SKD ROPS. LI (1)

Representations of Lie Groups

Main goal: discuss representations of compact/complex semisimple Lie groups.

(At the end we will also briefly discuss infinite-dimensional representations of noncompact groups.)

Note: These groups and their representations in finite-dimensional case) were completely chassified in the early 20th certage by work of Killing, E. cartan and weyl.

References:

- · Adams: "Lectures on Lie Groups"
- · Folton & Harris: "Representation Theory"

81: Introduction

Mantra: examples are the key to this subject.

E.g.: S1, O(3), SO(3). More generally,

SKI) Pers. LI 2) any closed subgroup of EL(n, IR).

The Lie algebra of a lie grap & Can be defined in various equivalent ways. we take it to be the tangent share at the identity.

1=T1G

And define its Lie brucket Via the following construction.

Recall the adjoint action GNG (given by consignation). Then or GEG we have a map Adg: G-G.

G-> GL(F)
Which is by del the adjoint action of

6 on its Lie algebra. Apain this Mars IEG to IdeGL(B), So differentiating at I again gives a Map: J-Lie GL(F)=ENdF=HOTX This is equivalent to a map 787- J. Which is by defin the Lie bracket of 7. one can check this gives If the Stricture of a Lie algebra. Correctanderce between Lie grays and Lie algebras This construction has a (Partial) inverse, giving an equivalence of categories:

SKD ROB. LI (3)

SKD PRR. LIG
$(dlg(t))^{-1}(\dot{g}(t)) \in T_1G = J$ $(dRg(t))^{-1}(\dot{g}(t)) \in T_1G = J$
After making a choice of left or right, we then see that a Rath g(D)n
3(6) EG and the Path F(t) in I (9) ver by one of the firmhae above): we extend F(t) to a time-dependent vector field (left-
or right-invariant) and take the flow line Passing through 9(0) at time 0.
we now consider Paths with god = 1. Since G is simply-connected we have: elements of G > homotopy classes of elements of G > homotopy classes of
elements of $G \iff homotopy classes of paths in G with g(o) = 1. So early alere classes of paths in G.$

SKD Reps. L1 6)
And we can closoribe this equivalence relation explicitly.
This gives as an invariant way to construct 6 from a Lie alsobra.
Equations of motion for rigid bodies
Suppose we have a time-derendent family of rotations, ge E SOC3). Then we can internet:
g-1g:= (d/g)-1g => angular velocity
$gg^{-1} := (dRg)^{-1}g \iff angolar velocity$
So the Physics leads as to a Surth of lie SO(3) = (P? X).

SKDREPS. LI (7)
More examples (classical grays)
We aganife the classical groups as follows.
Confidet: Complex conjugation $U(n)$ Solve $\frac{1}{2^2-1}$ $\frac{1}{2}$ $\frac{1}{$
Complex: {"complexification"} Specification Speci
Most of the groups we will be interested in fall into this pictore.

SKDREB. LIB)
92: Study at SU(2)
This is a very injurant example:
$SL(2) = \{A \in \mathbb{C}^{2\times 2} : A \neq A = 1, dlt A = 1\}$
= \(\langle \frac{\alpha}{5} \bar{\bar{\bar{\bar{\bar{\bar{\bar{\bar
(Aside: S' and S' are the any sheres
Certainly Su(2) is 1-connected. The adjoint action takes the form:
$\langle (1(2)) \longrightarrow GU(S, \mathbb{R})$
And in fact it takes values in SO(3).
This mar is actually a dable cover, and since Tr. SO(3) = Zz he have:
$SO(3) = SU(2)/\mathbb{Z} = SU(2)/(21)$
So that su(2) is the universal court
of SO(3). Thus, Liesu(2) = Lieso(3) =
(R3, X).

SKD Reps. LI (E)
100 100 100 100 100 100 100 100 100 100
Moca we also have $SU(2) \leq SL(2)$ furthermore:
Lie SL(2, C) = Lie SU(2) ØR C
= LieSu(2) & i LieSu(2)
we can this consider:
Pers. of SU(2) Pers. of SU(2, C) Pers. of Lie SU(2) Pers. of Lie SU(2)
(All representations one complex in this course) The point is that there four one equivalent (mostly follows from above discossion).

SKD ROBS. LICO
Algebraic albeach
we look at rops. of LieSL(2, a). we ose the following basis:
$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$
The Stracture constants are then: [H,X] = 2X, [H,Y] = -2Y, [X,Y] = AH Lot V be a folks acted on by s1(2,0), irrelacible as a module.
Consider (iH) = Marina Liesu(2). This the Lie algobra of: S!= {(eio : oer) = Su(2).
Imers. of Slace ID, given by

So restricting action on V to <iH> can decompose V into a direct som of ID reps. SKD Reps. LI C V = (1) Vx = as a vector space, not an SL(2,0)-module Whee (ene-in) acts on Va as eino so Hacts on Vx as a. Let ex E Va. Then Hea = dea, and: HXex = XHex + 2Xex $= ((+2)) \times ((+2)) \times$ = Xex \in Vx+2 By a Similar agument: $|Ye_{\alpha} \in V_{\alpha-2}|$ Note that if $g = (?;) \in SU(2)$ (len: g(0) = (-1) g = (-1) g=> 9Hg-1(ex) = - xex =) Hg-1(Bex) = - & g-1ex Soif x is a veight, so is -d, (with 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 - 1 - < 9 -

SKD Peps. LI (3)

Thus the iners. of (SU(2)) one the S^dU (where $U = C^2 \omega I$ tautological rep.)

(cf. Polys. homosuccus).

Gednetic approach

If SL(2, T) and then it also acts of IP(V*). Suppose we know that I an orbit isomorphic to DIP! not contained in any Proper linear subspace. Conti it C. Now SL(2, T) has a Standard action on DIP! = 5° by Möbius transformations.

Here, V=1-1°(C,L) where L-C is a line budle (see 1960). So the Classification is that of line budles Over OP! with a lift of the action SL(2, C) A OP!

This is well-known from CPX geometry: L= Ocd). Ther:

 $V = H^{o}(CGG) = SdU \leftarrow homogeneous$ of dograed. Nde: So(3) = SU(2) / (11). So every rel. of SO(3) lifts to a rel. of SU(8). CONVIRT a rel. Of SU(2) factor through to are of SO(3) THI -I acts towally for the mers sold this happens iff delet. Alternatively look at harmonic Polys: those & which Af=0. Then: HI = Slinear Rdys. S Hz = { faycefree Symmetrices} $H_k = S^{2k} U$

SKD ROB. LI