Statistical Inference and Multivariate Analysis (MA324)

Lecture SLIDES
Lecture 30

Multiple Linear Regression

Indian Institute of Technology Guwahati

Jan-May 2023

Estimation of Error Variance (σ^2)

It can be shown that

$$E(SS_{Res}) = (n - p - 1)\sigma^2$$

- Hence, $\hat{\sigma}^2 = \frac{SS_{Res}}{n-p-1} = MS_{Res}$ is an unbiased estimator of σ^2 . Here MS_{Res} is residual mean square.
- Observed value of $\hat{\sigma}^2 = \frac{SS_{Res}}{n-p-1}$ is called *Residual variance*. It's square root is called *residual standard error*.
- $\bullet \ \frac{(n-p-1)MS_{Res}}{\sigma^2} \sim \chi^2_{n-p-1}.$
- Here,

$$SS_{Res} = \sum_{i=1}^{n} e_i^2 = y^T y - \hat{\beta}_1^T X^T y,$$

Hypothesis Testing: Test for Significance of Regression (\sim ANOVA)

• Assumptions: ϵ_i 's are i.i.d $N(0, \sigma^2)$ Rvs.

$$\epsilon \sim N_n(0, \sigma^2 I_n)$$

• Want to test the hypothesis **if there is a linear relationship** between the response y and any of the regressor x_1, \dots, x_n .

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_p = 0$$
 ag. $H_1: \beta_j \neq 0$ for atleast one $j = 1, \cdots, p$

Therefore, the test statistic is

$$F_0 = rac{SS_{Reg}/p}{\hat{\sigma}^2} = rac{SS_{Reg}/p}{SS_{Res}/(n-p-1)} \sim F_{p,n-p-1}, ext{ under } H_0.$$

• Reject H_0 iff $F_0 > F_{p,n-p-1;\alpha}$ (at level α).

Hypothesis Testing for individual regression coefficients: β_i

Want to test:

$$H_0: eta_j = 0$$
 ag. $H_1: eta_j
eq 0$

Therefore, the test statistic is

$$t_0 = \frac{\hat{\beta}_j}{\sqrt{MS_{Res}C_{jj}}} \sim t_{n-p-1}, \text{ under } H_0,$$

where C_{jj} is the diagonal element of $(X^TX)^{-1}$

• Reject H_0 iff $|t_0| > t_{n-p-1,\alpha/2}$; (at level α).

Test of contribution of a subset of the regressors

$$\begin{array}{rcl} & \underbrace{y} & = & \underbrace{X} \overset{\beta}{\beta} + \overset{\epsilon}{\xi} \\ \\ \Longrightarrow & \underbrace{y} & = & (\underbrace{X_1}, \underbrace{X_2}) \begin{pmatrix} \overset{\beta_1}{\beta_2} \\ \overset{\epsilon}{\beta_2} \end{pmatrix} + \overset{\epsilon}{\xi} \end{array}$$

Want to test:

•

$$H_0: \beta_2 = 0 \text{ ag. } H_1: \beta_2 \neq 0$$

- Based on the full model ($\underline{y} = X \underline{\beta} + \underline{\epsilon}$), $\hat{\underline{\beta}} = (X^T X)^{-1} X^T y$ and $SS_{Reg}(\underline{\beta})$ has p degrees of freedom.
- To find the contribution of β_2 , fit the model assuming $\beta_2 = 0$.
- The reduced model is $\underline{y} = X_1 \beta_1 + \underline{\epsilon}$, $\hat{\beta}_1 = (X_1^T X_1)^{-1} X_1^T y$ and $SS_{Reg}(\beta_1)$ has p-r degrees of freedom. Where r denotes the number of components in β_2

Test of contribution of a subset of the regressors

- $SS_{Reg}(\tilde{\beta_2}|\tilde{\beta_1}) = SS_{Reg}(\tilde{\beta}) SS_{Reg}(\tilde{\beta_1})$ can be used as a measure of contribution of $\tilde{\beta_2}$.
- Note that if eta_2 has significant contribution then $SS_{Reg}(eta_2|eta_1)$ is large.
- Therefore, the test statistic is

$$F_0 = \frac{SS_{Reg}(\beta_2|\beta_1)/r}{\hat{\sigma}^2} = \frac{SS_{Reg}(\beta_2|\beta_1)/r}{SS_{Res}/(n-p-1)} \sim F_{r,n-p-1}, \text{ under } H_0.$$

• Reject H_0 iff $F_0 > F_{r,n-p-1;\alpha}$ (at level α).

Testing of general linear hypothesis

Want to test:

$$H_0: T\beta = 0 \text{ ag. } H_1: T\beta \neq 0,$$

where T is a $m \times (p+1)$ matrix of constants.

- Examples: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$
 - $H_0: \beta_1=\beta_3$ ag. $H_1: \beta_1\neq\beta_3$. Take, $T=\begin{bmatrix}0&1&0&-1\end{bmatrix}$.
 - $H_0: \beta_1=\beta_3, \beta_2=0$ ag. $H_1: \beta_1\neq\beta_3$ or $\beta_2\neq0.$ Take,

$$T = \begin{bmatrix} 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

- The full model (FM) is $\underline{y} = X \underline{\beta} + \underline{\epsilon}$, $\hat{\beta} = (X^T X)^{-1} X^T y$ and $SS_{Res}(FM) = y^T y \hat{\beta^T} X^T y \text{ has } n p 1 \text{ degrees of freedom.}$
- Now assume that T has $r(\leq m)$ independent rows. Then $T\beta$ can be solved and r of the β_j 's in FM can be written in terms of other (p+1-r) β_j 's.

Testing of general linear hypothesis

This lead to the reduced model (RM)

$$\underline{y} = \underline{Z}\underline{\gamma} + \epsilon_{\widetilde{z}}^*,$$

where Z is $n \times \overline{p+1-r}$ matrix.

$$\hat{\gamma} = (Z^TZ)^{-1}Z^Ty, \text{ and } SS_{Res}(RM) = y^Ty - \hat{\gamma^T}Z^Ty$$

has n-p-1+r degrees of freedom.

- $SS_{Res}(FM) \leq SS_{Res}(RM)$
- Consider $SS_H = SS_{Res}(RM) SS_{Res}(FM)$ with d.f (n-p-1+r)-(n-p-1)=r
- Therefore, the test statistic is

$$F_0 = \frac{SS_H/r}{SS_{Res}(FM)/(n-p-1)} \sim F_{r,n-p-1}, \text{ under } H_0.$$

• Reject H_0 iff $F_0 > F_{r,n-r-1;\alpha}$ (at level α).

Confidence Intervals (CIs):

- ullet Confidence Interval of individual regression coefficient \hat{eta}_j
- Pivot is

$$\frac{\hat{\beta}_j - \beta_j}{\sqrt{MS_{Res}C_{jj}}} \sim t_{n-p-1},$$

where C_{jj} is the diagonal element of $(X^TX)^{-1}$ matrix.

• A $100(1-\alpha)\%$ CI for β_j is

$$\left[\hat{\beta}_j \pm t_{n-p-1,\alpha/2} \sqrt{M S_{Res} C_{jj}}\right].$$

CI for mean response:

• Let
$$x_0 = \begin{pmatrix} 1 \\ x_{01} \\ \vdots \\ x_{0p} \end{pmatrix}$$
 be a value of the regressor vector. The mean response at x_0 is $x_0^T \beta$.

- ullet Confidence Interval of individual regression coefficient \hat{eta}_j
- $\qquad \text{Pivot is } \frac{\hat{y_0} \hat{x_0}^T \hat{\beta}}{\sqrt{MS_{Res} x_0^T (X^T X)^{-1} \hat{x_0}}} \sim t_{n-p-1}.$
- A $100(1-\alpha)\%$ CI for β_j is

$$\left[\hat{y_0} \pm t_{n-p-1,\alpha/2} \sqrt{M S_{Res} \hat{x_0}^T (X^T X)^{-1} \hat{x_0}}\right].$$

