機械学習モデルによるツイート分類

課題

ツイッターのツイートを 以下のクラスに分類するモデル作成

hate speech

offensive language

neither

データ紹介

cookies and crackers aren't even on the same level!

午前7:04 · 2014年6月27日 · Twitter Web Client

cookies and crackers aren't even on the same level!

クラス別データ数

Google翻訳による データ水増し

原文:

Fuck you you pussy ass hater go suck a dick and die fast

Google 翻訳でフランス語、ドイツ語、 オランダ語に翻訳

フランス語翻訳後:

Va te faire foutre le cul chatte aller sucer une bite et mourir vite

再び英語に翻訳

再翻訳後:

Fuck you pussy hater will suck a dick and die quick

データ水増し後

絵文字を内容で置き換え

テキスト前処理:置き換え

```
"@John: How was Japan?" Awesome! 😀
                  RT@Hana miss Japan :(
                              返信を示す
@メンションを<user>
    "<user>: How was Japan?" <reply> Awesome! :grinning_face:
                <rt from> miss Japan :sad face:
                リツイートを示す
```

テキスト前処理: lemmatization

- Stanford CoreNLP Package¹ を使用
- → 言語データの処理を一括で行える Pipeline
- GATE Twitter POStagger²モデル によりPOS タグ付け
- → twitterのツイートで学習を行った POS tagging モデル

(packageに別途追加)

● それを元にlemmatization

^{1.} https://stanfordnlp.github.io/CoreNLP/extensions.html

^{2.} https://gate.ac.uk/wiki/twitter-postagger.html

データ前処理:その他

●スペルミス直し

 \rightarrow モジュール: autocorrect¹ を使用 内蔵単語リストの中で最もレーベンシュタイン距離の近い物を返す(距離2以内)

●短縮形を戻す

→ モジュール: contractions² を使用 単純な辞書型置き換え

- ●?!以外の句読点削除
- 小文字に変換
- Stopwords削除
- → nltk³ 付属のリストを使用

- https://pypi.org/project/autocorrect/
- 2. https://pypi.org/project/contractions/
- 3. https://www.nltk.org/

用いたモデル

- 決定木
- LSTM

決定木パラメーター

	元データのみ	水増しあり
最大深度	20	30
分岐に必要な最低 サンプル数	17.5%	15.5%
各分岐で考慮する 特徴量	84%	82%

LSTM

パラメーター・モデル構成

	元データのみ	水増し後
embedding	20	20
LSTM Blocks	91	171
dropout	47%	63%
Softmax	3	3
学習率	0.001	0.001

モデル構成

1. embedding 層

2. LSTM 層 オプティマイザー: Adam 活性化関数: layer → tanh gates → hard sigmoid

3. Dropout

4. 出力層: softmax

特徵抽出

- 決定木: TF-IDF
 - A. 全文書を通してレアな単語に高い重み
 - B. 文書出現頻度上位30%、下位0.4%の単語は排除
 - C. ユニグラムとバイグラムの組み合わせを使用

特徵抽出

- LSTM:モデルに単語の分散を学習させる
- →タスクに適した分散を設定させる事が狙い

ex. 'white' と最もcosine 距離の近い単語

GloVe¹(ツイッターベース): black, blue, green, yellow, red, purple, tank

モデルが学習した分散 : nigga, fuck, faggot, nigger, fag, ass, racist

1. https://nlp.stanford.edu/projects/glove/

検証結果

決定木 CART

結果:元データのみ

テストデータ分類結果(%)

- offensive language, neitherは良く検出できているf1-score 約90%
- hate speech の検出が上手 くいっていない
- 特に hate vs offensive に課題
- f1-macro: 78%
- f1-weighted: 85%

結果:水増し後

- hate speech の検出率が大幅に上昇
- 他のクラスのhate speech への誤分類が増加 f1-weighted: 85% → 85%

• f1-macro: $78\% \rightarrow 80\%$

水増し後

水増し前

LSTM

結果: 元データのみ

テストデータ分類結果(%)

- 決定木と同じくoffensive, neither クラスはよく分類されている f1-score 約90%
- hate speech クラスはやはり上手 く検出できていない
- → 38%がoffensive と誤分類
- f1-macro: 76%
- f1-weighted: 83%

結果: 水増し後

- hate speechクラスの検出率が向上
- hate speech の誤分類量が増加

- f1-macro: 76% → 81%
- f1-weighted: 83% → 86%

モデル比較

● 決定木、LSTM共に同等の精度

結論

まとめ

- 決定木、LSTMを用いて分類
- offensive language 及び neither クラス は上手く検出できる
 - → それのみを目的とすれば2つとも非常によい
- hate speech の区別には課題

結論: hate vs offensive

■ この二つのクラスの区別が モデルには難しい

●元データのみ

→hate speech がoffensive language として分類されやすい

●クラスバランスを正す

→offensive languageがhate speech として認識されやすくなる

TSNEによる可視化

決定木ベストモデル

結論:ベストモデル

- モデルの判断の説明が簡単
 - →ユーザーの投稿削除した時に理由が説明できる
 - →ユーザー体験を損なわない
- 精度も遜色ない
 - → f1-weighted 85%

今後の課題

- 1. 正式なデータをもっと増やす
- 2. 決定木の欠陥の改善
- 3. SVM など他のモデルを試す
- 4. LSTM に関してはconvolutional 層を追加するなど 他の構成を試す

モデル紹介:補足

- 不純度が最も減少する特徴と しきい値でノードニ分割を繰 り返す
- Gini係数を不純度として使用

$$Gini = 1 - \sum_{i=1}^{C} (p_i)^2$$

モデル紹介:補足

- RNNの一種
- LSTM Block を中間層に使用以 下の時系列(t-1) の情報を(t)へ と再帰
 - C(t-1):セル状態
 - h(t-1):出力
- 長期の依存性の学習が可能

Long-Short Term Memory