PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-056414

(43) Date of publication of application: 01.03.1994

51)Int.CI.

CO1B 31/02

C01B 31/02 B01J 19/08

21)Application number : 04-206577

(71)Applicant:

MITSUI ENG & SHIPBUILD CO LTD

22)Date of filing:

03.08.1992

(72)Inventor:

MURATA KATSUHIDE

IRIE TAKAHIRO

MATSUMOTO MASABUMI

HATTA NAOKI

(54) PRODUCTION OF FULLERENE COMPOUNDS

(57) Abstract:

PURPOSE: To improve the efficiency of the production of the fullerene compound. CONSTITUTION: A constant amount of a raw material is continuously fed into a thermal plasma 11 downward generated from a plasma—generating system 7 and reacted in the thermal plasma 11 to produce the sooty product containing the fullerene compound. The product is introduced into a product—recovering tank 37 from a connecting piping 36, and most of the product is deposited in the product—recovering tank 37. The non-deposited product is perfectly recovered with a bag filter 40. Since the plasma—generating oven is disposed in the vertical direction and further since the thermal plasma 11 is jetted in the downward direction, the sooty product containing the produced fullerene compound is effectively dropped from the plasma—generating oven 35 into the product—recovering tank 37. Therefore, the deposition of the product in the plasma—generating oven 35 is reduced, and the operation can continuously be continued over a long period. And, since the sooty product containing the fullerene compound is almost perfectly recovered with the product—recovering tank 37 and the bag filter 40, the recovery rate of the fullerene compound is extremely high.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-56414

(43)公開日 平成6年(1994)3月1日

(51)Int.CL⁵

識別記号 庁内整理番号

FI

技術表示箇所

C 0 1 B 31/02

101 Z

ZAA

B 0 1 J 19/08

K 9151-4G

審査請求 未請求 請求項の数1(全 6 頁)

(21)出願番号

特顏平4-206577

(22)出顧日

平成4年(1992)8月3日

(71)出願人 000005902

三井造船株式会社

東京都中央区築地5丁目6番4号

(72)発明者 村田 勝英

千葉県市原市八幡海岸通1番地 三井造船

株式会社千葉事業所内

(72)発明者 入江 隆博

千葉県市原市八幡海岸通1番地 三井造船

株式会社千葉事業所内

(72)発明者 松本 正文

千葉県市原市八幡海岸通1番地 三井造船

株式会社千葉事業所内

(74)代理人 弁理士 重野 剛

最終頁に続く

(54)【発明の名称】 フラーレン類の製造方法

(57)【要約】

【目的】 フラーレン類の製造効率を向上する。

【構成】 プラズマ発生系7から下向きに発生した熱プラズマ11に原料が連続的に定量供給され、熱プラズマ11中において反応してフラーレン類を含むスス状生成物が生成する。この生成物は、接続配管36から生成物回収槽37に導入され、その大部分が該生成物回収槽37内に堆積する。堆積しなかった生成物は、バグフィルタ40において完全に回収される。

【効果】 ブラズマ発生炉35が上下方向に設けられており、熱ブラズマ11も下向きに噴射されているため、生成したフラーレン類を含むスス状生成物が効率良くプラズマ発生炉35内を落下し、生成物回収槽37に導入される。このため、ブラズマ発生炉35内の生成物の堆積が少なく、長時間にわたって連続運転することができる。また、フラーレン類を含むスス状生成物は、生成物回収槽37及びバグフィルタ40によりほぼ完全に回収されるため、フラーレン類の回収率も極めて高い。

第 1 図

【特許請求の範囲】

【請求項1】 熱ブラズマを発生させ、との中に含炭素化合物原料を供給してこれを加熱・分解反応させ、との反応ガスを冷却して固形分を回収し、との回収物よりフラーレン類を分離するフラーレン類の製造方法であって、熱ブラズマの発生部、反応部及び回収部を上方から下方に向って配置したことを特徴とするフラーレン類の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はフラーレン類を効率良く 製造する方法に関する。

[0002]

【従来の技術】フラーレン類はC。。, C,。などの高炭素数の球状の炭素同素体である。C。。は切頭正20面体のサッカーボール様の分子構造を有したものである。

【0003】従来のフラーレン類の製造方法には、黒鉛を蒸発(例えばレーザー照射による気化、高電流密度の抵抗加熱による気化、黒鉛電極間アーク放電発生等による気化)させ、生成した炭素ガスを冷却する方法が知ら 20れている。

【0004】フラーレン類の製造方法の別の従来法としてベンゼン/O, /Ar予混合ガスを低圧下で燃焼させ、生成したガスを冷却する方法がある。

[0005]

【発明が解決しようとする課題】前者のフラーレン類の 製造方法には、導電性の固体黒鉛(気化分解熱が大き く、気化温度が高い。)を用いなければならず、蒸発速 度が低くエネルギー効率が低い(1%未満)という問題 がある。また、連続的な原料供給は困難であるという問 30 題もある。

【0006】後者のフラーレン類の製造方法においては、温度条件の制御幅が定常燃焼温度範囲に限られ、燃焼到達温度が1800K程度のため、原料の完全な熱分解は困難である。また、必要以上にO。を供給すると、燃焼により損失する原料量が増え、さらに生成したフラーレン類を酸化分解する恐れもあり、加熱(定常燃焼)に必要なO、量とのバランス・最適化が困難であるという問題がある。

【0007】従って、これらの方法はフラーレン類の大 40 量な製造法として不向きである。

[0008]

【課題を解決するための手段】本発明のフラーレン類の製造方法は、熱プラズマを発生させ、この中に含炭素化合物原料を供給してこれを加熱・分解反応させ、この反応ガスを冷却して固形分を回収し、この回収物よりフラーレン類を分離するフラーレン類の製造方法であって、熱プラズマの発生部、反応部及び回収部を上方から下方に向って配置したことを特徴とするものである。

【0009】以下、本発明についてさらに詳細に説明す

る。

【0010】本発明において、熱プラズマを発生させる方法としては、特定種のブラズマガスを加熱電離する方法が好ましい。具体的には直流アーク放電ブラズマジェット式ブラズマガン機構や、100kHz~10GHz程度の高周波誘導熱プラズマ発生機構が例示される。

2

【0011】なお、直流アーク放電ブラズマジェット発生機構と高周波誘導熱ブラズマ発生機構を併用して熱ブラズマを発生させるようにしても良い。この場合、広い 容積にわたって原料供給速度の変化に対して安定な熱ブラズマを発生でき、フラーレン類を高速度で大量に合成できる。

【0012】このプラズマガスとしては、He、Ar、またはHe/H,、Ar/H,、He/O,、Ar/O,、He/Ar/H,、He/Ar/O,、He/Ar/H, /O, もしくはHe/Ar/H, Oが好ましい。このガスを適切な手段を用いて加熱電離させ、熱ブラズマを発生させる。熱ブラズマの最高到達温度は2000 K以上、好ましくは3500~15000 Kがよい。【0013】この熱ブラズマ中に供給される含炭素化合物原料としては、炭素を原子数比で全体の65%以下含有する化合物であることが好ましい。これらは一般に、含炭素化合物原料の内でも完全な熱分解が比較的容易で、安価な原料であるため、高い効率でフラーレン類を安価に合成できる。

【0014】具体的には、該原料としては、有機物の場合は次のような化合物が好ましい。

【0015】ベンゼン、ビリジン、シクロペンタジエ ン、ビロール、フラン、チオフェン等の単環の芳香族化 合物および複素芳香族化合物、もしくはそれらのメチ ル、ヒドロキシ、またはメルカブト置換体、ナフタレ ン、キノリン、インデン、インドール、ベンゾフラン、 ベンゾチオフェン、アントラセン、アクリジン、フェナ ントレン、フェナントリジン、フルオレン、カルバゾー ル、ジベンゾフラン、ジベンゾチオフェン、アセナフチ レン、ピレン、フルオランテン等の縮合多環芳香族化合 物および縮合多環複素芳香族化合物、もしくはそれらの メチル、ヒドロキシ、またはメルカブト置換体、ビフェ ニル、2, 2'-(または4, 4'-) ビビリジン、o - (またはm-もしくはp-)テルフェニル等の多環系 環集合芳香族化合物および多環系環集合複素芳香族化合 物、もしくはそれらのメチル、ヒドロキシ、またはメル カブト置換体、o-(またはp-)ベンゾキノン、1, 4-ナフトキノン、9,10-アントラキノン、9-フ ルオレノン等の芳香族ケトンおよびキノン、もしくはそ れらのメチル、ヒドロキシ、またはメルカブト置換体、 エチレン、1-プテン、1、3-プタジエン、アセチレ ン、1-ブチン、1、3-ブタジイン等の不飽和脂肪族 炭化水素、もしくはそららのメチル、ヒドロキシ、また 50 はメルカプト置換体、メタン、エタン、プロパン、n-

3

(またはイソ) ブタン、n-(またはイソもしくはネオ) ペンタン、n-ヘキサン、シクロヘキサン、n-ヘブタン、n-オクタン等の飽和脂肪族炭化水素、もしくはそれらのメチル、ヒドロキシ、またはメルカブト置換体。

【0016】また、無機物では、CS.、CO等が該原料として好ましい。特にCS.の場合、有機物の場合に必須な脱水素反応を経ることなく極めて容易に熱分解され、フラーレン類が合成できる。H.が含まれないブラズマガスによるフラーレン類の合成では、無機物原料の10場合、有機物の副生成がないので、生成物からのフラーレン類の分離精製が容易である。

[0017]以上の含炭素化合物原料は、単独で、または2種以上を組合せて用いる。

[0018]熱プラズマ中に供給された原料は、一度2000K以上、好ましくは2500K以上まで加熱された後、放熱される。この時、1300K以上の温度域に $1\sim500$ ms,好ましくは2500 ~1300 Kの温度域に $10\sim100$ ms滞在させるようにする。

【0019】なお、プラズマ反応部の内圧は10~30 0Torrに保つのが好ましい。この熱プラズマ中で分解によって生じた炭素がクラスタ化し、フラーレン類が 生成する。このフラーレン類を含む生成物は、冷却され、固形分として回収される。

【0020】反応生成物を含むガスの冷却方法としては、ブラズマガス/反応生成物の自然放冷もしくは断熱膨張によるもの;低温のHe、N, およびArなどのいずれかもしくは混合された不活性ガス(液化ガスを含む)をブラズマガス/反応生成物に加えることによるもの;熱交換冷却たとえば水冷壁へのブラズマガス/反応 30 生成物の接触によるものなどがある。この際、生成したフラーレン類の変性や未疑固による流出を防ぐため、できるだけ迅速に400℃以下、好ましくは100℃程度以下まで冷却部で冷却する。冷却に必要な排熱量は、ブラズマガスおよび原料供給速度とブラズマ発生のための供給エネルギの大きさに依存する。

【0021】とうして冷却・固化された生成物は回収手段(例えば回収壁および/またはバグフィルタなど)により回収される。放冷や熱交換によって冷却する場合は、冷却手段と回収手段とを兼ねることもできる。

【0022】ところで、生成物を冷却・固化させ、これを回収するに際し、減圧気流下でスス状生成物を生じさせるようにすると、生成物が回収しきれずに排気系(真空ポンプ等)に流出する量が多く、生成物の回収効率は必ずしも高くなりにくい。さらに、真空ポンプ等に生成物が堆積するため、冷却効率が低下し、そのために連続的な生成物の回収が困難となる。

【0023】とれを回避するために、本発明においては、プラズマ発生系、反応部及び冷却系を縦に下方に向って順次設置し、さらにその下方に設けた回収部に生成 50

物を移送して回収する。

【0024】かかる本発明方法においては、生じたスス 状生成物は、重力による自由落下と冷却されたプラズマ ガスのガス流による強制対流の両方の効果によって、冷 却系から効率良く排出され、滞留することなく下方の回 収部まで移送されて回収される。

【0025】との回収部としては、容器状(回収槽やサイクロン)及びバグフィルタ等の形式のものが使用される。また、これらのどれか一つを冷却系の下方に設置して、一度生成物の大部分を回収し、さらにその下流に上述のどれかの回収装置をもう一つ以上設置することによって、一段目で回収しきれなかった生成物を回収するようにしても良い。

【0026】また、以上の冷却及び回収工程において、 冷却系から排出されきれずに冷却系の表面に蓄積された 生成物を、随時脱離させながら運転すると、さらに効率 良く生成物が回収される。

【0027】この脱離方法としては、冷却系表面から生成物をかき落とすスイーパのような形状のものを用いることができる。また、不活性ガス(Ar, He, Nz等)をノズルから噴出させて、強制的に生成物を脱離させても良い。その際、生成物が下方に設置された回収部に移送されるよう、不活性ガスを上方から下方に向って冷却系表面に当てるように噴出させると良い。

【0028】との不活性ガスとしては、冷却後のブラズマガスを用いても良い。また、回収系を加振して生成物を脱離させても良い。

【0029】生成物が回収系で完全に回収されるようにするためには、回収系におけるガスの流速が好ましくは1m/s以下になるように回収系の形状を定める。なお、ブラズマ反応の過程で、多くの場合副生成物として有機物やススなどが生じ、この場合はフラーレン類とこれらの混合物が回収される。 回収された生成物の分離法には、生成物の再加熱・揮発ガスの再冷却による逆昇華、フラーレン類が可溶な溶媒による抽出などがある。これらは適宜組合せて用いても良い。

【0030】なお、特に抽出の場合のように、高温でフラーレン類を変質させる恐れがある溶媒等を使用して分離する場合は、原料供給系からブラズマ発生系、ブラズ 40 マ反応部、冷却系、回収系に至る経路と、この分離系とを完全に隔離して操作することが好ましい。この時、あらかじめ機械的に脱離させ、脱離した生成物を気密・隔離された抽出器まで移送してから行なうとよい。逆昇華の場合も、まず機械的に脱離させ、気密・隔離された逆昇華器まで移送させた後行なうのが好ましい。

【0031】逆昇華によってフラーレン類を分離する場合は、He、N、およびArなどのいずれかもしくは混合された不活性ガスの雰囲気下において適切な温度まで加熱した後、揮発ガスを冷却して回収する。この加熱温度は、例えば10-6 Torrでは400℃程度以上、常

っている。

圧では500℃程度以上、また冷却温度は100℃以下 が好ましい。

【0032】また、抽出によってフラーレン類を分離す る場合は、溶媒として生成フラーレン類を化学変化させ ずによく溶解する揮発性の溶媒、例えば炭素数10以下 の液状の飽和もしくは不飽和炭化水素、ベンゼン、トル エン、CS、、ピリジンなどを用いるのが好ましい。

【0033】抽出器としては、バッチ式抽出器、例えば ソックスレー抽出器などを用いることができる。この 時、加熱や超音波照射等で抽出を速めることもできる。 これらの方法では、フラーレン類は副生成物のススなど から分離されて回収される。

【0034】との後、必要があればフラーレン類を液体 クロマトグラフィーまたは超臨界流体クロマトグラフィ 一等によって単離し、精製する。

【0035】以上のフラーレン類の合成方法において、 原料供給系からブラズマ発生系、ブラズマ反応部、冷却 系、回収系に至る経路内は、全て外気から遮断されてい る。外気と遮断するには、第1、4図のように、真空ポ ンプ19によって排気されたチャンパ20内に、該経路 20 の部材全体または主要部分を設置すればよい。なお、該 経路内だけを配管系として構成し、外気から遮断しても 良い。

[0036]

【作用】本発明のフラーレン類の製造方法によると、気 体、液体もしくは粉体の含炭素化合物原料を連続供給で きる。また、これらの原料は黒鉛に比べて分解温度が低 く分解速度が大きいので、熱ブラズマ中の滞在時間内で 充分に加熱・分解でき、エネルギー効率よく迅速にフラ ーレン類を合成できる。さらに原料の加熱・分解を燃焼 30 によって行なう方法と異なり、過剰なO、を供給せず に、あるいは全くO、を供給せずにフラーレン類を合成 できる。このため、フラーレン類の大量製造法として、 極めて有効である。

【0037】本発明方法では、反応系、冷却系、回収系 をこの順に上から下に向って配置しているため、生成物 がスムーズに回収系まで流れ、フラーレン類の収率が向 上すると共に、連続運転が容易になる。

[0038]

【実施例】

実施例1

第1図はフラーレン類の製造装置の実施例を示す縦断面 図である。との装置は縦型のフラーレン類の製造装置で あって、筒軸方向を上下方向とした筒状のプラズマ発生 炉35の上端部分にプラズマ発生系7が下向きに設けら れている。との実施例では、直流アーク放電ブラズマジ ェットを発生させるプラズマガンをプラズマ発生系の例 として示してある。

【0039】とのブラズマ発生炉35の下部には接続配 管36が接続されており、この接続配管36は生成物回 50

収槽37内に挿入されている。生成物回収槽37の下端 にバルブ38が設けられている。生成物回収槽37の側 面に配管39を介してバグフィルタ40が接続されてお り、このバグフィルタ40は真空ポンプ19によりその 内部を減圧されている。なお、前記プラズマ発生炉35 及び接続配管36は冷却壁(符号A, B, C)構造とな

【0040】 このように構成された第1図の装置におい て、ブラズマ発生系7から下向きに発生した熱プラズマ 11に原料が連続的に定量供給され、熱ブラズマ11中 において反応してフラーレン類を含むスス状生成物が生 成する。この生成物は、接続配管36から生成物回収槽 37に導入され、その大部分が該生成物回収槽37内に 堆積する。堆積しなかった生成物は、バグフィルタ40 において完全に回収される。

【0041】との第1図に示す装置を用いたフラーレン 類の製造方法によると、プラズマ発生炉35が上下方向 に設けられており、熱ブラズマ11も下向きに噴射され ているため、生成したフラーレン類を含むスス状生成物 が効率良くプラズマ発生炉35内を落下し、生成物回収 槽37に導入される。とのため、ブラズマ発生炉35内 の生成物の堆積が少なく、長時間にわたって連続運転す ることができる。また、フラーレン類を含むスス状生成 物は、生成物回収槽37及びバグフィルタ40によりほ ぼ完全に回収されるため、フラーレン類の回収率も極め て高い。

【0042】なお、第1図では回収槽37とパグフィル タ40の両方を用いているが、いずれか一方であっても 良い。また、第1図の実施例ではブラズマ発生炉35を 鉛直方向に設けているが、斜め下向きとしても良い。

【0043】また、ブラズマ発生炉35内及び接続配管 36内において、付着する生成物(フラーレン類が混入 している場合もある。)を耐熱材料製のスイーバによっ て随時かき取ると、さらにフラーレン類の生成効率が向 上する。また、バグフィルタ40において、加振によっ て付着する生成物を随時脱離させると、より長時間の運 転が可能になる。

【0044】第1図の装置において、原料として液体べ ンゼンを3ミリリットル/minの速度でHeを随伴ガ 40 ス(流量2リットル/min)として原料供給系から供 給した。とのベンゼンは、ヒータ式予熱器で80℃に予 熱され、気化されて、そのまま保温された状態でブラズ マ発生系7の約2cm下流へ送られる。

【0045】プラズマガスとしては、Aェを20リット ル/min、Heを20リットル/minの割合で供給 した(以上、流量は全て常温常圧時換算)。

【0046】その他の主な条件は次の通りである。

25~40kW 【0047】ブラズマ発生系電力 (プラズマ発生系の水冷損失込)

55Torr 反応部内圧

反応部温度 1200~1500K

パグフィルタ40の出口ガス温度 初期には50°C。その後、80°Cまで徐々に上昇。

プラズマジェット内原料滞在時間 約1 m s その結果、30 m i n の原料供給でスス状物質(含 C₆₀、C₇₀)約50 g が回収槽内面に付着すると共に、パグフィルタ40で回収された。この回収槽内面の付着 生成物をかき出し、パグフィルタ40の回収物と併せてトルエン抽出したところ、その内のジエチルエーテル不 溶成分(フラーレンC₆₀+C₇₀)は最多時の試行で約 0.4 g であった。

【0048】また、ブラズマ発生炉35内には約1gのスス状生成物のみが付着し、冷却効率は殆ど低下しない ことが認められた。

【0049】第2図に該不溶成分のトルエン溶媒中における紫外-可視吸収スペクトルを示す。該不溶成分のスペクトルは、314nm,334nm,363nm,381nm,407nmにピークもしくはショルダを、また460~480nm付近になだらかなピークを持ち、参照データの標準試料のC。。とC、のスペクトルの和に20なっていることがわかる。

【0050】また、第3図に該不溶成分の電子衝撃イオン化マススペクトルを示す。 C_{so} および C_{7o} のそれぞれの1価および2価陽イオンの質量数/電荷に相当する720、360(C_{so})および840、420(C_{7o})のビークが見られる。これらより、フラーレン C_{so} および C_{7o} が合成されたことが確認された。

【0051】なお、比較のため、第1図の装置のうち配管39とバグフィルタ40を外し、回収槽37から直接真空ポンブ19で排気させるように組み直し、さらにブ 30ラズマ発生系7(ブラズマガン)から回収槽37までを横倒し(90°回転させた状態)になるように設置した*

*装置を用いて、同一条件で運転を行なった。

【0052】その結果、スス状生成物は回収槽37及び ブラズマ発生炉35内から約30g回収され、実施例1 の結果より少なくなった。また、生成物のうち、ブラズ マ発生炉35内の冷却壁部分に約13gが付着し、冷却 効率が低下しつつあると推定された。

[0053]

【発明の効果】以上の通り、本発明のフラーレン類の製造方法によると、原料を連続供給しながら、しかも過剰 なり、を供給せずに、あるいは全くり、を供給せずにフラーレン類を合成できる。従って、フラーレン類を安定して製造でき、しかも長期間に亘って連続製造することが可能である。

【0054】さらに、下方に設けられた回収部に効率良く生成物が移送され回収できるため、フラーレン類の収率が向上し、連続運転がし易くなる。

【図面の簡単な説明】

【図1】本発明の実施例方法に用いられるフラーレン類 製造装置の縦断面図である。

【図2】本発明の実施例における生成フラーレン類の分析結果(トルエン溶液の紫外 - 可視吸収スペクトル)である。

【図3】本発明の実施例における生成フラーレン類の別の分析結果(電子衝撃イオン化マススペクトル)である

【符号の説明】

7 プラズマ発生系

- 19 真空ポンプ
- 35 ブラズマ発生炉
- 37 生成物回収槽
- 40 バグフィルタ

[図3]

第 3 図

BEST AVAILABLE COPY

【図1】

【図2】

第 1 図

第 2 図

フロントページの続き

(72)発明者 八田 直樹 千葉県市原市八幡海岸通1番地 三井造船 株式会社千葉事業所内