

Banco de Dados I

Normalização

- -O conceito de normalização foi introduzido por E. F. Codd em 1970.
- -O processo de identificação dos agrupamentos necessários e da localização correta de cada atributo consiste num conjunto de técnicas designadas por normalização.
- -Metodologia para organizar os atributos nas tabelas de modo que a redundância entre os atributos não-chave seja eliminada.

Dizemos que um esquema de relação R está na primeira formal normal (1FN) se os domínios de todos os atributos de R são atômicos.

 Definida para NÃO permitir atributos multivalorados e atributos compostos.

1^a FORMA NORMAL (1^aFN)

Considere a tabela tbCliente abaixo sem normalização:

1 José 9563-6352 9847-2501 Rua Seis, 85 Morumbi 12.536-965 2 Maria 3265-8596 Rua Onze, 64 Moema 65.985-963 3 Jânio 8545-8956 9598-6301 Praça Ramos Liberdade 68.858-633	CLI_COD	CLI_NOME	CLI_TELEFONE	CLI_ENDERECO
Moema 65.985-963 3 Jânio 8545-8956 Praça Ramos 9598-6301 Liberdade	1	José		Morumbi
9598-6301 Liberdade	2	Maria	3265-8596	Moema
	3	Jânio		Liberdade

multivalorado 🖍

composto

Normalizando

CLI_COD	CLI_NOME	CLI_TELEFON E	CLI_RUA	CLI_NUM	CLI_BAIRRO	CLI_CEP
1	José	9563-6352 9847-2501	Rua Seis	85	Morumbi	12.536-965
2	Maria	3265-8596	Rua Onze	64	Moema	65.985-963
3	Jânio	8545-8956 9598-6301	Praça Ramos	NULL	Liberdade	68.858-633

multivalorado 🖍

Ainda não está na 1ª Forma Normal.

Normalizando

CLI_COD	CLI_NOME	CLI_RUA	CLI_NUM	CLI_BAIRRO	CLI_CEP
1	José	Rua Seis	85	Morumbi	12.536-965
2	Maria	Rua Onze	64	Moema	65.985-963
3	Jânio	Praça Ramos	NULL	Liberdade	68.858-633

CLT_CODIGO	CLI_COD (FK)	CLT_TELEFONE
1	1	9563-6352
2	1	9847-2501
3	2	3265-8596
4	3	8545-8956
5	3	9598-6301

Uma relação está em 2ª FN se todos os atributos não chave forem totalmente dependentes da chave primária (dependente de toda a chave e não apenas de parte dela).

- Assim, cada atributo não chave deve depender da chave.
- Esse caso aplica-se para entidades cuja chave primária é composta.

Dependência Funcional

	Pedido		ItemPedido	
PK	NÚMERO_PEDIDO		PK	NÚMERO_PEDIDO CÓDIGO PRODUTO
	PRAZO_DE_ENTREGA			QTDE_PRODUTO
	VALOR			NOME_PRODUTO
	<u>'</u>			PREÇO_UNITÁRIO

Dependência Funcional

Uma coluna ou conjunto de colunas A é dependente funcional de um outra coluna B, se a cada valor de B existir nas linhas da tabela um único valor de A. Em outras palavras, A depende funcionalmente de B.

Exemplo:

Considere uma tabela PEDIDO: a coluna PRAZO_DE_ENTREGA depende funcionalmente da coluna NÚMERO_PEDIDO. Em outras palavras, o NÚMERO_PEDIDO determina o PRAZO_ENTREGA.

Dependência Funcional Total

Na ocorrência de uma chave primária composta, dizemos que um atributo ou conjunto de atributos depende de forma completa ou total desta chave primária composta quando para cada valor da chave está associado um valor para cada atributo.

Exemplo: Na entidade ItemPedido, o atributo QTDE_PRODUTO depende de forma total da chave primária composta (NÚMERO_PEDIDO + CÓDIGO_PRODUTO).

Dependência Funcional Parcial

Quando uma coluna ou conjunto de colunas A depende de outra coluna B que faz parte da chave primária composta. Para cada valor da coluna B existe um valor associado para a coluna A.

A dependência funcional parcial só existe quando a tabela possui chave primária composta.

Exemplo: Na entidade ItemPedido, as colunas NOME_PRODUTO, PRECO_UNITARIO dependem de forma parcial da chave primária composta (NÚMERO_PEDIDO + CÓDIGO_PRODUTO) através da coluna CÓDIGO-PRODUTO.

Considere a tabela tbProjetoEmpregado abaixo:

CódProj	CodEmp	Nome	Cat	Sal	Datalni	TempAl
LSC001	2146	João	A1	4	1/11/91	24
LSC001	3145	Sílvio	A2	4	2/10/91	24
LSC001	6126	José	B1	9	3/10/92	18
LSC001	1214	Carlos	A2	4	4/10/92	18
LSC001	8191	Mário	A1	4	1/11/92	12
PAG02	8191	Mário	A1	4	1/05/93	12
PAG02	4112	João	A2	4	4/01/91	24
PAG02	6126	José	B1	9	1/11/92	12

Normalizando

Proj:

CódProj	Tipo	Descr
LSC001	Novo Desenv.	Sistema de Estoque
PAG02	Manutenção	Sistema de RH

ProjEmp:

CódProj	CodEmp	Datalni	TempAl
LSC001	2146	1/11/91	24
LSC001	3145	2/10/91	24
LSC001	6126	3/10/92	18
LSC001	1214	4/10/92	18
LSC001	8191	1/11/92	12
PAG02	8191	1/05/93	12
PAG02	4112	4/01/91	24
PAG02	6126	1/11/92	12

Emp:

CodEmp	Nome	Cat	Sal
2146	João	A1	4
3145	Sílvio	A2	4
1214	Carlos	A2	4
8191	Mário	A1	4
4112	João	A2	4
6126	José	B1	9

Uma relação está em 3ª FN se todos os atributos que não são chave são independentes, isto é, não existe funções que definam um ao outro. Portanto, sempre a chave deve definir toda a tabela.

 Atributos não-chaves não podem definir outros atributos não-chaves. Mais formalmente, a 3ª FN não permite que um atributo não-chave seja dependente de outro.

Considere a tabela tbltemNota abaixo (sem normalização).

ITE COD	PRO_COD	ITE_PRECO	ITE_QTDE	ITE_TOTAL
1	1	0,70	2	1,40
2	2	1,20	4	4,80
3	3	0,50	2	1,00

ITE_TOTAL = ITE_PRECO * ITE_QTDE

Normalizando

tbltemNota

ITE_COD	PRO_COD	ITE_PRECO	ITE_QTDE
1	1	0,70	2
2	2	1,20	4
3	3	0,50	2

Um dos mais importantes princípios de um modelo de banco de dados é o princípio da integridade dos dados, realizado através de restrições que são condições obrigatórias impostas pelo modelo para manter a consistência dos dados.

As restrições de integridade são:

- Integridade de domínio;
- Integridade de entidade;
- Integridade de chave;
- Integridade referencial.

Restrição de integridade de domínio:

Especificam que o valor de um atributo deve obedecer a definição dos valores admitidos para a coluna, ou seja, devem pertencer ao domínio deste atributo.

Restrição de integridade de entidade:

Uma chave primária não pode assumir valor nulo em qualquer tupla da relação.

Restrição de integridade de chave:

Cada atributo da chave primária deve assumir valor único em todas as tuplas da relação.

Restrição de integridade referencial:

Uma tupla em uma relação que se refere a outra relação, deve se referenciar a uma tupla existente nesta relação. A chave primária numa relação A1 é chave estrangeira numa relação A2.

Empregado		Departamento
nome		nome
salário		cod_depto (PK)
cod_depto (FK)		nome_chefe
	•	num_depto

SQL (Structured Query Language)

A sigla SQL refere-se a Structured Query Language.

A SQL é dividida nos seguintes componentes:

- **DCL (Linguagem de Controle de Dados)**: Provê a segurança interna do banco de dados.
- **DDL (Linguagem de Definição de Dados):** Permite a criação dos componentes do banco de dados.
- DML (Linguagem de Manipulação de Dados): Permite a manipulação dos dados armazenados.
- **DQL** (Linguagem de Consulta de Dados): Permite extrair dados do banco de dados.

DDL: Linguagem de Definição de Dados

- -A linguagem SQL, por meio da DDL, disponibiliza um conjunto de comandos para criação (CREATE), alteração (ALTER) e remoção (DROP) de tabelas e outras estruturas.
- -Embora a maioria dos SGBDs disponibiliza ferramentas que permitem a criação de Banco de Dados, é possível criar o próprio banco de dados a partir de comandos SQL.

https://www.microsoft. com/pt-br/sqlserver/sql-serverdownloads https://sqliteonline.com/

- -Para criar o banco de dados, precisamos ficar atentos para os seguintes itens:
- Tipo de dados;
- Null e not null;
- Chaves primárias, estrangeiras e únicas.

Tipo de dados	Valores aceitáveis
bigint	Valores inteiros de -2 ⁶³ a 2 ⁶³ -1
int	Valores inteiros de -2 ³¹ a 2 ³¹ -1
smallint	Valores inteiros de -2 ¹⁵ a 2 ¹⁵ -1
bit	Valores inteiros com valor 0 ou 1
decimal	Valores fracionários de -10 ³⁸ +1 a 10 ³⁸ -1
numeric	Valores fracionários de -10 ³⁸ +1 a 10 ³⁸ -1
money	Valores monetários de -2 ⁶³ a 2 ⁶³ -1
datetime	Valores de data e hora de 1/1/1753 a 31/12/9999
char	Valores de caracteres de comprimento definido (n: 1 a 8000 caracteres)
varchar	Valores de caracteres de comprimento variável (n: 1 a 8000 caracteres)
text	Valores de caracteres de comprimento variável (máx 2 ³¹ -1 caracteres)
varbinary	Valores binários de comprimento variável (máx 8000 bytes)
image	Dados de comprimento variável (máx 2 ³¹ -1 bytes)

Null e not null

Os atributos do banco de dados podem permitir null ou não.

- -Permitir null: significa que o campo pode ser vazio. Por exemplo: Ao armazenar os dados do cliente, o telefone pode não ser informado, então telefone deve permitir null.
- -Não permitir null: significa que o atributo sempre será preenchido. Por exemplo: Ao armazenar os dados do cliente, o nome sempre será informado, então nome não deve permitir null.

Chaves primárias representam o identificador da tabela;

- Em uma tabela, apenas um atributo pode ser marcado como chave primária;
 - A chave primária não pode aceitar null;
- Por padrão, identifica-se um campo código autoincremento (identidade) para ser a chave primária.

Uma tabela pode ter somene uma coluna de identidade. Além disso, o valor de uma coluna desse tipo é gerado automaticamente pelo SQL Server e não pode ser alterado ou inserido.

Chaves estrangeiras representam a chave primária de outra tabela.

Regras de exclusão:

- Sem Ação
- Cascata
- Definir nulo
- Definir padrão

Unique

Como em uma tabela apenas um atributo é definido como chave primária (identificador que não se repete), existem algumas tabelas que outro atributo não pode se repetir.

Como criar o script?

Primeiro precisamos criar o banco de dados. Para isso utilizaremos o seguinte script:

CREATE DATABASE, SistemaAcademico

representa o nome do banco de dados

Como criar o script?

Depois criaremos as tabelas e os atributos, definindo o tipo, se permite null ou não, chaves primárias, únicas e estrangeiras (caso existam).


```
CREATE TABLE thAluno
        ALU CODIGO int not null primary key identity,
        ALU NOME varchar(50) not null,
        ALU RG varchar(20) not null unique,
        ALU RUA varchar(50) not null,
        ALU NUMERO int null,
        ALU CIDADE varchar(50) not null,
        ALU UF varchar(2) not null
CREATE TABLE thAlunoTelefone
        ALT_CODIGO int not null primary key identity,
        ALT TELEFONE varchar(13) null,
        ALU CODIGO int not null foreign key references tbAluno
(ALU CODIGO) ON DELETE CASCADE ON UPDATE CASCADE
```


tbCliente

CLI_CODIGO (PK)

CLI NOME

CLI_CPF (UK)

CLI RUA

CLI NUMERO

CLI BAIRRO

CLI_CIDADE

CLI SEXO

tbPedido

PED_CODIGO (PK)

PED_NUMERO (UK)

PED_DATA

CLI_CODIGO (FK)

VEN_CODIGO (FK)

tbSecao

SEC_CODIGO (PK)

SEC_NOME

tbVendedor

VEN_CODIGO (PK)

VEN_NOME

VEN_CPF (UK)

tbPedidoProduto

PEP_CODIGO (PK)

PED_CODIGO (FK)

PRO_CODIGO (FK)

PEP QTDE

PEP PRECO UNIT

tbProduto

PRO CODIGO (PK)

PRO NOME

PRO_QTDE

PRO_UNIDADE

PRO PRECO UNIT

SEC_CODIGO (FK)

tbLivro

tbAluno

ALU_CODIGO (PK)

ALU NOME

ALU_CPF (UK)

ALU_DATA_NASC

ALU RUA

ALU NUMERO

ALU BAIRRO

ALU_CIDADE

tbAlunoTelefone

ALT_CODIGO (PK)

ALU_CODIGO (FK)

ALT_TELEFONE

tbLocacao

LOC_CODIGO (PK)

LOC_NUMERO (UK)

LOC_DATA

ALU_CODIGO (FK)

tbLocacaoLivro

LOL_CODIGO (PK)

LOC CODIGO (FK)

LIV CODIGO (FK)

LOL_DATA_DEV

LOL MULTA

LIV_CODIGO (PK)

LIV_NOME

LIV_ISBN (UK)

LIV EDICAO

LIV_VOLUME

LIV_EDITORA

LIV_QTDE_EXEMP

tbLivroAutor

LIA_CODIGO (PK)

LIV_CODIGO (FK)

AUT_CODIGO (FK)

tbAutor

AUT_CODIGO (PK)

AUT_NOME

AUT NOTA BIOG

Para adicionar uma coluna:

ALTER TABLE tbAluno ADD ALU_RUA varchar(100)

Para alterar uma coluna:

ALTER TABLE tbAluno
ALTER COLUMN ALU_RUA varchar(150)

Para apagar uma coluna:

ALTER TABLE tbAluno
DROP COLUMN ALU RUA

Para apagar uma chave

ALTER TABLE tbAluno
DROP CONSTRAINT UQ__tbAluno__08EA5793

Para adicionar uma chave única

ALTER TABLE tbAluno
ADD CONSTRAINT UK_ALUNO_NOME UNIQUE (ALU_NOME)

Para adicionar uma chave estrangeira:

ALTER TABLE tbAlunoTelefone
ADD CONSTRAINT FK_tbAluno_tbAlunoTelefone FOREIGN KEY
(ALU_CODIGO) REFERENCES tbAluno (ALU_CODIGO)

Para apagar uma tabela utilize:

DROP TABLE tbAlunoTelefone

tbCurso

CUR_CODIGO
CUR_NOME
CUR CARGA HORARIA (UK)

tbDisciplina

DIS_CODIGO (PK)
DIS_NOME

DIS SIGLA

- Adicionar os atributos DIS_CARGA_HORARIA e CUR_CODIGO na tabela tbDisciplina.
- Alterar o tipo de dados do atributo CUR_NOME para varchar(50).
- Remover o atributo DIS_SIGLA.
- Adicionar a chave primária ao atributo CUR_CODIGO da tabela tbCurso.
- Adicionar a chave estrangeira ao atributo CUR_CODIGO da tabela tbDisciplina.
- Adicionar a chave única ao atributo CUR_NOME.
- Remover a chave única do atributo CUR_CARGA_HORARIA.
- Remover a tabela tbDisciplina.

tbLivro

tbAluno

ALU_CODIGO (PK)

ALU NOME

ALU_CPF (UK)

ALU_DATA_NASC

ALU RUA

ALU NUMERO

ALU BAIRRO

ALU_CIDADE

tbAlunoTelefone

ALT_CODIGO (PK)

ALU_CODIGO (FK)

ALT_TELEFONE

tbLocacao

LOC_CODIGO (PK)

LOC_NUMERO (UK)

LOC_DATA

ALU_CODIGO (FK)

tbLocacaoLivro

LOL_CODIGO (PK)

LOC CODIGO (FK)

LIV CODIGO (FK)

LOL_DATA_DEV

LOL MULTA

LIV_CODIGO (PK)

LIV_NOME

LIV_ISBN (UK)

LIV EDICAO

LIV_VOLUME

LIV_EDITORA

LIV_QTDE_EXEMP

tbLivroAutor

LIA_CODIGO (PK)

LIV_CODIGO (FK)

AUT_CODIGO (FK)

tbAutor

AUT_CODIGO (PK)

AUT_NOME

AUT NOTA BIOG

tbPecaOrdemServ

POS_CODIGO (PK)

POS VALOR

POS QTDE

PEC_CODIGO

ORD_CODIGO (FK)

tbOrdemServico

ORD_CODIGO (PK)

ORD_DATA

CAR_CODIGO (FK)

tbServicoOrdemServ

SOS_CODIGO (PK)

SOS_VALOR

SER CODIGO (FK)

ORD_CODIGO (FK)

tbPeca

PEC DESCRICAO

PEC UNIDADE

PEC_VALOR

tbCarro

CAR CODIGO (PK)

CAR PLACA

CAR MODELO (UK)

CAR_ANO

CAR_CHASSI

CAR COR

tbServico

SER_CODIGO (PK)

SER_VALOR

SER_TEMPO

- 1) Adicionar o atributo SOS_QTDE a tabela tbServicoOrdemServ.
- 2) Remover o atributo SER_TEMPO da tabela tbServico.
- 3) Alterar o atributo SER_VALOR da tabela tbServico para decimal(10,2).
- 4) Adicionar o campo PEC_CODIGO na tabela tbPeca e adicionar a chave primária a este campo.
- 5) Adicionar a chave estrangeira ao atributo PEC_CODIGO da tabela tbPecaOrdemServ.
- 6) Adicionar as chaves únicas aos campos CAR_PLACA e CAR_CHASSI da tabela tbCarro.
- 7) Remover a chave única do atributo CAR_MODELO da tabela tbCarro.
- 8) (Tentar) remover o atributo SER_CODIGO da tabela tbServico.
- 9) (Tentar) remover a tabela tbServico.
- 10) Remover a tabela tbPecaOrdemServ.

Obs.: Justifique a execução dos itens 8 a 10, ressaltando as tentativas sem sucesso dos itens 8 e 9. Elabore maneiras que seria possível a execução desses itens.

tbPecaOrdemServ

POS_CODIGO (PK)

POS VALOR

POS QTDE

PEC_CODIGO (FK)

ORD CODIGO (FK)

tbOrdemServico

ORD_CODIGO (PK)

ORD_DATA

CAR_CODIGO (FK)

tbServicoOrdemServ

SOS_CODIGO (PK)

SOS_VALOR

SOS QTDE

SER_CODIGO (FK)

ORD_CODIGO (FK)

tbPeca

PEC CODIGO (PK)

PEC DESCRICAO

PEC UNIDADE

PEC_VALOR

tbCarro

CAR_CODIGO (PK)

CAR_PLACA (UK)

CAR MODELO

CAR ANO

CAR_CHASSI (UK)

CAR_COR

tbServico

SER_CODIGO (PK)

SER_VALOR

SER_TEMPO

tbCliente

CLI_CODIGO (PK)

CLI_NOME

CLI_CPF (UK)

CLI RUA

CLI NUMERO

CLI BAIRRO

CLI_CIDADE

CLI_COMP

tbVendedor

VEN_CODIGO

VEN NOME

VEN_CPF

tbPedido

PED_CODIGO (PK)

PED NUMERO (UK)

PED DATA

CLI_CODIGO (FK)

VEN_CODIGO

tbSecao

SEC_CODIGO (PK)
SEC_NOME

tbPedidoProduto

PEP_CODIGO (PK)

PED_CODIGO (FK)

PRO_CODIGO (FK)

PEP QTDE

PEP_PRECO_UNIT

tbProduto

PRO_CODIGO (PK)

PRO NOME

PRO_UNIDADE

PRO_PRECO_UNIT

SEC_CODIGO (FK)

- 1. Crie o banco de dados através de scripts.
- 2. Adicionar o atributo PRO_QTDE na tabela tbProduto.
- 3. Remova o atributo CLI_COMP da tabela tbCliente.
- 4. Adicione a chave única ao atributo VEN_CPF da tabela tbVendedor.
- 5. Adicione a chave primária ao atributo VEN_CODIGO da tabela tbVendedor.
- 6. Adicione a chave estrangeira ao atributo VEN_CODIGO da tabela tbPedido.
- 7. Remova a chave única do atributo CLI_CPF da tabela tbCliente.
- 8. Remova a tabela tbSecao.

tbAluno

ALU_CODIGO (PK)
ALU_NOME
ALU_CPF (UK)

ALU_DATA_NASC

ALU_RUA

ALU NUMERO

ALU_BAIRRO

ALU_CIDADE

tbAlunoTelefone

ALT_CODIGO (PK)
ALU_CODIGO (FK)
ALT TELEFONE

tbLocacao

LOC_CODIGO (PK)
LOC_NUMERO (UK)
LOC_DATA
ALU_CODIGO (FK)

tbLocacaoLivro

LOL_CODIGO (PK)

LOC_CODIGO (FK)

LIV_CODIGO (FK)

LOL_DATA_DEV

LOL_MULTA

LIV CODIGO (PK)

LIV_NOME (UK)

LIV ISBN

LIV_VOLUME

LIV_EDITORA

LIV_QTDE_EXEMP

tbLivroAutor

LIA_CODIGO (PK)

LIV_CODIGO (FK)

AUT_CODIGO

tbAutor

AUT_CODIGO

AUT_NOME

AUT NOTA BIOG

- 1. Crie o banco de dados através de scripts.
- 2. Adicionar o atributo LIV_EDICAO na tabela tbLivro.
- 3. Alterar o tipo de dados do atributo LOC_DATA da tabela tbLocacao para datetime.
- 4. Remover o atributo LIV_EDITORA.
- 5. Adicionar a chave primária ao atributo AUT_CODIGO da tabela tbAutor.
- 6. Adicionar a chave estrangeira ao atributo AUT_CODIGO da tabela tbLivroAutor.
- 7. Adicionar a chave única ao atributo LIV_ISBN da tabela tbLivro.
- 8. Remover a chave única de LIV_NOME na tabela tbLivro.
- 9. Remover a tabela tbAlunoTelefone
- 10.Adicionar o atributo ALU_TELEFONE na tabela tbAluno.