Review 2

Test 1 topics

- Descriptive statistics
 - e.g. stem-and-leaf plot, mean, median, mode...
- Probability distribution
 - e.g. discrete vs. continuous probability distribution...
- Hypothesis testing: one-sample inference
 - e.g. p-value, null hypothesis, alternate hypothesis...
- Hypothesis testing: two-sample inference
 - e.g. paired samples hypothesis testing, independent samples hypothesis testing (F-test: check equal variances, t-test)...

Hypothesis testing: categorical data

- Contingency Table Approach
 - Expected number of units in the (i,j) cell (E_{ij}):
 <u>ith</u> row margin X <u>jth</u> column margin
 grand total
 - none of the four expected values < 5
- Fisher's exact test
 - 1 of the cells with expected values <=5
- McNemar's Test
- i) Normal Theory test $(n_D \ge 20)$
- ii) Exact Method ($n_D < 20$)
- RxC Contingency Table
 - Test statistic:

$$X^{2} = \left(O_{11} - E_{11}\right)^{2} / E_{11} + \left(O_{12} - E_{12}\right)^{2} / E_{12} + \dots + \left(O_{RC} - E_{RC}\right)^{2} / E_{RC}$$

• $H_0 \sim \chi^2$ distribution with $(R-1) \times (C-1) df$

FIGURE 10.16 Flowchart for appropriate methods of statistical inference for categorical data

Regression and Correlation

- Interpretation of regression line
- Correlation (Pearson's vs. Spearman ranks)
- Hypothesis testing for multiple regression
 - F test:

$$H_0$$
: $\beta_1 = \beta_2 = ... = \beta_k = 0$

vs. H_1 : at least one of the $\beta_j \neq 0$ in multiple linear regression

Res SS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 Total SS = $\sum_{i=1}^{n} (y_i - \overline{y})^2$
Reg SS = Total SS - Res SS

Total SS =
$$\sum_{i=1}^{n} (y_i - \overline{y})^2$$
$$\hat{y}_i = a + \sum_{j=1}^{k} b_j x_{ij}$$

Test statistic:

F = Reg MS/Res MS, df = n-k-1 where n=sample size, k =no of independent

• T test:

 H_0 : $\beta_l = 0$, All other $\beta_i \neq 0$ vs. H_1 : $\beta_l \neq 0$, all other $\beta_i \neq 0$ in multiple linear regression

Statistical output for multiple regression model

Nonparametric Methods

- Parametric Methods: data of known distribution
- Non-parametric methods: data of unknown distribution, skewed / not normally distributed, ordinal

Analysis Type	Example	Parametric Procedure	Nonparametric Procedure
Compare means between two distinct/independent groups	Is the mean systolic blood pressure (at baseline) for patients assigned to placebo different from the mean for patients assigned to the treatment group?	Two-sample t-test	Wilcoxon rank-sum test
Compare two quantitative measurements taken from the same individual	Was there a significant change in systolic blood pressure between baseline and the sixmonth follow-up measurement in the treatment group?	Paired t-test	Wilcoxon signed-rank test
Estimate the degree of association between two quantitative variables	Is systolic blood pressure associated with the patient's age?	Pearson coefficient of correlation	Spearman's rank correlation