

Features

- Split Gate Trench MOSFET technology
- Excellent package for heat dissipation
- High density cell design for low RDS(ON)

Product Summary

BVDSS	RDSON	ID
40V	2mΩ	120A

Applications

- DC-DC Converters
- Power management functions
- Synchronous-rectification applications

PDFN5060-8L Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	40	V
V _G S	Gate-Source Voltage	±20	V
I _D @Tc=25°C	Continuous Drain Current ¹	120	Α
I _D @T _C =100°C	Continuous Drain Current ¹	76	А
I _{DM}	Pulsed Drain Current ²	480	А
EAS	Single Pulse Avalanche Energy ³	180	mJ
las	Avalanche Current	30	А
P _D @T _C =25°C	Total Power Dissipation ⁴	65.7	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{0JA}	Thermal Resistance Junction-ambient (Steady State) ¹		60	°C/W
ReJC	Thermal Resistance Junction-Case ¹		1.9	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =Œ0uA	I€			V	
$\triangle BV_{DSS}/\triangle T_{J}$	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =1mA				V/°C	
В	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =G€A		G	GÈ7	mΩ	
R _{DS(ON)}		V _{GS} =4.5V , I _D =F€A		ŒŽ	ΗÈ		
V _{GS(th)}	Gate Threshold Voltage	V -V I - 250A	FÈG	FÈ	ŒĠ	V	
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$V_{GS}=V_{DS}$, $I_D=-250uA$				mV/°C	
	Drain Source Leakage Current	V _{DS} =I €V , V _{GS} =0V , T _J =25°C			1	uA	
I _{DSS}	Drain-Source Leakage Current	V _{DS} =I €V, V _{GS} =0V , T _J =100°C			F00	uA	
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA	
gfs	Forward Transconductance	ice V _{DS} =F€V , I _D =G€A		ΪÍ		S	
R _g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		F		Ω	
Q _g	Total Gate Charge			ΙŒΪ			
Q _{gs}	Gate-Source Charge	V _{DS} =ŒV , V _{GS} =F€V , I _D =ŒA		ÎÈ		nC	
Q _{gd}	Gate-Drain Charge			7.2			
T _{d(on)}	Turn-On Delay Time			JÈ			
Tr	Rise Time	VGS=10V, VDD=ŒV,		ÌĖ			
T _{d(off)}	Turn-Off Delay Time	RG=3Ω, ID= Q 0A		H€ÌÌ		ns	
T _f	Fall Time			F€È			
C _{iss}	Input Capacitance			G G			
Coss	Output Capacitance	V _{DS} =ŒV , V _{GS} =0V , f=1MHz		Í΀		pF	
C _{rss}	Reverse Transfer Capacitance			ď			

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current ^{1,4}	V _G =V _D =0V , Force Current			120	А
VsD	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =250			1.2	V
t _{rr}	Reverse Recovery Time	IF=20A , di/dt=100A/µs ,		46		nS
Qrr	Reverse Recovery Charge	T _J =250		18.4		nC

Note:

- 1.The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2% 3.The EAS data shows Max. rating . The test condition is VR = 21 »Õ,VDD=25V,VGS=10V,L=0.5mH,IAS=30A.
- 4. The power dissipation is limited by 150 $^{\circ}$ C junction temperature $^{\circ}$ 1. The data is theoretically the same as I_{D} and I_{DM} , in real applications, should be limited by total power dissipation.

Typical Characteristics

Figure 1. Output Characteristics

Figure 3. Forward Characteristics of Reverse

Figure 5. R_{DS(ON)} vs. I_D

Figure 2. Transfer Characteristics

Figure 4. $R_{DS(ON)}$ vs. V_{GS}

Figure 6. Normalized $R_{DS(on)}$ vs. Temperature

Figure 7. Capacitance Characteristics

Figure 9. Power Dissipation

Figure 8. Gate Charge Characteristics

Figure 10. Safe Operating Area

Figure 11. Normalized Maximum Transient Thermal Impedance

Test Circuit

Figure A. Gate Charge Test Circuit & Waveforms

Figure B. Switching Test Circuit & Waveforms

Figure C. Unclamped Inductive Switching Circuit & Waveforms

Package Mechanical Data-PDFN5060-8L-Single

Symbol	Common					
	mm		Inch			
	Mim	Max	Min	Max		
Α	1.03	1.17	0.0406	0.0461		
b	0.34	0.48	0.0134	0.0189		
С	0.824	0.0970	0.0324	0.082		
D	4.80	5.40	0.1890	0.2126		
D1	4.11	4.31	0.1618	0.1697		
D2	4.80	5.00	0.1890	0.1969		
Е	5.95	6.15	0.2343	0.2421		
E1	5.65	5.85	0.2224	0.2303		
E2	1.60	/	0.0630	/		
е	1.27 BSC	1.27 BSC				
L	0.05	0.25	0.0020	0.0098		
L1	0.38	0.50	0.0150	0.0197		
L2	0.38	0.50	0.0150	0.0197		
Н	3.30	3.50	0.1299	0.1378		
1	/	0.18	/	0.0070		