(1) K は X^7-11 の最小分解体なので, $\xi,\alpha:=11^{1/7}\in K$ であり, $\mathbb{Q}(\xi,\alpha)\subseteq K$ となる. さらに, K の最小性より, $\mathbb{Q}(\xi,\alpha)=K$ が成り立つ. ここで, 円分拡大の一般論から, $[\mathbb{Q}(\xi):\mathbb{Q}]=6$ であり, アイゼンシュタインの既約判定法から, X^7-11 は既約なので, $[\mathbb{Q}(\alpha):\mathbb{Q}]=7$ が成り立つ. これより,

$$[K:\mathbb{Q}] = 6[\mathbb{Q}(\alpha):\mathbb{Q}] = 7[\mathbb{Q}(\xi):\mathbb{Q}]$$

が成り立つ. さらに,

$$[K:\mathbb{Q}] = [K:\mathbb{Q}(\alpha)][\mathbb{Q}(\alpha):\mathbb{Q}] \leq [\mathbb{Q}(\xi):\mathbb{Q}][\mathbb{Q}(alpha):\mathbb{Q}] = 42$$

となるので、 $[K:\mathbb{Q}]=42$ が成り立つ.

(2) $\mathbb Q$ が標数 0 の体であることから, $K/\mathbb Q$ は分離拡大であり, K は X^7-11 の最小分解体なので, $K/\mathbb Q$ は 正規拡大である. したがって, $K/\mathbb Q$ は Galois 拡大である.

 K/\mathbb{Q} の真なる中間体の数をもとめるには、Galois 理論の基本定理から、 $\mathrm{Gal}(K/\mathbb{Q})$ の非自明な部分群の数を求めれば十分である.ここで、 $\mathrm{Gal}(K/\mathbb{Q})$ の元は ξ,α の像によって決定され、 $\sigma\in\mathrm{Gal}(K/\mathbb{Q})$ について、

$$\sigma(\xi)^7 - 1 = 0$$
 $\sigma(\alpha)^7 - 11 = 0$

なので, $\sigma(\xi) = \xi^i$, $\sigma(\alpha) = \alpha \xi^j$ が成り立つ. ただし, $i \in \mathbb{F}_7^{\times}$ かつ $j \in \mathbb{F}$ である. σ がこのような写像であるとき, $\sigma_{i,j} = \sigma$ とおく. また, $\sigma(1)$ より, $|\operatorname{Gal}(K/\mathbb{Q})| = 42$ なので, この対応によって, 全単射 $\mathbb{F}_7^{\times} \times \mathbb{F}_7 \to \operatorname{Gal}(K/\mathbb{Q})$ が存在することに注意する.

 $\operatorname{Gal}(K/\mathbb{Q})$ の非自明な部分群は位数が 2,3,6,7,14,21 のいずれかになるので、それぞれの位数の部分群を数えればよい. 位数 k の部分群の数を s_k とする. ここで、

$$\sigma^n_{i,j}(\xi) = \xi^{i^n} \qquad \qquad \sigma^n_{i,j}(\alpha) = \alpha \xi^{j(1+i+i^2+\dots+i^{n-1})}$$

となることに注意する.

- (a) s_2 は位数 2 の元の数と等しく, $\sigma^2_{i,j}(\xi)=\xi$ となるのは, i=1,6 の場合である.
 - i. i=1 のとき, $\sigma_{1,j}^2(\alpha)=\alpha\xi^{2j}$ であり, 2j=0 となるのは j=0 のみである. しかし, $\sigma_{1,0}$ は位数 1 なので、この場合は位数 2 の元は存在しない.
 - ii. i=6 のとき、

$$\sigma_{i,j}^2(\alpha) = \alpha \xi^0 = \alpha$$

なので、すべてのjについて $\sigma_{6,j}$ は位数2の元となる.

以上より、位数 2 の元は 7 個存在するので、 $s_2 = 7$.

- (3) s_3 は位数 3 の元の数の半分であり, $\sigma_{i,i}^3(\xi) = \xi$ となるのは, i = 1, 2, 4 の場合である.
 - (a) i=1 のとき, $\sigma_{1,j}^3(\alpha)=\alpha\xi^{3j}$ であり, 3j=0 となるのは, j=0 のみである. しかし, $\sigma_{1,0}$ は位数 1 なので、この場合は位数 2 の元は存在しない.
 - (b) i=2 のとき, $\sigma_{2,j}^3(\alpha)=\alpha$ なので、すべての j について、 $\sigma_{2,j}$ は位数 3 の元となる.
 - (c) i=4 のとき, $\sigma_{4,i}^3(\alpha)=\alpha$ なので, すべての j について, $\sigma_{4,j}$ は位数 3 の元となる.

以上より、位数 3 の元は 14 個存在するので、 $s_3 = 7$ が成り立つ.

(4) Sylow の定理より, $s_7 = 1$ である. $\sigma_{i,j}^7(\xi) = \xi^{i^7} = \xi^i$ なので, $\sigma_{i,j}^7(\xi) = \xi$ となるのは, i = 1 の場合である.

$$\sigma_{1,i}^{7}(\alpha) = \alpha \xi^{j(1+i+\dots+i^6)} = \alpha$$

なので、すべての j に対して、 $\sigma_{1,j}^7=1$ が成り立つ.しかし、(i,j)=(1,0) のときには $\sigma_{1,0}$ は位数 1 なので、位数 7 の元は 6 個である.

- (5) 位数 6 の元を数える. $\sigma_{i,j}^6(\xi)=\xi^{i^6}=\xi$ なので、すべての i について、 $\sigma_{i,j}^6(\xi)=\xi$ が成り立つ.
 - (a) $i\neq 1$ のときには, $1+i+\cdots+i^5=0$ なので、このとき、すべての j に対して、 $\sigma_{i,j}^6=1$ が成り立っ。ゆえに、 $i\neq 1$ かつ、位数 2,3 でないような $\sigma_{i,j}$ はすべて位数 6 の元である
 - (b) i=1 のときには、位数 1 または 7 となるので、この場合は位数 6 の元は存在しない、したがって、位数 6 の元は 14 個存在する.

ここで, $\operatorname{Gal}(K/\mathbb{Q}) = \mathbb{Z}/7\mathbb{Z} \rtimes \mathbb{Z}/6\mathbb{Z}$ であることから, 自然に

$$\phi: \operatorname{Gal}(K/\mathbb{Q}) \to \mathbb{Z}/7\mathbb{Z}$$

$$\psi: \operatorname{Gal}(K/\mathbb{Q}) \to \mathbb{Z}/6\mathbb{Z}$$

が得られる. $G \subseteq \operatorname{Gal}(K/\mathbb{Q})$ を位数 6 の部分群とすれば, $\phi(G) = 0$ なので, $\psi(G) = \mathbb{Z}/6\mathbb{Z}$ が成り立つ. ゆえに, $G \cong \mathbb{Z}/6\mathbb{Z}$ である. したがって, $s_6 = 7$ である.