SWCON253 Machine Learning

Lecture 7. Introduction to Singular Value Decomposition

Observe
$$\underline{x}_1$$
, \underline{x}_2 , ..., $\underline{x}_p \in \mathbb{R}^n X = [\underline{x}_1, \underline{x}_2, ..., \underline{x}_p]$

Goal

find the 1D subspace that is closest to a set of points ("best" fits data) i.e., distance from x_i to subspace to be as small as possible

$$d_i^2 = \left\| \underline{x}_i - Proj_{\underline{a}} x_i \right\|_2^2$$

We want to minimize $\sum_{i=1}^{p} d_i^2$

 \perp

Projection Matrices

If $A \in \mathbb{R}^{n \times p}$ spans a subspace, then projection of \underline{X} onto span(cols(A)) = $Proj_A\underline{X}$ If columns of A are linearly independent, $Proj_A\underline{X} = A(A^TA)^{-1}A^TX$

$$\bullet \quad \mathbf{P}_A = \mathbf{P}_A^2 = \mathbf{P}_A \mathbf{P}_A = \mathbf{P}_A^T = \mathbf{P}_A^T \mathbf{P}_A$$

• If A =
$$\underline{a}$$
, then P_a = $a(a^{T}a)^{-1}a^{T} = \frac{aa^{T}}{a^{T}a}$

• The orthogonal complement of a subspace is the orthogonal to the subspace.

Let B be a basis for orthogonal complement.

$$A^TB = 0$$

For any vector $\underline{\mathbf{x}} \in \mathbb{R}^n$, it can be written as $\underline{\mathbf{x}} = P_A \underline{\mathbf{x}} + P_B \underline{\mathbf{x}} = (P_A + P_B) \underline{\mathbf{x}}$

$$I\underline{\mathbf{x}} = P_A\underline{\mathbf{x}} + P_B\underline{\mathbf{x}} = (P_A + P_B)\underline{\mathbf{x}}$$

$$\rightarrow \mathbf{I} = P_A + P_B$$

$$\rightarrow \mathbf{P}_B = \mathbf{I} - \mathbf{P}_A$$

$$d_i^2 = \left\| \underline{x}_i - P_{\underline{a}} \underline{x}_i \right\|_2^2$$

$$= \left\| \underline{x}_i - \frac{a a^T}{a^T a} \underline{x}_i \right\|_2^2$$

$$= \left\| (I - \frac{a a^T}{a^T a}) \underline{x}_i \right\|_2^2$$

Projection on <u>a</u> (orthogonal complement)

$$= x_i^T \left(I - \frac{aa^T}{a^T a} \right)^T \left(I - \frac{aa^T}{a^T a} \right) \underline{x}_i$$

$$= x_i^T \left(I - \frac{aa^T}{a^T a} \right) \underline{x}_i$$

$$= \underline{x}_i^T \underline{x}_i - \frac{\underline{x}_i^T \underline{a}\underline{a}^T \underline{x}_i}{\underline{a}^T \underline{a}}$$

We want to minimize

$$\textstyle \sum_{i=1}^p d_i^2 \! = \! \sum_{i=1}^p \underline{x_i^T}\underline{x_i} - \frac{\underline{x_i^T}\underline{a}\underline{a}^T\underline{x_i}}{\underline{a}^T\underline{a}}$$

 $\underline{x}_i^T \underline{x}_i$ does not depend on \underline{a} .

$$\hat{\underline{a}} = \underset{\underline{a}}{\operatorname{argmin}} \sum_{i=1}^{p} d_{i}^{2}$$

$$\hat{\underline{a}} = \underset{\underline{a}}{\operatorname{argmin}} \sum_{i=1}^{p} -\frac{x_{i}^{T} \underline{a}}{\underline{a}^{T} \underline{a}} \frac{\underline{a}^{T} x_{i}}{\underline{a}^{T} \underline{a}}$$

(Minimum of negative is the maximum of non-negative)

$$\hat{\underline{a}} = \underset{\underline{a}}{\operatorname{argmax}} \sum_{i=1}^{p} \frac{\underline{x_{i}^{T} \underline{a}} \ \underline{a}^{T} \underline{x_{i}}}{\underline{a}^{T} \underline{a}}$$

$$\hat{\underline{a}} = \underset{\underline{a}}{\operatorname{argmax}} \sum_{i=1}^{p} \frac{\underline{a}^{T} \underline{x_{i}} \underline{x_{i}^{T} \underline{a}}}{\underline{a}^{T} \underline{a}}$$

$$(\underline{x_{i}^{T} \underline{a}}, \ \underline{a}^{T} \underline{x_{i}} \ are \ scalers), \ (\underline{x_{i}^{T} \underline{a}} = \underline{a}^{T} \underline{x_{i}})$$

$$\hat{\underline{a}} = \underset{\underline{a}}{\operatorname{argmax}} \frac{\underline{a}^{T} \ XX^{T} \underline{a}}{\underline{a}^{T} \underline{a}}$$

The vector \hat{a} that achieves the maximum is called the **1**st **left singular vector** of X.

The value of $\frac{\underline{\hat{a}}xx^T\underline{\hat{a}}}{\underline{\hat{a}}^T\underline{\hat{a}}} = \sigma_i^2$ is the **squared 1**st **singular value** of X.

The Singular Value Decomposition (SVD)

Consider a matrix $X \in \mathbb{R}^{nxp}$. There exist matrices U, Σ , V such that

$$X = U \Sigma V^T$$

$$X = \bigcup \sum \bigvee^{\tau}$$

$$U \in \mathbb{R}^{n\times n}$$
 is orthogonal $(U^TU = UU^T = I)$, called left singular vectors $V \in \mathbb{R}^{n\times p}$ is orthogonal $(V^TV = VV^T = I)$, called right singular vectors $\Sigma \in \mathbb{R}^{n\times p}$ is diagonal; diagonal elements called singular values

The columns of U are called the "left singular vectors".

U is an orthogonal matrix ($U^TU = UU^T = I$).

The columns of U give an orthonormal basis for the columns of X.

The columns of V are called the "right singular vectors".

V is an orthogonal matrix ($V^TV = VV^T = I$).

The columns of V^T (rows of V) are the basis coefficients (weights on the column of U) need to represent each column of X.

 Σ is diagonal with non-negative diagonal elements.

$$\sum = \begin{bmatrix} \sigma_1 & & & \\ & \sigma_2 & & \\ & & &$$

 $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_p$

Let
$$U = [u_1, u_2, ..., u_n]$$

 u_1 is the best 1D subspace fit to x_i 's (all data).

$$\tilde{x}_i^{(1)} = \underline{x}_i - Proj_{u_1}\underline{x}_i$$
 projection x_i onto u_1

 u_2 is the best 1D subspace fit to $\tilde{x}_i^{(1)}$'s.

$$\tilde{x}_i^{(2)} = \underline{x}_i - Proj_{u_1}\underline{x}_1 - Proj_{u_2}\underline{x}_1.$$

 u_3 is the best 1D subspace fit to $\,\widetilde{x}_i^{(2)}$'s.

...

 $[u_1,\,u_2,\,...,\,u_k]$ is best k-dim subspace fit to x_i 's.

Principal Component Analysis

If $X = U \sum V^T$, then left singular vectors of X are called **Principal Component Directions**.

The 1^{st} principal component directions = the 1^{st} left singular vector of a matrix

The 2^{nd} principal component directions = the 2^{nd} left singular vector of a matrix