We need to show $w_{\lambda} < 0$ in Σ_{λ} for any $\lambda \in (0, a)$. This implies in particular that w_{λ} assumes along $\partial \Sigma_{\lambda} \cap \Omega$ its maximum in Σ_{λ} . By Theorem 2.5 (the Hopf lemma) we have for any such $\lambda \in (0, a)$

$$D_{x_1} w_{\lambda} \big|_{x_1 = \lambda} = 2 D_{x_1} u \big|_{x_1 = \lambda} < 0.$$

For any λ close to a, we have $w_{\lambda} < 0$ by Proposition 2.13 (the maximum principle for a narrow domain) or Theorem 2.32. Let (λ_0, a) be the largest interval of values of λ such that $w_{\lambda} < 0$ in Σ_{λ} . We want to show $\lambda_0 = 0$. If $\lambda_0 > 0$, by continuity, $w_{\lambda_0} \leq 0$ in Σ_{λ_0} and $w_{\lambda_0} \not\equiv 0$ on $\partial \Sigma_{\lambda_0}$. Then Theorem 2.7 (the strong maximum principle) implies $w_{\lambda_0} < 0$ in Σ_{λ_0} . We will show that for any small $\varepsilon > 0$

$$w_{\lambda_0-\varepsilon}<0$$
 in $\Sigma_{\lambda_0-\varepsilon}$.

Fix $\delta > 0$ (to be determined). Let K be a closed subset in Σ_{λ_0} such that $|\Sigma_{\lambda_0} \setminus K| < \frac{\delta}{2}$. The fact that $w_{\lambda_0} < 0$ in Σ_{λ_0} implies

$$w_{\lambda_0}(x) \le -\eta < 0$$
 for any $x \in K$.

By continuity we have

$$w_{\lambda_0-\varepsilon}<0$$
 in K .

For $\varepsilon > 0$ small, $|\Sigma_{\lambda_0 - \varepsilon} \setminus K| < \delta$. We choose δ in such a way that we may apply Theorem 2.32 (the maximum principle for a domain with small volume) to $w_{\lambda_0 - \varepsilon}$ in $\Sigma_{\lambda_0 - \varepsilon} \setminus K$. Hence we get

$$w_{\lambda_0-\varepsilon}(x) \leq 0 \quad \text{in } \Sigma_{\lambda_0-\varepsilon} \setminus K$$

and then by Theorem 2.10

$$w_{\lambda_0-\varepsilon}(x)<0$$
 in $\Sigma_{\lambda_0-\varepsilon}\setminus K$.

Therefore we obtain for any small $\varepsilon > 0$

$$w_{\lambda_0-\varepsilon}(x)<0$$
 in $\Sigma_{\lambda_0-\varepsilon}$.

This contradicts the choice of λ_0 .