

Figure 1A

Figure 1B

20 E.T.E. 20° 69' 52" 0.00

Figure 2

200 E.T. = 16.985 X 100 T

Figure 3

Figure 4A

Figure 4B

Figure 5

Figure 6

Figure 7

Figure 8

AUG CTP-5 EGFP His6

Figure 9A

Figure 9B-G

Figure 10 A

Experiment Type
Wavelength

CD - PMT
Signal: -0.73 m deg
Dynode: 178.54 v
PMT DC: 1.071 v

Fluorescence PMT
Signal: -0.00 Rel Int
Dynode: 0.27 v

Monochromator
Wavelength: 300.04 nm
Bandwidth: 1.00 nm
Slitwidth: 0.331 mm

Sample
24.99 deg C

RUN EXPERIMENT

Experiment is IDLE

Data Collection Display

Ready

217.265, -24.078/85.217

Figure 10 B

ANIV

Data Collection Display

Experiment Type
Wavelength

CD - PMT

Signal: -0.82 m deg
Dynode: 178.26 v
PMT DC: 1.071 v

Fluorescence PMT

Signal: -0.00 Rel Int
Dynode: 0.29 v

Monochromator

Wavelength: 300.04 nm
Bandwidth: 100 nm
Slitwidth: 0.329 mm

Sample

24.97 deg C

RUN EXPERIMENT

- CD Dynode
- FL Dynode

Experiment is IDLE

Ready

217.265, -26.730/84.348

Figure 10 C

ANIV

Experiment Type
Wavelength

CD - PMT
Signal: -0.76 m deg
Dynode: 179.39 v
PMT DC: 1071v

Fluorescence PMT
Signal: -0.03 Rel Int
Dynode: 0.11 v

Monochromator
Wavelength: 300.04 nm
Bandwidth: 100 nm
Slitwidth: 0.331 mm

Sample
24.99 deg C

RUN EXPERIMENT

Experiment is IDLE

Data Collection Display

Ready

213.818, -35.357/86.087

Figure 10 D

Experiment Type
Wavelength

CD - PMT
Signal: -0.99 m deg
Dynode: 177.73 v
PMT DC: 1.071 v

Fluorescence PMT
Signal: -0.03 Rel Int
Dynode: 0.46 v

Monochromator
Wavelength: 300.04 nm
Bandwidth: 1.00 nm
Slitwidth: 0.331 mm

Sample
24.99 deg C

RUN EXPERIMENT

Experiment is IDLE

Ready

214.758, -34.696/82.609

Figure 10 E

Figure 10 F

Figure 10 G

ANIV

Experiment Type
Wavelength

CD - PMT
Signal: -17.65 m deg
Dynode: 530.95 v.
PMT DC: 1.061 v

Fluorescence PMT
Signal: -0.00 Rel Int
Dynode: 0.30 v

Monochromator
Wavelength: 300.04 nm
Bandwidth: 1.00 nm
Slitwidth: 1.314 mm

Sample
24.99 deg C

STOP EXPERIMENT

Ready

Data Collection Display

Moving slits, please wait...

217.578, -44.791/75.652

Figure 10 H

Figure 11A

Figure 11B

Figure 12

Figure 13

2007-09-07 00:00

CTP-5-(KLAKLAK)₂ Peptide Impairs Cell Viability in Hig 82 Cells

Figure 14

CTP-5-(KLAKLAK)₂ Peptide Impairs Cell Viability in Hig 82 Cells

Figure 15

Effect of CTP-5-(KLAKLAK)₂ Peptide
Administration on Day 7 MCA205 Tumors

Figure 16A

DATE 06/25/2010

DP1

KLA

Figure 16B

2010-09-02 00:00

KLA

DP1

Figure 16C

Figure 16D

**CD34⁺/LIN⁻ Stem Cells Are Transduced by a
CTP-5-Biotin/Avidin- β -Galactosidase
Complex**

Figure 17

2016 TEC07 6985x000

Figure 18

Figure 19

Figure 20

© 2010 - 2011 - 2012 - 2013

Figure 21

Figure 22

Figure 23

Figure 24

3Epi-EGFP

Fig. 25

PTD-5 and Prostate peptide deliver β -Gal into DU145 tumor cells

PTD-5 and Prostate peptide FITC facilitate uptake into DU145 tumor cells

Peptide from Airway Segment Screening Facilitates
Uptake of β -Gal and Cy3 into Calu3 Cells

Transduction of CalU3 cells

Fig 28

Transduction of HEK-82 Cells

PND-5 and Airway Peptide Facilitate Delivery of Avidin- β -Gal into Murine Lungs

Fig. 31

P_{TD}-5 and Airway Peptide Facilitate β -Gal Uptake into Murine Lungs

AWP1 P_{TD}-5 Control

Fig. 32

PTD-5 Delivers Cy3-Anti-Mouse IgG into Hig-82 Cells

Fig. 33

Level of Transduction by Streptavidin- β -Galactosidase Complexes When Coupled to Biotinylated Peptides

Fig. 34

Cationic PTDs Transduce Human β -Cells with Varying Efficiencies

Fig. 35

Transduction of PTD-EGFP Into Human Islet

PTD-5	EGFP	UNKNOWN
-------	------	---------

Gene Therapy Applications to
Type I Diabetes

Project 9

Fig 3b

Uptake of Peptide-Biotin-Streptavidin- β -Galactosidase Complexes Is Impaired in CHO Cells Defective for HS & GAG Synthesis

β-Galactosidase With Dextran Sulfate Complexes in HS & GAG-Deficient, but not WT CHO Cells

Fig 37

Fig 3

Incubation with Dextran Sulfate or Protamine Sulfate, but
Not Heparan Sulfate, Is Able to Enhance
6-Lysine- β -Galactosidase Uptake in CHO 745 Cells

Pre-Incubation with 32 μ g/ml Dextran Sulfate Enhances Uptake of Cationic Peptide- β -galactosidase Complexes in CHO 745 Cells

Fig 31

Approaches for Peptide-Mediated Inhibition of NF- κ B

Gene Therapy Applications to
Type I Diabetes

Project 9

Insulin Response to Glucose after Mouse Islet Incubated with Peptides and IL-1 β

(Glucose 2.8, 20 and 2.8 mM)

Gene Therapy Applications to
Type I Diabetes

Project 9

Fig 43

Transduction of Peptide IKK β During Mouse Islet-Isolation

TAT(PTD4)-FITC

Gene Therapy Applications to
Type I Diabetes

PTD5-FITC

Project 9

Fig 44

Transduction of Peptide into β -Cells During Mouse Islet-Isolation

Gene Therapy Applications to
Type I Diabetes

Project 9

Fig 45

Transduction of Fusion Protein During Mouse Islet-Isolation

eGFP

Gene Therapy Applications to
Type I Diabetes

PTD5-eGFP

Project 9

Viability of Mouse Islets Isolated with Peptides

Fig 46

Gene Therapy Applications to
Type I Diabetes

Project 9

Protection of Mouse Islets During Isolation Procedure by PTD-IKK β Transfer

Gene Therapy Applications to
Type I Diabetes

Insulin Response to Glucose 12-16 hrs. after Mouse Islet Isolation with Peptides

Project 9

Gene Therapy Applications to
Type I Diabetes

Fig 49
Project 9

Gene Therapy Applications to
Type I Diabetes

PTD-5-FITC Transduction to Human Islets

Effect of PTD-IKK β on Islet Cell Mass

