

Spin Studies Status

J. Pela, M.Kenzie, D. Futyan, C. Seez Imperial College London

Getting the frames right

What was done:

- Implemented Helicity (a la D. Futayan and C. Seez) properly (i.e. e1-e2/|(g1+g2).P|)
- Implemented the Lisbon Quarkonia Frame changing software.
- Found & correted some bugs in my code

Impromented

 All methods for same frame change for cos(theta*) distribution now match, including Helicity 3 implemented methods.

Choosing a Frame

 The most promissing frame looks to be the Collins-Sopper.

Understanding Differences

- Noticed that setting the cross section of SM Higgs and Gravition to the same value give different Yields on each categories.
 - Graviton and SM Higgs have different kinematic properties
- Decided to look at some kinematics from the diphoton system
 - Boost
 - Diphoton Angle

Diphoton boost & angle

- Boost is similar on all categories
- Photons angle is different on all categories, and the graviton is on average higger than SM Higgs

Splitting Categories on cos(Theta* bins

- Decided to split all categories in 2 bins in cos(Theta*).
 - Choose the crossing point of each distribution
- Points
 - Cat0: 0.7
 - Cat1: 0.3
 - Cat2: 0.4
 - Cat3: 0.5

Mass Fitting in each Category

- Fitted mass spectrum in each category
 - Using a pow2 function
 - Excluding signal region (122 to 128 GeV)

Comparison between signal

- Since event Yields for SM Higgs and Graviton are different between categories and even in the total of categories, I normalized Gaviton number of events to SM Higgs.
 - This is not valid!!! But what other option is?

Signal plus background

 Now adding signals to background estimation and overlaying data seen at signal area.

Next Steps & Questions

Next Steps:

- Look at normalization
- Calculate Chi2
- Questions
 - What normalization to use?
 - Should I do background subtraction before Chi2 test? How to handle errors?

Results

As usual results can be found at:

https://pela.web.cern.ch/pela/cms/ic/hgg/SpinStudies/