<u>Т2</u> (Критерий Коши сходимости последовательности к.ч.)

$$(\{z_n\}$$
сходится) \iff $(\{z_n\} - \phi$ ундаментальная)

 Δ :

$$\max(|x_{n+p}-x_n|,|y_{n+p}-y_n|) \leq |z_{n+p}-z_n| \leq |x_{n+p}-x_n| + |y_{n+p}-y_n|$$

Ряды комплексных чисел

Рассмотрим
$$\{w_n\}\subset\mathbb{C}\longrightarrow w_1+\ldots+w_n+\ldots=\sum_{k=1}^\infty w_k\ (1)$$
 $\forall n\in\mathbb{N}\ S_n=w_1+\ldots+2_n,\ \{S_n\}$

Если $\exists \lim_{n \to \infty} S_n = S \in \mathbb{C}$, то ряд (1) называется сходящимся, а S называется суммой. Если сходится ряд $|w_1| + |w_2| + \ldots + |w_n| + \ldots = \sum_{k=1}^\infty |w_k|$, то ряд (1) называется абсолютно сходящимся.

<u>Т3</u> (Критерий Коши для числовых рядов)

$$((1)$$
 - СХОДИТСЯ) \iff $(orall \epsilon > 0 \exists N \in \mathbb{N} orall n, p \in \mathbb{N})$ $\sum_{k=n+1}^{n+p} = S_{n+p} - S_n$

Если к критерию Коши "добавим" неравенство $\triangle \implies$ Если (1) сходится абсолютно $\implies (1)$ сходится

Следствие из критерия Коши (необходимое условие)

Если
$$(1)$$
 сходится, то $w_n \longrightarrow 0$, $n \longrightarrow \infty$

 Δ :

Критерий Коши
$$p=1$$
 $|w_{n+1}|<\epsilon$

<u>Свойства</u>:

1. Пусть (1) с $w_n=u_n+iv_n$

((1) сходится к
$$S=S_1+iS_2)\iff (\sum_{n=1}^\infty u_n=S_1\wedge\sum_{n=1}^\infty v_n=S_2)$$

2.
$$\sum_{k=1}^\infty w_k = S'$$
, $\sum_{k=1}^\infty S''$. Тогда $orall \lambda, \mu \in \mathbb{C}$ $\sum_{k=1}^\infty (\lambda w_k + \mu z_k) = \lambda S' + \mu S''$

Расширенная комплексная плоскость. Стереографическая проекция. Сфера Римана.

extstyle ex

$$orall E>0 \exists N\in \mathbb{N} orall nin \mathbb{N} (n\geq N \implies |z_n|>E) \ z_n\longrightarrow \infty, n\longrightarrow \infty; \lim_{n o\infty} z_n=\infty$$

 $\{z_n\}$ является неограниченной, если $orall C>0 \exists n(C)\in \mathbb{N}\mid z_{n(C)}>C$ $\{z_n\}$ не является ограниченной $\implies \exists \{z_{n_k}\}:z_{n_k}\longrightarrow \infty, k\longrightarrow \infty$

<u>Опр.6</u> Расширенной комплексной плоскостью назовем комплексную плоскость ${\mathbb C}$ с добавлением к ней идеальным элементом ∞

Обозначение: $\bar{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$

 $orall \epsilon > 0$

 $\dot{U}_{\epsilon}(\infty) = \{z \in \mathbb{C} \mid |z| > \epsilon\}$ - проколотая окрестность ∞

 $U_{\epsilon}(\infty) = \dot{U_{\epsilon}}(\infty) \cup \{\infty\}$ - окрестность ∞

<u>Опр.7</u>

 $\{z_n\}\subset ar{\mathbb{C}}$ называется сходящейся к $z_0\in ar{\mathbb{C}}$, если $orall \epsilon>0$ $\exists N\in \mathbb{N}(n\geq N\implies z_n\in U_\epsilon(z_0))$ $orall \{z_n\}\subset ar{\mathbb{C}}$ $\exists \{z_{n_k}\}$ сходится к $z_0\in ar{\mathbb{C}}$

Стереографическая проекция. Сфера Римана.

Рассмотрим в \mathbb{R}^3 - ЕП сферу $\xi^2 + \eta^2 + \zeta^2 = \zeta$

 $ec{q} = \{x,y,-1\}$ - направляющий вектор \overrightarrow{NM}

здесь могла бы быть ваша ре... картинка

Плоскость $\zeta=0$ отождествляем с $\mathbb C$

$$egin{aligned} \xi = x \cdot t \wedge \eta = y \cdot t \wedge \zeta = 1 - t \mid \ M-?, M \in S \implies (x^2 + y^2)t^2 + 1 - 2t + t^2 = 1 - t \iff t((x^2 + y^2 + 1)t - 1) = 0 \end{aligned}$$

$$t=0 ee t = rac{1}{x^2+y^2+1} = rac{1}{|z|^2+1} \longrightarrow M: egin{cases} \xi = rac{x}{1+|z|^2} \ \eta = rac{y}{1+|z|^2} \ \zeta = rac{|z|^2}{1+|z|^2} \end{cases}$$

$$t=1-\zeta\longrightarrow z?x=rac{\xi}{1-\zeta};y=rac{\eta}{1-\zeta}$$

Отображение $S\setminus\{N\}\longrightarrow z=x+iy$ называется стереографической проекцией. Это взаимно однозначное и взаимно непрерывное отображение $S\setminus\{N\}$ на $\mathbb C$. Поставим соответствие:

 $N \leftrightarrow \infty$ и получим S на $ar{\mathbb{C}}$

Такая модель называется сферой Римана.

§4. Функции комплексной переменной. Предел. Непрерывность.

Пусть
$$E\subset \bar{\mathbb{C}},\,f:E\longrightarrow \bar{\mathbb{C}}.\,f(z)\longrightarrow w_0,\,z\longrightarrow z_0,\,z\in E$$
 $z_0,w_0\in \mathbb{C},\,z$ - предельная точка $E.\ orall \epsilon>0 \exists \delta>0 f(\dot{U}_\delta(z_0)\cap E)\subset U_\epsilon(w_0)$

Пусть $v \subset E \; f(v) = \{w \in \bar{\mathbb{C}} \mid \exists z \in V f(z) = w\}$ - образ множества V при отображении f.

Пусть, например, $z_0\in\mathbb{C},\,z_0$ - предельная точка $E,\,w_0=\infty$ $f(E)\subset\mathbb{C}$

$$f(z) \longrightarrow \infty, \ E \ni z \longrightarrow z_0 \iff \forall E > 0 \exists \delta > 0 \forall z \in E \ (0 < |z - z_0| < \delta \implies |f(z)| > E)$$

Остальные частные случаи аналогично.

Рассмотрим далее основной случай: $E\in\mathbb{C}, f(E)\subset\mathbb{C}$ - конечные значения, т.к. $\in\mathbb{C}$ (не $\in\bar{\mathbb{C}}$)

$$egin{aligned} orall z = x + iy \in E &\longrightarrow f(z) \in \mathbb{C} \ f(z) = u(x,y) + iv(x,y); \ u = Ref(z); \ v = Imf(z); \ orall (x,y) \in E &\longrightarrow (u(x,y),v(x,y)) \in \mathbb{R}^2 \end{aligned}$$

Утв.1

Пусть
$$f:E\longrightarrow \mathbb{C},\,E\subset \mathbb{C},\,z_0$$
 - предельная точка E $z_0=x_0+iy_0,\,w_0=u_0+iv_0$
$$(f(z)\longrightarrow w_0,E\ni z\longrightarrow z_0)\iff (\exists\lim_{E\ni (x,y)\to (x_0,y_0)}u(x,y)=u\land\exists\lim_{E\ni (x,y)\to (x_0,y_0)}v(x,y)=v_0)$$

 Δ :

$$(f(z)\longrightarrow w_0, E
ightarrow z_0) \iff (orall \epsilon>0 \exists \delta>0 orall z\in E(0<|z-z_0|<\delta\implies |f(z)-w_0|<\epsilon))$$
 $(1)\max(|u(x,y)-x_0|,|v(x,y)-v_0|)\leq |u(x,y)-u_0|+|v(x,y)-v_0|$ \implies Из (1) и определения $\implies orall (x,y)\in E$: $0<\sqrt{(x-x_0)^2+(y-y_0)^2}<\delta$ $|u(x,y)-u_0|<\epsilon \wedge |v(x,y)-v_0|<\epsilon$ \iff По $\frac{\epsilon}{2}$ $\exists \delta_1>0$ $|u(x,y)-u_0|<\epsilon/2$ $orall (x,y)\in E\cap \dot{U_{\delta_1}}(x_0,y_0)$ $\exists \delta_2>0$ $|v(x,y)-v_0|<\epsilon/2$ $orall (x,y)\in E\cap \dot{U_{\delta_2}}(x_0,y_0)$ Рассмотрим $\delta=\min(\delta_1,\delta_2)$

Арифметические свойства пределов:

(Борисыч устно проговорил, так что не совсем точно)

$$egin{aligned} &\lim(f+g)=\lim f+\lim g \ &\lim cf=c\lim f \ &\lim f\cdot g=\lim f\cdot &\lim g \ &\lim rac{f}{g}=rac{\lim f}{\lim g},\,g
eq 0 \end{aligned}$$

Непрерывность функции комплексных переменных

Опр.2

Пусть $E \subset \mathbb{C}$, $f: E \longrightarrow \mathbb{C}$, $z_0 \in E$

Функция f(z) называется непрерывной в точке z_0 по множеству E, если $orall \epsilon>0 \exists \delta_\epsilon>0 orall z\in E\ (|z-z_0|<\delta\implies|f(z)-f(z_0)|<\epsilon)$

- а) Если точка z_0 это изолированная точка E, то f(z) непрерывна в точке z_0 .
- б) Если точка z_0 предельная точка E, то непрерывность означает, что $\exists \lim_{E\ni z\to 0} f(z)=f(z_0)$

 $f\in C(E)$ - множество непрерывных функций на E $C(E;\mathbb{C})$

Свойства непрерывных функций:

Пусть $f_1, f_2 \in C(E)$. Тогда:

1.
$$f_1\pm f_2\in C(E)$$

2.
$$f_1 \cdot f_2 \in C(E)$$

$$3.\ orall z\in Ef(z)=0$$
, то $rac{f_1}{f_2}inC(E)$

<u>Утв.2</u>

Пусть
$$f:E\longrightarrow \mathbb{C},\, E\subset \mathbb{C},\, u(x,y)=Ref(z),\, v(x,y)=Imf(z).$$
 Тогда $(f\in C(E))\iff (u\in C(E)\wedge v\in C(E))$