计算机组成原理

翁睿

哈尔滨工业大学

3.5

二、总线通信控制

1. 目的 解决通信双方 协调配合 问题

2. 总线传输周期

申请分配阶段 主模块申请,总线仲裁决定

寻址阶段 主模块向从模块 给出地址 和 命令

传数阶段 主模块和从模块 交换数据

结束阶段 主模块 撤消有关信息

2023/3/2

以输入数据为例:

```
rac{m{a}}{m{c}} rac{m{c}}{m{c}} rac{m{c}}{m{c}} rac{m{c}}{m{c}} rac{m{c}}{m{c}} rac{m{c}}{m{c}} rac{m{c}}{m{c}} rac{m{c}}{m{c}} rac{m{c}}{m{c}} rac{m{c}}{m{c}}
```

结束 T_{4} 从模块撤销数据,主模块撤销命令

2023/3/2

3.5

以输入数据为例:

 $rac{m{J}}{m{J}}igg\{m{T}_1\ ar{T}_2\ ar{T}_2\ ar{T}_2$ 主模块发命令

 T_{3-1} 从模块提供数据

传数 $\mid T_{3-2}$ 从模块提供数据

 T_{3-n} 从模块提供数据

结束 T_{4} 从模块撤销数据,主模块撤销命令

赠送小题两道

1. 某同步总线的时钟频率为 100MHz, 宽度为 32 位, 地址/数据线复用, 每传输一个地址或数据占用一个时钟周期。 若该总线支持突发 (猝发) 传输 方式,则一次"主存写"总线事务传输 128 位数据所需要的时间至少

A. 20ns B. 40ns

C. 50ns

2. 假设某系统总线在一个总线周期中并行传输 4B 信息,一个总线周期占

用 2 个时钟 周期,总线时钟频率为 10MHz,则总线带宽是。。

A. 10MB/sB. 20MB/sC. 40MB/sD. 80MB/s

3. 总线通信的四种方式

同步通信 由统一时标控制数据传送

异步通信 采用应答方式,没有公共时钟标准

半同步通信 同步、异步结合、加入等待信号

. 分离式通信 充分挖掘系统总线每个瞬间的潜力

2023/3/2

Part 3

第6章 计算机的运算方法

- 6.1 无符号数和有符号数
- 6.2 数的定点表示和浮点表示
- 6.3 定点运算
- 6.4 浮点四则运算
- 6.5 算术逻辑单元

6.1 无符号数和有符号数

一、无符号数

寄存器的位数 n

反映无符号数的表示范围

所能表示的无符号数范围:
000...000 ~ 111...111
n^0 n^1

二、有符号数

6.1

1. 机器数与真值

真值

带符号的数

+ 0.1011

-0.1011

+ 1100

-1100

机器数

符号数字化的数

小数点的位置

小数点的位置

小数点的位置

小数点的位置

2. 原码表示法 带符号的绝对值表示

(1) 定义

整数
$$[x]_{\mathbb{R}} = \begin{cases} 0, & x & 2^{n} > x \ge 0 \\ 2^{n} - x & 0 \ge x > -2^{n} \end{cases}$$

x 为真值 n 为整数的位数

小数

$$[x]_{\mathbb{R}} = \begin{cases} x & 1 > x \ge 0 \\ 1 - x & 0 \ge x > -1 \end{cases}$$

$$x 为真值$$

3. 补码表示法

6.1

12为模

(1) 补的概念

- > 一个负数加上 模 数即得该负数的补数
- ▶ 一个正数和一个负数互为补数时 它们绝对值之和即为 模数

记作 -3 ≡ +9 (mod 12)

产正数的补数等于它本身

(3) 补码定义

整数
$$[x]_{\stackrel{?}{\nmid h}} = \begin{cases} 0, & x & 2^n > x \ge 0 \\ 2^{n+1} + x & 0 > x \ge -2^n \pmod{2^{n+1}} \end{cases}$$

x 为真值

n 为整数的位数

小数

$$[x]_{\stackrel{}{\uparrow}} = \begin{cases} x & 1 > x \ge 0 \\ 2 + x & 0 > x \ge -1 \pmod{2} \end{cases}$$
x 为真值

(4) 求补码的快捷方式

6.1

 $[x]_{\mathbb{R}} \xrightarrow{?} [x]_{\mathbb{N}}$ 当真值为负时,补码可用 原码除符号位外 每位取反,末位加 1 求得

 $[x]_{i}$ $\stackrel{?}{\longrightarrow}$ $[x]_{i}$ 当真值为负时,原码可用补码除符号位外每位取反,末位加 1 求得

 $[x]_{i}$ $\xrightarrow{?}$ $[-x]_{i}$ $[x]_{i}$ 连同符号位在内,每位取反,末位加 1 即得 $[-x]_{i}$

4. 反码表示法

6.1

(1) 定义

小数
$$[x]_{\overline{\mathbb{D}}} = \begin{cases} x & 1 > x \ge 0 \\ (2 - 2^{-n}) + x & 0 \ge x > -1 \pmod{2 - 2^{-n}} \end{cases}$$
 x 为真值 n 为小数的位数

5

三种机器数的小结

6.1

- ▶ 最高位为符号位,书写上用","(整数) 或"."(小数)将数值部分和符号位隔开
- ▶ 对于正数,原码 = 补码 = 反码
- ▶ 对于负数,符号位为1,其数值部分原码除符号位外每位取反末位加1→补码原码除符号位外每位取反一反码

5. 移码表示法

6.1

定义:
$$[x]_{8} = 2^{n} + x (2^{n} > x \ge -2^{n})$$

x 为真值, n 为 整数的位数

移码在数轴上的表示

如
$$x = 10100$$

$$[x]_{8} = 2^5 + 10100 = 1,10100$$
 $x = -10100$

用 逗号 将符号位 和数值部分隔开

$$[x]_{8} = 2^5 - 10100 = 0,01100$$

2023/3/2

6.1

(2) 移码和补码的比较

设
$$x = +1100100$$

$$[x]_{8} = 2^{7} + 1100100 = 1,1100100$$

$$[x]_{4} = 0,1100100$$

$$x = -1100100$$

$$[x]_{8} = 2^{7} - 1100100 = 0,0011100$$

$$[x]_{4} = 1,0011100$$

补码与移码只差一个符号位

2023/3/2

(3) 真值、补码和移码的对照表

6	4
$\mathbf{O}_{\mathbf{I}}$	J

真值 x (n=5)	$[x]_{ eqh}$	[x] _移	[x] _移 对应的 十进制整数
-100000	100000	000000	0
- 11111	$1\ 0\ 0\ 0\ 0\ 1$	$0\ 0\ 0\ 0\ 0\ 1$	1
- 11110	$1\ 0\ 0\ 0\ 1\ 0$	$0\ 0\ 0\ 0\ 1\ 0$	2
•	•	•	:
- 00001	111111	011111	31
± 00000	$0\ 0\ 0\ 0\ 0$	$1\ 0\ 0\ 0\ 0\ 0$	32
+ 00001	$0\ 0\ 0\ 0\ 0\ 1$	$1\ 0\ 0\ 0\ 0\ 1$	33
+ 00010	$0\ 0\ 0\ 0\ 1\ 0$	100010	34
:	•	•	:
+ 11110	011110	111110	62
+ 11111	011111	111111	63

(4) 移码的特点

6.1

→ 当
$$x = 0$$
 时 $[+0]_{8} = 2^{5} + 0 = 1,00000$

$$[-0]_{8} = 2^{5} - 0 = 1,00000$$

$$\vdots [+0]_{8} = [-0]_{8}$$

 \rightarrow 当 n = 5 时 最小的真值为 $-2^5 = -100000$ $[-100000]_{8} = 2^5 - 100000 = 000000$

可见,最小真值的移码为全 0 用移码表示浮点数的阶码 能方便地判断浮点数的阶码大小

6.2 数的定点表示和浮点表示

小数点按约定方式标出

一、定点表示

定点机 小数定点机 整数定点机 原码 $-(1-2^{-n}) \sim +(1-2^{-n})$ $-(2^n-1) \sim +(2^n-1)$ 补码 $-1 \sim +(1-2^{-n})$ $-(2^n-1) \sim +(2^n-1)$ 反码 $-(1-2^{-n}) \sim +(1-2^{-n})$ $-(2^n-1) \sim +(2^n-1)$

二、浮点表示

6.2

 $N = S \times r^{j}$ 浮点数的一般形式 S 尾数 j 阶码 r 基数 (基值) 计算机中r取 2、4、8、16 等 二进制表示 当 r=2 N=11.0101✓= 0.110101×2¹⁰ 规格化数 $= 1.10101 \times 2^{1}$ $= 1101.01 \times 2^{-10}$ $\checkmark = 0.00110101 \times 2^{100}$

计算机中 S 小数、可正可负 i 整数、可正可负

6.2

1. 浮点数的表示形式

 $S_{\rm f}$ 代表浮点数的符号

n 其位数反映浮点数的精度

m 其位数反映浮点数的表示范围

j_t和 m 共同表示小数点的实际位置

2. 浮点数的表示范围 (以原码为例)

6.2

上溢 阶码 > 最大阶码 下溢 阶码 < 最小阶码 按 机器零 处理 上溢

最大负数
$$-2^{-(2^{m}-1)} \times 2^{-n}$$

$$-2^{-15} \times 2^{-10}$$

设
$$m=4$$
 $n=10$

练习

设机器数字长为 24 位, 欲表示±3万的十进制数, 试问在保证数的最大精度的前提下, 除阶符、数符各取1 位外, 阶码、尾数各取几位?

解:
$$2^{14} = 16384$$
 $2^{15} = 32768$

: 如果是定点数15 位二进制数可反映 ±3 万之间的十进制数

$$2^{15} \times 0.\times \times \times \cdots \times \times \times \\ m = 4, 5, 6, \cdots$$

满足 最大精度 可取 m = 4, n = 18

3. 浮点数的规格化形式

6.2

```
r=2 尾数最高位为 1
```

r=4 尾数最高 2 位不全为 0 基数不同,浮点数的

r=8 尾数最高 3 位不全为 0 规格化形式不同

4. 浮点数的规格化

r=2 左规 尾数左移 1 位,阶码减 1

右规 尾数右移 1 位,阶码加 1

r=4 左规 尾数左移 2 位,阶码减 1

右规 尾数右移 2 位, 阶码加 1

r=8 左规 尾数左移 3 位,阶码减 1

右规 尾数右移 3 位, 阶码加 1

基数r越大,可表示的浮点数的范围越大基数r越大,浮点数的精度降低

例如: 设m=4, n=10, r=2

6.2

尾数规格化后的浮点数表示范围

$$=2^{15}\times(1-2^{-10})$$

$$= 2^{-15} \times 2^{-1} = 2^{-16}$$

$$2^{-1111} \times (-0.1000000000)$$

$$=-2^{-15}\times 2^{-1}=-2^{-16}$$

$$2^{+1111} \times (-0.1111111111) = -2^{15} \times (1-2^{-10})$$

$$=-2^{15}\times(1-2^{-10})$$

三、举例

6.2

例 4.13 将 $+\frac{19}{128}$ 写成二进制定点数、浮点数及在定点机和浮点机中的机器数形式。其中数值部分均取 10 位,数符取 1 位,浮点数阶码取 5 位(含1位阶符)。

解: 设 $x = + \frac{19}{128}$

二进制形式

x = 0.0010011

定点表示

x = 0.0010011000

浮点规格化形式 $x = 0.1001100000 \times 2^{-10}$

定点机中

 $[x]_{\text{ff}} = [x]_{\text{fr}} = [x]_{\text{fg}} = 0.0010011000$

浮点机中

 $[x]_{\mathbb{R}} = 1,0010; 0.1001100000$

 $[x]_{3} = 1, 1110; 0.1001100000$

 $[x]_{\bowtie} = 1, 1101; 0.1001100000$

例 4.14 将 -58 表示成二进制定点数和浮点数, 6.2 并写出它在定点机和浮点机中的三种机器数及阶码为移码、尾数为补码的形式(其他要求同上例)。

二进制形式

x = -111010

定点表示

x = -00001111010

浮点规格化形式 $x = -(0.1110100000) \times 2^{110}$

定点机中

 $[x]_{\text{ff}} = 1,0000111010$

 $[x]_{3} = 1,1111000110$

 $[x]_{\overline{\aleph}} = 1, 1111000101$

浮点机中

 $[x]_{\text{\tiny β}} = 0,0110; 1.1110100000$

 $[x]_{3} = 0,0110; 1.0001100000$

 $[x]_{\mathbf{x}} = 0,0110; 1.0001011111$

 $[x]_{\text{max}} = 1,0110; 1.0001100000$

例 4.15 写出对应下图所示的浮点数的补码 6.2 形式。设 n = 10, m = 4, 阶符、数符各取 1位。

0,1111; 1.0000000001

 $-2^{15} \times (1-2^{-10})$

2023最小负数

- ▶ 当浮点数 尾数为 0 时,不论其阶码为何值 按机器零处理
- 》 当浮点数 阶码等于或小于它所表示的最小数 时,不论尾数为何值,按机器零处理

如
$$m=4$$
 $n=10$

当阶码和尾数都用补码表示时,机器零为

$$\times, \times \times \times \times;$$
 0.00 ··· 0

当阶码用移码,尾数用补码表示时,机器零为 0,0000; 0.00 ··· 0

2023/3有利于机器中"判0"电路的实现

四、IEEE 754 标准

6.2

尾数为规格化表示

非"0"的有效位最高位为"1"(隐含)

	符号位 S	阶码	尾数	总位数
短实数	1	8	23	32
长实数	1	11	52	64
临时实数	1	15	64	80

"Father" of the IEEE 754 standard

- ▶直到80年代初,各个机器内部的浮点数表示格式还没有统一,因而相 互不兼容,机器之间传送数据时,带来麻烦
- > 1970年代后期, IEEE成立委员会着手制定浮点数标准
- ▶ 1985年完成浮点数标准IEEE 754的制定
- ➤ 现在所有计算机都采用 IEEE 754来表示浮点数

This standard was primarily the work of one person, UC Berkeley math professor William Kahan.

1989 ACM Turing Award Winner!

www.cs.berkeley.edu/~wkahan/ieee754status/754story.html

Prof. William Kahan

IEEE 754 Floating Point Standard

Single Precision: (Double Precision is similar)

S Exponent Significand

1 bit 8 bits 23 bits

- ° Sign bit: 1 表示negative; 0表示 positive NaN Inf
- [°] Exponent(阶码):

全0和全1用来表示特殊值!

- ·SP规格化数阶码范围为0000 0001 (-126) ~ 1111 1110 (127)
- •bias为127 (single), 1023 (double)

若用128,则阶码的

范围变为多少?

- 。Significand (尾数):
 - 规格化尾数最高位总是1, 所以隐含表示, 省1位
 - 1 + 23 bits (single), 1 + 52 bits (double)
- SP: $(-1)^S$ x (1 + Significand) x $2^{(Exponent-127)}$ 0000 0001 (-127) ~ 1111 1110 (126)
- DP: $(-1)^S \times (1 + Significand) \times 2^{(Exponent-1023)}$

Ex: Converting Binary FP to Decimal

BEE00000H is the hex. Rep. Of an IEEE 754 SP FP number

1 0111 1101 110 0000 0000 0000 0000 0000

- Sign: 1 => negative
- ° Exponent:
 - 0111 1101 $_{two} = 125_{ten}$
 - Bias adjustment: 125 127 = -2
- ° Significand:

$$1 + 1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 0 \times 2^{-4} + 0 \times 2^{-5} + \dots$$

=1+2⁻¹ +2⁻² = 1+0.5 +0.25 = 1.75

Represents: $-1.75_{\text{ten}} \times 2^{-2} = -0.4375$

Ex: Converting Decimal to FP -12.75

- 1. Denormalize: -12.75
- 2. Convert integer part:

$$12 = 8 + 4 = 1100_2$$

3. Convert fractional part:

$$.75 = .5 + .25 = .11_{2}$$

4. Put parts together and normalize:

$$1100.11 = 1.10011 \times 2^3$$

5. Convert exponent: $127 + 3 = 128 + 2 = 1000 \ 0010_2$

The Hex rep. is C14C0000H

- 4.3 定点运算
- 一、移位运算
 - 1. 移位的意义

15 m = 1500 cm

小数点右移 2 位

机器用语 15 相对于小数点 左移 2 位

(小数点不动)

左移 绝对值扩大

右移 绝对值缩小

。在计算机中,移位与加减配合,能够实现乘除运算

2. 算术移位规则

符号位不变

	码制	添补代码
正数	原码、补码、反码	0
负数	原码	0
	补 码	左移添0
	补 码	右移添1
	反 码	1

例4.16

4.3

设机器数字长为 8 位(含 1 位符号位),写出 A = +26时,三种机器数左、右移一位和两位后的表示形式及对应的真值,并分析结果的正确性。

解:
$$A = +26 = +11010$$
 则 $[A]_{\mathbb{F}} = [A]_{\mathbb{H}} = [A]_{\mathbb{D}} = \mathbf{0,0011010}$

移位操作	机器数 $[A]_{\mathbb{F}}=[A]_{\mathbb{A}}=[A]_{\mathbb{F}}$	对应的真值
移位前	0,0011010	+26
左移一位	0,0110100	+52
左移两位	0,1101000	+104
右移一位	0,0001101	+13
右移两位	0,0000110	+6

设机器数字长为8位(含1位符号位),写出 A=-26时,三种机器数左、右移一位和两位后的表 示形式及对应的真值,并分析结果的正确性。

解: A = -26 = -11010

原码

移位操作	机器数	对应的真值
移位前	1,0011010	- 26
左移一位	1,0110100	- 52
左移两位	1,1101000	- 104
右移一位	1,0001101	- 13
右移两位	1,0000110	-6

补码

移位操作	机器数	对应的真值
移位前	1,1100110	-26
左移一位	1,1001100	- 52
左移两位	1,0011000	- 104
右移一位	1,1110011	- 13
右移两位	1,1111001	-7

反码

移位操作	机器数	对应的真值
移位前	1,1100101	- 26
左移一位	1,1001011	- 52
左移两位	1,0010111	- 104
右移一位	1,1110010	- 13
右移两位	1,1111001	-6

3. 算术移位的硬件实现

4.3

- (a)真值为正
- (b)负数的原码
- (c) 负数的补码
- (d)负数的反码

←丢1 出错

出错

正确

正确

→丢1 影响精度

影响精度

影响精度

正确

4. 算术移位和逻辑移位的区别

4.3

算术移位 有符号数的移位

逻辑移位 无符号数的移位

逻辑左移 低位添 0, 高位移丢

逻辑右移 高位添 0, 低位移丢

例如 01010011

逻辑左移 10100110 逻辑右

算术左移 00100110

逻辑右移

算术右移

01011001

10110010

11011001 (补码)

高位1移丢

0

 $1\ 0\ 1\ 0\ 0\ 1\ 1\ 0$

二、加减法运算

4.3

- 1. 补码加减运算公式
 - (1) 加法

整数
$$[A]_{\nmid h} + [B]_{\nmid h} = [A+B]_{\nmid h} \pmod{2^{n+1}}$$

小数
$$[A]_{\stackrel{?}{\nmid \nmid}} + [B]_{\stackrel{?}{\nmid \nmid}} = [A+B]_{\stackrel{?}{\nmid \nmid}} \pmod{2}$$

(2) 减法

$$A-B = A+(-B)$$

整数
$$[A-B]_{\stackrel{?}{\nmid h}} = [A+(-B)]_{\stackrel{?}{\nmid h}} = [A]_{\stackrel{?}{\nmid h}} + [-B]_{\stackrel{?}{\nmid h}} \pmod{2^{n+1}}$$

小数
$$[A-B]_{\stackrel{?}{\nmid h}} = [A+(-B)]_{\stackrel{?}{\nmid h}} = [A]_{\stackrel{?}{\nmid h}} + [-B]_{\stackrel{?}{\nmid h}} \pmod{2}$$

连同符号位一起相加,符号位产生的进位自然丢掉

2. 举例

4.3

例 6.18 设 A = 0.1011, B = -0.0101求 $[A+B]_{\lambda h}$ 验证 $[A]_{3} = 0.1011$ 解: 0.1011 $+[B]_{\stackrel{*}{\not=}} = 1.1011$ 0.0101 $[A]_{\nmid h} + [B]_{\nmid h} = 10.0110 = [A + B]_{\nmid h}$ 0.0110 A + B = 0.0110例 6.19 设 A = -9, B = -5求 $[A+B]_{\stackrel{*}{\nmid}}$ 验证 $[A]_{k} = 1, 0111$ -1001 $+[B]_{3} = 1, 1011$ +-0101 $[A]_{\nmid h} + [B]_{\nmid h} = 11, 0010 = [A + B]_{\nmid h}$ -1110

A + B = -1110

2023/3/2

例 6.20 设机器数字长为 8 位(含 1 位符号位) 4.3 且 A=15, B=24,用补码求 A-B

解:
$$A = 15 = 0001111$$
 $B = 24 = 0011000$
 $[A]_{\dag} = 0,0001111$
 $[B]_{\dag} = 0,0011000$

$$+ [-B]_{3} = 1,1101000$$

$$[A]_{\not \uparrow \uparrow} + [-B]_{\not \uparrow \uparrow} = 1,1110111 = [A-B]_{\not \uparrow \uparrow}$$

$$A - B = -1001 = -9$$

练习 1 设
$$x = \frac{9}{16}$$
 $y = \frac{11}{16}$,用补码求 $x+y$ $x+y=-0.1100=-\frac{12}{16}$ 错

练习 2 设机器数字长为 8 位 (含 1 位符号位) 且 A = -97, B = +41, 用补码求 A - B

$$A - B = +1110110 = +118$$
 错

3. 溢出判断

4.3

(1) 一位符号位判溢出

参加操作的两个数(减法时即为被减数和"求补"以后的减数)符号相同,其结果的符号与原操作数的符号不同,即为溢出

硬件实现

最高有效位的进位 🕀 符号位的进位 = 1 溢出

2023/3/2

(2) 两位符号位判溢出

4.3

$$[x]_{\nmid h'} = \begin{cases} x & 1 > x \ge 0 \\ 4 + x & 0 > x \ge -1 \pmod{4} \end{cases}$$

$$[x]_{\lambda} + [y]_{\lambda} = [x + y]_{\lambda}$$
 (mod 4)

$$[x-y]_{k} = [x]_{k} + [-y]_{k}$$
 (mod 4)

结果的双符号位 相同

未溢出

00, ××××× × **11**, ×××××

结果的双符号位 不同

溢出

10, ×××××

01, ×××××

最高符号位 代表其 真正的符号

4. 补码加减法的硬件配置

A、X均n+1位

用减法标记 Gs 控制求补逻辑

第6章 课后作业 ★第一弹

作业: T6.4, T6.9, T6.19 (1) (3)

6.4 设机器数字长为 8 位(含 1 位符号位在内),写出对应下列各真值的原码、补码和反码。 13 29 100 07

$$-\frac{13}{64}, \frac{29}{128}, 100, -87$$

- 6.9 当十六进制数 9BH 和 FFH 分别表示为原码、补码、反码、移码和无符号数时, 所对应的十进制数各为多少(设机器数采用 1 位符号位)?
- 6.19 设机器数字长为 8 位(含 1 位符号位),用补码运算规则计算下列各题。

友情提醒:下次上课时交前3次作业 ②