PCM and DPCM

1. Consider an analog signal $m(t) = \sin(2\pi 50t)$. Sample it at $f_s = 5000$ samples/sec. Implement 5 bit pulse code modulation (PCM) transmitter and receiver. Find RMSE between input sampled signal m[n] and reconstructed signal $m_r[n]$. Repeat for speech signal and listen to reconstructed signal (16000 samples/sec). Is 5 bit encoding good for speech? (Note that we are not considering noise addition which happens in practice).

2. Consider an analog signalm(t) = $\sin(2\pi 50t)$. Sample it at $f_s = 5000$.

Implement 5 bit Differential Pulse code modulation (DPCM) transmitter and receiver. Find RMSE between input sampled signal m[n] and reconstructed signal $m_r[n]$. Repeat for speech signal and also listen to reconstructed signal. Use predicted value = previous sample value i.e.,

Predictor's equation: $\widehat{m}[n] = m[n-1]$

3. Repeat Q.2 by considering predictor equation as

Predictor's equation: $\widehat{m}[n] = a_1 m[n-1] + a_2 m[n-2] + a_3 m[n-3]$

How to find coefficients a_1 , a_2 and a_3 using input samples. Use pseudo inverse (Least squares estimation of coefficients)