

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Previously Presented) Compounds of formula I

in which

- A stands for phenylene,
- B stands for a bond or for C₁-C₁₂-alkylene, C₂-C₁₂-alkenylene, C₂-C₁₂-alkinylene, C₃-C₈-cycloalkylene, or phenylene that is optionally substituted in one or more places in the same way or differently with hydroxy, halogen, cyano, nitro, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₃-C₁₀-cycloalkyl, C₁-C₆-hydroxyalkyl,
-(CH₂)_pSO₃R⁸, or with the group -NR⁸R⁹, -NR⁸COR⁹, -NR⁸CSR⁹,
-NR⁸SOR⁹, -NR⁸SO₂R⁹, -NR⁸CONR⁸R⁹, -NR⁸COOR⁹,
-NR⁸C(NH)NR⁹R¹⁰, -NR⁸CSNR⁹R¹⁰, -NR⁸SONR⁹R¹⁰,
-NR⁸SO₂NR⁹R¹⁰, -COR⁸, -CSR⁸, -S(O)R⁸, -S(O)₂R⁸,
-S(O)₂NR⁸R⁹, -SO₃R⁸, -CO₂R⁸, -CONR⁸R⁹, -CSNR⁸R⁹, -SR⁸ or
-CR⁸(OH)-R⁹,

X and Y, in each case independently of one another, stand for oxygen, sulfur or for the group -NR¹¹-, -NR¹¹(CH₂)-, -NR¹¹O-, -ONR¹¹-, =CR⁶R⁷, =C=O, =C=S, =SO, =SO₂, -C(O)O-, -OC(O)-, -S(O)O-, -OS(O)-, -S(O)₂O-, -OS(O)₂-, -CONR⁸-, -N(COR⁸)-, -N(COOR⁸)-, -N(CONR⁸R⁹)-, -NR⁸CO-, -OCONR⁸-, -NR⁸C(O)O-, -CSNR⁸-, -NR⁸CS-, -OCSNR⁸-, -NR⁸CSO-,

-SONR⁸-, -NR⁸SO-, -SO₂NR⁸-, -S(O)₂N(COR⁸)-, -NR⁸SO₂-,
-NR⁸CONR⁹-, -NR⁸CSNR⁹-, -NR⁸SONR⁹-, -NR⁸SO₂NR⁹-,
-NR⁸C(O)NR⁹- or -NR⁸C(S)NR⁹-,

R¹ and R⁵, in each case independently of one another, stand for hydrogen,

hydroxy, halogen, nitro, cyano, C₁-C₆-alkyl, C₂-C₆- alkenyl, C₂-C₆-alkinyl, C₃-C₁₀-cycloalkyl, the group -C₁-C₆-alkyloxy-C₁-C₆-alkyloxy, -(CH₂)_pPO₃(R¹⁰)₂,
-NR⁸R⁹, -NR⁸COR⁹, -NR⁸CSR⁹,
-NR⁸SOR⁹, -NR⁸SO₂R⁹, -NR⁸CONR⁹R¹⁰, -NR⁸COOR⁹,
-NR⁸C(NH)NR⁹R¹⁰, -NR⁸CSNR⁹R¹⁰, -NR⁸SONR⁹R¹⁰, -NR⁸SO₂NR⁹R¹⁰, -COR⁸, -CSR⁸, -S(O)R⁸, -S(O)(NH)R⁸, -S(O)₂R⁸, -S(O)₂NR⁸R⁹, -S(O)₂N=CH-NR⁸R⁹,
-SO₃R⁸, -CO₂H, -CO₂R⁸, -CONR⁸R⁹, -CSNR⁸R⁹,
-SR⁸ or -CR⁸(OH)-R⁹, or for C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkinyl,
or C₃-C₁₀-cycloalkyl, that is substituted in one or more places in the same way
or differently with hydroxy, C₁-C₆-alkoxy, halogen, phenyl or with the group -NR³R⁴, and the phenyl, C₃-C₁₀-cycloalkyl, C₃-C₁₂-aryl, and
(CH₂)_p-C₃-C₁₈-heteroaryl itself optionally can be substituted in one or more
places in the same way or differently with halogen, hydroxy, C₁-C₆-alkyl, C₁-C₆-alkoxy, or with the group -CF₃ or -OCF₃,

R² stands for hydrogen or C₁-C₁₀-alkyl,

R³ stands for hydrogen, halogen, nitro, cyano, C₁-C₁₀-alkyl, halo-C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkinyl, C₃-C₁₀-cycloalkyl, hydroxy, C₁-C₆-alkoxy, C₁-C₆-alkylthio, amino, -NH-(CH₂)_p-C₃-C₁₀-cycloalkyl, C₁-C₆-hydroxyalkyl, C₁-C₆-alkoxy-C₁-C₆-alkyl, C₁-C₆-alkoxy-C₁-C₆-alkoxy-C₁-C₆-alkyl, -NHC₁-C₆-alkyl, -N(C₁-C₆-alkyl)₂, -SO(C₁-C₆-alkyl), -SO₂(C₁-C₆-alkyl), C₁-C₆-alkanoyl,

-CONR⁸R⁹, -COR¹⁰, C₁-C₆-alkylOAc, carboxy, or for the group -NR⁸R⁹, or for C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkinyl, or C₃-C₁₀-cycloalkyl,

that is substituted in one or more places in the same way or differently with
hydroxy, halogen, C₁-C₆-alkoxy,

C₁-C₆-alkylthio, amino, cyano, C₁-C₆-alkyl, -NH-(CH₂)_p-C₃-C₁₀-cycloalkyl,

C_3 - C_{10} -cycloalkyl, C_1 - C_6 -hydroxyalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkinyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -NHC₁-C₆-alkyl, -N(C₁-C₆-alkyl)₂, -SO(C₁-C₆-alkyl), -SO₂(C₁-C₆-alkyl), C₁-C₆-alkanoyl, -CONR⁸R⁹, -COR¹⁰, C₁-C₆-alkylOAc, carboxy, -(CH₂)_pPO₃(R¹⁰)₂ or with the group
 $-NR^8R^9$,

R^4 stands for hydrogen, halogen or C₁-C₄-alkyl,

R^6 , R^7 , R^8 ,

R^9 , R^{10}

and R^{11} , in each case independently of one another, stand for hydrogen or for

C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkinyl, C₃-C₁₀-cycloalkyl,

m stands for 0 to 8, and

n and p stand for 0 to 6, or isomers, diastereomers, enantiomers or salts thereof.

2. (Cancelled)

3. (Previously Presented) Compounds of formula (I),

in which

A stands for phenylene,

B stands for a bond or for C₁-C₁₂-alkylene, C₃-C₈-cycloalkylene or phenylene or thiophenylene that is optionally substituted in one or more places in the same way or differently with hydroxy, C₁-C₆-alkyl, C₁-C₆-hydroxyalkyl or

$-(CH_2)_pSO_3R^8$,

X and Y, in each case independently of one another, stand for oxygen or for the group $-NR^{11}-$, $-NR^{11}(CH_2)-$, $-CONR^8-$, $-SO_2NR^8-$ or $-NR^8CONR^9-$,

R^1 and R^5 , in each case independently of one another, stand for hydrogen, halogen, nitro, C_1-C_6 -alkyl, or for $-NR^8R^9$, $-C_1-C_6$ -alkyloxy- C_1-C_6 -alkyloxy or $-S(O)_2NR^8R^9$,

R^2 stands for hydrogen,

R^3 stands for hydrogen, halogen, cyano, C_1-C_{10} -alkyl or $-CONR^8R^9$,

R^4 stands for hydrogen,

R^8 ,

R^9

and R^{11} , in each case independently of one another, stand for hydrogen or for

C_1-C_{10} -alkyl,

n stands for 0 to 6,

m stands for 0 to 4, and

p stands for 0 to 6,

or isomers, diastereomers, enantiomers or salts thereof.

4. (Previously Presented) Compounds of formula (I), according to claim 3,

in which

A stands for phenylene,

B stands for a bond or for C_1-C_{12} -alkylene, cyclohexylene or phenylene that is optionally substituted in one or more places in the same way or differently with hydroxy, C_1-C_6 -alkyl, C_1-C_6 -hydroxyalkyl or $-(CH_2)SO_3R^8$,

X stands for oxygen or for the group $-CONR^8-$, $-SO_2NR^8-$ or $-NR^8CONR^9-$,

Y stands for oxygen or for the group $-NR^{11}-$,

R^1 and R^5 , in each case independently of one another, stand for hydrogen, amino, halogen, nitro, C_1-C_6 -alkyl, or for the group $-NR^8R^9$, $-C_1-C_6$ -alkyloxy- C_1-C_6 -alkyloxy or $-S(O)_2NR^8R^9$,

R^2 stands for hydrogen,
 R^3 stands for hydrogen, halogen, cyano, C_1-C_{10} -alkyl, or $-CONR^8R^9$,
 R^4 stands for hydrogen,
 R^8, R^9 and R^{11} , in each case independently of one another, stand for hydrogen or for methyl or isobutyl,
m stands for 0 to 4, and
p stands for 0 to 6,
as well as isomers, diastereomers, enantiomers, and salts thereof.

5. (Previously Presented) Compounds of formula (I), according to claim 3, in which
- A stands for phenylene,
B stands for a bond or for C_1-C_{12} -alkylene that is optionally substituted in one or more places in the same way or differently with hydroxy, C_1-C_6 -hydroxyalkyl or $-(CH_2)SO_3R^8$,
X stands for oxygen or for the group $-SO_2NR^8-$ or $-NR^8CONR^9-$,
Y stands for the group $-NR^{11}-$,
 R^1 and R^5 , in each case independently of one another, stand for hydrogen, amino, halogen, nitro or for the group $-S(O)_2NR^8R^9$,
 R^2 stands for hydrogen,
 R^3 stands for halogen or cyano,
 R^4 stands for hydrogen,
 R^8, R^9 and R^{11} in each case stand for hydrogen, and
m stands for 0 to 4,
or isomers, diastereomers, enantiomers or salts thereof.

6. (Cancelled)
7. (Cancelled)
8. (Cancelled)
9. (Previously Presented) Process for the production of the compounds of formula I according to claim 1, wherein either

a) compounds of formula VIII

in which R^1 , R^2 , R^3 , R^4 , R^5 , X , Y , A , B , m and n have the meanings that are indicated in formula I, and L stands for a leaving group, are cyclized with a an acid to compounds of formula I, or

b) the acyclic precursors of formula (IX)

in which R^1 , R^3 , R^4 , R^5 , X , Y , A , B , m and n have the meanings that are indicated in formula I, and L stands for a leaving group, are first reduced to amine in a solvent and a reducing agent at 0°C until reflux takes place and then the intermediately formed amine is cyclized to the compounds of formula I.

10. (Cancelled)
11. (Cancelled)
12. (Previously Presented) A method for the treatment of hormone-independent human breast cancer, human nonsmall-cell lung cancer, human colon cancer, hormone-independent human prostate cancer, or hormone-independent, multiple pharmaceutical agent-resistant human breast cancer, comprising administering to a host in need thereof a compound of formula I according to claim 1.
13. (Cancelled)
14. (Previously Presented) A pharmaceutical composition, comprising at least one compound according to claim 1 and a pharmaceutically acceptable carrier.
15. (Cancelled)
16. (Cancelled)
17. (Previously Presented) A pharmaceutical composition, comprising compound according to claim 3 and suitable formulation substances and vehicles.
18. (Cancelled)
19. (Cancelled)
20. (Cancelled)
21. (Cancelled)
22. (Cancelled)
23. (Cancelled)
24. (Currently Amended) Compounds of formula I

in which

- A stands for phenylene or thiophenylene,
 - B stands for C₁-C₁₂-alkylene, C₃-C₈-cycloalkylene, or phenylene that is optionally substituted in one or more places in the same way or differently with hydroxy, C₁-C₆-alkyl, C₁-C₆-hydroxyalkyl, or -(CH₂)_pSO₃R⁸,
 - X and Y, in each case independently of one another, stand for oxygen, sulfur or for the group -NR¹¹-, -NR¹¹(CH₂)-, -CONR⁸-, -SO₂NR⁸-, -S(O)₂N(COR⁸)-, -NR⁸SO₂-, or -NR⁸CONR⁹-,
 - R¹ and R⁵, in each case independently of one another, stand for hydrogen, halogen, nitro, C₁-C₆-alkyl or for the group -C₁-C₆-alkyloxy-C₁-C₆-alkyloxy, -NR⁸R⁹, -NR⁸COR⁹, -S(O)₂NR⁸R⁹, -S(O)₂N=CH-NR⁸R⁹, -CO₂H, -CO₂R⁸, -CONR⁸R⁹,
 - R² stands for hydrogen,
 - R³ stands for hydrogen, halogen, cyano, C₁-C₁₀-alkyl, -CONR⁸R⁹,
 - R⁴ stands for hydrogen,
 - R⁶, R⁷, R⁸,
 - R⁹, R¹⁰
- and R¹¹, in each case independently of one another, stand for hydrogen or for C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, -N(C₁-C₆-alkyl)₂, or -SO(C₁-C₆-alkyl),
- m stands for 0 to 8,
 - p stands for 0 to 6, and
 - n stands for 1
- or diastereomers, enantiomers or salts thereof.