CSC 411 Design and Analysis of Algorithms

Chapter 5 Divide and Conquer - Part 1

Instructor: Minhee Jun

Divide-and-Conquer

The most-well known algorithm design strategy:

- 1. A problem is divided into several subproblems of the same type
 - ideally of about equal size.
- 2. The subproblems are solved.
 - typically recursively, though sometimes a different algorithm is employed, especially when subproblems become small enough.
- 3. The solutions to the subproblems are combined to get a solution to the original problem

Divide-and-Conquer Technique

General Divide-and-Conquer Recurrence

$$T(n) = aT(n/b) + f(n)$$
 where $f(n) \in \Theta(n^d)$, $d \ge 0$

- aT(n/b) : sample size n is divided into b instances of size n/b, with a of them needing to be solved.
- f(n): a function that accounts for the time spent on <u>dividing</u> the problem into smaller ones and on <u>combining</u> their solutions.

General Divide-and-Conquer Recurrence

$$T(n) = aT(n/b) + f(n),$$

Master Theorem If $f(n) \in \Theta(n^d)$ where $d \ge 0$ in recurrence (5.1), then

$$T(n) \in \begin{cases} \Theta(n^d) & \text{if } a < b^d, \\ \Theta(n^d \log n) & \text{if } a = b^d, \\ \Theta(n^{\log_b a}) & \text{if } a > b^d. \end{cases}$$

Analogous results hold for the O and Ω notations, too.

- Example: T(n) = 2T(n/2) + 1?
 - $a = 2, b = 2, d = 0 \to T(n) \in \Theta(n)$

See Appendix B Page 486

Exercise 3.1-5

- **5.** Find the order of growth for solutions of the following recurrences.
 - **a.** T(n) = 4T(n/2) + n, T(1) = 1
 - **b.** $T(n) = 4T(n/2) + n^2$, T(1) = 1
 - **c.** $T(n) = 4T(n/2) + n^3$, T(1) = 1

General Divide-and-Conquer Recurrence

$$T(n) = aT(n/b) + f(n),$$

$$f(n) \in \Theta(n^d)$$

Master Theorem:

- If $a < b^d$, $T(n) \in \Theta(n^d)$
- If $a = b^d$, $T(n) \in \Theta(n^d \log_b n)$
- If $a > b^d$, $T(n) \in \Theta(n^{\log_b a})$

A.
$$T(n) = 4T(n/2) + n$$
?

•
$$a = 4, b = 2, d = 1 \rightarrow \text{ case } 3$$

$$\Rightarrow T(n) \in \Theta(n^2)$$

B.
$$T(n) = 4T(n/2) + n^2$$
?

•
$$a = 4, b = 2, d = 2 \rightarrow \text{ case 2}$$

$$\Rightarrow T(n) \in \Theta(n^2 \log_2 n)$$

C.
$$T(n) = 4T(n/2) + n^3$$
?

•
$$a = 4, b = 2, d = 3 \rightarrow \text{ case 1}$$

$$\Rightarrow T(n) \in \Theta(n^3)$$

Divide-and-Conquer Examples

- Sorting: mergesort and quicksort (5.1 & 5.2)
- Binary tree traversals (5.3)
- Multiplication of large integers and Matrix multiplication:
 Strassen's algorithm (5.4)
- Closest-pair and convex-hull algorithms (5.5)

5.1 Mergesort

- Split array A[0..n-1] in two about equal halves and make copies of each half in arrays B and C
- Sort arrays B and C recursively
- Merge sorted arrays B and C into array A as follows:
 - Repeat the following until no elements remain in one of the arrays:
 - compare the first elements in the remaining unprocessed portions of the arrays
 - copy the smaller of the two into A, while incrementing the index indicating the unprocessed portion of that array
 - Once all elements in one of the arrays are processed, copy the remaining unprocessed elements from the other array into A.

Pseudocode of Mergesort

```
ALGORITHM Mergesort(A[0..n-1])
    //Sorts array A[0..n-1] by recursive mergesort
    //Input: An array A[0..n-1] of orderable elements
    //Output: Array A[0..n-1] sorted in nondecreasing order
    if n > 1
        copy A[0..|n/2|-1] to B[0..|n/2|-1]
        copy A[|n/2|..n-1] to C[0..[n/2]-1]
        Mergesort(B[0..\lfloor n/2 \rfloor - 1])
        Mergesort(C[0..\lceil n/2\rceil - 1])
        Merge(B, C, A) //see below
```

T(n) = T(n/2) + T(n/2) + T(merge)

Merging Two Sorted Arrarys

 To merge two sorted array into a third (sorted) array, repeatedly compare the two least elements and copy the smaller of the two onto the third array.

of comparison:
7 in this example
(1, 2)
(5, 2)
(5, 3)
(5, 4)
(5, 8)
(6, 8)
(7, 8)

Pseudocode of Merge

```
ALGORITHM Merge(B[0..p-1], C[0..q-1], A[0..p+q-1])
    //Merges two sorted arrays into one sorted array
    //Input: Arrays B[0..p-1] and C[0..q-1] both sorted
    //Output: Sorted array A[0..p+q-1] of the elements of B and C
    i \leftarrow 0; i \leftarrow 0; k \leftarrow 0
    while i < p and j < q do
         if B[i] \leq C[j]
             A[k] \leftarrow B[i]; i \leftarrow i + 1
         else A[k] \leftarrow C[j]; j \leftarrow j+1
         k \leftarrow k + 1
    if i = p
         copy C[j..q - 1] to A[k..p + q - 1]
    else copy B[i..p - 1] to A[k..p + q - 1]
```

Example: 8 3 2 9 7 1 5 4 8 3 2 9 7 1 5 4 2 3 9 4 3 8 2 9 4 5 2 3 8 9 1 4 5 7 1 2 3 4 5 7 8 9

Analysis of Mergesort

How efficient is mergesort?

$$C(n) = 2C(n/2) + C_{merge}(n)$$
 for $n > 1$, $C(1) = 0$.

- Worst case:
 - neither of the two arrays becomes empty before the other one contains just one element (e.g., smaller elements may come from the alternating arrays).

$$C_{worst}(n) = 2C_{worst}(n/2) + n - 1$$
 for $n > 1$, $C_{worst}(1) = 0$.

Master's Theorem

$$C_{worst}(n) \in \Theta(n \log n)$$

Exercise 5.1-6

6. Apply mergesort to sort the list *E*, *X*, *A*, *M*, *P*, *L*, *E* in alphabetical order.

5.2 Quicksort

Select a *pivot* (partitioning element) – here, the first element

Rearrange the list so that

$$\underbrace{A[0]\dots A[s-1]}_{\text{all are } \leq A[s]} \quad A[s] \quad \underbrace{A[s+1]\dots A[n-1]}_{\text{all are } \geq A[s]}$$

- all the elements in the first s positions are smaller than or equal to the pivot
- all the elements in the remaining n-s positions are larger than or equal to the pivot
- Sort the two subarrays recursively

5.2 Quicksort

Pseudocode of Partitioning Algorithm

ALGORITHM HoarePartition(A[l..r]) //Partitions a subarray by Hoare's algorithm, using the first element // as a pivot //Input: Subarray of array A[0..n-1], defined by its left and right indices l and r (l < r) //Output: Partition of A[l..r], with the split position returned as this function's value $p \leftarrow A[l]$ $i \leftarrow l$; $i \leftarrow r + 1$ repeat repeat $i \leftarrow i + 1$ until $A[i] \ge p$ repeat $j \leftarrow j - 1$ until $A[j] \le p$ swap(A[i], A[j])until $i \geq j$ $\operatorname{swap}(A[i], A[j])$ //undo last swap when $i \geq j$ swap(A[l], A[j])return j

Pseudocode of Quicksort

```
ALGORITHM Quicksort(A[l..r])

//Sorts a subarray by quicksort

//Input: Subarray of array A[0..n-1], defined by its left and right

// indices l and r

//Output: Subarray A[l..r] sorted in nondecreasing order

if l < r

s \leftarrow Partition(A[l..r]) //s is a split position

Quicksort(A[l..s-1])

Quicksort(A[s+1..r])
```

What is the best case? What is the worst case?

0	1	2	3	4	5	6	7		
5	i 3	1	9	8	2	4	<i>j</i> 7		
5	3	1	<i>i</i> 9	8	2	<i>j</i> 4	7		
5	3	1	<i>i</i> 4	8	2	<i>j</i> 9	7		
5	3	1	4	<i>i</i> 8	<i>j</i> 2	9	7		
5	3	1	4	<i>i</i> 2	<i>j</i> 8	9	7		
5	3	1	4	<i>j</i> 2	<i>i</i> 8	9	7		
2	3	1	4	5	8	9	7	<i>I</i> =0, <i>r</i> =7 s=4	
							<i>l</i> =0, <i>r</i> =3 <i>s</i> =1		<i>l</i> =5, <i>r</i> =7 <i>s</i> =6

Analysis of Quicksort

• Best case: split in the middle - $\Theta(n \log n)$

$$C_{best}(n) = 2C_{best}(n/2) + n$$
 for $n > 1$, $C_{best}(1) = 0$.

$$C_{best}(n) \in \Theta(n \log_2 n)$$

• Worst case: sorted array! - $\Theta(n^2)$

$$C_{worst}(n) = (n+1) + n + \dots + 3 = \frac{(n+1)(n+2)}{2} - 3 \in \Theta(n^2).$$

• Average case: random arrays - $\Theta(n \log n)$

$$C_{avg}(n) = \frac{1}{n} \sum_{s=0}^{n-1} [(n+1) + C_{avg}(s) + C_{avg}(n-1-s)] \quad \text{for } n > 1,$$

$$C_{avg}(0) = 0, \quad C_{avg}(1) = 0.$$

$$C_{avg}(n) \approx 2n \ln n \approx 1.39n \log_2 n$$
.

Exercise 5.2-1

1. Apply quicksort to sort the list E, X, A, M, P, L, E in alphabetical order. Draw the tree of the recursive calls made.

5.3 Binary Search

- A binary tree T
 - a finite set of nodes that is either empty or consists of a root and two disjoint binary trees T_L and T_R called, respectively, the left and right subtree of the root.

Binary Tree Algorithms

- The definition itself divides a binary tree into two smaller structures of the same type
- Binary tree is a divide-and-conquer ready structure!
- Three parts: root, left subtree, and right subtree

Example: Binary Tree Algorithm

Height of Binary Tree

```
ALGORITHM Height(T)

//Computes recursively the height of a binary tree

//Input: A binary tree T

//Output: The height of T

if T = \emptyset return -1

else return \max\{Height(T_{left}), Height(T_{right})\} + 1
```


Example: Binary Tree Algorithm

•
$$x = n + 1$$

- x : the number of external nodes
- *n* : the number of internal nodes

• Proof: the total number of nodes is 2n + 1 = n + x

Efficiency? Θ(height)

$$A(n(T)) = A(n(T_{left})) + A(n(T_{right})) + 1$$
 for $n(T) > 0$,
 $A(0) = 0$. $A(n) = n$.

$$C(n) = n + x = 2n + 1,$$

Binary Search

Very efficient algorithm for searching in <u>sorted array</u>:

$$K$$
 vs A[0] A[m] A[n -1]

- If K = A[m], stop (successful search);
- otherwise,
 - If K < A[m], continue searching by the same method in A[0..m-1]
 - If K > A[m], in A[m+1..n-1]

$$l \leftarrow 0$$
; $r \leftarrow n$ -1
while $l \le r$ do
 $m \leftarrow \lfloor (l+r)/2 \rfloor$
if $K = A[m]$ return m
else if $K < A[m]$ $r \leftarrow m$ -1
else $l \leftarrow m$ +1
return -1

Exercise 5.3-2

2. The following algorithm seeks to compute the number of leaves in a binary tree.

```
ALGORITHM LeafCounter(T)

//Computes recursively the number of leaves in a binary tree

//Input: A binary tree T

//Output: The number of leaves in T

if T = \emptyset return 0

else return LeafCounter(T_{left})+ LeafCounter(T_{right})
```

Is this algorithm correct? If it is, prove it; if it is not, make an appropriate correction.

Binary Tree Traversals

The most important divide-and-conquer algorithms for binary trees are the three classic traversals: preorder, inorder, and postorder.

- **Preorder**: root, T_L , and T_R
 - the root is visited before the left and right subtrees are visited
- Inorder: T_L , root and T_R
 - the root is visited after visiting its left subtree but before visiting its right subtree
- Postorder: T_L , T_R and root
 - the root is visited after the left and right subtrees are visited

Classic traversals

- Preorder: root, TL, and TR
- Inorder: TL, root and TR
- Postorder: TL, TR and root

preorder: a, b, d, g, e, c, f inorder: d, g, b, e, a, f, c postorder: g, d, e, b, f, c, a

Exercise 5.3-5

- **5.** Traverse the following binary tree
 - a. in preorder.
 - **b.** in inorder.
 - c. in postorder.

Exercise 5.3-6

6. Write pseudocode for one of the classic traversal algorithms (preorder, inorder, and postorder) for binary trees. Assuming that your algorithm is recursive, find the number of recursive calls made.