

Lines and Angles Ex 8.4 Q6

Answer:

The figure is given as follows:

We need to find $\angle ABC$

Let us produce BA to meet PR at point G.

It is given that $PQ \parallel GB$.

Thus, $\angle QPR$ and $\angle RGB$ are corresponding angles.

Therefore,

$$\angle RGB = \angle QPR$$

Also it is given that $\angle QPR = 102^{\circ}$

$$\angle RGB = 102^{\circ}$$
 (i)

Similarly, it is given that $PR \parallel BC$.

Thus, $\angle ABC$ and $\angle RGB$ are consecutive interior angles. Therefore,

$$\angle ABC + \angle RGB = 180^{\circ}$$

From equation (i):

$$\angle ABC + 102^{0} = 180^{0}$$
$$\angle ABC = 180^{0} - 102^{0}$$
$$\angle ABC = \boxed{78^{0}}$$

Hence, the required value for $\angle ABC$ is $\boxed{78^{\circ}}$.

Lines and Angles Ex 8.4 Q7

Answer:

The given figure is as follows:

Since $\angle FDC = \angle ACD$

These are the pair of alternate interior opposite angles.

Theorem states: If a transversal intersects two lines in such a way that a pair of alternate interior angles is equal, then the two lines are parallel.

Therefore

 $AC \parallel DE$

Lines and Angles Ex 8.4 Q8

Answer:

The figure is given as follows:

It is given that $n \parallel p$.

Thus, $\angle 1$ and $\angle 3$ are corresponding angles.

Therefore,

$$\angle 1 = \angle 3$$

It is given that $\angle 1 = 85^{\circ}$. Therefore,

$$\angle 3 = 85^{\circ}$$
 ...(i)

Also, we have $m \parallel l$.

Thus, $\angle 2$ and $\angle 3$ are consecutive interior angles.

Therefore,

$$\angle 2 + \angle 3 = 180^{\circ}$$

From equation (i), we get:

$$\angle 2 + 85^{\circ} = 180^{\circ}$$
 $\angle 2 = 180^{\circ} - 85^{\circ}$
 $\angle 2 = 95^{\circ}$

Hence, the required value for $\angle 2$ is $\boxed{95^{\circ}}$.

********* END ********