12 13 13 17 16 15 14 17

	Search Terms
39	
40	
41	
42	
43	
4	
45	TESTERS
46	TESTING
47	TESTINGS
48	
49	VECTOR
50	
51	OPTIMISED
52	((((OPTIMIZING OR OPTIMIZE OR OPTIMIZATION OR OPTIMIZED OR OPTIMAL) SAME (MINIMIZATION OR MINIMIZING OR MINIMIZED OR MINIMIZE)) SAME (DIFFERENCE OR ERROR)) AND (((MODELLED OR MODELLING OR MODELING OR MODEL) SAME (STIMULI OR STIMULUS OR VECTOR)) SAME (TESTABLE OR TESTED OR TES

	Total	USPAT	US-PGPUB	EPO	JPO	Derwent	IBM TDB	USOCR
39								
40	39513							
41								
42	3916							
43	525733							
44	94966							
45								
46								
47	1076							
48								
49								
50	149385							
51	19296							
	117							
52			********					

iction of acute expression profiling 106/16 ving listener a conference call distorted 375/297 ng pre-equalizer and robust model rs using a detection network models in the and measurement 376/21	Methods and apparatus for fast and robust model training for object classification Optimization of detection systems using a detection error tradeoff analysis criterion Performance of artificial neural network models in the presence of instrumental noise and measurement errors		***************************************		-	L	-
expression profiling expression profiling listener conference call istorted g pre-equalizer and robust model s using a detection	Methods and apparatus for fast a training for object classification Optimization of detection system error tradeoff analysis criterion		20031009	US 20030191728 A1			18
expression profiling expression profiling listener conference call istorted g pre-equalizer and robust model	Methods and apparatus for fast a training for object classification		20031120	US 20030216916 A1			17
expression profiling expression profiling listener conference call istorted g pre-equalizer			20031204	US 20030225719 A1			16
expression profiling listener conference call istorted	Method and system for computing pre-equalizer coefficients		20031225	US 20030235245 A1		\boxtimes	15
expression profiling expression profiling listener conference call	Postdistortion amplifier with pred postdistortion		20040101	US 20040001559 A1		⊠	14
ction of acute expression profiling	Method and apparatus for improving listener differentiation of talkers during a conference		20040122	US 20040013252 A1			13
	Controlled capacity modeling tool		20040122	US 20040015460 A1		⊠	12
	Classification and prognosis prediction of acute lymphoblastic leukemia by gene expression profiling		20040129	US 20040018513 A1		×	11
or predicting and 600/544	Unified probabilistic framework for predicting and detecting seizure onsets in the brain and multitherapeutic device		20040408	US 20040068199 A1			10
mbining mutations, 435/471	Whole cell engineering by mutagenizing a substantial portion of a starting genome, combining mutations, and optionally repeating		20040422	US 20040077090 A1			9
ted multimedia 704/1	System and method for automated multimedia content indexing and retrieval		20040422	US 20040078188 A1		☒	8
g multi-variable 717/109	Method and system for predicting multi-variable outcomes		20040429	US 20040083452 A1		⊠	7
on levels 435/6	Method for predicting transcription levels		20040610	US 20040110209 A1		⊠	6
palytical methods for stractions and ractions and 702/27 atio rays of thereof	Experimental design and data analytical methods for detecting and characterizing interactions and interaction thresholds on fixed ratio rays of polychemical mixtures and subsets thereof		20040715	US 20040138826 A1			ъ
oloying reciprocity of 324/601	Network analyzer calibration employing reciprocity of a device	18	20040819	US 20040160228 A1			4
ation employing 702/104	Multiport network analyzer calibration employing reciprocity of a device		20040819	US 20040162689 A1		×	ω
382/187	On-line handwriting recognizer		20040826	US 20040165777 A1		⊠	2
ratus and methods	Video coding reconstruction appa	59	20040902	US 20040170330 A1			1
Current OR	Title	Pages	Issue Date	Document ID	н	-	

19	18	17	16	15	14	13	12	11	10	9	œ	7	6	5	4	ω	2	—	
	706/31			375/233		379/142.07; 379/142.08; 379/142.17				435/252.3; 435/254.2		708/520		,					Current XRef
																	,		Retrieval Classif
Guyon, Isabelle et al.	Kulkami, Bhaskar Dattatray et al.	Navratil, Jiri et al.	Juang, Biing-Hwang et al.	Erdogan, Alper Tunga et al.	Pinckley, Danny Thomas et al.	Craner, Michael L.	Alhadef, Bernard et al.	Downing, James R. et al.	Echauz, Javier Ramon et al.	Short, Jay M.	Gibbon, David Crawford et al.	Minor, James M. et al.	Yokota, Hiroki et al.	Carter, Walter Hansbrough JR. et al.	Jamneala, Tiberiu et al.	Jamneala, Tiberiu et al.	Lossev, Ilia et al.	Fogg, Chad Edward	Inventor
																			S
																			C
																			P
																			2
																			ω
																			4
 %	E	<u></u>	<u></u>	<u></u>	<u></u>		ي ا		<u></u>						Ë	<u></u>		<u>ا</u>	5
US 20030172043	US 20030191728	US 20030216916	US 20030225719	US 20030235245	US 20040001559	US 20040013252	US 20040015460	S 20040018513	US 20040068199	US 20040077090	US 20040078188	US 20040083452	US 20040110209	US 20040138826	US 20040160228	US 20040162689	US 20040165777	S 20040170330	Image Doc. Displayed
																			꼭

38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	
☒	☒	\boxtimes	☒	☒	Ø	☒	☒	☒	☒	☒	☒	☒	☒	⊠	☒	☒	☒	\boxtimes	U
																			1
US 20030033194 A1	US 20030033587 A1	US 20030055610 A1	US 20030063672 A1	US 20030078683 A1	US 20030078850 A1	US 20030083822 A2	US 20030099350 A1	US 20030100998 A2	US 20030101161 A1	US 20030115564 A1	US 20030130899 A1	US 20030139828 A1	US 20030140023 A1	US 20030140039 A1	US 20030142832 A1	US 20030148313 A1	US 20030149603 A1	US 20030169438 A1	Document ID
20030213	20030213	20030320	20030403	20030424	20030424	20030501	20030529	20030529	20030529	20030619	20030710	20030724	20030724	20030724	20030731	20030807	20030807	20030911	Issue Date
											100	63	88	59	25	2	83	25	Pages
System and method for on-line training of a non-linear model for use in electronic commerce	System and method for on-line training of a non-linear model for use in electronic commerce	Signal processing technique	Method for estimating the motion between two digital images with management of mesh overturning and corresponding coding method	System and method for on-line training of a support vector machine		SYSTEMS AND METHODS FOR MONITORING BEHAVIOR INFORMATICS	System and method for upstream power backoff for xDSL	SYSTEMS AND METHODS FOR MONITORING BEHAVIOR INFORMATICS	ning of	Block based design methodology	System and method for historical database training of non-linear models for use in electronic commerce	System and method for pre-processing input data to a 700/53 support vector machine	System and method for pre-processing input data to a non-linear model for use in electronic commerce	Pre-processing input data with outlier values for a support vector machine	Adaptive method for detecting parameters of loudspeakers	Applications of parallel genomic analysis	System and method for operating a non-linear model with missing data for use in electronic commerce	Colour separation method	Title
705/10	717/104	702/194	375/240.16	700/44	705/26	702/19	379/417	702/19	707/1	716/8	705/26	700/53	706/21	707/4	381/59	435/6	705/7	358/1.9	Current OR

	Current YDef	Patriaval Classif	Inventor	n	2	D	<u>د</u>	<u>~</u>	4	<u>л</u>	Image Doc.	4
20			Velde, Koen Vande et al.								US 20030169438	
21	706/22		Ferguson, Bruce et al.								US 20030149603	
22	435/91.2; 702/20		Strathmann, Michael Paul								US 20030148313	
23	381/96		Meerkoetter, Klaus et al.								US 20030142832	
24			Ferguson, Bruce et al.								US 20030140039	
25	706/15		Ferguson, Bruce et al.								US 20030140023	
26	700/31; 700/47; 700/52		Ferguson, Bruce et al.								US 20030139828	П
27			Ferguson, Bruce et al.								US 20030130899	П
28	716/2; 716/4		Chang, Henry et al.									
29	707/3		Ferguson, Bruce et al.									
30	382/128; 702/20		Brunner , Daniela et al.									
31	379/221.15		Bostoen, Tom et al.									
32	705/2		Brunner , Daniela et al.									
33			Hartman, Eric et al.									
34	700/52; 700/53		Hartman, Eric et al.									
35	348/699		Laurent-Chatenet, Nathalie									
36			Webber, Christopher J ST C									
37			Ferguson, Bruce et al.									
38			Ferguson, Bruce et al.									

716/4	Blocked based design methodology		20040224	US 6698002 B2		X	59
716/10	Block based design methodology		20040302	US 6701504 B2	⊐	Ø	58
704/246	System and method for automated multimedia content indexing and retrieval		20040330	US 6714909 B1		\boxtimes	57
706/48	System for identifying patterns in biological data using 706/48 a distributed network		20040330	US 6714925 B1		⊠	56
716/4	Blocked based design methodology		20040420	US 6725432 B2		\boxtimes	55
345/582	Graphics processing system having a virtual texturing 345/582		20040817	US 6778181 B1		☒	54
382/232	Video coding and reconstruction apparatus and methods		20040824	US 6782132 B1		\boxtimes	53
716/1	Block based design methodology		20010823	US 20010016933 A1		Ø	52
716/1	Block based design methodology		20010830	US 20010018756 A1		☒	51
716/18	Block based design methodology		20010927	US 20010025369 A1		Ø	50
716/8	Block based design methodology	•	20011108	US 20010039641 A1		☒	49
716/8	Block based design methodology		20011115	US 20010042237 A1		☒	&
716/18	Block based design methodology		20020207	US 20020016952 A1		☒	47
716/1	Block based design methodology with programmable components		20020613	US 20020073380 A1		Ø	8
714/732	Method and apparatus for low cost signature testing for analog and RF circuits		20020919	US 20020133772 A1		☒	45
345/767	System and method for multi-modal focus detection, referential ambiguity resolution and mood classification using multi-modal input		20020926	US 20020135618 A1		☒	4
706/16	Computer-aided image analysis	•	20021107	US 20020165837 A1		☒	43
716/1	Block based design methodology		20021107	US 20020166098 A1		☒	42
375/224	Method and apparatus for identification of an access network by means of 1-port measurements		20021212	US 20020186760 A1		☒	41
702/19	Systems and methods for monitoring behavior informatics		20030102	US 20030004652 A1		☒	46
702/19	Systems and methods for monitoring behavior informatics		20030206	US 20030028327 A1			39
Current OR	Title	Pages	Issue Date	Document ID		c	

Inventor S C P 2 3 4 5 Image Doc. Doc. Doc. Doc. Doc. Doc. Doc. Doc.	54 716/1; 55 716/11; 55 716/18; 716/2 56 706/16 704/251; 704/270.1; 707/102; 707/3				348/716; 53 382/260; 382/261	52	51	50	49 716/2	48	47 716/2	46	45	44	43 382/156	42	41	40 705/2	39 382/128; 702/20	Current XRef Retrieval Classif	
C P 2 3 4 5 Image Doc.	Chang, Henry et al. Barnhill, Stephen et al. Gibbon, David Crawford et al.	Chang, Henry et al. Barnhill, Stephen et al.	Chang, Henry et al.	Kilgariff, Emmett M. et al.	Fogg, Chad Edward	Chang, Henry et al.	Cooke, Laurence H. et al.	Voorakaranam, Ram et al.	Maes, Stephane Herman et al.	Zhang, Hong et al.	Chang, Henry et al.	Bostoen, Tom et al.	Brunner, Daniela et al.	Brunner, Daniela et al.							
P 2 3 4 5 Displayed D D D D D D D D D																				S	
2 3 .4 5 Image Doc.																				C	
3 .4 5 Image Doc.																				P	
.4 5 Image Doc. O]																			2	
5 Image Doc.]																			3	
Image Doc. Displayed																				4	
																				5	

77	76	75	74	73	72	71	70	69	68	67	66	65	2	63	62	61	60	
×	Ø	\boxtimes	⊠	\boxtimes	⊠	⊠	Ø	⊠	⊠	⊠	\boxtimes	⊠	Ø	⊠	Ø	Ճ		_
																		1
US 6470230 B1	US 6473746 B1	US 6480791 B1	US 6495601 B1	US 6532454 B1	US 6536024 B1	US 6549022 B1	US 6567957 B1	US 6574778 B2	US 6584836 B1	US 6587845 B1	US 6594800 B2	US 6615373 B2	US 6629293 B2	US 6631470 B2	US 6643597 B1	US 6678548 B1	US 6694501 B2	Document ID
20021022	20021029	20021112	20021217	20030311	20030318	20030415	20030520	20030603	20030701	20030701	20030715	20030902	20030930	20031007	20031104	20040113	20040217	Issue Date
		****************																Pages
Supervisory method for determining optimal process targets based on product performance in microelectronic fabrication	Method of verifying pretrained neural net mapping for 706/15 use in safety-critical software	Parallel methods for genomic analysis	Methods and compositions for treating conditions of the central and peripheral nervous systems using non-synaptic mechanisms	Stable adaptive control using critic designs	Method for making integrated circuits having gated clock trees	Apparatus and method for analyzing functional failures in integrated circuits	Block based design methodology	Block based design methodology	Bias method for identifying and removing machine contribution to test data	Method and apparatus for identification and optimization of bioactive compounds using a neural network	Block based design methodology	Method, system and program products for resolving potential deadlocks	Block based design methodology	Block based design methodology	Calibrating a test system using unknown standards	Unified probabilistic framework for predicting and detecting seizure onsets in the brain and multitherapeutic device	Block based design methodology	Title
700/121	706/15	702/20	514/562	706/14	716/6	324/752	716/4	716/1	73/146	706/21	716/1	714/47	716/4	716/3	702/104	600/544	716/10	Current OR

	Current XRef	Retrieval Classif	Inventor	S	C	ס	2	ω	4	55	Image Doc. Displayed
60	716/1; 716/18; 716/2; 716/7; 716/8; 716/9		Chang, Henry et al.								
61			Echauz, Javier Ramon et al.								
62	702/85		Dunsmore, Joel								
63			Chang, Henry et al.								
2			Chang, Henry et al.								
65	709/240		Elko, David A. et al.								
66	716/11; 716/4		Chang, Henry et al.								
67	706/20		Braunheim, Benjamin B.								
&											
69	716/4		Chang, Henry et al.								
70	716/1		Chang, Henry et al.								
71	324/765		Cole, Jr., Edward I. et al.								
72	716/2; 716/5; 716/7; 716/8		Hathaway, David J.								
73	706/21; 706/23		Werbos, Paul J.								
74	514/269; 514/603		Hochman, Daryl W.								
75	435/6; 435/91.2		Strathmann, Michael P.								
76	706/31		Zakrzewski, Radoslaw Romuald								
77	257/E21.525; 700/182		Toprac, Anthony J. et al.								

Apparatus and method for performing model estimation utilizing a discriminant measure
Method and apparatus for on-the-move detection of chemical agents using an FTIR spectrometer
Efficient synthesis of complex,
Determining an optimal color s selecting color modulations
Method for calibrating a photog
Analysis methods for energy di diffraction patterns
Fitting of X-ray scattering data algorithms
Model-based predictive control
Methods and apparatus for audio-visual speaker recognition and utterance verification
Block based design methodology
Heuristic processor
Die-based in-fab process monitoring and analysis system for semiconductor processing
Model-based predictive control
Methods for improving the efficiency of clock gating within low power clock trees
Method for mapping a nucleic

111	110	109	108	107	106	105	104	103	102	101	100	99	98	97	96	95	94	93	
☒	☒	⊠	\boxtimes	⊠	☒	☒	☒	☒	☒	\boxtimes	Ø	Ø	☒	☒	☒	☒	☒	☒	c
																			μ
US 4964126 A	US 5036474 A	US 5253192 A	US 5278647 A	US 5296861 A	US 5327521 A	US 5377306 A	US 5457625 A	US 5475793 A	US 5613037 A	US 5621580 A	US 5684713 A	US 5687733 A	US 5792072 A	US 5806029 A	US 5809490 A	US 5825645 A	US 5839105 A	US 5953136 A	Document ID
19901016	19910730	19931012	19940111	19940322	19940705	19941227	19951010	19951212	19970318	19970415	19971104	19971118	19980811	19980908	19980915	19981020	19981117	19990914	Issue Date
																			Pages
Fault tolerant signal processing machine and method	Motion detection and tracking from a mobile platform 348/117	Signal processing apparatus and method for teratively determining Arithmetic Fourier Transform	Video decoder using adaptive macroblock leak signals	Method and apparatus for maximum likelihood estimation direct integer search in differential carrier phase attitude determination systems		Heuristic processor	Maximizing process production rates using permanent 700/29 constraints	Heuristic digital processor using non-linear transformation	Rejection of non-digit strings for connected digit speech recognition	Ternary code magnetic recording system	of	System and method for estimating cardiac output		Signal conditioned minimum error rate training for continuous speech recognition	Apparatus and method for selecting a working data set for model development	Two-level system identifier apparatus with optimization	Speaker-independent model generation apparatus and speech recognition apparatus each equipped with means for splitting state having maximum increase in likelihood	Method for producing photographic copies from photographic originals	Title
714/797	348/117	708/403	375/240.15	342/357.11	704/272	706/14	700/29	706/14	704/256	360/48	716/19	600/505	600/559	704/244	706/16	700/28	704/256	358/504	Current OR

										_	7	╛
	Current XRef	Retrieval Classif	Inventor	S	C	v	2	ω	4	ر ح	Displayed	목
93	358/1.9		Kraft, Walter et al.									
94	704/231		Ostendorf, Mari et al.									
95	706/16; 706/20; 706/25		Konar, Ahmet Ferit et al.									
96	706/25		Guiver, John P. et al.									
97	704/245		Buhrke, Eric Rolfe et al.									
98	73/585		Keefe, Douglas H.									
99	600/526		McKown, Russell									
100	700/182		Asada, Haruhiko et al.									
101	360/40		Cruz, Joao R. et al.									
102	704/251; 704/255		Sukkar, Rafid A.									
103	706/25; 706/32; 706/41		Broomhead, David S. et al.									
104	700/33; 700/44; 700/45		Lim, Kian Y. et al.									
105	706/41		Broomhead, David S. et al.									
106	704/200; 704/203		Savic, Michael I. et al.									
107			Knight, Donald T.									
108	375/240.25		Hingorani, Rajesh et al.									
109	708/405		Tufts, Donald W.									
110	701/27		Bhanu, Bir et al.									
111	714/785		Musicus, Bruce R. et al.									

	c	μ_	Document ID	Issue Date	Pages	Title	Current OR
112			US 4893815 A	19900116		Interactive transector device commercial and military 463/47.3 grade	463/47.3
113	☒		US 4630242 A	19861216		Adaptive and non-adaptive method for estimating the 367/73 earth's reflection sequence	367/73
114	\boxtimes		US 4616308 A	19861007		Dynamic process control	700/39
115			US 4349869 A	19820914		Dynamic matrix control method	700/39
116	☒		□ NN900561	19900501		Automated Computer Performance Model Calibration Method Using Rule Based Inferencing And Generate-And-Test Paradigm.	
117	☒		US 20020133772 A	20020919		Electronic circuits low cost signature testing method for testing RF circuit, involves varying test stimulus to minimize error between predicted and measured performance parameters, to determine optimized test stimulus	

	Current XRef	Retrieval Classif	Inventor	S	C	P	2	ω	4	5	Displayed F	PT
112	42/1.08; 42/1.16; 89/1.11		Rowan, Larry									IJ.
T	267/42.							<u>.</u>	<u>.</u>			
			-]]]]]]]		j
113			Done, William J.									L
<u> </u>	702/14											
114			Morshedi, Abdol M. et al.									Ш
	700/266;											
	700/29;											
115			Prett, David M. et al.									Ш
	700/45;											*******
	702/108							ļ	ļ 	ļ		
116												
								ļ 	ļ 			
117			CHATTERJEE, A et al.									
			пининининин пинининин пининининин пинининин									

2
-
01

\dashv	15	ω	2	8	18
Total					
USPAT					
US-PGPUB		ω	2	8	18
EPO					
ЈРО					
Derwent					
IBM TDB					
ITDB USOCR					

	METHOD FOR THE SAME MANUFACTURING		20030826	JP 2003236371 A		⊠	15
714/724	8	54	19921027	US 5159598 A		⊠	14
716/1	Synthesis of low power linear digital signal processing 716/1 circuits using activity metrics	13	19980915	US 5808917 A		⊠	13
341/120	Method and system for making optimal estimates of linearity metrics of analog-to-digital converters	12	20021105	US 6476741 B2		☒	12
341/120	Apparatus and method including an efficient data transfer for analog to digital converter testing	12	20030311	US 6531972 B2			11
716/4	Method for diagnosing process parameter variations from measurements in analog circuits	16	20030923	US 6625785 B2		⊠	10
341/120	Apparatus and method including an efficient data transfer for analog to digital converter testing	13	20011101	US 20010035834 A1		Ø	9
341/120	Method and system for making optimal estimates of linearity metrics of analog-to-digital converters	12	20020314	US 20020030615 A1		⊠	8
702/117	Method for diagnosing process parameter variations from measurements in analog circuits	15	20020613	US 20020072872 A1			7
714/732	Method and apparatus for low cost signature testing for analog and RF circuits	19	20020919	US 20020133772 A1		☒	6
375/355	Method and apparatus for high-resolution jitter measurement	9	20020926	US 20020136337 A1		☒	5
714/724	Systems and methods for testing integrated circuits	18	20030515	US 20030093730 A1		\boxtimes	4
702/117	Method and apparatus for testing a system-on-a-chip 702/117	7	20030821	US 20030158688 A1		☒	ω
514/8	Novel two Gonadotropin releasing hormones and a method to isolate the same	14	20031225	US 20030236185 A1			2
714/25	Method for using an alternate performance test to reduce test time and improve manufacturing yield	7	20040729	US 20040148549 A1			1
Current OR	Title	Pages	Issue Date	Document ID	1	_	

		ONODERA, YOSHIRO et al.							
		Welles, II, Kenneth B. et al.		1					
		Chatterjee, Abhijit et al.							
		Cherubal, Sasikumar et al.							
		Variyam, Pramodchandran et al.							
257/E21.525; 716/1		Chatterjee, Abhijit et al.							
		Variyam, Pramodchandran et al.							
		Cherubal, Sasikumar et al.							
257/E21.525		Chatterjee, Abhijit et al.							
		Voorakaranam, Ram et al.							
		Chatterjee, Abhijit et al.							
		Halder, Achintya et al.							
		Chatterjee, Abhijit et al.							
		Chatterjee, Abhijit et al.							
		Voorakaranam, Ram et al.							
Current XRef	Retrieval Classif	Inventor	s		C	C P	 ٥	P 2	P 2 3

	METHOD AND APPARATUS FOR PROVIDING 19990624 DEMAND-BASED APPLICATION DOWNLOADING VIA AN IN-BAND CHANNEL TO A SET-TOP TERMINAL		19990624				18
	NOVEL TWO GONADOTROPIN RELEASING HORMONES AND A METHOD TO ISOLATE THE SAME		20030807			\boxtimes	17
UDING EFFICIENT TING A/D	APPARATUS AND METHOD INCLUDING EFFICIENT DATA TRANSMISSION FOR TESTING A/D CONVERTER		20020131	□ □ JP 2002031670 A 20020131			16
Current OR	Title	Pages	Issue Date	Document ID	1	C	

	Current XRef	Retrieval Classif	Inventor	S	2	Р	2	3	4	5	Image Doc. Displayed
16			VARIYAM, PRAMODCHANDRAN et al.								
17								**** **** ! ! * * * * * * * * * * * * *	·····		
18			KANNAN, NAVNEETH et al.								

HEER HOME I SEARCH HEER I SHOP I WER ACCOUNT I CONTACT HEER

	Welcome United States Patent and Traden	
Help FAQ Terms IEI Vincents to IEEE Valores Home - Home - What Can	Try our New Full-text Search Prototype Co	» Adva <u>Help</u>
I Access? - Log-out - Log-out	 Enter a single keyword, phrase, or Boolean expression. Example: acoustic imaging (means the phrase acoustic imaging plus any stem variations) Limit your search by using search operators and field codes, if desired. Example: optical <and> (fiber <or> fibre) <in> ti</in></or></and> 	Search Options: Select publication types: If IEEE Journals If IEEE Journals If IEEE Conference proceedings
Conterence Proceedings C Standards	3) Limit the results by selecting Search Options. 4) Click Search. See Search Examples (stimulus <paragraph>stimuli) <paragraph> <pre> </pre> </pre></pre></pre></pre></pre></pre></pre></pre></pre></paragraph></paragraph>	IEE Conference proceedings IEEE Standards Select years to search:
O- By Author O- Basic O- Advanced	(optimize <or>optimizied<or>optimization)<paragraph> Start Search Clear</paragraph></or></or>	Organize search results by: Sort by: Relevance
O- Join IEEE O- Establish IEEE Web Account	Note: This function returns plural and suffixed forms of the keyword(s). Search operators: <and> <or> <not> <in> More</in></not></or></and>	In: Descending order List 15 Results per page
Access the SEEE Mismber Digital Library Access the SEEE State price	Field codes: au (author), ti (title), ab (abstract), jn (publication name), de (index term) <u>More</u>	

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account |
New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online
Publications | Help. | FAQ| Terms | Back to Top

Copyright © 2004 IEEE — All rights reserved

HEER HOME (SEARCH HEER | SHOP | WER ACCOUNT | CONTACT HEER

1005	'ade
reerst	Welcome ent and Te
£3	Wei
etences	Welcome United States Patent and Trade
Can	inited
Standards Conferences Careers/Jobs	3
Publications/Services	
embership P	Ħ

.::::	10.	::::	10000
	æ		
200	8		
×	2	Υ.	
×	\$3	ž,	
×	~	č	
ш	×	್ಷ	***
ч	**	=	
ш	<u></u>	**	
88			
		*	
100000	99999	****	40000

» Search Results

Quick Links FAQ Terms IEEE Peer Review

mark Office

A maximum of 500 results are displayed, 15 to a page, sorted by Relevance in

Your search matched 0 of 1071730 documents.

Help

Refine This Search:

Descending order.

Character Can Access?

> Home

You may refine your search by editing the current search expression or entering a new one in the text box.

(stimulus<paragraph>stimuli)<paragraph>(optimize<or>

O Journals & Magazines

STREET, STREET

O-trag-out

Proceedings

Ch Standards

Camberence

Search

Check to search within this result set

Results Key:

STD = Standard JNL = Journal or Magazine CNF = Conference

Results:

No documents matched your query.

1

O Advanced

Q by Author

P Basic

C Establish IEEE > Join EEE

Web Account

Access the REE Member Digital Library

Cassian Cassian

語文語 | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | 点数次記の数 合意思定数 | Join IEEE | Web Account | New this week | OPAC Linking Information | Your Ecedback | Technical Support | Email Alerting | No. Robots Please | Release Notes | IEEE Online Publications | Help | FAQ | Terms | Back to Technical Support | Email Alerting | No. Robots Please | Release Notes | IEEE Online Publications | Help | FAQ | Terms | Back to Technical Support |

Copyright © 2004 IEEE — All rights reserved

HEER HOME | SEARCH HEER | SHOP | WEB ACCOUNT | CONTACT HEER

Help FAQ Terms IEE	E Peer Review Quick Links	» Adva
O- Home O- What Can	Try our New Full-text Search Prototype 60	<u>Help</u>
I Access? O- Log-out	 Enter a single keyword, phrase, or Boolean expression. Example: acoustic imaging (means the phrase acoustic imaging plus any stem variations) Limit your search by using search operators and field codes, 	Search Options: Select publication types:
O- Journals & Magazines	if desired. Example: optical <and> (fiber <or> fibre) <in> ti</in></or></and>	IEEE Conference proceedings
C Conference Proceedings	3) Limit the results by selecting Search Options.4) Click Search. See <u>Search Examples</u>	▼ IEE Conference proceedings ▼ IEEE Standards
O- Standards Standards O- Sy Author	<pre>(low<paragraph>cost<paragraph> signature) < and> (model < or > modelled < or > modellin g)</paragraph></paragraph></pre>	Select years to search: From year: All to Present
O Basic O Advanced	Start Search Clear	Organize search results by:
O- Join IEEE O- Establish IEEE Web Account	Note: This function returns plural and suffixed forms of the keyword(s). Search operators: <and> <or> <not> <in> More</in></not></or></and>	In: Descending order List 15 Results per page
O- Access the SEE Member Digital Library	Field codes: au (author), ti (title), ab (abstract), jn (publication name), de (index term) More	
O Access the		

Hems | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account |
New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online
Publications | Help. | FAQ| Terms | Back to Top

Copyright © 2004 IEEE - All rights reserved

File Cabinet

ibee howe | search ibee | shop | web account | compact ibee

1,100	
Careers	
Canterences	
Standards	
Publications/Services	
mbership	

	Welcoma United States Patent and Trademark Office
	asope
	Welcoma ent and Tr
	Weic Patent
	53. 33
	,9
	83
	87
	78
	Sec.
1	
ı	
١	
	Million Co.
1	11111.9917.881

	1 Million Documents			80.
	=			***
2	8			
9	ట	197	30	
3	ζ.		***	
₹.	52	ئن		
-	S.A	***		
•	: 6	Œ	- 000	
LJ.		.≥≥		
L.	***	***	333	
	2	*		
_		÷	333	

	9990			

Search Results

	8
B	ğ
BE	Š
	Š
	Š
	8

- C Horne
- Character Can Access?

Descending order.

O Ling-out

You may refine your search by editing the current search expression or entering a

Search

(low<paragraph>cost<paragraph>signature)<and>(mod

new one in the text box.

Refine This Search:

Check to search within this result set

A maximum of 500 results are displayed, 15 to a page, sorted by Relevance in

Your search matched 9 of 1071730 documents.

Quick Links

IEEE Peer Review

Terms

FAQ

Help

- O Journals & Magazines
- Proceedings O Conference
 - Ch Standards

Results Key:

- Q By Author

į

- V Jain EEE
- Digital Library

²ages:1335 - 1347 HEN Enterprise Par Caba

- **8888**
 - O Advanced

- Web Account
- Access the Reference

[Abstract]

1 Technical validation of high-fidelity seismic signature simulations in

STD = Standard

JNL = Journal or Magazine CNF = Conference

support of FCS network ground sensors

User Group Conference, 2003. Proceedings, 9-13 June 2003 Anderson, T.S.; Moran, M.L.; Ketcham, S.M.; Lacombe, J.;

Pages:62 - 67

IEEE CNF [Abstract] [PDF Full-Text (808 KB)]

2 Characterization of Palmprints by Wavelet Signatures via Directional **Context Modeling**

Zhang, L.; Zhang, D.;

Systems, Man and Cybernetics, Part B, IEEE Transactions on, Volume: 34, Issue:

3, June 2004

[PDF Full-Text (696 KB)]

٠,

Print Formas

3 Localized watermarking: methodology and application to template mapping

Kirovski, D.; Potkonjak, M.;

Acoustics, Speech, and Signal Processing, 2000. ICASSP '00. Proceedings. 2000 IEEE International Conference on , Volume: 6 , 5-9 June 2000

Pages:3235 - 3238 vol.6

[Abstract] [PDF Full-Text (440 KB)] IEEE CNF

4 The infusion of LASAR into VXI or how to utilize fault dictionary

techniques in an open system Kirkland, L.V.; Wright, R.G.;

AUTOTESTCON '97, 1997 IEEE Autotestcon Proceedings, 22-25 Sept. 1997

Pages:367 - 370

[Abstract] [PDF Full-Text (212 KB)] IEEE CNF

5 The Midcourse Space Experiment (MSX)

Guilmain, B.D.;

Aerospace Applications Conference, 1996. Proceedings., 1996 IEEE, Volume: 1, 3-

10 Feb. 1996

Pages: 205 - 216 vol.1

[Abstract] [PDF Full-Text (856 KB)] IEEE CNF

6 On-line integrity monitoring of microprocessor control logic

Seongwoo Kim; Somani, A.K.;

Computer Design, 2001. ICCD 2001. Proceedings. 2001 International Conference

on , 23-26 Sept. 2001

Pages:314 - 319

[Abstract] [PDF Full-Text (632 KB)] IEEE CNF

7 Application of EOS Core System data and data products for monitoring and mitigating natural disasters

Tapley, B.D.; Crawford, M.M.; Howard, T.; Hutchison, K.D.; Smith, S.; Wells, G.L.; Geoscience and Remote Sensing Symposium, 2001. IGARSS '01. IEEE 2001 International, Volume: 2, 9-13 July 2001 r.

Pages:824 - 826 vol.2

[Abstract] [PDF Full-Text (620 KB)] IEEE CNF

8 Performances of DS/SSMA communications with MPSK signaling and complex signature sequences

Ozluturk, F.M.; Tantaratana, S.; Lam, A.W.;

Communications, IEEE Transactions on , Volume: 43 , Issue:

234 , Feb./March/April 1995

Pages:1127 - 1133

[Abstract] [PDF Full-Text (648 KB)] IEEE JNL

9 On motion behavior of the object manipulated by active fence (AF)

Salvarinov, A.; Payandeh, S.;

Intelligent Robots and Systems, 1997. IROS '97., Proceedings of the 1997 IEEE/RSJ International Conference on , Volume: 1 , 7-11 Sept. 1997

Pages:428 - 434 vol.1

[Abstract] [PDF Full-Text (620 KB)] IEEE CNF

治のでは | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Easic Search | Advanced Search | Join IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Ischnical Support | Email Alerting | No. Robots Please | Release Notes | IEEE Online Publications | Help | EAG| Terms | Eack to Too

Copyright © 2004 IEEE — All rights reserved