

AARHUS SCHOOL OF ENGINEERING

SUNDHEDSTEKNOLOGI 3. SEMESTERPROJEKT

Dokumentation

Gruppe 1

Lise Skytte Brodersen (201407432) Mads Fryland Jørgensen (201403827) Albert Jakob Fredshavn (201408425) Malene Cecilie Mikkelsen (201405722) Mohamed Hussein Mohamed (201370525) Sara-Sofie Staub Kirkeby (201406211) Martin Banasik (201408398) Cecilie Ammizbøll Aarøe (201208778)

Vejleder Studentervejleder Lars Mortensen Aarhus Universitet

Indholdsfortegnelse

Kapite	l 1 K	ravspecifikation	1
1.1	Indled	ning	1
1.2	Funkti	ionelle krav	1
	1.2.1	Aktør-kontekstdiagram	1
	1.2.2	Aktørbeskrivelse	2
	1.2.3	Use case-diagram	3
	1.2.4	Use Cases	3
1.3	Ikke-fu	ınktionelle krav	7
	1.3.1	$(F)URPS+ \dots \dots$	7

Kravspecifikation

Version Dato Ansvarlig Beskrivelse

1.1 Indledning

1.2 Funktionelle krav

De funktionelle krav vil nedenstående beskrives ud fra Aktør-kontekstdiagram, aktørbeskrivelse, Use Cases samt Use Case diagram.

1.2.1 Aktør-kontekstdiagram

 $Figur~1.1:~Akt \'{o}r-kontekst diagram$

1.2.2 Aktørbeskrivelse

Aktørnavn Type Beskrivelse	Bruger Primær Person med relevant baggrundsviden inden for blodtryksanalyse
Aktørnavn Type Beskrivelse	Borger Sekundær Borger er en kombination af Physionet og Analog Discovery. Borger repræsenterer data fra Physionet leveret til blodtryksmålingssystemet igennem Analog Discovery
Aktørnavn Type Beskrivelse	Database Sekundær Database bruges i blodtryksmålingssystemet til at gemme data
Atørnavn Type Beskrivelse	Physionet Ekstern Physionet er en ekstern database, som indeholder blodtrykssignalet fra forskellige patienter
Aktørnavn Type Beskrivelse	Analog Discovery Ekstern Analog Discovery omdanner data fra Physionet til at analogt signal

Tabel 1.2: Aktørbeskrivelse

1.2. Funktionelle krav ASE

1.2.3 Use case-diagram

Figur 1.2: Use case-diagram

1.2.4 Use Cases

Use Case 1

Navn	Vis Måling
Use case ID	1
Samtidige forløb	1
Primær aktør	Bruger
Sekundære aktør	Borger
Referencer	UC2
Mål	Bruger ønsker at vise blodtrykssignal uden digitalt filter
Initiering	Startes af Bruger
Forudsætninger	System er aktivt og tilgængeligt
Resultat	Blodtrykssignalet udskrives

Hovedforløb	1.	Kalibrering-vinduet forekommer, hvor system spørger om der skal foretages en kalibrering [1.a Bruger trykker på "Ja"-knappen] [1.b Bruger trykker på "Nej"-knappen]
	2.	Blodtryksignal udskrives i Monitor-vinduet
Undtagelser	1.a	Bruger ønsker kalibrering. UC2 gennemføres fra punkt 3 hvorefter UC1 fortsætter ved punkt 2
	1.b	Bruger ønsker ikke kalibrering. UC1 forsættes ved punkt 2

Tabel 1.3: Fully dressed Use Case 1.

Use Case 2

Navn		Kalibrér
Use case ID		2
Samtidige forløb		1
Primær aktør		Bruger
Sekundære aktør		
Reference		
Mål		Bruger ønsker at kalibrere blodtrykssignal
Initiering		Startes af Bruger
Forudsætninger		System er aktivt og tilgængeligt. UC1 kører
Resultat		Blodtrykssignalet er kalibreret
Hovedforløb	1.	Kalibrering-vinduet forekommer, hvor system spørger om der skal foretages en kalibrering
	2.	Bruger trykker på "Ja"-knappen [2.a Bruger trykker på "Nej"-knappen]
	3.	System kalibrerer og udskriver, at kalibreringen er gennemført i kalibrerings-vinduet
Undtagelser	2.a	Bruger ønsker ingen kalibrering. System fortsætter i UC1 ved punkt 2

Tabel 1.4: Fully dressed Use Case 2.

1.2. Funktionelle krav ASE

Use Case 3

Navn		Nulpunktsjustér blodtrykssignal
Use case ID		3
Samtidige forløb		1
Primær aktør		Bruger
Sekundære aktør		Borger
Reference		
Mål		Bruger ønsker at nulpunktsjustere blodtrykssignal
Initiering		Startes af Bruger
Forudsætninger		System er aktivt og tilgængeligt. UC1 kører
Resultat		Blodtrykssignalet er nulpunktsjusteret
Hovedforløb	1.	Bruger trykker på "Nulpunktjustering"-knappen og nulpunktsjustering starter
	2.	System udskriver, at nulpunktsjustering er gemmenført i Monitorvinduet
Undtagelser		

Tabel 1.5: Fully dressed Use Case 3.

Use Case 4

Navn	Aktivér digitalt filter
Use case ID	4
Samtidige forløb	1
Primær aktør	Bruger
Sekundære aktør	Borger
Reference	
Mål	Bruger ønsker at filtere blodtrykssignalet igennem et digitalt filter
Initiering	Startes af Bruger
Forudsætninger	System er aktivt og tilgængeligt. UC1 kører
Resultat	Digitalt filtreret blodtrykssignal udskrives i Monitor-vindet

Hovedforløb	1.	Bruger aktiverer filter ved at rykke switchen over på "Med digitalt filtre"
	2.	System udskriver at filteret er aktivt i Monitor-vinduet
Undtagelser		
		Tabel 1 G. Fulls, dressed Use Cose /

Tabel 1.6: Fully dressed Use Case 4.

Navn	Gem måling
Use case ID	5

Samtidige forløb

Primær aktør Bruger

Sekundære aktør Database & Borger

Reference

Use Case 5

Mål Bruger ønsker at gemme data i Database

Initiering Startes af Bruger

Forudsætninger System er aktivt og tilgængeligt. UC1 kører

Resultat Data er gemt i Database

Hovedforløb 1. Bruger trykker på "Gem"-knappen $[1.a\ Borgerens\ data\ er\ gemt\ fra\ forrige\ målinger]$

2. System åbner Gem-vinduet

3. Bruger indtaster data for blodtryksmålingen

4. Bruger trykker på "OK"-knappen

5. System lukker Gem-vinduet

6. System udskriver, at data er gemt i Monitor-vinduet

Undtagelser 1.a	U	JC5 forsættes ved UC5 ved punkt 6
-----------------	---	-----------------------------------

Tabel 1.7: Fully dressed Use Case 5.

1.3 Ikke-funktionelle krav

1.3.1 (F)URPS+

MoSCoW er angivet i parentes med hhv. M, S, C eller W.

Usability

- (M) Brugeren skal kunne starte en default-måling maksimalt 20 sek. efter opstart af programmet
- (M) Login-vinduet skal indeholde en "login"-knap til at logge på og få vist EKGvinduet
- (M) EKG-vinduet skal indeholde en "start"-knap til at igangsætte målingerne
- (M) EKG-vinduet skal indeholde en "log ud"-knap
- (M) EKG-vinduet skal indeholde en "gem"-knap
- (M) Information-vinduet skal indeholde en "gem"-knap

Reliability

• (M) Systemet skal have en effektiv MTBF (Mean Time Between Failure) på 20 minutter og en MTTR (Mean Time To Restore) på 1 minut.

$$Availability = \frac{MTBF}{MTBF + MTTR} = \frac{20}{20 + 1} = 0,952 = 95,2\%$$
 (1.1)

Performance

- (M) Der skal vises en EKG-graf i EKG-vinduet, hvor spænding vises op af y-aksen (-1V til 1V) og tiden på x-aksen
- (M) Grafen skal være scrollbar på x-aksen, så brugeren selv ved brug af musen kan vælge det udsnit af grafen, der skal vises mere detaljeret
- (M) Skal tage en sample over et brugerbestemt interval, hvor frekvensen er tilpasset målingerne, således at grafen er analyserbar

Supportability

• (M) Softwaren er opbygget af trelagsmodellen