### Présentation TIPE

Vidéosurveillance et compression de données

Ethan BANDASACK - Candidat n°11973

Session 2023 - Thème : la ville

#### Sommaire

- Introduction
  - Lien avec le thème : vidéo-surveillance et données
  - Différentes étapes
  - Modélisation
- Différentes approches
  - Compression avec perte
  - Compression sans perte
    - Redondance
    - Entropie et borne de Shannon
    - Transformée de Burrows-Wheller
- Conclusion

#### Des caméras dans la ville

# Caméras de surveillance (« vidéo-protection »)

| Ville   | Nombre de caméras | (pour 100.000 habitants) |
|---------|-------------------|--------------------------|
| Paris   | 44 962            | 404                      |
| Nice    | 2 666             | 771                      |
| Londres | 127 373           | 1 335                    |
| (Chine) | <del></del>       | 37 280                   |

Estimations de 2022. Source: https://www.comparitech.com/vpn-privacy/the-worlds-most-surveilled-cities/

### Big data

#### Estimation naïve:

- Résolution 2560×1920 pixels « 5 MP »
- 15 images par seconde
- Profondeur de couleur « 8-bit color », 8 bits utilisés par pixel
  - $\longrightarrow$  1,9  $\times$  10<sup>13</sup> octets/jour/caméra
  - $\longrightarrow$  8,6  $\times$  10<sup>17</sup> octets/jour pour Paris

(Capacité du plus gros data center (Utah, États-Unis) :  $10^{18}$  octets...)

#### Problématique retenue

Quelles sont les différentes méthodes à disposition pour compresser un flux vidéo?

#### Principe de la compression



## Un bloc



#### 1 pixel

RGB:  $(r, g, b) \in [0, 255]^3$ 



Luminance / Chrominances :  $(Y, C_r, C_b) \in [0; 255] \times [-128; 127]^2$ 



## Compression naïve





## Compression par composante RGB



## Compression par composante YCrCb



#### Transformée de FOURIER

#### Transformée de Fourier à 1 dimension

Soit  $f: \mathbb{R} \to \mathbb{C}$  intégrable.

La transformée de f est  $\hat{f}: \left\{ egin{array}{ll} \mathbb{R} & \longrightarrow & \mathbb{C} \\ 
u & \longmapsto & \int_{\mathbb{R}} f(t) \mathrm{e}^{-\mathrm{i} 2\pi \nu t} \mathrm{d}t \end{array} \right.$ 

Si  $\hat{f}$  est intégrable, on a :  $\forall x \in \mathbb{R}, f(x) = \int_{\mathbb{R}}, \hat{f}(\nu) \mathrm{e}^{\mathrm{i} 2\pi \nu x} \mathrm{d} \nu$ .

- → Transformée de FOURIER à 2 dimensions
- --- Transformée de FOURIER discrète
- --- Transformée de FOURIER discrète à 2 dimensions
- --- Transformée en cosinus discrète

Définitions : cf Annexe

## Transformée en cosinus discrète (DCT)

### Transformée en cos discrète à 2 dimensions (2D DCT-II/III)

La transformée en cosinus discrète du signal s est :

$$S(k,l) = \frac{2}{\sqrt{NM}} \sum_{(n,m) \in \mathcal{N}} \alpha_k \alpha_l s(n,m) \cos\left(\frac{\pi}{N} \left(n + \frac{1}{2}\right) k\right) \cos\left(\frac{\pi}{M} \left(m + \frac{1}{2}\right) l\right).$$

On a alors, pour  $(n, m) \in \mathcal{N}$  :  $(\alpha_x = \frac{1}{\sqrt{2}} \text{ si x=0, 1 sinon})$ 

$$s(n,m) = \frac{2}{\sqrt{NM}} \sum_{(k,l) \in \mathcal{N}} \alpha_k \alpha_l S(k,l) \cos\left(\frac{\pi}{N} \left(n + \frac{1}{2}\right) k\right) \cos\left(\frac{\pi}{M} \left(m + \frac{1}{2}\right) l\right).$$

#### En matriciel:

$$\mathfrak{S} = \begin{pmatrix} s(0,0) & \dots & s(0,M-1) \\ & & & & \\ \vdots \\ s(N-1,0) & \dots & s(N-1,M-1) \end{pmatrix}, \quad \mathscr{S} = \begin{pmatrix} S(0,0) & \dots & S(0,M-1) \\ & & & \\ \vdots \\ S(N-1,0) & \dots & S(N-1,M-1) \end{pmatrix}$$

$$C = \left(\alpha_a \cos\left(\frac{\pi}{N}\left(b + \frac{1}{2}\right)a\right)\right)_{\substack{0 \le a \le N-1 \\ 0 \le b \le M-1}}$$

$$\mathscr{S} = C \mathfrak{s} D^T$$

$$D = \left(\alpha_a \cos\left(\frac{\pi}{M}\left(b + \frac{1}{2}\right)a\right)\right)_{\substack{0 \le a \le N-1\\0 \le b \le M-1}}$$

$$\mathfrak{s} = C^T \mathscr{S} D$$

## Mise en pratique (luminance)



| -70 | -64 | -72 | -73 | -69 | -106 | -121 | -121 |
|-----|-----|-----|-----|-----|------|------|------|
| 80  | 83  | 79  | 78  | 65  | -65  | -118 | -119 |
| -28 | -26 | -18 | -11 | 0   | -78  | -120 | -120 |
| -53 | -53 | -49 | -39 | -30 | -107 | -121 | -121 |
| -53 | -48 | -49 | -48 | -49 | -110 | -122 | -121 |
| -50 | -46 | -46 | -45 | -54 | -110 | -120 | -121 |
| -68 | -73 | -78 | -79 | -61 | -114 | -122 | -121 |
| 13  | 17  | 5   | -18 | -56 | -115 | -119 | -121 |

## Coefficients de la transformée en cosinus discrète (DCT-II)

| -486 | 296  | -125 | -20 | 65  | -36 | -25 | 33 |
|------|------|------|-----|-----|-----|-----|----|
| 85   | 24   | -46  | 11  | 14  | -13 | 2   | 2  |
| 38   | 45   | 22   | -6  | -11 | 2   | 1   | -5 |
| -108 | -65  | 25   | 4   | -11 | 3   | 0   | -4 |
| -80  | -30  | 34   | -9  | -14 | 9   | -2  | -5 |
| -158 | -111 | 22   | 19  | -6  | 0   | 3   | 1  |
| -53  | -32  | 14   | -4  | -14 | 7   | 5   | -8 |
| -65  | -48  | 10   | 11  | -7  | -3  | 5   | -1 |

### Mise en pratique



Nouvelle base fréquentielle



Représentation du bloc de DCT

### "Filtre passe-bas"



| 255 | 155 | 66 | 9 | 33 | 0 | 0 | 0 |
|-----|-----|----|---|----|---|---|---|
| 44  | 13  | 24 | 6 | 0  | 0 | 0 | 0 |
| 19  | 23  | 11 | 0 | 0  | 0 | 0 | 0 |
| 56  | 34  | 0  | 0 | 0  | 0 | 0 | 0 |
| 41  | 0   | 0  | 0 | 0  | 0 | 0 | 0 |
| 0   | 0   | 0  | 0 | 0  | 0 | 0 | 0 |
| 0   | 0   | 0  | 0 | 0  | 0 | 0 | 0 |
| 0   | 0   | 0  | 0 | 0  | 0 | 0 | 0 |

### "Filtre passe-bas"



Bloc de base



Bloc dégradé "passe-bas"

#### Comparaison avec la méthode naïve : réduction d'un facteur 4



Compression naïve (blocs  $2\times2$ )



Compression "passe-bas"

### Comparaison avec la méthode naïve : réduction d'un facteur 4



Image de base



Compression naïve



"Passe-bas"

## Tables de quantification (JPEG)

### Luminance

| 16 | 11 | 10 | 16 | 24  | 40  | 51  | 61  |
|----|----|----|----|-----|-----|-----|-----|
| 12 | 12 | 14 | 19 | 26  | 58  | 60  | 55  |
| 14 | 13 | 16 | 24 | 40  | 57  | 69  | 56  |
| 14 | 17 | 22 | 29 | 51  | 87  | 80  | 62  |
| 18 | 22 | 37 | 56 | 68  | 109 | 103 | 77  |
| 24 | 35 | 55 | 64 | 81  | 104 | 113 | 92  |
| 49 | 64 | 78 | 87 | 103 | 121 | 120 | 101 |
| 72 | 92 | 95 | 98 | 112 | 100 | 103 | 99  |
|    |    |    |    |     |     |     |     |

### Chrominance

| 17 | 18 | 24 | 47 | 99 | 99 | 99 | 99 |
|----|----|----|----|----|----|----|----|
| 18 | 21 | 26 | 66 | 99 | 99 | 99 | 99 |
| 24 | 26 | 56 | 99 | 99 | 99 | 99 | 99 |
| 47 | 66 | 99 | 99 | 99 | 99 | 99 | 99 |
| 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 |
| 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 |
| 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 |
| 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 |

## Exempl<u>es</u>





## Exemples





#### Redondance





#### Arbre binaire, code préfixe



Le code des feuilles est {00, 010, 011, 10, 11}.

Source: blog.savoirfairelinux.com

Exemple: "bcarr"  $\rightarrow$  [010011001111], 12 bits

## Entropie d'un code

#### Longueur d'un code

On définit la longueur d'un code préfixe c d'une suite de caractères X d'un alphabet  $\mathcal{A}=(a_i)_{i\in I}$  par :

$$L(c) = \sum_{i \in I} p_i \ell_c(a_i)$$

avec  $\ell_c(a_i)$  la longueur du caractère  $a_i$  codé par c, et  $p_i \in [0,1]$  la fréquence d'apparition du caractère  $a_i$  dans X.

### Entropie d'un code

#### Entropie de SHANNON

On conserve les notations précédentes. On définit l'entropie de X par :

$$H(X) = -\sum_{i \in I} p_i \log_2(p_i).$$

#### Borne de Shannon

Pour tout code préfixe  $c: L(c) \geq H(X)$ .

Codage par plages (RLE – Run-Length Encoding)

Algorithme MTF (Move-to-front)

Codage de HUFFMAN

Transformée de Burrows-Wheeler (BWT)



Exemple canonique de la BWT

### Codage de HUFFMAN: construction



Source: https://upload.wikimedia.org/wikipedia/commons/d/d8/HuffmanCodeAlg.png

#### Quelques considérations numériques

Une distance entre 
$$(M_{i,j,c})_{\substack{1 \leq j \leq N \\ 1 \leq j \leq M \\ 1 \leq c \leq 3}}$$
 et  $(M_{i,j,c}^{(ref)})_{\substack{1 \leq j \leq N \\ 1 \leq j \leq M \\ 1 \leq c \leq 3}}$   $(\in \mathcal{M}_{i,j}\left(\mathbb{R}^3\right))$ :

$$d(M, M^{(ref)}) = \frac{1}{NM} \sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{c=1}^{3} \left| M_{i,j,c} - M_{N,M,c}^{(ref)} \right|$$

| Transformation        | Shanghaï | New York |
|-----------------------|----------|----------|
| TCD (luminance seule) | 76       | 90       |
| TCD                   | 131      | 153      |
| Naïve (facteur 2)     | 29       | 34       |
| Naïve (facteur 8)     | 64       | 65       |
| Naïve (facteur 25)    | 95       | 87       |

## Taux de compression de la BWT

| Méthode                 | Octets occupés | Taux de compression |
|-------------------------|----------------|---------------------|
| Avant codage entropique | 1,8 million    | 1                   |
| Huffman seul            | 0,317 million  | 5,70                |
| Huffman seul par blocs  | 0,365 million  | 4,96                |
| Huffman + MTF           | 0,392 million  | 4,61                |
| Huffman + MTF par blocs | 0,386 million  | 4,69                |
| Huffman + BWT           | 0,317 million  | 5,70                |
| Huffman + BWT par blocs | 0,372 million  | 4,86                |
| Huffman + BWT + MTF     | 0,348 million  | 5,19                |
| " + " + " par blocs     | 0,411 million  | 4,40                |

### Changement de base

Une relation linéaire entre les deux triplets

$$\begin{pmatrix} 0,299 & 0,587 & 0,114 \\ -0,1687 & -0,3313 & 0,5 \\ 0,5 & -0,4187 & -0,0813 \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix} = \begin{pmatrix} Y \\ C_b \\ C_r \end{pmatrix}$$

#### Transformée de FOURIER

#### Transformée de Fourier à 1 dimension

Soit  $f: \mathbb{R} \to \mathbb{C}$  intégrable.

La transformée de f ourf est  $\hat{f}: \left\{egin{array}{ll} \mathbb{R} & \longrightarrow & \mathbb{C} \\ \nu & \longmapsto & \int_{\mathbb{R}} f(t) \mathrm{e}^{-\mathrm{i} 2\pi \nu t} \mathrm{d}t \end{array}
ight.$ 

On a alors :  $orall x \in \mathbb{R}, f(x) = \int_{\mathbb{R}}, \hat{f}(
u) \mathrm{e}^{\mathrm{i} 2\pi 
u x} \mathrm{d} 
u$ 

#### Transformée de Fourier à 2 dimensions

Soit  $f: \mathbb{R}^2 \longrightarrow \mathbb{C}$  intégrable.

La transformée de Fourier de f est :

$$\hat{f}: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{C} \\ (\nu, \xi) & \longmapsto & \int_{\mathbb{R}} \int_{\mathbb{R}} f(x, y) \mathrm{e}^{-\mathrm{i} 2\pi(\nu x + \xi y)} \mathrm{d}x \mathrm{d}y \end{array} \right.$$

On a alors :  $\forall (x,y) \in \mathbb{R}^2, f(x,y) = \int_{\mathbb{R}} \int_{\mathbb{R}} \hat{f}(\nu,\xi) \mathrm{e}^{\mathrm{i} 2\pi(\nu x + \xi y)} \mathrm{d}\nu \mathrm{d}\xi.$ 



### Transformée de FOURIER discrète (DFT)

#### Échantillonage d'un signal continu

Soit  $f: \mathbb{R} \to \mathbb{C}$ . On considère un échantillion de  $N \in \mathbb{N}$  valeurs aux points  $(x_0, \dots, x_{N-1})$  et

$$s: \left\{ \begin{array}{ccc} \llbracket 0, N-1 \rrbracket & \longrightarrow & \mathbb{C} \\ k & \longmapsto & f(x_k) \end{array} \right.$$

#### Transformée de Fourier discrète à 1 dimension

La transformée de Fourier discrète du signal s est :

$$S: \left\{ \begin{array}{ccc} \llbracket 0,N-1 \rrbracket & \longrightarrow & \mathbb{C} \\ k & \longmapsto & \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} s(n) \mathrm{e}^{-2\mathrm{i}\pi k \frac{n}{N}} \end{array} \right. .$$

On a alors : 
$$\forall n \in [0, N-1], s(n) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} S(k) e^{2i\pi n \frac{k}{N}}$$
.

4 / 41

### Transformée de FOURIER discrète (DFT)

#### Transformée de Fourier discrète à 2 dimensions

Soit  $f: \mathbb{R}^2 \longrightarrow \mathbb{C}$ . On considère un échantillon de *NM*  $(N, M \in \mathbb{N})$  valeurs aux points  $(x_{k,l})_{\substack{0 \leq k \leq N-1 \\ 0 \leq l \leq M-1}}$  et

$$s: \left\{ \begin{array}{ccc} \llbracket 0,N-1 \rrbracket \times \llbracket 0,M-1 \rrbracket = \mathcal{N} & \longrightarrow & \mathbb{C} \\ (k,l) & \longmapsto & f(x_{k,l}) \end{array} \right..$$

#### Transformée de FOURIER discrète à 2 dimensions

La transformée de Fourier discrète du signal s est :

$$S: \left\{ \begin{array}{ccc} \mathcal{N} & \to \mathbb{C} \\ (k,l) & \longmapsto & \frac{1}{\sqrt{MN}} \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} s(k,l) \mathrm{e}^{-2\mathrm{i}\pi \left(k\frac{n}{N} + l\frac{m}{M}\right)} \end{array} \right. .$$

On a alors : 
$$\forall (n,m) \in \mathcal{N}, s(n,m) = \frac{1}{\sqrt{NM}} \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} S(k,l) \mathrm{e}^{2\mathrm{i}\,\pi\left(k\frac{n}{N} + l\frac{m}{M}\right)}.$$

5 / 41

## Transformée en cosinus discrète (DCT)

#### Transformée en cosinus discrète à 1 dimension (DCT-II/III)

La transformée en cosinus discrète du signal s est :

$$S: \left\{ \begin{array}{ccc} \llbracket 0, N-1 \rrbracket & \longrightarrow & \mathbb{R} \\ k & \longmapsto & \sqrt{\frac{2}{N}} \sum_{n=0}^{N-1} s(n) \cos \left( \frac{\pi}{N} \left( n + \frac{1}{2} \right) k \right) \end{array} \right.$$

On a alors, pour  $n \in \llbracket 0, N-1 
rbracket$  :

$$s(n) = S(0)\sqrt{\frac{2}{N}} + \sqrt{\frac{1}{2N}} \sum_{k=1}^{N-1} S(k) \cos\left(\frac{\pi}{N} \left(n + \frac{1}{2}\right) k\right).$$

#### Préambule

```
from PIL import Image
import numpy as np
from time import time
from matplotlib import pyplot as plt
im = Image.open([path])
plt.ioff()
```

#### Afficher

```
def afficher (img, dpi):
    h, l = len(img), len(img[0])
    fig = plt.figure(figsize = (1/dpi,h/dpi))
    ax = plt.Axes(fig, [0., 0., 1., 1.])
    ax set axis off()
    fig add axes(ax)
    ax.imshow(img)
    plt savefig(f"[path]/Image{time()}.png"\
        , bbox inches="tight",\
        pad inches = 0, dpi=dpi)
    plt.show()
```

#### Conversion image à tableau

```
def imgtoarray(img, largeur=None, hauteur = None):
    I, h = img.size
    if (largeur, hauteur) == (None, None):
        largeur, hauteur = 1, h
   M = np.zeros((hauteur, largeur, 3))
    for x in range(min(l, largeur)):
        for y in range(min(h, hauteur)):
            (a,b,c) = img.getpixel((x, y))
           M[y][x] = np.array([a, b, c])
    return M
```

#### Manipulation de blocs

```
def divise(M, taille = 8):
   h, l = len(M), len(M[0])
    hr, lr = h//taille, l//taille
    blocs = [[] for _ in range(hr)]
    for y in range(hr):
        for x in range(lr):
            blocs[y].append(M[taille*y:taille*(y+1), taille*x:
                taille*(x+1)]
    return blocs
def rassemble(blocs):
    taille = len(blocs[0][0])
    hr, lr = len(blocs), len(blocs[0])
    h. l = hr*taille. lr*taille
    M = np.full((h,1), blocs[0][0][0]]
    for y in range(h):
        for x in range(1):
            M[y][x] = blocs[y//taille][x//taille][y%taille][x%
                taillel
    return M
```

## Composantes rgb

```
def rouge(M):
    h, 1 = len(M), len(M[0])
    L = M.copy()
    for i in range(h):
        for j in range(1):
            L[i][j][1] = L[i][j][2] = 0
    return L
def vert(M):
    h,1 = len(M), len(M[0])
    L = M.copy()
    for i in range(h):
        for j in range(1):
            L[i][j][0] = L[i][j][2] = 0
    return L
```

# Composantes rgb

```
def bleu(M):
    h, 1 = len(M), len(M[0])
    L = M.copy()
    for i in range(h):
         for j in range(1):
             L[i][j][1] = L[i][j][0] = 0
     return L
\# R, G, B = rouge(A), vert(A), bleu(A)
# sauv (R), sauv (G), sauv (B)
#T = naif(R)
\# A2 = T + G + B
# sauv (A2)
#T = naif(G)
\# A2 = T+R+R
# sauv (A2)
#T = naif(B)
\# A2 = T+R+G
# sauv (A2)
```

## Composantes luminance / chrominances

```
def matY(M):
    h, 1 = len(M), len(M[0])
    L = np.zeros((h, 1),dtype=int)
    coef = np.array([[.299], [.587], [.114]])
    for i in range(h):
        for j in range(1):
            L[i][j] = int(np.dot(M[i][j],coef))
    return L
def matCb(M):
    h, l = len(M), len(M[0])
    L = np.zeros((h, 1),dtype=int)
    coef = np.array([[-.1687], [-.3313], [.5]])
    for i in range(h):
        for j in range(1):
            L[i][j] = int(np.dot(M[i][j],coef))
    return L
```

## Changement de base

```
def matCr(M):
   h, l = len(M), len(M[0])
   L = np.zeros((h, 1), dtype=int)
    coef = np.array([[.5], [-.4187], [-.0813]])
    for i in range(h):
        for j in range(1):
            L[i][j] = int(np.dot(M[i][j],coef))
    return L
def rgb(matY, matCb, matCr):
    h,1 = min([len(matY), len(matCb), len(matCr)]), min([len(matY
        [0]), len(matCb[0]), len(matCr[0])])
    chang = np.linalg.inv(np.array
        ([[.299,-.1687,.5],[.587,-.3312,-.4187],[.114,.5,-.0813]]))
    M = np.zeros((h,1,3),dtype=int)
    for y in range(h):
        for x in range(1):
```

## Changement de base

```
YCC = np.array([matY[y][x], matCb[y][x], matCr[y][x]])
                 couleurs = np.dot(YCC, chang)
                 M[y][x][0] = \max(\min(int(couleurs[0]), 255), 0)
                 M[y][x][1] = \max(\min(\inf(couleurs[1]), 255), 0)
                 M[y][x][2] = \max(\min(int(couleurs[2]), 255), 0)
         return M
# Y, Cb, Cr = mat Y(A), mat Cb(A), mat Cr(A)
# YY = rqb(Y, np. zeros((h, l)), np. zeros((h, l)))
# BB = rgb(np.zeros((h,l)),Cb,np.zeros((h,l)))
# RR = rqb(np.zeros((h,l)), np.zeros((h,l)), Cr)
# sauv (YY)
# sauv (BB)
# sauv (RR)
# YYY = naif(YY)
#BBB = naif(BB)
#RRR = naif(RR)
\# sauv (rqb(matY(YYY), Cb, Cr))
# sauv(rqb(Y, matCb(BBB), matCr(RRR)))
\# R, G, B = rouge(A), vert(A), bleu(A)
```

#### Compression naïve

```
def naif(img, taux):
    l, h = img.size
    lc, hc = (1//taux+2)*taux, (h//taux+2)*taux
    M = imgtoarray(img, lc, hc)
    S = np.zeros((h, 1, 3), dtype = int)
    for i in range(taux):
        for j in range(taux):
            S += M[i:h+i,j:l+j]
    S /= taux ** 2
    comp = np.zeros((h, 1, 3), dtype = int)
    for x in range(h//taux):
        for i in range(taux):
            for y in range(1//taux):
                for j in range (taux):
                     comp[x*taux+i][y*taux+j] =\
                     S[x*taux][y*taux]
    return comp
```

#### Transformée en cosinus discrète (DCT)

```
def dct(s):
    N, M = len(s), len(s[0])
    C = np.zeros((N,N))
    D = np.zeros((M,M))
    for j in range(N):
        C[0][i]=1/2**.5
        for i in range(1,N):
            C[i][j]=np.cos(np.pi/N*(j+.5)*i)
    for j in range(M):
        D[0][i]=1/2**.5
        for i in range(1, M):
            D[i][j] = np.cos(np.pi/M*(j+.5)*i)
    return np.dot(C, np.dot(s,D.T))*2/(N*M)**.5
```

## Transformée en cosinus discrète (DCT)

```
def idct(S):
    N, M = len(S), len(S[0])
    C = np.zeros((N,N))
    D = np.zeros((M,M))
    for j in range(N):
        C[0][i]=1/2**.5
        for i in range(1,N):
            C[i][j]=np.cos(np.pi/N*(j+.5)*i)
    for j in range(M):
        D[0][i]=1/2**.5
        for i in range(1, M):
            D[i][j]=np.cos(np.pi/M*(j+.5)*i)
    return np.dot(C.T, np.dot(S,D))*2/(N*M)**.5
```

#### TCD luminance

```
def tcdY(M):
   blocs = divise(M)
   hc, lc = len(blocs), len(blocs[0])
   transforme = [[] for _ in range(hc)]
   F = np.array(
[ 16, 11, 10, 16, 24, 40, 51, 61,
 12, 12, 14, 19, 26, 58, 60, 55,
 14. 13. 16. 24. 40. 57. 69. 56.
 14, 17, 22, 29, 51, 87, 80, 62,
 18, 22, 37, 56, 68, 109, 103, 77,
 24, 35, 55, 64, 81, 104, 113, 92,
 49, 64, 78, 87, 103, 121, 120, 101,
 72, 92, 95, 98, 112, 100, 103, 99], dtype = int). reshape ((8,8))
   for y in range(hc):
       for x in range(1c):
           transforme[y].append(dct(blocs[y][x]-128)//F)
   return transforme
```

#### TCD chrominance

```
def tcdC(M):
   blocs = divise(M)
   hc, lc = len(blocs), len(blocs[0])
   transforme = [[] for _ in range(hc)]
     = np.array(
                     99, 99.
[ 17, 18, 24, 47,
                               99.
                                  99.
  18, 21, 26, 66,
                    99,
                         99,
                               99, 99,
          56.
                99.
                          99.
  24. 26.
                     99.
                               99.
                                    99.
 47, 66,
          99,
                99.
                         99.
                     99.
                               99.
                                    99.
  99, 99,
          99,
                99,
                    99, 99.
                               99,
                                   99,
  99, 99,
          99,
                99,
                         99,
                     99,
                               99.
                                    99.
  99,
      99,
          99,
                99,
                     99, 99,
                                  99,
                               99,
  99,
      99,
           99,
                99,
                     99, 99,
                               99, 99], dtype=int).reshape((8,8))
    for v in range(hc):
       for x in range(1c):
           transforme[y].append(dct(blocs[y][x])//F)
    return transforme
```

#### TCD inverse luminance

```
def tcdiY(transforme):
   hc, lc = len(transforme), len(transforme[0])
   blocs = [[] for _ in range(hc)]
   F = np.array(
   [ 16, 11, 10, 16, 24, 40, 51, 61,
     12, 12, 14, 19, 26, 58, 60, 55,
     14, 13, 16, 24, 40, 57, 69, 56,
     14, 17, 22, 29, 51, 87, 80, 62,
     18, 22, 37, 56, 68, 109, 103, 77,
     24, 35, 55, 64, 81, 104, 113, 92,
     49, 64, 78, 87, 103, 121, 120, 101,
     72, 92, 95, 98, 112, 100, 103, 99], dtype=int).reshape
         ((8,8))
     for y in range(hc):
       for x in range(lc):
           blocs[y].append(idct(transforme[y][x]*F)+128)
   return blocs
```

#### TCD inverse chrominance

```
def tcdiC(transforme):
   hc, lc = len(transforme), len(transforme[0])
   blocs = [[] for _ in range(hc)]
     = np.array(
[ 17, 18, 24, 47,
                   99, 99, 99, 99,
 18, 21, 26, 66, 99, 99,
                              99. 99.
 24, 26, 56, 99,
                   99, 99,
                              99,
                                  99,
 47. 66.
          99. 99.
                    99, 99.
                                   99.
                              99.
 99, 99,
          99.
               99.
                    99. 99.
                              99.
                                   99.
 99, 99,
          99.
               99,
                   99, 99.
                              99,
                                  99.
                    99, 99.
 99. 99.
          99.
                99.
                              99.
                                   99.
 99,
      99,
                99,
                    99, 99, 99], dtype = int). reshape ((8,8))
           99,
   for y in range(hc):
       for x in range(lc):
           blocs[y].append(idct(transforme[y][x]*F))
   return blocs
```

#### Calcul de la transformée en cosinus discrète

```
\# Z = np.zeros((h,l), dtype = int)
#Y = matY(A)
\# M = rqb(Y, Z, Z)
\# D = t c d Y (Y)
# YY = rassemble(tcdiY(D))
#T = naif(M,1)
# sauv (T)
def tcos(M):
    Y, Cb, Cr = matY(M), matCb(M), matCr(M)
    Y1, Cb1, Cr1 = tcdiY(tcdY(Y)), tcdiC(tcdC(Cb)), tcdiC(tcdC(Cr))
     # sauv(rqb(rassemble(Y1), Cb, Cr))
    return rgb(rassemble(Y1), rassemble(Cb1), rassemble(Cr1))
```

#### Redondance dans les coefficients de la DCT (luminance)

```
# Y, Cb, Cr = (tcdY(matY(A))),(tcdC(matCb(A))),tcdC(matCr(A))
# uniqu, counts = np.unique(Y, return_counts=True)
# fig1 = plt.figure(figsize = (6, 7))
# plt.ylabel("Nombre d'occurrences (log)")
# plt.title("Repartition des coefficients de la TCD (luminance)")
# plt.plot(uniqu, np.log10(counts), '.')
# plt.savefig(f"[path]/Graphe Y {time()}.jpg")
```

## Redondance dans les coefficients de la DCT (chrominances)

#### Longueur d'un code et entropie de SHANNON

```
def longueur(L, alphabet):
    d, total = compte(L)
    p = {x:d[x]/total for x in d}
    1 = {x:len(alphabet[x]) for x in d}
    for x in d:
        S += p[x]*1[x]
    return S
def H(L):
    d, total = compte(L)
    p = {x:d[x]/total for x in d}
    for x in d:
        S += p[x]*np.log2(p[x])
    return -S
```

#### Aplatir un bloc

```
def zigzag(bloc):
    n = len(bloc)
    L = []
    for i in range(n):
        if i%2:
            for j in range(i+1):
                 L.append(bloc[j][i-j])
        else:
            for j in range (i+1):
                 L.append(bloc[i-j][j])
    for i in range(n-1):
        if i%2:
            for j in range (i+1, n):
                 L.append(bloc[j][n+i-j])
        else:
            for j in range(i+1, n):
                 L.append(bloc[n+i-j][j])
    return L
```

#### Aplatir un bloc

```
def inverse_zigzag(L):
   n = int(len(L)**.5)
    bloc = np.zeros((n,n), dtype = int)
    c = 0
    for i in range(n):
        if i%2:
            for j in range (i+1):
                bloc[j][i-j] = L[c] ; c+=1
        else:
            for j in range (i+1):
                bloc[i-j][j] = L[c] ; c+=1
    for i in range(n-1):
        if i%2:
            for j in range(i+1, n):
                bloc[j][n+i-j] = L[c] ; c+=1
        else:
            for j in range(i+1, n):
                bloc[n+i-j][j] = L[c]; c+=1
    return bloc
```

# Codage et décodage

```
def codage(L, alphabet):
    n = len(L)
    T = np.full(n, '11111111111111111)
    C = {x:len(alphabet[x]) for x in alphabet}
    total = 0
    for i in range(n):
        x = L[i]
        T[i] = alphabet[x]
        total += C[x]
    return T. total
def decodage(T, alphabet):
    n = len(T)
    decode = {alphabet[x]:x for x in alphabet}
    L = np.full(n, list(decode.values())[0])
    for i in range(n):
        L[i] = decode[(T[i])]
    return L
```

#### Codage de HUFFMAN

```
def compte(L):
    d = \{\}
    total = 0
    for x in L:
         if x in d:
             d[x] += 1
         else:
              d[x] = 1
         total += 1
    return d, total
def huffman(L):
    d = compte(L)[0]
    K = list(d.keys())
    n = len(K)
    A0 = \{i: (K[i], d[K[i]], None, None) \text{ for } i \text{ in } range(n)\}
    c0 = n-1
    def aux(A, c): # creation de l'arbre
```

# Codage de HUFFMAN

```
if len(A) == 1:
    return A
K = list(A.keys())
x1, dm1 = K[0], A[K[0]][1]
x2, dm2 = K[1], A[K[1]][1]
if dm1 > dm2:
    x1, x2 = x2, x1
    dm1, dm2 = dm2, dm1
for x in A:
    dx = A[x][1]
    if dx < dm1:
        x1.dm1 = x.dx
    elif dx < dm2 and x! = x1:
    x2,dm2 = x,dx
    a1 = A.pop(x1)
    a2 = A.pop(x2)
    c += 1
    A[c] = (None, dm1+dm2, a1, a2)
    return aux(A,c)
```

# Codage de HUFFMAN

```
A = aux(A0, c0)
K = list(A.keys())
arbre = A[K[0]] # arbre obtenu
alphabet = {x:[] for x in d}
def aux2(chemin, arb): # recuperation des encodages
    x, dx, gauche, droite = arb
    if x != None:
        alphabet[x] = chemin
    if gauche != None:
        aux2(chemin+'0', gauche)
    if droite != None:
        aux2(chemin+'1', droite)
aux2('', arbre)
return alphabet
```

## Algorithme Move-to-front

```
def mtf(L):
    n = len(L)
    T = np.full(n, L[0])
    d = \{\}
    for x in L:
         d[x] = None
    c = 0
    for x in d:
         d[x] = c
         c += 1
    for i in range(n):
         y = d[L[i]]
         for x in d:
              if d[x]<y:
                  d \lceil x \rceil + = 1
         d[L[i]] = 0
         T[i] = y
    return T, d
```

#### Algorithme Move-to-front

```
def imtf(T, d):
    n = len(T)
    L = \lceil \rceil
     for i in range(n):
          d2 = \{d[x] : x \text{ for } x \text{ in } d\}
          t = T[-i-1]
          y = int(d2[0])
          for x in d:
               if int(d[x]) <= int(t):</pre>
                    d[x] = int(int(d[x])-1)
          d[y] = int(t)
          L.append(y)
     return L[::-1]
```

```
def lexico(a, b):
    for x, y in zip(a[0], b[0]):
        if x < y:
            return False
        if x > y:
            return True
    return False
def fusion(L1, L2, comparaison):
    L, M = L1, L2
    1, m = 0, 0
    liste = []
    while 1<len(L) and m<len(M):
        if comparaison(L[1], M[m]):
            liste.append(M[m])
            m += 1
        else:
            liste.append(L[1])
            1 += 1
```

```
def merge_sort(L, comparaison):
   n = len(L)
    if n == 1:
        return L
    return fusion(merge_sort(L[int(n//2):], comparaison),
        merge\_sort(L[:int(n//2)], comparaison), comparaison)
def BWT(L):
    n = len(L)
    M = np.concatenate((L, L))
    permu = [(L,True)] + [(M[i:n+i],False) for i in range(1, n)]
    trie = merge_sort(permu, lexico)
    R = np.full(n, L[0])
    for i in range(n):
        R[i] = trie[i][0][-1]
        if trie[i][1]:
            position = i
    return R, position
```

```
def fusion2(L1, L2):
    L, M = L1, L2
    1, m = 0, 0
    liste = []
    while 1<len(L) and m<len(M):
        if L[1][0] > M[m][0]:
            liste.append(M[m])
            m += 1
        else:
            liste.append(L[1])
            1 += 1
    if l == len(L):
       liste += M[m:]
    else:
        liste += L[l:]
    return liste
```

```
def lexico2(a, b):
    for x, y in zip(a, b):
        if x < y:
            return False
        if x > y:
            return True
    return False
def IBWT(R, position):
    n = len(R)
    T = np.full((n,n), 0, dtype = int)
    D = np.full((n,n), 0, dtype = int)
    for i in range(n):
        T[i][0] = R[i] ; D[i][0] = R[i]
    P = np.eye(n, k=1)
    for i in range(n-1):
        T = np.array(merge_sort(list(T), lexico2))
        T = np.dot(T, P) + D
    T = np.array(merge_sort(list(T), lexico2), dtype = int)
    return T[position]
```

## Compression finale

```
def compression(img = A):
    h, 1 = len(img), len(img[0])
    hc, 1c = h//8, 1//8
   Y, Cb, Cr = tcdY(matY(img)), tcdC(matCb(img)), tcdC(matCr(img))
    comp = [Y, Cb, Cr]
    blocs = np.full((hc, lc, 3, 64), "1111111111111")
    position = np.zeros((hc, lc, 3), dtype=int)
    d = np.full((hc, 1c, 3), {})
    alphabet = np.full((hc, lc, 3), {})
    total = 0
    for c in range(3):
        for i in range(hc):
            for j in range(lc):
```

# Compression finale

```
L = zigzag(comp[c][i][j])
            R, position[i][j][c] = BWT(L)
            M, d[i][j][c] = mtf(L)
            ALP = huffman(M)
            blocs[i][j][c], t = codage(M, ALP)
            alphabet[i][j][c] = ALP
            total += t
    \# C = rassemble(c)
    \# L = ziqzaq(C)
    \# R, position = BWT(L)
    #M, d = mtf(R)
    # alphabet = huffman(M)
    #T, t = codage(M, alphabet)
    # total += t
return total, lc, hc, blocs, position, d, alphabet
```

## Décompression finale

```
def decompression(blocs, position, d, alphabet):
   hc, lc = len(blocs), len(blocs[0])
   Y = np.zeros((hc, lc, 8, 8), dtype = int)
    Cb = np.zeros((hc, lc, 8, 8), dtype = int)
    Cr = np.zeros((hc, lc, 8, 8), dtype = int)
    comp = [Y, Cb, Cr]
    for c in range(3):
        for i in range(hc):
            for j in range(lc):
                T = decodage(blocs[i][j][c], alphabet[i][j][c])
                M = imtf(T, d[i][j][c])
                R = IBWT(M, position[i][j][c])
                B = inverse_zigzag(R)
                comp[c][i][j] = B
   Y = rassemble(tcdiY(Y))
    Cb = rassemble(tcdiC(Cb))
    Cr = rassemble(tcdiC(Cr))
    return rgb(Y, Cb, Cr)
```

#### Calcul de la distance entre les images

```
def ecart(M, Mref):
    h, 1 = len(M), len(M[0]); S = 0
    for i in range(h):
        for j in range(1):
            for c in range(3):
                S += abs(M[i][j][c]-Mref[i][j][c])
    return S/h/l
def tcos(M):
    Y, Cb, Cr = matY(M), matCb(M), matCr(M)
    Y1, Cb1, Cr1 = tcdiY(tcdY(Y)), tcdiC(tcdC(Cb)), tcdiC(tcdC(Cr))
    return rgb(rassemble(Y1), rassemble(Cb1), rassemble(Cr1)), rgb(
        rassemble (Y1), Cb, Cr)
\# LC. L = tcos(A)
\# N2, N8, N25 = naif(A,2), naif(A,8), naif(A,25)
# print(ecart(LC,A)) ; print(ecart(L,A))
# print(ecart(N2,A)); print(ecart(N8,A))
# print(ecart(N25,A))
```