Problem

For an array A of length N, let F(A) denote the sum of the product of all the subarrays of A. Formally,

$$F(A) = \sum_{L=1}^N \sum_{R=L}^N \left(\prod_{i=L}^R A_i
ight)$$

For example, let A = [1, 0, 1], then there are 6 possible subarrays:

- Subarray [1,1] has product =1
- Subarray [1,2] has product =0
- Subarray [1,3] has product =0
- Subarray [2,2] has product =0
- Subarray [2,3] has product =0
- Subarray [3,3] has product =1

So
$$F(A) = 1 + 1 = 2$$
.

Given a **binary** array A, determine the value of F(A).

Input Format

- ullet The first line of input will contain a single integer T, denoting the number of test cases.
- Each test case consists of multiple lines of input.
 - \circ The first line of each test case contains a single integer N denoting the length of the array.
 - \circ The second line contains N space-separated integers denoting the array A.

Output Format

For each test case, output on a new line the value of F(A).

Constraints

- $1 \le T \le 1000$
- $1 \le N \le 10^5$
- $0 \le A_i \le 1$
- ullet The sum of N over all test cases won't exceed $2\cdot 10^5\,.$

Sample 1:

Input	Output
4	2
3	0
1 0 1	3
1	4
0	
2	
1 1	
4	
1 1 0 1	

Explanation:

Test case 1: Explained in the statement.

Test case 2: There is only 1 subarray and it has product =0.

Test case 3: All the 3 subarrays have product =1.

Problem

For an array A of length N, let F(A) denote the sum of the product of all the subarrays of A. Formally,

$$F(A) = \sum_{L=1}^N \sum_{R=L}^N \left(\prod_{i=L}^R A_i
ight)$$

For example, let A = [1, 0, 1], then there are 6 possible subarrays:

- Subarray [1,1] has product =1
- Subarray [1,2] has product =0
- Subarray [1,3] has product =0
- Subarray [2,2] has product =0
- Subarray [2,3] has product =0
- Subarray [3,3] has product =1

So
$$F(A) = 1 + 1 = 2$$
.

Given a **binary** array A, determine the value of F(A).

Input Format

- ullet The first line of input will contain a single integer T, denoting the number of test cases.
- Each test case consists of multiple lines of input.
 - \circ The first line of each test case contains a single integer N denoting the length of the array.
 - \circ The second line contains N space-separated integers denoting the array A.

Output Format

For each test case, output on a new line the value of F(A).

Constraints

- $1 \le T \le 1000$
- $1 \le N \le 10^5$
- $0 \le A_i \le 1$
- ullet The sum of N over all test cases won't exceed $2\cdot 10^5\,.$

Sample 1:

Input	Output
4	2
3	0
1 0 1	3
1	4
0	
2	
1 1	
4	
1 1 0 1	

Explanation:

Test case 1: Explained in the statement.

Test case 2: There is only 1 subarray and it has product =0.

Test case 3: All the 3 subarrays have product =1.