

Résolution Numérique des Équations Différentielles Fractionnaires

Méthode de Perturbation d'Homotopie

EL GHEMARY Farah

Plan 1 Introduction

▶ Introduction

- ▶ Bases Mathématiques du calcul fractionnaires
- ▶ Éléments du calcul fractionnaire
- ▶ Conclusion

1 Introduction

Les EDFs sont très importantes dans plusieurs domaines comme la physique, l'ingénierie ou encore l'économie. Elles nous aident à représenter des situations complexes, mais il est souvent difficile de les résoudre directement. C'est là que la résolution numérique intervient, nous permettant de trouver des solutions même quand c'est compliqué.

Plan

2 Bases Mathématiques du calcul fractionnaires

- ▶ Introduction
- ▶ Bases Mathématiques du calcul fractionnaires
- ▶ Éléments du calcul fractionnaire
- ► Conclusion

Pré-requis du calcul ordinaire

2 Bases Mathématiques du calcul fractionnaires

Théorème Fondamental de l'Analyse

$$\frac{d}{dt} \int_{a}^{t} f(t) = f(t) \qquad \forall t \in [a, b]$$
 (1)

2 Bases Mathématiques du calcul fractionnaires

Définition 1.

On désigne par $\Gamma(x)$ la fonction définie dans l'intervalle $]0,+\infty[$, par l'intégrale généralisée suivant

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt. \tag{2}$$

(seconde intégrale eulérienne)

2 Bases Mathématiques du calcul fractionnaires

2 Bases Mathématiques du calcul fractionnaires

Exemple 1.

- 1. $\Gamma(1) = 1$
- 2. $\Gamma(\frac{1}{2}) = \sqrt{\pi}$

Proposition 1.

Soient $n \in \mathbb{N}$. On a les identités suivantes :

- 1. $\Gamma(x+1) = x\Gamma(x)$, pour tout x > 0
- $2. \ \Gamma(x+n)=x(x+1)...(x+n-1)\Gamma(x), \ \ pour \ tout \ x\in \mathbb{R}\backslash \mathbb{Z}^- \ \ tel \ que \ -n<\Re(x)\leq -n+1.$

2 Bases Mathématiques du calcul fractionnaires

Si on prend x=1 dans la propriété (2), on obtient $\Gamma(n+1)=n!, \forall n\in\mathbb{N}$.

Fonction Bêta

2 Bases Mathématiques du calcul fractionnaires

Définition 2.

On désigne par $\beta(x,y)$ la fonction définie pour x>0 et y>0 par l'intégrale suivant :

$$\beta(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt \tag{3}$$

(première intégrale eulérienne)

Fonction Bêta

2 Bases Mathématiques du calcul fractionnaires

Théorème 1.

La fonction bêta est symétrique, on a

$$\beta(x,y) = \beta(y,x) \tag{4}$$

Théorème 2.

La relation avec la fonction Gamma

$$\beta(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} = \frac{(x-1)!(y-1)!}{(x+y-1)!}.$$
 (5)

Mittag-Leffler

2 Bases Mathématiques du calcul fractionnaires

Définition 3.

$$E_{\alpha}(x) = \sum_{k=0}^{\infty} \frac{x^k}{\Gamma(\alpha k + 1)}, \qquad \alpha > 0$$
 (6)

Exemple 2.

- 1. $E_0(x) = \frac{1}{1-x}$, (somme d'une série géométrique)
- 2. $E_1(x) = e^x$, (série exponentielle)

Fonction Mittag-Leffler

2 Bases Mathématiques du calcul fractionnaires

Fonction Mittag-Leffler

2 Bases Mathématiques du calcul fractionnaires

Définition 4.

définie par le développement en série suivant :

$$E_{\alpha,\beta}(x) = \sum_{k=0}^{\infty} \frac{x^k}{\Gamma(\alpha k + \beta)}, \qquad \alpha > 0, \quad \beta > 0$$
 (7)

Remarque 1.

Si $\beta = 1$, alors $E_{\alpha,\beta}$ coincide avec E_{α}

$$E_{\alpha,1} = E_{\alpha} \tag{8}$$

Exemple 3.

1.
$$E_{1,1}(x) = e^x$$

1.
$$E_{1,1}(x) = e^x$$
,
2. $E_{1,2}(x) = \frac{e^x - 1}{x}$

Plan

3 Éléments du calcul fractionnaire

- ▶ Introduction
- ▶ Bases Mathématiques du calcul fractionnaires
- ▶ Éléments du calcul fractionnaire
- ► Conclusion

3 Éléments du calcul fractionnaire

le formule de Cauchy pour le n-ème intégral :

$$I_a^n f(t) = \int_a^t \int_a^{\tau_{n-1}} \dots \int_a^{\tau_1} f(\tau) d\tau d\tau_1 \dots d\tau_{n-1} = \frac{1}{(n-1)!} \int_a^t (t-\tau)^{n-1} f(\tau) d\tau \tag{9}$$

Définition 5.

L'intégrale fractionnaire de Riemann-Liouville d'ordre $\alpha \in \mathbb{R}^+$ d'une fonction $f \in L^1[a,b]$ est définie par :

$$I_a^{\alpha} f(t) = {}_a^{RL} D_t^{-\alpha} f(t) = \frac{1}{\Gamma(\alpha)} \int_a^t (t-s)^{\alpha-1} f(s) ds.$$
 (10)

3 Éléments du calcul fractionnaire

Fonctions usuelles

• Fonction puissance: $f(t) = (t - a)^{\beta}$, $t \in [a, b]$, $a \in \mathbb{R}$ et $\beta > -1$.

$$I_a^{\alpha}(t-a)^{\beta} = \frac{\Gamma(\beta+1)}{\Gamma(\beta+\alpha+1)}(t-a)^{\beta+\alpha}.$$
 (11)

3 Éléments du calcul fractionnaire

• Fonction constante : $f(t) = C \in \mathbb{R}$ est une constante. Alors

$$I_a^{\alpha}C = \frac{C}{\Gamma(\alpha+1)}(t-a)^{\alpha} \tag{12}$$

• Fonction exponentielle: $f(t) = e^{kt}$, où $k \in \mathbb{R}$ est une constante

$$I_a^{\alpha} e^{kt} = \frac{1}{\Gamma(\alpha)} \int_0^{t-a} s^{\alpha-1} e^{k(t-s)} ds. \tag{13}$$

3 Éléments du calcul fractionnaire

Propriétés:

• Soient $f \in C[a,b]$ $\beta > 0$, et $\alpha > 0$. Alors on a

$$I_a^{\alpha}[I_a^{\beta}f(t)] = I_a^{\alpha+\beta}f(t) \tag{14}$$

• Pour tout $\alpha, \beta > 0$ et f Lebesgue-intégrable sur [a, b] on a :

$$\frac{d^k}{dt^k}[I_a^{\alpha}f(t)] = I_a^{\alpha-k}f(t), \qquad \alpha > 1, \qquad \forall k < \alpha. \tag{15}$$

• Soient f fonction continue sure [0,b[. Si Df est continue alors pour tout t>0 on a :

$$D[I_a^{\alpha} f(t)] = I_a^{\alpha} [Df(t)] + \frac{f(0)}{\Gamma(\alpha)} t^{n-\alpha}$$
(16)

Dérivée fractionnaire au sens de Riemann-Liouville

3 Éléments du calcul fractionnaire

Définition 4.

La dérivée fraction naire au sens de Riemann-Liouville d'ordre α de la fonction définie par :

$$\mathbf{D}_{a}^{\alpha} = \frac{d^{n}}{dt^{n}} \left[I_{a}^{n-\alpha} f(t) \right], \tag{17}$$

avec $n = [\alpha] + 1$ où [.] est la partie entière. De manière équivalente, nous avons :

$$\mathbf{D}_{a}^{\alpha} = \frac{1}{\Gamma(n-\alpha)} \frac{d^{n}}{dt^{n}} \left(\int_{a}^{t} (t-s)^{n-\alpha-1} f(s) ds \right) \qquad n-1 < \alpha < n, \quad n \in \mathbb{N}^{*}$$
 (18)

Dérivée fractionnaire au sens de Riemann-Liouville

3 Éléments du calcul fractionnaire

Fonctions usuelles:

• Fonction puissance : $g(t) = (t-a)^{\gamma}$, et $0 < n-1 < \alpha < n$ avec $\gamma > n-1$ on a alors :

$$\mathbf{D}_{a}^{\alpha}(t-a)^{\gamma} = \frac{\Gamma(\gamma+1)}{\Gamma(\gamma-\alpha+1)}(t-a)^{\gamma-\alpha}$$
(19)

• Fonction Constante : $g(t) = C \in \mathbb{R}$ est une constante. Alors

$$\mathbf{D}_a^{\alpha} C = \frac{C}{\Gamma(1-\alpha)} (t-a)^{-\alpha}.$$
 (20)

Dérivée fractionnaire au sens de Riemann-Liouville

3 Éléments du calcul fractionnaire

Propriétés

• Linéarité:

$$\mathbf{D}_{a}^{\alpha}(\lambda f(t) + \gamma g(t)) = \lambda \mathbf{D}_{a}^{\alpha} f(t) + \gamma \mathbf{D}_{a}^{\alpha} g(t). \tag{21}$$

• Pour $\alpha > 0$ et t > a, nous avons :

$$\mathbf{D}_a^{\alpha} \left(I_a^{\alpha} f(t) \right) = f(t) \tag{22}$$

• Pour $\alpha \geq 0$ et $\beta \geq 0$, nous avons

$$\mathbf{D}_a^{\alpha} \left(I_a^{\beta} f(t) \right) = \mathbf{D}_a^{\alpha - \beta} f(t)$$

• Pour $n \le n - 1 \le \alpha < n, n \in \mathbb{N}^*$,

$$\frac{d^k}{dt^k}\left(\mathbf{D}_a^{\alpha}f(t)\right) = \mathbf{D}_a^{k+\alpha}f(t),\tag{23}$$

Dérivée fractionnaire au sens de Caputo

3 Éléments du calcul fractionnaire

Définition 5.

La dérivée fractionnaire de Caputo est définie par :

$$D_a^{\alpha} f(t) = I_a^{m-\alpha} \left(\frac{d^m}{dt^m} f(t) \right) = \frac{1}{\Gamma(m-\alpha)} \int_a^t (t-\tau)^{m-\alpha-1} f^{(m)}(s) ds, \tag{24}$$

pour $m-1 \le \alpha < m, m \in \mathbb{N}, t > a$

Dérivée fractionnaire au sens de Caputo

3 Éléments du calcul fractionnaire

Fonctions usuelles

• Fonction puissance : $g(t) = (t - a)^{\gamma}$, Soient $0 < m - 1 < \alpha < m$, avec $\gamma > m - 1$, alors

$$D_a^{\alpha}(t-a)^{\gamma} = \frac{\Gamma(\gamma+1)}{\Gamma(\gamma-\alpha+1)}(t-a)^{\gamma-\alpha}.$$

• Fonction Constante: $g(t) = C \in \mathbb{R}$ est une constante.

$$D_a^{\alpha}C=0.$$

Propriétés:

• Linéarité : Soient $\lambda, \gamma \in \mathbb{R}$

$$D_a^{\alpha}(\lambda f(t) + \gamma g(t)) = \lambda D_a^{\alpha} f(t) + \gamma D_a^{\alpha} g(t). \tag{25}$$

Dérivée fractionnaire au sens de Caputo

3 Éléments du calcul fractionnaire

• Pour $0 \le m-1 < \alpha < m$ et f une fonction telle que D_a^{α} et \mathbf{D}_a^{α} existent. Alors

$$D_a^{\alpha} f(t) = \mathbf{D}_a^{\alpha} f(t) - \sum_{k=0}^{m-1} \frac{f^{(k)}(a)(t-a)^{k-\alpha}}{\Gamma(k-\alpha+1)}.$$
 (26)

• Si f est continue, alors

$$D_a^{\alpha}(I_a^{\alpha}f(t)) = f(t),$$

et

$$I_a^{\alpha}(D_a^{\alpha}f(t)) = f(t) - \sum_{k=0}^{m-1} \frac{f^{(k)}(a)(t-a)^k}{k!}.$$

• Soient $n \in \mathbb{N}$ et $m-1 \le \alpha < m$, alors :

$$D_a^{\alpha}(D_a^n f(t)) = d_a^{\alpha+n} f(t), \tag{27}$$

3 Éléments du calcul fractionnaire

Description de la méthode :

Soient X et Y deux espaces topologiques. On dit que deux applications continues $f,g:X\mapsto Y$ sont homotopiques s'il existe une application continue :

$$F: X \times [0,1] \mapsto Y$$

 $(x,p) \mapsto F(x,p)$

telle que:

$$F(x,0) = f(x)$$

et

$$F(x,1) = g(x)$$

3 Éléments du calcul fractionnaire

Soit l'équation différentielle non linéaire suivante :

$$A(u) - f = 0, r \in \Omega (28)$$

avec les conditions aux limites :

$$B(u, \frac{\partial u}{\partial n}) = 0, \qquad r \in \Gamma$$
 (29)

où A est un opérateur différentiel général, B opérateur limite, f est une fonction connue et Γ est la frontière de Ω .

3 Éléments du calcul fractionnaire

A peut être écrit sous la forme A=L+N, où L désigne un opérateur linéaire et N un opérateur non linéaire, alors l'équation 28 devient :

$$L(u) + N(u) - f = 0 (30)$$

Construisons maintenant une homotopie $v(r,p): \Omega \times [0,1] \mapsto \mathbb{R}$, qui satisfait :

$$H(v,p) = (1-p)[L(v) - L(u_0)] + p[A(v) - f] = 0, p \in [0,1], (31)$$

οù

$$H(v,p) = L(v) - L(u_0) + pL(u_0) + p[N(v) - f] = 0,$$
(32)

3 Éléments du calcul fractionnaire

Les formules 31 et 32 impliquent :

$$H(v,0) = L(v) - L(u_0) = 0, (33)$$

$$H(v,1) = A(v) - f = 0, (34)$$

supposons que la solution de 31 et 32 sont exprimées comme :

$$v = v_0 + pv_1 + p^2v_2 + p^3v_3 + \dots = \sum_{i=0}^{\infty} v_i p^i$$
(35)

La solution analytique approché de l'équation 28 est donnée par :

$$u = \lim_{v \to 1} v = v_0 + v_1 + v_2 + \dots \tag{36}$$

3 Éléments du calcul fractionnaire

Application: Exemple 1

Considérons l'équation différentielle non linéaire suivante :

$$\begin{cases} u'(t) + u^2(t) = 0, & t \ge 0, \\ u(0) = 1, \end{cases}$$
 (37)

où la solution exact est donnée par :

$$u(t) = \frac{1}{1+t}. (38)$$

3 Éléments du calcul fractionnaire

On construit l'homotopie suivante :

$$H: \Omega \times [0,1] \mapsto \mathbb{R}$$

$$(1-p)\left(v'(t) - u_0'(t)\right) + p\left(v'(t) + v^2(t)\right), \quad p \in [0,1], \quad t \in \Omega$$
 (39)

avec $u_0 = u(0) = 1$.

La solution de l'équation 37 peut être exprimée comme suit :

$$v = v_0 + pv_1 + p^2v_2 + p^3v_3... = \sum_{k=0}^{\infty} p^k v_k.$$
(40)

3 Éléments du calcul fractionnaire

Substituons l'équation 40 dans l'équation 37 et identifions les termes de même puissance de p, il vient :

$$\begin{cases} p^{0}: v'_{0}(t) = u'_{0}(t), \\ p^{1}: v'_{1}(t) = u'_{0}(t) - v^{2}_{0}(t), & v_{1}(0) = 0, \\ p^{2}: v'_{2}(t) = -2v_{0}(t)v_{1}(t), & v_{2}(t) = 0, \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ . & \vdots & \vdots \\ . & \vdots & \vdots \\ \end{cases}$$

3 Éléments du calcul fractionnaire

Par conséquent, nous obtenons :

$$v_0(t) = 1,$$

 $v_1(t) = -t,$
 $v_2(t) = t^2.$

Finalement, la solution approchée de l'équation 37 est donnée par :

$$u(t) = \lim_{n \to 1} v(t) = v_0(t) + v_1(t) + v_2(t) + \dots = 1 - t + t^2 \dots$$
 (41)

3 Éléments du calcul fractionnaire

3 Éléments du calcul fractionnaire

Application: Exemple 2

Maintenant, nous allons considérer l'équation de Lane-Emden suivante :

$$\begin{cases} u''(x) + \frac{2}{x}u'(x) + u(x) = x^5 + 30x^3, \\ u(0) = u'(0) = 0, \end{cases}$$
 (42)

où la solution exacte est exprimée par :

$$u(x) = x^5. (43)$$

3 Éléments du calcul fractionnaire

La méthode de perturbation d'Homotopie, implique :

$$\left(v'' + \frac{2}{x}v'\right) - \left(u_0'' + \frac{2}{x}u_0'\right) = p\left(x^5 + 30x^3 - v - u_0'' - \frac{2}{x}u_0'\right). \tag{44}$$

La solution de l'équation 42 est sous la forme :

$$v = v_0 + pv_1 + p^2v_2 + p^3v_3 + \dots (45)$$

```
\begin{cases} p^0: v_0(x) = u_0(x) = 0, \\ p^1: v_1(x) = \frac{1}{56}x^7 + x^5, \\ p^2: v_2(x) = -\frac{1}{5040}x^9 - \frac{1}{56}x^7, \\ p^3: v_3(x) = \frac{1}{665280}x^{11} + \frac{1}{5040}x^9, \\ p^4: v_4(x) = \frac{1}{121080960}x^{13} - \frac{1}{665280}x^{11}, \\ p^5: v_5(t) = \frac{1}{29059430400}x^{15} + \frac{1}{121080960}x^{13}, \\ \vdots \end{cases}
```

3 Éléments du calcul fractionnaire

Finalement, la solution approchée le d'équation 42 est donnée par :

$$u(x) = \lim_{p \to 1} v(x) = v_0(x) + v_1(x) + v_2(x) + \dots$$
 (46)

3 Éléments du calcul fractionnaire

Description de la méthode : Le problème de valeur initiale d'équations différentielles fractionnaires est donnée par sa forme opérationnelle :

$$D^{\alpha}f(t) + Lf(t) = g(t) \tag{47}$$

$$f^{(i)}(0) = c_i, i = 0, 1, 2, ..., n - 1 (48)$$

où c_i est la condition initial, L désigne un opérateur linéaire qui peut inclus d'autre opérateurs de dérivées fractionnaires $D^{\beta}(\beta < \alpha)$ et g est une fonction connue.

3 Éléments du calcul fractionnaire

L'homotopie de l'équation 47 satisfait :

$$(1-p)D^{\alpha}f + p[D^{\alpha}f + Lf(t) - g(t)] = 0, p \in [0,1], (49)$$

où

$$D^{\alpha}f + p[Lf(t) - g(t)] = 0, (50)$$

avec $p \in [0,1]$ est un paramètre d'homotopie. Si p=0, l'équation 49 et 50 devient :

$$D^{\alpha}f = 0 \tag{51}$$

Si p = 1, les deux équations 49 et 50 donnent l'EDF original 47.

3 Éléments du calcul fractionnaire

La solution de l'équation 47 est :

$$f(t) = f_0(t) + pf_1(t) + p^2 f_2(t) + p^3 f_3(t) + \dots$$
 (52)

Substituons l'équation 52 dans l'équation 50 et identifions les termes de même puissance de p, il vient :

$$\begin{cases} p^{0}: D^{\alpha} f_{0} = 0 \\ p^{1}: D^{\alpha} f_{1} = -L f_{0} + g(t) \\ p^{2}: D^{\alpha} f_{2} = -L f_{1}(t) \\ p^{3}: D^{\alpha} f_{3} = -L f_{2}(t) \\ \vdots \\ \vdots \\ \vdots \end{cases}$$

3 Éléments du calcul fractionnaire

on peut réécrit les termes de solution de perturbation d'homotopie par :

3 Éléments du calcul fractionnaire

La forme générale de la solution HPM est donné par :

$$f_n = -I^{\alpha}[Lf_{n-1}(t)] \tag{53}$$

Alors la solution de perturbation d'homotopie est :

$$f(t) = f_0 + f_1 + f_2 + f_3 + \dots + f_n + \dots$$
 (54)

3 Éléments du calcul fractionnaire

Application : Exemple 1 Considérons l'équation différentielle fractionnaire linéaire suivante :

$$\begin{cases} D^{\alpha}x(t) + x(t) = \frac{2}{\Gamma(3-\alpha)}t^{2-\alpha} + t^3, \\ x(0) = 0, \\ x'(0) = 0. \end{cases}$$
 (55)

où la solution exacte pour $\alpha = 1, 9$ est donnée par :

$$x(t) = t^2. (56)$$

3 Éléments du calcul fractionnaire

On construit l'homotopie suivante :

$$D^{\alpha}x(t) + p\left[x(t) - \frac{2}{\Gamma(3-\alpha)}t^{2-\alpha} - t^3\right] = 0, \qquad t \in \Omega,$$
 (57)

La solution de 55 peut être exprimée comme suit :

$$x(t) = x_0(t) + px_1(t) + p^2x_2(t) + \dots = \sum_{i=0}^{\infty} p^i x_i(t)$$
 (58)

il vient:

$$\sum_{i=0}^{\infty} D^{\alpha} p^{(i)} x_i(t) = -p \left[\sum_{i=0}^{\infty} p^{(i)} x_i(t) - \frac{2}{\Gamma(3-\alpha)} t^{2-\alpha} - t^3 \right]$$

$$\begin{cases}
p^{0}: D^{\alpha}x_{0}(t) = 0, \\
p^{1}: D^{\alpha}x_{1}(t) = -x_{0}(t) + \frac{2}{\Gamma(3-\alpha)}t^{2-\alpha} + t^{3}, \\
p^{2}: D^{\alpha}x_{2}(t) = -x_{1}(t), \\
p^{3}: D^{\alpha}x_{3}(t) = -x_{2}(t), \\
\vdots
\end{cases} (59)$$

3 Éléments du calcul fractionnaire

Appliquent l'opérateur I^{α} sur les deux cotés de d'équations 59 et on utilisons les propriétés de L'intégrale fractionnaire de Riemann-Liouville d'ordre $\alpha \geq 0$, on obtient

$$x_0(t) = 0$$

$$x_1(t) = \frac{2}{\Gamma(3-\alpha)} t^{2-\alpha} + t^3$$

$$x_2(t) = -\frac{2}{\Gamma(3-\alpha)} t^{2-\alpha} - t^3$$

$$x_3(t) = \frac{2}{\Gamma(3+2\alpha)} t^{2+2\alpha} + \frac{6}{\Gamma(3+3\alpha)} t^{3+3\alpha}$$

.

3 Éléments du calcul fractionnaire

Donc la solution de l'équation 55 est donnée par :

$$\begin{split} x(t) &= x_0(t) + p x_1(t) + p^2 x_2(t) + p^3 x_3(t) + \dots \\ &= 0 + t^2 + \frac{\Gamma(4)}{\Gamma(4+\alpha)} - \frac{2}{\Gamma(3+\alpha)} t^{2+\alpha} - \frac{6}{\Gamma(4+2\alpha)} t^{3+2\alpha} + \frac{2}{\Gamma(3+2\alpha)} t^{2+2\alpha} + \dots \end{split}$$

si $\alpha = 1, 9$

$$x(t) = t^{2} + \frac{6}{\Gamma(5,9)}t^{4,9} - \frac{2}{\Gamma(4,9)}t^{3,9} - \frac{6}{\Gamma(7,8)}t^{6,8} + \dots$$

$$= t^{2} + 0.059247439t^{4,9} - 0.096770806t^{3,9} - 0.001776766299t^{6,8} + \dots$$

$$\approx t^{2}$$

$\mathbf{t_k}$	Solution exacte	Solution Approchée	$\mathbf{Erreur} = \mathbf{x}(\mathbf{t}) - \mathbf{x}(\mathbf{t}) $
0.0	0	0	0
0.1	0.10	0.00998856	0.09001144
0.2	0.04	0.0398404	0.0001596
0.3	0.09	0.0892778	0.0007222
0.4	0.16	0.157946	0.0007222
0.5	0.25	0.245486	0.004514
0.6	0.36	0.351595	0.008405
0.7	0.49	0.476084	0.013916
0.8	0.64	0.618931	0.021069
0.9	0.81	0.780324	0.029676
1	1.00	0.9607	0.0393

3 Éléments du calcul fractionnaire

Application : Exemple 2 Maintenant, considérons la deuxième équation différentielle factionnaire linéaire suivante :

$$\begin{cases} D^{\alpha}x(t) + x(t) = 1\\ x(0) = 0\\ x'(t) = 0 \end{cases}$$
 (60)

où la solution exacte pour $\alpha = 1.1$ est donnée par :

$$x(t) = t^{1,1} E_{1,1,2,1}(-t^{1,1}) (61)$$

3 Éléments du calcul fractionnaire

On construit l'homotopie suivante :

$$D_{\alpha}x(t) + p[x(t) - 1] = 0 \tag{62}$$

La solution de 55 peut être exprimée comme suit :

$$x = x_0 + px_1 + p^2 x_2 \dots = \sum_{i=0}^{\infty} p^i x_i$$
 (63)

il vient:

$$\sum_{i=0}^{\infty} D^{\alpha} p^{(i)} x_i(t) = p \left(1 - \sum_{i=0}^{\infty} p^i x_i(t) \right)$$

```
\begin{cases}
p^{0}: D^{\alpha}x_{0}(t) = 0, \\
p^{1}: D^{\alpha}x_{1}(t) = 1 - x_{0}(t), \\
p^{2}: D^{\alpha}x_{2}(t) = -x_{1}(t), \\
p^{3}: D^{\alpha}x_{3}(t) = -x_{2}(t), \\
\vdots
\end{cases}

(64)
```

3 Éléments du calcul fractionnaire

On obtient

$$x_0(t) = 0$$

$$x_1(t) = \frac{t^{\alpha}}{\Gamma(\alpha + 1)}$$

$$x_2(t) = -\frac{t^{2\alpha}}{\Gamma(2\alpha + 1)}$$

$$x_3(t) = \frac{t^{3\alpha}}{\Gamma(3\alpha + 1)}$$

.

3 Éléments du calcul fractionnaire

Donc la solution de l'équation 60 est donnée par :

$$x(t) = x_0(t) + px_1(t) + p^2x_2(t) + p^3x_3(t) + \dots$$
$$= \sum_{K=1}^{\infty} (-1)^{k+1} \frac{t^{k\alpha}}{\Gamma(k\alpha + 1)}$$

si $\alpha = 1, 1$

$$x(t) = \frac{t^{1,1}}{\Gamma(2,1)} - \frac{t^{2,2}}{\Gamma(3,2)} + \frac{t^{3,3}}{\Gamma(4,3)} - \frac{t^{4,4}}{\Gamma(5,4)} + \dots$$

$$= \frac{t^{1,1}}{0.95135} - \frac{t^{2,2}}{0.95135} + \frac{t^{3,3}}{0.95135} - \frac{t^{4,4}}{0.95135} + \dots$$

$$= 0.95557t^{1,1} - 0.41255t^{2,2} + 0.11293t^{3,3} - 0.02242t^{4,4} + \dots$$

$\mathbf{t_k}$	Solution exacte	Solution Approchée	Erreur
0.0	0	0	0
0.1	0.073357053781371	0.0733563	$7.53781371 \times 10^{-7}$
0.2	0.151282884629052	0.151281	$1.884629052 \times 10^{-6}$
0.3	0.226984580680193	0.226982	$2.58068193 \times 10^{-6}$
0.4	0.29890238480688	0.298899	$3.38480688 \times 10^{-6}$
0.5	0.366411147911488	0.366407	$4.147911488 \times 10^{-6}$
0.6	0.429259300754372	0.429254	$5.300754372 \times 10^{-6}$
0.7	0.487372840288318	0.487367	$5.840288318 \times 10^{-6}$
0.8	0.540762298480572	0.540756	$6.298480572 \times 10^{-6}$
0.9	0.589469952960841	0.589464	$5.952960841 \times 10^{-6}$
_1	0.633536032460000	0.63353	6.03246×10^{-6}

Plan 4 Conclusion

- ▶ Introduction
- ▶ Bases Mathématiques du calcul fractionnaires
- ▶ Éléments du calcul fractionnaire
- ► Conclusion