

PARTE 1 – Lógica matemática Ficha de trabalho

Elaborado por Patrícia Engrácia

16 de Dezembro de 2020

1 Exercícios

Exercício 1 Construa tabelas de verdade para as seguintes proposições. Com base nas tabelas, classifique as proposições como tautologas, contradições ou contingências.

1. $p \land (q \lor \neg p)$

p	q	$\neg p$	$q \lor \neg p$	$p \wedge (q \vee \neg p)$
1	1	0	1	1
1	0	0	0	0
0	1	1	1	0
0	0	1	1	0

Assim, conclui-se que a proposição é uma contingência.

2. $(p \lor \neg p) \Rightarrow q$

p	q	$\neg p$	$p \lor \neg p$	$(p \vee \neg p) \Rightarrow q$
1	1	0	1	1
1	0	0	1	0
0	1	1	1	1
0	0	1	1	0

Assim, conclui-se que a proposição é uma contingência.

3. $\neg(p \Rightarrow (q \Rightarrow p))$

p	q	$q \Rightarrow p$	$p \Rightarrow (q \Rightarrow p)$	$\neg(p \Rightarrow (q \Rightarrow p))$
1	1	1	1	0
1	0	1	1	0
0	1	0	1	0
0	0	1	1	0

Assim, conclui-se que a proposição é uma contradição.

4. $(p \land (q \lor r)) \Leftrightarrow ((p \land q) \lor (p \land r))$

p	q	r	$q \lor r$	$p \wedge (q \vee r)$	$p \wedge q$	$p \wedge r$	$(p \wedge q) \vee (p \wedge r)$	$(p \land (q \lor r)) \Leftrightarrow ((p \land q) \lor (p \land r))$
1	1	1	1	1	1	1	1	1
1	1	0	1	1	1	0	1	1
1	0	1	1	1	0	1	1	1
1	0	0	0	0	0	0	0	1
0	1	1	1	0	0	0	0	1
0	1	0	1	0	0	0	0	1
0	0	1	1	0	0	0	0	1
0	0	0	0	0	0	, 0	0	1

Assim, conclui-se que a proposição é uma tautologia.

Exercício 2 Sejam $A = \{1, 2, 3, 4, 5\}$ e $B = \{6, 7, 8, 9, 0\}$. Verifique se as seguintes expressões são verdadeiras ou falsas.

1.
$$\forall x \in A \ (x > 2 \Rightarrow x \in B)$$

Falso. Contra-exemplo: x=3. De facto, tem-se que x>2, mas $x\notin B$.

2.
$$\forall x \in A \ \exists y \in B \ (x+y=10)$$

Falso. Contra-exemplo: x=5. Para $x=5\in A$, não existe $y\in B$ tal que 5+y=10. Teríamos que ter y=5, mas $5\notin B$.

3.
$$\exists x \in A \ \exists y \in B \ (x + y = 10)$$

Verdadeiro. Existem $x=1\in A$ e $y=9\in B$ tal que x+y=1+9=10.

4.
$$\exists x \in B \ \forall y \in A \ (xy = 0)$$

Verdadeiro. Existe $x=0\in B$ tal que para todo $y\in A$, se tem xy=0y=0.

5.
$$\exists x \in A \ (x^2 \in B)$$

Verdadeiro. Existe $x=3\in A$ tal que $x^2=9\in B$.