WS63V100 TLS&DTLS

开发指南

文档版本 02

发布日期 2024-10-14

前言

概述

本文档主要介绍 TLS/DTLS 组件的开发实现示例。

TLS/DTLS 以及其他加密套基于开源组件 mbedtls 3.1.0 实现,详细说明请参见官方说明: https://tls.mbed.org/api/index.html

如果官方说明版本与 SDK 版本不一致,请参考官方 release 说明: https://github.com/ARMmbed/mbedtls/releases

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本
WS63	V100

读者对象

本文档主要适用于以下工程师:

- 技术支持工程师
- 软件开发工程师

2024-10-14 i

符号约定

在本文中可能出现下列标志,它们所代表的含义如下。

符号	说明
▲ 危险	表示如不避免则将会导致死亡或严重伤害的具有高等级风险的危害。
<u>↑</u> 警告	表示如不避免则可能导致死亡或严重伤害的具有中等级风险的危害。
<u> 注意</u>	表示如不避免则可能导致轻微或中度伤害的具有低等级风险的危害。
须知	用于传递设备或环境安全警示信息。如不避免则可能会导致设备 损坏、数据丢失、设备性能降低或其它不可预知的结果。 "须知"不涉及人身伤害。
□ 说明	对正文中重点信息的补充说明。 "说明"不是安全警示信息,不涉及人身、设备及环境伤害信息。

修改记录

文档版本	发布日期	修改说明
02	2024-10-14	更新 "4.4 关于 FCC 认证默认配置变更说明" 小节内容。
01	2024-04-10	第一次正式版本发布。
00B01	2024-03-15	第一次临时版本发布。

2024-10-14 ii

目 录

前言	i
1 API 接口说明	1
1.1 结构体说明	1
1.2 API 列表	1
1.3 配置说明	1
2 开发指南	2
3 硬件适配	3
3.1 配置说明	3
3.2 适配说明	3
3.2.1 AES 适配	3
3.2.2 大数模幂适配	3
3.2.3 随机数适配	4
3.2.4 RSA 数字签名适配	4
3.2.5 HASH 算法适配	4
3.2.6 ECP 适配	4
4 注意事项	5
4.1 关于配置 SSL 接收缓存的注意事项	5
4.2 关于数字证书有效期验证的注意事项	6
4.3 关于部分默认配置变更的说明	6
4.4.关于 FCC 认证默认配置变更说明	6

2024-10-14

1 API 接口说明

- 1.1 结构体说明
- 1.2 API 列表
- 1.3 配置说明

1.1 结构体说明

mbedtls 详细的结构体说明请参考官方说明文档: https://tls.mbed.org/api/annotated.html

1.2 API 列表

mbedtls 详细的 API 说明请参考官方说明文档: https://tls.mbed.org/api/globals_func.html

1.3 配置说明

mbedtls 详细的配置项说明请参考官方说明文档: https://tls.mbed.org/api/config_8h.html#ab3bca0048342cf2789e7d170548ff3a5

2024-10-14

开发指南 2 开发指南

2 开发指南

mbedtls 详细的开发 DEMO 请参考官方说明文档:

https://tls.mbed.org/api/modules.html

3 硬件适配

- 3.1 配置说明
- 3.2 适配说明

3.1 配置说明

在工程的 build\config\target_config\ws63\config.py 中的对应编译目标中添加 MBEDTLS_HARDEN_OPEN 宏,开启硬件加速回调接口注册功能。

在 mbedtls_v3.1.0\harden\platform\connect\mbedtls_platform_hardware_config.h 中开启对应的算法宏,会直接调用硬件驱动接口。

目前支持的硬件算法有 AES,RSA,HASH,大数模幂,随机数, ECP 算法。

3.2 适配说明

3.2.1 AES 适配

● 使能 MBEDTLS_AES_ALT 后,AES 算法在使用硬件加速器时,会锁定硬件加速器资源,即 AES 操作是阻塞的,直至驱动获取资源或超时返回失败。

3.2.2 大数模幂适配

● 使能 MBEDTLS_BIGNUM_EXP_MOD_USE_HARDWARE 后,会调用硬件驱动接口完成大数模幂运算。

3.2.3 随机数适配

使能 MBEDTLS_ENTROPY_HARDWARE_ALT 后,系统会选用默认增加硬件随机数作为一个强随机数源。如果此宏被关闭,而用户也没有注册其他强随机数源,会导致 mbedTLS 无法提供安全随机数,影响系统的安全性。

3.2.4 RSA 数字签名适配

使能 MBEDTLS_RSA_ALT 编译宏之后,mbedTLS 会对 RSA 数字签名操作和验签操作进行硬件加速。

3.2.5 HASH 算法适配

目前 WS63 规格支持的硬件加速 HASH 算法有 SHA1,SHA224,SHA256,SHA384,SHA512,分别开启 MBEDTLS_SHA1_USE_HARDWARE, MBEDTLS_SHA224_USE_HARDWARE, MBEDTLS_SHA256_USE_HARDWARE, MBEDTLS_SHA384_USE_HARDWARE, MBEDTLS_SHA512_USE_HARDWARE来使能。

3.2.6 ECP 适配

目前 WS63 规格支持的硬件加速 ECP 算法有 SECP192R1,

SECP224R1,SECP256R1,SECP384R1,SECP521R1,BP256R1,BP384R1,BP512R1,CURVE25519,CURVE448,分别开启 MBEDTLS SECP192R1 USE HARDWARE,

MBEDTLS_SECP224R1_USE_HARDWARE,

MBEDTLS SECP256R1 USE HARDWARE,

MBEDTLS SECP384R1 USE HARDWARE,

MBEDTLS SECP521R1 USE HARDWARE,

MBEDTLS_BP256R1_USE_HARDWARE, MBEDTLS_BP384R1_USE_HARDWARE, MBEDTLS_BP512R1_USE_HARDWARE.

MBEDTLS_CURVE25519_USE_HARDWARE,MBEDTLS_CURVE448_USE_HARDWARE 来开启。

4 注意事项

- 4.1 关于配置 SSL 接收缓存的注意事项
- 4.2 关于数字证书有效期验证的注意事项
- 4.3 关于部分默认配置变更的说明
- 4.4 关于 FCC 认证默认配置变更说明

4.1 关于配置 SSL 接收缓存的注意事项

● SSL 接收缓存由编译项 MBEDTLS_SSL_IN_CONTENT_LEN 控制,默认为 16KB。如果实际应用中,用户可以确保 SSL 上层数据包的最大长度不超过 2KB 或 4KB,则可以通过 mbedtls_ssl_conf_max_frag_len 接口设置 SSL 接收缓存的 长度,达到节省内存的目的。

注意: mbedtls_ssl_conf_max_frag_len 接口的调用必须先于 mbedtls_ssl_setup 接口。

- 考虑到多级数字证书可能导致 TLS 握手包的长度大于 1KB, 因此调用 mbedtls_ssl_conf_max_frag_len 接口时,只有 mfl_code 为 MBEDTLS_SSL_MAX_FRAG_LEN_2048 或 MBEDTLS_SSL_MAX_FRAG_LEN_4096 时, mbedtls 才会修改接收缓存;如果 mfl_code 为 MBEDTLS_SSL_MAX_FRAG_LEN_512 或 MBEDTLS_SSL_MAX_FRAG_LEN_1024,则接收缓存仍然为 16KB。
- 如果修改 SSL 接收缓存为 2KB 或 4KB 后, Client 端接收到 Server 端的一个大于 2KB 或 4KB 的数据包,此时 mbedtls_ssl_read 接口会返回失败,错误码为 MBEDTLS_ERR_SSL_MSG_TOO_LONG(此为新增的一个特定错误码),当用 户获得此错误码时,必须关闭 SSL 连接,不允许继续从 SSL 链路接收数据。

● 通过 mbedtls_ssl_conf_max_frag_len 接口设置 SSL 接收缓存,目前只对 SSL Client 有效。

4.2 关于数字证书有效期验证的注意事项

由于 WS63 平台无 Real Time Controller,因此系统启动后,无法获取 UTC 时间,这种情况下数字证书的有效期验证会失败,导致 TLS 建链失败。针对此种情况,mbedtls 默认关闭 MBEDTLS_HAVE_TIME_DATE,此时 TLS 的证书校验会关闭。如果用户可以确保 TLS 证书校验之前,可以通过其他方式获取 UTC 时间(例如:SNTP),则可以打开 MBEDTLS_HAVE_TIME_DATE 编译宏。

4.3 关于部分默认配置变更的说明

MbedTLS 安全库的默认配置见 include/mbedtls/mbedtls_config.h 文件。开源版本默认开启大部分功能,LiteOS 对 MbedTLS 的默认配置进行了适度修改,主要目的是增强 MbedTLS 的安全性,降低代码体积。修改后的 MbedTLS 满足 IoT 绝大部分场景,改动的主要原则如下:

- 默认配置必须保证安全性要求。
- 关闭不安全算法或功能。
- 关闭不适合 IoT 场景的功能,例如 TLS Server 模式、X509 证书签名请求 CSR。
- 关闭不适合 IoT 场景的算法,例如 SECP521R1 ECC 曲线, IoT 场景下推荐使用
 128 比特安全强度的 ECC 曲线。
- 关闭不常用算法或功能,例如 IoT 场景不常用的 PKCS#12 证书。如果打开 PKCS#12,可能存在一定的应用风险。

4.4 关于 FCC 认证默认配置变更说明

FCC 认证为 EMC 强制性认证,主要针对 9K-3000GHZ 的电子电器产品,内容涉及无线电、通信等各方面。FCC 认证过程依赖 KEY_EXCHANGE_ECDHE_RSA 算法,此算法默认未开启。如果设备有通过 FCC 认证的需求,可以开启此算法。开启方法:修改

open source/mbedtls/mbedtls v3.1.0/harden/platform/connect/mbedtls platform har

dware_config.h 文件,将#undef
MBEDTLS_KEY_EXCHANGE_ECDHE_RSA_ENABLED 注释掉。