PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-178960

(43)Date of publication of application: 18.07.1995

(51)Int.Cl.

B41J 2/44

B41J 2/45

B41J 2/455

H01L 33/00

(21)Application number : 05-346768

(71)Applicant: KYOCERA CORP

(22)Date of filing: 22.12.1993 (72)Inventor: MURANO SHUNJI

TSURUSAKI KOJI

MIYAUCHI KOJI

(54) IMAGING DEVICE

(57)Abstract:

PURPOSE: To obtain a substrate intensive to one piece by providing imaging arrays of an imaging device, cathode drive ICs, and anode drive

ICs on a single hard printed board.

CONSTITUTION: LED arrays 2 are arranged on a hard printed board 6. On the both sides thereof, data buses 8, 8 are provided and subjected to wire bonding. The data bus 8 is divided for every two arrays and shaped into a U shape. The divided data buses 8, 8 are connected to each other by a through hole and a back surface wire 14. Anode drive ICs 3 are connected to the data bus 8. A common electrode wire 10 is provided in a space between the data buses 8, 8 and connecting to cathode drive ICs

LEGAL STATUS

[Date of request for examination]

27.08.1996

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application

converted registration]

[Date of final disposal for application]

[Patent number]

2935402

[Date of registration]

04.06.1999

[Number of appeal against examiner's decision of

[Date of requesting appeal against examiner's decision

of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-178960

(43)公開日 平成7年(1995)7月18日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ				技術表示箇所
B41J	2/44							
	2/45							-8-
	2/455							
H01L	33/00	. J						
				B41J	3/ 21		L	
	. •		審查請求	未請求請求項	で数3 FI) (全 6	頁)	最終頁に続く
(21)出願番号		特願平5-346768		(71)出願人	000006633			
					京セラ株式	会社		
(22)出願日		平成5年(1993)12月22日		京都府京都市山科区東野北			井ノ上町 5番地	
					Ø22			•
				(72)発明者	村野 俊次			
*					鹿児島県姶		内999	番地3 京七
					ラ株式会社			
				(72)発明者	鶴崎 幸二	····		-
					鹿児島県姶	良郡焦人町	r 141 999	選地3 京七

(54) 【発明の名称】 画像装置

(57)【要約】

【目的】 1枚の硬質プリント基板に、画像装置の画像アレイとカソード駆動 I C並びにアノード駆動 I Cを搭載し、基板を1枚に集約する。

【構成】 硬質プリント基板6にLEDアレイ2を配列し、その両側にデータバス8,8を設けて、ワイヤボンディングする。データバス8はアレイ2個毎に分断してU字状にし、分断したデータバス8,8間をスルーホールと裏面配線14で接続する。データバス8にアノード駆動IC3を接続し、データバス8,8の隙間に共通電極配線10を設けて、カソード駆動IC4を接続する。

ラ株式会社鹿児島隼人工場内

ラ株式会社鹿児島隼人工場内

(74)代理人 弁理士 塩入 明 (外1名)

鹿児島県姶良郡隼人町内999番地3 京セ

(72)発明者 宮内 宏治

【特許請求の範囲】

【請求項1】 基板の一方の主面に画像アレイを配列 し、アノード駆動ICとカソード駆動ICとで、該アレ イをダイナミック駆動するようにした画像装置におい て、

画像アレイではその受発光体の列の両側にワイヤボンデ ィングパッドを配列し、基板では、画像アレイ2個単位 のU字状のデータバスを、画像アレイの列の両側に設 け、画像アレイとデータバスとをワイヤボンディング し、かつ該データバスはアレイ2個毎に分断して、スル 10 ーホールと基板の裏面配線とを介して相互に接続し、さ らにデータバスとデータバスとの隙間に共通電極配線を 設けて、画像アレイの共通電極に接続し、

前記の主面上にカソード駆動ICとアノード駆動ICと を搭載して、カソード駆動ICを共通電極配線に、アノ ード駆動ICをデータバスに接続したことを特徴とす る、画像装置。

【請求項2】 前記画像アレイと、アノード駆動並びに カソード駆動の各ICとを、電磁的にも光学的にも絶縁 するシールドを設けたことを特徴とする、請求項1の画 20 像装置。

【請求項3】 前記基板をハウジングに収容し、かつハ ウジングにミラーを設けてアレイからの光路を90度曲 げ、該光路を前記基板に平行に配置したことを特徴とす る、請求項1の画像装置。

【発明の詳細な説明】

[0001]

【発明の利用分野】この発明は、LEDヘッドやプラズ マヘッド、イメージセンサ等の画像装置に関する。

[0002]

【従来技術】ダイナミック駆動の画像装置では、ガラス 基板に薄膜配線で高密度配線を施し、この基板上に画像 アレイとアノード駆動ICとを搭載する。画像アレイの ダイナミック駆動用のカソード駆動ICは電流量が大き いため、ガラス基板とは別のプリント基板に搭載し、ガ ラス基板とはフレキシブルプリント基板で接続する。

【0003】ここでガラス基板に薄膜配線を施すのは精 密配線のためであり、例えば標準的な解像度である30 ODPIの場合、配線ピッチは84.7 μ mとなる。こ れに対して硬質プリント基板等での厚膜配線では、線幅 とギャップとを各50μmとして、100μm程度が配 線ピッチの下限である。画像装置では、線幅や線と線と のギャップの他に、ワイヤボンディングのためのパッド が必要で、硬質プリント基板では200DPI程度の低 解像度の画像装置しか実現できない。即ち、300DP I以上の解像度では配線ピッチが85μm程度となり、 しかもここにワイヤボンディングパッドを設ける必要が あるため、ガラス基板上の薄膜配線しか用いることがで きなかったのである。しかしガラス基板は高価で、かつ 薄膜配線は生産性に劣る。

【0004】従来技術では、ガラス基板の他に、カソー ド駆動ICを搭載した別の基板が必要で、基板の枚数は 2枚である。またこれ以外に、ガラス基板とカソード駆 動ICの基板とを接続するフレキシブルプリント基板が 必要である。これはダイナミック駆動では、カソード駆 動ICに大きな電流が流れるため、ガラス基板上の薄膜 配線では電流を賄えないからである。これらのため、単 に基板が2枚必要なだけでなく、基板間を半田付け等で 接続する必要があり、作業時間の増加と半田付け不良に よる歩留りの低下とを招いていた。またフレキシブルプ リント基板の半田付けでは、フラックスを均一に塗布す る必要があり、不均一に塗布すると接続不良を生じ、へ ッドの不良をもたらした。しかし、フレキシブルプリン ト基板にフラックスを均一に塗布するのは難しい。

[0005]

【発明の課題】この発明の課題は、

- 1) 画像アレイとカソード駆動 I C並びにアノード駆動 ICを1枚の基板に搭載して、基板を1枚にし、
- 2) かつ、硬質プリント基板等の安価な基板を用いるこ とを可能にすることにある。

請求項2の発明での課題は、画像アレイと駆動IC間と を電磁的にも光学的にも絶縁して、

- 3) 周囲の電磁ノイズを遮断し、駆動 I Cの誤動作を防 止するとともに、
- 4) 画像アレイからの光により、駆動 I Cが誤動作する ことを防止し、
- 5) かつ駆動 I Cからの放射ノイズが、周囲に放射され ることを防止することにある。

【0006】請求項3の発明での課題は、ハウジングに ミラーを設けて光路を90度変え、

6) 基板の幅が増加しても、画像装置の幅を小さく保つ ことにある。

[0007]

【発明の構成】この発明は、基板の一方の主面に画像ア レイを配列し、アノード駆動ICとカソード駆動ICと で、該アレイをダイナミック駆動するようにした画像装 置において、画像アレイではその受発光体の列の両側に ワイヤボンディングパッドを配列し、基板では、画像ア レイ2個単位のU字状のデータバスを画像アレイの列の 両側に設けて、画像アレイとデータバスとをワイヤボン ディングし、かつ該データバスはアレイ2個毎に分断し て、スルーホールと基板の裏面配線とを介して相互に接 続し、かつデータバスとデータバスの隙間に共通電極配 線を設けて、画像アレイの共通電極に接続し、前記の主 面上にカソード駆動ICとアノード駆動ICとを搭載し て、カソード駆動 I Cを共通電極配線に、アノード駆動 ICをデータバスに接続したことを特徴とする。好まし くは、画像アレイと、アノード駆動並びにカソード駆動 の各ICとを、電磁的にも光学的にも絶縁するシールド 50 を設ける。また好ましくは、前記基板をハウジングに収

容し、かつハウジングにミラーを設けてアレイからの光 路を90度曲げ、該光路を前記基板に平行にする。画像 アレイには受発光体を配列したものを用い、例えばLE Dアレイやプラズマアレイ、あるいはイメージセンサの 光電池アレイ等とする。また基板は、好ましくは硬質プ リント基板とする。

[0008]

【発明の作用】この発明では、画像アレイの列の両側に データバスを設けるので、データバスの配線密度は1/ 2に低下する。これに伴って画像アレイは、受発光体の 10 列の両側にワイヤボンディングパッドを配列したアレイ とする。配線密度を1/2に低下させたので、硬質プリ ント基板等を用いることができる。硬質プリント基板等 を用いると、配線の電流容量を薄膜配線に比べ大きくと れるため、大電流のカソード駆動ICを同じ基板に搭載 でき、この結果、基板は1枚で良く、しかも基板間接続 の工程が不要になる。また当然に、基板間接続用のフレ キシブルプリント基板も不要になる。基板は硬質プリン ト基板等の安価な、厚膜配線(例えば銅箔のエッチング による配線)を用いた基板で良く、高価なガラス基板や 20 生産性の低い薄膜配線の成膜工程が不要になる。

【0009】画像アレイの共通電極をカソード駆動 I C に接続するため、U字状に分断したデータバスの隙間 (データバスと次のデータバスとの隙間) に共通電極配 線を施し、分断したデータバスはスルーホールと基板の 裏面配線を介して相互に接続する。

【0010】請求項2の発明では、画像アレイと駆動I C間のノイズを除去する。画像アレイでは受発光体の周 囲の部分はシールドできず、ここから周囲のノイズ、例 えば帯電器や現像器等からのノイズが侵入する。また画 30 像アレイからの光は、駆動ICの誤動作の原因となる。 そこで画像アレイと駆動 I Cとの間を、電磁的にも光学 的にも絶縁し、帯電器等からの外来ノイズや画像アレイ からの光等による、駆動ICの破壊や誤動作を防止す る。またこれと同時に、駆動ICからのノイズが周囲に 放射されることを防止する。

【0011】次に、基板上で画像アレイの列の両側にデ ータバスを設け、カソード駆動ICを同じ基板上に搭載 すると、基板の幅が増加する。そして基板幅の増加は実 装上の問題をもたらす。例えば感光体ドラムの周囲に画 像装置を配置すると、帯電器と現像器との狭い隙間に画 像装置を配置しなければならない。ここでプリンタやフ ァクシミリ、コピー機等の小型化のためには、画像装置 の幅を小さくしなければならない。そこでミラーを設 け、光路を90度曲げて基板に平行な光路とすれば、基 板幅が増加しても画像装置の幅は増加しない(請求項 3)。

[0012]

【実施例】図1~図5に実施例を示す。図1において、 2はLEDアレイで、例えば40個1列に直線状に配置 50 -A軸に関して線対称に配置しないと、接続が不可能に

する。3は画像データを供給するためのアノード駆動 I Cで、4はダイナミック駆動用のカソード駆動 I Cであ る。6は硬質プリント基板、8は基板6に設けたデータ バスである。データバス8はLEDアレイ2の列の、図 での上下両側に設け、LEDアレイ2個単位に分断して 繰り返し、U字状をしている。10は共通電極配線で、 LEDアレイ2の共通電極に接続し、データバス8と次 のデータバス8の隙間からアレイ2の底面へと導く。1 2はアノード駆動 I C 3に接続したバスである。分断し たデータバス8は、スルーホールと基板6の裏面配線1 4を介して相互に接続する。16はカソード駆動 I Cへ の信号線で、18はコネクタでプリンタ本体等との接続 に用いる。

【0013】図2に、LEDアレイ2個分の配線を拡大 して示し、図ではワイヤ線は省略した。20は発光体 で、例えば84. 7μmピッチでアレイ2の1個当たり 64個直線状に設け、22はワイヤボンディングパッド で、32個をパッド22aとして発光体20の上側に、 残る32個をパッド22bとして下側に配置した。2 4,26はワイヤボンディングパッドである。28はス ルーホールで、バス8、8間の接続に用いる。

【0014】パッド22a、22bは、アレイ2の長手 方向中心軸と、短辺方向中心軸で(A-A軸)の2軸に関 して線対称とする。長手方向中心軸に関して対称(図で の上下対称)とするのは、パッド22a, 22bに最大 限広い面積を割り当てるためである。例えば解像度を3 00DPIとすると、パッド22a, 22bの配列ピッ チは約170μmで、パッド幅を例えば100μm程度 にできる。パッド22a,22bをA-A軸に関して線 対称にするのは、データバス8と交差配線無しでワイヤ ボンディングするためで、これ以外の場合、上側のデー タバス8aと下側のデータバス8bに交差配線が必要な

【0015】例えば図での下側のデータバス8bを見る と、左端のパッド24-1には左側のアレイの左端の発 光体へのデータが現れ、右端のパッド24-64には右 側のアレイの右端の発光体へのデータが現れる。ここで パッド22a、22bをアレイ2のA-A軸に関して線 対称に配置すると、左側のアレイの左端の発光体に接続 したアレイ上のパッドが基板6のパッド24-1に接し た位置に現れ、右側のアレイの右端の発光体に接続した パッドがパッド24-64に接した位置に現れる。この ため基板6のパッド24を最も近いアレイ2のパッド2 2 b に接続するだけで、正しい接続ができる。このこと は両端以外の発光体へのデータの供給や、上側のパッド 22aについても同様で、線対称では基板6のパッド2 4を最も近いアレイ2上のパッド22a, 22bにワイ ヤボンディングするだけで良い。

【0016】これに対して、パッド22a, 22bをA

10

なる。例えばパッド22a,22bをアレイ2の中心に対し、点対称に配置したとする。すると、下の列の右端のパッド24-64は、上側の列の右端のパッド22aに接続しなければならない。これはパッド24-64に右側のアレイの最も右の発光体へのデータがあり、点対称ではこの発光体には上側の列で右端のパッド22aが接続されるからである。この配置で接続するには、データバス8a,8bをアレイ2の底部で交差しなければならず、これは配線密度を2倍に増加させ、硬質プリント基板6を用いるとの目的と矛盾する。

【0017】図3に、基板6の断面を示す。LEDアレイ2のパッド22をデータバス8のパッド24にワイヤボンディングし、IC3,4も同様にバス12や信号線16にワイヤボンディングする。またアレイ2の2個毎に分断したデータバス8は、スルーホール28と裏面配線14を用いて相互に接続する。

【0018】実施例の基板構成の特徴を説明する。LE Dアレイ2の列の両側にデータバス8を設けたので、配線密度は1/2に低下する。これにはアレイ2でパッド22a,22bを短辺方向中心軸A-Aに関して線対称20に配置し、データバス8,8間の交差配線を除いたことが関係している。そして配線密度を1/2に低下させたので、例えば解像度300DPIの場合、データバス8での配線ピッチは約170 μ mに達し、例えば100 μ m幅のワイヤボンディングパッド24を設けても、50 μ m以上の線間ギャップを残すことができる。この結果、安価な硬質プリント基板6を用いることができる。

【0019】硬質プリント基板6を用いると、大きな電流容量が必要な共通電極配線10や信号線16を形成でき、カソード駆動IC4を基板6に搭載できる。このため1枚の基板6に、LEDアレイ2やアノード駆動IC3の他に、カソード駆動IC4を搭載でき、基板を1枚にできる。

【0020】LEDアレイ2の共通電極には、U字状にアレイ2の2個単位で分断したデータバス8の隙間から共通電極配線10を接続でき、しかも分断したデータバス8はスルーホール28と裏面配線14で相互に接続できる。また硬質プリント基板6ではスルーホールの形成も容易である。

【0021】図4,図5に、画像装置のハウジング30 40を示す。図5は図4の5-5線に沿った断面である。ハウジング30は例えば安価なプラスチックハウジングとし、32は駆動IC3,4と、アレイ2との間に設けたシールド部で、ハウジング30と一体に成型する。34はシールド部32の内面に設けた導電性被覆で、例えば金属や導電性プラスチックを用い、接地する。36は例えば金属のヘッドカバー、38はミラー、40はレンズアレイである。

【0022】画像装置は、図4の感光体ドラム01に面して、帯電器02と図示しない現像器との間に配置し、

プリンタの小型化のため帯電器 0 2 との隙間は僅かで、ドラム 0 1 に対する正面幅にも制限がある。帯電器 0 2 からは 2 - 3 K V 程度の電位のノイズが生じ、このノイズが I C 3, 4 に放電すると I C 3, 4 が破壊される。破壊に至らなくとも、ノイズで I C 3, 4 が誤動作する。これ以外に、LEDアレイ 2 の光が I C 3, 4 に入射すると誤動作することがある。また I C 3, 4 からのノイズが、周囲に放射されることも防止しなければならない。

【0023】駆動IC3,4は、図での下側を金属カバー36でシールドし、これ以外の部分をシールド部32の導電性被覆34でシールドする。IC3,4とLEDアレイ2との位置関係は図5のようになり、両者の間にはシールド部32があり、IC3,4はシールド部32とカバー36で密閉される。このため、アレイ2側から侵入したノイズを電磁的にも光学的にも遮断でき、かつIC3,4からのノイズの放射も防止できる。シールド部32は、IC3,4を囲む部分でハウジング30の内面に、金属や導電性プラスチックの被覆を設けるだけで良く、特に限定するものではないが、ハウジング30の全体を高価な導電性プラスチックで構成する必要はない

【0024】実施例のように、基板6の中央にLEDアレイ2を配列し、その両側にデータバス8やIC4等を設けると、基板幅が増加し、小径の感光体ドラム01への取付が難しくなる。これはプリンタ等の小型化の要求に一致しない。そこでハウジング30に固定したミラー38を用いて、光路を90度曲げて基板6に平行にし、感光体ドラム01に対する画像装置の取付幅を減少させる。このようにすれば、基板6の幅が増加しても画像装置の正面幅(感光体ドラム01に面した幅)は増加せず、小さなドラム01に対し容易に取り付けることができる。

[0025]

【発明の効果】この発明では、

- 1) 画像アレイとカソード駆動 I C並びにアノード駆動 I Cを 1 枚の基板に搭載して、基板を 1 枚にすることができ
- 2) しかも、硬質プリント基板等の安価な基板を用いることができる。またこれらに伴って、
- 3) 半田付け等による基板間の接続が不要になり、しかも高価なフレキシブルプリント基板が不要になる。 請求項2の発明では、画像アレイと駆動IC間とを電磁的にも光学的にも絶縁して、
- 4) 周囲の電磁ノイズを遮断による駆動 I Cの破壊や誤動作を防止するとともに、
- 5) 画像アレイからの光による駆動 I Cの誤動作を防止し、
- 6) かつ駆動 I Cからの放射ノイズが、周囲に放射されることを防止する。

7

【0026】請求項3の発明では、ハウジングにミラーを設けて光路を90度変え、

7) 基板の幅が増加しても、画像装置の幅を小さく保つことができる。

【図面の簡単な説明】

【図1】 実施例の画像装置の基板配線を示す要部平 面図

【図2】 実施例に用いたLEDアレイの平面図

【図3】 実施例の画像装置の要部断面図

【図4】 変形例の画像装置の使用状態を示す断面図 10

【図5】 実施例の画像装置の断面図

【符号の説明】

2 LEDアレイ

30 ハウジ

ング

3 アノード駆動 I C

32 シール*

* ド部

4 カソード駆動 I C

3 4 導電性

被覆

6 硬質プリント基板

36 ヘッド

カバー

8 データバス

38 ミラー

10 共通電極配線

40 レン

ズアレイ

12 バス

14 裏面配線

16 信号線

18 コネクタ

20 発光体

22, 24, 26 ワイヤボンディングパッド

28 スルーホール

【図1】

【図3】

【図4】

[図5]

フロントページの続き

(51) Int. Cl. 6

識別記号

庁内整理番号

FΙ

技術表示箇所

H01L 33/00

N