

HOME TOP CATALOG CONTESTS GYM PROBLEMSET GROUPS RATING EDU API CALENDAR HELP

PAJENEGOD BLOG TEAMS SUBMISSIONS GROUPS CONTESTS

pajenegod's blog

Montgomery Multiplication Explained (Fast Modular Multiplication)

By pajenegod, history, 12 months ago,

Hi CF! During this past weekend I was reading up on Montgomery transformation, which is a really interesting and useful technique to do fast modular multiplication. However, all of the explanations I could find online felt very unintuitive for me, so I decided to write my own blog on the subject. A big thanks to kostia244, nor, nskybytskyi and -is-this-fft- for reading this blog and giving me some feedback =).

Fast modular multiplication

Let $P=10^9+7$ and let a and b be two numbers in [0,P). Our goal is to calculate $a\cdot b\,\%\,P$ without ever actually calling $\%\,P$. This is because calling $\%\,P$ is very costly.

If you haven't noticed that calling % P is really slow, then the reason you haven't noticed it is likely because the compiler automatically optimizes away the % P call if P is known at compile time. But if P is not known at compile time, then the compiler will have to call % P, which is really really slow.

Montgomery reduction of $a \cdot b$

It turns out that the trick to calculate $a\cdot b\ \%\ P$ efficiently is to calculate $a\cdot b\cdot 2^{-32}\ \%\ P$ efficiently. So the goal for this section will be to figure out how to calculate $a\cdot b\cdot 2^{-32}\ \%\ P$ efficiently. $a\cdot b\cdot 2^{-32}\ \%\ P$ is called the Montgomery reduction of $a\cdot b$, denoted by $m_reduce(a\cdot b)$.

Idea (easy case)

Suppose that $a\cdot b$ just happens to be divisible by 2^{32} . Then $(a\cdot b\cdot 2^{-32})\,\%\,P=(a\cdot b)\gg 32$, which runs super fast!

Idea (general case)

Can we do something similar if $a\cdot b$ is not divisible by 2^{32} ? The answer is yes! The trick is to find some integer m such that $(a\cdot b+m\cdot P)$ is divisible by 2^{32} . Then $a\cdot b\cdot 2^{-32}$ % $P=(a\cdot b+m\cdot P)\cdot 2^{-32}$ % $P=(a\cdot b+m\cdot P)\gg 32$.

So how do we find such an integer m? We want $(a\cdot b+m\cdot P)$ % $2^{32}=0$ so $m=(-a\cdot b\cdot P^{-1})$ % 2^{32} . So if we precalculate $(-P^{-1})$ % 2^{32} then calculating m can be done blazingly fast.

Montgomery transformation

Since the Montgomery reduction divides $a\cdot b$ by 2^{32} , we would like some some way of multiplying by 2^{32} modulo P. The operation $x\cdot 2^{32}$ % P is called the Montgomery transform

→ Pay attention

Before contest

Codeforces Round 876 (Div. 2)

08:20:36

Register now »

*has extra registration

\rightarrow Top rated			
#	User	Rating	
1	Benq	3783	
2	jiangly	3741	
3	tourist	3622	
4	Um_nik	3536	
5	maroonrk	3526	
6	inaFSTream	3477	
7	fantasy	3468	
8	ecnerwala	3454	
9	QAQAutoMaton	3428	
10	fivedemands	3381	
Countri	<u>View all →</u>		

→ Top contributors		
#	User	Contrib.
1	Um_nik	184
2	adamant	178
3	awoo	177
4	nor	169
5	maroonrk	165
6	-is-this-fft-	164
7	antontrygubO_o	152
8	ko_osaga	151
9	dario2994	150
10	SecondThread	149
		<u>View all →</u>

→ Find user	
Handle:	
	Find

→ Recent actions

awoo → Educational Codeforces Round 26 Editorial \bigcirc \bigcirc

of x, denoted by $m_{transform}(x)$.

The trick to implement m_transform efficiently is to make use of the Montgomery reduction. Note that m_transform(x) = m_reduce($x \cdot (2^{64} \% P)$), so if we precalculate $2^{64} \% P$, then m_transform also runs blazingly fast.

Montgomery multiplication

Using m_reduce and m_transform there are multiple different ways of calculating $a \cdot b \,\%\, P$ effectively. One way is to run m_transform(m_reduce($a \cdot b$)). This results in two calls to m_reduce per multiplication.

Another common way to do it is to always keep all integers transformed in the so called Montgomery space. If $a' = \text{m_transform}(a)$ and $b' = \text{m_transform}(b)$ then $\text{m_transform}(a \cdot b \% P) = \text{m_reduce}(a' \cdot b')$. This effectively results in one call to m_reduce per multiplication, however you now have to pay to move integers in to and out of the Montgomery space.

Example implementation

Here is a Python 3.8 implementation of Montgomery multiplication. This implementation is just meant to serve as a basic example. Implement it in C++ if you want it to run fast.

```
P = 10**9 + 7
r = 2**32
r2 = r * r % P
Pinv = pow(-P, -1, r) # (-P^-1) % r
def m_reduce(ab):
 m = ab * Pinv % r
 return (ab + m * P) // r
def m_transform(a):
 return m_reduce(a * r2)
# Example of how to use it
a = 123456789
a_prim = m_transform(a) # mult a by 2^32
b_prim = m_transform(b) # mult b by 2^32
prod prim = m reduce(a prim * b prim) # divide a' * b' by 2^32
prod = m_reduce(prod_prim) # divide prod' by 2^32
print('%d * %d %% %d = %d' % (a, b, P, prod)) # prints 123456789 * 35 %
1000000007 = 320987587
```

Final remarks

One important issue that I've so far swept under the rug is that the output of $\lfloor \underline{\mathsf{m_reduce}} \rfloor$ is actually in [0,2P) and not [0,P). I just want end by discussing this issue. I can see two ways of handling this:

• Alternative 1. You can force $\mathbf{m_reduce}(a \cdot b)$ to be in [0,P) for a and b in [0,P) by adding an if-stament to the output of $\boxed{\mathbf{m_reduce}}$. This will work for any odd integer $P < 2^{31}$.

Fixed implementation of m_reduce

• Alternative 2. Assuming P is an odd integer $<2^{30}$ then if a and $b\in[0,2P)$ you can show that the output of $\operatorname{m_reduce}(a\cdot b)$ is also in [0,2P). So if you are fine working with [0,2P) everywhere then you don't need any if-statements. Nyaan's github has a nice C++ implementation of Montgomery multiplication using this style of implementation.

```
twoplusthree → Invitation to Replay of JU
BitFest Season One 2023
flamestorm → Codeforces Round 871 (Div.
4) Editorial 📡
SPatrik → Codeforces Round #577 (Div 2)
Editorial 69 🖫
valerikk → Codeforces Round #876 (Div. 2)
spybit → Take care of your health!
patilc125 → Searching Job • •
\textbf{MikeMirzayanov} \rightarrow \underline{\textbf{Rule about third-party}}
code is changing 🦃 🧏
tibinyte → Codeforces Round #875 (Div. 1,
<u>Div. 2)</u> 💭
SriniV → Latest Contest Rating Gone? ©
\textbf{d-agrawal} \rightarrow \underline{Competitive\ Programming}
<u>Helper — Looking for a maintainer, and a</u>
big thank you to the users!
chokudai → Tokio Marine & Nichido Fire
Insurance Programming Contest 2023 (ABC
304) Announcement 🐠
yl_neo → grind to 2000 before November
FedeNQ → Teams going to ICPC WF 2022
(<u>Egypt 2023</u>) — WIP List
thanhdno → Become expert before July! ©
Gheal → Codeforces Round #875 (Div.1 +
Div. 2) Editorial 📡
EverybodyOrz|nSomeWay → How does
dynamic memory allocation work? 🦃 🚆
tlsdydaud1 → Codeforces Round #821 (Div.
2) Editorial 😯 🧏
leathamcheesebugers → Codeforces Round
#875 (Div. 1, Div. 2) rating changes 🦃
\textbf{romanregins} \rightarrow \underline{\textbf{Please Help CF Community}}
FLEA → Moldova IOI '23 and EGOI '23
teams 🦃
\textbf{jubayer555} \rightarrow \underline{\text{To remove newbie tag from}}
my profile (C
AJ_20 → Could Someone tell the optimal
approach ©
lis05 \rightarrow Another "If I don't reach GM im
gonna die" blog 🙄
ERROR_1609 → Query related to Blog
<u>writing</u>
                                      Detailed →
```