5XCCO Biopotential and Neural Interface Circuits

Electronics Fundamentals

Pieter Harpe

Outline

- Devices: MOS transistors
 - Diffusion & Drift
 - Above threshold & Sub-threshold operation
- Noise
 - Shot noise, 1/f noise
 - Noise in devices
 - Noise in circuits

Basic N-channel MOSFET Behavior

$$V_{GS} > V_{th} \& V_{DS} < V_{GS} - V_{th}$$
: Above threshold, linear mode $I_{ds} = \mu_n C_{ox}^W / \{(V_{gs} - V_{th})V_{ds} - \frac{1}{2}V_{ds}^2\}$

$$V_{GS} > V_{th} \& V_{DS} > V_{GS} - V_{th}$$
: Above threshold, saturation mode $I_{ds} = \frac{1}{2} \mu_n C_{ox}^W / (V_{gs} - V_{th})^2$

Diffusion & Drift Current

Diffusion:
Difference in concentration

→ Current flow

Drift:
Difference in surface potential

→ Current flow

= Electron

Sub/Above-Threshold Behavior

<u>Sub</u>-Threshold: Small V_{gs}

- Depletion; few electrons in channel
- V_{ds} causes concentration difference
- Diffusion current: $I_{ds} = I_0 \exp(K_s V_{gs}/\Phi_t)$

= Electron

Above-Threshold: Large V_{gs}

- Depletion; many electrons in channel
- V_{ds} causes electric field
- Drift current: $I_{ds} = \frac{1}{2} \mu_n C_{ox}^W / (V_{gs} V_{th})^2$

= Fixed negative charge

Extended Behavior in Saturation

• Change in I_{ds} and g_m around V_{th} because of *diffusion*

I = weak inversion: diffusion current

II = moderate inversion: transition area

III = strong inversion: drift current

Note: the typical saturation model is ONLY valid in strong inversion

I_{ds}-V_{gs}-V_{ds} Behavior

Two times the same picture, but Y-axis changed from linear to logarithmic.

- Difference between each red/blue line is a V_{gs} step of 100mV
- Green line is the border between linear and saturation region
- Blue lines: $V_{gs} > V_{th}$
 - Strong inversion mode
 - I_{ds} quadratic to V_{gs}
 - Saturation if $V_{ds} > V_{gs} V_{th}$
- Red lines: V_{gs} < V_{th}
 - Weak inversion mode
 - I_{ds} exponential to V_{gs}
 - Saturation if $V_{ds} > 4\Phi_t$ $(\Phi_t = kT/q, 4\Phi_t \approx 100mV)$

Overview of Modes

Linear & saturation modes can occur with sub & above threshold

	Linear Region	Saturation Region
Sub-Threshold = Weak Inversion	$V_{gs} < V_{th}$ $V_{ds} < 4\Phi_{t}$ (≈ 100 mV)	$V_{gs} < V_{th}$ $V_{ds} > 4\Phi_{t} (\approx 100 \text{mV})$
Above-Threshold = Strong Inversion	$V_{gs} > V_{th}$ $V_{ds} < V_{gs} - V_{th}$	$V_{gs} > V_{th}$ $V_{ds} > V_{gs} - V_{th}$

$$\Phi_{\rm t}$$
 = kT/q

$$g_m = \partial I_{ds} / \partial V_{gs}$$

Sub-Threshold, Saturation	Above-Threshold, Saturation
$I_{ds} = I_0 \exp(K_s V_{gs} / \Phi_t)$	$I_{ds} = \frac{1}{2} \mu_n C_{ox}^{W} / (V_{gs} - V_{th})^2$
g_m = $K_s/\Phi_t\cdot I_{DS}\approx 27~I_{DS}$ K_s is constant (around $^2/_3$), Φ_t = kT/q	$g_{m} = \mu_{n}C_{ox}^{W}/_{L}(V_{GS}^{-}V_{th})$ $= \sqrt{\{2\mu_{n}C_{ox}^{W}/_{L}I_{DS}^{-}\}}$
$g_m/I_{DS} = K_s/\Phi_t \approx 27$ *	$g_{\rm m}/I_{\rm DS} = \sqrt{\{2\mu_{\rm n}C_{\rm ox}^{\rm W}/_{\rm L}/I_{\rm DS}\}}$

Sub-threshold is more *power efficient*

Note: bipolar transistors (NPN, PNP) behave similar to sub-threshold MOSFETs:

•
$$I_{ce} = I_0 \exp(V_{be}/\Phi_t)$$

•
$$g_m = 1/\Phi_t \cdot I_{CE} \approx 40 I_{CE}$$

* Note: the value 27 is an example or approximation. The actual value my vary.

Transit Time

 Transit time: average time of an electron to travel the length of the channel

Sub-threshold is slower but scales down with L², above-threshold scales ultimately with L

Sub/Above-Threshold Comparison

Sub-Threshold	Above-Threshold	
Saturation current is exponential in $V_{\rm gs}$	Saturation current is square law in V _{gs}	
V _{dsat} is constant, approx. 100mV	V_{dsat} is variable with V_{gs} : $V_{gs} - V_{th}$	
Current flows by diffusion	Current flows mainly by drift	
Charge concentrations are small	Charge concentrations are large	
Currents are small	Currents are large	
Good for ultra-low-power operation	Good for high-power operation	
Power efficiency is constant with current	Power efficiency is lower and degrades with larger currents	
Higher noise and offset (absolute values)	Lower noise and offset	
Can work on low power supply voltages	Needs higher power supply voltages	
Reduced speed of operation	Higher speed of operation	
Becoming increasingly important	Traditional use in the past	

Outline

- Devices: MOS transistors
 - Diffusion & Drift
 - Above threshold & Sub-threshold operation
- Noise
 - Shot noise, 1/f noise
 - Noise in devices
 - Noise in circuits

Shot Noise (1)

• Current: flow of charge (electrons/holes) → <u>Discrete</u>

Shot Noise (2)

Time domain

Mean value: \overline{I} Variance: σ_I^2

Frequency domain

Power Spectral Density (PSD): P(f) or S₁²(f) [A²/Hz]

• Because of shot noise, a current with average value \(\bar{\text{l}} \) will have a noise P(f) of 2q\(\bar{\text{l}} \)

• Total noise power: $I_{n.rms}^2 = \sigma_I^2$: $2q\bar{I}\Delta f$, where Δf is the bandwidth of interest

Summary Noise Terminology

Time domain		Current	Voltage
	Amplitude	I _{n,rms} [A]	V _{n,rms} [V]
	Power	$I_{n,rms}^{2} [A^2]$	$V_{n,rms}^{2} [V^{2}]$
Frequency domain (spectral density)			
	Amplitude spectral density	$S_{I}(f) [A/\sqrt{Hz}]$	$S_{V}(f) [V/\sqrt{Hz}]$
	Power spectral density	$S_1^2(f) [A^2/Hz]$	$S_V^2(f)$ [V ² /Hz]
-	ency domain (integrated noise), and on to time domain		
	Amplitude of integrated noise (in a bandwidth Δf)	$I_{n,rms} = \sqrt{\Delta f \cdot S_I(f)} [A]$	$V_{n,rms} = \sqrt{\Delta f \cdot S_V(f)} [V]$
	Power of integrated noise (in a bandwidth Δf)	$I_{n,rms}^{2} = \Delta f \cdot S_{l}^{2}(f) [A^{2}]$	$V_{n,rms}^{2} = \Delta f \cdot S_{V}^{2}(f) [V^{2}]$

Note: the term "power" used in noise terminology refers to squared amplitudes, like V² or I², but it is not a power in "Watt"!

Exercise 1: SNR

Consider at some point in our system, we have a signal and we have thermal noise.

The signal is a sinusoid with an amplitude of 1mV.

The thermal noise has a spectral density of $3\mu V/\sqrt{Hz}$ and a bandwidth of 100Hz.

- a) Calculate the signal power
- b) Calculate the integrated noise power
- c) Calculate the rms value of the noise
- d) Calculate the SNR in this system (in dB)

Resistor Noise (1)

- Current flows:
 - Drift (due to externally applied voltage)
 - Random thermal movement
- Signal current determined by drift (I = V/R)
- Noise dominated by thermal movement (I_t): $P(f) = 2q\bar{I}_t$, which ends up in:
 - Current PSD: $S_1^2(f) = 4kTG = 4kT/R$

Resistor Noise (2)

- Current PSD: $S_1^2(f) = 4kTG$
- Voltage PSD: $S_V^2(f) = 4kTR$
- $S_V^2(f) = S_I^2(f) \cdot R^2$
- The direction of a noise source doesn't matter, as they are random sources with average 0.

Sub-Threshold MOSFET Noise

Sub-Threshold Noise, Gain and Power

• In saturation:

$$-g_{\rm m} = K_{\rm s}/\Phi_{\rm t}\cdot I_{\rm DSAT}$$
 ($\Phi_{\rm t}\approx 25{\rm mV}$, $K_{\rm s}/\Phi_{\rm t}\approx 27$)

$$-S_1^2(f) = 2qI_{DSAT}$$

$$-v_{g,n}^{2}(f) = S_{l}^{2}(f) / g_{m}^{2} \approx kT / 9I_{DSAT} \approx (4kT \cdot {}^{2}/_{3}) / g_{m}$$

More power (I_{DS}) :

- Proportionally higher g_m
- Lower input-referred noise

$$v_{g,n}^{2}(f) \propto 1 / I_{DSAT} \propto 1 / g_{m}$$

Above-Threshold Noise, Gain and Power

• In saturation:

$$-g_{m} \propto \sqrt{I_{DSAT}}$$

$$-S_{I}^{2}(f) = (4kT \cdot {}^{2}/_{3}) \cdot g_{m}$$

$$-v_{g,n}^{2}(f) = S_{I}^{2}(f) / g_{m}^{2} \approx (4kT \cdot {}^{2}/_{3}) / g_{m} \propto 1 / \sqrt{I_{DSAT}}$$

More power (I_{DS}):

- Higher g_m , but only with $\sqrt{}$
- Lower input-referred noise, but only as:

$$v_{g,n}^{2}(f) \propto 1 / \sqrt{I_{DSAT}} \propto 1 / g_{m}$$

Sub/Above-Threshold Comparison

Above-Threshold

- ${ullet} \; {ullet} \; {ullet}$
- $v_{g,n}^{2}(f) \approx (4kT \cdot 2/3) / g_{m}$
- $v_{g,n}^2(f) \propto 1 / I_{DSAT}$

•
$$g_{\rm m} \propto \sqrt{I_{\rm DSAT}}$$

$$\bullet v_{g,n}^2(f) \approx (4kT \cdot 2/3) / g_m$$

•
$$v_{g,n}^{2}(f) \propto 1 / \sqrt{I_{DSAT}}$$

Sub-Threshold more power efficient: higher g_m and lower $v_{g,n}^2(f)$ for the same I_{DS}

NMOS Small-Signal Model (in Saturation)

- $g_m \cdot v_{gs}$ represents the transconductance
- r_o represents the finite output resistance
- I_n²(f) represents the transistor's noise

1/f or Flicker Noise

- Not as fundamental as shot noise
 - Depends on a.o. technology, purity, PMOS or NMOS, area (WL)
- Still largely empirical; limited understanding
 - Charges get trapped in the isolation layer, released after delay
 - Deeper trap has a higher energy level but takes longer → 1/f nature

1/f in Transistors

$$S_1^2(f) =$$

$$K I_{DS}^2 / f \qquad \text{in sub-threshold}$$

$$K I_{DS} / f \qquad \text{in above-threshold}$$

$$\infty g_m^2 / f \qquad \text{in both cases}$$

- Improve 1/f noise performance by:
 - Increase area WL
 - Use PMOS instead of NMOS
 - Use bipolar transistors
 - Use special circuit techniques, e.g. chopping

Noise in Circuits

Resistive divider with capacitor

$$V_{out} / V_{in} = R_1 / (R_1 + R_2)$$

$$R_2 = 2 R_1$$

- How to choose R₁ and R₂?
 - $R_1 = 1\Omega, R_2 = 2\Omega$?
 - $-R_1 = 1G\Omega$, $R_2 = 2G\Omega$?

Adding Noises

 Superposition: noise contributions can be added together, but in the power domain!

C was ignored until now: what is its influence?

Influence of Capacitor

Low-pass filter with cut-off:

$$f_{3dB} = 1 / 2\pi R_{eff}C$$
, $R_{eff} = R_1 R_2 / (R_1 + R_2)$

- $P_{\text{nout}} = \int V_{\text{nout}}^2$ (f) = kT/C, independent on R_1 and R_2 !
- Higher R₁ and R₂ increases noise PSD at low frequencies, but reduces bandwidth, resulting in the same total noise power

Cadence AC Noise Simulation

- $R_1 = 3k\Omega$, $R_2 = 6k\Omega$, C = 1pF
- $^{8}/_{3}kTR_{1} = 33aV^{2}/Hz$, $kT/C = 4.1nV^{2}$

Exercise 2: Noise in an RC Network

Consider the circuit composed of a DC voltage source $V_1 = 1V$, two resistors $R_1 = 1M\Omega$, $R_2 = 2M\Omega$, and a capacitor C = 10pF. Both R_1 and R_2 generate thermal noise.

- a) Calculate the DC output voltage V_{out}.
- b) Calculate the noise power spectral density at the output V_{out} for very low frequencies. (so you can ignore C)
- c) What is the total integrated noise power at output V_{out}?

Sampled Noise

Switched Capacitor networks; Sample&Hold (S&H) for ADCs

- Transistor in linear mode or saturation?
 - Linear mode, it is a switch with $V_{ds} \approx 0V$
- How is the transistor modeled in this mode?
 - As a resistor: r_{on}
- What is the noise model?
 - $S_V^2(f) = 4kTr_{on}$, just like a resistor!
- What is the total noise power at the output?
 - $P_{nout} = kT / C$
- What does the noise look like in the time-domain?
 - 2 phases; continuous noise and sampled noise

Cadence Transient Noise Simulation

• At the sampling moment, the S&H takes a sample of:

(1) the input signal PLUS (2) the instantaneous noise

Switch closed: continuous Switch open: sampled noise, total power: kT/C noise, total power: kT/C

Basic Differential Pair Amplifier

- VDD = 1V, I_{BIAS} = 2 μ A, R = 200 $k\Omega$, sub-threshold, current mirror 1:1
- $I_{DS} = 1 \mu A$
- $g_m = 25 \mu A/V$
- $A_0 = g_m r_{out} = 5$
- $v_{\text{nout}}^2(f) =$ $2 \cdot 2ql_{\text{DS}} [r_{\text{out}}]^2$ $= 26fV^2/\text{Hz}$
- $v_{nin}^{2}(f) = v_{nout}^{2}(f) / A_{0}^{2}$ = $1fV^{2}/Hz$

Cadence Simulation Results

DC simulation

Noise simulation

• _{DS}	= C	0.9μ	ιΑ ((1)	μA	
-------------------	-----	----------	------	-----	---------	--

•
$$g_m = 22\mu A/V (25\mu A/V)$$

•
$$A_0 = 4.4 (5)$$

- $v_{\text{nout}}^2(f) = 40 \text{fV}^2/\text{Hz} (26 \text{fV}^2/\text{Hz})$
- $v_{nin}^2(f) = 2fV^2/Hz (1fV^2/Hz)$

gm	22.12u
gmbs	4.359u
gmoverid	24.57
ibulk	-48.78p
id	900.lm

	Device	Param	Noise Contribution	⊹ Of Total
	/15/M0	id	1.64082e-14	40.55
١	/I5/M4	id	1.64082e-14	40.55
١	/I5/RL	TU	3.24862e-15	8.03
	/I5/R0	TJ	3.24862e-15	8.03
٦	/I5/M0	fn	5.72244e-16	1.41
	/I5/M4	fn	5.72244e-16	1.41
	/I5/M4	igd	1.27403e-18	Noise from
	/I5/M0	igd	1.27403e-18	0.00 NOISE ITOTT
	/I5/M0	rgbi	8.46603e-19	resistors (4kTR)
	/I5/M4	rgbi	8.46603e-19	0.00 TC3I3tO13 (4KTK)
١	l .			

Spot Noise Summary (in V^2/Hz) at 20K Hz Sorted By Noise Contributors
Total Summarized Noise = 4.04625e-14
Total Input Referred Noise = 2.11258e-15
The above noise summary info is for phoise data

AC simulation: gain

Lot of 1/f noise

Exercise 3: Amplifier Noise

Given: VDD = 1V, I_{BIAS} = $2\mu A$, R = $200k\Omega$, sub-threshold, current mirror 1:1

a) Calculate the input-referred noise power spectral density (as on the previous slides), but now account for the 4kTR noise of the two load resistors.

Exercise 4: Design for Noise

- Considering just a single transistor
- Assume it is biased in weak inversion and saturation
- Our goal is to have an input referred noise of $0.4\mu V_{rms}$ in a bandwidth from 0 to 400Hz

- a) Calculate the noise power spectral density
- b) Calculate the required g_m for this transistor
- c) Calculate the required bias current I_{DS} for this transistor

Chopping Amplifier (1)

- Amplifier with 1/f noise (and/or offset)
- Input signal is a DC level

Chopping Amplifier (2)

Differential Pair with Chopping

Cadence Simulation Results

Chopping reduces 1/f noise

Noise Simulations

- Noise: AC (small signal) noise simulation
 - Only possible for circuits with a DC point -> Circuits with static bias
 - Not valid for time-variant systems (e.g. circuits with dynamic operation)
- Periodic noise or transient noise simulation
 - Can be used for time-variant systems
 (e.g. chopping amplifiers, switched-capacitor circuits, comparators)

Summary

- Devices: MOS transistors
 - Diffusion & Drift
 - Above-threshold & Sub-threshold operation
 - Power-efficiency
- Noise
 - Shot noise, 1/f noise
 - Noise in devices
 - Noise in circuits
 - Simulation in Cadence

Solution 1: SNR

- a) $\frac{1}{2}A^2 = 0.5\mu V^2$
- b) $V_n(f) = 3\mu V/\sqrt{Hz} \rightarrow V_n^2(f) = 9pV^2/Hz \rightarrow P_{noise} = V_n^2(f) \cdot BW = 900pV^2$
- c) $V_{n.rms} = \sqrt{(900p)} = 30\mu V$
- d) $SNR = 10 log_{10} (P_{signal} / P_{noise}) = 27.4dB$

Solution 2: Noise in an RC Network

- a) $V_{OUT} = 0.667V$
- b) $V_{n,out}^2(f) = 4kTR_p$, where $R_p = R_1R_2/(R_1 + R_2) = 11fV^2/Hz$
- c) $V_{n,out,rms}^2 = kT / C = 0.4nV^2$

Solution 3: Amplifier Noise

a)

- $I_{DS} = 1 \mu A$
- $g_m = 25 \mu A/V$
- $A_0 = g_m r_{out} = 5$
- $v_{\text{nout}}^2(f) = \{2 \cdot 2qI_{DS} + 2 \cdot 4kT/r_{\text{out}}\}[r_{\text{out}}]^2 = 32fV^2/Hz$
- $v_{nin}^2(f) = v_{nout}^2(f) / A_0^2 = 1.3fV^2/Hz$

Solution 4: Design for Noise

- a) $V_{n,rms}^2 = 0.16pV^2 \rightarrow V_n^2(f) = 0.4fV^2/Hz$
- b) Assuming $V_n^2(f) = (4kT \cdot {}^2/_3) / g_m \rightarrow g_m = 27.6 \mu A/V$
- c) Assuming $g_m = 27I_{DS} \rightarrow I_{DS} = 1\mu A$