

E28-2G4T12S 产品规格书

SX1280 2.4GHz TTL 高速 LoRa 无线模块

成都亿佰特电子科技有限公司

Chengdu Ebyte Electronic Technology Co.,Ltd.

目录

第一章 产品概述	2
1.1 产品简介	2
1.2 特点功能	2
1.3 应用场景	
第二章 规格参数	
2.1 极限参数	
2.2 工作参数	
第三章 机械尺寸与引脚定义	4
第四章 推荐连线图	E
第五章 功能详解	
5.1 定点发射	
5.2 广播发射	
5.3 广播地址	6
5.4 监听地址	
5.5 模块复位	
5. 6 AUX 详解	7
5.6.1 串口数据输出指示	7
5. 6. 2 无线发射指示	7
5.6.3 模块正在配置过程中	7
第六章 工作模式	8
6.1 模式切换	
6.2 传输模式 (模式 0)	
6.3 测距模式 (模式 2)	
6.4 配置模式 (模式 3)	
第七章 指令格式	
7.1 出厂默认参数	
7.2 工作参数读取	
7.3 版本号读取	
7.4 复位指令	
7.5 参数设置指令	10
第八章 硬件设计	10
第九章 常见问题	15
第十章 焊接作业指导	14
第十一章 相关型号	15
第十二章 天线指南	15
第十三章 批量包装方式	17
修订历史	1.5
关于我们	17

第一章 产品概述

1.1 产品简介

E28-2G4T12S 是一款基于 SEMTECH 公司 SX1280 射频芯片的无线串口 模块(UART),透明传输方式,工作在2.4GHz 频段,具有LoRa、FLRC和 GFSK 三种调制解调技术, TTL 电平输出, 兼容 3.3V 与 5V 的 IO 口电压。

LoRa 直序扩频技术将带来更远的通讯距离,且具有功率频谱较宽,抗 干扰能力强的优势。模块具有硬件 FEC 前向纠错算法, 其编码效率较高, 纠错能力强,在突发干扰的情况下,能主动纠正被干扰的数据包,大大提 高可靠性和传输距离。

传输效率。

1.2 特点功能

- 支持 LoRa、FLRC、GFSK 多种调制方式;
- 支持高速连续传输,数据不分包,不限包长;
- 支持 RSSI 信号强度读取;
- 支持空中唤醒,即低功耗功能,适用于电池供电方案;
- 支持定点传输/广播传输/信道监听:
- 理想条件下,通信距离可达 3km;
- 最大发射功率 18mW, 软件多级可调;
- 支持全球免许可 ISM 2.4GHz 频段;
- 支持 1kbps~2Mbps 的数据空中传输速率;
- 支持低功耗模式,适用于电池应用;
- 支持 2.3~5.5V 供电,大于 5V 供电均可保证最佳性能;
- 工业级标准设计,支持-40~+85℃下长时间使用;
- 双天线可选 (PCB/IPEX), 便于用户二次开发, 利于集成。

1.3 应用场景

- 智能家居以及工业传感器等;
- 安防系统、定位系统;
- 无线遥控, 无人机;
- 无线游戏遥控器;
- 医疗保健产品;
- 无线语音,无线耳机;
- 汽车行业应用。

第二章 规格参数

2.1 极限参数

十冊令粉	性	能	备注	
主要参数	最小值	最大值	金	
电源电压 (V)	0	5. 5	超过 5.5V 永久烧毁模块	
阻塞功率 (dBm)	_	10	近距离使用烧毁概率较小	
工作温度(℃)	-40	+85	工业级	

2.2 工作参数

	主要参数		性能		备注	
	土女少奴	最小值	典型值	最大值	审任	
工作电压 (V)		2.3	5. 0	5. 5	≥5.0V 可保证输出功率	
	通信电平(V)		3. 3		使用 5V TTL 有风险烧毁	
	工作温度(℃)	-40	ı	+85	工业级设计	
	工作频段 (MHz)	2400	ı	2500	支持 ISM 频段	
功	发射电流 (mA)		46		瞬时功耗	
邦	接收电流(mA)		20			
杜	休眠电流 (µA)		8		软件关断	
	最大发射功率 (dBm)	11.5	12. 0	13. 5		
	接收灵敏度 (dBm)	-130	-132	-134	空中速率为 1kbps	
	空中速率(bps)	1k	1k	2M	用户编程控制	

主要参数	描述	备注
参考距离	3000m	晴朗空旷环境,天线增益 5dBi, 天线高度 2.5米, 空中速率 1kbps
发射长度	121 Btye	普通模式,使用 1Mbps 空速
汉别	221 Btye	连传模式
	GFSK	
调制方式	LoRa	
	FLRC	
通信接口	UART 串口	TTL 电平
封装方式	贴片式	
接口方式	1.27mm	
外形尺寸	17. 5*28. 7mm	
天线接口	IPEX/PCB	等效阻抗约 50 Ω

第三章 机械尺寸与引脚定义

引脚序号 引脚名称 引脚方向 引脚用途 1 GND 参考地 模块地线 2 NC 空脚不接 3 MO输入 M2、M1、M0 共同组合决定模块 8 种工作模式 (不可悬空,如不使用可接地) 输入 M2、M1、M0 共同组合决定模块 8 种工作模式 (不可悬空,如不使用可接地) 4 M15 M2输入 M2、M1、M0 共同组合决定模块 8 种工作模式 (不可悬空,如不使用可接地) TTL 串口输入,连接到外部 TXD 输出引脚; 6 RXD 输入 可配置为漏极开路或上拉输入,详见参数设置 TTL 串口输出,连接到外部 RXD 输入引脚; TXD 7 输出 可配置为漏极开路或推挽输出,详见参数设置 用于指示模块工作状态,用户唤醒外部 MCU,上电自检初始化期间输出低电平, 输出 8 AUX 可配置为漏极开路输出,或推挽输出,详见参数设置(可以悬空) 9 VCC 模块电源正参考, 电压范围: 2.3V ~ 5.5V DC 10 GND 参考地 模块地线 GND 参考地 模块地线 11 $12 \sim 19$ NC 空脚不接 20 GND 参考地 模块地线

第四章 推荐连线图

序号	模块与单片机简要连接说明(上图以 STM8L 单片机为例)
1	无线串口模块为 TTL 电平,请与 TTL 电平的 MCU 连接。
2	某些 5V 单片机,可能需要在模块的 TXD 和 AUX 脚加 4~10K 上拉电阻。

第五章 功能详解

5.1 定点发射

5.2 广播发射

5.3 广播地址

- 举例:将模块A地址设置为0xFFFF,信道设置为0x04。
- 当模块 A 作为发射时(相同模式,透明传输方式), 0x04 信道下所有的接收模块都可以收到数据,达到广播的目的。

5.4 监听地址

- 举例:将模块 A 地址设置为 0xFFFF,信道设置为 0x04。
- 当模块 A 作为接收时,可以接收到 0x04 信道下所有的数据,达到监听的目的。

5.5 模块复位

● 模块上电后,AUX 将立即输出低电平,并进行硬件自检,以及按照用户参数进行工作方式设置。在此过程中,AUX 保持低电平,完毕后 AUX 输出高电平,并按照 M2、M1、M0 组合而成的工作模式开始正常工作。所以,用户需要等待 AUX 上升沿,作为模块正常工作的起点。

5.6 AUX 详解

● 它指示模块是否有数据尚未通过无线发射出去,或已经收到无线数据是否尚未通过串口全部发出,或模块正在初始化自 检过程中。

5.6.1 串口数据输出指示

● 用于唤醒休眠中的外部 MCU(注意,连传模式下 AUX 指示无延迟)

射频接收到空中数据到 MCU 发送时, AUX 时序图

5.6.2 无线发射指示

- 分包传输模式下,内部缓冲区大小由分包大小指定,如包长设置为 221 字节,对应缓冲器大小为 2048 字节,AUX=1 时用户可以连续发起不超过 2048 字节数据。
- 连传模式下,AUX=1 时代表当前模块处于忙状态,但不适用于唤醒外部 MCU,因为连传时数据发送比较快。
- AUX=1 时代表模块全部串口数据均通过无线发射完毕,模块处于空闲状态。

MCU 接收到串口数据到 MCU 启动射频发送时, AUX 时序图

5.6.3 模块正在配置过程中

● 仅在复位和退出休眠模式的时候

自检期间, AUX 时序图

第六章 工作模式

模块有 4 种工作模式,由引脚 MO、M1 设置;详细情况如下表所示:

模式 (0-3)	M2	M1	МО	模式介绍	备注											
0 传输模式	1	0	0	 串口打开,无线打开,连续透明传输	空速支持手动配置和自适应随波特率自											
o 14 ma 17024	1	Ů	Ŭ	11 11717 76-20117117 76-202 7114-118	动调节;连传模式双方波特率必须一致											
1 RSSI 模式	1	0	1	串口打开,无线打开,RSSI 功能打开	模块每 100ms 串口输出 RSSI 强度值											
2 测距模式	1	1	0	保留												
3 配置模式	1	1	1	串口打开,无线关闭,用于参数配置	波特率固定 9600 8N1											
4 低功耗	0	0	0	0	0	0	0	0	0	0	0	0			低功耗模式,功耗为最低	M2 置高时处于正常工作状态
4 队切代		X	X	队 切 代	M2 置低时处于低功耗。											

6.1 模式切换

- 用户可以将 M1M0 进行高低电平组合,确定模块工作模式。可使用 MCU 的 GPIO 来控制模式切换;当改变 M1M0 后:若模块空闲(AUX 高电平)后,即可按照新的模式开始工作;若模块有串口数据尚未通过无线发射完毕,则发射完毕后,才能进入新的工作模式;若模块收到无线数据后并通过串口向外发出数据,则需要发完后才能进入新的工作模式;所以模式切换只能在 AUX 输出 1 的时候有效,否则会延迟切换。
- 例如:在模式 3 下,用户连续输入大量数据,并同时进行模式切换,此时的切换模式操作是无效的;模块会将所有用户数据处理完毕后,才进行新的模式检测;所以一般建议为:检测 AUX 引脚输出状态,等待 AUX 输出高电平后 2ms 再进行切换。
- 当模块从其他模式被切换到配置模式时,如果有数据尚未处理完毕;模块会将这些数据(包括收和发)处理完毕后,才能进入休眠模式。这个特征可以用于快速休眠,从而节省功耗;例如:发射模块工作在模式 0,用户发起串口数据"12345",然后不必等待 AUX 引脚空闲(高电平),可以直接切换到休眠模式,并将用户主 MCU 立即休眠,模块会自动将用户数据全部通过无线发出后,1ms 内自动进入休眠;从而节省 MCU 的工作时间,降低功耗。
- 同理,任何模式切换,都可以利用这个特征,模块处理完当前模式事件后,在 1ms 内,会自动进入新的模式;从而省去了用户查询 AUX 的工作,且能达到快速切换的目的;例如从发射模式切换到接收模式;用户 MCU 也可以在模式切换前提前进入休眠,使用外部中断功能来获取 AUX 变化,从而进行模式切换。
- 此操作方式是非常灵活而高效的,完全按照用户 MCU 的操作方便性而设计,并可以尽可能降低整个系统的工作负荷,提高系统效率,降低功耗。

6.2 传输模式 (模式 0)

● 此模式下可进行数据透传,即发送方发什么数据接收方将会接收到什么数据。在普通模式下,只要保证两个模块的空速、 地址和信道一致,两个模块就可以进行正常的透传;连传模式下,需要保证两个模块的波特率必须一样,才能保证两个 模块的透传,连传模式支持波特率 1200-115200 连续传输大文件。

6.3 RSSI 模式 (模式 1)

● 此模式下模块会间隔 100ms 输出当前空中 2. 4GHz 信号的 RSSI 值,用于检测空中的信道质量。输出的值为十六进制补码格式。

6.4 测距模式 (模式 2)

● 保留。

6.5 配置模式 (模式 3)

● 此模式下波特率固定参数为 9600, 8N1。可参考指令格式设置模块的相应参数。

第七章 指令格式

● 配置模式(模式 3: M0=1, M1=1, M2=1)下,支持的指令列表如下(设置时,只支持 9600, 8N1 格式):

序号	指令格式	详细说明
1	C0+工作参数	16 进制格式发送 C0+5 字节工作参数, 共 6 字节, 必须连续发送(掉电保存)
2	C1+C1+C1	16 进制格式发送三个 C1,模块返回已保存的参数,必须连续发送。
3	C2+工作参数	16 进制格式发送 C2+5 字节工作参数, 共 6 字节, 必须连续发送(掉电不保存)
4	C3+C3+C3	16 进制格式发送三个 C3,模块返回版本信息,必须连续发送。
5	C4+C4+C4	16 进制格式发送三个 C4,模块将产生一次复位,必须连续发送。
6	E2+E2+E2	透传模式下,16 进制格式发送三个 E2,模块将进入一个 10S 钟的配置窗口期,在这 10S 钟之内可以通过 C0 指令配置模块的相应参数,10S 钟结束后,模块使用新参数进行工作。
7	E3+E3+E3	透传模式下,16 进制格式发送三个 E3,接收到此指令的相应模块将进入一个 10S 钟的配置窗口期,在这 10S 钟之内可以发送 6 个字节的 C0 指令参数空中配置模块的参数,10S 钟结束后,接收模块模块使用新参数进行工作。

7.1 出厂默认参数

型号	出厂默认参数值:							
模块型号	频率	地址	信道	空中速率	波特率	串口格式	发射功率	
E28-2G4T12S	2.4GHz	0x0000	0x13	10kbps	9600	8N1	12dbm	

7.2 工作参数读取

指令格式	详细说明
C1+C1+C1	在配置下 (MO=1, M1=1), 向模块串口发出命令 (HEX 格式): C1 C1 C1, 模块会返回当前的配置参数,比如: C0 00 00 13 18 04。

7.3 版本号读取

指令格式	详细说明
C3+C3+C3	在配置下 (M0=1, M1=1), 向模块串口发出命令 (HEX 格式): C3 C3 C3, 模块会返回当前的配置参数, 比如: C3 00 47 10 0C 09 01 00; 此处的 00 28 代表模块型号 (E28 系列), 10 代表版本号, 0C 代表模块功率, 其他参数代表模块其他特性。

7.4 复位指令

指令格式	详细说明
C4+C4+C4	在配置下(M0=1, M1=1,) 向模块串口发出命令(HEX 格式): C4 C4 C4,模块将产生一次复位; 复位过程中,模块进行自检,AUX 输出低电平,复位完毕后,AUX 输出高电平,模块开始正常工作。 此时,可以进行模式切换或发起下一条指令。

7.5 参数设置指令

	名称				描述	备注
						必须为 0xC0 或 C2
0	HEAD	固定(0xC0 或	0xC2,	表示此帧数据为控制命令	CO: 所设置的参数会掉电保存。
						C2: 所设置的参数不会掉电保存。
1	ADDH	模块均	也址高与	字节(默	法认 00H)	00H-FFH
2	ADDL	模块均	也址低与	字节(默	法人 00H)	00H-FFH
		7	6	串口村	交验位	
		0	0	8N1 (默认)	
		0	1	801		通信双方串口模式可以不同
		1	0	8E1		
		1	1	8N1 (等同 00)	
		5	4	3	TTL 串口速率(bps)	
		0	0	0	串口波特率为 1200	
		0	0	1	串口波特率为 4800	普通模式下,通信双方串口模式可以不
		0	1	0	串口波特率为 9600 (默认)	同;
3	SPED	0	1	1	串口波特率为 19200	连传模式下,通信双方波特率必须相
		1	0	0	串口波特率为 57600	同;
		1	0	1	串口波特率为 115200	
		1	1	0	串口波特率为 460800	
		1	1	1	串口波特率为 921600	
		2	1	0	无线空中速率(bps)	空中速率非连传模式下,串口波特率和
		0	0	0	空中速率自适应(连续传输)	无线传输参数无关,不影响无线收发特
		0	0	1	空中速率为 1k	性。 空中速率连传模式下,串口波特率确定
		0	1	0	空中速率为 5k	空中速率。波特率越快,传输速度越快,
		0	1	1	空中速率为 10k (默认)	传输距离越近。

		1	0	0	空中速率	 室为 50k			空中速	率越低, 距	离越远,抗	干扰性能		
		1	0	1		× 100k				→ 越强,发送时间越长。 」通信双方空中无线传输速率必须相				
		1	1 0 空中速率为 1M (FLRC)							」				
		1	1	1		率为 2M(FSK)								
		通信信道号												
4	CHAN	普通模式: 空速为 1k、5k、10k 时,信道计算公式为: 2400 + CHAN * 1MHz; 空速为 50k、100k 时,信道计算公式为: 2400 + CHAN * 2MHz; 空速为 50k、100k 时,信道计算公式为: 2400 + CHAN * 3MHz; 空速为 1M 时,信道计算公式为: 2400 + CHAN * 5MHz; 空速为 2M 时,信道计算公式为: 2400 + CHAN * 5MHz; 连传模式: 波特率 1200、9600、19200 时信道计算公式为: 2400+CHAN*2MHz; 波特率 4800、57600、115200 时信道计算公式为: 2400+CHAN*4MHz; 波特率 460800、921600 时信道计算公式为: 2400+CHAN*5MHz;							默认:	默认: 0x18				
		7 0 1	透明作	发送使 专输模式 专输模式		ModBus)	作为高变自身	为1时,每个用户数据帧的前3个字节 作为高、低地址、信道。发射时模块改 变自身地址和信道,完毕后恢复原有设 置;连传模式均为透明传输。						
	OPTION	6	保留											
		5	保留											
		4	测试机	莫式设备	¥型(保	留)	No Long Little	测距模式下从机地址由 ADDH 与 ADDL 确						
		0	从机 (默认)							式卜从机地	址由 ADDH -	与 ADDL 确		
		1	主机				— 认。							
		3	LBT	开关				打开 LBT 后,发送每包数据之前会检查 当前信道质量,如果较好,直接发送, 信道存在干扰则等待干扰消失后再发						
5		0	美闭 I	LBT(默	:认)		I							
		1	打开Ⅰ	LBT				送。 115200	送。 115200 空中速率以下支持, 开启后可能 影响连传功能。					
		2	10]	驱动方式	式			该位用	该位用于使能模块内部上拉电阻;漏极					
		1	TXD,	AUX 推打	免输出,R	XD 上拉输入(I	开路方式电平适应能力更强,某些情况 可能需要外部上拉电阻。						
		0	TXD、	AUX 开足	烙输出,R	XD 开路输入	月能需							
		1	0	发	射功率(大	(约值)		- 外部由	外部电源必须提供 100mA 以上电流输出能力,并保证电源纹波小于 100mV。					
		0	0	12dBm	(默认)									
		0	1	10dBm						→ 不推荐使用较小功率发送,其电源利用				
		1	0	7dBm				- 效率不高。						
		1	1	4dBm										
举例说明(序号 3"SPED" -								I						
	该字节的二进制位				7	6	5	4	3	2	1	0		
	具体值(用户配置)				0 0 0 1 0									
	代表意义				串口校验位 8N1 串口波特率为 9600 空中速率 10kbps						ps			
对应的十六进制			0 13											

第八章 硬件设计

- 推荐使用直流稳压电源对该模块进行供电,电源纹波系数尽量小,模块需可靠接地;
- 请注意电源正负极的正确连接,如反接可能会导致模块永久性损坏;
- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性,电压不能大幅频繁波动;
- 在针对模块设计供电电路时,往往推荐保留30%以上余量,有整机利于长期稳定地工作;
- 模块应尽量远离电源、变压器、高频走线等电磁干扰较大的部分;
- 高频数字走线、高频模拟走线、电源走线必须避开模块下方,若实在不得已需要经过模块下方,假设模块焊接在 Top Layer,在模块接触部分的 Top Layer 铺地铜(全部铺铜并良好接地),必须靠近模块数字部分并走线在 Bottom Layer;
- 假设模块焊接或放置在 Top Layer, 在 Bottom Layer 或者其他层随意走线也是错误的,会在不同程度影响模块的杂散以及接收灵敏度;
- 假设模块周围有存在较大电磁干扰的器件也会极大影响模块的性能,跟据干扰的强度建议适当远离模块,若情况允许可以做适当的隔离与屏蔽;
- 假设模块周围有存在较大电磁干扰的走线(高频数字、高频模拟、电源走线)也会极大影响模块的性能,跟据干扰的强度建议适当远离模块,若情况允许可以做适当的隔离与屏蔽;
- 通信线若使用 5V 电平,必须串联 1k-5.1k 电阻(不推荐,仍有损坏风险);
- 尽量远离部分物理层亦为 2.4GHz 的 TTL 协议, 例如: USB3.0;
- 天线安装结构对模块性能有较大影响,务必保证天线外露,最好垂直向上。当模块安装于机壳内部时,可使用优质的天 线延长线,将天线延伸至机壳外部;
- 天线切不可安装于金属壳内部,将导致传输距离极大削弱。

第九章 常见问题

9.1 传输距离不理想

- 当存在直线通信障碍时,通信距离会相应的衰减;
- 温度、湿度,同频干扰,会导致通信丢包率提高;
- 地面吸收、反射无线电波,靠近地面测试效果较差;
- 海水具有极强的吸收无线电波能力,故海边测试效果差;
- 天线附近有金属物体,或放置于金属壳内,信号衰减会非常严重;
- 功率寄存器设置错误、空中速率设置过高(空中速率越高,距离越近);
- 室温下电源低压低于推荐值,电压越低发功率越小;
- 使用天线与模块匹配程度较差或天线本身品质问题。

9.2 模块易损坏

- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性,电压不能大幅频繁波动;
- 请确保安装使用过程防静电操作,高频器件静电敏感性;
- 请确保安装使用过程湿度不宜过高,部分元件为湿度敏感器件;
- 如果没有特殊需求不建议在过高、过低温度下使用。

9.3 误码率太高

- 附近有同频信号干扰,远离干扰源或者修改频率、信道避开干扰;
- 电源不理想也可能造成乱码,务必保证电源的可靠性;
- 延长线、馈线品质差或太长,也会造成误码率偏高。

第十章 焊接作业指导

10.1 回流焊温度

Profile Feature	曲线特征	Sn-Pb Assembly	Pb-Free Assembly	
Solder Paste	锡膏	Sn63/Pb37	Sn96. 5/Ag3/Cu0. 5	
Preheat Temperature min (Tsmin)	最小预热温度	100℃	150℃	
Preheat temperature max (Tsmax)	最大预热温度	150℃	200℃	
Preheat Time (Tsmin to Tsmax)(ts)	预热时间	60-120 sec	60-120 sec	
Average ramp-up rate(Tsmax to Tp)	平均上升速率	3℃/second max	3℃/second max	
Liquidous Temperature (TL)	液相温度	183℃	217℃	
Time (tL) Maintained Above (TL)	液相线以上的时间	60-90 sec	30-90 sec	
Peak temperature (Tp)	峰值温度	220−235°C	230−250℃	
Aveage ramp-down rate (Tp to Tsmax)	平均下降速率	6°C/second max	6℃/second max	
Time 25℃ to peak temperature	25℃到峰值温度的时间	6 minutes max	8 minutes max	

10.2 回流焊曲线图

第十一章 相关型号

产品型号	芯片方案	工作频率	发射功率	测试距离	产品尺寸	封装形式	通信接口
一加坐与	心月刀采	Hz dBm		km	mm	封农ル八	世 旧 按 口
E28-2G4T12S	SX1280	2. 4G	12. 5	3	17. 5*28. 7	贴片	TTL
E28-2G4M27S	SX1280	2. 4G	27	8	15*26.5	贴片	SPI
E28-2G4M20S	SX1280	2. 4G	20	6	15*26.5	贴片	SPI
E28-2G4M12S	SX1280	2.4G	12. 5	3	25*14	贴片	SPI

第十二章 天线指南

12.1 天线推荐

天线是通信过程中重要角色,往往劣质的天线会对通信系统造成极大的影响,故我司推荐部分天线作为配套我司无线模

E28-2G4T12S 产品规格书

块且性能较为优秀且价格合理的天线。

产品型号	类型	频段	增益	尺寸	馈线	接口	—————————————————————————————————————
) 加坐与	大空	Hz	dBi	mm	cm		14 W
TX2400-NP-5010	柔性天线	2. 4G	2.0	10x50	_	IPEX	柔性 FPC 软天线
TX2400-JZ-3	胶棒天线	2. 4G	2.0	30	-	SMA-J	超短直式,全向天线
<u>TX2400-JZ-5</u>	胶棒天线	2. 4G	2.0	50	_	SMA-J	超短直式,全向天线
<u>TX2400-JW-5</u>	胶棒天线	2. 4G	2.0	50	_	SMA-J	固定弯折,全向天线
TX2400-JK-11	胶棒天线	2. 4G	2.5	110	-	SMA-J	可弯折胶棒,全向天线
<u>TX2400-JK-20</u>	胶棒天线	2. 4G	3.0	200	-	SMA-J	可弯折胶棒,全向天线
TX2400-XPL-150	吸盘天线	2. 4G	3.5	150	150	SMA-J	小型吸盘天线, 性价比

12.2 天线选择

使能 PCB 板载天线 (默认)

使能 IPEX 接口

EBYTE 成都亿佰特电子科技有限公司

第十三章 批量包装方式

修订历史

版本	修订日期	修订说明	维护人
1.0	2018-01-08	初始版本	huaa
1.1	2018-04-16	内容更新	huaa
1.2	2018-05-24	内容更新	Huaa
1.3	2018-07-20	名称变更	Huaa
1.4	2019-3-12	内容更新	Ray
1.5	2020-04-24	错误修改	du
1.6	2020-04-24	错误修改	du

关于我们

销售热线: 4000-330-990

公司电话: 028-61399028

E28-2G4T12S 产品规格书

技术支持: <u>support@cdebyte.com</u> 官方网站: <u>www.ebyte.com</u>

公司地址: 四川省成都市高新西区西芯大道 4 号创新中心 B333-D347

