Técnicas Algorítmicas Prof. Agustín Gravano

MiM - UTDT - Segundo semestre de 2020

Clase 4: Backtracking

Problema de las 8 Reinas

Colocar 8 reinas en un tablero de ajedrez sin que se amenacen.

(Tablero: 8x8.)

¡A jugar!

http://www.datagenetics.com/blog/august42012/ http://www.dr-mikes-math-games-for-kids.com/ eight-queens-puzzle.html

Prueben encontrar una solución, pero más importante: piensen un algoritmo para buscar una solución.

Problema de las 8 Reinas

- Es un problema de búsqueda, usualmente llamado problema de optimización combinatoria.
- ► El espacio de soluciones posibles es gigantesco.
- ► Backtracking: forma ordenada de buscar, de manera exhaustiva, una solución [óptima] al problema.
 - En ciertos problemas, nos alcanza con encontrar soluciones válidas. Ejemplo: 8 reinas.
 - ► En otros problemas, queremos encontrar la mejor solución posible. Ejemplo: viajante de comercio.

Problema de las 8 Reinas

Función Reinas:

- ► Si quedan reinas por colocar en el tablero:
 - Para cada casilla c donde sea válido colocar una reina:
 - Avanzar un paso: colocar una reina en c. (El tablero ahora está un paso más cerca del caso base.)
 - Recursivamente, resolver Reinas sobre el tablero actual.
 - Retroceder un paso: retirar la reina de c.
- ► Si ya coloqué 8 reinas en el tablero:
 - ¡Tenemos una solución! Mostrar el tablero. (Este es el caso base: ya no quedan reinas por colocar.)

<u>Tarea</u>: Ver la solución en Python provista, que incluye la definición de un tipo de datos Tablero para simplificar el código.

Laberinto (sin ciclos)

Función Buscar Salida a partir de un punto *p*:

- ► Avanzar desde *p* hasta llegar a:
 - La salida del laberinto: (caso base)
 - ► ¡Listo!
 - Un camino sin salida: (caso base)
 - Volver a la última bifurcación.
 - Una bifurcación:

Ejemplo:

Para cada opción x: Buscar Salida a partir de x

Al llegar a la bifurcación, hay dos opciones para seguir: 1 y 2. A partir de 1 y de 2, el problema es más pequeño que a partir de *p*. Entonces, podemos resolverlo recursivamente:

- Buscar Salida a partir de 1
- Buscar Salida a partir de 2

Laberinto (sin ciclos)

Función Buscar Salida a partir de un punto *p*:

- ► Avanzar desde *p* hasta llegar a:
 - La salida del laberinto: (caso base)
 - ▶ ¡Listo!
 - Un camino sin salida: (caso base)
 - Volver a la última bifurcación.
 - Una bifurcación:
 - Para cada opción x: Buscar Salida a partir de x

¿Qué debemos cambiar si el objetivo es encontrar el mejor camino de salida del laberinto?

("mejor", según algún criterio arbitrario. Ej: el camino más corto, el que tiene menos riesgos, etc.)

Laberinto (sin ciclos)

Función Buscar **Mejor** Salida a partir de un punto *p*:

- ► Avanzar desde *p* hasta llegar a:
 - La salida del laberinto: (caso base)
 - ► ¡Listo! Devolver el camino encontrado
 - ► Un camino sin salida: (caso base)
 - Volver a la última bifurcación. Devolver ∅
 - Una bifurcación:
 - Para cada opción x: Buscar Mejor Salida a partir de x
 - ▶ De los caminos encontrados, devolver el mejor (o \emptyset)

¿Qué debemos cambiar si el objetivo es encontrar el mejor camino de salida del laberinto?

("mejor", según algún criterio arbitrario. Ej: el camino más corto, el que tiene menos riesgos, etc.)

Problema del Viajante de Comercio (TSP)

Dados un conjunto de ciudades y la distancia entre cada par de ellas, hallar el recorrido más corto que visita cada ciudad exactamente una vez y retorna a la ciudad de origen.

Problema del Viajante de Comercio (TSP)

Dados un conjunto de ciudades y la distancia entre cada par de ellas, hallar el recorrido más corto que visita cada ciudad exactamente una vez y retorna a la ciudad de origen.

Usamos grafos para representar a las ciudades (nodos) y a las distancias entre ellas (aristas con pesos asociados).

Observaciones: Por simplicidad, todo par de ciudades debe tener definida la distancia entre ellas. Las distancias son mayores que 0 y no se espera que respeten lógica alguna.

Problema del Viajante de Comercio (TSP)

Función Viajante de Comercio:

- ► Si todavía quedan ciudades por visitar:
 - Para cada ciudad *c* que falta visitar:
 - Avanzar un paso: visitar c en este momento.
 - ightharpoonup Recursivamente, obtener el mejor recorrido r_c desde acá.
 - Retroceder un paso: no visitar *c* en este momento.
 - \blacktriangleright De todos los recorridos r_c vistos, devolver el mejor.
- ► Si ya no quedan ciudades por visitar:
 - Terminamos de construir un recorrido. Devolverlo.

<u>Tarea</u>: Ver la solución en Python provista, que incluye la definición de un tipo de datos Mapa para simplificar el código.

Esquema general de backtracking

Función Backtracking:

- ► Si la solución todavía está incompleta:
 - Para cada forma i de avanzar en la construcción de la solución:
 - Avanzar un paso.
 - **Recursivamente**, obtener la mejor solución s_i desde acá.
 - Retroceder un paso.
 - ightharpoonup De todas las soluciones s_i vistas, devolver la mejor.
- Si la solución ya está completa:
 - ► Terminamos de construir una solución. Devolverla.

Repaso de la clase de hoy

- ► Técnica de backtracking
- ► Ejemplos: 8 Reinas, Laberinto, Viajante de Comercio.

Con lo visto hoy, ya pueden resolver la sección 4 de la guía de ejercicios y empezar el trabajo práctico final.