Chương 2. NITROGEN VÀ SULFUR

ĐƠN CHẤT NITROGEN

- 3.1. Ở trạng thái tự nhiên, nitrogen
 - A. tồn tại ở dạng đơn chất và hợp chất.
 - B. chỉ tồn tại ở dạng đơn chất.
 - C. chỉ tồn tại ở dạng hợp chất.
 - D. tự do chiếm khoảng 20% thể tích không khí.
- 3.2. Cấu hình electron nguyên tử của nitrogen là
 - A. 1s²2s²2p¹.

B. 1s²2s²2p⁵.

C. $1s^22s^22p^4$.

- D. 1s²2s²2p³.
- 3.3. Tính chất nào sau đây của nitrogen không đúng?
 - A. Ở điều kiện thường, nitrogen là chất khí.
 - B. Nitrogen tan rất ít trong nước.
 - C. Nitrogen không duy trì sự cháy và sự hô hấp.
 - D. Nitrogen nặng hơn không khí.
- 3.4. Nitrogen trong không khí có vai trò nào sau đây?
 - A. Cung cấp đạm tự nhiên cho cây trồng.
 - B. Hình thành sấm sét.
 - C. Tham gia quá trình quang hợp của cây.
 - D. Tham gia hình thành mây.
- 3.5. a) Tại sao nitrogen là phi kim mạnh lại tồn tại được trong tự nhiên dưới dạng tự do?
 - b) Tại sao nitrogen phản ứng được với nhiều kim loại, nhưng trong vỏ Trái Đất không gặp một nitride (N^{3-}) kim loại nào cả?

- 3.6. Viết phản ứng chứng minh nitrogen hoạt động hoá học ở nhiệt độ cao.
- **3.7.** Một bình kín có dung tích là 0,5 L chứa 1,5 mol H_2 và 0,5 mol N_2 ở nhiệt độ xác định. Ở trạng thái cân bằng có 0,2 mol NH_3 tạo thành. Tính hằng số cân bằng K_0 của phản ứng xảy ra trong bình.
- **3.8***. Tại sao ở điều kiện thường (25 °C, 1 bar), nitrogen tồn tại ở dạng phân tử N_2 trong khi đó phosphorus lại tồn tại ở dạng P_4 mà không xảy ra trường hợp ngược lại? Biết:
 - Năng lượng liên kết ba N≡N là 941 kJ/mol.
 - Năng lượng liên kết ba P≡P là 490 kJ/mol.
 - Năng lượng liên kết đơn N-N là 160 kJ/mol.
 - Năng lượng liên kết đơn P-P là 209 kJ/mol^(*).
- 3.9. Xác định cụm từ phù hợp trong các ô từ (1) đến (7) để hoàn thành chu trình của nitrogen trong tự nhiên.

^{**} Nguồn: http://butane.chem.uiuc.edu/cyerkes/Chem104ACSpring2009/Genchemref/bondenergies.html