AD-A088 344

TENNESSEE UNIV KNOXVILLE DEPT OF MATHEMATICS
UN THEOREM DE PROBABILITE ZERO OU UN DANS GROUPE MEASURABLE OR --ETC(U)
FEB 80 B S RAJPUT, A TORTRAT
UNCLASSIFIED
TR-8001

FOR BOOK OF THE PROBABILITE ZERO OU UN DANS GROUPE MEASURABLE OR --ETC(U)
FEB 80 B S RAJPUT, A TORTRAT
NO0014-74-C-0468
NL

END
ONE
OF THE PROBABILITE ZERO OU UN DANS GROUPE MEASURABLE OR --ETC(U)
FEB 80 B S RAJPUT, A TORTRAT
ONE
OF THE PROBABILITE ZERO OU UN DANS GROUPE MEASURABLE OR --ETC(U)
FEB 80 B S RAJPUT, A TORTRAT
ONE
OF THE PROBABILITE ZERO OU UN DANS GROUPE MEASURABLE OR --ETC(U)
FEB 80 B S RAJPUT, A TORTRAT
ONE
OF THE PROBABILITE ZERO OU UN DANS GROUPE MEASURABLE OR --ETC(U)
FEB 80 B S RAJPUT, A TORTRAT
ONE
OF THE PROBABILITE ZERO OU UN DANS GROUPE MEASURABLE OR --ETC(U)
FEB 80 B S RAJPUT, A TORTRAT
ONE
OF THE PROBABILITE ZERO OU UN DANS GROUPE MEASURABLE OR --ETC(U)
FEB 80 B S RAJPUT, A TORTRAT
ONE
OF THE PROBABILITE ZERO OU UN DANS GROUPE MEASURABLE OR --ETC(U)
FEB 80 B S RAJPUT, A TORTRAT
ONE
OF THE PROBABILITE ZERO OU UN DANS GROUPE MEASURABLE OR --ETC(U)
FEB 80 B S RAJPUT, A TORTRAT
ONE
OF THE PROBABILITE ZERO OU UN DANS GROUPE MEASURABLE OR --ETC(U)
FEB 80 B S RAJPUT, A TORTRAT
ONE
OF THE PROBABILITE ZERO OU UN DANS GROUPE MEASURABLE OR --ETC(U)
FEB 80 B S RAJPUT, A TORTRAT
ONE
OF THE PROBABILITE ZERO OU UN DANS GROUPE MEASURABLE OR --ETC(U)
FEB 80 B S RAJPUT, A TORTRAT
ONE
OF THE PROBABILITE ZERO OU UN DANS GROUPE MEASURABLE OR --ETC(U)
FEB 80 B S RAJPUT, A TORTRAT
ONE
OF THE PROBABILITE ZERO OU UN DANS GROUPE MEASURABLE OR --ETC(U)
FEB 80 B S RAJPUT, A TORTRAT
ONE
OF THE PROBABILITE ZERO OU UN DANS GROUPE MEASURABLE OR --ETC(U)
FEB 80 B S RAJPUT, A TORTRAT
ONE
OF THE PROBABILITE ZERO OU UN DANS GROUPE MEASURABLE OR --ETC(U)
FEB 80 B S RAJPUT, A TORTRAT
ONE
OF THE PROBABILITE ZERO OU UN DANS GROUPE MEASURABLE OR --ETC(U)
FEB 80 B S RAJPUT, A TORTRAT
ONE
OF THE PROBABILITE ZERO OU UN DANS GROUPE MEASURABLE OR --ETC(U)
FEB 80 B S RAJPUT, A TORTRAT
ONE
OF THE PROBABILITE ZERO OU UN DANS GROUPE MEASURABLE OR --ETC(U)
FE

AD A 088344

(12)

Title: (0-1 Theorm of Probability in a measurable or Topological Group)

Un theorem de Probabilite
zero ou un dans groupe measurable
or topologique quelconque

Balram S., Rajput University of Tennessee Knoxville, TN 37916

Albert/Tortrat
The University of Paris
France

(1) THE WALL

(1) THE WALL

(1) THE WALL

(1) THE WALL

ELECTE AUG 2 1 1980

This document has been approved for public release and sale; its distribution is unlimited.

411/14

I. Introduction.

Soit (X,\mathcal{B}) un espace vectoriel muni d'une tribu. On suppose que l'addition est measurable, de $(X\times X,\mathcal{B}\times \mathcal{B})$ dans (X,\mathcal{B}) , et que \mathcal{B} est invariante par les homothèties, <u>ou</u> (cas dit topologique) que X est un espace de trajectoires rèelles sur un espace T muni de la tribu cylindrique engendrèe parles coordonnèes x_t , ou de la tribu borèlienne pour une topologie \mathcal{E} plus fine que celle, σ , induite par R^T . Dans ce dernier cas la loi μ sur \mathcal{B} sera supposeè τ -règulière.

Lorsque μ est gaussienne, dan le cas topologique $^{(1)}$, on a $\mu(A)=0$ ou 1 pour toute partie $A\in\mathcal{Z}_{\mu}$ (tribu complètee pour μ) et H-invariante $(A+h=A, tout h\in H)$, H etent l'espace autoreproduiscant habituel (suppose dans X) relatif à la covariance des $\nu.a.x_t, x_t$. Taus autres thèorèms de zero ou un en découlent, en particulier (if faut pouver que $\mu(Gx)>0 \Rightarrow H\subset G$)

(1)
$$\mu(Gx) = 0$$
 ou 1,

ou G est un sous-groupe additif.

Taus les théorèmes de zèro ou un lorsque μ n'est plus guassienne, concernent (1) (pour simplifier nous supposerons dans la suite $G\in\mathcal{B}$) mais en fait G0 le cas ou G0 est vectoriel, où an mieux un r-module G1 (:un module sur les corps des rationnels) et G2 semi-stable:

(2)
$$\mu^r = r^{1/p} \cdot \mu$$

pour <u>un</u> r>0, r. μ désignant la loi de $r\zeta$ si la v.a. ζ a la loi μ . L'exposant p, comme pour une loi strictement stable (:(2) vant pour taut r>0, ou taut r entier) \in]0, 2].

Clairement le problème concerne d'abird le groupe quotient $X/G = \hat{G}$, qui, si X est muni de la topologie $\mathcal E$ mais G non ferme, n'est pas separe pour la topologie quotient (on ne sait rien sur la tribu $\hat{\mathcal B}$ induite par $\mathcal B$ dans \hat{G}) et le problème peut être posé dans $(X,\mathcal B)$ groupe measurable $(x \times x' + xx'^{-1})$ est measurable ou topologique séparé quelconque (non abélien), avec G sous-groupe normal.

Récemment $^{(4)}$, (1) a été pouve pour (X, \mathcal{B}) groupe abélien measurable et μ quasienne centrée en ce sens que (z') étant une réplique indépendant de z de loi μ , (3') n'est pas nécessaire)

- (3) $\zeta\zeta'$ et $\zeta\zeta'^{-1}$ sont independantes,
- (3') $\zeta \zeta'^{-1}$ a pour loi μ^2 .
- (3") les caractères ont des moments tous $\neq 0$.

Dans(5) un théorème très general est donné qui, dans le cas vectoriel et pour les problèmes antérieurs n'alteint lui aussi, sans restriction, que les r-modules. Nous domons ici un deuxième théorème qui fournit (1), dans un groups X quelconque, pour, entre autres, toute loi strictement stable d'exposant rationnel (\neq 1 si $\mathring{\mathbf{G}}$ n'est pas abelien). μ^n désigne la n-iême poduit de convolutian de μ par elle-même, et $n \cdot \mu$ ($n \cdot A$) l'image de μ (de A) pour l'application $x \rightarrow x^n$. ε est l'unité de $\mathring{\mathbf{G}}$.

II. Theoreme.

(5)

Dans le groupe (X, \mathcal{B}) , on suppose qui la loi μ verifie

(4)
$$n \cdot \mu = \mu^{K}$$
,

pour un couple $n \neq K$. Dans le cas n > K on suppose en outre

- (i) (4) vaut avec d'autres couples (n', K') pour des K' arbitrairement grands, ce qui est toujours vrai si G est abélien,
 - ii) (4) vaut avec <u>un</u> n' multiple <u>d'un</u> entier k' telque n K = k < k' < min(n, 2k) .

Soit $G \in \mathcal{B}$ un sous-groupe normal tel que $\mu(Gx)$ ou $\mu^K(Gx')$ soit > 0 (pour un x ou un x'). Alors il existe un sous-groupe \dot{G}_0 de $\dot{G} = X/G$, a I éléments, et $a \in \dot{G}$ telque dans \dot{G} on ait

(6)
$$\mu = \sigma \delta(a) = \delta(a)\sigma$$
, $\sigma = 10i$ de Harr sur \dot{G}_0 , (6') $n \cdot \sigma = \sigma$.

'†') I \times nécessite que I ne divise aucum n', que \dot{G}_0 n'ait aucum element $g \neq \epsilon$, dont l'ordre divise n ou un n'.

(+) Corollaire 1.

- Si (4) vaut pour un couple n < K, et pour des n' multiples de tout entier, (1) est vrai.
- Si (4) vaut pour un couple n > K, pour des K' arbitrairement grands (dans le cas non abélien) et pour des n' multiples de tout entier, (1) est vrai.

(t) Corollaire 2.

(1) vaut pour toute loi strictement stable d'exposant $p = \ell/m$ rationnel $\neq 1$ (K^{ℓ} est l'exposant dans (7)):

(7)
$$\mu^{K^{\ell}} = K^{m} \cdot \mu$$
, pour $K = 2, 3, ...,$

et pour p=1 si X/G est abèlien et $\mu \in (3")$. Il suffit que (7) vaille pour des K multiples de tout entier. La preuve du théorème se fera en trois étapes principales. On se place dans (\dot{G}, \dot{B}) , les points sont désignés par a, b, c diversement indexés. Il faut prouver que $n_0 = \mu a > 0 \Rightarrow n_0 = 1$.

1. (3) implique que μ est portie par I atomes igaux.

On a $\mu_n(a^n)=\eta\ge\eta_0$. Si on choisit η maximum, la relation de convolution $\mu_n=\mu\mu'$ avec $\mu'=\mu^{K-1}$ s'ecrit

(8)
$$\mu_n(a^n) = \sum_{\mu} (a^n b_i^{-1}) \mu'(b_i)$$
.

(8) montre que $\eta = \eta_0$, les b_i sont en nombre I fini, et (η_0) est maximum pour μ)

$$\eta = \mu(a^nb_1^{-1})$$
 pour taut $b_1 \in B$ support de μ' , $\sum_{i=1}^{I} \mu'(b_i) = 1$.

Puisque B = A^{k-1} où A est l'ensemble de <u>taus</u> les atomes-points les μ , A se reduit a I atomes a_i de poids $\eta=1/I$ car μ 'B = 1 nécessite μ A = 1 <u>et</u> on a

(9)
$$a'B^{-1} = A$$
, tout $a' \in n.A = \{a_i^n, i = 1,..., I\} = A^k$.
(†), (6;) suppose G abelien, or $Gx(\text{or }Gx') = G$ l or μ symmetrique,

Dans (9) les a'distincts sont en nombre I comme tout A^{ℓ} si $\ell \leq un$ K'de 5(ii), car chaque $A^{\ell}a$ I $_{\ell}$ éléments avec I $_{\ell}$ + avec ℓ et I $_{1}$ = I = I $_{K}$ ', argument essentiel dans la suite.

2. Soit n = K - k, k > 0.

Prenant $b=a_2a_1^{n+k-2}$ et $a'=a_1^n \cdot dans$ (9) on obtient; $a_1^{2-k}a_2^{-1} \in A \Rightarrow a_2a_1^{k-2}a_1^{2-k}a_2^{-1} = \epsilon \in A^k \text{ . Posant } K-1=kd+r\text{ , }r < k\text{ ,}$ on $a \ B \supset A^r$ et A^{k+r} donc $B=A^r=A^{r+k}$ et $A^kA^k=A^{k-r}A^{k+r}=A^{k-r}A^r=A^k$. Ainsi A^k est un groupe \dot{G}_0 à I éléments, et prenant un element $a \in A$, on obtient $cA=Ac=\dot{G}_0$ pour $c=a^{1k-1}$, soit $A=a\dot{G}_0=\dot{G}_0a$. (6) et les conclusions de l'enonce s'en suivent.

3. Le cas n = K + k, k > 0.

Prenant dans (9) $a' = a_i^n$ et $b_i = a^{(\ell)}a_i^{k-\ell-1}$ avec $a^{(\ell)} \in A^\ell$, $a_i \in A$ et $k' = k + \ell + 1 \le n$ ($\ell \ge 0$) on obtient $a_i^k \in Aa^{(\ell)}$, tout i, tout $a^{(\ell)}$. Suivant b(i), les $a_i^{k'}$ sant distincts ($1 \le i \le I$) car les $a_i^{n'}$ le sont pour un n' multiple de k; donc on a $Aa^{(\ell)} = k' \cdot A$. De plus $I_{k'} = I$ vu b(i), donc b(i) et b(i) et comme en 2., vu l'hypothèse b(i) et b(

4. L'hypothèse 5(ii) est toujours satisfaite si \mathring{G} est obélien, car, se plasant dans le groupe abélien denombrable engendre par A, (4) écrite pour la loi v (réelle ou sur la circonfirence unité) d'an caractère $X:v^k=n.v$, sitère en $v^{k^l}=n^l.u$ (utiliser la fonction caractéristique). On notera que $n'.u=u^{k'}$, sachant (6), equivant a "les $g^{n'}$, $g\in \mathring{G}_0$, sont distincts, et $a^{n'}=a^{k'}$ ". Vu $a^k=\varepsilon$, il ne serait pas judicieux de poser que $k'+\infty$ avec n'.

Preuue du corollaire 2.

Les cas p=1 doit etre traité à part, apes le n^0l , de la preuve ci dessus. Si les éléments de A permutent entre eux, plasons nous encore dand le groupe abèlien G denombrable qui ils engendrent. La loi v d'un caractere χ , a des moments u_n vèrifiant $u_n=u_1^n$, soit $u_1=0$ etant impossible, en posant $u_1=e^{i\theta-C}$, c>0:v est enroulèe de la loi de Cauchy de fontion caractèristique $e^{i\theta-c|t|}$ dans R, et ne peut etre discrète que si chaque v est impropre, donc u egalement (argument de (4) pour $u\in (3)$, apès avoir pouve que $(3)\Rightarrow uG=1$). N.B. une synthèse de toutes ces questions sera proposee au Colloque de S^t Flour des 23-28 juin 1980.

Corollaire 3.

Soit $\dot{\mathcal{B}}_\mu$ la tribu complète induite par \mathcal{B}_μ . On suppose que $\mathrm{Gx}\in\mathcal{B}_\mu$ (ou $\mathrm{Gx}^*\in\mathcal{B}_{\mathrm{LK}}$) avec la condition

 $(*)\{\text{Uc: } \mathbf{c^n} = \mathbf{a^n}\} \in \mathring{\mathcal{B}}_{\mu} \text{ pour } \underline{\mathbf{un}} \text{ a de } \mathring{\mathcal{B}}_{\mu} \text{ de } \mu\text{-mesure } \mathbf{n}$ maximum (parmi les $\mathbf{a} \in \mathring{\mathcal{B}}_{\mu}$)
Alors tous les rèsultate ci-dessus sont valables.

Preuve du corollarie 3.

1. (8) demeure inchangee et implique $\mu_n(a^n) = \eta = \mu(a^nb^{-1})$, $\mu'(\cup b_i) = 1$. Tout $b \notin B = \cup b_i$ est μ' -nul, et comme tout $a^{(k-1)}$ de A^{K-1} , avec A ensemble de tous les atomes-points de $\hat{\mathcal{Z}}_{\mu}$, est de $\mu_{+}^{K-1} > 0$ (il faut entendre cela au sens de (X, \mathcal{Z}_{μ})), on a $A^{K-1} \subset B$ donc $A^{K-1} = B$ donc A se rèduit aux I-atomes μ -égaux de (8): $A = a^nB^{-1}$. Alors $1 = \mu^{K-1}B = \int \mu(Bc^{-1}) \mu^{K-2}(dc)$ nécessite un $\mu(B\bar{c}^1) = 1$ done $a^nB^{-1} \subset ce B\bar{c}^1$, soit $A = B\bar{c}^1$ (puisqu'ils ont tous deux I éléments), et $\mu A = 1$.

- 2. La peuve est inchangée (cas n < K) .
- 3. (cas n > K). Les a_i^n sont μ -mesurables, car $\{c:c^n \in n.A\}$ A est μ nul, done {c:cⁿ = a_i^n } $\mu \cup \{a_i : a_i^n = a_i^n\}$. Vu $\mu^K(n.A) = 1$, $\cup \{a_i^n\} = A^K$ car les $a^{(k)} \in A^K$ sont tous de $\mu_*^K > 0$ donc ne peuvent être hours de n.A . Il en est exactement de même pour $n' \cdot \mu = \mu^{K'}$: les $a_i^{n'}$ sont tous distincts, donc les $a_i^{k'}$ si k' divise n' . Ainsi les argument utilises pour prouver le théorème (done les corollaries 1 et 2) restent valablesm

Remarque.

Le corollaire 2 contient, pour $G \in B$, le cas gaussien centre de (4) car en ce cas on a $2.\mu = \mu^4$ dans X, et $n.\mu = \mu^2$ dans G denombrable engendre, dans G, par le A du théorème: c'est dans le seul cas ou X abelien, est separe par son dual (6) que nous savons que (3), (3') et (3") \Rightarrow (7) avec p = 2. Ce corollaire prouve aussi que dans X (si p = 1) abelien denombrable (7) $\Rightarrow \mu$ de Dirac. Reciproquement (3") et (7) \Rightarrow (3) et (3').

(4) MAREK KANTER Azero-one Dichotomies for subgroups of a Probability Space (preprint, 1976).

5) Louie, RAJPUT and TORTRAT A 0-1 law for a class of measures on groups, to appear. (6) supposant en outre que les caracteres engendrent la topologie: definissent une base de voisinages de l'unite.

⁽¹⁾ i.e. les y(.) du dual de(X, $\mathscr E$), ou les x₁, sont, pour μ , de lois normales. Si le dual de(X, $\mathscr E$) est plus grand que celuide RT, il suffit (cf. $^{(2)}$) qu'une base de $\mathscr E$ -voisinages de 0 dans X, $\in \mathscr B_\sigma$, pour que μ gaussienne pour T (donc pour σ)

le soit pour $\mathscr E$.

(2) A. TORTRAT Prolong ements τ -reguliers, application aux probabilités quassiennes Symposia Mathematica XXI(1977), 117-138.

(3) Nous exceptons le cas de μ "convexe," cf. "Convex measures on locally convex spaces," by BORELL C. Arkiv for Matematik 12-22(1974).

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
I. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
Technical Report 8001	AD-A088344	<u> </u>
4. TITLE (and Subilitie)		5. TYPE OF REPORT & PERIOD COVERED
Un theoreme de Probabilite zero ou un dans groupe measurable or topologique quelconque		INTERIM
- topologique que tomque		6. PERFORMING ORG, REPORT NUMBER
7. AUTHOR(a) Balram S. Rajput		6. CONTRACT OR GRANT NUMBER(s)
Albert Tortrat, Un. of Paris, France		N00014-78-C-0468
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10 BROGRAM EL EMENT BROJECT TARK
		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT HUMBERS
Mathematics Department, University of Tennessee, Knoxville, TN 37916		NR 042-400
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Statistics and Probability Program,		February '80 '
Office of Naval Research, Arlington, VA 22217		13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office)		18. SECURITY CLASS, (of this report)
,		15a, DECLASSIFICATION/DOWNGRADING SCHEDULE
		SCHEDOLE
Approved for public release: Distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Strictly semistable laws, zero-one law, Groupe, stable laws		
20. ABSTRACT (Cantinue on reverse side if necessary and identify by block number)		
A general 0-1 law for a class of measures for normal subgroups of a group is obtained. Several corollaries are also given.		
		·

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601 |

SECURITY CLASSIFICATION OF THIS PAGE (Shen Date Entered)