Машинное обучение

Рысьмятова Анастасия

Полезные ссылки

Репозиторий курса: https://github.com/hse-mlds/ml

Чат предмета: https://t.me/+Qvc86ptxVu42OWYy

Страница на вики: http://wiki.cs.hse.ru/

Энитаск: https://anytask.org/course/1068

Степик: https://stepik.org/lesson/806463/step/1?unit=809639

Лекции Евгения Соколова: https://github.com/esokolov/ml-course-hse

Формула курса

Оценка = 0 *
$$O_{\text{Тренировочные тесты}}$$
 + 0.2 * O_{Stenik} + 0.1 * $O_{\text{Контрольная}}$ + 0.2 * $O_{\text{Экзамен}}$ + 0.5 *

Автоматы: Если накопленная до экзамена оценка (до округления) больше или равна 7, то она (после округления) по желанию студента ставится в качестве итоговой оценки. Для получения автомата **также необходимо получить за контрольную не менее 6 баллов** (неокругленных).

Под накопленной оценкой до экзамена понимаем Накоп_до_экзамена = Оценка / 0.8

В случае если накопленная до экзамена оценка (опять же, до округления) < 7 и/или студент получил за коллоквиум во 2-м модуле < 6 баллов, то автомат за экзамен не предусмотрен. Итоговая оценка тогда считается по формуле, округляется и ставится в зачетку.

Deep Blue 1997

AlphaGo 2016

Машинный перевод

Машинное обучение

- 1. Машинное обучение с учителем (Supervised learning)
 - Классификация
 - Регрессия

- 2. Машинное обучение без учителя (Unsupervised Learning)
 - Кластеризация

3. Обучение с подкреплением

Машинное обучение с учителем

Х - множество объектов

Y - множество ответов

$$\mathsf{X} = \{(x_1,\,y_1),\,\dots,\,(x_l,\,y_l)\}$$
 - обучающая выборка

Необходимо найти

$$a(x): \mathbf{X} \to \mathbf{Y}$$

Линейная регрессия

Рассмотрим задачу регрессии $Y = \mathbb{R}$

Будем считать что каждый объект имеет признаковое описание - числовой вектор длины n

$$x=(x_1,\,x_2,\,\ldots,\,x_n)$$

Линейная регрессия

Будем искать алгоритм a(x) вида

$$a(x) = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_n x_n$$

Если мы найдем веса w_0, w_1, \ldots, w_n

то мы построим алгоритм a(x)

Линейная регрессия

Веса $w_0, \, w_1, \, \ldots, \, w_n$ - параметры модели линейной регрессии

Обучение модели - поиск оптимальных параметров модели