Solutions

Prof. Dr. Md. Hafezur Rahaman

Dept. of Applied Chemistry and Chemical Engineering Islamic University, Kushtia 7003, Bangladesh

 Solution: A homogeneous mixture of two or more substances on molecular level.

- A solution can be physically separated
- All portions of the solution have the same properties

Examples: salt water, blood, sugar water, gasoline

Solutes and Solvents

- Solute: a substance that is dissolved to make a solution.
 - when dissolved it separates into individual particles
- Solvent: is a substance that dissolves a solute.
 - when the solute is dissolved into the solvent it is not possible to identify the solvent and solute as individual parts

 The <u>solvent</u> is the largest part of the solution and the <u>solute</u> is the smallest part of the solution

Examples of Solutes and Solvents

Saltwatersalt=solutewater=solvent

saltwaterfishing365.com

ucdavismagazine.ucdavis.edu

TYPES AND EXAMPLES OF SOLUTIONS		
TYPES	Example	
Solid/Solid	Alloys (brass, etc.)	
Solid/Liquid	Ocean water	
Solid/Gas	Sulfur vapor in air	
Liquid/Solid	Mercury in copper	
Liquid/Liquid	Alcohol in water	
Liquid/Gas	Fog	
Gas/Solid	Hydrogen adhered to platinum	
Gas/Liquid	Softdrink	
Gas/gas	Air	

Examples of Solutions

 Solutions can be made from solids, liquids, and gases

- <u>Air:</u> solute=oxygen, solvent=nitrogen (oxygen is dissolved in nitrogen)
- Humidity: solute=liquid, solvent=gas (water is dissolved into air)
- Stainless steel: solute=chromium metal, solvent=iron (chromium metal is dissolved in iron to form a shiny steel)

www.germes-online.com

Properties of Solvents change in Solutions

 A solution's physical properties are different from the physical properties of the pure solvent.

 The amount of solute in the solution determines how much the physical properties of the solvent are changed

Lowering the freezing point

- Freezing point: temperature at which a liquid becomes a solid
- The freezing point of a liquid solvent decreases when a solute is dissolved in it.
- Example
 - Water, pure = 0 degrees C.
 - Water + salt = a freezing point lower than 0 degrees C.

coolcosmos.ipac.caltech.edu

Lowering the freezing point

- Making Ice Cream
 - Depends on lowering the freezing point of a solvent
 - Canister hold liquid ice cream ingredients
 - OPut in a larger container containing ice and salt
 - Salt lowers the freezing point of the mixture
 - Causes ice to melt (absorbing heat from surroundings)
 - Ice cream mix is chilled when its contents are constantly stirred
 - Tiny ice crystals form all at once instead of gradually
 - Causing the ice cream to be smooth and creamy

Raising the boiling point

- Boiling point: temperature when a liquid turns into a gas
- A solution's boiling point can be raised by the amount of solute in the solvent.
- Example:
 - Antifreeze added to cars prevent it from overheating or having the liquid's reach their boiling point

www.state.tn.us

www.classic-car-magazine.co.uk

- Concentration: The amount of solute dissolved in a solvent at a given temperature.
- Examples:
 - OHot chocolate...the more powdered mix you add the higher the concentration of chocolate
 - Lemonade...the more frozen lemon concentrate or powdered mix you add the more tart the drink becomes

www.thesunblog.com

Degrees of Concentration

- Dilute: a solution has a low concentration of solute
- Saturated: a solution that contains the maximum amount of solute that can be dissolved into the solvent at a given temperature.
- Supersaturated: a solution can contain more solute than normal by raising the temperature of the solvent.

Ways to Express Concentrations

- Mass percentage
- Mole fraction
- Molarity
- Molality
- Normality

Mass Percent

- Solutions can also be represented as percent of solute in a specific mass of solution.
- For a solid dissolved in water, you use percent by mass which is Mass Percent.
- % by mass = $\frac{\text{mass solute}}{\text{mass of solution}} \times 100$

** Mass of solution = solute mass + solvent mass

Molarity

- Molarity is the concentration of a solution expressed in moles of solute per Liter of solution.
- Molarity is a conversion factor for calculations

Molarity (M) = <u>moles of solute</u> Liters of solution Molarity

M = mol (solute)

L (solution)

 Example 1: What is the molarity of a solution that has 2.3 moles of sodium chloride in 0.45 liters of solution?

2.3 moles NaCl = 5.1M NaCl 0.45 L

Molarity

M = mol (solute)

L (solution)

Example 2: How many grams of NaCl are needed to make 3.0 L of 1.5 M solution?

= 260 g NaCl

Solubility

Solubility: the amount of the substance that will dissolve in a certain amount of solvent at a given temperature.

- The solubility of a solute can be changed
 - Oby raising the temperature
 - Olf solute is a gas...then you can change the pressure...higher pressure of gas in a liquid increases the amount of gas that can be dissolved

Solubility and Temperature

Solute	Increased Temperature	Decreased Temperature
Solid	Increase in solubility	Decrease in solubility
Gas	Decrease in solubility	Increase in solubility

Solubility and Pressure

Solute	Increased Pressure	Decreased Pressure
Solid	No effect on solubility	No effect on solubility
Gas	Increase in solubility	Decrease in solubility

Solubility depends on Molecular Structure

 When a substance dissolves, its molecules (covalent bonds) or ions (ionic bonds) separate from one another and become evenly mixed with molecules of the solvent

- Water contains polar covalent bonds.
 - Negative region (O)
 - Positive region (H)

Ethane, a nonpolar molecule

www.emc.maricopa.edu

Polar and Nonpolar

- Water and oil do not mix
 - Water is polar...negative and positive regions
 - Oil is nonpolar...no charge

www.historyforkids.org

- Molecules are not attracted to each other (opposite charges attract each other) so they do not mix
- Water and sugar or salt mix
 - Water is polar
 - Salt and sugar are also polar
 - Opposite charged molecules are attracted to each other

Solutions can be acidic, basic, or neutral

Acid	Base
Donate H+ ion (protonatomic number is 1=1 proton)	Can accept a H ⁺ ionusually release an OH ⁻ ion than can accept a H ⁺ ion.
Taste sour	Taste bitter
Produce burning or prickling sensation on skin	Feel slippery
React with most metals	

Common Household Acids & Bases

Acids Bases

www.mhhe.com

pH scale

- pH scale: potential of Hydrogen
- Higher H+ lower number (Acid)
- Lower H+ higher number (Base)
- Range is 0-14, 7 is neutral
- Common Acids and Bases
 - OBase: Soap pH 10
 - OAcid: lemon juice pH 2
- Acids and Bases neutralize each other

Metal alloys are solid mixtures

Alloy: a mixture of one or more metals and one or more other elements...made from melting and mixing

- Examples:
 - OBrass: zinc and copper
 - Bronze: tin and copper
 - Stainless steel: chromium and iron

art-foundry.com

Liquid-Liquid Solutions

- 1. Phenol-water
- 2. Methanol-cyclohexane
- 3. Carbondisulphide-methanol
- 4. Hexane aniline

Azeotropic Mixture

Distribution Law

