SEMB / SETR - 2019 / 2020

Lecture	Dates	Planning	weeks
		Course introduction. Objectives, organization, assessment.	
		Introduction to embedded systems. Examples. Main requirements. Typical	
1	10-fev	interfaces	1
		Hardware and software platforms for embedded systems. Cross platform	
2	11-fev	development.	
		Memory models. Compiling, linking and debugging.	
3	17-fev	Real-Time requirements, origin and characterization.	2
		Models of computation. Task and execution time abstraction. Temporal task	
4	18-fev	models. Models for tracking the environment.	
		Carnival Break	
5	2-mar	Introduction to task scheduling. Offline scheduling techniques.	3
		Online task scheduling with fixed priorities. Rate-Monotonic Scheduling	
		(RMS), Deadline-Monotonic Scheduling (DMS), Generalized Fixed Priorities	
		Scheduling (FPS). Utilization-based schedulability tests. Response-time	
6	3-mar	schedulability tests.	
		Online task scheduling with dynamic priorities. Earliest Deadline First	
		scheduling (EDF). Differences to RMS. Utilization-based schedulability tests.	
7	9-mar	Response-time and processor-demand tests.	4
		Sharing resources across tasks. Critical sections. Basic synchronization	
		techniques: interrupt and preemption disabling. Priority inversion and	
		blocking time. Synchronization techniques based on semaphores. Priority	
8	10-mar	inheritance. Priority ceiling. Stack resource policy.	
		Handling aperiodic tasks. Concept of server. Examples of servers for FPS	
9	16-mar	and EDF.	5
		Fault-tolerance. Conflict real-time versus reliability. Temporal redundancy.	
10	17-mar	Redundancy management.	
		POSIX profiles for embedded real-time systems. Common interfaces of Real-	
11	23-mar	Time Operating Systems.	6
12	24-mar	Project assignment. Guidelines for structuring the project execution	
17	30-mar	Seminar with students presentations (separate per lab class)	7
16	31-mar	exam	
	6-13 abr	Easter Break	
	0-13 abi	The Arduino platform. Simple multi-tasking programming patterns, the cyclic	
		executive pattern. Interrupt service routines as tasks. The cycle executive	
13	14-abr	with periodic trigger using a timer interrupt.	8
10	14-401	Executing independent periodic tasks. Non-preemptive and preemptive	- 0
14	20-abr	(single shot) kernels. Exercizing simple multi-tasking applications	9
18	21-abr	Project	
19	27-abr	Project	10
20	28-abr	Project	10
20		·	
04	4-8 maio	Academic Week	4.4
21	11-mai	Project	11
22	12-mai	Project	40
23	18-mai	Project	12
24	19-mai	Project	40
25	25-mai	Project	13
26	26-mai	Project	