## Data Mining and Machine Learning

F21DL: Coursework 1

 $\begin{array}{c} {\rm Andrew\ Beveridge} \\ {\rm H00013703} \end{array}$ 

#### How I Did It and What Tools I Used

I wrote one PHP script, running on my webserver. I read the data directly into arrays using loops and regular expressions, built-in functions like "getcsv", and performed z-normalization using your awk script from within PHP. For my histograms I used the pChart library. URLs below may be of interest.

PHP Source Code: <a href="http://j.mp/dmml1-source">http://j.mp/dmml1-source</a>
Histograms generator: <a href="http://j.mp/dmml1-hist">http://j.mp/dmml1-hist</a>

### 1-Nearest-Neighbour Classification

| Data Set             | Correct     | Accuracy   | Run Time | Link    |
|----------------------|-------------|------------|----------|---------|
| Communities          | 1688 / 1994 | 84.65396 % | 472 sec  | <u></u> |
| - Z-Normalized       | 1692 / 1994 | 84.85456 % | 517 sec  | <u></u> |
| Pima                 | 522 / 768   | 67.96875 % | 6.7 sec  | <u></u> |
| - Max-Min Normalized | 542 / 768   | 70.57291 % | 5.8 sec  | <u></u> |
| Yeast                | 1036 / 1484 | 69.81132 % | 24 sec   | <u></u> |
| - Max-Min Normalized | 1045 / 1484 | 70.41778 % | 21 sec   | <u></u> |

The performance of 1-Nearest-Neighbour Classification on the original Communities data set is very similar to the performance on the z-normalized version, because the original data is normalized already.

For the most part the same can be said about the Yeast data set - the original data is not completely normalized, but as all the values are within a similar range between 0 and 1, nearest neighbour does a pretty good job already without additional normalization, hence there only being a 0.6% difference in performance.

The larger gap in performance between original and normalized data from the Pima data set is caused by the wide variance between fields in the original data - one field having a value in the hundreds could cause the distance formula to be biased towards that field, giving an unhelpful nearest neighbour for classification. As such, performing simple min-max normalization on the data allows better classification.

### Communities and Crime Data Set Histograms

Field 1:

Field 2:





Field 3:

Field 4:





Field 5:



#### Notes

Most of the data in field 1 is in the first bucket, and there isn't a large difference between the two classes in that bucket. However, as class 0 seems to have no values at all in bucket 3, 4, or 5, yet class 1 does, it could still be useful in classification.

Field 2 has a fairly normal distribution for both classes, and is not very helpful.

Field 3 and 4 have fairly even distribution for class 1, and wide variance in values for class 0 - as such I feel these two fields are the most important for classification.

Field 5 has most data in bucket 1, with little class variance, so is not helpful.

## Pima Indians Diabetes Data Set Histograms

Field 1:

Field 2:





Field 3:

Field 4:





Field 5:



#### Notes

**Field 1** has a higher frequency of class 0 in bucket 1 then class 1, and more than double the frequency of class 1 than class 0 in bucket 3. Bucket 4 has no class 0 data at all, and some class 1, making field 1 quite useful in classification.

**Field 2** has a much larger frequency of class 0 in bucket 3, and almost 10 times the frequency of class 1 than 0 in bucket 5, with notable differences in bucket 2 and 4 also, therefore field 2 is also very useful in classification.

Field 3 has more class 0 in bucket 3 and more class 1 in bucket 4, so is somewhat useful but not substantially. Fields 4 and 5 have fairly similar frequencies for both classes, so are not particularly useful.

### Yeast Data Set Histograms

Field 1:

Field 2:





Field 3:

Field 4:





Field 5:



#### Notes

Field 1 has most data in buckets 2 and 3, with small differences in frequency; bucket 3 has a little more CYT, bucket 4 has about twice as much OTHER as CYT and bucket 5 has no CYT at all and some OTHER - as such, field 1 may be somewhat helpful in classification.

Field 2 has a big difference in bucket 4, which has far more OTHER, and bucket 2 which has about  $1/3^{rd}$  more CYT.

Field 3 has entirely OTHER in bucket 1, and entirely CYT in bucket 4, making it useful in classification.

Field 4 has more CYT in bucket 1 but is mostly fairly similar between classes. Field 5 is identical for both classes, therefore useless.

I would suggest Field 2 and Field 3 as the most useful fields for classification.

# 1-Nearest-Neighbour With Reduced Data Sets

| Data Set             | Correct     | Accuracy   | Run Time    | Link    |
|----------------------|-------------|------------|-------------|---------|
| Communities          | 1550 / 1994 | 77.73319 % | 14.7 sec    | <u></u> |
| - Z-Normalized       | 1547 / 1994 | 77.58274 % | 14.9 sec    | <u></u> |
| Pima                 | 498 / 768   | 64.84375 % | 1.9 sec     | <u></u> |
| - Max-Min Normalized | 491 / 768   | 63.93229~% | 1.8 sec     | <u></u> |
| Yeast                | 943 / 1484  | 63.54447~% | 7.5 sec     | <u></u> |
| - Max-Min Normalized | 945 / 1484  | 63.67924 % | $6.6  \sec$ | <u></u> |