HW7

박성빈, 수학과, 20202120

I'll first show a (trivial) proposition.

Proposition 1. Let (ρ_1, V_1) , (ρ_2, V_2) are representations on a group G. If ρ_2 has degree 1, $\rho_1 \otimes \rho_2 \simeq \rho_2 \rho_1$, which act on V_1 by $\rho_2(s)$ $(\rho_1(s))$ (v) identifying $\rho_2(s) \in \mathbb{C}^{\times}$.

Proof. Since dim $V_2 = 1$, $V_2 \simeq \mathbb{C}$. Identifying V_2 with \mathbb{C} , for each $s \in G$, $\rho_2(s)$ acts on \mathbb{C} by scalar multiplication, so in \mathbb{C}^{\times} . Let $\varphi : V_1 \otimes_{\mathbb{C}} V_2 \to V_1$ by $(v_1, c_2) \mapsto c_2 v_1$. This is definitely vector space isomorphism. Furthermore, it is representation isomorphism since

$$\varphi((\rho_{1} \otimes \rho_{2}(s)))((v_{1}, c_{2}))) = \varphi((\rho_{1}(s)))(v_{1}), (\rho_{2}(s))(c_{2}))
= (\rho_{2}(s))(c_{2})(\rho_{1}(s))(v_{1})
= (\rho_{2}(s))(1)(\rho_{1}(s))(c_{2}v_{1})
= (\rho_{2}\rho_{1}(s)) \circ \varphi(v_{1}, c_{2}).$$
(1)

for any $s \in G$, $v_1 \in V_1$, and $c_2 \in \mathbb{C}$.

Remark 2. If ρ_2 is trivial, then $\rho_1 \otimes \rho_2 \simeq \rho_1$.

Remark 3. Since $\rho_1 \otimes \rho_2 \simeq \rho_2 \otimes \rho_1$, we get $\rho_1 \otimes \rho_2 \simeq \rho_2$ if ρ_1 is trivial.

1(S 8.2)

 D_n The textbook denotes the dihedral group with order 2n by $D_n = \{r^k s^{\sigma}; \sigma \in \{0, 1\}, 0 \le k \le n-1\}$. For the generator $s, r \in D_n$, let's write $A = \{r^k : 0 \le k < n\}$, $H = \{1, s\}$. Note that both subgroups are abelian and normal to D_n . Since $A \cap H = \{1\}$ and $|A||H| = 2n = |D_n|$, we get $D_n = AH$ as AH forms a subgroup in D_n and it has same cardinal as D_n . Finally, it has inner semi-direct product structure: for any $a_1, a_2 \in A$ and $b_1, b_2 \in H$,

$$a_1h_1a_2h_2 = (a_1h_1a_2h_1^{-1})(h_1h_2). (2)$$

Note that for $0 \le m \le n-1$, $\chi_m(r^k) = \exp\left(\frac{2\pi i m k}{n}\right)$ are well-defined irreducible group representations from A to \mathbb{C}^{\times} . Each χ_i are distinct since

$$(\chi_i, \chi_j) = \frac{1}{n} \sum_{k=0}^{n-1} \exp\left(\frac{2\pi(i-j)mk}{n}\right) = \delta_{ij}.$$
 (3)

Also, note that χ_i forms a group X under multiplication since $\chi_i \chi_j = \chi_{i+j \mod n}$. The conjugation action of s to r^k is $s^{-1}r^ks = r^{-k}$, so $s\chi_i = \chi_{n-i}$.

If n is even, $\chi_{0 \le i \le n/2}$ is a system of representatives for the orbits of H in X with $\chi_0 \equiv 1$ and $s\chi_{n/2} = \chi_{n/2}$. For $1 \le i < n/2$, $1 \in H$ only fixes χ_i . Let' set $H_i = 1$, then any irreducible representations of H_i is trivial and we just need to consider $\operatorname{Ind}_A^G \chi_i \simeq \mathbb{C}[G] \otimes_{\mathbb{C}[A]} \mathbb{C}$. Under basis $1 \otimes 1$ and $s \otimes 1$,

$$\operatorname{Ind}_{A}^{G} \chi_{m}(s) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\operatorname{Ind}_{A}^{G} \chi_{m}(r) = \begin{pmatrix} \exp\left(\frac{2\pi i m}{n}\right) & 0 \\ 1 & \exp\left(-\frac{2\pi i m}{n}\right) \end{pmatrix}$$
(4)

for $1 \le m < n/2$.

For $m=1, \chi_0$ is trivial, so any element in H fixes χ_0 . Therefore, extend χ_0 to G=AH by setting $\chi_0(r^ks^\sigma)=\chi_0(r^k)$. For the trivial representation ρ of H, let $\tilde{\rho}(r^ks^\sigma)=\rho(s^\sigma)$, which becomes a representation on G=AH. Now, $\chi_0\otimes\tilde{\rho}$ is a trivial representation on G. For another representation ρ' on H which sends s to -1, we can repeat the above argument and get a representation $\chi_0\otimes\tilde{\rho}'\simeq\tilde{\rho}'$ on G since χ_0 is trivial.

For m = n/2, repeat the above argument and get

$$(\chi_{n/2} \otimes \tilde{\rho}) (r^k s^{\sigma}) = (-1)^k$$

$$(\chi_{n/2} \otimes \tilde{\rho'}) (r^k s^{\sigma}) = (-1)^k (-1)^{\sigma}.$$
(5)

Finally, apply proposition 25 to say that we found all the irreducible representations of G.

For odd n, we can repeat the above argument except considering n/2 case: $\operatorname{Ind}_A^G \chi_m$ for $1 \le m \le \frac{n-1}{2}, \chi_0 \otimes \tilde{\rho}$, and $\chi_0 \otimes \tilde{\rho}'$.

 \mathfrak{A}_4 Let's consider \mathfrak{A}_4 as the group of even permutation of a set $\{1, 2, 3, 4\}$. Set $t = (1\ 2\ 3)$. For $A = \{(1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$ and $H = \{1, t, t^2\}$, I'll show that $\mathfrak{A}_4 \simeq A \rtimes H$ which is again given by inner semidirect product structure. Note that A is a normal subgroup of \mathfrak{A}_4 since conjugation action just permutes the numbers in the orbits, for example, for $\sigma \in \mathfrak{A}_4$,

$$\sigma(1\ 2)(3\ 4)\sigma^{-1} = (\sigma(1)\ \sigma(2))(\sigma(3)\ \sigma(4)). \tag{6}$$

It shows that AH forms a subgroup of \mathfrak{A}_4 . Since $A \cap H = \{1\}$ and $|A||H| = 12 = |\mathfrak{A}_4|$, $\mathfrak{A}_4 = AH$. Finally, it satisfies the inner semidirect product structure following the argument in D_n .

Let's construct group representation of A by following:

	1	$(1\ 2)(3\ 4)$	$(1\ 3)(2\ 4)$	$(1 \ 4)(2 \ 3)$
χ_1	1	1	1	1
χ_2	1	1	-1	-1
<i>X</i> 3	1	-1	1	-1
χ_1 χ_2 χ_3 χ_4	1	-1	-1	1

Note that $(\chi_i, \chi_j) = \delta_{ij}$, so each are irreducible and distinct to each other. It forms a group X about multiplication: χ_1 is identity, $\chi_2\chi_3 = \chi_3\chi_2 = \chi_4$, $\chi_3\chi_4 = \chi_4\chi_3 = \chi_2$, $\chi_4\chi_2 = \chi_2\chi_4 = \chi_3$, and $\chi^2_{2 \le i \le 4} = \chi_1$. For conjugation about t by $t^{-1}st$ for $s \in A$,

$$1 \mapsto 1$$

$$(1\ 2)(3\ 4) \mapsto (1\ 3)(2\ 4)$$

$$(1\ 3)(2\ 4) \mapsto (1\ 4)(2\ 3)$$

$$(1\ 4)(2\ 3) \mapsto (1\ 2)(3\ 4).$$

$$(7)$$

It shows that $t\chi_4 = \chi_3$, $t\chi_3 = \chi_2$, and $t\chi_2 = \chi_4$ where the action is given by $(t\chi)(s) = \chi(t^{-1}st)$. It shows that χ_1, χ_2 are a system of representatives for the orbits of H in X. For χ_1 , all $h \in H$ satisfies $h\chi_1 = \chi_1$ and for χ_2 , only 1 makes $1\chi_2 = \chi_2$. For χ_1 , consider irreducible representations $\rho_m: H \to \mathbb{C}^\times$ such that $\rho_m(t) = \exp\left(\frac{2\pi i m}{3}\right)$ for $0 \le m \le 2$; since H is cyclic group, ρ_m are all the irreducible representations of H. For G = AH, extend χ_i to G by $\chi_i(ah) = 1$, and let $\tilde{\rho}_m(ah) = \rho_m(h)$. Since $\chi_1 \otimes \tilde{\rho}_m$ is already a representation on G having degree 1, the induced representation is again $\chi_1 \otimes \tilde{\rho}_m$. Also, it is isomorphic to $\tilde{\rho}_m$ since χ_1 is trivial.

For χ_2 , the fixing group $H_2 = 1$, so the irreducible representation is only trivial representation for H_2 . Now, we take $\operatorname{Ind}_A^G \chi_2 \simeq \mathbb{C}[G] \otimes_{\mathbb{C}[A]} \mathbb{C}$, which have matrix form under basis $1 \otimes 1$, $t \otimes 1$, and $t^2 \otimes 1$:

$$\operatorname{Ind}_{A}^{G} \chi_{2}(1) = 1$$

$$\operatorname{Ind}_{A}^{G} \chi_{2}(t) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\operatorname{Ind}_{A}^{G} \chi_{2}((1\ 2)(3\ 4)) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$\operatorname{Ind}_{A}^{G} \chi_{2}((1\ 3)(2\ 4)) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\operatorname{Ind}_{A}^{G} \chi_{2}((1\ 3)(2\ 4)) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

$$\operatorname{Ind}_{A}^{G} \chi_{2}((1\ 3)(2\ 4)) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

The above representations are all irreducible, distinct, and shows all the irreducible representations of \mathfrak{A}_4 by proposition 25.

 \mathfrak{S}_4 Again set A as in \mathfrak{A}_4 and set $H = \{s \in \mathfrak{S}_4 : s \cdot 4 = 4\}$. By the same reason in \mathfrak{A}_4 , we get G = AH with inner semi-direct product structure since |H| = 6. Unfortunately, H is not an cyclic group now, but we know that H is group isomorphic to D_3 , so we can use the first case. χ_1, χ_2 are a system of representatives for the orbits of H in X, and only (1 2) fixes χ_2 in H.

Since χ_1 is trivial, any element in H fixes χ_1 . For any irreducible representation ρ on H, we can extend it by $\tilde{\rho}$ to G = AH as in \mathfrak{A}_4 ; note that $\chi_1 \otimes \tilde{\rho} \simeq \tilde{\rho}$. For the degree 2 irreducible representation ρ of H, we get

$$\tilde{\rho}(a) = 1$$

$$\tilde{\rho}((1\ 2\ 3)) = \begin{pmatrix} \exp\left(\frac{2\pi i}{3}\right) & 0\\ 0 & \exp\left(-\frac{2\pi i}{3}\right) \end{pmatrix}$$

$$\tilde{\rho}((1\ 2)) = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$
(9)

for $a \in A$. For non-trivial degree 1 representation ρ' of H,

$$\tilde{\rho}'(a) = 1$$

$$\tilde{\rho}'((1\ 2\ 3)) = 1$$

$$\tilde{\rho}'((1\ 2)) = -1$$
(10)

for $a \in A$. The left one is trivial representation on G.

As χ_2 is only fixed by (1 2) in H, $H_2 = \{1, (1 2)\}$ and we can extend χ_2 to AH_2 . For trivial representation ρ on H_2 , extend it to AH_2 , which is again trivial, so the tensor of two representations is isomorphic of χ_2 . Finally, considering $\operatorname{Ind}_{AH_2}^G \chi_2 \simeq \mathbb{C}[G] \otimes_{\mathbb{C}[AH_2]} \mathbb{C}$ with basis $1 \otimes 1$, $(1 3) \otimes 1$, and $(1 4) \otimes 1$,

$$\operatorname{Ind}_{AH_2}^G \chi_2(1) = 1$$

$$\operatorname{Ind}_{AH_2}^G \chi_2((1 \ 2 \ 3)) = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$$

$$\operatorname{Ind}_{AH_2}^G \chi_2((1 \ 2)) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$

$$\operatorname{Ind}_{AH_2}^G \chi_2((1 \ 2)(3 \ 4)) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$\operatorname{Ind}_{AH_2}^G \chi_2((1 \ 3)(2 \ 4)) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\operatorname{Ind}_{AH_2}^G \chi_2((1 \ 4)(2 \ 3)) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

For the non-trivial irreducible representation ρ' of H_2 , repeating above procedure, we get

$$\operatorname{Ind}_{AH_{2}}^{G}(\chi_{2} \otimes \tilde{\rho}')(1) = 1$$

$$\operatorname{Ind}_{AH_{2}}^{G}(\chi_{2} \otimes \tilde{\rho}')((1 \ 2 \ 3)) = \begin{pmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$$

$$\operatorname{Ind}_{AH_{2}}^{G}(\chi_{2} \otimes \tilde{\rho}')((1 \ 2)) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\operatorname{Ind}_{AH_{2}}^{G}(\chi_{2} \otimes \tilde{\rho}')((1 \ 2)(3 \ 4)) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$\operatorname{Ind}_{AH_{2}}^{G}(\chi_{2} \otimes \tilde{\rho}')((1 \ 3)(2 \ 4)) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\operatorname{Ind}_{AH_{2}}^{G}(\chi_{2} \otimes \tilde{\rho}')((1 \ 4)(2 \ 3)) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Applying proposition 25, we get all the irreducible distinct representations of \mathfrak{S}_4 .