

Natalizumab and its biosimilar for treating highly active relapsing-remitting multiple sclerosis after at least one disease modifying therapy: Discrete Event Simulation

Ayman Sadek and Howard Thom

With Catalina Lopez Manzano, Chris Cooper, Eve Tomlinson, Hanyu Wang, Claire Rice, Emma Tallantyre, Ananya Rao-Middleton, Penny Whiting.

Outline

- Decision problem
- Previous NICE models in RRMS
- Discrete event simulation and model structure
- MS Registry analyses
- Efficacy, costs and utilities
- Implementation with DESCEM (Warden)
- Results
- Value of information analysis
- Conclusions/learnings

Decision problem

NICE Decision problem

- NICE multiple treatment assessment (MTA).
- Technologies of interest for this appraisal were natalizumab (Tysabri, Biogen) and natalizumab biosimilar (Tyruko, Sandoz).
- Natalizumab is recommended as first-line treatment option for this sub-population of relapsing—remitting multiple sclerosis (RRMS) (NICE TA127).
- The population is highly active relapsing-remitting multiple sclerosis (HARRMS) after at least one disease modifying therapy (i.e., from 2nd line therapy).

Iinterventions

- Glatiramer acetate
- Interferon beta 1a
- Interferon beta 1b
- Alemtuzumab
- Cladribine tablets

Sphingosine 1-phosphate Receptor Modulators

- Ponesimod
- Fingolimod

CD-20 Cytolytic Antibodies

- Ocrelizumab
- Ofatumumab
- Ublexitumab

Previous NICE models in RRMS

Overview

- 7 STAs (TA767, TA699, TA616, TA533, TA312, TA254 and TA127), 1 MTA and 1 cost comparison (TA 1025) for approved drugs in RRMS,
- 21 Health state Markov Model is most common structure

Source: Ponesimod for treating relapsing multiple sclerosis [ID1393] Document B 29 April 2021. TA767

Key Issues with Previous Models

- Lacking treatment sequencing and variable treatment waning.
- Outdated relative risk of death dependent or independent to severity states.
- Limited ability to accurately reflect the course of the condition and relying on outdated registry data.

Discrete Event Simulation and model structure

Events or states for modelling

- Cohort models could be used to record history
- Very quickly proliferate states if need to reflect severities or patient history...illustrated by the Atrial fibrillation model used in NICE clinical guidelines (1)
- Individual level 'microsimulation' is cleaner as patient history can be recorded
- State-based microsimulation of treatment sequences has been employed in Dutch RRMS guidelines (2)
- We argued for events as the treatment effects are primarily on events Confirmed Disability Progression (CDP) and relapses, rather than severity (e.g., EDSS level)

- NICE. Atrial fibrillation: diagnosis and management. The National Institute for Health and Care Excellence Guideline [NG196]. Available from: https://www.nice.org.uk/guidance/ng196 Site accessed 18/10/22. 2021
- 2. Versteegh MM, Huygens SA, Wokke BWH, et al. Effectiveness and Cost-Effectiveness of 360 Disease-Modifying Treatment Escalation Sequences in Multiple Sclerosis. *Value Health* 2022;25(6):984-91. doi: 10.1016/j.jval.2021.11.1363

Model diagram

Start simulation

Set baseline demographic and disease characteristics:

- Age
- Sex
- EDSS \in (0,...,9)
- SPMS Status = 0
- Treatment

Death Simulate events **Total costs and QALYs** If SPMS Status = 0 • If EDSS<9: EDSS increase (CDP6) • If EDSS>0: EDSS decrease Progression to SPMS Relapse • Serious adverse events • Switching due to adverse event Resolve competing risks: Death Select the event which occurs first If SPMS Status = 1 • If EDSS<9: EDSS increase Relapse Serious adverse events **Evaluate (non-death) event** Death Add event costs and subtract disutility Update demographics, EDSS, SPMS status,

annual costs, annual QALYs

Update treatment if changed.

Treatment sequence

2nd line therapy in highly active RRMS

3rd line therapy in highly active RRMS

4th line therapy in highly active RRMS

MS Registry Analyses

Registry Analyses

- Rates of events using exponential survival and models fit to interval censored data. Covariates were included in some
 of these models.
- Rates depending on treatment used in the model were for patients on Natalizumab-IV

Event	Covariates
EDSS increase (i.e., confirmed disability progression)	Treatment, current EDSS
EDSS decrease	Current EDSS
Relapse	Treatment, current EDSS
Progression to SPMS	Current EDSS

Mortality

Updated Mortality

- Updated approach uses average SMR across EDSS levels from Jick 2014 with differences between EDSS categories matched to Harding 2018
- SMRs calculated relative to EDSS 4 based on model simulation that showed highest % time spent in EDSS 4

EDSS	0	1	2	3	4	5	6	7	8	9
Jick 2014	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68	1.68
Harding for EDSS≥4 and Jick for										
EDSS<4	1.68	1.68	1.68	1.68	2.02	2.02	3.86	4.76	22.17	60.74
Jick/Harding mix SMR	1.40	1.40	1.40	1.40	1.68	1.68	3.21	3.96	18.44*	50.52*

*SMRs not in base case

Efficacy, costs, and utilities

Confirmed Disease Progression 6months (CDP6)

Annual Relapse Rate (ARR)

Serious Adverse Events (SAEs)

Adverse Events leading to Discontinuation (AEltD)

6

AELtD Treatments vs Natalizumab-IV

Health Related Quality of Life

UK MS Survey 2005

- RRMS utility by severity
- SPMS utility by severity
- Relapse disutility does not vary by severity

Miscellaneous sources

- SAEs disutilities
- Carer disutilities

Costs

- Annual Treatment acquisition Costs
- Re-treatment beyond years 1 &2 (% informed by clinical opinion)
- Annual Administration & Monitoring Costs
- Annual Treatment Health state costs by stratified by severity (EDSS)
- Relapse costs vary according to severity (Hospitalisation) but not EDSS

Implementation with DESCEM

Setting up & running the model in DESCEM (Warden)

- 2nd and 3rd line treatments
- Importing the data
- Setting Common inputs, deterministic, probabilistic (conditional on age, disease, severity):
 - Baseline characteristics, Natural History, Treatment effects, Mortality, Costs, Utilities
- Unique patient inputs are flags which tracked age, sex, disease type, progression, death, number of events (Treatments, Replaces, treatment switches,) and time (annually, spent in severity states, spent on treatment)
- Initial Events
- Reaction Events
- Discounting
- No of Simulations.

Results publicly available list prices

Validation – average time

	Natalizumab IV	Natalizumab SC	Natalizumab biosimilar	Average of all treatments				
Average time to event (years)								
Progression	10.32	10.37	10.42	10.36				
Relapse	10.91	11.01	10.96	10.92				
Average time spent on treatment (years)								
2 nd line	9.62	9.81	9.75	9.67				
3 rd line	2.59	2.55	2.7	2.66				
4 th line	1.1	1.1	1.22	1.11				

Validation – disease severity over time

■ Natalizumab IV ■ NatalizumabSC ■ Natalizumab biosimilar IV ■ All treaments

Validation - mortality

Incremental Costs and QALYs

- High degree of uncertainty
- Difficulty interpreting the results

Total costs	Total QALYs	Incremental Costs vs Natalizumab-IV	Incremental QALYs vs Natalizumab- IV	ICER
314,000 (271,332, 367,456)	9.11 (6.72, 11.35)	-	-	-
314,385 (272,890, 367,079)	9.12 (6.62, 11.28)	384 (-12,902, 14,361)	0.011 (-0.42, 0.42)	35,030
306,705 (264,904, 357,319)	9.00 (6.65, 11.20)	-7,295 (-21,979, 5,987)	-0.11 (-0.58, 0.34)	68,821
267,751 (231,533, 314,025)	9.01 (6.55, 11.22)	-46,249 (-108,949, -1,012)	-0.10 (-0.56, 0.36)	460,503
339,848 (294,768, 393,119)	9.08 (6.76, 11.27)	25,847 (15,594, 37,457)	-0.03 (-0.51, 0.41)	-857,053
329,510 (281,371, 387,638)	8.94 (6.43, 11.11)	15,509 (3,469, 30,475)	-0.17 (-0.77, 0.30)	-90,899
 341,567 (286,838, 406,773)	9.08 (6.69, 11.26)	27,567 (7,338, 53,607)	-0.025 (-0.47, 0.37)	-1,119,370

Incremental Net Benefits

- Preferred due to high uncertainly
- Less familiar to decision makers

Net Benefit £20,000 /QALY	Net Benefit £30,000 /QALY	Incremental Net Benefit £20,000 /QALY vs Natalizumab-IV	Incremental Net Benefit £30,000 /QALY vs Natalizumab-IV
-131,808 (-183,657, -90,700)	-40,712 (-107,342, 13,831)	-	-
-131,973 (-181,558, -89,274)	-40,767 (-106,749, 14,312)	-165 (-14,983, 13,741)	-55 (-17,007, 15,910)
-126,633 (-176,162, -86,945)	-36,597 (-96,754, 16,082)	5,175 (-10,437, 20,970)	4,115 (-13,996, 21,881)
-87,567 (-148,860, -34,473)	2,524 (-81,946, 72,046)	44,241 (-1,540, 109,189)	43,236 (-2,764, 109,436)
-158,259 (-209,061, -114,561)	-67,464 (-138,206, -11,243)	-26,450 (-39,882, -13,563)	-26,752 (-42,754, -11,095)
-150,730 (-204,786, -104,009)	-61,340 (-132,400, -2,091)	-18,922 (-36,581, -3,897)	-20,628 (-40,070, -2,563)
-159,868 (-216,480, -106,521)	-69,018 (-138,390, -2,917)	-28,060 (-51,876, -6,623)	-28,306 (-53,646, -4,532)

CEAC

Bristol Medical School

Learnings/Conclusions

Conclusions/Learnings

- Pros
 - DESCEM (Warden) is rapid way to build of a DES model
 - Workflow in R integrates well with other teams / GitHub
 - Transparent and well received by committee members
- Cons
 - Computationally intensive
 - In accessible non-R users
 - Was difficult to modularise

Q&A

- Bristol TAG https://www.bristol.ac.uk/population-health-sciences/centres/beam-centre/bristol-tag/
- MULTI NMA https://dmphillippo.github.io/multinma/
- Project https://www.nice.org.uk/guidance/indevelopment/gid-ta10977/
- WARDEN https://jsanchezalv.github.io/WARDEN/
- Detailed presentation to be given at Health Economic Bristol University Modelling Group (HEMBUG),
 please sign up to our mailing list by emailing ayman.sadek@bristol.ac.uk

This report was commissioned by the NIHR Evidence Synthesis Programme as project number NIHR 165943.

Discrete event simulation (DES)

- Individual patients characterised by their attributes
 - Can include demographics (age, gender), risk factors (EDSS severity), and event history (previous treatments, number of relapses)
- No cycle length as model is continuous time
- Computationally intensive as need (say) 1000 patients for each 1000 probabilistic model run
- But much greater flexibility to reflect treatment sequences, patient history and utilise new MS Registry analyses

Value of information analysis

Title

- Point 1
- Point 2