

SAUDI DIGITAL ACADEMY

Himah Digital Bootcamps - Al Bootcamp

Business Case

Automated Customer Reviews
Analysis using Al

2025

Represent By

Team Members

- AHMED ALQARNI
- AMAL ALGHTANI
- HANAN ALNBHANI

Group Number: 1

AGENDA

- 1. Introduction
- 2. Data Understanding
- 3. Data Preprocessing
- 4. Review Classification
- 5. Model Evaluation
- 6. Product Category Clustering
- 7. Review Summarization
- 8. Deployment
- 9. Challenges & Solutions
- 10. Team Organization
- 11.Q&A Session

Introduction

Natural Language Processing (NLP): is a field of AI that enables machines to analyze and understand human language like <u>sentiment analysis</u> and <u>text classification</u>.

Main Objective of the Project

Problem: There are thousands of customer reviews online, and analyzing them manually is inefficient.

Goal: To build a system using (NLP) to <u>classify</u>, <u>cluster</u>, and <u>summarize</u> reviews.

Understand Dataset

- PRIMARY DATASET: <u>AMAZON PRODUCT REVIEWS</u>
- LARGER DATASET: <u>AMAZON REVIEWS DATASET</u>

Datafiniti_Amazon_Con sumer_Reviews_of_Ama zon_Products_May19

Datafiniti_Amazon_Con sumer_Reviews_of_Ama zon Products

1429_1


```
df1= pd.read_csv("/content/1429_1.csv")
df2 = pd.read_csv("/content/Datafiniti_Amazon_Consumer_Reviews_of_Amazon_Products.csv")
df3 = pd.read_csv("/content/Datafiniti_Amazon_Consumer_Reviews_of_Amazon_Products_May19.csv")
df4 = pd.read_csv("/content/All_Beauty (2).csv")
```

1. REVIEW CLASSIFICATION

1. REVIEW CLASSIFICATION

Preprocessing Steps:

- Removing stopwords and irrelevant tokens
- Filtering out symbols and special characters
- Handling missing or incomplete ratings
- Converting star ratings to sentiment classes:
- **★** 1-2 → Negative
- ★3 → Neutral
- \star 4-5 \rightarrow Positive

Data Preparation & Pre-processing

Merge The Data

2

Keep only the text and rating columns

3

Missing values duplicates
Text cleaning

Balance categories with the highest number of positive reviews

Model Training

Split data into features (X) and targets (y)

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

Models Evaluation

Calculate the scales for each category

Accuracy	Precision Negative	Precision Neutral	Precision Positive	Recall Negative	Recall Neutral	Recall Positive	F1 Negative	F1 Neutral	F1 Positive
0.864126	0.804822	0.802180	0.983479	0.810836	0.793991	0.986194	0.807818	0.798065	0.984835
0.879275	0.846135	0.810029	0.980736	0.805231	0.841318	0.989876	0.825176	0.825377	0.985285
0.883410	0.843912	0.819034	0.986462	0.818192	0.841550	0.989185	0.830853	0.830139	0.987822
0.883526	0.840782	0.824751	0.982890	0.823797	0.834126	0.991371	0.832203	0.829412	0.987113
0.883487	0.843389	0.821372	0.984116	0.819360	0.838998	0.990796	0.831201	0.830091	0.987445

Confusion matrix

Preprocessing Steps:

- Removing stopwords and irrelevant tokens
- Filtering out symbols and special characters
- Text Normalization
- super_clean Function
- Replace text between words with a space
- Remove spaces
- Remove common or simple words

Solution Steps:

- Select the categories reviews.text
- Embeddings using (intfloat/e5-small-v2)
- Chose number of cluster: 5
- Used unsupervised learning techniques: K-Means.
- Merged clusters
- Evaluate clusters based on Top words.

Names Of The Clusters After Merge

Positive

merged_cluster			
Tablets & Consumer Electronics	10729		
Smart Audio & Entertainment Devices 7249			
Streaming Devices & Media Playback 5044			
Digital Reading & Productivity Tools 4900			
Name: count, dtype: int64			

3. REVIEW SUMMARIZATION

3. REVIEW SUMMARIZATION

COMPARE OUTPUTS OF ALL THREE MODELS

3. REVIEW SUMMARIZATION

Best Model Selection

The best-performing model is

CHALLENGES & SOLUTIONS

Solutions

1. Dataset Imbalance	oversampling or under sampling.			
2. Large-scale review datasets (like				

Amazon Reviews) require high computational resources and can slow down training and testing.

Use lightweight models like BERT to reduce resource consumption.

3. Difficulty in choosing the appropriate number of groups for clustering

Use criteria like Silhouette Score and Elbow Method to automatically select the optimal number.

DEPLOYMENT

To make our project accessible and user-friendly, we deployed the models using Gradio, an open-source Python library that allows for quick and interactive demo.

CONCLUSION

Our project proves how NLP can turn massive customer reviews into <u>clear</u>, <u>smart</u>, and <u>useful insights.</u>

We built a system that <u>classifies</u>, <u>clusters</u>, and <u>summarizes reviews</u> helping both businesses and users make better decisions.

This is just the beginning of what Al can do for customer experience! 💋

DEMO

https://ae1942335d54fb783d.gradio.live

The product arrived on time and the packaging was fine, but the quality didn't match my expectations. It stopped working properly after just two weeks, and customer support wasn't helpful at all.

Absolutely love this product! The battery lasts forever, it's super easy to use, and it works even better than I expected. Totally worth the price!"

The product works as described. Nothing extraordinary, but it does the job. Delivery was okay and setup was straightforward.

Organizing Labor Division in Our Team Strategies & Implementation

Ahmed Alqarni

Review Classification

Amal alghtani

Product Category Clustering

Hanan Alnbhani

Review Summarization

Thank you

For your kind listening

ANY Lions?