Roll	No.	
------	-----	--

322452(14)

B. E. (Fourth Semester) Examination, Nov.-Dec. 2019

(New Scheme)

(CSE Branch)

DISCRETE STRUCTURES

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Part (a) of each quesiton is compulsory and carries 2 marks. Attempt any two the remaining questions and carries 7 marks each.

Unit - 1

- 1. (a) Define tautology.
 - (b) Establish the equivalance:

$$(P \vee q) \implies r \equiv (P \implies r) \land (q \implies r)$$

(c) Obtain the disjunctive normal form of the following function:

$$F(x, y, z) = (x + y) \cdot (x + z') + (y + z')$$

(d) Prove that for each $a \in B$, a' is unique.

Unit - II

2. (a) If $f: R \to R$ and $g: R \to R$ defined by the formula

$$f(x) = x + 2 \quad \forall x \in R$$

 $g(x) = x^2 \quad \forall x \in R$, then find gof.

(b) Prove that the R is an equivalence relation where R be a relation in the set of integer Z defined by

$$R = \{ (x, y) : x \in z, y \in z, x - y \text{ is}$$

divisible by 6 \}.

(c) Prove that in a distributive lattice (L, \le) if $a \wedge b = a \wedge c$ and $a \vee b = a \vee c$ then b = c.

(d) Show that the mapping $f: R \to R$ be defined by f(x) = ax + b where $a \ b \in R$ is invertible. Define its inverse.

Unit - III

- 3. (a) Define semi-group.
 - (b) Prove that fourth root of unity 1, -1, i, -i from an abelian multiplicative group.
 - (c) State and prove Lagrange's theorem.
 - (d) Define Boolean ring. Prove that it is commutative.

Unit - IV

- 4. (a) Define Eulerian and Hamiltonian graph.
 - (b) Apply Dijkstra's algorithm to the graph given below and find the shortest path from a to f.

(c) Define spanning tree, find the minimum spanning tree of the following spanning tree of the following graph by using Kruskal's algorithm.

(d) Draw the graph represented by the following matrix A:

	\mathbf{v}_{i}	V_2	V ₃	V_4	V_5
V_{1} V_{2} $A = V_{3}$ V_{4} V_{5}		1	1	0	0
$\mathbf{v}_{2}^{'}$	1	1	1	0	1
$A = V_3$	1	1	0	1	1
V_4	0	0	1	1	1
V,	0	1	1	1	0

Unit - V

- 5. (a) Write the pigenhole principle.
 - (b) Show that $n^3 + 2n$ is divisible by 3 for all $n \ge 1$ by mathematical induction.
 - (c) How many positive integers not exceeding 500 are divisible by 7 or 11?
 - (d) Solve the recurrence relation by the method of characteristics roots $a_n = 3a_{n-1} 3a_{n-2} + a_{n-3}$ with initial condition $a_0 = 0$, $a_3 = 3$, $a_5 = 10$.