Linear Algebra 2 – Practicals

Lukas Prokop

summer term 2016

Contents

1	Exercise 1	2
2	Exercise 3	3
3	Exercise 2	3
4	Exercise 4	4

1 Exercise 1

Exercise 1. Determine the matrix representation of the linear map

$$f: \mathbb{R}_1[x] \to \mathbb{R}_2[x]$$

$$p(x) \mapsto (x-1) \cdot p(x)$$

in regards of bases $B = \{1 - x, 1 + x\} \subseteq \mathbb{R}_1[x]$ and $C = \{1, 1 + x, 1 + x + x^2\} \subseteq \mathbb{R}^2[x]$.

$$f: \mathbb{R}_1[x] \to \mathbb{R}_2[x]$$

$$f: p(x) \mapsto (x-1)p(x)$$

$$B = \{1 - x, 1 + x\} =: \{b_1, b_2\}$$

$$C = \{1, 1 + x, 1 + x + x^2\} =: \{c_1, c_2, c_3\}$$

Find $A \in \mathbb{K}^{3 \times 2} =: M_C^B(f)$.

$$\forall v \in \mathbb{R}_1 : f(v) = w : \Phi_C(w) = A\Phi_B(v)$$

$$f(b_1) = (1 - x)(x - 1) = -x^2 + 2x - 1$$
$$f(b_2) = (x - 1)(x + 1) = x^2 - 1$$

$$\Phi_C(f(b_1))$$

Coefficient comparison:

$$-x^{2} + 2x - 1 = \lambda_{1} \cdot 1 + \lambda_{2}(1+x) + \lambda_{3}(1+x+x^{2})$$

$$x^{2} : \lambda_{3} = -1$$

$$x^{1} : 2 = \lambda_{2} + \lambda_{3} \Rightarrow \lambda_{2} = 3$$

$$x^{0} : -1 = \lambda_{1} + \lambda_{2} + \lambda_{3} \Rightarrow \lambda_{1} = -3$$

$$\Phi_{C}(f(b_{1})) = \begin{pmatrix} 3\\3\\1 \end{pmatrix}$$

$$\Phi_{C}(f(b_{2})) : x^{2} = 1 = \lambda_{1} \cdot 1 + \lambda_{2}(1+x) + \lambda_{3}(1+x+x^{2})$$

$$x^{2} : \lambda_{3} = 1$$

$$x^{1} : \lambda_{2} + \lambda_{3} = 0 \Rightarrow \lambda_{2} = -1$$

$$x^{0} : -1 = \lambda_{1} + \lambda_{2} + \lambda_{3}$$

$$-1 = \lambda_{1} - 1 + 1$$

$$-1 = \lambda_{1}$$

$$\Phi_C(f(b_2)) = \begin{pmatrix} -1\\-1\\1 \end{pmatrix}$$
$$A = \begin{pmatrix} -3 & -1\\3 & -1\\1 & 1 \end{pmatrix}$$

2 Exercise 3

Exercise 2. Let A_1, A_2, \ldots, A_k be quadratic $n \times n$ matrices over the field \mathbb{K} . Show that the product $A_1 A_2 \ldots A_k$ is invertible if and only if all A_i are invertible.

All A_i are invertible, then $\prod A_i$ is invertible.

A,B invertible, then AB is invertible and $(AB)^{-1}=B^{-1}A^{-1}$. Generalize by induction.

If $\prod A_i$ is invertible, then all A_i are invertible.

Sidenote: We know that rank(A) = n - dim kernel(A).

k = 1 trivial

k=2 A_1A_2 is invertible. Let $C=(A_1A_2)^{-1}$. Then $CA_1A_2=I_n$. Let $x\in \mathrm{kernel}(A_2)\Rightarrow A_2x=0\Rightarrow\underbrace{CA_1}_{I_n}A_2x=CA_10=0$.

 $\operatorname{kernel}(A_2) = 0 \Rightarrow \operatorname{rank}(A_2) = n - 0 : n \Rightarrow A_2$ invertible

$$A_1 = \underbrace{A_1 A_2}_{\text{invertible}} \cdot \underbrace{A_2^{-1}}_{\text{invertible}}$$

 $k \to k+1$ Let $A_1 \dots A_{k+1}$ is invertible $\Rightarrow (A_1, \dots, A_k)A_{k+1}$ is invertible $\stackrel{k=2}{\Longrightarrow} A_1, \dots, A_k$ is invertible, A_{k+1} invertible.

Remark: $A, B \in \mathbb{K}^{n \times n}$. B is inverse of A

$$\Leftrightarrow AB = I = BA \Leftrightarrow AB = I \Leftrightarrow BA = I$$

3 Exercise 2

Exercise 3. Let V be a vector space and $f:V\to \mathbb{V}$ is a nilpotent linear map, hence there exists some $k\in\mathbb{N}$ such that $f^k=0$.

3.1 Part a

Exercise 4. Show that $id_V - f$ is invertible with $(id_V - f)^{-1} = id_V + f + f^2 + \ldots + f^{k-1}$.

Show that: $(id_v - f)^{-1} = \sum_{i=0}^{k-1} f^i$.

$$(\mathrm{id}_V - f) \circ \left(\sum_{i=0}^{k-1} f^i\right) = \mathrm{id}_V \circ \sum_{i=0}^{k-1} f^i - f \circ \sum_{i=0}^{k-1} f^i - \sum_{i=0}^{k-1} f^{i+1} = f^0 + \sum_{i=1}^{k-1} f^i - \sum_{i=1}^{k-1} f^i - f^k = \mathrm{id}_V - 0 = \mathrm{id}_V$$

and $\left(\sum_{i=0}^{k-1} f^i\right) \circ (\mathrm{id}_V - f)$ analogously.

3.2 Part b

Exercise 5. Use part a) to determine the inverse of the matrix

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

3

 \Rightarrow f nilpotent.

4 Exercise 4

4.1 Part a

Exercise 6. Let A be an invertible $n \times n$ matrix over a field \mathbb{K} and u, v are column vectors (hence $n \times 1$ matrices), such that $\sigma 1 + v^t A^{-1} u \neq 0$. Show that $(A + uv^t)$ is invertible and that

$$(A + uv^t)^{-1} = A^{-1} - \frac{1}{\sigma} A^{-1} uv^t A^{-1}$$

4.2 Part b

Exercise 7. Apply this formula to determine the inverse of the matrix

$$A = \begin{pmatrix} 5 & 3 & 0 & 1 \\ 3 & 2 & 0 & 0 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 3 & 5 \end{pmatrix}$$

A is invertible, because it is a block matrix 1 .

¹That's why chose A and S that way

$$A^{-1} = \begin{pmatrix} 2 & -3 & 0 & 0 \\ -3 & 5 & 0 & 0 \\ 0 & 0 & 5 & -3 \\ 0 & 0 & -3 & 2 \end{pmatrix}$$

$$\sigma = 1 + \begin{pmatrix} 0 & 0 & 0 & 1 \end{pmatrix} A^{-1} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = 1 + 0 \neq 0$$

$$\Rightarrow B^{-1} = A^{-1} - A^{-1} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} A^{-1} = \begin{pmatrix} 2 & -3 & 6 & -4 \\ -3 & 5 & -9 & 6 \\ 0 & 0 & 5 & -3 \\ 0 & 0 & -3 & 2 \end{pmatrix}$$