CIRCUITOS DIGITAIS

INTRODUÇÃO

Prof. Marcelo Grandi Mandelli mgmandelli@unb.br

Professor

Professor Marcelo Grandi Mandelli

Professor Assistente – Universidade de Santa Cruz do Sul

Doutorado em cotutela PUCRS / Universidade de Montpellier,
França

■ Mestrado em Ciência da Computação – PUCRS

■ Engenharia de Computação – PUCRS

Professor

Professor Marcelo Grandi Mandelli

- mgmandelli@unb.br
- Sala A1-63-28

http://www.cic.unb.br/o-cic/infraestrutura/mapa/

Circuitos Digitais

 Componentes eletrônicos digitais estão em tudo a nossa volta

Objetivos

 Compreender o hardware utilizado em todos esses equipamentos

- Projetar circuitos digitais
 - menores
 - desempenho
 - consumo de potência
- □ Testar e analisar circuitos digitais

Por que Circuitos?

- Caminho circular por onde flui corrente elétrica
- Um circuito é composto de componentes com funções específicas
 - Resistores (limitam valor da corrente, dissipam calor)
 - Fonte (fornece energia elétrica)
 - Capacitores (armazenadores de carga elétrica)
 - Indutores (usados em motores, transformadores, ...)

Circuitos eletrônicos

Circuitos Analógicos

Circuitos Digitais

Analógico vs Digital

□ Circuito Analógico

 sinais analógicos -> tem um conjunto infinito de valores possíveis

Analógico vs Digital

Circuito Digital

sinais digitais → conjunto finito de valores possíveis
→ 2 valores

Circuitos Digitais

- Sinal digital → operam de modo binário :
 - cada tensão de entrada ou saída tem valor 0 ou 1 ->
 intervalos de tensão predefinidos

Por que usar Circuitos Digitais?

Projeto mais simples

□ Fácil armazenamento de informação

□ Os circuitos digitais são mais adequados à integração → Chips

 Os circuitos digitais são menos afetados por ruídos

■ SINAL ANALÓGICO

 Os circuitos digitais são menos afetados por ruídos

■ SINAL ANALÓGICO

 Os circuitos digitais são menos afetados por ruídos

■ SINAL DIGITAL

SINAL ENVIADO

SINAL RECEBIDO

 Os circuitos digitais são menos afetados por ruídos

■ SINAL DIGITAL

SINAL ENVIADO

SINAL RECEBIDO

Conversores Analógico ←→ Digital

Conversores Analógico ←→ Digital

O que vamos estudar?

- 1) Componentes eletrônicos em circuitos digitais
 - Conversão analogico ↔ digital
- 2) Lógica booleana
- 3) Blocos Básicos em Circuitos Digitais
- 4) Projeto de circuitos (incluindo simplificação, e aspectos importantes na implementação dos circuitos)
 - Circuitos combinacionais
 - Circuitos com memória

Como vamos estudar?

Aulas teóricas

- Terças-feiras às 8h, na sala PJC BT 125
- Quintas-feiras às 8h, na sala PAT AT 021
- Aulas expositivas, resolução de exercícios
- Projetos

Aulas práticas

- Sextas-feiras (depende da turma), no Linf 5
- Pré-projeto semanal
- Grupos de 2 alunos
- Relatório por grupo

Avaliação

 Presença mínima de 75% nas aulas teóricas e 75% nas aulas de laboratório

□ Média de Provas (P1, P2, e P3):

$$M_P = \frac{2 \times P_1 + 3 \times P_2 + 3 \times P_3}{8}$$

□ Média de Laboratório: M_L

Avaliação

- A média final será calculada se:
 - Presença aulas teóricas maior ou igual a 75%
 - Presença aulas laboratório maior ou igual a 75%
 - Mp ≥5
 - ML ≥5
- □ Média final para efeito de menção:

$$M_{P} = \frac{7 \times M_{P} + 3 \times M_{L}}{10}$$

Cronograma

- □ Prova P1: 13 de abril de 2017 (quinta-feira)
- □ Prova P2: 25 de maio de 2017 (quinta-feira)
- □ Prova P3: 29 de junho de 2017 (quinta-feira)
- Prova de Reposição: 4 de julho de 2017 (terçafeira)

- Prova de reposição
 - possibilita ao aluno que faltou uma das provas repor essa nota
 - somente alunos que efetivamente faltaram uma das provas poderão fazer a prova de reposição

Observações

A presença é controlada: frequência deve ser superior a 75% tanto nas aulas teóricas quanto no laboratório

- □ Sala de aula:
 - Evitar
 - Barulhos de celular 😩
 - □ Conversas laterais 😂
 - Atrasos ②
 - Se tiverem dúvidas, perguntem! Participem! <a>

Ambiente Aprender.unb.br (Moodle)

- Localização da Disciplina:
 - Instituto de Ciências Exatas Ciência da Computação
- □ Nome da Disciplina:
 - Circuitos Digitais CD
- Nome Resumido:
 - CD-CD
- Código de Acesso:
 - CD2017

Ambiente Aprender.unb.br (Moodle)

A inscrição no moodle da disciplina é obrigatória

Todos os recursos (slides, textos, exercícios, trabalhos) e a comunicação (notas, avisos, etc..) será feita por esse canal

Bibliografia

- TOCCI, R.J. & WIDMER, N.S. Sistemas digitais: princípios e aplicações. 11ª ed, Prentice-Hall, 2011.
- FLOYD, T. L. Sistemas digitais: fundamentos e aplicações. 9 ed, Bookman, 2007.

