INTERNATINONAL UNIVERSITY (IU) – VIETNAM NATIONAL UNIVERSITY – HCMC

Mid-term Examination Replacement

Begin: April 20th, 2020 Submit: April 27th, 2020 Question Code: 15

SUBJECT:	Electronic Devices
Dean of School of Electrical Engineering	Lecturer
Signature:	Signature:
Full name: Mai Linh	Full name: Tran Van Su

INTRODUCTIONS:

- 1. Exam questions are available on Blackboard
- 2. Answers must be typed and submitted on Blackboard in .PDF file.
- 3. Do not copy other materials because your answer files will be checked with Turnitin
- 4. Please write down your name, student ID and question code.

Question 1(10pts)

Figure shows an amplifier circuit with $Vs = 0.15\sin(\omega t)$ V, $Rs = 240 \Omega$, $Ri = 520\Omega$, $A_{vo} = 25$, $R_o = 150\Omega$ and $R_L = 750\Omega$.

- a. Determine V₀.
- b. What is the value of R_L to deliver maximum power to R_L .

Question 2(15pts)

- a) Draw and design a difference amplifier using an ideal op-amp with input impedance of **Rin** =500 k Ω , input voltages $V_2 = 1.5V$, $V_1 = 0.8V$, and output voltage of $V_0 = 4.9V$.
- b) Draw and design an instrumentation amplifier using ideal op-amps with input impedance of Rin = ∞ , input voltages $V_2 = 0.5V$, $V_1 = -0.2V$, and output voltage of $V_0 = 9.8V$.

Question 3(15pts)

An ideal op-amp is shown in Fig. 3 with $R=1~k\Omega$, $\mathbf{R}_f=11.4~k\Omega$ and $\mathbf{C}=0.1\mu F$

- a. Give the expression of transfer function of the voltage gain V_o/V_{in}
- b. Compute the 3-dB frequency in Hz.
- c. Compute the unity-gain frequency in Hz.
- d. Given that the slope of magnitude of the voltage gain V_o/V_{in} is -20dB/decade, estimate the magnitude of the voltage gain at $\mathbf{f} = 450$ Hz.

Question 4(15pts)

A silicon diode with ideality factor n=1 has $\mathbf{I}_D=6.1 mA$ and $Is=10^{-14} A$ shown in the figure.

- a. If $R_2 = \infty$, find V_D and V_{DC} .
- b. If $\mathbf{R}_2 = 650 \,\Omega$, find V_{DC}

Question 5(15pts)

The constant-voltage-drop model is used for the diode (D) in Figure with $V_{Do} = 0.65V$. The ideality factor n = 1. $R_2 = 450 \ \Omega$; $i_{AC} = 0.009 \cos(\omega t)$ (A)

- a. Find the current i_D.
- b. Find the voltage v_D

Question 6(15pts)

Find maximum Rs if **V**s varies from 9V to 11V, I_L varies from 4mA to 5mA, $r_z = 5\Omega$, $V_{zo} = 3.9V$ and $I_{zmin} = 1mA$. Find Maximum power dissipated in Zener diode

Question 7(15pts)

- a. An ideal op-amp is connected with resistance R and diode D shown in Figure. The current of the diode is $i_D = I_S e^{\frac{v_D}{v_T}}$ (A). Find relationship between V₀ and V_{in}.
- b. If $V_{in} = 1.4V$, $\mathbf{R} = 2.7 \text{ k}\Omega$, $I_S = 10^{-14} \text{ A}$, find v_D