РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

Математическое моделирование

Отчет по лабораторной работе №2

Группа: НФИбд-03-19

Студент: Ломакина София

Васильевна

Москва 2022г.

Цель

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии k км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении.

Известно, что скорость катера в n раз больше скорости браконьерской лодки. Необходимо определить, по какой траектории необходимо двигаться катеру, чтоб нагнать лодку.

Задания

- 1. Провести необходимые рассуждения и вывод дифференциальных уравнений, если скорость катера больше скорости лодки в n раз.
- 2. Построить траекторию движения катера и лодки для двух случаев.
- 3. Определить по графику точку пересечения катера и лодки.

Выполнение лабораторной работы

Принимаем за $t_0 = 0$, $X_0 = 0$ - место нахождения лодки браконьеров в момент обнаружения, $X_0 = k$ - местонахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки. Введем полярные координаты. Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет x, а катер x - k (или x + k). Время, за которое они пройдут это расстояние, вычисляется как x/v или (x+k)/v (для второго случая (x-k)/v). Тогда неизвестное расстояние можно найти из следующего уравнения: x/v = (x+k)/v - в первом случае, x/v = (x+k)/v во втором случае.

Отсюда мы найдем два значения x_1 и x_2 , задачу будем решать для двух случаев:

$$x_1 = k/(n+1)$$
, при $\theta = 0$

$$x_2 = k/(n-1)$$
, при $\theta = -\pi$

Найдем тангенциальную скорость для нашей задачи $v_t=r\frac{d\theta}{dt}$. Вектора образуют прямоугольный треугольник, откуда по теореме Пифагора можно найти тангенциальную скорость $v_t=\sqrt{n^2v_r^2-v^2}$. Поскольку радиальная скорость равна v, то тангенциальную скорость находим из уравнения $v_t=\sqrt{n^2v^2-v^2}$. Следовательно, $v_{\tau}=v\sqrt{n^2-1}$.

Тогда получаем
$$r \frac{d\theta}{dt} = v \sqrt{n^2 - 1}$$

Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений

$$\begin{cases} \frac{dr}{dt} = v \\ r\frac{d\theta}{dt} = v\sqrt{n^2 - 1} \end{cases}$$

с начальными условиями

$$\begin{cases} \theta_0 = 0 \\ r_0 = \frac{k}{n+1} \end{cases}$$

$$\begin{cases} \theta_0 = -\pi \\ r_0 = \frac{k}{n-1} \end{cases}$$

Задача

Вариант № 21

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 9.4 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 3.7 раза больше скорости браконьерской лодки.

- 1. Запишите уравнение, описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени).
- 2. Постройте траекторию движения катера и лодки для двух случаев.
- 3. Найдите точку пересечения траектории катера и лодки

Код в scilab:

```
n=3.7; // разница в скорости между катером береговой охраны и лодкой браконьеров k=9.4; // начальное расстояние между катером береговой охраны и лодкой браконьеров fi=3*\% рі/4; // функция, описывающая движение катера береговой охраны function dr=f(tetha,r) dr=r/sqrt(n*n-1); endfunction; // начальные условия в первом случае r0=k/(n+1); tetha0=0;
```

```
tetha=0:0.01:2*%pi;
r = ode(r0, tetha0, tetha, \underline{f})
//функция, описывающая движение лодки браконьеров
function xt = \underline{f2}(t)
  xt=cos(fi)*t;
endfunction
t=0:1:800;
plot2d(t,\underline{f2}(t),style = color('red'));// движения катера береговой охраны в полярных координатах
polarplot(tetha,r,style = color('green')); //nостроение траекториибраконьерской лодки в полярных координатах
//начальные условия во втором случае
r0=k/(n-1);
tetha0=-%pi;
figure();
r = ode(r0, tetha0, tetha, \underline{f})
plot2d(t,\underline{f2}(t),style = color(red'));// движения катера береговой охраны в полярных координатах
polarplot(tetha,r,style = color('green'));//построение траекториибраконьерской лодки в полярных координатах
```

Траектория первого случая

Точка пересечения катера и лодки:

Траектория второго случая

Точка пересечения катера и лодки:

Вывод

Рассмотрели задачу о погоне. Провели анализ и вывод дифференциальных уравнений. Смоделировали ситуацию.

Наблюдаем, что при погоне по часовой стрелке для достижения цели потребуется пройти значительно меньшее расстояние.