夏季学期实验指导书

实验版

V1.5

课程教学组

2017/6/20

目录

版本历史	2
夏季学期实验要求及注意事项	3
夏季学期实验教学安排表	. 4
夏季学期实验: 32 位 MIPS 处理器设计	5

版本历史

版本	日期	说明		
1.0	2012.6.16	初始版本		
1.1	2012.6.28	1. ALU 功能表中,修正移位操作符错误;		
		2. ALU 功能示意图,修正选择器地址分配;		
		3. 单周期处理器指令集,将 Bgez 替换为 Bltz;		
		4. 单周期处理器功能框图中,添加 IRQ 信号;		
		5. 修改 DataMemory 地址为字节地址;		
		6. 调整 LED 和 Switch 地址分配,与代码保持一致;		
		7. 附件程序更新到 V1.2。		
1.2	2013.6.17	8. 修改 ALU 输出端口名称;		
		9. 修改外部地址空间描述,统一地址为字节地址;		
1.3	2014.4.28	10. 增加串口外设		
1.4	2015.6.30	11. 修订支持指令集		
1.5	2016.6.10	12. 将 ALU 中的 GEZ 替换为 LTZ		
		13. 修订支持指令集,BGEZ 替换为 BLTZ		

夏季学期实验要求及注意事项

- 1. 实验分组进行,最多 3 人组成 1 组,实验评分分为现场验收和实验报告两部分。
- 2. 实验时间:小学期前三周,具体实验时间安排见后面"夏季学期教学实验安排表"。
- 3. 现场验收由助教根据现场硬件情况核定,按照小组进行验收(要求小组所有成员必须在场),现场成绩占个人成绩的 50%。
- 4. 实验报告可以小组完成,各部分必须标明完成人,报告成绩占个人总成绩的 50%。
- 5. 实验报告内容包括:实验目的;设计方案(原理说明及框图);关键代码及文件清单;仿真结果及分析;综合情况(面积和时序性能);硬件调试情况;思想体会。
- 6. 实验报告提交方式:实验报告(word 或者 pdf)和设计代码打包后提交到网络学堂, 提交打包文件名按照"学号_姓名 实验编号"的规则命名。
- 7. 硬件实验板将在实验验收结束时上缴。
- 8. 第一次实验课所有同学必须到场,其他时间可以在主楼 9 楼机房完成实验,也可以在寝室或者其他地方自行完成实验,现场验收必须在指点时间段内的主楼 9 楼机房进行。
- 9. 根据综合结果,在流水线设计功能正确的所有小组中,具有最高时钟频率的前 10 个小组将可获得该实验 10%的加分,申请加分的小组需要单独提交申请,并需另提 交一份代码和设计说明。
- **10.** 注意,请同学们在遇到问题时,一定要先通过仿真自行查找原因,如果没有仿真结果,助教有权不予回答,请珍惜助教和其他同学的时间。
- **11.** 实验严禁抄袭,有抄袭嫌疑(实验报告或者设计代码出现雷同、回答问题明显非个人完成等)的现场实验或者实验报告按零分处理。

夏季学期实验教学安排表

		周一	周二	周三	周四	周五
	上午				SZ1/SZ2/SZ3	
第1周	下午		SZ1/SZ2/SZ3		SZ1/SZ2/SZ3	
(6.26∼			(答疑)		(答疑)	
6.30)	晚上	SZ1/SZ2/SZ3				
		(上课)				
	上午	SZ1/SZ2/SZ3		SZ1/SZ2/SZ3		SZ1/SZ2/SZ3
第 2 周	下午	SZ1/SZ2/SZ3		SZ1/SZ2/SZ3		SZ1/SZ2/SZ3
(7.3~		(答疑)		(答疑)		(答疑)
7.7)	晚上					
	上午		SZ1/SZ2/SZ3		SZ1/SZ2/SZ3	无
第 3 周			(验收)		(验收)	
(7.10∼	下午					
7.14)	晚上					

- A. 最多 3 人组成实验小组,实验小组成员可在 SZ1、SZ2 和 SZ3 内部自行组合(但不能与 Xilinx 班跨班组合)。
- B. 时间段安排: 上午 8: 30~12: 00, 下午 13: 30~17: 00
- C. 验收时间:标识为"验收"的时间段,上午:9:00~11:00,下午14:00~16:00。
- D. 答疑时间:标识为"答疑"的时间段,上午:9:00~11:00,下午14:00~16:00。
- E. 其他时间:没有标识的时间段,无助教值班,请自行上机实验。

夏季学期实验: 32 位 MIPS 处理器设计

实验名称: 32 位 MIPS 处理器设计

实验目的: 熟悉现代处理器的基本工作原理; 掌握单周期和流水线处理器的设计方法。

实验原理:

参考教材第五章和第六章相关内容。

实验内容:

实验分为三个阶段, 按照次序依次进行。

1. 设计一个 32 位 ALU(30%)。

实现基本的算术、逻辑、关系、位与移位运算,ALU 功能表如下所示:

类型	功能	ALUFun	描述
算术	ADD	000000	S=A+B
	SUB	000001	S=A-B
位运算	AND	011000	S=A&B
	OR	011110	S=A B
	XOR	010110	S=A^B
	NOR	010001	S=~(A B)
	"A"	011010	S=A
移位运算	SLL	100000	S=B< <a[4:0]< td=""></a[4:0]<>
	SRL	100001	S=B>>A[4:0]
	SRA	100011	S=B>>a[4:0] 算术移位
关系运算	EQ	110011	If(A==B) S=1 else S=0
	NEQ	110001	If(A!=B) S=1 else S=0
	LT	110101	If(A <b) else="" s="0</td"></b)>
	LEZ	111101	If(A<=0) S=1 else S=0
	LTZ	111011	If(A<0) S=1 else S=0
	GTZ	111111	If(A>0) S=1 else S=0

ALU 端口如下表所示

名称	类型	描述
A[31:0]	输入	操作数 1
B[31:0]	输入	操作数 2
ALUFun[5:0]	输入	ALU 功能
Sign	输入	运算符号, 1: 有符号; 0: 无符号
Z[31:0]	输出	结果输出

- A. 加法运算实现可以直接采用"+"运算符实现,减法通过加法实现(参见理论课讲义);同时输出 Z(结果为零)、V(结果溢出)、N(结果为负)等标志位,注意有符号数和无符号数标志产生的不同。
- B. 比较运算根据减法运算的结果(Z/V/N)产生,自行分析比较操作与算术运算之间的关系。
- C. 移位运算可以考虑将移位操作拆分为 16 位移位、8 位移位、4 位移位、2 位移位、1 位移位等几个子运算的组合,然后级联形成最后的运算结果。
- D. 逻辑运算可以根据要求直接产生。

ALU 实现示意图(实际可根据自己设计实现)

2. 设计一个单周期 MIPS 处理器(40%)。

- A. 本实验完成一个 32 位的单周期 MIPS 架构处理器,实现核心 MIPS 指令集系统的一个子集,如下:
 - i. 空指令: nop (0x00000000,即 sll \$0,\$0,0)
 - ii. 存储访问指令: lw、sw、lui;
 - iii. 算术逻辑指令: add、addu、sub、subu、addi、addiu、and、or、xor、nor、andi、sll、srl、sra、slt、sltiu;
 - iv. 分支和跳转指令 branch(beg、bne、blez、bgtz、bltz)和 jump(j、jal、jr、jalr);

- v. 其他指令可以根据情况自行添加。
- B. 该处理器支持异常(为简单起见,可以只支持未定义指令异常)和中断(定时器中断)的处理。
- C. Register File 模块提供 32 路 32bits 的寄存器资源,注意: 其中\$0 的取值永远为 0,见附件。
- D. 指令存储器地址空间和数据存储器地址空间是分离的,指令存储器实现采用常量数组(ROM)的方式,根据自己设计的程序设定合理的大小,样例见附件。
- E. 数据存储的地址空间被划分为 2 部分: 0x00000000~0x3FFFFFFF(字节地址)为数据 RAM,可以提供数据存储功能; 0x40000000~0x7FFFFFFF(字节地址)为外设地址空间,对其地址的读写对应到相应的外设资源(LEDs、SWITCH...),见附件。具体地址划分如下:

地址范围(字节地址)	功能	描述
0x00000000~0x000003FF	数据存储器	256×32bits(可以根据需要自行扩展
		大小)
0x40000000~0x4000000B	定时器	定时器外设地址 Timer
0x400000C	外部 LEDs	Obit: LED O
		1bit: LED 1
		7bit: LED 7
0x40000010	外部 SWITCH	Obit: Switch O
		1bit: Switch1
		7bit: Switch7
0x40000014	七段数码管	Obit: CA
		1bit: CB
		7bit: DP
		8bit: ANO
		9bit: AN1
		10bit: AN2
		11bit: AN3
0x40000018~0x40000023	UART	UART 外设地址

注:对于 Altera DE2 平台,需额外使用示例代码 digitube_scan.v 将硬件上的非扫描模式的七段数码管转换为扫描模式。

F. 提供一个定时器外设,可以根据设定周期产生外部中断,通过该定时器触发 7 段数码管的扫描显示。

地址范围	功能	备注
0x40000000	定时器 TH	每当 TL 计数到全 1 时,自动加载 TH 值到
		TL
0x40000004	定时器 TL	定时器计数器,TL 值随时钟递增

0x40000008	定时器控制 TCON	Obit: 定时器使能控制,1-enable,0-disable
		1bit: 定时器中断控制,1-enable,0-disable
		2bit: 定时器中断状态

定时器软件操作流程:

- i. 关闭定时器,TCON 写入 0;
- ii. 设置定时器周期,TH 取值决定定时器的计数周期;
- iii. 设置定时器TL 为OxFFFFFFFF;
- iv. 启动定时器,TCON 写入 3.

定时器中断软件服务程序流程(此时处理器处于内核态,监督位为11):

- i. 定时器中断禁止,同时中断状态清零,TCON 的 1-2bit 清零,TCON &=0xfffffff9;
- ii. 保护现场;
- iii. 中断处理代码;
- iv. 恢复现场;
- v. 使能中断,TCON 的 1bit 置1,TCON /= 0x00000002;
- vi. 退出中断服务程序, 跳转到中断发生时保存的断点地址处继续执行(\$26).

地址范围	功能	备注
0x40000018	串口发送数据	串口发送数据寄存器,只有低 8bit 有效;
	UART_TXD	对该地址的写操作将触发新的 UART 发送
0x4000001C	串口接收数据	串口接收数据寄存器,只有低 8bit 有效
	UART_RXD	
0x40000020	串口状态、控制	Obit: 发送中断使能,1-enable,0-disable
	UART_CON	1bit: 接收中断使能,1-enable,0-disable
		2bit:发送(中断)状态,每当 UART_TXD
		中的数据发送完毕后该比特置' 1 ', 当执行
		对该地址的读操作后,将自动清零
		3bit:接收(中断)状态,每当 UART_RXD
		中已经接收到一个完整的字节时该比特置
		'1', 当执行对该地址的读操作后,将自动
		清零
		4bit: 发送模块状态, 0-发送模块处于空闲
		状态,1-发送模块处于发送状态

H. 单周期处理器可以参照下面的结构实现,也可以根据讲义或者扩充后的指令集 自行设计实现。

- 1) PCSrc, PC 的值可以有 6 种选择: 正常执行时, PC+4; 条件分支时, ConBA 或者 PC+4, 根据条件分支中的条件判断结果而定(ALUOut[0]), ConBA 来自于 PC+4 与指令中 16 位立即数左移 2 位后的数值之和; 直接跳转时, JT, 其值来 自于 J 型指令中的 26 位地址; 寄存器跳转时, Databus A, 其值取自\$Ra; 发生中断时, ILLOP(常量 0x80000004); 发生异常时, XADR(常量 0x80000008)。
- 2) RegDst,写入寄存器的地址可以有 4 种选择:R 型指令中,指令中的 Rd;I型指令中,指令中的 Rt;JAL/JALR 指令中,来自 Ra(常量,31);异常处理时,Xp(为简化处理,这里指定为常量 26,即发生中断或者异常时,返回地址将保存到\$26 寄存器中)。
- 3) EXTOp,根据指令产生 16 位立即数的 32 位扩展,无符号扩展和有符号扩展。
- 4) LUOp, 根据指令 LUI, 将 16 位立即数装入 32 位数的高 16 位。
- 5) ALUSrc1、ALUSrc2,根据指令决定参与ALU运算的两个操作数。
- 6) ALUFun, ALU 运算功能控制,同前面的 ALU 设计中要求。
- 7) Sign,决定 ALU 运算的性质,有符号数还是无符号数。
- 8) MemWr、MemRd,数据 memory 读写控制信号。

- 9) MemToReg,根据指令决定写入寄存器的数据来源,有3种选择:运算指令,ALU的输出将被写入寄存器;Load指令,数据存储器中的数据将被写入寄存器; JAL/JALR指令或者异常中断过程中,PC+4将被写入寄存器中。
- 10) PC 的最高位 PC[31]为监督位。当该位为'1'时,处理器处于内核态,此时异常和中断被禁止;当该位为'0'时,处理器处于普通态,此时允许发生中断和异常。注意 PC[31]不能作为地址最高位去索引指令存储器,取指令时应当固定将地址最高位置零。只有 RESET、异常、中断等有可能将 PC[31]设置为'1',其他指令不能设置该位为'1',JR 和 JALR 指令可以使监督位清零。
 - 在处理器复位后,PC中的值应该为0x80000000(处于内核态);
 - 发生中断时, PC 中的值应该为 0x80000004(处于内核态);
 - 在发生异常时, PC 中的值应该为 0x80000008(处于内核态);
 - PC+4 逻辑电路实现时应该保证 PC[31]不变;
 - 分支语句和 J、JAL 语句不应该改变 PC[31];
 - 当执行 JR、JALR 指令时,PC[31]的值由跳转地址(\$Ra)中的第 31 位(最高位)决定。
- I. 设计一个简单的编译程序,能够将简单的汇编代码编译为机器码。
- J. 设计一个计算两个整数的最大公约数的汇编程序,使用设计的编译程序得到机器码,要求通过 UART 输入两个 8bits 的操作数,通过七段数码管显示十六进制的操作数(必须通过定时器中断以扫描的形式进行数码管显示,七段译码采用软件译码,定时中断频率为扫描频率),通过 8 个 LEDs 显示计算结果并通过UART 输出,自行设计接口逻辑。
- 3. 在单周期 MIPS 处理器的基础上,设计一个 5 级流水线的 MIPS 处理器(30%)。
- A. 采用如下方法解决竞争问题:
 - i. 采用完全的 forwarding 电路解决数据关联问题。
 - ii. 对于 Load-use 类竞争采取阻塞一个周期+Forwarding 的方法解决
 - iii. 对于分支指令在 EX 阶段判断(提前判断也可以),在分支发生时刻取消 ID 和 IF 阶段的两条指令。
 - iv. 对于 J 类指令在 ID 阶段判断,并取消 IF 阶段指令。
- B. 将计算最大公约数的程序在流水线 MIPS 处理器中正常运行。