Содержание

		(Этр.
1.	Вопрос	№ 1	4
2.	Вопрос	№2	4
3.	Вопрос	№3	4
4.	Вопрос	№4	4
5.	Вопрос	№5	5
6.	Вопрос	№6	5
7.	Вопрос	№ 7	5
8.	Вопрос	№8	5
9.	Вопрос	№9	6
10	.Вопрос	№ 10	6
11	.Вопрос	№11	6
12	.Вопрос	№12	7
13	.Вопрос	№13	7
14	.Вопрос	№14	7
15	.Вопрос	№15	7
16	.Вопрос	№16	7
17	.Вопрос	№17	8
18	.Вопрос	№18	8
19	.Вопрос	№19	8
20	.Вопрос	№20	8

. 8	21.Вопрос №21
. 9	22.Вопрос №22
. 9	23.Вопрос №23
. 9	24.Вопрос №24
. 9	25.Вопрос №25
. 9	26.Вопрос №26
. 10	27.Вопрос №27
. 10	28.Вопрос №28
. 10	29.Вопрос №29
. 10	30.Вопрос №30
. 10	31.Вопрос №31
. 11	32.Вопрос №32
. 11	33.Вопрос №33
. 11	34.Вопрос №34
. 11	35.Вопрос №35
. 11	36.Вопрос №36
. 12	37.Вопрос №37
. 12	38.Вопрос №38
. 12	39.Вопрос №39
. 12	40.Вопрос №40
. 12	41.Вопрос №41

42.Вопрос №42	 13
43.Вопрос №43	 13
44.Вопрос №44	 13
45.Вопрос №45	 13
46.Вопрос №46	 13
47.Вопрос №47	 14
48.Вопрос №48	 14
49.Вопрос №49	 14
50.Вопрос №50	 14
51.Вопрос №51	 14
52 Boupoc №52	15

Формулировка

Формы представления данных и цели анализа данных.

Ответ

По форме представления данных можно выделить выборк, функции, семантические данные (тексты, изображения). В качестве основных целей анализа данных можно отметить анализ глобальных событий и явлений, компактное представление данных, прогнозирование.

2 Вопрос №2

Формулировка

Характеристики положения данных.

Ответ

1)Выборочное среднее, 2) med $\mathbf{x}=\mathbf{x}$? $\mathbf{x}=\mathbf{x}[\mathbf{k}+1]$ || $\mathbf{x}=\mathbf{x}[\mathbf{k}]$, в случае нечётности и чётности соответственно (выборочная медиана), $\mathbf{3})Z_R=$ полусумма экстремальных значений, 4)Полусумма выборочных квартилей $Z_Q=\frac{z_{1/4}+z_{3/4}}{2}$, $\mathbf{5})Z_{tr}=\frac{1}{n-2r}\sum_{i=r+1}^{n-r}x_{(i)}$ - усечённое среднее 6)Среднее геометрическое $Z_G=x_1*...*x_n^{1/n}$, 7)Среднее гармоническое $Z_M=\frac{1}{1/n*\sum_{i=1}^n1/z_i}$, 8)Среднее по Колмогорову $z_k=g^{-1}(\frac{1}{n}\sum_{i=1}^ng(x_i))$. Вариационный ряд данных - неубывающая выборка.

3 Вопрос №3

Формулировка

Характеристики рассеивания данных.

Ответ

1) Среднеквадратичное отклонение и выборочная дисперсия, 2) среднее абсолютное отклонение от медианы $d=1/n \sum_{i=1}^n |x_i-medx|$, 3) $R=X_n-X_1$ - размах выборки, 4) интервальная широта, 5) Медианное абсолютное отклонение

4 Вопрос №4

Формулировка

Оптимизационный подход к построению х-к положения и рассеивания данных.

Ответ

Нет ответа.

Формулировка

Характеристики взаимосвязи данных.

Ответ

Коэффициент корреляции Пирсона(линейная зависимость), ранговый коэффициент Спирмена - мера монотонной зависимости(не линейной), квадратный (знаковый) коэффициент корреляции.

6 Вопрос №6

Формулировка

Характеристики экстремальных значений данных.

Ответ

```
Нужно для выявления выбросов.
```

```
1)|x_i - medx| > K * MAD x -> IQR
```

```
(2)x_i - выброс, если > max(x_1, LQ - 3/2IQR) || < min(x_n, UQ + 3/2IQR).
```

7 Вопрос №7

Формулировка

Графическое представление данных -боксплот Тьюки.

Ответ

```
IQR = UQ - LQ. \ x_i - выброс, если > max(x_1, LQ - 3/2IQR) || < min(x_n, UQ + 3/2IQR).
```

8 Вопрос №8

Формулировка

Характеристики распределений данных: «ядерные» оценки плотности.

Ответ

Эмпирическая функция распределения, дельта функция.

Ядро - функция K(u), если : 1. $K(u) \ge 0$, 2. K(-u) = K(u), 3. $\int_{-\infty}^{\infty} K(u) du = 1$.

Если функция обладает первым свойством, то результатом ядерной оценки плотности действительно будет плотность вероятности. Третье свойство гарантирует, что среднее значение распределения равно среднему использованной выборки.

Нужно для оценки плотности распределения. $f(x) = \lim_{n\to\infty,h\to0} 1/n * h \sum_{i=1}^n K(\frac{x-x_i}{h})$

Формулировка

Что такое точечная оценка?

Ответ

Оценка параметра — соответствующая числовая характеристика, рассчитанная по выборке. Оценки параметров генеральной совокупности делятся на два класса: точечные и интервальные.

Когда оценка определяется одним числом, она называется точечной оценкой. Точечная оценка, как функция от выборки, является случайной величиной и меняется от выборки к выборке при повторном эксперименте.

К точечным оценкам предъявляют требования, которым они должны удовлетворять, чтобы хоть в каком-то смысле быть «доброкачественными». Это несмещённость, эффективность и состоятельность.

Несмещённость - если мат ожидание оценки равно оцениваемому параметру генеральной совокупности. Эффективность - если обладает минимальной дисперсией среди всех несмещенных точечных оценок. Состоятельность - если при увеличении выборки стремится по вероятности к параметру генеральной совокупности. Генеральная совокупность - параметр от которого зависит выборка.

10 Вопрос №10

Формулировка

Что такое статистика?

Ответ

Статистика — отрасль знаний, наука, в которой излагаются общие вопросы сбора, измерения, мониторинга, анализа массовых статистических (количественных или качественных) данных и их сравнение; изучение количественной стороны массовых общественных явлений в числовой форме.

11 Вопрос №11

Формулировка

Какая оценка называется состоятельной, несмещенной, эффективной, робастной?

Ответ

Несмещённость - если мат ожидание оценки равно оцениваемому параметру генеральной совокупности. Эффективность - если обладает минимальной дисперсией среди всех несмещенных точечных оценок. Состоятельность - если при увеличении выборки стремится по вероятности к параметру генеральной совокупности. Генеральная совокупность - параметр от которого зависит выборка. Робастная - устойчивая к выбросам

Формулировка

Какая из двух оценок считается более эффективной?

Ответ

ДЛЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН ВЕРОЯТНОСТЬ ТОГО, ЧТО ТОЧЕЧНАЯ ОЦЕНКА (ширина доверительного интервала равна 0) СОВПАДЕТ С ЛЮБЫМ ЗАДАННЫМ ЗНАЧЕНИЕМ ИЛИ ОЦЕНИВАЕМЫМ ПАРАМЕТРОМ РАВ-НА 0.

Таким образом, точечная оценка имеет смысл лишь тогда, когда приведена характеристика рассеяния этой оценки (дисперсия). В противном случае она может служить лишь в качестве исходных данных для построения интервальной оценки. Интервальная оценка лучше.

13 Вопрос №13

Формулировка

Что такое эффективность, относительная эффективность, асимптотическая эффективность оценки?

Ответ

Нет ответа.

14 Вопрос №14

Формулировка

Что такое процедура «складного ножа»?

Ответ

Нет ответа.

15 Вопрос №15

Формулировка

Приведите примеры состоятельных оценок м.о. нормального распределения.

Ответ

Нет ответа.

16 Вопрос №16

Формулировка

Приведите примеры состоятельных оценок м.о. распределения Лапласа.

Нет ответа.

17 Вопрос №17

Формулировка

Приведите примеры состоятельных оценок м.о. равномерного распределения.

Ответ

Нет ответа.

18 Вопрос №18

Формулировка

Приведите примеры состоятельных оценок центра симметрии распределения Коши.

Ответ

Нет ответа.

19 Вопрос №19

Формулировка

Приведите примеры состоятельных оценок стандартного отклонения нормального распределения.

Ответ

Нет ответа.

20 Вопрос №20

Формулировка

Приведите примеры состоятельных оценок дисперсии нормального распределения.

Ответ

Нет ответа.

21 Вопрос №21

Формулировка

Приведите примеры состоятельных оценок стандартного отклонения распределения Лапласа.

Нет ответа.

22 Вопрос №22

Формулировка

Приведите примеры состоятельных оценок дисперсии распределения Лапласа.

Ответ

Нет ответа.

23 Вопрос №23

Формулировка

Приведите примеры состоятельных оценок стандартного отклонения равномерного распределения.

Ответ

Нет ответа.

24 Вопрос №24

Формулировка

Приведите примеры состоятельных оценок дисперсии равномерного распределения.

Ответ

Нет ответа.

25 Вопрос №25

Формулировка

Приведите примеры несмещенных оценок м.о. нормального распределения.

Ответ

Нет ответа.

26 Вопрос №26

Формулировка

Приведите примеры несмещенных оценок дисперсии нормального распределения.

Нет ответа.

27 Вопрос №27

Формулировка

Назовите состоятельные оценки начальных моментов распределений.

Ответ

Нет ответа.

28 Вопрос №28

Формулировка

Назовите состоятельные оценки центральных моментов распределений.

Ответ

Нет ответа.

29 Вопрос №29

Формулировка

Назовите состоятельные оценки генеральных квантилей распределений.

Ответ

Нет ответа.

30 Вопрос №30

Формулировка

Что такое неравенство Рао-Крамера? В чем состоит его смысл?

Ответ

Нет ответа.

31 Вопрос №31

Формулировка

При каком условии достигается равенство в неравенстве Рао-Крамера? Приведите примеры.

Нет ответа.

32 Вопрос №32

Формулировка

Сформулируйте метод максимума правдоподобия. Какова эвристическая идея этого метода?

Ответ

Нет ответа.

33 Вопрос №33

Формулировка

Сформулируйте метод моментов.

Ответ

Нет ответа.

34 Вопрос №34

Формулировка

Сформулируйте метод квантилей.

Ответ

Нет ответа.

35 Вопрос №35

Формулировка

Каковы общие свойства оценок максимума правдоподобия?

Ответ

Нет ответа.

36 Вопрос №36

Формулировка

Каковы оценки максимума правдоподобия параметров нормального распределения?

Нет ответа.

37 Вопрос №37

Формулировка

Каковы оценки максимума правдоподобия параметров равномерного распределения?

Ответ

Нет ответа.

38 Вопрос №38

Формулировка

Какова оценка максимума правдоподобия вероятности «успеха» биномиального распределения?

Ответ

Нет ответа.

39 Вопрос №39

Формулировка

Какова оценка максимума правдоподобия для параметра масштаба показательного распределения?

Ответ

Нет ответа.

40 Вопрос №40

Формулировка

Каковы оценки максимума правдоподобия параметров распределения Лапласа?

Ответ

Нет ответа.

41 Вопрос №41

Формулировка

Каковы оценки метода моментов параметров нормального распределения?

Нет ответа.

42 Вопрос №42

Формулировка

Что такое доверительный интервал?

Ответ

Нет ответа.

43 Вопрос №43

Формулировка

Что такое интервальная оценка параметра и каковы ее отличия от точечной оценки?

Ответ

Нет ответа.

44 Вопрос №44

Формулировка

Что такое точность и надежность интервальной оценки?

Ответ

Нет ответа.

45 Вопрос №45

Формулировка

Что такое критерий согласия?

Ответ

Нет ответа.

46 Вопрос №46

Формулировка

Что такое ошибки первого и второго рода?

Нет ответа.

47 Вопрос №47

Формулировка

Какие критерии согласия вы знаете?

Ответ

Нет ответа.

48 Вопрос №48

Формулировка

Какова общая схема проверки статистических гипотез с использованием критериев согласия?

Ответ

Нет ответа.

49 Вопрос №49

Формулировка

Каково происхождение термина «регрессия»?

Ответ

Нет ответа.

50 Вопрос №50

Формулировка

Что такое задача простой линейной регрессии?

Ответ

Нет ответа.

51 Вопрос №51

Формулировка

Какие методы оценивания параметров простой линейной регрессии вы знаете?

Нет ответа.

52 Вопрос №52

Формулировка

Как проверятся адекватность полученного решения задачи простой линейной регрессии?

Ответ

Нет ответа.