Kristine Trinh

NSID: nlt895

11190412

Question 1)

a)

Given $R=\{2,4,6,8\}$ and $S=\{1,3,5,7\}$ and xRy if (y-x) > 1 The relation = {(2,5),(2,7), (4,7)} because: 2R5 since 5-2 > 1 2R7 since 7-2 > 1 4R7 since 7-4 > 1

Question 2)

a	b	$a \Rightarrow b$	$\neg b$	$\neg b \wedge (a \Rightarrow b)$	$\neg a$	$[\neg b \land (a \Rightarrow b)] \Rightarrow \neg a$
Т	Т	Т	F	F	F	Т
Т	F	F	Т	F	Т	Т
F	Т	Т	F	F	F	Т
F	F	Т	Т	F	Т	Т

Thus, we have $[\neg b \land (a \Rightarrow b)] \Rightarrow \neg a$ is a tautology.

The use of truth table allows me to say that the expression is a tautology because the compound statement of the last column is always true regardless of the truth value of its variables, which is a, b

Question 3)

p	q	r	$p\vee q$	$p \Rightarrow r$	$q \Rightarrow r$	$(p \vee q) \wedge (p \Rightarrow r) \wedge (q \Rightarrow r)$
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	T	F	F	F
Т	F	Т	Т	Т	Т	Т
Т	F	F	Т	F	Т	F
F	Т	Т	Т	Т	Т	Т
F	Т	F	T	Т	F	F
F	F	Т	F	Т	Т	Т
F	F	F	F	Т	Т	F

The compound statement $(p \lor q) \land (p \Rightarrow r) \land (q \Rightarrow r)$ holds the same truth values as r. Therefore, the conclusion is $[(p \lor q) \land (p \Rightarrow r) \land (q \Rightarrow r)] \Rightarrow r$

Question 4)

- a) The OR gate has the output of NAND gate(=PQ) and the input of P. Hence, the Boolean expression of the circuit is S=P+PQ
- b) Proof that the Boolean expression in a) is equivalent to t

Expression
P + PQ
Original expression
P + (P + Q)
De Morgan's Law
(P + P) + Q
Communicative, Associative Laws

T + Q Complement Law T Identity Law