## CSM51A Discussion #6

Hyunjin Kim

### Outline

- Review HW5
- Chapter 8
  - Timing Parameters of Flipflops
- Chapter 7
  - Mealy vs. Moore machine
  - State transition table
  - State Diagram
  - State Minimization



Figure 8.12: TIME BEHAVIOR OF CELL.

Violation of set-up time or hold time causes a undefined output.

## Example



- (1) the **Setup Time** [t2 t1]: the minimum amount of time Input must be he ld constant BEFORE the clock tick.
- (2) the **Propagation delay** of the Flip Flop [t3 t2]: this is the time that it takes for the new input to be to propagate and influence the output.
- (3) the **Hold time** [t4 t2]: the minimum amount of time the Input is held constant AFTER the clock tick: Most current FF has **zero** (negative) hold time

### Mealy machine

$$z(t) = H(s(t), x(t))$$

$$s(t+1) = G(s(t), x(t))$$

#### Moore machine

$$z(t) = H(s(t))$$

$$s(t+1) = G(s(t), x(t))$$

### EQUIVALENT IN CAPABILITIES

# Mealy vs Moore



- Mealy
  - Less states
    - #output on arcs (n2) than states (n)
  - Input change can cause output change in a clock period -> X
- Moore
  - Usually more states than Mealy
  - Safer to use
    - Outputs change at clock edge

## Mealy vs Moore

- Example
  - "11" pattern detector





Ex7.1 A sequential system has one input with values a, b, and c and one output with values p and q. The output is q whenever the input sequence has an even number of a's and an odd number of b's. Obtain a state description of the system.

Input:

$$x(t) \in \{a, b, c\}$$

Output:

$$z(t) \in \{p,q\}$$

Function:

$$z(t) = \begin{cases} q & \text{if number of a's in } x(0, t - 1) \text{ is even and number of b's is odd.} \\ p & \text{otherwise} \end{cases}$$

Initial state:

$$s_a(0) = 0$$
  
$$s_b(0) = 0$$

Transition function:

$$s_a(t+1) = \begin{cases} s_a(t)' & \text{if } x(t) = a \\ s_a(t) & \text{otherwise} \end{cases}$$

$$s_b(t+1) = \begin{cases} s_b(t)' & \text{if } x(t) = b \\ s_b(t) & \text{otherwise} \end{cases}$$

|       |       | Input |       |              |
|-------|-------|-------|-------|--------------|
| PS    | x = a | x = b | x = c |              |
| (0,0) | (1,0) | (0,1) | (0,0) | p            |
| (0,1) | (1,1) | (0,0) | (0,1) | q            |
| (1,0) | (0,0) | (1,1) | (1,0) | p            |
| (1,1) | (0,1) | (1,0) | (1,1) | p            |
|       |       | NS    |       | Output $(z)$ |

Mealy or Moore?



Ex7.5 Determine the state diagram for the sequential system described by the following expressions:

$$s(t+1) = s(t) if x=a$$

$$(s(t)+1) mod 5 if x=b$$

$$2 if x=c$$

$$z(t) = 0$$
 if  $s(t)$  is even  
1 if otherwise

The system has five states labeled 0, 1, 2, 3, and 4

Mealy or Moore?

## Ex7.5 Solution



Ex7.15 Determine the minimal state table that is equivalent to the following:

|    | input |      |  |  |  |
|----|-------|------|--|--|--|
| PS | x=0   | x=1  |  |  |  |
| а  | f, 0  | b, 0 |  |  |  |
| b  | d, 0  | c, 0 |  |  |  |
| C  | f, 0  | e, 0 |  |  |  |
| d  | g, 1  | a, 0 |  |  |  |
| е  | d, 0  | c, 0 |  |  |  |
| f  | f, 1  | b, 1 |  |  |  |
| g  | g, 0  | h, 1 |  |  |  |
| h  | g, 1  | a, 0 |  |  |  |
|    | NS, z |      |  |  |  |

#### Exercise 7.15

From the state table we get

$$P_1 = (a, b, c, e)(d, h)(f)(g)$$

To obtain  $P_2$ , we determine the class of  $P_1$  to which the successors of the states belong.

Thus,

$$P_2 = (a,c)(b,e)(d,h)(f)(g)$$

To obtain  $P_3$ , we determine the group of states of  $P_2$  to which the successors of the state belong.

|   | 1     | 2     | 3     | 4   | 5   |
|---|-------|-------|-------|-----|-----|
|   | (a,c) | (b,e) | (d,h) | (f) | (g) |
| 0 | 4 4   | 3 3   | 5 5   | 4   | 5   |
| 1 | 2 2   | 11    | 11    | 2   | 3   |

Therefore,  $P = P_3 = P_2 = (a, c)(b, e)(d, h)(f)(g)$  and the reduced table is

|    | Input |       |  |  |  |  |
|----|-------|-------|--|--|--|--|
| PS | x = 0 | x = 1 |  |  |  |  |
| a  | f, 0  | b, 0  |  |  |  |  |
| b  | d, 0  | a, 0  |  |  |  |  |
| d  | g, 1  | a, 0  |  |  |  |  |
| f  | f, 1  | b, 1  |  |  |  |  |
| g  | g,0   | d, 1  |  |  |  |  |
|    | NS,C  | utput |  |  |  |  |

Ex7.17 Determine the minimal state table equivalent to the following one:

|    | Input |      |      |      |  |  |  |  |  |
|----|-------|------|------|------|--|--|--|--|--|
| PS | x=a   | x=b  | x=c  | x=d  |  |  |  |  |  |
| Α  | E, 1  | C, 0 | B, 1 | E, 1 |  |  |  |  |  |
| В  | C, 0  | F, 1 | E, 1 | B, 0 |  |  |  |  |  |
| С  | B, 1  | A, 0 | D, 1 | F, 1 |  |  |  |  |  |
| D  | G, 0  | F, 1 | E, 1 | B, 0 |  |  |  |  |  |
| E  | C, 0  | F, 1 | D, 1 | E, 0 |  |  |  |  |  |
| F  | C, 1  | F, 1 | D, 0 | Н, 0 |  |  |  |  |  |
| G  | D, 1  | A, 0 | B, 1 | F, 1 |  |  |  |  |  |
| Н  | B, 1  | C, 0 | E, 1 | F, 1 |  |  |  |  |  |
|    | NS, z |      |      |      |  |  |  |  |  |

### Exercise 7.17

Based on the outputs for each state we get the first partition

$$P_1 = (A, C, G, H)(B, D, E)(F)$$

To obtain  $P_2$ , we determine the class of  $P_1$  to which the successors of the states belong.

|   |   | group 1 |        |        | group 2 |        |          | group 3 |
|---|---|---------|--------|--------|---------|--------|----------|---------|
|   | A | C       | G      | H      | B       | D      | E        | F       |
| a | 2 | 2       | 2      | 2      | 1       | 1      | 1        |         |
| b | 1 | 1       | 1      | 1      | 3       | 3      | 3        |         |
| c | 2 | $^{2}$  | $^{2}$ | $^{2}$ | 2       | $^{2}$ | $^{2}$   |         |
| d | 2 | 3       | 3      | 3      | 2       | 2      | <b>2</b> |         |

Partition  $P_2$  is

|   | group 1 | $\mathbf{g}_{1}$ | roup | $^2$ | group 3 |   |   | group 4 |
|---|---------|------------------|------|------|---------|---|---|---------|
|   | A       | C                | G    | H    | B       | D | E | F       |
| a |         | 3                | 3    | 3    | 2       | 2 | 2 |         |
| b |         | 1                | 1    | 2    | 4       | 4 | 4 |         |
| c |         | 3                | 3    | 3    | 3       | 3 | 3 |         |
| d |         | 4                | 4    | 4    | 3       | 3 | 3 |         |

### Partition $P_3$ is

|   | group 1 | gro | up 2 | group 3 | $\mathbf{g}_{1}$ | roup | 4 | group 5 |
|---|---------|-----|------|---------|------------------|------|---|---------|
|   | A       | C   | G    | H       | B                | D    | E | F       |
| a |         | 4   | 4    |         | 2                | 2    | 2 |         |
| b |         | 1   | 1    |         | 5                | 5    | 5 |         |
| c |         | 4   | 4    |         | 4                | 4    | 4 |         |
| d |         | 5   | 5    |         | 4                | 4    | 4 |         |

### STOP.

The equivalent states are: {A}, {B,D,E}, {C,G}, {F}, {H} Minimal state transition table:

| PS | x = a     | x = b | x = c | x = d |  |  |  |
|----|-----------|-------|-------|-------|--|--|--|
| A  | B/1       | C/0   | B/1   | B/1   |  |  |  |
| B  | C/0       | F/1   | B/1   | B/0   |  |  |  |
| C  | B/1       | A/0   | B/1   | F/1   |  |  |  |
| F  | C/1       | F/1   | B/0   | H/0   |  |  |  |
| Н  | B/1       | C/0   | B/1   | F/1   |  |  |  |
|    | NS/output |       |       |       |  |  |  |