Introduction to Machine Learning: Linear and Logistic Regression and Neural Networks Using Python

Chapter 2 Python Demos

Python Demos

Section	Title	Description
2.1	NumPy Demo	Covers the principal numpy functions to be used in the course. Numpy array is building block underlying framework we will create.
2.2	Matplotlib Demo Basic	Covers the basic matplotlib plotting functions
2.3	Matplotlib Demo Heatmap	Covers how to create a scatter plot and heatmap used to visualize machine learning data and results for classification
2.4	Pandas Demo	Covers how to use the basic pandas commands to read data from file and perform basic manipulations
2.5	unittest Demo	Covers how to create unit tests
2.6	sklearn Demo	Covers how to process text in format useful for spam classification

2.1 NumPy Demo

NumPy Demo

NumPy (Numpy/numpy) is a Python package for scientific computing

- Key object is multi-dimensional numpy array
- numpy functions manipulate these arrays
 - Can perform standard matrix and vector operations
 - Can perform operations on entire array without explicit looping
- Course framework uses numpy array as fundamental building block
- See following site for details: https://numpy.org/

Key Numpy Commands and Functions

Operation	numpy functions
Array creation	numpy.array()
Array indexing	
Component-wise operations: addition, multiplication, scalar multiplication	+,*, * with scalar
Functions	numpy.exp(), numpy.absolute(), numpy.square()
Concatenation, shaping, removal, addition of axes	<pre>numpy.concatenate(), numpy.reshape(),numpy,squeeze(), numpy.expand_dims()</pre>
Sum entries of array	numpy.sum()
Array of zeros, array of ones	numpy.zeros(), numpy.ones()
Array of random numbers: setting seed, from uniform distribution, from normal distribution	numpy.random.seed(), numpy.random.rand(), numpy.random.randn()

2.1 Numpy DEMO

Jupyter Notebook for demo:

• IntroML/Examples/Chapter2/NumpyDemo.ipynb

Course Resources at:

2.2 Matplotlib Basic Demo

Matplotlib Basic Demo

Matplotlib is a Python package for plotting

- See following site for details: https://matplotlib.org
- Matplotlib has Matlab-like interface
- This section has a demo of the basic plotting commands

Matplotlib Basics: Commands and Functions

Operation	matplotlib functions
Basic plotting using lists and numpy arrays and adding legends	figure(),plot(), legend(), title(), xlabel(), ylabel(),show()
Multiple plots	subplot()
Object oriented approach	
Scatter plots	plot(), scatter()
Histograms	hist()
Bar chart	bar()

2.2 Matplotlib DEMO

Jupyter Notebook for demo:

IntroML/Examples/Chapter2/MatplotlibBasicsDemo.ipynb

Course Resources at:

2.3 Matplotlib Heatmap Demo

Matplotlib Heatmap

- Goal: produce plot showing "training data" and Machine Learning prediction
- Training data: red and blue points
- Machine Learning Prediction: heatmap (purple region is predicted 0 and yellow region is predicted 1)

Throughout this course we will produce plots like this to visualize effectiveness of machine learning algorithms for classification

Plotting Training Data

Generate training data: points in (X0,X1) plane and labels (0 or 1)

- 1. Identify indices for label = 0 plot corresponding points red
- 2. Identify indices for label = 1 plot corresponding points blue

Plotting Heatmap of Results

- 1. Create grid of points similar to that on right: (0.25,0.25), (0.5,0.25), (0.75,0.25), (0.25,0.5), (0.5,0.5), (0.75,0.5), (0.25,0.75), (0.5,0.75)
- 2. Want to assign 0 or 1 to each point to create heatmap
- 3. Use meshgrid to create 2d grids for X0 and X1 points
- 4. Reshape into 1d grids and create feature matrix $X = \begin{bmatrix} 0.25 & 0.5 & 0.75 & 0.25 & 0.5 & 0.75 & 0.25 & 0.5 \\ 0.25 & 0.25 & 0.25 & 0.5 & 0.5 & 0.5 & 0.75 & 0.75 \end{bmatrix}$
- 5. Apply prediction algorithm to feature matrix to determine 0 or 1 label for each point
- 6. Reshape prediction into 3x3 grid and use prolormesh function in matplotlib to generate heatmap

 X_1

2.3 Matplotlib Heatmap DEMO

Jupyter Notebook for demo:

IntroML/Examples/Chapter2/MatplotlibHeatmapDemo.ipynb

Course Resources at:

2.4 Pandas Demo

Pandas Demo

Pandas is a Python package containing data structures and analysis tools

- Will use pandas functions to read data from csv file and process data for case studies
- Key structure is data frame
- See following site for details: https://pandas.pydata.org/

Reading From CSV

4	Α	В	С	D
1	label	feature 1	feature 2	
2	0.123	0.715279	-1.5454	
3	1.23	0.5	-0.72009	
4	-1.45	0.5	0.004291	
5	0.51	0.433026	1.203037	
6				
7				

- Typically csv file has columns of data with headings/names
- Pandas reads data and puts into dataframe structure
- Use column names to choose which data to manipulate

Key Pandas Commands and Functions

Operation	pandas functions	
Read data from csv file and put into data frame	pandas.read_csv	
List items in data frame	pandas.head(), pandas.tail()	
Remove column from data frame	pandas.drop()	
Map data	map attribute	
Extract values from data frame in numpy array format	values attribute	

2.4 Pandas DEMO

Jupyter Notebook for demo:

• IntroML/Examples/Chapter2/PandasDemo.ipynb

Course Resources at:

2.5 unittest Demo

unittest Demo

unittest is a package that is part of the Python release

- Package allows set up of unit tests
- Will set up unit tests to check accuracy of derivative calculations of course machine learning framework
- See following site for details: https://docs.python.org/3/library/unittest.html

Unit Test Functionality

```
import unittest
class Test(unittest.TestCase)
    def test1(self):
        Z1 = (X+Y)^*(X+Y)
        Z2 = X^*X + 2^*X^*Y + Y^*Y
        error = abs(z1-z2)
        self.assertLessEqual(error,1e-7)
if name == " main ":
    #this is command in python when running in command window
    #unittest.main()
    # this is command in the jupyter notebook
    unittest.main(argv=['first-arg-is-ignored'], exit=False)
```

- Use functionality in unittest package
- Create a class derived from unittest.TestCase
- Individual unit tests are set up as methods of the class
- Test should have "assert" command which determines pass or fail
- Use unittest.main to run tests
- Will get OK if test passes

2.5 unittest DEMO

Jupyter Notebook for demo:

• IntroML/Examples/Chapter2/unittestDemo.ipynb

Course Resources at:

2.6 sklearn Demo

sklearn Demo

- sklearn is shortened version of name of package scikit-learn
- sklearn is a package for machine learning
- Will use text processing functionality in CountVectorizer in sklearn for spam classification case study
- See following site for details: https://scikit-learn.org/stable/index.html

CountVectorizer - Example

- 3 Messages: 'Call me soon', "CALL to win", "Pick me up soon"
- CountVectorizer determines unique words (My, my, MY are the same in default setting)
- CountVectorizer creates matrix (# words x # messages) with number of times each word appears in a message

Most Common Words

• Sum Feature Matrix in col direction to get count of words for all messages

Count:

Words:	Feature Matrix:		
call	Γ1 1 07		
me	$\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$		
pick	$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$		
soon	$\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$		
to	$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$		
up	$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$		
win	LO 1 0J		

- Can use numpy argsort function to get indices of most common words:
 - In case of ties, go in order of index
 - Indices of 4 most common words: 0, 1, 3, 2
 - Most common words: call, me, soon, pick

2.6 sklearn DEMO

Jupyter Notebook for DEMO

• IntroML/Examples/Chapter2/sklearnDemo.ipynb

Course Resources at: