Let's play Fairy Chess!

You have an $n \times n$ chessboard. An s-leaper is a chess piece which can move from some square (x_0, y_0) to some square (x_1, y_1) if $abs(x_0 - x_1) + abs(y_0 - y_1) \le s$; however, its movements are restricted to $up(\uparrow)$, $down(\downarrow)$, $left(\leftarrow)$, and $right(\rightarrow)$ within the confines of the chessboard, meaning that diagonal moves are not allowed. In addition, the leaper cannot leap to any square that is occupied by a pawn.

Given the layout of the chessboard, can you determine the number of ways a leaper can move m times within the chessboard?

Note: abs(x) refers to the absolute value of some integer, x.

Input Format

The first line contains an integer, q, denoting the number of queries. Each query is described as follows:

- 1. The first line contains three space-separated integers denoting n, m, and s, respectively.
- 2. Each line i of the n subsequent lines contains n characters. The j^{th} character in the i^{th} line describes the contents of square (i, j) according to the following key:
 - . indicates the location is *empty*.
 - P indicates the location is occupied by a pawn.
 - L indicates the location of the *leaper*.

Constraints

- $1 \le q \le 10$
- $1 \le m \le 200$
- There will be exactly one L character on the chessboard.
- The **s**-leaper can move $up(\uparrow)$, $down(\downarrow)$, $left(\leftarrow)$, and $right(\rightarrow)$ within the confines of the chessboard. It cannot move diagonally.

Output Format

For each query, print the number of ways the leaper can make m moves on a new line. Because this value can be quite large, your answer must be modulo $10^9 + 7$.

Sample Input 0

```
3
4 1 1
....
.P..
3 2 1
...
...
4 3 2
....
...L
```

Sample Output 0

4 11 385

Explanation 0

You must perform two queries, outlined below. The *green* cells denote a cell that was leaped to by the leaper, and coordinates are defined as (*row*, *column*).

1. The leaper can leap to the following locations:

	$(1, 1) \rightarrow (1, 1)$					$(1, 1) \rightarrow (1, 0)$					$(1, 1) \rightarrow (0, 1)$						$(1, 1) \rightarrow (1, 2)$					
	0	1	2	3			0	1	2	3		0	1	2	3			0	1	2	3	
0						0					0						0					
1		L				1		L			1		L				1		L			
2		Р				2		P			2		P				2		P			
3						3					3						3					

Observe that the leaper cannot leap to the square directly underneath it because it's occupied by a pawn. Thus, there are $\bf 4$ ways to make $\bf 1$ move and we print $\bf 4$ on a new line.

2. The leaper can leap to the following locations:

Thus, we print **11** on a new line.

Note: Don't forget that your answer must be modulo $10^9 + 7$.