国立天文台 天文シミュレーションプロジェクト 流体学校の手引

Contents

1	流体	本方程式	の数値解法	1
	1.1	一次元	数値流体計算コード・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
		1.1.1	空間時間一次精度スキーム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2	磁纹	気流体力	学の数値解法	5

Chapter 1

流体方程式の数値解法

流体方程式は保存形式で表される。

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} + \frac{\partial \mathbf{G}}{\partial y} + \frac{\partial \mathbf{H}}{\partial z} = 0 \tag{1.1}$$

$$\mathbf{U} = \begin{pmatrix} \rho \\ \rho v_x \\ \rho v_y \\ \rho v_z \\ E \end{pmatrix}, \quad \mathbf{F} = \begin{pmatrix} \rho v_x \\ \rho v_x^2 + P \\ \rho v_x v_y \\ \rho v_x v_z \\ (E+P)v_x \end{pmatrix}, \quad \mathbf{G} = \begin{pmatrix} \rho v_y \\ \rho v_y v_x \\ \rho v_y^2 + P \\ \rho v_y v_z \\ (E+P)v_y \end{pmatrix}, \quad \mathbf{G} = \begin{pmatrix} \rho v_z \\ \rho v_z v_x \\ \rho v_z v_x \\ \rho v_z^2 + P \\ (E+P)v_z \end{pmatrix}, \quad (1.2)$$

1.1 一次元数値流体計算コード

1.1.1 空間時間一次精度スキーム

サンプルコードで使わている変数の説明

Figure 1.1: サンプルプログラムの計算手順のフローチャート。

Table 1.1: 時間発展に関数する変数

変数名/配列名	説明
nhy	時間ステップ数
nhymax	最大時間ステップ数
time	時刻
timemax	計算終了時刻
dt	時間幅

Table 1.2: nhy > nhymax または time > timemax を満たすと計算が終了する。

Table 1.3: 座標に関する変数

変数名/配列名	説明
ngrid	計算領域内のセル総数
mgn	ghost cell 数
in	ghost cell を含めたセル総数
is	計算領域左端のセル番号
ie	計算領域右端のセル番号
x1min	計算領域左端の座標
x1max	計算領域右端の座標
x1b(i)	セル中心の座標 x_i (要素数 in-1)
x1a(i)	セル境界の座標 $x_{i+1/2}$ (要素数 in)

Table 1.4. 流体変数に関する変数

Table 1.4: 流体変数に関する変数					
変数名/配列名	説明				
基本量 (primitive variables)					
d(i)	$x=x_i$ における密度 (要素数 in-1)				
v(i)	$x=x_i$ における速度 (要素数 in-1)				
p(i)	$x=x_i$ における圧力 (要素数 in-1)				
保存量 (primitive variables) 密度は基本量で出てくるので除いている					
mv(i)	$x=x_i$ における運動量 (要素数 in-1)				
et(i)	$x=x_i$ における全エネルギー (要素数 in-1)				
その他の量					
ei(i)	$x=x_i$ における内部エネルギー (要素数 in-1)				
cs(i)	$x=x_i$ における音速 (要素数 in-1)				
セル境界の流束 (numerical flux)					
dflux(i)	$x=x_{i+1/2}$ における質量流束 (要素数 in)				
mvflux(i)	$x=x_{i+1/2}$ における運動量流束 (要素数 in)				
etflux(i)	$x=x_{i+1/2}$ におけるエネルギー流束 (要素数 in)				

Chapter 2

磁気流体力学の数値解法