

UML

학습내용

- UML 개요
- UML 실습

학습목표

- UML의 기본 개념과 종류를 이해하고 설명할 수 있다.
- UML 도구를 활용하여 클래스를 설계하고 설명할 수 있다.

1 UML이란?

1 UML 정의

UML

Unified Modeling Language의 약자로 통합 모델링 언어

업무, 소프트웨어 애플리케이션,
 시스템 아키텍처를 모델링 하는데 사용되는
 표준 비주얼 모델링 언어

UML은 프로그래밍 언어가 아니라 도구 UML 다이어그램을 사용하여 다양한 언어코드를 생성하는 데 사용됨

2 UML 목표

사용자들에게 쉽고 다양하게 표현할 수 있는 모델링 언어를 제공

개발언어 및 개발 프로세스와 독립적인 Specification을 제공

1 UML이란?

3 UML 특징

- 소프트웨어의 개념모델을 가시적인 그래픽 형태로 작성
- 참여자들의 오류 없고 원활한 의사소통이 이루어지게 하는 언어

가시화 언어 소프트웨어 개발의
각 과정(분석, 설계,
구현 단계)에서 필요한
모델을 정확하고
완전하게 명세할 수
있게 하는 언어

다양한 객체지향 프로그래밍 언어로 변화 가능 구축 언어

- 구축하려는 프로그램
 코드로 순변환하여
 구축에 사용가능
- 기 구축된 코드를 UML 모델로 역변환하여 분석 가능

문서화 언어

명세화

어어

• 여러 개발자들 간의 통제, 평가 및 의사소통에 필요한 문서화를 할 수 있는 언어

2 UML 기본 구성

1 사물(Things)

구조사물(Structural Things)

UML 모델의 명사형, 모델의 정적인 부분, 개념적/물리적 요소를 표현

2 UML 기본 구성

1 사물(Things)

2 관계(Relationship)

2 UML 기본 구성

2 관계(Relationship)

실체화 관계 (Realization)

Interface를 구현하는 관계

의존 관계 (Dependency)

한쪽 사물의 변화가 다른 사물에 영향을 주는 관계

2 UML 기본 구성

3 도해(Diagrams)

2 UML 기본 구성

3 도해(Diagrams)

Active Class

Use Case 내부 혹은 객체의 동작 중에 발생하는 활동을 표현함

Component

소프트웨어의 물리적 단위(exe, dll 등 library)의 구성과 연결상태를 표현함

Deployment

실제 하드웨어적인 배치와 연결상태를 나타냄

3 UML 표기법

1 Use Case

타원으로 표시하고 안쪽에 Use Case 명을 기술

'~ 한다'와 같은 동사 형태

- 2 Class
 - 1 Class의 정의

Class

공통의 속성, 오퍼레이션 및 관계를 갖는 객체들의 집합

- 클래스의 이름은 <mark>대문자</mark>로 시작함
- 속성과 오퍼레이션은 소문자로 시작함

3 UML 표기법

- 2 Class
 - 1 Class의 정의

■ 패키지와 함께 표현할 때→ package-name:: Class-name

2 속성(Attribute) 객체들의 특성을 표시

3 UML 표기법

- 2 Class
 - 2 속성(Attribute) 객체들의 특성을 표시

3 UML 표기법

- 2 Class
 - 3 기능(Operation)

기능 (Operation)

객체가 수행하는 서비스

- 오퍼레이션 이름(파라미터 리스트) : 리턴타입
- visibility name(parameter-list):return-type-expression(propertystring)

class-scope operation

해당 클래스에 대해 유일한 값을 갖는 오퍼레이션(이름에 밑줄) ex) static public String getName();

3 UML 표기법

- 2 Class
 - 4 가시성(Visibility)

클래스의 속성과 오퍼레이션에 부여할 수 있는 특성으로 다른 클래스에서 사용 가능 여부를 나타냄

구분	내용
+(public)	외부 클래스에서도 사용 가능함을 의미
#(protected)	하위 클래스와 해당 클래스 내에서만 사용 가능함 을 의미
-(private)	해당 클래스에서만 사용 가능함을 의미
~(package, default)	패키지 내에서만 사용 가능함을 의미

5 추상클래스(Abstract Class)

추상메소드가 1개 이상 존재하는 클래스

내부 구현 코드가 정의되어 있지 않은 메소드

Name(Abstract Class)	
Attributes	
+abstractMethod	

(※ 추상클래스와 메소드는 *이탤릭체로 표기*)

3 UML 표기법

2 Class

5 추상클래스(Abstract Class)

(※ 추상클래스와 메소드는 *이탤릭체로 표기*)

3 객체(Object)

BullDog: Mungmung

name=(Mung2) age=(1) weight=5

- Class의 Instance
- 특정한 속성 값을 가짐
- Object 이름은 밑줄로 표현

ex) Class-name: Object-name

3 UML 표기법

4 협력(Collaboration)

구현관점에서 목적을 달성하기 위한 일련의 행위

Collaboration

세차하기

- 타원을 점선으로 표기
- 타원 안에 <mark>역할의 내용을</mark> 기입

5 상태머신(State Machine)

객체의 상태를 순서대로 명시한 것

response

■ 이벤트에 대한 객체의 <mark>응답</mark>과 <mark>반응</mark>

3 UML 표기법

6 Active Class

하나 이상의 프로세스나 쓰레드를 갖는 객체를 파생하는 클래스 기술

■ Class 표기와 비슷하지만, 양 옆에 세로라인이 추가됨

7 Componen

3 UML 표기법

7 Componen

3 UML 표기법

8 Node

물리적인 요소로서 시스템이 실행 될 때 존재함

어느 정도의 메모리와 처리 능력을 갖는 전산 자원을 의미

■ <mark>육면체로 표현</mark>하며 이름을 표기하고 필요에 따라 탑재되는 컴포넌트를 표기함

UML 실습

- 1 StartUML 다운로드 및 설치
 - 1 항목
 - 2 설치
- 2 화면 설명
- 3 간단하게 그리는 방법 설명
 - 활용 예제-수강신청 예제

수강신청 요구 사항

- 수강신청 담당자는 시스템에 접속하여 수강신청 항목을 입력한다.
- 학생들은 수강신청 시스템에 접속하여 원하는 강좌를 조회, 선택, 신청을 한다.
- 수강 신청이 완료되면 수강 신청 담당자는 해당 강좌의 교수에게 수강신청 명단을 전달한다.
- 1) Use case Diagram 그리기
- 2) Sequence Diagram 그리기
- 3) Collaboration Diagram 그리기
- 4) Activity Diagram 그리기
- 5) Statechart Diagram 그리기

학습정리

1. UML 개요

- 업무, 소프트웨어 애플리케이션, 시스템 아키텍처를 모델링 하는데 사용되는 표준 비주얼 모델링 언어
- UML은 사물(Things), Relationship(관계), Diagram(도해)으로 구성
- UML은 가시화 언어, 명세화 언어, 구축언어, 문서화 언어로서의 특징을 가짐

학습정리

2. UML 실습

- UML은 한 회사에서 독점하고 있지 않고 모두에게 개방되어 있음
- Use Case Diagram은 사용자의 입장에서 본 시스템의 행동을 나타냄
- Class Diagram은 비슷한 속성과 공통적인 행동 수단을 지닌 것들의 그룹을 나타냄
- Sequence Diagram은 객체들끼리 주고받는 메시지의 순서를 시간의 흐름에 따라 나타냄
- Active Class Diagram은 Use case 내부 혹은 객체의 동작 중에 발생하는 활동을 표현함