2019年 理工学

11]

$$\int S(\epsilon) = I - F(\epsilon)$$

$$\int S(\epsilon) = |-F(\epsilon)|$$

$$\int f(t) = \frac{d}{d\epsilon} F(t)$$

$$f(t) = \int_0^\infty t f(t) dt = \int_0^\infty S(t) dt$$

を示したい。 f(t) → S(z) と積分されていることより. 部分積分を行う.

$$E[7] = \int_{0}^{\infty} \chi f(t) dt$$

$$\lfloor \lfloor 17 \rfloor = \int_0^{\infty} t + (t) dt$$

$$= -\left[+ S(t) \right]_0^{\infty} + \int_0^{\infty} S(t) dt$$

$$= 0 + \int_0^\infty S(z) dz$$

$$E[7] = \int_0^\infty t f(t) dt < \infty$$

lim t P(T>t) = 0 (1 t; to ?

$$E[T|T>t] = \int_{0}^{\infty} x P(T=x|T>t) dx$$

$$= \int_{0}^{\infty} x \frac{P(T=x,T>t)}{P(T>t)} dx$$

$$= \int_{0}^{\infty} x \frac{P(T=x)}{P(T>t)} dx \tag{4}$$

この変形さん出きれば解けるう。

$$M(t) = E[T-t|T>t]$$

$$= \int_{t}^{\infty} (x-t) \frac{P(\tau=x)}{P(\tau>t)} dx$$

$$= \frac{1}{5(t)} \int_{t}^{\infty} (x-t) f(x) dx$$

$$= \frac{1}{S(t)} \left\{ \int_{t}^{\infty} x f(x) dx - t \int_{t}^{\infty} f(x) dx \right\}$$

$$= \frac{1}{S(t)} \left\{ \left[\chi \left(-S(\chi) \right) \right]_{t}^{\infty} + \int_{t}^{\infty} S(\chi) d\chi - t S(t) \right\}$$

$$= \frac{1}{S(t)} \left\{ \pm S(t) + \int_{t}^{\infty} S(u) du - \pm S(t) \right\}$$

$$= \frac{1}{S(t)} \int_{t}^{\infty} S(x) dx$$

次に
$$m(t) = \int_{0}^{\infty} \exp\left\{H(t) - H(trx)\right\} dx$$
 を成す.

$$\begin{cases} h(t) = \frac{f(t)}{S(t)} \\ H(t) = \int_{0}^{t} h(s) ds \end{cases}$$

$$m(t) = \frac{(}{S(t)} \int_{t}^{\infty} S(x) dx$$

$$\delta(:) \wedge (:) \wedge (:)$$

これを使うと、

$$\int_{0}^{\infty} exp[H(z) - H(z+x)] dx$$

$$= \int_{0}^{\infty} exp[-logS(z) + logS(z+x)] dx$$

$$= \int_{0}^{\infty} \frac{exp[logS(z)]}{exp[logS(z)]} dx$$

$$= \int_{0}^{\infty} \frac{S(t+x)}{S(z)} dx$$

$$= \frac{1}{S(z)} \int_{z}^{\infty} S(x) dx \qquad (t+x=x' r \not \not \not \not \not \not)$$

$$= m(t)$$

$$S(z) = exp[-\int_{0}^{t} \frac{1+m'(x)}{m(x)} dx] \qquad z \not \rightarrow z$$

$$= m(t)$$

$$\int_{0}^{t} \frac{1+m'(x)}{m(x)} dx \qquad o \not \rightarrow z$$

$$\int_{0}^{t} \frac{1+m'(x)}{m(x)} dx \qquad o \not \rightarrow z$$

$$\int_{0}^{t} \frac{1+m'(x)}{m(x)} dx \qquad exp[H(z) - H(z+x)] dx$$

$$= \int_{0}^{\infty} exp[H(z) - H(z+x)] (h(z) - h(z+x)) dx$$

4

→解答参照

[4]

⇒ 若命分をはIFRである

⇒ h(t) は媚的関股である。

H(t)が凹門数のとま、同様に寿命関数がDFRであるとかでよる。

 $\Rightarrow h'(t) > 0$

$$= \frac{d}{d\epsilon} \left(\left(-e^{-\epsilon^{\vartheta}} \right) \right)$$
$$= -e^{-\epsilon^{\vartheta}} \left(-\beta \right) t^{\vartheta - 1}$$

$$= -e \quad (-\beta)t$$

$$= \beta t^{\beta-1} e^{-t^{\beta}}$$

$$\begin{cases} h_{\frac{1}{2}}(t) = \frac{1}{2}t^{-\frac{1}{2}} & \dots & 0 \\ h_{2}(t) = 2t & \dots & 2 \end{cases}$$

3 3

(1)

分散分析表は次のようになる。

	S (₹\$40)	レ (白如度)	V (そかそ右)	FB
A	5	/	5	2.5
B	4	/	4	2.0
C	1	/	1	0,5
D	1	/	1	0,5
芸差	6 (= 2+/+3)	3	2	
<u></u>		7(:8-1)		

実験順序のうち、完全無作為なのは 2。

(2)

A×Bの列は成分記号が a.b の (3)列に対応する。

	S (₹\$40)	レ (白杏廣)	V (そかそも)	FB
A	5	/	5	
В	4	/	4	
С	1	/	1	
D	1	/	1	
A×B	2	(= (2-1)x(2-1))	2	1.0
15.5 15.5 15.6 15.6 15.6 15.6 15.6 15.6	4	2	2	
		7		_

[3] [4] 解答条照

[5] 解答を参照する限り、次のような分数分析長ができる。

	S	ν	\vee	F
A	5	1	5	2,5 (= 5/2)
3	4	1	4	(4 (: 4/1)
С	1	1	1	h (= 1/1)
D	1	1	1 /	h (: 1/1)
一次證差	4 (= 2+2)	2	2	为用
二次等差	1	1	1	2. 111
	(6	7		

1995

(游答号照>