High-Throughput Sequencing: A Brief Introduction

James Pease 14 July 2014

High throughput sequencing ("Next Generation Sequencing")

DNA or RNA

Many sequencing technologies

illumına

http://www.youtube.com/watch?v=I99aKKHcxC4

http://youtu.be/v8p4ph2MAvl?t=52s

Millions (billions) of short reads

MIGAGGCTCTGGAATGGGCTCAACTCAACGCTACCAAGGAGTTCGGGT MICATTGCTTGGCAAAT'I'GGCGLIAGAAATCACCACGTATTTTAGTACCGGCTAGAATCACCACGTATTTTTAGTACCCTCAAATCACCTTCACCTTCAAATCACCTTCACCTTCAAATCACCTTCACCTTCAAATCACCTTC GGCTCCAGUUGLLLL CGGCAGGTTTCGGGAGCTACTCATCACGAGTCTCAAGTGAA CACTAGGAGAAGGTGATGGTTTTGCGATCGTGCTTGTACTCCCC

CACTAGGAGAAGGTGATGGTTTTGCGATGCTTGTACTCGAGG CACTAGGAGAAGGACTATATATAAGCAAGAAGTGTAAATAATCCAATGT MANGEGGGGTCGCAG'L'LA LO LLILIMETGGTCGTGCTAAGGTAGGACATGTACAAATCTTGTAGTTCTGTAAGATGATGATGT MONTH CONTROLL AND A MANGENGECTATAACCGAGGGTGTAAGTAATAGAAATTCAAAGGCATGTCCGTACTC MONATCCTACACAACTTCCCCTGCCCTGAAAAGCCAGGTGCCCCTTTAGAAAGACCGGACCGCGT WORKCATCACTATCACCTCAAC L COLL MANTON CONTROLL AND CONTROLL AN MANTICISCATGTAAAAGTGAATGTTAGCATATTAGCATAGACATATGACGTACCACGAGGCAGTATGACGTA AND THE COLOR OF T

Paired end sequencing

sequence each fragment from both ends

Normally, data will come as two files (one for each end, left/right)

DNA or RNA?

DNA

RNA

the whole genome

only transcripts

non-coding regions (introns, etc.)

expression data

alternatively spliced isoforms

costs more

costs less

RNA-Seq is actually cDNA-Seq

Reverse Transcriptase linked to Polymerase Chain Reaction (RT-PCR) mRNA + primer 1 (BamHI) AAAAAAAA 3' TTTTTTTTTTTGGATCC 5' Reverse transcriptase TTTTTTTTTTGGATCC 5' cDNA - mRNA duplex Remove mRNA TTTTTTTTTTGGATCC 5' Terminal transferase GGGGGGGG == TTTTTTTTTTGGATCC 5'

Short Read Assembly

DNA Short Reads

Contiguous sequence "contig"

Mapping reads

Alignment of DNA (or RNA) short reads to chromsomes (or transcripts) from a reference genome

Microarray

Requires a pre-designed panel of <u>known</u> transcript sequences

	RNA-Seq	microarray
Annotate genes	yes	no
All transcripts	yes*	no
Differential Expression	yes	yes
Genotyping	yes	no*

Read Length and Error Rates inversely correllated

DNA-Seq Options

Whole-genome

RAD-Seq:

Restriction site Associated DNA Markers

Stranded/unstranded

RNA-Seq Options

Whole-transcriptome

Small RNAs

Stranded/unstranded

Normalized/non-normalized

Choosing a Sequencing Technology

- Read Length

- Error Rates

- Software Options

- Cost (time and money)

Researchers often spend months or years painstakingly designing a study and collecting data, and then throw their data into a computer and try to analyse it in minutes. The data deserve better. The quick and reckless approach to data analysis often fails to identify important aspects of the data. You should become friends with them! Conducting data analysis is like drinking a fine wine. It is important to swirl and sniff the wine, to unpack the complex bouquet and to appreciate the experience. Gulping the wine doesn't work.

Daniel Wright (2003) BJEP

Isolated DNA/RNA

AGTAGTCATGCCG

TAGTAGTAGT

CGTACGTGTACC

CATGCGTACGTAG

TCATGCTAGTACGTA