Лабораторна робота №4

з дисципліни "Математичне моделювання систем та процесів" тема: "Моделювання в MatLab & Simulink"

Мета роботи – опанувати засоби побудови найпростіших математичних моделей у *MatLab & Simulink*.

Завдання для виконання

- 1. Побудувати *Simulink*-модель системи нелінійних рівнянь, що задана за варіантом (*табл.* 4.1) та розв'язати її. В побудованій *Simulink*-моделі обов'язково мають бути присутні два блоки *Display* в яких буде виводитись значення коренів системи нелінійних рівнянь та два блоки *ToWorkSpace*, за допомогою яких отримані значення коренів будуть передаватися в середовище *MatLab*. Для розв'язання кожного рівняння нелінійної системи рекомендується використовувати блок *Algebraic Constraint*.
- 2. Побудувати *Simulink*-модель диференціального рівняння, що задане за варіантом (*табл.* 4.2) та розв'язати його. В побудованій *Simulink*-моделі має бути використаний блок *Scope* (осцилограф) та *ToWorkSpace*.

3. Номер варіанту визначається таблицею:

№ за списком викладача	Варіант №	
1	5	
2	8	
3	4	
4	10	
5	1	
6	7	

№ за списком викладача	Варіант №
7	3
8	11
9	2
10	9
11	6

Вимоги до оформлення звіту

Звіт має містити:

- 1. Оформлений за зразком титульний аркуш.
- 2. На кожній сторінці, окрім титульної, в правому верхньому куті прізвище, ініціали студента та номер групи.
- 3. Наскрізну нумерацію, окрім титульної, в правому нижньому куті.
- 4. Постановку задачі за варіантом.
- 5. Математичне підгрунття для виконання даної лабораторної роботи.
- 6. Процес локалізації коренів системи нелінійних рівнянь п.1 завдання.
- 7. *Simulink*-модель системи нелінійних рівнянь та корені знайдені при імітаційному моделюванні.
- 8. *Simulink*-модель диференціального рівняння, його розв'язок знайдений при імітаційному моделюванні та вікно осцилоскопа з графіком знайденої інтегральної кривої.
- 9. Висновки.
- 10. Основний текст звіту має бути набраний з дотриманням таких вимог: шрифт Times New Roman 14 пт, відступ першого рядка 12.5 мм з міжрядковим інтервалом 1.5 з вирівнюванням по ширині та надрукований на одному боці аркуша паперу формату А4 з полями таких розмірів:
 - верхнє та нижнє поле: до тексту 20 мм,
 до колонтитула 12.5 мм;
 - ліве поле 30 мм;
 - праве поле 15 мм.
- 11. Текст в таблицях має бути набраний з дотриманням таких вимог: шрифт Times New Roman 12 пт (при необхідності дозволяється змінити шрифт на Courier New 8 пт), міжрядковий інтервал 1.0, інтервал перед 6 пт, інтервал після 6 пт.
- 12. Текст програм має бути набраний з дотриманням таких вимог: шрифт Courier New 8 пт з міжрядковим інтервалом 1.0.

13. Звіт подається на перевірку в роздрукованому та електронному вигляді в форматі *.doc або *.docx, або *.rtf, або *.pdf.

Таблиця 4.1. Варіанти завдань

	Тионнда на виринти зивдин	
Варіант №	Система рівнянь	
1	$\begin{cases} x^2 - xy + 3y^2 + 2x - 5y - 4 = 0; \\ x + 2y = 4. \end{cases}$	
2	$\begin{cases} 2xy - y^2 + 5x + 20 = 0; \\ x + 2y = 4. \end{cases}$	
3	$\begin{cases} x^2 - 4y^2 = 200; \\ x + 2y = 100. \end{cases}$	
4	$\begin{cases} x - y = 1; \\ x^3 - y^3 = 7. \end{cases}$	
5	$\begin{cases} y^2 - xy = -12; \\ x^2 - xy = 28. \end{cases}$	
6	$\begin{cases} x^3 + y^3 = 9; \\ xy = 2. \end{cases}$	
7	$\begin{cases} (x-y)xy = 30; \\ (x+y)xy = 120. \end{cases}$	
8	$\begin{cases} x^{-2} + y^{-2} = 13; \\ x^{-1} + y^{-1} = 5. \end{cases}$	
9	$\begin{cases} x^3 + y^3 = 35; \\ x + y = 5. \end{cases}$	
10	$\begin{cases} x^3 + y^3 = 65; \\ x^2y + xy^2 = 20. \end{cases}$	_
11	$\begin{cases} x^2 + y^2 + 6x + 2y = 0; \\ x + y + 8 = 0. \end{cases}$	

Таблиця 4.2. Варіанти завдань

Варіант №	Рівняння	Початкова умова	
1	$y' = (1 - y) \cdot \cos x$	$x_0 = \pi ;$ $y(x_0) = 5$	
2	$y' = \sqrt[3]{y}$	$x_0 = 0;$ $y(x_0) = 1$	
3	y' = 2xy + x	$x_0 = 3;$ $y(x_0) = 3$	
4	$y' = y \sin x$	$x_0 = 15;$ $y(x_0) = 7$	
5	$y' = xy \cdot \cos\frac{x}{3} + 0.25y$	$x_0 = 5;$ $y(x_0) = 7$	
6	$y' = e^x + y$	$x_0 = 3;$ $y(x_0) = 1$	
7	$y' = 6e^{2x - y}$	$x_0 = 1;$ $y(x_0) = 7$	
8	$y' = 2x^2y^2$	$x_0 = 1;$ $y(x_0) = -1$	
9	y' = 1 + x + y + xy	$x_0 = 1;$ $y(x_0) = 7$	
10	$y' = \sqrt[3]{64xy}$	$x_0 = 5;$ $y(x_0) = 23$	
11	$y' = y \cdot e^x$	$x_0 = 0;$ $y(x_0) = 2e$	

Контрольні питання

- 1. Принцип роботи блоку Algebraic Constraint у Simulink-моделі.
- 2. Принцип роботи блоку *Integrator* у *Simulink*-моделі.
- 3. Як змінити кількість входів в стандартних блоках Simulink-моделі?
- 4. Як отримати графік інтегральної кривої диференціального рівняння за допомогою осцилографа?
- 5. Принцип роботи суматора, помножувача та блоку *MathFuction* у *Simulink*-моделі.
- 6. Яким чином можна передати дані з *Simulink*-моделі у робоче середовище *MatLab*?