Operational Amplifier (Op – Amp)

Component Description

Operational Amplifier (Op – Amp) Pin Diagram & Circuit Symbol of IC 741

(b) The schematic symbol for an op-amp

741 chip (relative size)

(c) The 741 chip packaged in an 8-pin DIP (dual-in-line package)

Operational Amplifier (Op – Amp) Types of Op – Amp Packages of IC 741

Operational Amplifier (Op – Amp) What makes it so useful & versatile?

Operational Amplifier (Op – Amp) Typical Application Areas

- Analog & Digital Communication
- Instrumentation Systems
- Analog Signal Processing
- Analog Computation Systems
- Waveform Synthesizers & Generators
- Signal Conversion Techniques
- Voltage Regulators & Power Supplies
- Timers & Timing Applications

Operational Amplifier (Op – Amp) Circuit Symbol of IC 741C

Concept of Mathematical Models Electrical Equivalent Circuit

A mathematical model is the combination of circuit elements, properly chosen, that best approximates the actual behaviour of a semiconductor device under some certain specific operating conditions.

Remember Thevenin's Theorem?

Operational Amplifier (Op – Amp) Ideal Mathematical Model

Ideal Operational Amplifier Open Loop Transfer Characteristics

Operational Amplifier (Op – Amp) Practical Mathematical Model

Practical Operational Amplifier Open Loop Transfer Characteristics

jayen.modi@frcrce.ac.in

Practical Operational Amplifier Types of 'Working' Configurations

- Open Loop Configuration
 - → Difference Amplifier
 - → Inverting Amplifier
 - → Non Inverting Amplifier

never used in actual practice for linear applications but used as comparator

- Closed Loop Configuration
 - → Wide variety of applications

All are linear applications but with 'reduced' gain

Inverting Amplifier
Non – Inverting Amplifier
Summing Amplifier
Averaging Amplifier
Adder & Subtractor
Integrator & Differentiator

Practical Operational Amplifier Applications in Open Loop Configuration

• Difference Amplifier

- Inverting Amplifier
- Non Inverting Amplifier

never used in actual practice for linear applications but used as comparator

That's because in open loop configuration as gain approaches infinity, a small change in the input voltage (V_{id}) will cause the output of op-amp to go either at $+V_{sat}$ or $-V_{sat}$ making it useless for linear applications

Practical Operational Amplifier Applications in Open Loop Configuration

Practical Operational Amplifier

Applications in Open Loop Configuration

1. The Difference Amplifier

1. The Difference Amplifier

Waveforms

ECCF (CSC 304) by Jayen Modi jayen.modi@frcrce.ac.in

2. The Inverting Amplifier

ECCF (CSC 304) by Jayen Modi jayen.modi@frcrce.ac.in

2. The Inverting Amplifier

3. The Non – Inverting Amplifier

3. The Non – Inverting Amplifier

Open Loop Configuration Input Waveforms & Output Waveforms

WHERE'S THE AMPLIFICATION ???

Practical Operational Amplifier

'Manipulated' Transfer Characteristics

ECCF (CSC 304) by Jayen Modi jayen.modi@frcrce.ac.in

Practical Operational Amplifier Applications in Closed Loop Configuration

Practical Op – Amp Analysis

1. Virtual Short Concept in Op – Amp

Practical Op – Amp Analysis

2. Virtual Ground Concept in Op – Amp

Ideal Operational Amplifier Features of Ideal Operational Amplifier

- Open loop voltage gain is infinite
- Input Impedance is infinite
- Output Impedance is zero
- Bandwidth is infinite
- CMRR is infinite
- Slew Rate is infinite
- Output Offset Voltage is zero
- Input Bias Currents are zero

not possible to achieve in actual practice

Practical Operational Amplifier Features of Practical Operational Amplifier

- Large Open Loop Voltage Gain (2 x 10⁵)
- Very high Input Impedance (2 $M\Omega$)
- Very low Output Impedance (75 Ω)
- Output Offset Voltage of upto ± 15 mV
- High value of CMRR (80 dB 120 dB)
- Small Bandwidth (5 Hz)
- Finite Slew Rate (0.5 V/μs)
- Input Bias Currents of upto 500 nA

features
of

µA 741

D.C. Characteristics of Op – Amp 1. Input Bias Current (I_B)

- The input stage of op amp is differential amplifier made up of either BJT or JFET
- These devices are biased in the active region of their operation by supplying some input current
- Ideally due to the extremely high input resistance of input stages, these currents are almost negligible
- Practically some of input current flows through both the op amp input terminals

These are called as the bias currents $I_{B1} \& I_{B2}$

1. Input Bias Current (I_B)

average of the two currents entering op-amp terminals is called input bias current

$$I_B = \frac{I_B^+ + I_B^-}{2}$$

ECCF (CSC 304) by Jayen Modi $voltage\ V_{out} = V_{oos}\ _{31}$ jayen.modi@frcrce.ac.in

D.C. Characteristics of Op – Amp2. Input Offest Current (I_{ios})

- Bias current compensation will work only if both bias currents are equal $(I_B^+ \& I_B^-)$
- Since input transistors can't be made identical there is some difference in the bias currents
- This small difference called as the input offset current (I_{ios}) & is given by :-

$$|I_{ios}| = I_B^+ - I_B^-$$

D.C. Characteristics of Op – Amp 3. Input Offset Voltage (V_{ios})

- Shorting together the input terminals of the op amp gives output voltage as V_{out} = 0 since V_1 = V_2 = 0
- Due to the mismatches between the two transistors of input stage of differential amplifier, $V_{out} \neq 0$
- To force the output voltage (V_{out}) to become zero, we need to apply some input voltage to the op amp
- This is called as the input offset voltage (V_{ios}) defined as amount to null the output voltage

 V_{ios} is used for forcing to make $V_{out} = 0$

3. Input Offset Voltage (V_{ios})

3. Input Offset Voltage (Vios)

3. Input Offset Voltage (V_{ios})

due to unequal bias currents as $I_{B1} \neq I_{B2}$ there exists voltages hence potential difference between $V_1 \& V_2$

3. Input Offset Voltage (V_{ios})

$$V_{out} = V_{oos} = \left(1 + \frac{R_2}{R_1}\right)V_{ios}$$
 measuring the V_{oos} helps to calculate the input offset V_{ios}

D.C. Characteristics of Op – Amp 4. Output Offset Voltage (V_{00S})

- Output offset voltage is the voltage at output terminal of the op – amp without any input applied to it
- Output offset voltage results due to the effect of input bias current current (I_{B2}) which can be minimized
- By compensating resistor (R_{comp}) it can be minimized but effect remains due to input offset current (I_{ios})
- It is due to the input offset voltage (V_{ios}) resulting at the op-amp input terminals without any input

$$V_{oos} = f(I_{B2}, I_{ios} & V_{ios})$$

Input Offset Voltage Compensation (a) Op – Amp with offset null terminals

- Many op-amps, including the IC 741C have a pair of external offset null pins as shown in the figure
- 10 k Ω potentiometer is connected between the offset null pins 1 & 5 with wiper connected to V_{EE}
- The potentiometer is gradually adjusted around the voltage of V_{EE} for zero output voltage (minimum)
- This procedure has to be repeated many times using an op-amp for practical applications

Refer class note book for circuit diagram

Input Offset Voltage Compensation

(a) Op – Amp with offset null terminals

ECCF (CSC 304) by Jayen Modi jayen.modi@frcrce.ac.in

Op – Amp Transient Analysis (b) Slew Rate (SR) Characteristics

- Slew Rate (SR) is defined as maximum rate of change of op amp output voltage with time
- Higher the value of the slew rate, better is the op amp since V_{out} can change as fast as V_{in}

$$SR = \frac{dV_{out}}{dt} \Big|_{max}$$

Slew Rate (SR) Characteristics Circuit Diagram of Unity Gain Amplifier

Slew Rate (SR) Characteristics Mathematical Analysis & Derivations

Given
$$V_{in}(t) = V_m \sin \omega_m t$$
 | since op – amp configured hence $V_{out}(t) = V_m \sin \omega_m t$ | as voltage follower (buffer)

Differentiate $V_{out}(t)$ with respect to time :-

$$\frac{dV_{out}}{dt} = V_m \cdot \omega_m \cdot \cos \omega_m t$$

$$now maximize dV_{out} / dt by$$

$$putting term \cos \omega_m t = 1$$

$$\frac{dV_{out}}{dt} \bigg|_{max} = V_m \cdot \omega_m \longrightarrow SR = \frac{dV_{out}}{dt} \bigg|_{max}$$

hence
$$SR = V_m \cdot 2\pi f_m$$
 where $\omega_m = 2\pi f_m$

Slew Rate (SR) Characteristics Limits on Voltage (V_m) & Frequency (f_m)

Slew Rate (SR) =
$$2 \pi f_m V_m$$

please refer your class notebook for equation

$$f_m (max) = \frac{SR}{2 \pi V_m}$$

$$V_m(max) = \frac{SR}{2 \pi f_m}$$

maximum values of the amplitude & frequency for the given slew rate