Pattern Recognition Lecture 02-1 Random Forest & Linear Classification

Prof. Jongwon Choi Chung-Ang University Fall 2022

Warning!!

- The architecture of decision tree can be very various
- The decision tree can be utilized for a lot of applications
- However, we will target on "Supervised classification learning"

Supervised learning?

Machine learning when the data are fully categorized or labelled.

Peanut	Fish	Meat	Wheat	Water	Egg	Milk
0	0.1	0	0	0.1	0.1	0
0.3	0.2	0.9	0	0.9	0.8	0
0	0.8	0.3	0.5	0.4	0.1	0.2
0	0	0.8	0.2	0	0	0.1
0.5	0.1	0.2	0.9	0.2	0	0.3

Features (input): Quantities of various ingredients

Labels (output): Whether or not the dog eats

- Decision tree is a simple program
 - Splitting rule one splitting node decide "if-else" according to the features
 - Class prediction the class label is annotated at the last node (leaf)

- There are many possible decision trees!
 - We can change the splitting feature types
 - We can change the splitting thresholds
 - We can change the stop criterion (tree depth)
- Among the various decision trees,
 - We need to fine the best model to represent the given data!
 - This is called "training" the supervised learning model

Let's find the best splitting node!

Peanut	Fish	Meat	Wheat	Water	Egg	Milk
0	0.1	0	0	0.1	0.1	0
0.3	0.2	0.9	0	0.9	0.8	0
0	0.8	0.3	0.5	0.4	0.1	0.2
0	0	0.8	0.2	0	0	0.1
0.5	0.1	0.2	0.9	0.2	0	0.3

Let's find the best splitting node!

- There can be various method to score the combination of feature type and threshold.
 - 1. Split the input samples into two balanced sets
 - 2. Split the input samples to obtain the highest accuracy
 - 3. Split the input samples to result one perfect leaf node
 - 4. etc...

- Let's find the best splitting node!
 - •1. Split the input samples into two balanced sets

Peanut	Fish	Meat	Wheat	Water	Egg	Milk
0	0.1	0	0	0.1	0.1	0
0.3	0.2	0.9	0	0.9	0.8	0
0	0.8	0.3	0.5	0.4	0.1	0.2
0	0	0.8	0.2	0	0	0.1
0.5	0.1	0.2	0.9	0.2	0	0.3

Dog eats?
0
1
0
1
0

Peanut > 0.2

Meat > 0.5

Egg – Impossible

Milk > 0.1

- Let's find the best splitting node!
 - 2. Split the input samples to obtain the highest accuracy

Peanut	Fish	Meat	Wheat	Water	Egg	Milk
0	0.1	0	0	0.1	0.1	0
0.3	0.2	0.9	0	0.9	0.8	0
0	0.8	0.3	0.5	0.4	0.1	0.2
0	0	0.8	0.2	0	0	0.1
0.5	0.1	0.2	0.9	0.2	0	0.3

Meat > 0.7

- Let's find the best splitting node!
 - 3. Split the input samples to result one perfect leaf node

Peanut	Fish	Meat	Wheat	Water	Egg	Milk
0	0.1	0	0	0.1	0.1	0
0.3	0.2	0.9	0	0.9	0.8	0
0	0.8	0.3	0.5	0.4	0.1	0.2
0	0	0.8	0.2	0	0	0.1
0.5	0.1	0.2	0.9	0.2	0	0.3

Dog eats?
0
1
0
1
0

Meat > 0.8

Milk > 0.2

Peanut > 0.4

Supervised learning notation

_	Peanut	Fish	Meat	Wheat	Water	Egg	Milk			
	0	0.1	0	0	0.1	0.1	0			
	0.3	0.2	0.9	0	0.9	0.8	0			
X =	0	0.8	0.3	0.5	0.4	0.1	0.2	H	- n	Dogoo
	0	0	0.8	0.2	0	0	0.1			Dog ea
	0.5	0.1	0.2	0.9	0.2	0	0.3			0
	_								_	1
				Ý					$\mathbf{b} =$	0
				7						1
				d						0

- Cost of the best split estimation
- Assume that:
 - 'n' samples
 - 'd' feature types
 - 'k' discrete thresholds
- We compute "n" labels for "k*d" combinations
 - \bullet O(ndk)
- Thus, sometimes, we decide the feature types randomly!
- When k is small, the computation reduces much

- Decision tree learning (Sequential)
 - It is computationally infeasible to find the best decision tree!
 - We need to try every combination of sequential split nodes
- Most common decision tree learning algorithm in practice:
 - Greedy recursive splitting

Peanut	•••
0	
0.3	
0	
0	
0.5	

Peanut	•••
0.3	
0.5	

Dog eats?
1
0

Peanut	•••
0	
0	
0	

Dog eats?
0
0
1

- Decision tree learning (Sequential)
 - It is computationally infeasible to find the best decision tree!
 - We need to try every combination of sequential split nodes
- Most common decision tree learning algorithm in practice:
 - Greedy recursive splitting
 - Then, until when???
 - When all the samples are categorized well?
 - Or, we can define the maximum depth value

Actually, this problem is not that easy...

- With the infinite depth,
 - The training accuracy is '1.0' (because one leaf can contain one sample)
 - It perfectly labels the data we used to train the decision tree
 - Then, for prediction, some additional samples are given,
 - What is the <u>testing accuracy</u> on the new data?
 - Conventionally, the testing accuracy becomes much low...
 - Overfitting: Lower accuracy on new (test) data
 - The model gets too specific to the training dataset
 - However, our goal of supervised learning was "prediction"!

- Memorization vs. Learning
 - Memorization: Only can do well on the training data
 - Learning: Generalize the model on various situations
- The problem is...
 - THE TEST DATA CANNOT INFLUENCE THE TRAINING PHASE IN ANY WAY

• THE TEST DATA CANNOT INFLUENCE THE TRAINING PHASE IN ANY WAY

- Thus, we need some assumptions on training/testing data
 - The training and test data need to be related in some way
 - Most common assumption: independent and identically distributed (IID)

IID Assumption

- All examples come from the same distribution
- The examples are sampled independently (order doesn't matter)

Examples

- Pick a card, put it back in the deck, re-shuffle, repeat
- Pick a card, put it back in the deck on the bottom, repeat
- Pick a card, re-shuffle, repeat

- IID Assumption
 - All examples come from the same distribution
 - The examples are sampled independently (order doesn't matter)

- Actually, the IID assumption is rarely true:
 - But it is often a good approximation
- We do not assume the IID across features!!

- Amount of overfitting
 - When we define the amount of overfitting by:
 - $E_{approx} = E_{test} E_{train}$
 - It tends to get smaller as the number of samples gets larger
 - Small dataset vs. Large dataset
 - It tends to grow as model get more "complicated"
 - Small depth vs. Large depth

Validation error

Split the training set into a partial training set and a validation set

Training
Set
Validation
Set

	Peanut	Fish	Meat	Wheat	Water	Egg	Milk
	0	0.1	0	0	0.1	0.1	0
	0.3	0.2	0.9	0	0.9	0.8	0
	0	0.8	0.3	0.5	0.4	0.1	0.2
Ì	0	0	0.8	0.2	0	0	0.1
L	0.5	0.1	0.2	0.9	0.2	0	0.3

	Dog eats:
	0
	1
,	0
	1
	0

- Cross Validation
 - Ex. 3-fold cross validation

	Ы	1	•
TU	ıu	┸	•

Train

Train

Validation

 E_{Valid1}

Fold 2:

Train

Validation

Train

 E_{Valid2}

Fold 3:

Validation

Train

Train

 E_{Valid3}

$$E_{cross-Valid} = (E_{Valid1} + E_{Valid2} + E_{Valid3})/3$$

Parameter & Hyper-parameter

- Parameter The values that are estimated by the training algorithm
- Hyper-parameter The control values conventionally defined by user
 - We use the validation error to find the best hyper-parameter
- When the splitting optimization algorithm is fixed,

Ensemble Models - Definition

- How can we acquire the accurate & real-time classifiers?
 - Decision tress and naïve Bayes are fast, but not accurate
 - k-NN is accurate, but not fast
- We can consider the 'ensemble' model
 - Ensemble model Classifiers that have classifiers as input
 - Also called 'meta classifier'
 - Ex. Averaging, boosting, bootstrapping, bagging, cascading, etc.
 - The ensemble model often show higher accuracy than separated inpu classifier

Ensemble Models - Averaging

• Input to averaging is the predictions of a set of models:

- A prediction from a decision tree
- A prediction from another decision tree
- A prediction from naïve Bayes
- A prediction from k-NN
- Etc.

Simple model averaging:

Take the mode of the predictions (i.e. average probabilities)

Ensemble Models - Averaging

- A common variation is 'stacking'
 - Fit another classifier that uses the predictions as features
- Averaging/stacking often performs bettern than individual models
 - Typically used by Kaggle winners!
 - Most of saturated research area conventionally utilize these models
 - Since the separated input classifers can be run in parallel, these models are often used for real applications and systems.

Ensemble Models - Averaging

Why can Averaging work??

- When there are three independent classifiers with probability 0.80,
- $p(all\ 3\ right) = 0.8^3 = 0.512$
- $p(2 \ right, \ 1 \ wrong) = 3 * 0.8^2(1 0.8) = 0.384$
- $p(1 \, right, \, 2 \, wrong) = 3 * 0.8(1 0.8)^2 = 0.096$
- $p(all\ 3\ wrong) = (1 0.8)^3 = 0.008$
- Thus, the ensemble model's probability is 0.896 (0.512 + 0.384)

- Random forests average a set of deep decision trees
 - One of the best classifiers for real applications
 - Any predictions are very fast (Especially, in parallel)
- However, the multiple decision trees are not independent!
 - Since we train the decision trees with same training data and rules

- To solve the problem, the random forest utilizes:
 - Booststrapping
 - Random trees

Bootstrap sampling

- Extract a new training dataset from the original training dataset
- Randomly select samples from the original training dataset
 - Then, some samples can be duplicated or missing

- Roughly maintain the trends
- We can obtain the varying data from one training data

Bagging

- Use the boostrap samples for ensemble learning
 - Generate several bootstrap sample sets
 - Fit a classifier to each bootstrap sample set
 - At test time, average the prediction!

Random trees

- Conventional binary decision tree
- But, the feature type is randomly chosen at every node
- We can simply reduce the dependency among the multiple decision trees

Random Forest

- Bagging + Random Trees
- The multiple decision trees become independent (not perfectly), and the resulting ensemble model often works well

Ensemble Models – Boosting

Cascade classifier

A meta classifier consists of several classifiers that are applied subsequently

Boosting

- When a sample passes all the classifiers, it is classified as the final label
- Only a part of classifiers are applied until the sample is rejected
- When there are a number of outliers, it works rapidly and efficiently

