PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-025345

(43)Date of publication of application: 28.01.1997

(51)Int.CI.

C08J 5/00 // C08L 67:04

(21)Application number: 07-173246

(71)Applicant: MITSUBISHI PLASTICS IND LTD

(22)Date of filing:

10.07.1995

(72)Inventor: TAKAGI JUN

TERADA SHIGENORI

(54) POLYLACTIC ACID MOLDING

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a polylactic acid molding excellent in resistances to impact and wet heat. SOLUTION: This molding comprises a polylactic acid polymer and is obtd. by thermoforming an oriented polylactic acid sheet which is characterized in that the degree of plane orientation \Box P is $3.0 \times 10-3-30 \times 10-3$, that the difference (\Box Hm- \Box Hc) between the heat of crystal fusion \Box Hm absorbed by fusion in raising the sheet temp. and the heat of crystallization \Box Hc released by crystallization in lowering the sheet temp. is 20J/g or higher, and that the value of $\{(\Box$ Hm- \Box Hc)/ \Box Hm} is 0.75 or higher.

LEGAL STATUS

[Date of request for examination]

15.02.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application

converted registration]

[Date of final disposal for application]

[Patent number]

3217240

[Date of registration]

03.08.2001

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision

of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-25345

(43)公開日 平成9年(1997)1月28日

技術表示箇所

(51) Int.Cl.⁶

識別記号 CFD 庁内整理番号

FI C08J 5/00

CFD

C08J 5/00 // C08L 67:04

審査請求 未請求 請求項の数1 OL (全 5 頁)

(21)出願番号

特願平7-173246

(71)出願人 000006172

三菱樹脂株式会社

(22)出願日

平成7年(1995)7月10日

東京都千代田区丸の内2丁目5番2号

(72)発明者 高木 潤

滋賀県長浜市三ツ矢町5番8号 三菱樹脂

株式会社長浜工場内

(72)発明者 寺田 滋憲

滋賀県長浜市三ツ矢町5番8号 三菱樹脂

株式会社長浜工場内

(74)代理人 弁理士 近藤 久美

(54) 【発明の名称】 ポリ乳酸系成形体

(57)【要約】

【課題】 耐衝撃性と耐湿熱性とが優れたポリ乳酸系成 形体を提供することにある。

【解決手段】 ポリ乳酸系重合体からなり、面配向度 Δ Pが3. $0 \times 10^{-3} \sim 30 \times 10^{-3}$ であり、シートを昇温したときの結晶融解熱量 Δ H m と昇温中の結晶化 により発生する結晶化熱量 Δ H c との差(Δ H m $-\Delta$ H c)が20 J / g以上かつ {(Δ H m $-\Delta$ H c)が0. 75以上である配向ポリ乳酸系シートを熱成形したことを特徴とするポリ乳酸系成形体。

【効果】 ポリ乳酸からなる成形体が広い分野で使用可能となる。

【特許請求の範囲】

【請求項1】 ポリ乳酸系重合体からなり、面配向度△ Pが3. 0×10⁻⁸~30×10⁻³であり、シート を昇温したときの結晶融解熱量AHmと昇温中の結晶化 により発生する結晶化熱量 Δ H c との差(Δ Hm - Δ H c) が20J/g以上かつ { (ΔHm-ΔHc)/ΔH m}が0.75以上である配向ポリ乳酸系シートを熱成 形したことを特徴とするポリ乳酸系成形体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、耐衝撃性、透明性 および耐湿熱性に優れかつ自然環境下で分解する、ポリ 乳酸からなる成形体に関する。

[0002]

【従来の技術】各種商品の展示包装用に用いられている ブリスター加工品は、樹脂製シートを得た後、当該シー トを熱成形法である真空成形、圧空成形等により成形し て作られるのが一般的である。ブリスター加工品は包装 体を通して中の商品を透視できる、透明性に優れている ものが好まれる。そこで、ブリスター加工品用の素材シ ートとしてはポリ塩化ビニル系、ポリエチレンテレフタ レート系、ポリスチレン系などのシートが使用されてい

【0003】しかしながら、上述したシートは化学的、 生物的に安定なため自然環境下に放置されてもほとんど 分解されることなく残留、蓄積される。これらは自然環 境中に散乱して動植物の生活環境を汚染するだけでな く、ゴミとして埋められた場合にもほとんど分解せずに 残り、埋立地の寿命を短くするという問題がある。

【0004】そこで、これらの問題を生じない分解性重 30 物、酸無水物などを使用しても構わない。 合体からなる材料が要求されており、多くの研究、開発 が行われている。その一つにポリ乳酸が知られている。 【0005】ポリ乳酸を用いてブリスター加工品を得る

方法としては、特開平6-122148号に、L-乳酸 系ポリマーが75%以上で厚みが0.2~2mmである 透明なし一乳酸系ポリマーシートから真空吸引、圧空圧 力又は真空圧空によってL-乳酸系ポリマー成形品を得 る方法が示され、得られた成形体の透明性および成形性 が優れていることが開示されている。

[0006]

【発明が解決しようとする課題】しかし、従来知られて いるポリ乳酸からなる成形体はその強度、耐衝撃性能が 不十分であり、取扱いの際に穴があく等の問題が生じ る。また、耐湿熱性能が不十分であり、製品の輸送、保 管、使用中に髙温髙湿環境下にさらされると、成形体が 変形したり、透明な成形体が白色化する、いわゆる、白 化が生じる。

【0007】このため、環境問題等から自然環境下で分 解するポリ乳酸からなる成形体の使用が期待されている ものの、上述した事柄等から、実用化に至っていない。

【0008】そこで、本発明の課題は耐衝撃性、耐湿熱 性が優れたポリ乳酸系成形体を提供することにある。 [0009]

【課題を解決するための手段】本発明の要旨は、ポリ乳 酸系重合体からなり、面配向度△Pが3.0×10⁻³ ~30×10-8であり、シートを昇温したときの結晶 融解熱量AHmと昇温中の結晶化により発生する結晶化 熱量ΔHcとの差(ΔHm-ΔHc)が20J/g以上 かつ { (ΔHm-ΔHc) /ΔHm} が0.75以上で 10 ある配向ポリ乳酸系シートを熱成形したことを特徴とす るポリ乳酸系成形体である。

[0010]

【発明の実施の形態】本発明に用いられるポリ乳酸系重 合体とは、ポリ乳酸または乳酸と他のヒドロキシカルボ ン酸との共重合体、もしくはこれらの混合物であり、本 発明の効果を阻害しない範囲で他の高分子材料が混入さ れても構わない。また、成形加工性、シートや成形体の 物性を調整する目的で可塑剤、滑剤、無機フィラー、紫 外線吸収剤などの添加剤、改質剤を添加することも可能 20 である。

【0011】乳酸としてはL-乳酸、D-乳酸が挙げら れ、他のヒドロキシカルボン酸としては、グリコール 酸、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、3-ヒ ドロキシ吉草酸、4-ヒドロキシ吉草酸、6-ヒドロキ シカプロン酸などが代表的に挙げられる。

【0012】これらの重合法としては、縮合重合法、開 環重合法など公知のいずれの方法を採用することも可能 であり、さらには、分子量増大を目的として少量の鎖延 長剤、例えば、ジイソシアネート化合物、エポキシ化合

【0013】ポリ乳酸系重合体の重量平均分子量として は、50,000から1000,000の範囲が好まし く、かかる範囲を下まわると実用物性がほとんど発現さ れず、また熱成形時にシートが強度を保持できないなど の問題を生じる。また上まわる場合には、溶融粘度が髙 くなりすぎ成形加工性に劣る。

【0014】本発明に使用されるポリ乳酸系シートは、 上述した重合体を十分に乾燥して水分を除去した後、押 出法、カレンダー法、プレス法などの一般的な溶融成形 40 法によりシート状に成形し、次いで、急冷することによ

【0015】実用的には、シート状に溶融押出成形され た重合体を、回転するキヤステイングドラム(冷却ドラ ム)に接触させて急冷するのが好ましい。キヤステイン グドラムの温度は60℃以下が適当であり、これより髙 いと重合体がキヤステイングドラムに粘着して引取りが 困難になり、また結晶化が促進されて球晶が発達し透明 性が低下するとともに熱成形加工も困難になる。従っ て、60℃以下でシートを急冷して、実質上非晶質のシ 50 ートとするのが好ましい。

2

10

【0016】本発明では、ポリ乳酸系重合体が本来的に 有する脆性を大幅に改良し、成形品の耐衝撃性を向上さ せるためには、ポリ乳酸系シートの面配向度△Pを3. 0×10⁻³~30×10⁻³ に調整する。

【0017】面配向度 APは、シートの厚み方向に対す る面方向の配向度を表わし、通常直交3軸方向の屈折率 を測定し以下の式で算出される。

$$\Delta P = \{ (\gamma + \beta) / 2 \} - \alpha$$
 $(\alpha < \beta)$

CCで、 γ 、 β がシート面に平行な直交2軸の屈折率、 αはシート厚さ方向の屈折率である。

【0018】面配向度APは結晶化度や結晶配向にも依 存するが、大きくはシート面内の分子配向に依存する。 つまりシート面内、特にシートの流れ方向および/また はそれと直交する方向の1または2方向に対し、分子配 向を増大させることにより、無配向シートでは1.0× 10⁻³ 以下である△Pを、本発明で規定する3.0× 10-3以上に増大させることができる。

【0019】面配向度APを増大させる方法としては、 既知のあらゆる延伸法に加え、電場や磁場を利用した分 20 子配向法を採用することもできる。

【0020】通常はTダイ、Iダイ、丸ダイ等から溶融 押し出しを行ったシート状物または円筒状物を冷却キャ ストロールや水、圧空等により急冷し非晶質に近い状態 で固化させた後、ロール法、テンター法、チューブラー 法等により一軸または二軸に延伸する方法が、工業的に 望ましく採用される。

【0021】未延伸ポリ乳酸系シートの延伸条件として は、延伸温度50~100℃、延伸倍率1.5倍~5 倍、延伸速度100%/分~10,000%/分が一般 30 的ではあるが、この適正範囲は重合体の組成や、未延伸 シートの熱履歴によって異なってくるので、面配向度△ Pの値を見ながら適宜決められる。

【0022】面配向度△Pを3.0×10-3以上とす ることにより、耐衝撃性が顕著に改良されるとともに、 無配向シートが高温高湿雰囲気下にさらされた時に生じ る、主に球晶成長に起因する脆化や白化を防止すること ができる。なお、面配向度△Pの上限は実際上30×1 O- ® 程度であり、これより面配向度△Pを高めようと すると、延伸が不安定ないし不可能になる。例え、延伸 40 できたとしても、シートの熱成形が困難となる。

【0023】面配向度△Pを3.0×10⁻³~30× 10-3の範囲にすることより、上述した効果が得られ るが、その一方、熱寸法安定性が不良となり、変形を起 こしやすい。例えば、夏の暑い時期や、髙温髙湿の倉 庫、車両、船舶等の中でシートおよび成形体は自然収縮 を起とし、たるみ、波打ち等の変形を生じてしまう。変 形したシートを使用して熱成形を行っても、所望する形 状の成形品が得られない。 従って、常温よりもやや高 酸系シートが収縮しないこと、すなわち、熱寸法安定性 を有していることが重要である。

【0024】 このため、面配向度△Pを3.0×10 - ³ ~30×10⁻ ³ のポリ乳酸系シートにおいては、 実用的な熱寸法性を得るために、シートを昇温したとき の結晶融解熱量△Hmと昇温中の結晶化により発生する 結晶化熱量ΔHcとの差(ΔHm-ΔHc)を20J/ g以上かつ $\{(\Delta Hm - \Delta Hc)/\Delta Hm\}$ を0.75 以上に制御することが重要である。

【0025】結晶融解熱量△Hm、結晶化熱量△Hc は、シートサンプルの示差走査熱量測定(DSC)によ り求められるもので、結晶融解熱量△Hmは昇温速度1 0 ℃/分で昇温したときの全結晶を融解させるのに必要 な熱量であって、重合体の結晶融点付近に現れる結晶融 解による吸熱ピークの面積から求められる。また結晶化 熱量△H c は、昇温過程で生じる結晶化の際に発生する 発熱ピークの面積から求められる。

【0026】結晶融解熱量△Hmは、主に重合体そのも のの結晶性に依存し、結晶性が大きい重合体では大きな 値を取る。ちなみに共重合成分のないL-乳酸またはD -乳酸の完全ホモポリマーでは、601/g以上であ り、これら2種の乳酸の共重合体ではその組成比により 結晶融解熱量△Hmは変化する。

【0027】結晶化熱量ΔHcは、重合体の結晶性に対 するその時のシートの結晶化度に関係する指標であり、 結晶化熱量AHcが大きいときには、昇温過程でシート の結晶化が進行する。すなわち重合体が有する結晶性を 基準にシートの結晶化度が相対的に低かったことを表 す。逆に、結晶化熱量△Hcが小さい時は、重合体が有 する結晶性を基準にシートの結晶化度が相対的に高かっ たことを表す。

【0028】 ($\Delta Hm - \Delta Hc$) を増大させるための1 つの方向は、結晶性が高い重合体を原料に、結晶化度の 比較的高いシートをつくることであり、シートの結晶化 度は、重合体の組成に少なからず依存する。

【0029】重合体そのものの結晶融解熱量△Hmを2 0 J / g以上にするには、L-乳酸とD-乳酸の組成比 が100:0~94:6の範囲内または0:100~ 6:94の範囲内にするとよい。

【0030】また、結晶化熱量△Hcを低下させるため には、すなわちシートの結晶化度を高めるためにはシー トの成形加工条件を選定する必要がある。成形加工工 程、特にテンター法2軸延伸においてシートの結晶化度 を上げるためには、延伸倍率を上げ配向結晶化を促進す る、あるいは、延伸後に結晶化温度以上の雰囲気で熱処 理するなどが有用である。なお、面配向度△Pが大きい ほど結晶化温度が低下する傾向があるので、本発明の場 合には、熱処理を70°C以上、好ましくは90°C~17 0℃の範囲で3秒以上行うとよい。熱処理温度が高いほ い温度すなわち約50℃以上の温度雰囲気下で、ポリ乳 50 ど、また熱処理時間が長いほど熱寸法安定性は向上す

5

る。

【0031】本発明においては、以上のようにして作られたポリ乳酸系シートを熱成形して、成形体を得る。熱成形に適したシートの厚みは、特に限定されるものではないが、用途上からは0.05mm~2mmが好ましく使用される。

【0032】熱成形の方法としては、シートを熱成形するあらゆる既知の方法、例えば、真空成形、圧空成形、真空圧空成形、雄雌型成形、プラグアシスト真空成形、CD(Cuspation Dilation:先端拡 10 張)成形等から任意に採用することができる。

【0033】本発明のシートは成形応力が比較的大きくなる傾向にあるので、細部やコーナー部が複雑な形状な成形品を得るには、シートに大きな力をかけることができる圧空成形、真空圧空成形、ブラグアシスト真空成形等が好ましく採用される。

【0034】圧空成形する場合の圧力としては、概ね 1.5~20Kg/cm²の範囲が適当である。かかる範囲 を下回る場合には、型の形状にもよるが、細部やコーナ 一部まで十分成形できないことがあり、逆に上回る場合 20 には、シートが成形され金型表面に到達する前に、空気 圧によってシートが破断することが多くなる。

【0035】予熱温度と時間を調整して、成形直前のシートの温度を $60\sim175$ °C、より好ましくは $145\sim170$ °Cの温度範囲とする。金型温度はポリ乳酸のガラス転移温度である60 °C以下が好ましい。

[0036]

【実施例】以下に実施例を示すが、本発明はこれに限定 されるものではない。実施例中に示す測定値は次に示す ような条件で測定を行い、算出した。

 $[0037](1)\Delta P$

アッベ屈折計によって直交3軸方向の屈折率 (α, β, γ) を測定し、次式で算出した。

 $[0038]\Delta P = \{(\gamma+\beta)/2\} - \alpha$ $(\alpha < \beta < \gamma)$

γ:フィルム面内の最大屈折率

β:それに直交するフィルム面内方向の屈折率

α:フィルム厚さ方向の屈折率

(2)ΔHm-ΔHcおよび(ΔHm-ΔHc)/ΔH m

パーキンエルマー製DSC-7を用い、フィルムサンプル10mgをJIS-K7122に基づいて、昇温速度10℃/分で昇温したときのサーモグラムから結晶融解

6

熱量△Hmと結晶化熱量△Hcを求め、算出した。 【0039】(3)耐衝撃性

ハイドロショット高速衝撃試験機HTM-1型((株) 島津製作所製)を用いて耐衝撃性を測定した。100mm×100mmに切り出したサンブルの中央に錘を落し て衝撃を与え、試料が破壊する時の破壊エネルギーを読 みとった。測定温度は23℃、落垂の落下速度は3m/ 秒である。破断時の最大荷重およびエネルギーが低いほ ど耐衝撃性に劣り脆い。

10 【0040】(4)耐湿熱性

50℃、80%R. H. の条件下に24時間、成形体を恒温恒湿槽に放置した後、成形体の白化と変形の度合いとを目視で判定した。×は使用に耐えないレベルであり、△は×より良いが実用レベルを満たしていない、○は実用レベル以上である。

【0041】(実施例1) L-乳酸とD-乳酸との組成比がおよそ98:2で、ガラス転移点58℃、融点175℃、重量平均分子量18万のポリ乳酸を90mmφ単軸エクストルーダーを用い、200℃で押し出し、幅300mm、厚み1.875mmのシートを作製した。【0042】上記未延伸シートを流れ方向に70℃で2.5倍にロール延伸し、次いで、テンター内で幅方向に70℃で2.5倍に延伸した。引き続きテンター内で160℃、25秒間熱処理して、厚み300μmのポリ乳酸系シートを作成した。各製造条件を表1にまとめた。

【0043】(実施例2)実施例1と同様な方法で、かつ、表1に示した条件でポリ乳酸系シートを作成した。 【0044】(比較例1~5)実施例1と同様な方法 で、かつ、表1に示した条件でポリ乳酸系シートを作成した。

【0045】得られたボリ乳酸の延伸シートの△P、△Hmおよび△Hcを上述の方法で測定して、△P、(Hmー△Hc)がよび {(△Hmー△Hc)/△Hm}を得た。また、上記ボリ乳酸系シートからアルミニウム製のカップ状金型を用いて、圧空成形機より、カップ形状の成形体を製造した。得られた成形体を用いて、耐衝撃性および耐湿熱性の測定を行った。それらの結果を表1に示す。尚、耐衝撃性および耐湿熱性の結果を合わせて40総合評価を行った。評価は×は使用に耐えないレベル、○は実用レベル以上とした。

[0046]

【表1】

8

		実施例1	実施例2	比較例1	比較例2	比較例3	比較例4	比較例 5
モノマー組成	L体	98	96	98	98	98	98	93
	· D体	2	4	2	2	2	2	7
温度 凝延伸 倍率	₹ (℃)	70	70	65	70	70	無延伸	70
	区(倍)	2.5	2.5	1.2	2.5	4.0		2.5
横延伸	£ (°C)	70	70	70	70	70	無延伸	70
	区(倍)	2. 5	3.0	1.5	2.5	4.0		2,5
ΔP (×1	0 -4)	10	10	2	- 10	35	0.1以下	10
執机斑	€ (℃)	160	120	100	なし	140	なし	160
	引(秒)	25	25	30	なし	25	なし	25
ΔHm-ΔHc (J/g)		50	35	40	33	52	11	10
ΔHm								
耐衝擊性		200	175	10	150	成形不可	5	184
(kgr f •mmo)								
耐湿熱性	白化	0	0	×	Δ	成形不可	×	0
	変形	0	0	Δ	×		Δ	×
総合総	価	0	0	×	×	×	×	×

表1より明らかなように本発明の条件を満たす、実施例 1,2は耐衝撃性および耐湿熱性に優れている。一方、比較例1は延伸が不十分であり面配向度△Pが小さく、耐衝撃性および耐湿熱性が改良されていない。比較例2は熱処理を行っていないので結晶化度が不足しており、耐衝撃性は改良されているがいまだ不十分であり、耐衝撃性および耐湿熱性が改良されていない。

【0047】比較例3は過剰な延伸を行っているので、 面配向度△Pが大きくなり過ぎ、成形が不可能であっ た。比較例4は面配向度ΔPおよび結晶化度が不足して おり、耐衝撃性および耐湿熱性が改良されていない。比 較例5はD体の含有量が多いので、結晶性が劣ってお り、耐湿熱性で成形体が変形を生じてしまった。 【0048】

【発明の効果】以上説明したように本発明のポリ乳酸系成形体は耐衝撃性、耐湿熱性に優れているので、ポリ乳 30 酸からなる成形体が広い分野で使用可能となる。