L^{∞} -uniqueness of Schrödinger operators restricted in an open domain*

Ludovic Dan LEMLE[†]

revised version 20 January 2008

Abstract

Consider the Schrödinger operator $\mathcal{A} = -\frac{\Delta}{2} + V$ acting on space $C_0^{\infty}(D)$, where D is an open domain in \mathbb{R}^d . The main purpose of this paper is to present the $L^{\infty}(D,dx)$ -uniqueness for Schrödinger operators which is equivalent to the $L^1(D,dx)$ -uniqueness of weak solutions of the heat diffusion equation associated to the operator \mathcal{A} .

Key Words: C_0 -semigroups; L^{∞} -uniqueness of Schrödinger operators; L^1 -uniqueness of the heat diffusion equation.

2000 AMS Subject Classification Primary: 47D03, 47F05 Secondary: 60J60

^{*}This work is partially supported by Yangtze Research Programme, Wuhan University, China, and the Town Council of Hunedoara, Romania.

[†]UFR Sciences et Technologies, Université Blaise Pascal, 63177 Aubière, France and Engineering Faculty, "Politehnica" University, 331128 Hunedoara, Romania e-mail: lemle.dan@fih.upt.ro

1 Preliminaries

Let D be an open domain in \mathbb{R}^d with its boundary ∂D . We denote by $C_0^{\infty}(D)$ the space of all infinitely differentiable real functions on D with compact support. Consider the Schrödinger operator $\mathcal{A} = -\frac{\Delta}{2} + V$ acting on space $C_0^{\infty}(D)$, where Δ is the Laplace operator and $V: \mathbb{R}^d \longrightarrow \mathbb{R}$ is a Borel measurable potential.

The essential self-adjointness of Schrödinger operator in $L^2(\mathbb{R}^d, dx)$, equivalent to the unique solvability of Schrödinger equation in $L^2(\mathbb{R}^d, dx)$, has been studied by KATO [Ka'84], REED and SIMON [RS'75], SIMON [Si'82] and others because of its importance in Quantum Mechanics. In the case where V is bounded, it is not difficult to prove that $(\mathcal{A}, C_0^{\infty}(\mathbb{R}^d))$ is essentially self-adjoint in $L^2(\mathbb{R}^d, dx)$. But in almost all interesting situations in quantum physics, the potential V is unbounded. In this situation we need to consider the Kato class, used first by SCHECHTER [Sch'71] and KATO [Ka'72]. A real valued measurable function V is said to be in the Kato class \mathcal{K}^d on \mathbb{R}^d if

$$\lim_{\delta \searrow 0} \sup_{x \in \mathbb{R}^d} \int_{|x-y| \le \delta} |g(x-y)V(y)| \, dy = 0$$

where

$$g(x) = \begin{cases} \frac{1}{|x|^{d-2}} & , & \text{if } d \ge 3\\ \ln \frac{1}{|x|} & , & \text{if } d = 2\\ 1 & , & \text{if } d = 1. \end{cases}$$

If $V \in L^2_{loc}(\mathbb{R}^d, dx)$ is such that V^- belongs to the Kato class on \mathbb{R}^d , it is well known that the Schrödinger operator $(\mathcal{A}, C_0^{\infty}(\mathbb{R}^d))$ is essentially self-adjoint and the unique solution in L^2 of the heat equation is given by the famous $Feynmann-Kac\ semigroup$

$$\left\{P_t^V\right\}_{t\geq 0}$$

$$P_t^V f(x) := \mathbb{E}^x f(B_t) exp\left(-\int_0^t V(B_s) \, ds\right)$$

or, in the multidimensional case, only in some special situations.

where f is a nonnegative measurable function, $(B_t)_{t\geq 0}$ is the Brownian Motion in \mathbb{R}^d defined on some filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, (\mathbb{P}_x)_{x\in\mathbb{R}^d})$ with $\mathbb{P}_x(B_0 = x) = 1$ for any initial point $x \in \mathbb{R}^d$ and \mathbb{E}^x means the expectation with respect to \mathbb{P}_x . In the case where D is a strict sub-domain, sharp results are known only when d = 1

Consequently of an intuitive probabilistic interpretation of uniqueness, Wu [Wu'98] introduced and studied the uniqueness of Schrödinger operators in $L^1(D, dx)$. On say that $(\mathcal{A}, C_0^{\infty}(D))$ is $L^1(D, dx)$ -unique if \mathcal{A} is closable and its closure is the generator of some C_0 -semigroup on $L^1(D, dx)$. This uniqueness notion was also studied in Arendt [Ar'86], Eberle [Eb'97], Djellout [Dj'97], Röckner [Rö'98], Wu [Wu'98] and [Wu'99] and others in the Banach spaces setting.

2 $L^{\infty}(D, dx)$ -uniqueness of Schrödinger operators

Our purpose is to study the $L^{\infty}(D, dx)$ -uniqueness of the Schrödinger operator $(\mathcal{A}, C_0^{\infty}(D))$ in the case where D is a strict sub-domain on \mathbb{R}^d . But how we can define the uniqueness in $L^{\infty}(D, dx)$? One can prove rather easely that the killed Feynmann-Kac semigroup $\left\{P_t^{D,V}\right\}_{t\geq 0}$

$$P_t^{D,V} f(x) := \mathbb{E}^x 1_{[t < \tau_D]} f(B_t) exp\left(-\int_0^t V(B_s) ds\right)$$

where $\tau_D := \inf\{t > 0 : B_t \notin D\}$ is the first exiting time of D, is a semigroup of bounded operators on $L^p(D, dx)$ for any $1 \le p \le \infty$, which is strongly continuous for

 $1 \leq p < \infty$, but never strongly continuous in $(L^{\infty}(D, dx), \| . \|_{\infty})$. Moreover, a well known result of Lotz [Lo'86, Theorem 3.6, p. 57] says that the generator of any strongly continuous semigroup on $(L^{\infty}(D, dx), \| . \|_{\infty})$ must be bounded.

To obtain a correct definition of $L^{\infty}(D, dx)$ -uniqueness, we should introduce a weaker topology of $L^{\infty}(D, dx)$ such that $\left\{P_t^{D,V}\right\}_{t\geq 0}$ becomes a strongly continuous semigroup with respect to this new topology. Remark that the natural topology for studying C_0 -semigroups on $L^{\infty}(D, dx)$ used first by WU and ZHANG [**WZ'06**] is the topology of uniform convergence on compact subsets of $L^1(D, dx)$, denoted by $\mathcal{C}(L^{\infty}, L^1)$. More precisely, if we denote

$$\langle f, g \rangle := \int_{D} f(x)g(x)dx$$

for all $f \in L^1(D, dx)$ and $g \in L^{\infty}(D, dx)$, then for an arbitrary point $g_0 \in L^{\infty}(D, dx)$, a basis of neighborhoods with respect to $\mathcal{C}(L^{\infty}, L^1)$ is given by

$$N(g_0; K, \varepsilon) := \left\{ g \in L^{\infty}(D, dx) : \sup_{f \in K} |\langle f, g \rangle - \langle f, g_0 \rangle| < \varepsilon \right\}$$

where K runs over all compact subsets of $L^1(D, dx)$ and $\varepsilon > 0$.

Remark that $(L^{\infty}(D, dx), \mathcal{C}(L^{\infty}, L^1))$ is a locally convex space and if $\{T(t)\}_{t\geq 0}$ is a C_0 -semigroup on $L^1(D, dx)$ with generator \mathcal{L} , by $[\mathbf{WZ'06}, \text{ Theorem 1.4, p. 564}]$ it follows that $\{T^*(t)\}_{t\geq 0}$ is a C_0 -semigroup on $(L^{\infty}(D, dx), \mathcal{C}(L^{\infty}, L^1))$ with generator \mathcal{L}^* .

Now we can introduce the uniqueness notion in $L^{\infty}(D, dx)$. Let **A** be a linear operator on $L^{\infty}(D, dx)$ with domain \mathcal{D} wich is assumed to be dense in $L^{\infty}(D, dx)$ with respect to the topology $\mathcal{C}(L^{\infty}, L^1)$.

Definition 2.1. The operator **A** is said to be a pre-generator on $L^{\infty}(D, dx)$ if there exists some C_0 -semigroup on $(L^{\infty}(D, dx), \mathcal{C}(L^{\infty}, L^1))$ such that its generator \mathcal{L} extends

A. We say that **A** is $L^{\infty}(D, dx)$ -unique if **A** is closable and its closure with respect to the topology $C(L^{\infty}, L^1)$ is the generator of some C_0 -semigroup on $(L^{\infty}(D, dx), C(L^{\infty}, L^1))$.

The main result of this paper is

Theorem 2.2. Let $V \in L^{\infty}_{loc}(D, dx)$ such that $V^{-} \in \mathcal{K}^{d}$. Then the Schrödinger operator $(\mathcal{A}, C^{\infty}_{0}(D))$ is $(L^{\infty}(D, dx), \mathcal{C}(L^{\infty}, L^{1}))$ -unique.

Proof. First, we must remark that the existence assumption of pre-generator in [**WZ'06**, Theorem 2.1, p. 570] is satisfied. Indeed, if consider the killed Feynman-Kac semigroup $\left\{P_t^{D,V}\right\}_{t>0}$ on $L^{\infty}\left(D,dx\right)$ and for any $p\in[1,\infty]$ we define

$$\left\|P_t^{D,V}\right\|_p := \sup_{\substack{f \geq 0 \\ \|f\|_p \leq 1}} \left\|P_t^{D,V}f\right\|_p,$$

next lemma show that \mathcal{A} is a pre-generator on $(L^{\infty}(D, dx), \mathcal{C}(L^{\infty}, L^{1}))$, i.e. \mathcal{A} is contained in the generator $\mathcal{L}_{(\infty)}^{D,V}$ of the killed Feynmann-Kac semigroup $\left\{P_{t}^{D,V}\right\}_{t\geq0}$.

Lemma 2.3. Let $V \in L^{\infty}_{loc}(D, dx)$ such that $V^{-} \in \mathcal{K}^{d}$ and let $\left\{P^{D,V}_{t}\right\}_{t \geq 0}$ be the killed Feynman-Kac semigroup on $L^{\infty}(D, dx)$. If $\left\|P^{D,V}_{t}\right\|_{\infty}$ is bounded over the compact intervals, then $\left\{P^{D,V}_{t}\right\}_{t \geq 0}$ is a C_{0} -semigroup on $\left(L^{\infty}(D, dx), \mathcal{C}\left(L^{\infty}, L^{1}\right)\right)$ and its generator $\mathcal{L}^{D,V}_{(\infty)}$ is an extension of $(\mathcal{A}, C^{\infty}_{0}(D))$.

Proof. The proof is close to that of [Wu'98, Lemma 2.3, p. 288]. Let $\left\{P_t^{D,V}\right\}_{t\geq 0}$ be the killed Feynman-Kac semigroup on $L^{\infty}(D,dx)$. Remark that

$$|P_t^{D,V}f(x)| \le P_t^{D,V}|f|(x) \le P_t^{D,-V^-}|f|(x) \le P_t^{-V^-}|f|(x)$$

from where we deduce that

$$\sup_{0 \le t \le 1} \left\| P_t^{D,V} \right\|_{\infty} \le \sup_{0 \le t \le 1} \left\| P_t^{-V^-} \right\|_{\infty} < \infty$$

since $\|P_t^{-V^-}\|_{\infty}$ is uniformly bounded by the assumption that $V^- \in \mathcal{K}^d$ (see [AS'82]). Since $\|P_t^{D,V}\|_1 = \|P_t^{D,V}\|_{\infty}$ is bounded for t in compact intervals of $[0,\infty)$, using [Wu'01, Lemma 2.3, p. 59] it follows that $\{P_t^{D,V}\}_{t\geq 0}$ is a C_0 -semigroup on $L^1(D, dx)$. By [WZ'06, Theorem 1.4, p. 564] we find that $\{P_t^{D,V}\}_{t\geq 0}$ is a C_0 -semigroup on $L^\infty(D, dx)$ with respect to the topology $\mathcal{C}(L^\infty, L^1)$. We have only to show that its generator $\mathcal{L}_{(\infty)}^{D,V}$ is an extension of $(\mathcal{A}, C_0^\infty(D))$.

Step 1: the case $V \geq 0$. For $n \in \mathbb{N}$ we consider $V_n := V \wedge n$. By a theorem of bounded perturbation (see [Da'80, Theorem 3.1, p. 68]) it follows that

$$\mathcal{A}_n = -\frac{\Delta}{2} + V_n$$

is the generator of a C_0 -semigroup $\left\{P_t^{D,V_n}\right\}_{t\geq 0}$ on $(L^{\infty}(D,dx),\mathcal{C}(L^{\infty},L^1))$. So for any $f\in\mathcal{C}_0^{\infty}(D)$ we have

$$P_t^{D,V_n} f - f = \int_0^t P_s^{D,V_n} \mathcal{A}_n f \, ds \quad , \quad \forall t \ge 0.$$

Letting $n \to \infty$, we have pointwisely on D:

$$P_t^{D,V_n}f \to P_t^{D,V}f$$

and

$$P_t^{D,V_n} \mathcal{A}_n f \to P_t^{D,V} \mathcal{A} f$$
.

Moreover, for any $x \in D$ we have:

$$\left| P_t^{D,V_n} f(x) \right| \le P_t^{D,V} |f|(x)$$

and

$$\left| P_t^{D,V_n} \mathcal{A}_n f(x) \right| \le P_t^{D,V} \left(\left| \frac{\Delta}{2} \right| + |Vf| \right) (x)$$
.

Hence by the dominated convergence we derive that

$$P_t^{D,V}f - f = \int_0^t P_s^{D,V} \mathcal{A}f ds$$
 , $\forall t \ge 0$.

It follows that f is in the domain of the generator $\mathcal{L}_{(\infty)}^{D,V}$ of C_0 -semigroup $\left\{P_t^{D,V}\right\}_{t\geq 0}$. Step 2: the general case. Setting $V^n=V\vee (-n)$, for $n\in\mathbb{N}$, and denoting by

$$\mathcal{A}^n = -\frac{\Delta}{2} + V^n$$

the generator of the C_0 -semigroup $\left\{P_t^{D,V^n}\right\}_{t\geq 0}$ on $(L^{\infty}(D,dx),\mathcal{C}(L^{\infty},L^1))$, we have by Step 1

$$P_t^{D,V^n}f - f = \int_0^t P_s^{D,V^n} \mathcal{A}^n f ds \quad , \quad t \ge 0.$$

Notice that

$$\left| P_s^{D,V^n} \mathcal{A}^n f(x) \right| \le P_s^{D,V} \left(\left| \frac{\Delta}{2} f \right| + |Vf| \right) (x)$$

which is uniformly bounded in $L^{\infty}(D, dx)$ over [0, t]. By Fubini's theorem we have

$$\int_{0}^{t} P_{s}^{D,V}\left(\left|\frac{\Delta}{2}f\right| + |Vf|\right)(x)ds < \infty \text{ dx-a.e. on } D.$$

On the other hand, for any $x \in D$ fixed such that

$$P_s^{D,V}\left(\left|\frac{\Delta}{2}f\right| + |Vf|\right)(x) < \infty$$

then by dominated convergence we find

$$P_s^{D,V^n}\left(-\frac{\Delta}{2}+V^n\right)f(x)\longrightarrow P_s^{D,V}\left(-\frac{\Delta}{2}+V\right)f(x)$$
.

Thus by dominated convergence we have dx-a.e. on D,

$$\int_{0}^{t} P_{s}^{D,V^{n}} \left(-\frac{\Delta}{2} + V^{n} \right) f ds \to \int_{0}^{t} P_{s}^{D,V} \left(-\frac{\Delta}{2} + V \right) f ds \quad , \quad \forall t \geq 0.$$

The same argument shows that

$$P_t^{D,V^n}f - f \to P_t^{D,V}f - f$$
.

By consequence

$$P_t^{D,V}f - f = \int_0^t P_s^{D,V} \left(-\frac{\Delta}{2} + V\right) f ds$$
 , $\forall t \ge 0$.

Hence f is in the domain of generator $\mathcal{L}_{(\infty)}^{D,V}$ of semigroup $\left\{P_t^{D,V}\right\}_{t\geq 0}$. So $\mathcal{L}_{(\infty)}^{D,V}$ is an extension of the operator $(\mathcal{A}, C_0^{\infty}(D))$ and the lemma is proved.

Next we prove the $L^{\infty}(D, dx)$ -uniqueness of \mathcal{A} . By [**WZ'06**, Theorem 2.1, p. 570], we deduce that the operator $(\mathcal{A}, C_0^{\infty}(D))$ is $L^{\infty}(D, dx)$ -unique if and only if for some λ , the range $(\lambda I - \mathcal{A})(C_0^{\infty}(D))$ is dense in $(L^{\infty}(D, dx), \mathcal{C}(L^{\infty}, L^1))$. It is enough to show that for any $h \in L^1(D, dx)$ which satisfies the equality

$$\langle h, (\lambda I + \mathcal{A})f \rangle = 0$$
 , $\forall f \in C_0^{\infty}(D)$

it follows h = 0.

Let $h \in L^1(D, dx)$ be such that for some λ one have

$$\langle h, (\lambda I + \mathcal{A}) f \rangle = 0$$
 , $\forall f \in C_0^{\infty}(D)$

or

$$(\lambda I + \mathcal{A})h = 0$$
 in the sense of distribution.

Since $V \in L^{\infty}_{loc}(D, dx)$, by applying [AS'82, Theorem 1.5, p. 217] we can see that h is a continuous function. By the mean value theorem due to AIZENMAN and SIMON [AS'82, Corollary 3.9, p. 231], there exists some constant C > 0 such as

$$|h(x)| \le C \int_{|x-y| \le 1} |h(y)| dy$$
 , $\forall x \in D$.

As $V^- \in \mathcal{K}^d$, C may be chosen independently of $x \in D$. Since $h \in L^1(D, dx)$, it follows that h is bounded and, consequently, $h \in L^2(D, dx)$. Now by the $L^2(D, dx)$ -uniqueness of $(\mathcal{A}, C_0^{\infty}(D))$ and $[\mathbf{WZ'06}$, Theorem 2.1, p. 570], h belongs to the domain of the generator $\mathcal{L}_{(2)}^{D,V}$ of $\{P_t^{D,V}\}_{t>0}$ on L^2 and

$$\mathcal{L}_{(2)}^{D,V}h = \left(-\frac{\Delta}{2} + V\right)h = -\lambda h$$
.

Hence

$$P_t^{D,V}h = e^{-\lambda t}h \quad , \quad \forall t \ge 0.$$

Let

$$\lambda(D, V) := \inf_{f \in C_0^{\infty}(D)} \left\{ \frac{1}{2} \int_D |\nabla f|^2 dx + V f^2 dx : ||f||_2 \le 1 \right\}.$$

be the lowest energy of the Schrödinger operator. If we take $\lambda < \lambda(D, V)$, then the last equality is possible only for h = 0, because $\left\|P_t^{D,V}\right\|_2 = e^{-\lambda(D,V)t}$ (see Albeverio and MA [AM'91, Theorem 4.1, p. 343]).

Remarque 2.4. Intuitively, to have $L^{1}(D, dx)$ -uniqueness, the repulsive potential V^{+} should grow rapidly to infinity near ∂D , this means

$$(C_1) \mathbb{P}_x \left(\int_0^{\tau_D} V^+(B_s) \, ds + \tau_D = \infty \right) = 1 \text{for a.e. } x \in D$$

so that a particle with starting point inside D can not reach the boundary ∂D (see [Wu'98, Theorem 1.1, p. 279]).

By analogy with the uniqueness in $L^1(D, dx)$, the $L^{\infty}(D, dx)$ -uniqueness of $(\mathcal{A}, C_0^{\infty}(D))$ means that a particle starting from the boundary ∂D can not enter in D. Unfortunately, here we have a problem: $L^{\infty}(D, dx)$ -uniqueness of \mathcal{A} is equivalent to the existence of a unique boundary condition for \mathcal{A}^* . It is well known that there are many boundary conditions (Dirichlet, Newmann, etc.). Remark that in the case of $L^1(D, dx)$ -uniqueness

of \mathcal{A} , the effect of the boundary condition for \mathcal{A}^* is eliminated by the condition (C_1) for potential. To find such condition in the case of $L^{\infty}(D, dx)$ -uniqueness is very difficult. In this moment we can present here an interesting result from $[\mathbf{WZ'06}]$:

Proposition 2.5. Let D be a nonempty open domain of \mathbb{R}^d . If the Laplacian $(\Delta, C_0^{\infty}(D))$ is $L^{\infty}(D, dx)$ -unique, then $D^C = \emptyset$ or $D = \mathbb{R}^d$.

For the heat diffusion equation we can formulate the next result

Corollary 2.6. If $V \in L^{\infty}_{loc}(\mathbb{R}^d, dx)$ and $V^- \in \mathcal{K}^d$, then for every $h \in L^1(\mathbb{R}^d, dx)$, the heat diffusion equation

$$\begin{cases} \partial_t u(t,x) = \left(-\frac{\Delta}{2} + V\right) u(t,x) \\ u(0,x) = h(x) \end{cases}$$

has one $L^1(\mathbb{R}^d, dx)$ -unique weak solution which is given by $u(t, x) = P_t^V h(x)$.

Proof. The assertion follows by [WZ'06, Theorem 2.1, p. 570] and Theorem 2.2.

Acknowledgements. I am grateful to Professor Liming WU for his kind invitation to Wuhan University, China, during May-June 2006 where this result was reported and for his valuable help and support. And I want to thank to anonymous reviewer for sugestions.

References

[AM'91] Albeverio, S., Ma, Z.M. Perturbation of Dirichlet form: lower boundedness, closability and form cores. *J. Funct. Anal.*, **99**(1991), 332-356.

- [AS'82] AIZENMAN, M., SIMON, B. Brownian motion and Harnack's inequality for Schrödinger Operators. Comm. Pure Appl. Math., 35(1982), 209-271.
- [Ar'86] ARENDT, W. The abstract Cauchy problem, special semigroups and perturbation. One Parameter Semigroups of Positive Operators (R. Nagel, Eds.), Lect. Notes in Math., 1184, Springer, Berlin, 1986.
- [Da'80] Davies, E.B. One-parameter semigroups. Academic Press, London, New York, Toronto, Sydney, San Francisco, 1980.
- $[\mathbf{Dj'97}]$ DJELLOUT, H. Unicité dans L^p d'opérateurs de Nelson. Prépublication, 1997.
- [Eb'97] EBERLE, A. Uniquenees and non-uniqueness of singular diffusion operators.

 Doctor-thesis, Bielefeld, 1997.
- [Ka'84] Kato, T. Perturbation theory for linear operators. Springer Verlag, Berlin, Heidelberg, New York, 1984.
- [Ka'72] Kato, T. Schrödinger operators with singular potentials. *Israel J. Math.*, 13(1972), 135-148.
- [Lo'86] LOTZ, H.P. The abstract Cauchy problem, special semigroups and perturbation. One Parameter Semigroups of Positive Operators (R. Nagel, Eds.), Lect. Notes in Math., 1184, Springer, Berlin, 1986.
- [RS'75] REED, M., SIMON, B. Methods of Modern Mathematical Physics, II, Fourier Analysis, Self-adjointness. Academic Press, New York, 1975.
- [Rö'98] RÖCKNER, M. L^p-analysis of finite and infinite dimensional diffusion operators. Lect. Notes in Math., 1715(1998), 65-116.

- [Sch'71] Schechter, M. Spectra of partial differential operators. North-Holland, Amsterdam, 1971.
- [Si'82] SIMON, B. Schrödinger Semigroups. Bull. Amer. Math. Soc. (3)7(1982), 447-526.
- [Wu'98] Wu, L. Uniqueness of Schrödinger Operators Restricted in a Domain. J. Funct. Anal., (2)153(1998), 276-319.
- [Wu'99] Wu, L. Uniqueness of Nelson's diffusions. *Probab. Theory Relat. Fields*, 114(1999), 549-585.
- [Wu'01] Wu, L. L^p -uniquenessof Schrödinger operators and the capacitary positive improving property. J. Funct. Anal., 182(2001), 51-80.
- [WZ'06] Wu, L., Zhang, Y. A new topological approach to the L^{∞} -uniqueness of operators and L^{1} -uniqueness of Fokker-Planck equations. J. Funct. Anal., 241(2006), 557-610.