

What is claimed is:

1. A mode switching method in a mobile communication system comprising:

providing a mode switching start point between an uplink signal and a
5 downlink signal of a transceiver;

resetting the mode switching start point based on length of a guard period provided between the uplink signal and the downlink signal; and

starting mode switching at the mode switching start point.

10 2. The method of claim 1, wherein the providing step comprises:

determining a mode switching time (MST) of the transceiver;

determining a minimum guard period (GP_{min}) of the transceiver;

determining whether the MST is greater than the GP_{min} ; and

15 determining the mode switching start point reset, if the MST is greater than the GP_{min} .

3. The method of claim 1, wherein the resetting step comprises:

determining an advancing time offset (Δt) based on a minimum guard period (GP_{min}); and

20 setting the mode switching start point before a start point of the minimum guard period (GP_{min}) of the transceiver based on a mode switching signal.

25 4. The method of claim 3, wherein the mode switching start point is determined by determining a time deference between the advancing time offset (Δt) and the start point of GP_{min} .

5. The method of claim 3, wherein the advancing time offset (Δt) is shorter than the GP_{min} .

6. The method of claim 2, wherein the step of resetting comprises:
5 determining an advancing time offset (Δt) shorter than the GP_{min} ; and
 setting the mode switching start point before a start point of a minimum guard period (GP_{min}) of the system based on a mode switching signal.

7. The method of claim 6, wherein the mode switching start point is
10 determined by determining the time difference between the advancing time offset (Δt) and the start point of GP_{min} .

8. The method of claim 7, wherein the advancing time offset (Δt) is shorter than the GP_{min} .
15

9. The method of claim 8, further comprising performing mode switching based on the mode switching start point.

10. A mode switching method comprising:
20 providing a mode switching start point between an uplink signal and a downlink signal of a transceiver;
 determining an advancing time offset (Δt) based on a minimum guard period (GP_{min});
 setting the mode switching start point before a start point of the GP_{min} of
25 the transceiver based on a mode switching signal;
 starting mode switching at the mode switching start point;

determining a mode switching time (MST) of the transceiver;
determining whether the MST is greater than the GP_{min}; and
determining the mode switching start point reset, if the MST is greater than
the GP_{min}.

5

11. A mode switching system in a mobile communication system comprising:

means for providing a mode switching start point between an uplink signal and a downlink signal of a transceiver;

10 means for resetting the mode switching start point based on length of a guard period provided between the uplink signal and the downlink signal; and

means for starting mode switching at the mode switching start point.

12. The system of claim 11, wherein the providing means comprises:

15 means for determining a mode switching time (MST) of the transceiver;

means for determining a minimum guard period (GP_{min}) of the transceiver;

means for determining whether the MST is greater than the GP_{min}; and

means for determining the mode switching start point reset, if the MST is greater than the GP_{min}.

20

13. The system of claim 11, wherein the resetting means comprises:

means for determining an advancing time offset (Δt) based on a minimum guard period (GP_{min}); and

means for setting the mode switching start point before a start point of the 25 minimum guard period (GP_{min}) of the transceiver based on a mode switching signal.

14. The system of claim 13, wherein the mode switching start point is determined by determining a time deference between the advancing time offset (Δt) and the start point of GP_{min} .

5

15. The system of claim 13, wherein the advancing time offset (Δt) is shorter than the GP_{min} .

16. The system of claim 12, wherein the resetting means comprises:
10 determining an advancing time offset (Δt) shorter than the GP_{min} ; and
 setting the mode switching start point before a start point of a minimum guard period (GP_{min}) of the system based on a mode switching signal.

17. The system of claim 16, wherein the mode switching start point is
15 determined by determining the time difference between the advancing time offset (Δt) and the start point of GP_{min} .

18. The system of claim 17, wherein the advancing time offset (Δt) is
20 shorter than the GP_{min} .

19. The system of claim 18, further comprising performing mode switching based on the mode switching start point.

20. A mode switching system comprising:
25 means for providing a mode switching start point between an uplink signal and a downlink signal of a transceiver;

means for determining an advancing time offset (Δt) based on a minimum guard period (GP_{min});

means for setting the mode switching start point before a start point of the GP_{min} of the transceiver based on a mode switching signal;

- 5 means for starting mode switching at the mode switching start point;
- means for determining a mode switching time (MST) of the transceiver;
- means for determining whether the MST is greater than the GP_{min} ; and
- means for determining the mode switching start point reset, if the MST is greater than the GP_{min} .