(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平5-307167

(43)公開日 平成5年(1993)11月19日

識別記号 - 庁内整理番号 - F I - I	技術表示箇所
5 5 0 7820-2K	
T 8204-2G	
1 0 1 7348-2K	
5 0 0 9018-2K	
7319-5G	
審査請求 未請求 請求項の数 2	2(全 7 頁)
特願平4-111323 (71)出願人 000002369	
セイコーエブソン株式会社	
平成4年(1992)4月30日 東京都新宿区西新宿2丁目4番	発1号
(72)発明者 小澤 徳郎	
長野県諏訪市大和3丁目3番5 ーエプソン株式会社内	5号 セイコ
(74)代理人 弁理士 山田 稔	

(54) 【発明の名称】 アクティブマトリクスパネル

(57)【要約】

【目的】 検査工程の後に検査回路に対する配線形成を 不要化して、生産性および信頼性を向上可能なアクティ プマトリクスパネルを実現すること。

【構成】 アクティブマトリクスパネル1において、ソース線 $X_1 \sim X_N$ に対する検査回路 20 の制御用信号線電位切換回路 30 では、検査が終了して、画面を表示するときに、正側の電源線 V_{ddy} に電位が印加されると、TFT 30 a, 30 bがON状態になって、検査回路 20 と画素マトリクス 11 とを絶縁状態に切換されると共に、TFT制御用信号線 23 a, 23 bはローレベルの電位に保持される。

【特許請求の範囲】

【請求項1】 信号線駆動回路側に導電接続する複数の 信号線および走査線駆動回路側に導電接続する複数の走 査線が格子状に配置されて画面の各画素が形成された画 素マトリクスと、制御用信号線を介して印加された電位 に基づいて高インピーダンス状態と低インピーダンス状 態との間で切り換えられるスイッチング回路と、このス イッチング回路を介して前記信号線に導電接続し、前記 スイッチング回路が低インピーダンス状態にあるときに 前記信号線駆動回路側から前記信号線に入力された検査 10 用信号を検査用信号出力端子から出力可能な検査用信号 線と、前記画面の表示状態および非表示状態に対応して 電位が変化する前記信号線駆動回路側および前記走査線 駆動回路側のいずれかの配線から供給された電位に基づ いて動作し、この電位が前記画面の表示状態に相当する レベルであるときに、前記制御用信号線の電位を前記ス イッチング回路が高インピーダンス状態となるレベルの 電位に切り換えて保持する制御用信号線電位切換回路 と、を有していることを特徴とするアクティブマトリク スパネル。

【請求項2】 請求項1において、前記制御用信号線電 位切換回路の動作を規定する電位をそれに供給する前記 配線は、前記走査線駆動回路側の電源線であることを特 徴とするアクティブマトリクスパネル。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は液晶表示パネルなどのア クティブマトリクスパネルに関し、特に、その信号線に 対する検査回路に関する。

[0002]

【従来の技術】液晶の配向状態などを利用して情報を表 示するフラット型表示パネルのうち、アクティブマトリ クス方式の液晶表示パネルにおいて、その全体構成を図 4にブロック図で示すように、ソース線X1, X2・・ X、(信号線)とゲート線Y1, Y2・・・Y1 (走 査線) とが格子状に配置されて、その交点に画素が形成 された画素マトリクス51を有しており、いずれの画素 にも、薄膜トランジスタ(TFT)と液晶セルとを有す る。ここで、ソース線X1, X2・・・Xn は画素マト 導電接続し、このソース線駆動回路52の側にはシフト レジスタ部53、サンプルホールド回路54およびビデ オ信号線Videoを有する。一方、ゲート線 Y_1 , Y2 ・・・Yx は画素マトリクス51と同一基板上のゲー ト線駆動回路55の側に導電接続し、このゲート線駆動 回路55の側にはシフトレジスタおよび必要に応じてパ ッファ回路を有する。さらに、ソース線駆動回路52の 側には、そのシフトレジスタ部53にクロック信号CK Aを入力すべきクロック信号線56および開始信号Dx

ート線駆動回路55の側にも、そのシフトレジスタにク ロック信号を入力すべきクロック信号線58および開始 信号を供給すべき開始信号線59が配置されている。こ こで、シフトレジスタ部、たとえば、ソース線駆動回路 52の側のシフトレジス夕部53は、1ピット当たり、 図3に示すように、クロック信号CKAのうちのクロッ ク信号もおよびクロック信号もと逆相のクロック信号も * (φパー) で駆動される単位シフトレジスタ部53 a. 53bで構成され、いずれの単位シフトレジスタ部 53a, 53bも、1つのインパータ531と、2つの クロックドインバータ532a, 533aもしくは2つ のクロックドインパータ532b、533bで構成され て、クロック信号 Φまたはクロック信号 Φ*で駆動可能 になっている。

【0003】このような構成のアクティブマトリクスパ ネルにおいて、その基板上にはソース線X1,X2・・ · Xx に対する検査回路60も形成されている。この検 査回路60は、ソース線X1, X2・・・Xxに対して TFT61a: , 61a2 ・・・61ax (スイッチン 20 グ回路)を介して導電接続する2つの検査用信号線62 a, 62bb, TFT61a1, 61a2 · · · 61a » のゲートに導電接続する2つのTFT制御用信号線6 3 a, 6 3 b とを有し、そのうち、TFT制御用信号線 63aは奇数番目のTFT61a1, 61a3・・・6 1 ax-1 を駆動可能に、また、TFT制御用信号線63 bは偶数番目のTFT61a2, 61a4 · · · 61a x を駆動可能になっていると共に、それぞれの端部には TFT制御用信号入力端子TX1, TX2 を備える。ま た、検査用信号線62a,62bは、端部に検査用信号 30 出力端子CX1, CX2 を備える。

【0004】このような検査回路60において、ソース 線X1 , X2 · · · Xn の断線を検出するための検査工 程においては、図2に示す波形図のうちの左側の波形図 に示すように、TFT制御用信号入力端子TX1, TX 2 のうち、TFT制御用信号入力端子TX1 からハイレ ベル(Hレベル)のゲート電位101aを奇数番目のT FT61a1, 61a3 ・・・61an-1 のゲートに供 給してそれらをON状態として、ソース線X1,X3・ ・・X_{N-1} と検査用信号線62aとを導通状態(スイッ リクス 5 1 と同一基板上のソース線駆動回路 5 2 の側に 40 チング回路が低インピーダンス状態)とする一方、TF T制御用信号入力端子TX2 からはローレベル(Lレベ ル)のゲート電位101bを偶数番目のTFT61 a2,61a4・・・61axのゲートに供給して、そ れらをOFF状態(スイッチング回路が高インピーダン ス状態)にしておく。この状態で、ビデオ信号線Vid e oから所定の検査用電流を供給すると共に、シフトレ ジスタ部53にクロック信号φ, φ*を供給して、シフ トレジスタ部53からサンプルホールド回路54にビッ ト信号102a、102bを送出すると、ピット信号1 を供給すべき開始信号線 5.7 が配置されている一方、ゲ50-0.2 a, 1.0.2 b に対応して、サンプルホールド回路 5

3

4の各アナログスイッチが動作して、ビデオ信号線Vi deoの検査用電流をソース線X1, X3・・・Xn-1 に導く。ここで、ソース線 X1 , X2 ・・・ Xx のう ち、奇数番目のソース線 X1 , X3 ・・・ Xx-1 と検査 用信号線62bとの間に配置された奇数番目のTFT6 1 a1 、 6 1 a3 ・・・ 6 1 ax-1 のみがON状態にあ るため、奇数番目のソース線X1, X3・・・Xn-1を 通して、検査用電流が検査用信号出力端子CX1から検 査出力電流信号103aとして時系列的に出力される。 の検査出力電流信号103bは流れない。逆に、図2に 示す波形図のうちの右側の波形図に示すように、TFT 制御用信号入力端子TX:からHレベルのゲート電位1 01bを偶数番目のTFT61a2, 61a4 · · · 6 1 ax に供給すると、ソース線X2, X4 ・・・Xxの 側からの検査出力電流信号103bが検査用信号出力端 子CX2 から出力される。このため、図4に示すよう に、ソース線X2 に断線が生じていると、検査出力電流 信号103bには、ソース線Xxに対応するタイミング で電流が流れないことを示す信号104が出現して、ソ 20 ース線X2に断線が生じていることが確認できる。 [0005]

【発明が解決しようとする課題】しかしながら、従来の アクティブマトリクスパネルの検査回路60において、 ソース線 X1, X2・・・Xmに対する検査工程は、そ の製造工程の途中に行われ、検査工程に用いたTFT制 御用信号線63a、63bをアクティブマトリクスパネ ルの完成後もフロート状態のままにしておくと、ソース 線X1 、X2 ・・・Xx とが完全に絶縁分離されていな 3 bや検査回路60の側からのノイズがソース線X1, X2 ・・・Xx に伝わって、画面の表示品位が低下す る。このため、検査工程の後に、再び配線工程を行っ て、TFT制御用信号線63a、63bと、たとえばゲ ート線駅動回路55の負側の電源線V... とを導電接続 する工程を必要とするので、アクティブマトリクスパネ ルの製造工程が複雑になって、その生産性の向上の妨げ になっているという問題点がある。また、ソース線 X1, X2・・・Xmの検査工程の後に配線工程を行う 』に断線が生じやすいことに加えて、この工程において 発生した断線は検査されずに最終工程にまで残り、歩留 りを低下させてしまうという問題点がある。

【0006】以上の問題点に鑑みて、本発明の課題は、 検査を終了後の検査回路側の制御用信号線を自動的に所 定の電位に固定しておく制御用信号線電位切換回路を設 けて、検査工程後に検査回路に対する配線形成を不要化 することによって、生産性および信頼性を向上可能なア クティブマトリクスパネルを実現することにある。

[0007]

【課題を解決するための手段】上記課題を解決するため に、本発明において講じた手段は、信号線駆動回路側に 導電接続する複数の信号線および走査線駆動回路側に導 電接続する複数の走査線が格子状に配置されて画面の各 画素が形成された画素マトリクスと、制御用信号線を介 して印加された電位に基づいて高インピーダンス状態お よび低インピーダンス状態に切り換えられるスイッチン グ回路と、このスイッチング回路を介して信号線に導電 接続し、スイッチング回路が低インピーダンス状態にあ これに対して、ソース線 X_2 , X_4 ・・・ X_5 の側から 10 るときに信号線駆動回路側から信号線に入力された検査 用信号を検査用信号出力端子から出力する検査用信号線 と、画面の表示状態および非表示状態に対応して電位が 変化する信号線駆動回路側および走査線駆動回路側のい ずれかの配線から供給された電位に基づいて動作し、こ の電位が画面の表示状態に相当するレベルであるときに は制御用信号線をスイッチング回路が高インピーダンス 状態となるレベルの電位に固定する制御用信号線電位切 換回路とを、アクティブマトリクスパネルに設けること である。

> 【0008】ここで、制御用信号線電位切換回路の動作 を規定する電位をそれに供給する配線として、走査線駆 動回路側の電源線を利用することが好ましい。

[0009]

【作用】 上記手段を講じた本発明に係るアクティプマト リクスパネルにおいて、制御用信号線を介してスイッチ ング回路に所定の重位を供給して、スイッチング回路を 低インピーダンス状態に切り換えた状態で、信号線駆動 回路側から信号線に検査用信号を入力すると、検査用電 流信号はスイッチング回路および検査用信号線を介して いことなどに起因して、TFT制御用信号線63a,6 30 検査用信号出力端子から出力されるため、その電流信号 に基づいて、ソース線の断線の有無をソース線毎に検査 できる。ここで、検査工程は画面が非表示状態のときに 行われ、表示状態とは異なる電位が信号線駆動回路側ま たは走査線駆動回路側のいずれかの配線に印加された状 態にあるのに対して、画面が表示状態になるときには、 この配線の電位は異なるレベルの電位に移行するため、 この電位の変化に基づいて、制御用信号線電位切換回路 は制御用信号線をスイッチング回路が高インピーダンス 状態となるレベルの電位に切り換える。たとえば、走査 ため、この工程において、ソース線 X_1 , X_2 ・・・X 40 線駆動回路側の電源線に対しては、信号線の検査中は電 位が印加されないかもしくは低い電位が印加されるが、 画面を表示状態とするときには、電位が印加されるかも しくは高い電位が印加されるため、この電源線の電位の 変化に対応して、制御用信号線電位切換回路は制御用信 号線の電位を規定する。それ故、スイッチング回路を自 動的に高インピーダンス状態にして、検査回路と画素マ トリクス側とを自動的に絶縁状態とすると共に、その電 位に制御用信号線の電位を自動的に固定するため、検査 工程の後に、制御用信号線を他の配線に接続する必要が

50 ない。

っている。

5

[0010]

【実施例】つぎに、添付図面を参照して、本発明の実施 例について説明する。

【0011】図1は本発明の実施例に係るアクティブマ トリクスパネル(液晶表示パネル)の構成を示すプロッ ク図である。ここで、本例のアクティブマトリクスパネ ルの構成のうち、ソース線(信号線), ゲート線(走査 線), 画素マトリクス, ソース線駆動回路およびゲート 線駆動回路については、従来のアクティブマトリクスパ ネルと同様な構成になっているため、対応する部分同 10 ックドインパータ532a,533aもしくは2つのク 土、たとえばソース線およびゲート線などについては同 符号を付してある。

【0012】この図において、本例のアクティブマトリ クスパネル1は、ソース線、ゲート線、画素マトリク ス、ソース線駆動回路、ゲート線駆動回路およびソース 線の断線の有無を検査する検査回路が同一の基板上に形 成されており、その基板上において、ソース線 X1 , X 2 ・・・ Xx (信号線) とゲート線 Y1 , Y2 ・・・ Y (走査線)とが格子状に配置されて、その交点に画素 を備える画素マトリクス11を有する。また、いずれの 20 可能なように、基板上には、ソース線 X_1 , X_2 ・・・ 画素にも、薄膜トランジスタ (TFT) と液晶セルとを 有し、薄膜トランジスタの動作に対応して、液晶セルに 所定の電位が印加されて、各画素の液晶の配向状態に対 応する画面が表示される。ここで、ソース線X:,X2 ・・・X』は、画素マトリクス11と同一基板上に形成 されたソース線駆動回路12に導電接続しており、この ソース線駆動回路12の側にはシフトレジスタ部13, サンプルホールド回路14およびビデオ信号線Vide oを有する。そして、ソース線X1, X2・・・X $_{\rm N}$ は、サンプルホールド回路 1 4 の各アナログスイッチ 30 $_3$ ・・・2 1 2 1 2 1 を駆動可能に、また、TFT制御用 を介してシフトレジスタ部13の1ピット毎の単位シフ トレジタ部に対応している。このため、シフトレジスタ 部13から出力されたビット信号に基づいて、TFT1 4 a1 , 1 4 a2 ・・・1 4 am はON状態またはOF F状態に制御されて、ソース線X1,X2・・・X1に ビデオ信号線Videoからのビデオ信号をホールド可 能になっている。一方、ゲート線 Y_1 , Y_2 ・・・ Y_R は、同一基板上の画素マトリクス11の両側に配置され たゲート線駆動回路15の側に導電接続し、このゲート 線駆動回路15の側にはシフトレジスタおよび必要に応 40 じてバッファ回路を有する。ここで、ゲート線駆動回路 15のシフトレジスタ部も複数のTFTで構成され、そ れらを駆動するために、ゲート線駆動回路15の側にも 負側の電源線V...、および正側の電源線Vaar が配置さ れている。さらに、ソース線駆動回路12の側には、そ のシフトレジスタ部13にクロック信号CKAを入力す べきクロック信号線16および開始信号Dx を供給すべ き開始信号線17が配置されている一方、ゲート線駆動 回路15の側にも、そのシフトレジスタ部にクロック信 号を入力すべきクロック信号線18および開始信号を供 50 切換回路30には、TFT制御用信号線23a,23b

給すべき開始信号線19が配置されている。ここで、シ フトレジスタ部、たとえば、ソース線駆動回路12の側 のシフトレジスタ部13は、1ピット当たり、図3を用 いて説明した従来のアクティブマトリクスのシフトレジ スタ部と同様に、クロック信号CKAのうちのクロック 信号 のおよびクロック信号 のと逆相のクロック信号 の* (øパー)で駆動される単位シフトレジスタ部13a, 13 bで構成され、いずれの単位シフトレジスタ部13 a、13bも、1つのインパータ531と、2つのクロ ロックドインパータ532b、533bで構成されて、 クロック信号のまたはクロック信号の*で駆動可能にな

【0013】このような構成のアクティブマトリクスパ ネル1において、ソース線 X_1 , X_2 ・・・ X_8 はゲー ト線Y1, Y2・・・Y1に層間絶縁膜を介して上層側 に形成されているため、ゲート線Y1, Y2・・・Yu に比較して段差切れなどの断線が発生しやすい。そこ で、ソース線X1, X2・・・Xxの断線の有無を確認 X に対する検査回路20が形成されている。この検査 回路20は、ソース線X1, X2・・・Xx に対してT FT21a1, 21a2 ・・・21ax (スイッチング 回路)を介して導電接続する2つの検査用信号線22 a, 22bと、画素マトリクス11の辺方向に沿って配 置されてTFT21a1,21a2・・・21axのゲ ートに導電接続する2つのTFT制御用信号線23a, 23b (制御用信号線) とを有し、そのうち、TFT制 御用信号線23aは奇数番目のTFT21aょ,21a 信号線23bは偶数番目のTFT21a2, 21a4 ・ ・・21am を駆動可能になっている。また、検査用信 号線22a, 22bは端部に検査用信号出力端子C X1 , CX2 を備え、TFT制御用信号線23a, 23 りは端部にTFT制御用信号入力端子TX1, TX2を

【0014】このような検査回路20において、TFT 制御用信号線23a,23bをアクティブマトリクスパ ネル1の完成後もフロート状態のままにしておくと、ソ ース線 X₁ , X₂ ・・・X_N と検査回路 2 0 とが完全に 絶縁分離されていないことに起因して、TFT制御用信 号線23a, 23bや検査回路20の側からのノイズが ソース線 X1 、 X2 ・・・X1 に伝わって、画面の表示 品位が低下する。そこで、本例のアクティブマトリクス パネル1においては、アクティブマトリクスパネル1に 画面表示するとき、すなわち検査が終了した後におい て、TFT制御用信号線23a,23bを自動的にアー ス単位などの低い単位レベルに固定するための制御用信 号線電位切換回路30を有する。この制御用信号線電位 に対応する2つのn型のTFT30a, 30bを有し、 これらのTFT30a、30bのいずれのゲートも、ア クティブマトリクスパネル1の画面が表示状態および非 表示状態に変化するのに対応して電位が変化する配線と して、ゲート線駆動回路15の正側の電源線Vaar に導 電接続している。すなわち、ゲート線駆動回路15の正 側の電源線Veerには、画面の表示状態においては、正 の駆動電位が供給されるが、画面の非表示状態において は、駆動電位が印加されないかもしくは低電位が印加さ 線 Vaar にはハイレベルの電位が印加されないため、い ずれのTFT30a, 30bもOFF状態であるので、 TFT21a1, 21a2・・・21a1のゲート電位 はTFT制御用信号入力端子TX1, TX2 に印加され た電位に規定可能になっている。一方、検査が終了、す なわち画面を表示するときには、正側の電源線 Vaa 、 に ハイレベルの電位が印加されるので、いずれのTFT3 0a, 30bもON状態になって、TFT制御用信号線 23a. 23bの電位、すなわち、TFT21a1, 2 1 a 2 ・・・ 2 1 a x のゲート電位は低レベルになっ 20 て、それらは高インピーダンス状態になる。このため、 検査回路20と画素マトリクス11とを絶縁状態に切換 可能になっていると共に、TFT制御用信号線23a, 23 bの電位を低レベル (アース電位) に固定した状態 に保持可能になっている。

【0015】このような構成のアクティブマトリクス1 の検査回路20において、ソース線X1, X2・・・X x に対する検査工程を、図2に示す各信号の波形図を参 照して説明する。ここで、画面を表示する必要がないた め、正側の電源線Vaarには電位が印加されておらず、 TFT30a、30bはOFF状態であるので、TFT 制御用信号線23a, 23bはフロート状態にある。

【0016】この状態から検査工程を行うには、まず、 図2に示す波形図のうちの左側の波形図に示すように、 TFT制御用信号入力端子TX1, TX2のうち、TF T制御用信号入力端子TX」からHレベルのゲート電位 101aを奇数番目のTFT21a:, 21a: ・・・ 2 1 ax-1 のゲート電位に供給して、それらをON状態 とし、ソース線X1, X3・・・Xx-1 と検査用信号線 ンス状態)とする。一方、TFT制御用信号入力端子T X2 からはLレベル(低い電位レベル)のゲート電位1 01bを偶数番目のTFT21a2, 21a4 · · · 2 1 ax のゲートに供給して、それらをOFF状態とす る。この状態で、ビデオ信号線Videoから所定の検 査用電流を供給すると共に、シフトレジスタ部13にク ロック信号φ, φ*を供給して、シフトレジスタ部13 からサンプルホールド回路14にピット信号102a, 102bを送出すると、ピット信号102a, 102b に対応して、サンプルホールド回路14の各アナログス 50 る。

イッチが動作し、ビデオ信号線Videoの検査用電流 をソース線X1, X2・・・Xm に導く。ここで、ソー ス線X1, X2・・・Xmのうち、奇数番目のソース線 X₁ 、 X₈ ・・・ X₈₋₁ と検査用信号線 1 2 b との間に 配置された奇数番目のTFT21a1, 21as・・・ 2 1 a_{N-1} のみがON状態にあるため、奇数番目のソー ス線X1, X3・・・X1-1 を通して、検査用電流が検 査用信号出力端子CX1 から検査出力電流信号103 a として時系列的に出力される。これに対して、偶数番目 れる。このため、断線を検査するときには、正側の電源 10 のソース線 X_1 , X_4 ・・・ X_8 の側からの検査出力電 流信号103bは流れない。逆に、図2に示す波形図の うちの右側の波形図に示すように、TFT制御用信号入 力端子TX2 からHレベルのゲート電位101bを偶数 番目のTFT21a2, 21a4・・・21am に供給 して、それらをON状態とすることによって、偶数番目 のソース線X2, X4・・・Xxの側からの検査用電流 が検査用信号出力端子CX2 を介して検査出力電流信号 103bとして出力される。このため、図1に示すよう に、ソース線X2 に断線が生じていると、検査出力電流 信号103bには、ソース線X2に対応するタイミング で電流が流れないことを示す信号104が出現している ことを開始信号Dxとの対比から識別して、ソース線X **』に断線が生じていることが確認できる。**

> 【0017】以上の検査工程が終了した後に、アクティ プマトリクスパネル1の全製造工程を完了して、アクテ ィプマトリクスパネル1に画面を表示するときには、ゲ ート線駆動回路15の正側の電源線Vaar に高い電位レ ベルの駆動電位が印加される。このため、TFT30 a, 30bがいずれもON状態になって、TFT制御用 信号線23a、23bの電位、すなわち、全てのTFT 2 1 a₁ , 2 1 a₂ ・・・2 1 a₁ のゲート電位は低い 電位レベルになって、それらは自動的に高インピーダン ス状態となり、検査回路20と画素マトリクス11とが 絶縁状態に自動的に切換される。また、TFT制御用信 号線23a, 23bの電位はアース電位(低い電位レベ ル)に自動的に固定される。

【0018】このように、本例のアクティブマトリクス パネル1においては、画面を表示するときにハイレベル の電位が印加されるゲート線駆動回路15の正側の電源 12aとを導通状態(スイッチング回路が低インピーダ 40 線 Vaa, を利用して、画面を表示するときには、検査回 路20を画索マトリクス11の側から確実にかつ自動的 に絶縁分離すると共に、TFT制御用信号線23a,2 3 b の電位レベルを確実にかつ自動的にアース電位に固 定した状態とする。このため、配線工程が完了した後 に、ソース線X1 X2・・・X1 に対する断線の有 無の検査工程を行なえ、検査工程の後に再度配線工程を

> 【0019】それ故、アクティブマトリクスパネル1の 生産性および信頼性のいずれもを向上することができ

9

【0020】なお、検査時に、TFT制御用信号入力端 子TX1, TX2 にハイレベルの電位を印加する電源と しては、外部からの定電圧電源または定電圧発生回路を 用いることができるが、その他にも、ゲート線駆動回路 15の正側の電源線Vaay とTFT制御用信号入力端子 TX1, TX2 と導電接続しておき、検査時には、電源 線Veer に対して、TFT11a1, 11a2・・・1 1 a, をオン状態、かつ、TFT30a, 30bをオフ 状態とする電位を供給してもよい。また、上記の検査回 路の構成に部分的な変更を加えて、本例の検査回路をゲ 10 1・・・アクティブマトリクスパネル ート線の検査回路側に採用することもできる。

[0021]

【発明の効果】以上のとおり、本発明に係るアクティブ マトリクスパネルには、画面の表示状態および非表示状 態に対応して電位が変化する信号線駆動回路側および走 香線駆動回路側の配線、たとえば走査線駆動回路の電源 線などから供給された電位に基づいて動作して、制御用 信号線の電位のレベルに切り換える制御用信号線電位切 換回路を有する。従って、本発明によれば、画面が表示 状態になったときの電位に基づいて、制御用信号線電位 20 22a, 22b, 62a, 62b・・・検査用信号線 切換回路は制御用信号線をスイッチング回路が高インピ ーダンス状態となるレベルの電位に切り換えて、検査回 路と画素マトリクス側とを自動的に絶縁状態とすると共 に、その電位に制御用信号線の電位を自動的に固定する ため、検査工程の後に、制御用信号線を他の配線に接続 させる必要がない。それ故、検査工程の後に再度配線工 程を行う必要がないので、アクティブマトリクスパネル の生産性および信頼性が向上するという効果を奏する。

【図面の簡単な説明】

【図1】本発明の実施例1に係るアクティブマトリクス 30 $X_1 \sim X_R$ ・・・ソース線(信号線) パネルの構成を示すプロック図である。

【図2】木発明の実施例に係るアクティブマトリクスパ

ネルおよび従来のアクティブマトリクスパネルに対する ソース線の断線検査工程において、各部位に入出力され る信号の波形図である。

10

【図3】本発明の実施例に係るアクティブマトリクスパ ネルおよび従来のアクティブマトリクスパネルのソース 線駆動回路のシフトレジスタの回路図である。

【図4】従来のアクティブマトリクスパネルの構成を示 すプロック図である。

【符号の説明】

11.51・・・ 画素マトリクス

12.52・・・ソース線駆動回路

13,53・・・シフトレジスタ部

14,54・・・サンプルホールド回路

15,55・・・ゲート線駆動回路

16, 18, 56, 58・・・クロック信号線

20.60・・・検査回路

21 a1 ~21 ax, 61 a1 ~61 ax · · · TFT (スイッチング回路)

23a, 23b, 23a, 23b···TFT制御用信 号線 (制御用信号線)

30・・・制御用信号線電位切換回路

30a, 30b · · · TFT

CX1、CX2・・・検査用信号出力端子

TX1, TX2・・・TFT制御用信号入力端子

V...、・・・ゲート線駆動回路の負側の電源線

Vall ・・・ゲート線駆動回路の正側の電源線

Video・・・ビデオ信号線

Y1~Yu・・・ゲート線(走査線)

[図2]

【図3】

[図1]

【図4】

