Programmieren mit Python

Teil 3: Schleifen

Dr. Aaron Kunert aaron.kunert@salemkolleg.de

29. April 2021

Die For-Schleife

Einen Programmabschnitt x-mal ausführen

Problemstellung

Lies eine ganze Zahl x ein. Gib dann folgende Zeilen auf der Konsole aus

T

4

3

4

:

X

Wie macht man das?

Lösung

```
x = input("Enter a number")

for k in range(1, x + 1):
    print(k)
```

```
Struktur der for...in Schleife

for Variable in range(min, max):

LL Codezeile 1

LL Codezeile 2

LL :

Code, der nicht mehr Teil der Schleife ist
```

Wie funktioniert's?

Die Schleifenvariable wird zunächst gleich dem unteren Wert in range gesetzt. Dann wird der for-Block wiederholt ausgeführt. Bei jedem Durchgang wird die Schleifenvariable um 1 vergrößert und zwar so lange, wie der Wert der Schleifenvariable kleiner als der obere Wert in range ist.

Good to know

- Achtung: Die Schleifenvariable erreicht nie das obere Ende der range-Funktion, sondern bleibt immer 1 drunter.
- Die range-Funktion ist nicht auf 1er-Schrittweite beschränkt. Mit folgendem Ausdruck werden die Zahlen von 0 bis 9 z.B. in 3er-Schritten durchlaufen: range (0, 10, 3).
- For-Schleifen sind flexibel und können alles mögliche durchlaufen, z.B. auch die einzelnen Buchstaben eines Strings (dazu später mehr).

Einmaleins: Die 7er-Reihe

Schreibe ein kleines Skript, was die 7er-Reihe (bis 70) wie folgt auf der Konsole ausgibt:

```
1 mal 7 ist 7
2 mal 7 ist 14
:
```

7er-Reihe mit beliebigem oberen Ende

Lies eine positive ganze Zahl x ein und gib die 7er-Reihe von 7 bis mindestens x wie oben auf der Konsole aus.

Schleife über einen String

Lies Deinen Namen (oder irgendein Wort) auf der Konsole ein und überprüfe, ob er den Buchstaben a (groß/klein) enthält.

Schwierigere Übungen

Das Gauss-Problem

Berechne die Summe der Zahlen 1 bis 100.

Fibonacci-Zahlen

Die Zahlenfolge 1, 1, 2, 3, 5, 8, 13 . . . nennt man *Fibonacci*-Folge. Dabei ensteht das Element der Folge, durch die Addition des letzten und vorletzten Elements. Berechne die 30. Fibonacci-Zahl.

Harte Übungen

Quersumme

Lies eine ganze Zahl x ein und bestimme ihre Quersumme.

Tipp 1: Die Anzahl der Stellen einer Zahl bekommt man mittels len(str(x)) heraus.

Tipp 2: Man benötigt Tipp 1 gar nicht.

Zahlenmuster

Gib folgendes Muster auf der Konsole aus:

```
1
```

1 2

1 2 3

1 2 3 4

:

1 2 · · · 20

Die While-Schleife

Wie die For-Schleife nur abstrakter und open-end

Problemstellung

Lies immer wieder eine Zahl von der Konsole ein. Höre auf, wenn diese Zahl 7 ist.

Wie macht man das?

Lösung

```
1  x = 0
2
3  while x != 7:
4   x = input("Enter a number")
5   x = int(x)
6
7  print("Yeah, you picked the right number.")
```

Struktur der While-Schleife while Bedingung: uu Codezeile 1 uu Codezeile 2 uu : Code, der nicht mehr Teil der Schleife ist

Wie funktioniert's?

Die Schleife wird solange ausgeführt, wie die Bedingung True ergibt. Nach jedem Durchgang wird der Ausdruck der Bedingung neu ausgewertet. Ist die Bedingung False wird der Code unterhalb des Schleifenblocks ausgeführt.

Achtung Endlosschleife

Man sollte immer darauf achten, dass die Bedingung in der while-Schleife auch wirklich irgendwannmal False wird. Ansonsten bleibt das Programm in einer *Endlosschleife* gefangen.

Ersetze eine for-Schleife durch eine while-Schleife

Schreib ein Programm, dass alle 7er-Zahlen von 7 bis 700 auf der Konsole ausgibt.

Notenrechner

Schreib ein Programm, dass wiederholt nach einer Note von Dir fragt und Dir dann jeweils die aktuelle Durchschnittsnote auf der Konsole ausgibt. Das Programm soll durch die Eingabe vom Buchstaben ${\bf q}$ beendet werden können.

Beispielausgabe:

```
Bitte gib eine Note oder q zum Beenden ein: 1
Deine Durchschnittsnote ist 1.0
Bitte gib eine Note oder q zum Beenden ein: 2
Deine Durschnittsnote ist 1.5

:
```

Ratespiel

Definiere eine positive ganze Zahl number_to_guess. Der User kann nun wiederholt eine Zahl eingeben. Das Spiel endet, wenn die eingegebene Zahl mit number_to_guess übereinstimmt. Andernfalls wird auf der Konsole beispielsweise ausgegeben:

Sorry, Deine eingegebene Zahl war zu klein, versuche es nochmal:

Zusatz 1:

Am Ende soll die Anzahl der Versuche angegeben werden.

Zusatz 2:

Das Spiel soll mit der Eingabe von q abgebrochen werden können.

Zusatz 3:

Google, wie Python die Zahl number_to_guess zufällig erzeugen kann (das verbessert das Gameplay).

break und continue

Den Fluss kontrollieren

Das break-Statement

Taucht innerhalb einer Schleife das Schlüsselwort break auf, so wird die weitere Abarbeitung der Schleife abgebrochen. Die Ausführung wird mit dem Code *nach* dem Schleifenblock ausgeführt.

Beispie

```
for k in range(1,100):
    print(k)
    if k > 3:
    break
    # prints 1 2 3 4
```

Das continue-Statement

Taucht innerhalb einer Schleife das Schlüsselwort continue auf, so wird der aktuelle Schleifendurchgang abgebrochen. Die Ausführung wird mit der nächsten Schleifeniteration fortgesetzt.

Beispie

```
for k in range(1,11):
    if k % 2 == 0:
    continue
    print(k)
    # prints 1 3 5 7 9
```

Der else-Block einer Schleife

Analog zum if-Statement, kann auch eine Schleife einen else-Block haben. Dieser wird ausgeführt, wenn die Schleife *regulär* (also nicht durch die Verwendung von break) beendet wird.

Beispiel

```
name = input("Your name: ")

for letter in name:

if letter == "a":

print("Your name contains an a")

break

else:

print("Your name contains no a")
```

Die nächste 31er-Zahl

Lies eine ganze Zahl x ein. Prüfe, ob eine der 20 auf x Zahlen durch 31 teilbar ist. Gib sie in diesem Fall auf der Konsole aus, ansonsten gib aus, dass keine 31er-Zahl gefunden wurde.

Schwierigere Übung

Primzahltest

Lies eine ganze Zahl x ein und überprüfe, ob diese Zahl eine Primzahl ist. Das Programm soll etwa folgende Ausgabe liefern

Die Zahl 28061983 ist eine Primzahl.