Data Extraction and Exploration

- 3 Queries were used on the Udacity website to extract the data in .csv format:
 - select * from city_data;- select * from city_list;
 - select * from global data;
- Then I used python jupyter notebook to read and explore the resulting .csv

Data Creation

- Created moving average temperatures for Los Angeles and Global
- la_data['la moving avg temp'] = la_data.iloc[:,3].rolling(window=5).mean()
- global_data['global moving avg temp'] = global_data.iloc[:,1].rolling(window=5).mean()
- The moving average was calculated using pandas .rolling() method, where the "windows=" is used to select how many rows of the average temperature column column I would like to select, then use the mean() method to get the averages among those rows of year
- Results:

In [94]:	la_dat		In [96]:	global_data							
Out[94]:							Out[96]:				
		year	city	country	avg_temp	la moving avg temp			year	avg_temp	global moving avg temp
	36607	1849	Los Angeles	United States	15.71	NaN		0	1750	8.72	NaN
	36608	1850	Los Angeles	United States	15.28	NaN		1	1751	7.98	NaN
	36609	1851	Los Angeles	United States	15.53	NaN		2	1752	5.78	NaN
	36610	1852	Los Angeles	United States	15.61	NaN		3	1753	8.39	NaN
	36611	1853	Los Angeles	United States	16.27	15.680		4	1754	8.47	7.868
	36767	2009	Los Angeles	United States	16.68	16.688		261	2011	9.52	9.578
	36768	2010	Los Angeles	United States	15.89	16.580		262	2012	9.51	9.534
	36769	2011	Los Angeles	United States	15.87	16.430		263	2013	9.61	9.570
	36770	2012	Los Angeles	United States	17.09	16.508		264	2014	9.57	9.582
	36771	2013	Los Angeles	United States	18.12	16.730		265	2015	9.83	9.608
	165 row	/s × 5 (columns					266	rows ×	3 columns	

Data Merging and Cleaning

- I used the .merge() method and performed a left join with the global_data and la_data tables, with the moving averages added
- I noticed that Los Angeles only has average temperature data from 1853 to 2013, so I selected only the rows with that range of years

-combined = global_data.merge(la_data, left_on='year', right_on='year', how='left')[103:-2], results:

.09]: c	omb	ined						
09]:		year	avg_temp_x	global moving avg temp	city	country	avg_temp_y	la moving avg temp
	103	1853	8.04	8.040	Los Angeles	United States	16.27	15.680
	104	1854	8.21	8.086	Los Angeles	United States	15.74	15.686
	105	1855	8.11	8.128	Los Angeles	United States	15.94	15.818
	106	1856	8.00	8.092	Los Angeles	United States	15.52	15.816
	107	1857	7.76	8.024	Los Angeles	United States	16.19	15.932
:	259	2009	9.51	9.580	Los Angeles	United States	16.68	16.688
:	260	2010	9.70	9.580	Los Angeles	United States	15.89	16.580
:	261	2011	9.52	9.578	Los Angeles	United States	15.87	16.430
:	262	2012	9.51	9.534	Los Angeles	United States	17.09	16.508
	263	2013	9.61	9.570	Los Angeles	United States	18.12	16.730
			7					

161 rows × 7 columns

Data Visualization

- I used matplotlib.pyplot library visualize the Los Angeles' and Global's moving average temperature changes from 1853 to 2013,
- A line chart was chosen because it is the most appropriate for telling changes in values over time

```
In [101]: plt.plot(combined['year'], combined['global moving avg temp'], label = 'global temperatures')
   plt.plot(combined['year'], combined['la moving avg temp'], label = 'Los Angeles temperatures')
   plt.title('Global temperatures vs Los Angeles temperatures from 1853 to 2014')
   plt.xlabel('Years')
   plt.ylabel('Degrees in celcius')
   plt.legend()
   plt.figure(figsize=(50, 50))
   plt.show()
```


<Figure size 3600x3600 with 0 Axes>

Findings

• Los Angeles, from the years 1853 to 2013, is about 7.32 degrees Celsius hotter than the global

```
average
In [10]: combined['la moving avg temp'].mean() -
combined['global moving avg temp'].mean()
Out[10]: 7.321130434782601
```

• Los Angeles has a range in average temperature fluctuations of about 1.6 degrees Celsius, while the world has 1.69 degrees Celsius

• Los Angeles's hottest year on record was in 2013, while the coldest year was in 1880, the world's hottest year on record was in 2015, while the coldest year was in 1752.

• The temperatures all around the world have been steadily increasing, I believe that the hottest year on record would be 2020 if there was data available in this dataset.