# $$\operatorname{MK's}$ Notes for CIVL-4530/6970 Geometric Design

# Michael Chen 2024-03-04

TODO: make the page number consistent

Geometric design is the base of transportation,

providing fundamental concepts, terms, and fomulas.

## Contents

| 1        | $\mathbf{Intr}$ | oduction and Highway Function                           | 1 |
|----------|-----------------|---------------------------------------------------------|---|
|          | 1.1             | Objectives                                              | 1 |
|          | 1.2             | Geometric Design Definition                             | 1 |
|          | 1.3             | Geometric Design Basic                                  | 1 |
|          | 1.4             | AASHTO Role                                             | 1 |
|          | 1.5             | Reference - AASHTO publications                         | 1 |
|          | 1.6             | Reference - ITE publications                            | 2 |
|          | 1.7             | design elements                                         | 2 |
|          | 1.8             | Highway Design Control Factors                          | 2 |
|          | 1.9             | Highway functions                                       | 2 |
|          | 1.10            | Hierarchy of Movements - 6 stages                       | 3 |
|          |                 | Hierarchy of Movements                                  | 3 |
|          |                 | Highway Design Volume                                   | 3 |
|          |                 | Traffic Information for Roadway Designers               | 3 |
|          |                 | Terms                                                   | 4 |
|          |                 | Rules                                                   | 4 |
|          |                 | Formulas                                                | 4 |
|          |                 | Reference                                               | 4 |
|          |                 |                                                         |   |
| <b>2</b> | Desi            | ign Control and Criteria                                | 1 |
|          | 2.1             | Objectives                                              | 1 |
|          | 2.2             | Design vehicles                                         | 1 |
|          | 2.3             | Older Driver Deficiencies                               | 1 |
|          | 2.4             | LOS and ADT                                             | 3 |
|          | 2.5             | 13 AASHTO Criteria                                      | 3 |
|          | 2.6             | speed                                                   | 3 |
|          | 2.7             | lane width for urban and rural (1-2ft wider than urban) | 5 |
|          | 2.8             | cross slope                                             | 5 |
|          | 2.9             | Terms                                                   | 5 |
|          | 2.10            | Rules                                                   | 6 |
|          | 2.11            | Formulas                                                | 6 |
|          |                 | Reference                                               | 6 |
|          |                 |                                                         |   |
| <b>3</b> | $\mathbf{Sigh}$ | at Distance (SD)                                        | 1 |
|          | 3.1             | Objectives                                              | 1 |
|          | 3.2             | key component of SD                                     | 1 |
|          | 3.3             | Sight Distance Types                                    | 1 |
|          | 3.4             | SSD - stopping sight distance                           | 1 |
|          | 3.5             | SSD on vertical curve                                   | 2 |
|          | 3.6             | DSS - decision sight distance                           | 2 |
|          | 3.7             | Terms                                                   | 2 |
|          | 3.8             | Rules                                                   | 2 |
|          | 3.9             | Formulas                                                | 2 |
|          |                 | Reference                                               | 2 |
|          |                 |                                                         |   |

| 4 | Horizontal Alignment                                | 1 |
|---|-----------------------------------------------------|---|
|   | 4.1 Objectives                                      | 1 |
|   | 4.2 Horizontal Curve Diagram                        | 1 |
|   | 4.3 Horizontal Curve diagram                        | 1 |
|   | 4.4 Horizontal Curve formulas                       | 2 |
|   | 4.5 stationing calculations - for PI, PC and PT     | 3 |
|   | 4.6 bearings calculations                           | 3 |
|   | 4.7 types of horizontal curves                      | 3 |
|   | 4.8 sight distance on curves                        | 3 |
|   | 4.9 superelevation - centrifugal force              | 4 |
|   | 4.10 superelevation - selection of e                | 4 |
|   | 4.11 superelevation - transition design control     | 5 |
|   | 4.12 axis of rotation                               | 5 |
|   | 4.13 superelevation runoff fomula                   | 6 |
|   | 4.14 tangent runout formula                         | 6 |
|   | 4.15 Terms                                          | 6 |
|   | 4.16 Rules                                          | 6 |
|   | 4.17 Formulas                                       | 6 |
|   | 4.18 Reference                                      | 6 |
| 5 | Vertical Alignment                                  | 1 |
|   | 5.1 Objectives                                      | 1 |
|   | 5.2 philosophies                                    | 1 |
|   | 5.3 maximum grades                                  | 1 |
|   | 5.4 Vertical Curve                                  | 3 |
|   | 5.5 stopping/passing sight distance on crest curves | 4 |
|   | 5.6 sag sight distance                              | 5 |
|   | 5.7 Vertical curve design - AASHTO table            | 5 |
|   | 5.8 vertical alignment - elevation                  | 5 |
|   | 5.9 Terms                                           | 6 |
|   | 5.10 Rules                                          | 6 |
|   | 5.11 Formulas                                       | 6 |
|   | 5.12 Reference                                      | 6 |

## 1 Introduction and Highway Function

## 1.1 Objectives

- 1. Geometric Design concepts
- 2. Highway Function

## 1.2 Geometric Design Definition

- 1. fit the highway to the terrain
- 2. maintaining design standards for safety and performance

## 1.3 Geometric Design Basic

- 1. make criteria matches
  - (a) driver expectancy/behavior
  - (b) vehicle performance/behavior
- 2. balance safty, cost, mobility, community values, environmental, politics, liability, sustainable development, etc

#### 1.4 AASHTO Role

- 1. American Association of State Highway and Transportation Officials
- 2. the membership of AASHTO consists of FHWA, and state DOTs

## 1.5 Reference - AASHTO publications

- 1. a.k.a Green Book/PGDHS: A Policy on Geometric Design of Highways and Streets, 2018, 7th Edition
- 2. Guidelines for Geometric Design of Very Low Volume Local Roads, 2001
- 3. A Guide to Achieving Flexibility in Highway Design, May 2004
- 4. Guide for the Planning, Design, and Operation of Pedestrian Facilities, July 2004
- 5. Guide for the Development of Bicycle Facilities, June 2012
- 6. Good for New Highway Design
- 7. TRB Special Report 214, Designing Safer Roads: Practices for Resurfacing, Restoration, and Rehabilitation for guidance.

## 1.6 Reference - ITE publications

ITE - Institute of Transportation Engineers. It is an international educational and scientific association of transportation professionals.

- 1. Urban Street Geometric Design Handbook, 2008
- 2. Freeway and Interchange Geometric Design Handbook, 2007
- 3. Designing Walkable Urban Thoroughfares: A Context Sensitive Approach, March 2010

## 1.7 design elements

Design elements affect design consistency, driver expectancy, and vehicular operation.

- 1. horizontal and vertical alignment
- 2. embankments and slopes
- 3. shoulders, crown and cross slope, superelevation
- 4. bridge widths
- 5. signing and delineation
- 6. guardrail and placement of utility poles or light supports

## 1.8 Highway Design Control Factors

- 1. Highway Function (Arterials, Collections, Locals)
- 2. Design speed of the facility
- 3. Physical characteristics of the "design vehicle"
- 4. Performance of the design vehicle (heavy trucks, RVs)
- 5. Acceptable degree of congestion

## 1.9 Highway functions

Highway Function: Arterials, Collections, Locals

Arterials: principal arterials, minor arterials Mobility: the ability to move goods and passengers to their destination in a reasonable time Accessibility: the ability to reach desired destination

## 1.10 Hierarchy of Movements - 6 stages

Main Movement Transition Distribution Collection Access Termination

## 1.11 Hierarchy of Movements

| Roadway Class | % Through | VMT    | in | Miles    | in | VMT    | in | Miles    | in |
|---------------|-----------|--------|----|----------|----|--------|----|----------|----|
|               | Movement  | Rural  |    | Rural    |    | Urban  |    | Urban    |    |
| Freeways      | 100%      |        |    |          |    |        |    |          |    |
| Arterials     | 60-80%    | 45-75% |    | 6 - 12%  |    | 65-80% |    | 15 - 25% |    |
| Collectors    | 40-60%    | 20-35% |    | 20 - 25% |    | 5-19%  |    | 5  10%   |    |
| Local Streets | 0-40%     | 5-20%  |    | 65-75%   |    | 10-30% |    | 65-80%   |    |

## 1.12 Highway Design Volume

| Highway Type                  | Approximate Design Speed | Approximate Design Volume   |  |
|-------------------------------|--------------------------|-----------------------------|--|
| Freeway – free flow           | 70-75 mph                | 2400  veh/h/ln              |  |
| Freeway – free flow           | 65  mph                  | 2300  veh/h/ln              |  |
| Rural Highways                |                          |                             |  |
| a) Multilane-one way          |                          | 1600-2000  veh/h/ln         |  |
| b) Two lane                   |                          | 2000-2800 veh/h             |  |
| Urban Highways                |                          |                             |  |
| a) Arterials                  |                          | See Highway Capacity Manual |  |
| b) Signalized intersections   |                          | 1900  pc/h/ln               |  |
| c) Unsignalized intersections |                          | 1100-2000  veh/h            |  |

## 1.13 Traffic Information for Roadway Designers

These traffic information should be available to the designer prior to or very early in the design process:

- 1. AADT for the current year: opening year (completion of construction), and design year
- 2. Existing hourly traffic volumes over a minimum of 24-hour period, including peak hour turning movements and pedestrian counts
- 3. Directional distribution factor (D30).
- 4. 30th highest hour factor (K30).
- 5. Truck factors (T) for daily and peak hour.

- 6. Design speed and proposed posted speed.
- 7. Design vehicle for geometric design.
- 8. Turning movements and diagrams for existing and proposed signalized intersections.
- 9. Special or unique traffic conditions, including during construction.
- 10. Crash history, including analyses at high crash locations within the project limits.
- 11. Recommendations regarding parking or other traffic restrictions.

#### 1.14 Terms

- 1. cross section A cross section refers to the vertical view of a roadway or highway at right angles to its centerline.
- 2. embankment An embankment is a constructed mound of earth, stones, or other materials. Its purpose is to support the raising of a roadway or railway above the level of the surrounding ground surface.
- 3. cross slope Cross slope plays a crucial role in ensuring proper drainage and safety on roadways.
- 4. crown The crown of a highway refers to the cross-sectional shape of the road surface.
- 5. signing and delineation -
- 6. guardrail A guardrail on a highway serves as a safety barrier designed to protect motorists.
- 7. guardrail and placement of utility poles or light supports -
- 8. detour walkaround roadway
- 9. through movement refers to the uninterrupted flow of vehicles or goods from one location to another
- 10. VMT Vehicle Miles Traveled
- 11. open year and design year open year means compeletion of construction.
- 12.  $D_{30}$  factor Directional Distribution factor
- 13.  $K_{30}$  factor the 30th highest hour factor

#### 1.15 Rules

#### 1.16 Formulas

#### 1.17 Reference

## 2 Design Control and Criteria

## 2.1 Objectives

- 1. Design Vehicles, Driver and Traffic Characteristics
- 2. 13 AASHTO criteria
- 3. AASHTO administered, federal-wide
- 4. State-DOT administered Green Book
- 5. local government administered ordinance or code

## 2.2 Design vehicles

- 1. Design Vehicle
  - Its weight, dimensions, and operating characteristics will be used to establish the geometric standards of the highway.
- 2. design vehicle P: passenger car
  - (a) Geometry length 19ft (5+11+3), width 7ft
  - (b) Minimum turning path outline 25.4ft, front wheel 23.8ft, CTR 21ft, min 14.4ft
- 3. WB-50 length 55ft, width 8.5ft, height 13.5ft

ASSHTO guideline - Selection of design vehicle 1

- 1. parking lot passenger car
- 2. intersection of local area SU-30, 30ft
- 3. intersection of state highway and city street City transit buses, 40ft
- 4. intersections of highways; low-volume county roads with ADT ; 400 City bus (40ft, 84 passengers) or conventional bus(36ft, 64 passengers)
- 5. freeway ramp; arterial crossroads; intersections of state highways; with high volume of traffic WB-40 to WB-62

### 2.3 Older Driver Deficiencies

- 1. Slower information processing
- 2. Slower reaction times
- 3. Slower decision making
- 4. Visual deterioration



Figure 1: Design Vehicles

- 5. Hearing deterioration
- 6. Decline in ability to judge time, speed, and distance
- 7. Limited depth perception
- 8. Limited physical mobility

9. Side effects from prescription drugs

## 2.4 LOS and ADT

acceptable LOS / level of "congestion" 2

| Roadway   | urban | rural level | rural rolling | rural mountainous |
|-----------|-------|-------------|---------------|-------------------|
| Freeway   | C/D   | В           | В             | С                 |
| Arterial  | C/D   | В           | В             | C                 |
| Collector | D     | С           | С             | D                 |
| Local     | D     | D           | D             | D                 |

#### 2.5 13 AASHTO Criteria

- 1. design speed
- 2. lane width
- 3. shoulder width
- 4. bridge width
- 5. structural capacity
- 6.
- 7. horizontal alignment
- 8. vertical alignment
- 9. cross slope
- 10. grades
- 11. superelevation
- 12. horizontal clearance
- 13. vertical clearance

## 2.6 speed

- 1. running speed the speed of an individual vehicle
- 2. design speed AASHTO: max safe speed
- 3. operation speed the 85th percentile of observed speed in free flow conditions
- 4. safty of over speed  $\Delta V$ : [0, 5] low; [5, 15] medium; [15, infinit] high

## **Levels of Service**



Figure 2: Level of Service

minimum design speed for rural roadways vs vehicle per day(VPD)

| rural terrain | 0-400 | 400-2000 | over 2000 |
|---------------|-------|----------|-----------|
| level         | 40    | 50       | 60        |
| rolling       | 30    | 40       | 50        |
| mountainous   | 20    | 30       | 40        |

## 2.7 lane width for urban and rural (1-2ft wider than urban)

| Types                    | urban    | rural   |
|--------------------------|----------|---------|
| Freeway and Interstates: | 12ft,    | 12ft    |
| Ramp:                    | 12-30ft  | 12-30ft |
| Arterial:                | 11-12ft, | 10-12ft |
| Collections:             | 10-12ft, | 10-12ft |
| local roads:             | 9-12ft,  | 9-12ft  |

## 2.8 cross slope

paved surfaces: 1.5-2%, typical 2% - Green Book

unpaved surfaces: 2-6% - Green Book areas with high intensity rainfall: 2-2.5%

ALDOT use in 2 Counties: 2.2%

Table 1: Lane Widths for Different Types of Roadways

| Type of Roadway |           | Rural           | Urban     |                 |  |
|-----------------|-----------|-----------------|-----------|-----------------|--|
|                 | US (feet) | Metric (meters) | US (feet) | Metric (meters) |  |
| Freeway         | 14-16*    | 4.3-4.9*        | 14–16*    | 4.3-4.9*        |  |
| Arterial        | 14-16     | 4.3 - 4.9       | 14 - 16   | 4.3 – 4.9       |  |
| Collector       | 14        | 4.3             | 14        | 4.3             |  |
| Local           | 14        | 4.3             | 14        | 4.3             |  |

Table 2: Functional Classification of Roadways

| Criteria                                | Local    | Collector        | Arterial         |
|-----------------------------------------|----------|------------------|------------------|
| Street pavement width                   | 24 ft    | 22 ft (1), 31 ft | 36 ft (2), 48 ft |
| Minimum horizontal curve radius         | 200 ft   | 350  ft          | 550 ft           |
| Maximum grade (3)                       | 15%      | 12%              | 8%               |
| Minimum design speed for vertical curve | 25  mi/h | 35  mi/h         | 45  mi/h         |

## 2.9 Terms

SU - represents all single unit trucks and small buses, with length 35-60ft

ADT - average daily traffic

AADT - the annual average daily traffic, empersizing annual average

DHV - design hour volume

DDHV - The directional design hour volume

 $30\mathrm{HV}$  - the  $30\mathrm{th}$  Highest Hour of Yearly Traffic - the  $30\mathrm{th}$  Hour volume

design speed (DS) - design maximum speed of a roadway

free flow speed (FFS) - the observed speed at which vehicles can travel with

minimal delays and no restrictions from traffic signals, congestion, or other factors.

LOS - Characterization of operating conditions, related to speed, travel time, traffic density, freedom to maneuver

FFS is close to DS - It means a good design

K-factor - DHV = K \* ADT, K is 8 to 12% for urban facilities; 12 to 18% for rural facilities.

D-factor - DDHV = D \* DHV, D is 50% for urban highways; 55 - 80% for rural and suburban roads

DDHV = ADT (or AADT) \* K \* D

CMF - Crash Modification Factor

Cul-de-sac: deed end street

#### **2.10** Rules

Tandem Axle - 2 axles which are very close State maximum gross vehicle weight - 73,280 - 164,000 lbs State maximum gross vehicle weight - 73,280 - 164,000 lbs

 $\mathrm{DHV} = 8\%$  - 12% ADT in urban area, refer to Green Book  $\mathrm{30HV} = 15\%$  ADT in a typical rural arterial, refer to Green Book

## 2.11 Formulas

1 mile = 5,280 feet 1000 kg = 2204.62 lbs 1 foot = 0.3048 meters 1 lb = 16 oz 1 gallon = 3.785 liters (U.S. liquid gallon)

1 gallon = 3.785 liters (U.S. inquid gallon) 1 gallon = 4.546 liters (U.K. imperial gallon)

#### 2.12 Reference

FHWA Website

http://safety.fhwa.dot.gov/geometric/pubs/mitigationstrategies/

## 3 Sight Distance (SD)

## 3.1 Objectives

- 1. describe various types of sight distance
- 2. determine sight distance requirements for stopping and passing maneuvers

## 3.2 key component of SD

- 1. PRT: the perception-reaction time required to initiate a maneuver (premaneuver phase)
- 2. MT: the time required to safely complete a maneuver

```
driver's eye - 3.5ft high
Hazard - 2ft high
```

## 3.3 Sight Distance Types

- 1. stopping sight distance (SSD)
- 2. decision sight distance (DSD)
- 3. passing sight distance (PSD)
- 4. intersection sight distance (ISD)

## 3.4 SSD - stopping sight distance

SSD is a key input for geometric design, including horizontal and vertical alignment

PRT includes: recognize an object + decide a stop + react and prepare to apply the brake

Deceleration rate:  $11.2ft/sec^2$ , 10th percentile deceleration rate, by AASHTO

$$SSD = D_{p-r} + D_b$$

 $D_{p-r}$ : in ft, perception-reaction distance

 $D_b$ : in ft, braking distance

$$D_{p-r} = 1.47 \times 2.5s \times v = 3.675v$$

 $D_{p-r}$ : in ft, perception-reaction distance

v: in mi/h, design speed

$$D_b = \frac{(v_0)^2 - (v_f)^2}{30(\frac{a}{g} \pm G)}$$

 $D_b$ : in ft, braking distance

 $v_0$ : in mi/h, design speed

 $v_f$ : in mi/h, final velocity

a:  $11.2 \ ft/sec^2$ , deceleration rate, by AASHTO, in [10, 15]

**g:** 32.2  $ft/sec^2$ 

f = a/g: 0.35 by ASSHTO, coefficient of friction, 0.7 for dry roads, 0.3-0.4 for wed roads

G: grade, e.g. down grade: -0.06

## 3.5 SSD on vertical curve

crest curve:

- Driver eye height: 3.5ft

- Height of object in readway: 2.0ft

sag curve:

- headlight height: 2ft

- headlight beam angle: 1 degree (departure from horizontal, suggest changing to 0.75 degree)

- 3.6 DSS decision sight distance
- 3.7 Terms
- 3.8 Rules
- 3.9 Formulas
- 3.10 Reference

## 4 Horizontal Alignment

## 4.1 Objectives

- 1. Horizontal Curve Elements
- 2. Superelevation
- 3. Design Horizontal Curve

## 4.2 Horizontal Curve Diagram



## 4.3 Horizontal Curve diagram

## Terms:

1. PI: point of intersection, intersection of tangent and curve

- 2. PC: point of curve(where curve starts), intersection of tangent and curve
- 3. PT: point of tangency(where curve ends), intersection of 2 tangents
- 4. PCurve: intersection of line PI-O and curve PC-PT
- 5. PChord: intersection of chord PC-PT and line PI-O

6.

- 7. R: the radius of the curve
- 8. D: in degree, degree of curve, the degree matches 100ft arc
  - (a) highways:(small) D -> arc length of 100ft
  - (b) railroads(big) D -> cord length of 100ft
- 9.  $\Delta$  the degree of the curve, the same as the bearings of 2 tangents
- 10. L: in feet, curve length
- 11. T: line segment from PI to PT/PC
- 12. E: external distance, line segment of PI-PCurve
- 13. M: middle ordinate, line segment of PCurve-PChord
- 14. LC: chord PC-PT
- 15. curvature how big is a curve, curvature = 1/R

### 4.4 Horizontal Curve formulas

$$\begin{split} \frac{D}{100} &= \frac{360}{2\pi R} \\ D &= \frac{360 \cdot 100}{2\pi R} \\ L &= 100 \cdot \Delta/D \\ L_{in\_meter} &= 30.48 \cdot \Delta/D \\ T &= R \cdot tan\frac{1}{2}\Delta \\ M &= R(1 - cos\frac{1}{2}\Delta) \\ E &= R(\frac{1}{cos\frac{1}{2}\Delta} - 1) \\ LC &= 2R \cdot sin\frac{1}{2}\Delta \end{split}$$

## 4.5 stationing calculations - for PI, PC and PT

Stationing is the concept of assigning distances along a line, such as a survey baseline (initial field survey) or center line (design)

52+48.63 means 52 hundreds 48 ft and .63 ft

Given PI, calculate the locations:

- 1. why???
- 2. PC = PI T
- 3. PT = PC + L

## 4.6 bearings calculations

A bearing refers to the direction and orientation of a line

N 73°30'38"E

52+48.63 means 52 hundreds 48 ft and .63 ft

## 4.7 types of horizontal curves

- 1. simple
- 2. compound (R1 and R2)
- 3. reverse
- 4. spiral (change radius btw 2 Rs)

VDOT: The use of spiral transitions for compound and reverse curves on urban roadways should be avoided, ...

#### 4.8 sight distance on curves

terms:

- 1. highway centerline -> highway radius
- 2. centerline inside a lane  $->R_v$
- 3. line of sight
- 4. sight obstruction
- 5. sight distance

sight distance fomula:

$$M_{s} = R_{v} \cdot (1 - cos_{degrees} \frac{90SSD}{\pi R_{v}})$$
  
$$M_{s} = R_{v} \cdot (1 - cos_{radians} \frac{SSD}{R_{v}})$$

 $M_s$ : the middle ordinate, distance from centerline to obstruction  $R_v$ : the radius of the curve, inside lance — for the centerline of the \*1st\* lane SSD: the stopping sight distance

## 4.9 superelevation - centrifugal force

## suggestion value:

$$1mph = 1.47ft/sec$$

## superelevation formula:

$$\frac{e+f}{1-ef} = \frac{v^2}{gR} = \frac{V^2}{15R}$$

#### minimam radius:

$$R_{min} = \frac{V^2}{15(f_s + e_{max})} = \frac{v^2}{g(f_s + e_{max})}$$

e: superelevation rate, e.g. 0.04

f: coefficient of friction

 $f_s$ : side friction, e.g. 0.10

g: 9.8, the acceleration of gravity

v: in ft/sec, the speed in ft/sec

V: in mph, the speed in mph

R: in ft, the radius of the curve in feet

## 4.10 superelevation - selection of e

- 1. too high or too low?
- 2. What factors should be considered?

3.

- 4.  $e \le 0.10$  on any paved road
- 5.  $e \le 0.12$  on unpaved roads
- 6. e < 0.08 where there is ice and snow
- 7.  $e \le 0.06$  in Illinois where ever practical
- 8. e < 0.04 in Illinois for urban freeways

## 4.11 superelevation - transition design control

- 1. Tangent runout (TR): the distance needed to change from a normal crown section to a point where the outside lane(s) is level
- 2. Superelevation Runoff (L): the distance needed to change the cross slope from the end of TR to the design full superelevation rate.
- 3. IDOT practice: TR and 1/3 runoff on the tengent; 2/3 of runoff on the curve;
- 4. ASSHTO: placing the PC at between 60% and 80% of the transition length
- 5. ALDOT: 80/20 split (of the entire STL)
- 6. VDOT: this split is of the superelevation runoff portion only, not the entire  ${\rm STL}$
- 7. Many states, including Virginia, use 2:1 split

#### 4.12 axis of rotation

Axis of Rotation is the point about which the pavement edges are revolved to superelevate the roadway.

- typically, on undivided highways the centerline of roadway is the axis of rotation.
- 2. typically, divided highways rotate around the median edge
- 3. also, some roadway revolved about inside edge!

## 4.13 superelevation runoff fomula

## superelevation runoff for \*TWO-Lane\* roads:

 $L_{sro} \cong 30e(V+32)$ , for 12 ft lans

 $L_{sro} \cong 25e(V+32)$ , for 10 ft lans

 $L_{sro}$ : superelevation runoff length

e: superelevation rate

## full superelevation curve length:

 $L_{full} = L_{curve} - 2L_{sro}$ 

 $L_{full}$ : full superelevation curve length

 $L_{curve}$ : horizontal curve length (arc length)

## for multilane roads: (AASHTO Green Book)

times 1.5 for 4 lanes (2 in each direction)

times 2.0 for 6 lanes

## 4.14 tangent runout formula

## tangent runout formula, given runoff:

$$TR = L_{sro} \frac{NC}{e}$$

TR: tengent runout

 $L_{sro}$ : superelevation runoff length

NC: normal crown rate

## 4.15 Terms

gradient: slope rate

- **4.16** Rules
- 4.17 Formulas
- 4.18 Reference

## 5 Vertical Alignment

## 5.1 Objectives

- 1. Understand basic philosophies in establishing a vertical alignment
- 2. Apply criteria for selection of grades
- 3. Design a vertical Curve

## 5.2 philosophies

- 1. conform to the existing terrain (within constraints of max grade and min lengths of vertical curves)
- 2. to minimize impacts (balance earthwork)
- 3. coordinate horizontal and vertical alignments (HC and VC)
  - (a) avoid steep (near the max) grades and sharp (near min radius) horizontal curve
  - (b) avoid placing the start of HC in the middle of VC; VC either at HC tangents or at HC vurves
  - (c) avoid placing the start of HC at the bottom of a steep VC

#### 5.3 maximum grades

- 1. Steepness and length heavily impacts heavy vehicles.
- 2. max grade design criteria is related with: design speed, the functional classification, and terrain
- 3. max grades: by AASHTO
  - (a) freeway: 3-6%, +3.00% 70mph; max +4.00% for upgrade, max 5.00% for downgrade
  - (b) arterials: +3.00% 60mph; up to +8.00% 40mph at mountainous
  - (c) collectors: +4.00% 70mph; up to +14.00% 20 mph, mountainous
  - (d) locals: up to +17.00% in mountainous terrain
- 4. min grades:
  - (a) urban design (curb and gutter): an appropriate min grade is 0.5%, but grade of .30%  $\dots$
  - (b) rural deisgn(shoulder and ditches): ... cross-slope is adaquate ...



## 5.4 Vertical Curve



If  $G_1$  and  $G_2$  are in slope, e.g. +0.02, x and L must in feet

$$A = G_2 - G_1$$

A: total change in grade, if negative, the curve is below the tangent  $G_n$ : grade, like -0.08

3

$$Y_{offset} = x^2 \frac{A}{2L} = x^2 \frac{G_2 - G_1}{2L}$$

 $Y_{offset}$ :

vertical offset from a tangent to a parak

$$Y_{tan} = Y_{vpc} + G_1 x$$

 $Y_{tan}$ : tangent elevation

$$Y_{curve} = Y_{vpc} + G_1 x + \frac{A}{2L} x^2$$

 $Y_{curve}$ : curve elevation

$$Y_{tan} = Y_{offset} + Y_{curve}$$

$$x_{hi/lo} = L \frac{G_1}{G_1 - G_2}$$

 $x_{hi/lo}$ : the highest/lowest point

## 5.5 stopping/passing sight distance on crest curves

$$A = G_2 - G_1$$

## \*SSD/PSD\* minimum length of crest curve:

$$L = \frac{|A|S^2}{200(\sqrt{h_1} + \sqrt{h_2})^2} \text{ when } S \le L$$
 
$$L = 2S - \frac{200(\sqrt{h_1} + \sqrt{h_2})^2}{|A|} \text{ when } S \ge L$$
 stopping:  $h_1 = 3.5ft, \ h_2 = 2.0ft$  passing:  $h_1 = 3.5ft, \ h_2 = 3.5ft$ 

## \*SSD\* minimum length of crest curve:

$$L_{SSD} = \frac{|A|S^2}{2158} \text{ when } S \le L$$
 
$$L_{SSD} = 2S - \frac{2158}{|A|} \text{ when } S \ge L$$

## A: in unit %, e.g. 3, the grade change of VC

L: the minimum length of the vertical curve??? the arc length or the horizontal segment length??? S: stop sight distance, related with speed, reaction time, and coefficient of friction

 $h_1: 3.5$  feet, the driver eye height

 $h_2: 2.0$  feet, the object height

## 5.6 sag sight distance

TODO diagram???

#### minimum length of sag curve

$$\begin{split} L &= \frac{|A|S^2}{200(h+S\cdot tan\beta)} \text{ when } S \leq L \\ L &= 2S - \frac{200(h+S\cdot tan\beta)}{|A|} \text{ when } S \geq L \end{split}$$

$$L = \frac{|A|S^2}{400+3.5S} \text{ when } S \leq L$$
 
$$L = 2S - \frac{400+3.5S}{|A|} \text{ when } S \geq L$$

A: in unit %, e.g. 3, the grade change of VC

L: the horizontal length of sag curve

S: sag sight distance

h: 2 feet, the headlamp height

 $\beta$ : 1 degree, the headlamp beam angle

## 5.7 Vertical curve design - AASHTO table

#### Another approach to determining curve length!

 $L = K \cdot A$ 

L: in feet, curve length, minimum length for a given design speed

A: in unit %, change in grade

K: rate of vertical curvature, K = required ft of curve length per 1% net change in grade

K table for crest VC

K table for sag VC

TODO add tables???

## 5.8 vertical alignment - elevation

TODO

1.

## 5.9 Terms

gradient: slope rate grade: e.g. +4.00%a upward slope; -3.00% a downward slope

- **5.10** Rules
- 5.11 Formulas
- 5.12 Reference