3/21/25, 12:05 PM

Shivam Wagh

DSBDA Practical A-6: Implement Simple Naïve Bayes classification algorithm using Python/R on iris

Compute Confusion matrix to find TP, FP, TN, FN, Accuracy, Error rate, Precision, Recall on the given dataset.

in [1]:	# <i>F</i>	ntt	os://www.kaggl	e.com/dataset	ts/uciml/iris			
In [2]:	<pre>import pandas as pd</pre>							
in [8]:	<pre>df = pd.read_excel(r"C:\Users\Admin\Desktop\TEB56\Iris.xlsx")</pre>							
in [9]:	<pre>df.head()</pre>							
out[9]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	
	0	1	5.1	3.5	5 1.4	0.2	Iris-setosa	
	1	2	4.9	3.0	1.4	0.2	Iris-setosa	
	2	3	4.7	3.2			Iris-setosa	
	3	4	4.6	3.1			Iris-setosa	
	4	5	5.0	3.6	5 1.4	0.2	Iris-setosa	
[11]:	df	ta	il()					
t[11]:			Id SepalLength	Cm SepalWidth	hCm PetalLength	Cm PetalWidth	Cm Sp	ecies
	145	5 1	46	6.7	3.0	5.2	2.3 Iris-virg	ginica
	146	5 1	47	6.3	2.5	5.0	1.9 Iris-virg	ginica
	147	7 1	48	6.5	3.0	5.2	2.0 Iris-virg	ginica
	148	3 1		6.2	3.4	5.4	2.3 Iris-virg	
	149	9 1	50	5.9	3.0	5.1	1.8 Iris-virg	ginica
[12]:	df	sh	ape					
		۰.	6)					
t[12]:	(15	, 00	6)					

3/21/25, 12:05 PM A6

Out[13]:

```
count 150.000000
                                  150.000000
                                                                 150.000000
                                                                               150.000000
                                                 150.000000
                   75.500000
                                    5.843333
                                                   3.054000
                                                                   3.758667
                                                                                 1.198667
           mean
             std
                   43.445368
                                    0.828066
                                                   0.433594
                                                                   1.764420
                                                                                 0.763161
            min
                   1.000000
                                    4.300000
                                                   2.000000
                                                                   1.000000
                                                                                 0.100000
            25%
                   38.250000
                                    5.100000
                                                   2.800000
                                                                   1.600000
                                                                                 0.300000
            50%
                  75.500000
                                    5.800000
                                                   3.000000
                                                                  4.350000
                                                                                 1.300000
                                    6.400000
                                                   3.300000
                                                                   5.100000
                                                                                 1.800000
            75%
                  112.750000
                150.000000
                                    7.900000
                                                   4.400000
                                                                   6.900000
                                                                                 2.500000
            max
          x=df.drop(['Id', 'Species'], axis=1)
In [14]:
In [15]:
          x.head()
              SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
Out[15]:
          0
                         5.1
                                        3.5
                                                        1.4
                                                                       0.2
          1
                         4.9
                                        3.0
                                                        1.4
                                                                       0.2
          2
                         4.7
                                        3.2
                                                                       0.2
                                                        1.3
          3
                         4.6
                                        3.1
                                                        1.5
                                                                       0.2
           4
                         5.0
                                        3.6
                                                                       0.2
                                                        1.4
In [16]:
          x.shape
          (150, 4)
Out[16]:
          from sklearn.preprocessing import LabelEncoder
In [17]:
           label=LabelEncoder()
           df['Species']=label.fit_transform(df['Species'])
          y=df['Species']
In [18]:
          y.head()
          0
                0
Out[18]:
          1
                0
          2
                0
          3
                0
          Name: Species, dtype: int32
In [19]:
          print(y.shape)
          (150,)
          from sklearn.model_selection import train_test_split
In [20]:
           xtrain, xtest, ytrain, ytest=train_test_split(x,y,test_size=0.2, random_state=0)
In [21]:
          xtrain.shape
          (120, 4)
Out[21]:
```

Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm

3/21/25, 12:05 PM A6

```
In [22]:
          xtest.shape
          (30, 4)
Out[22]:
          ytrain.shape
In [23]:
          (120,)
Out[23]:
In [24]:
         ytest.shape
          (30,)
Out[24]:
          from sklearn.naive_bayes import GaussianNB
In [26]:
In [27]:
          model=GaussianNB()
In [28]:
          model.fit(xtrain, ytrain) # Train the model
Out[28]:
          ▼ GaussianNB
         GaussianNB()
         ypred=model.predict(xtest) # Predict on test data
In [29]:
          model.score(xtest, ytest)
In [30]:
         0.966666666666667
Out[30]:
          from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
In [31]:
          accuracy_score(ytest, ypred)
In [32]:
         0.966666666666667
Out[32]:
          cm=confusion_matrix(ytest, ypred)
In [33]:
          print(cm)
          [[11 0 0]
          [ 0 13 0]
          [0 1 5]]
In [35]: print(classification_report(ytest, ypred))
                        precision
                                     recall f1-score
                                                         support
                     0
                                       1.00
                             1.00
                                                  1.00
                                                              11
                                                              13
                     1
                             0.93
                                       1.00
                                                  0.96
                     2
                             1.00
                                       0.83
                                                  0.91
                                                               6
                                                  0.97
                                                              30
             accuracy
                             0.98
                                       0.94
                                                  0.96
                                                              30
             macro avg
         weighted avg
                             0.97
                                       0.97
                                                  0.97
                                                              30
 In [ ]:
 In [ ]:
```