

Estrutura de Dados e Algoritmos - MATA 40

# RELATÓRIO RED-BLACK TREE vs AVL

### Reynan Da Silva Dias Paiva Bruno Ribeiro Cana Brasil Jamilson Prazeres Pestana Júnior

Responsável: Prof. Dr. George Marconi de Araújo Lima

 $<sup>^1\,</sup>Reynan\,Da\,Silva\,Dias\,Paiva.\,Cursnado\,Ciência\,Da\,Computação\,na\,UFBA.\,Contato: < reynanwq@gmail.com>.$ 

# **SUMÁRIO**

| 1.0 AVL – Definição                                 |
|-----------------------------------------------------|
| 2.0 Red-black tree Definição                        |
| 3.0 Diferença da Red-black e AVL                    |
| 4.0 ANALISANDO AS DIFERENÇAS NO COMPORTAMENTO AO    |
| APLICAR DE 2 ATÉ 6 NÓS                              |
| 5.0 ANALISANDO AS DIFERENÇAS NO COMPORTAMENTO AO    |
| APLICAR DE 10 ATÉ 38 NÓS10                          |
| 6.0 ANALISANDO AS DIFERENÇAS NO COMPORTAMENTO AO    |
| APLICAR 60 NÓS                                      |
| 7.0 ANALISANDO AS DIFERENÇAS NO COMPORTAMENTO AO    |
| APLICAR 100 NÓS                                     |
| 8.0 ANALISANDO AS DIFERENÇAS NO COMPORTAMENTO AO    |
| APLICAR 200 NÓS22                                   |
| 9.0 ANALISANDO AS DIFERENÇAS AS NO COMPORTAMENTO AO |
| APLICAR AO VALORES DADOS PELO PROFESSOR: input1.txt |
| 10.0 MÉDIA E DESVIO PADRÃO                          |
| 11.0 CONCLUSÃO                                      |
| 12.0 REFERÊNCIAS BIBLIOGRÁFICAS                     |

 $<sup>^2</sup>$  Reynan Da Silva Dias Paiva. Curs<br/>nado Ciência Da Computação na UFBA. Contato:<br/><reynanwq@gmail.com>.

# LISTA DE GRÁFICOS

| Grafico 1 - Teste 1                       |
|-------------------------------------------|
| Grafico 2 - Teste 2                       |
| Grafico 3 - Teste 3                       |
| Grafico 4 - Teste 4                       |
| Grafico 5 - Teste 5                       |
| Grafico 6 - Teste 6                       |
| Grafico 7 - Teste 7                       |
| Grafico 8 - Teste 8                       |
| Grafico 9 - Teste 9                       |
| Grafico 10 - Teste 10                     |
| Grafico 11 - Teste 11                     |
| Grafico 12 - Teste 12                     |
| Grafico 13 - Teste 13                     |
| Grafico 14 - Teste 14                     |
| Grafico 15 - Teste 15                     |
| Grafico 16 - Teste 16                     |
| Grafico 17 - Teste 17                     |
| Grafico 18 - Teste 18                     |
| Grafico 19 - Teste 19                     |
| Grafico 20 – Gráfico de Altura         30 |
| Grafico 21 – Nível de Balanceamento       |
| Grafico 22 – Média de Rotações            |

<sup>&</sup>lt;sup>3</sup> Reynan Da Silva Dias Paiva. Cursnado Ciência Da Computação na UFBA. Contato:<reynanwq@gmail.com>.

#### 1.0 O que é AVL?

Esta estrutura foi criada em 1962 pelos soviéticos Adelson Velsky e Landis (a incial de seus inventores que formam a árvore) que a criaram para que fosse possível inserir e buscar um elemento em tempo c.log (n) operações, onde n é o número de elementos contido na árvore. É fato que é uma árvore binária de busca balanceada. Uma árvore AVL nunca excede (1.44 log n) em altura, o que implica que, mesmo no pior caso, o tempo de pesquisa numa árvore AVL é da ordem de O(log n). Numa árvore perfeitamente balanceada, as sub-árvores de cada nó têm a mesma altura. Uma árvore AVL é uma árvore binária de pesquisa em que as sub-árvores esquerda e direita da raiz não diferem de mais do que uma unidade nas suas alturas. São casos particulares de árvores de pesquisa binária em que as operações de inserção e remoção são desenhadas para manter a árvore muito próxima de um estado balanceado em cada instante. As operações de busca, inserção e remoção de elementos possuem complexidade O(log n), ao qual n é o número de elementos da árvore), que são aplicados a árvore de busca binária.

#### Existem 2 tipos de rotação:



#### Rotação à esquerda



#### Rotação à direita



#### 2.0 O que é Red-black tree ?

Foram inventadas por Bayer sob o nome "Árvores Binárias Simétricas" em 1972, 10 anos depois das árvores AVL. Uma árvore vermelho-preto é um tipo de árvore de busca binária com equilíbrio automático, onde cada nó tem um bit extra, e esse bit é frequentemente interpretado como a cor (vermelho ou preto). Essas cores são usadas para garantir que a árvore permaneça equilibrada durante as inserções e exclusões. Embora o equilíbrio da árvore não seja perfeito, é bom o suficiente para reduzir o tempo de busca e mantê-lo em torno do tempo O (log n), onde n é o número total de elementos na árvore. Esta árvore foi inventada em 1972 por Rudolf Bayer. A altura preta da árvore vermelho-preta é o número de nós pretos em um caminho do nó raiz até o nó folha. Os nós de folha também são contados como nós pretos. Portanto, uma árvore vermelho-preta de altura h tem altura preta>=h/2. A altura de uma árvore vermelho-preta com n nós é  $h \le 2 \log 2 (n+1)$ . A profundidade de preto de um nó é definida como o número de nós pretos da raiz até aquele nó, ou seja, o número de ancestrais pretos. Cada árvore rubro-negra é um caso especial de árvore binária. Cada vez que uma operação for realizada na árvore, o conjunto de propriedades é testado

Por serem "balanceadas" as árvores V-P possuem complexidade logarítmica em suas operações: O (log n). Todo nó é vermelho ou preto. A raiz é preta. Toda folha (Nil) é preta. Se um nó

é vermelho, então os seus filhos são pretos. Para cada nó, todos os caminhos do nó para folhas descendentes contém o mesmo número de nós PRETOS.



Primeira inserção: Caso a árvore seja nula, a inserção o Nó mudará a sua cor para preto.







#### Rotação à Direita:





#### Rotação à Esquerda:





#### 3.0 Diferença da Red-black e AVL.

#### **RED-BLACK**

**Pesquisas:** mais lentas, pois não são equilibradas

Cor: Vermelha ou Preta

**Inserção/Remoção:** Mais rápidas pois tem menos rotações sendo feitas.

**Pesquisa de Busca:** Não fornece pesquisas eficientes.

**Fator de equilíbrio:** Não tem equilíbrio

Usos: Bibliotecas de idiomas: map;

#### **AVL**

**Pesquisas:** mais rápidas, pois são mais equilibradas

Cor: Não tem cor

Inserção/Remoção: Operações complexas de inserção e remoção equilíbrio rigoroso a medida que são feitas as rotações

**Pesquisa de Busca:** Fornece pesquisas eficientes.

Fator de equilíbrio: Cada Nó tem um fator de

fator entre: { 1, 0, -1 }

Usos: Banco de Dados

| <u>Algorithm</u> | <u>Average</u> | Worst case |
|------------------|----------------|------------|
| Space            | O(n)           | O(n)       |
| Search           | O(log n)       | O(log n)   |
| Insert           | O(log n)       | O(log n)   |
| Delete           | O(log n)       | O(log n)   |
| AVL TREE -       |                |            |
| Algorithm        | Average        | Worst case |
| Space            | O(n)           | O(n)       |
| Search           | O(log n)       | O(log n)   |
| Insert           | O(log n)       | O(log n)   |
| Delete           | O(log n)       | O(log n)   |

# 4.0 ANALISANDO AS DIFERENÇAS NO COMPORTAMENTO AO APLICAR DE 2 ATÉ 6 NÓS..

Para esse teste inicial as entradas utilizadas na AVL e na Red-black Tree foram:

Árvore com 2 NÓ:

10 15

Árvore com 4 NÓ:

10 15 20 25

**Árvore com 6 NÓ:** 10 15 20 25 30 35

Árvore com 3 NÓ:

10 15 20

**Árvore com 5 NÓ:** 10 15 20 25 30

#### TESTE 01

#### **AVL**

# 2 0010 0015

#### RED-BLACK TREE



**Análise:** Não há mudanças com relação ao posicionamento dos Nós. Sendo o valor "10" a raiz, ao inserir o valor "15" por ele ter um valor maior que a raiz, então será inserido na direita da raiz. Na RB O 10 é a raiz, logo terá cor preta, o valor 20 entra como vermelho e por também ser autobalanceada, entra à direita da raiz.

AVL fator de balanceamento da raiz: -1

AVL altura: 1 AVL rotações: 0 AVL N° de Nós: 2

AVL Medio de Rotações: 0

RB fator de balanceamento da raiz: -1

RB altura: 1 RB rotações: 0 RB N° de Nós: 2

RB Medio de Rotações: 0

RB Soma dos Fatores da árvore: -1 RB Nível de balanceamento: 0.5



TESTE 02

#### **AVL**

### 2 0015 1 0010 0020

#### **RED-BLACK TREE**



Análise: Ao inserir o valor "20", percebe-se que ainda não há nenhuma diferença com relação ao posicionamento, isso ocorre pelo fato de ambas as árvores serem autobalanceadas. Ao inserir o valor "20", que também é maior que a raiz e o valor "15", então ele é inserido à direita do "15", neste caso, é necessário que seja reaalizada uma rotação para esquerda. Como já sabemos, o "20" entra como vermelho, à direita do "15". Logo, será necessáro uma rotação para à esquerda, pois um vermelho não pode ter um filho vermelho. O "15", para balancear vira a raiz, logo terá cor preta e o 10 desce como vermelho, pois seu irmão também é vermelho.

AVL fator de balanceamento da raiz: 0

AVL altura: 1 AVL rotações: 1 AVL N° de Nós: 3

AVL Medio de Rotações: 0.33 AVL Soma dos Fatores da árvore: 0 AVL Nivel de balanceamento: 0 RB fator de balanceamento da raiz: 0

RB altura: 1 RB rotações: 1 RB N° de Nós: 3

RB Medio de Rotações: 0.33 RB Soma dos Fatores da árvore: 0 RB Nível de balanceamento: 0



TESTE 03

#### **AVL**

#### **RED-BLACK TREE**





**Análise:** Ao inserir o valor "25", ainda não ocorre diferenças com relação ao posicionamento. O 25 será inserido à direita do 20, logo não é necessário nenhuma rotação. O "25" entra como vermelho, porém, o "20" que é o pai do "25" também é vermelho, então o "20" deve ter valor preto. Logo, o "10" que é o irmão do "20" deve ter cor preta.

AVL fator de balanceamento da raiz: -1

AVL altura: 2 AVL rotações: 1 AVL N° de Nós: 4

AVL Medio de Rotações: 0.25 AVL Soma dos Fatores da árvore: -2 AVL Nivel de balanceamento: 0.50 RB fator de balanceamento da raiz: -1

RB altura: 2 RB rotações: 1 RB N° de Nós: 4

RB Medio de Rotações: 0.25 RB Soma dos Fatores da árvore: -2 RB Nível de balanceamento: 0.50



#### **TESTE 04**



**Análise:** Com a inserção do valor "30", ainda não é notável a diferença com relação ao posicionamento das árvores. O "30" será inserido à direita do "25", logo será necessário uma rotação para esquerda. O "30" entra como cor vermelha e como filho do "25", como o "25" é o pai e tem cor vermelha, então a cor do "25" muda para preta. Também é ralizada uma rotação para esquerda. O "20" também fica vermelho pois seu irmão "30" é vermelho.

AVL fator de balanceamentoda raiz: -1

AVL altura: 2 AVL rotações: 2 AVL N° de Nós: 5

AVL Medio de Rotações: 0.4

AVL Soma dos Fatores da árvore: -1 AVL Nivel de balanceamento: 0.20 RB fator de balanceamento da raiz: -1

RB altura: 2 RB rotações: 2

RB N° de Nós: 5

RB Medio de Rotações: 0.4

RB Soma dos Fatores da árvore: -1

RB Nível de balanceamento: 0.20



#### TESTE 05

#### **AVL**

#### RED-BLACK TREE





**Análise:** Inserindo o valor "35", finalmente é possível notar uma diferença com relação ao posicionamento. Na Red-Black tree, o "35" entra como filho do "30", logo o "30" e o "20" ficam preto e "25" com a coloração avermelhada. Na AVL, há uma roatção dupla, o "20" virá o filho do Nó "15" que deixa de ser raiz, para ser o filho do "25" que virá a nova raiz. O "35" será inserido à direita do "30", desta forma, a àrvore ficará desbalanceada, logo será necessário uma rotação para à esquerda, tornando o "25" a nova raiz. O 35 entra como vermelho. Como o seu pai (30) também é vermelho, então a sua cor muda para preto.

AVL fator de balanceamento: 0

AVL altura: 2 AVL rotações: 3 AVL N° de Nós: 6

AVL Medio de Rotações: 0.5

AVL Soma dos Fatores da árvore: -1 AVL Nivel de balanceamento: 0.16

RB fator de balanceamento da raiz: -2

RB altura: 3 RB rotações: 2 RB N° de Nós: 6

RB Medio de Rotações: 0.33 RB Soma dos Fatores da árvore: -4 RB Nível de balanceamento: 0.5



# 5.0 ANALISANDO AS DIFERENÇAS NO COMPORTAMENTO AO APLICAR DE 10 ATÉ 38 NÓS.

Entradas utilizadas na AVL e na Red-black Tree:

Árvore com 10 NÓ:

10 15 20 25 30 35 40 45 50 55

Árvore com 11 NÓ:

10 15 20 25 30 35 40 45 50 55 60

Árvore com 12 NÓ:

10 15 20 25 30 35 40 45 50 55 60 65

Árvore com 13 NÓ:

10 15 20 25 30 35 40 45 50 55 60 65 70

Árvore com 14 NÓ:

10 15 20 25 30 35 40 45 50 55 60 65 70 75

Árvore com 15 NÓ:

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Árvore com 16 NÓ:

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Árvore com 17 NÓ:

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Árvore com 18 NÓ:

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

#### TESTE 06





**Análise:** Este é apenas a primeira análise, já é nitido a mudança no comportamento, principalmente por causa das cores, o fatro de balanceamento da raiz tambémee está diferindo, tal como a altura, quantidade de rotações e o nível de balanceamento.

AVL fator de balanceamento da raiz: -1

AVL altura: 3 AVL rotações: 6 AVL N° de Nós: 10

AVL Medio de Rotações: 0.6

AVL Soma dos Fatores da árvore: -2 AVL Nivel de balanceamento: 0.2

RB fator de balanceamento da raiz: -2

RB altura: 4 RB rotações: 5 RB N° de Nós: 10

RB Medio de Rotações: 0.50 RB Soma dos Fatores da árvore: -6 RB Nível de balanceamento: 0.6



#### **TESTE 07**





Análise: Ao inserir o valor "60", na AVL irá apenas acontecer uma rotação para esquerda, ou seja,

Com relação à Red-Black tree, o "60" entra como vermelho e o "55" muda sua coloração para preto. Para balancear a árvore, então é feita uma rotação para esquerda.

AVL fator de balanceamento da raiz: -1

AVL altura: 3 AVL rotações: 7 AVL N° de Nós: 11

AVL Medio de Rotações: 0.63 AVL Soma dos Fatores da árvore: -1 AVL Nivel de balanceamento: 0.9 RB fator de balanceamento raiz: -2

RB altura: 4 RB rotações: 6 RB N° de Nós: 11

RB Medio de Rotações: 0.55

RB Soma dos Fatores da árvore: -5 RB Nível de balanceamento: 0.45



### TESTE 08



**Análise:** a entrada "65" causa uma grande mudança na AVL, pois é necessário uma rotação dupla, o "45" vira a nova raiz e o "25" aponta para o "35", tudo isso é feito com o intuito de balancear as árvore. Na Reb-black tree, o "65" entra como cor vermelha e o "60" muda sua cor para preto, tal como o seu irmão o "50", consequentemente, o "55" e o "45" também tem as suas cores alteradas.

AVL fator de balanceamento da raiz: 0

AVL altura: 3 AVL rotações: 8 AVL N° de Nós: 12

AVL Medio de Rotações: 0,66 AVL Soma dos Fatores da árvore: -2 AVL Nivel de balanceamento: 0.17 RB fator de balanceamento da raiz: 2

RB altura: 4 RB rotações: 7 RB N° de Nós: 12 RB Medio de Rotações: 0.58

RB Soma dos Fatores da árvore: -5 RB Nível de balanceamento: 0.42



AVL: Red-Black tree:





Análise: Inserindo o "70", na AVL fazemos uma rotação à esquerda.

Na Red-Black tree, é realizada a mesma operação, contendo aalteração apenas na coloração.

AVL fator de balanceamento da raiz: 0

AVL altura: 3 AVL rotações: 9 AVL N° de Nós: 13

AVL Medio de Rotações: 0.69 AVL Soma dos Fatores da árvore: -1 AVL Nivel de balanceamento: 0.8 RB fator de balanceamento da raiz: 2

RB altura: 4 RB rotações: 8 RB N° de Nós: 13

RB Medio de Rotações: 0.62 RB Soma dos Fatores da árvore: 4 RB Nível de balanceamento: 0.31



#### **TESTE 10**

AVL: Red-Black tree:





**Análise:** Ao inserir o "75", acontece uma rotação no "65", que irá apontar para o "55" e a partir de agora será

apontado pelaa raiz (que é o "45"). Na Red-Black tree, há uma cadeia de alteração de cores.

AVL fator de balanceamento da raiz: 0

AVL altura: 3 AVL rotações: 10 AVL N° de Nós: 14

AVL Medio de Rotações: 0,71 AVL Soma dos Fatores da árvore: -1 AVL Nivel de balanceamento: 0.07 RB fator de balanceamento da raiz: 3

RB altura: 5 RB rotações: 8 RB N° de Nós: 14

RB Medio de Rotações: 0.57 RB Soma dos Fatores da árvore: -9 RB Nível de balanceamento: 0.64



**TESTE 11** 





Análise: inserindo o "80", então é feito uma

rotação à esquerda. Já na Red-black tree, também é feita a mesma alteração visando o balanceamento, ocorrendo mudança apenas na coloração.

AVL fator de balanceamento da raiz: 0

AVL altura: 3 AVL rotações: 11 AVL N° de Nós: 15

AVL Medio de Rotações: 0,73 AVL Soma dos Fatores da árvore: 0 AVL Nivel de balanceamento: 0 RB fator de balanceamento da raiz: -3

RB altura: 5 RBl rotações: 9 RB N° de Nós: 15

RB Medio de Rotações: 0.60 RB Soma dos Fatores da árvore: -8 RB Nível de balanceamento: 0.53



#### **TESTE 12**

#### **AVL**:



#### **Red-Black tree:**



**Análise:** Neste teste, temos a inserção do "85". Na AVL, não é necessário nenhuma rotação. Na Red-Black tree, é necessário uma rotação para esquerda. O "45" irá apontar para o "65", que agora irá apontarv para o "55" e o novo filho à direita dele será o "60".

AVL fator de balanceamento da raiz: 1

AVL altura: 4 AVL rotações: 11 AVL N° de Nós: 16

AVL Medio de Rotações: 0,68 AVL Soma dos Fatores da árvore: -4 AVL Nivel de balanceamento: 0.25 RB fator de balanceamento da raiz: 3

RB altura: 5 RB rotações: 10 RB N° de Nós: 16

RB Medio de Rotações: 0.62 RB Soma dos Fatores da árvore: -8 RB Nível de balanceamento: 0.50



#### AVL: Red-Black tree:



**Análise:** No experimento de número 8, ocorrerá a inserção do "90". Na AVL teremos uma rotação para esquerda. Interessante que na Red-black tree temos a mesma rotação, a única diferença é que nele ocorre a alteração nas cores. Apesar de ambas serem autobalanceadas, as duas árvores tomaram rumos totalmente diferentes.

AVL fator de balanceamento da raiz: 1

AVL altura: 4 AVL rotações: 12 AVL N° de Nós: 17

AVL Medio de Rotações: 0,70

Red-Black fator de balanceamento da raiz: 3

RB altura: 5 RB rotações: 11 RB N° de Nós: 17

RB Medio de Rotações: 0.65

AVL Soma dos Fatores da árvore: -3 AVL Nivel de balanceamento: 0.18

RB Soma dos Fatores da árvore: 7 RB Nível de balanceamento: 0.41



#### TESTE 14

#### AVL:

#### **Red-Black tree:**





**Análise:** No último teste, teremos a inserção do "95". O "65" aponta para o "85", que por sinal irá apontar para o "75", e o seu filho à direita será o "80". Na Red-Black tree, ocorre apenas alteração na cor, mas não no posicionamento.

AVL fator de balanceamento da raiz: 1

AVL altura: 4 AVL rotações: 13 AVL N° de Nós: 18

AVL Medio de Rotações: 0,72

AVL Soma dos Fatores da árvore: -3 AVL Nivel de balanceamento: 0.17

RB fator de balanceamento da raiz: 2

RB altura: 5 RB rotações: 12 RB N° de Nós: 18

RB Medio de Rotações: 0.67

RB Soma dos Fatores da árvore: -8 RB Nível de balanceamento: 0.44



#### **TESTE 15**

#### AVL: Red-Black tree:





**Análise:** Neste teste, fora aplicada "20" Nós a mais que o teste "9". Ao longo deste teste, percebemos certas diferenças. O fator de balanceamento de ambas as árvores é o mesmo, tal como a altura, o detalhe mais interessante foi a quantidade de rotações, visto que a AVL realizou 9 rotações a mais que a RB.

10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 52, 49, 51, 53, 48, 47, 62, 63, 96, 83, 84, 78, 43, 39, 44, 38, 22, 23, 32, 33.

AVL fator de balanceamento da raiz: 0

AVL altura: 5 AVL rotações: 30 AVL N° de Nós: 38

AVL Medio de Rotações: 0,79 AVL Soma dos Fatores da árvore: -2 AVL Nivel de balanceamento: 0.05 RB fator de balanceamento da raiz: 0

RB altura: 5 RB rotações: 21 RB N° de Nós: 38

RB Medio de Rotações: 0.55 RB Soma dos Fatores da árvore: -3 RB Nível de balanceamento: 0.08



# 6.0 ANALISANDO AS DIFERENÇAS NO COMPORTAMENTO AO APLICAR DE 60 NÓS.

#### Teste 16

**Valores utilizados:** 10; 15; 20; 25; 30; 35; 40; 45; 50; 55; 60; 65; 70; 75; 80; 85; 90; 95; 52; 49; 51; 53; 48; 47; 62; 63; 96; 83; 84; 78; 43; 39; 44; 38; 22; 23; 32; 33; 14; 13; 12; 11; 93; 92; 99; 98; 100; 121; 131; 161; 558; 679; 854; 841; 853; 896; 844; ;744; 766; 322.

**Análise:** Não é notavel mudança com relação a altura das árvores, entretanto, a quantidade de rotações na AVL passou a ser 17 vezes maior que na RB. Com essas informações, começamos a ter indicios de que a aplicação de NÓS na RB é mais rápida.

AVL fator de balanceamento da raiz: -1

AVL altura: 6 AVL rotações: 55 AVL N° de Nós: 60

AVL Medio de Rotações: 0.92

AVL Soma dos Fatores da árvore: -10 AVL Nivel de balanceamento: 0.17

RB fator de balanceamento da raiz: 1

RB altura: 6 RB rotações: 38 RB N° de Nós: 60

RB Medio de Rotações: 0.63 RB Soma dos Fatores da árvore: 6 RB Nível de balanceamento: 0.10



# 7.0 ANALISANDO AS DIFERENÇAS NO COMPORTAMENTO AO APLICAR DE 100 NÓS.

#### Teste 17

**Valores utilizados:** 10; 15; 20; 25; 30; 35; 40; 45; 50; 55; 60; 65; 70; 75; 80; 85; 90; 95; 52; 49; 51; 53; 48; 47; 62; 63; 96; 83; 84; 78; 43; 39; 44; 38; 22; 23; 32; 33; 14; 13; 12; 11; 93; 92; 99; 98; 100; 121; 131; 161; 558; 679; 854; 841; 853; 896; 844; ;744; 766; 322; 111; 222; 333; 444; 555; 666; 777; 888; 999; 987; 965; 954; 932; 921; 978; 945; 412; 413; 451; 452; 453; 469; 468; 467; 489; 498; 491; 492; 493; 495; 479; 473; 475; 484; 487;415; 416; 417; 418; 419.

**Análise:** Suprecendentemente, a altura continua a mesma, contrário a quantidade de rotações que diferem em 25 rotações que AVL tem a mais que a RB. O nível de balanceamento da AVL também é bem mais próximo do valor zero do que a RB.

AVL fator de balanceamento da raiz: -1 AVL altura: 7

RB fator de balanceamento da raiz: 1 RB altura: 7

AVL rotações: 100 AVL Nº de Nós: 100

AVL Medio de Rotações: 1.0 AVL Soma dos Fatores da árvore: 2 AVL Nivel de balanceamento: 0.02 RB rotações: 75 RB N° de Nós: 100

RB Medio de Rotações: 0.75

RB Soma dos Fatores da árvore: 10 RB Nível de balanceamento: 0.10



# 8.0 ANALISANDO AS DIFERENÇAS NO COMPORTAMENTO AO APLICAR DE 200 NÓS.

Valores Utilizados: 10; 15; 20; 25; 30; 35; 40; 45; 50; 55; 60; 65; 70; 75; 80; 85; 90; 95; 52; 49; 51; 53; 48; 47; 62; 63; 96; 83; 84; 78; 43; 39; 44; 38; 22; 23; 32; 33; 14; 13; 12; 11; 93; 92; 99; 98; 100; 121; 131; 161; 558; 679; 854; 841; 853; 896; 844; ;744; 766; 322; 111; 222; 333; 444; 555; 666; 777; 888; 999; 987; 965; 954; 932; 921; 978; 945; 412; 413; 451; 452; 453; 469; 468; 467; 489; 498; 491; 492; 493; 495; 479; 473; 475; 484; 487;415; 416; 417; 418; 419; 510; 511; 512; 513; 514; 577; 578; 579; 569; 549; 531; 532; 534; 536; 537; 538; 539; 541; 542; 543; 546; 549; 548; 611; 610; 601; 602; 603; 604; 609; 608; 607; 606; 605; 612; 613; 614; 615; 619; 618; 640; 641; 590; 591; 592; 593; 594; 595; 596; 597; 598; 599; 701; 702; 703; 704; 705; 706; 707; 708; 709; 710; 730; 731; 732; 733; 734; 735; 736; 737; 738; 739; 801; 802; 803; 804; 805; 806; 807; 808; 809; 810; 891; 892; 893; 894; 895; 896; 897; 898; 201; 202; 203; 204; 205; 206; 207; 208; 213; 288; 101; 102.

#### Teste 18

**Análise:** A altura continua não diferindo, dando a entender que apesar de ser um dado importante, a diferença de ambos não é tão grande assim. A quantidade de rotações só segue aumentando, pois AVL realizou 42 rotações a mais que a RB. O nível de balanceamento de ambas são bem próximos. Com esses dados, fica fácil concluir que até este momento o desempenho da REDBLACK TREE é bem melhor do que a AVL.

AVL fator de balanceamento da raiz: -1

AVL altura: 8 AVL rotações: 209 AVL N° de Nós: 200

AVL Medio de Rotações: 1.04 AVL Soma dos Fatores da árvore: 6 AVL Nivel de balanceamento: 0.03 RB fator de balanceamento da raiz: 1

RB altura: 8 RB rotações: 167 RB N° de Nós: 200

RB Medio de Rotações: 0.83

RB Soma dos Fatores da árvore: -2 RB Nível de balanceamento: 0.01



# 9.0 ANALISANDO AS DIFERENÇAS NO COMPORTAMENTO AO APLICAR AO VALORES DADOS PELO PROFESSOR PROFESSOR

#### Teste 19

Valores Utilizados: 5898; 90656; 21830; 17755; 30931; 40781; 53356; 74159; 78859; 36156.

**Análise:** Apesar do nível de balanceamento possuir o mesmo valor em ambas as árvores. Com estes valores, ficou ainda mais fácil visualizar que o desempenho da RB foi melhor, com relação a quantidade de rotações, já que a RB realizou 5 rotações a menos que a AVL.

altura da arvore: 3

fator de balanceamento da raiz: 0

quantidade de rotações: 9

quantidade de Nó da arvore: 10

Medio de Rotações: 0.90

Soma dos Fatores da árvore: -2 Nivel de balanceamento: 0.20 altura da arvore: 3

fator de balanceamento da raiz: 0

quantidade de rotações: 5 quantidade de Nó da arvore: 10

Medio de Rotações: 0.50

Soma dos Fatores da árvore: -2 Nivel de balanceamento: 0.20



#### 10.0 Média e Desvio Padrão.

O desvio padrão é uma medida de dispersão que pode ser calculada para um conjunto de observações de uma variável. Quando calculamos o desvio padrão, obtemos um número que indica a variação das observações em relação à média delas. Quanto menor o valor do desvio padrão, mais homogêneos são os dados.

1º passo: calcular a média dos dados;

2º passo: subtrair a média de cada observação;

3º passo: elevar cada um dos resultados das subtrações ao quadrado;

4º passo: somar todos os valores encontrados no passo 3;

5º passo: dividir o resultado da soma pelo total de observações e extrair a raiz quadrada.

$$D_P = \sqrt{\frac{\sum_{i=1}^{n} (x_i - M_A)^2}{n}}$$

Onde:

DP = Desvio padrão;

 $\Sigma$  = Soma dos elementos;

xi = Valor do elemento individual;

xm = Média aritmética da amostragem;

n = Quantidade de elementos da amostragem.

O desvio padrão é uma ferramenta estatística que pode ser usada para entender o comportamento de uma base de dados ou uma base de informações. O seu objetivo é indicar o quão próximos são os resultados obtidos entre esses dados. Em outras palavras, esse indicador mede a uniformidade dos elementos de uma amostragem. Quanto mais próximo de zero, ele representa que os dados são mais uniformes e, portanto, a amostragem apresenta valores próximos entre si. Por outro lado, conforme aumenta o seu resultado, ele tende a oferecer maior diferença entre os seus dados.

# CALCULANDO A MÉDIA E O DESVIO PADRÃO DA MÉDIA DE ROTAÇÕES:

| 1° Teste: 0     | 1° Teste: 0     |
|-----------------|-----------------|
| 2° Teste: 0,33  | 2° Teste: 0,33  |
| 3° Teste: 0,25  | 3° Teste: 0,25  |
| 4° Teste: 0,4   | 4° Teste: 0,4   |
| 5° Teste: 0,5   | 5° Teste: 0,33  |
| 6° Teste: 0,6   | 6° Teste: 0,50  |
| 7° Teste: 0,63  | 7° Teste: 0,55  |
| 8° Teste: 0,66  | 8° Teste: 0,58  |
| 9° Teste: 0,69  | 9° Teste: 0,62  |
| 10° Teste: 0,71 | 10° Teste: 0,57 |
| 11° Teste: 0,73 | 11° Teste: 0,60 |
| 12° Teste: 0,68 | 12° Teste: 0,62 |
| 13° Teste: 0,70 | 13° Teste: 0,65 |
| 14° Teste: 0,72 | 14° Teste: 0,67 |
| 15° Teste: 0,79 | 15° Teste: 0,79 |
| 16° Teste: 0,92 | 16° Teste: 0,92 |
| 17° Teste: 1,0  | 17° Teste: 1,0  |
| 18° Teste: 1,04 | 18° Teste: 1,04 |
| 19° Teste: 0,90 | 19° Teste: 0,90 |
|                 |                 |

**AVL MÉDIA** = ((0+0.33+0.25+0.4+0.5+0.6+0.63+0.66+0.69+0.71+0.73+0.68+0.70+0.72+0.79+0.92+1.0+1.04+0.90) / 19)

**AVL MÉDIA** = (12,25/19)

# AVL MÉDIA = 0,6447368421052632

```
AVL DESVIO PADRÃO = RAIZ DE ( ( (0-19)^2 + (0,33-19)^2 + (0,25-19)^2 + (0,4-19)^2 + (0,5-19)^2 + (0,6-19)^2 + (0,63-19)^2 + (0,66-19)^2 + (0,69-19)^2 + (0,71-19)^2 + (0,73-19)^2 + (0,68-19)^2 + (0,72-19)^2 + (0,79-19)^2 + (0,92-19)^2 + (1,0-19)^2 + (1,04-19)^2 + (0,90-19)^2 ) / 19)
```

**AVL DESVIO PADRÃO** = RAIZ DE (6402,619900000001/19)

**AVL DESVIO PADRÃO** = RAIZ DE 336,9799947368421

# **AVL DESVIO PADRÃO = 18,35**

**RED-BLACK MÉDIA** = ((0 + 0.33 + 0.25 + 0.4 + 0.33 + 0.5 + 0.55 + 0.58 + 0.62 + 0.57 + 0.60 + 0.62 + 0.65 + 0.67 + 0.55 + 0.63 + 0.75 + 0.83 + 0.50) / 19)

**RED-BLACK MÉDIA** = (9,93 / 19)

# **RED-BLACK MÉDIA = 0,5226315789473684**

```
RED-BLACK DESVIO PADRÃO = RAIZ DE ( ( (0-19)^2 + (0,33-19)^2 + (0,25-19)^2 + (0,4-19)^2 + (0,33-19)^2 + (0,5-19)^2 + (0,55-19)^2 + (0,58-19)^2 + (0,62-19)^2 + (0,57-19)^2 + (0,60-19)^2 + (0,62-19)^2 + (0,65-19)^2 + (0,67-19)^2 + (0,55-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-19)^2 + (0,63-1
```

**RED-BLACK DESVIO PADRÃO** = RAIZ DE ( 6487,5151000000005 / 19 )

**RED-BLACK DESVIO PADRÃO** = RAIZ DE 341,4481631578948

# **RED-BLACK DESVIO PADRÃO = 18,47**

# CALCULANDO A MÉDIA E O DESVIO PADRÃO DO NÍVEL DE BALANCEAMENTO:

#### AVL

#### **RED-BLACK**

| 1° Teste: 0,5   | 1° Teste: 0,5   |
|-----------------|-----------------|
| 2° Teste: 0     | 2° Teste: 0     |
| 3° Teste: 0,5   | 3° Teste: 0,5   |
| 4° Teste: 0,2   | 4° Teste: 0,2   |
| 5° Teste: 0,16  | 5° Teste: 0,5   |
| 6° Teste: 0,2   | 6° Teste: 0,6   |
| 7° Teste: 0,9   | 7° Teste: 0,45  |
| 8° Teste: 0,17  | 8° Teste: 0,42  |
| 9° Teste: 0,8   | 9° Teste: 0,31  |
| 10° Teste: 0,07 | 10° Teste: 0,64 |
| 11° Teste: 0    | 11° Teste: 0,53 |
| 12° Teste: 0,25 | 12° Teste: 0,5  |
| 13° Teste: 0,18 | 13° Teste: 0,41 |
| 14° Teste: 0,17 | 14° Teste: 0,44 |
| 15° Teste: 0,05 | 15° Teste: 0,08 |
| 16° Teste: 0,17 | 16° Teste: 0,10 |
| 17° Teste: 0,02 | 17° Teste: 0,10 |
| 18° Teste: 0,03 | 18° Teste: 0,01 |
| 19° Teste: 0,20 | 19° Teste: 0,20 |
|                 |                 |

**AVL MÉDIA** = ((0.5 + 0 + 0.5 + 0.2 + 0.16 + 0.2 + 0.9 + 0.17 + 0.8 + 0.07 + 0 + 0.25 + 0.18 + 0.17 + 0.05 + 0.17 + 0.02 + 0.03 + 0.20) / 19)

### AVL MÉDIA = 0,2405263157894

**AVL DESVIO PADRÃO** = RAIZ de  $((0.5-19)^2 + (0-19)^2 + (0.5-19)^2 + (0.2-19)^2 + (0.16-19)^2 + (0.2-19)^2 + (0.9-19)^2 + (0.17-19)^2 + (0.8-19)^2 + (0.07-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-19)^2 + (0.17-$ 

**AVL DESVIO PADRÃO** = RAIZ de  $((-18,5)^2 + (-19)^2 + (-18,5)^2 + (-18,8)^2 + (-18,8)^2 + (-18,8)^2 + (-18,1)^2 + (-18,83)^2 + (-18,2)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)^2 + (-18,93)$ 

**AVL DESVIO PADRÃO** = RAIZ de ( ( 342,25 + 361 + 342,25 + 353,44 + 353,44 + 353,44 + 327,61 + 354,5689 + 331,24 + 358,3449 + 361 + 351,5625 + 357,9664 + 354,5689 + 359,1025 + 354,5689 + 360,2404 + 359,8609 + 353,44 ) / 19 )

**AVL DESVIO PADRÃO** = RAIZ de (352,0997)

# **AVL DESVIO PADRÃO = 18,76**

**RED-BLACK MÉDIA** = ((0.5 + 0 + 0.5 + 0.2 + 0.5 + 0.6 + 0.45 + 0.42 + 0.31 + 0.64 + 0.53 + 0.5 + 0.41 + 0.44 + 0.08 + 0.10 + 0.10 + 0.01 + 0.20) / 19)

**RED-BLACK MÉDIA** = (6,49 / 19)

# **RED-BLACK MÉDIA = 0,3415789473684**

**RED-BLACK DESVIO PADRÃO** = RAIZ DE (  $(0,5-19)^2 + (0-19)^2 + (0,5-19)^2 + (0,2-19)^2 + (0,5-19)^2 + (0,6-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-19)^2 + (0,4-1$ 

**RED-BLACK DESVIO PADRÃO** = RAIZ DE  $((-18,50)^2 + (-19)^2 + (-18,50)^2 + (-18,80)^2 + (-18,50)^2 + (-18,40)^2 + (-18,55)^2 + (-18,58)^2 + (-18,69)^2 + (-18,36)^2 + (-18,47)^2 + (-18,50)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)^2 + (-18,90)$ 

**RED-BLACK DESVIO PADRÃO** = RAIZ DE ( ( 342,25 + 361 + 342,25 + 353,44 + 342,25 + 338,56 + 344,1025 + 345,2164 + 349,3161 + 337,0896 + 341,1409 + 342,25 + 345,5881 + 344,4736 + 357,9664 + 357,21 + 357,21 + 360,6201 + 353,44) / 19 )

**RED-BLACK DESVIO PADRÃO** = RAIZ DE ( 348,17756315789 )

# **RED-BLACK DESVIO PADRÃO = 18,65**

# CALCULANDO A MÉDIA E O DESVIO PADRÃO DA ALTURA:

#### **AVL**

#### **RED-BLACK**

| 1° Teste: 1  | 1° Teste: 1  |
|--------------|--------------|
| 2° Teste: 1  | 2° Teste: 1  |
| 3° Teste: 2  | 3° Teste: 2  |
| 4° Teste: 2  | 4° Teste: 2  |
| 5° Teste: 2  | 5° Teste: 3  |
| 6° Teste: 3  | 6° Teste: 4  |
| 7° Teste: 3  | 7° Teste: 4  |
| 8° Teste: 3  | 8° Teste: 4  |
| 9° Teste: 3  | 9° Teste: 4  |
| 10° Teste: 3 | 10° Teste: 5 |
| 11° Teste: 3 | 11° Teste: 5 |
| 12° Teste: 4 | 12° Teste: 5 |
| 13° Teste: 4 | 13° Teste: 5 |
| 14° Teste: 4 | 14° Teste: 5 |
| 15° Teste: 5 | 15° Teste: 5 |
| 16° Teste: 6 | 16° Teste: 6 |
| 17° Teste: 7 | 17° Teste: 7 |
| 18° Teste: 8 | 18° Teste: 8 |
| 19° Teste: 3 | 19° Teste: 3 |
|              |              |

**AVL MÉDIA** = ((1+1+2+2+2+3+3+3+3+3+3+4+4+4+5+6+7+8+3)/19)

**AVL MÉDIA** = (67/19)

# **AVL MÉDIA = 3,5263**

**AVL DESVIO PADRÃO** = RAIZ DE (  $(1-19)^2 + (1-19)^2 + (2-19)^2 + (2-19)^2 + (2-19)^2 + (3-19)^2 + (3-19)^2 + (3-19)^2 + (3-19)^2 + (3-19)^2 + (3-19)^2 + (3-19)^2 + (3-19)^2 + (4-19)^2 + (4-19)^2 + (4-19)^2 + (5-19)^2 + (6-19)^2 + (7-19)^2 + (8-19)^2 + (3-19)^2 ) / 19 )$ 

**AVL DESVIO PADRÃO** = RAIZ DE  $((-18)^2 + (-18)^2 + (-17)^2 + (-17)^2 + (-17)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-15)^2 + (-15)^2 + (-15)^2 + (-14)^2 + (-13)^2 + (-12)^2 + (-11)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-16)^2 + (-1$ 

**AVL DESVIO PADRÃO** = RAIZ DE ( 324 + 324 + 289 + 289 + 289 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 256 + 25

AVL DESVIO PADRÃO = RAIZ DE (4612/19)

**AVL DESVIO PADRÃO** = RAIZ DE ( 242,73684210526 )

### **AVL DESVIO PADRÃO = 15,58**

**RED-BLACK MÉDIA** = ((1+1+2+2+3+4+4+4+4+5+5+5+5+5+5+6+7+8+3)/19)

**RED-BLACK MÉDIA** = ( 79 / 19)

# **RED-BLACK MÉDIA = 4,1578**

**RED-BLACK DESVIO PADRÃO** = RAIZ DE  $((1-19)^2 + (1-19)^2 + (2-19)^2 + (2-19)^2 + (3-19)^2 + (4-19)^2 + (4-19)^2 + (4-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19)^2 + (5-19$ 

**RED-BLACK DESVIO PADRÃO** = RAIZ DE  $((-18)^2 + (-18)^2 + (-17)^2 + (-17)^2 + (-16)^2 + (-15)^2 + (-15)^2 + (-15)^2 + (-15)^2 + (-15)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2 + (-14)^2$ 

**RED-BLACK DESVIO PADRÃO** = RAIZ DE ( 324 + 324 + 289 + 289 + 256 + 225 + 225 + 255 + 196 + 196 + 196 + 196 + 196 + 196 + 169 + 144 + 121 + 256 / 19 )

**RED-BLACK DESVIO PADRÃO** = RAIZ ( 4248 / 19 )

**RED-BLACK DESVIO PADRÃO** = RAIZ ( 223,57894736842 )

### **RED-BLACK DESVIO PADRÃO = 14,95**

- AS DIFERENÇAS DE ALTURA DA AVL E DA REDBLACK SÃO SIGNIFICATIVAS ?

Com relação as diferenças de altura, a média da AVL é de 3,52 enquanto a REDBLACK é de 4,15. Já o desvio padrão é de 15,58 para AVL e 14,95 para REDBLACK. Com base nos valores, podemos chegar em uma resposta de que não há uma diferença muito expressiva com relação ao valores encontrados. Entretanto, podemos concluir que a REDBLACK tende a ter uma altura maior do que a AVL, isso se dá principalmente pelo fato de AVL se importar principalmente com o seu balanceamento, enquanto a REDBLACK tende a dividir o seu foco não apenas no balanceamento, como também com a coloração dos NÓS.



# EM TERMOS DE DESEMPENHO NA BUSCA, QUAL MÉTODO DE BALANCEAMENTO É MAIS INDICADO? A PARTIR DE QUANTOS NÓS?

Enquanto o desvio padrão da AVL resultou em 18,73 e a sua média foi de 0,24 e a REDBLACK resultou em 18,65 e teve a média de 0,34. Como quanto mais próximo do zero, mais uniformes serão os valores entre si, deste modo, o desvio padrão para Árvore REDBLACK é baixo, enquanto na AVL há um amplo distanciamento entre os seus dados. Desta forma, neste modo, há uma menor uniformidade.

Com 6 NÓS: A AVL tem um melhor desvio padrão.

Com 18 NÓS: A AVL continua tendo um melhor desvio padrão.

Com 38 NÓS: Apesar da AVL ainda for melhor, os valores estão próximos.

Com 60 NÓS: Com essa quantidade, a REDBLACK começa a ter um melhor desvio padrão.

COM 200 NÓS: Os valores estão muito próximos, mas a REDBLACK continua na frente da AVL.

Ao final, podemos concluir que a REDBLACK, por ter um menor desvio padrão, possui pouca variação em torno da média, ou seja, a média fica mais representativa.

Quando tratamos da média de rotações, chegamos na conclusão de que o Desvio Padrão da AVL é menor, possuindo uma variação em torno da média menor do que a REDBLACK

# GRÁFICO DO NÍVEL DE BALANCEAMENTO





Durante todo o relatório é analisado a mudança no comportamento das árvores AVL e a REDBLACK com relação a aplicação de diferentes quantidades de NÓS. Podemos concluir que a REDBLACK é mais rápida com relação a inserção de NÓS, isso se pelo fato da AVL ter um foco maior no balanceamento, e para que isso aconteça ela realiza um número maior de rotações, além disso, a REDBLACK conseguiu se aproximar da AVL com relação ao Nível de balanceamento durante todos os testes.

#### 12.0 REFERÊNCIAS BIBLIOGRÁFICAS.

**Red/Black tree visualization:** <a href="https://www.cs.usfca.edu/~galles/visualization/RedBlack.html">https://www.cs.usfca.edu/~galles/visualization/RedBlack.html</a>

**Red-Black Trees** | **Insertion:** <a href="https://www.codesdope.com/course/data-structures-red-black-trees-insertion/">https://www.codesdope.com/course/data-structures-red-black-trees-insertion/</a>

#### **AVL Trees vs. Red-Black Trees?:**

https://discuss.fogcreek.com/joelonsoftware/default.asp?ixPost=22948

ÁRVORE AVL: https://youtu.be/3zmjQlJhBLM

O que é uma árvore AVL – Árvore binária de busca balanceada: https://youtu.be/5aBQZdvoM6w

Como implementar uma Árvore AVL – Árvore balanceada: <a href="https://youtu.be/2Vn4XaTVUN8">https://youtu.be/2Vn4XaTVUN8</a>

Como implementar uma rotação à esquerda em uma árvore AVL: <a href="https://youtu.be/R7BgPz-b1Ds">https://youtu.be/R7BgPz-b1Ds</a>

Como implementar uma rotação à direita em uma árvore AVL: https://youtu.be/ck5VQnbIFIE

Como implementar as rotações duplas em uma árvore AVL: <a href="https://youtu.be/d-7IWL4dEOw">https://youtu.be/d-7IWL4dEOw</a>

Como inserir em uma árvore binária balanceada: https://youtu.be/oIp82CfCDoQ

Árvores Rubro-Negras: <a href="https://youtu.be/e1u3koSscQA">https://youtu.be/e1u3koSscQA</a>

**Red-Black Tress – Data Structures:** https://youtu.be/ZxCvM-9BaXE

O que é uma àrvore AVL – Árvore binária de busca balanceada: https://wagnergaspar.com/o-que-e-uma-arvore-avl-arvore-binaria-de-busca-balanceada/

Como descobrir a quantidade de Nó's de uma árvore binária: <a href="https://youtu.be/qX0AkoEX4C0">https://youtu.be/qX0AkoEX4C0</a>

Como descobrir a quantidade de folhas de uma árvore binária: <a href="https://youtu.be/3cizPPwqmCc">https://youtu.be/3cizPPwqmCc</a>
Desvio Padrão: <a href="https://maisretorno.com/portal/termos/d/desvio-padrao">https://maisretorno.com/portal/termos/d/desvio-padrao</a>

<sup>&</sup>lt;sup>34</sup> Reynan Da Silva Dias Paiva. Cursnado Ciência Da Computação na UFBA. Contato:<reynanwq@gmail.com>.