Maximum-Cup 2024 解説

Writer: a01sa01to, through

Tester: m_99, AngrySadEight, miryoku7

MAXIMUM-CUP2024

アンケート

- 今後のため、ぜひアンケートにご協力ください!
- https://forms.office.com/r/FNydh2XNGs
 - MOFE のコンテストトップページにリンクがあります

MAXIMUM-CUP2024

Writer & Tester 予想難易度

• A < B < C < D < E < F < G < H < I

オンサイト only AC Count

A – Saitama Venice University

Writer: a01sa01to

MAXIMUM-CUP2024
MAXIMUM-GUP2024

問題概要

- $H \times W$ マスあり、各マスに $A_{i,i}$ が定まっている
- max A_{i,j} を求めよ
- $H, W \le 1000, 0 \le A_{i,i} \le 10^9$

MAXIMUM-CUP2024

解法

- 言われた通りに実装しましょう
- O(HW)

MAXIMUM-CUP2024

裏話

• 埼玉大学は大雨時に一部学生 (a01sa01to 含) から

「埼玉ヴェネツィア大学」と揶揄されます(表記揺れあり)

- 正門の通りの側道とかあちこちに川ができる
- 「埼玉ヴェネツィア大学」で検索!
- 水たまりでめちゃくちゃ濡れた時に発案

バス乗り場の水たまりのせいで足がお亡くなり

Translate post

MAXIMUM-CUP2024

統計情報

- AC チーム数
 - オンサイト: 11 / 11
 - 全体: 42 / 42
- FA
 - オンサイト: vwxyz (01:11)
 - 全体: チーム 団体 1 名様 (00:48)

MAXIMUM-CUP2024

M/4XIMUM-CUP2024

B – Three Coins

Writer: a01sa01to

MAXIMUM-CUP2024 MAXIMUM-GUP2024

問題概要

- 数列 A_i が与えられる
- 数列から要素を3つ(重複可)選び、その3つの和をとる
- あり得る総和すべてからなる集合 (重複不可) について、 要素すべての XOR をとった値は?

MAXIMUM-CUP2024

M/AXIMUM-GUP2024

解說一部分点解法

- *N* ≤ 200 なので全列挙できる
- 例えば…
 - 3 重ループを回して、3 つの和を set に入れる
 - set のすべての要素について XOR をとる
- $O(N^3 \log N)$ で通る

MAXIMUM-CUP2024

解説 - 満点解法

- 制約「A_{i+1} は A_i の倍数」
- 3つの和をとるときに重複を許しているので、Aの重複要素は取り除いてしまって問題ない
- A の要素の重複を除くと A の長さは $O(\log N)$ になる
- ・よって、部分点解法と同様のことをすれば良い

MAXIMUM-CUP2024

M/4XXIM/U/M/=GU/P2024;

裏話

- Maximum-Cup 恒例「埼玉トラップ」問題として作られました
 - 皆さんトラップにはまっていただけたみたいでうれしいです
- ・テレビを見ていたら雑貨店 3COINS が流れてきて発案
- ・当初総和だったが、 XOR にしてちょっと面倒くさくなった
- AGC050 B「Three Coins」とは無関係

MAXIMUM-CUP2024

統計情報

- AC チーム数
 - オンサイト: 9 / 11
 - 全体: 34 / 42
- FA
 - オンサイト: チーム MMdayo (10:44)
 - 全体: TKTYI (03:36)

MAXIMUM-CUP2024

C – Minimum Changes on Bipartite Coloring

Writer: a01sa01to

MAXIMUM-CUP2024

M/4XIMUM-CUP2024;

問題概要

- 二部グラフ G と良い彩色 α , β が与えられる
 - ・良い彩色:「隣接点は異なる色」かつ「使われない色が存在しない」
- α が β に一致するまで以下の操作を繰り返す
 - ・良い彩色を保つように、1項点選びその頂点の色を変更する
- 最小の操作回数とその操作列は?

MAXIMUM-CUP2024

M/4XXIM/U/M/=GU/P2024;

解説 - 部分点解法 [1/2]

- ・問題を言い換えてみる
 - ・良い彩色にIDを振って、頂点番号とする
 - 1 頂点の変更で一致させられるような良い彩色間に辺を張る
 - α , β に対応する頂点間の最短経路を求めよ

MAXIMUM-CUP2024

M/4X7MUM-GUP2024

解説 - 部分点解法 [2/2]

• こんな感じのグラフになる (サンプル 1 の場合)

- $n \le 8$:あり得る良い彩色を全列挙可能 + 上のグラフを構築可能
- ・復元付き BFS で求められる

MAXIMUM-CUP2024

解説 - 満点解法 [1/5]

- 部分点で構築したグラフでは、頂点数が $O(2^n)$ 個あって厳しい
- ・実験してみると、以下の性質に気づく
 - 2 頂点以上からなる連結成分の各頂点について、色は変更できない
 - 1点変更しようとすると隣接点と同じ色になってしまい、良い彩色を満たさない
 - よって変更できるのは孤立点だけ
 - 2 頂点以上の連結成分で変わっている部分があれば -1

MAXIMUM-CUP2024

解說 - 満点解法 [2/5]

- 以下、孤立点のみ変化するケースについて考える
- ・ハミング距離が最小値になりそう
- コーナーケース
 - どちらかの頂点を変更しようとすると その色が使われなくなってしまう

2

MAXIMUM-CUP2024

M/4X77MU/M-GU/P2024,

解説 - 満点解法 [3/5]

- $c_{a \to b}$ を $\lceil \alpha(v) = a, \beta(v) = b$ なる v の個数」とする
 - α , β は良い彩色なので、以下の 4 つが成り立つことに注意

$$c_{0\to 0}+c_{0\to 1}>0, \qquad c_{1\to 0}+c_{1\to 1}>0, \qquad c_{0\to 0}+c_{1\to 0}>0, \qquad c_{0\to 1}+c_{1\to 1}>0$$

- ・以下の事実が成り立つ
 - $c_{0\to 0}=c_{1\to 1}=0$, $c_{0\to 1}=c_{1\to 0}=1$ の場合答えは -1 (さっきのコーナー)
 - それ以外は一致させられて、ハミング距離が最小操作回数

MAXIMUM-CUP2024

解説 - 満点解法 [4/5]

- 1. $c_{0\to 0}>0$, $c_{1\to 1}>0$ の場合: $c_{0\to 1}$, $c_{1\to 0}$ の頂点を変更する
- 2. $c_{0\to 0} > 0, c_{1\to 1} = 0$ の場合: $c_{0\to 1}$ を操作して 1 に帰着
- 3. $c_{0\to 0} = c_{1\to 1} = 0$ の場合
 - $c_{0 o 1} = 1, c_{1 o 0} > 1$ なら $c_{1 o 0}$ に操作して 2 に帰着
 - $c_{0\to 1} = 1, c_{1\to 0} = 1$ ならコーナーケースの話から、操作不可能
- $c_{0 o 0} = 0$, $c_{1 o 1} > 0$ なども同様

解説 - 満点解法 [5/5]

- ・実際、前ページのように操作すれば、 最小操作回数としてハミング距離が得られる
- まとめると以下の実装をすれば良く、O(n+m) などで解ける
 - 2 頂点以上の連結成分内で変化がある: -1
 - $c_{0\to 0}=c_{1\to 1}=0$, $c_{0\to 1}=c_{1\to 0}=1$: -1
 - それ以外: ハミング距離、操作列の構築は前ページ参照

裏話 [1/2]

- ・もともとは最小操作回数だけの予定が、 MOFE に動的得点機能が追加されたので操作列を追加
 - ↑「複数あるならどれを出力してもよい」がサポートされた
- •動的得点にすると平均点が算出されるので Rime は微妙だった

MAXIMUM-CUP2024

裏話 [2/2]

- a01sa01to が卒論のテーマ決めの時に論文漁っていて 「2 彩色ならこの問題は自明、ほんとか?」になったので出題
- 3 彩色版の問題についても考えてみてください~
 - Johnson, M., Kratsch, D., Kratsch, S. et al. Finding Shortest Paths Between Graph Colourings. Algorithmica 75, 295–321 (2016). https://doi.org/10.1007/s00453-015-0009-7

MAXIMUM-CUP2024

統計情報

- AC チーム数
 - オンサイト: 8 / 11
 - 全体: 27 / 42
- FA
 - オンサイト: チーム Maximum_dropkick (54:12)
 - 全体: TKTYI (20:46)

MAXIMUM-CUP2024

M/4XXIMUM-GUIP2024;

D – SaitaMaze

Writer: through

MAXIMUM-CUP2024 MAXIMUM-CUP2024

問題概要

- • $H \times W$ のグリッドが与えられ、マス (i,j) の高さは $h_{i,j}$
- 上下左右に隣接する同じ高さのマスにしか移動ができない
- Maximum 君は任意のマスの高さを変える能力を持っている
- \bullet (0,0) から (H-1,W-1) に到達するまでに、能力を使う最小値を求めよ

MAXIMUM-CUP2024

解説 - 部分点 1 解法 [1/1]

- ・制約より、同じ高さの地点が存在しない
- 行先を $h_{0,0}$ に揃えるようにすると、マンハッタン距離だけ 高さを揃える必要がある(これは経路によらない)
- よって答えは H-1+W-1
- O(1) で解ける

MAXIMUM-CUP2024

解説 - 満点解法 [1/4]

- $h_{i,j} = h_{i',j'}$ となる 2 点 (i,j), (i',j') を考える
- $(i,j) \rightarrow (i',j')$ の問題を考えると、

答えは
$$|i-i'|+|j-j'|-1$$
 以下

- 勿論、経路によってはもっと小さいコストで行ける時もある
- Ex) $h_{1,1} = h_{2,2} = h_{3,3}$ の時、 $(1,1) \rightarrow (3,3)$ はコスト 2 で行ける

MAXIMUM-CUP2024

解説 - 満点解法 [2/4]

- Ex のようなケースは分割して小さい問題の和に帰着する
 - $(1,1) \rightarrow (3,3)$ は、 $(1,1) \rightarrow (2,2)$ と $(2,2) \rightarrow (3,3)$ の和として考える

MAXIMUM-CUP2024

解説 - 満点解法 [3/4]

- ここで以下のグラフを考える
 - 1. ある地点 (i,j) において、上下左右の隣接マスにコスト 1 の辺を張る(隣接マスの高さが不一致の時)
 - 2. $h_{i,j} = h_{i',j'}$ を満たす 2 点 (i,j), (i',j') の間に コスト |i-i'|+|j-j'|-1 の辺を張る
- 答えはこのグラフにおける $(0,0) \rightarrow (H-1,W-1)$ の最短経路

MAXIMUM-CUP2024

解説 - 満点解法 [4/4]

- ・辺の本数を考える(制約より同じ地点は20個以下)
 - 1. の辺は 2(H-1)W + 2H(W-1) 本
 - 2. の辺は $\frac{HW}{20}$ 20(20 1) 本(※ 最悪の場合)
- よって最悪の場合、合計でE = 23HW 2H 2W本
- したがって $O(E \log(HW))$ で解ける

MAXIMUM-CUP2024

M/4XXIMUM-GUP2024

裏話 1

- ・ポケモン第四世代(ダイアモンド・パール)の4バッジ目の ジムリーダー「マキシ」から着想を得た
- 本家はもっと複雑なギミックだが、問題に落とし込む過程で変更を重ね、原型をとどめていない問題になった

MAXIMUM-CUP2024

裏話 2

- 初めは $H,W \leq 100$,同じ高さの地点は 100 個以下という制約
- dist[H][W][前訪れた高さ] として 01BFS をすると $O((HW)^2)$ が通ると助言をいただき修正
- ・同じ地点の個数を減らす代わりに上記を落とすようにした

MAXIMUM-CUP2024

統計情報

- AC チーム数
 - オンサイト: 5 / 11
 - 全体: 20 / 42
- FA
 - オンサイト: チーム MMdayo (76:27)
 - 全体: TKTYI (29:22)

MAXIMUM-CUP2024

M/4XXIMUM-GUIP2024;

E – Train Sleeper

Writer: a01sa01to

MAXIMUM-CUP2024 MAXIMUM-CUP2024

問題概要

- N 人の人がいる
- それぞれの人が左・中・右のどれかを独立に 1/3 の確率で選ぶ
- その後、右の人から「左に倒れる」連鎖が起きる
- さらに、左の人から「右に倒れる」連鎖が起きる
- 最終的に「左・中・右」になる確率 mod 998244353 は?

MAXIMUM-CUP2024

解説 - 部分点 1 解法

- $N \leq 12$ なので、 3^N 通りの状態を前計算で全列挙可能
- それぞれの状態において、 最終的にどうなるかを数え上げて状態数 3^N で割ればよい
- $O(N \cdot 3^N \cdot \log p + Q)$ などで実装可能 (p = 998244353)

MAXIMUM-CUP2024

解説 - 部分点 2 解法

- DP できそうだなーと思って置きましたが嘘でした
- とりあえずそのままにしておきました
- 時間をかけた方へ: ごめんなさい

MAXIMUM-CUP2024

M/4X77MU/M-GU/P2024

解説 - 満点解法 [1/3]

- 前計算せずに、クエリごとに人 *i* について考える
- 「左」伝播で変更することになるのは、i が M のとき かつ i より右が MM...ML となっているとき
- 同様に「右」伝播は、i より左が RMM…M となっているとき

MAXIMUM-CUP2024

解説 - 満点解法 [2/3]

• $\lceil i$ より右が $\lceil MM...ML \rceil$: 確率 1/3 で独立に選ばれているので、 $\lceil i$ より右の人の人数を $\lceil R \rceil$ とすると、その確率は

$$\sum_{i=1}^{R} \left(\frac{1}{3}\right)^{j} = \frac{3^{-1}(1-3^{-R})}{1-3^{-1}} = \frac{3^{R}-1}{2\cdot 3^{R}}$$

左が RM...M も同様

MAXIMUM-CUP2024

解説 - 満点解法 [3/3]

- 以下のことを行えばよく、クエリ当たり $O(\log p \cdot \log N)$
 - $p_l = p_m = p_r = 1/3$ で初期化 (それぞれ左・中・右の確率)
 - 左伝播の確率 $x:=p_m\cdot \frac{3^{N-i}-1}{2\cdot 3^{N-i}}$ を計算し、 $p_l+=x,p_m-=x$ とする
 - 右伝播の確率 $y := p_m \cdot \frac{3^{i-1}-1}{2\cdot 3^{i-1}}$ を計算し、 $p_m -= y, p_r += y$ とする
 - これらを出力する

MAXIMUM-CUP2024

裏話

• 電車で爆睡しているときに発案

• 解法考えずに原案 $_{(部分点 2\, s\, c)}$ を through に投げたら 「数学やるだけじゃん」となり $N \leq 10^5$ から $N \leq 10^{18}$ に変更

MAXIMUM-CUP2024

M/4XIMUM-CUP2024

統計情報

- AC チーム数
 - オンサイト: 4 / 11
 - 全体: 20 / 42
- FA
 - オンサイト: vwxyz (43:39)
 - 全体: KumaTachiRen (14:16)

MAXIMUM-CUP2024

M/4X7MUM-GUP2024;

F – Maximum Spanning Tree Query

Writer: a01sa01to

MAXIMUM-CUP2024
MAXIMUM-CUP2024

問題概要

- 重み付き連結無向グラフ G = (V, E) が与えられる
- 以下のクエリに答えよ
 - 重み w_i の辺 $e_i = \{x_i, y_i\}$ が与えられる
 - グラフ $(V, E \cup e_j)$ の最大全域木の重みを求めよ
- ・以降最大全域木を MST と表記します

MAXIMUM-CUP2024

解說 - 部分点 1 解法

- $N, M \le 100, Q \le 1000$
- クエリごとに MST を $O(M \log M + N\alpha(N))$ で求められる
 - 辺を重みの降順でソート
 - クラスカル法同様に「すでに連結でなければ辺を採用」の繰り返し

MAXIMUM-CUP2024

M/4X7MUM-GUP2024

解説 - 部分点 2 解法

- $N \le 100, Q \le 1000 \ (M \le 2 \times 10^5)$
- ・先ほどの方法では間に合わない(高速化したら通るかも)
- ・以下の事実を使う
 - 初期状態のグラフGのMSTで使われない辺は、クエリでも使われない
 - ・証明は簡単なので省略
- M = N 1 とできて、通る

MAXIMUM-CUP2024

解説 - 満点解法 [1/2]

- ・以下の事実を使う
 - 全域木 T が MST $\Leftrightarrow T$ に採用されていない任意の辺 $e = \{x,y\}$ について、 T の x-y パス上の辺は e より重みが小さいことはない
 - ・つまり、採用されない辺の端点を結ぶパス上の辺の重みは、 採用されない辺の重み以上
 - 背理法使ったりクラスカル法の流れを見たりするとわかる

MAXIMUM-CUP2024

解説 - 満点解法 [2/2]

- よって、クエリごとに以下のことを高速に行えれば良い
 - 初期状態のグラフにおける MST T を前計算で求めておく
 - 重み w_j の辺 $e_j = \{x_j, y_j\}$ が与えられたときに、 T の $x_j y_j$ パス上の辺の重みの最小値 c を求める
 - $c < w_i$ なら e_i を採用、そうでなければ T のまま
- ダブリングやオイラーツアーなどを使って O(log N)

MAXIMUM-CUP2024

裏話

- 元ネタは ABC355 F MST Query (気づいた方もいそう)
- コンテスト中にちょっと誤読したことにより、 この問題と想定解が生えた

MAXIMUM-CUP2024

M/4XXI[M|U|M|=GU|P2024;

統計情報

- AC チーム数
 - オンサイト: 4 / 11
 - 全体: 23 / 42
- FA
 - オンサイト: チーム Maximum_dropkick (28:59)
 - 全体: dyktr_06 (13:31)

MAXIMUM-CUP2024

M/4XIMUM-CUP2024;

G – Loneliness

Writer: through

MAXIMUM-CUP2024 MAXIMUM-GUP2024

問題概要

- $1 \sim 60$ の番号が付いた人がいる(番号がi の人を以降人i と呼ぶ)
- 同じ番号の人は 2 人で 1 つのペアを組むことができる
- クエリが *Q* 個くるので順に処理する
 - クエリ1:区間 [L,R) には人 l,l+1,...,r が奇数人、それ以外は偶数人いる
 - クエリ2:区間 [L,R) にいるペアを組めない人の人数を出力
 - 一意に定まらない場合は "Ambiguous" を出力

MAXIMUM-CUP2024

解説 - 部分点 1 解法 [1/4]

- ・ペアを作れずに余る人は、各番号に 0 or 1 人しかいない
- ⇒ 各番号における mod 2 の足し算 ⇒ 排他的論理和を使いたい
- B_{LR} を以下の様に定義する

区間 [L,R) において $B_{LR} = \sum_{i=1}^{60} 2^{i-1} \times (人 i の人数%2)$

・意味: $\left(B_{\mathrm{L},R} \otimes (1LL \ll i)\right) \neq 0$ の時、区間 [L,R) に人 i+1 が奇数人

MAXIMUM-CUP2024

解說 - 部分点 1 解法 [2/4]

- L < M < R について考えると $B_{L,R} = B_{L,M} \oplus B_{M,R}$ が言える
 - 同時に $B_{L,M}=B_{L,R}\oplus B_{M,R}$, $B_{M,R}=B_{L,R}\oplus B_{L,M}$ も言える
- ・番号は高々 60 通りしかないため、 long long で上記のコスト が管理でき、更新もビット演算で簡単にできる

MAXIMUM-CUP2024

M/4XIMUM-CUP2024;

解說 - 部分点 1 解法 [3/4]

• クエリ 1 の区間の端点を移動すると一意に定まる区間が分かる

$$B_{P_1,P_3} = 1011_2$$
 P_1
 P_2
 P_3

 $B_{P_1,P_2} = 0111_2$ $B_{P_2,P_3} = 1100_2$

 $B_{P_{1,P_{3}}}$ はクエリ1で情報を得る以外に $B_{P_{1,P_{2}}} \oplus B_{P_{2,P_{3}}}$ でも得る事が可能

 $1011_2 = 0111_2 \oplus 1100_2$

MAXIMUM-CUP2024

解說 - 部分点 1 解法 [4/4]

- よって、L,R を端点とするコスト $B_{l,r}$ の辺を張ったグラフ上で、 コストの排他的論理和を取る BFS を<u>すると答えが求まる</u>
 - 到達できない場合は "Ambiguous" を出力する
 - $1 \le L < R \le 1e9$ だが、地点は高々 2Q 個のため座圧かmap管理 で OK
- クエリ 2 毎に BFS をすることで $O(Q^2)$ で解ける

MAXIMUM-CUP2024

M/4XIMUM-CUP2024;

解説 - 満点解法 [1/2]

• 部分点 1 で考えたグラフでは、

[L,R) のコストは経路に依らずコスト $B_{l,r}$ が一定

- ⇒ ポテンシャルの概念が使える
- ある基準からの情報が分かれば、任意の区間の情報が分かる

MAXIMUM-CUP2024

解説 - 満点解法 [2/2]

- 任意の頂点のポテンシャルを高速に求められるもの
 - ⇒ 重み付き UnionFind !!
- $B_{l,r}$ を重みとして排他的論理和をとるような

重み付き UnionFind を用いると、ソート

がボトルネックになり、O(QlogQ)でこの問題を解ける

MAXIMUM-CUP2024

解說 - 満点解法 [補足 1]

- ちなみに、UnionFind を 60 個持つことで解く方法もありますが、かなり定数倍高速化をしないと落ちます
 (少なくとも Writer 陣では 60 個持ちは通りませんでした)
- 最悪ケースで頂点数 4×10^5 で UF 1 つあたり 3 つの長さ N の配列を持つと仮定すると、 $4 \times 10^5 \times 3 \times 60 = 7.2 \times 10^7$ になるため重い

MAXIMUM-CUP2024

解説 - 満点解法 [補足 2]

- "Ambiguous" さえ先に判定してしまえば、それ以外は オフラインクエリとして対処ができる
- ⇒ クエリ先読みをして UnionFind で "Ambiguous" を最初に

確認した後に Euler Tour やら HLD やらを使うことで、

同じくO(QlogQ)で解くことも可能

MAXIMUM-CUP2024

M/4XXIMUM-CUP2024

裏話

- ・中高生の時にあった「二人組作って~」が原案
- ・先に "Ambiguous" を判定するとオフラインクエリになることから、Euler 順に Mo's Algorithm をするとクラスの種類が 1e9以下でも可能で $O(Q \ sqrt(Q) \ log Q)$ で解くという案があった
- ただ $O(Q^2)$ とほとんど変わらないという理由から却下

MAXIMUM-CUP2024

M/4XXIM/U/M/=GU/P22024;

統計情報

- AC チーム数
 - オンサイト: 3 / 11
 - 全体: 14 / 42
- FA
 - オンサイト: チーム Goriragon (60:56)
 - 全体: KumaTachiRen (45:49)

MAXIMUM-CUP2024

M/4XXIMUM-GUIP2024;

H – Maximum vs Merin

Writer: through

MAXIMUM-CUP2024 MAXIMUM-CUP2024

問題概要

- ullet \bullet N 種類のスライムがいて、i 種類目は体力 h_i で c_i 体いる
- Maximum 君と Merin ちゃんがスライム 1 体に対して 1 以上 D 以下の攻撃か、 2 体に分裂させるかのいずれかを交互に行う
- 先手は Maximum 君
- ・スライ Δ の波が Q 回来るので、最適に行動した時に最後の一体を倒すのは誰か出力する MAXIMUM-CUP202

解説 - 部分点 1 [1/1]

- 愚直に攻撃と分割をシミュレーションする方法を考える
- ・状態数は $S=\sum_{i=1}^{\max(h)}h_ic_i$, $V=\sum_{j=1}^{S}(j$ の分割数) として V 個
- V の最大値を V_{max} とすると $V_{max} = 28628$ のため、体力毎のスライムの数をメモ化して後退解析をすると間に合う (OEIS参照)
- 雑にメモ化しても、 $O(V \log V \cdot \max(h)^2)$ で通る

MAXIMUM-CUP2024

解説 - 部分点 2 [1/2]

• g(N) を体力 N のスライムの Grundy 数とすると、下記になる

$$g(N) = \max(\{g(N-d), g(N-k) \oplus g(k) \mid 1 \le d \le D, 1 \le k \le N\})$$

:攻擊遷移

: 分裂遷移

MAXIMUM-CUP2024

解説 - 部分点 2 [2/2]

- よって g(0) から昇順に求めることが可能
- $\bullet g(N) \oplus g(N) = 0$ のため、 c_i は偶奇だけを見れば良い
- $O(N + \max(h)^2)$ で解ける

MAXIMUM-CUP2024

M/4X77MUM-GUP2024,

解説 - 満点解法 [1/2]

- 部分点 2 の Grundy 数を見ると以下の規則に気付く
 - 最初の0を除いたD+D%2項は周期4で以下に従う

$${4k-3, 4k-2, 4k, 4k-1}$$

• 上記より後ろの項は、それぞれ以下に周期的に従う

•
$$\{0\} + \{4k - 3, 4k - 2, 4k, 4k - 1\}$$
 $(D \equiv 0 \mod 2)$

•
$$\{0, D+1\} + \{4k-2, 4k-3, 4k-1, 4k\}$$
 $(D \equiv 1 \mod 2)$

証明はここ

MAXIMUM-CUP2024

MAXIMUM-CUP2024;

解説 - 満点解法 [2/2]

- Grundy 数の一般項が O(1) で求めることが可能
- よって全体で O(N) で解ける

MAXIMUM-CUP2024

M/4X77MUM-GUP2024,

裏話

- Grundy 数の問題を作ってみたかったので作成
- 証明がとっても大変でした…頑張りました…
- ちなみに Merin ちゃんとはこれのこと ⇒

(埼玉大学マスコットキャラクター)

MAXIMUM-CUP2024

M/4XIMUM-CUP2024:

統計情報

- AC チーム数
 - オンサイト: 0 / 11 (部分点: 3)
 - 全体: 5 / 42
- FA
 - オンサイト: (-)
 - 全体: karinohito (63:32)

MAXIMUM-CUP2024

M/4X77MU/M-GU/P2024,

I – Maximum Profits by Toll

Writer: a01sa01to

MAXIMUM-CUP2024 MAXIMUM-GUP2024

問題概要

- 有向グラフが与えられる
- 各辺について通行人数 t_j が定まっている
- ・以下の条件を満たすように各辺に通行料 f_j を設定する
 - $\sum_{j \in X} f_j \leq c_i + \sum_{j \in Y} f_j$ が全頂点について成り立つ
 - X は入辺の集合、Y は出辺の集合、 c_i は入力
- $\sum t_j f_j$ の最大値は?

MAXIMUM-CUP2024

M/4X77MU/M-GU/P2024,

解説 – 閉路を含む場合 [1/2]

- 閉路を含む場合、いくらでも増やせる
 - ・1つの閉路に注目
 - 閉路に含まれる辺をx、 そうでない点を0とすれば 条件を満たしつつ xをいくらでも増やせる

MAXIMUM-CUP2024

M/4X7MUM-CUP2024;

解説 – 閉路を含む場合 [2/2]

- 閉路を含む場合、いくらでも増やせる
- よってこの場合は -1
- ・以降、グラフは連結な DAG であると仮定する
 - DAG でなければ、閉路を含むので -1
 - 連結でなければ、各連結成分にについて同じ議論ができる

MAXIMUM-CUP2024

M/4XIMUM-CUP2024;

解説 - 部分点 1 解法 [1/2]

- $rac{c_i = 0}{}$ の場合
- 葉に注目すると出辺がないので、条件を見ると

$$\sum_{j \in X} f_j \le c_i + \sum_{j \in Y} f_j = 0$$

• f_j は非負整数なので、入辺について $f_j = 0$ とするしかない

MAXIMUM-CUP2024

MAXIMUM-CUP2024

解説 - 部分点 1 解法 [2/2]

• 葉の親についてみると、出辺について全部 $f_i = 0$ なので、

$$\sum_{j \in X} f_j \le c_i + \sum_{j \in Y} f_j = 0$$

- 結局、すべての辺について $f_j = 0$ とするしかない
- 答えは 0

MAXIMUM-CUP2024

M/AXIMUM-GUP2024

解説 - 部分点 2 解法 [1/2]

- ・有向木となる場合
- ・根を除く任意の町について、入辺はただ1本であることに注目
 - その辺を f_{in} と表記する
- すると条件は $f_{\text{in}} \leq c_i + \sum_{j \in Y} f_j$ となる
- $\sum t_i f_i$ を最大化したいので、等号成立させておくのがお得

MAXIMUM-CUP2024

MAXIMUM-CUP2024

解説 - 部分点 2 解法 [2/2]

- よって各頂点に対して $f_{\text{in}} = c_i + \sum_{j \in Y} f_j$ としていけば良い
 - 根の条件は $0 \le c_i + \sum_{j \in Y} f_j$ となるが、 $c_i, f_j \ge 0$ より明らかに満たす
- 葉から順番に求めていけば OK
 - トポロジカルソートしてもいいし根から再帰してもいい

MAXIMUM-CUP2024

MAXIMUM-GUP2024

解説 - 満点解法 [1/9]

- 基本的に部分点 2 と同様にやれば良さそうだが...
- 入辺に対する分配をどうすればいいのか困る
- サンプル3の例
 - 上下どちらに 1 を設定するか?

24

解説 - 満点解法 [2/9]

- 何を思ったか 線形計画問題 (LP) として表現してみる
- *A* をグラフの接続行列とする
 - *A* ∈ {-1,0,1}^{N×M} であって、以下を満たす行列 (*x* は任意の頂点)

$$A_{i,j} = \begin{cases} -1 & \text{if } e_j = (i \to x) \\ 1 & \text{if } e_j = (x \to i) \\ 0 & \text{otherwise} \end{cases}$$

• 読みやすさのため有向辺を「→」で表現しています

MAXIMUM-CUP2024

MAXIMUM-CUP2024

解説 - 満点解法 [3/9]

• LP で表現すると以下の通り

Maximize $t^T f$ subject to $Af \leq c$, $f \geq 0$

- A は完全単模行列であり c は整数ベクトルなので、 最適解において f が整数ベクトルとなるものが存在する
 - 用語の定義や証明は省略
- つまり、 *f* の各要素を整数に限定しても最適解は得られる

MAXIMUM-CUP2024

MAXIMUM-GUP2024

解説 - 満点解法 [4/9]

・双対をとると、以下の LP が得られる

Minimize $c^T x$ subject to $A^T x \ge t$, $x \ge 0$

• これも同様に、x を整数に限定しても最適解は得られる

MAXIMUM-CUP2024

MAXIMUM-CUP2024;

解説 - 満点解法 [5/9]

Minimize $c^T x$ subject to $A^T x \ge t$, $x \ge 0$

- これを文章にすると以下のようになる
 - 各頂点に非負整数 x_i を割り当てる
 - ただし、各辺 $e_j = (u \rightarrow v)$ について $x_v \ge x_u + t_j$ を満たす必要がある
 - $\sum c_i x_i$ の最小値を求めよ

MAXIMUM-CUP2024

MAXIMUM-GUP2024

解說 - 満点解法 [6/9]

- この問題を解くには?
 - $\sum c_i x_i$ の最小化なので x_i はなるべく小さくしたい
 - 各辺 $e_i = (u \rightarrow v)$ について $x_v \ge x_u + t_i$ を満たしたい
- トポロジカル順に以下のように決めていけば OK
 - 入辺がなければ $x_n = 0$
 - ・入辺 $e_j = (u \rightarrow v)$ があれば $x_v \coloneqq \max(x_v, x_u + t_j)$

解說 - 満点解法 [7/9]

- •LP について、以下の定理が知られている(強双対定理)
 - LP とその双対がどちらも実行可能解を持つならば、 どちらにも最適解が存在して、 2 つの問題の最適値は等しい

MAXIMUM-CUP2024

M/4XIMUM-CUP2024;

解說 - 満点解法 [8/9]

- 確認
 - 元の問題は実行可能である (f = 0: 最適とは限らないが条件を満たす)
 - 双対問題も実行可能である
 - トポロジカル順に求める方法で最適解が求められる
- ・→強双対定理から、元の問題の最適解と一致!

MAXIMUM-CUP2024

M/4XIM/UM-CUP2024:

解說 - 満点解法 [9/9]

- まとめると、以下のようにして求められる
 - トポロジカルソートする (閉路あれば -1)
 - トポロジカル昇順に、頂点vに対して以下の操作をする
 - 入辺がなければ $x_n := 0$
 - あれば、その入辺を $e_j = (u \to v)$ として $x_v \coloneqq \max(x_v, x_u + t_j)$
 - ∑ c_ix_i が答え

MAXIMUM-CUP2024

M/4XXIMUM-GUP2024

裏話

- 「難しめな問題生えないかな〜」といろいろ調べてみたら 双対問題を目にしたので、双対を生やした
 - 双対使ってない人多そう
- m_99 と話し合ってたらちょっとだけむずかしめになった
 - もともと t_i , $c_i = 1$ だけだった
 - 運営部屋で $t_i \ge 0$ に制約緩和してもよかった?になってました

MAXIMUM-CUP2024

統計情報

- AC チーム数
 - オンサイト: 0 / 11 (部分点: 1)
 - 全体: 4 / 42
- FA
 - オンサイト: (-)
 - 全体: seekworser (83:00)

MAXIMUM-CUP2024

MAXIMUM-CUP2024;