

TRIGONOMETRY

Tomo 05 Session 01

FEEDBACK

1. Si $x \in [-4; 6]$, calcule la variación de: $P = \frac{2x - 2}{5}$

Resolución:

Del dato:
$$-4 \le x \le 6$$
 × (2)
 $-8 \le 2x \le 12$ −(2)
 $-10 \le 2x - 2 \le 10$ ÷ (5)
 $-2 \le \frac{2x - 2}{5} \le 2$ ∴ $P \in [-2; 2]$

2. Determine el menor valor de: $H = x^2 - 6x + 21$; $x \in \mathbb{R}$

Resolución:

Recordar:

Por propiedad: $\forall a \in \mathbb{R} \rightarrow a^2 \geq 0$

Usar la identidad

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(x-3)^{2} \ge 0$$

$$x^{2} - 6x + 9 \ge 0 + (12)$$

$$x^{2} - 6x + 21 \ge 12$$

$$H$$

$$\Rightarrow H \in [12; +\infty)$$

∴ El menor valor de H es 12

3. Si $\beta \in [30^\circ; 53^\circ)$, calcule la variación de: $C = 20sen\beta + 3$

Resolución:

Del dato:

$$30^{\circ} \le \beta < 53^{\circ}$$

 $sen30^{\circ} \le sen\beta < sen53^{\circ}$

$$\frac{1}{2} \le sen\beta < \frac{4}{5} \qquad \times (20)$$

$$10 \le 20 sen \beta < 16 + (3)$$

$$13 \le 20 sen \beta + 3 < 19$$

$$\Rightarrow$$
 13 \leq C $<$ 19

Por lo tanto:

$$C \in [13;19]$$

4. Del gráfico, determine el valor de y.

Resolución:

Se cumple que: $x^2 + y^2 = 1$

$$x^2 + y^2 = 1$$

Entonces:

$$\left(\frac{\sqrt{3}}{2}\right)^2 + y^2 = 1$$

$$\frac{3}{4} + y^2 = 1$$

$$y^2 = \frac{1}{4} \qquad \qquad y = \pm \frac{1}{4}$$

Como $y \in IVC$:

$$\therefore y = -\frac{1}{2}$$

5. En una CT ordene en forma decreciente: sen70°, sen125°, sen250°, sen310°.

6. Determine el intervalo de variación de a, si: $cos\beta = \frac{2a-3}{11}$; $\beta \in \mathbb{R}$

Resolución:

$$Como \beta \in \mathbb{R}: -1 \leq cos\beta \leq 1$$

$$-1 \le \frac{2a-3}{11} \le 1 \qquad \times \textbf{(11)}$$

$$-11 \le 2a - 3 \le 11 + (3)$$

$$-8 \le 2a \le 14$$
 ÷ (2)

$$-4 \le a \le 7$$

$$\therefore a \in [-4; 7]$$

7. En la CT, ordene en forma creciente: tan40°, tan170°, tan240° y tan300°

Resolución:

Ordenando en forma creciente:

 $tan300^{\circ} < tan170^{\circ} < tan40^{\circ} < tan240^{\circ}$

8. Si $\beta \in IIC$, determine el menor valor entero de:

$$F = 4tan^2\beta + 7$$

Resolución:

Como
$$\beta \in IIC$$
: $tan\beta < 0$ ()²

$$tan^{2}\beta > 0 \times (4)$$

$$4tan^{2}\beta > 0 +7$$

$$4tan^{2}\beta + 7 > 7 \Rightarrow F \in \langle 7; +\infty \rangle$$

: El menor valor entero de F es 8

9. Del gráfico, determine el área de la región sombreada.

Resolución:

Como $\beta \in IIC$: $tan\beta < 0$

$$\Rightarrow |tan\beta| = -tan\beta$$

Hallando el área de la región sombreada:

10.

Erick tiene un terreno en forma rectangular que desea cercar. Si las longitudes de los lados, en metros, es de A y B; determine el perímetro de dicho terreno, si $\alpha \in \mathbb{R}$ y $\beta \in \mathbb{R}$:

$$sen\alpha = \frac{2a-5}{3}; cos\beta = \frac{3b-11}{4}$$

Donde:

A = Máximo valor de a

B = Máximo valor de b

Resolución:

Como $\alpha \in \mathbb{R}$

$$-1 \le sen \alpha \le 1$$

$$-1 \le \frac{2a-5}{3} \le 1$$

$$-3 \le 2a - 5 \le 3$$

$$2 \le 2a \le 8$$

$$1 \le a \le 4$$

$$A = a_{max} = 4$$

Como $\beta \in \mathbb{R}$

$$-1 \le \cos\beta \le 1$$

$$-1 \le \frac{3b - 11}{4} \le 1$$

$$-4 \le 3b - 11 \le 4$$

$$7 \le 3b \le 15$$

$$\frac{7}{3} \le b \le 5$$

$$B = b_{max} = 5$$

$$2p = 2A + 2B = 2(4) + 2(5) = 18 \text{ m}$$