Lab 4

Part 1: Sizing Chart

Part 2: CD Amplifier

Schematic

DC OP

Comment: The transistor operates in saturation.

AC Analysis

Bode Plot

Peaking in frequency domain

4.329

expr

ymax(dB20(VF("/Vout")))

Quality Factor Analytic Calculation

Approximate: Q
$$\approx \sqrt{\frac{gm(Cgs+Cgd)Rsig}{c_L}} = \sqrt{\frac{(101.2\mu)(5.75f+59f)(2M)}{2p}} = 2.56 \Rightarrow \text{Underdamped system}$$

Exact:

Exact:
$$b_1 = C_{gd}R_{sig} + \frac{C_{gs} + C_L}{g_m}$$

$$b_2 = \left(\frac{(C_{gs} + C_{gd})C_L + C_{gs}C_{gd}}{g_m}\right)R_{sig}$$

$$\omega_z = \frac{g_m}{C_{gs}}, \omega_o = \frac{1}{\sqrt{b_2}}, \mathbf{Q} = \frac{\sqrt{b_2}}{b_1}$$

$$Q = 1.59 \Rightarrow \text{Underdamped system}$$

CL Parametric Sweep

Comment: As CL increases, the peaking in frequency domain decreases. Increasing CL eventually decreases $Q \rightarrow \omega p, out$ becomes dominant.

R_{sig} Parametric Sweep

Comment: As Rsig increases, the peaking in frequency domain increases and Q increases.

Transient Analysis

- DC shift = VGS = 605.9 mV
- Using NMOS would shift it downwards.

Time Domain Ringing

There is ringing in time domain.

overshoot(v("/Vout" ?result "tran" ?resultsDir "/home/user01/simulation/Lab4/part1/maestro/results/maestro/ExplorerRun.0/1/Lab4_part1_1/psf") 605m nil 705m nil 7105m nil 7105m

C_L Parametric Sweep

Comment: As CL increases, the ringing (overshoot) in time domain decreases.

R_{sig} Parametric Sweep

Comment: As Rsig increases, the ringing (overshoot) in time domain increases.

Z_{out} (Inductive Rise)

Magnitude

Phase

Comments

- $\omega_z = \frac{1}{Rsig\ Cgs} \&\ \omega_p = \frac{gm}{Cgs}$
- There is an inductive rise because Rsig (2M) > 1/gm (9.88k), so $\omega_z < \omega_p$. This zero causes this inductive rise.

• At high frequency, Cgd shunts Rsig ($\frac{Rsig}{1+s.Rsig.Cgd}$). This causes a new pole at this frequency, so we notice that Zout falls.

Analytical Calculations

la /poles /zeros	×		
_ qfactor	/poles (Hz)	qfactor	/zeros (Hz)
1 500.0E-3	13.48E6	500.0E-3	1.174E6
2 500.0E-3	115.9E6		

Poles & Zeros

•
$$f_z = \frac{1}{2\pi Rsig Cgs} = \frac{1}{2\pi (2M)(59f)} = 1.35 \text{ MHz}$$

•
$$f_{p1} = \frac{1}{2\pi R sig Cgd} = \frac{1}{2\pi (2M)(5.75f)} = 13.8 \text{ MHz}$$

•
$$f_{p2} = \frac{gm}{2\pi \ Cgs} = \frac{101.2\mu}{2\pi (59f)} = 273 \text{ MHz}$$
 (ro negelected)

•
$$f_{p2} = \frac{gm + gds}{2\pi \left[Rsig.gds.Cgs + Cgs\right]} = 103.7 \text{ MHz}$$
 (ro taken into account)

Magnitude

• At low frequency, Zout =
$$\frac{1}{g_m} \left(\frac{1 + sR_{sig}Cgs}{1 + s\frac{Cgs}{g_m}} \right)$$
.

- At higher frequencies, replace Rsig with (Rsig | | Cgd).
- Let low frequency = 10 Hz → Magnitude at f_L = 9.88k
- Let high frequency = 40 MHz \rightarrow Magnitude at f_H = 75.3k

Comparison

	Simulation	Analytic Calculations
fz	1.17 MHz	1.35 MHz
fp1	13.48 MHz	13.8 MHz
fp2	115.9 MHz	103.7 MHz
Zout _{fL}	9.80k	9.88k
Zout _{fH}	100.8k	75.3k