

华中科技大学 2021~2022 学年第 2 学期 《大学物理(四)》课程期中自测试卷

(第4卷)

考试日期: 2022.04.24 上午

考试时间: 150 分钟

116. 口.	田田口		Ξ				光 八	<i>₩</i> . \\	本作
题号		1	1	2	3	4	总分	统分 签名	教师 签名
得分									

得 分	
评卷人	

一、选择题(单选,每题3分,共30分)

[] 1. 正常人主动脉的横截面积为 3 cm^2 ,通过它的血流速度为 $30 \text{ cm} \cdot \text{s}^{-1}$ 。典 型的人体毛细血管横截面积约为 3×10^{-7} cm²,毛细血管内的血流速度约为0.5 mm·s⁻¹, 这样算来一个人毛细血管总条数大概有:

- (A) 6000万; (B) 6亿;
- (C) 30/2; (D) 60/2.

] 2. 两个质量分别为 m_1 、 m_2 并由一根轻弹簧的两端连接着的小球放在光滑 Γ 的水平面上. 当 m_1 固定时, m_2 的振动频率为 ν_2 , 当 m_2 固定时, m_1 的振动频率为 ν_1 , 则 ν₁ 等于

- (A) v_2 (B) $v_2\sqrt{m_2/m_1}$ (C) m_2v_2/m_1 (D) m_1v_2/m_2

] 3. 频率为100Hz,传播速度为300m/s的平面简谐波,波线上两点振动 [的相位差为 $\pi/3$,则此两点相距:

- (A) 2m; (B) 2.19m; (C) 0.5m; (D) 28.6m.

1 4. 麦克斯韦速率分布曲线如图所示,图中A,B两部分面积相等,则该图 ſ

表示

- (B) v₀ 为平均速率
- (C) ν_0 为方均根速率

- (D) 速率大于和小于 ν_0 的分子数各占一半
- [] 5. 肥皂液的表面张力系数为 $4.0 \times 10^{-2} \, \mathrm{N \ m^{-1}}$,吹一个直径为 $10 \, \mathrm{cm}$ 的肥皂泡。所做的功为
 - (A) $8\pi \times 10^{-4} \, \text{J}_{\odot}$

(B) $2\pi \times 10^{-4} \text{ J};$

(C) $4\pi \times 10^{-4}$ J;

- (D) $\pi \times 10^{-4} \text{ J};$
- [] 6. 关于高斯定理,以下说法正确的是
 - (A) 如果高斯面上 \vec{E} 处处为零,则该面内必无电荷;
 - (B) 如果高斯面内无电荷,则高斯面上 \vec{E} 处处为零;
 - (C) 如果高斯面上 \vec{E} 处处不为零,则高斯面内必有电荷;
 - (D) 如果高斯面内净电荷不为零,则通过高斯面的电通量必不为零。
- [] 7. 如图所示,三块无限大带电平面彼此平行,把空间分为 a、b、c、d 四个区域,面电荷密度如图,试判断哪个区域的电场强度最大
 - (A) a 区域的电场强度最大;
 - (B) b 区域的电场强度最大;
 - (C) c 区域的电场强度最大;
 - (D) d 区域的电场强度最大.

[] **8.** 载流的圆形线圈(半径R)与正方形线圈(边长a)通有相同电流I. 若两个线圈的中心 O_1 、 O_2 处的磁感应强度大小相同,则半径R与边长a之比R:a为

- (A) 1:1; (B) $\sqrt{2}\pi$:1:
- (C) $\sqrt{2}\pi:4:$ (D) $\sqrt{2}\pi:8$.
- [] 9. 如图所示,无限长直载流导线与正三角形载 在同一平面内, 若长直导线固定不动, 则正三角形载流线
 - (A) 靠近长直导线:
 - (B) 远离长直导线:
 - (C) 转动;
 - (D) 不动。
- [] 10. 两根无限长平行直导线载有大小相等方向相反的电流 I, I以 d I/ d t 的变化率增长, 一矩形线圈位于导线平面内 (如图),

则:

- (B)线圈中感应电流为顺时针方向.
- (C)线圈中感应电流为逆时针方向.
- (D)线圈中感应电流方向不确定.

流线圈

圈将

二. 填空题(每题3分,共30分)

- 1. 声波波源沿着 x 轴正向作匀速直线运动并发出声波,则站在波源前方的人测得声 波的频率为 f_1 ,站在波源后方的人测得声波的频率为 f_2 。已知空气中的声速为u, 则该声源的运动速度为。
- 2. 一质点作简谐振动。其振动位移随时间变化的曲线如图 所示。质点初时刻的位移恰好为振幅的一半, 若质点的振 动位移方程用余弦函数描述。则其初位相应为。

3. 一个带有活塞的容器中盛有一定量的气体,如果压缩气

体并对其加热,使气体温度从 $27^{\circ}C$ 上升到 $177^{\circ}C$,体积减少一半,则压强变为原 先的 倍,分子平均平动动能变为原先的 倍,分子的方均根速率变为原

先的	倍。
フロロコ	III a

- **4.** 一个顶端开口的圆筒容器,高为 40cm ,直径为 10cm 。在圆筒底部中心开一面积为 1cm^2 的小孔. 水从圆筒底顶部以 $200\text{cm}^3/s$ 的流量由水管注入圆筒内,则圆筒中的水面可以升到的最大高度为
- 5. 如图所示,已知 $\varepsilon_1=24.0\mathrm{V}$, $r_1=2.0\Omega$, $\varepsilon_2=4.0\mathrm{V}$ $r_2=2.0\Omega$, $R_1=2.0\Omega$,

 $R_2=1.0\Omega$, $R_3=3.0\Omega$,则回路中的电流为______。 R_1

- 6. 若将 27 个具有相同半径并带相同电荷的球状小水滴聚集成一个球状大水滴,此 大水滴的电势将是小水滴的电势的_________倍。
- 7. 一平行板电容器,两板间充满各向同性均匀电介质,已知相对介电常数为 ϵ_r . 若极板上的自由电荷面密度为 σ ,则介质中电位移的大小 D = ______,电场强度的大小 E = _____。
- **8.** 一平面内三条无限长直导线等间距地平行安放,导线 I、II、III 分别载有 1A,2A,3A 的同方向电流,由于磁相互作用的结果,导线 I、II、III 单位长度上分别受力 \vec{F}_1 、 \vec{F}_2 、 \vec{F}_3 ,如图所示。则其中 \vec{F}_1 和 \vec{F}_2 的大小比值为______。

9. 如图所示,无限长直导线与一矩形导体线圈共面放置,线圈尺寸和初时刻的位置如图。假设矩形线圈以匀速率 ν 远离直导线,则 t 时刻线圈与直导线间的互感系数为_____。

10. 一无限长圆柱型均匀磁场空间的横截面如图所示,截面半径为 R,磁场方向垂直于纸面向里,圆柱外有一无限长条直导线与圆柱的轴线垂直。假设空间的磁场在增强,且 $\frac{dB}{dt} = k$ (k为定值)。则长直导线上的感生电动势为_____。

三. 计算题(每题10分,共40分+附加题)

得 分	
评卷人	

1. 注射器活塞面积为 1.2cm²,注射时用针头截面积为 1mm²,当注射器水平放置时用 1.35N 的力推动活塞,使 4cm 长的药液柱进入静脉血管,静脉压为 0.67kPa (计示压强)。设药液单位体积因黏性力的存在而引起的能量损耗为

 10^4J/m^3 ,密度为 $1.2 \times 10^3 \text{kg/m}^3$,问注射完这么多药液所需的时间为多少?

得 分	
评卷人	

2. 一平面波在 t=0 时的波形曲线如图中曲线①所示,波沿 x 轴正向传播,经过 t=0.5s 后,波形变为曲线②。已知波的 周期 $T \ge 1s$,试由图中所给条件,求(1)波函数:(2)P

点的振动方程。

得 分	
评卷人	

3. 一均匀带点球体,半径为R,体电荷密度为 ρ ,今在球内挖去一个半径为r(r< R)的球体(如图所示),求由此形成的空腔内任一点的电场,并说明方向。

得 分	
评卷人	

4. 如图所示,一半径为R的无限长1/4圆弧形金属薄片,通有垂直于纸面的电流I,设电流在圆弧上均匀分布。试求圆

心*O*处的磁感应强度。

得 分	
评卷人	

5. 一个限定在半径为 R 的圆柱体内的均匀磁场 B, B 以 10-2T/s 的恒定变化率减少,电子在磁场中 A、O、C 各点处时,它所获得的瞬时加速度(大小和方向)各为多少?设 r=5.0cm。