압전 하베스팅 실험

실 험 명	압전하베스팅 채굴 전력량 측정							
실험 목적	1. 압전하베스팅으로 얻을 수 있는 전력이 무게/속도에 비례하는가? 2. 킥보드로 얻을 수 있는 전력량이 어떻게 되는가?							
실험 일시 및 장소	- 2020년 11월 05일 13시 (목) - 경상대학교 대운동장							
참고 논문	1. 한국도로학회논문집, "압전세라믹 연결방식에 따른 전력생산 평가 연구" 권수안 외 3인, 제14권 2. 한국도로공사 도로교통연구원, "압전 하베스터 성능검증 및 운영전략 수립", 김기훈 외 5명							
	3. 대한전기학회 학술대회 논문집, "압전효과를 이용한 교통특성별 도로에너지발전 량 추정모델에 관한 연구", 강성인 외 4인 4. 2010 대한토목학회 정기학술대회 논문집, "압전효과를 이용한 에너지 하베스팅 기초연구", 조병완 외 5명							
	압전 소자 -12개 , 000,000,000							
	Piezo Element ROHS Compliant Specifications Resonant Inspedence (Max.) Presonant Impedence (Max.) Presonant Impedence (Max.) Provincia (Max.							
	Diagram GUIE M660 Set 1 SC 1 SC 2 SC 2 SC 3 SC 3 SC 3 SC 4 SC 5 SC 5 SC 6 SC 7 SC							
	압전소자 - 여분 3개를 포함한 총 15개							

데코 - 압전소자 파손방지

실험 재료

테스터기 - 전압 측정

킥보드

압전 소자 12개를 병렬로 연결하여, 킥보드의 바퀴 너비에 맞춰 판에 부착. 테스터기와 압전소자 연결

(+) 한국도로학회논문집의 "압전세라믹 연결방식에 따른 전력생산 평가 연구"에서 직렬연결보다 병렬연결의 효율이 좋다는 점을 참고하여 압전소자를 병렬연결함.

- 전압 측정은 각 상황별 5회 실시

독립변수 : 속도 종속변수 : 전압

통제변수 : 무게 (킥보드 15.6kg + 팀원1 58.9kg = 74.5kg, 약 75kg)

1

실험 과정

1-1. 10km/h의 속력으로 지나갈 때의 전압 측정

1-2. 20km/h의 속력으로 지나갈 때의 전압 측정

1-3. 30km/h의 속력으로 지나갈 때의 전압 측정

독립변수 : 속도 2 종속변수 : 전압

통제변수 : 무게 (킥보드 15.6kg + 팀원2 69.1kg = 84.7kg, 약 85kg)

2-1. 10km/h의 속력으로 지나갈 때의 전압 측정

2-2. 20km/h의 속력으로 지나갈 때의 전압 측정

2-3. 30km/h의 속력으로 지나갈 때의 전압 측정

독립변수 : 속도 종속변수 : 전압

통제변수 : 무게 (킥보드 15.6kg + 팀원3 74.7kg = 90.3kg, 약 90kg)

2-1. 10km/h의 속력으로 지나갈 때의 전압 측정

2-2. 20km/h의 속력으로 지나갈 때의 전압 측정

3

2-3. 30km/h의 속력으로 지나갈 때의 전압 측정

1. 압전하베스팅으로 얻을 수 있는 전력이 무게/속도에 비례하는가?

	<i>(-</i>)							I		1
무게(kg)		75			85			90		
속력(km/h)		10	20	30	10	20	30	10	20	30
전압 (V)	1	12.0 9	11.5	12.5	0	19.2	22.4	25.7	10.3	35.5
	2	12.3	14.2	15.6	17.2	20.3	3.6	22.8	30.0 3	33.7
	3	13.4	12.3	16.4	20.2	21.8	26.1	28.2	25.7	31.4
	4	10.2	13.8	13.5	22.1	18.5	24.5	24.5	28.1	38.9
	5	9.96	15.6	14.7	18.5	23.6	23.3	26.1	23.6	32.9
	평균	11.5	13.4	14.5	19.5	20.6	24.0	25.4	26.8	34.4
		9	8	4		8	75	6	575	8
전력량		29.8	40.3	46.9	84.4	94.9	128.	143.	160.	263.
(µW • Sec)			40.3				6	9	1	9

결과 및 분석

압전 하베스팅으로 얻을 수 있는 전력량은 무게/속도에 비례한다. 그 중 속도보다는 무게에 더 큰 영향이 있다.

빨간색으로 표시된 결과의 경우 정확히 발판을 발고 지나가지 못하여 생긴 결 측치를 의미

2. 킥보드로 얻을 수 있는 전력량이 어떻게 되는가?

$$W = \int V * C \frac{dV}{dt} dt [W • Sec]$$

 $W = CV^2/2 \quad [W \cdot Sec]$

가장 전압이 높게 나온 실험으로 분석하자면 압전소자 1개 당 C(정전용량)가 0.037μF이고, 병렬로 12개를 연결했기에 정전용량은 0.444μF, 따라서 얻는 전력은 약 335.9 [μW・Sec] 즉, 12cm의 거리를 90kg이 30km/h의 속력으로 한 번 지나갈 때 335.9 [μW・Sec]의 전력을 얻는다는 것이다.

3. 분석

우리가 실험에 사용한 압전소자는 정전용량이 매우 작았고(0.037μF) 압전소자를 설치한 발판의 길이가 짧았기 때문에(12cm) 속도와 무게가 충분하여도 압전소자 스펙의 한계로 인해 얻을 수 있는 전력이 매우 작았다. 하지만 실험을 통해 압전하베스팅으로 얻을 수 있는 전력량은 무게/속도에 비례한다는 것을 증명 하였고, 그 중 속도보다는 무게에 더 큰 영향이 있다는 것을 증명하였기 때문에 더 좋은 스펙의 압전소자를 더 길게 설치한다면 버스가 지나갈 때의 얻을 수 있는 전력량도 측정할 수 있다는 결론을 도출하였다.