Team # 72877 Page 1 of 21

Team Control Number

For office use only

T1 _____

T2 ____

T3 ____

T4 ____

E

Team Control Number

For office use only

F1 _____

F2 ____

F3 ____

F4 ____

E

2018 ICM Summary Sheet

(Your team's summary should be included as the first page of your electronic submission.)

Type a summary of your results on this page. Do not include the name of your school, advisor, or team members on this page.

Peace and development has become the theme in this day and age. However, climate change has been causing serious threat to people's survival and the national vulnerability has increased dramatically. Combining with previous researches, we add 9 indicators related to national vulnerability, so it is influenced by 21 indicators. Our research aims to establish multi-layer deep neural networks model. Based on gradient descent algorithm, Momentum algorithm and Adam algorithm, the mapping between input and output of deep neural networks and the continuous mapping function of m-dimensional Euclidean space in a highly non-linear Euclidean space finite domain come out. Coupled with the data processing of the complexity of simple non-linear functions, two links (forward and backward-propagation and weights update) iterations are repeatedly adopted to overcome the limitations of traditional regression models in building complex mapping relations and extracting high-level data characteristics. In our research, the training sets containing 21 factors corresponding countries data from 2013 to 2016 are used to achieve the prediction of the influence of climate factors on the national vulnerability.

Firstly, the model can determine national vulnerability by the impact of climate change on national vulnerability from two aspects, single climate factors and comprehensive climate factors. We have concluded that the single factor of climate change has a certain impact on national vulnerability and the comprehensive factors of climate have a great impact on national vulnerability. However, huge fluctuations cannot be caused by changing single factor, which reflects the stability of this model.

Secondly, by analyzing the vulnerability of one of the ten vulnerable countries, Sudan, we get the optimal climate factor model and Sudan could not be so vulnerable if comprehensive climate factors improve. And we used the "threshold mechanism" to determine the appropriate threshold to determine the selection of the critical point in order to make the model to achieve the best results, which can effectively reduce the vulnerability of the Sudan.

Thirdly, we chose Britain, which is in top 10 non-fragile countries to predict the national vulnerability. We can draw a conclusion that the improvement of the comprehensive factors of climate change can make the U.K. have more solid strength. And we calculated the cost of education, health care, welfare and protection to determine the government budget under artificial intervention.

Finally, after a comprehensive analysis of the correlation between urban vulnerability and national vulnerability, due to the cumulative process effect and cumulative amplification effect, we determined that the neural network model can be applied to smaller "continent" or larger "continent". Therefore, our model can be applied to not only national vulnerability detection, prediction and prevention, but also a tiny area, such as township, or a great area, such as the earth. This will bring great help to the development of local conditions and point out the direction for the progress and development of the world.

Team # 72877 Page 2 of 21

The Impact of Climate Change on National Vulnerability Based on Deep Neural Networks

Abstract

National vulnerability has complex effects of many variables, which also have correlations with each other. In our research, we established a multilayer deep neural network model using 21 indicators of national vulnerability data from 2013 to 2016 for 4 years to learn the characteristics of data for achieving the best forecast of regression. We also optimize the algorithm and use momentum algorithm and Adam algorithm to make the model more reliable and robust.

Firstly, we show the influence of single and comprehensive climate change factors on national vulnerability. And we concluded that the single factor of climate change has certain influence on the national stability and comprehensive factors have a strong impact on national vulnerability. However, huge fluctuations cannot be caused by changing single factor, which reflects the stability of this model.

Secondly, after analyzing the relationship between Sudan's national stability and its characteristics, we find that the comprehensive factors of climate change have great influence on the national vulnerability of Sudan.

Thirdly, after analyzing the vulnerability of UK countries, it is concluded that climate change factors have a great influence on the fragile factors of the UK countries. The UK can improve its national strength by improving climate conditions, such as increasing greening area and planting trees. At the same time, the threshold is used to analyze the critical point which is the most suitable to distinguish the country's vulnerability, so that the model can be used to predict the true state of the country.

Finally, we demonstrated the generality of the neural network model. The multi-layer deep neural network is also suitable for cities, states, even continents.

Key Words: National Vulnerability; Climate Change; Machine Learning; Deep Neural Networks Model; Momentum Algorithm; Adam Algorithm.

Team # 72877 Page 3 of 21

Table of Contents

- 1 Introduction
- 2 Basic Assumptions
- 3 Nomenclatures

4 Deep Neural Networks Model with Gradient Descent Algorithm

- 4.1 Model Establishment & Model Preparation
 - 4.1.1 Model Establishment
 - (1) The Choice of Influencing Factors
 - (2) Algorithm Choice
 - (3) Algorithm Implementation
 - 4.1.2 Model Preparation
 - (1) Data Standardization
 - (2) Threshold Selection
 - (3) The Choice of Neural Networks
- 4.2 Climate change impacts on national vulnerability
 - 4.2.1 Single factor of climate change Influence
 - 4.2.2 Comprehensive factors of climate change Influence
- 4.3 Sudan Climate improvement reduce national vulnerability
- 4.4 U.K. Climate improvement makes nation stronger
 - 4.4.1 U.K. climate change influence analysis
 - 4.4.2 The determination of the critical point
- 4.5 Comprehensive intervention reduce national vulnerability
 - 4.5.1 Comprehensive factors of climate change Influence
 - 4.5.2 Total budget of human intervention
- 4.6 Model Applicability and Universality

5 Evaluation and optimization of model

- 5.1 Model Evaluation: Pros and Cons of Gradient Descent Algorithm
- 5.2 Model Optimization
 - 5.2.1 Deep Neural Networks with Momentum Algorithm
 - 5.2.2 Deep Neural Networks with Adam Algorithm
- 6 Conclusion
- 7 Reference
- 8 Appendix

Team # 72877 Page 4 of 21

1 Introduction

Climate change can affect the vulnerability of a country or region. Climate change varies by region. Much of the impact it brings can change the way people live, leading to fragility in the country.

National vulnerability means the state's ability or legitimacy is weak, unable to meet the basic needs and expectations of the people, and unable to resist the internal and external risks in the fields of nature, society and security. Vulnerability is a manifestation of internal contradictions in the country. The phenomenon of "weak countries" has become a global and regional issue. Since 1980s, climate warming marked by the global climate change has attracted the attention of governments, international organizations and scientists. After that, some scholars began to introduce the concept of vulnerability into the field of climate change research. In 2001 IPCC (Intergovernmental Panel on Climate Change) third assessment report on climate change, the vulnerability was revised as a clear concept. From then, it has gradually become the focus of global climate change research and hot fields.

With the increasing global population pressure, climate change especially the greenhouse effect has been affected at human living needs, such as food and increasing number of private cars. The changing climate also caused deterioration of the environment, such as drought, rising sea levels and the environmental performance index (EPI) decreased. In order to survive, people live away from their homes to the stable state and make a mass migration. This directly results in that migration of people can't get the basic guarantee of their good education, health care, credit and during the rush, the infant mortality rate and life expectancy are greatly shortened. And because of human migration, domestic labor shortage, economic and public service collapse come out. At the same time, people's rights are not guaranteed, and the crime rate is rising sharply. Moreover, the defense is weak, and the political economy is vulnerable to external intervention, which all lead to national vulnerability increase. For the country, which people have migrated to, the racial conflicts are bound to occur. The surplus labor force has led to a rise in the unemployment rate in the country. Under such a vicious circle, the world's development imbalance will be more serious, and the world economy will collapse sharply. Therefore, it is of great significance to the human society to study the impact of climate change on the vulnerability of the country.

This article will focus on the following aspects of the impact of single climate change factor and comprehensive climate factors on the country's vulnerability.

Team # 72877 Page 5 of 21

2 Basic assumptions

1) There is no sharp deterioration of the environment caused by the war led to an increase in the national vulnerability.

- 2) There is no sudden outbreak of large-scale influenza and viruses, such as Ebola virus, SARS and so on.
- 3) There is no planetary collision exactly on a certain country.

3 Nomenclatures

Symbol	Meaning
M	number of examples in the dataset
n_{x}	input size
n_{y}	output size
$n_h^{[l]}$	number of hidden units
X	input matrix
$x^{(i)}$	l th example
Y	label matrix
$y^{[i]}$	output label
$W^{[l]}$	weight matrix
$b^{[l]}$	bias vector
Ŷ	predicted output vector
L	number of layers in the network
HP	Homeless People due to Natural Disaster
LE	Life expectancy at birth
TU	Total unemployment rate
EPI	Environmental Performance Index
PP	Prison Population
IM	Infant mortality rate
UED	Uneven Economic Development
DC	Domestic credit provided by financial sector
GTI	Global Terrorism Index

Team # 72877 Page 6 of 21

4 Deep Neural Networks Model with Gradient Descent

4.1 Model Establishment & Model Preparation

4.1.1 Model Establishment

(1) The Choice of Influencing Factors

In view of the fact that is the national vulnerability determined by a variety of factors, in addition to the 12 indicators in the Fragile States Index, Demographic Pressures, Refugees and IDPs, Group Grievance, Human Flight, Poverty and Economic Decline, Uneven Development, State Legitimacy, Public Services, Human Rights, Security Apparatus, Factionalized Elites, External Intervention), there are 9 factors also influencing the national vulnerability (Homeless People due to Natural Disaster, Life expectancy at birth, Total unemployment rate, Environmental Performance Index, Prison Population, Infant mortality rate, Education Index, Domestic credit provided by financial sector, Global Terrorism Index) based on the Dr. Zbigniew W. Ras, Department of Computer Science, University of North Carolina Charlotte, NC, USA. After the data preprocessing, the data having significant impact on national vulnerability has been got for 2013-2016 years. The added dataset including 9 features is listed in Appendix 10.

(2) Algorithm Choice

National vulnerability is influenced by many variables. There is a certain correlation between variables. We propose to build a multilayer deep neural network model, using 21 indicators in four years to learn the characteristics of memory data, so as to achieve the best regression for data.

Deep neural network is a learning algorithm for multilayer neural networks under the guidance of a tutor. It is based on the gradient descent method. The relationship between input and output in real deep network is a mapping between an input m and output of the deep neural network to complete the functions of continuous mapping to m dimensional Euclidean space in a finite domain in Euclidean space, which is highly nonlinear. Its information processing capability is derived from the multiple complex of simple nonlinear function, so it has a strong ability to reproduce the function. It iteratively iterates through two links (incentive propagation and weight updating), until the input reaches a predetermined target range.

(3) Algorithm Implementation

The learning process of deep neural network is composed of forward propagation process and reverse propagation process. In the forward propagation process, the input information is processed and transmitted to the output layer by the hidden layer through the input layer. If the expected output value is not in the output layer, the

Team # 72877 Page 7 of 21

objective function is replaced by output and the expected sum of squares and reversed to the spread. And then, partial derivatives of the objective function of the neuron weight layer are obtained, which forms a ladder of objective function of the weight vector, as the basis of modifying the weights. Lastly, network-learning is completing in the process of modification of weights. When the error reaches the desired value, the network learning is finished¹.

In the forward propagation process:

Input:
$$a^{[l-1]}$$
 Output: $a^{[l]}$, cache $(z^{[l]})$
$$z^{[l]} = W^{[l]} \cdot a^{[l-1]} + b^{[l]}$$

$$a^{[l]} = g^{[l]}(z^{[l]})$$

For the backward propagation process:

Input:
$$da^{[l]}$$
 Output: $da^{[l-1]}$, $dW^{[l]}$, $db^{[l]}$

$$\begin{split} \mathrm{d}z^{[l]} &= \mathrm{d}a^{[l]} * g^{[l]}(z^{[l]}) \\ \mathrm{d}W^{[l]} &= \frac{1}{m} dz^{[l]} \cdot a^{[l-1]} \\ db^{[l]} &= dz^{[l]} \\ \mathrm{d}a^{[l-1]} &= W^{[l+1]T} \cdot \mathrm{d}z^{[l+1]} * g^{[l]}(z^{[l]}) \end{split}$$

Then

$$\mathrm{d}z^{[l]} = W^{[l+1]T} \cdot dz^{[l+1]} * g^{[l]}(z^{[l]})$$

There are three types of deep neural network models: the input layer, the hidden layer and the output layer. A neuron model is a model that contains input, output, and computing functions. The input can be analogous to the dendrite of the neuron, and the output can be analogous to the axon of the neuron, and the calculation can be analogous to the nucleus.

The training algorithm of the deep neural network model is to adjust the value of the weight to the best, so the whole network has the best prediction effect. The purpose of the machine learning model training is to make the parameters as possible as possible with the real model.

First, we assign random values to all the parameters. We use these randomly generated parameter values to predict the samples in the training data. The prediction target of the sample is \hat{y} , and the real target is y. So, we define a value loss, and the calculation formula is as follows.

The Loss Function:

$$J(\omega, b) = -\frac{1}{m} \sum_{i=1}^{m} (y \log \hat{y} + (1 - y) \log(1 - \hat{y}))$$
$$= -\frac{1}{m} \sum_{i=1}^{m} (y \log a + (1 - y) \log(1 - a))$$

Team # 72877 Page 8 of 21

If we introduce the matrix formula of the previous neural network into \hat{y} , the loss can be imported to function of the parameter, which is called the loss function. At this point, the problem is transformed into an optimization problem. Gradient descent algorithm is used. Gradient descent algorithm calculates the parameters at the current gradient every time, then let the parameters move towards a distance in the opposite direction of the gradient and repeat until the gradient is close to zero. At this time, all the parameters happen to achieve a state that makes the loss function reach a minimum. In the neural network model, because of the complex structure, the cost of calculating the gradient is very high. So, it is necessary to use the back-propagation algorithm. The backpropagation algorithm is used to calculate the structure of the neural network. The gradient of all the parameters is calculated not once, but from the back.

Then, we calculate the gradient of the output layer, then the gradient of the second parameter matrix, middle layer, first parameter matrix.

Finally, the gradient of the input layer. After the end of the calculation, the gradient of the two parameter matrices is available.

Updating the parameters:

$$W=W-\alpha \frac{\partial J(W,b)}{\partial W}$$

$$b = b - \alpha \frac{\partial J(W,b)}{\partial b}$$

The value of parameters W and b trained in our model are listed in the Appendix 11 In a multilayer neural network, the output is also calculated in a layer of one layer. Starting from the outermost layer, the calculation is calculating the value of all the units, then continues to calculate the deeper layer. The next layer will be calculated only after the values of all the units in the current layer have been calculated. So, this process is called "forward propagation". The more in-depth representation features can be understood that as the number of networks increases, each layer is more in-depth for the previous level of abstract representation. In neural networks, each layer of neurons presents a more abstract representation of the value of the previous layer of neurons. The network has stronger ability to distinguish and classify things by extracting more abstract features. This is why we choose multi-layer deep neural network model.

4.1.2 Model Preparation

We first import the Python related libraries (Numpy, Pandas, Sklearn, Matplotlib), then read the data and preprocess the data. The model we built is a functional model Team # 72877 Page 9 of 21

of multivariate and national vulnerability. *X* represents all the corresponding characteristic data in 4 years and *Y* is the corresponding national ranks. And the Python Codes are listed in Appendix 1.

(1) Data Standardization

We normalize the *X* data based on the characteristics of the sigmoid and ReLu functions that make the most of the data around the function point 0 in order to avoid the loss of weight.

Sigmoid Activation Function:

$$\sigma (z) = \frac{1}{1+e^z} = \hat{y} = a$$

$$\sigma'(z) = \frac{e^{-z}}{(1+e^{-z})^2} = \hat{y} (1 - \hat{y}) = a (1 - a)$$

(2) Threshold Selection

According to the national vulnerability data, we selected 50 as the threshold. The rank is less than 50, the *x* is 0, which shows the country is more fragile. On the contrary, if the rank is more than 50, the *x* is 1, representing the country has more solid national strength. At the same time, four data sets (train_*x*, train_*y*, test_*x* and test_*y*) set up to train the model. (The corresponding Python Codes are in Appendix 1 for data processing.)

ReLu Activation Function²⁻³:

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 0, & \text{if } z \le 0 \\ 1, & \text{if } z > 0 \end{cases}$$

(3) The Choice of Neural Networks

We have established 5 layers of deep neural networks, including 4 hidden layers and one output layer. The number of neurons in each layer respectively is 21, 20, 7, 5, 1. The hidden layer is used the ReLu activation function, and the output layer is used the Sigmoid activation function³. (The Python Codes are in the Appendix 3 and Appendix 5.)

Team # 72877 Page 10 of 21

Figure 1 Figure 2

Figure 1 shows our 5-layer deep neural networks model. (X is the dataset inputted. \hat{y} is the prediction value.) Figure 2 shows how forward and back-propagation happens.

The learning rate is 0.0075. After 25000 iterations of the model, we get the deep neural network model. The Python Codes are listed in Appendix 4.

Figure 3 shows the cost decrease after 25000 iterations. As for the prediction in Figure 4, the accuracy of the training set is 0.9876977152899822, and the test set is 0.979020979020979.

4.2 Climate change impacts on national vulnerability

The 5 layers depth neural network model has been built, which is a general description of national vulnerability based on multivariable and multi parameter conditions.

Team # 72877 Page 11 of 21

The change of climate will change many factors, such as Refugees and Internally-Displaced Persons Group Grievance, Human Flight and Brain Drain, Uneven Economic Development, Economic Decline, Human Rights and Rule of Law, Security Apparatus, Homeless People due to Natural Disaster, Environmental Performance Index (EPI), Global Terrorism Index (GTI), which all have a direct impact on national vulnerability. Subsequently, the analysis between single climate factor and mixed factors dominated by climate is as following.

4.2.1 Single factors of climate change Influence

In order to display the single and comprehensive factors influencing the national vulnerability, the result shows as following respectively.

In the study of the single factors of climate showed in Figure 5, the climate factors of the various countries are expanding which change from 0 to 10 by per 0.001 increasing and then it is tested the accuracy illustrating by images. Under the study of the comprehensive factors of climate change, the multi factor factors are respectively expanded (Refugees and Internally-Displaced Persons Group Grievance, Human Flight and Brain Drain, Uneven Economic Development, Economic Decline, Human Rights and Rule of Law, Security Apparatus, Homeless People due to Natural Disaster, Environmental Performance Index (EPI), Global Terrorism Index(GTI)) from 0 to 10 by 0.001 increasing, and the accuracy is tested and the image is drawn.

Figure 5 shows the impacts of single climate change factor on the training accuracy. Figure 6 shows the impacts of comprehensive climate change factors on the training accuracy. The Python Codes are listed in Appendix 6.

4.2.2 Comprehensive factors of climate change Influence

- (1) When the climate change factor is synchronous in each country showed in Figure 6, the factor value is from 0 to 10 increasing by 0.001.
- (2) when factor value is 1-2, the accuracy is up to 0.315, which means climate is less affected on national vulnerability;
- (3) When the factor value is 2-4, 4-5 or 5-7.8, the accuracy is under gradient descent;

Team # 72877 Page 12 of 21

(4) when the factor value>8, the accuracy reaches the minimum, which means it has dominant influence on the national vulnerability.

Conclusion: The accuracy of the factor values in the vicinity of 4 and 5 has a large fluctuation, and the impact on the country is not very large because of the single factor influence of some countries.

Figure 7 and Figure 8 both show the different impacts of C1, C3, E1, E2, E3, P3, S2, HP and GTI

When the climate change factor and other indirect factors' effects are synchronous in each country, the comprehensive factors of climate change have great influence on national vulnerability.

When the factor value is from 0 to 10 increasing by 0.001.

on single weather factor EPI using the dataset.

- (1)When factor value <1.8, the climate change factors have significant influence on national vulnerability and the accuracy rate is relatively high;
 - (2) When the factor value is between 1.8 and 3, the accuracy slow down;
- (3) When the factor value is greater than 3, the accuracy rate stay constant, but low accuracy, which states that climate change factors have a strong impact on national vulnerability.

Conclusion: When factor value <1.8, the climate change factors have significant influence on national vulnerability and the accuracy rate is relatively high;

All in all, the model is stable basically if the single climate weather factor changes a little bit, and the single weather factor EPI could make an influence on the model. Besides, the model is affected by comprehensive weather factors greatly if the values of these factors change simultaneous.

4.3 4.3 Sudan Climate improvement reduce national vulnerability

Sudan is chosen as an object of study. The results of the related calculations are as Follows:

-			
L'al	h	_	1
1 41	n		- 1

factors	C1	C2	C3	E1	E2	E3	P1
count	4	4	4	4	4	4	4
mean	9.5	9.9	9.8	8.425	7.975	8.775	9.65
std	0.244948974	0.115470054	0.141421356	0.419324854	0.377491722	0.287228132	0.1
min	9.2	9.8	9.7	7.8	7.6	8.4	9.6
25%	9.425	9.8	9.7	8.4	7.825	8.7	9.6
50%	9.5	9.9	9.75	8.6	7.9	8.8	9.6
75%	9.575	10	9.85	8.625	8.05	8.875	9.65
max	9.8	10	10	8.7	8.5	9.1	9.8

factors	P2	Р3	S1	S2	X1	HP	LE
count	4	4	4	4	4	4	4
mean	8.875	9.45	8.8	10	9.875	2.743	2.7105
std	0.15	0.173205081	0.141421356	0	0.095742711	3.804667134	3.739667142
min	8.8	9.3	8.7	10	9.8	0.838	0.838
25%	8.8	9.3	8.7	10	9.8	0.841	0.841
50%	8.8	9.45	8.75	10	9.85	0.842	0.842
75%	8.875	9.6	8.85	10	9.925	2.744	2.7115
max	9.1	9.6	9	10	10	8.45	8.32

factors	TU	EPI	PP	IM	ED	DC	GTI
count	4	4	4	4	4	4	4
mean	7.4925	5.739	7.945303105	1.1925	2.67275	10.745	2.6025
std	1.58184228	0.873310178	0.989419057	0.020615528	3.704833363	1.074197375	1.062780473
min	5.12	5.22	6.461212421	1.17	0.82	9.68	1.84
25%	7.4675	5.22	7.941553105	1.185	0.82	10.3175	1.84
50%	8.275	5.35	8.435	1.19	0.8205	10.53	2.238
75%	8.3	5.869	8.43875	1.1975	2.67325	10.9575	3.0005
max	8.3	7.036	8.45	1.22	8.23	12.24	4.094

Table 1 summarizes the 21 indicators in 2013-2016 in Sudan, each mean value and maximum value of climate change factors (C1: 9.5/9.8, C3: 9.8/10, E1: 8.425/8.7, E2: 7.975/8.5, E3: 8.775/8.875, P3: 9.45/9.6, S2: 10/10) are greater than 5. Among these, mean EPI is 5.739 and its maximum value is up to 7.036.

After summarizing the 21 indicators in 2013-2016 in Sudan, each mean value and maximum value of climate change factors (C1: 9.5/9.8, C3: 9.8/10, E1: 8.425/8.7, E2: 7.975/8.5, E3: 8.775/8.875, P3: 9.45/9.6, S2: 10/10) are greater than 5. Among these, mean EPI is 5.739 and its maximum value is up to 7.036. (The Python Codes are in Appendix 2.)

Team # 72877 Page 14 of 21

After testing the Sudan's data set in the task on, the accuracy is low, which shows it has a great impact on the national vulnerability. Meanwhile, in the model training set and the Sultan test, after the removal of the impact factors of climate change factors, the prad_Sudan output is Array [1, 0, 1, 0] showing that the comprehensive factors of climate change have a great impact on Sudan.

In conclusion, the Sudan national vulnerability would be improved if the comprehensive climate change factors get better value listed above.

4.4 U.K. Climate improvement makes nation stronger

4.4.1 U.K. climate change influence analysis

Britain is chosen as a research object.

Table 2

uk							
factors	C1	C2	C3	E1	E2	E3	P1
count	4	4	4	4	4	4	4
mean	2.275	2.975	5.2	3.525	3.2	1.975	1.55
std	0.5909	1.05	0.4899	0.8884	0.9345	0.25	0.6608
min	1.4	1.4	4.6	2.2	1.8	1.6	0.6
25%	2.225	2.975	4.9	3.475	3.15	1.975	1.35
50%	2.5	3.5	5.3	3.9	3.65	2.1	1.8
75%	2.55	3.5	5.6	3.95	3.7	2.1	2
max	2.7	3.5	5.6	4.1	3.7	2.1	2
- IIICA						2.1	
factors	P2	P3	S1	S2	X1	HP	LE
count	4	4	4	4	4	4	4
mean	1.9	1.775	2.475	2.325	1.2	1.5445	6.945
std	0.5416	0.05	0.1893	0.3775	0.0816	2.1303	1.1701
min	1.1	1.7	2.2	1.8	1.1	0.47	5.19
25%	1.85	1.775	2.425	2.25	1.175	0.4805	6.93
50%	2.1	1.8	2.55	2.4	1.2	0.484	7.525
75%	2.15	1.8	2.6	2.475	1.225	1.548	7.54
max	2.3	1.8	2.6	2.7	1.3	4.74	7.54
factors	TU	EPI	PP	IM	ED	DC	GTI
count	4	4	4	4	4	4	4
mean	3.7	8.0841	1.5445	4.445	1.402	0.5925	0.5978
std	4.723	0.944	2.1303	1.4817	1.832	0.4013	0.5888
min	1.22	6.6765	0.47	3.62	0.48	0	0.115
25%	1.22	8.0299	0.4805	3.62	0.4868	0.5175	0.3363
50%	1.4	8.481	0.484	3.75	0.489	0.765	0.41
75%	3.88	8.5353	1.548	4.575	1.4043	0.84	0.6715
max	10.78	8.698	4.74	6.66	4.15	0.84	1.456

Team # 72877 Page 15 of 21

Table 2 Summarizes the 21 indexes of 2013-2016 years in the UK for four years, and the mean of climate change factors (C1: 2.275, C3: 5.2, E1: 3.525, E2: 3.2, E3: 1.975, P3: 1.775, S2: 2.325) were less than 6, but the single index EPI mean climate change is 8.084122 and the maximum value is up to 8.698. the factors of climate change have a great influence on the national vulnerability factors.

4.4.2 The determination of the critical point

Due to the "threshold mechanism" established in the model: 50 is the threshold, and the value less than 50 is "0" showing the country is more fragile and the more than 50 is "1" showing country has strong national strength. So, the critical point is defined as the threshold value of a model that distinguishes the country's vulnerability.

Next, select the appropriate threshold to distinguish the size of the country's vulnerability.

In the program, we increase the threshold from 0 to 178 by 1 each step. We use training set to train the model, and then test the accuracy with the training set and the test set respectively, so as to confirm the influence of the model on the national vulnerability by increasing 1 each step.

Figure 9 is the photo of training set accuracy and Figure 10 is the test set accuracy.

The Python Codes are listed in Appendix 7.

So, as the threshold increasing, the accuracy is up and down. And as the figure shows, the better threshold is between 25-75. And the model is robust using the value of 50.

4.5 Comprehensive intervention reduce national vulnerability

4.5.1 Comprehensive factors of climate change Influence

According to the results of Problem 1, the comprehensive factors of climate change have a great impact on the accuracy. When climate change factors change

Team # 72877 Page 16 of 21

synchronously in different countries, the factor value should try to be located between 0-1.8. The accuracy rate is the highest and the vulnerability of the country is the least.

4.5.2 Total budget of human intervention

The annual input of education is appropriate, which is about 5% in gross national product, especially in those more vulnerable countries which should pay more attention to education. Investment in science and technology should be mainly considered by underdeveloped countries. Underdeveloped areas should increase investment in infrastructure, create a favorable investment environment, and develop domestic technology through introducing foreign capital.

Education, health care, welfare and protection should be the top priority for the country to address the problem of climate change influence.

Category	Detail	Budget\billions of Pounds	Total
	Pre-primary and primary education	0.8	
	Secondary education	27.2	
	Tertiary education	6.2	
Education	Education not definable by level	46.2	84.4
	Subsidiary services to education	0.5	
	R&D Education	1.6	
	Education n.e.c.	2.3	
	Medical service	129.6	
пис	Public health services	3.5	120.5
Health Care	R&D Health	2.2	138.5
	Health n.e.c.	3.2	
	Family and children	15.7	
	Unemployment	2.7	
Welfare	Housing	4.0	113.6
	Social exclusion n.e.c.	31.6	
	Social protection n.e.c.	59.7	
	Police services	3.6	
	Fire-protection services	0.5	
Protection	Law courts	5.3	29.9
rrotection	Prisons	4.2	29.9
	R&D Public order and safety	1.1	
	Public order and safety n.e.c.	15.2	

Table 3

The total amount of budget: 84.4 + 138.5 + 113.6 + 29.9 = 366.4 billion pounds.

All in all, the country could be stronger if it spends around 366.4 billion pounds per year for education, welfare, health care and protection to address the problem comprehensive climate weather factors.

Team # 72877 Page 17 of 21

Figure 11

Figure 11 shows the percentage of fields including education, health care, welfare and protection for national budget. It clearly shows that health care should be spent more than others.

4.6 Model Applicability and Universality

The neural networks models can be applied to smaller "continents" or larger "continents", such as cities and continents.

Urban vulnerability is the comprehensive embodiment of economic fragility, social vulnerability and ecological environment vulnerability. Urban vulnerability's evaluation and regulation is of great significance to the promotion of the quality of urbanization and the realization of sustainable development. With a large population and economic agglomeration to the city, the city is a disaster and risk prone land leading to increase the vulnerability of the city. With the passage of time, chronic deposition effect is increasingly enlarged, which results in the formation of "cumulative" process and cumulative amplification effect. With the slow deposition and amplification process in the course of time accumulated more than a certain the threshold, the city will escape from the state of sustainable development³. As gradually increasing the vulnerability, and when the external interference factors of "catalytic", vulnerability state will accelerate the amplification effect even mutation effect, leading to the city system collapse.

The new type of urbanization development model requires continuous reduction of urban vulnerability and continuous improvement of the quality of urbanization. In order to improve the comprehensive response ability of cities, it is very necessary to use neural network to carry out urban vulnerability research and grasp the change of urban vulnerability. We believe that the city comprehensive vulnerability comprehensively reflects the city under the comprehensive disaster factors with the attribute disturbance, which is measurement of natural system, social system,

Team # 72877 Page 18 of 21

economic system and many other city system sensitivity, coping ability and degree of exposure and is defects and shortcomings of internal system, closely related to social factors, the city's political and economic factors, and geographical factors. Urban vulnerability is affected by population density, economic density index, proportion of disadvantaged groups, tree greening rate, regional unemployment rate and per capita GDP and at the same time, they have an impact on each other.

Conclusion: Our model, using the neural network, integrates relevant data to determine the vulnerability of the city and to measure the impact of various factors. The continent is a collection of n countries. Each country can be understood as a factor in the study of continent vulnerability. N factors affect the vulnerability of continents, and the links between countries are close and estranged. The same neural network model can also be used to determine the fragility of the continent.

5 Evaluation and optimization of model

5.1 Model Evaluation: Pros and Cons of Gradient Descent Algorithm

Until now, we have used Gradient Descent algorithm (Python Codes are in Appendix 3) in our 5-layer deep neural networks to update the parameters (w and b) and minimize the cost function. Because gradient descent algorithm makes the parameters update after hundreds or thousands of iterations, the direction of the update has some variance, and the path taken by gradient descent algorithm will oscillate toward the convergence. Using momentum or Adam algorithm can reduce these oscillations and get a better model¹.

5.2 Model Optimization

5.2.1 Deep Neural Networks with Momentum Algorithm

Momentum takes into account the past gradients to smooth out the update. We will store the 'direction' of the previous gradients in the variable ν . Formally, this will be the exponentially weighted average of the gradient on previous steps⁴.

$$S_{dw} = \beta S_{dw} + (1-\beta)dw^2$$

$$S_{db} = \beta S_{db} + (1-\beta)db^2$$

$$\omega = \omega - \alpha \frac{dw}{\sqrt{S_{dw}} + \varepsilon}$$

$$b = b - \alpha \frac{db}{\sqrt{S_{db}} + \varepsilon}$$

$$(\varepsilon = 10^{-8})$$

(Python Codes are in Appendix 8.)

Team # 72877 Page 19 of 21

Figure 12

Figure 12 shows the cost decrease using the momentum algorithm.

As we can see, after using the momentum algorithm, the 5-layer deep neural networks become more robust.

5.2.2 Deep Neural Networks with Adam Algorithm

Adam algorithm is one of the most effective optimization algorithms for training multi-layer deep neural networks. It combines ideas from RMSProp and Momentum algorithm⁵.

Firstly, it calculates an exponentially weighted average of past gradients, and stores it in variable v and v_corrected. Then it calculates an exponentially weighted average of the squares of the gradients and stores it in variables s and s_corrected. Finally, it updates parameters in a direction⁶.

$$\begin{split} v_{dw^{[l]}} = & \beta_1 v_{dw^{[l]}} + (1 - \beta_1) \frac{\partial J}{\partial W^{[l]}} \\ v_{dW^{[l]}}^{corrected} = & \frac{v_{dw^{[l]}}}{1 - (\beta_1)^t} \\ S_{dw^{[l]}} = & \beta_2 S_{dw^{[l]}} + (1 - \beta_2) (\frac{\partial J}{\partial W^{[l]}})^2 \\ S_{dW^{[l]}}^{corrected} = & \frac{S_{dw^{[l]}}}{1 - (\beta_1)^t} \\ W^{[l]} = & W^{[l]} - \alpha \frac{v_{dw^{[l]}}^{corrected}}{\sqrt{S_{dW^{[l]}}^{corrected}} + \varepsilon} \end{split}$$

Team # 72877 Page 20 of 21

Figure 13 shows the cost decrease using the Adam algorithm. (Python Codes are in Appendix 9)

As you can see, the cost decreases fast and steadily, which is very good for training a better model.

6 Conclusion

Peace and development has become the theme in this day and age. However, climate change has been causing serious threat to people's survival and the national vulnerability has increased dramatically.

Combining with previous researches of *Analysis on Fragile States Data* by Dr. Zbigniew W. Ras, Department of Computer Science, University of North Carolina Charlotte, NC, USA, we increased 9 indicators (Homeless People due to Natural Disaster(HP), Life Expectancy(LE), Total Unemployment Rate(TU), Environmental Performance Index(PEI), Prison Population(PP), Infant Mortality Rate(IM), Education Index(EI), Domestic Credit Provided by financial sector(DC), Global Terrorism Index(GTI)) related to national vulnerability, so it is determined by 21 indicators.

Our research aims to establish multilayer deep neural network model. Based on gradient descent method, Momentum algorithm and Adam algorithm, the mapping between input and output of deep neural networks and the continuous mapping function of m dimensional Euclidean space in a highly nonlinear Euclidean space finite domain come out⁶. Coupled with the data processing of the complexity of simple nonlinear functions, two links (Forward and backward-propagation and weights update) iterations are repeatedly adopted to overcome the limitations of traditional regression models in building complex mapping relations and extracting

Team # 72877 Page 21 of 21

high-level data characteristics⁷.

In our research, the training sets containing 21 factors corresponding countries data from 2013 to 016 was used to achieve the prediction of the influence of climate factors on the national vulnerability.

Firstly, the model can determine national vulnerability by the impact of climate change on national vulnerability from two aspects, single climate factors and climatic comprehensive factors. We have concluded that the single factor of climate change has a certain impact on national vulnerability and the comprehensive factors of climate change have a great impact on national vulnerability.

Secondly, by analyzing the vulnerability of the country to top ten vulnerable countries, Sudan, we get the optimal climate change factor model and used the "threshold mechanism" to determine the appropriate threshold to determine the selection of the critical point in order to make the model to achieve the best results, which can effectively reduce the vulnerability of the Sudan. However, huge fluctuations cannot be caused by changing single factor, which reflects the stability of this model.

Thirdly, we chose Britain, which is in top 10 non-fragile countries to predict the national vulnerability. We can draw a conclusion that the improvement of the comprehensive factors of climate change can make the UK have more solid strength. And we calculated the cost of education, medical, welfare and security to determine the government budget under artificial intervention.

Finally, after a comprehensive analysis of the correlation between urban vulnerability and national vulnerability, due to the cumulative process effect and cumulative amplification effect, we determined that the neural network model can be applied to smaller "continent" or larger "continent". Therefore, our model can be applied to not only national vulnerability detection, prediction and prevention, but also a tiny area, such as township, or a great area, such as the earth. This will bring great help to the development of local conditions and point out the direction for the progress and development of the world.

7 References

1. Geoffrey E. Hinton, David E. Rumelhart, Ronald J. Williams. Learning representations by back-propagation[J]. Nature VOL 323 9, October 1986.

- Geoffrey E. Hinton, Vinod Nair. Rectified Linear Units Improve Restricted Boltzmann Machines[J]. Department of Computer Science, University of Toronto, Toronto, ON M5S 2G4, Canada, 2017.
- Andrew Y. Ng, Andrew L. Maas, Awni Y. Hannun. Rectifier Nonlinearities Improve Neural Network Acoustic Models[J]. Computer Science Department, Stanford University, CA 94305 USA, 2017.
- 4. Geoffrey E. Hinton, George Dahl, James Martens, Ilya Sutskever. On the importance of initialization and momentum in deep learning[J]. Department of Computer Science, University of Toronto, 2016.
- 5. Diederik P. Kingma, Jimmy Ba. Adam: A Method for Stochastic Optimization[J]. ICLR 2015.
- 6. Ernest Istook, Tony Martinez. Improved Backpropagation Learning in Neural Networks with Windowed Momentum[J]. In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318.
- Demis Hassabis, Dharshan Kumaran, Christopher Summerfield, and Matthew Botvinick,. Neuroscience-Inspired Artificial Intelligence[J]. DeepMind, 5 New Street Square, London, UK, June 2017.

Team # 72877 Page 23 of 21

8 Appendix

Appendix 1

Python Codes for data cleaning, pre-processing and reading the dataset

(in **Appendix 10**)

```
1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4
5 dataset = pd.read_csv("Final_Data_Train.csv")
6 x = dataset.iloc[: ,3:].values
7 y = dataset.iloc[: ,2:3].values
8
9 x = x / 10
10 from sklearn import preprocessing
11 binarizer = preprocessing.Binarizer(threshold=50)
12 y = binarizer.transform(y)
13
14 from sklearn.cross_validation import train_test_split
15 train_x, test_x, train_y, test_y = train_test_split(x, y, test_size = 0.2, random_state = 2)
16 train_x = np.transpose(train_x)
17 train_y = np.transpose(test_x)
19 test_y = np.transpose(test_y)
```

Appendix 2

Python Codes for reading the Sudan_Dataset for Task 2

```
237 Sudan_Dataset = pd.read_excel('task2.xlsx')
238 Sudan_Dataset.iloc[: ,[3, 9, 11, 12, 13, 15, 16, 18, 19, 20, 21]] = 0
239 Sudan_x = Sudan_Dataset.iloc[: ,[3, 9, 11, 12, 13, 15, 16, 18, 19, 20, 21]]
240 Sudan_y = Sudan_Dataset.iloc[:, 1:2].values
241 #Sudan_y = Sudan_y / 178
242 Sudan_x = np.transpose(Sudan_x)
243 Sudan_y = np.transpose(Sudan_y)
244 pred_Sudan, Accuracy = predict(Sudan_x, Sudan_y, parameters)
```

Team # 72877 Page 24 of 21

Appendix 3

Python Codes for establish the model

```
24 def sigmoid(Z):
      A = 1/(1+np.exp(-Z))
      cache = Z
      return A, cache
31 def sigmoid_backward(dA, cache):
      Z = cache
      s = 1/(1+np.exp(-Z))
      dZ = dA * s * (1-s)
      assert (dZ.shape == Z.shape)
      return dZ
40 def relu(Z):
41
      A = np.maximum(0,Z)
      assert(A.shape == Z.shape)
      cache = Z
      return A, cache
48
49 def relu_backward(dA, cache):
      Z = cache
      dZ = np.array(dA, copy=True)
      dZ[Z \leftarrow 0] = 0
      assert (dZ.shape == Z.shape)
      return dZ
```

```
58 def linear_forward(A, W, b):
59
60  Z = np.dot(W, A) + b
61
62  assert(Z.shape == (W.shape[0], A.shape[1]))
63  cache = (A, W, b)
64  return Z, cache
65
66 def linear_activation_forward(A_prev, W, b, activation):
67
68  if activation == "sigmoid":
69        Z, linear_cache = linear_forward(A_prev, W, b)
70        A, activation_cache = sigmoid(Z)
71
72  elif activation == "relu":
73        Z, linear_cache = linear_forward(A_prev, W, b)
74        A, activation_cache = relu(Z)
75
76  assert (A.shape == (W.shape[0], A_prev.shape[1]))
77  cache = (linear_cache, activation_cache)
78
79  return A, cache
```

Team # 72877 Page 25 of 21

```
82 def initialize parameters deep(layer dims):
       parameters = {}
       L = len(layer dims)
       for 1 in range(1, L):
           parameters['W' + str(1)] = np.random.randn(layer_dims[1],
                       layer_dims[1-1])/ np.sqrt(layer_dims[1-1])
           parameters['b' + str(1)] = np.zeros((layer_dims[1], 1))
           assert(parameters['W' + str(1)].shape == (layer_dims[1],
                              layer dims[1-1]))
           assert(parameters['b' + str(1)].shape == (layer_dims[1], 1))
       return parameters
 99 def L_model_forward(X, parameters):
       caches = []
       A = X
103
       L = len(parameters) // 2
105
       for 1 in range(1, L):
           A prev = A
107
           A, cache = linear_activation_forward(A_prev,
                                                 parameters['W' + str(1)],
109
                                                 parameters['b' + str(1)], "relu")
110
           caches.append(cache)
111
112
       AL, cache = linear activation forward(A,
                                              parameters['W' + str(L)],
113
114
                                              parameters['b' + str(L)], "sigmoid")
115
       caches.append(cache)
116
117
       assert(AL.shape == (1, X.shape[1]))
118
       return AL, caches
119
120 def compute cost(AL, Y):
121
122
       m = Y.shape[1]
123
       cost = -np.sum(np.multiply(np.log(AL),Y) +
124
                      np.multiply(np.log(1 - AL), 1-Y)) / m
125
       cost = np.squeeze(cost)
126
       assert(cost.shape == ())
127
       return cost
```

Team # 72877 Page 26 of 21

```
129 def linear_backward(dZ, cache):
       A_prev, W, b = cache
       m = A prev.shape[1]
       dW = np.dot(dZ, A prev.T) / m
       db = np.sum(dZ, axis=1, keepdims=True) / m
       dA_prev = np.dot(W.T, dZ)
       assert (dA prev.shape == A prev.shape)
       assert (dW.shape == W.shape)
       assert (db.shape == b.shape)
       return dA_prev, dW, db
144 def linear activation backward(dA, cache, activation):
       linear_cache, activation_cache = cache
       if activation == "relu":
           dZ = relu_backward(dA, activation_cache)
           dA prev, dW, db = linear backward(dZ, linear cache)
       elif activation == "sigmoid":
           dZ = sigmoid_backward(dA, activation_cache)
           dA_prev, dW, db = linear_backward(dZ, linear_cache)
       return dA prev, dW, db
157 def L_model_backward(AL, Y, caches):
       grads = \{\}
       L = len(caches)
       Y = Y.reshape(AL.shape)
       dAL = -(np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
       current_cache = caches[L-1]
       linear_activation_backward(dAL,current_cache,activation="sigmoid")
       for 1 in reversed(range(L-1)):
           current_cache = caches[1]
           dA_prev_temp, dW_temp, db_temp =
             linear_activation_backward(grads["dA"+str(1+2)],current_cache,"relu")
           grads["dA" + str(1 + 1)] = dA prev temp
           grads["dW" + str(1 + 1)] = dW_temp
           grads["db" + str(1 + 1)] = db_temp
175
       return grads
```

Team # 72877 Page 27 of 21

```
177 def update_parameters(parameters, grads, learning_rate):
       L = len(parameters) // 2
       for 1 in range(L):
            parameters["W" + str(1+1)] = parameters["W" + str(1+1)] -
            learning_rate * grads["dW" + str(l+1)]
parameters["b" + str(l+1)] = parameters["b" + str(l+1)] -
learning_rate * grads["db" + str(l+1)]
        return parameters
189 def L_layer_model(X, Y, layers_dims, learning_rate,
                       num_iterations = 3000, print_cost=False):
       costs = []
       parameters = initialize_parameters_deep(layers_dims)
        for i in range(0, num_iterations):
            AL, caches = L_model_forward(X, parameters)
            cost = compute_cost(AL, Y)
            grads = L_model_backward(AL, Y, caches)
            parameters = update_parameters(parameters, grads, learning_rate)
            if print_cost and i % 100 == 0:
                print ("Cost after iteration %i: %f" %(i, cost))
            if print_cost and i % 100 == 0:
                costs.append(cost)
        plt.plot(np.squeeze(costs))
       plt.ylabel('cost')
       plt.xlabel('iterations (per tens)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()
       return parameters
```

Appendix 4

Python Codes for predict the Accuracy

Team # 72877 Page 28 of 21

Appendix 5 Python Codes for establish 5-layer deep neural networks and make predictions

```
232 layers_dims = [21, 20, 7, 5, 1]
233 parameters = L_layer_model(train_x, train_y, layers_dims, learning_rate = 0.0075, num_iterations = 25000, print_cost = True)
234
235 pred_train, Accuracy = predict(train_x, train_y, parameters)
236 pred_test, Accuracy = predict(test_x, test_y, parameters)
```

Appendix 6

Python Codes for discussing the influence of climate change factor for

Task 1

```
235 Train_Accuracies = []
236 single_weather_factor = 0
237 while single_weather_factor <= 10:
       New_Dataset = dataset
       New_Dataset.iloc[:, 18] = single_weather_factor
       Single_Weather_Affected_Dataset = dataset
       x_new = Single_Weather_Affected_Dataset.iloc[: ,3:].values
       y_new = Single_Weather_Affected_Dataset.iloc[: ,2:3].values
       from sklearn import preprocessing
       binarizer = preprocessing.Binarizer(threshold = 50)
       y_new = binarizer.transform(y_new)
       from sklearn.cross_validation import train_test_split
       train_x_new, test_x_new, train_y_new, test_y_new =
                train_test_split(x_new, y_new, test_size = 0.2, random_state = 2)
       train x new = np.transpose(train x new)
       train y new = np.transpose(train y new)
       test x new = np.transpose(test x new)
       test_y_new = np.transpose(test_y_new)
       pred_train_new, Accuracy = predict(train_x_new, train_y_new, parameters)
       Train_Accuracies.append(Accuracy)
       single weather factor += 0.001
265 plt.plot(np.squeeze(Train_Accuracies), color = 'r')
266 plt.ylabel('Accuracy')
267 plt.xlabel('Iterations as the single_weather_factor change')
268 plt.title("Single-Weather Factor Infulence") #Multi-Weather Factor Infulence
269 plt.show()
```

Team # 72877 Page 29 of 21

Appendix 7

Python Codes for Choosing suitable threshold

```
223 Train_Accuracies = []
224 threshold value = 0
226 while threshold_value < 178:
       x \text{ new} = x / 10
       binarizer = preprocessing.Binarizer(threshold = threshold_value)
       y_new = binarizer.transform(y)
       train_x, test_x, train_y, test_y = train_test_split(x_new, y_new,
                                                             test size = 0.2,
                                                             random_state = 2)
       train_x = np.transpose(train_x)
       train_y = np.transpose(train_y)
       test_x = np.transpose(test_x)
       test_y = np.transpose(test_y)
       layers_dims = [21, 20, 7, 5, 1]
       parameters = L_layer_model(train_x, train_y, layers_dims,
                                   learning_rate = 0.0075,
                                   num_iterations = 25000,
                                   print_cost = True)
       pred_train, Accuracy = predict(test_x, test_y, parameters)
       Train_Accuracies.append(Accuracy)
       threshold value += 1
252 plt.plot(np.squeeze(Train_Accuracies), color = 'r')
253 plt.ylabel('Accuracy')
254 plt.xlabel('Iterations as the threshold_value change')
255 plt.title("threshold value Accuracy") #Multi-Weather Factor Infulence
256 plt.show()
```

Team # 72877 Page 30 of 21

Appendix 8 Python Codes for Momentum Algorithm

Appendix 9 Python Codes for Adam Algorithm

```
297 def initialize_adam(parameters) :
298
L = len(parameters) // 2
300 v = {}
301 s = {}
302
303
for 1 in range(L):
304
v["dW" + str(1+1)] = np.zeros(parameters["W"+str(1+1)].shape)
305
v["db" + str(1+1)] = np.zeros(parameters["W"+str(1+1)].shape)
306
s["dW" + str(1+1)] = np.zeros(parameters["W"+str(1+1)].shape)
307
s["db" + str(1+1)] = np.zeros(parameters["W"+str(1+1)].shape)
308
309
return v, s
310
setal = 0.9, beta2 = 0.999, epsilon = 1e-8):
311
def update_parameters_with_adam(parameters, grads, v, s, t, learning_rate = 0.01,
312
betal = 0.9, beta2 = 0.999, epsilon = 1e-8):
313
14 L = len(parameters) // 2
5 v_corrected = {}
5 v_c
```

Appendix 10 Added Dataset used to train the model by

Dr. Zbigniew W. Ras, Department of Computer Science, University of North Carolina Charlotte, NC, USA.

Country	Year	Rank	НР	LE	TU	EPI	PP	IM	ED	DC	GTI
Sudan	2013	3	0.838	8.25	5.48	6.461212	0.838	1.22	0.821	12.24	2.636
Somalia	2013	1	0.83	6.62	1.5	6.711509	0.83	1.58	0.734	4.755	0
South Suda	2013	4	0.762	7.45	0.8	7.3541	0.762	1.38	0.666	0.59	3.086
Yemen	2013	6	0.478	7.47	0.36	8.822893	0.478	1.97	0.454	3.5	1.173
Afghanista	2013	7	0.47	5.97	1.66	0.987495	0.47	7.17	0.387	0.2	7.244
Congo Den	2013	2	0.49	6.26	0.74	0.976391	0.49	5.98	0.457	0.445	3.389
Liberia	2013	23	0.647	7.42	5.04	6.270738	0.647	2.29	0.704	8.765	1.168
Chad	2013	5	0.37	4.91	1.28	1.211863	0.37	9.77	0.338	0.275	0
Zimbabwe	2013	10	0.488	5.71	1.56	6.607026	0.488	1.42	0.677	5.245	0.069
Iraq	2013	11	0.599	6.73	2.94	3.27967	0.599	2.53	0.506	0	4.505
Haiti	2013	8	0.415	5.45	0.66	3.620776	0.415	6.74	0.346	1.05	0
Kenya	2013	17	0.894	8.32	1.36	4.805058	0.894	1.68	0.825	1.94	2.358
Syria	2013	21	0.874	5.63	0.64	5.909088	0.874	2.55	0.804	7.83	0
Cote divoir	2013	12	0.762	7.91	0.7	2.674599	0.762	0.88	0.659	4.43	0.119
Central Afr	2013	9	0.909	8.17	1.12	3.023417	0.909	0.47	0.871	1.315	0
Pakistan	2013	13	0.341	7.43	0.8	6.547982	0.341	0.49	0.199	2.295	0
Niger	2013	18	0.625	6.55	1.52	4.71251	0.625	4.32	0.537	2.32	0
Bangladesl	2013	29	0.815	7.63	2.32	2.553192	0.815	0.63	0.706	3	9.049
Uzbekistar	2013	44	0.72	7.25	2.06	6.868499	0.72	4.93	0.638	9.725	0.079
Guinea	2013	14	0.746	7.3	2.24	3.888358	0.746	1.15	0.721	1.08	0.415
Mauritania	2013	31	0.459	6.43	6.16	3.11094	0.459	0.66	0.443	7.81	2.491
Burundi	2013	20	0.392	5.8	2.1	2.611709	0.392	6.54	0.254	1.24	2.627
Tajikistan	2013	51	0.757	5.48	0.14	7.803491	0.757	9.26	0.744	9.15	0
Ethiopia	2013	19	0.414	6.27	1.8	3.705258	0.414	3.7	0.267	0	3.428
Guinea Bis	2013	15	0.611	7.14	1.4	4.065906	0.611	2.66	0.454	0.84	0
Uganda	2013	22	0.733	6.9	0.86	7.468032	0.733	0.37	0.635	1.77	2.037
Nigeria	2013	16	0.545	6.4	0.62	4.333577	0.545	3.55	0.466	0.64	0.119
Israel and '	2013	67	0.769	7.48	2.14	2.060144	0.769	2.87	0.699	10.28	8.147
Myanmar	2013	26	0.686	6.89	5.48	3.607177	0.686	1.43	0.711	1.36	0.624
Cambodia	2013	41	0.398	5.58	0.04	4.64514	0.398	5.95	0.385	4.16	5.68
Iran	2013	37	0.907	8.22	3.04	4.045948	0.907	4.26	0.883	2.04	0.867
Togo	2013	42	0.904	7.08	0.96	6.73564	0.904	0.89	0.843	7.795	0
Cameroon	2013	27	0.643	7.3	0.82	1.758492	0.643	2.24	0.528	1.695	3.672
Kyrgyz Rep	2013	48	0.782	6.86	0.72	4.58393	0.782	3.92	0.801	7.79	0.585
North Kor€	2013	23	0.922	6.88	1.28	2.241753	0.922	3.1	0.896	1.04	0
Mali	2013	38	0.892	7.28	1.38	4.179818	0.892	3.93	0.779	3.7	0
Madagasca	2013	61	0.419	4.89	0.26	4.412005	0.419	5.94	0.414	10.36	2.008
Jordan	2013	87	0.876	8.27	1.06	3.579069	0.876	1.48	0.789	17.59	1.369
Eritrea	2013	25	0.675	7.25	2	3.652729	0.675	1.6	0.585	0	0.01
Zambia	2013	45	0.744	6.53	3.54	6.990285	0.744	1.36	0.799	2.415	1.755
Rwanda	2013	38	0.671	7.41	3.82	4.246985	0.671	1.92	0.631	1.985	0
Lebanon	2013	46	0.891	6.97	3	4.28756	0.891	0.33	0.86	0	7.086
Nepal	2013	30	0.799	6.86	1.06	3.78417	0.799	2.21	0.794	2.485	0
Venezuela	2013	89	0.754	7.01	0.86	6.877636	0.754	5.65	0.652	11.65	1.129
Solomon Is	2013	51	0.559	7.29	6.84	6.560484	0.559	1.78	0.484	0.69	0.158
TimorLeste	2013	32	0.539	6.29	1.54	6.031659	0.539	0.37	0.544	0.9	1.731
Congo Rep	2013	36	0.576	6.1	1.56	2.707636	0.576	3.76	0.516	0.35	3.729
Tanzania	2013	65	0.478	8.22	6.2	5.68518	0.478	3.68	0.305	0	3.566
Egypt	2013	34	0.709	7.31	1.22	1.999986	0.709	2.71	0.614	3.695	0
Sri Lanka	2013	28	0.92	4.98	1.26	5.484258	0.92	0.62	0.812	0.32	0
Papua Nev	2013	53	0.942	5.21	0.98	3.996893	0.942	6.16	0.907	4.04	0
Burkina Fa	2013	35	0.781	7.39	0.32	1.753917	0.781	1.05	0.756	0.925	4.088
Gambia	2013	62	0.887	8.18	3	2.960703	0.887	0.35	0.82	2.205	6.801
Comoros	2013	56	0.712	7.37	1.46	4.189562	0.712	1.49	0.612	1.17	5.633
Libya	2013	54	0.563	6.97	0.74	3.950666	0.563	5.54	0.455	0.165	3.599

Sierra Leor	2013	33	0.749	6.31	0.66	6.108295	0.749	0.93	0.643	0.51	0.277
Bolivia	2013	67	0.589	6.87	5.62	1.727319	0.589	3.08	0.431	2.435	4.899
Senegal	2013	64	0.794	7.78	1.12	6.504403	0.794	0.31	0.769	2.92	4.597
Bhutan	2013	62	0.466	5.92	0.46	3.519697	0.466	6.85	0.386	2.625	3.732
Swaziland	2013	49	0.509	8	0.84	7.914588	0.509	0.22	0.438	1.36	0.522
Mozambiq	2013	59	0.641	7.64	0.88	3.846537	0.641	3.11	0.649	5.635	0
China	2013	66	0.831	8.1	2.12	3.827411	0.831	0.74	0.761	7.54	0
Bosnia and	2013	83	0.661	6.75	3.54	4.666048	0.661	3.4	0.656	2.865	5.861
Djibouti	2013	50	0.924	7.98	2.94	2.73498	0.924	0.32	0.932	3.085	0.217
Colombia	2013	57	0.713	7.54	3.84	2.877063	0.713	1.15	0.599	3.48	0
Thailand	2013	90	0.719	7.46	0.74	7.055583	0.719	6.61	0.63	0.73	4.509
Laos	2013	58	0.541	6.03	1.68	3.945665	0.541	4.66	0.515	2.57	0
Turkey	2013	86	0.617	8.26	1.62	7.773454	0.617	5.15	0.656	1.85	1.743
India	2013	79	0.907	8.36	1.22	5.31246	0.907	0.54	0.809	7.82	0.679
Guatemala	2013	79 70	0.307	8.05	1.52	3.130576	0.86	0.34	0.809	1.955	4.992
	2013		0.735			2.752392			0.616	0.65	4.992 0
Malawi		40		6.02	1.28		0.735	1.29			
Equatorial	2013	47 07	0.681	7.07	1.58	1.613167	0.681	2.26	0.582	0.17	2.016
Mexico	2013	97	0.683	7.44	0.96	4.984946	0.683	7.92	0.531	5.685	0.188
Georgia	2013	55	0.678	6.33	1.08	2.078151	0.678	3.97	0.608	1.745	0.435
Suriname	2013	106	0.878	7.59	1.6	6.180724	0.878	9.79	0.864	2.71	0
Angola	2013	43	0.843	8.11	1.54	0.965486	0.843	0.23	0.695	0.775	0
Fiji	2013	67	0.856	7.62	1.54	2.224002	0.856	0.29	0.875	5.72	0
Algeria	2013	73	0.737	7.43	2.2	1.62615	0.737	2.24	0.65	0.105	6.304
Indonesia	2013	76	0.824	7.49	2.54	3.729984	0.824	0.17	0.817	3.855	1.225
Philippines	2013	59	0.779	6.57	2.02	4.055517	0.779	1	0.807	0.92	0
Vietnam	2013	97	0.678	7.46	1.62	7.196565	0.678	1.5	0.627	1.57	5.031
Lesotho	2013	71	0.796	8.13	1.24	4.165432	0.796	0.85	0.604	3.205	0
Azerbaijan	2013	76	0.887	8.1	2.8	4.326981	0.887	0.33	0.809	1.235	1.36
Guyana	2013	107	0.406	5.77	0.82	5.775291	0.406	6.68	0.316	2.53	5.155
Maldives	2013	88	0.834	7.98	2.24	3.746565	0.834	0.16	0.868	6.49	0
Nicaragua	2013	72	0.54	5.43	0.46	3.373418	0.54	6.36	0.403	0	2.163
Sao Tome	2013	91	0.827	7.69	1.74	4.009462	0.827	2.39	0.729	5.53	0
Russia	2013	80	0.731	7.26	0.68	3.436253	0.731	4.8	0.672	2.33	0
Turkmenis	2013	81	0.513	7.04	2.06	7.258439	0.513	0.24	0.43	1.35	1.408
Ecuador	2013	74	0.721	7.76	2.54	2.574222	0.721	1.87	0.614	1.395	0.059
Jamaica	2013	118	0.902	8.05	0.84	5.838507	0.902	0.34	0.878	8.87	4.256
Benin	2013	78	0.706	6.98	0.42	3.540409	0.706	1.55	0.708	0.92	3.266
Paraguay	2013	104	0.796	8.13	0.72	3.905804	0.796	7.62	0.648	1.95	0
Honduras	2013	75	0.633	6.62	2.2	1.096072	0.633	3.33	0.568	2.895	0.04
Saudi Arab	2013	102	0.843	8.03	2.72	3.944186	0.843	0.46	0.675	6.095	0
Armenia	2013	105	0.823	7.59	1.04	1.408003	0.823	1.23	0.808	2.07	8.669
Tunisia	2013	83	0.635	8.18	3.52	5.791098	0.635	2.08	0.57	2.63	0.069
Morocco	2013	93	0.753	7.4	4.52	2.003926	0.753	1.31	0.642	3.025	0
Serbia	2013	92	0.799	7.43	2.06	4.6127	0.799	0.73	0.807	3.06	0
Belarus	2013	81	0.792	7.53	1.5	2.880753	0.792	1.3	0.773	1.6	0.158
South Afric	2013	113	0.732	7.33 7.4	4.94	6.753734	0.474	0.29	0.773	3.16	2.066
Gabon	2013	99	0.474	8.04	5.96	2.32504	0.474	0.23	0.323	0.705	0.203
						2.579795			0.309		
Dominican	2013	95 04	0.464	6.13 5.46	0.82		0.464	5.89 6.24		2.26 0	0.395
Cape Verd	2013	94 100	0.501	5.46 7.52	1.52	1.804049	0.501	6.24	0.479		2.181
Kazakhstar	2013	109	0.727	7.53	1.84	4.045744	0.727	0.22	0.675	5.71	0.992
El Salvador	2013	95 101	0.725	7.54	1.52	2.339787	0.725	2.01	0.639	3.31	0
Cuba	2013	101	0.773	7.92	1.4	1.830711	0.773	0.46	0.791	3.435	1.696
Moldova	2013	83	0.828	5.71	1.64	2.345742	0.828	3.12	0.724	0.955	0.976
Peru	2013	103	0.538	7.63	1.4	6.358965	0.538	0.23	0.382	1.92	0.158
Macedonia	2013	112	0.484	7.88	1.02	3.122777	0.484	7.23	0.505	2.6	0
Albania	2013	119	0.759	7.73	2.68	1.676504	0.759	1.38	0.715	3.41	6.182

Micronesia	2013	99	0.421	7.65	1.12	4.441622	0.421	0.55	0.292	2.335	0
Belize	2013	114	0.889	8.04	0.2	2.470195	0.889	0.35	0.829	3.16	5.266
Ukraine	2013	117	0.741	6.35	1.5	6.525975	0.741	1.26	0.673	4.17	1.177
Ghana	2013	110	0.755	7.46	4.82	1.878831	0.755	1.28	0.778	1.565	0
Samoa	2013	111	0.838	6.79	3.68	4.821513	0.838	1.49	0.823	0	0
Antigua an	2013	128	0.523	5.15	1.46	2.669385	0.523	10.41	0.476	4.615	3.01
Namibia	2013	108	0.72	7.09	0.52	4.338718	0.72	0.31	0.735	1.205	0.054
Trinidad ar	2013	125	0.934	4.89	1	6.814059	0.934	5.11	0.885	2.605	0
Bahrain	2013	124	0.79	7.51	0.9	2.901002	0.79	1.09	0.713	3.605	3.99
Seychelles	2013	121	0.485	6.95	4.78	5.132506	0.485	1.09	0.425	1.745	0
Croatia	2013	135	0.483	7.7	2.36	1.897385	0.483	0.41	0.423	15.895	0
	2013	115	0.817	7.7 7.98	1.88	3.2158	0.817	0.41	0.78	1.245	0.585
Cyprus											
Grenada	2013	120	0.57	6.1	0.34	2.507989	0.57	4.7	0.547	4.56	0.119
Bahamas	2013	133	0.745	7.07	0.24	2.016541	0.745	3.12	0.704	5.195	9.556
Botswana	2013	121	0.735	7.62	1.22	2.920256	0.735	0.59	0.67	0.735	4.492
Kuwait	2013	127	0.737	7.37	0.64	4.686979	0.737	1.6	0.695	2.11	5.238
Mongolia	2013	129	0.501	8.02	3.92	3.016393	0.501	6.81	0.361	2.175	0
Malaysia	2013	116	0.908	7.16	0.6	3.517046	0.908	0.45	0.827	1.26	0
Brazil	2013	126	0.693	6.42	0.3	1.511949	0.693	3.82	0.654	5.065	0
Brunei Dar	2013	123	0.734	7.39	2.46	1.656498	0.734	1.43	0.633	0.675	0
Romania	2013	130	0.679	6.23	1.1	5.235916	0.679	1.6	0.606	3.92	0.741
Hungary	2013	141	0.483	6.21	1.2	4.1836	0.483	5.62	0.415	10.055	0
Bulgaria	2013	132	0.86	7.82	0.66	1.965212	0.86	0.81	0.71	3.39	3.917
Greece	2013	138	0.919	8.06	0.58	2.902316	0.919	0.33	0.905	6.955	3.864
United Ara	2013	142	0.62	7.41	0.82	7.895242	0.62	4.21	0.494	3.72	1.72
Chile	2013	152	0.387	5.08	0.9	5.737545	0.387	9.02	0.273	5.655	4.576
Qatar	2013	143	0.506	7.72	1.36	4.467031	0.506	1.94	0.417	10.06	0
Monteneg	2013	134	0.765	6.26	1.8	3.876586	0.765	1.28	0.696	1.29	2.804
Spain	2013	149	0.413	7.29	2.58	4.752135	0.413	4.41	0.364	9.035	0
Oman	2013	136	0.63	8.14	4.6	4.939654	0.63	0.35	0.529	1.81	0
Costa Rica	2013	139	0.412	5.79	3.18	3.402897	0.412	8.05	0.442	2.66	0
Italy	2013	147	0.659	6.9	2.74	3.796097	0.659	0.34	0.505	4.26	7.068
Panama	2013	131	0.514	6	0.72	4.120635	0.514	2.06	0.464	0.445	0.616
Argentina	2013	144	0.781	7.57	3.46	2.051205	0.781	0.68	0.404	1.52	7.305
•											
Slovak Rep	2013	145	0.717	7.48	2.8	5.827862	0.717	0.93	0.653	2.865	2.68
Estonia	2013	145	0.586	5.68	1.16	3.163309	0.586	7.43	0.439	3.75	0.346
Malta	2013	151	0.508	8.11	1.26	6.521795	0.508	5.02	0.492	0.825	2.708
Czech Repi	2013	154	0.865	7.82	1.5	2.932325	0.865	0.32	0.856	11.6	0
Poland	2013	153	0.684	7.21	3.1	3.379114	0.684	7.06	0.661	2.545	0
Barbados	2013	137	0.565	7.08	1.18	1.650823	0.565	3.53	0.452	0	0
Latvia	2013	140	0.589	6.57	0.28	4.683896	0.589	2.27	0.59	0.64	1.62
South Kore	2013	157	0.766	6.54	4.96	4.998472	0.766	3.75	0.741	4.64	0
Lithuania	2013	150	0.814	6.53	4.12	3.89022	0.814	0.76	0.815	1.695	0
Mauritius	2013	148	0.779	6.01	1.74	2.500266	0.779	0.92	0.694	1.48	2.174
Uruguay	2013	155	0.773	5.86	1.3	8.090094	0.773	0.65	0.714	3.885	0
Belgium	2013	164	0.796	7.09	2.88	2.895078	0.796	0.4	0.836	5.665	7.242
France	2013	161	0.719	6.96	4.08	3.417975	0.719	2	0.753	7.39	0
Denmark	2013	174	0.452	5.08	11.84	3.927116	0.452	7.28	0.393	1.785	4.483
Singapore	2013	158	0.734	7.33	0.56	7.569365	0.734	3.71	0.677	1.565	0.079
United Sta	2013	159	0.718	6.78	1.64	6.737062	0.718	1.16	0.767	4.395	0
United Kin	2013	160	0.47	7.51	1.58	6.676487	0.47	3.88	0.48	0.69	1.456
Germany	2013	165	0.445	5.98	0.82	3.652601	0.445	5.01	0.348	7.855	1.235
Japan	2013	156	0.891	8.19	2.44	3.207578	0.891	0.32	0.86	2.59	0
Austria	2013	166	0.933	8.21	1.04	4.046799	0.933	0.36	0.936	6.795	4.844
New Zeala	2013	173	0.405	7.34	1.36	5.003618	0.405	2.64	0.363	11.7	0
Slovenia	2013	163	0.403	7.34 7.27	1.76	3.435098	0.403	1.36	0.503	1.705	1.475
Sioverila	2013	103	0.7	1.21	1./0	J.43JUY8	0.7	1.50	0.099	1.705	1.4/5

Portugal	2013	161	0.773	7.26	0.1	3.441176	0.773	1.57	0.676	3.205	0
Finland	2013	178	0.427	6.28	1.88	3.731755	0.427	4.62	0.312	8.275	6.055
Iceland	2013	171	0.614	7.28	0.72	3.86805	0.614	1.92	0.504	3.425	5.831
Canada	2013	168	0.546	6.75	1.46	2.933048	0.546	3.07	0.451	0.72	5.017
Netherland	2013	166	0.634	7.58	1.38	5.72806	0.634	0.53	0.488	3.415	0.049
Australia	2013	169	0.736	7.44	0.98	0.997648	0.736	1.46	0.73	7.535	0.074
Norway	2013	175	0.908	8.12	1.14	3.516866	0.908	3.31	0.91	0	0
Ireland	2013	170	0.677	6.85	1.38	2.585198	0.677	1.51	0.61	0.09	0.03
Switzerlan	2013	175	0.417	5.47	2.2	6.670224	0.417	0.24	0.297	0.8	0.059
Luxembou	2013	172	0.766	7.36	2.68	4.086442	0.766	0.79	0.656	2.87	0
Sweden	2013	177	0.652	6.75	2.94	4.194991	0.652	0.65	0.686	1.28	0
Sudan	2014	4	0.842	8.3	5.22	8.435	0.842	1.19	0.82	10.53	1.84
Somalia	2014	2	0.845	6.65	1.5	8.1625	0.845	1.54	0.768	6.345	0.16
Congo Den	2014	5	0.498	6.33	0.76	6.378	0.498	5.66	0.469	0.04	6.5
South Suda	2014	1	0.781	7.49	0.76	7.9935	0.781	1.29	0.706	1.11	0.5
	2014	9	0.781	5.74	0.62	7.9933 7.647	0.781	2.42	0.700	7.875	0.01
Syria	2014	9 7									
Yemen Central Afr			0.488	7.53	0.38	8.247	0.488	1.87	0.462	3.605	3.57
	2014	3	0.919	8.2	1.12	3.369	0.919	0.44	0.89	1.715	5.25
Chad	2014	6	0.347	5.07	1.28	4.95	0.347	9.35	0.338	0.55	1.59
Afghanista	2014	8	0.479	6.04	1.82	2.7165	0.479	6.81	0.398	0.115	5.6
Liberia	2014	21	0.662	7.44	5.28	7.39	0.662	2.01	0.721	9.745	0.58
Guinea	2014	10	0.751	7.34	2.24	6.018	0.751	1.11	0.725	1.42	5.52
Haiti	2014	11	0.421	5.52	0.66	5.6095	0.421	6.24	0.353	1.445	2.58
Guinea Bis	2014	17	0.637	7.18	1.38	4.2405	0.637	2.51	0.508	0.79	7.86
Nigeria	2014	14	0.555	6.48	0.7	6.095	0.555	3.34	0.475	0.61	4.41
Zimbabwe	2014	16	0.836	5.85	1.92	8.32	0.836	1.23	0.681	5.69	0
Iraq	2014	12	0.615	6.8	2.26	6.0785	0.615	2.36	0.525	0	0.24
Pakistan	2014	13	0.351	7.49	0.96	6.5935	0.351	0.48	0.206	2.395	1.72
Burundi	2014	18	0.399	5.87	2.14	3.821	0.399	6.22	0.261	1.17	4.24
Bangladesl	2014	32	0.823	7.66	2.46	4.3	0.823	0.56	0.717	2.99	9.37
Niger	2014	19	0.637	6.59	0.96	6.4215	0.637	4.07	0.546	2.365	1.45
Mali	2014	30	0.896	7.33	1.64	6.7645	0.896	3.7	0.783	3.535	2.71
Tajikistan	2014	57	0.764	5.57	0.16	7.612	0.764	8.74	0.752	8.8	4.71
Rwanda	2014	37	0.679	7.46	4.16	7.9545	0.679	1.81	0.637	2.4	4.73
Kenya	2014	21	0.902	8.35	1.34	6.256	0.902	1.58	0.842	1.755	1.18
Uzbekistar	2014	52	0.723	7.28	2.04	8.73	0.723	4.61	0.641	8.435	1.34
Cote divoir	2014	15	0.775	7.94	0.54	3.6905	0.775	0.86	0.684	4.5	0
Jordan	2014	81	0.881	8.31	1.02	5.405	0.881	1.39	0.804	18.85	5.21
Myanmar	2014	27	0.701	6.91	5.38	6.7055	0.701	1.39	0.725	1.75	0
Uganda	2014	23	0.738	6.94	0.76	8.248	0.738	0.35	0.641	1.455	0.24
Iran	2014	44	0.919	8.26	3.2	5.9255	0.919	3.93	0.906	2.17	2.38
Nepal	2014	35	0.804	6.94	1.36	7.3235	0.804	1.99	0.797	2.765	2.3
Mauritania	2014	26	0.473	6.51	6.18	5.6985	0.473	0.62	0.445	0	0
Togo	2014	47	0.909	7.11	1.06	8.2705	0.909	0.86	0.852	8.44	0
Venezuela	2014	74	0.764	7.04	0.9	8.4935	0.764	5.36	0.666	12.59	0
TimorLeste	2014	35	0.541	6.35	1.54	8.2365	0.541	0.36	0.545	1.01	5.17
Ethiopia	2014	20	0.418	6.37	1.66	4.533	0.418	3.5	0.267	0	0.08
Eritrea	2014	24	0.678	7.3	1.48	5.389	0.678	1.49	0.584	0	0
Kyrgyz Rep	2014	62	0.793	6.94	0.7	7.4995	0.793	3.66	0.805	8.115	2.85
North Kore	2014	29	0.923	6.96	1.26	4.926	0.923	2.97	0.897	1.09	0
Libya	2014	25	0.582	7.06	0.8	2.414	0.582	5.23	0.474	0.035	0
Lebanon	2014	40	0.899	7.03	2.16	6.1295	0.899	0.3	0.867	0.033	5.98
Cameroon	2014	28	0.646	7.33	0.88	3.1654	0.646	2.13	0.531	2.36	0
Egypt	2014	38	0.718	7.35 7.35	1.24	3.9275	0.718	2.62	0.622	4.41	0
Laos	2014	55	0.718	6.16	1.64	5.5105	0.718	4.46	0.518	3.035	4.67
Cambodia	2014	33 42	0.33	5.67	0.08	4.6905	0.33	5.58	0.318	4.23	4.67 1.45
Carribodid	2014	44	0.400	3.07	0.08	4.0903	0.400	٥٥.د	0.333	4.23	1.45

Angola	2014	42	0.857	8.13	1.52	3.3445	0.857	0.21	0.718	1.21	5.77
Gambia	2014	51	0.894	8.22	2.48	5.228	0.894	0.36	0.832	2.685	3.55
Solomon Is	2014	50	0.565	7.34	6.78	6.447	0.565	1.7	0.489	0.715	0
Sierra Leor	2014	31	0.762	6.42	0.68	6.4695	0.762	0.85	0.659	0.09	1.73
Madagasca	2014	56	0.427	4.98	0.36	4.8335	0.427	5.47	0.423	9.725	0
Colombia	2014	61	0.734	7.58	3.88	4.3605	0.734	0.98	0.631	3.545	5.23
Mozambiq	2014	46	0.637	7.68	0.92	3.51	0.637	2.94	0.649	5.59	0
Congo Rep	2014	33	0.59	6.23	1.92	4.2115	0.59	3.44	0.52	0.435	0.7
Sri Lanka	2014	34	0.924	5.09	1.38	7.795	0.924	0.6	0.814	1.13	0
Papua Nev	2014	57	0.948	5.28	1.2	6.4555	0.948	5.84	0.916	3.93	0.19
Israel and	2014	68	0.774	7.54	2.54	5.4535	0.774	2.72	0.704	8.28	0.76
Djibouti	2014	41	0.923	8.02	2.9	3.7005	0.923	0.3	0.923	3	0
Zambia	2014	53	0.748	6.56	3.28	8.426	0.748	1.26	0.803	0	1.07
Tanzania	2014	63	0.488	8.26	5.6	8.441	0.488	3.44	0.318	0	0
Honduras	2014	76	0.488	6.64	1.54	6.1185	0.438	3.44	0.572	3.015	7.19
	2014	70 78	0.671	6.83			0.671			2.935	6.58
Bosnia and					3.58	4.974		3.17	0.656		
Georgia	2014	70 71	0.694	6.44	1	6.335	0.694	3.7	0.618	2.43	6.24
Thailand	2014	71	0.723	7.49	0.88	7.9625	0.723	6.2	0.63	0.975	2.67
Swaziland	2014	48	0.514	8.04	0.9	8.307	0.514	0.22	0.445	1.045	0.81
Bolivia	2014	76	0.604	6.95	6.24	4.263	0.604	2.83	0.452	2.76	3.7
Burkina Fa	2014	39	0.792	7.42	0.32	3.675	0.792	0.97	0.778	1.44	0.56
Philippines	2014	48	0.783	6.62	1.8	6.4175	0.783	1	0.808	1.235	0.04
Comoros	2014	59	0.724	7.4	1.44	4.2875	0.724	1.41	0.63	1.46	4
Maldives	2014	91	0.846	8	2.32	6.431	0.846	0.16	0.882	7.025	4.66
Algeria	2014	67	0.743	7.48	2.12	4.47	0.743	2.2	0.658	0.9	5.19
India	2014	69	0.916	8.4	1.18	5.5925	0.916	0.53	0.822	5.805	0.16
Equatorial	2014	54	0.688	7.11	1.66	5.345	0.688	2.1	0.597	0.235	0.14
Russia	2014	65	0.737	7.29	0.54	6.688	0.737	4.57	0.671	1.9	0
Malawi	2014	44	0.719	6.09	1.32	4.548	0.719	1.19	0.616	0.81	0
China	2014	83	0.845	8.17	1.82	4.76	0.845	0.72	0.784	8.47	0
Senegal	2014	60	0.798	7.82	1.18	5.023	0.798	0.3	0.764	2.89	0
Turkey	2014	89	0.625	8.3	1.98	8.2365	0.625	4.58	0.658	2	1.02
Mexico	2014	99	0.701	7.47	0.98	6.428	0.701	7.59	0.561	5.785	0.47
Bhutan	2014	74	0.481	5.96	0.64	3.688	0.481	6.57	0.408	2.365	2.59
Morocco	2014	89	0.758	7.44	4.46	6.218	0.758	1.19	0.649	2.895	2.37
Ukraine	2014	84	0.746	6.5	1.86	7.91	0.746	1.17	0.673	4.32	0.95
Dominican	2014	104	0.47	6.2	0.76	5.886	0.47	5.58	0.31	2.52	7.29
Paraguay	2014	103	0.795	8.16	0.66	6.331	0.795	7.15	0.648	2.55	1.54
Suriname	2014	109	0.888	7.63	1.6	7.5395	0.888	9.02	0.886	3.02	0
Guyana	2014	107	0.414	5.88	0.78	7.196	0.414	6.28	0.33	3.04	4.66
Belarus	2014	87	0.794	7.56	1.7	4.9805	0.794	1.23	0.773	2.14	3.76
Nicaragua	2014	72	0.754	5.51	0.54	6.764	0.754	5.85	0.773	0	0
_	2014	82	0.332	7.68	1.74	3.19	0.332	0.25	0.41	5.655	
Fiji Tunisia											1.26
Tunisia	2014	86	0.553	8.22	3.06	8.2215	0.553	1.95	0.436	0.055	0.23
Ghana	2014	100	0.768	7.49	5.3	4.7265	0.768	1.13	0.794	1.91	3.71
Guatemala	2014	64	0.865	8.09	1.52	3.399	0.865	0.37	0.83	2.09	0.01
Saudi Arab	2014	101	0.855	8.09	2.78	7.4605	0.855	0.45	0.698	5.41	0.23
Azerbaijan	2014	80	0.892	8.14	3.02	4.1715	0.892	0.3	0.82	1.69	1.12
Benin	2014	73	0.706	7	0.52	3.4575	0.706	1.46	0.704	1.02	3.97
Indonesia	2014	88	0.834	7.52	2.12	6.7015	0.834	0.16	0.835	3.79	0.54
Turkmenis	2014	78	0.519	6.96	2.02	7.989	0.519	0.24	0.42	1.475	0.58
Serbia	2014	92	0.805	7.47	1.94	7.744	0.805	0.7	0.816	3.87	0.07
Lesotho	2014	66	0.799	8.19	1.34	2.855	0.799	0.77	0.611	2.7	0
Sao Tome	2014	93	0.841	7.74	1.32	5.796	0.841	2.28	0.756	4	0
Ecuador	2014	85	0.724	7.78	2.6	4.899	0.724	1.95	0.615	1.585	0
Armenia	2014	108	0.826	7.63	1.22	3.9975	0.826	1.15	0.807	2.555	7.31

Vietnam	2014	97	0.688	7.48	1.4	8.3065	0.688	1.47	0.629	1.78	0.19
South Afric	2014	113	0.491	7.43	4.98	7.942	0.491	0.27	0.355	3.285	2.55
Kazakhstar	2014	110	0.729	7.57	1.84	6.435	0.729	0.21	0.677	5.31	2.95
Bahrain	2014	119	0.79	7.54	0.88	4.868	0.79	1.02	0.713	3.755	10
Jamaica	2014	117	0.92	8.09	0.7	6.401	0.92	0.33	0.91	8.66	1.76
Grenada	2014	120	0.575	6.14	0.34	6.8485	0.575	4.42	0.546	3.42	6.76
Gabon	2014	104	0.893	8.08	6.04	4.0295	0.893	0.2	0.847	0.69	0
Croatia	2014	137	0.833	7.73	3.22	5.9645	0.823	0.2	0.795	15.39	6.4
	2014							1.9			
El Salvador		102	0.739	7.59	1.72	4.0695	0.739		0.665	3.685	0
Micronesia	2014	94	0.438	7.68	0.78	5.7275	0.438	0.52	0.312	2.505	0
Namibia	2014	106	0.733	7.16	0.62	6.2015	0.733	0.29	0.738	1.49	3.04
Cape Verd	2014	94	0.514	5.55	1.52	3.386	0.514	5.86	0.493	0	0
Macedonia	2014	118	0.495	7.93	1.18	6.5025	0.495	7.05	0.503	2.275	0.28
Cyprus	2014	114	0.854	8.02	1.88	5.87	0.854	0.26	0.786	1.46	4.9
Peru	2014	98	0.548	7.68	1.32	5.572	0.548	0.22	0.395	2.04	0
Moldova	2014	96	0.853	5.8	1.46	5.4605	0.853	3.02	0.781	1.31	0
Albania	2014	125	0.762	7.78	3.5	2.1565	0.762	1.29	0.715	3.385	7.41
Antigua an	2014	127	0.531	5.23	1.46	3.353	0.531	9.88	0.48	4.23	5.9
Samoa	2014	111	0.852	6.82	3.94	5.394	0.852	1.36	0.852	0	0
Brazil	2014	123	0.698	6.45	0.32	4.837	0.698	3.56	0.658	5.255	2.93
Cuba	2014	112	0.773	7.94	1.22	4.334	0.773	0.41	0.779	3.67	0.31
Malaysia	2014	115	0.911	7.16	0.58	5.9	0.911	0.36	0.818	0.755	2.96
Mongolia	2014	129	0.511	8.06	3.6	7.1635	0.511	6.61	0.377	1.94	0.27
Seychelles	2014	124	0.313	7.01	3.78	7.1033	0.493	1.01	0.377	1.34	0.27
•											
Belize	2014	116	0.895	8.08	0.22	4.209	0.895	0.34	0.841	2.85	0.35
Brunei Dar	2014	121	0.754	7.45	2.28	3.1245	0.754	1.44	0.677	1.275	2.45
Trinidad ar	2014	126	0.938	4.9	0.66	7.338	0.938	4.88	0.892	2.735	0.53
Bulgaria	2014	130	0.864	7.88	0.6	5.3005	0.864	0.85	0.714	3.125	6.25
Kuwait	2014	128	0.741	7.4	0.7	6.8135	0.741	1.35	0.701	2.215	3.29
Hungary	2014	139	0.49	6.28	0.98	5.7255	0.49	5.35	0.422	11.81	0
Greece	2014	134	0.924	8.09	0.56	5.885	0.924	0.32	0.914	6.93	2.61
Botswana	2014	122	0.747	7.65	1.36	3.3685	0.747	0.54	0.694	0.425	0.08
Romania	2014	132	0.692	6.26	1.04	6.7205	0.692	1.51	0.613	4.02	0.7
Barbados	2014	138	0.575	7.16	1.18	4.8735	0.575	3.21	0.457	0	8.58
Oman	2014	135	0.642	8.18	5.38	5.916	0.642	0.33	0.542	2.06	0
United Ara	2014	144	0.603	7.44	0.76	8.0635	0.603	3.97	0.494	4.405	3.09
Spain	2014	151	0.431	7.31	2.66	7.38	0.431	4.23	0.374	9.285	2.59
Monteneg	2014	132	0.779	6.31	1.98	6.1075	0.779	1.22	0.725	3.305	0
Qatar	2014	143	0.515	7.76	1.36	6.742	0.515	1.85	0.422	8.665	0.04
Chile	2014	150	0.394	5.16	0.92	5.9715	0.394	8.67	0.28	6	4.01
Costa Rica	2014	142	0.425	5.87	3.46	4.0005	0.425	7.65	0.457	3.15	0.41
Bahamas	2014	136	0.758	7.08	0.24	3.1145	0.758	2.89	0.723	5.13	0
Panama	2014	131	0.525	6.14	0.66	6.024	0.738	1.94	0.725	0.49	0
	2014	140	0.525	6.6	0.3		0.586	2.07	0.473	0.795	
Latvia						6.3035					2.11
Estonia	2014	146	0.582	5.76	1.06	5.5325	0.582	7.03	0.439	3.52	0.01
Poland	2014	153	0.678	7.27	2.78	5.453	0.678	6.74	0.655	2.79	0
Argentina	2014	141	0.784	7.61	3.24	3.4425	0.784	0.61	0.695	1.71	0.05
Italy	2014	147	0.649	6.94	2.74	6.9625	0.649	0.31	0.5	4.28	0.06
Mauritius	2014	145	0.787	6.28	1.54	5.4805	0.787	0.78	0.7	0	3.63
Czech Repi	2014	154	0.875	7.86	1.32	4.4875	0.875	0.29	0.878	11.125	0
Slovak Rep	2014	149	0.72	7.51	2.64	6.6485	0.72	0.87	0.657	2.62	0
South Kore	2014	156	0.775	6.65	4.88	7.3375	0.775	3.55	0.76	3.435	0
France	2014	160	0.734	7	4.08	5.2195	0.734	1.94	0.777	7.4	1.99
Malta	2014	151	0.511	8.17	1.18	5.593	0.511	4.51	0.492	0.965	0
Lithuania	2014	148	0.828	6.62	4.12	3.4165	0.828	0.72	0.835	1.8	0
United Sta	2014	158	0.718	6.82	1.26	8.3505	0.718	1.09	0.766	5.495	0.08
	•	= =	-	-	-	-	-				

Uruguay	2014	155	0.779	5.97	1.32	8.2205	0.779	0.52	0.717	4.15	0
Austria	2014	167	0.937	8.24	0.98	6.0705	0.937	0.32	0.939	6.345	8.12
Japan	2014	157	0.898	8.24	2.38	6.4185	0.898	0.3	0.87	2.62	0
Australia	2014	170	0.741	7.47	1.12	2.9535	0.741	1.32	0.73	8.295	9.39
United Kin	2014	161	0.484	7.54	1.22	8.481	0.484	3.62	0.489	0.84	0.41
Belgium	2014	163	0.798	7.13	2.32	5.4395	0.798	0.35	0.833	7.72	1.16
Singapore	2014	159	0.735	7.38	0.56	6.928	0.735	3.27	0.677	1.705	0
Denmark	2014	175	0.466	5.15	11.14	3.5895	0.466	6.85	0.406	1.66	4.01
Portugal	2014	164	0.785	7.29	0.04	7.3705	0.785	1.47	0.691	3.55	2.58
Germany	2014	165	0.45	6.02	1.18	5.688	0.45	4.86	0.358	7.03	0.1
Slovenia	2014	162	0.702	7.29	1.94	7.113	0.702	1.3	0.702	1.655	0.29
New Zeala	2014	172	0.414	7.4	1.12	6.2005	0.414	2.46	0.366	11.535	0
Netherland	2014	166	0.645	7. - 7.62	1.16	6.677	0.645	0.46	0.503	3.575	3.04
Canada	2014	168	0.558	6.84	1.38	2.9955	0.558	2.63	0.459	0.815	5.29
	2014										
Finland		178	0.441	6.41	2.06	4.4555	0.441	4.29	0.315	8.23	0
Norway	2014	176	0.913	8.16	1.12	6.7175	0.913	3.05	0.917	0	0
Ireland	2014	169	0.686	6.89	1.18	5.7655	0.686	1.39	0.622	0.02	0
Iceland	2014	171	0.623	7.31	0.7	3.804	0.623	1.8	0.518	3.065	0
Sweden	2014	177	0.665	6.79	2.64	6.3795	0.665	0.61	0.705	1.945	0
Switzerlan	2014	173	0.421	5.54	2.18	6.72	0.421	0.22	0.297	0.825	0
Luxembou	2014	174	0.763	7.42	2.14	4.8025	0.763	0.73	0.656	2.1	0
Sudan	2015	4	0.842	8.3	5.22	8.435	0.842	1.19	0.82	10.53	1.84
Somalia	2015	2	0.845	6.65	1.5	8.1625	0.845	1.54	0.768	6.345	0.16
Congo Den	2015	5	0.498	6.33	0.76	6.378	0.498	5.66	0.469	0.04	6.5
South Suda	2015	1	0.781	7.49	0.86	7.9935	0.781	1.29	0.706	1.11	0
Syria	2015	9	0.882	5.74	0.62	7.647	0.882	2.42	0.818	7.875	0.01
Yemen	2015	7	0.488	7.53	0.38	8.247	0.488	1.87	0.462	3.605	3.57
Central Afr	2015	3	0.919	8.2	1.12	3.369	0.919	0.44	0.89	1.715	5.25
Chad	2015	6	0.347	5.07	1.28	4.95	0.347	9.35	0.338	0.55	1.59
Afghanista	2015	8	0.479	6.04	1.82	2.7165	0.479	6.81	0.398	0.115	5.6
Liberia	2015	21	0.662	7.44	5.28	7.39	0.662	2.01	0.721	9.745	0.58
Guinea	2015	10	0.751	7.34	2.24	6.018	0.751	1.11	0.725	1.42	5.52
Haiti	2015	11	0.421	5.52	0.66	5.6095	0.421	6.24	0.353	1.445	2.58
Guinea Bis	2015	17	0.421	7.18	1.38	4.2405	0.421	2.51	0.508	0.79	7.86
Nigeria	2015	14	0.555	6.48	0.7	6.095	0.555	3.34	0.475	0.61	4.41
Zimbabwe	2015	16	0.836	5.85	1.92	8.32	0.836	1.23	0.681	5.69	0
Iraq	2015	12	0.615	6.8	2.26	6.0785	0.615	2.36	0.525	0	0.24
Pakistan	2015	13	0.351	7.49	0.96	6.5935	0.351	0.48	0.206	2.395	1.72
Burundi	2015	18	0.399	5.87	2.14	3.821	0.399	6.22	0.261	1.17	4.24
Bangladesl	2015	32	0.823	7.66	2.46	4.3	0.823	0.56	0.717	2.99	9.37
Niger	2015	19	0.637	6.59	0.96	6.4215	0.637	4.07	0.546	2.365	1.45
Mali	2015	30	0.896	7.33	1.64	6.7645	0.896	3.7	0.783	3.535	2.71
Tajikistan	2015	57	0.764	5.57	0.16	7.612	0.764	8.74	0.752	8.8	4.71
Rwanda	2015	37	0.679	7.46	4.16	7.9545	0.679	1.81	0.637	2.4	4.73
Kenya	2015	21	0.902	8.35	1.34	6.256	0.902	1.58	0.842	1.755	1.18
Uzbekistar	2015	52	0.723	7.28	2.04	8.73	0.723	4.61	0.641	8.435	1.34
Cote divoir	2015	15	0.775	7.94	0.54	3.6905	0.775	0.86	0.684	4.5	0
Jordan	2015	81	0.881	8.31	1.02	5.405	0.881	1.39	0.804	18.85	5.21
Myanmar	2015	27	0.701	6.91	5.38	6.7055	0.701	1.39	0.725	1.75	0
Uganda	2015	23	0.738	6.94	0.76	8.248	0.738	0.35	0.641	1.455	0.24
Iran	2015	44	0.919	8.26	3.2	5.9255	0.730	3.93	0.906	2.17	2.38
Nepal	2015	35	0.804	6.94	1.36	7.3235	0.804	1.99	0.300	2.765	2.36
Mauritania	2015	26	0.804	6.51	6.18	5.6985	0.804	0.62	0.797	0	0
Togo	2015	47	0.909	7.11	1.06	8.2705	0.909	0.86	0.852	8.44	0
Venezuela	2015	74 25	0.764	7.04	0.9	8.4935	0.764	5.36	0.666	12.59	0
TimorLeste	2015	35	0.541	6.35	1.54	8.2365	0.541	0.36	0.545	1.01	5.17

Ethiopia	2015	20	0.418	6.37	1.66	4.533	0.418	3.5	0.267	0	0.08
Eritrea	2015	24	0.678	7.3	1.48	5.389	0.678	1.49	0.584	0	0
Kyrgyz Rep	2015	62	0.793	6.94	0.7	7.4995	0.793	3.66	0.805	8.115	2.85
North Kor€	2015	29	0.923	6.96	1.26	4.926	0.923	2.97	0.897	1.09	0
Libya	2015	25	0.582	7.06	0.8	2.414	0.582	5.23	0.474	0.035	0
Lebanon	2015	40	0.899	7.03	2.16	6.1295	0.899	0.3	0.867	0	5.98
Cameroon	2015	28	0.646	7.33	0.88	3.1654	0.646	2.13	0.531	2.36	0
Egypt	2015	38	0.718	7.35	1.24	3.9275	0.718	2.62	0.622	4.41	0
Laos	2015	55	0.55	6.16	1.64	5.5105	0.55	4.46	0.518	3.035	4.67
Cambodia	2015	42	0.406	5.67	0.08	4.6905	0.406	5.58	0.395	4.23	1.45
Angola	2015	42	0.857	8.13	1.52	3.3445	0.857	0.21	0.718	1.21	5.77
Gambia	2015	51	0.894	8.22	2.48	5.228	0.894	0.21	0.832	2.685	3.55
Solomon Is	2015	50	0.565	7.34	6.78	6.447	0.565	1.7	0.832	0.715	0
Sierra Leor	2015	31	0.762	6.42	0.68	6.4695	0.762	0.85	0.659	0.09	1.73
Madagasca	2015	56	0.427	4.98	0.36	4.8335	0.427	5.47	0.423	9.725	0
Colombia	2015	61	0.734	7.58	3.88	4.3605	0.734	0.98	0.631	3.545	5.23
Mozambiq	2015	46	0.637	7.68	0.92	3.51	0.637	2.94	0.649	5.59	0
Congo Rep	2015	33	0.59	6.23	1.92	4.2115	0.59	3.44	0.52	0.435	0.7
Sri Lanka	2015	34	0.924	5.09	1.38	7.795	0.924	0.6	0.814	1.13	0
Papua Nev	2015	57	0.948	5.28	1.2	6.4555	0.948	5.84	0.916	3.93	0.19
Israel and '	2015	68	0.774	7.54	2.54	5.4535	0.774	2.72	0.704	8.28	0.76
Djibouti	2015	41	0.923	8.02	2.9	3.7005	0.923	0.3	0.923	3	0
Zambia	2015	53	0.748	6.56	3.28	8.426	0.748	1.26	0.803	0	1.07
Tanzania	2015	63	0.488	8.26	5.6	8.441	0.488	3.44	0.318	0	0
Honduras	2015	76	0.638	6.64	1.54	6.1185	0.638	3.26	0.572	3.015	7.19
Bosnia and	2015	78	0.671	6.83	3.58	4.974	0.671	3.17	0.656	2.935	6.58
Georgia	2015	70	0.694	6.44	1	6.335	0.694	3.7	0.618	2.43	6.24
Thailand	2015	71	0.723	7.49	0.88	7.9625	0.723	6.2	0.63	0.975	2.67
Swaziland	2015	48	0.514	8.04	0.9	8.307	0.514	0.22	0.445	1.045	0.81
Bolivia	2015	7 6	0.604	6.95	6.24	4.263	0.604	2.83	0.452	2.76	3.7
Burkina Fa	2015	39	0.792	7.42	0.32	3.675	0.792	0.97	0.432	1.44	0.56
			0.792								0.30
Philippines	2015	48		6.62	1.8	6.4175	0.783	1	0.808	1.235	
Comoros	2015	59	0.724	7.4	1.44	4.2875	0.724	1.41	0.63	1.46	4
Maldives	2015	91	0.846	8	2.32	6.431	0.846	0.16	0.882	7.025	4.66
Algeria	2015	67	0.743	7.48	2.12	4.47	0.743	2.2	0.658	0.9	5.19
India	2015	69	0.916	8.4	1.18	5.5925	0.916	0.53	0.822	5.805	0.16
Equatorial	2015	54	0.688	7.11	1.66	5.345	0.688	2.1	0.597	0.235	0.14
Russia	2015	65	0.737	7.29	0.54	6.688	0.737	4.57	0.671	1.9	0
Malawi	2015	44	0.719	6.09	1.32	4.548	0.719	1.19	0.616	0.81	0
China	2015	83	0.845	8.17	1.82	4.76	0.845	0.72	0.784	8.47	0
Senegal	2015	60	0.798	7.82	1.18	5.023	0.798	0.3	0.764	2.89	0
Turkey	2015	89	0.625	8.3	1.98	8.2365	0.625	4.58	0.658	2	1.02
Mexico	2015	99	0.701	7.47	0.98	6.428	0.701	7.59	0.561	5.785	0.47
Bhutan	2015	74	0.481	5.96	0.64	3.688	0.481	6.57	0.408	2.365	2.59
Morocco	2015	89	0.758	7.44	4.46	6.218	0.758	1.19	0.649	2.895	2.37
Ukraine	2015	84	0.746	6.5	1.86	7.91	0.746	1.17	0.673	4.32	0.95
Dominican	2015	104	0.47	6.2	0.76	5.886	0.47	5.58	0.31	2.52	7.29
Paraguay	2015	103	0.795	8.16	0.66	6.331	0.795	7.15	0.648	2.55	1.54
Suriname	2015	109	0.733	7.63	1.6	7.5395	0.888	9.02	0.886	3.02	0
Guyana	2015	109	0.888	7.63 5.88	0.78	7.3393 7.196	0.888	6.28	0.886	3.02	4.66
•											
Belarus	2015	87 72	0.794	7.56	1.7	4.9805	0.794	1.23	0.773	2.14	3.76
Nicaragua	2015	72	0.552	5.51	0.54	6.764	0.552	5.85	0.41	0	0
Fiji · ·	2015	82	0.863	7.68	1.74	3.19	0.863	0.25	0.876	5.655	1.26
Tunisia	2015	86	0.553	8.22	3.06	8.2215	0.553	1.95	0.436	0.055	0.23
Ghana	2015	100	0.768	7.49	5.3	4.7265	0.768	1.13	0.794	1.91	3.71
Guatemala	2015	64	0.865	8.09	1.52	3.399	0.865	0.37	0.83	2.09	0.01

Saudi Arab	2015	101	0.855	8.09	2.78	7.4605	0.855	0.45	0.698	5.41	0.23
Azerbaijan	2015	80	0.892	8.14	3.02	4.1715	0.892	0.3	0.82	1.69	1.12
Benin	2015	73	0.706	7	0.52	3.4575	0.706	1.46	0.704	1.02	3.97
Indonesia	2015	88	0.834	7.52	2.12	6.7015	0.834	0.16	0.835	3.79	0.54
Turkmenis	2015	78	0.519	6.96	2.02	7.989	0.519	0.24	0.42	1.475	0.58
Serbia	2015	92	0.805	7.47	1.94	7.744	0.805	0.7	0.816	3.87	0.07
Lesotho	2015	66	0.799	8.19	1.34	2.855	0.799	0.77	0.611	2.7	0
Sao Tome	2015	93	0.841	7.74	1.32	5.796	0.841	2.28	0.756	4	0
Ecuador	2015	85	0.724	7.78	2.6	4.899	0.724	1.95	0.615	1.585	0
Armenia	2015	108	0.826	7.63	1.22	3.9975	0.826	1.15	0.807	2.555	7.31
Vietnam	2015	97	0.688	7.48	1.4	8.3065	0.688	1.47	0.629	1.78	0.19
South Afric	2015	113	0.491	7. 4 3	4.98	7.942	0.491	0.27	0.355	3.285	2.55
Kazakhstar	2015	110	0.729	7. 4 3 7.57	1.84	6.435	0.729	0.21	0.677	5.31	2.95
	2015	119	0.723	7.57 7.54	0.88	4.868	0.729	1.02	0.77	3.755	10
Bahrain											
Jamaica	2015	117	0.92	8.09	0.7	6.401	0.92	0.33	0.91	8.66	1.76
Grenada	2015	120	0.575	6.14	0.34	6.8485	0.575	4.42	0.546	3.42	6.76
Gabon	2015	104	0.893	8.08	6.04	4.0295	0.893	0.2	0.847	0.69	0
Croatia	2015	137	0.823	7.73	3.22	5.9645	0.823	0.38	0.795	15.39	6.4
El Salvador	2015	102	0.739	7.59	1.72	4.0695	0.739	1.9	0.665	3.685	0
Micronesia	2015	94	0.438	7.68	0.78	5.7275	0.438	0.52	0.312	2.505	0
Namibia	2015	106	0.733	7.16	0.62	6.2015	0.733	0.29	0.738	1.49	3.04
Cape Verd	2015	94	0.514	5.55	1.52	3.386	0.514	5.86	0.493	0	0
Macedonia	2015	118	0.495	7.93	1.18	6.5025	0.495	7.05	0.503	2.275	0.28
Cyprus	2015	114	0.854	8.02	1.88	5.87	0.854	0.26	0.786	1.46	4.9
Peru	2015	98	0.548	7.68	1.32	5.572	0.548	0.22	0.395	2.04	0
Moldova	2015	96	0.853	5.8	1.46	5.4605	0.853	3.02	0.781	1.31	0
Albania	2015	125	0.762	7.78	3.5	2.1565	0.762	1.29	0.715	3.385	7.41
Antigua an	2015	127	0.531	5.23	1.46	3.353	0.531	9.88	0.48	4.23	5.9
Samoa	2015	111	0.852	6.82	3.94	5.394	0.852	1.36	0.852	0	0
Brazil	2015	123	0.698	6.45	0.32	4.837	0.698	3.56	0.658	5.255	2.93
Cuba	2015	112	0.773	7.94	1.22	4.334	0.773	0.41	0.779	3.67	0.31
Malaysia	2015	115	0.911	7.16	0.58	5.9	0.911	0.36	0.818	0.755	2.96
, Mongolia	2015	129	0.513	8.06	3.6	7.1635	0.513	6.61	0.377	1.94	0.27
Seychelles	2015	124	0.493	7.01	3.78	7.488	0.493	1.01	0.426	1.31	0
Belize	2015	116	0.895	8.08	0.22	4.209	0.895	0.34	0.841	2.85	0.35
Brunei Dar	2015	121	0.754	7.45	2.28	3.1245	0.754	1.44	0.677	1.275	2.45
Trinidad ar	2015	126	0.938	4.9	0.66	7.338	0.938	4.88	0.892	2.735	0.53
Bulgaria	2015	130	0.864	7.88	0.6	5.3005	0.864	0.85	0.714	3.125	6.25
Kuwait	2015	130	0.741	7.88 7.4	0.7	6.8135	0.804	1.35	0.714	2.215	3.29
	2015	139	0.741	6.28	0.7	5.7255	0.741	5.35	0.701		0
Hungary										11.81	
Greece	2015	134	0.924	8.09	0.56	5.885	0.924	0.32	0.914	6.93	2.61
Botswana	2015	122	0.747	7.65	1.36	3.3685	0.747	0.54	0.694	0.425	0.08
Romania	2015	132	0.692	6.26	1.04	6.7205	0.692	1.51	0.613	4.02	0.7
Barbados	2015	138	0.575	7.16	1.18	4.8735	0.575	3.21	0.457	0	8.58
Oman	2015	135	0.642	8.18	5.38	5.916	0.642	0.33	0.542	2.06	0
United Ara	2015	144	0.603	7.44	0.76	8.0635	0.603	3.97	0.494	4.405	3.09
Spain	2015	151	0.431	7.31	2.66	7.38	0.431	4.23	0.374	9.285	2.59
Monteneg	2015	132	0.779	6.31	1.98	6.1075	0.779	1.22	0.725	3.305	0
Qatar	2015	143	0.515	7.76	1.36	6.742	0.515	1.85	0.422	8.665	0.04
Chile	2015	150	0.394	5.16	0.92	5.9715	0.394	8.67	0.28	6	4.01
Costa Rica	2015	142	0.425	5.87	3.46	4.0005	0.425	7.65	0.457	3.15	0.41
Bahamas	2015	136	0.758	7.08	0.24	3.1145	0.758	2.89	0.723	5.13	0
Panama	2015	131	0.525	6.14	0.66	6.024	0.525	1.94	0.475	0.49	0
Latvia	2015	140	0.586	6.6	0.3	6.3035	0.586	2.07	0.59	0.795	2.11
Estonia	2015	146	0.582	5.76	1.06	5.5325	0.582	7.03	0.439	3.52	0.01
Poland	2015	153	0.678	7.27	2.78	5.453	0.678	6.74	0.655	2.79	0

Argentina	2015	141	0.784	7.61	3.24	3.4425	0.784	0.61	0.695	1.71	0.05
Italy	2015	147	0.649	6.94	2.74	6.9625	0.649	0.31	0.5	4.28	0.06
Mauritius	2015	145	0.787	6.28	1.54	5.4805	0.787	0.78	0.7	0	3.63
Czech Repi	2015	154	0.875	7.86	1.32	4.4875	0.875	0.29	0.878	11.125	0
Slovak Rep	2015	149	0.72	7.51	2.64	6.6485	0.72	0.87	0.657	2.62	0
South Kore	2015	156	0.775	6.65	4.88	7.3375	0.775	3.55	0.76	3.435	0
France	2015	160	0.734	7	4.08	5.2195	0.734	1.94	0.777	7.4	1.99
Malta	2015	151	0.511	8.17	1.18	5.593	0.511	4.51	0.492	0.965	0
Lithuania	2015	148	0.828	6.62	4.12	3.4165	0.828	0.72	0.432	1.8	0
United Sta	2015	158	0.718	6.82	1.26	8.3505	0.718	1.09	0.766	5.495	0.08
	2015	155	0.718	5.97	1.32	8.2205	0.718	0.52	0.700	4.15	0.08
Uruguay											
Austria	2015	167	0.937	8.24	0.98	6.0705	0.937	0.32	0.939	6.345	8.12
Japan	2015	157	0.898	8.24	2.38	6.4185	0.898	0.3	0.87	2.62	0
Australia	2015	170	0.741	7.47	1.12	2.9535	0.741	1.32	0.73	8.295	9.39
United Kin	2015	161	0.484	7.54	1.22	8.481	0.484	3.62	0.489	0.84	0.41
Belgium	2015	163	0.798	7.13	2.32	5.4395	0.798	0.35	0.833	7.72	1.16
Singapore	2015	159	0.735	7.38	0.56	6.928	0.735	3.27	0.677	1.705	0
Denmark	2015	175	0.466	5.15	11.14	3.5895	0.466	6.85	0.406	1.66	4.01
Portugal	2015	164	0.785	7.29	0.04	7.3705	0.785	1.47	0.691	3.55	2.58
Germany	2015	165	0.45	6.02	1.18	5.688	0.45	4.86	0.358	7.03	0.1
Slovenia	2015	162	0.702	7.29	1.94	7.113	0.702	1.3	0.702	1.655	0.29
New Zeala	2015	172	0.414	7.4	1.12	6.2005	0.414	2.46	0.366	11.535	0
Netherland	2015	166	0.645	7.62	1.16	6.677	0.645	0.46	0.503	3.575	3.04
Canada	2015	168	0.558	6.84	1.38	2.9955	0.558	2.63	0.459	0.815	5.29
Finland	2015	178	0.441	6.41	2.06	4.4555	0.441	4.29	0.315	8.23	0
Norway	2015	176	0.913	8.16	1.12	6.7175	0.913	3.05	0.917	0	0
Ireland	2015	169	0.686	6.89	1.18	5.7655	0.686	1.39	0.622	0.02	0
Iceland	2015	171	0.623	7.31	0.7	3.804	0.623	1.8	0.518	3.065	0
Sweden	2015	177	0.665	6.79	2.64	6.3795	0.665	0.61	0.705	1.945	0
Switzerlan	2015	173	0.421	5.54	2.18	6.72	0.421	0.22	0.297	0.825	0
Luxembou	2015	174	0.763	7.42	2.14	4.8025	0.763	0.73	0.656	2.1	0
Sudan	2016	4	8.47	6.66	1.5	7.669	8.47	1.5	7.68	6.055	0.038
Somalia	2016	1	7.82	7.5	0.94	7.084	7.82	1.25	7.06	1.215	0
Syria	2016	6	9.2	8.22	1.12	0	9.2	0.43	8.9	1.74	6.712
Central Afr	2016	3	8.45	8.32	5.12	7.036	8.45	1.17	8.23	9.68	4.094
South Suda	2016	2	4.93	7.55	0.42	7.623	4.93	3.38	4.67	0	2.139
Liberia	2016	27	4.93 8.84	7.33 5.77	0.42	4.828	4.93 8.84	2.36	8.18	7.62	0
	2016		3.52	5.15	1.28	4.828	3.52	9.15	3.38	0.89	7.686
Afghanista		9									
Chad	2016	7	4.98	6.36	0.76	5.925	4.98	5.51	4.69	1.075	1.71
Yemen	2016	4	4.79	6.07	1.92	3.75	4.79	6.63	3.98	0.02	9.065
Guinea	2016	12	4.24	5.55	0.66	8.891	4.24	6.03	3.53	1.58	2.622
Kenya	2016	20	6.24	6.83	1.9	8.664	6.24	2.28	5.35	0	2.088
Congo Den	2016	8	7.54	7.36	2.24	8.542	7.54	1.08	7.25	1.715	0
Mali	2016	29	5.58	6.51	0.82	7.529	5.58	3.28	4.75	0.815	0
Iraq	2016	11	3.53	7.52	1.04	5.889	3.53	0.47	2.06	2.44	1.381
Iran	2016	47	4.02	5.9	2.16	0	4.02	6.09	2.62	1.425	0
Jordan	2016	77	8.4	5.92	2.14	6.606	8.4	4.66	6.87	0	0
Zimbabwe	2016	16	6.4	7.21	1.38	8.898	6.4	2.43	5.08	0.995	0
Haiti	2016	10	6.8	7.33	1.18	8.059	6.8	1.44	5.84	0	0
Djibouti	2016	39	6.4	6.61	1.16	6.959	6.4	3.95	5.46	2.41	0
Cote dvoir	2016	21	9.03	8.37	1.34	8.658	9.03	1.54	8.42	2.245	0
Myanmar	2016	26	7.76	7.96	0.6	6.934	7.76	0.85	6.84	4.435	0
Tajikistan	2016	57	6.48	7.35	0.92	5.034	6.48	2.07	5.34	2.695	3.334
Egypt	2016	38	7.4	6.96	0.72	7.305	7.4	0.77	6.41	1.675	1.869
Venezuela	2016	63	4.2	6.42	1.54	8.571	4.2	3.41	2.67	0	0
Papua Nev	2016	50	5.86	7.08	0.84	7.028	5.86	5.07	4.74	0	4.75
			3.50			0	2.23	J.J.		-	3

North Kor€	2016	30	6.99	6.93	5.1	7.904	6.99	1.36	7.25	2.175	0
Guinea Bis	2016	17	6.64	7.45	5.5	7.438	6.64	1.9	7.21	10.3	2.116
Nigeria	2016	13	4.76	6.55	6.22	7.072	4.76	0.6	4.45	0	0
Uganda	2016	23	8.98	7.35	1.7	7.109	8.98	3.59	7.83	4.005	0.076
Niger	2016	19	9.24	7	1.26	6.737	9.24	2.91	8.97	0	0
Lebanon	2016	40	5.92	6.29	1.72	6.255	5.92	3.32	5.2	0.485	0
Libya	2016	25	6.82	7.48	4.02	7.329	6.82	1.75	6.37	2.725	1.881
Cameroon	2016	22	8.07	6.98	1.22	4.529	8.07	1.9	7.97	2.83	2.567
Burkina Fa	2016	41	7.65	6.47	0.68	4.969	7.65	0.82	6.59	1.04	0
Rwanda	2016	32	5.41	6.37	1.54	6.492	5.41	0.35	5.45	1.14	0
Bangladesl	2016	36	8.24	7.67	2.46	4.583	8.24	0.53	7.17	2.985	3.544
Eritrea	2016	18	8.58	8.15	1.52	4.337	8.58	0.21	7.18	1.55	3.342
Nepal	2016	33	7.22	7.37	1.28	8.581	7.22	2.57	6.22	4.79	4.976
India	2016	70	9.25	8.04	2.88	8.467	9.25	0.29	9.23	2.58	2.484
Kyrgyz Rep	2016	64	9.01	7.05	1.96	9.043	9.01	0.29	8.67	0	3.083
Togo	2016	51	7.94	7.43	0.3	5.827	7.94	0.93	7.78	1.465	8.108
Angola	2016	37	6.38	7.43 7.7	0.94	4.92	6.38	2.86	6.49	5.37	0
Gambia	2016	48	9.25	5.13	1.56	4.802	9.25	0.59	8.14	1.975	0
Israel and '	2016	69	5.15	8.06	0.86	7.37	5.15	0.33	4.45	1.045	7.27
Uzbekistar	2016	60	7.16	6.12	1.34	7.355	7.16	1.14	6.16	0.9	0
Philippines	2016	54	4.04	5.71	0.1	5.142	4.04	5.41	3.95	4.14	9.233
Mauritania	2016	28	9.21	8.27	3.38	8.722	9.21	3.79	9.06	2.335	3.114
Guatemala	2016	61	8.97	8.24	2.46	7.889	8.97	0.35	8.39	0	0.659
Pakistan	2016	14	7.43	6.57	3.18	5.85	7.43	4.33	8.03	0	0
Cambodia	2016	46	9.49	5.31	0.98	6.964	9.49	5.71	9.16	4.12	2.009
Zambia	2016	49	9.13	7.13	1.04	4.692	9.13	0	8.55	8.67	0
Mozambiq	2016	42	5.74	7.37	6.96	0	5.74	1.66	5.09	0.86	0
Laos	2016	55	6.91	7.13	1.68	8.448	6.91	2.03	6.01	0.845	3.364
Equatorial	2016	53	7.88	6.64	1.48	5.358	7.88	0.99	8.08	1.38	6.667
Sri Lanka	2016	43	5.55	6.22	1.64	8.69	5.55	4.36	5.18	4.4	2.738
Ethiopia	2016	24	4.27	5.01	0.44	8.23	4.27	5.28	4.23	9.56	2.125
Bolivia	2016	75	7.66	5.61	0.22	6.863	7.66	8.5	7.52	8.94	4.006
Madagasca	2016	56	7.27	7.42	1.44	4.979	7.27	1.36	6.3	0	7.642
Comoros	2016	57	8.02	7.83	1.16	4.717	8.02	0.3	7.69	2.92	0
Congo Rep	2016	31	7.25	7.3	2.02	7.024	7.25	2.31	6.43	8.16	0
Swaziland	2016	44	8.66	8.11	1.52	8.704	8.66	0.36	8.3	2.14	0
Colombia	2016	67	4.9	8.28	5.38	6.373	4.9	3.36	3.18	0	3.467
Burundi	2016	15	7.67	7.05	0.86	7.969	7.67	1.29	6.68	11.915	7.2
Sierra Leor	2016	34	7.94	6.96	0.7	8.8	7.94	3.55	8.05	8.325	1.187
Fiji	2016	82	7.4	7.3	0.48	7.224	7.4	4.45	6.72	1.875	1.751
Lesotho	2016	66	8	8.21	1.42	8.693	8	0.73	6.11	2.9	1.349
Morocco	2016	89	7.38	7.6	3.92	5.756	7.38	0.92	6.31	2.63	4.894
China	2016	86	6.38	6.65	1.4	7.434	6.38	3.2	5.68	2.985	1.583
Saudi Arab	2016	97	7.74	7.56	2.42	8.506	7.74	2.65	7.04	6.525	2.297
Russia	2016	65	9.17	8.42	1.16	8.472	9.17	0.53	8.22	5.4	4.613
Azerbaijan	2016	81	5.56	5.55	0.56	6.807	5.56	5.67	4.1	0	0
Suriname	2016	112	7.06	7.01	0.52	6.249	7.06	1.42	7.04	0.98	6.66
Malawi	2016	44	6.97	6.49	0.92	6.013	6.97	3.61	6.18	2.63	0.00
Maldives	2016	91	7.25	7.5	1	7.867	7.25	6.03	6.3	1.01	0.41
Senegal	2016	59	6.07	7.3 6.99	6.06	6.329	6.07	2.72	4.52	3.335	7.29
Thailand				6.99 7.5	2.1				4.52 6.58		7.29 0
	2016	74 94	7.45			4.177	7.45 9.97	2.19		1.99	
Ecuador	2016	84	8.87	8.33	1.12	9.051	8.87	1.35	8.14	18.83	1.219
TimorLeste	2016	35 73	4.85	5.98	0.72	4.342	4.85	6.42	4.14	2.715	1.219
Benin	2016	72	6.27	8.31	2.06	6.858	6.27	2.28	6.58	2.1	0
Tanzania	2016	62	4.42	7.7	1	4.371	4.42	0.51	3.12	2.685	0.305
Honduras	2016	68	8.93	8.16	2.88	5.989	8.93	0.29	8.2	1.77	3.76

	2016	00	0.65		4.00	0.540	0.65	0.00	0.77	5.005	•
Bosnia and	2016	88	8.65	7.7	1.92	8.549	8.65	0.23	8.77	5.995	0
Indonesia	2016	86	5.31	6.97	2	6.063	5.31	3.77	4.41	0	0
Belize	2016	116	7.26	7.79	2.42	8.82	7.26	1.96	6.18	1.545	4.553
Ukraine	2016	85	7.48	6.55	1.98	5.834	7.48	0.59	6.73	4.51	3.979
Serbia	2016	98	8.47	8.2	2	5.579	8.47	0.7	7.84	9.845	0
Gabon	2016	98	8.36	7.53	2.1	7.398	8.36	0.16	8.34	3.84	0
Jamaica	2016	118	6.74	6.87	3.72	4.148	6.74	3.06	6.56	2.925	6.032
El Salvador	2016	96	5.36	8.23	2.96	6.555	5.36	4.37	4.17	0.45	4.077
Solomon Is	2016	52	7.62	7.46	4.46	7.593	7.62	1.13	6.55	2.995	6.662
Georgia	2016	72	8.48	8.02	2.36	6.499	8.48	0.15	8.82	7.24	0.305
Mexico	2016	107	7.95	7.58	1.74	4.82	7.95	1.2	7.73	2.575	0.153
Turkey	2016	79	8.56	5.85	1.42	5.124	8.56	2.96	7.81	0	0.153
Paraguay	2016	95	8.43	7.76	1.16	5.029	8.43	2.22	7.56	3.95	0.038
Ghana	2016	102	7.96	8.17	0.7	7.114	7.96	6.94	6.52	0	0
Algeria	2016	76	7.39	7.61	1.88	8.46	7.39	1.84	6.65	3.89	1.187
Sao Tome	2016	94	8.56	8.12	2.8	6.914	8.56	0.45	6.98	4.87	6.376
Belarus	2016	92	8.04	7.48	1.86	7.802	8.04	0.68	8.16	3.805	2.252
Tunisia	2016	88	8.95	8.1	6.02	6.439	8.95	0.19	8.47	0.845	0
Kazakhstar	2016	113	5.5	7.7	1.34	6.964	5.5	0.2	3.95	2.435	2.077
Vietnam	2016	106	5.18	5.6	1.52	2.766	5.18	5.71	4.93	0	7.6
Samoa	2016	110	7.69	7.5	4.98	8.126	7.69	1.06	7.94	1.755	0
Namibia	2016	103	7.35	7.17	0.62	8.024	7.35	0.28	7.37	1.605	3.08
Moldova	2016	93	4.14	5.92	0.78	7.061	4.14	6.1	3.3	2.84	0
Cuba	2016	114	4.73	6.23	0.86	8.859	4.73	5.42	3.1	2.74	0.076
Bhutan	2016	78	6.92	7.5	1.6	6.367	6.92	1.73	6.29	6.415	0
Nicaragua	2016	71	7.01	7.49	0.86	6.786	7.01	7.45	5.61	5.905	0
Armenia	2016	109	4.94	7.44	5.02	7.418	4.94	0.26	3.55	3.72	1.446
Cyprus	2016	119	8.27	7.65	1.26	3.783	8.27	1.11	8.08	2.41	2.142
Macedonia	2016	111	8.55	6.83	4	7.313	8.55	1.31	8.52	0	1.722
Brazil	2016	117	4.97	7.95	1.18	7.007	4.97	6.92	5.03	2.375	4.871
Cape Verd	2016	101	8.9	7.64	1.48	7.295	8.9	8.71	8.86	3.345	3.316
Turkmenis	2016	83	7.3	7.58	1.84	8.66	7.3	0.2	6.78	5.275	3.663
Croatia	2016	136	7.75	7.96	1.04	8.34	7.75	0.4	7.79	3.54	2.421
South Afric	2016	108	9.12	7.18	0.58	4.366	9.12	0.33	8.18	0	0
Peru	2016	98	8.96	8.1	0.22	6.397	8.96	0.33	8.41	3.33	10
Dominican	2016	105	6.98	6.45	0.38	4.898	6.98	3.48	6.58	5.435	4.08
Trinidad ar	2016	127	9.23	8.11	0.66	9.068	9.23	0.32	9.1	8.57	0
Greece	2016	130	8.56	8.03	1.9	7.767	8.56	0.25	7.86	1.575	3.969
Brunei Dar	2016	123	7.5	7.66	1.44	4.631	7.5	0.51	6.94	0.62	0.305
Micronesia	2016	80	7.92	7.56	0.88	3.673	7.92	0.99	7.15	4.39	1.636
Bahrain	2016	121	5.79	6.15	0.36	8.324	5.79	4.28	5.51	2.9	0
Guyana	2016	104	7.54	7.47	1.96	5.021	7.54	1.46	6.81	1.67	4.791
Malaysia	2016	115	7.54 7.64	7.47	3.46	5.132	7.54 7.64	1.25	7.15	3.13	0.243
Albania	2016	124	7.04 4.98	7.8 7.03	3.40	3.132	7.04 4.98	0.97	4.26	0	2.444
	2016	131	7.42	7.03 7.42	0.74	8.203	7.42	1.26	7.01	2.26	0.429
Monteneg											
Antigua an	2016	129	9.39	4.89	0.76	7.052	9.39	1.16	8.91	2.98	4.231
Bahamas	2016	137	5.13	8.07	3.64	5.198	5.13	6.51	3.77	1.86	0
Grenada	2016	122	5.33	5.27	1.34	5.713	5.33	9.6	4.82	3.4	6.466
Kuwait	2016	126	9.26	8.11	0.54	6.994	9.26	0.31	9.14	6.77	0
Botswana	2016	120	7.81	6.32	1.92	6.51	7.81	1.18	7.25	3.465	6.294
Bulgaria	2016	132	8.65	7.9	0.58	3.748	8.65	0.86	7.16	3.09	3.485
Hungary	2016	135	5.27	6.19	0.62	6.328	5.27	1.88	4.77	0.56	0
Argentina	2016	140	6.93	6.28	1.16	7.702	6.93	1.46	6.13	6.01	0.229
Mongolia	2016	128	4.93	6.31	0.88	6.935	4.93	5.22	4.25	10.575	1.045
Romania	2016	134	8.27	7.75	3.12	5.496	8.27	0.36	7.98	15.71	0
Oman	2016	137	7.59	7.09	0.24	6.645	7.59	2.79	7.23	4.97	6.813

Czech Repi	2016	151	6.45	8.2	5.18	6.496	6.45	0.32	5.42	3.21	2.373
Qatar	2016	142	5.79	7.2	1.22	5.54	5.79	3.07	4.57	0	1.187
Seychelles	2016	125	7.86	7.62	3.26	4.646	7.86	0.58	6.94	2.06	6.721
Poland	2016	152	5.88	6.62	0.32	8.863	5.88	1.97	5.9	0.95	0.267
Chile	2016	150	5.16	7.78	1.38	7.814	5.16	1.8	4.19	8.35	6.034
United Ara	2016	145	4.35	5.91	3.22	7.984	4.35	7.45	4.75	3.495	1.674
Lithuania	2016	149	7.22	7.52	2.26	5.71	7.22	0.84	6.57	2.775	0
Costa Rica	2016	142	6.06	7.46	0.74	6.954	6.06	0.35	4.94	4.64	7.279
Uruguay	2016	155	5.92	5.79	1.1	6.441	5.92	6.82	4.39	3.825	0.019
Japan	2016	157	7.89	6.39	1.58	7.89	7.89	0.74	7	0	2.207
South Kore	2016	156	6.49	6.96	2.74	8.921	6.49	0.3	5	4.16	0.091
Slovak Rep	2016	144	8.3	6.66	4.12	8.16	8.3	0.69	8.35	1.81	0.115
Mauritius	2016	147	3.96	5.19	0.92	6.691	3.96	8.5	2.8	6.18	9.213
France	2016	158	8.78	7.88	1.26	8.003	8.78	0.28	8.78	10.95	0
Spain	2016	153	6.84	7.29	2.42	6.585	6.84	6.58	6.55	2.96	4.755
Italy	2016	148	4.2	7.33	2.72	6.419	4.2	4.17	3.74	9.005	2.928
Panama	2016	133	5.12	8.19	1.08	6.328	5.12	4.34	4.92	1.095	1.516
Latvia	2016	141	7.8	6.02	1.46	6.768	7.8	3.39	7.17	5.005	5.98
Austria	2016	167	7.76	6.69	4.48	4.182	7.76	3.46	7.6	3.565	4.386
Estonia	2016	146	8.99	8.26	2.56	8.426	8.99	0.29	8.7	2.52	3.442
Barbados	2016	139	7.36	7.02	4.1	7.085	7.36	1.91	7.77	7.42	0
United Sta	2016	159	7.21	6.85	1.06	7.728	7.21	0.87	7.66	4.28	3.697
Slovenia	2016	160	7.04	7.3	1.86	7.359	7.04	1.27	7.02	1.685	3.985
Singapore	2016	161	7.35	7.4	0.66	7.423	7.35	3.11	6.77	1.8	3.579
Malta	2016	154	4.87	7.55	1.1	4.61	4.87	0.56	4.89	0.895	0
Portugal	2016	163	7.88	7.31	0.04	6.632	7.88	1.42	6.91	3.68	4.222
Belgium	2016	164	7.96	7.15	2.36	4.328	7.96	0.34	8.34	7.415	0
Sweden	2016	171	4.52	6.05	1.26	7.8	4.52	4.79	3.58	6.755	0
Netherland	2016	166	6.47	7.64	1.18	7.532	6.47	0.43	5.03	3.76	2.581
Australia	2016	172	9.39	8.25	0.94	5.956	9.39	0.3	9.39	6.305	6.487
Iceland	2016	170	7.63	7.43	1.9	8.378	7.63	0.71	6.56	0.135	1.381
Germany	2016	165	5.63	6.88	1.38	4.598	5.63	2.46	4.59	0.74	0
Denmark	2016	175	6.25	7.33	0.7	8.738	6.25	1.74	5.18	2.97	6
Norway	2016	177	6.66	6.81	2.46	8.352	6.66	0.58	7.05	2.67	6.207
Luxembou	2016	168	7.43	7.49	1.14	4.205	7.43	1.26	7.3	8.86	0.823
New Zeala	2016	176	6.89	6.91	1	8.015	6.89	1.34	6.22	0.465	1.977
Ireland	2016	172	4.18	5.57	2.18	7.02	4.18	0.21	2.97	0.84	0
United Kin	2016	162	4.74	5.19	10.78	8.698	4.74	6.66	4.15	0	0.115
Finland	2016	178	4.18	7.43	1.2	6.658	4.18	2.37	3.69	10.945	0.577
Canada	2016	169	9.15	8.17	1.08	5.209	9.15	2.94	9.17	0	0
Switzerlan	2016	174	4.48	6.46	2.12	8.848	4.48	4.14	3.18	7.93	0

Appendix 11 Parameters W and b trained by model

Shape: *W1*: (20,21) *W2*: (7,20) *W3*: (5,7) *W4*: (1,5)

b1: (20,1) *b2*: (7,1) *b3*: (5,1) *b4*: (1,1)

	0.28875		-0.07184 -0.1803 0.007748 0.596562		0.02211 -0.262						-0.11184 (-0.04015	
	0.039378				0.16495 -0.072				64 -0.09047			
	0.490597		-0.02689 0.003336									
	-0.07407	-0.2449 0.057878			0.1857 0.1118			0.146795 0.1245				
	-0.13163	-0.3082 0.023774						-0.10629 0.5094				0.0352
	0.451425	0.39798 0.248442 (0.488769 -0.269			-0.06312	
	-0.07004		-0.17716 0.102383 -0.08818 -0.21369		243935 -0.277).35072 -0.084			-0.19954 -0.313 -0.12512 -0.063		0.229991	0.114632 (-0.36156	
		-0.20473 0.133348										
		-0.12899 0.310067							64 0.286879			
		-0.38273 -0.29366			140008 -0.077			-0.28403 0.1010				
		0.252406 0.379644				0.553447		0.125925 0.4112				
		0.094833 -0.40645 (0.11962 -0.301			-0.0111 0.0241 0.336512 -0.347				
		0.350102 -0.02945 -0.07127 -0.01301			405613 -0.223			-0.07382 0.134			-0.07202 (-0.02693	
		-0.08088 0.097639						0.120205 0.2425				
		0.158973 0.170934			310124 -0.366	399 0.028458	-0.20136	-0.31355 -0.188	16 -0.51144	-0.21625	0.106845	-0.3000
	-0.2484	-0.05596 -0.46543	-0.13282 0.220027	0.795718	.09252 -0.099	336 0.29377	-0.11731	0.463509 -0.181	76 0.153544	-0.10924	-0.1962	-0.2226
0	0.20584 -0.29 -0.3115 0.077 0.311219 -0.17 -0.18057 -0.51	537 0.261416 0.13698 861 -0.14813 -0.00488 679 -0.07905 -0.45066 328 -0.26483 -0.36254 216 -0.00858 0.14718 459 0.014328 0.149895	-0.13183 -0.01408 0. 0.007173 -0.32987 -0 -0.10245 0.187814 -0 0.500268 0.716301 0.	151937 0.06422 0.02398 0.156674 0.02741 0.175182 324107 -0.21905	0.239179 0.135 -0.08179 0.1604 0.23752 -0.074 0.120968 0.0843	27 0.105798 0.14 83 0.212231 0.08 92 0.205011 0.23 98 -0.36729 -0.0	13484 0.018 36982 0.104 32234 -0.18 33957 -1.25	045 -0.07658 -0.388 704 0.322837 -0.310 967 -0.10109 -0.256 359 0.611628 0.3641	84 0.275546 0 42 0.238077 0 31 0.338374 0 55 0.025198 0	0.137676 -0. 0.196489 -0.1 0.178629 0.19 0.211373 1.0	9134 0.028353 3786 -0.36996 1013 0.291897	-0.1190 -0.3183 -0.237 -0.4170
W3		0.80746	0.52992	12 -0.2	21549	0.7730	23 (.349319	-0.76	6721	0.101	194
		-0.04587	-0.1633	34 -0.0	02901	-0.095	12 -	0.19545	-0.10	0611	-0.43	345
		0.078308	0.01676	69 0.5	78446	0.3598	89 (0.013804	-0.36	6935	-0.34	023
		1.52684	0.40193	32 0.12	20999	0.1907	86 -	0.20842	-1.73	3915	0.126	714
		-0.9477	-0.1564	11 0.43	34039	0.3540	94	0.21694	1.46	6374	0.007	695
W4		-1.29092	2 -1.385	48 0.3	399931	-2.08	8041	1.7492	25			
h1	-0	0/1527	h2	_0.577	23	h3		-0.4559		b/I	2.9	3033/
b1		.04527	b2	-0.577		b3		-0.4559		b4	2.8	39334
b1		.48347	b2	-0.164	106	b3		0		b4	2.8	39334
b1	-0	.48347 0	b2		106 '66	b3		0		b4	2.8	39334
b1	-0	.48347 0 .12051	b2	-0.164 0.0007	106 766 0	b3		0 0 -0.13255		b4	2.8	39334
b1	-0	.48347 0	b2	-0.164	106 766 0	b3		0		b4	2.8	39334
b1	-0 -0 -0	.48347 0 .12051	b2	-0.164 0.0007	106 766 0 749	b3		0 0 -0.13255		b4	2.8	39334
b1	-0 -0 -0 0.6	.48347 0 .12051 .01086	b2	-0.164 0.0007 0.0007	766 0 749 731	b3		0 0 -0.13255		b4	2.8	39334
b1	-0 -0 -0 0.6	.48347 0 .12051 .01086 605688	b2	-0.164 0.0007 0.0007 0.9912	766 0 749 731	b3		0 0 -0.13255		b4	2.8	39334
b1	-0 -0 -0 0.6 -0	.48347 0 .12051 .01086 .05688 .02425 .03428	b2	-0.164 0.0007 0.0007 0.9912	766 0 749 731	b3		0 0 -0.13255		b4	2.8	39334
b1	-0 -0 -0 0.6 -0 -0	.48347 0 .12051 .01086 .05688 .02425 .03428	b2	-0.164 0.0007 0.0007 0.9912	766 0 749 731	b3		0 0 -0.13255		b4	2.8	39334
b1	-0 -0 -0 0.6 -0 -0 -0	.48347 0 .12051 .01086 .005688 .02425 .03428 .00311	b2	-0.164 0.0007 0.0007 0.9912	766 0 749 731	b3		0 0 -0.13255		b4	2.8	39334
b1	-0 -0 -0 0.6 -0 -0 -0	.48347 0 .12051 .01086 .005688 .02425 .03428 .00311 .095201 .00602	b2	-0.164 0.0007 0.0007 0.9912	766 0 749 731	b3		0 0 -0.13255		b4	2.8	39334
b1	-0 -0 0.6 -0 -0 -0 -0 0.0	.48347 0 .12051 .01086 .005688 .02425 .03428 .00311 .095201 .00602 0	b2	-0.164 0.0007 0.0007 0.9912	766 0 749 731	b3		0 0 -0.13255		b4	2.8	39334
b1	-0 -0 0.6 -0 -0 -0 0.0 0	.48347 0 .12051 .01086 .05688 .02425 .03428 .00311 .095201 .00602 0 .12934	b2	-0.164 0.0007 0.0007 0.9912	766 0 749 731	b3		0 0 -0.13255		b4	2.8	39334
b1	-0 -0 0.6 -0 -0 -0 0.0 0	.48347 0 .12051 .01086 .005688 .02425 .03428 .00311 .095201 .00602 0 .12934 .13876	b2	-0.164 0.0007 0.0007 0.9912	766 0 749 731	b3		0 0 -0.13255		b4	2.8	39334
b1	-0 -0 0.6 -0 -0 -0 0.0 0	.48347 0 .12051 .01086 .05688 .02425 .03428 .00311 .095201 .00602 0 .12934	b2	-0.164 0.0007 0.0007 0.9912	766 0 749 731	b3		0 0 -0.13255		b4	2.8	39334
b1	-0 -0 -0 -0 -0 -0 -0 0.0 0	.48347 0 .12051 .01086 .005688 .02425 .03428 .00311 .095201 .00602 0 .12934 .13876	b2	-0.164 0.0007 0.0007 0.9912	766 0 749 731	b3		0 0 -0.13255		b4	2.8	39334
b1	-0 -0 -0 -0 -0 -0 -0 0.0 0 -1 0.6 0.1	.48347 0 .12051 .01086 .005688 .02425 .03428 .00311 .095201 .00602 0 .12934 .013876 .51704	b2	-0.164 0.0007 0.0007 0.9912	766 0 749 731	b3		0 0 -0.13255		b4	2.8	39334
b1	-0 -0 -0 -0 -0 -0 -0 0.0 0 -1 0.6 0.1	.48347 0 .12051 .01086 .005688 .02425 .03428 .00311 .095201 .00602 0 .12934 .013876 .151704 .104285	b2	-0.164 0.0007 0.0007 0.9912	766 0 749 731	b3		0 0 -0.13255		b4	2.8	89334
b1	-0 -0 -0 -0 -0 -0 -0 0.0 0 -1 0.6 0.1 0.0 -0	.48347 0 .12051 .01086 .005688 .02425 .03428 .00311 .095201 .00602 0 .12934 .613876 .51704 .004285 .00082	b2	-0.164 0.0007 0.0007 0.9912	766 0 749 731	b3		0 0 -0.13255		b4	2.8	89334