CORRIGE DEVOIR ECRIT N°1 Octobre 2011

Exercice n°1: voir cours

Exercice n°2:

1.
$$f(x) = (\cos 2x)^x = e^{x \ln(\cos 2x)}$$

Posons
$$X = 2x$$
. Si $x \to 0$, $X \to 0$.cos $X = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(X^5) \Rightarrow \cos 2x = 1 - 2x^2 + \frac{2x^4}{3} + o(x^5) \Rightarrow \ln(\cos 2x) = \ln(1 - 2x^2 + \frac{2x^4}{3} + o(x^5))$.

Posons
$$Y = -2x^2 + \frac{2x^4}{3} + o(x^5)$$
. Si $x \to 0$, $Y \to 0$. Comme Y est équivalent à $-2x^2$ il suffit de développer ln $(1+Y)$ à l'ordre 3.

$$\ln(1+Y) = Y - \frac{Y^2}{2} + \frac{Y^3}{3} + o(Y^3) \Rightarrow \ln(\cos 2x) = -2x^2 + \frac{2x^4}{3} - 2x^4 + o(x^5) \Rightarrow x \ln(\cos 2x) = -2x^3 - \frac{4x^5}{3} + o(x^5) \Rightarrow f(x) = e^{-2x^3 - \frac{4x^5}{3} + o(x^5)}$$

Posons
$$Z = -2x^3 - \frac{4x^5}{x^2} + o(x^5)$$
. Si $x \to 0$, $Z \to 0$. Comme Z est équivalent à $-2x^3$, il suffit de développer e^Z à l'ordre 2.

$$e^{Z} = 1 + Z + \frac{Z^{2}}{2!} + o(Z^{2}) \Rightarrow f(x) = 1 - 2x^{3} - \frac{4x^{5}}{3} + o(x^{5})$$

2. Posons
$$X = 2x$$
. Si $x \to 0$, $X \to 0$. $\sin X = X - \frac{x^3}{3!} + \frac{x^5}{5!} + o(X^5) \Rightarrow \sin(2x) = 2x - \frac{4x^3}{3!} + \frac{2x^5}{15} + o(x^5)$.

Posons $Y = 2x^2$. Si $\to 0$, $Y \to 0$. Comme Y est équivalent à $2x^2$, il suffit de développer $\frac{1}{1+Y}$ à l'ordre 3.

$$\frac{1}{1+Y} = 1 - Y + Y^2 - Y^3 + o(Y^3) \Rightarrow \frac{1}{1+2x^2} = 1 - 2x^2 + 4x^4 + o(x^5).$$

$$\Rightarrow f(x) = \left[2x - \frac{4x^3}{3} + \frac{2x^5}{15} + o(x^5)\right] \left(1 - 2x^2 + 4x^4 + o(x^5)\right) \Rightarrow f(x) = 2x - \frac{16}{3}x^3 + \frac{54}{5}x^5 + o(x^5).$$

Exercice n°3

Pour étudier localement la fonction f en 0, on va commencer par déterminer le DL à l'ordre 3 en 0 du numérateur. (ordre 3 car le dénominateur est équivalent en 0 à x^2)

Posons
$$X = 2x$$
. Si $x \to 0$ alors $X \to 0$. $e^X = 1 + X + \frac{X^2}{2!} + \frac{X^3}{3!} + o(X^3) \Rightarrow e^{2x} = 1 + 2x + 2x^2 + \frac{4}{3}x^3 + o(x^3)$.

Posons
$$Y = 4x$$
. Si $x \to 0$ alors $Y \to 0$. $\sqrt{1+Y} = 1 + \frac{1}{2}Y - \frac{1}{8}Y^2 + \frac{1}{16}Y^3 + o(Y^3) \Rightarrow \sqrt{1+4x} = 1 + 2x - 2x^2 + 4x^3 + o(x^3)$.

Posons
$$Z = x^2$$
. Si $x \to 0$ alors $Z \to 0$. $\ln(1 + Z) = Z - \frac{Z^2}{2} + o(Z^2) \Rightarrow \ln(1 + x^2) = x^2 + o(x^3)$

$$f(x) = \frac{1 + 2x + 2x^2 + \frac{4}{3}x^3 - 1 - 2x + 2x^2 - 4x^3 + o(x^3)}{x^2 + o(x^3)} = \frac{4x^2 - \frac{8}{3}x^3 + o(x^3)}{x^2 + o(x^3)} = \frac{x^2(4 - \frac{8}{3}x + o(x))}{x^2(1 + o(x))} = \frac{4 - \frac{8}{3}x + o(x)}{1 + o(x)}$$

 $\lim_{x \to 0} f(x) = 4 = f(0) \operatorname{donc} \mathbf{f} \text{ est continue en } \mathbf{0}$

$$\frac{f(x) - f(0)}{x - 0} = \frac{\frac{4 - \frac{8}{3}x + o(x)}{1 + o(x)} - 4}{x} = \frac{-\frac{8}{3}x + o(x)}{x(1 + o(x))} = \frac{x(-\frac{8}{3} + o(1))}{x(1 + o(x))} = \frac{-\frac{8}{3} + o(1)}{1 + o(x)} \Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = -\frac{8}{3} \operatorname{donc} f \text{ est dérivable en 0 et } f'(0) = -\frac{8}{3}$$

Exercice n°4:

Posons
$$X = \frac{2}{x^2}$$
. Si $x \to +\infty$, alors $X \to 0$. sin $X \approx X$ en 0 donc sin $\left(\frac{2}{x^2}\right) \approx \frac{2}{x^2}$ en $+\infty$.

$$e^{\frac{1}{x}} - e^{\frac{1}{x+1}} = e^{\frac{1}{x+1}} \left(e^{\frac{1}{x} - \frac{1}{x+1}} - 1 \right) = e^{\frac{1}{x+1}} \left(e^{\frac{1}{x(x+1)}} - 1 \right)$$
. Posons $Y = \frac{1}{x(x+1)}$. Si $x \to +\infty$, $Y \to 0$. $e^{Y} - 1 \approx Y$ en $0 \Rightarrow e^{\frac{1}{x(x+1)}} - 1 \approx \frac{1}{x(x+1)}$ en $+\infty$

On a, en
$$+\infty$$
, $\frac{\sin\left(\frac{2}{x^2}\right)}{e^{\frac{1}{x}} - e^{\frac{1}{x+1}}} \approx \frac{\frac{2}{x^2}}{\frac{e^{\frac{1}{x+1}}}{x(x+1)}} \approx \frac{2x(x+1)}{x^2} \approx \frac{2x^2}{x^2} = 2 \text{ car } \lim_{x \to +\infty} e^{\frac{1}{x+1}} = 1 \text{ donc } \lim_{x \to +\infty} \frac{\sin\left(\frac{2}{x^2}\right)}{e^{\frac{1}{x}} - e^{\frac{1}{x+1}}} = 2$

Exercice n°5:

1. La fonction f est dérivable sur $]-\infty$; $0[\cup]1; +\infty[$ comme produit et composé de fonctions dérivables et pour tout x appartenant à $]-\infty; 0[\cup]1; +\infty[$,

$$f'(x) = \sqrt{\frac{x}{x-1}} + x \frac{\frac{x-1-x}{(x-1)^2}}{2\sqrt{\frac{x}{x-1}}} = \frac{\frac{2x}{x-1} - \frac{x}{(x-1)^2}}{2\sqrt{\frac{x}{x-1}}} = \frac{2x^2 - 2x - x}{2(x-1)^2\sqrt{\frac{x}{x-1}}} = \frac{x(2x-3)}{2(x-1)^2\sqrt{\frac{x}{x-1}}}$$

Etude en 0: $\frac{f(x) - f(x)}{x - 0} = \sqrt{\frac{x}{x - 1}}$ donc $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 0$. La fonction f est dérivable en 0 et f'(0) = 0 donc la droite d'équation y = 0 est une demi-tangente à la courbe de f en l'origine du repère.

 $2.f'(x) = \frac{x(2x-3)}{2(x-1)^2 \sqrt{\frac{x}{x-1}}} \operatorname{donc} f'(x) \text{ est du signe de } x(2x-3).$

 $\lim_{\substack{x \to 1^+ \\ x \to 1^-}} \frac{x}{x-1} = +\infty$ $\lim_{\substack{x \to 1^+ \\ x \to +\infty}} \frac{x}{\sqrt{x} = +\infty}$ $\Rightarrow \lim_{\substack{x \to 1^+ \\ x \to 1^+}} \sqrt{\frac{x}{x-1}} = +\infty$ $\Rightarrow \lim_{\substack{x \to 1^+ \\ x \to 1^+}} f(x) = +\infty \Rightarrow \text{La droite d'équation } x = 1 \text{ est asymptote à la courbe de } f.$

4. Posons
$$X = \frac{1}{x}$$
. Si $x \to \infty$, alors $X \to 0$. $\sqrt{\frac{x}{x-1}} = \sqrt{\frac{\frac{1}{X}}{\frac{1}{X}-1}} = \sqrt{\frac{1}{1-X}} = (1-X)^{-\frac{1}{2}} = 1 - \frac{1}{2}(-X) + \frac{-\frac{1}{2}\left(-\frac{1}{2}-1\right)}{2!}(-X)^2 + o(X^2) = 1 + \frac{1}{2}X + \frac{3}{8}X^2 + o(X^2) = 1 + \frac{1}{2x} + \frac{3}{8x^2} + o\left(\frac{1}{x^2}\right)$

$$\Rightarrow f(x) = x \left[1 + \frac{1}{2x} + \frac{3}{8x^2} + o\left(\frac{1}{x^2}\right) \right] = x + \frac{1}{2} + \frac{3}{8x} + o\left(\frac{1}{x}\right).$$

On peut donc en déduire que $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x = +\infty$ et $\lim_{x \to -\infty} f(x) = -\infty$; la droite Δ d'équation $y = x + \frac{1}{2}$ est une asymptote à la courbe de f en $+\infty$ et en $-\infty$; 3

 $\frac{3}{8x}$ étant du signe de x, la courbe de f est au dessus de Δ en $+\infty$ et en dessous en $-\infty$.

