DATA 88: Economic Models

(Due: 03/02/2020)

Homework 4

Instructors: Alan Liang, Eric Van Dusen

Please read all the instructions below carefully before you start working on the assignment.

- Please typeset your submissions in \LaTeX and submit your assignment as a PDF document. Use the template provided for your answers. Please include your name with you submission.
- This assignment is due at 11:59 pm on Monday, March 2nd.
- Please submit your assignment on Gradescope. Make sure to assign all questions to the corresponding page(s) of your assignment, or else it will not be graded.

Problem 1: Budget Constraints

Eric has an income of 24 dollars and he can buy either vegemite, which costs 4 dollars, or boomerangs, which cost 8 dollars.

Question 1.1

What is Eric's budget constraint? Make sure to use IATEX.

Question 1.2

- 1. Can Eric afford to buy 1 boomerang and 2 vegemite?
- 2. What about 1 boomerang and 4 vegemite?
- 3. What about 2 boomerangs and 4 vegemite?
- 4. Which consumption bundle would Eric choose, and why?

Question 1.3

Vegemite has now decreased to 3 dollars, while boomerangs remain at 8 dollars. If the quantity of vegemite was on the x-axis and the quantity of boomerangs was on the y-axis, what will happen to the slope and intercepts?

Question 1.4

What will happen to the slope and intercepts if Eric's income increases to 32 dollars, while the price of vegemite and boomerangs stay the same at 4 and 8 dollars respectively?

Problem 2: Marginal Utility

Consider the utility function:

$$u(x_1, x_2) = x_1 + x_2$$

Question 2.1

What is the marginal utility function with respect to x_1 ? What is the marginal utility function with respect to x_2 ?

Question 2.2

Given your results in (a), what is significant about this utility function?

Problem 3: Perfect Complements

Consider the utility function:

$$u(x_1, x_2) = \min(x_1, x_2)$$

In other words, the function simply outputs the minimum between x_1 and x_2 . Note that this function is not directly differentiable, so its marginal utility functions are not straightforward. Nonetheless, we will examine consumer utility-optimization behavior in this problem.

Note: For the drawing portions of this question, please include this as part of your ET_EX submission. To learn more about how to include images in ET_EX , check out this link. If you complete the graphs without scanning or taking a photograph (i.e. digitally), **you will receive 1 bonus point**. Check out draw.io to draw simple diagrams; if you have an iPad, using a drawing/notetaking app is OK as well.

Question 3.1

Draw out the indifference curves for this utility function.

Question 3.2

Assume that x_1 and x_2 have the same price, and you have the ability to purchase one more unit of x_1 or x_2 . If you currently consume 5 units x_1 and 3 units of x_2 , which good would you purchase? Why?

Question 3.3

Why is this function known as the perfect complements function? (hint)

Question 3.4

Add a budget constraint to your indifference curve(s) from part a). Assume that x_1 and x_2 have the same price.

Question 3.5

At which point on the utility curve will individuals tend to choose as their optimal consumption bundle?