IP Addressing

- IP is a connectionless, unreliable, best-effort delivery protocol.
- All nodes are identified using an IP address.
- IP accepts whatever data is passed down to it from the upper layers and forwards the data in the form of IP packets.
- Packets are delivered from the source to the destination using IP address.
- IP address is for the interface of a host.
- Multiple interfaces mean multiple IP addresses.

Each router provides its services to support upper-layer functions.

IP Address

IPv4 Addresses

- IPv4 address is a 32 bit address.
- IPv4 addresses are unique and universal (all nodes connecting Internet must have IP addresses).
- Address space of IPv4 is 2³²

Classful Addressing

- The address space is divided into five classes: A, B, C, D, and E.
- A large part of the available addresses are wasted.
- Almost obsolete.

	First byte	Second byte	Third byte	Fourth byte
Class A	0			
Class B	10			
Class C	110			
Class D	1110			
Class E	1111			

	First byte	Second byte	Third byte	Fourth byte
Class A	0–127			
Class B	128–191			
Class C	192–223			
Class D	224–239			
Class E	240–255			

a. Binary notation

b. Dotted-decimal notation

Number of blocks and block size in classful IPv4 addressing

Class	Number of Blocks	Block Size	Application
A	128	16,777,216	Unicast
В	16,384	65,536	Unicast
С	2,097,152	256	Unicast
D	1	268,435,456	Multicast
Е	1	268,435,456	Reserved

- Class A: Address begins with bit 0. It has 8 bit network number (range 0.0.0.0-to-127.255.255.255), 24 bit host number.
- Class B: Address begins with bits 10. It has 16 bit network number (range: 128.0.0.0-to-191.255.255.255), 16 bit host number.
- Class C: Address begins with bits 110. It has 24 bit network number (range: 192.0.0.0-to-223.255.255.255), 8 bit host number.
- Class D: Begins with 1110, multicast addresses (224.0.0.0-to-239.255.255.255)
- Class E: Begins with 11110, unused

IPv4 addressing: CIDR

CIDR: Classless InterDomain Routing

- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address

- IPv4 addressing- a block of addresses can be defined as a.b.c.d/x
- a.b.c.d defines one of the addresses and the /x defines the mask.
- Usually a.b.c.d is the first address in the address block.
- The first address in the block can be found by setting the rightmost 32-x bits to 0s.
- The last address in the block can be found by setting the rightmost 32-x bits 1s.
- Number of addresses in the block can be found by using the formula 2^{32-n}
- The first address in a block is normally not assigned to any device.
- It is used as the network address that represents the organization to the rest of the world.

 Each address in the block can be considered as a two-level hierarchical structure:

The leftmost n bits (prefix) define the network. The rightmost 32-n bits define the host.

Number of subnet bits is called subnet mask

Subnetting

• 223.1.17.0/24, ip addresses are $2^{(32-24)} = 256$

• Subnet 1 needs 2^6=64,

223.1.17.0/26

last address: 223.1.17.63

• Subnet 2 needs $2^6=64$,

223.1.17.64/26

last address: 223.1.17.127

• Subnet 3 needs $2^7 = 128$,

223.1.17.128/25

Figure 19.10 A NAT implementation

Site using private addresses

Figure 19.11 Addresses in a NAT

all datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

motivation: local network uses just one IP address as far as outside world is concerned:

- range of addresses not needed from ISP: just one IP address for all devices
- can change addresses of devices in local network without notifying outside world
- can change ISP without changing addresses of devices in local network
- devices inside local net not explicitly addressable, visible by outside world (a security plus)

implementation: NAT router must:

- outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)
 ... remote clients/servers will respond using (NAT IP address, new port #) as destination addr
- remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair
- incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

ICMP: internet control message protocol

*	used by hosts & routers to communicate network-level information	0	0	description echo reply (ping)
	error reporting:	3	0	dest. network unreachable
	unreachable host, network,	3	1	dest host unreachable
		3	2	dest protocol unreachable
	port, protocol	3	3	dest port unreachable
	echo request/reply (used by	3	6	dest network unknown
	ping)	3	7	dest host unknown
*	network-layer "above" IP:	4	0	source quench (congestion
	ICMP msgs carried in IP			control - not used)
	datagrams	8	0	echo request (ping)
		9	0	route advertisement
**	ICMP message: type, code	10	0	router discovery
	plus first 8 bytes of IP	11	0	TTL expired
	datagram causing error	12	0	bad IP header

IPv6 Addresses

- Address depletion may occur with IPv4.
- IPv6 address is 128 bits long.

IPv6: motivation

- initial motivation: 32-bit address space soon to be completely allocated.
- *additional motivation:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS

IPv6 datagram format:

- fixed-length 40 byte header
- no fragmentation allowed

IPv6 datagram format

priority: identify priority among datagrams in flow flow Label: identify datagrams in same "flow." (concept of flow not well defined).

next header: identify upper layer protocol for data

ver	pri	flow label			
K	oayload	llen	next hdr	hop limit	
	source address (128 bits)				
destination address (128 bits)					
data					
← 32 bits — →					

Other changes from IPv4

- checksum: removed entirely to reduce processing time at each hop
- options: allowed, but outside of header, indicated by "Next Header" field
- *ICMPv6: new version of ICMP
 - additional message types, e.g. "Packet Too Big"
 - multicast group management functions

IPv6 Header Format

IPv4: 20 Bytes + Options IPv6: 40 Bytes + Extension Header

IPv6 Header

IPv4 Header

Version	IHL	Type of Service	Total Length	
Identification			Flags	Fragment Offset
Time to Live Protocol		Header Checksum		
	Source Address			
Destination Address				
		Options		Padding

IPv6 Address Types

- Unicast
- Address is for a single interface.
- Multicast
- One-to-many
- Enables more efficient use of the network
- Uses a larger address range
- Anycast
 - One-to-nearest (allocated from unicast address space).
 - Multiple devices share the same address.
 - All anycast nodes should provide uniform service.
 - Source devices send packets to anycast address.
 - Routers decide on closest device to reach that destination.
 - Suitable for load balancing and content delivery services.

IPv6 Address Scope

- Link-local: The scope is the local link (nodes on the same subnet)
- Unique-local: The scope is the organization (private site addressing)
- Global: The scope is global (IPv6 Internet addresses)

• x:x:x:x:x:x:x, where x is a 16-bit hexadecimal field

IPv6 Address Representation: Link Local

- Hosts on the same link (the same subnet) use these automatically configured addresses to communicate with each other.
- Neighbour discovery provides address resolution.
- Following illustration shows the structure of a link-local address.

1111 1110 10	000 000	Interface ID
(10 bits)	(54 bits)	(64 bits)

IPv6 Address Representation: Unique Local

IPv6 unicast unique-local addresses are similar to IPv4 private addresses.

The unique-local address of the scope a internetwork of organization's (You site. an can addresses unique-local global and both use addresses in your network)

•

The prefix for unique-local addresses is FC00::/8.

IPv6 Address Representation: Link Local

IPv6 Address Representation: Global Unicast

Global unicast and anycast addresses are defined by a global routing prefix, a subnet ID, and an interface ID.

DHCPv6

- Stateful Configuration
- Provides not only IP address, also other configuration parameters like DNS

Transition to IPv6

Transition Options:

- Dual Stack
- IPv6-IPv4 Tunnel
- IPv6-IPv4 Translation

Transition Mechanism

Dual stack hosts and network

- This allows all the end hosts and intermediate network devices (like routers, switches, modems etc.) to have both IPv4 and IPv6 addresses and protocol stack.
- If both the end stations support IPv6, they can communicate using IPv6; otherwise they will communicate using IPv4.
- This will allow both IPv4 and IPv6 to coexist and slow transition from IPv4 to IPv6 can happen.

Dual Stack

Dual Stack Hosts and Network

Transition from IPv4 to IPv6

- not all routers can be upgraded simultaneously
 - no "flag days"
 - how will network operate with mixed IPv4 and IPv6 routers?
- tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers

Tunneling

IPv4 tunnel Α В connecting IPv6 routers logical view: IPv6 IPv6 IPv6 IPv6 Ε Α В physical view: IPv6 IPv6 IPv6 IPv6 IPv4 IPv4

Tunneling

IPv6-IPv4 Translation

- This allows communication between IPv4 only and IPv6 only end stations
- The job of the translator is to translate IPv6 packets into IPv4 packets by doing address and port translation and vice versa.

