

R-25

IGEE-UMBB (Spring 2017)

EE 174 : Recitations set 1

✓ 1. Given the sets A, B show that $\overline{A \cup B} = \overline{A} \cap \overline{B}$

✓ 2. Consider the set \mathcal{R} of real numbers

- (a) Is $\{\mathcal{R}, +\}$ a group where $(+)$ is the usual addition ?
- (b) Repeat for $\{\mathcal{R}, \times\}$ where (\times) is the usual multiplication ?

✓ 3. Let $\{G, *\}$ be an Abelian group, show that for all $a, b, x \in G$ we have:

- a) $a * x = b * x \Rightarrow a = b$
- b) $a * x = b \Rightarrow x = a^{-1} * b$
- c) $(a * b)^{-1} = b^{-1} * a^{-1}$

✓ 4. Consider $\{R^2, +, \circ\}$ where the binary operations $(+)$ and (\circ) are defined as follows:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2) \text{ and } (x_1, y_1) \circ (x_2, y_2) = (x_1 x_2, y_1 y_2).$$

Is $\{R^2, +, \circ\}$ a ring? Is it commutative? Does it have a unit element?

✓ 5. Consider $\{R^2, +, \circ\}$ where the binary operations $(+)$ and (\circ) are defined as follows:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2) \text{ and } (x_1, y_1) \circ (x_2, y_2) = (x_1 x_2 - y_1 y_2, x_1 y_2 + y_1 x_2).$$

Is $\{R^2, +, \circ\}$ a field ?

IGEE-UMBB (Spring 2017)

EE 174 : Recitations set 2

✓

1. Which of the following is a vector space ?

- a) $S = \{(x, y, z, w) / x + y - z + w = 0\}$
- b) $S = \{ae^x + be^{-x} / a, b \text{ real}\}$
- c) $S = \{(x, y, z) / x + y + z = 1\} - \{N\}$
- d) $S = \{f : R \rightarrow R / \frac{d^2f}{dx^2} + f = 0\}$

S is not a subset

S is a subset

2. Let $v \neq \theta$ be a vector of the vector space $V(\mathcal{F})$; Show that:

- (a) $0v = \theta$
- (b) $\alpha v = \theta$ if and only if $\alpha = 0$
- (c) $\alpha v = \beta v$ if and only if $\alpha = \beta$

3. Let $V(\mathcal{R})$ be the space of real-valued functions

- a) Is the set U of even real-valued functions a subspace ?
- b) Is the set W of odd real-valued functions a subspace ?
- c) From the fact that $f(x) = \frac{1}{2}[f(x) + f(-x)] + \frac{1}{2}[f(x) - f(-x)]$, what can conclude on the relationship between $V(\mathcal{R})$, U and W ?

4. Consider again $S = \{(x, y, z) / x + y + z = 1\}$

- a) Is S a subspace of \mathcal{R}^3 ? $\theta \notin S \Rightarrow \text{No}$

b) Suppose we define on S the following binary operations:

$$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2 - 1, y_1 + y_2, z_1 + z_2) \text{ and}$$

$$\alpha(x, y, z) = (\alpha x - \alpha + 1, \alpha y, \alpha z) ; \text{ Is } S \text{ a vector space ?}$$

- c) Comment your result.

5. Let S, T be subspaces of $V(\mathcal{F})$

- a) Are \bar{S} and \bar{T} subspaces of $V(\mathcal{F})$?

b) Show that a necessary condition for $S \cup T$ to be a subspace is that one is contained in the other.

Hint: Use contradiction to show that if the condition is not satisfied, $S \cup T$ is not closed under addition.

Q-21

IGEE-UMBB (Spring 2017)

EE 174 : Recitations set 3

1. Check the linear independence of the following vectors of R^3
 - a) $\{(0, 0, -1); (1, 0, 4)\}$
 - b) $\{(1, 1, 0); (-1, 2, 0)\}$
 - c) $\{(1, 1, 0); (-1, 1, 2); (1, -1, 0)\}$
2. Let P_2 be the space of real polynomials of degree ≤ 2 ; Check the linear independence of the following sets
 - a) $\{1, x, x^2\}$
 - b) $\{-1 + 4x - x^2, 1 + 7x, 2 + 3x + x^2\}$
 - c) Can we select a basis for P_2 from these sets?
3. Let $S = \{v_1, v_2, \dots, v_k\}$ be a subset of the vector space $V(F)$; Show that $[S] = [v_1, v_2, \dots, v_k] = [v_1, v_2, \dots, v_k, v_{k+1}]$ if and only if $v_{k+1} \in [v_1, v_2, \dots, v_k]$ for any $v_{k+1} \in V(F)$. What conclusions can you draw from this result?
4. Let S, T be linearly independent subsets of vectors of the vector space $V(F)$
 - a) Is $S \cap T$ linearly independent ? Justify.
 - b) Are the complements \bar{S} and \bar{T} linearly independent? Justify.
5. Let P_3 be the space of real polynomials of degree ≤ 3 ; Is the subset $\{1, 1+x, 1+x+x^2, 1+x+x^2+x^3\}$ a basis for P_3 ? If so, express $p(x) = x^2 + x^3$ in this basis.
6. Find a basis and the dimension of the solution space of the following system of linear equations:
$$x_1 - 4x_2 + 3x_3 - x_4 = 0$$
$$2x_1 - 8x_2 + 6x_3 - 2x_4 = 0$$

22/1

IGEE-UMBB (Spring 2017)

EE 174 : Recitations set 4

1. Let W be a subspace of dimension m of the vector space V of dimension n ; Show that:
 - (a) $m \leq n$
 - (b) if $m = n$ then $W = V$
2. Consider $T : R^2 \rightarrow R^2$ defined by $T(x,y) = (x+y, x+y)$
 - (a) Is T linear ?
 - (b) Is $v_1 = (1,0)$ and $v_2 = (1,1)$ a basis for R^2 ? Are their images also a basis for R^2 ? What can you conclude?
3. Consider $L : R^3 \rightarrow R^2$ defined by $T(x,y,z) = (x,y)$
 - (a) Is L linear? What does it represent geometrically?
 - (b) Is $v_1 = (1,0,0)$ and $v_2 = (0,1,0)$ a basis for R^3 ? Are their images a basis for the codomain? What do you conclude?
4. Let $L : V \rightarrow W$ be a linear mapping ; Show that:
 - (a) L is **onto** if and only if $r(L) = \dim W$
 - (b) If $\dim V = \dim W$, then L is **one-to-one** if and only if L is **onto**.
5. Find the nullity of the linear mapping $L : P_n \rightarrow R$ defined by $L[p(x)] = \int_0^1 p(x)dx$ where $p(x) = a_0 + a_1x + \dots + a_nx^n$; Deduce the rank of L
6. Consider the linear transformation $T : R^3 \rightarrow R^3$ defined by $T(x,y,z) = (x+y+z, y-z, x-y+z)$; Is T nonsingular ? If so, determine $T^{-1}(x,y,z)$.

R22

IGEE-UMBB (Spring 2017)

EE 174 : Recitations set 5

- Let the linear transformation $T : R^3 \rightarrow R^3$ be defined by $T(x, y, z) = (x + 2y - z, y + z, x + y - 2z)$; Find the dimension and a basis for the range space $\mathcal{R}(T)$ and the null space $\mathcal{N}(T)$.
- Consider $T : R^2 \rightarrow R^2$ defined by $T(1, 1) = (2, 0)$ and $T(1, 0) = (-1, 0)$
 - Find the matrix representation A relative to the basis $\{(1, 1); (1, 0)\}$
 - Find the matrix representation B relative to the standard basis
 - Find the matrix representation C relative to the basis $\{(1, -1); (1, 1)\}$
- Consider the space of real functions $V = \{a \cos x + b \sin x / a, b \in R\}$ and $D : V \rightarrow V$ defined by $D[f(x)] = \frac{df(x)}{dx}$;
Is $\{\cos x, \sin x\}$ a basis for V ? If so, give the matrix representation A of D relative to this basis.
- Perform the following operations, if defined:
 - $\begin{pmatrix} 5 & -1 & 2 \\ 6 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 5 & -1 & 2 \\ 6 & 1 & 1 \end{pmatrix}$
 - $4 \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix} + 5 \begin{pmatrix} -1 & 4 \\ -2 & 1 \end{pmatrix}$
 - $3 \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix} + 2 \begin{pmatrix} 1 & 1 & 4 \\ 3 & 0 & 5 \end{pmatrix}$
 - $\begin{pmatrix} 1 & 1 & -1 \\ 4 & 0 & 3 \end{pmatrix} \begin{pmatrix} 2 & -1 & -1 \\ 3 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix}$
- $\begin{pmatrix} 2 & -7 \\ 7 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 & 5 \\ -1 & 1 & 1 \\ 3 & 8 & 4 \end{pmatrix}$
- Given $A = \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 5 & 2 \\ 4 & 4 \end{pmatrix}$ and $C = \begin{pmatrix} -2 & 3 & 0 \\ -4 & 1 & 1 \end{pmatrix}$ compute when defined AB, BA, ABC, CBA and comment.