Numerrical Analysis

欧阳尚可 3190102458

2021年11月2日

1 Assignments

Problem 1

考虑线性插值 $p_1(f;x)=kx+n$,将 x_0 和 x_1 及其对应的函数值代入解 得 $k=-\frac{1}{2};b=\frac{3}{2}$,因此 $p_1(f;x)=-\frac{1}{2}+\frac{3}{2}$ 。所以 $f(x)-p_1(f;x)=\frac{1}{x}+\frac{1}{2}x-\frac{3}{2}=\frac{f''(\epsilon(x))}{2}(x-1)(x-2)=(x^2-3x+2)[\epsilon(x)]^{-3}$,化简得 $\epsilon(x)=(2x)^{\frac{1}{3}}$ $x\in(1,2)$ 。 对 $\epsilon(x)$ 进行解析延拓至 [1,2] 可得 $\epsilon(x)=(2x)^{\frac{1}{3}}$ $x\in[1,2]$ 。 对函数进行求导得 $\epsilon'(x)=\frac{1}{3}(2x)^{-\frac{2}{3}}$,可知在 $x\in[1,2]$ 时, $\epsilon'(x)>0$ 恒成立。所以 $\epsilon(x)$ 在 [1,2] 上单调递增。 因此 $\max(\epsilon(x))=4^{\frac{1}{3}},\min(\epsilon(x))=2^{\frac{1}{3}}$ 。 通过前面的推导我们可以得出 $f''(\epsilon(x))=\frac{1}{x},x\in[1,2]$,因此 $\max(f''(\epsilon(x)))=1$ 。

Problem 2

首先,对于给定的每个点对应的函数值取它们的根号,构成一些新的节点。我们总可以找到 $p \in \mathbb{P}_n$,使得 $p(x_i) = \sqrt{f_i}$ 。再令 $p'(x) = p^2(x)$,有 $p'(x_i) = f_i, p'(x) \in \mathbb{P}_{2n}^+$ 。

Problem 3

考虑对 $\forall t \in \mathbb{R}$ 使用归纳法,当 n=1 时, $f[t,t+1]=f[t+1]-f[t]=(e-1)e^t$;现在假设当 n=k 时, $f[t,t+1,...,t+k]=\frac{(e-1)^k}{k!}e^t$;当 n=k+1 时, $f[t,t+1,...,t+k+1]=\frac{f[t+1,...,t+k+1]-f[t,...,t+k]}{k+1}=\frac{1}{k+1}(\frac{(e-1)^k}{k!}e^{t+1}-\frac{(e-1)^k}{k!}e^t)=\frac{(e-1)^{k+1}}{(k+1)!}$ 。

$$\begin{split} f[0,1,...,n] &= \frac{(e-1)^n}{n!} = \frac{f^{(n)}(\epsilon)}{n!}, \, \text{由此可知} \, (e-1)^n = e^\epsilon \to \epsilon = nln(e-1). \\ \text{由于} \, e-1 > e^{\frac{1}{2}}, \, \, 所以 \, \epsilon > \frac{n}{2}. \end{split}$$

Problem 4

由上表可知
$$p_3(f;x) = 5 - 2x + x(x-1) + \frac{1}{4}x(x-1)(x-3)$$
。
 $p_3'(f;x) = \frac{3}{4}x^2 - \frac{9}{4} \to x = \sqrt{3}$,负值舍去。

0	5			
1	3	-2		
2	5	0	1	
3	12	$\frac{7}{4}$	$\frac{5}{4}$	$\frac{1}{4}$

Problem 5

0	0					
1	1	1				
1	1	7	6			
1	1	7	21	15		
2	128	127	120	99	42	
2	128	7 7 127 448	321	201	102	30

由上表可知 f[0,1,1,1,2,2]=30。 由余项的表达形式可知 $\frac{f^{(5)}(\epsilon)}{5!}=f[0,1,1,1,2,2]=30 \rightarrow \epsilon=\frac{\sqrt{70}}{7}$ 。

Problem 6

由上表可知 $p_4(f;x)=1+x-2x(x-1)+\frac{2}{3}x(x-1)^2-\frac{5}{36}x(x-1)^2(x-3)$ 。 因此 $f(x)\approx p_4(f;2)=\frac{11}{18}$ 。

由余项的估计形式可知 $f(x) - p_4(f;x) \leq \frac{1}{5!} f^{(5)}(\epsilon(x)) \prod_{i=0}^n (x - x_i) \leq \frac{M}{5!} x(x-1)^2 (x-3)^2$ 。令 $g(x) = x(x-1)^2 (x-3)^2, x \in [0,3]$,可知 g(x) 在 x=2 处取最大值 2,所以 $f(x) - p_4(f;x) \leq 2M$ 。

Problem 7

考虑使用数学归纳法进行证明。当 n=1 时, $\triangle f(x)=f(x_1)-f(x_0)=hf[x_0,x_1]$;现假设当 n=k 时, $\triangle^k f(x)=k!h^k f[x_0,x_1,...,x_k]$;则当 n=k+1 时, $\triangle^{k+1}f(x)=\triangle^k f(x+h)-\triangle^k f(x)=k!h^k f[x_1,...,x_{k+1}]-k!h^k f[x_0,...,x_k]=(k+1)hk!h^k f[x_0,...,x_{k+1}]=(k+1)!h^{k+1}f[x_0,...,x_{k+1}]$ 。

同样考虑使用数学归纳法。当 n=1 时, $\nabla f(x)=f(x)-f(x-h)=hf[x_0,x_{-1}]$; 现假设当 n=k 时, $\nabla^k f(x)=k!h^k f[x_0,...,x_{-k}]$; 则 当 n=k+1 时, $\nabla^{k+1} f(x)=\nabla^k f(x)-\nabla^k f(x-h)=k!h^k f[x_0,...,x_{-k}]-k!h^k f[x_{-1},...,x_{-k-1}]=(k+1)hk!h^k f[x_0,...,x_{-k-1}]=(k+1)!h^{k+1} f[x_0,...,x_{-k-1}]$ 。

Problem 8

考虑使用数学归纳法。当 n=1 时, $\frac{\partial}{\partial x_0}f[x_0,x_1]=\frac{\partial}{\partial x_0}\frac{f(x_1)-f(x_0)}{x_1-x_0}=\frac{\partial}{\partial x_0}\frac{f(x_1)-f(x_0)}{x_1-x_0}=\frac{\partial}{\partial x_0}\frac{f(x_1)}{x_1-x_0}-\frac{\partial}{\partial x_0}\frac{f(x_0)}{x_1-x_0}=\frac{f(x_1)-f(x_0)}{(x_1-x_0)^2}-\frac{f'(x_0)(x_1-x_0)}{(x_1-x_0)^2}=\frac{f(x_1)-f(x_0)}{x_1-x_0}-f'(x_0)=f[x_0,x_0,x_1];$ 现假设当 n=k 时, $\frac{\partial}{\partial x_0}f[x_0,...,x_n]=f[x_0,x_0,...,x_n];$ 当 n=k+1 时, $\frac{\partial}{\partial x_0}\frac{f[x_1,...,k_{k+1}]-f[x_0,...,x_k]}{x_{k+1}-x_0}=\frac{f[x_1,...,x_{k+1}]}{(x_{k+1}-x_0)^2}-\frac{f[x_0,x_0,x_1,...,x_k](x_{k+1}-x_0)+f[x_0,...,x_k]}{(x_{k+1}-x_0)^2}=\frac{f[x_0,x_0,x_1,...,x_k](x_{k+1}-x_0)+f[x_0,...,x_k]}{x_{k+1}-x_0}=f[x_0,x_0,x_1,...,x_k]$

Problem 9

构造 $T_n(x) = cos(narccos\frac{2x-(a+b)}{b-a})$ 。易得 $T_n(x)$ 有如下性质: $T_{n+1}(x) = 2\frac{2x-(a+b)}{b-a}T_n(x) - T_{n-1}(x)$, $T_1 = x$; $T_n(x)$ 在 $x_k = \frac{(2k-1)(b-a)\pi}{4n} + \frac{a+b}{2}$ 处 $T_n(x) = 0$,在 $x_k' = \frac{k\pi(b-a)}{2n} + \frac{a+b}{2}$ 处 $|T_n(x)| = 1$ 。综上可知, $T_n(x)$ 在 x_n 处的系数为 $\frac{4^{n-1}}{(b-a)^{n-1}}$ 。

当 $a_0=1$ 时,假设存在一列 $a_1,...,a_n\in\mathbb{R}$,使得由它们构成的 n 次多项式的 p(x) 有 $\max_{x\in[a,b]}|p(x)|<\frac{(b-a)^{n-1}}{4^{n-1}}$,令 $Q(x)=\frac{(b-a)^{n-1}}{4^{n-1}}T_n(x)-p(x)$,有上述性质可知 Q(x) 在 $x_k^{'},k=0,1,...,n$ 上变换符号,可知 Q(x) 在 [a,b] 处有 n 个零点,所以 Q(x) 为 n 次多项式,这与 Q(x) 的定义矛盾。由此可知, $\max_{x\in[a,b]}|p(x)|\geq\frac{(b-a)^{n-1}}{4^{n-1}}$ 。 (等号在 $p(x)=\frac{(b-a)^{n-1}}{4^{n-1}}T_n(x)$)

当 $a_0 \neq 1$ 时,有 $|a_0x^n + ... + a_n| = |a_0||x^n + ... + a_n'| \geq |a_0| \frac{(b-a)^{n-1}}{4^{n-1}}$ 。 $min\ max_{x \in [a,b]} |a_0x^n + ... + a_n| = |a_0| \frac{(b-a)^{n-1}}{4^{n-1}}$

Problem 10

当 $T_n(a) > 0$ 时,令 $Q(x) = \frac{T_n(x)}{|T_n(a)|} - p(x)$ 。根据 3.40 同样的方法,我们假设 $\exists p \in \mathbb{P}_n^a, s.t. ||\hat{p}_n(x)||_{\infty} > ||p||_{\infty}$ 。那么由于 $|T_n(x)| \leq 1$,所以有 $||p||_{\infty} < \frac{1}{T_n(a)}$,因此有 Q(x) 在 $x_k', k = 0, 1, ..., n$ 上变换符号。再由 Q(x) 的连续性知 Q(x) 在 [-1,1] 上有 n 个零点,又因为 Q(a) = 0,所以 Q(x) 至少有 n+1 个零点,而从 Q(x) 的定义中得知其最大次数不会超过 n,矛盾。当 $T_n(a) < 0$ 时,令 $Q(x) = -\frac{T_n(x)}{|T_n(a)|} - p(x)$ 。同理可导出矛盾性。因此 $\forall p \in \mathbb{P}_n^a, ||\hat{p}_n(x)||_{\infty} \leq ||p||_{\infty}$