

主要特点

- IC控制电路与LED点光源共用一个电源。
- 控制电路与RGB芯片集成在一个2121封装的元器件中,构成一个完整的外控像素点。
- 内置信号整形电路,任何一个像素点收到信号后经过波形整形再输出,保证线路波形畸变不会累加。
- 每个像素点的三基色颜色可实现256级亮度显示,完成16777216种颜色的全真色彩显示;
- 内置上电复位和掉电复位电路。
- 端口扫描频率2KHz/s。
- 串行级联接口,能通过一根信号线完成数据的接收与解码。
- 断点续传,额外增加一路信号线,实现双路信号传输,在单个像素点损坏的情况下,不影响整体显示效果;
- 任意两点传输距离在不超过2米时无需增加任何电路。
- 当刷新速率30帧/秒时,级联数不小于1024点。
- 数据发送速度可达800Kbps。
- 智能反接保护,5V电源接反时不会损坏元器件;
- 外围不需要包含电容在内的所有任何电子元器件。

主要应用领域

● LED像素屏、广告屏、异形屏,各种消费性电子产品。

产品概述

WS2813B-2121是一个集控制电路与发光芯片于一体的智能外控LED光源。其外型与一个2121LED灯珠相同,每个元件即为一个像素点。像素点内部包含了智能数字接口数据锁存信号整形放大驱动电路,防反接电路,还包含有高精度的内部振荡器和高精度恒流控制模块,有效保证了像素点光的颜色高度一致。

实现**双路信号传输**,在单个像素点损坏的情况下,不影响整体色彩的显示。

数据协议采用单线归零码的通讯方式,像素点在上电复位以后,DIN端接受从控制器传输过来的数据,首先送过来的24bit数据被第一个像素点提取后,送到像素点内部的数据锁存器,剩余的数据经过内部整形处理电路整形放大后通过DO端口开始转发输出给下一个级联的像素点,每经过一个像素点的传输,信号减少24bit。像素点采用自动整形转发技术,使得该像素点的级联个数不受信号传送的限制,仅仅受限信号传输速度要求。

高达 2KHz 的端口扫描频率,在高清摄像头的捕捉下都不会出现闪烁现象,非常适合高速移动产品的使用。 280µs以上的 RESET 时间,出现中断也不会引起误复位,可以支持更低频率,价格便宜的MCU。

机械尺寸(单位mm)

引出端排列

引脚功能

脚位号	符号	管脚名	功 能 描 述
1	BI	辅助信号输入	辅助信号输入引脚
2	DI	主路信号输入	主路信号输入引脚
3	VDD	电源	供电引脚
4	DO	主路信号输出 控制信号输出引脚	
5	ВО	辅助信号输出 辅助信号输出引脚	
6	GND	地	信号接地和电源接地引脚

最大额定值

参数	符号	范围	单位
电源电压	V_{DD}	+3.7~+5.3	V
逻辑输入电压	V _I	-0.3V~VDD+0.7	V

电气参数(T_A=25°C, V_{DD}=5V, V_{SS}=0V**)**

参数	符号	最小	典型	最大	单位	测试条件
端口输出电流	Iout		48		mA	OUTR+OUTG+OUTB
输入电流	II			±1	μΑ	$V_I = V_{DD}/V_{SS}$
高电平输入	$V_{ m IH}$	0.65Vdd		V _{DD} +0.7V	V	$\mathrm{D_{IN}}$
低电平输入	V_{IL}	-0.3V		0.7V	V	D_{IN}

开关特性 (T_A=25°C, V_{DD}=5V, V_{SS}=0V)

参数	符号	最小	典型	最大	单位	测试条件
传输延迟时间	t_{PLZ}			300	ns	CL=15pF, DIN \rightarrow DOUT, RL=10K Ω
下降时间	t _{THZ}			120	μs	CL=300pF, OUTR/OUTG/OUTB
输入电容	C _I			15	pF	

LED 特性参数

参数符号	佐 县	} 颜色	静	单位	工作		
	14.2		最小值	典型值	最大值	平位	电流
47 1/	发光 强度 IV	Red	380	440	500		
		Green	900	1000	1100	mcd	16mA
34/2		Blue	180	220	260		
		Red	620	622	625		
波长		Green	520	522	525	nm	16mA
		Blue	465	468	470		

数据传输时间

符号	参数描述		最小值	典型值	最大值	单位	
ТОН	0码,	高电平时间	220	340	380	ns	
T1H	1码,	高电平时间	580	680	1000	ns	
TOL	0码,	低电平时间	580	820	1000	ns	
T1L	1码,	低电平时间	580	820	1000	ns	
RES	帧单位	,低电平时间	280	-	-	us	
数据周期: T	数据周期: T0H+T0L≥1.25μs ; T1H+T1L≥1.25μs						

时序波形图

输入码型:

连接方法:

数据传输方法

注: 其中 D1 为 MCU 端发送的数据, D2、D3、D4 为级联电路自动整形转发的数据。

24bit 数据结构

注: 高位先发, 按照 GRB 的顺序发送数据。

典型应用电路:第一颗 LED BI 接 GND

包装方式及数量 4000PCS/袋

载带规格及 LED 编带位置

SYMBOL	SPEC
	35±0.1
В0	2.35±0.1
	25±0.1
P0	4.00 ± 0.1
Pl	4.00±0.1
P2	2.00±0.1
T	0.18±0.1
E	1.75±0.1
F	3.50±0.1
D0	1.50+0.1
Dl	1.00+0.1
W	8.00±0.1
10P0	40.00±0.2

卷轴尺寸

单位: mm

表面贴装型 LED 使用注意事项

1. 描述:

通常 LED 也像其它的电子元件一样有着相同的使用方法,为了让客户更好地使用华彩威的 LED 产品,请参看下面的 LED 保护预防措施。

2. 注意事项:

2.1. 灰尘与清洁

LED 的表面是采用改性环氧胶封装的,环氧胶对于 LED 的光学系统和抗老化性能都起到很好的保护作用。环氧胶易粘灰尘,保持作业环境的洁净。当 LED 表面有一定限度内的尘埃,也不会影响到发光亮度,但我们仍应避免尘埃落到 LED 表面。打开包装袋的就优先使用,安装过 LED 的组件应存放在干净的容器中,在 LED 表面需要清洁时,如果使用三氨乙烯或者丙酮等溶液会出现使 LED 表面溶解等现象,不可使用具用溶解性的溶液清洁 LED,可使用一此异丙基的溶液,在使用任何清洁溶液之前都应确认是否会对 LED 有溶解作用;请不要用超声波的方法清洁 LED,如果产品必须使用超声波,那么就要评估影响 LED 的一些参数,如超声波功率,烘烤的时间和装配的条件等,在清洁之前必须试运行,确认是否会影响到 LED。

2.2. 防潮处理

LED 属于湿敏元件,将 LED 包装在铝膜的袋中是为了避免 LED 在运输和储存时吸收湿气,在包装袋中放有干燥剂,以吸收湿气。如果 LED 吸收了水气,那么在 LED 过回流焊时,水气就会蒸发而膨胀,有可能使胶体与支架脱离以及损害 LED 的光学系统。由于这个原因,防湿包装是为了使包装袋内避免有湿气,但通常保护时间仅能维持 1~2 个月。此款产品防潮等级 (MSL)为: 5a. SMT 时请参照 IPC/JEDECJ-STD-020 规定的材料防潮等级 (MSL) 定义进行 MSL 管控。

防潮等级	包装拆封后车间寿命			
	时间	条件		
LEVEL1	无限制	≤30°C/85%RH		
LEVEL2	1年	≤30°C/60%RH		
LEVEL2a	4 周	≤30°C/60%RH		
LEVEL3	168 小时	≤30°C/60%RH		
LEVEL4	72 小时	≤30°C160%RH		
LEVEL5	48 小时	≤30°C/60%RH		
LEVEL5a	24 小时	≤30°C/60%RH		
LEVEL6	取出即用	≤30°C/60%RH		

- 2.3 SMT 贴片要求:
- 2.3.1 建议 LED 在 SMT 前拆袋,整卷放入烤箱中进行除湿干燥(70~75℃烘烤≥24H);
- 2.3.2 产品从烤箱中取出至高温焊接完成(包含多次回流焊、浸锡、波峰焊、加热维修等高温操作/作业),时间段控制在 24 内(在 T<30 $^{\circ}$ C,RH<60%条件下);
 - 2.3.3 LED 贴件在印刷锡膏后的 PCBA 上,应尽快完成 SMT,建议不超过 1H;
- 2.3.4 生产剩余、机台抛料、维修用料等散料 LED,若长时间暴露在空气中,不可直接使用,建议进行除湿干燥后再被使用。整卷烘烤: 70~75℃* ≥24H 或 散料烘烤: 120℃*4H。

3. 焊接

表贴应用 LED 应符合 JEDECJ-STD-020C 标准,作为一般指导原则,建议遵循所用焊锡膏制造商推荐的焊接温度曲线,或使用我司如下推荐的焊接温度曲线。

温度曲线描述	范围
30℃~150℃预热斜率	1~4 ℃/s
30℃~150℃预热时间	60∼120 s
150℃~200℃恒温斜率	0~3 ℃/s
150℃~200℃恒温时间	60∼120 s
液相温度	217℃
峰值温度	245℃
回流焊斜率	0~3 ℃/s
回流焊时间	45-90 s
降温速率	-4~0 ℃/s
室温至峰值温度停留时间	<6 min
降温速率	-4~0 °C/s

注:以上所有温度是指在封装本体焊点表面测得的温度。

4. 产品配装过程注意事项

1. 通过使用适当的工具从材料侧面夹取	2. 不可直接用手或尖锐 金属压胶体表面,它可能 会损坏内部电路	3. 不可将模组材料堆积在一起,它可能会损坏内部电路	4. 不可用在 PH<7 的酸性场所
			CPM7

WS2813B-2121

智能外控集成 LED 光源

文件更改记录

版本号	状态	修改内容概要	修订日期	修订人	批准人
V1.0	N	新建	20200501	沈金国	尹华平