Lezione 24-10 Casi di non derivabilità: Def: f: A → IR, x ∈ A. Se esistono ficxo e ficxo, entrante finite mu ficxo) + ficxo) allera xo si dice panto angoloso. Esemplo: Jess=1x1.









· YneW D (ex) = ex HxelR.  $f(x) = \sin x$  $D(\sin x) = \cos x$   $D(\cos x) = -\sin x$  $\int_{C} (x) = \cos x$  $\begin{cases} \int_{-\infty}^{\infty} |x| = \int_{-\infty}^{\infty} |x| = -\sin x \\ \int_{-\infty}^{\infty} |x| = -\int_{-\infty}^{\infty} |x| = -\cos x \\ \int_{-\infty}^{\infty} |x| = -\int_{-\infty}^{\infty} |x|$  $\begin{cases}
c5 \\
c \times ) = 
\end{cases}$  cxDer la lunique la since la derivata e'a clian di ordine 4.







| Derivata della Junzione com  | posta:                     |                            |  |
|------------------------------|----------------------------|----------------------------|--|
|                              |                            |                            |  |
| Prop: ) e f e derivabile i   | 1 x e g e donvahile in fix | $\left(\frac{1}{2}\right)$ |  |
|                              |                            |                            |  |
| allor gof e'dentahile in x   |                            |                            |  |
|                              |                            |                            |  |
| $(gof)(cx_0) = g'(f(cx_0)).$ |                            |                            |  |
| (3) 3) (20)                  | 8 (0)                      |                            |  |
|                              |                            |                            |  |
|                              | <u></u>                    |                            |  |
| Es: f(x)=sinx, q(y)=e        |                            |                            |  |
|                              |                            |                            |  |
|                              | Z'N X                      |                            |  |
| (gof)cx)=g(fcx))-g(sin       | x) = e                     |                            |  |
|                              |                            |                            |  |
|                              |                            |                            |  |
|                              |                            |                            |  |

(gof) cx = g'(fcx). f(x) = g'(sinx). cosx = esinx Es: D(x) = 1,  $D(x^2) = D(x-x) = 1.x + x.1 = 2x$   $D(x^3) = D(x^2-x) = 2x.x + x^2.1 = 3x^2$  $D(x^n) = n \cdot x^{n-1} \forall n \in \mathbb{N} \quad n \geq 1$ D(x) dell x>0

Punz. composte
alogx
D(xd) = D(e alogx) = e alogx
D(dlogx) =

e alogx
- x a -1









Es: gcx)= c7+x) a e1R x>-1  $g(x) = \alpha \cdot (1+x)^{\alpha-1}$  g(x) = 1\((o) = a  $f(x) = f(0) + f(0) \cdot (x - 0) + o(x - 0) = 1 + dx + o(x)$ Se f: ca, b)  $\Rightarrow IR$  e oberivable in  $x_0 \in ca, b$ )

allow  $f(x) = f(x_0) + f(x_0) \cdot (x_0 - x_0) + \phi(x_0 - x_0)$ 









