Данная программа была разработана для прогнозирования расхода топлива с учетом погодных условий. При открытии программы, открывается меню авторизации вы вводите имя и пароль.



Рисунок 1 – Авторизация

После чего открывается меню, в котором показываются основные шкалы расхода топлива и расхода масла на текущий момент, распределённые по кораблям.



Рисунок 2 – Основная страница

Для настройки маршрутов кораблей необходимо два раза нажать на интересующий корабль и откроется меню параметров корабля.



Рисунок 3 – Информация о корабле.

Для добавления маршрута нажмите на кнопку добавить маршрут. При добавлении маршрута вводится значение показания угла дрейфа и время участка. Для учета падения

скорости используется формула 
$$\Gamma$$
. Андерсена  $(-100)^{-100}$  [м/с]

где m и n – эмпирические коэффициенты;

 $V_0$  – скорость полного хода судна на тихой воде, м/с;

L 11 – длина судна между перпендикулярами, м.

Определение коэффициенты m и n по таблице:

Значения коэффициентов т и п на волнении

| Число<br>баллов по<br>Вофорту | Высота<br>волны<br>h <sub>1/3</sub> , м | Водиение                    |                    |                             |                   |                           |             |                          |         |
|-------------------------------|-----------------------------------------|-----------------------------|--------------------|-----------------------------|-------------------|---------------------------|-------------|--------------------------|---------|
|                               |                                         | встречное                   |                    | в скулу                     |                   | в борт                    |             | попутное                 |         |
|                               |                                         | m                           | n                  | m                           | n                 | 171                       | n           | m                        | n       |
| 5<br>6<br>7<br>8              | 3,0<br>4,2<br>5,8<br>7,4                | 800<br>1300<br>2100<br>3600 | 2<br>6<br>11<br>18 | 700<br>1000<br>1400<br>2300 | 2<br>5<br>8<br>12 | 350<br>500<br>700<br>1000 | 1<br>1<br>5 | 100<br>200<br>400<br>700 | 0 1 2 3 |

Воздействие ветра на корабль определяется его направлением и силой, формой и размерами площади парусности корабля, расположением центра парусности, значениями осадки, крена и дифферента.

Действие ветра в пределах курсовых углов 0—110° вызывает потерю скорости, а при больших курсовых углах и силе ветра не свыше 3—4 баллов — некоторое ее приращение.

Действие ветра в пределах 30—120° сопровождается дрейфом и ветровым креном. На движущийся корабль действует относительный (кажущийся) ветер, который связан с истинным следующими отношениями:

$$V_{\rm H} = V_{\rm K}^2 + V_{\rm o}^2 - 2V_{\rm K}V_{\rm o}\cos{(V_{\rm K} + \beta_{\rm o})};$$
 (7.1)

$$V_{\rm M} = V_{\rm K}^2 + V_{\rm o}^2 - 2V_{\rm K}V_{\rm o}\cos(V_{\rm K} + \beta_{\rm o}); \qquad (7.1)$$

$$Y_{\rm M} = Y_{\rm K} + \beta_{\rm o} + \arccos\frac{V_{\rm M}^2 + V_{\rm K}^2 - V_{\rm o}^2}{2V_{\rm M}V_{\rm K}}, \qquad (7.2)$$

где Vи — скорость истинного ветра, м/с;

VK—скорость кажущегося ветра, м/с;

V0 — скорость хода корабля, м/с;

βо—угол дрейфа корабля, град.

Yk — угол кажущегося ветра;

Үи—угол истинного ветра.

Удельное давление ветра на корабль в кгс/м&sub2; рассчитывается по формуле

$$P = 0.08W^2$$
,

где W — скорость ветра, м/с.

Так, при урагане, когда скорость ветра достигает 40—50 м/с, величина ветровой нагрузки достигает 130—200 кгс/м2.

Полное давление ветра на корабль определяется из выражения  $P = p\Omega$ , где &Omrga; — площадь парусности корабля.

Величина кренящего момента Мкр (рис. 7.2) в кгс • м для случая установившегося движения и действия силы давления ветра P, перпендикулярной ДП корабля, определяется из выражения

$$M_{\rm KP} = P\left(Z_{\rm II} - \frac{T}{2}\right),\tag{7.4}$$

где zn — ордината центра парусности, м;

Т — средняя осадка корабля, м.

Волнение моря оказывает наиболее существенное влияние на корабль. Оно сопровождается действием на корпус значительных динамических нагрузок и качкой корабля. При плавании на волнении увеличивается сопротивление корпуса корабля и ухудшаются условия совместной работы винтов, корпуса и главных двигателей.



Рис. 4. Элементы волн

В результате снижается скорость, увеличивается нагрузка на главные машины, повышается расход топлива и уменьшается дальность плавания корабля. Форма и размеры волн характеризуются следующими элементами (рис. 7.3):

- высота волны h расстояние по вертикали от вершины до подошвы волны;
- длина волны  $\lambda$  расстояние по горизонтали между двумя соседними гребнями или подошвами;
- период волны t промежуток времени, в течение которого волна проходит расстояние, равное своей длине(3);
- скорость волны С расстояние, проходимое волной в единицу времени.

По происхождению волны подразделяются на ветровые, приливо-отливные, анемобарические, волны землетрясения (цунами) корабельные. И распространенными являются ветровые волны. Различают три типа волнения: ветровое, зыбь и смешанное. Ветровое волнение — развивающееся, оно находится под непосредственным воздействием ветра в отличие от зыби, представляющей собой инерционное волнение, или волнение, вызванное штормовым ветром, дующим в удаленном районе. Профиль ветровой волны не симметричен. Ее подветренный склон круче, чем наветренный. На вершинах ветровых волн образуются гребни, верхушки которых под действием ветра заваливаются, образуя пену (барашки), а при сильном ветре срываются. Направление ветра и направление ветровых волн в открытом море, как правило, совпадают или разнятся на 30—40°. Размеры ветровых волн зависят от скорости ветра и продолжительности его воздействия, длины пути ветровых потоков над водной поверхностью и глубины данного района

Для упрощения, расчета направления ветра направление ветра было разбито на сектора, борт, встречный, попутный, скула:



Рисунок 5 – Свойства участков.