Project Proposal

Team X- Tumbler 13.06.2020

Line Following

Line following strategy including sensors, hardware design, Algorithm and etc.

03

Color detection

Robot arm working principle including color detection strategy with sensors, actuators and etc.

Wall Following

Wall following strategy including sensors, hardware design, Algorithm and etc.

O4 Strategy for passing Ramp successfully and robot control

Gates

Strategy for identifying the gate sequence and passing two gate

Wall Following Pole Detection Box Detection

Strategy including sensors, hardware design & Algorithm

13.06.2020

Wall Following & Pole Detection

[] Two Ultra Sonic (SRF 05) sensors are used.

- Uses time of flight principle
- Has a good accuracy → enough for our purpose
- [] Cheap
- Easy to control
- [] Good range of measuring → Has a range of 3cm to 4m & operate frequency range of 40-60 kHz.

- [] Calculate the distance between the wall and sensor. As well used to count the number of poles.
- As there are two curved walls, we planned to detect each wall by left/right or using both sensors.
- [] Signals that given by the sensors are send to the Arduino board and then speeds of motors will be controlled.

Box Detection

SHARP GP2Y0A21 IR sensor is used.

- Uses incident angle principle
- **II** More accurate
- **III** High speed response rate

- [] The sensor reading will be used to calculate the specific distance between the robot and the box where the robot will have to stop for color detection task.
- IR sensors measures infrared light radiating from objects in its field of view.

Wall Following Algorithm

ARDUINO MEGA 2560

- A development board based on Atmega2560 microcontroller as our robot brain.
- [] Has 54 digital input & output pins.
- Easy to use
- Designed for the projects that require more I/O lines, sketch memory and more RAM.

 Team X- Tumbler

Color detection and robot arm control

03

- 1.TCS3200 color sensor
- 2.Robot arm design
- 3. Servo motor control algorithm

TCS3200 color sensor

- Consists of 4 white LEDs and 8x8 photodiode array. 16 for each red, green, blue and clear filters.
- [] Light reflected from surface falls on filters which produce a current proportional to the frequency of light.
- [] Current-to-frequency converter generates a square wave with frequency proportional to the intensity of received light and it is sent to the Arduino board where color can be identified by the frequency of the signal.
- Supply voltage: 5V and Range: ≈1"

Color filters are powered up according to the inputs given to S2 and S3 control pins

S2	S3	Photo diode
L	L	Red
L	Н	Blue
Н	L	Clear
Н	Н	green

Light

8x8 array of photodiodes

Current-to-frequency converter

Team X- Tumbler 13.06.2020

Robot arm design

3 Tower pro SG90 micro servo motors are used for M1,M2 and M3.

Front elevation

Robot arm design

Side elevation

Front elevation

Servo motor control algorithm

RAMPAREA

Strategy for passing ramp Successfully and robot control

Description

- Ramp Area has three angle segments and one top flat area segment.
- we will not use any sensor in robot for the purpose of moving the ramp area.
- we hope to move the robot at a constant speed throughout the ramp area.
- The encoders are used to measure the speed of the wheels.
- [] Encoders maintain a constant speed of the wheels by applying a motor control

loop through the control panel.

Control loop of the encoders

Center of gravity and stability

- The center of gravity of the robot should be close to the base of the robot.
- [] Proper positioning of the robot's battery and other fairly heavy equipment, helps to position the center of gravity near the base.
- Since we have not included battery here, when we include it, the center of gravity will considerably move down

The Battery

We hope to use a single LiPo battery for our mobile robot.

Specifications

Size= 132 X 43 X 23 mm

| Battery voltage = 11.1v

III Cell count and arrangement = 3s

IV Battery capacity = 3000mAh

V Discharge rate = 30C continuous and 60 burst

Reasons for selecting the battery

- LiPo batteries are light weight.
- High discharge rate
- Higher capacity

- Since we will use a single battery, a 5V buck converter will be used to step down this 11.1v to 5v for microcontroller and sensors.
- A 6v buck converter will be used for servo motor.
- A 12v boost converter will be used for DC motors.

Gates

Identifying the sequence of gates
Methodology for passing them successfully

Sensors & Specifications Phase

GP2Y0A21 Sharp IR Sensor

Why we selected this sensor?

- I. Wave Propagation mode
- II. Resolution
- III. Range
- IV. Accuracy
- V. Simplicity

Hardware Design Phase

Thank You!

Task	Person	
Line Following	T. A. D. S. Tennakoon 180639P	
Wall Following	H. A. D. G. Hettiarachchi 180236D	
Color Detection	D. N. R. Dissanayake 180153U	
Ramp Area	N. G. K. M. Dayasekara 180112U	
Gates	M. M. C. J. Bandara 180065C	
		- Marie

Team K- Tumbler