

the process continued...

Find Eigenvalues:

Find Eigenvectors: 2.

Form Matrices:

Construct the Diagonalization:

 ODO^{-}

the process continued...

$A = QDQ^{-1}$

1. Find Eigenvalues:

Determine the eigenvalues λ of the matrix A by solving the characteristic polynomial $\det(A - \lambda I) = 0$ where I is the identity matrix.

2. Find Eigenvectors:

For each eigenvalue, find the corresponding eigenvectors by solving $(A - \lambda I)\vec{v} = 0$

3. Form Matrices:

Arrange the eigenvectors as columns in a matrix Q and the eigenvalues along the diagonal in a matrix D.

4. Construct the Diagonalization:

If A is diagonalizable you can express it as $A=\mathcal{Q}D\mathcal{Q}^{-1}$

the recipe

$$A = QDQ^{-1}$$