Problem §3 (4.15) Suppose V is an F-vector space, \mathcal{A} and \mathcal{B} are subsets of V, and

- \bullet $\, \mathcal{B}$ is linearly independent.
- |A| = |B|.
- span $(B) \subseteq \text{span}(A)$.

Prove span (A) = span(B).

Solution: We start with 2 lemmas.

Lemma 1. Let V be an F-vector space. Given a subset $A \subseteq V$, span (A) is a subspace of V; and if A is linearly independent, then A forms a basis of span (A).

Proof. Clearly, given $v_1, v_2 \in \text{span}(A)$, we have $v_1 + v_2 \in \text{span}(A)$ (since for each component $a_i \alpha_i$ of v_1 and corresponding $a'_i \alpha_i$ of v_2 , $(a_i + a'_i) \in F$ by closure of addition in fields, so $v_1 + v_2$ is still in span (A) by definition); and for any $c \in F$, $cv \in \text{span}(A)$ as well (like above, for each component $a_i \alpha_i$ of v, $(ca_i) \in F$, so $cv \in \text{span}(A)$ by definition). Finally, setting each a_i coefficient to 0 shows that $\mathbf{0} \in \text{span}(A)$. Hence span (A) is a subspace of V.

If \mathcal{A} is linearly independent, clearly \mathcal{A} forms a basis for span (A) (since \mathcal{A} is both linearly independent and spans span (A)). Wow!)

Lemma 2. Let a set A span a vector space V. If a linearly independent set B has the same number of elements as A, A is also linearly independent, and is thus a basis for V.

Proof. Suppose \mathcal{A} is linearly dependent. Then for some $\alpha_i \in \mathcal{A}$, $\alpha_i \in \text{span}(\mathcal{A} \setminus \{\alpha_i\})$, so $\mathcal{A} \setminus \{\alpha_i\}$ spans V as well. But then $|\mathcal{A} \setminus \{\alpha_I\}| < |\mathcal{A}| = |\mathcal{B}|$ a linearly independent set in V, a contradiction of Lemma 4.24. Thus \mathcal{A} is linearly independent in V as well, and thus is a basis for V. \square

Lemma 3. Let \mathcal{A} be a basis for a vector space V. If a linearly independent set \mathcal{B} has the same number of elements as \mathcal{A} , then \mathcal{B} is a basis for V as well.

Proof. Suppose \mathcal{B} is not a basis for V. Then for some $v \in V$ where $v \notin \operatorname{span}(\mathcal{B})$, $\mathcal{B}' = \mathcal{B} \cup \{v\}$ is linearly independent. However, Lemma 4.24 tells us that the size of any linearly independent set in V is less than or equal to the length of any spanning set in V, and since \mathcal{A} spans V and $|\mathcal{A}| = |\mathcal{B}| < |\mathcal{B}'|$, this is a contradiction. Hence \mathcal{B} must span V as well, and so \mathcal{B} is a basis for V. \square

Lemma 1 tells us that span (A) is a subspace of V (and thus also a vector space, allowing us to apply theorems about bases and dimensions of vector spaces). Since span $(B) \subseteq \text{span}(A)$, clearly $B \subseteq \text{span}(A)$. Thus B is a linearly independent set in span (A). Since A and B have the same number of elements, Lemma 2 tells us that A is linearly independent in span (A) as well, and thus is a basis. Lemma 3 then tells us that B is a basis for span (A) too; thus span (A) = span(B), as required.

Problem §4 Suppose V,W are finite-dimensional F-vector spaces. Let $L:V\to W$ be a linear transformation.

- If L injective, prove dim $V \leq \dim W$.
- If L surjective, prove $\dim V \geq \dim W$.

Solution: Let $\{v_1, \ldots, v_n\}$, $\{w_1, \ldots, w_m\}$ be basis for V and W respectively.

• Suppose $L: V \to W$ is injective. For any $v \in V$, we can write

$$v = \sum_{i=1}^{n} a_i v_i$$
, where $a_i \in F$.

Clearly, $\mathcal{B} = \{L(v_1), \dots, L(v_n)\}$ spans range L, since for any $L(v) \in \text{range } L$, we have

$$L(v) = L(a_1v_1 + \ldots + a_nv_n) = a_1L(v_1) + \ldots + a_nL(v_n).$$

We claim that \mathcal{B} is a basis for range L.

Suppose L(v), $L(v') \in \text{range } L$ are different ways of representing a vector in range L; in other words, L(v) = L(v') and

$$L(v) = \sum_{i=1}^{n} a_i L(v_i), \ L(v') = \sum_{i=1}^{n} a'_i L(v_i), \ a_i \neq a'_i.$$

By linearity,

$$L(v) = \sum_{i=1}^{n} a_i L(v_i) = \sum_{i=1}^{n} L(a_i v_i)$$

and

$$L(v') = \sum_{i=1}^{n} a'_{i}L(v_{i}) = \sum_{i=1}^{n} L(a'_{i}v_{i}).$$

L injective then means

$$\sum_{i=1}^{n} a_i v_i = \sum_{i=1}^{n} a'_i v_i,$$

and since $\{v_1,\ldots,v_n\}$ is a basis for V (and thus is linearly independent), we necessarily have

$$\sum_{i=1}^{n} (a_i - a_i')v_i = 0, \ a_i - a_i' = 0.$$

and hence $a_i = a_i'$. Equivalently, L(v) and L(v') are the same, and thus every $L(v) \in \text{range } L$ can be represented uniquely as

$$L(v) = \sum_{i=1}^{n} a_i L(v_i).$$

In other words, \mathcal{B} is a basis for range L.

Since range $L \subseteq W$ and \mathcal{B} is linearly independent in range L (and thus in W as well), by Lemma 4.24 any spanning set must have at least as many elements as \mathcal{B} . Hence any basis of W must have at least as many elements as \mathcal{B} ; and since $|\mathcal{B}| = \dim V$, we get $\dim V \leq \dim W$, as required.

• Suppose $L: V \to W$ is surjective. From before, we know that $\mathcal{B} = \{L(v_1), \ldots, L(v_n)\}$ spans range L; since L is surjective (and so range L = W), \mathcal{B} spans W as well. By Lemma 4.24, the size of any linearly independent set in W is less than or equal to the size of any spanning set of W. Since $\{w_1, \ldots, w_m\}$ is linearly independent, we thus have dim $W \leq \text{range } L = \dim V$. Therefore dim $V \geq \dim W$, as required.

Problem §5 (4.18) Let V be a finite-dimensional F-vector space, and let $U \subseteq V$ be a vector subspace.

- (a) Prove that U is finite-dimensional.
- (b) Prove that $\dim_F U \leq \dim_F V$.
- (c) Prove that

$$U = V \iff \dim_F U = \dim_F V.$$

Solution:

(a) If $U = \{0\}$, U is clearly finite-dimensional, so suppose $U \neq \{0\}$. Let $u_1 \in U$ be a non-zero vector. If $U = \text{span}(\{u_1\})$, then we are done; otherwise, continue adding non-zero vectors $u_i \in U$ such that

$$u_i \not\in \text{span}(\{u_1, \dots, u_{i-1}\}),$$

until $\{u_1, \ldots, u_j\}$ forms a spanning set of U. With each addition, $\{u_1, \ldots, u_j\}$ is a linearly independent set by construction (since each added vector was not in the span of the previous vectors). Moreover, every linearly independent set $\{u_1, \ldots, u_j\}$ is in V, since each $u_i \in U \subseteq V$.

Let $n = \dim V$. Since any basis of V is spanning, and by Lemma 4.24, the number of elements in any linearly independent set in V must be less than or equal to the length of any spanning set in V, the length of $\{u_1, \ldots, u_j\}$ must be less than or equal to n. Thus the above process will eventually terminate (it cannot repeat infinitely — or past j = n — since the number of elements must be less than or equal to n), and so we are left with a finite linearly independent spanning set $\{u_1, \ldots, u_j\}$ of U. Thus U is finite-dimensional.

- (b) From above, we see that a basis $\{u_1, \ldots, u_j\}$ of U cannot have more elements than $n = \dim V$. Hence $\dim_F U \leq \dim_F V$.
 - Alternatively, let $\{u_1,\ldots,u_m\}$ be a basis for U. Then $\{u_1,\ldots,u_m\}\subseteq U\subseteq V$ is a linearly independent set of vectors in V. By Lemma 4.24, any linearly independent set of vectors in V cannot have more elements than any spanning set of V. Since a basis $\{v_1,\ldots,v_n\}$ of V is the smallest spanning set of V and has $n=\dim V$ elements, any linearly independent set cannot have more than n elements. Thus $|\{u_1,\ldots,u_m\}|=\dim_F U\leq \dim_F V=n=|\{v_1,\ldots,v_n\}|$.
- (c) Suppose U = V. Then a basis $\{v_1, \ldots, v_n\}$ of U is also a basis of V, and so $\dim_F U = \dim_F V$.

Conversely, suppose $\dim_F U = \dim_F V = n$, and let $\{u_1, \ldots, u_n\}$, $\{v_1, \ldots, v_n\}$ be bases for U and V respectively. Since U is a subspace of V, we know that $\{u_1, \ldots, u_n\}$ is a linearly independent set of vectors in V. From Lemma 3 (of Problem §3), since $\{u_1, \ldots, u_n\}$ is a linearly independent set of vectors with the same number of elements as a basis $\{v_1, \ldots, v_n\}$ of V, $\{u_1, \ldots, u_n\}$ is a basis of V as well. Thus

$$U = \operatorname{span}(\{u_1, \dots, u_n\}) = V,$$

and so U = V, as required.