

QUESTION 1

Correct

Mark 1.00 out of 1.00

Seleccione el valor de la siguiente expresión, correspondiente al **producto interno** de los vectores dados:

$$\left[\begin{bmatrix} 1 \\ i \\ 1 - 3i \end{bmatrix}, \begin{bmatrix} 2 + i \\ i \\ 2 \end{bmatrix} \right]$$

Select one:

- \circ a. 5-7i
- $^{\circ}$ b. 3-5i
- \circ c 3+5i
- \circ d. $5+7i\checkmark$

Your answer is correct.

QUESTION 2

Correct

Mark 1.00 out of 1.00

Calcule el valor de la siguiente expresión, es decir, la **norma** del vector indicado. Escriba en la casilla su respuesta usando 2 decimales.

$$\begin{bmatrix} 5.5 + 5.8i \\ 5.6 - 4.4i \end{bmatrix}$$

Answer: 10.71

QUESTION 3

Correct

Mark 1.00 out of 1.00

Considere los siguientes vectores: (Correspondientes a las columnas de la matriz de Hadamard)

$$V_{+} \!=\! \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \! \left[\left\langle \mathbf{q} \, \mathbf{q} \, \mathbf{u} \, \mathbf{a} \, \mathbf{d} \, \mathbf{V} \, ? \right]_{-} \! =\! \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$$

Marque todas las opciones que sean verdaderas:

Select one or more:

$$ightharpoonup$$
 a. $|V_+| = 1$

$$lacksquare$$
 b. $|V|=1$

$$[0,1]^T = \frac{1}{\sqrt{2}} (V_+ - V_-)^{\checkmark}$$

$${
m ilde{\hspace{-0.07cm} \hspace{-0.07cm} }}$$
 d. Los vectores $V+$ y V_{-} forman una base ortonormal de ${
m \cline{0.07cm} }^2$ 2. $ightharpoonup$

$$^{\circ}$$
 e. $V_{+}^{\dagger} = V_{-}$

$$[1,0]^T = \frac{1}{\sqrt{2}}(V_+ + V_-)^{\checkmark}$$

$${
m f f V}$$
 h. Los vectores $V+{
m y}V$ _ forman una base ortogonal de ${
m f C}$ 2. ${
m f f V}$

$$V_{+}[2,1] = V_{-}[2,1]$$

Your answer is correct.

QUESTION 4

Correct

Mark 1.00 out of 1.00

Dada la siguiente matriz:

$$A = \begin{bmatrix} 0 & -2i \\ 2i & 0 \end{bmatrix}$$

Y el siguiente **vector propio** de A :

$$V = \begin{bmatrix} i \\ 1 \end{bmatrix}$$

Escriba en la siguiente casilla el valor propio correspondiente:

Answer: −2