Мультипликативные функции

- 1. Через $\tau(n)$ и $\sigma(n)$ обозначим соответственно количество и сумму делителей числа $n\in\mathbb{N}$. Докажите, что $\tau(n)<2\sqrt{n}$ и $\sigma(n)\geq \tau(n)\sqrt{n}$.
- **2.** Пусть $\varphi(n)$ количество целых чисел меньших или равных $n \in \mathbb{N}$ и взаимно простых с ним. Докажите, что $\varphi(n) \ge \sqrt{n}$ при $n \ne 2$, 6 и $\sigma(n)\varphi(n) < n^2$ при $n \ge 2$.
- 3. Сумма всех натуральных делителей числа $n \in \mathbb{N}$ более чем в 100 превосходит само число n. Докажите, что есть сто идущих подряд натуральных чисел, каждое из которых имеет общий делитель с n больший 1.
- 4. Пусть $f \colon \mathbb{N} \to \mathbb{N}$ строго возрастающая мультипликативная функция. Докажите, что если f(2)=2, то f(n)=n для всех $n\in \mathbb{N}$.
- **5. а)** Дана мультипликативная функция f. Докажите, что функция $g(n) \stackrel{\text{def}}{=} \sum_{d|n} f(d)$ мультипликативная.
- **b**) Докажите, что $\sum_{d|n} \varphi(d) = n$ и $\sum_{d|n} \mu(n) = \begin{cases} 1, n=1, \\ 0, n>1. \end{cases}$
- **6.** (Формула обращения Мёбиуса) Дана произвольная функция $f \colon \mathbb{N} \to \mathbb{R}$. Рассмотрим функцию $g \colon \mathbb{N} \to \mathbb{R}$ такую, что $g(n) = \sum_{d|n} f(d)$ при $n \in \mathbb{N}$. Докажите, что $f(n) = \sum_{d|n} \mu(d) g(n/d)$.
- 7. Докажите, что $\frac{\varphi(n)}{n} = \sum_{d|n} \frac{\mu(d)}{d}$ для любого $n \in \mathbb{N}.$
- 8. а) Для функции $f \colon \mathbb{R} \to \mathbb{R}$ определим функцию $g(x) \stackrel{\text{def}}{=} \sum_{n \le x} f\left(\frac{x}{n}\right)$. Докажите, что $f(x) = \sum_{n \le x} \mu(n) g\left(\frac{x}{n}\right)$.
- **b)** Вычислите $\sum_{n \le x} \mu(n) \left[\frac{x}{n} \right]$ для любого $x \ge 1$.