Exercise 1

1. Find out every subgroup of group $\langle \mathbf{Z}_6, +_6 \rangle$, then find out every left coset

of each subgroup.

$$Z_{6} = \{[0], [1], [2], [3], [4], [5]\} \\
identity: [0], [0]^{-1} = [0], [1]^{-1} = [5], [2]^{-1} = [4] \\
[3]^{-1} = [3].$$

$$0 < \{[0]\}, +_{i}>_{i} < Z_{i}, +_{i}>_{i} < Z_{i}>_{i} < Z_{i}>_{i}$$

$$0 < \{(0)\}, +,>, < Z_0, +,>$$
 $3 < \{(0), (3)\}, +,>$

2. Let
$$< H$$
, $*>$ be a subgroup of $< G$, $*>$, if $A = \{x | x \in G, x * H * x^{-1} = H\}$ prove that $< A$, $*>$ is a subgroup of $< G$, $*>$.

Hint:

Theorem 7

A necessary and sufficient condition for a nonempty subset H of a group <G,</p> *> to be a subgroup is that for $\forall a, b \in H \rightarrow a * b^{-1} \in H$.

3. Let $\langle G, * \rangle$ be a group, R is a relation on G such that

 $R = \{(a, b) | \text{there exists } x \in G \text{ such that } b = x * a * x^{-1} \}$

Show that R is an equivalence relation on G.

$$\frac{b-x-a+x^{-1}}{b-x-a+x^{-1}} \qquad \alpha=y+b+y^{-1}.$$

4. Let < H, *> be a subgroup of < G, *>, show that among all cosets of H,

there is only one coset A such that $\leq A$, *> is a subgroup of $\leq G$, *>.

His
$$\langle G, * \rangle$$
 swbgroup.

(Assume there is another cosets. att is also

a*h.=e, a=hTeH. a*heH.

 $h = (a * a^{-1}) * h = a * (a^{-1} * h) = a * (h * h) \in aH$