In [65]: **import** pandas **as** pd

In [66]: data=pd.read_csv("/home/placenent/Downloads/fiat500.csv")

In [67]: data.describe()

Out[67]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	11.563428	8576.003901
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	2.328190	1939.958641
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	7.245400	2500.000000
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	9.505090	7122.500000
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	11.869260	9000.000000
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	12.769040	10000.000000
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	18.365520	11100.000000

In [68]: data.head()

Out[68]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	pop	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	рор	73	3074	106880	1	41.903221	12.495650	5700

In [69]: #to remove a columns
 datal=data.drop(['lat','lon','ID'],axis=1)
 datal

Out[69]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	pop	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	pop	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	pop	51	1766	54276	1	7900

1538 rows × 6 columns

In [70]: data=pd.get_dummies(data)
data

Out[70]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price	model_lounge	model_pop	model_sport
0	1	51	882	25000	1	44.907242	8.611560	8900	1	0	0
1	2	51	1186	32500	1	45.666359	12.241890	8800	0	1	0
2	3	74	4658	142228	1	45.503300	11.417840	4200	0	0	1
3	4	51	2739	160000	1	40.633171	17.634609	6000	1	0	0
4	5	73	3074	106880	1	41.903221	12.495650	5700	0	1	0
		•••							***		
1533	1534	51	3712	115280	1	45.069679	7.704920	5200	0	0	1
1534	1535	74	3835	112000	1	45.845692	8.666870	4600	1	0	0
1535	1536	51	2223	60457	1	45.481541	9.413480	7500	0	1	0
1536	1537	51	2557	80750	1	45.000702	7.682270	5990	1	0	0
1537	1538	51	1766	54276	1	40.323410	17.568270	7900	0	1	0

1538 rows × 11 columns

```
In [71]: data.shape
```

Out[71]: (1538, 11)

In [72]: data2=pd.get_dummies(data1)

In [73]: data2

_			-
/ No.	. +-	1 / 2	
		I /)	
00		L ,	

	engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
0	51	882	25000	1	8900	1	0	0
1	51	1186	32500	1	8800	0	1	0
2	74	4658	142228	1	4200	0	0	1
3	51	2739	160000	1	6000	1	0	0
4	73	3074	106880	1	5700	0	1	0
1533	51	3712	115280	1	5200	0	0	1
1534	74	3835	112000	1	4600	1	0	0
1535	51	2223	60457	1	7500	0	1	0
1536	51	2557	80750	1	5990	1	0	0
1537	51	1766	54276	1	7900	0	1	0

1538 rows × 8 columns

```
In [74]: #for checking rows & columns
data2.shape

Out[74]: (1538, 8)
In [75]: #pridected value we removed from data frame
```

```
In [75]: #pridected value we removed from data frame
y=data2['price']
x=data2.drop('price',axis=1)
```

```
In [76]: y
Out[76]: 0
                  8900
                  8800
          2
                  4200
          3
                  6000
          4
                  5700
          1533
                  5200
          1534
                  4600
          1535
                  7500
          1536
                  5990
          1537
                  7900
          Name: price, Length: 1538, dtype: int64
In [77]: #!pip3 install scikit-learn
          #to install sklearn
In [78]: #divide the data into testing & training
          from sklearn.model selection import train test split
          x train,x test,y train,y test=train test split(x,y,test size=0.33,random state=42)
In [79]: #to show starting rows
          x test.head(5)
Out[79]:
               engine_power age_in_days
                                         km previous_owners model_lounge model_pop model_sport
                                 3197 120000
           481
                        51
                                                         2
                                                                     0
                                                                              1
                                                                                         0
            76
                        62
                                 2101 103000
                                                         1
                                                                     0
                                                                              1
                                                                                         0
           1502
                        51
                                  670
                                       32473
                                                        1
                                                                    1
                                                                              0
                                                                                         0
           669
                        51
                                  913
                                       29000
                                                        1
                                                                    1
                                                                              0
                                                                                         0
           1409
                        51
                                  762
                                       18800
                                                         1
                                                                    1
                                                                              0
                                                                                         0
```

In [80]: x_train.head(5)

\sim			г.	\sim	\sim	т.
"	и.	Τ.		×	ы	
v	u	u	ים	U	v	л.

	engine_power	age_in_days	km	previous_owners	model_lounge	model_pop	model_sport
52	51	425	13111	1	1	0	0
129	51	1127	21400	1	1	0	0
602	. 51	2039	57039	1	0	1	0
333	. 51	1155	40700	1	1	0	0
323	51	425	16783	1	1	0	0

```
In [81]: y_test.head(5)
Out[81]: 481
                 7900
                 7900
         76
         1502
                 9400
         669
                 8500
         1409
                 9700
         Name: price, dtype: int64
In [82]: y_train.head(5)
Out[82]: 527
                9990
         129
                9500
         602
                7590
         331
                8750
         323
                9100
         Name: price, dtype: int64
In [83]: from sklearn.linear_model import LinearRegression
In [84]: reg=LinearRegression()#creating object of LinearRegression
```

```
In [85]: reg.fit(x_train,y_train)#training and fitting LR object using training data and the model is created by trai
```

Out[85]: LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [86]: #prediction price
         y pred=reg.predict(x test)
In [87]: | y pred
                                  6069.//10/828,
                                                  9023.26394/82, 10220.56195956,
                  9772.85146492,
                  9238.89392583,
                                  9931.47195375,
                                                  8321.42715662,
                                                                   8377.80491069,
                  7528.53327408, 10552.64805598, 10465.02437243, 10110.68940664,
                 10238.17869436,
                                  6841.77264488,
                                                   9625.64505547, 10412.59988875,
                  9653.06224923,
                                  7948.63618724,
                                                  9704.82523573,
                                                                   7971.05970955,
                 10399.51752022,
                                  9176.43567301,
                                                   5803.03205787,
                                                                   6698.19524313,
                  8257.83550573, 10452.95284574,
                                                  9948.66454584.
                                                                   9789.65062843,
                10582.50828537,
                                  7568.91955482,
                                                   6804.97705225,
                                                                   8065.01292384,
                                  8836.34894739,
                                                                   9582.13932508,
                 10310.29143419,
                                                   8390.05091229,
                                                                   7145.15315349,
                  9745.34784981, 10045.45021387, 10294.09872915,
                                  6281.78952194,
                                                                   9387.9203723 ,
                  9727.85493167,
                                                  7901.36245623,
                  5039.55649797,
                                  9351.49777725,
                                                  9980.70844784, 10094.79341516,
                  6359.24321991,
                                  9856.10227211,
                                                  9099.07023804,
                                                                   5234.05388382,
                  5534.45288323,
                                  4495.02309231, 10199.78432943, 10024.87037067,
                  5465.58034188,
                                  8520.72057674,
                                                  7034.71038647, 10054.65061446,
                 10191.12067767,
                                  6008.34860428,
                                                  9748.18097947,
                                                                   9669.4333196 ,
                  9145.3756075 ,
                                  9175.66562699, 10087.86753845,
                                                                   9825.02990067,
                  7340.29803785,
                                  5083.8487301 ,
                                                  9441.50914802, 10243.05490667,
                  5556.42300245, 10676.01945733,
                                                  6126.99295838,
                                                                   9845.16661356,
                  9850.77978959,
                                  7840.83596305,
                                                  6552.05146566,
                                                                   9938.82104889,
In [88]: from sklearn.metrics import r2 score
         r2 score(y test,y pred)#y test=actual price,y pred=predicted price
Out[88]: 0.8415526986865394
```

localhost:8888/notebooks/fait 500(1).ipynb

```
In [96]: from sklearn.metrics import mean squared error#calculating MSE
          vv=mean squared error(y pred,y test)
In [97]: vv
Out[97]: 581887.727391353
In [102]:
          import math
          print(math.sqrt(vv))
          762.8156575420782
In [104]: |y_pred
Out[104]: array([ 5867.6503378 ,
                                   7133.70142341,
                                                    9866.35776216,
                                                                    9723.28874535,
                                                    9673.14563045, 10118.70728123,
                 10039.59101162,
                                   9654.07582608,
                                   9351.55828437, 10434.34963575,
                                                                   7732.26255693,
                  9903.85952664.
                  7698.67240131,
                                   6565.95240435,
                                                   9662.90103518, 10373.20344286,
                  9599.94844451,
                                   7699.34400418,
                                                    4941.33017994, 10455.2719478
                 10370.51555682, 10391.60424404,
                                                    7529.06622456,
                                                                    9952.37340054,
                  7006.13845729,
                                   9000.1780961 ,
                                                    4798.36770637,
                                                                    6953.10376491,
                  7810.39767825,
                                   9623.80497535,
                                                    7333.52158317,
                                                                    5229.18705519,
                  5398.21541073,
                                   5157.65652129,
                                                    8948.63632836,
                                                                    5666.62365159,
                  9822.1231461 ,
                                   8258.46551788,
                                                    6279.2040404 ,
                                                                    8457.38443276,
                  9773.86444066,
                                   6767.04074749,
                                                   9182.99904787, 10210.05195479,
                  8694.90545226, 10328.43369248,
                                                                    8866.7826029 ,
                                                    9069.05761443,
                  7058.39787506,
                                   9073.33877162,
                                                    9412.68162121, 10293.69451263,
                  10072.49011135,
                                   6748.5794244 ,
                                                    9785.95841801,
                                                                    9354.09969973,
                  9507.9444386 , 10443.01608254,
                                                    9795.31884316,
                                                                    7197.84932877,
                 10108.31707235,
                                   7009.6597206 ,
                                                    9853.90699412,
                                                                    7146.87414965,
                                                                    8515.83255277,
                  6417.69133992,
                                   9996.97382441,
                                                    9781.18795953,
                                                                    6832.86406122,
                  8456.30006203,
                                   6499.76668237,
                                                    7768.57829985,
                  8347.96113362. 10439.02404036.
                                                    7356.43463051.
                                                                    8562.56562053.
                   0020 70555100
                                  10025 02571520
                                                    7270 77100022
                                                                    0411 45004006
```

```
In [113]: #Results=pd.DataFrame(columns=['Actual', 'predicted'])
    #Result['Actual']=y_test
    Results['price']=y_test
    Results['predicted']=y_pred
    Results=Results.reset_index()
    Results['ID']=Results.index
    Results.head(10)
```

Out[113]:

	index	price	predicted	ID
0	481	7900	5867.650338	0
1	76	7900	7133.701423	1
2	1502	9400	9866.357762	2
3	669	8500	9723.288745	3
4	1409	9700	10039.591012	4
5	1414	9900	9654.075826	5
6	1089	9900	9673.145630	6
7	1507	9950	10118.707281	7
8	970	10700	9903.859527	8
9	1198	8999	9351.558284	9

In [114]: Results['diff']=Results.apply(lambda row:row.price-row.predicted,axis=1)
 Results

Out[114]:

	index	price	predicted	ID	diff
0	481	7900	5867.650338	0	2032.349662
1	76	7900	7133.701423	1	766.298577
2	1502	9400	9866.357762	2	-466.357762
3	669	8500	9723.288745	3	-1223.288745
4	1409	9700	10039.591012	4	-339.591012
503	291	10900	10032.665135	503	867.334865
504	596	5699	6281.536277	504	-582.536277
505	1489	9500	9986.327508	505	-486.327508
506	1436	6990	8381.517020	506	-1391.517020
507	575	10900	10371.142553	507	528.857447

508 rows × 5 columns

In []: