Sdot == S'[t]
$$\rightarrow$$
 M[t] - (β 1 + β 2 * (S[t] - 605.34)) * (S[t] - 605.34)
Sdot == S'[t] \rightarrow M[t] - (β 1 + β 2 (-605.34 + S[t])) (-605.34 + S[t])
Sdot == S'[t] \rightarrow M[t] - (β 1 + β 2 (-605.34 + S[t])) (-605.34 + S[t])
Sdot == S'[t] \rightarrow M[t] - (β 1 + β 2 (-605.34 + S[t])) (-605.34 + S[t])

$$Y[t] = (A * K[t]^{v}) / (1 + \kappa * (\tau * (S[t] - S_{PI}))^{2})$$

$$Y[t] = \frac{A K[t]^{v}}{1 + \kappa \tau^{2} (S[t] - S_{PI})^{2}}$$

$$\begin{split} & \text{Kdot} == \text{K'[t]} \rightarrow \\ & \left(\text{A*K[t]}^{\wedge} \nu\right) / \left(1 + \kappa * \left(\tau * \left(\text{S[t]} - \text{S}_{\text{PI}}\right)\right)^{\wedge} 2\right) - \text{CONS[t]} - \psi * \left(\mu * \text{Y[t]}\right) * \text{MIU[t]}^{\wedge} 2 - \delta * \text{K[t]} \\ & \text{Kdot} == \text{K'[t]} \rightarrow -\text{CONS[t]} - \delta \text{K[t]} + \frac{\text{AK[t]}^{\vee}}{1 + \kappa \tau^{2} \left(\text{S[t]} - \text{S}_{\text{PI}}\right)^{2}} - \mu \ \psi \ \text{MIU[t]}^{2} \ \text{Y[t]} \end{split}$$

$$\begin{split} & \text{M[t]} = \mu * \left(\text{A} * \text{K[t]} ^{\wedge} \nu \right) * \left(1 - \text{MIU[t]} \right) \\ & (* \text{ Utility Funcion*}) \\ & \text{U[t]} = \left(\text{CONS[t]} ^{\wedge} \left(1 - \alpha \right) \right) / \left(1 - \alpha \right) \\ & \text{T[t]} =: \tau * \left(\text{S[t]} - \text{S}_{\text{PI}} \right) \\ & \text{H} = \text{U[t]} + \lambda \text{S[t]} * \left(\text{A} \mu \, \text{K[t]}^{\vee} \left(1 - \text{MIU[t]} \right) - \left(\beta 1 + \beta 2 * \left(\text{S[t]} - 605.34 \right) \right) * \left(\text{S[t]} - 605.34 \right) \right) + \\ & \lambda \text{K[t]} * \left(-\text{CONS[t]} - \delta \, \text{K[t]} - \psi * \mu * \left(\text{A} * \text{K[t]}^{\wedge} \nu \right) * \text{MIU[t]} ^{\wedge} 2 + \frac{\text{A} \, \text{K[t]}^{\vee}}{1 + \kappa \, \tau^{2} \, \left(\text{S[t]} - \text{S}_{\text{PI}} \right)^{2}} \right) / / \end{split}$$

FullSimplify // PowerExpand

Lvereinfache vollständig Lmultipliziere Potenzen aus

$$A \mu K[t]^{\vee} (1 - MIU[t])$$

$$\frac{\mathsf{CONS}[\mathsf{t}]^{1-\alpha}}{\mathsf{1}}$$

$$T[t] = \tau \left(S[t] - S_{PI}\right)$$

$$\frac{\mathsf{CONS}[\mathtt{t}]^{1-\alpha}}{1-\alpha} + \left(-\mathsf{CONS}[\mathtt{t}] - \delta \,\mathsf{K}[\mathtt{t}] + \mathsf{A}\,\mathsf{K}[\mathtt{t}]^{\vee} \left(-\mu \,\psi\,\mathsf{MIU}[\mathtt{t}]^2 + \frac{1}{1+\kappa \,\tau^2 \,\left(\mathsf{S}[\mathtt{t}] - \mathsf{S}_{\mathsf{PI}}\right)^2}\right)\right) \,\lambda\mathsf{K}[\mathtt{t}] + \left(-\mathsf{A}\,\mu \,\mathsf{K}[\mathtt{t}]^{\vee} \,\left(-1 + \mathsf{MIU}[\mathtt{t}]\right) - \left(\beta 1 + \beta 2 \,\left(-605.34 + \mathsf{S}[\mathtt{t}]\right)\right) \,\left(-605.34 + \mathsf{S}[\mathtt{t}]\right)\right) \,\lambda\mathsf{S}[\mathtt{t}]$$

$$H_S = D[H, S[t]] = -D[\lambda S[t], t] + \rho * \lambda S[t] // FullSimplify // PowerExpand Leite ab Leite ab Leite ab Levereinfache vollständig Leultipliziere Poter$$

$$H_K = D[H, K[t]] = -D[\lambda K[t], t] + \rho * \lambda K[t] // FullSimplify // PowerExpand$$
Leite ab Leit

$$\lambda K[t] = CONS[t]^{-\alpha}$$

$$A \mu K[t]^{\vee} (2 \psi MIU[t] \lambda K[t] + \lambda S[t]) == 0$$

$$\left(-\beta\mathbf{1} - 2.\ \beta\mathbf{2}\ \left(-605.34 + S[t] \right) \right)\ \lambda S[t] + \lambda S'[t] = \frac{2\ A\ \kappa\ \tau^2\ K[t]^{\ \gamma}\ \left(S[t] - S_{PI} \right)\ \lambda K[t]}{\left(1 + \kappa\ \tau^2\ \left(S[t] - S_{PI} \right)^2 \right)^2} + \rho\ \lambda S[t]$$

$$\left(-\delta + \mathsf{A} \vee \mathsf{K}[\mathsf{t}]^{-1+\vee} \left(-\mu \, \psi \, \mathsf{MIU}[\mathsf{t}]^2 + \frac{1}{1 + \kappa \, \tau^2 \, \left(\mathsf{S}[\mathsf{t}] - \mathsf{S}_{\mathsf{PI}} \right)^2} \right) \right) \, \lambda \mathsf{K}[\mathsf{t}] + \lambda \mathsf{K}'[\mathsf{t}] = \\ \rho \, \lambda \mathsf{K}[\mathsf{t}] + \mathsf{A} \, \mu \vee \mathsf{K}[\mathsf{t}]^{-1+\vee} \, \left(-1 + \mathsf{MIU}[\mathsf{t}] \right) \, \lambda \mathsf{S}[\mathsf{t}]$$

Controls = Solve[{
$$H_{CONS}$$
, H_{MIU} }, { $CONS[t]$, $MIU[t]$ }]

Solve::ifun: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution information >>

$$\left\{ \left\{ \mathsf{CONS[t]} \to \left(\frac{1}{\lambda \mathsf{K[t]}} \right)^{\frac{1}{\alpha}}, \, \mathsf{MIU[t]} \to -\frac{\lambda \mathsf{S[t]}}{2 \, \psi \, \lambda \mathsf{K[t]}} \right\} \right\}$$

```
sol12 = Solve[H_S, \lambda S'[t]] // FullSimplify // PowerExpand
                                                                                                                                                            _vereinfache vollständig_multipliziere Potenzen aus
sol14 = Solve[H_K, \lambda K'[t]] /. Controls // FullSimplify // PowerExpand
                                                                                                                                                                                                                                vereinfache vollständig multipliziere Potenzen aus
\mathsf{Sdot} = \mathsf{S'[t]} \rightarrow \mathsf{A} \ \mu \ \mathsf{K[t]}^{\vee} \ \left( \mathsf{1} - \mathsf{MIU[t]} \right) - \left( \beta \mathsf{1} + \beta \mathsf{2} * \left( \mathsf{S[t]} - 605.34 \right) \right) * \left( \mathsf{S[t]} - 605.34 \right)
\mathsf{Kdot} = \mathsf{K'[t]} \to -\mathsf{CONS[t]} - \delta \, \mathsf{K[t]} - \psi * \mu * \left( \mathsf{A} * \, \mathsf{K[t]} \,^{\wedge} \mathsf{v} \right) * \mathsf{MIU[t]} \,^{\wedge} 2 + \frac{\mathsf{A} \, \mathsf{K[t]} \,^{\wedge}}{1 + \kappa \, \tau^{2} \, \left( \mathsf{S[t]} - \mathsf{S_{PI}} \right)^{2}}
Sdotnew = S'[t] /. Sdot /. Controls // FullSimplify // PowerExpand
                                                                                                                                                                                                                vereinfache vollständig multipliziere Potenzen aus
Kdotnew = K'[t] /. Kdot /. Controls // FullSimplify // PowerExpand
                                                                                                                                                                                                                vereinfache vollständig multipliziere Potenzen aus
system = {Sdotnew[[1]], Kdotnew[[1]],
                   sol12[[1, 1, 2]], sol14[[1, 1, 1, 2]]} // FullSimplify
systemmatrix = system // FullSimplify // PowerExpand // MatrixForm
                                                                                                                                               Lvereinfache vollständig Lmultipliziere Poten··· LMatritzenform
\left\{ \left\{ \lambda S'[t] \rightarrow \left( 2.\ A \ \kappa \ \tau^2 \ K[t]^{\vee} \left( S[t] - 1.\ S_{PI} \right) \ \lambda K[t] \right) \ \middle/ \ \left( 1. + \kappa \ \tau^2 \ \left( S[t] - 1.\ S_{PI} \right)^2 \right)^2 + \right\} \right\} \right\} = \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \right\} \left\{ \left\{ \lambda S'[t] - 1.\ S_{PI} \right\} \left\{ \lambda S'[t] -
                          1. \rho \lambda S[t] + (1. \beta 1 - 1210.68 \beta 2 + 2. \beta 2 S[t]) \lambda S[t])
\left\{\left\{\lambda \mathsf{K}'[\mathsf{t}]\right\}\right\}
                          \left(\delta + \rho - \frac{\mathsf{A} \vee \mathsf{K}[\mathsf{t}]^{-1+\vee}}{1 + \kappa \, \tau^2 \, \left(\mathsf{S}[\mathsf{t}] - \mathsf{S}_{\mathsf{PI}}\right)^2}\right) \, \lambda \mathsf{K}[\mathsf{t}] - \mathsf{A} \, \mu \vee \mathsf{K}[\mathsf{t}]^{-1+\vee} \, \lambda \mathsf{S}[\mathsf{t}] - \frac{\mathsf{A} \, \mu \vee \mathsf{K}[\mathsf{t}]^{-1+\vee} \, \lambda \mathsf{S}[\mathsf{t}]^2}{4 \, \psi \, \lambda \mathsf{K}[\mathsf{t}]} \Big\} \Big\} \Big\}
\mathsf{S'[t]} \rightarrow \mathsf{A} \ \mu \ \mathsf{K[t]}^{\vee} \ \left( \mathsf{1-MIU[t]} \right) \ - \ \left( \beta \mathsf{1} + \beta \mathsf{2} \ \left( -605.34 + \mathsf{S[t]} \right) \right) \ \left( -605.34 + \mathsf{S[t]} \right)
\mathsf{K}'[\mathsf{t}] \to -\mathsf{CONS}[\mathsf{t}] - \delta \, \mathsf{K}[\mathsf{t}] - \mathsf{A} \, \mu \, \psi \, \mathsf{K}[\mathsf{t}]^{\vee} \, \mathsf{MIU}[\mathsf{t}]^2 + \frac{\mathsf{A} \, \mathsf{K}[\mathsf{t}]^{\vee}}{1 + \kappa \, \tau^2 \, \left(\mathsf{S}[\mathsf{t}] - \mathsf{S}_{\mathsf{PI}}\right)^2}
\left\{-\left(\beta {\tt 1} + \beta {\tt 2} \, \left(-605.34 + {\tt S[t]}\right)\right) \, \left(-605.34 + {\tt S[t]}\right) + {\tt A} \, \mu \, {\tt K[t]}^{\vee} \, \left(1 + \frac{\lambda {\tt S[t]}}{2 \, \psi \, \lambda {\tt K[t]}}\right)\right\}
\left\{-\delta\,\mathsf{K}[\mathsf{t}]-\lambda\mathsf{K}[\mathsf{t}]^{-1/\alpha}+\mathsf{K}[\mathsf{t}]^{\vee}\left(\frac{\mathsf{A}}{\mathsf{1}+\kappa\,\tau^{2}\,\left(\mathsf{S}[\mathsf{t}]-\mathsf{S}_{\mathsf{PI}}\right)^{2}}-\frac{\mathsf{A}\,\mu\,\lambda\mathsf{S}[\mathsf{t}]^{2}}{\mathsf{4}\,\psi\,\lambda\mathsf{K}[\mathsf{t}]^{2}}\right)\right\}
\left\{-\left(\beta \mathbf{1} + \beta \mathbf{2} \left(-605.34 + S[t]\right)\right) \left(-605.34 + S[t]\right) + A \mu K[t]^{\vee} \left(\mathbf{1} + \frac{\lambda S[t]}{2 \psi \lambda K[t]}\right)\right\}
      -\delta \,\mathsf{K}[\mathsf{t}] \,-\lambda \mathsf{K}[\mathsf{t}]^{-1/\alpha} + \mathsf{K}[\mathsf{t}]^{\,\vee} \left( \frac{\mathsf{A}}{\mathsf{1} + \kappa \,\tau^2 \,\left(\mathsf{S}[\mathsf{t}] - \mathsf{S}_{\mathsf{PI}}\right)^2} - \frac{\mathsf{A} \,\mu \,\lambda \mathsf{S}[\mathsf{t}]^2}{\mathsf{4} \,\psi \,\lambda \mathsf{K}[\mathsf{t}]^2} \right),
       (2. \text{ A} \times \tau^2 \text{ K[t]}^{\vee} (\text{S[t]} - 1. \text{ S}_{PI}) \lambda \text{K[t]}) / (1. + \kappa \tau^2 (\text{S[t]} - 1. \text{ S}_{PI})^2)^2 +
            1. \rho \lambda S[t] + (1. \beta 1 - 1210.68 \beta 2 + 2. \beta 2 S[t]) \lambda S[t]
        \left[ \delta + \rho - \frac{\mathsf{A} \vee \mathsf{K}[\mathsf{t}]^{-1+\vee}}{\mathsf{1} + \kappa \ \tau^2 \ \left( \mathsf{S}[\mathsf{t}] - \mathsf{S}_{\mathsf{PI}} \right)^2} \right] \lambda \mathsf{K}[\mathsf{t}] - \mathsf{A} \ \mu \vee \mathsf{K}[\mathsf{t}]^{-1+\vee} \ \lambda \mathsf{S}[\mathsf{t}] - \frac{\mathsf{A} \ \mu \vee \mathsf{K}[\mathsf{t}]^{-1+\vee} \ \lambda \mathsf{S}[\mathsf{t}]^2}{\mathsf{4} \ \psi \ \lambda \mathsf{K}[\mathsf{t}]} \right]
                              -\left(\beta\mathbf{1}+\beta\mathbf{2}\,\left(-\,605.34+S[\mathtt{t}]\right)\right)\,\left(-\,605.34+S[\mathtt{t}]\right)\,+\,\mathsf{A}\,\mu\,\mathsf{K}[\mathtt{t}]^{\,\vee}\,\left(\mathbf{1}+\frac{\lambda\mathsf{S}[\mathtt{t}]}{2\,\psi\,\lambda\mathsf{K}[\mathtt{t}]}\right)
                                                                          -\delta \mathsf{K}[\mathsf{t}] - \lambda \mathsf{K}[\mathsf{t}]^{-1/\alpha} + \mathsf{K}[\mathsf{t}]^{\vee} \left( \frac{\mathsf{A}}{\mathsf{1} + \kappa \, \tau^2 \, (\mathsf{S}[\mathsf{t}] - \mathsf{Spt})^2} - \frac{\mathsf{A} \, \mu \, \lambda \mathsf{S}[\mathsf{t}]^2}{\mathsf{4} \, \psi \, \lambda \mathsf{K}[\mathsf{t}]^2} \right)
        \frac{2.\,\mathsf{A}\,\mathsf{k}\,\tau^2\,\mathsf{K}[\mathsf{t}]^\vee\,(\mathsf{S}[\mathsf{t}]-\mathsf{1}.\,\mathsf{S}_{\mathsf{PI}})\,\lambda\mathsf{K}[\mathsf{t}]}{\left(\mathsf{1}.\,\mathsf{k}\,\mathsf{k}\,\tau^2\,\left(\mathsf{S}[\mathsf{t}]-\mathsf{1}.\,\mathsf{S}_{\mathsf{PI}}\right)^2\right)^2} + \mathsf{1}.\,\rho\,\lambda\mathsf{S}[\mathsf{t}] + \left(\mathsf{1}.\,\beta\mathsf{1} - \mathsf{1210.68}\,\beta\mathsf{2} + \mathsf{2}.\,\beta\mathsf{2}\,\mathsf{S}[\mathsf{t}]\right)\,\lambda\mathsf{S}[\mathsf{t}] \\ \left(\delta + \rho - \frac{\mathsf{A}\,\mathsf{v}\,\mathsf{K}[\mathsf{t}]^{-\mathsf{1}+\mathsf{v}}}{\mathsf{1}+\mathsf{k}\,\tau^2\,\left(\mathsf{S}[\mathsf{t}]-\mathsf{S}_{\mathsf{PI}}\right)^2}\right)\,\lambda\mathsf{K}[\mathsf{t}] - \mathsf{A}\,\mu\,\mathsf{v}\,\mathsf{K}[\mathsf{t}]^{-\mathsf{1}+\mathsf{v}}\,\lambda\mathsf{S}[\mathsf{t}] - \frac{\mathsf{A}\,\mu\,\mathsf{v}\,\mathsf{K}[\mathsf{t}]^{-\mathsf{1}+\mathsf{v}}\,\lambda\mathsf{S}[\mathsf{t}]^2}{\mathsf{4}\,\psi\,\lambda\mathsf{K}[\mathsf{t}]} \\
```

```
par = \{\rho \to 0.01, \alpha \to 0.5, A \to 1, \nu \to 0.75,
          \mu \to 0.1, \ \psi \to 2, \ \tau \to 0.003, \ \delta \to 0.1, \ \beta 1 \to 0.01668,
          \beta 2 \rightarrow -7.88515 * 10^{(-6)}, \kappa \rightarrow 0.005, S_{PI} \rightarrow 400
para = {system[[1]] == 0, system[[2]] == 0,
                system[[3]] = 0, system[[4]] = 0 / . par
ss = FindRoot[para, \{\{S[t], 1\}, \{K[t], 1\}, \{\lambda S[t], 1\},
                  ermittle Nullstelle
                \{\lambda K[t], 1\}\}, MaxIterations \rightarrow 100 000]
                                                                          maximale Wiederholung
Controls /. par /. ss;
Ssteady = S[t] → ss[[1, 2]] // FullSimplify;
                                                                                                                                   vereinfache vollständig
Ksteady =
          K[t] → ss[[2, 2]] // FullSimplify // PowerExpand;
                                                                                                  vereinfache vollstän… multipliziere Potenzen aus
\lambda Ssteady = \lambda S[t] \rightarrow ss[[3, 2]] /. Ssteady // FullSimplify //
                                                                                                                                                                                             vereinfache vollständig
               PowerExpand;
              multipliziere Potenzen aus
\lambdaKsteady = \lambdaK[t] \rightarrow ss[[4, 2]] /. Ssteady // FullSimplify //
                                                                                                                                                                                             vereinfache vollständig
               PowerExpand;
              multipliziere Potenzen aus
Jacob = {
                {D[system[[1]], S[t]], D[system[[1]], K[t]],
                  leite ab
                                                                                                                        leite ab
                    D[system[[1]], \lambda S[t]], D[system[[1]], \lambda K[t]]\},
                                                                                                                             leite ab
                  {D[system[[2]], S[t]], D[system[[2]], K[t]],
                                                                                                                          leite ab
                     leite ab
                    D[system[[2]], \lambda S[t]], D[system[[2]], \lambda K[t]]\},
                                                                                                                             leite ab
                   {D[system[[3]], S[t]], D[system[[3]], K[t]],
                     lleite ab
                                                                                                                          Heite ab
```

```
LIVITO UN
     D[system[[3]], \lambda S[t]], D[system[[3]], \lambda K[t]]\},
                                 leite ab
     {D[system[[4]], S[t]], D[system[[4]], K[t]],
                                 leite ab
     leite ab
     D[system[[4]], \lambda S[t]], D[system[[4]], \lambda K[t]]\};
     leite ab
                                 leite ab
Jacob2 = Jacob /. par /. Ksteady /. Ssteady /. λSsteady /.
      λKsteady // FullSimplify // PowerExpand;
                    vereinfache vollstän···|multipliziere Potenzen aus
eigenval = N[Eigenvalues[Jacob2], 32]
            ... Eigenwerte
eigenvec = N[Eigenvectors[Jacob2], 32];
            ··· Eigenvektoren
Ssteady = S[t] → ss[[1, 2]] // FullSimplify;
                                   vereinfache vollständig
Ksteady =
  K[t] → ss[[2, 2]] // FullSimplify // PowerExpand;
                          vereinfache vollstän… multipliziere Potenzen aus
\lambda Ssteady = \lambda S[t] \rightarrow ss[[3, 2]] /. Ssteady // FullSimplify //
                                                   vereinfache vollständig
    PowerExpand;
   Imultipliziere Potenzen aus
\lambdaKsteady = \lambdaK[t] \rightarrow ss[[4, 2]] /. Ssteady // FullSimplify //
                                                   vereinfache vollständig
    PowerExpand;
   multipliziere Potenzen aus
Jacob = {
    {D[system[[1]], S[t]], D[system[[1]], K[t]],
    leite ab
                                lleite ab
     D[system[[1]], \lambda S[t]], D[system[[1]], \lambda K[t]]\},
                                 leite ab
    {D[system[[2]], S[t]], D[system[[2]], K[t]],
     leite ab
                                leite ab
     D[system[[2]], \lambda S[t]], D[system[[2]], \lambda K[t]]\},
                                 leite ab
     {D[system[[3]], S[t]], D[system[[3]], K[t]],
```

lleite ah

lleite ah

```
Liono ab
                                 LIVITO UN
     D[system[[3]], \lambda S[t]], D[system[[3]], \lambda K[t]]\},
                                  leite ab
     {D[system[[4]], S[t]], D[system[[4]], K[t]],
     leite ab
                                 leite ab
     D[system[[4]], \lambda S[t]], D[system[[4]], \lambda K[t]]\};
     leite ab
                                  leite ab
Jacob2 = Jacob /. par /. Ksteady /. Ssteady /. λSsteady /.
       λKsteady // FullSimplify // PowerExpand;
                     vereinfache vollstän···|multipliziere Potenzen aus
eigenval = N[Eigenvalues[Jacob2], 32]
            | · · · | Eigenwerte
eigenvec = N[Eigenvectors[Jacob2], 32]
            |···| Eigenvektoren
neg1 = 2;
neg2 = 4;
\(\lambda SSS2 = \lambda Ssteady[[2]] // FullSimplify // PowerExpand
                              vereinfache vollstän··· multipliziere Potenzen aus
\[ \lambda KSS2 = \lambda Ksteady[[2]] // FullSimplify // PowerExpand
                             vereinfache vollstän··· multipliziere Potenzen aus
SSS2 = Ssteady[[2]] // FullSimplify // PowerExpand
                           vereinfache vollstän… multipliziere Potenzen aus
KSS2 = Ksteady[[2]] // FullSimplify // PowerExpand
                           |vereinfache vollstän ··· | multipliziere Potenzen aus
\(\lambda SSS = \lambda SSS2 \) / par // FullSimplify // PowerExpand
                          vereinfache vollstän… | multipliziere Potenzen aus
\(\lambda KSS = \lambda KSS2 /. par // FullSimplify // PowerExpand
                          vereinfache vollstän··· multipliziere Potenzen aus
SSS = SSS2 /. par // FullSimplify // PowerExpand
                       vereinfache vollstän… multipliziere Potenzen aus
KSS = KSS2 /. par // FullSimplify // PowerExpand
                       vereinfache vollstän… | multipliziere Potenzen aus
Sclose = SSS +
    Exp[zeit * eigenval[[neg1]]] * A1 * eigenvec[[neg1, 1]] +
    Exponentialfunktion
    Exp[zeit * eigenval[[neg2]]] * A2 * eigenvec[[neg2, 1]];
    Exponentialfunktion
```

```
Kclose = KSS +
   Exp[zeit * eigenval[[neg1]]] * A1 * eigenvec[[neg1, 2]] +
   Exponentialfunktion
   Exp[zeit * eigenval[[neg2]]] * A2 * eigenvec[[neg2, 2]];
   Exponentialfunktion
RSclose0 = Sclose /. zeit → 0 // FullSimplify //
                                   vereinfache vollständig
   PowerExpand;
   multipliziere Potenzen aus
RKclose0 =
  Kclose /. zeit → 0 // FullSimplify // PowerExpand;
                          vereinfache vollstän… multipliziere Potenzen aus
RSclose = RSclose0;
RKclose = RKclose0;
Sini = 800 / .par;
Kini = 500 /. par;
Cont = Solve[{RSclose == Sini, RKclose == Kini}, {A1, A2}];
SSim1 = Sclose /. Cont[[1]];
KSim1 = Kclose /. Cont[[1]];
λSclose = λSSS +
   Exp[zeit * eigenval[[neg1]]] * A1 * eigenvec[[neg1, 3]] +
   Exponentialfunktion
   Exp[zeit * eigenval[[neg2]]] * A2 * eigenvec[[neg2, 3]];
   Exponentialfunktion
\lambda Kclose = \lambda KSS +
   Exp[zeit * eigenval[[neg1]]] * A1 * eigenvec[[neg1, 4]] +
   Exponentialfunktion
   Exp[zeit * eigenval[[neg2]]] * A2 * eigenvec[[neg2, 4]];
   | Exponential funktion
```

```
LEAPORTORIGIANIANIANIA
\lambdaSSim1 = \lambdaSclose /. Cont[[1]];
\lambda KSim1 = \lambda Kclose /. Cont[[1]];
Tmax = 200;
PS = Plot[{SSim1}, {zeit, 0, Tmax},
     stelle Funktion graphisch dar
    AxesLabel \rightarrow \{ "t", "S(t)^*" \}, PlotRange \rightarrow
                                            Koordinatenbereich der Graphik
    Achsenbeschriftung
      {{0, 200}, {700, 1500}}, LabelStyle → Larger];
                                         Beschriftungsstil größer
PK = Plot[{KSim1}, {zeit, 0, Tmax},
     stelle Funktion graphisch dar
    AxesLabel \rightarrow {"t", "K(t)*"}, PlotRange \rightarrow
                                            Koordinatenbereich der Graphik
    Achsenbeschriftung
      {{0, 200}, {500, 1500}}, LabelStyle → Larger];
                                        Beschriftungsstil größer
P\lambda S = Plot[{\lambda SSim1}, {zeit, 0, Tmax},
       stelle Funktion graphisch dar
    AxesLabel \rightarrow {"t", "\lambda_s(t) *"}, PlotRange \rightarrow
    Achsenbeschriftung
                                             Koordinatenbereich der Graphik
      {{0, 200}, {0, -0.5}}, LabelStyle → Larger];
                                      |Beschriftungsstil |größer
P\lambda K = Plot[\{\lambda KSim1\}, \{zeit, 0, Tmax\},\}
       stelle Funktion graphisch dar
    AxesLabel \rightarrow {"t", "\lambda_K(t) *"}, PlotRange \rightarrow
                                             Koordinatenbereich der Graphik
    Achsenbeschriftung
      {{0, 200}, {0.1, 0.2}}, LabelStyle → Larger];
                                       Beschriftungsstil | größer
ConsSim1 = Controls[[1, 1, 2]] /.\lambda K[t] \rightarrow \lambda KSim1/.
            \lambda S[t] \rightarrow \lambda SSim1 / . S[t] \rightarrow SSim1 / . K[t] \rightarrow KSim1 / .
       par // FullSimplify // PowerExpand;
                vereinfache vollstän···|multipliziere Potenzen aus
MIUSim1 = Controls[[1, 2, 2]] /.\lambda K[t] \rightarrow \lambda KSim1/.
            \lambda S[t] \rightarrow \lambda SSim1 / . S[t] \rightarrow SSim1 / . K[t] \rightarrow KSim1 / .
        par // FullSimplify // PowerExpand;
                Ivereinfache vollstän · · Imultipliziere Potenzen aus
```

```
LACIOHITAGUIO AGUOTALI ELLIANTINDISTICIO I OTOLISCUI ANO
Pcons = Plot[{ConsSim1}, {zeit, 0, Tmax},
         stelle Funktion graphisch dar
    AxesLabel \rightarrow \{ "t", "C(t)^*" \},
    |Achsenbeschriftung | Konstante
    PlotRange \rightarrow {{0, 200}, {0, 150}}, LabelStyle \rightarrow Larger];
    Koordinatenbereich der Graphik
                                                  |Beschriftungsstil | größer
PMIU = Plot[{MIUSim1}, {zeit, 0, Tmax},
        stelle Funktion graphisch dar
    AxesLabel \rightarrow {"t", "m(t) *"},
    Achsenbeschriftung
    PlotRange \rightarrow \{\{0, 200\}, \{-0.2, 0.5\}\},\
    Koordinatenbereich der Graphik
    LabelStyle → Larger];
    Beschriftungsstil größer
INV = -CONS[t] - \psi MIU[t]<sup>2</sup> + (A K[t]<sup>\gamma</sup>) / (1 + \kappa \tau^2 (S[t] - S<sub>PI</sub>)<sup>2</sup>) /.
            par /. K[t] \rightarrow KSim1 /. MIU[t] \rightarrow MIUSim1 /.
       K[t] \rightarrow KSim1 /. S[t] \rightarrow SSim1 /. CONS[t] \rightarrow ConsSim1;
PI = Plot[{INV}, {zeit, 0, Tmax},
     stelle Funktion graphisch dar
    AxesLabel \rightarrow \{ "t", "I(t)^*" \},
    Achsenbeschriftung
                             imaginäre Einheit I
    PlotRange \rightarrow {{0, 200}, {0, 200}}, LabelStyle \rightarrow Larger];
    Koordinatenbereich der Graphik
                                                 Beschriftungsstil größer
MIUCosts = \psi MIU[t]<sup>2</sup> /. par /. K[t] \rightarrow KSim1 /.
    MIU[t] → MIUSim1;
shareMIU = MIUCosts / (MIUCosts + INV + ConsSim1);
shareCONS = ConsSim1 / (MIUCosts + INV + ConsSim1);
shareINV = INV / (MIUCosts + INV + ConsSim1);
share1 = Plot[{shareINV, shareCONS},
          stelle Funktion graphisch dar
   {zeit, 1, Tmax}, AxesLabel \rightarrow {"t", "\xi_i(t)*"},
                         Achsenbeschriftung
   PlotRange \rightarrow {{0, 200}, {0, 1}}, LabelStyle \rightarrow Larger,
  Koordinatenbereich der Graphik
                                             |Beschriftungsstil | größer
   Epilog \rightarrow { Text["\xi_I(t)*", {150, 0.7}, {0, 0}], Text[
  Epilog
              Text
       \xi_{c}(t)^{*}, {150, 0.46}, {0, 0}]}, TextStyle \rightarrow Larger]
```

Textstil

0.135078

1718.86

Biono

share2 = Plot[{shareMIU}, {zeit, 1, Tmax}, stelle Funktion graphisch dar

AxesLabel \rightarrow {"t", " $\xi_M(t)$ *"}, PlotRange \rightarrow Koordinatenbereich der Graphik Achsenbeschriftung

{{0, 200}, {0, 0.0025}}, LabelStyle → Larger]; |Beschriftungsstil | größer

$$\begin{aligned} &\text{par} = \{ \rho \to 0.01, \ \alpha \to \ 1, \ \mathsf{A} \to 1, \ \mathsf{V} \to 0.75, \\ &\mu \to \ 0.1, \ \psi \to 2, \ \tau \to 0.003, \ \delta \to 0.1, \ \beta 1 \to 0.01668, \\ &\beta 2 \to -7.88515 * 10^{\land} (-6), \ \kappa \to 0.005, \ \mathsf{S}_{PI} \to 400 \} \\ &\text{para} = \{ \text{system}[[1]] == 0, \ \text{system}[[2]] == 0, \\ &\text{system}[[3]] == 0, \ \text{system}[[4]] == 0 \} \ \textit{/.} \ \text{par} \\ &\text{ss} = \text{FindRoot}[\text{para}, \ \{ \{ \mathsf{S}[t], 1 \}, \ \{ \mathsf{K}[t], 1 \}, \ \{ \lambda \mathsf{S}[t], 1 \}$$

```
LOTTING TAGNOTORO
    \{\lambda K[t], 1\}\}, MaxIterations \rightarrow 100 000]
                    maximale Wiederholung
Controls /. par /. ss;
Ssteady = S[t] → ss[[1, 2]] // FullSimplify;
                                    vereinfache vollständig
Ksteady =
  K[t] \rightarrow ss[[2, 2]] // FullSimplify // PowerExpand;
                           vereinfache vollstän… multipliziere Potenzen aus
\lambda Ssteady = \lambda S[t] \rightarrow ss[[3, 2]] /. Ssteady // FullSimplify //
                                                    vereinfache vollständig
    PowerExpand;
    multipliziere Potenzen aus
\lambdaKsteady = \lambdaK[t] \rightarrow ss[[4, 2]] /. Ssteady // FullSimplify //
                                                    vereinfache vollständig
    PowerExpand;
    multipliziere Potenzen aus
Jacob = {
    {D[system[[1]], S[t]], D[system[[1]], K[t]],
     leite ab
                                 leite ab
     D[system[[1]], \lambda S[t]], D[system[[1]], \lambda K[t]]\},
                                  leite ab
     {D[system[[2]], S[t]], D[system[[2]], K[t]],
     lleite ab
                                 leite ab
     D[system[[2]], \lambda S[t]], D[system[[2]], \lambda K[t]]\},
     leite ab
                                  leite ab
     {D[system[[3]], S[t]], D[system[[3]], K[t]],
     leite ab
                                 leite ab
     D[system[[3]], \lambda S[t]], D[system[[3]], \lambda K[t]]\},
     leite ab
                                  leite ab
     {D[system[[4]], S[t]], D[system[[4]], K[t]],
                                 leite ab
     D[system[[4]], \lambda S[t]], D[system[[4]], \lambda K[t]]\};
     leite ab
                                  leite ab
Jacob2 = Jacob /. par /. Ksteady /. Ssteady /. λSsteady /.
       λKsteady // FullSimplify // PowerExpand;
                     vereinfache vollstän···|multipliziere Potenzen aus
eigenval = N[Eigenvalues[Jacob2], 32]
```

I...|Figenwerte

```
L LEIGOTIWOTO
eigenvec = N[Eigenvectors[Jacob2], 32];
            |···| Eigenvektoren
Ssteady = S[t] → ss[[1, 2]] // FullSimplify;
                                   vereinfache vollständig
Ksteady =
  K[t] \rightarrow ss[[2, 2]] // FullSimplify // PowerExpand;
                          vereinfache vollstän… multipliziere Potenzen aus
\lambdaSsteady = \lambdaS[t] \rightarrow ss[[3, 2]] /. Ssteady // FullSimplify //
                                                   vereinfache vollständig
    PowerExpand;
    multipliziere Potenzen aus
\lambdaKsteady = \lambdaK[t] \rightarrow ss[[4, 2]] /. Ssteady // FullSimplify //
                                                   vereinfache vollständig
    PowerExpand;
   multipliziere Potenzen aus
Jacob = {
    {D[system[[1]], S[t]], D[system[[1]], K[t]],
     leite ab
                                leite ab
     D[system[[1]], \lambda S[t]], D[system[[1]], \lambda K[t]]\},
                                  leite ab
     {D[system[[2]], S[t]], D[system[[2]], K[t]],
     lleite ab
                                 leite ab
     D[system[[2]], \lambda S[t]], D[system[[2]], \lambda K[t]]\},
                                  leite ab
     {D[system[[3]], S[t]], D[system[[3]], K[t]],
     leite ab
                                 leite ab
     D[system[[3]], \lambda S[t]], D[system[[3]], \lambda K[t]]\},
                                  leite ab
     {D[system[[4]], S[t]], D[system[[4]], K[t]],
     leite ab
                                 leite ab
     D[system[[4]], \lambda S[t]], D[system[[4]], \lambda K[t]]\};
     leite ab
                                  leite ab
Jacob2 = Jacob /. par /. Ksteady /. Ssteady /. λSsteady /.
       λKsteady // FullSimplify // PowerExpand;
                     vereinfache vollstän ··· [multipliziere Potenzen aus
eigenval = N[Eigenvalues[Jacob2], 32]
            I...I Figenwerte
```

L LEIGOTIWOTO

```
eigenvec = N[Eigenvectors[Jacob2], 32]
           |···| Eigenvektoren
```

```
neg1 = 2;
neg2 = 4;
\(\lambda SSS2 = \lambda Ssteady[[2]] // FullSimplify // PowerExpand
                             vereinfache vollstän··· multipliziere Potenzen aus
\[ \lambda KSS2 = \lambda Ksteady[[2]] // FullSimplify // PowerExpand
                             vereinfache vollstän… multipliziere Potenzen aus
SSS2 = Ssteady[[2]] // FullSimplify // PowerExpand
                          vereinfache vollstän… multipliziere Potenzen aus
KSS2 = Ksteady[[2]] // FullSimplify // PowerExpand
                          |vereinfache vollstän ··· | multipliziere Potenzen aus
\lambdaSSS = \lambdaSSS2 /.par // FullSimplify // PowerExpand
                         vereinfache vollstän… | multipliziere Potenzen aus
λKSS = λKSS2 /. par // FullSimplify // PowerExpand
                         vereinfache vollstän··· multipliziere Potenzen aus
SSS = SSS2 /.par // FullSimplify // PowerExpand
                      vereinfache vollstän··· multipliziere Potenzen aus
KSS = KSS2 /. par // FullSimplify // PowerExpand
                      |vereinfache vollstän···|multipliziere Potenzen aus
Sclose = SSS +
    Exp[zeit * eigenval[[neg1]]] * A1 * eigenvec[[neg1, 1]] +
    Exponentialfunktion
    Exp[zeit * eigenval[[neg2]]] * A2 * eigenvec[[neg2, 1]];
    Exponentialfunktion
Kclose = KSS +
    Exp[zeit * eigenval[[neg1]]] * A1 * eigenvec[[neg1, 2]] +
    Exponentialfunktion
    Exp[zeit * eigenval[[neg2]]] * A2 * eigenvec[[neg2, 2]];
    Exponentialfunktion
RSclose0 = Sclose /. zeit → 0 // FullSimplify //
                                     vereinfache vollständig
    PowerExpand;
    multipliziere Potenzen aus
```

```
RKclose0 =
  Kclose /. zeit → 0 // FullSimplify // PowerExpand;
                           vereinfache vollstän··· multipliziere Potenzen aus
RSclose = RSclose0;
RKclose = RKclose0;
Sini = 800 / .par;
Kini = 500 /. par;
Cont = Solve[{RSclose == Sini, RKclose == Kini}, {A1, A2}];
       löse
SSim1 = Sclose /. Cont[[1]];
KSim1 = Kclose /. Cont[[1]];
\lambdaSclose = \lambdaSSS +
    Exp[zeit * eigenval[[neg1]]] * A1 * eigenvec[[neg1, 3]] +
   Exponentialfunktion
    Exp[zeit * eigenval[[neg2]]] * A2 * eigenvec[[neg2, 3]];
   Exponentialfunktion
\lambda Kclose = \lambda KSS +
    Exp[zeit * eigenval[[neg1]]] * A1 * eigenvec[[neg1, 4]] +
   Exponentialfunktion
    Exp[zeit * eigenval[[neg2]]] * A2 * eigenvec[[neg2, 4]];
   Exponentialfunktion
\lambda SSim1 = \lambda Sclose /. Cont[[1]];
\lambda KSim1 = \lambda Kclose /. Cont[[1]];
Tmax = 200;
PS = Plot[{SSim1}, {zeit, 0, Tmax},
    stelle Funktion graphisch dar
   AxesLabel \rightarrow {"t", "S(t)*"}, PlotRange \rightarrow
   Achsenbeschriftung
                                      Koordinatenbereich der Graphik
     {{0, 200}, {700, 1500}}, LabelStyle → Larger];
                                   Beschriftungsstil größer
PK = Plot[{KSim1}, {zeit, 0, Tmax},
    Istelle Funktion graphisch dar
```

```
AxesLabel \rightarrow {"t", "K(t)*"}, PlotRange \rightarrow
                                            |Koordinatenbereich der Graphik
    Achsenbeschriftung
      {{0, 200}, {500, 1500}}, LabelStyle → Larger];
                                         Beschriftungsstil größer
P\lambda S = Plot[\{\lambda SSim1\}, \{zeit, 0, Tmax\},\}
       stelle Funktion graphisch dar
    AxesLabel \rightarrow {"t", "\lambda_s(t)^*"}, PlotRange \rightarrow
    |Achsenbeschriftung
                                             Koordinatenbereich der Graphik
      {{0, 200}, {0, -0.5}}, LabelStyle → Larger];
                                      |Beschriftungsstil | größer
P\lambda K = Plot[\{\lambda KSim1\}, \{zeit, 0, Tmax\},\}
       stelle Funktion graphisch dar
    AxesLabel \rightarrow {"t", "\lambda_{\kappa}(t) *"}, PlotRange \rightarrow
    Achsenbeschriftung
                                             Koordinatenbereich der Graphik
      {{0, 200}, {0.1, 0.2}}, LabelStyle → Larger];
                                       |Beschriftungsstil | größer
ConsSim1 = Controls[[1, 1, 2]] /.\lambda K[t] \rightarrow \lambda KSim1/.
            \lambda S[t] \rightarrow \lambda SSim1 / . S[t] \rightarrow SSim1 / . K[t] \rightarrow KSim1 / .
       par // FullSimplify // PowerExpand;
                vereinfache vollstän multipliziere Potenzen aus
MIUSim1 = Controls[[1, 2, 2]] /.\lambda K[t] \rightarrow \lambda KSim1/.
            \lambda S[t] \rightarrow \lambda SSim1 / . S[t] \rightarrow SSim1 / . K[t] \rightarrow KSim1 / .
       par // FullSimplify // PowerExpand;
                vereinfache vollstän ··· multipliziere Potenzen aus
Pcons = Plot[{ConsSim1}, {zeit, 0, Tmax},
         stelle Funktion graphisch dar
    AxesLabel \rightarrow {"t", "C(t)*"},
    |Achsenbeschriftung | Konstante
    PlotRange \rightarrow {{0, 200}, {0, 150}}, LabelStyle \rightarrow Larger];
                                                   Beschriftungsstil größer
    Koordinatenbereich der Graphik
PMIU = Plot[{MIUSim1}, {zeit, 0, Tmax},
        stelle Funktion graphisch dar
    AxesLabel \rightarrow \{"t", "m(t)^*"\},
    Achsenbeschriftung
    PlotRange \rightarrow \{\{0, 200\}, \{-0.2, 0.5\}\},\
    Koordinatenbereich der Granhik
```

Lotono i armaiori graprinoori aar

```
LI CONTAINI LA CON
```

```
LabelStyle → Larger];
    |Beschriftungsstil | größer
INV = -CONS[t] - \psi MIU[t]<sup>2</sup> + (A K[t]<sup>\gamma</sup>) / (1 + \kappa \tau^2 (S[t] - S<sub>PI</sub>)<sup>2</sup>) /.
           par /. K[t] \rightarrow KSim1 /. MIU[t] \rightarrow MIUSim1 /.
       K[t] → KSim1 /. S[t] → SSim1 /. CONS[t] → ConsSim1;
PI = Plot[{INV}, {zeit, 0, Tmax},
     stelle Funktion graphisch dar
    AxesLabel \rightarrow \{ "t", "I(t)^*" \},
    Achsenbeschriftung Limaginäre Einheit I
    PlotRange → {{0, 200}, {0, 200}}, LabelStyle → Larger];
    Koordinatenbereich der Graphik
                                               |Beschriftungsstil | größer
MIUCosts = \psi MIU[t]<sup>2</sup> /. par /. K[t] \rightarrow KSim1 /.
    MIU[t] → MIUSim1;
shareMIU = MIUCosts / (MIUCosts + INV + ConsSim1);
shareCONS = ConsSim1 / (MIUCosts + INV + ConsSim1);
shareINV = INV / (MIUCosts + INV + ConsSim1);
share1 = Plot[{shareINV, shareCONS},
          stelle Funktion graphisch dar
   {zeit, 1, Tmax}, AxesLabel \rightarrow {"t", "\xi_i(t) *"},
                        Achsenbeschriftung
  PlotRange \rightarrow {{0, 200}, {0, 1}}, LabelStyle \rightarrow Larger]
  Koordinatenbereich der Graphik
                                       Beschriftungsstil größer
share2 = Plot[{shareMIU}, {zeit, 1, Tmax},
          stelle Funktion graphisch dar
    AxesLabel \rightarrow \{ "t", "\xi_{M}(t)^{*} " \}, PlotRange \rightarrow
    Achsenbeschriftung
                                          Koordinatenbereich der Graphik
      {{0, 200}, {0, 0.0025}}, LabelStyle → Larger];
                                      Beschriftungsstil | größer
```

0.0

hello23 = GraphicsGrid[{{PMIU}, {share2}, {share1}}] LGraphik in Gitteranordnung

$$\begin{array}{l} \text{par} = \{\rho \to 0.01, \ \alpha \to \ 1.5, \ A \to 1, \ v \to 0.75, \\ \mu \to 0.1, \ \psi \to 2, \ \tau \to 0.003, \ \delta \to 0.1, \ \beta 1 \to 0.01668, \\ \beta 2 \to -7.88515*10^{\land} (-6), \ \kappa \to 0.005, \ S_{\text{PI}} \to 400 \} \\ \text{para} = \{\text{system}[[1]] == 0, \ \text{system}[[2]] == 0, \\ \text{system}[[3]] == 0, \ \text{system}[[4]] == 0 \} \ /. \ \text{par} \\ \text{ss} = \text{FindRoot[para, } \{\{S[t], 1\}, \{K[t], 1\}, \{\lambda S[t], 1\}, \{\text{ermittle Nullstelle} \\ \{\lambda K[t], 1\}\}, \ \text{MaxIterations} \to 100\,000] \\ \text{[maximale Wiederholung} \\ \text{Controls /. par /. ss;} \\ \text{Ssteady} = S[t] \to \text{ss}[[1, 2]] \ // \ \text{FullSimplify;} \\ \text{[vereinfache vollständig} \\ \text{Ksteady} = \\ \end{array}$$

 $K[t] \rightarrow ss[[2, 2]] // FullSimplify // PowerExpand;$

Ivereinfache vollstän… Imultipliziere Potenzen aus

```
LACIONINGONO ACNOTANT FINANTINDISTONO I OTONIZONI AAO
\lambdaSsteady = \lambdaS[t] \rightarrow ss[[3, 2]] /. Ssteady // FullSimplify //
                                                    vereinfache vollständig
    PowerExpand;
    multipliziere Potenzen aus
\lambdaKsteady = \lambdaK[t] \rightarrow ss[[4, 2]] /. Ssteady // FullSimplify //
                                                    vereinfache vollständig
    PowerExpand;
   multipliziere Potenzen aus
Jacob = {
    {D[system[[1]], S[t]], D[system[[1]], K[t]],
     leite ab
                                lleite ab
     D[system[[1]], \lambda S[t]], D[system[[1]], \lambda K[t]]\},
                                  leite ab
     {D[system[[2]], S[t]], D[system[[2]], K[t]],
     leite ab
                                 leite ab
     D[system[[2]], \lambda S[t]], D[system[[2]], \lambda K[t]]\},
     lleite ab
                                  leite ab
     {D[system[[3]], S[t]], D[system[[3]], K[t]],
                                 leite ab
     leite ab
     D[system[[3]], \lambda S[t]], D[system[[3]], \lambda K[t]]\},
     leite ab
                                  lleite ab
     {D[system[[4]], S[t]], D[system[[4]], K[t]],
     leite ab
                                 leite ab
     D[system[[4]], \lambda S[t]], D[system[[4]], \lambda K[t]]\};
                                  leite ab
Jacob2 = Jacob /. par /. Ksteady /. Ssteady /. λSsteady /.
      λKsteady // FullSimplify // PowerExpand;
                     |vereinfache vollstän · · | multipliziere Potenzen aus
eigenval = N[Eigenvalues[Jacob2], 32]
            I...|Eigenwerte
eigenvec = N[Eigenvectors[Jacob2], 32];
            ··· Eigenvektoren
Ssteady = S[t] → ss[[1, 2]] // FullSimplify;
                                    vereinfache vollständig
Ksteady =
  K[t] \rightarrow ss[[2, 2]] // FullSimplify // PowerExpand;
```

Ivereinfache vollstän… Imultinliziere Potenzen aus

```
neg1 = 2;
neg2 = 4;

\( \lambda \text{SSS2} = \lambda \text{Ssteady}[[2]] // FullSimplify // PowerExpand | vereinfache vollstän... | multipliziere Potenzen aus |
\]
```

```
Literatura de la constanta l'inditiplizione i otorizon ado
λKSS2 = λKsteady[[2]] // FullSimplify // PowerExpand
                            vereinfache vollstän··· multipliziere Potenzen aus
SSS2 = Ssteady[[2]] // FullSimplify // PowerExpand
                          vereinfache vollstän… multipliziere Potenzen aus
KSS2 = Ksteady[[2]] // FullSimplify // PowerExpand
                          vereinfache vollstän… multipliziere Potenzen aus
\( \lambda SSS = \lambda SSS2 \) /. par // FullSimplify // PowerExpand
                         vereinfache vollstän… multipliziere Potenzen aus
λKSS = λKSS2 /. par // FullSimplify // PowerExpand
                        vereinfache vollstän… multipliziere Potenzen aus
SSS = SSS2 /. par // FullSimplify // PowerExpand
                      vereinfache vollstän… multipliziere Potenzen aus
KSS = KSS2 /. par // FullSimplify // PowerExpand
                      |vereinfache vollstän ··· | multipliziere Potenzen aus
Sclose = SSS +
    Exp[zeit * eigenval[[neg1]]] * A1 * eigenvec[[neg1, 1]] +
    Exponentialfunktion
    Exp[zeit * eigenval[[neg2]]] * A2 * eigenvec[[neg2, 1]];
   Exponentialfunktion
Kclose = KSS +
    Exp[zeit * eigenval[[neg1]]] * A1 * eigenvec[[neg1, 2]] +
   Exponentialfunktion
    Exp[zeit * eigenval[[neg2]]] * A2 * eigenvec[[neg2, 2]];
   Exponentialfunktion
RSclose0 = Sclose /. zeit → 0 // FullSimplify //
                                     vereinfache vollständig
    PowerExpand;
   multipliziere Potenzen aus
RKclose0 =
  Kclose /. zeit → 0 // FullSimplify // PowerExpand;
                           |vereinfache vollstän ··· | multipliziere Potenzen aus
RSclose = RSclose0;
RKclose = RKclose0;
Sini = 800 / . par;
```

```
Kini = 500 /. par;
Cont = Solve[{RSclose == Sini, RKclose == Kini}, {A1, A2}];
       löse
SSim1 = Sclose /. Cont[[1]];
KSim1 = Kclose /. Cont[[1]];
λSclose = λSSS +
    Exp[zeit * eigenval[[neg1]]] * A1 * eigenvec[[neg1, 3]] +
   Exponentialfunktion
    Exp[zeit * eigenval[[neg2]]] * A2 * eigenvec[[neg2, 3]];
   Exponentialfunktion
λKclose = λKSS +
    Exp[zeit * eigenval[[neg1]]] * A1 * eigenvec[[neg1, 4]] +
   Exponentialfunktion
    Exp[zeit * eigenval[[neg2]]] * A2 * eigenvec[[neg2, 4]];
   Exponentialfunktion
\lambda SSim1 = \lambda Sclose /. Cont[[1]];
\lambda KSim1 = \lambda Kclose /. Cont[[1]];
Tmax = 200;
PS = Plot[{SSim1}, {zeit, 0, Tmax},
    stelle Funktion graphisch dar
    AxesLabel \rightarrow \{ "t", "S(t)^*" \}, PlotRange \rightarrow
   Achsenbeschriftung
                                      Koordinatenbereich der Graphik
     {{0, 200}, {700, 1500}}, LabelStyle → Larger];
                                    |Beschriftungsstil | größer
PK = Plot[{KSim1}, {zeit, 0, Tmax},
    stelle Funktion graphisch dar
    AxesLabel \rightarrow \{ "t", "K(t)^*" \}, PlotRange \rightarrow
   Achsenbeschriftung
                                       Koordinatenbereich der Graphik
     {{0, 200}, {500, 1500}}, LabelStyle → Larger];
                                    Beschriftungsstil größer
P\lambda S = Plot[\{\lambda SSim1\}, \{zeit, 0, Tmax\},\}
      stelle Funktion graphisch dar
```

AxesLabel \rightarrow {"t", " $\lambda_s(t)$ *"}, PlotRange \rightarrow

Koordinatenhereich der Granhik

Achsenheschriftung

LIVOOTAITIALOTIDOTOTOTI AOT GITAPTIIIV

```
{{0, 200}, {0, -0.5}}, LabelStyle → Larger];
                                       |Beschriftungsstil | größer
P\lambda K = Plot[\{\lambda KSim1\}, \{zeit, 0, Tmax\},\}
       stelle Funktion graphisch dar
    AxesLabel \rightarrow {"t", "\lambda_K(t)*"}, PlotRange \rightarrow
    Achsenbeschriftung
                                              Koordinatenbereich der Graphik
      {{0, 200}, {0.1, 0.2}}, LabelStyle → Larger];
                                        Beschriftungsstil | größer
ConsSim1 = Controls[[1, 1, 2]] /.\lambda K[t] \rightarrow \lambda KSim1/.
            \lambda S[t] \rightarrow \lambda SSim1 /. S[t] \rightarrow SSim1 /. K[t] \rightarrow KSim1 /.
        par // FullSimplify // PowerExpand;
                vereinfache vollstän · · | multipliziere Potenzen aus
MIUSim1 = Controls[[1, 2, 2]] /.\lambda K[t] \rightarrow \lambda KSim1/.
            \lambda S[t] \rightarrow \lambda SSim1 /. S[t] \rightarrow SSim1 /. K[t] \rightarrow KSim1 /.
        par // FullSimplify // PowerExpand;
                vereinfache vollstän···|multipliziere Potenzen aus
Pcons = Plot[{ConsSim1}, {zeit, 0, Tmax},
          stelle Funktion graphisch dar
    AxesLabel \rightarrow {"t", "C(t)*"},
                              Konstante
    Achsenbeschriftung
    PlotRange → {{0, 200}, {0, 150}}, LabelStyle → Larger];
    Koordinatenbereich der Graphik
                                                    Beschriftungsstil größer
PMIU = Plot[{MIUSim1}, {zeit, 0, Tmax},
        stelle Funktion graphisch dar
    AxesLabel \rightarrow {"t", "m(t) *"},
    Achsenbeschriftung
    PlotRange \rightarrow \{\{0, 200\}, \{-0.2, 0.5\}\},\
    Koordinatenbereich der Graphik
    LabelStyle → Larger];
    |Beschriftungsstil | größer
INV = -CONS[t] - \psi MIU[t]<sup>2</sup> + (A K[t]<sup>\gamma</sup>) / (1 + \kappa \tau<sup>2</sup> (S[t] - S<sub>PI</sub>)<sup>2</sup>) /.
            par /. K[t] \rightarrow KSim1 /. MIU[t] \rightarrow MIUSim1 /.
        K[t] \rightarrow KSim1 / . S[t] \rightarrow SSim1 / . CONS[t] \rightarrow ConsSim1;
PI = Plot[{INV}, {zeit, 0, Tmax},
     Istelle Funktion graphisch dar
```

L MINOCINCOCCITITIONS

```
Lotono i armaiori graprinoori aar
```

AxesLabel \rightarrow {"t", "I(t) *"}, |Achsenbeschriftung | imaginäre Einheit I PlotRange \rightarrow {{0, 200}, {0, 200}}, LabelStyle \rightarrow Larger]; Koordinatenbereich der Graphik |Beschriftungsstil | größer MIUCosts = ψ MIU[t]² /. par /. K[t] \rightarrow KSim1 /. MIU[t] → MIUSim1; shareMIU = MIUCosts / (MIUCosts + INV + ConsSim1); shareCONS = ConsSim1 / (MIUCosts + INV + ConsSim1); shareINV = INV / (MIUCosts + INV + ConsSim1); share1 = Plot[{shareINV, shareCONS}, stelle Funktion graphisch dar {zeit, 1, Tmax}, AxesLabel \rightarrow {"t", " $\xi_i(t)$ *"}, Achsenbeschriftung PlotRange \rightarrow {{0, 200}, {0, 1}}, LabelStyle \rightarrow Larger] Koordinatenbereich der Graphik Beschriftungsstil größer share2 = Plot[{shareMIU}, {zeit, 1, Tmax}, stelle Funktion graphisch dar AxesLabel \rightarrow {"t", " $\xi_M(t)$ *"}, PlotRange \rightarrow Koordinatenbereich der Graphik Achsenbeschriftung

{{0, 200}, {0, 0.0025}}, LabelStyle → Larger]; Beschriftungsstil größer

$$\left\{ \rho \rightarrow 0.01, \ \alpha \rightarrow 1.5, \ A \rightarrow 1, \ \gamma \rightarrow 0.75, \ \mu \rightarrow 0.1, \ \psi \rightarrow 2, \ \tau \rightarrow 0.003, \ \delta \rightarrow 0.1, \\ \beta 1 \rightarrow 0.01668, \ \beta 2 \rightarrow -7.88515 \times 10^{-6}, \ \kappa \rightarrow 0.005, \ S \\ 108 \\$$

```
\{\texttt{S[t]} \rightarrow \texttt{1718.86}, \, \texttt{K[t]} \rightarrow \texttt{843.993}, \, \lambda \texttt{S[t]} \rightarrow -\texttt{0.00432039}, \, \lambda \texttt{K[t]} \rightarrow \texttt{0.00246466}\}
\{0.0483482, -0.0383482, 0.0175323, -0.00753232\}
\{0.0483482, -0.0383482, 0.0175323, -0.00753232\}
\{\{0.291596, 0.956542, 1.98727 \times 10^{-6}, 1.15215 \times 10^{-6}\},
  \{0.0140622, 0.999901, 3.07176 \times 10^{-7}, -3.18066 \times 10^{-6}\},
  \{0.961678, 0.27418, 9.99007 \times 10^{-6}, -7.17222 \times 10^{-7}\},
 \{0.766594, -0.642132, -5.01722 \times 10^{-6}, 2.34867 \times 10^{-6}\}
-0.00432039
0.00246466
1718.86
843.993
-0.00432039
0.00246466
1718.86
843.993
\xi_i(t)^* 1.0 \lceil
8.0
0.6
0.4
0.2
0.0
                                                                    200
                   50
                                   100
                                                   150
```

hello25 = GraphicsGrid[{{PMIU}, {share2}, {share1}}] LGraphik in Gitteranordnung

Show[hello2, hello23, hello25,

zeige an

```
 \mathsf{Epilog} \to \{ \, \mathsf{Text}["\alpha = 0.5", \, \{60, \, -145\}, \, \{0, \, 0\}] \,, \, \mathsf{Text}["\alpha = 1", \, \{89, \, -145\}, \, \{0, \, 0\}] \,, 
   \mathsf{Text}["\alpha=1.5", \{116, -145\}, \{0, 0\}], \mathsf{Text}["\alpha=0.5", \{105, -426\}, \{0, 0\}],
   Text["\alpha=1", {130, -426}, {0, 0}], Text["\alpha=1.5", {151, -426}, {0, 0}],
  LText
                                                     Text
   \mathsf{Text}["\alpha=0.5", \{52, -558\}, \{0, 0\}], \mathsf{Text}["\alpha=1", \{52, -570\}, \{0, 0\}],
   Text["\alpha=1.5", {52, -584}, {0, 0}]}, TextStyle \rightarrow Larger]
     m(t)^*
    0.5
    0.4
    0.3
    0.2
    0.1
              α=0.5
                       q=1
                              α=1.5
                                                                                                   200
                               50
                                                     100
                                                                            150
```

