

Probability distributions

Session Expectations

Online edition	The usual
 → Switch on your video when speaking (if possible) → Participate in the discussions → Mute yourself when you are not speaking 	 → Be present → Be honest → Be open → Be curious

What to expect

- Types of data
- Discrete Vs Continuous
- ☐ Statistical distribution
- □ Break
- ☐ PMF, PDF and CDF

Sampling Keywords

- 1. **Population**: It is the complete set of all possible subjects of interest.
- 2. **Sample**: a subset of the population that is selected for study. should ideally be representative of the population
- 3. **Parameter**: a numerical characteristic of a population
- Population mean = μ , size = N
- 4. **Statistic**: a numerical characteristic of a sample. It is calculated from sample data and are used to estimate population parameters.
- Sample mean = x^- , size = n
- 5. **Sampling Distribution**: is the probability distribution of a statistic based on all possible samples of a fixed size drawn from a population.
- 6. **Bias**: the systematic error in a study that leads to incorrect estimates of population parameters.
- 7. **Variance** is a measure of the dispersion or spread of a set of data points around their mean.
- 8. **Standard Deviation**: *sqrt(variance)*. Also, a measure of dispersion because it is in the same units as the original data.

0

Symbols in Sampling

Name	Population Parameters	Sample Statistics
Mean	μ	X
Median	η	x
Mode	No symbol	No symbol
Range	R	R
Variance	σ^2	s ²
Standard Deviation	σ	S
Sample Size	N	n
Estimates	δ	n/a

Symbols in statistics

Symbol	Name	Symbol	Name
Σ	Sum	n	Size of a subsample
^	Hat, used above a parameter to denote an estimate	N	Total sample size
ANOVA	Analysis of variance	OR	Odds ratio
α	Alpha, probability of Type I error	P	Statistical probability
β	Beta, probability of Type II error; or population regression coefficient	X^2	X ² test or statistic
CI	Confidence interval	r	Bivariate correlation coefficient
CV	Coefficient of variation	R	Multivariate correlation coefficient
Δ	Delta, change	RR	Relative risk
δ	Delta, true sampling error	ρ	Rho, population coefficient
3	Epsilon, true experimental error	SD	Standard deviation of a sample
H_0	Null hypothesis	SE	Standard error
H_1	Alternate hypothesis; specify whether 1 or 2 sided	SEM	Standard error of the mean
κ	Kappa statistic	t	Student t; specify a level
μ	Population mean	U	Mann-Whitney U (Wilcoxon) statistic
		z	z score

O

Types of data

Discrete

Continuous

It takes on distinct, countable values	It takes on any value within a range, and the number of possible values within that range is infinite.
- Countable	- Measureable
- Individually whole	- Ungrouped whole
- Can have hierarchy	- Cannot have hierarchy unless grouped
- Can be sorted	- Cannot be sorted
- Integers	- Any real numbers
- Numbers of cars, products, items, books, customers etc	- Weight, Height, Distance travelled, water volume etc

Statistical distributions

These are mathematical functions that describe the likelihood of different outcomes occurring in a population or sample

1. Normal Distribution (Gaussian)

- Symmetric around their mean, bell-shaped distribution characterized by its mean and standard deviation.
- μ is the mean and σ is the standard deviation. (mean, median & mode are equal)
- Widely used in statistics due to the central limit theorem.
 - Naturally occurring phenomena such as heights, weights, test scores, temperature.

2. Binomial Distribution

- Models the number of successes in a fixed number of independent Bernoulli trials, where each trial has the same probability of success.
- the number of trials, n, and the probability of success, p.
 - success/failure experiments.

3. Poisson Distribution

- Models the number of events occurring in a fixed interval of time or space, given a known average rate of occurrence.
- the average rate of occurrence λ
 - waiting times between phone calls, durations of time until failure in reliability engineering, and inter-arrival times in queuing systems.

4. Exponential Distribution

- Describes the time between events in a Poisson process, where events occur continuously and independently at a constant average rate.
- λ.

•••

5. Uniform Distribution

- Assigns equal probability to all outcomes within a specified range
- Minimum, maximum.
 - selecting a random number between two values i.e. coin toss, die throw

6. Bernoulli Distribution

- a single trial with two possible outcomes:
- success (p) or failure (1-p).
 - success/failure experiments.

7. Gamma Distribution

- Models the waiting time until a specified number of events occur in a Poisson process, where events occur continuously and independently at a constant average rate.
- the shape parameter k and the rate parameter θ
 - queuing theory, finance, and insurance.

8. Beta Distribution

- Describes the probability distribution of a random variable bounded between 0 and 1.
- two shape parameters, α and β
 - Bayesian statistics, modeling proportions in epidemiology, and A/B testing in marketing

Probability mass function (PMF)

- A function that associates probabilities with discrete random variables.
- Its a function over the sample space of a discrete random variable X which gives the probability that X is equal to a certain value.
- PMF is strictly positive.
- Based on your experience of rolling a dice, you can develop a PMF showing the probabilities of each possible value between 1 and 6 occurring.

Applications

- 1. It is used to calculate the mean and variance of the discrete distribution.
- 2. It is used in binomial and Poisson distribution to find the probability value where it uses discrete values.

$$egin{aligned} f(x) &= \mathrm{P}[X = x] \ f(x) &\geq 0 ext{ for all } x \in S, \ \sum_{x \in S} f(x) &= 1. \end{aligned}$$

Probability density function (PDF)

$$\int\limits_a^b f(x) \mathrm{d}x = \mathrm{P}[a < X \leq b]$$

$$\text{(i)} \qquad f(x) \geq 0 \text{ for all } x \in \mathbb{R},$$

$$\int\limits_{-\infty}^{\infty}f(x)\mathrm{d}x=1.$$

- Its a function that specifies the likelihood of a continuous random variable falling within a particular range of values.
- > PDF is also positive.
- Unlike the PMF, the PDF does not directly give probabilities but rather density values.

Applications

1. used to calculate the probabilities associated with the random variables

Cumulative density functions (CDF)

- Its a function that gives the probability that a random variable is less than or equal to a specified value.
- It is cumulative, adding up probabilities.
- It is denoted as F(x), where x is the value.

PMF/CDF

$$F(x) = \mathrm{P}[X \leq x]$$
 $P[a < X \leq b] = F(b) - F(a)$

PDF/CDF

$$F(x) = \int\limits_{-\infty}^{x} f(t) \mathrm{d}t \qquad \qquad rac{\mathrm{d}}{\mathrm{d}x} F(x) = f(x)$$

