₁ Kapitel 1

Maßtheorie

3 1.1 Messbare Räume

- $_4$ Im Folgenden sei X stets eine nichtleere Menge.
- 5 **Definition 1.1.** Sei $A \subseteq \mathcal{P}(X)$. Dann heißt A σ -Algebra über X, falls gilt:
- $_{6}$ (1) $X \in \mathcal{A}$,
- $_{7}$ (2) $A \in \mathcal{A} \Rightarrow A^{c} \in \mathcal{A},$
- 8 (3) $A_j \in \mathcal{A}, j \in \mathbb{N} \quad \Rightarrow \quad \bigcup_{j=1}^{\infty} A_j \in \mathcal{A}.$
- 9 Dann heißt (X, A) messbarer Raum. Eine Menge $A \subseteq X$ heißt messbar, wenn
- 10 $A \in \mathcal{A}$.
- Hierbei ist A^c das Komplement von A in X, also $A^c = X \setminus A$, und $\mathcal{P}(X)$ ist
- die Potenzmenge von X, also die Menge aller Teilmengen von X.
- Satz 1.2. Ist A eine σ -Algebra über X, dann gilt
- $(1) \emptyset \in \mathcal{A},$
- 15 (2) $A_1, A_2 \in \mathcal{A} \Rightarrow A_2 \setminus A_1 \in \mathcal{A}, A_1 \cap A_2 \in \mathcal{A},$
- $_{16}$ (3) $A_j \in \mathcal{A}, j \in \mathbb{N} \quad \Rightarrow \quad \bigcap_{j=1}^{\infty} A_j \in \mathcal{A}.$
- Beweis. Es ist $X \in \mathcal{A}$, also auch $\emptyset = X^c \in \mathcal{A}$. Sind $A_1, A_2 \in \mathcal{A}$, dann sind auch

$$A_1 \cap A_2 = (A_1^c \cup A_2^c)^c$$

19 und damit

$$A_2 \setminus A_1 = A_2 \cap (A_1^c)$$

Elemente von A. Die dritte Behauptung folgt aus

$$\bigcap_{j=1}^{\infty} A_j = \left(\bigcup_{j=1}^{\infty} A_j^c\right)^c.$$

Beispiel 1.3. $\{\emptyset, X\}$ und $\mathcal{P}(X)$ sind σ -Algebra.

- **Beispiel 1.4.** Seien X, Y nichtleer, $f: X \to Y$ und A, \mathcal{B} σ -Algebren über X
- 6 und Y. Dann sind auch

- $f^{-1}(\mathcal{B}) := \{f^{-1}(B) : B \in \mathcal{B}\} \ (Urbild \ \sigma\text{-}Algebra),$
- $f_*(A) := \{B \subseteq Y : f^{-1}(B) \in A\}$ (direktes Bild)
- σ-Algebren. Dies lässt sich elementar mit den Eigenschaften des Urbildes beweisen. Achtung: die Menge

$$\{f(A): A \in \mathcal{A}\}$$

- ist im Allgemeinen keine σ -Algebra.
- Wir wollen nun zu einer gegebenen Menge $S \subseteq \mathcal{P}(X)$ die kleinste σ -Algebra konstruieren, die S enthält. Dazu benötigen wir das folgende Resultat.
- Lemma 1.5. Sei I nichtleer, und seien A_i σ -Algebren über X für jedes $i \in I$.
- Dann ist $\bigcap_{i \in I} A_i$ eine σ -Algebra über X.
- Beweis. Setze $\mathcal{A} := \bigcap_{i \in I} \mathcal{A}_i$. Dann folgt direkt $X \in \mathcal{A}$. Ist $A \in \mathcal{A}$, dann ist
- ¹⁸ $A \in \mathcal{A}_i$ für alle $i \in I$, damit ist $A^c \in \mathcal{A}_i$ für alle $i \in I$, also auch $A^c \in \mathcal{A}$. Seien
- nun Mengen $A_j \in \mathcal{A}, j \in \mathbb{N}$ gegeben. Dann ist $A_j \in \mathcal{A}_i$ für alle $i \in I$ und alle
- $j \in \mathbb{N}$. Damit folgt $\bigcup_{j=1}^{\infty} A_j \in \mathcal{A}_i$ für alle $i \in I$, also auch $\bigcup_{j=1}^{\infty} A_j \in \mathcal{A}$. Und \mathcal{A}
- ist eine σ -Algebra.
- Satz 1.6. Sei $S \subseteq \mathcal{P}(X)$. Dann ist

$$\mathcal{A}_{\sigma}(S) := \bigcap \left\{ \mathcal{A} : \ \mathcal{A} \subseteq \mathcal{P}(X) \ \textit{ist σ-Algebra und $\mathcal{A} \supseteq S$} \right\}$$

- eine σ -Algebra. Weiter ist $\mathcal{A}_{\sigma}(S)$ die kleinste σ -Algebra, die S enthält: Ist \mathcal{A}
- eine σ -Algebra, die S enthält, dann folgt $\mathcal{A} \supseteq \mathcal{A}_{\sigma}(S)$.
- $\mathcal{A}_{\sigma}(S)$ heißt die von S erzeugte σ -Algebra.
- 27 Beweis. Da $\mathcal{P}(X)$ eine σ -Algebra ist, wird in der Konstruktion von $\mathcal{A}_{\sigma}(S)$ der
- Durchschnitt über mindestens eine σ -Algebra gebildet. Wegen Lemma 1.5 folgt,
- dass $\mathcal{A}_{\sigma}(S)$ eine σ -Algebra ist. Sei \mathcal{A} eine σ -Algebra, die S enthält, dann nimmt
- \mathcal{A} an dem Durchschnitt teil, und es folgt $\mathcal{A}_{\sigma}(S) \subseteq \mathcal{A}$.

- **Beispiel 1.7.** Sei $A \subseteq X$ und $S = \{A\}$, dann ist $\mathcal{A}_{\sigma}(S) = \{\emptyset, A, A^c, X\}$.
- **Bemerkung 1.8.** Die Abbildung $S \mapsto \mathcal{A}_{\sigma}(S)$ hat die folgenden Eigenschaften,
- 3 die einen Hüllenoperator charakterisieren:
- $(1) S \subseteq \mathcal{A}_{\sigma}(S) \text{ für alle } S \subseteq \mathcal{P}(X),$
- 5 (2) aus $S \subseteq T \subseteq \mathcal{P}(X)$ folgt $\mathcal{A}_{\sigma}(S) \subseteq \mathcal{A}_{\sigma}(T)$,
- 6 (3) $\mathcal{A}_{\sigma}(\mathcal{A}_{\sigma}(S)) = \mathcal{A}_{\sigma}(S)$ für alle $S \subseteq \mathcal{P}(X)$.
- 7 Analoge Eigenschaften haben auch die Abbildungen $S \mapsto \operatorname{span}(S), S \mapsto \operatorname{cl}(S)$
- 8 (Abschluss).

- Die Konstruktion von A_{σ} folgt einem allgemeinen Konstruktionsprinzip: es
- wird der Durchschnitt über alle Mengen gebildet, die eine gewünschte Eigen-
- schaft haben, und die die gegebene Menge enthalten. Auf analoge Art und Weise
- kann man den Abschluss, die konvexe Hülle, lineare Hülle, etc, konstruieren.
- Beispiel 1.9. Sei $S = \{\{x\} : x \in X\}$ die Menge der einelementigen Teilmengen von X. Dann ist
- $\mathcal{A}_{\sigma}(S) = \{ A \subseteq X : A \text{ oder } A^c \text{ ist h\"ochstens abz\"{a}hlbar} \}.$
- Definition 1.10. Sei (X, d) ein metrischer Raum und \mathcal{T} die Menge aller offenen Teilmengen von X. Dann heißt

$$\mathcal{B}(X) := \mathcal{A}_{\sigma}(\mathcal{T})$$

- Borel σ -Algebra auf X, $B \in \mathcal{B}(X)$ heißt Borelmenge.
- 20 Weiter führen wir noch folgende Abkürzung ein:

$$\mathcal{B}^n:=\mathcal{B}(\mathbb{R}^n),$$

- wobei \mathbb{R}^n mit der Euklidischen Norm versehen ist.
- Satz 1.11. Sei (X,d) ein metrischer Raum und $\mathcal C$ die Menge aller abgeschlos-
- senen Mengen. Dann ist $\mathcal{B}(X) = \mathcal{A}_{\sigma}(\mathcal{C})$.
- Sei K die Menge der kompakten Mengen. Existiert eine Folge (K_j) kompakter
- Mengen mit $X = \bigcup_{j=1}^{\infty} K_j$, dann gilt $\mathcal{B}(X) = \mathcal{A}_{\sigma}(\mathcal{K})$.
- 27 Beweis. Eine Menge ist offen genau dann, wenn ihr Komplement abgeschlossen
- ist. Daraus folgt dann auch die erste Behauptung. Da $\mathcal{K}\subseteq\mathcal{C}$ folgt $\mathcal{A}_{\sigma}(\mathcal{K})\subseteq$
- 29 $\mathcal{A}_{\sigma}(\mathcal{C}) = \mathcal{B}(X)$. Sei $C \in \mathcal{C}$ eine abgeschlossene Menge. Dann ist

$$C = C \cap X = C \cap \bigcup_{j=1}^{\infty} K_j = \bigcup_{j=1}^{\infty} (C \cap K_j).$$

- Weiter ist $C \cap K_j \in \mathcal{K}$ und damit auch $C = \bigcup_{j=1}^{\infty} (C \cap K_j) \in A_{\sigma}(\mathcal{K})$. Also ist
- $_{2}$ $\mathcal{C}\subseteq A_{\sigma}(\mathcal{K})$, und daraus folgt $A_{\sigma}(C)\subseteq A_{\sigma}(A_{\sigma}(\mathcal{K}))$. Im Beweis haben wir die
- Eigenschaften aus Bemerkung 1.8 benutzt.
- Für die Borel σ -Algebra \mathcal{B}^n können wir ein einfaches Erzeugendensystem
- 5 angeben.
- **Definition 1.12.** Für Vektoren $a, b \in \mathbb{R}^n$ definieren wir die Relation

$$a \leq b \quad \Leftrightarrow \quad a_i \leq b_i \ \forall i = 1, \dots, n.$$

- 8 Analog definieren wir \geq , <,> für Vektoren. Für $a \leq b$ ist ein offener Quader
- 9 definiert durch

$$(a,b) := \{x \in \mathbb{R}^n : a < x < b\} = (a_1,b_1) \times \dots \times (a_n,b_n) =: \prod_{i=1}^n (a_i,b_i)$$

- Analog werden halboffene Quader (a, b], [a, b) und abgeschlossene Quader [a, b]
- definiert. Falls $a \leq b$ nicht gilt, dann definiere $(a,b), (a,b], [a,b), [a,b] := \emptyset$.
- Einen Quader (a, b) nennen wir Würfel, wenn alle Seiten gleich lang sind,
- 14 also $|b_i a_i| = |b_j a_j|$ für alle i, j = 1 ... n ist.
- Bemerkung 1.13. Sei (X,d) ein metrischer Raum. Der Durchmesser von $A \subseteq$
- 16 X ist definiert als

diam(A) :=
$$\sup\{d(x, y) : x, y \in A\}$$
.

- 18 Für den Quader $(a,b) \subseteq \mathbb{R}^n$ (versehen mit der Euklidischen Metrik) ist der
- 19 Durchmesser gleich der Länge der Diagonalen b-a:

$$\dim((a,b)) = ||b-a||_2.$$

- Es ist leicht zu sehen, dass jede offene Menge des \mathbb{R}^n eine Vereinigung solcher
- 22 Quader ist. Wir beweisen nun die folgende stärkere Aussage.
- Satz 1.14. Jede offene Menge des \mathbb{R}^n ist eine disjunkte abzählbare Vereinigung
- von halboffenen Würfeln mit rationalen Eckpunkten.
- Beweis. Für $k \in \mathbb{N}$ definiere

$$M_k := \bigcup_{x \in \mathbb{Z}^n} \left(\prod_{i=1}^n \left[\frac{x_i}{2^k}, \frac{x_i + 1}{2^k} \right) \right). \tag{1.15}$$

Dann ist M_k eine abzählbare Menge disjunkter Würfel der Kantenlänge 2^{-k} .

¹ Sei nun O eine offene Menge. Dann definieren wir induktiv

$$W_1 := \{ M \in M_1 : M \subseteq O \}$$

- $und f \ddot{u} r \ k \in \mathbb{N}$
- $W_{k+1} := \{ M \in M_{k+1} : M \subseteq O, M \not\subseteq M' \ \forall M' \in W_{k'}, \ k' \le k \}.$
- 5 Wir setzen

$$U := igcup_{k=1}^{\infty} igcup_{M \in W_k} M.$$

- 7 Es bleibt zu zeigen, dass O=U ist. Per Konstruktion gilt $U\subseteq O$. Weiter ist U
- 8 die gewünschte abzählbare Vereinigung disjunkter Würfel.
- Sei nun $x \in O$. Dann existiert ein $\rho > 0$ mit $B_{\rho}(x) \subseteq O$. Wir zeigen nun, dass
- die offene Kugel $B_{\rho}(x)$ einen Würfel aus W_k für hinreichend großes k enthält.
- Die Würfel aus M_k haben einen Durchmesser von $2^{-k}\sqrt{n}$. Sei nun k so, dass
- 12 $2^{-k}\sqrt{n} < \rho$. Es ist $\bigcup_{M \in M_k} M = \mathbb{R}^n$, damit existiert ein $W \in M_k$ mit $x \in W$.
- Wegen der Wahl von k ist $W \subseteq B_{\rho}(x) \subseteq O$.
- Ist $W \in W_k$, folgt $x \in U$. Gilt $W \notin W_k$, ist W Teilmenge eines Würfels aus
- $W_{k'}$ mit k' < k. Dies folgt aus der induktiven Konstruktion der W_k . Wieder ist
- dann $x \in U$, und die Behauptung ist bewiesen.
- Damit können wir beweisen, dass die Borel σ -Algebra \mathcal{B}^n durch offene (halboffene, abgeschlossene) Quader erzeugt werden kann.
- 9 **Satz 1.16.** Es seien

$$\mathbb{J}(n) := \{(a,b) : a,b \in \mathbb{R}^n\}, \\
\mathbb{J}_r(n) := \{[a,b) : a,b \in \mathbb{R}^n\}, \\
\mathbb{J}_l(n) := \{(a,b] : a,b \in \mathbb{R}^n\}, \\
\mathbb{J}(n) := \{[a,b] : a,b \in \mathbb{R}^n\}.$$

- Dann ist $\mathcal{B}^n = \mathcal{A}_{\sigma}(\mathbb{J})$ für alle $\mathbb{J} \in {\mathbb{J}(n), \mathbb{J}_r(n), \mathbb{J}_l(n), \overline{\mathbb{J}}(n)}.$
- Beweis. Die Quader (a, b) und [a, b] sind offen beziehungsweise abgeschlossen,
- damit folgt $\mathcal{A}_{\sigma}(\mathbb{J}(n)) \subseteq \mathcal{B}^n$ per Definition und $\mathcal{A}_{\sigma}(\bar{\mathbb{J}}(n)) \subseteq \mathcal{B}^n$ aus Satz 1.11.
- Ist a < b dann ist

$$[a,b] = \bigcap_{n=1}^{\infty} (a - \frac{1}{n}, b + \frac{1}{n}) \in \mathcal{A}_{\sigma}(\mathbb{J}(n)).$$

Damit folgt $\mathcal{A}_{\sigma}(\bar{\mathbb{J}}(n))\subseteq\mathcal{A}_{\sigma}(\mathbb{J}(n))$. Analoge Konstruktionen können für alle

1 Typen von Quadern gemacht werden, und es folgt

$$\mathcal{A}_{\sigma}(\mathbb{J}(n)) = \mathcal{A}_{\sigma}(\mathbb{J}_r(n)) = \mathcal{A}_{\sigma}(\mathbb{J}_l(n)) = \mathcal{A}_{\sigma}(\bar{\mathbb{J}}(n)) \subseteq \mathcal{B}^n.$$

- Ist $O \subseteq \mathbb{R}^n$ offen, dann folgt $O \subseteq \mathcal{A}_{\sigma}(\mathbb{J}_r(n))$ aus Satz 1.14. Dies impliziert
- $\mathcal{B}^n \subseteq \mathcal{A}_{\sigma}(\mathbb{J}_r(n))$, und die Behauptung ist bewiesen.
- Seien (X_1, A_1) und (X_2, A_2) messbare Räume. Wie erzeugt man eine σ -
- ⁶ Algebra auf $X_1 \times X_2$ mithilfe von $\mathcal{A}_1, \mathcal{A}_2$? Im Allgemeinen ist

$$\mathcal{A}_1 \boxtimes \mathcal{A}_2 := \{ A_1 \times A_2 : A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2 \}$$

- $_{8}~$ keine $\sigma\textsc{-Algebra}.$ Wir benutzen stattdessen die Produkt- $\sigma\textsc{-Algebra},$ welche defi-
- 9 niert ist durch

$$\mathcal{A}_1 \otimes \mathcal{A}_2 := \mathcal{A}_{\sigma}(\mathcal{A}_1 \boxtimes \mathcal{A}_2). \tag{1.17}$$

- Wir zeigen nun, dass Produkt- und σ -Algebra-Bildung in gewissem Sinne
- 12 kommutieren.
- Lemma 1.18. Seien X_1, X_2 nichtleer, $S_i \subseteq \mathcal{P}(X_i)$ mit $X_i \in S_i$ für i = 1, 2.
- 14 Dann gilt:

$$\mathcal{A}_{\sigma}(S_1 oxtimes S_2) = \mathcal{A}_{\sigma}(S_1) \otimes \mathcal{A}_{\sigma}(S_2)$$

- 16 Beweis. " \subseteq ": Sei $A \in S_1 \boxtimes S_2$, dann ist $A = A_1 \times A_2$ mit $A_i \in S_i$, i = 1, 2. Damit
- folgt $A_i \in \mathcal{A}_{\sigma}(S_i)$, i = 1, 2, und $A \in \mathcal{A}_{\sigma}(S_1) \boxtimes \mathcal{A}_{\sigma}(S_2) \subseteq \mathcal{A}_{\sigma}(S_1) \otimes \mathcal{A}_{\sigma}(S_2)$.
- ¹⁸ "⊇": Definiere die Projektionen

$$p_i: X_1 \times X_2 \to X_i, \ p_i(x_1, x_2) = x_i, \ i = 1, 2.$$

- Für $A_1 \subseteq X_1$ ist $p_1^{-1}(A_1) = A_1 \times X_2$, analog gilt $p_2^{-1}(A_2) = X_1 \times A_2$ für
- $A_2 \subseteq X_2$.
- Sei nun $A_1 \times A_2 \in \mathcal{A}_{\sigma}(S_1) \boxtimes \mathcal{A}_{\sigma}(S_2)$. Dann folgt

$$A_1 \times A_2 = (A_1 \times X_2) \cap (X_1 \times A_2) = p_1^{-1}(A_1) \cap p_2^{-1}(A_2).$$

- Es bleibt zu zeigen, dass $p_1^{-1}(A_1)$ und $p_2^{-1}(A_2)$ Elemente von $\mathcal{A}_{\sigma}(S_1 \boxtimes S_2)$ sind.
- Definiere dazu die σ -Algebren

$$\mathcal{B}_i = \{ A \in X_i : p_i^{-1}(A) \in \mathcal{A}_{\sigma}(S_1 \boxtimes S_2) \}, \ i = 1, 2,$$

- 27 siehe auch Beispiel 1.4.
- Wir zeigen nun, dass $\mathcal{A}_{\sigma}(S_1) \subseteq \mathcal{B}_1$: Sei $A_1 \in S_1$, dann ist $p_1^{-1}(A_1) = A_1 \times$
- $X_2 \in S_1 \boxtimes S_2$, also $A_1 \in \mathcal{B}_1$. Da \mathcal{B}_1 eine σ -Algebra ist, folgt $\mathcal{A}_{\sigma}(S_1) \subseteq \mathcal{B}_1$.
- Analog beweist man $\mathcal{A}_{\sigma}(S_2) \subseteq \mathcal{B}_2$.

- Jetzt können wir den Beweis beenden. Seien wieder $A_1 \times A_2 \in \mathcal{A}_{\sigma}(S_1) \boxtimes$
- $\mathcal{A}_{\sigma}(S_2)$. Dann ist $A_i \in \mathcal{B}_i$, i = 1, 2, und es folgt

$$A_1 \times A_2 = (A_1 \times X_2) \cap (X_1 \times A_2) = p_1^{-1}(A_1) \cap p_2^{-1}(A_2) \in \mathcal{A}_{\sigma}(S_1 \boxtimes S_2),$$

- was die zweite Inklusion beweist.
- 5 Satz 1.19. Es gilt $\mathcal{B}^{m+n} = \mathcal{B}^m \otimes \mathcal{B}^n$.
- 6 Beweis. Jeder Quader aus $\mathbb{J}(m+n)$ ist das Produkt zweier Quader aus $\mathbb{J}(m)$
- $_{7}$ und $\mathbb{J}(n)$, so dass $\mathbb{J}(m+n)=\mathbb{J}(m)\boxtimes\mathbb{J}(n)$ gilt. Mit dem obigen Hilfsresultat
- 8 Lemma 1.18 und dem fundamentalen Resultat Satz 1.16 folgt

9
$$\mathcal{B}^{m+n} = \mathcal{A}_{\sigma}(\mathbb{J}(m+n)) = \mathcal{A}_{\sigma}(\mathbb{J}(m) \boxtimes \mathbb{J}(n)) = \mathcal{A}_{\sigma}(\mathbb{J}(m)) \otimes \mathcal{A}_{\sigma}(\mathbb{J}(n)) = \mathcal{B}^m \otimes \mathcal{B}^n.$$

1.2 Maße

12 Als Wertebereich für Maße verwenden wir die erweiterten reellen Zahlen, defi-

13 niert durch

$$\bar{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\},\$$

mit folgenden intuitiven Rechenregeln

16
$$a \pm \infty = \pm \infty \quad \forall a \in \mathbb{R},$$
17 $a \cdot (\pm \infty) = (\pm \infty) \cdot a = \pm \infty \cdot \operatorname{sgn}(a) \quad \forall a \in \mathbb{R}.$

Weiter ist es noch zweckmäßig

$$0 \cdot (\pm \infty) := 0$$

20 zu definieren. Dieser Ausdruck entsteht bei Integralen vom Typ

$$\int_{\mathbb{R}} 0 \, \mathrm{d}x = 0 \cdot \int_{\mathbb{R}} 1 \, \mathrm{d}x = 0 \cdot \infty = 0.$$

- Nicht definiert sind die unbestimmten Ausdrücke $\infty \infty$ und $-\infty + \infty$. Solange
- keine unbestimmten Ausdrücke entstehen, erfüllen Addition und Multiplikation
- 24 auf \mathbb{R} die üblichen Rechenregeln (Assoziativität, Kommutativität, Distributiv-
- gesetze). Allerdings gilt die Implikation $a+c=b+c \Rightarrow a=b$ nur falls $c\in\mathbb{R}$
- 26 ist.
 - Auf $\bar{\mathbb{R}}$ kann man die Ordnungstopologie definieren, als die kleinste Topologie,

die die Mengen

10

11

15

16

$$[-\infty, a), (a, +\infty]$$

- enthält, wobei $(a, +\infty) = (a, +\infty) \cup \{+\infty\}$. Konvergenz einer Zahlenfolge in
- 4 dieser Topologie entspricht der üblichen Konvergenz (falls der Grenzwert endlich
- ist) beziehungsweise der uneigentlichen Konvergenz gegen $\pm \infty$.
- **Definition 1.20.** Sei $A \subseteq \mathcal{P}(X)$ mit $\emptyset \in A$. Dann heißt $\varphi : A \to [0, +\infty]$ mit $\varphi(\emptyset) = 0$ Mengenfunktion.
- (1) φ heißt σ -subadditiv, wenn für alle Folgen (A_j) mit $A_j \in \mathcal{A}$ und $\bigcup_{j=1}^{\infty} A_j \in \mathcal{A}$ gilt

$$\varphi\Big(\bigcup_{j=1}^{\infty} A_j\Big) \le \sum_{j=1}^{\infty} \varphi(A_j)$$

- $(\varphi \ hei\beta t \ subadditiv, \ wenn \ die \ Eigenschaft für \ endlich \ viele \ A_1, \ldots, A_n \ gilt.)$
- 13 (2) φ heißt σ -additiv wenn für alle Folgen (A_j) paarweise disjunkter Menge 14 $A_j \in \mathcal{A}$ und $\bigcup_{j=1}^{\infty} A_j \in \mathcal{A}$ gilt

$$\varphi\Big(\bigcup_{j=1}^{\infty} A_j\Big) = \sum_{j=1}^{\infty} \varphi(A_j)$$

- $(\varphi \text{ heißt additiv, wenn die Eigenschaft für endlich viele } A_1, \ldots, A_n \text{ gilt.})$
- 17 (3) φ heißt σ -endlich, falls es eine Folge (A_j) mit $A_j \in \mathcal{A}$ gibt mit $\varphi(A_j) < +\infty$ für alle j und $\bigcup_{j=1}^{\infty} A_j = X$. 19 $(\varphi$ heißt endlich, falls $\varphi(X) < +\infty$.)
- In obiger Definition wird nicht vorausgesetzt, dass die Reihen $\sum_{j=1}^{\infty} \varphi(A_j)$ in \mathbb{R} konvergieren. Hier ist ausdrücklich $+\infty$ als Grenzwert oder Summe zugelassen.
- 22 **Beispiel 1.21.** Sei

$$\varphi: \mathcal{P}(X) \to [0, +\infty], \quad \varphi(A) = \begin{cases} 1 & \textit{falls } A \neq \emptyset, \\ 0 & \textit{falls } A = \emptyset. \end{cases}$$

- Dann ist φ eine σ -subadditive und endliche Mengenfunktion. Enthält X mehr
- $_{\text{25}}$ $\,$ als ein Element, dann ist φ nicht $\sigma\text{-}additiv.$
- **Definition 1.22.** Sei A eine σ -Algebra über X und $\mu: A \to [0, +\infty]$ σ -additiv.
- Dann heißt μ Maß (über \mathcal{A}) und (X,\mathcal{A},μ) Maßraum. Ist zusätzlich $\mu(X)=1,$
- dann heißt μ Wahrscheinlichkeitsmaß und (X, A, μ) Wahrscheinlichkeitsraum.

- In der Literatur wird solche ein Maß manchmal auch positive Maß genannt.
- Beispiel 1.23. Se (X, A) messbarer Raum. Sei $a \in X$. Dann ist

$$\delta_a(A) := egin{cases} 1 & a \in A \ 0 & a
otin A \end{cases}$$

- 4 ein Maβ, das Dirac-Maβ.
- **Beispiel 1.24.** Für $A \subseteq X$ definiere $\mathcal{H}^0(A) := \#A = Anzahl$ der Elemente von
- 6 A. Dabei ist $\mathcal{H}^0(A) = +\infty$ wenn A unendlich viele Elemente enthält. Dann ist
- \mathcal{H}^0 ein Maß, das Zählmaß. Das Maß \mathcal{H}^0 ist endlich genau dann, wenn X endlich
- viele Elemente hat, und σ -endlich, genau dann wenn X höchstens abzählbar viele
- 9 Elemente hat.
- Satz 1.25. Seien (X, A, μ) ein Maßraum, $A, B \in A$, sowie (A_j) eine Folge in
- 11 A. Dann gelten folgende Aussagen:

12
$$(1.26) \ \mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B).$$

13 (1.27) Falls
$$A \subseteq B$$
 und $\mu(A) < \infty$, so ist $\mu(B \setminus A) = \mu(B) - \mu(A)$.

(1.28)
$$A \subseteq B \Rightarrow \mu(A) \leq \mu(B)$$
. (Monotonie)

15
$$(1.29) \ \mu(A_k) \nearrow \mu(\bigcup_{i=1}^{\infty} A_i), \ falls \ A_1 \subseteq A_2 \subseteq A_3 \cdots$$

(1.30)
$$\mu(A_k) \searrow \mu(\bigcap_{i=1}^{\infty} A_i)$$
, falls $A_1 \supseteq A_2 \supseteq A_3 \cdots und \mu(A_1) < \infty$.

17 (1.31)
$$\mu(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \mu(A_i)$$
. $(\sigma$ -Subadditivität)

- 18 Beweis. (1.26): Wir schreiben $A \cup B$ und B als Vereinigung disjunkter Mengen
- wie folgt: $A \cup B = A \cup (B \setminus A)$ und $B = (A \cap B) \cup (B \setminus A)$. Aus der Additivität
- bekommen wir $\mu(A \cup B) = \mu(A) + \mu(B \setminus A)$ und $\mu(B) = \mu(A \cap B) + \mu(B \setminus A)$.
- Aus der Assoziativität der Addition auf \mathbb{R} erhalten wir

$$\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B \setminus A) + \mu(A \cap B) = \mu(A) + \mu(B).$$

- 23 (1.27) und (1.28) folgen direkt aus $B=A\cup(B\setminus A)$ für $A\subseteq B.$ Aus der
- ²⁴ Additivität folgt $\mu(B) = \mu(A) + \mu(B \setminus A)$.
- (1.29): Die Monotonie der Folge $(\mu(A_k))$ folgt aus (1.28). Wir setzen $B_1 = A_1$
- und $B_{j+1} = A_{j+1} \setminus B_k$, $j \in \mathbb{N}$. Dann ist $\bigcup_{j=1}^{\infty} A_j = \bigcup_{j=1}^{\infty} B_j$, und die (B_j) sind
- 27 paarweise disjunkt. Dann folgt mit der σ -Additivität

$$\mu\left(\bigcup_{j=1}^{\infty} A_j\right) = \mu\left(\bigcup_{j=1}^{\infty} B_j\right) = \sum_{j=1}^{\infty} \mu(B_j)$$

$$= \lim_{m \to \infty} \sum_{j=1}^{m} \mu(B_j) = \lim_{m \to \infty} \mu\left(\bigcup_{j=1}^{m} B_j\right) = \lim_{m \to \infty} \mu(A_m).$$

(1.30): Wenden (1.29) auf die Folge $B_k := A_1 \setminus A_k$ an. Dann folgt

$$\lim_{m \to \infty} \mu(A_1 \setminus A_m) = \mu\left(\bigcup_{j=1}^{\infty} (A_1 \setminus A_j)\right) = \mu\left(A_1 \setminus \bigcap_{j=1}^{\infty} A_j\right).$$

- 4 Ausnutzen von (1.27) und Subtrahieren von $\mu(A_1)$ auf beiden Seiten beweist
- 5 (1.30)
- (1.31): Definiere $B_j := A_j \setminus (\bigcup_{i=1}^{j-1} A_i) \subseteq A_j$. Dann sind die B_j paarweise
- $_{7}~$ disjunkt. Weiterhin ist $\bigcup_{j=1}^{\infty}A_{k}=\bigcup_{j=1}^{\infty}B_{j},$ woraus mit der $\sigma\text{-}Additivit$ ät und
- 8 (1.28) folgt

$$\mu\left(\bigcup_{j=1}^{\infty} A_k\right) = \mu\left(\bigcup_{j=1}^{\infty} B_j\right) = \sum_{j=1}^{\infty} \mu(B_j) \le \sum_{j=1}^{\infty} \mu(A_j).$$

10

Die Konstruktion der Folge disjunkter Mengen aus dem vorherigen Beweis halten wir noch als eigenes Resultat fest.

13 Lemma 1.32. Seien (X, \mathcal{A}, μ) ein Maßraum und (A_j) eine Folge in \mathcal{A} . Dann

gibt es eine Folge (B_j) paarweise disjunkter Mengen in $\mathcal A$ mit $B_j\subseteq A_j$ und

- **Definition 1.33.** Sei (X, \mathcal{A}, μ) ein Maßraum. Eine Menge $N \in \mathcal{A}$ mit $\mu(N) = 0$
- heißt μ -Nullmenge. Man sagt Nullmenge, wenn aus dem Zusammenhang klar ist,
- welches Maß gemeint ist, Der Maßraum heißt vollständig, wenn gilt: $M \subseteq N$,
- 19 Nullmenge impliziert $M \in \mathcal{A}$.
- Folgerung 1.34. Sei (X, \mathcal{A}, μ) ein Maßraum. Dann ist die Vereinigung abzähl-
- 21 bar vieler Nullmengen wieder eine Nullmenge.
- 22 Beweis. Folgt aus Satz 1.25 (1.31). \Box
- Ein gegebener Maßraum kann mit einer einfachen Konstruktion vervollständigt werden.
- Satz 1.35. Sei (X, \mathcal{A}, μ) ein Maßraum. Definiere

$$\bar{\mathcal{A}} := \{ A \cup M : A \in \mathcal{A}, M \subseteq N \in \mathcal{A}, \mu(N) = 0 \}$$

27 und

$$\bar{\mu}: \bar{\mathcal{A}} \to [0, +\infty], \quad \bar{\mu}(A \cup M) := \mu(A).$$

- 1 Dann ist $(X, \bar{\mathcal{A}}, \bar{\mu})$ ein vollständiger Maßraum.
- 2 Beweis. Sei $B = A \cup M \in \bar{\mathcal{A}}$ mit $A \in \mathcal{A}$, $M \subseteq N$ und $\mu(N) = 0$. Dann ist

$$B^c = (A \cup M)^c = A^c \cap M^c = A^c \cap (N^c \cup (N \cap M^c)) = (A^c \cap N^c) \cup (A^c \cap N \cap M^c).$$

- ⁴ Hier ist $A^c \cap N^c \in \mathcal{A}$, $\mu(A^c \cap N) = 0$, damit $A^c \cap N \cap M^c$ Teilmenge einer
- 5 Nullmenge, und $B^c \in \mathcal{A}$. Da die abzählbare Vereinigung von Nullmengen wieder
- eine Nullmenge ist, ist $\bar{\mathcal{A}}$ abgeschlossen bezüglich abzählbaren Vereinigungen,
- $_{7}$ und $\bar{\mathcal{A}}$ ist eine σ-Algebra.
- Sei (B_j) eine Folge von paarweise disjunkten Mengen mit $B_j = A_j \cup M_j$,
- 9 $M_j\subseteq N_j, \, \mu(N_j)=0$. Dann ist $N:=\bigcup_{j=1}^\infty N_j$ eine Nullmenge, und $\bigcup_{j=1}^\infty M_j\subseteq$
- 10 N. Damit erhalten wir

$$\bar{\mu}\left(\bigcup_{j=1}^{\infty}B_{j}\right)=\bar{\mu}\left(\bigcup_{j=1}^{\infty}A_{j}\cup\bigcup_{j=1}^{\infty}M_{j}\right)=\mu\left(\bigcup_{j=1}^{\infty}A_{j}\right)$$

$$=\sum_{j=1}^{\infty}\mu(A_{j})=\sum_{j=1}^{\infty}\bar{\mu}(A_{j}\cup M_{j})=\sum_{j=1}^{\infty}\bar{\mu}(B_{j}),$$

und $\bar{\mu}$ ist σ -additiv.

1.3 Äußere Maße

- Das große Ziel dieses Kapitels ist die Konstruktion eines Maßes auf dem \mathbb{R}^n , das
- 16 für Quader im \mathbb{R}^3 (Rechtecke im \mathbb{R}^2 , Strecken im \mathbb{R}^1) mit dem Volumen (Flä-
- che, Länge) übereinstimmt. Zuerst konstruieren wir äußere Maße: eine gegebene
- 18 Menge wird von Quadern überdeckt. Dann ergibt die Summe der Volumina die-
- ser Quader eine obere Schranke an das "Maß" der Menge. Nun können wir die
- 20 kleinste obere Schranke nehmen. Leider erhalten wir kein Maß, sondern ein äu-
- 21 ßeres Maß.
- 22 Wir werden nun nebeneinander abstrakte Begriffe einführen und deren Ei-
- 23 genschaften untersuchen und dann diese auf die Situation \mathbb{R}^n anwenden.
- **Definition 1.36.** Eine Abbildung $\mu^* : [0, +\infty]$ heißt äußeres Maß, falls gilt:
- $\mu^*(\emptyset) = 0,$
- (2) μ^* ist monoton, d.h., $A \subseteq B$ impliziert $\mu^*(A) \le \mu^*(B)$,
- (3) μ^* ist σ -subadditiv.
- Wir abstrahieren die oben motivierte Konstruktion wie folgt.

Satz 1.37. Es sei $K \subseteq \mathcal{P}(X)$ mit $\emptyset \in K$. Weiter sei $\nu : K \to [0, \infty]$ gegeben mit $\nu(\emptyset) = 0$. Für $A \subseteq X$ definiere

$$\mu^*(A) := \inf \left\{ \sum_{j=1}^{\infty} \nu(K_j) : K_j \in K, \bigcup_{j=1}^{\infty} K_j \supseteq A \right\}.$$

- 4 Dann ist μ^* ein äußeres Maß.
- Hier wird inf $\emptyset = +\infty$ verwendet, so dass $\mu^*(A) = +\infty$ falls es keine abzähl-
- bare Überdeckung von A mit Mengen aus K gibt.
- Beweis. Da $\emptyset \in K$ ist $\mu^*(\emptyset) = 0$. Sei $A \subseteq B$ gegeben. Ist (K_j) eine Folge mit
- $K_j \in K$ und $\bigcup_{j=1}^{\infty} K_j \supseteq B$, dann gilt auch $\bigcup_{j=1}^{\infty} K_j \supseteq A$, und es folgt $\mu^*(A) \le K_j$
- 9 $\mu^*(B)$. Existiert keine solche Folge (K_j) , dann ist $\mu^*(B) = +\infty \ge \mu^*(A)$.
- Es bleibt, die Subadditivität von μ^* zu beweisen. Sei nun (A_i) eine Folge
- mit $A_i \subseteq X$. Ist $\sum_{i=1}^{\infty} \mu^*(A_i) = +\infty$, dann ist nichts zu zeigen. Wir müssen nur
- noch den Fall $\sum_{i=1}^{\infty} \mu^*(A_i) < +\infty$ betrachten. Dann ist $\mu(A_i) < +\infty$ für alle i.
- Sei $\epsilon > 0$. Dann existiert zu jedem i eine Folge $(K_{i,j})$ mit $\bigcup_{j=1}^{\infty} K_{i,j} \supseteq A$ und

$$\sum_{i=1}^{\infty} \nu(K_{i,j}) \le \mu^*(A_i) + \frac{\epsilon}{2^i}.$$

15 Weiter folgt

14

19

$$\bigcup_{i=1}^{\infty} A_i \subseteq \bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} K_{i,j},$$

so dass die $(K_{i,j})_{(i,j)\in\mathbb{N}^2}$ eine abzählbare Überdeckung von $\bigcup_{j=1}^{\infty}A_j$ sind. Aus der Definition von μ^* (und dem Doppelreihensatz Satz 1.38) folgt nun

$$\mu^* \left(\bigcup_{i=1}^{\infty} A_i \right) \le \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \nu(K_{i,j}).$$

20 Die Doppelsumme auf der rechten Seite können wir abschätzen durch

$$\mu^* \left(\bigcup_{i=1}^{\infty} A_i \right) = \sum_{i=1}^{\infty} \sum_{i=1}^{\infty} \nu(K_{i,j}) \le \sum_{i=1}^{\infty} \left(\mu^*(A_i) + \frac{\epsilon}{2^i} \right) = \epsilon + \sum_{i=1}^{\infty} \mu^*(A_i).$$

Diese Ungleichung gilt für alle $\epsilon > 0$, daraus folgt $\mu^* \left(\bigcup_{j=1}^{\infty} A_j \right) \leq \sum_{i=1}^{\infty} \mu^*(A_i)$, und μ^* ist σ -subadditiv.

Dieser Beweis ist noch nicht komplett: die Aussage " $(K_{i,j})_{(i,j)\in\mathbb{N}^2}$ ist eine abzählbare Überdeckung von $\bigcup_{j=1}^{\infty} A_j$ " bedeutet, dass für eine bijektive Funktion

$$\tau: \mathbb{N} \to \mathbb{N}^2 \text{ gilt}$$

$$\bigcup_{j=1}^{\infty} A_j \subseteq \bigcup_{n=1}^{\infty} K_{\tau(n)},$$

so dass aus der Definition von μ^* folgt

$$\mu^*(\bigcup_{j=1}^{\infty} A_j) \le \sum_{n=1}^{\infty} K_{\tau(n)}.$$

- Dass die Reihe auf der rechten Seite konvergiert, und ihre Summe gleich der
- Doppelsumme $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \nu(K_{i,j})$ ist, beweisen wir jetzt noch. Insbesondere ist
- $\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\nu(K_{i,j})$ keine Umordnung von $\sum_{n=1}^{\infty}K_{\tau(n)}.$

Doppelreihensatz 1.3.1

- **Satz 1.38.** Für $i, j \in \mathbb{N}$ seien reelle Zahlen $a_{ij} \geq 0$ gegeben. Weiter setzen wir
 - Die Reihen $\sum_{i=1}^{\infty} a_{ij}$ sind konvergent für alle i.
 - Die Reihe $\sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} a_{ij} \right) =: s$ ist konvergent.
- Dann gelten folgende Aussagen:
- (1.39) Für alle bijektiven Funktionen $\tau: \mathbb{N} \to \mathbb{N}^2$ konvergiert $\sum_{n=1}^{\infty} a_{\tau(n)}$ und es gilt $\sum_{n=1}^{\infty} a_{\tau(n)} = s$.
- (1.40) Die Reihen $\sum_{i=1}^{\infty} a_{ij}$ sind konvergent für alle j.
- (1.41) Es gilt $\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij} = s$.
- Beweis. (1.39): Sei $\tau: \mathbb{N} \to \mathbb{N}^2$ bijektiv. Sei $N \in \mathbb{N}$. Dann ist $\tau(\{1...N\})$ eine
- endliche Teilmenge von \mathbb{N}^2 , und es existiert ein $M \in \mathbb{N}$, so dass $\tau(\{1 \dots N\}) \subseteq$
- $\{1 \dots M\}^2$. Es folgt

$$\sum_{n=1}^{N} a_{\tau(n)} \le \sum_{i=1}^{M} \sum_{j=1}^{M} a_{i,j} \le s, \tag{1.42}$$

- und wir bekommen die Konvergenz von $\sum_{n=1}^{\infty} a_{\tau(n)}$ sowie $\sum_{n=1}^{\infty} a_{\tau(n)} \leq s$.
- Sei $\epsilon > 0$. Dann existiert ein I > 0 mit $\sum_{i=I+1}^{\infty} \left(\sum_{j=1}^{\infty} a_{ij}\right) \leq \frac{\epsilon}{2}$. Für $i = 1 \dots I$ sind die Reihen $\sum_{j=1}^{\infty} a_{ij}$ konvergent. Darum existiert ein J > 0, so
- dass $\sum_{j=J+1}^{\infty} a_{ij} \leq \frac{\epsilon}{2I}$ für alle $i=1\dots I.$ Dann bekommen wir

$$s = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \le \frac{\epsilon}{2} + \sum_{i=1}^{I} \sum_{j=1}^{\infty} a_{ij} \le \frac{\epsilon}{2} + \sum_{i=1}^{I} \left(\frac{\epsilon}{2I} + \sum_{j=1}^{J} a_{ij} \right) = \epsilon + \sum_{i=1}^{I} \sum_{j=1}^{J} a_{ij} \quad (1.43)$$

sei nun N>0 so, dass $\tau(\{1\dots N\})\supseteq \{1\dots I\}\times \{1\dots J\}$. Dann folgt

$$\sum_{i=1}^{I} \sum_{j=1}^{J} a_{ij} \le \sum_{n=1}^{N} a_{\tau(n)} \le \sum_{n=1}^{\infty} a_{\tau(n)}.$$

3 Und wir bekommen die Ungleichung

$$s \le \epsilon + \sum_{n=1}^{\infty} a_{\tau(n)}.$$

- 5 Da $\epsilon > 0$ beliebig war, folgt die Behauptung $s = \sum_{n=1}^{\infty} a_{\tau(n)}$.
- $_{6}$ (1.40) und (1.41) folgen aus (1.42) und (1.43) durch Vertauschung der Sum-
- mationsreihenfolge $i\leftrightarrow j$ auf der rechten Seite der jeweiligen Ungleichungen. \square

8 1.3.2 Das Lebesguessche äußere Maß

- 9 Für einen Quader definiert durch zwei Punkte a,b im \mathbb{R}^n definieren wir sein
- 10 Volumen als

$$\operatorname{vol}_n(a,b) := \begin{cases} \prod_{i=1}^n (b_i - a_i) & \text{falls } a \leq b, \\ 0 & \text{sonst.} \end{cases}$$

- Damit können wir ein äußeres Maß definieren.
- 13 Satz 1.44. Für $A \subseteq \mathbb{R}^n$ definiere

$$\lambda_n^*(A) := \inf \left\{ \sum_{j=1}^{\infty} \operatorname{vol}_n(I_j) : \ I_j \in \mathbb{J}(n), \ \bigcup_{j=1}^{\infty} I_j \supseteq A \right\}.$$

Dann ist $\lambda_n^*(A)$ ein äußeres Maß - das Lebesguessche äußere Maß. Weiter gilt

$$\lambda_n^*(A) = \text{vol}_n(a, b) \quad \forall a \leq b, \ (a, b) \subseteq A \subseteq [a, b].$$

17 Beweis. Wegen Satz 1.37 ist λ_n^* ein äußeres Maß. Sei nun $a \leq b$. Da λ_n^* monoton

ist, gilt $\lambda_n^*((a,b)) \leq \lambda_n^*(A) \leq \lambda_n^*([a,b])$ für alle A mit $(a,b) \subseteq A \subseteq [a,b]$.

Schritt 1: $\lambda_n^*((a,b)) = \lambda_n^*([a,b])$. Es gilt

$$[a,b]=(a,b)\cupigcup_{j=1}^n B_j$$

wobei die B_j jeweils zwei gegenüberliegende Seitenflächen von (a, b) sind, also

22 Mengen der Bauart

$$B_{j} = (a_{1}, b_{1}) \times (a_{j-1}, b_{j-1}) \times \{a_{k}, b_{k}\} \times (a_{j-1}, b_{j-1}) \times (a_{n}, b_{n}).$$

Die Menge B_i kann für $\epsilon > 0$ überdeckt werden durch

$$J_{1} \cup J_{2} := (a_{1}, b_{1}) \times (a_{j-1}, b_{j-1}) \times (a_{k} - \epsilon, a_{k} + \epsilon) \times (a_{j-1}, b_{j-1}) \times (a_{n}, b_{n})$$

$$\cup (a_{1}, b_{1}) \times (a_{j-1}, b_{j-1}) \times (b_{k} - \epsilon, b_{k} + \epsilon) \times (a_{j-1}, b_{j-1}) \times (a_{n}, b_{n})$$

3 so dass

13

$$\lambda^*(B_j) \le \operatorname{vol}_n(J_1) + \operatorname{vol}_n(J_2) = 4\epsilon \cdot \prod_{i \ne j} |b_i - a_i|.$$

- Daraus folgt $\lambda_n^*(B_j) = 0$ und $\lambda_n^*([a, b]) \leq \lambda_n^*((a, b))$.
- Schritt 2: $\lambda_n^*([a,b]) = \text{vol}_n(a,b)$. Mit der Überdeckung $I_1 := [a,b], I_j = \emptyset$
- ⁷ für $j \geq 2$, folgt $\lambda_n^*([a,b]) \leq \operatorname{vol}_n([a,b])$. Sei (I_j) eine Überdeckung von [a,b]. Da
- 8 [a,b] kompakt ist, existiert eine endliche Teilüberdeckung, also $[a,b] \subseteq \bigcup_{j=1}^m I_j$.
- 9 Mit dem noch zu beweisenden Satz 1.45 folgt $\operatorname{vol}_n([a,b]) \leq \sum_{j=1}^m \operatorname{vol}_n(I_j) \leq \sum_{j=1}^m \operatorname{vol}_n(I_j)$
- $\sum_{j=1}^{\infty} \operatorname{vol}_n(I_j)$. Das äußere Maß λ_n^* ist das Infimum über solche Summen, also
- folgt $\operatorname{vol}_n([a,b]) \leq \lambda_n^*([a,b]).$

Satz 1.45. Seien $I, I_1, \dots I_m \in \mathbb{J}(n)$ gegeben mit $I \subseteq \bigcup_{j=1}^m I_j$. Dann gilt

$$\operatorname{vol}_n(I) \le \sum_{j=1}^m \operatorname{vol}_n(I_j).$$

- Das heißt, vol_n ist subadditiv auf $\mathbb{J}(n)$.
- 15 Beweis. Wir folgen [Fre04, 115B Lemma]. Der Beweis ist per Induktion nach n.
- $_{\rm 16}$ Der Beweis des Induktionsanfangs n=1 ist analog zum Induktionsschritt.
- Induktionsschritt $n \to n+1$. Sei die Behauptung des Satzes für ein $n \ge 1$
- bewiesen. Seien $I, I_1, \dots I_m \in \mathbb{J}(n+1)$ gegeben mit $I \subseteq \bigcup_{i=1}^m I_i$.
- Wir führen folgende Notationen ein: $I=(a,b),\ I_j=(a_j,b_j).$ Für einen
- Vektor $x \in \mathbb{R}^{n+1}$ schreiben wir $x = (x', x_{n+1})$ mit $x' \in \mathbb{R}^n$. Weiter setzen wir
- $I' := (a', b'), I'_i := (a'_i, b'_i)$. Hinzufügen des Apostrophs (') streicht also die letzte
- 22 Koordinate.
 - Für $t \in \mathbb{R}$ sei H_t der offene Halbraum

$$H_t := \{ x \in \mathbb{R} : x_{n+1} < t \}.$$

Sind $x, y \in \mathbb{R}^{n+1}$ mit $x \leq y$ dann ist

$$(x,y) \cap H_t = (x',y') \times (\min(x_{n+1},t), \min(y_{n+1},t))$$

und

$$vol_{n+1}((x,y) \cap H_t) = vol_n((x',y')) \cdot (\min(y_{n+1},t) - \min(x_{n+1},t)). \tag{1.46}$$

- Aus dieser Darstellung folgt, dass $t \mapsto \text{vol}_{n+1}((x,y) \cap H_t)$ stetig und monoton wachsend ist. Weiter definieren wir die 'gute' Menge
- $G := \left\{ t \in [a_{n+1}, b_{n+1}] : \operatorname{vol}_{n+1}(I \cap H_t) \le \sum_{j=1}^m \operatorname{vol}_{n+1}(I_j \cap H_t) \right\}$ (1.47)
- Wir zeigen nun, dass $b_{n+1} \in G$. Daraus folgt dann die Induktionsbehauptung,
- 5 da $I \cap H_{b_{n+1}} = I$ und $\operatorname{vol}_{n+1}(I_j \cap H_t) \leq \operatorname{vol}_{n+1}(I_j)$ für alle t. Wir beweisen nun
- $_{6}$ der Reihe nach, dass G nicht leer, abgeschlossen und in einem gewissen Sinne
- offen ist. Offensichtlich ist $a_{n+1} \in G$, da dann wegen $I \cap H_{a_{n+1}} = \emptyset$ die linke
- 8 Seite der Ungleichung gleich Null ist.
- G ist abgeschlossen. Wegen (1.46) sind die Funktionen $t \mapsto \operatorname{vol}_{n+1}(I \cap H_t)$ und $t \mapsto \operatorname{vol}_{n+1}(I_j \cap H_t)$ stetig. Damit ist G das Urbild einer abgeschlossenen Menge unter einer stetigen Abbildung. (Langfassung: Ist (t_k) eine Folge mit $t_k \in G$ und $t_k \to t$ dann können wir in der Ungleichung in (1.47) zur Grenze gehen, und $t \in G$.)
- G hat folgende Eigenschaft: ist $s \in G$ mit $s < b_{n+1}$, dann existiert $\epsilon > 0$, so dass $(s, s + \epsilon) \subseteq G$. Sei $s \in G$ mit $s < b_{n+1}$. Für $t \in [a_{n+1}, b_{n+1}]$ bekommen wir

$$\operatorname{vol}_{n+1}(I \cap H_t) = \operatorname{vol}_n(I') \cdot (t - a_{n+1})$$

$$= \operatorname{vol}_n(I') \cdot (t - s + s - a_{n+1})$$

$$= \operatorname{vol}_n(I') \cdot (t - s) + \operatorname{vol}_{n+1}(I \cap H_s).$$
(1.48)

- Eine analoge Umformung wollen wir auch für die Ausdrücke $\operatorname{vol}_{n+1}(I_i \cap H_t)$
- machen. Hier betrachten wir nur die Quader, die tatsächlich von H_s geschnitten
- 20 werden.

- Setze $J := \{j: s \in (a_{j,n+1}, b_{j,n+1})\}$. Da die I_j den Quader I überdecken
- folgt $I' \times \{s\} \subseteq \bigcup_{j \in J} I_j$. Dann ist auch $I' \subseteq \bigcup_{j \in J} I'_j$, woraus per Induktions-
- voraussetzung folgt

$$\operatorname{vol}_n(I') \le \sum_{j \in J} \operatorname{vol}_n(I'_j). \tag{1.49}$$

25 Setze

24

$$\epsilon := \max(\{b_{n+1} - s\} \cup \{b_{j,n+1} - s: j \in J\}) > 0.$$

- Dann folgt $(s, s + \epsilon) \subseteq (a_{n+1}, b_{n+1})$ und $(s, s + \epsilon) \subseteq (a_{j,n+1}, b_{j,n+1})$ für alle
- Sei nun $j \in J$ und $t \in [s, s + \epsilon)$. Dann vereinfacht sich die Berechnung von vol $_{n+1}(I_j \cap H_t)$ (vergleiche (1.46)) zu

$$vol_{n+1}(I_i \cap H_t) = vol(I_i') \cdot (t - a_{i,n+1}) = vol(I_i') \cdot (t - s) + vol_{n+1}(I_i \cap H_s).$$
 (1.50)

Weiter ist für $t \geq s$ und $j = 1 \dots m$ wegen (1.46)

$$\operatorname{vol}_{n+1}(I_i \cap H_t) \ge \operatorname{vol}_{n+1}(I_i \cap H_s). \tag{1.51}$$

- ³ Jetzt kombinieren wir (1.48), (1.49), $s \in G$ und (1.47), (1.50) und (1.51) und
- 4 erhalten

$$\operatorname{vol}_{n+1}(I \cap H_t) = \operatorname{vol}_n(I') \cdot (t-s) + \operatorname{vol}_{n+1}(I \cap H_s)$$

$$\leq \left(\sum_{j \in J} \operatorname{vol}_n(I'_j)\right) \cdot (t-s) + \sum_{j=1}^m \operatorname{vol}_{n+1}(I_j \cap H_s)$$

$$= \sum_{j \in J} \left(\operatorname{vol}_n(I'_j) \cdot (t-s) + \operatorname{vol}_{n+1}(I \cap H_s)\right) + \sum_{j \notin J} \operatorname{vol}_{n+1}(I_j \cap H_s)$$

$$\leq \sum_{j \in J} \operatorname{vol}_{n+1}(I_j \cap H_t) + \sum_{j \notin J} \operatorname{vol}_{n+1}(I_j \cap H_t)$$

$$= \sum_{j=1}^m \operatorname{vol}_{n+1}(I_j \cap H_t),$$

5 so dass $[s, s + \epsilon) \in G$.

Ende des Induktionsschrittes. Sei $s := \sup G$. Dann ist $s \in G$, weil G abgeschlossen ist. Ist $s < b_{n+1}$, dann wäre $(s, s + \epsilon) \subseteq G$, ein Widerspruch zu $s = \sup G$. Also ist $s = b_{n+1}$, und der Induktionsschritt ist vollständig bewiensen.

Induktionsanfang. Der Beweis für den Fall n=0 kann aus dem Beweis für $n \geq 1$ wie folgt erhalten werden: Wir setzen $\operatorname{vol}_0(\{0\}) = 1$ und $\operatorname{vol}_0(\emptyset) = 0$ (andere Teilmengen hat der \mathbb{R}^0 nicht). Dann gelten alle oben entwickelten Formeln auch für n=0, denn (1.48), (1.50), (1.51) sind Längenberechnungen der Intervalle $I \cap H_t$ und $I_j \cap H_t$.

- Bemerkung 1.52. [Fre04] beweist diesen Satz sogar für eine abzählbare Überdeckung, dadurch kann im Beweis von Satz 1.44 auf das Kompaktheitsargument
 verzichtet werden.
- Bemerkung 1.53. Im obigen Beweis haben wir Induktion über reelle Zahlen durchgeführt, um zu zeigen, dass $G = [a_{n+1}, b_{n+1}]$, siehe dazu auch [Cla12]. Das dahinterliegende Grundprinzip ist: ist $G \subseteq \mathbb{R}$ nicht-leer, offen und abgeschlossen, dann ist $G = \mathbb{R}$, da \mathbb{R} zusammenhängend ist.
- Bemerkung 1.54. Mit mehr oder weniger großen Veränderungen im Beweis von Satz 1.45 kann man die Subadditivität von λ_n^* auf $\mathbb{J}_l(n)$, $\mathbb{J}_r(n)$, $\mathbb{J}(n)$ beweisen. Analog kann man auch Additivität von λ_n^* auf $\mathbb{J}_l(n)$ und $\mathbb{J}_r(n)$, $\mathbb{J}(n)$ beweisen.

- Das Lebesguessche äußere Maß kann auch durch Überdeckungen mit halb-
- ² offenen oder abgeschlossenen Quadern erzeugt werden.
- ³ Satz 1.55. Sei $\mathbb{J} \in {\{\mathbb{J}(n), \mathbb{J}_l(n), \mathbb{J}_r(n), \overline{\mathbb{J}}(n)\}}$. Für $A \subseteq \mathbb{R}^n$ ist

$$\lambda_n^*(A) = \inf \left\{ \sum_{j=1}^{\infty} \operatorname{vol}_n(I_j) : I_j \in \mathbb{J}, \bigcup_{j=1}^{\infty} I_j \supseteq A \right\}.$$

- 5 Beweis. Es seien λ_l^* , λ_r^* , λ_a^* die durch Überdeckungen aus $\mathbb{J}_l(n)$, $\mathbb{J}_r(n)$, $\mathbb{J}(n)$
- erzeugten äußeren Maße. Wir beweisen nur $\lambda_n^*(A) \leq \lambda_a^*(A)$. Mit offensichtlichen
- 7 Vereinfachungen beweist man die Ungleichungen $\lambda_a^*(A) \leq \lambda_l^*(A) \leq \lambda_n^*(A)$ und
- $\lambda_a^*(A) \le \lambda_l^*(A) \le \lambda^* n(A).$
- Sei nun $A\subseteq\mathbb{R}^n$ und $\epsilon>0$. Dann gibt es eine Überdeckung von A mit
- abgeschlossenen Quadern $I_j = [a_j, b_j]$, so dass $A \subseteq \bigcup_{i=1}^{\infty} [a_j, b_j]$ und

$$\sum_{j=1}^{n} \operatorname{vol}_{n}(a_{j}, b_{j}) \leq \lambda_{a}^{*}(A) + \epsilon.$$

Diese abgeschlossenen Quader überdecken wir mit offenen Quadern

$$(\tilde{a}_j, \tilde{b}_j) := (a_j - \epsilon(b_j - a_j), b_j + \epsilon(b_j - a_j)) \supseteq [a_j, b_j],$$

woraus folgt

11

13

15

$$\operatorname{vol}_n(\tilde{a}_j, \tilde{b}_j) = (1 + 2\epsilon)^n \operatorname{vol}_n(a_j, b_j).$$

Dann ist $\bigcup_{j=1}^{\infty} (\tilde{a}_j, \tilde{b}_j)$ eine Überdeckung von A mit offenen Quadern, und wir erhalten

$$\lambda_n^*(A) \le \sum_{j=1}^n \operatorname{vol}_n(\tilde{a}_j, \tilde{b}_j)$$

$$= (1 + 2\epsilon)^n \sum_{j=1}^n \operatorname{vol}_n(a_j, b_j)$$

$$\le (1 + 2\epsilon)^n (\lambda_a^*(A) + \epsilon).$$

- Dies gilt für alle $\epsilon > 0$, so dass $\lambda_n^*(A) \le \lambda_a^*(A)$ folgt.
- 20 **Aufgabe 1.56.** Sei $A \subseteq \mathbb{R}^n$ eine abzählbare Menge. Zeigen Sie, dass $\lambda_n^*(A) = 0$.

1.4 Messbare Mengen

- Es sei μ^* ein äußeres Maß auf X. Wir werden daraus einen Maß konstruieren.
- 23 Die auf Caratheodory zurückgehende Idee ist, eine geschickte Einschränkung

- von μ^* auf $\mathcal{A} \subseteq \mathcal{P}(X)$ zu betrachten, so dass \mathcal{A} eine σ -Algebra und $\mu^*|_{\mathcal{A}}$ ein
- 2 Maß wird.
- Für eine Motivation der folgenden Definition siehe [AE01, Abschnitt IX.4].
- **Definition 1.57.** Sei μ^* ein äußeres Maß auf X. Eine Menge $A \subseteq X$ heißt
- μ^* -messbar, falls gilt

$$\mu^*(D) = \mu^*(A \cap D) + \mu^*(A^c \cap D) \qquad \forall D \subseteq X.$$

- ⁷ Es sei $\mathcal{A}(\mu^*)$ die Menge der μ^* -messbaren Mengen. Ist $\mu^*(N) = 0$, dann heißt
- 8 $N \mu^*$ -Nullmenge.
- Da μ^* monoton ist, ist die Messbarkeit von A $(A \in \mathcal{A}(\mu^*))$ äquivalent zu

$$\mu^*(D) \ge \mu^*(A \cap D) + \mu^*(A^c \cap D) \quad \forall D: \ \mu^*(D) < +\infty.$$

- Lemma 1.58. Jede μ^* -Nullmenge ist μ^* -messbar.
- 12 Beweis. Sei $N \subseteq X$ mit $\mu^*(N) = 0$. Sei $D \subseteq X$ mit $\mu^*(D) < +\infty$. Wegen der
- 13 Subadditiviät von μ^* folgt

$$\mu^*(N \cap D) + \mu^*(N^c \cap D) \le \mu^*(N) + \mu^*(D) = \mu^*(D),$$

- und N ist messbar.
- Satz 1.59. Sei μ^* ein äußeres Maß auf X. Dann ist $\mathcal{A}(\mu^*)$ eine σ -Algebra, und
- ¹⁷ $\mu^*|_{\mathcal{A}(\mu^*)}$ ist ein vollständiges Ma β .
- 18 Beweis. Offensichtlich ist $\emptyset \in \mathcal{A}(\mu^*)$. Sei nun $A \in \mathcal{A}(\mu^*)$. Da $(A^c)^c = A$ folgt
- sofort $A^c \in \mathcal{A}(\mu^*)$.
- Schritt 1: endliche Vereinigungen. Wir zeigen erst, dass endliche Vereini-
- gungen μ^* -messbarer Mengen wieder messbar sind. Seien $A_1, A_2 \in \mathcal{A}(\mu^*)$. Sei
- 22 $D \subseteq X$ mit $\mu^*(D) < +\infty$. Wir müssen die Ungleichung

$$\mu^*((A_1 \cup A_2) \cap D) + \mu^*((A_1 \cup A_2)^c \cap D) \le \mu^*(D)$$

- ²⁴ beweisen. Für den zweiten Summanden bekommen wir aus der Messbarkeit von
- ²⁵ A_1 (mit Testmenge $A_2^c \cap D$)

$$\mu^*((A_1 \cup A_2)^c \cap D) = \mu^*(A_1^c \cap (A_2^c \cap D))$$

= $\mu^*(A_2^c \cap D) - \mu^*(A_1 \cap A_2^c \cap D),$ (1.60)

- wobei $\mu^*(A_1 \cap A_2^c \cap D) \leq \mu^*(D) < +\infty$ ist. Nun ist es zweckmäßig folgenden
- 28 Fakt

$$A_1 \cup A_2 = (A_1 \cap A_2^c) \cup A_2$$

zu benutzen, so dass aus der Monotonie von μ^* folgt

$$\mu^*((A_1 \cup A_2) \cap D) = \mu^*((A_1 \cap A_2^c \cap D) \cup (A_2 \cap D))$$

$$\leq \mu^*(A_1 \cap A_2^c \cap D) + \mu^*(A_2 \cap D).$$
(1.61)

- Addieren von (1.60) und (1.61) sowie das Ausnutzen der Messbarkeit von A_2
- ergibt die Behauptung:

$$\mu^*((A_1 \cup A_2) \cap D) + \mu^*((A_1 \cup A_2)^c \cap D) \le \mu^*(A_2^c \cap D) + \mu^*(A_2 \cap D)) \le \mu^*(D).$$

- Hier war $\mu^*(A_1 \cap A_2^c \cap D) \leq \mu^*(D) < \infty$ wichtig. Es folgt $A_1 \cup A_2 \in \mathcal{A}(\mu^*)$. Per
- ⁷ Induktion zeigt man, die Vereinigung endlich vieler Mengen aus $\mathcal{A}(\mu^*)$ wieder
- \circ in $\mathcal{A}(\mu^*)$ ist.
- Schritt 2: abzählbare, disjunkte Vereinigungen; σ -Additivität von μ^* . Sei (A_i)
- eine Folge paarweise disjunkter Mengen aus $\mathcal{A}(\mu^*)$. Sei $D\subseteq X$ mit $\mu^*(D)<0$
- $+\infty$. Da A_1 messbar ist erhalten wir (Achtung: hier wird als Testmenge ($A_1 \cup$
- $A_2 \cap D$ verwendet!)

$$\mu^*((A_1 \cup A_2) \cap D) = \mu^*(A_1 \cap (A_1 \cup A_2) \cap D) + \mu^*(A_1^c \cap (A_1 \cup A_2) \cap D)$$

$$= \mu^*(A_1 \cap D) + \mu^*(A_2 \cap D).$$

Per Induktion folgt

$$\mu^* \left(\bigcup_{j=1}^m (A_j \cap D) \right) = \sum_{j=1}^m \mu^* (A_j \cap D) \quad \forall m \in \mathbb{N}.$$

Setze $A := \bigcup_{j=1}^{\infty} A_j$. Wegen der Monotonie von μ^* folgt

$$\mu^*(A \cap D) \ge \mu^* \left(\bigcup_{j=1}^m (A_j \cap D) \right) = \sum_{j=1}^m \mu^*(A_j \cap D) \quad \forall m \in \mathbb{N}.$$
 (1.62)

18 Grenzübergang $m \to \infty$ liefert

$$\mu^*(A \cap D) \ge \sum_{j=1}^{\infty} \mu^*(A_j \cap D).$$

– Aus der $\sigma\text{-Subadditivität}$ von μ^* folgt

$$\mu^*(A \cap D) \ge \sum_{j=1}^{\infty} \mu^*(A_j \cap D) \ge \mu^*(A \cap D), \tag{1.63}$$

also sind alle Ungleichungen mit Gleichheit erfüllt. Für D := X bekommen wir

- hieraus die σ-Additiviät von μ^* auf $\mathcal{A}(\mu^*)$. Wir müssen noch $A \in \mathcal{A}(\mu^*)$ zeigen.
- $_{\scriptscriptstyle 2}$ Nach dem in Schritt 1 bewiesenen gilt für alle m

$$\mu(D) \ge \mu^* \left(\left(\bigcup_{j=1}^m A_j \right) \cap D \right) + \mu^* \left(\left(\bigcup_{j=1}^m A_j \right)^c \cap D \right).$$

4 Ausnutzen von (1.62) und $(\bigcup_{j=1}^m A_j)^c \supseteq A^c$ ergibt

$$\mu(D) \ge \left[\sum_{j=1}^m \mu^*(A_j \cap D)\right] + \mu^*(A^c \cap D).$$

- 6 Grenzübergang $m \to \infty$ ergibt die gewünschte Ungleichung, vergleiche (1.63),
- $_{7}$ und A ist messbar.

22

- Schritt 3: abzählbare (beliebige) Vereinigungen. Sei (A_i) eine Folge aus $\mathcal{A}(\mu^*)$.
- setzen $B_1 = A_1$ und $B_{j+1} = A_{j+1} \setminus B_j$, $j \in \mathbb{N}$. Dann ist $\bigcup_{j=1}^{\infty} A_j = \bigcup_{j=1}^{\infty} B_j$,
- und die (B_j) sind paarweise disjunkte Mengen. Wegen

$$B_{j+1} = A_{j+1} \setminus B_j = A_{j+1} \cap B_j^c = (A_{j+1}^c \cup B_j)^c$$

kann man per Induktion mithilfe von Schritt 1 zeigen, dass $B_j \in \mathcal{A}(\mu^*)$ für alle j. Aus Schritt 2 folgt $\bigcup_{j=1}^{\infty} B_j \in \mathcal{A}(\mu^*)$ und damit $\bigcup_{j=1}^{\infty} A_j \in \mathcal{A}(\mu^*)$.

Damit ist $\mathcal{A}(\mu^*)$ eine σ -Algebra, und $\mu^*|_{\mathcal{A}(\mu^*)}$ ist ein Maß. Die Vollständigkeit folgt aus Lemma 1.58.

Allerdings ist hier nicht klar, dass $\mathcal{A}(\mu^*)$ auch nicht-triviale Mengen enthält, also ob $\mathcal{A}(\mu^*) \neq \{\emptyset, X\}$.

Bemerkung 1.64. Es gibt tatsächlich Beispiele für äußere Maße, für die nur \emptyset und X messbar sind. Das folgende Beispiel ist aus [DT15, Example 2]. Sei $X = \mathbb{R} \times (0, \infty)$, die obere, offene Halbebene. Für $x \in \mathbb{R}$, s > 0, definiere die offenen Mengen

$$T(x,s) = \{(y,t) \in X : t < s, |x-y| < s-t\},\$$

diese Mengen sind "Zelte" (englisch: tents) mit Eckpunkten (x-s,0), (x+s,0), (x,s). Weiter wird $\nu(T(x,s)) := s$ und $K := \{T(x,s) : x \in \mathbb{R}, s > 0\} \cup \{\emptyset\}$ gesetzt. Für das per Satz 1.37 konstruierte Maß ist $\mathcal{A}(\mu^*) = \{\emptyset, X\}$.

Zuerst geben wir eine untere Schranke von μ^* an. Sei $E \subseteq X$ mit $(y,t) \in E$.

Dann muss jede Überdeckung von E ein Zelt T(x,s) mit s > t enthalten, also ist $\mu^*(E) \ge t$.

Sei $E \subsetneq X$ nicht leer. Dann hat E einen Randpunkt (x_0, s_0) . Sei T(x, s) so, dass $(x_0, s_0) \in T(x, s)$. Man kann zeigen, dass es Punkte gibt $(y, t) \in E \cap T(x, s)$,

- $(y',t') \in E^c \cap T(x,s) \ mit \ t+t' > 2s. \ Dann \ ist \ \nu(T(x,s)) = s \ und \ \mu^*(T(x,s)) = s.$
- Weiter ist $\mu^*(E \cap T(x,s)) \ge t$ und $\mu^*(E^c \cap T(x,s)) \ge t'$, woraus

$$\mu^*(T(x,s)) = s < t + t' \le \mu^*(E \cap T(x,s)) + \mu^*(E^c \cap T(x,s))$$

- folgt, und E ist nicht μ^* -messbar.
- **Aufgabe 1.65.** Sei λ_n^* das Lebesguessche äußere Maß. Für $k \in \{1 \dots n\}$ und
- 6 $t \in \mathbb{R}$ definiere den offenen Halbraum $H := \{x : x_k < t\}$. Zeigen Sie mithilfe
- ⁷ der Definition, dass $H \lambda_n^*$ -messbar ist.

8 1.5 Metrische Maße

- Es sei (X, d) ein metrischer Raum, μ^* ein äußeres Maß auf X.
- Definition 1.66. μ^* heißt metrisches äußeres Maß, falls gilt:

$$\forall A, B \subseteq \mathbb{R}^n, \ d(A, B) > 0 \ \Rightarrow \ \mu^*(A \cup B) = \mu^*(A) + \mu^*(B).$$

12 Dabei ist

11

13

18

21

$$d(A,B) = \inf_{a \in A, b \in B} d(a,b).$$

- Satz 1.67. Sei μ^* ein metrisches äußeres Maß auf X. Dann gilt $\mathcal{B}(X) \subseteq \mathcal{A}(\mu^*)$.
- Beweis. Es reicht zu zeigen, dass offene Mengen in $X \mu^*$ -messbar sind. Dann
- enthält $\mathcal{A}(\mu^*)$ alle offenen Mengen, und ist damit eine Obermenge von $\mathcal{B}(X)$.
- Sei nun $O \subsetneq X$ offen. Wir benutzen eine Streifentechnik. Für $j \in \mathbb{N}$ definiere

$$O_j := \left\{ x : \ d(x, O^c) > \frac{1}{i} \right\},\,$$

- 19 dann ist $d(O_j, O^c) \ge \frac{1}{j}$.
- Sei nun $D \subseteq X$ mit $\mu^*(D) < \infty$. Dann ist

$$\mu^{*}(O \cap D) + \mu^{*}(O^{c} \cap D) \leq \mu^{*}(O_{j} \cap D) + \mu^{*}((O \setminus O_{j}) \cap D) + \mu^{*}(O^{c} \cap D)$$

$$= \mu^{*}((O_{j} \cup O^{c}) \cap D) + \mu^{*}((O \setminus O_{j}) \cap D)$$

$$\leq \mu^{*}(D) + \mu^{*}((O \setminus O_{j}) \cap D),$$
(1.68)

- wobei wir benutzt haben, dass μ^* subadditiv und metrisch ist, und $d(O_i, O^c) > 0$
- ²³ aufgrund der Konstruktion. Es bleibt zu zeigen, dass $\mu^*((O \setminus O_i) \cap D) \to 0$.
- Wir zerlegen O weiter in Streifen

$$A_i := \left\{ x: \ \frac{1}{i+1} \le d(x, O^c) \le \frac{1}{i} \right\} \quad i \in \mathbb{N}.$$

Damit bekommen wir

$$O\setminus O_j = igcup_{i=j}^\infty A_i$$

- Die Mengen A_i und A_{i+1} haben keinen positiven Abstand, allerdings die Mengen
- 4 A_i und A_{i+2} . Wir zeigen sogar, dass $d(A_i,A_{i+k})>0$ für $i,k\in\mathbb{N},\,k\geq 2$: Seien
- $x \in A_i, y \in A_{i+k}, z \in O^c$. Dann ist

$$_{6} \qquad d(x,y) \geq d(x,z) - d(y,z) \geq \frac{1}{i+1} - \frac{1}{i+k} = \frac{k-1}{(i+1)(i+k)} \geq \frac{1}{(i+1)(i+k)},$$

- voraus $d(A_i, A_{i+k}) > 0$ folgt für $k \geq 2$. Dann haben alle an der Vereinigung
- $\bigcup_{i=1}^{\infty} A_{2i}$ beteiligten Mengen positiven Abstand. Weil μ^* metrisch ist, kann per
- 9 Induktion beweisen, dass

$$\sum_{i=1}^{m} \mu^*(A_{2i} \cap D) = \mu^*(\bigcup_{i=1}^{m} A_{2i} \cap D) \le \mu^*(D).$$

11 Analog bekommen wir

$$\sum_{i=1}^{m} \mu^*(A_{2i+1} \cap D) = \mu^*(\bigcup_{i=1}^{m} A_{2i+1} \cap D) \le \mu^*(D).$$

13 Addieren dieser beiden Ungleichungen ergibt

$$\sum_{i=1}^{2m+1} \mu^*(A_i \cap D) \le 2\mu^*(D) \quad \forall m \in \mathbb{N},$$

15 so dass

16

10

$$\sum_{i=1}^{\infty} \mu^*(A_i \cap D) \le 2\mu^*(D) < \infty. \tag{1.69}$$

Aus der Konstruktion der O_i und A_i (und Subadditivität) folgt

$$\mu^*((O \setminus O_j) \cap D) = \mu^* \left(\bigcup_{i=j}^{\infty} (A_i \cap D) \right) \le \sum_{i=j}^{\infty} \mu^*(A_i \cap D).$$

- Wegen (1.69) folgt $\lim_{j\to\infty} \mu^*((O\setminus O_j)\cap D)=0$, und mit (1.68) folgt die
- Behauptung: O ist μ^* -messbar.
- Satz 1.70. λ_n^* ist ein metrisches äußeres Maß auf \mathbb{R}^n .
- 22 Beweis. Es seien $A, B \subseteq \mathbb{R}^n$ mit $d(A, B) =: \delta > 0$. Sei $\epsilon > 0$. Dann gibt es wegen
- Satz 1.55 eine Überdeckung von $A \cup B$ mit halboffenen Quadern $I_j \in \mathbb{J}_r(n)$ mit

 $A \cup B \subseteq \bigcup_{j=1}^{\infty} I_j$ und

$$\sum_{j=1}^{\infty} \operatorname{vol}_n(I_j) \le \lambda_n^*(A \cup B) + \epsilon.$$

- Jeder Quader I_j kann wegen des noch zu beweisenden (offensichtlichen?) Resul-
- 4 tats von Lemma 1.71 in eine disjunkte Vereinigung endlich vieler Quader mit
- Durchmesser $\leq \delta/2$ zerlegt werden. Dabei ist die Summe der Volumina dieser
- 6 Quader gleich $\operatorname{vol}_n(I_j)$. In der Zerlegung ersetzen wir I_j durch die endlich vielen
- 7 kleinen Quader.
- Daher können wir annehmen, dass wir eine Überdeckung von $A \cup B$ mit
- halboffenen Quadern $I_j \in \mathbb{J}_r(n)$, diam $(I_j) < \delta$ für alle j, mit $A \cup B \subseteq \bigcup_{j=1}^{\infty} I_j$
- 10 und

11

$$\sum_{i=1}^{\infty} \operatorname{vol}_n(I_j) \le \lambda_n^*(A \cup B) + \epsilon$$

12 haben. Wir definieren jetzt zwei Indexmengen

$$J_A := \{j: \ I_j \cap A \neq \emptyset\}, \quad J_B := \{j: \ I_j \cap B \neq \emptyset\}.$$

Da $d(A,B)=\delta$ größer ist als der Durchmesser der I_j , ist $I_A\cap I_J=\emptyset$. Weiter

15 gilt

16

$$\bigcup_{j\in J_A}I_j\supseteq A,\quad \bigcup_{j\in J_A}I_j\supseteq B.$$

Daraus folgt

$$\lambda_n^*(A) + \lambda_n^*(B) \le \sum_{j \in J_A} \operatorname{vol}_n(I_j) + \sum_{j \in J_B} \operatorname{vol}_n(I_j) \le \sum_{j=1}^{\infty} \operatorname{vol}_n(I_j) \le \lambda_n^*(A \cup B) + \epsilon.$$

Da $\epsilon > 0$ beliebig war, folgt die Behauptung.

Lemma 1.71. Sei $I \in \mathbb{J}_r(n)$. Dann gilt: für jedes $\epsilon > 0$ gibt es endlich viele,

paarweise disjunkte $I_1 \dots I_m \in \mathbb{J}_r(n)$ mit den Eigenschaften

$$I = \bigcup_{j=1}^{m} I_j$$

(2) diam $(I_i) \le \epsilon$ für alle j,

$$(3) \operatorname{vol}_n(I) = \sum_{j=1}^m I_j$$
.

25 Beweis. Wir zeigen zuerst, dass es ein $\rho \in (0,1)$ gibt, so dass wir für $\epsilon :=$

- $\rho \operatorname{diam}(I)$ die Menge I wie gewünscht in zwei Quader zerlegen können.
- Sie also $I=[a,b)\in \mathbb{J}_r(n)$ gegeben. Die längste Kante von I sei entlang der
- Koordinatenrichtung k, also $|b_k a_k| \ge |b_i a_i|$ für alle $i = 1 \dots n$. Definiere

$$m := \frac{1}{2}(a_k + b_k)$$
 und

$$I_1 := [a_1, b_1) \times [a_{k-1}, b_{k-1}) \times [a_k, m) \times [a_{k+1}, b_{k+1}) \times [a_n, b_n),$$

$$I_2 := [a_1, b_1) \times [a_{k-1}, b_{k-1}) \times [m, b_k) \times [a_{k+1}, b_{k+1}) \times [a_n, b_n).$$

- Dann gilt $I = I_1 \cup I_2$ und $\operatorname{vol}_n(I) = \operatorname{vol}_n(I_1) + \operatorname{vol}_n(I_2)$. Weiter ist diam $(I) = \operatorname{vol}_n(I_1) + \operatorname{vol}_n(I_2)$
- $||b a||_2$ und

$$\operatorname{diam}(I_1)^2 = \operatorname{diam}(I_2)^2 = \frac{1}{4}(b_k - a_k)^2 + \sum_{i \neq k} (b_i - a_i)^2.$$

6 Damit folgt

$$\frac{\operatorname{diam}(I_1)^2}{\operatorname{diam}(I)^2} = \frac{\frac{1}{4}(b_k - a_k)^2 + \sum_{i \neq k} (b_i - a_i)^2}{(b_k - a_k)^2 + \sum_{i \neq k} (b_i - a_i)^2}.$$

- \overline{s} Für $c_2>c_1>0$ ist $x\mapsto\frac{c_1+x}{c_2+x}=1-\frac{c_2-c_1}{c_2+x}$ monoton wachsend für x>0. Da
- 9 $(b_i a_i)^2 \le (b_k a_k)^2$ nach Definition von k, bekommen wir

$$\frac{\operatorname{diam}(I_1)^2}{\operatorname{diam}(I)^2} \le \frac{\frac{1}{4} + (n-1)}{1 + (n-1)} = \frac{n - \frac{3}{4}}{n} =: \rho^2 \in (0,1).$$

- ¹¹ Und wir haben die gewünschte Zerlegung in zwei Quader bekommen, so dass
- sich der Durchmesser um den Faktor ρ reduziert. Ist $\epsilon > 0$ gegeben, wenden wir
- diese Zerlegung rekursiv an, und bekommen nach endlich vielen Schritten die
- 14 gewünschte Zerlegung.
- Bemerkung 1.72. In der Konstruktion im Beweis war es wichtig, die längste
- 16 Kante von I zu halbieren. Warum?
- Aufgabe 1.73. Beweisen Sie die im Beweis verwendete Aussage diam((a,b)) =
- $||b-a||_2$.

1.6 Eigenschaften des Lebesgue-Maßes

- 20 Wir vereinbaren folgende Abkürzungen.
- Definition 1.74. Die Menge

$$\mathcal{L}(n) := \mathcal{A}(\lambda_n^*)$$

3 heißt Menge der Lebesque-messbaren Mengen. Das dazugehörige Maß

$$\lambda_n := \lambda_n^*|_{\mathcal{L}(n)}$$

neißt Lebesgue-Maß.

- Wir wissen bereits folgende Eigenschaften:
- (1) $(\mathbb{R}^n, \mathcal{L}(n), \lambda_n)$ ist ein Maßraum (Satz 1.59),
- 3 (2) alle Borelmengen sind Lebesgue-messbar, $\mathcal{B}^n \subseteq \mathcal{L}(n)$, (Satz 1.67 und Satz 1.70),
- (3) damit ist auch $(\mathbb{R}^n, \mathcal{B}^n, \lambda_n|_{\mathcal{B}^n})$ ein Maßraum,
- 6 (4) $\lambda_n(A) = \text{vol}_n(a, b)$ für alle A mit $(a, b) \subseteq A \subseteq [a, b]$ (Satz 1.44),
- (5) ist $A \subseteq \mathbb{R}^n$ beschränkt und messbar, dann ist $\lambda_n(A) < \infty$,
- 8 (6) λ_n ist σ -endlich: $\mathbb{R}^n = \bigcup_{j=1}^{\infty} [-j, +j]^n$.
- s Satz 1.75. Das Lebesgue-Maß λ_n ist regulär. Für $A \in \mathcal{L}(n)$ gilt

$$\lambda_n(A) = \inf\{\lambda_n(O): O \supseteq A, O \text{ offen}\},$$

$$\lambda_n(A) = \sup\{\lambda_n(K) : K \subseteq A, O \ kompakt\}.$$

- Beweis. Sei $A \in \mathcal{L}(n)$. Ist $K \subseteq A \subseteq O$, dann folgt $\lambda_n(K) \le \lambda_n(A) \le \lambda_n(O)$ aus der Monotonie von Maßen (1.28).
- Schritt 1: innere Regularität. Sei $\epsilon > 0$. Dann gibt es nach Konstruktion von
- λ_n (Satz 1.44) eine Folge (I_j) offener Quader mit $A \subseteq \bigcup_{j=1}^n I_j$ und

$$\sum_{j=1}^{\infty} \operatorname{vol}_n(I_j) - \epsilon \le \lambda_n(A) = \lambda_n(A).$$

Setze $O := \bigcup_{j=1}^{n} I_j$, dann ist wegen $\operatorname{vol}_n(I_j) = \lambda_n(I_j)$

$$\lambda_n(O) \le \sum_{j=1}^{\infty} \lambda_n(I_j) \le \sum_{j=1}^{\infty} \operatorname{vol}_n(I_j) \le \lambda_n(A) + \epsilon.$$

- 20 Und die erste Behauptung folgt.
- Schritt 2: äußere Regularität für beschränktes A. Zunächst nehmen wir an,
- dass A beschränkt ist, dann ist $\lambda_n(A) < \infty$. Dann existiert eine kompakte Menge
- 23 C mit $C\supseteq A$. Aufgrund des ersten Teils existiert für jedes $\epsilon>0$ eine offene
- Menge O, so dass

$$\lambda_n(O) \le \lambda_n(C \setminus A) + \epsilon = \lambda_n(C) - \lambda_n(A)$$

Es folgt, $\lambda_n(A) \leq \lambda_n(C) - \lambda_n(O) = \lambda_n(C \setminus O)$. Da O kompakt ist folgt die

zweite Behauptung für beschränktes A.

- Schritt 3: äußere Regularität. Sei nun $A \in \mathcal{L}(n)$ beliebig. Ist $\lambda(A) = 0$ dann
- 2 folgt die Behauptung mit $K=\emptyset$. Sei also nun $\lambda(A)>0$. Sei $\alpha\in(0,\lambda(A))$.
- 3 Definiere die Funktion

$$t \mapsto \lambda_n(A \cap [-t, t]^n).$$

- 5 Wegen der Monotonie von Maßen (1.28),(1.29) ist diese Funktion für t>0
- 6 monoton wachsend und stetig. Das heißt, es gibt ein t>0, so dass $\lambda_n(A\cap$
- $_{7}$ $[-t,t]^{n}) > \alpha$. Wegen Schritt 2 existiert eine kompakte Menge $K \subseteq A \cap [-t,t]^{n}$
- 8 mit $\lambda_n(K) > \alpha$. Da $\alpha < \lambda_n(A)$ beliebig war, folgt die Behauptung.
- Eine Nullmenge lässt sich auch wie folgt charakterisieren.
- Folgerung 1.76. Sei A eine λ_n -Nullmenge. Dann gibt es für jedes $\epsilon > 0$ abzählbar viele kompakte Würfel (I_j) mit $A \subseteq \bigcup_{j=1}^{\infty} I_j$ und $\sum_{j=1}^{\infty} \lambda_n(I_n) < \epsilon$.
- $_{12}$ Beweis. Aus der Definition des äußeren Maßes λ_n^* bekommen wir eine Zerlegung
- mit offenen Quadern (I_i) . Jeder dieser Quader ist eine abzählbare Vereinigung
- von kompakten Würfeln (Satz 1.14).
- Wir beweisen nun, dass Bilder von Nullmengen unter gewissen Umständen
 wieder Nullmengen sind.
- 17 Satz 1.77. Sei $U\subseteq\mathbb{R}^n$ offen, $f:U\to\mathbb{R}^m,\ m\geq n,\ Lipschitz\ stetig,\ d.h.$
- 18 $\exists L > 0$:

$$||f(x) - f(y)||_{\infty} \le L||x - y||_{\infty} \ \forall x, y \in U.$$

- 20 Sei $A \subseteq U$ eine λ_n -Nullmenge. Dann ist f(A) eine λ_m -Nullmenge.
- 21 Beweis. Sei $A\subseteq U$ eine λ_n -Nullmenge. Sei $\epsilon\in(0,1$ und (I_j) die Überdeckung
- von A durch kompakte Würfel mit $\sum_{j=1}^{\infty} \lambda_n(I_n) < \epsilon$ aus Folgerung 1.76.
- Sei $I_j = [a, b]$, dann ist $x_j := \frac{1}{2}(a + b)$ der Mittelpunkt von I_j , und I_j ist
- eine 'Kugel' um x_j in der ∞ -Norm: $I_j = \{x : \|x x_j\|_{\infty} \le \frac{1}{2} \|b a\|_{\infty} \}$. Sei
- nun $x \in I_j$. Dann können wir abschätzen

$$||f(x) - f(x_j)||_{\infty} \le L||x - x_j||_{\infty}.$$

- Das heißt, $f(I_j)$ ist in einem Würfel \tilde{I}_j enthalten, der um den Faktor L größer
- ist als I_i :

$$f(I_j) \subseteq \{y: \|y - f(x_j)\|_{\infty} \le L\frac{1}{2}\|b - a\|_{\infty}\} =: \tilde{I}_j.$$

- Die Kantenlänge \tilde{s} von $\tilde{I}_j\subseteq\mathbb{R}^m$ ist das L-fache der Kantenlänge s von $I_j\subseteq\mathbb{R}^n$.
- 31 Daraus folgt

$$\operatorname{vol}_m(\tilde{I}_j) = \tilde{s}^m = (Ls)^m = L^m \operatorname{vol}_n(I_j)^{m/n}.$$

Dann folgt

$$f(A)\subseteqigcup_{j=1}^{\infty}f(I_j)\subseteqigcup_{j=1}^{\infty} ilde{I}_j$$

₃ und

$$\lambda_n^*(f(A)) \le \sum_{j=1}^\infty \operatorname{vol}_n = m(\tilde{I}_j) = \sum_{j=1}^\infty L^m \operatorname{vol}_n(I_j)^{m/n}.$$

5 Da $\operatorname{vol}_n(I_j) < \epsilon < 1$ folgt

$$\lambda_n^*(f(A)) \le L^m \sum_{j=1}^{\infty} L^m \operatorname{vol}_n(I_j) \le L^m \epsilon.$$

Da $\epsilon \in (0,1)$ beliebig war, folgt $\lambda_n^*(f(A)) = 0$ und f(A) ist eine λ_n -Nullmenge.

8

Bemerkung 1.78. Die Aussage ist nur richtig für $m \geq n$. Für m < n ist

sie im Allgemeinen falsch: Sei $A \subseteq \mathbb{R}^{n-m}$ eine Nullmenge, $B \subseteq \mathbb{R}^m$ beliebig.

Dann ist $A \times B$ eine Nullmenge. Definiere $f(x_1 \dots x_n) = (x_1 \dots x_m)$. Dann ist

f linear und Lipschitz stetig mit L=1 auf \mathbb{R}^n , aber $f(A\times B)=B$ muss keine

Nullmenge, ja nicht einmal messbar sein.

Bemerkung 1.79. Die Aussage ist nicht richtig, wenn f nur als stetig vorausgesetzt wird. Die Peano-Kurve p ist eine stetige und surjektive Abbildung von [0,1] nach $[0,1]^2$. Definiert man $f(x_1,x_2)=p(x_1)$, dann ist f stetig und

 $f([0,1] \times \{0\}) = [0,1]^2.$

1.7 Translations- und Bewegungsinvarianz des Lebesgue-Maßes

Für $a \in \mathbb{R}^n$ definiere

19

21

$$\tau_a(x) := x + a, \ x \in \mathbb{R}^n.$$

Die Abbildung $x \mapsto \tau_a(x)$ realisiert eine Verschiebung von x (Translation) um

den Vektor a. Ziel dieses Abschnittes ist es, zu zeigen, dass das Lebesgue-Maß

²⁴ (bis auf eine multiplikative Konstante) durch die Invarianz gegenüber Transla-

tionen eindeutig bestimmt ist.

Satz 1.80. $\mathcal{L}(n)$ und λ_n sind translations invariant: Für alle $a \in \mathbb{R}^n$, $A \in \mathcal{L}(n)$

gilt
$$\tau_a(A) \in \mathcal{L}(n)$$
 und $\lambda_n(A) = \lambda_n(\tau_a(A))$.

Beweis. $\mathbb{J}(n)$ und vol_n sind translationsinvariant: $I \in \mathbb{J}(n)$ impliziert $\tau_a(I) \in \mathbb{J}(n)$

 $\mathbb{J}(n)$ und $\operatorname{vol}_n(I) = \operatorname{vol}_n(\tau_a(I))$. Damit sind λ_n^* und $\mathcal{L}(n)$ translations invariant,

also auch λ_n .

- Wir beweisen nun, dass ein translationsinvariantes Maß ein Vielfaches von λ_n ist.
- 3 Satz 1.81. Es sei \mathcal{M} eine translationsinvariante σ -Algebra mit $\mathbb{J}_r(n) \subseteq \mathcal{M} \subseteq$
- ⁴ $\mathcal{L}(n)$ und μ ein translations invariantes Maß auf \mathcal{M} . Es sei $\alpha := \mu([0,1)^n) \in$
- $[0,+\infty)$. Dann gilt

$$\mu(A) := \alpha \lambda_n(A) \quad \forall A \in \mathcal{M}.$$

- ⁷ Beweis. Schritt 1: Quader mit ganzzahligen Eckpunkten. Sei $e := (1, ..., 1)^T \in$
- 8 \mathbb{R}^n . Wir zeigen zuerst die Behauptung für Quader [0,b) mit $b\in\mathbb{N}^n$. Diesen
- 9 Quader können wir durch $\prod_{i=1}^n b_i$ verschobene Einheitsquader überdecken:

$$[0,b) = \bigcup_{a \in [0,b) \cap \mathbb{Z}^n} (\tau_a([0,e)).$$

Da μ und λ_n translations invariante Maße sind folgt

$$\mu((0,b)) = \sum_{a \in [0,b) \cap \mathbb{Z}^n} \mu(\tau_a([0,e)) = \sum_{a \in [0,b) \cap \mathbb{Z}^n} \mu(([0,e))$$

$$= \alpha \sum_{a \in [0,b) \cap \mathbb{Z}^n} \lambda_n(([0,e)) = \alpha \sum_{a \in [0,b) \cap \mathbb{Z}^n} \lambda_n(\tau_a([0,e)) = \lambda_n((0,b)).$$

Schritt 2: Quader mit rationalen Eckpunkten. Sei nun $b \in \mathbb{Q}^n$ mit $b \geq 0$. Dann gibt es ein $k \in \mathbb{N}$, so dass $kb \in \mathbb{N}^n$. Den Quader [0, kb) können wir durch k^n Kopien von [0, b) überdecken. Auf den Quader [0, kb) können wir das Resultat von Schritt 1 anwenden. Dann erhalten wir

$$k^{n}\mu([0,b) = \sum_{a \in \{0...k-1\}^{n}} \mu(\tau_{ab}([0,b)) = \mu([0,kb))$$

$$= \alpha \lambda_{n}([0,kb)) = \dots = \alpha k^{n} \lambda_{n}([0,b)).$$

Da μ und λ translations invariant sind, folgt die Behauptung für alle Quader [a, b) mit rationalen Eckpunkten $a, b \in \mathbb{Q}^n$.

Schritt 3: Offene Mengen. Sei O offen. Nach Satz 1.14 ist O eine disjunkte Vereinigung abzählbar vieler Quader (I_j) mit rationalen Eckpunkten, $O = \bigcup_{j=1}^{\infty} I_j, I_j \in \mathbb{J}_r(n)$, und die (I_j) sind paarweise disjunkt. Dann gilt

$$\mu(O) = \sum_{j=1}^{\infty} \mu(I_j) = \alpha \sum_{j=1}^{\infty} \lambda_n(I_j) = \dots = \alpha \lambda_n(O).$$

Schritt 4: Beschränkte Mengen. Sei $A \in \mathcal{M} \subseteq \mathcal{L}(n)$ beschränkt. Sei U eine offene und beschränkte Menge mit $A \subseteq U$. Damit ist $\lambda_n(U) < \infty$ und wegen Schritt 4 auch $\mu(U) < \infty$. Sei $\epsilon > 0$. Wegen der Regularität des Lebesgue-Maßes

```
Satz 1.75 existiert eine offene Menge O \supseteq A und eine kompakte Menge K \subseteq A,
                                  \lambda_n(O) - \epsilon \le \lambda_n(A) \le \lambda_n(K) + \epsilon.
    Wegen Schritt 3 ist
               \mu(K) = \mu(U) - \mu(U \setminus K) = \alpha(\lambda_n(U) - \lambda_n(U \setminus K)) = \alpha\lambda_n(K)
    so dass
                              \mu(A) \le \mu(O) = \alpha \lambda_n(O) \le \alpha \lambda_n(A) + \alpha \epsilon
    und
                            \mu(A) \ge \mu(K) = \alpha \lambda_n(K) \ge \alpha \lambda_n(A) - \alpha \epsilon.
    Da \epsilon > 0 beliebig war, folgt \mu(A) = \alpha \lambda_n(A). (Hier haben wir \alpha < +\infty benötigt.)
         Schritt 5: Beliebige Mengen. Sei A \in M. Dann gilt \mu(A \cap B_k(0)) = \alpha \lambda_n(A \cap B_k(0))
    B_k(0)) für alle k. Grenzübergang k \to \infty mithilfe von (1.29) beweist die Be-
    hauptung.
                                                                                                        Lemma 1.82. Es seien X, Y metrische Räume, f: X \to Y stetig. Dann ist
    f^{-1}(B) \in \mathcal{B}(X) für alle B \in \mathcal{B}(Y).
    Beweis. Wir betrachten f_*(\mathcal{B}(X)) = \{B \subseteq Y : f^{-1}(B) \in \mathcal{B}(X)\}, was nach
    Beispiel 1.4 eine \sigma-Algebra ist. Da f stetig ist, ist f^{-1}(O) \in \mathcal{B}(X) für alle
17
    offenen Mengen O \subseteq Y, und damit O \in f_*(\mathcal{B}(X)). Also ist f_*(\mathcal{B}(X)) eine \sigma-
    Algebra, die alle offenen Mengen aus Y enthält, damit ist \mathcal{B}(Y) \subseteq f_*(\mathcal{B}(X)),
    was die Behauptung ist.
    Satz 1.83. Sei Q \in \mathbb{R}^{n \times n} eine orthogonale Matrix. Dann gilt \lambda_n(A) = \lambda_n(QA)
    f\ddot{u}r alle A \in \mathcal{B}^n, wobei QA := \{Qx : x \in A\}.
    Beweis. Die Abbildung x \mapsto Q^{-1}x ist stetig, und QA \in \mathcal{B}^n für alle A \in \mathcal{B}^n
    nach Lemma 1.82. Hierbei ist QA := \{Qx : x \in A\}. Definiere \mu(A) := \lambda_n(QA).
    Dann ist \mu ein Maß auf \mathcal{B}^n. Weiter ist \mu translationsinvariant: \mu(\tau_a(A)) =
    \lambda_n(Q(A+a)) = \lambda_n(QA+Qa) = \lambda_n(QA) = \mu(A). Sei A := [0,1)^n. Dann ist
    QA in einer Kugel vom Radius diam(A) = \sqrt{n} enthalten. Damit ist \mu(A) < \infty.
    Nach Satz 1.81 ist \mu(A) = \alpha \lambda_n(A). Wir zeigen nun \alpha = 1: Sei B = B_1(0) die
    offene Einheitskugel. Dann ist QB = B und \alpha = 1 folgt (denn \lambda_n(B) < \infty). \square
    Satz 1.84. Sei S \in \mathbb{R}^{n \times n} eine invertierbare Matrix. Dann gilt \lambda_n(SA) =
    |\det(S)|\lambda_n(A) für alle A \in \mathcal{B}^n.
    Beweis. Der Beweis folgt dem von Satz 1.83. Definiere \mu(A) := \lambda_n(SA). Dann
    ist \mu ein translationsinvariantes Maß auf \mathcal{B}^n. Für A:=[0,1)^n ist SA in einer
```

- Kugel vom Radius $\sqrt{n}||S||_2$ enthalten. Damit ist $\mu(SA) < \infty$. Nach Satz 1.81 ist $\mu(A) = \alpha \lambda_n(A)$.
- Wir benutzen nun die Singulärwertzerlegung von S: Die Matrix S^TS ist
- $_{\mathtt{4}}~$ symmetrisch, also diagonalisierbar. Dann existiert eine orthogonale Matrix Q
- mit $Q^TS^TSQ = D$, wobei D diagonal mit positiven Diagonaleinträgen d_{ii}
- 6 ist. Sei Σ die Matrix mit Diagonaleinträgen $d_{ii}^{1/2}$. Dann gilt $D=\Sigma^2$ und
- $\Sigma^{-1}Q^TS^TSQ\Sigma^{-1}=I_n$, also ist $P:=\Sigma^{-1}Q^TS^T$ orthogonal, und es gilt PSQ=1
- 8 Σ . Dann bekommen wir für $A := [0,1)^n$

$$\mu(QA) = \lambda_n(SQA) = \lambda_n(P^T \Sigma A) = \lambda_n(\Sigma A),$$

wobei wir Satz 1.83 benutzt haben. Nun ist $\Sigma A = [0, \Sigma e)$ mit $e = (1, \dots, 1)^T$, so

- dass $\lambda_n(\Sigma A) = \operatorname{vol}_n \lambda_n(\Sigma A) = \prod_{i=1}^n d_{ii}^{1/2} = \det \Sigma$. Es gilt $\det \Sigma = (\det D)^{1/2} =$
- $|\det S|$. Damit ist

13

$$\mu(QA) = |\det S| \lambda_n(A) = |\det S| \lambda_n(QA),$$

und es folgt $\alpha = |\det S|$, was die Behauptung war.

15 1.8 Existenz nicht Lebesgue-messbarer Mengen

- 16 Auswahlaxiom der Mengenlehre: Es sei $(F_i)_{i \in I}$ ein System nicht-leerer
- ¹⁷ Mengen. Dann existiert eine Abbildung f auf I mit $f(i) \in F_i$ für alle $i \in I$.
- Satz 1.85. Das Auswahlaxiom ist äquivalent zu jeder der folgenden Aussagen:
- 19 (1) Jeder Vektorraum hat eine Basis.
- 20 (2) Jede surjektive Funktion $f: X \to Y$ hat eine Rechtsinverse, d.h., es existiert $q: Y \to X$ mit f(q(y)) = y für alle $y \in Y$.
- Lemma 1.86. Gilt das Auswahlaxiom, dann existiert eine nicht λ^1 -messbare Teilmenge A von [0,1], d.h., $A \notin \mathcal{L}(1)$.
- Beweis. Wir betrachten auf [0,1] die Äquivalenzrelation $x \sim y \Leftrightarrow x y \in \mathbb{Q}$.
- Sei $K:=[0,1]/\sim$ die Menge der dazugehörigen Äquivalenzklassen. Nach dem
- Auswahlaxiom gibt es eine Abbildung $f: K \to [0,1]$ mit $f(\hat{x}) \in \hat{x}$, also ei-
- 27 ne Funktion, die jeder Äquivalenzklasse einen Repräsentanten zuordnet (bezie-
- ²⁸ hungsweise aus jeder Äquivalenzklasse einen Repräsentanten auswählt). Setze
- V:=f(K), was eine Auswahl von je einem Repräsentanten je Äquivalenzklasse
- ist. Wir zeigen nun, dass V nicht messbar ist.
- Dazu zeigen wir, dass wir das Intervall [0, 1] mit abzählbar vielen disjunkten
- Kopien von V überdecken können. Es gilt: $[0,1]\subseteq\bigcup_{q\in\mathbb{Q}\cap[-1,1]}(q+V)$. Sei $r\in$

- [0,1]. Dann gibt es ein $\hat{x} \in K$ mit $v \in \hat{x}, v \in V \cap \hat{x}$ und eine $q \in \mathbb{Q}$ mit r = v + q.
- ² Da $r, v \in [0, 1]$ ist $q = r v \in [-1, 1]$. Offenbar gilt $\bigcup_{q \in \mathbb{Q} \cap [-1, 1]} (q + V) \subseteq [-1, 2]$.
- Weiter bekommen wir: sind $q, q' \in \mathbb{Q}$ mit $q \neq q'$. Dann gilt $q + V \neq q' + V$.
- Angenommen, V wäre messbar. Dann wäre auch q + V messbar, und es
- 5 würde folgen

$$1 = \lambda_1([0,1]) \le \sum_{q \in \mathbb{Q} \cap [-1,1]} \lambda_1(q+V) \le \lambda_1([-1,2]) = 3.$$

- Nun ist aber $\lambda_1(q+V)=\lambda_1(V)$. Wegen der linken Ungleichung folgt $\lambda_1(V)>0$,
- wegen der rechten Ungleichung aber $\lambda_1(V) \leq 0$. Ein Widerspruch. Also ist V
- 9 nicht messbar.
- Das Auswahlaxiom ist auch nötig, um zu beweisen, dass die abzählbare Vereinigung abzählbarer Mengen wieder abzählbar ist: die Existenz einer Abzählfunktion für jede der abzählbar vielen Mengen ist nicht klar ohne Auswahlaxiom.
 Wir beenden diese Betrachtung mit dem folgenden auf Russell zurückgehenden
 Beispiel: "Um aus unendlich vielen Paaren Socken jeweils eine Socke auszuwählen brauchen wir das Auswahlaxiom, für Schuhe wird es nicht benötigt: wir können jeweils den linken Schuh auswählen."

1.9 Hausdorff-Maße

- $_{\rm 18}$ $\,$ Wir betrachten nun eine weitere Möglichkeit, äußere Maße zu konstruieren. Sei
- (X, d) separabler metrischer Raum.
- Seien $s \geq 0$ und $\epsilon > 0$. Für $A \subseteq X$ definiere

$$\mathcal{H}^s_{\epsilon}(A) := \inf \left\{ \sum_{j=1}^{\infty} \operatorname{diam}(O_j)^s : \ O_j \text{ offen, } \operatorname{diam}(O_j) < \epsilon \ \forall j, \ \bigcup_{j=1}^{\infty} O_j \supseteq A \right\}.$$

- Dies ist ein äußeres Maß wegen Satz 1.37. Weiter ist $\epsilon \mapsto \mathcal{H}^s_{\epsilon}(A)$ monoton fallend,
- 23 deshalb existiert

$$\mathcal{H}^s_*(A) := \lim_{\epsilon \searrow 0} \mathcal{H}^s_\epsilon(A) = \sup_{\epsilon > 0} \mathcal{H}^s_\epsilon(A) \in [0, +\infty].$$

- Satz 1.87. Für $s \geq 0$ ist \mathcal{H}^s_* ein äußeres Maß das s-dimensionale Hausdorff-
- 26 sche äußere Maß.
- 27 Beweis. Die entsprechenden Eigenschaften bekommen wir direkt aus denen von

28
$$\mathcal{H}^s_\epsilon$$
.

Satz 1.88. \mathcal{H}^s_* ist ein metrisches äußeres Maß auf \mathbb{R}^n für alle $s \geq 0$.

- Beweis. Seien $A, B \in \mathbb{R}^n$ mit $d(A, B) =: \delta > 0$. Sei $\epsilon \in (0, \delta)$. Sei $\eta > 0$. Dann
- gibt es offene Mengen (O_j) mit $\operatorname{diam}(O_j) < \epsilon, A \cup B \subseteq \bigcup_{i=1}^{\infty} O_j$, und

$$\sum_{j=1}^{\infty} \operatorname{diam}(O_j)^s \le \eta + \mathcal{H}^s_{\epsilon}(A \cup B).$$

- Da diam $(O_j)<\epsilon$, ist für alle $j\colon A\cap O_j=\emptyset$ oder $B\cap O_j=\emptyset$. Es sei $J:=\{j:$
- 5 $A \cap O_j \neq \emptyset$. Dann ist

6
$$\mathcal{H}^s_{\epsilon}(A) + \mathcal{H}^s_{\epsilon}(B) \le \sum_{j \in J} \operatorname{diam}(O_j)^s + \sum_{j \notin J} \operatorname{diam}(O_j)^s$$

$$= \sum_{j=1}^{\infty} \operatorname{diam}(O_j)^s \le \eta + \mathcal{H}_{\epsilon}^s(A \cup B).$$

- Das gilt für alle $\eta > 0$, so dass $\mathcal{H}^s_{\epsilon}(A) + \mathcal{H}^s_{\epsilon}(B) \le \mathcal{H}^s_{\epsilon}(A \cup B)$ folgt. Dies wiederum
- gilt für alle $\epsilon \in (0, \delta)$, und die Behauptung ist bewiesen.
- Das aus dem äußeren Maß \mathcal{H}_*^s enstehende Maß (vergleiche Satz 1.59) nennen wir das Hausdorff-Maß

$$\mathcal{H}^s := \mathcal{H}^s_*|_{\mathcal{A}(\mathcal{H}^s_*)}.$$

- Per Konstruktion ist das Hausdorff-Maß translationsinvariant. Das Maß \mathcal{H}^s ist
- 14 nicht σ -endlich falls s < n. Man kann zeigen, dass jede λ_n -messbare Menge
- ¹⁵ \mathcal{H}^n -messbar ist, [AE01, Korollar 5.22].