Université Abdelmalek Essaâdi ENSAH Année Universitaire 2020/2021 AP-II, 2ème année, (S4)

TD.Probabilités et Statistiques Série 1

Exercice 1

Une société de 498 employés procède à l'élection de 7 délégués du personnel. Chaque employé vote pour 7 candidats. On suppose qu'il n'y a ni vote nul, ni abstention. On considère 3 candidats A, B et C. 265 employés ont voté pour A, 160 pour A et B, 144 pour A et C, 108 pour A, B et C, 71 pour B et C mais pas pour A, 57 pour C mais pas pour A ni pour B, 114 pour B mais pas pour A.

- 1) Combien d'employés ont voté pour B?
- 2) Combien d'employés ont voté pour C?
- 3) Combien d'employés n'ont voté ni pour A, ni pour B, ni pour C?

Corrigé de l'exercice 1

On a les effectifs suivant les chiffres donnés par l'énoncé :

```
\begin{array}{l} card(A) = 265 \\ card(A \cap B) = 160 \\ card(A \cap C) = 144 \\ card(\overline{A} \cap B \cap C) = 108 \\ card(\overline{A} \cap B \cap C) = 71 \\ card(\overline{A} \cap \overline{B} \cap C) = 57 \\ card(\overline{A} \cap B) = 114 \end{array}
```

- 1) Nous en déduisons que :
 - $card(B)=card(B\cap A)+card(B\cap \overline{A})=160+114=274$ employés ont voté pour B.
- 2) Nous en déduisons que :

```
card(C) = card(C \cap \overline{A}) + card(C \cap \overline{A})= card(C \cap A) + card(C \cap \overline{A} \cap B) + card(C \cap \overline{A} \cap \overline{B})= 144 + 71 + 57 = 272
```

employés ont voté pour C.

3) $card(A \cup B \cup C) = card(A) + card(B) + card(C) - card(A \cap B) - card(A \cap C) - card(B \cap C) + card(A \cap B \cap C)$ or $card(B \cap C) = card(B \cap C \cap A) + card(B \cap C \cap \overline{A})$

 $\operatorname{donc}\operatorname{card}(A \cup B \cup C) = \operatorname{card}(A) + \operatorname{card}(B) + \operatorname{card}(C) - \operatorname{card}(A \cap B) - \operatorname{card}(A \cap C) - \operatorname{card}(B \cap C \cap \overline{A})).$ $\operatorname{card}(A \cup B \cup C) = 265 + 274 + 272 - 160 - 144 - 71) = 436.$

Nous en déduisons que :

436 employés parmi les 498 employés ont voté pour A, B ou C, donc :

donc $card(\overline{A} \cap \overline{B} \cap \overline{C}) = 498 - 436 = 62$ employés n'ont voté ni pour A, ni pour B, ni pour C.

Exercice 2

Le code confidentiel d'une carte bancaire est un nombre constitué de 4 chiffres tous non nuls.

- 1) Quel est le nombre de codes possibles?
- 2) Combien existe-t-il de codes:
 - a) de quatre chiffres différents?
 - b) comportant une seule fois le chiffre 1?
 - c) comportant deux fois le chiffre 1, les deux autres chiffres étant différents entre eux?
 - d) deux fois le chiffre 1 et deux fois le chiffre 2?

Corrigé de l'exercice 2

1) Un code est une 4 - liste (avec répétition éventuelle) dans [1, 9]. Il y a donc $9^4 = 6561$ codes possibles.

- 2) (a) Un code de quatre chiffres différents est une 4 liste sans répétition dans [1, 9]. Il y a donc $A_4^9 = 9 \times 8 \times 7 \times 6 = 3024$ codes de quatre chiffres différents.
 - (b) Un code comportant une seule fois le chiffre 1 est déterminé :
 - i) en choisissant la position du chiffre 1 : 4 possibilités,
 - ii) en choisissant pour chacun des trois autres chiffres un des 8 chiffres différents de 1 : 8^3 possibilités Il y a donc $4 \times 8^3 = 2048$ codes comportant une seule fois le chiffre 1.
 - (c) Un code comportant deux fois le chiffre 1, les deux autres chiffres étant différents entre eux est déterminé :
 - i) en choisissant la position des deux chiffres 1 parmi les 4 positions possibles : $C_4^2 = 6$ possibilités,
 - ii) en choisissant pour le premier des chiffres restant un des 8 chiffres différents de 1 : 8 possibilités
 - iii) en choisissant pour le dernier des chiffres restant un des 7 chiffres différents de 1 et du chiffre précédemment choisi : 7 possibilités
 - Il y a donc $6 \times 8 \times 7 = 336$ codes comportant deux fois le chiffre 1, les deux autres chiffres étant différents entre eux.
 - (d) Un code comportant deux fois le chiffre 1 et deux fois le chiffre 2 est déterminé par le choix de la position des chiffres 1 (les chiffres 2 étant placés aux positions restant libres).
 - Il y a donc $C_4^2 = 6$ codes comportant deux fois le chiffre 1 et deux fois le chiffre 2.

Exercice 3

- 1) À quelle condition sur $a \in \mathbf{R}$ la formule : $\mathbf{P}(\{\frac{1}{n}\}) = \frac{a}{3^n}$ définit-elle une probabilité sur N^* ?
- 2) À quelle condition sur $a \in \mathbf{R}$ la formule : $\mathbf{P}(\{\frac{1}{n}\}) = \frac{2^n a}{n!}$ définit-elle une probabilité sur N^* ?

Corrigé de l'exercice 3_

- 1) Il faut vérifier que la probabilité totale est égale à 1. c'est à dire Il faut que $\sum_{n=1}^{+\infty} \mathbf{P}(\{\frac{1}{n}\}) = 1$ donc
 - $\sum_{n=1}^{+\infty}\frac{a}{3^n}=1$. En faisant la somme de la série géométrique de premier terme a, de raison $\frac{1}{3}$, nous obtenons :

$$\sum_{n=0}^{+\infty} \frac{a}{3^n} = a\left(\frac{1}{1-\frac{1}{3}}\right) = \frac{3a}{2}$$

$$1 = \sum_{n=1}^{+\infty} \frac{a}{3^n} = \frac{3a}{2} - a$$

donc la probabilité totale entraine : $\frac{a}{2} = 1$, et nous en déduisons : a = 2.

2) La probabilité totale entraine que $\sum_{n=1}^{+\infty} \frac{2^n a}{n!} = 1$. Nous reconnaissons la somme d'une série exponentielle, donc :

$$\sum_{n=0}^{+\infty} \frac{2^n a}{n!} = a \exp(2)$$

donc : $a \exp(2) - a = 1$, et nous en déduisons : $a = \frac{1}{\exp(2) - 1}$.

Exercice 4

Soit (Ω, \mathcal{T}) un espace probabilisable.

- 1) a) Si A et B sont des événements négligeables, montrer que $A \cup B$ est encore négligeable.
 - b) Si $(A_n)_{n\in\mathbb{N}}$ est une suite d'événements négligeables, montrer que $\cup_{n\in\mathbb{N}}A_n$ est encore négligeable.
- 2) a) Si A et B sont des événements presque-sûrs, montrer que $A \cap B$ est presque-sûr.
 - b) Si $(B_n)_{n\in\mathbb{N}}$ est une suite d'événements presque-sûrs, montrer que $\cap_{n\in\mathbb{N}}B_n$ est presque-sûr.

Corrigé de l'exercice 4

1) a)D'après la formule du crible :

$$\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B) - \mathbf{P}(A \cap B)$$

$$\leq \mathbf{P}(A) + \mathbf{P}(B) = 0 + 0 = 0$$

b) Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'événements négligeables. Notons $B_n = \bigcup_{k=0}^n A_k$. Nous pouvons démontrer par récurrence sur $n\in\mathbb{N}$ que B_n est de probabilité nulle : $B_0=A_0$ est en effet presque impossible, et $B_{n+1}=B_n\cup A_{n+1}$ est de probabilité nulle car réunion de deux événements de probabilité nulle.

Puisque
$$B_n = \bigcup_{k=0}^n A_k$$
 est une suite croissante d'événements, d'après le théorème de limite monotone :

$$\mathbf{P}\Big(\bigcup_{k=0}^{+\infty} A_k\Big) = \lim_{n \to +\infty} \mathbf{P}\Big(\bigcup_{k=0}^{n} A_k\Big)$$

2) a) Si A et B sont des événements presque-sûrs, les complémentaires sont de probabilité nulle :

$$\mathbf{P}(\overline{A}) = \mathbf{P}(\overline{B}) = 0$$

donc, d'après la question 1 :

$$\mathbf{P}(\overline{A} \cup \overline{B}) = 0$$

En passant au complémentaire :

$$\mathbf{P}(A \cap B) = 1 - \mathbf{P}(\overline{A} \cup \overline{B}) = 1$$

Donc $A \cap B$ est presque-sûr.

b) Si $(B_n)_{n\in\mathbb{N}}$ est une suite d'événements presque-sûrs, les complémentaires sont de probabilité nulle :

$$\forall k \in \mathbb{N}, \quad \mathbf{P}(\overline{B_k}) = 0$$

donc, d'après la question 1 :

$$\mathbf{P}\Big(\bigcup_{k=0}^{+\infty} \overline{B_k}\Big) = 0$$

En passant au complémentaire :

$$\mathbf{P}\Big(\bigcap_{k=0}^{+\infty} B_k\Big) = 1 - \mathbf{P}\Big(\bigcup_{k=0}^{+\infty} \overline{B_k}\Big) = 1$$

donc
$$\bigcap_{k=0}^{+\infty} B_k$$
 est presque-sûr.

Exercice 5.

Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé, A et B deux événements tels que $\mathbb{P}(A) = 0.4$ et $\mathbb{P}(B) = 0.5$. Calculer $\mathbb{P}(\overline{A} \cap B)$, $\mathbb{P}(A \cap B/A)$ et $\mathbb{P}(\overline{A}/B)$ dans les cas suivants :

- 1. A et B sont indépendants
- 2. A et B sont incompatibles
- 3. $\mathbb{P}(A \cup B) = 0.8$

Corrigé de l'exercice 5

1. A et B sont indépendants

A et B sont indépendants, donc \overline{A} et B sont indépendants.

Ainsi
$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$
 et $\mathbb{P}(\overline{A} \cap B) = \mathbb{P}(\overline{A})\mathbb{P}(B)$

a) Calcul de $\mathbb{P}(\overline{A} \cup B)$

$$\begin{split} \mathbb{P}(\overline{A} \cup B) &= \mathbb{P}(\overline{A}) + \mathbb{P}(B) - \mathbb{P}(\overline{A} \cap B) \\ &= 1 - \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(\overline{A})\mathbb{P}(B) \\ &= 1 - 0.4 + 0.5 - (1 - 0.4) \times 0.5 \\ &= 0.8 \end{split}$$

Donc $\mathbb{P}(\overline{A} \cup B) = 0.8$

b) Calcul de $\mathbb{P}(A \cap B/A)$

$$\begin{split} \mathbb{P}(A \cap B/A) &= \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)} = \frac{\mathbb{P}(A)\mathbb{P}(B)}{\mathbb{P}(A)} = \mathbb{P}(B) = 0.5 \\ \text{c)} \ \frac{\text{Calcul de } \mathbb{P}(\overline{A}/B)}{\mathbb{P}(\overline{A}/B) = \frac{\mathbb{P}(\overline{A} \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(\overline{A})\mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(\overline{A}) = 0.6 \\ \text{Donc } \mathbb{P}(\overline{A}/B) &= 0.6 \\ A \text{ et } B \text{ sont incompatibles} \end{split}$$

2. A et B sont incompatibles

A et B sont incompatibles, donc $B \subset \overline{A}$ et $\overline{A} \cap B = B$.

a) Calcul de $\mathbb{P}(\overline{A} \cup B)$.

$$\begin{split} \mathbb{P}(\overline{A} \cup B) &= \mathbb{P}(\overline{A}) + \mathbb{P}(B) - \mathbb{P}(\overline{A} \cap B) \\ &= 1 - \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(B) \\ &= 1 - 0.4 \\ &= 0.6 \end{split}$$

Donc $\mathbb{P}(\overline{A} \cup B) = 0.6$

b) Calcul de $\mathbb{P}(A \cap B/A)$

$$\mathbb{P}(A \cap B/A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)} = \frac{\mathbb{P}(\emptyset)}{\mathbb{P}(A)} = \frac{0}{\mathbb{P}(A)} = 0$$

c) Calcul de $\mathbb{P}(\overline{A}/B)$

$$\mathbb{P}(\overline{A}/B) = \frac{\mathbb{P}(\overline{A} \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B)}{\mathbb{P}(B)} = 1 \text{ car } \overline{A} \cap B = B$$

Donc $\mathbb{P}(\overline{A}/B) = 1$

3. $\mathbb{P}(A \cup B) = 0.8$

D'abord on calcule $\mathbb{P}(A \cap B)$ et $\mathbb{P}(\overline{A} \cap B)$

-)
$$\mathbb{P}(A \cap B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cup B) = 0.4 + 0.5 - 0.8 = 0.1$$

Donc $\mathbb{P}(A \cap B) = 0.1$.

-)
$$\mathbb{P}(\overline{A} \cap B) = \mathbb{P}(B) - \mathbb{P}(A \cap B)$$
 car $B = (B \cap A) \cup (B \cap \overline{A})$ et $(B \cap A) \cap (B \cap \overline{A}) = \emptyset$ = 0.5 - 0.1

Donc $\mathbb{P}(\overline{A} \cap B) = 0.4$

a) Calcul de $\mathbb{P}(\overline{A} \cup B)$.

$$\begin{split} \mathbb{P}(\overline{A} \cup B) &= \mathbb{P}(\overline{A}) + \mathbb{P}(B) - \mathbb{P}(\overline{A} \cap B) \\ &= 1 - \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(\overline{A} \cap B) \\ &= 1 - 0.4 + 0.5 - 0.4 \\ &= 1.5 - 0.8 \end{split}$$

Donc $\mathbb{P}(\overline{A} \cup B) = 0.7$

b) Calcul de $\mathbb{P}(A\cap B/A)$

$$\mathbb{P}(A \cap B/A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)} = \frac{0.1}{0.4} = 0.25.$$

Donc $\mathbb{P}(A \cap B/A) = 0.25$.

c) Calcul de $\mathbb{P}(\overline{A}/B)$

$$\overline{\mathbb{P}(\overline{A}/B)} = \frac{\overline{\mathbb{P}(\overline{A} \cap B)}}{\overline{\mathbb{P}(B)}} = \frac{0.4}{0.5} = 0.8$$

Donc $\mathbb{P}(\overline{A}/B) = 0.8$

On lance une pièce équilibrée jusqu'à obtenir $\ll pile \gg$. n étant le nombre de lancers effectués, on remplit une urne avec 3^n boules dont une de couleur blanche et les autres de couleurs noire, et on procède à un tirage d'une boule dans cette urne

- 1) Quelle est la probabilité d'obtenir une boule blanche?
- 2) On obtient une boule blanche. Quelle est la probabilité que la pièce ait donnée $\ll Pile \gg$ du premier

Corrigé de l'exercice 6.

1) Soient les événements suivants :

 $P_n = \{\text{obtenir le premier pile au n-ième lancer}\},$

 $P_{\infty} = \{ \text{ ne jamais obtenir pile } \},$

 $B_n = \{ \text{lancer n fois la pièce avant d'obtenir} \ll pile \gg, \text{puis tirer une boule blanche} \},$

$$\mathbb{P}(P_n) = \frac{1}{2^n}$$

On a $\mathbb{P}(P_n) = \frac{1}{2^n}$ Sachant P_n , on tire une boule dans une urne contenant 3^n boules dont 1 blanche : $\mathbb{P}(B_n/P_n) = \frac{1}{3^n}$ D'après la formula de la

$$\mathbb{P}(B_n/P_n) = \frac{1}{3^n}$$

D'après la formule des probabilités complète on a :

$$\mathbb{P}(B_n) = \mathbb{P}(B_n/P_n)\mathbb{P}(P_n) + \mathbb{P}(B_n/\overline{P_n})\mathbb{P}(\overline{P_n})$$

$$= \frac{1}{3^n} \times \frac{1}{2^n} + 0 \times (1 - \frac{1}{2^n}) \quad \operatorname{car} \mathbb{P}(B_n/\overline{P_n}) = 0.$$

$$= \frac{1}{6^n}$$

Soit B l'événement : $B = \{ \text{ tirer une boule blanche } \}. (P_n)_{n \in N^* \cup \{+\infty\}} \text{ est un système complet d'événement}$ ments, donc d'après la formule des probabilités totales :

$$\mathbb{P}(B) = \sum_{n=1}^{+\infty} \mathbb{P}(B \cap P_n) = \sum_{n=1}^{+\infty} \frac{1}{6^n}$$

Nous devons calculer la somme de la série géométrique de premier terme $\frac{1}{6}$ de raison $\frac{1}{6}$:

donc

$$\mathbb{P}(B) = \frac{1}{6} \frac{1}{1 - \frac{1}{6}} = \frac{1}{5}$$

2) D'après la formule de Bayes, la probabilité d'avoir obtenu $\ll pile \gg$ au premier coup sachant que l'on obtient une boule blanche est :

$$\mathbb{P}(P_1/B) = \frac{\mathbb{P}(B \cap P_1)}{\mathbb{P}(B)} = \frac{\frac{1}{6}}{\frac{1}{5}} = \frac{5}{6}.$$