See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/234451381

Erratum: Fluxionality and low-lying transition structures of the water trimer [J. Chem. Phys. 99, 5228 (1993)]

ARTICLE in CHEMICAL PHYSICS · DECEMBER 1993

Impact Factor: 1.65 · DOI: 10.1063/1.467292

CITATIONS

27

READS

11

4 AUTHORS, INCLUDING:

Thomas Bürgi

University of Geneva

203 PUBLICATIONS 5,705 CITATIONS

SEE PROFILE

Samuel Leutwyler

Universität Bern

247 PUBLICATIONS 6,426 CITATIONS

SEE PROFILE

hans-beat Buergi

University of Zurich

243 PUBLICATIONS 6,042 CITATIONS

SEE PROFILE

Erratum: Fluxionality and lowlying transition structures of the water trimer [J. Chem. Phys. 99, 5228 (1993)]

Martin Schütz, Thomas Bürgi, Samuel Leutwyler, and Hans Beat Bürgi

Citation: J. Chem. Phys. 100, 1780 (1994); doi: 10.1063/1.467292

View online: http://dx.doi.org/10.1063/1.467292

View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v100/i2

Published by the AIP Publishing LLC.

Additional information on J. Chem. Phys.

Journal Homepage: http://jcp.aip.org/

Journal Information: http://jcp.aip.org/about/about_the_journal Top downloads: http://jcp.aip.org/features/most_downloaded

Information for Authors: http://jcp.aip.org/authors

ADVERTISEMENT

Erratum: Fluxionality and low-lying transition structures of the water trimer [J. Chem. Phys. 99, 5228 (1993)]

Martin Schütz, Thomas Bürgi, and Samuel Leutwyler Institut für anorganische, analytische und physikalische Chemie, Universität Bern, Freiestrasse 3, CH-3000 Bern 9, Switzerland

Hans Beat Bürgi

Laboratorium für Kristallografie, Universität Bern, Freiestrasse 3, CH-3000 Bern 9, Switzerland

(Received 1 October 1993; accepted 6 October 1993)

In this work, the basis set superposition errors (BSSE) of the various conformers of $(H_2O)_3$ were calculated using the full counterpoise (CP) procedure. Defining the three water monomers as X, Y, and Z, one has BSSE $(X-Y-Z)=E(X)_X+E(Y)_Y+E(Z)_Z-E(X)_{XYZ}-E(Y)_{XYZ}-E(Y)_{XYZ}$ where, e.g., $E(X)_X$ represents the energy of X calculated in the basis of X alone, and $E(X)_{XYZ}$ the energy of X calculated in the basis of X plus Y plus Z. The three BSSE contributions of the type $E(X)_X$ were erroneously calculated in the optimized monomer geometry, instead of the optimized geometry in the *trimer*. Hence, the different BSSE contributions and the BSSE corrected binding ener-

gies given in lines 3 to 6 of Table I are incorrect. The corrected Table I is thus presented here.

The CP corrected energies of the {uuu}, {upd}, and (ppp) structures relative to the minimum-energy {uud} structure given in Table II also change slightly. The corrected columns 7 and 8 of Table II are also presented here.

In all cases, the CP corrected and uncorrected energy values (column 7 of Table II) are now closer together, which strengthens the qualitative conclusions presented and discussed. Specifically, the $\{upd\}$ transition structure now lies energetically higher than the $\{uud\}$ structures at both the CP corrected and uncorrected levels.

TABLE I. Calculated binding energy contributions ΔE (kcal/mol) for the equilibrium structure and several transition structures of $(H_2O)_3$, optimized at the Hartree-Fock (HF) and Møller-Plesset (MP2) levels.

Structure	{ <i>u</i> 1	ud}	C ₃ {1	ıuu}	C _{3h} {	ppp}	{upd}*
optimization level	HF	MP2	HF	MP2	HF	MP2	HF
$\Delta E(\mathrm{HF})$	13.70	13.09	13.20	12.52	13.13	12.96	13.64
$\Delta E(MP2)^b$	3.60	4.69	3.13	4.46	2.60	2.93	3.45
δ ^{CP} _{HF} δ ^{CP} _{MP2} d	-1.22	-1.53	-1.07	-1.45	-0.91	1.07	-1.16
δĈP d MP2	-2.18	2.70	-1.86	-2.57	-1.43	-1.63	-2.06
$\delta^{CP} \doteq \delta^{CP}_{HF} + \delta^{CP}_{MP2}$	-3.39	-4.22	-2.93	-4.02	-2.33	-2.70	3.22
$\Delta E(HF) + \Delta E(MP2) + \delta^{CP}$	13.91	13.56	13.41	12.96	13.40	13.19	13.87

^aHF optimized structure only.

TABLE II. Overview of $(H_2O)_3$ calculated interaction energies $\Delta E (\text{cm}^{-1})$ for the stationary and "special" points. Structures are optimized at the HF and MP2 levels, as noted.

Structure	$\Delta E^{ m HFa}$	ΔE^{MP2}
"Chair" {uud}	0	0
"Crown" {uuu}	171(172)	209
"Planar" {ppp}	177(196)	128
{upd}	11(20)	
Saddle point		
{uup}	(140)	
Not stationary		
{ <i>upp</i> }	(126)	
Not stationary		

^aCounterpoise corrected energies, relative to {uud} structure; counterpoise uncorrected values in parentheses.

bMP2 contribution; frozen-core approximation employed.

^cCounterpoise correction at HF level.

^dCounterpoise correction at MP2 level.