第3回輪講資料 『ロボット制御基礎論』 pp.11-38

著者: 吉川恒夫 担当: 脇本 怜奈

March 18, 2025

概要

2.1 物体の位置と姿勢

2.1.1 物体座標系

基準座標系を \sum_A , 原点を O_A , 直交する 3 軸を X_A, Y_A, Z_A とする。

Figure 1: 図 2.1: 基準座標系と物体座標系

2.1.2 回転行列

回転行列を

$${}^{A}\boldsymbol{R}_{B} = \begin{bmatrix} {}^{A}\boldsymbol{x}_{B} & {}^{A}\boldsymbol{y}_{B} & {}^{A}\boldsymbol{z}_{B} \end{bmatrix}$$
 (1)

と表現する。 ${}^Ax_B, {}^Ay_B, {}^Az_B$ は互いに直交する単位ベクトルであるので、以下の式 (2.3)(2.4) を満たす。

$$(^{A}\mathbf{R}_{B})^{T}(^{A}\mathbf{R}_{B}) = \mathbf{I}_{3} \tag{2}$$

$${}^{A}\boldsymbol{R_{B}}^{-1} = \left({}^{A}\boldsymbol{R_{B}}\right)^{T} \tag{3}$$

つまり、回転行列 AR_B は直交行列の性質を持ち、座標変換に用いられる。

2.1.3 オイラー角

Figure 2: 図 2.4: オイラー角

オイラー角を用いた制御では、図 4 に示すように物体の姿勢を 3 つの回転角の組であるオイラー角 $(\phi,\,\theta,\,\psi)$ で表す。オイラー角が与えられたときの回転行列 AR_B は一意に定まる。 AR_B を式 (2.20) に示す。

$${}^{A}\mathbf{R}_{B} = \begin{bmatrix} C_{\phi}C_{\theta}C_{\psi} - S_{\phi}S_{\psi} & C_{\phi}C_{\theta}S_{\psi} - S_{\phi}C_{\psi} & C_{\phi}S_{\theta} \\ S_{\phi}C_{\theta}C_{\psi} + C_{\phi}S_{\psi} & -S_{\phi}C_{\theta}S_{\psi} + C_{\phi}C_{\psi} & S_{\phi}S_{\theta} \\ -S_{\theta}C_{\psi} & S_{\theta}S_{\psi} & C_{\theta} \end{bmatrix}$$

$$(4)$$

次に、任意の AR_B から対応するオイラー角を定める。 AR_B を式 (2.22) のように定める。

$${}^{A}\mathbf{R}_{B} = \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{bmatrix}$$
 (5)

atan 2を

$$atan2(a,b) = arg(b+ja)$$
(6)

とすると、 $R_{13}^2 + R_{23}^2 \neq 0$ なら

$$\theta = \operatorname{atan2}\left(\pm\sqrt{R_{13}^2 + R_{23}^2}, R_{33}\right) \tag{7}$$

$$\phi = \text{atan2} (\pm R_{23}, \pm R_{13}) \tag{8}$$

$$\psi = \operatorname{atan2}(\pm R_{32}, \mp R_{31}) \tag{9}$$

2.1.4 ロール・ピッチ・ヨー角

オイラー角による姿勢表現では $Z_a^{''}$ 軸周りに角度 ψ 回転させたが、ロール・ピッチ・ヨー角による姿勢表現では $X_a^{''}$ 軸周りに角度 ψ 回転させる。この様子を図 (2.6) に示す。

Figure 3: 図 2.6: ロール・ピッチ・ヨー角

2.2 座標変換

2.2.1 同次変換

2 つの座標系 \sum_A と \sum_B について、 \sum_A の座標系の位置を $^A\mathbf{r}$, \sum_B の座標系の位置を $^B\mathbf{r}$, \sum_B の \sum_A に 対する位置を Ap_B 、姿勢の回転行列を AR_B とすると

$$\begin{bmatrix} {}^{A}\mathbf{r} \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{A}\mathbf{R}_{B} & {}^{A}\mathbf{p}_{B} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} {}^{B}\mathbf{r} \\ 1 \end{bmatrix} \triangleq {}^{A}\mathbf{R}_{B} \begin{bmatrix} {}^{B}\mathbf{r} \\ 1 \end{bmatrix}$$
(10)

と表される。

2.3 関節変数と手先位置

- 2.3.1 一般的関係
- 2.3.2 リンクパラメータ
- 2.3.3 リンク座標系
- 2.3.4 順運動学問題の解