ディジタル無線通信

~アクセス制御編~

九州大学大学院 システム情報科学研究院 石田 繁巳 <ishida@f.ait.kyushu-u.ac.jp> 2014/06/19

アウトライン

- ■この講義の目的
- 通信の衝突とアクセス制御
- MACプロトコル
 - 時間軸
 - 周波数軸
 - 符号軸
- 多元接続と多重化

この講義の目的

- 通信のアクセス制御について理解する
 - 「通信の衝突」について知る
 - 衝突回避の基本概念を知る
 - 基本となるアクセス制御方式について知る

通信の衝突とアクセス制御

通信の衝突(1)

■ 2つのノードが同時に送信したらどうなる?

通信の衝突 (2)

■ 復調可能?

$$E = (I_1 + I_2) + j(Q_1 + Q_2)$$

- 2つの信号が混ざっているので分離できない
- ⇒通信の衝突
- ■通信の共存
 - 複数のノードが送信する場合, 衝突回避が必須
 - ⇒ 分離できない電波を同時に出さないようにする
 - = アクセス制御(Media Access Control: MAC)

有線の通信衝突

- 通信の衝突は無線だけ?
 - 同じ線に複数台のノードが接続されている場合も衝 突が起きる
 - 例) 有線LAN (Ethernet = IEEE 802.3)

問題

通信の衝突を回避するためには どうしたらいい?

アクセス制御のアプローチ

- 2つの軸
 - 時間
 - トークンパッシング・トークンバス (主に有線)
 - TDMA, ALOHA, CSMA
 - 周波数
 - FDMA, OFDMA, SC-FDMA

MACプロトコル

MACプロトコル

- アクセス制御のためのプロトコル
- ※ プロトコル
 - 通信を行う時の手順を決める"取り決め"
 - どのノードが
 - いつ
 - どのタイミングで
 - 何を
 - どのように

時間軸方向のアクセス制御

トークンパッシング

- ■「トークン」を持つものが送信権を持つ
 - トークンを受信したノードはデータを付加して別のノードに送る
 - これを繰り返す
- バスに適用したのがトー クンバス
 - 仮想的なリングネット ワークを形成する

TDMA

- Time division multiple access
 - 時間を"slot"(またはtimeslotと呼ぶ)に区切る
 - 1 slotで1ノードだけが送信するように送信スケ ジューリング
 - 全ノードは同期されていないとダメ

TDMAの特徴

Pros

- 1つの周波数を複数のノードで共有できる
- 衝突は100%回避可能であり、通信効率が高い
- 動的なスロット割当てによる可変通信帯域が実現で きる

Cons

- 同期が必須のためオーバーヘッドが大きい
- 動的にスロットを割当てる場合には制御が難しい
- 送信信号が隣接チャネル信号に影響しやすい

ALOHA

Pure ALOHA

- 送信ノードは送りたいときにいつでも送信
- データを受信したノードは送信元に受信確認パケット(ACK: acknowledgment)を送信
- 送信ノードは一定時間内にACKが返って来なければ ランダムな時間待ってから再送

Slotted ALOHA

時間をslotに区切り、その中でPure ALOHAにより衝突回避

ALOHAの特徴

Pros

- シンプルであり、各ノードが自律的に動作できる
- Slot同期すると衝突率が低下してスループット向上

Cons

- 達成可能なスループットが低く、効率が悪い
- 送信要求が多くなるとスループットが大幅に低下
- ACKのための通信は別チャネルが必須
 - ACKを同一チャネルでやると極めて非効率的になる

ALOHAの性能 (1)

■ 前提

- N台のノードが時間Tだけ送信,送信要求は確率pで発生
- 解析
 - 送信がランダムなら送信の発生はポアソン過程
 - ullet 衝突しない確率は2T間に送信が発生しない確率
 - Slotted ALOHAの場合はT間
 - これを全ノードで平均

$$NpP_1(0) = Np \frac{(2Np)^0 e^{-2Np}}{0!} = Npe^{-2Np}$$
 (pure ALOHA)

$$NpP_2(0) = Np\frac{(Np)^0e^{-NP}}{0!} = Npe^{-Np}$$
 (slotted ALOHA)

ALOHAの性能 (2)

CSMA

- Carrier sense multiple access
 - 送信ノードは送信前に受信(carrier sense)
 - 他のノードが送信していたら送信を延期
 - 他のノードの送信がなければ決められたアルゴリズムに従って送信
 - ただちに送信
 - ランダム時間待ってから送信(backoff)
 - . . .

CSMAの特徴

- Pros
 - 各ノードは自律分散動作できる
 - ALOHAに比べてスループット,効率が向上
- Cons
 - 隠れ端末問題や同時送信による衝突が発生し得る

隠れ端末問題

■ ノード1 → ノード2への通信

CSMA/CD & CSMA/CA

- 有線と無線の違い
 - 有線: 全てのノードの送信信号を検出できる
 - 無線: 全てのノードの送信信号は検出できない
- CD: collision detection
 - 有線では送信中にも受信しておくことで衝突を検知できる
- CA: collision avoidance
 - 無線では衝突を検知することはできないので、衝突しないような工夫(backoffなど)が必須

周波数軸方向のアクセス制御

FDMAとその特徴

- Frequency division multiple access
 - ノード毎に異なる周波数 (チャネル)を使って通信
- Pros
 - シンプル
 - 高い周波数利用効率を達成可能
- Cons
 - ノード数だけチャネルが必要
 - ノード数が固定でないときはチャネル割当てが複雑

OFDMA

- Orthogonal frequency division multiple access
 - OFDMのサブキャリアをノードに割当てて通信
 - 直交する周波数のサブキャリア(要するに混ざらない搬送波)を使ったFDMA
 - = FDMAの超高効率化バージョン

実は別の軸がある

CDMA

- Code division multiple access
 - 各ノードに拡散符号を割当てて通信
 - 拡散符号を使ったスペクトル拡散で、同じ周波数、同 じ時刻の通信から必要な信号だけを抜き出す

Pros

- 他人に盗み聞きされにくい(通信を実現可能)
- ノイズに強い

Cons

• ノードの数だけ拡散符号が必要,動的に割当てる場合は複雑になる

スペクトル拡散

- Spread spectrum
 - 無線信号をより広帯域な信号に拡散する技術
 - DSSS: direct sequence spread spectrum
 - GPS, 802.11b, 802.15.4
 - CDMAはこっちを利用
 - FHSS: frequency hopping spread spectrum
 - Bluetooth, 802.11
 - ⇒ ノイズ・干渉に強い

DSSS

- TX: 送信信号と疑似ノイズ信号をかけ算して送出
- RX: 同じ疑似ノイズ信号とかけ算して復元

FHSS

- 一定時間毎に疑似ランダムに送信周波数を変えて送信
 - slow hopping
 - 1周波数で複数シンボ ルを送信
 - fast hopping
 - 1シンボルを複数周波 数で送信

多元接続と多重化

多元接続と多重化

- 多元接続 (multiple access)
 - 1対多の通信を実現する技術
- 多重化 (multiplexing)
 - 複数の情報をやり取りする技術

- ステレオ(右・左チャンネル), 上り・下り
- ⇒どちらもアクセス制御で実現される
 - 呼び名は変わります
 - TDMA ↔ TDM (time division multiplexing)
 - FDMA ↔ FDM (frequency division multiplexing)

まとめ

まとめ

- 無線も有線も同時に送信したら衝突する
 - 衝突を避けるためにはアクセス制御が必須
- MACプロトコル
 - アクセス制御を実現するプロトコル
 - 時間軸, 周波数軸, 符号軸のアプローチを組合せる
- 多元接続と多重化
 - 1対多の通信、複数の信号をまとめる通信