EL ERROR DE TAYLOR

Fijamos una función $f: \mathbb{R} \to \mathbb{R}$ (derivable, etc.) y

• $T_{n,a}(x)$ su polinomio de Taylor de grado n centrado en a.

Recordemos que esto involucra al valor f(a) y a los valores de las n primeras derivadas de f: $f'(a), f''(a), \ldots, f^{(n)}(a)$:

$$T_{n,a}(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-2)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

Como 0! = 1, 1! = 1 y 2! = 2 vemos que *simplemente* el polinomio es

la suma, desde $\ell = 0$ hasta $\ell = n$, de las potencias $(x - a)^{\ell}$, cada una con coeficiente $\frac{f^{(\ell)}(a)}{\ell!}$.

Este polinomio aproxima (en general no es igual), para cada x, el valor f(x): mientras mayor el n o más cerca el x de a, mejor la aproximación.

• La diferencia entre el verdadero valor f(x) y el valor $T_{n,a}(x)$ es el **Resto o Error de Taylor**:

$$R_{n,a}(x) = f(x) - T_{n,a}(x).$$

Notar que es una función de x, de la que solo sabemos $R_{n,a}(a) = 0$ (el polinomio y la función son iguales en x = a y valen ambos f(a)).

• Tenemos una fórmula

$$R_{n,a}(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$

para un c indeterminado que está entre x y a (y que depende de x).

Por esto, en general **no nos importa el valor exacto**, sino que buscamos acotarlo o estimarlo:

$$|R_{n,a}(x)| < \epsilon. \tag{1}$$

Notemos que en esta fórmula hay **tres** datos que podemos modificar: el grado n del polinomio, el punto x en donde comparamos la función y el polinomio y finamente la cota o estimación ϵ .

En general, los problemas que vamos a plantear van a tener que ver con la relación de dos de estos datos, ya dados, con el tercero, por descubrir.

- * Tipos de problemas. En general se nos presentan tres tipos de problemas:
- (1) Dados una grado n y un valor x fijos:

No buscamos una respuesta exacta si no una que **buscamos una cota** ϵ que cumpla (1). Es decir:

Tenemos n y x: buscamos ϵ .

(2) Dada una cota ϵ para el error y un valor de x fijos:

Aquí buscamos un grado n que nos permita asegurar que vale (1). Es decir:

Tenemos ϵ y x: buscamos n.

(3) Dados una grado n y una cota ϵ fijos:

¿Para qué valores de x me sirve este polinomio?

Aquí queremos hallar valores de x para los que se cumpla (1). Es decir:

Tenemos ϵ y n: buscamos x.

Es importante observar que podemos no encontrar todos los valores de x, si no que el problema apunta a encontrar un subconjunto de estos valores.

* ¿Qué pasa con c? Como dijimos, el valor de c es indeterminado, por lo que no podemos calcular el valor exacto de la función $R_{n,a}(x)$ y buscamos estimarla. De todos modos, $f^{(n+1)}(c)$ aparece en la fórmula. Tenemos que remover este factor: estimarlo.

Buscamos una cota M > 0 de modo tal que podamos asegurar:

$$|f^{(n+1)}(c)| \le M$$

para cualquiera que pueda ser el valor de c (entre a y x). Es decir, en el intervalo (a, x) (si x > a) o (x, a) (si x < a).

Por ejemplo:

- Si la función $f^{(n+1)}(t)$ (ponemos t para no confundir con x o c) es creciente, entonces $f^{(n+1)}(c) \leq f^{(n+1)}(x)$ si x > a o $f^{(n+1)}(c) \leq f^{(n+1)}(a)$ si x < a. Como es creciente, es menor o igual que su valor en el extremo derecho del intervalo.
- Si es decreciente, es menor o igual que su valor en el extremo *izquierdo* del intervalo: $f^{(n+1)}(c) \leq f^{(n+1)}(a)$ si x > a o $f^{(n+1)}(c) \leq f^{(n+1)}(x)$ si x < a.
- Si $f^{(n+1)}(t) = \cos(t)$ o $f^{(n+1)}(t) = \sin(t)$, podemos usar $|f^{(n+1)}(c)| \le 1$.
- En cualquier otro caso, tenemos herramientas de Análisis I para analizar una función en un intervalo y encontrar su máximo.

Si logramos esto, obtenemos que

$$|R_{n,a}(x)| = \left| \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1} \right| \le M \frac{|x-a|^{n+1}}{(n+1)!}.$$

Así, la ecuación (1) se vuelve:

$$M \frac{|x-a|^{n+1}}{(n+1)!} \le \epsilon. \tag{2}$$

Esta es una ecuación con tres datos: x, n, ϵ . Como vimos, los **tres problemas** que queremos resolver son

tengo dos datos, quiero encontrar el otro.

* Los tres problemas. Queremos resolver (2), teniendo dos datos y buscando el tercero.

Problema 1: Tenemos el grado n y un x fijo. Entonces puedo hallar ϵ directamente:

$$\epsilon = M - \frac{|x - a|^{n+1}}{(n+1)!}$$

 $Problema\ 2$: Tenemos la cota ϵ y un x fijo. Entonces debo "despejar" n para que cumpla:

$$\frac{|x-a|^{n+1}}{(n+1)!} \le \frac{\epsilon}{M}.$$

Es un problema que se resuelve a mano, con algo de ingenio.

Problema 3: Tenemos la cota ϵ y un n fijo. Se trata entonces de encontrar un intervalo de valores para x que cumplan:

$$M|x-a|^{n+1} \le \epsilon(n+1)!$$

Es decir, la respuesta es el intervalo

$$a - \sqrt[n+1]{\frac{\epsilon(n+1)!}{M}}, a + \sqrt[n+1]{\frac{\epsilon(n+1)!}{M}}$$
.

Como indicamos antes, estos son algunos valores para los cuales podemos asegurar que vale (2). Si mejoramos la cota M, podemos hallar un intervalo mayor.

Problema 3 (bis): Aquí podemos hacer una aclaración: M es el máximo de $f^{(n+1)}(t)$ en el intervalo (a,x). Como x en este caso es variable, la constante M puede estar en función de x: ser una función M(x). Se trata entonces, más específicamente de encontrar el intervalo de valores para x que cumplan:

$$M(x)|x - a|^{n+1} \le \epsilon(n+1)!$$

En cualquier caso (sea M una constante o no) esto es nuevamente un problema de Análisis I: analizar cuándo una función $g(x) = M(x)|x-a|^{n+1}$ es menor o igual a un número fijo $\epsilon(n+1)!$.

Ejemplo. Sea f(x) = sen(x) y consideremos su polinomio de Taylor $T_{n,0}(x)$ alrededor de x = 0. Entonces

- (1) Si n = 3 y x = 0, 2. ¿Cuál es el error que cometo si tomo $T_{3,0}(0,2)$ como valor de sen(0,2)?
- (2) ¿Qué grado n necesito si quiero tomar $T_{n,0}(0,2)$ como valor de sen(0,2) y equivocarme por menos de 10^{-6} (seis decimales correctos)?
- (3) ¿Cuáles son los valores de x para los cuales puedo tomar $T_{3,0}(x)$ como valor de sen(x) y siempre equivocarme por menos de 10^{-2} (dos decimales correctos)?

El error $R_{n,0}(x)$ involucra la derivada n+1 de $\operatorname{sen}(x)$, evaluada en algún c entre 0 y x. Dependiendo de n, este valor $\operatorname{ser}(c)$, $\operatorname{cos}(c)$, $-\operatorname{sen}(c)$ o $-\operatorname{sen}(c)$. Como observamos antes, siempre se cumple

$$|f^{(n+1)}(c)| \le M = 1.$$

Por lo tanto, los tres problemas se resumen en que tenemos **dos** de los datos n, x, ϵ y buscamos el que nos falta para que valga (2), que en este caso (a = 0) es

$$\frac{|x|^{n+1}}{(n+1)!} \le \epsilon.$$

Podemos dar las respuestas. Vamos a usar la identificación $0, 2 = \frac{1}{5}$:

(1) Si n=3 y x=0,2, entonces el error es a lo sumo

$$\frac{|0,2|^4}{4!} = \frac{1}{5^4 24} = \frac{1}{15000}.$$

Es decir, es menor a 10^{-4} , tiene cuatro dígitos de precisión.

(2) Si x = 0, 2 y $\epsilon = 10^{-6}$, necesito resolver

$$\frac{|0,2|^{n+1}}{(n+1)!} \le \frac{1}{10^6} \iff 1000000 \le 5^{n+1}(n+1)! \iff n \ge 5.$$

(3) Si n=3 y $\epsilon=10^{-2}$ entonces $\sqrt[n+1]{\frac{\epsilon(n+1)!}{M}}=\sqrt[4]{\frac{24}{100}}\approx 0,7$. Luego la aproximación vale para

$$x \in \left[-\sqrt[4]{\frac{24}{100}}, \sqrt[4]{\frac{24}{100}}\right].$$

Analicemos en otro ejemplo el caso (3), en el contexto del *Problema 3 (bis)*.

Ejemplo (bis): Sea $f(x) = e^x$ y consideremos su polinomio de Taylor $T_{n,0}(x)$ alrededor de x = 0. Entonces

(3) ¿Cuáles son valores de x > 0 para los cuales puedo tomar $T_{3,0}(x)$ como valor de e^x y siempre equivocarme por menos de 10^{-2} (dos decimales correctos)?

Notar que todas las derivadas de f coinciden: $f^{(n)}(x) = e^x$. Así, la fórmula del error es, para cada x:

$$R_{3,0}(x) = \frac{e^c x^4}{4!}$$
 para $c \in [0, x]$.

Vemos entonces que no hay una cota única M tal que $e^c \leq M$, ya que la exponencial es una función creciente y no acotada. En este caso, sí podemos observar que

$$e^c < e^x$$
.

Con un poco de Análisis 1, también podemos usar $e^x \le x^4$ si $x \le 8$. Así, llegamos a la cota

$$|R_{3,0}(x)| \le \frac{e^x x^4}{4!} \le \frac{x^8}{4!}.$$

Obtenemos entonces que los valores de x para los cuales el error es menor a 10^{-2} son aquellos tales que $x^8 \le \frac{4!}{10^2} = 0$, 24. Es decir $x \in [0, \sqrt[8]{0, 24}]$. (Recordar que que con una cota más ajustada podríamos hallar un intervalo mayor).

* Bonus track: La serie de Taylor.

Recordemos que para identificar el conjunto en donde una función f(x) coincide con su serie de Taylor alrededor de a tenemos que chequear para qué valores de x vale

$$\lim_{n \to \infty} R_{n,a}(x) = 0.$$

Si consideramos nuevamente la cota $f^{(n+1)}(c) \leq M(x)$, esto implica buscar los valores de x para los cuales

$$\frac{M(x)|x-a|^{n-1}}{(n+1)!} \xrightarrow[n\to\infty]{} 0.$$

En este caso, x y a están fijos, se trata entonces de ver si la sucesión

$$a_n = \frac{M(x)|x-a|^{n-1}}{(n+1)!}$$

tiende a cero.

Volvamos al ejemplo anterior, ahora en este contexto.

Ejemplo. ¿Para qué valores de x la serie de Taylor de f(x) = sen(x) coincide con la función?

Recordemos que en este caso $|R_{n,0}(x)| \leq \frac{|x|^{n+1}}{(n+1)!}$. Así, vemos que sen(x) coincide con su serie para cualquier $x \in \mathbb{R}$ ya que, si x está fijo, la sucesión

$$a_n = \frac{|x|^{n+1}}{(n+1)!}$$

tiende a cero.