Лабораториска вежба 2

Граматики

Општо кажано една граматика претставува алгоритам кој овозможува да се определи јазик над дадена азбука.

Дефиниција: Формална граматика

Формална граматика (или само граматика) G претставува подредена четворка $G=\{V,\sum,S,R\}$, каде што

- V е помошна азбука или азбука од нетерминални симболи
- Σ е основна азбука или азбука од терминални симболи
- $S \in V$ е почетен нетерминал од G
- R е конечно множество зборови од облик $v \to \omega$, каде $v, \omega \in (V \cap \Sigma)^*$, а " \to " е симбол кој не припаѓа на $V \cap \Sigma$.
- $V \cup \Sigma = \emptyset$, $V \cap \Sigma$ се нарекува потполна азбука на граматиката

Забелешка: R всушност претставува множество на правила за генерирање зборови и уште се нарекува *шема* или *програма* на граматиката.

Граматики во JFLAP

Нека е дадена граматиката $G=\{V, \sum, S, R\}$, каде:

- *V*={S,A}
- ∑={a,b}
- $R=\{S\rightarrow aA, A\rightarrow bA, A\rightarrow a\}$

Како би конструирале недетерминистички конечен автомат, кој го препознава јазикот генериран од граматиката G, во JFLAP ?

Постапката е следна:

Чекор 1:

Отворете JFLAP. Пред вас се појавува следното мени:

Чекор 2:

Изберете Grammar од понуденото мени. Прозорецот кој ќе се појави пред вас пополнете го на како на сликата:

Чекор 3:

Изберете "Convert Right-Linear Grammar to FA" од менито Convert.

Чекор 4:

На новодобиениот прозорец кликнете на копчето "Show All", а потоа и на "Export".

Чекор 5:

Следно се појавува прозорец на кој е исцртан бараниот недетерминистички конечен автомат.

Задачи

Секој од вас треба да реши само една од двете наведени задачи. Бројот на задачата го пресметувате со: (бр Индекс % 2)+1

Задача 1.

Нека е дадена граматиката

- 1. *G={V,∑,S,R*}, каде:
 - *V*={S,A,B}
 - *∑*={a,b}
 - $R=\{S\rightarrow abA, S\rightarrow B, S\rightarrow baB, S\rightarrow \lambda, A\rightarrow bS, A\rightarrow b, B\rightarrow aS\}$
- 2. *G={V,∑,S,R}*, каде:
 - *V*={S, X, Y}
 - ∑={a,b}
 - $R=\{S \rightarrow aS, S \rightarrow aX, X \rightarrow bS, X \rightarrow aY, Y \rightarrow bS, S \rightarrow a\}$

- 3. $G=\{V, \sum, S, R\}$, каде:
 - *V*={A,B,C}
 - *∑*={a,b,c}
 - $R = \{A \rightarrow aA, A \rightarrow bB, B \rightarrow bB, B \rightarrow aA, B \rightarrow cC, C \rightarrow c\}$

Вашата граматика е таа чиј реден број е пресметан со: (бр_Индекс % 3)+1. Дефинираните подточки се однесуваат на вашата граматика.

- а) Конструирајте недетерминистички конечен автомат кој го препознава јазикот генериран од вашата граматика *G*.
- b) Детерминизирајте го добиениот недетерминистички конечен автомат.
- с) Минимизирајте го добиениот детерминистички конечен автомат.
- d) Повторете ја постапката со користење на алатката JFLAP.
 Дали добивте слични резултати?

Задача 2.

Нека е даден регуларниот израз:

- 1. (a+b)*(aa+bb)(a+b)*
- 2. (0*10+1*0)(01)*
- 3. (010)*1+(1*0)*

Вашиот регуларен израз е тој чиј реден број е пресметан со: ($6p_Индекс \% 3$)+1. Дефинираните подточки се однесуваат на вашиот регуларен израз.

- a) На лист од хартија, конструирајте недетерминистички конечен автомат кој го препознава јазикот генериран со регуларниот израз.
- b) Детерминизирајте го добиениот недетерминистички конечен автомат.
- с) Минимизирајте го добиениот детерминистички конечен автомат.
- d) Дефинирајте ја граматиката која го генерира јазикот препознаен од добиениот минимален конечен автомат.
- е) Повторете ја постапката со алатката JFLAP.Дали добиените резултати се слични?

Поставување:

Одговорите на вашата задача зачувајте ги во word документот со име Lab2_Reshenija.doc кој можете да го најдете на курсот. Тој зачувајте го во папка со име "Lab2_XXXXX". Архивирајте ја и поставете го решението на соодветното место. Се разбира XXXXX го претставува вашиот број на индекс.