A Simple Theoretical Model of Importance for Summarization

Maxime Peyrard
ACL19 Outstanding Paper

Author

Maxime Peyrard EPFL 洛桑联邦理工学院

2019

pdf bib abs A Simple Theoretical Model of Importance for Summarization

Maxime Peyrard

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

pdf bib abs Studying Summarization Evaluation Metrics in the Appropriate Scoring Range

Maxime Peyrard

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

bib abs MoverScore: Text Generation Evaluating with Contextualized Embeddings and Earth Mover

Distance

Wei Zhao | Maxime Peyrard | Fei Liu | Yang Gao | Christian M. Meyer | Steffen Eger Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

2018

pdf bib Live Blog Corpus for Summarization

Avinesh P.V.S. | Maxime Peyrard | Christian M. Meyer

Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib abs Objective Function Learning to Match Human Judgements for Optimization-Based Summarization

Maxime Peyrard | Iryna Gurevych

Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

Overview

Summarization

Summarization is the process of identifying the most important information from a source to produce a comprehensive output for a particular user and task.

Summarization

Summarization is the process of identifying the most

important information from a source to produce a

comprehensive output for a particular user and task.

The core challenge of summarization

Natural Language Generation

Overview

Information theory

Entropy for event

$$H(X) = -\sum_{i=1}^n p(x_i) \log(p(x_i))$$
 e.g. $x_1 =$ 正面朝上 $x_2 =$ 反面朝上

• Entropy for text $X = w_1, w_2, ..., w_n$

$$p(X) = p(w_1)p(w_2)\cdots p(w_n)$$

$$H(X) = -\sum_{i=1}^{n} p(w_i)\log(p(w_i))$$

 χ_2

Semantic Units Ω

- ullet Atomic piece of information Ω
- Words
- Characters
- BPE
- Topic models
- Frame semantics
-

$$H(X) = -\sum_{i=1}^{n} p(\omega_i) \log(p(\omega_i))$$
Semantic unit

• X can be represented by a probability distribution \mathbb{P}_X over the semantic units Ω .

Notation

- Semantic Unit $\omega_i \in \Omega$
- Source document(s) D, \mathbb{P}_D
- Candidate summary S, \mathbb{P}_S

Redundancy

- A summary should contain a lot of information.
- For a summary S represented by \mathbb{P}_S :

$$H(S) = -\sum_{\omega_i} \mathbb{P}_S(\omega_i) \log(\mathbb{P}_S(\omega_i))$$

Redundancy

$$Red(S) = -H(S)$$
 $H(S)$ $Red(S)$

Redundancy in Previous Works

- Maximum coverage
- MMR (Maximal marginal relevance)
 - The selected sentence is the most important one amongst the remaining sentences and it has the least content overlap with the current summary.
- Submodular functions
 - Reward diversity. Reward a higher score when picking a sentence that is not too similar to the summary set.

Relevance

 Intuitively, observing a summary should reduce our uncertainty about the original text.

$$Rel(S, D) = -CE(S, D)$$

$$Rel(S, D) = \sum_{\omega_i} \mathbb{P}_S(\omega_i) \log(\mathbb{P}_D(\omega_i))$$

Informativeness

- Intuitively, a summary is informative if it induces, for a user, a great change in her knowledge about the world.
- ullet K the background knowledge \mathbb{P}_K

$$Inf(S,K) = CE(S,K)$$

$$Inf(S,K) = -\sum_{\omega_i} \mathbb{P}_S(\omega_i) \log(\mathbb{P}_K(\omega_i))$$

Informativeness

CCCCCCCC

CCCCCDDDD

ABCDEFGH

Importance

$$Red(S) = -H(S)$$

$$Rel(S,D) = -CE(S,D)$$

$$Inf(S,K) = CE(S,K)$$

Importance

 $\begin{bmatrix} D & K \end{bmatrix}$

$$\{\Omega = \omega_1 \ \omega_2, \cdots, \omega_n\}$$

$$[\mathbb{P}_D \mathbb{P}_K]$$

$$d_i = \mathbb{P}_D(\omega_i)$$
 $k_i = \mathbb{P}_K(\omega_i)$

$$f(d_i, k_i)$$

Source Document Background knowledge

Semantic Units

Distribution

For one unit ω_i

Importance of unit ω_i

$f(d_i, k_i)$

$$d_i = d_j \quad k_i > k_j$$

$$f(d_i, k_i) < f(d_j, k_j)$$
Informativeness

$$I(f(d_i, k_i)) =$$

$$\alpha I(d_i) + \beta I(k_i)$$
Additivity

$$k_i = k_j \quad d_i > d_j$$

$$f(d_i, k_i) > f(d_j, k_j)$$
Relevance

$$\sum_{i} f(d_i, k_i) = 1$$
Normalization

$$f(d_i, k_i)$$

$$\mathbb{P}_{\frac{D}{K}}(\omega_i) = \frac{1}{C} \cdot \frac{d_i^{\alpha}}{k_i^{\beta}}$$

$$C = \sum_{i} \frac{d_i^{\alpha}}{k_i^{\beta}}, \, \alpha, \beta \in \mathbb{R}^+$$

 $\mathbb{P}_{rac{D}{K}}$

Summary scoring function

$$S \longrightarrow \mathbb{P}_{\overline{K}}$$

$$Red(S) = -H(S)$$

$$\theta_{I}(S, D, K) = -KL\left(\mathbb{P}_{S} \parallel \mathbb{P}_{\underline{D}}\right) = -CE\left(\mathbb{P}_{S} \parallel \mathbb{P}_{\underline{D}}\right) + H(S)$$

$$S^* = \operatorname*{argmax}_{S} \theta_I = \operatorname*{argmin}_{S} KL(\mathbb{P}_S \parallel \mathbb{P}_{\overline{K}})$$

Experiments

TAC-2008 and TAC-2009

- Generic multi-document summarization
 - A documents (10 documents) --> Summary

- Update multi-document summarization
 - Given A documents (10 documents)
 - B documents (10 documents) --> Summary

Setup and Assumptions

- semantic units : words
- For update summarization, K is the frequency distribution over words in the background documents (A).
- \bullet For generic summarization, K is the uniform probability distribution
- $\alpha = \beta = 1$

Correlation with humans

Result

	Generic	Update
ICSI	.178	.139
Edm.	.215	.205
LexRank	.201	.164
KL	.204	.176
JS	.225	.189
KL_{back}	.110	.167
JS_{back}	.066	.187
Red	.098	.096
Rel	.212	.192
Inf	.091	.086
$ heta_I$.294	.211

Example

Figure 2: Example of $\mathbb{P}_{\frac{D}{K}}$ in comparison to the word distribution of reference summaries for one topic of TAC-2008 (D0803).

$$H(\mathbb{P}_{\underline{D}})$$

Measures the number of possibly good summaries.

• Low: little uncertainty about which semantic units to extract (few possible good summaries).

High: many equivalently good summaries are possible

Potential Information

$$PI(D,K) = CE(D,K)$$

Thanks!