Circuits and Signals

Equivalent devices (continuation)

Marek Rupniewski 2022 spring semester

WARSAW UNIVERSITY OF TECHNOLOGY

Equivalent devices

Devices are called equivalent if they are governed by equivalent equations.

Device equations determines the behaviour of the device in any circuit!

Device equation — an example

Device equation:

$$u = Ri$$

Device as a part of a bigger circuit vs device as independent circuit

Device equation:

Device as independent circuit:

Thévenin's equivalent

$$u = E_T - R_T i.$$

Norton's equivalent

$$i = J_N - uG_N = J_N - \frac{u}{R_N}.$$

Thévenin's and Norton's equivalents equivalence

Thévenin's and Norton's equivalents are equivalent if and only if

$$R_T = R_N$$
 and $E_T = J_N R_N$.

$$u = E_T - R_T i$$
 $i = J_N - \frac{u}{R_N} \equiv u = J_N R_N - R_N i.$

Attention:

$$I \stackrel{\text{CDF}}{=} \frac{3}{2} \times \frac{20}{20+5} A$$
$$= \frac{6}{5} A$$

$\Delta - \bigstar$ and $\bigstar - \Delta$ transformations

Equivalent if:

$$\begin{split} R_A &= \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1}, \\ R_B &= \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}, \\ R_C &= \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}. \end{split}$$

In other words:

$$R_1 = \frac{R_B R_C}{R_A + R_B + R_C},$$

$$R_2 = \frac{R_C R_A}{R_A + R_B + R_C},$$

$$R_3 = \frac{R_A R_B}{R_A + R_B + R_C}.$$

Every one-port comprising of resistors only is equivalent to a resistor

Every one-port comprising of resistors only is equivalent to a resistor

$$R_{\text{eq}} = \left(\frac{9}{4} || \frac{3}{2} + \frac{1}{2}\right) \Omega = \left(\frac{\frac{9}{4} \times \frac{3}{2}}{\frac{9}{4} + \frac{3}{2}} + \frac{1}{2}\right) \Omega = \left(\frac{27}{30} + \frac{1}{2}\right) \Omega = \frac{7}{5} \Omega.$$

A one-port comprising of different devices can still be equivalent with a resistor

$$nu = -R(-\frac{1}{n}i),$$
 $u = \underbrace{\frac{1}{n^2}R}_{Reg}i.$

A one-port comprising of different devices does not have to be equivalent to a resistor

$$u=E_T+R_Ti.$$

What is a linear DC one-port equivalent to?

The following cases are possible:

$$i=J_N,$$
 u arbitrary, current source,
 i arbitrary, $u=E_T,$ voltage source,
 i arbitrary, $u=E_T-iR_T,$ $R_T\neq 0,$ Thévenin's equivalent,
 $i=J_N,$ $u=E_T,$ fixator,
 i arbitrary, u arbitrary, norator.

What is a linear DC one-port equivalent to?

Consider two connections (not necessarily circuits!):

1	U	one-port's	type
---	---	------------	------

*	*	norator		
Ø	Ø	fixator		
Ø	Ε	voltage source or fixator generating zero current		
J	Ø	current source or fixator generating zero voltage		
J	Ε	Thévenin's equivalent: $E_T = E, R_T = E/J$ (equivalently, Norton's		
		equivalent: $J_N = J$, $R_N = E/J$)		
0	0	nullator or resistor.		

Thévenin's and Norton's equivalents parameters

An alternative way of determining internal (output) resistance

If short-circuit current is non-zero:

$$R_T = R_N = \frac{\text{open-circuit voltage}}{\text{short-circuit current}}.$$

In general:

The internal (output) resistance $R_T = R_N$ of a one-port equals the equivalent resistance of the reduced one-port that results from the original one-port by reduction of all the independent sources to zeros.

Thévenin's equivalent parameters — an example

$$R_T = R_1 + R_2.$$

 $E_T = E_1 + (-E_2) + J_1 R_1$.

Norton's equivalent parameters — an example

Thévenin equivalent – another example – 1st option (find E_T and R_T)

$$J = 6 \text{ mA}, \ R = \frac{1}{4}, \ R_1 = 1.5 \text{ k}\Omega, \ R_2 = 6 \text{ k}\Omega.$$

Thévenin equivalent – another example – 2nd option (find E_T and J_N ; then $R_T = \frac{E_T}{J_N}$)

$$J = 6 \text{ mA}, \ R = \frac{1}{4}, \ R_1 = 1.5 \text{ k}\Omega, \ R_2 = 6 \text{ k}\Omega.$$

Thévenin equivalent – another example – 3rd option (find J_N and R_T ; then $E_T = J_N R_T$)

$$J = 6 \text{ mA}, \ R = \frac{1}{4}, \ R_1 = 1.5 \text{ k}\Omega, \ R_2 = 6 \text{ k}\Omega.$$

