Let $T: V \to W$ be a linear map. Show that a) T(-v) = -T(v) b) T(v-u) = T(v) - T(u)

Problem Solving - What are the terms/strategies I may need? What do I know?

Definition of a linear map:

$$T(u + v) = T(u) + T(v)$$
$$T(cu) = c(T(u))$$

Properties of vector spaces:

$$-v = (-1)v$$

Let $T: V \to W$ be a linear map. Show that a) T(-v) = -T(v) b) T(u-v) = T(u) - T(v)

Steps & Process – Try to answer the question writing in many steps to avoid small errors.

a)
$$T(-v)$$
 = $T(-1v)$ (Property of $-v$)
= $-1 T(v)$ (T is linear)
= $-T(v)$ (Property of $-v$)

b)
$$T(u-v)$$
 = $T(u+(-v))$ (Definition of vector subtraction)
= $T(u) + T(-v)$ (T is linear)
= $T(u) + (-T(v))$ (Part a)
= $T(u) - T(v)$ (Definition of vector subtraction)

Let $T: V \to W$ be a linear map. Show that a) T(-v) = -T(v) b) T(v-u) = T(v) - T(u)

Solidify Understanding – Explain why the steps makes sense by connecting to math you know.

Why do we consider linear transformations?

For Video Please click the link below:

<u>Video</u>