Spectral Clustering 17 谱聚类

构造无向图, 距离远的两点, 权重值低; 降维聚类

生命中最重要的问题, 几乎都是概率问题。

The most important questions of life are indeed, for the most part, really only problems of probability.

—— 皮埃尔-西蒙·拉普拉斯 (Pierre-Simon Laplace) | 法国著名天文学家和数学家 | 1749 ~ 1827

- ◀ sklearn.cluster.SpectralClustering() 谱聚类算法
- ◀ sklearn.datasets.make_circles() 创建环形样本数据
- sklearn.preprocessing.StandardScaler().fit_transform() 标准化数据;通过减去均值然后除以标准差,处理后数据符合标准正态分布

17.1 谱聚类

谱聚类 (spectral clustering) 是一种基于图论的聚类算法,其特点是能够处理高维数据和非凸数据簇,并且对于数据分布的形态没有特殊要求。优点是可以在任意维度上进行聚类,并且不会受到噪声的影响。缺点是需要进行谱分解计算,计算量较大。

具体来说,谱聚类的思路是将样本数据看做是空间**节点** (node),这些节点之间用**边** (edge) 连构成的**无向图** (undirected graph),也叫**加权图**。无向图中,距离远的数据点,边的权重值低;距离近的数据点,在无向图中,边的权重值高。

用无向图聚类的过程很简单,切断无向图中权重值低的边,得到一系列子图。子图内部节点 之间边的权重尽可能高,子图之间边权重尽可能低。将节点之间的相似度构成的矩阵称为邻接矩 阵,通过对邻接矩阵进行谱分解,得到数据点的特征向量,进而将其映射到低维空间进行聚类。

流程

这个思路虽然简单,但是实际操作需要一系列矩阵运算。

首先,需要计算数据 X 之间的两两距离,并构造成距离矩阵 D。然后,将距离转换成权重值,即相似度 (similarity),构造相似度矩阵 (similarity matrix) S,利用 S 可以绘制无向图。

之后,将相似度矩阵转化成**拉普拉斯矩阵** (Laplacian matrix) L。最后,**特征值分解** (eigen decomposition) L,相当于将 L 投影在一个低维度正交空间。在这个低维度空间中,用简单聚类方法对投影数据进行聚类,并得到原始数据聚类。

下面通过实例,我们一一讨论谱聚类这些步骤所涉及的技术细节。

17.2 距离矩阵

图 1 给出 12 个样本点在平面上位置。计算数据**两两距离** (pairwise distance), $x^{(i)}$ 和 $x^{(i)}$ 两个点之间欧氏距离 $d_{i,i}$:

$$d_{i,j} = \sqrt{\left(x^{(i)} - x^{(j)}\right)^{\mathrm{T}} \left(x^{(i)} - x^{(j)}\right)} = \left\|x^{(i)} - x^{(j)}\right\|$$
(1)

其中,约定 $x^{(i)}$ 和 $x^{(j)}$ 均为列向量。

图 2 所示为热图描绘的 12 个样本点两两欧氏距离构造的对称矩阵 D;注意,D 的对角线元素均为 0,这是因为观察点和自身之间距离为 0。色块颜色越浅,说明距离越近;色块颜色越深,说明距离越远。

图 1.12 个样本点平面位置

1	0	0.3845	0.8692	0.7926	0.1449	0.2649	2.891	2.131	2.586	2.74	2.605	3.282
2	0.3845	0	0.4894	0.7412	0.2494	0.3749	2.629	1.929	2.356	2.448	2.333	2.975
3	0.8692	0.4894	0	0.851	0.7387	0.8378	2.439	1.865	2.228	2.207	2.134	2.695
4	0.7926	0.7412	0.851	0	0.7935	0.9998	3.276	2.638	3.039	3.054	2.972	3.546
5	0.1449	0.2494	0.7387	0.7935	0	0.2063	2.763	2.017	2.466	2.605	2.474	3.144
6	0.2649	0.3749	0.8378	0.9998	0.2063	0	2.65	1.875	2.335	2.514	2.369	3.063
7	2.891	2.629	2.439	3.276	2.763	2.65	0	0.867	0.4055	0.3493	0.3054	0.6349
8	2.131	1.929	1.865	2.638	2.017	1.875	0.867	0	0.4841	0.9092	0.6789	1.443
9	2.586	2.356	2.228	3.039	2.466	2.335	0.4055	0.4841	0	0.5782	0.354	1.028
10	2.74	2.448	2.207	3.054	2.605	2.514	0.3493	0.9092	0.5782	0	0.2384	0.5628
11	2.605	2.333	2.134	2.972	2.474	2.369	0.3054	0.6789	0.354	0.2384	0	0.7683
12	3.282	2.975	2.695	3.546	3.144	3.063	0.6349	1.443	1.028	0.5628	0.7683	0
	1	2	3	4	5	6	7	8	9	10	11	12

3.5 3 2.5

2

1.5 1

- 0.5

图 2.12 个样本点两两欧氏距离构造的成对距离矩阵 D

本 PDF 文件为作者草稿,发布目的为方便大家在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

17.3 相似度

然后利用 $d_{i,j}$ 计算 i 和 j 两点的相似度 $s_{i,j}$ "距离 \rightarrow 相似度"的转换采用高斯核函数:

$$s_{i,j} = \exp\left(-\left(\frac{d_{i,j}}{\sigma}\right)^2\right) = \exp\left(-\frac{\left\|\boldsymbol{x}^{(i)} - \boldsymbol{x}^{(j)}\right\|^2}{\sigma^2}\right)$$
(2)

相似度取值区间为 (0,1]。 $x^{(i)}$ 和 $x^{(i)}$ 两个点距离越近,它们的相似性越高。任意点和自身的距离为 0,因此对应的相似度最大为 1。

 $\sigma = 1$ 时,两两距离 $d_{i,j}$ 和相似度 $s_{i,j}$ 两者关系如图 3 所示。

图 1 中,点 $\mathbf{x}^{(2)}$ 和 $\mathbf{x}^{(10)}$ 之间欧氏距离为 $d_{2,10}=2.448$,点 $\mathbf{x}^{(2)}$ 和 $\mathbf{x}^{(4)}$ 之间欧氏距离为 $d_{2,4}=0.741$ 。利用上式,可以计算得到,点 $\mathbf{x}^{(2)}$ 和 $\mathbf{x}^{(10)}$ 之间相似度 $s_{2,10}=0.0025$,点 $\mathbf{x}^{(2)}$ 和 $\mathbf{x}^{(4)}$ 之间欧氏距离为 $s_{2,4}=0.577$ 。

图 3. 欧氏距离和相似度关系

图 2 所示成对距离矩阵可以转化为图 4 所示相似度矩阵 (similarity matrix) S。S 也叫邻接矩阵 (adjacency matrix)。相似度矩阵 S 的每个元素均大于 0。请大家注意,一些教材将两两距离矩阵 D 叫做相似度矩阵。从图 4 一眼就可以看出数据可以划分为两簇。

图 4.12 个样本点两两相似度矩阵 S

本 PDF 文件为作者草稿,发布目的为方便大家在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

17.4 无向图

图 5 为相似度矩阵 S 无向图。图中绿色线越粗,表明两点之间的相似度越高,也就是两点距离越近。

切断相似度小于 0.001 两两元素之间的联系得到无向图图 6。图 7 为,切断相似度小于 0.005 两两元素之间的联系得到无向图。观察图 8 可以知道,当切断相似度小于 0.031 两两元素之间的联系,可以将原始数据划分为两簇。

图 5. 相似度对称矩阵 S 无向图

图 6. 当切断相似度小于 0.001 两两元素之间的联系得到无向图

本 PDF 文件为作者草稿,发布目的为方便大家在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 7. 当切断相似度小于 0.005 两两元素之间的联系得到无向图

图 8. 当切断相似度小于 0.02 两两元素之间的联系得到无向图

17.5 拉普拉斯矩阵

度矩阵 (degree matrix) G 是一个对角阵。G 的对角线元素是对应相似度矩阵 S 对应列元素之 和, 即:

$$G_{i,i} = \sum_{j=1}^{n} s_{i,j} = \operatorname{diag}(I^{\mathsf{T}}S)$$
(3)

代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

1	4.791	0	0	0	0	0	0	0	0	0	0	0
2	0	5.071	0	0	0	0	0	0	0	0	0	0
3	0	0	3.876	0	0	0	0	0	0	0	0	0
4	0	0	0	3.498	0	0	0	0	0	0	0	0
5	0	0	0	0	5.013	0	0	0	0	0	0	0
6	0	0	0	0	0	4.664	0	0	0	0	0	0
7	0	0	0	0	0	0	4.79	0	0	0	0	0
8	0	0	0	0	0	0	0	3.569	0	0	0	0
9	0	0	0	0	0	0	0	0	4.604	0	0	0
10	0	0	0	0	0	0	0	0	0	4.726	0	0
11	0	0	0	0	0	0	0	0	0	0	4.945	0
12	0	0	0	0	0	0	0	0	0	0	0	3.424
	1	2	3	4	5	6	7	8	9	10	11	12

图 9.12 个样本点两两相似度构造的度矩 G

拉普拉斯矩阵

然后构造拉普拉斯矩阵 (Laplacian matrix) L。有三种方法构造拉普拉斯矩阵。

第一种叫做未归一化拉普拉斯矩阵 (unnormalized Laplacian matrix),具体定义如下:

$$L = G - S \tag{4}$$

第二种叫做归一化随机漫步拉普拉斯矩阵 (normalized random-walk Laplacian matrix),也叫 Shi-Malik 矩阵, 定义如下:

$$L_{rw} = G^{-1} \left(G - S \right) \tag{5}$$

第三种叫做归一化对称拉普拉斯矩阵 (normalized symmetric Laplacian matrix),也叫做 Ng-Jordan-Weiss 矩阵,如下:

$$L_{s} = G^{-1/2} (G - S) G^{-1/2}$$
 (6)

采用第一种方法获得拉普拉斯矩阵 L, 热图如图 10 所示。

本 PDF 文件为作者草稿,发布目的为方便大家在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 10.12 个样本点两两相似度构造未归一化拉普拉斯矩阵 L

17.6 特征值分解

对拉普拉斯矩阵 L 进行特征值分解:

$$L = V \Lambda V^{-1} \tag{7}$$

其中

$$\boldsymbol{\Lambda} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_{12} \end{bmatrix}, \quad \boldsymbol{V} = \begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \dots & \boldsymbol{v}_1 \end{bmatrix}$$
(8)

图 11 所示为拉普拉斯矩阵 L 特征值分解得到的特征值从小到大排序。按从小到大排列 λ 值, 对应第 2 个, $\lambda_2 = 0.01285$,对应的特征向量 $\nu_2 = [-0.300, -0.295, -0.297, -0.294, -0.275, -0.298,$ 0.283, 0.285, 0.288, 0.278, 0.284, 0.286]

本 PDF 文件为作者草稿,发布目的为方便大家在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 11. 拉普拉斯矩阵 L 特征值分解得到的特征值从小到大排序

图 12 和图 13 分别展示前两个特征向量的结果。相当于将拉普拉斯矩阵 L 投影到一个二维空间,具体如图 14 所示。在图 14 所示平面内,可以很容易将数据划分为两簇。

图 12. 特征向量 v_1 结果

本 PDF 文件为作者草稿,发布目的为方便大家在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 14. 矩阵 L 投影到低维度正交空间结果

图 15 所示为采用谱聚类算法对环形样本数据聚类结果。谱聚类的可调节参数包括:相似度矩阵可以使用不同的相似度度量方式。拉普拉斯矩阵可以采用不同类型。特征向量数量可以影响聚类效果。最终的聚类可以选择不同算法。

图 15. 环形样本数据聚类结果

代码 Bk7_Ch16_01.py 可以获得图 15。

谱聚类是一种基于图论的聚类算法,其特点是能够处理高维数据和非凸数据簇,并且对于数据分布的形态没有特殊要求。谱聚类通过将数据点看作图中的节点,将它们之间的相似度构成的 矩阵称为邻接矩阵,通过对邻接矩阵进行谱分解,得到数据点的特征向量,进而将其映射到低维

本 PDF 文件为作者草稿,发布目的为方便大家在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

空间进行聚类。优点是可以在任意维度上进行聚类,并且不会受到噪声的影响。缺点是需要进行 谱分解计算, 计算量较大。

请大家注意,拉普拉斯矩阵 L 为半正定矩阵 (positive semi-definite matrix)。证明过程请参考 Ulrike von Luxburg 创作的 A Tutorial on Spectral Clustering。