

ASSIGNMENT

FUNDAMENTALS IN PREDICTIVE MODELING

REPORT

Pillar1-e

Prepared By

William C. Phiri

PG Dip in Data Science Student No. 4295158639

+353-87-3502102

Athlone, IRELAND

BACKGROUND:

The data for modelling provided contained information on the selling price of each house in million Rs. It also contained Carpet area in square feet, Distance from nearest metro station and number of schools within a 2 km distance. The data has 198 rows and 5 columns.

ASSIGNMENT OBJECTIVE:

To establish the following below using Python programming.

- 1. Build a regression model on training data to estimate selling price of a House.
- 2. List down significant variables and interpret their regression coefficients.
- 3. What is the R2 and adjusted R2 of the model? Give interpretation.
- 4. Is there a multicollinearity problem? If yes, do the necessary steps to remove it.
- 5. Are there any influential observations in the data?
- 6. Can we assume that errors follow 'Normal' distribution?
- 7. Is there a Heteroscedasticity problem? Check using residual vs. predictor plots.
- 8. Calculate the RMSE for the Training and Testing data.

RESULTS:

Question 1: Build a regression model on training data to estimate selling price of a House.

OUTPUT: Refer to code on GitHub at the <u>LINK HERE</u> for the model created

Refer to app location **HERE** for the prediction app built off the training data

The project structure outline was laid out as follows.

```
FPM_Assignment_PY/
  - dashboard/
   └─ app.py
                                     # 🗸 Streamlit app
   data/
    - raw/
       └─ House Price Data.csv
       processed/
          - cleaned_house_data.csv
          - X_train.csv
          - X test.csv
          y_train.csv
         y_test.csv
      - new/
       └─ incoming house data.csv # ▼ For dashboard input testing
   environment/
     environment.yml
   └─ requirements.txt
   models/
   └─ house_price_model.pkl
   notebooks/
   ─ 01_EDA.ipynb
     — 02_Model_Building.ipynb
   ☐ 03_Evaluation_Report.ipynb
   reports/
     summary.txt
   ☐ 03_Evaluation_Report.pdf
   src/
     data_prep.py
      - train_model.py
     — utils.py
   .gitignore
   main.py
   README.md
```

Question 2: List down significant variables and interpret their regression coefficients.

OUTPUT:

Model Summary Results.

OLS Regression Results							
Dep. Variable		рі	rice OLS	R-squ Adj.	ared: R-squared:		0.794 0.791
Method:		Least Squa			tistic:		249.0
Date:	Sa	nt, 19 Apr 1	2025	Prob	(F-statistic):	3.03e-66
Time:		17:24	4:40	Log-L	ikelihood:		-436.96
No. Observati	ons:		198	AIC:			881.9
Df Residuals:			194	BIC:			895.1
Df Model:			3				
Covariance Ty	pe:	nonrol	bust				
========			-===:				
	coef	std err		t	P> t	[0.025	0.975]
Intercept	-9.5423	1.744	-!	5.472	0.000	-12.982	-6.103
area	0.0346	0.002	17	7.111	0.000	0.031	0.039
distance	-1.8704	0.162	-11	1.564	0.000	-2.189	-1.551
schools	1.3187	0.371	3	3.552	0.000	0.586	2.051
========		:=======	:				
Omnibus:		12	.632	Durbi	n-Watson:		1.558
Prob(Omnibus)	:	0	.002	Jarqu	e-Bera (JB):		13.367
Skew:		-0	629	Prob(JB):		0.00125
Kurtosis:		3.	.191	Cond.	No.		1.16e+04

EXPLANATION:

Variable	Coefficient	P-value	Interpretation
Carpet Area	0.0346	<0.05	For each additional sq. ft. , the selling price increases by 0.035 million Rs , holding other variables constant.
Distance to Nearest Metro	-1.8704	<0.05	For each additional km away from metro , the price decreases by 1.87 million Rs , all else equal.
Schools	1.3187	<0.05	Each additional school nearby increases the price by 1.3 million Rs , if other factors are held constant.

Question 3: What is the R2 and adjusted R2 of the model? Give interpretation.

OUTPUT: $R^2 = 0.794 \rightarrow ~79\%$ of the variation in house price can be explained by this model.

Adjusted R 2 = 0.791 \rightarrow Similar value after adjusting for number of predictors, confirms the model strength.

This is a strong model with a good explanatory power.

Question 4: Is there a multicollinearity problem? If yes, do the necessary steps to remove it.

VIF Output:

	△ Variable	# VIF
0	Intercept	119.98940511378272
1	area	1.6985770212861035
2	distance	1.05520609424952
3	schools	1.7641262589958706

Multicollinearity was checked using the variance inflation factor and all variables had VIFs <5 indicating that there was no multicollinearity and hence all variables were retained in the model.

Question 5: Are there any influential observations in the data?

OUTPUT: Cooks distance check revealed influential points above the threshold, these points can disproportionately affect the regression. The model was re-run with the influential observations removed for comparison to initial model.

The influential points were noted as follows

Influential points: [6 23 24 27 51 62 65 97 103 109 115 116 125 140 141 145 149]

Model re-fit after removing the influential points

Time: 17:06:32 No. Observations: 179 Df Residuals: 175 Df Model: 3 Covariance Type: nonrobust	Adj. F-sta Prob Log-l AIC: BIC:	(F-statistic): Likelihood: 	 [0.025 	0.797 0.794 229.4 2.17e-60 -391.07 790.1 802.9
Method: Least Squares Date: Sat, 19 Apr 2025 Time: 17:06:32 No. Observations: 179 Df Residuals: 175 Df Model: 3 Covariance Type: nonrobust	F-sta Prob Log-L AIC: BIC:	atistic: (F-statistic): Likelihood: 		229.4 2.17e-60 -391.07 790.1 802.9
Date: Sat, 19 Apr 2025 Time: 17:06:32 No. Observations: 179 Df Residuals: 175 Df Model: 3 Covariance Type: nonrobust	Prob Log-L AIC: BIC: t	(F-statistic): Likelihood: 		2.17e-60 -391.07 790.1 802.9
Time: 17:06:32 No. Observations: 179 Df Residuals: 175 Df Model: 3 Covariance Type: nonrobust	Log-L AIC: BIC: t	Likelihood:		-391.07 790.1 802.9
No. Observations: 179 Df Residuals: 175 Df Model: 3 Covariance Type: nonrobust coef std err Intercept -9.7951 1.827 -5 area 0.0349 0.002 10 distance -1.8288 0.168 -10	AIC: BIC: t	P> t		790.1 802.9
Df Residuals: 175 Df Model: 3 Covariance Type: nonrobust	BIC: t 5.362			802.9
Df Model: 3 Covariance Type: nonrobust coef std err Intercept -9.7951 1.827 -9 area 0.0349 0.002 10 distance -1.8288 0.168 -10	t 5.362			
Covariance Type: nonrobust coef std err Intercept -9.7951 1.827 -1 area 0.0349 0.002 10 distance -1.8288 0.168 -10	 5.362			0.975]
coef std err	 5.362			0.975]
Intercept -9.7951 1.827 -9 area 0.0349 0.002 10 distance -1.8288 0.168 -10	 5.362			0.975]
area 0.0349 0.002 10 distance -1.8288 0.168 -10		0.000	-13.401	
distance -1.8288 0.168 -10				-6.190
	3.70	0.000	0.031	0.039
schools 1.2644 0.390	898.	0.000	-2.160	-1.498
	3.240	0.001	0.494	2.035
omnibus: 10.245	Durbi	in-Watson:	======	1.721
Prob(Omnibus): 0.006	Jarqu	ue-Bera (JB):		10.722
Skew: -0.599	Prob((JB):		0.00470
Kurtosis: 3.069	Cond.	. No.		1.17e+04

Model Summary Comparison Original vs Cleaned(Influential points removed)

Variable	Coeff	icient	P-value		Conclusion	
variable	Original	Cleaned	Original	Cleaned	Conclusion	
Carpet Area	0.0346	0.0349	< 0.05	< 0.05	There is no significant difference between the two models as it relates to carpet area	
Distance to Nearest Metro	-1.8704	-1.8288	< 0.05	< 0.05	There is no significant difference between the two models as it relates to distance to nearest Metro station	
Schools	1.3187	1.2644	< 0.05	< 0.05	There is no significant difference between the two models as it relates to schools nearby	

R² and Adjusted R² Value comparison

Metric	Original Model	Cleaned Model
R ²	0.794	0.797
Adjusted R ²	0.791	0.794

Key Takeaway:

There is no significant difference in the model fit between the two models

Question 6: Can we assume that errors follow 'Normal' distribution?

To check for normality among the residuals(errors), we ran the Shapiro-Wilk test and made a QQ plot of the residuals.

Shapiro-Wilk Test p-value:	Conclusion
0.0004	p-value <0.05 therefore we fail to reject normality

QQ-Plot of Residuals.

The points in the QQ plot fall along the 45° line, residuals(errors) are likely to be normally distributed.

Both the Shapiro-Wilk test and QQ plot indicate that the residuals follow normal distribution.

Question 7: Is there a Heteroscedasticity problem?

Heteroscedasticity was analysed using the Residuals vs Fitted values plot.

Seeing as the spread of variance is random, we can conclude that there is no heteroscedasticity, and we have homoscedasticity inherent between the residuals and the fitted values.

Question 7: Calculate the RMSE for the Training and Testing data

RMSE(Training Data)	2.193
RMSE(Test Data)	2.222

The RMSE is consistent between the train and the test data sets, indicating a well generalized model. Ideally you want the training RMSE to be lower than the test data which is the case in point.