1. 设 $f(x) = x^2$, $0 \le x \le 1$, 而 $S(x) = \sum_{n=1}^{\infty} b_n \sin n\pi x$, 其 $b_n = 2 \int_0^1 f(x) \sin n\pi x dx$,

解
$$S(-\frac{1}{2}) = -S(\frac{1}{2}) = -\frac{1}{4}$$
; $a_2 = \frac{2}{\pi} \int_0^{\pi} x^2 \cos 2x dx = 1$

 $\frac{2}{2}$. 设 f(x) 是周期为 2π 的周期函数,且 f(x) 在 $[-\pi,\pi)$ 上的表达式为

$$f(x) = \begin{cases} 0, & -\pi \le x < 0 \\ x, & 0 \le x < \pi \end{cases}$$
, $f(x)$ 的傅里叶级数 $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ 的和

解
$$S(x) = S(\pm k \cdot 2\pi + \alpha) = S(\pm k \cdot 2l + \alpha) = S(\alpha)$$

$$S(9\pi) = S(4 \times 2\pi + \pi) = S(\pi) = \frac{0+\pi}{2} = \frac{\pi}{2}$$

$$b_3 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin 3x dx = \frac{1}{\pi} \int_{0}^{\pi} x \sin 3x dx = \frac{1}{3}$$

3. 设
$$f(x) = \begin{cases} x+1, & 0 \le x \le \frac{1}{2} \\ x-1, & \frac{1}{2} < x \le 1 \end{cases}$$
 $S(x) = \sum_{n=1}^{\infty} b_n \sin n\pi x \, (-\infty < x < +\infty)$,其中

 $b_n = 2\int_0^1 f(x) \sin n\pi x dx$,则 $S(-\frac{5}{2})$ 等于(

$$(\mathbf{A}) -\frac{1}{2}$$

(B)
$$\frac{1}{2}$$

(A)
$$-\frac{1}{2}$$
 (B) $\frac{1}{2}$ (C) $-\frac{3}{2}$ (D) $\frac{3}{2}$

(D)
$$\frac{3}{2}$$

A
$$S(-\frac{5}{2}) = S(-2-\frac{1}{2}) = S(-\frac{1}{2}) = -S(\frac{1}{2}) = -\frac{1}{2}$$