Министерство образования и науки Российской Федерации

Федеральное государственной бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра теоретической и прикладной информатики

Лабораторная работа №3

по дисциплине «Методы оптимизации»

Факультет: ПМИ

Группа: ПМ-92

Бригада: 7

Студенты: Иванов В., Кутузов И.

Преподаватель: Филиппова Е. В.

Цель работы

Ознакомиться с методами штрафных функций при решении задач нелинейного программирования. Изучить типы штрафных и барьерных функций, их особенности, способы и области применения, влияние штрафных функций на сходимость алгоритмов, зависимость точности решения от величины коэффициента штрафа.

Задание

Реализовать программу? для решения задачи нелинейного программирования с использованием метода штрафных функций и с использованием метода барьерных функций.

Исследовать сходимость метода штрафных функций в зависимости:

- от выбора штрафных функций
- начальной величины коэффициента штрафа
- стратегии изменения коэффициента штрафа
- начальной точки
- ullet задаваемой точности eps

Вариант 7:
$$f(x,y) = (x+y)^2 + 4y^2 \rightarrow min; x+y \ge 5; y=x+2$$

Исследование

Задача
$$f(x,y) = (x+y)^2 + 4y^2; x+y \ge 5$$

$$\begin{aligned} r_0 &= 1 \\ r_i &= 2r_{i-1} \\ G_i[g_i(x)] &= \frac{1}{2} \{g_i(x) + |g_i(x)| \} \end{aligned}$$

x_0	x_{min}	f(x)	eps	iterations
(5, 0)	(5.00e+00, 6.89e-09)	25.0	1e-15	5
(0, 5)	(5.00e+00, -2.85e-08)	25.000000000000004	1e-15	5
(5, 5)	(5.00e+00, -1.01e-08)	25.0	1e-15	5
(100, 5)	(5.00e+00, -1.35e-08)	24.9999999999993	1e-15	5
(0, 0)	(5.00e+00, 3.16e-09)	25.0	1e-15	5
(-10, -50)	(5.00e+00, 9.80e-09)	25.0	1e-15	5

$$x_0 = (5,5)$$

 $r_i = 2r_{i-1}$
 $G_i[g_i(x)] = \frac{1}{2} \{g_i(x) + |g_i(x)|\}$

r_0	x_{min}	f(x)	eps	iterations
1	(5.00e+00, -1.01e-08)	25.0	1e-15	5
0.00005	(5.00e+00, 9.88e-09)	24.99999999999993	1e-15	19
10.0	(5.00e+00, -1.15e-08)	25.0	1e-15	2
0.25	(5.00e+00, 5.97e-09)	25.0	1e-15	7
50.0	(5.00e+00, -1.15e-08)	25.0	1e-15	1

$$x_0 = (5,5)$$

 $r_0 = 1$
 $G_i[g_i(x)] = \frac{1}{2} \{g_i(x) + |g_i(x)|\}$

$r_i(i)$	x_{min}	f(x)	eps	iterations
$r_i = 2r_{i-1}$	(5.00e+00, -1.01e-08)	25.0	1e-15	5
$r_i = r_{i-1} + 1$	(5.00e+00, -8.39e-09)	25.0	1e-15	13
$r_i = r_{i-1} + 0.1$	(5.00e+00, -6.89e-09)	25.0	1e-15	112
$r_i = 10r_{i-1}$	(5.00e+00, -6.51e-09)	25.0	1e-15	3
$r_i = 50r_{i-1}$	(5.00e+00, 3.11e-07)	25.00000000000387	1e-15	2

$$x_0 = (5,5)$$

$$r_0 = 1$$

$$r_i = 2r_{i-1}$$

$$G_i[g_i(x)] = \frac{1}{2} \{g_i(x) + |g_i(x)|\}$$

x_{min}	f(x)	eps	iterations
(9.66e-01, 4.83e-01)	3.0322912811497136	1e+1	1
(4.00e+00, -1.11e-10)	16.000000486155184	1e+0	4
(5.00e+00,-1.01e-08)	25.0	1e-4	5
(5.00e+00,-1.01e-08)	25.0	1e-8	5
(5.00e+00, -1.01e-08)	25.0	1e-15	5

$$\begin{aligned} x_0 &= (5,5) \\ r_0 &= 1 \\ r_i &= 2r_{i-1} \\ G_i[g_i(x)] &= [\frac{1}{2}\{g_i(x) + |g_i(x)|\}]^2 \end{aligned}$$

x_{min}	f(x)	eps	iterations
(2.50e+00, -1.15e-08)	6.249999924431094	1e+1	1
(4.00e+00, -1.72e-09)	16.000000129976655	1e+0	3
(5.00e+00, -6.15e-10)	24.99923707633349	1e-4	17
(5.00e+00, 4.31e-06)	24.999999906931194	1e-8	30
(5.00e+00, 4.32e-06)	25.00000000075055	1e-15	53

$$\begin{aligned} x_0 &= (5,5) \\ r_0 &= 1 \\ r_i &= 2r_{i-1} \\ G_i[g_i(x)] &= [\frac{1}{2}\{g_i(x) + |g_i(x)|\}]^8 \end{aligned}$$

x_{min}	f(x)	eps	iterations
(4.00e+00, -1.86e-08)	16.00000001708284	1e+1	1
(4.00e+00, -9.94e-09)	16.00000001708284	1e+0	1
(5.00e+00, 2.10e-09)	24.999063653677094	1e-4	95
(5.00e+00, 8.50e-05)	24.999999935127196	1e-8	188
(5.00e+00, 7.70e-05)	25.00000002889694	1e-15	350

Задача $f(x,y) = (x+y)^2 + 4y^y; y = x+2$

$$\begin{split} r_0 &= 1 \\ r_i &= 2 r_{i-1} \\ H_i[h_i(x)] &= \{|h_i(x)|\} \end{split}$$

x_0	x_{min}	f(x)	eps	iterations
(1.5, 0.5)	(-1.50e+00, 5.00e-01)	1.999999999999996	1e-15	3
(0.5, 1.5)	(-1.50e+00, 5.00e-01)	1.999999999999996	1e-15	3
(1.5, 1.5)	(-1.50e+00, 5.00e-01)	1.999999999999998	1e-15	3
(100, 5)	(-1.50e+00, 5.00e-01)	2.0	1e-15	3
(0, 0)	(-1.50e+00, 5.00e-01)	2.0	1e-15	3
(-10, -50)	(-1.50e+00, 5.00e-01)	2.0	1e-15	3

$$x_0 = (1.5, 1.5)$$
$$r_i = 2r_{i-1}$$

$$H_i[h_i(x)] = \{|h_i(x)|\}$$

r_0	x_{min}	f(x)	eps	iterations
1	(-1.50e+00, 5.00e-01)	1.99999999999998	1e-15	3
0.00005	(-1.50e+00, 5.00e-01)	1.999999999999996	1e-15	17
5.0	(-1.50e+00, 5.00e-01)	1.99999999999998	1e-15	1
0.25	(-1.50e+00, 5.00e-01)	1.999999999999996	1e-15	5
50.0	(-1.50e+00, 5.00e-01)	2.0	1e-15	1

$$x_0 = (1.5, 1.5)$$

 $r_0 = 1$

$$H_i[h_i(x)] = \{|h_i(x)|\}$$

$r_i(i)$	x_{min}	f(x)	eps	iterations
$r_i = 2r_{i-1}$	(-1.50e+00, 5.00e-01)	1.999999999999998	1e-15	3
$r_i = r_{i-1} + 1$	(-1.34e+00, 4.46e-01)	2.0000000000000013	1e-15	3
$r_i = r_{i-1} + 0.1$	(-1.28e+00, 4.25e-01)	1.99999999999999	1e-15	13
$r_i = 10r_{i-1}$	(-1.50e+00, 5.00e-01)	2.0	1e-15	2
$r_i = 50r_{i-1}$	(-1.50e+00, 5.00e-01)	2.000000000000005	1e-15	2

$$x_0 = (1.5, 1.5)$$

$$r_0 = 1$$

$$r_i = 2r_{i-1}$$

$$H_i[h_i(x)] = \{|h_i(x)|\}$$

x_{min}	f(x)	eps	iterations
(9.66e-01, 4.83e-01)	3.0322912811497136	1e+1	1
(-7.50e-01, 2.50e-01)	0.500000005924924	1e+0	1
(-1.50e+00, 5.00e-01)	1.9999999598792362	1e-4	2
(-1.50e+00, 5.00e-01)	1.99999999999998	1e-8	3
(-1.50e+00, 5.00e-01)	1.99999999999998	1e-15	3

$$x_0 = (1.5, 1.5)$$

$$r_0 = 1$$

$$r_i = 2r_{i-1}$$

$$H_i[h_i(x)] = \{|h_i(x)|^2\}$$

x_{min}	f(x)	eps	iterations
(4.83e-01, 9.66e-01)	5.83132938682637	1e+1	1
(-1.00e+00, 3.33e-01)	0.8888888874675382	1e+0	1
(-1.50e+00, 5.00e-01)	1.9998779353071061	1e-4	15
(-1.50e+00, 5.00e-01)	1.9999999850978891	1e-8	28
(-1.50e+00, 5.00e-01)	1.999999999999996	1e-15	52

$$x_0 = (1.5, 1.5)$$

$$r_0 = 1$$

$$r_i = 2r_{i-1}$$

$$H_i[h_i(x)] = \{|h_i(x)|^8\}$$

x_{min}	f(x)	eps	iterations
(-7.50e-01, 1.42e+00)	8.556886034293163	1e+1	1
(-9.62e-01, 3.46e-01)	0.8581782704235786	1e+0	1
(-1.50e+00, 5.00e-01)	1.9998186095374564	1e-4	92
(-1.50e+00, 5.00e-01)	1.999999981835013	1e-8	185
(-1.50e+00, 5.00e-01)	1.999999999999978	1e-15	345

Задача
$$f(x,y) = (x+y)^2 + 4y^2; x+y \ge 5$$

$$r_0 = 5$$

$$r_i = \frac{r_{i-1}}{2}$$

$$G_i[g_i(x)] = \{-\frac{1}{g_i(x)}\}$$

x_0	x_{min}	f(x)	eps	iterations
(5, 0)	(5.00e+00, 0.00e+00)	25.00000000000067	1e-15	125
(0, 5)	(5.00e+00, 0.00e+00)	25.0	1e-15	118
(5, 5)	(5.00e+00, 7.29e-10)	25.000000000000764	1e-15	128
(3, 3)	(5.00e+00, -2.34e-07)	25.00000000000004	1e-15	128
(5, 21)	(2.60e+01, -7.03e-10)	675.999999999994	1e-15	49

$$x_0 = (5, 5)$$

$$r_i = \frac{r_{i-1}}{2}$$

$$G_i[g_i(x)] = \{-\frac{1}{g_i(x)}\}$$

r_0	x_{min}	f(x)	eps	iterations
5	(5.00e+00, 7.29e-10)	25.000000000000764	1e-15	128
1	(5.00e+00, 5.00e+00)	99.999999999994	1e-15	49
10	(5.00e+00, -2.91e-08)	25.00000000001215	1e-15	128
25	(5.00e+00, 1.84e-08)	25.00000000003052	1e-15	129
100	(5.00e+00, 4.12e-08)	25.0	1e-15	124

$$x_0 = (5, 5)$$
$$r_0 = 100$$

$$G_i[g_i(x)] = \{-\frac{1}{g_i(x)}\}$$

$r_i(i)$	x_{min}	f(x)	eps	iterations
$r_i = .5r_{i-1}$	(5.00e+00, -2.91e-08)	25.0000000000000004	1e-15	124
$r_i = .25r_{i-1}$	(5.00e+00, 1.40e-08)	25.000000000000068	1e-15	67
$r_i = .1r_{i-1}$	(5.00e+00, -1.68e-08)	25.000000000000515	1e-15	41
$r_i = .75r_{i-1}$	(5.00e+00, 9.02e-09)	25.0	1e-15	296
$r_i = .9r_{i-1}$	(2.60e+01, 3.55e-08)	25.0	1e-15	805

$$x_0 = (5, 5)$$

 $r_0 = 100$
 $r_i = \frac{r_{i-1}}{2}$

$$G_i[g_i(x)] = \{-\frac{1}{g_i(x)}\}$$

x_{min}	f(x)	eps	iterations
(6.33e+00, 6.54e-08)	40.0471199305916	1e+1	4
(5.00e+00, -2.79e-07)	25.000000000000313	1e+0	82
(5.00e+00, -2.79e-07)	25.000000000000313	1e-4	95
(5.00e+00, -2.79e-07)	25.000000000000313	1e-8	109
(5.00e+00, 7.51e-09)	25.0	1e-15	124

$$x_0 = (5, 5)$$
$$r_0 = 100$$

$$r_0 = 100$$

$$r_i = \frac{r_{i-1}}{2}$$

$$G_i[g_i(x)] = \{-\ln -g_i(x)\}$$

x_{min}	f(x)	eps	iterations
(5.00e+00, -8.60e-08)	25.00000000001144	1e+1	10
(5.00e+00, 8.30e-07)	25.000000000002753	1e+0	14
(5.00e+00, 8.30e-07)	25.000000000002753	1e-4	27
(5.00e+00, 8.30e-07)	25.000000000002753	1e-8	40
(5.00e+00, -6.73e-09)	25.0	1e-15	63

Вывод

На эффективность метода штрафных функций существенно влияет выбор начального приближения r_0 . Если выбирать слишком малые значения r_0 (слишком малое значение штрафной функции) могут привести к ситуации, когда уже на первых итерациях будет найдена точка, в которой достигается безусловный минимум, в таком случае количество итераций для поиска нужного значения может существенно вырасти. Частично это можно исправить повышением порядка штрафной функции, однако, как показывают исследования, с повышением порядка штрафной функции, также уменьшается точность получаемого решения.

В отличие от метода штрафных функций, при использовании метода барьерных функций поиск решения должен начинаться с точки, удовлетворяющей условиям ограничений (т.е в допустимой области), что в некоторых задачах может сопровождаться трудоемкими вычислениями. К тому же вследствие того, что в алгоритме поиска безусловного минимума используются дискретные шаги, нередко возникают ситуации, когда на очередной итерации точка выходит за пределы допустимой области, где барьерная функция имеет сравнительно малое значение (по сравнению со значением на границе) и по итогу найденное решение совпадает с безусловным минимумом функции.

Приложение

```
def function(point) -> float:
    x, y = point
    return (x + y)**2 + 4*y**2
def restriction function(point):
   x, y = point
    return 5 - x - y
def restrictions(point) -> bool:
    return restriction function(point) <= 0</pre>
def G(x k):
    return restriction function(x k) + abs(restriction function(x k))) / 2.
def penalty(x k, r k):
   return r_k * G(x_k)
def create_function(r_k):
    return lambda x: function(x) + penalty(x, r k)
def calculate coefficients(r k, step):
    return r_k * step
def penalty_method(eps: float, dimension=2, maxiter=10000):
    x_k = initial_point(dimension)
    r^{-}k = 1.
   r_step = 2.
    for i in range(maxiter):
        f_k = create_function(r_k)
        x_k = nelder_mead_method(f_k, x_k, eps)
        if abs(restriction function(x k)) < eps:</pre>
            return x k
        else:
            r k = calculate coefficients(r k, r step)
    return x k
def barrier_method(eps: float, dimension=2, maxiter=10000):
    x k = initial point(dimension)
    r_k = 1.
    r_step = .5
    for i in range(maxiter):
        f_k = create_function(r_k)
        if restrictions(nelder_mead_method(f_k, x_k, eps)):
            x k = nelder mead method(f k, x k, eps)
        if abs(penalty(x_k, r_k)) < eps:</pre>
            return x_k
        else:
            r k = calculate coefficients(r k, r step)
    \textcolor{return}{\textbf{return}} \ x\_k
```


