Vypsané testy z FITwiki:

- 23. 12. 2023 Valenta
- <u>5. 12. 2023 Trofimova</u>
- 14. 12. 2021 Valenta 14:30 V
- 30. 11. 2021 Valenta
- 17. 12. 2018 Valenta 16:15
- 11. 12. 2017 Valenta 14:30

Verze A

Část 1 - SQL optimalizace

Byly zadány dvě relace R[A] a S[B,D]. Atribut A může nabývat 10 různých hodnot. Pak byly zadné Nr = 1000 Br = 2 a Ns = 1000 Bs = 50.

Příklad 1 (2 body)

Dopočítejte statistiky Pr a Ps:

Řešení:

Pr = Nr/Br = 1000/2 = 500 Ps = Ns/Bs = 1000/50 = 20

Příklad 2 (5 bodů)

Nakreslete strom plánu vyhodnocení pro následující dotaz (byl zadaný v algebře i SQL)

```
(R(A=5)*S)[B,D]
```

```
SELECT B,D FROM (SELECT * FROM R WHERE A=5) CROSS JOIN S
```

Byla tam ještě poznámka, že máme brát v potaz uzávorkování výrazu v algebře

Řešení

Příklad 3 (5 bodů)

Uvažujte nested loop join a určete kolik paměťových stránek bude potřeba k vyhodnocení plánu. Byli tam ještě zadané další statistiky, že blokový faktor B a D = 100.

Příklad 4 (3 body)

Nakreslete strom plánu vyhodnocení pro výraz jako v 2, ale efektivnější.

Část 2 - MongoDB (7 bodů) 🗸

```
db.actors.save({ _id: "trojan", name: { first: "Ivan", last: "Trojan" },
    year: 1964, movies: [ "samotari", "medvidek", "karamazovi" ] });
    db.actors.save({ _id: "machacek", name: { first: "Jiri", last: "Machacek"
}, year: 1966, movies: [ "medvidek", "vratnelahve", "samotari" ] });
    db.actors.save({ _id: "schneiderova", name: { first: "Jitka", last:
        "Schneiderova" }, year: 1973, movies: [ "samotari" ] });
    db.actors.save({ _id: "sverak", name: { first: "Zdenek", last: "Sverak"
}, year: 1936, movies: [ "vratnelahve" ] });
    db.actors.save({ _id: "geislerova", name: { first: "Anna", last:
        "Geislerova" }, year: 1976 });
    db.actors.save({ _id: "vilhelmova", name: { first: "Tatiana", last:
        "Vilhelmova" }, year: 1978, movies: [ "medvidek"] });
    db.actors.save({ _id: "menzel", name: { last: "Menzel", first: "Jiri" },
        year: 1938, movies: "medvidek" });

    db.movies.save({ _id: "samotari", title: { cs: "Samotari", en: "Loners"
```

```
}, year: 2000, rating: 84, actors: [ "trojan", "machacek", "schneiderova"
], genres: [ "comedy", "drama" ], country: [ "CZ", "SI" ], length: 103
});
db.movies.save({ _id: "medvidek", title: "Medvidek", year: 2007,
director: { first: "Jan", last: "Hrebejk" }, rating: 53, actors: [
"trojan", "machacek", "vilhelmova", "issova", "menzel" ], genres: [
"comedy", "drama" ], country: [ "CZ" ], length: 100 });
db.movies.save({ _id: "vratnelahve", title: { cs: "Vratne lahve", en:
"Empties" }, year: 2006, director: { first: "Jan", last: "Sverak" },
rating: 76, actors: [ "sverak", "machacek", "schneiderova" ], genres:
"comedy", country: "CZ", length: 99 });
db.movies.save({ _id: "zelary", title: "Zelary", year: 2003, director: {
last: "Trojan", first: "Ondrej" }, rating: 81, actors: [ ], genres: [
"romance", "drama" ], country: [ "CZ", "SK", "AT" ], length: 142 });
db.movies.save({ _id: "stesti", title: "Stesti", year: 2005, director: {
last: "Slama", first: "Bohdan" }, rating: 72, length: 100, awards: [ {
type: "Czech Lion", year: 2005 } ] });
db.movies.save({ _id: "kolja", title: "Kolja", year: 1996, rating: 86,
length: 105, awards: [ { type: "Czech Lion", year: 1996 }, { type:
"Noname Awards", category: "A", year: 2005 } ] });
```

Příklad 1 (2 body) 🗸

Vyberte herce narozené před rokem 1967 s křesním jménem Jiri.

Řešení

Řešení podle Morčína:

```
db.actors.find({
   year: {
      "$lt": 1967
   },
   "name.first": "Jiri"
})
```

Příklad 2 (2 body) 🗸

Vypište herce co hráli zároveň ve filmech samotari a medvidek, a vypište jen jejich id a křestní jméno.

Řešení

```
db.actors.find({
    movies: {
        "$all": ["samotari", "medvidek"]
    },
},
{_id:1, "name.first":1})
```

Příklad 3 (3 body) 🗸

Herci, kteří hrají ve filmech medvídek nebo samotari. Seřaďte výstup vzestupně dle příjmení herce.

Řešení

Řešení podle Morčína:

Část 3 - Neo4j

Byl zadaný celkem jednoduchý graf jen s jedním typem uzlů a hran a to: Města a přímé cesty mezi nimi. Hrany byly ohodnocené cenou spoje. Uzel Města obsahoval vlastnosti name a code.

Příklad 1 (2 body)

Vypište všechna města jejihž kód je větší než "ch".

Řešení

```
MATCH (s)
WHERE s.code>='ch'
RETURN s;
```

Příklad 2 (3 body)

Vypište všechna města kam se dá dostat z Dallasu přímým spojením. Byla tam ještě nějaká podmínka na řazení myslím...

Řešení

```
MATCH (s{code:'da'})-[:DIRECT]→(d)
WHERE s<>d
RETURN d.name;
```

Příklad 3 (3 body)

Vypsat čárkou oddělený seznam kódů měst kam se dá dostat z New Yorku s maximálně 4 přestupy.

Řešení

```
MATCH (s{code:'ny'})-[:DIRECT *4]→(d)

WHERE s<>d

WITH COLLECT(DISTINCT d) as n

RETURN REDUCE(res='', x in n | res + x.code + ',');
```

Část 4 - XQuery

Zde bylo zadané XML něco ve stylu:

```
<body>
  <div id="book132">
    <h1>Název knihy 1</h1>
    <div>
      <img src="image.jpg"/>
    </div>
  </div>
  <div id="book221">
   <h1>Název knihy 2</h1>
   <div>
      <img src="image.png"/>
    </div>
  </div>
  <div id="book114">
    <h1>Název knihy 3</h1>
      <div><img src="image.jpg"/></div>
    </div>
  </div>
</body>
```

Příklad 1 (5 bodů)

Vypište ID divů, které obsahují obrázek, který končí na jpg.

Příklad 2 (5 bodů)

Vypište abecedně seřazené knihy podle jejího názvu (element h1) a počet obrázků, které kniha obsahuje (v libovolně vnořené úrovni). Výpis proveďte v následující struktuře.

```
<element>
  <book>název knihy></book>
  <images>počet obrázků</images>
  </element>
```

Verze B

Část 1 (7 bodů)

Mějme relace R(A, B) a S(X, Y, Z). Předpokládejme, že nR = 2 000 (počet záznamů), bR = 10 (blokovací faktor), nS = 1 000 a bS = 10. Atribut A nabývá vR.A = 50 různých hodnot (každá z nich je stejně pravděpodobná). Navíc máme k dispozici clusterovaný index pro atribut A v relaci R. Jeho hloubka je iR.A = 2 a listová úroveň obsahuje pR.A = 50 bloků.

Příklad 1 (1 bod)

Dopočítejte statistiky Pr a Ps

Příklad 2 (2 body)

Vytvořte prováděcí plán ve formě stromu pro vyhodnocení dotazu (byl zadaný v algebře i SQL)

```
(R(A = 13) \times S)
```

select from (select from R where A=13) cross join S;

Byla tam ještě poznámka, že máme brát v potaz uzávorkování výrazu v algebře

Příklad 3 (3 body)

Uvažujte plán vyhodnocení, ve kterém se spojení realizuje pomocí algoritmu Nested Loops. Pro mezivýsledek každé dílčí operace určete počty záznamů, blokovací faktor a počet bloků. Nakonec určete celkovou cenu vyhodnocení celého plánu. K dispozici máme systémovou paměť o velikosti M = 22 bloků. Postup komentujte.

Příklad 4 (1 bod)

Navrhněte (opět formou syntaktického stromu jako výše), jak by bylo možné získat rychlejší plán vyhodnocení. Pro tento plán již nemusíte nic dalšího počítat.

Část 2 - MongoDB (7 bodů) 🗸

Byla zadána DB jako byla ve cvičeních tj

```
db.actors.save({ _id: "trojan", name: { first: "Ivan", last: "Trojan" },
year: 1964, movies: [ "samotari", "medvidek", "karamazovi" ] });
db.actors.save({ _id: "machacek", name: { first: "Jiri", last: "Machacek"
}, year: 1966, movies: [ "medvidek", "vratnelahve", "samotari" ] });
db.actors.save({ _id: "schneiderova", name: { first: "Jitka", last:
"Schneiderova" }, year: 1973, movies: [ "samotari" ] });
db.actors.save({ _id: "sverak", name: { first: "Zdenek", last: "Sverak"
}, year: 1936, movies: [ "vratnelahve" ] });
db.actors.save({ _id: "geislerova", name: { first: "Anna", last:
"Geislerova" }, year: 1976 });
db.actors.save({ _id: "vilhelmova", name: { first: "Tatiana", last:
"Vilhelmova" }, year: 1978, movies: [ "medvidek"] });
db.actors.save({ _id: "menzel", name: { last: "Menzel", first: "Jiri" },
year: 1938, movies: "medvidek" });
db.movies.save({ _id: "samotari", title: { cs: "Samotari", en: "Loners"
}, year: 2000, rating: 84, actors: [ "trojan", "machacek", "schneiderova"
], genres: [ "comedy", "drama" ], country: [ "CZ", "SI" ], length: 103
});
db.movies.save({ _id: "medvidek", title: "Medvidek", year: 2007,
director: { first: "Jan", last: "Hrebejk" }, rating: 53, actors: [
"trojan", "machacek", "vilhelmova", "issova", "menzel" ], genres: [
"comedy", "drama" ], country: [ "CZ" ], length: 100 });
db.movies.save({ _id: "vratnelahve", title: { cs: "Vratne lahve", en:
"Empties" }, year: 2006, director: { first: "Jan", last: "Sverak" },
```

```
rating: 76, actors: [ "sverak", "machacek", "schneiderova" ], genres:
"comedy", country: "CZ", length: 99 });
db.movies.save({ _id: "zelary", title: "Zelary", year: 2003, director: {
   last: "Trojan", first: "Ondrej" }, rating: 81, actors: [ ], genres: [
   "romance", "drama" ], country: [ "CZ", "SK", "AT" ], length: 142 });
db.movies.save({ _id: "stesti", title: "Stesti", year: 2005, director: {
   last: "Slama", first: "Bohdan" }, rating: 72, length: 100, awards: [ {
   type: "Czech Lion", year: 2005 } ] });
db.movies.save({ _id: "kolja", title: "Kolja", year: 1996, rating: 86, length: 105, awards: [ { type: "Czech Lion", year: 1996 }, { type: "Noname Awards", category: "A", year: 2005 } ] });
```

Příklad 1 (2 body) 🗸

Herci, narození dříve než 1970 s křestním jménem Jiří.

Řešení

Řešení podle Morčína:

```
db.actors.find({
   year: {
      "$lt": 1970
    },
    "name.first": "Jiri"
})
```

Příklad 2 (2 body) 🗸

Filmy, které natočil Jan Hřebejk (director). Vypište pouze ID a názvy filmů.

Řešení

```
db.movies.find({
   "director.first": "Jan",
   "director.last": "Hrebejk"
},
{
   _id: 1,
   title: 1
})
```

Herci, kteří hrají ve filmech medvídek a samotari. Seřaďte výstup vzestupně dle příjmení herce.

Řešení

Řešení podle Morčína:

Část 3 (8 bodů)

Graf letišť, jako ze cvičení:

```
CREATE
 (sf {name:'San Francisco', code:'sf'}),
 (la {name: 'Los Angeles', code: 'la'}),
 (da {name:'Dallas', code:'da'}),
 (ch {name:'Chicago', code:'ch'}),
 (ny {name:'New York', code:'ny'}),
 (sf)-[:DIRECT {price:50}]->(la),
 (la)-[:DIRECT {price:50}]->(sf),
 (sf)-[:DIRECT {price:250}]->(ch),
 (ch)-[:DIRECT {price:250}]->(sf),
 (da)-[:DIRECT {price:300}]->(sf),
 (sf)-[:DIRECT {price:300}]->(da),
 (ch)-[:DIRECT {price:100}]->(da),
 (da)-[:DIRECT {price:100}]->(ch),
 (ch)-[:DIRECT {price:250}]->(ny),
 (ny)-[:DIRECT {price:250}]->(ch),
 (ny)-[:DIRECT {price:225}]->(da),
 (da)-[:DIRECT {price:225}]->(ny),
 (da)-[:DIRECT {price:200}]->(la),
 (la)-[:DIRECT {price:200}]->(da);
```

Příklad 1 (2 body)

Vypište trojice <cíl, cena, start> pro přímé lety, výstup setřiďte abecedně dle startu a ceny.

Příklad 2 (3 body)

Vypište letiště dosažitelná z Los Angeles pomocí právě jednoho přestupu.

Příklad 3 (3 body)

Vypište cesty (kódy letišť oddělené čárkou) začínající v Los Angeles do maximální délky 4.

Část 4 (10 bodů)

Zde bylo zadané XML něco ve stylu:

```
<html><body>
        <div id="kniha1">
                <h1>Mravenečkova dobrodružství</h1>
                        <img src="mravenecek.jpg"/>
                </div>
        </div>
        <div id="kniha2">
                <h1>1984</h1>
                <img src="1984.png"/>
        </div>
        <div id="kniha3">
                <h1>Cesta kolem světa</h1>
                <div>
                        Autor: <strong>Jules Verne</strong>
                        <div><img src="verne.jpg"/></div>
                </div>
                <img src="1984.png"/>
        </div>
        <div id="kniha4">
                <h1>Pravidla českého pravopisu</h1>
        </div>
</body></html>
```

Příklad 1 (4 body)

Napište dotaz, který vybere id všech elementů div, které obsahují (jakkoliv vnořeně) obrázek s příponou jpg.

Příklad 2 (4 bodů)

Napište dotaz, který setřídí elementy div s nějakým id podle obsahu elementu h1 a na výstup vypíše jméno knihy (z h1) a počet obrázků (img) ke knize přiřazených. Příklad:

Verze C

Mějme relace R(X, Y) a S(Y, Z), kde S.Y je cizím klíčem do R.Y. Předpokládejme, že nR = 10~000 (počet záznamů), bR = 100 (blokovací faktor), nS = 100~000 a bS = 40. Atribut Z nabývá vS.Z = 250 různých hodnot (každá z nich je stejně pravděpodobná).

Část 1 - SQL optimalizace (7 bodů)

Příklad 1 (1 bod)

Dopočítejte statistiky Pr a Ps

Příklad 2 (2 body)

Vytvořte prováděcí plán ve formě stromu pro vyhodnocení dotazu (byl zadaný v algebře i SQL)

```
(S(Z = 56) * R)[X]
```

select X from (select * from S where Z=56) natural join R;

Byla tam ještě poznámka, že máme brát v potaz uzávorkování výrazu v algebře

Příklad 3 (3 body)

Uvažujte plán vyhodnocení, ve kterém se spojení realizuje pomocí algoritmu Nested Loops. Pro mezivýsledek každé dílčí operace určete počty záznamů, blokovací faktor a počet bloků. Nakonec určete celkovou cenu vyhodnocení celého plánu. K dispozici máme systémovou paměť o velikosti M = 52 bloků. Blokovací faktor pro atribut X je $b\pi = 10$. Postup komentujte.

Příklad 4 (1 bod)

Navrhněte (opět formou syntaktického stromu jako výše), jak by bylo možné získat rychlejší plán vyhodnocení. Pro tento plán již nemusíte nic dalšího počítat.

Část 2 - MongoDB (7 bodů) 🗸

Byla zadána DB jako byla ve cvičeních tj

```
db.actors.save({ _id: "trojan", name: { first: "Ivan", last: "Trojan" },
year: 1964, movies: [ "samotari", "medvidek", "karamazovi" ] });
```

```
db.actors.save({ _id: "machacek", name: { first: "Jiri", last: "Machacek"
}, year: 1966, movies: [ "medvidek", "vratnelahve", "samotari" ] });
db.actors.save({ _id: "schneiderova", name: { first: "Jitka", last:
"Schneiderova" }, year: 1973, movies: [ "samotari" ] });
db.actors.save({ _id: "sverak", name: { first: "Zdenek", last: "Sverak"
}, year: 1936, movies: [ "vratnelahve" ] });
db.actors.save({ _id: "geislerova", name: { first: "Anna", last:
"Geislerova" }, year: 1976 });
db.actors.save({ _id: "vilhelmova", name: { first: "Tatiana", last:
"Vilhelmova" }, year: 1978, movies: [ "medvidek"] });
db.actors.save({ _id: "menzel", name: { last: "Menzel", first: "Jiri" },
year: 1938, movies: "medvidek" });
db.movies.save({ _id: "samotari", title: { cs: "Samotari", en: "Loners"
}, year: 2000, rating: 84, actors: [ "trojan", "machacek", "schneiderova"
], genres: [ "comedy", "drama" ], country: [ "CZ", "SI" ], length: 103
});
db.movies.save({ _id: "medvidek", title: "Medvidek", year: 2007,
director: { first: "Jan", last: "Hrebejk" }, rating: 53, actors: [
"trojan", "machacek", "vilhelmova", "issova", "menzel" ], genres: [
"comedy", "drama" ], country: [ "CZ" ], length: 100 });
db.movies.save({ _id: "vratnelahve", title: { cs: "Vratne lahve", en:
"Empties" }, year: 2006, director: { first: "Jan", last: "Sverak" },
rating: 76, actors: [ "sverak", "machacek", "schneiderova" ], genres:
"comedy", country: "CZ", length: 99 });
db.movies.save({ _id: "zelary", title: "Zelary", year: 2003, director: {
last: "Trojan", first: "Ondrej" }, rating: 81, actors: [ ], genres: [
"romance", "drama" ], country: [ "CZ", "SK", "AT" ], length: 142 });
db.movies.save({ _id: "stesti", title: "Stesti", year: 2005, director: {
last: "Slama", first: "Bohdan" }, rating: 72, length: 100, awards: [ {
type: "Czech Lion", year: 2005 } ] });
db.movies.save({ _id: "kolja", title: "Kolja", year: 1996, rating: 86,
length: 105, awards: [ { type: "Czech Lion", year: 1996 }, { type:
"Noname Awards", category: "A", year: 2005 } ] });
```

Příklad 1 (2 body) 🗸

Herci se jménem Anna nebo Jiří.

Řešení

```
db.actors.find({
  "$or": [
     {
```

```
"name.first": "Anna"
},
{
    "name.first": "Jiri"
}
```

Příklad 2 (2 body) 🗸

Filmy, které mají hodnocení horší než 90 a patří do žánru romance. Vypište pouze názvy filmů (title) a id.

Řešení

Řešení podle Morčína:

```
db.movies.find({
    "rating": {
        "$lt": 90
    },
    "genres": {
        "$in": ["romance"]
    }
})
```

Příklad 3 (3 body) 🗸

Herci, kteří hrají ve filmech medvídek a samotáři. Seřaďte výstup vzestupně dle příjmení herce.

Řešení

Řešení podle Morčína:

Část 3 (8 bodů)

Graf letišť, jako ze cvičení:

```
CREATE
(sf {name:'San Francisco', code:'sf'}),
(la {name: 'Los Angeles', code: 'la'}),
(da {name:'Dallas', code:'da'}),
(ch {name:'Chicago', code:'ch'}),
(ny {name:'New York', code:'ny'}),
(sf)-[:DIRECT {price:50}]->(la),
(la)-[:DIRECT {price:50}]->(sf),
(sf)-[:DIRECT {price:250}]->(ch),
(ch)-[:DIRECT {price:250}]->(sf),
(da)-[:DIRECT {price:300}]->(sf),
(sf)-[:DIRECT {price:300}]->(da),
(ch)-[:DIRECT {price:100}]->(da),
(da)-[:DIRECT {price:100}]->(ch),
(ch)-[:DIRECT {price:250}]->(ny),
(ny)-[:DIRECT {price:250}]->(ch),
(ny)-[:DIRECT {price:225}]->(da),
(da)-[:DIRECT {price:225}]->(ny),
(da)-[:DIRECT {price:200}]->(la),
(la)-[:DIRECT {price:200}]->(da);
```

Příklad 1 (2 body)

Vypište trojice <start, cena, cíl> pro přímé lety dražší než 200, výstup setřiďte abecedně dle startu a ceny.

Příklad 2 (3 body)

Vypište letiště dosažitelná z Los Angeles pomocí právě dvou přestupů.

Příklad 3 (3 body)

Vypište cesty (kódy letišť oddělené čárkou) začínající v Dallasu do maximální délky 5.

Část 4 (10 bodů)

Zde bylo zadané XML s pacienty něco ve stylu:

Příklad 1 (4 body)

Napište dotaz, který vybere jméno pacienta s největším počtem návštěv kde diagnóza je "Simuluje" (Výsledkem bude "Pepa") .

Příklad 2 (4 bodů)

Napište dotaz, který pro každé datum (tedy hodnoty atributu datum v elementu navsteva) vypíše seznam pacientů (jméno) kteří byli na návštěvě Příklad:

```
<zaznam>
  <datum>2020-01-13</datum>
  <pacient jmeno="Pepa"/>
  <pacient jmeno="Jan"/>
  </zaznam>
```

Verze D

Část 1 (7 bodů)

Mějme relace R(A, B, C) a S(D, E). Předpokládejme, že nR = 1 000 (počet záznamů), bR = 5 (blokovací faktor), nS = 1 000 a bS = 20. Atribut A nabývá vR.A = 10 různých hodnot (každá z nich je stejně pravděpodobná). Primární soubor relace R je setříděný podle A.

Příklad 1 (1 bod)

Dopočítejte statistiky Pr a Ps

Příklad 2 (2 body)

Vytvořte prováděcí plán ve formě stromu pro vyhodnocení dotazu (byl zadaný v algebře i SQL)

```
(R(A = 3) × S)[B,D]
select B,D from (select * from R where A=3) cross join S;
```

Byla tam ještě poznámka, že máme brát v potaz uzávorkování výrazu v algebře

Příklad 3 (3 body)

Uvažujte plán vyhodnocení, ve kterém se spojení realizuje pomocí algoritmu Nested Loops. Pro mezivýsledek každé dílčí operace určete počty záznamů, blokovací faktor a počet bloků. Nakonec určete celkovou cenu vyhodnocení celého plánu. K dispozici máme systémovou paměť o velikosti M = 12 bloků. Blokovací faktor pro dvojici atributů B a D je bπ = 100. Postup komentujte.

Příklad 4 (1 bod)

Navrhněte (opět formou syntaktického stromu jako výše), jak by bylo možné získat rychlejší plán vyhodnocení. Pro tento plán již nemusíte nic dalšího počítat.

Část 2 - MongoDB (7 bodů) 🗸

Byla zadána DB jako byla ve cvičeních tj

```
db.actors.save({ _id: "trojan", name: { first: "Ivan", last: "Trojan" },
year: 1964, movies: [ "samotari", "medvidek", "karamazovi" ] });
db.actors.save({ _id: "machacek", name: { first: "Jiri", last: "Machacek"
}, year: 1966, movies: [ "medvidek", "vratnelahve", "samotari" ] });
db.actors.save({ _id: "schneiderova", name: { first: "Jitka", last:
"Schneiderova" }, year: 1973, movies: [ "samotari" ] });
db.actors.save({ _id: "sverak", name: { first: "Zdenek", last: "Sverak"
}, year: 1936, movies: [ "vratnelahve" ] });
db.actors.save({ _id: "geislerova", name: { first: "Anna", last:
"Geislerova" }, year: 1976 });
db.actors.save({ _id: "vilhelmova", name: { first: "Tatiana", last:
"Vilhelmova" }, year: 1978, movies: [ "medvidek"] });
db.actors.save({ _id: "menzel", name: { last: "Menzel", first: "Jiri" },
year: 1938, movies: "medvidek" });
db.movies.save({ _id: "samotari", title: { cs: "Samotari", en: "Loners"
}, year: 2000, rating: 84, actors: [ "trojan", "machacek", "schneiderova"
], genres: [ "comedy", "drama" ], country: [ "CZ", "SI" ], length: 103
});
db.movies.save({ _id: "medvidek", title: "Medvidek", year: 2007,
director: { first: "Jan", last: "Hrebejk" }, rating: 53, actors: [
"trojan", "machacek", "vilhelmova", "issova", "menzel" ], genres: [
"comedy", "drama" ], country: [ "CZ" ], length: 100 });
db.movies.save({ _id: "vratnelahve", title: { cs: "Vratne lahve", en:
"Empties" }, year: 2006, director: { first: "Jan", last: "Sverak" },
rating: 76, actors: [ "sverak", "machacek", "schneiderova" ], genres:
```

```
"comedy", country: "CZ", length: 99 });
db.movies.save({ _id: "zelary", title: "Zelary", year: 2003, director: {
    last: "Trojan", first: "Ondrej" }, rating: 81, actors: [ ], genres: [
    "romance", "drama" ], country: [ "CZ", "SK", "AT" ], length: 142 });
    db.movies.save({ _id: "stesti", title: "Stesti", year: 2005, director: {
    last: "Slama", first: "Bohdan" }, rating: 72, length: 100, awards: [ {
        type: "Czech Lion", year: 2005 } ] });
    db.movies.save({ _id: "kolja", title: "Kolja", year: 1996, rating: 86,
        length: 105, awards: [ { type: "Czech Lion", year: 1996 }, { type:
        "Noname Awards", category: "A", year: 2005 } ] });
```

Příklad 1 (2 body) 🗸

Herci narození v roce 1964 nebo 1966

Řešení

Řešení podle Morčína:

Příklad 2 (2 body) 🗸

Filmy, které mají hodnocení lepší než 70 a patří do žánru drama. Vypište pouze názvy filmů (title) a id.

Řešení

```
db.movies.find({
    rating: {
        "$gt": 70
    },
    genres: {
        "$in": [
```

```
"drama"
]
},
{
_id: 1,
   title: 1
})
```

Příklad 3 (3 body) 🗸

Herci, kteří hrají ve filmech samotáři a vratnelahve. Seřaďte výstup vzestupně dle příjmení herce.

Řešení

Řešení podle Morčína:

Část 3 (8 bodů)

Graf letišť, jako ze cvičení:

```
CREATE
  (sf {name:'San Francisco', code:'sf'}),
  (la {name:'Los Angeles', code:'la'}),
  (da {name:'Dallas', code:'da'}),
  (ch {name:'Chicago', code:'ch'}),
  (ny {name:'New York', code:'ny'}),
  (sf)-[:DIRECT {price:50}]->(la),
  (la)-[:DIRECT {price:50}]->(sf),
  (sf)-[:DIRECT {price:250}]->(ch),
  (ch)-[:DIRECT {price:250}]->(sf),
  (da)-[:DIRECT {price:300}]->(da),
  (ch)-[:DIRECT {price:300}]->(da),
  (da)-[:DIRECT {price:100}]->(ch),
```

```
(ch)-[:DIRECT {price:250}]->(ny),
(ny)-[:DIRECT {price:250}]->(ch),
(ny)-[:DIRECT {price:225}]->(da),
(da)-[:DIRECT {price:225}]->(ny),
(da)-[:DIRECT {price:200}]->(la),
(la)-[:DIRECT {price:200}]->(da);
```

Příklad 1 (2 body)

Vypište trojice <start, cena, cíl> pro přímé lety levnější než 200, výstup setřiďte abecedně dle startu a ceny.

Příklad 2 (3 body)

Vypište letiště dosažitelná ze New Yourku pomocí právě dvou přestupu.

Příklad 3 (3 body)

Vypište cesty (kódy letišť oddělené čárkou) začínající v Los Angeles do maximální délky 3.

Část 4 (10 bodů)

Zde bylo zadané XML s pacienty něco ve stylu:

Příklad 1 (4 body)

Napište dotaz, který najde všechny objednávky, na nichž se vyskytují štípačky minimálně 2x a jejich celková cena (v rámci objednávky) je minimálně 250.

Příklad 2 (4 bodů)

Napište dotaz, který pro každého zákazníka spočítá součet cen všech položek na všech jeho objednávkách Příklad:

```
<soucet>
  <jmeno>Pepa Vomacka</jmeno>
  <cena>2150</cena>
</soucet>
```

Verze E

Část 1 (15 bodů)

Rovnaké ako 1. úloha minulý rok, rozdiel akurát v zadaných hodnotách Br a Bs.

Ve verzi D zadaný příklad následovně: Mějme relace R[A, B] a S[X,Y, Z]. Předpokládejme, že Nr = 2000 (počet záznamů), Br = 10 (blokový faktor), Ns = 1000 a Bs = 10. Atribut A nabývá VR.A = 50 různých hodnot (každá z nich je stejně pravděpodobná). Navíc máme k dispozici clusterovaný index pro atribut A v relaci R. Jeho hloubka je iR.A = 2 a listová úroveň obsahuje pR.A 50 bloků. Uvažujte plán vyhodnocení, ve kterém spojení realizuje pomocí algoritmu Nested Loops. Pro mezivýsledek každé dílčí operace určete počty záznamů, blok. faktor a počet bloků. Nakonec určete elkovou cenu vyhodnocení celého plánu. K dispozici máme systémovou paměť o velikosti M = 22 bloků. Postup komentujte.

Dopočtěte statistiky: Pr. Ps

Řešení

```
Pr = Nr/Br = 2000/10 = 200
Ps = Ns/Bs = 1000/10 = 100
```

Část 2 - MongoDB (7 bodů) 🗸

Byla zadána DB jako byla ve cvičeních tj

```
db.actors.save({ _id: "trojan", name: { first: "Ivan", last: "Trojan" },
year: 1964, movies: [ "samotari", "medvidek", "karamazovi" ] });
db.actors.save({ _id: "machacek", name: { first: "Jiri", last: "Machacek"
}, year: 1966, movies: [ "medvidek", "vratnelahve", "samotari" ] });
db.actors.save({ _id: "schneiderova", name: { first: "Jitka", last:
"Schneiderova" }, year: 1973, movies: [ "samotari" ] });
db.actors.save({ _id: "sverak", name: { first: "Zdenek", last: "Sverak"
```

```
}, year: 1936, movies: [ "vratnelahve" ] });
db.actors.save({ _id: "geislerova", name: { first: "Anna", last:
"Geislerova" }, year: 1976 });
db.actors.save({ _id: "vilhelmova", name: { first: "Tatiana", last:
"Vilhelmova" }, year: 1978, movies: [ "medvidek"] });
db.actors.save({ _id: "menzel", name: { last: "Menzel", first: "Jiri" },
year: 1938, movies: "medvidek" });
db.movies.save({ _id: "samotari", title: { cs: "Samotari", en: "Loners"
}, year: 2000, rating: 84, actors: [ "trojan", "machacek", "schneiderova"
], genres: [ "comedy", "drama" ], country: [ "CZ", "SI" ], length: 103
});
db.movies.save({ _id: "medvidek", title: "Medvidek", year: 2007,
director: { first: "Jan", last: "Hrebejk" }, rating: 53, actors: [
"trojan", "machacek", "vilhelmova", "issova", "menzel" ], genres: [
"comedy", "drama" ], country: [ "CZ" ], length: 100 });
db.movies.save({ _id: "vratnelahve", title: { cs: "Vratne lahve", en:
"Empties" }, year: 2006, director: { first: "Jan", last: "Sverak" },
rating: 76, actors: [ "sverak", "machacek", "schneiderova" ], genres:
"comedy", country: "CZ", length: 99 });
db.movies.save({ _id: "zelary", title: "Zelary", year: 2003, director: {
last: "Trojan", first: "Ondrej" }, rating: 81, actors: [ ], genres: [
"romance", "drama" ], country: [ "CZ", "SK", "AT" ], length: 142 });
db.movies.save({ _id: "stesti", title: "Stesti", year: 2005, director: {
last: "Slama", first: "Bohdan" }, rating: 72, length: 100, awards: [ {
type: "Czech Lion", year: 2005 } ] });
db.movies.save({ _id: "kolja", title: "Kolja", year: 1996, rating: 86,
length: 105, awards: [ { type: "Czech Lion", year: 1996 }, { type:
"Noname Awards", category: "A", year: 2005 } ] });
```

Upravit

Příklad 1 (2 body) 🗸

Vyberte herce s křesním jménem Jiri nebo Anna

Řešení

```
"name.first": "Jiri"
}
```

Příklad 2 (2 body) 🗸

Vypište herce co hráli zároveň ve filmech samotari a medvidek, a vypište jen jejich id a křestní jméno

Řešení

Řešení podle Morčína:

Příklad 3 (3 body) 🗸

Vypište filmy, které mají žáner romance a hodnocení menší než 90.

Řešení

```
db.movies.find({
  rating: {
      "$lt": 90
    },
    genres: {
      "$in": [
      "romance"
    ]
    }
})
```

Část 3 (8 bodů)

Byl zadaný celkem jednoduchý graf jen s jedním typem uzlů a hran a to: Města a přímé cesty mezi nimi. Hrany byly ohodnocené cenou spoje. Uzel Města obsahoval vlastnosti name a code.

```
(sf {name:'San Francisco', code:'sf'}),
(la {name: 'Los Angeles', code: 'la'}),
(da {name:'Dallas', code:'da'}),
(ch {name:'Chicago', code:'ch'}),
(ny {name:'New York', code:'ny'}),
(sf)-[:DIRECT {price:50}]->(la),
(la)-[:DIRECT {price:50}]->(sf),
(sf)-[:DIRECT {price:250}]->(ch),
(ch)-[:DIRECT {price:250}]->(sf),
(da)-[:DIRECT {price:300}]->(sf),
(sf)-[:DIRECT {price:300}]->(da),
(ch)-[:DIRECT {price:100}]->(da),
(da)-[:DIRECT {price:100}]->(ch),
(ch)-[:DIRECT {price:250}]->(ny),
(ny)-[:DIRECT {price:250}]->(ch),
(ny)-[:DIRECT {price:225}]->(da),
(da)-[:DIRECT {price:225}]->(ny),
(da)-[:DIRECT {price:200}]->(la),
(la)-[:DIRECT {price:200}]->(da);
```

Příklad 1 (2 body)

Vypište všechny trojice <start, cíl, cena> pro příme cesty

Příklad 2 (3 body)

Vypište všechna města kam se dá dostat z Los Angeles s maximálne 1 přestupem

Příklad 3 (3 body)

Vypsat čárkou oddělený seznam kódů měst kam se dá dostat z Los Angeles s maximálně 4 přestupy.

Část 4 (10 bodů)

Zde bylo zadané XML něco ve stylu:

```
<body>
<div id="book132">
```

```
<h1>Název knihy 1</h1>
    <div>
      <img src="image.jpg"/>
    </div>
  </div>
  <div id="book221">
    <h1>Název knihy 2</h1>
    <div>
      <img src="image.png"/>
    </div>
  </div>
  <div id="book114">
    <h1>Název knihy 3</h1>
    <div>
      <div><img src="image.jpg"/></div>
    </div>
  </div>
</body>
```

Příklad 1 (5 bodů)

Vypište ID divů, které obsahují obrázek, který končí na jpg.

```
//div[ends-with(.//img/@src, "jpg")]/@id
```

Příklad 2 (5 bodů)

Vypište abecedně seřazené knihy podle jejího názvu (element h1) a počet obrázků, které kniha obsahuje (v libovolně vnořené úrovni). Výpis proveďte v následující struktuře

```
<element>
  <book>název knihy></book>
  <images>počet obrázků</images>
  </element>
```

Řešení

```
let $books := //div[boolean(.//h1)]

for $book in $books
  let $name := $book/h1/text()
  order by $name
  return
    <element>
```

```
<book>{$name}</book>
<images>{count($book//img)}</images>
</element>
```

Verze F (mix více testů)

Ostatní části byly namixovné z ostatních verzí testu.

Část 1 - SQL optimalizace

Mějme relace Student(*sid*, jmeno, vek), Hra(*hid*, nazev, zanr) a Hraje(*sid*, *hid*, *datum*), kde Hraje.sid je cizím klíčem do Student.sid a Hraje.hid je cizím klíčem do Hra.hid.

Předpokládejme, že nStudent = 2 000 (počet záznamů), bStudent = 20 (blokovací faktor), nHra = 1 000 a bHra = 5. Atribut zanr nabývá vHra.zanr = 10 různých hodnot (každá z nich je stejně pravděpodobná). Primární soubor relace Hra je setříděný podle zanru.

Příklad 1 (1 bod)

Spočtěte další potřebné charakteristiky: pStudent a pHra

Příklad 2 (2 body)

Vytvořte prováděcí plán ve formě stromu pro vyhodnocení dotazu zapsaného v relační algebře: (Hra(Zanr='FPS') x Student). Jedná se o přepis SQL dotazu:

```
select * from (select * from Hra where zanr='FPS') cross join Student;
```

Respektuje pořadí vyhodnocení operací dané uzávorkováním výrazu v relační algebře.

Příklad 3 (3 body)

Uvažujte plán vyhodnocení, ve kterém se spojení realizuje pomocí algoritmu Nested Loops. Pro mezivýsledek každé dílčí operace určete počty záznamů, blokovací faktor a počet bloků. Nakonec určete celkovou cenu vyhodnocení celého plánu. K dispozici máme systémovou paměť o velikosti M = 12 bloků. Postup komentujte.

Příklad 4 (1 bod)

Navrhněte (opět formou syntaktického stromu jako výše), jak by bylo možné získat rychlejší ohodnocení. Pro tento plán již nemusíte nic dalšího počítat.

Část 2 - MongoDB (7 bodů) 🗸

```
{
        "address": {
            "building": "1007",
            "coord": [ -73.856077, 40.848447 ],
            "street": "Morris Park Ave",
            "zipcode": "10462"
        },
        "borough": "Bronx",
        "cuisine": "Bakery",
        "grades": [
            { "date": { "day": 2022-11-09 }, "grade": "A", "score": 2 },
            { "date": { "day": 2022-11-09 }, "grade": "A", "score": 6 },
            { "date": { "day": 2022-11-09 }, "grade": "A", "score": 10 },
            { "date": { "day": 2022-11-09 }, "grade": "A", "score": 9 },
            { "date": { "day": 2022-11-09 }, "grade": "B", "score": 14 }
        ],
        "name": "Morris Park Bake Shop",
        "restaurant_id": "30075445"
    },
        "address": {
            "building": "23-A",
            "coord": [ -73.851066, 40.739583 ],
            "street": "Harris Lord Kekw",
            "zipcode": "10465"
        },
        "borough": "Manhattan",
        "cuisine": "Sushi",
        "grades": [
            { "date": { "day": 2020-11-23 }, "grade": "C", "score": 3 },
            { "date": { "day": 2021-02-21 }, "grade": "B", "score": 6 },
            { "date": { "day": 2021-09-19 }, "grade": "C", "score": 4 },
            { "date": { "day": 2022-04-17 }, "grade": "B", "score": 7 },
            { "date": { "day": 2022-11-09 }, "grade": "A", "score": 13 }
        ],
        "name": "Heaven Sushi",
       "restaurant_id": "30075487"
   }
]
```

Příklad 1 (2 body) 🗸

Restaurace z Manhattnu, hodnocené po roce 2021.

Řešení

Řešení podle Morčína:

Příklad 2 (2 body) 🗸

Restaurace z Bronxu, jejichž název končí na "Shop", vypsat pouze názvy restaurací.

Řešení

Řešení podle Morčína:

```
db.restaurants.find({
  borough: "Bronx",
  name: {
    $regex: "Shop$"
  }
})
```

Příklad 3 (3 body) 🗸

Skóre restaurací, které byly hodnocené jen v roce 2022 a dostaly známku B, vypsat oddělené čárkou a sestupně.

Řešení

```
"grade": "B"
}
}).sort({ "name": -1 });
```

Část 2b - MongoDB (7 bodů) 🗸

```
db.peaks.insertMany ([
{
    "name": "Everest",
    "height":8848,
    "location":["Nepal", "China"],
    "ascents":{ "first":{"year":1953}, "first_winter":{"year":1980},
"total":5656 }
},
{
    "name": "K2",
    "height":8611,
    "location":["Pakistan", "China"],
    "ascents":{ "first":{"year":1954}, "first_winter":{"year":1921},
"total":306 }
},
{
    "name": "Kangchenjunga",
    "height":8586,
    "location":["Nepal", "India"],
    "ascents": { "first": { "year": 1955}, "first_winter": { "year": 1986},
"total":283 }
},
{
    "name": "Lhotse",
    "height":8516,
    "location":["Nepal", "China"],
    "ascents":{ "first":{"year":1956}, "first_winter":{"year":1988},
"total":461 }
},
{
    "name": "Makalu",
    "height":8485,
    "location":["China","Nepal"],
    "ascents":{ "first":{"year":1955}, "first_winter":{"year":2009},
"total":361 }
}
])
```

Příklad 1 (2 body) 🗸

Vrcholy, které leží v Pakistanu a jsou nizsi nez 8000 metru.

Řešení

Řešení podle Morčína:

```
db.peaks.find({
  height: {
     "$lt": 8000
  },
  location: {
     "$in": [
     "Pakistan"
     ]
  }
})
```

Příklad 2 (2 body) 🗸

Vrcholy, které se nacházejí bud v Indie nebo Nepalu a byly vystoupány více než 1000 krát. Vypíšte pouze název a vysku vrcholu.

Řešení

Řešení podle Morčína:

```
db.peaks.find({
    "ascents.total": {
        "$gt": 1000
    },
    location: {
        "$in": [
            "India",
            "Nepal"
        ]
    }
})
```

Příklad 3 (3 body) 🗸

Vrcholy které se nenachazejí v Chině. Seřadte výstup abecedně podle názvu.

Řešení

Řešení podle Morčína:

```
db.peaks.find({
    location: {
        "$nin": [
            "China"
        ]
    }
}).sort({"name": 1})
```

Část 3 - Neo4j (8 bodů)

```
CREATE
(philip:Person {name:"Philip"})-[:IS_FRIEND_OF]->(emil:Person {name:"Emil"}),
  (philip)-[:IS_FRIEND_OF]->(michael:Person {name:"Michael"}),
  (philip)-[:IS_FRIEND_OF]->(andreas:Person {name:"Andreas"});

CREATE
(sushi:Cuisine {name:"Sushi"}),
  (nyc:City {name:"New York"}),
  (iSushi:Restaurant {name:"iSushi"})-[:SERVES]->(sushi),
  (iSushi)-[:LOCATED_IN]->(nyc),
  (michael)-[:LIKES]->(iSushi),
  (andreas)-[:LIKES]->(iSushi),
  (zam:Restaurant {name:"Zushi Zam"})-[:SERVES]->(sushi),
  (zam)-[:LOCATED_IN]->(nyc),
  (andreas)-[:LIKES]->(zam);
```

Příklad 1 (2 body)

Vypište nazvy všech restauraci, výstup setřiďte abecedně.

Příklad 2 (2 body)

Vypište pratele Emila a pratele jeho pratel do maximalni delky 3.

Příklad 3 (4 body)

Najděte restaurace v Londyne, které servirujou pizzu a jsou oblibene Emilovi přátelé.

Část 4 - XQuery

```
<contact-info>
   <contact1>
       <name first="Tamara" last="Patrick"/>
       <company>Marvel
       <phone>123456789</phone>
       <address street="Linden ave." city="London"/>
       <img src="Toma.png"/>
       <comment>Met at the conference.
   </contact1>
   <contact2>
       <name first="John" last="Black"/>
       <company>DC</company>
       <phone>987654321</phone>
       <address street="Bowl blv." city="Las Vegas"/>
       <img src="Jonik.jpg"/>
       <img src="Jonik2.jpg"/>
       <comment>Studied at high school.
   </contact2>
</contact-info>
```

Příklad 1 (4 body)

Napište dotaz, který vybere všechny společnosti, které se vyskytují v databázi.

Přklad 2 (4 body)

Napište dotaz, který setřídí kontakty podle obsahu elementu comment a na výstup vypíše jméno kontaktu a počet přiřazených obrázků (img).

Příklad:

```
<contact>
<name>Tamara Patrick</name>
<img>1</img>
</contact>
```