

Cairo University

Faculty of Engineering

Structural Engineering Department

Design Aids For Reinforced Concrete Structures According to ECP-203-2018

Prepared by Reinforced Concrete Staff Members

Area of Steel Reinforcement Used in Egypt

0	Weight					Area	of Cross	Area of Cross Section in cm ²	n cm ²				
шш	(kg/m')	1	2	3	4	5	9	2	8	6	10	11	12
9	0.222	0.283	0.565	0.848	1,131	1,414	1,696	1.979	2.262	2.545	2.827	3,110	3,393
8	0.395	0.503	1.005	1.508	2.011	2.513	3.016	3.519	4.021	4.524	5.027	5.529	6.032
10	0.617	0.785	1.571	2.356	3.142	3.927	4.712	5.498	6.283	690'2	7.854	8'639	9.425
12	0.888	1,131	2.262	3,393	4.524	5.655	98/.9	7.917	9,048	10,179	11,310	12,441	13.572
14	1.208	1.539	3.079	4.618	6.158	7.697	9:736	10.776	12,315	13.854	15,394	16.933	18,473
16	1.578	2.011	4.021	6.032	8.042	10.053	12.064	14.074	14.074 16.085	18,096	20.106	22.117	24.127
18	1.998	2.545	5.089	7.634	10.179	12.723	15.268	17.813	20.358	22.902	25.447	27.992	30.536
20	2.466	3.142	6.283	9.425	12.566	15.708	18,850	21,991	25.133	28.274	31,416	34,558	37,699
22	2.984	3,801	7.603	11.404	15.205	19.007	22.808	56.609	30,411	34.212	38,013	41,815	45,616
25	3.853	4'906	9.817	14.726	19.635	24.544	29.452	34,361	39.270	44.179	49.087	23.996	58.905
28	4.834	6.158	12.315	18.473	24.630	30.788	36.945	43.103	49.260	55.418	61.575	67.733	73,890
32	6.313	8.042	16.085	24.127	32.170	32.170 40.212	48.255	48.255 56.297 64.340 72.382	64.340	72.382	80.425	88,467	96.510

Design Chart For Doubly Reinforced Sections Subjected To Simple Bending (d'/d = 0.1)

* Values of Maximum Ring Tension and Its Position

	x, 8	Values	α, β Values for solid slabs		cast	momithically with beams.	ally wi	th beam			
H	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
8	.35	.40	.45	.50	. 55	09.	.65	.70	.75	.80	.85
В	.35	. 29	.25	.21	.18	.16	.14	.12	.11.	60.	.08

where : $\beta = 0.35/r^{1}$

& K = 0.5 r - 0.15

sq	2.0
bbed sla	1.9
way ri	1.8
for two	1.7
ng on masonary walls and for two way ribbed slabs (Marcus)	1.6
onary wa)	1.5
Jon masol Marcus)	1.4
slabs resting on flange. (1.3
for slabs	1.2
100	1.1
K, A Values	1.0
with	ų

.849

.830

.806

.778

.746

.706

.660

909.

.543

.473

.396

ጷ

.053

.063

.077

.093

.113

.140

.172

.212

. 262

. 333

966.

9

 slab	
cover	-
lange.	
sion f	
сошрех	
with non-complete compersion flange. (cover slab	
non-	
	-
slab	
α, β Values for ribbed slab ially omitted (Grashoff)	1
for ed (
alues	
α, β Values for parrtially omitted	
arrti	

2.0	.941	.059
1.9	.928	.072
1.8	.914	980'
1.7	.893	.107
1.6	.867	.133
1.5	.834	.166
1.4	797	. 203
1.3	.742	.258
1.2	.672	.328
1.1	,595	.405
1.0	. 500	.500
ы	8	β

Materials required for Hollow block slabs

Dimensions	Mater:	ials r	equire	d/m ²	De	ad load	s kg/m	2
of Blocks	Nº of	Block	Concr	ete m ³	Lec	a Blocks	Conc.	Blocks
(cm)	1 way	2 way	1 way	2 way	1 way	2 way	1 way	2 way
15x20x50	10	8.4	.073	.089	238	270	300	320
15x20x40	10.4	8.7	.075	-096	240	284	303	336
20×20×40	10.4	8.7	.083	.111	265	330	330	380
25×20×40	10	8	.100	.140	320	406	410	478

Weight of brick & block walls $(kg/m^2, with 2cm plaster on each side & mortar joint thickness = 1cm)$

Type of unit	Dimensions	wall	Weight of	Weight of
	(cm)	thick	mortar/m ²	wall/m ²
Solid Conc.blocks	25×12×10	12	34	300.6
Solid Conc.blocks	25×12×10	25	90.15	533.4
Hollow conc.blocks	40x20x12	12	14.5	244
Hollow conc.blocks	40x20x20	20	22	312
Solid Leca bricks	25x12x6	12	47.68	248
Solid Leca bricks 😽 🖟	25x12x6	25	121.42	431
Hollow Leca blocks 5	50x20x12	12	18.13	180
ollow Leca blocks	50x25x20	20	26.13	250
Hollow Leca blocks	50x25x20	25	37.81	294
Heavy solid Sand	25x12x6	12	47.68	316
Heavy solid Sand	25×12×6	25	121.42	568
	50x20x10	10	15.13	183
	60x20x12	12	14.71	198
	50x25x20	20	26.13	285
light solid Sand	50x25x25	25	.37.82	337
Solid Shale bricks 7 3	25×12×6	12	47.68	- 301
Perforated Shale	25x12x6	12	47.68	262
Perforated Shale	25x12x6	25	117.42	456
Gypsum blocks ·· 그 즉 즉.	66.6×50×10	10	6	105
Gypsum blocks	33.3x50x8	B	6	78

Fixed End Moments And Elastic Reactions For Beams

Case	F.	E.M	Elastic	Reaction
	M _a	M _b	Ya	Y _b
a w t/m` b	$\frac{W L^2}{12}$	$\frac{WL^2}{12}$	$\frac{W L^3}{24}$	$\frac{WL^3}{24}$
a w t/m` b	$\frac{WL^2}{8}$	0	$\frac{W L^3}{24}$	$\frac{W L^3}{24}$
a w t/m' b	$\frac{W L^2}{20}$	$\frac{W L^2}{30}$	$\frac{W L^3}{45}$	$\frac{W L^3}{51.5}$
y t/m' b	$\frac{WL^2}{15}$	0	$\frac{W L^3}{45}$	$\frac{W L^3}{51.5}$
a w t/m' b	W L ² 72.5	W L ² 900	W L ³ 350	W L ³ 587
a w t/m' b	$\frac{W L^2}{65}$	0	$\frac{W L^3}{350}$	W L ³ 587