深層ニューラルネットワークにおける 学習ダイナミクスの初等的解析

宇都宮 幸大 60210412

宮崎大学 工学部 情報通信工学プログラム

指導教員:伊達章准教授

- 1. 研究背景 & 問題提起
- 2. 解析の概要
- 3. コンピュータシミュレーション
- 4. まとめ

- 1. 研究背景 & 問題提起
- 2. 解析の概要
- 3. コンピュータシミュレーション
- 4. まとめ

深層学習の成功

ResNet [He et al., 2015]

Transformer [Vaswani et al., 2017]

- 巨大な数の可変なパラメータを用いる. やってみると上手くいく
- 理論の後追い(2018年頃~)

深層NNの定義と学習の枠組み

• $W_{ij}^{(\ell)} \sim \mathcal{N}\left(0, \frac{\sigma_{\ell}^2}{2}\right)$ で独立に初期化. 損失 $\mathcal{L}\left(f(x), y\right)$ を最小化

ニューロン数無限大の学習ダイナミクス

- Maximal Update Parametrization (μ P) の理論 [Yang et al., 2021]
- ullet $|\Delta \widetilde{h}_i^{(\ell)}| = \Theta(1)$ を実現する g_ℓ , σ_ℓ のとり方を提案
- $n \coloneqq n_1 = n_2 = \cdots = n_L$ & すべて $\Theta(n)$ を前提
- $n_{\ell-1} \neq n_{\ell}$ の場合は ? \Rightarrow Spectral Parametrization [Yang et al., 2023]

研究課題

自然な問い

中間層のニューロン数が層によって異なるオーダーのときは?

例:
$$n_{\ell-1} = \Theta(n^2)$$

 $n_{\ell} = \Theta(n)$
 $n_{\ell+1} = \Theta(n^2)$

このときにも学習が安定に 進むパラメータ設定を導出

1. 研究背景 & 問題提起

2. 解析の概要

3. コンピュータシミュレーション

4. まとめ

順伝播と逆伝播のオーダー評価

$\widetilde{m{h}}^{(\ell)}$ の各要素が消失や発散しない

$$|\widetilde{h}_i^{(\ell)}| = \Theta(1)$$

損失 \mathcal{L} が効果的に減少

$$\left|\left\langle \frac{\partial \mathcal{L}}{\partial \widetilde{\boldsymbol{h}}^{(\ell)}}, \ \Delta \widetilde{\boldsymbol{h}}^{(\ell)} \right\rangle \right| \stackrel{\text{req.}}{=} \Theta(1)$$

... 計算を進めると、中間表現の更新量

$$\|\Delta \widetilde{\boldsymbol{h}}^{(1)}\|_{2}, \|\Delta \widetilde{\boldsymbol{h}}^{(2)}\|_{2}, \dots, \|\Delta \widetilde{\boldsymbol{h}}^{(L-1)}\|_{2}$$

は同じオーダーでなければならないことが導かれる

σ_ℓ と g_ℓ が満たすべき条件

•
$$\left| \left\langle \frac{\partial \mathcal{L}}{\partial \widetilde{\boldsymbol{h}}^{(\ell)}}, \ \Delta \widetilde{\boldsymbol{h}}^{(\ell)} \right\rangle \right| = \dots = \Theta \left(g_{\ell}^2 \| \boldsymbol{h}^{(\ell-1)} \|_2^2 \frac{1}{\| \Delta \widetilde{\boldsymbol{h}}^{(\ell)} \|_2^2} \right)$$

- $g_{\ell}\sqrt{n_{\ell-1}} \ \sigma_{\ell} \stackrel{\text{req.}}{=} \Theta(1)$
- $\|\Delta \widetilde{\boldsymbol{h}}^{(L)}\|_2 \stackrel{\text{req.}}{=} \Theta(1)$

中間層 $1 < \ell < L - 1$:

$$\underline{\boldsymbol{g_\ell}} = \Theta\left(\frac{\|\Delta\widetilde{\boldsymbol{h}}^{(\ell)}\|_2}{\sqrt{n_{\ell-1}}}\right), \quad \boldsymbol{\sigma_\ell} = \Theta\left(\frac{1}{\|\Delta\widetilde{\boldsymbol{h}}^{(\ell)}\|_2}\right)$$

出力層(第L層):

$$g_{\underline{L}} = \Theta\left(\frac{1}{\sqrt{n_{L-1}}}\right), \quad \sigma_{\underline{L}} = \Theta\left(\frac{1}{\|\Delta \widetilde{h}^{(L-1)}\|_2}\right)$$

勾配とモデル出力の発散を防ぐための基準

$$\frac{\partial \mathcal{L}}{\partial \widetilde{\boldsymbol{h}}^{(\ell)}} = g_{\ell+1} \left(\boldsymbol{W}^{(\ell+1)} + \Delta \boldsymbol{W}^{(\ell+1)} \right)^{\top} \frac{\partial \mathcal{L}}{\partial \widetilde{\boldsymbol{h}}^{(\ell+1)}}$$

- 勾配の発散を防ぐための基準: $\|\Delta \widetilde{m{h}}^{(\ell)}\|_2 \stackrel{ ext{req.}}{=} O\left(\sqrt{n_{\ell-1}}\right)$
- ullet $\|\Delta\widetilde{m{h}}^{(1)}\|_2, \, \|\Delta\widetilde{m{h}}^{(2)}\|_2, \, \dots, \, \|\Delta\widetilde{m{h}}^{(L-1)}\|_2 \,$ の条件を踏まえると

$$\|\Delta \widetilde{\boldsymbol{h}}^{(\ell)}\|_2 \stackrel{\text{req.}}{=} O(\sqrt{n_{\min}})$$

ullet モデル出力の発散を防ぐための基準: $\|\Delta \widetilde{\pmb{h}}^{(L-1)}\|_2 \stackrel{\mathrm{req.}}{=} \Omega(1)$

学習が安定に進むための基準

$$\|\Delta \widetilde{\boldsymbol{h}}^{(\ell)}\|_2 = \Theta\left(n_{\min}^r\right), \qquad r \in [0, 1/2]$$

提案手法

Dynamic Parametrization (DP):

$$egin{align} oldsymbol{f}(oldsymbol{x}) &= rac{1}{\sqrt{n_{L-1}}} oldsymbol{W}^{(L)} oldsymbol{h}^{(L-1)}, \ oldsymbol{ ilde{h}}^{(\ell)} &= rac{n_{\min}^r}{\sqrt{n_{\ell-1}}} oldsymbol{W}^{(\ell)} oldsymbol{h}^{(\ell-1)}, & 1 \leq \ell \leq L-1, \ oldsymbol{h}^{(\ell)} &= \psi(oldsymbol{ ilde{h}}^{(\ell)}), & 1 \leq \ell \leq L-1, \ oldsymbol{ ilde{h}}^{(0)} &= oldsymbol{x}. \end{aligned}$$

• ただし、 $r \in [0, 1/2]$. 重み行列の各要素は、

$$W_{ij}^{(\ell)} \sim \mathcal{N}\left(0, \ rac{\gamma_{\ell}^2}{n_{\min}^{2r}}
ight)$$

で独立に初期化する

• $\psi(z)=\max(0,z)$ の場合, $\gamma_1=\cdots=\gamma_{L-1}=\sqrt{2}$ & $\gamma_L=1$

Spectral Parametrization [Yang et al., 2023]

$$g_{\ell} = \Theta\left(\sqrt{\frac{n_{\ell}}{n_{\ell-1}}}\right), \qquad \sigma_{\ell} = \begin{cases} \Theta\left(\frac{1}{\sqrt{n_{\ell}}}\right), & \text{if } n_{\ell-1} \leq n_{\ell}, \\ \Theta\left(\frac{1}{\sqrt{n_{\ell-1}}}\right), & \text{if } n_{\ell-1} > n_{\ell} \end{cases}$$

- $|\Delta \widetilde{h}_i^{(\ell)}| = \Theta(1)$ すなわち $\|\Delta \widetilde{h}^{(\ell)}\|_2 = \Theta\left(\sqrt{n_\ell}\right)$ を実現
- $\|\Delta\widetilde{m{h}}^{(1)}\|_2,\,\|\Delta\widetilde{m{h}}^{(2)}\|_2,\,\dots,\,\|\Delta\widetilde{m{h}}^{(L-1)}\|_2$ もそれぞれ異なるオーダーに.

 $\Delta \widetilde{m{h}}^{(\ell)}$ がニューロン数に依らず損失 $\mathcal L$ の減少に寄与することを意味する

$$\left|\left\langle \frac{\partial \mathcal{L}}{\partial \widetilde{\boldsymbol{h}}^{(\ell)}},\; \Delta \widetilde{\boldsymbol{h}}^{(\ell)} \right\rangle\right| = \Theta(1)$$

が満たされないと考えられる

- 1. 研究背景 & 問題提起
- 2. 解析の概要
- 3. コンピュータシミュレーション
- 4. まとめ

- $n := n_1 = n_3 = n_5$
- ・ $n_{\mathsf{min}} \coloneqq n_2 = n_4$ $n_{\mathsf{min}} = 150 \, n^{1/5}$. すなわち n_{min} が $\Theta(n)$ ではなく $\Theta\left(n^{1/5}
 ight)$

性能への影響

- 1. 研究背景 & 問題提起
- 2. 解析の概要
- 3. コンピュータシミュレーション
- 4. まとめ

まとめ

- 学習が安定に進むための基準として $\|\Delta\widetilde{m{h}}^{(\ell)}\|_2 = \Theta(n_{\min}^r), \ r \in [0, 1/2]$ を導くとともに、この基準を満たす具体的なパラメータ設定を提案
- 訓練性と汎化性能の向上が期待される

本研究の解析の限界

- 漸近的な議論における確率的な揺らぎ
- 学習によって獲得される具体的な表現

例:

- 訓練データの特徴をどのような階層構造として抽出するか?
- ボトルネック部分でどのような情報圧縮のメカニズムが働くか?

【再掲】提案手法

Dynamic Parametrization (DP):

$$egin{aligned} oldsymbol{f}(oldsymbol{x}) &= rac{1}{\sqrt{n_{L-1}}} oldsymbol{W}^{(L)} oldsymbol{h}^{(L-1)}, \ oldsymbol{ ilde{h}}^{(\ell)} &= rac{n_{\min}^r}{\sqrt{n_{\ell-1}}} oldsymbol{W}^{(\ell)} oldsymbol{h}^{(\ell-1)}, & 1 \leq \ell \leq L-1, \ oldsymbol{h}^{(\ell)} &= \psi(oldsymbol{ ilde{h}}^{(\ell)}), & 1 \leq \ell \leq L-1, \ oldsymbol{ ilde{h}}^{(0)} &= oldsymbol{x}. \end{aligned}$$

• ただし、 $r \in [0, 1/2]$. 重み行列の各要素は、

$$W_{ij}^{(\ell)} \sim \mathcal{N}\left(0, \; \frac{\gamma_\ell^2}{n_{\min}^{2r}}\right)$$

で独立に初期化する

• $\psi(z)=\max(0,z)$ の場合, $\gamma_1=\cdots=\gamma_{L-1}=\sqrt{2}$ & $\gamma_L=1$