Math40002 Analysis 1

Problem Sheet 5

1. Fix x > 0. Prove $(1+x)^n \ge 1 + nx$ for any $n \in \mathbb{N}$. Deduce that $(1+x)^{-n} \to 0$. Deduce that if $r \in (0,1)$ then $r^n \to 0$, and if $r \in (1,\infty)$ then $r^n \to \infty$.

By the binomial theorem, $(1+x)^n=1+nx+\ldots \ge 1+nx$ because \ldots is all >0 (or empty for n=0,1). Hence $|(1+x)^{-n}-0|\le 1/(1+nx)$. Now

$$1/(1+nx) < \epsilon \iff n > (\epsilon^{-1}-1)/x.$$

So given any $\epsilon > 0$ we pick $N > (\epsilon^{-1} - 1)/x$ so that

$$n \ge N \implies |(1+x)^{-n} - 0| \le 1/(1+nx) < \epsilon.$$

We can write $r = (1+x)^{-1}$ by setting $x := r^{-1} - 1 > 0$, then apply previous result.

If $r \in (1, \infty)$ then fix any R > 0. Now use the first part of the question to see that $r^n \ge 1 + n(r-1) \ge R$ for all $n \ge \frac{R-1}{r-1}$. That is, $r^n \to \infty$.

- 2. Suppose $\lim_{n\to\infty} |a_{n+1}/a_n| = L$. In lectures we proved that if L < 1 then $a_n \to 0$.
 - (a) Prove that if L > 1 then $|a_n| \to \infty$.
 - (b) Give an example with $|a_{n+1}/a_n| < 1 \ \forall n \ \text{but } a_n \not\to 0$.

Give (without proof) examples where L = 1 and

- (i) $a_n \to 0$,
- (iii) a_n divergent and bounded,
- (ii) $a_n \to a \neq 0$,
- (iv) $a_n \to \infty$.
- (a) If L > 1 then set $\epsilon = (L-1)/2 > 0$. Then $\exists N$ such that $\forall n \ge N$ we have $|a_{n+1}/a_n L| < (L-1)/2$ and in particular $|a_{n+1}|/|a_n| > L (L-1)/2 = (L+1)/2 > 1$.

Let $\alpha:=(L+1)/2>1$. Therefore we find inductively that $|a_{N+m}|>\alpha^m|a_N|$. But $\alpha^m\to\infty$ as $m\to\infty$ by previous question. In particular if we fix any R>0 then $\exists M$ such that $\forall m\geq M$ we have $\alpha^m>R/|a_N|$.

Putting it altogether we find that $\forall n \geq N+M$ we have $|a_n| > (R/|a_N|)|a_N| = R$. Thus $|a_n| \to \infty$ as $n \to \infty$.

- (b) Example: $a_n = 1 + 1/n$.
- (i) $a_n = 1/n$
- (ii) $a_n \equiv a$
- (iii) $a_n = (-1)^n$
- (iv) $a_n = n$
- 3. Let $(a_n)_{n\geq 1}$ be a sequence of strictly positive real numbers.

Give an example such that $(1/a_n)_{n\geq 1}$ is unbounded.

Suppose that $a_n \to a \neq 0$. Prove from first principles that $(1/a_n)_{n\geq 1}$ is bounded.

Any example like $a_n = 1/n$ will do.

Let $\epsilon = a/2 > 0$. Then $\exists N \in \mathbb{N}$ such that

$$n \ge N \implies |a_n - a| < \epsilon \implies a_n > a - \epsilon = a/2 \implies 1/a_n < 2/a.$$

Therefore $0 < 1/a_n \le \max\left(a_1^{-1}, a_2^{-1}, \dots, a_{N-1}^{-1}, 2/a\right) \ \forall n$ and so is bounded.

- 4.† Fix $r \in (0, 1/8)$. Define $(a_n)_{n>1}$ by $a_1 := 1$ and $a_{n+1} = ra_n^2 + 1$.
 - (a) Show that $a_{n+1} a_n = r(a_n + a_{n-1})(a_n a_{n-1})$. This is just $a_{n+1} - a_n = ra_n^2 - ra_{n-1}^2 = r(a_n + a_{n-1})(a_n - a_{n-1})$.

(b) Show that if
$$0 < a_j < 2 \quad \forall j \le n,$$
 (1)

then
$$|a_{n+1} - a_n| < (4r)^n/4.$$
 (2)

Use $|a_{n+1} - a_n| < r(2+2)|a_n - a_{n-1}| = 4r|a_n - a_{n-1}| \le (4r)^2|a_{n-1} - a_{n-2}| \le \ldots \le (4r)^{n-1}|a_2 - a_1|$. But this equals $(4r)^{n-1}(r+1-1) = (4r)^n/4$, as required.

- (c) Deduce that if (1) holds, then $a_{n+1} < r/(1-4r) + 1$. By the triangle inequality, $a_{n+1} \le |a_{n+1} - a_n| + |a_n - a_{n-1}| + \ldots + |a_2 - a_1| + |a_1|$, which is $< \frac{1}{4} ((4r)^n + (4r)^{n-1} + \ldots + 4r) + 1 \le r/(1-4r) + 1$ because 4r < 1.
- (d) Conclude that (1) holds for j = n + 1 too, and so $\forall j$ by induction. Since r < 1/8 we have r/(1-4r) + 1 < 2. (It is clear from the definition that $a_n > 0 \ \forall n$.)
- (e) Using (2) deduce $|a_m-a_n|<(4r)^n/4(1-4r)$ for $m\geq n$. By the same triangle inequality argument, $|a_m-a_n|<(4r)^{m-1}/4+\ldots+(4r)^n/4$ which again is $\leq (4r)^n/4(1-4r)\leq (4r)^n/2$. From Q1 $(4r)^n\to 0$ as $n\to\infty$ since 0<4r<1.

So $\forall \epsilon > 0 \ \exists N \in \mathbb{N}$ such that $n \geq N \ \Rightarrow \ (4r)^n < \epsilon \ \Rightarrow \ |a_m - a_n| < \epsilon/2 \ \text{for} \ m \geq n \geq N$. Thus a_m is Cauchy and so convergent.

- (f) Deduce a_n is Cauchy. What does it converge to? Let a be $\lim_{n\to\infty} a_n$. Taking limits in $a_{n+1}=ra_n^2+1$ gives $a=ra^2+1$ so that $a=\frac{1\pm\sqrt{1-4r}}{2r}$. Then \pm cannot be + because we know from (1) that $a\in[0,2]$. So $a=\frac{1-\sqrt{1-4r}}{2r}$.
- 5.* Show that any sequence of real numbers $(a_n)_{n\geq 0}$ has a subsequence which either converges, or tends to ∞ , or tends to $-\infty$.

If (a_n) is bounded, it has a convergent subsequence by Bolzano-Weierstrass. Suppose instead it is unbounded above; we will show it has a subsequence tending to ∞ (unbounded below and $-\infty$ is similar).

We define a_{n_i} recursively such that $a_{n_i} > i$. Since 1 is not an upper bound, there is an $n_1 \in \mathbb{N}$ such that $a_{n_1} > 1$, so the recursion begins.

Assuming we've defined $n_1 < \ldots < n_i$ such that $a_{n_i} > i$, we need to define n_{i+1} . But i+1 is not an upper bound for the set $\{a_n : n > n_i\}$ (if it were then (a_n) would be bounded above by $\max(i+1,a_1,a_2,\ldots,a_{n_i})$.) So we can pick $a_{n_{i+1}} > i+1$ in it this set, as required.

Now given any $R \in \mathbb{R}$ pick $N \in \mathbb{N}$ with N > R. Then $\forall i \geq N$ we have $a_{n_i} > i \geq N > R$, which is the definition of $a_{n_i} \to \infty$.

6. At home Professor Papageorgiou has made a fully realistic mathematical model of a dart board. It is a copy of the unit interval [0,1] in a frictionless vacuum. He throws a countably infinite number of darts at it, the *n*th landing at $a_n \in [0,1]$.

He then makes a small dot $(x - \epsilon_x, x + \epsilon_x)$ around each point $x \in [0, 1]$ with his pen. Prove that however small he makes each dot, at least one of them will contain an infinite number of darts $a_n \in [0, 1]$.

What if he only makes dots around each dart $a_n \in [0, 1]$?

By Bolzano-Weierstrass there exists a subsequence b_n of the a_n which is convergent to some $b\in[0,1]$. Therefore consider any neighbourhood $(b-\epsilon_b,b+\epsilon_b)$ of the limit. There exists $N\in\mathbb{N}$ such that $b_n\in(b-\epsilon_b,b+\epsilon_b)$ $\forall n\geq N$, so there are an *infinite* number of darts in this dot.

For some sequences (a_n) it is possible to find a neighbourhood of each dart with only finitely many darts in it. Eg if $a_n = 1/n$ then we can choose the neighbourhood (1/(n+1), 1/(n-1)) of a_n .

For some it is not; eg if $a_1 = 0$ and $a_n = 1/n$ for n > 1 – then any neighbourood of a_1 has infinitely many darts.

The general condition is that no point a_n of the sequence should be a limit of any subsequence.

- 7. Let $(a_n)_{n\geq 1}$ be the sequence $\frac{1}{2}$, $\frac{1}{3}$, $\frac{2}{3}$, $\frac{1}{4}$, $\frac{2}{4}$, $\frac{3}{4}$, $\frac{1}{5}$, $\frac{2}{5}$, $\frac{3}{5}$, $\frac{4}{5}$, $\frac{1}{6}$, ...
 - (i) Give (without proof) a subsequence of $(a_n)_{n\geq 1}$ which converges to $\ell=0$, and one which converges to $\ell=1$.
 - (ii) Given any $\ell \in (0,1)$, give (with proof) a subsequence convergent to ℓ .
 - (i) The subsequence $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$, $\frac{1}{6}$, ... converges to $\ell=0$.

The subsequence $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, $\frac{5}{6}$,... converges to $\ell=1$.

(ii) Let $\ell_n/10^n$ ($\ell_n \in \mathbb{N}$) be the decimal expansion of ℓ truncated at the nth decimal place. Since $\ell \neq 0$, the decimal expansion is nonzero so there is a k such that $\ell_k \neq 0$. Now take the subsequence of $(a_n)_{n \geq 1}$ given by

$$\frac{\ell_k}{10^k}$$
, $\frac{\ell_{k+1}}{10^{k+1}}$, ...

Notice we do not cancel the fractions into lower terms – the denominators must keep increasing so the ith term a_{n_i} satisfies that $n_i < n_{i+1}$ – i.e. subsequences always "move to the right" in the original sequence. By its definition, $|\ell_n/10^n-l| \le 10^{-n}$. So given any $\epsilon > 0$, choose $N > 1/\epsilon$ and

$$\left| \frac{\ell_n}{10^n} - \ell \right| \le 10^{-n} < \frac{1}{n} \le \frac{1}{N} < \epsilon$$

for all $n \ge N$. So the subsequence $\to \ell$, as required.

8. A student is learning about Cauchy sequences, and thinks they have a brilliant proof that allows them to precisely identify the limit of a Cauchy sequence straight from the Cauchy condition. The student gives their proof below, is it correct?

$$\forall \epsilon > 0 \; \exists N \in \mathbb{N} \text{ such that } n, m \geq N \; \Rightarrow \; |a_n - a_m| < \epsilon$$

$$\Rightarrow \; \forall n \geq N \quad |a_n - a_N| < \epsilon$$

$$\Rightarrow \; a_n \to a_N \; \text{ as } \; n \to \infty.$$

The problem is that N can depend on ϵ ; we only found N after fixing ϵ . So they only prove that $|a_n - a_N| < \epsilon$ for a fixed $\epsilon > 0$. To prove that $a_n \to a_N$ we need to prove $|a_n - a_N| < \epsilon$ for any $\epsilon > 0$, so we need to be able to change ϵ , but that may change N and so the "limit" a_N .