INTRODUÇÃO À INTELIGÊNCIA ARTIFICIAL 22-23

CAP. 2 AGENTES RACIONAIS

Carlos Pereiro

Índice

□ Índice

- □ Conceito de agente
- Agente Racional
- Estrutura Interna de um Agente
- □ Tipos de Agentes
- O Ambiente
- Agentes Aprendizes

Conceito de Agente

- Um Agente é uma entidade que habita um denominado ambiente e é capaz de:
 - Percepcionar
 - Recebe informação do ambiente que a rodeia através de sensores
 - Agir
 - Actuar sobre o ambiente através de actuadores

Conceito de Agente

- П ...
 - Exemplos de Agentes
 - Um ser humano
 - Possui sensores (olhos, ouvidos, ...) e actuadores (braços, pernas, ...)
 - Um robot
 - Possui sensores (câmaras, sensores de infra-vermelhos, de pressão, ...) e actuadores (motores, braços mecânicos, ...)
 - Sistema de pesquisas autónomas na internet
 - Filtro de correio electrónico
 - Nas aplicações de software, a informação sobre o ambiente e acções, são representadas por informação (estruturas de dados) que o agente manipula.

Conceito de Agente

5

- Jogos
- Shopbots
 - comparar preços na internet

■ Chatterbots, seres virtuais, ...

- E muitos outros...
 - www.agentland.com
 - www.trsoccerbots.org
 - http://ccl.northwestern.edu/netlogo

Conceito de Agente

- Virtual Assistants
 - http://www.chatbots.org/virtual_assistant/
 - Ask Anna from IKEA
 - "Created in 2003 by Artificial Solutions, she remains one of the largest implementations of a Virtual Assistant worldwide. Anna resides in 20 countries, being able to communicate in 18 languages via all IKEA's country websites"
 - http://www.ikea.com/ms/en_GB/customer_service/contact_ us/contact.html
 - http://www.buscas.pt/index.html

□ ...

Agent Type	Performance Measure	Environment	Actuators	Sensors	
Medical diagnosis system	Healthy patient, reduced costs	Patient, hospital, staff	Display of questions, tests, diagnoses, treatments, referrals	Keyboard entry of symptoms, findings, patient's answers	
Satellite image analysis system	Correct image categorization	Downlink from orbiting satellite	Display of scene categorization	Color pixel arrays	
Part-picking robot	Percentage of parts in correct bins	Conveyor belt with parts; bins	Jointed arm and hand	Camera, joint angle sensors	
Refinery controller	Purity, yield, safety	Refinery, operators	Valves, pumps, heaters, displays	Temperature, pressure, chemical sensors	
Interactive English tutor	Student's score on test	Set of students, testing agency	Display of exercises, suggestions, corrections	Keyboard entry	

Agente Racional

- Agente Racional
 - Um Agente que escolhe a ação correta, isto é, aquela ação que leva o agente a atingir o maior <u>sucesso.</u>
 - É assim necessário <u>avaliar o su</u>cesso (Como e Quando?)
 - Não existe uma única função de avaliação.
 - Por exemplo, para um "agente de limpeza", pode avaliar-se: A qualidade da limpeza, a eletricidade consumida, o ruído gerado e/ou o tempo despendido.

- ...
 - Quando?
 - Poderemos considerar de melhor performance os agentes que agirem mais rapidamente.
 - Exemplo: O Robot Aspirador
 - Ambiente: Área dividida em células
 - Objetivo: aspirar todo o lixo minimizando o consumo de energia
 - Perceções: Conteúdos da célula em que se encontra e célula em frente.
 - Ações: Mover-se para a frente, virar à esquerda, virar à direita, aspirar

Agente Racional

- □ ...
 - O nível de racionalidade depende de quatro factores:
 - Conhecimento inicial (à partida) do ambiente
 - Sequência de percepção (tudo aquilo que já apercebeu)
 - Acções que pode tomar
 - Função usada para **avaliação** do sucesso
 - O Agente Racional Ideal
 - Para uma dada sequência de percepção, toma a acção que espera vir a maximizar a função de medida do seu sucesso, baseando-se na sequência de percepção e conhecimento inicial do ambiente

Agente Racional

□ ...

- Mapeamento Percepção-Acção
 - O projecto de um Agente Racional Ideal consiste em mapear sequências de percepção em acções óptimas.

Agentes Autónomos

- Se o comportamento do agente for determinado pela sua experiência, diz-se que o agente é autónomo.
 - Um agente que baseie o seu comportamento no conhecimento prévio do ambiente (conhecimento embutido) pode ser considerado autónomo?

Agente Racional

12

п.

- Outras características de uma agente autónomo
 - Deve conseguir operar em ambientes diversos, dado o tempo necessário para se adaptar.
 - Um agente autónomo deve possuir capacidade de aprendizagem.
 - Contudo, algum conhecimento embutido é ainda necessário, para que o agente não tenha de agir aleatoriamente no início (tal como acontece com os reflexos inatos no mundo animal...)

- □ Agente = Arquitectura + Programa
 - No projecto de agentes racionais, na lA pretendemos implementar funções ou programas que mapeiam percepções em acções
 - Os programas executam num contexto (hardware, plataforma de programação) designado por arquitectura
 - A arquitectura inclui as componentes físicas do agente: um computador e eventualmente câmaras, sensores diversos, filtros, dispositivos electro-mecânicos, etc.

Estrutura Interna de um Agente

- □ Programa de um agente racional: Tarefa principal da IA
 - O Agente como forma genérica de um Programa
 - O Agente necessita de registar as sequências de percepções, dado receber uma percepção de cada vez.
 - Recurso a estruturas de dados. Estas estruturas devem ser:
 - Actualizadas pelas novas percepções
 - Manipuladas pelo agente através dos seus procedimentos de tomada de decisão, com vista à escolha de uma acção

15

□ ...
■ Esqueleto de um programa

Function Skeleton-Agent(percept) returns action
static: memory /* A memória que o agente tem do ambiente */
memory ← Update-Memory (memory, percept)
action ← Choose-Best-Action (memory)
memory ← Update-Memory (memory, percept)
return action

Estrutura Interna de um Agente

16

□ ...

- Exemplos para o robot aspirador
 - Mundo: apenas duas posições (células A e B)
 - Perceções:
 - A célula onde está.
 - Se a célula contém lixo.
 - Ações
 - Mover esquerda; Mover direita; aspirar; fazer nada

17

□ ...

■ Se tem lixo na posição atual, Então Aspira; Senão, move para outra posição

Implementação

If Célula_Actual(Lixo) Then Aspirar Elself Posição_Atual(A) Then Direita Elself Posição_Atual(B) Then Esquerda

Agente meramente reativo. Seleciona a ação a efetuar apenas com base na perceção atual.

Suponha que falhou um sensor e o agente não deteta a localização. Qual o melhor comportamento? Determinístico ou randomizado?

Estrutura Interna de um Agente

18

□ ...

Exemplos para o robot aspirador

■ Exemplo A:

If Célula_Actual(Lixo) Then Aspirar

If Célula_Frente(Fronteira) Then Rodar_Esquerda

If Célula_Frente(Lixo) Then Avançar

If True Then Rodar_Direita

• Que problemas identifica no agente descrito?

19

□ ...

■ Exemplo B

If $C\'{e}lula_Frente(Fronteira)$ Then $Rodar_Direita$

If Célula_Frente(Vazio) Then Avançar

If True Then Aspirar

- Que problemas identifica no agentes descritos?
- Qual seria um bom agente?

Tipos de Agentes

- □ Podemos considerar quatro tipos de Agentes
 - Agentes <u>Reactivos</u>
 - Agentes <u>Reactivos com Estado Interno</u>
 - Agentes Guiados por Objectivos
 - □ Agentes Baseados em <u>Funções de Utilidade</u>

. .

□ Agentes Reactivos

Tipos de Agentes

- Respondem a cada percepção sempre da mesma forma, tomando em linha de conta apenas a percepção mais recente.
- Funcionam como um simples reflexo, traduzível por uma regra do tipo "if...then..."
- □ Simulam reflexos adquiridos ou inatos.

Tipos de Agentes

22

□ ...

conhecimento previamente embutido

Agent

Sensors

What action I list like now

What action I list like now

Condition-action rules

What action I list like now

Fiftedors

- 24
- □ Agentes Reactivos com Estado Interno (memória)
 - Respondem à mesma percepção de forma eventualmente diferente, combinando a percepção mais recente com informação acerca do estado anterior do ambiente.
 - □ A sua actualização requer conhecimento sobre:
 - Como se modifica o mundo ao longo do tempo
 - Efeito que as acções têm no estado do mundo

25

□ ...

Arquitectura

Tipos de Agentes

26

□ ...

■ Programa

```
Function Reflex-Agent-with-Internal-State(percept) returns action
static: state /* Uma descrição do estado do ambiente */
rules /* Um conjunto de regras percepção-acção */
state ← Update-State (state, percept)
rule ← Rule-Match (state, rules)
action ← Rule-Action (rule)
state ← Update-State (state, action)
return action
```

- Agentes Guiados por Objectivos
 - É também importante considerar os objectivos a atingir
 - Este agentes respondem a uma percepção de forma a atingirem um dado objectivo e combinam essa percepção com informação acerca do estado anterior do ambiente.
 - Uma decisão deste tipo considera o resultado futuro: O que acontece se virar à esquerda? E à direita? Isso será bom para o meu objectivo ?
 - Se o objectivo for alterado, o agente altera o seu comportamento (nos modelos anteriores, isto implicaria a escrita de novas regras if...then...).

Tipos de Agentes

28

□ ...

Arquitectura

□ ...

função agente_guiado_por_objectivos(percepção): acção

estado: modelo do estado actual do ambiente

descritor_de_acções: descreve o efeito das acções no estado domundo

objectivo: estado que o agente deseja atingir estado ← Actualiza_estado (estado, percepção) acção ← Avaliador (estado, descritor_de_acções, objectivo) estado ← Actualiza_estado (estado, acção) fim_de_função

Tipos de Agentes

- □ Agentes Baseados em Funções de Utilidade
 - Respondem a uma percepção de forma a atingirem um dado objectivo maximizando o grau de sucesso obtido na prossecução desse objectivo.
 - □ A Função Utilidade:
 - Associa valores numéricos a estados, representando o grau de satisfação
 - Permite optar pela melhor solução de entre várias
 - Pode ponderar factores contraditórios (distância/estado da estrada)
 - Permite medir o grau de sucesso obtido quando um objectivo é atingido

31

Uma Função Utilidade mapeia um estado ou conjunto de estados num número real, que mede o grau de sucesso obtido pelo agente se optar por determinada acção.

O Ambiente

- □ Os agentes estão inseridos num ambiente:
 - A resolução do problema depende das características do ambiente
 - Tal como os agentes, também os ambientes podem classificar-se em vários tipos:
 - Acessível
 - Determinístico
 - Episódico
 - Dinâmico
 - Discreto

O Ambiente

- □ Ambientes Acessíveis/Não Acessíveis
 - Se o conjunto de sensores do agente lhe der acesso ao estado completo do ambiente. Caso contrário diz-se não acessível.
 - Exemplo:
 - Jogo de Xadrez
 - O agente consegue obter toda a informação relevante para a tomada de decisão?

- Jogo de Poker
 - Acessível ou não acessível?
- Robot aspirador com sensor local parcialmente (não) acessível

O Ambiente

- □ Ambientes Determinísticos/Estocásticos
 - O ambiente é determinístico se o seu próximo estado puder ser completamente determinado a partir do seu estado actual e da acção a executar. Caso contrário diz-se estocástico.
 - Exemplos
 - Jogo de xadrez. Determinístico ou estocástico?
 - Condutor autónomo de um veículo. Determinístico ou estocástico?

- Ambientes Episódicos/Não episódicos
 - Se a experiência do agente for dividida em episódios (atómicos). É não-episódico no caso contrário.
 - Cada episódio consiste numa perceção seguida de uma acão.
 - O sucesso dessa ação depende apenas do episódio atual.
 - Os ambientes episódicos tendem a gerar agentes mais simples, porque estes não precisam de "pensar no futuro".

■ Exemplo

- Robot selecionando peças. É relevante considerar o que aconteceu anteriormente para escolher a Acão atual?
- Condução autónoma não episódicos (sequencial).

O Ambiente

- □ Ambientes Dinâmicos/Estáticos
 - O ambiente diz-se dinâmico se puder mudar enquanto o agente se encontra a decidir. Caso contrário, diz-se estático.
 - Se o ambiente n\u00e3o mudar com o tempo mas o desempenho do agente sim, o ambiente diz-se semi-din\u00e1mico (xadrez com tempo controlado).
 - Exemplos:
 - Sistema de diagnóstico médico. Dinâmico ou estático?

O Ambiente

□ Ambientes Discretos/Contínuos

- Diz-se discreto quando origina séries de percepções e acções perfeitamente distintas umas das outras. Caso contrário, diz-se contínuo.
 - Existe um número finito de estados ou de percepções/acções?
 - **■** Exemplos:
 - Jogo de Poker: Discreto
 - Condução de um veículo: Contínuo

O Ambiente

38

□ Exemplos de Ambientes

Task Environment	Observable	Agents	Deterministic	Episodic	Static	Discrete
Crossword puzzle	Fully	Single	Deterministic		Static	Discrete
Chess with a clock	Fully	Multi	Deterministic		Semi	Discrete
Poker	Partially	Multi	Stochastic	Sequential	Static	Discrete
Backgammon	Fully	Multi	Stochastic	Sequential	Static	Discrete
Taxi driving Medical diagnosis	Partially Partially	Multi Single	Stochastic Stochastic		•	Continuous Continuous
Image analysis Part-picking robot	Fully	Single	Deterministic	Episodic	Semi	Continuous
	Partially	Single	Stochastic	Episodic	Dynamic	Continuous
Refinery controller	Partially	Single	Stochastic	Sequential	•	Continuous
Interactive English tutor	Partially	Multi	Stochastic	Sequential		Discrete

- A definição do ambiente depende de como a "tarefa" é definida.
- Os ambientes mais complexos são os ambientes inacessíveis, nãodeterminísticos, não-episódicos, dinâmicos, contínuos e multi-agente.

Agentes Aprendizes

- Os agentes racionais apresentados anteriormente mostram como escolher ações em função das circunstâncias do ambiente.
 - Mas quem implementa os programas?
 - Como se garante que os mapeamentos condição/ação são adequados?
 - E se o ambiente mudar?

Agentes Aprendizes

40

□ ...

■ A solução consiste em construir sistemas que tenham capacidade de <u>aprendizagem</u>

Agentes Aprendizes

