MATH3029/4082: Binomial GLMs in R

The dataset considered here relates to the survival of 34 leukemia patients as a function of their white cell bloood count and the presence or absence of a certain characteristic in the cells. The characteristic, when present, is referred to as AG-positive, and when absent, is referred to as AG-negative.

• In the dataset there are 10 groups, each one corresponding to a different combination of AG status and white blood cell count, with the following variables: n_i is the number of patients in group i; y_i is the number of patients in group i who survived at least 52 weeks beyond the time of diagnosis; x_i is the (common) cell count for patients in group i; and $ag_i = 1$ if AG is present in group i, and $ag_i = 2$ if AG is absent in group i. First of all we shall construct the dataset in R.

```
n=c(2,6,3,3,3,1,5,3,6,2)
y=c(1,2,1,1,0,1,3,2,3,1)
ag=c(rep(1,5),rep(2,5))
x=rep(c(500,5000,10000,40000,100000),2)
```

We now put the data into a 10×4 matrix called blooddata and then print it out.

```
blooddata=cbind(n,y,ag,x)
blooddata
```

- Important: The structure of the dataset suggests the model $y_i \stackrel{ind}{\sim} Bin(n_i, p_i), i = 1, \ldots, 10$. (10 rows in the matrix corresponding to unique combinations of predictors), where p_i is the probability that the people in the *i*th category/row survive for atleast 52 weeks.
- To fit the binomial regression we first need to put y and n-y into a response matrix (Read help file in R for glm), called y2, with two columns, the first column consisting of the "successes", y_i , and the second column consisting of the "failures", $n_i y_i$. We also need to declare ag as a factor. (Failure to do so will result in R perhaps considering as a numeric variable—careful!)

```
y2=cbind(y,n-y)
ag=factor(ag)
```

• The scale of x is too large. Let's take a log transform of x. This has nothing to do with the link function! We are just transforming a predictor to create a new one.

Now fit a model with the same slope for both AG groups but different intercepts; call this model M1. Since AG has two levels, the model implicitly creates 1 indicator variable.

```
out1 = glm(y2 ~ ag + log(x), family=binomial(link="logit"))
```

The logit link is the default in R. Other link functions can be used (read help page). The covariate ag is included in the model as an indicator variable z = 0 if ag is 1 and z = 1 otherwise. As with a linear model this results in two models which differ only in the intercept term:

$$\log(p_i/(1-p_i)) = \beta_0 + \beta_2 \log(x_i) \quad \text{(when } z = 0)$$

= $\beta_0 + \beta_1 + \beta_2 \log(x_i) \quad \text{(when } z = 1)$ (1)

The base model corresponds to ag = 1, that is AG is present or AG-positive. Thus the model for z = 1 (AG-negative) is characterised by a change in intercept of the model with z = 0; there is no change in slope (i.e. β_2).

Look at result of fitting with

summary(out1)

and note make sure you are comfortable interpreting estimates b_0, b_1 and b_2 of β_0, β_1 and β_2 respectively. For example, $b_0 = 2.4547$ implies that the log-odds of a patient with AG-positive surviving at least 52 weeks beyond the time of diagnosis is 2.4547; and hence, the corresponding probability for the same is $\frac{e^{2.4547}}{1+e^{2.4547}} = 0.92$.

- Is there a higher chance of survival for patients with AG-positive?

 The estimate of the coefficient for ag is 1.4408. This implies that the log odds of survival for patients with ag=2 is higher by 1.44 than that of patients with ag=1. So the answer is no.
- What is the predicted probability of a patient with ag 1 and cell count 40000? Based on output, since ag is 1, the corresponding indicator variable is 0. The estimated linear predictor $\mathbf{x}^T\mathbf{b} = 2.454 + 0 - 0.3664(\log(40000))$. Then $\hat{p} = e^{\mathbf{x}^T\mathbf{b}}/[1 + e^{\mathbf{x}^T\mathbf{b}}]$.
- Recall that the variance matrix of the estimate **b** is the inverse of the Fisher Information matrix. For example for the model out1, this can be accessed as

vcov(out1)

Make sure you can match the std error in the output table (from summary command) to the diagonal elements of the (observed) FI matrix; recall that the diagonal elements correspond to variances of components of **b** while the off-diagonals correspond to the (pairwise) covariances.

- By modifying the model formula in R, fit the following models:
 - Model M2: model with only log(x).
 - Model M3: different slopes and different intercepts for both groups (model with ag, log(x) and interaction ag*log(x)). Write this down carefully, and carefully interpret the coefficients as in (1) above.
 - 1. Write down the nesting structure of the models M1, M2, M3.
 - 2. Perform a Deviance test to check if ag is significant at 5%. Does the result of the test corroborate result of the Wald's test provided in the output? Let D2 be the residual deviance for M2 and D1 for M1. Compare $\Delta = D2 D1$ against the 95th percentile of a χ^2 distribution with 1 df. [qchisq(0.95,1) in R for the percentile].
 - The p-value in the output against ag is the p-value for the large sample Wald's test based on a Z statistic (refer to notes).
 - 3. Try fitting a binomial GLM with probit and (complementary) log-log link functions, and see how your results change (read the help page for link functions).