МЕТОД ГАУССА С ВЫБОРОМ ГЛАВНОГО ЭЛЕМЕНТА ПО СТРОКЕ С использованием MPI

1 Постановка задачи

Рассмотрим систему линейных уравнений, записанную в матричном ви-

$$AX = B, A \in M_{n,n}(\mathbb{R}), X, B \in \mathbb{R}^n$$

Требуется решить ее методом Гаусса с выбором главного элемента по строке.

2 Индексация и переменные

Индексация любых массивов начинается с 0. Столбцы и строки матрицы всегда подразумеваются блочными, если не указано другого. Ниже представлены переменные, использованные для описания алгоритма.

$$A = \begin{pmatrix} A_{00}^{m \times m} & \dots & A_{0,l-1}^{m \times m} & A_{0,l}^{m \times s} \\ \vdots & \ddots & \vdots & \vdots \\ A_{l-1,0}^{m \times m} & \dots & A_{l-1,l-1}^{m \times m} & A_{l-1,l}^{m \times s} \\ A_{l,0}^{s \times m} & \dots & A_{l,l-1}^{s \times m} & A_{ll}^{s \times s} \end{pmatrix}$$

$$X = \begin{pmatrix} X_0^m \\ \vdots \\ X_{l-1}^m \\ X_l^s \end{pmatrix}$$

$$B = \begin{pmatrix} B_0^m \\ \vdots \\ B_{l-1}^m \\ B_s \end{pmatrix}$$

n — размер матрицы A.

m — размер стандартного блока. $l = \left[\frac{n}{m}\right]$.

$$l = \left\lceil \frac{n}{m} \right\rceil.$$

i main — номер итерации алгоритма Гаусса.

pivot — индекс столбца главного элемента на итерации i main

p — количество запущенных процессов.

$$sh1 = \begin{cases} 1, & \text{если } rank \leqslant i_main \% p \\ 0, & \text{иначе} \end{cases}$$

3 Хранение

Матрица хранится в памяти процессов по блок-столбцам. А именно, процесс rank хранит все столбцы с номерами $rank+k\cdot p$, где $k\in\mathbb{Z}$. Столбец присоединенной матрицы B хранится в процессе с rank=0.

4 Прямой ход алгоритма Гаусса

4.1 Общее описание

В нижеследующих разделах описывается одна итерация прямого хода алгоритма Гаусса. Его задача - привести матрицу A к верхнетреугольному виду с единицами на диагонали. i_main пробегает все значения от 0 до l.

4.2 Поиск главного элемента

В процессе rank в строке i_main , начиная со столбца $i_main/p + sh0$, проводится поиск главного элемента. т. е. блока с наименьшей нормой обратной матрицы. Если обратной не существует, норму полагаем бесконечностью. Результат процедуры - структура с номером столбца, содержащего такой блок, и нормой матрицы, обратной к блоку. Если невырожденного блока не найдено, номеру присваивается значение -1. Затем, вызывается функция MPI_Allreduce, после работы которой, все процессы получают глобальный индекс главного элемента.

4.3 Смена столбцов

Процессы с $rank = i_main \% p$ и rank = pivot % p меняются столбцами с локальными номерами i_main / p и pivot / p соответственно с помощью функции MPI_Sendrecv_replace. MPI обмена, конечно же, не происходит, если столбцы находятся в одном процессе. Этому преобразованию столбцов соответствует умножение матрицы A справа на матрицу этого преобразования: AI_i . Тогда система принимает вид $AI_iX = B$. Запомним эту перестановку столбцов и в конце алгоритма покажем, как вернуться к системе, равносильной исходной.

4.4 Умножение строки i_main

С помощью функции MPI_Bcast , вызванной в процессе $rank=i_main\ \%\ p$, процессы получают блок A_{i_main,i_main} . Затем, блоки в строке i_main , начиная со столбца $i_main\ /\ p\ +\ sh1$ умножаются слева на матрицу A_{i_main,i_main}^{-1} .

В процессе 0 так же умножается матрица $B_{i\ main}$.

4.5 Обнуление столбца, содержащего главный элемент

С помощью функции MPI_Bcast , вызванной в процессе $rank=i_main\ \%\ p$, процессы получают часть (со строки i_main+1) столбца с глобальным индексом i_main . Этот столбец необходим каждому процессу, чтобы произвести вычитание

$$\widetilde{A}_{jh} = A_{jh} - A_{j,i_main} \widetilde{A}_{i_main,h},$$

$$\forall h \in \{i \ main + 1, \dots, l\}, \ \forall j \in \{i \ main + 1, \dots, l\}$$

В процессе rank вычитание проводится со строками строго ниже i_main , со столбцами с индексом от $i_main \ / \ p + sh1$.

В процессе 0 вычитания так же проводятся со столбцом B.

5 Обратный ход алгоритма Гаусса

5.1 Общее описание

К этому моменту, логически матрица A имеет вид (для простоты l=4):

$$\begin{pmatrix} E & A_{01} & A_{02} & A_{03} & A_{0l} \\ 0 & E & A_{12} & A_{13} & A_{1l} \\ 0 & 0 & E & A_{23} & A_{2l} \\ 0 & 0 & 0 & E & A_{3l} \\ 0 & 0 & 0 & 0 & E \end{pmatrix}$$

В следующем разделе описывается одна итерация обратного хода алгоритма Гаусса. Его задача - логически привести матрицу A к единичной. Фактические вычисления проводятся только со столбцом B в процессе $0.\ i\ main$ пробегает все значения от $l\ do\ 0.$

5.2 Итерация обратного хода

С помощью функции MPI_Send, процесс с $rank=i_main~\%~p$ передает процессу 0 часть (со строки i_main до строки 0) столбца с глобальным индексом i_main , локальным $i_main~/~p$.

Процесс 0 с помощью полученного столбца вычисляет

$$\widetilde{B_i} = B_i - A_{i,i_main} B_{i_main},$$

$$\forall i \in \{i \ main - 1, \dots, 0\}$$

.

6 Вычисление решения системы

Преобразованиям строк матрицы A соответсвует умножение ее слева на произведение матриц элементарных преобразований(R). Перестановке столбцов $(I=I_1I_2\dots I_l)$ — умножение ее справа. Таким образом, E=RAI. А значит, системе AX=B будет равносильна $RAX=RB\Leftrightarrow RAI\cdot(IX)=RB\Leftrightarrow IX=RB$. Тогда $X=I^{-1}RB$. То есть к полученному столбцу B после обратного шага алгоритма нужно применить перестановку строк, соответствующую I^{-1} . Массив соответствующей перестановки хранится в процессе 0. Он же проводит обратную перестановку для вычисления решения системы.

7 Оценка количества и объема пересылок

Пересылка в 4.2 происходит на каждой итерации с помощью функции MPI_Allreduce, причем объем передаваемых данных не зависит от n и m, а значит, пренебрежимо мал.

Количество же пересылок равно l.

Пересылка в 4.3 проиходит с помощью функции MPI_Sendrecv_replace на каждой итерации в объеме nm.

Количество пересылок равно l.

Суммарный объем пересылаемых данных: n^2 .

Пересылка в 4.4 происходит с помощью функции MPI_Bcast на каждой итерации в объеме m^2 .

Количество пересылок равно l.

Суммарный объем пересылаемых данных: пт

Пересылка в 4.5 происходит с помощью функции MPI_Bcast на каждой итерации в объеме $(l-i \ main-1) \cdot m^2$.

Количество пересылок равно l.

Суммарный объем пересылаемых данных:

$$\frac{l(l-1)m^2}{2} = \frac{1}{2}n^2 - \frac{1}{2}nm$$

Пересылка в 5.2 происходит с помощью функции MPI_Send на тех итерациях обратного хода, где $i_main \neq k \cdot p, k \in \mathbb{Z}$ в объеме $i_main \cdot m^2$. Количество пересылок равно $l-l \ / \ p$.

Суммарный объем пересылаемых данных не больше

$$\frac{l(l-1)m^2}{2} = \frac{1}{2}n^2 - \frac{1}{2}nm$$

Тогда, оценка общего количества пересылок:

$$5\frac{n}{m}$$

Оценка суммарного объема всех пересылок:

$$2n^2$$

.