时间复杂性作业

姓名:	叶子宁	学号:	1120231313
/—		–	

7.9

颞意

无向图中的三角形是一个3团。

证明: $TRIANGLE \in P$, 其中 $TRIANGLE = \{\langle G \rangle \mid G \ \mathcal{E} - \Lambda \in \mathbb{R} \}$.

证明

我们可以枚举三角形的三个点,然后判断这三个点是否构成一个三角形。 这样的话,我们需要枚举的点的个数是 $O(n^3)$,然后判断是否构成三角形的时间复杂度是O(1),所以总的时间复杂度是 $O(n^3)$ 。

构造如下高水平描述的图灵机 H = "

对于输入 $\langle G \rangle$, G是一个无向图

- 1. 设G有n个顶点 $u_1, u_2, ..., u_n$ 。
- 2. 若 n < 3, 则拒绝。
- 3. 对 *i* 从 1 到 *n*:
- 4. 对 j 从 i+1 到 n:
- 5. 对 k 从 j+1 到 n:
- 6. 若 u_i 和 u_k 之间有边,则接受。
- 7. 拒绝。"

我们可以看到,这个图灵机的时间复杂度是 $O(n^3)$,所以TRIANGLE $\in P$ 。

7.11

颞意

若图 G 的节点重新排序后,G 可以变得与 H 完全相同,则称 G 与 H 是同构的。 令 $ISO = \{\langle G, H \rangle \mid G \cap H \}$ 是同构的图 $\{G, H\}$ 。

证明: ISO ∈ NP。

证明

构造如下高水平描述的非确定性图灵机 N = "

对于输入 $\langle G, H \rangle$, G 和 H 是两个无向图

- 1. 设G有n个顶点 $u_1, u_2, ..., u_n$, H有m个顶点 $v_1, v_2, ..., v_m$ 。
- 2. 若 $n \neq m$, 则拒绝。
- 3. 非确定性地选择一个 n 的排列 p_i 。
- 4. 对 *i* 从 1 到 *n*:
- 5. 对j从1到n:
- 6. 若 u_i 和 u_j 之间有边且 v_{p_i} 和 v_{p_j} 之间无边, 或 u_i 和 u_j 之间无边且 v_{p_i} 和 v_{p_j} 之间有边,则拒绝。

7. 接受。"

若G, H同构,则 N 一定有分支接受; 否则,N 所有分支拒绝。以上图灵机可以在 $O(n^2)$ 的时间内判定问题,故 $ISO \in NP$ 。

7.21

題意

 \diamondsuit Double-SAT = $\{\langle \varphi \rangle \mid \varphi$ 至少有两个满足赋值 $\}$ 。

证明: Double-SAT 是 NP 完全的。

证明

1. Double-SAT 属于 NP

构造如下高水平描述的非确定性图灵机 N = "对于输入 $\langle \varphi \rangle$, φ 是布尔公式

- (1) 非确定性地产生两组不同赋值 s, t。
- (2) 若在赋值 $s \vdash \varphi = 1$ 且在赋值 $t \vdash \varphi = 1$,则接受;否则,拒绝。"

因为 N 的语言是 Double-SAT, 且 N 在多项式时间内运行, 所以 Double-SAT 属于 NP。

2. 证明 SAT 可以多项式时间映射归约到 Double-SAT

对任意布尔公式 φ ,添加一个新变量 a,构造函数 $f(\varphi) = \varphi \wedge (a \vee \neg a)$ 。

首先,f 可在多项式时间内计算完成。

其次, $f \in SAT$ 到 Double-SAT 的映射归约, 即 φ 可满足 $\Leftrightarrow f(\varphi)$ 有两个满足赋值:

- 若 φ 有可满足赋值s,则:
 - 在赋值 s 和 a=1 下 $f(\varphi)=1$,
 - 在赋值 s 和 a=0 下 $f(\varphi)=1$,

从而有两个不同的赋值;

若 $f(\varphi)$ 有可满足赋值 s,则从 s 中去掉 a 的赋值,必然也是 φ 的可满足赋值。 所以 f 是从 SAT 到 Double-SAT 的多项式时间映射归约。

由 1. 和 2. 及 SAT 是 NP完全问题知, Double-SAT 是 NP完全问题。

7.22

题意

令 HALF-CLIQUE = $\{\langle G \rangle \mid G$ 是无向图, 包含结点数至少为 $\frac{m}{2}$ 的完全子图, m是G 的结点数 $\}$ 。证明: HALF-CLIQUE 是 NP完全的.

证明

1. HALF-CLIQUE 属于 NP

构造如下高水平描述的非确定性图灵机 N = "对于输入 $\langle G \rangle$,G 是一个无向图,有 m 个顶点

- (1) 非确定性地产生一个 🕆 个顶点的子集。
- (2) 若这个子集中的任意两个顶点之间都有边相连,则接受;否则,拒绝。"

因为 N 的语言是 HALF-CLIQUE,且 N 在多项式时间内运行,所以 HALF-CLIQUE 属于 NP。

2. 证明 CLIQUE 可以多项式时间映射归约到 HALF-CLIQUE

对任意 $\langle G, k \rangle$, 其中 G 是一个无向图, k 是一个正整数。

构造函数 $f(\langle G, k \rangle) = G'$ 。

设G有m个顶点。按如下方式构造G':

- 若 $k > \frac{m}{2}$, 则在 G 中增加 2k m 个新顶点, 这些新顶点都是孤立点, 得到 G';
- 若 $k < \frac{m}{2}$, 则增加 m 2k 个新顶点,这些新顶点之间两两都有边相连,新顶点与 G 的所有顶点之间也都相连。

首先, f 可在多项式时间内计算完成。

其次,证明 f 是 CLIQUE 到 HALF-CLIQUE 的映射归约,

- 若G有k团:
 - \circ 当 $k=\frac{m}{2}$ 时, $G'=G,\ m'=m,\ 则\ G'$ 也有 $k=\frac{m}{2}$ 团;

即证明 $G \in \mathbb{R}$ 团 $\Leftrightarrow G'$ (设有 m' 个顶点) 有 $\frac{m'}{2}$ 个顶点的团:

- 。 当 $k > \frac{m}{2}$ 时, m' = 2k, G' 中也有 $k = \frac{m}{2}$ 团;
- 。当 $k < \frac{m}{2}$ 时,m' = 2m 2k,G 中的 k 团加上新添的 m 2k 个顶点形成 $m k = \frac{m}{2}$ 团。
- 若 G' 有 ^m/₂ 团:
 - 。 当 $k = \frac{m}{2}$ 时, G' = G, m' = m, 则 G 也有 $k = \frac{m}{2}$ 团;
 - 当 $k > \frac{m}{2}$ 时,m' = 2k,G 中也有 $k = \frac{m}{2}$ 团;
 - 。当 $k < \frac{m}{2}$ 时,m' = 2m 2k,G' 中的 m k 团至多有 m 2k 个新添顶点,去掉新添顶点至少还有 k 个顶点,所以 G 中有 k 团。

由 1., 2. 和 CLIQUE 是 NP 完全问题知, HALF-CLIQUE 是 NP 完全问题。