2018 VCAA Specialist Mathematics Exam 2 Solutions

Use CAS to save time

SECTION A – Multiple-choice questions

1	2	3	4	5	6	7	8	9	10
Е	В	D	A	D	С	С	Е	D	A
11	12	13	14	15	16	17	18	19	20
С	A	В	C	Е	В	Е	D	Е	В

Q1

Q2
$$\sin^{-1}(cx+d) > 0$$
, $0 < cx+d \le 1$, $-\frac{d}{c} < x \le \frac{1-d}{c}$

Q3
$$\frac{(2x+1)(x+1)}{(2x+1)^3(x-1)(x+1)} = \frac{1}{(2x+1)^2(x-1)}$$

Q4
$$\csc(-x) = \frac{1}{\sin(-x)} = -\frac{1}{\sin(x)} = -\frac{\cot(x)}{\cos(x)} = \frac{b}{a}$$

Q5
$$z + \frac{1}{z} = z + \frac{\overline{z}}{z\overline{z}} \in R \text{ if } z\overline{z} = |z|^2 = 1$$

Q6 O, z, iz, z + iz are the vertices of a square of side length of

$$|z|$$
, .: area of the triangle = $\frac{|z|^2}{2}$

Q7 Length =
$$\int_{0}^{2\pi} \sqrt{(2\cos(2t))^2 + (-2\sin(t))^2} dt \approx 12.2$$

Q8 Let
$$u = \tan(x)$$
, $\frac{du}{dx} = \sec^2(x)$

$$\int_{0}^{\frac{\pi}{6}} \tan^{2}(x) \sec^{2}(x) dx = \int_{0}^{\frac{\pi}{6}} u^{2} \frac{du}{dx} dx = \int_{0}^{\frac{1}{\sqrt{3}}} u^{2} du$$

Q9
$$\sin(x+y)-\sin(x-y)=2\cos(x)\sin(y)$$

$$\frac{dy}{dx} = \frac{1}{\cos(x)\sin(y)}, \int \sin(y)dy = \int \sec(x)dx$$

Q10 Gradient = 1 when x = 0; gradient = -1 when y = 0

Q11
$$\tilde{a}.\tilde{b} = ab\cos\theta$$
, $2m = \frac{\sqrt{3}}{2}(m^2 + 1)$, $\sqrt{3}m^2 - 4m + \sqrt{3} = 0$
 $m = \sqrt{3}, \frac{1}{\sqrt{2}}$

Q12
$$(\tilde{a} + \tilde{b})(\tilde{a} + \tilde{b}) = \tilde{a}.\tilde{a} + 2\tilde{a}.\tilde{b} + \tilde{b}.\tilde{b}$$

$$|\tilde{a} + \tilde{b}|^2 = |\tilde{a}|^2 + 2|\tilde{a}||\tilde{b}|\cos\theta + |\tilde{b}|^2$$

$$\therefore |\tilde{a} + \tilde{b}|^2 = (|\tilde{a}| + |\tilde{b}|)^2 \text{ if } \theta = 0$$

i.e.
$$|\tilde{a} + \tilde{b}| = |\tilde{a}| + |\tilde{b}|$$
 if $\tilde{a} / / \tilde{b}$

http://www.learning-with-meaning.com/

Q13
$$\tilde{\mathbf{v}} = -3\sin(t)\tilde{\mathbf{i}} + 4\cos(t)\tilde{\mathbf{j}}$$

Speed =
$$\sqrt{9\sin^2(t) + 16\cos^2(t)} = \sqrt{9 + 7\cos^2(t)}$$

Min speed when
$$\cos(t) = 0$$
, $t = \frac{\pi}{2}$

Q14
$$\hat{b} = \frac{1}{\sqrt{14}} \tilde{b}$$
, $\tilde{a}.\hat{b} = \frac{1}{\sqrt{14}} \tilde{a}.\tilde{b} = \frac{1}{\sqrt{14}} (-3-6) = -\frac{9\sqrt{14}}{14}$

Q15
$$20^2 = 4^2 + 2a(15)$$
, $a = 12.8 \text{ ms}^{-2}$, $P = 8 \times 12.8 = 102.4$

Q16
$$F_2 \sin 45^\circ - 4 - 3\sin 30^\circ = 0$$
, $F_2 = \frac{11}{2\sin 45^\circ} = \frac{11\sqrt{2}}{2}$

Q17
$$2t - \frac{1}{2} \times 9.8t^2 = -50$$
, $t \approx 3.4$ s

Q18
$$s = \frac{67.31 - 58.42}{2 \times 1.96} \approx 2.267857$$
, $\sigma \approx \sqrt{36} \times 2.267857 \approx 13.61$

Q19 Population distribution:
$$\mu = 66$$
 and $\sigma = \sqrt{\frac{16}{9}} = \frac{4}{3}$

Sample distribution:

The mean of the sample mean gestation periods \bar{x} is $\mu = 66$, and

$$s = \frac{\sigma}{\sqrt{n}} = \frac{\frac{4}{3}}{\sqrt{5}} \approx 0.596285$$
$$\Pr(\overline{X} > 65) \approx 0.9532$$

Q20 Let X_M and X_S be random variables Mathematic score and Statistics score respectively.

$$X_{M} > X_{S}, X_{M} - X_{S} > 0$$

$$E(X_M - X_S) = E(X_M) - E(X_S) = 71 - 75 = -4$$

$$var(X_M - X_S) = var(X_M) + (-1)^2 var(X_S) = 10^2 + 7^2 = 149$$

$$: \sigma = \sqrt{149}$$

$$\Pr(X_M > X_S) = \Pr(X_M - X_S > 0) \approx 0.3716$$

SECTION B

Q1a
$$f(x) = 2\sin^{-1}(x^2 - 1), -1 \le x^2 - 1 \le 1, 0 \le x^2 \le 2,$$

 $-\sqrt{2} \le x \le \sqrt{2}, -\pi \le f(x) \le \pi$
D is $\left[-\sqrt{2}, \sqrt{2}\right]$ and the range of f is $\left[-\pi, \pi\right]$

Q1b

Q1c
$$f'(x) = \frac{4x}{\sqrt{1 - (x^2 - 1)^2}} = \frac{4x}{\sqrt{(1 + (x^2 - 1))(1 - (x^2 - 1))}}$$

= $\frac{4x}{\sqrt{x^2}\sqrt{2 - x^2}} = \frac{4x}{|x|\sqrt{2 - x^2}} = \frac{4}{\sqrt{2 - x^2}}$ for $x > 0$

Q1d For
$$x < 0$$
, $f'(x) = \frac{4x}{|x|\sqrt{2-x^2}} = \frac{-4}{\sqrt{2-x^2}}$

Q1ei
$$f'(x) = \frac{4x}{|x|\sqrt{2-x^2}}$$
 :: $g(x) = \frac{4x}{|x|}$

For f'(x) to be defined, $x \ne 0$ and $2 - x^2 > 0$.: max domain of f' is $\left(-\sqrt{2}, 0\right) \cup \left(0, \sqrt{2}\right)$

Q1eii
$$g(x) = \begin{cases} -4 & -\sqrt{2} < x < 0 \\ 4 & 0 < x < \sqrt{2} \end{cases}$$

Q1eiii

http://www.learning-with-meaning.com/

Q2a Centre (1, 2), radius 2

Q2b
$$|(x+1)+iy| = \sqrt{2}|x+i(y-1)|, (x+1)^2 + y^2 = 2(x^2 + (y-1)^2)$$

 $(x-1)^2 + (y-2)^2 = 4$, centre (1, 2), radius 2

Q2c

Q2d The line is a perpendicular bisector of the section on the Re(z) axis from 1 to 3, the line is Re(z) = x = 2. The upper and lower points of intersection are $(2, 2 + \sqrt{3})$ and $(2, 2 - \sqrt{3})$ respectively.

Q2e The angle subtended by the arc at the centre of the circle is $\theta = 2 \tan^{-1} \sqrt{3} = \frac{2\pi}{3}$

Segment area =
$$\frac{1}{3}\pi 2^2 - \frac{1}{2} \times 2^2 \sin \frac{2\pi}{3} = \frac{4\pi}{3} - \sqrt{3}$$

Q3a
$$V = \int_{0}^{h} \pi x^{2} dy = \int_{0}^{h} \pi \left(y^{2} + \frac{1}{4} \right) dy = \pi \left[\frac{y^{3}}{3} + \frac{y}{4} \right]_{0}^{h} = \frac{\pi}{4} \left(\frac{4}{3} h^{3} + h \right)$$

Q3b When
$$h = \frac{\sqrt{3}}{2}$$
, full $V = \frac{\pi}{4} \left(\frac{4}{3} \times \frac{3\sqrt{3}}{8} + \frac{\sqrt{3}}{2} \right) = \sqrt{3} \text{ m}^3$

When
$$V = \frac{1}{2} \times \sqrt{3}$$
, $\frac{\pi}{4} \left(\frac{4}{3} h^3 + h \right) = \frac{\sqrt{3}}{2}$, $h = 0.68$ m

Q3ci
$$\frac{dV}{dt} = 0.04 - 0.05\sqrt{h}$$
, $\frac{dV}{dh} \times \frac{dh}{dt} = \frac{dV}{dt}$
 $\frac{\pi}{4} (4h^2 + 1) \frac{dh}{dt} = 0.04 - 0.05\sqrt{h}$, $\frac{dh}{dt} = \frac{4 - 5\sqrt{h}}{25\pi (4h^2 + 1)}$

Q3cii When
$$h = 0.25$$
, $\frac{dh}{dt} = \frac{4 - 5\sqrt{0.25}}{25\pi (4(0.25)^2 + 1)} \approx 0.0153 \text{ ms}^{-1}$

Q3d
$$\frac{dh}{dt} = \frac{4 - 5\sqrt{h}}{25\pi(4h^2 + 1)}, \frac{dt}{dh} = \frac{25\pi(4h^2 + 1)}{4 - 5\sqrt{h}},$$

$$t = \int_{-\infty}^{0.25} \frac{25\pi(4h^2 + 1)}{4 - 5\sqrt{h}} dh \approx 9.8 \text{ s}$$

$$t = 25$$
, $h = 0.4$

$$t = 30$$
, $h \approx 0.4 + 5 \times \frac{4 - 5\sqrt{0.4}}{25\pi(4 \times 0.4^2 + 1)} \approx 0.43 \text{ m}$

Q3f Let
$$\frac{dh}{dt} = \frac{4 - 5\sqrt{h}}{25\pi(4h^2 + 1)} = 0$$
, $4 - 5\sqrt{h} = 0$, $h = 0.64$

Distance from the top = $\frac{\sqrt{3}}{2}$ – 0.64 \approx 0.23 m

Q4a A:
$$x = t + 1$$
, $y = t^2 + 2t$, .: $y = (x - 1)^2 + 2(x - 1) = x^2 - 1$
B: $x = t^2$, $y = t^2 + 3$, $y = x + 3$

Q4b Sane *x*-coordinate when
$$t^2 = t + 1$$
, $t = \frac{1 + \sqrt{1 + 4}}{2} = \frac{1 + \sqrt{5}}{2}$

Same y-coordinate when $t^2 + 2t = t^2 + 3$, $t = \frac{3}{2}$

 \therefore A and B cannot be at the same point (same x and same y) at the same time. They will not collide.

Q4c Since
$$t \ge 0$$
, .: $x \ge 0$

Let $x^2 - 1 = x + 3$, $x \approx 2.562$ and $y \approx 5.562$, .: the two paths cross at (2.562, 5.562).

http://www.learning-with-meaning.com/

Q4d
$$\dot{\mathbf{r}}_{A} = \tilde{\mathbf{i}} + (2t+2)\tilde{\mathbf{j}}$$
, $|\dot{\mathbf{r}}_{A}| = \sqrt{1^{2} + (2t+2)^{2}}$, and $\dot{\mathbf{r}}_{B} = 2t \, \tilde{\mathbf{i}} + 2t \, \tilde{\mathbf{j}}$, $|\dot{\mathbf{r}}_{B}| = \sqrt{(2t)^{2} + (2t)^{2}}$, $t \ge 0$
Let $\sqrt{1^{2} + (2t+2)^{2}} > \sqrt{(2t)^{2} + (2t)^{2}}$, $0 \le t < \frac{5}{2}$

Q4e Distance apart =
$$|\tilde{\mathbf{r}}_{B} - \tilde{\mathbf{r}}_{A}| = |(t^{2} - t - 1)\tilde{\mathbf{i}} + (3 - 2t)\tilde{\mathbf{j}}|$$

= $\sqrt{(t^{2} - t - 1)^{2} + (3 - 2t)^{2}} < 0.2$, .: $1.529 < t < 1.597$ approx
Period of time $\approx 1.597 - 1.529 \approx 0.068$ h ≈ 4.1 min

Q5a

Q5bi $20a = 20g \sin 30^{\circ} - 20v$

Q5bii
$$a = \frac{g}{2} - v$$
, $a = \frac{g - 2v}{2}$

Q5c
$$v \frac{dv}{dx} = \frac{g - 2v}{2}$$
, $\frac{dv}{dx} = \frac{g - 2v}{2v}$, $\frac{dx}{dy} = \frac{2v}{g - 2v} = \frac{g}{g - 2v} - 1$

Given
$$x = 0$$
, $v = 0$, $x = \int_{0}^{v} \left(\frac{4.9}{4.9 - v} - 1 \right) dv = \left[-4.9 \log_{e} \left(4.9 - v \right) - v \right]_{0}^{v}$

$$\therefore x = -v + 4.9 \log_{e} \left(\frac{4.9}{4.9 - v} \right)$$

Q5d Let
$$-v + 4.9 \log_e \left(\frac{4.9}{4.9 - v} \right) = 15$$
, $v \approx 4.81 \,\text{ms}^{-1}$ down the ramp

Q5ei
$$a = \frac{g - 2v}{2}$$
, $\frac{dv}{dt} = \frac{g - 2v}{2}$, $t = \int_{0}^{4.5} \frac{1}{4.9 - v} dv$

Q5eii
$$t = [-\log_e(4.9 - v)]_0^{4.5} = \log_e \frac{4.9}{0.4} \approx 2.51 \text{ s}$$

Q6a $H_0: \mu = 150$; $H_1: \mu < 150$

Q6b Standard deviation of
$$\overline{X} = \frac{15}{\sqrt{50}} = \frac{3}{\sqrt{2}}$$
 cm

Q6c p - value =
$$Pr(\overline{X} < 145 \mid \mu = 150) \approx 0.0092$$

Q6d Since p - value < 0.05, H_0 should be rejected at the 5% level of significance.

Q6e Let $\Pr(\overline{X} < \overline{h} \mid \mu = 150) = 0.05$ where \overline{h} is the smallest value of the sample mean height that could be observed for H_0 to be not rejected.

$$\Pr\left(Z < \frac{\overline{h} - 150}{\frac{3}{\sqrt{2}}}\right) = 0.05, \ \frac{\overline{h} - 150}{\frac{3}{\sqrt{2}}} = -1.6449, \ \overline{h} \approx 146.51 \,\text{cm}$$

Q6f From part e, smallest $\overline{h} \approx 146.51$ for H_0 to be accepted at 5% level of significance.

$$\Pr(\overline{X} > 146.51 \mid \mu = 145) \approx 0.24$$

Q6g
$$Pr(Z < z) = \frac{1 - 0.99}{2} = 0.005, z \approx -2.5758$$

99% confidence interval for the mean height is

$$\left(145 - 2.5758 \times \frac{3}{\sqrt{2}}, 145 + 2.5758 \times \frac{3}{\sqrt{2}}\right)$$
, i.e. $\left(139.5, 150.5\right)$

Please inform mathline@itute.com re conceptual and/or mathematical errors

http://www.learning-with-meaning.com/