Non-linear equations Judd Chapter 5

David Childers (thanks to Y. Kryukov, K. Judd, and U. Doraszelski)

CMU, Tepper School of Business

March 20, 2023

Today: (systems of) nonlinear equations

- Bisection: simple univariate method
- Newton's method: from univariate to bivariate
 - Derivative computation
 - Secant / Broyden: avoiding derivatives
- Fixed point iteration: Gauss-Jacobi/Seidel
- Continuation & Homotopy methods

Systems of non-linear equations

$$F(x)=0,$$

where $x \in \mathbb{R}^n$, and $F : \mathbb{R}^n \to \mathbb{R}^n$.

- Zero problem: F(x) = 0
- Fixed point problem: F(x) = x

Examples:

- Optimization FOC (naive approach)
- Games: multiple maximizing agents
- General equilibrium models: agents + market
- Z-estimators: estimator solves system

Issues:

- Direct solution methods rarely available: use iterative instead
- Potential multiplicity of solutions

Univariate problem: Bisection method

Solving f(x)=0, $x\in\mathbb{R}^1$, $F:\mathbb{R}^1\to\mathbb{R}^1$ Initialization: Find $x^L< x^R$ such that $f(x^L)f(x^R)<0$. Choose stopping criteria ϵ and δ .

- ① Compute $x^M = \frac{1}{2}(x^L + x^R)$ or $x^L + \frac{f(x^L)}{f(x^L) f(x^R)}(x^R x^L)$
- ② Compute $f(x^M)$, the new (x^L, x^R) is:

$$\left\{ \begin{array}{ll} (x^L, x^M) & \text{if} & f(x^L) f(x^M) < 0, \\ (x^M, x^R) & \text{otherwise}. \end{array} \right.$$

Converges linearly to a solution, if f is continuous.

Bisection: illustration

Figure 5.1 Bisection method

Univariate Newton(-Raphson)'s Method

Initialization: Choose initial guess x^0 and stopping criteria ϵ and δ .

• Compute $f(x^k)$. Compute the step x^k as :

$$x^{k+1} = x^k - f(x^k) / f'(x^k).$$

- If $|x^{k+1}-x^k|<\epsilon(1+|x^k|)$, go to step 3; otherwise, to step 1
- 3 If $|f(x^{k+1})| < \delta$, stop and report success; otherwise stop and report failure.

Converges quadratically if:

- f is twice continuously differentiable with $f'(x) \neq 0$ and
- The initial guess is good (close to solution)

Bad initial guess can make Newton diverge, circle, or get stuck

Newton: illustration

Newton: Quadratic Convergence

- Let $f(x) \in \mathcal{C}^2$ with $f(x^*) = 0$ and $f'(x^*) \neq 0$
- $\bullet \text{ Then } \exists \epsilon > 0 \text{ s.t. } |x-x^*| < \epsilon \text{ implies } \lim_{k \to \infty} \frac{|x_{k+1}-x^*|}{|x_k-x^*|^2} = \frac{1}{2} \frac{|f''(x^*)|}{|f'(x^*)|}$
- Proof: By Taylor's theorem (with intermediate value remainder)

$$0 = f(x^*) = f(x_k) + f'(x_k)(x^* - x_k) + \frac{1}{2}f''(\tilde{x})(x^* - x_k)^2$$

• Rearrange and divide by $f'(x_k)$, then $x^* - x_{k+1} =$

$$\frac{f(x_k)}{f'(x_k)} + (x^* - x_k) = -\frac{1}{2} \frac{f''(\tilde{x})(x^* - x_k)^2}{f'(x_k)}$$

• Take absolute values on each side and divide: for small enough initial error, $|x^* - x_k| \to 0$, and so by continuity, limit holds

Newton: Cautions

- If $f'(x^*) = 0$, or only C^1 , may converge but not quadratically
- In fact, if derivative near 0, may be slow in practice, and have small radius of convergence
- If starting point not close enough, no guarantees
 - If derivative 0 at an iterate, will stop
 - Can also cycle or explode
 - ullet ightarrow Start with good guess from more reliable but slower method
- Extensions exist based on higher order derivatives (Householder methods) with faster than quadratic convergence: rarely used since derivative computation may dominate cost

Newton: "pathological" example

Multivariate Newton: idea

$$F(x) = 0, \quad x \in \mathbb{R}^n, \quad F : \mathbb{R}^n \to \mathbb{R}^n$$

$$F = [f^1(x), f^2(x), ..., f^n(x)]^T$$

- Univariate method is based on linear approximation around x^k
 - \Rightarrow Approximate F(x) by

$$\hat{F}^{0}(x) = F(x^{0}) + F_{x}(x^{0})(x - x^{0}),$$

where $F_x(x)$ is the Jacobian of F at x.

• The approximation $\hat{F}^{0}\left(x\right)$ is equal to zero at:

$$x^{1} = x^{0} - [F_{x}(x^{0})]^{-1}F(x^{0}).$$

This suggests the iteration:

$$x^{k+1} = x^k - [F_x(x^k)]^{-1}F(x^k).$$

Multivariate Newton: details

- Same stopping rules as univariate version:
 - If $||x^{k+1} x^k|| > \epsilon(1 + ||x^k||)$, continue iterating
 - 2 If $||F(x^{k+1})|| < \delta$, report success
- Starting value can be crucial:
 - Make your best guess
 - E.g. solution to a simpler version of this problem
 - Continuation method (later in this lecture)
- Potential for multiple solutions:
 - Try many different starting values: a grid for each x_j^0 , or random values from some reasonable interval
- One way to prove uniqueness: FOC of concave maximization

Where do we get the Jacobian?

- Analytic Jacobian:
 - By hand can be labor-intensive
 - Symbolic derivatives (e.g. in Maple) available in some cases;
 still have to code it
- Numeric Jacobian (Finite Difference, next slide):
 - Precision is low, but Newton's method is robust to that
 - Can be slow to compute
- Automatic differentiation:
 - Takes code for the function, returns code for derivative
 - If efficiently implemented, cost is O(cost of function eval)
 - Fortran (ADIFOR), C (ADIC), Julia (Juliadiff, etc), Python (Autograd/JAX/Torch), Matlab
- Estimate the Jacobian within the method:
 - Secant (univariate), Broyden (multivariate)
 - Useful if $F_x(x)$ is hard to evaluate

Finite difference derivatives

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{f(x) - f(x-h)}{h}$$

ullet One-sided finite difference. Pick h>0, and

$$\widehat{f'_{+}(x)} = \frac{f(x+h) - f(x)}{h}$$

- Biased on curved functions
- Two-sided finite difference:

$$\widehat{f'(x)} = \frac{f(x+h) - f(x-h)}{2h}$$

- Multivariate: separate FD for each x_i
 - ullet Two-sided needs twice as many evaluations of f
- Trade off approx vs floating point error
 - O(h) or $O(h^2)$ for 1, 2 sided vs $O(\frac{\epsilon}{h}) \to \text{set } h \propto \sqrt{\epsilon}$ or $\epsilon^{2/3}$

Secant method: univariate aprox. derivative

- Newton method without f'(x).
- Replace the update formula

$$x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)}$$

with

$$x^{k+1} = x^k - \frac{f(x^k)(x^k - x^{k-1})}{f(x^k) - f(x^{k-1})}.$$

- ullet f(x) evaluations are used to approximate the derivative
- Converges at rate $\frac{1+\sqrt{5}}{2}\approx 1.62$, i.e. superlinear: faster than linear, but slower than quadratic

Improving reliability

- As with Newton, Secant may fail if $f(x^k) f(x^{k-1}) \approx 0$
- Popular solution is Brent's Method
- Starting with bracketing points, perform secant update if $|f(x^k) f(x^{k-1})| > \delta$
- Perform bisection update otherwise
- Each iteration series of criteria used to decide between methods
- Ensures continued convergence at linear rate of bisection even if secant would get stuck
- But since most updates are secant updates, usually converges superlinearly
- Version of this is fzero in Matlab , option Brent() in Optim.jl, brentq in SciPy

Broyden method: multivariate aprox. derivative

- Approximates Jacobian F_x as J, updated at each iteration
- Update the Jacobian estimate as:

$$J^{k+1} = J^k + \frac{1}{s^{k'}s^k}(y^k - J^k s^k)s^{k'},$$

where $y^k = F(x^{k+1}) - F(x^k)$, $s^k = x^{k+1} - x^k$.

ullet Why updates? Linear approximation gives us n secant equations:

$$F(x^{k+1}) - F(x^k) = J^{k+1}(x^{k+1} - x^k)$$

- not enough to determine the n^2 elements of Jacobian J^{k+1} .
- Solution: Impose $J^{k+1}q = J^kq$ whenever $q's^k = 0$, to keep J^{k+1} "close" to J^k .
- x^k converges superlinearly; J^k might not

Newton & Quasi-Newton in high dimensions

- In large dimensions, inverse Jacobian is large linear system
- Helpful to approximate even when derivatives fast to calculate
- w/ Broyden, update equation allows fast inversion by Sherman-Morrison formula $(A+uv^T)^{-1}=A^{-1}-\frac{A^{-1}uv^TA^{-1}}{1+v^TA^{-1}u}$
- Given initial inverse, update needs only matrix vector multiplies
- $J_{k+1}^{-1} = J_k^{-1} + \frac{s_k J_k^{-1} y_k}{s_k^{\top} J_k^{-1} y_k} s_k^{\top} J_k^{-1}$
- ullet Each update is $O(n^2)$ instead of $O(n^3)$ for generic linear system
- Trade off larger # of iterates needed for faster iterates

Newton & Quasi-Newton in high dimensions

- Newton valid up to $n = \infty$: use for PDEs, functional equations
- Approximation methods give large but finite matrices
- In many problems, Jacobian is ill-conditioned matrix
 - Especially (approximations of) integral equations
- Multivariate analog of (near) failure of $f' \neq 0$ condition
- Similarly causes slow or non-convergence, small basin
- Regularize: Replace Jacobian by invertible surrogate
 - Tikhonov: $(J_k + \lambda_k I)^{-1}$ for $\lambda_k \to 0$
 - Spectral cutoff: SD_k^+V Zero out smallest singular values, invert remainder

Fixed point iteration

- Solving a fixed point problem: G(x) = x
 - Transforming F(x) = 0: carry out x_i out of each $f^i(x)$
- Iterate on $x^{k+1} = G(x^k)$
- Starting in neighborhood, converges to solution x^* if F Lipschitz & $\rho(G_x(x^*)) < 1$
 - Linear convergence rate = $\rho(G_x(x^*))$
 - We do not know x^* , and $G_x(\cdot)$ can be hard to compute
- Dampening and acceleration work as with linear eq's.
- If there are multiple solutions:
 - "Basin of convergence" set of starting values that lead to a given solution
 - Some of multiple solutions will be unstable,
 i.e. we can't converge to them

Fixed point problem and contraction mapping

• Contraction mapping: $G: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$||G(x) - G(y)|| \le \beta ||x - y||, \quad \forall x, y \in \mathbb{R}^n$$

for some $\beta \in (0,1)$

- Contraction mapping theorem (Banach's fixed point): G(x) is a contraction \Rightarrow
 - There exists a unique fixed point $G(x^*) = x^*$
 - $x^{k+1} = G(x^k)$ converges to x^* , for any x^0
 - ullet Convergence is linear at rate eta
- ullet Converse also true: if iteration converges linearly to unique fixed point, \exists metric in which function is contraction
- Many constructive existence theorems are Banach in disguise: implicit function theorem, Picard iteration for ODEs

Sufficient conditions for contraction

- **Blackwell**'s sufficient conditions for contraction $(x \in \mathbb{R}^n)$:
 - Monotonicity: $x \le y$ implies $G(x) \le G(y)$
 - Discounting: $\exists \beta \in (0,1)$ such that for any x and $a \in \mathbb{R}^1$: $g_j(\{x_i+a\}_i) \leq g_j(x) + \beta a$ for all j, where $\{x_i+a\}_i$ is vector x with a added to all components.
- Alternately: G(x) is a differentiable contraction map
- ullet Global convergence on compact convex set $D\subseteq \mathbb{R}^n$ if
 - $G \in \mathcal{C}^1$
 - $G(D) \subseteq D$
 - $\bullet \max_{x \in D} \|G_x(x)\|_{\infty} < 1$

Other Fixed Point Theorems

- Brouwer/Kiyotaki/Schauder less practical than Banach
 - Every (upper hemi-)continuous function (correspondence) from closed ball to itself has a fixed point
- Used to show GE, Nash equilibria exist, but nonconstructive
- Recent work suggests worst case takes exponential time to find even approximate solution
 - Problem is PPAD complete (c.f. Daskalakis, Papadimitriou)
 - Special cases can be tractable (zero sum, potential games, etc)
 - Weaker equilibrium concepts (correlated) also tractable
- Tarski's fixed point theorem sometimes practical
 - Order preserving (monotone) function on complete lattice (all subsets have sup and inf) has nonempty ordered set of fixed points
 - Can find smallest/largest fixed point by iteration, not others

Other methods

Re-state as least squares problem:

$$\min \sum_{i=1}^{n} [f^{i}(x)]^{2} = SSR(x)$$

- Optimization is better studied than equations
- But can get local min, and problem is badly conditioned
- Powell's hybrid method (a version of Dog-Leg or Safeguarding):
 - Check if Newton reduces SSR
 - If not, switch to least squares
- Direction search along Newton's s^k :

$$f(\lambda) = SSR(F(x_k + \lambda s^k))$$

- ullet Trust region: limit λ so Taylor's approximation is accurate
- Transform the problem to reduce curvature:

• E.g.
$$e^x h(x) = 0 \Leftrightarrow h(x) = 0$$

Continuation method: smart initial guess

• Introduce parameter t ($x \in \mathbb{R}^n$ is still the variable):

$$H(x;t)=0, \qquad t\in [0,1]$$

- $t = 0 \Longrightarrow H(x;t)$ is a problem with known solution x^0
- $t = 1 \Longrightarrow H(x;t) = F(x)$, the problem of interest
- **1** Pick sequence $0 = t^0 < t^1 < ... < t^K = 1$
- Solve problem $H(x^{k+1}; t^{k+1}) = 0$ for x^{k+1} , using x^k as the initial guess.
 - Constructing *H*:
 - "Natural" parameter that makes the model simple
 - "Artificial" parameter: H(x,t) = (1-t)x + tF(x)

Homotopy method

Exact approach to continuation

- We want the *solution path* though the (x, t)-space: y(s) = (x(s), t(s))
- Solution path is described by:

$$H(y(s)) = 0$$

• Differentiate both sides w.r.t. s:

$$H_y y'(s) = 0$$

- This is a differential equation, and can be solved numerically; Starting value: $y^0 = (x^0, 0)$
- Path guaranteed to reach t = 1 under reasonable conditions.
- Can be labor-intensive to implement (HOMPACK90 in Fortran)
- ullet Can find multiple solutions \Rightarrow good way to explore effects of a natural parameter

References

- Judd, Ch 4 (Solvers) SciML Book Ch 8, 10 (Differentiation)
- QuantEcon. Solvers, Optimizers, and Automatic Differentiation. https://julia.quantecon.org/more_julia/ optimization_solver_packages.html
 - LeastSquaresOptim.jl, and differentiation libraries in Julia
 - Use these in practice, code methods yourself on problem sets
- Quantecon Python Newton Tutorial https://python.quantecon.org/newton_method.html

QuantEcon tutorial on NLsolve.il, Optim.il, Roots.il,

Ron N. Borkovsky, Ulrich Doraszelski, Yaroslav Kryukov (2010)
 A User's Guide to Solving Dynamic Stochastic Games Using the Homotopy Method. Operations Research 58(4-part-2) 1116-1132.