Containers

a.k.a. OS-Level Virtualization

Containers

- Form of operating system virtualization
- OS Kernel creates multiple isolated user space instances
 - Process from one user space sees only it's space
 - Process from one user space "cannot" affect process of another user space
- This makes them more lightweight and portable than VMs
- The "de facto" standard for modern microservices architecture

Serios vulnerabilities have been reported many times with container isolation mechanisms. There is always a risks of container escape vulnerability. This makes then less secure than virtual machines and not preferred approach for some use cases.

Containers

- Namespace isolation
 - Process tree
 - Networking
 - User IDs
 - File Systems
 - ◆ IPC

- Resource limitation
 - ◆ CPU
 - Memory
 - ◆ I/O
 - Network

Brief History of Containers

- 1979 Chroot
- ◆ 2000 FreeBSD Jails
- 2001 Linux VServer
- 2004 Solaris Containers
- 2005 Open VZ (Open Virtuozzo)
- 2007 Control groups (cgroups)
- 2008 LXC (LinuX Containers)
- 2013 Docker
- 2015 Kubernetes
- 2016 Windows Native Containers
- More...

Docker

What is Docker?

- Creating, working with, and managing containers
- Standardized packaging for software
- Simplify building, shipping, running apps
- Isolate apps from each other
- Share the same OS kernel
- Works for all major Linux distributions
- Open Source platform

Docker components

Docker Image

The basis of a Docker container. Represents a full application

Docker Container

The standard unit in which the application service resides and executes

Docker Engine

Creates, ships and runs Docker containers on physical or virtual

Registry Service (Docker Hub(Public) or Docker Trusted Registry(Private))

Cloud or server-based storage and distribution service for your images

Kubernetes

What is Kubernetes?

- Automates containerized and distributed applications
- Container orchestration platform
- Cluster management orchestration platform
- Open Source platform
- Also know as k8s
- Ancient Greek word for "Helmsman" (Root of the word "Governor", "Cybernetics")
- Born from a Google internal project (Google launches 2 billion containers per week)

Core Features

- Service discovery
- Load balancing
- Self-healing ideology
- Declarative approach

Kubernetes Cluster

- The cluster is the heart of Kubernetes
- Set of nodes that run containerized applications
- Aims to run containers in efficient, automated, distributed, and scalable manner
- Master and worker nodes
- Decouples the containers from the underlying hardware layer

Kubernetes Nodes

- Runs container workloads
- May be a virtual or physical machine
- May be in cloud or on-prem
- Managed by k8s cluster control plain
- Contains k8s services required to manage containers and PODs
- Typically you have several nodes in a cluster
 - You can have a single node cluster for learning

PODs

- Basic building block
- Smallest deployable units
- Group of one or more containers
 - Deeply coupled
 - Shared network
 - Shared storage
- Each POD has a unique dynamic IP address

Service

- Service discovery
- Load balancing

Namespaces

- Mechanism for isolating groups of resources
- Single cluster Multiple namespaces
- Names of resources need to be unique within a namespace
- Applicable only fro namespaced objects (e.g. Deployments, Services, etc)
 - Not applicable for cluster-wide objects (e.g. StorageClass, Nodes, PersistentVolumes, etc).
- Intended for use in environments with many users and teams

Configuration Units

- ConfigMaps
 - Object used to store non-confidential data
 - Do not store confidential data!
 - Key-value pairs
 - Can be consumed as environment variables or file
- Secrets
 - Object used to store sensitive data
 - Passwords, tokens, encryption keys, etc.
 - Can be consumed as environment variables or file

Other Units

- ReplicaSets
 - Ensures that the number of desired pods "replicas" are running at any time.
- Deployments
 - Describe the desired state of the application (pods, replica sets).
 - Easy version updates for any software
- DaemonSets
 - Runs a POD on every node in a cluster
- StatefulSets:
 - Clustered applications (e.g. PostgreSQL, MongoDB, Elasticsearch)
 - Startup/shutdown ordering
 - Stable hostname and storage