

Hyperfréquence (Radiofrequency)

Three-dimensional view of the electric field for the TE_{10} – mode in a rectangular waveguide

Part 2

Dr. Lana Damaj

Part 2.3: outlines

- Waveguide:
 - rectangular waveguide fundamentals
 - Waveguide field propagation: TE and TM modes
 - Wave propagation

Introduction

- In the previous chapter, we saw how a pair of conductors was used to guide electromagnetic wave propagation.
- This propagation was via the TEM mode, meaning both the electric and magnetic field components were transverse, or perpendicular, to the direction of propagation.
- In this chapter we investigate wave-guiding structures that support propagation in non- TEM modes, namely in the TE and TM modes.

Introduction

- The generic term waveguide can mean any structure that supports propagation of a wave.
- Although T-lines are technically a subset of waveguides, in general usage the term waveguide refers to constructs that only support non-TEM mode propagation.
- Such constructs share an important criteria: They are unable to support wave propagation below a certain frequency, termed the cut off frequency.

TE and TM modes (review)

TE mode

 The vector of the electric field is perpendicular to the plane of incidence (xoz), E//oy and it keeps this position during guidance but it changes the sign keeping the direct direction (k,E,H)

TM mode

 The electric field vector is in the plane of incidence and the magnetic field vector is perpendicular to it.

TE mode

- Let us consider a rectangular waveguide with interior dimensions are a and b,
- Waveguide can support TE and TM modes.
 - In TE modes, the electric field is transverse to the direction of propagation.
 - In TM modes, the magnetic field that is transverse and an electric field component is in the propagation direction.
- The order of the mode refers to the field configuration in the guide, and is given by m and n integer subscripts, TE_{mn} and TM_{mn}.
 - The m subscript corresponds to the number of half-wave variations of the field in the x direction, and
 - The n subscript is the number of half-wave variations in the y direction.

Rectangular Waveguide

Why is TEM not supported by rectangular guide?

- The TEM mode requires at least a pair of conductors to propagate and is therefore not supported by hollow guide like rectangular waveguide.
- To see why this is so, let us suppose that a hollow guide does support the TEM mode. By definition, the magnetic field must be entirely in the transverse plane, and from Gauss's law for magnetic fields, ∇ · B =0, these field lines must form closed loops. Now, by Ampere's circuital law,

$$\oint \mathbf{H} \cdot d\mathbf{L} = \int \mathbf{J_c} \cdot d\mathbf{S} + \frac{\partial}{\partial t} \int \mathbf{D} \cdot d\mathbf{S}$$

• Since no conductive element can be enclosed in the hollow waveguide, the conduction current J_c term must be zero. The displacement-current term requires a component of D, and therefore E, in the direction of propagation, that is, normal to the transverse plane. But for TEM mode propagation, the E must be entirely transverse. Therefore, the TEM mode can- not be supported by hollow waveguide.

A particular mode is only supported above its cutoff frequency.
 The cutoff frequency is given by

$$f_{c_{mn}} = \frac{1}{2\sqrt{\mu\epsilon}} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2} = \frac{c}{2\sqrt{\mu_r \epsilon_r}} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$$

$$u = \frac{1}{\sqrt{\mu \epsilon}} = \frac{1}{\sqrt{\mu_o \mu_r \epsilon_o \epsilon_r}} = \frac{1}{\sqrt{\mu_o \epsilon_o}} \frac{1}{\sqrt{\mu_o \epsilon_o}} = \frac{c}{\sqrt{\mu_r \epsilon_r}}$$

where $c = 3 \times 10^8$ m/s

Rectangular Waveguide

Mode of propagation

Mode of propagation

The field patterns and associated field intensities in a cross section of rectangular waveguide for (a) TE₁₀ and (b) TE₂₀. Solid lines indicate electric field; dashed lines are the magnetic field.

- For conventional rectangular waveguide filled with air, where a=2b, the dominant or lowest order mode is TE_{10} with a cutoff frequency $f_{c,10}=c/2a$.
- · The relative cutoff frequencies for the first 12 modes of this waveguide are shown in the figure below
- For instance, owing to this particular wave- guide's condition a = 2b, the TE₂₀ and TE₀₁ modes have the same cutoff frequency. Also, the TE11 and TM11 modes share a cutoff frequency.
- Notice also that there are no modes where both m and n are zero and also no TM modes with either m or n equal to zero.

Some Standard Rectangular Waveguide

Waveguide Designation	a (in)	b (in)	t (in)	f _{c10} (GHz)	freq range (GHz)
WR975	9.750	4.875	.125	.605	.75 – 1.12
WR650	6.500	3.250	.080	.908	1.12 — 1.70
WR430	4.300	2.150	.080	1.375	1.70 - 2.60
WR284	2.84	1.34	.080	2.08	2.60 - 3.95
WR187	1.872	.872	.064	3.16	3.95 - 5.85
WR137	1.372	.622	.064	4.29	5.85 - 8.20
WR90	.900	.450	.050	6.56	8.2 – 12.4
WR62	.622	.311	.040	9.49	12.4 - 18

 Let us calculate the cutoff frequency for the first four modes of WR284 waveguide. From the table, the guide dimensions are a = 2.840 inches and b = 1.340 inches. Converting to metric units we have a = 7.214 cm and b = 3.404 cm.

$$f_{c_{mn}} = \frac{1}{2\sqrt{\mu\epsilon}} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2} = \frac{c}{2\sqrt{\mu_r \epsilon_r}} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$$

 Let us calculate the cutoff frequency for the first four modes of WR284 waveguide. From the table, the guide dimensions are a = 2.840 inches and b = 1.340 inches. Converting to metric units we have a = 7.214 cm and b = 3.404 cm.

$$f_{c_{mn}} = \frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2} \qquad \text{where } c = 3 \times 10^8 \text{ m/s}$$

where
$$c = 3 \times 10^8$$
 m/s

TE₁₀:
$$f_{c10} = \frac{c}{2a} = \frac{3x10^8 \, m/s}{2(7.214cm)} \frac{100cm}{1m} = 2.08 \, \text{GHz}$$

TE₀₁:
$$f_{c01} = \frac{c}{2b} = \frac{3x10^8 \, m/s}{2(3.404cm)} \frac{100cm}{1m} = 4.41 \, \text{GHz}$$

TE₂₀:
$$f_{c20} = \frac{c}{a} = 4.16 \text{ GHz}$$

TE₁₁:
$$f_{c11} = \frac{3x10^8 \, m/s}{2} \sqrt{\left(\frac{1}{7.214cm}\right)^2 + \left(\frac{1}{3.404cm}\right)^2} \frac{100cm}{1m} = 4.87 \text{ GHz}$$

- We can achieve a qualitative understanding of wave propagation in waveguide by considering the wave to be a superposition of a pair of TEM waves.
- Let us consider a TEM wave propagating in the z direction. Figure shows the wave fronts; bold lines indicating constant phase at the maximum value of the field (+E_o), and lighter lines indicating constant phase at the minimum value (-E_o).
- The waves propagate at a velocity u_u , where the u subscript indicates media unbounded by guide walls. In air, $u_u = c$.

- Now consider a pair of identical TEM waves, labeled as u+ and u- in Figure (a). The u+ wave is propagating at an angle +θ to the z axis, while the u-wave propagates at an angle -θ.
- These waves are combined in Figure (b). Notice that horizontal lines can be drawn on the superposed waves that correspond to zero field. Along these lines the u+ wave is always 180° out of phase with the u- wave.

- Since we know E = 0 on a perfect conductor, we can replace the horizontal lines of zero field with perfect conducting walls. Now, u+ and u- are reflected off the walls as they propagate along the guide.
- The distance separating adjacent zero-field lines in Figure (b), or separating the conducting walls in Figure (a), is given as the dimension a in Figure (b).
- The distance a is determined by the angle θ and by the distance between wavefront peaks, or the wavelength λ . For a given wave velocity u_u , the frequency is $f = u_u/\lambda$.
- If we fix the wall separation at a, and change the frequency, we must then also change the angle θ if we are to maintain a propagating wave. Figure (b) shows wave fronts for the u+ wave.
- The edge of a $+E_o$ wave front (point A) will line up with the edge of a $-E_o$ front (point B), and the two fronts must be $\lambda/2$ apart for the m = 1 mode.

For any value of m, we can write by simple trigonometry

$$\sin\theta = \frac{m\lambda/2}{a} \qquad \qquad \lambda = \frac{2a}{m}\sin\theta = \frac{u_u}{f}$$

The waveguide can support propagation as long as the wavelength is smaller than a critical value, λ_c , that occurs at θ = 90°, or

$$\lambda_c = \frac{2a}{m} = \frac{u_u}{f_c}$$

Where f_c is the cutoff frequency for the propagating mode.

We can relate the angle θ to the operating frequency and the cutoff frequency by

$$\sin\theta = \frac{\lambda}{\lambda_c} = \frac{f_c}{f}$$

The time t_{AC} it takes for the wavefront to move from A to C

(a distance
$$l_{AC}$$
) is
$$t_{AC} = \frac{\text{Distance from A to C}}{\text{Wavefront Velocity}} = \frac{l_{AC}}{u_u} = \frac{m\lambda/2}{u_u}$$

A constant phase point moves along the wall from A to D. Calling this phase velocity u_p , and given the distance I_{AD} is

$$l_{AD} = \frac{m\lambda/2}{\cos\theta}$$

Then the time t_{AD} to travel from A to D is

$$t_{AD} = \frac{l_{AD}}{u_p} = \frac{m\lambda/2}{\cos\theta \ u_p}$$

$$u_p = \frac{u_u}{\cos \theta}$$

The Wave velocity is given by

$$u_{u} = \frac{1}{\sqrt{\mu \varepsilon}} = \frac{1}{\sqrt{\mu_{o} \mu_{r} \varepsilon_{o} \varepsilon_{r}}} = \frac{1}{\sqrt{\mu_{o} \varepsilon_{o}}} \frac{1}{\sqrt{\mu_{o} \varepsilon_{o}}} = \frac{c}{\sqrt{\mu_{r} \varepsilon_{r}}}$$
where $c = 3 \times 10^{8}$ m/s

The *Phase velocity* is given by

$$u_{p} = \frac{u_{u}}{\cos \theta} \quad \text{using} \quad u_{p} = \frac{u_{u}}{\sqrt{1 - \left(\frac{f_{c}}{f}\right)^{2}}}$$

$$\cos \theta = \sqrt{\cos^{2} \theta} = \sqrt{1 - \sin^{2} \theta} = \sqrt{1 - \left(\frac{f_{c}}{f}\right)^{2}}$$

The Group velocity is given by

$$u_G = u_u \cos \theta$$

$$u_G = u_u \sqrt{1 - \left(\frac{f_c}{f}\right)}$$

Phase velocity

Analogy!

The phase constant is given by

$$\beta = \beta_u \sqrt{1 - \left(\frac{f_c}{f} \right)}$$

The guide wavelength is given by

$$\lambda = \frac{\lambda_u}{\sqrt{1 - \left(f_c/f\right)}}$$

The ratio of the transverse electric field to the transverse magnetic field for a propagating mode at a particular frequency is the waveguide impedance.

For a TE mode, the wave impedance is

$$Z_{mn}^{TE} = \frac{\eta_u}{\sqrt{1 - \left(\frac{f_c}{f}\right)^2}},$$

For a TM mode, the wave impedance is

$$Z_{mn}^{TM} = \eta_u \sqrt{1 - \left(\frac{f_c}{f}\right)^2}.$$

$$\eta_u = \sqrt{\frac{\mu}{\epsilon}}$$

$$\eta_u = 120\pi\Omega$$
 in free space Radiofrequency

Consider WR975 is filled with polyethylene. Find (a) u_u , (b) u_p and (c) u_G at 600 MHz.

From Table for WR975 we have a = 9.75 in and b = 4.875 in. Then

Consider WR975 is filled with polyethylene. Find (a) u_u , (b) u_p and (c) u_G at 600 MHz.

From Table for WR975 we have a = 9.75 in and b = 4.875 in. Then

$$fc_{10} = \frac{c}{2\sqrt{\varepsilon_r a}} = \frac{3x10^8 \, m/s}{2\sqrt{2.26}} \frac{1}{9.75in} \left(\frac{1in}{0.0254m}\right) = 403MHz$$

$$F = \sqrt{1 - \left(\frac{fc}{f}\right)^2} = \sqrt{1 - \left(\frac{403}{600}\right)^2} = 0.741$$

Now,

$$u_U = \frac{c}{\sqrt{\varepsilon_r}} = \frac{3x10^8}{\sqrt{2.26}} = 2x10^8 \frac{m}{s}$$

$$u_P = \frac{u_U}{F} = 2.7 \times 10^8 \frac{m}{s}$$

$$u_G = u_U F = 1.48 \times 10^8 \frac{m}{s}$$

Let's determine the TE mode looking into a 20 cm long section of shorted WR90 waveguide operating at 10 GHz.

From the Waveguide Table, a = 0.9 inch (or) 2.286 cm and b = 0.450 inch (or) 1.143 cm.

Let's determine the TE mode looking into a 20 cm long section of shorted WR90 waveguide operating at 10 GHz.

From the Waveguide Table, a = 0.9 inch (or) 2.286 cm and b = 0.450 inch (or) 1.143 cm.

$$f_{c_{mn}} = \frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$$

Mode	Cutoff Frequency	Mode	Cutoff Frequency
TE ₁₀	6.56 GHz	TE ₁₀	6.56 GHz
TE ₀₁	13.12 GHz Rearrange	TE ₀₁	13.12 GHz
TE ₁₁	14.67 GHz	TE ₂₀	13.13 GHz
TE ₂₀	13.13 GHz	TE ₁₁	14.67 GHz
TE ₀₂	26.25 GHz	TE ₀₂	26.25 GHz

