Welcome to CME 250 Introduction to Machine Learning!

Spring 2020 – Online version May 4th, 2020

Today's schedule: Wrap-up

- Practice exercise:
 - Regression
 - Classification
 - Model selection using Cross Validation
- What are neural networks?
 - Mathematical expression
 - Similarities to other ML algorithms
 - Main challenges
- What is next?
 - How to keep up with ML?

Let's get to know each other...

Breakout room

You

Name

Location

Department

Year

What has changed in the last 5 weeks?

3 mins

Chat/Audio/Video

Experience

Data Exploration Prediction Models

Performance Analysis

Task

Supervised Learning

Recap

		Regression	Classification	Interpretability	Flexibility	Tuning
	KNN _	Y is quantitative	Y is categorical	X	Non-linear boundary	# Hyperparameters #neighbors, Distance
A STATE OF THE STA	Linear Regression		Dummy variables		Create additional	#Features,
Malign Benign Logistic Regression	Logistic Regression	X	/		features	Regularization
X ₂	SVM	X		X		Kernel, Regularization
33 > 0	CART		fitting uning			Tree depth
bootstrap train train $f^2(x)$	Г					Tree depth, # trees, # features,
P(c)	Gradient Boosting Trees			<u></u>		learning rate

Example of Supervised Learning: Young people Survey

Music preferences (19 items)

Movie preferences (12 items)

Hobbies & interests (32 items)

Phobias (10 items)

Health habits (3 items)

Personality traits, views on life, & opinions (57 items)

Spending habits (7 items)

Demographics (10 items)

Example of Supervised Learning: Goal

Ordered
Categorical 1-5

Music preferences (19 items)
Movie preferences (12 items)
Hobbies & interests (32 items)
Phobias (10 items)
Health habits (3 items)
Personality traits, views on life, & opinions (57 items)
Spending habits (7 items)
Demographics (8 items)

Example of Supervised Learning: Roadmap

Example of Supervised Learning: Roadmap Classification

Example of Supervised Learning: Roadmap Regression

y = a x + b

Prediction Models

Supervised Learning Part IV: Intro to Neural Networks & Deep Learning

Elements Statistical Learning
Chapter II: (Vanilla) Neural Networks

Deep Learning
Ian Goodfellow, Yoshua Bengio, and Aaron
Courville

Motivation for Neural Networks

Linear regression

$$y \approx w^T x$$

Logistic regression

$$y \approx \frac{\exp(w^T x)}{1 + \exp(w^T x)}$$
$$= g(w^T x)$$

Linear regression

$$y \approx w^T x$$

I-hidden layer Neural Network

Logistic regression

$$y \approx \frac{\exp(w^T x)}{1 + \exp(w^T x)}$$
$$= g(w^T x)$$

Linear regression

$$y \approx w^T x$$

I-hidden layer Neural Network

Logistic regression

$$y \approx \frac{\exp(w^T x)}{1 + \exp(w^T x)}$$
$$= g(w^T x)$$

Linear regression

$$y \approx w^T x$$

Logistic regression

$$y \approx \frac{\exp(w^T x)}{1 + \exp(w^T x)}$$
$$= g(w^T x)$$

I-hidden layer Neural Network

$$y \approx h \left(\sum_{m=1}^{k} a_m g(w_m^T x) \right)$$
$$= h \left(a^T g(W^T x) \right)$$

Linear regression

$$y \approx w^T x$$

Logistic regression

$$y \approx \frac{\exp(w^T x)}{1 + \exp(w^T x)}$$
$$= g(w^T x)$$

I-hidden layer Neural Network

$$y \approx h \left(\sum_{m=1}^{k} a_m g(w_m^T x) \right)$$
$$= h \left(a^T g(W^T x) \right)$$

Deep Neural Network

Linear regression

$$y \approx w^T x$$

Logistic regression

$$y \approx \frac{\exp(w^T x)}{1 + \exp(w^T x)}$$
$$= g(w^T x)$$

I-hidden layer Neural Network

$$y \approx h \left(\sum_{m=1}^{k} a_m g(w_m^T x) \right)$$
$$= h \left(a^T g(W^T x) \right)$$

Deep Neural Network

Linear regression

$$y \approx w^T x$$

Logistic regression

$$y \approx \frac{\exp(w^T x)}{1 + \exp(w^T x)}$$
$$= g(w^T x)$$

#params = d

I-hidden layer Neural Network

$$y \approx h \left(\sum_{m=1}^{k} a_m g(w_m^T x) \right)$$
$$= h \left(a^T g(W^T x) \right)$$

#params = d*k + k

Deep Neural Network

$$\mathbf{z_1} = g(W_1^T \mathbf{x}),$$

$$\mathbf{z_l} = g(W_l^T \mathbf{z_{l-1}}),$$

$$\mathbf{y} \approx h(a^T \mathbf{z_l}),$$

$$\#$$
params = $I*(d*k) + k$

How is the bias - variance tradeoff of Deep NNs?

Why Deep NNs work: I)Large Sample Size

Why Deep NNs work: I)Large Sample Size

Why Deep NNs work: 2) Regularization

Why Deep NNs work: 3) Overparametrization

Why Deep NNs are challenging: Training

Why Deep NNs are challenging: Training

Train weights:

$$\underset{a,W_1,\dots,W_l}{\text{minimize}} \sum_{i=1}^{N} L\left(y^{(i)}, f(x^{(i)})\right)$$

I) Non-Convex Problem: Use Gradient Descent

2) Large Sample Size: Use Stochastic Gradient Descent

$$\gamma \sum_{k \in data} \nabla_W L(y_k, f(x_k))$$

$$\approx E[\nabla_W L(Y, f(X; W_i))]$$

3) Composition of Functions:

$$f(x) = h(a^T z_l), z_l = g(W_l^T z_{l-1}), \dots,$$

4) Regularization: NN Architecture = Sparsity of weights

Typical NN architectures

Dense

CNN
Spatial data
(Images)

Only connection to neighbors

RNN Sequential Data (Text)

Memory from previous features

ResNet Image Processing

Deep Residual Learning for Image Recognition. He et al. CVPR 2016

Attention is All you Need. Vaswani et al. NeurIPS 2017

Final thoughts

How were these architectures found?

more general ...

Why are ML methods so successful? What happened with theory-based models?

Theory vs Learning from Examples

Theory

Theorems to describe what works best given assumptions

Assumptions are restrictive

Still developing theory (deep learning)

Examples

Try what works for others

Generalization?

Explainability?

Optimality?

Why learning from examples has worked

What was CME250?

Terminology, Models
Best Practices.

Project

What's next?

Introduction

CME 250: Introduction to Machine Learning

CS 229A: Applied Machine Learning Foundations

CS 229: Machine Learning

CS 221: Artificial Intelligence

CS 230: Deep Learning Theory

CS 229T: Statistical Learning Theory

STATS 315A/B: Modern Applied Statistics

CS 234: Reinforcement Learning **Applications**

CS 224N: Natural Language Processing with Deep Learning

CS 231N: Convolutional Neural Networks for Visual Recognition

> CS 246: Mining Massive Data Sets

CS 325B: Data for Sustainable Development

CS 273B: Deep Learning in Genomics and Biomedicine

...and much more

- + Extensive amount of online courses, blogs, resources
- + Practice, practice, practice ...

Mathematical proofs. Implementation tricks.

Thank you!

