Глубинное обучение в анализе графовых данных

3. Эмбеддинги

в предыдущих сериях...

Создание признаков

Графы - объекты сложные, нужно придумать как делать признаки

Как и для задач, разобрали признаки (feature engineering) для

- вершин
- связей
- графов

Признаки для вершин

- степень вершины
- центральность
- коэффициент кластеризации
- графлеты

Признаки для связей

- дистанция
- локальное пересечение
- глобальное пересечение

Признаки для графов

- графлетовые ядра
- WL ядра

Эмбеддинги

Мотивация

Вручную создавать признаки требует определенного погружения в задачу. На этапе построения не всегда понятно, какие точно стоит выбирать, какие помогут улучшить алгоритмы машинного обучения.

Нужно научиться выделять удобные признаки более "общими" способами. В этом нам смогут помочь эмбеддинги.

Эмбеддинги

Эмбединги вершин - векторы, суммаризующие позицию вершины в графе и локальное соседство

По сути хотим получить проекцию в пространство, где геометрические соотношения векторов будут отображать связи в оригинальном графе

Эмбеддинги

Перед нами стоит задача как-то закодировать вершины, чтобы похожесть в эмбеддинговом пространстве позволяла аппроксимировать похожесть в графе

Encoder

Encoder - функция, которая проецирует вершины графа в эмбеддинговое пространство

$$V \rightarrow Z_V \qquad \text{ENC}: \mathcal{V} \rightarrow \mathbb{R}^d$$

$$ENC(v) = \mathbf{Z}[v]$$

Decoder

Decoder - функция, по представлению реконструирующия оригинал и связи

В простом случае парный декодировщик позволяет спрогнозировать связаны ли две вершины в графе

$$\text{DEC}: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^+$$

$$DEC(ENC(u), ENC(v)) = DEC(\mathbf{z}_u, \mathbf{z}_v) \approx \mathbf{S}[u, v].$$

Парадигма

- 1. encoder переводит вершины в пространство эмбеддингов
- 2. определяем каким-то образом похожесть вершин в графе
- 3. decoder переводит эмбеддинги в степень похожести
- 4. оптимизируем параметры encoder'а для достижения следующей цели

similarity
$$(u, v) \approx \mathbf{z}_v^{\mathrm{T}} \mathbf{z}_u$$

Парадигма

Оптимизация

Задачу обучения декодировщировщика можно описать как задачу минимизации следующего функционала:

$$\mathcal{L} = \sum_{(u,v)\in\mathcal{D}} \ell\left(\text{DEC}(\mathbf{z}_u, \mathbf{z}_v), \mathbf{S}[u,v]\right)$$

Подходы к созданию эмбеддингов

Основанные на факторизации матриц смежности

- Laplacian eigenmaps
- Inner-product methods

Laplacian eigenmaps

$$DEC(\mathbf{z}_u, \mathbf{z}_v) = \|\mathbf{z}_u - \mathbf{z}_v\|_2^2$$

$$\mathcal{L} = \sum_{(u,v)\in\mathcal{D}} \text{DEC}(\mathbf{z}_u, \mathbf{z}_v) \cdot \mathbf{S}[u,v].$$

Inner-product methods

$$\text{DEC}(\mathbf{z}_u, \mathbf{z}_v) = \mathbf{z}_u^{\top} \mathbf{z}_v$$

$$\mathcal{L} = \sum_{(u,v)\in\mathcal{D}} \|\text{DEC}(\mathbf{z}_u, \mathbf{z}_v) - \mathbf{S}[u,v]\|_2^2.$$

$$\mathcal{L} pprox \|\mathbf{Z}\mathbf{Z}^{ op} - \mathbf{S}\|_2^2$$

Обзор

Method	Decoder	Similarity measure	Loss function
Wiedflod	Decoder	Similarity measure	Loss function
Lap. Eigenmaps Graph Fact. GraRep HOPE	$\ \mathbf{z}_u - \mathbf{z}_v\ _2^2 \ \mathbf{z}_u^{ op} \mathbf{z}_v \ \mathbf{z}_u^{ op} \mathbf{z}_v \ \mathbf{z}_u^{ op} \mathbf{z}_v \ e^{\mathbf{z}_u^{ op} \mathbf{z}_v}$	$\mathbf{A}[u,v] \\ \mathbf{A}[u,v],,\mathbf{A}^k[u,v] \\ \text{general}$	$\begin{aligned} & \text{DEC}(\mathbf{z}_u, \mathbf{z}_v) \cdot \mathbf{S}[u, v] \\ & \ \text{DEC}(\mathbf{z}_u, \mathbf{z}_v) - \mathbf{S}[u, v] \ _2^2 \\ & \ \text{DEC}(\mathbf{z}_u, \mathbf{z}_v) - \mathbf{S}[u, v] \ _2^2 \\ & \ \text{DEC}(\mathbf{z}_u, \mathbf{z}_v) - \mathbf{S}[u, v] \ _2^2 \end{aligned}$
DeepWalk	$\frac{e^{-u-v}}{\sum_{k \in \mathcal{V}} e^{\mathbf{z}_{u}^{\top} \mathbf{z}_{k}}}$	$p_{\mathcal{G}}(v u)$	$-\mathbf{S}[u,v]\log(\mathrm{DEC}(\mathbf{z}_u,\mathbf{z}_v))$
node2vec	$\frac{e^{\mathbf{z}_{u}^{\top}\mathbf{z}_{v}}}{\sum_{k\in\mathcal{V}}e^{\mathbf{z}_{u}^{\top}\mathbf{z}_{k}}}$	$p_{\mathcal{G}}(v u)$ (biased)	$-\mathbf{S}[u,v]\log(\text{DEC}(\mathbf{z}_u,\mathbf{z}_v))$

Обсужденные ранее методы как правило определяют S как некую полиномиальную функцию, и оптимизируется похожесть произведения двух эмбеддингов и S[u,v]

В последнее время успешными начинают быть методы, которые связаны с вероятностным подходом к похожести эмбеддингов, основанными на том, как часто вершины взаимно встречаются на случайных проходах

$$\text{DEC}(\mathbf{z}_u, \mathbf{z}_v) \triangleq \frac{e^{\mathbf{z}_u^\top \mathbf{z}_v}}{\sum_{v_k \in \mathcal{V}} e^{\mathbf{z}_u^\top \mathbf{z}_k}}$$

$$DEC(\mathbf{z}_u, \mathbf{z}_v) \triangleq \frac{e^{\mathbf{z}_u^{\top} \mathbf{z}_v}}{\sum_{v_k \in \mathcal{V}} e^{\mathbf{z}_u^{\top} \mathbf{z}_k}}$$

$$\approx p_{\mathcal{G},T}(v|u)$$

$$\mathcal{L} = \sum_{(u,v) \in \mathcal{D}} -\log(ext{DEC}(\mathbf{z}_u, \mathbf{z}_v))$$

node2vec (negative sampling)

$$\mathcal{L} = \sum_{(u,v)\in\mathcal{D}} -\log(\sigma(\mathbf{z}_u^{\top}\mathbf{z}_v)) - \gamma \mathbb{E}_{v_n \sim P_n(\mathcal{V})}[\log(-\sigma(\mathbf{z}_u^{\top}\mathbf{z}_{v_n}))].$$

LINE

$$\text{DEC}(\mathbf{z}_u, \mathbf{z}_v) = \frac{1}{1 + e^{-\mathbf{z}_u^{\top} \mathbf{z}_v}}$$

Альтернативные подходы

- Можно совершать "прыжки" в блужданиях
- struct2vec

Проблемы

- каждая вершина в таком подходе рассматривается индивидуально
- не используют признаки вершин
- не способны работать с новыми вершинами

решим потом) (on the way to GNN)

Графы знаний (или multi-relational graphs)

Граф - G = (V, E) , V - вершины, E - ребра

B обычном графе e = (u, v)

В графе знаний e = (u, t, v)

В общем случае на графах знаний решается задача предсказания пропущенных связей, но бывают и задачи классификации вершин

RESCAL

$$egin{aligned} ext{DEC}(u, au,v) &= \mathbf{z}_u^ op \mathbf{R}_ au \mathbf{z}_v, \ \mathcal{L} &= \sum_{u \in \mathcal{V}} \sum_{v \in \mathcal{V}} \sum_{ au \in \mathcal{R}} \| ext{DEC}(u, au,v) - \mathcal{A}[u, au,v]\|^2 \ &= \sum \sum \sum_{u \in \mathcal{V}} \sum_{v \in \mathcal{V}} \|\mathbf{z}_u^ op \mathbf{R}_ au \mathbf{z}_v - \mathcal{A}[u, au,v]\|^2, \end{aligned}$$

 $u \in \mathcal{V} \ v \in \mathcal{V} \ \tau \in \mathcal{R}$

Стандартные функции потерь

- cross-entropy with negative sampling
- max-margin loss

Cross-entropy with negative sampling

$$\mathcal{L} = \sum_{(u,\tau,v)\in\mathcal{E}} -\log(\sigma(\text{DEC}(\mathbf{z}_u,\tau,\mathbf{z}_v))) - \gamma \mathbb{E}_{v_n \sim P_{n,u}(\mathcal{V})} \left[\log\left(\sigma\left(-\text{DEC}(\mathbf{z}_u,\tau,\mathbf{z}_{v_n})\right)\right)\right]$$

$$\mathcal{L} = \sum_{(u,\tau,v)\in\mathcal{E}} \left(-\log(\sigma(\text{DEC}(\mathbf{z}_u,\tau,\mathbf{z}_v))) - \sum_{v_n \in \mathcal{P}_{n,u}} \left[\log\left(\sigma\left(-\text{DEC}(\mathbf{z}_u,\tau,\mathbf{z}_{v_n})\right)\right)\right]\right)$$

Max-margin loss

$$\mathcal{L} = \sum_{(u,\tau,v)\in\mathcal{E}} \sum_{v_n\in\mathcal{P}_{n,u}} \max(0, -\text{DEC}(\mathbf{z}_u, \tau, \mathbf{z}_v) + \text{DEC}(\mathbf{z}_u, \tau, \mathbf{z}_{v_n}) + \Delta)$$

Обзор

Name	Decoder	Relation Parameters
RESCAL	$\mathbf{z}_u^{\top}\mathbf{R}_{\tau}\mathbf{z}_v$	$\mathbf{R}_{ au} \in \mathbb{R}^{d imes d}$
TransE	$-\ \mathbf{z}_u+\mathbf{r}_\tau-\mathbf{z}_v\ $	$\mathbf{r}_{ au} \in \mathbb{R}^d$
TransX	$-\ g_{1, au}(\mathbf{z}_u)+\mathbf{r}_{ au}-g_{2, au}(\mathbf{z}_v)\ $	$\mathbf{r}_{ au} \in \mathbb{R}^d, g_{1, au}, g_{2, au} \in \mathbb{R}^d \to \mathbb{R}^d$
DistMult	$<\mathbf{z}_{u},\mathbf{r}_{ au},\mathbf{z}_{v}>$	$\mathbf{r}_{ au} \in \mathbb{R}^d$
ComplEx	$\mathrm{Re}(<\mathbf{z}_u,\mathbf{r}_{ au},ar{\mathbf{z}}_v>)$	$\mathbf{r}_{ au} \in \mathbb{C}^d$
RotatE	$-\ \mathbf{z}_u \circ \mathbf{r}_\tau - \mathbf{z}_v\ $	$\mathbf{r}_{ au} \in \mathbb{C}^d$

Translational Decoders

$$DEC(\mathbf{z}_u, \tau, \mathbf{z}_v) = -\|\mathbf{z}_u + \mathbf{r}_\tau - \mathbf{z}_v\|$$

$$\text{DEC}(\mathbf{z}_u, \tau, \mathbf{z}_v) = -\|g_{1,\tau}(\mathbf{z}_u) + \mathbf{r}_{\tau} - g_{2,\tau}(\mathbf{z}_v)\|_{\mathbf{z}_v}$$

$$\text{DEC}(\mathbf{z}_u, \tau, \mathbf{z}_v) = -\|(\mathbf{z}_u - \mathbf{w}_r^\top \mathbf{z}_u \mathbf{w}_r) + \mathbf{r}_\tau - (\mathbf{z}_v - \mathbf{w}_r^\top \mathbf{z}_v \mathbf{w}_r)\|$$

Multi-linear

$$\begin{aligned} \text{DEC}(\mathbf{z}_u, \tau, \mathbf{z}_v) = &< \mathbf{z}_u, \mathbf{r}_\tau, \mathbf{z}_v > \\ &= \sum_{i=1}^d \mathbf{z}_u[i] \times \mathbf{r}_\tau[i] \times \mathbf{z}_v[i] \\ = &< \mathbf{z}_v, \mathbf{r}_\tau, \mathbf{z}_u > \\ &= \text{DEC}(\mathbf{z}_v, \tau, \mathbf{z}_u). \end{aligned}$$

Complex

$$DEC(\mathbf{z}_u, \tau, \mathbf{z}_v) = Re(\langle \mathbf{z}_u, \mathbf{r}_\tau, \bar{\mathbf{z}}_v \rangle)$$

$$= Re(\sum_{i=1}^d \mathbf{z}_u[i] \times \mathbf{r}_\tau[i] \times \bar{\mathbf{z}}_v[j])$$

$$DEC(\mathbf{z}_u, \tau, \mathbf{z}_v) = -\|\mathbf{z}_u \circ \mathbf{r}_\tau - \mathbf{z}_v\|,$$

Свойства

- симметрия (асимметрия)
- инверсионность
- КОМПОЗИТНОСТЬ

Эмбеддинги графов

Среднее

$$Z_G = \sum_{v \in G} Z_v$$

Виртуальная вершина

Анонимные случайные блуждания

- 1. Сэмплируем анонимные случайные блуждания и отображаем граф как частоты появления случайных блужданий
- 2. Обучаем эмбеддинги графа вместе с анонимными случайными блужданиями