

Лекция 1

Аффинное пространство

Содержание лекции:

В настоящей лекции мы начинаем рассматривать геометрическую сцену и геометрические объекты. Сценой для нас будет служить аффинное пространство - множество точее, на котром действует линейное пространство. Здесь мы обсудим аксиомы аффинного пространства и их простейшие следствия.

Ключевые слова:

Аффинное пространство, аксиомы Вейля, векторизация, размерность, аффинная плоскость, точка, прямая, гиперплосоксть, аффинная оболочка, параллельность плокскостей, скрещивающиеся плоскости, пересечение аффицных пространств.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы: mathdep.ifmo.ru/geolin

1.1 Аксиомы Вейля

Аффинным пространством называется тройка $\mathbb{A}_{\mathbb{k}}=(\mathbb{S},\mathbb{V},+)$, где \mathbb{S} - множество (элементы которого мы будем называть "точками"), \mathbb{V} - векторное пространство над полем \mathbb{k} и отображение

$$+ : \mathbb{S} \times \mathbb{V} \to \mathbb{S},$$

сопоставляющее каждой паре $(P, \vec{v}) \in \mathbb{S} \times \mathbb{V}$ элемент $P + \vec{v}$ множества \mathbb{S} .

Nota bene Свойства композиции + (аксиомы Вейля):

1. для любой точки $P \in \mathbb{S}$ имеет место

$$P + \vec{0} = P$$

2. для любой точки $P \in \mathbb{S}$ и для любых $\vec{v}, \vec{w} \in \mathbb{V}$ имеет место:

$$P + (\vec{v} + \vec{w}) = (P + \vec{v}) + \vec{w},$$

3. для любой упорядоченной пары точек $(P,Q)\in \mathbb{S}\times \mathbb{S}$ существует единственный элемент из $\vec{v}\in \mathbb{V}$, такой что:

$$Q = P + \vec{v}.$$

Nota bene Если $P+\vec{v}=Q$, то будем обозначать элемент $\vec{v}\in\mathbb{V}$ посредством $\vec{v}=\overrightarrow{PQ}$.

Лемма 1.1. Пусть P, Q, R - произвольные точки аффинного пространства $\mathbb{A}_{\mathbb{k}}$, тогда

$$\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$$

Введем обозначения $\vec{v} = \overrightarrow{PQ}$ и $\vec{w} = \overrightarrow{QR}$, тогда аксиома (2) дает

$$P + \left(\overrightarrow{PQ} + \overrightarrow{QR}\right) = \left(P + \overrightarrow{PQ}\right) + \overrightarrow{QR} = Q + \overrightarrow{QR} = R,$$

Затем из аксиомы (3) получаем требуемое.

Лемма 1.2. Имеет место равенство:

$$\overrightarrow{QP} = -\overrightarrow{PQ}$$

B случае R = P будем иметь

$$P + \overrightarrow{PQ} + \overrightarrow{QP} = P \quad \Leftrightarrow \quad \overrightarrow{PQ} + \overrightarrow{QP} = \overrightarrow{0} \quad \Rightarrow \quad \overrightarrow{QP} = -\overrightarrow{PQ}.$$

 $oldsymbol{Nota\ bene}$ Из предыдущей леммы, в частности, следует что $\overrightarrow{PP} = \vec{0}$

1.2 Векторизация аффинного пространства

Векторизацией аффинного пространства $\mathbb{A}_{\mathbb{k}}$ относительно точки $O \in \mathbb{A}_{\mathbb{k}}$ называется отображение $\mathrm{vect}_O : \mathbb{A}_{\mathbb{k}} \to \mathbb{V}$, такое что

$$\operatorname{vect}_O(P) = \overrightarrow{OP} = \overrightarrow{v}_P, \quad \forall P \in \mathbb{A}_k,$$

и при этом $P=O+\overrightarrow{OP}$ и вектор \overrightarrow{OP} называется радиусом-вектором точки P относительно точки O.

Теорема 1.1. Для любой точки $O \in \mathbb{A}_{\mathbb{k}}$ векторизация vect_O является взаимнооднозначным соответствием (биекцией) между $\mathbb{A}_{\mathbb{k}}$ и \mathbb{V} .

Иньективность:

$$\overrightarrow{OP} = \overrightarrow{OQ} \quad \Rightarrow \quad P = Q.$$

Действительно:

$$P = O + \overrightarrow{OP} = O + \overrightarrow{OQ} = Q.$$

Сюрьективность:

$$\forall \vec{v} \in \mathbb{V} \quad \exists P \in \mathbb{A}_{\mathbb{k}} : \quad P = O + \vec{v} \quad \Rightarrow \quad \vec{v} = \overrightarrow{OP}.$$

•

Размерностью аффинного пространства $\mathbb{A}_{\mathbb{k}}$ называется размерность соответствующего векторного пространства \mathbb{V} :

$$\dim \mathbb{A}_{\mathbb{k}} = \dim_{\mathbb{k}} \mathbb{V}.$$

1.3 Объекты аффинной геометрии

Аффинной плоскостью в пространстве $\mathbb{A}_{\mathbb{k}}$ называется подмножество вида:

$$\mathbb{P}_{\mathbb{k}} = \{ P_0 + \vec{u} : P_0 \in \mathbb{A}_{\mathbb{k}}, \quad \vec{u} \in \mathbb{U} \},$$

где $\mathbb{U} \leq \mathbb{V}$ - подпространство \mathbb{V} . Пространство \mathbb{U} называется направляющим подпространством плоскости $\mathbb{P}_{\mathbb{k}}$.

 $Nota\ bene$ По определению \mathbb{P}_{\Bbbk} - аффинное пространство и $\dim \mathbb{P}_{\Bbbk} = \dim_{\Bbbk} \mathbb{U}$.

Точкой и **прямой** называются, соответственно, плоскости размерности 0 и 1. **Ги- перплоскостью** называется плоскость размерностью n-1, если $\dim \mathbb{A}_{\mathbb{k}}=n$.

Пример 1.1. Рассмотрим прямую $\mathbb{L}_{\mathbb{k}}$ в аффинном пространстве $\mathbb{A}_{\mathbb{k}}$ и положим $\mathbb{U} = \operatorname{span}_{\mathbb{k}}(\vec{a})$. Пусть далее \vec{r}_0 - образ точки P_0 при векторизации vect_O . Тогда для образа \vec{r} произвольной точки $P \in \mathbb{L}_{\mathbb{k}}$ будем иметь:

$$\vec{r} = \vec{r}_0 + \alpha \vec{u}, \quad \alpha \in \mathbb{k}.$$

Аналогично, для плоскости вместе с $\mathbb{U}=\mathrm{span}_{\Bbbk}(\vec{a},\vec{b}),$ где $\vec{a},\vec{b}\in\mathbb{V}$ - два неколлинеарных вектора, в результате векториации получим:

$$\vec{r} = \vec{r_0} + \vec{w} = \vec{r_0} + \alpha \vec{a} + \beta \vec{b}, \quad \alpha, \beta \in \mathbb{k}.$$

Теорема 1.2. Через любые m+1 точек аффинного пространства $\mathbb{A}_{\mathbb{k}}$ проходит плоскость размерности меньшей или равной m. При этом, если эти точки не содержатся в плоскости размерности меньшей m, то через них проходит единственная плоскость размерности m.

▶

Пусть $P_0, P_1, \ldots, P_m \in \mathbb{A}_k$. Тогда

$$\mathbb{P}_{\mathbb{k}} = P_0 + \operatorname{span}_{\mathbb{k}}(\overrightarrow{P_0P_1}, \overrightarrow{P_0P_2}, \dots, \overrightarrow{P_0P_m}),$$

есть плоскости размерности меньшей или равной m, проходящие через точки $P_0, P_1, \dots P_m$. Если $\dim \mathbb{P}_{\Bbbk} = m$, то векторы $\left\{\overrightarrow{P_0P_j}\right\}_{j=1}^m$ линейнонезависимы и \mathbb{P}_{\Bbbk} является единственной m-мерной плоскостью, проходящей через $P_0, P_1, \dots P_m$.

•

Теорема 1.3. Всякая плоскость $\mathbb{P}_{\mathbb{k}}$ есть множество решений некоторой системы линейных уравнений.

▶

Векторизация $\mathbb{P}_{\mathbb{k}}$ относительно некоторой точки O дает структуру линейного многообразия в \mathbb{V} , которое можно интерпретировать как решение некоторой неоднородной системы.

4

Аффинной оболочкой множества $M \subset \mathbb{A}_k$ называется плоскость

aff
$$M = P_0 + \operatorname{span}_{\mathbb{k}}(\overrightarrow{P_0P} : P \in M), \quad M \subset \mathbb{A}_{\mathbb{k}}, \quad P_0 \in M.$$

Пример 1.2. Воспроизведем хорошо известные утверждения:

- aff $\{P_0, P_1\} = P_0 + \operatorname{span}_{\Bbbk}(\overrightarrow{P_0P_1})$ аффинная прямая;
- aff $\{P_0,P_1,P_2\}=P_0+\mathrm{span}_{\Bbbk}(\overrightarrow{P_0P_1},\overrightarrow{P_0P_2})$ аффинная плоскость;

1.4 Взаимное расположение плоскостей

Плоскости $\mathbb{P}_{\Bbbk}^{(1)}=\{P_1+\mathbb{U}_1\}$ и $\mathbb{P}_{\Bbbk}^{(2)}=\{P_2+\mathbb{U}_2\}$ называются

- параллельными, если $\mathbb{U}_1 \leqslant \mathbb{U}_2$ или $\mathbb{U}_2 \leqslant \mathbb{U}_1$, при этом они **совпадают**, если $\overrightarrow{P_1P_2} \in \mathbb{U}_{1(2)}$;
- скрещивающимися, если $\mathbb{P}_{\mathbb{k}}^{(1)} \cap \mathbb{P}_{\mathbb{k}}^{(2)} = \emptyset$ и $U_1 \cap U_2 = \{\vec{0}\}.$
- пересекающимимся в остальных случаях.

Лемма 1.3. Плоскости $\mathbb{P}_{\Bbbk}^{(1)}$ и $\mathbb{P}_{\Bbbk}^{(2)}$ пересекаются тогда и только тогда, когда

$$\overrightarrow{P_1P_2} \in \mathbb{U}_1 + \mathbb{U}_2.$$

Плоскости $\mathbb{P}_{\mathbb{k}}^{(1)}$ и $\mathbb{P}_{\mathbb{k}}^{(2)}$ пересекаются тогда и только тогда, когда существуют векторы $\vec{u}_1 \in \mathbb{U}_1, \ \vec{u}_2 \in \mathbb{U}_2,$ такие что

$$P_1 + \vec{u}_1 = P_2 + \vec{u}_2.$$

Это равенство может быть переписано в виде

$$\overrightarrow{P_1P_2} = \overrightarrow{u}_1 - \overrightarrow{u}_2.$$

Существование таких векторов \vec{u}_1 , \vec{u}_2 как раз означает, что $\overrightarrow{P_1P_2} \in \mathbb{U}_1 + \mathbb{U}_2$.

Пусть $\mathbb{A}_{\mathbb{k}}^{(1)}=(\mathbb{S}_1,\mathbb{V}_1,+)$ и $\mathbb{A}_{\mathbb{k}}^{(2)}=(\mathbb{S}_2,\mathbb{V}_2,+)$ - два аффинных подпространства аффинного пространства $\mathbb{A}_{\mathbb{k}}=(\mathbb{S},\mathbb{V},+)$. **Пересечением** $\mathbb{A}_{\mathbb{k}}^{(1)}$ и $\mathbb{A}_{\mathbb{k}}^{(2)}$ называется тройка $\mathbb{A}_{\mathbb{k}}^{\cap}=(\mathbb{S}_{\cap},\mathbb{V}_{\cap},+)$, такая что

$$\mathbb{S}_{\cap} = \mathbb{S}_1 \cap \mathbb{S}_2, \quad \mathbb{V}_{\cap} = \mathbb{V}_1 \cap \mathbb{V}_2,$$

где первое пересечение является теоретико-множественным, а второе - пересечением линейных подпространств.

Теорема 1.4. Пересечение аффинных подпространств - аффинное подпространство.