San Francisco Housing Rental Analysis

In this assignment, you will perform basic analysis for the San Francisco Housing Market to allow potential real estate investors to choose rental investment properties.

```
In [133]: # initial imports
          import os
          import pandas as pd
          import matplotlib.pyplot as plt
          import hvplot.pandas
          import plotly.express as px
          from pathlib import Path
          from dotenv import load dotenv
          from panel.interact import interact
          from panel import widgets
          import hvplot.pandas
          import panel as pn
          %matplotlib inline
In [134]: # Read the Mapbox API key
          load dotenv()
          mapbox_token = os.getenv("MAPBOX_TOKEN")
```

Load Data

```
In [135]: # Read the census data into a Pandas DataFrame
file_path = Path("Data/sfo_neighborhoods_census_data.csv")
sfo_data = pd.read_csv(file_path, index_col="year")
sfo_data.head()
```

neighborhood sale_price_sqr_foot housing_units gross_rent

Out[135]:

year				
2010	Alamo Square	291.182945	372560	1239
2010	Anza Vista	267.932583	372560	1239
2010	Bayview	170.098665	372560	1239
2010	Buena Vista Park	347.394919	372560	1239
2010	Central Richmond	319.027623	372560	1239

Housing Units Per Year

In this section, you will calculate the number of housing units per year and visualize the results as a bar chart using the Pandas plot function.

Hint: Use the Pandas groupby function

Optional challenge: Use the min, max, and std to scale the y limits of the chart.

```
In [136]:
          # Calculate the mean number of housing units per year (hint: use groupby)
          # YOUR CODE HERE!
          units_per_year= sfo_data.groupby('year').mean()["housing_units"]
          units_per_year
Out[136]: year
          2010
                   372560
          2011
                   374507
          2012
                   376454
          2013
                  378401
          2014
                   380348
          2015
                   382295
          2016
                   384242
          Name: housing_units, dtype: int64
In [137]: std_y=units_per_year.std()
          min y=units per year.min()-std y
          max_y=units_per_year.max()+std_y
```

```
In [138]: # Use the Pandas plot function to plot the average housing units per year.
# Note: You will need to manually adjust the y limit of the chart using the mi
n and max values from above.
# YOUR CODE HERE!

# Optional Challenge: Use the min, max, and std to scale the y limits of the c
hart
# YOUR CODE HERE!
ax = units_per_year.plot(kind="bar", title='Housing Units in San Francisco fro
m 2010 to 2016')
ax.set_xlabel("Year")
ax.set_ylabel("Housing Units")
plt.ylim(min_y,max_y)
plt.show()
```


Average Prices per Square Foot

In this section, you will calculate the average gross rent and average sales price for each year. Plot the results as a line chart.

Average Gross Rent in San Francisco Per Year

```
In [139]: # Calculate the average gross rent and average sale price per square foot
    # YOUR CODE HERE!
    average_per_year= sfo_data.groupby('year').mean()
    average_per_year
```

Out[139]:

sale_price_sqr_foot housing_units gross_rent

year			
2010	369.344353	372560	1239
2011	341.903429	374507	1530
2012	399.389968	376454	2324
2013	483.600304	378401	2971
2014	556.277273	380348	3528
2015	632.540352	382295	3739
2016	697.643709	384242	4390

Average Sales Price per Year

Average Prices by Neighborhood

In this section, you will use hyplot to create an interactive visulization of the Average Prices with a dropdown selector for the neighborhood.

Hint: It will be easier to create a new DataFrame from grouping the data and calculating the mean prices for each year and neighborhood

Out[142]:

	year	neighborhood	sale_price_sqr_foot	housing_units	gross_rent
0	2010	Alamo Square	291.182945	372560	1239
1	2010	Anza Vista	267.932583	372560	1239
2	2010	Bayview	170.098665	372560	1239
3	2010	Buena Vista Park	347.394919	372560	1239
4	2010	Central Richmond	319.027623	372560	1239
392	2016	Telegraph Hill	903.049771	384242	4390
393	2016	Twin Peaks	970.085470	384242	4390
394	2016	Van Ness/ Civic Center	552.602567	384242	4390
395	2016	Visitacion Valley	328.319007	384242	4390
396	2016	Westwood Park	631.195426	384242	4390

397 rows × 5 columns

Out[143]:

	year	neighborhood	sale_price_sqr_foot
0	2010	Alamo Square	291.182945
1	2010	Anza Vista	267.932583
2	2010	Bayview	170.098665
3	2010	Buena Vista Park	347.394919
4	2010	Central Richmond	319.027623
392	2016	Telegraph Hill	903.049771
393	2016	Twin Peaks	970.085470
394	2016	Van Ness/ Civic Center	552.602567
395	2016	Visitacion Valley	328.319007
396	2016	Westwood Park	631.195426

397 rows × 3 columns

Out[144]:

In [145]: plot_neighborhood_data('Telegraph Hill')

Out[145]: <matplotlib.axes._subplots.AxesSubplot at 0x26951c83588>


```
In [146]: interact(plot_neighborhood_data, neighborhood=['Anza Vista','Parkside'])
Out[146]:
```


For some reason, my graph was not refreshing after chaging the value in combo. I tried the following, still not refreshing.

Is there a way to enforce the refresh using some command? Not sure if I am missing something or my Pyviz/jupyter lab has an issue.

The Top 10 Most Expensive Neighborhoods

In this section, you will need to calculate the mean sale price for each neighborhood and then sort the values to obtain the top 10 most expensive neighborhoods on average. Plot the results as a bar chart.

In [147]: # Getting the data from the top 10 expensive neighborhoods
YOUR CODE HERE!
averages_by_neighborhood=sfo_data.groupby('neighborhood').mean().sort_values(b
y=['sale_price_sqr_foot'], ascending=False).head(10)
averages_by_neighborhood

Out[147]:

	sale_price_sqr_foot	housing_units	gross_rent
neighborhood			
Union Square District	903.993258	377427.50	2555.166667
Merced Heights	788.844818	380348.00	3414.000000
Miraloma Park	779.810842	375967.25	2155.250000
Pacific Heights	689.555817	378401.00	2817.285714
Westwood Park	687.087575	382295.00	3959.000000
Telegraph Hill	676.506578	378401.00	2817.285714
Presidio Heights	675.350212	378401.00	2817.285714
Cow Hollow	665.964042	378401.00	2817.285714
Potrero Hill	662.013613	378401.00	2817.285714
South Beach	650.124479	375805.00	2099.000000

In [148]: # Plotting the data from the top 10 expensive neighborhoods
YOUR CODE HERE!
averages_by_neighborhood["sale_price_sqr_foot"].plot(kind="bar")

Out[148]: <matplotlib.axes._subplots.AxesSubplot at 0x26952381c88>

Leveraging the same code I used above to modify the graph and set min, max values...

```
In [149]: std_y=averages_by_neighborhood["sale_price_sqr_foot"].std()
    min_y=averages_by_neighborhood["sale_price_sqr_foot"].min()-std_y
    max_y=averages_by_neighborhood["sale_price_sqr_foot"].max()+std_y

ax = averages_by_neighborhood["sale_price_sqr_foot"].plot(kind="bar", title='T
    op 10 expensive neighborhoods')
    ax.set_xlabel("Neighborhood")
    ax.set_ylabel("Sale Price Per Sqr Foot")
    plt.ylim(min_y,max_y)
    plt.show()
```


Parallel Coordinates and Parallel Categories Analysis

In this section, you will use plotly express to create parallel coordinates and parallel categories visualizations so that investors can interactively filter and explore various factors related to the sales price of the neighborhoods.

Using the DataFrame of Average values per neighborhood (calculated above), create the following visualizations:

- 1. Create a Parallel Coordinates Plot
- 2. Create a Parallel Categories Plot

I figured out my jupyter lab worked only when I used panel.column.. otherwise it wasn't showing the graph. So using the workaround to show the graphs

```
In [150]: # Parallel Coordinates Plot
          # YOUR CODE HERE!
          averages by neighborhood.reset index(inplace=True)
          ax=px.parallel_coordinates(averages_by_neighborhood, color='sale_price_sqr_foo
          t', width=1000)
          column = pn.Column(
               "## Parallel Coordinates Plot", ax
          column
Out[150]:
  In [ ]:
In [170]:
          # Parallel Categories Plot
          # YOUR CODE HERE!
          ax=px.parallel categories(
              averages by neighborhood,
              dimensions=["neighborhood", "housing_units", "gross_rent"],
              color="sale price sqr foot",
              color_continuous_scale=px.colors.sequential.Inferno,
              labels={
                   "neighborhood": "Neighborhood",
                   "housing units": "Uousing Units",
                   "gross_rent": "Gross Rent",
              },
              width=1000
          column = pn.Column(
               "## Parallel Categories Plot", ax
          column
```

In [171]: averages_by_neighborhood

Out[171]:

	neighborhood	sale_price_sqr_foot	housing_units	gross_rent
0	Union Square District	903.993258	377427.50	2555.166667
1	Merced Heights	788.844818	380348.00	3414.000000
2	Miraloma Park	779.810842	375967.25	2155.250000
3	Pacific Heights	689.555817	378401.00	2817.285714
4	Westwood Park	687.087575	382295.00	3959.000000
5	Telegraph Hill	676.506578	378401.00	2817.285714
6	Presidio Heights	675.350212	378401.00	2817.285714
7	Cow Hollow	665.964042	378401.00	2817.285714
8	Potrero Hill	662.013613	378401.00	2817.285714
9	South Beach	650.124479	375805.00	2099.000000

Neighborhood Map

In this section, you will read in neighboor location data and build an interactive map with the average prices per neighborhood. Use a scatter_mapbox from plotly express to create the visualization. Remember, you will need your mapbox api key for this.

Load Location Data

```
In [172]: # Load neighborhoods coordinates data
    file_path = Path("Data/neighborhoods_coordinates.csv")
    df_neighborhood_locations = pd.read_csv(file_path)
    df_neighborhood_locations
```

Out[172]:

	Neighborhood	Lat	Lon
0	Alamo Square	37.791012	-122.402100
1	Anza Vista	37.779598	-122.443451
2	Bayview	37.734670	-122.401060
3	Bayview Heights	37.728740	-122.410980
4	Bernal Heights	37.728630	-122.443050
68	West Portal	37.740260	-122.463880
69	Western Addition	37.792980	-122.435790
70	Westwood Highlands	37.734700	-122.456854
71	Westwood Park	37.734150	-122.457000
72	Yerba Buena	37.792980	-122.396360

73 rows × 3 columns

Data Preparation

You will need to join the location data with the mean prices per neighborhood

- 1. Calculate the mean values for each neighborhood
- 2. Join the average values with the neighborhood locations

```
In [185]: # Calculate the mean values for each neighborhood
# YOUR CODE HERE!

df_neighborhood=sfo_data.groupby('neighborhood').mean()

df_neighborhood.reset_index(inplace=True)
df_neighborhood.head()
```

Out[185]:

	neighborhood	sale_price_sqr_foot	housing_units	gross_rent
0	Alamo Square	366.020712	378401.0	2817.285714
1	Anza Vista	373.382198	379050.0	3031.833333
2	Bayview	204.588623	376454.0	2318.400000
3	Bayview Heights	590.792839	382295.0	3739.000000
4	Bernal Heights	576.746488	379374.5	3080.333333

```
In [182]: df_neighborhood_locations.columns=["neighborhood","lat","lon"]
#df_neighborhood_locations.set_index("neighborhood",inplace=True)

df_neighborhood_locations.head()
```

Out[182]:

neighborhood		neighborhood	lat	lon	
	0	Alamo Square	37.791012	-122.402100	
	1	Anza Vista	37.779598	-122.443451	
	2	Bayview	37.734670	-122.401060	
	3	Bayview Heights	37.728740	-122.410980	
	4	Bernal Heights	37.728630	-122.443050	

```
In [190]: df_neighborhood
    df_neighborhood.set_index("neighborhood",inplace=True)
```

```
In [191]: # Join the average values with the neighborhood locations
# YOUR CODE HERE!

df_joined=pd.concat([df_neighborhood,df_neighborhood_locations], axis='columns', join='inner')
df_joined
```

Out[191]:

	sale_price_sqr_foot	housing_units	gross_rent	lat	lon
neighborhood					
Alamo Square	366.020712	378401.00	2817.285714	37.791012	-122.402100
Anza Vista	373.382198	379050.00	3031.833333	37.779598	-122.443451
Bayview	204.588623	376454.00	2318.400000	37.734670	-122.401060
Bayview Heights	590.792839	382295.00	3739.000000	37.728740	-122.410980
Buena Vista Park	452.680591	378076.50	2698.833333	37.768160	-122.439330
West Portal	498.488485	376940.75	2515.500000	37.740260	-122.463880
Western Addition	307.562201	377427.50	2555.166667	37.792980	-122.435790
Westwood Highlands	533.703935	376454.00	2250.500000	37.734700	-122.456854
Westwood Park	687.087575	382295.00	3959.000000	37.734150	-122.457000
Yerba Buena	576.709848	377427.50	2555.166667	37.792980	-122.396360

69 rows × 5 columns

Mapbox Visualization

Plot the aveage values per neighborhood with a plotly express scatter mapbox visualization.

```
In [197]:
          df joined.reset index(inplace=True)
In [200]: # Set token using Plotly Express set function
          px.set_mapbox_access_token(mapbox_token)
          # YOUR CODE HERE!
          myplot= px.scatter_mapbox(
                   df_joined,
                   lat="lat",
                   lon="lon",
                   size="sale_price_sqr_foot",
                   color="neighborhood",
                   color_continuous_scale=px.colors.cyclical.IceFire,
                   title="Neighborhood Info",
                   zoom=3,
                   width=1200,
                   height=700
              )
          geo_column = pn.Column(
               "## Neighborhood Info", myplot
          geo_column
```

Out[200]:

```
In [201]: | # Set token using Plotly Express set function
          px.set_mapbox_access_token(mapbox_token)
          # YOUR CODE HERE!
          # chaging the color to be sale price
          myplot= px.scatter_mapbox(
                   df_joined,
                   lat="lat",
                   lon="lon",
                   size="sale_price_sqr_foot",
                   color="sale_price_sqr_foot",
                   color_continuous_scale=px.colors.cyclical.IceFire,
                   title="Neighborhood Info",
                   zoom=3,
                   width=1200,
                   height=700
               )
          geo_column = pn.Column(
               "## Neighborhood Info", myplot
          geo_column
```

Out[201]:

In []: