

Subject Name: Cryptography and Network Security

Unit No: 01 Unit Name: Introduction to Cryptography

Faculty Name:

Dr. Sangita Chaudhari Dr.Pallavi Sapkale

Index

Lecture 1 – Classical Encryption techniques, Symmetric cipher model	3
Lecture 2 – Mono-alphabetic cipher, Cryptanalysis	12
Lecture 3 – Polyalphabetic substitution techniques: Vigenère cipher	35

Lecture No: 1
Classical Encryption techniques,
Symmetric cipher model

Model for Network Security

Model for Network Security

This model requires:

- Design a suitable algorithm for the security transformation
- 2. Generate the secret information (keys) used by the algorithm
- 3. Develop methods to distribute and share the secret information
- Specify a protocol enabling the principals to use the transformation and secret information for a security service

Classical Security Techniques

- Cryptography
- Symmetric Key Encipherment/Secret Key
 Cryptography/Private Key Cryptography
- Asymmetric Key Encipherment/ Shared Key
 Cryptography/ Public Key Cryptography
- Steganography

Cryptography

Symmetric(Secret/Priva te key)

$$C = E_{k}(M)$$

$$M = D_{k}(C)$$

$$M = D_{k}(C)$$

Asymmetric(Shared/Pub lic key)

$$C = E_{pu.k}(M)$$

$$M = D_{pr.k}(C)$$

$$M = D_{pr.k}(C)$$

Basic Terminologies

- Plaintext original message
- Ciphertext coded message
- Cipher algorithm for transforming plaintext to ciphertext
- Key info used in cipher known only to sender/receiver
- Encipher (encrypt) converting plaintext to ciphertext
- **Decipher (decrypt)** recovering plaintext from ciphertext
- Cryptanalysis (code breaking) study of principles/ methods of deciphering ciphertext without knowing key
- Cryptology field of both cryptography and cryptanalysis

Requirements of Classical Security Techniques

- Strong encryption algorithm
- An opponent who knows one or more ciphertexts would not be able to find the plaintexts or the key
- Ideally, even if he knows one or more pairs of plaintextciphertext, he would not be able to find the key
- Sender and receiver must share the key. Once the key is compromised, all communications using that key are readable
- Encryption algorithm is not a secret. It is impractical to decrypt the message on the basis of the ciphertext plus the knowledge of the encryption algorithm (Kerckhoff's principle)

Classical Symmetric Ciphers(Encryption Techniques)

Classical (historical) algorithms are based on substitution
 & permutation.

Encryption: $C = E_k(P)$

Decryption: $P = D_k(C)$

In which,
$$D_k(E_k(x)) = E_k(D_k(x)) = x$$

Classical Symmetric Ciphers

Unit Name: Introduction & Number

Lecture No: 2 Monoalphabetic Ciphers

- The simplest monoalphabetic cipher is the additive cipher.
- This cipher is sometimes called a shift cipher and sometimes a Caesar cipher, but the term additive cipher better reveals its mathematical nature.

a	b	c	d	e	f	g	h	i	j	k	1	m	n	0	p	q	r	s	t	u	V	W	X	у	Z
A	В	C	D	Е	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z
00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Use the additive cipher with key = 5 to encrypt the message "SECURITY".

Solution

We apply the encryption algorithm to the plaintext, character by character:

	Pla	inte	ext:	S -:	>			En	cry	ptio	n: ((18·	+5)	mo	d			Cip	her	text	i: 23	3 ->	•		
	18							26									2	X							
	Pla	inte	ext:	E -:	> 4	ļ		En	cry	ptio	n: ((4+	5)m	nod	26			Cipl	her	text	t: 9	-> ,	J		
	Pla	inte	ext:	C -	> 2)		En	cry	ptio	n: (2+	5)m	nod	26			Cipl	her	text	t: 7	->	4		
	Pla			_		_		En	cry	ptio	n: ((20-	+5)	mod	d		(Cipl	her	text	t: 2	5 ->	•		
	20							26	-	•		•	,					Z							
	– ° Pla	inte	xt.	R -:	>			En	cry	ptio	n: ((17-	+5)	mod	d		(Cipl	her	text	t: 22	<u>2</u> ->	•		
	17		,,,,,					26	•	•		`	,				1	W							
	 Pla	inte	xt.	l ->	8			En	cry	ptio	n: ((8+	5)m	nod	26			Cipl	her	text	t: 13	3 ->	•		
а	ь	С	d	e	f	g	h	Ęn	CFV	ptiq	n _i	[19	(5)	mod	d _n	q	r	N _s	t	u	v	w	x	у	z
A	В	C	D	Е	F	G	Н	26	_	K	_	М		-	P	Q	_	Cip	h e r		12			Y	$\frac{z}{z}$
00				04									100000		15									_	
	24							26								<u>,</u>					: 3				

Use the additive cipher with key = 5 to decrypt the message "XJHZWNYD".

Solution

We apply the decryption algorithm to the plaintext character by character:

	Cipt	nert	ext:	: X ·	-> 2	23		D	ecr	ypt	ion	: (2	3 - :	5)m	od			Р	lair	ntex	t: 1	8 ->	>		
(Ciph	nert	ext	: J -	> 9			2	6									S)						
(Cipt	nert	ext	: H	-> 7	7		D	ecr	ypt	ion	: (9) - 5	5)mo	od 2	26		Р	lair	ntex	t: 4	->	Ε		
(Cipt	nert	ext	Z -	-> 2	25		D	ecr	ypt	ion	: (7	7 - 5	5)mo	od 2	26		Р	lair	ntex	t: 2	->	С		
(Cipt	nert	ext	W	->			D	ecr	ypt	ion	: (2	25 -	, 5)n	nod			Р	lair	ntex	t: 2	0 ->	>		
2	22							2		•		`		,				U							
(Ciph	nert	ext	: N	-> ^	13		D	ecr	ypt	ion	: (2	22 -	5)n	nod			Р	lair	ntex	t: 1	7 ->	>		
(Cipt	nert	ext	Υ.	-> 2	24		2		,		`		,				R							
(Cipt	nert	ext	D	-> (3		D	ecr	ypt	ion	: (1	3 -	5)m	od			P	lair	itex	t: 8	->	l		
a	b	с	d	e	f	g	h		$6_{ m j}$	k	1	m		О	p	q	r	s	t	u	v	w	x	у	z
A	В	С	D	Е	F	G	Н	ID	ecr	уpt	q n	M	4	5) r	n g o	Q	R	S	Т	U	V	W	X	Y	Z
00	01	02	03	04	05	06	07			10							17	18	19	20	21	22	23	24	25
	~							Ď	ecr	ypt	ion	: (3	3- 5) mo	od 2	26		Y		1					

Cryptanalysis

"Cryptanalysis is the science and art of breaking secret codes created by Cryptography"

- Objective to recover key not just message
- Approaches:
 - > Cryptanalytic attack
 - > Brute-force attack
 - > Statistical attack
 - > Pattern attack

Ciphertext only - only ciphertext is known to attacker

Known Plaintext - pairs of ciphertext and corresponding to plaintext is known to attacker

Chosen Plaintext - attacker selects a plaintext

Chosen Ciphertext - attacker selects a ciphertext

Cryptanalysis of Caesar Cipher

- only have 25 possible ciphers
 - A maps to B,C,...Z
- could simply try each in turn
- a brute force search
- given ciphertext, just try all shifts of letters
- Ciphertext: SGHR HR BRR BKZRR

	S	G	Н	R	Н	R		В	R	R	В	K	Z	R	R
25	R	F	G	Q	G	Q		А	Q	Q	А	J	Y	Q	Q
24	Q	Е	F	Р	F	Р		Z	Р	Р	Z	I	Х	Р	Р
23	Р	D	Е	0	Е	0		Y	0	0	Y	Н	w	0	0
22	0	С	D	N	D	N		Х	N	N	Х	G	٧	N	N
21	N	В	С	М	С	М		W	М	М	W	F	U	М	М
20	М	Α	В	L	В	L		٧	L	L	V	Е	Т	L	L
19	L	Z	Α	К	Α	K		U	К	К	U	D	S	K	K
18	К	Υ	Z	J	Z	J		Т	J	J	Т	С	R	J	J
17	J	Х	Υ	I	Υ	I		S	I	I	S	В	Q	I	I
16	I	W	Х	Н	Х	Н		R	Н	Н	R	А	Р	Н	Н
15	Н	٧	W	G	W	G		Q	G	G	Q	Z	0	G	G
14	G	U	V	F	V	F		Р	F	F	Р	Y	N	F	F
13	F	Т	U	E	U	E		0	E	Е	0	Х	М	E	Е
12	Е	S	Т	D	Т	D		N	D	D	N	W	L	D	D
11	D	R	S	С	S	С		М	С	С	М	V	K	С	С
10	С	Q	R	В	R	В		L	В	В	L	U	J	В	В
1					 		 	1			 				

Statistical Attacks

- Compute frequency of each letter in ciphertext (KHOOR ZRUOG):
- G = 0.1, H = 0.1, K = 0.1, O = 0.3, R = 0.2, U = 0.1, Z = 0.1
- Let Φ (i) be a correlation function of the frequency of each letter in ciphertext with the corresponding letter in English, $\phi(i) = \sum_{0 < c < 25} f(c)p(c-i)$

- i is the key
- f (c) is the frequency of character c in cipherter

Statistical Attack

For ciphertext (KHOOR ZRUOG): G H K O R U Z

$$\phi(i) = 0.1p(6-i) + 0.1p(7-i) + 0.1p(10-i) + 0.3p(14-i) + 0.2p(17-i) + 0.1p(20-i) + 0.1p(25-i)$$

Correlation: $\varphi(i)$ for $0 \le i \le 25$

i	φ(i)	i	φ(i)	i	φ(i)	i	φ(i)
0	0.0482	7	0.0442	13	0.0520	19	0.0315
1	0.0364	8	0.0202	14	0.0535	20	0.0302
2	0.0410	9	0.0267	15	0.0226	21	0.0517
3	0.0575	10	0.0635	16	0.0322	22	0.0380
4	0.0252	11	0.0262	17	0.0392	23	0.0370
5	0.0190	12	0.0325	18	0.0299	24	0.0316
6 hah	0.0660 le kevs t	1256	d on ·			25	0.0430

Most probable keys, based on :

 $\varphi(6) = 0.0660$ plaintext: EBIIL TLOLA

 $\phi(10) = 0.0635$ plaintext AXEEH PHKEW

 φ (3) = 0.0575 plaintext HELLO WORLD

 ϕ (14) = 0.0535 plaintext WTAAD LDGAS

The only English phrase is for i = 3 (key = 3 or 'D')

Pattern Attack

- Human languages are redundant
- Letters are not equally commonly used
- In english e is by far the most common letter and then t,
 r, n, i, o, a, s
- It have tables of single, double & triple letter frequencies

Pattern Attack

- Given ciphertext:
 - UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETS
 XAIZVUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZH
 SXEPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ
- count relative letter frequencies
- Guess: P & Z are e and t
- guess ZW is TH and hence ZWP is THE
- proceeding with trial and error finally get:
 - it was disclosed yesterday that several informal but direct contacts have been made with political representatives of the viet cong in moscow

Caesar Cipher-Shortcomings

- Key is too short
- Key can be found by exhaustive search
- Statistical frequencies not concealed well
- They look too much like regular English letters

Multiplicative Cipher

Affine Cipher

Affine Cipher

Use an affine cipher to encrypt the message "hello" with the key pair (7, 2).

Encryption:

P: $h \rightarrow 07$	Encryption: $(07 \times 7 + 2) \mod 26$	$C: 25 \rightarrow Z$
P: $e \rightarrow 04$	Encryption: $(04 \times 7 + 2) \mod 26$	$C: 04 \rightarrow E$
$P: 1 \rightarrow 11$	Encryption: $(11 \times 7 + 2) \mod 26$	$C: 01 \rightarrow B$
$P: 1 \rightarrow 11$	Encryption: $(11 \times 7 + 2) \mod 26$	$C: 01 \rightarrow B$
$P: o \rightarrow 14$	Encryption: $(14 \times 7 + 2) \mod 26$	$C: 22 \rightarrow W$

Affine Cipher

Use the affine cipher to decrypt the message "ZEBBW" with the key pair (7, 2) in modulus 26.

Decryption:

Multiplicative Inverse of 7=15

$C: Z \rightarrow 25$	Decryption: $((25 - 2) \times 7^{-1}) \mod 26$	$P:07 \rightarrow h$
$C: E \rightarrow 04$	Decryption: $((04 - 2) \times 7^{-1}) \mod 26$	$P:04 \rightarrow e$
$C: B \rightarrow 01$	Decryption: $((01 - 2) \times 7^{-1}) \mod 26$	$P:11 \rightarrow 1$
$C: B \rightarrow 01$	Decryption: $((01 - 2) \times 7^{-1}) \mod 26$	$P:11 \rightarrow 1$
$C: W \rightarrow 22$	Decryption: $((22 - 2) \times 7^{-1}) \mod 26$	$P:14 \rightarrow o$

Simple Monoalphabetic Cipher

Instead of shifting the letters with a fixed amount, any permutation of the alphabet is done.

Plain	а	b	С	d	е	f	g	h	i	j	k	I	m	n	0	p	q	r	S	t	u	V	8	X	У	Z
Cipher	D	K	٧	Q	F	ı	В	J	W	Р	Ε	S	С	X	Н	Т	M	Υ	Α	U	0	L	R	G	Z	N

Plaintext: cryptography

Ciphertext: VYZXUHBYDMJZ

Number of keys?

Simple Monoalphabetic Cipher

- Keys are $26! = 4 \times 10^{26}$
- Decryption without a key would need to try all the 26!
 Possibilities.
- With so many keys, it might be secure
- The problem is that
 - language characteristics can be used to speed up the process of decryption

Unit Name: Introduction & Number

Lecture No: 3
Polyalphabetic substitution
techniques: Vigenère cipher

Polyalphabetic Substitution Cipher

- Each occurrence of a character may have a different substitute. The relationship between a character in the plaintext to a character in the ciphertext is oneto-many.
- Makes cryptanalysis harder with more alphabets (substitutions) to guess and flattens frequency distribution
- A key determines which substitution is used in each step

Autokey Cipher

$$P = P_1 P_2 P_3 \dots$$

$$C = C_1 C_2 C_3 \dots$$

$$k = (k_1, P_1, P_2, ...)$$

Encryption: $C_i = (P_i + k_i) \mod 26$

Decryption: $P_i = (C_i - k_i) \mod 26$

Plaintext = attack is today $K_1 = 12$

Plaintext:	a	t	t	a	c	k	i	S	t	O	d	a	y
P's Values:	00	19	19	00	02	10	08	18	19	14	03	00	24
Key stream:	12	00	19	19	00	02	10	08	18	19	14	03	00
C's Values:	12	19	12	19	02	12	18	00	11	7	17	03	24
Ciphertext:	\mathbf{M}	\mathbf{T}	\mathbf{M}	\mathbf{T}	\mathbf{C}	\mathbf{M}	\mathbf{S}	\mathbf{A}	\mathbf{L}	H	R	D	\mathbf{Y}

Ciphertext = mtmtcm sa Ihrdy

- Proposed by Giovan Batista Belaso (1553) and reinvented by Blaisede Vigenère (1586)
- Multiple caesar ciphers
- key is multiple letters long K = k1 k2 ... kd
- ith letter specifies ith alphabet to use
- use each alphabet in turn
- repeat from start after d letters in message
- decryption simply works in reverse

$$P = P_1 P_2 P_3 \dots$$
 $K = [(k_1, k_2, ..., k_m), (k_1, k_2, ..., k_m), ...]$

Encryption: $C_i = P_i + k_i$ Decryption: $P_i = C_i - k_i$

Example: Encrypt the message "She is listening" using the 6-character keyword "PASCAL".

Plaintext:

P's values:

Key stream:

C's values:

Ciphertext:

S	h	e	i	S	1	i	S	t	e	n	i	n	g
18	07	04	08	18	11	08	18	19	04	13	08	13	06
15	00	18	02	00	11	15	00	18	<i>02</i>	00	11	15	00
07	07	22	10	18	22	23	18	11	6	13	19	02	06
Н	Н	W	K	S	W	X	S	L	G	N	T	С	G

keyword: deceptive

key: de cep tivedecept ived eceptive

plaintext: we are discovered save yourself

ciphertext: ZI CVT WQNGRZGVTW AVZH CQYGLMGJ

```
KEY
                J K L M N O P Q R S T U V W X Y Z
                  KLMNOPQRST
               J K L M N O P Q R S T U V W
             J K L M N O P Q R S T U V W
D D E F G H I J K L M N O P Q R S T U V W
          J K L M N O P Q R S T U V W X
        J K L M N O P Q R S T U V W X
 G H I J K L M N O P Q R S T U V W X
        LMNOPQRSTUVW
   J K L M N O P Q R S T U V W X Y Z
  J K L M N O P Q R S T U V W X
K K L M N O P Q R S T U V W X Y Z A B
 LMNOPQRSTUVWXYZABCDE
                         ABCDE
N N O P Q R S T U V W X Y Z A B C D E F G H I
                     ABCDE
                  ZABCDEFGHI
                  ABCDEFGHI
          XYZABCDE
                       FGHIJKLMNO
         YZABCDEFGHI
        YZABCDEFGHI
 V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
 WXYZABCDEFGHI
                       JKLMNOPQR
X X Y Z A B C D E F G H I J K L M N O P Q R S T
                    JKLMNOPQRST
                  J K L M N O P Q R S T U V W X Y
```


- Its strength lays in the fact that each plaintext letter has multiple ciphertext letters
 - Letter frequencies are obscured (but not totally lost)
- The Vigenère Cipher can be broken using the following steps:
 - 1. Find the period (key length); call it n
 - 2. Break ciphertext into n parts
 - Each part is enciphered using the same key letter

(Caesar cipher)

3. Solve each part as a Caesar ciphent

One Time Pad

- Idea: use a (truly) random key as long as the plaintext
- It is unbreakable since the ciphertext bears no statistical relationship to the plaintext
- Moreover, for any plaintext & any ciphertext there exists a key mapping one to the other
- Thus, a ciphertext can be decrypted to any plaintext of the same length
- The cryptanalyst is in an impossible situation

One Time Pad

- The security is entirely given by the randomness of the key
 - If the key is truly random, then the ciphertext is random
 - A key can only be used once if the cryptanalyst is to be

kept in the "dark"

- Problems with this "perfect" cryptosystem
 - Making large quantities of truly random characters is a

significant task

- Key distribution is enormously difficult:

Lecture 3: Polyalphabetic substitution techniques: Vigenère cipher

to be sent, a key of equal length must be

Thank You

