(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 30. Juni 2005 (30.06.2005)

PCT

(10) Internationale Veröffentlichungsnummer WO 2005/058786 A1

- (51) Internationale Patentklassifikation⁷: C07C 45/50, 211/19, 31/27, 47/347
- (21) Internationales Aktenzeichen: PCT/EP2004/013814
- (22) Internationales Anmeldedatum:

4. Dezember 2004 (04.12.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

- (30) Angaben zur Priorität: 103 57 718.1 9. Dezember 2003 (09.12.2003) DE
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF Aktiengesellschaft [DE/DE]; 67056 Ludwigshafen (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): PAPP, Rainer [DE/DE]; Schützenstr. 11, 67346 Speyer (DE). PA-CIELLO, Rocco [US/DE]; Seebacherstr.70, 67098 Bad Dürkheim (DE). BENISCH, Christoph [DE/DE]; Windmühlstrasse 21, 68165 Mannheim (DE).
- (74) Gemeinsamer Vertreter: BASF Aktiengesellschaft; 67056 Ludwigshafen (DE).

- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der f\(\tilde{u}\)r \(\tilde{A}\)nderungen der Anspr\(\tilde{u}\)che geltenden
 Frist; Ver\(\tilde{o}\)ffentlichung wird wiederholt, falls \(\tilde{A}\)nderungen
 eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: METHOD FOR PRODUCING TRICYCLODECANDIALDEHYDE
- (54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG VON TRICYCLODECANDIALDEHYD
- (57) Abstract: The invention relates to a method for producing tricyclodecandialdehyde by hydroformulating dicyclopentadiene by means of a CO/H₂-mixture in the presence of a non-ligand modified rhodium catalyst which can be dissolved in a homogenous manner in the hydroformulation medium at a high temperature and at high pressure. Hydroformulation is carried out at pressure of between 200 350 bar in at least two reaction zones. In a first reaction zone, the reaction temperature is adjusted from 80 to 120 °C and in a reaction zone, which follows on from the latter, the temperature is adjusted from 120 to 150 °C, with the proviso that the reaction temperature in the subsequent reaction area is at least 5 °C higher that in the previous reaction zone.
- (57) Zusammenfassung: Verfahren zur Herstellung von Tricyclodecandialdehyd durch die Hydroformylierung von Dicyclopentadien mittels eines CO/H₂-Gemisches in Gegenwart eines homogen im Hydroformylierungsmedium gelösten, nicht-ligandmodifizierten Rhodiumkatalysators bei erhöhter Temperatur und bei erhöhtem Druck, in dem man die Hydroformylierung bei einem Druck von 200 bis 350 bar in mindestens zwei Reaktionszonen durchführt, wobei in einer ersten Reaktionszone eine Reaktionstemperatur von 80 bis 120°C und in einer dieser Reaktionszone nachfolgenden Reaktionszone eine Reaktionstemperatur von 120 bis 150°C eingestellt wird, mit der Maßgabe, dass die Reaktionstemperatur in der nachfolgenden Reaktionszone um mindestens 5°C höher ist als in der vorausgehenden Reaktionszone.

