Multi-diffusion et répartition de contenus vidéos dans un réseau actif : un modèle en couches

Claude DUVALLET, Ronan KERYELL, Sylvain GUÉRIN, Yerom-David BROMBERG, Gérard BABONNEAU

Laboratoire Informatique & Télécommunications

Département Informatique

École Nationale Supérieure des Télécommunications de Bretagne

Claude.Duvallet@free.fr

Plan de la présentation

- Introduction et contexte
- Une solution basée sur un ensemble de nœuds actifs :
 - le réseau de nœuds
 - un nœud actif
 - la solution globale
- Un état d'avancement des travaux :
 - ce qui marche
 - ce qui est en cours de réalisation
 - les problèmes rencontrés
- Perspectives : ce qu'il reste à faire.

Contexte de l'étude

- Télévision ⇒ un média incontournable
- Progrès énormes dans les réseaux hauts débits
 - Infrastructures (*backbones*): ATM, IP direct DWDM, ...
 - Augmentation des connexions internet à haut débit (cable, xDSL, etc.)
- Réseau avec débit suffisant pour avoir la télévision en numérique et avec plus d'interactivité
- Problème: on va vers une saturation des bandes passantes entre la source vidéo et les clients
- Solution : réduire le traffic de la bande passante
 - Factoriser les flux identiques avec multi-diffusion (*MBone*)
 - Utiliser des mécanismes de cache
 - Répartir les contenus

Pour quels services ?(1)

- Télévision différée, magnétoscope *implicite* interactif dans le passé
- Gestion de la qualité en fonction du coût de l'abonnement
 - Pas cher : choix plus limité
 - Plus cher : prioritaire, peut rogner sur la qualité des abonnements pas cher, moins de pubs, ...
- Gestion de la qualité en fonction des conditions réseau
 - Réduction fluide de la qualité si plus assez de ressources disponibles
 - Passage en diffusion différée si le débit devient vraiment insuffisant (xDSL sur longue ligne, . . .)

Avec quelles techniques? (1)

Distribution à outrance des contenus

- Connexion en mode pair-à-pair des nœuds au niveau physique du réseau
- Caches auto-adaptatifs
- Préchargement des caches avec films, bandes annonces, infos, . . .
- Utilisation d'informations sémantiques pour gérer les caches : infos et météo ≡ durée de vie faible, . . .
- Répartitions des films dans des caches du réseau en fonction du coût
- Seuls les émissions en direct et les films à la demande peu commun circulent en temps réel
- Encodage hiérarchique avec cachage progressif et amélioration successive de la qualité à chaque demande malgré faible débit
- Démocratie : / qualité à chaque demande

Nom de code : RéActiVE

Réseau Actif de Vidéo Multimédia de l'ENST Bretagne

- Déploiement d'une plate-forme expérimentale
- Réseau actif à programmation « hors bande » (mélange de parallélisme, de systèmes répartis et de réseau)
- Validation de l'apport des réseaux actifs dans le cadre de la :
 - Diffusion de vidéo sur les réseaux IP
 - Technologie multicast sur IP
- Validation en termes d'usages

Réseau d'expérimentaion

- Réseau cablé en infrastructure 1 Gbit/s Ethernet fibre optique
- Accès Internet principal à 20 Mbits
- Réseau de la « Maison des Élèves » :
 - \geq 340 machines (\equiv quartier) sur Ethernet (\equiv ADSL, Cable)
 - ➤ Étoile en Ethernet 100 Mbits (≡ URAD)
 - \succ Hubs par couloir (\equiv DSLAM de rue)
- Utilisateurs très critiques . . .

Le réseau RéActiVE

Les nœuds actifs

- Structure et fonctionnalité d'un nœud actif :
 - le module Interface Utilisateur
 - le module Noyau Actif
 - le module Source Vidéo
- Chaque nœud possède au minimum le module Noyau Actif
- Le module Interface Utilisateur est complété par :
 - un serveur WEB en PHP
 - un <u>serveur RTSP</u>

Hypothèses

Modélisation objet

- Objet « contenu » unique
- Uniformisation film ou flux TV : tout n'est qu'une suite de segments
- Corollaire fonction magnétoscope implicite sur TV
- Réseau actif manipule ce flux de segments en paquets RTP

Architecture en couche

Le réseau RéActiVE / partie client

Le nœud doit :

- implémenter la fonction UserInterface
- posséder un serveur RTSP en attente de connexions
- avoir un serveur WEB en fonctionnement avec les pagesPHP

Le client doit :

- disposer du client RTSP
- du lecteur MPEG VideoLan Client

Interconnexion des nœuds

- Utilisation d'un gestionnaire de réseau : envoi de « Life Beat Messages » en mode multicast (addresse de classe D)
- Détection des nœuds automatique
- Échange des informations sur le contenu des nœuds pour qu'ils soient connus et accessibles depuis n'importe lequel des nœuds
- Multi-diffusion sur des canaux Multicast des contenus au moyen de paquets RTP.

Programmation

- Contrôle application : expressivité
 - > Java
 - Messages actifs : sérialisation objets Java en XML à la SOAP
- Pragmatisme : sortir de Java que si problème de performance
- Flux multimédia : besoin de performance
 - Exploite directement moteur Unix
 - Routage
 - Limitation des copies entre couches
 - ➤ IP multi-diffusion
 - Serveur RTSP

Présentation de l'application (1)

Présentation de l'application (2)

Présentation de l'application (3)

Présentation de l'application (4)

NetworkManager of fisel.lit.enstb.org					
NetworkManager is started					
The NetworkM	/lanag	er provides	locally an im	age of net	work state.
Manager type: Active threads: Processed requests: Priority: Processors max priority:		MultithreadedManager			
		3			
		o			
		5			
		10			
ld Date	Reque	est type		Descripti	on
▲ ▼ ···································	en e	************************************		000000000000000000000000000000000000000	
<u> </u>			rk representat		
	L	ocal netwo	rk representat		
	L		rk representat		
Active nodes Graph	L	ocal netwo	rk representation		
	L hical i	ocal netwo	rk representat	tion	
Active nodes Graph	L hical i	ocal netwo	rk representation	tion	
Active nodes Graph	L hical i	ocal netwo	rk representation	tion	
Active nodes Graph	L hical i	ocal netwo	rk representation	tion	
Active nodes Graph	L hical i	ocal netwo	rk representation	tion	
Active nodes Graph	L hical i	ocal netwo	rk representation	tion	
Active nodes Graph	L hical i	ocal netwo	rk representation	tion	
Active nodes Graph	L hical i	ocal netwo	rk representation	tion	

Présentation de l'application (5)

Conclusions

- Une architecture permettant d'améliorer les performances des serveurs de VoD et réduire l'utilisation de la bande passante.
- Une architecture reposant sur les concepts des systèmes pair-à-pair et de répartition des moyens de calcul et de stockage.
- Une réalisation concrète sous forme d'une plate-forme d'expérimentation.

Perspectives

- Optimiser certaines parties de la plate-forme d'expérimentation.
- Développement de stratégies de cache « intelligentes » :
 - recueillir des informations sur la consommation des utilisateurs
 - ne stocker localement sur les nœuds les plus proches que les films qui intéressent les utilisateurs
 - moyen : utiliser un système d'aide à la décision pour de l'analyse multi-critères
- Mise en place d'une simulation grande échelle
- Numérisation de chaines de télévision en temps réel
- Numérisation des cours de l'ENST