$$A = |m^3| / \sqrt{(m_2)^3} = 0.005 5 / \sqrt{(0.078)^3} = 0.254$$

$$B = m_4 / (m_2)^2 = 0.021 / (0.078)^2 = 3.503$$

对 p=0.95, n=40, 查表 D. 1 得 $A_1=0.59$;

对 p=0.95, n=40, 查表 D. 2 得区间 2.07~4.06。

由于 0.254<0.59, 2.07<3.503<4.06

故可接受此组数据为正态分布。

D.2 检验数据正态性的方法——夏皮洛—威尔克 (Shapiro-Wilk) 法

将一组测量数据按由小到大的顺序排列。

夏皮洛一威尔克法检验的统计量是:

$$W = \{ \sum a_K [X_{n+1-K} - X_K] \}^2 / \sum_{K=1}^n (X_K - \overline{X})^2$$
 (D. 5)

式中分子下标的 K 值,当测量次数 n 是偶数时为 $1\sim n/2$;当测量次数是奇数时则为 $1\sim (n-1)/2$;系数 a_K 是与 n 及 K 有关的特定值,见表 D. 4。

该统计量 W 的判据是,当 W>W(n, p) 时,则接受测定数据为正态分布。W(n, p) 是与测量次数 n 及置信概率 p 有关的数值,其值见表 D. 5。

K	2	3	4	5	6	7	8	9	10
1	0.707 1	0.707 1	0.6872	0.6646	0. 643 1	0.6233	0.6052	0.5888	0.5739
2		_	0.1677	0. 241 3	0.2806	0.3031	0.3164	0.3244	0.3291
3	_	_			0.087 5	0.140 1	0. 174 3	0.1976	0. 214 1
4	_	_		_	_		0.0561	0.0947	0.1224
5		**********				—			0.0399

表 D. 4 系数 a_K 的值

表	n	1	(4	#	`
₩	D.	4	(3	4	

K n	11	12	13	14	15	16	17	18	19	20
1	0.560 1	0.5475	0.5359	0.525 1	0.5150	0.5056	0.4968	0.4886	0.4808	0.4734
2	0.3315	0.3325	0.3325	0.3318	0.3306	0.3290	0.3273	0.3253	0.3232	0.3211
3	0. 226 0	0.2347	0. 241 2	0.246 0	0.249 5	0. 252 1	0.254 0	0.255 3	0.256 1	0.2565
4	0.1429	0.158 6	0.1707	0.1802	0.1878	0.1939	0.1988	0.2027	0.205 9	0. 208 5
5	0.0695	0.0922	0.1099	0.124 0	0.135 3	0.1447	0. 152 4	0.1587	0.1641	0.1686
6	'	0.0303	0.0539	0.0727	0.0880	0.1005	0.1109	0.119 7	0.127 1	0.1334
7	_	_		0.024 0	0.0433	0.0593	0.0725	0.0837	0.0932	0.1013
8			_	_		0.0196	0.035 9	0.0496	0.0612	0.0711
9		_			_		_	0.016 3	0.0303	0.0422
10						_	_		_	0.0140

表 D.4 (续)

K	21	22	23	24	25	26	27	28	29	30
1	0.464 3	0.4590	0.4542	0.449 3	0.445 0	0.4407	0.4366	0.4328	0.429 1	0.4254
2	0.3185	0.315 6	0.3126	0.3098	0.306 9	0.3043	0.3018	0.2992	0.2968	0. 294 4
3	0.2578	0.257 1	0.2563	0.2554	0.2543	0. 253 3	0. 252, 2	0.2510	0.2499	0.2487
4	0. 211 9	0.213 1	0.2139	0.214 5	0.2148	0. 215 1	0. 215 2	0.215 1	0.215 0	0.2148
5	0.173 6	0.1764	0.1787	0.1807	0.1822	0.183 6	0.1848	0.185 7	0.186 4	0.1870
6	0.1399	0.1443	0.148 0	0.151 2	0. 153 9	0.1563	0.1584	0.1601	0.1616	0.1630
7	0.1092	0.115 0	0.1201	0.124 5	0. 128 3	0.1316	0.134 6	0.137 2	0.1395	0.141 5
8	0.0804	0.0878	0.094 1	0.0997	0.1046	0.1089	0.1128	0.116 2	0.1192	0.1219
9	0.0530	0.0618	0.0696	0.0764	0.0823	0.087 6	0.0923	0.0965	0.1002	0.1036
10	0.026 3	0.0368	0.045 9	0.0539	0.0610	0.067 2	0.0728	0.0778	0.082 2	0.086 2
11	_	0.0122	0.0228	0.0321	0.0403	0.047 6	0.0540	0.0598	0.0650	0.069 7
12	_		_	0.0107	0.0200	0.028 4	0.035 8	0.0424	0.0483	0.0537
13	_	_	_	_		0.0094	0.0178	0.025 3	0.0320	0.038 1
14	_		_	_		_		0.0084	0.015 9	0.022 7
15 '								<u> </u>		0.0076

表 D.4 (续)

K	31	32	33	34	35	36	37	38	39	40
1.	0.4220	0.4188	0.415 6	0.4127	0.4096	0.4068	0.404 0	0.4015	0.3989	0.3964
2	0.2921	0.2898	0.287 6	0.285 4	0.2834	0. 281 3	0.279 4	0.277 4	0.275 5	0. 273 7
3	0.247 5	0.2463	0.245 1	0.243 9	0.242 7	0.241 5	0.240 3	0.239 1	0.2380	0. 236 8
4	0.2145	0.214 1	0. 213 7	0.2132	0.2127	0.212 1	0.211 6	0.211 0	0.2104	0.2098
5	0.187 4	0.1878	0.188 0	0.188 2	0.1883	0.1883	0.1883	0.1881	0.188 0	0.1878
6	0.164 1	0.1651	0.1660	0.1667	0.1673	0.1678	0.1683	0.1686	0.1689	0.1691
7	0.1433	0.144 9	0.146 3	0.147 5	0.1487	0.149 6	0.150 5	0. 151 3	0.1520	0.1526
8	0.124 3	0.1265	0. 128 4	0.1301	0.1317	0.1331	0.1344	0.135 6	0.1366	0.137 6
9.	0.1066	0.1093	0.1118	0.114 0	0.1160	0.1179	0.1196	0.1211	0. 122 5	0. 123 7
10	0.0899	0.0931	0.096 1	0.0988	0. 101 3	0.1036	0.105 6	0.1075	0.1092	0.1108
11	0.0739	0.077 7	0.0812	0.084 4	0.087 3	0.0900	0.0924	0.0947	0.0967	0.0986
12:	0.058 5	0.0629	0.0669	0.0706	0.0739	0.077 0	0.0798	0.0824	0.0848	0.0870
13	0.043 5	0.0485	0.0530	0.057 2	0.0610	0.064 5	0.067 7	0.070 6	0.0733	0.075 9
14	0.0289	0.0344	0.039 5	0.044 1	0.0484	0.0523	0.055 9	0.0592	0.0622	0.065 1
15	0.014 4	0.0206	0.026 2	0.0314	0.036 1	0.0404	0.0444	0.0481	0.051 5	0.054 6
16		0.0068	0.013 1	0.0187	0.0239	0.028 7	0.033 1	0.037 2	0.040 9	0.044 4
1.7		_	_	0.0062	0.0119	0.017 2	0.0220	0.026 4	0.0305	0.034 3
18				_		0.005 7	0.0110	0.015 8	0.0203	0.024 4
19		_	<u> </u>	_	_			0.005 3	0.0101	0.014 6
20	_		_	<u> </u>					. —	0.0049

表 D. 4 (续)

K n	41	42	43	44	45	46	47	48	49	50
1	0.3940	0.3917	0.3894	0.3872	0.385 0	0.383 0	0.3808	0.3789	0.377 0	0.035 1
2	0.271 9	0.270 1	0.2684	0. 266 7	0. 265 1	0. 263 5	0.262 0	0. 260 4	0. 258 9	0. 257 4
3	0.235 7	0.234 5	0.2334	0. 232 3	0. 231 3	0. 230 2	0. 229 1	0. 228 1	0. 227 1	0.226 0
4	0.209 1	0.2085	0.2078	0. 207 2	0. 206 5	0. 205 8	0. 205 2	0. 204 5	0. 203 8	0. 203 2
5	0.187 6	0.187 4	0.187 1	0.1868	0. 186 5	0.186 2	0.185 9	0. 185 5	0.1851	0.184 7
6	0.1693	0.1694	0.169 5	0.1695	0.1695	0.1695	0.1695	0.1693	0.169 2	0.1691
7	0.1531	0.1535	0.1539	0.1542	0.1545	0.1548	0.155 0	0. 155 1	0.155 3	0.1554
8	0.1384	0.139 2	0.1398	0.140 5	0.1410	0.1415	0.1420	0. 142 3	0.1427	0.143 0
9	0.124 9	0.125 9	0.126 9	0.1278	0.1286	0.129 3	0.1300	0.130 6	0. 131 2	0.1317
10	0.1123	0.113 6	0.114 9	0.116 0	0.1170	0.1180	0.1189	0.1197	0. 120 5	0.1212
11	0.1004	0.1020	0.1035	0.1049	0.1062	0.1073	0.1085	0.1095	0. 110 5	0.1113
12	0.189 1	0.0909	0.0927	0.0943	0.0959	0.0972	0.0986	0.0998	0. 101 0	0.1020
13	0.078 2	0.0804	0.0824	0.0842	0.0860	0.0876	0.089 2	0.0906	0.0919	0.0932
14	0.067 7	0.070 1	0.0724	0.074 5	0.0765	0.0783	0.080 1	0.0817	0.083 2	0.084 6
15	0.057 5	0.060 2	0.0628	0.065 1	0.067 3	0.0694	0.0713	0.0713	0.073 1	0.076 4
16	0.047 6	0.0506	0.0534	0.0560	0.0584	0.060 7	0.0628	0.0648	0.0667	0.068 5
17	0.037 9	0.0411	0.044 2	0.047 1	0.0497	0.0522	0.054 6	0.0568	0.0588	0.0608
18	0.028 3	0.0318	0.035 2	0.0383	0.0412	0.0439	0.046 5	0.0489	0.0511	0.0532
19	0.0188	0.022 7	0.026 3	0.029 6	0.0328	0.035 7	0.0385	0.0411	0.0436	0.045 9
20	0.0094	0.0136	0.017 5	0.021 1	0.024 5	0.027 7	0.0307	0.0335	0.036 1	0.0386
21	_	0.004 5	0.0087	0.0126	0.016 3	0.0197	0.0229	0.025 9	0.0288	0.0314
22	_		_	0.0042	0.0081	0.0118	0.015 3	0.0185	0.0215	0.0211
23			_	_ [0.0039	0.0076	0.0111	0.0143	0.0174
24			_	-	_	_		0.0073	0.0071	0.0101
25			_							0.0035

□ 表 D.5 W(n, p) 的值

n	0.99	0.95	p n	10.99	0.95	p n	0.99	0.95	n	0.99	0.95
3	0.753	0.767	15	0.835	0.881	27	0.894	0.923	39	0.917	0.939
4	0.687	0.748	16	0.844	0.887	28	0.896	0.924	40	0.919	0.940
5	0.686	0.762	17	0.851	0.892	29	0.898	0.926	41	0.920	0.941
6	0.713	0. 788	18	0.858	0.897	30	0.900	0.927	42	0.922	0.942
7	0.730	0.803	19	0.863	0.901	31	0.902	0.929	43	0.923	0.943
. 8	0.749	0.818	20	0.868	0.905	32	0.904	0.930	44	0.924	0.944
9	0.764	0.829	21	0.873	0.908	33	0.906	0.931	45	0.926	0.945
10	0.781	0.842	22	0.878	0.911	.34	0.908	0.933	46	0.927	0.945
11	0.792	0.850	23	0.881	0.914	35	0.910	0.934	47	0.928	0.946
12	0.805	0.859	24	0.884	0.916	36	0.912	0.935	48	0.929	0.947
13	0.814	0.866	25	0.888	0.918	37	0.914	0.936	49	0.929	0.947
14	0.825	0.874	26	0.891	0.920	38	0.916	0.938	50	0.930	0.947

对表 D. 3 所列数据,按夏皮洛—威尔克法进行检验,见表 D. 6。 a_k 值由表 D. 4 中查出。

K	$X_{\scriptscriptstyle k}$	X_{n+1-k}	$X_{n+1-k}-X_k$	a_k	K	X_{k}	X_{n+1-k}	$X_{n+1-k}-X_k$	a_k
1	2.40	3. 68	1. 28	0.3964	11	2. 92	3. 19	0. 27	0.0986
2	2.40	3. 65	1.25	0.273 7	12	2.92	3. 19	0.27	0.087 0
3	2.50	3.43	0.93	0. 236 8	13	3.00	3. 16	0.16	0.075 9
4	2.70	3. 38	0.68	0.2098	14	3.00	3. 12	0.12	0.065 1
5	2.70	3. 37	0.67	0. 187 8	15	3.01	3. 12	0.11	0.054 6
6:	2.70	3. 37	0.67	0.1691	16	3.03	3. 10	0.07	0.044 4
7	2.83	3. 27	0.44	0. 152 6	17	3.04	3.10	0.06	0.034 3
8 ;	2.86	3. 21	0.35	0.137 6	18	3.04	3. 10	0.06	0.024 4
9 .	2.86	3. 20	0. 34	0. 123 7	19	3.08	3.09	0.01	0.014 6
10	2.90	3. 20	0.30	0.1108	20	3.08	3.08	0 .	0.0049

表 D. 6 夏皮洛—威尔克法检验计算

经计算, 得: \overline{X} =3.050 $\Sigma (X_k - \overline{X})^2$ =3.11, W=1.72×1.72/3.11=0.957;

查表 D. 5, W(n, p) = 0.940 (其中 n=40, p=0.95)。

由于 0.957>0.940, 故接受该组数据为正态分布。

D. 3 检验数据正态性的方法——达戈斯提诺(D'Agostoon)法 将数据按由小到大顺序排列。

检验的统计量为

$$Y = \sqrt{n} \left[\frac{\sum \left[\left(\frac{n+1}{2} - K \right) (X_{n+1-K} - X_K) \right]}{n^2 \sqrt{m_2}} - 0.28209479 \right] / 0.02998598$$
 (D. 6)

式中, m_2 根据式 (D. 2) 得到; n 为测定次数。下标 K 的值,当 n 是偶数时为 $1\sim n/2$; 当 n 是奇数时为 $1\sim (n-1)/2$ 。

该统计量的判据是: 当置信概率为 95%时, Y 值应落入区间 a-a 范围内。当置信概率为 99%时, Y 值应落入区间 b-b 范围内。上述区间值见表 D. 7。

	区	间		区	间
, n	a-a	<i>bb</i>	n	a-a	b-b
	(p=0.95)	(p=0.99)		(p=0.95)	(p=0.99)
50	$-2.74\sim1.06$	$-3.91 \sim 1.24$	450	$-2.25\sim1.65$	$-3.06\sim2.09$
60	$-2.68\sim1.13$	$-3.81 \sim 1.34$	500	$-2.24\sim1.67$	$-3.04\sim2.11$
70	$-2.64\sim1.19$	$-3.73\sim 1.42$	550	$-2.23\sim1.68$	$-3.02\sim2.14$
80	$-2.60\sim1.24$	$-3.67\sim1.48$	600	$-2.22\sim1.69$	$-3.00\sim2.15$
90	$-2.57 \sim 1.28$	$-3.61\sim1.54$	650	$-2.21\sim1.70$	$-2.98\sim2.17$
100	$-2.54 \sim 1.31$	$-3.57\sim 1.59$	700	$-2.20\sim1.71$	$-2.97\sim2.18$
150	$-2.45\sim1.42$	$-3.41\sim1.75$	750	$-2.19\sim1.72$	$-2.96\sim2.20$
200	$-2.39 \sim 1.50$	$-3.30 \sim 1.85$	800	$-2.18\sim1.73$	$-2.94\sim2.21$
250	$-2.35\sim1.54$	$-3.23\sim1.93$	850	$-2.18\sim1.74$	$-2.93\sim2.22$
300	$-2.32\sim1.53$	$-3.17\sim 1.98$	900	$-2.17\sim1.74$	$-2.92\sim2.23$
350	$-2.29\sim1.61$	$-3.13\sim 2.03$	950	$-2.16\sim1.75$	$-2.91\sim2.24$
400	$-2.27\sim1.63$	$-3.09\sim2.06$	1 000	$-2.16\sim1.75$	$-2.91\sim2.25$

表 D.7 达戈斯提诺法检验临界区间

附录F

狄克逊(Dixon)法

将测定数据按由小到大的顺序排列:

$$X_{\scriptscriptstyle (1)} \leqslant X_{\scriptscriptstyle (2)} \leqslant \cdots \leqslant X_{\scriptscriptstyle (n-1)} \leqslant X_{\scriptscriptstyle (n)}$$

按表 F. 1($f_{(a,n)}$ 值、 r_1 及 r_n 值计算公式表)计算 r_1 值和 r_n 值。若 $r_1 > r_n$,且 $r_1 > f_{(a,n)}$,则判定 $X_{(1)}$ 为异常值;若 $r_n > r_1$,且 $r_n > f_{(a,n)}$,则判定 $X_{(n)}$ 为异常值;若 r_1 及 r_n 值均小于 $f_{(a,n)}$ 值,则所有数据保留。

	1	表 F. I	$J_{(\alpha,n)}$ 但、 r_1	及 r, 1	直计算公式表		
n	统计量	f_{0}	(α, n)		松斗县	f_{α}	z,n)
	<u>乳</u> 月里	$\alpha = 1 \%$	$\alpha = 5\%$	n	统计量	α=1%	$\alpha = 5\%$
3	$r_1 = \frac{X_{(2)} - X_{(1)}}{X_{(2)} - X_{(1)}}$	0.994	0.970	17		0.610	0.529
4	-(1)	0.926	0.829	18		0.594	0.514
5	和 X _(x) — X _(x, y)	0.821	0.710	19		0.580	0.501
6	$r_n = \frac{X_{(n)} - X_{(n-1)}}{X_{(n)} - X_{(1)}}$	0.740	0.628	20		0.567	0.489
7	中的较大者	0.680	0.569	21		0.555	0.478
8	$r_1 = \frac{X_{(2)} - X_{(1)}}{X_{(n+1)} - X_{(1)}}$	0.717	0.608	22		0.544	0.468
9	$r_n = \frac{X_{(n)} - X_{(n-1)}}{X_{(n)} - X_{(n)}}$	0.672	0.564	23	$r_1 = \frac{X_{(3)} - X_{(1)}}{X_{(3)} - X_{(1)}}$	0.535	0.459
10	・**	0.635	0.530	24	和	0.526	0.451
11	$r_1 = \frac{X_{(3)} - X_{(1)}}{X_{(n-1)} - X_{(1)}}$	0.709	0.619	25	$r_{n} = \frac{X_{(n)} - X_{(n-2)}}{X_{(n)} - X_{(3)}}$	0.517	0.443
12	和 $r_n = \frac{X_{(n)} - X_{(n-2)}}{X_{(n)} - X_{(n)}}$	0.660	0.583	26	中的较大者	0.510	0.436
13	* X ₍₃₎ - X ₍₂₎ 中的较大者	0.638	0.557	27		0.502	0.429
14	$r_1 = \frac{X_{(3)} - X_{(1)}}{X_{(n-2)} - X_{(1)}}$	0.670	0.586	28		0.495	0, 423
15	和 $r_n = \frac{X_{(n)} - X_{(n-2)}}{X_{(n)} - X_{(2)}}$	0.647	0.565	29		0.489	0.417
16	/" $X_{(n)} - X_{(3)}$ 中的较大者	0.627	0.546	30		0.483	0.412

表 \mathbf{F} . 1 $f_{(\alpha,n)}$ 值、 r_1 及 r_n 值计算公式表

附录 H

科克伦 (Cochran) 法

采用科克伦法检验平均值间是否等精度,先计算 m 组数据的各组 n 个数据的方差,再计算其中的最大方差与 m 个方差和之比:

$$C = s_{\max}^2 / \sum_{i=1}^m s_i^2$$

根据所取显著性水平 α ,数据组数 m,重复测定次数 n,查科克伦检验临界值 表 H. 1,得临界值 $C(\alpha, m, n)$ 。

若 $C \leq C(\alpha, m, n)$,表明各组数据平均值间为等精度。若 $C > C(\alpha, m, n)$,表明被检验的最大方差为离群值,离群方差说明该组数据的精度比其他组数据差,计算定值结果时可按不等精度情况处理。

表 H.1 科克伦检验临界值表

	齊	齊	齊	当	当	显著性水平	4.34	z = 0.05	,		t			
1 2 3 4 5	3 4	4		5		9	2	∞	6	10	16	36	144	8
0.998 5 0.975 0 0.930 2 0.905 7 0.877 2	975 0 0.930 2 0.905 7 0.877 2	930 2 0.905 7 0.877 2	905 7 0.877 2	877 2		0.8534	0.8332	0.8159	0.8010	0.7880	0.7341	0.6602	0.5813	0.5000
0.966 9 0.870 9 0.797 7 0.745 7 0.707 1	870 9 0.797 7 0.745 7 0.707 1	797 7 0.745 7 0.707 1	745 7 0.707 1	707 1		0.677 1	0.6530	0.6333	0.6167	0.6025	0.5466	0.4748	0.4031	0.3333
0.906 5 0.767 9 0.684 1 0.628 7 0.589 5	767 9 0.684 1 0.628 7 0.589	684 1 0. 628 7 0. 589	628 7 0.589	589		0.5538	0.5365	0.5175	0.5017	0.4884	0.4366	0.3720	0.3093	0.2500
0.8412 0.6838 0.5981 0.5441 0.5065	683 8 0.598 1 0.544 1 0.506	598 1 0.544 1 0.506	544 1 0.506	506		0.4783	0.4564	0.4387	0.4241	0.4118	0.3645	0.3066	0.2513	0.2000
0.7808 0.6161 0.5321 0.4803 0.4447	616 1 0.532 1 0.480 3 0.444	532 1 0.480 3 0.444	480 3 0.444	444		0.4184	0.3980	0.3817	0.3682	0.3568	0.3135	0.2612	0.2119	0.1667
0.7271 0.5612 0.4800 0.4307 0.3974	561 2 0.480 0 0.430 7 0.397	480 0 0.430 7 0.397	430 7 0.397	397		0.3726	0.3535	0.3384	0.3259	0.3154	0.2756	0. 227 8	0.1833	0.1429
0.6798 0.5157 0.4377 0.3910 0.3595	515 7 0.437 7 0.391 0 0.359	437 7 0.391 0 0.359	391 0 0.359	359		0.3362	0.3185	0.3043	0.2926	0.2829	0.2462	0.2022	0.1616	0.1250
0.6385 0.4775 0.4027 0.3584 0.3285	477 5 0.402 7 0.358 4 0.328	402 7 0.358 4 0.328	358 4 0.328	328		0.3067	0.2901	0.2768	0. 265 9	0.2568	0. 222 6	0.1820	0.1446	0.1111
0.602 0 0.445 0 0.373 3 0.331 1 0.302 9	445 0 0.373 3 0.331 1 0.302	373 3 0.331 1 0.302	. 331 1 0. 302	302		0.2823	0.2666	0.2541	0.2439	0.2353	0.2032	0.1655	0.1308	0.1000
0.5410 0.3924 0.3264 0.2880 0.2624	392 4 0.326 4 0.288 0 0.262	326 4 0.288 0 0.262	288 0 0.262	262		0.2439	0.2299	0.2187	0.2098	0.2020	0.1737	0.1403	0.1100	0.0833
0.470 9 0.334 6 0.275 8 0.241 9 0.219 5	334 6 0.275 8 0.241 9 0.219	275 8 0. 241 9 0. 219	241 9 0. 219	219		0.2034	0.1911	0.1815	0.1736	0.1671	0.1429	0.1144	0.0889	0.0667
0.3894 0.2705 0.2205 0.1921 0.1735	270 5 0. 220 5 0. 192 1 0. 173	220 5 0.192 1 0.173	192 1 0.173	173		0.1602	0.1501	0.1422	0.1357	0.1303	0.1108	0.0879	0.067 5	0.0500
0.3434 0.2354 0.1907 0.1656 0.1493	235 4 0.190 7 0.165 6 0.149	190 7 0.165 6 0.149	165 6 0.149	149		0.1374	0.1286	0.1216	0.1160	0.1113	0.0942	0.0743	0.0567	0.0417
0. 292 9 0. 198 0 0. 159 3 0. 137 7 0. 123 7	198 0 0.159 3 0.137 7 0.123	159 3 0. 137 7 0. 123	137 7 0. 123	123		0.1137	0.1061	0.1002	0.0958	0.0921	0.077 1	0.0604	0.045 7	0.0333
0.237 0 0.157 6 0.125 9 0.108 2 0.096 8	157 6 0.125 9 0.108 2 0.096	125 9 0.108 2 0.096	108 2 0.096	960		0.0887	0.0827	0.0780	0.074.5	0.0713	0.0595	0.0462	0.0347	0.0250
0.1737 0.1131 0.0895 0.0765 0.0682	113 1 0.089 5 0.076 5 0.068	089 5 0.076 5 0.068	076 5 0.068	890		0.0623	0.0583	0.0552	0.0520	0.0497	0.0411	0.0316	0.0234	0.0167
0.0998 0.0632 0.0495 0.0419 0.0371	063 2 0.049 5 0.041 9 0.037	049 5 0.041 9 0.037	041 9 0.037	037		0.0337	0.0312	0.0292	0.0279	0.0266	0.0218	0.0165	0.012 0	0.0083
0 0 0 0	0 0	0		0		0	0	0	0	0	0	0	0	0

₹ H. 1 (续)

		0	3	0	0	7	6	0		0	3	7	0	7	3	0	7	3	
	8	0.500 0	0.333 3	0.250	0.200 0	0.166 7	0.142 9	0.125 0	0.111 1	0.100 0	0.083 3	0.066 7	0.050 0	0.0417	0.033 3	0.025 C	0.0167	0.008 3	0
	144	0.6062	0.4230	0.3251	0.2644	0.2229	0.1925	0.1700	0.1521	0.1376	0.1157	0.0934	0.0709	0.0595	0.0480	0.0363	0.0245	0.0125	0
	36	0.7067	0.5153	0.4057	0.3351	0.2858	0.2494	0.2214	0.1992	0.1811	0.1535	0.1251	0.0960	0.0810	0.0658	0.0503	0.0344	0.0178	0
	16	0.7949	0. 602.8	0.4884	0.4094	0.3529	0.3105	0.2779	0.2514	0.2297	0.1961	0.1612	0.1248	0.1060	0.0867	0.0668	0.0461	0.0242	0
	10	0.8539	0.6743	0.5536	0.4697	0.4084	0.3616	0.3248	0.2950	0.2704	0.2320	0.1918	0.150 1.	0.1283	0.1054	0.0816	0.0567	0.0302	0.
	6	0.8674	0.6912	0.5702	0.4854	0.4229	0.3751	0.3373	0.3067	0.2813	0.2419	0.2002	0.1567	0.1338	0.1100	0.0853	0.0594	0.0316	0
$z \alpha = 0.01$	8	0.8823	0.7107	0.5897	0.5037	0.4401	0.3911	0.3522	0.3207	0.2945	0.2535	0.2104	0.1646	0.1406	0.1157	0.0898	0.0625	0.033 4	0
显著性水平	7	0.8998	0.7335	0.6129	0.5259	0.4608	0.4105	0.3704	0.3378	0.3106	0.2680	0.2228	0.1748	0.1495	0.1232	0.0957	0.0668	0.0357	0
	9	0.9172	0.7606	0.6410	0.5531	0.4866	0. 434 7	0.3932	0.3592	0.3308	0.2861	0.2386	0.1877	0.1608	0.1327	0. 103 3	0.0722	0.0387	0
	2	0.9373	0.7933	0.6761	0.5875	0.5195	0.4659	0.4226	0.3870	0.3572	0.3099	0.2593	0.2048	0. 175 9	0.1454	0.1135	0.0796	0.0429	0
	4	0.9586	0.8335	0.7112	0.6329	0.5635	0.5080	0.4627	0.1251	0.3934	0.3428	0, 288 2	0. 228 8	0.1970	0.1635	0.1281	0.0902	0.0489	0
	8	0.9794	0.8831	0.7814	0.6957	0.6258	0.5685	0.5209	0.4810	0.4469	0.3919	0.3317	0.2654	0.2295	0.1913	0.1508	0.1069	0.0585	0
	2	0.9950	0.9423	0.8643	0.7885	0.7218	0.6644	0.6152	0.5727	0.5358	0.4751	0.4069	0.3297	0.2871	0.2412	0.1915	0.1371	0.0759	0
	Г	0.9999	0.9933	0.9676	0.9279	0.8828	0.8376	0.7945	0.7544	0.7175	0.6528	0.5747	0.4799	0.4247	0.3632	0.2940	0.2151	0.1225	0
2	m	2	က	4	rc	9	7	∞	6	10	12	15	20	24	30	40	09	120	8

注: $\nu=n-1$;n为每组实验测量次数;m为实验测量组数。