CSF 432: Intro to Network and System Security

Week 05 - Review

Michael Conti

Department of Computer Science and Statistics
University of Rhode Island

Fall 2020

Sources: Professor Messer's CompTIA N10-007 Network+ Course Notes

Assigning IPv4 Addresses

Assigning IPv4 Addresses

DHCP

- ☑IPv4 address configuration used to be manual
 - ☑ IP address, subnet mask, gateway, DNS servers, NTP servers, etc.
- ☑ BOOTP didn't automatically define everything
 - Some manual configurations were still required
 - ☑ BOOTP also didn't know when an IP address might be available again
- ☑ Dynamic Host Configuration Protocol
 - ✓ Initially released in 1997, updated through the years
 - Provides automatic address / IP configuration for almost all devices

Assigning IPv4 Addresses

The DHCP Process

- - Find all of the available DHCP Servers
- - Send some IP address options to the client
- - Client chooses an offer and makes a formal request
- - ☑ DHCP server sends an acknowledgement to the client

-

3:

Assigning IPv4 Addresses

Turning dynamic into static

- ☑DHCP assigns an IP address from the first available from a large pool of addresses
- - Server, printer, or personal preference
- ✓ Disable DHCP on the device
 - Configure the IP address information manually
 - ☑ Requires additional administration
- ☑ Configure an IP reservation on the DHCP server
 - Associate a specific MAC address with an IP address

Assigning IPv6 Addresses

Assigning IPv6 Addresses

Stateful DHCPv6

✓ Very similar process to DHCPv4 - udp/546 (client) and udp/547 (server)

Assigning IPv6 Addresses

Converting EUI-48 to EUI-64

- ☑ Split the MAC
- ☑ Put FFFE in the middle
 - ☑ The missing 16 bits
- ☑ Invert the seventh bit
 - Changes the address from globally unique/universal
 - ☑ Turns the burned-in address (BIA) into a locally administered address

Assigning IPv6 Addresses

Shortcut for flipping the 7th bit

- ☑ Quickly convert the MAC address create a chart
- ☑ Count from 0 to F in hex two columns, groups of four
- ☑ Quickly convert the second character of the first hex byte

8c:2d:aa:4b:98:a7

8e:2d:aa:4b:98:a7

Network Topologies Star Mesh Ring

Network Topologies

Logical Network Maps

- ☑ Specialized software
 - ☑ Visio, OmniGraffle, Gliffy.com
- - ☑ WAN layout, application flows
- ☑ Useful for planning and collaboration

Physical network maps

- - Can include physical rack locations

Common Network Types

Network Topologies

Wireless topologies

- ☑ Ad hoc networking
 - ☑ No pre-existing infrastructure
 - ☑ Devices communication amongst themselves
- ☑ Infrastructure
 - Market All devices communicate through an access point
 - ☑ The most common wireless communication mode
- **Mesh**
 - Ad hoc devices work together to form a mesh "cloud"

14

Common Network Types

LAN - Local Area Network

- ☑ A building or group of buildings
- - Any slower and it isn't "local"

WLAN - Wireless LAN

Common Network Types

MAN - Metropolitan Area Network

- MA network in your city
 - Larger than a LAN, often smaller than a WAN
- ☑ Common to see government ownership
 - ☑ They "own" the right-of-way

CAN - Campus Area Network

- ☑ Corporate Area Network
- ☑Limited geographical area
 - A group of buildings
- ☑LAN technologies
 - Fiber connected, high speed Ethernet
- - ☑ No third-party provider

Common Network Types

WAN - Wide Area Network

- ☑ Generally connects LANs across a distance
 - And generally much slower than the LAN
- - Point-to-point serial, MPLS, et
 - ☑ Terrestrial and non-terrestrial

Common Network Types

NAS vs. SAN

✓ Network Attached Storage (NAS)

- Connect to a shared storage device across the network

- ☑ Block-level access
- Very efficient reading and writing
- ☑ Requires a lot of bandwidth
 - May use an isolated network and high-speed network technologies

17

Common Network Types

PAN - Personal Area Network

- Personal Area Network

- Mobile phone wireless headset

Internet of Things (IoT) Topologies

19

Internet of Things (IoT) Topologies

Internet of Things

- - ☑ Track our location
- Mome automation

 - ☑ Internet-connected garage door openers
 - Heating and cooling
 - It knows when you are home (and when you aren't)

Internet of Things (IoT) Topologies

Z-Wave

- - ☑ Control lights, locks, garage doors, etc.
- - ☑ Nodes can hop through other nodes on the way to the destination
- ✓ Uses the ISM band
 - ☑ Industrial, Scientific, and Medical

 - ☑ No conflicts with 802.11

21

Internet of Things (IoT) Topologies

ANT / ANT+

- Wireless sensor network protocol

 - An "Internet of Things" ultra-low-power protocol
 - Fitness devices, heart rate monitors, etc.
- - ☑ Not 802.11 or Bluetooth
- ☑ Denial of service
- ☑ Optional encryption
 - And no method to maintain integrity

Internet of Things (IoT) Topologies

Bluetooth

- PAN (Personal Area Network)
 - Connects our mobile devices
- ☑ Smartphones, tethering, headsets and headphones,
 - health monitors, automobile and phone integration, smartwatches, external speakers

- -

Internet of Things (IoT) Topologies

Near field communication (NFC)

- - Builds on RFID, which is mostly one-way
- ☑ Payment systems
 - ☑ Google wallet and MasterCard partnership
- ☑ Bootstrap for other wireless
 - NFC helps with Bluetooth pairing
- ☑ Access token, identity "card"

Internet of Things (IoT) Topologies

RFID (Radio-frequency identification)

- ☑ It's everywhere
 - Access badges
 - ☑ Inventory/Assembly line tracking
 - ☑ Pet/Animal identification
 - Anything that needs to be tracked
- ☑ Radar technology
 - ☑ Radio energy transmitted to the tag
 - F Powers the tag, ID is transmitted back
 - ☑ Bidirectional communication

Internet of Things (IoT) Topologies

IR (Infrared)

- ✓ Included on many smartphones, tablets, and smartwatches
 - Not really used for file transfers and printing
- ☑ Control your entertainment center
 - Many IR options

IEEE 802.11

- ☑ Wireless networking (802.11)
 - Managed by the IEEE LAN/ MAN Standards Committee (IEEE 802)
- Many updates over time
 - Check with IEEE for the latest
- The Wi-Fi trademark
 - Wi-Fi Alliance handles interoperability testing

Wireless Standards

	Frequencies	Maximum MIMO streams	theoretical throughput (per stream)	theoretical throughput (total)
802.11a	5 GHz	Not applicable	54 Mbit/s	54 Mbit/s
802.11b	2.4 GHz	Not applicable	11 Mbit/s	11 Mbit/s
802.11g	2.4 GHz	Not applicable	54 Mbit/s	54 Mbit/s
802.11n	5 GHz and/or 2.4 GHz	4 MIMO	150 Mbit/s	600 Mbit/s
802.11ac	5 GHz	8 MU-MIMO	866.7 Mbit/s	~6.8 Gbit/s

26

Wireless Standards

☑ 802.11a

☑802.11n

☑ 802.11b

₹802.11ac

☑802.11g

	Frequencies	Maximum MIMO streams	theoretical throughput (per stream)	theoretical throughput (total)
802.11a	5 GHz	Not applicable	54 Mbit/s	54 Mbit/s
802.11b	2.4 GHz	Not applicable	11 Mbit/s	11 Mbit/s
802.11g	2.4 GHz	Not applicable	54 Mbit/s	54 Mbit/s
802.11n	5 GHz and/or 2.4 GHz	4 MIMO	150 Mbit/s	600 Mbit/s
802.11ac	5 GHz	8 MU-MIMO	866.7 Mbit/s	~6.8 Gbit/s

Cellular Network Standards

Cellular Network Standards

Cellular networks

☑ Separate land into "cells"

☑ CDMA - Code Division

Cellular Network Standards

GSM

☑ Global System for Mobile Communications

☑ Originally an EU standard - Worldwide coverage

☑ Used by AT&T and T-Mobile in the United States

Move your SIM card (Subscriber Identity Module) from phone to phone

☑ Original GSM standard uses TDMA to multiplex calls

0.0

CDMA COMA COde Division Multiple Access Everyone communicates at the same time Each call uses a different code The codes are used to filter each call on the receiving side Used by Verizon and Sprint Handsets are controlled by the network provider Not much adoption elsewhere

Cellular Network Standards

4G and LTE

- ☑Long Term Evolution (LTE) A "4G" technology
 - Converged standard (GSM and CDMA providers)
 - ☑ Based on GSM and EDGE (Enhanced Data Rates for GSM Evolution)
 - Standard supports download rates of 150 Mbit/s
- ☑ LTE Advanced (LTE-A)
 - Standard supports download rates of 300 Mbit/s

Wireless Network Technologies

802.11 technologies

- - ₫ 2.4 GHz or 5 GHz
 - And sometimes both
- ☑ Channels
 - Groups of frequencies, numbered by the IEEE
- ☑ Bandwidth

 - ☑ 20 MHz, 40 MHz, 80 MHz, 160 MHz

CSF 432: Intro to Network and System Security

Week 05 - Review

Michael Conti

Department of Computer Science and Statistics University of Rhode Island

Fall 2020

Sources: Professor Messer's CompTIA N10-007 Network+ Course Notes