Columbia University

Math Methods for Political Science Fall 2017

Exercise Set 1

Due: September 19, 2017

1. Systems of linear equations

Exercise 1. Among the following equations, determine which ones are linear.

a)
$$x_1^2 + x_2^2 = 1$$

a)
$$x_1^2 + x_2^2 = 1$$

b) $2^2x_1 + 2^2x_2 = 1$

c)
$$\sqrt{3}x_1 + \left[1 - \sqrt{2}\right]x_2 + 3 = \pi x_1$$

d)
$$3x_1 + 2x_2 + 4x_3x_4 = 5$$

e)
$$\begin{bmatrix} \frac{1}{\sqrt{2}} - 1 \end{bmatrix} x_1 - 2 = 2x_1 + 4x_2 + \sqrt{3}x_3 + x_9$$

Exercise 2. For the linear systems below:

- (1) Write their augmented matrices.
- (2) Solve them using elementary row operations on the augmented matrices.

a)
$$x_1 - 2x_2 = -1$$

 $-x_1 + 3x_2 = 3$

$$3x_1 + 2x_2 - x_3 = 12$$

b)
$$x_3 + 2x_1 - 4x_2 = -1$$

$$\begin{array}{rcl}
 x_2 & + & 2x_3 & - & 4x_1 & = & -8 \\
 6x_1 & - & 3x_2 & + & 2x_3 & = & 11
 \end{array}$$

c)
$$-3x_1 + 2x_2 - x_3 = -4$$

$$5x_1 - 3x_2 + 2x_3 = 9$$

Exercise 3. Determine whether each proposal is true or false and justify briefly your answer.

- a) Elementary row operations are reversible.
- b) A 5×6 matrix has 6 rows.
- c) The solution set of a linear system in x_1, x_2, \ldots, x_n is a set of the form (s_1, s_2, \ldots, s_n) which, when substituted for x_1, x_2, \ldots, x_n respectively, make each equation in the system true.
- d) An inconsistent system has more than one solution.
- e) If two augmented matrices are equal, then so are the solution set of their corresponding linear systems.

Exercise 4. Show that elementary row operations do not modify the solution set of a linear system.

1

Exercise 5. For each of the following systems:

- 1) Write its augmented form
- 2) Compute its RREF.
- 3) Identify the free and basic variables, and determine its general solution.

a)
$$2x_1 + x_2 = 8$$

 $4x_1 - 3x_2 = 6$

b)
$$3x_{1} + 2x_{2} + x_{3} = 0$$

$$-2x_{1} + x_{2} - x_{3} = 2$$

$$2x_{1} - x_{2} + 2x_{3} = -1$$
c)
$$x_{1} + 2x_{2} + x_{3} = 1$$

$$2x_{1} + 4x_{2} + 2x_{3} = 3$$

c)
$$x_1 + 2x_2 + x_3 = 1$$

 $2x_1 + 4x_2 + 2x_3 = 3$

d)
$$x_1 + x_2 + x_3 + x_4 + x_5 = 2$$

 $x_1 + x_2 + x_3 + 2x_4 + 2x_5 = 3$
 $x_1 + x_2 + x_3 + 2x_4 + 3x_5 = 2$

Exercise 6. Consider
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} \mathbf{a}_2 = \begin{bmatrix} 5 \\ -13 \\ -3 \end{bmatrix}$$
, and $\mathbf{b} = \begin{bmatrix} -3 \\ 8 \\ 1 \end{bmatrix}$.

- i) Is it possible to write **b** as a linear combination of \mathbf{a}_1 and \mathbf{a}_2 ?
- ii) Give a geometric interpretation of your result.

Exercise 7. Is
$$v = \begin{bmatrix} 5 \\ -3 \\ -6 \end{bmatrix}$$
 in the subset spanned by the columns of $A = \begin{bmatrix} 3 & 5 \\ 1 & 1 \\ -2 & -8 \end{bmatrix}$? Justify.

Exercise 8. Let A be a $m \times n$ matrix with columns $\mathbf{a}_1, \dots, \mathbf{a}_n$. Show that Span $\{\mathbf{a}_1, \dots, \mathbf{a}_n\} = \mathbb{R}^m \iff$ its REF has a pivot in each row.

2. Matrix algebra

Exercise 9. Consider the following matrices:

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}, \qquad B = \begin{bmatrix} 3 & 1 \\ 2 & 2 \\ 1 & 4 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 3 \\ 2 & 3 \end{bmatrix}$$
$$D = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \qquad E = \begin{bmatrix} 1 & 4 \end{bmatrix}.$$

Compute the following product if they exist. If they don't, explain why.

- a) AB, BA, AC, CA, BC, CB, CD, EC, EA
- b) AA^{T} , $A^{T}A$, BA^{T} , BC^{T} , $C^{T}A$, BD^{T} , $D^{T}B$

(a) Compute the inverse of $A = \begin{bmatrix} 2 & 2 \\ 2 & 4 \end{bmatrix}$, Exercise 10.

- (i) using the general formula for a 2×2 matrix.
- (ii) by finding the RREF of $[A I_2]$.

(b) Compute the inverse of
$$A = \begin{bmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{bmatrix}$$
 by finding the RREF of $[AI_3]$.

Exercise 11. Let A and B be matrices such that AB is well defined. Show $(AB)^T = B^T A^T$.

Exercise 12. Determine whether each proposal is true or false and justify briefly your answer.

- (a) Let A and B be two 2×2 matrices whose columns are $\mathbf{a}_1, \mathbf{a}_2$ and $\mathbf{b}_1, \mathbf{b}_2$, then AB = $|\mathbf{a}_1\mathbf{b}_1 \ \mathbf{a}_2\mathbf{b}_2|$.
- (b) Let A, B and C be three 3×3 matrices, then AB + AC = (B + C)A.

- (c) Let A and B two $n \times n$ matrices, then $A^T + B^T = (A + B)^T$.
- (d) The transpose of a matrix product is equal to the product of their transpose in the same order.
- (e) If A is invertible, then A^{-1} is also invertible. (f) The product of invertible $n \times n$ matrices is not invertible.
- (g) If A is an invertible $n \times n$ matrix, then Ax = b has a solution for each $b \in \mathbb{R}^n$.
- h) A $m \times n$ matrix can be multiplied from the left by a $p \times m$ matrix.
- i) The matrix product is commutative.
- j) If A and B are such that AB=0, then A=0 or B=0. k) $(ABC)^T=C^TB^TA^T$.