

Probabilità

Marco Isopi

2. Esperimenti aleatori e teoria degli insiemi

Esperimenti aleatori

Obiettivo della lezione: introdurre il linguaggio matematico che useremo per descrivere esperimenti che possono avere più esiti

Introdurre il linguaggio matematico necessario

Serve qualcosa di diverso dal calcolo infinitesimale

Teoria degli Insiemi

Esperimenti aleatori

Qualche esperimento:

lancio di un dado o di una moneta

pescare "a caso" un pesce dall'acquario

misurare l'altezza della prima persona che incontreremo per strada domattina

Come formalizzare la descrizione di questi esperimenti?

Esperimenti aleatori

Consideriamo l'insieme di tutti gli esiti possibili

 $\{T,C\}$ per il lancio di una moneta

 $\{1, 2, 3, 4, 5, 6\}$ per il lancio di un dado.

{pesce1, pesce2, pesce3, ...} per la pesca dall'acquario

cosa mettiamo per l'altezza della prima persona che incontreremo per strada domattina?

Insieme: collezione di oggetti (elementi)

Può essere specificato tramite l'elenco dei suoi elementi,

p.e. $\{2, 3, 5, 7\}$

oppure tramite una descrizione: "tutti gli oggetti che godono di una certa proprietà"

p.e. tutti i numeri primi minori di 10

Per ora solo insiemi finiti

Nello specificare un insieme l'ordine non conta:

 $\{2,3,5,7\}$ e $\{3,7,5,2\}$ sono lo stesso insieme

Anche la molteplicità non conta:

 $\{2,3,5,7\}$ e $\{2,2,3,5,5,5,7\}$ sono lo stesso insieme

$$S = \{1, 2, 3, 4, 5, 6\}$$

S insieme ambiente, spazio dei campioni

$$2 \in \{1, 2, 3, 4, 5, 6\}$$

2 è un **elemento** di S

 $2\in \boldsymbol{\mathcal{S}}$

più in generale

 $\emph{A} = \{2,4,6\}$ è un sottoinsieme di \emph{S}

 $A \subset S$

 $A \cup B$, l'**unione** di due insiemi A e B, è l'insieme i cui elementi sono elementi di A oppure di B

se
$$A = \{1, 2, 3\}$$
 e $B = \{2, 4, 6\}$, allora $A \cup B = \{1, 2, 3, 4, 6\}$

 $A \cap B$, l'intersezione di due insiemi $A \in B$, è l'insieme i cui elementi sono elementi sia di A che di B

se
$$A = \{1, 2, 3\}$$
 e $B = \{2, 4, 6\}$, allora $A \cap B = \{2\}$

 A^c , il **complementare** dell'insieme A è l'insieme i cui elementi sono gli elementi dell'insieme ambiente che non appartengono ad A

se
$$A = \{1, 2, 3\}, A^c = \{4, 5, 6\}$$

il complementare dipende dall'insieme ambiente

 $A \times B$, il **prodotto cartesiano** di due insiemi $A \in B$, è l'insieme i cui elementi sono coppie ordinate che hanno come primo membro un elemento di A e come secondo membro un elemento di B

se
$$A = \{1, 2, 3\}$$
 e $B = \{a, b\}$

$$A \times B = \{(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)\}$$

|A|, cardinalità dell'insieme A è il numero di elementi di A

$$|\{a, b, c, d\}| = 4$$

$$|A \times B| = |A| \cdot |B|$$

$$|\emptyset| = 0$$