EDB4012-FYP Proposal Defense

Title: Development of Apps to Improve Mood States

Name: Tong Yun Xian (20094)

Supervisor: AP. Dr. Tang Tong Boon

Background of Study

What is Mood States?

- Emotion
- Valence / Arousal

• 1 Million of US Employees missed work due to stress (America Institute of Stress) 1

Mood Disorder causes 50 Billion USD / year in lost productivity and results in 321.2 M lost workdays (Kessler) 2

Why do We have to Improve Mood States?

Increase Productivity 3

Improve Job Performance, Decision Making, Teamwork, Leadership 45

Organisation will be More successful in a competitive market. 6

Reduce Stress Related Disease 7

Problem Statements

- Lack of Mood States Monitoring
- How to determine Mood States
- How to Improve Mood States

Objectives

- To develop mood state monitoring using portable fNIRS
- To design and develop task-based game application to improve mood state

Scope of Study

- Measurement of Mood States based on survey
- Brain Activities on different mood states
- Task use to stimulate brain
- Measurement of Brain Activities
- Methods to Improve Mood States

Critical analysis

- Mood States Assessment
- Brain Activities on different mood states
- fNIRS and other neuroimaging modalities
- Mood States Induction

Measurement of Mood States based on Survey

- Self- Assessment Manikin (SAM) 8
- Positive Affect Negative Affect Schedule (PANAS)₉
- Profile of Mood States(POMS)₁₀

Mood States Assessment ...

Approach

Positive Affect Negative Affect Schedule (PANAS)

Advantages

- -10 negative affect
- -10 positive affect
- -Ease of usage to determine mood states

Disadvantages

Need to spend more time to complete the assessment compare to SAM

Task Use to Stimulate Brain

- Simple Arithmetic Task to stimulate brain 11
- Measure brain using task-based activities
- Brain will be active when given a task

Brain Activities on Different Mood States 12131415

- Relation between asymmetry of prefrontal cortex activities during each mood states
- Compare the differences between fNIRS ,EEG,
 fMRI

Brain Activities on Different Mood States

Approach

fNIRS, EEG, fMRI

Paper Found

Major Depressive Disorder(fMRI) 13

Music Listening(EEG) 14

Urban Picture(fNIRS) 15

Common Traits

Valence Specific Hypothesis 12

Right PFC- Negative Mood

Left PFC- Positive Mood

Measurement of Brain Activities 16 17

- fNIRS, fMRI, EEG
- Portable fNIRS

fNIRS and Other Modalities

Approach

fNIRS

Advantages

Portable, Low Costs.

Good Signal-Noise Ratio

Non-Invasiveness

Less movement constraint

Disadvantages

Low spatial resolution than fMRI and PET 16

Low temporal resolution than EEG 17

Methods to Improve Mood States

- Self-Statements or Velten Procedure 18
- Music 19
- Autobiographical Recall 20
- Films 21
- Photos (International Affective Picture Systems) 22
- Use Virtual Reality with combination of Music and Photos to Improve Mood States 23

—

Mood States Induction

Approach

Virtual Reality with Music and Video 23

Advantages

Immersive Experience

Wider range of mood induction

Disadvantages

May cause motion sickness

Methodology

Hardware

- -Portable fNIRS
- -Android Phone with Gyroscope compatibility
- -VR Headset
- -Noise cancelling earphone

Software

- -Android Studio
- -Unity
- -Sound Forge

System Overview

Key Project Milestone and Gantt Chart

Conclusion

Accomplished Work:

- Create Task-based application based on simple arithmetic to stimulate brain
- Acquire all the software and necessary library files

Future Work:

- Design and Create the virtual reality forest with nature sounds using
 Unity
- Tested the functionalities of portable fNIRS
- Link smartphone with portable fNIRS
- Obtain raw data from fNIRS to smartphone
- Analysis of data and troubleshooting

Expected Results:

- Mood state monitoring application
- Application to improve mood state

References

- 1. America Institute of Stress. (2017). "Workplace Stress". Retrieved from: https://www.stress.org/workplace-stress/5th November 2017.
- 2. Kessler. R. C., Adler. L., et. Al. (2006). "The prevalence and correlates of adult ADHD in the United States: results from the National Comorbidity Survey Replication." Am J Psychiatry, 2006 Apr; 163(4): 716-23.
- 3. George, J. M. & Bettenhausen, K. (1990). Understanding prosocial behavior, sales performance, and turnover: A group-level analysis in a service context. Journal of Applied Psychology, 75, 698-709. doi:10.1037/0021-9010.75.6.698
- 4. Spector, P. E., and Fox, S. (2002). "An emotion-centered model of voluntary work behavior: some parallels between counterproductive work behavior and organizational citizenship behavior." Hum. Resour. Manag. Rev. 12, 269–292. doi: 10.1016/S1053-4822(02)00049-9
- 5. Lam. L. T., Kirby. S. L. (2002). "Is emotional intelligence an advantage? An exploration of the impact of emotional and general intelligence on individual performance." J Soc Psychol. 2002 Feb, 142(1):133-43.
- 6. Sigal. G. B., Donald. E. G. (2007). "Why Does Affect Matter in Organisations?" Academy of Management Perspectives, Articles, 36-59.
- 7. British Mental Health Foundation (2001) "Burn Out or Burning Bright." British Mental Health Foundation Report, 2001
- 8. Bradley, M.M. & Lang, P.J. (1994). "Measuring emotion: the self-assessment manikin and the semantic differential." Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49-59. DOI 10.1016/0005-7916(94)90063-9.
- 9. Engelen, U., De Peuter, S., Victoir, A., Van Diest, I. & Van den Bergh, O. (2006). "Positive and Negative Affect Schedule (PANAS)." Gedrag & Gezondheid, 34(2), 61-70. DOI 10.1007/BF03087979.
- 10. McNair et al. (1971) "Manual for the Profile of Mood States." San Diego, CA: Educational and Industrial Testing Service.
- 11. Masahiro. T., Kaoru. S., et. al. (2004)." Relation between asymmetry of prefrontal cortex activities and the autonomic nervous system during a mental arithmetic task: near infrared spectroscopy study." Neuroscience Letters 369 (2004) 69–74
- 12. Adolphs. R., Jansari. A., Tranel. D. (2001) "Hemispheric perception of emotional valence from facial expressions." Neuropsychology. 2001 Oct; 15(4):516-24.

- 13. Grimm. S., et al. (2007). "Imbalance between Left and Right Dorsolateral Prefrontal Cortex in Major Depression Is Linked to Negative Emotional Judgment: An fMRI Study in Severe Major Depressive Disorder." Society of Biology Psychiatry, 2007.05.033.
- 14. Bos. D. O. (n.d.). "EEG-based Emotion Recognition: The Influence of Visual and Auditory Stimuli." (n.p).
- 15. Yu. J., Ang. K. K., Ho. S. H., Sia. A., Ho. R., (2017). "Prefrontal cortical activation while viewing urban and garden scenes: A pilot fNIRS study," 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, 2017, pp. 2546-2549.
- 16. Doi. H., Nishitani. S., Shinohara. Kazuyuki. (2013). "NIRS as a tool for assaying emotional function in the prefrontal cortex."

Frontiers in Human Neuroscience, November 2013, Volume 7, Article 770. doi: 10.3389/fnhum.2013.00770 17. Hong, K. S., Naseer, N., Kim, Y.H. (2015) "Classification of prefrontal and motor cortex signals for three-class fNIRS-BCI."

- Neurosci Lett. 2015 Feb 5; 587():87-92. 18. Velten, E. (1968). A laboratory task for induction of mood states. Behaviour Research and Therapy, 6, 473-482.
- 19. Sutherland, G., Newman, B., Rachman, S. (1982) Experimental investigations of the relations between mood and intensive
- unwanted cognition. British Journal of Medical Psychology, 55, 127-138. 20. Brewer D., Doughtie E.B., Lubin B. (1980). Induction of mood and mood shift. Journal of Clinical Psychology, 36, 215-226.
- Gross, J.J., Levenson, R.W. (1995). Emotion elicitation using films. Cognition and Emotion, 9, 87-108. 21.
- 22. Meagher M. W., Arnau R. C., Rhudy J. L. (2001). Pain and emotion: effects of affective picture modulation. Psychosom. Med.
- 63 79-90 10.1097/00006842-200101000-00010 23.
- Banos. R., Liano. Victor., et. al. (2006) "Changing Induced Mood Via Virtual Reality." W. IJsselsteijn et al. (Eds.):
- PERSUASIVE 2006, LNCS 3962, pp. 7–15, 2006. Springer-Verlag Berlin Heidelberg 2006

Current Progress

Arithmetic Task

