Predicting HIV Viral Load

Hyojin Lim and Tom Lindman

HIV Viral Load Testing

- Without a cure, antiretroviral therapy (ART) is central to treating HIV¹
- > Viral load testing essential to ART
- Viral load testing essential to combating the HIV epidemic

Viral Load Testing: Challenges

- > Quantitative polymerase chain reaction (qPCR) the "gold standard" for viral load testing²
- > qPCR requires:
 - Expensive lab equipment
 - Highly trained staff
 - Time
- > Implementation challenges in low- and middle-income countries³

^{3.} Greig et. Al (2020)

Viral Load Testing: Potential Solutions

- > Isothermal DNA amplification offers potential qPCR alternative
- > Reaction produces florescent spots on paper slip
 - Spots correlate with viral load
 - Can process tests using phone application
- > Challenge: prediction at high spot concentration
- > Project goal: increase prediction range, accuracy

User and Use Cases

- > Users: Main Project team
 - Cole Martin and collaborators (primary users)
 - Use cases:
 - > Update phone app to predict viral load using our model
 - > Update our model using new data, features, and ML algorithms
- > Users: Clinicians testing phone app
 - Clinicians working with patients on ART
 - Use case:
 - > Monitor patient viral load using our model
 - > Interact with model exclusively via phone app

Prediction with ML models

- > ML models are effective in analyzing data
- > Lightweight ML models can be run on mobile devices
- > Key points:
 - Feature Selection: Use minimal, relevant data
 - Model Selection: Opt for lightweight & accurate models.
 - Result Analysis: Evaluate to enhance accuracy.

Feature selection

- > Key features: 11 features in total
 - max_fluorescence_change:Maximum change in fluorescence
 - max_area_change:Maximum area change
 - max_spot_change:Maximum spot change

Critical features for extending the model's dynamic range

- percent_area:Percentage of area covered
- n_spots:Number of spots identified

Less critical

Model selection

- > Models tested
 - Linear Regression: Simple, interpretable
 - Random Forest: Handles non-linearity, reduces overfitting
 - XGBoost: Fast, high-performance gradient boosting.

	Linear Regression	Random Forest	XGBoost
Average Train MSE	0.0090	0.0028	0.0000
Average Test MSE	0.0127	0.0152	0.0138

Result analysis and key takeaways

> Result analysis

Future work

- > Collect more data
- > Conduct sensitivity analysis
- > Fully integrate Android App

