

<u>Materia Sensores y Actuadores</u>.

Trabajo Práctico N°2

Pregunta N°4:

4) Durante el diseño de un equipo de control de flujo de agua se ensayan cuatro sensores A, B, C y D. Cada uno de estos sensores fue probado tomando cinco lecturas mientras se mantenía un caudal de agua constante de 0.1 L/s, dando como resultado los datos consignados en la tabla.

¿Cuál sensor ofrece la mayor exactitud y cuál ofrece la mayor precisión?

Para entender la precisión y la exactitud de los sensores A, B, C y D, primero necesitamos definir ambos términos en el contexto de medición:

- **<u>Precisión</u>**: Se refiere a la consistencia de las mediciones. Un sensor es preciso si sus lecturas son cercanas entre sí, incluso si no están cerca del valor real.
- <u>Exactitud</u>: Se refiere a lo cerca que están las mediciones del valor real o verdadero. Un sensor es exacto si las lecturas se aproximan al valor real, aunque no necesariamente sean consistentes entre sí.

Análisis de Ejemplo

Para determinar cuál de los sensores tiene mayor precisión y cuál mayor exactitud, necesitamos conocer los datos de las lecturas para cada sensor (A, B, C, y D).

Para este ejemplo se toman datos hipotéticos.

Dirección General de EDUCACIÓN TÉCNICA Y FORMACIÓN PROFESIONAL Ministerio de **EDUCACIÓN**

Supongamos que tenemos la siguiente tabla de datos de las lecturas de los sensores:

Sensor	Lectura 1 (L/s)	Lectura 2 (L/s)	Lectura 3 (L/s)	Lectura 4 (L/s)	Lectura 5 (L/s)
Α	0.09	0.11	0.10	0.09	0.098
В	0.12	0.13	0.11	0.14	0.12
С	0.10	0.10	0.10	0.11	0.13
D	0.08	0.12	0.09	0.10	0.11

Explicación:

- **Promedio (L/s):** Se calcula sumando todas las lecturas de un sensor y dividiendo entre el número de lecturas (en este caso, 5).
- **Desviación Estándar (L/s):** Mide la dispersión de las lecturas alrededor del promedio, calculada usando la fórmula mencionada a continuación.

Ahora vamos a completar la tabla con los cálculos de precisión y exactitud de cada sensor:

Sensor	Lectura 1 (L/s)	Lectura 2 (L/s)	Lectura 3 (L/s)	Lectura 4 (L/s)	Lectura 5 (L/s)	Promedio	Desviación estándar
Α	0.09	0.11	0.10	0.09	0.098	0.098	0.008
В	0.12	0.13	0.11	0.14	0.12	0.124	0.011
С	0.10	0.10	0.10	0.11	0.13	0.108	0.007
D	0.08	0.12	0.09	0.10	0.11	0.100	0.014

Conclusión:

- **Sensor más exacto: Sensor D**, ya que su promedio de lecturas (0.100 L/s) es exactamente el mismo que el valor real de 0.1 L/s.
- Sensor más preciso: Sensor C, ya que tiene la menor desviación estándar (0.007 L/s), lo que indica que sus lecturas son las más consistentes.

