

Allegro Stack-Up, Route & Shape

内容提要

- 叠层设计(Stack-Up)
 - 叠层设计的基本原则
 - 叠层设计的经典案例
- · PCB布线基本原则与操作(Route)
 - 布线概述及原则
 - 布线规划
 - 手动布线
 - 各类信号布线注意事项及布线技巧
- Allegro电源地处理(Shape)
 - 电源地处理的基本原则
 - 电源地平面分割(Negative)
 - 电源地正片铜皮处理
 - 电源地处理的其他注意事项

- 叠层设计基本原则
 - PCB层的构成
 - 单板的叠层由电源层、地层和信号层组成。

- 叠层设计基本原则
 - 合理的PCB层数选择
 - 在确定层数时,根据单板的电源、地的种类、分布合理的电源地层数;
 - 根据整板布线密度、关键器件的布线通道、主信号的频率、速率、 特殊布线要求的信号种类、数量确定布线的层数;
 - 电源地层数加上布线层数构成PCB的总层数。
 - PCB叠层设置常见的问题
 - 参考平面的选择
 - 回流、参考平面或回流路径
 - 主电源平面和地平面相邻
 - PI角度电源平面低阻抗
 - 物理角度容值大、储能多

- 叠层设计基本原则
 - 单板叠层设置的一般原则
 - 元器件相邻的第二层为地平面,提供器件屏蔽层以及为表层布线提供参考平面;
 - 所有的信号层尽可能与地平面相邻,以保证完整的回流通道;
 - 尽量避免两信号的直接相邻,以减小串扰;
 - 主电源尽可能与地相邻,构成平面电容,降低电源平面阻抗;
 - 兼顾层压结构对称,防止PCB生产是的翘曲。
 - 在具体PCB叠层时,需要灵活考虑各方面的因素
 - 两信号层相邻;
 - 弱化电源与地相邻减低平面阻抗的方式,减少布线层;
 -

- 叠层设计设计的经典案例
 - Allegro中设置叠层

- 叠层设计设计的经典案例
 - Allegro中设置叠层

	Subclass Name	Туре		Material		Thickness (MIL)	Conductivity (mho/cm)	Dielectric Constant	Loss Tangent	Negative Artwork	Shield	Width (MIL)
1		SURFACE	T	AIR				1	0			
2	TOP	CONDUCTOR	•	COPPER	•	2.2	0	4.2	0			5.500
্		DIELECTRIC	·	FR-4	•	4	0	4.2	0			
	Add Layer Above	PLANE	·	COPPER	•	1.2	0	4.2	0	×	×	
	Add Layer Below	DIELECTRIC	·	FR-4	•	5.12	0	4.2	0			
ы	AHTUJ	CONDUCTOR	·	COPPER	•	1.2	0	4.2	0			4.800
7		DIELECTRIC	·	FR-4	•	8.3	0	4.2	0			
8	PWR04	PLANE	·	COPPER	•	1.2	0	4.2	0	×	×	
9		DIELECTRIC	·	FR-4	•	8	0	4.5	0			
0	GND05	PLANE	·	COPPER	•	1.2	595900	4.5	0	×	×	
1		DIELECTRIC	ı	FR-4	•	8	0	4.5	0.035			
2	ART06	CONDUCTOR	•	COPPER	•	1.2	0	4.2	0			4.800
3		DIELECTRIC	·	FR-4	•	5.12	0	4.2	0			
4	PWR07	PLANE	·	COPPER	•	1.2	0	4.2	0	×	×	
5		DIELECTRIC	·	FR-4	•	4	0	4.2	0			
6	воттом	CONDUCTOR	•	COPPER	•	2.2	0	4.2	0			5.500
7		SURFACE		AIR				1	0			

- 叠层设计设计的经典案例
 - 6层板叠层方案

- 叠层设计设计的经典案例
 - 8层板叠层方案

- 布线概述及原则
 - 布线的DFM要求
 - · 孔的DFM要求
 - 孔的大小及形状要求
 - 孔与孔以及其他元素之间的间距要求
 - 安装孔特殊要求
 - Etch线(蚀刻线)的DFM要求
 - 走线(Cline)间距要求

铜厚	外层线宽/间距(Mil)	内层线宽/间距(Mil)				
H OZ,1OZ	4/5	4/4				
2 OZ	6/6	6/6				
3 OZ	8/8	8/8				

- 布线概述及原则
 - 布线的DFM要求
 - Etch线(蚀刻线)的DFM要求
 - 所有电气层板边至少20Mil,如果相应边有辅助边,至少40Mil
 - 小的分立器件走线对称
 - 密间距的SMT焊盘引线应从焊盘外部链接,不允许在焊盘中间直接连接
 - SMT焊盘在大面积铺铜时要花焊盘链接
 - Etch先分布均匀,防止加工后翘曲

- 布线概述及原则
 - 布线中的电气特性要求
 - 阻抗控制及阻抗连续性
 - · Cross Talk及EMC等的控制要求
 - 拓扑结构和时序控制要求
 - 电源及功率信号的布线要求
 - 布线中的散热考虑
 - 载流、通道、功率器件
 - 过孔数量及位置、散热焊盘及散热孔
 - 添加散热铜皮、加强布线通道

- 布线规划
 - 约束设置
 - 物理规则设置
 - 间距规则设置
 - 电气规则设置
 - Fanout
 - 对BGA封装器件的Fanout,最好成十字通道
 - 十字通道上不能有过孔
 - 所有的过孔都放在临近的4个焊盘中间
 - 如果不是所有的BGA引脚都有网络,根据实际情况来定

- 布线规划
 - Fanout

- 布线规划
 - Fanout

Note: **BGA** 中间的 十字 通道

- 布线规划
 - Fanout

- 布线规划
 - SOP/QFP等密间距器件的Fanout

- 布线规划
 - 分离器件(小电容)的Fanout

- 布线规划
 - 分离器件(BGA下小电容)的Fanout

- 布线规划
 - 分离器件(Bulk电容)的Fanout

- 布线规划
 - 布线
 - 对整板信号布线层面及布线通道进行评估规划(BGA出线策略)

- 布线规划
 - 布线
 - 瓶颈的估算

- 手动布线
 - 添加走线(Add Connect)

- 手动布线
 - Add Connect 右键菜单

- 手动布线
 - Add Connect 指令的选项卡
 - 走线形状和拐角

- 手动布线
 - Add Connect 指令的选项卡
 - 推挤功能选项

- 手动布线
 - Add Connect 指令的选项卡
 - 推挤功能选项

- 手动布线
 - Add Connect 指令的选项卡
 - 推挤功能选项

- 手动布线
 - Add Connect 指令的选项卡
 - 其他常用选项

- 手动布线
 - Add Connect 指令的选项卡
 - 其他常用选项

- 手动布线
 - Add Connect 指令的选项卡
 - · 添加Via

- 手动布线
 - 布线编辑命令
 - · 布线调整 (Slide)

- 手动布线
 - 布线编辑命令
 - · 布线调整 (Slide)

- 手动布线
 - 布线编辑命令
 - 编辑拐角(Vertex)

- 手动布线
 - 布线编辑命令
 - Change命令

- 手动布线
 - 布线编辑命令
 - Delete命令

- 手动布线
 - 布线编辑命令
 - Cut选项
 - 可以在Delete、Slide、Change命令是使用

- 手动布线
 - 时序等长控制
 - 时序等长约束设置(见Constraint Manager)
 - 延迟窗口(Dynamic Timing Display)

- 手动布线
 - 时序等长控制
 - 延迟调整(Delay Tuning)

• 各类信号布线注意事项及布线技巧

- 差分信号

- 各类信号布线注意事项及布线技巧
 - 高速总线
 - 总线布线

- 各类信号布线注意事项及布线技巧
 - 高速总线
 - 总线打孔模式

- 各类信号布线注意事项及布线技巧
 - 高速总线
 - 总线打孔模式

- 各类信号布线注意事项及布线技巧
 - 高速总线
 - 总线打孔模式

- 各类信号布线注意事项及布线技巧
 - 时钟线
 - 优先布线层
 - 不跨分割
 - 有EMC要求的设计,较长的时钟尽量布在内层
 - 端接匹配
 - 模拟信号(抗干扰性差)
 - 布线尽量短
 - 部分放弃阻抗要求,布线尽量加粗
 - 尽量在限定的区域(模拟区)布线,远离数字信号
 - 接口信号(RJ-45、USB、HDMI等)
 - 遵循差分布线原则
 - 注意隔离器件(变压器、光耦等)下面不要布线
 - 保护地(机壳地)的恰当处理

- 电源地处理的基本原则
 - 载流能力
 - 电源通道和滤波
 - 直流压降参考平面
 - 其他要求(20H、分隔带宽度、电气安全间距)

- 电源地平面分割(Negative)
 - 检查前处理流程内容
 - 检查板子的外形Outline是否正确绘制
 - Route Keepin区域是否正确设置
 - 叠层(Cross Section) 平面层是否设置成负片(Negative)
 - 添加Anti Etch

- 电源地平面分割(Negative)
 - 添加Anti Etch

- 电源地平面分割(Negative)
 - 定义要掏空区域

- 电源地平面分割(Negative)
 - 创建 Split Plane

- 电源地平面分割(Negative)
 - 创建 Split Plane

- · 电源地平面分割(Negative)
 - 创建 Split Plane

- 电源地正片铜皮处理
 - 用到正片铜的常见情况
 - 封装基板设计,由于面积小,采用正片来处理
 - 走线层来处理部分电源
 - 电源输出/入铺铜
 - 表层空白处铺地(整板铺铜)
 - Shape Fill选项卡

- 电源地正片铜皮处理
 - Void Controls 选项卡(铜皮避让方式控制)

- 电源地正片铜皮处理
 - Clearances 选项卡

- 电源地正片铜皮处理
 - Thermal Relief Connects 选项卡

• 电源地正片铜皮处理

Shape命令

- 电源地正片铜皮处理
 - Shape命令

• 电源处理的其他注意事项

• 电源处理的其他注意事项

Q&A

- Q&A
- Summary

Thank you!

SEP 26, 2012
By: Ausben Du
ausbendu@comtech.com.cn

