In [1]:

```
pip install mlxtend
```

```
Requirement already satisfied: mlxtend in c:\users\tejas\anaconda3\lib\site-
packages (0.18.0)
Requirement already satisfied: matplotlib>=3.0.0 in c:\users\tejas\anaconda3
\lib\site-packages (from mlxtend) (3.1.1)
Requirement already satisfied: scipy>=1.2.1 in c:\users\tejas\anaconda3\lib
\site-packages (from mlxtend) (1.4.1)
Requirement already satisfied: joblib>=0.13.2 in c:\users\tejas\anaconda3\li
b\site-packages (from mlxtend) (0.13.2)
Requirement already satisfied: numpy>=1.16.2 in c:\users\tejas\anaconda3\lib
\site-packages (from mlxtend) (1.16.5)
Requirement already satisfied: scikit-learn>=0.20.3 in c:\users\tejas\anacon
da3\lib\site-packages (from mlxtend) (0.21.3)
Requirement already satisfied: pandas>=0.24.2 in c:\users\tejas\anaconda3\li
b\site-packages (from mlxtend) (0.25.1)
Requirement already satisfied: setuptools in c:\users\tejas\anaconda3\lib\si
te-packages (from mlxtend) (41.4.0)
Requirement already satisfied: cycler>=0.10 in c:\users\tejas\anaconda3\lib
```

Requirement already satisfied: cycler>=0.10 in c:\users\tejas\anaconda3\lib \site-packages (from matplotlib>=3.0.0->mlxtend) (0.10.0)

Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\tejas\anaconda3 \lib\site-packages (from matplotlib>=3.0.0->mlxtend) (1.1.0)

Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in c:\users\tejas\anaconda3\lib\site-packages (from matplotlib>=3.0.0->mlxtend) (2.4.2)

Requirement already satisfied: python-dateutil>=2.1 in c:\users\tejas\anacon da3\lib\site-packages (from matplotlib>=3.0.0->mlxtend) (2.8.0)

Requirement already satisfied: pytz>=2017.2 in c:\users\tejas\anaconda3\lib \site-packages (from pandas>=0.24.2->mlxtend) (2019.3)

Requirement already satisfied: six in c:\users\tejas\anaconda3\lib\site-pack ages (from cycler>=0.10->matplotlib>=3.0.0->mlxtend) (1.12.0)

Note: you may need to restart the kernel to use updated packages.

```
In [2]:
```

```
import pandas as pd
from mlxtend.frequent_patterns import apriori,association_rules
import numpy as np
import matplotlib.pyplot as plt
from mlxtend.preprocessing import TransactionEncoder
```

Import Data

In [3]:

books_data=pd.read_csv("book.csv")
books_data

Out[3]:

	ChildBks	YouthBks	CookBks	DoltYBks	RefBks	ArtBks	GeogBks	ItalCook	ItalAtlas	
0	0	1	0	1	0	0	1	0	0	
1	1	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	
3	1	1	1	0	1	0	1	0	0	
4	0	0	1	0	0	0	1	0	0	
								•••		
1995	0	0	1	0	0	1	1	1	0	
1996	0	0	0	0	0	0	0	0	0	
1997	0	0	0	0	0	0	0	0	0	
1998	0	0	1	0	0	0	0	0	0	
1999	0	0	0	0	0	0	0	0	0	
2000 rows × 11 columns										

Initial Analysis

In [4]:
books_data.shape

Out[4]:

(2000, 11)

```
H
In [5]:
books_data.isna().sum()
Out[5]:
ChildBks
             0
YouthBks
             0
CookBks
DoItYBks
             0
RefBks
ArtBks
             0
GeogBks
ItalCook
ItalAtlas
ItalArt
             0
Florence
dtype: int64
In [6]:
                                                                                             M
books_data.dtypes
```

Out[6]:

ChildBks int64 YouthBks int64 CookBks int64 DoItYBks int64 RefBks int64 ArtBks int64 GeogBks int64 ItalCook int64 ItalAtlas int64 ItalArt int64 Florence int64 dtype: object

Model Building

Apriori algorithm

Association rules with 10% support and 80% confidence

In [7]: ▶

```
#Purpose of Apriori : to build freq item sets
freq_itemsets = apriori(books_data,min_support=0.10,use_colnames=True)
freq_itemsets
```

Out[7]:

	support	itemsets
0	0.4230	(ChildBks)
1	0.2475	(YouthBks)
2	0.4310	(CookBks)
3	0.2820	(DoltYBks)
4	0.2145	(RefBks)
5	0.2410	(ArtBks)
6	0.2760	(GeogBks)
7	0.1135	(ItalCook)
8	0.1085	(Florence)
9	0.1650	(ChildBks, YouthBks)
10	0.2560	(ChildBks, CookBks)
11	0.1840	(ChildBks, DoltYBks)
12	0.1515	(ChildBks, RefBks)
13	0.1625	(ChildBks, ArtBks)
14	0.1950	(ChildBks, GeogBks)
15	0.1620	(YouthBks, CookBks)
16	0.1155	(YouthBks, DoltYBks)
17	0.1010	(YouthBks, ArtBks)
18	0.1205	(YouthBks, GeogBks)
19	0.1875	(DoltYBks, CookBks)
20	0.1525	(CookBks, RefBks)
21	0.1670	(CookBks, ArtBks)
22	0.1925	(CookBks, GeogBks)
23	0.1135	(ItalCook, CookBks)
24	0.1055	(DoltYBks, RefBks)
25	0.1235	(DoltYBks, ArtBks)
26	0.1325	(DoltYBks, GeogBks)
27	0.1105	(RefBks, GeogBks)
28	0.1275	(ArtBks, GeogBks)
29	0.1290	(CookBks, ChildBks, YouthBks)
30	0.1460	(DoltYBks, ChildBks, CookBks)
31	0.1225	(ChildBks, CookBks, RefBks)
32	0.1265	(ChildBks, CookBks, ArtBks)

itemsets	support	
(ChildBks, CookBks, GeogBks)	0.1495	33
(ChildBks, DoltYBks, GeogBks)	0.1045	34
(ChildBks, ArtBks, GeogBks)	0.1020	35
(DoltYBks, CookBks, ArtBks)	0.1015	36
(DoltYBks, CookBks, GeogBks)	0.1085	37
(CookBks, ArtBks, GeogBks)	0.1035	38

In [8]: ▶

```
#Purpose of Association Rules - to generate the best associations
rules= association_rules(df =freq_itemsets ,metric='lift',min_threshold=0.8)
rules.sort_values(by = 'support',axis=0,ascending=False)
```

Out[8]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverag
2	(ChildBks)	(CookBks)	0.4230	0.4310	0.2560	0.605201	1.404179	0.07368
3	(CookBks)	(ChildBks)	0.4310	0.4230	0.2560	0.593968	1.404179	0.07368
11	(GeogBks)	(ChildBks)	0.2760	0.4230	0.1950	0.706522	1.670264	0.07825
10	(ChildBks)	(GeogBks)	0.4230	0.2760	0.1950	0.460993	1.670264	0.07825
26	(CookBks)	(GeogBks)	0.4310	0.2760	0.1925	0.446636	1.618245	0.07354
84	(CookBks, ArtBks)	(DoltYBks)	0.1670	0.2820	0.1015	0.607784	2.155264	0.05440
83	(DoltYBks, ArtBks)	(CookBks)	0.1235	0.4310	0.1015	0.821862	1.906873	0.04827
82	(CookBks, DoltYBks)	(ArtBks)	0.1875	0.2410	0.1015	0.541333	2.246196	0.05631
17	(ArtBks)	(YouthBks)	0.2410	0.2475	0.1010	0.419087	1.693281	0.04135
16	(YouthBks)	(ArtBks)	0.2475	0.2410	0.1010	0.408081	1.693281	0.04135

100 rows × 9 columns

In [9]:

A leverage value of 0 indicates independence. Range will be [-1 1]

A leverage value of 8 thattates that percentance. Range will be [-1 1]
A high conviction value means that the consequent is highly depending on the antecedent a

H

In [10]: ▶

Lift Ratio > 1 is a good influential rule in selecting the associated transactions
rules[rules.lift>1]

Out[10]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverag
0	(ChildBks)	(YouthBks)	0.4230	0.2475	0.1650	0.390071	1.576044	0.06030
1	(YouthBks)	(ChildBks)	0.2475	0.4230	0.1650	0.666667	1.576044	0.06030
2	(ChildBks)	(CookBks)	0.4230	0.4310	0.2560	0.605201	1.404179	0.07368
3	(CookBks)	(ChildBks)	0.4310	0.4230	0.2560	0.593968	1.404179	0.07368
4	(ChildBks)	(DoltYBks)	0.4230	0.2820	0.1840	0.434988	1.542511	0.06471
95	(CookBks, GeogBks)	(ArtBks)	0.1925	0.2410	0.1035	0.537662	2.230964	0.05710
96	(ArtBks, GeogBks)	(CookBks)	0.1275	0.4310	0.1035	0.811765	1.883445	0.04854
97	(CookBks)	(ArtBks, GeogBks)	0.4310	0.1275	0.1035	0.240139	1.883445	0.04854
98	(ArtBks)	(CookBks, GeogBks)	0.2410	0.1925	0.1035	0.429461	2.230964	0.05710
99	(GeogBks)	(CookBks, ArtBks)	0.2760	0.1670	0.1035	0.375000	2.245509	0.05740

100 rows × 9 columns

In [11]:

```
# visualization of obtained rule
plt.scatter(rules['support'],rules['confidence'])
plt.xlabel('support')
plt.ylabel('confidence')
plt.show()
```


Association rules with 20% support and 70% Confidence

```
In [12]:
# Building Support 20%
freq_itemsets1 = apriori(books_data,min_support=0.20,use_colnames=True)
```

Out[12]:

freq_itemsets1

itemsets	support	
(ChildBks)	0.4230	0
(YouthBks)	0.2475	1
(CookBks)	0.4310	2
(DoltYBks)	0.2820	3
(RefBks)	0.2145	4
(ArtBks)	0.2410	5
(GeogBks)	0.2760	6
(ChildBks, CookBks)	0.2560	7

```
#Building Confidence 70%
rules1= association_rules(df =freq_itemsets1 ,metric='lift',min_threshold=0.7)
rules1.sort_values(by = 'support',axis=0,ascending=False)
```

Out[13]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage
0	(ChildBks)	(CookBks)	0.423	0.431	0.256	0.605201	1.404179	0.073687
1	(CookBks)	(ChildBks)	0.431	0.423	0.256	0.593968	1.404179	0.073687
4								•

```
In [14]:
# lift > 1, It means it is best association.
```

```
In [15]:

# visualization of obtained rule
plt.scatter(rules1['support'],rules1['confidence'])
plt.xlabel('support')
plt.ylabel('confidence')
plt.show()
```


Association rules with 5% support and 90% confidence

In [16]: ▶

```
# Building Support 5%
freq_itemsets2 = apriori(books_data,min_support=0.05,use_colnames=True)
freq_itemsets2
```

Out[16]:

	support	itemsets
0	0.4230	(ChildBks)
1	0.2475	(YouthBks)
2	0.4310	(CookBks)
3	0.2820	(DoltYBks)
4	0.2145	(RefBks)
95	0.0600	(DoltYBks, YouthBks, CookBks, GeogBks)
96	0.0560	(YouthBks, CookBks, ArtBks, GeogBks)
97	0.0650	(DoltYBks, CookBks, ArtBks, GeogBks)
98	0.0510	(DoltYBks, GeogBks, ChildBks, YouthBks, CookBks)
99	0.0535	(DoltYBks, GeogBks, ChildBks, CookBks, ArtBks)

100 rows × 2 columns

In [17]: ▶

```
#Building Confidence 90%
```

rules2= association_rules(df =freq_itemsets2 ,metric='lift',min_threshold=0.90)
rules2.sort_values(by = 'support',axis=0,ascending=False)

Out[17]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	levera	
2	(ChildBks)	(CookBks)	0.423	0.4310	0.2560	0.605201	1.404179	0.0736	
3	(CookBks)	(ChildBks)	0.431	0.4230	0.2560	0.593968	1.404179	0.0736	
11	(GeogBks)	(ChildBks)	0.276	0.4230	0.1950	0.706522	1.670264	0.0782	
10	(ChildBks)	(GeogBks)	0.423	0.2760	0.1950	0.460993	1.670264	0.0782	
32	(CookBks)	(GeogBks)	0.431	0.2760	0.1925	0.446636	1.618245	0.0735	
625	(ChildBks, CookBks)	(YouthBks, DoltYBks, GeogBks)	0.256	0.0680	0.0510	0.199219	2.929687	0.0335	
626	(YouthBks, CookBks)	(ChildBks, DoltYBks, GeogBks)	0.162	0.1045	0.0510	0.314815	3.012582	0.0340	
627	(DoltYBks)	(CookBks, ChildBks, YouthBks, GeogBks)	0.282	0.0830	0.0510	0.180851	2.178928	0.0275	
628	(GeogBks)	(CookBks, ChildBks, DoltYBks, YouthBks)	0.276	0.0820	0.0510	0.184783	2.253446	0.0283	
368	(ChildBks, DoltYBks)	(YouthBks, ArtBks)	0.184	0.1010	0.0510	0.277174	2.744296	0.0324	
662 rows × 9 columns									

In [18]:

If lift >1, it means it is best association
rules2[rules2.lift>1]

Out[18]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	levera
0	(ChildBks)	(YouthBks)	0.4230	0.2475	0.1650	0.390071	1.576044	0.0603
1	(YouthBks)	(ChildBks)	0.2475	0.4230	0.1650	0.666667	1.576044	0.0603
2	(ChildBks)	(CookBks)	0.4230	0.4310	0.2560	0.605201	1.404179	0.0736
3	(CookBks)	(ChildBks)	0.4310	0.4230	0.2560	0.593968	1.404179	0.0736
4	(ChildBks)	(DoltYBks)	0.4230	0.2820	0.1840	0.434988	1.542511	0.0647
	•••							
657	(DoltYBks)	(ChildBks, CookBks, ArtBks, GeogBks)	0.2820	0.0835	0.0535	0.189716	2.272052	0.0299
658	(GeogBks)	(CookBks, ChildBks, DoltYBks, ArtBks)	0.2760	0.0820	0.0535	0.193841	2.363910	0.0308
659	(ChildBks)	(CookBks, DoltYBks, ArtBks, GeogBks)	0.4230	0.0650	0.0535	0.126478	1.945808	0.0260
660	(CookBks)	(ChildBks, DoltYBks, ArtBks, GeogBks)	0.4310	0.0595	0.0535	0.124130	2.086217	0.0278
661	(ArtBks)	(CookBks, ChildBks, DoltYBks, GeogBks)	0.2410	0.0890	0.0535	0.221992	2.494289	0.0320

662 rows × 9 columns

localhost:8888/notebooks/Downloads/ExcelR DS assignments/Association Rules assignment/Association_books assignment.ipynb

In [19]: ▶

```
# visualization of obtained rule
plt.scatter(rules2['support'],rules2['confidence'])
plt.xlabel('support')
plt.ylabel('confidence')
plt.show()
```


