## 第五章 同步时序逻辑电路的习题

- 一、基本知识点
- 1、时序逻辑电路的一般结构



特点: a、有存储电路(记忆元件);有组合电路(特殊时可没有)

b、包含反馈电路, 电路功能与"时序"相关

c、输出不仅与输入(X)有关,而且与存储状态(Y)有关

分类: (1) Mealy 型 Z=F (X, Q)

输出是电路的输入和现态的函数 (注意输出与输入有直接关系)



(2) Moore 型 Z=F (O)

**输出仅仅是电路现态的函数**(注意输出与输入**没有**直接关系)

所有输入 → 现态 → 输出

**同步时序逻辑电路**:各触发器共用同一时钟信号,即电路中各触发器状态的转换时刻在统一时钟信号控制下同步发生。

**异步时序逻辑电路**: 电路没有统一的时钟信号对状态变化进行同步控制, 输入信号的变化将直接引起电路状态的变化。

//本课程将较少讨论异步时序逻辑电路

2、同步时序逻辑电路的描述

注意: 任一个同步时序逻辑电路的结构和功能可用3组函数表达式完整地描述。

(1) 激励函数表达式:存储电路输入 Y 与电路输入 X 和现态 Q 之间的关系

Y=F(X, Q) //现态 Q 就是上图存储电路原始的输出  $y_k$ 

- (2) 次态函数表达式: 电路的次态  $Q^{n+1}$ 与激励函数 Y 和现态 Q 之间关系  $Q^{n+1} = F$  (Y, Q) //次态  $Q^{n+1}$  就是上图存储电路再次触发后的输出  $y_k^{n+1}$
- (3) 输出函数表达式: 电路的输出 Z 和输入 X 和当前现态 O 的关系

Mealy 型 Z=F(X, Q)

Moore 型 Z=F (O)

#### 状态表的格式

Mealy 型

Moore 型

| 现 态 | 次态 / 输出             | <br>现态  | 次态                 | 输出 |
|-----|---------------------|---------|--------------------|----|
|     | 输入X                 | -50 70. | 输入X                |    |
| у   | y <sup>n+1</sup> /Z | у       | $\mathbf{y}^{n+1}$ | Z  |

#### 状态图的画法

Mealy 型



Moore 型



#### 3、同步时序逻辑电路分析

- (1) 表格法的分析步骤
- a、根据电路写出输出表达式和激励函数表达式
- b、列出各自的激励矩阵,确定电路相应的次态
- c、作出给定电路的状态表和状态图
- d、拟定一个典型输入序列,画出时间图,描述此电路的功能
- (2) 代数法的分析步骤
- a、根据电路写出输出表达式和激励函数表达式
- b、把激励函数代入次态方程,导出次态方程组
- c、根据此方程组,作出状态表和状态图
- d、拟定一个典型输入序列,画出时间图,描述此电路的功能

注意: 上述两种分析方法的 b、c 两步骤不同

#### 4、同步时序逻辑电路设计

步骤:

(1) 形成原始的状态图和状态表

- (2) 对原始的状态进行化简,变成最简状态,降低电路复杂度和成本
- (3) 把状态与二进制代码相对应,即决定触发器的个数
- (4) 确定激励函数(对应触发器的种类)和输出函数(对应逻辑电路的种类),并画出逻辑电路图

#### 5、常用的时序电路

- (1) 计数器 周期性的状态循环
- 步 按**进制**可分为:二进制计数器、BCD 码计数器、任意进制计数器(楼两种存在无效状态)
- 安时钟输入方式:同步计数器、异步计数器
- **ョ** 按**趋势**可分为:加"1"计数器、减"1"计数器 \***同步二进制计数器**(3位数值,即3个触发器)
  - 用 3 个 JK 触发器实现,电路图如下所示(输入端悬空为信号"1")



驱动方程

 $J_0 = K_0 = 1$ 

(O₀触发器的输入控制)

 $J_1 = K_1 = Q_0$ 

(O<sub>1</sub> 触发器的输入控制)

 $J_2 = K_2 = O_0 O_1$ 

(Q2触发器的输入控制)

输出方程  $Z = (Q_2 \ Q_1 \ Q_0)$ 

三个触发器的输出端原相直接输出

输出波形如下所示



## 说明:

- 触发器按时钟 Cp 触发,每一个时钟 触发器翻转一次
- O₁触发器接收 O₂触发器的原相输出, 当 O₂原相输出为 1 后才翻转一次
- Q₂触发器接收 Q₀和 Q₁原相输出相与之后的结果,只有前两者输出均为 1 后才翻转一次

#### \* 异步二进制计数器

也用  $3 \uparrow$  JK 触发器实现,CR 为清零端,电路图如下所示( $3 \uparrow$  JK 触发器的输入端均悬空)



驱动方程同上(略)

输出波形如下所示(对比同步计数器,看看异同)



注意: 如反向输出则为加"1"计数

- (1) 寄存器 多个触发器的并行操作,可以暂存数据信息
- \* 数据寄存器(4位数值,即4个触发器)用D触发器来实现,电路图如下所示



\* 移位寄存器(输入可并行亦可串行,输出可并行亦可串行)各位之间存在传递关系



数据输入端(存储4位数据)

\* 移位寄存器(各位之间存在传递关系,且首位和末位也存在传递关系)



注意: 前面示意的均为左移位, 如右移位, 传递关系相反

#### 二、相关习题

#### \*\*填空题

- 1、时序逻辑电路按其状态改变是否受统一定时信号控制,可分为( )和( )和 ) 两种类型。
- 2、一个同步时序逻辑电路可用( )、( ) 和( ) 3 组函数表达式描述。
- 3、Mealy 型时序逻辑电路的输出是( )的函数,Moore 型时序逻辑电路的输出是( )的函数。
- 4、设最简状态表包含的状态数目为 n,相应电路中的触发器个数为 m,则 m 和 n 应满足关系( )。
- 5、一个 Mealy 型"0011"序列检测器的最简状态表中包含( ) 个状态,电路中有 ( ) 个触发器。
- 6、某同步时序逻辑电路的状态表如下所示,若电路初始状态为 A,输入序列 x=010101,则电路产生的输出响应序列为( )。

| 现态 | 次态 / 输出 |     |  |  |  |
|----|---------|-----|--|--|--|
|    | x=0     | x=1 |  |  |  |
| A  | B/0     | C/1 |  |  |  |
| В  | C/1     | B/0 |  |  |  |
| С  | A/0     | A/1 |  |  |  |

7、某同步时序逻辑电路的状态图如下所示,若电路的初始状态为 A,则在输入序列 11010010 作用下的状态和输出响应序列分别为( )和( )。



8、某某同步时序逻辑电路图如下所示,设电路现态  $y_2y_1=00$ ,经过 3 个时钟脉冲后,电路的状态为( )。



| **选择题(单选)                                         |                 |
|---------------------------------------------------|-----------------|
| 1、下列触发器中,(    )不可作为同步时序逻辑电路的存储器件。                 |                 |
| A. 基本 R-S 触发器 B. D 触发器                            |                 |
| C. J-K 触发器 D. T 触发器                               |                 |
| 2、构成一个模 10 同步计数器,需要( ) 触发器。                       |                 |
| A. 3↑ B. 4↑ C. 5↑ D. 10↑                          |                 |
| 3、实现同一功能的 Mealy 型同步时序电路比 Moore 型同步时序电路所需要的(       | ) (             |
| A. 状态数目更多 B. 状态数目更少                               |                 |
| C. 触发器更多 D. 触发器一定更少                               |                 |
| 4、同步时序电路设计中,状态编码采用相邻编码法的目的是(    )。                |                 |
| A. 减少电路中的触发器 B. 提高电路速度                            |                 |
| C. 提高电路可靠性 D. 减少电路中的逻辑门                           |                 |
|                                                   |                 |
| **判断题                                             | , ,             |
| 1、同步时序逻辑电路中的存储元件可以是任意类型的触发器。 (1)                  | ( )             |
| 2、若某同步时序逻辑电路可设计成 Mealy 型或者 Moore 型,则采用 Mealy 型电路比 | ,               |
| Moore 型电路所需状态数目少。                                 | ( )             |
| 3、实现同一功能的最简 Mealy 型电路比最简 Moore 型电路所需触发器数目一定更少     | <i>ን</i> 。<br>' |
|                                                   | ( )             |
| 4、最大等效类是指含状态数目最多的等效类。                             | ( )             |
| 5、同步时序逻辑电路设计中,状态编码采用相邻编码法是为了消除电路中的竞争。             | ( )             |
| 6、根据最简二进制状态表确定输出函数表达式时,与所选触发器类型无关。 (              | , )             |
| 7、设计一个同步模 5 计数器,需要 5 个触发器。                        | , )             |
| 8、同步时序逻辑电路中的无效状态是由于状态表没有达到最简导致的。 (                | ( )             |
| 9、一个存在无效状态的同步时序逻辑电路是否具有自启动功能,取决于确定激励逐             | 数时对             |
| 无效状态的处理。                                          | ( )             |

## \*\*分析及设计题

1、状态图如下所示,指出该电路属于何种类型?实现什么功能?相应的电路中需要几个触发器?



2、分析下图所示的逻辑电路,说明该电路的功能。



3、分析下图所示的逻辑电路,设电路初始状态为"00",输入序列为 x=10011110110,作出输出响应序列,并说明电路功能。



4、分析下图所示的逻辑电路,说明该电路的功能。



5、试作出"0101"序列检测器的最简 Mealy 型状态表和 Moore 型状态表。典型输入、输出序列为

| 输入 | X  | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
|----|----|---|---|---|---|---|---|---|---|---|---|---|---|
| 输出 | 7. | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |

6、化简如下所示的原始状态表

|    | 次态 / 输出 |     |  |  |  |
|----|---------|-----|--|--|--|
| 现态 | x=0     | x=1 |  |  |  |
| A  | B/0     | C/0 |  |  |  |
| В  | A/0     | F/0 |  |  |  |
| С  | F/0     | G/0 |  |  |  |
| D  | A/0     | C/0 |  |  |  |
| Е  | A/0     | A/1 |  |  |  |
| F  | C/0     | E/0 |  |  |  |
| G  | A/0     | B/1 |  |  |  |

7、用 D 触发器作为存储元件设计一个 4 位串行输入、并行输出的双向移位寄存器。该电路有一个数据输入端 x 和一个控制输入端 M。当 M=0 时,实现左移,数据从右端串行输入;当 M=1 时,实现右移,数据从左端串行输入。

#### 三、习题参考答案

#### \*\*填空题

- 1、时序逻辑电路按其状态改变是否受统一定时信号控制,可分为(同步时序逻辑电路)和(异步时序逻辑电路)两种类型。
- 3、Mealy 型时序逻辑电路的输出是(输入和状态变量)的函数,Moore 型时序逻辑电路的输

出是(状态变量)的函数。

- 4、设最简状态表包含的状态数目为 n,相应电路中的触发器个数为 m,则 m 和 n 应满足关系( $2^{m} \ge n > 2^{m-1}$ )。
- 5、一个 Mealy 型"0011"序列检测器的最简状态表中包含( 4 ) 个状态,电路中有( 2 )个触发器。

| 现态 | 次态 / 输出 |     |  |  |  |
|----|---------|-----|--|--|--|
|    | x=0     | x=1 |  |  |  |
| A  | B/0     | C/1 |  |  |  |
| В  | C/1     | B/0 |  |  |  |
| С  | A/0     | A/1 |  |  |  |



8、某某同步时序逻辑电路图如下所示,设电路现态  $y_2y_1=00$ ,经过 3 个时钟脉冲后,电路的状态为  $(y_2y_1=11)$ 。



#### \*\*选择题(单选)

- 1、下列触发器中,( A ) 不可作为同步时序逻辑电路的存储器件。
  - A. 基本 R-S 触发器

B. D 触发器

C. J-K 触发器

- D. T触发器
- 2、构成一个模10同步计数器,需要(
- B )触发器。

- A. 3 1
- B. 4个
- C. 5个
- D. 10 个

B

0

- 13、实现同一功能的 Mealy 型同步时序电路比 Moore 型同步时序电路所需要的(B
- √ A. 状态数目更多

B. 状态数目更少

ABCOE

)。

00001004



C. 触发器更多

- D. 触发器一定更少
- 4、同步时序电路设计中,状态编码采用相邻编码法的目的是( D )
  - A. 减少电路中的触发器
- B. 提高电路速度

C. 提高电路可靠性

D. 减少电路中的逻辑门

#### \*\*判断题

R-SX

一、同步时序逻辑电路中的存储元件可以是任意类型的触发器。

 $(\times)$ 

- 3、实现同一功能的最简 Mealy 型电路比最简 Moore 型电路所需触发器数目一定更少。

( × )

- 4、最大等效类是指含状态数目最多的等效类。
- 对<u>逻辑门</u> (×)
- 5、同步时序逻辑电路设计中,状态编码采用相邻编码法是为了消除电路中的竞争。( × )
- 6、根据最简二进制状态表确定输出函数表达式时,与所选触发器类型无关。 ( √)
- 7、设计一个同步模 5 计数器,需要 3 个触发器。 ( × )
- ~~ 同步时序逻辑电路中的无效状态是由于状态表没有达到最简导致的。

#### \*\*分析及设计题

1、状态图如下所示,指出该电路属于何种类型?实现什么功能?相应的电路中需要几个触发器?



| $\int_{2}^{1}$ | Xe   | 0 X= 1 |
|----------------|------|--------|
| 9 0            | 0%   | 01/0   |
| 9 1            | 10/0 | 10/0   |
| 1 0            | 00/1 | 0)/0   |
| 1              | 00/0 | 01/0   |
|                |      |        |

JK.

从状态图上看是输入和状态变量的函数,所以是 Mealy 型电路

"100"序列检测器,需要两个触发器(4种状态)。

2、分析下图所示的逻辑电路,说明该电路的功能。



# 

## (1) 写出激励函数表达式

$$\begin{array}{lll} J_1=\overline{\ x} &, & K_1=1 \\ \\ J_2=K_2=&\overline{\ x} & \overline{y}_1 &= x+y_1 \\ \\ J_3=K_3=&\overline{\ x} & \overline{y}_1 & y_2= (x+y_1) & y_2=x \ y_2+y_1 \ y_2 \end{array}$$

## (2) 列出激励矩阵和次态真值表

yı 的激励矩阵

| 输入 | 激励函数      |
|----|-----------|
| X  | $J_1 K_1$ |
| 0  | 1 1       |
| 1  | 0 1       |

## y<sub>2</sub>的激励矩阵

| 输入 | 现态         | 激励函数        |
|----|------------|-------------|
| X  | <b>y</b> 1 | $J_2$ $K_2$ |
| 0  | 0          | 0 0         |
| 0  | 1          | 1 1         |
| 1  | 0          | 1 1         |
| 1  | 1          | 1 1         |

## y<sub>3</sub>的激励矩阵

| 输入 | 现态                            | 激励函数                          |
|----|-------------------------------|-------------------------------|
| X  | y <sub>2</sub> y <sub>1</sub> | J <sub>3</sub> K <sub>3</sub> |
| 0  | 0 0                           | 0 0                           |
| 0  | 0 1                           | 0 0                           |
| 0  | 1 0                           | 0 0                           |
| 0  | 1 1                           | 1 1                           |
| 1  | 0 0                           | 0 0                           |
| 1  | 0 1                           | 0 0                           |
| 1  | 1 0                           | 1 1                           |
| 1  | 1 1                           | 1 1                           |

上述三表合并,如下所示(并依次列出次态值)

| 输入 | 现态                                           | 潟                             | 效励函数                    | 次态                                  |
|----|----------------------------------------------|-------------------------------|-------------------------|-------------------------------------|
| x  | y <sub>3</sub> y <sub>2</sub> y <sub>1</sub> | J <sub>3</sub> K <sub>3</sub> | $J_2$ $K_2$ $J_1$ $K_1$ | $y_3^{n+1}$ $y_2^{n+1}$ $y_1^{n+1}$ |
| 0  | 0 0 0                                        | 0 0                           | 0 0 1 1                 | 0 0 1                               |
| 0  | 0 0 1                                        | 0 0                           | 1 1 1 1                 | 0 1 0                               |
| 0  | 0 1 0                                        | 0 0                           | 0 0 1 1                 | 0 1 1                               |
| 0  | 0 1 1                                        | 1 1                           | 1 1 1 1                 | 1 0 0                               |
| 0  | 1 0 0                                        | 0 0                           | 0 0 1 1                 | 1 0 1                               |
| 0  | 1 0 1                                        | 0 0                           | 1 1 1 1                 | 1 1 0                               |
| 0  | 1 1 0                                        | 0 0                           | 0 0 1 1                 | 1 1 1                               |
| 0  | 1 1 1                                        | 1 1                           | 1 1 1 1                 | 0 0 0                               |

| 1 | 0 0 0 | 0 0 | 1 1 | 0 1 | 0 | 1 | 0 |
|---|-------|-----|-----|-----|---|---|---|
| 1 | 0 0 1 | 0 0 | 1 1 | 0 1 | 0 | 1 | 0 |
| 1 | 0 1 0 | 1 1 | 1 1 | 0 1 | 1 | 0 | 0 |
| 1 | 0 1 1 | 1 1 | 1 1 | 0 1 | 1 | 0 | 0 |
| 1 | 1 0 0 | 0 0 | 1 1 | 0 1 | 1 | 1 | 0 |
| 1 | 1 0 1 | 0 0 | 1 1 | 0 1 | 1 | 1 | 0 |
| 1 | 1 1 0 | 1 1 | 1 1 | 0 1 | 0 | 0 | 0 |
| 1 | 1 1 1 | 1 1 | 1 1 | 0 1 | 0 | 0 | 0 |
|   |       |     |     |     |   |   |   |

# (3) 作出状态表和状态图

状态表如下所示:

| 现态                                           | 次态 y <sub>3</sub> <sup>n+1</sup> | $y_2^{n+1}$ $y_1^{n+1}$ |
|----------------------------------------------|----------------------------------|-------------------------|
| y <sub>3</sub> y <sub>2</sub> y <sub>1</sub> | x = 0                            | x =1                    |
| 0 0 0                                        | 0 0 1                            | 0 1 0                   |
| 0 0 1                                        | 0 1 0                            | 0 1 0                   |
| 0 1 0                                        | 0 1 1                            | 1 0 0                   |
| 0 1 1                                        | 1 0 0                            | 1 0 0                   |
| 1 0 0                                        | 1 0 1                            | 1 1 0                   |
| 1 0 1                                        | 1 1 0                            | 1 1 0                   |
| 1 1 0                                        | 1 1 1                            | 0 0 0                   |
| 1 1 1                                        | 0 0 0                            | 0 0 0                   |

状态图如下所示:



## (4) 功能评述

当 x=0 时,进行模 8 计数;当 x=1 时,进行模 4 计数(且只是偶数计数)

3、分析下图所示的逻辑电路,设电路初始状态为"00",输入序列为 x=10011110110,作出输出响应序列,并说明电路功能。



## (1) 写出激励函数表达式

$$J_1 = x$$
 ,  $K_1 = \overline{x}$ 

$$J_2 = x y_1$$
 ,  $K_2 = x$ 

$$Z = x y_2 y_1$$

# (2) 列出激励矩阵和次态真值表

yı的激励矩阵

| 输入 | 激励函数        | 说明 |
|----|-------------|----|
| X  | $J_1 = K_1$ |    |
| 0  | 0 1         | 清0 |
| 1  | 1 0         | 置1 |

C

y<sub>2</sub>的激励矩阵

| 输入 | 现态         | 激励函数                          | 说明  |
|----|------------|-------------------------------|-----|
| X  | <b>y</b> 1 | J <sub>2</sub> K <sub>2</sub> |     |
| 0  | 0          | 0 1                           | 清0  |
| 0  | 1          | 0 1                           | 清 0 |
| 1  | 0          | 0 0                           | 保持  |
| 1  | 1          | 1 0                           | 置1  |

#### 上述二表合并,如下所示(并依次列出次态值)

| エベーバロハ | , AH I / II/J\\\\/\/\/\/\                   |                                                             |                       |
|--------|---------------------------------------------|-------------------------------------------------------------|-----------------------|
| 输入     | 现态                                          | 激励 <mark>函数</mark>                                          | 次态                    |
| X      | <b>y</b> <sub>2</sub> <b>y</b> <sub>1</sub> | J <sub>2</sub> K <sub>2</sub> J <sub>1</sub> K <sub>1</sub> | $y_2^{n+1} y_1^{n+1}$ |
| 0      | 0 0                                         | 0 1 0 1                                                     | 0 0                   |
| 0      | 0 1                                         | 0 1 0 1                                                     | 0 0                   |
| 0      | 1 0                                         | 0 1 0 1                                                     | 0 0                   |
| 0      | 1 1                                         | 0 1 0 1                                                     | 0 0                   |
| 1      | 0 0                                         | 0 0 1 0                                                     | 0 1                   |
| 1      | 0 1                                         | 1 0 1 0                                                     | 1 1                   |
| 1      | 1 0                                         | 0 0 1 0                                                     | 1 1                   |
| 1      | 1 1                                         | 1 0 1 0                                                     | 1 1                   |

(3) 作出状态表和状态图 状态表如下所示:

| 现态                            | 次态 y3 <sup>n+1</sup> y2 <sup>n+</sup> | ¹ yı <sup>n+1</sup> / 输出 |
|-------------------------------|---------------------------------------|--------------------------|
| y <sub>2</sub> y <sub>1</sub> | x = 0                                 | x =1                     |
| 0 0                           | 0 0 / 0                               | 0 1 / 0                  |
| 0 1                           | 0 0 / 0                               | 1 1 / 0                  |
| 1 0                           | 0 0 / 0                               | 1 1 / 0                  |
| 1 1                           | 0 0 /0                                | 1 1 / 1                  |

状态图如下所示:



由状态图可看出, 状态 11 为无效状态

(4) 功能评述

设初始状态为"00",输入序列为

由上可知,该电路为"111..."序列检测器,当连续输入 3 个或 3 个以上 1 时,输出为 1。 4、分析下图所示的逻辑电路,说明该电路的功能。



(1) 写出激励函数表达式

$$J_1 = K_1 = 1$$

$$J_2 = K_2 =_X \oplus y_1$$

$$Z = x \overline{y_2} \overline{y_1} + \overline{x} y_2 y_1$$

## (2) 列出激励矩阵和次态真值表

## yı的激励矩阵

| 输入 | 激励函数  | 说明 |
|----|-------|----|
| X  | J1 K1 |    |
| 0  | 1 1   | 翻转 |
| 1  | 1 1   | 翻转 |

## y<sub>2</sub>的激励矩阵

| 输入 | 现态         | 激励函数        | 说明 |
|----|------------|-------------|----|
| x  | <b>y</b> 1 | $J_2$ $K_2$ |    |
| 0  | 0          | 0 0         | 保持 |
| 0  | 1          | 1 1         | 翻转 |
| 1  | 0          | 1 1         | 翻转 |
| 1  | 1          | 0 0         | 保持 |

# 上述二表合并,如下所示(并依次列出次态值)

| ſ | 输入 | 现态                                          | 激励                            | 函数    | 次态                    |
|---|----|---------------------------------------------|-------------------------------|-------|-----------------------|
|   | X  | <b>y</b> <sub>2</sub> <b>y</b> <sub>1</sub> | J <sub>2</sub> K <sub>2</sub> | J1 K1 | $y_2^{n+1} y_1^{n+1}$ |
| ſ | 0  | 0 0                                         | 0 0                           | 1 1   | 0 1                   |
|   | 0  | 0 1                                         | 1 1                           | 1 1   | 1 0                   |
|   | 0  | 1 0                                         | 0 0                           | 1 1   | 1 1                   |
|   | 0  | 1 1                                         | 1 1                           | 1 1   | 0 0                   |
| † | 1  | 0 0                                         | 1 1                           | 1 1   | 1 1                   |
|   | 1  | 0 1                                         | 0 0                           | 1 1   | 0 0                   |
|   | 1  | 1 0                                         | 1 1                           | 1 1   | 0 1                   |
| L | 1  | 1 1                                         | 0 0                           | 1 1   | 1 0                   |

## (3) 作出状态表和状态图

## 状态表如下所示:

| 现态                            | 次态 y3 <sup>n+1</sup> y2 <sup>n+</sup> | ¹ yı <sup>n+1</sup> / 输出 |
|-------------------------------|---------------------------------------|--------------------------|
| y <sub>2</sub> y <sub>1</sub> | $\mathbf{x} = 0$                      | x = 1                    |
| 0 0                           | 0 1 / 0                               | 1 1 /1                   |
| 0 1                           | 1 0 / 0                               | 0 0 / 0                  |
| 1 0                           | 1 1 / 0                               | 0 1 / 0                  |
| 1 1                           | 0 0 / 1                               | 1 0 / 0                  |

## 状态图如下所示:

输入 x/输出 Z



## (4) 功能评述

当 x=0 时,进行二进制加 1 计数,输出为进位信号; 当 x=1 时,进行二进制减 1 计数,输出为借位信号。

5、试作出"0101"序列检测器的最简 Mealy 型状态表和 Moore 型状态表。典型输入、输出序

列为

输入 x 输出 Z (1) Mealy 型状态描述

| 初始状态    | A 状态 |
|---------|------|
| 检测到第一个0 | B 状态 |
| 检测到 01  | C 状态 |
| 检测到 010 | D状态  |

D 状态如再输入 1, 回到 C 状态; 如再输入 0, 回到 B 状态。 状态表如下所示:

| 现态 | 次态 / 输出 |      |
|----|---------|------|
|    | x = 0   | x =1 |
| A  | B/0     | A/0  |
| В  | B/0     | C/0  |
| C  | D/0     | A/0  |
| D  | B/0     | C/1  |

(2) Moore 型状态描述

| 初始状态     | A 状态 |
|----------|------|
| 检测到第一个 0 | B 状态 |
| 检测到 01   | C 状态 |
| 检测到 010  | D 状态 |
| 检测到 0101 | E状态  |
| 检测到 0101 | E 状态 |

状态表如下所示: (因为是状态的输出, 所以必须有结果状态)

| ۲ | スカーバカで(四方だりのは)部田、バッスのの日コストルの |       |      |     |  |
|---|------------------------------|-------|------|-----|--|
|   | 现 态                          | 次态    |      | 输 出 |  |
|   |                              | x = 0 | x =1 | Z   |  |
|   | A                            | В     | A    | 0   |  |
|   | В                            | В     | C    | 0   |  |
|   | C                            | D     | A    | 0   |  |
|   | D                            | В     | Œ    | 0   |  |
|   | E                            | D     | A    | 1   |  |
|   |                              |       |      |     |  |

#### 6、化简如下所示的原始状态表

|    | 次态 / 输出 |     |
|----|---------|-----|
| 现态 | x=0     | x=1 |
| A  | B/0     | C/0 |
| В  | A/0     | F/0 |
| С  | F/0     | G/0 |
| D  | A/0     | C/0 |

| Е | A/0 | A/1 |
|---|-----|-----|
| F | C/0 | E/0 |
| G | A/0 | B/1 |

## (1) 利用隐含表找等效状态对

## 顺序比较结果如下:



## 关联比较结果如下:



#### (2) 求最大等效类

从上图得 $\{A, B\}$ 、 $\{A, D\}$ 、 $\{B, D\}$ 、 $\{C, F\}$ 、 $\{E, G\}$ 最大等效类为 $\{A, B, D\}$ 、 $\{C, F\}$ 、 $\{E, G\}$ 则 $\{A, B, D\}$ 用 a 表示, $\{C, F\}$ 用 b 表示, $\{E, G\}$ 用 c 表示。

## (3) 得最简状态表

| 现态 | 次态 / 输出 |       |
|----|---------|-------|
|    | x = 0   | x =1  |
| a  | a / 0   | b/0   |
| b  | b/0     | c / 0 |
| с  | a / 0   | a / 1 |

7、用 D 触发器作为存储元件设计一个 4 位串行输入、并行输出的双向移位寄存器。该电路有一个数据输入端 x 和一个控制输入端 M。当 M=0 时,实现左移,数据从右端串行输入;当 M=1 时,实现右移,数据从左端串行输入。

设 4 位触发器的状态从左到右依次用  $y_4$ 、 $y_3$ 、 $y_2$ 、 $y_1$  表示,依据题意直接写出次态方程



$$y_4^{n+1} = M x + \overline{M} y_3$$
 $y_3^{n+1} = M y_4 + \overline{M} y_2$ 
 $y_2^{n+1} = M y_3 + \overline{M} y_1$ 
 $y_1^{n+1} = M y_2 + \overline{M} x$ 

## 电路图如下所示:

