# Notes on statistical learning

# Dávid Iván

# February 1, 2021

# Contents

| 1        | Intr | roduction                                 | 3  |
|----------|------|-------------------------------------------|----|
| <b>2</b> | Ove  | erview of Supervised Learning             | 3  |
|          | 2.1  | Linear models and least squares           | 3  |
|          | 2.2  | Statistical decision theory               | 4  |
|          |      | 2.2.1 application. Simple linear fit      | 4  |
|          | 2.3  | E Y-c  and the median                     | 7  |
|          |      | 2.3.1 discrete case                       | 7  |
|          |      | 2.3.2 continuous case                     | 9  |
|          | 2.4  | Local methods in high dimensions          | 11 |
|          |      | 2.4.1 deriving the prediction formula     | 11 |
|          |      | 2.4.2 equation (2.47) on page 37          | 12 |
|          | 2.5  | Solutions for the Exercises of chapter 2  | 13 |
|          |      | 2.5.1 Ex. 2.2                             | 13 |
|          |      | 2.5.2 Ex. 2.3                             | 14 |
|          |      | 2.5.3 Ex. 2.4                             | 14 |
|          |      | 2.5.4 Ex. 2.5                             | 15 |
|          |      | 2.5.5 Ex. 2.6                             | 18 |
|          |      | 2.5.6 Ex. 2.7                             | 18 |
|          |      | 2.5.7 Ex. 2.9                             | 20 |
| 3        | Line | ear Methods for Regression                | 22 |
|          | 3.1  | equations on page 47 and 48               | 22 |
|          | 3.2  | Equation (3.28) on page 54                | 26 |
|          | 3.3  | Solutions for the Exercises of chapter 3  | 27 |
|          |      | 3.3.1 Ex. 3.1                             | 27 |
|          |      | 3.3.2 Ex. 3.2                             | 28 |
|          |      | 3.3.3 Ex. 3.3                             | 29 |
|          |      | 3.3.4 Ex. 3.5                             | 31 |
|          |      | 3.3.5 Ex. 3.6                             | 32 |
|          |      | 3.3.6 Ex. 3.8                             | 33 |
|          |      | 3.3.7 Ex. 3.9 Forward stepwise regression | 34 |
|          |      |                                           |    |

|              |                                    | 3.3.8 Ex. 3.10 Backward stepwise regression                | 35 |  |  |
|--------------|------------------------------------|------------------------------------------------------------|----|--|--|
|              |                                    | 3.3.9 Ex. 3.11                                             | 36 |  |  |
|              |                                    | 3.3.10 Ex. 3.13                                            | 37 |  |  |
| Aı           | pen                                | dices                                                      | 38 |  |  |
| A            | diffe                              | erentiation                                                | 38 |  |  |
|              | A.1                                | differentiation w.r.t. a vector                            | 38 |  |  |
|              | A.2                                | differentiation w.r.t. a matrix                            | 38 |  |  |
| В            | variance and covariance properties |                                                            |    |  |  |
|              |                                    | scalar multiple                                            | 40 |  |  |
|              |                                    | vector multiple                                            | 40 |  |  |
|              |                                    | matrix multiple                                            | 41 |  |  |
| $\mathbf{C}$ | dist                               | ributions                                                  | 41 |  |  |
|              | C.1                                | Student's t-distribution                                   | 41 |  |  |
|              | C.2                                |                                                            | 41 |  |  |
|              | C.3                                | Gaussian posterior distribution $(W = U+V) \dots \dots$    | 42 |  |  |
|              |                                    | Gaussian posterior distribution $(W = XU + V) \dots \dots$ | 43 |  |  |
| D            | projections 4                      |                                                            |    |  |  |
|              |                                    | sum of projections                                         | 43 |  |  |
|              |                                    | difference of projections                                  | 44 |  |  |
|              |                                    | The special vector $Xb$                                    | 45 |  |  |
| ${f E}$      | Matrices                           |                                                            |    |  |  |
|              | T2 1                               | The matrix inversion lemma                                 | 46 |  |  |

# 1 Introduction

# 2 Overview of Supervised Learning

# 2.1 Linear models and least squares

On page 12 we have that the residual sum of squares:

$$RSS(\beta) = \sum_{i=1}^{N} (y_i - x_i^T \beta)^2 = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)$$
 (1)

How can we differentiate with respect to  $\beta$ ?

$$RSS(\beta) = \mathbf{y}^T \mathbf{y} - \mathbf{y}^T \mathbf{X} \beta - \beta^T \mathbf{X}^T \mathbf{y} + \beta^T \mathbf{X}^T \mathbf{X} \beta$$
 (2)

Using (139, 140), we can differentiate RSS:

$$\frac{d}{d\beta} RSS(\beta) = 0 - (\mathbf{y}^T \mathbf{X})^T - \mathbf{X}^T \mathbf{y} + (\mathbf{X}^T \mathbf{X} + (\mathbf{X}^T \mathbf{X})^T)\beta$$
(3)

$$\frac{d}{d\beta} RSS(\beta) = -2\mathbf{X}^T \mathbf{y} + 2\mathbf{X}^T \mathbf{X}\beta$$
 (4)

Setting this to zero we get the normal equations:

$$\mathbf{X}^T \mathbf{y} = \mathbf{X}^T \mathbf{X} \boldsymbol{\beta} \tag{5}$$

### 2.2 Statistical decision theory

On page 19 we have that

$$\beta = [E(XX^T)]^{-1}E(XY) \tag{6}$$

but how exactly do we get this equation? In general, we have the expected prediction error:

$$EPE(f) = E(Y - f(X))^2$$
(7)

And we have that the prediction function is linear:

$$f(X) = X^T \beta \tag{8}$$

We seek a  $\beta$  for minimizing the expected prediction error. X and Y are random variables, X being a vector, Y being a scalar.

$$\frac{d}{d\beta} \text{EPE} = \frac{d}{d\beta} \text{E}((Y - X^T \beta)^2) = \text{E}\left(\frac{d}{d\beta} (Y - X^T \beta)^2\right) 
= \text{E}\left(2(Y - X^T \beta) \cdot (-X)\right) = -2\text{E}(YX) + 2\text{E}(X(X^T \beta)) 
= -2\text{E}(YX) + 2\text{E}((XX^T)\beta) = -2\text{E}(YX) + 2(\text{E}(XX^T))\beta$$
(9)

We used the fact that the expected value is linear, and that  $\beta$  is not random, so we could factor out from the expected value. Setting this to zero we have that:

$$E(YX) = E(XX^T)\beta \tag{10}$$

which yields

$$\hat{\beta} = [\mathbf{E}(XX^T)]^{-1}\mathbf{E}(YX) \tag{11}$$

### 2.2.1 application. Simple linear fit.

Let's see an application for this equation. Let  $X = \begin{bmatrix} x \\ 1 \end{bmatrix}, \ \beta = \begin{bmatrix} a \\ b \end{bmatrix}$ .

Now  $f(x) = a \cdot x + b$ 

$$XY = \begin{bmatrix} x \cdot y \\ y \end{bmatrix} \tag{12}$$

$$XX^T = \begin{bmatrix} x^2 & x \\ x & 1 \end{bmatrix} \tag{13}$$

If we have N datapoints  $\{(x_1, y_1), (x_2, y_2), ...(x_N, y_N)\}$ , we can approximate the expectation values.

$$E(XY) \approx \frac{1}{N} \begin{bmatrix} \sum_{i} x_i \cdot y_i \\ \sum_{i} y_i \end{bmatrix}$$
 (14)

$$E(XX^T) \approx \frac{1}{N} \begin{bmatrix} \sum_i x_i^2 & \sum_i x_i \\ \sum_i x_i & N \end{bmatrix}$$
 (15)

Let's denote the followings:

$$\alpha_X = \sum_i x_i \tag{16}$$

$$\alpha_Y = \sum_i y_i \tag{17}$$

$$\alpha_{XY} = \sum_{i} x_i y_i \tag{18}$$

$$\alpha_{X^2} = \sum_i x_i^2 \tag{19}$$

With these notations:

$$E(XY) \approx \frac{1}{N} \begin{bmatrix} \alpha_{XY} \\ \alpha_Y \end{bmatrix} \tag{20}$$

$$E(XX^T) \approx \frac{1}{N} \begin{bmatrix} \alpha_{X^2} & \alpha_X \\ \alpha_X & N \end{bmatrix}$$
 (21)

Inverting  $E(XX^T)$ :

$$[\mathbf{E}(XX^T)]^{-1} \approx \frac{N}{N\alpha_{X^2} - \alpha_X^2} \begin{bmatrix} N & -\alpha_X \\ -\alpha_X & \alpha_{X^2} \end{bmatrix}$$
 (22)

Plug these in to the equation:

$$\hat{\beta} = [\mathbf{E}(XX^T)]^{-1}\mathbf{E}(YX) \tag{23}$$

$$\hat{\beta} \approx \frac{N}{N\alpha_{X^2} - \alpha_X^2} \begin{bmatrix} N & -\alpha_X \\ -\alpha_X & \alpha_{X^2} \end{bmatrix} \frac{1}{N} \begin{bmatrix} \alpha_{XY} \\ \alpha_Y \end{bmatrix}$$
 (24)

$$\hat{\beta} \approx \frac{1}{N\alpha_{X^2} - \alpha_X^2} \begin{bmatrix} N\alpha_{XY} - \alpha_X \alpha_Y \\ \alpha_{X^2} \alpha_Y - \alpha_X \alpha_{XY} \end{bmatrix}$$
 (25)

From here we can get  $\hat{a}$  and  $\hat{b}$ , since  $\hat{\beta} = \begin{bmatrix} \hat{a} \\ \hat{b} \end{bmatrix}$ 

# 2.3 E|Y-c| and the median

On page 20, it asks the question "What happens if we replace the  $L_2$  loss function with the  $L_1 : E|Y - f(X)|$ ?" Let's investigate this question.

#### 2.3.1 discrete case

We can get rid of the conditional X = x, and just ask the question: What c will minimize E|Y - c|? Denote this function with g, so g(c) = E|Y - c|. Let's look at two examples.

Example 1. The random variable Y takes 4 possible values with probabilities  $\frac{1}{7}$ ,  $\frac{1}{7}$ ,  $\frac{3}{7}$ ,  $\frac{2}{7}$ . The figure below shows the probability mass function.



Figure 1: probability mass function of the first example random variable.



Figure 2: g(c) function. The horizontal axis is c.

Example 2. The random variable Y takes 4 possible values with probabilities 0.1, 0.4, 0.3, 0.2. The figure below shows the probability mass function.



Figure 3: probability mass function of the second example random variable.



Figure 4: g(c) function. The horizontal axis is c.

We can see that g(c) is a piecewise linear function, and it has minimum, which is a point or a line segment. Let's say we have Y discrete random variable that takes values from  $S = \{x_1, x_2, \dots x_n\}$ . The values are ordered:  $x_1 < x_2 < \dots < x_n$ . Y takes these values with corresponding probabilities  $p_1, p_2, \dots, p_n$ .

Let's calculate the equation of the piecewise linear function. Denote the interval  $I_k$  such that  $x \in I_k$  if and only if k values from S are smaller than x. So  $I_0 = (-\infty, x_1], I_1 = [x_1, x_2], ..., I_n = [x_n, \inf).$ 

$$g(c) = E|Y - c| = \sum_{i=1}^{n} p_i \cdot |x_i - c|$$
 (26)

If  $c \in I_k$ , then

$$g(c) = E|Y - c| = \sum_{i=1}^{k} p_i \cdot (c - x_i) + \sum_{i=k+1}^{n} p_i \cdot (x_i - c)$$
 (27)

$$g(c) = c \cdot (\sum_{i=1}^{k} p_i - \sum_{i=k+1}^{n} p_i) + (\sum_{i=k+1}^{n} p_i x_i - \sum_{i=1}^{k} p_i x_i)$$
 (28)

First we can show that this function is continuous. On one hand  $(c \in I_k = [x_k, x_k + 1])$ :

$$g_1 = g(x_k) = x_k \cdot (\sum_{i=1}^k p_i - \sum_{i=k+1}^n p_i) + (\sum_{i=k+1}^n p_i x_i - \sum_{i=1}^k p_i x_i)$$
 (29)

On the other hand we have  $(c \in I_{k-1} = [x_{k-1}, x_k])$ :

$$g_2 = g(x_k) = x_k \cdot (\sum_{i=1}^{k-1} p_i - \sum_{i=k}^n p_i) + (\sum_{i=k}^n p_i x_i - \sum_{i=1}^{k-1} p_i x_i)$$
 (30)

$$g_1 - g_2 = x_k \cdot (p_k + p_k) - p_k x_k - p_k x_k = 0 \tag{31}$$

Now that we showed that this function is continuous, let's find it's minimum. Since it is piecewise linear, its derivative is piecewise constant. Denote the derivative of g on the interval  $I_k$  with  $g'(I_k)$ .

$$g'(I_k) = -1$$

$$g'(I_1) = -1 + 2p_1$$

$$g'(I_2) = -1 + 2p_1 + 2p_2$$

$$\cdots$$

$$g'(I_n) = -1 + 2p_1 + \dots + 2p_n = 1$$
(32)

So the derivative is increasing from -1 to +1. We can distinguish two possibilities. First, assume that the derivative is never zero. In this case, we have a k where  $g'(I_{k-1}) < 0$  but  $g'(I_k) > 0$ , so the minimum is at  $x_k$ , the median. The second case is where there is an interval where the derivative is zero. In this case the whole interval is minimum, again, the median.

#### 2.3.2 continuous case

Let's have the following function:

$$f(x) = \int_{a}^{x} g(x,t)dt \tag{33}$$

I state without proof that the derivative of this function is as follows:

$$f'(x) = \int_{a}^{x} \frac{\partial g(x,t)}{\partial x} dt + g(x,x)$$
 (34)

Now we have that

$$g(c) = E(|Y - c||X = x) = \int_{-\infty}^{c} (c - y) f_{Y|X}(y|x) dy + \int_{c}^{\infty} (y - c) f_{Y|X}(y|x) dy$$
(35)

$$g'(c) = \int_{-\infty}^{c} f_{Y|X}(y|x)dy + \int_{\infty}^{c} f_{Y|X}(y|x)dy$$
 (36)

Setting this to zero, we get that

$$\int_{-\infty}^{c} f_{Y|X}(y|x)dy = \int_{c}^{\infty} f_{Y|X}(y|x)dy \tag{37}$$

$$P(Y < c \mid X = x) = P(Y > c \mid X = x)$$
(38)

Again, this means the minimum is at the median.

## 2.4 Local methods in high dimensions

#### 2.4.1 deriving the prediction formula

On page 24 we see an example of a linear data with noise. At first I was confused how it gets  $\hat{y}_0 = x_0^T \beta + \sum_{i=1}^N l_i(x_0) \epsilon_i$ , where  $l_i(x_0)$  is the *i*th element of  $\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}x_0$ 

In this example we make N experiments, storing the  $X_i$  values in the rows of  $\mathbf{X}$ , and we have also  $\epsilon_i$  (elements of  $\vec{\epsilon}$ ) and  $Y_i = X_i^T \beta + \epsilon_i$  for some fixed  $\beta$ . For approximating  $\beta$ , we use the result:

$$\beta = [\mathbf{E}(XX^T)]^{-1}\mathbf{E}(YX) \tag{39}$$

in this case it will be an approximation, since we have noise  $(\epsilon)$ .

Calculate first E(YX):

$$E(YX) = E((X^T\beta + \epsilon)X) = E(XX^T)\beta + E(\epsilon X)$$
(40)

Substitute this into the approximation of  $\beta$ :

$$\hat{\beta} = [\mathbf{E}(XX^T)]^{-1}\mathbf{E}(YX)$$

$$= [\mathbf{E}(XX^T)]^{-1}(\mathbf{E}(XX^T)\beta + \mathbf{E}(\epsilon X))$$

$$= \beta + [\mathbf{E}(XX^T)]^{-1}\mathbf{E}(\epsilon X)$$
(41)

We do not know of course the exact expectation values, but we have N data samples (training data). So how could we approximate the expectation values? Use the averages:

$$E(\epsilon X)_i \approx \frac{1}{N} \sum_{k=1}^{N} \mathbf{X}_{ki} \epsilon_k \to E(\epsilon X) \approx \frac{1}{N} \mathbf{X}^T \vec{\epsilon}$$
 (42)

similarly,

$$[E(XX^T)]^{-1} \approx N \cdot (\mathbf{X}^T \mathbf{X})^{-1} \tag{43}$$

putting these all together, we have:

$$\hat{y}_0 = x_0^T \hat{\beta} = x_0^T \beta + x_0^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \vec{\epsilon} = x_0^T \beta + \vec{\epsilon}^T \cdot \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} x_0$$
(44)

and this is the formula that was to be explained.

### 2.4.2 equation (2.47) on page 37

$$EPE_{k}(x_{0}) = E\left((Y - \hat{f}_{k}(x_{0}))^{2} | X = x_{0}\right)$$

$$= E\left((f(x_{0}) + \epsilon_{0} - \hat{f}_{k}(x_{0}))^{2}\right)$$
(45)

The data points are fixed:  $x_1, x_2, \ldots, x_N$ . Denote the closest data point to  $x_0$  as  $x_{(1)}$ , the second closest  $x_{(2)}$ , etc. With this notation, the nearest neighbor estimate for  $f(x_0)$ :

$$\hat{f}_k(x_0) = \frac{1}{k} \sum_{l=1}^k (f(x_{(l)}) + \epsilon_l)$$
(46)

In this equation,  $f(x_{(l)})$  is fixed, and epsilons are iid random variables.

$$EPE_{k}(x_{0}) = E\left(\left(f(x_{0}) + \epsilon_{0} - \frac{1}{k}\sum_{l=1}^{k}(f(x_{(l)}) + \epsilon_{l})\right)^{2}\right)$$

$$= E\left(\left[\left(f(x_{0}) - \frac{1}{k}\sum_{l=1}^{k}f(x_{(l)})\right) + \left(\epsilon_{0} - \frac{1}{k}\sum_{l=1}^{k}\epsilon_{l}\right)\right]^{2}\right)$$

$$= E\left([\hat{F} + \hat{E}]^{2}\right) = E\left(\hat{F}^{2} + 2 \cdot \hat{F}\hat{E} + \hat{E}^{2}\right) = \hat{F}^{2} + 2\hat{F} \cdot E(\hat{E}) + E(\hat{E}^{2})$$

$$(47)$$

where  $\hat{F}$  is nonrandom, and  $\hat{E}$  is random:

$$\hat{F} \equiv f(x_0) - \frac{1}{k} \sum_{l=1}^{k} f(x_{(l)}),$$

$$\hat{E} \equiv \epsilon_0 - \frac{1}{k} \sum_{l=1}^{k} \epsilon_l$$
(48)

Let's calculate the expectation of  $\hat{E}$ :

$$E(\hat{E}) = E\left(\epsilon_0 - \frac{1}{k} \sum_{l=1}^k \epsilon_l\right) = E(\epsilon_0) - \frac{1}{k} \sum_{l=1}^k E(\epsilon_l) = 0 - \frac{1}{k} \sum_{l=1}^k 0 = 0$$
 (49)

The expectation of  $\hat{E}^2$ :

$$E(\hat{E}^2) = E\left(\epsilon_0 - \frac{1}{k}\sum_{l=1}^k \epsilon_l\right)^2 = E\left(\epsilon_0^2 + \sum_{l=1}^k \frac{\epsilon_l^2}{k^2} + CrossProducts\right)$$
(50)

The expectation of the cross products are zero, since epsilons are independent, so  $E(\epsilon_i \epsilon_j) = E \epsilon_i \cdot E \epsilon_j = 0 \cdot 0 = 0$ 

$$E(\hat{E}^{2}) = E\left(\epsilon_{0}^{2} + \sum_{l=1}^{k} \frac{\epsilon_{l}^{2}}{k^{2}}\right) = E\epsilon_{0}^{2} + \sum_{l=1}^{k} \frac{E\epsilon_{l}^{2}}{k^{2}}$$

$$= \sigma^{2} + \sum_{l=1}^{k} \frac{\sigma^{2}}{k^{2}} = \sigma^{2} + \frac{\sigma^{2}}{k}$$
(51)

We used the fact that the error has zero mean, so the variance is  $\sigma^2 = \text{Var}(\epsilon) = \text{E}(\epsilon^2) - (\text{E}\epsilon)^2 = \text{E}(\epsilon^2)$ . So the final form is:

$$E_{k}(x_{0}) = \hat{F}^{2} + 2\hat{F} \cdot E(\hat{E}) + E(\hat{E}^{2}) = \hat{F}^{2} + E(\hat{E}^{2})$$

$$= \left(f(x_{0}) - \frac{1}{k} \sum_{l=1}^{k} f(x_{(l)})\right)^{2} + \sigma^{2} + \frac{\sigma^{2}}{k}$$
(52)

### 2.5 Solutions for the Exercises of chapter 2

#### 2.5.1 Ex. 2.2

We have  $X \in \mathbb{R}^p$  continuous and G discrete random variables. Assume we have K classes. Each class has its own distribution, let's say that class g has a pdf  $f_g(x)$  ( $x \in \mathbb{R}^p$ ). When generating points, we first choose a class with associated probabilities  $p_1, p_2, \ldots, p_K$  ( $\sum p_i = 1$ ). When we have chosen the class, we generate a point with the appropriate distribution.

The Bayes classifier classifies each point x to the most probable class. So let's calculate the probability of class g, given the point. It should be noted that when I write P(x), I mean "the probability that the chosen point is in the infinitesimal neighborhood of x". So I should write  $P(X \in b_{dx}(x))$ , i.e., the probability that X is in the dx-volume ball around x. If the pdf was f(x), this probability is f(x)dx. But instead, I'll write P(x) = f(x). Likewise, when I write P(g), I mean P(G = g).

$$P(g|x) = \frac{P(g \cap x)}{P(x)} = \frac{P(g \cap x)}{P(x)} = \frac{P(x|g)P(g)}{\sum_{g'} P(x|g')P(g')}$$
(53)

The denominator is a normalizing constant, so the chosen class, for which  $\mathrm{P}(g|x)$  is maximum:

$$\hat{g}(x) = \max_{q} P(x|g)P(g) \tag{54}$$

#### 2.5.2 Ex. 2.3

Given a unit ball in p-dimension. We sample N data points from it uniformly. Let X be the distance from the origin. The pdf must be proportional to  $x^{p-1}$ , and integrating it from 0 to 1 gives 1, thus the pdf:

$$f(x) = p \cdot x^{p-1} \tag{55}$$

The probability that a random sample is at least x distant from the origin is:

$$P(X > x) = \int_{x}^{1} f(x)dx = 1 - x^{p}$$
 (56)

The probability that all N sample points are further from origin as x:

$$P(X_1 > x \cap X_2 > x \cap \dots \cap X_N > x) = (1 - x^p)^N$$
 (57)

We seek and x for that this probability is a half (that will give us the median):

$$(1 - x^{p})^{N} = \frac{1}{2}$$

$$1 - x^{p} = \left(\frac{1}{2}\right)^{1/N}$$

$$\left[1 - \left(\frac{1}{2}\right)^{1/N}\right]^{1/p} = x$$
(58)

#### 2.5.3 Ex. 2.4

If we choose a as the first unit base vector  $(a = [1, 0, 0, \dots, 0]^T)$ , then  $a^T \cdot x_i$  is the first coordinate of  $x_i$ . It is by definition (standard) normally distributed. Since the distribution is spherically symmetric, we can choose any direction a,  $a^T \cdot x_i$  remains standard normal.

I created an experiment on this. Created 1000 sample points in p dimension, and rotated them into the first 2 dimension, so that we can visualize the distances. On the first image below we can see that the points get further and further away from the origin as the dimension increases.



Figure 5: The sample points get further from the origin as we increase the dimension.

But this doesn't mean the points are close to each other. In the following experiment I took the random sample points, chose one of them and set it as the new origin. We can see that still the points are far from a random sample point as we increase the dimension.



Figure 6: The points get further and further from each other (red dot is a randomly selected sample point) as we increase the dimension.

#### 2.5.4 Ex. 2.5

equation (2.27) on page 26 I won't use indices at the expectation sign, it always confuses me. So this is the expected prediction error:

$$EPE(x_0) = E(y_0 - \hat{y}_0)^2$$
 (59)

Recall, that  $y_0 = x_0^T \beta + \epsilon$  is a random variable, since  $\epsilon \sim N(0, \sigma^2)$ . This is the label (the ground truth) for  $x_0$ . The prediction that we make for  $x_0$  is  $\hat{y_0} = x_0^T \beta + \bar{\epsilon}^T \cdot \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} x_0$ .  $x_0$  is a p-vector,  $\beta$  is a p-vector,  $\bar{\epsilon}$  is an n-vector, and  $\mathbf{X}$  is a n by p matrix (each row is a training sample vector).  $\hat{y_0} = x_0^T \beta + \bar{\epsilon}^T \cdot \mathbf{Z}^T x_0$ . Here I introduced the p by n matrix  $\mathbf{Z}$ :

$$\mathbf{Z} \equiv (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \tag{60}$$

In the expression of  $\hat{y}_0$ ,  $\vec{\epsilon}$  and **Z** are the only random variables. The elements of  $\vec{\epsilon}$  are iid RVs.  $\vec{\epsilon}$  and **Z** are independent. Let's calculate the expectation values of  $y_0$  and  $\hat{y}_0$ :

$$E(y_0) = E(x_0^T \beta + \epsilon) = x_0^T \beta \tag{61}$$

$$E(\hat{y}_0) = E(x_0^T \beta + \epsilon^T \cdot \mathbf{Z}^T x_0)$$

$$= x_0^T \beta + E(\bar{\epsilon}^T \cdot \mathbf{Z}^T x_0)$$

$$= x_0^T \beta + E(\bar{\epsilon}^T) E(\mathbf{Z}^T x_0)$$

$$= x_0^T \beta + \vec{0}^T \cdot E(\mathbf{Z}^T x_0)$$

$$= x_0^T \beta$$
(62)

Here I used that  $\vec{\epsilon}$  and **Z** are independent, so the expectation value of their product is the product of their expectations. For simplicity, denote  $\mu \equiv \mathrm{E}(y_0) = \mathrm{E}(\hat{y}_0) = x_0^T \beta$ . The expected prediction error:

$$\begin{aligned} \text{EPE}(x_0) &= \text{E}(y_0 - \mu + \mu - \hat{y}_0)^2 \\ &= \text{E}(y_0 - \mu)^2 - 2 \cdot \text{E}((y_0 - \mu)(\hat{y}_0 - \mu)) + \text{E}(\hat{y}_0 - \mu)^2 \\ &= \text{E}(y_0 - \mu)^2 + 0 + \text{E}(\hat{y}_0 - \mu)^2 \\ &= \text{Var}(y_0) + \text{Var}(\hat{y}_0) \end{aligned}$$
(63)

Note that  $y_0$  and  $\hat{y}_0$  are independent. The epsilon in  $y_0$  is a scalar and is nothing to do with the vector epsilon in  $\hat{y}_0$ . This is why  $\mathrm{E}((y_0 - \mu)(\hat{y}_0 - \mu))$  is zero. Now let's derive the variances:

$$Var(y_0) = Var(\mu + \epsilon) = Var(\epsilon) = \sigma^2$$
 (64)

Furthermore, we can write  $\text{Cov}(X,X) = \text{E}((X-\text{E}X)\cdot(X-\text{E}X)^T) = \text{E}(X\cdot X^T) - (\text{E}X)(\text{E}X^T)$ . Let's apply (146) and (147) to derive the variance of  $\hat{y}_0$ :

$$\operatorname{Var}(\hat{y}_{0}) = \operatorname{Var}(\mu + x_{0}^{T} \cdot \mathbf{Z} \cdot \vec{\epsilon}) = \operatorname{Var}(x_{0}^{T} \cdot \mathbf{Z} \cdot \vec{\epsilon})$$

$$= x_{0}^{T} \cdot \operatorname{Cov}(\mathbf{Z} \cdot \vec{\epsilon}, \mathbf{Z} \cdot \vec{\epsilon}) \cdot x_{0}$$

$$= x_{0}^{T} \cdot \left( \operatorname{E}(\mathbf{Z}\vec{\epsilon} \cdot \vec{\epsilon}^{T}\mathbf{Z}^{T}) - \operatorname{E}(\mathbf{Z}\vec{\epsilon}) \cdot \operatorname{E}(\vec{\epsilon}^{T}\mathbf{Z}^{T}) \right) \cdot x_{0}$$

$$= x_{0}^{T} \cdot \operatorname{E}(\mathbf{Z}\vec{\epsilon} \cdot \vec{\epsilon}^{T}\mathbf{Z}^{T}) \cdot x_{0}$$

$$(65)$$

Here we used the fact that  $\mathbf{Z}$  and  $\vec{\epsilon}$  are independent, so  $\mathrm{E}(\mathbf{Z}\vec{\epsilon}) = \mathrm{E}\mathbf{Z} \cdot \mathrm{E}\vec{\epsilon} = \mathrm{E}\mathbf{Z} \cdot \vec{0} = \vec{0}$ , and  $\vec{0} \cdot \vec{0}^T = \mathbf{0}$ , zero matrix.

$$\left(\mathbf{Z}\vec{\epsilon}\cdot\vec{\epsilon}^{T}\mathbf{Z}^{T}\right)_{i,j} = \sum_{k,l} (\mathbf{Z})_{i,k} \cdot (\vec{\epsilon}\vec{\epsilon}^{T})_{k,l} \cdot (\mathbf{Z}^{T})_{l,j}$$

$$\to \mathbf{E}\left(\mathbf{Z}\vec{\epsilon}\cdot\vec{\epsilon}^{T}\mathbf{Z}^{T}\right)_{i,j} = \sum_{k,l} \mathbf{E}\left(Z_{i,k}\cdot\epsilon_{k}\cdot\epsilon_{l}\cdot Z_{j,l}\right)$$

$$= \sum_{k,l} \mathbf{E}\left(Z_{i,k}\cdot Z_{j,l}\right) \cdot \mathbf{E}\left(\epsilon_{k}\cdot\epsilon_{l}\right) = \sum_{k,l} \mathbf{E}\left(Z_{i,k}\cdot Z_{j,l}\right) \cdot \sigma^{2}\delta_{k,l} \qquad (66)$$

$$= \sigma^{2} \cdot \sum_{k} \mathbf{E}\left(Z_{i,k}\cdot Z_{j,k}\right) = \sigma^{2} \cdot \mathbf{E}\sum_{k} \left(Z_{i,k}\cdot Z_{j,k}\right) = \sigma^{2} \cdot \mathbf{E}(\mathbf{Z}\mathbf{Z}^{T})_{i,j}$$

$$\to \mathbf{E}(\mathbf{Z}\vec{\epsilon}\cdot\vec{\epsilon}^{T}\mathbf{Z}^{T}) = \sigma^{2} \cdot \mathbf{E}(\mathbf{Z}\mathbf{Z}^{T})$$

Substituting this into (65):

$$Var(\hat{y}_0) = x_0^T \cdot \sigma^2 E(\mathbf{Z}\mathbf{Z}^T) \cdot x_0 \tag{67}$$

$$E(\mathbf{Z}\mathbf{Z}^{T}) = E\left((\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\right) = E\left((\mathbf{X}^{T}\mathbf{X})^{-1}\right)$$
(68)

Putting it all together:

$$EPE(x_0) = Var(y_0) + Var(\hat{y}_0) = \sigma^2 + \sigma^2 \cdot x_0^T \cdot E\left((\mathbf{X}^T \mathbf{X})^{-1}\right) \cdot x_0$$
 (69)

And this is what we wanted to derive.

#### equation (2.28) on page 26

$$E\left(x_0^T \text{Cov}(X)^{-1} x_0\right) = E\sum_{i,j} x_{0,i} \text{Cov}(X)_{i,j}^{-1} x_{0,j}$$
(70)

Assuming that  $x_0 \sim X$ , i.e.,  $x_0$  (the test point) has the same distribution as X (the training data), and the expectation of it is the zero vector,  $Cov(x_0) = Cov(X) = E(x_0x_0^T)$ .

$$\operatorname{E} \sum_{i,j} x_{0,i} \operatorname{Cov}(X)_{i,j}^{-1} x_{0,j} = \operatorname{E} \sum_{i,j} \operatorname{Cov}(X)_{i,j}^{-1} \operatorname{Cov}(x_0)_{i,j}$$

$$= \operatorname{E} \sum_{i,j} \operatorname{Cov}(X)_{i,j}^{-1} \operatorname{Cov}(X)_{i,j} = \operatorname{E} \sum_{i} \left( \sum_{j} \operatorname{Cov}(X)_{i,j}^{-1} \operatorname{Cov}(X)_{j,i} \right)$$

$$= \operatorname{E} \sum_{i} [\operatorname{Cov}(X)^{-1} \operatorname{Cov}(X)]_{i,i} = \operatorname{E} \left( \operatorname{Trace}(\operatorname{Cov}(X)^{-1} \operatorname{Cov}(X)) \right)$$

$$= \operatorname{E} \left( \operatorname{Trace} I_{pxp} \right) = p$$

$$(71)$$

#### 2.5.5 Ex. 2.6

Assume that we have n identical inputs  $x_1 = x_2 = \cdots = x_n \equiv x$  with outputs  $y_1, y_2, \ldots, y_n$ . The least squares formula:

$$RSS(\theta) = \sum_{i=1}^{n} (y_i - f_{\theta}(x))^2$$
 (72)

The weighted least squares formula:

$$RSS_w(\theta) = n \cdot \left(\frac{\sum_{i=1}^n y_i}{n} - f_{\theta}(x)\right)^2$$
 (73)

I claim that the two expressions differ by a constant term that doesn't depend on  $\theta$ , so both expressions lead to the same solution. This naturally extends to the case when we have groups of equal inputs.

Expanding RSS:

$$RSS(\theta) = \sum_{i=1}^{n} y_i^2 - 2f_{\theta}(x) \sum_{i=1}^{n} y_i + f_{\theta}^2(x)$$
 (74)

Expanding  $RSS_w$ :

$$RSS_w(\theta) = \frac{\left(\sum_{i=1}^n y_i\right)^2}{n} - 2f_{\theta}(x) \sum_{i=1}^n y_i + f_{\theta}^2(x)$$
 (75)

So the difference of the 2 expressions is a constant that doesn't depend on  $\theta$ . So when we derive wrt  $\theta$ , we get the same formulae.

Whenever we have observations with identical values x, we can always refactor the RSS for the groups according to  $(72) \rightarrow (73)$ .

#### 2.5.6 Ex. 2.7

Our estimator according to the problem statement:

$$\hat{f}(x_0) = \sum_{i=1}^{N} l_i(x_0; \mathcal{X}) y_i$$
 (76)

a) For kNN, the weights are:

$$l_i(x_0; \mathcal{X}) = \frac{1}{k} \delta(x_i \in kNN(x_0))$$
(77)

where  $\delta(x_i \in \text{kNN}(x_0))$  is 1 if  $x_i$  is in the set of k-nearest neighbors of  $x_0$ , and 0 otherwise. So in this case we average the ys of the k-nearest neighbors of  $x_0$ .

For linear regression we have

$$\hat{f}(x_0) = x_0^T \beta \tag{78}$$

Where  $\beta$  comes from the following equation (see Section 2.2):

$$\beta = \mathcal{E}(XX^T)^{-1}\mathcal{E}(XY) \tag{79}$$

Now let's calculate this expression. We estimate the expectation values with averages.

$$E(XX^{T})^{-1} \approx \left(\frac{1}{N} \sum_{j=1}^{N} x_{j} x_{j}^{T}\right)^{-1}$$

$$E(XY) \approx \frac{1}{N} \sum_{i=1}^{N} x_{i} y_{i}$$
(80)

With these, we can formulate  $\hat{f}(x_0)$  as follows:

$$\hat{f}(x_0) = x_0^T \left(\frac{1}{N} \sum_{j=1}^N x_j x_j^T\right)^{-1} \cdot \frac{1}{N} \sum_{i=1}^N x_i y_i$$

$$= \sum_{i=1}^N x_0^T \left(\sum_{j=1}^N x_j x_j^T\right)^{-1} x_i y_i$$

$$\equiv \sum_{i=1}^N l_i(x_0; \mathcal{X}) y_i$$
(81)

From this we get the weights:

$$l_i(x_0; \mathcal{X}) = x_0^T \left( \sum_{j=1}^N x_j x_j^T \right)^{-1} x_i$$
 (82)

#### 2.5.7 Ex. 2.9

The short answer is this:

$$ER_{tr}(\hat{\beta}) \le ER_{tr}(E\hat{\beta}) = ER_{te}(E\hat{\beta}) \le ER_{te}(\hat{\beta})$$
 (83)

Now I explain this in more details.

1. Proving the left inequality.  $\hat{\beta}$  comes from the following:

$$\hat{\beta} = \arg\min_{\beta'} R_{tr}(\beta') \tag{84}$$

This implies that for any fix  $\beta$ :

$$R_{tr}(\hat{\beta}) \le R_{tr}(\beta) \tag{85}$$

Taking the expectation of both sides:

$$ER_{tr}(\hat{\beta}) \le ER_{tr}(\beta)$$
 (86)

 $\hat{\beta}$  is a random variable (which depends on the training data), we can take the expectation, so we get  $E\hat{\beta}$  which is a fix, non-random vector. Substituting into the above inequality we get what we wanted to prove:

$$ER_{tr}(\hat{\beta}) \le ER_{tr}(E\hat{\beta})$$
 (87)

2. Proving the equation in the middle. For any fix  $\beta$ :

$$ER_{tr}(\beta) = \frac{1}{N} \sum_{i=1}^{N} E(y_i - \beta^T x_i)^2 = E(Y - \beta^T X)^2$$
 (88)

$$ER_{te}(\beta) = \frac{1}{M} \sum_{i=1}^{M} E(\widetilde{y}_i - \beta^T \widetilde{x}_i)^2 = E(Y - \beta^T X)^2$$
(89)

This is because both the train and the test data come from the same distribution. So for any fix  $\beta$ ,  $ER_{tr}(\beta) = ER_{te}(\beta)$ . Since  $E\hat{\beta}$  is a fix vector, we're done with this part.

3. Proving the right inequality. For this we use the fact that the training data and the test data are independent. Thus  $\hat{\beta}$  and the test data are also independent. For this part, just forget about the training data. Think of  $\hat{\beta}$  as a random vector independent from the (test) data.

$$ER_{te}(\hat{\beta}) = E(Y - \hat{\beta}^T X)^2 = EE\left((Y - \hat{\beta}^T X)^2 | X, Y\right)$$
(90)

(91)

$$\begin{split} \mathbf{E}\left((Y-\hat{\beta}^TX)^2|X,Y\right) =& \mathbf{E}\left(Y^2-2Y\hat{\beta}^TX+(\hat{\beta}^TX)^2|X,Y\right) \\ =& Y^2-2Y\mathbf{E}(\hat{\beta}^T)X+X^T\mathbf{E}(\hat{\beta}\hat{\beta}^T)X \\ =& Y^2-2Y\mathbf{E}(\hat{\beta}^T)X+X^T[\mathbf{E}\hat{\beta}\cdot\mathbf{E}\hat{\beta}^T+\mathbf{Cov}(\hat{\beta})]X \\ =& Y^2-2Y\mathbf{E}(\hat{\beta}^T)X+(\mathbf{E}\hat{\beta}^T)XX^T(\mathbf{E}\hat{\beta})+X^T\mathbf{Cov}(\hat{\beta})X \end{split}$$

Since the covariance matrix is positive semi-definite,  $X^T \text{Cov}(\beta) X \geq 0$ 

$$E\left((Y - \hat{\beta}^{T}X)^{2}|X,Y\right) \geq Y^{2} - 2YE(\hat{\beta}^{T})X + (E\hat{\beta}^{T})XX^{T}(E)\hat{\beta}$$

$$E\left((Y - \hat{\beta}^{T}X)^{2}|X,Y\right) \geq (Y - E(\hat{\beta}^{T})X)^{2}$$

$$EE\left((Y - \hat{\beta}^{T}X)^{2}|X,Y\right) \geq E(Y - E(\hat{\beta}^{T})X)^{2}$$

$$E(Y - \hat{\beta}^{T}X)^{2} \geq E(Y - E(\hat{\beta}^{T})X)^{2}$$

$$ER_{te}(\hat{\beta}) \geq ER_{te}(E\hat{\beta})$$

$$(92)$$

# 3 Linear Methods for Regression

### 3.1 equations on page 47 and 48

Variance of beta hat (page 47). We know the formulae for  $\hat{\beta}$  (equation 3.6 on page 45):

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \tag{93}$$

Using (146):

$$Var(\hat{\beta}) \equiv Cov(\hat{\beta})$$

$$= Cov ((\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y})$$

$$= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \cdot Cov (\mathbf{y}) \cdot \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1}$$

$$= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \cdot \sigma^2 \mathbf{I} \cdot \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1}$$

$$= \sigma^2 \cdot (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1}$$

$$= \sigma^2 \cdot (\mathbf{X}^T \mathbf{X})^{-1}$$

$$= \sigma^2 \cdot (\mathbf{X}^T \mathbf{X})^{-1}$$
(94)

Sigma hat. Deriving the expectation of  $\hat{\sigma}^2$ . We know that  $\mathbf{H}$ , that hat matrix is an orthogonal projection onto the column space of  $\mathbf{X}$ . This implies that  $\mathbf{H}^2 = \mathbf{H} = \mathbf{H}^T$ , and  $\text{Tr}(\mathbf{H}) = p+1$  (the trace of an orthogonal projection is the dimension of the subspace it projects onto, that is, the rank of  $\mathbf{X}$ ). Another thing is that  $(\mathbf{I} - \mathbf{H})$  is also an orthogonal projection. It projects to the orthogonal complement of the column space of  $\mathbf{X}$ . So  $(\mathbf{I} - \mathbf{H})^2 = (\mathbf{I} - \mathbf{H}) = (\mathbf{I} - \mathbf{H})^T$ , and  $\text{Tr}(\mathbf{I} - \mathbf{H}) = N - p - 1$ .

$$\sum_{i=1}^{N} (y_i - \hat{y}_i)^2 = (\mathbf{y} - \hat{\mathbf{y}})^T (\mathbf{y} - \hat{\mathbf{y}})$$

$$= (\mathbf{y} - \mathbf{H}\mathbf{y})^T (\mathbf{y} - \mathbf{H}\mathbf{y})$$

$$= ((\mathbf{I} - \mathbf{H})\mathbf{y})^T ((\mathbf{I} - \mathbf{H})\mathbf{y})$$

$$= \mathbf{y}^T (\mathbf{I} - \mathbf{H})^T (\mathbf{I} - \mathbf{H})\mathbf{y}$$

$$= \mathbf{y}^T (\mathbf{I} - \mathbf{H})^2 \mathbf{y} = \mathbf{y}^T (\mathbf{I} - \mathbf{H})\mathbf{y}$$

$$= \operatorname{Tr}(\mathbf{y}^T (\mathbf{I} - \mathbf{H})\mathbf{y}) = \operatorname{Tr}((\mathbf{I} - \mathbf{H})\mathbf{y}\mathbf{y}^T)$$
(95)

We know that  $Cov(\mathbf{y}) = \sigma^2 \mathbf{I} = E(\mathbf{y}\mathbf{y}^T) - (E\mathbf{y}) \cdot (E\mathbf{y}^T)$ . Taking the expectation:

$$E \sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2} = E \left( Tr((\mathbf{I} - \mathbf{H}) \mathbf{y} \mathbf{y}^{T}) \right)$$

$$= Tr((\mathbf{I} - \mathbf{H}) E(\mathbf{y} \mathbf{y}^{T}))$$

$$= Tr((\mathbf{I} - \mathbf{H}) \cdot (\sigma^{2} \mathbf{I} + E \mathbf{y} \cdot E \mathbf{y}^{T}))$$

$$= Tr((\mathbf{I} - \mathbf{H}) \sigma^{2} + (\mathbf{I} - \mathbf{H}) \cdot E \mathbf{y} \cdot E \mathbf{y}^{T})$$

$$= Tr((\mathbf{I} - \mathbf{H}) \sigma^{2}) + Tr((\mathbf{I} - \mathbf{H}) \cdot E \mathbf{y} \cdot E \mathbf{y}^{T})$$

$$= Tr(\mathbf{I} - \mathbf{H}) \cdot \sigma^{2} + Tr(E \mathbf{y}^{T} \cdot (\mathbf{I} - \mathbf{H}) \cdot E \mathbf{y})$$

$$= (N - p - 1) \cdot \sigma^{2} + E \mathbf{y}^{T} \cdot (\mathbf{I} - \mathbf{H}) \cdot E \mathbf{y}$$

$$= (N - p - 1) \cdot \sigma^{2}$$

At the last step we had to assume that  $E\mathbf{y}$  lies in the column space of  $\mathbf{X}$ , because it means that  $E\mathbf{y}$  and  $(\mathbf{I} - \mathbf{H})E\mathbf{y}$  are perpendicular to each other. This means that the response (y) is linear in its inputs, plus a random variable with zero mean. Now we see that

$$\frac{1}{N-p-1} E \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 = \sigma^2 \to E \hat{\sigma}^2 = \sigma^2$$
 (97)

**Distribution of sigma hat.** (3.11) states that  $\hat{\sigma}^2$  is proportional to a Chi-square distribution with N-p-1 parameters. Now we use the assumption that  $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ , where  $\mathbf{X}$  and  $\boldsymbol{\beta}$  are fixed, and  $\boldsymbol{\epsilon}$  is a vector of iid normal random variables with zero mean and  $\sigma^2$  variance. According to (95) we can write that:

$$\sum_{i=1}^{N} (y_i - \hat{y}_i)^2 = \|(\mathbf{I} - \mathbf{H})\mathbf{y}\|^2$$
(98)

Since **H** is a projection to the column space of **X**,  $\mathbf{HX} = \mathbf{X}$ , and  $(\mathbf{I} - \mathbf{H})\mathbf{X} = \mathbf{X} - \mathbf{HX} = \mathbf{X} - \mathbf{X} = \mathbf{0}$ . So  $(\mathbf{I} - \mathbf{H})\mathbf{y} = (\mathbf{I} - \mathbf{H}) \cdot (\mathbf{X}\beta + \epsilon) = (\mathbf{I} - \mathbf{H}) \cdot \epsilon$ .

$$\sum_{i=1}^{N} (y_i - \hat{y}_i)^2 = \|(\mathbf{I} - \mathbf{H})\epsilon\|^2$$
(99)

Now it is clear that this is  $\sigma^2 \cdot \chi^2_{N-p-1}$ , because we project the spherical normal distribution ( $\epsilon$ ) to a (N-p-1)-dimensional plane (subspace).

**The Z-score.** According to (3.12) we form the standardized coefficient or Z-score

$$z_j = \frac{\hat{\beta}_j}{\hat{\sigma}\sqrt{v_j}} \tag{100}$$

Why is this a t-distribution under the null hypothesis that  $\beta_j = 0$ ?

$$\hat{\beta} = \beta + \sigma \cdot (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon = \beta + \sigma \cdot (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{H} \epsilon$$
 (101)

$$\hat{\sigma}^2 = \frac{1}{N - p - 1} \left\| (\mathbf{I} - \mathbf{H}) \epsilon \right\|^2 \tag{102}$$

Now because  $\mathbf{H}\epsilon$  and  $(\mathbf{I} - \mathbf{H})\epsilon$  are independent,  $\hat{\beta}$  and  $\hat{\sigma}^2$  are also independent. Moreover,  $\hat{\beta}$  has a covariance  $\sigma^2(\mathbf{X}^T\mathbf{X})^{-1}$ ,  $\hat{\beta}_j$  has a variance  $\sigma^2 \cdot v_j$ , with  $v_j = [(\mathbf{X}^T\mathbf{X})^{-1}]_{jj}$ . So under the null hypothesis,

$$\frac{\beta_j}{\sigma_{\sqrt{v_j}}} \sim N(0, 1) \tag{103}$$

Also,

$$\frac{\hat{\sigma}}{\sigma} \sim \sqrt{\frac{\chi_{N-p-1}^2}{N-p-1}} \tag{104}$$

According to (149), the following has a Student's t-distribution with N-p-1 degrees of freedom

$$\frac{\frac{\beta_j}{\sigma\sqrt{v_j}}}{\frac{\hat{\sigma}}{\sigma}} = \frac{\beta_j}{\hat{\sigma}\sqrt{v_j}} = z_j \tag{105}$$

**F** statistic. According to (3.13) on page 48, we form the following statistic to decide whether we can drop groups of coefficients simultaneously.

$$F = \frac{(\text{RSS}_0 - \text{RSS}_1)/(p_1 - p_0)}{\text{RSS}_1/(N - p_1 - 1)}$$
(106)

I will show that under the null-hypothesis,  $RSS_0 - RSS_1$  is chi-squared with  $p_1 - p_0$  degrees of freedom,  $RSS_1$  is chi-squared with  $N - p_1 - 1$  degrees of freedom, and are independent. So according to appendix C.2, F has indeed an F-distribution with  $(p_1 - p_0), (N - p_1 - 1)$  parameters.

Let X be the  $N \times (p_0 + 1)$  data-matrix, while  $X_1 = [X|X']$  the extended  $N \times (p_1 + 1)$  data-matrix. We assume that the smaller model is true, i.e.,  $y = X\beta + \epsilon$ . We have two different estimates for y.  $\hat{y}_0 = H_0 y$  comes from the smaller model, while  $\hat{y}_1 = H_1 y$  comes from the bigger model.  $H_0$  and  $H_1$  are projections.  $H_1$  projects onto the column space of  $X_1$ , which we denote by  $W_1$ .  $H_0$  projects onto the column space of X, which we denote by  $W_0$ , this is actually a subspace of  $W_1$ . Let  $W_2$  be a subspace in  $W_1$  that is orthogonal to  $W_0$ .  $H_1 - H_0$  projects onto this subspace. Now calculate the residual sum of squares.

$$RSS_{0} = \|y - \hat{y}_{0}\|^{2}$$

$$= \|y - H_{0}y\|^{2}$$

$$= \|(I - H_{0})y\|^{2}$$

$$= \|(I - H_{0})(X\beta + \epsilon)\|^{2}$$

$$= \|(I - H_{0})X\beta + (I - H_{0})\epsilon\|^{2}$$

$$= \|0\beta + (I - H_{0})\epsilon\|^{2}$$

$$= \|(I - H_{0})\epsilon\|^{2}$$

$$= \epsilon^{T}(I - H_{0})^{T}(I - H_{0})\epsilon$$

$$= \epsilon^{T}(I - H_{0})(I - H_{0})\epsilon$$

$$= \epsilon^{T}(I - H_{0})\epsilon$$

$$= \epsilon^{T}(I - H_{0})\epsilon$$

Similarly,

$$RSS_1 = \epsilon^T (I - H_1)\epsilon \tag{108}$$

Note that here we used the fact that the columns of X make up the subspace  $W_0$ .  $I - H_0$  projects onto  $W_0^{\perp}$ , so  $(I - H_0)X = 0$ . Similarly,  $(I - H_1)X = 0$ .

From these, we can calculate the difference of the residual sum of squares.

$$RSS_{0} - RSS_{1} = \epsilon^{T} (H_{1} - H_{0}) \epsilon$$

$$= ||(H_{1} - H_{0}) \epsilon||^{2}$$
(109)

So  $RSS_0-RSS_1$  is a chi-squared random variable with  $p_1-p_0$  degrees of freedom (the dimension of  $W_2$ ). And  $RSS_1$  is also chi-squared with  $N-p_1-1$  degrees of freedom (the dimension of  $W_1^{\perp}$ ).  $RSS_0-RSS_1$  and  $RSS_1$  are independent, because  $I-H_1$  and  $H_1-H_0$  project onto perpendicular subspaces.

### 3.2 Equation (3.28) on page 54

I'd like to confirm that in general,

$$\hat{\beta}_j = \frac{z_j^T y}{z_j^T z_j} \tag{110}$$

But first some notations and clarifications.  $y, z_j \in \mathbb{R}^N$ .  $x_j \in \mathbb{R}^N$  is the *j*th column vector of X, the data matrix.  $W_X$  is the column space of X,  $W_{X(j)}$  is the subspace spanned by all the columns of X except the *j*th column.  $W_{X(j)}^{\perp}$  is a one-dimensional subspace that is orthogonal to  $W_{X(j)}$ , and

$$W_{X(j)} + W_{X(j)}^{\perp} = W_X \tag{111}$$

 $z_j = x_j - P_j x_j$ , where  $P_j$  projects onto  $W_{X(j)}$ . We can also express it as

$$z_j = P_i^{\perp} x_j \tag{112}$$

where  $P_i^{\perp}$  projects onto  $W_{X(i)}^{\perp}$ . We know, that

$$\hat{\beta} = (X^T X)^{-1} X^T y \tag{113}$$

Denoting the jth column vector of  $(X^TX)^{-1}$  by  $b_j$   $((X^TX)^{-1}$  is symmetric, so  $b_j^T$  is the jth row vector), we can write:

$$\hat{\beta}_j = b_j^T X^T y \tag{114}$$

From appendix (D.3) we can construct  $P_j^{\perp}$ :

$$P_j^{\perp} = \frac{Xb_j \cdot b_j^T X^T}{v_i} \tag{115}$$

Where  $v_j$  is the jth element of  $b_j$  (=  $[(X^TX)^{-1}]_{j,j}$ ). With this we can calculate  $z_j$  ( $A_{:,j}$  denotes the jth column vector of matrix A):

$$z_{j} = P_{j}^{\perp} x_{j} = (P_{j}^{\perp} X)_{:,j} = \left(\frac{X b_{j} \cdot b_{j}^{T} X^{T}}{v_{j}} X\right)_{:,j}$$

$$= \left(\frac{X b_{j}}{v_{j}} b_{j}^{T} X^{T} X\right)_{:,j} = \left(\frac{X b_{j}}{v_{j}} \delta_{j}^{T}\right)_{:,j} = \frac{X b_{j}}{v_{j}}$$

$$(116)$$

Here  $\delta_j = I_{:,j}$ , the jth column vector of the identity. We can plug this result into (110):

$$\hat{\beta}_{j} = \frac{\frac{b_{j}^{T} X^{T}}{v_{j}} y}{\frac{b_{j}^{T} X^{T} X b_{j}}{v_{i}^{2}}} = \frac{b_{j}^{T} X^{T} y}{\frac{b_{j}^{T} \delta_{j}}{v_{j}}} = \frac{b_{j}^{T} X^{T} y}{\frac{v_{j}}{v_{j}}} = b_{j}^{T} X^{T} y$$
(117)

It is indeed the same as we got in (114), so the proof is complete.

### 3.3 Solutions for the Exercises of chapter 3

#### 3.3.1 Ex. 3.1

According to Appendix (C.2), the F-statistics can be written in the form:

$$F \sim \frac{\chi_{d_1}^2/d_1}{\chi_{d_2}^2/d_2} \tag{118}$$

where in our case  $d_1 = p_1 - p_0$ ,  $d_2 = N - p_1 - 1$ . Dropping a single coefficient means that  $p_1 = p_0 + 1 \rightarrow p_1 - p_0 = 1$ , so

$$F \sim \frac{\chi_1^2/1}{\chi_{d_2}^2/d_2} \sim \frac{N(0,1)^2}{\chi_{d_2}^2/d_2} \sim \left(\frac{N(0,1)}{\sqrt{\frac{\chi_{N-p_1-1}^2}{(N-p_1-1)}}}\right)^2 \sim t_{N-p_1-1}^2$$
(119)

The Z-score is t-distributed with N-p-1 parameters, so the F-statistics for dropping a single coefficient is indeed distributed as the square of the corresponding Z-score. Well, this doesn't prove that the square of the calculated Z is equal to the calculated F. So let's prove it. Without loss of generality we can assume that we test for the last coefficient, j=p+1.

$$z_j^2 = \frac{\hat{\beta}_j^2}{\hat{\sigma}^2 v_j} \tag{120}$$

We have to show that this equals to the following F:

$$F = \frac{(\text{RSS}_0 - \text{RSS}_1)/(p_1 - p_0)}{\text{RSS}_1/(N - p_1 - 1)}$$
(121)

Now since  $(N - p_1 - 1)\hat{\sigma}^2 = RSS_1$ , and  $p_1 - p_0 = 1$ , we have to show that

$$\frac{\hat{\beta}_j^2}{v_i} = RSS_0 - RSS_1 \tag{122}$$

Denote the jth column (=jth row) of  $(X^TX)^{-1}$  as  $b_j$ . With this notation

$$\hat{\beta}_j = b_i^T X^T y = y^T X b_j \tag{123}$$

$$\frac{\hat{\beta_j}^2}{v_i} = y^T \frac{X b_j \cdot b_j^T X^T}{v_i} y \tag{124}$$

$$RSS_0 - RSS_1 = y^T (H_1 - H_0)y$$
 (125)

Where  $H_1$  projects onto the column space of X,  $H_0$  projects onto  $W_0$ .  $W_0$  is the column space of the matrix same as X but dropping the last column. According to Appendix (D.3):

$$H_1 - H_0 = \frac{X b_j \cdot b_j^T X^T}{v_j} \tag{126}$$

which concludes the proof.

### 3.3.2 Ex. 3.2



Figure 7: True function, predicted function, with 95% confidence band (pointwise).



Figure 8: True function, predicted function, with 95% confidence band (from multivariate normal).

#### 3.3.3 Ex. 3.3

**a.** We formulate an estimate of  $a^T\beta$  as  $c^Ty$ . For the least squares estimate we have that

$$a^T \hat{\beta} = a^T (X^T X)^{-1} X^T y \tag{127}$$

From this,

$$c_0 = X(X^T X)^{-1} a (128)$$

Any c can be written as

$$c = c_0 + c_1 = X(X^T X)^{-1} a + c_1 (129)$$

The constraint is that  $E(c^T y) = a^T \beta$ .

$$E(c^{T}y) = E(c_{0}^{T}y) + E(c_{1}^{T}y) = a^{T}\beta$$
(130)

Since  $E(c_0^T y) = a^T \beta$ , we have that  $E(c_1^T \beta) = 0$ .

$$0 = \mathcal{E}(c_1^T y) = c_1^T X \beta \tag{131}$$

Because  $\beta$  is unobservable, we conclude that

$$0 = c_1^T X \tag{132}$$

which means

$$c_1^T c_0 = c_1^T X (X^T X)^{-1} a = 0 (133)$$

Now consider the variances.

$$\operatorname{Var}(a^T \hat{\beta}) = a^T \operatorname{Var}(\hat{\beta}) a = \sigma^2 a^T (X^T X)^{-1} a \tag{134}$$

Calculating the variance of a general unbiased estimate, using (133):

$$Var(c^{T}y) = \sigma^{2}c^{T}c$$

$$= \sigma^{2}(c_{0}^{T} + c_{1}^{T})(c_{0} + c_{1}) = \sigma^{2}(c_{0}^{T}c_{0} + 0 + 0 + c_{1}^{T}c_{1})$$

$$= \sigma^{2}c_{0}^{T}c_{0} + \sigma^{2}c_{1}^{T}c_{1}$$

$$= Var(a^{T}\hat{\beta}) + \sigma^{2}c_{1}^{T}c_{1}$$
(135)

Since  $\sigma^2 c_1^T c_1 \geq 0$ , we conclude that

$$Var(c^T y) \ge Var(a^T \hat{\beta}) \tag{136}$$

**b.** The solution is basically the same as for the previous one. Here we will use the fact that  $A^TA$  is a positive semidefinite matrix for any matrix A. A linear unbiased estimate for  $\beta$  can be expressed as  $\widetilde{\beta} = C^Ty$ , where C is a  $N \times (p+1)$  matrix. We can express C as  $C = X(X^TX)^{-1} + C_1 = C_0 + C_1$ . The estimates are unbiased, so  $\mathrm{E}(C^Ty) = \beta$ . From this we have

$$E(C^{T}y) = (C_0 + C_1)^{T}(X\beta) = \beta + C_1^{T}X\beta = \beta \to C_1^{T}X\beta = 0$$
 (137)

Because  $\beta$  is unobservable, we have that

$$C_1^T X = 0 (138)$$

Now consider the variances.  $\hat{V} \equiv \operatorname{Var}(\hat{\beta}) = \sigma^2 (X^T X)^{-1}$ .  $\tilde{V} \equiv \operatorname{Var}(\tilde{\beta}) = \operatorname{Var}(C^T y) = \sigma^2 C^T C = \sigma^2 (C_0 + C_1)^T (C_0 + C_1)$ . Using (138), we can write that  $\tilde{V} = \sigma^2 C_0^T C_0 + \sigma^2 C_1^T C_1 = \hat{V} + \sigma^2 C_1^T C_1$ . From this:  $\tilde{V} - \hat{V} = \sigma^2 C_1^T C_1$  which is a positive semidefinite matrix. This concludes the proof.

#### 3.3.4 Ex. 3.5

The ridge regression loss in vectorized form:

$$L_{\text{ridge}} = (\mathbf{y} - \beta_0 \mathbf{e} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \beta_0 \mathbf{e} - \mathbf{X}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta}^T \boldsymbol{\beta}$$

**e** is a vector of all ones in  $\mathbb{R}^N$ . **X** is  $N \times p$  matrix, so it doesn't have **e** as its first column. That's why we have a separate  $\beta_0$ , which is a scalar. All other coefficients are in the vector  $\boldsymbol{\beta}$ .

How to formulate  $L_{\text{ridge}}^c$ ? We can use  $L_{\text{ridge}}$ , but instead of  $\mathbf{X}$ , we write  $\mathbf{X} - \frac{1}{N}\mathbf{e}\mathbf{e}^T\mathbf{X}$ . It's because  $\frac{1}{N}\mathbf{e}^T\mathbf{X} = [\overline{x}_1, \overline{x}_2, \dots, \overline{x}_p]$ . Let's create the following notation:

$$\mathbf{A} \equiv \frac{\mathbf{e}\mathbf{e}^T}{\mathbf{e}^T\mathbf{e}} = \frac{\mathbf{e}\mathbf{e}^T}{N}$$

This is a projection onto the line defined by **e**. So to get  $L_{\text{ridge}}^c$ , we replace **X** in  $L_{\text{ridge}}$  with  $(\mathbf{I} - \mathbf{A})\mathbf{X}$ . So we only need to solve  $L_{\text{ridge}}$  for  $\beta_0$  and  $\boldsymbol{\beta}$ . Once we have these, we get  $\beta_0^c$ ,  $\boldsymbol{\beta}^c$  by applying the change  $\mathbf{X} \to (\mathbf{I} - \mathbf{A})\mathbf{X}$ .

$$\frac{\partial L_{\text{ridge}}}{\partial \beta_0} = -2\mathbf{e}^T(\mathbf{y} - \beta_0 \mathbf{e} - \mathbf{X}\boldsymbol{\beta}) = 0$$
$$\rightarrow \beta_0 = \overline{y} - \frac{1}{N}\mathbf{e}^T \mathbf{X}\boldsymbol{\beta}$$

Note that  $\mathbf{e}^T \mathbf{e} = N$ , and  $\mathbf{e}^T \mathbf{y} = N \overline{y}$ . Now we can get  $\beta_0^c$  by the above mentioned substitution. Note that  $\mathbf{e}^T \mathbf{A} = \frac{1}{N} \mathbf{e}^T \mathbf{e} \mathbf{e}^T = \frac{1}{N} N \mathbf{e}^T = \mathbf{e}^T$ .

$$\beta_0^c = \overline{y} - \frac{1}{N} \mathbf{e}^T (\mathbf{I} - \mathbf{A}) \mathbf{X} \boldsymbol{\beta}^c$$

$$= \overline{y} - \frac{1}{N} (\mathbf{e}^T \mathbf{I} - \mathbf{e}^T \mathbf{A}) \mathbf{X} \boldsymbol{\beta}^c$$

$$= \overline{y} - \frac{1}{N} (\mathbf{e}^T - \mathbf{e}^T) \mathbf{X} \boldsymbol{\beta}^c$$

$$= \overline{y}$$

So we see that  $\beta_0^c$  does not depend on the features and coefficients, as  $\beta_0$  does. Now let's move on to  $\beta$  and  $\beta^c$ .

$$\frac{\partial L_{\text{ridge}}}{\partial \boldsymbol{\beta}} = -2\mathbf{X}^T(\mathbf{y} - \beta_0 \mathbf{e} - \mathbf{X}\boldsymbol{\beta}) + 2\lambda \boldsymbol{\beta}$$

Note that

$$\beta_0 \mathbf{e} = \mathbf{e} \overline{y} - \frac{1}{N} \mathbf{e} \mathbf{e}^T \mathbf{X} \boldsymbol{\beta} = \mathbf{A} \mathbf{y} - \mathbf{A} \mathbf{X} \boldsymbol{\beta}$$

So we have that

$$\frac{\partial L_{\text{ridge}}}{\partial \boldsymbol{\beta}} = -2\mathbf{X}^{T}(\mathbf{y} - \mathbf{A}\mathbf{y} + \mathbf{A}\mathbf{X}\boldsymbol{\beta} - \mathbf{X}\boldsymbol{\beta}) + 2\lambda\boldsymbol{\beta} = 0$$
$$\rightarrow \boldsymbol{\beta} = (\mathbf{X}^{T}(\mathbf{I} - \mathbf{A})\mathbf{X} + \lambda\mathbf{I})^{-1}\mathbf{X}^{T}(\mathbf{I} - \mathbf{A})\mathbf{y}$$

From this we can get  $\beta^c$  (by the substitution  $\mathbf{X} \to (\mathbf{I} - \mathbf{A})\mathbf{X}$ ). Note that  $\mathbf{I} - \mathbf{A}$  is a projection, so its square is itself, as well as its transpose.

$$\begin{split} \boldsymbol{\beta}^c = & (((\mathbf{I} - \mathbf{A})\mathbf{X})^T (\mathbf{I} - \mathbf{A})(\mathbf{I} - \mathbf{A})\mathbf{X} + \lambda \mathbf{I})^{-1} ((\mathbf{I} - \mathbf{A})\mathbf{X})^T (\mathbf{I} - \mathbf{A})\mathbf{y} \\ = & (\mathbf{X}^T (\mathbf{I} - \mathbf{A})(\mathbf{I} - \mathbf{A})(\mathbf{I} - \mathbf{A})\mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T (\mathbf{I} - \mathbf{A})(\mathbf{I} - \mathbf{A})\mathbf{y} \\ = & (\mathbf{X}^T (\mathbf{I} - \mathbf{A})\mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T (\mathbf{I} - \mathbf{A})\mathbf{y} \\ = & \boldsymbol{\beta} \end{split}$$

So the conclusion is that by centering the inputs, we get the same result for  $\beta$  and  $\beta^c$ , while  $\beta_0$  gets replaces by  $\beta_0^c = \overline{y}$ .

3.3.5 Ex. 3.6

- $Y = X\beta + \epsilon$
- $\boldsymbol{\beta} \sim N(\boldsymbol{0}, \tau^2 \boldsymbol{I}_p)$
- $\epsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_N)$

Using Appendix (C.4),  $U = \beta$ ,  $V = \epsilon$ , W = XU + V = Y, we have that the posterior distribution  $\beta | Y$  is Gaussian, with mean:

$$\boldsymbol{\mu}_{\boldsymbol{\beta}|\boldsymbol{y}} = \boldsymbol{\tau}^2 \boldsymbol{X}^T (\boldsymbol{\sigma}^2 \boldsymbol{I}_N + \boldsymbol{\tau}^2 \boldsymbol{X} \boldsymbol{X}^T)^{-1} \boldsymbol{y}$$

Using the matrix inversion lemma described in Appendix (E.1), we can write that

$$(\tau^{2}\boldsymbol{X}\boldsymbol{X}^{T} + \sigma^{2}\boldsymbol{I}_{N})^{-1} = \frac{1}{\sigma^{2}} \left(\frac{\tau^{2}}{\sigma^{2}}\boldsymbol{X}\boldsymbol{X}^{T} + \boldsymbol{I}_{N}\right)^{-1}$$

$$= \frac{1}{\sigma^{2}} \left(\boldsymbol{I}_{N} - \frac{\tau}{\sigma}\boldsymbol{X}\left(\boldsymbol{I}_{p} + \frac{\tau^{2}}{\sigma^{2}}\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1} \frac{\tau}{\sigma}\boldsymbol{X}^{T}\right)$$

$$= \frac{1}{\sigma^{2}}\boldsymbol{I}_{N} - \frac{1}{\sigma^{2}}\boldsymbol{X}\left(\frac{\sigma^{2}}{\tau^{2}}\boldsymbol{I}_{p} + \boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}$$

So the mean is:

$$\begin{split} \boldsymbol{\mu}_{\beta|y} &= \tau^2 \boldsymbol{X}^T (\sigma^2 \boldsymbol{I}_N + \tau^2 \boldsymbol{X} \boldsymbol{X}^T)^{-1} \boldsymbol{y} \\ &= \frac{\tau^2}{\sigma^2} \boldsymbol{X}^T \boldsymbol{y} - \frac{\tau^2}{\sigma^2} \boldsymbol{X}^T \boldsymbol{X} \left( \frac{\sigma^2}{\tau^2} \boldsymbol{I}_p + \boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y} \\ &= \left[ \frac{\tau^2}{\sigma^2} \left( \frac{\sigma^2}{\tau^2} \boldsymbol{I}_p + \boldsymbol{X}^T \boldsymbol{X} \right) - \frac{\tau^2}{\sigma^2} \boldsymbol{X}^T \boldsymbol{X} \right] \left( \frac{\sigma^2}{\tau^2} \boldsymbol{I}_p + \boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y} \\ &= \left( \frac{\sigma^2}{\tau^2} \boldsymbol{I}_p + \boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y} \end{split}$$

So this is the mean (and mode, as it is normally distributed) of  $\beta$ , given **y**. We got the same expression as the one for ridge regression, when we have

$$\lambda = \frac{\sigma^2}{\tau^2}$$

#### 3.3.6 Ex. 3.8

I assume that X has full rank, i.e.,  $\operatorname{rank}(X) = p + 1$ . We can write that  $X = [e|X_2]$ , where e is the vector with all ones, and  $X_2$  is  $N \times p$  matrix. Denote the column space of X by W, the subspace spanned by e is  $W_e$ , and so

$$W = W_e + W_e^{\perp}$$

By centering  $X_2$ , we remove the projections of its columns onto e, and so those columns will span  $W_e^{\perp}$ . the projection onto the line spanned by e is

$$P_e = \frac{1}{N} e e^T$$

With this we have that

$$\tilde{\boldsymbol{X}} = (\boldsymbol{I} - \boldsymbol{P}_e)\boldsymbol{X}_2$$

because this way the columns of  $\tilde{\pmb{X}}$  are centered. The column space of  $\tilde{\pmb{X}}$  is  $W_e^\perp.$ 

Considering the QR decomposition of X, we can write:

$$oldsymbol{Q} = [oldsymbol{e}/\sqrt{N}|oldsymbol{Q}_2] = rac{1}{\sqrt{N}}[oldsymbol{e}|\sqrt{N}oldsymbol{Q}_2]$$

The SVD of  $\tilde{X}$ :

$$\tilde{X} = UDV^T$$

Denote the column space of (arbitrary)  $\mathbf{A}$  by  $R(\mathbf{A})$ . Then

$$R(\tilde{\boldsymbol{X}}) = R(\boldsymbol{U}) = W_e^{\perp}$$

$$R(\mathbf{Q}_2) = W_e^{\perp}$$

#### 3.3.7 Ex. 3.9 Forward stepwise regression

Actually we don't need  $\mathbf{Q}$ , we only need  $\mathbf{H} = \mathbf{Q}\mathbf{Q}^T$ , and updating this matrix. Some notations first.  $W_1$  is the column space of  $\mathbf{X}_1$ .  $\mathbf{u}$  is an arbitrary column vector of  $\mathbf{X}_2$ .  $\mathbf{X}_{1u}$  is the matrix  $[\mathbf{X}_1|\mathbf{u}]$ .  $W_{1u}$  is the column space of  $\mathbf{X}_{1u}$ .  $\mathbf{H}_1$  is the projection matrix that projects onto  $W_1$ .  $\mathbf{H}_{1u}$  projects onto  $W_{1u}$ .

We know the residual:

$$\mathbf{r} = \mathbf{y} - \hat{\mathbf{y}} = \mathbf{y} - \mathbf{H}_1 \mathbf{y}$$

Now the new residual:

$$\mathbf{r}' = \mathbf{y} - \hat{\mathbf{y}}' = \mathbf{y} - \mathbf{H}_{1u}\mathbf{y}$$

Let's calculate  $\mathbf{H}_{1u}$  efficiently. It projects onto  $W_{1u}$ . We have an orthonormal base in  $W_1$ , namely, the columns of  $\mathbf{Q}$ . We need an orthonormal base in  $W_{1u}$  as well. So lets regress  $\mathbf{u}$  onto  $W_1$ .  $\mathbf{u}_p = \mathbf{H}_1\mathbf{u}$  is the projection of  $\mathbf{u}$  onto  $W_1$ , so  $\mathbf{u} - \mathbf{H}_1\mathbf{u}$  is orthogonal to  $W_1$ . Let's normalize this vector and append it to  $\mathbf{Q}$ .

$$\mathbf{q} = \frac{\mathbf{u} - \mathbf{H}_1 \mathbf{u}}{||\mathbf{u} - \mathbf{H}_1 \mathbf{u}||}$$

With this we can construct  $\mathbf{Q}' = [\mathbf{Q}|\mathbf{q}]$ , and the columns of this matrix are orthonormal. The projection matrix:

$$\mathbf{H}_{1u} = \mathbf{Q}'\mathbf{Q}'^T = \mathbf{Q}\mathbf{Q}^T + \mathbf{q}\mathbf{q}^T = \mathbf{H}_1 + \mathbf{q}\mathbf{q}^T$$

The new residual:

$$\mathbf{r}' = \mathbf{v} - \mathbf{H}_{1u}\mathbf{v} = \mathbf{v} - \mathbf{H}_{1}\mathbf{v} - \mathbf{q}\mathbf{q}^{T}\mathbf{v} = \mathbf{r} - \mathbf{q}\mathbf{q}^{T}\mathbf{v}$$

From this:

$$RSS' = RSS - 2\mathbf{r}^T \mathbf{q} \mathbf{q}^T \mathbf{y} + \mathbf{y}^T \mathbf{q} \mathbf{q}^T \mathbf{y}$$

The drop in RSS:

$$RSS - RSS' = (2\mathbf{r} - \mathbf{y})^T \mathbf{q} \mathbf{q}^T \mathbf{y}$$

So we iterate through the columns of  $\mathbf{X}_2$  and seek for the largest drop in RSS. Once we have the best column ( $\mathbf{u}^*$ ), we pass  $\mathbf{H}_{1u*}$  to the next iteration. Consider the notebook "forward\_stepwise.ipynb" where I have implemented this algorithm.

#### 3.3.8 Ex. 3.10 Backward stepwise regression

Now we seek for a column vector  $\mathbf{x}$  that we can drop from  $\mathbf{X}$ . Notations.  $\mathbf{x}_i$  is the *i*th column vector of  $\mathbf{X}$ .  $\mathbf{X}_i$  is the matrix obtained from  $\mathbf{X}$  by dropping the *i*th column.  $\mathbf{B} \equiv (\mathbf{X}^T \mathbf{X})^{-1}$ . The *i*th column vector of  $\mathbf{B}$  is  $\mathbf{b}_i$ .

Now,  $\mathbf{H} = \mathbf{X}\mathbf{B}\mathbf{X}^T$  projects onto the column space of  $\mathbf{X}$ . According to Appendix (D.3),  $\mathbf{H}_i = \mathbf{H} - \mathbf{P}_i$  projects onto the column space of  $\mathbf{X}_i$ , where

$$\mathbf{P}_i = \frac{\mathbf{X} \mathbf{b}_i \mathbf{b}_i^T \mathbf{X}^T}{v_i}$$

and  $v_i$  is the *i*th element in the diagonal of **B**. The original residual:

$$r = (I - H)y$$

The new residual (after dropping the ith column in X:

$$\mathbf{r}_i = (\mathbf{I} - \mathbf{H}_i)\mathbf{y} = \mathbf{r} + \mathbf{P}_i\mathbf{y}$$

From this we get the increment in RSS introduced by dropping the feature:

$$\Delta RSS_i = (2\mathbf{r} + \mathbf{y})^T \mathbf{P}_i \mathbf{y}$$

We seek for a column vector of  $\mathbf{X}$  for which  $\Delta \mathrm{RSS}_i$  is minimal. We drop that feature. Consider the notebook "backward\_stepwise.ipynb" where I implement this algorithm.

#### 3.3.9 Ex. 3.11

$$RSS(\mathbf{B}) = \sum_{i=1}^{N} (y_i - f(x_i))^T \mathbf{\Sigma}^{-1} (y_i - f(x_i))$$

$$= \operatorname{Tr} ((\mathbf{Y} - \mathbf{X}\mathbf{B})\mathbf{\Sigma}^{-1} (\mathbf{Y} - \mathbf{X}\mathbf{B})^T)$$

$$= \operatorname{Tr} (\mathbf{Y}\mathbf{\Sigma}^{-1}\mathbf{Y}^T) - \operatorname{Tr} (\mathbf{Y}\mathbf{\Sigma}^{-1}\mathbf{B}^T\mathbf{X}^T) - \operatorname{Tr} (\mathbf{X}\mathbf{B}\mathbf{\Sigma}^{-1}\mathbf{Y}^T) + \operatorname{Tr} (\mathbf{X}\mathbf{B}\mathbf{\Sigma}^{-1}\mathbf{B}^T\mathbf{X}^T)$$

Calculating the derivatives:

$$\frac{d}{d\mathbf{B}}\mathrm{Tr}(\mathbf{Y}\mathbf{\Sigma}^{-1}\mathbf{Y}^T) = \mathbf{0}$$

$$\frac{d}{d\mathbf{B}}\mathrm{Tr}(\mathbf{Y}\mathbf{\Sigma}^{-1}\mathbf{B}^T\mathbf{X}^T) = \frac{d}{d\mathbf{B}}\mathrm{Tr}(\mathbf{X}^T\mathbf{Y}\mathbf{\Sigma}^{-1}\mathbf{B}^T) = \mathbf{X}^T\mathbf{Y}\mathbf{\Sigma}^{-1}$$

$$\frac{d}{d\mathbf{B}}\mathrm{Tr}(\mathbf{X}\mathbf{B}\boldsymbol{\Sigma}^{-1}\mathbf{Y}^T) = \frac{d}{d\mathbf{B}}\mathrm{Tr}(\boldsymbol{\Sigma}^{-1}\mathbf{Y}^T\mathbf{X}\mathbf{B}) = (\boldsymbol{\Sigma}^{-1}\mathbf{Y}^T\mathbf{X})^T = \mathbf{X}^T\mathbf{Y}\boldsymbol{\Sigma}^{-1}$$

$$\begin{split} \frac{d}{d\mathbf{B}} \mathrm{Tr}(\mathbf{X}\mathbf{B}\boldsymbol{\Sigma}^{-1}\mathbf{B}^T\mathbf{X}^T) = & \frac{d}{d\mathbf{A}} \mathrm{Tr}(\mathbf{X}\mathbf{A}\boldsymbol{\Sigma}^{-1}\mathbf{B}^T\mathbf{X}^T) + \frac{d}{d\mathbf{A}} \mathrm{Tr}(\mathbf{X}\mathbf{B}\boldsymbol{\Sigma}^{-1}\mathbf{A}^T\mathbf{X}^T) \\ = & (\boldsymbol{\Sigma}^{-1}\mathbf{B}^T\mathbf{X}^T\mathbf{X})^T + \mathbf{X}^T\mathbf{X}\mathbf{B}\boldsymbol{\Sigma}^{-1} \\ = & 2\mathbf{X}^T\mathbf{X}\mathbf{B}\boldsymbol{\Sigma}^{-1} \end{split}$$

Now we can substitute:

$$\frac{d}{d\mathbf{B}} RSS(\mathbf{B}) = -2\mathbf{X}^T \mathbf{Y} \mathbf{\Sigma}^{-1} + 2\mathbf{X}^T \mathbf{X} \mathbf{B} \mathbf{\Sigma}^{-1}$$

Setting this to zero, we get:

$$\mathbf{B} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

What happens if the covariance matrices  $\Sigma_i$  are different for each observation? The Residual Sum of Squares:

$$RSS(\mathbf{B}) = \sum_{i=1}^{N} (y_i - \mathbf{B}^T x_i)^T \mathbf{\Sigma}_i^{-1} (y_i - \mathbf{B}^T x_i)$$

Derivating this w.r.t **B**, and setting to zero, we get:

$$\sum_{i=1}^{N} x_i x_i^T \mathbf{B} \mathbf{\Sigma}_i^{-1} = \sum_{i=1}^{N} x_i y_i^T \mathbf{\Sigma}_i^{-1}$$

#### 3.3.10 Ex. 3.13

Using the singular value decomposition of X,

$$X = UDV^T$$

the least squares coefficient is

$$\begin{split} \hat{\beta}^{ls} = & (X^T X)^{-1} X^T y \\ = & (V D U^T U D V^T)^{-1} V D U^T y \\ = & V D^{-2} V^T V D U^T y = V D^{-1} U^T y \end{split}$$

The PCR coefficient:

$$\hat{\beta}^{pcr}(p) = \sum_{m=1}^{p} \hat{\Theta}_{m} v_{m} = \sum_{m=1}^{p} \frac{z_{m}^{T} y}{z_{m}^{T} z_{m}} v_{m}$$

$$= \sum_{m=1}^{p} \frac{d_{m} u_{m}^{T} y}{d_{m}^{2}} v_{m} = \sum_{m=1}^{p} \frac{v_{m} u_{m}^{T}}{d_{m}} y = V D^{-1} U^{T} y$$

which concludes the proof.

# **Appendices**

Here I collected the useful mathematical knowledge required to understand some proofs.

# A differentiation

# A.1 differentiation w.r.t. a vector

1. Let  $\mathbf{a} \in \mathbb{R}^n$  be a constant vector,  $\mathbf{x} \in \mathbb{R}^n$ . Then

$$\frac{d}{d\mathbf{x}}(\mathbf{x}^T\mathbf{a}) = \frac{d}{d\mathbf{x}}(\mathbf{a}^T\mathbf{x}) = \mathbf{a}$$
 (139)

**2.** Let  $\mathbf{A} \in \mathbb{R}^{nxn}$  be a constant matrix,  $\mathbf{x} \in \mathbb{R}^n$  Then

$$\frac{d}{d\mathbf{x}}(\mathbf{x}^T \mathbf{A} \mathbf{x}) = (\mathbf{A} + \mathbf{A}^T)\mathbf{x}$$
 (140)

We can derive this as follows:

$$\begin{aligned} \frac{d}{d\mathbf{x}}(\mathbf{x}^T \mathbf{A} \mathbf{x}) &= \frac{d}{d\mathbf{y}}(\mathbf{y}^T \mathbf{A} \mathbf{x}) + \frac{d}{d\mathbf{y}}(\mathbf{x}^T \mathbf{A} \mathbf{y}) \\ &= \frac{d}{d\mathbf{y}}(\mathbf{y}^T \mathbf{A} \mathbf{x}) + \frac{d}{d\mathbf{y}}(\mathbf{y}^T \mathbf{A}^T \mathbf{x}) \\ &= \mathbf{A} \mathbf{x} + \mathbf{A}^T \mathbf{x} \end{aligned}$$

### A.2 differentiation w.r.t. a matrix

1. Let  $\mathbf{A} \in \mathbb{R}^{n \times m}$ ,  $\mathbf{X} \in \mathbb{R}^{m \times n}$ . Then

$$\frac{d}{d\mathbf{X}}\operatorname{Tr}(\mathbf{A}\mathbf{X}) = \frac{d}{d\mathbf{X}}\operatorname{Tr}(\mathbf{X}\mathbf{A}) = \mathbf{A}^{T}$$
(141)

2. Let  $\mathbf{A} \in \mathbb{R}^{n \times m}$ ,  $\mathbf{X} \in \mathbb{R}^{n \times m}$ . Then

$$\frac{d}{d\mathbf{X}}\operatorname{Tr}(\mathbf{A}\mathbf{X}^{\mathbf{T}}) = \frac{d}{d\mathbf{X}}\operatorname{Tr}(\mathbf{X}^{\mathbf{T}}\mathbf{A}) = \mathbf{A}$$
(142)

3. Let  $\mathbf{A} \in \mathbb{R}^{m \times m}$ ,  $\mathbf{X} \in \mathbb{R}^{m \times n}$ . Then

$$\frac{d}{d\mathbf{X}}\operatorname{Tr}(\mathbf{X}^T\mathbf{A}\mathbf{X}) = (\mathbf{A} + \mathbf{A}^T)\mathbf{X}$$
(143)

We can derive it as follows:

$$\begin{aligned} \frac{d}{d\mathbf{X}} \mathrm{Tr}(\mathbf{X}^T \mathbf{A} \mathbf{X}) &= \frac{d}{d\mathbf{Y}} \mathrm{Tr}(\mathbf{Y}^T \mathbf{A} \mathbf{X}) + \frac{d}{d\mathbf{Y}} \mathrm{Tr}(\mathbf{X}^T \mathbf{A} \mathbf{Y}) \\ &= \mathbf{A} \mathbf{X} + (\mathbf{X}^T \mathbf{A})^T \\ &= \mathbf{A} \mathbf{X} + \mathbf{A}^T \mathbf{X} = (\mathbf{A} + \mathbf{A}^T) \mathbf{X} \end{aligned}$$

**Example.** Consider now this example.

$$f(\mathbf{X}) = \text{Tr}(\mathbf{X}^T \mathbf{A} \mathbf{X} \mathbf{B} \mathbf{X}^T \mathbf{C})$$

where  $\mathbf{X} \in \mathbb{R}^{n \times m}$ ,  $\mathbf{A} \in \mathbb{R}^{n \times n}$ ,  $\mathbf{B} \in \mathbb{R}^{m \times m}$ ,  $\mathbf{C} \in \mathbb{R}^{n \times m}$ .

$$\begin{aligned} \frac{d}{d\mathbf{X}}f(\mathbf{X}) &= \frac{d}{d\mathbf{Y}}\mathrm{Tr}(\mathbf{Y}^T\mathbf{A}\mathbf{X}\mathbf{B}\mathbf{X}^T\mathbf{C}) \\ &+ \frac{d}{d\mathbf{Y}}\mathrm{Tr}(\mathbf{X}^T\mathbf{A}\mathbf{Y}\mathbf{B}\mathbf{X}^T\mathbf{C}) \\ &+ \frac{d}{d\mathbf{Y}}\mathrm{Tr}(\mathbf{X}^T\mathbf{A}\mathbf{X}\mathbf{B}\mathbf{Y}^T\mathbf{C}) \end{aligned}$$

Calculating these:

$$\frac{d}{d\mathbf{Y}} \operatorname{Tr}(\mathbf{Y}^T \mathbf{A} \mathbf{X} \mathbf{B} \mathbf{X}^T \mathbf{C}) = \mathbf{A} \mathbf{X} \mathbf{B} \mathbf{X}^T \mathbf{C}$$

$$\begin{aligned} \frac{d}{d\mathbf{Y}} \mathrm{Tr}(\mathbf{X}^T \mathbf{A} \mathbf{Y} \mathbf{B} \mathbf{X}^T \mathbf{C}) &= \frac{d}{d\mathbf{Y}} \mathrm{Tr}(\mathbf{Y} \mathbf{B} \mathbf{X}^T \mathbf{C} \mathbf{X}^T \mathbf{A}) \\ &= (\mathbf{B} \mathbf{X}^T \mathbf{C} \mathbf{X}^T \mathbf{A})^T \\ &= \mathbf{A}^T \mathbf{X} \mathbf{C}^T \mathbf{X} \mathbf{B}^T \end{aligned}$$

$$\frac{d}{d\mathbf{Y}}\mathrm{Tr}(\mathbf{X}^T\mathbf{A}\mathbf{X}\mathbf{B}\mathbf{Y}^T\mathbf{C}) = \frac{d}{d\mathbf{Y}}\mathrm{Tr}(\mathbf{Y}^T\mathbf{C}\mathbf{X}^T\mathbf{A}\mathbf{X}\mathbf{B}) = \mathbf{C}\mathbf{X}^T\mathbf{A}\mathbf{X}\mathbf{B}$$

So the result is:

$$\frac{d}{d\mathbf{X}} \operatorname{Tr}(\mathbf{X}^T \mathbf{A} \mathbf{X} \mathbf{B} \mathbf{X}^T \mathbf{C}) = \mathbf{A} \mathbf{X} \mathbf{B} \mathbf{X}^T \mathbf{C} + \mathbf{A}^T \mathbf{X} \mathbf{C}^T \mathbf{X} \mathbf{B}^T + \mathbf{C} \mathbf{X}^T \mathbf{A} \mathbf{X} \mathbf{B}$$

# B variance and covariance properties

### B.1 scalar multiple

We know that if  $a \in \mathbb{R}$  is a constant scalar, and X is a scalar random variable, then

$$Var(aX) = a^2 \cdot Var(X) \tag{144}$$

### B.2 vector multiple

Now what if  $a \in \mathbb{R}^p$  is a (constant) vector, and  $X \in \mathbb{R}^p$  is a random vector, and we take the inner product  $a^T \cdot X$ ? What is the variance  $Var(a^T \cdot X)$ ?

$$\operatorname{Var}(a^{T} \cdot X) = \operatorname{Var}(a_{1} \cdot X_{1} + a_{2} \cdot X_{2} + \dots + a_{n} \cdot X_{n})$$

$$= \operatorname{E}\left(\sum_{i} a_{i} \cdot (X_{i} - \operatorname{E}X_{i})\right)^{2}$$

$$= \operatorname{E}\left(\sum_{i,j} a_{i} \cdot (X_{i} - \operatorname{E}X_{i}) \cdot a_{j} \cdot (X_{j} - \operatorname{E}X_{j})\right)$$

$$= \sum_{i,j} a_{i} \cdot a_{j} \cdot \operatorname{E}\left((X_{i} - \operatorname{E}X_{i}) \cdot (X_{j} - \operatorname{E}X_{j})\right)$$

$$= \sum_{i,j} a_{i} \cdot a_{j} \cdot \operatorname{Cov}(X_{i}, X_{j})$$

$$= a^{T} \cdot \operatorname{Cov}(X, X) \cdot a = a^{T} \cdot \Sigma \cdot a$$

$$(145)$$

Here  $\Sigma \equiv \operatorname{Cov}(X,X)$  is the covariance matrix,  $\operatorname{Cov}(X,X)_{i,j} = \operatorname{Cov}(X_i,X_j)$ . Let's state our finding again.  $a \in \mathbb{R}^p$  is a constant vector,  $X \in \mathbb{R}^p$  is a random vector, then:

$$Var(a^T \cdot X) = a^T \cdot Cov(X, X) \cdot a \tag{146}$$

Furthermore, we can write for the covariance matrix:

$$Cov(X, X) = E((X - EX) \cdot (X - EX)^T) = E(X \cdot X^T) - (EX)(EX^T) \quad (147)$$

## B.3 matrix multiple

Let  $A \in \mathbb{R}^{nxp}$  a constant matrix,  $X \in \mathbb{R}^p$  a random vector. The covariance matrix:

$$Cov(AX) = E(AXX^{T}A^{T}) - E(AX)E(X^{T}A^{T})$$

$$= A \cdot E(XX^{T}) \cdot A^{T} - A \cdot E(X)E(X^{T}) \cdot A^{T}$$

$$= A \cdot (E(XX^{T}) - E(X)E(X^{T})) \cdot A^{T}$$

$$= A \cdot Cov(X) \cdot A^{T}$$
(148)

# C distributions

#### C.1 Student's t-distribution

The t-distribution with  $\nu$  degrees of freedom can be expressed as

$$T = \frac{Z}{\sqrt{V/\nu}} \tag{149}$$

where

- $Z \sim N(0,1)$
- $V \sim \chi_{\nu}^2$
- ullet Z and V are independent

### C.2 F-distribution

A random variate of the F-distribution with parameters  $d_1$  and  $d_2$  arises as the ratio of two appropriately scaled chi-squared variates:

$$X = \frac{U_1/d_1}{U_2/d_2} \tag{150}$$

where

- $U_1$  and  $U_2$  have chi-squared distributions with  $d_1$  and  $d_2$  degrees of freedom respectively, and
- $U_1$  and  $U_2$  are independent.

# C.3 Gaussian posterior distribution (W = U+V)

- $U \sim N(\boldsymbol{\mu}_U \in \mathbb{R}^n, \boldsymbol{\Sigma}_U \in \mathbb{R}^{n \times n})$
- $V \sim N(\boldsymbol{\mu}_V \in \mathbb{R}^n, \boldsymbol{\Sigma}_V \in \mathbb{R}^{n \times n})$
- ullet U and V are independent

W = U + V is also normal, as well as W|U:

- $W = U + V \sim N(\boldsymbol{\mu}_U + \boldsymbol{\mu}_V, \boldsymbol{\Sigma}_U + \boldsymbol{\Sigma}_V)$
- $W|U \sim N(U + \mu_V, \Sigma_V)$

The posterior distribution U|W is Gaussian, this is what I want to prove here.

- $U|W \sim N(\boldsymbol{\mu}_{U|W}, \boldsymbol{\Sigma}_{U|W})$
- $\mu_{U|W} = \Sigma_U (\Sigma_U + \Sigma_V)^{-1} (W \mu_V) + \Sigma_V (\Sigma_U + \Sigma_V)^{-1} \mu_U$
- $\Sigma_{U|W} = \Sigma_U (\Sigma_U + \Sigma_V)^{-1} \Sigma_V = \Sigma_V (\Sigma_U + \Sigma_V)^{-1} \Sigma_U$

The proof is too long, I won't specify all the details here. First, assuming that both U and V have a pdf,

$$f_{U|W}(u|w) = \frac{f_{W|U}(w|u)f_{U}(u)}{f_{W}(w)}$$

where

$$f_{W|U}(w|u) = \frac{\exp\left(-\frac{1}{2}(w - u - \mu_V)^T \mathbf{\Sigma}_V^{-1}(w - u - \mu_V)\right)}{\sqrt{(2\pi)^n \det(\mathbf{\Sigma}_V)}}$$

$$f_U(u) = \frac{\exp\left(-\frac{1}{2}(u - \mu_U)^T \mathbf{\Sigma}_U^{-1}(u - \mu_U)\right)}{\sqrt{(2\pi)^n \det(\mathbf{\Sigma}_U)}}$$

$$f_W(w) = \frac{\exp\left(-\frac{1}{2}(w - \mu_U - \mu_V)^T (\mathbf{\Sigma}_U + \mathbf{\Sigma}_V)^{-1}(w - \mu_U - \mu_V)\right)}{\sqrt{(2\pi)^n \det(\mathbf{\Sigma}_U + \mathbf{\Sigma}_V)}}$$

Plugging these into the equation above, after a lot of computation, we get to

$$f_{U|W}(u|w) = \frac{\exp\left(-\frac{1}{2}(u - \mu_{U|W})^T \Sigma_{U|W}^{-1}(u - \mu_{U|W})\right)}{\sqrt{(2\pi)^n \det(\Sigma_{U|W})}}$$

# C.4 Gaussian posterior distribution (W = XU+V)

- $U \sim N(\boldsymbol{\mu}_U \in \mathbb{R}^m, \boldsymbol{\Sigma}_U \in \mathbb{R}^{m \times m})$
- $V \sim N(\boldsymbol{\mu}_V \in \mathbb{R}^n, \boldsymbol{\Sigma}_V \in \mathbb{R}^{n \times n})$
- ullet U and V are independent
- $X \in \mathbb{R}^{n \times m}$ , non-random

W = XU + V is also normal, as well as W|U:

- $W = XU + V \sim N(X\mu_U + \mu_V, X\Sigma_UX^T + \Sigma_V)$
- $W|U \sim N(XU + \mu_V, \Sigma_V)$

The posterior distribution U|W is Gaussian, but I don't prove it here.

- $U|W \sim N(\boldsymbol{\mu}_{U|W}, \boldsymbol{\Sigma}_{U|W})$
- $\mu_{U|W} = (I \Sigma_U X^T C) \mu_U + \Sigma_U X^T C (W \mu_V)$
- $\bullet \ \Sigma_{U|W} = \Sigma_U \Sigma_U X^T C X \Sigma_U$
- $C \equiv (\Sigma_V + X\Sigma_U X^T)^{-1}$

# D projections

### D.1 sum of projections

Let V be a vector space,  $W_1 \subset V$  a subspace,  $W_2 \subset V$  a subspace such that  $W_1 \perp W_2$ .

Let  $P_1$  be an orthogonal projection onto the subspace  $W_1$ ,  $P_2$  be an orthogonal projection onto the subspace  $W_2$ . I claim that  $P_1+P_2$  is an orthogonal projection onto  $W_1+W_2$ .

*Proof.* Denote  $W_{\perp}$  the orthogonal complement of  $W_1 + W_2$ .

$$(W_1 + W_2) + W_{\perp} = V \tag{151}$$

and

$$(W_1 + W_2) \perp W_{\perp}$$
 (152)

Any vector  $v \in V$  can be decomposed as

$$v = w_{\perp} + w_1 + w_2 \tag{153}$$

where  $w_{\perp} \in W_{\perp}$ ,  $w_1 \in W_1$ ,  $w_2 \in W_2$ . This decomposition is unique.

$$P_1 v = 0 + w_1 + 0 = w_1 \tag{154}$$

$$P_2 v = 0 + 0 + w_2 = w_2 (155)$$

From these

$$(P_1 + P_2)v = w_1 + w_2 (156)$$

So  $P_1 + P_2$  projects onto  $W_1 + W_2$ .

# D.2 difference of projections

Let V be a vector space,  $W_1 \subset V$  a subspace,  $W_2 \subset W_1$  a subspace,  $W_3 \subset W_1$  a subspace, such that  $W_2 \perp W_3$ , and  $W_2 + W_3 = W_1$ .

Let  $P_1$  be an orthogonal projection onto the subspace  $W_1$ ,  $P_2$  be an orthogonal projection onto the subspace  $W_2$ . I claim that  $P_1-P_2$  is an orthogonal projection onto  $W_3$ .

*Proof.* Denote  $W_{\perp}$  the orthogonal complement of  $W_1$ :  $W_1+W_{\perp}=V,$  and  $W_1\perp W_{\perp}$ 

Any vector  $v \in V$  can be decomposed as

$$v = w_{\perp} + w_2 + w_3 \tag{157}$$

where  $w_{\perp} \in W_{\perp}$ ,  $w_2 \in W_2$ ,  $w_3 \in W_3$ . This decomposition is unique.

$$P_1 v = 0 + w_2 + w_3 = w_2 + w_3 \tag{158}$$

$$P_2 v = 0 + w_2 + 0 = w_2 (159)$$

From these

$$(P_1 - P_2)v = (w_2 + w_3) - w_2 = w_3 \tag{160}$$

So  $P_1 - P_2$  projects onto  $W_3$ .

### D.3 The special vector Xb

(I couldn't find any better name for this subsection, sorry for this...) Let's begin with the  $N \times p$  matrix X, where we denote the column vectors by  $x_i$ . Assume that X has a full column-rank, so  $\operatorname{rank}(X) = p$ . Denote the subspace  $W = \operatorname{span}(x_1, x_2, \ldots, x_{p-1})$ , which is the subspace generated by all the columns of X, except the last one. Let b be the last column vector of  $(X^TX)^{-1}$ . I claim that Xb is a vector that is perpendicular to W. Obviously, Xb is in the column space of X. We have that

$$X^T X (X^T X)^{-1} = I (161)$$

Considering the *i*th row, *j*th column  $(q_j \text{ being the } j\text{th column vector of } (X^TX)^{-1},$  so  $q_p = b)$ 

$$x_i^T X q_j = \delta_{i,j} \tag{162}$$

Choosing j = p

$$x_i^T X b = \delta_{i,p} \tag{163}$$

This means that Xb is perpendicular to  $x_i$   $(i \neq p)$ , which is what I wanted to prove. Now let's project onto the subspace  $W_p = \operatorname{span}(Xb)$ :

$$P_p = \frac{Xb \cdot b^T X^T}{b^T X^T X b} = \frac{Xb \cdot b^T X^T}{v} \tag{164}$$

where  $v \equiv b_p$  is the last element of the vector b, that is,  $v \equiv [(X^T X)^{-1}]_{p,p}$ .

Now we can create the same projection according to Appendix D.2. Let  $P_X$  be the projection onto the column space of X, and  $P_W$  the projection onto W:

$$P_X = X(X^T X)^{-1} X^T (165)$$

$$P_W = X_0 (X_0^T X_0)^{-1} X_0^T (166)$$

where we get  $X_0$  from X by dropping the last column. Now we see that

$$X(X^TX)^{-1}X^T - X_0(X_0^TX_0)^{-1}X_0^T = \frac{Xb \cdot b^TX^T}{v}$$
(167)

# E Matrices

#### E.1 The matrix inversion lemma

A special form of the matrix inversion lemma:

$$(I_n + UV)^{-1} = I_n - U(I_m + VU)^{-1}V$$

where  $\boldsymbol{U} \in \mathbb{R}^{n \times m}$ ,  $\boldsymbol{V} \in \mathbb{R}^{m \times n}$ .

Proof.

$$(I_n + UV)^{-1} = I_n - (I_n + UV)^{-1}UV = I_n - U(I_m + VU)^{-1}V$$

At first we used the following:

$$(I + P)^{-1} = I - (I + P)^{-1}P$$

which comes from:

$$(I + P)^{-1}(I + P) = I$$
  
 $(I + P)^{-1} + (I + P)^{-1}P = I$   
 $(I + P)^{-1} = I - (I + P)^{-1}P$ 

Secondly, we used:

$$(I_n + UV)^{-1}U = U(I_m + VU)^{-1}$$

which comes from:

$$egin{aligned} oldsymbol{U}(oldsymbol{I}_m+oldsymbol{V}oldsymbol{U}) &= (oldsymbol{I}_n+oldsymbol{U}oldsymbol{V})^{-1}oldsymbol{U}(oldsymbol{I}_m+oldsymbol{V}oldsymbol{U}) &= oldsymbol{U}\\ (oldsymbol{I}_n+oldsymbol{U}oldsymbol{V})^{-1}oldsymbol{U} &= oldsymbol{U}(oldsymbol{I}_m+oldsymbol{V}oldsymbol{U})^{-1} \end{aligned}$$

which concludes the proof.