

Using AWS for Image Recognition

Daniel Garza Michael Garcia Professor: Dr. Gonzalo D. Parra

- Image generation/recognition is becoming increasingly popular with AI models such as ChatGPT/DALL-E/HuggingGPT.
- We wanted to attempt to create a pseudo-build of an AI image recognition model solely utilizing AWS.
 - AWS has its own model that can recognize images and characteristics.

Objective

- Our goal is to create a system that can accurately generate a series
 of tags about an image that it is given, and send it to an email
 address.
 - Additionally, we would like to use this project to explore the various services that AWS has to offer.

Timeline

Project Milestones

- 1. Research various AWS services to incorporate into the image recognition system.
- 2. Link the various services to create a rough draft of the system through coding them together.
- 3. Create a working prototype that can recognize images and return descriptors.
- 4. Employ the Amazon SQS service to send the descriptors to a mobile device.

AWS Services

- 1. IAM sets permissions for Lambda
- 2. S3 stores images to be labeled by Rekognition
- 3. Lambda hosts core python code
- 4. Rekognition identifies labels to associate to image
- 5. SNS sends notification with labels via email
- 6. SQS works in conjunction with SNS to deliver notifications
- 7. DynamoDB stores labels produced by system

Cloud Architecture

Policy name ☑ ▽	Type ▽	Description
AmazonSQSFullAccess	AWS managed	Provides full access to Amazon SQS via the AWS Ma
⊕	AWS managed	Provides full access to all buckets via the AWS Mana
⊕ CloudWatchFullAccess	AWS managed	Provides full access to CloudWatch.
AmazonDynamoDBFullAccess	AWS managed	Provides full access to Amazon DynamoDB via the A
AmazonRekognitionFullAccess	AWS managed	Access to all Amazon Rekognition APIs
AWSLambdaBasicExecutionR	AWS managed	Provides write permissions to CloudWatch Logs.
AmazonSNSFullAccess	AWS managed	Provides full access to Amazon SNS via the AWS Ma

IAM (Updated for Security)

Policy name ☑	Туре	▼ Description
AmazonRekognitionReadOnlyAccess	AWS managed	Access to all Read rekognition
	AWS managed	Provides read only access to A
	AWS managed	Provides read only access to a
AWSLambdaSQSQueueExecutionRole	AWS managed	Provides receive message, del
AWSLambdaBasicExecutionRole	AWS managed	Provides write permissions to (
DynamoProjectPolicy	Customer inline	
+ SNSProjectPolicy	Customer inline	

S3

9

Lambda & Rekognition

+ Add destination

Lambda & Rekognition


```
import boto3
     import uuid
    s3 client = boto3.client('s3')
    rekognition_client = boto3.client('rekognition')
     sqs client = boto3.client('sqs')
    sns_client = boto3.client('sns')
    dynamodb client = boto3.client('dynamodb')
10
    def lambda_handler(event, context):
11
         # Retrieve S3 bucket and object information from the event
12
         s3_bucket = event['Records'][0]['s3']['bucket']['name']
         s3_object_key = event['Records'][0]['s3']['object']['key']
13
14
15
         try:
16
             image = get_s3_image(s3_bucket, s3_object_key)
17
18
             labels = detect labels(image)
19
20
             process_labels(labels, s3_object_key)
21
22
             message = ' \ n'
23
             for label in labels:
24
                 message += f'Label: {label["Name"]}, Confidence: {label["Confidence"]}%\n'
25
```

SNS & SQS

Details	
Name	Display name
projectSNS	Image Recognition Status
ARN	Topic owner

SNS & SQS

SNS & SQS

ProjectSQS	Edit Delete	Purge Send and receive messages Start
Details Info		
Name • ProjectSQS	Type Standard	ARN
Encryption Amazon SQS key (SSE-SQS)	URL	Dead-letter queue -
▶ More		

image_id ▼	confidence ▼	label ▽	object_key	▽
d64cb3fb-9af3-47ab	99.9999847	Truck	RAM.jpg	
62ab538e-e4fb-4383	99.9999847	Pickup Truck	RAM.jpg	
7439524a-5d35-408c	95.6109008	American F	ball.jpg	
4848d1ae-0c84-4b1a	95.6109008	Sport	ball.jpg	
a2afaa7a-40ad-4cea	95.6109008	Football	ball.jpg	
48eae29a-bf83-46f1	99.9999847	Vehicle	RAM.jpg	

Challenges & Limitations

- Learning to integrate multiple AWS services into python code
- Unable to use SNS for text messaging due to law requiring usage of toll-free number
- Code deployment required before testing, resulting in constant rollbacks
- DynamoDB caused many issues with integrating into our system
 - Lack of experience with NoSQL

- While our image recognition system can only provide basic labels from the images it is given, it could be improved to recognize more specific details with AutoML, such as the make and model of a car.
- It was somewhat difficult to work within the bounds of the AWS Free Tier, as a lot of the services required payment for resource use/extra features.

Resources

Amazon DynamoDB. (n.d.). Retrieved March 28, 2023, from https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStartedDynamoDB.html

Marquez, E. (2021, November 10). *How to create an AWS lambda function*. Cloud Computing. Retrieved February 6, 2023, from https://www.techtarget.com/searchcloudcomputing/tip/How-to-create-an-AWS-Lambda-function

Musgrave, D. (2022). Lambda. Amazon. Retrieved February 8, 2023, from https://docs.aws.amazon.com/lambda/latest/dg/API_Reference.html

North, F. (1998). SNS. Amazon. Retrieved April 4, 2023, from https://aws.amazon.com/getting-started/hands-on/send-fanout-event-notifications/

North, F. (1998). SQS. Amazon. Retrieved April 9, 2023, from https://aws.amazon.com/getting-started/hands-on/send-messages-distributed-applications/

Prerequisite: Setting up Amazon S3 - Amazon Simple Storage Service. (n.d.). Retrieved March 2, 2023, from https://docs.aws.amazon.com/AmazonS3/latest/userguide/setting-up-s3.html

Schütz Julia. (2011). *Amazon Rekognition: Detecting Labels*. Amazon. Retrieved March 17, 2023, from https://docs.aws.amazon.com/rekognition/latest/dg/labels.html?pg=ln&sec=ft

Whitehouse-Grant-Christ, I. H. V. (2011). *IAM*. Amazon. Retrieved March 8, 2023, from https://docs.aws.amazon.com/IAM/latest/UserGuide/access.html

