Proof for Theorem A:

Let $a \sim \pi_G$ be an action sampled from the generator, p_G be the probability of the generated action having reward 1. Let $R_{\rm gt}(a) \in \{0,1\}$ be the ground-truth reward (i.e., whether the action is good or bad), and $V(a) \in \{0,1\}$ be the verifier output.

We define:

$$p_G = P(R_{gt}(a) = 1 \mid a \sim \pi_G)$$

$$p_V = P(V(a) = R_{gt}(a))$$

that is, p_G is the probability the generator generates a good action, and p_V is the probability the verifier predicts the correct reward given an action, **independent of the ground truth action reward**.

Theorem A. Given $p_G \in (0,1)$, N>1, then $\mathbb{E}\left[R_{\mathrm{gt}}(a_{\mathrm{w/ver}})\right]>\mathbb{E}\left[R_{\mathrm{gt}}(a_{\mathrm{naive}})\right]$ if and only if $p_V>0.5$

Proof.

The expected reward of naive sampling from generator: $\mathbb{E}\left[R_{\mathrm{gt}}(a_{\mathrm{naive}})\right] = p_G \times 1 + (1-p_G) \times 0 = p_G.$

The expected reward of the selected action using the verifier is:

$$\begin{split} \mathbb{E}[R_{\text{gt}}(a_{\text{w/ver}})] &= P(\exists i, \ V(a_i) = 1) \cdot \mathbb{E}[R_{\text{gt}}(a) \mid V(a) = 1] \\ &+ P(\forall i, \ V(a_i) = 0) \cdot \mathbb{E}[R_{\text{gt}}(a) \mid V(a) = 0] \\ &= \left(1 - (1 - Q)^N\right) \cdot \frac{P(R = 1, V = 1)}{P(V = 1)} \\ &+ (1 - Q)^N \cdot \frac{P(R = 1, V = 0)}{P(V = 0)} \end{split}$$

where
$$Q = P(V(a) = 1) = (1 - p_G)(1 - p_V) + p_G p_V$$
. and

$$P(R = 1, V = 1) = p_G \cdot p_V, \quad P(R = 1, V = 0) = p_G \cdot (1 - p_V).$$

Substituting into the expression, we get:

$$\mathbb{E}[R_{\text{gt}}(a_{\text{w/ver}})] = (1 - (1 - Q)^N) \cdot \frac{p_G p_V}{Q} + (1 - Q)^N \cdot \frac{p_G (1 - p_V)}{1 - Q}.$$

We will first prove $\mathbb{E}[R_{\rm gt}(a_{\rm w/ver})] > \mathbb{E}[R_{\rm gt}(a_{\rm naive})] \Rightarrow p_V > 0.5$, and show that each step is reversible to prove the other direction.

$$\begin{split} \mathbb{E}[R_{\mathrm{gt}}(a_{\mathrm{w/ver}})] > \mathbb{E}[R_{\mathrm{gt}}(a_{\mathrm{naive}})] = p_G. \\ &\overset{divide}{\rightleftharpoons} \underset{p_G}{^{by}} \left(1 - (1-Q)^N\right) \cdot \frac{p_V}{Q} + (1-Q)^N \cdot \frac{1-p_V}{1-Q} > 1. \end{split}$$

Rewriting and simplifying:

$$\left(1-(1-Q)^N\right) \cdot \frac{p_V}{Q} + (1-Q)^N \cdot \frac{1-p_V}{1-Q} > 1$$

$$\Leftrightarrow \left(1-(1-Q)^N\right) \cdot \frac{p_V}{Q} + (1-p_V)(1-Q)^{N-1} > 1$$

$$\Leftrightarrow \left(\frac{p_V}{Q} - \frac{p_V}{Q}(1-Q)^N\right) + (1-p_V)(1-Q)^{N-1} > 1$$

$$\Leftrightarrow \frac{p_V}{Q} - \frac{p_V}{Q}(1-Q)^N + (1-p_V)(1-Q)^{N-1} > 1$$

$$\Leftrightarrow \left(\frac{p_V}{Q} - 1\right) + \left[-\frac{p_V}{Q}(1-Q)^N + (1-p_V)(1-Q)^{N-1}\right] > 0$$

$$\Leftrightarrow \left(\frac{p_V}{Q} - 1\right) + (1-Q)^{N-1} \left[-\frac{p_V}{Q}(1-Q) + (1-p_V)\right] > 0$$

$$\Leftrightarrow \left(\frac{p_V}{Q} - 1\right) + (1-Q)^{N-1} \left[1-p_V - \frac{p_V}{Q}(1-Q)\right] > 0$$

$$\Leftrightarrow \left(\frac{p_V}{Q} - 1\right) + (1-Q)^{N-1} \left(1-\frac{p_V}{Q}\right) > 0$$

$$\Leftrightarrow \left(\frac{p_V}{Q} - 1\right) \left[1 - (1-Q)^{N-1}\right] > 0.$$

Since $p_G \in (0,1)$, we have $Q \in (0,1)$, then $1-(1-Q)^{N-1} > 0$, so the inequality holds if and only if:

$$\frac{p_V}{Q} > 1 \quad \Longleftrightarrow \quad p_V > Q.$$

Substituting the expression for Q:

$$p_V > p_G p_V + (1 - p_G)(1 - p_V),$$

Rearranging:

$$p_V - p_G p_V > (1 - p_G)(1 - p_V),$$

 $\iff p_V (1 - p_G) > (1 - p_G)(1 - p_V).$

Since $p_G \in (0,1)$, we can divide both sides by $1-p_G$, yielding:

$$p_V > 1 - p_V \iff p_V > 0.5.$$

Since all of the above steps are reversible, we prove that the verifier improves the expected reward over naive sampling if and only if $p_V>0.5$.