$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3}$	0	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$		$r_{1}^{#2} + \alpha \beta = \frac{\sqrt{2}}{k^2 (1+k^2)(2r_3+r_5)}$	$\frac{i \sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	0	0	0	0
	$r_{1}^{#1} + \alpha \beta$	$_{L}^{#2} + ^{\alpha\beta}$	${\mathfrak l}_1^{\#1} + {\mathfrak a}^{\beta}$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1^{-}\alpha}^{\sharp 1}$	$\omega_{1^{-}\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}\alpha$
$\omega_{1}^{\#1}\dagger^{lphaeta}$	$k^2 (2r_3 + r_5) + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$\frac{1}{3}i\sqrt{2}kt_2$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{\alpha\beta}$	$\frac{\sqrt{2} t_2}{3}$	<u>t2</u> 3	<u>i kt2</u> 3	0	0	0	0
$f_{1}^{\#1} \dagger^{\alpha\beta}$	$-\frac{1}{3}i\sqrt{2}kt_2$	$-\frac{1}{3}ikt_2$	$\frac{k^2t_2}{3}$	0	0	0	0
$\omega_1^{\sharp 1} \dagger^{lpha}$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5\right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2} t_3}{3}$	0	$-\frac{2}{3}ikt_3$
$\omega_1^{\#2} \uparrow^{\alpha}$	0	0	0	$-\frac{\sqrt{2} t_3}{3}$	<u>t3</u> 3	0	$\frac{1}{3}i\sqrt{2}kt_3$
$f_1^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_1^{#2} \dagger^{\alpha}$	0	0	0	<u>2ikt3</u> 3	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$

$ \sigma_{2+}^{\#1} + \alpha \beta - \frac{2}{3 k^2 r_3} 0 0 \\ \tau_{2+}^{\#1} + \alpha \beta 0 0 0 $ $ \sigma_{2-}^{\#1} + \alpha \beta \chi 0 0 0 $		$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
	$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2}{3k^2r_3}$	0	0
$\sigma_{\alpha}^{\#1} + \alpha \beta \chi$ 0 0 0	$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
	$\sigma_{2}^{\#1} \dagger^{lphaeta\chi}$	0	0	0

$\omega_{2}^{\#1}_{+} g f_{2}^{\#1}_{+} \omega_{2}^{\#1}_{2}$	0	0	0
$f_{2}^{\#1}$	0	0	0
$\omega_2^{\#1}{}_+\alpha\beta$	$-\frac{3k^2r_3}{2}$	0	0
,	$\omega_2^{#1} + ^{\alpha\beta}$	$f_2^{#1} + \alpha \beta$	$\omega_2^{\#1} +^{lphaeta\chi}$

Lagrangian density	$\frac{2}{3}t_{3}\;\omega_{\alpha'}'\;\omega_{\kappa\alpha}^{\;$	$rac{1}{3}t_2\;\omega_{\kappa\lambda}^{\prime}\;\;\omega^{\kappa\lambda}_{\prime}-rac{1}{2}r_3\partial_{\imath}\omega^{\kappa\lambda}_{\kappa}\;\partial^{\imath}\omega_{\lambda}^{\alpha}-r_5\partial_{\imath}\omega^{\kappa\lambda}_{\kappa}\partial^{\imath}\omega_{\lambda}^{\alpha}+$	$\frac{1}{2} r_3 \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \ \theta} \partial_\kappa \omega^{\theta \kappa \lambda}_{\ \ -} r_5 \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \ \theta} \partial_\kappa \omega^{\theta \kappa \lambda}_{\ \ -} - \frac{1}{2} r_3 \partial_\theta \omega_\lambda^{\ \alpha}_{\ \ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda}_{\ \ \alpha} +$	$r_5 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} - \frac{1}{2} r_3 \partial_\alpha \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} - r_5 \partial_\alpha \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} +$	$r_3 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa\lambda\theta} + 2 r_5 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa\lambda\theta} + \frac{1}{6} t_2 \partial^\alpha f_{\theta\kappa} \partial^\kappa f_\alpha^{\ \theta} -$	$rac{1}{6}t_2\partial^{lpha}f_{\kappa heta}\partial^{\kappa}f_{lpha}^{\;\; heta}+rac{1}{6}t_2\partial^{lpha}f^{\lambda}_{\;\;\;}\partial^{\kappa}f_{lpha\lambda}^{\;\;\;-}rac{2}{3}t_3\;\omega_{\kappalpha}^{\;\;\;\;\;}\partial^{\kappa}f'_{\;\;\;\prime}^{\;\;\;-}$	$rac{2}{3}t_3\omega_{\kappa\lambda}^{\lambda}\partial^{\kappa}f'_{\prime}^{\prime}-rac{4}{3}t_3\partial^{lpha}f_{lpha}\partial^{\kappa}f'_{\prime}^{\prime}+rac{2}{3}t_3\partial_{\kappa}f^{\lambda}_{\lambda}\partial^{\kappa}f'_{\prime}^{\prime}+$	$\frac{1}{3}t_2\;\omega_{_{_{_{_{}}}}}\partial^{\kappa}f^{_{_{}}}\theta^{_{_{}}}-\frac{2}{3}t_2\;\omega_{_{_{_{_{_{_{_{}}}}}}}}\partial^{\kappa}f^{_{_{_{}}}}\theta^{_{_{}}}-\frac{1}{3}t_2\;\omega_{_{_{_{_{}}}}}\kappa}\partial^{\kappa}f^{_{_{}}}\theta^{_{_{}}}+$	$\frac{2}{3}t_2\;\omega_{\theta\kappa_I}\;\partial^\kappa f^{I\theta} + \frac{2}{3}t_3\;\omega_{I\alpha}^{\;\alpha}\;\partial^\kappa f^I_{\;\;\kappa} + \frac{2}{3}t_3\;\omega_{I\lambda}^{\;\lambda}\;\partial^\kappa f^I_{\;\;\kappa} -$	$\frac{1}{6}t_2\partial^\alpha f^\lambda_{\kappa}\partial^\kappa f_{\lambda\alpha} - \frac{1}{6}t_2\partial_\kappa f_{\lambda}^{}\partial^\kappa f_{\lambda}^{} + \frac{1}{6}t_2\partial_\kappa f^\lambda_{\theta}\partial^\kappa f_{\lambda}^{\theta} +$	$\frac{2}{3}t_3\partial^{\alpha}f^{\lambda}_{\alpha}\partial^{\kappa}f_{\lambda\kappa}-4r_3\partial^{\beta}\omega_{\alpha}^{\lambda\alpha}\partial_{\lambda}\omega_{\alpha\beta}^{\prime}-\frac{1}{2}r_3\partial_{\alpha}\omega_{\lambda}^{\alpha}\partial^{\lambda}\omega^{\theta\kappa}_{\kappa}+$	$r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha}_{\ \ \theta} \partial^{\lambda} \omega^{\theta \kappa}_{\ \ \kappa} + \frac{1}{2} r_3 \partial_{\theta} \omega_{\lambda}^{\ \alpha}_{\ \ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \ \kappa} - r_5 \partial_{\theta} \omega_{\lambda}^{\ \alpha}_{\ \ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \ \kappa}$	Added source term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\gamma}$
--------------------	--	--	--	--	--	--	--	---	--	---	--	--	---

	$\omega_0^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0}^{#1}\dagger$	$i \sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	t_2

$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	$\frac{1}{t_2}$
$\tau_{0}^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_0^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0^-}^{\#1} \dagger$

Source constraints						
SO(3) irreps	#					
$\tau_{0^{+}}^{\#2} == 0$	1					
$\tau_{0^{+}}^{\#1} - 2 i k \sigma_{0^{+}}^{\#1} == 0$	1					
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3					
$\tau_1^{\#1\alpha} == 0$	3					
$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} = 0$	3					
$\sigma_2^{\#1\alpha\beta\chi} == 0$	5					
$\tau_{2+}^{\#1\alpha\beta} == 0$	5					
Total #:	21					

Unitarity conditions $r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$

(No massive particles)