Week 2 Quiz Solutions

For the ideal operational amplifier circuit above, which of the following are true?

2.

For the difference amplifier circuit above, if R_1 = R_4 =1000 Ω and R_f = R_g =2000 Ω , what is the gain, G, of the circuit where v_o =G(v_2 - v_1)?

Consider the inverting differentiator shown above. If R=2000 Ω and C=0.25 μ F, and Vi(t)=e -2000tV what is the accurate expression for Vo(t)?

- Vout(t)=2000e(-2000t)V
- Vout(t)=.005e(-2000t)V

Vo= -RL dV:N

Vout(t)=e(-2000t)V

O Vout(t)=-2000e(-2000t)V

= - (2000 0.25x106) dv.N

= -0.5×10-3 (-2000) e-2000t

4. The input to the following op amp circuit is $vi(t)=10\cos(100t)$. If R=10k Ω and C=2 μ F, determine the value of vo in volts and select the most appropriate answer below.

$$vo(t)=-10\cos(100t)$$
.

For the inverting operational amplifier circuit above, if R2=10k Ω and the closed-loop gain is G= -5000, what is the appropriate resistance for R1? Submit your answer in units of Ohms, while omitting the unit. For example, if your answer is 1000 Ω submit 1000.

$$G = -\frac{R_2}{R_1} = 7 - 5000 = \frac{10000}{R_1}$$

$$Q_1 = 10000 = 2.2$$

For this question, Ra=3k Ω , Rb=12k Ω , Rc=3k Ω , and Rd=12k Ω , va=6V and vb=14V. What is vo? Give your answer in Volts and omit the units from your answer.

$$N_{0} = \frac{R_{b}}{R_{a}} (V_{5} - V_{a}) = \frac{12}{3} (14 - 6)$$

$$= 4(8) = 32$$

For the circuit shown, $Vin=Vin(t)=sin(\omega t)$ and $R=100\Omega$. A plot of the output voltage VO(t) is shown. What is the maximum current in milliamps that can be supplied by the voltage

= Max Voltage Naximum current = M = 0.5 V (from plot) .005 A 5 mA

8. An opamp is used as a buffer between the source and the load resistor R in the circuit of question 7 as shown. What minimum current in milliamps must the op-amp be able to supply so that $V_0(t) = V_{in}(t)$?

9. For the circuit shown, V_1 = 3V, V_2 = -2V, R_1 = 2k Ω , R_f = 10k Ω , and the output voltage V_0 = -7V. What is the value of the resistor R_2 in k Ω ?

$$V_{1}$$
 V_{2}
 V_{2}
 V_{3}
 V_{4}
 V_{5}
 V_{6}
 V_{7}
 V_{7}
 V_{8}
 V_{8}
 V_{8}
 V_{8}
 V_{9}
 V_{9}
 V_{1}
 V_{2}
 V_{1}
 V_{2}
 V_{3}
 V_{4}
 V_{7}
 V_{8}
 V_{8}
 V_{9}
 V_{9}
 V_{1}
 V_{1}
 V_{2}
 V_{1}
 V_{2}
 V_{1}
 V_{2}
 V_{3}
 V_{4}
 V_{7}
 V_{8}
 V_{8}
 V_{8}
 V_{8}
 V_{9}
 V_{9