The group G is isomorphic to the group labelled by ["could not identify G"] in the Small Groups library. Ordinary character table of $G \cong PSL(3,3)$:

	1a	2a	3a	3b	4a	6a	8a	8b	13a	13b	13c	13d
χ_1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	12	4	3	0	0	1	0	0	-1	-1	-1	-1
χ_3	13	-3	4	1	1	0	-1	-1	0	0	0	0
χ_4	16	0	-2	1	0	0	0	0	$E(13)^4 + E(13)^10 + E(13)^12$	$E(13)^{} 7 + E(13)^{} 8 + E(13)^{} 11$	$E(13) + E(13)^3 + E(13)^9$	$E(13)^2 + E(13)^5 + E(13)^6$
χ_5	16	0	-2	1	0	0	0	0	$E(13)^{} 7 + E(13)^{} 8 + E(13)^{} 11$	$E(13) + E(13)^3 + E(13)^9$	$E(13)^2 + E(13)^5 + E(13)^6$	$E(13)^4 + E(13)^10 + E(13)^12$
χ_6	16	0	-2	1	0	0	0	0	$E(13)^2 + E(13)^5 + E(13)^6$	$E(13)^4 + E(13)^10 + E(13)^12$	$E(13)^{} 7 + E(13)^{} 8 + E(13)^{} 11$	$E(13) + E(13)^3 + E(13)^9$
χ_7	16	0	-2	1	0	0	0	0	$E(13) + E(13)^3 + E(13)^9$	$E(13)^2 + E(13)^5 + E(13)^6$	$E(13)^4 + E(13)^10 + E(13)^12$	$E(13)^{} 7 + E(13)^{} 8 + E(13)^{} 11$
χ_8	26	2	-1	-1	2	-1	0	0	0	0	0	0
χ_9	26	-2	-1	-1	0	1	$E(8) + E(8)^{} 3$	$-E(8) - E(8)^{} 3$	0	0	0	0
χ_{10}	26	-2	-1	-1	0	1	$-E(8) - E(8)^{} 3$	$E(8) + E(8)^{} 3$	0	0	0	0
χ_{11}	27	3	0	0	-1	0	-1	-1	1	1	1	1
χ_{12}	39	-1	3	0	-1	-1	1	1	0	0	0	0

Trivial source character table of $G \cong PSL(3,3)$ at p=2

Trivial source character table of $G = PSL(5,5)$ at $p = 2$											
$Normalisers N_i$		N_1			N_2	N_3	N_4	N_5	N_6	N_7 N_8	
$p-subgroups \ of \ G \ up \ to \ conjugacy \ in \ G$		P_1			P_2	P_3	P_4	P_5	P_6	P_7 P_8	
Representatives $n_j \in N_i$	a = 3a = 3b	13a	13 <i>b</i>	13c	13d	1a $3a$	1a	1a 3b	1a 3a	$a \mid 1a \mid$	1a $1a$
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} $ 80	8 2	2	2	2	2	0 0	0	0 0	0 0	0	0 0
$ \left 0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} \right 64 $	10 1	-1	-1	-1	-1	0 0	0	0 0	0 0	, 0	0 0
$ \left 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \right 16 $	-2 1	$E(13) + E(13)^3 + E(13)^9$	$E(13)^2 + E(13)^5 + E(13)^6$	$E(13)^4 + E(13)^10 + E(13)^12$	$E(13)^{} 7 + E(13)^{} 8 + E(13)^{} 11$	0 0	0	0 0	0 0	, 0	0 0
$ \left 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \right 16 $	-2 1	$E(13)^2 + E(13)^5 + E(13)^6$	$E(13)^4 + E(13)^10 + E(13)^12$	$E(13)^{}7 + E(13)^{}8 + E(13)^{}11$	$E(13) + E(13)^3 + E(13)^9$	0 0	0	0 0	0 0	, 0	0 0
$ \left 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \right 16 $	-2 1	$E(13)^{} 4 + E(13)^{} 10 + E(13)^{} 12$	$E(13)^{}7 + E(13)^{}8 + E(13)^{}11$	$E(13) + E(13)^3 + E(13)^9$	$E(13)^2 + E(13)^5 + E(13)^6$	0 0	0	0 0	0 0	, 0	0 0
$ \left 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \right 16 $	-2 1	$E(13)^{} 7 + E(13)^{} 8 + E(13)^{} 11$	$E(13) + E(13)^3 + E(13)^9$	$E(13)^2 + E(13)^5 + E(13)^6$	$E(13)^4 + E(13)^10 + E(13)^12$	0 0	0	0 0	0 0	, 0	0 0
$ \left 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} \right 1446 $	4 0 -3	1	1	1	1	0 0	0	0 0	0 0	, 0	0 0
$1 \cdot \chi_1 + 2 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} 10 \cdot \chi_{10} + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} 10 \cdot \chi_{10} + 1 $	4 14 2	0	0	0	0	8 2	0	0 0	0 0	0	0 0
$ \left 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} \right 10 \cdot \chi_{10} $	4 5 -1	0	0	0	0	8 -1	0	0 0	0 0	, 0	0 0
$1 \cdot \chi_1 + 2 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 2 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} $ 150	6 12 0	0	0	0	0	12 0	4	0 0	0 0	0	0 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} $ 28	3 1 1	2	2	2	2	4 1	0	2 2	0 0	0	0 0
$ \left 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \right 12 $	2 3 0	-1	-1	-1	-1	4 1	0	2 -1	0 0	, 0	0 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $ 26	8 2	0	0	0	0	2 2	2	0 0	2 2	. 0	0 0
$ \left 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \right 26 $	5 - 1 - 1	0	0	0	0	$\begin{vmatrix} 2 & -1 \end{vmatrix}$	2	0 0	2 -	1 0	0 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} $	0 0	2	2	2	2	6 0	2	2 2	0 0	2	0 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} $ 78	8 6 0	0	0	0	0	6 0	2	0 0	0 0	, 0	2 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	1 1	1	1	1	1	1 1	1	1 1	1 1	1	1 1

```
P_1 = Group([()]) \cong 1
```

 $P_2 = Group([(2,6)(5,9)(7,12)(8,11)]) \cong C2$

 $P_3 = Group([(2,11,6,8)(3,13)(4,10)(5,12,9,7),(2,6)(5,9)(7,12)(8,11)]) \cong C4$

 $P_4 = Group([(2,6)(5,9)(7,12)(8,11),(3,13)(5,7)(8,11)(9,12)]) \cong C2 \times C2$

 $P_5 = Group([(2,11,6,8)(3,13)(4,10)(5,12,9,7),(2,6)(5,9)(7,12)(8,11),(2,9,6,5)(3,10)(4,13)(7,11,12,8)]) \cong \mathbb{Q}_8$

 $P_6 = Group([(2, 11, 6, 8)(3, 13)(4, 10)(5, 12, 9, 7), (2, 6)(5, 9)(7, 12)(8, 11), (3, 13)(5, 7)(8, 11)(9, 12)]) \cong D8$

 $P_7 = Group([(2,9,8,12,6,5,11,7)(3,4,13,10),(2,11,6,8)(3,13)(4,10)(5,12,9,7),(2,6)(5,9)(7,12)(8,11)]) \cong C8$

 $P_8 = Group([(2,9,8,12,6,5,11,7)(3,4,13,10),(2,6)(5,9)(7,12)(8,11),(2,11,6,8)(3,13)(4,10)(5,12,9,7),(2,6)(3,13)(5,12)(7,9)]) \cong \mathrm{QD}16$

 $N_1 = Group([(2,4)(3,5)(6,8)(10,11),(1,2,3)(5,6,7)(8,9,10)(11,12,13)]) \cong PSL(3,3)$

 $N_2 = Group([(2,9)(3,10)(5,6)(8,11),(2,6)(5,9)(7,12)(8,11),(3,4)(5,11)(7,12)(8,9),(4,13)(5,9)(7,8)(11,12)]) \cong GL(2,3)$

 $N_3 = Group([(2, 11, 6, 8)(3, 13)(4, 10)(5, 12, 9, 7), (2, 6)(5, 9)(7, 12)(8, 11), (3, 13)(5, 7)(8, 11)(9, 12), (2, 7, 6, 12)(3, 4)(5, 11, 9, 8)(10, 13)]) \cong QD16$

 $N_4 = Group([(1,10)(3,8)(9,12)(11,13),(2,6)(5,9)(7,12)(8,11),(1,4)(2,13)(3,6)(7,9),(3,13)(5,7)(8,11)(9,12)]) \cong S4$

 $N_5 = Group([(2,11,6,8)(3,13)(4,10)(5,12,9,7),(2,6)(5,9)(7,12)(8,11),(3,4)(5,11)(7,12)(8,9),(2,9,6,5)(3,10)(4,13)(7,11,12,8),(4,13)(5,9)(7,8)(11,12)]) \cong GL(2,3)$

 $N_6 = Group([(2,11,6,8)(3,13)(4,10)(5,12,9,7),(2,6)(5,9)(7,12)(8,11),(3,13)(5,7)(8,11)(9,12),(2,7,6,12)(3,4)(5,11,9,8)(10,13)]) \cong \mathrm{QD}16$

 $N_7 = Group([(2,9,8,12,6,5,11,7)(3,4,13,10),(2,11,6,8)(3,13)(4,10)(5,12,9,7),(2,6)(5,9)(7,12)(8,11),(3,13)(5,7)(8,11)(9,12)]) \cong QD16$

 $N_8 = Group([(2,9,8,12,6,5,11,7)(3,4,13,10),(2,6)(5,9)(7,12)(8,11),(2,11,6,8)(3,13)(4,10)(5,12,9,7),(2,6)(3,13)(5,12)(7,9),(3,13)(5,7)(8,11)(9,12)]) \cong \mathrm{QD}16$