Naoki Kobayashi, and Dale Miller, editors, LICS '20: 35th Annul ACM/IEEE Symposium on Logic in Computer Science, Sacarbrücken, Germany, July 8-11, 2020, pages 648-661. ACM, 2020. doi:10.1145/3373718.3394770.

[KKA19] Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Constructing quotient inductive-inductive types. Proc. ACM Program. Lang., 3(POPL):2:1-2:24, 2019. doi:10.1145/3290315.

[KKL19] Ambrus Kaposi, András Kovács, and Ambroise Lafont. For finitary induction-induction, induction is enough. In Marc Bezem and Assis of and Programs, 25th International Conference on Types for Provolume 175 of LIPIcs, pages 6:1–6:30. Schloss Dagstuhl - Leibnixvolume 175 of LIPIcs, pages 6:1–6:30. Schloss Dagstuhl - Leibnixvolume 175 of LIPIcs, pages 6:1–6:30.

[Unil3] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. https:// homotopytypetheory.org/book, Institute for Advanced Study,

2013.

- Az FQII és IQII szignatúrák elméletei egyaránt leírhatók IQII szignatúrával.
 A IQII szignatúrák tehát a saját elméletüket is specifikálják, és ezt arra használjuk, hogy minimalizáljuk a szilkséges feltételezéseket az IQII szignatúrák metaelméletének kidolgozásánál.
- A szignatúrák szemantikáját kibővítjiik a izo-fibrálás tulajdonsággal a szignatúra-típusokban. Ez azt jelenti, hogy a szignatúrák elméletében minden konstrukció megőrzi a leírt algebrák izomorfizmusait.
- Adaptáljuk a term algebra konstrukciót és a bal adjungált funktorok konstrukcióját a végtelen aritású esetre.
- Megmutatjuk, hogy a szignatúrákat lehet szemantikusan értelmezni magában a szignatúrák elméletének szintaxisában is. Egy példát hozva, ez azt eredményezi, hogy minden szignatúrához megkapjuk az algebra-homomorfizmusok specifikációját is szignatúraként.

eiz∍T .4

A hatodik fejezetben leírjuk a magasabb induktív-induktív szignatúrákat. Ezek elsősorban a szemantikában különbözek a korábbi szignatúráktól: a metanyelv most a homotópia típuselmélet [Uni13]. Míg korábban kizárólag egydimenziós egyenleteket adhattunk szignatúrákhoz, most tetszőleges magasabbdimenziós utakat tudunk specifikálni, az iniciális algebrák pedig szabadon generált omega-groupoidokat adnak meg. A magasabb-dimenziós általánosítás peraklt omega-groupoidokat adnak meg. A magasabb-dimenziós általánosítás natúrához). Továbbá, az algebra-morfizmusok két változatát kezeljük: az első natúrához). Továbbá, az algebra-morfizmusok két változatát kezeljük: az első szigorúan őrzi meg a struktúrákat, azaz definícionális egyenlétekkel, míg a másik gyengén, azaz a belső intenzionális egyenlőségekkel.

3. Publikációk

A fenti eredmények a következő publikációk tartalmára építenek, amelyek társzzerzője a jelenlegi tézis szerzője.

1. A Syntax for Higher Inductive-Inductive Types [KK18].

xisát és szemantikáját. Ezek a szignatúrák közel vannak kitejezőerő tekintetében Cartmell általánosított algebrai elméleteihez [Car86], viszont jelentős küljönbségek vannak a formalizációban és a szemantikai konstrukciókban és eredményekben.

- Az FQII szignatúrák képesek leírni szinte az összes típuselméletet, és így modell-elméletet kapunk hozzájuk, a szignatúrák szemantikáján keresztül.
- Az FQII szignatúrák elmélete tömören specifikált mint típuselmélet, és maga is algebrai elmélet.
- Mınden szıgnatürához egy veges inmitekkel rendelkező kategóriát rendelkink, amelynek az objektumai algebrák. Ezt a kategóriákéng [CCD19] prezentáljuk, ami lehetővé teszi, hogy precízen kiszámoljuk az indukció fogalmát. Megmutatjuk, hogy az indukció ekvivalens az inicialitással minden szignatúra esetén.
- Megmutatjuk, hogy az iniciális algebrákat meg lehet konstruklini az FQII szignatúrák szintaxisából, egy term modell konstrukcióval. Továbbá megmutatjuk, hogy az FQII szignatúrák szintaxisának bizonyos töredékei megkonstruálhatók egyszerűbb típusokból.
- Megmutatjuk, hogy a szignatúrák közötti párhuzamos helyettesítésekre modell konstrukciókként lehet gondolni, mivel a szemantikában funktorok lesznek algebrák kategóriái között. Továbbá, feltéve hogy minden iniciális FQII-algebra létezik, minden ilyen funktor jobb adjungált.

3. Tézis

Az tézis ötödik fejezetében módosítjuk az FQII szignatúrákat úgy, hogy végtelenül elágazó fa struktúrákat is le tudjunk írni az iniciális algebrákban. Így kapjuk a végtelen aritású QII szignatúrák elméletét (IQII röviden, "infinitary quotient inductive").

 Valós számok, szürreális számok, ordinálisok és a kumulatív halmazhierarchiák leírhatók IQII szignatúrák segítségével [Uni13], ami a véges aritású esetben nem volt lehetséges.