

Instrument for the Identification of Live and Dead Bacteria

ECEN 403 - 970

Arjun Krishnamoorthi

Team 52 (URS)

Advisor: Dr. Peter Rentzepis

Problem Statement and Goals

ENGINEERING
TEXAS A&M UNIVERSITY

- ▶ Bacteria are a serious threat to human life
- ► Current identification procedures are slow (≈ 1 to 2 days)
- ► Goals:
 - ► Utilize fluorescence spectroscopy to detect bacteria
 - ► Apply PCA to distinguish live and dead bacteria
 - ▶ Develop a portable prototype for rapidly identifying live and dead bacteria

Disinfection Unit Subsystem

Accomplishments since the last presentation <3> hours	Ongoing progress/problems and plans until the next presentation
 Slight optical realignments made to increase excitation and fluorescence intensity Additional testing performed to further validate disinfection and excitation capabilities 	Design and machine small cover to reduce background interference during acquisitions

Disinfection Unit Subsystem

Configuration of disinfection unit.

Optical Fiber

Excitation and disinfection setup.

last presentation	Ongoing and plans presenta
	_

- Slight optical adjustments made to further increase UV sensitivity
- Additional testing performed to further validate UV sensitivity capabilities
- Median filtering implemented to reduce noise in recorded spectra
- Subsystem tested with the excitation monochromator and disinfection unit subsystems

Ongoing progress/problems and plans until the next presentation

- Continue increasing sensitivity to lower integration time
- Reduce noise in recorded spectra
- Resolve any machining issues
- Continue testing subsystem with excitation monochromator (for next semester)

Emission Monochromator Subsystem

Optical Bench

Input Optical Fiber

Communication Port

Detector + Fan

Input Power

E. coli fluorescence spectrum (EX = 280 nm).

E. coli fluorescence decay with disinfection.

Peak fluorescence intensity decay with disinfection.

E. coli fluorescence decay with disinfection.

Peak fluorescence intensity decay with disinfection.

Effect of median filtering on fluorescence decay and peak intensities.

Excitation Monochromator Subsystem

Accomplishments since the last presentation <30> hours	Ongoing progress/problems and plans until the next presentation
 Stepper motor controller and driver (DCB 241) calibrated and validated High-power UVC LED (280 nm) mounted and wired through soldered connections Coupling optics aligned and fixed in enclosure Subsystem tested as scanning excitation source through experimental setup 	 Investigate using other or additional UV LEDs as excitation source Manage heat dissipation with UVC LED Finalize UVC LED and mount in enclosure Resolve any machining issues Continue testing subsystem as excitation source (for next semester)

Excitation Monochromator Subsystem

Serial Port

ENGINEERING
TEXAS A&M UNIVERSITY

DCB 241

High-Power UVC LED

UV Coupling Lenses

Scanning Mini-Chrom Monochromator

Excitation Monochromator Subsystem

High-power UVC LED mounted on heat sink with thermal adhesive.

UV coupling lenses mounted on top of high-power UVC LED for maximizing excitation intensity.

Dial and wavelength readout of scanning Mini-Chrom monochromator.

Overall experimental setup for acquiring excitation-emission matrix (EEM) of sample.

Collection Lens

Excitation Monochromator Validation

Emission Wavelength (nm) **Excitation Wavelength (nm)**

2D contour plot of EEM for tyrosine.

2D contour plot of EEM for tryptophan.

2D contour plot of EEM for bacteria (E. coli).

17

ENGINEERING TEXAS A&M UNIVERSITY

Excitation Monochromator Validation

Synchronous spectra of *E. coli* (Benchtop).

Synchronous spectra of E. coli (Portable).

Control and Display Unit Subsystem

Accomplishments since the last presentation <20> hours	Ongoing progress/problems and plans until the next presentation
 Processing GUI created through App Designer Acquisition GUI debugged and improved with more functionalities Serial communication through USB port validated for both monochromators Median filtering applied on input PCA data to improve clustering 	 Attempt to create unified GUI for acquiring and processing data Continue optimizing communication speed (baud rate, data compression, etc.) Continue optimizing PCA parameters Continue debugging code

Serial communication cable.

20

Control and Display Unit Validation

22

Control and Display Unit Validation

PCA Principal Component 1 Plot

Execution and Validation Plan

► Currently: Have completed practically all execution steps on schedule, validated all major subsystem functionalities, and begun integration of all subsystems

	October 11th	October 18th	October 25th	November 1st	November 8th	Execution
Control and	Develop MATLAB code for communicating with emission	Develop MATLAB code for communicating with excitation	Develop MATLAB code for processing data (plotting, PCA,	Develop simple GUI for interfacing with all subsystems	Validate GUI communication and processing requirements	Validation
Display Unit	monochromator	monochromator	etc.)	an subsystems	requirements	Completed (Execution)
Disinfection Unit	Select UV LED and optical fiber for subsystem	Design enclosure for subsystem	Machine enclosure for subsystem	Validate disinfection and excitation functions of subsystem	Couple with emission monochromator	Completed (Validation)
Excitation Monochromator	Select UV LED and microcontroller for subsystem	Design enclosure for subsystem	Machine enclosure for subsystem	Validate scanning capability of subsystem	Couple with emission monochromator	Incomplete
Emission Monochromator	Optimize sensitivity characteristics of subsystem	Design enclosure for subsystem	Machine enclosure for subsystem	Validate usage with disinfection unit	Couple with excitation monochromator	24

Thank You!

Questions?