ANALYSE DES DONNEES (Examen et correction)

Master M1 MMD - MA, 23 mai 2017

Calculatrice autorisée, documents autorisés : 2 feuilles recto-verso.

Barême approximatif: 10 points pour chacun des deux exercices.

Exercice 1

On considère le tableau K suivant où a est un entier non nul :

I/J	j_1	j_2	j_3	j_4	j_5
i_1	a	a	a	0	0
$ i_2 $	a	a	0	a	0
$egin{array}{c} i_1 \\ i_2 \\ i_3 \end{array}$	0	a	0	a	a

On pose

$$I = \{i_1, i_2, i_3\}$$
 et $J = \{j_1, j_2, j_3, j_4, j_5\}$.

On effectue l'analyse factorielle des corresponsdances (AFC) de *K*.

1. Déterminer les centres de gravité des nuages $\mathcal{N}(I)$ et $\mathcal{N}(J)$. On obtient

$$f_I = \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \end{pmatrix}$$
 et $f_J = \frac{1}{9} \begin{pmatrix} 2 \\ 3 \\ 1 \\ 2 \\ 1 \end{pmatrix}$.

2. Déterminer la matrice des profils colonnes F_1 ainsi que la matrice des profils lignes F_2 de K.

On a donc

$$F_1 = \frac{1}{6} \begin{pmatrix} 3 & 2 & 6 & 0 & 0 \\ 3 & 2 & 0 & 3 & 0 \\ 0 & 2 & 0 & 3 & 6 \end{pmatrix} \text{ et } F_2 = \frac{1}{3} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

3. Vérifier que le produit

$$F_1 F_2 = \frac{1}{18} \left(\begin{array}{ccc} 11 & 5 & 2 \\ 5 & 8 & 5 \\ 2 & 5 & 11 \end{array} \right).$$

Le produit donne le bon résultat.

4. Quel est l'influence du réel *a* sur l'AFC de ce tableau.

Aucune puisque les individus des nuages ne dépendent pas de a ainsi que les poids et les métriques.

- 5. Quel est l'axe factoriel trivial, à quelle valeur propre est-il associé? f_I est le vecteur propre de F_1F_2 associé à la valeur propre triviale 1.
- 6. Quelle est l'inertie du nuage $\mathcal{N}(J)$. L'inertie du nuage $\mathcal{N}(J)$ est la trace de F_1F_2 moins 1 donc 30/18 - 1 = 2/3.

7. On pose

$$w_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \text{ et } w_2 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}.$$

Montrer que w_1 et w_2 sont des vecteurs propres de F_1F_2 , en déduire les axes factoriels non triviaux u_1 et u_2 ainsi que les valeurs propres associés. On choisira u_1 de manière que la première coordonnée soit positive, de même pour u_2 . On vérifie que

$$F_1 F_2 w_1 = \frac{1}{2} w_1$$
 et $F_1 F_2 w_2 = \frac{1}{6} w_2$.

Or la norme de w_1 pour la métrique $D_{1/f_1} = 3I_3$ est $\sqrt{\P}$ donc le premier axe factoriel u_1 associé à la valeur propre $\lambda_1 = 1/2$ est $u_1 = \frac{1}{\sqrt{6}}w_1$ et le deuxième axe factoriel u_2 associé à la valeur propre $\lambda_2 = 1/6$ est $u_2 = \frac{1}{3\sqrt{2}}w_2$

8. On note $\varphi_{\alpha}(i)$ l'abscisse de la projection du profil de la ligne i sur le α ème axe factoriel. Remplir le tableau suivant avec la contrainte $\varphi_{\alpha}(i_1) \geq 0$

$$\begin{array}{c|ccccc} I/J & \varphi_1 & \varphi_2 & \varphi_3 \\ \hline i_1 & \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{6} & 0 \\ i_2 & 0 & \frac{-2\sqrt{3}}{6} & 0 \\ i_3 & \frac{-\sqrt{3}}{2} & \frac{\sqrt{3}}{6} & 0 \\ \hline \end{array}$$

 φ_{α} est une composante principale du nuage $\mathcal{N}(I)$ donc φ_{α} est un vecteur propre de $F_2'F_1'$. Or on remarque que la matrice F_1F_2 est symétrique donc $F_2'F_1' = F_1F_2$, on a les même vecteurs propres w_1 et w_2 que l'on normalise avec la métrique $1/3I_3$. Donc

$$\varphi_1 = \frac{\sqrt{3}}{2} w_1 \text{ et } \varphi_2 = \frac{\sqrt{3}}{6} w_2.$$

9. On note ψ_{α}^{j} l'abscisse de la projection du profil de la colonne j sur le α ème axe factoriel. En utilisant les formules de transition, compléter le tableau suivant

$$\begin{array}{|c|c|c|c|c|c|}\hline I/J & j_1 & j_2 & j_3 & j_4 & j_5 \\\hline \psi_1 & \frac{\sqrt{6}}{4} & 0 & \frac{2\sqrt{6}}{4} & \frac{-\sqrt{6}}{4} & \frac{-2\sqrt{6}}{4} \\ \psi_2 & \frac{-\sqrt{2}}{4} & 0 & \frac{2\sqrt{2}}{4} & \frac{-\sqrt{2}}{4} & \frac{2\sqrt{2}}{4} \\\hline \end{array}$$

Avec les formules de transition on a

$$\psi_1 = \sqrt{2}F_1'\varphi_1$$
 et $\psi_2 = \sqrt{6}F_1'\varphi_2$.

10. Représenter les deux nuages $\mathcal{N}(I)$ et $\mathcal{N}(J)$ simultanément dans le plan factoriel 1-2. Les tableaux précédents donnent les coordonnées des points des deux nuages.

11. Calculer la contribution de i_1 à chacun des axes factoriels non triviaux ainsi que la qualité de représentation de i_1 dans le plan factoriel 1-2 c'est-à-dire $COR_1(i_1) + COR_2(i_1)$.

On a

$$CTR_1(i_1) = \frac{1}{3} \times \frac{3/4}{1/2} = 1/2 \text{ et } CTR_2(i_1) = \frac{1}{3} \times \frac{3/36}{1/6} = 1/6.$$

Comme il n'y a que deux axes non triviaux, la qualité de représentation de i_1 dans le plan factoriel 1-2 est 1.

Exercice 2

On considère un tableau de contingence, noté $K = (k_{ij})_{1 \le i \le p, 1 \le j \le q}$, qui croise deux variables qualitatives X et Y dont le nombre de modalités est p pour X et q pour Y. On pose

$$I = \{1, \dots, p\} \text{ et } J = \{1, \dots, q\}.$$

On effectue une AFC sur ce tableau. On note F_{α} la composante principale associée à l'axe factoriel α pour le nuage $\mathcal{N}(J)$ et G_{α} la composante principale associée à l'axe factoriel α pour le nuage $\mathcal{N}(I)$.

1. Rappeler les formules de transitions entre F_{α} et G_{α} . On rappelle que

$$\forall i \in I, \quad F_{\alpha}(i) = \frac{1}{\sqrt{\lambda_{\alpha}}} \sum_{i=1}^{q} f_{j}^{i} G_{\alpha}(j) \text{ et } \forall j \in J, \quad G_{\alpha}(j) = \frac{1}{\sqrt{\lambda_{\alpha}}} \sum_{i=1}^{p} f_{i}^{j} F_{\alpha}(i).$$

- 2. On suppose qu'il existe une valeur propre non triviale égale à 1 : $\lambda_{\alpha} = 1$.
 - (a) On suppose qu'il existe des indices i_0 , j_0 tels que

$$\forall i \in I \setminus \{i_0\}, \ F_{\alpha}(i) < F_{\alpha}(i_0) \text{ et } \forall j \in J \setminus \{j_0\}, \ G_{\alpha}(j) < G_{\alpha}(j_0).$$

i. Montrer que

$$F_{\alpha}(i_0) = G_{\alpha}(i_0).$$

On a

$$F_{\alpha}(i) = \sum_{i=1}^{q} f_{j}^{i} G_{\alpha}(j) \le \sum_{i=1}^{q} f_{j}^{i} G_{\alpha}(j_{0}) = G_{\alpha}(j_{0})$$

et de même

$$G_{\alpha}(i_0) \leq F_{\alpha}(i_0)$$
.

donc on a l'égalité.

ii. En déduire que

$$f_j^{i_0} = \begin{cases} 1 & \text{si } j = j_0, \\ 0 & \text{sinon} \end{cases}$$

On suppose que $f_i^{i_0} > 0$ pour un indice $j \neq j_0$, alors

$$G_{\alpha}(j_{0}) = \sum_{j=1}^{q} f_{j}^{i_{0}} G_{\alpha}(j),$$

$$= f_{j_{0}}^{i_{0}} G_{\alpha}(j_{0}) + \sum_{j \neq j_{0}} f_{j}^{i_{0}} G_{\alpha}(j),$$

$$< f_{j_{0}}^{i_{0}} G_{\alpha}(j_{0}) + \left(\sum_{j \neq j_{0}} f_{j}^{i_{0}}\right) G_{\alpha}(j_{0}),$$

$$< f_{j_{0}}^{i_{0}} G_{\alpha}(j_{0}) + (1 - f_{j_{0}}^{i_{0}}) G_{\alpha}(j_{0}),$$

$$< G_{\alpha}(j_{0}).$$

L'inégalité est impossible donc pour tout $j \neq j_0$, $f_j^{i_0} = 0$. Comme la somme des composantes de $f_J^{i_0}$ vaut 1, on a le résultat.

iii. Que cela signifie t-il pour les modalités i_0 et j_0 ?

De même on a

$$f_i^{j_0} = \begin{cases} 1 & \text{si } i = i_0, \\ 0 & \text{sinon} \end{cases}$$

Donc tout individu qui possède la modalité i_0 possède la modalité j_0 et réciproquement.

(b) On note I_0 l'ensemble des indices pour lesquels $F_\alpha(i)$ atteint son maximum et J_0 l'ensemble des indices pour lesquels $G_\alpha(j)$ atteint son maximum. Pour simplifier on note $I_0 = \{1, \dots, p_0\}$ et $J_0 = \{1, \dots, q_0\}$, montrer que le tableau d'effectif K s'écrit

où K_0 et K_1 sont des tableaux d'effectifs.

On raisonne comme dans le cas précédent, on a pour $j_0 \in J_0$ et $i_0 \in I_0$

$$G_{\alpha}(j_0) = \sum_{i \in I_0} f_i^j F_{\alpha}(i_0) + \sum_{i \in I \setminus I_0} f_i^j F_{\alpha}(i),$$

$$\leq F_{\alpha}(i_0).$$

D'où par symétrie

$$\forall i_0 \in I_0, \ \forall j \in J_0, \ G_{\alpha}(j_0) = F_{\alpha}(i_0)$$

et aussi

$$\forall i_0 \in I_0, \ \ \forall j \in J \setminus J_0, \ \ f_i^{i_0} = 0 \text{ et } \forall j_0 \in J_0, \ \ \forall i \in I \setminus I_0, \ \ f_i^{j_0} = 0.$$

En termes d'effectifs, cela donne

$$\forall i_0 \in I_0, \quad \forall j \in J \setminus J_0, \quad k_{i_0,j} = 0 \text{ et } \forall j_0 \in J_0, \quad \forall i \in I \setminus I_0, \quad f_{ij_0} = 0.$$

on en déduit le résultat.

- 3. On suppose que p = q et que 1 est la seule valeur propre de F_1F_2 .
 - (a) Montrer que $F_1F_2 = I_p$ où I_p est la matrice identité. La matrice F_1F_2 est diagonalisable et n'admet que 1 comme valeur propre donc c'est l'identité.

(b) Que peut-on en déduire pour les matrices F_1 et F_2 ? On en déduit que

$$\forall (i,i') \in I^2, \quad i \neq i' \Longrightarrow \sum_{j=1}^p f_i^j f_j^{i'} = 0,$$

donc les termes étant positifs,

$$\forall (i, i') \in I^2, i \neq i' \Longrightarrow \forall j \in I, f_{ij}f_{i'j} = 0,$$

Pour i_0 fixé, la ligne i_0 n'étant pas nulle par hypothèse, il existe j_0 tel que $f_{i_0j_0} \neq 0$ alors d'après ce qui précède

$$\forall i \neq i_0, \quad f_{ij_0} = 0.$$

Par conséquent la ligne i_0 ne comporte que des zéros sauf pour j_0 donc $f_J^{i_0} = e_{j_0}$ où e_j est le jème vecteur de la base canonique de \mathbb{R}^p . La matrice F_2 est donc une matrice de permutation, de même pour F_1 , inverse de F_2 .

(c) Que conclure sur les variables *X* et *Y* ?

Les variables *X* et *Y* partitionnent l'ensemble des individus de la même manière.