Obliczenia Naukowe

Sprawozdanie 2

Jakub Czyszczonik

1 Zadanie 1

1.1 Opis Problemu

Wykonać ponownie zadanie 5 z listy pierwszej, przy niewielkiej modyfikacji współczynników wielomianu.

1.2 Rozwiązanie

Usunąć najmniej znaczącą cyfrę we współczynniku przy x_4 i x_5 , a następnie policzyć wszytsko analogicznie do zadania 5 z pierwszej listy.

1.3 Wyniki

Тур	do przodu	do tyłu	od największego	od najmniejszego
Float32	-0.4999443	-0.4543457	-0.5	-0.5
Float64	-0.004296342739891585	-0.004296342998713953	-0.004296342842280865	-0.004296342842280865

Wynik. 1: Zmodyfikowane dane

Typ	do przodu	do tyłu	od największego	od najmniejszego
Float32	-0.4999443	-0.4543457	-0.5	-0.5
Float64	1.0251881368296672e-10	-1.5643308870494366e-10	0.0	0.0

Wynik. 2: Oryginalne dane

Pomimo zmiany danych wejściowych, wyniki działania algorytmów dla arytmetyki Float32 pozostał bez zmian, dlatego, że różnica w danych nie jest możliwa do uchwycenia w tej arytmetyce (liczby nie są zapisawane z odpowiednią dokładnością, by zauważyć różnice.

Dla arytmetyki Float64 nastąpiły zmiany wyników w stosunku do wyników z oryginalnymi danymi. Natomiast wyniki pomiędzy poszczególnymi algorytmami w zmodyfikowanych danych, nie różnią się znacząco między sobą.

1.4 Wnioski

Arytmetyka Float32 ma na tyle niską precyzję, że niewielkie (pomijalnie małe dla tej arytmetyki) zmiany danych wejściowych nie muszą powodować zmiany wyników. W arytmetyce Float64 zmiany danych, pomimo tego, że wydają się praktycznie pomijalnie małe w widoczny sposób zmieniły otrzymane wyniki. Zadanie jest to przykładem zadania źle uwarunkowanego w którym niewielka zmiana danych powoduje dużą zmianę wyników.

2 Zadanie 2

2.1 Opis Problemu

Narysować wykres funkcji $f(x) = e^x ln(1+e^{-x})$ w co najmniej dwóch programach oraz obliczyć granicę $\lim_{x\to\infty} f(x)$ i porównać otrzymany wynik z wykresami.

2.2 Rozwiązanie

Wartość granicy: $\lim_{x\to\infty} f(x) = 1$.

Do narysowania wykresów posłużyły mi strony internetowe: fooplot.com oraz WolframAlpha.

2.3 Wyniki

Wolfram Alpha.com

Fooplot.com

Na załączonych wykresach widać, że dodatnich x wykres zbiega do 1, jednak wartość zaczyna się gwałtownie zmieniać funkcji w pewnym momencie gwałtownie spada do 0 i już się nie zmienia.

2.4 Wnioski

,

3 Zadanie 3

3.1 Opis Problemu

Rozwiązać układ równań liniowych Ax = b dla A będącego macierzą Hilberta oraz macierzą losową o zadanym wskaźniku uwarunkowania. Układy równań mają zostać rozwiązane za pomocą dwóch sposobów: metodą eliminacji Gaussa oraz drugiej metody: $x = A^{-1}b$.

3.2 Rozwiązanie

Rozwiązywanie układu równań rozpocząłem od wygenerowania macierzy Hilberta oraz macierzy losowej o zadanych stopniach macierzy oraz wskaźnikach uwarunkowania przy użyciu funkcji zaimplementowach przez dr hab. Paweła Zielińskiego. Następnie utworzyłem wektor $x=(1,...,1)^T$ za pomocą funkcji bibliotecznych jezyka Julia. Wektor b otrzymałem poprzez obliczenie wyrażenia b=A* x. Dodatkowym warunkiem było sprwdzenie czy macierze są nieosobliwe (Własnością Macierzy Hibberta jest nieosobliwość). Następnie rozwiązywałem układy równań przy pomocy zadanych algorytmów. Dla Macierzy Hilberta przeprowadziłem obliczenia dla 1 < n < 21, a dla macierzy losowej dla n=5, 10, 20 oraz dla stopnia warunkowania c=1, 10, 10^3 , 10^7 , 10^{12} , 10^{16}

3.3 Wyniki

Stopień mc.	Rząd mc.	Uwarunkowanie mc.	Błąd względy eliminacja Gaussa	Błąd względny drugiej metody
1	1	1.0	0.0	0.0
2	2	19.28147006790397	5.661048867003676e-16	1.4043333874306803e-15
3	3	524.0567775860644	8.022593772267726e-15	0.0
4	4	15513.73873892924	4.137409622430382e-14	0.0
5	5	476607.25024259434	1.6828426299227195e-12	3.3544360584359632e-12
6	6	1.4951058642254665e7	2.618913302311624e-10	$2.0163759404347654 \mathrm{e}\text{-}10$
7	7	4.75367356583129e8	1.2606867224171548e-8	4.713280397232037e-9
8	8	1.5257575538060041e10	6.124089555723088e-8	3.07748390309622e-7
9	9	4.931537564468762e11	3.8751634185032475e-6	4.541268303176643e-6
10	10	1.6024416992541715e13	8.67039023709691e-5	0.0002501493411824886
11	11	5.222677939280335e14	0.00015827808158590435	0.007618304284315809
12	11	1.7514731907091464e16	0.13396208372085344	0.258994120804705
13	11	3.344143497338461e18	0.11039701117868264	5.331275639426837
14	12	6.200786263161444e17	1.4554087127659643	8.71499275104814
15	12	3.674392953467974e17	4.696668350857427	7.344641453111494
16	12	7.865467778431645e17	54.15518954564602	29.84884207073541
17	12	1.263684342666052e18	13.707236683836307	10.516942378369349
18	12	2.2446309929189128e18	9.134134521198485	7.575475905055309
19	13	6.471953976541591e18	9.720589712655698	12.233761393757726
20	13	1.3553657908688225e18	7.549915039472976	22.062697257870493

Macierz Hilberta.

Z tabeli można wyczytać, że dla macierzy Hilberta wskaźnik uwarunkowania rośnie bardzo szybko, a co za tym idzie bardzo szybko wyniki stają się mniej dokładne i wiarygone. Bez względu na wybrany algorytm błędy względne są bardzo duże i w wielu przypadkach nie dają wiarygodnych wyników.

Stopień mc.	Rząd mc.	Uwarunkowanie mc.	Błąd względy eliminacja Gaussa	Błąd względny drugiej metody
5	5	1.0	2.0471501066083611e-16	2.0471501066083611e-16
5	5	10.0	4.124295487574583e-16	5.768888059150691e-16
5	5	1000.0	1.1998218802869006e-14	2.252543749271376e-14
5	5	1.0e7	1.4616595375180604e-10	9.385703304198744e-11
5	5	1.0e12	1.520839842528324e-5	1.3754086591583209e-5
5	4	1.0e16	0.1372499989215545	0.14523687548277814
10	10	1.0	3.3121136700345433e-16	2.9582808634907537e-16
10	10	10.0	2.1065000811460205e-16	1.4043333874306804e-16
10	10	1000.0	1.608360289126608e-14	1.9115448498488666e-14
10	10	1.0e7	2.37843535343169e-10	2.1866643517582951e-10
10	10	1.0e12	1.5740419510840757e-5	1.3200726679228422e-5
10	9	1.0e16	0.1805921046121644	0.20610790559801434
20	20	1.0	3.773125249565729e-16	4.385029596794321e-16
20	20	10.0	6.176473131037029e-16	6.454588798442909e-16
20	20	1000.0	9.16169466901524e-15	6.598872780119333e-15
20	20	1.0e7	2.9606040897065132e-12	5.5028563368800784e-11
20	20	1.0e12	1.7623490988034295e-5	1.6239088298887365e-5
20	19	1.0e16	6.964382220947393e-16	0.031213357423395274

Macierz losowa o zadanym wskaźniku uwarunkowania.

Wraz ze wzrostem wskaźnika uwarunkowania w macierzy losowej możemy zaobserowować wzrost błędu względnego przy obliczaniu układu równań liniowych o zadanym wskaźniki uwarunkowania i stopniu.

3.4 Wnioski

Wysoki wskaźnik uwarunkowania sprawia, że przy obliczeniach powstają duże błędy względne. Wskaźnik uwarunkowania w bardzo szybkim tempie zburza błąd względny przy obliczaniu Macierzy Hilberta. Dotychczas nie odkryto efektywnego algorytmu numerycznego na obliczanie Macierzy Hilberta, efektywnego w sensie generującego znikome błędy względne.

4 Zadanie 4

4.1 Opis Problemu

Obliczyć wszystkie pierwiastki wielomianu Wilkinsona o postaci naturalnej zadanej wzorem:

```
P(x) = 2.43290200817664e18 - 8.7529480367616e18 * x + 1.3803759753640704e19 * x^2 - 1.2870931245150988e19 * x^3 + 8.037811822645052e18 * x^4 - 3.599979517947607e18 * x^5 + 1.2066478037803732e18 * x^6 - 3.1133364316139066e17 * x^7 + 6.30308120992949e16 * x^8 - 1.014229986551145e16 * x^9 + 1.307535010540395e15 * x^{10} - 1.3558518289953e14 * x^{11} + 1.1310276995381e13 * x^{12} - 7.561111845e11 * x^{13} + 4.017177163e10 * x^{14} - 1.67228082e9 * x^{15} + 5.3327946e7 * x^{16} - 1.25685e6 * x^{17} + 20615.0 * x^{18} - 210.0 * x^{19} + 1.0 * x^{20}
```

P jest postacią naturalną wielomianu Wilkinsona :

$$p(x) = (x-1)*(x-2)*(x-3)*(x-4)*(x-5)*(x-6)*(x-7)*(x-8)*(x-9)*(x-10)*(x-11)*(x-12)*(x-13)*(x-14)*(x-15)*(x-16)*(x-17)*(x-18)*(x-19)*(x-19)*(x-20)$$

4.2 Rozwiązanie

Tworzę wielonian za pomocą funkcji poly z pakietu Polynomials a następnie obliczam pierwiastki wielomianu za pomocą funkcji roots. Wartość wielomianu wyznaczam dla danego argumentu x za pomocą metody polyval.

4.3 Wyniki

k	z_k	$\mathrm{P}(z_k)$	$p(z_k)$	błąd bezwzględny $ z_k - k $
20	19.999809291236637	$2.7462952745472\mathrm{e}{13}$	1.4019117414364248e23	0.00019070876336257925
19	19.00190981829944	$1.0278376162816\mathrm{e}{13}$	1.1990376202486947e23	0.0019098182994383706
18	17.99092135271648	7.199554861056e12	1.0144799361089491e23	0.009078647283519814
17	17.025427146237412	3.777623778304e12	8.568905825727875e22	0.025427146237412046
16	15.946286716607972	$1.555027751936\mathrm{e}{12}$	7.01087410689741e22	0.05371328339202819
15	15.075493799699476	6.13987753472e11	5.901011420239329e22	0.07549379969947623
14	13.914755591802127	3.65383250944e11	4.612719853149547e22	0.08524440819787316
13	13.07431403244734	$2.15723629056\mathrm{e}{11}$	3.807325552825022e22	0.07431403244734014
12	11.953283253846857	$7.216771584\mathrm{e}{10}$	2.8869446884129956e22	0.04671674615314281
11	11.025022932909318	3.5759895552e10	2.2478332979247994e22	0.025022932909317674
10	9.990413042481725	$1.2707126784\mathrm{e}{10}$	1.6552601335207813e22	0.009586957518274986
9	9.002915294362053	4.465326592e9	1.196559421646318e22	0.002915294362052734
8	7.999355829607762	1.682691072e9	$8.26205014011023 \mathrm{e}{21}$	0.0006441703922384079
7	7.000102002793008	4.80398336e8	5.423593016891272e21	0.00010200279300764947
6	5.999989245824773	1.20152064e8	3.320394888870126e21	1.0754175226779239e-5
5	5.000000665769791	2.4114688e7	1.8446752056545675e21	6.657697912970661e-7
4	3.9999999837375317	3.106816e6	8.854437035384718e20	1.626246826091915e-8
3	2.9999999995920965	209408.0	3.320413931687578e20	4.0790348876384996e-10
2	2.0000000000283182	181760.0	7.378697629901744e19	2.8318236644508943e-11
1	0.999999999996989	36352.0	5.517824e6	3.0109248427834245e-13

Tabela powyżej przedstawia wyniki dla wielomianu Wilkinsona o nie zmienionych współczynnikach. Dla niektórych pierwiastków wartość wielomianu różni się. Zauważalna różnica istnieje między pierwiastkami wyliczonymi (z_k) , a rzeczywistymi (k). Oczekiwaną wartością po podłożeniu pierwiastka wielomianu pod x jest zero, natomiast otrzymaliśmy inny wynik.

k	z_k	$P(z_k)$	$p(z_k)$	błąd bezwzględny $ z_k - k $
20	$20.84691021519479+0.0\mathrm{im}$	1.114453504512e13	1.591108408283123e23	0.8469102151947894
19	19.5024423688181	9.539424609817828e12	1.318194782057474e23	2.004329444309949
	$+\ 1.940331978642903 \mathrm{im}$			
18	19.5024423688181	9.539424609817828e12	1.318194782057474e23	2.454021446312976
	- 1.940331978642903 im			
17	16.73074487979267	3.315103475981763e11	8.484694713574187e22	2.825483521349608
	$+\ 2.812624896721978 \mathrm{im}$			
16	16.73074487979267	$3.315103475981763\mathrm{e}{11}$	8.484694713574187e22	2.9060018735375106
	- 2.812624896721978im			
15	13.992406684487216	$1.0612064533081976\mathrm{e}{11}$	4.934647147685479e22	2.7128805312847097
	$+\ 2.5188244257108443 \mathrm{im}$			
14	13.992406684487216	1.0612064533081976e11	4.934647147685479e22	2.5188358711909045
	- 2.5188244257108443im			
13	11.793890586174369	3.357756113171857e10	2.8568401004080516e22	2.045820276678428
	$+\ 1.6524771364075785 \mathrm{im}$			
12	11.793890586174369	3.357756113171857e10	2.8568401004080516e22	1.665281290598479
	- 1.6524771364075785im			
11	10.095455630535774	7.143113638035824e9	1.7212892853671066e22	1.1109180272716561
	$+\ 0.6449328236240688 \mathrm{im}$			
10	10.095455630535774	7.143113638035824e9	1.7212892853671066e22	0.6519586830380406
	- 0.6449328236240688im			
9	$8.915816367932559+0.0\mathrm{im}$	3.065575424e9	1.1607472501770085e22	0.0841836320674414
8	$8.007772029099446+0.0\mathrm{im}$	1.072547328e9	8.289399860984229e21	0.007772029099445632
7	$6.99960207042242+0.0\mathrm{im}$	3.88123136e8	5.422366528916045e21	0.00039792957757978087
6	$6.000020476673031+0.0\mathrm{im}$	1.29148416e8	3.320450195282314e21	2.0476673030955794e-5
5	$4.99999857388791 + 0.0\mathrm{im}$	3.9463936e7	1.8446726974084148e21	1.4261120897529622 e-6
4	$4.000000089724362+0.0\mathrm{im}$	1.046784e7	8.854437817429645e20	8.972436216225788e-8
3	$2.9999999660342 + 0.0\mathrm{im}$	2.221568e6	3.3204139201100146e20	3.3965799062229962e-9
2	$2.0000000000550373 + 0.0 \mathrm{im}$	349184.0	7.37869763029606e19	5.503730804434781e-11
1	$0.999999999999357 + 0.0 \mathrm{im}$	20992.0	3.012096e6	1.6431300764452317e-13

Tabela prezentuje wyniki dla wielomianu Wilkinsona ze zmienionym współczynnikiem. Zmieniony został współczynnik -210 przy x_{19} na -210 - 2^{-23} . Niewielka zmiana współczynnika spowodowała przesunięcie pierwistka do przestrzeni liczb zespolonych.

4.4 Wnioski

Znalezienie pierwiastków wielomianu wilkinsona jest źle uwarunkowane, ponieważ nawet niewielka zmiana współczynników powoduje wielkie zmiany wyników.

5 Zadanie 5

5.1 Opis problemu

Symulacja (proces logistyczny) wzrostu populacji. Wykonać symulację dla Float32, Float64 oraz dla Float32 dla którego przy 10 iteracji zaokrąglamy wynik do 3 miejsc po przecinku.

5.2 Rozwiązanie

Symulacja została wykonana dla wzoru: $p_{n+1} {=} r p_n (1-p_n)$ dla n=0,1,...

5.3 Wyniki

n	Float32	Float32(zmodyfikowany)	Float64
1	0.0397	0.0397	0.0397
2	0.15407173	0.15407173	0.15407173000000002
3	0.5450726	0.5450726	0.5450726260444213
4	1.2889781	1.2889781	1.2889780011888006
5	0.1715188	0.1715188	0.17151914210917552
6	0.5978191	0.5978191	0.5978201201070994
7	1.3191134	1.3191134	1.3191137924137974
8	0.056273222	0.056273222	0.056271577646256565
9	0.21559286	0.21559286	0.21558683923263022
10	0.7229306	0.722	0.722914301179573
11	1.3238364	1.3241479	1.3238419441684408
12	0.037716985	0.036488414	0.03769529725473175
13	0.14660022	0.14195944	0.14651838271355924
14	0.521926	0.50738037	0.521670621435246
15	1.2704837	1.2572169	1.2702617739350768
16	0.2395482	0.28708452	0.24035217277824272
17	0.7860428	0.9010855	0.7881011902353041
18	1.2905813	1.1684768	1.2890943027903075
19	0.16552472	0.577893	0.17108484670194324
20	0.5799036	1.3096911	0.5965293124946907
21	1.3107498	0.09289217	1.3185755879825978
22	0.088804245	0.34568182	0.058377608259430724
23	0.3315584	1.0242395	0.22328659759944824
24	0.9964407	0.94975823	0.7435756763951792
25	1.0070806	1.0929108	1.315588346001072
26	0.9856885	0.7882812	0.07003529560277899
27	1.0280086	1.2889631	0.26542635452061003
28	0.9416294	0.17157483	0.8503519690601384
29	1.1065198	0.59798557	1.2321124623871897
30	0.7529209	1.3191822	0.37414648963928676

n	Float32	Float32(zmodyfikowany)	Float64
31	1.3110139	0.05600393	1.0766291714289444
32	0.0877831	0.21460639	0.8291255674004515
33	0.3280148	0.7202578	1.2541546500504441
34	0.9892781	1.3247173	0.29790694147232066
35	1.021099	0.034241438	0.9253821285571046
36	0.95646656	0.13344833	1.1325322626697856
37	1.0813814	0.48036796	0.6822410727153098
38	0.81736827	1.2292118	1.3326056469620293
39	1.2652004	0.3839622	0.0029091569028512065
40	0.25860548	1.093568	0.011611238029748606

Porównując wyniki przy Float32 i Float32 z modyfikicjami to wyniki przez kilka kolejnych iteracji są podobne, to błąd zaokrąglenia narasta, bo później wyniki były nie podobne rosły i malały w inny sposób. Porównując wyniki dla arytmetyk Float32 i Float64 od pewnego x arytmetyki te dają różne rezultaty. Dzieje się tak ponieważ dokłądność arytmetyki Float32 Single nie jest wystarczająca, przez to powoduje ona szybsze narastanie błędu.

5.4 Wnioski

Rozbierzność wyników spowodowana jest przez to że odwzorowanie logistyczne jest układem chaotycznym czyli układ dużej wrażliwości rozwiązań na dowolnie małe zaburzenie parametrów. Stąd zaokrąglenie przy 10 iteracji czy utrata precyzji (małe zaburzenie parametrów) powoduje znaczną zmianę rezultatu wraz z kolejnymi krokami.

6 Zadanie 6

6.1 Opis problemu

Zbadać zachowanie równania rekurencyjnego zadanego wzorem: $x_{n+1}=x_n^2+c$ dla n=0,1,... dla danych wynikających z treści zadania:

- 1. c = -2; $x_0 = 1$
- 2. c = -2; $x_0 = 2$
- 4. c = -1; $x_0 = 1$
- 5. c = -1; $x_0 = -1$
- 6. c = -1; $x_0 = 0.75$
- 7. c = -1; $x_0 = 0.25$

6.2 Rozwiązanie

Graficzne przedstawienie 40 iteracji na wykresie. Wykres pierwszy dla danych 1-3, drugi dla 4-5, a trzeci dla 6-7.

6.3 Wyniki

Wykres 1 i 2 zachowują się normalnie, natomiast wykres 3 pokazuje jak bardzo kumulowany jest błąd zaokrąglenia spowodowany ograniczonością arytmetyki.

Wykresy te są identyczne, ponieważ funkcja ta jest funkcją parzystą i dla przeciwnych argumentów daje takie same wyniki.

Można zauważyć, że od około 10 iteracji mamy skorelowane wykresy tych dwóch funkcji.

6.4 Wnioski

Algorytmy czy wzory rekurencyjne mogą przejawiać stabilność czy niestabliność numeryczną w zależności od wybranych reprezentantów (danych wejściowych).