Software Analysis

- A Journey from Concretization to Abstraction -

Ji, Yong-Hyeon

A document presented for the Software Analysis

Department of Information Security, Cryptology, and Mathematics College of Science and Technology Kookmin University

June 28, 2024

Contents

1	Intro	duction				4		
	1.1	intro		•		4		
2	Pro	Propositional Logic I						
	2.1	Syntax and Semantic				5		
		2.1.1 Syntax				5		
		2.1.2 Semantics				6		
		2.1.3 Inductive Definition of Semantics				6		
	2.2	Satisfiability and Validity				7		
		2.2.1 Deciding Validity and Satisfiability						
		2.2.2 Deduction Rules for Propositional Logic						
		2.2.3 Proof Tree				10		
		2.2.4 Derived Rules				10		
3	Pro	ositional Logic II				11		
	3.1	Equivalence and Implication, and Equisatisfiability				11		
	3.2	Substitution				11		
	3.3	Normal Forms: NNF, DNF, CNF				11		
		3.3.1 Negation Normal Form (NNF)				11		
		3.3.2 Disjunctive Normal Form (DNF)				11		
		3.3.3 Conjunctive Normal Form (CNF)						
	3.4	Decision Procedures for Satisfiability						

CONTENTS 3

Symbols

In this paper, symbols are defined as follows.

 $I \models P$ I satisfies P $I \not\models P$ I does not satisfies P

Chapter 1

Introduction

1.1 intro

Chapter 2

Propositional Logic I

2.1 Syntax and Semantic

2.1.1 Syntax

- Atom: basic elements
 - truth symbols ⊥("false") and ⊤("true")
 - propositional variables P, Q, R, \dots
- **Literal**: an atom α or its negation $\neg \alpha$.
- Formula: a literal or the application of a logical connective (boolean connectives) to formulas

$$F \rightarrow \bot$$
 $\mid T$
 $\mid P$
 $\mid \neg F$ negation ("not")
 $\mid F_1 \land F_2$ conjunction ("and")
 $\mid F_1 \lor F_2$ disjunction ("or")
 $\mid F_1 \rightarrow F_2$ implication ("implies")
 $\mid F_1 \leftrightarrow F_2$ iff ("if and only if")

• Formula *G* is a **subformula** of formula *F* if it occurs syntactically within *G*.

$$\operatorname{sub}(\bot) = \{\bot\}$$

$$\operatorname{sub}(\top) = \{\top\}$$

$$\operatorname{sub}(P) = \{P\}$$

$$\operatorname{sub}(\neg F) = \{\neg F\} \cup \operatorname{sub}(F)$$

$$\operatorname{sub}(F_1 \land F_2) = \{F_1 \land F_2\} \cup \operatorname{sub}(F_1) \cup \operatorname{sub}(F_2)$$

• Consider $F:(P \land Q) \rightarrow (P \lor \neg Q)$. Then

$$\mathsf{sub}(F) = \{F, P \land Q, P \lor \neg Q, P, Q, \neg Q\}.$$

• The strict subformulas of a formula are all its subformulas except itself.

• To minimally use parentheses, we define the relative precedence of the logical connectives from highest to lowest as follows:

$$\neg \quad \land \quad \lor \quad \rightarrow \quad \leftrightarrow \quad$$

• (Currying) Additionally, \rightarrow and \leftrightarrow associate to the right, e.g.,

$$P \to Q \to R \iff P \to (Q \to R).$$

• Example:

$$- (P \land Q) \rightarrow (P \lor \neg Q) \iff P \land Q \rightarrow P \lor \neg Q$$
$$- (P_1 \land ((\neg P_2) \land \top)) \lor ((\neg P_1) \land P_2) \iff P_1 \land P_2 \top \lor \neg P_1 \land P_2$$

2.1.2 Semantics

- The semantics of a logic provides its meaning. The meaning of a PL formula is either true or false.
- The semantics of a formula is defined with an **interpretation** (or assignment) that assigns truth values to propositional variables.
- For example, $F: P \land Q \rightarrow P \lor \land Q$ evaluates to true under the interpretation $I: \{P \mapsto \text{true}, Q \mapsto \text{false}\}$:

P	Q	$\neg Q$	$P \wedge Q$	$P \vee \neg Q$	F
1	0	1	0	1	1

• The tabular notation is unsuitable for predicate logic. Instead, we define the semantics inductively.

2.1.3 Inductive Definition of Semantics

In an inductive definition, the meaning of basic elements is defined first. The meaning of complex elements is defined in terms of subcomponents.

- We write $I \models F$ if F evaluates to **true** under I.
- We write $I \not\models F$ if F evaluates to **false** under I.

Note that

$$I \models \top, \quad I \not\models \bot,$$

 $I \models P$ iff $I[P] = \text{true}$
 $I \models \neg F$ iff $I[P] = \text{false}$
 $I \models \neg F$ iff $I \not\models F$
 $I \models F_1 \land F_2$ iff $I \models F_1$ and $I \models F_2$
 $I \models F_1 \lor F_2$ iff $I \models F_1$ or $I \models F_2$
 $I \models F_1 \to F_2$ iff $I \not\models F_1$ or $I \models F_2$
 $I \models F_1 \leftrightarrow F_2$ iff $I \not\models F_1$ and $I \not\models F_2$) or $I \not\models F_2$

Example 2.1.1. Consider the formula

$$F: P \wedge Q \rightarrow P \vee \neg Q$$

and the interpretation

$$I: \{P \mapsto \mathsf{true}, Q \mapsto \mathsf{false}\}$$
.

The truth value of *F* is computed as follows:

1. $I \models P$ since I[P] = true2. $I \not\models Q$ since I[P] = true3. $I \models \neg Q$ by 2 and semantics of \neg 4. $I \not\models P \land Q$ by 2 and semantics of \land 5. $I \models P \lor \neg Q$ by 1 and semantics of \lor 6. $I \models F$ by 4 and semantics of \rightarrow

2.2 Satisfiability and Validity

- A formula *F* is **satisfiable** iff there exists an interpretation *I* such that $I \models F$.
- A formula *F* is **valid** iff for all interpretations $I, I \models F$.
- Satisfiability and validity are dual:

$$F$$
 is valid $\iff \neg F$ is unsatisfiable

Proof. content...

• We can check satisfiability by deciding validity, and vice versa.

Figure 2.1: Relation of SAT, UNSAT, VALID and INVALID

2.2.1 Deciding Validity and Satisfiability

Two approaches to show *F* is valid:

• Truth Table Method performs exhaustive search: e.g.,

$$F: P \wedge Q \rightarrow P \vee \neg Q$$
.

\overline{P}	Q	$P \wedge Q$	$\neg Q$	$P \vee \neg Q$	F
0	0	0	1	1	1
0	1	0	0	0	1
1	0	0	1	1	1
1	1	1	0	1	1

Non-applicable to logic with infinite domain (e.g., first-order logic).

- Semantic Argument Method uses deduction:
 - Assume *F* is valid: $I \not\models F$ for some *I* (falsifying interpretation).
 - Apply deduction rules (proof rules) to derive a contradiction.
 - If every branch of the proof derives a contradiction, then *F* is valid.
 - If some branch of the proof never derives a contradiction, then *F* is invalid.

2.2.2 Deduction Rules for Propositional Logic

Negation Elimination

$$\frac{I \models \neg F}{I \not\models F}$$

This rule shows how to derive F from $\neg F$. It eliminates the negation by asserting that if $\neg F$ holds, then F cannot hold.

Conjunction Elimination^a

$$\frac{I \models F \land G}{I \models F, I \models G}$$

This rule breaks down a conjunction into its individual components, showing that if $F \wedge G$ is true, then both F and G are true.

Disjunction Elimination^b

$$\frac{I \models F \lor G}{I \models F \mid I \models G}$$

This rule asserts that if $F \lor G$ is true in an interpretation, then either F is true, or G is true, or both are true. This is also sometimes referred to as the rule of cases.

Implication Elimination^c

$$\frac{I \models F \to G}{I \not\models F \mid I \models G}$$

This rule states that if $F \to G$ is true in an interpretation, then either F is false or G is true. This corresponds to the definition of material implication in classical logic.

Biconditional Elimination^d

$$\frac{I \models F \leftrightarrow G}{I \models F \land G \mid I \models \neg F \land \neg G}$$

This rule states that if $F \leftrightarrow G$ is true in an interpretation, then either both F and G are true, or both F and G are false. This corresponds to the definition of a biconditional statement in classical logic.

Negation Introduction

$$\frac{I \not\models \neg F}{I \models F}$$

This rule introduces F from the fact that $\neg F$ does not hold. It asserts that if the negation of F does not hold, then F must hold.

De Morgan's Law for Conjunction^a

$$\frac{I \not\models F \land G}{I \not\models F \mid I \not\models G}$$

This rule states that if $F \wedge G$ is not true, then at least one of F or G is not true. This is an application of De Morgan's laws.

De Morgan's Law for Disjunction^b

$$\frac{I \not\models F \lor G}{I \not\models F, I \not\models G}$$

This rule states that if $F \lor G$ is not true, then both F is not true and G is not true. This is directly derived from De Morgan's laws in classical logic.

Denial of Implication^c

$$\frac{I \not\models F \to G}{I \models F, I \not\models G}$$

This rule states that if $F \to G$ is not true in an interpretation, then F must be true and G must be false. This is the contrapositive form of material implication.

Negation of Biconditional^d

$$\frac{I \not\models F \leftrightarrow G}{I \models F \land \neg G \mid I \models \neg F \land G}$$

This rule states that if $F \leftrightarrow G$ is not true in an interpretation, then F and G have opposite truth values, i.e., either F is true and G is false, or F is false and G is true. This aligns with the concept of exclusive or (XOR).

^aAnd-Elimination

^bOr-Elimination

^cMaterial Implication

^dIf and Only If Elimination

^aContrapositive of Conjunction Introduction

^bContrapositive of Disjunction Introduction

^cContrapositive of Implication

^dExclusive Or Elimination

Contradiction Introduction (Proof by Contradiction)

$$\frac{I \models F \quad I \not\models F}{I \models \bot}$$

Example 2.2.1. To prove that the formula

$$F: P \wedge Q \rightarrow P \vee \neg Q$$

is valid, assume that it is invalid and derive a contradiction:

1.	$I \not\models P \land \to P \lor \neg Q$	assumption
2.	$I \models P \land Q$	by 1 and semantics of \rightarrow
3.	$I \not\models P \lor \neg Q$	by 1 and semantics of \rightarrow
4.	$I \models P$	by 2 and semantics of ∧
5.	$I\neg \models P$	by 3 and semantics of ∨
6.	$I \models \bot$	4 and 5 are contradictory

Example 2.2.2. To prove that the formula

$$F: (P \to Q) \land (Q \to R) \to (P \to R)$$

is valid, assume that it is invalid and derive a contradiction:

2.2.3 Proof Tree

2.2.4 Derived Rules

Chapter 3

Propositional Logic II

- 3.1 Equivalence and Implication, and Equisatisfiability
- 3.2 Substitution
- 3.3 Normal Forms: NNF, DNF, CNF
- 3.3.1 Negation Normal Form (NNF)
- 3.3.2 Disjunctive Normal Form (DNF)
- 3.3.3 Conjunctive Normal Form (CNF)
- 3.4 Decision Procedures for Satisfiability