

Computing with neurons Session 1: Neural Engineering

Terrence C. Stewart, Centre for Theoretical Neuroscience, University of Waterloo

Centre for Theoretical Neuroscience University of Waterloo

CTN and ABR

Understanding the mind

- What are the algorithms underlying cognition?
 - What is the mind doing?
- How can we know what the mind is doing?
 - How can we test these theories?

Understanding the mind

- Build computer models of the mind
- Mechanistic models
 - Internal components that map onto real system
- Why do we need a computational model?
 - Not analytically tractable

Cognitive Modelling

- Choose a phenomenon
 - Examine human behaviour
 - Build a computer program
 - Compare behaviours of program and human
- Many domains
 - Memory, mental arithmetic, reward learning
- Problem
 - How do we know if we're right?

- More constrained approach
 - Define a bunch of basic modules
 - Declarative memory
 - Visual recognition
 - Hand movement
 - Procedural memory
 - Use the same set of modules to do many tasks
 - It's not like we suddenly get new brain areas for each new task

ACT-R

- Declarative memory

 $B_i = \ln(\sum_{j=1}^n t_j^{-d}) + \beta_i$

- Procedural memory
 - IF-THEN rules
 - IF I'm counting and I'm at THREE then go to FOUR
- Parameter values
 - d = 0.5
 - 50 ms per rule
 - Found by looking at human data across many conditions
 - What are the limits on the procedural rules?

- Wide variety of tasks
 - Mental arithmetic
 - Estimating time
 - Visual search
 - Air-traffic control
 - Military squad co-ordination
 - Language interpretation
 - Driving a car
 - Dialing a phone number
 - Driving a car while dialing a phone number

- How does this help?
 - More constraints
- Same components do many different tasks
- Parameter values shouldn't change (much)
 - Or theory can say when they change
- Predicting many different aspects of behaviour with a small set of components

What about the brain?

- Should we pay attention to it?
- Why would it matter for algorithms?
 - Why not just look for the best algorithm?
 - Why constrain ourselves?

Advantage 1 More predictions

- A brain-based model will predict more than just overt behaviour
 - Connectivity
 - Firing patterns
 - Results of lesions
 - Timing
 - Effects of drugs

Advantage 2 Different algorithms

- Infinite numbers of algorithms to consider
- We implement algorithms on computers
 - So we are biased toward considering algorithms that are easy to program
- Instead, let's determine the types of algorithms that neurons would be good at implementing
 - Then make software tools to make those types of algorithms easy to program

The Brain

- What is the brain?
- How should we think about the brain?
 - 140,000,000,000,000,000,000,000,000 atoms?
 - 100,000,000,000 neurons?
 - 52 brain areas?

Connectionism

- Neural networks
 - Many components
 - Many connections

- Components add their inputs, perform some non-

linearity to produce outputs

Connectionism

How do we decide what the components can

do?

Common choice:
 sigmoid neuron

– Why that one?

Easy to program

- How do we get connection weights?
 - Start random, apply learning rule
 - Gets better and better at task (maybe)
 - Lots of computing needed

Neural Engineering Framework

- (Eliasmith & Anderson, 2003)
- Is there another way?
 - What are realistic neurons good at computing?

- Can this help resolve the connection weight

problem?

• What is a neuron really like?

What is a neuron really like?

• What is a neuron really like?

Link:crumb of mouse brain

Capacitance Resistance

r_m: Membrane resistance

 r_1 : Longitudinal resistance

cm: Capacitance due to electrostatic forces

$$rac{r_m}{r_l}rac{\partial^2 V}{\partial x^2}=c_m r_mrac{\partial V}{\partial t}+V$$

Many neurons (and synapses)

Many many neurons (and synapses)

How much detail?

- Do we need all that complexity?
 - How do we know when to stop?
- How do other sciences deal with this?

How much detail?

- Do we need all that complexity?
 - How do we know when to stop?
- How do other sciences deal with this?
 - Physics (gravity): sometimes Newton is enough detail, sometimes you need Einstein
- The level of detail needed depends on the question being asked
 - e.g. drug effects may require a detailed model
 - But do we need it for understanding behaviour?

Behaving Systems

- Brains are for behaving
 - Sensory input, muscle outputs
- If we want computational neuroscience to explain what people do and how they do it, then the models need to produce that behaviour
 - Given similar inputs as the real system:
 - Produce similar outputs
- But behaviour requires many more neurons....

- Could use a full supercomputer to simulate one neuron
- Have to make some abstraction
 - Start with something simple and uncontroversial
 - But everything we do could also be applied to more complex neurons

$$I(t) - \frac{V_{\rm m}(t)}{R_{\rm m}} = C_{\rm m} \frac{dV_{\rm m}(t)}{dt}$$

- How do neurons represent?
 - What is the relationship between the activity of a neuron a and the variable being represented x?
 - Sometimes this is easy:

Other times, not so much

- Let's break these tuning curves down into two aspects
 - Mapping from x (the variable) to J (current)
 - This is about how this neuron's inputs are organized
 - Mapping from J (current) to a (activity)
 - This is about the intrinsic response
 - This can be as complex as you want (assuming you have the compute power to do so)
 - a can be spikes or rates
 - I'm going to plot it as rates for now

Easy case:

$$J=lpha x+J^{bias}$$

For activity, use standard LIF model for now

```
plot(x, n.rates(x, gain=1, bias=50), 'b') # x*1+50
plot(x, n.rates(x, gain=0.1, bias=10), 'r') # x*0.1+10
plot(x, n.rates(x, gain=0.5, bias=5), 'g') # x*0.05+5
plot(x, n.rates(x, gain=0.1, bias=4), 'c') #x*0.1+4))
```


- What about these?
 - Mapping from x to J

$$J = -\alpha x + J^{bias}$$

Okay, what about these?

- ullet There's usually some x which gives a maximum firing rate
 - ullet ...and thus a maximum J
- ullet Firing rate (and J) decrease as you get farther from the preferred x value
 - ullet So something like $J=lpha[sim(x,x_{pref})]+J^{bias}$
- · What sort of similarity measure?
- Let's think about x for a moment
 - x can be anything... scalar, vector, etc.
 - Does thinking of it as a vector help?

- Here is the general form we use for everything (it has both 'mappings' in it)
- $ullet \ a_i = G_i [lpha_i x \cdot e_i + J_i^{bias}]$
 - ullet lpha is a gain term (constrained to always be positive)
 - J^{bias} is a constant bias term
 - *e* is the *encoder*, or the *preferred direction vector*
 - *G* is the neuron model
 - i indexes the neuron
- ullet To simplify life, we always assume e is of unit length
 - ullet Otherwise we could combine lpha and e
- In the 1D case, e is either +1 or -1
- In higher dimensions, what happens?

2-dimensional x

$$a_i = G_i[lpha_i x \cdot e_i + J_i^{bias}]$$

- · But that's not how people normally plot it
- It might not make sense to sample every possible x
- · Instead they might do some subset
 - For example, what if we just plot the points around the unit circle?

Just along the unit circle

$$a_i = G_i[\alpha_i x \cdot e_i + J_i^{bias}]$$

Tuning Curves

(Singh & Eliasmith, 2005)

Tuning Curves

- General claim
 - For any neural data, we can chose a space x such that we can match the neural data using

$$a_i = G_i[lpha_i x \cdot e_i + J_i^{bias}]$$

- Note: we don't need this assumption for NEF to work. We just need some map from x to a.
 - But this form seems to work well
 - Many neurons respond to multiple things
 - And gives us a really interesting shortcut soon
- Note: what is e, physically?
- So what can we do with these neurons?

Single Neuron

Two Neurons

Four Neurons

Fifty Neurons

Neural computation

Basic process

- A group of neurons stores some value $\, \mathscr{X} \,$
- Each neuron has some preferred stimulus e_i
- Current entering a neuron $J_i = x \cdot e_i$
- Neurons fire based on their input $a_i = G_i[J_i]$
- Decode output by weighted sum $\ \hat{x} = \sum_i a_i d_i$
- Find decoders by minimizing error $E = (x \sum a_i d_i)^2$

Extensions

- ${\mathcal X}$ can be a scalar or a vector
- decoders for different functions $E = (f(x) \sum a_i d_i)^2$

• [nengo example – scalar representation]

Multiple Dimensions

- Each neuron has a preferred direction (not just -1 or +1)
- Different weightings decode different values

• [nengo example – 2d representation]

Decoders

- But where do we get d_i from?
 - $\hat{x} = \sum (a_i d_i)$
- ullet Find the optimal d_i
 - How?

$$\hat{x} = \sum_{i} a_i d_i$$

Decoders

- But where do we get d_i from?
 - $\hat{x} = \sum (a_i d_i)$
- Find the optimal d_i
 - How?

$$E=rac{1}{2}\int_{-1}^{1}(x-\sum_{i}(a_{i}d_{i}))^{2}dx$$

• Take the derivative with respect to d_i

$$rac{\partial E}{\partial d_i} = rac{1}{2} \int_{-1}^1 2[x - \sum_j (a_j d_j)](-a_i) dx$$

$$rac{\partial E}{\partial d_i} = -\int_{-1}^1 a_i x dx + \int_{-1}^1 \sum_j (a_j d_j a_i) dx$$

• At the minimum, $rac{\partial E}{\partial d_i}=0$

$$\int_{-1}^1 a_i x dx = \int_{-1}^1 \sum_j (a_j d_j a_i) dx$$

$$\int_{-1}^1 a_i x dx = \sum_j (\int_{-1}^1 a_i a_j dx) d_j$$

Decoders

- ullet That's a system of N equations and N unknowns
- · In fact, we can rewrite this in matrix form

$$\Upsilon = \Gamma d$$

where

$$\Upsilon_i = rac{1}{2} \int_{-1}^1 a_i x dx$$

$$\Gamma_{ij}=rac{1}{2}\int_{-1}^{1}a_{i}a_{j}dx$$

- ullet Do we have to do the integral over all x?
 - ullet Approximate the integral by sampling over x
 - S is the number of x values to use (S for samples)

$$\sum_x a_i x/S = \sum_j (\sum_x a_i a_j/S) d_j$$

$$\Upsilon = \Gamma d$$

where

$$\Upsilon_i = \sum_x a_i x / S$$

$$\Gamma_{ij} = \sum_x a_i a_j / S$$

• Notice that if A is the matrix of activities (the firing rate for each neuron for each x value), then $\Gamma=A^TA/S$ and $\Upsilon=A^Tx/S$

So given

$$\Upsilon = \Gamma d$$

then

$$d = \Gamma^{-1} \Upsilon$$

or, equivalently

$$d_i = \sum_j \Gamma_{ij}^{-1} \Upsilon_j$$

Connecting Neurons

Communication Channel

• [nengo example - communication]

Computation

Computing $y=x^2$ requires the same amount of effort as y=x

Neural computation

• [Nengo example: decoding functions]

Computation

- Addition?
 - [nengo example]
- Combination?
 - [nengo example]
- Multiplication?
 - [nengo example]

Neural Computation

- With enough neurons, we can approximate any function to any degree of accuracy
 - $MSE \propto 1/N$
- What functions are neurons good at approximating?

Do SVD on the tuning curves

Low-degree polynomials (Legendre basis)

Computation

- Estimate any function f(x)
 - Accuracy increases as # neurons increases
 - Best at low-degree polynomials
- Not quite a perfect version of the function
 - Random noise due to neural activity
 - Smoothed due to post-synaptic current (varies from ~2ms to ~200ms)

$$f(x(t)) * h(t)$$

Biological Algorithms

- What do neural algorithms look like?
 - Each node (group of neurons) stores a vector
 - Each connection computes a function
 - and applies a filter
 - (set of functions and filter depends on neuron model)
- Different from standard connectionism
 - There, connections can only do linear weights
 - Some functions are easier than others
 - max(a,b) takes a very large number of neurons
 - sin(a+b)*cos(b a) is pretty easy

Recurrent connections

- What happens if a group of neurons connects back to itself?
 - Depends on what function is being computed on the connection

$$f(x) = x + 1$$

$$f(x) = -x$$

$$f(x) = x^2$$

Nengo

- Open-source (free for non-commercial use)
 - http://nengo.ca
 - http://github.com/nengo/nengo
- Requirements
 - Python (2.7, 3.4, or 3.5)
 - NumPy
- Install
 - "pip install nengo"
 - "pip install nengo_gui"