

DTU Physics

Sources and Monitors part 2.

2019 CSNS McStas School

2019 CSNS McStas School

McStas

Sources: Source model overview

- Mathematical:
 - Source_simple.comp
 - Source_div.comp
- Pulsed sources:
 - ESS_butterfly.comp
 - ESS_moderator.comp
 - Moderator.comp
 - SNS_source.comp (*)
 - SNS_source_analytic (*)
 - ViewModISIS (*)
 - ISIS_moderator.comp (*)

- Reactors:
 - Source Maxwell 3.comp
 - Source_gen.comp
 - Source_gen4.comp
 - Source_multi_surfaces.comp (*)
 - I/O mechanisms:
 - MCPL_input/output.comp
 - Virtual_input/output.comp
 - Virtual_mcnp_ss_input/output.comp
 - Virtual_tripoli4_input/output.comp
 - Vitess_input/output.comp

2019 CSNS McStas School

McStas


```
COMPONENT source = Source_Maxwell_3(yheight=0.156, xwidth=0.126,

Lmin=0.1, Lmax=9.0, dist=1.5, focus_xw = 0.025, focus_yh = 0.12,

T1=150.42, I1=3.67E11, T2=38.74, I2=3.64E11, T3=14.84, I3=0.95E11)
```

Parameters from the PSI cold source

Initial position and direction: as for Source_simple

6. marts 2019 2019 McStas school @ CSNS

2019 CSNS McStas School

McStas

Parameters from the PSI cold source

Intensity at a given wavelength drawn from a sum of (up to) 3 normalized Maxwellian distributions:

$$I(\lambda) = \sum_{i \in 1,2,3} I_i M(\lambda, T_i); \qquad M(\lambda, T_i) = 2 \alpha^2 \exp(\frac{-\alpha}{\lambda^2}) / \lambda^5;$$

$$\alpha = 949.0 K AA^2 / T_i$$

2019 CSNS McStas School

McStas

6. marts 2019

26, yh = 0.12, I3=0.95E11)

m the PSI cold source

2019 CSNS McStas School

McStas

6. marts 2019

COMPONENT source = Source Maxwe Lmin=0.1, Lmax=9.0, dis T1=150.42, I1=3.67E11,

Just for fun – let's see what happens if we remove the fast peak...

Input parameters

2019 CSNS McStas School

McStas

Parameters in ${\bf boldface}$ are required; the others are optional.

Name	Unit	Description	Default
size	m	Edge of cube shaped source (for backward compatibility)	0
yheight	m	Height of rectangular source	0
xwidth	m	Width of rectangular source	0
Lmin	AA	Lower edge of lambda distribution	
Lmax	AA	Upper edge of lambda distribution	
dist	m	Distance from source to focusing rectangle; at (0,0,dist)	
focus_xw	m	Width of focusing rectangle	
focus_yh	m	Height of focusing rectangle	
T1	K	1st temperature of thermal distribution	
T2	K	2nd temperature of thermal distribution	300
Т3	K	3nd temperature of	300
I1	1/(cm**2*st)	flux, 1 (in flux units, see above)	
I2	1/(cm**2*st)	flux, 2 (in flux units, see above)	0
I3	1/(cm**2*st)	flux, 3	0
target_index	1	relative index of component to focus at, e.g. next is +1 this is used to compute 'dist' automatically.	+1
lambda0	AA	Mean wavelength of neutrons.	0
dlambda	AA	Wavelength spread of neutrons.	0

6. marts 2019 2019 McStas school @ CSNS

2019 CSNS McStas School

McStas

6. marts 2019

Sources: Source gen (Source gen4)

```
COMPONENT source = Source gen(yheight=0.156, xwidth=0.126,
       Lmin=0.1, Lmax=9.0, dist=1.5, focus xw = 0.025, focus yh = 0.12,
       T1=150.42, I1=3.67E11, T2=38.74, I2=3.64E11, T3=14.84, I3=0.95E11)
```

Almost the same as Source_Maxwell_3: but with optional fluxfiles as input.

2019 McStas school @ CSNS

MCPL_input/output

Reads/writes events directly from MCPL-format files: "T. Kittelmann et. al., "", J. Phys. Comp., 2017

7

2019 CSNS McStas School

McStas

6. marts 2019 2019 McStas school @ CSNS

MCPL_input/output

Can include an Implicit Translation:

2019 CSNS McStas School

McStas

MCPL_output.comp

MCPL_input/output

Can include an Implicit Translation:

BECOMES

2019 CSNS McStas School

McStas

MCPL_output.comp

MCPL_input.comp

Pulsed sources:

2019 CSNS McStas School

McStas

Simplest case:

Use a continuous source!

Model a source with given wavelength and spatial distribution

and

... an infinitely short pulse length. I.e. t = 0 for all neutron rays.

```
COMPONENT src = Source_simple(
    radius=0.05, lambda0=2.5, dlambda=1.5,
    focus_xw=0.1, focus_yh=0.1, dist=5)
AT(0,0,0) RELATIVE origin
```

6. marts 2019 2019 McStas school @ CSNS 12

Pulsed sources:

Add a sample here TOF_monitor.

2019 CSNS McStas School

McStas

Simplest case:

Use a continuous source!

Model a source with given wavelength and spatial distribution

and

... an infinitely short pulse length. I.e. t = 0 for all neutron rays.

```
COMPONENT src = Source_simple(
    radius=0.05, lambda0=2.5, dlambda=1.5,
    focus_xw=0.1, focus_yh=0.1, dist=5)
AT(0,0,0) RELATIVE origin
```

6. marts 2019 2019 McStas school @ CSNS 13

Pulsed Sources:

2019 CSNS McStas School

McStas

Simplest case:

Use a continuous source!

Model a source with given wavelength and spatial distribution

```
... an infinitely short.

Or: Use a chopper eutron rays.

COMPONENT si

radius=0.

focus_xw= focus_yh=0.1, dist=5)

AT(0,0,0) RELATIVE origin
```

14

Pulsed Sources: Moderator

2019 CSNS McStas School

A flat pulsed source with uniform energy spectrum:

$$x \in U\left[-\frac{xwidth}{2}, \frac{xwidth}{2}\right] y \in U\left[-\frac{yheight}{2}, \frac{yheight}{2}\right]$$

$$|v| = f(\lambda); \lambda \in U\left[L_{min}L_{max}\right]$$

Time structure is given by energy dependent probability density function:

$$f_t = \frac{1}{\tau} \exp(-\frac{t}{\tau})$$

$$\tau = \begin{cases} t_0; & E < E_c \\ t_0 \left(\frac{1}{1 + \frac{(E - E_c)}{\gamma}} \right); & E \ge Ec \end{cases}$$

Pulsed Sources: SNS_source

2019 CSNS McStas School

McStas

6. marts 2019

- Samples directly from tallies coming from e.g. MCNP target+moderator calculations.
- Originally from SNS but also used extensively at J-PARC
- Can be used (with the proper input files) to model CSNS-source. Example (coming from you) is expected to be included in next release of McStas.

2019 McStas school @ CSNS

Pulsed Sources: SNS_source

2019 CSNS McStas School

McStas

Pulsed Sources: SNS_source_analytic

2019 CSNS McStas School

McStas

- Samples from fits of Padé-functions to tallies from SNS_source.
 - Requires a complex fitting campaign
 - + Much faster than SNS_source
 - + "Cleaner" distributions where statistics are sketchy
- Can be used (with the proper input files) to model CSNS-source.

6. marts 2019 2019 McStas school @ CSNS 18

Pulsed Sources: ViewModISIS

2019 CSNS McStas School

McStas

6. marts 2019

- Samples directly from tallies coming from e.g. MCNP target+moderator calculations.
- Data file supplied for each beam port at ISIS.

2019 McStas school @ CSNS

Pulsed Sources: ViewModISIS

2019 CSNS McStas School

McStas

Monitors (some)

1D

♦ L_monitor $\rightarrow I(\lambda)$

 \rightarrow TOF_monitor $\rightarrow I(t)$

- \rightarrow Hdiv_monitor $\rightarrow I(div_x)$
- igoplus MeanPolLambda $\rightarrow \langle \bar{P} \rangle (\lambda)$
- \blacksquare E_monitor $\rightarrow I(E)$

2D

• PSD_monitor $\rightarrow I(x,y)$

- PSD_monitor_4PI $\rightarrow I(\theta, \phi)$
- PolLambda_monitor $\rightarrow I(\bar{P}, \lambda)$
- Divergence_monitor $\rightarrow I(div_x, div_y)$
- DivPos_monitor $\rightarrow I(div_x, x)$

nD

Monitor_nD →

or

or

or ...

McStas School

2019 CSNS

McStas

Monitors: Quick examples

2019 CSNS McStas School

McStas

COMPONENT my_L_monitor = L_monitor(xwidth=0.2, yheight=0.2, nL=20, filename="Output.L", Lmin=2, Lmax=10)

In a histogram sense

I Imagine a histogram, e.g. $\mathbf{I}(\lambda)$

In bin *i*, **N** events each carrying a fractional intensity p_j so that

The RMS variance over that set becomes our statistical error bar E

2019 CSNS McStas School

McStas

From "Virtual experiments - the ultimate aim of neutron ray-tracing simulations", K. Lefmann et al., Journal of Neutron Research 16, 97-111 (2008)

2019 CSNS McStas School

McStas

Let n be the number of neutron rays reaching the detector, and let the rays have (different) weights, w_i . The simulated intensity is then given by

$$I = \sum_{i=1}^{n} w_i. \tag{1}$$

The estimate of the error on this number is calculated in the McStas manual [1], and the standard deviation is approximated by

$$\sigma^2(I) = \sum_{i=1}^n w_i^2. \tag{2}$$

In real experiments, $w_i = 1$, whence we reach I = n and $\sigma(I) = \sqrt{I}$ as expected (for counts exceeding 10). Let the virtual time be denoted by t. The simulated counts during this time becomes

$$C = tI, (3)$$

From "Virtual experiments - the ultimate aim of neutron ray-tracing simulations", K. Lefmann et al., Journal of Neutron Research 16, 97-111 (2008)

2019 CSNS McStas School

McStas

and its error bar estimate is

$$\sigma^2(C) = t^2 \sigma^2(I). \tag{4}$$

However, to simulate a realistic counting statistics, we must fulfill

$$\sigma_{\rm VE}(C_{\rm VE}) = \sqrt{C_{\rm VE}}.\tag{5}$$

This is obtained by adding to (3) a Gaussian noise $E(\Sigma)$ of mean value zero and standard deviation Σ :

$$C_{\rm VE} = tI + E(\Sigma). \tag{6}$$

The standard deviation for the VE becomes

$$\sigma_{VE}^2(C) = t^2 \sigma^2(I) + \Sigma^2. \tag{7}$$

Now, the requirement (5) allows us to determine Σ :

$$\Sigma^2 = tI - t^2 \sigma^2(I). \tag{8}$$

Since Σ^2 must remain positive, we reach an upper limit on t

$$t_{\text{max}} = \frac{I}{\sigma^2(I)}.$$
 (9)

Sketch of an algorithm...

散

 $t_{\mathtt{max}}$

The *smallest* defines the "maximal counting time" allowed by your statistics

2019 CSNS McStas School

3. Preferably a "background" should be added - use a "known experimental value" or an estimate...

McStas

2019 CSNS McStas School

McStas

Monitor_nD

The all-in-one , swiss-army-knife of monitors

Monitor_nD can have almost any shape, and record any requested standard quantities

Monitor_nD

Examples

2019 CSNS McStas School

McStas


```
COMPONENT MyMon = Monitor nD( xwidth = 0.1, yheight = 0.1, zdepth = 0,
                  options = "intensity per cm2 angle, limits=[-5 5],
                  bins=10,with borders, file = mon1")
```

options = "banana, theta limits=[10,130], bins=120, y"

options = "multiple kx ky kz, auto abs log t, and list all neutrons"

Monitor_nD

2019 CSNS McStas School

McStas

... or monitor just about anything:

```
COMPONENT MyMon = Monitor_nD(xwidth = 0.1, yheight = 0.1,
    user1=age, username1="Age of the Captain [years]",
    options="user1, auto")
```


2019 CSNS McStas School