CSCB63 – Design and Analysis of Data Structures

Anya Tafliovich¹

¹with huge thanks to Anna Bretscher and Albert Lai

priority queue

Collection of priority-job pairs; priorities must be comparable.

- insert(p, j): insert job j with priority p
- max(): return job with max priority
- extract-max(): remove and return job with max priority

heap

A heap is one way to store a priority queue. A heap is:

- a binary tree
- "nearly complete": every level i has 2ⁱ nodes, except the bottom level; the bottom nodes flush to the left
- at each node n: $priority(n) \ge priority(n.left)$ and $priority(n) \ge priority(n.right)$

.

heap insert: example

Insert job with priority 15.

- √ The tree is still "nearly-complete". But:
- ! Order of priorities bad. Fix: swap with parent.

heap insert: example

Insert job with priority 15.

- √ The tree is still "nearly-complete". But:
- ! Order of priorities bad. Fix: swap with parent.

heap insert: example

Insert job with priority 15.

- $\sqrt{\ }$ The tree is still "nearly-complete". But:
- $\sqrt{\ }$ Order of priorities good.

heap insert: algorithm

```
insert(p, j):
```

- 1. v := new node(p, j)
- insert v at bottom level, leftmost free place (keep the tree "nearly-complete")
- 3. while v has parent p with p.priority < v.priority:
 - swap v.priority and p.priority
 - swap v.job and p.job
 - v := parent(v)

Worst case time: $\Theta(height)$

Later we will see why $height = \lfloor \log n \rfloor + 1$. Therefore worse case time $\Theta(\log n)$.

new root?

replace by the bottom level, rightmost item.

- $\sqrt{}$ The tree is still "nearly-complete".
 - ! Order of priorities bad. Fix: swap with the larger child. (Why not the smaller child?)

replace by the bottom level, rightmost item.

- $\sqrt{\ }$ The tree is still "nearly-complete".
 - ! Order of priorities bad. Fix: swap with the larger child. (Why not the smaller child?)

replace by the bottom level, rightmost item.

- $\sqrt{\ }$ The tree is still "nearly-complete".
- $\sqrt{}$ Order of priorities good.

heap extract-max: algorithm

```
extract-max():
```

- 1. max_p, max_j = root.priority, root.job
- move (priority, job) from last (bottom, rightmost) node into root
- 3. remove last node
- 4. v := root
- 5. while v has child c with c.priority > v.priority:
 - c := child of v with largest priority
 - swap v.priority and c.priority
 - swap v.job and c.job
 - v := c
- return max_p, max_j

Worst case time: $\Theta(height)$

Later we will see why $height = \lfloor \log n \rfloor + 1$. Therefore worse case time $\Theta(\log n)$.

heap in array/vector

	16	14	10	8	7	9	3	2	4	1	
0	1	2	3	4	5	6	7	8	9	10	11

Array representation start at index 1

heap in array/vector

	16	14	10	8	7	9	3	2	4	1	
0	1	2	3	4	5	6	7	8	9	10	11

Easy:

- where to insert/remove? simply at the end
- saves space: no pointers to store

Where are children/parents?

- left child of node at index i: at index $2 \times i$
- right child of node at index i: at index $2 \times i + 1$
- parent of index node at i: at index $\lfloor i/2 \rfloor$

Downside?

heap: height

Let n be the number of nodes, h be the height.

- largest n: bottom level is full
 - $n = 2^h 1$
- smallest n: only 1 node at bottom level
 - h-1 levels are full

•
$$n = (2^{h-1} - 1) + 1$$

$$(2^{h-1}-1)+1 \le n \le 2^h-1$$

 $2^{h-1} \le n \le 2^h$
 $h-1 \le \log_2 n \le h$
 $h \le (\log_2 n)+1 \le h+1$
 $h = |\log_2 n|+1$