Pitkä matematiikka 16.3.2007, ratkaisut:

- 1. a) $7x^2 6x = 0 \iff x(7x 6) = 0 \iff x = 0 \text{ tai } x = \frac{6}{7}$.
 - **b)** $|3x-2| < 4 \iff -4 < 3x-2 < 4$. Nyt $-4 < 3x-2 \iff 3x > -2 \iff x > -\frac{2}{3}$ ja $3x-2 < 4 \iff 3x < 6 \iff x < 2$. Epäyhtälön ratkaisu on siis $-\frac{2}{3} < x < 2$.
 - c) $\sqrt[3]{a\sqrt{a}} = \sqrt[3]{a^{3/2}} = (a^{3/2})^{1/3} = a^{1/2} = \sqrt{a}$.
- **2.** a) $\int_0^{1/2} (1+2x^2) dx = \int_0^{1/2} x + \frac{2}{3}x^3 = \frac{1}{2} + \frac{2}{3} \cdot \frac{1}{8} = \frac{1}{2} + \frac{1}{12} = \frac{7}{12}$.
 - **b)** $f'(x) = \frac{1}{2} \frac{2x}{\sqrt{x^2 + 1}} = \frac{x}{\sqrt{x^2 + 1}}$. Siis $f'(1) = \frac{1}{\sqrt{2}}$.
 - c) $e^{2 \ln x} 2x^2 = e^{\ln x^2} 2x^2 = x^2 2x^2 = -x^2$.
- **3.** a) Jos merivettä on 100a, on siinä vettä 96a ja suolaa 4a. Haihdutuksen jälkeen jäljellä on vettä 96a 28a = 68a ja suolaa edelleen 4a eli yhteensä 72a merivettä. Sen suolaprosentti on nyt $100 \cdot \frac{4a}{72a} = \frac{50}{9} \approx 5,5556$. Vastaus: 5,6 %.
 - b) Jos korkoprosentti on p, on korkotekijä q=1+p/100. Tehtävän mukaan rahamäärän a kasvulle pätee $q^{10}a=1,5a$ eli $q^{10}=1,5$. Tästä saadaan $q=\sqrt[10]{1,5}\approx 1,04138$, josta edelleen $p=100(q-1)\approx 4,138$. Vastaus: 4,14%.
- **4.** Pisteiden A ja B paikkavektorit ovat $\overline{OA} = 2\overline{i} + 3\overline{j} + 6\overline{k}$ ja $\overline{OB} = 4\overline{i} 7\overline{j} 3\overline{k}$. Kysytty suuntavektori on $\overline{AB} = \overline{OB} \overline{OA} = 2\overline{i} 10\overline{j} 9\overline{k}$. Suoran pisteen P paikkavektori on $\overline{OP} = \overline{OA} + t\overline{AB} = (2+2t)\overline{i} + (3-10t)\overline{j} + (6-9t)\overline{k}$. Suoran parametriesitys on siten x = 2 + 2t, y = 3 10t, z = 6 9t.

Suora leikkaa xy-tason, kun z=0 eli kun 6-9t=0. Näin tapahtuu, kun $t=\frac{2}{3}$. Leikkauspisteen koordinaatit ovat $x=2+2\cdot\frac{2}{3}=\frac{10}{3}$ ja $y=3-10\cdot\frac{2}{3}=-\frac{11}{3}$.

Vastaus: Parametriesitys on $x=2+2t,\ y=3-10t,\ z=6-9t$ ja leikkauspiste $(\frac{10}{3},-\frac{11}{3},0).$

- 5. Suorien x+y=1 ja x-3y=1 leikkauspiste saadaan yhtälöparista x+y=1, x-3y=1, jonka ratkaisu on x=1, y=0. Näin jatkamalla nähdään, että suora x+y=1 leikkaa suoria x-3y=1 ja x-3y=-4 pisteissä A=(1,0) ja $B=(-\frac{1}{4},\frac{5}{4})$. Samoin nähdään, että suora x+y=6 leikkaa suoria x-3y=1 ja x-3y=-4 pisteissä $D=(\frac{19}{4},\frac{5}{4})$ ja $C=(\frac{7}{2},\frac{5}{2})$. Vaakasuora jana DE jakaa tarkasteltavan nelikulmion ABCD kahteen kolmioon. Kolmion ABD ala on $\frac{1}{2}\cdot(\frac{19}{4}-(-\frac{1}{4}))\cdot\frac{5}{4}=\frac{25}{8}$, ja kolmion BCD ala $\frac{1}{2}\cdot(\frac{19}{4}-(-\frac{1}{4}))\cdot(\frac{5}{2}-\frac{5}{4})=\frac{25}{8}$. Kysytyn nelikulmion ABCD ala on siis $\frac{25}{8}+\frac{25}{8}=\frac{25}{4}$. $Vastaus: \frac{25}{4}$.
- **6.** Kun x>3, saadaan epäyhtälö muotoon $x^2+7x+2>x-3$ eli $x^2+6x+5>0$. Vasemman puolen kuvaaja on ylöspäin aukeava paraabeli. Sen nollakohdat ovat $x=\frac{-6\pm\sqrt{36-20}}{2}=-3\pm2$ eli x=-5 ja x=-1. Näin ollen $x^2+6x+5>0$, kun x<-5 tai x>-1. Alueessa x>3 on siis $x^2+6x+5>0$ kaikilla arvoilla x.

Kun x < 3, saadaan epäyhtälö muotoon $x^2 + 7x + 2 < x - 3$ eli $x^2 + 6x + 5 < 0$. Edellisen mukaan $x^2 + 6x + 5 = 0$, kun x = -5 ja x = -1. Näin ollen alueessa x < 3 on $x^2 + 6x + 5 < 0$, kun -5 < x < -1.

Vastaus: Kun -5 < x < -1 tai x > 3.

7. Leikataan kartiota sen akselin kautta kulkevalla tasolla. Olkoon leikkauskuviossa A pohjaympyrän keskipiste ja r=AC säde sekä B kartion huippu. Olkoon vielä x=AD lieriön korkeus, 0 < x < 6 ja s=ED lieriön säde. Yhdenmuotoisista kolmioista ABC ja DBE saadaan verranto $\frac{6}{r} = \frac{6-x}{s}$, josta edelleen $s=r-\frac{1}{6}rx$. Lieriön tilavuus $V=\pi s^2 x$ on x:n funktiona $V(x)=\pi r^2(1-\frac{1}{6}x)^2 x=\pi r^2(x-\frac{1}{3}x^2+\frac{1}{36}x^3)$. Tämän derivaatta on $V'(x)=\pi r^2(1-\frac{2}{3}x+\frac{1}{12}x^2)=\frac{1}{12}\pi r^2(x^2-8x+12)$. Derivaatta häviää, kun $x=\frac{8\pm\sqrt{64-48}}{2}=4\pm 2$ eli kun x=2 tai x=6. Näistä vain edellinen on tarkastelualueella. Koska V'(x)>0, kun 0< x<2 ja V'(x)<0, kun 2< x<6, saavuttaa lieriön tilavuus suurimman arvonsa, kun x=2.

Vastaus: Lieriön korkeus on 2.

- 8. Jotta f olisi tiheysfunktio, on oltava $f(x) \geq 0$, kun $0 \leq x \leq 1$ sekä $\int_0^1 f(x) dx = 1$. Nyt $\int_0^1 f(x) dx = \int_0^1 (\frac{1}{a}x + \frac{a}{2}) dx = \int_0^1 \frac{1}{2} \frac{1}{a}x^2 + \frac{a}{2}x = \frac{1}{2}(\frac{1}{a} + a)$. Integraalin arvo on 1, jos $\frac{1}{a} + a = 2 \iff a^2 2a + 1 = 0 \iff (a 1)^2 = 0 \iff a = 1$. Arvolla a = 1 on $f(x) = x + \frac{1}{2} > 0$, kun $0 \leq x \leq 1$. Näin ollen f(x) on tiheysfunktio, kun a = 1. Todennäköisyys, että X on välillä $[0, \frac{1}{2}]$ on $\int_0^{1/2} (x + \frac{1}{2}) dx = \int_0^{\frac{1}{2}} \frac{1}{2}x^2 + \frac{1}{2}x = \frac{1}{8} + \frac{1}{4} = \frac{3}{8}$. Vastaus: a = 1 ja todennäköisyys on $\frac{3}{8}$.
- 9. Olkoon kuution sivun pituus a. Sijoitetaan kuutio koordinaatistoon siten, että $A=(0,0,0),\ D=(a,0,0),\ B=(0,a,0)$ ja E=(0,0,a). Tällöin $\overline{AC}=a\overline{i}+a\overline{j},\ |\overline{AC}|=a\sqrt{2}$ ja $\overline{AG}=a\overline{i}+a\overline{j}+a\overline{k},\ |\overline{AG}|=a\sqrt{3}$. Näiden väliselle kulmalle α saadaan $\cos\alpha=\frac{\overline{AC}\cdot\overline{AG}}{|\overline{AC}||\overline{AG}|}=\frac{a^2+a^2}{a^2\sqrt{2}\sqrt{3}}=\frac{2}{\sqrt{6}}\approx 0.8164966,$ joten $\alpha\approx35.26439^\circ.$ Vektori $\overline{BD}=\overline{AD}-\overline{AB}=a\overline{i}-a\overline{j}.$ Koska $\overline{AG}\cdot\overline{BD}=a^2-a^2=0,$ on vektoreiden

Vastaus: Kysytyt kulmat ovat 35,3° ja 90°.

välinen kulma $\beta = 90^{\circ}$.

- 10. Yleinen termi $a_n = \frac{2n-2}{n+1} = 2 \cdot \frac{n-1}{n+1} < 2$, koska $\frac{n-1}{n+1} < 1$. $a_{n+1} a_n = 2(\frac{n}{n+2} \frac{n-1}{n+1}) = 2 \cdot \frac{n(n+1) (n-1)(n+2)}{(n+1)(n+2)} = \frac{4}{(n+1)(n+2)} > 0.$ Näin ollen aina $a_{n+1} > a_n$. Lopulta $\lim_{n \to \infty} a_n = \lim_{n \to \infty} 2 \cdot \frac{1 \frac{1}{n}}{1 + \frac{1}{n}} = 2$, sillä $\lim_{n \to \infty} \frac{1}{n} = 0$.
- 11. Koska f on derivoituva arvolla 0, on olemassa $\lim_{h\to 0}\frac{f(h)-f(0)}{h}=f'(0)$.

 Pisteessä x on $\frac{f(x+h)-f(x)}{h}=\frac{f(x)f(h)-f(x)}{h}=f(x)\frac{f(h)-1}{h}=f(x)\frac{f(h)-f(0)}{h}$.

 Näin ollen on olemassa $f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}=f(x)f'(0)$. Siis f on derivoituva kaikkialla ja f'(x)=f(x)f'(0).

 Esimerkiksi funktio $f(x)=e^x$ täyttää tehtävän ehdot: $f(x+y)=e^{x+y}=e^xe^y=f(x)f(y), f(0)=e^0=1$ ja f on derivoituva arvolla 0.

12. $\int_{1}^{3} \frac{1}{x} dx = \int_{1}^{3} \ln x = \ln 3 \approx 1,098612.$ Puolisuunnikassääntö funktiolle f(x) välillä [1,3] käyttäen neljää jakoväliä on $S(x) = \frac{1}{2}(\frac{1}{2}f(1)+f(\frac{3}{2})+f(2)+f(\frac{5}{2})+\frac{1}{2}f(3)).$ Kun $f(x)=\frac{1}{x}$, on $S(x)=\frac{1}{2}(\frac{1}{2}+\frac{2}{3}+\frac{1}{2}+\frac{2}{5}+\frac{1}{6})=\frac{67}{60}\approx 1,116667.$ Siis $\int_{1}^{3} \frac{1}{x} dx \approx \frac{67}{60}\approx 1,11667.$

Likiarvon suhteellinen virhe prosentteina on $100 \cdot \frac{\frac{67}{60} - \ln 3}{\ln 3} \approx 1,643$ eli 1,64%.

- 13. Jos n on alkuluku ja z kokonaisluku, joka ei ole jaollinen n:llä, on Fermat'n pienen lauseen mukaan $z^{n-1} \equiv 1 \pmod{n}$ eli $z^n \equiv z \pmod{n}$. Jos taas z on jaollinen n:llä, on olemassa kokonaisluku k siten, että z = kn. Tällöin $z^n z = (kn)^n kn = n(n^{n-1}k k)$ eli $z^n \equiv z \pmod{n}$. Siis kun n on alkuluku ja z kokonaisluku, on $z^n \equiv z \pmod{n}$. Jos nyt n on alkuluku ja x, y kokonaislukuja, niin edellisen mukaan $(x+y)^n \equiv x+y \pmod{n}, x \equiv x^n \pmod{n}, y \equiv y^n \pmod{n}, x+y \equiv x^n + y^n \pmod{n}$, jolloin $(x+y)^n \equiv x^n + y^n \pmod{n}$, mikä piti todistaa.
- *14. a) $P_n(x) = \sum_{i=1}^n x^i$ on geometrinen summa, jonka ensimmäinen termi on x ja suhdeluku q=x. Näin ollen summa on $P_n(x)=x\frac{1-x^n}{1-x}$. Kun -1 < x < 1, on $\lim_{n\to\infty} x^n = 0$, joten on olemassa $\lim_{n\to\infty} \frac{1-x^n}{1-x} = \frac{x}{1-x}$. On osoitettu, että välillä -1 < x < 1 on olemassa raja-arvo $f(x) = \lim_{n\to\infty} P_n(x) = \frac{x}{1-x}$.
 - **b)** Edellisen mukaan $|P_n(x) f(x)| = |x| \cdot \left| \frac{1 x^n}{1 x} \frac{1}{1 x} \right| = \frac{|x|^{n+1}}{1 x}.$
 - c) Edellisen mukaan $|P_n(-0.5) f(-0.5)| \le 0.01$, kun $\frac{|-0.5|^{n+1}}{1+0.5} \le 0.01$ eli $(0.5)^{n+1} \le 0.015$. Tästä saadaan ehdoksi $(n+1) \ln 0.5 \le \ln 0.015$ eli $n+1 \ge \frac{\ln 0.015}{\ln 0.5} \ge 6.05$ eli n > 6. Asteluvun on siis oltava vähintään 6.
- *15. a) Jos a > 0, b > 0, on $0 \le (a b)^2 = a^2 + b^2 2ab$, joten $2ab \le a^2 + b^2$. Koska p < 2, on pab < 2ab. Siis $pab < a^2 + b^2$, mikä piti todistaa.
 - **b)** Olkoon suorakulmaisen kolmion kateetit a ja b sekä neliön sivu c. Tällöin kolmion kolmas sivu on $\sqrt{a^2+b^2}$. Koska pinta-alat ovat samat, on $\frac{1}{2}ab=c^2$, josta saadaan $c=\sqrt{\frac{1}{2}ab}$. Väite on nyt $a+b+\sqrt{a^2+b^2}>4c$ eli $a+b+\sqrt{a^2+b^2}>2\sqrt{2ab}$ eli $a+b+\sqrt{a^2+b^2}-2\sqrt{2ab}>0$.

Koska b>0, on $\sqrt{a^2+b^2}>a$. Näin ollen $a+b+\sqrt{a^2+b^2}-2\sqrt{2ab}>2a+b-2\sqrt{2ab}=(\sqrt{2a}-\sqrt{b}\,)^2\geq 0$. Siis $a+b+\sqrt{a^2+b^2}>4c$, mikä piti todistaa.