Санкт-Петербургский Политехнический университет Петра Великого

Институт прикладной математики и механики
Высшая школа прикладной математики и вычислительной физики

Отчёт по лабораторной работе 4 по дисциплине "математическая статистика"

Выполнил студент:

Аникин Алксандр Алексеевич, группа 3630102\80201

Проверил:

к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2021

Содержание

1	Пос	танов	ка задачи	4
2	Teo	рия		5
	2.1	Рассм	атриваемые распределения	5
	2.2	Эмпиј	рическая функция распределения	5
		2.2.1	Статистический ряд	5
		2.2.2	Эмпирическая функция распредления	5
		2.2.3	Нахождение эмпирической функции распределения	6
	2.3	Оцени	ки плотности вероятности	6
3	Рез	ультат	ъ	7
	3.1	Ядерн	ные оценки	7
	3.2	Эмпиј	рические функции распределения	22
$\mathbf{\Pi}$	итер	атура		24

Список иллюстраций

1	Ядерная оценка нормального распределения (1), 20 элементов	7
2	Ядерная оценка нормального распределения, 60 элементов	8
3	Ядерная оценка нормального распределения, 100 элементов	9
4	Ядерная оценка распределения Коши (2), 20 элементов	10
5	Ядерная оценка распределения Коши, 60 элементов	11
6	Ядерная оценка распределения Коши, 100 элементов	12
7	Ядерная оценка распределения Лапласа (3), 20 элементов	13
8	Ядерная оценка распределения Лапласа, 60 элементов	14
9	Ядерная оценка распределения Лапласа, 100 элементов	15
10	Ядерная оценка распределения Пуассона (4), 20 элементов	16
11	Ядерная оценка распределения Лапласа, 60 элементов	17
12	Ядерная оценка распределения Пуассона, 100 элементов	18
13	Ядерная оценка равномерного распределения (5), 20 элементов	19
14	Ядерная оценка равномерного распределения, 60 элементов	20
15	Ядерная оценка равномерного распределения, 100 элементов	21
16	Нормальное распределение (1), графики фактической и эмпирической функ-	
	ций распределения	22
17	Распределение Коши (2), графики фактической и эмпирической функций рас-	
	пределения	22
18	Распределение Лапласа (3), графики фактической и эмпирической функций	
	распределения	23
19	Распределение Пуассона (4), графики фактической и эмпирической функций	
	распределения	23
20	Равномерное распредление (5), графики фактической и эмпирической функций	
	распределения	23

Список таблиц

1	Таблица распределения																•													(
---	-----------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	---

1 Постановка задачи

Для следующих распределений:

- Нормальное распределение N(x, 0, 1)
- ullet Распределение Коши $\mathit{C}(x,0,1)$
- Распределение Лапласа $L(x,0,\frac{1}{\sqrt{2}})$
- ullet Распределение Пуассона P(k,10)
- Равномерное распределение $U(x, -\sqrt{3}, \sqrt{3})$

Стенерировать выборки размером 20, 60 и 100 элементов. Построить на них эмпирические функции распределения и ядерные оценки плотности распределения на отрезке [-4; 4] для непрерывных распределений и на отрезке [6; 14] для распределения Пуассона.

2 Теория

2.1 Рассматриваемые распределения

Плотности:

• Нормальное распределение:

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} \tag{1}$$

• Распределение Коши:

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1} \tag{2}$$

• Распределение Лапласа:

$$L(x,0,\frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|} \tag{3}$$

• Распределение Пуассона:

$$P(k,10) = \frac{10^k}{k!}e^{-10} \tag{4}$$

• Равномерное распределение:

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & \text{при} \quad |x| \le \sqrt{3} \\ 0 & \text{при} \quad |x| > 3 \end{cases}$$
 (5)

2.2 Эмпирическая функция распределения

2.2.1 Статистический ряд

Статистическим ряд – последовательность различных элементов выборки $z_1, z_2, ..., z_k$, расположенных в возрастающем порядке с указанием частот $n_1, n_2, ..., n_k$, с которыми эти элементы содержатся в выборке. Обычно записывается в виде таблицы.

2.2.2 Эмпирическая функция распредления

Эмпирическая (выборочная) функция распределения - относительная частота события X < x, полученная по данной выборке:

$$F_n^*(x) = P^*(X < x) \tag{6}$$

2.2.3 Нахождение эмпирической функции распределения

Для получения относительной частоты $P^*(X < x)$ просуммируем в статистическом ряде, построенном по данной выборке, все частоты n_i , для которых элементы z_i статистического ряда меньше x. Тогда $P^*(X < x) = \frac{1}{n} \sum_{z_i < x} n_i$. Получаем

$$F^*(x) = \frac{1}{n} \sum_{z_i < x} n_i \tag{7}$$

 $F^*(x)$ - функция распределения дискретной случайной величины X^* , заданной таблицей распределения

X*	z_1	z_2	z_3	 z_n
Р	$\frac{n_1}{n}$	$\frac{n_2}{n}$	$\frac{n_3}{n}$	 $\frac{n_k}{n}$

Таблица 1: Таблица распределения

Эмпирическая функция распределения является оценкой, т. е. приближённым значением, генеральной функции распределения

$$F_n^*(x) \approx F_X(x) \tag{8}$$

2.3 Оценки плотности вероятности

Оценкой плотности вероятности f(x) называется функция $\hat{f}(x)$, построенная на основе выборки, приближённо равная f(x)

$$\hat{f}(x) \approx f(x) \tag{9}$$

Здесь функция K(u), называемая ядерной (ядром), непрерывна и является плотностью вероятности, $x_1, ..., x_n$ — элементы выборки, $\{n\}$ — любая последовательность положительных чисел, обладающая свойствами

$$\lim_{n \to \infty} h_n = 0; \quad \lim_{n \to \infty} \frac{h_n}{n^{-1}} = \infty; \tag{10}$$

Такие оценки называются непрерывными ядерными [1].

Гауссово (нормальное) ядро [2]

$$K(u) = \frac{1}{\sqrt{2\pi}} e^{\frac{-u^2}{2}} \tag{11}$$

Правило Сильвермана [2]

$$h_n 1 = 1.06 \hat{\sigma} n^{-\frac{1}{5}},\tag{12}$$

где $\hat{\sigma}$ - выборочное стандартное отклонение (корень выборочной дисперсии).

3 Результаты

3.1 Ядерные оценки

Рис. 1: Ядерная оценка нормального распределения (1), 20 элементов

Рис. 2: Ядерная оценка нормального распределения, 60 элементов

Рис. 3: Ядерная оценка нормального распределения, 100 элементов

Рис. 4: Ядерная оценка распределения Коши (2), 20 элементов

Рис. 5: Ядерная оценка распределения Коши, 60 элементов

Рис. 6: Ядерная оценка распределения Коши, 100 элементов

Рис. 7: Ядерная оценка распределения Лапласа (3), 20 элементов

Рис. 8: Ядерная оценка распределения Лапласа, 60 элементов

Рис. 9: Ядерная оценка распределения Лапласа, 100 элементов

Рис. 10: Ядерная оценка распределения Пуассона (4), 20 элементов

Рис. 11: Ядерная оценка распределения Лапласа, 60 элементов

Рис. 12: Ядерная оценка распределения Пуассона, 100 элементов

Рис. 13: Ядерная оценка равномерного распределения (5), 20 элементов

Рис. 14: Ядерная оценка равномерного распределения, 60 элементов

Рис. 15: Ядерная оценка равномерного распределения, 100 элементов

3.2 Эмпирические функции распределения

Рис. 16: Нормальное распределение (1), графики фактической и эмпирической функций распределения

Рис. 17: Распределение Коши (2), графики фактической и эмпирической функций распределения

Рис. 18: Распределение Лапласа (3), графики фактической и эмпирической функций распределения

Рис. 19: Распределение Пуассона (4), графики фактической и эмпирической функций распределения

Рис. 20: Равномерное распредление (5), графики фактической и эмпирической функций распределения

Список литературы

- [1] Вероятностные разделы математики. Учебник для бакалавров технических направлений.//Под ред. Максимова Ю.Д. Спб.: «Иван Федоров», 2001.-592 с., илл.
- [2] Анатольев, Станислав (2009) «Непараметрическая регрессия», Квантиль, №7, стр. 37-52.