MATHEMATICAL QUANTUM THEORY WINTER TERM 2023/2024

EXERCISE SET 6

All exercises are worth 5 points. Due on Friday, December 1, via URM.

- Exercise 1 completes the theory of generators of momentum on the circle. The argument here is prototypical in mathematical quantum theory: we want to prove that some function is in a Sobolev space, which means a distributional derivative is representable as an L^2 -function. This can be done via integration by parts provided the boundary terms vanish due to suitable boundary conditions.
- Exercise 2 provides an example of a densely defined, symmetric that is not closed and therefore has uninteresting spectral theory. This is a good argument that symmetry is not enough and we should look for self-adjointness!
- Exercise 3 is an application of our criterion for essential self-adjointness. This calculation shows more, that "momentum on the half-line" cannot be given physical meaning in quantum mechanics. (This is in contrast to momentum on an interval which as we showed in exercise 1 has self-adjoint realizations, i.e., physical meaning)

Exercise 1. For $\theta \in [0,\pi)$, let $T_t^{(\theta)}: L^2([0,1]) \to L^2([0,1])$ be the translation operator defined by

$$(T_t^{(\theta)}\psi)(x) = e^{i\theta k}\psi(x-t+k), \quad \text{if } x-t+k \in [0,1] \text{ for } k \in \mathbb{Z}.$$

(a) Prove that the generator of the SCOPUG $\{T_t^{(\theta)}: t \in \mathbb{R}\}$, call it $(D(H_\theta), H_\theta)$, satisfies

$$D(H_{\theta}) = \{ \psi \in H^{1}([0,1]) : e^{i\theta} \psi(1) = \psi(0) \}$$

$$H_{\theta} = -i \frac{d}{dr}$$

(b) Prove that $(D(H_{\theta}), H_{\theta})$ is self-adjoint.

Hint. In part (a), you may use the following description of the domain of the generator proved in class:

$$D(H_{\theta}) = \{ \psi \in L^{2}([0,1]) : T_{t}^{(\theta)} \psi \in H^{1}([0,1]) \}.$$

In class, we already proved that $T_t^{(\theta)}\psi\in H^1([0,1])$ implies $e^{i\theta}\psi(1)=\psi(0)$. Here you need to show the converse, so you want to show that the distributional derivative of $T_t^{(\theta)}\psi$ is representable by an L^2 function.

Exercise 2. Consider the Hilbert space $\mathcal{H} = L^2([-1,1])$.

(a) Let $T = \frac{d}{dx}$ be defined on the domain

$$D(T) = C^1([-1,1]),$$

where $\psi \in C^1([-1,1])$ means that the one-sided limits of ψ and its difference quotients exist at the boundary points. Prove that the operator (T,D(T)) is not closed.

Hint. You may find it helpful to consider the sequence $\psi_n(x) = \sqrt{x^2 + n^{-1}}$.

(b) Adapt the argument from (a) to show that also the operator $S=-i\frac{d}{dx}$ with domain

$$D(S) = C_c^{\infty}(-1, 1)$$

is not closed.

(c) Verify that S is a densely defined symmetric operator.

Exercise 3. Let $\mathbb{R}_+ = (0, \infty)$ be the half-line. On the Hilbert space $L^2(\mathbb{R}_+)$, consider the momentum operator $T = -i\frac{d}{dx}$ with domain $D(T) = C_c^{\infty}(\mathbb{R}_+)$.

- (a) Find its adjoint T^* .
- (b) Calculate $\ker(T^* \pm i)$.
- (c) Is T essentially self-adjoint?

Remark: A fact that we shall not prove in this course says that an operator has self-adjoint extensions if and only if $\dim \ker(T^*+i) = \dim \ker(T^*-i)$. An operator that does not have self-adjoint extensions cannot possibly be given physical meaning as a quantum observable.

Exercise 4.

- (a) Let $U: \mathcal{H}_1 \to \mathcal{H}_2$ be a unitary between two Hilbert spaces. Let (H, D(H)) be a self-adjoint operator on \mathcal{H}_1 . Prove that $(UHU^*, UD(H))$ is a self-adjoint operator on \mathcal{H}_2 .
- (b) Let $g \in L^{\infty}(\mathbb{R}^d)$ be real-valued. Prove that the unbounded operator $(g(-i\nabla), L^2(\mathbb{R}^d))$ is self-adjoint. (Recall that $g(-i\nabla) = \mathcal{F}^{-1}\mathcal{M}_q\mathcal{F}$.)
- (c) Suppose that $z \in \mathbb{C}$ is such that H z is injective. Prove the identity

$$U(H-z)^{-1}U^* = (UHU^*-z)^{-1}$$