

Teacher's Signature:___

EXPT.	20BC	£857		Page No.: (2)	Youva
7	Regoession line	a ony-		Date	
	bzy= nezy		5(88) -1 5×157 -	5 x25 = 1	440-37
	- 6ay= 0.5				
	4 2-x 2 2 x-3 =	bay (g-g) = 0.5 (y-0)			
	2 22 =	711	[Regocs	soon Rine	dong
	- losselation (c	cff= oz Vbx		1.3 x0.5 0.65	
	as both bay 8 6		1 72 1		
02	POPEN I 80 45 papen I 81 56 let P-12	50 48 60	60 65 68 62 64 65		
		cy 22	y2		
		480 6400	6861		-
		40 3025			
		88 3136	2304		
		80 3364	3600		
	60 62 37		3844		
	68 65 49	1-0	4096		7
	70 70 99	00 4900	4900		
		50, 7225	5476 8100 Ha&nIP's Signatur	701	
-	912 772 118/5	8 48147	recomer a digitatur		

EXPT.	NAME: 238CE087	Page No.: 3	Your
	Ex2917 272720		
	Ex2 = 48149 Ey2 = 48742		
	= 5 = EX/n = 717/11 = 63.18		
	ÿ= εJh = 720/1 = 65.45		
1	Regression line Jon x:-		
	byz = nexy - ex. ey = 11×(48318) - nexi2 - (ex)2 11×(483149).	- (717)(920) - (717) ²	
	467x= 0.98		
	2 600y= n Exy- Ex. Sy = 11×48318 - n Ey2 - (Eyy 529639 - 11×48742	7]7×720	
	-65.45 = 0.982 - 63.8784 $-65.45 = 0.982 - 63.8784$	J (J-9)	13. U
	-100y= 98x +157.4 = 20.86	J+8.80	13
7	Deffecient of correlation; - 8= 167x.627 = Vo. 86x0.98 = Vo. 8428	= 0.91	8

EXPT.	NAME:	23818057	4-17	Page No.: Youvh
Q3	80=0.8 8=10xy	= V0.8×0.2	= 0.4	
		2. [8 = 0.4]	correlation	coefferient
Q4	Var (7)=	9		
	Jeyres	810n 8a-	10y 186 =0	
	tor (57 & 5)	461	-18y -214 20	
		402-50	y +330 =0	
		- + +	J-214 20	
			7 219	
-			X = 13	
	4 50 3 =	(13, 17)		
-c)	coeffeint	of coordation	n:-	
	2 2 18	y 7 214 2 40	7 28 x +	66
-	26	xy20.45	& by x	20.08
1		L 8220.	48 X08 4	0206
1				

EXPT. NAME:				Page No. 6	T
	DB(6087	11 4 51		Date:	Aonay
AG: Back27=21		NAM	es		13.
6xty 28	1				
-	6/2	C+ y =	= 52		
	4				
		+372	+21		
1 ~ ~ -		e J 2	7)		
4, 221	1 527				
1) 2012	-26	P-1000	0.1		
b) 3x+27	44.0/	ast d	= 31 -14 +31		
∠J=-3 2	2 2	22	EJ 6		
h = 0 = 1.	5	E Lan	050 10	-01_	
by22-1.		oaj	2-0.1	567	
x21	-15x (-0.167) 2	2 2 16	25 = 7	0-5	90
	(8x (0.10)) 2	0 - 0.	70 21		
Y2-	-0.5 98 6	ax2 ha	y are-	VC,	
	00 90 9	023 02) wie		
49: Payson's	108ff of 100	delation			
Y Y	da dy	dx^2	dy2	dor.d	7
160 192	V	25	1089	-165	5
164 280	-3 21	9	441	- 63	
172 260	1 1	1	1	1	
182 234	6 -25	36	625	-150	
166 266	-2 7	4	99	-14	
170 254	0 5	0	25	0	
178 230	4 -29	16	841	-116	
108 250	1 3	91 3	3071	-507	
				266 112	
2 2/2	1192 2 170.28	92	7	201.72	
	7		Teacher's Signa	sture:	

EXPT.	NAME: 238(6087 Page No.: P
-7	Assummed mean = 170 B= 284
	ON 2 2-170, dy 27-289
	= 6yx = n2 dxdy - Edxxedy = 7(-807) - 1×3 nedx2 - Gdxx2 7×91-12
	= 6-356 ² = -5.68
#	Regression 37 on x! - 62072 -3552 2-3552 7(3071)-9 21488
	2y-y=6yx(x-x) $6xy=0.1653$
	27-259.42=-5.58 (2-170.28)
	1. J2-5.88 x + 1210.45
1	Regression x ony:
	$y-\overline{y}=6xy(y-\overline{y})$ $\leq 2(-170.28=-0.1653)(y-259.40)$ $= 2-6.165y+213.169$

EXPT.	NAME:		2013	(0057		Page 6 Date:		Konny
18	P	No= C	2 0	V=(C)	K C.	= C'TYX	6-18	
_		- 10	g V= 1 l	logc -1				
		4)	X = A-	+ B X		15	11-8	
	P	V	X	X	X	X		
	0.5	1.6	-0.301	0.2041	-0.061	0.6908	Z	
	1)	0	0	0	0		
	1.5	0.75	0.1960	-0-1249	-0.0219	0.031		
	2	0.62		-0.2076		0.090		
	2.5	0.52	0.3979/	-6-2839	-0.113	0.1583		
	3	0.46	0-4771	-0.3372	-0.1608	0,227		
			1-051		-0.250	0.59	825	
		2	Ey = 0	nA +BEDI				
			5×142 A	EX+ C	3522	Internation of the last		
		c	-0. 7495 =	6A+ BX1.	051			
		-	0.255 2	1.051A+	0.5928B			
			A 2 0.09	124	2	-1/ -	11 -9:	72//
			B = -05	92241		-6 =		
						= 1.688	1	
			109CZ81	4	0			
			109CZ 81 = 1-6	88x (0.0)	1124)			
		4 1	10gC = 0.1	540	- 011-68	- 12175	1	
			1021:	4256	-1.	- 1.740	6	-
	THE RESERVE OF THE PERSON NAMED IN							

Teacher's Signature_

· · · A+	1288U	S SK	3-5			
	./1.68					
	V	88 2	1-4256	2 6.407	3	
	6 V Z (6		1.683 2			

Teacher's Signature: