

CONTENTS

1. Introduction	03	4. Results	2:
-----------------	----	------------	----

- 2. Basic Principles 06 5. Conclusion 26
- 3. Codes & Layers 13

Introduction

Introduction

스타일 트랜스퍼 (Style Transfer)

스타일 이미지(Style)가 주어졌을 때, 해당 이미지를 그대로 필터처럼 사용하는 것이 아니라, 특징(feature)을 추출하여 콘텐츠 이미지(content)에 전이시키는 기법

기본적인 원리 소개

Content image \vec{p}

Style Image \vec{a}

콘텐츠 손실(content loss)는 두 이미지 특징(feature)의 활성값이 동일하도록 만듭니다

Content Image \vec{p}

네트워크의 가중치는 고정한 뒤에 이미지를 변경시키는 방법을 사용합니다. - 이미지를 학습(업데이트)한다고 이해할 수 있습니다.

타겟 이미지

[이미지 변수 x 값이 변환되는 과정]

스타일(Style)은 서로 다른 특징(feature)간의 상관관계(correlation)을 의미합니다.

[Style Reconstruction(스타일 재구성)]

- Gram Matrix는 채널의 크기만큼 커지게 됩니다.
- (a) conv1_1
- (b) conv1_1, conv2_1
- (c) conv1_1, conv2_1, conv3_1
- (d) conv1_1, conv2_1, conv3_1, conv4_1,
- (e) conv1_1, conv2_1, conv3_1, conv4_1, conv5_1

[Content Reconstruction(내용 재구성)]

- 깊어질수록 구체적인 픽셀 정보는 소실됩니다.
- (a) conv1_2
- (b) conv2_2
- (c) conv3_2
- (d) conv4_2
- (e) conv5_2

Style Transfer 알고리즘의 과정

컨텐츠 업데이트 / 스타일 업데이트

```
prediction_probabilities = vgg(x)
prediction_probabilities.shape
Downloading data from <a href="https://storage.googleapis.com/tensorflow/keras-applications/vgg19/vgg19_weights_tf_dim_ordering_tf_kernels.h5">https://storage.googleapis.com/tensorflow/keras-applications/vgg19/vgg19_weights_tf_dim_ordering_tf_kernels.h5</a>
TensorShape([1, 1000])
predicted_top_5 = tf.keras.applications.vgg19.decode_predictions(prediction_probabilities.numpy())[0]
[(class_name, prob) for (number, class_name, prob) in predicted_top_5].
Downloading data from <a href="https://storage.googleapis.com/download.tensorflow.org/data/imagenet_class_index.json">https://storage.googleapis.com/download.tensorflow.org/data/imagenet_class_index.json</a>
[('envelope', 0.61191404),
 ('web_site', 0.20023946),
 ('binder', 0.018892692),
                                                                      Codes & Layers
 ('carton', 0.014203147),
 ('switch', 0.011903387)]
                                                                                       사용한 코드와 레이어 소개
-vgg = tf.keras.applications.VGG19(include_top=<mark>False</mark>, weights='imagenet').
print()
for layer in vgg.layers:
  print(layer.name)
Downloading data from <a href="https://storage.googleapis.com/tensorflow/keras-applications/vgg19/vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5">https://storage.googleapis.com/tensorflow/keras-applications/vgg19/vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5</a>
input_2
```

초기 모델 레이어

이미지 처리를 위해, 분류 레이어를 제외한 전체 레이어들을 조절하며 최적의 결과값을 찾는 과정을 거침

초기 모델 레이어

이미지 처리를 위해, 분류 레이어를 제외한 전체 레이어들을 조절하며 최적의 결과값을 찾는 과정을 거침

```
content_layers = ['block5_conv2']
style_layers = ['block1_conv1',
                 'block2_conv1',
                 'block3_conv1',
                 'block4_conv1',
                 'block5_conv1']
num_content_layers = len(content_layers);
num_style_layers = len(style_layers);
```


block1_conv1 block1_conv2 block1_pool block2_conv1 block2_conv2 block2_pool block3_conv1 block3_conv2 block3_conv3 block3_conv4 block3_pool block4_conv1 block4_conv2 block4_conv3 block4_conv4 block4_pool block5_conv1 block5_conv2 block5_conv3 block5_conv4 block5_pool

[초기 선택 레이어]

[초기 선택 레이어]

```
content_layers = ['block5_conv2']
style_layers = ['block1_conv1',
                'block2_conv1',
                'block3_conv1',
                'block4_conv1',
                'block5_conv1']
num_content_la
num_style_laye
```

[더 얕은 콘텐츠 레이어]

```
content_layers = ['block2_conv1']
style_layers = ['block1_conv1',
                'block2_conv1',
                 'block3_conv1',
                'block4_conv1',
                'block5_conv1']
num_content_lay
num_style_layer
```


[초기 선택 레이어]

[더 얕은 콘텐츠 레이어]

[초기 선택 레이어]

[더 얕은 콘텐츠 레이어]


```
style_layers = ['block1_conv1',
                'block2_conv1',
                'block3_conv1',
                'block4_conv1']
```



```
style_layers = ['block1_conv1',
                'block2_conv1',
                'block3_conv1']
```

스타일 입력값이 줄어들수록 스타일 요소 감소


```
style_layers = ['block1_conv1',
                'block2_conv1',
                'block3_conv1',
                'block4_conv1',
                'block5_conv1']
```



```
style_layers = ['block1_conv1',
                'block2_conv1',
                'block3_conv1',
                'block4_conv1']
```



```
style_layers = ['block1_conv1',
                'block2_conv1',
                'block3_conv1']
```


Results

Results

Conclusion

앞으로 해볼 것 & 마무리

Conclusion

THANK YOU

