb	Variable solución	Solución	X_1	X_2	X_3	X_4	S_1	S_2	S ₃	S ₄
0	X_1	3	1	0	1/2	0	1	-1/2	0	-1/2
0	X_2	4	0	1	0	0	-1	1	0	1/2
0	X ₃	6	0	0	1	0	0	0	1/2	-1/4
0	X_4	4	0	0	0	1	0	0	0	1/4
	Zj	340000	20000	20000	30000	20000	0	10000	10000	0
	Cj-Zj		0	0	-10000	0	0	-10000	-10000	0

A continuación, podemos observar que existe una solución alterna a la solución básica, la cual involucra diferentes variables y permite un menor uso de recursos.

 $X_1 = 0$ (Cantidad de mesas a producir)

 $X_2 = 7$ (Cantidad de sillas a producir)

 $X_3 = 6$ (Cantidad de camas a producir)

 $X_4 = 4$ (Cantidad de bibliotecas a producir)

 $S_1 = 3$ (Cantidad de piezas rectangulares de 8 pines sin utilizar)

SOLUCIÓN DIGITAL:

inicializamos con número de variables y restricciones:

Pasamos a plantear el sistema de ecuaciones:

1-Iteración

	Cj		20000	20000	20000	20000	0	0	0	0
Cb	V5	Sol	X1	X2	ХЗ	X4	51	52	53	54
0	51	24	2	1	1	2	1	0	0	0
0	52	20	2	2	1	0	0	1	0	0
0	53	20	0	0	2	2	0	0	1	0
0	54	16	0	0	0	4	0	0	0	1
	Zj	0	0	0	0	0	0	0	0	0
	Cj-Zj		20000	20000	20000	20000	0	0	0	0

Continuar

2-Iteración

	Cj		20000	20000	20000	20000	0	0	0	0
Cb	VS	Sol	X1	X2	Х3	X4	51	52	53	54
0	51	4	0	-1	0	2	1	-1	0	0
20000	X1	10	1	1	1/2	0	0	1/2	0	0
0	53	20	0	0	2	2	0	0	1	0
0	54	16	0	0	0	4	0	0	0	1
	Zj	200000	20000	20000	10000	0	0	10000	0	0
	Cj-Zj		0	0	10000	20000	0	-10000	0	0

3-Iteración

	Cj		20000	20000	20000	20000	0	0	0	0
Cb	V5	Sol	X1	X2	Х3	X4	51	52	53	54
20000	X4	2	0	-1/2	0	1	1/2	-1/2	0	0
20000	X1	10	1	1	1/2	0	0	1/2	0	0
0	53	16	0	1	2	0	-1	1	1	0
0	54	8	0	2	0	0	-2	2	0	1
	Zj	240000	20000	10000	10000	20000	10000	0	0	0
	Cj-Zj		0	10000	10000	0	-10000	0	0	0

4-Iteración

	Cj		20000	20000	20000	20000	0	0	0	0
Cb	VS	Sol	X1	X2	Х3	X4	51	52	53	54
20000	X4	4	0	0	0	1	0	0	0	1/4
20000	X1	6	1	0	1/2	0	1	-1/2	0	-1/2
0	53	12	0	0	2	0	0	0	1	-1/2
20000	X2	4	0	1	0	0	-1	1	0	1/2
	Zj	280000	20000	20000	10000	20000	0	10000	0	5000
	Cj-Zj		0	0	10000	0	0	-10000	0	-5000

Solucion = 340000

	Cj		20000	20000	20000	20000	0	0	0	0
Cb	V5	Sol	X1	X2	ХЗ	X4	51	52	53	54
20000	X4	4	0	0	0	1	0	0	0	1/4
20000	X1	3	1	0	0	0	1	-1/2	-1/4	-3/8
20000	ХЗ	6	0	0	1	0	0	0	1/2	-1/4
20000	X2	4	0	1	0	0	-1	1	0	1/2
	Zj	340000	20000	20000	20000	20000	0	10000	5000	2500
	Cj-Zj		0	0	0	0	0	-10000	-5000	-2500

Ejercicios Clásicos:

Ejercicio - 1

Maximizar Z: Sujeto a:

$$5 X_1 + 4 X_2 + 3 X_3$$

$$2 X_1 + 3 X_2 + 1 X_3 \le 5$$

$$4 X_1 + 1 X_2 + 2 X_3 \le 11$$

$$3 X_1 + 4 X_2 + 2 X_3 \le 8$$

$$X_1$$
, X_2 , $X_3 \ge 0$

Solución:

Estandarización del problema

- Restricción 1: Tiene signo "≤" (menor igual) por lo que se agrega la variable de holgura S₁.
- Restricción 2: Tiene signo "≤" (menor igual) por lo que se agrega la variable de holgura S₂.
- Restricción 3: Tiene signo "≤" (menor igual) por lo que se agrega la variable de holgura S₃.

Maximizar: Z:
$$5 X_1 + 4 X_2 + 3 X_3 + 0 S_1 + 0 S_2 + 0 S_3$$

Sujeto a: $2X_1 + 3X_2 + 1 X_3 + 1S_1 + 0S_2 + 0S_3 = 5$
 $4X_1 + 1X_2 + 2X_3 + 0S_1 + 1S_2 + 0S_3 = 11$
 $3X_1 + 4X_2 + 2X_3 + 0S_1 + 0S_2 + 1S_3 = 8$

$$X_1, X_2, X_3, S_1, S_2, S_3 \ge 0$$

A partir de este modelo planteamos la tabla para aplicar el método simplex :

Tablero inicial

	CJ		5	4	3	0	0	0
	Variable							
Cb	solución	Solución	X_1	X_2	X_3	$\mathbf{S}_{\scriptscriptstyle 1}$	S_2	S_3
0	S_1	5	2	3	2	1	0	0
0	S_2	11	4	1	3	0	1	0
1	S_3	8	3	4	1	0	0	1
	Zį	0	-5	-4	1	0	0	-0

Ingresa la variable X₁ y sale de la base la variable S₁. El elemento pivote es 2

Iteración -1

	CJ		5	4	3	0	0	0
Cb	Variable solución	Solución	$X_{\scriptscriptstyle 1}$	X_2	X_3	$\mathbf{S}_{\scriptscriptstyle 1}$	S_2	S_3
0	$X_{\scriptscriptstyle 1}$	5/2	1	3/2	1/2	1/2	0	0
0	S_2	1	0	-5	0	-2	1	0
1	S_3	1/2	0	-1/2	1/2	-3/2	0	1
	Zj	25/2	0	7/2	-1/2	5/2	0	0

Ingresa la variable X₃ y sale de la base la variable S₃. El elemento pivote es ½

Iteración -2

	CJ		5	4	3	0	0	0
G!	Variable	0.1.17	37	T 7	T 7		a	
Cb	solución	Solución	\mathbf{X}_1	\mathbf{X}_2	X_3	$\mathbf{S}_{\scriptscriptstyle 1}$	\mathbf{S}_2	S_3
0	$X_{\scriptscriptstyle 1}$	2	1	2	0	2	0	-1
0	S_2	1	0	-5	0	-2	1	0
1	X_3	1	0	1	1	-3	0	2
	Zj	13	0	3	0	1	0	1

A partir de aqui podemos afirmar que la solución para este problema simplex se puede sera:

La solución óptima es Z = 13

$$X_1 = 2$$
, $X_2 = 0$, $X_3 = 1$, $S_1 = 0$, $S_2 = 1$, $S_3 = 0$

(sacado de:https://www.gestiondeoperaciones.net/programacion_lineal/metodo-simplex-ejemplo/)

Solución digital:

1ra iteración:

	Cj		5	4	3	0	0	0
Cb	V5	Sol	X1	X2	Х3	51	52	53
0	51	5	2	3	1	1	0	0
0	52	11	4	1	2	0	1	0
0	53	8	3	4	2	0	0	1
	Zj	0	0	0	0	0	0	0
	Cj-Zj		5	4	3	0	0	0

2da iteración:

	Cj		5	4	3	0	0	0
Cb	V5	Sol	X1	X2	Х3	51	52	53
5	X1	5/2	1	3/2	1/2	1/2	0	0
0	52	1	0	-5	0	-2	1	0
0	53	1/2	0	-1/2	1/2	-3/2	0	1
	Zj	25/2	5	15/2	5/2	5/2	0	0
	Cj-Zj		0	-7/2	1/2	-5/2	0	0

3ra iteración(final):

Solucion = 13

	Cj		5	4	3	0	0	0
Cb	V5	Sol	X1	X2	Х3	51	52	53
5	X1	2	1	2	0	2	0	-1
0	52	1	0	-5	0	-2	1	0
3	Х3	1	0	-1	1	-3	0	2
	Zj	13	5	7	3	1	0	1
	Cj-Zj		0	-3	0	-1	0	-1

Ejercicio – 2:
Minimizar
$$Z = 3x_1 - 9x_2 - 5x_3 - 4x_4$$

Sujeto a:
 $x_1 + 4x_2 + 5x_3 + 8x_4 \le 8$
 $x_1 + 2x_2 + 6x_3 + 4x_4 \le 4$
 $x_1, x_2, x_3, x_4 \ge 0$

Solución:

Estandarización del problema

- Restricción 1: Tiene signo "≤" (menor igual) por lo que se agrega la variable de holgura S₁.
- Restricción 2: Tiene signo "≤" (menor igual) por lo que se agrega la variable de holgura S₂.

Minimizar
$$Z = 3x_1 - 9x_2 - 5x_3 - 4x_4$$

Sujeto a:
 $x_1 + 4x_2 + 5x_3 + 8x_4 + S_1 \le 8$
 $x_1 + 2x_2 + 6x_3 + 4x_4 + S_2 \le 4$
 $x_1, x_2, x_3, x_4 \ge 0$

Utilizamos el tablero simplex para encontrar la solución:

	CJ		3	-9	-5	-4	0	0
Cb	V.S	Solución	X_1	X_2	X_3	X_4	S_1	S_2
0	S_1	8	1	4	5	8	1	0
0	S_2	4	1	2	6	4	0	1
	Zj	0	-3	9	5	4	0	0

Ingresa la variable X_2 y sale de la base la variable S_1 . El elemento pivote es 4

Iteración -1

	CJ		3	-9	-5	-4	0	0
Cb	V.S	Solución	X_1	X_2	X_3	X_4	S_1	S_2
-9	S_1	2	1/4	1	5/4	2	1/4	0
0	S_2	0	1/2	0	7/2	0	-1/2	1
	Zj	-18	-21/4	0	-25/4	-14	-9/4	0

Y a partir de aquí concluimos que la solución a este problema simplex es:

$$Z = -18$$
, $x_1 = 0$, $x_2 = 2$, $x_3 = 0$, $x_4 = 0$

 $Z=-18, x_1=0, x_2=2, x_3=0, x_4=0$ (sacado de: http://www.ganimides.ucm.cl/haraya/doc/m_simplex.pdf)

Solución digital:

1ra iteración:

	Cj		3	-9	-5	-4	0	0
Cb	V5	Sol	X1	X2	Х3	X4	51	52
0	51	8	1	4	5	8	1	0
0	52	4	1	2	6	4	0	1
	Zj	0	0	0	0	0	0	0
	Cj-Zj		3	-9	-5	-4	0	0

2da iteración(final):

Es una solucion optima multiple

		Ace	ptar					
	Cj		3	-9	15	-4	0	0
Cb	V5	Sol	X1	X2	Х3	X4	51	52
0	51	0	-1	0	-7	0	1	-2
-9	X2	2	1/2	1	3	2	0	1/2
	Zj	-18	-9/2	-9	-27	-18	0	-9/2
	Cj-Zj		15/2	0	22	14	0	9/2

Ejercicio –3:

Una empresa que fabrica tres productos (P1,P2 y P3) ha formulado el siguiente programa lineal con el objetivo de maximizar sus beneficios:

$$MAX 3X_1 + 2X_2 - 2X_3$$

Restricción recurso 1 ->
$$2X_1+2X_2+1X_3\leq 10$$

Restricción recurso 2 -> $-2X_1+1X_2-2X_3\leq 5$
 $X_1,X_2,X_3\geq 0$

Solución:

Estandarización del problema

• Restricción 1: Tiene signo "≤" (menor igual) por lo que se agrega la variable de holgura S₁.

$$MAX 3X_1 + 2X_2 - 2X_3 + 0S_1 + 0S_2$$

Restricción recurso 1 ->
$$2X_1 + 2X_2 + 1X_3 + 1S_1 = 10$$

Restricción recurso 2 -> $-2X_1 + 1X_2 - 2X_3 + 1S_2 = 5$
 $X_1, X_2, X_3, S_1, S_2 \ge 0$

al pasarla a la tabla nos quedaría:

	Z	X_I	X_2	X_3	S_1	S_2	
Z	0	3	2	-2	0	0	0
S_I	0	2	2	1	1	0	10
S_2	0	2	1	-2	0	1	5

la solución de dicho programa lineal se muestra en la tabla:

	Z	X_{I}	X_2	X_3	S_1	S_2	
Z	1	0	1	3.5	1.5	0	15
X_I	0	1	1	0.5	0.5	0	5
S_2	0	0	3	-1	1	1	15

Y a partir de aquí concluimos que la solución a este problema simplex es:

$$Z = 15, x_1 = 5, x_2 = 0, x_3 = 0$$

(referenciado de

https://www.omniascience.com/books/index.php/scholar/catalog/download/18/72/94-1?inline=1)

Solucion digital:

1ra iteración.

	Cj		3	2	-2	0	0
Cb	V5	Sol	X1	X2	Х3	51	52
0	51	10	2	2	1	1	0
0	52	5	-2	1	-2	0	1
	Zj	0	0	0	0	0	0
	Cj-Zj		3	2	-2	0	0

2da iteración(final):

Solucion = 15

	Cj		3	2	-2	0	0
Cb	V5	Sol	X1	X2	Х3	51	52
3	X1	5	1	1	1/2	1/2	0
0	52	15	0	3	-1	1	1
	Zj	15	3	3	3/2	3/2	0
	Cj-Zj		0	-1	-7/2	-3/2	0

Ejercicios Aplicados:

Ejercicio-1

Una empresa fabrica tres tipos de helados, utilizando leche y nata Para el próximo mes dispone de 75 unidades de leche y 100 de nata. Los coeficientes técnicos y los costes se muestran en la tabla siguiente:

		Hel	ado 1	Hel	ado 2	Helado 3		
	Euros/Ud.	Uds. Euros		Uds.	Euros	Uds.	Euros	
Leche	2	4	8	3	6	2	4	
Nata	1	1	1	1 2 2		3	3	
Otro	os costes		6		5		8	
Tota	al costes		15		13		15	
Precio venta			20		20		18	
Beneficio unitario			5		7		3	

Como mínimo se deben fabricar 20 helados. El plan de producción mensual se ha obtenido a través del siguiente programa lineal:

Maximizar Z:
$$5 X_1 + 7 X_2 + 3 X_3$$
 Sujeto a:

$$4 X_1 + 3 X_2 + 2 X_3 \le 75$$

$$1 X_1 + 2 X_2 + 3 X_3 \le 100$$

$$1 X_1 + 1 X_2 + 1 X_3 \ge 20$$

$$X_1$$
, X_2 , $X_3 \ge 0$

Solución:

Estandarización del problema:

- Como la restricción l es del tipo '≤' se agrega la variable de holgura S₁.
- Como la restricción 2 es del tipo '≤' se agrega la variable de holgura S₂.
- Como la restricción 3 es del tipo '≥' se agrega la variable de exceso S₃ y la variable artificial A₁.

Maximizar Z: $5 X_1 + 7 X_2 + 3 X_3 + 0 S_1 + 0 S_2 + 0 S_3 + 0 A_1$

Sujeto a:

$$4 X_1 + 3 X_2 + 2 X_3 + 1 S_1 = 75$$

$$1 X_1 + 2 X_2 + 3 X_3 + 1 S_2 = 100$$

$$1 X_1 + 1 X_2 + 1 X_3 - 1S_3 + 1 A_1 = 20$$

$$X_1, X_2, X_3, S_1, S_2, S_3, A_1 \ge 0$$

A continuación procedemos al tablero simplex para la solución:

Tablero Inicial

	CJ		0	0	0	0	0	0	1
	Variable								
Cb	solución	Solución	X_1	X_2	X_3	$\mathbf{S}_{\scriptscriptstyle 1}$	S_2	S_3	$\mathbf{A}_{\scriptscriptstyle 1}$
0	$\mathbf{S}_{\scriptscriptstyle 1}$	75	4	3	2	1	0	0	0
0	S_2	100	1	2	3	0	1	0	0
1	A_1	20	1	1	1	0	0	-1	1
	Zį	20	1	1	1	0	0	-1	0

Ingresa la variable X_1 y sale de la base la variable S_1 . El elemento pivote es 4

Iteración-1

	CJ		0	0	0	0	0	0	1
	Variable								
Cb	solución	Solución	X_1	X_2	X_3	S_1	S_2	S_3	$\mathbf{A}_{\scriptscriptstyle 1}$
0	$X_{\scriptscriptstyle 1}$	75/4	1	3/4	1/2	1/4	0	0	0
0	S_2	325/4	0	5/4	5/2	-1/4	1	0	0
1	$A_{\scriptscriptstyle 1}$	5/4	0	1/4	1/2	-1/4	0	-1	1
	Zj	5/4	0	1/4	1/2	-1/4	0	-1	0

Ingresa la variable X_3 y sale de la base la variable A_1 . El elemento pivote es 1/2

Iteración-2

	CJ		0	0	0	0	0	0	1
	Variable								
Cb	solución	Solución	X_1	X_2	X_3	$\mathbf{S}_{\scriptscriptstyle 1}$	S_2	S_3	A_1
0	$X_{\scriptscriptstyle 1}$	35/2	1	1/2	0	1/2	0	1	-1
0	S_2	75	0	0	0	1	1	5	-5
0	X_3	5/2	0	1/2	1	-1/2	0	-2	2
	Zj	0	0	0	0	0	0	0	-1

Se finalizaron las iteraciones de la primera fase y existe alguna solución posible para el problema. Eliminamos las variables artificiales y pasamos a la segunda fase, pero debido a

que es un problema de simplex dos fases, no se puede resolver por simplex simple, podemos dejar el desarrollo del problema hasta cuando todos los Zj son 0 o > 0.

(Sacado de:

https://www.omniascience.com/books/index.php/scholar/catalog/download/18/72/94-1?inline=1)

Solución digital

1ra iteración:

	Cj		5	7	3	0	0	0
Cb	V5	Sol	X1	X2	ХЗ	51	52	53
0	51	75	1	2	3	1	0	0
0	52	100	1	2	3	0	1	0
0	53	20	1	1	1	0	0	1
	Zj	0	0	0	0	0	0	0
	Cj-Zj		5	7	3	0	0	0

2da iteración:

Solucion = 140											
	Cj		5	7	3	0	0	0			
Cb	V5	Sol	X1	X2	ХЗ	51	52	53			
0	51	35	-1	0	1	1	0	-2			
0	52	60	-1	0	1	0	1	-2			
7	X2	20	1	1	1	0	0	1			
	Zj	140	7	7	7	0	0	7			
	Cj-Zj		-2	0	-4	0	0	-7			

Ejercicio-2:

Un granjero tiene 600 acres de terreno y desea determinar el número de acres que asignará a cada una de las tres cosechas siguientes: tomates, pimientos y espinacas. Los días hombre, el coste de preparación y la ganancia por acre de cada una de las cosechas se muestran en la tabla siguiente:

Cosecha	Días hombre	Coste preparación	Beneficio
Tomates	5	12	6
Pimientos	8	18	12
Espinacas	13	14	10

Suponga que el número de días hombre disponibles es de 4.000, y que el granjero tiene 6.000 euros para la preparación.

Determine la distribución de acres más óptima para alcanzar el mayor beneficio.

 $x_i(Acres\ dedicados\ al\ cultivo) \rightarrow i = T, P, E$

El programa lineal es:

Max:
$$\{6x_T + 12x_P + 10x_E\}$$

Sujeto a:

$$5x_T + 8x_P + 12x_E \le 4000$$

$$12x_T + 18x_P + 14x_E \le 6000$$
$$x_T + x_P + x_E \le 600$$
$$x_T + x_P + x_E \ge 0$$

Solución:

Añadimos las variables de holgura correspondientes al modelo:

Max:
$$\{6x_T + 12x_P + 10x_E\}$$

 $5x_T + 8x_P + 12x_E + 1s_1 = 4000$
 $12x_T + 18x_P + 14x_E + 1s_2 = 6000$
 $x_T + x_P + x_E + 1s_3 = 600$
 $x_T + x_P + x_E = 0$

Siendo coste reducido de las variables no básicas

$$Z_{j} - C_{j} = C_{B} \cdot B^{-1} \cdot N - C_{N}$$

$$Z_{j} - C_{j} = C_{B} \cdot B^{-1} \cdot N - C_{j} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \cdot B^{-1} \cdot N - \begin{bmatrix} 6 & 12 & 10 \end{bmatrix} = \begin{bmatrix} -6 & -12 & -10 \end{bmatrix}$$

$$Z = C_{B} \cdot X_{B} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \cdot X_{B} = 0$$

Ahora usamos el tablero simplex para determinar la solución:

	Z	X_T	X_P	X_E	S_1	S_2	S_3	
Z	1	-6	-12	-10	0	0	0	0
S_1	0	5	8	13	1	0	0	4000
S_2	0	12	18	14	0	1	0	6000
S_3	0	1	1	1	0	0	1	600

Iteración 1: Entra en la base X_P ya que tiene el coste reducido negativo, y de todos los negativos, el mayor en valor absoluto. Sale de la base:

$$Min\left\{\frac{B^{-1}}{Y_{x_P}}, Y_{x_P} > 0\right\} = Min\left\{\frac{4000}{8}, \frac{6000}{18}, \frac{600}{1}\right\} = \frac{6000}{18} \to S_2$$

	Z	X_T	X_P	X_E	S_1	S_2	S_3	
Z	1	2	0	-0,66	0	0,66	0	0
S_1	0	-0.33	0	6,77	1	-0,4	0	1333

X_P	0	0.666	1	0,77	0	0,056	0	333,3
S_3	0	0,333	0	0,22	0	-0,056	1	266,7

Iteración 2: - Entra en la base X_E ya que tiene el coste reducido negativo, y de todos los negativos, el mayor en valor absoluto. Sale de la base:

$$Min\left\{\frac{B^{-1}}{Y_{x_E}}, Y_{x_E} > 0\right\} = Min\left\{\frac{1333}{6,77}, \frac{333,3}{0,77}, \frac{266,7}{0,22}\right\} = \frac{1333}{6,77} \to S_1$$

	Z	X_T	X_P	X_E	S_1	S_2	S_3	
Z	1	1,97	0	0	0,098	0,623	0	4131,1
X_E	0	-0,049	0	1	0,148	-0,066	0	196,7
X_P	0	0,705	1	0	-0,115	0,107	0	180,3
S_3	0	0,344	0	0	-0,033	-0,041	1	223

Debido a que ninguna variable puede entrar en la base y mejorar la solución actual, ya que el coste reducido de las variables no básicas es positivo y el problema es de maximización la solución es óptima.

Debido a lo anterior la solución más óptima es:

Acres de terreno a espinacas: 196,7 Acres de terrenos a pimientos: 180,3

Y con esto se alcanza un beneficio de 4131 euros.

(Sacado de:

https://www.omniascience.com/books/index.php/scholar/catalog/download/18/72/94-1?inline=1)

Solución digital:

1ra iteración:

	Cj		6	12	10	0	0	0
Cb	V5	Sol	X1	X2	Х3	51	52	53
0	51	4000	5	8	12	1	0	0
0	52	6000	12	18	14	0	1	0
0	53	600	1	1	1	0	0	1
	Zj	0	0	0	0	0	0	0
	Cj-Zj		6	12	10	0	0	0

2da iteración:

	Cj		6	12	10	0	0	0
Cb	V5	Sol	X1	X2	Х3	51	52	53
0	51	4000/3	-1/3	0	52/9	1	-4/9	0
12	X2	1000/3	2/3	1	7/9	0	1/18	0
0	53	800/3	1/3	0	2/9	0	-1/18	1
	Zj	4000	8	12	28/3	0	2/3	0
	Cj-Zj		-2	0	2/3	0	-2/3	0

3ra iteración:

Solucio	Solucion = 54000/13												
	Сj		6	12	10	0	0	0					
Cb	V5	Sol	X1	X2	Х3	51	52	53					
10	Х3	3000/13	-3/52	0	1	9/52	-1/13	0					
12	X2	2000/13	37/52	1	0	-7/52	3/26	0					
0	53	2800/13	9/26	0	0	-1/26	-1/26	1					
	Zj	4000/1	207/26	12	10	3/26	8/13	0					
	Cj-Zj		-51/26	0	0	-3/26	-8/13	0					

Ejercicio-3:

La dirección está estudiando la posibilidad de dedicar un empleado a realizar tareas de control de calidad. Preguntado por el tiempo necesario para realizarlo ha contestado que si todos los helados fuesen del tipo 1 podría examinar hasta 30, mientras que los helados del tipo 2 necesitan el doble que los de tipo 1, y los del tipo 3 el doble que los del tipo 2. Si realiza el control de calidad la dirección no considera necesario mantener la producción mínima de 20 helados. Determine cómo afectan estos cambios al plan de producción.

La restricción $X1 + X2 + X3 \ge 20$ deja de ser operativa, y es substituida por la restricción $X1 + 2 X2 + 4 X3 \le 30$. El nuevo modelo es el siguiente:

$$\begin{aligned} MAX \quad 5X_1 + 7X_2 + 3X_3 \\ 4X_1 + 3X_2 + 2X_3 &\leq 75 \\ X_1 + 2X_2 + 3X_3 &\leq 100 \\ X_1 + 2X_2 + 4X_3 &\leq 30 \\ X_1, X_2, X_3 &\geq 0 \end{aligned}$$

Añadiendo las variables de holgura correspondientes y resolviendo resulta:

	Z	X_{I}	X_2	X_3	S_{I}	S_2	S_3	
Z	1	-5	-7	-3	0	0	0	0

S_{I}	0	4	2	2	1	0	0	75
S_2	0	1	2	3	0	1	0	100
S_3	0	1	2	4	0	0	1	30

Iteración 1 - Entra en la base X2 ya que tiene el coste reducido negativo, y de los negativos, el mayor en valor absoluto. Sale de la base:

$$Min\left\{\frac{B^{-1}b}{Y_{X_2}}, Y_{X_2} > 0\right\} = Min\left\{\frac{75}{3}, \frac{100}{2}, \frac{30}{2}\right\} = \frac{30}{2} \to S_3$$

	Z	X_I	X_2	X_3	S_1	S_2	S_3	
Z	1	-1.5	0	11	0	0	3.5	105
S_I	0	2.5	0	-4	1	0	-1.5	30
S_2	0	0	0	-1	0	1	-1	70
X_2	0	0.5	1	2	0	0	-0.5	15

Iteración 2 - Entra en la base X1 ya que tiene el coste reducido negativo, y de los negativos, el mayor en valor absoluto. Sale de la base:

$$Min\left\{\frac{B^{-1}b}{Y_{X_1}}, Y_{X_1} > 0\right\} = Min\left\{\frac{30}{2.5}, -, \frac{15}{0.5}\right\} = \frac{30}{2.5} \to S_1$$

	Z	X_I	X_2	X_3	S_{I}	S_2	S_3	
Z	1	0	0	8.6	0.6	0	2.6	123
X_1	0	1	0	-1.6	0.4	0	-16	12
S_2	0	0	0	-1	0	1	-1	70
X_2	0	0	1	2.8	-0.2	0	0.8	9

La solución hallada es óptima dado que ninguna variable puede entrar en la base y mejorar la solución actual, ya que el coste reducido de las variables no básicas es positivo y el problema

es de maximización. La solución óptima consiste en fabricar 9 unidades de helado tipo 2 y 12 de helado tipo 1, alcanzando un beneficio de 123 euros.

(tomado de

https://www.omniascience.com/books/index.php/scholar/catalog/download/18/72/94-1?inline=1)

Solución digital:

1ra iteración:

	Cj		5	7	3	0	0	0
Cb	V5	Sol	X1	X2	Х3	51	52	53
0	51	75	4	3	2	1	0	0
0	52	100	1	2	3	0	1	0
0	53	30	1	2	4	0	0	1
	Zj	0	0	0	0	0	0	0
	Cj-Zj		5	7	3	0	0	0

2da iteración:

	Cj		5	7	3	0	0	0
Cb	V5	Sol	X1	X2	Х3	51	52	53
0	51	30	5/2	0	-4	1	0	-3/2
0	52	70	0	0	-1	0	1	-1
7	X2	15	1/2	1	2	0	0	1/2
	Zj	105	7/2	7	14	0	0	7/2
	Cj-Zj		3/2	0	-11	0	0	-7/2

3ra iteración:

		4		-
50	ucion =			-
	ucion –		_	

	Cj		5	7	3	0	0	0
Cb	V5	Sol	X1	X2	Х3	51	52	53
5	X1	12	1	0	-8/5	2/5	0	-3/5
0	52	70	0	0	-1	0	1	-1
7	X2	9	0	1	14/5	-1/5	0	4/5
	Zj	123	5	7	58/5	3/5	0	13/5
	Cj-Zj		0	0	-43/5	-3/5	0	-13/5

REFERENCIAS - BIBLIOGRAFÍA

[1] Método SIMPLEX. (2020, 22 diciembre). aner.com.

https://www.aner.com/blog/metodo-

simplex.html#:%7E:text=SIMPLEX%20se%20conoce%20como%20un,a%20trav%C3

%A9s%20del%20m%C3%A9todo%20 gr%C3%A1fico

[2] Universidad autónoma del estado de Mexico. (2015, septiembre). Introducción al

método simplex : forma tabular paso a paso. http://ri.uaemex.mx/.

http://ri.uaemex.mx/bitstream/handle/20.500.11799/31644/secme-

16318.pdf?sequence=1&isAllowed=y

[3] López, B. S. (2020, 7 octubre). Método Simplex. Ingenieria Industrial Online.

https://www.ingenieriaindustrialonline.com/investigacion-de-operaciones/metodo-

simplex/