MSO201A 2021-22-II END SEM EXAMINATION SOLUTIONS

Question 1. (1.5 + 1.5 marks) Let $X \sim t_2$. Then $|\mathbb{E}X|$ and variance of X

Answer: $\mathbb{E}X = 0$ and variance of X 'does not exist'.

Question 2. (3 marks) Which of the following RVs Y have zero mean? Put a tick (\checkmark) beside all

the correct option(s) to get credit.

(a)
$$Y \sim Cauchy(0,1)$$
 (b) $Y \sim Exponential(5)$

(c)
$$Y \sim N(0, \sqrt{2}),$$
 (d) $Y \sim Uniform(-3, 3)$

(d)
$$Y \sim Uniform(-3, 3)$$

Answer: Accepted answers: (c) and (d)

<u>Question</u> 3. (1.5 + 1.5 marks) Let $X \sim Poisson(1)$ and $Y \sim Poisson(2)$ be independent. Then

$$\mathbb{E}[X \mid X + Y = 5] =$$
 and
$$Var[X \mid X + Y = 5] =$$

Answer: The conditional distribution of X given X + Y = 5 is $Binomial(5, \frac{1}{1+2})$ (see Rohatgi & Saleh book). The conditional expectation is $\frac{5}{3}$ and conditional variance $\frac{10}{9}$.

Question 4. (2+1 marks) For $\alpha \in \mathbb{R}$, consider the functions $f,g:\mathbb{R} \to \mathbb{R}$ below.

$$f_{\alpha}(x) := \begin{cases} \alpha 4^{-x}, \forall x \in \{-1, 0, 1, 2, 3, \dots\}, \\ 0, \text{ otherwise.} \end{cases}$$

$$g_{\alpha}(x) := \alpha \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-1)^2}{2}\right) + (1-\alpha)\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-3)^2}{2}\right), \forall x.$$

For this value of α , is g_{α} a p.d.f.? Yes/No If f_{α} is a p.m.f., then $\alpha =$

Answer: We have $\sum_{x=-1}^{\infty} 4^{-x} = 4 + \sum_{x=0}^{\infty} 4^{-x} = 4 + \frac{4}{3} = \frac{16}{3}$. Then $\alpha = \frac{3}{16}$, which also ensures f_{α} takes non-negative values and hence becomes a p.m.f.. For this value of α , g_{α} is a convex combination of two p.d.f.s and hence is a p.d.f.

<u>Question</u> 5. (3 marks) Let $X \sim Geometric(\frac{1}{3})$. Let $\alpha = \mathbb{E}\frac{1}{\Gamma(X+1)}$, where Γ denotes the Gamma

function. Then
$$\boxed{\frac{1}{e}\alpha^3 - 2\mathbb{E}X =}$$

Answer:

$$\alpha = \sum_{n=0}^{\infty} \frac{1}{\Gamma(n+1)} \frac{1}{3} \left(\frac{2}{3}\right)^n = \frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n \frac{1}{n!} = \frac{1}{3} \exp\left(\frac{2}{3}\right).$$

Using results from Lecture notes, $\mathbb{E}X = 2$. The answer is

$$\frac{e}{27} - 4$$

<u>Question</u> 6. (3 marks) The following list contains some statements involving parametric statistical hypothesis testing problems. Put a tick (\checkmark) beside all the correct option(s) to get credit.

- (a) The null hypothesis H_0 is always true.
- (b) If the observed sample realization falls inside the critical region of a test, then we accept the null hypothesis based on the test.
- (c) The Neyman-Pearson Lemma gives the existence and uniqueness of an MP test of a given level α .
- (d) If a test has level α , then type-I error of the test can not exceed α .

Answer: Accepted answers: (c) and (d)

Question 7. (1.5 + 1.5 marks) The DF F defined by

$$F(x) = \begin{cases} 0, & \text{if } x < 0, \\ \frac{1}{5} + \frac{x}{3}, & \text{if } 0 \le x < 1, \\ \frac{1}{3} + \frac{x}{5}, & \text{if } 1 \le x < 3, \\ 1, & \text{if } x \ge 3. \end{cases}$$

has jump(s) at

with jump size(s)

Answer: jumps at 0 and 3, with jump sizes $F(0) - F(0-) = \frac{1}{5} - 0 = \frac{1}{5}$ and $F(3) - F(3-) = 1 - \frac{1}{3} - \frac{3}{5} = \frac{1}{15}$.

<u>Question</u> 8. (3 marks) Let X, Y, Z be independent N(0,1) RVs. Put a tick (\checkmark) beside all correct statement(s) to get credit.

- (a) Let F_X denote the DF of X. Then, $F_X(X) \sim Uniform(0,1)$.
- (b) $\frac{X^2+Z^2}{2Y^2} \sim F_{2,2}$. (c) $X^2+Z^2 \sim \chi_3^2$. (d) $\frac{X}{|Y|} \sim Cauchy(0,1)$

Answer: Accepted answers: (a) – Probability integral transform and (d) – Practice problem set 9 Question 5.

Note that $\frac{X^2 + Z^2}{2V^2} \sim F_{2,1}$ and $X^2 + Z^2 \sim \chi_2^2$.

<u>Question</u> 9. (3 marks) Let X be a non-negative RV defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that the MGF M_X exists on \mathbb{R} . Which of the following statement(s) is/are necessarily true? Put a

tick (\checkmark) beside all correct statement(s) to get credit.

- (a) $\mathbb{P}(X > 1) = 1$. (b) $\exp(\mathbb{E}X) \le M_X(1)$. (c) $(\mathbb{E}X^3)^2 > \mathbb{E}X^6$
- (d) $\mathbb{P}(X \ge \alpha) \le e^{-\lambda \alpha} M_X(\lambda)$ for all $\alpha > 0, \lambda > 0$.

Answer: Accepted answers: (b) – by Jensen's inequality and (d) – by Chernoff's inequality Counter-example to (a): $X \sim Uniform(0,1)$. For (c): note that for any non-negative RV Y, we have $(\mathbb{E}Y)^2 \leq \mathbb{E}Y^2$; setting $Y = X^3$ we get the opposite inequality.

Question 10. (3 marks) Let $X \sim Uniform(-1,3)$. Then, for any $p \in (0,1)$, the quantile of order p equals

Answer: We need to solve for unknown x in the equation $F_X(x) = p$. Now,

$$F_X(x) := \begin{cases} 0, & \text{if } x \le -1, \\ \frac{x+1}{4}, & \text{if } -1 < x < 3, \\ 1, & \text{if } x \ge 3. \end{cases}$$

Solving the equation, we get the quantile of order p as 4p-1.

Question 11. (2 + 2 marks)

- (a) Suppose that a random sample of size 16 has been drawn from a $N(\mu_1, 4)$ population, with $\mu_1 \in \mathbb{R}$ being unknown. If the sample mean obtained from the above sample is 4.2, then write down the equal-tailed 95% confidence interval for μ_1 based on the above random sample.
- (b) Suppose that two random samples, one of size 16 and other of size 9 have been drawn from $N(\theta_1, 5.76)$ and $N(\theta_2, 5.76)$ populations respectively, with $\theta_1, \theta_2 \in \mathbb{R}$ being unknown. If the sample means for these random samples are 4 and 8 respectively, write down the equal-tailed 99% confidence interval for $\theta_1 \theta_2$.

Answer: (a) For $\alpha = 0.05$, we have the solution to $\Phi(z_{\frac{1}{2}\alpha}) = 1 - \frac{\alpha}{2}$ as $z_{\frac{1}{2}\alpha} = 1.96$. The confidence interval is given by

$$\left[\bar{X}_n - \frac{\sigma}{\sqrt{n}} z_{\frac{1}{2}\alpha}, \bar{X}_n + \frac{\sigma}{\sqrt{n}} z_{\frac{1}{2}\alpha}\right] = [4.2 - 0.98, 4.2 + 0.98] = [3.22, 5.18]$$

open interval (3.22, 5.18) is also acceptable as an answer

$$\frac{[4.2-\frac{1}{2}z_{\frac{1}{2}\alpha},4.2+\frac{1}{2}z_{\frac{1}{2}\alpha}] \text{ with } \Phi(z_{\frac{1}{2}\alpha})=0.975 \text{ or } 1-\frac{\alpha}{2} \text{ with } \alpha=0.05 \text{ gets } 1 \text{ mark.}}{[4.2-\frac{1}{2}z_{\frac{1}{2}\alpha},4.2+\frac{1}{2}z_{\frac{1}{2}\alpha}] \text{ without } \Phi(z_{\frac{1}{2}\alpha})=0.975 \text{ gets no marks.}}$$

(b) For $\alpha=0.01$, we have the solution to $\Phi(z_{\frac{1}{2}\alpha})=1-\frac{\alpha}{2}$ as $z_{\frac{1}{2}\alpha}=2.575$. The confidence interval is given by

$$\left[\bar{X}_n - \bar{Y}_m - \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}} z_{\frac{1}{2}\alpha}, \bar{X}_n - \bar{Y}_m + \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}} z_{\frac{1}{2}\alpha} \right].$$

Now, $\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}} = \sqrt{\frac{5.76}{16} + \frac{5.76}{9}} = 1$. The confidence interval is given by

$$[4-8-2.575, 4-8+2.575] = [-6.575, -1.425]$$

open interval (-6.575, -1.425) is also acceptable as an answer

$$\frac{[-4-z_{\frac{1}{2}\alpha},-4+z_{\frac{1}{2}\alpha}] \text{ with } \Phi(z_{\frac{1}{2}\alpha})=0.995 \text{ or } 1-\frac{\alpha}{2} \text{ with } \alpha=0.01 \text{ gets } 1 \text{ mark.}}{[-4-z_{\frac{1}{2}\alpha},-4+z_{\frac{1}{2}\alpha}] \text{ without } \Phi(z_{\frac{1}{2}\alpha})=0.995 \text{ gets no marks.}}$$

Question 12. (2+2 marks) Let X_1, X_2, \dots, X_n be a random sample from $Binomial(1000, \theta)$ distri-

bution, where $\theta \in (0,1)$ is unknown. Write the MLE of θ^2 in the box.

Is the MLE of θ^2 consistent? Yes/No

Answer: Accepted answers: $\left(\frac{\bar{X}_n}{1000}\right)^2$ and 'Yes'.

The MLE of θ is $\frac{\bar{X}_n}{1000}$ (see Quiz 3 Question 4). Then the MLE of θ^2 is $\left(\frac{\bar{X}_n}{1000}\right)^2$. By WLLN, $\bar{X}_n \xrightarrow{P} 1000\theta$. By continuous mapping theorem for convergence in probability, we have $(\bar{X}_n)^2 \xrightarrow{P} 10^6\theta^2$ and hence the MLE of θ^2 is consistent.

Question 13. (4 marks) A 2-dimensional random vector $\binom{X}{Y}$ has the MGF $M_{X,Y}(t,s) = \exp(2t + s + \frac{1}{2}t^2 + 2s^2), \forall (t,s) \in \mathbb{R}^2$. Fix $\theta \in (0, \frac{\pi}{2})$ and define

$$U := (X - 2)\sin\theta + \frac{Y - 1}{2}\cos\theta, V := (X - 2)\cos\theta - \frac{Y - 1}{2}\sin\theta.$$

Put a tick (\checkmark) beside all the correct option(s) to get credit.

- (a) $X \sim N(0,1)$. (b) Cov(U,V) = 0. (c) $X + Y \sim N(3,5)$
- (d) U and V are independent.

Answer: Accepted answers: (b), (c) and (d).

By identifying the joint distribution of $\binom{X}{Y}$ by looking at the joint MGF, we conclude that $\binom{X}{Y} \sim N_2(2,1,1,4,0)$ and X,Y are also independent. Then $X+Y \sim N(2+1,1+4)$ and hence (c) is true. (b) and (d) follow from Practice set 9 Question 6.

<u>Question</u> 14. (1 + 1 + 2 marks) Let $\{X_n\}_n$ be a sequence of i.i.d. RVs defined on the same probability space.

(a) If
$$X_1 \sim Bernoulli(\frac{3}{4})$$
, then define $Y_n := \left(\frac{3n}{16}\right)^{-\frac{1}{2}} \left(X_1 + X_2 + \dots + X_n - \frac{3n}{4}\right), \forall n$. It is known that $Y_n \xrightarrow[n \to \infty]{d} Z$. Then $Z \sim$

(b) If $X_1 \sim N(1,4)$, then define $Y_n := \frac{X_1 + X_2 + \dots + X_n}{n}$, $\forall n$. It is known that $Y_n \xrightarrow[n \to \infty]{P} U$. Then the support of U equals

(c) If
$$X_1 \sim N(2,9)$$
, then define $Y_n := \sqrt{n} \left[\left(\frac{X_1 + X_2 + \dots + X_n}{n} \right)^2 - 4 \right], \forall n$. It is known that $Y_n \xrightarrow[n \to \infty]{d} W$. Then $W \sim$

Answer: (a) by CLT, $Z \sim N(0, 1)$.

(b) by WLLN, U is degenerate at 1 and hence the support is $\{1\}$.

Accepted answer: {1}. Just '1' is not acceptable.

(c) Take $g(x) = x^2, \forall x \in \mathbb{R}$. We have $g'(2) = 4 \neq 0$. By the delta method, $\frac{Y_n}{\sqrt{9}} \xrightarrow[n \to \infty]{d} V \sim N(0, 4^2)$. Hence $W \stackrel{d}{=} \sqrt{9}V \sim N(0, 9 \times 4^2) = N(0, 144)$.

<u>Question</u> 15. (2 + 2 marks) Let X_1 and X_2 be independent Geometric(p) RVs for some $p \in (0, 1)$. Let $f_{X_{(2)}}$ denote the p.m.f. of $X_{(2)}$.

(a) For integers
$$k > 0$$
, $f_{X_{(2)}}(k) =$

(b) Are
$$X_{(1)}$$
 and $X_{(2)} - X_{(1)}$ independent? Yes/No

Answer: Accepted answers: $(1-(1-p)^{k+1})^2-(1-(1-p)^k)^2$ and 'Yes'.

(a) The common p.m.f. of X_1 and X_2 is

$$f(x) = \begin{cases} p(1-p)^x, & \text{if } x \in \{0, 1, 2, \dots\}, \\ 0, & \text{otherwise.} \end{cases}$$

Now, for any non-negative integer k, using the independence of X_1 and X_2

$$\mathbb{P}(X_{(2)} \le k) = \mathbb{P}(X_1 \le k, X_2 \le k) = (\mathbb{P}(X_1 \le k))^2.$$

Since,

$$\mathbb{P}(X_1 \le k) = \sum_{x=0}^{k} p(1-p)^x = 1 - (1-p)^{k+1},$$

we have,

$$\mathbb{P}(X_{(2)} \le k) = \left(1 - (1 - p)^{k+1}\right)^2$$

and hence for positive integers k,

$$\mathbb{P}(X_{(2)} = k) = \mathbb{P}(X_{(2)} \le k) - \mathbb{P}(X_{(2)} \le k - 1) = \left(1 - (1 - p)^{k+1}\right)^2 - \left(1 - (1 - p)^k\right)^2.$$

(b) For non-negative integers m, n, we have

$$\begin{split} &\mathbb{P}(X_{(1)} = n, X_{(2)} - X_{(1)} = m) \\ &= \mathbb{P}(X_{(1)} = n, X_{(2)} = m + n) \\ &= \begin{cases} \mathbb{P}(X_1 = n, X_2 = m + n) + \mathbb{P}(X_2 = n, X_1 = m + n), & \text{if } m > 0, \\ \mathbb{P}(X_1 = X_2 = n), & \text{if } m = 0 \end{cases} \\ &= \begin{cases} 2p(1-p)^n \ p(1-p)^{m+n}, & \text{if } m > 0, \\ (p(1-p)^n)^2, & \text{if } m = 0 \end{cases} \\ &= \begin{cases} 2p^2(1-p)^{2n}(1-p)^m, & \text{if } m > 0, \\ (p(1-p)^n)^2, & \text{if } m = 0 \end{cases} \end{split}$$

Since, the joint p.m.f. is in a product form, we conclude that $X_{(1)}$ and $X_{(2)} - X_{(1)}$ are independent.