Homogénéité et optique géométrique

Jeudi 22 septembre 2022 - Durée 2h

- * Les exercices sont indépendants, et peuvent être traités dans le désordre.
- * La calculatrice est autorisée.
- * Il sera tenu le plus grand compte du soin, de la présentation, et de la rédaction.
- * Chaque réponse doit être justifiée. Par ailleurs, même lorsque ce n'est pas explicitement demandé, toute application numérique doit être précédée d'une expression littérale.

Pour l'optique géométrique dans les conditions de Gauss

• Soient deux points conjugués par le dioptre plan A et A':

$$A \xrightarrow{\text{Dioptre plan}} A'$$

La relation de conjugaison du dioptre est : $\frac{n}{\overline{HA}} = \frac{n'}{\overline{HA'}}$

avec H le projeté orthogonal de A sur le dioptre, n l'indice du milieu d'où viennent les rayons avant leur arrivée sur le dioptre et n' l'indice du milieu où se propagent les rayons après réfraction.

• Soient deux points conjugués A et A' par une lentille mince L_1 , de centre O et de distance focale image f'_1 , plongeant dans un milieu d'indice optique égal à 1 :

$$A \xrightarrow{(L_1,O,f_1')} A'$$

La relation de conjugaison de la lentille mince est : $\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'_1}$.

I. Homogénéité

L'interaction gravitationnelle entre deux points matériels $O(m_1)$ et M(m), est régie par la loi de Newton : $\overrightarrow{f} = \overrightarrow{f}_{O \to M} = -G \frac{m_1 m}{r^2} \overrightarrow{u}_r$ (r étant la distance entre les points matériels O et M).

Par ailleurs, l'énergie E d'un photon est donnée par la relation $E = \hbar \omega$, ω étant une pulsation.

- 1. En considérant les deux relations données ci-dessus, déterminer la dimension de la constante G ainsi que celle de la constante \hbar .
- 2. En utilisant l'homogénéité, construisez :
 - une masse, dite « masse de Planck », notée m_P . On déterminera m_P sous la forme $m_P = G^{\delta}.\hbar^{\eta}.c^{\mu}$;
 - un temps, dit « temps de Planck », noté $t_{\rm P}$. On déterminera $t_{\rm P}$ sous la forme $t_{\rm P}={\rm G}^\alpha.\hbar^\beta.c^\gamma$;
 - une distance, dite « longueur de Planck », notée ℓ_P . On déterminera ℓ_P sous la forme $\ell_P = G^{\Delta}.\hbar^{\nu}.c^{\xi}$.

NB: Les résultats seront au final écrits en notations habituelles, c'est à dire en utilisant les fractions et les racines carrées $\sqrt{...}$.

3. Calculer $m_{\rm P}$, $t_{\rm P}$ et $\ell_{\rm P}$.

 $Donn\'{e}s: \overrightarrow{u}_r$ est un vecteur unitaire : $\overrightarrow{u_r} = \frac{\overrightarrow{OM}}{||\overrightarrow{OM}||}$; constante de Planck réduite $\hbar = \frac{h}{2\pi}$, avec h la constante de Planck, $h = 6,63.10^{-34}$ S.I; constante gravitationnelle G = $6,67.10^{-11}$ S.I; vitesse de la

constante de Planck, $h = 6,63.10^{-34}$ S.1; constante gravitationnelle $G = 6,67.10^{-11}$ S.1; vitesse de la lumière $c = 3,00.10^8$ S.I. On retrouve régulièrement la pulsation ω dans des termes en « $\cos(\omega t)$ », t étant un temps.

II. Du dioptre à la lentille

II.1 Relation de conjugaison pour un dioptre sphérique

- 1. Énoncer les lois de Snell Descartes relatives à la réfraction pour un dioptre qui sépare deux milieux d'indice n_1 et n_2 .
- 2. Soit un dioptre sphérique de centre C de sommet S séparant un milieu homogène transparent d'indice n_1 d'un milieu homogène transparent d'indice n_2 .

Un rayon issu d'un point source A rencontre le dioptre en I et se réfracte en semblant provenir de A' considéré ici comme ponctuel (cf. Figure 1).

Figure 1 - Dioptre sphérique

- a) Préciser la signification du terme « homogène ».
- b) D'après le dessin, quel est le milieu le plus réfringent?
- c) Exprimer les angles d'incidence i_1 et de réfraction i_2 en fonction des angles orientés α , α' et β reportés sur la figure.
- 3. On se place dans les conditions de Gauss.
 - a) Rappeler en quoi consistent les conditions de Gauss. Que peut-on dire de $\overline{\rm SH}$ dans les conditions de Gauss?
 - b) Dans ces conditions, donner une relation linéaire liant i_1, i_2, n_1 et n_2 .
- 4. Relation de conjugaison du dioptre sphérique.
 - a) Déduire des relations précédentes la relation de conjugaison du dioptre sphérique sous la forme :

$$\frac{n_2}{\overline{SA'}} - \frac{n_1}{\overline{SA}} = \frac{n_2 - n_1}{\overline{SC}}$$

b) Retrouver la relation de conjugaison du dioptre plan à partir de la relation donnée ci-dessus.

II.2 Passage à la lentille mince

L'objectif d'un appareil photographique jetable est constitué d'une lentille convexe plan L₁ dont la géométrie est présentée sur la figure 2 ci-après.

La lentille est en plastique d'indice n=1,450. Les différentes dimensions sont $\overline{S_1C_1}=15,75$ mm et $\overline{S_1P_1}=2,900$ mm. Les résultats seront donnés avec quatre chiffres significatifs. Y compris dans les expressions littérales, on pourra remplacer n_0 par 1.

Figure 2 - Lentille mince

- 5. **Méthode pas à pas** : on cherche à déterminer la position de l'image A' par la lentille d'un objet A sur l'axe S_1C_1 tel que $\overline{S_1A} = -7035$ mm en déterminant la position des images successives par le dioptre sphérique puis par le dioptre plan. On notera A_1 l'image de A par le dioptre sphérique. On pourra utiliser les relations de conjugaison établies ou données dans la partie précédente.
 - a) Écrire le diagramme objet/image pour le dioptre sphérique puis le diagramme objet/image pour le dioptre plan, en respectant les notations proposées par l'énoncé.
 - b) Faire le tracé d'un rayon issu de A pour trouver la position de A_1 et celle de A' (pas à l'échelle mais retranscrivant le fait que n > 1).
 - c) Déterminer $\overline{S_1A_1}$ en fonction de $\overline{S_1C_1}$, $\overline{S_1A}$ et n. Faire l'application numérique.
 - d) Déterminer $\overline{S_1A'}$ en fonction de $\overline{P_1S_1}$, $\overline{S_1A_1}$ et n. Faire l'application numérique.
- 6. On souhaite caractériser la lentille par une seule relation de conjugaison. On notera F_1 son foyer objet et F_1' son foyer image. On utilisera notamment les notations proposées dans les diagrammes objet/image suivants :

$$A_{\infty} \xrightarrow{\text{Dioptre sphérique}} A_2 \xrightarrow{\text{Dioptre plan}} F_1'$$
 (Diag 1)

$$F_1 \xrightarrow{\text{Dioptre sphérique}} A_3 \xrightarrow{\text{Dioptre plan}} A'_{\infty}$$
 (Diag 2)

- a) En utilisant le diagramme (Diag 1) ainsi que les relations de conjugaison établies ou données dans la partie précédente, déterminer la position $\overline{S_1F_1'}$ en fonction de $\overline{S_1P_1}$, $\overline{S_1C_1}$ et n. Faire l'application numérique.
- b) En utilisant le diagramme (Diag 2) ainsi que les relations de conjugaison établies ou données dans la partie précédente, déterminer la position $\overline{S_1F_1}$ en fonction de $\overline{S_1C_1}$ et n. Faire l'application numérique.
- c) Déterminer numériquement la distance focale f_1' de la lentille L_1 définie comme la distance algébrique $\overline{OF_1'}$, avec $S_1 \simeq P_1 = O$, le centre optique de la lentille (approximation des lentilles minces). La lentille L_1 est-elle convergente ou divergente?
- d) Utiliser ces résultats pour retrouver la position de l'image A' de l'objet A par la lentille L₁. Comparer avec le résultat de la question 5. et conclure.