Introduction to Machine Learning CS182

Lu Sun

School of Information Science and Technology

ShanghaiTech University

June 7, 2022

Today:

• Deep Generative Networks (DGN)

Readings:

 Deep Learning (DL), Chapters 14&20

Today's Agenda

Deep Generative Models (DGM)

- Overview
- Representation Learning with Autoencoder
- Generative Adversarial Network (GAN)
- Applications of GANs

- Overview
- Representation Learning with Autoencoder
- Generative Adversarial Network (GAN)
- Applications of GANs

Task formulation

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Task formulation

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

K-means clustering

Task formulation

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Principal Component Analysis (Dimensionality reduction)

Task formulation

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Autoencoders (Feature learning)

Task formulation

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

1-d density estimation

2-d density estimation

Deep Generative Networks-DGM

- Overview
- Representation Learning with Autoencoder
- Generative Adversarial Network (GAN)
- Applications of GANs

Feature representation learning

Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data

Feature representation learning

Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data

Feature representation learning

How to learn this feature representation?

Feature representation learning

How to learn this feature representation?

Train such that features can be used to reconstruct original data "Autoencoding" - encoding itself

Feature representation learning

Feature representation learning

Feature representation learning

Linear hidden layer example

- A single hidden unit
- · Hidden unit has linear activation
- What will this learn?

Linear hidden layer example

Training: Learning W by minimizing L2 divergence

$$\begin{split} \hat{\mathbf{x}} &= \mathbf{w}^T \mathbf{w} \mathbf{x} \\ div(\hat{\mathbf{x}}, \mathbf{x}) &= \|\mathbf{x} - \hat{\mathbf{x}}\|^2 = \|\mathbf{x} - \mathbf{w}^T \mathbf{w} \mathbf{x}\|^2 \\ \widehat{W} &= \underset{W}{\operatorname{argmin}} E[div(\hat{\mathbf{x}}, \mathbf{x})] \\ \widehat{W} &= \underset{W}{\operatorname{argmin}} E[\|\mathbf{x} - \mathbf{w}^T \mathbf{w} \mathbf{x}\|^2] \end{split}$$

This is just PCA!

Nonlinear hidden layer

- · With non-linearity
 - "Non linear" PCA
 - Deeper networks can capture more complicated manifolds
 - "Deep" autoencoders

Variational Autoencoder (VAE)

■ Objective $\mathcal{L}(x, \phi, \theta) = -D_{KL}(q_{\phi}(z|x)||p_{\theta}(z)) + E_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)]$

Regularization term Reconstruction term

Variational Autoencoder (VAE)

■ Objective $\mathcal{L}(x, \phi, \theta) = -D_{KL}(q_{\phi}(z|x)||p_{\theta}(z)) + E_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)]$

Regularization term

Reconstruction term

Interpreting the Latent Space

Example: Attribute2Image

Main ideas

Example: Attribute2Image

Results

Problem of VAE

Blurry images

https://blog.openai.com/generative-models/

Deep Generative Networks-DGM

- Overview
- Representation Learning with Autoencoder
- Generative Adversarial Network (GAN)
- Applications of GANs

Taxonomy of Generative Models

- Working with explicit model p(x) could be expensive
 - □ Variational Autoencoder (variational inference)
 - □ Boltzmann Machines (MCMC)
- Representation learning may not require p(x)
 - Sometimes we are more interested in taking samples from p(x) instead of p itself

- Implicitly define a probability distribution
- Start by sampling the code vector z from a fixed, simple distribution
- A generator network computes a differentiable function G mapping z to an x in data space

Intuition: 1D example

Intuition

advocate/penalize samples within the blue/white region.

Learning by Comparison

Basic idea

For some models, we only have access to an unnormalised probability, partial knowledge of the distribution, or a simulator of data.

We compare the estimated distribution q(x) to the true distribution p*(x) using samples.

Generative Adversarial Networks (GAN)

Using a neural network to generate data

Input: Random noise

Output: Sample from training distribution

Generator Network

Generative Adversarial Networks (GAN)

 Using another neural network to determine if the data is real or not

Adversarial Learning

- GAN objective for the generator is some complicated objective function defined by a neural network.
 - □ This means a new way of thinking about "distance".
 - We are training networks to minimize the "distance" or "divergence" between generated images and real images.
 - Instead of some hand-crafted distance metric like L1 or L2, we can make something completely new.
 - A neural network, with the right architecture, is arguably the definition of perceptual similarity (assuming our visual system is some sort of neural network).

Adversarial Learning

Adversarial loss

Adversarial Learning

- Let D denote the discriminator's predicted probability of being real data
- Discriminator's cost function: cross-entropy loss for task of classifying real vs. fake images

$$\mathcal{J}_D = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}}[-\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z}}[-\log(1 - D(G(\mathbf{z})))]$$

 One possible cost function for the generator: the opposite of the discriminator's

$$\mathcal{J}_{G} = -\mathcal{J}_{D}$$

$$= \text{const} + \mathbb{E}_{\mathbf{z}}[\log(1 - D(G(\mathbf{z})))]$$

Two-Player Game

- Minimax formulation
 - The generator and discriminator are playing a zero-sum game against each other

$$\max_{G} \min_{D} \mathcal{J}_{D}$$

Using parametric models

Discriminator outputs likelihood in (0,1) of real image

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$
 Discriminator output for real data x generated fake data G(z)

Learning Procedure

Minimax objective function

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. Gradient descent on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

Learning Procedure

Updating the discriminator

Learning Procedure

Updating the generator

Typical Generator Architecture

For images

- ▶ Unit Gaussian distribution on z, typically 10-100 dim.
- Up-convolutional deep network (reverse recognition CNN)

Typical Discriminator Architecture

For images

- Recognition CNN model
- ► Binary classification output: real / synthetic

- Since GANs were introduced in 2014, there have been hundreds of papers introducing various architectures and training methods
- GAN Zoo: https://github.com/hindupuravinash/the-gan-zoo
- In general, training a GAN is tricky and unstable
- Many tricks:
 - □ S. Chintala, How to train a GAN, ICCV 2017 tutorial
 - □ https://github.com/soumith/talks/blob/master/2017-ICCV_Venice/How_To_Train_a_GAN.pdf

Generative Samples

Celebrities:

Karras et al., 2017. Progressive growing of GANs for improved quality, stability, and variation

Generative Samples

Objects:

Walk Around Data Manifold

Interpolating between random points in laten space

Radford et al, ICLR 2016

Walk Around Data Manifold

Vector Arithmetic

Deep Generative Networks-DGM

- Overview
- Representation Learning with Autoencoder
- Generative Adversarial Network (GAN)
- Applications of GANs

Conditional GANs

- Conditional GANs include a label and learn P(X|Y)
 - Add conditional variable y into G and D
 - Objective function

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{z}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x}|\boldsymbol{y})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z}|\boldsymbol{y})))].$$

Conditional GANs

Model architecture

Conditional GANs

petals with a dark purple center $D(\hat{x}, \varphi(t))$ Discriminator Network

this small bird has a pink breast and crown, and black primaries and secondaries.

Reed et al 2015

StackGAN

A coarse-to-fine manner

This bird is The bird has This bird is This is a small, This bird is A white bird white, black, white black and This bird has small beak, black bird with Text blue with white wings that are and brown in with a black with reddish a white breast yellow in color, escription and has a very brown and has color, with a brown crown and white on with a short crown and black beak short beak a yellow belly yellow beak brown beak and gray belly the wingbars. Stage-I images Stage-II images

Zhang et al. 2016

StackGAN

Use stacked GAN structure

More StackGAN results

This flower is This flower This flower white and pink, white, has a lot of yellow in has petals that and yellow in small purple color, with are dark pink Text color, and has petals in a with white petals that are description petals that are edges and dome-like wavy and striped configuration smooth pink stamen 64x64 GAN-INT-CLS 256x256 StackGAN

This flower is

Image-to-Image Translation

One-to-many or many-to-one mapping [Isola et al., 2016]

Image-to-Image Translation

More results

Image-to-Image Translation

More results

Image-to-image translation without paired data

If we had paired data (same content in both styles), this would be a supervised learning problem. But this is hard to find.

- If we had paired data (same content in both styles), this would be a supervised learning problem. But this is hard to find.
- The CycleGAN architecture learns to do it from unpaired data.
 - □ Train two different generator nets to go from style 1 to style 2, and vice versa.
 - Make sure the generated samples of style 2 are indistinguishable from real images by a discriminator net.
 - Make sure the generators are cycle-consistent: mapping from style 1 to style 2 and back again should give you almost the original image.

Total loss = discriminator loss + reconstruction loss

Results

More details

https://hardikbansal.github.io/CycleGANBlog/