MARTIN MARIETTA AEROSPACE

A) S.

DENVER DIVISION
POST OFFICE BOX 179
DENVER, COLORADO 80201
TELEPHONE (303) 979-7000

(18) SAMSO-17R-78-135 June 14, 1977

Refer to:

77-Y-30765

To:

General Electric Company

Valley Forge Space Technology Center

P. O. Box 8555

Philadelphia, Pennsylvania 19101

Attn:

Mr. A. Josloff (w/2 enclosures)

To:

Hq., Space and Missile Systems Organization

P. O. Box 92960

Worldway Postal Center

Los Angeles, California 90009

Attn:

Major J. Steele/SKT

Major P. Branch/LVXTI (w/enclosures)

Major W. Anders/LVXTI

Capt. D. Lynn/SKD (w/enclosures)

To:

The Aerospace Corporation

P. O. Box 92957

Los Angeles, California 90009

Attn:

Mr. G. Fox (w/2 enclosures)

Bldg. 100 - Room 2365

Mr. J. Anderson (w/enclosures)

Bldg. A2 Room 2083

Subject:

Contract F04701-76-C-0181 Comparison of Methodologies for

Calculation of Loads Tranformations For Payloads With Redundant

Interfaces .

Reference:

MCR-76-598, "Technical Operative Report (TOR), Stage II
Depletion Shutdown Analysis, General Electric DSCS II/III,"

February 1977.

Attachments:

A) Comparison of Loads Methodologies

B) Loads Transformation Development Using Unit Load Solution

403 225

LB

FILE C

Refer to: 77-Y-30765
Page Two

The upon

- 1. The enclosed attachments are submitted for your information and use.

 Attachment A details the analytical development and comparative results of a revised loads transformation development methodology. Attachment B details use of a unit load solution in conjunction with the new technology.
- 2. This information was previously provided informally to G.E. and Aerospace. MMC understands that G.E. is proceeding with the revised methodology to develop load transformations for the design loads cycle for DSCS II/III and DSCS III/III.
- 3. Any questions should be directed to Mr. Paul Jones, mail E-0971, telephone (303) 979-7000, extension 4250.

Very truly yours,

MARTIN MARIETTA CORPORATION

.G. E. Reed

Project Engineer

Titan IIIC Launch Vehicles

SAMS0-TR-78-135

ATTACHMENT A

COMPARISON OF LOADS METHODOLOGIES

I. SUMMARY

Payloads that fly on the Titan IIIC and on the T34D/IUS are constrained redundantly simple hypothetical problem and the other on the more complex DSCS III loads model from the GE DSCS II, III proposal study. It was the conclusion of this study that the present loads calculation method, which is dependent on upper body configuration, and effects of the fairing and of the lower stages feed through the interface and induce Two sample analyses were performed, one on a at up to eight bolt points on the interface ring. Due to this redundancy, inertial additional loading in the payload. This letter documents comparisons between the new method may adequately replace the old. the proposed new method, which is not.

II. PRESENT METHOD

Since the modal acceleration approach is highly desirable to minimize convergence problems, let us start with the discrete displacement loads transformation.

$$\left\{ ML \right\} = \left[\top \right] \left\{ \begin{matrix} X_{M} \\ X_{I} \end{matrix} \right\}$$

Where

are non-interface payload displacements

×

 $X_{\rm I}$ are interface payload displacements (maximum of 6 dof at 8 points = 48

新年 2 元 元 元 元 元 元 元 元 元 元 元 元 元 元 元 元 元 元	AUSESSITY & White technology	STATE CONT. SOUTH CONT. CONT. SOUTH CONT.	97 915THEUTION/AVAILABILITY COC'S. 3191. AVAIL RID, or SPECIAL	*
--	------------------------------	---	--	---

Then, derive $\left\{ \mathsf{x}
ight\}$ in terms of applied and inertia loading

$$\left\{ \begin{array}{c} X_{N} \\ X_{I} \end{array} \right\} = \left[\begin{array}{c|c} K_{NN} & K_{NI} \\ \hline K_{IN} & K_{II} + \overline{K_{TS}} \end{array} \right] \left\{ \begin{array}{c} P_{N} \\ P_{I} \end{array} \right\}$$

(II.2)

X

Where

is the transtage stiffness reduced to its interface coordinates

However, the loading may be expressed in terms of mixed coordinate vector cantilevered modal acceleration and discrete interface acceleration -

Where

 $\phi_{\sf N}$ are normal cantilevered modes of the payload

(II.3)

O are construction

are constraint modes of the payload

Expand equation II.2

$$\left\{ML\right\} = -\left[T\right] \left[\frac{K_{NN}}{K_{IN}} \left| \frac{K_{NI}}{K_{II} + \overline{K}_{TS}} \right| \left| M_{N} M_{I} \right| \left| \frac{\phi_{N}}{M_{I}} \left| \frac{\phi_{C}}{K_{I}} \right| \left| \frac{\ddot{\beta}_{P}}{\ddot{\chi}_{I}} \right| \right\}$$

and express in shorthand as

$$\left\{ ML \right\} = \left[LTMQ \mid LTMX \right] \left\{ \frac{\ddot{a}}{\dot{x}} \right\}$$

Equation II.5 can be further expanded using the relationships resulting from modal coupling,

$$\left\{ \frac{\ddot{\alpha}}{\ddot{x}} \right\} = \left[\frac{\Phi_{P}}{\phi_{I}} \right] \left\{ \frac{\ddot{x}}{\ddot{x}} \right\}$$

to yield the present modal loads transformation:
$$\left\{ ML \right\} = \left[LTMQ \left(LTMX \right) \left[\overrightarrow{\Phi}_{\mathbf{I}} \right] \left\{ \overrightarrow{\xi} \right\} \right\}$$
supplied by payload contractor dependent on interface stiffness

PROPOSED METHOD III.

In order to eliminate the dependency of LTM Development on interface stiffness (transtage, IUS, fairing, etc.), redefine the displacement vector of equation II.2 as follows:

$$\begin{cases} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{4} \\ x_{5} \\ x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_$$

interface, i.e. due to applied and inertial loading on payload Deflection relative to fixed

Deflection due to interface motion, i.e. applied and inertial loading due to fairing, transtage, P/L interface, etc.

(1111.1)

The loads equation (II.1) can be rewritten with equations III.1 and II.3 as

The loads equation (II.1) can be rewritten with equations III.1 and II.3 as -
$$\left\{ M_{L} \right\} = - \left[\begin{array}{c|c} T \end{array} \right] \left[\begin{array}{c|c} K_{NN} \end{array} \right] \left[\begin{array}{c|c} M_{N} \end{array} \right] \left[\begin{array}{c|c} \phi_{N} & \phi_{c} \end{array} \right] \left\{ \begin{array}{c|c} \ddot{\beta} P \\ \ddot{\gamma} \end{array} \right\}$$

$$+ \left[\begin{array}{c|c} T \end{array} \right] \left[\begin{array}{c|c} \phi_{c} \end{array} \right] \left\{ \times_{I} \right\}$$

(111.2)

Equation III.2 can be expressed in shorthand as -

$$\left\{ML\right\} = \left[LTMAQ \middle| LTMAX \middle] \left\{ \frac{\ddot{g}}{\dot{x}_{I}} \right\} + \left[LTMDX \middle] \left\{ x_{I} \right\} \right\}$$
The residue of the state of the stat

$$\begin{bmatrix} LTMAQ \end{bmatrix} = -\begin{bmatrix} T \end{bmatrix} \begin{bmatrix} K_{uN}^{-1} & M_N & \phi_N \end{bmatrix}$$

$$\begin{bmatrix} LTMAX \end{bmatrix} = -\begin{bmatrix} T \end{bmatrix} \begin{bmatrix} K_{uN}^{-1} & M_N & \phi_C \end{bmatrix}$$

$$\begin{bmatrix} LTMDX \end{bmatrix} = + \begin{bmatrix} T \end{bmatrix} \begin{bmatrix} \phi \\ I \end{bmatrix}$$

From the modal coupling analysis, the acceleration vector can be transformed to coupled modal acceleration.

$$\left\{ \begin{array}{c} \ddot{\vec{a}}_{P} \\ \ddot{\vec{x}}_{I} \\ \ddot{\vec{x}}_{I} \end{array} \right\} = \left[\begin{array}{c} \vec{\Phi}_{P} \\ \vec{\phi}_{I} \end{array} \right] \left\{ \ddot{\vec{s}} \right\}$$

analysis, the interface displacement vector can be transformed to the coupled modal acceleration domain. Note that the vector X_I has born a rigid and an elastic component $(X_I = X_I + X_I)$ but the effect on the loads due to the From both the transtage uncoupled vibration analysis and the modal coupling

rigid component is zero for a iree-free system.

$$\left\{x_{I}\right\} = \left[\operatorname{SeL}\right] \left[\mathbb{E}^{*}\right] \left\{\left\{\vec{F}\right\}\right\} + \left[\operatorname{ILT}_{r_{S}}\right] \left\{\vec{\xi}^{*}\right\}\right)$$

(III.8)

Where

is a selector matrix to pick up interface dof (*note the coordinate system) 띯

with applicable stiffness loading (PL, fairing, etc.) is the constrained transtage flexibility matrix

" Ш

is an inertial loads transformation for the wass loaded transtage (form of - $[M][\phi]$). ILITE

Using these relationships, the proposed modal loads transformation takes the form of:

IV. EXAMPLE PROBLEMS

The statement

IV. 1 SIMPLE TRUSS

ror this problem, the following example structure was used:

Typical

Both bodies are pinned joint (k = 40%/in). Mass at joints 7, 8, Body (B) represents a payload while Body (A) represents transtage, IUS, etc. (B) ties to (A) at points 10/13, 11/14, 12/15. Both bodies are pinned joint structures, 2 dof at each joint with 3 rigid body modes for the composite /in, the rest 0.01 #sec/in. The ramp forcing function below is applied in x-direction, joint 2, Truss A. All members are axial bars 10, 11 is 0.10 #sec structure.

<u>Solution</u> - The mass and stiffness matrices of (A) and (B) were tied together discretely to give the free-free equations of motion. All modes of the A/B system were kept in generating the coefficients. Member load time histories were then solved for Exact Solution

$$\{L(t)\} = \left[K_{B}\right]\left[\left.\psi_{B}\right]\left[E_{AB}\right]\left(\left\{F(t)\right\} - \left[M_{AB}\right]\left[\phi_{AB}\right]\left\{\ddot{\xi}(t)\right\}\right)$$

and tabulated in Table 1 as a basis of comparison.

ramp transient, yielding time histories of modal and discrete acceleration. Loads were calculated according to Equation II.6. Old Method - Bodies (A) and (B) were inertially modally coupled using all component modes; the coupled system was excited by the

$$\left\{ L(t) \right\} = \left[\frac{1}{LTMQ} \left| \frac{1}{LTMX} \right| \left[\frac{\vec{\Phi}}{\vec{\Phi}} \right] \left\{ \vec{\xi}(t) \right\} \right]$$

Table 1 tabulates results using 30 and 42 (all) modes.

New Method - Everything same as old method except that loads were calculated according to Equation III.9:

$$\left\{ L(t) \right\} = \left(\left[\underbrace{\text{LTMAQ}}_{\text{LTMAX}} \right] \left[\frac{\Phi}{\phi_{\text{L}}} \right] + \left[\underbrace{\text{LTMDX}}_{\text{LTZ}} \right] \left[\underbrace{\text{E*}}_{\text{LT}} \right] \left[\underbrace{\text{ILT}}_{\text{LS}} \right] \right) \left\{ \underbrace{\tilde{\mathbf{\xi}}}_{\text{(t)}} \right\}$$

Table 1 tabulates results using 30 and 42 (all) modes.

IV.2 DSCS III

by a fuel-leading a pletion, B-8, from the set of measured flight data transients commonly used in our analyses. Three distinct types of loads are tabulated in cluster, a transtage and a burned out Stage II booster. The system was excited Basically, the coupled configuration consisted of a DSCS II/DSCS III satellite For this much more complex case, use was made of the modes, frequency and transient response data of the GE DSCS II/III loads report of Reference 1.

1. One-g - The loads resulting from the uniform application of the rigid body modal equivalent of a unit g-level axial acceleration.

- The loads reported in Reference 1, consistent with Equation II.6.
- 3. New Method The loads according to Equation III.9.

Mention should be made here of two abbreviations used in Table 2. The expression "W Tanks" indicates standard Equation III.9. The expression "W/O Tanks" points to an analytical device in which the large inertial effects or the transtage tanks on the payload loads are deleted, i.e. the loads are calculated by a modified Equation III.9:

$$\left\{ L(t) \right\} = \left(\left[\text{LTMAQ}_{|\text{LTMAX}} \right] \left[\frac{\vec{\Phi}_{P}}{\phi_{I}} \right] + \left[\text{LTMDX} \right] \left[\text{SEL} \right] \left[\text{E*} \right] \left[\frac{\text{LLT}_{|\text{LTMAX}}}{|\text{LLT}_{|\text{LTMAX}}} \right] \left\{ \vec{\Xi}(t) \right\}$$

V. CONCLUSIONS

produce different answers. It should be noted that these differences are not attributable to the use of modal coordinates since the differences appear in the emphasize differences between the two methods since the model was set up to con-From the simple truss results, it is apparent that the old and new methods The results indicate that the feedback "all modes" case. It was expected that this example problem would in fact from such assymetric mass is a shortcoming of the old method. tain large mass assymetry in Body (A).

feedback differential. The transtage model used here has large assymetric masses in the form of propellant tanks which have rigid and elastic modes with the tanks moving both in and out of phase with each other. The elimination of the inertial duce different answers. At load stations away from the interface, the disagree-From the DSCS III loads results, it is also apparent that the methods profeedback of these tanks in the "W/O TKS" case produced results much closer to ment is slight. At or near the interface, the disagreement increases due to those of the old method, further confirming the above conclusion. In general, the following observations may be made:

- The LT1/LT2 approach (New Method) produces technically correct answers.
- LT1 and LT2 may be formed by the payload contractor without necessarily knowing what type of structure the payload will interface with. 2
 - Due to the final form of LT1 and LT2, it does not matter whether or not there are more structures beyond the interface structure (i.e. other booster stages, fairing).
- The form of LT1 is quite similar to the old method transformation; only the "E" used in its formation is different (and more convenient for the payload contractor to form). , t
- The inclusion of LT2 into the loads computations assures us that additional included; i.e. LT2 is a feedback term which potentially produces additional loads, due to applied or inertial loads on the lower structure, will be loads which the old method does not have the capability to include. 5.

TABLE 1

LARGEST VALUE - MEMBER LOADS (LBS)

30 MODES	OLDTRAN	.1100	0725	1900	.0854	0698	1170	0520	0647	1248	.0289	0235	0425	0522	.0445	0457	.0344	0280	0577	0499	0540	.0763	.0532	.0589	
30 N	<u>LT1/LT2</u>	0980	0581	1980	.0812	0664	1238	0561	0647	1265	.0824	0674	0632	0722	. 0477	0491	. 0359	0298	0677	0535	0557	9060*	.0641	.0614	
MODES	OLDTRAN	.1105	0747	1757	.0852	0722	1160	0539	0667	1213	.0278	0227	0464	0569	.0430	0445	.0322	0293	0577	0544	0585	7920.	.0542	.0564	
ALL (42) MODES	LT1/LT2	9560.	0597	1919	.0811	0690	1232	0581	0667	-,1229	.0825	0666	0616	0766	.0457	0506	.0337	0314	0656	0562	0602	6560.	.0650	6090.	
!	SOLUTION	9560.	0597	1919	.0811	0690	1232	0581	0667	1229	.0825	0666	0616	0766	.0457	0506	.0337	0314	0656	0562	0602	6560.	.0650	6090.	
•	MEMB ER NO.	, ,	*	—— ზ	7	'n	9	7	&	6	* 10	* 11	12	13	14	15	16	17	* 18	19	20	* 21	22	23	

MEMBERS TOUCHING INTERFACE JOINTS

TABLE 2
COMPARE DSCS III LOADS METHODS
FORCING FUNCTION FB-8

	•		
	W/O TKS NEW/OLD PCT	100 101 101 100 100 100 100 100 100 100	
	W/TANKS NEW/OLD PCT	100 100 100 100 100 100 100 100 100 100	
	OLD MIN VALUE	-1375.86 -9.90 -73.64 -10.04 -188.19 -303.85 -1357.88 -20.25 -20.	
0 10	W/O TKS NEW/OLD PCT	101 1000 1003 1003 1004 1000 1000 1000 1	
S FUNCTION FB.	W/TANKS NEW/OLD PCT	101 100 88 103 101 101 100 100 100 99 99 99 100 100 10	
FORCENG	OLD MAX VALUE	9.35 454.09 768.31 3.47 55.72 6.87 11.20 29.21 577.82 9.95 62.12 31.45 59.72 141.62 31.45 59.72 141.62 31.45 59.72 141.62 31.45 59.72 141.62 31.45 59.72 141.62 31.45 59.72 141.62 31.45 59.72 141.62 31.45 59.72 141.62 31.45 59.72 141.62 31.45 59.72 141.62 31.45 59.72 10.49 1381.02 64.47 2.19 2.19 2.29.28 13.59.08	
	W/O TKS NEW/OLD PCT	100 100 100 100 100 100 100 100 100 100	
	W/TANKS NEW/OLD PCT	100 100 100 100 100 100 100 100 100 100	
	OLD 1G(X) <u>VALUE</u>	-336.24 118.08 137.60 -1.32 -33.01 -80.21 -350.24 -119.32 137.78 137.78 -26.38 -26.38 -26.38 -112.61 -136.54 -138.84 -138.84 -138.84 -138.84 -15.61 -15.01 -80.29 337.12 10.50 -179.82 -179.82 -179.82 -179.82	
		D3L1 D3L2 D3L2 D3L3 D3L4 D3L4 D3L5 D3L10 D3L11 D3L11 D3L11 D3L12 D3L12 D3L21 D3L21 D3L21 D3L22 D3L22 D3L22 D3L23 D3L23 D3L24 D3L26 D3L27 D3L27 D3L28 D3L28 D3L28 D3L28 D3L29 D3L29 D3L29 D3L29 D3L29 D3L29 D3L29 D3L29 D3L29 D3L29 D3L29 D3L29 D3L29 D3L29 D3L29 D3L20 D3L20 D3L20 D3L20 D3L21 D3L20 D3L21 D3L20 D3L21 D3L21 D3L21 D3L20 D3L21 D3L21 D3L21 D3L21 D3L21 D3L21 D3L21 D3L21 D3L21 D3L22 D3L23 D	

W/O TKS NEW/OLD PCT	100 100 103 100 96 98 102	100 101 100 111 102 103	104 99 101 101 97 98 103 101 101 100 98	100 100 100
W/TANKS NEW/OLD PCT	98 100 62 100 94 121 120	105 98 101 83 101 103 107	101 101 102 102 97 117 101 103 98 97 96 100 98	106 100 100
OLD MIN VALUE	-869.99 -290.21 -50.26 -293.07 -2.52 -2.64 -55.57	-6.23 -690.37 -280.52 -53.06 -28.00 -30.59 -31.10	-25.00 -22.13 -40.22 -16.65 -24.90 -9.41 -15.65 -251.39 -293.95 -3.16 -3.16 -3.16 -40.27 -95.27	-336.18 -260.30 -3511.81
W/O TKS NEW/OLD PCT	93 101 101 100 100 100 100	100 100 102 99 100 105	99 104 103 103 100 101 104 114 100 96 97 100 96	116 100 113
W/TANKS NEW/OLD PCT	107 97 105 100 100 99 98	98 105 100 100 100 111 98	101 101 101 100 96 97 41 100 121 116 100 131 96	57 100 109
OL.) MAX VALUE	5.83 11.30 378.72 10.82 277.56 46.52 633.81 272.92	20.72 95.58 29.59 349.00 284.99 1249.08 14.01 787.92	53.45 10.35 10.35 2.42 1310.46 32.38 678.82 3.55 29.38 250.05 2.09 53.49 258.97 2.94 548.44 5.55	54.56 5.69 -9.51
W/O TKS NEW/OLD PCT	101 100 98 100 100 101 101 100	101 100 97 100 100 99	97 97 100 100 100 100 100 100 100 100 100 10	100
W/TANKS NEW/OLD PCT	97 101 111 100 101 97 96 101	95 101 112 100 100 9 2 96	102 102 101 101 100 86 95 101 101 95 95 95 95	100
OLD 1G (X) VALUE	-225.47 -66.34 78.54 -67.55 68.06 11.20 148.25 63.56	-137.64 -62.11 73.99 63.91 333.66 -6.16	8.36 -3.46 -3.93 344.62 5.39 183.03 -63.05 -75.15 64.72 64.75 -8.70 -104.99 64.75 -8.60 102.54 -65.63	-939.48
	D3L36 D3L37 D3L38 D3L39 D3L41 D3L41 D3L42 D3L42	D3145 D3146 D3147 D3148 D3149 D3151 D3151	03153 03153 03154 03155 03156 03156 03160 03161 03164 03165 03168 03168 03168	D3L72 D3L73

			•									1	₽	8				Tool T	<u> </u>	‡				ŧ	8	32 T				3	į	K			ú	¥ \$
W/O TKS NEW/OLD PCT	91	100	77	83	100	116	85	100	109	114	101					86	115	102	114	42	242	96	95	103	103	96	66	101	97				112	102	109	96
W/TANKS NEW/OLD PCT	170	100	187	170	100	40	198	100	32	13	28	39	108	101	83	108	163	92	159	122	454	100	146	92	92	96	95	94	81	80	82	95	112	107	7.0	110
OLD MIN VALUE	-212.67	-3085.18	-164.25	-158.72	-2954.91	-290.37	-149.02	-3336.62	-211.59	-161.77	-11.58	-7.83	-852.40	-1139.13	-10.47	-1220.07	-11.91	-1042.42	06.9-	92.9	3.69	-1196.28	-12.13	-970.03	-790.08	-1052.05	-1430.68	-1107.49	-44.79	-27.47	-24.25	-38.54	-1234.28	-1090.97	-37.32	-816.24
W/O TKS NEW/OLD PCT	120	96	109	108	103	80	107	73	98	94	97	86	105	122	89	563	102	117	103	91	68	88	102	95	92	96	76	86	96	%	37	107	76	93	95	113
W/TANKS NEW/OLD PCT	41	96	52	54	104	216	33	71	163	176	109	109	35	-20	۵, ۲ -	1139	92	168	91	26	66	121	92	141	172	110	100	109	108	108	109	110	96	88	111	73
OLD MAX <u>VALUE</u>	197.29	54.50	312.82	269.86	74.03	153.04	238.92	8.44	215.12	210.35	1628.72	989.70	6.27	4.26	1307.25	-1.14	1883.09	90.9	841.92	1175.91	1629.90	-6.25	1750.28	7.48	3.64	28.08	48.61	27.58	1454.21	893.62	764.66	1045.80	51.76	37.84	1327.46	22.69
W/O TKS NEW/OLD PCT	185	100	222	1154	100	226	491	100	183	671	6	97	97	92	91	86	102	103	103	92	06	98	104	104	104	97	88	104	96	96	86	109	118	103	95	76
W/TANKS NEW/OLD PCT	-395	101	-389	-5198	100	-428	-2760	101	-354	-4403	115	115	115	110	105	118	98	87	7 8	102	107	105	85	98	85	80	91	92	118	119	119	115	117	111	118	117
OLD 1G(X) VALUE	15.43	-883.00	17.40	1.35	-842.16	-16.62	2.69	-878.41	-16.22	-1.78	431.67	265.22	-225.53	-296.92	338.51	-316.95	507.81	-280.65	227.79	308.14	424.32	-312.11	478.11	-265.38	-213.76	-304.89	-413.91	-317.02	404.88	247.97	212.40	293.33	-337.36	-315.21	386.14	-237.52
	D3L74	D3L76	D3L77	D3L78	D3L79	D3L80	D3L81	D3L82	D3L83	D3L84	D3L85	D3L86	D3L87	D3L88	L3L89	D3L90	D3L91	D3L92	D3L93	D3L94	D3L95	p3L96	D3L97	D3L98	D3L99	D3L100	D3L101	D3L102	D3L103	D3L104	D3L105	D3L106	D3L107	D3L108	D3L109	D3L110

. .

										225)	(EM	P.E.	1455		6/9				Action to the second	
								-															
		8	24F	•		į	ج ا	<u>7</u>				į	\$	R				į	$\bar{\S}$	13F			
	W/O TKS NEW/OLD PCT	105			,				117	66	132	139	41	103	-63	-183	104	46	46	93	109	65	
	W/TANKS NEW/OLD PCT	71	126	100	118	118	88	126	115	332	-395	-102	304	118	-332	-7	89	109	110	15	46	-93	
	OLD MIN VALUE	-20.86	-1048.38	-37.91	-48.86	-27.69	-733.67	-36.15	-1308.75	-43.12	2.40	2.58	-2.78	-1166.65	-5.39	4.83	-22.25	-968.35	-826.98	-12.20	-20.30	-6.67	
	W/O TKS NEW/OLD PCT	97	79	114	103	102	102	86	115	78	102	101	101	57	113	06	86	107	106	102	86	109	
	W/TANKS NEW/OLD PCT	112	63 63	122	91	88	118	& ; %	116	95	35	92	88	297	132	103	110	74	89	122	121	126	
	OLD MAX VALUE	694.68	56.90	980.38	1627.45	906.02	21.73	1010.36	49.06	1111.92	1790,45	999.14	801.52	-3.61	1557.42	1280.51	1572.53	14.47	11.89	1100.33	1313.37	1174.90	
	W/O TKS NEW/OLD PCT	97	132	114	104	103	103	86	118	8.1	103	101	101	102	113	85	97	96	97	101	97	108	
	W/TANKS NEW/OLD PCT	119	131	127	84	81	81	9/	114	67	86	87	81	125	145	107	117	116	118	135	136	137	
The second secon	CLD 1G (X) VALUE	202.26	-308.22	284.79	456.02	254.13	-204.94	289.95	-378.74	318.18	474.83	264.56	213.37	-300,34	395.56	329.02	403.58	-248.34	-211.59	277.75	325.69	296.80	
		D3L111	D3L112	D3L114	D3L115	D3L116	D3L117	D3L118	D3L119	D3L120	D3L121	D3L122	D3L123	D3L124	D3L125	D3L126	D3L127	D3L128	D3L129	D3L130	D3L131	D3I.132	

ATTACHMENT B

LOADS TRANSFORMATION DEVELOPMENT

USING UNIT LOAD SOLUTION

UNIT LOAD SOLUTION

In developing loads transformations with the new method of Attachment A, a unit load solution is offered below which avoids large order matrix manipulation. Start with the discrete displacement loads transformation:

$$\left\{ ML \right\} = \left[T \right] \left\{ \begin{array}{c} Xu \\ XI \end{array} \right\}$$

T loads transformation

X non-interface payload displacements

XI interface displacements

interface displacements

Then derive $\left\{X\right\}$ in terms of applied and inertial loading

 $\begin{bmatrix} x_{xx} \\ o \\ o \end{bmatrix} \begin{cases} P_3 \\ + \end{bmatrix} + \begin{bmatrix} \phi_c \\ 1 \end{bmatrix} \begin{cases} x_x \\ \end{bmatrix}$

Where

influence coefficients with interface grounded

applied or inertial loads T3 a 6

constraint modes relating payload to interface motion

The member loads equation becomes

$$\left\{ ML \right\} = \left[\begin{array}{c|c} \top \end{array} \right] \left[\begin{array}{c|c} K_{MW} & O \\ \hline O & O \end{array} \right] \left\{ \begin{array}{c|c} P_s \end{array} \right\} + \left[\begin{array}{c|c} \top \end{array} \right] \left[\begin{array}{c|c} A_s \end{array} \right] \left\{ X_J \right\} \\ \hline \end{array}$$

$$\begin{array}{c|c} \operatorname{can} \text{ be formed by application of unit } 1\# \\ \text{loads to payload with fixed interface and calculating payload inertial loads. Unit loads are applied one at a time to each payload of the first of the first$$

Then final LT1 can be formed as

payload dof to build total matrix.

The other side of the LLA equation represents member loads due to interface displacement,

Where $\phi_c = -k_{22} - k_{21}$ and is usually formed by making this matrix product. However, ϕ_c can also be formed by "unit load" solution applied to intarface dof.

dois fixed. Displacements of the payload and internal loads are computed. Normalizir these loads and displacements to a unit 1" interface displacement forms one column in Unit loads are applied to one dof of the interface at a time with all other interface

Continuing this procedure completes the required matrices without performing the inversion of $K_{
m NN}$

The reduced stiffness and mass matrices can be formed as

$$\begin{bmatrix} K_{\rm I} \\ M_{\rm I} \end{bmatrix} = \begin{bmatrix} K_{\rm IN} \phi_{\rm c} + K_{\rm II} \\ \phi_{\rm c} \end{bmatrix} \begin{bmatrix} \phi_{\rm c} \\ M_{\rm N} \end{bmatrix} \begin{bmatrix} \phi_{\rm c} \\ I \end{bmatrix}$$

$$= \begin{bmatrix} \phi_{\rm c} \\ I \end{bmatrix} \begin{bmatrix} M_{\rm N} \end{bmatrix} \begin{bmatrix} \phi_{\rm c} \\ I \end{bmatrix} + \begin{bmatrix} M_{\rm II} \end{bmatrix} \quad (if M_{\rm N} is duagral)$$

ò

SUMMARY

Unit load solutions can be used to form the "Revised" Methodology loads transformation portions:

$$\begin{bmatrix} \top \end{bmatrix} \begin{bmatrix} K_{uu} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -M \end{bmatrix} \begin{bmatrix} \phi_u & \phi_c \\ 0 & 1 \end{bmatrix}$$

Without inversion of the large matrix $K_{\rm NN}$ and with the additional advantage of obtaining ϕ_c , $M_{\rm I}$, ζ_i . In other words, unit load solution replaces the collapsing procedure.