

Relatório 12 – Grupo G2

OBJETIVO:

• Estudar o trabalho da energia mecânica através do movimento do carrinho no trilho de ar.

PROCEDIMENTO EXPERIMENTAL

Tabela 1: Massa que compõem o sistema

Carrinho	Suporte de massa	Massa1 de 10g	Massa1 de 20g
$(0,20490 \pm 0,00001)$ kg	$(0,00797 \pm 0,00001) \text{ kg}$	$(0,00895 \pm 0,00001) \text{ kg}$	$(0.01899 \pm 0.00001) \mathrm{kg}$

Tabela 2: Tempo medido entre os deslocamentos demarcados, para impulso com massa de 10g

X_{F}	Δt 1	Δt 2	Δt 3	Δt 4	Δt 5	Média ∆t	Média ∆t²
0	0.000	0.000	0.000	0.000	0.000	0	0.000
$(0.100 \pm 0.005) \mathrm{m}$	(0.538 ± 0.011) s	(0.526 ± 0.010) s	(0.535 ± 0.011) s	(0.532 ± 0.011) s	(0.535 ± 0.011) s	$(0,533 \pm 0,011)$ s	$(0.28 \pm 0.01) \text{ s}^2$
$(0,200 \pm 0,005) \mathrm{m}$	(0.895 ± 0.018) s	(0.897 ± 0.018) s	(0.899 ± 0.018) s	(0.901 ± 0.018) s	$(0,900 \pm 0,018)$ s	$(0.898 \pm 0.018) \text{ s}$	$(0.81 \pm 0.03) \text{ s}^2$
$(0.300 \pm 0.005) \mathrm{m}$	$(1,148 \pm 0,023)$ s	$(1,150 \pm 0,023)$ s	$(1,151 \pm 0,023)$ s	$(1,153 \pm 0,023)$ s	$(1,144 \pm 0,023)$ s	$(1,149 \pm 0,023)$ s	$(1,32 \pm 0,05)$ s ²
$(0,400 \pm 0,005)$ m	$(1,327 \pm 0.026)$ s	$(1,321 \pm 0,026)$ s	$(1,328 \pm 0,027)$ s	$(1,333 \pm 0,027)$ s	$(1,319 \pm 0,026)$ s	$(1,326 \pm 0,027)$ s	$(1,76 \pm 0,07)$ s ²
$(0,500 \pm 0,005)$ m	$(1,471 \pm 0,029)$ s	$(1,465 \pm 0,029)$ s	$(1,469 \pm 0,029)$ s	$(1,471 \pm 0,029)$ s	$(1,471 \pm 0,029)$ s	$(1,469 \pm 0,029)$ s	$(2,16\pm0,09)$ s ²

Tabela 3: Tempo medido entre os deslocamentos demarcados, para impulso com massa de $20\mathrm{g}$

X_{F}	Δt 1	Δt 2	Δt 3	Δt 4	Δt 5	Média ∆t	Média ∆t²
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$(0.100 \pm 0.005) \mathrm{m}$	(0.405 ± 0.008) s	$(0,409 \pm 0,008)$ s	$(0,409 \pm 0,008)$ s	$(0,407 \pm 0,008)$ s	$(0,408 \pm 0,008)$ s	$(0,408 \pm 0,008)$ s	$(0.166 \pm 0.007) \text{ s}^2$
$(0,200 \pm 0,005)$ m	$(0,608 \pm 0,012)$ s	$(0,606 \pm 0,012)$ s	$(0,604 \pm 0,012)$ s	$(0,604 \pm 0,012)$ s	$(0,606 \pm 0,012)$ s	$(0,606 \pm 0,012)$ s	$(0.37 \pm 0.01) \text{ s}^2$
$(0,300 \pm 0,005)$ m	(0.754 ± 0.015) s	$(0,755 \pm 0,015)$ s	(0.751 ± 0.015) s	$(0,755 \pm 0,015)$ s	(0.757 ± 0.015) s	$(0,754 \pm 0,015)$ s	$(0.57 \pm 0.02) \text{ s}^2$
$(0,400 \pm 0,005)$ m	(0.875 ± 0.017) s	(0.884 ± 0.018) s	(0.877 ± 0.017) s	$(0.883 \pm 0.018) \text{ s}$	(0.882 ± 0.018) s	$(0.880 \pm 0.018) \text{ s}$	$(0.77 \pm 0.03) \text{ s}^2$
$(0,500 \pm 0,005)$ m	(0.983 ± 0.020) s	(0.984 ± 0.020) s	(0.979 ± 0.020) s	(0.984 ± 0.020) s	(0.980 ± 0.020) s	(0.982 ± 0.020) s	$(0.96 \pm 0.04) \text{ s}^2$

Tabela 4: Tempo medido entre os deslocamentos demarcados, para impulso com massa de 30g

X_{F}	Δt 1	Δt 2	Δt 3	Δt 4	∆t 5	Média ∆t	Média ∆t²
(0.000	0.000	0.000	0.000	0.000	0.000	0.000
$(0,100 \pm 0,005) \mathrm{m}$	(0.356 ± 0.007) s	(0.362 ± 0.007) s	(0.357 ± 0.007) s	(0.357 ± 0.007) s	(0.361 ± 0.007) s	(0.359 ± 0.007) s	$(0.129 \pm 0.005) \text{ s}^2$
$(0,200 \pm 0,005)$ m	(0.521 ± 0.010) s	(0.519 ± 0.010) s	(0.518 ± 0.010) s	(0.517 ± 0.010) s	(0.518 ± 0.010) s	(0.519 ± 0.010) s	$(0.27 \pm 0.01) \text{ s}^2$
$(0,300 \pm 0,005) \mathrm{m}$	$(0,641 \pm 0,013)$ s	$(0,638 \pm 0,013)$ s	$(0,639 \pm 0,013)$ s	$(0,639 \pm 0,013)$ s	$(0,646 \pm 0,013)$ s	$(0,641 \pm 0,013)$ s	$(0.41 \pm 0.02) \text{ s}^2$
$(0,400 \pm 0,005) \mathrm{m}$	(0.745 ± 0.015) s	(0.744 ± 0.015) s	(0.742 ± 0.015) s	(0.742 ± 0.015) s	(0.748 ± 0.015) s	$(0,744 \pm 0,015)$ s	$(0.55 \pm 0.02) \text{ s}^2$
$(0,500 \pm 0,005)$ m	(0.837 ± 0.017) s	(0.834 ± 0.017) s	(0.841 ± 0.017) s	(0.841 ± 0.017) s	(0.837 ± 0.017) s	(0.838 ± 0.017) s	$(0.70 \pm 0.03) \text{ s}^2$

Gráfico 1: gráfico XY, (XF em função de Δt^2 médio) referente a tabela 2.

Equação Horária obtida: v = 0,422t

Gráfico 2: gráfico XY (velocidade em função do tempo) referente a tabela 2

A área sob a curva encontrada (0,455) representa o deslocamento do carrinho.

Tabela 5: Valores da Aceleração obtidos referentes a tabela 2.

Velocidade	Área do gráfico	Aceleração Calculada	Aceleração do Gráfico	Desvio Percentual
(0,225 ± 0,005) m/s	0.06	$(0,42 \pm 0,02) \text{ m/s}^2$	0,422 m/s ²	0.47%
(0,379 ± 0,008) m/s	0.17	$(0,42 \pm 0,02) \text{ m/s}^2$	0,422 m/s ²	0.47%
(0,48 ± 0,01) m/s	0.276	$(0,42 \pm 0,02) \text{ m/s}^2$	0,422 m/s ²	0.47%
(0,56 ± 0,01) m/s	0.371	$(0,42 \pm 0,02) \text{ m/s}^2$	0,422 m/s ²	0.47%
(0,62 ± 0,01) m/s	0.455	$(0,42 \pm 0,02) \text{ m/s}^2$	0,422 m/s ²	0.47%

Tabela 6: Resumo dos Resultados em forma de Tabela referentes a tabela 2.

Área	ΔEp(J)	ΔEc(J)	$\tau_{Fr(Ma)}(J)$	$\tau_{Fr(Mc)}(J)$	Potência no carrinho(W)
Δ1	$-(0.0166 \pm 0.0005) \text{ J}$	$(0,0057 \pm 0,0003) \text{ J}$	$(0.0166 \pm 0.0001) \text{ J}$	$(0,0094 \pm 0,0005) \text{ J}$	(0.049 ± 0.002) W
Δ2	$-(0.0332 \pm 0.0005) \text{ J}$	$(0.0161 \pm 0.0007) \text{ J}$	$(0.0332 \pm 0.0001) \text{ J}$	$(0.0189 \pm 0.0005) \text{ J}$	(0.058 ± 0.002) W
Δ3	$-(0.0497 \pm 0.0005) \text{ J}$	$(0.026 \pm 0.001) \text{ J}$	$(0.0497 \pm 0.0001) \text{ J}$	$(0.0283 \pm 0.0005) \text{ J}$	(0.068 ± 0.002) W
Δ4	$-(0.0663 \pm 0.0004) \text{ J}$	$(0.035 \pm 0.001) \text{ J}$	$(0,0663 \pm 0,0002) \text{ J}$	$(0.0378 \pm 0.0005) \text{ J}$	(0.079 ± 0.002) W
Δ5	$-(0.0829 \pm 0.0004) \text{ J}$	$(0.043 \pm 0.001) \text{ J}$	$(0.0829 \pm 0.0002) \text{ J}$	(0.0472 ± 0.0005) J	(0.089 ± 0.002) W

Gráfico 3: gráfico XY, (XF em função de Δt^2 médio) referente a tabela 3.

Equação Horária obtida: v = 1,0268t

Gráfico 4: gráfico XY (velocidade em função do tempo) referente a tabela 3

A área sob a curva encontrada (0,495) representa o deslocamento do carrinho.

Tabela 7: Valores da Aceleração obtidos referentes a tabela 3.

Velocidade	Área do gráfico	Aceleração Calculada	Aceleração do Gráfico	Desvio Percentual
(0,419 ± 0,008) m/s	0.085	$(1,03 \pm 0,04) \text{ m/s}^2$	1,0268 m/s²	0.31%
(0,62 ± 0,01) m/s	0.188	$(1,02 \pm 0,03) \text{ m/s}^2$	1,0268 m/s ²	0.66%
(0,77 ± 0,02) m/s	0.29	$(1,02 \pm 0,05) \text{ m/s}^2$	1,0268 m/s ²	0.66%
(0,90 ± 0,02) m/s	0.396	$(1,02 \pm 0,05) \text{ m/s}^2$	1,0268 m/s²	0.66%
(1,01 ± 0,02) m/s	0.495	(1,03 ± 0,04) m/s ²	1,0268 m/s ²	0.31%

Tabela 8: Resumo dos Resultados em forma de Tabela referentes a tabela 3.

Área	$\Delta Ep(J)$	$\Delta Ec(J)$	$\tau_{Fr(Ma)}(J)$	$\tau_{Fr(Mc)}(J)$	Potência no carrinho(W)
$\Delta 1$	$-(0.0264 \pm 0.0006)$ J	$(0.0188 \pm 0.0007) \text{ J}$	$(0.0264 \pm 0.0002) \text{ J}$	$(0.022 \pm 0.001) \text{ J}$	$(0,119 \pm 0,006)$ W
Δ2	$-(0.0528 \pm 0.0006) \text{ J}$	$(0.041 \pm 0.001) \text{ J}$	$(0.0528 \pm 0.0002) \text{ J}$	$(0.044 \pm 0.001) \text{ J}$	$(0,160 \pm 0,007) \text{ W}$
Δ3	- (0,0793 ± 0,0006) J	$(0.063 \pm 0.003) \text{ J}$	$(0,0793 \pm 0,0002) \text{ J}$	$(0,066 \pm 0,001) \text{ J}$	$(0.192 \pm 0.008) \text{ W}$
Δ4	$-(0.1057 \pm 0.0005) \text{ J}$	$(0.087 \pm 0.004) \text{ J}$	$(0.1057 \pm 0.0002) \text{ J}$	$(0.088 \pm 0.001) \text{ J}$	$(0,220 \pm 0,008) \text{ W}$
Δ5	$-(0.1321 \pm 0.0005) \text{ J}$	$(0,109 \pm 0,004) \text{ J}$	$(0,1321 \pm 0,0002)$ J	$(0,110 \pm 0,001) \text{ J}$	$(0,246 \pm 0,009)$ W

Gráfico 5: gráfico XY, (XF em função de Δt^2 médio) referente a tabela 4.

Equação Horária obtida: v = 1,4272t

Gráfico 6: gráfico XY (velocidade em função do tempo) referente a tabela 4

A área sob a curva encontrada (0,503) representa o deslocamento do carrinho.

Tabela 9: Valores da Aceleração obtidos referentes a tabela 4.

Velocidade	Área do gráfico	Aceleração Calculada	Aceleração do Gráfico	Desvio Percentual
(0,51 ± 0,01) m/s	0.092	$(1,41 \pm 0,06) \text{ m/s}^2$	1,4272 m/s ²	1.20%
(0,74 ± 0,01) m/s	0.192	$(1,43 \pm 0,04) \text{ m/s}^2$	1,4272 m/s ²	0.20%
(0,91 ± 0,02) m/s	0.292	$(1,42 \pm 0,06) \text{ m/s}^2$	1,4272 m/s ²	0.50%
(1,06 ± 0,02) m/s	0.394	$(1,43 \pm 0,04) \text{ m/s}^2$	1,4272 m/s ²	0.20%
(1,20 ± 0,02) m/s	0.503	$(1,43 \pm 0,04) \text{ m/s}^2$	1,4272 m/s ²	0.20%

Tabela 10: Resumo dos Resultados em forma de Tabela referentes a tabela 4.

Área	ΔEp(J)	ΔEc(J)	$\tau_{Fr(Ma)}(J)$	$\tau_{Fr(Mc)}(J)$	Potência no carrinho(W)
Δ1	$-(0.0352 \pm 0.0008) \text{ J}$	$(0.027 \pm 0.001) \text{ J}$	$(0.0352 \pm 0.0002) \text{ J}$	$(0.029 \pm 0.001) \text{ J}$	$(0.18 \pm 0.01) \text{ W}$
Δ2	$-(0.0704 \pm 0.0008) \text{ J}$	$(0.056 \pm 0.002) \text{ J}$	$(0,0704 \pm 0,0002)$ J	$(0.058 \pm 0.001) \text{ J}$	$(0.25 \pm 0.01) \text{ W}$
Δ3	$-(0.1056 \pm 0.0008) \text{ J}$	$(0.085 \pm 0.004) \text{ J}$	$(0,1056 \pm 0,0003) \text{ J}$	$(0.088 \pm 0.001) \text{ J}$	$(0.30 \pm 0.01) \text{ W}$
Δ4	- (0,1408 ± 0,0008) J	$(0,115 \pm 0,004) \text{ J}$	$(0.1408 \pm 0.0003) \text{ J}$	$(0,117 \pm 0,001) \text{ J}$	$(0.35 \pm 0.01) \text{ W}$
Δ5	$-(0.1760 \pm 0.0007) \text{ J}$	$(0.148 \pm 0.005) \text{ J}$	$(0,1760 \pm 0,0003) \text{ J}$	$(0.146 \pm 0.001) \text{ J}$	$(0.38 \pm 0.02) \text{ W}$

Trabalho é a energia transferida pela aplicação de uma força em uma determinada direção mudança. Quando um sistema funciona, transferimos energia entre sistemas sobre outro. A potência é útil para medir a velocidade da conversão de energia meio de realização do trabalho. O uso da equação de Torricelli nos permite encontrar uma velocidade final um objeto que se move em linha reta sem conhecer o intervalo de tempo. Energia, trabalho e potência estão diretamente relacionados porque o trabalho é Energia cinética e/ou força multiplicada pela distância percorrida. A lei da conservação da energia afirma que a energia pode ser convertida ou transferido, mas nunca criado ou destruído. A conservação da energia mecânica explica que quando nenhuma força dissipativa atua em um objeto, todas as energias associadas ao movimento permanecem constantes. existir em outras palavras, a energia cinética e a energia potencial do corpo permanecem inalteradas.

O desvio encontrado é pequeno porque a fórmula utilizada no cálculo as fórmulas experimentais usadas para cálculos teóricos são as mesmas. Portanto, percebe-se que a mesma quantidade física pode ser obtida de maneiras diferentes.