Game Physics Notes 02

CSCI 321

WWU

April 14, 2015

Forces

Newton's second law of motion: F = ma

$$a = F/m$$

 $v' = a$
 $p' = v$

Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus a viribus impressis cogitur statum illum mutare.

Or, in English:

Every body perseveres in its state of being at rest or of moving uniformly straight forward, except insofar as it is compelled to change its state by force impressed.

Forces and Motion

$$F = ma$$

$$a = F/m$$

$$v' = a$$

$$p' = v$$

- What we really want to know is: "How do things move?"
- If we know the forces and masses, we know the acceleration.
- If we can integrate the acceleration we can get the velocity.
- If we can integrate the velocity we can get the position.
- The problem is integration—generally unsolvable.
- So we use approximate integration.

Euler Integration

Exact integration would move the point along the blue lines.

Euler Integration

Euler Integration

$$a = F/m$$

$$v' = a$$

$$p' = v$$

```
def update(F, m, dt):
    a = F / m
    v += a * dt
    p += v * dt
```

Sample Calculations

$$dt = 1
m = 10
k = 5
f = -kx
a = f/m = -kx/m = -x/2
x' = v
v' = a
xt+1 = xt + x't = xt + vt
vt+1 = vt + v't = vt + at$$

Eule t	er: 	V	а
0	20	0	-10
1	20	-10	-10
2	10	-20	-5
3	-10	-25	5
4	-35	-20	17
5	-55	-3	27

• Run spring.py

Online discussions of Midpoint and Runge Kutta

Readings:

- http://www.pixar.com/companyinfo/research/pbm2001/,
 Differential equation basics, and Particle dynamics
- http://www.nrbook.com/c/, 16.0, 16.1

$$\vec{k}_1 = d(\vec{x}_n)\Delta t$$

$$\vec{k}_2 = d(\vec{x}_n + \frac{1}{2}\vec{k}_1)\Delta t$$

$$\vec{x}_{n+1} = \vec{x}_n + \vec{k}_2$$

- Euler method has errors $O(\Delta t^2)$
- Midpoint method has errors $O(\Delta t^3)$
- Can take steps twice as big and get smaller errors:

$$0.05^2 = 0.0025$$
$$0.10^3 = 0.001$$

One midpoint method step of size Δt is more accurate than two Euler steps of size $\Delta t/2$.

Sample Calculations

First add half of the derivative.

Sample Calculations

Then add all the "half-derivative."

Fourth Order Runge-Kutta

$$\vec{k}_{1} = d(\vec{x}_{n})\Delta t$$

$$\vec{k}_{2} = d(\vec{x}_{n} + \frac{1}{2}\vec{k}_{1})\Delta t$$

$$\vec{k}_{3} = d(\vec{x}_{n} + \frac{1}{2}\vec{k}_{2})\Delta t$$

$$\vec{k}_{4} = d(\vec{x}_{n} + \vec{k}_{3})\Delta t$$

$$\vec{x}_{n+1} = \vec{x}_{n} + \frac{\vec{k}_{1}}{6} + \frac{\vec{k}_{2}}{3} + \frac{\vec{k}_{3}}{3} + \frac{\vec{k}_{4}}{6}$$

Fourth order Runge Kutta

Tangents calculated at the dots: $\frac{\vec{k}_1}{6}+\frac{\vec{k}_2}{3}+\frac{\vec{k}_3}{3}+\frac{\vec{k}_4}{6}$

Fourth Order Runge-Kutta

- Euler method has errors $O(\Delta t^2)$
- Midpoint method has errors $O(\Delta t^3)$
- Fourth order Runge Kutta has errors $O(\Delta t^5)$

```
0.05^2 = 0.00250

0.10^3 = 0.00100

0.20^5 = 0.00032
```

Adaptive stepsize

- Change Δt as you go along...
- ...depending on how much things are changing.

Differential Equations

Reading:

- Strange attractors http://en.wikipedia.org/wiki/Attractor
- The Limits to Growth http://www.csiro.au/files/files/plje.pdf
- Run: strange??.py

Symplectic Euler/Semi-implicit Euler

- http://en.wikipedia.org/wiki/Semi-implicit_Euler_method
- Two forms:

$$v_{n+1} = v_n + a_n \Delta t$$

$$p_{n+1} = p_n + v_{n+1} \Delta t$$

and

$$p_{n+1} = p_n + v_n \Delta t$$

$$v_{n+1} = v_n + a_{n+1} \Delta t$$

- Can use either one by itself, or alternate between them.
- Not accurate, but almost conserves energy.
- Easy to program when updates are by assignment.

Verlet Integration

Begin with symplectic Euler

$$v_{n+1} = v_n + a_n \Delta t$$

$$p_{n+1} = p_n + v_{n+1} \Delta t$$

• Substitute for v_{n+1}

$$v_{n+1} = v_n + a_n \Delta t$$

$$p_{n+1} = p_n + (v_n + a_n \Delta t) \Delta t$$

$$= p_n + v_n \Delta t + a_n \Delta t^2$$

• Use old positions to approximate $v_n \Delta t \approx p_n - p_{n-1}$

$$p_{n+1} = p_n + v_n \Delta t + a_n \Delta t^2$$

$$= p_n + (p_n - p_{n-1}) + a_n \Delta t^2$$

$$= 2p_n - p_{n-1} + a_n \Delta t^2$$

This is velocityless Verlet. There are other versions.

Verlet Integration

A Verlet based approach for 2D game physics (www.gamedev.net)
 http://www.gamedev.net/page/resources/_/technical/math-and-physics/a-verlet-based-approach-for-2d-

• A nice web demo:

```
http://gamedev.tutsplus.com/tutorials/implementation/simulate-fabric-and-ragdolls-with-simple-verified for the state of the same of the sa
```

- Can be used as the basis of a collision response system.
- Run VerletPhysicsDemo.py

True elastic collisions

- http://en.wikipedia.org/wiki/Elastic_collision
- Run BouncingBalls.py

Advanced collision techniques

Reading:

- http://www.gamasutra.com/view/feature/3190/advanced_collision_detection_.php
- Very small objects
- Fast moving objects
- Complex objects

Many objects

Reading:

- Partitioning
- Sweep and prune
- http://en.wikipedia.org/wiki/Sweep_and_prune
- http://jitter-physics.com/wordpress/?tag=sweep-and-prune
- Optional: nice research on the algorithm: http://danieljosephtracy.com/Daniel_Joseph_Tracy/Sweep_and_F

Use a Library

• PyMunk: http://code.google.com/p/pymunk/