

LAB 12 - FILTROS E RESPOSTA EM FREQUÊNCIA

1. Objetivos:

Verificar o funcionamento do amplificador operacional em função da frequência e implementação de filtros analógicos.

2. Material:

Laboratório	A ser providenciado pela equipe
01 Fonte de tensão CC variável	02 Cl 358 - amplificador operacional
01 Matriz de contatos	01 resistores 10 k Ω ¼ W
01 Osciloscópio	Resistores de valor calculado na atividade no pre-lab do moodle, caso precise realize associação de resistores, ¼ W
02 Pontas de prova	01 Capacitor cerâmico 1 nF ou 10nF (de acordo a seus valores no moodle)
01 Gerador de funções	

3. Reconhecimento e inspeção dos componentes:

3.1. Meça os resistores e anote os valores:

$$R10k=$$
 ______ (R_1 da configuração do filtro passa-baixo e passa-alto) R ______ $k=$ ______ (R_2 da configuração do filtro passa-baixo e passa-alto)

4. Circuito 2: Resposta em frequência

Figura 1: Amp-Op em configuração buffer.

4.1. Monte o circuito do seguidor de tensão (buffer) indicado na Figura 1. Utilize alimentação simétrica de 15V.

- 4.2. Ajuste (ou garanta) o gerador de funções para que forneça um sinal senoidal de 0,1Vpp (pico a pico) e f= 1kHz (sem offset, i.e. centrada em zero). Confirme sua forma de onda com o OSCILOSCÓPIO.
- 4.3. Ajuste as medidas do osciloscópio para observar tensão pico a pico e frequência do canal 1 e canal 2.
- 4.4. Mude a frequência e complete as medidas indicadas abaixo. <u>Faça o print da tela incluindo as medidas</u> para as frequências indicadas na tabela.

Frequência (kHz)	Vin _{p-p} (V) – CH1	Vout _{p-p} (V) – CH2	Frequência (kHz)	Tirar print de tela
1				Sim
10				Não
100				Não
1000				Sim
2000				Não
5000				Não
10000				Sim

Tabela 1. Grandezas relativas às medidas da resposta em frequência do circuito 1 (buffer).

4.5. Compare com os valores teóricos (do Prelab) e verifique seus resultados.

5. Circuito 2: Filtro passa-baixa (LPF) ativo

Figura 2: Filtro passa-baixa ativo.

- 5.1. Monte o circuito do filtro passa-baixa indicado na Figura 2, usando os valores calculados no pre-lab.
- 5.2. Ajuste (ou garanta) o gerador de funções para que forneça um sinal senoidal de 0,1Vpp (pico a pico) e f= 1kHz (**sem offset, i.e. centrada em zero**). Confirme sua forma de onda com o OSCILOSCÓPIO.
- 5.3. Ajuste as medidas do osciloscópio para observar tensão pico a pico e frequência do canal 1 e canal 2.
- 5.4. Escreva na Tabela 2 a frequência de corte (F_{C (teórica)}) do filtro usada no cálculo dos componentes, especificada no questionário do moodle.
- 5.5. Mude a frequência e complete as medidas indicadas abaixo. Use o cursor do osciloscópio e meça Δt como o tempo entre o pico negativo de Vout e Vin, depois encontre seu equivalente em fase $\theta = \Delta t * 360 * freq$. Faça o print da tela incluindo as medidas para as frequências indicadas na tabela.

Frequência	Vin _{p-p} (V) –	Vout _{p-p} (V) –	$\Delta t (\mu s)$	Frequência	0	fase	Tirar print
(kHz)	CH1	CH2		(kHz)	(graus)		de tela
0,1							Sim
1							Não
10							Não
100							Sim

Tabela 2. Grandezas relativas às medidas da resposta em frequência do circuito 2 (filtro passa-baixa).

5.6. Compare com os valores teóricos (do Prelab) e verifique seus resultados.

6. Circuito 3: Filtro passa-alta (HPF) ativo

Figura 3: Filtro passa-alta ativo.

- 6.1. Monte o circuito do filtro passa-alta indicado na Figura 3, usando os valores calculados no pre-lab.
- 6.2. Ajuste (ou garanta) o gerador de funções para que forneça um sinal senoidal de 0,1Vpp (pico a pico) e f= 1kHz (sem offset, i.e. centrada em zero). Confirme sua forma de onda com o OSCILOSCÓPIO.
- 6.3. Ajuste as medidas do osciloscópio para observar tensão pico a pico e frequência do canal 1 e canal 2.
- 6.4. Escreva na Tabela 3 a frequência de corte (F_{C (teórica)}) do filtro usada no cálculo dos componentes, especificada no questionário do moodle.
- 6.5. Mude a frequência e complete as medidas indicadas abaixo. Use o cursor do osciloscópio e meça Δt como o tempo entre o pico negativo de Vout e Vin, depois encontre seu equivalente em fase $\Theta = \Delta t * 360 * freq$. Faça o print da tela incluindo as medidas para as frequências indicadas na tabela.

Frequência (kHz)	Vin _{p-p} (V) – CH1	Vout _{p-p} (V) – CH2	Δ t (μs)	Frequência (kHz)	Θ fase (graus)	Tirar print de tela
1						Sim
10						Não
100						Não
1000						Sim
F _C (teórica)						Sim

Tabela 3. Grandezas relativas às medidas da resposta em frequência do circuito 3 (filtro passa-alta).

- 6.6. Compare com os valores teóricos (do Pre-lab) e verifique seus resultados.
- 6.7. Apresente seus cálculos, conclusões, os 3 print de tela do osciloscópio e resultados (Checkpoint).