

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2002015426 A

(43) Date of publication of application: 18.01.02

(51) Int. Cl

G11B 7/0045 G11B 7/125

(21) Application number: 2000192128

(22) Date of filing: 27.06.00

(72) Inventor:

(71) Applicant: RICOH CO LTD

SASA NOBORU TOMURA TATSUYA

NOGUCHI SO AZUMA YASUHIRO **UENO YASUNOBU** SATO TSUTOMU

(54) INFORMATION RECORDING METHOD AND OPTICAL RECORDING MEDIUM

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an information recording method capable of reducing the difference in characteristics of reproduced signals between the case reproduced with a recording wavelength and the case reproduced with a reproducing wavelength, or between the case reproduced with a recorder and the case reproduced with a reproduction exclusive device.

SOLUTION: The fluctuation of the optimum recording state due to the difference in resolution of the reproducing device is suppressed and the reproduction interchangeability is improved by such a manner that a ratio of the pulse emitting time Ttop+Tmp*(Twd-3) to the difference tstop-teend between the top pulse emission starting time tstop and the final pulse emission ending time teend is set to be 0.7 or larger so as to optimize the recording state to record the information.

COPYRIGHT: (C)2002,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-15426 (P2002-15426A)

(43)公開日 平成14年1月18日(2002.1.18)

(51) Int.Cl. ⁷		識別記号	FΙ	-	テーマコード(参考)
G11B	7/0045		G11B	7/0045	A 5D090
	7/125			7/125	C 5D119

審査請求 未請求 請求項の数5 OL (全 10 頁)

-			17 Mar 11 Mar 20 10 10 10 10 10 10 10 10 10 10 10 10 10
(21)出願番号	特顧2000-192128(P2000-192128)	(71)出願人	000006747
			株式会社リコー
(22)出願日	平成12年6月27日(2000.6.27)		東京都大田区中馬込1丁目3番6号
		(72)発明者	笹 登
			東京都大田区中馬込1丁目3番6号 株式
			会社リコー内
		(72)発明者	戸村 辰也
			東京都大田区中馬込1丁目3番6号 株式
			会社リコー内
		(74)代理人	100101177
			弁理士 柏木 慎史 (外2名)
	•		
		-	
			最終頁に続く

(54) 【発明の名称】 情報記録方法及び光記録媒体

(57) 【要約】

【課題】 記録波長で再生した場合と再生波長で再生した場合の、あるいは記録装置で再生した場合と再生専用 装置で再生した場合の再生信号の特性の差異を低減でき る情報記録方法を提供する。

【解決手段】 先頭バルス照射開始時間 t s topと最終 バルス照射終了時間 t e endの差 t s top ー t e endに対 するバルス服射終間 T top + T mp * (T wd - 3) の割合 が0.7以上になるように設定して記録状態を最適化し 情報を記録するようにすることで、再生装置の解像力の 差による最適記録状態の変勢を抑制することができ、再 生互換性を高くすることができるようにした。

【特許請求の範囲】

【請求項1】 所定の記録変調方式に従った情報に応じ てレーザ光源をマルテバルスからなる非連続的なバルス 発光波形で発光させて光記録媒体にレーザ光を照射して 前記記録変調方式に基づくマーク又はスペースを形成す ることにより情報を記録する情報記録方法において、

先頭パルス照射開始時間と最終パルス照射終了時間との 差に対する実際のパルス照射時間の割合が0.7以上に 設定された前記非連続的なパルス発光波形により前記レ 一ザ先源を発光させるようにしたことを特徴とする情報 記銭方法。

【請求項 2】 少なくとも最長マークを記録するための パルス発光波形の場合に、先頭パルス照射開始時間と最 終パルス照射終了時間との差に対する実際のパルス脛射 時間の割合が 0. 7以上に設定された前記非連続的なパ ルス発光波形を用いるようにしたことを特徴とする請求 項 1 記載の情報記録方法。

【請求項3】 所定の記録変調方式に従った情報に応じてレーザ光源をマルチパルスからなる非連続的なパルス 発光波形で発光させたレーザ光が照射されて前記記録変 関方式に基づくマークヌはスペースが形成されることにより情報が記録される米む鏡媒体において、

先頭パルス照射開始時間と最終パルス照射終了時間との 差に対する実際のパルス照射時間の割合が0.7以上に 設定された前記非連続的なパルス発光波形で前記レーザ 大源を発光させたレーザ光により情報が記録されること を特徴とする光記録媒体。

【請求項4】 少なくとも最長マークを記録するための バルス発光波形の場合に、先頭バルス照射開始時間と最 終パルス照射終了時間との差に対する実際のパルス照射 時間の割合が0.7以上に設定されて情報が記録される ことを特徴とする請求項3配載の光記録媒体。

【請求項5】 記録装置のビームよりも小径のビームを 用いる再生専用装置により再生されることを特徴とする 記録可能な請求項3又は4記載の光記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、記録波長と再生波 長とが異なる環境で使用され得る記録可能な光記録媒体 及びその情報記録方法に関する。

[0002]

【従来の技術】マルチメディアの普及に伴い、音楽用 C D (Compact Disk) やC D 一ROM等の再生専用メディアや光情報再生装置が実用とれている。 是近では、色素系メディアを用いた追記型光ディスクや、光磁気メディアを用いた追記型光ディスクや、光磁気メディアを用いた書換え可能なMO (Magnetic Optica Of Magnetic Optica の デホ、レーザ光源としての半導体レーザの超速長化

や高NA対物レンズによるスポット径の小径化や薄型基

sk) -ROM, DVD-R (Recordable), DVD-RAM, DVD-RW (Rewritable) 等の大容量ディ スクが実用化段階に入っている。

【0003】 ここに、例えば、DVD-Rシステムにおいては、記録波長が635 nmであり、再生波長が65 nmであり、再生波長が65 nmであるというように、記録波長と再生波長とが異なるシステム環境とされている。

【0004】また、記録波長と再生波長が同一であって も、リムインテンシティの制約によって、同一記録部を 再生しても再生専用装置と記録装置で特性が大きく変わ ってしまうという問題を有している。

[0005]

【発明が解決しようとする課題】ROMが存在する光ディスクシステム環境においては、記録可能なメディアは、ROMとの互換性が最も重要である。従って、例えばDVDーRの場合、DVDーROM対応の波長650nmの再生専用装置で低ジッタが速成される必要がある。

【0006】しかし、再生装置依存性の大きい光記録媒体では、図12に示すように記録装置(波長635 nm)自身で再生した場合のベストジッタが得られる記録条件と、再生専用装置(波長650 nm)で再生した場合のベストジッタが得られる記録条件とは大きく異なってしまう場合がある。図12では、波長635 nmによる再生では記録パワー10.3 mWが境や記録した部分でベストジッタが得られるが、波長650 nmでは記録パワー11.0mW近傍で記録した部分でベストジッタが得られるが、波長650 nmでは記録パワー11.0mW近傍で記録した部分でベストジッタが得られるがが完されている。

【0007】図示例の場合、波長635nmでペストジッタが得られる記録パワー10.3mW近傍で記録するとセヴッタ12.0%が得られても、波長650nmで再生した場合には、ジッタが15.0%程度になってしまう。また、ジッタ権自体も波長635nmの場合に比べて、波長650nmの場合のジッタは大幅に悪化してしまっていることが分かる。

【0008】かといって、再生専用装置(波長650 nm)でベストジッタが得られるような記録を記録装置

(波長635 nm) で記録することは不可能である。な ぜなら、再生専用装置(波長650 nm) でベストジッ タが得られるような記録を行うためには、記録装置(波 長635 nm) では意図的に良好でない記録を行わなけ ればならず、アシンメトリやβ値などで管理する通常の 記録方法では対応できなくなるためである。

【0009】 この点、予めアシンメトリやβ値などにオ フセットを持たせて記録する方法も考えられるが、その オフセット量を決める方法が明確でないことや、記録装 置自身でのデータ再生が不可能になる可能性があるため 実用的ではない。

【0010】以上のように、問題なのは記録装置と再生

装置と再生装置によって最適な記録状態が異なることに ある。

[0011] そこで、本発明は、記録波長と再生波長と が異なる環境で使用される場合に、記録波長で再生した 場合と再生波長で再生した場合の再生信号の特性の差異 を低減させることができる情報記録方法及び光記録媒体 を提供することを目的とする。

[0012] 或いは、記録装置と再生専用装置が独立に 存在する場合に、記録装置で再生した場合と再生専用装 置で再生した場合の再生信号の特性の差異を低減させる ことができる情報記録方法及び光記録媒体を提供するこ とを目的とする。

【0013】また、本発明は、変調度が高くROMとの 互換性をより一層高めることができる情報記録方法及び 光記録媒体を提供することを目的とする。

【0014】さらに、本発明は、パルス発光波形ストラ テジの変動マージンの高い情報記録方法及び光記録媒体 を提供することを目的とする。

[0015]

【課題を解決するための手段】請求項 1 記載の発明は、 所定の記録変調方式に従った情報に応じてレーザ光源を マルチパルスからなる非連続的なパルス発光波形で発光 させて光記録媒体にレーザ光を照射して前記記録変調力 式に基づくマーク又はスペースを形成することにより情 報を記録する情報記録方法において、先頭パルス照射間 始時間と最終パルス照射隊子時間との差に対する実際の パルス照射時間の割合が 0.7以上に設定された前記非 連続的なパルス発光波形により前記レーザ光源を発光さ せるようにした。

【0016】従って、先頭バルス照射開始時間と最終バルス照射終了時間との差に対する実際のバルス照射時間の割合をの、7以上に設定して記録状態を最適化することにより、再生装置の解像力の差による最適記録状態の変動を抑制することができ、再生互換性が高くなる。また、最適記録状態が再生装置の解像力の差に大きく依存しないため、記録時ののPC等の記録管理も簡便で済み、記録の信頼性も高め得る。さらには、高い変調度を得ることも可能であり、ROM用の再生専用装置との互換性を高め得る上に、ストラテジ変動マージンも広げることができる。

【0017】請求項2記載の発明は、請求項1記載の情報記載方法において、少なくとも最長マークを記録するためのパルス発光波形の場合に、先頭パルス照射開始時間と最終パルス照射終門との差に対する実際のパルス照射時間の割合が0.7以上に設定された前記非連続的なパルス発光波形を用いるようにした。

【0018】従って、基本的には請求項1記載の発明と同様であるが、特に、少なくとも最長マークを記録するためのパルス発光波形の場合に上記の条件を満たすよう

満たすこととなり、より一層良好なる再生互換性を確保 することができる。

【0019】請求項3記載の発明は、所定の記録変調方式に従った情報に応じてレーザ光源をマルチバルスからなる非連続的なバルス条光波形で発光させたレーザ光が照射されて前記記録変調方式に基づくマーク又はスペースが形成されることにより情報が記録される光記録媒体において、先頭バルス照射開始時間と最終バルス照射接 了時間との差に対する実際のバルス照射時間の割合がの、7以上に設定された前記手連続的なバルス免光波形で前記レーザ光源を発光させたレーザ光により情報が記録される。

【0020】従って、先頭バルス照射開始時間と最終パルス照射終了時間との差に対する実際のパルス照射時間 の割合が0.7以上に設定されて記録状態が最適化されて情報が記録されることにより、再生装置の解像力の差による最適記録状態の変動を抑制することができ、再生互換性の高い光記録採件となる。また、最適記録状態が再生装置の解像力の差に大きく依存しないため、記録所のPC等の記録管理も簡便で済み、記録の個類性も高め得る。さらには、高い変測度を得ることも可能であ

り、ROM用の再生専用装置との互換性を高め得る上 に、ストラテジ変動マージンの広い光記録媒体となる。

【0021】請求項4記載の発明は、請求項3記載の先 記録媒体において、少なくとも最長マークを記録するた めのバルス条光波形の場合に、先頭バルス服射間始時間 と最終バルス照射終了時間との差に対する実際のバルス 照射時間の割合が0、7以上に設定されて情報が記録さ れる。

【0022】従って、基本的には請求項3記載の発明と 同様であるが、特に、少なくとも競長マークを記録する ためのバルス発光波形の場合に上記の条件を満たすよう にしたので、それよりも短いマーク全てについて条件を 満たすこととなり、より一層良好なる再生互換性が確保 された光記録線株となる。

【0023】請求項5記載の発明は、記録可能な請求項 3又は4記載の光記録媒体において、記録装置のビーム よりも小径のビームを用いる再生専用装置により再生さ れる。

【0024】 従って、記録波表と再生波長とが同一である環境で使用される場合であっても、再生装置間での再生信号の特性の差異を低減させることができる光記録媒体であるのはもちろんであるが、特に、記録波長と再生波長とが異なる環境で使用される場合に、記録波長で再生した場合と再生波長で再生した場合の再生信号の特性の差異を低減させることができる光記録媒体となる。 【0025】

【発明の実施の形態】本発明の一実施の形態を図1及び 図2に其づいて時間する わかる。

に再生互換性が低下する原因は、再生する光ピックアップの解像力(ビーム径の大小)にあることを見出した。
即ち、解像力に差があることによってアシンメ・リが異なって見えるため、ジック値やジッタの記録パワー依存性等が大きく異なることになる。解像力の差自体は光ピレックアップに固有のものであるから、光記録媒体中に取り除けないが、解像力の差の影響によるアシンメトリ変動は、短マークと長マークの記録状態差 (例えば記録 露における深さ方向の記録域の大きるの差や変化量をなど)によってもその変動量がより大きくななことを見出した。つまり、短マークと長マークの記録状態差を経しまると言います。
現まする光ピックアップの解像の変も気に限に抑制させることができることを見出したものである。

【0028】本実施の形態は、このように記録装置のビーム径が再生専用装置のビーム径よりも大きい場合 (二 記録装置のビーム径に対して再生専用装置のビーム径が 小さい場合) に有効であり、このような関係は以下の場 合成いは以下の場合の組合せにより発生する。即ち、 役、記録時のレーザ波長が再生時のレーザ波長よりも長

① 記録時のレーザ波長が再生時のレーザ波長よりも長波長である場合

② 記録装置の光ビックアップの開口数NAが再生専用 装置の光ビックアップの開口数NAよりも小さい場合
③ 記録装置の光ビックアップの明ムインテンシティが 再生専用装置の光ビックアップのリムインテンシティよ りも小さい場合である。

【0029】例えば、DVD-Rシステムの場合は、② が最も該当し、記録装置のビーム径が再生専用装置のビ - ム径よりも大きくなる (海生専用装置では、大きなレ ーザパワーを必要としないため、ケラレを大きくしてビ ームを平面波に近づけ、また、ビーム径を小さくしてい る)。

【0030】本実施の形型でいうビーム径の大小は、同一記録部の短マーク振幅やジッタマージンの広さから判定する。即ち、同一記録部を再生した場合、短マーク振幅(例えば3下振幅)が大きく見える先ピックアップほどビーム役が小さいと判定できる。或いは、記録条件を系列的に変えて(例えば、記録パワーや記録がルス幅、記録経管度など)記録した場合、これらの系列的に変化させた条件の変動に対するジンタ変化がかるい光ピック

【0031】 <再生互換性を高める方法>次に、低解像 度の光ピックアップで記録を行い、高解像度の光ピック アップで再生するシステム環境において、再生互換性を 高める方法について説明する。

【0032】ビーム径に対して十分な長さを有する長マークの変調度は解像力に対しさほど敏感でないが、ビーム径に対して十分な長さを有する長マークの変調度は、光ピックアップの解像力に対し非常に敏感である。【0033】そこで、例えば一般的なパルス発光波形である目下M(Eight to FourteenModulation)変調方式の場合において、記録密度(記録終速度)を変えて、最短ゲータ及び最長データである3 T, 1 4 Tの変調度がどう変動するかを調像に転縁を、図1に示す(なお、この実験では、高記録線進度で記録パワーが低下するように記録パワーを設定した)。この結果からも、解像力にに記録パワーを設定した)。この結果からも、解像力に

【0034】このように短マークと長マークの変調度差 は解像力によって必ず変化してしまい、この変化は避け ることができない。

[0035] しかし一方、短マークと長マークの変調度 差が解像力によって変化する現象は、短マークと長マー ク間の記録状態に差が存在すると、より大きくなること を見出したのである。

【0036】記録層の温度分布はマーク長によって異なり、長マークに対して短マーク (特に最短マーク) は記録層の温度が上昇しずらい。

【0037】従って、基板変形量や色素分解量は記録マーク長によって(特に長マークと最短マーク間で)異なる。

[0038] 例えば、光学定数の波長依存性の大きい記録層の未分解領域の大きさが記録マーク長によって異なると、短マークと長マークの変調度差は解像力によって大きく変化することになる。

【0039】従って、再生互換性を高めるためには、長マークと短マークの記録状態差を低減するような記録を 行う必要があるわけである。

【0040】 未発明では、マルチパルス記録において、 先頭パルス照射制開始時間と最終パルス照射終了時間との 差に対する実體のパルス照射時間の割合を0.7以上に 設定すると、必然的に短マーク形成用の最適パルス長が 長くなり(絶対値も、また長マークに対する相対値も長 くなる)、これによって長マークと短マークの記録状態 差の低減が行えることを見出した。

【〇〇41】 なお、本実施の形態或いは本発明でいう先 頭パルス照射開始時間と服終パルス照射終了時間との差 に対するパルス照射時間の割合とは、図2に示すような マルチパルスからなる非連続なパルス発光波形(ストラ バルス照射終了時間 tendとの時間差に対する実際にバルスが照射される時間 Ttop+Tmp* (マルチバルスの 数) の割合のことである。マルチバルスの数は、DVD Specifications for Recordable Disk (DVD-R) Part1 PHYSICAL SPECIFICATIONS Version 1.0 July 1997に記載された記録ストラテジを用いる報告、4 Tマーク以上でTwdー3 であり(Twdに記録したいマークの長さ(T)である)、例えば6Tマークのバルス発光 波形の場合は、1つの先頭バルスと3つのマルチバルスから構成される。

[0042]

【実施例】上述の実施の形態を裏付ける実施例について、図3ないし図11を参照して説明する。

【0043】まず、初めに、本実施例で用いる装置の再生能力の差(ビーム径の大小)を確認し、記録装置のビーム径が再生専用装置のビーム径とよりも大きいことを確認した。記録・河生装置にはパルステック工業株式会社製のDDU-1000(波長635 nm、NAO.6

0、 $1/e^2$ [タンジェンシャル] 0、 $88\,\mu\text{m}$, $1/e^2$ [ラジアル] 0、 $88\,\mu\text{m}$, $1\text{J}\text{A}\text{C}\sqrt{2}$ テンシティ[ランジェンシャル] 0、 563, $1\text{J}\text{A}\text{C}\sqrt{2}$ フンティ[ラジアル] 0、 426), 再生専用装置にはパルステック工業株式会社製のDDU-1000(波長 $650\,\text{nm}$, NA0、 60, $1/e^2[9ンジェンシャル] 0、 <math>89\,\mu\text{m}$, $1/e^2$ [ラジアル] 0、 $93\,\mu\text{m}$, $1/\mu$ 0、 $1/\mu$ 0 $1/\mu$ 0

【0044】また、図3に示すように、厚さ0.6mm、トラックピッチ0.74μmのポリカーボネート基 板1上(4.7GB対応)に化1で示すような化学構造 式で示されるアソ金属錦体を記録層2としてスピンコートによって成膜し、その上にスパッタにより金反射層3、さらに紫外線硬化型樹脂からなる保護層4を設け、光記録媒体5を作成した。

【0045】 【化1】

$$\left(\begin{array}{c} N \\ N \end{array} \right) = N = N - \left(\begin{array}{c} N \\ N \end{array} \right) - N = N - \left(\begin{array}{c} N \\ N \end{array} \right)^{2^{4}}$$
NCOCF₃

【0046】このような構成の光記録媒体5に対し、同一記録ストラテジを用いて、波長635 nmの記録装置で回転線速度(CLV3.3m/s~3.8m/s)と記録パワー(8~11mW)を変えて記録を行った。【0047】このようにして記録された記録部分を波長635 nmで再生した場合のジッタ特を図4及び図5に示す。なお、ジッタ特性の測定には横河電機株式会社製のタイムインターバルアナライザTA320を用いた。

【0048】この結果、ジッタの記録線密度依存性の差から、波長650nmの再生装置が解像力が高いことが確認され、明らかに再生装置によって再生特性が変わることが確かめられた。

【0049】次に、本発明のストラテジ設定の効果を確認する実験を行った。前述の場合と同様に、厚さ0.6 mm、トラックピッチ0.74μmのポリカーボネート基板1上(4.7GB対応)に前途の化1で示したような化学構造式で示されるアゾ金属錯体を記録暦2としてスピンコートによって成版し、その上にスパッタにより金反射暦3、さらに紫外線硬化型樹脂からなる保護暦4を設け、光記録媒体5を作成した。

【0050】この光記録媒体5に対しDVD Specific ations for Recordable Disk (DVD-R) Part1 PHYSICAL SPECIFICATIONS Version 1.0 July 1997に記載された記録設定条件を用い、前途のパルステック工業製のDDU-1000 (波長635nm、NAO.60)によって記録を行い、パルステック工業製のDDU-1000 (波長635nm、NAO.60,再生パワーO.7mW)とパルステック工業製のDDU-1000 (波長650nm、NAO.60,再生パワーO.3mW)を用いて各々ジッタを測定した。

【0051】なお、ストラテジ設定は3Ttop-4Ttop-MP(4Ttopとは4T以上に用いる先頭パルス長のことである)が、

1. 02-1. 03-0. 60(T),

1. 12-1. 10-0. 70(T),

1, 28-1, 24-0, 80(T)

という3つの異なる条件を用い、各々のストラテジで記録した部分のジッタ特性の装置開差を測定した結果を図らないし図8に示す。この時、各々のストラテジ設定条件での先頭バルス照射開始時間 t stopと最終バルス照射時間 t endの差L1 (= t stop - t end) に対するバルス照射時間 L2 (= T top + T mp* (T wd - 3)) の割合L2/L1を表1ないし表3に示す。

【表 1】

-	$3T_{top} = 1.02$ $4T_{top} = 1.03$				
T _{wd} (T)	$MP = 0.60$ $ts_{loo}-te_{end}(T) \qquad T_{lop}+T_{mp}^{*}(T_{wd}-3)(T) \qquad L_{2}/L_{1}$				
	(= L ₁)	(=L ₂)			
4	2.03	1.63	0.80		
5	3.03	2.23	0.74		
6	4.03	2.83	0.70		
7	5.03	3,43	0.68		
8	6.03	4.03	0.67		
9	7.03	4,63	0.66		
10	8.03	5.23	0.65		
11	9.03	5.83	0.65		
14	12,03	7.63	0.63		

[0053]

【表 2】

	$3T_{lop} = 1.12$ $4T_{lop} = 1.10$ MP = 0.70		
T _{wd} (T)	ts _{top} -te _{end} (T)	T _{top} +T _{mp} *(T _{wd} -3) (T)	L ₂ /L ₁
	(=L ₁)	(= L ₂)	
4	2,10	1.80	0.86
5	3.10	2.50	0.81
6	4.10	3.20	0.78
7	5.10	3.90	0.76
8	6.10	4.60	0.75
9	7.10	× 5,30	0.75
10	8.10	6.00	0.74
11	9.10	6.70	0.74
14	12.10	8,80	0.73

[0054]

【表3】

	$3T_{top} = 1.28$ $4T_{top} = 1.24$ MP = 0.80		
T _{wd} (T)	ts _{top} -te _{end} (T) (= L _f)	$T_{top}+T_{mp}*(T_{wd}-3)$ (T) (= L ₂)	L ₂ /L ₁
4	2.24	2.04	0.91
5	3,24	2.84	0,88
6	4.24	3.64	0.86
7	5.24	4,44	0.85
- 8	6.24	5.24	0.84
9	7.24	6.04	0.83
- 10	8.24	6.84	0.83
11	9.24	7.64	0.83
14	12.24	10.04	0,82

【0055】これらの図6ないし図8及び表1ないし表 3に示す結果によれば、波長650nmにおけるジッタ 特性と波長635nmにおけるジッタ特性の差が、マル チパルス長MPの増加とともに改善されることがわか る。即ち、先頭パルス照射開始時間 t s topと最終パル ス照射終了時間 teendの差し1 (= tstop-teend) に対するパルス照射時間 L2 (= Ttop+Tmp* (Twd-3)) の割合 L2/L1がO. 7以上になると、最短マー ク形成のための最適パルス長3 Ttopも長くなり(絶対 値も、また4 Ttopに対する3 Ttopも長くなる)、ジッ タの記録パワー依存性曲線の差異が再生装置間で小さく なり、再生互換性が高まることが確認できたものである (波長635 n m で記録し、再生して最適条件を求めて 記録した部分が、波長650nmで再生した時も最適記 録状態である。特に、図7及び表2に示すように、最長 マーク14 Tを記録する場合に割合し2/L1が0.7以 上(ここでは、0、73)であれば、それよりも短いマ 一ク全てについて割合し2/し1が0.7以上となるの で、好ましい。

【0056】また、ストラテジ設定3T_{top}-4T_{top}-MPが、

- 1. 02-1. 03-0. 60(T),
- 1. 12-1. 10-0. 70(T)

の場合の変調度を測定した結果、図9及び図10に示す ようになり(なお、図中の機軸は影響パワーを最適記録 パワーPoで規格化した値である)、本実施例の光記録 媒体5或いはこの光記録媒体5に対する記録方法により、変調度が十分大きく、ROMとの互換性をより一層 高め得る効果があることが確認できたものである。

- 1. 02-1. 03-0. 60(T),
- 1. 12-1. 10-0. 70(T),
- 1. 28-1. 24-0. 80(T)

という3つの異なる条件を用いて、4 Ttop長が変化した場合のジッタ変化を測定した結果を図12に示す。な は、 横軸はベストジッタが得られる4 Ttop長に対する バルス長の比であり、縦軸はベストジッタに対するジッタの比である。

【0058】この結果から、先頭パルス照射開始時間 t stopと最終パルス照射終了時間 t endの差し1(= t stop-t end) に対するパルス照射時間し2(= Ttop+Tmp*(Twd))の割合し2/L1を0.7以上に設定すると、最短マーク形成のための最適パルス長3 T topも長くなる)、パルス長の変化に対してもジッタマージンが広がることが確認できたものである。

【0059】ちなみに、図11に示す例で、マルチバルス長が0.80(T)の場合に、ベストジッタ値が若干悪くなったのは、ストラテジの最適化を十分行わなかったためであり、本質的な問題ではない。

[0060]

【発明の効果】請求項1記載の発明の情報記録方法によれば、先頭バルス照射線時間と最終バルス照射線時間と最終パルス照射線時間と最終パルス照射時間の割合を0.7 以上に設定して記録状態を最適化したので、再生装置の 解像力の差による最適記録状態の変動を抑制することが でき、再生互換性を高くすることができ、また、最適記 録状態が再生装置の解像力の差に大きく依存しないた め、記録時のOPC等の記録管理も簡便で済み、記録の ほば解時のOPC等の記録管理も簡便で済み、記録の ほば解析とも以上しばいま、とこには、室いが頭伸を返 めることができる上に、ストラテジ変動マージンも広げることができる。

【0061】請求項2記載の発明の情報記録方法によれば、基本的には請求項1記載の発明と同様であるが、特に、少なくとも最長マークを記録するためのパルス発光波形の場合に上記の条件を満たすようにしたので、それよりも短いマーク全でについて条件を満たすこととなり、より一層良好なる再生互換性を確保することができる。

【〇〇62】請求項3記載の発明の光記録媒体によれば、先頭バルス照射網前間由と最終バルス照射解可合がの、フ以上に設定されて記録状態が影適化されて情報が記録されるので、再生装置の解像力の差による最適記録状態が表 動を抑制することができ、再生互換性の高い光記録媒体 を提供でき、また、最適配録状態が再生装置の解像力の 差に大きく依存しないため、記録時のOPC等の記録管 理も簡便で済み、記録の信頼性を高めることができ、さ 昨日表記録が、記録の信頼性を高めることができ、さ 専用装置との互換性を高めることができる上に、ストラ デジ変動マージンの広い光記録媒体を提供することができる。

【0063】 請求項4記載の発明の光記録媒体によれば、基本的には請求項2記載の発明の光記録媒体によれに、少なくとも最長マークを記録するためのパルス発光波形の場合に上記の条件を満たすようにしたので、それよりも短いマーク全でについて条件を満たすこととなり、より一層良好なる再生互換性が確保された光記録媒体を提供することができる。

【0064】請求項5記載の発明によれば、記録波長と 再生波長とが同一である環境で使用される場合であって も、再生装置間での再生信号の特性の差異を低減させる ことができる光記録媒体であるのはもちろんであるが、 特に、記録波長と再生波長とが異なる環境で使用される 場合に、記録波長で再生した場合と再生波長で再生した 場合の再生信号の特性の差異を低減させることができる 光記録媒体を提供することができる。

【図面の簡単な説明】

【図1】本発明の一実施の形態に関して記録線速度に応 じたRfレベルの変動の測定結果を示すグラフである。 【図2】パルス発光波形例を示すパルス波形図である。 【図3】本発明の一実施例を示す光記録媒体の断面構成

【図3】 本光明の一夫絶別を示り元記録媒体の明面構成 図である。 【図4】波長635nmで再生した場合のジッタ特性図

である。 【図5】波長650nmで再生した場合のジッタ特件図

ress.

【図6】 1. 02-1、03-0、60(T)なるストラ テジで記録した場合のジッタ特性図である。

【図7】1、12-1、10-0、70(T)なるストラテジで記録した場合のジッタ特性図である。

【図8】 1. 28-1: 24-0. 80(T)なるストラテジで記録した場合のジッタ特性図である。

【図9】1.02-1.03-0.60(T)なるストラ テジで記録した場合の変調度特性図である。

【図10】1、12−1、10−0、70(T)なるスト ラテジで記録した場合の変調度特性図である。

【図11】各々異なるストラテジで記録した場合の4T top長が変化した場合のジッタ変化を示す特性図であ る。

【図12】 記録波長と再生波長とで再生した場合の従来 のジッタ特性図である。 【符号の説明】

光記録媒体

t stop 先頭パルス照射開始時間 t e end 最終パルス照射終了時間

[図1]

【図3】

フロントページの続き

(72) 発明者 野口 宗

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

(72) 発明者 東 康弘

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

東京都大田区中馬込1丁目3番6号 株式 会社リコー内

(72) 発明者 佐藤 勉

東京都大田区中馬込1丁目3番6号 株式 会社リコー内

Fターム(参考) 5D090 AA01 BB03 CC01 DD03 EE02

FF17 KK04

5D119 AA23 BA01 BB02 DA03 EC09 FA05 HA60