

Features

- ➤ Fast charge and conditioning of nickel cadmium or nickel-metal hydride batteries
- ➤ Hysteretic PWM switch-mode current regulation or gated control of an external regulator
- ➤ Easily integrated into systems or used as a stand-alone charger
- ➤ Pre-charge qualification of temperature and voltage
- ➤ Configurable, direct LED outputs display battery and charge status
- Fast-charge termination by Δ temperature/Δ time, peak volume detection, -ΔV, maximum voltage, maximum temperature, and maximum time
- ➤ Optional top-off charge and pulsed current maintenance charging
- ➤ Logic-level controlled low-power mode (< 5µA standby current)

General Description

The bq2004 Fast Charge IC provides comprehensive fast charge control functions together with high-speed switching power control circuitry on a monolithic CMOS device.

Integration of closed-loop current control circuitry allows the bq2004 to be the basis of a cost-effective solution for stand-alone and system-integrated chargers for batteries of one or more cells.

Switch-activated discharge-beforecharge allows bq2004-based chargers to support battery conditioning and capacity determination.

High-efficiency power conversion is accomplished using the bq2004 as a hysteretic PWM controller for switch-mode regulation of the charging current. The bq2004 may alternatively be used to gate an externally regulated charging current.

Fast charge may begin on application of the charging supply, replacement

Fast-Charge IC

of the battery, or switch depression. For safety, fast charge is inhibited unless/until the battery temperature and voltage are within configured limits.

Temperature, voltage, and time are monitored throughout fast charge. Fast charge is terminated by any of the following:

- Rate of temperature time $(\Delta T/\Delta t)$
- Peak voltage detection (PVD)
- Negative delta voltage (-∆V)
- Maximum voltage
- Maximum temperature
- Maximum time

After fast charge, optional top-off and pulsed current maintenance phases are available.

Pin Connections

SLUS063-JUNE 1999 F

Pin Names

$\overline{\mathrm{DCMD}}$	Discharge command	SNS	Sense resistor input
DSEL	Display select	LED_1	Charge status output 1
VSEL	Voltage termination	LED_2	Charge status output 2
	select	V_{SS}	System ground
TM_1	Timer mode select 1	$V_{\rm CC}$	$5.0 \text{V} \pm 10\% \text{ power}$
TM_2	Timer mode select 2	MOD	Charge current control
TCO	Temperature cutoff	DIS	Discharge control
TS	Temperature sense	210	output
BAT	Battery voltage	$\overline{\text{INH}}$	Charge inhibit input

Pin Descriptions

DCMD Discharge-before-charge control input

The \overline{DCMD} input controls the conditions that enable discharge-before-charge. \overline{DCMD} is pulled \overline{up} internally. A negative-going pulse on \overline{DCMD} initiates a discharge to endof-discharge voltage (EDV) on the BAT pin, followed by a new charge cycle start. Tying \overline{DCMD} to ground enables automatic discharge-before-charge on every new charge cycle start.

DSEL Display select input

This three-state input configures the charge status display mode of the LED_1 and LED_2 outputs. See Table 2.

VSEL Voltage termination select input

This three-state input controls the voltage-termination technique used by the bq2004. When high, PVD is active. When floating, ΔV is used. When pulled low, both PVD and ΔV are disabled.

TM₁- Timer mode inputs TM₂

 TM_1 and TM_2 are three-state inputs that configure the fast charge safety timer, voltage termination hold-off time, "top-off", and trickle charge control. See Table 1.

TCO Temperature cut-off threshold input

Input to set maximum allowable battery temperature. If the potential between TS and SNS is less than the voltage at the TCO input, then fast charge or top-off charge is terminated.

TS Temperature sense input

Input, referenced to SNS, for an external thermister monitoring battery temperature.

BAT Battery voltage input

BAT is the battery voltage sense input, referenced to SNS. This is created by a high-impedance resistor-divider network connected between the positive and the negative terminals of the battery.

SNS Charging current sense input

SNS controls the switching of MOD based on an external sense resistor in the current path of the battery. SNS is the reference potential for both the TS and BAT pins. If SNS is connected to $V_{\rm SS}$, then MOD switches high at the beginning of charge and low at the end of charge.

$\begin{array}{ll} LED_{1}- & Charge\ status\ outputs \\ LED_{2} & \end{array}$

Push-pull outputs indicating charging status. See Table 2.

V_{SS} Ground

V_{CC} V_{CC} supply input

 $5.0V, \pm 10\%$ power input.

MOD Charge current control output

MOD is a push-pull output that is used to control the charging current to the battery. MOD switches high to enable charging current to flow and low to inhibit charging current flow.

DIS Discharge control output

Push-pull output used to control an external transistor to discharge the battery before charging.

INH Charge inhibit input

When low, the bq2004 suspends all charge actions, drives all outputs to high impedance, and assumes a low-power operational state. When transitioning from low to high, a new charge cycle is started.

Functional Description

Figure 3 shows a block diagram and Figure 4 shows a state diagram of the bq2004.

Battery Voltage and Temperature Measurements

Battery voltage and temperature are monitored for maximum allowable values. The voltage presented on the battery sense input, BAT, should represent a two-cell potential for the battery under charge. A resistor-divider ratio of:

$$\frac{\text{RB1}}{\text{RB2}} = \frac{\text{N}}{2} - 1$$

is recommended to maintain the battery voltage within the valid range, where N is the number of cells, RB1 is the resistor connected to the positive battery terminal, and RB2 is the resistor connected to the negative battery terminal. See Figure 1.

Note: This resistor-divider network input impedance to end-to-end should be at least $200k\Omega$ and less than $1M\Omega$.

A ground-referenced negative temperature coefficient thermistor placed in proximity to the battery may be used as a low-cost temperature-to-voltage transducer. The temperature sense voltage input at TS is developed using a resistor-thermistor network between $V_{\rm CC}$ and $V_{\rm SS}$. See Figure 1. Both the BAT and TS inputs are referenced to SNS, so the signals used inside the IC are:

$$V_{BAT} - V_{SNS} = V_{CELL}$$

$$and$$

$$V_{TS} - V_{SNS} = V_{TEMP}$$

Discharge-Before-Charge

The \overline{DCMD} input is used to command discharge-before-charge via the DIS output. Once activated, DIS becomes active (high) until V_{CELL} falls below V_{EDV} , at which time DIS goes low and a new fast charge cycle begins.

The \overline{DCMD} input is internally pulled up to V_{CC} (its inactive state). Leaving the input unconnected, therefore, results in disabling discharge-before-charge. A negative going pulse on \overline{DCMD} initiates discharge-before-charge at any time regardless of the current state of the bq2004. If \overline{DCMD} is tied to Vss, discharge-before-charge will be the first step in all newly started charge cycles.

Starting a Charge Cycle

A new charge cycle (see Figure 2) is started by:

- 1. V_{CC} rising above 4.5V
- 2. $V_{\rm CELL}$ falling through the maximum cell voltage, $V_{\rm MCV}$ where:

$$V_{MCV} = 0.8*V_{CC} \pm 30 mV$$

3. A transition on the $\overline{\text{INH}}$ input from low to high.

If $\overline{\text{DCMD}}$ is tied low, a discharge-before-charge is executed as the first step of the new charge cycle. Otherwise, pre-charge qualification testing is the first step.

The battery must be within the configured temperature and voltage limits before fast charging begins.

The valid battery voltage range is $V_{\rm EDV} < V_{\rm BAT} < V_{\rm MCV}$ where:

$$V_{EDV} = 0.4*V_{CC} \pm 30 mV$$

The valid temperature range is $V_{\rm HTF} < V_{\rm TEMP} < V_{\rm LTF},$ where:

Figure 1. Voltage and Temperature Monitoring

Figure 2. Charge Cycle Phases

$$V_{LTF} = 0.4*V_{CC} \pm 30 mV$$

$$V_{HTF} = [(1/4 * V_{LTF}) + (3/4 * V_{TCO})] \pm 30mV$$

Note: The low temperature fault (LTF) threshold is not enforced if the IC is configured for PVD termination (VSEL = high).

 V_{TCO} is the voltage presented at the TCO input pin, and is configured by the user with a resistor divider between V_{CC} and ground. The allowed range is 0.2 to 0.4 * V_{CC} .

If the temperature of the battery is out of range, or the voltage is too low, the chip enters the charge pending state and waits for both conditions to fall within their allowed limits. The MOD output is modulated to provide the configured trickle charge rate in the charge pending state. There is no time limit on the charge pending state; the charger remains in this state as long as the voltage or temperature conditions are outside of the allowed limits. If the voltage is too high, the chip goes to the battery absent state and waits until a new charge cycle is started.

Fast charge continues until termination by one or more of the six possible termination conditions:

- Delta temperature/delta time $(\Delta T/\Delta t)$
- Peak voltage detection (PVD)
- Negative delta voltage (-∆V)
- Maximum voltage
- Maximum temperature
- Maximum time

PVD and -∆V Termination

The bq2004 samples the voltage at the BAT pin once every 34s. When - ΔV termination is selected, if V_{CELL} is lower than any previously measured value by 12mV $\pm 4mV$ (6mV/cell), fast charge is terminated. When PVD termination is selected, if V_{CELL} is lower than any previously measured value by 6mV $\pm 2mV$ (3mV/cell), fast charge is terminated. The PVD and - ΔV tests are valid in the range 0.4 * V_{CC} < V_{CELL} < 0.8 * V_{CC} .

VSEL Input	Voltage Termination
Low	Disabled
Float	-ΔV
High	PVD

Voltage Sampling

Each sample is an average of voltage measurements taken 57 μ s apart. The IC takes 32 measurements in PVD mode and 16 measurements in - Δ V mode. The re-

sulting sample periods (9.17ms and 18.18ms, respectively) filter out harmonics centered around 55Hz and 109Hz. This technique minimizes the effect of any AC line ripple that may feed through the power supply from either 50Hz or 60Hz AC sources. Tolerance on all timing is $\pm 16\%$.

Voltage Termination Hold-off

A hold-off period occurs at the start of fast charging. During the hold-off period, $-\Delta V$ termination is disabled. This avoids premature termination on the voltage spikes sometimes produced by older batteries when fast-charge current is first applied. $\Delta T/\Delta t,$ maximum voltage and maximum temperature terminations are not affected by the hold-off period.

∆T/∆t Termination

The bq2004 samples at the voltage at the TS pin every 34s, and compares it to the value measured two samples earlier. If V_{TEMP} has fallen 16mV $\pm 4mV$ or more, fast charge is terminated. If VSEL = high, the $\Delta T/\Delta t$ termination test is valid only when V_{TCO} < V_{TEMP} < V_{TCO} + 0.2 * V_{CC} . Otherwise the $\Delta T/\Delta t$ termination test is valid only when V_{TCO} < V_{TEMP} < V_{LTF} .

Temperature Sampling

Each sample is an average of 16 voltage measurements taken $57\mu s$ apart. The resulting sample period (18.18ms) filters out harmonics around 55Hz. This technique minimizes the effect of any AC line ripple that may feed through the power supply from either 50Hz or 60Hz AC sources. Tolerance on all timing is $\pm 16\%$.

Maximum Voltage, Temperature, and Time

Anytime $V_{\rm CELL}$ rises above $V_{\rm MCV}$, the LEDs go off and charging ceases immediately. If $V_{\rm CELL}$ then falls back below $V_{\rm MCV}$ before $t_{\rm MCV}=1.5s\pm0.5s$, the chip transitions to the Charge Complete state (maximum voltage termination). If $V_{\rm CELL}$ remains above $V_{\rm MCV}$ at the expiration of $t_{\rm MCV}$, the bq2004 transitions to the Battery Absent state (battery removal). See Figure 4.

Maximum temperature termination occurs anytime V_{TEMP} falls below the temperature cutoff threshold V_{TCO} . Unless PVD termination is enabled (VSEL = high), charge will also be terminated if V_{TEMP} rises above the low temperature fault threshold, V_{LTF} , after fast charge begins. The V_{LTF} threshold is not enforced when the IC is configured for PVD termination.

Maximum charge time is configured using the TM pin. Time settings are available for corresponding charge rates of C/4, C/2, 1C, and 2C. Maximum time-out termination is enforced on the fast-charge phase, then reset, and enforced again on the top-off phase, if selected. There is no time limit on the trickle-charge phase.

Top-off Charge

An optional top-off charge phase may be selected to follow fast charge termination for the C/2 through 4C rates. This phase may be necessary on NiMH or other battery chemistries that have a tendency to terminate charge prior to reaching full capacity. With top-off enabled, charging continues at a reduced rate after fast-charge termination for a period of time equal to the fast-charge safety time (See Table 1.) During top-off, the MOD pin is enabled at a duty cycle of 260µs active for every 1820µs inactive. This modulation results in an average rate 1/8th that of the fast charge rate. Maximum voltage, time, and temperature are the only termination methods enabled during top-off.

Pulse-Trickle Charge

Pulse-trickle charging follows the fast charge and optional top-off charge phases to compensate for self-discharge of the battery while it is idle in the charger. The configured pulse-trickle rate is also applied in the charge pending state to raise the voltage of an over-discharged battery up to the minimum required before fast charge can begin.

In the pulse-trickle mode, MOD is active for 260 μ s of a period specified by the settings of TM1 and TM2. See Table 1. The resulting trickle-charge rate is C/64 when top-off is enabled and C/32 when top-off is disabled. Both pulse trickle and top-off may be disabled by tying TM1 and TM2 to VSS.

Charge Status Indication

Charge status is indicated by the LED_1 and LED_2 outputs. The state of these outputs in the various charge cycle phases is given in Table 2 and illustrated in Figure 2.

In all cases, if $V_{\rm CELL}$ exceeds the voltage at the MCV pin, both ${\rm LED_1}$ and ${\rm LED_2}$ outputs are held low regardless of other conditions. Both can be used to directly drive an LED.

Charge Current Control

The bq2004 controls charge current through the MOD output pin. The current control circuitry is designed to support implementation of a constant-current switching regulator or to gate an externally regulated current source.

When used in switch mode configuration, the nominal regulated current is:

$$I_{REG} = 0.225 V/R_{SNS}$$

Charge current is monitored at the SNS input by the voltage drop across a sense resistor, R_{SNS}, between the low side of the battery pack and ground. R_{SNS} is sized to provide the desired fast charge current.

If the voltage at the SNS pin is less than $V_{\rm SNSLO}$, the MOD output is switched high to pass charge current to the battery.

Table 1. Fast-Charge Safety Time/Hold-Off/Top-Off Table

Corresponding Fast-Charge Rate	TM1	TM2	Typical Fast-Charge Safety Time (minutes)	Typical PVD, -∆V Hold-Off Time (seconds)	Top-Off Rate	Pulse- Trickle Rate	Pulse- Trickle Period (Hz)
C/4	Low	Low	360	137	Disabled	Disabled	Disabled
C/2	Float	Low	180	820	Disabled	C/32	240
1C	High	Low	90	410	Disabled	C/32	120
2C	Low	Float	45	200	Disabled	C/32	60
4C	Float	Float	23	100	Disabled	C/32	30
C/2	High	Float	180	820	C/16	C/64	120
1C	Low	High	90	410	C/8	C/64	60
2C	Float	High	45	200	C/4	C/64	30
4C	High	High	23	100	C/2	C/64	15

Note: Typical conditions = 25°C, $V_{CC} = 5.0V$.

When the SNS voltage is greater than $V_{\rm SNSHI}$, the MOD output is switched low—shutting off charging current to the battery.

When used to gate an externally regulated current source, the SNS pin is connected to $V_{\rm SS}$, and no sense resisitor is required.

$$\begin{split} V_{SNSLO} &= 0.04 * V_{CC} \pm 25 mV \\ V_{SNSHI} &= 0.05 * V_{CC} \pm 25 mV \end{split}$$

Table 2. bq2004 LED Status Display Options

Mode 1	Charge Status	LED ₁	LED ₂
	Battery absent	Low	Low
DSEL = Vss	Fast charge pending or discharge-before-charge in progress	High	High
DSEL = VSS	Fast charge in progress	Low	High
	Charge complete, top-off, and/or trickle	High	Low
Mode 2	Charge Status	LED ₁	LED ₂
	Battery absent, fast charge in progress or complete	Low	Low
DODI Election	Fast charge pending	High	Low
DSEL = Floating	Discharge in progress	Low	High
	Top-off in progress	High	High
Mode 3	Charge Status	LED ₁	LED ₂
	Battery absent	Low	Low
$DSEL = V_{CC}$	Fast charge pending or discharge-before-charge in progress	Low	1/8s high 1/8s low
	Fast charge in progress	Low	High
	Fast charge complete, top-off, and/or trickle	High	Low

Figure 3. Block Diagram

Figure 4. State Diagram

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
$V_{\rm CC}$	$ m V_{CC}$ relative to $ m V_{SS}$	-0.3	+7.0	V	
V_{T}	$\overline{ m DC}$ voltage applied on any pin excluding V_{CC} relative to V_{SS}	-0.3	+7.0	V	
T_{OPR}	Operating ambient temperature	-20	+70	°C	Commercial
T _{STG}	Storage temperature	-55	+125	°C	
$T_{ m SOLDER}$	Soldering temperature	-	+260	°C	10 sec max.
T _{BIAS}	Temperature under bias	-40	+85	°C	

Note:

Permanent device damage may occur if **Absolute Maximum Ratings** are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

DC Thresholds $(T_A = T_{OPR}; V_{CC} \pm 10\%)$

Symbol	Parameter	Rating	Tolerance	Unit	Notes
V_{SNSHI}	High threshold at SNS resulting in MOD = Low	$0.05*\mathrm{V_{CC}}$	±0.025	V	
V_{SNSLO}	Low threshold at SNS resulting in MOD = High	0.04 * V _{CC}	±0.010	V	
$V_{ m LTF}$	Low-temperature fault	$0.4*\mathrm{V_{CC}}$	±0.030	V	$V_{TEMP} \ge V_{LTF}$ inhibits/terminates charge
V_{HTF}	High-temperature fault	$(1/4 * V_{LTF}) + (2/3 * V_{TCO})$	±0.030	V	$\begin{aligned} V_{TEMP} & \leq V_{HTF} \ inhibits \\ charge \end{aligned}$
V_{EDV}	End-of-discharge voltage	$0.4*\mathrm{V_{CC}}$	±0.030	V	$\begin{aligned} V_{CELL} < V_{EDV} & inhibits \\ fast & charge \end{aligned}$
$V_{ m MCV}$	Maximum cell voltage	$0.8*\mathrm{V_{CC}}$	±0.030	V	$V_{\rm CELL} > V_{\rm MCV}$ inhibits/ terminates charge
V _{THERM}	TS input change for $\Delta T/\Delta t$ detection	-16	±4	mV	V_{CC} = 5V, T_A = 25°C
-ΔV	BAT input change for $-\Delta V$ detection	-12	±4	mV	$V_{\rm CC}$ = 5V, $T_{\rm A}$ = 25°C
PVD	BAT input change for PVD detection	-6	±2	mV	$V_{\rm CC}$ = 5V, $T_{\rm A}$ = 25°C

Recommended DC Operating Conditions (TA = TOPR)

Symbol	Condition	Minimum	Typical	Maximum	Unit	Notes
$v_{\rm cc}$	Supply voltage	4.5	5.0	5.5	V	
V_{BAT}	Battery input	0	-	V_{CC}	V	
$V_{\rm CELL}$	BAT voltage potential	0	-	$V_{\rm CC}$	V	V _{BAT} - V _{SNS}
V_{TS}	Thermistor input	0	-	$V_{\rm CC}$	V	
V_{TEMP}	TS voltage potential	0	-	$V_{\rm CC}$	V	V _{TS} - V _{SNS}
V_{TCO}	Temperature cutoff	0.2 * V _{CC}	-	0.4 * V _{CC}	V	Valid ΔT/Δt range
**	Logic input high	2.0	-	-	V	DCMD, INH
$ m V_{IH}$	Logic input high	V _{CC} - 0.3	-	-	V	TM ₁ , TM ₂ , DSEL, VSEL
**	Logic input low	-	-	0.8	V	DCMD, INH
$oxed{V_{ m IL}}$	Logic input low	-	-	0.3	V	$\mathrm{TM}_1,\mathrm{TM}_2,\mathrm{DSEL},\mathrm{VSEL}$
V_{OH}	Logic output high	V _{CC} - 0.8	-	-	v	DIS, MOD, LED ₁ , LED ₂ , $I_{OH} \le -10mA$
V_{OL}	Logic output low	-	-	0.8	V	$\begin{array}{c} DIS,MOD,LED_1,LED_2,\\ I_{OL}\leq 10mA \end{array}$
I_{CC}	Supply current	-	1	3	mA	Outputs unloaded
I_{SB}	Standby current	-	-	1	μA	$\overline{INH} = V_{IL}$
I_{OH}	DIS, LED ₁ , LED ₂ , MOD source	-10	-	-	mA	$@V_{OH} = V_{CC} - 0.8V$
I_{OL}	DIS, LED ₁ , LED ₂ , MOD sink	10	-	-	mA	$@V_{OL} = V_{SS} + 0.8V$
_	Input leakage	-	-	±1	μA	$\overline{\text{INH}}$, BAT, V = V _{SS} to V _{CC}
$ m I_L$	Input leakage	50	-	400	μA	$\overline{\mathrm{DCMD}}$, V = V _{SS} to V _{CC}
$I_{\rm IL}$	Logic input low source	-	-	70	μΑ	$TM_1, TM_2, DSEL, VSEL, \\ V = V_{SS} \text{ to } V_{SS} + 0.3V$
I_{IH}	Logic input high source	-70	-	-	μΑ	$\begin{aligned} TM_1, TM_2, DSEL, VSEL, \\ V &= V_{CC} - 0.3V \text{ to } V_{CC} \end{aligned}$
${ m I}_{ m IZ}$	Tri-state	-2	-	2	μA	TM ₁ , TM ₂ , DSEL, and VSEL should be left disconnected (floating) for Z logic input state

Impedance

Symbol	Parameter	Minimum	Typical	Maximum	Unit
R _{BAT}	Battery input impedance	50	-	-	$M\Omega$
RTS	TS input impedance	50	-	-	$M\Omega$
R _{TCO}	TCO input impedance	50	-	-	ΜΩ
R _{SNS}	SNS input impedance	50	-	-	$M\Omega$

Timing (TA = 0 to +70°C; $V_{CC} \pm 10\%$)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
tpw	Pulse width for DCMD and INH pulse command	1	-	-	μs	Pulse start for charge or discharge before charge
d_{FCV}	Time base variation	-16	-	16	%	$V_{\rm CC}$ = 4.75V to 5.25V
$f_{ m REG}$	MOD output regulation frequency	-	-	300	kHz	
$t_{ m MCV}$	Maximum voltage termination time limit	1	-	2	s	Time limit to distinguish battery removed from charge complete.

Note: Typical is at $T_A = 25$ °C, $V_{CC} = 5.0$ V.

16-Pin DIP Narrow (PN)

16-Pin PN (0.300" DIP)

	Inches		Millin	neters			
Dimension	Min.	Max.	Min.	Max.			
A	0.160	0.180	4.06	4.57			
A1	0.015	0.040	0.38	1.02			
В	0.015	0.022	0.38	0.56			
B1	0.055	0.065	1.40	1.65			
С	0.008	0.013	0.20	0.33			
D	0.740	0.770	18.80	19.56			
Е	0.300	0.325	7.62	8.26			
E1	0.230	0.280	5.84	7.11			
e	0.300	0.370	7.62	9.40			
G	0.090	0.110	2.29	2.79			
L	0.115	0.150	2.92	3.81			
S	0.020	0.040	0.51	1.02			

16-Pin SOIC Narrow (SN)

16-Pin SN (0.150" SOIC)

	Inc	hes	Millin	meters			
Dimension	Min.	Max.	Min.	Max.			
A	0.060	0.070	1.52	1.78			
A1	0.004	0.010	0.10	0.25			
В	0.013	0.020	0.33	0.51			
C	0.007	0.010	0.18	0.25			
D	0.385	0.400	9.78	10.16			
E	0.150	0.160	3.81	4.06			
e	0.045	0.055	1.14	1.40			
Н	0.225	0.245	5.72	6.22			
L	0.015	0.035	0.38	0.89			

Data Sheet Revision History

Change No.	Page No.	Description	Nature of Change
1	10	Standby current ISB	Was 5 μA max; is 1 μA max
2	9	V _{BSNSLO} Rating	Was: V_{SNSHI} - $(0.01 * V_{CC})$ Is: $0.04 * V_{CC}$
2	7	Correction in Peak Voltage Detect Termination section	Was VCELL; is VBAT
2	3	Added block diagram	Diagram insertion
2	7	Added VSEL/termination table	Table insertion
2	8	Added values to Table 3	Top-off rate values
3	7	VSEL/Termination	Low, High changed
4	All	Revised and expanded format of this data sheet	Clarification
5	9	Corrected V _{HTF} rating	$\begin{aligned} &Was: (1/3*V_{LTF}) + (2/3*\\ &V_{TCO})\\ &Is: (1/4*V_{LTF}) + (3/4*V_{TCO}) \end{aligned}$
6	9	TOPR	Deleted industrial temperature range

Notes:

Change 1 = Apr. 1994 B "Final" changes from Dec. 1993 A "Preliminary." Change 2 = Sept. 1996 C changes from Apr. 1994 B.
Change 3 = April 1997 C changes from Sept. 1996 C.
Change 4 = Oct. 1997 D changes from April 1997 C.
Change 5 = Jan. 1998 E changes from Oct. 1997 D.
Change 6 = June 1999 F changes from Jan. 1998 E.

Ordering Information

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated