Experiment 4

Student Name: Sukhjinder Singh UID: 23BAI70078

Branch: BE-AIT-CSE Section/Group: 23AIT-KRG-G2

Semester: 5th Date of Performance: 8th Sept, 2025

Subject Name: ADBMS Subject Code: 23CSP-333

1. Consider a relation R having attributes as R(ABCD), functional dependencies are given below:

AB->C, C->D, D->A

Identify the set of candidate keys possible in relation R. List all the set of prime and non-prime attributes.

Ans: Closure Property: -

$$AB + = \{A, B, C, D\}$$

$$BC+ = \{B, C, D, A\}$$

$$AC + = \{A, C, D\}$$

$$BD+=\{B, D, C, A\}$$

Candidate Keys = $\{AC, BC, BD\}$

Prime Attributes = $\{A, B, C, D\}$

Non-Prime Attributes = { }(none)

Hence, the relation is in 3NF.

2. Relation R(ABCDE) having functional dependencies as:

A->D, B->A, BC->D, AC->BE

Identify the set of candidate keys possible in relation R. List all the set of prime and non-prime attributes.

Ans: Closure Property: -

$$AC + = \{A, C, B, E, D\}$$

$$AB+=\{A,\,B,\,D\}$$

$$BC + = \{B, C, D, A, E\}$$

Candidate Keys = $\{AC, BC\}$

Prime Attributes = $\{A, C, B\}$

Non-Prime Attributes = $\{D, E\}$

Hence, the relation is in 1NF.

3. Consider a relation R having attributes as R(ABCDE), functional dependencies are given below:

Identify the set of candidate keys possible in relation R. List all the set of prime and non-prime attributes.

Ans: Closure Property: -

$$B+ = \{B, A, C, E, D\}$$

$$A+ = \{A, C, B, E, D\}$$

Candidate Keys = $\{A, B\}$

Prime Attributes = $\{A, B\}$

Non-Prime Attributes = $\{C, D, E\}$

Hence, the relation is in BCNF.

4. Consider a relation R having attributes as R(ABCDEF), functional dependencies are given below:

A->BCD, BC->DE, B->D, D->A

Identify the set of candidate keys possible in relation R. List all the set of prime and non-prime attributes.

Ans: Closure Property: -

$$A+ = \{A, B, C, D, E\}$$

$$B+ = \{B, C, D, E, A\}$$

$$D+ = \{D, A, B, C, E\}$$

Candidate Keys = $\{A, B, D\}$

Prime Attributes = $\{A, B, D\}$

Non-Prime Attributes = $\{C, E\}$

Hence, the relation is in BCNF.