XM-35 Bluetooth Module Hardware Datasheet

Rev 1.2

(BC57E68)

Contents

- 1. Product Photo
- 2. Feature
- 3. Summary of Benefit
- 4. Device Terminal Function
- 5. Block Diagram
- 6. Electrical Specification:
- 7. Schematic Diagram
- 8. Testing Block Diagram
- Fig 1 Programming and Freq. Alignment Test Procedure
- Fig 2 RF Parameter Test procedure
- Fig 3 Assemble/Alignment/Testing Flow Chart

1. Product Dimensions

2. Feature

- Radio Transceiver
 - Typical –82dBm sensitivity
 - Up to +2dBm RF transmit power with power level control
- Baseband
 - ➤ Fully Qualified Bluetooth V2.0+EDR
 - Integrated Audio CODEC in one chip
 - ➤ Built-in link controller, link manager protocol and flash
 - ➤ Low Power 3.3V Operation
 - Full speed USB interface, compliant with USB 1.1
 - ➤ Integrated Battery Charger With Programmable Current
 - ➤ PIO control
 - Standard HCI(UART or USB)l
 - UART interface with programmable baud rate
 - Basic module without antenna
 - Basic module as SMD type
 - With Audio Out & Audio in

- Package option
 - Edge connector

3. Summary of Benefit

- Complete Bluetooth Solution
 - Complete 2.4GHz radio transceiver and baseband
 - ➤ CSR Bluecore 05- BT MultiMedia, single chip bluetooth system with CMOS
 - technology
 - Adaptive frequency hopping feature (AFH)
 - Smallest footprint, 20.5mmX13.7mm
 - Simplify overall design/development cycle
 - Full speed Class 2 bluetooth operation
 - Class I support using external power amplifier
- Low power standby modes to enable high efficient power management
- High performance radio transceiver
- •Low overall system cost
- Application
 - Stereo Headphone
 - Automotive Hands-Free Kits
 - Handsfree headset
 - Stereo (AV) Transmitter
 - Bluetooth Sound Box
- Software
 - Support CSR bluetooth stack
 - Design for Client

4. Device Terminal Function

PIN Name	PIN#	Pad type	Description	Note
	1.21.32.40		Ground pot	
GND	43.4856.5	VSS		
	8			
	39		Integrated 1.8V (+) supply with	
1.8V		VDD1.8V	On-chip output within 1.7-1.9V	
			Integrated 3.3V (+) supply with	
3.3V	31	VDD3.0V	On-chip I output within 3.03.3V	
		Battery	Lithium ion/polymer battery	
BATT	41	terminal+ve	positiveterminal.	
			Lithium ion/polymer battery	
CHG	42	Charger input	charger input	
			High-voltage linear regulator	
VREN	38	Analogue	and switch-moderegulator	
AIO0	5	Bi-Directional	Programmable input/output line	
AIO1	4	Bi-Directional	Programmable input/output line	
			Programmable input/output line,	
PIO0	54	Bi-Directional	control output for LNA(if fitted)	
		RX EN		
			Programmable input/output line,	
PIO1	55	Bi-Directional	control output for PA(if fitted)	
		TX EN		
PIO2	3	Bi-Directional	Programmable input/output line	
PIO3	2	Bi-Directional	Programmable input/output line	
PIO4	22	Bi-Directional	Programmable input/output line	
PIO5	23	Bi-Directional	Programmable input/output line	
PIO6	24	Bi-Directional	Programmable input/output line	
PIO7	18	Bi-Directional	Programmable input/output line	
PIO8	19	Bi-Directional	Programmable input/output line	
PIO9	14	Bi-Directional	Programmable input/output line	
PIO10	12	Bi-Directional	Programmable input/output line	
PIO11	16	Bi-Directional	Programmable input/output line	
		CMOS Input		
RET	25 wi	with	RESET	
		weak intemal		
		pull-down		
		CMOS		
		output,		
UART_RT	11	tri-stable with	UART request to send, active low	

S		weak		
S		internal		
		pull-up		
TIA DEL CE	10	CMOS input		
UART_CT	10	with	UART clear to send, active low	
S		weak internal		
		pull-down		
		CMOS input		
UART_R	8	with	UART Data input	
X		weak internal		
		pull-down		
		CMOS		
		output,		
UART_TX	9	Tri-stable	UART Data output	
		with weak		
		internal		
		pull-up		
		CMOS input	Serial peripheral interface data	
SPI_MOSI	35	with	input	
		weak internal		
		pull-down		
		CMOS input	Chip select for serial peripheral	
SPI_CSB	30	with	interface, active low	
_		weak internal	·	
		pull-up		
		CMOS input		
SPI_CLK	33	with	Serial peripheral interface clock	
_		weak internal	• •	
		pull-down		
		CMOS input	Serial peripheral interface data	
SPI MISO	34	with	Output	
		weak internal		
		pull-down		
USB_DN	6	Bi-Directional	USB	
USB_DP	7	Bi-Directional	USB	
MIC_A_P	51	Analogue	Microphone input L positive pot	Microphone
		input	Postario por	Left Positive
		Analogue	Microphone input L negative pot	Microphone
MIC_A-N	52	input		Left Negative
		Analogue	Microphone input R positive pot	Microphone
MIC_B_P	49	input	mput it positive pot	Right
WIIC_D_I	7/	mput		Positive
				Microphone
MIC R N	50	Apalogua		_
MIC_B_N	วบ	Analogue		Right

		input	Microphone input R negative pot	Negative
SPK_A_P	46	Analogue output	Speaker output L negative	Left Negative
SPK_A_N	47	Analogue output	Speaker output L positive	Left Positive
SPK_B_P	44	Analogue output	Speaker output R negative	Right Negative
SPK_B_N	45	Analogue output	Speaker output R positive	Right Positive
PCM_IN	26		Synchronous PCM data input	
PCM_SY NC	28		Synchronous PCM data strobe	
PCM_CL K	27		Synchronous PCM data clock	
PCM_OU T	29		Synchronous PCM data output	
ANT	57	Analogue	RF In/Out	
LED0	37	Open drain output	LED driver	
LED1	36	Open drain output	LED driver	
MIC_BAIS	53	Analogue	Microphone bia	

5. Block Diagram

6. Electrical Specification:

Eecommended Operating condition

Operating Condition	Min	Max
Operating temperature range	-20°C+²	' +75°C₽
Guaranteed RF performance range(a)	-20°C.≁	+75℃₽
Supply voltage: VDD_RADIO, VDD_VCO, VDD_ANA and VDD_CORE	1.7V	1.9V
Supply voltage: VDD_PADS, VDD_PIO, VDD_MEM and VDD_USB	1.7V	3.6V
Supply voltage: VREG_IN	3.0v↔	4.2V ^(b)
Supply voltage: BAT_P	3.0√+	4.2V
Supply voltage: V_CHG	4.35V	6.5V

Radio Characteristics	VDD = 1.8V Temperature = +20°C				
	Min	Тур	Max	Bluetooth Specification	Unit
Maximum RF transmit power(a) (b)	-	2.5	-	-6 to +4 ^(c)	dBm
RF power variation over temperature range with compensation $enabled(\pm)^{(d)}$	-	1.5	-		dB
RF power variation over temperature range with compensation disabled(±)	-	2	-	-	dB
RF power control range	-	35	-	≥16	dB
RF power range control resolution ^(e)	-	0.5	-	-	dB
20dB bandwidth for modulated carrier	-	780	-	≤1000	kHz
Adjacent channel transmit power F = F ₀ ± 2MHz(f) (g)	-	-40	-	≤-20	dBm
Adjacent channel transmit power F = F ₀ ± 3MHz	-	-45	-	≤-40	dBm
Adjacent channel transmit power F = F ₀ ± > 3MHz	-	-50	-	≤-40	dBm
Δf1 _{avg} Maximum Modulation	-	165	-	140 <f1<sub>avg<175</f1<sub>	kHz
Δf2 _{max} Minimum Modulation	-	150	-	≥115	kHz
Δf1 _{avg} /Δf2 _{avg}	-	0.97	-	≥0.80	-
Initial carrier frequency tolerance	-	6	-	±75	kHz
Drift Rate	-	8	-	≤20	kHz/50μs
Drift (single slot packet)	-	7	-	≤25	kHz
Drift (five slot packet)	-	9	-	≤40	kHz
2 nd Harmonic Content	-	-65	-	≤-30	dBm
3 rd Harmonic Content	-	-45	-	≤-30	dBm

7. Schematic Diagram

8. Testing Block Diagram

Fig 2 RF Parameter Test procedure

Fig 3 Assemble/Alignment/Testing Flow Chart