PERIMETER, AREA & VOLUME Rectangle

P = 2l + 2w

A = lw

 $\frac{\text{Square}}{P = 4s}$

 $A = s^2$

 $\frac{\text{Triangle}}{P = add \text{ all sides}}$ $A = \frac{1}{2}bh$

P = add all sides A = bh

 $P = add \ all \ sides$ $A = \frac{1}{2}(b_1 + b_2)h$

 $C = \pi d = 2\pi r$ $A = \pi r^2$

 $S = \theta r \text{ in radians}$ $S = \frac{\pi}{180} \theta r \text{ in degrees}$

Circle Sector Area $A = \frac{\theta}{2}r^2 \text{ in radians}$ $A = \frac{\theta}{360}\pi r^2 \text{ in degrees}$

Rectangular solid

S = 2lw + 2lh + 2whV = lwh

 $\frac{\text{Cube}}{SA = 6s^2}$

 $V = s^3$ <u>Cylinder</u> $SA = 2\pi r^2 + 2\pi r$

 $SA = 2\pi r^2 + 2\pi rh$ $V = \pi r^2 h$

 $SA = \frac{\text{Cone}}{\pi r s + \pi r^2}$ $V = \frac{1}{3}\pi r^2 h$

 $A = \pi r \sqrt{r^2 + h^2}$ Sphere

 $SA = 4\pi r^2$

 $V = \frac{4}{3}\pi r^3$ $A = 4\pi r^2$

Rectangle Pyramid

 $\overline{SA = lw + 2ls + 2ws}$ $V = \frac{1}{3}lwh$

EXPONENT LAWS

 $x^{0} = 1 \text{ if } x \neq 0$ $x^{1} = x$ $x^{-n} = \frac{1}{x^{n}} \text{ if } x \neq 0$ $x^{m}.x^{n} = x^{m+n}$ $(x^{m})^{n} = x^{m.n}$

 $x^m \div x^n = \frac{x^m}{x^n} = x^{m-n} \quad if \, x \neq 0$

 $(xy)^m = x^m y^m$ $\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n} \text{ if } y \neq 0$ $x^{\frac{m}{n}} = \sqrt[n]{x^m} \text{ if } (a \ge 0, m \ge 0, n > 0)$

PROPERTIES OF LOGARITHMS

 $y = log_a x \Leftrightarrow x = a^y$ where a > 0, $a \ne 0$ $a^{log_a M} = M$ $log_a (MN) = log_a M + log_a N$ $log_a \left(\frac{M}{N}\right) = log_a M - log_a N$ $log_a M^x = x log_a M$ $log_a M = \frac{log_b M}{log_b a} = \frac{log M}{log_a} = \frac{ln M}{ln a}$

SPECIAL PRODUCTS

 $x^{2} - y^{2} = (x + y)(x - y)$ $x^{3} \pm y^{3} = (x \pm y)(x^{2} \mp xy + y^{2})$ BINOMIAL THEOREM

 $(x \pm y)^{2} = x^{2} \pm 2xy + y^{2}$ $(x \pm y)^{3} = x^{3} \pm 3x^{2}y + 3xy^{2} \pm y^{3}$ $(x + y)^{n} = x^{n} + nx^{n-1}y$ $+ \frac{n(n-1)}{2}x^{n-2}y^{2} + \dots + \binom{n}{k}x^{n-k}$ $+ \dots + nxy^{n-1} + y^{n}$ where $\binom{n}{k} = \frac{n(n-1)\dots(n-k+1)}{1 \cdot 2 \cdot 3 \cdot \dots \cdot k}$

PASCAL'S TRIANGLE OF NUMBERS

1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
10 45 120 210 252 210 120 45 10 1
1 55 165 330 462 462 330 165 55 11

PYTHAGOREAN THEOREM

 $leg^2 + leg^2 = hypotenuse^2$

DISTANCE FORMULA

 $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

opp

 $sec \theta = \frac{hyp}{adj}$

 $tan\theta = \frac{\sin\theta}{\cos\theta}$ $\cot\theta = \frac{\cos\theta}{\sin\theta}$

 $sin\boldsymbol{\theta} = \frac{1}{csc\boldsymbol{\theta}}$

 $\cos \theta = \frac{1}{\sec \theta}$ $\csc \theta = \frac{1}{\sin \theta}$

 $sec\theta = \frac{1}{\cos\theta}$

 $tan m{ heta} = rac{1}{cot m{ heta}}$

 $\cot \theta = \frac{1}{\tan \theta}$ $\sin^2 \theta + \cos^2 \theta = 1$

 $tan^2\boldsymbol{\theta} + 1 = sec^2\boldsymbol{\theta}$

 $cot^{2}\boldsymbol{\theta} + 1 = csc^{2}\boldsymbol{\theta}$ $sin^{2}\boldsymbol{\theta} = \frac{1 - cos2\boldsymbol{\theta}}{2}$

 $\sin^2 \theta = \frac{2}{\cos^2 \theta}$ $\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$

 $tan^2\boldsymbol{\theta} = \frac{1 - \cos 2\boldsymbol{\theta}}{1 + \cos 2\boldsymbol{\theta}}$

 $sin(\mathbf{2}\boldsymbol{\theta}) = 2sin\boldsymbol{\theta}cos\boldsymbol{\theta}$

 $cos(2\theta) = cos^2\theta - sin^2\theta$ $= 2cos^2\theta - 1 = 1 - 2sin^2\theta$

 $tan(2\theta) = \frac{2tan\theta}{1 - tan^2\theta}$

 $\frac{\sin\alpha}{a} = \frac{\sin\beta}{b} = \frac{\sin\gamma}{c}$

Law of Cosines

 $a^{2} = b^{2} + c^{2} - 2bc\cos\alpha$ $b^{2} = a^{2} + c^{2} - 2ac\cos\beta$ $c^{2} = a^{2} + b^{2} - 2ab\cos\gamma$

Sum and Difference

 $sin(\alpha \pm \beta) = sin\alpha cos\beta \pm cos\alpha sin\beta$ $cos(\alpha \pm \beta) = cos\alpha cos\beta \mp sin\alpha sin\beta$

$$tan(\boldsymbol{\alpha} \pm \boldsymbol{\beta}) = \frac{tan\boldsymbol{\alpha} \pm tan\boldsymbol{\beta}}{1 \mp tan\boldsymbol{\alpha}tan\boldsymbol{\beta}}$$

Sum to Product

 $sin\alpha + sin\beta = 2sin\left(\frac{\alpha + \beta}{2}\right)cos\left(\frac{\alpha - \beta}{2}\right)$ $sin\alpha - sin\beta = 2cos\left(\frac{\alpha + \beta}{2}\right)sin\left(\frac{\alpha - \beta}{2}\right)$ $cos\alpha + cos\beta = 2cos\left(\frac{\alpha + \beta}{2}\right)cos\left(\frac{\alpha - \beta}{2}\right)$ $cos\alpha - cos\beta = -2sin\left(\frac{\alpha + \beta}{2}\right)sin\left(\frac{\alpha - \beta}{2}\right)$

Product to Sum

 $sin\alpha sin\beta = \frac{cos(\alpha - \beta) - cos(\alpha + \beta)}{2}$ $cos\alpha cos\beta = \frac{cos(\alpha - \beta) + cos(\alpha + \beta)}{2}$ $sin\alpha cos\beta = \frac{sin(\alpha + \beta) + sin(\alpha - \beta)}{2}$ $cos\alpha sin\beta = \frac{sin(\alpha + \beta) - sin(\alpha - \beta)}{2}$

GRAPHS OF THE SIX TRIGONOMETRIC FUNCTIONS

y = sinx $Domain: all \ reals$ Range: [-1,1] $Period: 2\pi, odd$

y = cosx $Domain: all \ reals$ Range: [-1,1] $Period: 2\pi, even$

y = tanxDomain: all reals, $x \neq \frac{\pi}{2} + k\pi$ Range: all reals
Period: π . odd

y = cscx **Domain**: all reals, $x \neq n\pi$ **Range**: $(-\infty, -1]$ and $[1, \infty)$ **Period**: 2π , odd

y = secx **Domain**: all reals, $x \neq \frac{\pi}{2} + k\pi$ **Range**: $(-\infty, -1]$ and $[1, \infty)$

Period: 2π , even

 $\dot{y} = cotx$ $Domain: all \ reals, x \neq n\pi$ $Range: all \ reals$ $Period: \pi, odd$

SANTA ANA COLLEGE 1530 West 17th Street, Santa Ana CA 92704

THE MATH CENTER

www.sac.edu/MathCenter

Room L-204 Phone: (714) 564-6678

OPERATIONAL HOURS

Monday thru Thursday 9:00AM - 7:50PM Friday 10:00AM - 12:50PM **Saturday** 12:00PM - 4:00PM

"Who has not been amazed to learn that the function $y = e^x$, like a phoenix rising from its own ashes, is its own derivative?" François le Lionnais

DERIVATIVES

Definition:

Derivative: $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ if this limit exists.

Applications: If y = f(x) then,

- m = f'(a) is the slope of the tangent line to y=f(x) at x=a and the equation of the tangent line at x = a is given by y = f(a) + f'(a)(x - a).
- f'(a) is the instantaneous rate of change of f(x) at x = a.
- If f(x) is the position of an object at time x, then f'(a) is the velocity of the object at x = aCritical points:

x = c is the critical point of f(x) = c provided either **1.** f'(c) = 0 or **2.** f'(c) does not exist. Increasing/Decreasing

- If f'(x) > 0 for all x in an interval I, then f(x) is increasing on the interval I.
- If f'(x) < 0 for all x in an interval I, then f(x) is decreasing on the interval I.
- If f'(x) = 0 for all x in an interval I, then f(x) is constant on the interval I.
- If f''(x) > 0 for all x in an interval I, then f(x) is concave up on the interval I.
- If f''(x) < 0 for all x in an interval I, then f(x) is concave down on the interval I.

x = c is an inflection point of f(x)if the concavity changes at x = c.

COMMON DERIVATIVES

- 1) c' = 0
- 2) [f(x) + g(x)]' = f'(x) + g'(x)
- 3) [f(x)g(x)]' = f(x)g'(x) + f'(x)g(x)
- 4) [f(g(x))]' = f'(g(x))g'(x)
- 5) [cf(x)]' = cf'(x)
- 6) [f(x) g(x)]' = f'(x) g'(x)
- 7) $\left[\frac{f(x)}{g(x)} \right]' = \frac{g(x)f'(x) f(x)g'(x)}{[g(x)]^2}$
- 8) $(x^n)' = nx^{n-1}$
- 9) $[e^x]' = e^x$
- 10) $[a^x]' = a^x ln a$
- 11) $[ln|x|]' = \frac{1}{n}$
- 12) $[\log_a \mathbf{x}]' = \frac{1}{\mathbf{x} \ln a}$

- 13) $(\sin x)' = \cos x$
- 14) $(\cos x)' = -\sin x$
- 15) $(tanx)' = sec^2x$
- $16) (cot x)' = -csc^2 x$
- 17) (secx)' = secxtanx
- 18) (cscx)' = -cscxcotx
- 19) $(\sin^{-1} x)' = \frac{1}{\sqrt{1 x^2}}$
- 20) $(\cos^{-1} x)' = -\frac{1}{\sqrt{1-x^2}}$ 32) $(\cosh^{-1} x)' = \frac{1}{\sqrt{x^2-1}}$
- 21) $(tan^{-1}x)' = \frac{1}{1+x^2}$
- 22) $(\cot^{-1} x)' = -\frac{1}{1+x^2}$ 34) $(\coth^{-1} x)' = \frac{1}{1-x^2}$

- 25) $(\sinh x)' = \cosh x$
- 26) (coshx)' = sinhx
- 27) $(tanhx)' = sech^2x$
- 28) $(coth\mathbf{x})' = -csch^2\mathbf{x}$
- 29) (sechx)' = -sechxtanhx
- 30) (cscx)' = -cschxcothx
- 31) $(\sinh^{-1} x)' = \frac{1}{\sqrt{1+x^2}}$
- 33) $(tanh^{-1}x)' = \frac{1}{1-x^2}$
- 23) $(\sec^{-1} x)' = \frac{1}{|x|\sqrt{x^2-1}}$ 35) $(\sec h^{-1} x)' = -\frac{1}{|x|\sqrt{1-x^2}}$
- 24) $(csc^{-1}x)' = -\frac{1}{|x|\sqrt{x^2-1}}$ 36) $(csch^{-1}x)' = -\frac{1}{|x|\sqrt{x^2+1}}$

INTEGRATION

<u>Definition:</u> Suppose f(x) is continuous on [a,b]. Divide [a,b] into n subintervals of width Δx and choose x_i^* from each interval. Then

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{\infty} f(x_{i}^{*}) \Delta x \quad \text{where } \Delta x = \frac{(b-a)}{n}$$

<u>Fundamental Theorem of Calculus</u>: Suppose f(x) is continuous on [a, b], then

Part I: $g(x) = \int_a^x f(t)dt$ is also continuous on [a,b] and $g'(x) = \frac{d}{dx} \int_a^x f(t)dt = f(x)$ where $a \le x \le b$.

Part II: $\frac{d}{dx} \int_a^b f(x) dx = F(b) - F(a)$ where F(x) is any anti-derivative of f(x), i.e, a function such that F' = f. Applications:

Area: $A = \int_a^b f(x) dx$

Area between Curves:

- y = f(x); $A = \int_a^b (upper lower funtion) dx$
- x = f(y); $A = \int_a^b (right left funtion) dy$

<u>Volumes:</u> $V = \int_a^b Area(x) dx$

Volume of Revolution

Rings $V = \int_a^b 2\pi (outer \, r^2 - inner \, r^2)$

Cylinders $V = \int_a^b circumference \cdot height \cdot thickness$

Work: If a force of F(x) moves an object in $a \le x \le b$, then the work done is $W = \int_a^b F(x) dx$

Average Function Value: The average value of f(x) on $a \le x \le b$ is $f_{average} = \frac{1}{b-a} \int_a^b f(x) dx$

INTEGRALS

- 1) $\int u^n du = \frac{u^{n+1}}{n+1} + c, \ n \neq -1$
- 2) $\int \frac{du}{dt} = \ln |\mathbf{u}| + c$
- 3) $\int e^u du = e^u + c$
- 4) $\int a^u du = \frac{a^u}{\ln a} + c$
- 5) $\int ln\mathbf{u} du = uln\mathbf{u} u + c$
- 6) $\int \frac{1}{u \ln u} du = \ln |\ln u| + c$
- 7) $\int \sin u \, du = -\cos u + c$
- 8) $\int \cos u \, du = \sin u + c$
- 9) $\int \tan \mathbf{u} \, d\mathbf{u} = \ln|\sec \mathbf{u}| + c$
- 10) $\int \cot \mathbf{u} \ d\mathbf{u} = \ln|\sin \mathbf{u}| + c$
- 11) $\int \sec \mathbf{u} \ d\mathbf{u} = \ln|\sec \mathbf{u} + \tan \mathbf{u}| + c$
- 12) $\int csc\mathbf{u} \ du = \ln|csc\mathbf{u} cot\mathbf{u}| + c$
- 13) $\int sec^2 \mathbf{u} \, du = tan \mathbf{u} + c$
- 14) $\int csc^2 \mathbf{u} \ du = -cot \mathbf{u} + c$ 15) $\int sec\mathbf{u} \tan \mathbf{u} du = sec\mathbf{u} + c$
- 16) $\int csc\mathbf{u} \cot \mathbf{u} du = -csc\mathbf{u} + c$
- 17) $\int \frac{du}{\sqrt{a^2 u^2}} = \sin^{-1} \frac{u}{a} + c, \ a > 0$

- 18) $\int \frac{du}{a^2 + a^2} = \frac{1}{a} tan^{-1} \frac{u}{a} + c$
- 19) $\int \frac{du}{u\sqrt{u^2-a^2}} = \frac{1}{a} sec^{-1} \frac{u}{a} + c$
- $20) \int \frac{du}{a^2 u^2} = \frac{1}{2a} \ln \left| \frac{u + a}{u a} \right| + c$
- 21) $\int \frac{du}{u^2 a^2} = \frac{1}{2a} \ln \left| \frac{u a}{u + a} \right| + c$
- 22) $\int \sin^{-1} \mathbf{u} \, du = u \sin^{-1} \mathbf{u} + \sqrt{1 u^2 + c}$
- 23) $\int \cos^{-1} \mathbf{u} \ du = u \cos^{-1} \mathbf{u} + \sqrt{1 u^2 + c}$
- 24) $\int tan^{-1} \mathbf{u} du = u tan^{-1} \mathbf{u} \frac{1}{2} ln(1 + u^2) + c$
- 25) $\int \sinh \mathbf{u} \, d\mathbf{u} = \cosh \mathbf{u} + c$
- 26) $\int \cosh \mathbf{u} \, d\mathbf{u} = \sinh \mathbf{u} + c$
- 27) $\int tanh\mathbf{u} du = ln(cosh\mathbf{u}) + c$
- 28) $\int coth \mathbf{u} \ du = \ln|\sinh \mathbf{u}| + c$
- 29) $\int \operatorname{sech} \boldsymbol{u} \, du = \tan^{-1} |\sinh \boldsymbol{u}| + c$
- 30) $\int csch \boldsymbol{u} \ du = \ln \left| tanh \frac{1}{2} \boldsymbol{u} \right| + c$
- 31) $\int \operatorname{sech}^2 \mathbf{u} \, d\mathbf{u} = \tanh \mathbf{u} + c$
- 32) $\int csch^2 \mathbf{u} \ du = -coth \mathbf{u} + c$
- 33) $\int sech \mathbf{u} \tanh \mathbf{u} du = -sech \mathbf{u} + c$
- 34) $\int csch \mathbf{u} coth \mathbf{u} du = -csch \mathbf{u} + c$
- 35) $\int u dv = uv \int v du$