Attorney Docket No.: 032739M087 U.S. Serial No.: 10/667,905

LISTING OF CLAIMS

Claim 1 (Currently Amended): An electrophotosensitive material comprising a conductive substrate and a photosensitive layer containing an electric charge generating material, an electric charge transferring material, an insoluble azo pigment and a binder resin provided on

the conductive substrate, wherein the electric charge generating material is phthalocyanine and the insoluble azo pigment has no OH group in the molecule, and an absorbance of the insoluble azo pigment in an absorption wavelength range of the electric charge generating material is 1/3 or less of an absorbance in the wavelength of the electric charge generating material, the phthalocyanine and the insoluble azo pigment being disposed together in the photosensitive

layer.

Claim 2 (Currently Amended): The An electrophotosensitive material according to claim 1, wherein the electrophotosensitive material is loaded on an image forming apparatus and the comprising a conductive substrate and a photosensitive layer containing an electric charge generating material, an electric charge transferring material, an insoluble azo pigment and a binder resin provided on the conductive substrate, wherein the electric charge generating material is phthalocyanine and the insoluble azo pigment has no OH group in the molecule, and an absorbance of the insoluble azo pigment in a wavelength range of an exposure light source of an image forming apparatus is 1/3 or less of an absorbance in the wavelength of the electric charge generating material.

Claim 3 (Original): The electrophotosensitive material according to claim 1 or 2, wherein the binder resin is at least one resin selected from the group consisting of polycarbonate, polyester, polyallylate, polystyrene and polymethacrylate ester.

Claim 4 (Previously Presented): The electrophotosensitive material according to claim 1 or 2, wherein the phthalocyanine is α type titanyl phthalocyanine having each main diffraction peak at a Bragg angle $(2\theta \pm 0.2^{\circ}) = 7.6^{\circ}$ and 28.6° in an X-ray diffraction spectrum, or Y type titanyl phthalocyanine having a main diffraction peak at a Bragg angle $(2\theta \pm 0.2^{\circ}) = 27.2$.

U.S. Serial No.: 10/667,905

Claim 5 (Previously Presented): The electrophotosensitive material according to claim 1 or 2, wherein the phthalocyanine is titanyl phthalocyanine and does not have an endothermic peak except for a peak associated with evaporation of adsorbed water in differential scanning calorimetry during heating from 50°C to 400°C.

Claim 6 (Currently Amended): The electrophotosensitive material according to claim 1 or 2, wherein the photosensitive layer is obtained by forming a film using a coating solution containing the electric charge generating material, the electric charge transferring material, the insoluble azo pigment and the binder resin to form a film, and solution containing the electric charge generating material, the electric charge transferring material, the insoluble azo pigment and the binder resin to form a film, and

a dispersion medium of the coating solution is at least one organic solvent selected from the group consisting of tetrahydrofuran, dioxane, dioxolane, cyclohexanone, toluene, xylene, dichloromethane, dichloroethane and chlorobenzene.

Claim 7 (Currently Amended): The electrophotosensitive material according to claim 1 or 2, wherein the insoluble azo pigment is a monoazo pigment represented by the general formula (1):

$$X^{2}$$
 X^{1}
 X^{2}
 X^{3}
 X^{2}
 X^{3}
 X^{4}
 X^{5}
 X^{5}
 X^{5}
 X^{2}
 X^{6}
 X^{7}
 X^{7

in the formula (1), X^1 to X^3 are the same or different and represent a nitro group, a chlorine atom, an alkyl group having 1 to 3 carbon atoms, a perfluoroalkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, an alkoxycarbonyl group having 1 to 2 carbon atoms, a group: -CONHR⁶, or a group: -SO₂NHPh, R^1 to R^5 are the same or different and represent a hydrogen atom, a chlorine atom, an alkyl group having 1 to 3 carbon atoms, a perfluoroalkyl

group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, an alkoxycarbonyl group having 1 to 2 carbon atoms, or a group: -NHCOR⁷, provided that R² and R³ may be combined with each other to form an ureylene group, R⁶ and R⁷ are the same or different and represent a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a phenyl group, and Ph represents a phenyl group;

a disazo pigment represented by the general formula (2):

$$R^{13}$$
 R^{14} R^{12} R^{15} $COCH_3$ R^{11} $HN-CO$ $N-X^{11}$ N $OC-NH$ R^{16} R^{20} R^{17} R^{18}

in the formula (2), X¹¹ represents the general formula (21) or the general formula (22):

$$X^{12}$$
 X^{14} (21) $X^{13}X^{15}$

$$X^{16}$$
 X^{17}
 X^{18}
 X^{19}
 X^{19}

[[(]]in the formula (21), X^{12} to X^{15} are the same or different and represent a hydrogen atom, a chlorine atom, an alkyl group having 1 to 3 carbon atoms, a perfluoroalkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms and, in the formula (22), X^{16} to X^{19} are the same or different and represent a chlorine atom, an alkyl group having 1 to 3 carbon atoms, a perfluoroalkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms), R^{11} to R^{20} are the same or different and represent a hydrogen atom, a chlorine

U.S. Serial No.: 10/667,905

atom, an alkyl group having 1 to 3 carbon atoms, a perfluoroalkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, an alkoxycarbonyl group having 1 to 2 carbon atoms, or a group: -NHCOR⁷, provided that R¹² and R¹³ and/or R¹⁷ and R¹⁸ may be combined with each other to form an ureylene group, and R⁷ represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a phenyl group;

a disazo pigment represented by the general formula (3):

in the formula (3), X²¹ represents the general formula (31) or the general formula (32):

$$X^{22}$$
 X^{24} (31) X^{23} X^{25}

$$X^{26}$$
 X^{27} (32)

(in the formula (31), X^{22} to X^{25} are the same or different and represent a hydrogen atom, a chlorine atom, an alkyl group having 1 to 3 carbon atoms, a perfluoroalkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms and, in the formula (32), X^{26} and X^{27} are the same or different and represent a chlorine atom, an alkyl group having 1 to 3 carbon atoms, a perfluoroalkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms), R^{21} to R^{30} are the same or different and represent a hydrogen atom, a chlorine atom, an alkyl group having 1 to 3 carbon atoms, a perfluoroalkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, an alkoxy group having 1 to 2

carbon atoms, or a group: -NHCOR⁷, provided that R²² and R²³ and/or R²⁷ and R²⁸ may be combined with each other to form an ureylene group, and R⁷ represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a phenyl group;

a disazo pigment represented by the general formula (4):

in the formula (4), X³¹ represents the general formula (41) or the general formula (42):

$$X^{32}$$
 X^{34} (41)

$$X^{36} \qquad X^{37} \qquad (42)$$

(in the formula (41), X^{32} to X^{35} are the same or different and represent a hydrogen atom, a chlorine atom, an alkyl group having 1 to 3 carbon atoms, a perfluoroalkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms and, in the formula (42), X^{36} and X^{37} are the same or different and represent a chlorine atom, an alkyl group having 1 to 3 carbon atoms, a perfluoroalkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms), R^{31} to R^{40} are the same or different and represent a hydrogen atom, a chlorine atom, an alkyl group having 1 to 3 carbon atoms, a perfluoroalkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, an alkoxy group having 1 to 2 carbon atoms, or a group: -NHCOR⁷, provided that R^{32} and R^{33} and/or R^{37} and R^{38} may be

U.S. Serial No.: 10/667,905

combined with each other to form an ureylene group, and R⁷ represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or a phenyl group;

a disazo condensed pigment represented by the general formula (5):

$$R^{44}$$
 R^{45}
 R^{45}
 R^{40}
 R^{40}
 R^{41}
 R^{41}
 R^{41}
 R^{41}
 R^{42}
 R^{41}
 R^{41}
 R^{42}
 R^{41}
 R^{42}
 R^{41}
 R^{42}
 R^{41}
 R^{42}
 R^{41}
 R^{42}
 R^{42}
 R^{43}
 R^{42}
 R^{43}
 R^{45}
 R^{45}

in the formula (5), X⁴¹ represents the general formula (51):

$$CH_3OC$$
 X^{42}
 X^{43}
 X^{43}
 X^{43}
 X^{43}
 X^{43}
 X^{43}
 X^{43}
 X^{43}

(in the formula (51), X⁴² and X⁴³ are the same or different and represent a hydrogen atom, a chlorine atom, an alkyl group having 1 to 3 carbon atoms, a perfluoroalkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms), R⁴¹ to R⁵⁰ are the same or different and represent a hydrogen atom, a chlorine atom, an alkyl group having 1 to 3 carbon atoms, a perfluoroalkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, an alkoxycarbonyl group having 1 to 2 carbon atoms, or a group: -NHCOR⁷, provided that R⁴² and R⁴³ and/or R⁴⁷ and R⁴⁸ may be combined with each other to form an ureylene group, and R⁷ is as defined above; or

a disazo condensed pigment represented by the general formula (6):

Attorney Docket No.: 032739M087

U.S. Serial No.: 10/667,905

in the formula (6), X⁵¹ represents the formula (61):

$$X^{54}$$
 X^{54}
 X^{52}
 X^{55}
 X^{55}
 X^{55}
 X^{55}
 X^{55}
 X^{55}
 X^{55}
 X^{55}
 X^{55}

(in the formula (61), X^{52} to X^{55} are the same or different and represent a hydrogen atom, a chlorine atom, an alkyl group having 1 to 3 carbon atoms, a perfluoroalkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms), R^{51} to R^{60} are the same or different and represent a hydrogen atom, a chlorine atom, an alkyl group having 1 to 3 carbon atoms, a perfluoroalkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, an alkoxycarbonyl group having 1 to 2 carbon atoms, or a group: -NHCOR⁷, provided that R^{52} and R^{53} and/or R^{57} and R^{58} may be combined with each other to form an ureylene group, and R^{7} is as defined above.

Claim 8 (Currently Amended): An electrophotosensitive material comprising a conductive substrate and a photosensitive layer containing an electric charge generating material, an electric charge transferring material, an insoluble azo pigment and a binder resin provided on the conductive substrate, wherein the electric charge generating material is phthalocyanine and the insoluble azo pigment has no OH group in the molecule, and an absorbance of the insoluble azo pigment in an absorption wavelength range of the electric charge generating material is 1/3 or less of an absorbance in the wavelength of the electric charge generating material, wherein the The electrophotosensitive material according to claim 1 or 2, which is a single-layer type electrophotosensitive material comprising a conductive substrate and a single photosensitive layer containing an electric charge generating material, an electric charge transferring material, an insoluble azo pigment and a binder resin provided on the conductive substrate.

Attorney Docket No.: 032739M087

U.S. Serial No.: 10/667,905

Claim 9 (New): The electrophotosensitive material according to claim 1, wherein the electrophotosensitive material is loaded on an image forming apparatus and the absorbance of the insoluble azo pigment in a wavelength of an exposure light source of an image forming apparatus is 1/3 or less of an absorbance in the wavelength of the electric charge generating material.