DEFINIÇÃO DE COLUNAS EM SQL

Sérgio Mergen

Definição de colunas em SQL

- Ao definir uma coluna de tabela, muitos aspectos devem ser considerados
 - Uso do tipos de dados adequados
 - Uso de colunas opcionais
 - Uso de restrições de integridade

•

Na aula de hoje analisaremos os dois primeiros aspectos

USO DE TIPOS DE DADOS ADEQUADOS

Tipos de dados em SQL

- "Alguns" tipos disponíveis
 - INT, INTEGER, SHORT, LONG, NUMBER, NUMERIC, SMALLINT, INTEGER2, INTEGER4
 - CHAR, VARCHAR, ALPHANUMERIC, CHARACTER, STRING
 - DATE, TIME, DATETIME, TIMESTAMP
 - DECIMAL, REAL, DOUBLE, FLOAT, FLOAT4, FLOAT8
 - BINARY, BIT, BYTE, YESNO, BOOLEAN
 - CURRENCY, MONEY
 - TEXT, OLEOBJECT, LONGTEXT, MEMO, NOTE, GENERAL

Tipos de dados em SQL

- Com tantos tipos, como escolher o tipo mais adequado?
- O que significa ser adequado?
- A análise pode levar em consideração diversos fatores
 - Codificação ampla x codificação restrita
 - Tamanho variável x tamanho fixo
 - Capacidade maior x capacidade menor

- Um alfabeto indica o universo de símbolos permitidos por um tipo de dados
 - Alfabeto restrito
 - Possibilita a representação de uma quantidade menor de símbolos
 - Alfabeto amplo
 - Possibilita a representação de uma quantidade maior de símbolos
- Um alfabeto mais amplo
 - gasta mais bits para representar cada símbolo.
- Ex.
 - o tipo INT (caracteres numéricos) é mais restrito que o tipo CHAR (caracteres alfanuméricos)

- Ex. Uma tabela de monitoramento guarda dados de altitude de aviões durante o voo.
- Que tipo de dados você usaria?
 - Numérico
 - ex. INT
 - Textual
 - Ex. CHAR
- Usualmente se escolhe um tipo que melhor represente a informação que se quer armazenar
 - Mas outras análises também são possíveis

- Ex. Uma tabela de monitoramento guarda dados de altitude de aviões durante o voo.
- Vantagens de usar o tipo numérico
 - Ocupa menos espaço que o tipo textual
 - Filtros por altitude são mais eficientes
 - Restringe o domínio de valores permitidos
 - Apenas dígitos são aceitos
- Vantagens de usar o tipo textual
 - Não restringe o domínio de valores permitidos
 - Ex. Permite valores como "10.000 pés"

- Textos também podem ser representados em alfabetos mais amplos ou mais restritos
- SGBDS disponibilizam diversos alfabetos (ou encodings)
- Dois das mais conhecidos:
 - ISO-8859-1 (Latin1)
 - UTF8

- · ISO-8859-1
 - Cada caractere ocupa 1 byte
 - Apenas 256 caracteres estão disponíveis
 - Possui diversas variações (Latin1, Latin2, ...)
 - Latin1 é a que mapeia o alfabeto ocidental
- É uma extensão da tabela ASCII
 - Os 7 bits da tabela ASCII original mapeiam 128 símbolos
 - O oitavo bit adiciona outros 128 símbolos
 - Para os caracteres ocidentais, o código ASCII e o código Latin1 são equivalentes
- Exemplos de símbolos suportados
 - 'a', 'A', 'ç', 'é', 'â'

UTF8

- Cada símbolo pode ocupar de 1 a 4 bytes
- Cada caractere latino n\u00e3o diacr\u00edtico ocupa 1 byte
- Cada caractere latino diacrítico ocupa 2 bytes
- Para alguns alfabetos são necessários de 3 a 4 bytes
- Exemplos de símbolos que usam 1 byte
 - A, a, -, +, 0, 4
- Exemplos de símbolos que usam 2 bytes
 - ã, ú, î, é, ç
- Exemplos de símbolos que usam 3 bytes
 - Aqueles dos alfabetos orientais

- Suponha que a coluna char(6) tenha como conteúdo o texto 'versão'. Quantos bytes ocupa esse valor?
 - Depende do encoding
- Em utf8
 - 7 bytes
- Em latin1
 - 6 bytes

- Se bastam os 256 caracteres do latin1
 - Faz sentido usá-lo
- Motivos
 - Economia de espaço
 - Eficiência em comparações
 - É mais rápido comparar strings onde cada símbolo ocupa um byte do que strings em que a quantidade de bytes de cada símbolo é variável

O encoding é definido para todas colunas da tabela

Ex. na criação da tabela (mySQL)
 CREATE TABLE tabela (...) CHARSET = latin1;

Ex. na alteração da tabela (mySQL)
 ALTER TABLE tabela
 CONVERT TO CHARACTER SET latin1;

Uso de Collation

- Além do encoding, é possível definir a colação (collation)
 - A colação de uma coluna textual diz respeito à forma como os símbolos que compõe o valor da coluna são comparados em clausulas WHERE e ORDER BY
- Ex. na criação da tabela (mySQL)

```
CREATE TABLE tabela (...) CHARSET = latin1

COLATTE latin1_swedish_ci;
```

CREATE TABLE tabela (...) CHARSET = latin1

COLATTE latin1_german2_ci;

Uso de Collation

SELECT nome FROM tabela ORDER BY nome;

usando
latin1_swedish_ci;

nome
bar
bär
ber
dar

usando

latin1_german2_ci;

nome
bär
bar
ber
dar

Uso de Collation

SELECT nome FROM tabela where nome like 'bä%';

usando
latin1_swedish_ci;

nome bär usando

latin1_german2_ci;

nome bär bar

Tipos de dados em SQL

- Com tantos tipos, como escolher o tipo mais adequado?
- O que significa ser adequado?
- A análise pode levar em consideração diversos fatores
 - Tipo abrangente x tipo restrito
 - Tamanho variável x tamanho fixo
 - Capacidade maior x capacidade menor

- Tamanho fixo (CHAR)
 - Todos os valores da coluna ocuparão o mesmo espaço
- Tamanho variável (VARCHAR)
 - O espaço destinado à coluna equivale ao comprimento da string
 - Precisa usar bytes de controle para determinar o tamanho da string
 - 1 byte se o tamanho máximo é de 255 caracteres
 - Ex. VARCHAR (10)
 - 2 bytes se o tamanho máximo é maior do que 255 caracteres
 - Ex. VARCHAR (300)
 - Ex. VARCHAR (1000)

- Ex. quantos bytes ocupa o seguinte texto? 'projeto ACME'
 - Usando CHAR(50) = 50 bytes
 - Usando VARCHAR (50) = 13 bytes
 - 12 bytes de caracteres
 - 1 byte de controle

- Ex. quantos bytes ocupa o seguinte texto? 'projeto ACME'
 - Usando CHAR(50) = 50 bytes
 - Usando VARCHAR (50) = 13 bytes
 - 12 bytes de caracteres
 - 1 byte de controle

- Dica: ao usar CHAR, escolha um tamanho
 - grande o suficiente para guardar todos os possíveis valores
 - Pequeno o suficiente para n\u00e3o desperdi\u00fcar bytes que nunca ser\u00e3o usados

Exercício

- É muito comum encontrar esquemas de bancos de dados cujos campos de texto de tamanho variável são definidos como
 - VARCHAR (255)
- Você saberia explicar o porquê?

- Ex. Como modelar o nome de uma pessoa?
- Tamanho fixo?
 - De que tamanho?
- Tamanho variável?
 - De que tamanho?

- Ex. Como modelar o nome de uma pessoa?
- Tamanho fixo?
 - De que tamanho?
- Tamanho variável?
 - De que tamanho?

- A decisão geralmente depende do contexto
 - Todas as colunas devem ser analisadas
 - Por quê? Por causa da organização física de um SGBD

- Organização de arquivos no SGBD
 - Registros de tamanho fixo
 - Indexação mais eficiente
 - As buscas são mais rápidas
 - Registros de tamanho variável
 - Melhor ocupação de espaço
- O registro terá tamanho variável quando qualquer coluna
 - tiver tamanho variável
 - ou permitir nulo
 - Mais adiante falaremos sobre colunas nulas

- Se otimização de espaço for mais importante
 - Usar tamanho variável
- Se desempenho no acesso é mais importante
 - Usar tamanho fixo
- Se o tamanho for sempre o mesmo (ou quase)
 - Usar tamanho fixo
- Obs. Se alguma outra coluna já tiver tamanho variável
 - Perde-se o desempenho no acesso
 - Dica: em alguns casos vale a pena mover colunas nulas ou de tamanho variável para outra tabela
 - Como se chama esse processo de refatoração?

Exercício

- O que você faria para melhorar o desempenho no acesso ao nome e ao salário de um funcionário?
 - Considerando a questão dos registros de tamanho variável
 - Sabendo que dados de email, twitter e facebook são pouco acessados

	Func
*idFunc	int
Nome	varchar (255)
Facebook	varchar (255)
Salario	decimal (8)
email	varchar (255)
twitter	varchar (255)

Tipos de dados em SQL

- Com tantos tipos, como escolher o tipo mais adequado?
- O que significa ser adequado?
- A análise pode levar em consideração diversos fatores
 - Tipo abrangente x tipo restrito
 - Tamanho variável x tamanho fixo
 - Capacidade maior x capacidade menor

- Cada tipo de dados é representado de forma diferente
 - Através de uma sequência de bytes
- Cada tipo de dados tem
 - Um tamanho em bytes
 - Que leva a uma capacidade de armazenamento (o intervalo de valores suportado)
- Ex.
 - Um tipo INT
 - ocupa mais bytes do que um tipo SMALLINT
 - Tem capacidade de armazenamento maior do que SMALLINT

- Que tipo de dado usar para o salário de um funcionário?
 - Int
 - Smallint
- E se analisássemos também outros formatos de representação além do inteiro?
 - Int
 - Smallint
 - Float
 - Decimal

tipo	bytes	Capacidade				
		Signed (com sinal)		Unsigned (sem sinal)		
		mínimo	máximo	mínimo	máximo	
tinyint	1	-128	127	0	255	
Smallint	2	-32.768	32.767	0	65.535	
Int	4	-2.147.483.648	2.147.483.647	0	4.294.967.295	

- Decimal (x,y)
 - x-y = número de dígitos antes da vírgula
 - y = número de dígitos depois da vírgula

Exemplos

- Decimal (8,2)
 - 6 dígitos antes da virgula
 - 2 dígitos depois da vírgula
- Decimal (6,0)
 - 6 dígitos antes da virgula
 - nenhum dígito depois da vírgula

- Para calcular o tamanho, deve-se somar a quantidade de bytes necessária para os dígitos
 - Antes da vírgula
 - Depois da vírgula
- A quantidade é calculada usando a seguinte tabela

# digitos	bytes
1-2	1
3-4	2
5-6	3
7-9	4

tipo	Bytes antes	Bytes depois	Total de bytes	Capacidade	
				mínimo	máximo
Decimal (5,0)	3	0	3	-99.999	99.999
Decimal (6,0)	3	0	3	-999.999	999.999
Decimal (7,2)	3	1	4	-99.999,99	99.999,99
Decimal (8,2)	3	1	4	-999.999,99	999.999,99

- Dicas na hora da escolha
- Usar o tipo de dado mais específico, quando se aplicar
 - DATE em vez de DATETIME
 - Quando a hora não importa
 - SMALLINT em vez de INT
 - Quando o valor máximo nem chega próximo ao limite superior do SMALLINT
 - DECIMAL (8,2) em vez de DECIMAL (7,2)
 - O tamanho é o mesmo
 - Mas a capacidade de armazenamento é maior

USO DE COLUNAS OPCIONAIS

 Colunas opcionais são usadas quando o valor nem sempre será preenchido

- Ex.
 - nome CHAR (50) NOT NULL
 - A coluna nome é obrigatória (necessariamente terá um valor)
 - O não preenchimento do valor leva a um erro
 - bairro CHAR (50) NULL
 - A coluna bairro é opcional (pode permanecer sem valor algum)
 - O não preenchimento deixa o campo com o valor NULL
 - O conteúdo NULL significa que o valor é desconhecido

- Se a tabela possuir colunas opcionais
 - Cada registro terá um vetor de bits que indicará quais colunas opcionais possuem valor
- O tamanho do vetor de bits é múltiplo de 1 byte
 - Caso haja de 1 a 8 colunas opcionais, é gasto 1 byte
 - Caso haja de 9 a 16 colunas opcionais, são gastos 2 bytes
 - E assim por diante

• Ex. **nome** CHAR (50) NOT NULL = 50 bytes nome CHAR (50) NULL 50 bytes + 1 byte (se valor **não** nulo) 1 byte (se valor nulo) altitude INT NOT NULL = 4 bytes altitude INT NULL 4 bytes + 1 byte (se valor **não** nulo) 1 byte (se valor nulo)

 O exemplo acima considera que haja apenas uma coluna opcional na tabela

- Como vimos, a escolha entre colunas opcionais e obrigatórias afeta o tamanho dos registros
 - O tamanho do overhead depende do tamanho do registro
 - Em registros grandes, esse bitmap de 1 ou 2 bytes é insignificante

- No entanto, esse não é o único critério a utilizar
 - O uso de colunas nulas faz com que o registro tenha tamanho variável
 - Isso pode trazer um impacto em consultas
 - Como veremos na próxima aula

Atividade Individual

- Foi disponibilizado um banco de dados contendo uma tabela chamada pessoa
- O objetivo do trabalho é fazer ajustes no esquema para reduzir ao máximo a quantidade de bytes usada por registro
- Os ajustes devem ser feitos em uma tabela com outro nome. Os dados da tabela original devem ser migrados para ela
- Analise os registros para decidir que tipo de ajuste pode ser feito

pessoa
Id
Nome
Idade
IP
Nascimento
Sexo
email
CPF

Atividade Individual

 Os dois comandos abaixo são formas alternativas que permitem ver o tamanho dos dados de cada tabela

```
SELECT table_name, table_rows, data_length
FROM information_schema.TABLES
WHERE table_schema = 'NOME_DO_SEU_BANCO';
```

```
SHOW TABLE STATUS FROM `NOME_DO_SEU_BANCO` LIKE 'NOME_DA_SUA_TABELA';
```

 O objetivo é fazer com que a tabela ajustada ocupe menos de 135000 bytes

Comandos úteis

 Função que mantém apenas os caracteres a partir de um caractere específico

```
REPLACE(col, 'x', ")
```

 Função que extrai de col todo o conteúdo anterior a uma ocorrência pos de um delimitador del. Se pos = -1, é extraído o conteúdo posterior a todas as ocorrências

```
SUBSTRING_INDEX(col, del, pos)
```

 Função que mantém apenas os caracteres a partir de um caractere específico

SUBSTRING(col, 2)

Atividade Individual 2

- Suponha que o projeto tem um status que pode ser
 - 'A' de ativo
 - 'I' de inativo
 - 'S' de suspenso.
- Alguns projetos não têm valor definido para status
- Como modelar status?
 - Obs. Se fossem apenas duas possibilidades de valor (ex. 'ativo' ou 'inativo'), daria para usar um tipo booleano
 - BOOLEAN NULL
 - No entanto, essa opção já é inviabilizada porque são três possiblidades de valor

Atividade Individual 2

- Como modelar status?
 - Como opcional de tamanho fixo
 - CHAR (1) NULL
 - Como obrigatório de tamanho fixo e status = '?' para indefinido
 - CHAR (1) NOT NULL
 - Como obrigatório de tamanho variável
 - VARCHAR (1) NOT NULL
- Justifique sua resposta apresentando como argumento uma análise sobre os possíveis cenários
 - muitos registros com status
 - poucos registros com status