实验二 状态反馈控制

自 02 彭程 2020011075

一、实验目的

- 1.训练设计模拟实验方案的能力。
- 2.掌握用状态反馈的方法实现控制系统闭环极点的配置。
- 3.观察状态反馈的性能,研究极点配置对系统闭环阶跃响应的影响。

二、实验内容

已知对象状态方程为:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 10 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

开环传递函数为:

$$G(s) = \frac{10}{(0.5s+1)(s+1)}$$

模拟实现:

1.判断系统的能控性、能观性

在 MATLAB 中,可利用能控性矩阵计算函数*ctrb()*和能观性矩阵计算函数*obsv()*和来求出系统的能控性和能观性矩阵,从而确定系统的能控性和能观性。

利用ctrb()函数计算该系统能控性矩阵:

$$Q_k = \begin{bmatrix} 10 & -20 \\ 0 & 20 \end{bmatrix}, \quad rank(Q_k) = 2$$

因此,该系统完全能控。

利用obsv()函数计算该系统能观性矩阵,

$$Q_g = \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix}, \quad rank(Q_g) = 2$$

因此, 该系统完全能观。

2.搭建 Matlab/Simlink 仿真模型,以单位阶跃信号为系统输入,观测闭环系统的阶跃响应。

(1) 对于状态反馈有

$$u = r - \begin{bmatrix} K_1 & K_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

r 为阶跃信号,当 $K_1 = 0$ 即为输出反馈。

调节 K_2 ,观测闭环系统的阶跃响应,使闭环系统的输出过渡过程呈现无超调、有超调、过渡过程时间较短等三种情况。记录相应的 K_2 、超调量 σ 和过渡过程时间 t_s ,计算闭环系统的极点。

闭环系统状态方程:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -2 - 10K_1 & -10K_2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 10 \\ 0 \end{bmatrix} r$$

$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

K_2	0.01	10	1
闭环传 递函数	$G_{[t]}(s) = \frac{20}{s^2 + 3s + 2.2}$	$G_{\text{FI}}(s) = \frac{20}{s^2 + 3s + 202}$	$G_{\text{F}}(s) = \frac{20}{s^2 + 3s + 22}$
闭环系 统极点	$s_1 = -1.7236$ $s_2 = -1.2764$	$s_1 = -1.5 + 14.1333i$ $s_2 = -1.5 - 14.1333i$	$s_1 = -1.5 + 4.4441i$ $s_2 = -1.5 - 4.4441i$
闭环系 统阶跃 响应	Step Response Step Response To go do a service of the service of	0.18 0.16 0.14 0.12 90 0.1 0.02 0.06 0.04 0.02 0 0.5 1 1.5 2 2.5 3 3.5 4 Time (seconds)	Step Response 1.4 1.2 1 90 0.8 0.4 0.4 0.2 0 0 0.5 1 1.5 2 2.5 3 3.5 4 Time (seconds)
σ	0	71.7%	34.2%

$t_s(5\%)$	3.26s	2.01s	1.70s
$t_s(2\%)$	4.02s	2.53s	2.38s
特点	无超调	有超调	有超调并且
			过渡过程时间短

(2)计算 $K_1=0$ 、 $K_2=5$ 和 $K_1=0.7$ 、 $K_2=5$ 两种情况下的闭环系统极点,观测闭环系统的阶跃响应,记录超调量 σ 和过渡过程时间 t_s 。

K_1 , K_2	$K_1 = 0 \ , K_2 = 5$	$K_1 = 0.7 , K_2 = 5$	
闭环传递函数	$G_{\text{fil}}(s) = \frac{20}{s^2 + 3s + 102}$	$G_{\text{fd}}(s) = \frac{20}{s^2 + 10s + 109}$	
闭环系	$s_1 = -1.5 - 9.9875i$	$s_1 = -5 - 9.1652i$	
统极点	$s_2 = -1.5 + 9.9875i$	$s_2 = -5 + 9.1652i$	
闭环系 统阶跃 响应	Step Response 0.35 0.3 0.25 ep pull duty 0.15 0.1 0.05 0 0.5 1 1.5 2 2.5 3 3.5 Time (seconds)	Step Response 0.25 0.2 0.2 0.1 0.05 0.02 0.4 Time (seconds)	
σ	62.18%	18.27%	
$t_s(5\%)$	1.93 <i>s</i>	0.505s	
$t_s(2\%)$	2.57 <i>s</i>	0.784 <i>s</i>	

(3)自行拟定三组 K_1 、 K_2 ,计算闭环系统的极点在所希望的位置上,分别测出阶跃响应的超调量 σ 和过渡过程时间 t_s ,震荡次数N等。

期望的极点位置分别为:

(1)
$$s_1 = -2$$
, $s_2 = -2$

(2)
$$s_1 = -2 - 2\sqrt{3}i$$
, $s_2 = -2 + 2\sqrt{3}i$

(3)
$$s_1 = -2 - 10i$$
, $s_2 = -2 + 10i$

结果如下:

$K_1 K_2$	$K_1 = 0.1$, $K_2 = 0.05$	$K_1 = 0.1$, $K_2 = 0.65$	$K_1 = 0.1$, $K_2 = 5.05$
闭环传递函数	$G_{\text{id}}(s) = \frac{20}{s^2 + 4s + 4}$	$G_{\text{fil}}(s) = \frac{20}{s^2 + 4s + 16}$	$G_{\text{fil}}(s) = \frac{20}{s^2 + 4s + 104}$
闭环系	$s_1 = -2$	$s_1 = -2 - 2\sqrt{3}i$	$s_1 = -2 - 10i$
统极点	$s_2 = -2$	$s_2 = -2 + 2\sqrt{3}i$	$s_2 = -2 + 10i$
闭环系 统阶跃 响应	Step Response 4.5 4.5 4.5 99 3 3.5 1.5 1.5 1.5 1.5 1.5 1.5 1.	Step Response 1.5 1	Step Response 0.25 0.25 0.2 90 0.05 1 1.5 2 2.5 3 Time (seconds)
σ	0	16%	53.4%
$t_s(5\%)$	2.37s	1.32s	1.35s
$t_s(2\%)$	2.92s	2.02s	1.70s
N	0	1	2