MATLAB SIMULINK

Simulink Oturumunu Başlatma

SIMULINK icon üzerine tıkla

Simulink Kütüphanesi

Yeni model oluşturma

Yeni model iconu oluşturma

Model Oluşturma

- Simulink blok diyagramı dinamik sistemin resimsel modeli
- Her blok ya sürekli yada ayrık çıkış üreten temel bir dinamik sistem gösterir.
- Doğrular blok çıkışlarına blok girişlerini bağlayan bağlantıları gösterir.

Model Oluşturma (2)

- Aşağıdaki adımlar bir sistem/model kurmak için size kılavuzluk edecektir:
- > ADIM 1: Blokları oluşturma
- ADIM 2: Bağlantıları yapma
- ADIM 3: Parametreleri kurma
- > ADIM 4: Simülasyonu çalıştırma

Adım 1: Blokları oluşturma

Adım 1: Blokları oluşturma

Adım 2: Bağlantılar yapma

Bağlantı yapmak için: kaynak porttan gidilecek porta sürüklenir.

Adım 3: Parametre Kurma

Ready

Gain bloğunu çift tıklayarak parametreyi ayarlayınız. 🙀 example Block Parameters: out1To Workspace Edit View Simulation Format To Workspace X 1 1 1 Write input to specified array or structure in MATLAB's main workspace. $\mathcal D$ ata is not available until the simulation is stopped or paused. Parameters: simout1 Out1 isimli Variable name: out1To Workspace lout1l 🔹 ÇIKIŞ Limit data points to last: Sine Wave linf Scope parametresi Decimation: simout out2To Workspace Sample time (-1 for inherited): × Block Parameters: Gain Gain Save format: Structure Element-wise gain $(y = K.^{x}u)$ or matrix gain $(y = K^{x}u)$ or $y = u^{x}K$. OK. Cancel Help Apply Parameters | Gain: Kazanç= 5 Multiplication: Element-wise(K.*u) Saturate on integer overflow 0K Cancel Help Apply:

100%

lode45

Adım 4: Simülasyonu Çalıştırma

Simülasyonu çalıştırmak için run

Scope bloğu yoluyla çıkışa bakmak.

Double click on **Scope bloğu üzerine tıklayarak sonuca bak**. Osiloskopa benziyor.

Çıkışa bak (workspace)

><u>RC DEVRESİ</u>

$$Vdc = Vr + Vc \implies Vdc = Ri + Vc$$

$$\Rightarrow Vdc - Vc = Ri = Vr$$

$$\Rightarrow i = \frac{Vdc - Vc}{R}$$

$$Vc = \frac{1}{C} \int i(dt)$$

♦ CONSTANT BLOĞA DEĞER ATANMASI

KAZANCIN (GAİN) AYARLANMASI

❖<u>INTEGRATÖR YERLEŞTİRİLMESİ</u>

❖TOPLAYICININ (SUM) AYARLANMASI

♦ SCOPELARIN BAĞLANMASI VE SCOPE EKRANI

SİMULASYON PARAMETRELERİNİN AYARLANMASI

❖SİMÜLASYON SONUÇLARI (DİRENÇ GERİLİMİ, AKIM VE KAPASİTE GERİLİMİ)

≻<u>RC DEVRESİ</u>

$$Vdc = Vr + Vc...(1)$$
 $i = C \frac{dVc}{dt}...(2)$

$$Vdc = Ri + Vc$$

$$\Rightarrow Vdc = RC \frac{dVc}{dt} + Vc$$

$$Vdc(s) = sRCVc(s) + Vc(s) \Rightarrow Vc(s) = \frac{Vdc(s)}{1 + sRC}$$

$$\rightarrow i(s) = \frac{sC}{1 + sRC}Vdc(s)$$

$$Vc(s) = \frac{1}{1 + sRC}Vdc(s)$$

$$i(s) = \frac{sC}{1 + sRC}Vdc(s)$$

*TRANSFER FUNCTION PARAMETRELERININ GIRILMESI

♦ SCOPE EKSEN SAYISININ ARTTIRILMASI

><u>RLC DEVRESİ</u>

$$Vdc = Vr + Vc + VL$$

$$i = C \frac{dVc}{dt}$$

$$V_L = L \frac{di}{dt}$$

$$Vdc = Ri + L\frac{di}{dt} + Vc$$

><u>RLC DEVRESİ</u>

$$Vdc - Vr - Vc = VL$$

$$Vdc - Ri - Vc = L\frac{di}{dt}$$

$$i = C \frac{dVc}{dt} \qquad V_L = L \frac{di}{dt}$$

$$Vr = Ri$$

RLC DEVRESİNDE MUX KULLANILARAK SİMÜLASYON SONUÇLARININ ELDE EDİLMESİ

>RLC DEVRESİ

(kapasite gerilimi kontrolü)

$$Vdc = Vr + Vc + VL$$

$$Vdc = RC\frac{dVC}{dt} + LC\frac{d^2Vc}{dt} + Vc$$

$$Vdc(s) = sRCVc(s) + s^2LCVc(s) + Vc(s)$$

$$Vc(s) = \frac{1}{s^2LC + sRC + 1}Vdc(s)$$

★KAPASİTE GERİLİMİ KONTROLLÜ RLC DEVRESİSİMÜLASYONU

Alt blok oluşturma

- Subsystem similar to "Subroutine"
- Advantage of Subsystems:
 - Reduce the number of blocks display on the main window (i.e. simplify the model)
 - Group related blocks together (i.e. More organized)
 - Can create a hierarchical block diagram (i.e. you can create subsystems within a subsystem)
 - Easy to check for mistakes and to explore different parameters

Bir dinamik sistemin örneği: kütle-yay -sönüm sistemi

Sistemin matematiksel modeli:

$$\ddot{x} = \frac{1}{M} \left(-B\dot{x} - Kx + f(t) \right)$$

M=2kg; B=2Ns/m; K=2N/m olsun

$$\ddot{x} = \frac{1}{2} \left(-2\dot{x} - 2x + f\left(t\right) \right)$$

$$\ddot{x} = \frac{1}{2} \left(-2\dot{x} - 2x + f\left(t\right) \right)$$

$$\ddot{x} = \frac{1}{2} \left(-2\dot{x} - 2x + f\left(t\right) \right)$$

Step time =0 olarak ayarla

Not: Tüm başlangıç şartlarını= al.

Create Subsystem

STEP 1: Creating Blocks (Main window)

STEP 2: Double click Subsystem block and create a *model* in the Subsystem block

STEP 3: Making connections (Main window)

STEP 4: Set Parameter (Main window)

STEP 5: Running Simulation

Then view output response

Ramp Function

Unit Step Function or Impulse

♦SİMULİNK DEMOLARI

♦ DEMO EKRANI