Homework Solutions Applied Regression Analysis

WEEK 5

Exercise Two

Complete the following six questions:

1. Generate the separate straight-line regressions of Y on X_1 (model 1) and Y on X_2 (model 2). Which of the two independent variables would you say is the more important predictor of Y? Discuss your response in the homework forum.

We will consider the two simple linear regression models separately. Type 'regress choles weight' in the command window.

Model 1

. regress	choles weight			
Source	SS	df	MS	Number of obs = 25 F(1, 23) = 1.74
	10231.7262 135145.314			Prob > F = 0.2000 R-squared = 0.0704
	+			Adj R-squared = 0.0300

Total	145377.04	24 6057.	37667		Root MSE	= 76.654
choles	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_	1.622343 199.2975		1.320 2.322		9209323 21.76962	4.165618 376.8254

Type 'regress choles age' in the command window.

Model 2

. regress	choles age					
	SS				Number of obs	
Model Residual	101932.666 43444.3743	1 23	101932.666 1888.88584		F(1, 23) Prob > F R-squared	= 0.0000 = 0.7012
	145377.04		6057.37667		Adj R-squared Root MSE	
			rr. t		[95% Conf.	Interval]
age	5.320676	.72429	09 7.346	0.000	3.822367 41.26516	

Age is a more important predictor. See the R^2 and the F test.

While making your decision regarding the independent variable, you need to take into consideration the p-value and the R^2 value. Please discuss your response in the homework forum.

2. Generate the regression model of Y on both X_1 and X_2 .

We will now consider a multiple linear regression model. Type 'regress choles weight age' in the command window. From the output, you can obtain the coefficient for β_1 and β_2 as well as the intercept (β_0) in the bottom right corner of the output in the "Coef." column.

	SS				Number of obs = $F(2, 22) =$	
Model Residual	102570.815 42806.2253	2 22	51285.4073 1945.73752		Prob > F = R-squared =	0.0000 0.7056
	145377.04				Adj R-squared = Root MSE =	
	Coef.		rr. t		[95% Conf. I	nterval]
weight	.4173621 5.216591		61 0.573 45 6.889	0.573 0.000	-1.094027	6.78702

3. For each of the models in questions 1 and 2, determine the predicted cholesterol level (Y) for patient 4 (with Y =263, X_1 = 70, and X_2 = 30) and compare these predicted cholesterol levels with the observed value. Comment on your findings in the homework forum.

There are three models in total. Two simple linear regression models from question 1 and the multiple linear regression model that we just fit. We have the intercept and slope coefficients from the outputs. Recall that in order to obtain the predicted value we just substitute the value of the predictor variables in the regression equation.

Please discuss your response in the homework forum.

```
Y=263, X<sub>1</sub> = 70 and X<sub>2</sub> = 30

Model 1: y=199.298+1.62234WEIGT

=199.298+1.62234(70)

=312.8618

Model 2: y=102.575+5.32068AGE

=102.575+5.32068(30)

=262.1954

Model 3: y=77.9825+5.21659AGE+0.41736WEIGHT

=77.9825+5.21659(30)+0.41736(70)

=263.695
```

Models 2 and 3 yield predictions very close to the observed cholesterol value of 263 while Model 1 provides a very poor prediction. Model 3 is the closest to the observed value.

4. Carry out the overall F test for the two-variable model and the partial F test for the addition of X_1 to the model, given that X_2 is already in the model.

For this question we will consider the multiple linear regression model. To carry out the overall F test, we will test if the null hypothesis that β_1 and β_2 are simultaneously equal to zero. The F statistic and the p-value for the same can be obtained from the RHS of the output from question 2.

Overall F-Test

 H_0 : $\beta_{x1} = \beta_{x2} = 0$

H_A: At least one of the β's≠0

F=26.36, p-value<0.001 (from computer output)

Reject the null hypothesis. There is significant overall regression.

Partial F-Test for the addition of X₁ given that X₂ is already in the model

H₀: The addition of X₁ (Weight) to the model does not significantly improve the prediction of Cholesterol over and above that achieved by the model containing X₂ (Age).

HA: The addition of X1 adds to the prediction of Cholesterol

$$F(x_1 \mid x_2) = \frac{SS_{reg}(x_1, x_2) - SS_{reg}(x_2)}{MS_{rectabal}(x_1, x_2)} = \frac{102571 - 101933}{1945.74} = 0.3279, \text{ with } 1,22 \text{ d.f.}$$

∴ Not Significant, Fail to reject the null hypothesis. The addition of X₁ to the model already containing X₂ does not add to the prediction of cholesterol.

5. Compute and compare the R^2 -values for each of the three models considered in questions 1 and 2.

This question is similar to question B of Problem 1. We will make use of the three outputs of the regression models that we had obtained earlier. Make sure that you match the correct output to the models. The value of \mathbb{R}^2 for each of the model can be obtained from the fourth line of the right hand side (RHS) of the outputs.

Model	R^2
1: WEIGHT	0.0704
2: AGE	0.7012
3: WEIGHT and AGE	0.7056

6. While concluding that a particular model is the best amongst the ones that you have fit, make sure you take into consideration the R^2 value and the corresponding p-value of the model. Please discuss your response in the homework forum.