Упражнение: Повторения с цикли – for-цикъл

Задачи за упражнение в клас и за домашно към курса "Основи на програмирането" @ СофтУни.

Тествайте решенията си в Judge системата: https://judge.softuni.bg/Contests/Compete/Index/1164

1. Числа до 1000, завършващи на 7

Напишете програма, която отпечатва числата в диапазона [1...1000], които завършват на 7.

вход	изход
(няма)	7 17 27 997

Насоки

- 1. Едно число завършва на 7, когато резултатът от модулното деление на числото и 10 е равен на 7;
- 2. Направете for цикъл от 1 до 1000 и проверете за всяко число дали завършва на 7. Изпълнилите условието числа принтирайте на конзолата

```
for num in range(1, 1001):
    if num % 10 == 7:
        print(num)
```

Можете да използвате и цикъл със стъпка:

```
for num in range(7, 1000, 10):
    print(num)
```

2. Елемент, равен на сумата на останалите

Да се напише програма, която чете **п на брой** цели числа, въведени от потребителя, и проверява дали сред тях съществува число, което е равно на сумата на всички останали.

Ако има такъв елемент, на конзолата да се изпечата на два реда:

"Yes"

"Sum = {неговата стойност}

В противен случай да се изпечата отново на два реда:

"No"

"Diff = {разликата между най-големия елемент и сумата на останалите, по абсолютна стойност}"

Примерен вход и изход

вход	изход	коментари	
7	Yes	3 + 4 + 1 + 2 + 1 + 1 = 12	
3	Sum = 12		
4			
1			
1			

2 12 1		
4 6 1 2 3	Yes Sum = 6	1 + 2 + 3 = 12
3 1 1 10	No Diff = 8	10 - (1 + 1) = 8
3 5 5 1	No Diff = 1	5 - (5 + 1) = 1
3 1 1 1	No Diff = 1	

Насоки

- 1. Създайте две помощни променливи:
 - "max num" с много ниска първоначална стойност, в която да пазите най-голямото от прочетените числа;
 - "total" с първоначална стойност 0, в която да пазите сумата от прочетените числа.

```
max num = -sys.maxsize
sum_numbers = 0
```

2. Прочетете броя числа, които ще се въведат на конзолата - \mathbf{n} , и направете \mathbf{for} цикъл от $\mathbf{0}$ до \mathbf{n} , като на всяко завъртане четете число **num**:

```
numbers_count = int(input())
for i in range(numbers_count):
```

3. Направете проверка дали прочетеното число е по-голямо от "max num". Ако е по-голямо, приравнете стойността на "max_num" към неговата. След което добавете стойността на прочетеното число към "total":

```
for i in range(numbers count):
   current_num = int(input())
    if current_num > max_num:
        max num = current num
    sum_numbers += current_num
```


4. След цикъла проверете дали "max num" е равно на сумата от всички числа, от която е извадено "max num":

```
sum numbers -= max num
if sum numbers == max num:
    print('Yes')
    print(f'Sum = {sum numbers}')
else:
    print('No')
    print(f'Diff = {abs(max_num - sum_numbers)}')
```

3. Четни / нечетни позиции

Напишете програма, която чете **n** на **брой числа**, въведени от потребителя, и пресмята **сумата**, **минимума** и максимума на числата на четни и нечетни позиции (броим от 1). Когато няма минимален / максимален елемент, отпечатайте "No".

Изходът да се форматира в следния вид:

Всяко число трябва да е форматирано до втория знак след десетичната запетая.

Примерен вход и изход

вход	изход
6 2 3 5 4 2 1	OddSum=9.00, OddMin=2.00, OddMax=5.00, EvenSum=8.00, EvenMin=1.00, EvenMax=4.00

вход	изход
2 1.5 -2.5	OddSum=1.50, OddMin=1.50, OddMax=1.50, EvenSum=-2.50, EvenMin=-2.50, EvenMax=-2.50

вход	изход
1 1	OddSum=1.00, OddMin=1.00, OddMax=1.00, EvenSum=0.00, EvenMin=No, EvenMax=No

вход	изход
0	OddSum=0.00, OddMin=No, OddMax=No, EvenSum=0.00, EvenMin=No, EvenMax=No

вход	Изход
5	OddSum=8.00,
3	OddMin=-3.00,
-2	OddMax=8.00,
8	EvenSum=9.00,
11	EvenMin=-2.00,
-3	EvenMax=11.00

вход	изход
4 1.5 1.75 1.5 1.75	OddSum=3.00, OddMin=1.50, OddMax=1.50, EvenSum=3.50, EvenMin=1.75, EvenMax=1.75

вход	изход
1 -5	OddSum=-5.00, OddMin=-5.00, OddMax=-5.00, EvenSum=0.00, EvenMin=No, EvenMax=No

вход	изход
3 -1 -2 -3	OddSum=-4.00, OddMin=-3.00, OddMax=-1.00, EvenSum=- 2.00, EvenMin=- 2.00, EvenMax=-2.00

Задача обединява няколко предходни задачи: намиране на минимум, намиране на максимум, намиране на сума и обработка на елементите от четни и нечетни позиции. Припомнете си ги.

Насоки

1. Работете с реални числа (не цели). Сумата, минимумът и максимумът също са реални числа;

[&]quot;OddSum= {cyma на числата на нечетни позиции}",

[&]quot;OddMin= { минимална стойност на числата на нечетни позиции }" / {"No"},

[&]quot;OddMax= { максимална стойност на числата на нечетни позиции }" / {"No"},

[&]quot;EvenSum= { сума на числата на четни позиции }",

[&]quot;EvenMin= { минимална стойност на числата на четни позиции }" / {"No"},

[&]quot;EvenMax= { максимална стойност на числата на четни позиции }" / {"No"}

- 2. Използвайте неутрална начална стойност при намиране на минимум / максимум, например sys.maxsize и -sys.maxsize. Ако получите накрая неутралната стойност, печатайте "No";
- 3. Завъртете **for** цикъл до числото, което се въвежда, като на всеки нов ред прочитате ново число **num**;
- 4. Проверете дали позицията на числото е четна или нечетна, като променливата, инициализирана в цикъла і, отговаря на позицията на числото;
- 5. Ако позицията на числото е четно, увеличете сумата на четните числа и проверете дали числото е по-голямо от най-голямото четно, и му презапишете стойността. Също така проверете дали числото е по-малко от най-малкото четно число и му презапишете стойността;
- 6. Аналогично направете същото и за нечетните числа.

4. Еднакви двойки

Дадени са **2*n** на **брой** числа. Първото и второто формират **двойка**, третото и четвъртото също и т.н. Всяка двойка има стойност – сумата от съставящите я числа. Напишете програма, която проверява дали всички двойки имат еднаква стойност или печата максималната разлика между две последователни двойки. Ако всички двойки имат еднаква стойност, отпечатайте "Yes, value = {стойността}". В противен случай отпечатайте "No, maxdiff = {максималната разлика}".

Примерен вход и изход

Примерни изпитни задачи

5. Хистограма

Дадени са \mathbf{n} цели числа в интервала [1...1000]. От тях някакъв процент $\mathbf{p1}$ са под 200, друг процент $\mathbf{p2}$ са от 200 до 399, друг процент **р3** са от 400 до 599, друг процент **р4** са от 600 до 799 и останалите **р5** процента са от 800 нагоре. Да се напише програма, която изчислява и отпечатва процентите р1, р2, р3, р4 и р5.

Пример: имаме n = 20 числа: 53, 7, 56, 180, 450, 920, 12, 7, 150, 250, 680, 2, 600, 200, 800, 799, 199, 46, 128, 65. Получаваме следното разпределение и визуализация:

Диапазон	Числа в диапазона	Брой числа	Процент
< 200	53, 7, 56, 180, 12, 7, 150, 2, 199, 46, 128, 65	12	p1 = 12 / 20 * 100 = 60.00 %
200 399	250, 200	2	p2 = 2 / 20 * 100 = 10.00 %
400 599	450	1	p3 = 1 / 20 * 100 = 5.00 %
600 799	680, 600, 799	3	p4 = 3 / 20 * 100 = 15.00 %
≥ 800	920, 800	2	p5 = 2 / 20 * 100 = 10.00 %

Вход

На първия ред от входа стои цялото число \mathbf{n} (1 ≤ \mathbf{n} ≤ 1000) – брой числа. На следващите \mathbf{n} реда стои \mathbf{n} о едно цяло число в интервала [1...1000] – числата върху които да бъде изчислена хистограмата.

Изход

Да се отпечата на конзолата хистограмата – 5 реда, всеки от които съдържа число между 0% и 100%, с точност две цифри след десетичната точка, например 25.00%, 66.67%, 57.14%.

Примерен вход и изход

Вход	Изход	Вход	Изход	E	Вход	Изход	Вход	Изход	Вход	Изход
3 1 2 999	66.67% 0.00% 0.00% 0.00% 33.33%	4 53 7 56 999	75.00% 0.00% 0.00% 0.00% 25.00%	8 2 1 3	800 801 250 199 399 599 799	14.29% 28.57% 14.29% 14.29% 28.57%	9 367 99 200 799 999 333 555 111 9	33.33% 33.33% 11.11% 11.11% 11.11%	14 53 7 56 180 450 920 12 7 150 250 680 2 600 200	57.14% 14.29% 7.14% 14.29% 7.14%

6. Деление без остатък

Дадени са n-на брой цели числа в интервала [1...1000]. От тях някакъв процент p1 се делят без остатък на 2, друг процент р2 се делят без остатък на 3, друг процент р3 се делят без остатък на 4. Да се напише програма, която изчислява и отпечатва процентите р1, р2 и р3.

Пример: имаме n = **10** числа: 680, 2, 600, 200, 800, 799, 199, 46, 128, 65. Получаваме следното разпределение и визуализация:

Деление без остатък на:	Числа в диапазона	Брой числа	Процент		
2	680, 2, 600, 200, 800, 46, 128	7	p1 = 7.0 / 10 * 100 = 70.00 %		

3	600	1	p2 = 1 / 10 * 100 = 10.00 %
4	680, 600, 200, 800, 128	5	p3 = 5 / 10 * 100 = 50.00 %

Вход

На първия ред от входа стои цялото число \mathbf{n} (1 ≤ \mathbf{n} ≤ 1000) - брой числа. На следващите \mathbf{n} реда стои \mathbf{n} о едно цяло число в интервала [1...1000] - числата които да бъдат проверени на колко се делят.

Изход

Да се отпечатат на конзолата 3 реда, всеки от които съдържа процент между 0% и 100%, с точност две цифри след десетичната точка, например 25.00%, 66.67%, 57.14%.

- На първият ред процентът на числата които се делят на 2;
- На вторият ред процентът на числата които се делят на 3;
- На третият ред процентът на числата които се делят на 4.

Примерен вход и изход

Вход	Изход	Вход	Изход
10	70.00%	3	33.33%
680	10.00% 50.00%	3	100.00%
2	30.00%	6	0.00%
600		9	
200			
800			
799			
199			
46			
128			
65			

7. Заплата

Шеф на компания забелязва че все повече служители прекарват време в сайтове, които ги разсейват. За да предотврати това, той въвежда изненадващи проверки на отворените табове на браузъра на служителите си.

Според сайта се налагат различни глоби:

- "Facebook" -> 150 лв.
- "Instagram" -> 100 лв.
- "Reddit" -> 50 лв.

От конзолата се четат два реда:

- Брой отворени табове в браузъра п цяло число;
- Заплата число в интервала цяло число.

След това n – на брой пъти се чете име на уебсайт – текст.

Ако по време на проверката заплатата стане по-малка или равна на 0 лева, на конзолата се изписва "You have lost your salary." и програмата приключва. В противен случай след проверката на конзолата се изписва остатъкът от заплатата (да се изпише като цяло число).

Примерен вход и изход

Вход	Изход	Обяснения		
10 750 Facebook Dev.bg Instagram Facebook Reddit Facebook Facebook	You have lost your salary.	Има 10 отворени таба в браузъра. Заплатата е 750 За първия таб -> Facebook глоба 150 лв.(750 – 150 = 600) За втория таб -> Dev.bg не глобяват За третия таб -> Instagram глоба 100 лв.(600 – 100 = 500) За четвъртия таб -> Facebook глоба 150 лв.(500 – 150 = 350) За петия таб -> Reddit глоба 50 лв. (350 – 50 = 300) За шестия таб -> Facebook глоба 150 лв.(300 – 150 = 150) За седмия таб -> Facebook глоба 150 лв.(150 – 150 = 0) Заплатата е равна на 0, следователно се изписва съответният изход и програмата приключва.		
Вход	Изход	Вход	Изход	
3 500 Github.com Stackoverflow.com softuni.bg	500	3 500 Facebook Stackoverflow.com softuni.bg	350	

