Summary for Complex Variables I

SEUNGWOO HAN

CONTENTS

CHAPIER I	PRELIMINARIES	PAGE Z
1.1	Complex Plane	2
1.2	Rectangular Representation	2
1.3	Polar Representation	3
CHAPTER 2	Elementary Complex Functions	PAGE 4
2.1	Exponential Functions	4
2.2	Mapping Properties	5
2.3	Logarithmic "Functions"	5
CHAPTER 3	Analytic Functions	PAGE 6
Chapter 4	Complex Integration	Page 7
CHAPTER 5	CONFORMAL MAPPING	Page 8

Chapter 1

Preliminaries

1.1 Complex Plane

Definition 1.1.1: Complex Number

 $i := \sqrt{-1}$ is called the *imaginary unit*. $\mathbb{C} := \{x + iy \mid x, y \in \mathbb{R}\}$ is the set of complex numbers where \mathbb{R} is the set of real numbers.

Definition 1.1.2: Algebras of \mathbb{C}

For $z_k := x_k + iy_k$ where $k \in \mathbb{Z}_+$ and $x_k, y_k \in \mathbb{R}$,

- $z_1 + z_2 := (x_1 + x_2) + i(y_1 + y_2)$
- $z_1 \cdot z_2 := (x_1x_2 y_1y_2) + i(x_1y_2 + x_2y_1).$

Theorem 1.1.3

 \mathbb{C} is a field.

Proof. Trivial.

→ Note

z = a + ib, $a, b \in \mathbb{R}$ with $z \neq 0$. Then, $z^{-1} = \frac{1}{a+ib} = \frac{a-ib}{a^2+b^2}$.

1.2 Rectangular Representation

Definition 1.2.1

Let z = x + iy where $x, y \in \mathbb{R}$.

- (i) $|z| := \sqrt{x^2 + y^2}$ is called *modulus* of z.
- (ii) $\overline{z} := x iy$ is called *conjugate* of z.
- (iii) $\Re z = x$ is called the *real part* of z and $\Im z = y$ is called the *imaginary part* of z.
- (iv) For $z_1, z_2 \in \mathbb{C}$, $|z_1 z_2|$ is the distance between z_1 and z_2 .

Note

- $z + \overline{z} = 2\Re z$
- $z \overline{z} = 2i\Im z$
- $|z_1 + z_2| \le |z_1| + |z_2|$
- $\bullet \ \, \Big| |z_1| |z_2| \Big| \le |z_1 z_2|$

1.3 Polar Representation

Given $z \in \mathbb{C}$, |z| is unique. $\arg z = \theta + 2k\pi \ (k \in \mathbb{Z})$ (Or $\arg z = \theta \ (\text{mod } 2\pi)$)

Definition 1.3.1

If $z = |z| \cdot (\cos \theta + i \sin \theta)$, θ is called an *argument* of z and is written $\arg z = \theta \pmod{2\pi}$ (as $\theta + 2k\pi$ for $k \in \mathbb{Z}$ is an argument of z as well). If $\arg z = \theta^* \pmod{2\pi}$, and if $-\pi < \theta^* \le \pi$, then we define $\operatorname{Arg} z = \theta^*$ and it is called the *principal argument* of z.

Theorem 1.3.2

For $z_1, z_2 \in \mathbb{C}$ with $z_1, z_2 \neq 0$, $\arg z_1 z_2 = \arg z_1 + \arg z_2 \pmod{2\pi}$.

Proof. Let $\arg z_1 = \theta_1 \pmod{2\pi}$ and $\arg z_2 = \theta_2 \pmod{2\pi}$ Then, $z_1 = |z_1|(\cos \theta_1 + i \sin \theta_1)$ and $z_2 = |z_2|(\cos \theta_2 + i \sin \theta_2)$. Now, we have $z_1 \cdot z_2 = |z_1||z_2|(\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2))$.

Chapter 2

Elementary Complex Functions

2.1 Exponential Functions

Definition 2.1.1: Exponential Function

For each z = x + iy where $x, y \in \mathbb{R}$, we define $e^z := e^x \cdot (\cos y + i \sin y)$.

Theorem 2.1.2

For each $z \in \mathbb{C}$, $e^z = \sum_{j=1}^{\infty} \frac{z^j}{j!}$.

Proof. Proved later using complex integral.

Theorem 2.1.3

For each $z, z' \in \mathbb{C}$,

(a)
$$e^{z+z'} = e^z \cdot e^{z'}$$
,

(b)
$$e^{-z} = \frac{1}{e^z}$$
, and

(c) $e^{z+2k\pi i} = e^z$ for all $k \in \mathbb{Z}$.

Definition 2.1.4

For each $z \in \mathbb{C}$,

$$(1) \cos z := \frac{e^{iz} + e^{-iz}}{2}$$

$$(2) \sin z := \frac{e^{iz} - e^{-iz}}{2i}$$

$$(3) \cosh z = \frac{e^z + e^{-z}}{2}$$

(4)
$$\sinh z = \frac{e^z - e^{-z}}{2}$$

Theorem 2.1.5

For each $z \in \mathbb{C}$, we have $\cosh z = \cos(iz)$ and $\sinh z = -i\sin(iz)$.

Example 2.1.6

Let us solve $\cos z = 2$. Let $t := e^{iz}$ to obtain $t^2 - 4t + 1 = 0$, which gives $t = 2 \pm \sqrt{3}$. Write z = x + iy where $x, y \in \mathbb{R}$ to have $e^{ix}e^{-y} = 2 \pm \sqrt{3}$. Taking modulus to both sides gives $e^{-y} = 2 \pm \sqrt{3}$, i.e., $y = -\ln(2 \pm \sqrt{3})$. Taking argument to both sides gives $x = 2k\pi$

for $k \in \mathbb{Z}$. Thus, $z = 2k\pi - i \ln(2 \pm \sqrt{3})$ for $k \in \mathbb{Z}$.

2.2 Mapping Properties

대충 그래프 그리는 이야기 ㅇㅇ

2.3 Logarithmic "Functions"

Definition 2.3.1: Logarithmic Function

For any $z \in \mathbb{C} \setminus \{0\}$, we define $w = \ln z$ if and only if $e^w = z$.

Note

How to compute $\ln z$? Note that $z=|z|\cdot e^{i(\operatorname{Arg} z+2k\pi)}$ for $k\in\mathbb{Z}$. Let w=u+iv where $u,v\in\mathbb{R}$ so that $e^w=e^u\cdot e^{iv}=|z|\cdot e^{i(\operatorname{Arg} z+2k\pi)}$. Hence, we have $u=\ln|z|$ and $v=\operatorname{Arg} z+2k\pi$. In other words, $\ln z=\ln|z|+i$ arg z. (Note that this is not a "function"!)

Definition 2.3.2: Principal Logarithmic Function

For any $z \in \mathbb{C} \setminus \{0\}$, we define $\operatorname{Ln} z := \ln |z| + i \operatorname{Arg} z$ and it is called the *principal value of* $\ln z$.

Chapter 3 Analytic Functions

Chapter 4 Complex Integration

Chapter 5 Conformal Mapping