Partial solutions to practice problems for Exam 2

COMS 4771 Fall 2016

Problem 1

- (a) $f''(\langle w, x \rangle)ww^{\top} \succeq 0$. This implies that g is convex.
- (b) Yes. Note that h is differentiable but not (necessarily) twice differentiable. So we'll check the first-order condition for convexity. Pick any $x, x_0 \in \mathbb{R}^d$. Then

$$\nabla h(x_0) = \begin{cases} f'(\langle w, x_0 \rangle) w & \text{if } \langle w, x_0 \rangle \le 0, \\ f'(0) w & \text{if } \langle w, x_0 \rangle > 0. \end{cases}$$

• If $\langle w, x_0 \rangle \leq 0$ and $\langle w, x \rangle \leq 0$, then

$$h(x_0) + \langle \nabla h(x_0), x - x_0 \rangle = g(x_0) + f'(\langle w, x_0 \rangle) \langle w, x - x_0 \rangle$$

$$= g(x_0) + \langle \nabla g(x_0), x - x_0 \rangle$$

$$\leq g(x)$$

$$= h(x)$$

where the inequality follows because g is convex.

• If $\langle w, x_0 \rangle \leq 0$ and $\langle w, x \rangle > 0$, then

$$h(x_0) + \langle \nabla h(x_0), x - x_0 \rangle = g(x_0) + \langle \nabla g(x_0), 0 - x_0 \rangle + f'(\langle w, x_0 \rangle) \langle w, x \rangle$$

$$\leq f'(\langle w, x_0 \rangle) \langle w, x \rangle$$

$$\leq f'(0) \langle w, x \rangle$$

$$= h(x)$$

where the first inequality follows because g is convex and g(0) = f(0) = 0, and the second inequality follows because f' is non-decreasing, $\langle w, x_0 \rangle \leq 0$, and $\langle w, x \rangle > 0$.

• If $\langle w, x_0 \rangle > 0$ and $\langle w, x \rangle \leq 0$, then

$$h(x_0) + \langle \nabla h(x_0), x - x_0 \rangle = f'(0) \langle w, x \rangle$$

$$= g(0) + \langle \nabla g(0), x - 0 \rangle$$

$$\leq g(x)$$

$$= h(x)$$

where the inequality follows because g is convex.

• If $\langle w, x_0 \rangle > 0$ and $\langle w, x \rangle > 0$, then

$$h(x_0) + \langle \nabla h(x_0), x - x_0 \rangle = f'(0) \langle w, x_0 \rangle + f'(0) \langle w, x - x_0 \rangle$$

= $f'(0) \langle w, x \rangle$
= $h(x)$.

This implies that h satisfies the first-order condition for convexity, so h is convex.

Problem 2

- (a)
- (b)
- (c) The only difference from part (b) is that each iterate must be projected to the unit ball $\{w \in \mathbb{R}^d : \|w\|_2 \le 1\}$. This can be done using the following procedure:
 - Input: vector $w \in \mathbb{R}^d$.
 - If $||w||_2 \leq 1$, return w.
 - Else, return $w/||w||_2$.

Problem 3

- (a) Yes
- (b) No
- (c) Yes

Problem 4

- 1. Function class \mathcal{F} may not contain log-odds function.
- 2. Random sample may not be representative of P.
- 3. Algorithm may not find good solution to optimization problem.

Problem 5

 $2\mu - 1$

Problem 6

- (a) 0.5
- (b) 0.5
- (c) 0.55

Problem 7

Let $D := \operatorname{diag}(\|x_1\|_2^2, \dots, \|x_n\|_2^2)$ and $b = (y_1, y_2, \dots, y_n)$. MLE is $(A^{T}D^{-1}A)^{-1}A^{T}D^{-1}b$.

Problem 8

Problem 9

- (a) (Here, we drop the subscript i on the vectors a_i and b_i .) The (i, i)-th entry
- of the matrix ab^{\top} is $a_{i}b_{i}$. So $\operatorname{tr}(ab^{\top}) = a_{1}b_{1} + \cdots + a_{d}b_{d} = \langle a, b \rangle$. (b) Since $A^{\top}B = \sum_{i=1}^{n} a_{i}b_{i}^{\top}$ and the (i, i)-th entry of AB^{\top} is $\langle a_{i}, b_{i} \rangle$, we have $\operatorname{tr}(A^{\top}B) = \sum_{i=1}^{n} \operatorname{tr}(a_{i}b_{i}^{\top}) = \sum_{i=1}^{n} \langle a_{i}, b_{i} \rangle = \operatorname{tr}(AB^{\top})$. (c) Let $\Sigma := \mathbb{E}[(X \mathbb{E}(X))(X \mathbb{E}(X))^{\top}] = \mathbb{E}[XX^{\top}]$ be the covariance ma-
- trix of the mean-zero random vector X. Then $\operatorname{tr}(\Sigma) = \operatorname{tr}(\mathbb{E}[XX^{\top}]) =$ $\mathbb{E}[\operatorname{tr}(XX^{\top})] = \mathbb{E}[\langle X, X \rangle] = \mathbb{E}[\|X\|_2^2].$ Moreover, writing the eigendecomposition of Σ as $\Sigma = V\Lambda V^{\top}$, we have $\operatorname{tr}(\Sigma) = \operatorname{tr}(V\Lambda V^{\top}) = \operatorname{tr}(V^{\top}V\Lambda) =$ $\operatorname{tr}(\Lambda) = \lambda_1 + \lambda_2 + \dots + \lambda_d.$
- (d) $\lambda_1 + \lambda_2 + \dots + \lambda_d = \mathbb{E} ||X \mathbb{E}(X)||_2^2$

Problem 10

- (a) $(VS^2V^{\mathsf{T}})w = VSU^{\mathsf{T}}y$.
- (b) Multiply both sides of normal equations by $VS^{-2}V^{\top}$ to get

$$VV^{\top}w = VS^{-1}U^{\top}u.$$

(c) Any w that satisfies the normal equations can be written as $w = VV^{\mathsf{T}}w +$ $(I - VV^{\scriptscriptstyle \top})w = A^{\dagger}y + (I - VV^{\scriptscriptstyle \top})w.$ By Pythagorean theorem, $\|w\|_2^2 = \|VV^{\scriptscriptstyle \top}w\|_2^2 + \|(I - VV^{\scriptscriptstyle \top})w\|_2^2 = \|A^{\dagger}y\|_2^2 + \|(I - VV^{\scriptscriptstyle \top})w\|_2^2,$ which is strictly larger than $||A^{\dagger}y||_2^2$ whenever $w \neq A^{\dagger}y$.

Problem 11

- (a) Consider the k=1 case. The average of rank one matrices uu^{\top} and vv^{\top} can have rank two (e.g., when u and v are linearly independent). So the set of rank one matrices is not convex.
- (b) k = 0 and $k = \min\{m, n\}$.
- (c) $\Omega = \{1, 2, \dots, m\} \times \{1, 2, \dots, n\}.$

Problem 12

$$\langle a_i, b - \sum_{j \neq i} \hat{w}_j a_j \rangle / ||a_i||_2^2$$
.

Time complexity: O(nd).

Problem 13

No. The k-means objective from lecture can be written as

$$\sum_{i=1}^{k} \sum_{x \in C_i} \|x - c_i\|_2^2,$$

but the objective from ESL is equal to

$$\sum_{i=1}^{k} |C_i| \sum_{x \in C_i} ||x - c_i||_2^2.$$

Problem 14

(a) Let l(t) := logistic(t). Then

$$\frac{l(\langle \hat{\alpha}, x_i \rangle) \cdot l(\langle \hat{\beta}_1, x_i \rangle)^{y_i} \cdot l(-\langle \hat{\beta}_1, x_i \rangle)^{1-y_i}}{l(\langle \hat{\alpha}, x_i \rangle) \cdot l(\langle \hat{\beta}_1, x_i \rangle)^{y_i} \cdot l(-\langle \hat{\beta}_1, x_i \rangle)^{1-y_i} + l(-\langle \hat{\alpha}, x_i \rangle) \cdot l(\langle \hat{\beta}_0, x_i \rangle)^{y_i} \cdot l(-\langle \hat{\beta}_0, x_i \rangle)^{1-y_i}}.$$

(b) This is very similar to "mixtures of two linear regressions" example from lecture. In the M-step, instead of a weighted logistic regression problem and two weighted least squares problems in the M-step, we have now three weighted logistic regression problems.

Problem 15

E-step:

$$w_i := \frac{\hat{\pi}_i \prod_{j=1}^m \hat{r}_j^{x_{i,j}} (1 - \hat{r}_j)^{1 - x_{i,j}}}{\hat{\pi}_i \prod_{j=1}^m \hat{r}_j^{x_{i,j}} (1 - \hat{r}_j)^{1 - x_{i,j}} + (1 - \hat{\pi}_i) \prod_{j=1}^m \hat{p}_j^{1 - x_{i,j}} (1 - \hat{p}_j)^{x_{i,j}}}$$

for all i = 1, 2, ..., m.

M-step:

$$\hat{\pi}_i := w_i \quad \text{for all } i = 1, 2, \dots, m,$$

$$\hat{p}_j := \frac{\sum_{i=1}^m (1 - w_i)(1 - x_{i,j})}{\sum_{i=1}^m (1 - w_i)} \quad \text{for all } j = 1, 2, \dots, n,$$

$$\hat{r}_j := \frac{\sum_{i=1}^m w_i x_{i,j}}{\sum_{i=1}^m w_i} \quad \text{for all } j = 1, 2, \dots, n.$$