Feuille 7 : Représentations maticielles des applications linéaires

Exercice 1-1

- 1. Soient $A \in \mathcal{M}_{2\times 2}(\mathbb{R})$ et $f: \mathcal{M}_{2\times 1}(\mathbb{R}) \to \mathcal{M}_{2\times 1}(\mathbb{R})$ une application définie par f(v) = Av, $\forall v \in \mathcal{M}_{2\times 1}(\mathbb{R})$. Montrer que f est une application linéaire.
- 2. Soit $A = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$. Donner une expression explicite de f(v) pour chaque $v = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathcal{M}_{2 \times 1}(\mathbb{R})$.

<u>Exercice 1-2</u> Trouver les matrices des applications linéaires suivantes dans les bases canonique des espaces vectoriels correspondants.

- 1. $f_1: \mathbb{R}^2 \to \mathbb{R}^2$ définie par f(x, y) = (2x + 3y, -x + y).
- 2. $f_2: \mathbb{R}^2 \to \mathbb{R}^3$ définie par f(x,y) = (y, -x + y, 2x y).
- 3. $f_3: \mathbb{R}^3 \to \mathbb{R}^2$ définie par f(x, y, z) = (x + 4y + z, -x + y + z).

Exercice 1-3 Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire définie par f(x, y, z) = (2x - y + z, -x - y, 5x - y).

- 1. Montrer que $\mathcal{B} = ((1, 2, 0), (0, 1, -1), (0, 1, 1))$ est une base pour \mathbb{R}^3 .
- 2. Trouver la matrice de f dans la base canonique.
- 3. Trouver la matrice de f dans la base \mathcal{B} .
- 4. Trouver la matrice de f dans la base \mathcal{B} pour l'espace de départ et la base canonique pour l'espace de arrivée.
- 5. Trouver la matrice de f dans la base canonique pour l'espace de départ et la base $\mathcal B$ pour l'espace de arrivée.

Exercice 1-4 Soient $C = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . On considère $h : \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire définie par $h(e_1) = 2e_1 + e_2 - e_3$, $h(e_2) = e_1 + e_2 - e_3$, $h(e_3) = e_1 - 2e_3$.

- 1. Trouver la matrice M de f dans la base C.
- 2. Quel est le rang de M?

Exercice 1-5 Soit $f: \mathbb{R}^4 \to \mathbb{R}^3$ l'application linéaire dont la matrice dans les bases canoniques de \mathbb{R}^4 et \mathbb{R}^3 est $A = \begin{pmatrix} 1 & 2 & 1 & 3 \\ 1 & 1 & 2 & 1 \\ 1 & -2 & 5 & -5 \end{pmatrix}$.

- 1. Déterminer une base pour le noyau de f.
- 2. Déterminer une base de l'image de f. Quel est le rang de A?

Exercice 1-6 Soient E un espace vectoriel et $\mathcal{B} = (u, v)$ et $\mathcal{B}' = (u', v', w')$ deux familles libres dans E. On considère l'application linéaire f: Vect $(u, v) \to \text{Vect}(u', v', w')$ définie par f(u) = u' + 2v' et f(v) = w'.

- 1. Trouver la matrice de f dans les bases \mathcal{B} et \mathcal{B}' pour Vect(u, v) et Vect(u', v', w') respectivement.
- 2. Trouver la dimension du noyau et de l'image de f.

Exercice 1-7 Soient $C = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $f : \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire définie par $f(e_1) = 2e_1 + e_2 - e_3$, $f(e_2) = e_2 - e_3$, $f(e_3) = -e_1 + 4e_3$. On considère $v_1 = 2e_1 - e_2$, $v_2 = -e_1 + e_3$, $v_3 = 2e_1 - 2e_2 + e_3$ trois vecteurs dans \mathbb{R}^3 .

- 1. Montrer que $\mathcal{B} = (v_1, v_2, v_3)$ est une base pour \mathbb{R}^3 .
- 2. Trouver la matrice A de f dans la base C et puis trouver la matrice B de f dans la base B. Quelle identité vérifient les matrices A et B?

Exercice 1-8 Soit $\mathcal{C}=(e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3 . Soit g l'endomorphisme de \mathbb{R}^3 dont la matrice

dans la base canonique est
$$A = \begin{pmatrix} 1 & 4 & 4 \\ -1 & -3 & -3 \\ 0 & 2 & 3 \end{pmatrix}$$
.

Soient $u = e_1 - e_2 + e_3$, $v = 2e_1 - e_2 + e_3$, $w = 2e_1 - 2e_2 + e_3$ trois vecteurs de \mathbb{R}^3 .

- 1. Montrer que $\mathcal{B} = (u, v, w)$ est une base de \mathbb{R}^3 .
- 2. Déterminer la matrice de passage P de \mathcal{C} à \mathcal{B} . Calculer P^{-1} .
- 3. Déterminer la matrice R de g dans la base \mathcal{B} .
- 4. (a) Calculer $P^{-1}AP$ en fonction de R.
 - (b) Calculer R^4 et en déduire les valeurs de A^{4n} .

Exercice 1-9 Soit $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et g l'endomorphisme de \mathbb{R}^3 définie par $g(e_1) = -3e_1 + 2e_2 - 4e_3$, $g(e_2) = e_1 - e_2 + 2e_3$, $g(e_3) = 4e_1 - 2e_2 + 5e_3$

- 1. Déterminer la matrice de g dans la base canonique.
- 2. Montrer que $E = \{v \in \mathbb{R}^3 : g(v) = v\}$ est un sous-espace vectoriel de \mathbb{R}^3 . Montrer que la dimension de E est 1 et donner un vecteur non nul a de E.
- 3. Montrer que $F = \{v = (v_1, v_2, v_3) \in \mathbb{R}^3 : -2v_1 + 2v_2 + 3v_3 = 0\}$ est un sous-espace vectoriel de \mathbb{R}^3 . Donner une base $\mathcal{B} = (b, c)$ de F.
- 4. Montrer que (a, b, g(b)) est une base de \mathbb{R}^3 .

Exercice 1-10 Soit $E \subset C^{\infty}(\mathbb{R})$ l'espace vectoriel des fonctions qui satisfont y'' + y = 0.

- 1. Montrer que $\alpha = \cos x \in E$ et $\beta = \sin x \in E$.
- 2. Montrer que $\mathcal{B} = (\alpha, \beta)$ est une base pour E, sachant que dim E = 2.
- 3. On considère $g: \mathbb{R}^2 \to E$ définie par $\forall v = (a, b) \in \mathbb{R}^2$, $g(v) = a \cos x + b \sin x$. Trouver la matrice de g dans la base canonique de \mathbb{R}^2 et la base $\mathcal{B} = (\alpha, \beta)$ de E.
- 4. Montrer que g est une bijection.

Exercice 1-11 Soit $u: \mathbb{R}_3[X] \to \mathbb{R}^2$ définie par u(P) = (P(-1), P(1)).

- 1. Montrer que u est une application linéaire.
- 2. Trouver la matrice de u dans les bases canoniques $(1, X, X^2, X^3)$ et (e_1, e_2) de $\mathbb{R}_3[X]$ et \mathbb{R}^2 respectivement.
- 3. Déterminer le noyau et l'image de u.

Exercice 1-12 Soit $h: \mathbb{R}_2[X] \to \mathbb{R}_3[X]$ définie par $h(P) = \int_1^x 2P(t)dt$.

- 1. Montrer que h est une application linéaire.
- 2. Montrer que $\mathcal{B} = (1, 2 + X, 4X + X^2)$ est une base pour $\mathbb{R}_2[X]$.
- 3. Trouver la matrice de h la base \mathcal{B} pour l'espace de départ et la base canonique $\mathcal{C} = (1, X, X^2, X^3)$ pour l'espace d'arrivée.

Exercice 1-13 Soit $f: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$ définie par f(P) = P - (X - 2)P'.

- 1. Montrer que f est une application linéaire.
- 2. Montrer que f est un endomorphisme de $\mathbb{R}_2[X]$.
- 3. Déterminer le noyau et l'image de f.
- 4. Déterminer la matrice de f dans la base canonique $\mathcal{C} = (1, X, X^2)$ de $\mathbb{R}_2[X]$.
- 5. Montrer que $\mathcal{B} = (1, X 2, (X 2)^2)$ est une base de $\mathbb{R}_2[X]$.
- 6. Déterminer la matrice de passage de P de C à \mathcal{B} . Calculer P^{-1} .
- 7. Quelle est la matrice de f dans la base \mathcal{B} .