Análisis de datos con Métodos Bayesianos

Instituto Bayesiano para la Investigación en Desarrollo (BayesGroup.org)

Rolando Gonzales rgonzales@bayesgroup.org

16 de octubre de 2015

Contenido del curso

Este es un curso corto e introductorio sobre Análisis de datos con métodos Bayesianos.

- Un poco de historia como introducción al curso.
- Homogeneización.
- Introducción a la inferencia Bayesiana.
- Introducción a la econometría Bayesiana.
- Aplicaciones.

Ejercicios prácticos con datos del anuario estadístico del municipio de La Paz 2013 y otros datos relevantes.

Inferencia

- Hasta el momento hablamos abstractamente de "eventos", en lugar de datos convencionales.
- La Inferencia implica realizar afirmaciones probabilísticas acerca de cantidades desconocidas utilizando los datos disponibles (y otra información disponible).
- Sea θ un parámetro que es el objetivo del análisis, y \mathbf{D} los datos que tenemos disponibles. El objetivo de la inferencia es obtener una afirmación probabilística acerca de θ dados los datos \mathbf{D} : $\mathbb{P}(\theta|\mathbf{D})$.

Inferencia

- La inferencia comienza (usualmente) especificando un modelo paramétrico para los datos a partir de una distribución de probabilidad, $\mathbb{P}(\mathbf{D}|\theta)$.
- Si formalizamos nuestro conocimiento previo sobre θ con $\mathbb{P}(\theta)$, antes de observar los datos, es posible inferir \mathbf{D} : $\mathbb{P}(\theta|\mathbf{D})$ con,

$$\mathbb{P}(\theta|\mathbf{D}) \propto \mathbb{P}(\theta)\mathbb{P}(\mathbf{D}|\theta).$$

En inferencia bayesiana, $\mathbb{P}(\theta|\mathbf{D})$ se denomina la probabilidad *a posteriori* o posterior, dada la evidencia de los datos contenida en $\mathbb{P}(\mathbf{D}|\theta)$ y el prior, o distribución de probabilidad *a priori*, $\mathbb{P}(\theta)$.

Estimación

La estimación es el proceso de extraer información acerca del valor de cierto parámetro poblacional a partir de la muestra $x_1,...,x_n$, utilizando algún estadígrafo como estimador, calculado con los datos $x_1,...,x_n$.

Estadígrafo.

Considérese que se obtiene una muestra de tamaño n de una población. Un estadígrafo es una función que se obtiene utilizando como datos las observaciones de la muestra $x_1, ..., x_n$.

Los Bayesianos describimos $\mathbb{P}(\theta|\mathbf{D})$ a través estadígrafos de resumen como medias, modas, fractiles, intervalos de credibilidad (probabilidades entre regiones) y gráficos. Toda la información que se necesita para hacer inferencia se obtiene al calcular $\mathbb{P}(\theta|\mathbf{D})$.

Una medida común de estimación puntual es,

$$\mathbb{E}[\theta|\mathbf{D}] = \int_{-\infty}^{\infty} \theta \mathbb{P}(\theta|\mathbf{D}) d\theta.$$

El problema con la estimación puntual de los momentos posteriores es que puede no describir apropiadamente las características de la distribución de $\mathbb{P}(\theta|\mathbf{D})$, por lo que es necesario complementar estas medidas puntuales con medidas interválicas, i.e. intervalos de credibilidad Bayesianos.

Intervalos de credibilidad

Sea $\mathcal C$ un subconjunto del espacio paramétrico Θ , tal que un $100(1-\alpha)\,\%$ intervalo de credibilidad de colas iguales cumple la condición,

$$1 - \alpha = \int_{\mathcal{C}} \mathbb{P}(\theta|\mathbf{D}) d\theta.$$

Los intervalos de credibilidad no son iguales a los intervalos de confianza frecuentistas (los intervalos de confianza frecuentistas cubren al "verdadero" parámetro a través de una $1-\alpha$ proporción de las replicaciones en el experimento, en promedio).

Los intervalos de credibilidad se generalizan a conjuntos de credibilidad para distribuciones multidimensionales.

El conjuto $\mathcal C$ puede definirse en diferentes maneras para cubrir diferentes partes de Θ y aún cumplir la definición de intervalos de credibilidad.

Una decisión sencilla y común es escoger α para que la $\frac{\alpha}{2}$ densidad quede igualmente distribuida en las colas derecha e izquierda de la distribución, afuera del intervalo de credibilidad:

$$\frac{\alpha}{2} = \int_0^L \mathbb{P}(\theta|\mathbf{D})d\theta,$$

$$\frac{\alpha}{2} = \int_{H}^{\infty} \mathbb{P}(\theta|\mathbf{D}) d\theta.$$

- La distribución de probabilidad de una variable contiene un parámetro θ que se quiere estimar
- El parámetro puede tomar valores de un conjunto llamado espacio paramétrico Θ
- La información sobre θ es la proporcionada por una muestra aleatoria de tamaño n, $\mathbf{x}=(x_1,...,x_n)$. Sea $\mathbb{P}(\mathbf{x}|\theta)$ la probabilidad de extraer la muestra \mathbf{x} cuando θ toma un valor en Θ , i.e. una muestra concreta corresponde a un valor concreto de θ . Supóngase sin embargo que, dada una muestra $\mathbf{x}=(x_1,...,x_n)$, lo que se requiere es recuperar el valor más plausible de θ que podría haber generado la muestra, $\mathbb{P}(\mathbf{x}|\theta)$ es inadecuado y es necesario definir un nuevo concepto: la verosomilitud (likelihood).

- La función $\mathcal{L}(\theta|\mathbf{x})$ –denominada función de verosimilitud– es una cantidad matemática que expresa la verosomilitud, plausibilidad, de que el parámetro θ tome un valor concreto en base a la información contenida en la muestra $\mathbf{x}=(x_1,...,x_n)$
- En la función de verosimilitud $\mathcal{L}(\theta|\mathbf{x})$, la muestra permanece constante, y θ varía en el espacio paramétrico Θ . Situación contraria a $\mathbb{P}(\mathbf{x}|\theta)$, ya que en este caso, θ permanece constante y lo que se compara son los posibles sucesos $\mathbf{x}_1, \mathbf{x}_2...$ para el mismo valor de θ .

Sea una variable aleatoria ξ con una función de densidad $f(x;\theta)$. Si se toma una muestra de tamaño $n, x_1, ..., x_n$, la función de densidad conjunta de la muestra será,

$$f(x_1,...,x_n;\theta) = f(x_1;\theta) \cdots f(x_n;\theta)$$

esta función de densidad conjunta será la función de verosimilitud muestral,

$$\mathcal{L}(\theta|\mathbf{x}) := f(x_1;\theta) \cdots f(x_n;\theta)$$

La elección del estimador $\widehat{\theta}$ entre los posibles valores que puede tomar el parámetro θ se sgue el criterio de elegir aquel $\widehat{\theta}$ tal que,

$$\mathcal{L}(\widehat{\theta}|\mathbf{x}) = \underset{\theta \in \Theta}{\text{máx}} \mathcal{L}(\theta|\mathbf{x})$$

Ya que en general la función de verosimilitud es complicada, para mayor sencillez se calcula el valor de θ en su logaritmo,

$$\ln \mathcal{L}(\widehat{\theta}|\mathbf{x}) = \max_{\theta \in \Theta} \ln \mathcal{L}(\theta|\mathbf{x})$$

$$\ln \mathcal{L}(\theta|\mathbf{x}) = \ln f(x_1;\theta) + \dots + \ln f(x_n;\theta) = \sum_{i=1}^n \ln f(x_i;\theta)$$

Una vez hallado el logaritmo se deriva respecto a θ ,

$$\frac{\partial \ln \mathcal{L}(\theta|\mathbf{x})}{\partial \theta} = \sum_{i=1}^{n} \frac{\partial \ln f(x_i; \theta)}{\partial \theta} = 0$$

La solución $\widehat{\theta} = \widehat{\theta}(\mathbf{x})$, únicamente función de los elementos muestrales, será el estimador máximo-verosímil del parámetro de interés, \mathbf{x} , \mathbf{x} , \mathbf{x}

Sean una muestra i.i.d. $x:=\{x_t\}_{t=1}^m=x_1,...,x_m$, si $x\sim \mathcal{N}(\mu,\sigma^2)$, la función de verosimilitud $\mathcal{L}\left(\mu,\sigma^2\right)$ será,

$$\mathcal{L}(\mu, \sigma^2) = f(x_1, ..., x_m | \mu, \sigma^2)$$

$$= \prod_{i=1}^m f(x_i | \mu, \sigma^2)$$

$$= \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left(-\frac{\sum_{i=1}^m (x_i - \mu)^2}{2\sigma^2}\right)$$

 $\mathcal{L}(\mu, \sigma^2)$ puede escribirse en función de \overline{x} ,

$$\mathcal{L}\left(\mu, \sigma^{2}\right) = \left(\frac{1}{2\pi\sigma^{2}}\right)^{n/2} \exp\left(-\frac{\sum_{i=1}^{m} (x_{i} - \overline{x})^{2} + m(\overline{x} - \mu)^{2}}{2\sigma^{2}}\right).$$

Si se aplica logaritmos a $\mathcal{L}\left(\mu,\sigma^2\right)$ y se maximiza derivando respecto al parámetro de interés μ e igualando a cero:

$$\frac{\partial}{\partial \mu} \log \left(\frac{1}{2\pi\sigma^2} \right)^{n/2} \exp \left(-\frac{\sum_{i=1}^m (x_i - \overline{x})^2 + m(\overline{x} - \mu)^2}{2\sigma^2} \right) = 0$$

se tendrá el estimador máximo verosimil,

$$\widehat{\mu} = \overline{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$$

Estimación puntual del primer momento: enfoque Bayesiano

Sea nuevamente una muestra i.i.d. $x_1,...,x_m$ con $x \sim \mathcal{N}(\mu,\sigma^2)$. Por simpleza, asúmase que se conoce σ_0^2 y el parámetro de interés a estimar es μ .

En inferencia Bayesiana, los parámetros no son cantidades fijas, sino variables aleatorias que siguen una distribución de probabilidad.

Si μ sigue una distribución gaussiana, se tiene el prior,

$$\mu|m, s^2 \sim \mathcal{N}(m, s^2) = (2\pi s^2)^{-\frac{1}{2}} \exp\left[-\frac{1}{2s^2}(\mu - m)^2\right].$$

Estimación puntual del primer momento: enfoque Bayesiano

Por el Teorema de Bayes,

$$\mathbb{P}(\mu|x) \propto \mathbb{P}(\mu)\mathbb{P}(x|\mu)$$

$$\propto \prod_{i=1}^{n} \exp\left[-\frac{1}{2\sigma_0^2}(x_i - \mu)^2\right] \exp\left[-\frac{1}{2s^2}(\mu - m)^2\right]$$

$$= \exp\left[-\frac{1}{2}\left(\frac{1}{\sigma_0^2}\sum_{i=1}^{n}(x_i - \mu)^2 + \frac{1}{s^2}(\mu - m)^2\right)\right].$$

Estimación puntual del primer momento: enfoque Bayesiano

Después de expandir los cuadrados y reordenar,

$$\mathbb{P}(\mu|x) \propto \exp \left[-\frac{1}{2} \left(\frac{1}{s^2} + \frac{n}{\sigma_0^2} \right) \left(\mu - \frac{\frac{m}{s^2} + \frac{n\overline{x}}{\sigma_0^2}}{\frac{1}{s^2} + \frac{n}{\sigma_0^2}} \right)^2 \right].$$

Por lo que el estimador Bayesiano posterior de μ es,

$$\hat{\mu} = \frac{\frac{m}{s^2} + \frac{n\overline{x}}{\sigma_0^2}}{\frac{1}{s^2} + \frac{n}{\sigma_0^2}}$$

Importancia de los datos vs. la información prior

Reordenando el estimador Bayesiano,

$$\hat{\mu} = \frac{\frac{1}{s^2}m + \frac{n}{\sigma_0^2}\overline{x}}{\frac{1}{s^2} + \frac{n}{\sigma_0^2}} \\
= \left(\frac{\frac{1}{s^2}}{\frac{1}{s^2} + \frac{n}{\sigma_0^2}}\right)m + \left(\frac{\frac{n}{\sigma_0^2}}{\frac{1}{s^2} + \frac{n}{\sigma_0^2}}\right)\overline{x}$$

Con un cambio de variable,

$$\omega_p = \left(\frac{rac{1}{s^2}}{rac{1}{s^2} + rac{n}{\sigma_0^2}}\right), \qquad \omega_d = \left(\frac{rac{n}{\sigma_0^2}}{rac{1}{s^2} + rac{n}{\sigma_0^2}}\right),$$

Importancia de los datos vs. la información prior

El estimador Bayesiano puede expresarse como,

$$\hat{\mu} = \omega_p m + \omega_d \overline{x},$$

siendo ω_p el peso (importancia) de la información prior y ω_d el peso (importancia) de los datos en el estimador.

Nótese que si no se tiene mucha confianza en la información prior, puede definirse un prior no-informativo (i.e. un prior difuso, dominado por la función de verosimilitud) si $s^2 \to \infty^+$. En este caso $s^2 \to \infty^+$,

$$\hat{\mu} \approx \overline{x}$$
.

¿Qué sucede cuando $n \to \infty$?

Multipliquemos la anterior expresión por $\frac{\sigma_0^2}{n}$, entonces,

$$\hat{\mu} = \frac{\frac{m\sigma_0^2}{ns^2} + \overline{x}}{\frac{\sigma_0^2}{ns^2} + 1}.$$

Si $n \to \infty$ (cuando la muestra de datos es grande),

$$\lim_{n \to \infty} \hat{\mu} = \lim_{n \to \infty} \frac{\frac{m\sigma_0}{ns^2} + \overline{x}}{\frac{\sigma_0^2}{ns^2} + 1} = \overline{x}.$$

Este resultado se denomina a veces el Teorema del Límite Central Bayesiano.