

[4]

QUÍMICA BI-1

ESTRUCTURA ATÓMICA-PERIODICIDAD.30/03/23 MODELO BI.

NIODELO BI

MAY-2010

Dibuje y rotule un diagrama de niveles energéticos para el átomo de hidrógeno. En su diagrama
muestre como se producen las series de líneas en las regiones ultravioleta y visible de su espectro
de emisión Rotule claramente cada serie

No mark for (simple) molecular.

showing y-axis labelled as energy/E / labelling at least two energy levels; showing a minimum of four energy levels/lines with convergence; showing jumps to n=1 for ultraviolet series; showing jumps to n=2 for visible light series;

- Considere el enlace y la estructura de los elementos del periodo 3.
 - (a) Explique el aumento de punto de fusión del sodio al aluminio.
 as (cat)ion becomes more positive / Na⁺, Mg²⁺, Al³⁺ / size/radius decreases / charge density increases;
 Do not allow increasing number of protons or increasing nuclear charge.
 attraction for mobile/valence/delocalized/sea of electrons increases;
 Do not accept "cloud of electrons".

 (b) Explique por qué el punto de fusión del azufre, S₈, es mayor que el del fósforo, P₄.
 larger molecule / higher M₁/M / greater number of electrons;
 Do not accept "larger/higher/greater mass".
 (c) Explique por qué el punto de fusión del silicio es el mayor y el punto de fusión del argón es el menor.
 Si: giant/network/macromolecular/3-D covalent bonding;
 No mark for strong bonding without reference to covalent and network.
 No mark for molecular.
 Ar: (simple) atomic / (only weak) van der Waals'/dispersion/London forces;

4. Una propiedad importante de una mezcla de combustible de cohetes es la formación de un gran volumen de productos gaseosos lo que proporciona el empuje. La hidracina, N₂H₄, se usa con frecuencia como combustible de cohetes. La siguiente ecuación representa la combustión de la hidracina.

$$N_2H_4(g) + O_2(g) \rightarrow N_2(g) + 2H_2O(g)$$
 $\Delta H_4^{\Theta} = -585 \text{kJ mol}^{-1}$

(a) La hidracina reacciona con flúor para producir nitrógeno y fluoruro de hidrógeno, todo en estado gaseoso. Indique una ecuación para representar esta reacción.

$$N_2H_4(g) + 2F_2(g) \rightarrow N_2(g) + 4HF(g)$$

Award [1] for reactants and products.

Award [1] of this equation is correctly balanced.

Ignore state symbols.

(b) Dibuje las estructuras de Lewis de la hidracina y el nitrógeno.

Accept lines, dots and crosses to show electron pairs. Penalize missing lone pairs once only.

- La tabla periódica muestra la relación entre la configuración electrónica y las propiedades de los elementos y es una herramienta valiosa para hacer predicciones químicas.
 - (a) (i) Identifique la propiedad que se usa para distribuir los elementos en la tabla periódica.
 - (ii) Resuma dos razones por las que la electronegatividad aumenta a lo largo del periodo 3 de la tabla periódica y una razón por la que a los gases nobles no se les asignan valores de electronegatividad.
 - (b) (i) Defina el término energía de primera ionización de un átomo.
 - (ii) Explique la tendencia general del aumento que presentan los valores de energía de primera ionización de los elementos del periodo 3, desde el Na al Ar.
 - (iii) Explique por qué el sodio conduce la electricidad mientras que el fósforo no lo hace. [2]

(a) (i) atomic number / Z;
 Accept nuclear charge / number of protons.

[2]

[1]

[3]

[2]

ii) Across period 3: increasing number of protons / atomic number / Z / nuclear charge; (atomic) radius/size decreases / same shell/energy level / similar shielding/screening (from inner electrons); No mark for shielding/screening or shielding/screening increases.

Noble gases: do not form bonds (easily) / have a full/stable octet/shell/energy level / cannot attract more electrons;

Do not accept "inert" or "unreactive" without reference to limited ability/inability to form bonds or attract electrons.

 (i) energy/enthalpy change/required/needed to remove/knock out an electron (to form +1/uni-positive/M⁺¹ ion);

in the gaseous state;

Award [1] for $M(g) \rightarrow M^+(g) + e^-$.

Award [2] for $M(g) \rightarrow M^+(g) + e^-$ with reference to energy/enthalpy change.

- increasing number of protons/atomic number/Z/nuclear charge;
 atomic radii/size decreases / same shell/energy level / similar shielding/screening (from inner electrons);
 No mark for shielding/screening or shielding/screening increases.
- (iii) Na: delocalized electrons / mobile sea of electrons / sea of electrons free to move; No mark for just "mobile electrons".

MAY-2016

1. La fosfina	a (nombre IUPAC fosfano) es un hidruro de fósforo, de fórmula PH ₃ .	
(a) (i)	Dibuje una estructura de Lewis (representación de electrones mediante puntos) de la fosfina.	[1]
н—	P—H Aceptar estructuras con puntos y/o cruces para indicar los enlaces y/o pares solitarios. H	
(ii)	Resuma si espera que los enlaces en la fosfina sean polares o no polares, dando una razón breve.	[1]
no-pola	r YP e H tienen la misma electronegatividad ✔ · · · · · · · · · · · · · · · · · ·	
(iii)	Explique por qué la molécula de fosfina no es plana.	[2]
	«alrededor del átomo central» O un par de electrones libres/sin enlazar «y tres pares enlazados al rededor del átomo central» ✓ repulsión entre dominios electrónicos/pares electrónicos/centros de carga negativa «producen una forma no plana» O «repulsión causa» orientación tetraédrica/forma piramidal ✓	
(iv)	La masa molar de la fosfina es mucho mayor que la del amoníaco. Explique por qué el punto de ebullición de la fosfina es significativamente menor que el del amoníaco.	[2]
NH ₃ forma e enlaces/pue	erzas de London ∢dispersión» ✓ enlaces/puentes de H ✓ entes de H son más fuertes de London son más débiles ✓	
	a fosfina se prepara generalmente calentando fósforo blanco, uno de los alótropos del sforo, con hidróxido de sodio acuoso concentrado. La ecuación para la reacción es: P₄(s) + 3OH⁻(aq) + 3H₂O(l) → PH₃(g) + 3H₂PO₂⁻(aq)	
(i)	Identifique otro elemento que tenga alótropos y enumere dos de esos alótropos.	[2]
Elemen	to: carbono/C ✓ Adjudicar [1] por dos de: diamante grafito	
Alótrop	grafeno	
Alótrop	oxígeno/O/O₂ ✓ ozono Y «diatómico/molecular» oxígeno/O₂ ✓	

 (ii) El primer reactivo está escrito como P₄, no como 4P. Describa la diferencia entre P₄ y 4P. 	re [1]
el P ₄ es una molécula «tormada por 4 átomos de P» Y 4P es cuatro átomos de «P» / separados	
P₄ representa « 4P » 4 átomos de P unidos/enlazados Y 4P representa « 4 » átomos de « P » separados/no enlazados ✓	
(iv) Indique el estado de oxidación del fósforo en el P ₄ y en el H ₂ PO ₂ ⁻ .	[2]
P ₄ : 0	
H ₂ PO ₂ -: +1	
 Los alquenos se usan ampliamente para la producción de polímeros. El compuesto A se muestra abajo, se usa para la fabricación de goma sintética. (ii) Indique la estructura del núcleo y el diagrama orbital del ¹³C en su estado fundamental. 	
Nº de protones 6 Nº de neutrones 7 Diagrama orbital 1 1 1 1 1s 2s 2p	
(d) Dibuje un orbital atómico 1s y un orbital atómico 2p. [1	1]
1s: 2p:	
	J