		$C \cdot \cdots \cdot C \cdot c$	
	1	Gianni Spiga	
12-		Sta 206	
STA			
(1) W-		11 November 2022	
ZW-			
□ ▼		Homework 6	
		2.) a.) $\beta_{k}^{*} = \int_{n-1}^{n-1} (s_{k}) \times (r_{k})$ for Standardized model $r_{k} = \int_{n-1}^{n} \sum_{i=1}^{n} (x_{ik} - \overline{x}_{k}) (Y_{i} - \overline{Y})$	
Œ_		$r_k = \frac{1}{2} \sum_{i=1}^{n} (\lambda_{ik} - \overline{\lambda}_k) (Y_i - \overline{Y})$	
STAR		S. S.	
N *		K -/	
YX-		In the Standardized regression model, we can see	
		that the value of Bk, has no dependence on the other values of Bk, where if, so regardless of how many terms our in model, the regression coefficient	
		other values of By where iti, so regardless of	
		how many terms and in model the regression coefficient	s do
në në	D	For the original model, we have: $\beta^* = (\frac{Y}{\ln -1})^*$	<i>p</i> *
Z X		Jn-1, 5y v,	
10 W -		B, = 1 B,*	
II *		Jn-1 Sxx	
>*-			
		$\beta_k = 1$ J_{n-1} sy r_k	
7	N	Pk - Sy K	
<u> </u>		Jn-15XK	
T A -		B = C	
- K-		12K - SY . ryk	
八本-			
> k-		D = D $D = D$)
1		Bx = Bx 10 Thus, the coefficient remains uninfluenced to each Bx, by any other Bx; i \(\) i \(\) .	
		each Br. by any other Br. i #j.	
		$2b_{i}) SSR(x_{i} x_{(i)}) = SSR(x_{i})$	-
		(c) (v 1) (c) (c) (v v)	
	DE NO	SSR(X; 1X;) = SSE(X;, Xx)) - SSE(X;, Xx))	FIN
			1 1

SSE(XI) = SSR(XI/XI) + SSE(XI, XI) Xj=X2 XI = XI $X_{I} = X_{-j}$ $= SSE(X_{I}) - SSE(X_{I}, X_{J})$ $= SSE(X_{I}^{*}) - SSE(X_{I}^{*}, X_{J}^{*})$ $= Y'(I - |-|(X_{I}^{*}))Y - Y'(I - |-|(X_{J}^{*}, X_{J}^{*}))Y$ $-(x) = \times (x^T \times)^{-1} \times^{\mathbf{T}}$ 1x*xx*) (n o x=1-X; XI 11 + X + X + X + X X * T + X : X * = Y (1 11+ X * X * - 1 Jn) Y

CA

3.)
$$VIF_1 = VIF_2 = \frac{1}{1-R_1^2} = \frac{1}{1-R_2^2}$$

The kth diagonal element of the inverse correlation matrix v_{xx}^{-1} is the VIF

$$c_{xx} = \begin{bmatrix} 1 & r_{12} \\ r_{21} & 1 \end{bmatrix} \qquad c_{xx}^{-1} = \underbrace{1}_{-(r_{12} \cdot r_{21})} \begin{bmatrix} 1 & -r_{12} \\ -r_{21} & 1 \end{bmatrix}$$

$$r_{xx}^{-1} = \begin{bmatrix} 1 & -r_{12} \\ (|-r_{12} \cdot r_{21}) \\ -r_{1} & |-(r_{12} \cdot r_{21}) \end{bmatrix}$$

$$r_{xx}^{-1} = \begin{bmatrix} 1 & -r_{12} \\ (|-r_{12} \cdot r_{21}) \\ -r_{12} \end{bmatrix}$$

$$r_{xx}^{-1} = \begin{bmatrix} 1 & -r_{12} \\ (|-r_{21} \cdot r_{21}) \\ -r_{21} & (|-r_{21} \cdot r_{21}|) \end{bmatrix}$$

$$r_{xx}^{-1} = \begin{bmatrix} 1 & -r_{12} \\ 1-R_1^2 & -r_{12} \end{bmatrix}$$
 By hint...

We know that the VIF is the 18th diagonal element, thus the proof is complete.