Problem 4 (Jacod and Protter, page 45 Problem 7.14) Let $\{A_k\}_{k\geq 1}$ be a sequence of null events, i.e. events where $\mathbb{P}(A_k) = 0$ for each $k \geq 1$. Show that $\bigcup_{k=1}^{\infty} A_k$ is also a null event.

Proof.

Let Ω be sample space and \mathcal{A} be the σ -algebra containg $\{A_k\}_{k\geq 1}$.

Since $\{A_k\}_{k\geq 1}$ be a sequence of null events,

there exists $\{B_k\}_{k\geq 1}\subset \mathcal{A}$ such that $A_k\subset B_k$ and $\mathbb{P}(B_k)=0$ for $k\geq 1$. Then $\cup_{k=1}^{\infty}A_k\subset \cup_{k=1}^{\infty}B_k$. Since $B_k\in \mathcal{A}, k\geq 1$ and \mathcal{A} is a σ -algebra, $\cup_{k=1}^{\infty}B_k\in \mathcal{A}$. Then $\mathbb{P}(\cup_{k=1}^{\infty}B_k)\leq \sum_{k=1}^{\infty}\mathbb{P}(B_k)=\sum_{k=1}^{\infty}0=0$. Thus, $\mathbb{P}(\cup_{k=1}^{\infty}A_k)\leq \mathbb{P}(\cup_{k=1}^{\infty}B_k)$ by the monotonicity of probability measure.