Homework #8 of「類比積體電路導論」

作業繳交截止日期:Dec. 12, 2024 12:00 (上傳E3數位平台繳交)

本次作業共兩大題, 8.1~8.3

請將作業轉成一個 PDF 檔案(file size 小於 10MB),檔名請使用「AIC_HW8_自己的學號」(例如: AIC_HW8_109700018),於作業繳交截止日期/時間前,上傳到指定的E3 數位平台繳交。

Unless otherwise stated, in the following problems, use the device data shown in Table 1 and assume that VDD=3V. The Dielectric constant of gate oxide is 3.9 and $\varepsilon o=8.854\times 10^{-12} F/m$.

Table 1. Level 1 SPICE models for NMOS and PMOS devices.

NMOS Model			
LEVEL = 1 NSUB = 9e+14	VTO = 0.7 LD = 0.08e - 6	GAMMA = 0.45 UO = 350	PHI = 0.9 LAMBDA = 0.1
TOX = 9e-9	PB = 0.9	CJ = 0.56e - 3	CJSW = 0.35e-11
MJ = 0.45 PMOS Model	MJSW = 0.2	CGDO = 0.4e - 9	JS = 1.0e-8
LEVEL = 1	VTO = -0.8	GAMMA = 0.4	PHI = 0.8
NSUB = 5e+14	LD = 0.09e - 6	UO = 100	LAMBDA = 0.2
TOX = 9e-9 MJ = 0.5	PB = 0.9 $MJSW = 0.3$	CJ = 0.94e - 3 CGDO = 0.3e - 9	CJSW = 0.32e-11 JS = 0.5e-8

VTO: threshold voltage with zero V_{SB} (unit: V)

GAMMA: body-effect coefficient (unit: V1/2)

PHI: $2\Phi_F$ (unit: V)

TOX: gate-oxide thickness (unit: m)

NSUB: substrate doping (unit: cm⁻³)

LD: source/drain side diffusion (unit: m)

UO: channel mobility (unit: cm²/V/s)

LAMBDA: channel-length modulation coefficient (unit: V-1)

CJ: source/drain bottom-plate junction capacitance per unit area (unit: F/m²)

CJSW: source/drain sidewall junction capacitance per unit length (unit: F/m)

PB: source/drain junction built-in potential (unit: V)

MJ: exponent in CJ equation (unitless)

MJSW: exponent in CJSW equation (unitless)

CGDO: gate-drain overlap capacitance per unit width (unit: F/m)

CGSO: gate-source overlap capacitance per unit width (unit: F/m)

JS: source/drain leakage current per unit area (unit: A/m²)

- 8.1 A feedback amplifier has a loop gain of 100 and two poles at ω_{p1} and ω_{p2} . For ω_{p1} =1 MHz. (Hint: can use Bode plot)
 - (a) Calculate the unit gain frequency if $\omega_{p2} = 2\omega_{p1}$.
 - (b) Calculate the phase margin if $\omega_{p2} = 3\omega_{p1}$.
- 8.2 Consider the amplifier of Fig. 1, where (W/L)1-4=50/0.5 and $I_{SS}=I_1=0.5$ mA. Assume that $C_X=C_Y=1$ pF and all the transistor capacitances can be neglected.
 - (a) Estimate the poles at nodes X and Y by multiplying the small-signal resistance and capacitance to ground.
 - (b) What is the phase margin for unity-gain feedback?
 - (c) Depict the Bode plot. Specify the low-frequency gain, the frequency of pole X, the frequency of Pole Y and the unit-gain frequency.
 - (d) What is the maximum tolerable value of C_Y that yields a phase margin of 60° for unity-gain feedback?

Fig. 1

8.3 For the circuit shown in Fig.2.

Fig. 2

- (a) Find the zero of the circuit and express it in terms of a function.
- (b) How will this zero affect the phase margin if Rz=0? Explain it.
- (c) What value can we choose for Rz to eliminate the zero?