

Análise de itens e pressupostos da análise fatorial exploratória (AFE)

A AFE é uma das técnicas mais utilizadas na psicologia, especialmente na **psicometria**, com a finalidade de testar o desempenho de instrumentos psicométricos ou **gerar teorias** (Costello & Osborne, 2005; Haig, 2005)

MULTIVARIATE BEHAVIORAL RESEARCH, 40(3), 303–329 Copyright © 2005, Lawrence Erlbaum Associates, Inc.

Exploratory Factor Analysis, Theory Generation, and Scientific Method

Brian D. Haig University of Canterbury

Charles Spearman

Foi desenvolvida por Spearman e utilizada na geração da teoria do fator geral de inteligência (g)

Sua hipótese era de que havia uma variável (geral) que explicava as relações entre habilidades específicas

Cinco grandes fatores da personalidade (big five)

Por Que Cinco Fatores?

A descoberta dos cinco fatores foi acidental e se constitui em uma generalização empírica, replicada independentemente inúmeras vezes. Como o modelo não foi desenvolvido a partir de uma teoria, não há, consequentemente, uma explicação teórica *a priori* (e satisfatória) dos motivos que levariam a organização da personalidade em cinco (e não quatro, ou sete) dimensões básicas.

Psicología Reflexão e Crítica Universidad Federal do Rio Grande do Sul prcrev@ufrgs.br ISSN: 0102-7972 BRASIL

Psicometria

 Na Psicometria, o modelo de AFE é empregado para descobrir (!) o número de variáveis (latentes) necessárias e suficientes para explicar um conjunto de itens ou tarefas de um instrumento psicométrico. Um uso bem comum é na investigação das propriedades psicométricas de escalas, questionários e inventários

Uso da análise fatorial exploratória **EM PSICOLOGIA**

Bruno Figueiredo Damásio¹ – Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil

Figura 1 - Ilustração das variâncias de três itens e suas relações com um fator hipotético.

Em suma

- A AFE é uma técnica que
- 1) parte da hipótese de que a correlação entre variáveis tem como <u>causa</u> uma ou mais variáveis, também chamada de "princípio da causa comum";
- 2) introduz a modelagem de variáveis latentes, isto é, variáveis que não são diretamente observáveis, e, por isso, não estão no banco de dados;
- 3) diferente de outras técnicas estatísticas, a AF é exploratória e interpretativa, alinhada ao raciocínio adbutivo (geração de hipóteses e teorias após a observação empírica)

Formulação matemática

- $X = b + a_1 F_1 + a_2 F_1 + a_3 F_1 \dots + e$
- Em que:

X é o escore observado no teste;

b é um intercepto, em geral fixado em zero;

 a é o coeficiente angular, indicando a relação linear entre item e fator;

F é um escore fatorial, valor latente do traço em questão;

e é um erro aleatório com média zero e distribuição normal.

Pressupostos

- Distribucionais método de extração
- Correlações qualidade dos dados

Anexo

Escala de Satisfação com a Vida

Instruções

Abaixo você encontrará cinco afirmações com as quais pode ou não concordar. Usando a escala de resposta a seguir, que vai de 1 a 7, indique o quanto concorda ou discorda com cada uma; escreva um número no espaço ao lado da afirmação, segundo sua opinião. Por favor, seja o mais sincero possível nas suas respostas.

- 7 = Concordo totalmente
- 6 = Concordo
- 5 = Concordo ligeiramente
- 4 = Nem concordo nem discordo
- 3 = Discordo ligeiramente
- 2 = Discordo
- 1 = Discordo totalmente
- Na maioria dos aspectos, minha vida é próxima ao meu ideal.
- As condições da minha vida são excelentes.
- Estou satisfeito(a) com minha vida.
- Dentro do possível, tenho conseguido as coisas importantes que quero da vida.
- Se pudesse viver uma segunda vez, não mudaria quase nada na minha vida.

(http://www.vvgouveia.net/sp/images/Gouveia_2005_medindo_a_satisfao_com_a_vida_dos_mdicos_no_brasil.pdf)

Distribuições

- hist(ESV[,1])
- shapiro.test(ESV[,1])
- Normalidade: Pearson
- Violações da normalidade:
 - Spearman
 - Tetracóricas (dicotômicos)
 - Policóricas (categorias ordenadas)

Histogram of ESV[, 1]

- cor.plot(ESV[,-c(6,7)],numbers = TRUE,cex = 0.8)
- pairs.panels(ESV[,-c(6,7)])

Qualidade dos dados

- KMO = proporção entre correlações bivariadas e correlações parciais
 - Quanto mais próximo à unidade, melhor
 - Aceitável acima de 0,6
- Teste de esfericidade de Batlett (p<0,05)

$$KMO = rac{\displaystyle\sum_{j
eq k} \displaystyle\sum_{r_{jk}} r_{jk}^2}{\displaystyle\sum_{j
eq k} \displaystyle\sum_{r_{jk}} r_{jk}^2 + \displaystyle\sum_{j
eq k} \displaystyle\sum_{r_{jk}} p_{jk}^2}$$

$$\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]$$

Técnicas de retenção de fatores

- Critério de Kaiser (Eingenvalue > 1)
- Critério de Cattell (descontinuidade no gráfico de sedimentação)

Análise paralela

- Simular dados e comparar o poder explicativo dos fatores
- Simulações: Monte Carlo (paramétrica) e por permutação dos valores

Parallel Analysis Scree Plots

fa(ESV[,-c(6,7)],cor="poly",fm="minrank")

Standardized loadings (pattern matrix) based upon correlation matrix

```
MRFA1 h2 u2 com

ESV1 0.87 0.75 0.25 1

ESV2 0.84 0.70 0.30 1

ESV3 0.92 0.85 0.15 1

ESV4 0.82 0.68 0.32 1

ESV5 0.74 0.55 0.45 1
```

MRFA1

SS loadings	3.52
Proportion Var	0.70

Modelos multidimensionais

•
$$X = b + a_1F_1 + a_1F_2 + a_2F_1 \dots + e$$

Parallel Analysis Scree Plots

Rotação fatorial

- Rotação fatorial
- A rotação fatorial é uma técnica que visa ajustar a solução fatorial (cargas fatoriais) de modo a deixá-la mais interpretável, ou clara. A solução não rotacionada pode levar aos itens apresentarem correlações com vários fatores. Para diminuir este efeito, os eixos dos fatores são rotacionados no espaço, de modo a permitir (rotação oblíqua) ou não (rotação ortogonal) a correlação entre os fatores.

Escores fatoriais

- Fiz a AFE, e agora?
- () somar os itens e usar o resultado em outras análises
- () usa a informação da modelagem estatística, ponderando a importância de cada item, em outras análises

Escores fatoriais

- Big5_fa<-fa(Big5[,-c(26,27)],5,cor="poly",fm="minrank",rotate = "oblimin",scores = "regression")
- View(Big5_fa\$scores)

*	MRFA1 [‡]	MRFA2 [‡]	MRFA4 [‡]	MRFA5 [‡]	MRFA3 [‡]
1	1.743510658	-0.61406410	-1.38189079	0.75822935	0.68997423
2	NA	NA	NA	NA	NA
3	-0.689141688	-0.00883950	-0.97104036	-1.71044114	-0.09944628
4	-0.500946099	1.07885105	-1.02285449	-0.12124280	1.77448972
5	-1.762444583	0.55404260	-0.53821931	-1.43584878	0.30273618
6	-0.130637187	-0.74167365	-1.62212615	-2.90191335	0.33061680
7	NA	NA	NA	NA	NA
8	0.493125538	-1.04918353	1.25134447	-1.81605333	0.14035380
9	-0.229904915	2.75605764	0.59508649	-0.60651766	-0.17919788

Escores fatoriais

- t.test(Big5_fa\$scores[,5]~Big5\$Sexo)
- boxplot(Big5_fa\$scores[,5]~Big5\$Sexo)

Fig. 3 Personality model of SWB

- Origens
 - Início do século XX
 - Psicometria Análise Fatorial
 - Genética e Econometria Análise de regressão múltipla e análise de trajetórias (path analysis)
 - Análises multivariadas
 - Necessidade de acomodar uma grande quantidade de variáveis em relações simultâneas
 - Dependência (Regressão múltipla, MANOVA)
 - Interdependência (Análise fatorial exploratória, escalonamento muiltimensional)

- Características:
 - Relações múltiplas e simultâneas de dependência e interdependência entre variáveis independentes e dependentes
 - Expressas como equações de regressão
 - Expressas como covariâncias (correlações)
 - Definidas pelo pesquisador (modelagem, imposição dos parâmetros)
 - Abordagem confirmatória (teste de modelos)
 - Incorpora a análise de variáveis não diretamente observadas (variáveis latentes, construtos)
 - Estimação dos erros de mensuração
 - Permite a avaliação de efeitos mediadores e moderadores

- Princípio básico
 - Definição de um modelo de relações (regressões, covariâncias, etc)
 - Avaliar o quanto os modelos "se ajustam" (*goodness-of-fit*) aos dados amostrais (matriz de covariâncias ou correlações)
 - Estimar o quanto a matriz amostral representa a matriz populacional (inferência)

• Como representar variáveis e relações em um modelo? Diagramas!

- Níveis das variáveis
 - Exógena Variáveis independentes (preditor)
 - Endógenas Variáveis dependentes (predita)
 - Exógena/endógena cumpre ambos os papéis
- Níveis ou porções dos modelos
 - Mensuração/Análise fatorial

Níveis ou porções dos modelos

- Características dos modelos
 - Modelos Recursivos relações unidirecionais

- Contextos do uso das Análises de Equações Estruturais
 - Estritamente confirmatório
 - Avaliação de modelos concorrentes (alternativos)*
 - Geração de modelos******&%@#@#\$\$"&!!!!

- Métodos de estimação
- Interpretação dos parâmetros
- Índices de ajuste dos modelos
- Processo de decisão
 - Índices de modificação
 - Comparação de modelos concorrentes
- Exercícios práticos

- Métodos de estimação
 - Matrizes de entrada dos dados
 - Variância/Covariância*
 - Correlações de Pearson
 - Correlações Tetracóricas ou Policóricas (dados dicotômicos, ordinais ou violação de normalidade)
 - Métodos de estimação dos modelos (AMOS)
 - Maximum Likelihood*
 - Generalized Least Squares
 - Unweighted Least Squares
 - Scale-free Least Squares
 - Asymptotically Distribution-free

- Interpretação dos parâmetros
 - Como cargas fatoriais, no nível de mensuração

 Como coeficientes angulares (β). Interpretação: quando a VI aumenta 1dp, a VD aumenta/diminui "x" dp.

Reporting Structural Equation Modeling and Confirmatory Factor Analysis Results: A Review

JAMES B. SCHREIBER Duquesne University

AMAURY NORA University of Houston FRANCES K. STAGE New York University

ELIZABETH A. BARLOW University of Houston JAMIE KING Duquesne University

Absolute/predictive fit		
Chi-square	χ^2	Ratio of χ^2 to $df \le 2$ or 3, useful for nested models/model trimming
Akaike information criterion	AIC	Smaller the better; good for model comparison (nonnested), not a single model
Browne-Cudeck criterion	BCC	Smaller the better; good for model comparison, not a single model
Bayes information criterion	BIC	Smaller the better; good for model comparison (nonnested), not a single model
Consistent AIC	CAIC	Smaller the better; good for model comparison (nonnested), not a single model
Expected cross-validation index	ECVI	Smaller the better; good for model comparison (nonnested), not a single model

```
Comparative fit
                                            Comparison to a baseline (independence) or other model
  Normed fit index
                                            ≥ .95 for acceptance
                                  NFI
                                            ≥ .95 for acceptance
  Incremental fit index
                                   IFI
  Tucker-Lewis index
                                  TLI
                                            \geq .95 can be 0 > TLI > 1 for acceptance
  Comparative fit index
                                            ≥ .95 for acceptance
                                  CFI
                                            ≥ .95, similar to CFI but can be negative, therefore CFI better choice
  Relative noncentrality fit index
                                  RNI
```

```
Parsimonious fit
Parsimony-adjusted NFI
Parsimony-adjusted CFI
Parsimony-adjusted CFI
Parsimony-adjusted GFI
PGFI
PGFI
Closer to 1 the better, though typically lower than other indexes and sensitive to model size
```

Other		
Goodness-of-fit index	GFI	≥ .95 Not generally recommended
Adjusted GFI	AGFI	≥ .95 Performance poor in simulation studies
Hoelter .05 index		Critical N largest sample size for accepting that model is correct
Hoelter .01 index		Hoelter suggestion, $N = 200$, better for satisfactory fit
Root mean square residual	RMR	Smaller, the better; 0 indicates perfect fit
Standardized RMR	SRMR	≤ .08
Weighted root mean residual	WRMR	< .90
Root mean square error of		
approximation	RMSEA	< .06 to .08 with confidence interval

Referências

- Byrne, B. (2001a). Structural equation modeling with Amos: Basic concepts, applications and programming. New Jersey: Lawrence Erlbaum.
- Byrne, B. (2001b). Structural Equation Modeling With AMOS, EQS, and LISREL: Comparative Approaches to Testing for the Factorial Validity of a Measuring Instrument. *International Journal of Testing*, 1 (1), 55-86.
- Hair, J. F., Jr., Anderson, R. E., Tatham, R. L., & Black, W. C. (2005). Análise multivariada de dados. 5a. edição. Porto Alegre: Artmed.
- Jackson, D. L., Gillaspy Jr., J. A., Purc-Stephenson, R. (2009). Reporting Practices in Confirmatory Factor Analysis: An Overview and Some Recommendations. Psychological Methods, 14(1), 6-23.
- Pilati, R. & Laros, J.A. (2007). Modelos de equações estruturais em psicologia: conceitos e aplicações. *Psicologia: Teoria e Pesquisa, 23*(2), 205-216.
- Schreiber, J.B., Stage, F.K., King, J., Nora, A., & Barlow, E.A. (2006). Reporting structural equation modeling and confirmatory factor analysis results: a review. The Journal of Educational Research, 99(6), 324-337.

Aplicações

- Análise de trajetórias (path analysis)
- Análise fatorial confirmatória*
- Modelagem latente (full latent models)*
- Análise multigrupos*
- Análise de curva latente (latent growth curve)*
- Modelagem multinível
- Matriz multitraço-multimétodo
- Modelagem de equações estruturais exploratória

•

- Outros pressupostos
 - Tamanho amostral
 - >200 observações, sendo recomendada a razão de 10/1 em relação aos parâmetros estimados
 - Dados omissos (missing values) e outliers
 - Aumentam o número de parâmetros estimados (médias, interceptos)
 - Aconselhado utilizar algum método de imputação (para ambos)
 - Normalidade, homocedasticidade e multicolinearidade
 - Normalidade univariada (Kolmogorov-Smirnov)
 - Normalidade multivariada (Mardia)
 - Homocedasticidade (Levene e M de Box)
 - Matriz de correlações

Análise Fatorial Confirmatória em Psicologia

Semelhanças e diferenças AFE & AFC

- Ambos visam identificar fatores que explicam a variação e co-variação entre um conjunto de indicadores
- AFE Data driven geralmente um procedimento descritivo ou exploratório
- AFC Theory Driven pesquisador deve pré-especificar todos os aspectos do modelo latente: o número de fatores, o padrão de cargas entre indicador e fator, e assim por diante

FIGURE 2.1. Path diagram of the one-factor model.

Pacote LAVAAN

- Latent Variable Analysis
- Permite especificação do modelo O pesquisador indica qual item ou variável devem carregar em cada fator
- Permite fazer análises:
 - multi-grupo
 - investigação de índices de modificação
 - Modelagem por equações regressão de fatores e mediação

Resultado ESV

User model versus baseline model:	
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.995 0.990
Loglikelihood and Information Criteria:	
Loglikelihood user model (HO) Loglikelihood unrestricted model (H1)	-4054.623 -4047.836
Number of free parameters Akaike (AIC) Bayesian (BIC) Sample-size adjusted Bayesian (BIC)	10 8129.245 8171.311 8139.571
Root Mean Square Error of Approximation:	
RMSEA 90 Percent Confidence Interval P-value RMSEA <= 0.05	0.059 0.022 0.097 0.298
Standardized Root Mean Square Residual:	
SRMR	0.018

Índices de Ajuste do Modelo

Valores de Referência
AIC (Akaike Information Criterion), o BIC (Bayesian
Information Criterion) = Quanto menor melhor!
CFI (Comparative Fit Index) & TLI (Tucker-Lewis Index)
= acima de 0,95 sugerem ajuste excelente, já
valores acima de 0,90 indicam que a qualidade de
ajuste é satisfatória

RMSEA (Root Mean Square Error of Approximation) e SRMR (Standardized Root Mean Square Residual) = menores que 0,05 indicam bom ajuste, enquanto valores menores que 0,08 indicam ajuste aceitável

(Hu & Bentler, 1999).

Resultado ESV

Cargas fatoriais padronizadas e não padronizadas Significância da carga no fator Comunalidade

