Contents

1	ubunt	+11																			1	
•																						
		run		•	 •	•	•	•		•						•	•	•	•	•	. 1	
	1.2	cp.sh																			. 1	
2	Basio	•																			1	
	2.1	ascii																			. 1	
	2.2	limits .																			. 1	
				•	 •	•	•	•	•	•	•		•	•		•	•	•	•	•		
_																						
3	字串																				1	
	3.1	最長迴文子	字串														_	_			. 1	
		stringstre			 -	-	-			-						-	-	•	-	-	. 2	
	3.2	Stringstre	alli		 •	•	•			•	•		•	•		•	•	•	•	•	. 2	
4	STL																				2	
	4.1	priority_q	عراعانا																		. 2	
				•	 •	•	•	•		•			•	•		•	•	•	•	•		
		deque																			. 2	
	4.3	map																			. 2	
		unordered_					_														. 3	
					-	•	•	•		•			•	•		•	•	•	•	•		
	4.5	set																			. 3	
	4.6	multiset															_				. 3	
		unordered_					•	-		-	- '	•		-	•	•	•	•	•	•	. 3	
					 •	•	•	•		•	•		٠	•		•	•	•	•	•		
	4.8	單調隊列																			. 3	
5	sort																				3	
J		⊥ #⊬+/- r≥																				
	5.1	大數排序																			. 3	
6	math																				4	
•		質數與因數																				
					 •	•	•	•		•			٠	•		•	•	•	•	•	. 4	
	6.2	快速冪 .																			. 4	
	6.3	歐拉函數																			. 5	
				•	 •	•	•	•		•	-		-	•		•	•	•	•	•		
		atan				•											•			•	. 5	
	6.5	大步小步																			. 5	
	_																					
7	21 001	cithm																			6	
7		rithm																			6	
7	7.1	basic																			. 6	
7	7.1	basic																			. 6	
7	7.1 7.2	basic 二分搜 .																			. 6	
7	7.1 7.2 7.3	basic 二分搜 . 三分搜 .																			. 6	
7	7.1 7.2 7.3	basic 二分搜 .										 									. 6	
7	7.1 7.2 7.3 7.4	basic 二分搜 . 三分搜 . prefix sum																			. 6 . 6 . 6	
7	7.1 7.2 7.3 7.4 7.5	basic 二分搜 . 三分搜 . prefix sum 差分			 																. 6 . 6 . 6	
7	7.1 7.2 7.3 7.4 7.5 7.6	basic 二分搜 . 三分搜 . prefix sum 差分 greedy .			 				 			 									. 6 . 6 . 6 . 7	
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7	basic 二分搜 . 三分搜 . prefix sum 差分			 				 												. 6 . 6 . 6	
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7	basic 二分搜 . 三分搜 . prefix sum 差分 greedy . floyd wars	 hall		 				 			 									. 6 . 6 . 6 . 7 . 7	
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7	basic 二分搜 . 三分搜 . prefix sum 差分 greedy . floyd wars dinic	 hall		 				 			 									. 6 . 6 . 6 . 7 . 7 . 9	
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	basic 二分搜 . 三分搜 . prefix sum 差分 greedy . floyd wars dinic SegmentTre	 hall		 				 			 									. 6 . 6 . 6 . 7 . 7 . 9 . 9	
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	basic 二分搜 . 三分搜 . prefix sum 差分 greedy . floyd wars dinic	 hall		 				 			 									. 6 . 6 . 6 . 7 . 7 . 9	
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10	basic 二分搜 . 三分搜 . prefix sum 差分 greedy . floyd wars dinic SegmentTre Nim Game	 hall 		 				 			 									. 6 . 6 . 6 . 7 . 7 . 9 . 9	
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11	basic 二分搜 三分搜 prefix sum 差分 greedy dinic SegmentTre Nim Game Trie	 hall e .		 																. 6 . 6 . 6 . 7 . 7 . 9 . 9 . 9	
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12	basic . 二分搜 三分搜 prefix sum 差分。 greedy floyd wars dinic . SegmentTre Nim Game Trie	 hall e .		 							 									. 6 . 6 . 6 . 7 . 7 . 9 . 9 . 10 . 10	
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12	basic . 二分搜 三分搜 prefix sum 差分。 greedy floyd wars dinic . SegmentTre Nim Game Trie	 hall e .		 																. 6 . 6 . 6 . 7 . 7 . 9 . 9 . 9	
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 7.13	basic 二分搜 三分搜 prefix sum 差分 greedy floyd wars dinic SegmentTre Nim Game Trie SPFA dijkstra	 hall e 		 																. 6 . 6 . 6 . 7 . 7 . 9 . 9 . 10 . 10 . 11	
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 7.13 7.14	basic . 二分搜 三分搜 prefix sum 差分 . greedy floyd wars dinic . SegmentTre Nim Game Trie . SFFA . dijkstra SCC Tarjan	hall e		 																. 6 . 6 . 6 . 7 . 7 . 9 . 9 . 10 . 10 . 11 . 11	
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.10 7.11 7.12 7.13 7.14 7.15	basic . 二分搜 三分搜 三分搜 prefix sum 差分 . greedy floyd wars dinic . SegmentTre Nim Game Trie . SPFA . dijkstra SCC Tarjan SCC Kosara																			. 6 . 6 . 6 . 7 . 7 . 9 . 9 . 10 . 11 . 11 . 11	
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.10 7.11 7.12 7.13 7.14 7.15	basic . 二分搜 三分搜 prefix sum 差分 . greedy floyd wars dinic . SegmentTre Nim Game Trie . SFFA . dijkstra SCC Tarjan																			. 6 . 6 . 6 . 7 . 7 . 9 . 9 . 10 . 10 . 11 . 11	
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.10 7.11 7.12 7.13 7.14 7.15 7.16	basic	hall e i o i o i o i o i o i o i o o o o o	int																	. 6 . 6 . 6 . 7 . 7 . 9 . 9 . 10 . 11 . 11 . 11 . 12 . 12	
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.10 7.11 7.12 7.13 7.14 7.15 7.16	basic . 二分搜 三分搜 三分搜 prefix sum 差分 . greedy floyd wars dinic . SegmentTre Nim Game Trie . SPFA . dijkstra SCC Tarjan SCC Kosara	hall e i o i o i o i o i o i o i o o o o o																		. 6 . 6 . 6 . 7 . 7 . 9 . 9 . 10 . 11 . 11 . 11	
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.10 7.11 7.12 7.13 7.14 7.15 7.16 7.17	basic	hall e i o i o i o i o i o i o i o o o o o	int																	. 6 . 6 . 6 . 7 . 7 . 9 . 9 . 10 . 11 . 11 . 11 . 12 . 12 . 12	
8	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.10 7.11 7.12 7.13 7.14 7.15 7.16 7.17 動	basic	hall e	int																	. 6 . 6 . 6 . 7 . 7 . 9 . 9 . 10 . 11 . 11 . 11 . 12 . 12	
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.10 7.11 7.12 7.13 7.14 7.15 7.16 7.17 動	basic	hall e	int																	. 6 . 6 . 6 . 7 . 7 . 9 . 9 . 10 . 11 . 11 . 11 . 12 . 12 . 12	
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.10 7.11 7.12 7.13 7.14 7.15 7.16 7.17 動	basic	hall e	int																	. 6 . 6 . 6 . 7 . 7 . 9 . 9 . 10 . 11 . 11 . 11 . 12 . 12 . 12	
8	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.10 7.11 7.12 7.13 7.14 7.15 7.16 7.17 動 8.1	basic	hall e	int																	. 6 6 6 6 7 7 7 9 9 9 9 9 9 10 11 11 11 11 11 11 11 11 11 11 11 11	
	7.1 7.2 7.3 7.4 7.5 7.7 7.8 7.9 7.10 7.11 7.12 7.14 7.15 7.16 7.17 動 8.1 Secti	basic	hall e	int																	. 6 6 6 6 7 7 9 9 9 9 10 10 11 11 11 11 12 11 12 12 12 12 14 14 14 14 14 14 14 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16	
8	7.1 7.2 7.3 7.4 7.5 7.7 7.8 7.9 7.10 7.11 7.12 7.14 7.15 7.16 7.17 動 8.1 Secti	basic	hall e	int																	. 6 6 6 6 7 7 7 9 9 9 9 9 9 10 11 11 11 11 11 11 11 11 11 11 11 11	
8	7.1 7.2 7.3 7.4 7.5 7.7 7.8 7.9 7.10 7.11 7.12 7.14 7.15 7.16 7.17 動 8.1 Secti	basic	hall e	int																	. 6 6 6 6 7 7 9 9 9 9 10 10 11 11 11 11 12 11 12 12 12 12 14 14 14 14 14 14 14 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16	
8 9	7.1 7.2 7.3 7.4 7.5 7.7 7.8 7.9 7.10 7.11 7.11 7.11 7.15 7.16 7.17 動 8.1 Secti 9.1	basic	hall e	int																	. 6 6 6 6 6 7 7 7 7 9 9 9 10 10 11 11 11 11 11 11 11 11 11 11 11	
8 9	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.10 7.11 7.112 7.13 7.14 數 .1 5 8.1 6 9.1 d d d d d d e e e e e e e e e e	basic	hall e	int																	. 6 6 6 6 7 7 7 7 9 9 9 9 9 9 11 11 11 12 12 12 12 12 14 14 14 14 15	
8 9	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.10 7.11 7.112 7.13 7.14 數 .1 5 8.1 6 9.1 d d d d d d e e e e e e e e e e	basic	hall e	int																	. 6 6 6 6 6 7 7 7 7 9 9 9 10 10 11 11 11 11 11 11 11 11 11 11 11	
8 9	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.10 7.11 7.112 7.13 7.14 數 .1 5 8.1 6 9.1 d d d d d d e e e e e e e e e e	basic	hall e	int																	. 6 6 6 6 7 7 7 7 9 9 9 9 9 9 11 11 11 12 12 12 12 12 14 14 14 14 15	
8 9	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.10 7.11 7.12 7.13 7.14 7.15 7.17 動 8.1 8.1 8.1 8.1 8.1 8.1 9.1 9.1	basic	hall e	int																	. 66 66 66 66 66 66 66 66 66 66 66 66 66	
8 9	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.10 7.11 7.12 7.13 7.15 7.16 7.17 動 8.1 Secti 9.1 dp 10.1 sl 10.1	basic	hall e	int																	. 6 6 6 6 6 6 7 7 7 7 9 9 9 9 9 9 9 10 10 11 11 11 11 11 11 11 11 11 11 11	
8 9	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.10 7.11 7.12 7.13 7.15 7.16 7.17 動 8.1 Secti 9.1 dp 10.1 sl 10.1	basic	hall e	int																	. 66 66 66 66 66 66 66 66 66 66 66 66 66	
8 9	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.10 7.11 7.12 7.13 7.15 7.16 7.17 動 8.1 Secti 9.1 dp 10.1 sl 10.1	basic	hall e	int																	. 6 6 6 6 6 6 7 7 7 7 9 9 9 9 9 9 9 10 10 11 11 11 11 11 11 11 11 11 11 11	

ubuntu

1.1 run

1 ~ \$ bash cp.sh PA

1.2 cp.sh

```
1 #!/bin/bash
2 clear
 g++ $1.cpp -DDBG -o $1
4 if [[ "$?" == "0" ]]; then
         echo Running
5
6
          ./$1 < $1.in > $1.out
7
          echo END
8 fi
```

Basic

2.1 ascii

1	int	char	int	char	int	char
2	32		64	@	96	•
3	33	!	65	Α	97	а
4	34	"	66	В	98	b
5	35	#	67	С	99	C
6	36	\$	68	D	100	d
7	37	%	69	E	101	e
8	38	&	70	F	102	f
9	39	,	71	G	103	g
10	40	(72	Н	104	h
11	41)	73	I	105	i
12	42	*	74	J	106	j
13	43	+	<i>75</i>	K	107	k
14	44	,	76	L	108	1
15	45	-	77	М	109	m
16	46		78	N	110	n
17	47	/	79	0	111	0
18	48	0	80	P	112	p
19	49	1	81	Q	113	q
20	50	2	82	R	114	r
21	51	3	83	S	115	S
22	52	4	84	T	116	t
23	53	5	85	U	117	u
24	54	6	86	V	118	V
25	55	7	87	W	119	W
26	56	8	88	X	120	X
27	57	9	89	Y	121	y
28	58	:	90	Z	122	Z
29	59	;	91	Γ	123	{
30	60	<	92	1	124	1
31	61	=	93	J	125	}
32	62	>	94	٨	126	~
33	63	?	95	_		

2.2 limits

```
1 [Type]
                       [size]
                                    [range]
   2 char
                                   127 to -128
                         1
                                   127 to -128
     signed char
                         1
     unsigned char
                         1
                                   0 to 255
   5
     short
                         2
                                   32767 to -32768
   6
     int
                                   2147483647 to -2147483648
     unsigned int
                                   0 to 4294967295
   8 long
                                   2147483647 to -2147483648
   9
     unsigned long
                         4
                                   0 to 18446744073709551615
21 10 long long
                         8
21 11
                9223372036854775807 to -9223372036854775808
  12 double
                              1.79769e+308 to 2.22507e-308
                         8
  13 long double
                         16
                              1.18973e+4932 to 3.3621e-4932
  14 float
                         4
                                 3.40282e+38 to 1.17549e-38
  15 unsigned long long
                         8
                                   0 to 18446744073709551615
                         32
  16 string
```

字串

3.1 最長迴文子字串

```
1 #include < bits / stdc ++ . h >
  #define T(x) ((x)%2 ? s[(x)/2] : '.')
3
  using namespace std;
5
  string s;
6 int n;
8
 int ex(int 1,int r){
  int i=0;
```

```
10
     while (1-i)=0&&r+i<n&&T(1-i)==T(r+i) i++;
11
     return i:
12 }
13
14 int main(){
15
     cin>>s;
     n=2*s.size()+1;
16
17
     int mx = 0;
     int center=0;
18
19
     vector<int> r(n);
20
     int ans=1;
     r[0]=1;
21
22
     for(int i=1;i<n;i++){</pre>
       int ii=center-(i-center);
23
24
       int len=mx-i+1;
25
       if(i>mx){
         r[i]=ex(i,i);
26
27
         center=i;
         mx=i+r[i]-1;
28
29
       else if(r[ii]==len){
30
31
         r[i]=len+ex(i-len,i+len);
32
          center=i;
         mx=i+r[i]-1;
33
34
35
       else r[i]=min(r[ii],len);
36
       ans=max(ans,r[i]);
37
38
     cout << ans -1 << "\n";
39
     return 0;
40 }
```

3.2 stringstream

```
1 string s,word;
2 stringstream ss;
3 getline(cin,s);
4 ss<<s;
bwhile(ss>>word) cout<<word<<endl;</pre>
```

4 STL

4.1 priority_queue

```
1 priority_queue: 優先隊列,資料預設由大到小排序。
  讀取優先權最高的值:
3
4
     x = pq.top();
                            //讀取後刪除
5
     pq.pop();
6 判斷是否為空的priority_queue:
                            //回傳 true
7
     pq.empty()
8
     pq.size()
9|如需改變priority_queue的優先權定義:
                           //預設由大到小
     priority_queue<T> pq;
10
11
     priority_queue<T, vector<T>, greater<T> > pq;
12
                            //改成由小到大
13
     priority_queue < T, vector < T > , cmp > pq;
                                         //cmp
```

4.2 deque

```
1 deque 是 C++ 標準模板函式庫

2 (Standard Template Library, STL)

3 中的雙向佇列容器 (Double-ended Queue),

4 跟 vector 相似,不過在 vector

中若是要添加新元素至開端,

5 其時間複雜度為 O(N),但在 deque 中則是 O(1)。

6 同樣也能在我們需要儲存更多元素的時候自動擴展空間,

7 讓我們不必煩惱佇列長度的問題。
```

```
8 dq.push_back() //在 deque 的最尾端新增元素
 dq.push_front() //在 deque 的開頭新增元素
             //移除 deque 最尾端的元素
10 dq.pop_back()
11 dq.pop_front() //移除 deque 最開頭的元素
12 dq.back()
              //取出 deque 最尾端的元素
              //回傳 deque 最開頭的元素
13 dq.front()
14 dq.insert()
15 dq.insert(position, n, val)
     position: 插入元素的 index 值
17
     n: 元素插入次數
     val: 插入的元素值
19 dq.erase()
     //刪除元素,需要使用迭代器指定刪除的元素或位置,
              //同時也會返回指向刪除元素下一元素的迭代器。
20
              //清空整個 deque 佇列。
21 da.clear()
22 dq.size()
              //檢查 deque 的尺寸
              //如果 deque 佇列為空返回 1;
23 dq.empty()
              //若是存在任何元素,則返回0
24
              //返回一個指向 deque 開頭的迭代器
25 dq.begin()
              //指向 deque 結尾,
26 dq.end()
27
              //不是最後一個元素,
              //而是最後一個元素的下一個位置
28
```

4.3 map

```
1 map: 存放 key-value pairs 的映射資料結構,
2
      會按 key 由小到大排序。
  元素存取
3
  operator[]:存取指定的[i]元素的資料
4
6
  begin():回傳指向map頭部元素的迭代器
7
  end():回傳指向map末尾的迭代器
  rbegin():回傳一個指向map尾部的反向迭代器
10 rend():回傳一個指向map頭部的反向迭代器
11
12 遍歷整個map時,利用iterator操作:
13 取key:it->first 或 (*it).first
  取value:it->second 或 (*it).second
14
15
16 容量
17 empty():檢查容器是否為空,空則回傳true
18 size():回傳元素數量
  max_size():回傳可以容納的最大元素個數
20
21 | 修改器
22 clear():刪除所有元素
23 insert():插入元素
24 erase():刪除一個元素
  swap():交換兩個map
25
26
27| 查找
28 count():回傳指定元素出現的次數
29 find(): 查找一個元素
30
  //實作範例
31
32 #include <bits/stdc++.h>
33
  using namespace std;
  int main(){
34
35
     //declaration container and iterator
36
     map<string, string> mp;
37
     map<string, string>::iterator iter;
38
     map<string, string>::reverse_iterator iter_r;
39
40
     //insert element
     mp.insert(pair<string, string>
41
            ("r000", "student_zero"));
42
     mp["r123"] = "student_first";
43
44
     mp["r456"] = "student_second";
45
     //traversal
```

```
47
       for(iter=mp.begin();iter!=mp.end();iter++)
           cout << iter -> first << " "
48
49
                         <<iter->second<<endl;
       for(iter_r=mp.rbegin();iter_r!=mp.rend();iter_r++)
50
51
           cout << iter_r -> first << "
                 "<<iter_r->second<<endl;
52
53
       //find and erase the element
       iter=mp.find("r123");
54
       mp.erase(iter);
55
56
       iter=mp.find("r123");
       if(iter!=mp.end())
57
58
          cout << "Find, the value is "
                    <<iter->second<<endl;
59
60
       else cout<<"Do not Find"<<endl;</pre>
61
       return 0;
62 }
```

4.4 unordered_map

```
1 | unordered_map: 存放 key-value pairs2 | 的「無序」映射資料結構。3 | 用法與map相同
```

4.5 set

```
1 set: 集合,去除重複的元素,資料由小到大排序。
2
  取值: 使用iterator
3
4
      x = *st.begin();
             // set中的第一個元素(最小的元素)。
5
6
      x = *st.rbegin();
             // set中的最後一個元素(最大的元素)。
7
8
  判斷是否為空的set:
9
10
      st.empty() 回傳true
      st.size() 回傳零
11
12
  常用來搭配的member function:
13
14
      st.count(x):
      auto it = st.find(x);
15
16
         // binary search, O(log(N))
17
      auto it = st.lower_bound(x);
18
         // binary search, O(log(N))
      auto it = st.upper_bound(x);
19
20
         // binary search, O(log(N))
```

4.6 multiset

4.7 unordered_set

```
unordered_set 的實作方式通常是用雜湊表(hash table),

phase phase
```

```
7 unordered_set <int> myunordered_set;
8 myunordered_set.insert(2);
9 myunordered_set.insert(4);
10 myunordered_set.insert(6);
11 cout << myunordered_set.count(4) << "\n"; // 1
12 cout << myunordered_set.count(8) << "\n"; // 0</pre>
```

4.8 單調隊列

```
1 //單調隊列
  "如果一個選手比你小還比你強,你就可以退役了。"--單調隊列
2
  example
  給出一個長度為 n 的數組,
6
  輸出每 k 個連續的數中的最大值和最小值。
  #include <bits/stdc++.h>
9
10
  #define maxn 1000100
11
  using namespace std;
  int q[maxn], a[maxn];
12
13 int n, k;
14
15
  void getmin() {
       // 得到這個隊列裡的最小值,直接找到最後的就行了
16
17
      int head=0,tail=0;
       for(int i=1;i<k;i++) {</pre>
18
19
           while(head<=tail&&a[q[tail]]>=a[i]) tail--;
20
          g[++tail]=i:
21
       for(int i=k; i<=n;i++) {</pre>
22
23
          while(head<=tail&&a[q[tail]]>=a[i]) tail--;
24
           q[++tail]=i;
25
           while(q[head]<=i-k) head++;</pre>
           cout <<a[q[head]]<<"
26
27
28
       cout << endl;
29
  }
30
  void getmax() { // 和上面同理
31
      int head=0,tail=0;
32
       for(int i=1;i<k;i++) {</pre>
33
34
           while(head<=tail&&a[q[tail]]<=a[i])tail--;</pre>
35
           q[++tail]=i;
36
       for(int i=k;i<=n;i++) {</pre>
37
38
           while(head<=tail&&a[q[tail]]<=a[i])tail--;</pre>
           q[++tail]=i;
39
40
           while(q[head]<=i-k) head++;</pre>
41
           cout <<a[q[head]]<<"
42
43
      cout << end1;
44
  }
45
46
  int main(){
      cin>>n>>k; //每k個連續的數
47
       for(int i=1;i<=n;i++) cin>>a[i];
48
49
       getmin();
50
       getmax();
51
       return 0;
52 }
```

5 sort

5.1 大數排序

```
# 建立空串列
6
      arr = []
      for i in range(n):
7
8
       arr.append(int(input())) # 依序將數字存入串列
                              # 串列排序
9
      arr.sort()
10
      for i in arr:
11
       print(i)
                            # 依序印出串列中每個項目
    except:
12
13
      break
```

6 math

6.1 質數與因數

```
1 埃氏篩法
2 int n;
3 vector<int> isprime(n+1,1);
4 isprime[0]=isprime[1]=0;
  for(int i=2;i*i<=n;i++){</pre>
5
6
       if(isprime[i])
           for(int j=i*i;j<=n;j+=i) isprime[j]=0;</pre>
7
8 }
9
10 歐拉篩0(n)
11 #define MAXN 47000 //sqrt(2^31)=46,340...
12 bool isPrime[MAXN];
13 int prime[MAXN];
14 int primeSize=0;
15 void getPrimes(){
       memset(isPrime, true, sizeof(isPrime));
16
17
       isPrime[0]=isPrime[1]=false;
       for(int i=2; i < MAXN; i++){</pre>
18
           if(isPrime[i]) prime[primeSize++]=i;
19
20
           for(int
                j=0;j<primeSize&&i*prime[j]<=MAXN;++j){</pre>
21
                isPrime[i*prime[j]]=false;
                if(i%prime[j]==0) break;
22
23
           }
       }
24
25
  }
26
  最大公因數 O(log(min(a,b)))
27
  int GCD(int a, int b){
28
29
       if(b==0) return a;
       return GCD(b,a%b);
30
  }
31
32
33 質因數分解
  void primeFactorization(int n){
34
35
       for(int i=0;i<(int)p.size();++i){</pre>
           if(p[i]*p[i]>n) break;
36
37
           if(n%p[i]) continue;
           cout << p[i] << ' ';
38
39
           while(n%p[i]==0) n/=p[i];
40
41
       if(n!=1) cout << n << ' ';
42
       cout << '\n';
43 }
44
45 擴展歐幾里得算法
46 \frac{1}{ax+by=GCD(a,b)}
47
  #include <bits/stdc++.h>
48
  using namespace std;
49
  int ext_euc(int a,int b,int &x,int &y){
       if(b==0){
51
52
           x=1, y=0;
53
           return a;
       }
54
55
       int d=ext_euc(b,a%b,y,x);
56
       y-=a/b*x;
57
       return d;
58 }
59
```

```
60 int main(){
       int a,b,x,y;
61
       cin>>a>>b;
62
       ext_euc(a,b,x,y);
63
64
       cout << x << ' '<< y << endl;
65
       return 0;
66
   }
67
68
69
   歌德巴赫猜想
70
71
   solution: 把偶數 N (6≤N≤10<sup>6</sup>) 寫成兩個質數的和。
   #include <iostream>
72
73 using namespace std;
74 #define N 20000000
75
   int ox[N],p[N],pr;
76
   void PrimeTable(){
77
       ox[0]=ox[1]=1;
78
       pr=0;
79
       for(int i=2:i<N:i++){</pre>
80
            if(!ox[i]) p[pr++]=i;
81
            for(int j=0;i*p[j]<N&&j<pr;j++)</pre>
82
                ox[i*p[j]]=1;
       }
83
84
   }
85
86
   int main(){
       PrimeTable();
87
88
       int n;
       while(cin>>n,n){
89
90
            int x:
91
            for(x=1;;x+=2)
92
                if(!ox[x]&&!ox[n-x]) break;
93
            printf("%d = %d + %d\n",n,x,n-x);
       }
94
   }
95
   problem : 給定整數 N,
96
            求 N 最少可以拆成多少個質數的和。
97
   如果 N 是質數,則答案為 1。
   如果 N 是偶數(不包含2),則答案為 2 (強歌德巴赫猜想)。
   如果 N 是奇數且 N-2 是質數,則答案為 2 (2+質數)。
   其他狀況答案為 3 (弱歌德巴赫猜想)。
   #include < bits / stdc ++. h>
102
   using namespace std;
103
104
   bool isPrime(int n){
105
       for(int i=2;i<n;++i){</pre>
106
            if(i*i>n) return true;
107
108
            if(n%i==0) return false;
109
       }
       return true;
110
111
   }
112
   int main(){
113
114
       int n;
115
       cin>>n;
116
       if(isPrime(n)) cout<<"1\n";</pre>
       else if(n%2==0||isPrime(n-2)) cout<<"2\n";</pre>
117
       else cout << "3\n";</pre>
119 }
```

6.2 快速冪

```
1 計算a^b
  #include<iostream>
  #define ll long long
  using namespace std;
  const 11 MOD=1000000007;
6
7
  11 fp(11 a, 11 b) {
       int ans=1;
8
9
       while(b>0){
10
           if(b&1) ans=ans*a%MOD;
           a=a*a%MOD;
11
12
           b>>=1;
```

6.3 歐拉函數

```
1 //計算閉區間 [1,n] 中的正整數與 n 互質的個數
2
3
  int phi(){
4
      int ans=n;
5
      for(int i=2;i*i<=n;i++)</pre>
6
          if(n%i==0){
              ans=ans-ans/i;
              while(n%i==0) n/=i;
8
10
      if(n>1) ans=ans-ans/n;
11
      return ans;
12 }
```

6.4 atan

```
1| 說明
    atan() 和 atan2() 函數分別計算 x 和 y/x的反正切。
3
4 回覆值
    atan()函數會傳回介於範圍 - /2 到 /2 弧度之間的值。
5
    atan2() 函數會傳回介於 - 至
                                 弧度之間的值。
    如果 atan2() 函數的兩個引數都是零,
    則函數會將 errno 設為 EDOM,並傳回值 0。
8
10|範例
11 #include <math.h>
12 #include <stdio.h>
13
  int main(void){
14
15
      double a,b,c,d;
16
17
      c = 0.45;
18
      d=0.23;
19
      a=atan(c);
20
      b=atan2(c,d);
21
22
23
      printf("atan(%lf)=%lf/n",c,a);
      printf("atan2(%1f,%1f)=%1f/n",c,d,b);
24
25
26 }
27
28 /*
29 atan (0.450000) = 0.422854
30 atan2(0.450000,0.230000)=1.098299
31 */
```

6.5 大步小步

```
      1 題意

      2 給定 B,N,P,求出 L 滿足 B^L N(mod P)。

      3 4 題解

      5 餘數的循環節長度必定為 P 的因數,因此 B^0 B^P,B^1 B^(P+1),…,

      6 也就是說如果有解則 L<N,枚舉0,1,2,L-1 能得到結果,但會超時。</td>

      7
```

```
8 | 將 L 拆成 mx+y,只要分別枚舉 x,y 就能得到答案,
  設 m=√P 能保證最多枚舉 2√P 次 。
9
10
11
  B^(mx+y) N(mod P)
12 B^(mx)B^y N(mod P)
  B^y N(B^(-m))^x \pmod{P}
13
14
15
  先求出 B^0,B^1,B^2,...,B^(m-1),
  再枚舉 N(B^(-m)),N(B^(-m))^2,… 查看是否有對應的 B^y。
16
17 這種算法稱為大步小步演算法,
  大步指的是枚舉 x (一次跨 m 步),
18
  小步指的是枚舉 y (一次跨 1 步)。
19
20
    複雜度分析
21
22 利用 map/unorder_map 存放 B^0,B^1,B^2,...,B^(m-1),
23 枚舉 x 查詢 map/unorder_map 是否有對應的 B^y,
  存放和查詢最多 2√P 次,時間複雜度為 0(√Plog√P)/0(√P)。
24
25
26
27
  #include <bits/stdc++.h>
28
29 using namespace std;
30 using LL = long long;
  LL B, N, P;
31
32
33
  LL fpow(LL a, LL b, LL c){
34
      LL res=1;
35
      for(;b;b >>=1){
36
          if(b&1)
37
               res=(res*a)%c;
          a=(a*a)%c;
38
39
40
      return res;
41
  }
42
     BSGS(LL a, LL b, LL p){
43
44
      a%=p,b%=p;
45
      if(a==0)
          return b==0?1:-1;
46
47
      if(b==1)
48
          return 0;
49
      map<LL, LL> tb;
      LL sq=ceil(sqrt(p-1));
50
51
      LL inv=fpow(a,p-sq-1,p);
52
      tb[1]=sq;
      for(LL i=1, tmp=1; i < sq; ++i){</pre>
53
54
          tmp=(tmp*a)%p;
55
          if(!tb.count(tmp))
               tb[tmp]=i;
56
57
      for(LL i=0;i<sq;++i){</pre>
58
59
          if(tb.count(b)){
60
              LL res=tb[b];
               return i*sq+(res==sq?0:res);
61
62
63
          b=(b*inv)%p;
64
      }
65
      return -1;
66
  }
67
68
  int main(){
69
      ios::sync_with_stdio(false);
      cin.tie(0),cout.tie(0);
70
71
      while(cin>>P>>B>>N){
          LL ans=BSGS(B,N,P);
72
          if(ans==-1)
73
74
               cout << "no solution\n";</pre>
75
76
              cout << ans << '\n';
77
      }
78 }
```

7 algorithm

7.1 basic

```
1 min_element:找尋最小元素
2 min_element(first, last)
3 max_element:找尋最大元素
4 max_element(first, last)
5 sort:排序,預設由小排到大。
6 sort(first, last)
기 sort(first, last, cmp):可自行定義比較運算子 cmp ∘
8 find:尋找元素。
9 find(first, last, val)
10 lower_bound:尋找第一個小於 x 的元素位置,
            如果不存在,則回傳 last 。
11
12 lower_bound(first, last, val)
13 upper_bound:尋找第一個大於 x 的元素位置,
            如果不存在,則回傳 last 。
14
15
  upper_bound(first, last, val)
16 next_permutation:將序列順序轉換成下一個字典序,
                 如果存在回傳 true,反之回傳 false。
17
18 next_permutation(first, last)
19 prev_permutation:將序列順序轉換成上一個字典序,
                 如果存在回傳 true,反之回傳 false。
20
21 prev_permutation(first, last)
```

7.2 二分搜

```
1 int binary_search(int target) {
2 // For range [ok, ng) or (ng, ok], "ok" is for the
3 // index that target value exists, with "ng" doesn't.
      int ok = maxn, ng = -1;
5 // For first lower_bound, ok=maxn and ng=-1,
6 // for last lower_bound, ok = -1 and ng = maxn
7 // (the "check" funtion
8 // should be changed depending on it.)
      while(abs(ok - ng) > 1) {
9
10
          int mid = (ok + ng) >> 1;
          if(check(mid)) ok = mid;
11
          else ng = mid;
13 // Be careful, "arr[mid]>=target" for first
14 // lower_bound and "arr[mid]<=target" for
15 // last lower_bound. For range (ng, ok],
16 // convert it into (ng, mid] and (mid, ok] than
17 // choose the first one, or convert [ok, ng) into
18 // [ok, mid) and [mid, ng) and than choose
19 // the second one.
20
      }
21
      return ok;
22 }
23
24 lower_bound(arr, arr + n, k);
                                 //最左邊 ≥ k 的位置
25 upper_bound(arr, arr + n, k);
                                 //最左邊 > k 的位置
27 lower_bound(arr, arr + n, k) - 1; //最右邊 < k 的位置
                                 //等於 k 的範圍
28 (lower_bound, upper_bound)
29 equal_range(arr, arr+n, k);
```

7.3 三分搜

```
10
  struct Point{
11
       double x, y, z;
12
       Point() {}
13
14
       Point(double _x, double _y, double
            _z):x(_x),y(_y),z(_z){}
       void read() { cin>>x>>y>>z; }
15
16
       Point operator+(const Point &rhs) const{
           return Point(x+rhs.x,y+rhs.y,z+rhs.z);
17
18
19
       Point operator - (const Point &rhs) const{
20
           return Point(x-rhs.x,y-rhs.y,z-rhs.z);
21
       Point operator*(const double &d) const{
22
23
           return Point(x*d,y*d,z*d);
24
25
       Point operator/(const double &d) const{
26
           return Point(x/d,y/d,z/d);
27
       }
28
       double dist(const Point &rhs) const{
           double res = 0:
29
30
           res+=(x-rhs.x)*(x-rhs.x);
31
           res+=(y-rhs.y)*(y-rhs.y);
32
           res+=(z-rhs.z)*(z-rhs.z);
           return res;
33
34
       }
35
  };
36
37
  int main(){
       ios::sync_with_stdio(false);
38
       cin.tie(0),cout.tie(0);
39
40
       int T;
41
       cin>>T;
42
       for(int ti=1;ti<=T;++ti){</pre>
43
           double time;
           Point x1, y1, d1, x2, y2, d2;
44
45
           cin>>time;
           x1.read();
46
47
           y1.read();
48
           x2.read();
49
           y2.read();
50
           d1=(y1-x1)/time;
           d2=(y2-x2)/time;
51
52
           double L=0,R=1e8,m1,m2,f1,f2;
           double ans = x1.dist(x2);
53
54
           while(abs(L-R)>1e-10){
55
                m1=(L+R)/2:
                m2=(m1+R)/2;
56
57
                f1=((d1*m1)+x1).dist((d2*m1)+x2);
                f2=((d1*m2)+x1).dist((d2*m2)+x2);
58
59
                ans = min(ans, min(f1, f2));
60
                if(f1<f2) R=m2;
61
                else L=m1;
62
           cout << "Case "<<ti << ": ";
63
           cout << fixed << setprecision(4) << sqrt(ans) << '\n';</pre>
64
65
       }
66 }
```

7.4 prefix sum

```
1 // 前綴和
  陣列前n項的和。
  b[i]=a[0]+a[1]+a[2]+ ··· +a[i]
  區間和 [l, r]:b[r]-b[l-1] (要保留b[l]所以-1)
  #include < bits / stdc ++. h>
7
  using namespace std;
  int main(){
      int n:
10
      cin>>n;
11
      int a[n],b[n];
12
      for(int i=0;i<n;i++) cin>>a[i];
13
      b[0]=a[0];
      for(int i=1;i<n;i++) b[i]=b[i-1]+a[i];</pre>
14
```

103 };

104

```
| for(int i=0;i<n;i++) cout<<b[i]<<' ';
| cout<<'\n';
| int l,r;
| cin>>l>>r;
| cout<<b[r]-b[l-1]; //區間和
| 20 | }
```

7.5 差分

```
1 // 差分
2|用途:在區間 [1, r] 加上一個數字v。
3|b[1] += v; (b[0~1] 加上v)
4 b[r+1] -= v; (b[r+1~n] 減去v (b[r] 仍保留v))
5 給的 a [ ] 是前綴和數列,建構 b [ ] ,
  因為 a[i] = b[0] + b[1] + b[2] + ··· + b[i],
7 所以 b[i] = a[i] - a[i-1]。
8 在 b[1] 加上 v,b[r+1] 減去 v,
9 最後再從 0 跑到 n 使 b[i] += b[i-1]。
10 這樣一來,b[] 是一個在某區間加上v的前綴和。
11
12 #include <bits/stdc++.h>
13 using namespace std;
14 int a[1000], b[1000];
  // a: 前綴和數列, b: 差分數列
16 int main(){
17
      int n, 1, r, v;
      cin >> n;
18
19
      for(int i=1; i<=n; i++){</pre>
20
          cin >> a[i];
          b[i] = a[i] - a[i-1]; //建構差分數列
21
22
23
      cin >> 1 >> r >> v;
      b[1] += v;
24
      b[r+1] -= v;
25
26
      for(int i=1; i<=n; i++){</pre>
27
28
          b[i] += b[i-1];
          cout << b[i] << ' ';
29
30
31 }
```

7.6 greedy

28

```
1 // 貪心
2 貪心演算法的核心為,
3 採取在目前狀態下最好或最佳(即最有利)的選擇。
  貪心演算法雖然能獲得當前最佳解,
5 但不保證能獲得最後(全域)最佳解,
6 提出想法後可以先試圖尋找有沒有能推翻原本的想法的反例,
7
  確認無誤再實作。
8
10 刪數字問題
11 //problem
12 | 給定一個數字 N(≤10^100),需要刪除 K 個數字,
13 請問刪除 K 個數字後最小的數字為何?
14
15
  //solution
  刪除滿足第 i 位數大於第 i+1 位數的最左邊第 i 位數,
17 扣除高位數的影響較扣除低位數的大。
18
19
  //code
20 int main(){
21
     string s:
22
     int k;
     cin>>s>>k:
23
     for(int i=0;i<k;++i){</pre>
24
        if((int)s.size()==0) break;
25
26
        int pos =(int)s.size()-1;
        for(int j=0; j<(int)s.size()-1;++j){</pre>
27
```

if(s[j]>s[j+1]){

```
29
                  pos=j;
30
                  break;
              }
31
          }
32
33
          s.erase(pos,1);
34
      while((int)s.size()>0&&s[0]=='0')
35
36
          s.erase(0,1);
       if((int)s.size()) cout<<s<'\n';</pre>
37
       else cout << 0 << '\n';
38
39 }
40
41
42 最小區間覆蓋長度
   //problem
43
44 | 給定 n 條線段區間為 [Li,Ri],
45
   請問最少要選幾個區間才能完全覆蓋 [0,S]?
   //solution
47
48 先將所有區間依照左界由小到大排序,
49 對於當前區間 [Li, Ri], 要從左界 >Ri 的所有區間中,
50 | 找到有著最大的右界的區間,連接當前區間。
51
52
   //problem
53 長度 n 的直線中有數個加熱器,
   在 x 的加熱器可以讓 [x-r,x+r] 內的物品加熱,
54
   問最少要幾個加熱器可以把 [0,n] 的範圍加熱。
55
56
57
   //solution
   對於最左邊沒加熱的點a,選擇最遠可以加熱a的加熱器,
58
   更新已加熱範圍,重複上述動作繼續尋找加熱器。
   //code
62
  int main(){
      int n, r;
63
       int a[1005];
64
65
      cin>>n>>r:
       for(int i=1;i<=n;++i) cin>>a[i];
66
67
      int i=1, ans=0;
68
       while(i<=n){</pre>
69
          int R=min(i+r-1,n),L=max(i-r+1,0)
          int nextR=-1:
70
71
          for(int j=R; j>=L; -- j){
              if(a[i]){
72
73
                 nextR=j;
74
                 break;
75
              }
76
          }
77
          if(nextR==-1){
              ans=-1;
78
79
              break;
80
81
          ++ans;
82
          i=nextR+r:
83
       cout <<ans << '\n';
84
85
86
87
   最多不重疊區間
88
   給你 n 條線段區間為 [Li,Ri],
   請問最多可以選擇幾條不重疊的線段(頭尾可相連)?
91
92
   //solution
94 依照右界由小到大排序,
   每次取到一個不重疊的線段,答案 +1。
96
97
   //code
98
   struct Line{
      int L.R:
99
       bool operator < (const Line &rhs)const{</pre>
100
           return R<rhs.R;</pre>
101
102
```

```
105
   int main(){
                                                         180
       int t:
                                                            //code
106
                                                         181
       cin>>t;
                                                            struct Work{
107
       Line a[30];
108
                                                         183
                                                                int t, d;
109
       while(t--){
                                                         184
                                                                bool operator<(const Work &rhs)const{</pre>
           int n=0;
110
                                                         185
                                                                    return d<rhs.d;</pre>
          while(cin>>a[n].L>>a[n].R,a[n].L||a[n].R)
111
                                                         186
112
                                                         187
                                                            }:
113
           sort(a,a+n);
                                                         188
           int ans=1,R=a[0].R;
114
                                                         189
                                                            int main(){
115
           for(int i=1;i<n;i++){</pre>
                                                         190
                                                                int n=0;
               if(a[i].L>=R){
                                                                Work a[10000];
                                                         191
116
117
                                                         192
                                                                priority_queue<int> pq;
                  ++ans;
                  R=a[i].R:
                                                                while(cin>>a[n].t>>a[n].d)
118
                                                         193
119
                                                         194
                                                                    ++n:
          }
                                                                sort(a,a+n);
120
                                                         195
121
          cout << ans << '\n';</pre>
                                                                int sumT=0,ans=n;
                                                         196
122
       }
                                                         197
                                                                for(int i=0;i<n;++i){</pre>
                                                                    pq.push(a[i].t);
123
  }
                                                         198
124
                                                         199
                                                                    sumT+=a[i].t;
                                                                    if(a[i].d<sumT){</pre>
125
                                                         200
126 最小化最大延遲問題
                                                         201
                                                                        int x=pq.top();
                                                         202
                                                                        pq.pop();
127 //problem
                                                                        sumT -=x;
                                                         203
128 | 給定 N 項工作,每項工作的需要處理時長為 Ti,
                                                                        --ans;
                                                         204
129 期限是 Di, 第 i 項工作延遲的時間為 Li=max(0, Fi-Di),
                                                                    }
                                                         205
   原本Fi 為第 i 項工作的完成時間,
                                                         206
                                                                }
   求一種工作排序使 maxLi 最小。
                                                         207
                                                                cout <<ans << '\n';
132
                                                         208
                                                            }
133
   //solution
                                                         209
  |按照到期時間從早到晚處理。
134
                                                            任務調度問題
                                                         210
135
                                                            //problem
                                                         211
   //code
136
                                                         212 給定 N 項工作,每項工作的需要處理時長為 Ti,
   struct Work{
137
                                                            期限是 Di,如果第 i 項工作延遲需要受到 pi 單位懲罰,
138
       int t, d;
                                                            請問最少會受到多少單位懲罰。
                                                         214
       bool operator < (const Work &rhs)const{</pre>
139
                                                         215
140
          return d<rhs.d;</pre>
                                                         216
                                                            //solution
141
                                                            依照懲罰由大到小排序,
142
  };
                                                         217
                                                            每項工作依序嘗試可不可以放在 Di-Ti+1, Di-Ti,...,1,0,
143
                                                         218
   int main(){
144
                                                            如果有空閒就放進去,否則延後執行。
                                                         219
145
       int n;
                                                         220
       Work a[10000];
146
                                                         221
                                                            //problem
147
       cin>>n;
                                                         222 給定 N 項工作,每項工作的需要處理時長為 Ti,
       for(int i=0;i<n;++i)</pre>
148
                                                            期限是 Di,如果第 i 項工作在期限內完成會獲得 ai
                                                         223
149
           cin>>a[i].t>>a[i].d;
                                                                 單位獎勵,
150
       sort(a.a+n):
                                                            請問最多會獲得多少單位獎勵。
                                                         224
       int maxL=0, sumT=0;
151
                                                         225
152
       for(int i=0;i<n;++i){</pre>
                                                         226
                                                            //solution
          sumT+=a[i].t:
153
                                                            和上題相似,這題變成依照獎勵由大到小排序。
                                                         227
           maxL=max(maxL,sumT-a[i].d);
154
                                                         228
       }
155
                                                         229
                                                            //code
156
       cout << maxL << '\n';</pre>
                                                         230
                                                            struct Work{
157
  }
                                                                int d,p;
                                                         231
158
                                                         232
                                                                bool operator<(const Work &rhs)const{</pre>
159
                                                         233
                                                                    return p>rhs.p;
   最少延遲數量問題
160
                                                         234
   //problem
161
                                                            };
                                                         235
162 給定 N 個工作,每個工作的需要處理時長為 Ti,
                                                         236
   期限是 Di,求一種工作排序使得逾期工作數量最小。
163
                                                         237
                                                            int main(){
                                                         238
                                                                int n;
165
  //solution
                                                         239
                                                                Work a[100005];
166 期限越早到期的工作越先做。將工作依照到期時間從早到晚排序4
                                                                bitset<100005> ok;
   依序放入工作列表中,如果發現有工作預期,
167
                                                                while(cin>>n){
                                                         241
   就從目前選擇的工作中,移除耗時最長的工作。
168
                                                         242
                                                                    ok.reset();
                                                                    for(int i=0;i<n;++i)</pre>
169
                                                         243
                                                         244
                                                                        cin>>a[i].d>>a[i].p;
170
   上述方法為 Moore-Hodgson s Algorithm。
171
                                                         245
                                                                    sort(a.a+n):
172 //problem
                                                         246
                                                                    int ans=0;
                                                                    for(int i=0;i<n;++i){</pre>
173 給定烏龜的重量和可承受重量,問最多可以疊幾隻烏龜?
                                                         247
                                                                        int j=a[i].d;
                                                         248
174
                                                         249
                                                                        while(j--)
175
   //solution
                                                                            if(!ok[j]){
                                                         250
176 和最少延遲數量問題是相同的問題,只要將題敘做轉換。
                                                         251
                                                                                ans+=a[i].p;
  |工作處裡時長 → 烏龜重量
                                                                                ok[j]=true;
                                                         252
178 工作期限 → 烏龜可承受重量
                                                         253
                                                                                break;
179 多少工作不延期 → 可以疊幾隻烏龜
                                                                            }
                                                         254
```

```
3 int medium[n][n];
4 // 由 i 點到 j 點的路徑,其中繼點為 med i um [ i ] [ j ] 。
  void floyd_warshall(){ //0(V^3)
6
    for(int i=0;i<n;i++)</pre>
7
      for(int j=0;j<n;j++){</pre>
9
         d[i][j]=w[i][j];
10
         medium[i][j]=-1;
         // 預設為沒有中繼點
11
12
      }
    for(int i=0;i<n;i++) d[i][i]=0;</pre>
13
14
    for(int k=0;k<n;k++)</pre>
15
      for(int i=0;i<n;i++)</pre>
16
         for(int j=0;j<n;j++)</pre>
17
           if(d[i][k]+d[k][j]<d[i][j]){</pre>
             d[i][j]=d[i][k]+d[k][j];
18
19
             medium[i][j]=k;
               由 i 點 走 到 j 點 經 過 了 k 點
20
           }
21
22
  }
23
24 // 這支函式並不會印出起點和終點,必須另行印出。
                                    // 印出最短路徑
25 void find_path(int s,int t){
    if(medium[s][t]==-1) return; // 沒有中繼點就結束
26
                                    // 前半段最短路徑
27
    find_path(s,medium[s][t]);
28
    cout << medium[s][t];</pre>
                             // 中繼點
    find_path(medium[s][t],t);
                                    // 後半段最短路徑
29
30 }
```

7.8 dinic

```
1 #include <stdio.h>
2
  #include <string.h>
3 #include <queue>
4 #define MAXNODE 105
5 #define oo 1e9
6 using namespace std;
8 int nodeNum;
9 int graph[MAXNODE][MAXNODE];
10 int levelGraph[MAXNODE];
11
  bool canReachSink[MAXNODE];
12
  bool bfs(int from, int to){
13
14
       memset(levelGraph,0,sizeof(levelGraph));
       levelGraph[from]=1;
15
       queue<int> q;
16
       q.push(from);
17
18
       int currentNode;
19
       while(!q.empty()){
           currentNode=q.front();
20
21
           q.pop();
           for(int nextNode=1; nextNode<=nodeNum</pre>
22
23
                                     ;++nextNode){
                if((levelGraph[nextNode]==0)&&
24
25
                    graph[currentNode][nextNode]>0){
26
                    levelGraph[nextNode]=
                        levelGraph[currentNode]+1;
27
                    q.push(nextNode);
28
29
30
                if((nextNode==to)&&
31
                    (graph[currentNode][nextNode]>0))
32
                    return true:
```

```
33
           }
       }
34
35
       return false;
36 }
37
  int dfs(int from, int to, int bottleNeck){
       if(from == to) return bottleNeck;
38
       int outFlow = 0;
39
40
       int flow;
       for(int nextNode=1; nextNode <= nodeNum; ++ nextNode){</pre>
41
           if((graph[from][nextNode]>0)&&
42
43
                (levelGraph[from]==levelGraph[nextNode]-1)&&
                canReachSink[nextNode]){
44
45
                flow=dfs(nextNode, to,
                    min(graph[from][nextNode],bottleNeck));
46
47
                graph[from][nextNode]-=flow; //貪心
48
                graph[nextNode][from]+=flow; //反悔路
49
                outFlow+=flow;
50
               bottleNeck -= flow;
51
52
           if(bottleNeck==0) break;
53
       if(outFlow==0) canReachSink[from]=false;
54
55
       return outFlow;
56
  }
57
  int dinic(int from, int to){
58
59
       int maxFlow=0;
       while(bfs(from, to)){
60
61
           memset(canReachSink,1,sizeof(canReachSink));
62
           maxFlow += dfs(from, to, oo);
63
64
       return maxFlow;
65
  }
66
67
  int main(){
68
       int from, to, edgeNum;
69
       int NetWorkNum = 1;
       int maxFlow:
70
       while(scanf("%d",&nodeNum)!=EOF&&nodeNum!=0){
71
           memset(graph, 0, sizeof(graph));
72
           scanf("%d %d %d", &from, &to, &edgeNum);
73
74
           int u, v, w;
75
           for (int i = 0; i < edgeNum; ++i){</pre>
76
                scanf("%d %d %d", &u, &v, &w);
77
                graph[u][v] += w;
78
                graph[v][u] += w;
           }
79
80
           maxFlow = dinic(from, to);
           printf("Network %d\n", NetWorkNum++);
81
82
           printf("The bandwidth is %d.\n\n", maxFlow);
83
84
       return 0;
85 }
```

7.9 SegmentTree

```
1 #define MAXN 1000
2 int data[MAXN]; //原數據
3 int st[4 * MAXN]; //線段樹
  int tag[4 * MAXN]; //懶標
6
  inline int pull(int 1, int r) {
7 // 隨題目改變 sum \ max \ min
8 // 1、r是左右樹的 index
      return st[l] + st[r];
10 }
11
12
  void build(int 1, int r, int i) {
  // 在[1, r]區間建樹, 目前根的index為i
13
      if (1 == r) {
14
15
          st[i] = data[1];
16
          return;
17
      int mid = 1 + ((r - 1) >> 1);
18
      build(1, mid, i * 2);
19
```

```
20
      build(mid + 1, r, i * 2 + 1);
      st[i] = pull(i * 2, i * 2 + 1);
21
22 }
23
24 int query(int ql, int qr, int l, int r, int i) {
  // [q1, qr]是查詢區間,[1, r]是當前節點包含的區間
25
      if (ql <= 1 && r <= qr)</pre>
26
27
          return st[i];
      int mid = 1 + ((r - 1) >> 1);
28
29
      if (tag[i]) {
          //如果當前懶標有值則更新左右節點
30
31
          st[i * 2] += tag[i] * (mid - 1 + 1);
32
          st[i * 2 + 1] += tag[i] * (r - mid);
          tag[i * 2] += tag[i]; //下傳懶標至左節點
33
          tag[i*2+1] += tag[i]; //下傳懶標至右節點
34
          tag[i] = 0;
35
      }
36
37
      int sum = 0;
      if (ql <= mid)</pre>
38
39
          sum += query(ql, qr, l, mid, i * 2);
40
      if (qr > mid)
41
          sum += query(ql, qr, mid + 1, r, i*2+1);
42
      return sum:
43 }
44
45 void update(int ql,int qr,int l,int r,int i,int c) {
46 // [q1, qr]是查詢區間,[1, r]是當前節點包含的區間
47 // c是變化量
48
      if (ql <= 1 && r <= qr) {</pre>
          st[i] += (r - l + 1) * c;
49
              //求和,此需乘上區間長度
50
          tag[i] += c;
51
          return;
52
      int mid = 1 + ((r - 1) >> 1);
53
54
      if (tag[i] && l != r) {
          //如果當前懶標有值則更新左右節點
55
          st[i * 2] += tag[i] * (mid - 1 + 1);
56
57
          st[i * 2 + 1] += tag[i] * (r - mid);
          tag[i * 2] += tag[i]; //下傳懶標至左節點
58
          tag[i*2+1] += tag[i]; //下傳懶標至右節點
59
60
          tag[i] = 0;
61
      if (ql <= mid) update(ql, qr, l, mid, i * 2, c);</pre>
62
      if (qr > mid) update(ql, qr, mid+1, r, i*2+1, c);
63
      st[i] = pull(i * 2, i * 2 + 1);
64
65 }
66 //如果是直接改值而不是加值,query與update中的tag與st的
67 // 改值從 += 改成 =
```

7.10 Nim Game

```
1 | //兩人輪流取銅板,每人每次需在某堆取一枚以上的銅板,
2 | //但不能同時在兩堆取銅板,直到最後,
3 //將銅板拿光的人贏得此遊戲。
5 #include <bits/stdc++.h>
6 #define maxn 23+5
7 using namespace std;
9 int SG[maxn];
10 int visited[1000+5];
11
  int pile[maxn],ans;
12
13
  void calculateSG(){
      SG [0]=0:
14
15
      for(int i=1;i<=maxn;i++){</pre>
16
          int cur=0;
17
          for(int j=0; j<i; j++)</pre>
18
              for(int k=0;k<=j;k++)</pre>
19
                  visited[SG[j]^SG[k]]=i;
20
          while(visited[cur]==i) cur++;
21
          SG[i]=cur;
      }
22
```

```
23 }
24
25
  int main(){
        calculateSG();
26
27
        int Case=0,n;
28
        while(cin>>n,n){
29
          ans=0:
30
          for(int i=1;i<=n;i++) cin>>pile[i];
31
          for(int i=1;i<=n;i++) if(pile[i]&1)</pre>
               ans^=SG[n-i];
32
          cout << "Game "<<++Case << ": ";
          if(!ans) cout<<"-1 -1 -1\n";
33
34
          else{
            bool flag=0;
35
36
            for(int i=1;i<=n;i++){</pre>
37
              if(pile[i]){
38
                 for(int j=i+1; j<=n; j++){</pre>
39
                   for(int k=j;k<=n;k++){</pre>
40
                      if((SG[n-i]^SG[n-j]^SG[n-k])==ans){
                        cout <<i -1 << " " << j -1 << " " << k -1 << endl;
41
42
                        flag=1;
43
                        break;
                      }
44
45
                  }
46
                   if(flag) break;
47
                 if(flag) break;
48
              }
49
50
            }
51
         }
52
53
        return 0;
54
  }
55
  /*
56
57
   input
58
  4 1 0 1 100
  3
     1 0 5
59
      2 1
60
61
   output
63 Game 1: 0 2 3
  Game 2: 0 1 1
64
  Game 3: -1 -1 -1
65
66 */
```

7.11 Trie

```
1 #include <bits/stdc++.h>
  #define word_maxn 4000*100+5
  #define str_maxn 300000+5
  #define sigma_num 26
  #define MOD 20071027
  using namespace std;
  int dp[str_maxn];
  char S[str_maxn];
10
  char wd[100+5];
11
12
  struct Trie{
13
       int ch[word_maxn][sigma_num];
14
       int val[word_maxn];
15
       int seq;
16
       void init(){
17
           memset(ch,0,sizeof(ch));
18
19
       void insertion(char *s){
20
21
           int row=0, n=strlen(s);
22
           for(int i=0;i<n;i++){</pre>
23
               int letter_no=s[i]-'a';
24
                if(ch[row][letter_no]==0){
25
                    ch[row][letter_no]=seq;
26
                    memset(ch[seq],0,sizeof(ch[seq]));
27
                    val[seq++]=0;
               }
28
```

```
29
                 row=ch[row][letter_no];
                                                                   26
            }
                                                                   27
30
31
            val[row]=n;
                                                                   28
32
                                                                   29
33
       void find_prefix(char *s,int len,vector<int>&vc){
                                                                   30
34
            int row=0;
                                                                   31
            for(int i=0;i<len;i++){</pre>
35
                                                                   32
36
                 int letter_no=s[i]-'a';
                                                                   33
                 if(ch[row][letter_no]==0) return;
                                                                   34
37
38
                 row=ch[row][letter_no];
                                                                   35
39
                 if(val[row]) vc.push_back(val[row]);
                                                                   36
            }
                                                                   37 }
40
41
       }
  }tr;
42
43
   int main(){
44
45
       int Case=1;
46
       while(cin>>S){
47
            int n;
48
            cin>>n;
            tr.init();
49
50
            for(int i=0;i<n;i++){</pre>
51
                cin>>wd;
                tr.insertion(wd);
52
53
            }
54
            memset(dp,0,sizeof(dp));
            int N=strlen(S);
55
56
            dp[N]=1;
57
            for(int i=N-1;i>=0;i--){
58
                 vector<int> vc;
                 tr.find_prefix(S+i,N-i,vc);
59
60
                 for(int j=0;j<vc.size();j++)</pre>
61
                     dp[i]=(dp[i]+dp[i+vc[j]])%MOD;
62
            cout << "Case "<<Case++<<": "<<dp[0]<<endl;
63
64
       }
65
       return 0;
66 }
67
68 /*
   input
69
70 abcd
71 4
72 a b cd ab
  output
73
74 Case 1: 2
75 */
  7.12 SPFA
1 struct Edge
```

```
2
  {
3
       int t;
       long long w;
4
5
       Edge(){};
6
       Edge(int _t, long long _w) : t(_t), w(_w) {}
7
  };
8
9 bool SPFA(int st) // 平均O(V + E) 最糟O(VE)
10 {
11
       vector<int> cnt(n, 0);
12
       bitset < MXV > inq(0);
       queue<int> q;
13
14
       q.push(st);
15
       dis[st] = 0:
16
       inq[st] = true;
17
       while (!q.empty())
18
19
            int cur = q.front();
           q.pop();
20
21
            inq[cur] = false;
22
           for (auto &e : G[cur])
23
           {
                if (dis[e.t] <= dis[cur] + e.w)</pre>
24
                    continue;
25
```

7.13 dijkstra

}

return true;

```
1 #include <bits/stdc++.h>
  #define maxn 50000+5
  #define INF 0x3f3f3f3f
3
  using namespace std;
6
  struct edge{
7
       int v,w;
  };
8
9
10
  struct Item{
11
       int u, dis;
12
       bool operator<(const Item &rhs)const{</pre>
13
            return dis>rhs.dis;
14
  };
15
16
17
  vector<edge> G[maxn];
  int dist[maxn];
18
19
  void dijkstra(int s){ // O((V + E)logE)
20
21
       memset(dist,INF,sizeof(dist));
22
       dist[s]=0;
23
       priority_queue<Item> pq;
24
       pq.push({s,0});
25
       while(!pq.empty()){
26
           Item now=pq.top();
27
            pq.pop();
28
            if(now.dis>dist[now.u]) continue;
29
            for(edge e:G[now.u]){
30
                if(dist[e.v]>dist[now.u]+e.w){
31
                     dist[e.v]=dist[now.u]+e.w;
32
                     pq.push({e.v,dist[e.v]});
33
                }
           }
34
       }
35
36
  }
37
38
  int main(){
       int t, cas=1;
39
40
       cin>>t;
41
       while(t--){
42
            int n.m.s.t:
43
            cin>>n>>m>>s>>t;
            for(int i=0;i<=n;i++) G[i].clear();</pre>
44
45
            int u,v,w;
            for(int i=0;i<m;i++){</pre>
46
47
                cin>>u>>v>>w;
48
                G[u].push_back({v,w});
49
                G[v].push_back({u,w});
50
51
           dijkstra(s);
            cout << "Case #"<<cas++<<": ";
52
            if(dist[t]==INF) cout << "unreachable \n";</pre>
53
            else cout<<dist[t]<<endl;</pre>
54
       }
55
56 }
```

dis[e.t] = dis[cur] + e.w;

return false; // negtive cycle

if (inq[e.t])

++cnt[e.t];

q.push(e.t);

continue;

if (cnt[e.t] > n)

inq[e.t] = true;

7.14 SCC Tarjan

```
1 //Strongly Connected Components
2 //Tarjan O(V + E)
3 int dfn[N], low[N], dfncnt, sk[N], in_stack[N], tp;
4 //dfn[u]: dfs時u被visited的順序
5 //low[u]: 在u的dfs子樹中能回到最早已在stack中的節點
6 int scc[N], sc; //節點 u 所在 SCC 的編號
7 int sz[N]; //強連通 u 的大小
9
  void tarjan(int u) {
      low[u] = dfn[u] = ++dfncnt, s[++tp] = u,
10
           in_stack[u] = 1;
      for (int i = h[u]; i; i = e[i].nex) {
11
          const int &v = e[i].t;
12
13
           if (!dfn[v]) {
14
               tarjan(v);
               low[u] = min(low[u], low[v]);
15
16
          } else if (in_stack[v]) {
17
               low[u] = min(low[u], dfn[v]);
18
19
20
      if (dfn[u] == low[u]) {
          ++sc;
21
22
          while (s[tp] != u) {
23
               scc[s[tp]] = sc;
24
               sz[sc]++:
25
               in_stack[s[tp]] = 0;
26
               --tp;
27
          }
28
           scc[s[tp]] = sc;
29
          sz[sc]++:
30
           in_stack[s[tp]] = 0;
31
           --tp;
32
      }
33 }
```

7.15 SCC Kosaraju

```
1 //做兩次dfs, O(V + E)
2 //g 是原圖, g2 是反圖
3 //s是 dfs離開的節點
  void dfs1(int u) {
5
      vis[u] = true;
6
       for (int v : g[u])
          if (!vis[v]) dfs1(v);
7
8
      s.push back(u):
9 }
10
  void dfs2(int u) {
11
12
      group[u] = sccCnt;
       for (int v : g2[u])
13
14
           if (!group[v]) dfs2(v);
15 }
16
  void kosaraju() {
17
18
      sccCnt = 0;
       for (int i = 1; i <= n; ++i)
19
20
           if (!vis[i]) dfs1(i);
21
       for (int i = n; i >= 1; --i)
           if (!group[s[i]]) {
22
23
               ++sccCnt:
24
               dfs2(s[i]);
25
           }
26 }
```

7.16 ArticulationPoints Tarjan

```
1 #include <bits/stdc++.h>
2 using namespace std;
3
4 vector<vector<int>>> G;
5 int N;
6 int timer;
7 bool visited[105];
```

```
8 int visTime[105]; // 第一次visit的時間
9 int low[105]:
10 // 最小能回到的父節點(不能是自己的parent)的visTime
11 int res;
12 //求割點數量
13
  void tarjan(int u, int parent) {
14
       int child = 0;
15
      bool isCut = false;
      visited[u] = true;
16
17
       visTime[u] = low[u] = ++timer;
18
       for (int v: G[u]) {
19
           if (!visited[v]) {
20
               ++child:
21
               tarjan(v, u);
22
               low[u] = min(low[u], low[v]);
23
               if (parent != -1 && low[v] >= visTime[u])
24
                    isCut = true;
25
26
           else if (v != parent)
27
               low[u] = min(low[u], visTime[v]);
28
      }
       //If u is root of DFS tree->有兩個以上的children
29
       if (parent == -1 && child >= 2)
30
           isCut = true;
31
       if (isCut)
32
33
           ++res;
34 }
35
  int main()
36
37
38
       char input[105];
39
       char* token;
       while (scanf("%d", &N) != EOF && N)
40
41
      {
42
           G.assign(105, vector<int>());
           memset(visited, false, sizeof(visited));
43
44
           memset(low, 0, sizeof(low));
45
           memset(visTime, 0, sizeof(visited));
           timer = 0;
46
47
           res = 0;
48
           getchar(); // for \n
49
           while (fgets(input, 105, stdin))
50
           {
51
               if (input[0] == '0')
52
                   break;
53
               int size = strlen(input);
               input[size - 1] = ' \setminus \emptyset';
54
55
               --size;
56
               token = strtok(input, " ");
57
               int u = atoi(token);
               int v;
58
59
               while (token = strtok(NULL, " "))
60
                    v = atoi(token);
61
62
                    G[u].emplace_back(v);
63
                    G[v].emplace_back(u);
64
               }
           }
65
66
           tarjan(1, -1);
67
           printf("%d \ n", res);
68
69
       return 0;
70 }
```

7.17 最小樹狀圖

```
1| 定義
2| 有向圖上的最小生成樹(Directed Minimum Spanning Tree)
3| 稱為最小樹形圖。
4| 常用的演算法是朱劉演算法(也稱為Edmonds 演算法),
5| 可以在O(nm)時間內解決最小樹形圖問題。
6| 7| 流程
8| 1. 對於每個點,選擇它入度最小的那條邊
```

```
9 2. 如果沒有環,演算法終止;
                                                   84 堆中的邊總是會形成一條路徑v0 <- v1<- ... <- vk,
     否則進行縮環並更新其他點到環的距離。
                                                   85 由於圖是強連通的,這個路徑必然存在,
10
                                                   86 並且其中的 vi 可能是最初的單一結點,
11
12 bool solve() {
                                                      也可能是壓縮後的超級結點。
                                                   87
13
    ans = 0;
                                                   88
    int u, v, root = 0;
14
                                                   89 最初有 v0=a,其中 a 是圖中任意的一個結點,
15
    for (;;) {
                                                   90 每次都選擇一條最小入邊 vk <- u,
     f(i, 0, n) in[i] = 1e100;
16
                                                   91 | 如果 u 不是v0, v1, . . . , vk中的一個結點,
     f(i, 0, m) {
17
                                                   92 那麼就將結點擴展到 v k+1=u。
       u = e[i].s;
18
                                                   93 如果 u 是他們其中的一個結點 vi,
       v = e[i].t;
19
20
       if (u != v && e[i].w < in[v]) {</pre>
                                                      再將他們收縮為一個超級結點c。
         in[v] = e[i].w;
                                                   95
21
22
         pre[v] = u;
       }
23
                                                      向隊列 P 中放入所有的結點或超級結點,
                                                   97
24
     f(i, 0, m) if(i!=root && in[i]>1e50) return 0;
25
                                                   99
26
     int tn = 0;
                                                   100 選擇 a 的最小入邊,保證不存在自環,
27
     memset(id, -1, sizeof id);
                                                   101 並找到另一頭的結點 b。
     memset(vis, -1, sizeof vis);
28
                                                   102  如果結點b沒有被記錄過說明未形成環,
     in[root] = 0;
29
                                                      令 a <- b,繼續目前操作尋找環。
                                                   103
     f(i, 0, n) {
30
31
       ans += in[i];
                                                      如果 b 被記錄過了,就表示出現了環。
32
       v = i;
       while(vis[v]!=i&&id[v]==-1&&v!=root){
33
         vis[v] = i;
                                                      以及結點/超級結點的總權值的更新。
34
         v = pre[v];
35
       }
36
                                                   109
                                                      並減去環上入邊的邊權。
       if (v != root && id[v] == -1) {
37
                                                   110
38
         for(int u=pre[v];u!=v;u=pre[u]) id[u]=tn;
                                                   111
39
         id[v] = tn++;
                                                   112 #include <bits/stdc++.h>
       }
40
                                                   113 using namespace std;
     }
41
                                                      typedef long long 11;
                                                   114
     if (tn == 0) break;
42
                                                   115 #define maxn 102
     f(i, 0, n) if (id[i] == -1) id[i] = tn++;
43
                                                      #define INF 0x3f3f3f3f
     f(i, 0, m) {
44
                                                   117
45
       u = e[i].s;
                                                      struct UnionFind {
                                                   118
       v = e[i].t;
46
                                                       int fa[maxn << 1];</pre>
                                                   119
47
       e[i].s = id[u];
                                                   120
       e[i].t = id[v];
48
                                                   121
                                                        void clear(int n) {
49
       if (e[i].s != e[i].t) e[i].w -= in[v];
                                                   122
                                                         memset(fa + 1, 0, sizeof(int) * n);
50
                                                   123
51
     n = tn;
                                                   124
                                                        int find(int x) {
     root = id[root];
52
                                                   125
53
                                                   126
54
    return ans;
                                                   127
55
                                                      };
                                                   128
56
                                                   129
57
                                                      struct Edge {
                                                   130
58
                                                       int u, v, w, w0;
    Tarjan 的DMST 演算法
                                                   132 \ \ \ ;
60 Tarjan 提出了一種能夠在
61 O(m+nlog n)時間內解決最小樹形圖問題的演算法。
                                                   134
                                                      struct Heap {
                                                       Edge *e;
62
                                                   135
                                                       int rk, constant;
                                                   136
63
                                                       Heap *lch, *rch;
64 Tarjan 的演算法分為收縮與伸展兩個過程。
                                                   137
                                                   138
65 接下來先介紹收縮的過程。
                                                   139
                                                       Heap(Edge *_e):
66 | 我們要假設輸入的圖是滿足強連通的,
                                                   140
67 如果不滿足那就加入 O(n) 條邊使其滿足,
                                                   141
68 並且這些邊的邊權是無窮大的。
                                                       void push() {
                                                   142
                                                         if (lch) lch->constant += constant;
                                                   143
70 我們需要一個堆存儲結點的入邊編號,入邊權值,
                                                         if (rch) rch->constant += constant;
                                                   144
71 | 結點總代價等相關信息,由於後續過程中會有堆的合併操作,
                                                   145
                                                         e->w += constant;
72 這裡採用左偏樹 與並查集實現。
                                                   146
                                                         constant = 0;
                                                       }
73 | 演算法的每一步都選擇一個任意結點v,
                                                   147
                                                      };
                                                   148
74 需要保證v不是根節點,並且在堆中沒有它的入邊。
                                                   149
75 再將v的最小入邊加入到堆中,
                                                   150
                                                      Heap *merge(Heap *x, Heap *y) {
76 如果新加入的這條邊使堆中的邊形成了環,
                                                   151
                                                       if (!x) return y;
77 那麼將構成環的那些結點收縮,
                                                   152
                                                       if (!v) return x:
78 我們不妨將這些已經收縮的結點命名為超級結點,
                                                   153
79 再繼續這個過程,如果所有的頂點都縮成了超級結點,
                                                         swap(x, y);
                                                   154
80 那麼收縮過程就結束了。
                                                   155
                                                       x->push();
81 | 整個收縮過程結束後會得到一棵收縮樹,
                                                   156
                                                       x - rch = merge(x - rch, y);
                                                   157
82 之後就會對它進行伸展操作。
```

158

83

```
那麼就找到了一個關於 vi <- ... <- vk <- vi的環,
並初始選擇任一節點 a,只要佇列不為空,就進行以下步驟:
總結點數加一,並將環上的所有結點重新編號,對堆進行合併,
更新權值操作就是將環上所有結點的入邊都收集起來,
 UnionFind() { memset(fa, 0, sizeof(fa)); }
   return fa[x] ? fa[x] = find(fa[x]) : x;
 int operator[](int x) { return find(x); }
   e(_e), rk(1), constant(0), lch(NULL), rch(NULL){}
 if(x->e->w + x->constant > y->e->w + y->constant)
 if (!x->lch || x->lch->rk < x->rch->rk)
   swap(x->lch, x->rch);
```

13

```
159
     if (x->rch)
       x->rk = x->rch->rk + 1;
160
161
       x->rk = 1;
162
163
     return x;
164 }
165
166 Edge *extract(Heap *&x) {
     Edge *r = x->e;
167
168
     x->push();
169
     x = merge(x->lch, x->rch);
170
     return r;
171 }
172
173 vector < Edge > in [maxn];
174 int n, m, fa[maxn << 1], nxt[maxn << 1];
175 Edge *ed[maxn << 1];
176 | Heap *Q[maxn << 1];
177 UnionFind id;
178
   void contract() {
179
     bool mark[maxn << 1];</pre>
180
     //將圖上的每一個節點與其相連的那些節點進行記錄
181
     for (int i = 1; i <= n; i++) {</pre>
182
       queue<Heap *> q;
183
       for (int j = 0; j < in[i].size(); j++)</pre>
184
         q.push(new Heap(&in[i][j]));
185
       while (q.size() > 1) {
186
         Heap *u = q.front();
187
         q.pop();
188
189
         Heap *v = q.front();
         q.pop();
190
         q.push(merge(u, v));
191
192
193
       Q[i] = q.front();
     }
194
195
     mark[1] = true;
     for(int a=1,b=1,p;Q[a];b=a,mark[b]=true){
196
       //尋找最小入邊以及其端點,保證無環
197
198
       do {
         ed[a] = extract(Q[a]);
199
200
         a = id[ed[a]->u];
       } while (a == b && Q[a]);
201
202
       if (a == b) break;
203
       if (!mark[a]) continue;
       //對發現的環進行收縮,以及環內的節點重新編號,
204
       //總權值更新
205
       for (a = b, n++; a != n; a = p) {
206
         id.fa[a] = fa[a] = n;
207
          if (Q[a]) Q[a]->constant -= ed[a]->w;
208
209
         Q[n] = merge(Q[n], Q[a]);
         p = id[ed[a]->u];
210
          nxt[p == n ? b : p] = a;
211
       }
212
     }
213
214 }
215
216 ll expand(int x, int r);
217 ll expand_iter(int x) {
     11 r = 0:
219
     for(int u=nxt[x];u!=x;u=nxt[u]){
       if (ed[u]->w0 >= INF)
220
221
         return INF;
       else
222
         r += expand(ed[u]->v,u)+ed[u]->w0;
223
     }
224
225
     return r;
226 }
227
228 | 11 expand(int x, int t) {
     11 r = 0;
229
     for (; x != t; x = fa[x]) {
230
      r += expand_iter(x);
231
232
       if (r >= INF) return INF;
233
     }
234
     return r;
235 }
```

```
236
   void link(int u, int v, int w) {
237
     in[v].push_back({u, v, w, w});
239 }
240
241
   int main() {
     int rt;
242
      scanf("%d %d %d", &n, &m, &rt);
     for (int i = 0; i < m; i++) {</pre>
244
245
        int u, v, w;
        scanf("%d %d %d", &u, &v, &w);
246
247
        link(u, v, w);
248
     }
      //保證強連通
249
     for (int i = 1; i <= n; i++)</pre>
250
251
       link(i > 1 ? i - 1 : n, i, INF);
252
     contract();
     11 ans = expand(rt, n);
253
254
     if (ans >= INF)
255
        puts("-1");
256
        printf("%11d\n", ans);
257
258
      return 0;
259 }
```

8 動態規劃

8.1 LCS 和 LIS

```
1 // 最長共同子序列 (LCS)
2 | 給定兩序列 A,B ,求最長的序列 C ,
 C 同時為 A,B 的子序列。
3
5 //最長遞增子序列 (LIS)
  給你一個序列 A , 求最長的序列 B ,
6
   B 是一個(非)嚴格遞增序列,且為 A 的子序列。
7
8
 //LCS 和 LIS 題目轉換
9
10 LIS 轉成 LCS
    1. A 為原序列, B=sort(A)
    2. 對 A,B 做 LCS
13 LCS 轉成 LIS
    1. A, B 為原本的兩序列
14
15
    2. 最 A 序列作編號轉換,將轉換規則套用在 B
16
    3. 對 B 做 LIS
    4. 重複的數字在編號轉換時後要變成不同的數字,
17
18
       越早出現的數字要越小
19
    5. 如果有數字在 B 裡面而不在 A 裡面,
20
       直接忽略這個數字不做轉換即可
```

9 Section2

9.1 thm

中文測試

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

•
$$\binom{x}{y} = \frac{x!}{y!(x-y)!}$$

•
$$\int_0^\infty e^{-x} dx$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

dp 表格 10

10.1 DPlist

	10	dp	表格	· i				73						
								74 75		 	 	 	 	
	10.1	D	Plist					76 77	I	 	 	 	 	
1								78 - 79	I	 	 	 	 	
2	 	 		 	 	 	 	l 80 l 81	1	 	 	[[
	i	 I		I	 I	I	 I	- 82 I 83	:	 I	 I		' I	 I
	i	_ i		 	 	 	 	l 84 - 85	i	İ	l	İ	l	İ
3	1	I		1		1		l 86	!		 		 	
,					I 		 	l 87 - 88	 	 	 	 	 	
2	1			1	 	1	 	l 89	 	 	 	 	 	
	1	۱ -			 			91 J 92	1	 	 I	 	 	
	l 			l 	 	 	 	- 93 - 94	I	 	 	 	 	
7 3	 	 		 	 	 	 	l 95 l 96	1	 	 	 	 	
	 I	 I		 I	 I	 I	 I	97 I 98	i	 I	 I	 I		 I
2	İ			İ	 	İ	 	99 - 100	i	 	 	 	 	
1		I		 	 	 	 	I 101 I 102	1	l	l	ļ	l	I
5	' 			' 	' I	 	' I	103	 	 	 '	 	 	 '
1	i	i		1		1		l 104 l 105	1	 	I 	 	I 	
9	!	 !		!	! !	!	! !	106 I 107	Ι	 	 	 	 	
'				l 	 	 	 	l 108 - 109	l 	l 	l 	 	l 	
:	 	 		 	 	 	 	l 110	 	 	 	 	 	
;	I	 		 	 	 	 	- 112 I 113	 I	 I	 I	 I	 I	 I
	l 	 		l 	l 	l 	 	l 114 - 115	1	 	 	İ	 	
	 	-		 	 	[[l 116	I I	 	 	 	 	
,	i	 I			 I	 I	 I	118		, I	' I	' 	' I	' I
	i 	_ i		 	 	 	 	l 119 l 120	i	1	 	İ	 	!
ı	!	ļ		1	<u> </u>	1	ļ	- 121 122	!	 	 !	!	! !	 !
	 			 	I 	 	 	123 - 124	l 	 	 	 	 	
7	1	 		 	 	 	 	l 125	 	 	 	 	 	
	Ι	 		 	 I	 	 	127 l 128	I	 	 I	 	 	 I
2	I 	 		 	 	 	 	129 - 130	I	l 	l 	 	l 	l
1	 	 		 	 	 	 	l 131 l 132	1	 	 	 	 	
	 I	<u>-</u> I		 I	 I	 I	 I	- 133 I 134	i	 I	 I		 I	 I
	İ			 	 	 	 	1 135 - 136		, 	 	 	 	,
	1			1	 	1	 	137			 			
				! 	' !	1 	ı ı	138 - 139	1	I 	I 	I 	I 	I
	1			1	! 	1	 	l 140 l 141	1	 	 	I 	 	
	!	 I		!	 !	!	 !	142 143	 	 	 I	 I	 I	 I
	1			I 	l 	I	 	l 144 - 145	<u> </u>	 	 	 	l 	
3	 	 		 	 	 	 	l 146 l 147		 	 	 	 	
9	I	 I		 I	 I	 I	 I	- 148 I 149		 I	 I	I	 I	 I
2	i	i		i	I	i	I	. 143	1	1	'	1	'	•

151			 					228	i	i i	i	i	i		i
152 153		I	 	 -	 	 		229 230				 I			- I
154			 					231	İ			 			i
155	1	- 1	I	l	l	I] :	232							-
156 157			 l 	l 	 	l 		233							
158	I	1	I	I	I	I		235				 			-
159	İ	i	İ	İ	İ	İ	İ :	236	1	1		l			l
160			 	· ·				237	I	I					I
161 162	1	l I	 	 	 	 		238 239	1			 I			- I
163			 					240	i	i					i
164	1	Į.	ļ .	l ·	l ·	Į.		241				·			-
165 166			 	 	 	 		242	1	 		 			
167	I	I	I	I	I	I		244					·		-
168	1	- 1	I	l	l	I		245	1			l			I
169			 I	 I	· ·	 I		246			 	 			 -
170 171		¦	! 	! 	l 	! 		247 248	1	I	I				I
172			 				- ;	249	İ	İ	į į	İ	į į	į į	İ
173		!		<u> </u>		<u> </u>		250							-
174 175	I 		 	 	 	l 		251 252	 	 	 	 	 	 	l I
176	1	ı	I	I	I	I		253				' 			-
177	1	I	I	l	I	I		254	1			l			I
178 179	1		 I	 I	· I	 I		255 256		 	 	 	 	 	 -
180	i	i	! 	! 	! 	! 		257	1	1	ı	l	ı	ı	I
181			 				- :	258	İ	i i	į į	İ	į į	į į	İ
182	!	!	<u> </u>	<u> </u>		[259				·			-
183 184	I		 	 	 	 		260 261	1	 	 	 	 	 	l I
185	1	ı	I	I	I	I		262				' 			-
186	1	I	I	l	I	I		263	1			l			I
187 188	1		 I	 I	· I	 I		264 265		 	 	 	 	 	 -
189	i	i	! 	! 	! 	! 		266	1	1	ı	l	ı	ı	I
190			 				- :	267	İ	i i	i i	İ	i i	i i	İ
191	1	!	!	!		!		268							-
192 193			 	 	 	I 		269 270	I	I I	 	 	 	 	l I
194	1	I	I	I	l	I		271							-
195	I	I	I	l	I	I		272	!	!					ļ
196 197	1		 I	 I	· I	 I		273 274	I	 	 	 	 	 	 -
198	i	i	İ	İ	i I	İ		275	1	1					I
199			 		·			276	1	1					l
200 201	1	I	 	 	 	 		277 278	1	 I		· I			- I
202		'	 	 	 			279	i I	 		 			i I
203	I	I	I	l	I	I		280							-
204			 	 	 	 		281				[l I
205 206	1	I	 I	I	I	I		282		ı 					-
207	İ	i	İ	I	İ	İ	İ :	284	1	1	l I		l I	l I	I
208			 		·			285	I	1		l			I
209	1	l I	 	 	 	 		286 287	1			 I			- I
211			 ' 	' 	' 			288	i	i					i
212	!	!	I	l	l	I		289							-
213			 	 	 	 		290 291				 			
214	I	I	 I	I	I	I		292							-
216	Ī	i	I	I	I	I	1 :	293	1	I I		l			I
217			 ·		·			294	1	I		l 			 -
218 219	I I	 	I 	! 	! 	 		295 296	1			· 			- I
220	· 		 					297	i	i					i I
221	Į.	I	Į.	!	l	ļ.] :	298		:				·	-
222	 		 	 	 	 		299 300] 			l I
223	1	ı	I	I	I	I		301							-
225	Ì	i	I	I	I	I	İ :	302	1	1		l			I
226			 				- ;	303	I	I		I			l

				1 3 0 0					
1									
304				381		1		1 1	ı
305	!!!!	!!!	!!!	382	 				
306	1 1	1 1		383		1		1 1	ı
307				384		1		1 1	I
308		1 1		385					
309		1 1		386		1		(I	I
310				387		1		1 1	- 1
311	1 1 1	1 1	1 1	388					
312		1 1	1 1	389	l I	1		1 1	1
313				390	i i	i		i i	i
314		1 1	1 1	391	' ' 				
315	i i i	i i	i	392	1 1	1			
316	' ' '			393	l I I I	1		<u> </u>	;
	1 1	1 1	1 1		 			·	'
317	!!!	! !		394					
318	1 1	I I	1 1	395	!!!	!		!!!	!
319				396		1		i I	- 1
320		l l		397					
321		l l		398		1		(I	1
322				399		1		1 1	1
323		1 1		400					
324		1 1		401	l I	1		1 1	1
325				402	i i	İ		i i	Ĺ
326		1 1	1 1	403		:			
327	i i i	i i	i i	404	l I	1		1 1	1
328			' '	405	' ' 	;			i
		1 1	1 1						
329		1 1	1 I	406	ı ı				1
330	ı I İ	1 I	ı I	407	I I			<u> </u>	1
331				408	ı l	I		(I	1
332	!!!!	! !		409	 				
333		1 1		410		1		1 1	1
334				411		1		(I	I
335		1 1		412					
336	1 1 1	1 1	1 1	413		1		1 1	1
337				414	l I	1		1 1	1
338		1 1	1 1	415		:			
339	i i i	i i	i i	416	l I	1		1 1	1
340				417	' ' 	i		i i	i
341	1 1	1 1	1 1	418					
	; ; ;	; ;			1 1				
342	1 1	1 1	1 1	419					!
343				420	l l	1		1 1	1
344	!!!!	!!!	!!!	421	 				
345	1 1	l l	1 1	422		1		1 1	ı
346				423		1		1 1	1
347		1 1		424					
348		1 1		425		1		(I	1
349				426		1		1 1	1
350	1 1 1	1 1	1 1	427					
351		1 1	1 1	428	l I	1		1 1	1
352				429	i i	i		i i	i
353		1 1	1 1	430					
354	i i i	i i	ii	431	l I	1			1
355				432	l I			, i	- :
	1 1	1 1	1 1						'
356		1 1	1 1	433					,
357	1 1	ı l	1 1	434		1		1	ļ
358				435	ı l	I		<i>i</i> 1	- 1
359	<u> </u>	į į	<u> </u>	436					
360	1 1	ı l	1 1	437	I I	I		i I	I
361				438		1		(I	1
362	1 1 1	I I	1 1	439					
363	1 1 1	1 1	1 1	440		1		I I	1
364				441		1	ĺ	ı i	i
365	1 1	1 1	1	442					
366	i i i	i i	· '	443		1			1
367				444	, , 	i		1	1
368	1 1 1	1 1	1 1	445	ı l 			, I	
		1 1	1 1			1			1
369	1 1	1 1	ı l	446	ı İ	1		<i>i</i>	!
370				447	ı l	I		i I	- 1
371	<u> </u>	į l	į I	448					
372	1 1 1	1 1	1 1	449		1		(I	I
373				450		1		(I	1
374	1 1 1	1 1	1 1	451					
375	1 1 1	1 1	1 1	452	l l	1			1
376				453		1		ı i	i
377	1 1	1 1	1	454	· 				
378	i i i	i i	· '	455		1			1
379				456	, , 	i		1	1
380	1 1 1	1 1	1 1	457	ı l 			, I	
200	1 1	ı l	1	751					

450												
458 459			1 1	 	 	535 536	1			 I		I I
460	·					537	i				i İ	i i
461	I I	I			l	538				·		
462 463					 	539 540						
464	I I	I	1	l .	I	540		 		 	 	l
465	i i	i	i i			542	1				I	Ι Ι
466						- 543	1				l	1
467	!!!	į.				544						
468 469				 	 	545 - 546	1	 		 	 	l I
470	1 1	1	1 1		I	547		·		' :		
471	i i	ĺ	i i		l	548	1				I	Ι Ι
472					·	549	1				l	l I
473 474	1 1	l I	1 1		l I	550 551	1			 I		
475					 	- 552	i			 	! 	' '
476	1	1	1 1		l	553				· 		
477	1 1	I	1 1		l	554	!			<u> </u>	<u> </u>	
478	1 1				 I	- 555 I 556				 	 	l I
479 480		i	1 1	 	l I	556 557	1			1		I I
481	·	'				- 558	i			I	İ	. '
482	1	1	1 1		I	559						
483	1	I			l 	560						<u> </u>
484 485	1 1	1	1		 I	- 561 562	l 	 		 	 	l I
486	i i	i		· 		563	1			l	I	
487	·					564	İ	İ	ĺ	İ	İ	i i
488	!!!	ļ.	! !			565					·	
489 490				 	 	566 567				 	 	
491	1 1	1	1 1		I	568				 	 	
492	i i	i	i i	i	İ	569	1				I	1
493						570	1			l	l	I I
494 495		1				571 572	1				· I	
496		l 		·	 	- 573		 		 	! 	
497	1 1	1	1 1		I	574						
498	1 1	1	1 1	l I	l	575	1			l	l	
499	1 1					- 576 577				 	 	
500 501		i	1 1	 	l I	577	1			1		I I
502	·					- 579	i	İ			i İ	i i
503	1	1	1 1		l	580						
504 505					 	581 - 582						
506	I I	I	1	l .	I	583		 		 	 	l
507	i i	i	i i			584	1				I	Ι Ι
508						- 585	1				l	1
509		- !				586						
510 511	ı l	l 		 	I 	587 - 588	1	 		! 	1 	ı
512	1 1	1	1 1	l I	I	589		· 				
513	1 1	1	1 1	l I	I	590	[]				!	
514	1 1	1	1		 I	- 591 I 592	I	 		 	 	I
515 516		i I		 	i 	592 593				_ .	I	
517						- 594	i				I	
518	! !	į.	1 !		l	595				·	·	
519				 	 	596] 	 -	
520 521		I				- 597 598	I	ı 		 :	 	ı l
522	i i	i	i			599	1			l	I	1
523				·		- 600	1	l İ		l	l	l İ
524	<u> </u>	Į.	!			601					·	
525 526	ı l	l 	1	 	 	602 - 603	i I	 		l 	I I	ı
527	1 1	1			l	604						·
528	ı i	İ	ı i	ı	I	605	1			l	I	1 1
529					·	- 606	1			l	I	l l
530 531		l I		 	 	607 608	1	 		 I	· I	
531	ı l				ı 	- 609		·		! 	! 	: I I
533	1 1	1	1 1	l I	I	610						
534	1 1	I	1 1		I	611	1			l	I	l I

612		1 1	ı	689	I	I	I	l	I	1 1
613				- 690	1	I	I	I	I	1 1
614 615				691 692	1	I	 I	· I	 I	I I
616				693	i	i	i	İ	i	i i
617 618				694 695	1	 I	 I	 I	 I	I I
619				- 696		i I	' 	 	' 	i i
620		!!!	!	697						
621 622			ا 	698 - 699	1	 	 	 	 	
623		1 1	1	700						
624				701		1	l '		l '	
625 626				702 703		 	 	 	I 	
627	li i i i	i i	ĺ	704	1	I	l	l	l	1 1
628 629		ا		705 706		 	 	 	 	
630	li i i i	iii	i	707	1	I	I	l	I	1 1
631				708	1	I	I	l	I	1 1
632 633				709 710	1	 I	· I	· I	 I	I I
634				711	i	i	İ		İ	i i
635	! ! ! !	!!!	!	712						
636 637			ا 	713 - 714	1	 	 	 	 	
638		1 1	1	715						
639		1 1	I	716		1	<u> </u>		<u> </u>	
640 641				- 717 718	I	I 	 	 :	 	
642	li i i i	i i	i	719	1	I	I	l	I	1
643				720	1	I	I		I	1 1
644 645				721 722	1	I				I I
646				723	i	i	i İ	İ	i İ	i i
647				724 725			· I	 I	 I	
648 649		ا ا 	ا 	725	1	! 	! 	 	! 	, ,
650	i i i i		1	727						
651 652				728 729			 -	 	 -	
653		1 1	1	730				:		
654	1 1 1	1 1	I	731	1	I	l	l	ļ	1 1
655 656				732		 	 	 	 	
657	li i i i	i i	i	734	1	I	I	I	I	1 1
658				735	1	I	I	l	I	1 1
659 660				736 737	1	 I	 I	 I	 I	
661				738	i	i I	I		I	i i
662			[739			 I			
663 664		ا ا 	ا 	740 - 741	1	! 	! 	 	! 	
665		1 1	1	742						
666 667				743 - 744		[-		 -	
668				744			I 		ı 	ı l
669	ji i i i	ı i	i	746	!	I	ļ	ļ	ļ	<u> </u>
670 671		ا	. ـ ـ ـ ـ ـ ـ ـ ـ	747 748	I	l 	l 	 	l 	ı l
672	li i i	iii	i	749	1	I	I	l	I	1 1
673				750	1	I	I	l	I	1 1
674 675				751 752	I	 I	· I	· I	 I	I I
676				753	i	İ	İ		İ	i i
677		!!!	!	754			·			
678 679		ا ا	ا 	755 756	1	I I	I I	[[I I	
680		1 1	1	757						. '
681		1 1	I	758	1	I	l '		l	<u> </u>
682 683		ا ا		759 760	I	I 	 	 	I 	ı l
684	li i i	i i	i	761	1	I	I	I	I	1 1
685				762	1	1	l 	l 	l 	l I
686 687				763 764	1	 	 	· 		
688				765	İ	İ	İ	l	İ	i i

766								- 843	1 1	l	I			l I
767	ļ	!		ļ		ļ	ļ	844		·				
768 769	 		 	 	 	 	 	845 - 846			 			
770	1	1	!	l	l	I	I	847						
771 772	 		 	 	 	 	 	848 - 849			 			
773	I	1		I	l	I	I	J 850		· 				
774 775	 		 	 	 	 	 	851 - 852		 				
776	I			I	l	I	I	853		 	 			
777	I	- 1	I	I	I	I	I	854	!!!		<u> </u>			. !
778 779	 I			· I		 I	 	- 855 856		 	 	·		l I
780	i	i	İ	i İ	İ	İ	İ	857	1 1	l	I			l I
781 782	 I		 I	· I		 I	 I	- 858 859		 	 	 	 	
783	i	i	İ	i İ	i i	i I	i I	l 860	1 1	l	l I			l I
784 785	 I		 I	 I	 I	 I	 I	- 861 862		 	 	 	 	
786	i	i		İ	' 	İ	İ	863	1 1	l	I			1
787 788				·		 I	·	- 864 865		 	l			l I
789			 	! 	 	! 	! 	866	1 1		I			l I
790								- 867	1 1	l	l I			l I
791 792	1		! 	1 	1 	! 	! 	868 869		· · · · · · · · · · · ·	 			
793								- 870	I i	I	I i		ı i	ı i
794 795	1			 	 	 	 	871 872	1	· I				
796								- 873	i i	İ	i			i i
797 798			 	 -	 	 	 	874 875	1					
799					ı 			- 876	i i					
800		1		l '	 -	I	I	877		·				
801 802	 		 	 	 	 	 	878 - 879		 	 			
803	ļ	!		ļ	l	I	l	880						
804 805			 	 	 	 	 	881 - 882		 	 			
806	I	!	l	l	l	I	I	l 883						
807 808	 		 	 	 	 	 	884 - 885			 			
809	1	1	l	l	I	I	I	J 886	·					
810 811	 		 	 	 	 	 	887 - 888	1 1		 			
812	I	1	l	I	I	I	I	l 889						
813 814	 		 	 	 	 	 	890 - 891			 			
815	I	1	l	I	I	I	I	892		· 	' 			
816 817	 		 	 	 	 	 	893 - 894		 				
818	I	1	l	I	I	I	I	895						
819	I	- 1	l	I	I	I	I	l 896	!!!		!			
820 821	ı			· · · · · · · · · · · · · ·		 	 	- 897 898		 	 			
822	I	İ	I	I	I	I	I	l 899			<u> </u>			. !
823 824	1		 	 I		 		- 900 901		 	 	·		
825	İ	İ	l	İ	I	İ	İ	902		ļ	ļ ļ			
826 827	 I			· I		 I	 I	- 903 904		 	 	 	 	l
828	i	i	İ	I	i I	i I	i I	905	1 1	l	I			l I
829 830	 I		 I	· I		 I	· I	- 906 907		 	l 	 	 	l I
831	1		İ	i İ	i I	İ	İ	908	1 1	I	I			1
832	 I			· I		 I	·	- 909						
833 834	1		! 	! 	ı 	! 	! 	910 911		 	 			
835				· ·				- 912	I i	l	l i		İ	ı i
836 837	1 1		! !	I 	l 	 	 	913 914		· 	 			
838	<u>-</u> -							- 915	i i	l	l			i i
839 840	1		l 	l I	l I	l I	l I	916 917		· I				
841			· 					918	i i	i	i			i i
842	I			l	l	I	I	919						

11 slogan

ı

966 | 967 -968 | 969 |

11.1 slogan

1	
2	/\\\\\\\/_
3	_\///\\\////\\\////\/\\//////\\
4	\/\\\/\\\/
5	\/\\\/\\\\/\\\\\\\\\\\\
6	\/\\\\/\\\
7	\/\\\\//\\\
8	\/\\\\//\\\
9	/\\\\\\\\///\\\\\
10	_\////////\////\///\///
11	/\\\\\\\/\\\\\\
12	/\\\////\\\/\\\////\\\/\\\/////\\\/\\\/////\\\
13	_\///\//\\\/\\\\//_\///\//\\\\////\/\\
14	/\\//\\\/\\\
15	/\\\//\/\\\

I

I

I

I

I