Homework 4

Due: 8:00pm (PDT) Thursday, October 27th, 2022 Please provide all the requested plots.

- 1. Let $\{Z_k\}$ be an i.i.d. random process with Z_k uniformly distributed over [-1,1]. For each of the following random processes $\{X_k\}$, plot 100 sample paths for the corresponding partial sum sequence $\{S_k\}$ for $1 \le k \le 1000$. Conjecture, and theoretically prove whether the corresponding partial sum sequence converges or not. Explain your answer.
 - (a) $X_k = \frac{Z_k}{k}$.
 - (b) $X_k = \frac{Z_k}{k^{0.7}}$.
 - (c) $X_k = \frac{Z_k}{k^{0.5}}$.
- 2. Consider the independent random process $\{X_k\}$ that takes values k^2 or 0 with the probabilities

$$P(X_k = k^2) = \frac{1}{k^2}$$
, and

$$P(X_k = 0) = 1 - \frac{1}{k^2}.$$

Fix threshold a = 1. For each $k \ge 1$:

- (a) Determine $P(|X_k| \ge a)$.
- (b) Determine $\mathbb{E}[X_k 1_{\{|X_k| \leq a\}}]$.
- (c) Determine $\operatorname{Var}[X_k 1_{\{|X_k| \leq a\}}]$.
- (d) Using these series, determine whether $\sum_{k=1}^{\infty} X_k$ converges a.s. or not.
- 3. Problem 3.8 of Prof. Kim's notes.
- 4. Problem 5.7 of Prof. Kim's notes.
- 5. Consider the function

$$f(\alpha) = p \log(1 + \alpha) + (1 - p) \log(1 - \alpha),$$

where p is a constant with $0.5 . Show that there exists an <math>\alpha^* \in [0,1]$ such that $f(\alpha^*) > 0$,