Componentwise Sensitivity and Stability Analysis

Let

$$A = \begin{bmatrix} 1 & 10^{-4} \\ 1 & 1 \end{bmatrix}$$
 and $\delta A = 10^{-4} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

Then $A + \delta A$ is a small normwise perturbation to A as $\frac{\|\delta A\|_{\infty}}{\|A\|_{\infty}} = 10^{-4}$.

Let

$$A = \begin{bmatrix} 1 & 10^{-4} \\ 1 & 1 \end{bmatrix}$$
 and $\delta A = 10^{-4} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

Then $A + \delta A$ is a small normwise perturbation to A as $\frac{\|\delta A\|_{\infty}}{\|A\|_{\infty}} = 10^{-4}$.

However, the perturbation to the a_{12} entry of A is not small as $\frac{|\delta a_{12}|}{|a_{12}|} = 1$.

Let

$$A = \begin{bmatrix} 1 & 10^{-4} \\ 1 & 1 \end{bmatrix}$$
 and $\delta A = 10^{-4} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

Then $A + \delta A$ is a small normwise perturbation to A as $\frac{\|\delta A\|_{\infty}}{\|A\|_{\infty}} = 10^{-4}$.

However, the perturbation to the a_{12} entry of A is not small as $\frac{|\delta a_{12}|}{|a_{12}|} = 1$.

Componentwise small perturbations: Let A be any $n \times m$ matrix. A perturbation $A + \delta A$ to A is componentwise small if there exists a small number $0 < \epsilon \ll 1$ such that $|\delta a_{ij}| \le \epsilon |a_{ij}|$ for all $1 \le i \le n$, and $1 \le j \le m$.

Let

$$A = \begin{bmatrix} 1 & 10^{-4} \\ 1 & 1 \end{bmatrix}$$
 and $\delta A = 10^{-4} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

Then $A + \delta A$ is a small normwise perturbation to A as $\frac{\|\delta A\|_{\infty}}{\|A\|_{\infty}} = 10^{-4}$.

However, the perturbation to the a_{12} entry of A is not small as $\frac{|\delta a_{12}|}{|a_{12}|}=1$.

Componentwise small perturbations: Let A be any $n \times m$ matrix. A perturbation $A + \delta A$ to A is componentwise small if there exists a small number $0 < \epsilon \ll 1$ such that $|\delta a_{ij}| \le \epsilon |a_{ij}|$ for all $1 \le i \le n$, and $1 \le j \le m$.

This will be denoted in compact form as $|\delta A| \leq \epsilon |A|$.

Let

$$A = \begin{bmatrix} 1 & 10^{-4} \\ 1 & 1 \end{bmatrix}$$
 and $\delta A = 10^{-4} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

Then $A + \delta A$ is a small normwise perturbation to A as $\frac{\|\delta A\|_{\infty}}{\|A\|_{\infty}} = 10^{-4}$.

However, the perturbation to the a_{12} entry of A is not small as $\frac{|\delta a_{12}|}{|a_{12}|}=1$.

Componentwise small perturbations: Let A be any $n \times m$ matrix. A perturbation $A + \delta A$ to A is componentwise small if there exists a small number $0 < \epsilon \ll 1$ such that $|\delta a_{ij}| \le \epsilon |a_{ij}|$ for all $1 \le i \le n$, and $1 \le j \le m$.

This will be denoted in compact form as $|\delta A| \leq \epsilon |A|$.

Note that a componentwise small perturbation preserves the zero entries of the matrix.

Let

$$A = \begin{bmatrix} 1 & 10^{-4} \\ 1 & 1 \end{bmatrix}$$
 and $\delta A = 10^{-4} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

Then $A + \delta A$ is a small normwise perturbation to A as $\frac{\|\delta A\|_{\infty}}{\|A\|_{\infty}} = 10^{-4}$.

However, the perturbation to the a_{12} entry of A is not small as $\frac{|\delta a_{12}|}{|a_{12}|}=1$.

Componentwise small perturbations: Let A be any $n \times m$ matrix. A perturbation $A + \delta A$ to A is componentwise small if there exists a small number $0 < \epsilon \ll 1$ such that $|\delta a_{ij}| \le \epsilon |a_{ij}|$ for all $1 \le i \le n$, and $1 \le j \le m$.

This will be denoted in compact form as $|\delta A| \leq \epsilon |A|$.

Note that a componentwise small perturbation preserves the zero entries of the matrix.

Perturbations induced by rounding errors are componentwise small.

Let

$$A = \begin{bmatrix} 1 & 10^{-4} \\ 1 & 1 \end{bmatrix}$$
 and $\delta A = 10^{-4} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

Then $A + \delta A$ is a small normwise perturbation to A as $\frac{\|\delta A\|_{\infty}}{\|A\|_{\infty}} = 10^{-4}$.

However, the perturbation to the a_{12} entry of A is not small as $\frac{|\delta a_{12}|}{|a_{12}|}=1$.

Componentwise small perturbations: Let A be any $n \times m$ matrix. A perturbation $A + \delta A$ to A is componentwise small if there exists a small number $0 < \epsilon \ll 1$ such that $|\delta a_{ij}| \le \epsilon |a_{ij}|$ for all $1 \le i \le n$, and $1 \le j \le m$.

This will be denoted in compact form as $|\delta A| \le \epsilon |A|$.

Note that a componentwise small perturbation preserves the zero entries of the matrix.

Perturbations induced by rounding errors are componentwise small.

Exercise: Prove that if a perturbation to a matrix *A* is componentwise small, then it is also normwise small.

Componentwise sensitivity analysis of the solution of a system of $n \times n$ equations Ax = b is a measure of the change in the solution with respect to perturbations in A and/or b where perturbations are considered in the componentwise manner.

Componentwise sensitivity analysis of the solution of a system of $n \times n$ equations Ax = b is a measure of the change in the solution with respect to perturbations in A and/or b where perturbations are considered in the componentwise manner.

Consider the solution x of an $n \times n$ system of equations

$$Ax = b \tag{1}$$

where $b \neq 0$ and A is nonsingular.

Componentwise sensitivity analysis of the solution of a system of $n \times n$ equations Ax = b is a measure of the change in the solution with respect to perturbations in A and/or b where perturbations are considered in the componentwise manner.

Consider the solution x of an $n \times n$ system of equations

$$Ax = b \tag{1}$$

where $b \neq 0$ and A is nonsingular.

Perturbing only b:

Suppose

$$A(x + \delta x) = b + \delta b \tag{2}$$

where $|\delta b| \le \epsilon |b|$ for some $\epsilon > 0$.

Componentwise sensitivity analysis of the solution of a system of $n \times n$ equations Ax = b is a measure of the change in the solution with respect to perturbations in A and/or b where perturbations are considered in the componentwise manner.

Consider the solution x of an $n \times n$ system of equations

$$Ax = b \tag{1}$$

where $b \neq 0$ and A is nonsingular.

Perturbing only b:

Suppose

$$A(x + \delta x) = b + \delta b \tag{2}$$

where $|\delta b| \le \epsilon |b|$ for some $\epsilon > 0$.

Then $|\delta x| \le \epsilon |A^{-1}||A||x|$. Exercise!

Taking the $\|\cdot\|_{\infty}$ norm on both sides, gives

$$\frac{\|\delta x\|_{\infty}}{\|x\|_{\infty}} \le \epsilon \||A^{-1}||A|\|_{\infty}. \tag{3}$$

Perturbing only A:

Suppose δA is a perturbation to A such that $|\delta A| \leq \epsilon |A|$ and

$$(A + \delta A)(x + \delta x) = b$$

If $\epsilon < 1/|||A^{-1}||A|||_{\infty}$, then

$$\frac{\|\delta x\|_{\infty}}{\|x\|_{\infty}} \le \frac{\epsilon \||A^{-1}||A|\|_{\infty}}{1 - \epsilon \||A^{-1}||A|\|_{\infty}}$$
 Exercise! (4)

Perturbing only A:

Suppose δA is a perturbation to A such that $|\delta A| \leq \epsilon |A|$ and

$$(A + \delta A)(x + \delta x) = b$$

If $\epsilon < 1/\||A^{-1}||A|\|_{\infty}$, then

$$\frac{\|\delta x\|_{\infty}}{\|x\|_{\infty}} \le \frac{\epsilon \||A^{-1}||A|\|_{\infty}}{1 - \epsilon \||A^{-1}||A|\|_{\infty}}$$
 Exercise! (4)

The quantity $||A^{-1}||A||_{\infty}$ plays an important role in the analysis. It is called the *skeel condition number of A and is denoted by* skeel $A = ||A^{-1}||A||_{\infty}$.

Perturbing only A:

Suppose δA is a perturbation to A such that $|\delta A| \leq \epsilon |A|$ and

$$(A + \delta A)(x + \delta x) = b$$

If $\epsilon < 1/\||A^{-1}||A|\|_{\infty}$, then

$$\frac{\|\delta x\|_{\infty}}{\|x\|_{\infty}} \le \frac{\epsilon \||A^{-1}||A|\|_{\infty}}{1 - \epsilon \||A^{-1}||A|\|_{\infty}}$$
 Exercise! (4)

The quantity $||A^{-1}||A||_{\infty}$ plays an important role in the analysis. It is called the *skeel condition number of A and is denoted by* skeel $A = ||A^{-1}||A||_{\infty}$.

Clearly, skeel $A \leq \kappa_{\infty}(A)$.

Therefore bounds (3) and (4) can be tighter than those obtained via normwise sensitivity analysis.

Error bounds via componentwise sensitivity and stability analysis

An algorithm for solving a system of equations Ax = b is said to componentwise backward stable if the computed solution x_c is the exact solution of a system of equations

$$(A + \delta A)z = b + \delta b$$

where there exist $\epsilon_1 > 0$ and $\epsilon_2 > 0$ of the order of u such that

$$|\delta A| \le \epsilon_1 |A|$$
 and $|\delta b| \le \epsilon_2 |b|$.

Error bounds via componentwise sensitivity and stability analysis

An algorithm for solving a system of equations Ax = b is said to componentwise backward stable if the computed solution x_c is the exact solution of a system of equations

$$(A + \delta A)z = b + \delta b$$

where there exist $\epsilon_1 > 0$ and $\epsilon_2 > 0$ of the order of u such that

$$|\delta A| \leq \epsilon_1 |A|$$
 and $|\delta b| \leq \epsilon_2 |b|$.

Theorem Let G be any nonsingular lower (upper) triangular $n \times n$ matrix and b be any nonzero column vector of length n. If y_c be the computed solution of the system Gw = b using any variant of forward (backward) substitution in floating point arithmetic, then y_c satisfies

$$(G + \delta G)v_c = b$$

where δG is an $n \times n$ matrix such that $|\delta G| \le Cu|G|$ for some modest constant C. If y be the exact solution and skeel G < 1/Cu, then

$$\frac{\|y_c - y\|_{\infty}}{\|y\|_{\infty}} \le \frac{Cu \operatorname{skeel} G}{1 - Cu \operatorname{skeel} G}.$$
 (5)

Properties of the Skeel condition number

Exercise: Given any nonsingular matrix A and a diagonal nonsingular matrix D, show that skeel DA = skeel A.

Using the above information, construct an example to show that given any $\epsilon > 0$, there exists a nonsingular matrix A such that $\frac{\kappa_{\infty}(A)}{|A| \log |A|} \ge 1/\epsilon$.

Further show that if $|\delta A| \le \epsilon |A|$ where $\epsilon < 1/\text{skeel } A$, then $A + \delta A$ is also nonsingular.