Cálculo de Congruencias

Calcular todas las congruencias del reticulado $(\{1,2,3,6,12\}, mcm, mcd)$

November 13, 2017

Cálculo de Congruencias

El reticulado ($\{1,2,3,6,12\}$, mcm, mcd) puede ser representado mediante el siguiente diagrama de Hasse.

Asumiremos que se tiene la prueba del siguiente lemma (lemma de convexidad)

Lemma

Si $c \in L/\theta$, entonces c es un subconjunto convexo de (L,s,i), es decir para cualesquiera $x,y,z \in L$, si se da que $x,y \in c$, $y \in c$ $x \leq z \leq y$, entonces $z \in c$

A continuación listaremos algunos teoremas que valen para todas las congruencias del reticulado que luego probaremos

Theorem

$$6\theta 3 = > 2\theta 1$$

$$3\theta 1 = > 2\theta 6$$

$$2\theta 6 = > 3\theta 1$$

$$2\theta 3 = 1\theta 2 \wedge 1\theta 3 \wedge 6\theta 2 \wedge 6\theta 3$$

$$1\theta 6 = > 1\theta 2 \wedge 1\theta 3 \wedge 6\theta 2 \wedge 6\theta 3$$

$$12\theta 6 = > 6\theta 3 \wedge 6\theta 2$$

Por ser reticulado, sabemos que valen las congruencias triviales

1.

2.

1.

3.

5.

6.

Congruencias. Caso $12/\theta = \{12\}.$

Sea θ una congruencia sobre ({1,2,3,6,12},mcm,mcd) . Ahora supongamos que $12/\theta=\{12\}$. Analizaremos por casos todas las posibles congruencias **Subcaso** (6,1) $\in \theta$

• Si $(6,1) \in \theta$ entonces (por lema de convexidad) $\{6,3,2,1\} \subseteq 6/\theta$, y ya que $12/\theta = \{12\}$, entonces $6/\theta = \{6,3,2,1\}$ por lo tanto θ es la congruencia 5.

Congruencias. Caso $12/\theta = \{12\}$.

Subcaso $(6,1) \notin \theta$

- Veamos el caso que $(2,1) \in \theta$ entonces (por lemita) $(3,6) \in \theta$, por lo tanto θ es la congruencia 4.
- Veamos el caso que $(3,1) \in \theta$ entonces (por lemita) $(2,6) \in \theta$, por lo tanto θ es la congruencia 3.

Congruencias. Caso $12/\theta = \{12\}.$

Nos queda analizar el caso en que $(2,3) \in \theta$, entonces (por lemita) $\{6,3,2,1\} \subseteq 2/\theta$, ya que $12/\theta = \{12\}$, entonces $\{6,3,2,1\} = 2/\theta$. Pero esto implica que $(6,1) \in \theta$. Absurdo! Por lo tanto este caso no puede darse. Si no se da ninguno de los casos listados recien, entonces $a/\theta = a$ para cada $a \in \{1,2,3,6,12\}$, por lo tanto θ es la congruencia Δ (la trivial).

Congruencias. Caso $12/\theta \neq \{12\}$

Ahora veremos las congruencias donde $12/\theta \neq \{12\}$ **Subcaso** $12/\theta = \{12,6\}$

• Sabemos que (2,1), $(3,1) \notin \theta$ (porque, por lemitas, eso implicara que (3,6) o $(2,6) \in \theta$, lo cual no puede ser porque supusimos que $12/\theta = \{12,6\}$). Entonces θ es la congruencia 6.

Congruencias. Caso $12/\theta \neq \{12\}$

- Si $3 \in 12/\theta$, por lema de convexitud, $6 \in 12/\theta$. Luego $(3,6) \in \theta$ implica (por lemita) $(2,1) \in \theta$.
 - Luego, si $2 \notin 12/\theta$, entonces θ es la congruencia 1.
 - Si $2 \in 12/\theta$ (por lemita), entonces θ es la congruencia ∇ (la trivial total).
- Si $2 \in 12/\theta$, por lema de convexidad, $6 \in 12/\theta$. Luego $(2,6) \in \theta$ implica (por lemita) $(3,1) \in \theta$.
 - Luego, si $3 \notin 12/\theta$, entonces θ es la congruencia 2.
 - Si $3 \in 12/\theta$ (por lemita), θ es la congruencia ∇ (la trivial total).

Congruencias Caso $12/\theta \neq \{12\}$

• Si $1 \in 12/\theta$, por lema de convexidad, $12/\theta = \{12, 6, 3, 2, 1\}$, por lo tanto θ es la congruencia ∇ (trivial total).

Con esto ya cubrimos todas las posibles congruencias θ .

Prueba Lemitas

Veamos ahora los lemas que planteamos sobre este reticulado valen:

(a)
$$6\theta 3 \Rightarrow 2\theta 1$$

 $6\theta 3 \Rightarrow 6i2\theta 3i2 \Rightarrow 2\theta 1$

- (b) $3\theta 1 \Rightarrow 2\theta 6$ $3\theta 1 \Rightarrow 3s2\theta 1s2 \Rightarrow 6\theta 2 \Rightarrow 2\theta 6$
- (c) $2\theta 6 \Rightarrow 3\theta 1$ $2\theta 6 \Rightarrow 2i3\theta 6i3 \Rightarrow 1\theta 3 \Rightarrow 3\theta 1$

Prueba Lemitas

- (d) $2\theta 3 \Rightarrow 1\theta 2 y 1\theta 3 y 6\theta 2 y 6\theta 3$ $2\theta 3 \Rightarrow 3\theta 3 \text{ y } 2\theta 3 \Rightarrow 3s2\theta 3s3 \text{ y } 3i2\theta 3i3$ \Rightarrow 6 θ 3 v 1 θ 3 Por (a) si $6\theta 3 \Rightarrow 2\theta 1$; Por (b) si $3\theta 1 \Rightarrow 2\theta 6$ Por lo tanto si $2\theta 3 \Rightarrow 1\theta 2$ y $1\theta 3$ y $6\theta 2$ y $6\theta 3$
- (e) $1\theta 6 \Rightarrow 1\theta 2 y 1\theta 3 y 6\theta 2 y 6\theta 3$ $1\theta 6 \Rightarrow 1s2\theta 6s2 \Rightarrow 2\theta 6$ $1\theta 6 \Rightarrow 1s3\theta 6s3 \Rightarrow 3\theta 6$ Por (a) si $6\theta 3 \Rightarrow 2\theta 1$.
 - Si $6\theta 2$ y $6\theta 3 \Rightarrow 2\theta 3 \Rightarrow 1\theta 3$.

Conclusión

Con esto hemos probado cuales son todas las congruencias del reticulado $(\{1,2,3,6,12\},mcm,mcd)$.