網路拓撲

網路拓樸 (Topology)

網路拓撲(Topology)簡單地說,就是實體網路連接後的形狀

在電腦網路上,每一個串接在網路上的電腦稱為節點(node),其所構成的網路形狀稱為網路拓樸(topology)。

網路型態

BUS (匯流排)

RING (環狀)

STAR (星狀)

MESH (網狀)

TREE (樹狀)

滙流排拓樸(bus)

在匯流排(bus)拓撲中,將所有電腦經由一條主幹線連接。這種架構具有廣播(broadcast)的特性,在網路上的任一部電腦都可以將資料向兩端傳遞,任一部電腦都可以接收這些資料,直到末端的終端電阻。

終端電阻 整端電阻

應用:乙太網路

星狀拓樸

在星狀(star)拓撲中,有一部電腦當為伺服器,扮演中央控制的角色,伺服器負責管理與控制所有的通訊動作。因此網路上的任何電腦要傳輸資料時,都必須經由伺服器

應用:乙太網路 hub為中間設備

環狀網路

- 在環狀(ring)拓樸中,將所有的裝置以一條幹線電纜連接形成環形的迴路。所有的網路節點以點對點(peer to peer)方式連接在這個迴路上。網路上的節點會依環形的順序,依序的傳遞資料。
- ●應用:Token Ring、FDDI光纖

網狀拓樸(Mesh)

- 。完全連結網路拓撲 (Full Connected Mesh Topology)
- 網路中的各節點均與系統中之其他 所有節點存在直接相連的路徑

。 應用:現在網路

部份連結網路拓撲 (Partially Connected Mesh Topology)

- · 部份連結網路拓樸 (Partially Connected Mesh Topology)
- 網路架構中並非所有節點間均存在 直接相連的路徑,訊息的傳送可能 需要經過其他節點才能到達目的地 節點

樹狀拓樸 (Tree Topology)

樹狀網路中之各節點連接形

成樹狀結構,任兩個節點間僅存在一條傳輸路徑

應用:集線器、電腦網路架構

比較

比較

拓模架構	結構圈	侵點	缺點
匯流排 (Bus)	1	安裝(新增、刪除)容易某一個節點故障不會 導致系統瘫痪	 允許之傳輸量要夠大, 方能承受眾多節點之資 料傳送
星狀 (Star)	*	安裝(新增、刪除)容易	 中央控制節點故障時, 則整個網路系統將完全 癱瘓
環狀 (Ring)	\Diamond	 某一個简點故障不會 導致系統癱瘓 	安裝(新增・排除)較麻好傳送資料易被修改
樹狀 (Tree)	ÁÀ	可用來連接數個網路	=
完全網狀 (Pull Mesh)		● 傳送可靠性高 (簡點問存在直接相連 的路徑)	需大量傳輸線,成本高
部份網狀 (Partial Mesh)	\$	● 成本校Full Mesh低 (並非節點問都存在直 接相連的路徑)	● 傳送速度較Full Meshilg

總結

高品質的網路結構,相對付出也是高成本,而管理上也是錯綜複雜, 因此較少的網路會使用此架構,但其具有更多的容錯性和可靠性 當網狀拓樸和其他拓樸連結在一起時,所形成一個混合式拓樸(星

狀+匯流排,星狀+環狀等局多)是目前網際網路較多採取的方式。

12