m0upmaxyh

December 6, 2024

1 Detección de fraudes con tarjetas de crédito

Enlace al dataset: https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud

1.0.1 Importamos las bibliotecas necesarias

```
[1]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

import warnings
warnings.filterwarnings("ignore")
```

1.0.2 Importamos y organizamos el dataset

```
[2]: # Organizar los datos en un dataframe
df = pd.read_csv("creditcard.csv")
df.head()
```

```
[2]:
       Time
                             V2
                                      VЗ
                                                ۷4
                                                          ۷5
                                                                   ۷6
                                                                             ۷7
        0.0 -1.359807 -0.072781
                                2.536347
                                          1.378155 -0.338321
                                                             0.462388
                                                                       0.239599
        0.0 1.191857 0.266151
                                0.166480
                                          0.448154 0.060018 -0.082361 -0.078803
    1
    2
        1.0 -1.358354 -1.340163 1.773209
                                          0.379780 -0.503198
                                                             1.800499
                                                                       0.791461
        1.0 -0.966272 -0.185226 1.792993 -0.863291 -0.010309
                                                             1.247203
                                                                       0.237609
        2.0 -1.158233 0.877737
                                1.548718 0.403034 -0.407193
                                                             0.095921
                                                                       0.592941
                                  V21
                                            V22
                                                      V23
                                                               V24
                                                                         V25
       0.098698
                 0.363787
                          ... -0.018307
                                       0.277838 -0.110474 0.066928
    1 0.085102 -0.255425
                          ... -0.225775 -0.638672 0.101288 -0.339846
    2 0.247676 -1.514654
                           ... 0.247998
                                       0.771679 0.909412 -0.689281 -0.327642
    3 0.377436 -1.387024
                          ... -0.108300
                                       0.005274 -0.190321 -1.175575
    4 -0.270533 0.817739
                                       ... -0.009431
            V26
                      V27
                               V28
                                    Amount
                                            Class
    0 -0.189115  0.133558 -0.021053
                                    149.62
    1 0.125895 -0.008983 0.014724
                                      2.69
```

```
2 -0.139097 -0.055353 -0.059752 378.66 0
3 -0.221929 0.062723 0.061458 123.50 0
4 0.502292 0.219422 0.215153 69.99 0
```

[5 rows x 31 columns]

1.0.3 Limpiamos los datos

a. Valores perdidos

```
[3]: lost = df.isnull().sum()
```

b. Datos duplicados

```
[4]: duplicate = df.duplicated().sum()
print (f'Hay {duplicate} valores duplicados')
```

Hay 1081 valores duplicados

```
[5]: # Limpiamos los datos duplicados
df_clean = df.drop_duplicates()
df_clean
```

```
[5]:
                  Time
                               V1
                                           V2
                                                     ٧3
                                                                V4
                                                                           ۷5
                  0.0
                        -1.359807
                                   -0.072781
                                               2.536347
                                                          1.378155 -0.338321
     0
                                    0.266151
     1
                  0.0
                         1.191857
                                               0.166480
                                                          0.448154 0.060018
     2
                   1.0
                        -1.358354
                                   -1.340163
                                               1.773209
                                                          0.379780 -0.503198
     3
                  1.0
                        -0.966272
                                   -0.185226
                                               1.792993 -0.863291 -0.010309
     4
                  2.0
                        -1.158233
                                    0.877737
                                               1.548718
                                                          0.403034 -0.407193
     284802
             172786.0 -11.881118
                                   10.071785 -9.834783 -2.066656 -5.364473
     284803
             172787.0
                        -0.732789
                                   -0.055080
                                               2.035030 -0.738589
                                                                    0.868229
     284804
             172788.0
                         1.919565
                                   -0.301254 -3.249640 -0.557828
                                                                    2.630515
     284805
             172788.0
                        -0.240440
                                    0.530483
                                               0.702510
                                                          0.689799 -0.377961
             172792.0
     284806
                        -0.533413
                                   -0.189733 0.703337 -0.506271 -0.012546
                    ۷6
                              ۷7
                                         ٧8
                                                   ۷9
                                                                V21
                                                                           V22
     0
             0.462388
                        0.239599
                                  0.098698
                                            0.363787
                                                       ... -0.018307
                                                                     0.277838
     1
            -0.082361 -0.078803
                                  0.085102 -0.255425
                                                       ... -0.225775 -0.638672
     2
             1.800499
                        0.791461
                                  0.247676 -1.514654
                                                       ... 0.247998
                                                                     0.771679
     3
             1.247203
                        0.237609
                                  0.377436 -1.387024
                                                       ... -0.108300
                                                                     0.005274
     4
                        0.592941 -0.270533
                                             0.817739
                                                       ... -0.009431
                                                                     0.798278
             0.095921
     284802 -2.606837 -4.918215
                                             1.914428
                                  7.305334
                                                           0.213454
                                                                     0.111864
             1.058415
                                  0.294869
                                             0.584800
                                                           0.214205
                                                                     0.924384
     284803
                        0.024330
     284804
             3.031260 -0.296827
                                  0.708417
                                             0.432454
                                                           0.232045
                                                                     0.578229
     284805
             0.623708 -0.686180
                                  0.679145
                                             0.392087
                                                           0.265245
                                                                     0.800049
     284806 -0.649617 1.577006 -0.414650
                                             0.486180
                                                          0.261057
                                                                     0.643078
```

```
V23
                      V24
                                V25
                                          V26
                                                    V27
                                                              V28
                                                                   Amount \
0
      -0.110474 0.066928 0.128539 -0.189115 0.133558 -0.021053
                                                                   149.62
       0.101288 -0.339846 0.167170 0.125895 -0.008983
1
                                                         0.014724
                                                                     2.69
2
       0.909412 - 0.689281 - 0.327642 - 0.139097 - 0.055353 - 0.059752 378.66
3
       -0.190321 -1.175575 0.647376 -0.221929 0.062723 0.061458 123.50
       -0.137458 0.141267 -0.206010 0.502292 0.219422 0.215153
                                                                    69.99
284802 1.014480 -0.509348 1.436807 0.250034 0.943651 0.823731
                                                                     0.77
284803 0.012463 -1.016226 -0.606624 -0.395255 0.068472 -0.053527
                                                                    24.79
284804 -0.037501 0.640134 0.265745 -0.087371 0.004455 -0.026561
                                                                    67.88
284805 -0.163298 0.123205 -0.569159 0.546668 0.108821 0.104533
                                                                    10.00
284806 0.376777 0.008797 -0.473649 -0.818267 -0.002415 0.013649 217.00
       Class
0
           0
           0
1
2
           0
3
           0
           0
           0
284802
284803
           0
284804
           0
284805
           0
284806
```

[283726 rows x 31 columns]

```
[6]: # Comprobamos la limpieza del DataFrame
    df_clean.dropna(inplace=True)
    nan_count = df_clean.isnull().sum().sum()
    print(f'Hay {nan_count} valores nulos en el DataFrame')
```

Hay O valores nulos en el DataFrame

1.0.4 Analizamos los datos

Porcentaje de transacciones fraudulentas en el dataset

```
[7]: # Calcular el porcentaje de transacciones fraudulentas
  fraud = (df_clean['Class']==1).sum()
  total = df_clean['Class'].count()

# Mostrar el porcentaje de transacciones fraudulentas
  print(f"El porcentaje de transacciones fraudulentas es: {(fraud/total)*100}")
```

El porcentaje de transacciones fraudulentas es: 0.1667101358352777

Importe medio de las transacciones fraudulentas

Importe medio de las transacciones fraudulentas: 123.87\$

1.0.5 Visualizamos los datos

Utilizamos un gráfico de barras para comparar las transacciones fraudulentas con las no fraudulentas

```
[9]: # Cuenta el número de transacciones fraudulentas y no fraudulentas
classC = df_clean['Class'].value_counts()
plt.figure(figsize=(8, 5))
plt.bar(classC.index, classC.values, color=['blue','red'])
plt.xlabel('Class')
plt.ylabel('Numero de Transacciones')
plt.title('Tipos de Transaccioness ')
plt.title('Tipos de Transaccioness ')
plt.xticks([0,1], ['No Fraudulentas(0)', 'Fraudulentas(1)'])

# Muestra la distribución de las traducciones fraudulentas con respecto de lasu
no fraudulentas
plt.show()
```


Ahora nos valemos de un histograma para visualizar distribución de los importes de las transacciones fraudulentas

```
[10]: # Separa los datos de transacciones fraudulentas
df_fraud = df_clean[(df_clean['Class'] == 1)]

# Muestra la distribución de los importes de las transacciones fraudulentas
plt.figure(figsize=(8, 5))
plt.hist(df_fraud['Amount'])
plt.xlabel('Valor Transacción')
plt.ylabel('Frecuencia')
plt.title('Transacciones Fraudulentas')
plt.show()
```


1.1 Desarrollo y evaluación de modelos

1.1.1 Preparamos el dataset

1.1.2 Creamos y evaluamos los modelos

```
[12]: array([0, 0, 0, ..., 0, 0, 0], dtype=int64)
```

1.1.3 Evaluamos la precisión general

Utilizamos la función accuracy_score(), que calcula la proporción de predicciones correctas en relación con el total de predicciones. La precisión indica el porcentaje de todas las transacciones correctamente clasificadas (fraudulentas y no fraudulentas)

```
[13]: precision = accuracy_score(y_test, y_pred) print(f"La precisión general del modelo es de {round(precision * 100, 2)}%")
```

La precisión general del modelo es de 99.95%

1.1.4 Reporte de clasificación

La función classification_report() genera un reporte detallado con varias métricas de rendimiento, como la precisión, el recall y el F1-score, para cada clase (fraudulenta y no fraudulenta).

- Precision: La proporción de verdaderos positivos sobre el total de predicciones positivas. Es
 decir, de todas las veces que el modelo predijo que una transacción era fraudulenta, cuántas
 realmente lo eran.
- Recall: La proporción de verdaderos positivos sobre el total de casos positivos reales. Es decir, de todas las transacciones fraudulentas, cuántas fueron correctamente identificadas por el modelo.
- F1-score: La media armónica entre la precisión y el recall, que da un valor más equilibrado cuando se tiene un conjunto de clases desequilibradas.

```
[14]: report = classification_report(y_test, y_pred)
print("Reporte de clasificación:\n", report)
```

Reporte de clasificación:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	56656
1	0.94	0.71	0.81	90
accuracy			1.00	56746
macro avg	0.97	0.86	0.90	56746
weighted avg	1.00	1.00	1.00	56746

1.1.5 Importancia de las características

Este gráfico añade una capa de interpretabilidad al proyecto, ayudando a entender qué aspectos del dataset están impulsando las decisiones del modelo, ya que las características con mayor importancia están más correlacionadas con la capacidad predictiva del modelo.

```
[15]: importances = model.feature_importances_
    features = X.columns

sorted_idx = importances.argsort()
    sorted_features = features[sorted_idx]
    sorted_importances = importances[sorted_idx]

plt.figure(figsize=(10, 6))
    plt.barh(sorted_features, sorted_importances, color='skyblue')
    plt.xlabel('Importancia de la Característica')
    plt.ylabel('Características')
    plt.title('Importancia de las Características - Random Forest')
    plt.grid(axis='x', linestyle='--', alpha=0.7)
    plt.tight_layout()
    plt.show()
```


1.1.6 Matriz de confusión

La matriz de confusión es una herramienta visual excelente para visualizar el rendimiento del modelo, especialmente en problemas de clasificación.

```
[16]: from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y_test, y_pred)

sns.heatmap(cm, annot=True,fmt='d', cmap='Blues')
```

```
plt.xlabel('Valor Predicho')
plt.ylabel('Valor Real')
plt.title('Confusion Matrix')

plt.show()

FP = cm[0][1]  # Falsos Positivos
FN = cm[1][0]  # Falsos Negativos
print(f"Error Tipo I (Falsos Positivos): {FP}")
print(f"Error Tipo II (Falsos Negativos): {FN}")
```


Error Tipo I (Falsos Positivos): 4 Error Tipo II (Falsos Negativos): 26

1.1.7 Curva ROC y AUC

La curva ROC muestra el rendimiento del modelo para todos los umbrales posibles, y el AUC es el área bajo la curva, que mide la capacidad del modelo para distinguir entre clases positivas y negativas. Un valor de AUC cercano a 1 indica un buen rendimiento.

```
from sklearn.metrics import roc_curve, roc_auc_score

fpr, tpr, thresholds = roc_curve(y_test, model.predict_proba(X_test)[:, 1])
auc = roc_auc_score(y_test, y_pred)

plt.figure(figsize=(8, 6))
plt.plot(fpr, tpr, label=f'AUC = {auc:.2f}')
plt.plot([0, 1], [0, 1], linestyle='--')
plt.xlabel('Indice de Falsos Positivos')
plt.ylabel('Indice de Verdaderos Positivos')
plt.title('Curva ROC')
plt.legend()

plt.show()
```


1.1.8 Curva Precision-Recall (PRC) y AUC

Similar a la curva ROC, la curva de precisión-recall muestra la relación entre la precisión y el recall para diferentes umbrales de clasificación. Es especialmente útil en problemas desbalanceados, ya que se enfoca más en la clase minoritaria (en este caso, las transacciones fraudulentas).

Cómo se interpreta: Un área bajo la curva PRC mayor indica un mejor rendimiento del modelo en cuanto a la detección de la clase positiva (fraudulenta).

1.2 Visualizaciones interactivas

Utilizamos los módulos Plotly y Cufflinks para mejorar la interactividad y visualización del proyecto, haciéndolo más atractivo y fácil de analizar.

1.2.1 Configuración inicial

```
[19]: import plotly.express as px
import cufflinks as cf

cf.go_offline()
cf.set_config_file(offline=False, world_readable=True)
```

1.2.2 Curvas de Aprendizaje

Una gráfica de curvas de aprendizaje interactiva permite inspeccionar cada punto y observar los valores de precisión en diferentes tamaños de entrenamiento.

1.2.3 Distribución de Importe por Tipo de Transacción

Utilizamos una gráfica de tipo Box Plot para identificar la distribución de los importes en transacciones fraudulentas y no fraudulentas.

Ahora nos valemos de un gráfico KDE para comparar cómo se distribuye el importe entre transacciones fraudulentas y no fraudulentas. Este tipo de gráfico ayuda a visualizar la densidad de probabilidad de los datos.

1.2.4 Visualización de los árboles de decisión

Por último, obtenemos una visualización de los árboles de decisión que ha implementado el modelo

Reducimos el parámetro max_depth para reducir la complejidad del árbol y mejorar la visualización.

```
[24]: from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt from sklearn.tree import plot_tree
```

