PR03 SOLUSI

NAMA: _____ NPM: ____

1. Sebuah sistem mempunyai ukuran page 2 KByte dengan jumlah page sebanyak 4096 page dan jumlah frame memori fisik sebanyak 2048 frame.

(Unit ukuran: 1KByte= 1024 Byte = 2^{10} Byte; 1 MByte = 2^{20} Byte)

a. Berapa jumlah bit yang dibutuhkan untuk Logical Address?

LA= 12 (Total Page) + 11 (Page Size) = 23 Bit

b. Berapa jumlah bit yang dibutuhkan untuk Physical Address?

PA= 11 (Total Frame) + 11 (Page Size) = 22Bit

- c. Untuk alamat logik: 2000, Hitung
 - a. Nomor Page (dalam desimal)

PN = 2000/2048 = 0,... = 0

b. Offset (dalam desimal)

Offset= 2000 % 2048 = 2000

d. Berapa MByte kapasitas memori fisik?

Kapasitas MF = 2048 (Total Frame) x 2048 (Page Size) = 2^{11} x 2^{11} = 2^{22} =4 Mbyte

Cara Lain

PA= 11 (Total Frame) + 11 (Page Size) = 22Bit Kapasitas MF = 2²² x 1 Byte = 4 Mbyte

2. Sebuah sistem menggunakan page berukuran 256 bytes dengan 12 bit alamat virtual dan alamat fisik. Dibawah ini adalah page table yang digunakan. Karakter i menandakan *invalid*, artinya page tidak ada pada memori.

Page	Frame
0	i
1	5
2	i
3	1
4	8
5	9
6	7
7	E
8	4

9	D
Α	i
В	F
С	i
D	3
E	i
F	i

Frame kosong yang tersedia secara berurutan mulai dari A, B dan C. Jika terjadi *invalid access*, maka page akan ditempatkan pada frame kosong mulai dari frame A. Tentukan alamat fisik dari alamat virtual berikut (dalam hexadesimal):

a) $8A1 \rightarrow 4A1$

d) A4D \rightarrow B4D

b) $2BE \rightarrow ABE$

e) B51 → F51

- c) 569 → 969
- 3. Diketahui sebuah sistem mempunyai
 - 16 bit logical address space
 - Ukuran page: 1 KByte
 - Ukuran 1 Page Table Entry: 2 Byte
 - Jumlah proses: 10 Proses
 - a) Berapa Byte yang dibutuhkan untuk menampung 1 page table?

 Alokasi bit untuk page table = 16-10 (bit page offset) = 4 bit

 Byte untuk menampung Page Table = 24x2byte PTE = 32 Byte
 - b) Berapa Byte yang dibutuhkan untuk menampung page table dari seluruh proses?32 Byte x 10 = 320 Byte
- 4. Sebuah proses secara berurutan mengakses page-page sebagai berikut:

Jika jumlah frame kosong adalah 4 frame , hitunglah jumlah page fault jika sistem menggunakan algoritma pergantian page:

a. FIFO

6	6	6	6	4	4	4	4	
	7	7	7	7	6	6	6	
		8	8	8	8	7	7	
			9	9	9	9	8	

PF= 8

b. LRU

6	6	6	6	6	6	6
	7	7	7	4	4	4
		8	8	8	7	7
			9	9	9	8

PF= 7

c. OPTIMAL

6	6	6	6	6
	7	7	7	7
		8	8	8
			9	4

PF= 5

- 5. Sebuah sistem mempunyai spesifikasi sebagai berikut:
 - Data Array: int A[][] = new int A[10][10].
 - Penyusunan array pada memori dimulai dari A[0][0], A[0][1],..., A[0][9],
 A[1][0], A[1][1], ..., A[9][9]
 - Satu integer berukuran 4 byte
 - Ukuran 1 page = 80 Byte
 - Jumlah frame = 1 frame

Berdasarkan informasi diatas, tentukan jumlah page fault masing-masing potongan kode program berikut:

Isi page:

Do so O	A[0][0]
	A[0][1]
	•••
	A[0][9]
Page 0	A[1][0]
	A[1][1]
	•••
	A[1][9]
	A[2][0]
	A[2][1]
	•••
Page 1	A[2][9]
	A[3][0]
	A[3][1]
	•••
	A[3][9]

	A[4][0]
	A[4][1]
Dago 2	A[4][9]
Page 2	A[5][0]
	A[5][1]
	A[5][9]
	A[6][0]
	A[6][1]
Daga 2	A[6][9]
Page 3	A[7][0]
	A[7][1]
	A[7][9]

	A[8][0]
	A[8][1]
Page 4	A[8][9]
	A[9][0]
	A[9][1]
	A[9][9]

Jumlah frame = 1 frame

Page yang diakses:

$$0,0,1,1,2,2,3,3,4,4 \Rightarrow \text{ interasi } j = 0 = 5 \text{ PF}$$
 $0,0,1,1,2,2,3,3,4,4 \Rightarrow \text{ interasi } j = 1 = 5 \text{ PF}$
...
...
...
 $0,0,1,1,2,2,3,3,4,4 \Rightarrow \text{ interasi } j = 9 = 5 \text{ PF}$

Total Page Fault = $10 \times 5 \text{ PF} = 50 \text{ PF}$

Sistem Operasi untuk Sistem Informasi Semester Pendek 2023/2024

b) for (int
$$i=0$$
; $i < 10$; $i++$) for (int $j = 0$; $j < 10$; $j++$) A[i][j]=0;

Jumlah frame = 1 frame

Page yang diakses:

$$4,4,4,4,4,4,4,4,4,4$$
 interasi i = 8 = 1 PF
 $4,4,4,4,4,4,4,4,4,4$ interasi i = 9

Total Page Fault =
$$5 \times 1 \text{ PF} = 5 \text{ PF}$$

c). Berapa jumlah page yang dibutuhkan untuk menampung data array?

int A[][]= new int A[10][10] \rightarrow jumlah data = 10 x 10 = 100 elemen data bertipekan integer

Total byte = 100 elemen data x 4 byte integer = 400 byte.

Jumlah page = total byte data/ukuran 1 page = 400/80 = 5 page