<u>MÓDULO DE PRÁCTICAS DE</u> <u>SISTEMAS ELECTRÓNICOS RECONFIGURABLES</u>

PLACA PCB DISPLAY 2

PINOUT DE LA FPGA ASIGNADO EN LA PLACA PCB DISPLAY 2:

<u>DISPL</u>	4 <i>Y 2 (A L</i>	A IZQDA)	10 6	<u>DISPL</u>	4 <i>Y1 (A LA</i>	A DRCHA)
A2	PIN7	23		A1	PIN7	21
B2	PIN6	25	∫ f g ∫ b	B1	PIN6	22
C2	PIN4	33)e //c	C1	PIN4	11
D2	PIN2	34		D1	PIN2	10
E2	PIN1	35	1 5	E1	PIN1	13
F2	PIN9	26	SC56-11 3 _, , 8	F1	PIN9	12
G2	PIN10	24		G1	PIN10	14
DP2	PIN5	32	7 6 4 2 1 9 10 5	DP1	PIN5	9

PINES AUXILIARES PARA OTRA PLACA DE AMPLIACIÓN (DE ABAJO A ARRIBA)

PIN1	VCC (3.3v)	PIN4	3
PIN2	1	PIN5	4
PIN3	2	PIN6	GND

PLACA PCB SWITCH & PULSADORES 2

PINES MICROSWITCH		PINES PULSADORES
SW1	86	PULS1 76
SW2	85	PULS2 75
SW3	84	PULS3 74
SW4	83	PULS4 73
SW5	82	PULS5 96
SW6	81	PULS6 95
SW7	78	PULS7 94
SW8	77	PULS8 93

NOTA: Al subir a 'ON' un microswitch o presionar un pulsador el estado de la entrada correspondiente en la FPGA se pone a nivel alto (3.3 V).

PLACA PCB MÓDULO LUZ FRECUENCIA

El Chip TCS3210 es un convertidor luz frecuencia con color programable y salida en frecuencia ajustable. Con los pines S0 y S1 se configura la frecuencia y con los pines S2 y S3 el color. A continuación se muestran las tablas que determinan el comportamiento del convertidor.

S0	S1	OUTPUT FREQUENCY SCALING (fo)
L	L	Power down
L	Н	2%
Н	L	20%
Н	Н	100%

S2	S3	PHOTODIODE TYPE
L	L	Red
L	Н	Blue
Н	L	Clear (no filter)
Н	Н	Green

Dentro de nuestro módulo la asignación de pines es la siguiente:

PIN1	VDC (3.3v)	
PIN2	OUT	1
PIN3	S3	2
PIN4	S2	3
PIN5	S1	4
PIN6	GND	

La placa también dispone de un Jumper que define el valor del pin 'S0'.

Si JMP está cerrado S0='1' y si se retira el jumper entonces S0='0'.

Nota: Esta placa solo se puede conectar mediante el conector de ampliación de la placa PCB Display.

PLACA PCB MÓDULO ULTRASONIDOS

El LV-MaxSonar-EZ3 es un sensor ultrasónico que tiene integrado emisor y receptor en un solo módulo. Tiene un rango de detección de 0 cm a 6.45 m. Desde 15.24 cm hasta los 6.45 m tiene una resolución de una pulgada (2.54 cm). Dispone de tres formatos de salida:

- Ancho de pulso a través de la patilla PW (Pin 1 de la FPGA). La distancia se determina aplicando el factor de escala de 147uS por pulgada.
- Salida de tensión analógica AN (Pin 2 de la FPGA). La distancia se determina en nuestro caso para una Vcc de 3.3 voltios aplicando el factor de escala de 6.4mV/pulgada (El factor de escala es Vcc/512 V/pulgada).
- Salida digital serie TX (Pin 4 de la FPGA). Para habilitar esta salida hay que poner a nivel bajo o sin conexión la patilla BW. Esta salida emplea comunicación RS232. Inicia la trama mandando el código ASCII 'R', después manda tres dígitos en ASCII indicando la distancia en pulgadas hasta un valor máximo de 255 y finalmente termina la trama mandando un retorno de carro (valor ASCII 13).

El Pin 3 de la FPGA va al pin 'RX' del módulo. La entrada RX a nivel alto durante un mínimo de 20 uS realiza una lectura. En caso de permanecer a nivel alto realizará lecturas continuadas y a nivel bajo detiene la medición.

La placa dispone de un Jumper que define el valor del pin 'BW'. La entrada BW como se ha comentado anteriormente solo sirve para habilitar (BW='0') o deshabilitar (BW='1') la salida digital serie. Si JMP está cerrado BW='1' y si se retira el jumper entonces BW='0'.

Nota: Esta placa solo se puede conectar mediante el conector de ampliación de la placa PCB Display.

PLACA MachXO2 BREAKOUT BOARD

8 LEDS SMD

EN PLACA

Reloj Externo

50 MHz

RELOJ EXTERNO

Se ha agregado a la placa un reloj externo de 50 MHz. El reloj dispone de una patilla de habilitación CLK_EN que va al PIN 32 de la FPGA. A nivel alto el Cristal externo esta habilitado y a nivel bajo deshabilitado. La salida del reloj CLK OUT va al PIN 27 de la FPGA.

D8 -> PIN 107

CLK_OUT PIN 27	CLK EN PIN 32
• LEDS ON BOARD	
D1 -> PIN 97	D5 -> PIN 104
D2 -> PIN 98	D6 -> PIN 105
D3 -> PIN 99	D7 -> PIN 106

D4 -> PIN 100