Отчёт по лабораторной работе

Дисциплина: Основы администрирования операционных систем

Ищенко Ирина Олеговна НПИбд-01-22

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Выполнение домашнего задания	19
4	Ответы на контрольные вопросы	21
5	Выводы	23

Список иллюстраций

2.1	Создание виртуальнои машины	6
2.2	Указание объема оперативной памяти	7
2.3	Создание нового виртуального диска	8
2.4	Указание типа жесткого диска	9
2.5	Указание формата хранения	10
2.6		11
2.7	Добавление привода оптического диска и выбор образа	11
2.8	Запуск	12
2.9	Место установки	13
2.10	Отключение	14
2.11	Имя узла	15
		16
2.13	Процесс установки	17
2.14	Дополнения	18
3.1	Версия ядра Linux	19
3.2	Частота процессора	19
3.3		19
3.4		20
3.5	1 1	20
3.6	Ттип файловой системы корневого раздела	20
3.7	Последовательность монтирования файловых систем.	20

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Выполнение лабораторной работы

В данной лабораторной работе мне требуется установить виртиуальную машину Oracle Virtual Box (уже установлен) операционной системы Linux и дистрибутив Rocky.

Создаем виртуальную машину и задаем ее расположение с указанием моего логина, типа операционной системы (Linux, Red Hat 64-bit) и (рис. 2.1).

Рис. 2.1: Создание виртуальной машины

Указываем объем оперативной памяти виртуальной машины, я указала 2048

Мб (рис. 2.2). Создаем новый виртуальный жесткий диск (рис. 2.3), указываем тип VDI (рис. 2.4), выбираем динамический виртуальный диск (рис. 2.5).

Рис. 2.2: Указание объема оперативной памяти

Рис. 2.3: Создание нового виртуального диска

Рис. 2.4: Указание типа жесткого диска

Рис. 2.5: Указание формата хранения

Указываем имя и размер виртуального диска – 40Гб (рис. 2.6). Проверяем расположение файла.

Рис. 2.6: Размер виртуального диска

Во вкладке носители добавляем новый привод оптических дисков и выбираем образ, для этого используем скачанный образ Rocky (рис. 2.7).

Рис. 2.7: Добавление привода оптического диска и выбор образа

Запускаем виртуальную машину (рис. 2.8). Переходим к настройкам установки операционной системы и выбираем английский язык для интерфейса. При выборе места установки оставляем параметры, которые были выставлены авто-

матически (рис. 2.9). Отключаем КDUMP (рис. 2.10).

Рис. 2.8: Запуск

Рис. 2.9: Место установки

Рис. 2.10: Отключение

Включаем сетевое соединение и в качестве имени узла указываем ioithenko.localdomain (рис. 2.11).

Рис. 2.11: Имя узла

Устанавливаем пароль для root и пользователя с правами администратора (рис. 2.12).

Рис. 2.12: Пароль для root

Начинаем процесс установки (рис. 2.13).

Рис. 2.13: Процесс установки

Дожидаемся и завершаем установку. После успешной установки выполняем перезагрузку системы. Последним пунктом нашей лабораторной работы становится подключение дополнений ОС (рис. 2.14).

Рис. 2.14: Дополнения

3 Выполнение домашнего задания

Получили следующую информацию: 1.Версия ядра Linux (Linux version) (рис. 3.1).

```
[ioithenko@ioithenko ~]$ dmesg | grep -i "Linux version"
[ 0.000000] Linux version 5.14.0-284.11.1.el9_2.x86_64 (mockbuild@iad1-prod-build@01.bld.equ.rockylinux.org) (gcc (GCC) 11.3.1 20221121 (Red Hat 11.3.1-4), GNU ld version 2.35.2-37.el9) #1 SMP PREEMPT_DYNAMIC Tue May 9 17:09:15 UTC 2023
```

Рис. 3.1: Версия ядра Linux

2. Частота процессора (Detected Mhz processor) (рис. 3.2).

```
[ioithenko@ioithenko ~]$ dmesg | grep -i "processor"

[ 0.000012] tsc: Detected 2096.060 MHz processor

[ 0.196213] smpboot: Total of 1 processors activated (4192.12 BogoMIPS)

[ 0.248433] ACPI: Added _OSI(Processor Device)

[ 0.248436] ACPI: Added _OSI(Processor Aggregator Device)
```

Рис. 3.2: Частота процессора

3. Модель процессора (CPU0) (рис. 3.3).

```
[ioithenko@ioithenko ~]$ dmesg | grep -i "CPU0"

[ 0.077530] CPU0: Hyper-Threading is disabled

[ 0.195326] smpboot: CPU0: AMD Ryzen 5 5500U with Radeon Graphics (family: 0x

17, model: 0x68, stepping: 0x1)
```

Рис. 3.3: Модель процессора

4.Объём доступной оперативной памяти (Memory available) (рис. 3.4).

```
[ioithenko@ioithenko ~]$ free -m
total used free shared buff/cache available
Mem: 1970 1243 203 14 723 726
Swap: 2099 231 1868
```

Рис. 3.4: Объём доступной оперативной памяти

5.Тип обнаруженного гипервизора (Hypervisor detected) (рис. 3.5).

```
[ioithenko@ioithenko ~]$ dmesg | grep -i "Hypervisor detected"
[ 0.000000] Hypervisor detected: KVM
```

Рис. 3.5: Тип обнаруженного гипервизора

6.Тип файловой системы корневого раздела (рис. 3.6).

```
thenko@ioithenko ~]$ dmesg | grep -i "/dev"
0.000000] Command line: BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.14.0-284.11.1.el9
 ioithenko@ioithenko
                     v/mapper/rl-root ro resume=/
 2.x86_64 root=/
                                                      lev/mapper/rl-swap rd.lvm.lv=rl/ro
ot rd.lvm.lv=rl/swap rhgb quiet
     0.014118] Kernel command line: BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.14.0-284.1
1.1.el9_2.x86_64 root=/dev/mapper/rl-root ro resume=/dev/mapper/rl-swap rd.lvm.lv=rl/root rd.lvm.lv=rl/swap rhgb quiet
     0.558506] input: Power Button as /devices/LNXSYSTM:00/LNXPWRBN:00/input/inp
     0.558670] input: Sleep Button as /devices/LNXSYSTM:00/LNXSLPBN:00/input/inp
     0.624695] input: AT Translated Set 2 keyboard as /devices/platform/i8042/se
rio0/input/input2
     0.831125] input: ImExPS/2 Generic Explorer Mouse as /devices/platform/i8042
/serio1/input/input4
     1.985651] systemd[1]: Listening on Journal Socket (/
     2.061366] systemd[1]: Starting Create Static Device Nodes in 2.086656] systemd[1]: Finished Create Static Device Nodes in
      2.960792] input: Video Bus as /
                                             vices/LNXSYSTM:00/LNXSYBUS:00/PNP0A03:00/L
NXVIDEO:00/input/input5
```

Рис. 3.6: Ттип файловой системы корневого раздела

7.Последовательность монтирования файловых систем (рис. 3.7).

```
[ioithenko@ioithenko ~]$ dmesg | grep -i "mount"
[ 0.076365] Mount-cache hash table entries: 4096 (order: 3, 32768 bytes, line ar)
[ 0.076371] Mountpoint-cache hash table entries: 4096 (order: 3, 32768 bytes, linear)
[ 5.139336] XFS (dm-0): Mounting V5 Filesystem
[ 6.372498] systemd[1]: Set up automount Arbitrary Executable File Formats File System Automount Point.
[ 6.389178] systemd[1]: Mounting Huge Pages File System...
[ 6.397129] systemd[1]: Mounting POSIX Message Queue File System...
[ 6.402397] systemd[1]: Mounting Kernel Debug File System...
[ 6.412924] systemd[1]: Starting Kernel Trace File System...
[ 8.951805] XFS (sda1): Starting Remount Root and Kernel File Systems...
[ 9.198561] XFS (sda1): Ending clean mount
```

Рис. 3.7: Последовательность монтирования файловых систем.

4 Ответы на контрольные вопросы

1. Какую информацию содержит учётная запись пользователя?

Учетная запись пользователя содержит информацию, которая необходима для индентификации пользователя в системе и его аавторизации: - Имя пользователя

- Идентефикационный номер пользователя идентификационный номер группы
- Пароль Полное имя Начальная оболочка Домашний каталог
 - 2.Укажите команды терминала и приведите примеры:
- -help для получения справки по команде; cd для перемещения по файловой системе; ls для просмотра содержимого каталога; du для определения объёма каталога; rm/touch для создания / удаления каталогов / файлов; chmod для задания определённых прав на файл / каталог; history для просмотра истории команд.
 - 3. Что такое файловая система? Приведите примеры с краткой характеристикой.

Файловая система — порядок, определяющий способ организации, хранения и именования данных на носителях информации в компьютерах, а также в другом электронном оборудовании: цифровых фотоаппаратах, мобильных телефонах и т. п. Файловая система определяет формат содержимого и способ физического хранения информации, которую принято группировать в виде файлов. NTFS - файловая система ОС Windows, которая поддерживает разграничение доступа для различных групп пользователей.

4.Как посмотреть, какие файловые системы подмонтированы в ОС?

Команды df и findmnt выводят информацию о том, какие файловые системы подмонтированы в OC.

5.Как удалить зависший процесс?

Команда killall позволяет удалить зависший процесс.

5 Выводы

В ходе выполнения лабораторной рабооты я приобрела практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.