

부동산가격예측모델개발

팀 이름: 아파트

조 원: 이유리, 우병준, 이정인

Table of Contents

1. Project Overview	프로젝트 개요
2. Team Composition and Roles	
3. Project Execution Process and Methodology	수행 절차 및 방법
4. Data Preprocessing	데이터 전처리
5. Project Outcomes - Modeling	수행결과 - 모델링
6. Self-Evaluation and Insights	자체 평가 의견

프로젝트 개요

1. Project Overview

매매가예측

주제 선정 배경

서울시 아파트 매매가는 부동산 시장의 주요 지표. 따라서 시민과 투자자들에게 중요한 의사결정 정보를 제공

프로젝트 개요

서울시 아파트 매매가 예측 머신 러닝 모델 개발

주요 데이터 아파트 매매 실거래가 데이터 등

> 데이터 전처리 및 분석 feature 선정 예측 모델 구성

활용 장비 및 개발 환경

언어 Python

라이브러리 Pandas, NumPy, Scikitlearn, XgBoost 등

분석 도구 Jupyter Notebook, VS Code 프로젝트 구조

데이터 수집

데이터 전처리 및 탐색적 분석

머신러닝 모델 구축 및 예측

2. Team Composition and Roles

팀 구성 및 역할

이유리

우병준

• 통계청

• 한국은행

• 공공데이터 포털

• 공공데이터 포털

이정인

_	\hat{r}	
데	0	터

• 아파트 실거래가

• 구/행정동/법정동

목록 및 경계 파일

- 국토교통부
- 아파트 브랜드 부동산 사이트
 - 공공데이터 포털 및 브이 공간 월드
- 버스정류장, 지하철역 공공데이터 포털
- 정치 데이터
- 재임 기간

- 소비자 물가지수
- 환율, 금리
- 행정동별 인구밀도
- 행정동별
 - 상가 소득 및 소비
- 범죄율(폐기)

- 학교, 병원, 공원
 - 위치 데이터
- 날씨(폐기)

• 공공데이터 포털

• 기상청

- 전처리
- XgBoost 모델링 • Ridge, Lasso
 - 기타

• 그 외 모든 전처리

Decision Tree

• 문서 작업

• 발표자료 제작 (전반부)

- 2019년, 2020년 아파트 도 로명 주소 위도 경도 변환
- 행정동별 상가 소득 및 소비
- Random Forest
- 최고 성능 모델의 하이퍼파 라미터 튜닝
- 발표자료 제작 (후반부)
- 문서 작업

• 학교 도로명 주소 위도 경도 변환

3. Project Execution Process and Methodology

수행 절차 및 방법

기획

프로젝트 주제 선정

- 부동산 시장 분석 및 프로젝트 주제 선정
- 필요 데이터및 목표 정의

수행

데이터 수집

- 서울시 실거래가 데 이터 수집
- 주변 시설
- 교통
- 정치
- 환율, 금리
- 소득-소비
- 브랜드화

데이터 전처리

- 아파트 기본 정보 주소 위도경도 변환 등
- 주변 시설 및 교통아파트 기준최단거리 계산일정 반경 내 점수화
- 동별 직전 월의 거래 건수
- 환율, 금리, 정치 결측치 처리
- 인구밀도 및 경제 수준

예측 모델링

- Ridge, Lasso
- Decision Tree
- Random Forest
- XgBoost
- 최고 성능 모델 (Gradient Boosting 알고리즘 구현) XGBoost 하이퍼파라미터 튜닝

데이터 전처리

연도별 총 거래 건수 (2019-2023 하이라이트)

2023년 35,642건

5개년 총합 251,096건

데이터 전처리

불필요한 컬럼을 지운 서울시 아파트 실거래가 원데이터 (도로명 주소는 가림)

NO	시군구	단지명	전용면적 (㎡)	계약년 월		거래금액(만 원)	층	건축년 도
1	서울특별시 성동구 마장 동	현대	134.790	201912	31	88,000	17	1998

인덱스용 NO컬럼 값 정제

 NO
 address
 NO
 latitude
 longitude

 2019_00001
 서울특별시성동구실
 0
 2019_00001
 37.56
 127.04

위도 경도 추출을 위 한 주소 정제 API 활용 위도 경도 변환

Missing Value는 주소를 뒤에서 부터 잘라,

모든 주소 위도 경도 변환

(학교 주소도 같은 방식으로 변환)

데이터 전처리

상위 1위 ~10위 고급 (4점)

상위 11위~28위 중급 (3점)

순위 밖 브랜드 하급 (2점)

그외 브랜드 아님 (1점)

데이터 전처리

소비자 총물가지수 활용

2023 화폐가치로 전환

데이터 전처리

아파트기준

버스 정류장, 학교, 병원, 공원 연도별 지하철역

거리 계산 점수 계산

0~500m 10점 (도보약 5분) 500m~1km 5점 (도보약 10분) 1km~1.5km 1점 (도보약 15분 이상)

구/행정동 매핑

동별 직전 1/3/6개월 거래 건수 집계 행정동별 인구밀도 데이터 적용 행정동별 상가기준 소득-소비 데이터 적용

데이터 전처리

Monthly Averages of Interest Rate and Exchange Rates

── USD 환율

5. Project Outcomes

Modeling

수행결과 - 모델링

Correlation Analysis

상관 관계 분석

특성 간 상관관계 분석을 통 한 다중공선성 탐지

Correlation Analysis

Feature Importance

RandomForestRegressor

• R²

훈련 세트 R²: 0.984

테스트 세트 R²: 0.871

• MAE

12731.622

• 평균 절대 오차

랜덤 포레스트

MSE

RMSE

724951722.668

• 평균 제곱 오차

26924.928

Error Rate

0.13

• 평균 제곱근 오차

Cross Validation

Hyperparameter tuning

하이퍼 파라미터 조정

 $R^2 = 0.875$ MAE = 12632.60 RMSE = 26503.194

Error Rate = 0.129

Unsampled Data

• R²

0.891

랜덤 포레스트

MAE

12170.569

• 평균 절대 오차

MSE

• RMSE

540423738.4162

• 평균 제곱 오차

23247.015

Error Rate

0.128

• 평균 제곱근 오차

XGBRegressor

• R²

훈련 세트 R²: 0.982

테스트 세트 R²: 0.936

MAE

6735.414

• 평균 절대 오차

XGBoost

MSE

89093354.404

• 평균 제곱 오차

9438.927

오차율 0.105

RMSE

• 평균 제곱근 오차

Cross Validation

Hyperparameter tuning

하이퍼 파라미터 조정

Unsampled Data

• R²

0.936

• MAE

9506.353

• 평균 절대 오차

XGBoost

MSE

316722287.767

• 평균 제곱 오차

17796.693

오차율 0.096

• RMSE

• 평균 제곱근 오차

6. Self-Evaluation and Insights

자체 평가 의견

All for one, one for all

각자 담당 데이터를 수집, 전처리 각자 담당 모델을 훈련 최고 성능의 모델을 조정

이유리

아쉬운 점:

시간적 여유가 더 있었다면 더 긴 기간 대상 가능

좋았던 점:

데이터를 전처리하는 다양한 유형을 학습다양한 알고리즘의 활용

우병준

아쉬운 점:

시간이 더 있었다면 더 넓은 범위의 파라미터 조정 가능

좋았던 점:

다양한 알고리즘의 활용 머신러닝에 대한 보다 깊은 이해

이정인

아쉬운 점 :

파이썬이 미숙해 다양한 작업을 하지 못 함

좋았던 점:

데이터 수집에 대한 이해

Thank You