TABLE V

Conversion Factors

Force

Pressure

 $1\,\mathrm{bar} \qquad \qquad = \quad 750.06\,\mathrm{mm}\,\mathrm{Hg}$

= 0.9869 atm= 10^5 N/m^2 = 10^3 kg/m-sec^2

 1 N/m^2 = 1 pascal

= 10^{-5} bar = $10^{-2} \text{ kg/m-sec}^2$

1 atm = 760 mm Hg

= $1.03 \text{ kgf/cm}^2 = 1.01325 \text{ bar}$ = $1.01325 \times 10^5 \text{ N/m}^2$

Work, Energy or Heat

1 joule = 1 newton metre

= 1 watt-sec

 $= \quad \ 2.7778 \times 10^{-7} \, \text{kWh}$

0.239 cal

= 0.239×10^{-3} kcal

1 cal = 4.184 joule

= $1.1622 \times 10^{-6} \text{ kWh}$

 $1\,\mathrm{kcal} \qquad \qquad = \quad 4.184\times 10^3\,\mathrm{joule}$

 $427~\mathrm{kgfm}$

= 1.1622 × 10⁻³ kWh

 $1 \text{ kWh} \qquad \qquad = \qquad 8.6 \times 10^5 \text{ cal}$

= 860 kcal = 3.6 × 10⁶ joule

 $1 \text{ kgfm} \qquad \qquad = \qquad \left(\frac{1}{427}\right) \text{ kcal} = 9.81 \text{ joules}$

Power

1 watt = 1 joule/sec = 0.86 kcal/h

1 h.p. = 75 mkgf/sec = 0.1757 kcal/sec

= 735.3 watt

1 kW = 1000 watts

= 860 kcal/h

Specific heat

1 kcal/kg - °K = 4.18 kJ/kg-K

Thermal conductivity

1 watt/m-K = 0.8598 kcal/h-m-°C 1 kcal/h-m-°C = 1.16123 watt/m-K= 1.16123 joules/s-m-K

Heat transfer co-efficient

 $\begin{array}{lll} 1\,\text{watt/m}^2\text{-K} & = & 0.86\,\text{kcal/m}^2\text{-h-°C} \\ 1\,\text{kcal/m}^2\text{-h-°C} & = & 1.163\,\text{watt/m}^2\text{-K} \end{array}$

IMPORTANT ENGINEERING CONSTANTS AND EXPRESSIONS IN SI UNITS

	Engineering constants and expressions	M.K.S. system	S.I. units
1. 2.	Value of $g_0^{}$ Universal gas constant	9.81 kg-m/kgf-sec ² 848 kgf-m/kg mole-°K	1 kg-m/N-sec ² $848 \times 9.81 = 8314 \text{ J/kg-mole-}^{\circ}\text{K}$ (: 1 kgf-m = 9.81 joules)
3.	Gas constant (R)	29.27 kgf m/kg-°K for air	$\frac{8314}{29} = 287 \text{ joules/kg-K for air}$
4.	Specific heats (for air)	$c_v = 0.17~\rm kcal/kg\text{-}^{\circ}K$	$c_v = 0.17 \times 4.184$ = 0.71128 kJ/kg-K
		$c_p = 0.24~\rm kcal/kg\text{-}^{\circ}K$	$c_p = 0.24 \times 4.184$ = 1 kJ/kg-K
5.	Flow through nozzle-exit velocity (C_2)	91.5 \sqrt{U} where U is in kcal	$44.7\mathrm{VU}$ where U is in kJ
6.	Refrigeration 1 ton	= 50 kcal/min	= 210 kJ/min
7.	Heat transfer		
	The Stefan Boltzman Law is given by :	Q = σ T ⁴ kcal/m ² -h when σ = 4.9 × 10 ⁻⁸	$Q = \sigma T^4$ watts/m ² -h when $\sigma = 5.67 \times 10^{-8}$
		kcal/h-m 2 - $^\circ$ K 4	W/m ² K ⁴