Phase 1: Data Loading and Preprocessing

Step 1: Load Dataset from Parquet File

- We begin by loading the network intrusion dataset in Parquet format.
- This format was chosen for its efficiency in reading large files compared to CSV.
- The dataset contains over 16 million rows and 80 columns of network traffic features.

```
# Install required packages

# %pip install pandas pyarrow
# %pip install matplotlib
# %pip install seaborn

import warnings
warnings.filterwarnings("ignore")

# Load data from CSV file
import pandas as pd

data = pd.read_parquet('reduced_combined_data.parquet', engine='pyarrow')

print("Shape of the data:",data.shape)
data.head(5)
```

	Dst Port	Protocol	Timestamp	Flow Duration	Tot Fwd Pkts	Tot Bwd Pkts	TotLen Fwd Pkts	TotLen Bwd Pkts	Pkt	Fwd Pkt Len Min	 Fwd Seg Size Min	Active Mean	Active Std	Active Max	Active Min	Idle Mean	Idle Std	
0	0	0	14/02/2018 08:31:01	112641719	3	0	0	0	0	0	 0	0.0	0.0	0	0	56320860.0	139.30003	5
1	0	0	14/02/2018 08:33:50	112641466	3	0	0	0	0	0	 0	0.0	0.0	0	0	56320732.0	114.55130	5
2	0	0	14/02/2018 08:36:39	112638623	3	0	0	0	0	0	 0	0.0	0.0	0	0	56319310.0	301.93460	5
3	22	6	14/02/2018 08:40:13	6453966	15	10	1239	2273	744	0	 32	0.0	0.0	0	0	0.0	0.00000	
4	22	6	14/02/2018 08:40:23	8804066	14	11	1143	2209	744	0	 32	0.0	0.0	0	0	0.0	0.00000	

5 rows × 80 columns

Drop the unnecessary column

→ Shape of the data: (16137183, 80)

Step 2: Drop Irrelevant Columns and Map Attack Labels

In this step, we:

- Drop the Timestamp column, which is not useful for model training.
- Map detailed attack types to broader categories (e.g., mapping multiple DoS attacks to a single label like 'DoS attack').
- · Display class distribution before and after label transformation.

```
'FTP-BruteForce': 'Brute-force',
         ######### Brute-force
          'Brute Force -XSS': 'Web attack',
          'Brute Force -Web': 'Web attack',
          'SQL Injection': 'Web attack',
         ######### Web attack
          'DoS attacks-Hulk': 'DoS attack',
          'DoS attacks-SlowHTTPTest': 'DoS attack',
          'DoS attacks-Slowloris': 'DoS attack',
          'DoS attacks-GoldenEye': 'DoS attack',
         ######### DoS attack
          'DDOS attack-HOIC': 'DDoS attack',
          'DDOS attack-LOIC-UDP': 'DDoS attack',
          'DDoS attacks-LOIC-HTTP': 'DDoS attack',
         ######### DDoS attack
          'Bot': 'Botnet',
         ######## Botnet
          'Infilteration': 'Infilteration',
         ########## Infilteration
          'Benign': 'Benign',
          'Label': 'Benign',
         ######### Infilteration
   }
def transform_multi_label(df):
   print(df['Label'].value_counts())
   # Set style for better visuals
   sns.set(style="whitegrid")
   # Plot class distribution
    plt.figure(figsize=(8, 5))
   sns.countplot(x='Label', data=df, order=df['Label'].value_counts().index, palette="Set2")
   plt.title('Distribution of Labels', fontsize=14)
   plt.xlabel('Label')
   plt.ylabel('Count')
   plt.xticks(rotation=45)
   plt.tight_layout()
   plt.show()
   print('\n')
   df['Label'] = df['Label'].map(mapping)
    return df
data_preprocess = transform_multi_label(data_preprocess)
```

```
Label
Benign
                             13390249
DDOS attack-HOIC
                               686012
DDoS attacks-LOIC-HTTP
                               576191
DoS attacks-Hulk
                               461912
                               286191
Bot
FTP-BruteForce
                               193354
SSH-Bruteforce
                               187589
Infilteration
                               160639
DoS attacks—SlowHTTPTest
                               139890
DoS attacks-GoldenEye
                                41508
DoS attacks-Slowloris
                                10990
                                 1730
DDOS attack-LOIC-UDP
Brute Force -Web
                                  611
Brute Force -XSS
                                   230
SQL Injection
                                    87
Name: count, dtype: int64
```



```
# Check the distribution of the labels after mapping
data_preprocess['Label'].value_counts()
```

```
Label
Benign
                  13390249
DDoS attack
                   1263933
DoS attack
                    654300
Brute-force
                    380943
Botnet
                    286191
Infilteration
                    160639
Web attack
                       928
Name: count, dtype: int64
```

```
# Set style for better visuals
sns.set(style="whitegrid")

# Plot class distribution
plt.figure(figsize=(8, 5))
sns.countplot(x='Label', data=data_preprocess, order=data_preprocess['Label'].value_counts().index, palette="Set2")

plt.title('Distribution of Labels', fontsize=14)
plt.xlabel('Label')
plt.ylabel('Count')
plt.ylabel('Count')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```


Step 3: Filter Unwanted Classes and Balance the Dataset

- Before training, we remove low-representation or irrelevant categories like Botnet, Infiltration, and Web attack.
- Then we use **random undersampling** to balance the remaining classes (Benign, Brute-force, DDoS attack, and DoS attack) to ensure the model is not biased toward the majority class.

```
# %pip install imbalanced-learn
from imblearn.under_sampling import RandomUnderSampler
def balance_data(df):
    X=df.drop(["Label"], axis=1)
    y=df["Label"]
    rus = RandomUnderSampler()
    X_balanced, y_balanced = rus.fit_resample(X, y)
    df = pd.concat([X_balanced, y_balanced], axis=1)
    del X, y, X_balanced, y_balanced
    print (df.shape)
    print(df['Label'].value_counts())
    return df
# Drop rows with unwanted categories
unwanted_categories = ['Botnet', 'Infilteration', 'Web attack']
data_preprocess = data_preprocess[~data_preprocess['Label'].isin(unwanted_categories)]
data_preprocess1 = balance_data(data_preprocess)
    (1523772, 79)
    Label
    Benign
                    380943
                    380943
    Brute-force
    DDoS attack
                    380943
                    380943
    DoS attack
    Name: count, dtype: int64
```

Step 4: Remove Constant (Zero-Variance) Features

- This step removes features that have zero variance across all samples i.e., their value is constant for every row in the dataset.
- Such features do **not provide any useful information** for classification and can be safely dropped to reduce dimensionality and improve model performance.

```
variances = data_preprocess1.var(numeric_only=True)
constant_columns = variances[variances == 0].index
data_preprocess1 = data_preprocess1.drop(constant_columns, axis=1)
```

```
Columns that have constant values: Index(['Bwd PSH Flags', 'Bwd URG Flags', 'Fwd Byts/b Avg', 'Fwd Pkts/b Avg', 'Fwd Blk Rate Avg', 'Bwd Byts/b Avg', 'Bwd Blk Rate Avg'],
```

Step 5: Detect and Remove Duplicate Columns

print("Columns that have constant values:",constant_columns)

In this step, we identify and remove duplicate columns – i.e., columns that have identical values across all rows.

We use a hashing technique to efficiently detect duplicates by:

· Hashing each column's content

plt.show()

dtype='object')

- · Grouping columns with the same hash
- · Keeping only one copy and dropping the rest

This helps reduce redundancy and improves model efficiency.

```
import pandas as pd
import hashlib
def hash_series(s):
    return hashlib.md5(pd.util.hash_pandas_object(s, index=False).values).hexdigest()
col_hashes = {col: hash_series(data_preprocess1[col]) for col in data_preprocess1.columns}
# Invert the dict to find duplicates
from collections import defaultdict
hash_map = defaultdict(list)
for col, h in col_hashes.items():
   hash_map[h].append(col)
# Get all groups with duplicates
duplicate_cols = [cols[1:] for cols in hash_map.values() if len(cols) > 1]
duplicate_cols = [item for sublist in duplicate_cols for item in sublist]
print(f"Duplicate columns: {duplicate_cols}")
data_preprocess1 = data_preprocess1.drop(columns=duplicate_cols)
🚌 Duplicate columns: ['Subflow Fwd Pkts', 'Subflow Bwd Pkts', 'Subflow Fwd Byts', 'Fwd Seg Size Avg', 'Bwd Seg Size Avg', 'SYN Flag Cnt', '
sns.set(style="whitegrid")
# Plot class distribution
plt.figure(figsize=(8, 5))
sns.countplot(x='Label', data=data_preprocess1, order=data_preprocess1['Label'].value_counts().index, palette="Set2")
plt.title('Distribution of Labels', fontsize=14)
plt.xlabel('Label')
plt.ylabel('Count')
plt.xticks(rotation=45)
plt.tight_layout()
```


pearson correlation heatmap
plt.figure(figsize=(70, 70))
corr = data_preprocess1.corr(numeric_only=True)
sns.heatmap(corr, annot=True, cmap='RdBu', vmin=-1, vmax=1, square=True) # annot=True
plt.show()

To reduce multicollinearity and improve model efficiency, we remove features that are highly correlated with others.

In this step, we:

- · Compute the correlation matrix
- Remove one feature from each pair of features with a correlation above 0.92

This ensures that redundant information is eliminated, improving model generalization.

```
import numpy as np
correlated col = set()
is_correlated = [True] * len(corr.columns)
threshold = 0.92
for i in range (len(corr.columns)):
    if(is_correlated[i]):
        for j in range(i):
            if (np.abs(corr.iloc[i, j]) >= threshold) and (is_correlated[j]):
                colname = corr.columns[j]
                is_correlated[j]=False
                correlated_col.add(colname)
print("Correlated Columns:",correlated_col)
print("Count of Correlated Columns:",len(correlated_col))
   Correlated Columns: {'Active Mean', 'Tot Bwd Pkts', 'Idle Mean', 'TotLen Fwd Pkts', 'Flow Pkts/s', 'Pkt Len Max', 'Fwd IAT Mean', 'Fwd Pk
    Count of Correlated Columns: 27
# Drop the correlated columns
data_preprocess1.drop(correlated_col, axis=1, inplace=True)
print ("Shape after dropping correlated columns:",data_preprocess1.shape)
→ Shape after dropping correlated columns: (1523772, 37)
Step 8: Train Test Split
```

```
label_col = 'Label'
feature_cols = list(data_preprocess1.columns)
feature_cols.remove(label_col)
from sklearn.model_selection import train_test_split
train_df, test_df = train_test_split(data_preprocess1, test_size=0.2, random_state=2, shuffle=True, stratify=data_preprocess1[label_col])
del data_preprocess1
```

Step 9: Feature Scaling and Label Encoding

In this step, we:

- · Apply MinMax scaling to normalize feature values between 0 and 1 for better model performance.
- Encode the target labels (Benign, Brute-force, etc.) into integer values using a consistent label list.
- · Export the processed training and testing datasets into CSV files for modeling.

```
from sklearn.preprocessing import RobustScaler, MinMaxScaler
minmax_scaler = MinMaxScaler()
train_df[feature_cols] = minmax_scaler.fit_transform(train_df[feature_cols])
test_df[feature_cols] = minmax_scaler.transform(test_df[feature_cols])
order_label_list = list(np.unique(train_df[label_col]))
order_label_list

    ['Benign', 'Brute-force', 'DDoS attack', 'DoS attack']
```

Phase 2: Modeling

In this phase, we build and evaluate three different classifiers for the Intrusion Detection task:

1. Decision Tree Classifier

- o A simple, interpretable model based on tree splits.
- o Useful for understanding feature importance and baseline performance.

→ Evaluation Metrics

Each model is evaluated using:

- Classification Report (precision, recall, F1-score)
- Confusion Matrix (visualized using Seaborn heatmap)
- Overall Accuracy

from sklearn.metrics import classification_report,confusion_matrix,accuracy_score,precision_recall_fscore_support from sklearn.ensemble import RandomForestClassifier,ExtraTreesClassifier from sklearn.tree import DecisionTreeClassifier

```
X_train = train_df[feature_cols]
X_test = test_df[feature_cols]
y_train = [order_label_list.index(k) for k in train_df[label_col]]
y_test = [order_label_list.index(k) for k in test_df[label_col]]
dt = DecisionTreeClassifier(max_depth=5)
dt.fit(X_train.values, y_train)
y_pred = dt.predict(X_test.values)
print(classification_report(y_test, y_pred))
cm=confusion_matrix(y_test, y_pred)
sns.set_style("whitegrid")
# Plot heatmap
f, ax = plt.subplots(figsize=(10, 8))
sns.heatmap(
    cm,
    annot=True,
    fmt=".0f",
    linewidths=0.5,
    linecolor="gray",
    cmap="Blues",
    ax=ax
# Add labels and title
plt.xlabel("Predicted Label", fontsize=12)
plt.ylabel("True Label", fontsize=12)
plt.title("Confusion Matrix", fontsize=14)
plt.tight_layout()
plt.show()
```

₹	precision	recall	f1-score	support
0 1 2 3	1.00 0.90 0.98 0.89	0.98 0.89 1.00 0.90	0.99 0.90 0.99 0.90	76189 76189 76188 76189
accuracy macro avg weighted avg	0.94 0.94	0.94 0.94	0.94 0.94 0.94	304755 304755 304755

2. Random Forest Classifier

- $\circ\;$ An ensemble of decision trees that improves accuracy and reduces overfitting.
- Robust to noise and effective on high-dimensional data.

```
rf = RandomForestClassifier(max_depth=5)
rf.fit(X_train.values, y_train)
y_pred = rf.predict(X_test.values)
print(classification_report(y_test, y_pred))
cm=confusion_matrix(y_test, y_pred)
sns.set_style("whitegrid")
# Plot heatmap
f, ax = plt.subplots(figsize=(10, 8))
sns.heatmap(
    cm,
    annot=True,
    fmt=".0f",
    linewidths=0.5,
    linecolor="gray",
    cmap="Blues",
    ax=ax
# Add labels and title
plt.xlabel("Predicted Label", fontsize=12)
```

```
plt.ylabel("True Label", fontsize=12)
plt.title("Confusion Matrix", fontsize=14)
plt.tight_layout()
plt.show()
```

	precision	recall	f1-score	support
0 1 2 3	1.00 0.82 0.98 1.00	0.98 1.00 1.00 0.78	0.99 0.90 0.99 0.88	76189 76189 76188 76189
accuracy macro avg weighted avg	0.95 0.95	0.94 0.94	0.94 0.94 0.94	304755 304755 304755

3. XGBoost Classifier

! brew install libomp

- o A gradient boosting algorithm known for speed and high performance.
- o Handles class imbalance well and supports regularization for better generalization.

```
linecolor="gray",
    cmap="Blues",
    ax=ax
# Add labels and title
plt.xlabel("Predicted Label", fontsize=12)
plt.ylabel("True Label", fontsize=12)
plt.title("Confusion Matrix", fontsize=14)
plt.tight_layout()
plt.show()
₹
                   precision
                                 recall f1-score
                                                    support
                0
                        1.00
                                  1.00
                                             1.00
                                                      76189
                1
                        0.89
                                   0.96
                                             0.92
                                                      76189
                2
                                                      76188
                        1.00
                                  1.00
                                             1.00
                3
                        0.96
                                  0.88
                                             0.92
                                                      76189
```

0.96

0.96

linewidths=0.5,

accuracy

macro avg weighted avg

Confusion Matrix	Κ

0.96

0.96

0.96

0.96

0.96

304755

304755

304755

Feature Importance using Random Forest

We use a trained **Random Forest Classifier** to evaluate the importance of each feature.

This allows us to:

- Identify the most influential features in intrusion detection
- · Optionally reduce dimensionality by selecting only top-ranked features

The table below shows the features sorted by their importance scores, helping guide feature selection and model refinement.

```
ext=pd.DataFrame(rf.feature_importances_,columns=["extratrees_importance"])
ext = ext.sort_values(['extratrees_importance'], ascending=False)
feature_cols = X_train.columns
feature_index = [feature_cols[i] for i in list(ext.index)]
```

→

	_	
	extratrees_importance	Feature_Name
30	1.900578e-01	Fwd Seg Size Min
0	1.611680e-01	Dst Port
27	1.156069e-01	Init Fwd Win Byts
16	6.323736e-02	Bwd Pkts/s
15	5.933775e-02	Fwd Pkts/s
6	5.583783e-02	Fwd IAT Tot
8	4.760825e-02	Fwd IAT Min
28	4.555107e-02	Init Bwd Win Byts
25	3.121082e-02	Pkt Size Avg
7	2.759846e-02	Fwd IAT Std
26	2.695090e-02	Subflow Bwd Byts
18	2.550753e-02	Pkt Len Var
29	2.289821e-02	Fwd Act Data Pkts
17	1.856859e-02	Pkt Len Min
4	1.585329e-02	Flow Byts/s
2	1.411781e-02	Fwd Pkt Len Std
24	1.078819e-02	Down/Up Ratio
12	1.044489e-02	Bwd IAT Min
23	7.658473e-03	ECE Flag Cnt
1	7.135593e-03	Protocol
10	6.494776e-03	Bwd IAT Std
21	6.144573e-03	ACK Flag Cnt
5	5.835602e-03	Flow IAT Std
3	5.586605e-03	Bwd Pkt Len Min
9	5.159889e-03	Bwd IAT Tot
20	4.364832e-03	PSH Flag Cnt
11	3.289220e-03	Bwd IAT Max
35	2.256585e-03	Idle Min
22	1.669681e-03	URG Flag Cnt
33	6.430045e-04	Active Min
34	5.664828e-04	Idle Std
32	4.207071e-04	Active Max
13	1.581368e-04	Fwd PSH Flags
31	1.554889e-04	Active Std
19	1.166675e-04	FIN Flag Cnt
14	2.060557e-08	Fwd URG Flags

 $from \ sklearn.feature_selection \ import \ SelectFromModel$

```
# Used the fitted model to select features
selector = SelectFromModel(model, prefit=False)
selector.fit(X_train, y_train)
```

print(selected_features)
['Dst Port', 'Fwd IAT Std', 'Bwd IAT Std', 'Init Fwd Win Byts', 'Init Bwd Win Byts', 'Fwd Seg Size Min']

selected_features = list(selector.get_feature_names_out(input_features=feature_cols))

→ Decision Tree Classifier

```
dt = DecisionTreeClassifier(max_depth=5)
dt.fit(X_train[selected_features].values, y_train)
y_pred = dt.predict(X_test[selected_features].values)
print(classification_report(y_test, y_pred))
cm=confusion_matrix(y_test, y_pred)
sns.set_style("whitegrid")
# Plot heatmap
f, ax = plt.subplots(figsize=(10, 8))
sns.heatmap(
    annot=True,
    fmt=".0f",
    linewidths=0.5,
    linecolor="gray",
    cmap="Blues",
    ax=ax
# Add labels and title
plt.xlabel("Predicted Label", fontsize=12)
plt.ylabel("True Label", fontsize=12)
plt.title("Confusion Matrix", fontsize=14)
plt.tight_layout()
plt.show()
₹
                   precision
                                recall f1-score
                                                   support
                0
                                  0.96
                                            0.98
                                                     76189
                        1.00
                1
                        0.82
                                  1.00
                                            0.90
                2
                        0.96
                                  1.00
                                            0.98
                3
                        1.00
                                  0.78
                                            0.88
```

76189 76188 76189 0.94 304755 accuracy 0.94 0.95 0.94 304755 macro avg weighted avg 0.95 0.94 0.94 304755


```
rf.fit(X_train[selected_features].values, y_train)
y_pred = rf.predict(X_test[selected_features].values)
print(classification_report(y_test, y_pred))
cm=confusion_matrix(y_test, y_pred)
sns.set_style("whitegrid")
# Plot heatmap
f, ax = plt.subplots(figsize=(10, 8))
sns.heatmap(
    cm,
    annot=True,
    fmt=".0f",
    linewidths=0.5,
    linecolor="gray",
    cmap="Blues",
    ax=ax
)
# Add labels and title
plt.xlabel("Predicted Label", fontsize=12)
plt.ylabel("True Label", fontsize=12)
plt.title("Confusion Matrix", fontsize=14)
plt.tight_layout()
plt.show()
<del>_</del>_
                   precision
                                recall f1-score
                                                    support
                0
                        0.98
                                             0.97
                                                      76189
                1
                        0.82
                                  1.00
                                             0.90
                                                      76189
                2
                        0.96
                                             0.97
                                                      76188
                                  0.99
                        1.00
                                  0.78
                                             0.88
                                                      76189
                                             0.93
                                                     304755
        accuracy
                        0.94
                                  0.93
                                             0.93
       macro avg
                                                     304755
```

0.94

0.93

weighted avg

rf = RandomForestClassifier(max_depth=5)

Confusion Matrix

304755

0.93

