In the Claims

- 1. (Currently Amended) A tire comprising:
- a tire bead area rubber comprising a mixture of a rubber polymer, and a first carbon black particles, having a DBP absorption of about 45 or less, and a second carbon black having a DBP absorption of from about 70 to about 140 wherein the carbon black particles having a DBP absorption of about 45 or less.
- 2. (Currently Amended)The tire according to Claim 1, wherein the <u>first</u> carbon black particles also have <u>has</u> an iodine number of about 40 or less.
- 3. (Original) The tire according to Claim 2, wherein the tire bead area rubber comprises a bead filler, a chafer strip or an abrasion.
- 4. (Original) The tire according to Claim 3, wherein the rubber polymer is natural rubber, or a synthetic rubber made from monomers of one or more conjugated dienes having from about 4 to 12 carbon atoms, a rubber made from monomers of a conjugated diene having from 4 to about 12 carbon atoms and a vinyl substituted aromatic having from 8 to 12 carbon atoms, or combinations thereof.
- 5. (Currently Amended)The tire according to Claim 4, wherein said DBP absorption of the first carbon black is from about 20 to about 45.
- 6. (Currently Amended)The tire according to Claim 4, wherein said iodine number of the first carbon black is from about 3 to about 35.
- 7. (Currently Amended)The tire according to Claim 1, wherein the <u>bead area</u> rubber polymer prior to curing has a Mooney Viscosity (ML¹⁺⁴) of from about 30 to about 80.

10/068,411 Page 3

8. (Currently Amended)The tire according to Claim 1, wherein the amount of the first carbon black particles is from about 5 to about 70 parts, and the amount of the second carbon black is from about 20 to about 120 parts by weight per 100 parts by weight of said rubber.

9. (Currently Amended) A tire component comprising:

a strip of rubber composition comprising a mixture of a rubber polymer, a first carbon black and a second carbon black particles, wherein the first carbon black particles having has a DBP absorption of about 45 or less, the second carbon black has a DBP absorption of about 70 to about 140 and wherein the strip of rubber composition is a bead filler, a chafer strip, or an abrasion.

- 10. (Currently Amended) The tire component of Claim 9, wherein the <u>first</u> carbon black <u>particles also have has</u> an iodine number of about 40 or less.
- 11. (Original) The tire component of Claim 9, wherein the rubber polymer is natural rubber, or a synthetic rubber made from monomers of one or more conjugated dienes having from about 4 to 12 carbon atoms, a rubber made from monomers of a conjugated diene having from 4 to about 12 carbon atoms and a vinyl substituted aromatic having from 8 to 12 carbon atoms, or combinations thereof.
- 12. (Currently Amended) The tire component Claim 11, wherein said DBP absorption of the first carbon black is from about 20 to about 45.
- 13. (Currently Amended) The tire component of Claim 12, wherein said <u>first</u> carbon black has an iodine number is of from about 3 to about 35.

10/068,411 Page 4

14. (Currently Amended) The tire component of Claim 13 wherein the rubber composition polymer prior to curing has a Mooney Viscosity (ML¹⁺⁴) of from about 30 to about 80.

- 15. (Currently Amended) The tire component of Claim 14, wherein the amount of the the first carbon black particles is from about 5 to about 70 parts and the amount of the second carbon black is from about 20 to about 120 parts by weight per 100 parts by weight of said rubber.
- 16. (Withdrawn) A process for reducing energy when mixing a rubber composition comprising:
- (a) mixing, into uncured rubber, carbon black particles that have a DBP absorption of about 45 or less in fewer mixing stages than would be necessary when using carbon black particles that have a DBP absorption of about 70 or greater in order to achieve the same desired Mooney Viscosity, and
 - (b) transferring the mixture to another vessel for further processing.