

AULA 5 SUMÁRIO 5.3 Diagramas e Mapas de Estado 5.4. Classificação dos Circuitos Sequenciais 5.5 Contadores 5.5.1 Contadores assíncronos 5.5.2 Contadores sincronos 5.5.3 Contadores auto-iniciados 5.6 Registo de Deslocamento 5.6.1 Registo SISO 5.6.2 Registo SIPO 5.6.3 Registo PIPO ABC LUEM - Digital 1

Capítulo 5 Circuitos Sequenciais

5.1. Introdução

No capitulo 1 afirmamos que o grande mérito dos sistemas digitais é o sequenciamento de operações. Esta funcionalidade implica a necessidade de saber qual é o estado seguinte em função do estado actual.

Há, logicamente, que ter em conta o tempo, da a necessidade de relógio para definir a separação entre o que chamaremos de *estado actual* e o *estado anterior*.

O estado dum sistema digital é dado pela combinação das variáveis de saída.

O estado duma turma de 10 alunos pode ser definido por 4 meninas e 6 meninos. Mas podemos ter a turma no estado 7 meninas e 3 rapazes.

Se um dado circuito tem as suas saídas condicionadas não só à combinação actual das variáveis de entrada mas também ao estado anterior das variáveis de saída, diz-se ser um Circuito Sequencial. A Fig. 5.1 mostra o conceito de circuito sequencial.

BC UEM - Digital I, Fey_Jun/08

Electrónica Digital II

5.1. Introdução

Será um comportamento dum circuito combinatório a seguinte situação:

a) Se encontrar a turma na sala vou dar o tema dos circuitos sequenciais.

Será um comportamento dum circuito sequencial a seguinte situação:

b) Se encontrar 70% dos alunos da aula anterior vou ensiná-los os circuitos sequenciais, se forem 50% dos alunos vou repetir a aula anterior de contrário desisto

A situação a) revela que não importa o estado anterior da turma. Basta que estejam na sala os alunos e o professor decorrerá a aula de CS

Já a situação b) além da condição de haver estudantes e professor na sala de aula, há que saber qual foi o estado anterior da turma. As mesmas condições de entrada geram caminhos distintos de acordo com a predisposição da turma

BC UEM - Digital I, Fev_Jun/08

5.1. Introdução

No circuito sequencial a informação pode estar distribuída espacialmente ou temporariamente.

A figura 5.1 lembra-nos a figura 4.1 só que ao circuito combinatório da caixa negra, foi acrescida uma linha de re-alimentação que retorna o estado anterior das variáveis de saída $Y_{(j,l)}$ para combiná-las com as variáveis actuais Xi e gerar novos valores $Yi_{(t)}$.

Esta configuração originou o circuito sequencial. O relógio é fundamental nesta situação para que a combinação não ocorra em qualquer momento, assim que estiverem presentes as variáveis de entrada.

No modelo apresentado na figura 5.1 as variáveis X são chamadas variáveis de entrada ou externas, as Z são variáveis de saída, as Y são variáveis de estado(ou internas) no instante t-I e as Y são variáveis de estado(ou internas) no instante t.

ABC UEM - Digital I, Fey_Jun/08

5.1. Introdução

Matematicamente podemos escrever as relações entre as diversas variáveis da seguinte forma:

$$Z_{j} = f[X_{1}(t), X_{2}(t), ..., X_{n}(t), y_{1}(t), y_{2}(t), ..., y_{k}(t)]$$

$$Y_{j} = g[X_{1}(t), X_{2}(t), ..., X_{n}(t), y_{1}(t), y_{2}(t), ..., y_{k}(t)]$$

$$(5.1)$$

$$(5.2)$$

Onde i=1,...,mj=1,...,k

As expressões (5.1) e (5.2) podem ser apresentadas na forma vectorial como:

$$X = \begin{bmatrix} X1 \\ X2 \\ \vdots \\ Xn \end{bmatrix} \quad Z = \begin{bmatrix} Z1 \\ Z2 \\ \vdots \\ Zn \end{bmatrix} \quad Y = \begin{bmatrix} Y1 \\ Y2 \\ \vdots \\ Yn \end{bmatrix} \quad y = \begin{bmatrix} y1 \\ y2 \\ \vdots \\ yn \end{bmatrix}$$

$$ABC \qquad (5.3)$$

$$UEM - Digital I, Few Jamobs$$

5.1. Introdução

Agora é preciso encontrarmos formas de descrever com mais acuidade as diferentes variáveis, tendo sempre em mente que elas são booleanas, o que acaba facilitando a síntese e analise dos circuitos digitais

As variáveis de saída Z podem ser obtidas de duas maneiras diferentes:

- a) Pela combinação das variáveis de entrada X com as de estado Y. Este é o modelo de Mealy
- b) As variáveis de saída coincidem com as variáveis de estado Y ou dependem delas. Este é o modelo de Moore

No item 5.4 voltaremos a este assunto.

5.2.1. Características Básicas do Flip-Flop

A parte fundamental no circuito sequencial é o elemento de memória. É necessário que de alguma maneira consigamos reter o estado actual do circuito para usá-lo no futuro

Se tivermos em conta que estamos a falar de circuitos electrónicos temos que saber que fixar um estado é conservar o nível lógico 0 (normalmente 0V) ou o nível lógico 1(Normalmente 5V, 12V ou 18V)

Há vários elementos de memória. Mas o mais importante é um elemento sequencial elementar representado na Fig. 5.2.a) que tem as seguintes características:

CARACTERISTICAS FÍSICAS

- 1) Tem duas entradas principais J e K
- 2) Tem uma entrada de controle Ck
- 3) Tem duas entradas prioritárias Pr e Clr
- 4) Tem duas saídas complementares Q e ^Q

ABC

UEM - Digital I

5.2.1. Características Básicas do Flip-Flop CARACTERISTICAS FUNCIONAIS 1) a entrada J, quando activa(nível 1), força a saída Q a ficar activa(nível 1) 2) a entrada K, quando activa, força a saída Q a ficar inactiva (nível 0) 3) se a duas entradas estiverem inactivas nada sucede com a saída Q 4) se ambas entradas estiverem activas, forçam a saída Q a mudar de estado 5) As saídas Q e ^Q reagem às entradas J e K quando o sinal de controle for activo 6) a entrada Pr, quando activa, força a saída Q a ficar activa(nível 1) independentemente das entradas J e K 7) a entrada CIr, quando activa, força a saída Q a ficar inactiva(nível 0) independentemente das entradas J e K RESTRIÇÕES 1) As saídas devem ser sempre complementares 2) As entradas prioritárias não devem ser activas em simultâneo

5.2.2.1. Latch SR Básico

Dispositivos que se comportam como os descritos aqui não são práticos senão em situações muito específicas e raras. Já a combinação dos dois representa um grande ganho na construção do latch SR.

Latch é um circuito que uma vez atingindo o seu estado de estabilidade jamais sai independentemente do que acontecer na entrada.

Existe o

Latch SET, que estabiliza no nível lógico 1 e o Latch RESET, que estabiliza no nível lógico 0.

O latch SR é uma associação dos latches SET e RESET para obter um dispositivo que comporte as duas funcionalidades.

É a primeira tentativa de construir o elemento de memória

ABC

UEM - Digital I

5.2.2.1 Latch SR Básico

As equações de Q e ~Q são:

 $Q = \overline{\overline{SQ}}$ (5.7a)

 $\overline{Q} = \overline{R}Q$

(5.7b)

Das expressões acima obtemos:

1a. seja S=0 e R=0. Assumamos que Q=0 e logo, \sim Q=1 De (5.7) obtemos: Q=0 e \sim Q=1

1b. seja S=0 e R=0. Assumamos que Q=1 e logo, ~Q=0

De (5.7) obtemos: Q=1 e $\sim Q=0$

Conclusão:

Se S=0 e R=0, as saídas mantêm o estado em que est<mark>avam,</mark> no instante t-1, quando as variáveis de entrada assumira<mark>m os</mark> valores do estado actual, t

ABC

21 UEM - Digital I

5.2.2.1 Latch SR Básico

2a. seja S=0 e R=1. Assumamos que Q=0 e logo, \sim Q=1 De (5.7) obtemos: Q=0 e \sim Q=1

2b. seja S=0 e R=1. Assumamos que Q=1 e logo, ~Q=0

De (5.7) obtemos: Q=0 e ~Q=1

Conclusão:

Se S=0 e R=1, a saída Q=0 e ~Q=1 independentemente do estado em que estavam no instante t-1 quando as variáveis de entrada assumiram os valores do estado actual, t.

3a. seja S=1 e R=0. Assumamos que Q=0 e logo, ~Q=1

De (5.7) obtemos: Q=1 e ~Q=0

3b. seja S=1 e R=0. Assumamos que Q=1 e logo, ~Q=0

De (5.7) obtemos: Q=1 e ~Q=0

Conclusão:

Se S=1 e R=0, a saída Q=1 e ~Q=0 independentemente do estado em que estava no instante t-1 quando as variáveis de entrada assumiram os valores do estado actual, t.

UEM - Digital

5.2.2.1 Latch SR Básico

4a. seja S=1 e R=1. Assumimos que Q=0 e logo, ~Q=1 De (5.7) obtemos: Q=1 e ~Q=1

4b. seja S=1 e R=1. Assumimos que Q=1 e logo, ~Q=0 De (5.7) obtemos: Q=1 e ~Q=1

De (5.7) obtemos. Q=1 e 3

Conclusão:

Se S=1 e R=1, a saída Q=1 e ~Q=1 independentemente do estado em que estavam no instante t-1 quando as variáveis de entrada assumiram os valores do estado actual, t. Só que esta combinação das saídas não satisfaz a condição de que Q é complementar de ~Q. Assim esta última combinação das variáveis de entrada não será permitida.

Desta análise chegamos à Tabela de verdade final do latch SR

ABC

UEM - Digital I

5.2.2.1 Latch SR Básico

Deficiências do latch SR básico:

a) Tem uma combinação perdida porque não é permitida

b) Não tem controle sobre os sinais de entrada. Assim que estiverem presentes na entrada são combinadas com os sinais das linhas de realimentação e geram novas saídas que se combinam de novo.

Por isso não conseguimos armazenar a informação.

ABC

M - Digital I

5.2.2.2 Latch SR Com Ck

Lembremos que o circuito sequencial separa o instante t-1 do t. Isto tem que ser duma forma controlada. O latch SR básico que vimos no item anterior, como circuito sequencial, peca pelo facto de não introduzir este aspecto. Sempre que as variáveis estiverem presentes na entrada elas combinam-se e geram o resultado conforme a tabela de verdade

A Fig. 5.6 a seguir mostra uma modificação do mesmo latch SR básico. Foi introduzida uma barreira chamada Clock. A as entradas esperem até que o sinal de Ck seja activo (neste caso em 1).

No fundo, o que a barreira faz é levar o latch para a 1ª linha da tabela de verdade sempre que se deseja esperar pelo instante t+1.

Lembremos que na primeira linha, as saídas mantêm o estado anterior.

UEM - Digital I

5.2.2.2 Latch SR Com Ck

Deficiências do latch SR básico resolvidas:

a) A falta de controle sobre as entradas.

Deficiências do latch SR com Ck

a) Tem uma combinação perdida porque não é permitida

b) Não tem controle sobre as entradas quando o sinal de Ck estiver activo. Assim que estiverem presentes na entrada são combinadas com os sinais das linhas da re-alimentação e geram novas saídas que se combinam de novo

ABC

UEM - Digital I

5.2.2.3 Latch D

Uma das aplicações mais frequentes em sistemas digitais é o armazenamento de dados para uso posterior. O dispositivo mais usualmente empregue nestas situações é o Latch D(Delay, atraso).

Nesta montagem, é fácil ver que o latch irá executar apenas a 2ª e a 3ª linha da tabela de verdade do latch SR.

Se em D tivermos 0 estaremos na situação de S=0 e R=1, o que resulta numa saída igual a 0.

Se tivermos D=1, estaremos na situação de S=1 e R=0, do que $\frac{1}{1}$ resulta numa saída igual a 1.

Mas ainda não conseguimos o dispositivo perfeito. Sempre que o Ck for 1, a saída Q imita a entrada D.

5.2.3 Flip-Flop JK

Tomamos o latch SR e acrescentamos duas portas AND antes das entradas S e R. Esticamos a re-alimentação mais para atrás até a estas portas. Em consequência disso obtemos um novo dispositivo que toma o nome de flip-flop JK.

O flip-flop JK tem o mesmo comportamento que o latch SR nas 3 primeiras combinações. Analisemos a última com detalhe.
Partimos das equações:

(5.8a)

$$S = J\overline{Q}$$

$$R = KQ (5.8b)$$

UEM - Digital

5.2.3 Flip-Flop JK

4a. seja J=1 e K=1. Assumimos que Q=0 e logo, ~Q=1.

De (5.8) obtemos: S=1 e R=0.

Esta situação representa a 3^a linha da tabela de verdade do latch SR. Nesta linha Q=1 e $\sim Q=0$.

4b. seja J=1 e K=1. Assumimos que Q=1 e logo, ~Q=0. De (5.8) obtemos: S=0 e R=1.

Esta situação representa a 2^a linha da tabela de verdade do latch SR. Nesta linha Q=0 e $\sim Q=1$.

Vemos que se no instante t, em que J=1 e K=1, enquanto que antes (no instante t-1) os valores das saídas eram Q=0 e $\sim Q=1$, os valores actuais das mesmas são Q=1 e $\sim Q=0$.

Por outro lado, se no instante t, em que J=1 e K=1, enquanto que antes (no instante t-1) os valores das saídas eram Q=1 e $\sim Q=0$, os valores actuais das mesmas são Q=0 e $\sim Q=1$.

5.2.3 Flip-Flop JK

Conclusão

Se J=1 e K=1, as saídas Q e ~Q mudam do seu estado anterior para o seu complementar. Qesta vez consegue-se ainda obter a complementaridade entre as saídas Q e ~Q.

J	K	Q				
0	0	Q_0				
0	1	0				
1	0	1				
1	1	~Q ₀				

Tab. 5.5. Tabela de verdade do flip-flop JK. Q_0 significa Q no estado t-1. $\sim Q_0$ significa $\sim Q$ no estado t-1

Deficiências do latch SR com Ck resolvidas:

Existência duma combinação perdida.

Deficiências do flip-flop JK:

· Não tem controle sobre as entradas quando o sinal de Ck for activo.

5.2.4 Flip-Flop JK Mestre-Escravo O último problema que temos que resolver é o da falta de controle das entradas quando o sinal de controle Ck for activo. A solução será conseguida por efectuar modificações ao circuito do flip-flop JK por forma que se reduza o tempo em que as variáveis podem combinarem-se e gerar resultados à saída. Para tal, combinamos dois dispositivos já vistos atrás, um flip-flop JK como mestre e um latch SR como escravo (Fig. 5.13) Vamos analisar o comportamento do flipflop com ajuda diagrama temporal Ck Ck $\bar{\mathsf{Q}}$ ā seguir Escravo Mestre

G

5.2.5 Flip-Flop JK Mestre-Escravo com Pr e Clr

Quando se liga o flip-flop à alimentação ele pode calhar em qualquer estado. Isto não é benéfico para os circuitos electrónicos reais.

A solução deste problema passa pela introdução de mais duas entradas no escravo (Fig. 5.17):

PRESET que força o flip-flop a ir para o estado CLEAR que força o flip-flop a ir para o estado 0

ABC

Se Pr = 0 a saída Q é forçada a ir para 1 e através da re-alimentação leva ~Q ao estado 0 – Isto é PRESET

Se Clr = 0 a saída ~Q é forçada a ir para 1 e através da re-alimentação leva Q ao estado 0 - Isto é CLEAR

ATENÇÃO: as entradas Pr e Clr nunca devem ser activadas simultaneamente pois forçariam uma situação proibida por violar a complementaridade

Quando as entradas J e K forem montadas de tal modo que são sempre complementares (Fig.5.21), formamos o flip-flop do tipo D que é apenas um conservador de dados Quando as entradas J e K forem montadas de tal modo que são sempre é apenas um conservador de dados Quando as entradas J e K forem montadas de tal modo que são sempre iguais(Fig.5.22), formamos o flip-flop do tipo T que muda de estado sempre de ocorre uma transição de Ck e T=1 Fig.5.22. If E. a) Ligação b) Ligação b) Ligação b) Ligação b) Ligação b) Ligação b) Simbolo

5.3 Diagrama e Mapas de Estados

UEM - Digital I

As expressões (5.1), (5.2) e (5.3) descrevam matematicamente o comportamento do circuito sequencial elas não nos mostram com clareza o que de facto acontece num circuito.

A forma prática de ilustrar o que sucede num circuito é representar o seu Diagrama de Estados ou o chamado Mapa de Estado(Fig.5.23 a 25)

O diagrama de estado é uma representação gráfica em que:

- 1. as variáveis de estado (o mesmo que dizer o estado do circuito) são apresentados dentro de círculos;
- 2. o fluxo da transição entre estados é indicado por uma seta que parte do estado actual para o estado seguinte;
- 3. a seta é rotulada com condição de transição que é um co<mark>njunto</mark> formado pelas variáveis de estado, as variáveis de saída ou as de entrada

BC UEM - Digital I

Normalmente o estado Y é indicado por uma etiqueta A, B, C,..., O estado Y é feito pela combinação das variáveis de estado Y. Para n variáveis são possíveis 2ⁿ estados diferentes. Não quer isto dizer que o circuito passa por todos eles. Por outro lado, faz-se corresponder a cada variável de estado um elemento de memória .

ABC UEM - Digita

5.4.1 Sistemas Activados Por Pulsos

Lembremos que a definição da sequência, ou melhor, a separação entre o instante t e t-1 é feito por um relógio. Na verdade o relógio é um sinal que gera pulsos, numa dada frequência ou sequência(Fig.5.34).

A Fig. 5.31 mostra a situação em que o instante *t-1* corresponde ao ciclo anterior e o instante *t* corresponde ao ciclo actual. Nos sistemas deste tipo a passagem dum estado para o outro é activada pelo estado Low ou High do sinal do relógio.

Para os sistemas activados em Low, as variáveis de entrada serão permitidas a prepararem-se durante o semi-ciclo em que o relógio estiver no nível 1. Os que são activados em High as variáveis de entrada serão permitidas a prepararem-se durante o semi-ciclo em que o relógio estiver no nível 0.

Normalmente depois que se entra no período em que o Ck é activ<mark>o, as</mark> variáveis de entrada não devem mudar mais.

BC UEM - Digital I

5.4.1 Sistemas Activados Por Pulsos

Os sistemas activados deste modo dizem-se activados por pulsos. Esta configuração tem a desvantagem de haver muito tempo para as variáveis se combinarem. Lembremos que há re-alimentação no circuito. E, como tal, se a duração do semi-ciclo activo for maior que o tempo médio de propagação no caminho da re-alimentação, poderá ocorrer que o novo estado das saídas seja re-combinado com as entradas.

47 ABC UEM - Digital I

5.4.2 Sistemas Activados Por Flancos

Fig. 5.32 Definição dos instantes t-1 e t nos sistemas activados por flancos Os sistemas mais seguros usam as configuração da figura 5.32. Nestes, a separação entre o instante *t-1* e *t* faz-se pela linha de subida ou descida do sinal do relógio.

Nesta configuração a linha da realimentação não conseguirá devolver as saídas para a entrada ao ponto de recombiná-los com as variáveis do instante t-2.

Os sistemas da alínea a) dizem-se activados pelo flanco positivo ou flanco ascendente, enquanto os da alínea b) dizem-se activados pelo flanco negativo ou flanco descendente.

48 UEM - Digital I

5.5. Contadores

Contador é qualquer circuito sequencial cujas saídas mudam a cada comando de Ck respeitando um sequência predeterminada.

As saídas que se tomam na determinação da sequencia são exactamente as variáveis de estado que são as saídas dos flip-flops.

TIPIFICAÇÃO DOS CONTADORES

A. QUANTO À LIGAÇÃO DO CK

Um contador é um CS que pode ser <u>assíncrono</u> ou <u>síncrono</u>, conforme o estabelecido no Sub-Capítulo 5.4

- Contadores <u>assíncronos</u> é uma classe de contadores em que o sinal principal de Ck afecta um fli-flop. O sinal é propagado pelos restantes flip-flop pelo efeito dominó, ou seja, cada flip-flop passa em diante o sinal.
- > Contadores <u>Síncronos</u> é uma classe de contadores nos quais o comando de Ck age em simultâneo em todos os flip-flops.

ABC UEM - Digit

5.5. Contadores

B. QUANTO AO TIPO DE CONTAGEM

- \rightarrow **Binários** quando contam na sequência binária natural. Normalmente eles tem n bits e contam 2^n estados.
- $\succ N \overline{a} o b i n \acute{a} r i o s contam$ em qualquer sequência preestabelecida

C. QUANTO À FORMA DE INICIAÇÃO

- > <u>Auto-iniciados ou auto-correctores</u> quando automaticamente entram na sequência correcta caso calhem fora dela. Esta falha normalmente sucede na altura da ligação da fonte de alimentação e em situação de interferência
- > <u>Não auto-iniciados ou forçados</u> quando precisam dum est<mark>ímulo</mark> externo para entrarem numa sequência

54 UEM - Digital I

5.5. Contadores

D. QUANTO AO SENTIDO

- > <u>Crescentes</u> quando realizam um contagem numérica em que cada estado representa um número maior que o do estado anterior
- > <u>Decrescentes</u> quando realizam um contagem numérica em que cada estado representa um número menor que o do estado anterior
- > <u>Bi-direcionais</u> quando um mesmo contador pode ser tanto crescente como decrescente

E. QUANTO AO TIPO DE SEQUÊNCIA

> <u>Cíclicos</u> quando contam numa sequência sem fim, isto é, quando chegam ao último estado regressam à primeira

UEM - Digital 1

> Acíclicos quando contam e páram no último estado

ABC

Os flip-flops estão montados na configuração T e como as suas entradas estão ligadas ao nível 1, sempre que acontecer uma transição útil de Ck, irão mudar o estado de Q.

Por outro lado, como apenas um está ligado ao Ck externo, apenas este irá obedecer a este comando imediatamente. Os restantes aguardam o comando nos seus Ck respectivos que vem do ^Q do flipflop anterior.

A Fig. 5.38 a seguir ilucida o fluxo de acontecimentos.

56 UEM - Digital I

5.5.1. Contadores Assíncronos

VANTAGENS DOS CONTADORES ASSÍNCRONOS

- > Simples de realizar para contagem em binário natural
- > Baratos dado que exigem poucos componentes

DESVANTAGENS DOS CONTADORES ASSINCRONOS

- > Não são práticos para contagens de qualquer sequência
- > Lentos. A frequência de Ck deve ter em conta o tempo de atraso em toda a cadeia
- > Forte efeito de trepidação

O efeito da trepidação pode ser visto se entrarmos no detalhe dos acontecimentos na Fig. 5.38, transformando-a na Fig. 5.39

Tomemos o caso pior da passagem do estado 111 ao estado 000 assim que acontecer o impulso de Ck principal(Vide Fig. 5.39)

58 UEM - Digital

5.5.2. Contadores Síncronos

Contadores Síncronos é uma classe de contadores nos quais o comando de Ck age em simultâneo em todos os flip-flops.

VANTAGENS DOS CONTADORES SÍNCRONOS

- > Realizam qualquer sequência
- > Reduzem o efeito da trepidação
- > São fáceis de projectar para qualquer sequência

DESVANTAGENS DOS CONTADORES SÍNCRONOS

- > Consomem mais recursos na sua construção
- > São sensíveis a desfasamentos do sinal de Ck

UEM - Digital

5.5.2. Contadores Síncronos

PROJECTO DUM CONTADOR SÍNCRONO

EXEMPLO 5.2:

PROJECTAR UM CONTADOR SÍNCRONO, CÍCLICO, QUE REALIZA A CONTAGEM DE 0 À 9 NA FORMA CRESCENTE.

O projecto simplificado dum contador síncrono usa também flip-flops do tipo T e segue algumas etapas que facilitam o desenho final do circuito:

- Determinar a sequência a realizar e com isso as variáveis intervenientes (entrada e de estado)
- Elaborar uma tabela de estados, em que aparece a combinação actual e a seguinte.
- Verificar que estados actuais precedem estados em que um dado flip-flop terá mudado de estado. Aqueles estados são usados para definir o valor 1 da entrada T do flip-flop.
- Encontrar dessa observação as equações de entradas dos flip-flops
- Simplificar as expressões encontradas
- Implementar o circuito

5.5.2. Contadores Síncronos

Passo 3. Observando a tabela anterior vemos que:

- A variável A muda de estado quando se está nos estados 0111 e 1001
- A variável B muda de estado quando se está nos estados 0011 e 0111
- A variável C muda de estado quando se está nos estados 0001, 0011, 0101 e 0111
- A variável D muda de estado quando se está nos estados 0000, 0010, ..., 1001, ou seja, está sempre a mudar de estado.

Passo 4 e 5. Das ilações tiradas do passo 3 vem:

$$T_A = \overline{A}BCD + A\overline{B}\overline{C}D = BCD + AD$$

$$T_B = \overline{ABCD} + \overline{ABCD} = \overline{ACD}$$

$$T_{C} = \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} = \overline{AD}$$

$$T_D = \sum m(0,1,2,3,4,5,6,7,8,9) = 1$$

5.5.3. Contadores Auto-iniciados

O contador da Fig. 5.40 embora bem projectado, tem uma anomalia. Verifique como é que se comportaria se ao ligar a fonte entrasse num estado acima de 9. É provável que ele nunça entre na sequência, dando a impressão que há algum erro.

Este problema resolve-se com os contadores inicializados: Auto iniciados ou forçados. A inicialização consiste em forçar os flip-flops a irem para um estado pré-determinado. Isto é feito através das entradas prioritárias.

Existem 3 modos de auto-inicialização:

- a) Ao ligar a fonte de alimentação
- b) Ao atingir um estado crítico
- c) Ao cair num estado falso

5.5.3. Contadores Auto-iniciados AUTO-INICIALIZAÇÃO PELA FONTE

Esta é feita pela ligação dum circuito que ao se ligar a fonte de alimentação impoe entradas prioritárias impoe por certo tempo (curto) uma condição nas

Ao ligar a fonte de alimentação o condensador entra em curto-circuito instantâneo injectando o nível 0 no circuito. Passado algum tempo carrega e injecta 1 que permanecerá até desligar-se o circuito.

5.5.3. Contadores Auto-iniciados

AUTO-INICIALIZAÇÃO PELO ESTADO CRÍTICO

Esta é feita normalmente nos contadores crescentes ou decrescentes. Consiste na detecção do estado a seguir ao último estado da sequência. A detecção pode ser feita através dum minitermo ou maxtermo.

A saída do circuito detector é ligada às entradas prioritárias de acordo com o estado seguinte que se pretende.

AUTO-INICIALIZAÇÃO AO CAIR EM ESTADOS FALSO

Quando um contador não esgota todas as combinações possíveis para o numero de bits, existirão estados fora da sequência (estados falsos). É possível remeter o contador a qualquer estado da sequência através da previsão de transições adequadas que levam o contador a entrar rapidamente na sequência.

Consolidarems estes conceitos nas aulas práticas.

ABC

07 UEM - Digital I

Considerações Finais Sobre Contadores

1. Estados falsos

São os estados fora da sequência quando um contador de n bits não esgota todas as 2^n combinações. Para evitar os estados falsos o contador deve ser auto-iniciado

2. Uso de dont care

O uso dos X implica que o contador está autorizado a passar pelos estados com X. Embora o uso dos X ajude na simplificação há o perigo de o CNT perder tempo a flutuar pelo estados falsos.

Para minimizar o efeito nefasto dos X, o CNT deve ser auto-

3. Módulo dum Contador

Um contador é de módulo m se na sua sequência tem m estados.

ABC

5.6.1. Registo SISO

Registos são circuitos lógicos sequenciais construídos por flip-flops com propósito de manipular a posição de bits

Registos são também usados como elementos de memórias onde conservam-se inertes os dados até que ocorra um impulso de ck que os movimenta conforme o tipo de registo.

O primeiro registo que analisaremos tem os dados a serem introduzidos através dum flip-flop a cada impulso de ck. Deste flip-flop são transferidos para o seguinte e deste para diante.

Enquanto o sinal de ck activar o registo, os bits são deslocados até atingirem o último e saem um a um

Como os dados são introduzidos um a um e saem também um a um no outro extremo, o registo diz-se SISO – Serial In – Serial Out (Entrada Serial – Saída Serial). São registos usados na transmissão serial, onde há necessidade de conservação temporária de dados

ABC

UEM - Digital I, Fev_Jun/08

5.6.1. Registo SISO

Como o objectivo deste circuito é transferir o dado que existe na entrada do flip-flop para a saida, a montagem a realizar deve ser a que permite que se execute a 2ª e 3ª linhas da tbv do JK.

Quer isto dizer que é usado o flip-flop JK na configuração D.

Suponha que no início todos os ff estão em 0. Coloquemos à entrada o bit 1 e depois activemos o Ck. Esta acção faz com que o 0 que esteve em C passe para a saída, o que estava em B para C e o que estava em A passe para B

Finalmente o bit 1 que estava à espera em J e K do primeiro flip-flop passa para A.

ABC

UEM - Digital I, Fev_Jun/08

5.6.1. Registo SISO

Voltemos a colocar 0 na entrada e de seguida activamos o Ck. Esta acção move o 0 em C para a saída, o que está em B para C e o 1 em A para B. A tabela a seguir ilustra isso

Entrada	Ck	A	В	C	Saida
1	\downarrow	1	0	0	0
0	\downarrow	0	1	0	0
0	\downarrow	0	0	1	0
0	\downarrow	0	0	0	1

Verificamos da tabela de verdade que houve um deslocamento dum 1 da entrada para a saída. Na verdade houve também deslocação dos 0 que sempre estiveram presente dentro e na entrada do registo.

ABC

72 JEM - Digital I, Fev_Jun/08

5.6.2. Registo SIPO

Em algumas ocasiões ligamos equipamentos que tratam o transporte de informação de modo diferenciado.

Se o equipamento emissor trata a informação de modo serial, ele disponibiliza à sua saída os dados bit a bit. Tem apenas um ponto de acesso ao exterior.

O receptor processa a informação de modo paralelo de modo que tem na sua entrada n pontos de acesso e necessita de receber todos os bits ao mesmo tempo

O registo Serial In-Parallel Out(Entrada Serial-Saída Paralela) faz a conversão dos dados seriais em dados paralelos(Fig. 5.46)

5.6.2. Registo SIPO

Analisemos o circuito da Fig. 5.47.

Inicialmente colocamos o sinal Hab(habilitador) no nível lógico 0, de modo que as portas AND bloqueiem as saídas dos flip-flops

Com o Hab=0, o registo por baixo funciona como um SISO visto antes. Após 4 impulsos de Ck os dados que se pretendem introduzir ocupam os seus lugares dentro do registo.

Após os 4 impulsos de Ck, habilitamos a saída do registo colocando a entrada Hab no nível lógico 1. Nessa altura todos os bits residente nos pinos Q dos flip-flop passam para a saída.

Deste modo foi feita a conversão de dados que chegaram em série para saírem em paralelo.

74 UEM - Digital I, Fey_Jun'08

5.6.3. Registo PISO

Imagine que o equipamento que no item 5.6.2 recebeu os dados em paralelo precisa de devolver os dados para o ambiente em que os dados são tratados de modo serial.

Para conseguir ligar os dois ambientes devemos converter dados paralelos em seriais. Para tal usamos o circuito apresentado na Fig. 5.47 que representa o Registo PISO – Parallel In – Serial Out (Entrada Paralela – Saída Paralelo)

O funcionamento do registo é dividido, como no SIPO, em 2 momentos: o da introdução e o da extracção

No momento de introdução colocam-se os dados em Di e passa-se o habilitador para 1. Nessa altura os dados entram nos flip-flops independentemente do sinal de Ck.

Se Di=0, a entrada Clr do flip-flop fica em Low e a Pr em High e com isso limpa-se a saída Q.

Se Di=1, a entrada Pr do flip-flop fica em Low e a Clr em High, fazendo com que o Q seja forçado a ir para High

ABC UEM - Digital I, Fev_Jun/08

5.6.3. Registo PISO

No momento de extracção coloca-se o habilitador em 0. Esta operação faz com que ambas entradas Pr e Clr fiquem em 1 tornando-as inactivas.

Como cada flip-flop tem a entrada ligada à saída do anterior, o circuito torna-se um registo SISO

No momento de extracção activa-se o Ck e em cada transição deste os bits deslocam-se para a direita

UEM - Digital I, Fev_Jı

ABC

5.6.4. Registo PIPO

Momentos existem em que pretendemos liar dois sistemas que tratam a informação de modo paralelo mas por qualquer motivo (como diferenças de velocidade ou simplesmente a necessidade de retenção) precisamos de reter os dados por algum momento

Para conseguirmos isso construímos o registo PIPO – Parallel In – Parallel Out (Entrada Paralela-Saída Paralela)

A obtenção desse circuito consiste na derivação de acesso paralelo no registo PISO. Assim que os dados forem introduzidos podem ser retirados pela saídas S_i

ABC UEM - Digital I, Fev_Jun/0t

Electrónica Digital II

Os circuito registadores aqui apresentados são puramente didácticos, apresentando algumas anomalias como:

SISC

A saída tem sempre um dado que pode ser lido pelo circuito adiante. Note-se que 0 é também um dado

SIPO

Quando o habilitador fecha a saída, na verdade coloca nesta o valor 0. Mas 0 é um dado válido que pode ser lido adiante.

0.1.1

Idem a SISO

PIPO

Os dados são logo apresentados na saída mesmo que não tenha chegado o momento desejado.

BC UEM - Digital I, Fev_Jun 08

