Inverses and Decryption

Alex Shaffer

Inverses

- I general an inverse is just an something that reverses a process.
- Some, but not all, functions have corresponding inverse functions.
 - If f is a function which is invertible, then f^{-1} is the notation used for the inverse.
 - If $f: A \to B$ then $f^{-1}: B \to A$
 - If $x_0 \in A$ and $f(x_0) = y_0$ then if f^{-1} exists, $f^{-1}(y_0) = x_0$.

Inverses

• $f: A \to B$ has an inverse. $g: A \to B$ does **not** have an inverse

One-to-One Functions

- From the last slide, the function f has the property of being one-to-one.
 - This means that every element of the codomain has at most one element of the domain associated with it.
- g did not have this property because in set B, 4 was associated with 1 and 2 in A.

Onto functions

- The function f is also an "onto" function.
 - This is because it associates an element of A with every element of B.
- g was not an onto function.
 - Not every element of B was mapped to.

Bijective functions

- A function is a bijection if it is one-to-one and onto.
 - f is a bijective function.
- For a global inverse to exist, the function must be a bijection.
 - If the function is only one-to-one, then a local inverse exists.
 - If the function is only onto, then no inverse exists.
 - If the function is neither, then no inverse exists.

Some Inverses

- The inverse of adding a number \boldsymbol{x} is subtracting by the same number \boldsymbol{x}
 - And vice versa
- The inverse of multiplying by a number x is dividing by the same number x.
 - And vice versa

The Modular Multiplicative Inverse

- Consider the modular arithmetic congruence:
 - $ax \equiv 1 \pmod{n}$, where a, x, and n are integers, and n > 0.
- We want to find the value x:
 - x is the modular multiplicative inverse of a and is useful in cryptography as we will see.
 - We will also denote the modular multiplicative inverse of a as a^{-1} .
- a only has a modular multiplicative inverse if it is coprime to n.
 - Two numbers are coprime if the share no common prime factors.

Coprime Numbers

- Two numbers are coprime if they if they share no prime factors
 - Prime numbers are numbers that have cannot be divided by any numbers besides themselves and 1.
- Numbers coprime to 26.
 - 26 has the prime factors {2, 13}
 - Coprime and less than 26: {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

Finding a Modular Multiplicative Inverse

- For all $b \in \{0, 1, ..., n-1\}$ compute all the values $a \cdot b \pmod{n}$:
- If any of these products is 1, then that b is the modular multiplicative inverse.
- If there is a modular multiplicative inverse, there is no need to check $b \ge n$ because those numbers have corresponding values less than n.

Modular Multiplicative Inverse Example

- We will usually be interested in systems (mod 26) so this is used in this example.
- Find the modular multiplicative inverse of 9 $(mod\ 26)$:
 - $b \in \{0, 1, 2, \dots, 25\}$
 - Products modulo 26: {0, 9, 18, 1 ...}
 - We got $9 \cdot b \equiv 1 \pmod{26}$ when b = 3
 - The modular multiplicative inverse of 9 modulo 26 is 3.

Encryption and Decryption

- Encryption is a function.
 - The corresponding decryption is its inverse.
- Encryption $\rightarrow E(x)$
 - Domain is whatever the plaintext is made up of.
 - Letters
 - Numbers
 - Words
- Decryption $\rightarrow D(x)$
 - Domain is whatever the ciphertext is made up of.

Caesar Cipher

- For an integer key k
- For a Caesar Cipher we may define $E_{caesar}(x) = x + k \pmod{26}$
 - The domain is the integer $\{0, 1, 2, \dots, 25\}$ which correspond to letters.
- The decryption cipher then is given by:
 - $D_{caesar}(x) = x k \pmod{26}$

The affine cipher

- ullet An affine cipher uses a pair of encryption keys, a and b
 - We define $E_{affine}(x) = (ax + b) \pmod{26}$
- We then can decrypt with the decryption key a^{-1} and b:
 - We see that we need a to be chosen coprime to 26
 - $D_{affine}(x) = a^{-1}(x b) \pmod{26}$

Justification of the Affine Cipher

- For an arbitrary plaintext number x let us check to see that D(E(x)) = x.
 - This is just checking to ensure that D(x) is the inverse of E(x).

•
$$D(E(x)) = a^{-1}(E(x) - b) \pmod{26}$$

$$= a^{-1} (((ax + b) \pmod{26}) - b) \pmod{26}$$

$$= a^{-1}(ax + b - b) \pmod{26}$$

$$= a^{-1}ax \pmod{26}$$

$$= x \pmod{26}$$