Minimization by Incremental Stochastic Surrogate Optimization for Large Scale Nonconvex Problems

Belhal Karimi 1 , Hoi-To Wai 2 , Eric Moulines 3 and Ping Li 1

Baidu Research¹, Chinese University of Hong Kong², Ecole Polytechnique³

belhalkarimi@baidu.com, htwai@se.cuhk.edu.hk, eric.moulines@polytechnique.edu, liping11@baidu.com@gmail.com

Large Scale Optimization

• Objective: Constrained minimization problem of a finite sum of functions:

$$\min_{\boldsymbol{\theta} \in \Theta} \mathcal{L}(\boldsymbol{\theta}) := \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{i}(\boldsymbol{\theta}) , \qquad (1)$$

where $\mathcal{L}_i: \mathbb{R}^p \to \mathbb{R}$ is bounded from below and is (possibly) nonconvex and include a nonsmooth penalty.

• The gap $\widehat{e}(\theta; \{\overline{\theta}_i\}_{i=1}^n)$ plays a key role in the convergence analysis and we require this error to be L-smooth for some constant L>0 Denote by $\langle\cdot\,|\cdot\rangle$ the scalar product, we also introduce the following stationary point condition:

Definition 1. (Asymptotic Stationary Point Condition)

A sequence $(\theta^k)_{k>0}$ satisfies the asymptotic stationary point condition if

$$f'(\boldsymbol{\theta}, \boldsymbol{d}) := \lim_{t \to 0^+} \frac{f(\boldsymbol{\theta} + t\boldsymbol{d}) - f(\boldsymbol{\theta})}{t} \ge 0.$$
 (2)

Majorization-Minimization Scheme

Algorithm 2 The MISO method (Mairal, 2015).

- 1: **Input:** initialization $\boldsymbol{\theta}^{(0)}$.
- 2: Initialize the surrogate function as
- $\mathcal{A}_i^0(oldsymbol{ heta}) \coloneqq \widehat{\mathcal{L}}_i(oldsymbol{ heta}; oldsymbol{ heta}^{(0)}), \ i \in \llbracket 1, n
 rbracket.$
- 3: **for** $k = 0, 1, ..., K_{\text{max}}$ **do**4: Pick is uniformly from [1]
- 4: Pick i_k uniformly from [1, n].
 5: Update A_i^{k+1}(θ) as:

$$\mathcal{A}_i^{k+1}(oldsymbol{ heta}) = egin{cases} \widehat{\mathcal{L}}_i(oldsymbol{ heta}; oldsymbol{ heta}^{(k)}), & ext{if } i = i_k \ \mathcal{A}_i^k(oldsymbol{ heta}), & ext{otherwise}. \end{cases}$$

- 6: Set $\boldsymbol{\theta}^{(k+1)} \in \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \mathcal{A}_{i}^{k+1}(\boldsymbol{\theta})$.
- 7: **end for**
- MISO Method: fix any $n \ge 1$, we stop the SA at a random iteration N with

An Inctractability for Latent Data Models

- Case when the surrogate functions computed in Algorithm ?? are not tractable.
- Assume that the surrogate can be expressed as an integral over a set of latent variables $z = (z_i \in Z, i \in [n]) \in Z[]$.

$$\widehat{\mathcal{L}}_{i}(\boldsymbol{\theta}; \overline{\boldsymbol{\theta}}) := \int_{\mathbf{7}} r_{i}(\boldsymbol{\theta}; \overline{\boldsymbol{\theta}}, z_{i}) p_{i}(z_{i}; \overline{\boldsymbol{\theta}}) \mu_{i}(dz_{i}) \quad \forall \ (\boldsymbol{\theta}, \overline{\boldsymbol{\theta}}) \in \Theta \times \Theta \ . \tag{3}$$

• Our scheme is based on the computation, at each iteration, of stochastic auxiliary functions for a mini-batch of components. For $i \in [n]$, the auxiliary function, noted $\widetilde{\mathcal{L}}_i(\theta; \overline{\theta}, \{z_m\}_{m=1}^M)$ is a Monte Carlo approximation of the surrogate function $\widehat{\mathcal{L}}_i(\theta; \overline{\theta})$ defined by (3) such that:

$$\widetilde{\mathcal{L}}_{i}(\boldsymbol{\theta}; \overline{\boldsymbol{\theta}}, \{z_{m}\}_{m=1}^{M}) := \frac{1}{M} \sum_{m=1}^{M} r_{i}(\boldsymbol{\theta}; \overline{\boldsymbol{\theta}}, z_{m}),$$
 (4)

where $\{z_i^m\}_{m=0}^{M-1}$ is a Monte Carlo batch.

MISSO Method

 \bullet dd

Algorithm 2 The MISSO method.

- 1: **Input:** initialization $\theta^{(0)}$; a sequence of non-negative numbers $\{M_{(k)}\}_{k=0}^{\infty}$.
- 2: For all $i \in [1, n]$, draw $M_{(0)}$ Monte Carlo samples with the stationary distribution $p_i(\cdot; \boldsymbol{\theta}^{(0)})$.
- 3: Initialize the surrogate function as

$$\widetilde{\mathcal{A}}_i^0(\boldsymbol{\theta}) := \widetilde{\mathcal{L}}_i(\boldsymbol{\theta}; \boldsymbol{\theta}^{(0)}, \{z_{i,m}^{(0)}\}_{m=1}^{M_{(0)}}), \ i \in \llbracket 1, n
rbracket$$
.

- 4: **for** $k = 0, 1, ..., K_{\text{max}}$ **do**
- Pick a function index i_k uniformly on [1, n].
- 5: Draw $M_{(k)}$ Monte Carlo samples with the stationary distribution $p_i(\cdot; \boldsymbol{\theta}^{(k)})$
- : Update the individual surrogate functions recursively as:

$$\widetilde{\mathcal{A}}_i^{k+1}(oldsymbol{ heta}) = egin{cases} \widetilde{\mathcal{L}}_i(oldsymbol{ heta}; oldsymbol{ heta}^{(k)}, \{z_{i,m}^{(k)}\}_{m=1}^{M_{(k)}}), & ext{if } i = i_k \ \widetilde{\mathcal{A}}_i^k(oldsymbol{ heta}), & ext{otherwise}. \end{cases}$$

- 8: Set $\boldsymbol{\theta}^{(k+1)} \in \operatorname{arg\,min}_{\boldsymbol{\theta} \in \Theta} \widetilde{\mathcal{L}}^{(k+1)}(\boldsymbol{\theta}) := \frac{1}{n} \sum_{i=1}^{n} \widetilde{\mathcal{A}}_{i}^{k+1}(\boldsymbol{\theta})$.
- 9: **end for**

Global Convergence Analysis

Assumptions: we need a few regularity conditions in this case,

1. There exists a Borel measurable function $\hat{H}:\mathcal{H} imes\mathsf{X} o\mathcal{H}$,

$$\hat{H}_{\eta}(x) - P_{\eta}\hat{H}_{\eta}(x) = H_{\eta}(x) - h(\eta), \ \forall \ \eta \in \mathcal{H}, x \in X.$$

- ⇒ existence of solution to the *Poisson equation*.
- 2. For all $\eta \in \mathcal{H}$ and $x \in X$, $\|\hat{H}_{\eta}(x)\| \le L_{PH}^{(0)}$, $\|P_{\eta}\hat{H}_{\eta}(x)\| \le L_{PH}^{(0)}$, and

$$\sup_{\mathbf{x} \in \mathbf{X}} \|P_{\boldsymbol{\eta}} \hat{H}_{\boldsymbol{\eta}}(\mathbf{x}) - P_{\boldsymbol{\eta}'} \hat{H}_{\boldsymbol{\eta}'}(\mathbf{x})\| \le L_{PH}^{(1)} \|\boldsymbol{\eta} - \boldsymbol{\eta}'\|, \ \forall \ (\boldsymbol{\eta}, \boldsymbol{\eta}') \in \mathcal{H}^2.$$

- \Longrightarrow smoothness of $\hat{H}_{\eta}(x)$, satisfied if P_{η} , $H_{\eta}(X)$ are smooth w.r.t. η .
- 3. It holds that $\sup_{\eta \in \mathcal{H}, x \in X} \|H_{\eta}(x) h(\eta)\| \leq \sigma$.
- \Longrightarrow requires the noise is *uniformly bounded* for all $x \in X$.

Example: assumptions 1 & 2 are satisfied if the Markov kernel $P_{\eta_{\eta}}$ is geometrically ergodic + smooth, and the drift term is smooth w.r.t. η .

Theorem 1. Suppose that the step sizes are decreasing and $\gamma_1 \leq 0.5(c_1(L+C_h))^{-1}$ (+other conditions). Let $V_{0,n} := \mathbb{E}[V(\eta_0) - V(\eta_{n+1})]$,

$$\mathbb{E}[\|h(\boldsymbol{\eta}_N)\|^2] \leq \frac{2c_1(V_{0,n} + C_{0,n} + (\sigma^2 L + C_{\gamma}) \sum_{k=0}^n \gamma_{k+1}^2)}{\sum_{k=0}^n \gamma_{k+1}} + 2c_0.$$

- Set $\gamma_k = (2c_1L(1+C_h)\sqrt{k})^{-1} \Longrightarrow \mathbb{E}[\|h(\boldsymbol{\eta}_N)\|^2] = \mathcal{O}(c_0 + \log n/\sqrt{n})$ (same as Case 1).
- **Proof idea**: challenge is that e_{n+1} is not zero-mean \Longrightarrow bound the sum of $\mathbb{E}[\langle \nabla V(\eta_n) | e_{n+1} \rangle]$ w/ Poisson equation + a novel decomposition (cf. *Lemma 2*).

The 33rd International Conference on Algorithmic Learning Theory

Conclusion

- Theorem 1 & 2 show the non-asymptotic convergence rate of biased SA scheme with smooth (possibly non-convex) Lyapunov function.
- With appropriate step size, in n iterations the SA scheme finds $\mathbb{E}[\|h(\eta_N)\|^2] = \mathcal{O}(c_0 + \log n/\sqrt{n})$, where c_0 is the bias and $h(\cdot)$ is the mean field.
- Applications to online EM and online policy gradient.

References