

Cybersecurity

Professor: F. d'Amore

Table of Contents

1	Introduction	5
2	Symmetric Encryption 2.1 Stream Ciphers 2.2 Stream Ciphers in practice 2.2.1 A5/1 2.2.2 RC-4	6 6 7 7 7
3	Data Integrity	8
4	Public Key Cryptography	9
5	Digital Signatures	10
6	Cryptographically Secure Pseudo-Random Number Generators	11
7	Authentication	12
8	Secret Sharing	13
9	Access Control	14
10	OSecure Protocols	15
1	1 Firewalls	16
12	2Email Security	17
1.	3Web Technologies	18
14	4Web Security	19
1	5Web Tracking	20

List of Figures

List of Tables

1 Introduction

2 Symmetric Encryption

Secret key cryptography involves the use of a single key. Given a message (the plaintext) and the key, encryption produces unintelligible data which is about the same length as the plaintext was.

Secret key cryptography is sometimes referred to as **conventional cryptography** or **symmetric cryptography**.

Secret key encryption schemes require that both the party that does the encryption and the party that does the decryption share a secret key. We will discuss two types of secret key encryption schemes:

- Stream Ciphers: This uses the key as a seed for a pseudorandom number generator, produces a stream of pseudorandom bits, and \oplus s (bitwise exclusive ors) that stream with the data. Since \oplus is its own inverse, the same computation performs both encryption and decryption.
- **Block Ciphers**: This takes as input a secret key and a plaintext block of fixed size (older ciphers used 64-bit blocks, modern ciphers use 128-bit blocks). It produces a ciphertext block the same size as the plaintext block. To encrypt messages larger than the blocksize, the block cipher is used iteratively with algorithms called *modes of operation*. A block cipher also has a decryption operation that does the reverse computation.

2.1 Stream Ciphers

Idea: try to simulate one-time pad

- 1. Define a secret key (seed)
- 2. Using the seed, generate a byte stream (A.K.A. **Keystream**): i-th byte is a function of:
 - (a) only the key (synchronous stream cipher)
 - (b) both the key and first i-1 bytes of cipher text (asynchronous stream cipher)
- 3. Obtain the ciphertext by bitwise XORing plaintext and keystream

- 2.2 Stream Ciphers in practice
- 2.2.1 A5/1
- 2.2.2 RC-4
- 2.3 Block Ciphers

3 Data Integrity

4 Public Key Cryptography

Digital Signatures

6	Cryptographically	Secure	Pseudo-Random	Number
	Generators			

7 Authentication

Secret Sharing

9 Access Control

10 Secure Protocols

11 Firewalls

12 Email Security

13 Web Technologies

14 Web Security

15 Web Tracking