CS1555 Recitation 3

Objective: to practice normalization, canonical forms, decomposing relations into BCNF and checking for lossless decompositions.

checking for lossless decompositions.	•
Part 1: For each of the following relations R and sets of functional dependencies F, do the following: 1) Find the canonical cover (minimal cover) of F. 2) Using the canonical cover, find the keys of the R.	vesult
1. Consider the following set of functional dependencies F on a relation R (A, B, C, D, E): F: .A \to BC	A-> B (duplicates transjermen) Drimbey A-> B B-> C C-> D DE-> C
$A \rightarrow C$ $AC \rightarrow D$ $E \rightarrow AD$ $E \rightarrow H$ $A \rightarrow CD$ $E \rightarrow AH$	I find anything not on right (and As candidate AE+: AE > AEB (:A>B)
Part 2: Consider the following set of functional dependencies F on relation R (A, B, C, D, E, H): $A \to C$ $AC \to D$ $E \to AD$ $E \to H$ $A \to CD$	can determire EsAEBCP (C->P) all relations.
$A \to CD$ $E \to AH$ The key for R is EB and the following set of functional dependencies constitutes the canonical cover: $A \to C, E \to A, E \to H, A \to D$ 1) Using Synthesis Method, construct a set of 3NF relations. (Messe) 2) Using Universal Method, decompose R into a set of BCNF relations. (decompose E)	3(EB) wecan't schemise there DelB Nop-down U: R(A,B,C,D,E,H), and CC & Iceg.
Part 3: Assume that R is decomposed into: R1 (A, B), F1 = {A \rightarrow B}, key (A) R2 (B, C), F2 = {B \rightarrow C}, key (B) R3 (C, D, E), F3 = {C \rightarrow D, DE \rightarrow C), key (DE), (CE) Is this decomposition a lossless-join decomposition? Use the table method.	U: R(A,B,C,D,E,H) and CC & ICEY, (Can't contain transitive form) R(A,B,D,E,H) [Down 37 R2(A,C) [Top1] LS R(XIP Remove
ABCDE	L>BCNP Remove $R_1'(A,B,E,H)$ $R_1''(A,B,E,H)$
A,B A	
aaa	PIZ' (E, E, H) SEAP
aaa	P(12) (E,H) -> BCNF
-full row > can't retrive	5 BCNFs merge P, (A, C,D)
(Loss/ decomposition)	R ₂ (E _A ,H)
<i>'</i>	$R_3(BE)$