Contents

L	Bina	rry Phase-Shift Keying (BPSK)
	1.1	Overview
	1.2	Mathematical Description
		1.2.1 Time-Domain Signal
	1.3	IQ Representation
		1.3.1 Constellation Diagram
	1.4	Modulation and Demodulation
		1.4.1 Transmitter (Modulator)
		1.4.2 Receiver (Coherent Detector)
	1.5	Carrier Recovery
		1.5.1 Problem: Phase Ambiguity
		1.5.2 Carrier Recovery Techniques
		1.5.3 Differential BPSK (DBPSK)
	1.6	Bit Error Rate (BER) Performance
		1.6.1 Coherent BPSK in AWGN Channel
		1.6.2 Comparison: BPSK vs OOK
		1.6.3 Differential BPSK Performance 6
	1.7	Bandwidth Efficiency
	1.8	Practical Implementations
		1.8.1 IEEE 802.15.4 (Zigbee)
		1.8.2 Satellite Telemetry
		1.8.3 RFID Backscatter
	1.9	Advantages and Disadvantages
	1.10	Transition to Higher-Order Modulation
	1.11	Worked Example: Satellite Link Budget
	1.12	Summary
	1.13	Further Reading

Chapter 1

Binary Phase-Shift Keying (BPSK)

FOR NON-TECHNICAL READERS

BPSK is like Morse code with a twist—instead of turning a signal on and off, you flip the wave upside-down to send 1s and 0s.

Simple idea:

- Bit 0 = wave pointing "up" ↑
- Bit 1 = wave pointing "down" \downarrow (flipped 180°)

Real use: GPS satellites use BPSK. Your phone detects whether the signal is normal or flipped.

Why flip instead of on/off? More reliable in noise, works with constant power, less interference. Trade-off: Simple but slow (1 bit per symbol).

1.1 Overview

Binary Phase-Shift Keying (BPSK) is the simplest form of phase modulation, where binary data is encoded by shifting the carrier phase between two states: 0° and 180° .

KEY CONCEPT

BPSK provides **3 dB better performance** than On-Off Keying (OOK) at the same signal-to-noise ratio, making it the optimal choice for power-limited channels such as satellite and deep-space communications.

BPSK forms the foundation for higher-order phase shift keying schemes including QPSK (4 phases), 8PSK (8 phases), and beyond.

1.2 Mathematical Description

1.2.1 Time-Domain Signal

The BPSK waveform is expressed as:

$$s(t) = A\cos(2\pi f_c t + \phi_n) \tag{1.1}$$

where:

- A = carrier amplitude
- f_c = carrier frequency (Hz)
- $\phi_n \in \{0^\circ, 180^\circ\}$ = phase for bit n

Phase encoding:

$$\phi_n = \begin{cases} 0^{\circ} & \text{if bit = 0} \\ 180^{\circ} & \text{if bit = 1} \end{cases}$$
 (1.2)

Alternative representation using the cosine identity $\cos(\theta + 180^{\circ}) = -\cos(\theta)$:

$$s(t) = A \cdot d_n \cdot \cos(2\pi f_c t) \tag{1.3}$$

where $d_n \in \{+1, -1\}$ is the bipolar data symbol:

- Bit $0 \rightarrow d_n = +1 \rightarrow 0^{\circ}$ phase
- Bit $1 \rightarrow d_n = -1 \rightarrow 180^{\circ}$ phase (inverted carrier)

Physical Interpretation

BPSK is effectively **amplitude modulation with bipolar data**. The carrier polarity flips between positive and negative, which is equivalent to a 180° phase shift. This representation simplifies both mathematical analysis and hardware implementation.

1.3 IQ Representation

The baseband complex representation of BPSK is:

$$s(t) = \operatorname{Re}\{A \cdot d_n \cdot e^{j2\pi f_c t}\}$$
(1.4)

IQ components:

- I (In-phase): $I_n = A \cdot d_n$ (either +A or -A)
- **Q (Quadrature):** $Q_n = 0$ (BPSK uses only the I axis)

1.3.1 Constellation Diagram

The BPSK constellation consists of two points on the real axis separated by maximum distance d=2A:

This maximum Euclidean separation between symbols provides optimal noise immunity for binary modulation schemes.

1.4 Modulation and Demodulation

1.4.1 Transmitter (Modulator)

The BPSK modulator consists of three stages:

Process:

- 1. NRZ encoding: Map bits to bipolar symbols
 - Bit $0 \to d_n = +1$
 - Bit $1 \rightarrow d_n = -1$
- 2. Multiply by carrier: $s(t) = A \cdot d_n \cdot \cos(2\pi f_c t)$
- 3. Pulse shaping: Apply raised-cosine filter to:
 - · Limit occupied bandwidth
 - Prevent intersymbol interference (ISI)
 - Meet spectral mask requirements

1.4.2 Receiver (Coherent Detector)

Local Oscillator;

[->,thick] (input) - (mult); [->,thick] (lo) - (mult); [->,thick] (mult) - (lpf); [->,thick] (lpf) - (sample); [->,thick] (sample) - (thresh); [->,thick] (thresh) - (output);

CRITICAL REQUIREMENT

Phase synchronization is critical. The local oscillator must be exactly in phase with the transmitter carrier. A phase offset ϕ_e reduces detected signal by $\cos(\phi_e)$. At $\phi_e = 90^\circ$, complete signal loss occurs.

Detection process:

1. **Multiply by local carrier** (frequency f_c , phase $\phi = 0$):

$$r(t) = s(t) \cdot 2\cos(2\pi f_c t) = 2Ad_n \cos^2(2\pi f_c t)$$
 (1.5)

2. Apply trigonometric identity $\cos^2(x) = \frac{1}{2}[1 + \cos(2x)]$:

$$r(t) = Ad_n[1 + \cos(4\pi f_c t)] \tag{1.6}$$

3. Lowpass filter removes $2f_c$ component, leaving baseband:

$$y(t) = Ad_n (1.7)$$

4. Sample at bit period T_b : $y_n = Ad_n + n(t)$ where n(t) is AWGN

5. Threshold decision:

$$\hat{d}_n = \begin{cases} +1 & \text{if } y_n > 0 \quad \text{(decode as bit 0)} \\ -1 & \text{if } y_n < 0 \quad \text{(decode as bit 1)} \end{cases}$$
 (1.8)

1.5 Carrier Recovery

The receiver must generate a local oscillator **exactly in phase** with the transmitter carrier. This is the primary challenge in coherent BPSK detection.

1.5.1 Problem: Phase Ambiguity

A phase offset ϕ_e between transmitter and receiver carriers causes:

$$y(t) = Ad_n \cos(\phi_e) + n(t) \tag{1.9}$$

Effects:

- $\phi_e = 0^\circ$: Full signal strength (optimal)
- $\phi_e = 45^\circ$: Signal reduced by 3 dB
- $\phi_e = 90^\circ$: Complete signal loss
- $\phi_e = 180^\circ$: Inverted data (all bits flipped)

1.5.2 Carrier Recovery Techniques

1. Pilot Tone

- ✓ Simple implementation
- ✓ Accurate phase reference
- × Wastes power (typically 10–20% of total)
- × Reduces data throughput

2. Costas Loop

PLL-based carrier recovery using I/Q demodulation:

- ✓ No pilot tone required
- ✓ Optimal for BPSK and QPSK
- × Complex analog circuitry
- × Acquisition time required

3. Squaring Loop

Exploits $d_n^2 = 1$ to remove data modulation:

$$[d_n \cos(2\pi f_c t)]^2 = \frac{1}{2} [1 + \cos(4\pi f_c t)]$$
(1.10)

PLL locks to $2f_c$, then divides by 2 to recover f_c .

- ✓ Completely removes data modulation
- ✓ Robust in low SNR
- × 180° phase ambiguity (requires differential encoding)

Differential BPSK (DBPSK) 1.5.3

Principle: Encode data in **phase transitions**, not absolute phase.

Encoding rule:

$$\phi_n = \phi_{n-1} + \Delta \phi_n \quad \text{where} \quad \Delta \phi_n = \begin{cases} 0^{\circ} & \text{if bit = 0} \\ 180^{\circ} & \text{if bit = 1} \end{cases}$$
 (1.11)

Decoding: Compare consecutive symbols:

$$\hat{b}_n = \begin{cases} 0 & \text{if } \operatorname{sgn}(y_n) = \operatorname{sgn}(y_{n-1}) \\ 1 & \text{if } \operatorname{sgn}(y_n) \neq \operatorname{sgn}(y_{n-1}) \end{cases}$$
(1.12)

Trade-off:

- √ No carrier recovery needed
- ✓ Simpler receiver
- × Approximately 3 dB performance penalty
- × Error propagation (single error affects two bits)

Bit Error Rate (BER) Performance 1.6

1.6.1 Coherent BPSK in AWGN Channel

For ideal coherent detection with perfect synchronization:

BER =
$$Q\left(\sqrt{\frac{2E_b}{N_0}}\right) = \frac{1}{2}\operatorname{erfc}\left(\sqrt{\frac{E_b}{N_0}}\right)$$
 (1.13)

where:

- $E_b=\frac{A^2T_b}{2}$ = energy per bit (joules) N_0 = noise power spectral density (W/Hz) $Q(x)=\frac{1}{\sqrt{2\pi}}\int_x^\infty e^{-t^2/2}\,dt$ (Gaussian Q-function)

Performance benchmarks:

$\overline{E_b/N_0 \text{ (dB)}}$	BER	Practical Meaning
0 dB	7.9×10^{-2}	1 error in 13 bits
5 dB	9.7×10^{-4}	1 error in 1,000 bits
10 dB	3.9×10^{-6}	1 error in 250,000 bits
15 dB	6.9×10^{-10}	1 error in 1.4 billion bits

1.6.2 Comparison: BPSK vs OOK

At the same $E_b/N_0 = 10$ dB:

Modulation Scheme	BER	Performance Ratio
OOK (non-coherent) BPSK (coherent)	4.0×10^{-3} 3.9×10^{-6}	Baseline 1000× better

KEY CONCEPT

Why is BPSK 3 dB better than OOK?

- 1. **Full signal space utilization:** BPSK uses $\pm A$ (both polarities), while OOK uses $\{0, A\}$ (one polarity). This doubles the Euclidean distance between symbols.
- 2. **Coherent detection:** Correlating with a known carrier phase is the optimal detection strategy (maximum likelihood).
- 3. Constant envelope: Energy is transmitted continuously, not just during "on" bits.

1.6.3 Differential BPSK Performance

DBPSK trades synchronization complexity for performance:

$$BER_{DBPSK} \approx \frac{1}{2}e^{-E_b/N_0} \tag{1.14}$$

At $E_b/N_0=10$ dB: BER $\approx 5\times 10^{-6}$ (approximately 1.3 dB penalty versus coherent BPSK).

1.7 Bandwidth Efficiency

The occupied bandwidth (99% power) for rectangular pulses is:

$$B \approx \frac{1}{T_b} = R_b \tag{1.15}$$

where R_b is the bit rate (bps) and T_b is the bit period (seconds).

With **raised-cosine pulse shaping** (roll-off factor α):

$$B = R_b(1+\alpha) \tag{1.16}$$

Typical value: $\alpha = 0.35$ gives $B = 1.35R_b$

Spectral efficiency:

$$\eta = \frac{R_b}{B} = \frac{1}{1+\alpha} \approx 0.74 \text{ bps/Hz} \tag{1.17}$$

Example: 1 Mbps BPSK System

• Data rate: $R_b = 1$ Mbps

• Roll-off: $\alpha = 0.35$

• Required bandwidth: $B = 1 \times (1 + 0.35) = 1.35 \text{ MHz}$

• Spectral efficiency: $\eta = 1/1.35 = 0.74$ bps/Hz

1.8 Practical Implementations

1.8.1 IEEE 802.15.4 (Zigbee)

Low-rate wireless personal area networks (868/915 MHz bands):

• **Modulation:** BPSK with Direct-Sequence Spread Spectrum (DSSS)

• Chip rate: 300 kcps (868 MHz), 600 kcps (915 MHz)

• Data rate: 20 kbps (868 MHz), 40 kbps (915 MHz)

• Spreading gain: 15:1 to 20:1 (improves interference rejection)

1.8.2 Satellite Telemetry

Deep-space missions (Voyager, Mars rovers) use BPSK for maximum power efficiency:

• Modulation: BPSK or QPSK

• Coding: Concatenated (Convolutional + Reed-Solomon)

• **Data rate:** 10 bps to 10 kbps (extreme path loss)

• Rationale: Every dB matters at interplanetary distances

Example: Voyager 1 at 24 Billion km

TX power 23 W

TX antenna gain 48 dBi (3.7 m dish)

RX antenna 70 m Deep Space Network dish (74 dBi)

 $\begin{array}{ll} {\rm Free\text{-}space\;path\;loss} & {\rm 310\;dB} \\ {\rm Received\;power} & {\rm -196\;dBm} \end{array}$

Link budget Barely positive with FEC

Achieved BER $\sim 10^{-5}$

1.8.3 RFID Backscatter

Passive RFID tags use backscatter modulation (effectively BPSK):

- Mechanism: Tag switches antenna impedance (reflection vs absorption)
- **Binary encoding:** Reflection = bit 0, absorption = bit 1
- Data rate: 40–640 kbps (EPC Gen2 standard)
- Power source: Harvested from reader's carrier

1.9 Advantages and Disadvantages

Advantages

- 1. **Optimal binary modulation:** Best BER performance for 1 bit/symbol (3 dB better than OOK)
- 2. **Constant envelope:** Compatible with nonlinear amplifiers (no AM-PM distortion)
- 3. **Simple constellation:** Two points simplify visualization and analysis
- 4. Foundation for higher PSK: Concepts extend naturally to QPSK, 8PSK, etc.

Disadvantages

- 1. Carrier synchronization required: Costas loop or squaring loop adds complexity
- 2. **DBPSK penalty:** Avoiding synchronization costs 3 dB in performance
- 3. **Low spectral efficiency:** 1 bit/symbol = maximum 1 bps/Hz
- 4. Outperformed at high SNR: QPSK, 16-QAM more efficient when SNR permits

1.10 Transition to Higher-Order Modulation

BPSK uses only the I-axis (real axis) with two constellation points. **Natural extension:** Utilize **both I and Q axes** to create QPSK:

QPSK = Two independent BPSK channels (I and Q) operating in parallel, doubling spectral efficiency to \sim 2 bps/Hz.

Worked Example: Satellite Link Budget 1.11

Scenario: Geostationary satellite downlink to 1 m ground station

Given Parameters

TX power $P_t = 10 \text{ W} = 40 \text{ dBm}$

TX antenna gain $G_t = 30 \text{ dBi}$

d = 36,000 km (GEO orbit) Distance f = 12 GHz (Ku-band) Frequency $G_r = 40 \text{ dBi (1 m dish)}$ RX antenna gain

System noise temp $T_s = 150 \text{ K}$ B = 1 MHzBandwidth

 10^{-6} Required BER

Step 1: Free-Space Path Loss

$$FSPL [dB] = 20 \log_{10}(d_{km}) + 20 \log_{10}(f_{MHz}) + 32.45$$
(1.18)

$$FSPL = 20\log_{10}(36,000) + 20\log_{10}(12,000) + 32.45 = 205.5 \text{ dB}$$
 (1.19)

Step 2: Received Signal Power

$$P_r = P_t + G_t + G_r - FSPL \tag{1.20}$$

$$P_r = 40 + 30 + 40 - 205.5 = -95.5 \text{ dBm}$$
 (1.21)

1.12. Summary 9

Step 3: Noise Power

$$N = kT_s B = (1.38 \times 10^{-23})(150)(10^6) = 2.07 \times 10^{-15} \,\mathrm{W} \tag{1.22}$$

$$N = 10\log_{10}(2.07 \times 10^{-15}/10^{-3}) = -117 \text{ dBm}$$
 (1.23)

Step 4: Signal-to-Noise Ratio

$$SNR = P_r - N = -95.5 - (-117) = 21.5 \, dB \tag{1.24}$$

Step 5: Energy-per-Bit to Noise Ratio

Assuming data rate $R_b = 500$ kbps:

$$\frac{E_b}{N_0} = \text{SNR} + 10\log_{10}\left(\frac{B}{R_b}\right) \tag{1.25}$$

$$\frac{E_b}{N_0} = 21.5 + 10\log_{10}\left(\frac{1,000,000}{500,000}\right) = 21.5 + 3.0 = 24.5 \text{ dB}$$
 (1.26)

Step 6: Link Margin Calculation

• **Required** E_b/N_0 **for BER** = 10^{-6} **:** 10.5 dB

• Available E_b/N_0 : 24.5 dB

• Link margin: 24.5 - 10.5 = 14.0 dB

Link Budget Summary

Result: Link closes with 14 dB margin

This comfortable margin accommodates:

- Rain fade (\sim 5–8 dB at Ku-band)
- Implementation losses (\sim 2–3 dB)
- Pointing errors (\sim 1–2 dB)
- Aging and component degradation

Conclusion: Link is viable for reliable 500 kbps BPSK transmission.

1.12 Summary

Parameter	Value	
Bits per symbol	1	
Constellation points	2 (0°, 180°)	
Spectral efficiency	\sim 0.7–1.0 bps/Hz	
BER @ 10 dB E_b/N_0	3.9×10^{-6}	
Carrier recovery	Required (Costas/squaring loop)	
Implementation	Moderate complexity	
Best application	Power-limited channels	
Typical uses	Satellite, deep-space, RFID	

1.13 Further Reading

- Chapter 5: On-Off Keying (OOK)—simpler but inferior performance
- Chapter 6: Frequency-Shift Keying (FSK)—alternative binary scheme
- Chapter 7: Quadrature Phase-Shift Keying (QPSK)—2 bits/symbol extension
- Chapter 12: Constellation Diagrams—visualization techniques
- Chapter 13: IQ Representation—complex baseband mathematics
- Chapter 18: Bit Error Rate Analysis—performance measurement
- Chapter 22: Forward Error Correction—coding for BER improvement
- Chapter 25: Carrier Recovery Techniques—synchronization methods