Non-linear Layer

Dr. Thanh-Sach LE LTSACH@hcmut.edu.vn

GVLab: Graphics and Vision Laboratory

Faculty of Computer Science and Engineering, **HCMUT**

Contents

- Goal of non-linear layer
- **❖**ReLU
- Sigmoid
- **❖**Tanh
- **Summary**

Goal of non-linear layer

- Add non-linear capacity to networks
- Without non-linear layers
 - ♣ Networks can approximate linear functions (X —> Y)

 ∂b

ReLU Forward-pass

$$y_i = x_i$$
, if $x_i \ge 0$
= 0, otherwise

$$y_i = x_i$$
, if $x_i \ge 0$
= 0, otherwise

91

$$y_i = x_i$$
, if $x_i \ge 0$
= 0, otherwise

deactivated neuron don't affect or contribute to neurons in next layers

дh

$$y_i = x_i$$
, if $x_i \ge 0$
= 0, otherwise

What happened if all input to ReLU are negative?

al

$$y_i = x_i$$
, if $x_i \ge 0$
= 0, otherwise

What happened if all input to ReLU are negative?

Network can't learn anything!

21

$$y_i = x_i$$
, if $x_i \ge 0$
= 0, otherwise

What happened if all input to ReLU are positive?

ReLU layer is meaningless.

Convolution layer + ReLU = linear

Fully-connected layer + ReLU = linear

2.6

$$\delta x_i = \delta y_i \times \frac{dy_i}{dx_i} = \delta y_i, \text{ if } x_i \ge 0$$
= 0, otherwise

 ∂b

$$\delta x_i = \delta y_i \times \frac{dy_i}{dx_i} = \delta y_i, \text{ if } x_i \ge 0$$

$$= 0, \text{ otherwise}$$

$$\delta x_i = \delta y_i \times \frac{dy_i}{dx_i} = \delta y_i, \text{ if } x_i \ge 0$$
= 0, otherwise

$$\Delta \mathbf{x} = \Delta \mathbf{y} \cdot \mathbf{m}$$

$$m_i = 1$$
, if $x_i \ge 0$
= 0, otherwise

is element-wise multiplication

Sigmoid Forward-pass

$$y_{i} = \frac{1}{1 + e^{-x_{i}}}$$
$$y'_{i} = y_{i}(1 - y_{i})$$

Sigmoid Forward-pass

Sigmoid Forward-pass

 ∂b

$$y_{i} = \frac{1}{1 + e^{-x_{i}}}$$
$$y'_{i} = y_{i}(1 - y_{i})$$

 ∂b

$$\delta x_i = \delta y_i \times \frac{dy_i}{dx_i} = \delta y_i \times y_i \times (1 - y_i)$$

$$\delta x_i = \delta y_i \times \frac{dy_i}{dx_i} = \delta y_i \times y_i \times (1 - y_i)$$

Sigmoid

Backward-pass

$$\delta x_i = \delta y_i \times \frac{dy_i}{dx_i} = \delta y_i \times y_i \times (1 - y_i)$$

$$\delta x_i = \delta y_i \times \frac{dy_i}{dx_i} = \delta y_i \times y_i \times (1 - y_i)$$

$$\delta x_i = \delta y_i \times \frac{dy_i}{dx_i} = \delta y_i \times y_i \times (1 - y_i)$$

Tanh Forward-pass

$$y_{i} = \frac{e^{x_{i}} - e^{-x_{i}}}{e^{x_{i}} + e^{-x_{i}}}$$
$$y'_{i} = 1 - y_{i}^{2}$$

Tanh Forward-pass

Tanh Forward-pass

 ∂t

$$y_{i} = \frac{e^{x_{i}} - e^{-x_{i}}}{e^{x_{i}} + e^{-x_{i}}}$$
$$y'_{i} = 1 - y_{i}^{2}$$

 ∂b

$$\delta x_i = \delta y_i \times \frac{dy_i}{dx_i} = \delta y_i \times (1 - y_i^2)$$

 ∂b

$$\delta x_i = \delta y_i \times \frac{dy_i}{dx_i} = \delta y_i \times (1 - y_i^2)$$

$$\delta x_i = \delta y_i \times \frac{dy_i}{dx_i} = \delta y_i \times (1 - y_i^2)$$

Tanh

Backward-pass

$$\delta x_i = \delta y_i \times \frac{dy_i}{dx_i} = \delta y_i \times (1 - y_i^2)$$

$$\delta x_i = \delta y_i \times \frac{dy_i}{dx_i} = \delta y_i \times (1 - y_i^2)$$

$$\delta x_i = \delta y_i \times \frac{dy_i}{dx_i} = \delta y_i \times (1 - y_i^2)$$

Summary

			Sigmoid	Tanh	ReLU
10	Tanh		0.99995	1.0	10
0			0.50000	0.0	0.0
1.0			0.73105	0.76159	1.0
$-\frac{1}{\partial b}$			0.00247	-0.99999	0

ReLU	Tanh	Sigmoid		
10	0.0000	0.0005		10
- 5	-5.0000	−1.2500 ←	Touch	
-0.4	-0.1680	-0.0786 ←	Tanh	<u>-0.</u> 4
0	0.0000	0.0037		1.5