

TRAVERSE RESEARCH

Machine Learning-Enhanced Graphics: an overview

NEXT SLIDE

MACHINE LEARNING-ENHANCED GRAPHICS:

AN OVERVIEW

Luca Quartesan

ML Researcher @ Traverse Research Master Game Technologies @ BUas Programming instructor @ BUas

LQrtsn

luca-quartesan

<u>luca@traverseresearch.nl</u>

GOAL

- **01** Photorealistic graphics
- **02** High resolution
- **03** High refresh rate
- **04** Scalable to a variety of devices

HARDWARE SOLUTIONS

- Specialized hardware for graphics

 Nvidia RT cores
- Cloud solution

 Nvidia CLOUD XR
- Specialized hardware for Machine Learning

 Nvidia Tensor Cores
 - Google Tensor

NEURAL NETWORKS

- 01 Black box
- **02** Fixed size
- **03** Fixed compute

People with no idea about AI, telling me my AI will destroy the world

Me wondering why my neural network is classifying a cat as a dog..

RENDERING PIPELINE

SUPER SAMPLING

Render at lower resolution = higher frame rate 01

FPS (30-60)

NEURAL SCENE

- inverse graphics: 3D scene from an image
- Novel view synthesis: given multiple images create a 3D scene

Rendering Pipeline

Image

3D Scene

Geometry

Materials

Lights

Camera

NEURAL GEOMETRY

01 ACORN: compress signal with neural network

autoLOD reduces the amount of triangles

Our: 20M tris

Hasselgren, J., (2021).

simplification.

TRAVERSE RESEARCH

Appearance-driven automatic 3D model

3D Scene

Geometry

Materials

Lights

Camera

NEURAL MATERIALS

01 BTF: real-life captures

02 Neumip: Neural network material

3D Scene

Geometry

Materials

Lights

Rendering Pipeline

Image

Camera

PRODUCTION RENDERING

PRODUCTION RENDERING

Hasselgren, J., (2020). Neural temporal adaptive sampling and denoising.

NEURAL RENDERING

Rendering pipeline replaced by neural network

Generative Query Networks

• from few observations

NEURAL RENDERING

Neural scene graph rendering

RECAP

- With Supersampling, we can render at lower resolution and achieve higher refresh rate
- With Inverse Graphics we can create a 3D representation from few images/video
- **03** A Neural Network can represent 3D scenes
- Speed up Production rendering by optimizing the amount of samples
- Or simply replace everything with Neural networks

