

Alexander Panchenko

INDUCING INTERPRETABLE WORD
SENSES FOR WSD AND ENRICHMENT OF
LEXICAL RESOURCES

Word vs sense embeddings

Word vs sense embeddings

Related work

Related work: knowledge-based

AutoExtend [Rothe and Schütze, 2015]

^{*} image is reproduced from the original paper

Related work: knowledge-free

- Adagram [Bartunov et al., 2016]
- Multiple vector representations θ for each word:

Related work: knowledge-free

- Adagram [Bartunov et al., 2016]
- Multiple vector representations θ for each word:

$$p(Y, Z, \beta | X, \alpha, \theta) = \prod_{w=1}^{V} \prod_{k=1}^{\infty} p(\beta_{wk} | \alpha) \prod_{i=1}^{N} [p(z_i | x_i, \beta) \prod_{j=1}^{C} p(y_{ij} | z_i, x_i, \theta)],$$

- z_i a hidden variable: a sense index of word x_i in context C;
- α a meta-parameter controlling number of senses.

Related work: knowledge-free

- Adagram [Bartunov et al., 2016]
- Multiple vector representations θ for each word:

$$p(Y, Z, \beta | X, \alpha, \theta) = \prod_{w=1}^{V} \prod_{k=1}^{\infty} p(\beta_{wk} | \alpha) \prod_{i=1}^{N} [p(z_i | x_i, \beta) \prod_{j=1}^{C} p(y_{ij} | z_i, x_i, \theta)],$$

- z_i a hidden variable: a sense index of word x_i in context C;
- α a meta-parameter controlling number of senses.
- See also: [Neelakantan et al., 2014] and [Li and Jurafsky, 2015]

Related work: word sense induction

- Word sense induction (WSI) based on graph clustering:
 - [Lin, 1998]
 - [Pantel and Lin, 2002]
 - [Widdows and Dorow, 2002]
 - Chinese Whispers [Biemann, 2006]
 - [Hope and Keller, 2013]

* source of the image: http://ic.pics.livejournal.com/blagin_anton/33716210/2701748/2701748_800.jpg

RepL4NLP@ACL'16 [Pelevina et al., 2016], LREC'18 [Remus and Biemann, 2018]

Prior methods:

- Induce inventory by clustering of word instances
- Use existing sense inventories

Our method:

- Input: word embeddings
- Output: word sense embeddings
- Word sense induction by clustering of word ego-networks

From word embeddings to sense embeddings

Word sense induction using ego-network clustering

Neighbours of Word and Sense Vectors

Vector	Nearest Neighbors
	tray, bottom, diagram, bucket, brackets, stack, basket, list, parenthesis, cup, saucer, pile, playfield, bracket, pot, drop-down, cue, plate

Neighbours of Word and Sense Vectors

Vector	Nearest Neighbors
table	tray, bottom, diagram, bucket, brackets, stack, basket, list, parenthesis, cup, saucer, pile, playfield, bracket, pot, drop-down, cue, plate
table#0	leftmost#0, column#1, tableau#1, indent#1, bracket#3, pointer#0, footer#1, cursor#1, diagram#0, grid#0
table#1	pile#1, stool#1, tray#0, basket#0, bowl#1, bucket#0, box#0, cage#0, saucer#3, mirror#1, pan#1, lid#0

Word Sense Disambiguation

- Context extraction: use context words around the target word
- Context filtering: based on context word's relevance for disambiguation
- **Sense choice in context**: maximise similarity between a context vector and a sense vector

They bought a table and chairs for kitchen. table senses data furniture

Evaluation on SemEval 2013 Task 13 WSI&D:

Model	Jacc.	Tau	WNDCG	F.NMI	F.B-Cubed
AI-KU (add1000)	0.176	0.609	0.205	0.033	0.317
AI-KU	0.176	0.619	0.393	0.066	0.382
AI-KU (remove5-add1000)	0.228	0.654	0.330	0.040	0.463
Unimelb (5p)	0.198	0.623	0.374	0.056	0.475
Unimelb (50k)	0.198	0.633	0.384	0.060	0.494
UoS (#WN senses)	0.171	0.600	0.298	0.046	0.186
UoS (top-3)	0.220	0.637	0.370	0.044	0.451
La Sapienza (1)	0.131	0.544	0.332	_	_
La Sapienza (2)	0.131	0.535	0.394	_	-
AdaGram, α = 0.05, 100 dim	0.274	0.644	0.318	0.058	0.470
w2v	0.197	0.615	0.291	0.011	0.615
w2v (nouns)	0.179	0.626	0.304	0.011	0.623
JBT	0.205	0.624	0.291	0.017	0.598
JBT (nouns)	0.198	0.643	0.310	0.031	0.595
TWSI (nouns)	0.215	0.651	0.318	0.030	0.573

LREC'2018 [Remus and Biemann, 2018]

	AUTOEXTEND	ADAGRAM	sans .	GLOVE .	SYMPAT .	LSABOW .		PARAGRAM SL
SIMLEX999	0.45	0.29	0.44	0.37	0.54	0.30	0.27	0.68
MEN	0.72	0.67	0.77	0.73	0.53	0.67	0.71	0.77
SIMVERB	0.43	0.27	0.36	0.23	0.37	0.15	0.19	0.53
WORDSIM353	0.58	0.61	0.70	0.61	0.47	0.67	0.59	0.72
SIMLEX999-N	0.44	0.33	0.45	0.39	0.48	0.32	0.34	0.68
MEN-N	0.72	0.68	0.77	0.76	0.57	0.71	0.73	0.78

Jan 11, 2018

- Sense-aware similarities are marked with +SENSES.
- These results are using a sense inventory based on sparse dependency features (JoBimText).

Word and sense embeddings of words iron and vitamin.

LREC'18 [Remus and Biemann, 2018]

Bartunov, S., Kondrashkin, D., Osokin, A., and Vetrov, D. (2016).

Breaking sticks and ambiguities with adaptive skip-gram. In *Artificial Intelligence and Statistics*, pages 130–138.

Pelevina, M., Arefiev, N., Biemann, C., and Panchenko, A. (2016).

Making sense of word embeddings.

In Proceedings of the 1st Workshop on Representation Learning for NLP, pages 174–183, Berlin, Germany. Association for Computational Linguistics.

Remus, S. and Biemann, C. (2018).

Retrofittingword representations for unsupervised sense aware word similarities.

In *Proceedings of the LREC 2018*, Miyazaki, Japan. European Language Resources Association.

Rothe, S. and Schütze, H. (2015).

Autoextend: Extending word embeddings to embeddings for

In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1793–1803, Beijing, China. Association for Computational Linguistics.

Jan 11, 2018