37.ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС ПОЛУЧЕНИЯ ОТЛИВКИ

Рис. 77. Схема технологического процесса получения отливок в песчаных формах

Схема технологического процесса изготовления отливки в песчано-глинистые форме включает следующие этапы:

1)изготовление песчано-глинистой формы а)изготовление формовочных и стержневых смесей

Песчано-глинистая форма изготавливается из формовочной смеси, в состав которой входят: оборотная (отработанная) формовочная смесь, кварцевый песок, огнеупорная глина, вода техническая, а также добавки — каменный уголь, пылевидный мазут, поверхностно-активные вещества, красители, асбест и др..

Основу **стержневых смесей** оставляет **сухой кварцевый песок**. Связующие материалы: **глина, растительные и минеральные масла, сульфитно-спиртовая барда, жидкое стекло, сухие и жидкие смолы с катализаторами**.

Конкретный состав песчано-глинистых формовочных смесей (табл.24) зависит от вида заливаемого сплава, толщины стенок и массы отливок, состояния формы перед заливкой (сырые, сухие или подсушенные), назначения (облицовочная, наполнительная, единая).

В табл. 25 приведены типовые составы наиболее распространенных жидкостекольных смесей, которые отверждаются при выдержке на воздухе, тепловой сушке, продувке холодным или горячим воздухом или углекислым газом, а также за счет взаимодействия с отвердителем. Связь между песчинками обеспечивает обезвоженный силикат натрия.

При продувке углекислым газом отвержение жидкостекольных смесей осуществляется в результате протекания химической реакции

Применяется также многочисленная группа жидкостекольных самотвердеющих смесей, отверждение которых осуществляется за счет взаимодействия жидкого стекла и отвердителя.

Формовочные и стержневые смеси должны обладать *свойствами*: пластичность, прочность, огнеупорность, газонепроницаемость, податливость (сжимаемость при усадке металла)

б)изготовление стержней

Особенности полостей отливок, получаемых стержнями. Для того, чтобы обеспечить получение полостей необходимо стремиться к уменьшению количества стержней, упрощению их формы, надежному закреплению, возможности удаления газа.

Минимальные диаметры отверстий получают:

Типовые составы формовочных песчано-глинистых смесей Таблица 24

			Состав смеси в %, мас. доля				Проч-	
Назначение	Macca	Толщина		<u>Обо-</u>	Содер	Добавки	ность на	
			Формо-		1 -	дооавки		
смеси	отливки,	стенок,	вочный	ротная	жание		сжатие в	
	ΚГ	MM	песок	смесь	глины		сыром	
							состоя-	
							нии,	
			~				МПа	
Стальные отливки								
Единая для	До 100	До 25	6,5-8,0	92-90	8-10	ЛСТ	0,03-0,05	
сырых						0,5-1,0		
форм								
Облицовоч-	100-500	25-50	20,5-51,5	75-40	10-13	ЛСТ до	0,04-0,07	
ная для сы-						0,5		
рых форм								
Облицовоч-	Св.500	50-80	15,5-50,5	80-40	12-14	ЛСТ до	0,05-0,07	
ная для су-						1,0		
хих форм								
Чугунные отливки								
Единая для	До 100	До 25	5-15	94-84	10-12	Камен.	0,03-0,08	
сырых						уголь		
форм						0,5-1,5		
Облицовоч-	До 1000	До 50	25-55	70-40	9-16	Камен.	0,04-0,08	
ная для сы-	, ,	, ,				уголь	, ,	
рых форм						4-5		
Облицовоч-	До 10000	До 100	40-60	60-40	12-16	Опилки	0,05-0,08	
ная для су-						0 -4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
хих форм						0 .		
Отливки из медных сплавов								
Единая для	До 100	До 25	7-10	91-87	8-12	Мазут	0,03-0,05	
сырых	70 100	7. 7.	, 10	,10,	0 12	1-1,5	0,00 0,00	
форм						1 1,5		
Облицовоч-	Св.100	25-50	20-40	80-60	10-15	_	0,04-0,06	
ная для су-	СВ.100	23 30	20 40	00 00	10 13		0,04 0,00	
хих форм								
хих форм		Отпи	NGH HO OTHOM	HILLODI IV A	пловов			
Единая для		Отлин	вки из алюми 8-10	<u>92-90</u>	8-10		0,03-0,05	
	_	-	0-10	フムーブひ	0-10	-	0,03-0,03	
сырых								
Форм Отливки из магниевых сплавов								
E		Отлі			тавов	Ф	0.04.0.00	
Единая для	_	-	10-15	90-85	-	Фтори-	0,04-0,08	
сухих форм						стая при-		
						садка		
						4,0-8,0		

⁻³⁻⁵мм для легких сплавов, -4-5мм для бронз и латуней, -5-7мм для чугуна, -7-10мм для сталей.

Типовые составы жидкостекольных смесей Таблица 25

Назначение	Содержание компонентов, %, мас.доля						
смесей	Кварцевый	Глина	Жидкое стек-	Отвердитель			
	песок		ло				
Облицовочная	95-96	4 - 5	5 - 7	CO_2			
для форм							
Стержневая для	100	-	4 - 6	CO_2			
CO_2							
процесса							
	95-96	4 - 5*	5 - 7	Ферро-			
				хромовый			
Пластичные са-				шлак 3 - 5			
мотвердеющие	95-96	4 - 5*	5 - 6	Нефелиновый			
(ПСС) для форм				шлак 2 - 3			
и стержней	96,5-97	-	3 - 3,5	Пропилен-			
				карбонат			
				0,3-0,35			
Жидкая само-	_						
твердеющая				Ферро-			
(ЖСС) для	95-97	-	8 – 9**	хромовый			
форм и стерж-				шлак 3 - 5			
ней							

^{*}Только для облицовочной смеси

Технология изготовления стержней содержит: формовку сырого стержня, сушку, отделку, окраску противопригарной краской. Связующие материалы во время сушки (150-300° С) спекаются, окисляются, в них происходит химическая реакция, благодаря чему песок склеивается. Сушка в стержневом ящике обеспечивает более качественные поверхности отливок. Составные стержни калибруют, то есть обрабатывают плоскости соприкосновения шлифовальным камнем или ножом.

При изготовлении стержней вручную в разъемном стержневом ящике (рис. 78, *а*) раздельно набивают половины стержневого ящика (поз. 1). Поверхности разъема смазывают клеем и обе половины ящиков соединяют друг с другом и металлической иглой делают вентиляционный канал (поз. 2). Затем стержень удаляют из стержневого ящика, устанавливают на сушильную плиту (поз. 3) и отправляют в сушильную печь. На поз. 4 показан стержень, подготовленный к сборке.

^{**}Жидкая композиция, состоящая из 6-7 частей жидкого стекла, 1,5-2 частей воды и 0,1-0,5 частей ПАВ

Рис. 78. Схемы процессов изготовления стержней:

- а вручную;
- б на пескодувных машинах: 1 пескодувный резервуар, 2, 11 отверстия, 3 гильза, 4 надувная плита, 5 сопло, 6 стержневой ящик, 7, 8 венты, 9 ресивер, 10 быстродействующий клапан, 12 вункер;
- в в нагреваемой оснастке: 1 пескодувный резервуар, 2 половинки стержневого ящика, 3 опустошитель, 4 стержень, 5 пневматический цилиндр, 6 выталкиватель;
- г из жидкостекольных смесей: 1 колпак, 2 стержень, 3 штырь, 4 клинья, 5 плита, 6 резиновые уплотнители в)изготовление полуформ и сборка формы (рис.79,86, 87), а именно:

Формовка - процесс изготовления формы. Виды формовки: формовка в почве по шаблонам и моделям (рис.79) в ед. производстве для деталей типа тел вращения, в опоках (рис.79, 86), безопочная формовка, формовка в стержнях (рис. 81) в массовом производстве для сложных деталей. Формовка в парных опоках по разъемной модели наиболее распространена.

Рис. 79. Шаблонная формовка

Формовку шаблонами применяют в единичном производстве для получения отливок, имеющих конфигурацию тел вращения. Для примера рассмотрим технологический процесс изготовления форм для шлаковой чаши (рис. 79, а). Формовку осуществляют с помощью шаблонов /, 4 (рис. 79, б); в яме устанавливают подпятник 7 со шпинделем 2 в вертикальном положении, засыпают формовочную смесь и уплотняют ее вокруг шпинделя; к серьге 3 прикрепляют шаблон 1, режущая кромка которого имеет очертания наруж ной поверхности отливки, и устанавливают его на шпиндель (рис. 79, в) до упора 5; вращением шаблона в ту и другую сторону срезают формовочную смесь в соответствии с профилем шаблона, удаляя излишки формовочной смеси; по полученному болвану изготовляют верхнюю полуформу 6 (рис. 79, г). Для этого серьгу с шаблоном снимают со шпинделя, плоскость разъема формы покрывают разделительным слоем сухого кварцевого песка или бумагой, устанавливают модели литниковой системы, опоку, засыпают формовочную смесь и уплотняют ее, удаляют шпиндель и снимают верхнюю полуформу. В подпятник 7 вновь устанавливают шпиндель, на который с помощью серьги устанавливают шаблон 4 (рис. 79, д), имеющий очертания внутренней поверхности отливки. С помощью этого шаблона с болвана удаляется слой формовочной смеси на толщину стенки отливки (рис. 79, д); после этого снимают шаблон и удаляют болван и устанавливают верхнюю полуформу (рис. 79, е), затем в литейную форму заливают расплавленный металл.

Формовку в *стержнях* применяют в массовом и крупносерийном производствах при изготовлении отливок сложной конфигурации. На рис. 80 приведен пример формовки в стержнях цилиндра двигателя с воздушным охлаждением. Форма для отливки цилиндра двигателя с воздушным охлаждением собрана из шести стержней. Сборку формы производят в горизонтальном положении. В стержень / вкладывают стержень 2, затем стержни 3, 4, 5 и 6. Собранную форму скрепляют.

Рис. 80. Формовка в стержнях цилиндра двигателя с воздушным охлаждением

Рис. 81. Способы уплотнения песчано-глинистых форм прессованием:

а) нижнее (моделью снизу); б) верхнее (колодка с резиновой прокладкой); в) диафрагменное; г) верхнее жесткой колодкой; д) дифференциальное

Рис. 82. Уплотнение песчано-глинистых форм:а) встряхиванием (1 - рамка наполнительная, 2 - опока, 3 - модель, 4 - стол встряхивающий, 5 - станина),

- б) пескометное (1 отверстие, 2 «комок», 3 лопатка, 4 диск, 5 ленточный транспортер, 6 головка пескомета),
- в) пескодувным способом (1 гильза, 2 бункер, 3 шибер, 4 смесь формовочная, 5 опока, 6 модель)

Методы уплотнения формовочных смесей: ручное уплотнение; прессование верхнее (рис.81,6,2), встряхивание с подпрессовкой (рис.82,а), прессование нижнее (рис.81,а), прессование дифференциальное (многоплунжерное колодкой, диафрагменное (рис.81 в,д), пескометное (рис.82 б), пескодувное с подпрессовкой (рис.82 в), вибропрессование (вакуумная формовка или вакуумно-пленочная формовка), импульсное (формовка взрывом).

Сущность вакуумно-пленочной формовки в том, что форма, изготавливаемая из сухого песка без связующих элементов, уплотняется вибрацией, а упрочняется под действием атмосферного давления вследствие вакуумирования формы (рис. 83).

Преимущества:

- -удешевление формовочной смеси и упрощение смесеприготовление;
- -повышение точности и чистоты поверхности отливок благодаря отсутствию связующих и влаги в форме;
 - -упрощение выбивки формы, увеличение срока оснастки.

Рис. 83. Основные этапы при вакуумно-пленочной формовке:

а - разогрев пленки и натяжение ее на модель; б - установка опоки и засыпка песка; в - вибрирование формы и установка рамки со второй пленкой; г прижимание внешней пленки и съем формы с моделью; 1 - полая подмодельная плита; 2 - модель с вентами; 3 - рамка вспомогательная; 4 - пленка синтетическая; 5 - нагреватель; 6 - опока; 7 - сухой песок

Используют чугуны, стали, медные и алюминиевые сплавы от нескольких грамм до нескольких тонн в условиях единичного и массового производства.

Импульсная формовка использует импульс горячего газа или воздуха, уплотняет формовочную смесь за счет быстрого выхлопа воздуха, повышает точность и производительность труда; очень перспективна.

Импульсное уплотнение формовочной смеси (рис. 84) осуществляется в следующей последовательности: на модельную плиту 1 с моделью устанавливают опоку 2 и засыпают формовочную смесь 3, на опоку накладывают плиту-рассекатель 4 с большим числом отверстий. Сверху плиты располагают импульсную головку 5 с пусковым клапаном 6. Головку, плиту-рассекатель и опоку плотно прижимают друг к другу. После этого открывают пусковой клапан 6 и сжатый воздух под давлением 5 ... 8 МПа

направляется через отверстия в плите-рассекателе в опоку и уплотняет смесь за счет динамического воздействия и фильтрации через поры, после чего уходит в атмосферу через венты (венты - тонкие отверстия, через которые проходит воздух, но не проходит формовочная смесь) в модели и модельной плите. Этот способ уплотнения формовочной смеси позволяет изготовлять формы с высокой и равномерной плотностью, высокопроизводителен, не имеет движущих частей (плунжеров, диафрагм т.д.).

Рис. 84. Схема уплотнения формовочной смеси воздушным импульсом

1- подмодельная плита, 2-модель «низа», 3 – опока

2- подмодельная плита, 2- модель «низа», 3 — модель питателя, 4 — модель зупмфа, 5 — нижняя полуформа, 6 — рабочая полость нижней полуформы

1- подмодельная плита, 2- модель «верха», 3 - опока

Рис. 85. Технологический процесс изготовления песчано-глинистой формы в парных опоках: а)изготовление нижней полуформы; б)извлечение (протяжка) модели из нижней полуформы; в)изготовление верхней полуформы

Литейную форму (рис. 85, 86), состоящую из двух полуформ, изготовляют по разъемной модели) в такой **последовательности**:

- изготовление нижней полуформы,
- извлечение (протяжка) модели из нижней полуформы,
- изготовление верхней полуформы,
- извлечение моделей из верхней полуформы, сборка формы

1 - подмодельная плита, 2 - модель «верха», 3 — модели выпоров, 4 — модель чаши и стояка, 5 - модель шлакоуловителя, 6 — верхняя полуформа

1 – груз, 2 – полуформа верхняя, 3 – полуформа нижняя, 4 – рабочая полость, 5 стержень песчаный, 6 – литниковая система

Рис.86. Технологический процесс изготовления песчано-глинистой формы в парных опоках (продолжение): г) извлечение моделей из верхней полуформы; д) сборка формы

Рис.87 Последовательность операций сборки литейной формы

а – установка нижней полуформы; б – установка стержней I и II; в – установка по центрирующим штырям верхней полуформы

1 – нижняя полуформа; 2 – верхняя полуформа; 3 – центрирующие штыри

2)плавка жидкого металла

Рис. 88. Схематический разрез вагранки:

1 - фундамент; 2 - опорные колонны; 3 - откидная крышка; 4 - подина; 5 - воздушные фурмы; б - вентилятор; 7 -шамотная футеровка; 8 - кожух; 9 - чугунные плиты; 10 - загрузочное окно; // - искрогаситель; 12 - труба; 13 - загрузочная бадья; 14 - летка; /5 -копильник; 16 - летка для выпуска шлака; 17 - летка для выпуска чугуна; 18 –ковш

В зависимости от вида сплава в литейных цехах используется следующее **пла-** вильное оборудование:

вагранка (рис. 88 – для плавки чугуна),

дуговая электропечь (рис.39- чугун, сталь),

пламенные печи (рис.38 - мартеновская — для плавки стали, прочие пламенные — для плавки чугуна и цветных сплавов),

конвертер (сталь),

индукционная электропечь (рис. 41 – все сплавы),

электропечь сопротивления (цветные сплавы).

Для получения ответственных тонкостенных отливок из серого и ковкого чугуна используются также дуплекс-процессы: «вагранка – дуговая электропечь», «вагранка – индукционная электропечь» и «вагранка – пламенная печь.

Вагранка - это шахтная печь. Стальная цилиндрическая шахта устанавливается на подовую плиту, покоящуюся на колоннах. Стальной кожух шахты с толщиной 6 - 10 мм изнутри футеруется огнеупорным кирпичом.

Вагранка (рис. 48) состоит из трех основных частей: нижней - горна, в котором скапливается выплавленный жидкий чугун; средней - собственно шахты, в которую загружают

шихту (металл, топливо, флюс); верхней - трубы, через которую горячие газы попадают в искрогаситель и далее в атмосферу.

В последнее время в литейных цехах находят применение установки электрошлакового переплава, плазменные и электронно-лучевые печи, вакуумные индукционные печи, установки плазменно-дугового и вакуумно-дугового переплава и установки для плавки металла во взвешенном состоянии (бестигельные печи).

Для заливки расплавленного металла в литейную форму применяют *разливочные* чайниковые (чугун, цветные сплавы), *барабанные* (чугун) или *стопорные ковши* (сталь).

3) заливка расплава в литейную форму

Температура заливаемого сплава:

- -стали 1500-1600°C
- -ковкий чугун 1380-1450°C
- -серый чугун 1260-1400°C
- -бронзы 1100-1150°С
- -алюминиевые сплавы 700-780°C.

Чем тоньше стенка, тем выше температура нагрева.

Рис. 89. Схема автоматической заливочной установки:

1 –раздаточное устройство; 2 – герметичная крышка; 3, 7 – каналы; 4 – отверстие; 5 – форма; 6 – кольцевой индуктор; 8 - ковш

4)выдержка металла в форме для затвердевания и охлаждения

Остывание длится от 5 мин до нескольких суток

5)выбивка отливки из формы

Извлечение отливок из формы осуществляется путем ее разрушения и называется выбивкой, при этом выделяется большое количество пыли, газов и теплоты.

Производят это на специальных выбивных решетках с механическим и пневматическим приводом. При выбивки отливок частично выбиваются и стержни.

На рис. 90 показана автоматическая установка для выбивки отливок. Форма 2 из опоки снизу вверх выталкивается гидравлическим выталкивателем 4, затем сталкивается толкателем 1 на виброжелоб 3. Пустая опока остается на заливочном конвейере. Выбитая форма по виброжелобу направляется на выбивную решетку, где отливки освобождаются от формовочной смеси, и направляется по конвейеру на очистку, а формовочная смесь - в смесеприготовительное отделение.

Рис. 90. Автоматическая установка для выбивки отливок из форм: 1 – толкатель, 2 – форма, 3 – виброжелоб, 4 – гидравлический выталкиватель

6) финишная обработка отливок

включает операции обрубки, очистки, зачистки, выбивки стержней, термообработку (при необходимости), исправление дефектов, контроль, окраску (грунтовку), иногда эмалирование, первичную механическую обработку отливок.

Рис.91. Поточная линия очистки отливок:

1 – отливки; 2, 5 – конвейер; 3 – решетка для удаления смеси; 4 – вращающийся барабан; 6 – дробеметный барабан; 7 – дробеметная головка; 8 – ленточный конвейер; 9 – обдирочные станки

Обрубка - это удаление литниковой системы, питателей и крупных заусенцев (заливов). Литниковую систему чугунных отливок отбивают, отливок из пластичных сплавов - отрезают газовой или воздушно-дуговой резкой, ленточными или дисковыми пилами.

Очистку отливок от пригоревшей песчаной смеси производят в галтовочных барабанах (рис.92в), методами дробомётной (рис.92а,б), дробеструйной и вибрационной очистки, гидропескоструйным и электрохимическим способами.

Зачистка предусматривает собой удаление с поверхности отливок следов литниковой системы, заливов по плоскости разъёма, прочих заусенцев наждачными кругами, иногда - в штампах на специальных прессах.

Стержни мелких отливок выбиваются при очистке в галтовочных барабанах и при дробометной очистке. Стержни из крупных отливок выбиваются в гидравлических камерах струей воды под давлением 5 ... 10 МПа; .в гидравлических камерах методом электрогидравлической выбивки (удаление производится в результате электрического разряда в воде и последующего гидравлического удара), на вибрационных решетках, вручную.

В зависимости от вида сплава в литейных цехах выполняют следующие виды термообработки: отжиг белого чугуна на ковкий чугун, гомогенизацию, старение, отжиг и отпуск алюминиевых и магниевых сплавов, отжиг или нормализацию отливок из стали.

- 1 лопатка турбины, 2 питатель, 3 распределитель, 4 дробь, 5 пучки дроби
- 1 гибкая лента, 2 отливки,
- 3 дробеметное колесо

1 – барабан, 2 – крышка, 3 – система вентиляции, 4 – отливки, 5 – «звездочки»

Рис.92. Способы очистки отливок: а) схема дробометной очистки, б) дробометный барабан, в) галтовочный барабан

38. ДОСТОИНСТВА И НЕДОСТАТКИ ЛИТЬЯ В ПЕСЧАНЫЕ ФОРМЫДостоинства:

-простота,

- -универсальность: а) по сплавам,
 - б) по конфигурации деталей,
 - в) по размерам,
 - г) по типам производства;
- -относительная дешевизна (возможность многоразового использования формовочных смесей);
- -высокая производительность до 180-240 форм в час (на опочных автоматических линиях) и до 500 форм в час (безопочная формовка);
- -возможность механизации (литейные конвейеры) и полной автоматизации процесса (автоматические литейные линии).

Недостатки:

- -низкая точность (14-17квалитет) и качество поверхности отливок,
- -низкий коэффициент выхода годных деталей (75-80% для чугунных отливок и до 50% для стали и цветных металлов);
 - -низкий КИМ (0,75-0,9);
- -большой объём применяемых вспомогательных материалов, что влечёт за собой необходимость в значительных производственных площадях и в специальном оборудовании для их переработки;
 - -большой объём отходов (нерешённость вопросов экологии);
- -пониженные механические свойства металла при производстве толстостенных отливок (из-за пониженной скорости затвердевания);
 - -неблагоприятные условия труда в литейном цехе.