

Discovering Potential Biomarkers for Uterine and Cervical Cancers

Genevieve Ferguson - MS Data Science Student

Mentor: Dr. Ananda Mondal

Guided by: Dr. Giri Narasimhan

Introduction

- Biomarker biological measure that indicates a condition or disease
 - Can be used to identify risk/presence of cancer
- Potential biomarkers datasets
 - Copy number alterations
 - Gene expression
 - miRNA
- Desired result:
 - Potential biomarkers for cancer (2 types)
 - UCEC/ Uterine Corpus Endometrial Carcinoma
 - CESC/Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma

hhmi.org

Genome.gov

Background

- Each cell 23 pairs chromosomes
- Chromosomes > DNA > genes
- DNA transcription to RNA
- RNA translation to proteins
- Changes to gene = changes to protein (when, where, how much)
- Changes to protein = changes to the body

Background - CNAs

- o Copy number alterations (CNAs) - changes to chromosome structure
- o Gain or lose number of genes
 - Certain CNAs associated w disease

- Central Dogma
- DNA -> RNA -> proteins
 - Process called gene expression
- Measuring protein concentration = hard
- Measure mRNA counts instead

Sources: Galaxyproject.org genome.gov

- miRNA non-coding
- Bind to mRNA so cannot make proteins
- Can block oncogenes
 - stop cancer
- Can block tumor suppressors
 - promote cancer

Sources: PubMed. Computational Biology

Use Cases

- Springboard for further research
- Replicate for other cancers
- Early detection systems
 - Before symptoms start
 - Frequent screenings for high-risk individuals

Process

LASSO FEATURE SELECTION

DATASET PREP

STRATIFIED
TRAINING & TESTING
SETS

CREATE, FIT,
AND EVALUATE
CLASSIFICATION
MODELS

FROM MODELS

Goals

BUILD ACCURATE CLASSIFICATION MODELS

FIND BIOMARKERS FOR BOTH CANCERS

DETERMINE DIRECTIONALITY
OF BIOMARKER

Objectives

EVALUATE ALL CLASSIFICATION MODELS FOR ACCURACY

USE LASSO AND K-FOLD CV + TRAINING AND TEST ACCURACY

FIND AVERAGE SHAP VALUES FOR EACH FEATURE ACROSS ALL CLASSIFIERS

USE SHAP BEESWARM PLOTS TO IDENTIFY DIRECTION OF INFLUENCE

Motivation

2016-2020

- 11542 NEW CASES OF CERVICAL CANCER
 - 4272 women died
- 54744 NEW CASES OF UTERINE CANCER
 - · 11995 women died

Source: CDC

Challenges

SLIGHTLY IMBALANCED DATA

FINDING SAMPLES ACROSS ALL DATASETS

LOW NUMBER OF SAMPLES

COMPUTATIONAL COST

Datasets from TCGA

miRNA

887 rows 1881 columns

signal intensity miRNA

Gistic

845 rows 19729 columns

-1,0,1: Evidence of copy del, no change, evidence of duplication

Protein-coding genes

Htseq

892 rows 60483 columns

mRNA
mapping to
Protein-coding,
non-coding, &
pseudo genes

Combined

824 rows (overlap) 82093 columns (concatenated)

Participants in all datasets

miRNA dataset - Standard Scaling

Before

After

$$x_{standardized} = \frac{x - x_{mean}}{x_{standard deviation}}$$

LASSO (Least Absolute Shrinkage and Selection Operator)

FEATURE SELECTION – REDUCES INSIGNIFICANT OR REDUNDANT FEATURES TO ZERO

+OVERFITTING

10-FOLD CROSS VALIDATION ALSO FOR OVERFITTING

Datasets After LASSO

miRNA

Gistic

Htseq

Combined Dataset

1881

columns

19729

columns

60483

columns

82093

columns

Reduced

to 131

Reduced

to 77

Reduced

to 118

Reduced to

152

Classification algorithms

- LogisticRegression
- RandomForestClassifier
- Linear Discriminant Analysis
- DecisionTreeClassifier
- AdaBoostClassifier
- ExtraTreesClassifier
- KNeighborsClassifier
- GaussianNB
- CalibratedClassifier

- SVM
- Perceptron
- PassiveAggressiveClassifier
- SGDClassifier
- XGBClassifier
- Bagging Classifier
- MLPClassifier
- RidgeClassifierCV
- ANN

Total = 18

ANN

- Neural network for binary classification
- Layer 1: Input
 - Neurons: (# of features)
 - Activation Function: ReLU
 - Determined by the number of features in the input data
- Layer 2: Hidden
 - Neurons: (# of features)
 - Activation Function: ReLU
 - Further refines learned features from the previous layer
- Output Layer:
 - Neurons: 1
 - Activation Function: Sigmoid
 - Classifies cancer type into 0 and 1

CNAs-'Gistic' Dataset

CESC = '1' | count = 548 UCEC = '0' | count = 297

PAC removed

Gene Expression - 'Htseq'

CESC = '1' | count = 583 UCEC = '0' | count = 309

microRNA -'mirna'

CESC = '1' | count = 575 UCEC = '0' | count = 312

NB removed

Combined Dataset

CESC = '1' | count = 530 UCEC = '0' | count = 294 Total = 824

Accuracies

Gistic Dataset		
Algorithm	Acc	
LR	0.728	
LDA	0.717	
CART	0.724	
XGB	0.767	
ADA	0.741	
XTC	0.755	
SVC	0.728	
SGD	0.722	
RF	0.759	
BAG	0.753	
KNN	0.724	
NB	0.671	
CAL	0.667	
MLP	0.763	
RCV	0.714	
NC	0.704	
ANN	0.711	

HtSEQ Dataset	
Algorithm	Acc
LR	1.0
LDA	1.0
CART	1.0
XGB	0.999
ADA	1.0
XTC	1.0
PAC	1.0
SVC	1.0
SGD	1.0
RF	1.0
BAG	1.0
KNN	1.0
NB	1.0
CAL	1.0
MLP	1.0
RCV	1.0
NC	1.0
ANN	1.0

miRNA Dataset		
Algorithm	Acc	
LR	0.942	
LDA	0.950	
CART	0.926	
XGB	0.957	
ADA	0.955	
XTC	0.955	
PAC	0.933	
SVC	0.923	
SGD	0.919	
RF	0.955	
BAG	0.942	
KNN	0.955	
CAL	0.901	
MLP	0.956	
RCV	0.953	
NC	0.940	
ANN	0.937	

Combined Dataset		
Algorithm	Acc	
LR	1.0	
LDA	1.0	
CART	0.999	
XGB	0.999	
ADA	1.0	
XTC	1.0	
PAC	1.0	
SVC	1.0	
SGD	1.0	
RF	1.0	
BAG	1.0	
KNN	1.0	
NB	1.0	
CAL	1.0	
MLP	1.0	
RCV	1.0	
NC	1.0	
ANN	1.0	

Gistic - AUC

Significant overfit -need more data

Htseq - AUC

Perfect
performance
-read counts
significantly different
for two cancers

miRNA learning curve - AUC

Slight overfit but still performing well.

Combined learning curve

Also perfect performance

MOST SALIENT FEATURES FOUND FOR EACH ALGORITHM

SHAPLEY (SHAP) SCORES USED
-EXPLAINS HOW EACH FEATURE
(PLAYER) CONTRIBUTES TO THE
PREDICTION (TEAM)

GISTIC AND MIRNA = XGBOOST SHAP VALUES

HTSEQ & COMBINED = AVERAGED ACROSS ALL ALGORITHMS

Source: Towardsdatascience

SHAP DirectionalitymiRNA data

- UCEC = 0
- CESC = 1
- Mir-944 & Mir-21
 - Low UCEC
 - High CESC
- Mir-190a
 - Low CESC
 - High UCEC

Medium

Gistic - XGB SHAP values

Gene Name	Cancer Specificity	Ave SHAP	Source
ENSG00000141905.16	Endometrial cancer	0.093	link
ENSG00000073282.11	cervical cancer, head and neck cancer, lung cancer, urothelial cancer	0.063	link
ENSG00000176009.3	None	0.062	link
ENSG00000028310.16	Detected in all	0.055	link
ENSG00000121858.9	Prostate cancer, Myeloma, Endometrial cancer, Breast cancer	0.054	<u>link</u>

endometrial biomarkers

Htseq - Average SHAP values

Gene Name	Cancer Specificity	Ave SHAP	Source
ENSG00000206630.1	endometrial cancer	0.061	<u>link</u>
ENSG00000182117.5	Diffuse large B cell lymphoma (DLBCL), bladder, & cervical	0.060	<u>link</u>
ENSG00000269899.1	Ovarian cancer	0.057	<u>link</u>
ENSG00000274501.1	Acute myeloid leukemia (LAML) & thymoma	0.044	<u>link</u>
ENSG00000215267.7	None	0.030	<u>link</u>

miRNA - XGBoost SHAP values

Gene Name	Cancer Specificity	SHAP val	Source
hsa-mir-21	Many cancers, incl. endometrial & cervical	0.154	<u>link</u>
hsa-mir-205	Endometrial, cervical, squamous cell carcinoma, colon cancer	0.110	<u>Link</u> <u>link</u>
hsa-mir-944	Endometrial, cervical, & breast cancers	0.082	Link link
hsa-mir-224	Hepatocellular carcinoma (HCC), Pancreatic ductal adenocarcinoma (PDAC), & Non-small cell lung cancer (NSCLC)	0.049	link
hsa-mir-452	Bladder cancer, uterine cancer	0.048	<u>link</u>

Combined - Average SHAP values

Gene Name	Cancer Specificity	Ave SHAP	Source
ENSG00000280231.1	Thymoma	0.064	<u>link</u>
ENSG00000215030.5	Ovarian and bladder cancer	0.061	<u>Link</u>
ENSG00000225131.2	Diffuse large B cell lymphoma (DLBCL) and Glioblastoma	0.058	<u>link</u>
ENSG00000128228.4	Diffuse large B cell lymphoma (DLBCL), Uterine, Bladder cancer	0.058	<u>link</u>
ENSG00000244268.1	endometrial cancer	0.034	<u>link</u> <u>link</u>

MIRNA - HSA-MIR-224 XGBOOST SHAP VALUE = 0.049 NO CURRENT CANCER BIOMARKERS

HTSEQ - ENSG00000269899.1, ENSG00000274501.1, & ENSG00000215267.7 - SPECIAL INTEREST - HIGH ACC - NO BIOMARKERS

COMBINED – TOP 4 WITH NO BIOMARKERS FOR EITHER CANCER

GISTIC (CAUTION) - ENSG00000176009.3 SHAP VALUE = 0.062 BUT LOW ACCURACY

Comparison Maps - US Rate of New Cancers

Cervical Uterine

USCS Data Visualizations - CDC - 2016 to 2020

CONCLUSION

Biomarkers – applied to public health +Genetic testing to predict disease

+Screening in high-prevalence areas

Future Work: Which combinations of biomarkers result in specific disease?

Acknowledgement

Special Thanks to the Machine Learning And Data Analytics Group (MLDAG) here at FIU

& my mom, Donna Ferguson for her endless support

