

Exame de recurso de **Introdução aos Sistemas Electromagnéticos** Eng. Biomédica 2°Ano/1°Semestre

16/02/2012 Duração: 1h

Nome N° Aluno

Parte I

- Para cada questão há uma única hipótese correcta.
- Cotação: Resposta correcta = 2; Resposta errada = -0,66
- Responda no máximo a 5 questões e indique neste rectângulo as respostas efectivamente respondidas.

1.1 O vector campo eléctrico gerado pelas quatro cargas no centro do quadrado (ponto O) é de:

A: $\overrightarrow{E_o} = \overrightarrow{0}$ (kV/m)	B: $\overrightarrow{E_o} = -113,1\hat{y}$ (kV/m)
C: $\overrightarrow{E_o} = 70,7 \hat{y} (kV/m)$	D: $\overrightarrow{E_o} = -95,5\hat{y}$ (kV/m)

1.2 A força eléctrica sobre a carga que se encontra no ponto P é de:

A: $\overrightarrow{F_P} = -25.9 \hat{x} + 54.1 \hat{y} (\mu \text{N})$	B: $\overrightarrow{F_P} = -37, 2\hat{x} + 78, 0\hat{y}$ (μ N)
C: $\overrightarrow{F_P} = 32,7 \hat{x} - 68,5 \hat{y} (\mu N)$	D: $\overrightarrow{F_p} = 40,4 \hat{x} - 84,6 \hat{y} (\mu N)$

1.3 O potencial eléctrico gerado pelas quatro cargas no centro do quadrado (ponto O) é de:

A: - 34 V	 •	-	 B: - 16 V	-	-	
C: 41 V			D: 0 V			

1.4 A energia electrostática das quatro cargas é de:

A: -2,9 µJ	B: 4,1 μJ
C: -1,7 µJ	D: 5,3 µJ

- **2.** Um electrão $(q_e = -1.6 \times 10^{-19} \ C; \quad m_e = 9.1 \times 10^{-31} \ kg)$ com uma velocidade $\vec{v} = 5.0 \times 10^6 \ \hat{x} \quad m/s$
- é lançado paralelamente a um campo eléctrico uniforme $\vec{E} = 3,0 \,\hat{x} \, kV/m$. Qual o espaço percorrido pelo electrão até a sua velocidade se anular?

A: 4,6 cm	B: 1,8 cm	
C: 3,5 cm	D: 2,4 cm	

Exame de recurso de **Introdução aos Sistemas Electromagnéticos** Eng. Biomédica 2°Ano/1°Semestre

16/02/2012 Duração: 1h

Nome	Nº Aluno

- **3.** Considere duas bobines, b_1 e b_2 , planas concêntricas e complanares, respectivamente, de raios r_1 e r_2 , e número de espiras N_1 e N_2 , percorridas pelas correntes N_1 e N_2 0 e raios contrários.
- **3.1** Que relação deve existir entre as correntes para que o campo magnético seja nulo no centro das espiras?

A: É impossível anular o campo no centro.	B: $\frac{I_1}{I_2} = \frac{N_2}{N_1} \left(\frac{r_1}{r_2}\right)^2$
C: $\frac{I_1}{I_2} = \frac{N_2 r_1}{N_1 r_2}$	D: $\frac{I_1}{I_2} = \left(\frac{N_2}{N_1}\right)^2 \frac{r_2}{r_1}$

3.2 Se a corrente I_1 for sinusoidal e a corrente I_2 for contínua...

A: existe variação de fluxo magnético em ambas as bobines.

B: existe variação de fluxo magnético apenas na bobine b_1 .

C: existe variação de fluxo magnético apenas na bobine b_2 .

D: não existe variação de fluxo magnético em nenhuma bobine.

Soluções:

1.1-B

1.2-A

1.3-D

1.4-C

2-D

3.1-C

3.2-A