

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Profesor: Pedro Gaspar – Estudiante: Benjamín Mateluna

Geometría Diferencial - MAT2860 Resumen Superficies Regulares (I1) 06 de Abril de 2025

1. Superficies Regulares

1.1. Definición y ejemplos

Definición 0.1. Sea $\Sigma \subseteq \mathbb{R}^3$, decimos que Σ es una superficie regular si para todo $p \in \Sigma$ existe un abierto $V \subseteq \mathbb{R}^3$ con $p \in V$ y una función diferenciable

$$\varphi: \mathcal{V} \subseteq \mathbb{R}^2 \to \mathbb{R}^3$$

 $tal\ que$

- $\varphi(\mathcal{V}) = V \cap \Sigma$
- φ es homeomorfismo de V sobre $V \cap \Sigma$
- $D\varphi(q): \mathbb{R}^2 \to \mathbb{R}^3$ es inyectiva, es decir, si $\varphi = \varphi(u,v)$, entonces

$$\varphi_u(q) := D\varphi(q) \cdot e_1 = \frac{d}{dt} \varphi(q + te_1) \big|_{t=0}$$
$$\varphi_v(q) := D\varphi(q) \cdot e_2 = \frac{d}{dt} \varphi(q + te_2) \big|_{t=0}$$

son linealmente independientes, en otras palabras $\varphi_u(q) \times \varphi_v(q) \neq 0$. Decimos que φ es una parametrización local para Σ .

Definición 0.2. Una superficie parametrizada diferenciable es una aplicación diferenciable $\varphi : \mathcal{V} \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ con \mathcal{V} abierto. Se dice que φ es regular si $D\varphi(q) : \mathbb{R}^2 \to \mathbb{R}^3$ es inyectiva para todo $q \in \mathcal{V}$.

Definición 0.3. Sea $F:W\subseteq\mathbb{R}^n\to\mathbb{R}^m$ diferenciable. Se dice que $q\in\mathbb{R}^m$ es un valor regular para F, si $F^{-1}(q)=\emptyset$ o si para todo $p\in F^{-1}(q)$ se tiene que $DF(p):\mathbb{R}^n\to\mathbb{R}^m$ es sobreyectiva.

Teorema 1. Sea $h: W \subseteq \mathbb{R}^3 \to \mathbb{R}$ una función diferenciable. Si $c \in \mathbb{R}$ es un valor regular para h, entonces $h^{-1}(c)$ es una superficie regular.

1.2. Cambio de Coordenadas

Lema 1.1. Sea $\varphi: \mathcal{V} \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ superficie parametrizada regular

$$\varphi(u, v) = (x(u, v), y(u, v), z(u, v))$$

Entonces para todo punto $(u_0, v_0) \in \mathcal{V}$ se tiene que $D(\pi \circ \varphi)(u_0, v_0) : \mathbb{R}^2 \to \mathbb{R}^2$ es un isomorfismo lineal, donde $\pi : \mathbb{R}^3 \to \mathbb{R}^2$ es una de las proyecciones a los planos xy, xz o yz.

Consecuentemente existe $V_0 \subseteq V$ abierto con $(u_0, v_0) \in V_0$ tal que $\pi \circ \varphi(V_0) = W_0 \subseteq \mathbb{R}^2$ es abierto $y \pi \circ \varphi|_{V_0} : V_0 \to W_0$ es un difeomorfismo.

Corolario 1.1. Si $\Sigma \subseteq \mathbb{R}^3$ es una superficie regular, entonces para todo $p \in \Sigma$ existe parametrización local cuya imagen contiene a p y que corresponde a la gráfica de una función diferenciable.

Teorema 2. Si $\varphi_i : \mathcal{V}_i \subseteq \mathbb{R}^2 \to \Sigma$ son parametrizaciones locales de Σ con $U := \varphi_1(\mathcal{V}_1) \cap \varphi_2(\mathcal{V}_2) \neq \emptyset$. Entonces la aplicación

$$\varphi_2^{-1} \circ \varphi_1 : \varphi_1^{-1}(U) \subseteq \mathbb{R}^2 \to \varphi_2^{-1}(U) \subseteq \mathbb{R}^2$$

es un difeomorfismo. Se dice que $\varphi_2^{-1} \circ \varphi_1$ es un cambio de coordenadas.

1.3. Aplicaciones Diferenciables

Definición 2.1. Se dice que $f: \Sigma \to \mathbb{R}^d$ es diferenciable en $p \in \Sigma$ si existe una parametrización local $\varphi: \mathcal{V} \subseteq \mathbb{R}^2 \to \Sigma$ con $p \in \varphi(\mathcal{V})$ y tal que $f \circ \varphi$ es diferenciable en $\varphi^{-1}(p) \in \mathcal{V}$.

Definición 2.2. Se dice que

$$\gamma: V \subseteq \mathbb{R}^d \to \Sigma \subseteq \mathbb{R}^3$$

con Σ una superficie parametrizada regular, es diferenciable en $q \in V$. Si existe una parametrización local $\varphi : \mathcal{V} \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ con $\gamma(q) \in \varphi(\mathcal{V})$ tal que

$$\varphi^{-1} \circ \gamma : \gamma^{-1}(\varphi(\mathcal{V})) \subseteq \mathbb{R}^d \to \mathbb{R}^2$$

es diferenciable en $q \in \gamma^{-1}(\varphi(\mathcal{V}))$.

Lema 2.1.

- a) Sean $\gamma: \mathcal{V} \subseteq \mathbb{R}^d \to \Sigma$ y $f: \Sigma \to \mathbb{R}^m$ tales que γ es diferenciable en q y f es diferenciable en $\gamma(q)$ entonces $f \circ \gamma$ es diferenciable en q.
- b) Sean $f: \Sigma \to \mathbb{R}^m$ y $\phi: W \subseteq \mathbb{R}^m \to \mathbb{R}^d$ con $f(\Sigma) \subseteq W$ tales que f es diferenciable en p y ϕ es diferenciable en p.

Corolario 2.1. Una aplicación $\gamma: V \subseteq \mathbb{R}^d \to \Sigma$ es diferenciable $q \in V$ si y solo si sus coordenadas $\gamma_1, \gamma_2, \gamma_3$ son funciones diferenciables de V a \mathbb{R} en q.

Definición 2.3. Sean Σ_1, Σ_2 superficies regulares. Se dice que

$$F: \Sigma_1 \to \Sigma_2$$

es diferenciable en $p \in \Sigma_1$. Si existen parametrizaciones locales $\varphi_i : \mathcal{V}_i \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ para Σ_i con $p \in \varphi_1(\mathcal{V}_1)$ y $F(p) \in \varphi_2(\mathcal{V}_2)$ tales que

$$\varphi_2^{-1} \circ F \circ \varphi_1 : (F \circ \varphi_1)^{-1}(\varphi(\mathcal{V}_2)) \to \mathcal{V}_2$$

es diferenciable en $\varphi_1^{-1}(p) \in \mathcal{V}_1$.

Proposición 2.1. Sea $F: \Sigma_1 \to \Sigma_2 \subseteq \mathbb{R}^3$ y escribimos

$$F(p) = (F_1(p), F_2(P), F_3(p))$$

donde $F_i: \Sigma_1 \to \mathbb{R}$. Entonces F es diferenciable en $p \in \Sigma_1$ si y solo si F_i son diferenciables en $p \in \Sigma_1$.

Definición 2.4. Se dice que $F: \Sigma_1 \to \Sigma_2$ entre superficies regulares es un difeomorfismo si

- F es diferenciable, es decir, F es diferenciable para todo $p \in \Sigma_1$.
- \blacksquare F es una biyección y F^{-1} es diferenciable

Teorema 3. Sean $F: \Sigma_1 \to \Sigma_2$ y $G: \Sigma_2 \to \Sigma_3$ aplicaciones diferenciables entre superficies regulares. Si F es diferenciable en $p \in \Sigma_1$ y G es diferenciable en $F(p) \in \Sigma_2$ entonces $G \circ F$ es diferenciable en $p \in \Sigma_1$.

1.4. El Plano Tangente

Definición 3.1. El plano tangente a Σ en $p \in \Sigma$ es el subespacio vectorial

$$D\varphi(\varphi^{-1}(p))(\mathbb{R}^2) \subseteq \mathbb{R}^3$$

con φ una parametrización local en p. Lo denotaremos por $T_p\Sigma$.

Proposición 3.1. Para $p \in \Sigma$ y $w \in \mathbb{R}^3$ tenemos que $w \in T_p\Sigma$ si y solo si existe una curva parametrizada diferenciable $\alpha : (-\varepsilon, \varepsilon) \subseteq \mathbb{R} \to \mathbb{R}^3$ tal que

- $\alpha(0) = p$.
- $\alpha(t) \in \Sigma$ para todo $t \in (-\varepsilon, \varepsilon)$.
- $\alpha'(0) = w.$

Definición 3.2. Sea $f: \Sigma \to \mathbb{R}^m$ diferenciable en $p \in \Sigma$. Definimos la derivada o diferencial de f en $p \in \Sigma$ se define por

$$Df_p: T_p\Sigma \to \mathbb{R}^m$$

$$w = \alpha'(0) \to (f \circ \alpha)'(0) \in \mathbb{R}^m$$

Proposición 3.2. La derivada de una función diferenciable no depende de la elección de la curva y es lineal.