kobriendublin.wordpress.com

Twitter: @kobriendublin

Sequences: Example

Let the sequence u_n be defined by the recurrence relation:

$$u_{n+1}=u_n+2n,$$

for n = 1, 2, 3, ...

Initial Condition: $u_1 = 1$.

Calculate u_2 , u_3 , u_4 and u_5 , showing all your workings.

Starting with n = 1,

$$u_{n+1} = u_n + 2n,$$

 $u_{(1)+1} = u_1 + 2 \times 1,$
 $u_2 = 1 + 2,$
 $u_2 = 3.$

With
$$n = 2$$
,

$$u_{n+1} = u_n + 2n,$$

 $u_{(2)+1} = u_2 + 2 \times 2,$
 $u_3 = 3 + 4,$
 $u_3 = 7.$

With
$$n = 3$$
,

$$u_{n+1} = u_n + 2n,$$

 $u_{(3)+1} = u_3 + 2 \times 3,$
 $u_4 = 7 + 6,$
 $u_4 = 13.$

With
$$n = 4$$
,

$$u_{n+1} = u_n + 2n,$$

 $u_{(4)+1} = u_4 + 2 \times 4,$
 $u_5 = 13 + 8,$
 $u_5 = 21.$

The first five elements of the sequence are as follows:

$$\{1,3,7,13,21,\ldots\}$$