ROBEM I Assume $(X_n : n \ge 0)$ is an irreducible Markov chain on E. Prove that $(X_n : n \ge 0)$ is recurrent (or transient) $\iff \forall i \in E$,

$$\mathbb{P}\left(\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}\{X_k=i\}\right)=1(\text{or }0).$$

SOUTHON. Only need to prove " \Longrightarrow ".

First we assume $(X_n : n \in \mathbb{N})$ is recurrent, we should prove $\mathbb{P}(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \{X_k = i\}) = 1$. Let $\tau_1 = \inf\{n > 0 : X_n = i\}$, and for $n \in \mathbb{N}^+$, we let $\tau_{n+1} = \inf\{n > \tau_n : X_n = i\}$. Since i is recurrent and (X_n) is irreducible, we know that $\tau_1 < \infty, a.s.$. Then $(X_{\tau_1+n} : n \in \mathbb{N})$ is a Markov chain with the same transition matrix as (X_n) . So we get that $\tau_2 - \tau_1 < \infty, a.s.$. So $\tau_2 < \infty$, a.s.. Use MI, we can easily get that $\forall n \in \mathbb{N}^+, \tau_n < \infty, a.s.$. Easy to get that $\tau_{n+1} > \tau_n$ and $\tau_1 > 0$, so $\tau_n \geq n$. So $\tau_n < \infty \implies \exists k \geq n, X_k = i$. So $\forall n \in \mathbb{N}, \mathbb{P}(\bigcup_{k=n}^{\infty} \{X_k = i\}) = 1$. Thus $\mathbb{P}(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \{X_k = i\}) = 1$.

Second we assume $(X_n:n\in\mathbb{N})$ is transient, we should prove that $\mathbb{P}(\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}\{X_k=i\})=0$. Write $A=\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}\{X_k=i\}$. If not, we consider $(A,\mathcal{F}\cap A,\mathbb{P}_A:=\frac{\mathbb{P}}{\mathbb{P}(A)})$. We define τ_n as above. Easy to know $\forall \omega\in A, \forall n\in\mathbb{N}^+, \tau_n<\infty$. And easy to know that $\tau_{n+1}-\tau_n\mid_{\tau_n<\infty}$ has the same distribution for every n. And since (X_n) is transient, we know (X_{τ_k+n}) is transient for every $k\in\mathbb{N}^+$. So we know $\mathbb{P}(\tau_{n+1}-\tau_n<\infty\mid\tau_n<\infty)<1$. Then $\mathbb{P}(A)=\mathbb{P}(\forall n,\tau<\infty)\leq\mathbb{P}(\forall n,\tau_{n+1}-\tau_n<\infty)\leq\prod_{n=1}^{\infty}\mathbb{P}(\tau_{n+1}-\tau_n<\infty)=\prod_{n=1}^{\infty}\mathbb{P}(\tau_{n+1}-\tau_n<\infty)=0$. \square

ROBEM II Let $(X_n:n\geq 0)$ is a one dimension simple random walk, and P is it's transition matrix. Let $a\leq b\in\mathbb{Z}$ satisfies $\mathbb{P}(a\leq X_0\leq b)=1$. Define $\tau=\inf\{n\geq 0: X_n=a \text{ or } b\}, Y_n=X_{n\wedge\tau}$. Prove: $(Y_n:n\geq 0)$ is Markov chain on $[a,b]\cap\mathbb{Z}$, and give its transition matrix and the classification. ROBEM III Prove: $(X_n:n\geq 0)$ is Markov chain on E, where E is finite. Then $\exists x\in E, x$ is recurrent. ROBEM IV Assume $(X_n:n\geq 0)$ is Markov chain on \mathbb{Z} . Prove it is transient $\iff \forall \mu_0$ is primitive distribution, $\lim_{n\to\infty}|X_n|\stackrel{\text{a.s.}}{=}\infty$. ROBEM V Assume P is a transition matrix on \mathbb{Z}^+ , which has a first line $\{a_0,a_1,\cdots\}$, $\forall i\geq 1,\ p_{i,i-1}=1,\ \text{and}\ \forall j\neq i-1,\ p_{i,j}=0.$ Discuss the irreducibility, recurrence, ergodicity and periodicity of P0. ROBEM VI Assume P1 is a transition matrix on P2. Prove: $\forall i\in E,\ \lim_{n\to\infty}p_{ii}(n)$ exists, and P3.

ROBEM VII Assume P is a transition matrix on E and P is irreducible, $j \in E$. Prove: P is recurrent $\iff 1$ is the minimum non negtive solution of

$$y_i = \sum_{k \neq j} p_{ik} y_k + p_{ij}, i \in E$$

 $\mathbb{R}^{\text{OBEM VIII Let }} \{a_k : k \geq 0\} \text{ satisfies } \sum_{k \geq 0} a_k = 1, a_k \geq 1, a_0 > 0, \ \mu := \sum_{k=1}^{\infty} k a_k > 1. \text{ Define }$ $p_{ij} = \begin{cases} a_j &, i = 0 \\ a_{j-i+1} &, i \geq 1 \land j \geq i-1. \text{ Prove: } P \text{ is transient.} \\ 0 &, \text{ otherwise} \end{cases}$