Applicazioni DEL MARKOV CHAIN MONTE CARZO

Si ha:

$$u \sim v \Leftrightarrow ||u - v|| = 1$$

Usereur le condizioni al bondo periodiche (le coordinate sono in modulo L): $L\equiv O$

 \Rightarrow se $u=(i,5) \in V$, i sua viciui savo (i,5-1), (i,5+1), (i-1,5), (i+1,5) can be operation +/- mod L

Sia $E = \{-1, 1\}^{\vee}, x = (x_{\nu})_{\nu \in V} \in E, H(x) = -\sum_{u, v: u \sim v} x_{u} \times v$

Se x ∈ E, le "configurarioni vivine ad x" sour tutte e sole quelle del tipo:

$$(\times^{v})_{u} = \begin{cases} \times_{u} & \text{se } u \neq v \\ \times_{v} & \text{se } u = v \end{cases}$$

Questa u viene di "iuvessione" formisce E di una struttura di grafo regolare di grado L^2 . Quiudi usiamo l'algoritmo di Metropolis usando come matrice di riferimento quella della parseggiata aleatoria su tale grafo, cisé gli unici elementi non unlli di + sono $+(\times, \times^v) = \frac{1}{L^2}$. L'algoritmo di metropolis per $T_{\mathcal{B}}(\times) = \frac{1}{2p} e^{-\mathcal{B}H(\times)}$ ha matrice di transizione

$$Q(x,x^{\nu}) = \frac{1}{L^2} e \times p(-\beta(H(x^{\nu}) - H(x))^+), \beta > 0$$

Notare che $H(x^{\nu}) - H(x) = 2 \times_{\nu} \sum_{u:u \sim v} \times_{u}$. In particolare, se v = (i,s) si ha $H(x^{\nu}) - H(x) = 2 \times_{\nu} (\times_{i+1,s} + \times_{i-1,s} + \times_{i,s+1} + \times_{i,s-1})$.

Se $X \in E$, pariamo $m(X) = \frac{1}{L^2} \sum_{u \in V} X_u =: MAGNETIZZAZIONE,$ l'obliettivo é studiore l'evolutione di $m(X_u)$!!!

```
PSEUDOCODICE:

X_{0} = \underbrace{\begin{array}{c} \text{Lutti gli spin uguali tra los} \\ (X_{0})_{N} = \pm \ 1 \ \text{can probabilità} \ \frac{1}{2} \ \text{indipendenti}. \\ \text{For } n = 0, ..., N-1: \\ \text{Scegli in vertice casuale} \\ \text{if } H(X_{n}^{V}) - H(X_{n}) \leqslant 0: \\ X_{n+1} = X_{n}^{V} \\ \text{else:} \\ \text{genera } V \sim \text{Unif}(0, 1) \\ \text{if } U \leqslant e^{-\beta(H(X_{n}^{V}) - H(X_{n}))^{+}:} \\ X_{n+1} = X_{n}^{V} \end{aligned}}
```

else: $X_{n+1} = X_n$ visualizza $m(X_{n+1})$, n = 1,..., N

2) Problema del commensor viaggiatore:

 $E = \{ \text{ permutarioui di u oggetti} \}$. Ogui oggetto deusta una città. Se $i, s \in \{1, ..., n\}$ sono 2 città, deustiamo con d(i, s) la loro distanza. Assumiamo $d(i, s) = d(s, i) \ \forall i, s$. Se $\forall \in E$, definiamo :

 $H(T) = d(T(1),T(2)) + \ldots + d(T(n-1),T(n)) + d(T(n),T(1))$

I'abliettiva é minimizzare H. Si puá usare l'algoritma di Metropolis per $T_T(T) = \frac{1}{2T} \exp\left(-\frac{H(T)}{T}\right)$. 2 permutazioni T, Y si dicono vicine se $\exists i, s \ t. c.$:

$$\mathcal{A}(K) = \begin{cases} T(K) & K \neq i, s \\ T(i) & K = s \\ T(s) & K = i \end{cases}, \quad \mathcal{A} = T^{i,s}$$

(ió dota E di una strutura di grafo segolore con deg = u(u-1) e possiamo quindi contruire l'algoritme di Metropolis come segue:

 $Q(T, T^{i,s}) = \frac{1}{\mu(\mu-1)} \exp\left(-\frac{1}{T}(H(T^{i,s}) - H(T))^{+}\right)$

Faccioned variance nel temps $T = T_n + C_n + T_{n+1} = A T_n$, $A \in (0,1)$