Sistemas de múltiples grados de libertad

Los ejercicios con (*) son opcionales.

Modos normales de oscilación

1. Molécula triatómica Se esquematiza en la figura una molécula triatómica simétrica. En el equilibrio dos átomos de masa m están situados a ambos lados del átomo de masa M=2m y vinculados por resortes de constante k y longitud natural l_0 . Como sólo estamos interesados en analizar los modos longitudinales, supondremos que las masas se encuentran dentro de una canaleta que impide todo tipo de movimiento en la dirección transversal.

- a) Encuentre las ecuaciones de movimiento de cada masa.
- b) Halle las frecuencias de los modos normales.
- c) Dibuje las configuraciones de cada modo.
- d) Si el centro de masa de la molécula se mueve con $v_o = cte$, halle la solución para $\psi_a(t)$, $\psi_b(t)$ y $\psi_c(t)$.
- e) Determine las condiciones iniciales para excitar sólo el modo más alto (mayor frecuencia).
- 2. Analice las oscilaciones transversales del problema anterior. Para su mejor comprensión puede imaginarlo como el esquema de la figura, en el cual las masas de los extremos pueden subir/bajar pero solidarios a la barra enhebrada a los vástagos laterales.

- a) Encuentre las ecuaciones de movimiento de las masas. ¿Qué diferencias hay entre la ecuación de movimiento para resortes slinky y resortes con $l_0 \neq 0$ en la aprox. de pequeñas oscilaciones?
- b) Halle las frecuencias de los modos normales.
- c) Dibuje la configuración correspondiente a cada modo normal. Determine los desplazamientos de cada masa como función del tiempo (solución más general posible para cada masa).
- d) ¿Qué condiciones iniciales que permiten excitar sólo el segundo modo?
- e) Si se fuerza la masa del centro con frecuencias incrementalmente mayores, ¿qué modos se van observando?
- f) ¿Cómo se modifican los resultados anteriores si el extremo de la derecha se fija a la pared como se indica en la figura a continuación?.

Batidos (o latidos, beats)

3. Considere el sistema de dos péndulos de igual longitud l pero de masas diferentes m_a y m_b , acoplados mediante un resorte de constante k.

- a) Escriba las ecuaciones de movimiento de cada masa. considerando pequeñas oscilaciones, ¿es relevante considerar $l_0 \neq 0$? ¿Qué cambia si el resorte es slinky?
- b) Obtenga las frecuencias naturales del sistema y sus modos normales de oscilación. Interprete el significado físico de estos modos normales.
- c) Suponga que el acoplamiento es débil $(k \ll \frac{g}{l} \frac{m_a m_b}{m_a + m_b})$ y que las condiciones iniciales son: $\dot{\Psi}_a(0) = 0, \dot{\Psi}_b(0) = 0, \Psi_a(0) = 0, \Psi_b(0) = 1$. Obtenga el movimiento de cada masa y grafíquelo en función del tiempo.
- d) Calcule los valores medios, en un ciclo rápido, de T_a y T_b , donde T indica energía cinética. Grafique $\langle T_a \rangle$ y $\langle T_b \rangle$, y analice las diferencias en el gráfico como función de las diferencias entre las masas ($m_a = m_b$ y m_a muy diferente de m_b). Calcule el valor medio de la energía de interacción entre las dos partículas.
- 4. Considere el sistema de la figura. Las masas están apoyadas en una mesa sin rozamiento, sujetas a las paredes por resortes de constante k y unidas por otro resorte de constante k'.

- a) Obtenga las frecuencias y los modos transversales del sistema.
- b) ¿Bajo qué condiciones espera observar batidos? ¿Qué son los batidos?

Sistemas forzados

- 5. Considere el sistema de dos péndulos acoplados del problema 3, tal que uno de ellos es impulsado por una fuerza $F = F_0 \cos(\Omega t)$.
 - a) Escriba las ecuaciones de movimiento del sistema con amortiguamiento y forzado y desacople las ecuaciones utilizando las coordenadas normales del sistema.
 - b) Resuelva el sistema forzado para las coordenadas normales y luego escriba la solución más general posible para las coordenadas de las partículas a y b.
 - c) Estudie el caso estacionario, observe cuando las partículas están en fase o contrafase.
 - d) Muestre que considerando $m_a = m_b = m$ y despreciando el amortiguamiento se obtienen las siguientes expresiones.

$$\begin{split} \Psi_a &\approx \frac{F_0}{2m} \cos(\Omega t) \left[\frac{1}{\omega_1^2 - \Omega^2} + \frac{1}{\omega_2^2 - \Omega^2} \right] \\ \Psi_b &\approx \frac{F_0}{2m} \cos(\Omega t) \left[\frac{1}{\omega_1^2 - \Omega^2} - \frac{1}{\omega_2^2 - \Omega^2} \right] \\ \frac{\Psi_b}{\Psi_a} &\approx \frac{\omega_2^2 - \omega_1^2}{\omega_2^2 + \omega_1^2 - 2\Omega^2} \end{split}$$

donde ω_1 es la menor de las frecuencias modales, ω_2 es la mayor y Ω es la frecuencia de excitación.

- e) (*) Grafique $\frac{\Psi_b}{\Psi_a}$, ¿qué representa esta relación? Indique cuándo hay una transferencia efectiva de movimiento y cuándo no.
- 6. Considere el sistema del problema 4, pero en este caso en considere las oscilaciones longitudinales.
 - a) Halle la solución estacionaria para el caso forzado en el cual se aplica sobre la masa de la izquierda una fuerza oscilante del tipo $f(t)=f_0\,\cos(\Omega t)$ ¿Qué resonancias espera ver si realiza un barrido de frecuencias?
 - b) (*) Repita el punto anterior, teniendo en cuenta además una fuerza de disipación proporcional a la velocidad
 - c) (*) Repita el problema pero considerando las oscilaciones transversales del sistema