分析2期中考试

Yunhui

几点声明:

1、此试卷为考生回忆版,不保证问题顺序的准确性与问题陈述的严谨性。

2、考试时间为2022年4月18日9:50至12:15。

3、满分为108分。

1.Let (X, \mathcal{B}, μ) be a measure space and $f_n : X \to \mathbb{C}$ be a sequence of measurable functions.

(1)(10 points)Show that $S = \{x \in X; \lim_{n \to \infty} f_n(x) exists\}$ is measurable. (2)(10 points)Suppose $g: X \to [0, \infty]$ is a integral function such that $|f_n(x)| \leq g(x), \forall x \in X, n \in X$ \mathbb{N} . Suppose $f: X \to \mathbb{C}$ is another measurable function. Show that f_n pointwise converges to f almost everywhere if and only if f_n almost uniformly converges to f.

2.(1)(8 points)Use the Dominated Convergence Theorem to find:

$$\lim_{n \to \infty} \int_{2022}^{\infty} \frac{x^4 \cos(n^2 \pi x^2) + x^{4.8}}{27 + nx^6} \, dx.$$

(2)(10 points) Use the fact $\sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$ to prove:

$$\int_{0}^{\infty} \frac{x}{e^{2x} - 1} \, dx = \frac{\pi^2}{24}$$

3.Let \mathcal{A} be the set of all subsets of \mathbb{R} which are the finite union of the left-closed right-open intervals like $[a,b).\mu_0: \mathcal{A} \to [0,\infty]$ satisfying $\mu_0(E) = \infty, \forall \phi \neq E \in \mathcal{A}$ and $\mu_0(\phi) = 0$.

(1)(6 points)Show that μ_0 is a pre-measure.

(2)(6 points)Show that $\langle \mathcal{A} \rangle$ is actually the Borel algebra $\mathcal{B}(\mathbb{R})$ of \mathbb{R} .

(3)(6 points)Let $\mu: \mathcal{B}(\mathbb{R}) \to [0,\infty]$ be the Kolmogorov measure of μ_0 . Show that $\mu(E) = \infty, \forall \phi \neq 0$ $E \in \mathcal{B}(\mathbb{R}).$

(4)(6 points)Construct a measure $\mu': \mathcal{B}(\mathbb{R}) \to [0, \infty]$ such that μ' is a extension of μ_0 but $\mu' \neq \mu$.

1

4.(1)(10 points)Suppose $f: \mathbb{R} \to [0,\infty]$ is a measurable function such that $\int_{\mathbb{R}} f \, dm < \infty$.Let $f_k(x) = f(x+k), \forall k \in \mathbb{N}$ and $h = \liminf_{k \to \infty} f_k$.

Show that

$$m(\{x \in \mathbb{R}; h(x) \neq 0\}) = 0.$$

(2)(10 points)Suppose a Lebesgue measurable set $E \subseteq [0, 1]$ satisfying:there exists a constant C > 0, such that \forall interval $I \subseteq [0, 1]$,

$$m(E \cap I) \geqslant C m(I)$$
.

Determine whether m(E) = 1 always holds.

5.(1)(5 points)For each subset E of \mathbb{R} , define

$$D(E) := \{x - y; x, y \in E\}.$$

Show that if E is Lebesgue measurable with m(E) > 0, then D(E) contains a neighborhood of 0. (2)(5 points)We know that $G = \{n + m\pi; n, m \in \mathbb{Z}\}$, the group generated by 1 and π , is dense in \mathbb{R} . Suppose

$$V = \{x_C \in [0, 1]; C \in \mathbb{R}/G\}$$

where x_C is a representation element of C.

Show that V is a non-measurable set.

(3)(5 points)We know that $G_0 = \{2n + m\pi; n, m \in \mathbb{Z}\}$ is a dense subgroup of G, and $G \setminus G_0$ is dense in \mathbb{R} . Suppose

$$S = V + G_0$$
.

Show that for each measurable subset F of $S,D(F) \cap (G \setminus G_0) = \phi$.

- (4)(5 points)Show that S is a non-measurable set.
- (5)(6 points)Show that every measurable subsets of S are null sets.