Automated Answer Paper Evaluation System

Team No. 16

Name	Roll number	
Pranav T N	46	
Rahul Mohanan A K	47	
Sourabh Subhod	53	
Vishal V	59	

S7 CSE (2016 Batch) Guide: Prof. Sajith B

July 13, 2020

Outline

- Introduction
- Motivation
- System Architecture
 - Handwritten Text Recognition Module
 - Classifier Architecture
- 4 System Design
 - Flow Chart
 - Data Flow Diagram Level 0
 - Data Flow Diagram Level 1
- Detailed Design
 - Use Case Diagram
 - Class Diagram
 - Sequence Diagram
 - Activity Diagram
- 6 Results
- Conclusion

Introduction

- A GUI for teachers and students.
- A handwriting recognition system based on a CNN-LSTM architecture used for digital conversion of answer paper.
- A NLP model used for semantic evaluation of digital answer paper using provided answer key.
- Publish results to students

Motivation

- Manual evaluation time consuming.
- Automated system preferred for fast evaluation.
- Manual evaluation can cause inconsistent results.
- Students need to pay extra fees for answer script copies.
- Delay of results for final year students

System Architecture

HTR Model

Classifier Architecture

Type	Description	Output
Input	gray-value line-image	$800 \times 64 \times 1$
Conv+Pool	kernel 5×5 , pool 2×2	400 x 32 x 64
Conv+Pool	kernel 5×5 , pool 1×2	400 x 16 x 128
Conv+Pool+BN	kernel 3×3 , pool 2×2	200 x 8 x 128
Conv	kernel 3×3	200 x 8 x 256
Conv+Pool	kernel 3×3 , pool 2×2	100 x 4 x 256
Conv+Pool+BN	kernel 3×3 , pool 1×2	100 x 2 x 512
Conv+Pool	kernel 3×3 , pool 1×2	100 x 1 x 512
Collapse	remove dimension	100×512
Project	project onto 80 classes	100×80
CTC	decode or loss	≤ 100

Flow Chart

Data Flow Diagram - Level 0

Figure: Data Flow Diagram Level 0

Data Flow Diagram - Level 1

Use Case Diagram

Class Diagram

Sequence Diagram

Activity Diagram

Figure: Login Page

Figure: Upload Page

Figure: Result Page


```
A. Machine Learning is the study of computer algorithms
that improve automatically through experience.
```

Figure: Input image

A. Machine Learning is the study of computer algorithms that improve automatically through experience.

Figure: Input image after horizontal lines are removed

A. Machine Learning is the study of computer algorithms that improve automatically through experience.

Figure: Input image after line segmentation

```
Init with stored values from ../model/snapshot-24
WWRING:tensorPlow:From C:Uksers\NhefirstPeiddevUtr\crcVbdel.py:47: The name tf.summary.scalar is deprecated. Please use tf.compat.vi.summary.scalar instead.
WWRING:tensorPlow:From C:Uksers\NhefirstPeiddevUtr\crcVbdel.py:48: The name tf.summary.FileWriter is deprecated. Please use tf.compat.vi.summary.FileWriter instead.
WWRING:tensorPlow:From C:Uksers\NhefirstPeiddevUtr\srcVbdel.py:58: The name tf.summary.merge is deprecated. Please use tf.compat.vi.summary.merge instead.
Without correction:
A. Nachine Learning is the study of computer algoritms
that improve antomatically through experiene:
A. Nachine Learning is the study of computer algoritms
that improve antomatically through experiene:
A. Nachine Learning is the study of computer algoritms
that improve automatically through experiene:
```

Figure: Prediction with and without correction

Figure: Semantic analaysis from HTR result

Figure: A false positive evaluation

Conclusion

- We presented a method to recognize handwritten texts using a system based on CNN-LSTM model widely applied to transcribe isolated text lines.
- A GUI was provided for teachers and students.
- A CER of 8.57% was obtained.
- The WER was relatively high as seen from results.
- Semantic analysis was done on a word-word comparison.
- This lead to false postives. Need to improve this in the future.

Thank You

