

FCC ID TEST REPORT

for

An Apps Driven IoT Hub (Gateway)

Model: STACK Box

FCC ID: 2AACASTACKBOX

Prepared for: Syabas Technology Hong Kong, Limited

FLAT/RM 316A 3/F, ENTERPRISE PLACE PHASE ONE HONG KONG

SCIENCE PARK PAK SHEK KOK TAI PO NT HONG KONG

Prepared by: Shenzhen TCT Testing Technology Co.,Ltd

1F, Building 1, Yibaolai Industrial Park, Qiaotou Village, Fuyong Town,

Baoan District, Shenzhen, Guangdong, China

TEL: +86-0755-27673339 FAX: +86-0755-27673332

Report Number: TCT141009E001

Date of Test: Oct. 09-Nov. 17, 2014

Date of Report: Nov. 18, 2014

The results detailed in this test report relate only to the specific sample(s) tested. It is the Application's responsibility to ensure that all production units are manufactured with equivalent EMC characteristics. This report is not to be reproduced except in full, without written approval from TCT Testing Technology

Table of Contents

1.0 General Details	3
1.1 Test Lab Details	3
1.2 Applicant Details	3
1.4 Statement	4
1.5 Test Engineer	4
2.0 Test equipments and Associated Equipment used during the test.	5
2.1 Test Equipments	5
2.2 AE used during the test	
3.0 Technical Details	
3.1 Summary of test results	6
3.2 Test Standards	6
4.0 EUT Modification	6
5.0 Measurement Uncertainty (95% confidence levels, k=2)	6
6.0 Power Line Conducted Emission Test	7
7.0 Maximum Peak Output Power	11
8.0 6dB Bandwidth Measurement	13
9.0 Power Spectral Density Measurement	21
10.0 Band-edge Measurement	29
11.0 Spurious Emission Test	
12.0 Antenna Requirement	59

1.0 General Details

1.1 Test Lab Details

Name:	Shenzhen Tongce Testing Lab
Address:	1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China
Telephone:	13410377511
Fax:	

The test facility is recognized, certified, or accredited by the following organizations:

FCC Registration Number: 572331

Shenzhen TCT Testing Technology Co., Ltd., Shenzhen EMC Laboratory: Shenzhen Tongce Testing Lab The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

Registration Number: 572331

Industry Canada (IC)

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

Registration Number IC: 10668A-1

1.2 Applicant Details

Applicant:	Syabas Technology Hong Kong, Limited
Address:	FLAT/RM 316A 3/F, ENTERPRISE PLACE PHASE ONE HONG KONG SCIENCE PARK
	PAK SHEK KOK TAI PO NT HONG KONG
Telephone:	86-755-82913735
Fax:	86-755-82913735

Manufacturer:	Shenzhen Zowee Technology Ltd., Company.
Address:	Zowee Industry Park, TangxiachongTongfuyu Industry Park, Songgang District,
	Shenzhen, China
Telephone:	
Fax:	

1.3 Description of EUT

Product:	An Apps Driven IoT Hub (Gateway)
Model No.:	STACK Box
Additional Model No.:	N/A
Brand Name:	Xuan
Modulation Type:	IEEE 802.11b: DSSS
	IEEE 802.11g: OFDM
	IEEE 802.11n: OFDM
Operation Frequency:	IEEE 802.11b: 2412-2462 MHz
	IEEE 802.11g: 2412-2462 MHz
	IEEE 802.11n: 2412-2462 MHz(HT 20), 2422-2452 MHz(HT 40)
Number of Channel:	IEEE 802.11b/g: 11, IEEE 802.11n: 11(HT 20), 7(HT 40)
Antenna Designation:	Ceramic antenna: 2dbi
Power supply:	DC 5V via Adapter
	Adapter information:
	Model: MX18W1-0503000U
	Input: AC 100-240V, 50/60Hz, 0.5A
	Output: DC 5V, 3A

1.4 Statement

N/A

1.5 Test Engineer

The sample tested by

Born shao

Printed name: Beryl Zhao

2.0 Test equipments and Associated Equipment used during the test.

2.1 Test Equipments

Instrument Type	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
ESPI Test Receiver	ROHDE&SCHWARZ	ESPI 3	100379	July 2, 2014	July 1, 2015
Ultra Broadband ANT	ROHDE&SCHWARZ	HL562	100157	July 3, 2014	July 2, 2015
Power Meter	Agilent	E4416A	MY45101555	July 3, 2014	July 2, 2015
Power Sensor	Agilent	E9327A	MY44421198	July 3, 2014	July 2, 2015
System Controller	CT	SC100	-	July 3, 2014	July 2, 2015
Spectrum Analyzer	ROHDE&SCHWARZ	FSEM	848597/001	July 3, 2014	July 2, 2015
Spectrum Analyzer	ROHDE&SCHWARZ	FSU	1166.1660.03	July 3, 2014	July 2, 2015
Pre-amplifier	Teseq	LAN6900		July 3, 2014	July 2, 2015
Pre-amplifier	Agilent	8447D	83153007374	July 3, 2014	July 2, 2015
Pre-amplifier	Agilent	8449B	3008A01738	July 3, 2014	July 2, 2015
Loop antenna	ZHINAN	ZN30900A	1024	July 3, 2014	July 2, 2015
Horn Antenna	ETS LINDGREN	3117		July 3, 2014	July 2, 2015
Horn Antenna	ETS LINDGREN	3160		July 3, 2014	July 2, 2015
EMI Test Receiver	R&S	ESCS30	100139	July 2, 2014	July 1, 2015
LISN	AFJ	LS16C	16010222119	July 2, 2014	July 1, 2015
Coaxial Cable	TCT	N/A	N/A	July 2, 2014	July 1, 2015
Coaxial Cable	TCT	N/A	N/A	July 2, 2014	July 1, 2015
Coaxial cable	TCT	N/A	N/A	July 2, 2014	July 1, 2015
Coaxial Cable	TCT	N/A	N/A	July 2, 2014	July 1, 2015

2.2 AE used during the test

Equipment type	Manufacturer	Model

3.0 Technical Details

3.1 Summary of test results

The EUT has been tested according to the following specifications:				
Test Item CFR 47 Section Result				
AC Power Line Conducted Emission	15.207(a)	Complies		
Maximum Peak Output Power	15.247(b)(3)	Complies		
6 dB bandwidth	15.247 (a)(2)	Complies		
Maximum Power Density	15.247(e)	Complies		
Band age Measurement	15.247 (d), 15.205 (a), 15.209 (a)	Complies		
Radiated Emission	15.209	Complies		
Antenna Requirement	15.203,15.247(c)	Complies		
RF Exposure	15.247(b), 1.1307(b)	Complies		

3.2 Test Standards

FCC Part 15:2013 Subpart C, Paragraph 15.247 KDB 558074 D01 DTS Meas Guidance v03r02

4.0 EUT Modification

No modification by Shenzhen TCT Testing Technology Co., Ltd.

5.0 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	MU
1.	Radio Frequency	$\pm 1 \times 10^{-9}$
2.	Temperature	±0.1℃
3.	Humidity	±1.0%
4.	RF power, conducted	±0.34dB
5.	RF power density, conducted	±1.45dB
6.	Spurious emissions, conducted	±3.70dB
7.	All emissions, radiated	±4.50dB

Note: 1) For IEEE 802.11b/g/n (HT 20): Low channel: 2412MHz, Middle channel: 2437MHz,

High channel: 2462MHz

For IEEE 802.11n (HT 40): Low channel: 2422MHz, Middle channel: 2437MHz,

High channel: 2452MHz

6.0 Power Line Conducted Emission Test

6.1 Schematics of the test

EUT: Equipment Under Test

6.2 Test Method and test Procedure

The EUT was tested according to ANSI C63.10-2009. The Frequency spectrum From 0.15MHz to 30MHz was investigated.

Test Voltage: 120V~, 60Hz Block diagram of Test setup

6.3 EUT Operating Condition

Operating condition is according to ANSI C63.10 -2009

- A Setup the EUT and simulators as shown on the following
- B Enable AF signal and confirm EUT active to normal condition

6.4 Test Equipment

Instrument Type	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
EMI Test Receiver	R&S	ESCS30	100139	July 2, 2014	July 1, 2015
LISN	AFJ	LS16C	16010222119	July 2, 2014	July 1, 2015

6.5 Conducted Emission Limit

Eraguanay (MHz)	Class A Limits (dB μ V)		Class B Limits (dB µ V)	
Frequency(MHz)	Quasi-peak Level	Average Level	Quasi-peak Level	Average Level
0.15 ~ 0.50	79.0	66.0	66.0~56.0*	56.0~46.0*
$0.50 \sim 5.00$	73.0	60.0	56.0	46.0
5.00 ~ 30.00	73.0	60.0	60.0	50.0

Notes: 1. *Decreasing linearly with logarithm of frequency.

2. The tighter limit shall apply at the transition frequencies

6.6 Test specification:

Environmental conditions: Temperature: 26° C Humidity: 51% Atmospheric pressure: 103kPa

Frequency range: 0.15 MHz – 30 MHz

The test was carried out in the following operation mode(s):

- Tx mode

6.7 Test result

Min. limit margin 2.10 dB at 9.9375MHz

The requirements are FULFILLED

Remarks: According to FCC part 15.207.

A Conducted Emission on Line Terminal of the power line (150kHz to 30MHz)

Limit: FCC PART15 Conduction(QP)	Power:	Humidity:	51 %

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1655	36.03	11.49	47.52	65.18	-17.66	QP	
2		0.1655	18.00	11.49	29.49	55.18	-25.69	AVG	
3		0.1945	33.59	11.46	45.05	63.84	-18.79	QP	
4		0.1945	15.08	11.46	26.54	53.84	-27.30	AVG	
5		0.5836	28.35	11.26	39.61	56.00	-16.39	QP	
6		0.5836	15.02	11.26	26.28	46.00	-19.72	AVG	
7		3.0391	25.98	11.31	37.29	56.00	-18.71	QP	
8		3.0391	18.09	11.31	29.40	46.00	-16.60	AVG	
9		4.4102	26.31	10.83	37.14	56.00	-18.86	QP	
10		4.4102	19.05	10.83	29.88	46.00	-16.12	AVG	
11		14.2734	30.92	11.55	42.47	60.00	-17.53	QP	
12	*	14.2734	27.56	11.55	39.11	50.00	-10.89	AVG	

B Conducted Emission on Neutral Terminal of the power line (150kHz to 30MHz)

Limit: FCC PART15 Conduction(QP)

Power: Humidity: 51 %

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBu∀	dB	Detector	Comment
1	0.1617	41.15	11.51	52.66	65.37	-12.71	QP	
2	0.1617	25.54	11.51	37.05	55.37	-18.32	AVG	
3	0.1930	35.55	11.48	47.03	63.90	-16.87	QP	
4	0.1930	22.35	11.48	33.83	53.90	-20.07	AVG	
5	0.2281	36.73	11.47	48.20	62.52	-14.32	QP	
6	0.2281	26.99	11.47	38.46	52.52	-14.06	AVG	
7	0.2906	32.48	11.43	43.91	60.50	-16.59	QP	
8	0.2906	27.86	11.43	39.29	50.50	-11.21	AVG	
9	9.9375	40.78	11.36	52.14	60.00	-7.86	QP	
10 *	9.9375	36.54	11.36	47.90	50.00	-2.10	AVG	
11	16.2266	37.21	11.39	48.60	60.00	-11.40	QP	
12	16.2266	36.22	11.39	47.61	50.00	-2.39	AVG	

7.0 Maximum Peak Output Power

7.1 Test Setup

7.2 Limits of Maximum Peak Output Power

The Maximum Peak Output Power Measurement is 30dBm.

7.3 Test Procedure

- 1. The testing follows FCC KDB Publication NO558074 (Measurement Guidance of DTS)
- 2. The RF output of EUT was connected to the power meter by a low loss cable
- 3. Measure the power by power meter

7.4 Test Equipment:

Instrument Type	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
Power Meter	Agilent	E4416A	MY45101555	July 3, 2014	July 2, 2015
Power Sensor	Agilent	E9327A	MY44421198	July 3, 2014	July 2, 2015

7.5 Test Result

IEEE 802.11b

Test channel	Conducted Power (dBm)	Limit (dBm)	Result
Lowest	14.37	30	Pass
Middle	15.17	30	Pass
Highest	12.97	30	Pass

IEEE 802.11g

Test channel	Conducted Power (dBm)	Limit (dBm)	Result
Lowest	17.07	30	Pass
Middle	17.64	30	Pass
Highest	18.20	30	Pass

IEEE 802.11n(20MHz)

Test channel	Conducted Power (dBm)	Limit (dBm)	Result
Lowest	19.13	30	Pass
Middle	19.49	30	Pass
Highest	13.69	30	Pass

IEEE 802.11n(40MHz)

Test channel	Conducted Power (dBm)	Limit (dBm)	Result
Lowest	19.75	30	Pass
Middle	20.26	30	Pass
Highest	20.54	30	Pass

8.0 6dB Bandwidth Measurement

8.1 Test Setup

8.2 Limits of 6dB Bandwidth Measurement

The minimum of 6 dB Bandwidth is >500 kHz

8.3 Test Procedure

According to KDB 558074 D01 DTS Meas Guidance v03r02, the transmitter output was connected to the spectrum analyzer through an attenuator. The spectrum analyzer is setting as follows: RBW=100 kHz,

VBW=300 kHz, Detector=Peak, Trace mode=max hold, Sweep=auto couple. The 6dB bandwidth is defined as the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

8.4 Test Equipment:

Instrument Type	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
Spectrum Analyzer	ROHDE&SCHWARZ	FSU	1166.1660.03	July 3, 2014	July 2, 2015

8.5 Test Result

IEEE 802.11b mode						
IEEE 802.110 IIIOUE	T		T			
Test channel	6 dB occupied bandwidth	Limit (kHz)	Result			
Test chamier	(MHz)	Emit (KHZ)	Result			
Lowest	10.00	500	Pass			
Middle	10.06	500	Pass			
Highest	10.06	500	Pass			
IEEE 802.11g mode						
	6 dB occupied bandwidth		- 1			
Test channel	(MHz)	Limit (kHz)	Result			
Lowest	16.34	500	Pass			
Middle	16.28	500	Pass			
Highest	16.35	500	Pass			
IEEE 802.11n(HT 20)	mode					
	6 dB occupied bandwidth	I (III.)	D 1			
Test channel	(MHz)	Limit (kHz)	Result			
Lowest	17.50	500	Pass			
Middle	17.31	500	Pass			
Highest	17.31	500	Pass			
IEEE 802.11n(HT 40) mode						
	6 dB occupied bandwidth		- 1			
Test channel	(MHz)	Limit (kHz)	Result			
Lowest	35.71	500	Pass			
Middle	35.71	500	Pass			
Highest	35.58	500	Pass			

Test plot:

Test Mode: IEEE 802.11b mode

Low channel

Date: 10.NOV.2014 15:17:14

Middle channel

Date: 10.NOV.2014 15:12:00

High channel

Date: 10.NOV.2014 15:08:27

Test Mode: IEEE 802.11g mode

Low channel

Date: 10.NOV.2014 14:59:49

Middle channel

Date: 10.NOV.2014 15:03:00

High channel

Date: 10.NOV.2014 15:05:31

Test Mode: IEEE 802.11n (HT 20) mode

Low channel

Date: 10.NOV.2014 14:56:57

Middle channel

Date: 10.NOV.2014 14:52:09

High channel

Date: 10.NOV.2014 14:48:36

Test Mode: IEEE 802.11n(HT 40) mode

Low channel

Date: 10.NOV.2014 14:33:49

Middle channel

Date: 10.NOV.2014 14:40:15

High channel

Date: 10.NOV.2014 14:44:58

9.0 Power Spectral Density Measurement

9.1 Test Setup

9.2 Limits of Power Spectral Density Measurement

The Maximum Power Spectral Density is 8 dBm in any 3 kHz.

9.3 Test Procedure

According to KDB 558074 D01 DTS Meas Guidance v03r02, the transmitter output was connected to the spectrum analyzer through an attenuator.

The spectrum analyzer is setting as follows:

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- d) Set the VBW \geq 3 × RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = \max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

9.4 Test Equipment:

Instrument Type	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
Spectrum Analyzer	ROHDE&SCHWARZ	FSU	1166.1660.03	July 3, 2014	July 2, 2015

9.5 Test Result

IEEE 802.11b

Test channel	Peak Power Spectral Density (dBm)	Limit (dBm)	Result
Lowest	-11.82	8	Pass
Middle	-11.71	8	Pass
Highest	-9.63	8	Pass

IEEE 802.11g

Test channel	Peak Power Spectral Density (dBm)	Limit (dBm)	Result
Lowest	-18.24	8	Pass
Middle	-16.58	8	Pass
Highest	-16.59	8	Pass

IEEE 802.11n(20MHz)

Test channel	Peak Power Spectral Density (dBm)	Limit (dBm)	Result
Lowest	-18.42	8	Pass
Middle	-17.65	8	Pass
Highest	-17.79	8	Pass

IEEE 802.11n(40MHz)

Test channel	Peak Power Spectral Density (dBm)	Limit (dBm)	Result	
Lowest	-18.62	8	Pass	
Middle	-19.52	8	Pass	
Highest	-18.74	8	Pass	

Test plots:

Test Mode: IEEE 802.11b mode

Low channel

Date: 10.NOV.2014 15:20:03

Middle channel

Date: 10.NOV.2014 15:21:59

High channel

Date: 10.NOV.2014 15:24:16

Test Mode: IEEE 802.11g mode

Low channel

Date: 10.NOV.2014 15:41:06

Middle channel

Date: 10.NOV.2014 15:29:10

High channel

Date: 10.NOV.2014 15:27:32

Test Mode: IEEE 802.11n (HT 20) mode

Low channel

Date: 10.NOV.2014 15:40:23

Middle channel

Date: 10.NOV.2014 15:42:58

High channel

Date: 10.NOV.2014 15:44:05

Test Mode: IEEE 802.11n(HT 40) mode

Low channel

Date: 10.NOV.2014 15:49:54

Middle channel

Date: 10.NOV.2014 15:48:31

High channel

Date: 10.NOV.2014 15:47:07

10.0 Band-edge Measurement

10.1 Test Equipment

Instrument Type	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
Spectrum Analyzer	ROHDE&SCHWARZ	FSU	1166.1660.03	July 3, 2014	July 2, 2015
Pre-amplifier	Agilent	8449B	3008A01738	July 2, 2014	July 1, 2015
Horn Antenna	ETS LINDGREN	3117		July 1, 2014	July 1, 2015

10.2 Test specification:

Environmental conditions: Temperature 22° C Humidity: 50% Atmospheric pressure: 103kPa

10.3 Limit:

Radiated emissions which fall in the restricted bands, as defined in section 15.205(a), must also comply with The radiated emission limits specified in 15.209(a)

The DTS rules specify that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions:7

- a) If the maximum peak conducted output power procedure was used to demonstrate compliance as described in 9.1, then the peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz (*i.e.*, 20 dBc).
- b) If maximum conducted (average) output power was used to demonstrate compliance as described in 9.2, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz (*i.e.*, 30 dBc).
- c) In either case, attenuation to levels below the 15.209 general radiated emissions limits is not required.

10.4 Test Procedure

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq 3 x RBW.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

10.5 Test Result:

Conducted Emission Method

Test plots:

Test Mode: IEEE 802.11b mode

Low channel

Date: 10.NOV.2014 16:09:12

High channel

Date: 10.NOV.2014 16:07:03

Test Mode: IEEE 802.11g mode

Low channel

Date: 10.NOV.2014 16:11:27

High channel

Date: 10.NOV.2014 16:05:10

Test Mode: IEEE 802.11n (HT 20) mode

Low channel

Date: 10.NOV.2014 16:00:41

High channel

Date: 10.NOV.2014 16:03:29

Test Mode: IEEE 802.11n (HT 40) mode

Low channel

Date: 10.NOV.2014 16:01:47

High channel

Date: 10.NOV.2014 15:54:44

11.0 Spurious Emission Test

11.1 Conducted emissions Measurement

11.1.1 Test configuration

11.1.2 Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

11.1.3 Test procedure:

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site. The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz. Measurements are made over the 30MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

11.1.4 Test Equipment

Instrument Type	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Oct. 22, 2014	Oct. 23, 2015

11.1.5 Test Result:

Test plots please refer to next pages.

Note: 1.Conducted emissions measurements below 30 MHz were made, and the maximum peak was detected, which is much less the limit. So it is not submitted in the report.

2. Above 13G the signal is too low, which is much less than the limit, no necessary take down the records.

Test plots:

Test Mode: IEEE 802.11b mode

Low channel

Note: Sweep points=1001pts

Middle channel

Note: Sweep points=1001pts

High channel

Note: Sweep points=1001pts

Test Mode: IEEE 802.11g mode

Low channel

Note: Sweep points=1001pts

Middle channel

Note: Sweep points=1001pts

High channel

Test Mode: IEEE 802.11n(HT 20) mode

Low channel

Note: Sweep points=1001pts

Middle channel

High channel

Note: Sweep points=1001pts

Test Mode: IEEE 802.11n(HT 40) mode

Low channel

Middle channel

Note: Sweep points=1001pts

High channel

11.2 Radiated emissions Measurement

11.2.1 Test Method and test Procedure:

- 1) The EUT was tested according to ANSI C63.10 -2009.
- 2) The EUT, peripherals were put on the turntable which table size is 1m x 1.5 m, table high 0.8 m. All set up is according to ANSI C63.10-2009.
- 3) The frequency spectrum from 30 MHz to 25 GHz was investigated. All readings from 30 MHz to 1 GHz quasi-peak values with a resolution bandwidth of 120 kHz.

All readings are above 1 GHz, peak values with a resolution bandwidth of 1 MHz. Measurements were made at 3 meters.

Set the spectrum as follows:

- 1): Peak: RBW=1MHz, VBW=1MHz, Sweep=Auto
- 2): Average: RBW=1MHz, VBW=10Hz, Sweep=Auto
- 4) The antenna high is varied from 1 m to 4 m high to find the maximum emission for each frequency.
- 5) The antenna polarization: Vertical polarization and Horizontal polarization.

Block diagram of Test setup

Block diagram of Test setup for frequency below 30MHz

Block diagram of Test setup for frequency above 1GHz

11.2.2 EUT Operating Condition

Operating condition is according to ANSI C63.10 -2009

11.2.3 Radiated Emission Limit

All emission from a digital device, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strength specified below:

Frequencies in restricted band are complied to limit on Paragraph 15.209.

Frequency Range (MHz)	Distance (m)	Field strength (dB μ V/m)
0.009-0.490	3	20log 2400/F (kHz) + 80
0.490-1.705	3	20log 24000/F (kHz) + 40
1.705-30	3	20log 30 + 40
30-88	3	40.0
88-216	3	43.5
216-960	3	46.0
Above 960	3	54.0

Note:

- 1) RF Voltage (dBuV) = 20 log RF Voltage (uV)
- 2) In the Above Table, the tighter limit applies at the band edges.
- 3) Distance refers to the distance in meters between the measuring instrument antenna and the EUT
- 4) This is a handhold device. The radiated emissions should be tested under 3-axes position (Lying, Side, and Stand), After pre-test. It was found that the worse radiated emission was get at the lying position.
- 5) All scanning using PK detector. And the final emission level was get using QP detector for frequency range from 30-1000MHz.As to 1G-25G, the final emission level got using PK and AV detector.
- 6) If measurement is made at 3m distance, then F.S Limitation at 3m distance is adjusted by using the formula Ld1 = Ld2 * (d2/d1)
- 7)The DTS rules specify that emissions which fall into restricted frequency bands shall comply with the general radiated emission limits.9

11.2.4 Test Equipment:

Instrument Type	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
ESPI Test Receiver	ROHDE&SCHWARZ	ESPI 3	100379	July 2, 2014	July 1, 2015
Spectrum Analyzer	ROHDE&SCHWARZ	FSEM	848597/001	July 3, 2014	July 2, 2015
Pre-amplifier	Teseq	LNA6900		July 3, 2014	July 2, 2015
Pre-amplifier	Agilent	8447D	83153007374	July 3, 2014	July 2, 2015
Pre-amplifier	Agilent	8449B	3008A01738	July 3, 2014	July 2, 2015
Loop antenna	ZHINAN	ZN30900A	1024	July 3, 2014	July 2, 2015
Ultra Broadband ANT	ROHDE&SCHWARZ	HL562	100157	July 3, 2014	July 2, 2015
Horn Antenna	ETS LINDGREN	3117		July 3, 2014	July 2, 2015
Horn Antenna	ETS LINDGREN	3160		July 3, 2014	July 2, 2015

11.2.5 Test specification:

Environmental conditions: Temperature 22° C Humidity: 51% Atmospheric pressure: 103kPa

11.2.6 Test result

A Radiated Emission (9 kHz----30 MHz)

Note: 1) Emission Level=Reading+ Cable loss+ Antenna factor-Amp factor

2) The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement

Result: Pass

Frequency (MHz)	Level@3m (dB μ V/m)	Limit@3m (dB µ V/m)

B General Radiated Emissions Data

Please refer to following diagram for individual

Radiated Emission In Horizontal (30MHz----1000MHz)

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		120.6118	46.90	-13.74	33.16	43.50	-10.34	QP		0	
2		324.8645	47.20	-7.74	39.46	46.00	-6.54	QP		0	
3	İ	445.6931	46.10	-4.72	41.38	46.00	-4.62	QP		0	
4		481.5111	40.80	-3.56	37.24	46.00	-8.76	QP		0	
5	*	651.3831	43.90	-0.87	43.03	46.00	-2.97	QP		0	
6		965.4741	37.70	4.89	42.59	54.00	-11.41	QP		0	

Radiated Emission In Vertical (30MHz----1000MHz)

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		37.5648	40.30	-12.78	27.52	40.00	-12.48	QP		0	
2	*	120.6118	51.70	-13.74	37.96	43.50	-5.54	QP		0	
3		324.8645	43.10	-7.74	35.36	46.00	-10.64	QP		0	
4		445.6932	43.90	-4.72	39.18	46.00	-6.82	QP		0	
5		651.3831	37.90	-0.87	37.03	46.00	-8.97	QP		0	
6		965.4741	40.30	4.89	45.19	54.00	-8.81	QP		0	

Note: Measurements were conducted in all three channels (high, middle, low) with IEEE 802.11b mode, IEEE 802.11g mode, IEEE 802.11n(HT20), IEEE 802.11n(HT40), and the worst case (high channel in IEEE 802.11n (HT40) mode) was submitted only.

C Fundamental & Harmonics Radiated Emission Data (1000MHz-25000MHz)

IEEE 802	.11b mode:	Low chann	el: 2412 MI	Hz					
Freq.	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissic	Emission Level		AV limit	Margin
(MHz)	H/V	(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)
2387.01	Н	70.57		-4.20	66.37		74.00	54.00	-7.63
2387.01	Н		52.44	-4.20		48.24	74.00	54.00	-5.76
4824.00	Н	49.48		-3.94	45.54		74.00	54.00	-8.46
7236.00	Н	45.74		0.52	46.26		74.00	54.00	-7.74
2387.01	V	70.43		-4.20	66.23		74.00	54.00	-7.77
2387.01	V		50.92	-4.20		46.72	74.00	54.00	-7.28
4824.00	V	49.59		-3.94	45.65		74.00	54.00	-8.35
7236.00	V	45.5		0.52	46.02		74.00	54.00	-7.98

- 2) Radiated emissions measured in frequencies above 1GHz were made with peak detector and Average (AV) detector.
- 3) Average test would be performed if the peak readings were greater than the average limit.
- 4) Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 5) Emission Level=Peak (AV) Reading + Correction Factor;Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 6) Margin (dB) = Emission Level (Peak) (dBuV/m)-Average limit (dBuV/m)

IEEE 802	.11b mode:	Middle cha	nnel: 2437	MHz					
Freq.	Ant. Pol.	Peak reading	AV Correction reading Factor		Emission Le	evel	Peak limit	AV limit	Margin
(MHz)	H/V	(dBuV)	(dBuV)	Factor (dB)	Peak (dBuV/m)	AV (dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)
4874.00	Н	49.70		-3.98	45.72		74.00	54.00	-8.28
7311.00	Н	45.88		0.57	46.45		74.00	54.00	-7.55
4874.00	V	50.82		-3.98	46.84		74.00	54.00	-7.16
7311.00	V	46.06		0.57	46.63		74.00	54.00	-7.37

- 2) Radiated emissions measured in frequencies above 1GHz were made with peak detector and Average (AV) detector.
- 3) Average test would be performed if the peak readings were greater than the average limit.
- 4) Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 5) Emission Level=Peak (AV) Reading + Correction Factor;Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 6) Margin (dB) = Emission Level (Peak) (dBuV/m)-Average limit (dBuV/m)

IEEE 802	.11b mode:	High chanr	nel: 2462 M	Hz					
Freq.	Ant. Pol.	Peak reading	AV reading	Correction Factor	EIIIISSIOII LEVEI		Peak limit	AV limit	Margin
(MHz)	H/V	(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)
2493.51	Н	68.96		-2.38	66.58		74.00	54.00	-7.42
2493.51	Н		50.30	-2.38		47.92	74.00	54.00	-6.08
4924.00	Н	51.34		-3.98	47.36		74.00	54.00	-6.64
7386.00	Н	46.53		0.57	47.1		74.00	54.00	-6.90
2493.51	Н	69.63		-2.38	67.25		74.00	54.00	-6.75
2493.51	Н		50.22	-2.38		47.84	74.00	54.00	-6.16
4924.00	V	50.97		-3.98	46.99		74.00	54.00	-7.01
7386.00	V	46.29		0.57	46.86		74.00	54.00	-7.14

- 2) Radiated emissions measured in frequencies above 1GHz were made with peak detector and Average (AV) detector.
- 3) Average test would be performed if the peak readings were greater than the average limit.
- 4) Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 5) Emission Level=Peak (AV) Reading + Correction Factor;Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 6) Margin (dB) = Emission Level (Peak) (dBuV/m)-Average limit (dBuV/m)

IEEE 802	.11g mode:	Low chann	el: 2412 MI	Ηz					
Freq.	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emission Level		Peak limit	AV limit	Margin
(MHz)	H/V	(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)
2387.01	Н	71.13		-4.20	66.93		74.00	54.00	-7.07
2387.01	Н		52.01	-4.20	-	47.81	74.00	54.00	-6.19
4824.00	Н	49.82		-3.94	45.88		74.00	54.00	-8.12
7236.00	Н	46.15		0.52	46.67		74.00	54.00	-7.33
2387.01	V	71.17		-4.20	66.97		74.00	54.00	-7.03
2387.01	V		51.38	-4.20		47.18	74.00	54.00	-6.82
4824.00	V	50.03		-3.94	46.09		74.00	54.00	-7.91
7236.00	V	45.69		0.52	46.21		74.00	54.00	-7.79

- 2) Radiated emissions measured in frequencies above 1GHz were made with peak detector and Average (AV) detector.
- 3) Average test would be performed if the peak readings were greater than the average limit.
- 4) Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 5) Emission Level=Peak (AV) Reading + Correction Factor;Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 6) Margin (dB) = Emission Level (Peak) (dBuV/m)-Average limit (dBuV/m)

IEEE 802	.11g mode:	Middle cha	nnel: 2437	MHz					
Freq.	Ant. Pol.	Peak reading	AV reading			evel	Peak limit	AV limit	Margin
(MHz)	H/V	(dBuV)	(dBuV)	Factor (dB)	Peak (dBuV/m)	AV (dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)
4874.00	Н	50.43		-3.98	46.45		74.00	54.00	-7.55
7311.00	Н	46.26		0.57	46.83		74.00	54.00	-7.17
4874.00	V	50.92		-3.98	46.94		74.00	54.00	-7.06
7311.00	V	46.64		0.57	47.21		74.00	54.00	-6.79

- 2) Radiated emissions measured in frequencies above 1GHz were made with peak detector and Average (AV) detector.
- 3) Average test would be performed if the peak readings were greater than the average limit.
- 4) Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 5) Emission Level=Peak (AV) Reading + Correction Factor;Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 6) Margin (dB) = Emission Level (Peak) (dBuV/m)-Average limit (dBuV/m)

IEEE 802	.11g mode:	High chann	el: 2462 M	Hz					
Freq.	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emission Level		Peak limit	AV limit	Margin
(MHz)	H/V	(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)
2493.51	Н	69.76		-2.38	67.38		74.00	54.00	-6.62
2493.51	Н		51.09	-2.38	-	48.71	74.00	54.00	-5.29
4924.00	Н	51.28		-3.98	47.30		74.00	54.00	-6.70
7386.00	Н	46.54		0.57	47.11		74.00	54.00	-6.89
2493.51	Н	70.67		-2.38	68.29		74.00	54.00	-5.71
2493.51	Н		49.81	-2.38		47.43	74.00	54.00	-6.57
4924.00	V	51.04		-3.98	47.06		74.00	54.00	-6.94
7386.00	V	46.59		0.57	47.16		74.00	54.00	-6.84

- 2) Radiated emissions measured in frequencies above 1GHz were made with peak detector and Average (AV) detector.
- 3) Average test would be performed if the peak readings were greater than the average limit.
- 4) Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 5) Emission Level=Peak (AV) Reading + Correction Factor;Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 6) Margin (dB) = Emission Level (Peak) (dBuV/m)-Average limit (dBuV/m)

IEEE 802	.11n(HT20)	mode: Low	channel: 2	412 MHz					
Freq.	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emission Level		Peak limit	AV limit	Margin
(MHz)	H/V	(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)
2387.01	Н	72.09		-4.20	67.89		74.00	54.00	-6.11
2387.01	Н		53.02	-4.20	-	48.82	74.00	54.00	-5.18
4824.00	Н	50.72		-3.94	46.78		74.00	54.00	-7.22
7236.00	Н	47.57		0.52	48.09		74.00	54.00	-5.91
2387.01	V	71.49		-4.20	67.29		74.00	54.00	-6.71
2387.01	V		51.44	-4.20		47.24	74.00	54.00	-6.76
4824.00	V	50.25		-3.94	46.31		74.00	54.00	-7.69
7236.00	V	46.06		0.52	46.58		74.00	54.00	-7.42

- 2) Radiated emissions measured in frequencies above 1GHz were made with peak detector and Average (AV) detector.
- 3) Average test would be performed if the peak readings were greater than the average limit.
- 4) Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 5) Emission Level=Peak (AV) Reading + Correction Factor;Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 6) Margin (dB) = Emission Level (Peak) (dBuV/m)-Average limit (dBuV/m)

IEEE 802.11n(HT20) mode: Middle channel: 2437 MHz											
Freq.	Ant. Pol.	Peak reading	AV reading	Correction	Emission Level		Peak limit	AV limit	Margin		
(MHz)	H/V	(dBuV)	(dBuV)	Factor (dB)	Peak (dBuV/m)	AV (dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)		
4874.00	Н	50.01		-3.98	46.03		74.00	54.00	-7.97		
7311.00	Н	46.58		0.57	47.15		74.00	54.00	-6.85		
4874.00	V	51.79		-3.98	47.81		74.00	54.00	-6.19		
7311.00	V	48.02		0.57	48.59		74.00	54.00	-5.41		

- 2) Radiated emissions measured in frequencies above 1GHz were made with peak detector and Average (AV) detector.
- 3) Average test would be performed if the peak readings were greater than the average limit.
- 4) Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 5) Emission Level=Peak (AV) Reading + Correction Factor;Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 6) Margin (dB) = Emission Level (Peak) (dBuV/m)-Average limit (dBuV/m)

IEEE 802.11n(HT20) mode: High channel: 2462 MHz										
Freq.	Freq. Ant. Pol.	ol. Peak reading	AV reading	Correction Factor	Emission Level		Peak limit	AV limit	Margin	
(MHz)	H/V	(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	
2493.51	Н	71.05		-2.38	68.67		74.00	54.00	-5.33	
2493.51	Н		51.74	-2.38	-	49.36	74.00	54.00	-4.64	
4924.00	Н	52.31		-3.98	48.33		74.00	54.00	-5.67	
7386.00	Н	47.38		0.57	47.95		74.00	54.00	-6.05	
2493.51	Н	71.25		-2.38	68.87		74.00	54.00	-5.13	
2493.51	Н		50.93	-2.38		48.55	74.00	54.00	-5.45	
4924.00	V	52.41		-3.98	48.43		74.00	54.00	-5.57	
7386.00	V	47.58		0.57	48.15		74.00	54.00	-5.85	

- 2) Radiated emissions measured in frequencies above 1GHz were made with peak detector and Average (AV) detector.
- 3) Average test would be performed if the peak readings were greater than the average limit.
- 4) Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 5) Emission Level=Peak (AV) Reading + Correction Factor;Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 6) Margin (dB) = Emission Level (Peak) (dBuV/m)-Average limit (dBuV/m)

IEEE 802.11n(HT40) mode: Low channel: 2422 MHz										
Freq.	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emission Level		Peak limit	AV limit	Margin	
(MHz)	H/V	(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	
2387.01	Н	70.94		-4.20	66.74		74.00	54.00	-7.26	
2387.01	Н		52.89	-4.20		48.69	74.00	54.00	-5.31	
4844.00	Н	50.7		-3.94	46.76		74.00	54.00	-7.24	
7266.00	Н	46.82		0.52	47.34		74.00	54.00	-6.66	
2387.01	V	70.85		-4.20	66.65		74.00	54.00	-7.35	
2387.01	V		51.79	-4.20		47.59	74.00	54.00	-6.41	
4844.00	V	51.01		-3.94	47.07		74.00	54.00	-6.93	
7266.00	V	46.20		0.52	46.72		74.00	54.00	-7.28	

- 2) Radiated emissions measured in frequencies above 1GHz were made with peak detector and Average (AV) detector.
- 3) Average test would be performed if the peak readings were greater than the average limit.
- 4) Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 5) Emission Level=Peak (AV) Reading + Correction Factor;Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 6) Margin (dB) = Emission Level (Peak) (dBuV/m)-Average limit (dBuV/m)

IEEE 802.11n(HT40) mode: Middle channel: 2437 MHz										
Freq.	Ant. Pol.	Peak reading		Emission Level		Peak limit	AV limit	Margin		
(MHz)	H/V	(dBuV)	(dBuV)	Factor (dB)	Peak (dBuV/m)	AV (dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	
4874.00	Н	51.61		-3.98	47.63		74.00	54.00	-6.37	
7311.00	Н	47.42		0.57	47.99		74.00	54.00	-6.01	
4874.00	V	50.90		-3.98	46.92		74.00	54.00	-7.08	
7311.00	V	46.69		0.57	47.26		74.00	54.00	-6.74	

- 2) Radiated emissions measured in frequencies above 1GHz were made with peak detector and Average (AV) detector.
- 3) Average test would be performed if the peak readings were greater than the average limit.
- 4) Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 5) Emission Level=Peak (AV) Reading + Correction Factor;Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 6) Margin (dB) = Emission Level (Peak) (dBuV/m)-Average limit (dBuV/m)

IEEE 802.11n(H40) mode: High channel: 2452 MHz										
Freq.	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emission Level		Peak limit	AV limit	Margin	
(MHz)	H/V	(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	
2493.51	Н	70.91		-2.38	68.53		74.00	54.00	-5.47	
2493.51	Н		51.08	-2.38		48.70	74.00	54.00	-5.30	
4904.00	Н	52.11		-3.98	48.13		74.00	54.00	-5.87	
7356.00	Н	47.43		0.57	48.00		74.00	54.00	-6.00	
2493.51	Н	71.53		-2.38	69.15		74.00	54.00	-4.85	
2493.51	Н		50.55	-2.38		48.17	74.00	54.00	-5.83	
4904.00	V	51.85		-3.98	47.87		74.00	54.00	-6.13	
7356.00	V	47.26		0.57	47.83		74.00	54.00	-6.17	

- 2) Radiated emissions measured in frequencies above 1GHz were made with peak detector and Average (AV) detector.
- 3) Average test would be performed if the peak readings were greater than the average limit.
- 4) Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 5) Emission Level=Peak (AV) Reading + Correction Factor;Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 6) Margin (dB) = Emission Level (Peak) (dBuV/m)-Average limit (dBuV/m)

12.0 Antenna Requirement

12.1 Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitter antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the mount in dB that the directional gain of the antenna exceeds 6 dBi.

12.2 Antenna Specification

According to the manufacturer declared, the EUT has a ceramic antenna; the directional gain of antenna is 2.0dBi, and no consideration of replacement. Therefore the EUT is considered sufficient to comply with the provision.

WIFI Antenna

END OF REPORT