Probabilistic Parsing: Issues & Improvement

LING 571 — Deep Processing Techniques for NLP October 15th, 2018

Notes on HW #3

- Subtrees in cells
 - ...cells are subtrees, just represented differently!
 - You could use NLTK's Tree objects as backpointers efficiently iff:
 - each left or right child is defined by reference to another subtree.
 - ...this isn't more efficient than:

A new type of vaccine? (0 parses)

Det -> "A"		NP -> 0 • Det • 1 1 • Nom • 3		NP -> 0 • Det • 1 1 • Nom • 5 _X_7 -> 0 • NP • 3 3 • PP • 5
1		NP -> 1•ADJP•2 2•Nom•3 Nom -> 1•ADJP•2 2•Nom•3		NP -> 1 • ADJP • 2 2 • Nom • 5 Nom -> 1 • Nom • 3 3 • PP • 5 _X_7 -> 1 • NP • 3 3 • PP • 5 NP -> 1 • Nom • 3 3 • PP • 5 Nom -> 1 • ADJP • 2 2 • Nom • 5
	2	Nom -> "type" NP -> "type"		Nom -> 2 • Nom • 3 3 • PP • 5 NP -> 2 • Nom • 3 3 • PP • 5 _X_7 -> 2 • NP • 3 3 • PP • 5
	2	3	Prep -> "of" 4 -	PP -> 3 • Prep • 4 4 • NP • 5 NP -> "vaccine" Nom -> "vaccine"

Will this work in humans? (0 parses)

Will this work in apes? (0 parses)

They restored immunity in mice with a weak immune system. (8 parses)

	3		Nom -> "mice" NP -> "mice"					_X_7 -> 4 • NP • 5 5 • PP • 1 NP -> 4 • Nom • 5 5 • PP • 10	
			I .			 			
			I .	 	 	 			
		3	Prep -> "in"	PP -> 3•Prep•4 4•NP•5 	 	 	 	 	PP -> 3 • Prep • 4 4 • NP • 1
	2		 Prep -> "in"	 PP -> 3•Prep•4 4•NP•5		 	 		'
									_X_7 -> 2 • NP • 3 3 • PP • 1 Nom -> 2 • Nom • 5 5 • PP • 1 NP -> 2 • Nom • 5 5 • PP • 10
		NP -> "immunity"		NP -> 2 • Nom • 3 3 • PP • 5 _X_7 -> 2 • NP • 3 3 • PP • 5					_X_7 -> 2 • NP • 5 5 • PP • 1 NP -> 2 • Nom • 3 3 • PP • 10
1 -	 	 Nom -> "immunity"	 	VP -> 1 • VBD • 2 2 • NP • 5 	 	i 	i I	i 	VP -> 1 • VBD • 2 2 • NP • 1 0
	 VBD -> "restored" 	VP -> 1•VBD•2 2•NP•3	 		 	 	 	 	VP -> 1 • VBD • 2

Start Recording!

PCFG Induction

Learning Probabilities

- Simplest way:
 - Use treebank of parsed sentences
 - To compute probability of a rule, count:
 - Number of times a nonterminal is expanded:
 - $\Sigma_{\gamma} Count(\alpha \rightarrow \gamma)$ $Count(\alpha \rightarrow \beta)$ Number of times a nonterminal is expanded by a given rule:

$$P(\alpha \to \beta \mid \alpha) = \frac{Count(\alpha \to \beta)}{\sum_{\gamma} Count(\alpha \to \gamma)} = \frac{Count(\alpha \to \beta)}{Count(\alpha)}$$

- Alternative: Learn probabilities by re-estimating
- (Later)

Inducing a PCFG NP VP NNP **VBZ** NP NNP Mr. Vinken NP NN NP IN chairman NP NP of NNP NNP NNP **VBG** NN DT Dutch publishing Elsevier N.V. the group

Inducing a PCFG $S \rightarrow NPVP$. NNP **VBZ** NP NNP Mr. Vinken NP NN NP IN chairman NP NP of NNP NNP NNP **VBG** NN DT Dutch publishing Elsevier N.V. the group

WASHINGTON

PROFESSIONAL MASTER'S IN
COMPUTATIONAL LINGUISTICS

1	$S \rightarrow NP \ VP$.]
1	$NP \rightarrow NNP \ NNP$]
1	$\overline{VP} \rightarrow VBZNP$]

	1	$S \rightarrow NP \ VP$.	1
	2	$NP \rightarrow NNP \ NNP$	1
:	1	$VP \rightarrow VBZ NP$	1
	1	$NP \rightarrow NP \ PP$	1
	_	$PP \rightarrow IN NP$	1

1	$S \rightarrow NP \ VP$.	1
3	$NP \rightarrow NNP \ NNP$	1
1	$VP \rightarrow VBZ NP$	1
1	$NP \rightarrow NP PP$	1
	$PP \rightarrow IN NP$	1
	$NP \rightarrow NP$, NP	1

1	$S \rightarrow NP \ VP$.	1
4	$NP \rightarrow NNP \ NNP$	2
1	$VP \rightarrow VBZ NP$	1
1	$NP \rightarrow NP PP$	1
	$PP \rightarrow IN NP$	1
	$NP \rightarrow NP$, NP	1

1	$S \rightarrow NP \ VP$.	1
5	$NP \rightarrow NNP \ NNP$	2
1	$VP \rightarrow VBZ NP$	1
1	$NP \rightarrow NP PP$	1
	$PP \rightarrow IN NP$	1
	$NP \rightarrow NP$, NP	1
	$NP \rightarrow DT NNP VBG NN$	1

$S \rightarrow *$	1	$S \rightarrow NP \ VP$.	1
$NP \rightarrow *$	5	$NP \rightarrow NNP \ NNP$	2
$VP \rightarrow *$	1	$VP \rightarrow VBZ NP$	1
$PP \rightarrow *$	1	$NP \rightarrow NP PP$	1
		$PP \rightarrow IN NP$	1
		$NP \rightarrow NP$, NP	1
		$NP \rightarrow DT NNP VBG NN$	1

→ *	1	$S \rightarrow NP \ VP$.	1
? → *	5	$NP \rightarrow NNP \ NNP$	2/5
$\rightarrow *$	1	$VP \rightarrow VBZ NP$	1
°→ *	1	$NP \rightarrow NP PP$	1/5
		$PP \rightarrow IN NP$	1
		$NP \rightarrow NP$, NP	1/5
		$NP \rightarrow DT NNP VBG NN$	1/5

$S \rightarrow *$	1	$S \rightarrow NP \ VP$.	1
$VP \rightarrow *$	5	$NP \rightarrow NNP \ NNP$	0.4
$VP \rightarrow *$	1	$VP \rightarrow VBZ NP$	1
$PP \rightarrow *$	1	$NP \rightarrow NP PP$	0.2
		$PP \rightarrow IN NP$	1
		$NP \rightarrow NP$, NP	0.2
		$NP \rightarrow DT NNP VBG NN$	0.2

Problems with PCFGs

Problems with PCFGs

- Independence Assumption
 - Assume that rule probabilities are independent

- Lack of Lexical Conditioning
 - Lexical items should influence the choice of analysis

Issues with PCFGs: Independence Assumption

- Context Free ⇒ Independence Assumption
 - Rule expansion is context-independent
 - Allows us to multiply probabilities
- If we have two rules:
 - $NP \rightarrow DT NN$ [0.28]
 - $NP \rightarrow PRP$ [0.25]
- What does this new data tell us?
 - $NP \rightarrow DT NN$ [0.09 if $NP_{\Theta=subject}$ else 0.66]
 - $NP \rightarrow PRP$ [0.91 if $NP_{\Theta=subject}$ else 0.34]

Semantic Role of NPs in Switchboard Corpus

	Pronomial	Non-Pronomial
Subject	91%	9%
Object	34%	66%

... Can try parent annotation

Issues with PCFGs: Lexical Conditioning

VP NP NNS **VBD** NP dumped workers NNS NP * sacks NN into bin

("into a bin" = location of sacks after dumping)

("into a bin" = *the sacks which were located in PP)
not OK

Issues with PCFGs: Lexical Conditioning

("in a bin" = location of sacks **before** dumping)

("into a bin" = *the sacks which were located in PP) not OK

Issues with PCFGs: Lexical Conditioning

- workers dumped sacks into a bin
 - into should prefer modifying dumped
 - into should disprefer modifying sacks

- fishermen caught tons of herring
 - of should prefer modifying tons
 - of should disprefer modifying caught

 $NP \rightarrow NP \ Conj \ NP \ NP \ PP \ NOUN \rightarrow "dogs" \ PP \rightarrow Prep \ NP \ Prep \rightarrow "in" \ NP \rightarrow Noun \ Noun \rightarrow "houses" \ Conj \rightarrow "and" \ NP \rightarrow Noun \ Noun \rightarrow "cats"$

Same Rules!

 $NP \rightarrow NP \ PP$ $Noun \rightarrow "dogs"$ $PP \rightarrow Prep \ NP$ $Prep \rightarrow "in"$ $NP \rightarrow NP \ Conj \ NP$ $NP \rightarrow Noun$ $Noun \rightarrow "houses"$ $Conj \rightarrow "and"$ $NP \rightarrow Noun$ $Noun \rightarrow "cats"$

 $NP \rightarrow NP \ Conj \ NP$ $NP \rightarrow NP \ PP$ $Noun \rightarrow "dogs"$ $PP \rightarrow Prep \ NP$ $Prep \rightarrow "in"$ $NP \rightarrow Noun$ $Noun \rightarrow "houses"$ $Conj \rightarrow "and"$ $NP \rightarrow Noun$ $Noun \rightarrow "cats"$

Same Rules!

 $NP \rightarrow NP \ PP$ $Noun \rightarrow "dogs"$ $PP \rightarrow Prep \ NP$ $Prep \rightarrow "in"$ $NP \rightarrow NP \ Conj \ NP$ $NP \rightarrow Noun$ $Noun \rightarrow "houses"$ $Conj \rightarrow "and"$ $NP \rightarrow Noun$ $Noun \rightarrow "cats"$

30

 $NP \rightarrow NP \ Conj \ NP$ $NP \rightarrow NP \ PP$ $Noun \rightarrow "dogs"$ $PP \rightarrow Prep \ NP$ $Prep \rightarrow "in"$ $NP \rightarrow Noun$ $Noun \rightarrow "houses"$ $Conj \rightarrow "and"$ $NP \rightarrow Noun$ $Noun \rightarrow "cats"$

Same Rules!

 $NP \rightarrow NP \ PP$ $Noun \rightarrow "dogs"$ $PP \rightarrow Prep \ NP$ $Prep \rightarrow "in"$ $NP \rightarrow NP \ Conj \ NP$ $NP \rightarrow Noun$ $Noun \rightarrow "houses"$ $Conj \rightarrow "and"$ $NP \rightarrow Noun$ $Noun \rightarrow "cats"$

Improving PCFGs

Improving PCFGs

- Parent Annotation
- Lexicalization
- Markovization
- Reranking

Improving PCFGs: Parent Annotation

- To handle the NP o PRP [0.91 if $NP_{\Theta=subject}$ else 0.34]
 - Can annotate each node with its parent

Improving PCFGs: Parent Annotation

- To handle the NP o PRP [0.91 if $NP_{\Theta=subject}$ else 0.34]
 - Can annotate each node with its parent

PROFESSIONAL MASTER'S IN
COMPUTATIONAL LINGUISTICS

Improving PCFGs: Parent Annotation

- To handle the NP o PRP [0.91 if $NP_{\Theta=subject}$ else 0.34]
 - Can annotate each node with its parent

PROFESSIONAL MASTER'S IN
COMPUTATIONAL LINGUISTICS

Improving PCFGs: Parent Annotation

- Advantages:
 - Captures structural dependencies in grammar
- Disadvantages:
 - Explodes number of rules in grammar
 - Same problem with subcategorization
 - Results in sparsity problems
- Strategies to find an optimal number of splits
 - Petrov et al (2006)

Improving PCFGs

- Parent Annotation
- Lexicalization
- Markovization
- Reranking

Improving PCFGs: Lexical "Heads"

- Remember back to syntax intro (Lecture #1)
 - Phrases are "headed" by key words
 - VP are headed by V
 - NP by NN, NNS, PRON
 - PP by PREP

• We can take advantage of this in our grammar!

Improving PCFGs: Lexical Dependencies

- As we've seen, some rules should be conditioned on certain words
- Proposal: annotate nonterminals with lexical head

```
VP 	o VBD \ NP \ PP VP(\mathbf{dumped}) 	o VBD(\mathbf{dumped}) \ NP(\mathbf{sacks}) \ PP(\mathbf{into})
```

Additionally: annotate with lexical head + POS

 $VP(dumped, VBD) \rightarrow VBD(dumped, VBD) NP(sacks, NNS) PP(into, IN)$

Internal Rules					
TOP	\rightarrow	S(prefer, V)			
S(prefer, V)	\rightarrow	NP(I, Pron)	VP(prefer, V)		
NP(I, Pron)	\rightarrow	Pron(I, Pron)			
VP(prefer, V)	\rightarrow	V(prefer, V)	NP(flight, NN)		
NP(flight, NN)	\rightarrow	Det(a, Det)	Nom(flight, NN)		
PP(on, IN)	\rightarrow	IN(on, IN)	NP(TWA, NNP)		

Lexical F	Rules	;
Pron(I, Pron)	\rightarrow	I
V(prefer, V)	\rightarrow	prefer
Det(a, Det)	\rightarrow	\mathbf{a}
$NN(flight,\ NN)$	\rightarrow	flight
IN(on, IN)	\rightarrow	on
NNP(NWA, NNP)	\rightarrow	TWA

Internal Rules					
TOP	\rightarrow	S(prefer, V)			
S(prefer, V)	\rightarrow	NP(I, Pron)	VP(prefer, V)		
NP(I, Pron)	\rightarrow	Pron(I, Pron)			
VP(prefer, V)	\rightarrow	V(prefer, V)	NP(flight, NN)		
NP(flight, NN)	\rightarrow	Det(a, Det)	Nom(flight, NN)		
PP(on, IN)	\rightarrow	IN(on, IN)	NP(TWA, NNP)		

Lexical R	lules	5
Pron(I, Pron)	\rightarrow	I
V(prefer, V)	\rightarrow	prefer
Det(a, Det)	\rightarrow	a
$NN(flight,\ NN)$	\rightarrow	flight
IN(on, IN)	\rightarrow	on
NNP(NWA, NNP)	\rightarrow	TWA

Internal Rules				
TOP	\rightarrow	S(prefer, V)		
S(prefer, V)	\rightarrow	NP(I, Pron)	VP(prefer, V)	
NP(I, Pron)	\rightarrow	Pron(I, Pron)		
VP(prefer, V)	\rightarrow	V(prefer, V)	NP(flight, NN)	
NP(flight, NN)	\rightarrow	Det(a, Det)	Nom(flight, NN)	
PP(on, IN)	\rightarrow	IN(on, IN)	NP(TWA, NNP)	

Lexical R	tules	5
Pron(I, Pron)	\rightarrow	I
V(prefer, V)	\rightarrow	prefer
Det(a, Det)	\rightarrow	a
NN(flight, NN)	\rightarrow	flight
IN(on, IN)	\rightarrow	on
NNP(NWA, NNP)	\rightarrow	TWA

Internal Rules				
TOP	\rightarrow	S(prefer, V)		
S(prefer, V)	\rightarrow	NP(I, Pron)	VP(prefer, V)	
NP(I, Pron)	\rightarrow	Pron(I, Pron)		
VP(prefer, V)	\rightarrow	V(prefer, V)	NP(flight, NN)	
NP(flight, NN)	\rightarrow	Det(a, Det)	Nom(flight, NN)	
PP(on, IN)	\rightarrow	IN(on, IN)	NP(TWA, NNP)	

Lexical R	Rules	5
Pron(I, Pron)	\rightarrow	I
V(prefer, V)	\rightarrow	prefer
Det(a, Det)	\rightarrow	a
NN(flight, NN)	\rightarrow	flight
IN(on, IN)	\rightarrow	on
NNP(NWA, NNP)	\rightarrow	TWA

Internal Rules					
TOP	\rightarrow	S(prefer, V)			
S(prefer, V)	\rightarrow	NP(I, Pron)	VP(prefer, V)		
NP(I, Pron)	\rightarrow	Pron(I, Pron)			
VP(prefer, V)	\rightarrow	V(prefer, V)	NP(flight, NN)		
NP(flight, NN)	\rightarrow	Det(a, Det)	Nom(flight, NN)		
PP(on, IN)	\rightarrow	IN(on, IN)	NP(TWA, NNP)		

Lexical Rules					
Pron(I, Pron)	\rightarrow	I			
V(prefer, V)	\rightarrow	prefer			
Det(a, Det)	\rightarrow	a			
NN(flight, NN)	\rightarrow	flight			
IN(on, IN)	\rightarrow	on			
NNP(NWA, NNP)	\rightarrow	TWA			

Internal Rules				
TOP	\rightarrow	S(prefer, V)		
S(prefer, V)	\rightarrow	NP(I, Pron)	VP(prefer, V)	
NP(I, Pron)	\rightarrow	Pron(I, Pron)		
VP(prefer, V)	\rightarrow	V(prefer, V)	NP(flight, NN)	
NP(flight, NN)	\rightarrow	Det(a, Det)	Nom(flight, NN)	
PP(on, IN)	\rightarrow	IN(on, IN)	NP(TWA, NNP)	

Lexical Rules					
Pron(I, Pron)	\rightarrow	I			
V(prefer, V)	\rightarrow	prefer			
Det(a, Det)	\rightarrow	a			
NN(flight, NN)	\rightarrow	flight			
IN(on, IN)	\rightarrow	on			
NNP(NWA, NNP)	\rightarrow	TWA			

Improving PCFGs: Lexical Dependencies

- Upshot: heads propagate up tree:
 - $VP \rightarrow VBD(dumped, VBD) NP(sacks, NNS) PP(into, P)$
 - $NP \rightarrow NNS(sacks, NNS) PP(into, P)$

40

Improving PCFGs: Lexical Dependencies

- Downside:
 - Rules far too specialized will be sparse
- Solution:
 - Assume conditional independence
 - Create more rules

Improving PCFGs: Collins Parser

- Proposal:
 - ullet LHS o LeftOfHead ... Head ... RightOfHead
 - Instead of calculating P(EntireRule), which is sparse:
 - Calculate:
 - ullet Probability that LHS has nonterminal phrase H given head-word hw...
 - ullet × Probability of modifiers to the **left** given head-word hw...
 - ullet × Probability of modifiers to the right given head-word hw...

$$P(T,S) = \prod_{n \in T} p(r(n)|n,h(n)) \cdot p(h(n)|n,h(m(n)))$$

Collins Parser Example

Collins Parser Example

$P(VP \rightarrow VBD \ NP \ PP | VP, dumped)$

$$= \frac{Count \left(VP \left(dumped\right) \to VBD \ NP \ PP\right)}{\sum_{\beta} Count \left(VP \left(dumped\right) \to \beta\right)}$$
$$= \frac{6}{9} = 0.67$$

$P_R(into | PP, dumped)$

$$= \frac{Count\left(X\left(dumped\right) \to \dots PP\left(into\right) \ \dots\right)}{\sum_{\beta} Count\left(X\left(dumped\right) \to \dots PP \ \dots\right)}$$

$$=\frac{2}{9}=0.22$$

$P(VP \rightarrow VBD \ NP | VP, dumped)$

$$= \frac{Count \left(VP \left(dumped \right) \to VBD \ NP \right)}{\sum_{\beta} Count \left(VP \left(dumped \right) \to \beta \right)}$$
$$= \frac{1}{0} = 0.11$$

$$P_R(into | PP, sacks)$$

$$= \frac{Count \left(X \left(sacks \right) \to \dots PP \left(into \right) \dots \right)}{\sum_{\beta} Count \left(X \left(sacks \right) \to \dots PP \dots \right)}$$
$$= \frac{0}{0}$$

Improving PCFGs

- Parent Annotation
- Lexicalization
- Markovization
- Reranking

CNF Factorization & Markovization

- CNF Factorization:
 - Converts n-ary branching to binary branching
 - Can maintain information about original structure
 - Neighborhood history and parent

Different Markov Orders

Markovization and Costs

PCFG	Time(s)	Words/s	V	P	LR	LP	Fı
Right-factored	4848	6.7	10105	23220	69.2	73.8	71.5
Right-factored, Markov order-2	1302	24.9	2492	11659	68.8	73.8	71.3
Right-factored, Markov order- I	445	72.7	564	6354	68.0	730	70.5
Right-factored, Markov order-0	206	157.1	99	3803	61.2	65.5	63.3
Parent-annotated, Right-factored, Markov order-2	7510	4.3	5876	22444	76.2	78.3	77.2

from Mohri & Roark 2006

Improving PCFGs

- Parent Annotation
- Lexicalization
- Markovization
- Reranking

Reranking

- Issue: Locality
 - PCFG probabilities associated with rewrite rules
 - Context-free grammars are, well, context-free
 - Previous approaches create new rules to incorporate context
- Need approach that incorporates broader, global info

Discriminative Parse Reranking

- General approach:
 - Parse using (L)PCFG
 - Obtain top-N parses
 - Re-rank top-N using better features
- Use discriminative model (e.g. MaxEnt) to rerank with features:
 - right-branching vs. left-branching
 - speaker identity
 - conjunctive parallelism
 - fragment frequency
 - •

Reranking Effectiveness

- How can reranking improve?
 - ...assuming N-best includes the correct parse

• Results from Collins (2000), with 50-best

System	Accuracy	
Baseline	0.897	
Oracle	0.968	
Discriminative	0.917	

• "Oracle" is to automatically choose the correct parse if in N-best

Improving PCFGs: Tradeoffs

Pros:

- Increased accuracy/specificity
- e.g. Lexicalization, Parent annotation, Markovization, etc

Cons:

- Explode grammar size
- Increased processing time
- Increased data requirements
- How can we balance?

Improving PCFGs: Efficiency

- Beam thresholding
- Heuristic Filtering

Efficiency

- PCKY is $|G| \cdot n^3$
 - Grammar can be huge
 - Grammar can be extremely ambiguous
 - Hundreds of analyses not unusual
- ...but only care about best parses
- Can we use this to improve efficiency?

Beam Thresholding

- Inspired by Beam Search
- Assume low probability parses unlikely to yield high probability overall
 - Keep only top k most probable partial parses
 - Retain only k choices per cell
 - For large grammars, maybe 50-100
 - For small grammars, 5 or 10

Heuristic Filtering

- Intuition: Some rules/partial parses unlikely to create best parse
- Proposal: Don't store these in table.
- Exclude:
 - Low frequency: (singletons)
 - Low probability: constituents ${m X}$ s.t. $P({m X}) < 10^{-200}$
 - Low relative probability:
 - Exclude \boldsymbol{X} if there exists \boldsymbol{Y} s.t. $P(\boldsymbol{Y}) > 100 \times P(\boldsymbol{X})$

HW #4

Probabilistic Parsing

- Goals:
 - Learn about PCFGs
 - Implement PCKY
 - Analyze Parsing Evaluation
 - Assess improvements to PCFG Parsing

Tasks

- I. Train a PCFG
- Estimate rule probabilities from treebank
- Treebank is already in CNF
- More ATIS data from Penn Treebank
- 2. Build CKY Parser
 - Modify (your) existing CKY implementation

Tasks

3. Evaluation

- Evaluate your parser using standard metric
- We will provide evalb program and gold standard

4. Improvement

- Improve your parser in some way:
 - Coverage
 - Accuracy
 - Speed
- Evaluate new parser

Improvement Possibilities

- Coverage:
 - Some test sentences won't parse as is!
 - Lexical gaps (aka out-of-vocabulary [OOV] tokens)
 - ...remember to model the probabilities, too
- Better context modeling
 - e.g. Parent Annotation
- Better Efficiency
 - e.g. Heuristic Filtering, Beam Search
- No "cheating" improvements:
 - improvement can't change training by looking at test data

