Inverse Probability Treatment Weighting

We Are Interested In Addressing Sampling Bias Among Those Who Had Samples Taken For Amyloidosis

It was initially thought that age would be a confounding factor

We Are Interested In Addressing Sampling Bias Among Those Who Had Samples Taken For Amyloidosis

Then it points became of interest

Boxplot of Unsampled Points

Clearly there is bias, those sampled are at much higher risk

To correct for this we will use

Inverse Probability Treatment Weighting

Calculates weights used in model as inverse of propensity score

In our model we used the formula weights = 1/p(sampled | points)

We fit two models

Model 1: Sample ~ Points, this model was used on the large data set

Model 2: Amyloid Status ~ Points + Severe

- Given weights found from model 1
- Fit this model to the dataset containing only those who were sampled for amyloidosis to correct for the sampling bias

Model 1: Sample ~ Points

```
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -15.61627    1.89884   -8.224    < 2e-16 ***
Points 0.18007 0.02224 8.095 5.71e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 468.70 on 340 degrees of freedom
Residual deviance: 151.13 on 339 degrees of freedom
AIC: 155.13
```

Model 2: Amyloid Status ~ Points + Severe with weights

```
Call:
glm(formula = amyloid_status ~ Points + Severity, family = quasibinomial,
   data = amyloid, weights = weight)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
           -8.07338 1.56068 -5.173 5.93e-07 ***
(Intercept)
Points
      SeveritySevere 2.19651 0.55614 3.950 0.000111 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
```