

IoT Data Exchange Protocols and associated software development

How does IoT devices communicate

सी डैक **EDAC**

Module Contents

IoT Protocol Stack

- Communication Models & Patterns
- OS for IoT devices Contiki -os
- RESTful Architecture for IoT

IoT Protocols - HTTP, CoAP & MQTT

IoT Protocol stack for constrained devices

सी डेक **©DAC**

डैक Typical IoT stack for IEEE 802.15.4 Motes

Application	_
I TABLICATION	

Transport

Network, Routing

Adaptation

MAC

Duty Cycle

Radio

CoAP MQTT Websockets HTTP

TCP UDP

IPv4 IPv6 RPL

6loWPAN

CSMA/CA

ContikiMAC

Application Layer

- Responsible for data formatting
- Ensures that data is sent/received in application optimal schemes
- Applications are built on the top of application layer protocols
- IoT application layer headers are lightweight

CoAP MQTT Websockets HTTP

TCP UDP

IPv4 IPv6 RPL

6loWPAN

CSMA/CA

ContikiMAC

Transport Layer

- Allows multiple applications to run on devices by having dedicated channel numbers
- Maintains sessions between applications on the devices
- In-order delivery of packets
- Optional secured communication using TLS (transport layer security) on TCP and DTLS (Datagram transport layer security) on UDP

CoAP MQTT Websockets HTTP

TCP UDP

IPv4 IPv6 RPL

6loWPAN

CSMA/CA

ContikiMAC

Network Layer

- Device addressing IPv6
- Routing of data through multiple hops if required
- Routing algorithms optimized for power consumption in IoT

CoAP MQTT Websockets HTTP

TCP UDP

IPv4 IPv6 RPL

6loWPAN

CSMA/CA

ContikiMAC

Adaptation Layer

- Transmits IPv6 datagrams over IEEE 802.15.4 Link layer frames and vice-versa
- Header compression for IPv6 and UDP
- Data Fragmentation and reassembly

CoAP MQTT Websockets HTTP

TCP UDP

IPv4 IPv6 RPL

6loWPAN

CSMA/CA

ContikiMAC

MAC Layer

 Reliable link between two devices by detecting and correcting errors that may happen in physical layer

Protocol used : CSMA/CA

CoAP MQTT Websockets HTTP

TCP UDP

IPv4 IPv6 RPL

6loWPAN

CSMA/CA

ContikiMAC

Radio Duty Cycle layer

 Used for reducing power consumption of radio transreceiver

 Algorithm decides when the radio is On/Off – Contiki MAC

 Need to optimize for Radio being On when receiving data from others CoAP MQTT
Websockets HTTP

TCP UDP

IPv4 IPv6 RPL

6loWPAN

CSMA/CA

ContikiMAC

Physical layer

- Radio layer transmission and reception of signals in the frequency band of 2.4 GHz and Sub 1 GHz.
- IEEE 802.15.4 2006, IEEE 802.15.4e Standards
- Bit timings, synchronization,
 Modulation demodulations and encodings

CoAP MQTT Websockets HTTP

TCP UDP

IPv4 IPv6 RPL

6loWPAN

CSMA/CA

ContikiMAC

Routing Path

CoAP MQTT Websockets HTTP

TCP UDP

IPv4 IPv6 RPL

6loWPAN

CSMA/CA

ContikiMAC

802.15.4

CoAP MQTT Websockets HTTP

TCP UDP

Pv4 IPv6 RPD

6loWPAN

CSMA/CA

ContikiMAC

802.15.4

CoAP MQTT Websockets HTTP

TCP UDP

IPv4 IPv6 RPL

6loWPAN

CSMA/CA

ContikiMAC

Communication Models in IoT

- Request Response
- Publish Subscribe
- Push Pull
- Exclusive Pair

Request – Response Model

- First Client makes a request to server
- Server then responds to clients request
- Server maintains the resources
- Based on the request from Client, Server may retrieve resource representations and sends the data client in the appropriate format

Examples of Protocols based on Request – Response

HTTP (Hyper text transfer protocol)

CoAP (Constrained Application Protocol)

Publish - Subscribe Model

- Consists of Publisher, Subscriber and Broker
- Publishers publishes data onto broker on a given topic
- Subscriber need to subscribe onto particular topic on Broker
- Whenever data arrives on the Broker on a topic, Broker in turn notifies all the subscribers who have subscribed on that topic
- Decouples Publishers & Subscribers

Examples of Protocols based on Publish - Subscribe

MQTT (Message queue telemetry transport)

DDS (Data distribution service)

Push - Pull Model

- Producers push data onto queues
- Consumers pull data from queues
- Queue kind of data structure is maintained
- Decouples Producers and Consumers

Examples of Protocols based on Push –

AMQP (Advanced message queuing protocol)

Exclusive Pair Model

स्रोडेक Exclusive Pair Communication Model

 Bi-directional, full duplex communication after the initial handshake

 Once the connection is established, it remains open and allows full duplex communication between client and server until the connection closes

Example of Protocol based on Exclusive Pair

 Websockets: Websocket protocol allows fullduplex communication over a single socket connection between server and client machines

Communication Patterns in IoT

