Homework 8

Songyu Ye

October 24, 2025

Fix an algebraic closure $\overline{\mathbb{Q}}_p$ of \mathbb{Q}_p and choose a "compatible" system of p-power roots $p^{1/p}, p^{1/p^2}, \ldots$ in $\overline{\mathbb{Q}}_p$ such that $(p^{1/p^{i+1}})^p = p^{1/p^i}$ for all i. Similarly, choose a compatible system of p-power roots of unity $\zeta_p, \zeta_{p^2}, \ldots$ such that $(\zeta_{p^{i+1}})^p = \zeta_{p^i}$ for all i. Define

$$\mathbb{Q}_p(p^{1/p^{\infty}}) = \bigcup_{i>1} \mathbb{Q}_p(p^{1/p^i}), \qquad \mathbb{Q}_p(\zeta_{p^{\infty}}) := \bigcup_{i>1} \mathbb{Q}_p(\zeta_{p^i}).$$

[Fact] (you're encouraged to verify, but you're welcome to take for granted): These are infinite extensions of \mathbb{Q}_p which are totally ramified in that every finite subextension is totally ramified, or equivalently in that the residue fields of the two extensions are still \mathbb{F}_p . Their completions, denoted by $\widehat{\mathbb{Q}_p(p^{1/p^{\infty}})}$ and $\widehat{\mathbb{Q}_p(\zeta_{p^{\infty}})}$, are perfectoid fields.

On the other hand, the valuation on the CDVF $\mathbb{F}_p((t))$ extends uniquely to

$$\mathbb{F}_p((t^{1/p^{\infty}})) = \bigcup_{i \ge 1} \mathbb{F}_p((t^{1/p^i})),$$

where $t^{1/p}, t^{1/p^2}, \ldots$ form a compatible system of p-power roots of t. (Another way to think of $\mathbb{F}_p((t^{1/p^{\infty}}))$ is that it is the perfection of $\mathbb{F}_p((t))$ in the same way $\mathbb{F}_p[X^{p^{-\infty}}]$ is the perfection of $\mathbb{F}_p[X]$.) The completion $\mathbb{F}_p(t^{1/p^{\infty}})$ is a perfectoid field as well, now of characteristic p.

You can identify the valuation rings in $\mathbb{Q}_p(p^{1/p^{\infty}})$, $\mathbb{Q}_p(\zeta_{p^{\infty}})$, $\mathbb{F}_p((t^{1/p^{\infty}}))$ by applying [S] I.6 to finite subextensions. (Actually you have inseparable extensions in the last case, but [S] I.6(ii) still applies. Or, you can directly compute the valuation ring to be $\mathbb{F}_p[[t^{1/p^{\infty}}]]$.) So you can find the valuation rings in their completions by taking closures.

Problem 1

(1) Take $K := \widehat{\mathbb{Q}_p(p^{1/p^{\infty}})}$. Show that $K^{\flat} \cong \mathbb{F}_p(\widehat{(t^{1/p^{\infty}})})$.

[Hint] We have the valuation rings A, A^{\flat} for K, K^{\flat} satisfying $A^{\flat} = \varprojlim_{x \mapsto x^p} A/pA$. Try to find an isomorphism $A/pA \cong \mathbb{F}_p[t^{1/p^{\infty}}](t)$, from which you should be able to understand K^{\flat} . You may want to choose $\varpi^{\flat} \in A^{\flat}$ to be the element given by $(p, p^{1/p}, p^{1/p^2}, \ldots)$ in the inverse limit.

(2) For $K := \widehat{\mathbb{Q}_p(\zeta_{p^{\infty}})}$, show that $K^{\flat} \cong \mathbb{F}_p(\widehat{(t^{1/p^{\infty}})})$.

[Hint] This time you may want to consider $(1 - \zeta_p, 1 - \zeta_{p^2}, ...)$ in the inverse limit. (This time, this element need not correspond to $\varpi^{\flat} = t \in A^{\flat}$.)

(3) Show that the two fields $\mathbb{Q}_p(p^{1/p^{\infty}})$ and $\mathbb{Q}_p(\zeta_{p^{\infty}})$ are not isomorphic over \mathbb{Q}_p .

Solution:

(1) Let $A = \mathcal{O}_K$ be the valuation ring. Then $A = \mathbb{Z}_p[p^{1/p^{\infty}}]$. Reducing mod p gives

$$A/p \;\cong\; \widehat{\mathbb{F}_p[t^{1/p^\infty}]} \;=\; \mathbb{F}_p[\![t^{1/p^\infty}]\!],$$

where t is the image of p. This is because $\mathbb{Z}_p[p^{1/p^n}]/p \cong \mathbb{F}_p[t^{1/p^n}]$, and completion commutes with filtered colimits here.

For a perfectoid field K, the tilt is

$$K^{\flat} = \operatorname{Frac}\left(\varprojlim_{x \mapsto x^p} A/p\right)^{\wedge}.$$

Since $A/p = \mathbb{F}_p[\![t^{1/p^\infty}]\!]$ is perfect, the inverse limit along Frobenius identifies canonically with the same ring, sending $t \longleftrightarrow \varpi^{\flat} := (p, p^{1/p}, p^{1/p^2}, \dots) \in A^{\flat}$. Hence

$$A^{\flat} \cong \mathbb{F}_p[\![t^{1/p^{\infty}}]\!] \Rightarrow K^{\flat} \cong \mathbb{F}_p(\widehat{(t^{1/p^{\infty}})}).$$

(2) Now $A = \widehat{\mathbb{Z}_p[\zeta_{p^{\infty}}]}$. Put $\varpi^{\flat} := (1 - \zeta_p, 1 - \zeta_{p^2}, 1 - \zeta_{p^3}, \dots) \in A^{\flat}$. Cyclotomic *p*-adic estimates give $v_p(1 - \zeta_{p^{n+1}}) = \frac{1}{p^n(p-1)}$ and $(1 - \zeta_{p^{n+1}})^p = (1 - \zeta_{p^n}) \cdot u_n$ with $u_n \in A^{\times}$. Thus Frobenius sends the class of $1 - \zeta_{p^{n+1}}$ to the class of $1 - \zeta_{p^n}$, so ϖ^{\flat} defines a pseudo-uniformizer in the tilt. Exactly the same reduction argument as above shows

$$A/p \cong \mathbb{F}_p[t^{1/p^{\infty}}] \quad (t \leftrightarrow 1 - \zeta_p),$$

hence again $A^{\flat} \cong \mathbb{F}_p[\![t^{1/p^{\infty}}]\!]$ and

$$K^{\flat} \cong \mathbb{F}_p(\widehat{(t^{1/p^{\infty}})}).$$

(3) In $K_2 := \mathbb{Q}_p(\zeta_{p^{\infty}})$ we have $\mu_{p^{\infty}} \subset K_2^{\times}$ by construction. In $K_1 := \mathbb{Q}_p(p^{1/p^{\infty}})$ there are no nontrivial p-power roots of unity. Indeed, any $\xi \in \mu_{p^{\infty}}$ satisfies $\xi \equiv 1 \pmod{p}$. But on $1 + pA_1$ the p-adic logarithm is injective (for $p \geq 3$; for p = 2 one restricts to $1 + 4A_1$, and the same conclusion holds), hence the only p-power torsion is 1.

Therefore $\mu_{p^{\infty}} \subset K_2$ but $\mu_{p^{\infty}} \not\subset K_1$.

Remark 1. The conclusion is that non-isomorphic perfectoid fields may admit isomorphic tilting. We say $\mathbb{Q}_p(p^{1/p^{\infty}})$ and $\mathbb{Q}_p(\zeta_{p^{\infty}})$ are (different) "untilts" of the perfectoid field $\mathbb{F}_p(\widehat{(t^{1/p^{\infty}})})$.

Problem 2 Let C, C^{\flat} be the perfectoid fields as in Problem Set 7, #1, i.e. C is the completion of $\overline{\mathbb{Q}}_p$, and C^{\flat} is the (characteristic p) "tilt" of C. Let A, A^{\flat} denote the valuation rings of C, C^{\flat} . (The standard notation in the literature for such A, A^{\flat} is $\mathcal{O}_C, \mathcal{O}_{C^{\flat}}$. Adopt it if you like.) As in the preceding HW, we have a multiplicative map $f^{\sharp}: A^{\flat} \to A$, sending $x \mapsto x^{\sharp}$.

Notice that C^{\flat} is a perfect field of char p, and A^{\flat} is a perfect ring of characteristic p. The functor W gives us the strict p-ring equipped with surjection (the mod p quotient map)

$$W(A^{\flat}) \twoheadrightarrow A^{\flat}$$

which admits a Teichmüller lift $[\]:A^{\flat}\to W(A^{\flat}).$

(1) Show that the map $x \mapsto x^{\sharp} \mod p$ induces a ring isomorphism

$$A^{\flat}/\varpi^{\flat}A^{\flat} \cong A/pA,$$

where $\varpi^{\flat} \in A^{\flat}$ is an element as in Problem Set 7 such that $|(\varpi^{\flat})^{\sharp}| = |p|$ (we're taking $\varpi = p$ here).

[Tip] Freely use results from the previous homework; then you can do (1) without much extra work.

(2) Prove that there is a *unique* ring homomorphism

$$\theta:W(A^{\flat})\longrightarrow A$$

such that $\theta([x]) = x^{\sharp}$ for all $x \in A^{\flat}$.

[Remark] Here it's not hard to see how to define θ uniquely; the main problem is to check the homomorphism property.

[Hint] The idea is similar to [S] p. 38, Prop. 10 but the latter is not exactly applicable as A is not a p-ring (since A/pA is not a perfect ring). Instead, adapt to a variant: see Lemma 1.1.6 of this paper.

(3) Show that the map θ is surjective.

Hint: Use part (1).

Solution: Write C for the completed algebraic closure of \mathbb{Q}_p , C^{\flat} its tilt, and $A = \mathcal{O}_C$, $A^{\flat} = \mathcal{O}_{C^{\flat}}$. Recall $A^{\flat} = \varprojlim_F A/pA$ (with respect to Frobenius), elements $x \in A^{\flat}$ are sequences $x = (x^{(0)}, x^{(1)}, \ldots)$ with $(x^{(n+1)})^p = x^{(n)}$. The multiplicative map $x \mapsto x^{\sharp} \colon A^{\flat} \to A$ is $x^{\sharp} = \lim_{n \to \infty} \widetilde{x^{(n)}}^p \in A$, where $\widetilde{x^{(n)}} \in A$ is any lift of $x^{(n)} \in A/p$; the limit exists and is independent of choices. Fix $\varpi^{\flat} \in A^{\flat}$ with $|(\varpi^{\flat})^{\sharp}| = |p|$.

- (1) For $x=(x^{(0)},x^{(1)},\ldots)\in A^{\flat},\,x^{\sharp}\equiv x^{(0)}\pmod{pA}$. Indeed, choose lifts $\widetilde{x^{(n)}}\equiv x^{(n)}\pmod{p}$. Then $\widetilde{x^{(n)}}^{p^n}\equiv (x^{(n)})^{p^n}=x^{(0)}\pmod{p}$; taking the limit preserves the congruence. Hence the reduction $r:A^{\flat}\longrightarrow A/pA,\,x\longmapsto x^{\sharp}\bmod{p}$ is just the projection $A^{\flat}=\varprojlim_F(A/p)\to A/p$ onto the 0-th coordinate. In particular, r is surjective.
 - (b) Kernel is $\varpi^{\flat}A^{\flat}$. If $x \in \ker r$, then $x^{(0)} = 0$. By compatibility under Frobenius, $x^{(n)} = 0$ for all n in the valuation sense appropriate to A/p, and one checks (using that $\varpi^{\flat} = (p \mod p, p^{1/p} \mod p, \ldots)$) and that Frobenius on A/p is surjective for a perfectoid A) that this is equivalent to divisibility by ϖ^{\flat} : there exists $y \in A^{\flat}$ with $x = \varpi^{\flat}y$. Conversely, $\varpi^{\flat}y$ always maps to $0 \mod p$. Hence $\ker r = \varpi^{\flat}A^{\flat}$.

Therefore we get an isomorphism

$$A^{\flat}/\varpi^{\flat}A^{\flat} \xrightarrow{\sim} A/pA$$

via $x \mapsto x^{\sharp} \mod p$.

- (2) Recall the two following facts about Witt vectors:
 - Every Witt vector has a Teichmüller expansion $w = \sum_{n=0}^{\infty} p^n[x_n], x_n \in A^{\flat}$, converging p-adically in $W(A^{\flat})$ and unique.
 - The Teichmüller map $[\cdot]: A^{\flat} \to W(A^{\flat})$ is multiplicative, and the Witt construction is designed so that any continuous ring map out of $W(A^{\flat})$ is determined by its values on [x] (with a compatibility that we will meet).

Define θ on Teichmüller series by

$$\theta\left(\sum_{n=0}^{\infty} p^n[x_n]\right) := \sum_{n=0}^{\infty} p^n \left(x_n^{\sharp}\right)^{p^n}$$

The series on the right converges in A because $|x_n^{\sharp}| \leq 1$, so $|p^n(x_n^{\sharp})^{p^n}| \leq |p|^n \to 0$. A standard Witt-polynomial check shows that the above respects addition and multiplication and hence defines a continuous ring homomorphism with $\theta([x]) = x^{\sharp}$. A continuous ring map is determined by its values on [x]. Since we prescribed $\theta([x]) = x^{\sharp}$, θ is unique.

(3) We reduce θ modulo p. We have $W(A^{\flat}) \xrightarrow{\theta} A \longrightarrow A/pA$ is the map $w \mapsto (0\text{th Witt component}) \in A/pA$, which is surjective.

Now we can lift p-adically to show surjectivity. Given $a \in A$:

- First, choose $x_0 \in A^{\flat}$ such that $x_0^{\sharp} \equiv a \pmod{p}$. Let $w_0 = [x_0]$. Then $\theta(w_0) \equiv a \pmod{p}$.
- For each $n \geq 0$, suppose we have w_n with $\theta(w_n) \equiv a \pmod{p^{n+1}}$. By part (1), the reduction of θ on p^{n+1}/p^{n+2} is the identity map. Thus we can find $x_{n+1} \in A^{\flat}$ that corrects the error modulo p^{n+2} .

• Set $w_{n+1} = w_n + p^{n+1}[x_{n+1}]$ to get $\theta(w_{n+1}) \equiv a \pmod{p^{n+2}}$.

The w_n converge to $w \in W(A^{\flat})$ with $\theta(w) = a$. Hence θ is surjective.

[Note 1] The ring $W(A^{\flat})$ equipped with the map θ is often called A_{inf} and plays a central role in p-adic Hodge theory, and related topics, e.g., see standard references.

[Note 2] Nothing is really special about our choice of C, C^{\flat} . These assertions are valid for any perfectoid field C of characteristic 0 and its tilt C^{\flat} of characteristic p. In fact, $W(A^{\flat})$ turns out to encode "untilts" of a given C^{\flat} . (In general there are many perfectoid fields whose tilts are isomorphic to C^{\flat} .) See the paragraph below Lemma 2.2.3, p. 17 of Weinstein's notes for a discussion.

Problem 3 Show that

$$\left\{1, \ \theta, \ \frac{1}{2}\left(\theta + \theta^2\right)\right\}$$

is an integral basis (i.e. a \mathbb{Z} -basis of the ring of integers) of $\mathbb{Q}(\theta)$, where θ is a root of $\theta^3 - \theta - 4 = 0$.

Solution: It is clear that $x^3 - x - 4$ is irreducible because it has no rational roots. For $x^3 + ax + b$ the discriminant is $\Delta = -4a^3 - 27b^2$. Here a = -1, b = -4, so

$$\Delta(f) = -4(-1)^3 - 27(-4)^2 = 4 - 432 = -428 = -4 \cdot 107.$$

Thus disc $(1, \theta, \theta^2) = -428$. Hence the index $[\mathcal{O}_K : \mathbb{Z}[\theta]]$ divides 2. Set $\alpha = \frac{\theta^2 + \theta}{2}$. Using $\theta^3 = \theta + 4$:

$$\theta^3 = \theta\theta^2 = \theta(2\alpha - \theta) = 2\alpha\theta - (2\alpha - \theta) = 2\alpha\theta - 2\alpha + \theta$$

so comparing with $\theta + 4$ gives $2\alpha(\theta - 1) = 4$, i.e. $\theta = 1 + \frac{2}{\alpha}$. Substituting in $f(\theta) = 0$:

$$(1+2/\alpha)^3 - (1+2/\alpha) - 4 = 0 \implies 4\alpha^3 - 4\alpha^2 - 12\alpha - 8 = 0 \implies \alpha^3 - \alpha^2 - 3\alpha - 2 = 0$$

Hence $\alpha \in \mathcal{O}_K$. Now we check that the discriminant drops by the expected factor. Express the new basis $B' = \{1, \theta, \alpha\}$ in terms of the old $B = \{1, \theta, \theta^2\}$: $\alpha = \frac{1}{2}(\theta + \theta^2)$ gives

$$\begin{bmatrix} 1 \\ \theta \\ \alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \theta \\ \theta^2 \end{bmatrix}$$

Thus det $M = \frac{1}{2}$, and discriminants transform by

$$disc(B') = disc(B) \cdot (\det M)^2 = (-428) \cdot \frac{1}{4} = -107$$

Since all elements of B' are integral and $\operatorname{disc}(B')$ is square-free (-107), the order $\mathbb{Z}[1, \theta, \alpha]$ equals \mathcal{O}_K .