A standardized computational framework for the analysis of mass spectrometry-based single-cell proteomics data

Christophe Vanderaa, Laurent Gatto

December 4, 2020

Bioinformatics

 $Bioinformatics = understand\ biology\ from\ data$

Types of measures:

- Sequencing
- Probing
- Microscopy
- Simulation
- **.**..

Types of levels:

- Epigenomics
- Genomics
- Transcriptomics
- Proteomics

Bioinformatics

 $Bioinformatics = understand\ biology\ from\ data$

Types of measures:

- Sequencing
- Probing
- Microscopy
- Simulation
- **.**..

Types of levels:

- Epigenomics
- Genomics
- Transcriptomics
- Proteomics

Bulk vs single-cell omics

Bulk omics generates a single observation for highly complex samples

Bulk vs single-cell omics

Bulk omics generates a single observation for highly complex samples

Subpopulations are missed

Dynamic effects are missed

Bulk vs single-cell omics

Bulk omics generates a single observation for highly complex samples

Dynamic effects are missed

Single-cell omics generate one observation per cell, unlocking new analytical tools

Single-cell challenges

- ▶ Technical challenges: automation, minute sample amount, cost per cell
- ► Computational challenges: big data, dropouts, noise, complex batch effects
- Conceptual challenges: what is a cell type? what is biologically relevant?

Proteomics vs transcriptomics

Proteomics vs transcriptomics

Source: Franks et al. (2017), Specht et al. (2020).

Single-cell proteomics

Single-cell proteomics recently achieved a milestone by quantifying >1000 proteins for >1000 single cells (Specht et al. (2020)).

- ► Label-free quantification: accurate quantification, but low throughput and low identification rate
- Multiplexed: label cross contamination, but high throughput and increased identification rate

Our contribution

We offer a solution to the lack of good computational tools for handling SCP data.

- scpdata disseminates curated SCP data sets for method development and benchmarking
- scp implements functions to streamline the analysis of SCP data

SCP pipeline

- 1. Input data
- 2. QC on features
- 3. QC on samples
- 4. Peptide aggregation
- 5. Log-normalization
- 6. Feature selection
- 7. Imputation
- 8. Protein aggregation
- 9. Data integration
- Dimension reduction

```
readSCP(quantTable = quantData,
           metaTable = metaData.
           channelCol = "Channel",
           batchCol = "Set") %>%
    zeroIsNA(i = 1:4) %>%
    filterFeatures (~ Potential.contaminant != "+") %>%
    computeSCR(i = 1:4,
                colDataCol = "SampleType".
 9
                carrierPattern = "Carrier",
                samplePattern = "Monocyte") %>%
    filterFeatures (~ .meanSCR < 0.1) %>%
11
12
    subsetByAssay(dims(.)[1, ] > 150) %>%
13
    computeMedianCV(i = 1:3,
14
                     proteinCol = "protein".
15
                     peptideCol = "peptide") %>%
16
    aggregateFeaturesOverAssays(i = 1:3,
                                  name = 4:6,
18
                                  fcol = "peptide".
19
                                  fun = robustSummary) %>%
20
    joinAssays(i = 4:6, name = "peptides") %>%
    normalize(i = "peptides",
22
               method = "median", na.rm = TRUE) %>%
    logTransform(i = "normAssay",
24
                  base = 2) \%>\%
25
    impute(i = "normAssay",
            method = "knn") %>%
26
    aggregateFeatures(i = "logAssay",
28
                       name = "proteins".
29
                       fcol = "protein") ->
30
    scp
```

The SCoPE2 dataset I

 $\mathsf{SCoPE2}$ dataset (Specht et al. (2020)) = current state-of-the-art SCP dataset

Replication of the analysis using scp:

The SCoPE2 dataset II

Replication: conclusion

scp provides a standardized pipeline for unified and reproducible analysis of SCP data:

- SCoPE2 (Specht et al. (2020)): almost perfect replication, new metrics included in scp, highlighted issues and possible improvements
- 2. Trajectory analysis on chicken utricle (Zhu et al. (2019)): lack of good documentation

This demonstrate the successful application of our software to various SCP datasets.

SCP challenges: batch effect

SCP challenges: missingness

- Biological missingness
- ► Technical missingness
- ▶ Both

Monocyte

Macrophage

SCP challenges: data modeling

Hurdle model (Goeminne et al. (2020))

Takehome message

- SCP is an emerging but very promosing field!
- We developed a computational infrastructure to formalize SCP data analyses
- ► The infrastructure could be applied to reproduce 2 published analyses
- Exciting challenges are yet to be solved

Acknowledgements

Many thanks to my promoter Pr. Laurent Gatto

Thanks you for your attention!

I'm happy to take questions now or at the discussion tables

See you at the EuroBioc2020 (online)

References I

- Alexander Franks, Edoardo Airoldi, and Nikolai Slavov. Post-transcriptional regulation across human tissues. *PLoS Comput. Biol.*, 13(5):e1005535, May 2017.
- Ludger J E Goeminne, Adriaan Sticker, Lennart Martens, Kris Gevaert, and Lieven Clement. MSqRob takes the missing hurdle: Uniting intensity- and Count-Based proteomics. Anal. Chem., 92(9):6278–6287, May 2020.
- Harrison Specht, Edward Emmott, Aleksandra A Petelski, R Gray Huffman, David H Perlman, Marco Serra, Peter Kharchenko, Antonius Koller, and Nikolai Slavov. Single-cell proteomic and transcriptomic analysis of macrophage heterogeneity. October 2020.
- Ying Zhu, Mirko Scheibinger, Daniel Christian Ellwanger, Jocelyn F Krey, Dongseok Choi, Ryan T Kelly, Stefan Heller, and Peter G Barr-Gillespie. Single-cell proteomics reveals changes in expression during hair-cell development. *Elife*, 8, November 2019.