

Predicting Real Private Consumption Using Time Series Data: A Machine Learning Approach

Supervisor : Mohd Azam Osman

Student Name : Muhammad Azzubair bin Azeman

Mentor : Patrick Lam Kar Jun

Practicum Company: DataMicron Systems Sdn Bhd

Introduction: Background of Company

- DataMicron Systems Sdn Bhd is a consultant services company which offers big data solutions and consultation services in data analytics.
- As many companies nowadays have their own databases, they face difficulties in gaining insights from raw data using relational database queries.
- This is where **DataMicron** comes as a solution provider in **implementing data** warehouses for data storage, equipped with visualization tools for data analytics.

Introduction: Background of Domain

1. What is Real Private Consumption (RPC)?

 The amount of goods and services consumed by households to fulfill their basic needs and wants (DoSM, 2020)

2. Why is it important to predict RPC?

• RPC is the major contributor (58.7% in 2019) to Malaysia's GDP (Asada et al., 2019).

3. What is the relation of RPC with GDP?

RPC is one of the indicator of GDP :

$$GDP = C + G + I + NX$$

Where :

- GDP = Gross Domestic Product
- C = Private Consumption
- G = Government Consumption
- I = Investment
- NX = Net Export (Import Export)

Introduction: Background of Domain

4. What is Gross Domestic Product?

 "Market value of all final goods and services produced in economy annually" (Hashim et al., 2018)

5. Why it is important to be concern on GDP?

• GDP determines economic advancement of a country. It distinguishes economic status of one country to another.

Countries by Real GDP Growth Rate in 2018

Source: IMF World Economic Outlook Database, April 2020

6. How RPC is currently predicted by Government?

- Mixed frequency vector auto regression (MFVAR)
- Mixed data sampling (MIDAS)
- Unrestricted error correction model (UECM)

Introduction: Problem Statement

- Much studies have been done on comparing between performances of machine learning models with statistical models especially in economics (Yu, 1999; Dematos et. al, 1996; Kumar, 2018).
- However, there is no specific study have been done in comparing model performances between machine learning models with statistical models for time series prediction of real private consumption in Malaysia.
- The study of machine learning performance will contribute to the understanding of ML approach for time series prediction of real private consumption specifically and macroeconomics generally.

Introduction: Research Question

170000

2017

2018

2019

2020

RPC (Q2 2020)

Throughout this project, the research questions are as following:

- 1) Which machine learning model is the most suitable for RPC prediction?
- 2) What are the **important steps** in developing machine learning models to **predict** RPC?
- 3) Between statistical and machine learning approaches, which of them is better in model performance evaluation?

Introduction: Objectives

Following the research questions, the objectives are as following:

- 1) To investigate the suitable machine learning technique for RPC prediction
- 2) To develop RPC prediction model using the selected machine learning approach.
- 3) To evaluate prediction performance of the RPC prediction models.

Introduction: Benefits of the Project

- This project is a consultation project between DataMicron with Fiscal and Economics Division of Malaysia's Ministry of Finance (MoF).
- Therefore, this project will benefit Data
 Micron in providing proposed solution
 for their client's problem.
- In return, MoF will use these insights to discuss with MoF's top management in considering new approach for time series prediction of real private consumption.

Related Works: Review on Domain

- According Ministry of Finance
 (2019), contribution to GDP is
 dominantly contributed by Real
 Private Consumption since 2018.
- Following RPC are Investment,
 Real Government Consumption,
 and finally Net Export.
- Moreover, RPC's contribution to GDP is quarterly increasing since 2018 (MoF, 2019).
- This shows that Malaysia's GDP is significantly dependent on RPC.

Contribution to GDP (%)

Source: Ministry of Finance (2020)

OFF TO THE RACES: A COMPARISON OF MACHINE LEARNING AND ALTERNATIVE DATA FOR PREDICTING ECONOMIC INDICATORS

Table 1 Model Performance Comparison for Quality Service Survey on RPC

		Statistics		Machine Learning					
Algorithm	4QMA	LASSO	Ridge	CART	MARS				
Normalised RMSE	0.23	0.04	0.07	0.11	0.05	0.05	0.10	0.13	

Findings: **Tree-based Ensemble models** resulted on the **best predictions**. Such models are **random forests** and **gradient boosting**. The reason is because they can **learn nonlinear patterns** of economic indicators. (Chen et al., 2018)

Related Works: Review on DSA Techniques

Macroeconomic forecasting using factor models and machine learning: an application to Japan[★]

Table 2 Model Performance Comparison for Macroeconomic Forecasting

	h = 1	h = 2	h = 3	h = 6	h = 12	h = 18	h = 24	h = 30	h = 36
(1) Best me	thod under specifi	cation A to C							
IIP	B-lasso	C-RNN	B-RNN	C-RNN	C-RNN	B-lasso	C-CNN	C-lasso	B-EN
UTIL.	C-EN	C-EN	C-EN	C-EN	C-EN	C-EN	C-EN	C-EN	C-EN
UR	A-FAAR	A-FAAR	A-FAAR	B-boost	B-boost	B-boost	B-boost	B-boost	B-boost
WAGE	A-FAAR	A-FAAR	B-boost	B-boost	B-boost	B-boost	B-boost	B-boost	B-boost
CONS	C-lasso	C-lasso	C-lasso	C-EN	B-boost	B-bagging	B-bagging	B-bagging	B-boost
WPI	A-FAAR	B-boost	B-boost	B-boost	B-boost	B-boost	B-boost	B-boost	B-boost
CPI	B-EN	B-boost	B-RF	B-RF	B-boost	B-RF	B-boost	B-boost	B-boost

Findings: Ensemble learning based on regression trees (bagging, random forests, and boosting) is the best method due to their adaptability with nonlinear trends of macroeconomic indicators. (Maehashi and Shintani, 2020)

Related Works: Review on DSA Tools

Seglearn: A Python Package for Learning Sequences and Time Series

Table 3 Comparison of features between libraries

Findings: seglearn library has the most feature for time series prediction.

: This library also can **incorporate** classification, regression, clustering, and **forecasting tasks**.

: Most importantly, seglearn has sliding window segmentation, and adaptable to sklearn models (Burns and Whyne, 2018).

	tslearn	cesium-ml	ts-fresh	seglearn
Active development (2018)	✓	√	✓	
Documentation	✓	✓	✓	✓
Unit Tests	✓	✓	✓	✓
Multivariate time series	✓	✓	✓	✓
Context data	X	✓	X	✓
Time series target	X	X	X	✓
Sliding window segmentation	X	X	X	✓
Temporal folds	X	X	X	✓
sklearn compatible model selection	X	X	X	\checkmark
Feature representation learning	X	✓	✓	✓
Number of implemented features	N/A	58	64	20
Deep learning	X	X	X	✓
Classification	✓	✓	✓	\checkmark
Clustering	✓	✓	✓	✓
Regression	✓	✓	✓	✓
Forecasting	X	✓	✓	✓

Research Methodology: Contribution

Table 4 Contribution Table on achieving the objectives

Objectives	Method used	Contribution		
To investigate the suitable machine learning technique for RPC prediction.	Literature Review	Most suitable ML models		
To develop RPC prediction model using the selected machine learning approach.	Develop prediction models using the most suitable models	RPC prediction models		
To evaluate prediction performance of the RPC prediction models.	 Compare performance between: Machine Learning models ML vs Statistical models 	Accuracy Result		

Research Methodology: Problem Analysis

- Currently, MoF is finding a methodology to optimise RPC predictions in order to predict future values with higher accuracy.
- As of now, their best model is MIDAS followed by UECM and lastly MFVAR.
- This is indicated by their prediction error (RMSE) with MIDAS having the least while MFVAR having the most error.
- Could Machine Learning outperform these?

Figure 3 Current Prediction Methods of RPC

	2018Q1	2018Q2	2018Q3	2018Q4	2019Q1	2019Q2	2019Q3	2019Q4	2020Q1
RMSE(UECM)	1560.1	5650.9	1952.9	382.7	1883.3	1037.7	1127.5	1114.1	261.4
RMSE(MIDAS)	2596.6	1009.1	664.4	2495.4	2142.8	608.2	1118.8	261.3	233.6
RMSE(MFVAR)	8612.9	4829.5	4957.7	13262.3	10993.8	5672.4	3089.7	16843.7	17939.1

Research Methodology: Exploratory Data Analysis

- **Prior** to the COVID-19 pandemic (**Q1 2020**), 13 out of 16 **RPC indicators** show an **increasing trend**.
- Overall, 11 of the 16 indicators show nonlinear trends except for MSW, NM, FS, EMP, and CC.
- During Q1 2020, 9 indicators significantly declined

Research Methodology: Final Analysis

Figure 4 Flow chart of model development for RPC prediction models

Results and Discussion

Objective 1: To investigate the suitable machine learning technique for RPC prediction

- Tree-based ensemble models were the most suitable models
- Those models are:
 - Bagging
 - Random Forest
 - AdaBoost
 - XGBoost
- Reason:
 - Capable of predicting nonlinear trends

Table 4 Summary of Selected Literature Reviews

Author		Alg	Findings		
	Paramet	ric	No	n parametric	Tree-based ensemble
Chen et al. (2019)	4QMA LASSO Ridge		CART RF XGBoost SVR MARS		models such as RF, and XGBoost were the most accurate models. • Due to underfitting of MARS and 4QMA models, they had poor prediction performance
	Linear	Ense	Ensemble Neural Network		Tree-based ensemble
Maehashi and Shintani (2020)	LASSO Ridge EN	 RF 	gging aBoost	• FFNN • CNN • LSTM	models were the majority of the best models. • Large window size is recommended for better time series predictions.

Results and Discussion

Objective 2: To develop RPC prediction model using selected machine learning approach.

Table 5 Model Performance Comparison

	Bagging	RF	AdaBoost	XGBoost	
RMSE	16264	18359	15594	10633	

- Currently, Tree-based ensemble models with default parameters were successfully developed.
- After this, these models will be optimised to reduce their RMSE values as much as possible.

Conclusion

Currently, this project can be concluded as stated in the following table:

Table 4 Conclusion Summary

Objectives	Status of Achievement	Findings
To investigate the suitable machine learning technique for RPC prediction.	Achieved	Tree-based ensemble models were the most suitable models
 To develop RPC prediction model using the selected machine learning approach. 	Ongoing	-
To evaluate prediction performance of the RPC prediction models.	Ongoing	-

Thank You

Backup Slides

Related Works: Review on Domain

In particular, RPC is indicated by 18 indicators as published in MoF (2017).

Source: Ministry of Finance (2017)

Research Methodology: Activities Plan

- From October until early of November, I spent most on the time reviewing articles to select the best algorithms and tools.
- Currently, I am still on track with my Gantt Chart as I have developed basic models for all of the algorithm selected.

Figure 1 Gantt Chart of Project Consultancy and Practicum

Research Methodology: DS Lifecycle

- As a data scientist, my lifecycle has been rolling throughout the data science lifecycle.
- I spent most of the time in modeling phase back-and-forth between Feature Engineering and Model Evaluation.
- After satisfied with model evaluation, I will propose the machine learning models for the new approach seek by Fiscal and Economics Division, Ministry of Finance, Malaysia.

Figure 2 Data Science Lifecycle Projects

Results and Discussion: Data Cleansing

Transform Data

Monthly to Quarterly

FS ICG SOM Date 75641.0 1771.000000 2756.300000 2223.90000 81561.0 1775.800000 1762.200000 3283.100000 2581.60000 1882.600000 2890.8000000 2330.40000 84808.0 19038.573194 18504.265237 2552.02500 19217.321673 19704.177128 2602.99800 19148.158828 17777.865886 2822.28515 125747.0 6228.979782 5827.208852 780.14800

Change Dataset Timeline

2015 - 2020

	FS	ICG	ISP	SOM
Date				
2015Q1	12328.555125	12670.250538	1690.89500	109248.0
2015Q2	12275.627835	16086.134717	1701.27300	93418.0
2015Q3	12560.931648	15755.989512	2439.37300	86952.0
2015Q4	13161.240861	17918.012761	2790.71600	91184.0
2016Q1	13713.463269	15783.503816	1919.76700	106224.0
201602	13513.860603	17687.022792	1802.06600	95922.0
2016Q3	13501.733745	15623.794846	2240.07200	95237.0
2019Q1	18652.156040	16967.177973	2278.06000	132716.0
201902	19154.941736	18837.769720	2501.83600	124764.0
2019Q3	19038.573194	18504.265237	2552.02500	142484.0
2019Q4	19217.321673	19704.177128	2602.99800	146849.0
2020Q1	19148.158828	17777.865886	2822.28515	125747.0

Remove Insufficient Attributes

SSW, & MSV are discarded

	Date	SSW	MSV
0	2015Q1	0.0	0.0
1	2015Q2	0.0	0.0
2	2015Q3	0.0	0.0
3	2015Q4	0.0	0.0
4	2018Q1	0.0	0.0
5	2016Q2	0.0	0.0
16	2019Q1	0.0	0.0
17	2019Q2	0.0	0.0
18	2019Q3	0.0	0.0
19	2019Q4	0.0	0.0
20	2020Q1	0.0	0.0

Figure 7 Output of each process in Data Cleansing phase

Results and Discussion: Data Preparation

	NM	FBM	MCF	MSW	EMP	MIER	PCI		NM	FBM	MCF	MSW	EMP	MIER	PCI
Date								Date							
2019-03-31	1278293.0	1678.0	1739.0	21978.0	45055.0	86.0	198858.0	2019-03-31	1278293.0	1678.0	1739.0	21978.0	45055.0	86.0	198858.0
2019-06-30	1291613.0	1655.0	1742.0	21787.0	45347.0	93.0	203386.0	2019-06-30	1291613.0	1655.0	1742.0	21787.0	45347.0	93.0	203386.0
2019-09-30	1290416.0	1610.0	1696.0	22013.0	45596.0	84.0	218143.0	2019-09-30	1290416.0	1610.0	1696.0	22013.0	45596.0	84.0	218143.0
2019-12-31	1326405.0	1592.0	1691.0	22427.0	45867.0	82.0	214678.0	2019-12-31	1326405.0	1592.0	1691.0	22427.0	45867.0	82.0	214678.0
2020-03-31	1355344.0	1455.0	1539.0	22728.0	45895.0	51.0	212257.0	2020-03-31	1355344.0	1455.0	1539.0	22728.0	45895.0	51.0	212257.0
2020-06-30	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2020-06-30	1287626.0	1516.0	1652.0	21880.0	45438.0	75.0	NaN

Figure 8 Output of RPC indicators before (left) and after (right) Windowing process