Пример.
$$f(x)= egin{cases} e^{-\dfrac{1}{x^2}} & ,x
eq 0 \ 0 & ,x
eq 0 \end{cases}$$

$$f'(x) = \frac{2}{x^3}e^{-\frac{1}{x^2}}, x \neq 0$$

$$f'(0) = ?$$

Следствие из теоремы Лагранжа:

$$\lim_{x \to x_0} f'(x) = A$$
 тогда $f'(x_0) = A$

$$f'(0) = \lim_{x \to 0} \frac{2}{x^3} e^{-\frac{1}{x^2}} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \lim 2 \frac{\frac{2}{x^3} e^{-\frac{1}{x^2}}}{3x^2} = \lim \frac{4e^{-\frac{1}{x^2}}}{3} = \text{ больно, не надо так}$$

$$\lim_{x \to 0} \frac{2}{x^3} e^{-\frac{1}{x^2}} = \lim \frac{\frac{2}{x^3}}{e^{\frac{1}{x^2}}} = \left[\frac{\infty}{\infty} \right] = \lim \frac{\frac{-6}{x^4}}{\frac{-2}{x^3} e^{\frac{1}{x^2}}} = \lim \frac{\frac{3}{x}}{e^{\frac{1}{x^2}}} = \left[\frac{\infty}{\infty} \right] = \lim \frac{\frac{-3}{x^2}}{\frac{-2}{x^3} e^{\frac{1}{x^2}}} = \lim \frac{3}{2} \frac{x}{e^{\frac{1}{x^2}}} = 0$$

$$f'(x) = \begin{cases} \frac{2}{x^3} e^{-\frac{1}{x^2}} & , x \neq 0 \\ 0 & , x = 0 \end{cases}$$

$$f^{(n)}(x) = \begin{cases} P_n \left(\frac{1}{x} \right) \cdot e^{-\frac{1}{x^2}} & , x \neq 0 \\ 0 & , x = 0 \end{cases}$$

Заметим, что многочлен Тейлора этой функции при $x \to 0$ не становится точнее при увеличении числа слагаемых, т.к. они все = 0.

Будем складывать дроби неправильно:

$$\frac{a}{b} + \frac{c}{d} = \frac{a+c}{b+d}$$

Это работает в неравенствах, если a,b,c,d>0

Теорема 1. Штольца.

Это дискретная версия правила Лопиталя. $y_n \to 0, x_n \to 0$ — строго монот.

$$\lim \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = a \in \mathbb{R}$$

Тогда
$$\exists \lim \frac{x_n}{y_n} = a$$

Примечание. Аналогичное верно, если $x_n \to +\infty, y_n \to +\infty$

Доказательство.

1.
$$a > 0 \quad (a \neq +\infty)$$

$$\forall \varepsilon > 0 \ [\varepsilon < a] \ \exists N_1 \ \forall n > N_1 \ a - \varepsilon < \frac{x_n - x_{n-1}}{y_n - y_{n-1}} < a + \varepsilon$$

Берем $N > N_1$

$$a - \varepsilon < \frac{x_{N+1} - x_N}{y_{N+1} - y_N} < a + \varepsilon$$

$$a - \varepsilon < \frac{x_n - x_{n-1}}{y_n - y_{n-1}} < a + \varepsilon$$

По неправильному сложению: (оно применимо, т.к. все дроби положительные)

$$a - \varepsilon < \frac{x_n - x_N}{y_n - y_N} < a + \varepsilon$$

 $n \to +\infty$

$$a - \varepsilon < \frac{x_N}{y_N} < a + \varepsilon$$

- 2. $a = +\infty$ доказывается так же
- 3. a < 0 поменяем знак и докажем так же

4.
$$a=0$$
 т.к. знаки x_n-x_{n-1} и y_n-y_{n-1} фикс., $a=+0$ или $a=-0$

Для
$$a = +0 \lim \frac{y_n - y_{n-1}}{x_n - x_{n-1}} = +\infty$$

 $x_n = 1 + 2 + 3 + \ldots + n \xrightarrow{?} y_n$

$$\lim \frac{x_n}{y_n} = \lim \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = \lim_{n \to +\infty} \frac{n}{y_n - y_{n-1}} = \left[y_n := \frac{n^2}{2} \right] = \lim \frac{n}{n - \frac{1}{2}} = 1$$

$$x_n \sim \frac{n^2}{2}$$

$$x_n = 1^{\alpha} + 2\alpha + 3\alpha + \ldots + n\alpha - \frac{n^{\alpha+1}}{\alpha+1} \sim z_n$$

$$\lim \frac{x_n}{z_n} = \lim \frac{n^{\alpha} - \left(\frac{n^{\alpha+1}}{\alpha+1} - \frac{(n-1)^{\alpha+1}}{\alpha+1}\right)}{z_n - z_{n-1}}$$

$$n^{\alpha} - \frac{1}{\alpha + 1} n^{\alpha + 1} \left(1 - \left(1 - \frac{1}{n} \right)^{\alpha + 1} \right) =$$

$$\left((\alpha + 1)^{\frac{1}{n}} - \frac{(\alpha + 1)\alpha}{n} + \alpha \left(\frac{1}{n} \right) \right) - \frac{\alpha}{n} n^{\alpha - 1} + \alpha (n)^{\alpha + 1}$$

$$= n^{\alpha} - \frac{1}{\alpha + 1} n^{\alpha + 1} \left((\alpha + 1) \frac{1}{n} - \frac{(\alpha + 1)\alpha}{2} \frac{1}{n^2} + o\left(\frac{1}{n^2}\right) \right) = \frac{\alpha}{2} n^{\alpha - 1} + o(n^{\alpha - 1}) =$$

$$= \frac{\alpha}{n} n^{\alpha - 1} + o(n^{\alpha - 1})$$

$$=\frac{\alpha}{2}n^{\alpha-1}+o(n^{\alpha-1})$$

$$\lim \frac{x_n}{z_n} = \lim \frac{\frac{\alpha}{2} n^{\alpha - 1}}{z_n - z_{n - 1}}$$

Функциональные свойства определенного интеграла:

1. $\forall \alpha, \beta \in \mathbb{R}, \ f, g \in C[a, b]$

$$\int_{a}^{b} \alpha f + \beta g dx = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g$$

Доказательство. По формуле Ньютона-Лейбница $f\leftrightarrow F$ $g\leftrightarrow G$ $\alpha f+\beta g\leftrightarrow \alpha F+\beta G$ \square

2. Замена переменных: $f \in C[a,b] \ \varphi : \langle \alpha, \beta \rangle \to [a,b], \varphi \in C^1$

$$[p,q] \subset \langle \alpha, \beta \rangle$$

Тогда

$$\int_{p}^{q} f(\varphi(t))\varphi'(t)dt = \int_{\varphi(p)}^{\varphi(q)} f(x)dx$$

Доказательство. $f \leftrightarrow F \quad f(\varphi(t))\varphi'(t) \leftrightarrow F(\varphi(t))$

 $\mbox{\it Примечание.}$ (a) $\varphi([p,q])$ может быть шире, чем " $[\varphi(p),\varphi(q)]$ "

(b) $\varphi(p)$ может быть $> \varphi(q)$

3. Интегрирование по частям

$$f|_a^b \stackrel{\text{def}}{=} f(b) - f(a)$$

$$f, g \in C^1[a, b]$$

$$\int_{a}^{b} fg' = fg|_{a}^{b} - \int_{a}^{b} f'g$$

Доказательство.

$$(fg)' = f'g + fg'$$
$$fg' = (fg)' - f'g$$

Проинтегрируем по [a, b]

$$\int\limits_a^b fg' = fg|_a^b - \int\limits_a^b f'g$$

 Π ример. Неравенство Чебышева $f,g\in C[a,b]$ монот. возр.

Тогда

$$\int_{a}^{b} f \int_{a}^{b} g \le (b - a) \int_{a}^{b} f g$$

M3137y2019

Доказательство. $x, y \in [a, b]$ $(f(x) - f(y))(g(x) - g(y)) \ge 0$

$$f(x)g(x) - f(y)g(x) - f(x)g(y) + f(y)g(y) \ge 0$$

Интегрируем по x по [a,b]

$$I_{fg} - f(y)I_g - g(y)I_f + f(y)g(y) \ge 0$$

Интегрируем по y по [a,b]

$$I_{fg} - I_f I_g - I_g I_f + I_{fg} \ge 0$$

Пример.

$$\begin{split} H_n &:= \frac{1}{n!} \int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^n \cos t dt := \frac{1}{n!} \int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f g' dt \\ H_n &= \left[f' = -2n \left(\frac{\pi^2}{4} - t^2\right)^{n-1} t \quad g = \sin t\right] = \\ &= \frac{1}{n!} \left(\frac{\pi^2}{4} - t^2\right)^n \sin t \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + \frac{2}{(n-1)!} \int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^{n-1} t \sin t \\ &= 0 + \frac{2}{(n-1)!} \left(\frac{\pi^2}{4} - t^2\right)^{n-1} + \sin t \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + \\ &+ \frac{2}{(n-1)!} \int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left((2n-1) \left(\frac{\pi^2}{4} - t^2\right)^{n-1} - \frac{\pi^2}{2} (n-1) \left(\frac{\pi^2}{4} - t^2\right)^{n-2}\right) \cos t dt = \\ &= (4n-2) H_{n-1} - \pi^2 H_{n-2} \end{split}$$

Теорема 2. Число π — иррационально

Доказательство. Пусть $\pi=rac{p}{a}; H_n$ задано выше

$$H_n = (4n - 2)H_{n-1} - \pi^2 H_{n-2}$$

$$H_0 = 2, \quad H_1 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\frac{\pi^2}{4} - t^2) \cos t = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \sin t dt = 2t(-\cos t) \Big|_{\dots}^{\dots} + 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos t = 4$$

 $H_n=\ldots H_1+\ldots H_0=P_n(\pi^2)$ — многочлен с целыми коэффициентами, степень $\leq n$

$$q^{2n}P_n\left(rac{p^2}{q^2}
ight)=\,$$
 целое число $=q^{2n}H_n=q^{2n}H_n>0 \Rightarrow q^{2n}H_n\geq 1$

$$1 \le \frac{q^{2n}}{n!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2 \right)^n \cos t dt \le \frac{q^2 n 4^n}{n!} \pi \to 0$$

Противоречие.

$$f \leftrightarrow F$$

$$\int_{x_0}^{x} \frac{f^{(n)}(x_0)}{n!} (t - x_0)^n dt = \frac{F^{(n+1)}(x_0)}{(n+1)!} (x - x_0)^{n+1}$$

$$\frac{1}{\sqrt{1 - x^2}} = 1 + \frac{1}{2}x^2 + \frac{3}{8}x^4 + o(x^4)$$

$$\arcsin t = t + \frac{1}{6}t^3 + \frac{3}{40}t^5 + o(t^5)$$

Определение. $f:[a,b]\to\mathbb{R}$, кусочно непрерывна f — непр. на [a,b] за исключением конечного числа точек, в которых разрывы I рода Пример. $f(x)=[x], x\in[0,2020]$

Определение. $F:[a,b] \to \mathbb{R}$ — почти первообразная кусочно непрерывной функции f: F — непр. и $\exists F'(x) = f(x)$ всюду, кроме конечного числа точек

Пример.
$$f = \operatorname{sign} x, x \in [-1, 1]$$
 $F := |x|$

$$f$$
 — кус. непр.

$$x_0 = a < x_1 \dots < x_n = b$$

$$\int\limits_a^b f := \sum_{k=1}^n \int\limits_{x_{k-1}}^{x_k} f$$

Утверждение: Верна формула Ньютона-Лейбница f — кус. непр. на [a,b], F — почти первообразная

$$\int_{a}^{b} f = F(b) - F(a) = \sum_{x_{k-1}}^{x_k} \int_{x_{k-1}}^{x_k} f = \sum_{x_{k-1}}^{x_k} F(t)|_{x_{k-1}}^{x_k} = \sum_{x_{k-1}}^{x_k} F(x_k) - F(x_{k-1}) = F(b) - F(a)$$

Пример. Дискретное неравенство Чебышева

$$a_1 \le a_2 \le \ldots \le a_n, b_1 \le b_2 \le \ldots \le b_n$$

$$\frac{1}{n} \sum_{i=1}^{n} a_i \cdot \frac{1}{n} \sum b_i \le \frac{1}{n} \sum a_i b_i$$

Доказательство.

$$f(x)=a_i, x\in (i-1,i], i=1\dots n$$
— задана на $(0,n]$
$$g(x)=\dots b_i$$

$$I_fI_g\leq I_{fg}$$

M3137y2019 Лекция 3

1 Приложение определенного интеграла

 $Segm\langle a,b\rangle=\{[p,q]:[p,q]\subset\langle a,b\rangle\}$ — множество всевозм. отрезков, лежащих в $\langle a,b\rangle$

Определение. Функция промежутка $\Phi: Segm\langle a,b\rangle \to \mathbb{R}$

Определение. Аддитивная функция промежутка: Φ — функция промежутка и

$$\forall [p,q] \in Segm\langle a,b \rangle \ \forall r: p < r < q \ \Phi([p,q]) = \Phi([p,r]) + \Phi([r,q])$$

Пример. • Цена куска колбасы от p до q.

• Цена билета от станции p до станции q. Эти две функции обычно не аддитивны.

•
$$[p,q] \to \int_n^q f$$

Определение. Плотность аддитивной функции промежутка: $f:\langle a,b\rangle\to\mathbb{R}$ — плотность $\Phi,$ если:

$$\forall \delta \in Segm \langle a,b \rangle \quad \inf_{x \in \delta} f(x) \cdot len_{\delta} \leq \Phi(\delta) \leq \sup f \cdot len_{\delta}$$

Теорема 3. О вычислении аддитивной функции промежутка по плотности

$$f:\langle a,b \rangle \to \mathbb{R}$$
 — непр. $\Phi: Segm\langle a,b \rangle \to \mathbb{R}$ f — плотность Φ

Тогда
$$\Phi([p,q]) = \int\limits_b^a f, \quad [p,q] \subset \langle a,b \rangle$$

Доказательство.

$$F(x) := egin{cases} 0 &, x = a \\ \Phi([a,x]) &, x > a \end{cases}$$
 — первообразная f

Это утверждение ещё не доказано, но если мы его докажем, то:

$$\Phi([p,q]) = \Phi[a,q] - \Phi[a,p] = F(q) - F(p) = \int_{p}^{a} f$$

Докажем утверждение:

$$\frac{F(x+h) - F(x)}{h} = \frac{\Phi[a, x+h] - \Phi[a, x]}{h} = \frac{\Phi[x, x+h]}{h} = [0 \le \Theta \le 1] = f(x + \Theta h)$$

Тут последовал пример про нахождение площади круга, но мне лень.