海淀九年级第二学期期中练习

数学答案

2017. 5

一、选择题(本题共30分,每小题3分)

题号	1	2	3	4	5	6	7	8	9	10
答案	В	A	В	D	В	В	C	C	В	A

二、填空题(本题共18分,每小题3分)

- 11. $b(a+2)^2$; 12. 10; 13. $(m+a)(m+b) = m^2 + am + bm + ab$ (答案不唯一);
- 14. ③:
- 15. $1 \le k \le 4$;
- 16. 两组对边分别相等的四边形是平行四边形,平行四边形的对角线互相平分.

三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)

解: : AD = AE,

 $\therefore \angle 1 = \angle B + \angle BAD$,

- $\therefore \angle B + \angle BAD = \angle C + \angle CAE$.
- $\therefore \angle BAD = \angle CAE$,
- $\therefore \angle B = \angle C.$
- $\therefore AB=AC.$ ------5 分

解法二:

解: : AD = AE,

$$\therefore 180^{\circ} - \angle 1 = 180^{\circ} - \angle 2.$$

		即 ∠3=∠4	2分
		在△ABD 与△ACE 中,	
		$\triangle BAD = \angle CAE$,	
		AD = AE,	
		∠3 = ∠4,	
		∴ $\triangle ABD \cong \triangle ACE$ (ASA)	4分
		\therefore AB=AC.	5分
20.	解:	\therefore 关于 x 的方程 $x^2 - ax + a = 0$ 有两个相等的实数根,	
		$\therefore \Delta = (-a)^2 - 4a = a^2 - 4a = 0.$	2分
		$\therefore \frac{1}{a^2-4} \cdot \frac{a+2}{a-2}$	
			- /\
		$=\frac{1}{(a+2)(a-2)}\cdot\frac{a+2}{a-2}$	
		$=\frac{1}{\left(a-2\right)^2},\qquad$	4分
		$\therefore 原式 = \frac{1}{a^2 - 4a + 4} = \frac{1}{4} . $	5 分
21.	解:	(1) : 直线 l_1 : $y = k_1 x + b$ 过 A (0, −3), B (5, 2),	
		$ \therefore \begin{cases} b = -3, \\ 5k_1 + b = 2. \end{cases} $	1分
		$ \vdots \begin{cases} k_1 = 1, \\ b = -3. \end{cases} $	2分
		\therefore 直线 l_1 的表达式为 $y = x - 3$	3分
			~ /\
		(2) 答案不唯一,满足 $k_2 < -\frac{1}{4}$ 即可	5分
22.	答:	小军的数据较好地反映了该校八年级同学选修历史的意向	1分
		理由如下:	
		小红仅调查了一个班的同学,样本不具有随机性;	
		小亮只调查了8位历史课代表,样本容量过少,不具有代表性;	
		小军的调查样本容量适中,且能够代表全年级的同学的选择意向	3分
		根据小军的调查结果,有意向选择历史的比例约为 $\frac{20}{80} = \frac{1}{4}$;	4分
		故据此估计全年级选修历史的人数为 $241 \times \frac{1}{4} = 60.25 \approx 60$ (人)	5分
		(注:估计人数时,写61人也正确)	

23. (1) 证明: : CF=BE,

 \therefore CF+EC=BE+EC.

即 EF=BC.

-----1 分

- ∵ 在□ ABCD 中, AD//BC 且 AD=BC,
- $\therefore AD // EF = AD = EF$.
- ∴ 四边形 AEFD 是平行四边形. ------ 2 分
- $: AE \perp BC$
- -----3 分 ∴ □ *AEFD* 是矩形.

(2)解:

- ∵ □ AEFD 是矩形, DE=8,
- \therefore AF=DE=8.
- \therefore AB=6, BF=10,
- $AB^2 + AF^2 = 6^2 + 8^2 = 10^2 = BF^2$.
- ∴ ∠*BAF*=90 °.
- $: AE \perp BF$
- $\therefore S_{\triangle ABF} = \frac{1}{2}AB \cdot AF = \frac{1}{2}BF \cdot AE.$
- $\therefore AE = \frac{AB \cdot AF}{BF} = \frac{24}{5}.$

24. (1) 2013年至2015年中国和美国对世界经济增长的贡献率统计表

贡献率 年份 国家	2013年	2014 年	2015年	
中国	32.5%	29.7%	30.0%	
美国	15.2%	19.6%	21.9%	

或

2013年至2015年中国和美国对世界经济的贡献率统计图

-----2 分 (2) 2.8: -----

(3) 答案不唯一, 预估理由与预估结果相符即可.

- 25. (1) 证明: : AB = OO 相切于点 D,
 - ∴ $OD \perp AB \mp D$.
 - *∴* ∠*ODB*=90 °. ------1 分
 - : CF//AB,
 - $\therefore \angle OMF = \angle ODB = 90^{\circ}$.
 - \therefore $OM \perp CF$.
 - ∴ 点 *M* 是 *CF* 的中点. ------2 分

(2) 思路:

连接 DC, DF.

- ③ 在Rt $\triangle ABC$ 中, $\angle B=60$ °,BC=BD=a,可以求得AD=a, $OD=\frac{\sqrt{3}a}{3}$, $OA=\frac{2\sqrt{3}a}{3}$;

(4)
$$AE = AO - OE = \frac{2\sqrt{3}a}{3} - \frac{\sqrt{3}a}{3} = \frac{\sqrt{3}}{3}a$$
.

- 26. (1) $x \neq 1$; ------1 \Rightarrow
 - (2) ① (1, 1); -------2分
 - (3) (1)

...... 4 ½

②该函数的性质:

- (i) 当 x < 0 时,y 随 x 的增大而增大; 当 $0 \le x < 1$ 时,y 随 x 的增大而减小; 当 1 < x < 2 时,y 随 x 的增大而减小; 当 $x \ge 2$ 时,y 随 x 的增大而增大.
- (ii) 函数的图象经过第一、三、四象限.
- (iii) 函数的图象与直线 x=1 无交点,图象由两部分组成.
- (iv) 当 x>1 时,该函数的最小值为 1.

••••

(写出一条即可) ------5分

- 27. (1) *m*; -------2 分
 - (2) : 抛物线 $y = mx^2 2m^2x + 2$ 与 y 轴交于 A 点,
 - ∴ A (0, 2). ------ 3 分
 - **∵** *AB* // *x* 轴, *B* 点在直线 *x*=4 上,

 - $\therefore m=2.$
 - :. 抛物线的表达式为 $y = 2x^2 8x + 2$. ------ 5 分
 - (3) 当m > 0时,如图 1.
 - A(0,2),
 - ∴要使 $0 \le x_p \le 4$ 时,始终满足 $y_p \le 2$,

只需使抛物线 $y = mx^2 - 2m^2x + 2$ 的对称轴与直线 x=2 重合或在直线 x=2 的右侧.

当m < 0时,如图2,

$$m < 0$$
时, $y_p \le 2$ 恒成立. -----7分

综上所述,m < 0或 $m \ge 2$.

28. (1) 证明:

- ∵四边形 ABCD 为平行四边形,∠ABC=90°,
- ∴ □ABCD 为矩形, AB=CD.
- \therefore $\angle D = \angle BAD = 90^{\circ}$.
- ∵ *B*, *B*′ 关于 *AD* 对称,
- ∴ $\angle B'AD = \angle BAD = 90$ °, AB = AB'. -----1 \oiint
- $\therefore \angle B'AD = \angle D.$
- $\therefore \angle AFB' = \angle CFD$
- $\therefore \triangle AFB' \cong \triangle CFD \text{ (AAS)}$.
- $\therefore FB' = FC.$
- **∴** *F 是 C B'* 的中点. -------2 分

(2) 证明:

方法 1: 过点 B' 作 B'G // CD 交 AD 于点 G.

- ∵ *B*, *B*′ 关于 *AD* 对称,
- $\therefore \angle 1 = \angle 2$, AB = AB'.
- B'G//CD, AB//CD,
- $\therefore B'G//AB.$
- ∴ ∠2=∠3.
- ∴ ∠1=∠3.
- $\therefore B'A=B'G.$
- \therefore AB=CD, AB=AB',
- ∴ B'G=CD. ------3分
- B'G//CD,
- ∴ ∠4=∠D. -------4 分
- $\therefore \angle B' FG = \angle CFD$,
- $\therefore \triangle B' FG \cong \triangle CFD \text{ (AAS)}.$
- $\therefore FB' = FC.$
- ∴ F 是 C B' 的中点. ------5 分

方法 2: 连接 BB' 交直线 AD 于 H 点,

- ∵ *B*, *B*′ 关于 *AD* 对称,
- \therefore AD 是线段 B'B 的垂直平分线.
- ∴ B' H=HB. -----3 分
- : AD//BC,
- $\therefore \frac{B'F}{FC} = \frac{B'H}{HB} = 1. ----4 \, \text{f}$
- $\therefore FB' = FC.$
- ∴ F 是 C B' 的中点. ------5 分

方法 3: 连接 BB', BF,

- ∵ B, B' 关于 AD 对称,
- \therefore AD 是线段 B'B 的垂直平分线.
- ∴ B' F=FB. -----3 分
- ∴ ∠1=∠2.
- $\therefore AD//BC$
- $\therefore B'B\perp BC.$
- $\therefore \angle B'BC=90^{\circ}$.
- $\therefore \angle 1 + \angle 3 = 90^{\circ}, \angle 2 + \angle 4 = 90^{\circ}.$
- ∴ ∠3=∠4.
- ∴ FB=FC. ------4 分
- \therefore B' F=FB=FC.
- ∴ F 是 CB' 的中点. ------5 5

B'

- (3) 解:取B'E的中点G,连结GF.
 - ∵ 由 (2) 得, *F* 为 *CB'* 的中点,
 - $\therefore FG//CE, FG = \frac{1}{2}CE \cdot \cdots \cdot 1$
 - \therefore $\angle ABC=135^{\circ}$, $\Box ABCD + , AD//BC$,
 - ∴ ∠BAD=180 °- ∠ABC=45 °.
 - ∴ 由对称性, ∠*EAD*=∠*BAD*=45°.
 - : FG//CE, AB//CD,
 - \therefore FG//AB.
 - ∴ ∠GFA=∠FAB=45°.------6分
 - \therefore $\angle FGA=90^{\circ}, GA=GF.$
 - $\therefore FG = \sin \angle EAD \cdot AF = \frac{\sqrt{2}}{2}AF \cdot \cdots \text{ }$

- (2) 过点A作AH垂直x轴于H点.
 - \therefore 点 A, B 的"相关菱形"为正方形,
 - ∴ △*ABH* 为等腰直角三角形.
 - : A (1, 4),
 - $\therefore BH=AH=4.$
 - ∴*b* = -3 或 5. ------ 5 分

