Computation Tree Logic

Lecture #18 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

January 6, 2009

Overview Lecture #18

- ⇒ Summary of LTL model checking
 - Branching temporal logic
 - Syntax and semantics of CTL

Summary of LTL model checking (1)

- LTL is a logic for formalizing path-based properties
- Expansion law allows for rewriting until into local conditions and next
- ullet LTL-formula arphi can be transformed algorithmically into NBA \mathcal{A}_{arphi}
 - this may cause an exponential blow up
 - algorithm: first construct a GNBA for φ ; then transform it into an equivalent NBA
- LTL-formulae describe ω -regular LT-properties
 - but are less expressive as ω -regular languages

Summary of LTL model checking (2)

- $TS \models \varphi$ can be solved by a nested depth-first search in $TS \otimes A_{\neg \varphi}$
 - time complexity of the LTL model-checking algorithm is linear in TS and exponential in $|\varphi|$
- Fairness assumptions can be described by LTL-formulae the model-checking problem for LTL with fairness is reducible to the standard LTL model-checking problem
- The LTL-model checking problem is PSPACE-complete
- Satisfiability and validity of LTL amounts to NBA emptiness-check
- The atisfiability and validity problem for LTL are PSPACE-complete

Overview Lecture #18

- Summary of LTL model checking
- ⇒ Branching temporal logic
 - Syntax and semantics of CTL

Linear and branching temporal logic

Linear temporal logic:

"statements about (all) paths starting in a state"

- $s \models \Box(x \leqslant 20)$ iff for all possible paths starting in s always $x \leqslant 20$
- Branching temporal logic:

"statements about all or some paths starting in a state"

- $s \models \forall \Box (x \leqslant 20)$ iff for all paths starting in s always $x \leqslant 20$
- $s \models \exists \Box (x \leqslant 20)$ iff for **some** path starting in s always $x \leqslant 20$
- nesting of path quantifiers is allowed
- Checking $\exists \varphi$ in LTL can be done using $\forall \neg \varphi$
 - . . . but this does not work for nested formulas such as $\forall \Box \exists \Diamond a$

Linear versus branching temporal logic

- Semantics is based on a branching notion of time
 - an infinite tree of states obtained by unfolding transition system
 - one "time instant" may have several possible successor "time instants"
- Incomparable expressiveness
 - there are properties that can be expressed in LTL, but not in CTL
 - there are properties that can be expressed in most branching, but not in LTL
- Distinct model-checking algorithms, and their time complexities
- Distinct treatment of fairness assumptions
- Distinct equivalences (pre-orders) on transition systems
 - that correspond to logical equivalence in LTL and branching temporal logics

Transition systems and trees

© JPK

7

"behavior" in a state s	path-based: $\mathit{trace}(s)$	state-based: computation tree of s
temporal logic	LTL: path formulas φ $s \models \varphi$ iff $\forall \pi \in \textit{Paths}(s). \ \pi \models \varphi$	CTL: state formulas existential path quantification $\exists \varphi$ universal path quantification: $\forall \varphi$
complexity of the model checking problems	PSPACE–complete $\mathcal{O}\left(\mathit{TS} \cdot 2^{ arphi } ight)$	PTIME $\mathcal{O}\left(\mathit{TS} \cdot \Phi ight)$
implementation- relation	trace inclusion and the like (proof is PSPACE-complete)	simulation and bisimulation (proof in polynomial time)
fairness	no special techniques	special techniques needed

© JPK

Branching temporal logics

There are various branching temporal logics:

- Hennessy-Milner logic
- Computation Tree Logic (CTL)
- Extended Computation Tree Logic (CTL*)
 - combines LTL and CTL into a single framework
- Alternation-free modal μ -calculus
- Modal μ -calculus
- Propositional dynamic logic

Overview Lecture #18

- Summary of LTL model checking
- Branching temporal logic
- ⇒ Syntax and semantics of CTL

Computation tree logic

modal logic over infinite trees [Clarke & Emerson 1981]

Statements over states

- $-a \in AP$
- $\neg \Phi$ and $\Phi \wedge \Psi$
- $-\exists \varphi$
- **-** ∀ \varphi

atomic proposition negation and conjunction there \emph{exists} a path fulfilling φ all paths fulfill φ

Statements over paths

- $\bigcirc \Phi$
- $-\Phi \cup \Psi$

the next state fulfills Φ

 Φ holds until a Ψ -state is reached

- \Rightarrow note that \bigcirc and \bigcup *alternate* with \forall and \exists
 - \forall \bigcirc Φ and \forall ∃ \bigcirc Φ $\not\in$ CTL, but \forall \bigcirc \forall \bigcirc and \forall \bigcirc ∃ \bigcirc Φ ∈ CTL

Derived operators

potentially Φ : $\exists \Diamond \Phi = \exists (\mathsf{true} \, \mathsf{U} \, \Phi)$

inevitably Φ : $\forall \Diamond \Phi = \forall (\mathsf{true} \, \mathsf{U} \, \Phi)$

potentially always Φ : $\exists \Box \Phi$:= $\neg \forall \Diamond \neg \Phi$

invariantly Φ : $\forall \Box \Phi = \neg \exists \Diamond \neg \Phi$

weak until: $\exists (\Phi \mathsf{W} \Psi) = \neg \forall ((\Phi \land \neg \Psi) \mathsf{U} (\neg \Phi \land \neg \Psi))$

 $\forall (\Phi \mathsf{W} \Psi) = \neg \exists \big((\Phi \land \neg \Psi) \mathsf{U} (\neg \Phi \land \neg \Psi) \big)$

the boolean connectives are derived as usual

Visualization of semantics

Example properties in CTL

Semantics of CTL state-formulas

Defined by a relation ⊨ such that

 $s \models \Phi$ if and only if formula Φ holds in state s

$$\begin{array}{lll} s \models a & \text{iff} & a \in L(s) \\ s \models \neg \, \Phi & \text{iff} & \neg \, (s \models \Phi) \\ s \models \Phi \wedge \Psi & \text{iff} & (s \models \Phi) \wedge (s \models \Psi) \\ s \models \exists \varphi & \text{iff} & \pi \models \varphi \text{ for some path } \pi \text{ that starts in } s \\ s \models \forall \varphi & \text{iff} & \pi \models \varphi \text{ for all paths } \pi \text{ that start in } s \end{array}$$

© JPK

Semantics of CTL path-formulas

Define a relation \models such that

 $\pi \models \varphi$ if and only if path π satisfies φ

$$\begin{split} \pi &\models \bigcirc \Phi &\quad \text{iff } \pi[1] \models \Phi \\ \pi &\models \Phi \ \mathsf{U} \ \Psi &\quad \text{iff } (\exists \, j \geqslant 0. \, \pi[j] \models \Psi \ \land \ (\forall \, 0 \leqslant k < j. \, \pi[k] \models \Phi)) \end{split}$$

where $\pi[i]$ denotes the state s_i in the path π

Transition system semantics

• For CTL-state-formula Φ , the *satisfaction set* $Sat(\Phi)$ is defined by:

$$Sat(\Phi) = \{ s \in S \mid s \models \Phi \}$$

• TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

$$TS \models \Phi$$
 if and only if $\forall s_0 \in I. s_0 \models \Phi$

- this is equivalent to $I \subseteq Sat(\Phi)$
- Point of attention: $TS \not\models \Phi$ and $TS \not\models \neg \Phi$ is possible!
 - because of several initial states, e.g., $s_0 \models \exists \Box \Phi$ and $s_0' \not\models \exists \Box \Phi$

Example of CTL semantics

Infinitely often

 $s \models \forall \Box \forall \Diamond a$ if and only if $\forall \pi \in \textit{Paths}(s)$ an a-state is visited infinitely often

© JPK

Weak until

© JPK