1. 1) Обратимые элементы:

Матрица вида
$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$$
 обратима $\Leftrightarrow \begin{vmatrix} a & b \\ 0 & c \end{vmatrix} = ac \neq 0 \Rightarrow \begin{cases} a \neq 0 \\ c \neq 0 \end{cases}$ Найдём матрицу, обратную к $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ при условии, что $\begin{cases} a \neq 0 \\ c \neq 0 \end{cases}$:
$$\begin{pmatrix} a & b & 1 & 0 \\ 0 & c & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} ac & bc & c & 0 \\ 0 & c & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} ac & 0 & c & -b \\ 0 & 1 & 0 & \frac{1}{c} \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & \frac{1}{a} & -\frac{b}{ac} \\ 0 & 1 & 0 & \frac{1}{c} \end{pmatrix} \in R$$
 \Rightarrow любой элемент кольца вида $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$, для которог верно, что $\begin{cases} a \neq 0 \\ c \neq 0 \end{cases}$ обратия

2) Пусть $A:=\begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix}$ и $B:=\begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix}$ - левый и правый делители нуля соответственно:

$$\Rightarrow \begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix} \cdot \begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 & a_1 b_2 + b_1 c_2 \\ 0 & c_1 c_2 \end{pmatrix} = 0 \Rightarrow \begin{cases} a_1 a_2 = 0 \\ a_1 b_2 + b_1 c_2 = 0 \\ c_1 c_2 = 0 \end{cases}$$

Рассмотрим несколько случаев для левого делителя

$$-\begin{cases} a_1 \neq 0 \\ c_1 \neq 0 \end{cases} \Rightarrow \begin{cases} a_2 = 0 \\ b_2 = 0 \\ c_2 = 0 \end{cases} \Rightarrow B = 0 - \text{получили противоречие}$$

- $-a_1=0\Rightarrow$ элементы второй матрицы a_2 и b_2 могут быть отличные от нуля \Rightarrow можем найти такую матрицу $B\neq 0$, что $AB=0\Rightarrow$ такая матрица A является делителем нуля
- $-c_1=0\Rightarrow$ элемент второй матрицы c_2 может быть отличен от нуля \Rightarrow можем найти такую матрицу $B\neq 0$, что $AB=0\Rightarrow$ такая матрица A является левым делителем нуля

Рассмотрим несколько случаев для правого делителя:

$$-\begin{cases} a_2 \neq 0 \\ c_2 \neq 0 \end{cases} \Rightarrow \begin{cases} a_1 = 0 \\ b_1 = 0 \\ c_1 = 0 \end{cases} \Rightarrow A = 0$$
 – получили противоречие

- $-a_2=0\Rightarrow$ элементы второй матрицы a_1 и b_1 могут быть отличные от нуля \Rightarrow можем найти такую матрицу $A\neq 0$, что $AB=0\Rightarrow$ такая матрица B является делителем нуля
- $-c_2=0\Rightarrow$ элемент второй матрицы c_1 может быть отличен от нуля \Rightarrow можем найти такую матрицу $A\neq 0$, что $AB=0\Rightarrow$ такая матрица B является левым делителем нуля

 \Rightarrow делителем нуля (и правым, и левым) является любой элемент кольца вида $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$, где ac=0

3) Рассмотрим матрицу
$$A := \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : A \neq 0, A^n = 0$$
. Заметим, что $A^n_{1,1} = a^n$, а $A^n_{2,2} = c^n$, но $A^n = 0 \Rightarrow \begin{cases} a^n = 0 \\ c^n = 0 \end{cases} \Rightarrow \begin{cases} a = 0 \\ c = 0 \end{cases} \Rightarrow A$ имеет вид $\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$, где $b \neq 0 \Rightarrow A^2 = \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$. $\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow A$ -нильпотент \Rightarrow все элементы кольца вида $\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$, где $b \neq 0$

Р.S. Докажем, что
$$A_{1,1}^n=a^n$$
, а $A_{2,2}^n=c^n$ (что A^n имеет вид $\begin{pmatrix} a^n & * \\ 0 & c^n \end{pmatrix}$) индукцией по n : Для $n=1$ - верно. Пусть верно для $n=k$. Докажем для $n=k+1$: $A^{k+1}=A^k\cdot A=\begin{pmatrix} a^k & * \\ 0 & c^k \end{pmatrix}\cdot \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}=\begin{pmatrix} a^{k+1} & * \\ 0 & c^{k+1} \end{pmatrix}$, что и требовалось доказать Где * – какое-то выражение (может быть разное для всех звёздочек)

- 2. Пусть от противного $\exists f \in R := \mathbb{Q}[x,y] : I = (x,y-1) = (f)$ $\begin{cases} x = 1 \cdot x + 0 \cdot (y-1) \in I \Rightarrow x \in I \\ y 1 = 0 \cdot x + 1 \cdot (y-1) \in I \Rightarrow (y-1) \in I \end{cases} \Rightarrow \begin{cases} x : f \\ (y-1) : f \end{cases} \Rightarrow deg(f) \leqslant 1$
 - 1) $deg(f)=0 \Rightarrow f=const=c \Rightarrow f$ обратим $\Rightarrow I=R \Rightarrow 1=f_1x+f_2(y-1)$. Возьмём значение в точке $(0,\,1)\Rightarrow 1=0$ получили противоречие

$$2) \ deg(f) = 1 \Rightarrow f = ax + by + c \Rightarrow \begin{cases} x = fg_1 \\ y - 1 = fg_2 \end{cases} \Rightarrow \begin{cases} deg(g_1) = 0 \\ deg(g_2) = 0 \end{cases} \Rightarrow \begin{cases} x = ag_1x + bg_1y + cg_1 \\ y - 1 = ag_2x + bg_2 + cg_2 \end{cases}$$
$$\Rightarrow \begin{cases} b = c = 0 \\ a = 0 \\ cg_2 = -1 \end{cases} \Rightarrow f = 0 \Rightarrow deg(f) = 0 \Rightarrow \text{пришли к противоречию}$$

3. $\varphi : \mathbb{C}[x] \to \mathbb{C} \oplus \mathbb{C}$ $f \mapsto (f(0), f(-3))$

 $Ker(\varphi)$: чтобы наше отображение переводило многочлен f в (0,0), необходимо, чтобы многочлен имел корень и 0, и -3, то есть, делился и на x, и на (x+3), то есть, делился на $x^2+3x\Rightarrow Ker(\varphi)=(x^2+3x)$

$$Im(\varphi): \text{возьмём многочлен} -\frac{1}{3}(a+bi)x + \frac{1}{3}(c+di)(x+3) \Rightarrow \varphi(-\frac{1}{3}(a+bi)x + \frac{1}{3}(c+di)(x+3)) = (c+di,a+bi) \\ \forall a,b,c,d \in \mathbb{C} \Rightarrow Im(\varphi) = (\mathbb{C},\mathbb{C})$$

Докажем, что полученное отображение является гомоморфизмом:

$$\varphi(f+g) = ((f+g)(0), (f+g)(-3)) = (f(0)+g(0), f(-3)+g(-3)) = (f(0), f(-3))+(g(-0), g(-3)) = \varphi(f) + \varphi(g)$$

$$\varphi(fg) = ((fg)(0), (fg)(-3)) = (f(0)g(0), f(-3)g(-3)) = (f(0), f(-3))(g(-0), g(-3)) = \varphi(f)\varphi(g)$$

- \Rightarrow по теореме о гомоморфизме: $\mathbb{C}[x]/(x^2+3x)\simeq\mathbb{C}\oplus\mathbb{C},$ что и требовалось доказать
- 4. \Rightarrow Фактор кольцо R/I поле. R/I поле \Rightarrow любой ненулевой элемент $r+I: r \in R$ обратим. Пусть от противного I содержится в каком-то собственном идеале кольца R. То есть, существует такой $J \neq R$, что $I \subset J$. Так как I содержится в J, то в J есть элемент $r \in R$ такой, что $r \notin I \Rightarrow$ элемент $r+I \in J \Rightarrow rR+I \in J$. Идеал J собственный \Rightarrow не содержит единицу $\Rightarrow rR+I \neq 1 \Rightarrow$ элемент r кольца R/I необратим \Rightarrow получили противоречие.
 - $\Leftarrow I \neq R$ не содержится ни в каком собственном идеале кольца R. Рассмотрим произвольный элемент $r \in I$. Рассмотрим идеал $J = (r, I) \Rightarrow I \subset J$, но I не содержится ни в каком собственном идеале $\Rightarrow J = R \Rightarrow 1 \in R \Rightarrow 1 = rk + I$, где $k \in R \Rightarrow$ элемент r + I обратим $\forall r \neq 0 \Rightarrow R/I$ поле, что и требовалось доказать.