

TABLE 1: SUMMATIVE LABORATORY FORM

Semester	01
Module Code	EE1302
Module Name	Introduction to Electrical Engineering
Lab Number	02
Lab Name	VERIFICATION OF CIRCUIT LAWS
Lab conduction date	2022.09.28
Report Submission date	2022.10.05

C0	nte	ntc
LU	nte	HLS

1 Observation	1
2 Calculation	3
2.1 Specimen Calculation	6
3 Discussion	8

List of Figures
FIGURE 1: CIRCUIT DIAGRAM TO TEST KIRCHHOF'S CURRENT AND VOLTAGE LAWS
(CIRCUIT 1)
FIGURE 2 : CIRCUIT DIAGRAM TO TEST SUPERPOSITION THEOREM (CIRCUIT 2) 4
iv

1 Observation

TABLE 2 : CALCULATED EXPERIMENTAL VALUES USING KIRCHOFF'S CURRENT LAW AND VOLTAGE LAW

	Vs1 (V)	Vs2 (V)	R1 (Ω)	R2 (Ω)	R3 (Ω)	I1 (A)	12 (A)	13 (A)	V1 (V)	V2 (V)	V3 (V)
1	9	16	38	68	38	0.055	0.130	0.180	2.10	8.4	8.6
2	12	18	42	74	40	0.089	0.125	0.205	3.60	8.0	10.5
3	15	20	20	30	20	0.230	0.300	0.500	4.50	8.8	10.0
4	16	20	22	28	16	0.285	0.350	0.600	6.20	9.4	9.2

TABLE 3 : CALCULATED ERRORS USING THEORETICAL VALUES AND EXPERIMENT VALUE

		Theoretical	Experimental	Error		Theoretical	Experimental	Error
		(V)	(V)	%		(A)	(A)	%
	V1	1.976	2.1	-6.275	I1	0.052	0.055	-5.769
1	V2	8.796	8.4	4.502	12	0.132	0.130	1.515
	V3	7.030	8.6	-22.333	13	0.185	0.180	2.703
	V1	3.486	3.6	-3.270	I1	0.084	0.089	-7.229
2	V2	9.472	8.2	13.429	12	0.129	0.125	2.344
	V3	8.480	10.5	-23.821	13	0.212	0.205	3.302
	V1	4.360	4.5	-3.211	I1	0.219	0.230	-5.505
3	V2	9.360	8.8	5.983	12	0.313	0.300	3.846
	V3	10.620	10.0	5.838	13	0.531	0.500	5.838
	V1	5.960	6.1	-2.349	I1	0.271	0.285	-5.5166
4	V2	9.940	9.4	5.433	12	0.36	0.350	1.408
	V3	10.032	9.2	8.293	13	0.63	0.600	4.306

$\underline{\mathsf{TABLE}\,4}: \underline{\mathsf{THEORETICAL}\,\,\mathsf{AND}\,\,\mathsf{EXPERIMENTAL}\,\,\mathsf{VALUES}\,\,\mathsf{OF}\,\,\mathsf{SUPERPOSITION}\,\,\mathsf{THEOREM}$

		1 A)		[2 A)		I3 (A)
	Theoretical	Experimental	Theoretical	Experimental	Theoretical	Experimental
1	0.200	0.195	-0.067	-0.070	0.133	0.125
2	-0.033	-0.035	0.167	0.165	0.133	0.130
3	0.166	0.160	0.100	0.095	0.267	0.255

2 Calculation

FIGURE 1: CIRCUIT DIAGRAM TO TEST KIRCHHOF'S CURRENT AND VOLTAGE LAWS (CIRCUIT 1)

Applying Kirchhoff's Current law for node b:

$$I_1 + I_2 - I_3 = 0$$

Applying Kirchhoff's voltage law for mesh 1:

Applying Kirchhoff's voltage law for mesh 2:

$$I_2R_2 + I_3R_3 = V_{S2}$$

By solving the above three equations we can find I_1 , I_2 and I_3 values.

Then V_1 , V_2 , and V_3 should be found.

$$V_1 = I_1 \times R_1$$

$$V_2 = I_2 \times R_2$$

$$V_3 = I_3 \times R_3$$

Then should be calculated error using the below equation.

$$Error = \frac{Theoritical\ value - Experimental\ value}{Theoritical\ value} \times 100\%$$

FIGURE 2 : CIRCUIT DIAGRAM TO TEST SUPERPOSITION THEOREM (CIRCUIT 2)

First, we should find the current through each branch with the only V_{S1} voltage source. So, we should Remove V_2 from the above circuit and calculate values for I_1 , I_2 , and I_3

$$I'_{1} = \frac{V_{S1}}{\frac{R_{2} \times R_{3}}{R_{2} + R_{3}} + R_{1}}$$

$$I'_{2} = I'_{1} \times \frac{R_{3}}{R_{3} + R_{2}}$$

$$I'_{3} = I'_{1} - I'_{2}$$

Then, we should find the current through each branch with the only V_{S1} voltage source. So, we should Remove V_2 from the above circuit and calculate values for I_1 , I_2 , and I_3

$$I_{2}^{"} = \frac{V_{S2}}{\frac{R_{1} \times R_{3}}{R_{1} + R_{3}} + R_{2}}$$

$$I_1^{"} = I_2^{"} \times \frac{R_3}{R_3 + R_1}$$

$$I_3^{"} = I_2^{"} - I_1^{"}$$

As per Superposition theorem

$$I_3 = I_3' + I_3''$$

$$I_2 = I_2' - I_2''$$

$$\mathbf{I_1} = \mathbf{I_1'} - \mathbf{I_1''}$$

2.1 Specimen Calculation

FOR KIRCHHOFF'S VOLTAGE AND CURRENT LAWS

Considering the third data set;

$$20I_1 + 20I_3 = 15$$

$$30I_2 + 20I_3 = 20$$

$$I_1 + I_2 - I_3 = 0 \qquad \longrightarrow \qquad \boxed{3}$$

By solving 1, 2, and 3 equations:

$$I_1 = 0.2188A$$

$$I_2 = 0.3125A$$

$$I_3 = 0.5313A$$

Hence

$$V_1 = I_1 R_1$$

$$V_1 = 0.2188 \times 20$$

$$V_1 = 4.376V$$

$$V_2 = I_2 R_2$$

$$V_2 = 0.3125 \times 30$$

$$V_2 = 9.375V$$

$$V_3 = I_3 R_3$$

$$V_3 = 0.5313 \times 20$$

$$V_3 = 10.626V$$

Then we can calculate errors using our theoretical values and the experimental values.

$$Error = \frac{Theoritical\ value - Experimental\ value}{Theoritical\ value} \times 100\%$$

Error of
$$I_3 = \frac{0.531 - 0.500}{0.531} \times 100\%$$

= 5.8380%

FOR SUPERPOSITION THEOREM

Considering the first data set of table 1.2; By removing V_{S2} ;

$$I'_{1} = \frac{14}{\frac{30 \times 15}{30 + 15} + 60}$$

$$I'_{1} = 0.2 \text{ A}$$

$$I'_{2} = 0.2 \times \frac{15}{15 + 30}$$

$$I'_{2} = -0.0667 \text{ A}$$

$$I'_{3} = 0.133 \text{A}$$

By removing V_{S1};

$$I_{2}^{"} = \frac{7}{\frac{60 \times 15}{60 + 15} + 30}$$

$$I_{2}^{"} = 0.1667A$$

$$I_{1}^{"} = 0.1667 \times \frac{15}{60 + 15}$$

$$I_{1}^{"} = -0.0333A$$

$$I_{3}^{"} = 0.1334A$$

As per the superposition theorem;

$$I_3 = 0.133 + 0.134$$

 $I_3 = 0.267A$

3 Discussion

Q1.

Kirchhoff's current law states that the algebraic sum of the currents entering a node is zero at every instant. The KCL requesting figure 1;

Table 2.2 contains all the theoretical and experimental values. Columns 7, 8, and 9 represent theoretical values, experimental values, and error percentages, respectively. 52mA to 600 mA is the range of our measured readings. Comparing experimental and theoretical values yields results that are almost identical.

The errors are given by,

$$Error = \frac{Theoritical\ value - Experimental\ value}{Theoritical\ value} \times 100\%$$

Some errors had a positive value while others had a negative value.

Kirchhoff's voltage law states that the algebraic sum of all the voltages around a closed loop is zero at every instant. The KVL applying for figure 1;

Table 2.2 contains all the theoretical and experimental values. Columns 3, 4, and 5 represent theoretical values, experimental values, and error percentages, respectively. Our measurements range from 2.1 to 10.5 volts. Comparing experimental and theoretical values yields results that are almost identical. Some errors had a positive value while others had a negative value.

Q2.

In its most basic version, the superposition theorem asserts that the current in each branch of a linear network with multiple e.m.f. sources is the algebraic sum of the currents obtained by each source acting independently, with each other source being replaced by its corresponding impedance.

The superposition theorem states that a circuit with several voltage and current sources is comparable to the total of simpler circuits with a single source. We can turn off the sources so that we can collect the values and streamline the circuit system. In order to verify the theorem, we computed the theoretical current values for a circuit and contrasted them with the outcomes of the experiments. It can be shown that the theoretical and experimental values of the currents are comparable. Theoretical results can occasionally outperform experimental results, and vice versa. There are many other possible reasons for this. These mistakes might occur if we use flawless instruments but disregard all the resistors, conducting cables, and other parts they contain.

Even when employing KCL and KVL, circuits can still get pretty complex. On occasion, though, we can use the superposition theorem to simplify the circuits. The circuit is solved and the superposition theorem is implemented, with one independent source left out. Applying it to all of the sources and then totaling up everything you read will allow you to calculate the outcome. With the use of this theorem, any linear circuit with several sources can be investigated. A very useful technique for conducting circuit analysis is superposition.

When a circuit contains several electrical sources or inputs, use superposition. Consequently, the multi-source, multi-resistance challenging electric network is finally addressed utilizing the superposition

circuit analysis since it turns
9