Using the DCGL_2.0 Package

Jing Yang $^{1,2}, Bao-Hong \ Liu^2$ and Hui Yu 2 March 27, 2013

 $^1{\rm School}$ of Biotechnology, East China University of Science and Technology. Shanghai 200237, P.R. China.

yangjing@scbit.org and bhliu@scbit.org

Contents

1	Intr	oducti	on	1
2	Getting started Methods			
3				
	3.1	Gene l	Filtration	3
	3.2	Link fi	iltration	3
		3.2.1	Filtering gene links according to the correlation threshold	4
		3.2.2	Filtering gene links according to the max correlation value	4
		3.2.3	Filtering gene links according to the q-values of correlation values .	4
	3.3	Differe	ential CoExpression Analysis	4
		3.3.1	DCp for identifying DCGs	4
		3.3.2	DCe for identifying DCGs and DCLs	5
		3.3.3	WGCNA, ASC and LRC for identifying DCGs	5
		3.3.4	Summarizing DCGs and DCLs	5
	3.4	Differe	ential Regulation Analysis	5
		3.4.1	Sorting out potential DRGs and DRLs	5
		3.4.2	Visualizing differential coexpression and regulation relationship	6
		3.4.3	Ranking Regulators	6
4	Dat	aset		7
5	Exa	mple		7
	5.1	Gene f	filter	7
	5.2	DCp:	Identify DCGs	8
	5.3	DCe:	Identify DCGs and DCLs	9
	5.4	DCsur	m: Summarizing DCGs and DCLs	10

²Shanghai Center for Bioinformation Technology. Shanghai 201203, P.R. China.

5.5	DRsort: Sorting out potential DRGs and DRLs	11
5.6	DRplot: Visualizing differential coexpression and regulation relationship	13
5.7	DRrank: Ranking regulators	13

1 Introduction

This document gives instructions on how to use the functions in the package $DCGL_2.0$ which is an advanced and upgraded version of $DCGL_1.0$. $DCGL_2.0$ contains four modules which are Gene filtration module, Link filtration module, Differential CoExpression Analysis (DCEA) module and Differential Regulation Analysis (DRA) module. In Gene filtration module, there are expressionBasedfilter and varianceBasedfilter functions to filter genes on expression microarray data. In Link filtration module, there are rlink-filter, percentlinkfilter and qlinkfilter functions to filter gene coexpression links in coexpression networks. DCp, DCe, WGCNA, LRC and ASC functions were implemented in DCEA module for extracting differentially coexpressed genes (DCGs) and differentially coexpressed links (DCLs). The final step of DCEA module is DCsum to determine DCGs and DCLs which come from multiple DCEA methods. In DRA module, there are DRsort, DRplot and DRrank functions to identify differentially regulated genes (DRGs) and differentially regulated links (DRLs) and to present some relevant information according to regulation knowledge. Figure 1 shows the overall design of $DCGL_2.0$.

The major input of $DCGL_2.0$ are two expression data matrices from two contrastive conditions, where the rows and columns correspond to genes and microarrays respectively. TF-to-target regulation knowledge, which was wrapped in the package, is another required input dataset.

The DCGL_2.0 package employs R library igraph, limma, org.Hs.eg.db, which must be installed in advance.

2 Getting started

Prior to using $DCGL_2.0$, users should download the installation file of $DCGL_2.0$ to their local computer, and install $DCGL_2.0$ as a package of their R computing environment. For Linux users, they should type 'R CMD INSTALL DCGL_2.0.tar.gz' in the shell (suppose the installation file 'DCGL_2.0.tar.gz' is in the current working directory); for windows users, they should go to the R menu 'Packages' and click the 'Install package(s) from local zip files' and then locate the local file 'DCGL_2.0.zip'. If the package is installed successfully, a file folder named 'DCGL' should appear beneath the folder 'library' in the R installation directory.

To load the *DCGL_2.0* package, type library(DCGL).

3 Methods

DCGL_2.0 provides the pre-existing facilities for gene filtering, link filtering and D-CGs/DCLs identification of *DCGL_1.0*, as well as newly added functions for DCGs/DCLs summarization, DRGs/DRLs identification, networks visualization, and regulators ranking.

Figure 1: Overall design of DCGL_2.0. Functions implemented in both DCGL_1.0 and DCGL_2.0 are represented in light gray. DCEA: Differential CoExpression Analysis; DRA: Differential Regulation Analysis.

3.1 Gene Filtration

If there are too many genes in the expression dataset, one can filter out some genes using the expressionBasedfilter or varianceBasedfilter or both of them. expressionBasedfilter filters out a half genes that have their Between-Experiment Mean Expression Signal (BEMES) lower than the median BEMES of all genes (Prieto and etal.,2008). varianceBasedfilter is an approximate test of the hypothesis that gene has the same variance as the median variance (Simon and Lam,2006). The variance of the log-values for each gene is compared to the median of all the variances. The quantity

$$quantity = (n-1) * var_i/var_m$$

for each gene is compared to a percentile of a chi-square distribution (with a degree of freedom of n-1, n being the number of arrays) to filter out those genes not significantly more variable than the median gene.

3.2 Link filtration

For all DCEA methods but WGCNA, a link filtering step is necessary to build up two gene coexpression networks for the two contrastive conditions. The two gene coexpression networks have identical linking structures but different edge weights (coexpression values). The input to link filtering methods always include two separate gene expression matrices for the two conditions, and the output mainly comprises two data vectors, each coming from a half of the symmetrical gene-versus-gene coexpression matrices. One can imagine that, in the intermediate coexpression matrices, retained links have non-zero values while discarded links are denoted with zero values.

Three stand-alone functions are implemented for link filtering, which are the correlation value threshold (rLinkfilter), the correlation-value fraction based link filtering (percentLinkfilter), and the q-value based link filtering (qLinkfilter). However, these link filtering functions are seldom called as independent functions; instead, they are wrapped in the DCEA functions DCp, DCe, ASC, LRC, and can be tuned with the 'link.method' and 'cutoff' parameters.

3.2.1 Filtering gene links according to the correlation threshold

As an argument to the 'link.method' parameter, rLinkfilter is abbreviated to 'rth'. Each gene link is associated with two correlation values (one out of condition A and the other out of condition B); if either of the two correlation values is greater than the given correlation threshold ('cutoff'), the gene link is retained.

3.2.2 Filtering gene links according to the max correlation value

As an argument to the 'link.method' parameter, percentLinkfilter is abbreviated to 'percent'. Each gene link is associated with two correlation values (one out of condition A and the other out of condition B) and thus a vector of 'maximum absolute values' for all correlation value pairs is decided. Then these 'maximum absolute values' are sorted in decreasing order. At last, a fraction ('cutoff') of gene pairs with the highest max correlation values will be retained.

3.2.3 Filtering gene links according to the q-values of correlation values

As an argument to the 'link.method' parameter, qLinkfilter is abbreviated to 'qth'. For each of the two experimental conditions, the coexpression values are associated with the corresponding p-values (student T-test of the zero nature of a Pearson Correlation Coefficient (PCC)), and these p-values are sorted and transformed to q-values (false discovery rates). In this way, each gene link is associated with a pair of q-value, and those links with at least one q-value lower than the threshold ('cutoff') are retained.

3.3 Differential CoExpression Analysis

DCEA module contains five DCEA methods. DCp and DCe(Yu and etal.,2011)(Liu and etal.,2010) proposed by us, and WGCNA, ASC, and LRC were proposed by other inventors. All the methods are aimed to extract DCGs/DCLs through analysing the change in. All methods must be preceded by a link filtering step, which can be tuned with the the 'link.method' and 'cutoff' parameters. After the link filtering, coexpression pairs with rth/percent/qth of coexpression values in either of two conditions higher/higher/lower than the cutoff are retained.

3.3.1 DCp for identifying DCGs

DCp works on the filtered set of gene coexpression value pairs, where each pair is made up with two coexpression values calculated under two different conditions separetely. The subset of coexpression value pairs associated with a particular gene, in two groups for the two conditions separately, can be written as two vectors X and Y (n is coexpression neighbors for a gene).

$$X = (x_{i1}, x_{i2}, ..., x_{in})$$

$$Y = (y_{i1}, y_{i2}, ..., y_{in})$$

Then a length-normalized Euclidean distance is used for measuring differential coexpression (dC) of this gene.

$$dC_n(i) = \sqrt{\frac{(x_{i1} - y_{i1})^2 + (x_{i2} - y_{i2})^2 + \dots + (x_{in} - y_{in})^2}{n}}$$

To evaluate whether a gene has significant dC, we perform a permutation test, in which we randomly permute the disease and normal conditions of the samples, calculate new PCCs, filter gene pairs based on the new PCCs, and calculate new dC statistics. The sample permutation is repeated N times, and a large number of permutation dC statistics form an empirical null distribution. The p-value for each gene can then be estimated.

3.3.2 DCe for identifying DCGs and DCLs

DCe is based on the 'Limit Fold Change' (LFC) model, a robust statistical method originally proposed for selecting differentially expressed genes(DEGs) from microarray data (Mutch and etal.,2002).

First, the correlation pairs are divided into three parts according to the pairing of signs of coexpression values and the multitude of coexpression values: pairs with same signs

 (N_1) , pairs with different signs (N_2) and pairs with differently-signed high coexpression values (N_3) . The "high coexpression values" are deemed based on the same correlation value threshold as in the qLinkfilter function. The first two parts are processed with the 'LFC' model separately to yield two subsets of DCLs (K_1,K_2) , while the third part (N_3) adds to the set of DCLs directly. So a total of $K=N_3+K_1+K_2$ DCLs are determined from a total of N gene links. For a gene (g_i) , the total number of links (n_i) and DCLs in particular (k_i) associated with it are counted, and the Binomial Probability model is used to estimate the significance of the gene being a DCG.

$$P(g_i) = \sum_{x=k_i}^{n_i} C_{n_i}^x (\frac{K}{N})^x (1 - \frac{K}{N})^{n_i - x}$$

3.3.3 WGCNA, ASC and LRC for identifying DCGs

WGCNA (Fuller and etal.,2007; van Nas and etal.,2009), ASC (Choi and etal.,2005) and LRC (Reverter and etal.,2005) are other methods for measuring genes' differential coexpression. For more details please consult (Yu and etal.,2011; Liu and etal.,2010).

3.3.4 Summarizing DCGs and DCLs

DCsum, short for Differentially Coexpression Summarization, summarizes 1) a set of DCGs, which is an intersection of DCp and DCe results; and 2) a set of DCLs which by definition must be connected with the DCGs. As a result, DCsum combines results from different coexpression analysis methods.

3.4 Differential Regulation Analysis

3.4.1 Sorting out potential DRGs and DRLs

DRsort, the first function of DRA module, is aimed to sift DCGs and DCLs according to regulation knowledge.

If a DCG is a TF, it is intuitively speculated that its related differential coexpression may be attributed to the change of its regulation relationships with its targets. So this type of DCGs are termed Differential Regulation Genes (DRGs). Besides if the upstream TFs of a DCG is identified, that DCG is possibly a differentially regulated target of an implicated regulator, and so such DCGs are also kept in the set of DRGs.

If a DCL happens to be a TF-to-target relation, we highlight this DCL because it is the direct attribution to differential regulation. This type of DCLs are termed 'TF2target_DCL'. On the other hand, if there are one or more common TFs regulating the two genes of a DCL, we also give priority to this DCL because the change in the expression correlation of the two genes could be attributed to the disruption of their co-regulation by the common TFs. This type of DCLs are termed 'TF_bridged_DCLs'. TF2target_DCL and TF_bridged_DCL, therefore, together form the set of Differentially Regulated Links(DRLs).

3.4.2 Visualizing differential coexpression and regulation relationship

We built a function DRplot to display combined information of DCGs/DCLs and DRGs/DRLs. DRpolt generats two figures which are 1): TF2target_DCL-centered network and 2): TF_bridged_DCL-centered network. In both networks, we rely on different node shapes differentiate TFs and non-TFs (square for TFs, circle for non-TFs), different node colors to categorize genes (red for DCGs, plum for non-DCGs, gray for TFs which are not tested in expression microarray data), and different edge types to express different relations of gene pairs (solid for DCLs, dashed for non-DCLs; edges with arrow indicate TF-to-target relations).

3.4.3 Ranking Regulators

DRrank is implemented for ranking potential TFs in terms of their relevance to the phenotypic change or biophysical process of interest. It contains three methods: RIF (Reverter and etal.,2010), TED, and TDD. The latter two methods were proposed by us firstly in this package.

TED, short for 'Target Enrichment Density', employs Binomial Probability model to quantify the enrichment of a TF's targets in the DCG set, and as such to evaluate which regulators are more likely to be subject-relevant or even causal. Suppose we sift K DCGs from expression profile which contains N genes. If TF_i has T_i targets in regulation knowledge, there should be $T_i * K/N$ DCGs appeared in TF_i targets list randomly. Actually, it is found that T_I DCGs are included in TF_i 's targets list. The larger T_I than $T_i * K/N$ is, the more targets of TF_i enriched, the more likely TF_i is a relevant or causative regulator. Following is TED formula.

$$TED(TF_i) = \sum_{x=T_I}^{T_i} C_x^T i(\frac{K}{N})^x (1 - \frac{K}{N})^{T_i - x}$$

TDD, short for 'Targets' DCL Density', uses Clustering Coefficient to quantify the density of DCLs among a regulator's targets, and so to judge the importance of a TF. Suppose that TF_i has n targets, and that there are k DCLs among these targets. A larger k means more DCLs are bridged by the common TF_i . We intuitively assume that, if a TF bridged more TF_bridged_DCL it is of more importance (even if the regulator is not a DCG). Based on this hypothesis, we employ Clustering Coefficient formula to calculate TDD as follow:

$$TDD(TF_i) = ClusteringCoefficient(TF_i) = \frac{k}{\frac{n*(n-1)}{2}}$$

Of note even though no expression data is available for a TF, its TED and TDD could still be calculated only if the expression level of its targets are measured. This is an advantage of TED and TDD over RIF.

RIF method, short for 'Regulator Impact Factor', assesses the change of regulationaccountable expression value of Differentially Expressed Genes(DEGs) and correlation coefficient between DEGs and TFs (Reverter and etal., 2010).

$$RIF(TF_i) = \frac{1}{n_{de}} \sum_{j=1}^{j=n_{de}} [(e1_j * r1_{ij})^2 - (e2_j * r2_{ij})^2]$$

where n_{de} means the number of DEGs, e1 (e2) means the expression value of DEG_j in condition 1 (condition 2), $r1_{ij}$ ($r2_{ij}$) means the correlation of TF_i and DEG_j in condition 1 (condition 2).

4 Dataset

DCGL_2.0 includes six datasets: exprs, tf, tf2target, exprs_design, intgenelist. exprs, contains 1000 genes and 63 samples, is a sub-dataset from a real microarray data (GSE17967) from GEO (http://www.ncbi.nlm.nih.gov/geo/). exprs_design, required by DRrank, elucidates the experiment design of the exprs. tf and tf2target, regulation information obtained through processing relevant data (TFbsConFactors.txt and TFbsConsSites.txt) from UCSC hg18, contain 215 human Transcription Factors (TFs) and 214607 TF-to-target relationships. intgenelist data is sample set of user-interested genes, and are required by DRplot to plot sub-networks.

5 Example

The following examples are based on the test dataset exprs.

5.1 Gene filter

One can filter genes by expressionBasedfilter or varianceBasedfilter, keep subset.

```
> library(DCGL)
> data(exprs)
```

> dim(exprs)

[1] 1000 63

> exprs.filter.1 <- expressionBasedfilter(exprs)

> dim(exprs.filter.1)

[1] 500 63

> exprs.filter.2 <- varianceBasedfilter(exprs, 0.05)

> dim(exprs.filter.2)

[1] 374 63

5.2 DCp: Identify DCGs

In the sample gene expression data matrix exprs, it was designed to study gene expression in cirrhotic tissues with (N=16) and without (N=47) HCC. So we firstly divide exprs into two parts corresponding to condition 1 (exprs.1) and condition 2 (exprs.2) respectively.

```
> exprs.1 <- exprs[, 1:16]
> exprs.2 <- exprs[, 17:63]
> DCp.res <- DCp(exprs.1, exprs.2,
      r.method = c("pearson", "spearman")[1],
      link.method = c("qth", "rth", "percent")[1],
      cutoff = 0.25,
      N = O,
      N.type = c("pooled", "gene_by_gene")[1],
      q.method = c("BH", "holm", "hochberg", "hommel", "bonferroni", "BY", "fdr")[1]
> DCp.res[1:3, ]
             dC links p.value q.value
AACS 0.2955923
                  394
                           NA
                                   NA
FSTL1 0.3255206
                  584
                           NA
                                   NΑ
ELMO2 0.2687325
                  642
                           NA
                                   NA
> DCp.res.N <- DCp(exprs.1, exprs.2,
      r.method = c("pearson", "spearman")[1],
      link.method = c("qth", "rth", "percent")[1],
      cutoff = 0.25,
+
      N = 100,
      N.type = c("pooled", "gene_by_gene")[1],
      q.method = c("BH", "holm", "hochberg", "hommel", "bonferroni", "BY", "fdr")[1])
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
```

```
90 %
100 %

> DCp.res.N[1:3, ]

dC links p.value q.value
AACS 0.2955923 394 0.875 0.9988584
FSTL1 0.3255206 584 0.708 0.9985896
ELMO2 0.2687325 642 0.965 0.9989648
```

Link filter methods(rLinkfilter, percentLinkfilter and qLinkfilter) are wrapped in DCp with available parameter 'link.method'. Correlation coefficient methods are also given a option by 'r.method'. So is 'q.method' for adjusting p value.

Parameter 'N.type' is used for choosing the permutation type. If 'N.type' is set to 'pooled', that means pooling all the dC together to form a null distribution of dC and estimate corresponding statistical significance (p-value) against null statistics. If 'N.type' is set to 'gene_by_gene', that means calculating p-value of a gene only against this gene's null distribution of dC.

The 'DCp.res' ia a matrix of all genes with 'dC' column, 'link' column (degree in coexpression networks), 'p.value' column and 'q.value' column. If we set N=0, no permutation has beeb done, and in this case the 'p.value' and 'q.value' are <NA>.

5.3 DCe: Identify DCGs and DCLs

As shown in the example of DCp, 'link.mehtod', 'r.method' and 'q.method' are parameters for choosing link-filtration method, correlation-calculating method, and q-value calculating method.

```
> DCe.res <- DCe(exprs.1, exprs.2,
      link.method = c("qth", "rth", "percent")[1],
      cutoff = 0.25,
      r.method = c("pearson", "spearman")[1],
      q.method = c("BH", "holm", "hochberg", "hommel", "bonferroni", "BY", "fdr")[1],
      nbins = 20, p = 0.1, figname = c("LFC.s.jpeg", "LFC.d.jpeg"))
> DCe.res$DCGs[1:3, ]
       All.links DC.links DCL_same DCL_diff DCL_switch
                                                                     p
                                                                                  q
CXCL13
             411
                       206
                                 93
                                         101
                                                      12 8.433654e-90 8.433654e-87
RPS21
                       250
                                 68
                                                      57 9.130849e-68 4.565425e-65
             718
                                         125
METTL5
             702
                       224
                                 54
                                                      57 2.083395e-53 6.944650e-51
                                         113
```

'DCe.res' contains two components, one is DCe.res\$DCGs and the other is DCe.res\$DCLs.

DCe.res\$DCGs is a matrix which includes seven columns: 'All.links' (degree of genes in whole coexpression network), 'DC.links' (degree of genes after Linkfilter), 'DCL_same' (the count of same signed correlation coefficient of two conditions in 'DC.links'), 'DCL_diff' (the count different signed correlation coefficient of two conditions in 'DC.links'), 'DCL_switch' (the count switched opposites correlation coefficient of two conditions in 'DC.links'), 'p' (p.value) and 'q' (q.value).

> DCe.res\$DCLs[1:3,]

```
Gene.1 Gene.2
                                                 cor.2
                                     cor.1
                                                              type cor.diff
C9orf45, AACS
                         AACS -0.679430350 -0.1120171 same signed 0.5674132
               C9orf45
ABCD4, AACS
                 ABCD4
                         AACS -0.046094800 -0.3431368 same signed 0.2970420
KIAA1661, AACS KIAA1661
                         AACS 0.008438316 0.3069050 same signed 0.2984666
```

DCe.res\$DCLs is a matrix which covers links ('Gene.1' and 'Gene.2), correlation coefficient ('cor.1', 'cor.2' in two conditions), type ('same signed', 'diff signed' or 'swithed opposites') and 'cor.diff' (the absolute value of 'cor.1' minus 'cor.2'). If the user need to narrow down DCGs or DCLs, the may consider setting lower 'cutoff' (in 'qth' or 'percent') or higher coexpression correlation coefficient 'cutoff' (in 'rth') or giving a stricter outlier fraction (p value).

DCsum: Summarizing DCGs and DCLs

We implemented DCsum to summarize DCGs and DCLs from 'DCp.res' and 'DCe.res'.

```
> DCsum.res <- DCsum(DCp.res, DCe.res,</pre>
```

- DCpcutoff = 0.25,
- DCecutoff = 0.25)
- > DCsum.res\$DCGs[1:3,]

```
DCG
                dC All.links.DCp DCp.p DCp.q All.links.DCe DC.links DCL.same
1 A4GNT 0.5308694
                              356
                                      NA
                                            NA
                                                          356
                                                                     90
                                                                              41
2 ADAM23 0.5242025
                              312
                                      NA
                                            NA
                                                          312
                                                                     71
                                                                              35
3 ADAM29 0.4779226
                              596
                                      NA
                                                          596
                                                                    102
                                                                              56
                                            NA
 DCL.diff DCL.switch
                              DCe.p
                                            DCe.q
1
        38
                    11 2.493160e-15 1.325344e-13
2
        25
                    11 3.347260e-10 9.297944e-09
3
        38
                     8 6.845184e-07 1.037149e-05
```

> DCsum.res\$DCLs[1:3,]

```
Gene.1 Gene.2
                                  cor.1
                                               cor.2
                                                            type cor.diff
                       GMPPA -0.5719228 -0.02508201 same signed 0.5468408
ADAM23; GMPPA
               ADAM23
ADAM23; CEP350 ADAM23 CEP350
                              0.6860120 -0.22261784 diff signed 0.9086298
ADAM23; SOD2
                              0.5292947 -0.33945089 diff signed 0.8687456
               ADAM23
                  DCG
ADAM23; GMPPA
               ADAM23
```

ADAM23; CEP350 ADAM23 ADAM23; SOD2 ADAM23

5.5 DRsort: Sorting out potential DRGs and DRLs

DRsort recommends TF-to-target regulation information which downloaded from UC-SC to identify whether DCGs are TFs or not. If a DCG happened to encode a TF, this DCG is considered to be a DRG. Specially for DCLs DRsort sorts out DCLs to two types, TF2target_DCL and TF_bridged_DCL. Both of them are considered to be DRLs.

```
> data(tf2target)
> DRsort.res <- DRsort(DCsum.res$DCGs, DCsum.res$DCLs, tf2target, exprs)
> DRsort.res$DRGs[1:3, ]
     DCG
                                                     Upstream_TFofDCG
1 A4GNT
                                                                CDC5L
2 ADAM23 NF-1;STAT1;PAX3;BRIP1;...;CUX1;MRPL36;DAND5;BACH1;ER-alpha
3 ADAM29
  DCGisTF
                 dC DCp.p All.links.DCe DC.links DCL.same DCL.diff
    FALSE 0.5308694
                                     356
                                                90
                                                         41
                                                                  38
   FALSE 0.5242025
                                     312
                                                71
                                                         35
                                                                  25
                        NA
   FALSE 0.4779226
                       NA
                                     596
                                               102
                                                         56
                                                                  38
 DCL.switch
1
          11
2
          11
3
           8
> DRsort.res$DRLs[1:3, ]
         pairID
                                                      common.TF internal.TF
1 ABHD5; CDC25B
                                               CREB1; deltaCREB
                                                                        <NA>
2 ABHD5; USP6NL
                                                    Egr-1; EGR1
                                                                        <NA>
    ABR; AGPAT1 FOS; FOSB; JUN; JUNB; JUND; MIF-1; PLAU; SPZ1
                                                                        <NA>
  Gene.1 Gene.2
                     cor.1
                                  cor.2
                                                       type cor.diff
                                                                          DCG
1 ABHD5 CDC25B 0.5788734 -0.30345618 switched opposites 0.8823296 CDC25B
  ABHD5 USP6NL -0.4089767 0.46839285
                                                diff signed 0.8773695 USP6NL
                                                same signed 0.7756035 AGPAT1
3
     ABR AGPAT1 -0.8306742 -0.05507074
> DRsort.res$DCGs[1:3, ]
     DCG
                                           Upstream_TFofDCG
1 A4GNT
2 ADAM23
           SP1;NF1;Pax-5;CUX1;MRPL36;DAND5;BACH1;ER-alpha
3 ADAM29
                                                         NA
                 dC DCp.p All.links.DCe DC.links DCL.same DCL.diff
 DCGisTF
1
   FALSE 0.5308694
                        NA
                                     356
                                                90
                                                         41
                                                                  38
2
   FALSE 0.5242025
                                                         35
                                                                  25
                        NΑ
                                     312
                                                71
   FALSE 0.4779226
                        NA
                                     596
                                               102
                                                         56
                                                                  38
```

DCL.switch

```
11
1
2
          11
3
           8
> DRsort.res$DCLs[1:3, ]
         pairID
                                                      common.TF internal.TF
1 ABHD5; CDC25B
                                              CREB1; deltaCREB
                                                                       <NA>
2 ABHD5; USP6NL
                                                    Egr-1; EGR1
                                                                       <NA>
    ABR; AGPAT1 FOS; FOSB; JUN; JUNB; JUND; MIF-1; PLAU; SPZ1
                                                                       <NA>
  Gene.1 Gene.2
                                  cor.2
                                                                         DCG
                     cor.1
                                                       type
                                                             cor.diff
  ABHD5 CDC25B
                0.5788734 -0.30345618 switched opposites 0.8823296 CDC25B
  ABHD5 USP6NL -0.4089767 0.46839285
                                               diff signed 0.8773695 USP6NL
3
     ABR AGPAT1 -0.8306742 -0.05507074
                                               same signed 0.7756035 AGPAT1
> dim(DRsort.res$DRGs)
[1] 207 10
> dim(DRsort.res$DCGs)
[1] 207 10
> dim(DRsort.res$DRLs)
[1] 4317
           10
> dim(DRsort.res$DCLs)
[1] 14059
             10
```

DRGs, DRLs, DCG2TF, TF_bridged_DCL, DCGs and DCLs, six components comprise 'DRsort.res'. 'Upstream_TFofDCG' and 'DCGisTF' columns were added to the list of DRsort.res\$DRGs to display the differential regulated genes. 'common.TF' and 'internal.TF' columns were added to the list of DRsort.res\$DRLs to identify two type of differential regulated links. Lists of DRsort.res\$DCGs and DRsort.res\$DCLs contain all the genes and links came out from DCEA, and were annotated regulation information whenever available. And more details were displayed in DRsort.res\$DCG2TF and DRsort.res\$TF_bridged_DCL for the ease of follow-up investigation.

5.6 DRplot: Visualizing differential coexpression and regulation relationship

DRplot plots TF2target_DCL-centered (Figure 2) and TF_bridged_DCL-centered (Figure 3) networks depending on *igraph*.

The graph of TF_bridged_DCL_int.pdf has been completed and saved in your working directory.

If 'type' is set to 'TF2target_DCL' or 'TF_bridged_DCL', DRplot only plots corresponding network. If 'type' is set to 'both', two networks will be plotted. However, total information of DCGs/DCLs and DRGs/DRLs are not always needed. DRplot gives 'int-genelist' parameter for user to delimit a sub-network. The value of 'intgenelist' is a group of interesting gene symbols.

figname = c("TF2target_DCL.pdf", "TF_bridged_DCL_int.pdf"))

5.7 DRrank: Ranking regulators

vsize=5,asize=0.25,lcex=0.3,ewidth=1,

DRrank implements three approaches to form a potential rank to show which regulators are more relevant to a phenotypic change or biophysical process in these conditions of expression profiles.

```
> data(tf)
> data(tf2target)
> data(exprs_design)
> DRrank.res <- DRrank(exprs, exprs.1, exprs.2, tf, tf2target,
      exprs_design, p.value=0.05, DRsort.res)
> DRrank.res[1:3,]
        TF TED_score TED_rank TDD_score TDD_rank RIF_score RIF_rank
129 NKX2-5 3.822698
                            1 0.4931034
                                               16
                                                         NA
                                                                  NA
52
    FOXD3 3.557994
                            2 0.4789474
                                               18
                                                                  NA
                                                         NA
    FOX01 3.531307
                            3 0.3568627
                                               51 2.261597
                                                                   7
```

References

[Reverter and etal., 2010] Reverter, A., Hudson, N.J., Nagaraj, S.H., Perez-Enciso, M. and Dalrymple, B.P. (2010) Regulatory impact factors: unraveling the transcriptional regulation of complex traits from expression data. *Bioinformatics*, 26, 896-904

Figure 2: Visualization of TF2target_DCL-centered network. Node represents gene, with red indicating DCGs, plum indicating non-DCGs, square indicating TFs, and circle indicating non-TFs. Edge represents gene interaction, with solid line indicating DCLs, and arrow line indicating TF-to-target relations.

Figure 3: Visualization of TF_bridged_DCL-centered network. Node represents gene, with red indicating DCGs, plum indicating non-DCGs, gray indicating genes without mentioned in expression microarray data, square indicating TFs, circle indicating non-TFs. Edge represents gene interaction, with solid line indicating DCLs, dashed line indicating non-DCLs, arrow line indicating TF-to-target relations.

- [Prieto and etal.,2008] Prieto, C., Risueno, A., Fontanillo, C. and De las Rivas, J. (2008) Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles. *PLoS One*,3, e3911.
- [Simon and Lam, 2006] Simon, R. and Lam, A. (2006) BRB Array Tools Users Guide. Technical Reports. Biometric Research Branch. National Cancer Institute
 - http://linus.nci.nih.gov/~brb/download_full_new.html
- [Mutch and etal.,2002] Mutch, D. M., Berger, A., Mansourian, R., Rytz, A., Roberts, M. A. (2002) The limit fold change model: a practical approach for selecting differentially expressed genes from microarray data. *BMC Bioinformatics*, 3, 17.
- [Fuller and etal., 2007] Fuller, T.F., Ghazalpour, A., Aten, J.E., Drake, T.A., Lusis, A.J. and Horvath, S. (2007) Weighted gene coexpression network analysis strategies applied to mouse weight. *Mamm Genome*, 18, 463-472.
- [van Nas and etal.,2009] van Nas, A., Guhathakurta, D., Wang, S.S., Yehya, N., Horvath, S., Zhang, B., Ingram-Drake, L., Chaudhuri, G., Schadt, E.E., Drake, T.A., Arnold, A.P. and Lusis, A.J. (2009) Elucidating the role of gonadal hormones in sexually dimorphic gene coexpression networks. *Endocrinology*,150, 1235-1249.
- [Choi and etal., 2005] Choi, J.K., Yu, U., Yoo, O.J. and Kim, S. (2005) Differential coexpression analysis using microarray data and its application to human cancer. *Bioinformatics*, 21, 4348-4355.
- [Reverter and etal., 2005] Reverter, A., Ingham, A., Lehnert, S.A., Tan, S.H., Wang, Y., Ratnakumar, A. and Dalrymple, B.P. (2006) Simultaneous identification of differential gene expression and connectivity in inflammation, adipogenesis and cancer. *Bioinformatics*, 22, 2396-2404.
- [Yu and etal., 2011] Yu, H., Liu, B.H., Ye, Z.Q., Li, C., Li, Y.X., Li, Y.Y. (2011) Link-based quantitative methods to identify differentially coexpressed genes and gene pairs. BMC Bioinformatics, 12, 315
- [Liu and etal.,2010] Liu, B.H., Yu, H., Tu, K., Li, C., Li, Y.X., Li, Y.Y. (2010) DCGL: an R package for identifying differentially coexpressed genes and links from gene expression microarray data. *Bioinformatics*, 26, 2637-8
- [Reverter and etal.,2010] Reverter, A., Hudson, N. J., Nagaraj, S. H., Perez-Enciso, M., Dalrymple, B. P., (2010) Regulatory impact factors: unraveling the transcriptional regulation of complex traits from expression data *Bioinformatics*, 26, 896-904
- [Csardi and etal.,2006] Gabor, C., Tamas, N. (2006) The igraph software package for complex network research InterJournal, Complex Systems, 1695
- [Elo and etal.,2007] L. L., Elo, H. Jarvenpaa, M., Oresic, R.Lahesmaa and T. Aittokallio. (2007) Systematic construction of gene coexpression networks with applications to human T helper cell differentiation process *Bioinformatics*, 23(16), 2096-103