Review - Boolean algebra, DeMorgan's Theorem, Karnaugh Map, and data control circuits

Student's Name				
Instruction:				
Show all work to receive full credit. Box or circle the answer				
Question 1				
Use Boolean algebra to simplify the following expression $\overrightarrow{ABC} + \overrightarrow{ABC} + \overrightarrow{BC}$				
Sketch the simplified circuit				
Question 2				
Simplify the following expression using Boolean algebra and DeMorgan's theorem				
$\overline{(\overline{A}B)} + \overline{B}C$				

Find and simplify the output Y of the following logic circuit using Boolean algebra

Draw the simplified circuit

Question 4

Simplify the output X of the following logic circuit using Boolean algebra and DeMorgan's theorem

Simplify the following Karnaugh Map to its most simplified form:

	$\overline{C}\overline{D}$	$C\overline{D}$	CD	C D
$\overline{A}\overline{B}$	1	1	0	1
ĀB	0	0	1	1
AB	0	0	1	0
$A\overline{B}$	1	1	1	1

Question 6

Simplify the following SOP output $X = \bar{A}\bar{B}C + \bar{A}B\bar{C} + A\bar{B}C + ABC$ using K-map

	<u></u>	C
$\overline{A}\overline{B}$		
ĀB		
AB		
$A\overline{B}$		

Question 7

For the following inequality comparator, list all possible inputs for B

Question 8

Design a logic circuit to decode the binary string $A=0010_2$. Assuming that A_0 is the LSB and A_3 is the MSB, write the output equation with respect decoder

For the following BCD to 7-segment decoder circuit, if we assume that D is the least-Significant-Bit (LSB) and A the Most Significant Bit (MSB)

If we receive the following input, which segment of the 7-segment will be ON? $A=0,\,B=0,\,C=1,\,D=1$

Segment that will be ON? Write the segment in alphabetic order

Question 10

For the following 8-1 MUX, which Data Input is selecting the data selector?

What would be output Y?_____

Question 11

Having the following input $A = 1010_2$ and $B = 0011_2$ through the 4-bit full adder below, what would be the output for Σ_3 , Σ_2 , Σ_1 , Σ_0 , and $C_{out(3)}$

For the following 4-bit full-adder circuit, show the bit flow and find SUM_0 , SUM_1 , SUM_2 , SUM_3 , and C_{in} , given:

 $\begin{aligned} A &= 0111_2 \\ B &= 1101_2 \\ C_{in} &= 0 \end{aligned}$

----- Review ends here -----