1. Say whether the following is true or false and support your answer by a proof. $(\exists m \in \mathcal{N})(\exists n \in \mathcal{N})(\exists m \in \mathcal{N})$

PROOF The statement is false. The smallest $m, n \in \mathcal{N}$ that we can try are 1 and 1.

- Substituting these in the above equation: 3*1+5*1=8<12.
- Let us try the next possible value for m, which is 2: 3*2+5*1=11<12.
- For m = 3, n = 1, and m = 1, n = 2, and all other combinations of m and n, 3m + 5n > 12.
- Therefore $\neg[(\exists m \in \mathcal{N})(\exists n \in \mathcal{N})(3m + 5n = 12)].$
- Or, $(\forall m \in \mathcal{N})(\forall n \in \mathcal{N})(3m + 5n \neq 12)$.

This completes the proof. ■