دورة سنة 2008 العادية	امتحانات الشهادة الثانوية العامة فرع علوم الحياة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الكيمياء المدة ساعتان	

Cette épreuve est constituée de trois exercices. Elle comporte quatre pages numérotées de 1 à 4. L'usage d'une calculatrice non programmable est autorisé.

Traiter les trois exercices suivants:

Premier exercice (7 points) Savon parfumé

Les premiers savons dits « durs » ont été élaborés dans le nord de l'actuelle Syrie au VIII^e siècle. Un savon est « mou » si l'on utilise de la potasse, « dur » si on emploie de la soude. Le savon d'Alep est obtenu par traitement à chaud l'huile d'olive par l'hydroxyde de sodium. Le processus chimique qui aboutit au savon peut se formuler ainsi :

Huile d'olive + soude \rightarrow savon + glycérol.

D'après un article de la Compagnie Générale de Cosmétique.

On parfumait le savon d'Alep par des essences naturelles. Aujourd'hui, de nombreux savons sont parfumés par ajout d'un ester synthétique comme le butanoate de pentyle.

1- Réaction de saponification.

- 1.1- Écrire la formule semi-développée du glycérol (propan-1, 2,3-triol).
- 1.2- Un des corps gras utilisés pour la fabrication du savon d'Alep est l'oléine de formule :

Écrire l'équation de la réaction qui conduit à la formation du savon d'Alep.

- 1.3- Préciser si le savon d'Alep est un savon « mou » ou « dur ».
- 1.4- L'ion carboxylate présent dans ce savon est représenté par le schéma ci-dessous, où la partie rectiligne symbolise la chaîne carbonée et le cercle le groupe carboxylate.

Recopier ce schéma sur la feuille des réponses en indiquant la partie hydrophile et celle lipophile de cet ion. Donner le sens de chacun de ces deux termes.

2- Étude de la réaction de préparation d'un parfum

Le butanoate de pentyle est obtenu par une réaction d'estérification représentée par l'équation suivante :

$$C_4 H_8 O_2 + C_5 H_{12} O = C_9 H_{18} O_2 + H_2 O$$

(A) (B) (E)

- 2.1- Donner les formules semi-développées de l'acide carboxylique (A), de l'alcool (B) et de l'ester (E). Donner les noms systématiques de (A) et (B).
- 2.2- On mélange 16 mL de l'acide (A) et 0,17 mol de l'alcool (B) en présence de quelques mL d'acide sulfurique concentré. Ce mélange est réparti, en quantités égales dans des erlenmeyers, qu'on chauffe à une température constante. À des intervalles de temps réguliers, on dose l'acide restant dans chaque erlenmeyer.

<u>Donnée</u>: Pour l'acide carboxylique (A):

- la masse volumique : $\rho_A = 0.96 \text{ g.mL}^{-1}$;
- la masse molaire : $M_A = 88 \text{ g.mol}^{-1}$.
- 2.2.1-Montrer que le mélange réactionnel initial est équimolaire.
- 2.2.2- Indiquer la raison pour laquelle on plonge chaque erlenmeyer dans l'eau glacée avant d'effectuer le dosage.
- 2.3- On désigne par \mathbf{x} le nombre de moles de l'ester formé à chaque instant dans le mélange initial. Les résultats du dosage permettent de tracer la courbe : $\mathbf{x} = \mathbf{f}(t)$ ci-dessous :

Répondre, en justifiant la réponse, par vrai ou faux, aux propositions données ci-dessous.

- -Proposition 1 : On peut obtenir « davantage d'ester » en éliminant l'eau formée au cours de la transformation.
- -Proposition 2 : La vitesse instantanée de la réaction augmente au cours du temps.
- -Proposition 3 : Le pourcentage de l'estérification de l'alcool, à t = 100 min, est 33 %.

Deuxième exercice (6 points) L'éthanol

L'éthanol est l'un des composés organiques les plus importants. Il est largement utilisé comme antiseptique, dissolvant des vernis, dans les parfums et dans les boissons alcooliques. L'éthanol peut être obtenu par la réaction entre une solution d'éthanoate d'éthyle et une solution d'hydroxyde de sodium selon l'équation suivante :

$$C_4H_8O_2 + Na^+ + HO^- \rightarrow C_2H_6O + Na^+ + CH_3 - COO^-$$

Le but de cet exercice est d'étudier la cinétique de cette réaction.

1- Formules structurales

- 1.1- Écrire les formules semi-développées de l'éthanoate d'éthyle et de l'éthanol.
- 1.2- Encadrer le groupe fonctionnel dans chacune des formules ci-dessus.

2- Étude cinétique

Au temps t = 0, on mélange une solution d'éthanoate d'éthyle et une solution d'hydroxyde de sodium. La concentration initiale de chacun des deux réactifs dans ce mélange est $C = 5 \times 10^{-2} \text{ mol.L}^{-1}$.

On divise le mélange réactionnel en parties égales ayant chacune un volume V = 10 mL. À différents instants t, en présence d'un indicateur coloré, les ions HO^- restant dans chaque volume V sont titrés avec une solution d'acide chlorhydrique de concentration $C_a = 10^{-2} \text{ mol.L}^{-1}$. Les résultats sont donnés dans le tableau suivant :

t (min)	4	9	15	24	37	53	83	143
$V_a (mL)$	44,1	38,6	33,7	27,9	22,9	18,5	13,6	8,9
n (10 ⁻⁴ mol)	0,59		1,63	2,21	2,71	3,15		4,11

 V_a est le volume de la solution d'acide chlorhydrique ajouté pour atteindre l'équivalence dans V et n est le nombre de moles de l'éthanol formé à tout instant t dans V.

- 2.1- Écrire l'équation de la réaction de dosage.
- 2.2- À chaque instant t, le nombre de moles d'éthanol formé est donné par l'expression : $n = 5 \times 10^{-4} 10^{-2} \times V_a$, où V_a est exprimé en L.
- 2.2.1- Calculer les valeurs qui manquent dans le tableau ci-dessus.
- 2.2.2- Déduire la valeur de n à la fin de la réaction.
- 2.3- Tracer, sur un papier millimétré, la courbe n = f(t) dans l'intervalle de temps 0 143 min. Prendre les échelles suivantes:

1cm pour 10 min en abscisses et 1 cm pour 0,2×10⁻⁴ mol en ordonnées.

2.4- Déterminer le temps de demi-réaction.

3- Quelques réactions catalytiques d'éthanol

- 3.1- L'éthanol subit une réaction de déshydrogénation quand il est chauffé en présence du cuivre. Écrire l'équation de la réaction.
- 3.2- L'éthanol subit la déshydratation intermoléculaire quand il est chauffé en présence de l'oxyde d'aluminium. Écrire l'équation de la réaction.
- 3.2- Conclure à propos du choix du catalyseur dans ces réactions.

Troisième exercice (7 points) Le fer dans des solutions acides

Le fer réagit lentement, à la température ambiante, avec une solution d'acide chlorhydrique selon l'équation suivante :

$$Fe_{(s)} + 2 H_3O_{(aq)}^+ \rightarrow Fe_{(aq)}^{2+} + H_{2(g)} + 2 H_2O_{(l)}$$

Une lame de fer pur de masse m = 0.28 g est introduite dans un flacon contenant un volume V = 100 mL d'une solution d'acide chlorhydrique de concentration C = 0.2 mol.L⁻¹.

Donnée:

- $M(Fe) = 56 \text{ g.mol}^{-1}$.
- Volume molaire gazeux : $V_m = 24 \text{ L.mol}^{-1}$.
- pK $_{a}$ (CH $_{3}$ COOH/CH $_{3}$ COO $^{-}$) = 4,75.

1- Étude préliminaire

- 1.1- Montrer que le volume de dihydrogène dégagé à la fin de la réaction est : $V(H_2)_{\infty} = 120 \text{ mL}$.
- 1.2- Montrer qu'à tout instant t, on a la relation suivante : $[H_3O^+]_t = 0.2 \frac{V(H_2)_t}{1200}$; où $V(H_2)$ en mL est le volume du gaz H_2 à l'instant t et $[H_3O^+]_t$ en mol.L⁻¹ est la concentration des ions H_3O^+ au même instant t.
- 1.3- Déduire la concentration des ions H₃O⁺ à la fin de la réaction.

2- Étude cinétique de la disparition des ions H₃O⁺

- 2.1- Comparer la vitesse de disparition des ions H₃O⁺ à celle de formation de dihydrogène H₂, au même instant t.
- 2.2- La vitesse d'apparition de bulles du gaz H₂ diminue au cours du temps. Préciser le facteur cinétique qui explique cette variation.
- 2.3- La réaction ci-dessus est totale et se termine après 98 minutes. Choisir, en justifiant, le temps de demi-réaction parmi les trois propositions suivantes :
 - a) 49 minutes.
- b) plus de 49 minutes.
- c) moins de 49 minutes.
- 2.4- On reprend la réaction ci-dessus sans changer les quantités des réactifs mais en utilisant de la poudre du fer à la place de la lame. Justifier si la fin de la réaction aurait lieu :
 - a) avant 98 min;

b) à 98 min;

c) après 98 min.

3- <u>Étude de pH</u>

- 3.1- À la solution obtenue à la fin de la réaction entre l'acide chlorhydrique et le fer, on ajoute de l'eau distillée jusqu'à avoir 1 L de solution notée S₁. Déterminer le pH de la solution S₁.
- 3.2- La même masse de fer (0,28 g) est traitée avec 100 mL d'une solution d'acide éthanoïque de concentration 0,2 mol.L ⁻¹. À la fin de la réaction, on ajoute de l'eau distillée jusqu'à avoir 1 L de solution notée S₂.
- 3.2.1- Écrire l'équation de la réaction qui a eu lieu.
- 3.2.2- Déterminer le pH de la solution S₂. Donner les caractéristiques de cette solution.