UNSUPERVISED MACHINE LEARNING

Import required libraries

:		CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	6
	3	4	Female	23	16	77
	4	5	Female	31	17	40
	•••					
1	195	196	Female	35	120	79
	196	197	Female	45	126	28
	197	198	Male	32	126	74
	198	199	Male	32	137	18
	199	200	Male	30	137	83

200 rows × 5 columns

In []: df.head()

Out[]:		CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	6
	3	4	Female	23	16	77
	4	5	Female	31	17	40

In []: df.tail()

Out[]:		CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
	195	196	Female	35	120	79
	196	197	Female	45	126	28
	197	198	Male	32	126	74
	198	199	Male	32	137	18
	199	200	Male	30	137	83

In []: df.dtypes

```
Out[]: CustomerID
                                   int64
        Genre
                                  object
                                   int64
        Annual Income (k$)
                                   int64
        Spending Score (1-100)
                                  int64
        dtype: object
In [ ]: df.columns
Out[ ]: Index(['CustomerID', 'Genre', 'Age', 'Annual Income (k$)',
               'Spending Score (1-100)'],
              dtype='object')
        Checking missing values
In [ ]: df.isna().sum()
Out[]: CustomerID
        Genre
        Age
        Annual Income (k$)
        Spending Score (1-100)
                                 0
        dtype: int64
        Encoding using LabelEncoder
In [ ]: from sklearn.preprocessing import LabelEncoder
       le=LabelEncoder()
       df['Genre']=le.fit_transform(df['Genre'])
        Feature selection
In [ ]: x=df.iloc[:,1:]
       x.ndim
Out[]:
```

:		Genre	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	19	15	39
	1	1	21	15	81
	2	0	20	16	6
	3	0	23	16	77
	4	0	31	17	40
	•••				
	195	0	35	120	79
	196	0	45	126	28
	197	1	32	126	74
	198	1	32	137	18
	199	1	30	137	83

200 rows × 4 columns

Cluster identification

```
In []: from sklearn.cluster import KMeans
wcss=[]
for i in range(1,11):
    model=KMeans(n_clusters=i,init='k-means++',random_state=42)
    model.fit(x)
    wcss.append(model.inertia_)
```

```
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to suppress the w
arning
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to suppress the w
arning
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to suppress the w
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the w
arning
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to suppress the w
arning
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to suppress the w
arning
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to suppress the w
arning
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to suppress the w
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to suppress the w
arning
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to suppress the w
warnings.warn(
```

In []: print(wcss)

 $[308862.06000000006,\ 212889.44245524303,\ 143391.59236035676,\ 104414.67534220168,\ 75427.71182424155,\ 58348.641363315044,\ 51575.2779310779,\ 44359.634641148325,\ 40942.51117006117,\ 37515.84125504126]$

Elbow points

```
In [ ]: import matplotlib.pyplot as plt
    plt.plot(range(1,11),wcss)
    plt.xlabel('no of clusters')
    plt.ylabel('varience')
```

Out[]: Text(0, 0.5, 'varience')


```
In [ ]: model1=KMeans(n clusters=6,init='k-means++',random state=42)
                       y_means=model1.fit_predict(x)
                    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the w
                     arning
                    warnings.warn(
\texttt{Out[]: array([5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 
                                             5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 1, 2, 1, 4,
                                             5, 2, 1, 4, 4, 4, 1, 4, 4, 1, 1, 1, 1, 1, 4, 1, 1, 4, 1, 1, 4,
                                             1, 1, 4, 4, 1, 1, 1, 1, 1, 4, 1, 4, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4,
                                             4, 1, 1, 4, 1, 4, 4, 4, 1, 4, 1, 4, 1, 1, 4, 1, 1, 1, 1, 1,
                                            1, 4, 4, 4, 4, 4, 1, 1, 1, 1, 4, 4, 4, 0, 4, 0, 3, 0, 3, 0, 3, 0,
                                             4, 0, 3, 0, 3, 0, 3, 0, 3, 0, 4, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0,
                                             3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0,
                                             3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0,
                                             3, 0], dtype=int32)
In [ ]: x['Cluster']=y_means
Out[]:
```

:		Genre	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
	0	1	19	15	39	5
	1	1	21	15	81	2
	2	0	20	16	6	5
	3	0	23	16	77	2
	4	0	31	17	40	5
	•••					
	195	0	35	120	79	0
	196	0	45	126	28	3
	197	1	32	126	74	0
	198	1	32	137	18	3
	199	1	30	137	83	0

200 rows × 5 columns

Data seperation

In []: x1=x.iloc[:,:-1]
x1

ut[]:		Genre	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	19	15	39
	1	1	21	15	81
	2	0	20	16	6
	3	0	23	16	77
	4	0	31	17	40
	•••				
	195	0	35	120	79
	196	0	45	126	28
	197	1	32	126	74
	198	1	32	137	18
	199	1	30	137	83

200 rows × 4 columns

Split the data into Training & Testing data

In []: from sklearn.model_selection import train_test_split
 x_train,x_test,y_train,y_test=train_test_split(x1,y1,test_size=0.30,random_state=42)
 x_train

Out[]:		Genre	Age	Annual Income (k\$)	Spending Score (1-100)
	169	1	32	87	63
	97	0	27	60	50
	31	0	21	30	73
	12	0	58	20	15
	35	0	21	33	81
	•••				
	106	0	66	63	50
	14	1	37	20	13
	92	1	48	60	49
	179	1	35	93	90
	102	1	67	62	59

140 rows × 4 columns

```
In [ ]: x_test
      y_train
      y_test
Out[]: 95
       15
           2
       30
      158
           3
       128
           3
      115
           4
       69
            4
      170
            3
      174
           3
      45
66
            2
       182
            3
       165
            0
       78
            3
      186
      177
            0
      56
152
            1
           3
      82
68
124
            1
            4
           4
       16
            5
       148
            3
      93
65
       60
            1
       84
            4
       67
            1
      125
            0
      132
            4
       9
            2
      18
55
75
            5
            4
      150
            3
      104
           1
      135
           0
      137
            0
      164
            3
       76
       79
            1
      197
            0
       38
            5
      24
122
            5
            4
      195
29
            2
       19
            2
       143
           0
       86
            1
      114
           4
      173
            0
       5
            2
       126
            3
       117
       73
      140
            3
       98
            1
      172
           3
       96
      Name: Cluster, dtype: int32
```

Data Normalization

In []: from sklearn.preprocessing import StandardScaler
 scaler=StandardScaler()

```
scaler.fit(x_train)
x_train=scaler.transform(x_train)
x_test=scaler.transform(x_test)
```

Model Creation using Knn

```
In []: from sklearn.neighbors import KNeighborsClassifier knn=KNeighborsClassifier (n_neighbors=5) knn.fit(x_train), ytrain) y_pred=knn.predict(x_test) y_pred

Out[]: array([4, 2, 5, 3, 3, 4, 4, 3, 3, 2, 1, 3, 0, 4, 3, 0, 1, 3, 1, 4, 4, 5, 3, 4, 4, 1, 4, 1, 0, 4, 2, 5, 1, 4, 3, 1, 0, 0, 3, 1, 1, 0, 5, 5, 4, 0, 2, 2, 0, 1, 4, 0, 2, 1, 1, 1, 3, 1, 3, 1], dtype=int32)

Performance Evaluation

In []: from sklearn.metrics import confusion_matrix,accuracy_score matr=confusion_matrix(y_test,y_pred) matr score=accuracy_score(y_test,y_pred) score

Out[]: 0.9833333333333333333
```