Electronique Partiel 2 – Mai 2011

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet

Nom: _____Classe:

Durée 1h30

Prénom:	
Exercice 1. Questions de cours (3 points)	
A. Donnez le schéma équivalent petits signaux d'un JFET Canal N, en précisant bi l'emplacement de chacune des bornes.	ien
G D.	

B. Quel est le principe de fonctionnement du Convertisseur Flash? De quel type de convertisseur s'agit-il?

ou compare la tension à convertir à des
tourism d 3 muso 11 /
tension atteinte ost celle du dernier "1" rencon
tension atteinte est celle du dernier "1" rencon toi (en sortie des comparateurs).
Il s'agit d'un convertissent anatogique.
nomi à pue.

Exercice 2. Portes logiques et électronique (4 points)

1. Quelles sont les différences entre les technologies TTL et CMOS?

2. Soit le montage suivant : De quelle fonction logique s'agit-il? Vous donnerez votre réponse sous la forme d'une équation en justifiant votre réponse.

Exercice 3. Amplificateur opérationnel (4 points)

On considère le montage suivant :

L'amplificateur opérationnel est supposé idéal et la tension sortie de l'AOP est limitée par la saturation aux valeurs extrêmes – V_{sat} et $+V_{sat}$.

La diode est supposée idéale (ddp nulle en sens direct).

1) Que vaut v_s si la diode est passante?

2) Que vaut v_s si la diode est bloquée?

3) A quelle condition (sur v_e) la diode est-elle bloquée?

da diode est bloquie si
$$V_D < 0$$
.

6r $V_D = V_{007} - V_S = V_{007} - V^T$ avec $V_{007} = \pm V_{Sat}$.

Pour pue $V_D < 0$, il faut pue $V_{007} = -V_{Sat}$ car, si D'est bloquies $N_S = 0$.

=> II faut donc pue $E < 0$

i.e. $V^+ = V^- < 0$.

i.e. $V^+ = V^- < 0$.

4) La tension v_e est un signal triangulaire symétrique de période T et d'amplitude 6V. Tracer $v_s=f(t)$ pour $0 \le t \le 2T$ sur le graphe ci-dessous représentant la tension $v_e(t)$.

Exercice 4. Conversion (4 points)

On considère le montage suivant :

- Les interrupteurs fonctionnent de la manière suivante :

 Si a_i = 0, l'interrupteur est connecté en position 0
 - Si a = 1, l'interrupteur est connecté en position 1.
 - 1) Donnez l'expression de V_S en fonction de a_0 , a_1 et V_{ref} .

Il y a retraction wegative
$$\Rightarrow$$
 2! ADP fonctionine en mode dividire \Rightarrow $E = 0$ \Rightarrow $V' = 0 = V'$

Appliphons le théorème de Villman au point A:

$$V_A = V' = \frac{\frac{V_S}{R} + \frac{V_B}{R} + \frac{V_{A_1}}{2R}}{\frac{1}{R} + \frac{1}{R} + \frac{1}{2R}} = 0.$$

Appliphons maintenant le théorème de Villman au point B:

$$V_B = \frac{\frac{O}{2R} + \frac{V_{AO}}{2R} + \frac{V_A}{R}}{\frac{1}{2R} + \frac{1}{2R}} = \frac{\frac{V_{AO}}{2R}}{\frac{1}{2R}} = \frac{V_{AO}}{4}$$

$$\Rightarrow V_S = -\left(\frac{V_{AO}}{4} + \frac{V_{A_1}}{2}\right). \quad \text{for } V_{A_1} = a_1 \cdot V_{ref}.$$

2) En généralisant l'expression obtenue précédemment, exprimer V_5 en fonction de V_{ref} et des a_i dans le cas du montage ci-dessous. Comment appelle-t-on ce type de montage ?

A la puestion précédente, on a trouvé:

$$V_s = -\frac{V_{ref}}{4} \left(\frac{1}{2} a_1 + a_0 \right) = -\frac{V_{ref}}{2^2} \left(\frac{1}{2} a_1 + 2^2 a_0 \right)$$

Soi généralisant, on trouve:

 $V_s = -\frac{V_{ref}}{2^n} \sum_{i=0}^{n} a_i \cdot 2^i$

Il s'agit d'un convertisseur nominque analogique

Exercice 5. Filtres actifs (4 points)

A l'enregistrement d'un disque, les sons graves sont atténués, et les sons aigus sont renforcés, pour une meilleure qualité de l'enregistrement. Par conséquent, à la reproduction, il faut accentuer les sons graves, et atténuer les aigus : c'est le rôle du filtre RIAA, dont on se propose d'étudier ici une réalisation. L'amplificateur opérationnel est supposé idéal.

Déterminez la fonction de transfert du filtre.

IT y a retwachon négative => l'App fouchouve en mode linéair =>
$$C=0$$
 => $V^+=V^-=0$.

Appliphous le théorème de Villman en A:

 $V_A = V^-=0 = \frac{V_C}{R_1} + \frac{V_B}{R_Z} + jC_\omega V_B$

=> $J_C = -R_1 V_B \left(\frac{1}{R_Z} + jC_\omega \omega \right)$.

Appliphous maintenant le théorème de Villman en B.

 $V_B = \frac{V_B}{R_Z} + jC_{S_Z}\omega + \frac{V_S}{R_Z}$
 $\frac{1}{R_Z} + jC_{S_Z}\omega + \frac{1}{R_Z}\omega + \frac{$

$$= \int_{R_{1}}^{R_{2}} \int_{R_{2}}^{R_{2}} \int_{R_{2}}^{R_{2}} \int_{R_{3}}^{R_{2}} \int_{R_{3}}^{R_{3}} \int_{R_{2}}^{R_{3}} \int_{R_{3}}^{R_{3}} \int_{R_{3}$$

Question Bonus (2 points)

On suppose qu'à l'instant t=0, le condensateur est déchargé et que $v_s=+V_{sat}$. Déterminer et tracer en fonction du temps les variations de v^- jusqu'au point de basculement du comparateur. Le comparateur ayant basculé, déterminer et tracer les nouvelles variations de v^- .

Montrer que le comparateur basculera de nouveau et que ce processus instable se répète indéfiniment.