CS & IT

ENGINERING

COMPUTER ORGANIZATION AND ARCHITECTURE

Cache Organization

Lecture No.- 1

Recap of Previous Lecture

Topics to be Covered

Topic Local

Locality of Reference

Topic

Cache Memory

#Q. A 32-bit wide main memory unit with a capacity of 1 GB is built using 256M X 4-bit DRAM chips. The number of rows of memory cells in the DRAM chip is 2¹⁴. The time taken to perform one refresh operation is 50 nanoseconds. The refresh period is 2 milliseconds. The percentage (rounded to the closet integer) of the time available for performing the memory read/write operations in the main memory unit is _____?

one chip refresh time = 214 * 50 ns 210=1024 $2^{10} = K$ 16 * 1K * 50 n5= 16 * 1024 * 50 ns = 0.8192 ms 800 Usec = 0.8 ms

no of addresses =
$$\frac{19B}{4B} = 2^{28}$$

expected mem = $2^{28} \times 4B$ or $2^{28} \times 32$ bits

no. of chips = 256 to x x bits = 8 chips

all horizontal

Topic: Locality of Reference

If CPU has requested one address for memory access, then that particular address or near by addresses will be accessed soon.

Topic: Locality of Reference

Types:

- 1. Spatial (space) = if CPU refers nearby addresses
- 2. Temporal (time) =) if CPU refers same add again

Mem.

Based on Cocality of reference, CPU'S current demonded localities are kept into a smaller and faster memory called as cache.

=> Use of cache reduces CPUs mem-access time.

Topic: Working of Cache Memory

- 1. Cache Hit => if CPUs demanded content is present in cache.
- 2. Cache Miss ⇒ | | _____ is not ____ | |
- 3. Hit Ratio

when there is a miss for read in cache then the block (which contains the missed content) is Copied from

Topic: Average Memory Access Time

ex: cpv suffers mem => 100 times
$$H = \frac{80}{100} = 0.8$$
 or 80%
leibs => 80 times $Tay = 0.8 *10 + 0.2 *$
miss => 20 times when hit = 10 ns $= 32 \text{ ns}$
 CPV^{S} mem access time when hit = 10 ns $= 32 \text{ ns}$

$$= \frac{2000}{100} = 0.8 \times 10 + 0.2 \times 120 \text{ ns}$$

$$= 32 \text{ ns}$$

Total mem access time for all hits = 80 × 10ns = 800 ns - miss = 20 * 120ns 2400 hs 3200ns Total mem access time = avg mem access time = 3200ms 200 + 2400 $\frac{100}{80 \times 10 + 20 \times 120} = \frac{80 \times 10}{100} + \frac{20 \times 120}{100}$

Topic: Types of Cache Accesses

Simultaneous Access: (Parallel)

Request for cache and main-memory are generated simultaneously

Topic: Types of Cache Accesses

Hierarchical Access: (serial)

Only cache is accessed first

Topic: When to Use Which Formula

tom, tom given NO yes Use general formula Level or hierarchy given yes Use simultaneous PSU) use hierarchical (default for GATE) Cache search time is negligible Cache bookup — 11

2 mins Summary

Topic

Locality of Reference

Topic

Cache Memory

Happy Learning THANK - YOU