Reminders: PS #2 due Friday Witkowski 110 en Friday 32.5 Accelerating convergence det: A sequence {xn} converges linearly if there exists $\lambda \in (0,1)$ such that $\lim_{n\to\infty}\frac{|X_{n+1}\times 1|}{|X-X|^2}=\lambda$ For really large n, $\frac{x_{n+1}-x}{x_n-x} \approx \lambda$ Then $\frac{x^{n+2}-x}{x^{n+1}-x} \xrightarrow{x^{n+1}-x} \frac{x^{n+1}-x}{x^{n}-x}$ Solving for x... $(x^{n+2} \times)(x^{-} \times) \approx (x^{n+1} \times)^2$ $\chi_{n+2}\chi_n - \chi \chi_{n+2} = \chi \chi_n + \chi^2 \approx \chi_{n+1}^2 - 2\chi \chi_{n+1} + \chi^2$ $(2x_{n+1}-x_{n+2}-x_n)x \approx x_{n+1}^2-x_{n+2}x_n$ $\chi \approx \frac{\chi_{n+1}^2 - \chi_{n+2} \chi_n}{2\chi_{n+1} - \chi_{n+2} - \chi_n}$ Ailkens α^2 method tum: If xn > x linearly, then {xn} defined by $x_{n} = \frac{x_{n+1} - x_{n+2} \times n}{2x_{n+1} - x_{n+2} - x_{n}}$

converges to x faster than x_n , i.e., $\lim_{n\to\infty} \frac{|\hat{x}_n - x| \in O}{|x_n - x|} = 0$ $\lim_{n\to\infty} \frac{|\hat{x}_n - x|}{|x_n - x|} = 0$ $\lim_{n\to\infty} \frac{|\hat{x}_n - x|}{|x_n - x|} = 0$ Typically we use the notation DXn = Xn+1-Xn, $\frac{\lambda}{x_n} = x_n - \frac{(\Delta x_n)^2}{\Delta^2 x_n}$ (AXN)= (xn+1 xn)2 $\Delta^2 x_n = \Delta(\Delta x_n)$ To generate \hat{x}_n , you \hat{b} need to $=\Delta(x_{n+1}-x_n)$ know xn, xn+1, xn+2. To apply = [Xnta Xnt] - [Xnti Xn] this to a fixed-point iteration, we stagger our application of a= method. Xn+2 - 2×n+1+ ×n x = 10,x e.g.) Consider $x_n = 10^{-x_{n-1}}$, $x_0 = 0.5$. $x_0 = 0.5$ $x_1 = 10^{-0.5}$ $x_2 = 10^{-0.5}$ $x_3 = 10^{-0.5}$ $x_4 = 10^{-0.5}$ X3=10*2 $\begin{cases} x' = 10 - x' \\ x'$ X (2) =

thu: For an appropriate x_o , the sequence $\{\hat{x}^{(i)}\}_i$ converges quadratically to a solution of x=g(x).