Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

ОТЧЁТ ПО ЛАБОРАТОРНЫМ РАБОТАМ ПО ДИСЦИПЛИНЕ «МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

Выполнил студент Войнова Алёна Игоревна группы 3630102/80201

Проверил к. ф.-м. н., доцент Баженов Александр Николаевич

Санкт-Петербург 2021

Содержание

1	1100 1.1	становка задачи Задание 4	3 3
2	Teo	рия	3
_	2.1	Распределения	3
	2.2	Эмпирическая функция распределения	4
		2.2.1 Статистический ряд	4
		2.2.2 Определение	4
		2.2.3 Описание	4
	2.3	Оценки плотности вероятности	5
		2.3.1 Определение	5
		2.3.2 Ядерные оценки	5
3	Pea	лизация	5
4	Рез	ультаты	6
	$\frac{-}{4.1}$	Эмпирическая функция распределения	6
	4.2	Ядерные оценки плотности распределения	8
5	Обо	суждение	15
c	П.,		16
6	111	иложения	10
Л	итер	атура	17
C	Япис	сок иллюстраций	
	1	Нормальное распределение	6
	2	Распределение Коши	6
	3	Распределение Лапласа	7
	4	Распределение Пуассона	7
	5	Равномерное распределение	8
	6	Нормальное распределение, $n=20$	8
	7	Нормальное распределение, n = 60	9
	8	Нормальное распределение, n = 100	9
	9	Распределение Коши, n = 20	10
	10	Распределение Коши, n = 60	10
	11	Распределение Коши, n = 100	11
	12	Распределение Лапласа, n = 20	11
	13	Распределение Лапласа, n = 60	12
	14	Распределение Лапласа, n = 100	12
	15	Распределение Пуассона, n = 20	13
	16	Распределение Пуассона, n = 60	13
	17	Распределение Пуассона, n = 100	14

18	Равномерное распределение, $n=20$	4
19	Равномерное распределение, $n = 60 \dots 1$	15
20	Равномерное распределение, $n = 100$	15
Спис	сок таблиц	
1	Статистический ряд	4

1 Постановка задачи

Для 5 распределений:

- 1. N(x,0,1) нормальное распределение
- 2. C(x,0,1) распределение Коши
- 3. $L(x,0,\frac{1}{\sqrt{2}})$ распределение Лапласа
- 4. P(k, 10) распределение Пуассона
- 5. $U(x, -\sqrt{3}, \sqrt{3})$ равномерное распределение

1.1 Задание 4

Сгенерировать выборки размером 20, 60 и 100 элементов. Построить на них эмперические функции распределения и ядерные оценки плотности распределения на отрезке [-4;4] для непрерывных распределений и на отрезке [6;14] для распределения Пуассона.

2 Теория

2.1 Распределения

• Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}(1) \tag{1}$$

• Распределение Коши

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1} (2) \tag{2}$$

• Распределение Лапласа

$$L(x,0,\frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|}(3)$$
(3)

• Распределение Пуассона

$$P(k,10) = \frac{10^k}{k!}e^{-10}(4) \tag{4}$$

• Равномерное распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & |x| \le \sqrt{3} \\ 0 & |x| > \sqrt{3} \end{cases} (5)$$

2.2 Эмпирическая функция распределения

2.2.1 Статистический ряд

Статистическим рядом называется последовательность различных элементов выборки $z_1, z_2, ..., z_k$, расположенных в возрастающем порядке с указанием частот $n_1, n_2, ..., n_k$, с которыми эти элементы содержатся в выборке. Статистический ряд обычно записывается в виде таблицы

Z	z_1	z_1	 z_k
n	n_1	n_2	 n_k

Таблица 1: Статистический ряд

2.2.2 Определение

Эмпирической (выборочной) функцией распределения (э. ф. р.) называется относительная частота события X < x, полученная по данной выборке:

$$F_n^*(x) = P^*(X < x) \tag{6}$$

2.2.3 Описание

Для получения относительной частоты $P^*(X < x)$ просуммируем в статистическом ряде, построенном по данной выборке, все частоты n_i , для которых элементы z_i статистического ряда меньше х. Тогда $P^*(X < x) = \frac{1}{n} \sum_{z_i < x} n_i$. Получаем

$$F^*(x) = \frac{1}{n} \sum_{z_i < x} n_i \tag{7}$$

 $F^*(x)$ — функция распределения дискретной случайной величины X_* , заданной таблицей распределения

X^*	z_1	z_1	 z_k
Р	$\frac{n_1}{n}$	$\frac{n_2}{n}$	 $\frac{n_k}{n}$

Таблица 2: Статистический ряд

Эмпирическая функция распределения является оценкой, т. е. приближённым значением, генеральной функции распределения

$$F_n^*(x) \approx F_X(x) \tag{8}$$

2.3 Оценки плотности вероятности

2.3.1 Определение

Оценкой плотности вероятности f(x) называется функция $\hat{f}(x)$, построенная на основе выборки, приближённо равная f(x)

$$f(x) \approx \hat{f}(x) \tag{9}$$

2.3.2 Ядерные оценки

Представим оценку в виде суммы с числом слагаемых, равным объёму выборки:

$$\hat{f}_n(x) = \frac{1}{nh_n} \sum_{i=1}^n K(\frac{x - x_i}{h_n})$$
 (10)

Здесь функция K(u), называемая ядерной (ядром), непрерывна и является плотностью вероятности, x_1, \ldots, x_n — элементы выборки, h_n — любая последовательность положительных чисел, обладающая свойствами

$$h_n \xrightarrow[n \to \infty]{} 0, \frac{h_n}{n^{-1}} \xrightarrow[n \to \infty]{} \infty$$
 (11)

Такие оценки называются непрерывными ядерными [?, с. 421-423].

3амечание: Свойство, означающее сближение оценки с оцениваемой величиной при $n \to \infty$ в каком-либо смысле, называется состоятельностью оценки.

Если плотность f(x) кусочно-непрерывная, то ядерная оценка плотности является состоятельной при соблюдении условий, накладываемых на параметр сглаживания h_n , а также на ядро K(u).

Гауссово (нормальное) ядро [1, с. 38]

$$K(u) = \frac{1}{\sqrt{2\pi}} e^{\frac{-u^2}{2}} \tag{12}$$

Правило Сильвермана [1, с. 44]

$$h_n = 1.06\hat{\sigma}n^{-\frac{1}{5}},\tag{13}$$

где $\hat{\sigma}$ - выборочное стандартное отклонение.

3 Реализация

Лабораторная работа выполнена с помощью средств языка программирования **Python** в среде разработки **Jupyter**. Исходный код лабораторной работы приведён в приложении.

4 Результаты

4.1 Эмпирическая функция распределения

Рис. 1: Нормальное распределение

Рис. 2: Распределение Коши

Рис. 3: Распределение Лапласа

Рис. 4: Распределение Пуассона

Рис. 5: Равномерное распределение

4.2 Ядерные оценки плотности распределения

Рис. 6: Нормальное распределение, ${\bf n}=20$

Рис. 7: Нормальное распределение, n = 60

Рис. 8: Нормальное распределение, n=100

Рис. 9: Распределение Коши, ${\bf n}=20$

Рис. 10: Распределение Коши, ${\bf n}=60$

Рис. 11: Распределение Коши,
 $n=100\,$

Рис. 12: Распределение Лапласа,
 $n\,=\,20$

Рис. 13: Распределение Лапласа, n = 60

Рис. 14: Распределение Лапласа, n = 100

Рис. 15: Распределение Пуассона, n = 20

Рис. 16: Распределение Пуассона, n=60

Рис. 17: Распределение Пуассона, n = 100

Рис. 18: Равномерное распределение, ${\rm n}=20$

Рис. 19: Равномерное распределение, n = 60

Рис. 20: Равномерное распределение, n = 100

5 Обсуждение

Можем наблюдать на иллюстрациях (1) - (5), что ступенчатая эмпирическая функция распределения тем лучше приближает функцию распределения реальной выборки, чем мощнее эта выборка. Заметим так же, что для распределения Пуассона и равномерного распределения отклонение функций друг от друга наибольшее.

Рисунки (6) - (20) иллюстрируют сближение ядерной оценки и функции плотности вероятности для всех h с ростом размера выборки. Для распределения Пуассона

наиболее ярко видно, как сглаживает отклонения увеличение параметра сглаживания h.

В зависимости от особенностей распределений для их описания лучше подходят разные параметры h в ядерной оценке: для равномерного распределения и распределения Пуассона лучше подойдет параметр $h=2h_n$, для распределения Лапласа - $h=h_n/2$, а для нормального и Коши - $h=h_n$. Такие значения дают вид ядерной оценки наиболее близкий к плотности, характерной данным распределениям.

6 Приложения

URL: Выполненная лабораторная работа на GitHub https://github.com/pikabol88/Math-Statistics/blob/main/labs/Lab4.ipynb

Список литературы

[1] Анатольев, Станислав (2009) "Непараметрическая регрессия Квантиль, 7, стр. 37-52.