

Распределения, связанные с нормальным (хи-квадрат, Стьюдента, Фишера).

Janua - pachpegeneune

Вспончин свойство устаїливости по супнированию:

o Thyon
$$\S_1,...,\S_n$$
 - we abuce $u\S_i\in T_{\alpha,\alpha_i}$ $\forall i\in [1,n]$ Tonga $\S_1+...+\S_n\in T_{\alpha,\alpha_1+...+\alpha_n}$ U goranceu eux ogus choiche $T_{\alpha,\alpha}$:

Докудательство!

Tipu
$$y = 0$$
: $F_{g^2}(y) = P(g^2 < y) = 0 \Rightarrow f_{g^2}(y) = 0$

The
$$q>0$$
: $Fg^{2}(y) = P(g^{2} < q) = P(-Jy < g < Jy) = N_{0,1}(Jy) - N_{0,1}(-Jy)$

$$fg^{2}(y) = \frac{dF_{3}(y)}{dy} = (N_{0,1}(Jy))' \cdot (Jy)' - (N_{0,1}(Jy))' \cdot (Jy)' = V_{0,1}(Jy)' \cdot (Jy)' = V_{0,1}(Jy) \cdot \frac{1}{2Jy} = \frac{1}{2Jy} (F_{0,1}(Jy) + F_{0,1}(Jy))$$

$$= \frac{1}{2Jy} + F_{0,1}(Jy) = \frac{1}{2Jy} \cdot e^{\frac{1}{2}} = \frac{1}{2Jy} \cdot e^{\frac{1}{2}} \cdot e^{\frac{1}{2}} = \frac{1}{2Jy} \cdot e^{\frac{1}{2}} = \frac{1}{$$

Pacnpegeneuve X2 Thepcaua

Us npequayyux gbyx choices chequer, 170 echu $\xi_1,...,\xi_n$ uzobucunun u $\xi_i \in N_{0,1}$ $\forall i \in [1,n]$ $\forall 0 \in \mathbb{N}$ $\forall 0 \in$

° Choùcho: Ceru $\chi_1 \in \chi_1^2$, $\chi_2 \in \chi_2^2$ $\Rightarrow \chi_1 + \chi_2 \in \chi_{n+m}^2$

miro

Pacnpegeneure Courgeura

Def Trycto go, g, ,..., g_E - uezabucuxu u gi € No, Hi € [o, n] Pacopegeneur congration benureur $t_k = \frac{50}{5^2 + ... + 5^2}$ us 01

распределением Стыдента с к степенини выбоди и обозначается Тк

Clouerbo: $T_n \Rightarrow N_{0,1}$. $\Delta acconstrates on a sign of the sign$ $\cdot \quad t_n = \frac{3}{\sqrt{\chi_n^2}} \Rightarrow 3 \in N_{0,1}$ miro

l'acopegeneuve Pumepa

Def Tyon Z, € Xn } wyabucunu.

Pachpegeneuve chyraquoù benuruu $f_{n,m} = \frac{\frac{z_1}{n}}{\frac{z_2}{n}} = \frac{m}{n} \frac{z_1}{z_2}$ uneet pachpegeneuve quivepa c hum creneugru cho Togu. (Fn,m)

Choùcho: Fn,m => I1

Choùcho: $f_{n,m} \Rightarrow 1_1$ $N_{n,m+\infty}$ Orelaguo, $T.K. \quad Z_1 = \frac{S_1^2 + ... + S_n^2}{N} \not \Rightarrow ES_1^2 = 1 \quad u \quad \frac{Z_2}{m} = \frac{y_1^2 + ... + y_m^2}{m} \rightarrow Ey_1^2 = 1$

