1. Dado o gráfico de uma função f, obtenha o gráfico das seguintes transformações de f:

(a)
$$y = f(x - 2)$$

(b)
$$y = f(x) - 2$$

(c)
$$y = 2f(x)$$

(d)
$$y = -f(x) + 3$$

(e)
$$y = f(-x)$$

(a)
$$y = f(x - 2)$$
 (b) $y = f(x) - 2$ (c) $y = 2f(x)$ (d) $y = -f(x) + 3$ (e) $y = f(-x)$ (f) $y = \frac{1}{2}f(x - 1)$

2. Classifique as funções abaixo como pares, ímpares ou nenhum dos casos:

Verifique se as funções abaixo são pares, ímpares ou nenhum destes casos. Justifique sua resposta:

a)
$$f(x) = x^4$$

b)
$$f(x) = x^3 - x$$

c)
$$f(x) = x + \frac{1}{x}$$

d)
$$f(x) = 1 - \sqrt[3]{x}$$

4. Em cada caso, complete o gráfico de f de modo que f seja uma (a) função par (b) ímpar

5. Use o gráfico de f e g para obter o valor de:

f(g(2)) $(g \circ f)(4)$ $(g \circ g)(-2)$ g(f(0)) $(f \circ g)(0)$ $(f \circ f)(4)$

6. Use a tabela para obter o valor de:

x	1	2	3	4	5	6
f(x)	2	3	5	1	6	3
g(x)	3	5	6	2	1	4

f(g(2))	g(f(2))
f(f(1))	g(g(2))
$(f \circ g)(6)$	$g(g(2))$ $(g \circ f)(2)$ $(g \circ g)(2)$
$(f \circ f)(5)$	$(g \circ g)(2)$
	12 2717

7. Encontre as funções $f\circ g$, $g\circ f$, $f\circ f$ e $g\circ g$, e seus domínios:

a)
$$f(x) = \frac{1}{x}$$
, $g(x) = 2x + 4$

b)
$$f(x) = x^2$$
, $g(x) = \sqrt{x-3}$

c)
$$f(x) = \frac{1}{\sqrt{x}}$$
, $g(x) = x^2 - 4x$

d)
$$f(x) = x - 4$$
, $g(x) = |x + 4|$

8. A função f , representada graficamente ao lado, admite inversa? Se admitir, determine $f^{-1}(1)=$ _____ e $f^{-1}(3)=$ _____

9. Verifique se f é injetora em cada um dos casos:

10. Encontre os valores indicados usando a tabela:

							$f^{-1}(5)$	$f^{-1}(0)$
	1	2	2	4	_	_	J (2)	J (0)
x	1		3	4	3	0	$f^{-1}(f(1))$	$f(f^{-1}(6))$
							3 (3(-1)	J(J (0))
f(x)	4	6	2	5	0	1	$f^{-1}(f^{-1}(1))$	$f^{-1}(f^{-1}(0))$
							- 1, 1, 1,	0 (0 ())

11. Use o gráfico de f para traçar o gráfico de f^{-1} :

12. Determine a inversa das funções abaixo:

$$f(x) = 5 - 4x^3$$

c)
$$f(x) = \frac{x}{x + 4}$$

e)
$$f(x) = 4 - x^2$$
, $x \ge 0$

$$f(x) = 5 - 4x^3$$
 c) $f(x) = \frac{x}{x+4}$ e) $f(x) = 4 - x^2$, $x \ge 0$ g) $f(x) = \sqrt{4 - x^2}$, $0 \le x \le 2$

$$f(x) = \frac{1}{x+2}$$

$$f(x) = \frac{1}{x+2}$$
 d) $f(x) = \frac{2x+5}{x-7}$ f) $f(x) = \sqrt{5+8x}$

$$f(x) = \sqrt{5 + 8x}$$

13.

Considere as funções f(x)=x+2, g(x)=x+3, h(x)=|x| e F(x)=f(x)g(x). Encor todos os valores de $x\in\Re$ que satisfazem a inequação

14.

$$(h\circ F)(x)<(h(x))^2-6.$$

. Considere as funções $g(x) = x^2 - 1 + |x - 1|$ e $h(x) = \frac{1}{x-2}$.

- (a) A função g é uma função par, ímpar ou nem par nem ímpar? Justifique com argumentos consistentes.
- (b) Determine o conjunto solução da inequação $g(x-1)h(x) < h^{-1}(\frac{1}{3})$.

Algumas respostas:

1.

2. ímpar; nem par, nem ímpar; par; ímpar.

3. par ; ímpar; ímpar; nem par nem ímpar

4.

5. a)
$$f(g(2))=4$$
 b) 5 c)4 d)3

f) -2

e)0

6.

f(g(2))	g(f(2))
f(f(1))	g(g(2))
$(f \circ g)(6)$	$(g \circ f)(2)$
$(f \circ f)(5)$	$(g \circ g)(2)$
Respostas da coluna	Respostas da coluna
acima:	acima:
a) 6	a) 6
b) 3	b) 1
c) 1	c) 6

7.

a) $f(g(x)) = \frac{1}{2x+4}; \text{ Dom: } \mathbb{R} - \{-2\}$ $g(f(x)) = \frac{2}{x} + 4; \text{ Dom: } \mathbb{R}^*$ $f(f(x)) = x, \text{ Dom: } \mathbb{R}^*$ $g(g(x)) = 4x + 12; \text{ Dom: } \mathbb{R}$	b) $(g(x)) = x - 3$; $Dom: [3, +\infty)$ $g(f(x)) = \sqrt{x^2 - 3}$; $(-\infty, -\sqrt{3}] \cup [\sqrt{3}, +\infty)$ $f(f(x)) = x^4$, $Dom: \mathbb{R}$ $g(g(x)) = \sqrt{\sqrt{x - 3} - 3}$; $Dom: [12, +\infty)$
c) $f(g(x)) = \frac{1}{\sqrt{x^2 - 4x}}$; Dom: $(-\infty, 0) \cup (4, +\infty)$	d) $f(g(x)) = x + 4 - 4$; Dom: \mathbb{R}
$g(f(x)) = \frac{1}{x} - \frac{4}{\sqrt{x}}$; Dom: $(0, +\infty)$	$g(f(x)) = x $; Dom: \mathbb{R}
$f(f(x)) = \sqrt[4]{x}$, Dom: $(0, +\infty)$	$f(f(x)) = x - 8$, Dom: \mathbb{R}
$g(g(x)) = x^4 - 8x^3 + 12x^2 + 16x$; Dom: \mathbb{R}	$g(g(x)) = x + 8 $; Dom: \mathbb{R}

8.
$$f^{-1}(1) = 4 e f^{-1}(3) = 5$$

9. Injetora no 1º e 4º gráficos

10.

$f^{-1}(5)$	=4	$f^{-1}(0)$	=5
$f^{-1}(f(1))$	=1	$f(f^{-1}(6))$	=6
$f^{-1}(f^{-1}(1))$	=2	$f^{-1}(f^{-1}(0))$	=4

11.

12.

a)
$$f^{-1}: \mathbb{R} \to \mathbb{R} \ tal \ que \ f^{-1}(x) = \sqrt[5]{\frac{5-x}{4}}$$

b)
$$f^{-1}: \mathbb{R} - \{0\} \to \mathbb{R} - \{-2\} \ tal \ que \ f^{-1}(x) = \frac{1-2}{x}$$

b)
$$f^{-1}: \mathbb{R} - \{0\} \to \mathbb{R} - \{-2\} \ tal \ que \ f^{-1}(x) = \frac{1-2x}{x}$$

c) $f^{-1}: \mathbb{R} - \{1\} \to \mathbb{R} - \{-4\} \ tal \ que \ f^{-1}(x) = \frac{-4x}{x-1}$
d) $f^{-1}: \mathbb{R} - \{2\} \to \mathbb{R} - \{7\} \ tal \ que \ f^{-1}(x) = \frac{7x+5}{x-2}$
e) $f^{-1}: (-\infty, 4] \to \mathbb{R} - \{0\} \ tal \ que \ f^{-1}(x) = \sqrt{4-x}$

d)
$$f^{-1}: \mathbb{R} - \{2\} \to \mathbb{R} - \{7\} \ tal \ que \ f^{-1}(x) = \frac{7x+5}{x-3}$$

e)
$$f^{-1}: (-\infty, 4] \to \mathbb{R} - \{0\} \ tal \ que \ f^{-1}(x) = \sqrt{4 - x}$$

f)
$$f^{-1}:[0,+\infty) \to (-\frac{5}{8},+\infty] \ tal \ que \ f^{-1}(x) = \frac{x^2-5}{8}$$

g) $f^{-1}:[0,2] \to [0,2] \ tal \ que \ f^{-1}(x) = \sqrt{4-x^2}$

g)
$$f^{-1}:[0,2] \to [0,2]$$
 tal que $f^{-1}(x) = \sqrt{4-x^2}$

13. A designaldade acima fica reescrita na forma: $|x^2 + 5x + 6| < x^2 - 6$

$$S=(-\infty,-\frac{5}{2})$$

14. a) Nem par, nem ímpar b)
$$S = (-\infty, 4) - \{2\}$$