CLAIMS

What is claimed is:

1	1. An MRAM cell comprising:
2	a magnetic tunneling junction including
3	a free layer,
4	a pinned layer, and
5	a spacer layer disposed between the free layer and the pinned layer;
6	a digit line including a bit line segment disposed proximate to the magnetic
7	tunneling junction;
8	a bit line including a bit line segment in electrical contact with the magnetic
9	tunneling junction; and
10	a magnetic liner layer disposed around the bit line segment and contacting the free
11	layer.
1	2. The MRAM cell of claim 1 wherein the digit line segment is disposed proximate to
2	the pinned layer and the bit line segment is in electrical contact with the free
3	layer.
1	3. The MRAM cell of claim 1 wherein the bit line segment is disposed proximate to the
2	pinned layer and the digit line segment is in electrical contact with the free layer.
1	4. The MRAM cell of claim 1 wherein the magnetic liner layer is electrically conductive.

- 1 5. The MRAM cell of claim 1 wherein the bit and digit lines are formed of a metal
- 2 selected from the group consisting of Cu, W, and Al.
- 1 6. The MRAM cell of claim 1 further including an antiferromagnetic layer disposed
- 2 adjacent to the pinned layer.
- 7. The MRAM cell of claim 1 wherein the magnetic liner layer is formed of Permalloy.
- 1 8. The MRAM cell of claim 7 wherein the Permalloy is between 16 and 22 atomic
- 2 percent iron.
- 9. The MRAM cell of claim 7 wherein the Permalloy is Ni₈₁Fe₁₉.
- 1 10. The MRAM cell of claim 1 wherein the magnetic liner layer has a thickness of about 20Å to about 500Å.
- 1 11. The MRAM cell of claim 1 wherein the magnetic liner layer has a thickness of about
- 2 30Å to about 100Å.
- 1 12. The MRAM cell of claim 1 wherein the magnetic liner layer is formed of a material
- 2 selected from the group consisting of CoZrCr, CoZrNb, CoZrRe, FeSiAl, FeN,
- 3 FeAlN, FeRhN, and FeTaN.

1	13. The MRAM cell of claim 1 wherein the pinned layer is two ferromagnetic layers
2	separated by a spacer layer.
1	14. The MRAM cell of claim 1 wherein the free layer is two ferromagnetic layers.
1	15. An MRAM cell comprising:
2	a magnetic tunneling junction including
3	a free layer having a magnetization orientation,
4	a pinned layer, and
5	an insulating spacer layer disposed between the free layer and the pinned
6	layer;
7	a digit line including a segment disposed proximate to the pinned layer;
8	a bit line including a segment in electrical contact with the free layer;
9	a magnetic liner layer disposed around the bit line segment and contacting the free
10	layer such that a magnetic field encircles the bit line segment.
1	16. The MRAM cell of claim 15 wherein the magnetic liner layer is electrically
2	conductive.
1	17. The MRAM cell of claim 15 wherein the bit and digit lines are formed of a metal
2	selected from the group consisting of Cu, W, and Al.

- 18. The MRAM cell of claim 15 further including an antiferromagnetic layer disposed 1 adjacent to the pinned layer. 2 19. The MRAM cell of claim 15 wherein the magnetic liner layer is formed of 1 Permalloy. 2 20. The MRAM cell of claim 19 wherein the Permalloy is between 16 and 22 atomic 1 2 percent iron. 21. The MRAM cell of claim 19 wherein the Permalloy is $Ni_{81}Fe_{19}$. 1 22. The MRAM cell of claim 15 wherein the magnetic liner layer has a thickness of 1 about 20Å to about 500Å. 2 23. The MRAM cell of claim 15 wherein the magnetic liner layer has a thickness of 1 about 30Å to about 100Å. 2
 - 24. The MRAM cell of claim 15 wherein the pinned layer is two ferromagnetic layers
 separated by a spacer layer.
 - 1 25. The MRAM cell of claim 15 wherein the free layer is two ferromagnetic layers.

1	26. An MRAM cell comprising:
2	a magnetic tunneling junction including
3	a free layer,
4	a pinned layer, and
5	an insulating spacer layer disposed between the free layer and the pinned
6	layer;
7	a digit line including a segment disposed proximate to the pinned layer, the digit
8	line segment having a long axis defining a first direction;
9	an electrically insulating spacer layer disposed between the digit line segment and
10	the pinned layer;
11	a bit line including a segment in electrical contact with the free layer, the bit line
12	segment having a long axis defining a second direction substantially
13	perpendicular to the first direction;
14	a magnetic liner layer disposed around the bit line segment and contacting the free
15	layer.
1	27. The MRAM cell of claim 26 wherein the magnetic liner layer is electrically
2	conductive.
1	28. The MRAM cell of claim 26 wherein the bit and digit lines are formed of a metal
2	colocted from the group consisting of Cu W and Al.

- 1 29. The MRAM cell of claim 26 further including an antiferromagnetic layer disposed 2 adjacent to the pinned layer. 1 30. The MRAM cell of claim 26 wherein the magnetic liner layer is formed of 2 Permalloy. 1 31. The MRAM cell of claim 30 wherein the Permalloy is between 16 and 22 atomic 2 percent iron. 1 32. The MRAM cell of claim 30 wherein the Permalloy is Ni₈₁Fe₁₉. 1 33. The MRAM cell of claim 26 wherein the magnetic liner layer has a thickness of about 20Å to about 500Å. 2
- 1 34. The MRAM cell of claim 26 wherein the magnetic liner layer has a thickness of about 30Å to about 100Å.
- 1 35. The MRAM cell of claim 26 wherein the pinned layer is two ferromagnetic layers
 2 separated by a spacer layer.
- 1 36. The MRAM cell of claim 26 wherein the free layer is two ferromagnetic layers.

1	37. An MRAM cell comprising:
2	a magnetic tunneling junction including
3	a free layer,
4	a pinned layer, and
5	an insulating spacer layer disposed between the free layer and the pinned
6	layer;
7	a digit line including a segment disposed proximate to the pinned layer, the
8	segment having a long axis defining a first direction;
9	a bit line including
10	a segment in electrical contact with the free layer and having
11	a long axis defining a second direction substantially perpendicular
12	to the first direction,
13	a bottom surface abutting the free layer,
14	a top surface opposite the bottom surface, and
15	first and second vertical surfaces opposite one another and
16	connecting the top and bottom surfaces; and
17	a magnetic liner layer disposed around the bit line segment and contacting the
18	first and second vertical surfaces and the top surface.
1	38. The MRAM cell of claim 37 wherein the magnetic liner layer also contacts the free
2	layer.

2

39. The MRAM cell of claim 37 wherein the magnetic liner layer is electrically 1 2 conductive. 40. The MRAM cell of claim 37 wherein the bit and digit lines are formed of a metal 1 2 selected from the group consisting of Cu, W, and Al. 1 41. The MRAM cell of claim 37 further including an antiferromagnetic layer disposed 2 adjacent to the pinned layer. 1 42. The MRAM cell of claim 37 wherein the magnetic liner layer is formed of 2 Permalloy. 43. The MRAM cell of claim 42 wherein the Permalloy is between 16 and 22 atomic 1 2 percent iron. 1 44. The MRAM cell of claim 42 wherein the Permalloy is Ni₈₁Fe₁₉. 1 45. The MRAM cell of claim 37 wherein the magnetic liner layer has a thickness of about 20Å to about 500Å. 2

46. The MRAM cell of claim 37 wherein the magnetic liner layer has a thickness of

about 30Å to about 100Å.

2	separated by a spacer layer.
1	48. The MRAM cell of claim 37 wherein the free layer is two ferromagnetic layers.
1	49. An MRAM cell comprising:
2	a magnetic tunneling junction including
3	a free layer,
4	a pinned layer, and
5	an insulating spacer layer disposed between the free layer and the pinned
6	layer;
7	a digit line including a segment disposed proximate to the pinned layer, the digit
8	line segment having a long axis defining a first direction;
9	a bit line including a bit line segment in electrical contact with the free layer and
10	having a long axis defining a second direction substantially perpendicular
11	to the first direction; and
12	a magnetic sheath disposed around the bit line segment and formed from the free
13	layer and a magnetic liner layer.
1	50. The MRAM cell of claim 49 wherein the magnetic liner layer is electrically
2	conductive.

1 47. The MRAM cell of claim 37 wherein the pinned layer is two ferromagnetic layers

- 1 51. The MRAM cell of claim 49 wherein the bit and digit lines are formed of a metal
- 2 selected from the group consisting of Cu, W, and Al.
- 1 52. The MRAM cell of claim 49 further including an antiferromagnetic layer disposed
- 2 adjacent to the pinned layer.
- 1 53. The MRAM cell of claim 49 wherein the magnetic liner layer is formed of
- Permalloy.
- 1 54. The MRAM cell of claim 53 wherein the Permalloy is between 16 and 22 atomic
- 2 percent iron.
- 1 55. The MRAM cell of claim 53 wherein the Permalloy is Ni₈₁Fe₁₉.
- 1 56. The MRAM cell of claim 49 wherein the magnetic liner layer has a thickness of
- 2 about 20Å to about 500Å.
- 1 57. The MRAM cell of claim 49 wherein the magnetic liner layer has a thickness of
- 2 about 30Å to about 100Å.
- 1 58. The MRAM cell of claim 49 wherein the pinned layer is two ferromagnetic layers
- 2 separated by a spacer layer.

- 59. The MRAM cell of claim 49 wherein the free layer is two ferromagnetic layers. 1 60. A method of fabricating an MRAM cell comprising: 2 providing a substrate; 3 forming a digit line on the substrate; 4 forming an insulating spacer including a contact via over the bit line; 5 forming a bottom lead over the insulating spacer; 6 forming a magnetic tunnel junction stack over the bottom lead; 7 forming a first liner layer over the magnetic tunnel junction; 8 forming a bit line over the magnetic tunnel junction stack; and 9 forming a second liner layer over the bit line. 1 61. The method of claim 60 wherein forming the bit line includes 2 forming and patterning an oxide layer on the substrate; 3 depositing a conductive metal; and 4 planarizing a top surface of the conductive metal.
- 1 62. The method of claim 61 wherein the conductive metal is selected from the group 2 consisting of copper, tungsten, and aluminum.
- 1 63. The method of claim 61 wherein planarizing is performed by CMP.

- 64. The method of claim 60 wherein forming the bottom lead is performed by depositing 1 2 a conductive metal selected from the group consisting of copper, tungsten, and 3 aluminum. 65. The method of claim 60 wherein forming the bottom lead includes a patterning step. 1 1 66. The method of claim 60 wherein forming the magnetic tunnel junction stack includes 2 forming a first ferromagnetic layer over the bottom lead; 3 forming a tunneling barrier layer over the first ferromagnetic layer; and 4 forming a second ferromagnetic layer over the tunneling barrier layer. 67. The method of claim 66 wherein forming the magnetic tunnel junction stack further 1 2 includes forming an antiferromagnetic layer between the first ferromagnetic layer 3 and the bottom lead. 1 68. The method of claim 66 wherein forming the magnetic tunnel junction stack further 2 includes forming an antiferromagnetic above the second ferromagnetic layer. 1 69. The method of claim 66 wherein forming the magnetic tunnel junction stack further
- 70. The method of claim 60 further comprising forming an insulating material layer over the insulating spacer.

includes a patterning step.

- 1 71. The method of claim 70 wherein forming an insulating material layer includes
- forming a trench therein and over the magnetic tunnel junction stack.
- 1 72. The method of claim 71 wherein the trench has first and second sidewalls.
- 1 73. The method of claim 72 wherein the first liner layer is formed on the first and second
- 2 sidewalls.
- 1 74. The method of claim 60 wherein the first liner layer is formed with a thickness in the
- 2 range of about 20Å to about 500Å.
- 1 75. The method of claim 60 wherein the first liner layer is formed by ion beam
- 2 deposition or physical vapor deposition.
- 1 76. The method of claim 60 wherein the first liner layer is formed of Permalloy.
- 1 77. The method of claim 60 further comprising forming a stop layer over the first liner
- 2 layer.
- 1 78. The method of claim 77 further comprising forming a seed layer over the stop layer.
- 1 79. The method of claim 60 wherein forming the bit line includes forming a seed layer.

1 80. The method of claim 60 wherein the bit line is formed of a conductive metal selected 2 from the group consisting of copper, tungsten, and aluminum. 81. The method of claim 60 wherein forming the bit line includes a planarization. 1 1 82. The method of claim 81 wherein forming the bit line includes an ion beam etch. 1 83. The method of claim 60 wherein forming the second liner layer includes 2 forming and patterning a mask; and 3 removing portions of the second liner layer. 84. The method of claim 60 wherein the second liner layer is formed with a thickness in 1 the range of about 20Å to about 500Å. 2 1 85. The method of claim 60 wherein the second liner layer is formed of Permalloy. 1 86. A method of fabricating an MRAM cell comprising: 2 providing a digit line; forming a magnetic tunnel junction stack over the digit line; 3

forming a magnetic liner layer over the bit line and in contact with the magnetic

5

6

forming a bit line; and

tunnel junction stack.

1	87. The method of claim 86 wherein forming a magnetic tunnel junction stack includes
2	forming a free ferromagnetic layer and wherein the magnetic liner layer is formed
3	in contact with the free ferromagnetic layer.
1	88. A method of storing a bit of data in an MRAM cell, comprising:
2	pinning a magnetic orientation of a first ferromagnetic layer in a magnetic tunnel
3	junction;
4	simultaneously generating
5	a first write current in a digit line including segment proximate to the
6	magnetic tunnel junction and
7	a second write current in a bit line including segment proximate to the
8	magnetic tunnel junction, the write currents being sufficient to
9	produce a magnetic field capable of orienting a magnetic domain
10	of a second ferromagnetic layer in the magnetic tunnel junction;
11	and
12	maintaining the orientation of the magnetic field of the second ferromagnetic
13	layer by creating a magnetic loop around the bit line.