### Chapter 3

# Discrete-time signals in the frequency domain

### Discrete-Time Signals in the Frequency Domain

- The frequency-domain representation of a discrete-time sequence is the discrete-time Fourier transform (DTFT)
- This transform maps a time-domain sequence into a continuous function of the frequency variable  $\omega$
- We first review briefly the continuous-time Fourier transform (CTFT)









• **Definition** – The inverse CTFT of a Fourier transform  $X_a(j\Omega)$  is given by

$$x_a(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_a(j\Omega) e^{j\Omega t} d\Omega$$

- Often referred to as the Fourier integral
- A CTFT pair will be denoted as

$$x_a(t) \overset{\text{CTFT}}{\longleftrightarrow} X_a(j\Omega)$$

• **Definition** – The CTFT of a continuoustime signal  $x_a(t)$  is given by

$$X_a(j\Omega) = \int_{-\infty}^{\infty} x_a(t)e^{-j\Omega t}dt$$

• Often referred to as the Fourier spectrum or simply the spectrum of the continuous-time signal

- Ω is real and denotes the continuous-time angular frequency variable in radians/sec if the unit of the independent variable t is in seconds
- In general, the CTFT is a complex function of  $\Omega$  in the range  $-\infty < \Omega < \infty$
- It can be expressed in the polar form as

$$X_a(j\Omega) = |X_a(j\Omega)|e^{j\theta_a(\Omega)}$$

where

$$\theta_a(\Omega) = \arg\{X_a(j\Omega)\}\$$

- The quantity  $|X_a(j\Omega)|$  is called the magnitude spectrum and the quantity  $\theta_a(\Omega)$  is called the phase spectrum
- Both spectrums are real functions of  $\Omega$
- In general, the CTFT $X_a(j\Omega)$  exists if  $x_a(t)$  satisfies the Dirichlet conditions given on the next slide

#### **Dirichlet Conditions**

- (a) The signal  $x_a(t)$  has a finite number of discontinuities and a finite number of maxima and minima in any finite interval
- (b) The signal is absolutely integrable, i.e.,

$$\int_{-\infty}^{\infty} |x_a(t)| dt < \infty$$

• If the Dirichlet conditions are satisfied, then

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} X_a(j\Omega) e^{j\Omega t} d\Omega$$

converges to  $x_a(t)$  at all values of t except at values of t where  $x_a(t)$  has discontinuities

• It can be shown that if  $x_a(t)$  is absolutely integrable, then  $|X_a(j\Omega)| < \infty$  proving the existence of the CTFT

 $\triangleright$  Exponential  $f(t) = e^{-at} u(t)$  a>0

$$F(j\omega) = \int_0^\infty e^{-at} e^{-j\omega t} dt$$
$$= \frac{1}{a+j\omega}$$

$$|F(j\omega)| = \frac{1}{\sqrt{a^2 + \omega^2}}$$

$$\varphi(\omega) = -tg^{-1} \frac{\omega}{a}$$





 $\triangleright$  Unit impulse  $\delta(t)$ 



$$F[\delta(t)] = \int_{-\infty}^{\infty} \delta(t)e^{-j\omega t}dt = 1$$

Unit impulse has uniform frequency density in whole frequency range, that means it has infinite wide band.

Constant 1

$$1 \longleftrightarrow 2\pi\delta(\omega)$$

This result could be got directly based on the symmetry of Fourier Transform.

Constant 1 represents direct current signal, and its spectrum is non-zero only at  $\omega = 0$ , which is a  $\delta(\omega)$ 

> Sin and cos function

Based on the transform pair  $1 \longleftrightarrow 2\pi\delta(\omega)$  and  $\delta(t) \longleftrightarrow 1$ , we have some important conclusions:

$$\mathbf{F}[\mathbf{e}^{\mathbf{j}\omega_0\mathbf{t}}] = \int_0^\infty e^{-j\omega_0t} e^{-j\omega t} dt = \int_0^\infty e^{-j(\omega-\omega_0)t} dt = 2\pi\delta(\omega-\omega_0)$$

$$\mathbf{F}[\cos\omega_0 \mathbf{t}] = \mathbf{F}[(\mathbf{e}^{\mathbf{j}\omega_0 \mathbf{t}} + \mathbf{e}^{-\mathbf{j}\omega_0 \mathbf{t}})/2] = \pi[\delta(\omega + \omega_0) + \delta(\omega - \omega_0)]$$

$$\mathbf{F}[\sin \omega_0 \mathbf{t}] = \mathbf{F}[(\mathbf{e}^{\mathbf{j}\omega_0 \mathbf{t}} - \mathbf{e}^{-\mathbf{j}\omega_0 \mathbf{t}})/2\mathbf{j}] = \mathbf{j}\pi[\delta(\omega + \omega_0) - \delta(\omega - \omega_0)]$$



> Unit impulse sequence

$$\delta_{T}(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT) \qquad F[\delta_{T}(t)] = \omega_{0} \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_{0})$$

$$= \omega_{0} \delta_{\omega_{0}}^{n=-\infty}(\omega)$$





$$\omega_0 = 2\pi/T$$

• The total energy  $\mathcal{E}_x$  of a finite energy continuous-time complex signal  $x_a(t)$  is given by

$$\mathcal{E}_{x} = \int_{-\infty}^{\infty} |x_{a}(t)|^{2} dt = \int_{-\infty}^{\infty} x_{a}(t) x_{a}^{*}(t) dt$$

• The above expression can be rewritten as

$$\mathcal{E}_{x} = \int_{-\infty}^{\infty} x_{a}(t) \left[ \frac{1}{2\pi} \int_{-\infty}^{\infty} X_{a}^{*}(j\Omega) e^{-j\Omega t} d\Omega \right] dt$$

Interchanging the order of the integration we get

$$\begin{split} \mathcal{E}_{X} &= \frac{1}{2\pi} \int_{-\infty}^{\infty} X_{a}^{*}(j\Omega) \left[ \int_{-\infty}^{\infty} x_{a}(t)e^{-j\Omega t} dt \right] d\Omega \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} X_{a}^{*}(j\Omega) X_{a}(j\Omega) d\Omega \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} |X_{a}(j\Omega)|^{2} d\Omega \end{split}$$

Hence

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X_a(j\Omega)|^2 d\Omega$$

• The above relation is more commonly known as the Parseval's theorem for finite-energy continuous-time signals

• The quantity  $|X_a(j\Omega)|^2$  is called the energy density spectrum of  $x_a(t)$  and usually denoted as

$$S_{xx}(\Omega) = |X_a(j\Omega)|^2$$

• The energy over a specified range of frequencies  $\Omega_a \le \Omega \le \Omega_b$  can be computed using  $\Omega_b$ 

 $\mathcal{E}_{x,r} = \frac{1}{2\pi} \int_{\Omega_a}^{\Omega_b} S_{xx}(\Omega) d\Omega$ 

• <u>Definition</u> - The discrete-time Fourier transform (DTFT)  $X(e^{j\omega})$  of a sequence x[n] is given by

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

where  $\omega$  is a continuous variable in the range  $-\infty < \omega < \infty$ 

- The infinite series  $\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$  may or may not converge
- If it converges for all values of  $\omega$ , then the DTFT  $X(e^{j\omega})$  exists
- In general,  $X(e^{j\omega})$  is a complex function of the real variable  $\omega$  and can be written as

$$X(e^{j\omega}) = X_{re}(e^{j\omega}) + jX_{im}(e^{j\omega})$$

- $X_{re}(e^{j\omega})$  and  $X_{im}(e^{j\omega})$  are, respectively, the real and imaginary parts of  $X(e^{j\omega})$ , and are real functions of  $\omega$
- $X(e^{j\omega})$  can alternately be expressed as  $X(e^{j\omega}) = |X(e^{j\omega})| e^{j\theta(\omega)}$

where

$$\theta(\omega) = \arg\{X(e^{j\omega})\}\$$

- $X(e^{j\omega})$  is called the magnitude function
- $\theta(\omega)$  is called the phase function
- Both quantities are again real functions of  $\omega$
- In many applications, the DTFT is called the Fourier spectrum
- Likewise,  $X(e^{j\omega})$  and  $\theta(\omega)$  are called the magnitude and phase spectra

- For a real sequence  $x[n], X(e^{j\omega})$  and  $X_{re}(e^{j\omega})$  are even functions of  $\omega$ , whereas,  $\theta(\omega)$  and  $X_{im}(e^{j\omega})$  are odd functions of  $\omega$
- Note:  $X(e^{j\omega}) = |X(e^{j\omega})| e^{j\theta(\omega + 2\pi k)}$  $= |X(e^{j\omega})| e^{j\theta(\omega)}$ for any integer k
- The phase function  $\theta(\omega)$  cannot be uniquely specified for any DTFT

• Unless otherwise stated, we shall assume that the phase function  $\theta(\omega)$  is restricted to the following range of values:

$$-\pi \leq \theta(\omega) < \pi$$

called the principal value

• Example - The DTFT of the unit sample sequence  $\delta[n]$  is given by

$$\Delta(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \delta[n] e^{-j\omega n} = \delta[0] = 1$$

• Example - Consider the causal sequence

$$x[n] = \alpha^n \mu[n], \quad |\alpha| < 1$$

Its DTFT is given by

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \alpha^n \mu[n] e^{-j\omega n} = \sum_{n=0}^{\infty} \alpha^n e^{-j\omega n}$$
$$= \sum_{n=0}^{\infty} (\alpha e^{-j\omega})^n = \frac{1}{1-\alpha e^{-j\omega}}$$
as  $|\alpha e^{-j\omega}| = |\alpha| < 1$ 

• The magnitude and phase of the DTFT  $X(e^{j\omega}) = 1/(1-0.5e^{-j\omega})$  are shown below





- The DTFT  $X(e^{j\omega})$  of a sequence x[n] is a continuous function of  $\omega$
- It is also a periodic function of ω with a period 2π:

$$X(e^{j(\omega_o+2\pi k)}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j(\omega_o+2\pi k)n}$$

$$= \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega_o n}e^{-j2\pi kn} = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega_o n} = X(e^{j\omega_o})$$

Therefore

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

represents the Fourier series representation of the periodic function

• As a result, the Fourier coefficients x[n] can be computed from  $X(e^{j\omega})$  using the Fourier integral

 $x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$ 

Inverse discrete-time Fourier transform:

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

• Proof:

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left( \sum_{\ell=-\infty}^{\infty} x[\ell] e^{-j\omega\ell} \right) e^{j\omega n} d\omega$$

- The order of integration and summation can be interchanged if the summation inside the brackets converges uniformly, i.e.  $X(e^{j\omega})$  exists
- Then  $\frac{1}{2\pi} \int_{-\pi}^{\pi} \left( \sum_{\ell=-\infty}^{\infty} x[\ell] e^{-j\omega\ell} \right) e^{j\omega n} d\omega$

$$= \sum_{\ell=-\infty}^{\infty} x[\ell] \left( \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\omega(n-\ell)} d\omega \right) = \sum_{\ell=-\infty}^{\infty} x[\ell] \frac{\sin \pi(n-\ell)}{\pi(n-\ell)}$$

• Now 
$$\frac{\sin \pi (n-\ell)}{\pi (n-\ell)} = \begin{cases} 1, & n=\ell \\ 0, & n \neq \ell \end{cases}$$
$$= \delta[n-\ell]$$

Hence

$$\sum_{\ell=-\infty}^{\infty} x[\ell] \frac{\sin \pi(n-\ell)}{\pi(n-\ell)} = \sum_{\ell=-\infty}^{\infty} x[\ell] \delta[n-\ell] = x[n]$$

 Convergence Condition - An infinite series of the form

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

may or may not converge

• Let  $X_K(e^{j\omega}) = \sum_{n=-K}^K x[n]e^{-j\omega n}$ 

• Then for uniform convergence of  $X(e^{j\omega})$ ,

$$\lim_{K\to\infty} \left| X(e^{j\omega}) - X_K(e^{j\omega}) \right| = 0$$

• Now, if x[n] is an absolutely summable sequence, i.e., if

$$\sum_{n=-\infty}^{\infty} |x[n]| < \infty$$

• Then

$$\left|X(e^{j\omega})\right| = \left|\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}\right| \le \sum_{n=-\infty}^{\infty} |x[n]| < \infty$$

#### for all values of ω

• Thus, the absolute summability of x[n] is a sufficient condition for the existence of the DTFT  $X(e^{j\omega})$ 

• Example - The sequence  $x[n] = \alpha^n \mu[n]$  for  $|\alpha| < 1$  is absolutely summable as

$$\sum_{n=-\infty}^{\infty} \left| \alpha^n \right| \mu[n] = \sum_{n=0}^{\infty} \left| \alpha^n \right| = \frac{1}{1 - |\alpha|} < \infty$$

and its DTFT  $X(e^{j\omega})$  therefore converges to  $1/(1-\alpha e^{-j\omega})$  uniformly

Since

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 \le \left(\sum_{n=-\infty}^{\infty} |x[n]|\right)^2,$$

an absolutely summable sequence has always a finite energy

 However, a finite-energy sequence is not necessarily absolutely summable

• Example - The sequence

$$x[n] = \begin{cases} 1/n, & n \ge 1 \\ 0, & n \le 0 \end{cases}$$

has a finite energy equal to

$$\mathcal{E}_{x} = \sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^{2} = \frac{\pi^{2}}{6}$$

• But, x[n] is not absolutely summable

• To represent a finite energy sequence x[n] that is not absolutely summable by a DTFT  $X(e^{j\omega})$ , it is necessary to consider a **mean-square convergence** of  $X(e^{j\omega})$ :

$$\lim_{K \to \infty} \int_{-\pi}^{\pi} \left| X(e^{j\omega}) - X_K(e^{j\omega}) \right|^2 d\omega = 0$$

where

$$X_K(e^{j\omega}) = \sum_{n=-K}^K x[n]e^{-j\omega n}$$

• Here, the total energy of the error

$$X(e^{j\omega}) - X_K(e^{j\omega})$$

must approach zero at each value of  $\omega$  as K goes to  $\infty$ 

• In such a case, the absolute value of the error  $X(e^{j\omega}) - X_K(e^{j\omega})$  may not go to zero as K goes to  $\infty$  and the DTFT is no longer bounded

• Example - Consider the DTFT

$$H_{LP}(e^{j\omega}) = \begin{cases} 1, & 0 \le |\omega| \le \omega_c \\ 0, & \omega_c < |\omega| \le \pi \end{cases}$$

shown below



• The inverse DTFT of  $H_{LP}(e^{j\omega})$  is given by

$$h_{LP}[n] = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega$$

$$\begin{aligned} h_{LP}[n] &= \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega \\ &= \frac{1}{2\pi} \left( \frac{e^{j\omega_c n}}{jn} - \frac{e^{-j\omega_c n}}{jn} \right) = \frac{\sin \omega_c n}{\pi n}, \quad -\infty < n < \infty \end{aligned}$$

- The energy of  $h_{LP}[n]$  is given by  $\omega_c / \pi$
- $h_{LP}[n]$  is a finite-energy sequence, but it is not absolutely summable

As a result

$$\sum_{n=-K}^{K} h_{LP}[n] e^{-j\omega n} = \sum_{n=-K}^{K} \frac{\sin \omega_c n}{\pi n} e^{-j\omega n}$$

does not uniformly converge to  $H_{LP}(e^{j\omega})$  for all values of  $\omega$ , but converges to  $H_{LP}(e^{j\omega})$  in the mean-square sense

• The mean-square convergence property of the sequence  $h_{LP}[n]$  can be further illustrated by examining the plot of the function

$$H_{LP,K}(e^{j\omega}) = \sum_{n=-K}^{K} \frac{\sin \omega_c n}{\pi n} e^{-j\omega n}$$

for various values of K as shown next



- The DTFT can also be defined for a certain class of sequences which are neither absolutely summable nor square summable
- Examples of such sequences are the unit step sequence  $\mu[n]$ , the sinusoidal sequence  $\cos(\omega_o n + \phi)$  and the exponential sequence  $A\alpha^n$
- For this type of sequences, a DTFT representation is possible using the Dirac delta function δ(ω)

- A Dirac delta function  $\delta(\omega)$  is a function of  $\omega$  with infinite height, zero width, and unit area
- It is the limiting form of a unit area pulse function  $p_{\Delta}(\omega)$  as  $\Delta$  goes to zero satisfying

$$\lim_{\Delta \to 0} \int_{-\infty}^{\infty} p_{\Delta}(\omega) d\omega = \int_{-\infty}^{\infty} \delta(\omega) d\omega$$



• Example - Consider the complex exponential sequence

$$x[n] = e^{j\omega_o n}$$

• Its DTFT is given by

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_o + 2\pi k)$$

where  $\delta(\omega)$  is an impulse function of  $\omega$  and

$$-\pi \leq \omega_o \leq \pi$$

• The function

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_o + 2\pi k)$$

is a periodic function of  $\omega$  with a period  $2\pi$  and is called a **periodic impulse train** 

• To verify that  $X(e^{j\omega})$  given above is indeed the DTFT of  $x[n] = e^{j\omega_o n}$  we compute the inverse DTFT of  $X(e^{j\omega})$ 

Thus

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_o + 2\pi k) e^{j\omega n} d\omega$$

$$= \int_{-\pi}^{\pi} \delta(\omega - \omega_o) e^{j\omega n} d\omega = e^{j\omega_o n}$$

where we have used the sampling property of the impulse function  $\delta(\omega)$ 

### Commonly Used DTFT Pairs

Sequence DTFT
$$\delta[n] \leftrightarrow 1$$

$$1 \leftrightarrow \sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$$

$$e^{j\omega_{o}n} \leftrightarrow \sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_{o} + 2\pi k)$$

$$\mu[n] \leftrightarrow \frac{1}{1 - e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$$

$$\mu[n], (|\alpha| < 1) \leftrightarrow \frac{1}{1 - \alpha e^{-j\omega}}$$

### DTFT Properties and Theorems

- There are a number of important properties and theorems of the DTFT that are useful in signal processing applications
- These are listed here without proof
- Their proofs are quite straightforward
- We illustrate the applications of some of the DTFT properties

# Table 3.1: DTFT Properties: Symmetry Relations

| Sequence                     | Discrete-Time Fourier Transform                                                  |
|------------------------------|----------------------------------------------------------------------------------|
| x[n]                         | $X(e^{j\omega})$                                                                 |
| x[-n]                        | $X(e^{-j\omega})$                                                                |
| $x^*[-n]$                    | $X^*(e^{j\omega})$                                                               |
| $Re\{x[n]\}$                 | $X_{\rm cs}(e^{j\omega}) = \frac{1}{2} \{ X(e^{j\omega}) + X^*(e^{-j\omega}) \}$ |
| $j\operatorname{Im}\{x[n]\}$ | $X_{ca}(e^{j\omega}) = \frac{1}{2} \{ X(e^{j\omega}) - X^*(e^{-j\omega}) \}$     |
| $x_{\rm CS}[n]$              | $X_{\mathrm{re}}(e^{j\omega})$                                                   |
| $x_{ca}[n]$                  | $jX_{\mathrm{im}}(e^{j\omega})$                                                  |

Note:  $X_{cs}(e^{j\omega})$  and  $X_{ca}(e^{j\omega})$  are the conjugate-symmetric and conjugate-antisymmetric parts of  $X(e^{j\omega})$ , respectively. Likewise,  $x_{cs}[n]$  and  $x_{ca}[n]$  are the conjugate-symmetric and conjugate-antisymmetric parts of x[n], respectively.

# Table 3.2: DTFT Properties: Symmetry Relations

| Sequence           | Discrete-Time Fourier Transform                                       |  |
|--------------------|-----------------------------------------------------------------------|--|
| x[n]               | $X(e^{j\omega}) = X_{\rm re}(e^{j\omega}) + jX_{\rm im}(e^{j\omega})$ |  |
| $x_{ev}[n]$        | $X_{\mathrm{re}}(e^{j\omega})$                                        |  |
| $x_{\text{od}}[n]$ | $jX_{\mathrm{im}}(e^{j\omega})$                                       |  |
|                    | $X(e^{j\omega}) = X^*(e^{-j\omega})$                                  |  |
|                    | $X_{\rm re}(e^{j\omega}) = X_{\rm re}(e^{-j\omega})$                  |  |
| Symmetry relations | $X_{\rm im}(e^{j\omega}) = -X_{\rm im}(e^{-j\omega})$                 |  |
|                    | $ X(e^{j\omega})  =  X(e^{-j\omega}) $                                |  |
|                    | $\arg\{X(e^{j\omega})\} = -\arg\{X(e^{-j\omega})\}$                   |  |
|                    |                                                                       |  |

Note:  $x_{ev}[n]$  and  $x_{od}[n]$  denote the even and odd parts of x[n], respectively.

57

### Table 3.4 DTFT Theorems

| Theorems                                                                                                                             | Sequence                   | DTFT                                                                              |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------|--|--|
|                                                                                                                                      | g[n] $h[n]$                | $G(e^{j\omega}) \ H(e^{j\omega})$                                                 |  |  |
| Linearity                                                                                                                            | $\alpha g[n] + \beta h[n]$ | $\alpha G(e^{j\omega}) + \beta H(e^{j\omega})$                                    |  |  |
| Time-shifting                                                                                                                        | $g[n-n_o]$                 | $e^{-j\omega n_o}G(e^{j\omega})$                                                  |  |  |
| Frequency-shifting                                                                                                                   | $e^{j\omega_o n}g[n]$      | $G\left(e^{j(\omega-\omega_o)}\right)$                                            |  |  |
| Differentiation in frequency                                                                                                         | ng[n]                      | $G\left(e^{j(\omega-\omega_o)}\right)$ $j\frac{dG(e^{j\omega})}{d\omega}$         |  |  |
| Convolution                                                                                                                          | $g[n] \circledast h[n]$    | $G(e^{j\omega})H(e^{j\omega})$                                                    |  |  |
| Modulation                                                                                                                           | g[n]h[n]                   | $\frac{1}{2\pi} \int_{-\pi}^{\pi} G(e^{j\theta}) H(e^{j(\omega-\theta)}) d\theta$ |  |  |
| Parseval's relation $\sum_{n=-\infty}^{\infty} g[n]h^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} G(e^{j\omega})H^*(e^{j\omega}) d\omega$ |                            |                                                                                   |  |  |

- Example Determine the DTFT  $Y(e^{j\omega})$  of  $y[n] = (n+1)\alpha^n \mu[n], |\alpha| < 1$
- Let  $x[n] = \alpha^n \mu[n], |\alpha| < 1$
- We can therefore write

$$y[n] = n x[n] + x[n]$$

$$X(e^{j\omega}) = \frac{1}{1 - \alpha e^{-j\omega}}$$

• Using the differentiation theorem of the DTFT given in Table 3.4, we observe that the DTFT of nx[n] is given by

$$j\frac{dX(e^{j\omega})}{d\omega} = j\frac{d}{d\omega} \left(\frac{1}{1 - \alpha e^{-j\omega}}\right) = \frac{\alpha e^{-j\omega}}{(1 - \alpha e^{-j\omega})^2}$$

• Next using the linearity theorem of the DTFT given in Table 3.4 we arrive at

$$Y(e^{j\omega}) = \frac{\alpha e^{-j\omega}}{(1 - \alpha e^{-j\omega})^2} + \frac{1}{1 - \alpha e^{-j\omega}} = \frac{1}{(1 - \alpha e^{-j\omega})^2}$$

• Example - Determine the DTFT  $V(e^{j\omega})$  of the sequence v[n] defined by

$$d_0v[n] + d_1v[n-1] = p_0\delta[n] + p_1\delta[n-1]$$

- From Table 3.3, the DTFT of  $\delta[n]$  is 1
- Using the time-shifting theorem of the DTFT given in Table 3.4 we observe that the DTFT of  $\delta[n-1]$  is  $e^{-j\omega}$  and the DTFT of v[n-1] is  $e^{-j\omega}V(e^{j\omega})$

• Using the linearity theorem of Table 3.4 we then obtain the frequency-domain representation of

$$d_0v[n] + d_1v[n-1] = p_0\delta[n] + p_1\delta[n-1]$$

as

$$d_0V(e^{j\omega}) + d_1e^{-j\omega}V(e^{j\omega}) = p_0 + p_1e^{-j\omega}$$

Solving the above equation we get

$$V(e^{j\omega}) = \frac{p_0 + p_1 e^{-j\omega}}{d_0 + d_1 e^{-j\omega}}$$

# Linear Convolution Using DTFT

- An important property of the DTFT is given by the convolution theorem in Table 3.4
- It states that if y[n] = x[n] \* h[n], then the DTFT  $Y(e^{j\omega})$  of y[n] is given by

$$Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$$

 An implication of this result is that the linear convolution y[n] of the sequences x[n] and h[n] can be performed as follows:

# Linear Convolution Using DTFT

- 1) Compute the DTFTs  $X(e^{j\omega})$  and  $H(e^{j\omega})$  of the sequences x[n] and h[n], respectively
- 2) Form the DTFT  $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$
- 3) Compute the IDFT y[n] of  $Y(e^{j\omega})$



## § 3.4 Energy Density Spectrum of a Discrete-Time Sequence

The total energy of a finite-energy sequence g[n] is given by

$$\mathcal{E}_g = \sum_{n=-\infty}^{\infty} |g[n]|^2$$

• From Parseval's relation we observe that

$$\mathcal{E}_g = \sum_{n=-\infty}^{\infty} |g[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |G(e^{j\omega})|^2 d\omega$$

## § 3.4 Energy Density Spectrum of a Discrete-Time Sequence

The quantity

$$S_{gg}(\omega) = \left| G(e^{j\omega}) \right|^2$$

is called the energy density spectrum

The area under this curve in the range  $-\pi \le \infty \le \pi$  divided by  $2\pi$  is the energy of the sequence

- ➤ The *Signal Processing Toolbox* in MATLAB includes a number of M-files to aid in the DTFT-based analysis of discrete-time signals.
- > The function that can be used as:
  - **1) Freqz()**
  - **2) Abs()**
  - **3**) **Angle**()
  - **4) Real(), imag()**
  - 5) Unwrap()

➤ The function freqz can be used to compute the values of the DTFT of a sequence, described as a rational function in the form of

$$X(e^{j\omega}) = \frac{p_0 + p_1 e^{-j\omega} + \dots + p_M e^{-j\omega M}}{d_0 + d_1 e^{-j\omega} + \dots + d_N e^{-j\omega N}}$$

at a prescribed set of discrete frequency points  $\omega = \omega_1$ 

> For example, the statement

H = freqz(num, den, w)

returns the frequency response values as a vector H of a DTFT defined in terms of the vectors num and den containing the coefficients  $\{p_i\}$  and  $\{d_i\}$ , respectively at a prescribed set of frequencies between 0 and  $2\pi$  given by the vector w

- ➤ There are several other forms of the function freqz
- ➤ The Program 3\_1 in the text can be used to compute the values of the DTFT of a real sequence
- ➤ It computes the real and imaginary parts, and the magnitude and phase of the DTFT

**Example** - Plots of the real and imaginary parts, and the magnitude and phase of the DTFT

$$X(e^{j\omega}) = \frac{-0.033e^{-j\omega} + 0.05e^{-j2\omega}}{1 + 2.37e^{-j\omega} + 2.7e^{-j2\omega}}$$
$$+1.6e^{-j3\omega} + 0.41e^{-j4\omega}$$

are shown on the next slide



#### § 3.6 DTFT Computation Using MATLAB

- Note: The phase spectrum displays a discontinuity of  $2\pi$  at  $\omega = 0.72$
- ➤ This discontinuity can be removed using the function unwrap as indicated below





- ➤ Digital processing of a continuous-time signal involves the following basic steps:
  - (1) Conversion of the continuous-time signal into a discrete-time signal,
  - (2) Processing of the discrete-time signal,
  - (3) Conversion of the processed discretetime signal back into a continuous-time signal

- Conversion of a continuous-time signal into digital form is carried out by an analog-to-digital (A/D) converter
- The reverse operation of converting a digital signal into a continuous-time signal is performed by a digital-to-analog (D/A) converter

Since the A/D conversion takes a finite amount of time, a sample-and-hold (S/H) circuit is used to ensure that the analog signal at the input of the A/D converter remains constant in amplitude until the conversion is complete to minimize the error in its representation

- To prevent aliasing, an analog antialiasing filter is employed before the S/H circuit
- To smooth the output signal of the D/A converter, which has a staircase-like waveform, an analog reconstruction filter is used

#### Complete block-diagram



- ➤ Since both the anti-aliasing filter and the reconstruction filter are analog lowpass filters, we review first the theory behind the design of such filters
- ➤ Also, the most widely used IIR digital filter design method is based on the conversion of an analog lowpass prototype

#### **Sampling of Continuous-time Signals**

- ➤ As indicated earlier, discrete-time signals in many applications are generated by sampling continuous-time signals
- ➤ We have seen earlier that identical discrete-time signals may result from the sampling of more than one distinct continuous-time function

#### **Sampling of Continuous-time Signals**

- ➤ In fact, there exists an infinite number of continuous-time signals, which when sampled lead to the same discrete-time signal
- ➤ However, under certain conditions, it is possible to relate a unique continuoustime signal to a given discrete-time signal

#### Sampling of Continuous-time Signals

- ➤ If these conditions hold, then it is possible to recover the original continuous-time signal from its sampled values
- ➤ We next develop this correspondence and the associated conditions

#### Sampling of Continuous-time Signals

Let  $g_a(t)$  be a continuous-time signal that is sampled uniformly at t = nT, generating the sequence g[n] where

$$g[n] = g_a(nT), -\infty < n < \infty$$

with T being the sampling period

The reciprocal of T is called the sampling frequency  $F_T$ , i.e.,  $F_T = 1/T$ 

#### Sampling of

#### **Continuous-time Signals**

Now, the frequency-domain representation of  $g_a(t)$  is given by its continuos-time Fourier transform (CTFT):

$$G_a(j\Omega) = \int_{-\infty}^{\infty} g_a(t)e^{-j\Omega t}dt$$

• The frequency-domain representation of g[n] is given by its discrete-time Fourier transform (DTFT):

$$G(e^{j\omega}) = \sum_{n=-\infty}^{\infty} g[n]e^{-j\omega n}$$

To establish the relation between  $G_a(j\Omega)$  and  $G(e^{j\omega})$ , we treat the sampling operation mathematically as a multiplication of  $g_a(t)$  by a periodic impulse train p(t):

$$p(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT) \qquad g_a(t) \xrightarrow{\qquad \qquad } g_p(t)$$

$$p(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT) \qquad g_a(t) \xrightarrow{\qquad \qquad } g_p(t)$$

ightharpoonup p(t) consists of a train of ideal impulses with a period T as shown below



• The multiplication operation yields an impulse train:

$$g_p(t) = g_a(t)p(t) = \sum_{n=-\infty}^{\infty} g_a(nT)\delta(t-nT)$$

 $ightharpoonup g_p(t)$  is a continuous-time signal consisting of a train of uniformly spaced impulses with the impulse at t = nT weighted by the sampled value  $g_a(nT)$  of  $g_a(t)$  at that instant t=nT





- $\triangleright$  There are two different forms of  $G_p(j\Omega)$ :
- $\triangleright$  One form is given by the weighted sum of the CTFTs of  $\delta(t-nT)$ :

$$G_p(j\Omega) = \sum_{n=-\infty}^{\infty} g_a(nT)e^{-j\Omega nT}$$

• To derive the second form, we note that p(t) can be expressed as a Fourier series:

$$p(t) = \frac{1}{T} \sum_{k=-\infty}^{\infty} e^{j(2\pi/T)kt} = \frac{1}{T} \sum_{k=-\infty}^{\infty} e^{j\Omega_T kt}$$

where 
$$\Omega_T = 2\pi/T$$

The impulse train  $g_p(t)$  therefore can be expressed as

$$g_{p}(t) = \left(\frac{1}{T} \sum_{k=-\infty}^{\infty} e^{j\Omega_{T}kt}\right) \cdot g_{a}(t)$$

• From the frequency-shifting property of the CTFT, the CTFT of  $e^{j\Omega_T kt}g_a(t)$  is given by  $G_a(j(\Omega - k\Omega_T))$ 

> Hence, an alternative form of the CTFT of  $g_p(t)$  is given by

$$G_p(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} G_a(j(\Omega - k\Omega_T))$$

• Therefore,  $G_p(j\Omega)$  is a periodic function of  $\Omega$  consisting of a sum of shifted and scaled replicas of  $G_a(j\Omega)$ , shifted by integer multiples of  $\Omega_T$  and scaled by 1/T

- The term on the RHS of the previous equation for k=0 is the baseband portion of  $G_p(j\Omega)$ , and each of the remaining terms are the frequency translated portions of  $G_p(j\Omega)$
- > The frequency range

$$-\frac{\Omega_T}{2} \le \Omega \le \frac{\Omega_T}{2}$$

is called the baseband or Nyquist band

Assume  $g_a(t)$  is a band-limited signal with a CTFT  $G_a(j\Omega)$  as shown below



• The spectrum  $P(j\Omega)$  of p(t) having a sampling period  $T=2\pi/\Omega_T$  is indicated below



Two possible spectra of  $G_p(j\Omega)$  are shown below





- It is evident from the top figure on the previous slide that if  $\Omega_T > 2 \Omega_m$ , there is no overlap between the shifted replicas of  $G_a(j\Omega)$  generating  $G_p(j\Omega)$
- $\triangleright$  On the other hand, as indicated by the figure on the bottom, if  $\Omega_T$ <2  $\Omega_m$ , there is an overlap of the spectra of the shifted replicas of  $G_a(j\Omega)$  generating  $G_p(j\Omega)$

If  $\Omega_T > 2 \ \Omega_m$ ,  $g_a(t)$  can be recovered exactly from  $g_p(t)$  by passing it through an ideal lowpass filter  $H_r(j\Omega)$  with a gain T and a cutoff frequency  $\Omega_c$  greater than  $\Omega_m$  and less than  $\Omega_T$ -  $\Omega_m$  as shown below



➤ The spectra of the filter and pertinent signals are shown below









 $\triangleright$  On the other hand, if  $\Omega_T$ < 2  $\Omega_m$ , due to the overlap of the shifted replicas of  $G_a(j\Omega)$ , the spectrum  $G_p(j\Omega)$  cannot be separated by filtering to recover  $G_a(j\Omega)$ because of the distortion caused by a part of the replicas immediately outside the baseband folded back or aliased into the baseband

Sampling theorem - Let  $g_a(t)$  be a band-limited signal with CTFT  $G_a(j\Omega)=0$  for

$$|\Omega| > \Omega_{\rm m}$$

Then  $g_a(t)$  is uniquely determined by its samples  $g_a(nT)$ ,  $-\infty \le n \le \infty$  if

$$\Omega_{\rm T} \ge 2 \Omega_{\rm m}$$

where  $\Omega_{\rm T}=2\pi/{\rm T}$ 

The condition  $\Omega_T \ge 2 \Omega_m$  is often referred to as the Nyquist condition

The frequency  $\Omega_T/2$  is usually referred to as the folding frequency

• Given  $\{g_a(nT)\}\$ , we can recover exactly  $g_a(t)$  by generating an impulse train

$$g_{p}(t) = \sum_{n=-\infty}^{\infty} g_{a}(nT)\delta(t-nT)$$

and then passing it through an ideal lowpass filter  $H_r(j\Omega)$  with a gain T and a cutoff frequency  $\Omega_c$  satisfying

$$\Omega_{\rm m} < \Omega_{\rm c} < (\Omega_{\rm T} - \Omega_{\rm m})$$

- The highest frequency  $\Omega_m$  contained in  $g_a(t)$  is usually called the Nyquist frequency since it determines the minimum sampling frequency  $\Omega_T = 2\Omega_m$  that must be used to fully recover  $g_a(t)$  from its sampled version
- The frequency  $2\Omega_m$  is called the Nyquist rate

- ➤ Oversampling The sampling frequency is higher than the Nyquist rate
- ➤ Undersampling The sampling frequency is lower than the Nyquist rate
- Critical sampling The sampling frequency is equal to the Nyquist rate
- ➤ Note: A pure sinusoid may not be recoverable from its critically sampled version

- In digital telephony, a 3.4 kHz signal bandwidth is acceptable for telephone conversation
- ➤ Here, a sampling rate of 8 kHz, which is greater than twice the signal bandwidth, is used

- In high-quality analog music signal processing, a bandwidth of 20 kHz has been determined to preserve the fidelity
- ➤ Hence, in compact disc (CD) music systems, a sampling rate of 44.1 kHz, which is slightly higher than twice the signal bandwidth, is used

**Example** - Consider the three continuous-time sinusoidal signals:

$$g_1(t) = \cos(6\pi t)$$

$$g_2(t) = \cos(14\pi t)$$

$$g_3(t) = \cos(26\pi t)$$

Their corresponding CTFTs are:

$$G_1(j\Omega) = \pi[\delta(\Omega - 6\pi) + \delta(\Omega + 6\pi)]$$

$$G_2(j\Omega) = \pi[\delta(\Omega - 14\pi) + \delta(\Omega + 14\pi)]$$

$$G_3(j\Omega) = \pi[\delta(\Omega - 26\pi) + \delta(\Omega + 26\pi)]$$

> These three transforms are plotted below



- These continuous-time signals sampled at a rate of T=0.1 sec, i.e., with a sampling frequency  $\Omega_T=20\pi$  rad/sec
- The sampling process generates the continuous-time impulse trains,  $g_{1p}(t)$ ,  $g_{2p}(t)$ , and  $g_{3p}(t)$
- > Their corresponding CTFTs are given by

$$G_{\ell p}(j\Omega) = 10\sum_{k=-\infty}^{\infty} G_{\ell}(j(\Omega - k\Omega_T)), \quad 1 \le \ell \le 3$$

> Plots of the 3 CTFTs are shown below



- These figures also indicate by dotted lines the frequency response of an ideal lowpass filter with a cutoff at  $\Omega_c = \Omega_T/2 = 10\pi$  and a gain T = 0.1
- The CTFTs of the lowpass filter output are also shown in these three figures
- In the case of  $g_1(t)$ , the sampling rate satisfies the Nyquist condition, hence no aliasing

# Effect of Sampling in the Frequency Domain

- ➤ Moreover, the reconstructed output is precisely the original continuous-time signal
- In the other two cases, the sampling rate does not satisfy the Nyquist condition, resulting in aliasing and the filter outputs are all equal to  $\cos(6\pi t)$

# **Effect of Sampling in the Frequency Domain**

Now, the CTFT  $G_p(j \Omega)$  is a periodic function of  $\Omega$  with a period  $\Omega_T = 2\pi/T$ 

Example Because of the mapping, the DTFT  $G(e^{j\omega})$  is a periodic function of  $\omega$  with a period  $2\pi$ 

- We now derive the expression for the output  $\hat{g}_a(t)$  of the ideal lowpass reconstruction filter  $H_r(j\Omega)$  as a function of the samples g[n]
- The impulse response  $h_r(t)$  of the lowpass reconstruction filter is obtained by taking the inverse DTFT of  $H_r(j\Omega)$

$$H_r(j\Omega) = \begin{cases} T, & |\Omega| \le \Omega_c \\ 0, & |\Omega| > \Omega_c \end{cases}$$

> Thus, the impulse response is given by

$$\begin{split} h_r(t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} H_r(j\Omega) e^{j\Omega t} d\Omega = \frac{T}{2\pi} \int_{-\Omega_c}^{\Omega_c} e^{j\Omega t} d\Omega \\ &= \frac{\sin(\Omega_c t)}{\Omega_T t/2}, \qquad -\infty \le t \le \infty \end{split}$$

• The input to the lowpass filter is the impulse train  $g_p(t)$ :

$$g_{p}(t) = \sum_{n=-\infty}^{\infty} g[n]\delta(t - nT)$$

• Therefore, the output  $\hat{g}_a(t)$  of the ideal lowpass filter is given by:

$$\hat{g}_a(t) = h_r(t) \circledast g_p(t) = \sum_{n = -\infty}^{\infty} g[n] h_r(t - nT)$$

Substituting  $h_r(t) = \sin(\Omega_c t)/(\Omega_T t/2)$  in the above and assuming for simplicity

$$\Omega_{\rm c} = \Omega_{\rm T}/2 = \pi/T$$
, we get
$$\hat{g}_a(t) = \sum_{n=-\infty}^{\infty} g[n] \frac{\sin[\pi(t-nT)/T]}{\pi(t-nT)/T}$$

which is called Poisson sum formula

➤ The ideal bandlimited interpolation process is illustrated below



- Consider again the three continuoustime signals:  $g_1(t) = \cos(6\pi t)$ ,  $g_2(t) = \cos(14\pi t)$ , and  $g_3(t) = \cos(26\pi t)$
- The plot of the CTFT  $G_{1p}(j\Omega)$  of the sampled version  $g_{1p}(t)$  of  $g_1(t)$  is shown below



From the plot, it is apparent that we can recover any of its frequencytranslated versions  $\cos[(20k\pm6)\pi t]$ outside the baseband by passing g<sub>1p</sub>(t) through an ideal analog bandpass filter with a passband centered at  $\Omega = (20k\pm6)\pi$ 

For example, to recover the signal  $\cos(34\pi t)$ , it will be necessary to employ a bandpass filter with a frequency response

$$H_r(j\Omega) = \begin{cases} 0.1, & (34 - \Delta)\pi \le |\Omega| \le (34 + \Delta)\pi \\ 0, & \text{otherwise} \end{cases}$$

where  $\Delta$  is a small number

Likewise, we can recover the aliased baseband component  $cos(6\pi t)$  from the sampled version of either  $g_{2p}(t)$  or  $g_{3p}(t)$  by passing it through an ideal lowpass filter with a frequency response

$$H_r(j\Omega) = \begin{cases} 0.1, & (6-\Delta)\pi \le |\Omega| \le (6+\Delta)\pi \\ 0, & \text{otherwise} \end{cases}$$

- There is no aliasing distortion unless the original continuous-time signal also contains the component  $\cos(6\pi t)$
- Similarly, from either  $g_{2p}(t)$  or  $g_{3p}(t)$  we can recover any one of the frequency-translated versions, including the parent continuous-time signal  $g_2(t)$  or  $g_3(t)$  as the case may be, by employing suitable filters

- The conditions developed earlier for the unique representation of a continuous-time signal by the discrete-time signal obtained by uniform sampling assumed that the continuous-time signal is bandlimited in the frequency range from DC to some frequency  $\Omega_T$
- > Such a continuous-time signal is commonly referred to as a lowpass signal

- There are applications where the continuoustime signal is bandlimited to a higher frequency range  $\Omega_L \le |\Omega| \le \Omega_H$  with  $\Omega_L > 0$
- > Such a signal is usually referred to as the bandpass signal
- To prevent aliasing a bandpass signal can of course be sampled at a rate greater than twice the highest frequency, i.e. by ensuring

$$\Omega_{\rm T} \ge 2 \Omega_{\rm H}$$

- ➤ However, due to the bandpass spectrum of the continuous-time signal, the spectrum of the discrete-time signal obtained by sampling will have spectral gaps with no signal components present in these gaps
- Moreover, if  $\Omega_H$  is very large, the sampling rate also has to be very large which may not be practical in some situations

- ➤ A more practical approach is to use under-sampling
- Let  $\Delta\Omega = \Omega_H \Omega_L$  define the bandwidth of the bandpass signal
- $\triangleright$  Assume first that the highest frequency  $\Omega_H$  contained in the signal is an integer multiple of the bandwidth, i.e.,

$$\Omega_{\rm H} = {\rm M}(\Delta\Omega)$$

We choose the sampling frequency  $\Omega_T$  to satisfy the condition

$$\Omega_{\rm T} = 2(\Delta\Omega) = 2\Omega_{\rm H}/{\rm M}$$

which is smaller than  $2\Omega_{H}$  , the Nyquist rate

> Substitute the above expression in

$$G_p(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} G_a(j(\Omega - k\Omega_T))$$

This leads to

$$G_p(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} G_a(j\Omega - j2k(\Delta\Omega))$$

As before,  $G_p(j\Omega)$  consists of a sum of  $G_a(j\Omega)$  and replicas of  $G_p(j\Omega)$  shifted by integer multiples of twice the bandwidth  $\Delta\Omega$  and scaled by 1/T

> The amount of shift for each value of k ensures that there will be no overlap between all shifted replicas



no aliasing

> Figure below illustrate the idea behind



- As can be seen,  $g_a(t)$  can be recovered from  $g_p(t)$  by passing it through an ideal bandpass filter with a passband given by  $\Omega_L \le |\Omega| \le \Omega_H$  and a gain of T
- Note: Any of the replicas in the lower frequency bands can be retained by passing through bandpass filters with passbands  $\Omega_L\text{-} \ k(\Delta\Omega) \leq |\Omega| \leq \Omega_H\text{-} \ k(\Delta\Omega) \ , \ 1 \leq k \leq M\text{-}1$  providing a translation to lower frequency ranges

#### Exercise 3.16

➤ Determine the DTFT of each of the following sequences:

(a) 
$$x_1[n] = \alpha^n \mu[n-1], \qquad |\alpha| < 1$$

(c) 
$$x_3[n] = \alpha^n \mu[n+1], \quad |\alpha| < 1$$

#### Exercise 3.60

A 4.0s long segment of a continuous-time signal is uniformly sampled without aliasing and generating a finite-length sequence containing 8500 samples. What is the highest frequency component that could be present in the continuous-time signal?

#### Exercise 3.61

 $\triangleright$  A continuous-time signal x(t) is composed of a linear combination of sinusoidal signals of frequencies 300Hz, 500Hz, 1.2kHz, 2.15kHz, and 3.5kHz. The signal x(t) is sampled at a 3.0-kHz rate, and the sampled sequence is passed an ideal lowpass filter with a cutoff frequency of 900Hz, generating a continuous-time signal y(t). What are the frequency components present in the reconstructed signal y(t)?