T320 - Introdução ao Aprendizado de Máquina II: *Classificação (Parte I)*

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

A disciplina

- Continuação de **T319 Introdução ao Aprendizado de Máquina I**.
- *Curso introdutório* onde veremos os conceitos básicos de funcionamento dos seguintes algoritmos de *machine learning* (ML):
 - Classificadores
 - Regressão Logística
 - Regressão Softmax
 - Redes Neurais
 - Clustering
 - k-Means
- O curso terá sempre uma parte expositiva e outra prática para fixação dos conceitos introduzidos.
 - Quizzes e exercícios envolvendo o uso dos algoritmos discutidos.

Objetivo do curso

- O objetivo principal do curso é apresentar
 - os conceitos fundamentais da teoria do aprendizado de máquina.
 - um conjunto de ferramentas (ou seja, algoritmos) de aprendizado de máquina para solução de problemas.
- Ao final do curso vocês devem ser capazes de
 - Entender e discutir sobre os principais algoritmos de ML.
 - Compreender a terminologia utilizada na área.
 - Aplicar algoritmos de ML para a resolução de problemas.
 - Analisar e entender novos algoritmos de ML.
 - Criar projetos que envolvam ML.

Critérios de Avaliação

- 2 trabalhos em grupo com peso de 85% cada.
 - Envolvendo questões teóricas e/ou práticas.
 - Uma parte de cada trabalho será feita presencialmente.
- 2 conjuntos de exercícios (quizzes e laboratórios) com peso de 15% cada.
 - Podem sempre ser entregues até a próxima aula.
 - Podem ser resolvidos em grupo, mas entregas devem ser individuais.
 - Exercícios serão atribuídos através de tarefas do MS Teams.

Frequência

- Gerada automaticamente pelo Teams.
- Por favor, acompanhem a frequência no portal.

Cronograma

Aula	Data	Dia	Horário	Atividade
1	11/2/2023		08:00 às 09:40	Introdução ao Aprendizado de Máquina
2	18/2/2023			Introdução ao Aprendizado de Máquina
3	25/2/2023			Introdução ao Aprendizado de Máquina
4	4/3/2023			Introdução ao Aprendizado de Máquina
5	11/3/2023			Introdução ao Aprendizado de Máquina
6	18/3/2023			Introdução ao Aprendizado de Máquina
7	25/3/2023			Introdução ao Aprendizado de Máquina
8	1/4/2023			Avaliação Presencial I (Projeto I – Parte I)
9	8/4/2023			Introdução ao Aprendizado de Máquina
10	15/4/2023	Sábado		Introdução ao Aprendizado de Máquina
11	22/4/2023	Sabauu		Introdução ao Aprendizado de Máquina
12	29/4/2023			Introdução ao Aprendizado de Máquina
13	6/5/2023			Introdução ao Aprendizado de Máquina
14	13/5/2023			Introdução ao Aprendizado de Máquina
15	20/5/2023			Introdução ao Aprendizado de Máquina
16	27/5/2023			Avaliação Presencial II (Projeto II – Parte I)
17	3/6/2023			Introdução ao Aprendizado de Máquina
18	10/6/2023			Introdução ao Aprendizado de Máquina
19	17/6/2023			Introdução ao Aprendizado de Máquina
20	24/6/2023			Introdução ao Aprendizado de Máquina

Referências

- [1] Stuart Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach," Prentice Hall Series in Artificial Intelligence, 3rd ed., 2015.
- [2] Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems", 1st ed., O'Reilly Media, 2017.
- [3] Joseph Misiti, "Awesome Machine-Learning," on-line data base with several free and/or open-source books (https://github.com/josephmisiti/awesome-machine-learning).
- [4] Andriy Burkov, "The Hundred-Page Machine-Learning Book," Andriy Burkov 2019.
- [5] C. M. Bishop, "Pattern Recognition and Machine Learning," Springer, 1st ed., 2006.
- [6] S. Haykin, "Neural Networks and Learning Machines," Prentice Hall, 3ª ed., 2008.
- [7] Coleção de livros:

https://drive.google.com/drive/folders/1lyIIMu1w6POBhrVnw11yqXXy6BjC439j?usp=sharing

Avisos

- Entregas de exercícios (laboratórios e quizzes) devem ser feitas no MS Teams.
 - Se atentem às datas e horários de entrega.
- Todo material do curso será disponibilizado no MS Teams e no GitHub:
 - https://github.com/zz4fap/t320 aprendizado de maquina
- Horários de Atendimento
 - Professor: quintas-feiras das 17:30 às 19:30 (provisório).
 - Monitor (Maycol teles: <u>maycol.teles@ges.inatel.br</u>): quartas-feiras das 18:30 às 19:30.
 - Atendimento remoto via MS Teams.

Classificação

- Tarefa (ou problema) de aprendizado supervisionado.
 - As saídas esperadas são conhecidas.
- Envolve encontrar uma função, f(x), que mapeie os atributos de entrada em *valores discretos*, ou seja, em classes.

Classification

f(x) **separa** os dados.

Motivação para tarefas de classificação

- Classificação de emails entre SPAM e HAM (legítimo).
- Classificação de objetos.
- Detecção ou classificação de símbolos.
- Classificação de modulações (QPSK, AM, FM, etc.).

Motivação para tarefas de classificação

- Reconhecimento de texto escrito à mão.
- Classificação de texto.
- Classificação de sentimentos.

Definição do problema de classificação

- **Problema**: encontrar uma função f(x) que atribua a cada **exemplo de entrada**, x, uma das Q classes possíveis, C_q , $q=1,\ldots,Q$ e a qual o exemplo pertence.
 - Por exemplo, as classes podem ser
 - Spam e ham (legítimo).
 - o Dígitos de 0 a 9.
 - Símbolos de uma modulação específica.
 - Objetos (carros, barcos, cães, gatos, etc.)
- Semelhante ao problema da *regressão linear*, existe um conjunto de treinamento com N pares de *vetores de atributos* e *rótulos* $\{x(i); y(i)\}_{i=0}^{N-1}$ que é utilizado para treinar um *classificador*, onde
 - $x(i) = [x_1(i) \cdots x_K(i)]^T \in \mathbb{R}^{K \times 1}$ representa o *i*-ésimo vetor de atributos, o qual é composto por K atributos, $x_1(i), \dots, x_K(i)$
 - e y(i) representa o *i*-ésimo *rótulo*.
- Portanto, como vocês já devem ter percebido, classificadores são algoritmos de treinamento supervisionado.

Representação da saída desejada

- A *saída desejada* de um classificador para um *vetor de atributos*, x(i) deve ser um valor que identifique a *classe* à qual x(i) pertence.
- Sendo assim, a saída $\hat{y}(i)$ de um *classificador*, é uma variável *categórica* (ou seja, *discreta*).
- Portanto, para realizarmos o treinamento do *modelo de classificação*, devemos escolher uma *representação numérica* para a *saída*, *y*.
- Assim, como veremos a seguir, duas opções podem ser adotadas, dependendo se a classificação é binária ou multi-classes.

Representação da saída desejada

- Classificação binária: existem apenas duas classes possíveis, C_1 e C_2 , onde C_1 é chamada de classe negativa e C_2 a classe positiva.
- Portanto, nesse caso, podemos utilizar *uma única saída escalar binária* para indicar a *classe* correspondente ao *vetor de atributos de entrada*:

$$y(i) = \begin{cases} 0, & x(i) \in C_1 \\ 1, & x(i) \in C_2 \end{cases}.$$

- Assim, $y(i) \in \mathbb{R}^1$, de maneira que o classificador realiza um mapeamento $\mathbb{R}^{K \times 1} \to \mathbb{R}^1$, ou seja, y = f(x), onde $x \in \mathbb{R}^{K \times 1}$ e $y \in \mathbb{R}^1$.
- Também é possível utilizar y(i) = -1 para $x(i) \in C_1$, ou seja

$$y(i) = \begin{cases} -1, & x(i) \in C_1 \\ 1, & x(i) \in C_2 \end{cases}.$$

Representação da saída desejada

- Classificação multi-classes: existem mais de 2 classes possíveis (Q > 2).
 - Geralmente, nesse caso, o classificador terá Q saídas.
 - Uma estratégia bastante utilizada para representar estas classes é conhecida como codificação one-hot.
- Codificação one-hot: utiliza uma representação vetorial binária para as saídas.
 - Ou seja, as saídas são vetores com o valor 1 no elemento representando a classe do exemplo de entrada e 0 nos demais elementos.
 - Nesse caso, o classificador possui múltiplas saídas, cada uma representando uma classe específica.
 - **Exemplo**: imaginemos um classificador de notícias com quatro classes possíveis: *esportes*, *política*, *ciências* e *variedades*. Como seria a representação com codificação *one-hot*?

```
esportes: \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^T política: \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}^T Assim, \mathbf{y}(i) \in \mathbb{R}^{Q \times 1}, de maneira ciências: \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}^T que o classificador realiza um mapeamento \mathbb{R}^{K \times 1} \to \mathbb{R}^{Q \times 1}.
```

Fronteiras de decisão de um classificador

- Antes, usávamos funções hipótese para aproximar um modelo gerador, agora, as usaremos para separar classes.
- Para facilitar o entendimento, vamos imaginar o *espaço* bi-dimensional, \mathbb{R}^2 , criado pelos atributos x_1 e x_2 .
- Esse espaço pode ser dividido em *regiões de decisão*, $R_i, i=1,\dots,Q$, onde cada *região* corresponde a uma classe.
- As regiões de decisão são separadas por fronteiras de decisão.
- Uma fronteira de decisão corresponde a uma superfície (também chamada de superfície de separação) no espaço de atributos que separe as classes de forma ótima.

Fronteira de decisão

Fronteiras de decisão de um classificador

- As *superfícies de decisão* podem ser *lineares* (e.g., retas e planos) ou *não-lineares* (e.g., círculos).
- As *superfícies de decisão* são definidas por *funções* (lineares ou não) que separam as classes.
- Essas funções são normalmente chamadas de *funções discriminantes*, pois separam as classes.
- As figuras mostram regiões de decisão em problemas de classificação binária e multi-classes.

Funções discriminantes lineares

 Em geral, uma função discriminante linear pode ser escrita da seguinte forma

$$g(\mathbf{x}) = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_K x_K = \mathbf{a}^T \mathbf{x},$$

que nada mais é do que uma *combinação linear dos pesos*, assim como nós vimos em regressão linear.

- g(x) também pode ser vista como um *hiperplano* que separa as classes. Um *hiperplano* pode ser 1 ponto em 1D, uma reta em 2D, um plano em 3D, etc.
 - O coeficiente a_0 (**bias**) dá o deslocamento com relação à origem.
 - E o restante dos pesos determina a orientação do *hiperplano*.
- A ideia aqui é encontrar os pesos da função discriminante de tal forma que

$$C_q = \begin{cases} 1, & g(x) < 0 \\ 2, & g(x) > 0 \\ \text{uma ou outra,} & g(x) = 0 \longrightarrow \text{Indeterminação: empate entre as classes.} \end{cases}$$

• OBS.: Como vimos anteriormente, podemos ter também *funções* discriminates não-lineares em relação aos atributos, e.g., $g(x) = a_0 + x_1^2 + x_2^2$ (eq. de um círculo centrado na origem, onde $a_0 = -r^2$).

 $g(\mathbf{x}) = 0$

Exemplo: Encontrando os pesos da função discriminante, g(x)

- Analisem a figura.
- Temos 2 classes, 2 atributos, x_1 e x_2 , e queremos encontrar uma **função discriminate**, g(x), que as separe.
- Qual formato deve ter esta função discriminante?
 - O formato mais simples (navalha de Occam) é o de uma reta.

Exemplo: Encontrando os pesos da função discriminante, q(x)

- Visualmente, traçamos uma reta em uma posição que separe as classes da melhor forma possível.
- A *função discriminante* que representa esta reta é definida como $g(\textbf{x}) = a_0 + a_1x_1 + a_2x_2$
- Agora que definimos uma função e sua posição no gráfico, precisamos encontrar os pesos e as regiões de decisão.

Exemplo: Encontrando os pesos da função discriminante, g(x)

- Temos 3 incógnitas e 3 equações:
 - $(x_1 = 0, x_2 = 1) \rightarrow 0 = a_0 + a_2 : a_0 = -a_2$
 - $(x_1 = 1, x_2 = 2) \to 0 = a_0 + a_1 + 2a_2 : a_1 = -(a_0 + 2a_2)$
 - $(x_1 = 2, x_2 = 3) \to 0 = a_0 + 2a_1 + 3a_2 : a_1 = -(a_0 + 3a_2)/2$
- Resolvendo o sistema, encontramos $a_0=1$, $a_1=1$, $a_2=-1$, então
 - $g(x) = 1 + x_1 x_2$

Tarefas

- Quiz: "T320 Quiz Classificação (Parte I)" que se encontra no MS Teams.
- Exercício Prático: Laboratório #1.
 - Pode ser acessado através do link acima (Google Colab) ou no GitHub.
 - Se atentem aos prazos de entrega.
 - Instruções para resolução e entrega dos laboratórios.
 - Laboratórios podem ser resolvidos em grupo, mas as entregas devem ser individuais.

Obrigado!

