Learning and Judgment Shocks in U.S. Business Cycles

James Murray
Department of Economics
University of Wisconsin - La Crosse

Tuesday, March 15, 2011

Explain Expectations

- Learning: type of adaptive expectations, agents collect past data and run regressions.
- Judgment: agents adjust their expectations based on...
 - something in the news (war in Libya, earthquake in Japan),
 - outcome of an election,
 - complete nonsense.

Explain Macroeconomic Fluctuations

- How is macroeconomic volatility in U.S. is explained by typical structural shocks versus judgment shocks.
- 2 How much of judgment is explained by actual events versus judgment shocks.

Explain Expectations

- Learning: type of adaptive expectations, agents collect past data and run regressions.
- Judgment: agents adjust their expectations based on...
 - something in the news (war in Libya, earthquake in Japan),
 - outcome of an election,
 - complete nonsense.

Explain Macroeconomic Fluctuations

- How is macroeconomic volatility in U.S. is explained by typical structural shocks versus judgment shocks.
- ② How much of judgment is explained by actual events versus judgment shocks.

Constant Gain Learning

- Agents' expectations are informed by least-squares forecasts based on past data.
- Forecasts can be directly mapped to past data on observable variables: output gap, inflation, interest rates.

$\mathsf{E}\mathsf{ imes}\mathsf{pectation} = \mathsf{Forecast} + \mathsf{Judgment}$

- Judgment may be informative, include relevant information not in past data.
- Judgment may be ill-informed (destabilizing, independent stochastic shock)
- Agents' actual expectations are mapped to data from Survey of Professional Forecasters

Constant Gain Learning

- Agents' expectations are informed by least-squares forecasts based on past data.
- Forecasts can be directly mapped to past data on observable variables: output gap, inflation, interest rates.

Expectation = Forecast + Judgment

- Judgment may be informative, include relevant information not in past data.
- Judgment may be ill-informed (destabilizing, independent stochastic shock)
- Agents' actual expectations are mapped to data from Survey of Professional Forecasters.

Monetary Policy

- Oraphanides and Williams (JEDC, 2005): Monetary authority was optimizing, but misinformed.
- Primiceri (QJE, 2006): Monetary authority misinformed, expectations improved with time.

Explaining Volatility

- Milani (2008): Time varying expectations.
- Bullard and Singh (2007): bad luck + Bayesian learning.

Estimation

- Milani (JME, 2007): Explains persistence.
- Slobodyan and Wouters (2009): DSGE models with learning can fit data better than RE.

Monetary Policy

- Oraphanides and Williams (JEDC, 2005): Monetary authority was optimizing, but misinformed.
- Primiceri (QJE, 2006): Monetary authority misinformed, expectations improved with time.

Explaining Volatility

- Milani (2008): Time varying expectations.
- Bullard and Singh (2007): bad luck + Bayesian learning.

Estimation

- Milani (JME, 2007): Explains persistence.
- Slobodyan and Wouters (2009): DSGE models with learning can fit data better than RE.

Monetary Policy

- Oraphanides and Williams (JEDC, 2005): Monetary authority was optimizing, but misinformed.
- Primiceri (QJE, 2006): Monetary authority misinformed, expectations improved with time.

Explaining Volatility

- Milani (2008): Time varying expectations.
- Bullard and Singh (2007): bad luck + Bayesian learning.

Estimation

- Milani (JME, 2007): Explains persistence.
- Slobodyan and Wouters (2009): DSGE models with learning can fit data better than RE.

Central Banking Policy

- Reifschneider, Stockton, and Wilcox (1997)
- Svensson (2005)

Exuberance Equilibria

- Bullard, Evans, Honkapohja (2008), (2010).
- Judgment is independent from fundamentals: purely destabilizing.

Empirical Evaluation

• Missing?

Central Banking Policy

- Reifschneider, Stockton, and Wilcox (1997)
- Svensson (2005)

Exuberance Equilibria

- Bullard, Evans, Honkapohja (2008), (2010).
- Judgment is independent from fundamentals: purely destabilizing.

Empirical Evaluation

• Missing?

Central Banking Policy

- Reifschneider, Stockton, and Wilcox (1997)
- Svensson (2005)

Exuberance Equilibria

- Bullard, Evans, Honkapohja (2008), (2010).
- Judgment is independent from fundamentals: purely destabilizing.

Empirical Evaluation

• Missing?

Utility maximization conditions

(Special case) Euler equation:
$$u'(c_t) = \beta E_t u'(c_{t+1}) \frac{(1+r_t)}{(1+\pi_{t+1})}$$

(Linearized) extended model:

$$\tilde{\lambda}_t = E_t \tilde{\lambda}_{t+1} + \hat{r}_t - E_t \pi_{t+1} - r_t^n,$$

$$\tilde{\lambda}_t = \frac{1}{(1-\beta\eta)(1-\eta)} \left[\beta\eta E_t \tilde{y}_{t+1} - (1+\beta\eta^2) \tilde{y}_t + \eta \tilde{y}_{t-1} \right]$$

Notation

 $\tilde{\lambda}_t$: marginal utility of income.

 \tilde{y}_t : output gap.

 \hat{r}_{t} : nominal interest rate.

 π_t : inflation.

 $\eta \in [0,1)$: habit.

 $eta \in (0,1)$: discount rate

 r_t^n : natural rate shock

Utility maximization conditions

(Special case) Euler equation:
$$u'(c_t) = \beta E_t u'(c_{t+1}) \frac{(1+r_t)}{(1+\pi_{t+1})}$$

(Linearized) extended model:

$$\tilde{\lambda}_t = E_t \tilde{\lambda}_{t+1} + \hat{r}_t - E_t \pi_{t+1} - r_t^n,$$

$$\tilde{\lambda}_t = \frac{1}{(1-\beta\eta)(1-\eta)} \left[\beta\eta E_t \tilde{y}_{t+1} - (1+\beta\eta^2) \tilde{y}_t + \eta \tilde{y}_{t-1} \right]$$

Notation

 $\tilde{\lambda}_t$: marginal utility of income.

 \tilde{y}_t : output gap.

 \hat{r}_{t} : nominal interest rate.

 π_t : inflation.

 $\eta \in [0,1)$: habit.

 $\beta \in (0,1)$: discount rate

 r_t^n : natural rate shock

Utility maximization conditions

(Special case) Euler equation:
$$u'(c_t) = \beta E_t u'(c_{t+1}) \frac{(1+r_t)}{(1+\pi_{t+1})}$$

(Linearized) extended model:

$$\tilde{\lambda}_t = E_t \tilde{\lambda}_{t+1} + \hat{r}_t - E_t \pi_{t+1} - r_t^n,$$

$$\tilde{\lambda}_t = \frac{1}{(1-\beta\eta)(1-\eta)} \left[\beta\eta E_t \tilde{y}_{t+1} - (1+\beta\eta^2) \tilde{y}_t + \eta \tilde{y}_{t-1} \right]$$

Notation

 $\tilde{\lambda}_t$: marginal utility of income.

 \tilde{y}_t : output gap.

 \hat{r}_t : nominal interest rate.

in the time

 π_t : inflation.

 $\eta \in [0,1)$: habit.

 $\beta \in (0,1)$: discount rate.

 r_t^n : natural rate shock

Profit Maximizing Condition

- Firms choose prices (firms have market power)
- Firms only infrequently update prices.
- Consider expectations of future inflation.
- Aggregate supply depends on price level.

$$\pi_t = \frac{1}{1 + \beta \gamma} \left[\gamma \pi_{t-1} + \beta E_t \pi_{t+1} + \kappa (\tilde{y}_t - \mu \tilde{\lambda}_t) + u_t \right]$$

- Cost push shock: u_t.
- $\gamma \in [0,1)$: price indexation.
- $\kappa \in (0, \infty)$: price flexibility.

Profit Maximizing Condition

- Firms choose prices (firms have market power)
- Firms only infrequently update prices.
- Consider expectations of future inflation.
- Aggregate supply depends on price level.

$$\pi_t = \frac{1}{1 + \beta \gamma} \left[\gamma \pi_{t-1} + \beta E_t \pi_{t+1} + \kappa (\tilde{y}_t - \mu \tilde{\lambda}_t) + u_t \right]$$

- Cost push shock: u_t .
- $\gamma \in [0,1)$: price indexation.
- $\kappa \in (0, \infty)$: price flexibility.

Taylor (1993) Rule

- Fed raises interest rates when output above potential.
- Fed raises interest rates when inflation above target.
- Fed gradually adjusts interest rate.

$$\hat{r}_{t} = \rho_{r} \hat{r}_{t-1} + (1 - \rho_{r}) (\psi_{\pi} E_{t} \pi_{t+1} + \psi_{y} E_{t} \tilde{y}_{t+1}) + \epsilon_{r,t}$$

- $\epsilon_{r,t}$: monetary policy shock.
- $\psi_{\pi} \in (0, \infty)$: feedback on inflation.
- $\psi_V \in (0, \infty)$: feedback on output.
- $\rho_r \in (0,1)$: gradual adjustment.

Taylor (1993) Rule

- Fed raises interest rates when output above potential.
- Fed raises interest rates when inflation above target.
- Fed gradually adjusts interest rate.

$$\hat{r}_{t} = \rho_{r} \hat{r}_{t-1} + (1 - \rho_{r}) \left(\psi_{\pi} E_{t} \pi_{t+1} + \psi_{y} E_{t} \tilde{y}_{t+1} \right) + \epsilon_{r,t}$$

- $\epsilon_{r,t}$: monetary policy shock.
- $\psi_{\pi} \in (0, \infty)$: feedback on inflation.
- $\psi_v \in (0, \infty)$: feedback on output.
- $\rho_r \in (0,1)$: gradual adjustment.

Linear Model 8/ 1

• Log-linearized New Keynesian model has the structural form:

$$\Omega_0 x_t = \Omega_1 x_{t-1} + \Omega_2 x_{t+1}^e + \Omega_3 x_{t+2}^e + \Psi z_t$$
$$z_t = A z_{t-1} + \epsilon_t$$

- All observable by the agents: $x_t = [\tilde{y}_t \ \pi_t \ \hat{r}_t]'$
- Shocks not observable to agents that learn: $z_t = [r_t^n \ u_t \ \epsilon_{r,t}]'$
- Rational expectations solution:

$$E_t x_{t+1} = G x_t + H z_t$$

• Learning: agents estimate G with by running a regression.

Regression Notation

- Let $Y_{\tau} \in \{\tilde{y}_t, \ \pi_{\tau} \ \hat{r}_{\tau}\}$ denote one of the dependent variables agents want to forecast.
- Let $X_{\tau} = [1 \ \tilde{y}_{\tau-1} \ \pi_{\tau-1} \ \hat{r}_{\tau-1}]'$ denote vector of explanatory variables.
- Let $\hat{\beta}_t^Y$ be the row in G for variable Y_t .

OLS Regression

$$\hat{\beta}_{t}^{Y} = \left(\sum_{\tau=0}^{t-1} X_{\tau} X_{\tau}'\right)^{-1} \left(\sum_{\tau=0}^{t-1} X_{\tau}' Y_{\tau}\right)$$

Econometric Forecast: $E_t^* Y_t = X_t' \hat{\beta}_t$

Regression Notation

- Let $Y_{\tau} \in \{\tilde{y}_t, \ \pi_{\tau} \ \hat{r}_{\tau}\}$ denote one of the dependent variables agents want to forecast.
- Let $X_{\tau} = [1 \ \tilde{y}_{\tau-1} \ \pi_{\tau-1} \ \hat{r}_{\tau-1}]'$ denote vector of explanatory variables.
- Let $\hat{\beta}_t^Y$ be the row in G for variable Y_t .

OLS Regression

$$\hat{eta}_t^Y = \left(\sum_{ au=0}^{t-1} X_ au X_ au'
ight)^{-1} \left(\sum_{ au=0}^{t-1} X_ au' Y_ au
ight)$$

Econometric Forecast: $E_t^* Y_t = X_t' \hat{\beta}_t$

Recursive Formulation

The least squares regression coefficients can be rewritten as:

$$\hat{\beta}_{t}^{Y} = \beta_{t-1}^{Y} + g_{t}R_{t}^{-1}X_{t}'(Y_{t} - X_{t}\hat{\beta}_{t})$$

$$R_t = R_{t-1} + g_t(X_t X_t' - R_{t-1}),$$

where $g_t = 1/t$ is the **learning gain**.

Learning Gain

- $g_t \to 0$ as $t \to \infty$, learning disappears over time.
- Constant gain learning: $g_t = g$.
- Learning can always lead to changes in expectations.
- Allows agents to learn about structural changes.

Recursive Formulation

The least squares regression coefficients can be rewritten as:

$$\hat{\beta}_{t}^{Y} = \beta_{t-1}^{Y} + g_{t}R_{t}^{-1}X_{t}'(Y_{t} - X_{t}\hat{\beta}_{t})$$

$$R_t = R_{t-1} + g_t(X_t X_t' - R_{t-1}),$$

where $g_t = 1/t$ is the **learning gain**.

Learning Gain

- $g_t \to 0$ as $t \to \infty$, learning disappears over time.
- Constant gain learning: $g_t = g$.
- Learning can always lead to changes in expectations.
- Allows agents to learn about structural changes.

Data Requirements

- Recall rational expectations: $E_t x_{t+1} = G x_t + H z_t$
- Learning agents have data on x_t , cannot "get data" on structural shocks, z_t .

Expectations: Learning with Judgment

- Judgment may include evidence of structural shocks that are evident from news or current events.
- Expectations: sum of econometric forecasts $(E_t^* x_{t+1})$ and judgment (η_t) .

$$x_{t+1}^e = E_t^* x_{t+1} + \eta_t$$

Data Requirements

- Recall rational expectations: $E_t x_{t+1} = G x_t + H z_t$
- Learning agents have data on x_t , cannot "get data" on structural shocks, z_t .

Expectations: Learning with Judgment

- Judgment may include evidence of structural shocks that are evident from news or current events.
- Expectations: sum of econometric forecasts $(E_t^* x_{t+1})$ and judgment (η_t) .

$$x_{t+1}^e = E_t^* x_{t+1} + \eta_t$$

Evolution of Judgment

Judgment, η_t , is possibly informed by current structural shocks, and subject to is own shock:

$$\begin{split} \eta_t &= \Phi z_t + \zeta_t, \\ \zeta_{y,t} &= \rho_{\zeta,y} \zeta_{y,t-1} + \xi_{y,t}, \\ \zeta_{\pi,t} &= \rho_{\zeta,\pi} \zeta_{\pi,t-1} + \xi_{\pi,t}, \end{split}$$

- η_t is 2x1 vector, includes judgment on \tilde{y}_{t+1}^e and π_{t+1}^e .
- Φ: dependence of judgment on actual structural shocks.
- ζ_t : judgment shocks.

Evolution of Judgment

Judgment, η_t , is possibly informed by current structural shocks, and subject to is own shock:

$$\begin{split} \eta_t &= \Phi z_t + \zeta_t, \\ \zeta_{y,t} &= \rho_{\zeta,y} \zeta_{y,t-1} + \xi_{y,t}, \\ \zeta_{\pi,t} &= \rho_{\zeta,\pi} \zeta_{\pi,t-1} + \xi_{\pi,t}, \end{split}$$

- η_t is 2x1 vector, includes judgment on \tilde{y}_{t+1}^e and π_{t+1}^e .
- Φ: dependence of judgment on actual structural shocks.
- ζ_t : judgment shocks.

Estimation 13/1

 Bayesian Estimation - Metropolis Hastings Simulation Procedure.

- Quarterly data from 1968:Q3 through 2007:Q1 on
 - Output gap: measured by Congressional Budget Office.
 - GDP deflator inflation rate.
 - Federal funds rate.
 - Survey of Professional Forecasters One-Quarter ahead forecast on real GDP.
 - Survey of Professional Forecasters One-Quarter ahead forecast on GDP deflator.
- Pre-sample (1954:Q3 1968:Q2) data on first three variables initialize VAR(1) learning forecasts.

	Median	5th PCT	95th PCT
$\overline{\eta}$	0.0715	0.0207	0.1420
σ	2.9178	2.2683	3.5847
μ	2.0691	1.3988	2.8363
κ	0.0278	0.0161	0.0432
γ	0.8465	0.7241	0.9146
$ ho_r$	0.9210	0.8578	0.9572
ψ_{y}	0.3185	0.1054	0.5845
ψ_{π}	1.5262	1.2789	1.7665
$ ho_{n}$	0.9798	0.9629	0.9925
$ ho_{\it u}$	0.0619	0.0146	0.2714
σ_n	0.0302	0.0236	0.0376
$\sigma_{\scriptscriptstyle \it U}$	0.0039	0.0035	0.0045
σ_r	0.0037	0.0033	0.0040

- Low persistence due to habit formation.
- ② High inflation persistence.
- 3 High persistence in natural rate shock.
- 4 Low persistence in cost-push shock.

	Median	5th PCT	95th PCT
η	0.0715	0.0207	0.1420
σ	2.9178	2.2683	3.5847
μ	2.0691	1.3988	2.8363
κ	0.0278	0.0161	0.0432
γ	0.8465	0.7241	0.9146
$ ho_r$	0.9210	0.8578	0.9572
ψ_{y}	0.3185	0.1054	0.5845
ψ_{π}	1.5262	1.2789	1.7665
$ ho_n$	0.9798	0.9629	0.9925
$ ho_{\sf u}$	0.0619	0.0146	0.2714
σ_n	0.0302	0.0236	0.0376
$\sigma_{\it u}$	0.0039	0.0035	0.0045
σ_r	0.0037	0.0033	0.0040

- Low persistence due to habit formation.
- 2 High inflation persistence.
- 4 High persistence in natural rate shock.
- Low persistence in cost-push shock.

	Median	5th PCT	95th PCT
$\overline{\eta}$	0.0715	0.0207	0.1420
σ	2.9178	2.2683	3.5847
μ	2.0691	1.3988	2.8363
κ	0.0278	0.0161	0.0432
γ	0.8465	0.7241	0.9146
ρ_r	0.9210	0.8578	0.9572
ψ_{y}	0.3185	0.1054	0.5845
ψ_π	1.5262	1.2789	1.7665
$ ho_{n}$	0.9798	0.9629	0.9925
$ ho_{\sf u}$	0.0619	0.0146	0.2714
σ_n	0.0302	0.0236	0.0376
$\sigma_{\it u}$	0.0039	0.0035	0.0045
σ_r	0.0037	0.0033	0.0040

- Low persistence due to habit formation.
- 2 High inflation persistence.
- High persistence in natural rate shock.
- Low persistence in cost-push shock.

	Median	5th PCT	95th PCT
$\overline{\eta}$	0.0715	0.0207	0.1420
σ	2.9178	2.2683	3.5847
μ	2.0691	1.3988	2.8363
κ	0.0278	0.0161	0.0432
γ	0.8465	0.7241	0.9146
$ ho_r$	0.9210	0.8578	0.9572
ψ_{y}	0.3185	0.1054	0.5845
ψ_{π}	1.5262	1.2789	1.7665
ρ_{n}	0.9798	0.9629	0.9925
ρ_{u}	0.0619	0.0146	0.2714
σ_n	0.0302	0.0236	0.0376
$\sigma_{\scriptscriptstyle \sf I\hspace{-1pt}I}$	0.0039	0.0035	0.0045
σ_r	0.0037	0.0033	0.0040

- Low persistence due to habit formation.
- 2 High inflation persistence.
- High persistence in natural rate shock.
- 4 Low persistence in cost-push shock.

	Median	5th PCT	95th PCT
$\overline{\eta}$	0.0715	0.0207	0.1420
σ	2.9178	2.2683	3.5847
μ	2.0691	1.3988	2.8363
κ	0.0278	0.0161	0.0432
γ	0.8465	0.7241	0.9146
$ ho_r$	0.9210	0.8578	0.9572
ψ_{y}	0.3185	0.1054	0.5845
ψ_{π}	1.5262	1.2789	1.7665
$ ho_n$	0.9798	0.9629	0.9925
$\rho_{\scriptscriptstyle \sf U}$	0.0619	0.0146	0.2714
σ_n	0.0302	0.0236	0.0376
$\sigma_{\it u}$	0.0039	0.0035	0.0045
σ_r	0.0037	0.0033	0.0040

- Low persistence due to habit formation.
- Aligh inflation persistence.
- High persistence in natural rate shock.
- 4 Low persistence in cost-push shock.

Expectation Parameters

L MALL L FUL DOT

	Median	5th PCI	95th PCI
g	0.0232	0.0103	0.0439
$ ho_{\zeta,y}$	0.7322	0.4884	0.9385
$\rho_{\zeta,\pi}$	0.8729	0.7896	0.9460
$\sigma_{\zeta,y}$	0.0090	0.0082	0.0100
$\sigma_{\zeta,\pi}$	0.0050	0.0045	0.0055
$\phi_{y,n}$	-0.2220	-0.2937	-0.1466
$\phi_{y,u}$	0.0916	-0.2233	0.3346
$\phi_{y,r}$	-0.0394	-0.2990	0.3760
$\phi_{\pi,n}$	0.0252	0.0015	0.0503
$\phi_{\pi,u}$	-0.2890	-0.4411	-0.1428
$\phi_{\pi,r}$	-0.0679	-0.2102	0.0934

ALL DOT

- Typical learning gain \sim 43*obs*. \sim 11*years*.
- 2 High judgment persistence.
- Informed judgment (non-zero).
- Judgment not informed.

Expectation Parameters

	Median	5th PCT	95th PCT
g	0.0232	0.0103	0.0439
$ ho_{\zeta,y}$	0.7322	0.4884	0.9385
$\rho_{\zeta,\pi}$	0.8729	0.7896	0.9460
$\sigma_{\zeta,y}$	0.0090	0.0082	0.0100
$\sigma_{\zeta,\pi}$	0.0050	0.0045	0.0055
$\phi_{y,n}$	-0.2220	-0.2937	-0.1466
$\phi_{y,u}$	0.0916	-0.2233	0.3346
$\phi_{y,r}$	-0.0394	-0.2990	0.3760
$\phi_{\pi,n}$	0.0252	0.0015	0.0503
$\phi_{\pi,u}$	-0.2890	-0.4411	-0.1428
$\phi_{\pi,r}$	-0.0679	-0.2102	0.0934

- Typical learning gain \sim 43*obs*. \sim 11*years*.
- 2 High judgment persistence.
- Informed judgment (non-zero).
- Judgment not informed.

Expectation Parameters

	ivieuran	ו סנוו דכו	95111 FC1
g	0.0232	0.0103	0.0439
$ ho_{\zeta,y}$	0.7322	0.4884	0.9385
$ ho_{\zeta,\pi}$	0.8729	0.7896	0.9460
$\sigma_{\zeta,y}$	0.0090	0.0082	0.0100
$\sigma_{\zeta,\pi}$	0.0050	0.0045	0.0055
$\phi_{y,n}$	-0.2220	-0.2937	-0.1466
$\phi_{y,u}$	0.0916	-0.2233	0.3346
$\phi_{y,r}$	-0.0394	-0.2990	0.3760
$\phi_{\pi,n}$	0.0252	0.0015	0.0503
$\phi_{\pi,u}$	-0.2890	-0.4411	-0.1428
$\phi_{\pi,r}$	-0.0679	-0.2102	0.0934

Modian | 5th DCT

OF+L DCT

- **1** Typical learning gain ~ 43 obs. ~ 11 years.
- 2 High judgment persistence.
- Informed judgment (non-zero).
- Judgment not informed.

Expectation Parameters

L MALIS L FUL DOT

	Median	5th PCI	95th PCT
g	0.0232	0.0103	0.0439
$ ho_{\zeta,y}$	0.7322	0.4884	0.9385
$ ho_{\zeta,\pi}$	0.8729	0.7896	0.9460
$\sigma_{\zeta,y}$	0.0090	0.0082	0.0100
$\sigma_{\zeta,\pi}$	0.0050	0.0045	0.0055
$\phi_{y,n}$	-0.2220	-0.2937	-0.1466
$\phi_{y,u}$	0.0916	-0.2233	0.3346
$\phi_{y,r}$	-0.0394	-0.2990	0.3760
$\phi_{\pi,n}$	0.0252	0.0015	0.0503
$\phi_{\pi,u}$	-0.2890	-0.4411	-0.1428
$\phi_{\pi,r}$	-0.0679	-0.2102	0.0934

ALL DOT

- Typical learning gain ~ 43obs. ~ 11years.
- 2 High judgment persistence.
- Informed judgment (non-zero).
- Judgment not informed.

Expectation Parameters

	Median	5th PCT	95th PCT
g	0.0232	0.0103	0.0439
$ ho_{\zeta,y}$	0.7322	0.4884	0.9385
$ ho_{\zeta,\pi}$	0.8729	0.7896	0.9460
$\sigma_{\zeta,y}$	0.0090	0.0082	0.0100
$\sigma_{\zeta,\pi}$	0.0050	0.0045	0.0055
$\phi_{y,n}$	-0.2220	-0.2937	-0.1466
$\phi_{y,u}$	0.0916	-0.2233	0.3346
$\phi_{y,r}$	-0.0394	-0.2990	0.3760
$\phi_{\pi,n}$	0.0252	0.0015	0.0503
$\phi_{\pi,u}$	-0.2890	-0.4411	-0.1428
$\phi_{\pi,r}$	-0.0679	-0.2102	0.0934

- Typical learning gain ~ 43obs. ~ 11years.
- 2 High judgment persistence.
- Informed judgment (non-zero).
- Judgment not informed.

Judgment

Recall, judgment is a linear combination of concurrent structural shocks and its own stochastic disturbance:

 $\begin{array}{ll} \mbox{Judgment:} & \eta_t = \Phi z_t + \zeta_t, \\ \mbox{Disturbance:} & \zeta_t = \zeta_{t-1} + \xi_t, \end{array}$

Variance Decomposition

What percentage of the variability in judgment (η_t) is,

- ① informed by concurrent structural shocks (z_t) ?
- 2 stochastic disturbances (ξ_t) ?

Uses the estimates parameters in Φ , $\rho_{\zeta,y}$, $\rho_{\zeta,\pi}$ and the variances of z_t , $\xi_{y,t}$, $\xi_{\pi,t}$.

Judgment

Recall, judgment is a linear combination of concurrent structural shocks and its own stochastic disturbance:

Judgment: $\eta_t = \Phi z_t + \zeta_t$, Disturbance: $\zeta_t = \zeta_{t-1} + \xi_t$,

Variance Decomposition

What percentage of the variability in judgment (η_t) is,

- \odot informed by concurrent structural shocks (z_t) ?
- 2 stochastic disturbances (ξ_t) ?

Uses the estimates parameters in Φ , $\rho_{\zeta,y}$, $\rho_{\zeta,\pi}$ and the variances of z_t , $\xi_{\gamma,t}$, $\xi_{\pi,t}$.

Stochastic Shock	Output Judg.	Inflation Judg.
Natural Rate Shock	86.5 %	12.1%
Cost-Push Shock	0.0%	1.1%
Monetary Policy Shock	0.0%	0.0%
Output Judgment Shock	13.5%	_
Inflation Judgment Shock	_	86.7%
Total	100.00%	100.00%

- Expectations (judgment) are informed by the natural rate shock.
- 2 Expectations are not informed by cost-push shock.
- Some variability in judgment for output are from stochastic disturbances
- Most of the variability in judgment for inflation are from stochastic disturbances.

Stochastic Shock	Output Judg.	Inflation Judg.
Natural Rate Shock	86.5 %	12.1%
Cost-Push Shock	0.0%	1.1%
Monetary Policy Shock	0.0%	0.0%
Output Judgment Shock	13.5%	_
Inflation Judgment Shock	_	86.7%
Total	100.00%	100.00%

- Expectations (judgment) are informed by the natural rate shock.
- 2 Expectations are not informed by cost-push shock.
- Some variability in judgment for output are from stochastic disturbances
- Most of the variability in judgment for inflation are from stochastic disturbances.

Stochastic Shock	Output Judg.	Inflation Judg.
Natural Rate Shock	86.5 %	12.1%
Cost-Push Shock	0.0%	1.1%
Monetary Policy Shock	0.0%	0.0%
Output Judgment Shock	13.5%	_
Inflation Judgment Shock	_	86.7%
Total	100.00%	100.00%

- Expectations (judgment) are informed by the natural rate shock.
- 2 Expectations are not informed by cost-push shock.
- Some variability in judgment for output are from stochastic disturbances
- Most of the variability in judgment for inflation are from stochastic disturbances.

Stochastic Shock	Output Judg.	Inflation Judg.
Natural Rate Shock	86.5 %	12.1%
Cost-Push Shock	0.0%	1.1%
Monetary Policy Shock	0.0%	0.0%
Output Judgment Shock	13.5%	-
Inflation Judgment Shock	_	86.7%
Total	100.00%	100.00%

- Expectations (judgment) are informed by the natural rate shock
- Expectations are not informed by cost-push shock.
- Some variability in judgment for output are from stochastic disturbances.
- Most of the variability in judgment for inflation are from stochastic disturbances.

Stochastic Shock	Output Judg.	Inflation Judg.
Natural Rate Shock	86.5 %	12.1%
Cost-Push Shock	0.0%	1.1%
Monetary Policy Shock	0.0%	0.0%
Output Judgment Shock	13.5%	_
Inflation Judgment Shock	-	86.7%
Total	100.00%	100.00%

- Expectations (judgment) are informed by the natural rate shock.
- 2 Expectations are not informed by cost-push shock.
- Some variability in judgment for output are from stochastic disturbances
- Most of the variability in judgment for inflation are from stochastic disturbances.

Response to Output Gap from Output Judgment Shock

- Output judgment shock increases output.
- Larger IRF's coincide with 1980s volatility, rapid growth of 1990s, slow growth in 2000s, slow recovery 2010 recession.

- Output judgment shock increases inflation.
- Larger IRF's occur during same time periods.

Response to Output Gap from Inflation Judgment Shock

- Inflation judgment shock increases output (reduces expected real interest rate).
- Inflation judgment IRFs on output have diminished over time.

Response to Inflation from Inflation Judgment Shock

- Inflation judgment shock increases inflation.
- Response is not symmetric over time. Largest in last few years of the sample.

First Four Periods of IRF			
Shock	Output	Inflation	
Natural Rate	0.6018	0.1981	
Cost-Push	0.1697	1.0864	
Monetary Policy	0.6364	0.1787	
Output Judgment	1.2952	0.3662	
Inflation Judgment	0.2911	0.3029	

First Sixteen Periods of IRF Shock Inflation Output Natural Rate 0.9918 0.6533 Cost-Push 0.1870 0.6953 Monetary Policy 0.7742 0.4854 Output Judgment 0.6060 1.0627 Inflation Judgment 0.3353 0.4694

- Output judgment shock has largest average impact or output.
- Cost-push shock has largest impact on inflation.
- Both output judgment and inflation judgment influence inflation dynamics.

First Four Periods of IRF			
Shock	Output	Inflation	
Natural Rate	0.6018	0.1981	
Cost-Push	0.1697	1.0864	
Monetary Policy	0.6364	0.1787	
Output Judgment	1.2952	0.3662	
Inflation Judgment	0.2911	0.3029	

First Sixteen Periods of IRF			
Shock	Output	Inflation	
Natural Rate	0.9918	0.6533	
Cost-Push	0.1870	0.6953	
Monetary Policy	0.7742	0.4854	
Output Judgment	1.0627	0.6060	
Inflation Judgment	0.3353	0.4694	

- Output judgment shock has largest average impact on output.
- Cost-push shock has largest impact on inflation.
- Both output judgment and inflation judgment influence inflation dynamics.

First Four Periods of IRF			
Shock	Output	Inflation	
Natural Rate	0.6018	0.1981	
Cost-Push	0.1697	1.0864	
Monetary Policy	0.6364	0.1787	
Output Judgment	1.2952	0.3662	
Inflation Judgment	0.2911	0.3029	
First Sixtoon Pariods of IDE			

First Sixteen Periods of IRF			
Shock	Output	Inflation	
Natural Rate	0.9918	0.6533	
Cost-Push	0.1870	0.6953	
Monetary Policy	0.7742	0.4854	
Output Judgment	1.0627	0.6060	
Inflation Judgment	0.3353	0.4694	

- Output judgment shock has largest average impact or output.
- Cost-push shock has largest impact on inflation.
- Both output judgment and inflation judgment influence inflation dynamics.

First Four Periods of IRF		
Shock	Output	Inflation
Natural Rate	0.6018	0.1981
Cost-Push	0.1697	1.0864
Monetary Policy	0.6364	0.1787
Output Judgment	1.2952	0.3662
Inflation Judgment	0.2911	0.3029

First Sixteen Periods of IRF

Shock	Output	Inflation
Natural Rate	0.9918	0.6533
Cost-Push	0.1870	0.6953
Monetary Policy	0.7742	0.4854
Output Judgment	1.0627	0.6060
Inflation Judgment	0.3353	0.4694

- Output judgment shock has largest average impact on output.
- Cost-push shock has largest impact on inflation.
- Both output judgment and inflation judgment influence inflation dynamics.

- Judgment is a significant source of persistence for output and inflation.
- Inflation judgment is mostly dependent on stochastic disturbances.
- Output judgment is largely informed by concurrent natural rate shock.
- Both output and inflation judgment shocks are important drivers of business cycle fluctuations, along with natural rate shock and cost-push shock.