Weekly Progress

崔炼为, 麦景 04/10/2020

previous issue: pattern in code

• The routine of a specificed ML algorithm is described by customized functions f1-f6.

```
import numpy as np
from functools import reduce
m = 10 # number of samples
n = 3 \# number of features
x = np.arange(m*n).reshape(m, n)
y = np.arange(m)
z = np.arange(m*n).reshape(m, n)
# parameter
w = np.arange(n)
```

```
f1 = lambda x, y: x * y
f2 = lambda \ acc, x: acc + x
f3 = lambda x: x
f4 = lambda x, y: x - y
f5 = lambda x, v: x * v
f6 = lambda \ acc, x: acc + x
s = np.array(list(map(lambda t: reduce(f2, f1(t, w)), x)))
s = f4(f3(s), y)
s = f5(z, s[:,np.newaxis])
s = reduce(f6, s)
```

Issue: Paper citing TABLA

Title	Author	Tag	Conference	Year	Citing	I
Cambricon-F		ISA	ISCA	2019		
TABLA			HPCA	2016		
PipeLayer: A Pipelined ReRAM-Based Accelerator for Deep Learning		ReRAM	HPCA	2017	TABLA, PRIME, ISAAC	I
PUMA: A Programmable Ultra-efficient Memristor-based Accelerator for Machine Learning Inference		ReRAM	ASPLOS	2019	TABLA	
PyRTLMatrix: an Object-Oriented Hardware Design Pattern for Prototyping ML Accelerators			EMAC2(works	2019	TABLA	ł
FPSA: A Full System Stack Solution for Reconfigurable ReRAM-based NN Accelerator Architecture.	Yu Ji, Youhui Zhang, Yuan Xie	ReRAM	ASPLOS	2019		
Bridge the Gap between Neural Networks and Neuromorphic Hardware with a Neural Network Compiler	Yu Ji, Youhui Zhang, WenGuang Chen, Yuan Xie	ReRAM	ASPLOS	2018		
DNNWeaver: From High-Level Deep Neural Models to FPGAs	ACT lab	ISA	MICRO	2016	TABLA	
Bit Fusion: Bit-Level Dynamically Composable Architecture for Accelerating Deep Neural Network	ACT lab		ISCA	2018		
An Instruction Set Architecture for Machine Learning	Yunji Chen	ISA			TABLA	
CoSMIC: Scale-Out Acceleration for Machine Learning	ACT lab		MICRO	2017	TABLA	
FlexiGAN: An End-to-End Solution for FPGA Acceleration of Generative Adversarial Networks	ACT lab		FCCM	2018	TABLA	

See more info in https://github.com/magic3007/ML-on-Silicon

From High-Level Deep Neural Models to FPGAs

· Design DNNWEAVER: a framework that automatically generates a synthesizable accelerator for a given (DNN, FPGA) pair from a high-level specification in Caffe

· work flow

From High-Level Deep Neural Models to FPGAs

· Translator: translate Caffe code to state machine and microcodes

· Hand-Optimized Templates:

The PEs and the buffers in the template PU architecture provide compute capabilities for convolution and inner product layers. The customizable normalization, pooling, and activation modules provide support for the other possible layers in DNNs

Figure 5: Overview of a clustered hierarchical template design. The template accelerator is divided into Processing Units (PUs) that are comprised of multiple smaller Processing Engines (PEs).

From High-Level Deep Neural Models to FPGAs

- · Optimizations in different layers:
 - conv: dedicated buffer in PUs for weights, parallelism across output elements saving partial results, data forwarding across PEs, reusing data across convlutions kernels
 - pooling: the pooling module overlaps its operations with the convolution operation
 - · IP: parallelism across output elements
 - Normalization and Activation

An End-to-End Solution for FPGA Acceleration of Generative Adversarial Networks

· Similiar to previous papers:

Figure 2: Overview of FlexiGAN end-to-end solution. FlexiGAN receives a high-level description of GAN and the target FPGA specification. At the end, it generates an optimized FPGA accelerator and the instruction schedules.

· Chanllenge for GAN accelerations: Inefficiency of using convolution hardware to performtransposed convolution

An End-to-End Solution for FPGA Acceleration of Generative Adversarial Networks

- · To overcome this challenge
 - reorganize output rows: the even-indexed output rows (2 and 4) become adjacent.
 Similarly, the odd-indexed rows (3 and 5) are placedadjacent to each other
 - · reorganizes the filter rows

Figure 3: (a) Zero-insertion step in TranConv operation for a 4×4 input and the transformed input. The white-colored squares represent zero values in the transformed input. (b) Using convolution dataflow for performing TranConv operations.

Figure 4: The flow of data after applying (a) output row reorganization and (b) filter row reorganization. The combination of these flow optimizations reduces the idle (white) operations and improves the resource utilization.

Scale-Out Acceleration for Machine Learning

- · Design CoSMIC: an entire stack of layers to execute a wide range of learning algorithms on accelerator-augmented scale-out systems
- · Theoretical foundation of disturbed learning——Parallelizing Stochastic Optimization

Parallel
$$\langle \theta_j^{(t+1)} = \mathbf{SGD}(\{XY_1, ..., XY_b\}, \theta^{(t)}, f) \rangle$$

$$\theta^{(t+1)} = \frac{\sum_j \theta_j^{(t+1)}}{n}$$

Scale-Out Acceleration for Machine Learning

Programming Layer		Partial Gradient		
	Algorithmic Specification	Aggregation Operator		
		Mini-Batch Size		
		Number of Nodes		
	System Specification	Number of Groups		
		Accelerator Type		
Compilation	Translator	Dataflow Graph (DFG)		
Layer	Compiler	Operation Schedule/Map		
	System Director	Node Roles		
	System Subroutines: Delta Nodes	Accelerator Invocation Module		
	system subroutines. Delta Nodes	Module for Communication with Sigma Node		
System Layer		Accelerator Invocation Module		
System Layer		Networking Thread Pool for Communication with Delta Node		
	System Subroutines: Sigma Nodes	Circular Buffer for Consumer-Producer Networking & Aggregat		
		Aggregation Thread Pool		
		Module for Communication with Next Level of Hierarchy Node		
	Hand-Optimized Template Design	RTL Verilog		
Architecture Layer	Performance Estimation Tool	Design Space of Possible Architectures		
		Number of Threads		
	Planner	Resources per Thread		
		Accelerator Datapath		
Circuit Layer	Constructor	RTL Verilog of the Multi-Threaded Accelerator		

Figure 3: The full CoSMIC stack.

Yu Ji

- PhD, Computer Architecture
- Tsinghua University, 2015-now
- Advisor: Youhui Zhang, Yuan Xie
- Research Interests
 - Neuromorphic Hardware, ReRAM
 - NEUTRAMS: Neural network transformation and co-design under neuromorphic hardware constraints(MICRO 2016)
 - Bridge the Gap between Neural Networks and Neuromorphic Hardware with a Neural Network Compiler(ASPLOS 2018)
 - FPSA: A Full System Stack Solution for Reconfigurable ReRAM-based NN Accelerator Architecture(ASPLOS 2019)

	$I_j = \sum_i G_{ji} V_i \Rightarrow I = GV$
Latency	10ps for $100 imes 100$ crossbar (RC delay)
Area	4F ² for each cell

- NN Attack from the perspective of computer Architecture(not the first author)
 - Memory Trojan Attack on Neural Network Accelerators(DATE 2019)
 - DeepSniffer: A DNN Model Extraction Framework Based on Learning Architectural Hints(ASPLOS 2020)
 - Programmable Neural Network Trojan for Pre-Trained Feature Extractor

See More Info in attached materials.

