

Kompetensi

Pengalamatan Jaringan

Konsep Subnetting

Mahasiswa mampu menjelaskan konsep dasar subnetting dengan teknik FLSM dan VLSM

Subnetting Mahasiswa mampu melakukan perhitungan subnetting dengan benar dengan teknik FLSM dan VLSM.

Materi

Teknik –Teknik Subnetting

Teknik Subnetting FLSM

Teknik Subnetting VLSM

Metode Subnetting

Teknik-Teknik Subnetting

Metode Subnetting:

- FLSM (Fixed Length Subnet Mask).
 - ✓ Subnetting dengan Classfull Addressing, yaitu berdasarkan kelas IP.
 - ✓ Menggunakan satu subnetmask prefix .
- VLSM (Variable Length Subnet Mask).
 - ✓ Subnetting dengan *Classless*Addressing, yaitu tidak
 berdasarkan kelas IP.
 - ✓ Tidak terikat pada satu subnetmask prefix

Metode FLSM

Tahapan Metode FLSM

Metode FLSM

Menghitung Subnetting

- 1 Jumlah Subnet :
 - Menentukan jumlah subnet yang akan terbentuk
 - Rumus: 2x
 - ✓ dimana x adalah jumlah bit angka biner "1" pada HostID prefix subnetmask
- (2) Jumlah Host :
 - Menentukan jumlah host per subnet
 - Rumus : 2^y 2
 - ✓ dimana y adalah jumlah bit angka biner "o" pada HostID prefix subnetmask

- 3 Blok Subnet:
 - Menentukan ukuran blok (range) subnet
 - Rumus : 256 jumlah HostID subnetmask prefix
- (4) Alamat Broadcast :
 - Menentukan broadcastID
 - Rumus : angka terakhir pada setiap blok subnet
- 5 Alamat Host Valid:
 - Menentukan alamat-alamat host pada blok subnet
 - Rumus:
 - ✓ SubnetID : Alamat pertama blok subnet.
 - ✓ HostID valid : alamat antara SubnetID dan BroadcastID

Contoh kasus 1

Menghitung Subnet dengan Metode FLSM

Solusi

Deskripsi Kasus:

- Sebuah kantor akan membuat jaringan komputer dengan IP Address 192.168.1.0 /26.
- Lakukan subnetting terhadap IP Address Tersebut.

Langkah awal adalah analisis IP Address

- Kelas : C
- Default Subnetmask :
 - ✓ Desimal: 255 . 255 . 255 . 0
- Prefix /26
 - ✓ Biner : 11111111 . 11111111 . 11111111 . 11000000
 - ✓ Desimal: 255 . 255 . 255 . 192

Contoh Kasus 1 : lanjutan

Menghitung Subnet

Prefix /26

- Biner : 11111111 . 11111111 . 111000000
- Desimal: 255 . 255 . 255 . 192

 NetID HostID
- 1 Jumlah Subnet : 2 × = 2 ² = 4 Subnet
 - x adalah jumlah bit angka biner "1" pada HostID prefix subnetmask
- $\binom{2}{3}$ Jumlah Host: $2^{y}-2=2^{6}-2=64-2=62$ host
 - y adalah jumlah bit angka biner "0" pada HostID prefix subentmask

- 3 Blok Subnet: 256 192 = 64 per blok
 - Rumus: 256 jumlah HostID prefix
 - Jadi blok subnet lengkapnya adalah : 0, 64, 128, 192

Contoh Kasus 1 : lanjutan

Menghitung Subnet

IP Address 192.168.1.0 /26

Jumlah Subnet: 4 Subnet

Jumlah Host: 62 host

Blok Subnet : 64 per blok

Jadi blok subnet lengkapnya :
0, 64, 128, 192

Subnet	Host awal	Host Akhir	Broadcast
192.168.1. <mark>0</mark>	192.168.1. <mark>1</mark>	192.168.1. <mark>62</mark>	192.168.1. <mark>63</mark>
192.168.1. <mark>64</mark>	192.168.1. <mark>65</mark>	192.168.1. <mark>126</mark>	192.168.1. <mark>127</mark>
192.168.1. <mark>128</mark>	192.168.1. <mark>129</mark>	192.168.1. <mark>190</mark>	192.168.1. <mark>191</mark>
192.168.1. <mark>192</mark>	192.168.1. <mark>193</mark>	192.168.1. <mark>254</mark>	192.168.1. <mark>255</mark>

Contoh Kasus 2

Menghitung Subnet dengan Metode FLSM

Solusi

Deskripsi Kasus:

- Sebuah perusahaan akan membuat jaringan komputer dengan IP Address 172.16.0.0 /18.
- Lakukan subnetting terhadap IP Address Tersebut.

Langkah awal adalah analisis IP Address

- Kelas : B
- Default Subnetmask :
 - ✓ Desimal: 255 . 255 . 0 . 0
- Prefix /18

 - ✓ Desimal: $\frac{255}{1}$. $\frac{255}{1}$. $\frac{192}{1}$. 0

Contoh Kasus 2 : Lanjutan

Menghitung Subnet

Prefix /18

- Desimal: 255 . 255 . 192 . 0

 NetID HostID
- 1 Jumlah Subnet : 2 × = 2 ² = 4 Subnet
 - x adalah jumlah bit angka biner "1" pada HostID prefix subnetmask
- 2 Jumlah Host: $2^{y}-2=2^{14}-2=16.384-2$ = 16.382 host
 - y adalah jumlah bit angka biner "0" pada HostID prefix subentmask

- 3 Blok Subnet: 256 192 = 64 per blok
 - Rumus: 256 jumlah HostID prefix
 - Jadi blok subnet lengkapnya adalah : 0, 64, 128, 192

Contoh Kasus 2 : Lanjutan

Menghitung Subnet

IP Address 172.16.0.0 /18

Jumlah Subnet: 4 Subnet

Jumlah Host: 16.382 host

Blok Subnet : 64 per blok

Jadi blok subnet lengkapnya : 0, 64, 128, 192

(4) Alamat Broadcast & Alamat Host :

Subnet	Host awal	Host Akhir	Broadcast
172.16.0.0	172.16. <mark>0.1</mark>	172.16.63.254	172.16.63.255
172.16. <mark>64.0</mark>	172.16. <mark>64.1</mark>	172.16.127.254	172.16.127.255
172.16. <mark>128.0</mark>	172.16. <mark>128.1</mark>	172.16.191.254	172.16.191.255
172.16. <mark>192.0</mark>	172.16.192.1	172.16. <mark>255.254</mark>	172.16. <mark>255.255</mark>

Contoh Kasus 3

Menghitung Subnet dengan Metode FLSM

Solusi

Deskripsi Kasus:

- Sebuah perusahaan akan membuat jaringan komputer dengan IP Address 172.16.0.0 /25.
- Lakukan subnetting terhadap IP Address Tersebut.

Langkah awal adalah analisis IP Address

- Kelas : B
- Default Subnetmask :
 - ✓ Desimal: 255 . 255 . 0 . 0
- Prefix /18
 - ✓ Biner : 11111111 . 11111111 . 1111111 . 10000000
 - ✓ Desimal: 255 . 255 . 255 . 128

Contoh Kasus 3 : Lanjutan

Menghitung Subnet

Prefix /25

- Biner : 11111111 . 11111111 . 11111111 . 10000000
- Desimal: 255 . 255 . 255 . 128

 NetID HostID
- 1 Jumlah Subnet : 2 × = 2 9 = 512 Subnet
 - x adalah jumlah bit angka biner "1" pada HostID prefix subnetmask
- 2 Jumlah Host : 2 y 2 = 2 7 = 128 2 = 126 host
 - y adalah jumlah bit angka biner "0" pada HostID prefix subentmask

- (3) Blok Subnet: 256 128 = 128 per blok
 - Rumus: 256 jumlah HostID prefix
 - Jadi blok subnet lengkapnya adalah : 0, 128

Contoh Kasus 3 : Lanjutan

Menghitung Subnet

IP Address 172.16.0.0 /25

Jumlah Subnet: 512 Subnet

Jumlah Host: 126 host

Blok Subnet : 128 per blok

Jadi blok subnet lengkapnya : 0, 128

(4) Alamat Broadcast & Alamat Host :

Subnet	Host awal	Host Akhir	Broadcast
172.16.0.0	172.16.0.1	172.16.0.126	172.16.0.127
172.16. <mark>0.128</mark>	172.16.0.129	172.16.0.254	172.16.0.255
172.16. <mark>1.0</mark>	172.16.1.1	172.16.1.126	172.16.1.127
172.16. <mark>1.128</mark>	172.16.1.129	172.16.1.254	172.16. <mark>1.255</mark>
172.16. <mark>255.0</mark>	172.16. <mark>255.1</mark>	172.16. <mark>255.126</mark>	172.16. <mark>255.127</mark>
172.16. <mark>255.128</mark>	172.16.255.129	172.16.255.254	172.16.255.255

Contoh Kasus 4

Menghitung Subnet dengan Metode FLSM

Deskripsi Kasus:

- Suatu perusahaan berencana menggunakan IP Address 220.12.5.0.
- IP tersebut akan di subnet, dimana tiap subnet mampu menampung maksimal 28 host.
- Berapakah subnetmask yang paling tepat untuk diberikan?

Solusi:

- Kebutuhan host : 28
- Menentukan host → Rumus: 2^y 2
 2^y 2 = ... ≥ 28 (Berapa nilai Y agar hasilnya sama dengan atau lebih dari 28)

```
2^1 - 2 = 0 \ge 28 (False)
2^2 - 2 = 2 \ge 28 (False)
```

$$2^3 - 2 = 6 \ge 28$$
 (False)

$$2^4 - 2 = 14 \ge 28$$
 (False)

$$2^{5}$$
 - 2 = 30 ≥ 28 (True) \rightarrow jadi nilai Y = 5

Contoh Kasus 4 : Lanjutan

Menghitung Subnet

Nilai Y = 5

y adalah jumlah bit angka biner
 "0" pada HostID prefix
 subentmask

Solusi:

- IP 220.12.5.0 = kelas C
- Default Subnetmask :
- Subnetmask dari nilai Y
 - ✓ Biner : 11111111 . 11111111 . 111100000 ✓ Desimal : 255 . 255 . 254

Jawaban

Jadi subnetmask yang dibutuhkan
 255 . 255 . 255 . 224

Mengapa Metode VLSM?

Tujuan VLSM

- Memaksimalkan penggunaan ruang blok subnet.
- Membentuk beberapa subnet dengan ukuran bervariasi sesuai dengan kebutuhan.

Masalah FLSM

Pengalamatan berdasarkan kelas

Pemborosan IP

Lokasi nomor IP tidak efisien

Menghasilkan subnet dengan jumlah host sama Ada kemungkinan blok-blok subnet tidak digunakan Ada kemungkinan blok-blok subnet butuh lebih banyak alamat

Metode VLSM

Tahapan Metode VLSM

Contoh kasus

Menghitung Subnet dengan Metode VLSM

Deskripsi Kasus:

- Sebuah kantor akan membuat jaringan komputer lokal (LAN) dengan IP Address 204.24.93.0.
- Lakukan subnetting terhadap IP Address tersebut sesuai dengan kebutuhan host seperti tabel dibawah

Subnet	Butuh Host
AA	14
BB	28
CC	2
DD	7
EE	28

Mengurutkan subnet

Subnet diurutkan berdasarkan jumlah host terbanyak.

Subnet	Butuh Host
BB	28
EE	28
AA	14
DD	7
CC	2

Contoh Kasus : lanjutan

Menghitung Subnet

- (2) Menentukan range Host
 - Range host ditentukan dengan mencari nilai "Y" (pada rumus 2y - 2).
 - Nilai "Y" digunakan untuk menentukan batas minimal dari kebutuhan host.
- Setelah nilai "Y" ditentukan, kemudian masukkan nilai tersebut ke 2y - 2 untuk menentukan range host.

Subnet	Butuh Host	Nilai (Y)		Range Host	Host Sisa
BB	28	$2^{y}-2 \ge 28 \rightarrow 2^{5}-2 \ge 28 \rightarrow 32-2 \ge 28 \rightarrow 30 \ge 28$	(y = 5)	30 ≥ <mark>28</mark>	2
EE	28	$2^{y}-2 \ge 28 \rightarrow 2^{5}-2 \ge 28 \rightarrow 32-2 \ge 28 \rightarrow 30 \ge 28$	(y = 5)	30 ≥ <mark>28</mark>	2
AA	14	$2^{y}-2 \ge 14 \rightarrow 2^{4}-2 \ge 14 \rightarrow 16-2 \ge 14 \rightarrow 14 \ge 14$	(y=4)	14 ≥ 1 <mark>4</mark>	0
DD	7	$2^{y}-2 \ge 7 \rightarrow 2^{4}-2 \ge 7 \rightarrow 16-2 \ge 7 \rightarrow 14 \ge 7$	(y=4)	14 ≥ <mark>7</mark>	7
CC	2	$2^{y}-2 \ge 2 \rightarrow 2^{2}-2 \ge 2 \rightarrow 4-2 \ge 2 \rightarrow 2 \ge 2$	(y = 2)	2 ≥ <mark>2</mark>	0

Contoh Kasus : lanjutan

Menghitung Subnet

- (3) Menentukan prefix tiap subnet
 - Nilai prefix ditentukan dengan mengurangi jumlah total bit IPv4 yaitu 32 bit dengan nilai Y.
 - Rumus Prefix = 32 Y

Subnet	Nilai (y)	Prefix (32 - y)	Prefix
BB	5	32 – 5 = 27	/27
EE	5	32 − 5 = 27	/27
AA	4	32 – 4 = 28	/28
DD	4	32 − 4 = 28	/28
CC	2	32 − 2 = 30	/30

Contoh Kasus : lanjutan

Menghitung Subnet

Menentukan blok subnet

- IP Address 204.24.93.0
- Blok subnet ditentukan dengan mengurangi nilai 256 dengan nilai HostID pada subnetmask prefix tiap subnet
- Rumus blok subnet = 256 HostID subnetmask prefix

Subnet	Butuh Host	Prefix	Blok Subnet	Alamat blok Subnet
BB	28	/27	256 – (/ 27) = 256 – 224 = 32	204.24.93.0 /27
EE	28	/27	256 – (/ 27) = 256 – 224 = 32	204.24.93.32 /27
AA	14	/28	256 – (/28) = 256 – 240 = 16	204.24.93.64 /28
DD	7	/28	256 – (/28) = 256 – 240 = 16	204.24.93.80 /28
CC	2	/30	256 – (/30) = 256 – 252 = 4	204.24.93.96 <mark>/30</mark>

Contoh Kasus 4 : lanjutan

Menghitung Subnet

Subnet	Blok subnet	Alamat blok Subnet	Range Host	Broadcast
ВВ	32	204.24.93.0 /27	204.24.93.1 - 204.24.93.30	204.24.93. <mark>31</mark>
EE	32	204.24.93.32 /27	204.24.93. <mark>33</mark> – 204.24.93. <mark>62</mark>	204.24.93.63
AA	16	204.24.93.64 /28	204.24.93. <mark>65</mark> – 204.24.93. <mark>78</mark>	204.24.93.79
DD	16	204.24.93.80 /28	204.24.93. <mark>81</mark> - 204.24.93. <mark>94</mark>	204.24.93. <mark>95</mark>
CC	4	204.24.93.96 /30	204.24.93.97 - 204.24.93.98	204.24.93.99

