Университет ИТМО

Факультет программной инженерии и компьютерной техники Кафедра вычислительной техники

Домашняя работа № 1 по дисциплине "Сети ЭВМ и телекоммуникации"

Выполнил: Чебыкин И. Б.

Группа: Р3301

Проверяющий: Шинкарук Д. Н.

1 Описание работы

Цель работы: изучение методов логического и физического кодирования, используемых в цифровых сетях передачи данных. В процессе выполнения домашнего задания необходимо выполнить логическое и физическое кодирование исходного сообщения в соответствии с заданными методами кодирования, провести сравнительный анализ рассматриваемых методов кодирования, выбрать и обосновать наилучший метод для передачи исходного сообщения.

2 Порядок выполнения задания

- 1. Сформировать исходное сообщение.
- 2. Выполнить физическое кодирование исходного сообщения не менее, чем тремя способами, включая, в качестве обязательного, манчестерское кодирование.
- 3. Выполнить логическое кодирование исходного сообщения, используя избыточное кодирование 4В/5В и скремблирование.
- 4. Выполнить сравнительный анализ рассмотренных способов кодирования и выбрать наилучший способ для передачи исходного сообщения.

3 Физическое кодирование

3.1 Исходное сообщение

Данные: Чебыкин И.Б.

в шестнадцатеричном коде: D7 E5 E1 FB EA E8 ED 20 C8 2E C1 2E

в двоичном коде:

11010111 11100101 11100001 11111011 11101010 11101000

11101101 00100000 11001000 00101110 11000001

длина сообщения: 12 байт (96 бит)

3.2 NRZ

$$f_0 = \frac{1}{2t} = 5 \,\mathrm{MFz}$$

$$f_0 = \frac{1}{2t_b} = 5 \text{ M} \Gamma$$
ц
 $f_H = \frac{1}{12t_b} = 0,833 \text{ M} \Gamma$ ц

$$f_B = f_0^{12lb} \cdot 7 = 35 \,\mathrm{M}$$
Гц

$$F = f_B - f_H = 34,167 \,\mathrm{M}$$
Гц

 $F_{cp} = 1,875 \, \text{МГц}$

3.3 RZ

$$f_0 = \frac{1}{t} = 10 \,\mathrm{M}\Gamma$$
ц

$$f_0 = \frac{1}{t_b} = 10 \text{ M} \Gamma \text{ц}$$
 $f_H = \frac{1}{2t_b} = 5 \text{ M} \Gamma \text{ц}$ $f_B = f_0 \cdot 7 = 70 \text{ M} \Gamma \text{ц}$

$$f_P = f_0 \cdot 7 = 70 \text{ M}\Gamma \text{H}$$

$$F = f_B - f_H = 65 \,\mathrm{M}$$
Гц

 $F_{cp} = 8,125 \,\mathrm{M}\Gamma$ ц

3.4 Манчестерский

$$f_0 = \frac{1}{1} = 10 \, \text{M} \Gamma \text{H}$$

$$f_0 = \frac{1}{t_b} = 10 \text{ M} \Gamma$$
ц
 $f_H = \frac{1}{2t_b} = 5 \text{ M} \Gamma$ ц
 $f_B = f_0 \cdot 7 = 70 \text{ M} \Gamma$ ц

$$f_B = f_0 \cdot 7 = 70 \text{ M}$$
Гц

$$F = f_B - f_H = 65 \text{ M}$$
Гц

 $F_{cp} = 8,125 \,\mathrm{M}\Gamma$ ц

3.5 Результаты сравнительного анализа

	f_0	f_H , МГц	f_B , М Γ ц	F , М Γ ц	F_{cp} , М Γ ц
NRZ	5	0,833	35	34,167	1,875
RZ	10	5	70	65	8,125
M	10	5	70	65	8,125

	NRZ	RZ	M
Минимизация спектра	+	-	-
Самосинхронизация	-	+	+
Постоянная составляющая	+	-	-
Обнаружение ошибок и их исправление	-	+	+
Низкая стоимость реализации	+	-	+

Исходя из полученных результатов можно выбрать следующие способы кодирования:

RZ – хоть он и дороже, чем NRZ и манчестерский, свойство самосинхронизации позволяет не вести отдельную линию для синхронизации сигнала.

Манчестерский – т.к. имеет невысокую стоимость реализации.

4 Логического кодирование

4.1 Исходное сообщение

в шестнадцатеричном коде: DB F8 BE 27 B7 E5 B9 2E 6E 9E D4 A9 CD 26 9C в двоичном коде:

длина сообщения: 15 байт (120 бит) избыточность: 3/12 = 0, 25 = 25%

4.2 RZ

$$f_0 = \frac{1}{t_b} = 10 \ \mathrm{M}\Gamma$$
ц
$$f_H = \frac{1}{2t_b} = 5 \ \mathrm{M}\Gamma$$
ц
$$f_B = f_0 \cdot 7 = 70 \ \mathrm{M}\Gamma$$
ц
$$F = f_B - f_H = 65 \ \mathrm{M}\Gamma$$
ц
$$F_{cp} = 8 \ \mathrm{M}\Gamma$$
ц

4.3 Манчестерский

$$f_0 = \frac{1}{t_b} = 10 \text{ M}\Gamma$$
ц
 $f_H = \frac{1}{2t_b} = 5 \text{ M}\Gamma$ ц
 $f_B = f_0 \cdot 7 = 70 \text{ M}\Gamma$ ц
 $F = f_B - f_H = 65 \text{ M}\Gamma$ ц
 $F_{cp} = 8 \text{ M}\Gamma$ ц

4.4 Результаты сравнительного анализа

	f_0	f_H , М Γ ц	f_B , М Γ ц	F , М Γ ц	F_{cp} , М Γ ц
RZ	10	5	70	65	8
M	10	5	70	65	8

Исходя из сравнения видно, что эти методы идентичны, поэтому выгоднее выбрать манчестерский способ из-за низкой стоимости реализации.

4.5 Скремблирование

Т.к. мы кодируем не более 32 битов, то достаточно выбрать полином $B_i=A_i\oplus B_i-3\oplus B_i-5$ в шестнадцатеричном коде: С8 В6 85 7F Е8 ВА 70 ВЗ 37 7А 58 F7 в двоичном коде:

B1 = A1 = 1	$B9 = A9 \oplus B6 \oplus B4 = 1$	$B17 = A17 \oplus B14 \oplus B12 = 1$	$B25 = A25 \oplus B22 \oplus B20 = 0$
B2 = A2 = 1	$B10 = A10 \oplus B7 \oplus B5 = 0$	$B18 = A18 \oplus B15 \oplus B13 = 0$	$B26 = A26 \oplus B23 \oplus B21 = 1$
B3 = A3 = 0	$B11 = A11 \oplus B8 \oplus B6 = 1$	$B19 = A19 \oplus B16 \oplus B14 = 0$	$B27 = A27 \oplus B24 \oplus B22 = 1$
$B4 = A4 \oplus B1 = 0$	$B12 = A12 \oplus B9 \oplus B7 = 1$	$B20 = A20 \oplus B17 \oplus B15 = 0$	$B28 = A28 \oplus B25 \oplus B23 = 1$
$B5 = A5 \oplus B2 = 1$	$B13 = A13 \oplus B10 \oplus B8 = 0$	$B21 = A21 \oplus B18 \oplus B16 = 0$	$B29 = A29 \oplus B26 \oplus B24 = 1$
$B6 = A6 \oplus B3 \oplus B1 = 0$	$B14 = A14 \oplus B11 \oplus B9 = 1$	$B22 = A22 \oplus B19 \oplus B17 = 1$	$B30 = A30 \oplus B27 \oplus B25 = 1$
$B7 = A7 \oplus B4 \oplus B2 = 0$	$B15 = A15 \oplus B12 \oplus B10 = 1$	$B23 = A23 \oplus B20 \oplus B18 = 0$	$B31 = A31 \oplus B28 \oplus B26 = 1$
$B8 = A8 \oplus B5 \oplus B3 = 0$	$B16 = A16 \oplus B13 \oplus B11 = 0$	$B24 = A24 \oplus B21 \oplus B19 = 1$	$B32 = A32 \oplus B29 \oplus B27 = 1$

4.6 RZ

$$f_0 = \frac{1}{t_b} = 10 \text{ M}\Gamma$$
ц
 $f_H = \frac{1}{2t_b} = 5 \text{ M}\Gamma$ ц
 $f_B = f_0 \cdot 7 = 70 \text{ M}\Gamma$ ц
 $F = f_B - f_H = 65 \text{ M}\Gamma$ ц
 $F_{cp} = 7, 5 \text{ M}\Gamma$ ц

4.7 Манчестерский

$$f_0 = \frac{1}{t_b} = 10 \ \mathrm{M}\Gamma$$
ц
$$f_H = \frac{1}{2t_b} = 5 \ \mathrm{M}\Gamma$$
ц
$$f_B = f_0 \cdot 7 = 70 \ \mathrm{M}\Gamma$$
ц
$$F = f_B - f_H = 65 \ \mathrm{M}\Gamma$$
ц
$$F_{cp} = 7,5 \ \mathrm{M}\Gamma$$
ц

4.8 Результаты сравнительного анализа

	f_0	f_H , М Γ ц	f_B , М Γ ц	F , М Γ ц	F_{cp} , М Γ ц
RZ	10	5	70	65	7,5
M	10	5	70	65	7,5

5 Вывод