								x 10 °								
	EXERCICE 15 p 255 (niveau 1-2)							16						\checkmark		
Giga		méga			kilo	hecto	déca		deci	centi	milli		micro	-		nano
G		W			k	h	da	unité	d	С	m		μ			n
															7	

_9

- 1. Convertissons: 4.30×10^{-7} m = $4.30 \times 10^{-7} \times 10^{9}$ nm = 4.30×10^{2} nm = 430 nm (radiation violette)
- 2. a. Cette radiation est dans le domaine visible car il est compris dans l'intervalle de longueurs d'onde du domaine visible. [400 nm ; 800 nm].
- b. Convertissons : λ = 1200 nm = 1200 \times 10⁻⁹ m = 1,200 \times 10⁻⁶ m

EXERCICE 17 p 255 (niveau 1-2)

- 1. La longueur d'onde a pour symbole λ .
- 2. L'axe des abscisses est gradué en nanomètres (nm).
- 3.L'œil est plus sensible à la radiation de longueur d'onde 550 nm (verte).

EXERCICE 26 p 257 (niveau 1-2)

- 1.La zone émettrice de lumière dans les étoiles est constituée par des corps chauds (la photosphère) car ils produisent des spectres continus contrairement aux gaz excités en énergie.
- 2. Bételgeuse est rouge, son spectre possède donc un maximum d'intensité lumineuse dans le rouge. Rigel est bleue, son spectre possède donc un maximum d'intensité lumineuse dans le bleu.
- 3.Le spectre A est celui de Rigel car son maximum d'intensité lumineuse est dans le bleu. Le spectre b est celui de Bételgeuse car son maximum d'intensité lumineuse est dans le rouge.

EXERCICE 28 p 257 (niveau 1-2)

Ce spectre d'émission dit « de raies » possède 3 raies de longueurs d'ondes proches de 430 nm ; 480 nm et 655 nm.

L'élément sodium ne peut pas être présent dans cette lampe car il émet sur 4 longueurs d'ondes différentes.

L'élément mercure ne peut pas être présent dans cette lampe car deux de ses longueurs d'ondes ne correspondent pas aux raies du spectre.

L'élément hydrogène a trois longueurs d'ondes d'absorption qui correspondent aux raies du spectre, le gaz de la lampe est donc constitué d'hydrogène.