Ordinary Differential Equations

(preliminary draft updated Dec 17 2023)

李思 (Si Li)

Tsinghua University

Thanks very much for your support of this note! It is greatly appreciated if you are willing to help improve it by sending your comments such as typo, mistake or suggestion at your tea time. You are welcome to submit your comment via either the website

https://www.wjx.cn/vm/wfNWML4.aspx

or the barcode below

You can also contact me at sili@mail.tsinghua.edu.cn. The draft will be updated on my homepage: https://sili-math.github.io/. Thank you.

Contents

Prefac	eface					
Chapte	napter 1 Introduction					
1.1	Basic	Concepts	6			
	1.1.1	ODE and PDE	6			
	1.1.2	System of Differential Equations	7			
	1.1.3	Linear and Nonlinear Equations	7			
	1.1.4	Order	8			
	1.1.5	Integral Curve	9			
1.2	Examples of Solutions		10			
	1.2.1	Integrating Factor	10			
	1.2.2	Seperation of Variables	12			
	1.2.3	Change of Variable	13			
Chapt	er 2 I	inear Equations	15			
2.1	Linear System with Constant Coefficients					
	2.1.1	1st Order Homogeneous System	15			
	2.1.2	1st Order Inhomogeneous System	20			
	2.1.3	n-th Order Linear Equation	21			
2.2	Long-term Behavior					
	2.2.1	Jordan Canonical Form	26			
	2.2.2	Examples of Two-dim System	31			
2.3	Nonau	ntonomous Linear Equations	34			
	2.3.1	Path-ordered Exponential	34			
	2.3.2	Variation of Parameters	37			
Chapt	er 3 N	Nonlinear Equations	40			
3.1	Local Solutions					
	3.1.1	Integral Equation	40			
	3.1.2	The Contraction Mapping Theorem	41			
	3.1.3	Lipschitz Condition	42			
	3.1.4	Local Existence and Uniqueness	43			

3.2	Extension of solutions	45
	3.2.1 Maximal Interval of Existence	46
	3.2.2 Grönwall's Inequality	47
	3.2.3 Global Existence for Linear Growth	48
3.3	Dependence on Initial Data	49
	3.3.1 Continuous Dependence on Initial Value	50
	3.3.2 Continuous Dependence on Parameters	53
	3.3.3 Differentiability	53
3.4	Analyticity	57
	3.4.1 Analytic Function	57
	3.4.2 Cauchy-Kovalevskaya Theorem	57
Chapt	er 4 Power Series Solutions	61
4.1	Ordinary Point	61
4.2	Linear System with Regular Singularity	65
	4.2.1 Regular Singular Point	65
	4.2.2 Gauge Transformation	68
	4.2.3 Solutions in General	70
4.3	Scalar Equation with Regular Singularity	72
	4.3.1 Regular Singular Point	72
	4.3.2 Method of Frobenius	74
	4.3.3 Hypergeometric Series	76
\mathbf{Chapt}	er 5 Boundary Value Problem	7 8
5.1	Boundary Value Problem for Second Order Equations	78
	5.1.1 Boundary Conditions	78
	5.1.2 Sturm-Liouville Form	79
	5.1.3 Homogeneous Problem	80
5.2	Green's Function for Second Order Equations	82
	5.2.1 Idea of Green's Function	82
	5.2.2 Construction of Green's Function	84
	5.2.3 Solution via Green's Function	86
5.3	Boundary Value Problem in General	88
	5.3.1 Linear System and Green's Matrix	88
	5.3.2 Nonlinear Equation	90
5.4	Compact Self-adjoint Operators	92
	5.4.1 Inner Product Space	92
	5.4.2 Compact Self-adjoint Operators	93
	5.4.3 Orthonormal Sequence	95
5.5	Sturm-Liouville Eigenvalue Problem	98

	5.5.1	Eigenvalue Problem	98
	5.5.2	Green's function as Compact Self-adjoint Operator	99
	5.5.3	Eigenfunctions and Fourier Series	101
Chapte	er 6 C	Calculus of Variations	104
6.1	Euler-	Lagrange Equation	104
	6.1.1	Principle of Least Action	104
	6.1.2	Euler-Lagrange Equation	105
6.2	Brach	istochrone Problem	109
	6.2.1	Brachistochrone Curve	109
	6.2.2	Fermat's Principle	112
6.3	Isoper	rimetric Problem	113
	6.3.1	Action Principle with Constraint	114
	6.3.2	Isoperimetric Problem	116
6.4	Keple	r Problem	117
	6.4.1	Solutions of Motion	117
	6.4.2	Kepler's Laws	120
Chapte	er 7 N	Numerical Solutions s Method	122
7.1	Euler'	's Method	122
	7.1.1	Difference Equation	122
	7.1.2	Error Analysis	123
	7.1.3	Backward Euler's Method	125
	7.1.4	Trapezoidal Method	
7.2	Highe	r-Order Methods	
	7.2.1	Taylor Method	
	7.2.2	Runge-Kutta Method	
	7.2.3	Linear Multi-Step Method	
7.3	Stabil	ity and Convergence	
	7.3.1	Zero-Stability	
	7.3.2	Consistency	
	7.3.3	Convergence	
7.4	Bound	dary Value Problem	
	7.4.1	Difference Equation	
	7.4.2	Error Analysis	
Bibliog	graphy		140

Preface

This preliminary note is written for the undergraduate course "Ordinary Differential Equations" that I lectured in the fall semester of 2023 at Department of Mathematical Sciences, Tsinghua University. It is to give a basic introduction to the theory of ordinary differential equations, covering fundamental topics on initial value problem, boundary value problem and analytic method, as well as applied topics on calculus of variations and numerical methods.

I would like to thank 顾坪昕 and 汤乐琪, who have done amazing jobs of teaching assistant for this course. An early version of this note was typed by 顾坪昕, including all those beautiful figures. I want to thank 曲仟仟, 刘汉 and 任子逸 for their help on careful proofreading of this note, as well as their important roles of being excellent students for the whole semester. Special thanks (special dinner promised) go to a few friends who have been asking me various questions in differential equations during the semester and have been pushing me to finish this note.