Oznamy

- Výber článku na journal club formulárom na stránke do budúcej stredy 23.10. 22:00.
- Domáca úloha 1 bude zverejnená budúci týždeň
- Nezabudnite na pravidelné kvízy, ak je niečo nejasné, pýtajte sa.

Zarovnávanie sekvencií 2/2 (sequence alignment)

Broňa Brejová 16.10.2025

Zhrnutie z minulej prednášky

• Problém globálneho a lokálneho zarovnania

Vstup: sekvencie $X=x_1x_2\dots x_n$ a $Y=y_1y_2\dots y_m$. Výstup:

globálne: zarovnanie X a Y s najvyšším skóre

lokálne: zarovnania podreťazcov $x_i \dots x_j$ a $y_k \dots y_\ell$ s najvyšším skóre.

- Správny algoritmus na riešenie dynamické programovanie
- Realistické skórovacie schémy

Máme správny algoritmus na zarovnávanie, čo viac nám chýba?

Časová zložitosť: $O(n^2)$ na dvoch sekvenciách dĺžky n.

Koľko je to času v skutočnosti?

(jednoduchá implementácia, náhodné sekvencie dĺžky n, bežný počítač)

n	čas výpočtu
1,000	0.02s
10,000	1.5s
100,000	2.5 minúty (*)
1,000,000	4 hodiny (*)
10,000,000	17 dní (*)
100,000,000	5 rokov (*)
1,000,000,000	476 rokov (*)

Potrebujeme efektívnejší algoritmus,

najmä ak chceme pracovať s celými genómami

Pamäť: základný algoritmus $O(n^2)$, dá sa zlepšiť na O(n).

Heuristické lokálne zarovnávanie

- Nie je zaručené, že nájdeme najlepšie zarovnanie, ale program pobeží rýchlejšie.
- Prehľadá iba "sľubné" časti dyn. prog. matice.

Napríklad: BLASTN (Altschul et al 1990),

FASTA (Pearson a Lipman 1988)

- Nájdi krátke zhodujúce sa úseky dĺžky w (jadrá zarovnania).
- Rozšír každé jadro pozdĺž uhlopriečky na zarovnanie bez medzier.
- Spoj zarovnania na neďalekých uhlopriečkach medzerami.
- Lokálne vylepši zarovnanie dynamickým programovaním (možno vynechať).

Ako nájdeme jadrá, zhodujúce sa úseky?

- ullet Vybudujeme "slovník" úsekov dĺžky w z prvej sekvencie.
- Nájdeme každý úsek z druhej sekvencie v slovníku.

Príklad: CAGTCCTAGA vs CATGTCATA

Slovník:			Hľadaj:		
AG	2,	8	${\tt CA} \ \rightarrow$	1	
CA	1		$\text{AT } \rightarrow$	_	
CC	5		TG $ ightarrow$	_	
СТ	6		$\texttt{GT} \ \rightarrow$	3	
GA	9		TC \rightarrow	4	
GT	3		${\tt CA} \ \to \ $	1	
TA	7		$\text{AT } \to$	_	
TC	4		${\tt TA} \ \rightarrow$	7	

Heuristické lokálne zarovnávanie

(V praxi sa používa w=11 a viac.)

- 1. nájdi zhodné úseky
- 2. rozšír bez medzier
- 3. spoj medzerami

Rýchlosť heuristického algoritmu

Algoritmus:

- ullet Nájdi jadrá zarovnaní (krátke zhodujúce sa úseky dĺžky w).
- Drahý krok: Rozširovanie/spájanie jadier do väčších zarovnaní.

Náhodné zhody dĺžky w: nie sú časťou zarovnania s vysokým skóre. Vyfiltrujeme ich pri rozširovaní, ale spomaľujú program.

Koľko náhodných jadier?

Dva nukleotidy sa zhodujú s pravdepodobnosťou 1/4.

Jadro, t.j. w zhôd za sebou s pravdepodobnosťou 4^{-w} .

Stredná hodnota počtu jadier $nm4^{-w}$.

Zvýšenie w o 1 zníži jadier cca 4 krát.

Senzitivita heuristického algoritmu

Algoritmus:

- ullet Nájdi jadrá zarovnaní (krátke zhodujúce sa úseky dĺžky w).
- Drahý krok: Rozširovanie/spájanie jadier do väčších zarovnaní.

Nenájdené zarovnania: vysoké skóre, ale nemajú jadro dĺžky w

Senzitivita: aká časť skutočných zarovnaní obsahuje jadro, t.j. zhodu dĺžky w

Rýchlosť vs. senzitivita

Senzitivita heuristického algoritmu

Odhad senzitivity:

Predpokladáme zarovnanie bez medzier, dĺžky L Každá pozícia je zhoda s pravdepodobnosťou p

 $f(L,p) = \Pr(\text{zarovnanie obsahuje } w \text{ zhôd za sebou})$

(človek-myš: $p \approx 0.7$)

BLAST algoritmus pre proteíny

BLOSUM62 skórovacia matica pre proteíny

```
A R N D C Q E G H I ...

A 4 -1 -2 -2 0 -1 -1 0 -2 -1

R -1 5 0 -2 -3 1 0 -2 0 -3

N -2 0 6 1 -3 0 0 0 1 -3

D -2 -2 1 6 -3 0 2 -1 -1 -3

C 0 -3 -3 -3 9 -3 -4 -3 -3 -1

Q -1 1 0 0 -3 5 2 -2 0 -3

E -1 0 0 2 -4 2 5 -2 0 -3

G 0 -2 0 -1 -3 -2 -2 6 -2 -4

H -2 0 1 -1 -3 0 0 -2 8 -3

I -1 -3 -3 -3 -1 -3 -3 -4 -3 4
```

Proteínový BLAST namiesto zhody dĺžky w vyžaduje 3 aminokyseliny so skóre aspoň 13

Príklady programov na rôzne účely

NCBI BLAST: blastn pre DNA/RNA, blastp pre proteíny, tblastx preloží DNA do proteínu a použije blastp

UCSC Blat: pomerne rýchle vyhľadávanie veľmi podobných sekvencií, napr. kde je daná sekvencia v genóme

- ullet používa veľké w
- vie nájsť zarovnania s veľkými medzerami (napr. intróny pri mRNA)

Minimap2: mapuje dlhé čítania na genóm alebo porovnáva dva príbuzné genómy

- ullet používa techniku minimizerov na ušetrenie pamäti (neukladá všetky úseky dĺžky w)
- veľmi rýchly

BWA-MEM/BWA-MEM2: mapuje krátke čítania na genóm

namiesto jadier fixnej dĺžky používa maximálne presné zhody

• zložitejšie dátové štruktúry (BWT z informatických cvičení)

Genomické zarovnania (whole-genome alignments)

Ku každému úseku ľudského genómu nájsť zodpovedajúcu časť z myši, psa, sliepky, atď. (predpočítané v UCSC browseri)

- Lokálne zarovnania nájdu exóny a iné zachované časti, sú však úseky, ktoré sa príliš zmenili.
- Pri duplikovaných úsekoch nevieme rozhodnúť, ktoré dvojice úsekov patria k sebe.
- Synténia (synteny): lokálne zarovnania, ktoré sa nachádzajú v dvoch genómoch v tom istom poradí a orientácii.
 - Pomáha nám určiť, ktoré dvojice úsekov vznikli z tej istej oblasti v spoločnom predkovi (ortológy)

Viacnásobné zarovnanie, multiple sequence alignment

Cieľ: Zarovnaj viacero sekvencií.

```
Human ctccatagcaatgt-cagagatagggcagagcggat-----ggtggtgac Rhesus ctccatggcaatgt-cagagatagggcagagcggat-----gctggtgac Mouse ttt--tgacaaca--tagagac-tgagatagaaaat-----atgctgac Dog -tccccgctaatgtacaaagatggggcag-gaaga--a---tgtgctgaa Horse -tccacggcaatac-tggagatggggcagagcaga--agat-ggtgatgaa ctgcatagaaatct-cagagatggggaaagcaga----agacattcat Opossum atccatggaaacat-cagaagtgggagaaatagaaga---tggcaatga-Platypus acccggggaaggg-aagaggg-aagaggagggccggccg------
```

Ako by ste riešili skórovanie, aký by ste použili algoritmus?

Viacnásobné zarovnanie, multiple sequence alignment

```
Human ctccatagcaatgt-cagagatagggcagagcggat-----ggtggtgac Rhesus ctccatggcaatgt-cagagatagggcagagcggat-----gctggtgac Mouse ttt--tgacaaca--tagagac-tgagatagaaaat-----atgctgac Dog -tccccgctaatgtacaaagatggggcag-gaaga--a---tgtgctgaa Horse -tccacggcaatac-tggagatggggcagagcaga--agat-ggtgatgaa Ctgcatagaaatct-cagagatggggaaagcaga----agacattcat Opossum atccatggaaacat-cagaagtgggagaaatagaaga---tggcaatga-Platypus acccggggaaggg-aagaggg-aagaggacggccg------
```

Skórovanie: napr. súčet párových skór všetkých dvojíc sekvencií.

V každej dvojici vyhodím stĺpce s dvomi pomlčkami.

Zložitosť dynamického programovania: $O(2^k n^k)$ pre k sekvencií dĺžky n. Pre všeobecné k NP-ťažké.

Heuristické algoritmy, napr. CLUSTAL-W, MUSCLE, TBA, MAFFT.

Často zarovnávajú hierarchicky vždy dve skupiny do jednej väčšej.

Výsledok programu BLAST voči RefSeq proteínovej databáze na serveroch NCBI https://blast.ncbi.nlm.nih.gov/

hypothetical protein [Collimonas pratensis]

Sequence ID: WP_150119746.1 Length: 102 Number of Matches: 1

Range 1: 20 to 31 GenPept Graphics

Score	Expect	Identities	Positives	Gaps
31.6 bits(67)	17	11/12(92%)	11/12(91%)	0/12(0%)

▼ Next Match ▲ Pr

▼ Next Match ▲ Pr

Query 1 VIVALASVEGAS 12 VIVALASV GAS Sbjct 20 VIVALASVIGAS 31

<u>**Lanor** ■ Download</u> **Solution** ■ GenPept Graphics

DNA mismatch repair protein [Mycena indigotica]

Sequence ID: XP_037221711.1 Length: 968 Number of Matches: 1

Range 1: 482 to 492 GenPept Graphics

Score	Expect	Identities	Positives	Gaps
30.3 bits(64)	46	10/11(91%)	10/11(90%)	0/11(0%)

Query 2 IVALASVEGAS 12 IVALASVE AS Sbjct 482 IVALASVEDAS 492

Ako rozlíšiť, či ide o významné zarovnanie?

Dĺžka dotazu m. Veľkosť databázy n.

Zarovnanie so skóre S.

P-hodnota: Pravdepodobnosť, že pre náhodný dotaz dĺžky m v náhodnej databáze dĺžky n nájdeme zarovnanie so skóre aspoň S.

 $E ext{-hodnota:}$ Očakávaný počet zarovnaní so skóre aspoň S nájdených pre náhodný dotaz dĺžky m v náhodnej databáze dĺžky n.

Pri veľmi malých hodnotách sú E-hodnota a P-hodnota takmer identické.

Výpočet P-hodnoty simuláciou

- ullet Vygenerujeme náhodne dve sekvencie dĺžky n
- Spočítame ich najlepšie lokálne zarovnanie (schéma +1/-1)
- Zaznamenáme si výsledné skóre
- Opakujeme veľa krát

Výpočet P-hodnoty simuláciou (pokr.)

P-hodnota pre skóre 25:

Aká časť zarovnaní má skóre 25 alebo vyššie?

V praxi je simulácia pomalá, existujú matematické odhady rozdelenia.

Karlin and Althschul 1990, Dembo et al. 1994

Zhrnutie

- Zarovnávanie (alignment) je základný nástroj bioinformatiky
- Formulácia problému: voľba skórovacej schémy
- Riešenie problému: presné ale pomalé algoritmy a rýchlejšie heuristiky, ktoré nie vždy nájdu všetko
- Odhad štatistickej významnosti (E-hodnota, P-hodnota) je dôležitý nástroj na rozpoznávanie reálnych zarovnaní od tých, čo sa vyskytli náhodou
- Špecializované programy na rôzne úlohy súvisiace so zarovnávaním
 - Informatici na ďalších cvičeniach ďalšie finty na zlepšenie jadier
 - Biológovia ukážky použitia programov