

SEQUENCE LISTING

<110> Ron S. Israeli et al.

<120> PROSTATE-SPECIFIC MEMBRANE ANTIGEN

<130> 1769/41426-C/JPW/SHS

<160> 38

<170> PatentIn version 3.0

<210> 1

<211> 2653

<212> DNA

<213> human

<400> 1

ctcaaaaaggg gccggatttc ctttcctgg aggagatgt tgcctctc tc tcgctcg 60

attggttcag tgcactctag aaacactgct gtggtgaga aactggaccc caggctcg 120

gcgaattcca gcctgcaggg ctgataagcg aggatttgc gagattgaga gagactttac 180

cccgccgtgg tggttggagg gcgcgcagta gagcagcagc acaggcgccg gtcccccggag 240

cccggtctg ctcgcgccga gatgtggaaat ctccttcacg aaaccgactc ggctgtggcc 300

accgcgcgcc gcccgcgtg gctgtgcgt gggcgctgg tgctggcggt tggcttcttt 360

ctcctcggt tcctcttcgg gtggttata aaatcctcca atgaagctac taacattact 420

ccaaagcata atatgaaagc attttggat gaattgaaag ctgagaacat caagaagtcc 480

ttatataatt ttacacagat accacattta gcaggaacag aacaaaactt tcagcttgca 540

aagcaaattc aatcccagtg gaaagaattt ggcctggatt ctgttgagct agcacattat 600

gatgtcctgt tgtcttaccc aaataagact catcccaact acatctaat aattaatgaa
660

gatggaaatg agatttcaa cacatcatta tttgaaccac ctcctccagg atatgaaaat
720

gttccggata ttgtaccacc tttcagtgct ttctctcctc aaggaatgcc agagggcgat
780

ctagtgtatg ttaactatgc acgaactgaa gacttctta aattggaacg ggacatgaaa
840

atcaattgct ctggaaaaat tgtaattgcc agatatggga aagtttcag aggaaataag
900

gttaaaaatg cccagctggc agggccaaa ggagtcattc tctactccga ccctgctgac
960

tacttgctc ctggggtgaa gtcctatcca gatggttgga atcttcctgg aggtgggtgc
1020

cagcgtggaa atatcctaaa tctgaatggc gcaggagacc ctctcacacc agttaccca
1080

gcaaatgaat atgcttatag gcgtgaaatt gcagaggctg ttggctttcc aagtattcct
1140

gttcatccaa ttggatacta tcatgcacag aagctccttag aaaaaatggg tggctcagca
1200

ccaccagata gcagctggag aggaagtctc aaagtgcctt acaatgttgg acctggcttt
1260

actggaaact tttctacaca aaaagtcaag atgcacatcc actctaccaa tgaagtgaca
1320

agaatttaca atgtgatagg tactctcaga ggagcagtgg aaccagacag atatgtcatt
1380

ctgggaggtc accgggactc atgggtttt ggtggattt accctcagag tggagcagct
1440

gttggcatg aaattgtgag gagcttggc acactgaaaa aggaagggtg gagacctaga
1500

agaacaattt tgtttgcag ctggatgca gaagaatttgc gtcttcttgg ttctactgag
1560

tgggcagagg agaattcaag actccttcaa gagcgtggcg tggcttatat taatgctgac
1620

tcatctatag aaggaaaacta cactctgaga gttgattgta caccgctgat gtacagcttg
1680

gtacacaacc taacaaaaga gctgaaaagc cctgatgaag gctttgaagg caaatcttt
1740

tatgaaagtt ggactaaaaa aagtcccttcc ccagagttca gtggcatgcc caggataagc
1800

aaattggat ctggaaatga tttttaggtg ttcttccaac gacttggaat tgcttcaggc
1860

agagcacggt atactaaaaa ttgggaaaca aacaaattca gcggctatcc actgtatcac
1920

agtgtctatg aaacatatga gttggtgaa aagtttatg atccaatgtt taaatatcac
1980

ctcactgtgg cccaggttcg aggagggatg gtgtttgagc tagccaattc catagtgctc
2040

cctttgatt gtcgagatta tgctgttagtt ttaagaaagt atgctgacaa aatctacagt
2100

atttctatga aacatccaca ggaaatgaag acatacagt tatcatttga ttcactttt
2160

tctgcagtaa agaattttac agaaattgct tccaagttca gtgagagact ccaggacttt
2220

gacaaaagca acccaatagt attaagaatg atgaatgatc aactcatgtt tctggaaaga
2280

gcatttattg atccattagg gttaccagac aggcctttt ataggcatgt catctatgct
2340

ccaagcagcc acaacaagta tgcagggag tcattcccag gaatttatga tgctctgttt
2400

gatattgaaa gcaaagtgga cccttccaag gcctggggag aagtgaagag acagatttat
2460

gttgcagcct tcacagtgca ggcagctgca gagacttga gtgaagtagc ctaagaggat
2520

tcttttagaga atccgtattg aatttgtgtg gtatgtcact cagaaagaat cgtaatgggt
2580

atattgataa attttaaaat tggtatattt gaaataaaagt tgaatattat atataaaaaa
2640

aaaaaaaaaaa aaa
2653

<210> 2
<211> 750
<212> PRT
<213> human

<400> 2

Met Trp Asn Leu Leu His Glu Thr Asp Ser Ala Val Ala Thr Ala Arg
1 5 10 15

Arg Pro Arg Trp Leu Cys Ala Gly Ala Leu Val Leu Ala Gly Gly Phe
20 25 30

Phe Leu Leu Gly Phe Leu Phe Gly Trp Phe Ile Lys Ser Ser Asn Glu
35 40 45

Ala Thr Asn Ile Thr Pro Lys His Asn Met Lys Ala Phe Leu Asp Glu
50 55 60

Leu Lys Ala Glu Asn Ile Lys Lys Phe Leu Tyr Asn Phe Thr Gln Ile
65 70 75 80

Pro His Leu Ala Gly Thr Glu Gln Asn Phe Gln Leu Ala Lys Gln Ile
85 90 95

Gln Ser Gln Trp Lys Glu Phe Gly Leu Asp Ser Val Glu Leu Ala His
100 105 110

Tyr Asp Val Leu Leu Ser Tyr Pro Asn Lys Thr His Pro Asn Tyr Ile
115 120 125

Ser Ile Ile Asn Glu Asp Gly Asn Glu Ile Phe Asn Thr Ser Leu Phe
130 135 140

Glu Pro Pro Pro Pro Gly Tyr Glu Asn Val Ser Asp Ile Val Pro Pro
145 150 155 160

Phe Ser Ala Phe Ser Pro Gln Gly Met Pro Glu Gly Asp Leu Val Tyr

165

170

175

Val Asn Tyr Ala Arg Thr Glu Asp Phe Phe Lys Leu Glu Arg Asp Met
 180 185 190

Lys Ile Asn Cys Ser Gly Lys Ile Val Ile Ala Arg Tyr Gly Lys Val
 195 200 205

Phe Arg Gly Asn Lys Val Lys Asn Ala Gln Leu Ala Gly Ala Lys Gly
 210 215 220

Val Ile Leu Tyr Ser Asp Pro Ala Asp Tyr Phe Ala Pro Gly Val Lys
 225 230 235 240

Ser Tyr Pro Asp Gly Trp Asn Leu Pro Gly Gly Val Gln Arg Gly
 245 250 255

Asn Ile Leu Asn Leu Asn Gly Ala Gly Asp Pro Leu Thr Pro Gly Tyr
 260 265 270

Pro Ala Asn Glu Tyr Ala Tyr Arg Arg Gly Ile Ala Glu Ala Val Gly
 275 280 285

Leu Pro Ser Ile Pro Val His Pro Ile Gly Tyr Tyr Asp Ala Gln Lys
 290 295 300

Leu Leu Glu Lys Met Gly Gly Ser Ala Pro Pro Asp Ser Ser Trp Arg
 305 310 315 320

Gly Ser Leu Lys Val Pro Tyr Asn Val Gly Pro Gly Phe Thr Gly Asn
 325 330 335

Phe Ser Thr Gln Lys Val Lys Met His Ile His Ser Thr Asn Glu Val
 340 345 350

Thr Arg Ile Tyr Asn Val Ile Gly Thr Leu Arg Gly Ala Val Glu Pro
 355 360 365

Asp Arg Tyr Val Ile Leu Gly Gly His Arg Asp Ser Trp Val Phe Gly
 370 375 380

Gly Ile Asp Pro Gln Ser Gly Ala Ala Val Val His Glu Ile Val Arg
 385 390 395 400

Ser Phe Gly Thr Leu Lys Lys Glu Gly Trp Arg Pro Arg Arg Thr Ile
 405 410 415

Leu Phe Ala Ser Trp Asp Ala Glu Glu Phe Gly Leu Leu Gly Ser Thr

420	425	430	
Glu Trp Ala Glu Glu Asn Ser Arg Leu Leu Gln Glu Arg Gly Val Ala			
435	440	445	
Tyr Ile Asn Ala Asp Ser Ser Ile Glu Gly Asn Tyr Thr Leu Arg Val			
450	455	460	
Asp Cys Thr Pro Leu Met Tyr Ser Leu Val His Asn Leu Thr Lys Glu			
465	470	475	480
Leu Lys Ser Pro Asp Glu Gly Phe Glu Gly Lys Ser Leu Tyr Glu Ser			
485	490	495	
Trp Thr Lys Lys Ser Pro Ser Pro Glu Phe Ser Gly Met Pro Arg Ile			
500	505	510	
Ser Lys Leu Gly Ser Gly Asn Asp Phe Glu Val Phe Phe Gln Arg Leu			
515	520	525	
Lys Ile Ala Ser Gly Arg Ala Arg Tyr Thr Lys Asn Trp Glu Thr Asn			
530	535	540	
Lys Phe Ser Gly Tyr Pro Leu Tyr His Ser Val Tyr Glu Thr Tyr Glu			
545	550	555	560
Leu Val Glu Lys Phe Tyr Asp Pro Met Phe Lys Tyr His Leu Thr Val			
565	570	575	
Ala Gln Val Arg Gly Gly Met Val Phe Glu Leu Ala Asn Ser Ile Val			
580	585	590	
Leu Pro Phe Asp Cys Arg Asp Tyr Ala Val Val Leu Arg Lys Tyr Ala			
595	600	605	
Asp Lys Ile Tyr Ser Ile Ser Met Lys His Pro Gln Glu Met Lys Thr			
610	615	620	
Tyr Ser Val Ser Phe Asp Ser Leu Phe Ser Ala Val Lys Asn Phe Thr			
625	630	635	640
Glu Ile Ala Ser Lys Phe Ser Glu Arg Leu Gln Asp Phe Asp Lys Ser			
645	650	655	
Asn Pro Ile Val Leu Arg Met Met Asn Asp Gln Leu Met Phe Leu Glu			
660	665	670	
Arg Ala Phe Ile Asp Pro Leu Gly Leu Pro Asp Arg Pro Phe Tyr Arg			

675

680

685

His Val Ile Tyr Ala Pro Ser Ser His Asn Lys Tyr Ala Gly Glu Ser
 690 695 700

Phe Pro Gly Ile Tyr Asp Ala Leu Phe Asp Ile Glu Ser Lys Val Asp
 705 710 715 720

Pro Ser Lys Ala Trp Gly Glu Val Lys Arg Gln Ile Tyr Val Ala Ala
 725 730 735

Phe Thr Val Gln Ala Ala Ala Glu Thr Leu Ser Glu Val Ala
 740 745 750

<210> 3

<211> 8

<212> PRT

<213> human

<400> 3

Ser Leu Tyr Glu Ser Trp Thr Lys
 1 5

<210> 4

<211> 15

<212> PRT

<213> human

<220>

<221> misc.

<222> (1)..(15)

<223> x=unknown

<400> 4

Ser Tyr Pro Asp Gly Xaa Xaa Leu Pro Gly Gly Gly Val Gln Arg
 1 5 10 15

<210> 5

<211> 7

<212> PRT

<213> human

<400> 5

Phe Tyr Asp Pro Met Phe Lys

1 5

<210> 6
<211> 9
<212> PRT
<213> human

<400> 6

Ile Tyr Asn Val Ile Gly Thr Leu Lys
1 5

<210> 7
<211> 22
<212> PRT
<213> human

<220>
<221> misc
<222> (1)..(22)
<223> x=unknown

<400> 7

Phe Leu Tyr Xaa Xaa Thr Gln Ile Pro His Leu Ala Gly Thr Glu Gln
1 5 10 15

Asn Phe Gln Leu Ala Lys
20

<210> 8
<211> 17
<212> PRT
<213> human

<400> 8

Gly Val Ile Leu Tyr Ser Asp Pro Ala Asp Tyr Phe Ala Pro Asp Val
1 5 10 15

Lys

<210> 9
<211> 17
<212> PRT
<213> human

<400> 9

Pro Val Ile Leu Tyr Ser Asp Pro Ala Asp Tyr Phe Ala Pro Gly Val
1 5 10 15

Lys

<210> 10

<211> 15

<212> PRT

<213> human

<400> 10

Ala Phe Ile Asp Pro Leu Gly Leu Pro Asp Arg Pro Phe Tyr Arg
1 5 10 15

<210> 11

<211> 19

<212> PRT

<213> human

<400> 11

Tyr Ala Gly Glu Ser Phe Pro Gly Ile Tyr Asp Ala Leu Phe Asp Ile
1 5 10 15

Glu Ser Lys

<210> 12

<211> 22

<212> PRT

<213> human

<220>

<221> misc.

<222> (1)..(22)

<223> x=unknown

<400> 12

Thr Ile Leu Phe Ala Ser Trp Asp Ala Glu Glu Phe Gly Xaa Xaa Gly
1 5 10 15

Ser Thr Glu Glu Ala Glu
20

<210> 13
<211> 17
<212> DNA
<213> artificial;primer

<220>
<221> misc.
<222> (1)..(16)
<223> n=unknown

<400> 13
tttytaygayc cnatggt
17

<210> 14
<211> 17
<212> DNA
<213> artificial;primer

<220>
<221> misc
<222> (1)..(16)
<223> n=unknown

<400> 14
aacatnggrt crtaraa
17

<210> 15
<211> 17
<212> DNA
<213> artificial;primer

<220>
<221> misc.
<222> (1)..(17)
<223> n=unknown

<400> 15
athtayaayg tnathgg

17

<210> 16
<211> 17
<212> DNA
<213> artificial;primer

<220>
<221> misc.
<222> (1)..(17)
<223> n=unknown

<400> 16
ccdatnacrt trtadat
17

<210> 17
<211> 17
<212> DNA
<213> artificial;primer

<220>
<221> misc.
<222> (1)..(17)
<223> n=unknown

<400> 17
ccngcngayt ayttgc
17

<210> 18
<211> 17
<212> DNA
<213> artificial;primer

<220>
<221> misc.
<222> (1)..(17)
<223> n=unknown

<400> 18
gcraartart ncgcngg

17

<210> 19
<211> 20
<212> DNA
<213> artificial;primer

<220>
<221> misc.
<222> (1)..(20)
<223> n=unknown

<400> 19
acngarcara ayttycarct
20

<210> 20
<211> 20
<212> DNA
<213> artificial;primer

<220>
<221> misc.
<222> (1)..(20)
<223> n=unknown

<400> 20
agytgraart tytgtycngt
20

<210> 21
<211> 17
<212> DNA
<213> artificial;primer

<400> 21
garcaraayt tycarct
17

<210> 22
<211> 17
<212> DNA

<213> artificial;primer

<400> 22

agytgraart tytgytc
17

<210> 23

<211> 20

<212> DNA

<213> artificial;primer

<220>

<221> misc.

<222> (1)..(20)

<223> n=unknown

<400> 23

tgggaygcng argarttygg
20

<210> 24

<211> 20

<212> DNA

<213> artificial;primer

<220>

<221> misc.

<222> (1)..(20)

<223> n=unknown

<400> 24

ccraaytcyt cngcrtccca

20

<210> 25

<211> 17

<212> DNA

<213> artificial;primer

<220>

<221> misc.

<222> (1)..(17)

<223> n=unknown

<400> 25
tgggaygcng argartt
17

<210> 26
<211> 17
<212> DNA
<213> artificial;primer

<220>
<221> misc.
<222> (1)..(17)
<223> n=unknown

<400> 26
aaytcytcng crtccca
17

<210> 27
<211> 780
<212> DNA
<213> chicken

<220>
<221> misc.
<222> (1)..(780)
<223> n=unknown

<400> 27
tacacttatac ccattcgac atgcccacct tggaactgga gacccttaca ccccaggctt
60

cccttcgttc aaccacaccc annngttcc accagttgaa tcttcaggac taccccacat
120

tgctgttcag accatctcta gcagtgcagc agccaggctg ttcagcaaaa tggatggaga
180

cacatgctct ganagnngtt ggaaaggtgc gatccannnt tcctgttaagg tnngacnnaa
240

caaagcagga gannnnngcca gantaatggt gaaacttagat gtgaacaatt ccatgaaaga

300

caggaagatt ctgaacatct tcggtgctat ccagggattt gaagaacctg atcggtatgt
360

tgtgattgga gcccagagag actcctgggg cccaggagtg gctaaagctg gcactggaac
420

tgctatattg ttggaacttg cccgtgtat ctcagacata gtaaaaacg agggctacaa
480

accgaggcga agcatcatct ttgctagctg gagtgcagga gactacggag ctgtgggtgc
540

tactgaatgg ctggaggggt actctgccat gctgcatgcc aaagcttca cttacatcan
600

ngcttggatg ctccagtccct gggagcaagc catgtcaaga tttctgccag ccccttgctg
660

tatatgctgc tggggagttat tatgaagggg gtgaagaatc cagcagcagt ctcagagagc
720

nnnnctctat aacagacttg gcccagactg ggtaaaagca gttgttcctc ttggcctgga
780

<210> 28

<211> 660

<212> DNA

<213> rat

<220>

<221> misc.

<222> (1)..(660)

<223> n=unknown

<400> 28

tgcagaaaaag ctattcaaaa acatggaagg aaactgtcct cctagttgga atatagattc
60

ctcatgttaag ctggaacttt cacagaatca aaatgtgaag ctcactgtga acaatgtact
120

gaaagaaaaca agaatactta acatcttgg cgttattaaa ggctatgagg aaccagaccg
180

ctacattgt a gtaggagccc agagagacgc ttggggccct ggtngttgcg aagtccagtg
240

tgggaacagg tcttnctgtt gaaacttgcc caagtattct cagatatgtat ttcaaaaagat
300

ggatttagac ccagcaggag tattatctt gccagctgga ctgcaggaga ctatggagct
360

gttgtccga ctgagtggt ggaggggtac ctttcatctt tgcatctaaa gnnngcttc
420

acttacatta atnctggata aagtcgtcct gggtaactac aacttcaagg tttctgccag
480

ccccctatta tatacactta tggggaaagat aatgcaggan ncgtaaagca tccgannnn
540

nnnttgatgg aaaatatcta tatcgaaaca gtaattggat tagcaaaatt gaggaacttt
600

ccttggacaa tgctgcattc cctttcttg catattcagg aatcccagca gtttcttct
660

<210> 29
<211> 540
<212> DNA
<213> human

<220>
<221> misc.
<222> (1)..(540)
<223> n=unknown

<400> 29
tatggaagga gactgtccct ctgactggaa aacagactct acatgttagga tggtaacctc
60

agaaagcaag aatgtgaagc tcactgtgag caatgtgctg aaagagataa aaattcttaa
120

catctttgga gttattaaag gctttgtaga accagatcac tatgtttagt ttggggccca
180

gagagatgca tggggccctg gagctgcaaa atcncggtgt aggcacagct ctcctattga
240

aacttgc cca gatgttctca gatatgg taaaagatgg gtttcagccc agcagaagca
300

ttatcttgc cagtggagt gctggagact ttggatcggt tggtgccact gaatggctag
360

aggataacct ttcgtcnccct gcattaaag gctttcactt atattaatct ggataaagcg
420

gttcttgta ccagcaactt caaggttct gccagccac tgttgtatac gcttattgag
480

aaaacaatgc aaaatgtgaa gcatccggtt actgggcaat ttctatatca ggacagcaac
540

<210> 30
<211> 27
<212> DNA
<213> artificial

<400> 30
acggagcaaa actttcagct tgcaaag
27

<210> 31
<211> 9
<212> PRT
<213> artificial;primer

<400> 31

Thr Glu Gln Asn Phe Gln Leu Ala Lys
1 5

<210> 32
<211> 36
<212> DNA
<213> artificial;primer

<400> 32
ctcttcggca tccccagcttg caaacaaaaat tgttct
36

<210> 33

<211> 36
<212> DNA
<213> artificial;primer

<400> 33
agaacaattt tgtttgcaag ctgggatgcc aaggag
36

<210> 34
<211> 12
<212> PRT
<213> artificial;primer

<400> 34

Arg Thr Ile Leu Phe Ala Ser Trp Asp Ala Glu Glu
1 5 10

<210> 35
<211> 6
<212> PRT
<213> human

<400> 35

Asp Glu Leu Lys Ala Glu
1 5

<210> 36
<211> 6
<212> PRT
<213> human

<400> 36

Asn Glu Asp Gly Asn Glu
1 5

<210> 37
<211> 6
<212> PRT
<213> human

<400> 37

Lys Ser Pro Asp Glu Gly
1 5

<210> 38
<211> 17
<212> PRT
<213> human

G1
Cont <400> 38

Ala Gly Ala Leu Val Leu Ala Gly Gly Phe Phe Leu Leu Gly Phe Leu
1 5 10 15

Phe