

Launch and Maneuvers

SIC Saarland Informatics

Injection Velocity – Low Speed

Satellite injection at a slow speed

Injection Velocity – Medium Speed

Satellite injection at a medium speed

Injection Velocity – High Speed

Satellite injection at a high speed

Injection Velocity – Very High Speed

Satellite injection at a very high speed

Orbit Velocity

We have said that **velocity** in an **elliptical orbit** with apogee and perigee distances of r_a and r_p and semi-major axis $a = (r_p + r_a)/2$ is

$$v(r) = \sqrt{\frac{2\mu}{r} - \frac{\mu}{a}} = \sqrt{\frac{2\mu}{r} - \frac{2\mu}{r_p + r_a}}$$

Notably, in a **circular orbit** with radius $R=r_p=r_a$

$$v(r) = \sqrt{\frac{\mu}{R}}$$

 $\mu = 3.986013 \times 10^5 \text{ km}^3/\text{s}^2$

Formally Speaking

- If the injection velocity at height r is
 - $v < \sqrt{\mu/r}$, the satellite follows a **ballistic** trajectory and falls
 - $v = \sqrt{\mu/r}$, the satellite stays in a **circular** orbit of radius r
 - $v > \sqrt{\mu/r}$ but $v < \sqrt{2\mu/r}$, we have an **elliptical** orbit $(e \in (0; 1))$
 - $v = \sqrt{2\mu/r}$, the satellite follows a **parabola** (e = 1)
 - The apogee becomes ∞
 - This is the Earth's escape velocity
 - $v > \sqrt{2\mu/r}$, the trajectory is **hyperbolic**

Try this on STK

Use Astrogator in STK to:

6,371 + 307 km

- Create a new satellite with Astrogator as the propagator
- Set initial state in Earth Inertial Cartesian Coordinates (6678 km, 0, 0)
- Apply velocity in z axis only (V_z) and explore velocity ranges considering the following inflexion points:

•
$$v_{z1} = \sqrt{\frac{\mu}{r}} = \sqrt{\frac{3.986013 \times 10^5}{6678}} = 7.72 \text{ km/s}$$

•
$$v_{z1} = \sqrt{\frac{2\mu}{r}} = \sqrt{\frac{2 \times 3.986013 \times 10^5}{6678}} = 10.93 \text{ km/s}$$

■ → show in STK (Stk_Initial_Velocity.vdf)

Coord.System:	Earth Inertial				
Coordinate Type:	Cartesian	~			
Orbit Epoch:	® 19 Aug 2019 10:00:00.000 UTCG				
X Component:		6678.14 km	W		
Y Component:		0 km	w l		
Z Component:		0 km	₩		
Vx Component:		0 km/sec	₩		
Vy Component:		0 km/sec	₩		
Vz Component:		10.93 km/sec	₩		

Try this on STK

Cosmic Velocities

- $v_1 = \sqrt{\mu/r}$ is known as the **first cosmic velocity**
 - The required velocity not to fall to Earth
- $v_2 = \sqrt{2\mu/r}$ is known as the **second cosmic velocity**
 - The required velocity to escape from Earth
- $v_3 = \sqrt{2GM/R}$ is known as the **third cosmic velocity**
 - The required velocity to escape from the Solar System
 - Where M is the mass of the central object (e.g., Sun)
 - And R is the distance from the center of the celestial body to the point of escape (e.g., distance from the Sun to the object trying to escape its gravitational pull)
- The fourth cosmic velocity: galaxy escape velocity...

- Five spacecraft are leaving the Solar System
- Voyager 1: about 70,000 years to reach the nearest star

	Pioneer 10	Pioneer 11	Voyager 2	Voyager 1	New Horizons
Distance from Sun (AU)	124.318	102.890	121.665	146.820	45.303
Speed relative to Sun (km/s)	11.938	11.231	15.330	16.970	14.007
Speed relative to Sun (AU/year)	2.518	2.369	3.234	3.580	2.955
Ecliptic latitude	3°	14°	-37°	35°	2°
Declination	26° 0'	-8° 50'	-58° 24'	12° 15'	-20° 35'
Right ascension	5 ^h 13 ^m	18 ^h 49 ^m	19 ^h 59 ^m	17 ^h 12 ^m	19 ^h 5 ^m
Constellation	Taurus	Scutum	Pavo	Ophiuchus	Sagittarius
Distance from Earth (AU)	124.347	102.475	121.242	146.844	44.826
One-way light time (hours)	17.24	14.20	16.81	20.35	6.21
Brightness of Sun from spacecraft (Magnitude)	-16.2	-16.6	-16.3	-15.9	-18.4
Spacecraft still functioning?	no	no	yes	yes	yes
Launch date	1972-Mar-03	1973-Apr-06	1977-Aug-20	1977-Sep-05	2006-Jan-19

- New Horizon
- Launch mass: $478 \text{ kg} 2.2 \times 2.1 \times 2.7 \text{ m}$
- The first spacecraft to explore Pluto
 - Finest images from the dwarf planet
 - Now headed to Kuiper belt

Normal and Anti-Normal Burns

Acceleration with 90° to the orbital plane.

Acceleration with -90° to the orbital plane.

Properties

• It can be used to change *inclination* (if the maneuver is performed in the ascending/descending nodes) as well as to perform *RAAN* angle changes (if the maneuver is performed in the north/south extreme of the orbit.

Normal and Anti-Normal Burns

• A small change Δi to the inclination angle i of a **circular orbit** can be affected externally by applying a thrust Δv to the velocity vector V at an angle of $90^{\circ} + \Delta i / 2$ to the direction of the satellite

$$\Delta v = 2V \sin\left(\frac{\Delta i}{2}\right)$$

Normal and Anti-Normal Burns - Simple Inclination Change

Use Astrogator in STK to:

6,371 + 307 km

- Create a new satellite with Astrogator as propagator
- Set initial state in Earth Inertial Cartesian Coordinates (6678 km, 0, 0)
- Apply velocity in z axis only (V_z) of 7.72 km/s
- Propagate until ascending node
- Set maneuver to Thrust Vector in VNC (Earth) coordinates
- Configure impulse to change $\Delta i = 10^{\circ}$
 - Magnitude $\Delta v = ?$
 - Angle at $90^{\circ} + \Delta i/2 = 95^{\circ}$
 - Δ_{x} =?
 - $\Delta_{y} = ?$
 - show in STK (Stk_Inclination_change.vdf)

Normal and Anti-Normal Burns - Simple Inclination Change

Use Astrogator in STK to:

6,371 + 307 km

- Create a new satellite with Astrogator as propagator
- Set initial state in Earth Inertial Cartesian Coordinates (6678 km, 0, 0)
- Apply velocity in z axis only (V_z) of 7.72 km/s
- Propagate until ascending node
- Set maneuver to Thrust Vector in VNC (Earth) coordinates
- Configure impulse to change $\Delta i = 10^{\circ}$
 - Magnitude $\Delta v = 2\sqrt{\frac{\mu}{r}} \sin(\frac{\Delta i}{2}) = 2 \times 7.726 \times 0.0871 = 1.345$ km/s
 - Angle at $90^{\circ} + \Delta i/2 = 95^{\circ}$
 - $\Delta_x = \cos(95^\circ) \times \Delta v = -0.0871 \times 1.345 = -0.1172 \text{ km/s}$
 - $\Delta_y = \sin(95^\circ) \times \Delta v = 0.9961 \times 1.345 = 1.3398 \text{ km/s}$
- show in STK (Stk_Inclination_change.vdf)

Radial Burns

Radial-In

Radial-Out

Acceleration *towards* the center of the orbit.

Acceleration away from the center of the orbit.

Properties

- Doesn't change semi-major axis a
- Doesn't change orbital period

- Doesn't change orbital energy
- Increases eccentricity e, (b < a)

Retrograde and Prograde Burns

Acceleration in the *opposite* direction of the tangential velocity vector.

Properties:

raising/lowering perigee and apogee

Acceleration in the *same* direction of the tangential velocity vector.

changes eccentricity

Hohmann Transfer

Maneuver to transition between circular orbits

- Consists of two prograde or retrograde burns
- \blacksquare first burn **shifts apogee** from distance r_1 to r_2
- On resulting elliptical orbit perform second burn at apogee to transition to circular orbit with radius r_2

Assuming instantaneous impulses, we have

$$\Delta \mathbf{v}_1 = \sqrt{\frac{\mathbf{G} \mathbf{m}_{\bullet}}{\mathbf{r}_1}} \left(\sqrt{\frac{2\mathbf{r}_2}{\mathbf{r}_1 + \mathbf{r}_2}} - 1 \right)$$

and

$$\Delta \mathbf{v}_2 = \sqrt{\frac{\mathbf{G} \mathbf{m}_{\bullet}}{\mathbf{r}_2}} \left(1 - \sqrt{\frac{2\mathbf{r}_1}{\mathbf{r}_1 + \mathbf{r}_2}} \right)$$

Hohmann Transfer on STK

Use Astrogator in STK to create:

6,371 + 307 km

- A new satellite with Astrogator as propagator
- Set initial state in **Earth Inertial Cartesian Coordinates** (r_1 =6678 km, 0, 0)
- Propagate until apogee (apoapsis) and perform Hohmann to $r_2=42164~\mathrm{km}$
- $\Delta v_1 = ?$
- $\Delta v_2 = ?$
- show in STK (Stk_Initial_Velocity.vdf)

Hohmann Transfer on STK

Use Astrogator in STK to create:

6,371 + 307 km

- A new satellite with Astrogator as propagator
- Set initial state in **Earth Inertial Cartesian Coordinates** (r_1 =6678 km, 0, 0)
- Propagate until apogee (apoapsis) and perform Hofmann to $r_2=42164~\mathrm{km}$

■ → show in STK (Stk_Initial_Velocity.vdf)

GEO Satellite Launch Sequence A

- The satellite heading for a geostationary orbit is first placed in an elliptical transfer orbit
- Perigee at an altitude between 200 km and 300 km and its apogee at the geostationary altitude
- An apogee maneuver circularizes the orbit at the geostationary altitude

GEO Satellite Launch Sequence B

- The satellite heading for a geostationary orbit is first placed in a circular low-Earth orbit
- The low Earth circular orbit is transformed into an elliptical transfer orbit with a perigee maneuver
- An apogee maneuver circularizes the orbit at the geostationary altitude

Launch From Kourou (French Guyana) - Type A

I : Injection into Transfer orbit II : Satellite orbits in transfer orbit several times

III : Acquiring circular orbit with an altitude of approx. 36,000 km and inclination of 7° (Drift orbit)

IV : Attaining equatorial plane orbit

Launch From Cape Canaveral (USA) - Type B Equatorial plane Ш Apogee Transfer orbit Orbit in equatorial Parking Perigee plane orbit IV Drift orbit 28.5° : Injection into low Earth orbit (Parking orbit) II : Acquiring Transfer orbit III : Acquiring circular orbit with an altitude of approx. 36,000 km and inclination of 28.5° (Drift orbit) IV : Attaining equatorial plane orbit

Launch From Baikonur (Kazakhstan) - Type B

Sea Launch

Energia announced it was selling Sea Launch to the S7 Group, a Russian company whose holdings include an airline.

Liftoff of the Long March 11 from a mobile platform in the Yellow Sea, June 5, 2019. Credit: China Academy of Launch Vehicle Technology (CALT).

Launchers From Kourou: Ariane-5

- Launch mass: 750–780 tons
- Height: 47–57 m
- Capacity to GTO: 6.9–10 tons
- Capacity to LEO: 16–21 tons
- Stages: 2
- Launches: 117
- Successes: 112

https://en.wikipedia.org/wiki/Ariane_5

Launchers From USA: Delta-IV Heavy

- Launch mass: 249.5–733.4 tons
- Height: 63–72 m
- Capacity to GTO: 3.9–12.98 tons
- Capacity to LEO: 8.6–22.56 tons
- Stages: 2
- Launches: 15
- Successes: 14

https://en.wikipedia.org/wiki/Delta IV Heavy

Launchers From USA: Falcon-9 Heavy

Launch mass: 1.420 T

Height: 70 m

Capacity to GTO: 26.7 tons

Capacity to LEO: 63.8 tons

Stages: 2+

Launches: 7

• Falcon 9: 262

Successes: 7

• Falcon 9: 260

Landings: 221 / 230

https://en.wikipedia.org/wiki/Falcon Heavy

Launchers From Baikonur: Soyuz

Launch mass: 313 tons

• Height: 51 m

Capacity to LEO: 6.9 tons

Stages: 2

Launches: 745

Successes: 724

https://en.wikipedia.org/wiki/Soyuz (rocket family)

Launchers From China: Long March 5

Launch mass: 867 tons

Height: 57 m

Capacity to GTO: 13 tons

Capacity to LEO: 25 tons

Stages: 2

Launches: 9

Successes: 8

https://en.wikipedia.org/wiki/Long_March_(rocket_family) - https://en.wikipedia.org/wiki/Long_March_5

Launchers From New Zealand: Electron

Launch mass: 12 tons

• Height: 17 m

Capacity to LEO: 150 kg

Failure

Partial failure

Stages: 2

Launches: 40

Successes: 36

Success

Scheduled

Launch by Country in 2020

Country +	Launches *	Successes +	Failures +	Partial failures	Remarks +
United States	44	40	4	0	Includes seven Electron launches from Mahia
China	39	35	4	0	
Russia	17	17	0	0	Includes two Soyuz launches from Kourou
Europe	5	4	1	0	
Japan	4	4	0	0	
India	2	2	0	0	
== Iran	2	1	1	0	
srael	1	1	0	0	
World	114	104	10	0	

Launch by Country in 2021

Country +	Launches -	Successes +	Failures +	Partial failures +	Remarks +
** China	56	53	3	0	Includes one unannounced orbital test flight
United States	51	48	3	0	Includes Electron launches from Mahia
Russia	25	24	0	1	Includes European Soyuz launches from Kourou, French Guiana by Arianespace
Europe	6	6	0	0	
Japan	3	3	0	0	
India	2	1	1	0	
== Iran	2	0	2	0	
South Korea	1	0	1	0	[42]
World	146	135	10	1	

Launch by Country in 2022

Country +	Launches -	Successes +	Failures +	Partial †	Remarks \$
United States	87	84	2	1	Includes Electron launches from Mahia
China	64	62	2	0	
Russia	22	22	0	0	Includes Soyuz launches from Kourou and Baikonur
Europe	5	4	1	0	
India	5	4	1	0	
== Iran	1	1	0	0	
Japan	1	0	1	0	
South Korea	1	1	0	0	
World	186	178	7	1	

China

China Interplanetary Space Plan

Chang'e 3 prove in the moon seen by rover Yutu

Quequiao relay satellite in lagrange point for chang'e 4 & 5

Return moon sample

Mars 2020 rover

图 7 两种不同推进系统的上升器外形

Mars 2030 return samples

