Dersi veren: Prof. Dr. Ali Yapar **Dersin yardımcısı:** Araş. Gör. Furkan Şahin 27.04.2021

1.

$$f(x) = \arctan(x^2 - x + 1)$$

fonksiyonu için x = 1 noktasında

- (a) $h=0.1,\,0.5,\,0.025,\,0.0125,\,0.00625$ adım aralıkları için ileri, geri ve merkezi fark formüllerini kullanarak $D_hf(x)$ sayısal türevini hesaplayınız.
- (b) (a) şıkkındaki adım aralıkları için $D_h^{(2)}f(x)$ ikinci dereceden sayısal türevi hesaplayınız.

Çözüm:

f(x) fonksiyonunun birinci ve ikinci dereceden türevlerinin x=1 noktasındaki gerçek değerleri şu şekildedir.

$$f'(x) = \frac{1}{(x^2 - x + 1)^2 + 1} \frac{d(x^2 - x + 1)}{dx} = \frac{2x - 1}{(x^2 - x + 1)^2 + 1}$$
$$\Rightarrow f'(1) = 0.5$$

$$f''(x) = \frac{2((x^2 - x + 1)^2 + 1) - 2(2x - 1)^2(x^2 - x + 1)}{((x^2 - x + 1)^2 + 1)^2}$$
$$\Rightarrow f''(1) = 0.5$$

a.

İleri Fark Formülü:

$$D_h f(x) = \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow D_h f(1) = \frac{f(1+h) - f(1)}{h}$$

$$h = 0.1 \Rightarrow D_h f(1) \Big|_{h=0.1} = \frac{f(1+0.1) - f(1)}{0.1}$$

$$= \frac{f(1.1) - f(1)}{0.1} = 0.520855492141787$$

n	$\mathbf{h_n}$	$\mathbf{D_{h_n}f(1)}$	$oldsymbol{arepsilon_n} = \mathbf{f}'(1) - \mathbf{D_{h_n}f(1)}$	$ arepsilon_{n-1}/arepsilon_n $
1	0.1	0.520855492141787	-0.020855492141787	-
2	0.05	0.511459730984485	-0.011459730984485	1.82
3	0.025	0.505989670987828	-0.005989670987828	1.91
4	0.0125	0.503059901319629	-0.003059901319629	1.96
5	0.00625	0.501546224301457	-0.001546224301457	1.98

$$\left[\varepsilon = -\frac{h}{2}f''(c), \ c \in (1, 1+h)\right]$$

Geri Fark Formülü:

$$D_h f(x) = \frac{f(x) - f(x - h)}{h}$$

$$\Rightarrow D_h f(1) = \frac{f(1) - f(1-h)}{h}$$

\mathbf{n}	$\mathbf{h_n}$	$\mathbf{D_{h_n}f(1)}$	$oldsymbol{arepsilon_n} = \mathbf{f}'(1) - \mathbf{D_{h_n}f(1)}$	$ arepsilon_{n-1}/arepsilon_n $
1	0.1	0.470855908802202	0.029144091197798	-
2	0.05	0.486459744005305	0.013540255994695	2.15
3	0.025	0.493489671394727	0.006510328605273	2.08
4	0.0125	0.496809901332345	0.003190098667655	2.04
5	0.00625	0.498421224301850	0.001578775698150	2.02

$$\left[\varepsilon = -\frac{h}{2}f''(c), \ c \in (1 - h, 1)\right]$$

Merkezi Fark Formülü:

$$D_h f(x) = \frac{f(x+h) - f(x-h)}{2h}$$

$$\Rightarrow D_h f(1) = \frac{f(1+h) - f(1-h)}{2h}$$

\mathbf{n}	$\mathbf{h_n}$	$\mathbf{D_{h_n}f(1)}$	$oldsymbol{arepsilon_n} = \mathbf{f}'(1) - \mathbf{D_{h_n}f}(1)$	$ arepsilon_{n-1}/arepsilon_n $
1	0.1	0.495855700471995	0.004144299528005	-
2	0.05	0.498959737494895	0.001040262505105	3.98
3	0.025	0.499739671191277	2.603288087228428e-4	4
4	0.0125	0.499934901325987	6.509867401316427e-5	4
5	0.00625	0.499983724301654	1.627569834639075e-5	4

$$\[\varepsilon = -\frac{h^2}{6}f'''(c), \ c \in (1 - h, 1 + h) \]$$

b. İkinci dereceden sayısal türev formülü şu şekildedir.

$$D_h^{(2)} f(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

$$\Rightarrow D_h^{(2)} f(1) = \frac{f(1+h) - 2f(1) + f(1-h)}{h^2}$$

$$h = 0.1 \Rightarrow D_h^{(2)} f(1) \Big|_{h=0.1} = \frac{f(1+0.1) - 2f(1) + f(1-0.1)}{(0.1)^2}$$

$$= \frac{f(1.1) - 2f(1) + f(0.9)}{0.01} = 0.499995833395850$$

\mathbf{n}	$\mathbf{h_n}$	$\mathbf{D_{h_n}^{(2)}f(1)}$	$oldsymbol{arepsilon_n} = \mathbf{f''}(1) - \mathbf{D_{h_n}^{(2)}f(1)}$	$ arepsilon_{n-1}/arepsilon_n $
1	0.1	0.499995833395850	4.166604150257491e-6	-
2	0.05	0.499999739583590	2.604164103248152e-7	16
3	0.025	0.499999983724031	1.627596912801010e-8	16
4	0.0125	0.499999998982758	1.017241513245892e-9	16
5	0.00625	0.49999999937017	6.298261912007774e-11	16.15

$$\left[\varepsilon = -\frac{h^2}{12}f^{(4)}(c), \ c \in (1 - h, 1 + h)\right]$$

2. Bir koşucunun belirli zamanlardaki bulunduğu konum bilgileri aşağıdaki tabloda verilmiştir.

Bu durumda t=0.5 ve t=1.25 anındaki hızları tahmin ediniz.

Çözüm:

$$v = \frac{dx}{dt}$$

$$x'(0.5) \approx \frac{x(1) - x(0)}{2 \times 0.5} = \frac{6.8 - 0}{1} = 6.8$$
 (merkezi fark formülü ile)
$$x'(0.5) \approx \frac{x(1) - x(0.5)}{0.5} = \frac{6.8 - 3.65}{0.5} = 6.3$$
 (ileri fark formülü ile)
$$x'(0.5) \approx \frac{x(0.5) - x(0)}{0.5} = \frac{3.65 - 0}{0.5} = 7.3$$
 (geri fark formülü ile)
$$x'(1.25) \approx \frac{x(1.5) - x(1)}{2 \times 0.25} = \frac{9.9 - 6.8}{0.5} = 6.2$$
 (merkezi fark formülü ile)

