电容滤波电路

主讲人: 周一恒

单相桥式整流电路

主要内容:

电容滤波电路的结构、特点;含有电容滤波整流电路的计算。

重点难点:

含有电容滤波整流电路的计算。

电容滤波电路

交流电压经整流电路整流后输出的是脉动直流,其中既有直流成份又有交流成份。

滤波原理:滤波电路利用储能元件电容两端的电压(或通过电感中的电流)不能突变的特性,滤掉整流电路输出电压中的交流成份,保留其直流成份,达到平滑输出电压波形的目的。

方法:将电容与负载 R_L 并联(或将电感与负载 R_L 串联)。

1. 电路结构

3. 工作波形

2. 工作原理

 $u>u_C$ 时,二极管导通,电源在给负载 R_L 供电的同时也给电容充电, u_C 增加, $u_0=u_C$ 。

 $u < u_C$ 时,二极管截止,电容通过负载 R_L 放电, u_C 按指数规律下降, $u_0 = u_C$ 。

二极管承受的最高反向电压为 $U_{\rm RM} = 2\sqrt{2}U$ 。

- 4. 电容滤波电路的特点
- (1) 输出电压的脉动程度与平均值 U_0 与放电时间常数 R_1C 有关。 $R_{\rm L}C$ 越大 \rightarrow 电容器放电越慢 \rightarrow 输出电压的平均值 U_0 越大,波形越平滑。

为了得到比较平直的输出电压

一般取
$$\tau = R_L C \ge (3-5)\frac{T}{2}$$
 (T—电源电压的周期)

近似估算取: $U_o = 1.2 U$ (桥式、全波) $U_o = 1.0 U$ (半波)

当负载 R_L 开路时, $U_0 \approx \sqrt{2U}$

(2) 外特性曲线

采用电容滤波时,输出电压受负载 变化影响较大,即带负载能力较差。

因此电容滤波适合于要求输出电压较高、负载电流较小且负载变化较小的场合。

(3) 流过二极管的瞬时电流很大

 $R_L C$ 越大 $\rightarrow U_O$ 越高, I_O 越大 \rightarrow 整流二极管导通时间越短 $\rightarrow i_D$ 的峰值电流越大

选管时一般取 $I_{OM} = 2I_{D}$

例:有一单相桥式整流滤波电路,已知交流电源频率f=50Hz,

负载电阻 $R_{\rm L}$ = 200Ω,要求直流输出电压 $U_{\rm o}$ =30V,选择整流二极

管及滤波电容器。

解: (1) 选择整流二极管

流过二极管的电流

$$I_{\rm O} = \frac{U_{\rm O}}{R_{\scriptscriptstyle \rm I}} = \frac{30}{200} = 0.15 \,\mathrm{A}$$

变压器二次电压的有效值

二极管承受的最高反向电压

$$U_{\rm RM} = \sqrt{2}U = \sqrt{2} \times 25 = 35 \text{ V}$$

$$I_{\rm D} = \frac{1}{2}I_{\rm O} = 0.075 \,\mathrm{A}$$

$$U = \frac{U_0}{1.2} = \frac{30}{1.2} = 25V$$

可选用二极管2CZ52B

$$I_{\mathrm{OM}} = 100 \mathrm{mA}$$
 $U_{\mathrm{RWM}} = 50 \mathrm{V}$

例:有一单相桥式整流滤波电路,已知交流电源频率f=50Hz,

负载电阻 $R_{\rm L}=200\Omega$,要求直流输出电压 $U_{\rm O}=30{\rm V}$,选择整流二极

管及滤波电容器。

解: (2) 选择滤波电容器

取
$$R_{\rm L}C = 5 \times T/2$$

$$R_{\rm L}C = 5 \times \frac{1/50}{2}$$
s = 0.05 s

已知 $R_{\rm L} = 50 \Omega$

$$C = \frac{0.05}{R} = \frac{0.05}{200}$$
 $F = 250 \times 10^{-6}$ $F = 250 \mu$ **性**,如果接反会造成电解电容器的损坏。

一般选择体积小,容量 大的电解电容器。普通 电解电容器有正、负极

考虑到电网电压的波动范围,滤波电容的耐压值

可选用 $C = 250 \, \mu F$,耐压为 $50 \, V$ 的极性电容器。

小 结

- 1. 电路结构 电容与负载 R_L 并联
- 2. 工作原理
- 3. 工作波形
- 4. 电容滤波电路的特点

近似估算取: $U_0 = 1.2 U$ (桥式、全波)

$$U_{\rm o}$$
=1.0 U (半波)