程序代写代做 CS编程辅导

ECON 178 WI 2023: Homework 1

2023 (by 2:00pm PT)

Instructions:

- ts. The TAs will randomly pick one problem to grade • The homework and this proble: (you will get 30 points if your answers are correct or almost correct). The remaining 10 points will be graded on completion of this assignment.
- There will be two separate submissions: one for your R code and one for your writeup. Please submit both of tradescope (not detail to the submission of the R part are given in "Applied questions").
- Please follow the policy stated in the syllabus about academic integrity.
 You must read, understand agree and sign the integrity please
- (https://academicintegrity.ucsd.edu/take-action/promote-integrity/faculty/excel-with-integritypledge.pdf) before completing any assignment for ECON178. Please include your signed pledge in the sumisqual your issignment of COM

Conceptual questions

The following questions have reviewed expectations, conditional expectations, biases and variances, and basic properties of Normal (also called Gaussian) distributions.

Question 1

Suppose that we have a model $y_i = \beta x_i + \epsilon_i$ (i = 1, ..., n) where $y = \frac{1}{n} \sum_{i=1}^n y_i = 0$, $\overline{x} = \frac{1}{n} \sum_{i=1}^n x_i = 0$, and ϵ_i is distributed normally with mean 0 and variance σ^2 ; that is, $\epsilon_i \sim N(0, \sigma^2)$. Furthermore, $\epsilon_1, \epsilon_2, ..., \epsilon_n$ are independently distributed, and the x_i s (i = 1, ..., n) are non-random.

(a) The OLS estimator for β minimizes the Sum of Squared Residuals:

$$\hat{\beta} = \operatorname{argmin}_{\beta} \left[\sum_{i=1}^{n} (y_i - \beta x_i)^2 \right]$$

Take the first-order condition to show that

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}.$$

(b) Assume $\mathbb{E}\left[\epsilon_i|\beta\right] = 0$ for all i = 1, ..., n. Show that

$$\hat{\beta} = \beta + \frac{\sum_{i=1}^{n} x_i \epsilon_i}{\sum_{i=1}^{n} x_i^2}$$

1

What is $\mathbb{E}[\hat{\beta} \mid \beta]$ and $\mathrm{Var}(\hat{\beta} \mid \beta)$? Use this to show that, conditional on β , $\hat{\beta}$ has the following distribution: 有人的文化, β $\beta \sim N(\beta, \frac{\sigma^2}{\sum_{i=1}^n x_i^2})$.

- (c) Suppose we bel vertically with mean 0 and variance $\frac{\sigma^2}{\lambda}$; that is, $\beta \sim N(0, \frac{\sigma^2}{\lambda})$. Put that β is independent of ϵ_i for all i = 1, ..., n. Compute the mean and vertically what is $\mathbb{E}[\hat{\beta}]$ and $\operatorname{Var}(\hat{\beta})$? $m{L} = \mathbb{E}[\mathbb{E}[w_1 \mid w_2]] \text{ and } \mathrm{Var}(w_1) = \mathbb{E}[\mathrm{Var}(w_1 \mid w_2)] +$ (Hint you migh bles w_1 and w_2 .)
- (d) Since everything ted, it turns out that

$$\mathbf{WeChat: Cstut\^{O}rcs}^{\mathbb{E}[\beta \mid \hat{\beta}] = \mathbb{E}[\beta] + \frac{\mathrm{Cov}(\beta, \hat{\beta})}{\mathrm{Var}(\hat{\beta})} \cdot (\hat{\beta} - \mathbb{E}[\hat{\beta}]).$$

Let $\hat{\beta}^{RR} = \mathbb{E}[\beta \mid \hat{\beta}]$. Compute $\text{Cov}(\beta, \hat{\beta})$ and use the value of $\mathbb{E}[\beta]$ along with the values of $\mathbb{E}[\hat{\beta}]$, $\text{Cov}(\beta, \hat{\beta})$, and $\text{Var}(\hat{\beta})$ you have computed to show that $\begin{array}{c} \text{Assignment Project} \\ \hat{\beta}^{RR} = \mathbb{E}[\beta \mid \hat{\beta}] = \frac{\sum_{i=1}^{N} x_i^2 + \lambda}{\sum_{i=1}^{n} x_i^2 + \lambda} \cdot \hat{\beta} \end{array}$

(Hint: $Cov(w_1, \frac{1}{v_2})$ $\text{pre}[w_1]$ Eul $\text{E$

(e) Does $\hat{\beta}^{RR}$ increase or decrease as λ increases? How does this relate to β being distributed $N(0, \frac{\sigma^2}{\lambda})$? QQ: 749389476

Question 2

Let us consider the latest regression model $v_i \in \mathcal{S}_0$ the u_i (i = 1, ..., n), which satisfies Assumptions MLR.1 through MLR.5 (see Side 7 in Linear regression review" under "Modules" on Canvas)¹. The x_i s (i = 1, ..., n) and β_0 and β_1 are nonrandom. The randomness comes from u_i s (i=1,...,n) where var $(u_i)=\sigma^2$. Let $\hat{\beta}_0$ and $\hat{\beta}_1$ be the usual OLS estimators (which are unbiased for

 β_0 and β_1 , respectively) obtained from running a regression of $\begin{pmatrix} y_2 \\ \vdots \\ y_{n-1} \\ u_n \end{pmatrix}$ on $\begin{pmatrix} 1 \\ \vdots \\ 1 \\ 1 \end{pmatrix}$ (the intercept

column) and
$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix}$$
. Suppose you also run a regression of $\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{n-1} \\ y_n \end{pmatrix}$ on $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix}$ only

(excluding the intercept column) to obtain another estimator β_1 of

¹The model is a simple special case of the general multiple regression model in "Linear_regression_review". Solving this question does not require knowledge about matrix operations.

- - c) Derive Var $(\tilde{\beta}_1)$, the variance of $\tilde{\beta}_1$, in terms of σ^2 and x_i s (i = 1, ..., n).
- d) Show that $\operatorname{Var} \bigoplus_{i=1}^n \operatorname{Var} (\hat{\beta}_1)$; that is, $\operatorname{Var} (\hat{\beta}_1) \leq \operatorname{Var} (\hat{\beta}_1)$. When do you have $\operatorname{Var} (\tilde{\beta}_1) = \sum_{i=1}^n x_i^2 \geq \sum_{i=1}^n (x_i \bar{x})^2$ where $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$.
- e) Choosing between the bias and variance. Comment on this tradeoff.

Question 3

Let \hat{v} be an estimator of the truth v. Show that $\mathbb{E}(\hat{v}-v)^2 = \operatorname{Var}(\hat{v}) + [\operatorname{Bias}(\hat{v})]^2$ where $\operatorname{Bias}(\hat{v}) = \mathbb{E}(\hat{v}) - v$. (Hint: The value respectively from \hat{v} only and v is nonrandom).

Applied questions (with the use of R)

For this question you All scaled to the Project Exam Help

Installation

- To install R, please see http://www.f-project@163.com
- Once you install R, please install also R Studio https://rstudio.com/products/rstudio/download/.
- You will need to use R Studio 4 9 vo Re 9 replement.

Download

- data_ps1.csv;
- template_ps1.R.

Submission

- Open the template_ps1.R file that we provided on Canvas ⇒ Assignments.
- All your solutions and code need to be saved in a single file named template_ps1_YOURFIRSTANDLASTNAME.R file. Please use the template_ps1.R provided in Canvas to structure your answers.
- Any file that is not an .R will not be accepted, and the grade for this exercise will be zero.
- Please submit your code on **Gradescope**.
- Please follow the policy stated in the syllabus about academic integrity.

Useful readings

In addition to the lectile provided to the instruction of the following readings useful:

• Chapter 2.3 and An introduction to statistical learning with applications in R".

Question 4

- 1. Download the dataset from Canvas and open it using the command "read.csv".
- 2. Open the data and report how many columns and rows the dataset has;
- 3. See the names of the variables (see online the command "names");
- 4. Run a linear regressing large and the post of the transfer of the post of t
- 5. Report the summary of your results (see online the command "summary")
- 7. Plot a scatter plot of the regression (Hint: use abline) to draw the regression line)
- 8. Write down the interpretation of the coefficients as a comment in your .R script (Hint: see template file).

Please write all your answer and door in tempare—s. I. Dile and submit that file on Gradescope as described in the "Submission" section.

https://tutorcs.com

²Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.