RNA-Seq Analysis Mini Project

Kaitlyn Madriaga, A17217752

Differential Expression Analysis

```
library(DESeq2)
Load data files
  metaFile <- "GSE37704_metadata.csv"</pre>
  countFile <- "GSE37704_featurecounts.csv"</pre>
  # Import metadata and take a peak
  colData = read.csv(metaFile, row.names=1)
  head(colData)
              condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
               hoxa1_kd
SRR493369
SRR493370
               hoxa1_kd
               hoxa1_kd
SRR493371
  # Import countdata
  countData = read.csv(countFile, row.names=1)
  head(countData)
                length SRR493366 SRR493367 SRR493368 SRR493369 SRR493370
                   918
ENSG00000186092
                                0
                                           0
                                                     0
                                                                0
                                                                          0
                   718
                                0
                                                    0
ENSG00000279928
                                          0
                                                               0
                                                                          0
ENSG00000279457
                  1982
                               23
                                          28
                                                    29
                                                                         28
```

ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR493371					
ENSG00000186092	0					
ENSG00000279928	0					
ENSG00000279457	46					
ENSG00000278566	0					
ENSG00000273547	0					
ENSG00000187634	258					

Q. Remove the first column ("length") from countData

```
# Note we need to remove the odd first $length col
countData <- as.matrix(countData[,-1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

```
# Filter count data where you have 0 read count across all samples.
countData = countData[rowSums(countData) > 0,]
#can also use [!(rowSums(countData) == 0), ]
head(countData)
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

How many genes are left?

```
nrow(countData)
[1] 15975
DESeq2
Set up formats and run analysis
  dds = DESeqDataSetFromMatrix(countData=countData,
                                colData=colData,
                                design=~condition)
Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
design formula are characters, converting to factors
  #condition is the name in the colData
  dds = DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
```

```
res <- results(dds)
head(res)</pre>
```

get results from dds using results()

```
log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 6 columns
```

		0 00 = 0			
	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.2296	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.1881	-0.6927205	0.0548465	-12.630158	1.43990e-36
ENSG00000187961	209.6379	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215598	1.040744	2.97994e-01
	pac	lj			
	<numerio< td=""><td>c></td><td></td><td></td><td></td></numerio<>	c>			
ENSG00000279457	6.86555e-0	01			
ENSG00000187634	5.15718e-0	03			
ENSG00000188976	1.76549e-3	35			
ENSG00000187961	1.13413e-0	07			
ENSG00000187583	9.19031e-0	01			
ENSG00000187642	4.03379e-0	01			

Q. Call the summary() function on your results to get a sense of how many genes are up or down-regulated at the default 0.1 p-value cutoff.

```
summary(res)
```

```
out of 15975 with nonzero total read count
adjusted p-value < 0.1

LFC > 0 (up) : 4349, 27%

LFC < 0 (down) : 4396, 28%

outliers [1] : 0, 0%

low counts [2] : 1237, 7.7%

(mean count < 0)

[1] see 'cooksCutoff' argument of ?results

[2] see 'independentFiltering' argument of ?results
```

Plot results:

```
plot(res$log2FoldChange,-log(res$padj))
```



```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01
# and absolute fold change more than 2
inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(mycols)"</pre>
```


Annotate Results

I need to add annotation to my results including gene symbols and entrezeids, etc. For this I will use the **AnnotationDbi** package.

```
library(AnnotationDbi)
library(org.Hs.eg.db)
```

```
columns(org.Hs.eg.db)
```

```
[1] "ACCNUM"
                                     "ENSEMBL"
                                                     "ENSEMBLPROT"
                     "ALIAS"
                                                                     "ENSEMBLTRANS"
 [6] "ENTREZID"
                     "ENZYME"
                                     "EVIDENCE"
                                                     "EVIDENCEALL"
                                                                     "GENENAME"
                                                     "IPI"
[11] "GENETYPE"
                     "GO"
                                     "GOALL"
                                                                     "MAP"
                     "ONTOLOGY"
                                     "ONTOLOGYALL"
                                                     "PATH"
                                                                     "PFAM"
[16] "OMIM"
[21] "PMID"
                     "PROSITE"
                                     "REFSEQ"
                                                     "SYMBOL"
                                                                     "UCSCKG"
[26] "UNIPROT"
```

keys = row.names(res),
keytype = "ENSEMBL",
column = "ENTREZID",

multiVals = "first")

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

head(res)

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 9 columns

pvalue	stat	lfcSE	${\tt log2FoldChange}$	baseMean	
<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	
5.81042e-01	0.551863	0.3248216	0.1792571	29.9136	ENSG00000279457
2.36304e-03	3.040350	0.1402658	0.4264571	183.2296	ENSG00000187634
1.43990e-36	-12.630158	0.0548465	-0.6927205	1651.1881	ENSG00000188976
3.12428e-08	5.534326	0.1318599	0.7297556	209.6379	ENSG00000187961
8.81366e-01	0.149237	0.2718928	0.0405765	47.2551	ENSG00000187583
2.97994e-01	1.040744	0.5215598	0.5428105	11.9798	ENSG00000187642

name	entrez	symbol	padj	
<character></character>	<character></character>	<character></character>	<numeric></numeric>	
NA	NA	NA	6.86555e-01	ENSG00000279457
sterile alpha motif	148398	SAMD11	5.15718e-03	ENSG00000187634
NOC2 like nucleolar	26155	NOC2L	1.76549e-35	ENSG00000188976
kelch like family me	339451	KLHL17	1.13413e-07	ENSG00000187961
pleckstrin homology	84069	PLEKHN1	9.19031e-01	ENSG00000187583
PPARGC1 and ESRR ind	84808	PERM1	4.03379e-01	ENSG00000187642

Order results by adjusted p-value and save them to a CSV file

```
res = res[order(res$pvalue),]
write.csv(res, file="deseq_results.csv")
```

Pathway Analysis

We can use the KEGG database to get more insight

```
library(pathview)
library(gage)
library(gageData)

data(kegg.sets.hs)
data(sigmet.idx.hs)
```

The sigmet.idx.hs is an index of numbers of signaling and metabolic pathways in kegg.set.gs. We can examine them here:

```
# Focus on signaling and metabolic pathways only
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  # Examine the first 3 pathways
  head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
[1] "10"
          "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10" "1066"
                      "10720" "10941" "151531" "1548"
                                                         "1549" "1551"
                                       "1807" "1890"
 [9] "1553"
                              "1806"
             "1576"
                      "1577"
                                                         "221223" "2990"
```

```
[17] "3251"
               "3614"
                         "3615"
                                   "3704"
                                             "51733"
                                                       "54490"
                                                                "54575"
                                                                          "54576"
[25] "54577"
               "54578"
                         "54579"
                                   "54600"
                                                       "54658"
                                             "54657"
                                                                "54659"
                                                                          "54963"
[33] "574537" "64816"
                         "7083"
                                   "7084"
                                             "7172"
                                                       "7363"
                                                                "7364"
                                                                          "7365"
[41] "7366"
               "7367"
                         "7371"
                                   "7372"
                                             "7378"
                                                       "7498"
                                                                "79799"
                                                                          "83549"
                         "9"
[49] "8824"
                                   "978"
               "8833"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                          "10606"
                                    "10621"
                                              "10622"
                                                        "10623"
                                                                  "107"
                                                                            "10714"
  [9] "108"
                "10846"
                          "109"
                                    "111"
                                              "11128"
                                                        "11164"
                                                                  "112"
                                                                            "113"
                                                                            "159"
 [17] "114"
                "115"
                          "122481" "122622" "124583"
                                                       "132"
                                                                  "158"
 [25] "1633"
                                              "203"
                                                        "204"
                                                                  "205"
                                                                            "221823"
                "171568" "1716"
                                    "196883"
 [33] "2272"
                "22978"
                          "23649"
                                    "246721"
                                              "25885"
                                                        "2618"
                                                                  "26289"
                                                                           "270"
 [41] "271"
                "27115"
                          "272"
                                    "2766"
                                              "2977"
                                                        "2982"
                                                                  "2983"
                                                                            "2984"
 [49] "2986"
                "2987"
                          "29922"
                                    "3000"
                                              "30833"
                                                        "30834"
                                                                 "318"
                                                                            "3251"
                                                       "471"
 [57] "353"
                "3614"
                          "3615"
                                    "3704"
                                              "377841"
                                                                  "4830"
                                                                            "4831"
 [65] "4832"
                "4833"
                          "4860"
                                    "4881"
                                              "4882"
                                                        "4907"
                                                                  "50484"
                                                                            "50940"
 [73] "51082"
                "51251"
                          "51292"
                                    "5136"
                                              "5137"
                                                        "5138"
                                                                 "5139"
                                                                            "5140"
 [81] "5141"
                "5142"
                          "5143"
                                    "5144"
                                              "5145"
                                                        "5146"
                                                                 "5147"
                                                                            "5148"
 [89] "5149"
                "5150"
                          "5151"
                                    "5152"
                                              "5153"
                                                        "5158"
                                                                 "5167"
                                                                            "5169"
 [97] "51728"
                "5198"
                          "5236"
                                    "5313"
                                              "5315"
                                                        "53343"
                                                                 "54107"
                                                                           "5422"
                                                                 "5432"
[105] "5424"
                "5425"
                          "5426"
                                    "5427"
                                              "5430"
                                                        "5431"
                                                                            "5433"
                                    "5437"
                                                        "5439"
                                                                  "5440"
[113] "5434"
                "5435"
                          "5436"
                                              "5438"
                                                                            "5441"
[121] "5471"
                "548644" "55276"
                                    "5557"
                                              "5558"
                                                        "55703"
                                                                  "55811"
                                                                            "55821"
[129] "5631"
                "5634"
                          "56655"
                                    "56953"
                                              "56985"
                                                        "57804"
                                                                 "58497"
                                                                            "6240"
[137] "6241"
                "64425"
                          "646625" "654364"
                                              "661"
                                                        "7498"
                                                                  "8382"
                                                                            "84172"
[145] "84265"
                "84284"
                          "84618"
                                    "8622"
                                              "8654"
                                                        "87178"
                                                                  "8833"
                                                                            "9060"
[153] "9061"
                "93034"
                          "953"
                                    "9533"
                                              "954"
                                                        "955"
                                                                  "956"
                                                                            "957"
                "9615"
[161] "9583"
```

Make a new vector of the fold-change rules that I will use as input for gage, this will have the ENTREZ ID as names

```
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)

1266    54855    1465    51232    2034    2317
-2.422719    3.201955 -2.313738 -2.059631 -1.888019 -1.649792

# Get the results
keggres = gage(foldchanges, gsets=kegg.sets.hs)
```

attributes(keggres) \$names [1] "greater" "less" "stats" Look at the top 3 "less" head(keggres\$less) p.geomean stat.mean hsa04110 Cell cycle 8.995727e-06 -4.378644 8.995727e-06 hsa03030 DNA replication 9.424076e-05 -3.951803 9.424076e-05 hsa03013 RNA transport 1.375901e-03 -3.028500 1.375901e-03 hsa03440 Homologous recombination 3.066756e-03 -2.852899 3.066756e-03 hsa04114 Oocyte meiosis 3.784520e-03 -2.698128 3.784520e-03 hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03 q.val set.size exp1 hsa04110 Cell cycle 0.001448312 121 8.995727e-06 0.007586381 36 9.424076e-05 hsa03030 DNA replication hsa03013 RNA transport 144 1.375901e-03 0.073840037 hsa03440 Homologous recombination 0.121861535 28 3.066756e-03 hsa04114 Oocyte meiosis 102 3.784520e-03 0.121861535 hsa00010 Glycolysis / Gluconeogenesis 0.212222694 53 8.961413e-03 Make a pathway plot: pathview(gene.data=foldchanges, pathway.id="hsa04110") 'select()' returned 1:1 mapping between keys and columns Info: Working in directory /Users/kamadriaga/Downloads/BIMM143/class13 Info: Writing image file hsa04110.pathview.png # A different PDF based output of the same data #pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)

Q. Can you plot the pathwiew figures for the top 5 down-reguled pathways?

Figure 1: Cell Cycle Pathway Analysis

```
keggrespathways <- rownames(keggres$less)[1:5]</pre>
  # Extract the 8 character long IDs part of each string
  keggresids = substr(keggrespathways, start=1, stop=8)
  keggresids
[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"
  pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/kamadriaga/Downloads/BIMM143/class13
Info: Writing image file hsa04110.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/kamadriaga/Downloads/BIMM143/class13
Info: Writing image file hsa03030.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/kamadriaga/Downloads/BIMM143/class13
Info: Writing image file hsa03013.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/kamadriaga/Downloads/BIMM143/class13
Info: Writing image file hsa03440.pathview.png
'select()' returned 1:1 mapping between keys and columns
```

Info: Working in directory /Users/kamadriaga/Downloads/BIMM143/class13

Info: Writing image file hsa04114.pathview.png

