Some ad hoc materials

Grzegorz Wierzchowski

July 6, 2019

Abstract

This document contains some ad hoc dissertations made when I was taking course "Paradox and Infinity".

• Proof that cardinality of set of N to N bijections is equal to power of N.

Introduction

This document was prepared as my private notes from the course "MITx: 24.118x: Paradox and Infinity": https://courses.edx.org/course/course-v1: MITx+24.118x+2T2019/course/.

Document is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.

1 Related to Lecture 1

This is an extension to exercise 2. Original text of problem:

Let F be the set of functions from natural numbers to natural numbers.

Is it the case that $|\mathbb{N}| < |F|$?

I wonder: if we take little sharper assumption if the result would still hold. I.e.

Theorem. Let F^* be the set of bijections from natural numbers to natural numbers.

Then $|\mathbb{N}| < |F^*|$.

Proof. At first let's introduce following name.

Definition. Given any set A, we call perfect-mix a bijection $f: A \to A$ that additionally fulfill condition:

$$\forall_{a \in A} f(a) \neq a$$

It occurs:

Lema. For every $A \subset \mathbb{N}$ such as |A| > 1 perfect-mix $f : A \to A$ does exist.

Proof. For finite set: $\{0, 1, 2, \ldots, N\}$:

$$f(n) = \begin{cases} n+1 &: n < N \\ 0 &: n = N \end{cases}$$

For infinite set: $\{0, 1, 2, \dots\}$:

$$f(n) = \begin{cases} n+1 &: n = \{0, 2, 4, \dots\} \\ n-1 &: n = \{1, 3, 5, \dots\} \end{cases}$$

For every subset of \mathbb{N} with at least 2 elements there is bijection b to one of above sets and our perfect-mix function is $b \circ f \circ b^{-1}$.

Before we return to proof of main theorem, let us define one more symbol: let $2^{\mathbb{N}}_{>1}$ stands for power set (set of all subsets) of natural numbers but such ones that have at least 2 elements. It contains all subsets except empty set and one-element sets. This reminder is obviously countable, so following *Cantor's Theorem* and *No Countable Difference Principle* it occurs $|\mathbb{N}| < |2^{\mathbb{N}}| = |2^{\mathbb{N}}_{>1}|$.

Now let's return to proof of main theorem. We will show that $|2_{>1}^{\mathbb{N}}| \leq |F^*|$. This will be sufficient because of above observation. To proof this inequality we will construct an injective function from our limited power set of naturals to set of bijections $\mathbb{N} \to \mathbb{N}$.

Let us consider special case first:

• assign $\mathbb N$ to perfect-mix function over entire $\mathbb N$ (which exists thanks to our lemma).

Now let $A \subseteq \mathbb{N}$ be subset such that |A| > 1 and $A \neq \mathbb{N}$. We map our subset to bijection f constructed in following way:

- for $n \in A$ let f(n) = m(n) where m is perfect-mix function which exists on set A,
- for $n \in \mathbb{N} \setminus A$ let f(n) = n (i.e. identity on set $\mathbb{N} \setminus A$).

Obviously f is well defined bijection on natural numbers. It also occurs that this bijection is different than one assigned to \mathbb{N} : $n \in \mathbb{N} \setminus A$ is not empty, so for at least one element f(n) = n, so f is not perfect-mix.

Now let's take different subset $A' \subseteq \mathbb{N}$, $A' \neq A$, |A'| > 1. Like before we can map it to respective bijection f'. We want to show that $f' \neq f$.

Because $A' \neq A$, one of below occurs:

- i) $\exists a' \in A' \text{ and } a' \notin A$,
- ii) $\exists a \in A \text{ and } a \notin A'$.

From construction of our bijections f, f' we have respectively:

- i) $f'(a') \neq a'$ and f(a') = a' therefore $f'(a') \neq f(a')$,
- ii) $f(a) \neq a$ and f'(a) = a therefore $f(a) \neq f'(a)$.

So f and f' differ on at least one number - what ends the proof.

П