Factor models via Autoencoders

A clever way of using Neural Networks to solve a familiar but important problem in Finance was proposed by <u>Gu, Kelly, and Xiu, 2019</u> (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3335536).

It is an extension of the Factor Model framework of Finance, combined with the tools of dimensionality reduction (to find the factors) of Deep Learning: the Autoencoder.

You can find <u>code (https://github.com/stefan-jansen/machine-learning-for-trading/blob/main/20_autoencoders_for_conditional_risk_factors/06_conditional_autoencefor this model as part of the excellent book by <u>Stefan Jansen (https://github.com/stefan-jansen/machine-learning-for-trad</u></u>

trading/blob/main/20_autoencoders_for_conditional_risk_factors/06_conditional_autoenc

- <u>Github (https://github.com/stefan-jansen/machine-learning-for-trading)</u>
- In order to run the code notebook, you first need to run a notebook for <u>data prepara</u> <u>jansen/machine-learning-for-</u>
 - trading/blob/main/20 autoencoders for conditional risk factors/05 conditional a
 - This notebook relies on files created by notebooks from earlier chapters of
 - So, if you want to run the code, you have a lot of preparatory work ahead of
 - Try to take away the ideas and the coding

Factor Model review

We will begin with a quick review/introduction to Factor Models in Finance.

First, some necessary notation:

- $\mathbf{r}_s^{(d)}$: Return of ticker s on day d.
- $\hat{\mathbf{r}}_s^{(d)}$: approximation of $\mathbf{r}_s^{(d)}$
- $n_{
 m tickers}$: large number of tickers
- $n_{\rm dates}$ number of dates
- ullet $n_{
 m factors}$: small number of factors: independent variables (features) in our approximation
- ullet Returns matrix ${f R}$ indexed by date
 - lacksquare $\mathbf{R}: (n_{\mathrm{dates}} imes n_{\mathrm{tickers}})$
 - $lacksquare ||\mathbf{R}^{(d)}|| = n_{ ext{tickers}}$
 - \circ ${f R}^{(d)}$ is vector of returns for each of the $n_{
 m tickers}$ on date d
- ${f r}$ will denote a vector of single day returns: ${f R}^{(d)}$ for some date d

Notation summary

term	meaning		
s	ticker		
$n_{ m tickers}$	number of tickers		
d	date		
$n_{ m dates}$	number of dates		
$n_{ m chars}$	number of characteristics per ticker		
m	number of examples		
	$m=n_{ m dates}$		
i	index of example		
	There will be one example per date, so we use i and d interchangeably.		
$[\mathbf{X^{(i)}},\mathbf{R^{(i)}}]$	example i		
	\$	\X^\ip	= (\ntickers \times \nchars)\$
	\$	\R^\ip	= \ntickers\$
$\mathbf{X}_{s}^{(d)}$	vector of ticker s 's characteristics on day d		
	\$	X^{dp_s}	= \nchars\$

Note

The paper actually seeks to predict $\hat{\mathbf{r}}_s^{(d+1)}$ (forward return) rather than approximate the current return $\hat{\mathbf{r}}_s^{(d)}$.

We will present this as an approximation problem as opposed to a prediction problem for simplicity of presentation (i.e., to include PCA as a model).

A **factor model** seeks to approximate/explain the return of a *number* of tickers in terms of common "factors" ${f F}$

$$egin{array}{lll} oldsymbol{\cdot} & \mathbf{F}: (n_{ ext{dates}} imes n_{ ext{factors}}) \ & \mathbf{R}_1^{(d)} &=& eta_1^{(d)} \cdot \mathbf{F}^{(d)} + \epsilon_1 \ & dots \ & \mathbf{R}_{n_{ ext{tickers}}}^{(d)} &=& eta_{n_{ ext{tickers}}}^{(d)} \cdot \mathbf{F}^{(d)} + \epsilon_{n_{ ext{tickers}}} \end{array}$$

There are several ways to create a factor model.

Pre-defined factors, solve for sensitivities

First: supposed ${f F}$ is given

- \bullet For each date d, returns for: market, several industries, large/small cap
- Solve for β_s , for each s
 - lacksquare $n_{ ext{tickers}}$ separate Linear Regression models: $\langle \mathbf{X}^{(d)}, \mathbf{y}^{(d)}
 angle = \langle \mathbf{r}_s^{(d)}, \mathbf{F}^{(d)}
 angle$
 - Regression of time-series of a ticker's return agains a time-series of Factor returns
 - Solve for β_s

Pre-defined sensitivities, solve for factors

Alternately: suppose β is given

- For each ticker s, sensitivity of s to β_j
- Solve for $\mathbf{F}^{(d)}$, for each d
 - lacktriangledown $n_{
 m dates}$ separate Linear Regression models $\langle {f X}^{(s)}, {f y}^{(s)}
 angle = \langle eta_s, {f r}_s^{(d)}
 angle$
 - Regression of cross-section of tickers returns against a cross-section of ticker sensitivities
 - Solve for $\mathbf{F}^{(d)}$

Solve for sensitivities and factors: PCA

Yet another possibility: solve for β and ${\bf F}$ simulataneoulsy.

Recall Principal Components

 $oldsymbol{\bullet}$ Representing $oldsymbol{\mathbf{X}}$ (with "standard" basis vectors) via an alternate basis $oldsymbol{\mathbf{V}}$ $oldsymbol{\mathbf{X}} = ilde{oldsymbol{\mathbf{X}}} oldsymbol{\mathbf{V}}^T$

In this case without dimensionality reduction:

$$\mathbf{R} = \mathbf{ ilde{R}}V^T$$

where

$$\mathbf{R}, ilde{\mathbf{R}}: (n_{ ext{dates}} imes n_{ ext{tickers}})$$

$$\mathbf{V}^T:(n_{ ext{tickers}} imes n_{ ext{tickers}})$$

With dimensionality reduced from $n_{
m tickers}$ to $n_{
m factors}$

$$\mathbf{R} = \mathbf{F}\,eta^T$$

- ullet $\mathbf{F}^T:(n_{\mathrm{dates}} imes n_{\mathrm{factors}})$
 - is $\tilde{\mathbf{R}}$ with columns eliminated b/c of dimensionality reduction
- $ullet \ eta^T:(n_{ ext{factors}} imes n_{ ext{tickers}})$
 - so $\beta^{(s)}$ are sensitivities of s to factors
- Solve for \mathbf{F} , β simultaneously

The daily observation of $n_{
m tickers}$ returns ${f R}^{(d)}$ is replaced by $n_{
m factors}$ returns ${f F}^{(d)}$

This paper

This paper will create a factor model that

- Solve for ${f F}, eta$ simultaneously
 - like PCA
- ullet But where ${f F}$ and eta are defined by Neural Networks

Autoencoder

The paper refers to the model as a kind of Autoencoder.

Let's review the topic.

Training examples
$$\langle \mathbf{X}^{(d)}, \mathbf{y}^{(d)}
angle = \langle \mathbf{R}^{(d)}, \mathbf{R}^{(d)}
angle$$

No obvious form as factor model

- $\mathbf{R}^{(d)} = \mathbf{r}$
 - lacksquare mapped by Encoder to latent ${f z}$ (of length $n_{
 m factors}$)
 - lacktriangle latent ${f z}$ mapped to ${f r}$ by Decoder

Imagine instead creating an "Autoencoder" that worked as follows

- Maps $\mathbf{R}^{(d)}$ to $eta^{(d)}$
 - lacksquare sensitivity of each of the $n_{
 m tickers}$ on day d to day d returns of $n_{
 m factors}$ ${f F}^{(d)}$
- ullet Maps ${f R}^{(d)}$ to the day d returns of $n_{
 m factors}$ ${f F}^{(d)}$
- Outputting $\mathbf{y}^{(d)} = \beta^{(d)} \mathbf{F}^{(d)}$

It acts as an Autoencoder in the senses that the Training examples $\langle \mathbf{X}^{(d)}, \mathbf{y}^{(d)} \rangle = \langle \mathbf{R}^{(d)}, \mathbf{R}^{(d)} \rangle$

• But constrains $\hat{\mathbf{y}}^{(d)} = \hat{\mathbf{R}}^{(d)}$ to the form $\hat{\mathbf{R}}^{(d)} = eta^{(d)} \, \mathbf{F}^{(d)}$

This model solves for $eta^{(d)}, \mathbf{F}^{(d)}$ simultaneously

- almost what PCA does **but**, in PCA, β does not vary by day
- ullet this model: the beta of a ticker s to a factor j changes by day d !

This paper goes one step further than the standard Autoencoder

- Standard Autoencoder maps $\mathbf{R}^{(d)}$ to $eta^{(d)}$
- ullet This paper allows $n_{
 m chars} \geq 1$ daily *characteristics* ${f X}^{(d)}$ to map to $eta^{(d)}$
 - lacksquare one characteristic may be ${f R}^{(d)}$

$$eta_s^{(d)} = ext{NN}(\mathbf{X}_s^{(d)}; \mathbf{W}_eta)$$

- ullet $eta_s^{(d)}$
- lacksquare parameterized by weights \mathbf{W}_eta
- lacktriangle is only a function of the characteristics of s
- not a function of other ticker s' characteristics $\mathbf{X}_{s'}$, as in PCA
- ullet $eta_s^{(d)}$ share the same weights \mathbf{W}_eta for all s,d
 - lacktriangle unlike fixed factor, solve for eta_s
 - \circ different for each s
 - \circ same for each day d

This model: nothing pre-defined, solve for sensitivities and factors

- Simultaneously solve for $eta_s^{(d)}$ and $\mathbf{F}^{(d)}$
 - $\beta_s^{(d)}$ constrained:

$$eta_s^{(d)} = ext{Dense}\left(n_{ ext{factors}}
ight)\!(\mathbf{X}_s^{(d)})$$

- \circ combination of ticker-specific, time-varying characteristics $\mathbf{X}_s^{(d)}$
- we solve for the combining weights
 - shared by all tickers and dates
- $\mathbf{F}^{(d)}$ constrained

$$\mathbf{F}^{(d)} = ext{Dense}\left(n_{ ext{factors}}
ight) (\mathbf{R}^{(d)})$$

- \circ combination of time-varying raw returns $\mathbf{R}^{(d)}$
- we solve for combining weights
 - shared by all dates

This paper

- $ullet \mathbf{r}^{(d)} = eta^{(d)} * \mathbf{r}^{(d)}$
 - $\mathbf{r}^{(d)}$ shape is $(n_{ ext{tickers}} imes 1)$
 - lacksquare shape is $(n_{ ext{tickers}} imes n_{ ext{factors}})$
 - $\mathbf{r}^{(d)}$ shape is $(n_{\mathrm{factors}} imes 1)$
- Solve simultaneously for $eta^{(d)}, \mathbf{r}^{(d)}$ where $eta^{(d)}_s = f(\mathbf{X}^{(d)}_s)$
 - lacksquare $eta_s^{(d)}$ is only a function of the characteristics of s
 - not $f(\mathbf{r}^{(d)})$: the simultaneous returns of other s' as in PCA
 - $lacksquare eta_s^{(d)}$ share the same \mathbf{W}_eta for all s,d
 - \circ unlike fixed factor, solve for β_s
 - \circ different for each s
 - \circ same for each day d

and where

$$\mathbf{r}^{(d)} = f(\mathbf{r}^{(d)})$$
 for f fixed over all d

like PCA

Input side of network

Input X

$$\mathbf{X}:(n_{ ext{dates}} imes n_{ ext{tickers}} imes n_{ ext{chars}})$$

$$||\mathbf{X}^{|}| = (n_{ ext{tickers}} imes n_{ ext{chars}})$$

- one example per date
- ullet example shape is $n_{
 m tickers} imes n_{
 m chars}$

Dense β

- ullet Dense $(n_{
 m factors})$
 - lacksquare Dense($n_{ ext{factors}}): (n_{ ext{tickers}} imes n_{ ext{chars}}) \mapsto (n_{ ext{tickers}} imes n_{ ext{factors}})$
 - threads over ticker dimension (<u>see</u>
 (<u>https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense</u>))
 - tickers share same weights
 - \circ single Dense($n_{
 m factors})$ not $n_{
 m tickers}$ copies of Dense $(n_{
 m factors})$
- $ullet \ \mathbf{W}_eta : (n_{\mathrm{factors}} imes n_{\mathrm{chars}})$
 - lacktriangle same across all d,s
 - ullet $W_eta^{(d)}=W_eta^{(d')}$ like any other training (same weight for every example)
 - ullet $W_{eta,(s)}^{(d)}=W_{eta,(s')}^{(d)}$: transformation of characteristics to beta independent of ticker
 - lacksquare hence, size of \mathbf{W}_{eta} is $(n_{\mathrm{factors}} imes n_{\mathrm{chars}})$

$$eta^{(d)} = ext{Dense} \left(n_{ ext{factors}}
ight) (\mathbf{X}^{(d)}) \ ||eta^{(d)}|| = \left(n_{ ext{tickers}} imes n_{ ext{factors}}
ight)$$

Factor side of network

Input ${f R}$

 $\mathbf{R}:(n_{ ext{dates}} imes n_{ ext{tickers}})$

$$||\mathbf{R}^{(d)}|| = (n_{ ext{tickers}})$$

• one set of returns per date

Dense δ (factor)

- Dense (n_{factors})
 - lacksquare Dense($n_{ ext{factors}}): n_{ ext{tickers}} \mapsto n_{ ext{factors}}$
- ullet $\mathbf{W}_f:(n_{ ext{factors}} imes n_{ ext{tickers}})$
 - lacksquare same across all d,s
 - ullet $W_f^{(d)}=W_f^{(d')}$ like any other training (same weight for every example)
 - $lacksquare W^d pf$: transformation of ticker returns to factor returns

$$egin{aligned} \mathbf{F}^{(d)} &= \mathrm{Dense}\,(n_{\mathrm{factors}})(\mathbf{R}^{(d)}) \ ||\mathbf{F}^{(d)}|| &= n_{\mathrm{factors}} \end{aligned}$$

Dot

$$\hat{\mathbf{r}}^{(d)} = eta^{(d)} \cdot \mathbf{F}^{(d)}$$

• Dot product threads over factor dimension

$$||\hat{\mathbf{r}}^{(d)}|| = n_{ ext{tickers}}$$

Loss

Let $\mathcal{L}_{(s)}^{(d)}$ denote error of ticker s on day d.

$$\mathcal{L}_{(s)}^{(d)} = \mathbf{r}_s^{(d)} - \hat{\mathbf{r}}_s^{(d)}$$

or perhaps

$${\cal L}_{(s)}^{(d)} = {f r}_s^{(d+1)} - \hat{f r}_s^{(d)}$$

- ullet $\mathcal{L}^{(d)}$ is the loss of example d
 - this loss has $n_{
 m tickers}$ sub-components
 - lacktriangleright This appears in example $i=d:\mathbf{X}^{(d)}$
 - $ullet \mathcal{L}^{(\mathbf{i})} = \mathcal{L}^{(d)} = \sum_s \mathcal{L}^{(d)}_{(s)}$
- This is different than the loss \mathcal{L}' for the case where an example is a single ticker on a single day
 - $m'=n_{ ext{dates}}*n_{ ext{tickers}}$ examples in this case $\mathcal{L}'^{(\mathbf{i})}=\mathcal{L}_{(s)}^{(d)}$