Probabilités et applications

2023-2024

Table des matières

1	Gér	néralités sur les probabilités	5					
	1.1	Tribus	5					
	1.2	Probabilité	6					
		1.2.1 Continuité	6					
	1.3	Mesure de Dirac	7					
	1.4	Mesure de Lebesgue	8					
		1.4.1 Mesure de Lebesgue-Stieltjes	8					
	1.5	Fonctions mesurables	9					
	1.6	Loi de la variable aléatoire	11					
	1.7	Intégrale	12					
		1.7.1 Conséquences en probabilités	14					
	1.8	Fonctions de répartition	15					
	1.9	Système complet d'événements	19					
2		eteurs aléatoires	21					
	2.1	Fonction de répartition	21					
3	Ind	Indépendance 25						
	3.1	Evénements indépendants	25					
	3.2	Mutuellement indépendants	25					
	3.3	Classes d'événements indépendantes	25					
	3.4	Indépendance de variables aléatoires	27					
	3.5	Changement de variables	30					
4	Dér	Dénombrement 33						
	4.1	Dispositions sans répétition	33					
	4.2	Dispositions avec répétition	33					
	4.3	Tirage des urnes sans remise	34					
	4.4	Tirage des urnes avec remise						
5	Tra	vaux dirigés	35					

Chapitre 1

Généralités sur les probabilités

1.1 Tribus

Définition 1.1.1 (σ -algèbre \mathscr{A}). Ω ensemble. Les éléments de Ω constinuent une σ -algèbre \mathscr{A} :

- 1. $\Omega \in \mathscr{A}$;
- 2. Si $A \in \mathcal{A}$, alors $A^C \in \mathcal{A}$;
- 3. Si $\{A_n\}_{n=1}^{\infty}$ est une suite dénombrable dans \mathscr{A} , alors $\bigcup_n A_n \in \mathscr{A}$.

Exemple.

- 1. 2^{Ω} , ensemble de tous les ensembles de Ω , triviale;
- 2. Grossière $\{\emptyset, \Omega\}$.

Définition 1.1.2 (σ -algèbre engendrée). Dans Ω , on a une famille d'ensembles \mathscr{S} . On appelle $\sigma(\mathscr{S})$ la σ -algèbre engendrée par \mathscr{S} qui est la plus petite σ -algèbre qui contient \mathscr{S} .

$$\sigma(\mathscr{S}) = \bigcap_{\substack{\mathscr{A}\sigma \ -algebre \ \mathscr{A}_{lpha} \in \mathscr{S}}} \mathscr{A}_{lpha}$$

Exemple. $\Omega = \{a, b, c\}, \mathscr{S} = \{a, b\}$ Construire $\sigma(\mathscr{S})$.

Exemple. $\Omega = \{1, 2, 3, 4\}$ et $\mathscr{S} = \{\{1\}, \{2, 3\}\}$. Construire $\sigma(\mathscr{S})$.

Exemple. On a dans Ω deux ensembles A, B. Construire $\sigma(\{A, B\})$. $\sigma(\{A, B\}) = \{\Omega, \emptyset, A, B, A^C, B^C, A \cup B, A \cup B^C, \dots\}$ (15 éléments).

Imaginons que $\Omega = \mathbb{R}$.

 σ -algèbre de BOREL (β). Il s'agit de la σ -algèbre engendrée par les intervalles ouverts.

$$\begin{split} \mathscr{S} &= \{(a,b), (-\infty,a), (b,+\infty)\}.\\ \text{On a } [a,b) \in \beta, \, \text{car } \bigcap_{k=1}^\infty (a-\frac{1}{k},b) = [a,b). \end{split}$$

Remarque (intersections dans une σ -algèbre). Si $A,B\in\mathscr{A},\ est\ ce\ que\ A\cap B\in\mathscr{A}$?

$$A \cap B = (A^C \cup B^C)^C.$$

 $A - B = A \cap B^C$. $A - B \in \mathscr{A}$.

Les intersections dénombrables sont aussi dans ${\mathscr A}$.

Proposition 1.1.1. β est aussi engendrée par :

1.
$$\mathscr{S}_1 = \{[a,b)\};$$

2.
$$\mathscr{S}_2 = \{(a,b]\};$$

3.
$$\mathcal{S}_3 = \{[a, +\infty)\};$$

4.
$$\mathscr{S}_4 = \{(-\infty, a)\};$$

5.
$$\mathscr{S}_5 = \{(a, +\infty)\}.$$

Démonstration. On montre \mathscr{S}_1 .

$$[a,b) = \bigcap_{k=1}^{\infty} \left(a - \frac{1}{k}, b \right) \implies \sigma([a,b)) \subset \beta.$$
 (1.1)

Montrons maintenant que $\beta \in \sigma([a,b))$.

$$\bigcup_{k=1}^{\infty} \left[a + \frac{1}{k}, b \right) = (a, b).$$

Donc $\beta \in \sigma([a,b))$. Montrons \mathscr{S}_3 .

1.2 Probabilité

Définition 1.2.1 (Probabilité). Soit (Ω, \mathscr{A}) un espace mesurable.

On introduit une fonction d'ensemble $\mathbb{P}: \mathscr{A} \longrightarrow [0,1]$ qu'on appelle **probabilité** et qui vérifie :

1.
$$\mathbb{P}(\Omega) = 1$$
;

2. Si (A_n) est une suite dénombrable dans $\mathscr A$ d'éléments deux à deux disjoints, alors

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mathbb{P}(A_n).$$

Si $\{A_n\}_{n=1}^{\infty}$ est telle que A_n ne sont pas deux à deux disjoints, alors

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) \le \sum_{n=1}^{\infty} \mathbb{P}(A_n).$$

Cette propriété s'appelle σ -sous additivité.

1.2.1 Continuité

Soit $\{A_n\}$ une suite croissante, i. e. $A_n \subset A_{n+1}$. Est-ce que

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mathbb{P}(A_n)?$$

Soit $\{A_n\}_{n=1}^{\infty}$ une suite décroissante, le $A_{n+1} \subset A_n$, alors

$$\mathbb{P}\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mathbb{P}(A_n).$$

FIGURE 1.1 – On construit ainsi les couronnes

Démonstration.

$$\bigcup_{n=1}^{\infty} A_n = A_1 \cup \left(\bigcup_{n=1}^{\infty} (A_{n+1} \setminus A_n)\right)$$

Donc par le deuxième axiome, on a

$$\mathbb{P}(\bigcup_{n=1}^{\infty}A_n) = \mathbb{P}(A_1) + \sum_{n=1}^{\infty}\mathbb{P}(A_{n+1} \setminus A_n)$$

$$= \mathbb{P}(A_1) + \lim_{k \to +\infty} \sum_{n=1}^{k}\mathbb{P}(A_{n+1} \setminus A_n)$$

$$= \mathbb{P}(A_1) + \lim_{k \to +\infty} \sum_{n=1}^{k} (\mathbb{P}(A_{n+1}) - \mathbb{P}(A_n)) \text{ (somme téléscopique)}$$

Or on a

$$\sum_{n=1}^{k} (\mathbb{P}(A_{n+1}) - \mathbb{P}(A_n)) = \mathbb{P}(A_{k+1}) - \mathbb{P}(A_1).$$

Donc

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \mathbb{P}(A_1) + \lim_{k \to \infty} [\mathbb{P}(A_{k+1}) - \mathbb{P}(A_1)]$$

et on obtient le résultat désiré.

 $(\Omega, \mathcal{A}, \mathbb{P})$ espace mesuré ou de probabilité.

Dans le langage des probabilités, on appelle Ω l'univers et les éléments de $\mathscr A$ sont des événements.

1.3 Mesure de Dirac

Soit $\omega_0 \in \Omega$ quelconque.

$$\delta_{w_0}(A), A \in \mathscr{A}.$$

$$\delta_{w_0}(A) = \begin{cases} 1 & \text{si } w_0 \in A \\ 0 & \text{sinon.} \end{cases}$$

Montrer qu'il s'agit d'une probabilité.

Soit $\Omega = \{\omega_1, \omega_2, \dots, w_k, \dots\}$. On associe à w_i un poids p_i tel que

$$\sum_{i=1}^{\infty} p_i = 1. {(1.2)}$$

Si $A \subset \Omega$, on définit

$$\mathbb{P}(A) = \sum_{i,\omega_i \in A} p_i.$$

Si $card(\Omega) < \infty$, $\Omega = \{\omega_1, \omega_2, \dots, \omega_N\}$. On associe à $\omega_j = \frac{1}{N}$. Donc

$$\mathbb{P}(A) = \sum_{i,\omega_i \in A} \frac{1}{N} = \frac{card(\omega_i \text{ dans } A)}{card(\text{total de } \omega_i)} = \frac{\text{cas favorables}}{\text{cas possibles}}.$$

1.4 Mesure de Lebesgue

Elle est définie sur $\beta(\mathbb{R})$ et elle est la seule mesure qui se comporte comme ceci : $\lambda((a,b]) = b - a$.

On a aussi

$$\lambda((a,b)) = \lambda([a,b]) = b - a. \tag{1.3}$$

 $(a,b]=(a,b)\cup\{(b)\}.$ Il faut montrer que $\lambda(\{b\})=0.$ On a

$$\{b\} = \bigcap_{n=1}^{\infty} (b - \frac{1}{k}, b].$$

Donc

$$\begin{split} \lambda(\{b\}) &= \lambda(\bigcap_{k=1}^{\infty} (b - \frac{1}{k}, b]) \text{ intersection décroissante} \\ &= \lim_{k \to \infty} \lambda((b - \frac{1}{k}, b]) \\ &= \lim_{k \to \infty} (b - b + \frac{1}{k}) = \lim_{k \to \infty} \frac{1}{k} = 0. \end{split}$$

1.4.1 Mesure de Lebesgue-Stieltjes

Soit F une fonction croissante bornée et continue à droite (i. e. $F(x_0) = \lim_{x \to x_0} F(x)$) et supposons que

On définit une fonction d'ensemble $\nu((a,b]) = F(b) - F(a)$. ν devient une mesure de probabilité sur $\sigma((a,b]) = \beta$.

On a $\nu(\{x_d\}) \neq 0$.

Démonstration. $\{x_d\} = \bigcap_{k=1}^{\infty} (x_d - \frac{1}{k}, x_d].$

Figure 1.2 – Mesure de Lebesgue-Stieltjes

Or

$$\nu(\{x_d\}) = \lim_{k \to \infty} \nu((x_d - \frac{1}{k}, x_d]) = \lim_{k \to \infty} F(x_d) - F(x_d - \frac{1}{k})$$
$$= F(x_d) - \lim_{k \to \infty} F(x_d - \frac{1}{k}) = F(x_d)_+ - F(x_d)_-$$

= différence entre la limite gauche et la limite droite > 0.

1.5 Fonctions mesurables

 $(\Omega, \mathscr{A}) \to (\mathbb{R}, \beta), f: \Omega \to \mathbb{R}.$

Définition 1.5.1 (Mesurable). On dit que f est mesurable si pour tout borélien $B \in \beta$, $f^{-1}(B) \in \mathscr{A}$.

Définition 1.5.2 (Equivalente). $f^{-1}(\beta)$ est une sous σ -algèbre de \mathscr{A} .

Exercice 1. Montrer que $f^{-1}(\beta)$ est une σ -algèbre.

Démonstration. 1. $f^{-1}(\mathbb{R}) = \Omega$.

- 2. Si $A \in f^{-1}(\beta)$, est-ce que A^C est aussi dans $f^{-1}(\beta)$? Si $A \in f^{-1}(\beta)$, alors $\exists B \in \beta$ tel que $A = f^{-1}(B)$. $A^C = (f^{-1}(B))^C = f^{-1}(B^C)$.
- 3. Si $\{A_n\} \in f^{-1}(\beta)$, est-ce que $\bigcup_{n=1}^{\infty} A_n \in f^{-1}(\beta)$?

Proposition 1.5.1. $f: \Omega \to \mathbb{R}$.

Soit \mathscr{C} une famille dans \mathbb{R} telle que $\sigma(\mathscr{C}) = \beta$. Si $f^{-1}(C), C \in \mathscr{C}$ est dans \mathscr{A} , alors f est mesurable.

Exemple. $f: \Omega$ (topologie) $\longrightarrow \mathbb{R}$ (topologie ouverts) continue. f est mesurable.

Si \mathcal{O} ouvert dans \mathbb{R} , $f^{-1}(\mathcal{O})$ est ouvert dans Ω .

 $f:(\Omega,\mathscr{A})\longrightarrow (\mathbb{R},\beta).$ Pour tout $\omega\in\Omega,$ $f(\omega)=$ constante. On a deux cas :

- 1. $f^{-1}((a,b)) = \emptyset$ si la constante n'est pas dans (a,b);
- 2. $f^{-1}((a,b)) = \Omega$ si la constante est bien dans (a,b).

Exemple. Soient $f, g: (\Omega, \mathscr{A}) \to (\mathbb{R}, \beta)$ deux fonctions mesurables. Montrons que f + g est mesurable.

Démonstration. On considère la famille $\{(a, \infty)\}$.

Si on veut montrer que f+g est mesurable, il suffit de montrer que $(f+g)^{-1}((a,\infty)) \in \mathscr{A}$. Donc il faut montrer que $\{\omega, f(\omega) + g(\omega) > a\} \in \mathscr{A}$, ie $\{\omega, f(\omega) > a - g(\omega)\}$.

Montrons d'abord que a-g est mesurable.

 $\omega \in (a-g)^{-1}((b,\infty)).$

$$a - g(\omega) > b \implies -g(\omega) > b - a$$

Or $\{\omega, g(\omega) < a - b\} \in \mathscr{A}$,
c'est à dire $g^{-1}((-\infty, a - b)) \in \mathscr{A}$.

Notons h = a - g.

Si f, h sont mesurables, est-ce que $\{\omega, f(\omega) > h(w)\}$?

On a $\{\omega, f(\omega) > h(x)\} = \bigcup_{r \in \mathbb{O}} \{f > r\} \cap \{h < r\}.$

Or $\{\omega, f(\omega) > r\} = f^{-1}(r, \infty) \in \mathscr{A}$ et $\{\omega, h(\omega) < r\} = h^{-1}((-\infty, r)) \in \mathscr{A}$.

On a donc montré que f + g est mesurable.

Proposition 1.5.2. On a aussi:

- 1. Si λ est un scalaire, λf est mesurable;
- 2. $f \cdot g$ est mesurable;
- 3. Si $g \neq 0$, $\frac{f}{g}$ est mesurable;
- 4. Si on a une suite $\{f_n\}_{n\in\mathbb{N}}$ de fonctions mesurables, on a $\sup f_n$, $\inf f_n$, $\lim \sup f_n$, $\lim \inf f_n$ sont mesurables.

Soient $\Omega \in \mathbb{R}$ borné et $f:(\Omega,\beta) \longrightarrow (\mathbb{R},\beta)$.

Soit \mathcal{P} une partition de Ω , ie un ensemble $\mathcal{P} = \{P_i\}_{i=1}^{\infty}$ tel que

$$\bigcup_{i=1}^{\infty} P_i = \Omega \text{ et } P_i \cap P_j \neq 0 \text{ si } i \neq j.$$

Considérons par exemple la partition $\mathcal{P} = \{P_1, P_2, P_3, P_4\}.$

Comme \mathcal{P} est une famille dans Ω , construisons $\sigma(\mathcal{P})$, ie la σ -algèbre engendrée par \mathcal{P} . Dans notre cas, $\sigma(P_1, P_2, P_3, P_4)$.

Cette σ -algèbre est composée par la réunion d'éléments de $\mathcal{P} \cup \{\emptyset\}$.

$$\sigma(\mathcal{P}) = \{\emptyset, \Omega, P_1, P_2, P_3, P_4, P_1^C = P_2 \cup P_3 \cup P_4, \ldots\}.$$

Si on a $B = \bigcup_{i=1}^{m} P_i$, alors $B^C = \bigcap_{i=1}^{m} P_i^C = \bigcap_{i=1}^{m} (\bigcup_{i=1}^{m} P_i)$.

Proposition 1.5.3. On sait exactement comment sont faites les fonctions mesurables dans ce cas. Il s'agit de fonctions constantes par morceaux.

Démonstration. Soit $\{p\} \in \mathbb{R}$, donc $f^{-1}(\{p\}) \in \sigma(\mathcal{P})$.

Supposons par exemple que $f^{-1}(\{p\}) = P_2 \cap P_3$. Si $x \in f^{-1}(\{p\})$, alors f(x) = p, mais $x \in P_2 \cup P_3$, donc sur $P_2 \cup P_3$ on aura en fait une valeur constante.

Définition 1.5.3 (Variable aléatoire). Soit $X : (\Omega, \mathscr{A}, \mathbb{P}) \longrightarrow (\mathbb{R}, \beta)$. Si X est une fonction mesurable, on dit que X est une **variable aléatoire**.

Remarque (Notations). On notera

$$\mathbb{P}(X \in B) = \mathbb{P}(\omega, X(\omega) \in B).$$

1.6 Loi de la variable aléatoire

Définition 1.6.1 (Loi de variable aléatoire). Il s'agit d'une mesure de probabilité définie sur \mathbb{R} . On va la noter avec le symbole P_X .

$$Si B \in \beta$$
,

$$P_X(B) = \mathbb{P}(X^{-1}(B)),$$

avec

$$X^{-1}(B) = \{\omega \mid X(\omega) \in B\}.$$

Définition 1.6.2 (Rappel : mesure (cf cours d'intégration de L3)).

Soit (E,τ) un ensemble mesurable. Alors une application $\mu:\tau\to\overline{\mathbb{R}^+}$ est une mesure sur E si:

- 1. $\mu(\emptyset) = 0$;
- 2. Pour toute suite (A_n) de τ disjointe, ie $A_n \cap A_m = \emptyset$ si $m \neq n$, alors

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \sum_{n\in\mathbb{N}}\mu(A_n) \ (\sigma\text{-}additivit\'e.)$$

Exercice 2. Montrer que P_X est une mesure.

Démonstration. 1. $P_X(\mathbb{R}) = \mathbb{P}(X^{-1}(\mathbb{R})) = \mathbb{P}(\Omega) = 1$;

2. Si $\{B_n\}$ est une suite deux à deux disjointe,

$$P_X\left(\bigcup_{n=1}^{\infty} B_n\right) = \sum_{n=1}^{\infty} P_X(B_n),$$

car

FIGURE 1.3 – De façon informelle, une mesure a la propriété d'être monotone : si l'ensemble E est un sous-ensemble de F, la mesure de E est inférieure ou égale à celle de F. De plus, on impose à la mesure de l'ensemble vide la valeur E (Wikipédia).

$$\begin{split} P_X\left(\bigcup_{n=1}^\infty B_n\right) &= \mathbb{P}\left(X^{-1}\left(\bigcup_{n=1}^\infty B_n\right)\right) \\ &= \mathbb{P}\left(\bigcup_{n=1}^\infty X^{-1}(B_n)\right) \text{ (propriété de l'image réciproque)} \\ &= \sum_{n=1}^\infty \mathbb{P}(X^{-1}(B_n)) \text{ (\mathbb{P} est une probabilité)} \\ &= \sum_{n=1}^\infty P_X(B_n). \end{split}$$

1.7 Intégrale

Définition 1.7.1 (Fonctions étagées/simples). Soit X espace mesuré, $x \in X$. Une fonction h est appelée fonction étagée si h s'écrit de la manière suivante

$$h(x) = \sum_{k=1}^{M} c_k \mathbb{1}_{A_k}(x),$$

avec A_k ensemble mesurables (un élément de la σ -algèbre) tel que $A_k \cap A_j$ si $k \neq j$ et $c_k \geq 0$.

Théorème 1.7.1. Soit $f:(X, \mathscr{A}, \mu)$ (espace mesuré) $\longrightarrow (\mathbb{R}^+, \beta)$ mesurable. Alors il existe une suite croissante $(\forall x, h_n(x) \leq h_{n+1}(x))$ de fonctions étagées $\{h_k\}_{n\in\mathbb{N}}$ telle que

$$f(x) = \lim_{n \to \infty} h_n(x).$$

Définition 1.7.2 (Intégrale de Lebesgue).

1. Première étape. On considère une fonction simples

$$h(x) = \sum_{k=1}^{M} c_k \mathbb{1}_{A_k}(x),$$

alors

$$\int_X h d\mu = \int_X h(x) d\mu(x) = \sum_{k=1}^M c_k \mu(A_k).$$

2. Deuxième étape. Si f est mesurable non négative,

(a)

$$\int_X f d\mu = \sup \left(\int_X h d\mu, h \ \textit{simple}, \ h \leq f \right).$$

(b) Si $f = \lim_{k \to \infty} h_k, h_k$ simples non négatives,

$$\int_X f d\mu = \lim_{k \to \infty} \int h_k d\mu.$$

3. Si f mesurable de signe quelconque, on écrit $f(x) = f_+(x) - f_-(x)$, où $f_+ = \max(f,0)$ et $f_- = \max(-f,0)$. (à suivre...)

Définition 1.7.3 (De classe \mathcal{L}^1). On dira que f est de classe \mathcal{L}^1 si

$$\int_{X} |f| d\mu < +\infty.$$

Dans ce cas, $|f| = f_+ + f_-$.

Exemple. On considère la mesure de Dirac

$$\delta_a(A) = \begin{cases} 1 & si \ a \in A \\ 0 & sinon. \end{cases}$$

Alors

$$\int_{X} f(x)d\delta_{a}(x) = f(a). \tag{1.4}$$

Démonstration. Soit $f = \sum_{k=1}^{M} c_k \mathbb{1}_{A_k}$ une fonction simple.

$$\int \sum_{k=1}^{M} c_k \mathbb{1}_{A_k}(x) d\delta_a(x) = \sum_{k=1}^{M} c_k \delta_a(A_k) = c_{\overline{k}}$$

avec \overline{k} le seul k tel que $a \in A_k$ car les A_k sont deux à deux disjoints.

Or $c_{\overline{k}} = f(a)$.

On suppose maintenant que $f(x) = \lim_{k \to \infty} h_k(x)$. Alors

FIGURE 1.4 – a ne peut être que dans un seul des A_k .

$$\int_X f(x)d\delta_a(x) = \int_X \lim_{k \to \infty} h_k(x)d\delta_a(x) \stackrel{\text{Beppo-Levi}}{=} \lim_{k \to \infty} \int_X h_k d\delta_a(x) = \lim_{k \to \infty} h_k(a) = f(a).$$

Théorème 1.7.2 (Beppo-Levi). Si $\{h_k\}$ est une suite monotone non négative, alors

$$\lim \int f_k = \int \lim f_k.$$

Remarque. Si $\mu = \sum_{k=1}^{M} p_k \delta_{a_k}$, avec $\sum_{k=1}^{M} p_k = 1$, alors

$$\int_{X} fd\left(\sum_{k=1}^{M} p_k \delta_{a_k}\right) = \sum_{k=1}^{M} p_k f(a_k).$$

Démonstration. Même démonstration que pour 1.4.

1.7.1 Conséquences en probabilités

Soit $X:(\Omega,\mathscr{A},\mathbb{P})\longrightarrow (\mathbb{R},\beta)$.

X est une variable aléatoire. Associée à X, il y a une mesure de Borel sur la droite qu'on appelle la loi notée P_X (cf 1.6.1).

Définition 1.7.4 (Espérance de X). L'espérance de X se calcule comme suit :

$$\mathbb{E}[X] = \int_{\Omega} X(\omega) d\mathbb{P}(\omega). \tag{1.5}$$

Théorème 1.7.3 (De transfert). On a

$$\int_{\Omega} f(X(\omega)) d\mathbb{P}(\omega) = \int_{\mathbb{R}} f(x) dP_X(x), \text{ avec } x \in \mathbb{R}.$$
 (1.6)

Démonstration. Soit $f: \mathbb{R} \to \mathbb{R}$ fonction simple telle que $f(x) = \sum_{k=1}^{M} c_k \mathbb{1}_{A_k}(x)$.

$$\int_{\Omega} \sum_{k=1}^{M} c_k \mathbb{1}_{A_k}(X(\omega)) d\mathbb{P}(\omega) = \sum_{k=1}^{M} c_k \int_{\Omega} \mathbb{1}_{A_k}(X(\omega)) d\mathbb{P}(\omega). \tag{1.7}$$

FIGURE 1.5 – Illustration théorème de transfert

Or

$$\int_{\Omega}\mathbbm{1}_{A_k}(X(\omega))d\mathbb{P}(\omega)=\int_{\Omega}\mathbbm{1}_{X^{-1}(A_k)}(\omega)d\mathbb{P}(\omega)=\mathbb{P}(X^{-1}(A_k))=P_X(A_k)$$

Donc 1.7 devient:

$$\sum_{k=1}^{M} c_k P_X(A_k) = \int_{\mathbb{R}} f(x) dP_X(x).$$

On considère que f est quelconque avec $f = \lim_{k \to \infty} h_k$, avec $\{h_k\}$ suite de fonctions simples.

$$\begin{split} \int f(X(\omega))d\mathbb{P}(\omega) &= \int \lim_{k \to \infty} h_k(X(\omega))d\mathbb{P}(\omega) = \lim_{k \to \infty} \int h_k(X(\omega))d\mathbb{P}(\omega) \\ &= \lim_{k \to \infty} \int_{\mathbb{R}} h_k(x)dP_X(x) = \int_{\mathbb{R}} \lim_{k \to \infty} h_k(x)dP_X(x) = \int_{\mathbb{R}} f dP_X \end{split}$$

1.8 Fonctions de répartition

Définition 1.8.1 (Fonction de répartition). Soit $X:\Omega \longrightarrow \mathbb{R}$ une variable aléatoire. On définit

$$F(t) = \mathbb{P}(X \le t), t \in \mathbb{R} \tag{1.8}$$

$$= \mathbb{P}(\omega, X(\omega) \le t) = \mathbb{P}(X^{-1}((-\infty, t])) = P_X((-\infty, t]). \tag{1.9}$$

Proposition 1.8.1 (Propriétés de F).

- 1. F est non négative et bornée entre 0 et 1.
- 2. F est croissante et continue à droite.

3.

$$\begin{cases} \lim_{t \to +\infty} F(t) = 1\\ \lim_{t \to -\infty} F(t) = 0. \end{cases}$$

4. F est discontinue dans au plus un nombre dénombrable de points.

FIGURE 1.6 – Fonction de répartition

Démonstration. 1. Continuité à droite. Si a est un point de discontinuité,

$$F(a) = \lim_{t \to a^+} F(t).$$

$$F(a) = P_X((-\infty, a]) = P_X\left(\bigcap_{k=1}^{\infty} \left(-\infty, \frac{1}{k}\right)\right) = \lim_{k \to \infty} P_X\left(\left(-\infty, a + \frac{1}{k}\right)\right) = \lim_{k \to \infty} F\left(a + \frac{1}{k}\right) = \lim_{t \to a^+} F(t),$$

car on écrit

$$(-\infty, a] = \bigcap_{k=1}^{\infty} \left(-\infty, a + \frac{1}{k}\right).$$

Soit $\pi(a)$ le saut dans un point de discontinuité de la fonction de répartition. On définit

$$A_n = \{ t \in \mathbb{R}, \pi(t) \ge \frac{1}{n} \}.$$

Comme F est bornée entre 0 et 1, il peut y avoir au plus n éléments dans A_n . Les points de discontinuité sont données par des points

$$t \in \bigcup_{n \ge 1} A_n$$
 (ensemble dénombrable).

Comme F est continue et croissante à droite, elle définit une mesure de Lebesgue-Stieltjes

$$\nu((a,b]) = F(b) - F(a).$$

Démonstration. Montrons que $\nu = P_X$.

$$P_X((a,b]) = P_X((-\infty,b]) - P_X((-\infty,a]) = F(b) - F(a).$$

ν ne peut avoir que deux formes particulières.

1. ν est une somme de masses de Dirac. Si A est un borélien de \mathbb{R} , alors

$$\nu(A) = \sum_{k=1}^{\infty} p_k \delta_{X_k}(A),$$

avec

$$\sum_{k=1}^{\infty} p_k = 1.$$

Alors

$$p_k = \mathbb{P}(X = \{x_k\}) = \mathbb{P}(\omega, X(\omega) = x_k).$$

Définition 1.8.2 (Variable aléatoire discrète). On appelle **discrète** toute variable aléatoire X dont la loi a la forme :

$$P_X = \sum_{k=1}^{\infty} p_k \delta_{X_k}(A).$$

En particulier, nous écrirons toute variable aléatoire

$$X(\omega) = \sum_{k=1}^{\infty} x_k \mathbb{1}_{A_k}(\omega) \text{ et on aura } P_X(A) = \sum_{k=1}^{\infty} p_k \delta_{x_k}(A), \text{ avec } p_k = \mathbb{P}(A_k).$$

FIGURE 1.7 – Exemple de fonction de répartition d'une variable aléatoire discrète.

Remarque (Notations). Mesure de Lebesgue : $\begin{cases} Leb \\ dx \end{cases}$

2. Soit ν une mesure de probabilité de Borel sur \mathbb{R} . On dira que ν est **absolument continue** s'il existe une fonction non-négative $f \in L^1(\text{Leb})$ $(\int_{\mathbb{R}} f dx < \infty)$ telle que, pour tout borelien B,

$$\nu(B) = \int_B f(x)dx.$$

On la dénote aussi $\nu \ll Leb$.

En particulier si g est bornée ($L^{\infty}(Leb)$), alors

$$\int_{\mathbb{R}} g d\nu = \int_{\mathbb{R}} g f dx.$$

f est la densité de f par rapport à Lebesgue (dérivée de Radon-Nykodym).

Dans notre cas, $\nu((a,b]) = F(b) - F(a)$.

Si F est la fonction de répartition de X, on a

$$P_X((a,b]) = F(b) - F(a) \stackrel{\text{Si la loi est AC}}{=} \int_{(a,b]} f(x)dx$$
$$= \int_{[a,b]} f(x)dx = \int_{a}^{b} f(x)dx$$

Définition 1.8.3 (Variable aléatoire à densité). On dira qu'une variable aléatoire X est à densité si sa loi est absolument continue et on appelle f_X la densité de probabilité de X.

Si $\nu = c_1 \delta_{X_1} + c_2 \text{Leb}$, on écrit $\nu(A) = c_1 \delta_{X_1}(A) + c_2 \text{Leb}(A)$.

Il n'y a pas de saut dans la fonction de répartition d'une variable aléatoire absolument continue, car si $F(b) - F(a) = \int_a^b f(t)dt$, on a

$$\operatorname{saut}(x_0) = F(x_0) - F(x_0^-) = 0.$$

C'est lié au fait que pour λ mesure de Lebesgue, on a $\lambda(\{b\}) = 0$ (cf 1.3).

Théorème 1.8.1. Toute fonction de répartition F s'écrira (pour nous) de la forme

$$F(t) = c_1 F_d(t) + c_2 F_{ac}(t),$$

où F_d est la fonction de répartition d'une variable aléatoire discrète et F_{ac} est la fonction de répartition d'une variable aléatoire absolument continue et $c_1 + c_2 = 1$.

Dans ce cas, $P_X = c_1(\text{masses de Dirac}) + c_2(\text{mesure absolument continue}).$

Soit X une variable à densité f_X . Soit $g: \mathbb{R} \to \mathbb{R}$. On considère la même variable aléatoire $g \circ X$. Quelle est sa loi?

Exemple. Soit une variable aléatoire X avec la loi exponentielle. $X:\Omega\longrightarrow\mathbb{R}$,

$$f_X(x) = e^{-x} \mathbb{1}_{[0,\infty)}(x).$$

Trouver la loi de $X^2 = g \circ X$, avec $g: x \to x^2$.

Soit h une fonction bornée positive quelconque (fonction test).

$$\int_{\Omega} h(g(X))d\mathbb{P} = \int_{\Omega} (h \circ g)(X)d\mathbb{P} \stackrel{\text{transfert}}{=} \int_{\mathbb{R}} (h \circ g)(x)dP_X(x)$$
(1.10)

$$= \int_{\mathbb{R}} (h \circ g)(x) f_X(x) dx = \int_A h(g(x)) f_X(x) dx. \tag{1.11}$$

On fait un changement de variable en posant y = g(x), dy = g'(x)dx. Dans ce cas, 1.11 devient

$$\int h(y)f_X(g^{-1}(y))dy.$$

Or

$$\int h(y)c(y)dy = \int_{g(A)} h(y)f_X(g^{-1}(y))\frac{1}{g'(g^{-1}(y))}dy,$$

avec c la densité associée à y = g(x) et $(g^{-1})' = \frac{1}{g'(g^{-1})}$.

Comme h est quelconque,

$$c(y) = f_X(g^{-1}(y)) \frac{1}{g'(g^{-1}(y))} \mathbb{1}_{g(A)}(y).$$

Dans notre exemple, X a la densité $f_X(x) = e^{-x} \mathbb{1}_{[0,\infty)}(x)$ et $g(x) = x^2$, $A = [0,\infty)$. On a

$$y = x^2$$
$$x = \sqrt{y}.$$

On obtient

$$\begin{split} \overbrace{c(y)}^{\text{densit\'e}X^2} &= e^{-\sqrt{y}} \mathbb{1}_{[0,\infty)}(y) \frac{1}{2\sqrt{y}} \mathbb{1}_{g([0,\infty))}(y) \\ &= \frac{e^{-\sqrt{y}}}{2\sqrt{y}} \mathbb{1}_{[0,\infty)}(y), \end{split}$$

 $\operatorname{car} g([0,\infty)) = [0,\infty).$

Exemple. X suit la loi uniforme entre [-1, 1].

$$f_X = \frac{1}{2} \mathbb{1}_{[-1,1]}, \ car \ \frac{1}{2} \int_{-1}^1 dt = 1. \ Calculer \ X^2.$$

$$\int h(g(X))d\mathbb{P} = \int (h \circ g)(X)d\mathbb{P} = \int_{-1}^{1} (h \circ g)(x)f_X(x)dx$$

$$= \int_{-1}^{0} (h \circ g)(x)f_X(x)dx + \int_{0}^{1} (h \circ g)(x)f_X(x)dx$$

$$= \int_{0}^{1} h(y)f_X(-\sqrt{y})\frac{1}{2\sqrt{y}}dy + \int_{0}^{1} h(y)f_X(\sqrt{y})\frac{1}{2\sqrt{y}}dy$$

$$= \int_{0}^{1} h(y)\frac{1}{2\sqrt{y}}[f_X(-\sqrt{y}) + f_X(\sqrt{y})]dy.$$

On a

$$\int h(g(X))d\mathbb{P} = \int h(y)c_Y(y)dy,$$

avec

$$c_Y(y) = \frac{1}{2\sqrt{y}} [f_X(-\sqrt{y}) + f_X(\sqrt{y})] \mathbb{1}_{[0,1]}(y).$$

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé. Soit $B \in \mathcal{A}, \mathbb{P}(B) > 0$.

On peut définir $\mathbb{P}(A \mid B)$, la probabilité conditionnelle de A sachant B, définie comme suit :

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Exercice 3. Si l'on fixe B, montrer que $\mathbb{P}(\cdot \mid B) \to [0,1]$ est une probabilité.

On dira que deux événements A et B sont **indépendants** si $\mathbb{P}(A \cap B) = \mathbb{P}(A) \iff \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$, avec $\mathbb{P}(B) > 0$.

1.9 Système complet d'événements

Définition 1.9.1. Soit

$$\Omega = \bigcup_{i=1}^{\infty} A_i,$$

avec $A_i \cap A_j = \emptyset$ si $i \neq j$ et $\forall i \geq 1, \mathbb{P}(A_i) > 0$.

On appelle $\{A_i\}_{i=1}^{\infty}$ un système complet d'événements (SCE).

Théorème 1.9.1 (Formule des probabilités totales). $Si B \in \mathcal{A}$ quelconque, alors

$$\mathbb{P}(B) = \sum_{i=1}^{\infty} \mathbb{P}(B \cap A_i) = \sum_{i=1}^{\infty} \mathbb{P}(B \mid A_i) \mathbb{P}(A_i).$$

Chapitre 2

Vecteurs aléatoires

On considère maintenant des variables aléatoires $X:(\Omega,\mathscr{A},\mathbb{P})\longrightarrow\mathbb{R}^n$ (BOREL engendrée par les ouverts).

On étudiera surtout les cas où n=2. On dénote un vecteur aléatoire $X\equiv (X_1,X_2)$ (parfois (X,Y)). Parfois on écrit, pour $i=1,\ldots,n$,

$$X_i = \pi_i \circ X$$
, où $\pi_i : \mathbb{R}^n \to \mathbb{R}, \pi_i(x_1, \dots, x_n) = x_i$.

 π_i est une **projection**.

Définition 2.0.1 (Loi d'un vecteur aléatoire). Soit B un borélien de \mathbb{R}^n . Alors la loi de X (loi conjointe) est définie ainsi :

$$P_X(B) = \mathbb{P}(\omega \in \Omega, X(w) = (X_1(\omega), \dots, X_n(\omega)) \in B) = \mathbb{P}(X^{-1}(B)).$$

Est-il possible de calculer la loi de X_1 ?

Si on connaît la loi du couple de variables aléatoires, il est possible de calculer les lois des deux variables. Par contre, on ne peut pas avoir la loi du couple en connaissant la loi des deux variables aléatoires.

Définition 2.0.2 (Loi marginale). Si D est un borélien de \mathbb{R} , la loi de X est

$$\underbrace{P_{X_1}(D)}_{loi\ marginale} = \mathbb{P}(X_1 \in D) = \mathbb{P}(\pi_1 \circ X \in D) = \mathbb{P}(X \in \pi_1^{-1}(D)) = P_X(\underbrace{\pi_1^{-1}(D)}_{borelien}).$$

Remarque. $\pi_i^{-1}(D)$ est borélien, car π_i est continue.

2.1 Fonction de répartition

Dans le cas où $n = 2, X = (X_1, X_2),$

$$F_X(t_1, t_2) = \mathbb{P}(X_1 \le t_1, X_2 \le t_2) = P_X((-\infty, t_1] \times (-\infty, t_2]).$$

Définition 2.1.1. On dira que le vecteur aléatoire X est **absolument continu** s'il existe une fonction f mesurable et **non-négative** définie comme $f: \mathbb{R}^2 \to \mathbb{R}$ telle que, pour tout borélien B de \mathbb{R}^2 , on a

$$P_X(B) = P_{(X_1, X_2)}(B) = \iint_B \underbrace{f(x_1, x_2)}_{densit\'{e} du \ couple} dx_1 dx_2$$

et si $B = (-\infty, t_1] \times (-\infty, t_2]$, alors

$$F_X(t_1, t_2) = \int_{-\infty}^{t_1} \int_{-\infty}^{t_2} f(x_1, x_2) dx_1 dx_2 = \iint_{\mathbb{R}^2} f(x_1, x_2) \mathbb{1}_{(-\infty, t_1]}(x_1) \mathbb{1}_{(-\infty, t_2]}(x_2) dx_1 dx_2.$$

Proposition 2.1.1.

$$F_{X_1}(t_1) = \lim_{t_2 \to \infty} F_{(X_1, X_2)}(t_1, t_2) \text{ et } F_{X_2} = \lim_{t_1 \to \infty} F_{(X_1, X_2)}(t_1, t_2).$$

Démonstration.

$$F_{X_1}(t_1) = \mathbb{P}(X_1 \le t_1) = \mathbb{P}(X_1 \le t_1, \underbrace{X_2 \in \mathbb{R}}_{\text{toujours vrai}}),$$

car

$$\{X_1 \le t_1\} = \{\omega, X_1(\omega) \le t_1\} = \{\omega, X_1(\omega) \le t_1\} \cap \Omega = \{\omega, X_1(\omega) \le t_1\} \cap \underbrace{X_2^{-1}(\mathbb{R})}_{X_2 \in \mathbb{R}}).$$

Donc

$$F_{X_1}(t) = \mathbb{P}(X_1 \le t_1, X_2 \in \mathbb{R}) = P_{X_1, X_2}((-\infty, t_1] \times \mathbb{R}) = \lim_{k \to \infty} P_{X_1, X_2}((-\infty, t_1] \times (-\infty, k]),$$

car

$$\left((-\infty,t_1]\times\bigcup_{k=1}^{\infty}(-\infty,k)\right)=(-\infty,t_1]\times\mathbb{R}.$$

Ainsi

$$\lim_{k \to \infty} P_{X_1, X_2}((-\infty, t_1] \times (-\infty, k]) = \lim_{k \to \infty} F_{(X_1, X_2)}(t_1, k), k \in \mathbb{R}.$$

Théorème 2.1.1 (De transfert pour un vecteur aléatoire). Soit g une fonction mesurable. Alors on a

$$\int_{\Omega} g(X)d\mathbb{P} = \int_{\Omega} g((X_1, X_2))d\mathbb{P} = \iint_{\mathbb{R}^2} g(x_1, x_2)dP_X(x_1, x_2) = \iint_{\mathbb{R}^2} g(x_1, x_2)f_X(x_1, x_2)dx_1dx_2.$$

Proposition 2.1.2. Soit $X = (X_1, X_2)$ absolument continu, donc il existe une densité $f_X(x_1, x_2)$. Alors on a

$$\begin{cases} f_{X_1}(x_1) = \int_{\mathbb{R}} f_{(X_1, X_2)}(x_1, x_2) dx_2, \\ f_{X_2}(x_2) = \int_{\mathbb{R}} f_{(X_1, X_2)}(x_1, x_2) dx_1. \end{cases}$$

 $D\acute{e}monstration.$ Si X_1 a une densité, cela signifie

$$F_{X_1}(t_1) = \int_{-\infty}^{t_1} f_{X_1}(x_1) dx_1.$$

Ce résultat est-il vrai?
Par le théorème précédent,

$$\begin{split} F_{X_1}(t_1) &= \lim_{t_2 \to \infty} F_{(X_1, X_2)}(t_1, t_2) = \lim_{t_2 \to \infty} \int_{-\infty}^{t_1} \int_{-\infty}^{t_2} f_{(X_1, X_2)}(u_1, u_2) du_1 u_2 \\ &= \lim_{t_2 \to \infty} \iint_{\mathbb{R}^2} f_{(X_1, X_2)}(u_1, u_2) \mathbbm{1}_{(-\infty, t_1]}(u_1) \mathbbm{1}_{(-\infty, t_2]}(u_2) du_1 du_2 \\ &= \lim_{t_2 \to \infty} \int_{\mathbb{R}} \mathbbm{1}_{(-\infty, t_1]}(u_1) \left[\int_{\mathbb{R}} f_{(X_1, X_2)}(u_1, u_2) \mathbbm{1}_{(-\infty, t_2]}(u_2) du_2 \right] du_1 \\ &= \int_{\mathbb{R}} \mathbbm{1}_{(-\infty, t_1]}(u_1) \int_{\mathbb{R}} f_{(X_1, X_2)}(u_1, u_2) du_2 du_1 = \int_{-\infty}^{t_1} \left(\int_{\mathbb{R}} f_{(X_1, X_2)}(u_1, u_2) du_2 \right) du_1. \end{split}$$

Chapitre 3

Indépendance

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé.

3.1 Evénements indépendants

Définition 3.1.1. Deux événements $A, B \in \mathcal{A}$ sont indépendants si

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

ou

$$\mathbb{P}(A \mid B) = \mathbb{P}(A) \text{ si } \mathbb{P}(B) > 0.$$

3.2 Mutuellement indépendants

Définition 3.2.1. Soit $\{A_n\}$ une suite dénombrable d'événements. On dira que cette suite est **mutuellement indépendante** si pour toute sous-suite d'événements A_{i_1}, \ldots, A_{i_k} , on a

$$\mathbb{P}(A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}) = \mathbb{P}(A_{i_1})\mathbb{P}(A_{i_2}) \dots \mathbb{P}(A_{i_k}).$$

3.3 Classes d'événements indépendantes

Définition 3.3.1. Deux classes d'événements \mathscr{C}_1 et \mathscr{C}_2 sont dites indépendantes si $\forall A_1 \in \mathscr{C}_1$ et $A_2 \in \mathscr{C}_2$, A_1 et A_2 sont indépendants.

Cela se généralise à n classes $\mathcal{C}_1, \ldots, \mathcal{C}_n$.

Définition 3.3.2. Soit C_1 et C_2 deux classes d'événements indépendants et en plus qui sont stables par intersection finie (π -système). Alors les σ -algèbres engendrées par C_1 et C_2 sont indépendantes.

Définition 3.3.3. Soit $\mathscr C$ une classe. Soient $C_1,C_2,\ldots,C_n\in\mathscr C$. On dira que $\mathscr C$ est stable par intersection finie si

$$C_1 \cap C_2 \cap \cdots \cap C_n \in \mathscr{C}$$
.

1. Dans \mathbb{R} , on considère la classe $\mathscr{C}_1 = \{(a,b], a,b \in \mathbb{R}\}$. C'est un π -système, car pour Exemple. tout (a,b],(c,d], on aura

$$(a, b] \cap (c, d] = (\max\{a, c\}, \min\{b, d\}].$$

Dans \mathbb{R}^2 , $\mathscr{C} = \{(a_1, b_1) \times (a_2, b_2)\}$. Alors $\sigma(\mathscr{C}) = \sigma$ -algèbre de BOREL dans \mathbb{R}^2 .

Définition 3.3.4. Soit $X: \Omega \longrightarrow \mathbb{R}$ une variable aléatoire telle que $X^{-1}(\beta) \subset \Omega$. On appelle $\sigma(X)$ la plus petite σ -algèbre qui rend X mesurable.

Proposition 3.3.1.

$$\sigma(X) = X^{-1}(\beta),$$

où β est la σ -algèbre de BOREL dans \mathbb{R} .

Remarque (Personnelle). Soient E_1, E_2 ensembles et $f: E_1 \to E_2$. On rappelle que si τ_2 est une tribu $sur E_2$, alors

$$f^{-1}(\tau_2) = \{f^{-1}(A), A \in \tau_2\}$$

est une tribu sur E_1 , appelée la tribu réciproque.

Dans le cas de probabilités, on aura

$$X^{-1}(\beta) = \{X^{-1}(B), B \text{ bor\'elien}\}.$$

FIGURE 3.1 – Dans ce cas, $\sigma(X) = \sigma$ -algèbre engendrée par la partition \mathscr{A} .

Remarque (Personnelle). On rappelle que pour la figure 3.1, si A_1, \ldots, A_n est une partition de l'ensemble X, on définit

$$\tau = \left\{ \bigcup_{i \in J} A_i, J \subset \{1, \dots, n\} \right\}.$$

On démontre que τ est une tribu.

3.4 Indépendance de variables aléatoires

Définition 3.4.1. Deux variables aléatoires X_1, X_2 sont indépendantes si $\sigma(X_1) = X_1^{-1}(\beta)$ et $\sigma(X_2) = X_1^{-1}(\beta)$ $X_2^{-1}(\beta)$ sont deux familles indépendantes (cf définition 3.3.2).

Un élément de $X^{-1}(\beta)$ s'écrit comme $X^{-1}(B_1), B_1 \in \beta$. On écrira alors

$$\mathbb{P}(X_1^{-1}(B_1) \cap X_2^{-1}(B_2)) = \mathbb{P}(X_1^{-1}(B_1))\mathbb{P}(X_2^{-1}(B_2)).$$

On aura par conséquent, pour $(-\infty, b]$ qui engendrent β ($\{(-\infty, b]\}$ est un π -système),

$$\mathbb{P}(X_1^{-1}((-\infty, b_1]) \cap X_2^{-1}(-\infty, b_2]) = \mathbb{P}(X_1^{-1}(-\infty, b_1]) \mathbb{P}(X_2^{-1}(-\infty, b_2]),$$

donc

$$\mathbb{P}(X_1 \in (-\infty, b_1], X_2 \in (-\infty, b_2]) = \mathbb{P}(X_1 \in (-\infty, b_1]) \mathbb{P}(X_2 \in (-\infty, b_2]).$$

On obtient ainsi

$$\mathbb{P}(X_1 \le b_1, X_2 \le b_2) = \mathbb{P}(X_1 \le b_1)\mathbb{P}(X_2 \le b_2). \tag{3.1}$$

Le résultat 3.1 est exactement la définition de l'indépendance des deux variables aléatoires. On peut écrire 3.1 en terme de lois de probabilités :

$$\mathbb{P}(\overbrace{X_1 \leq b_1, X_2 \leq b_2}^{\subset \Omega}) = P_X((-\infty, b_1] \times (-\infty, b_2]) \stackrel{\text{si ind\'ep}}{=} P_{X_1}((-\infty, b_1]) P_{X_2}((-\infty, b_2]). \tag{3.2}$$

Proposition 3.4.1. Deux variables aléatoires X_1, X_2 définies sur l'espace $(\Omega, \mathcal{A}, \mathbb{P})$ sont indépendantes si et seulement si

$$P_{(X_1, X_2)} = P_{X_1} P_{X_2}.$$

Démonstration.

- 1. Partie nécessaire. On l'a démontré dans 3.2.
- 2. Partie suffisante. On suppose que

$$\overbrace{P_{(X_1,X_2)}(B_1 \times B_2)}^{\text{loi du couple}} = P_{X_1}(B_1)P_{X_2}(X_2).$$

On prend $B_1 = (-\infty, b_1]$ et $B_2 = (-\infty, b_2]$.

Ainsi

$$P_{(X_1,X_2)}((-\infty,b_1]\times (-\infty,b_2])=\mathbb{P}(X_1\leq b_1,X_2\leq b_2).$$

Exemple. Considérons un vecteur aléatoire (X_1, X_2) de loi

$$\begin{cases} P_{X_1} = \frac{1}{2}\delta_{a_1} + \frac{1}{2}\delta_{a_2} = f_1(y)dy \\ P_{X_2} = f_2(x)dx. \end{cases}$$

On veut trouver la loi de (X_1, X_2) .

On calcule:

$$\int e^{X_1+X_2} d\mathbb{P} = \iint e^{x_1+x_2} dP_{(X_1,X_2)} P(x_1,x_2) = \iint e^{x_1+x_2} d\left(\frac{1}{2}\delta_{a_1} + \frac{1}{2}\delta_{a_2}\right) f_2 dx_2 = \dots$$

Corollaire 3.4.1. Si X_1, X_2 sont indépendantes, la même chose est vraie pour $f(X_1)$ et $g(X_2)$ avec f et g réelles et mesurables.

Proposition 3.4.2. Les variables aléatoires X_1 et X_2 sont indépendantes si et seulement si pour toutes f, g non-négatives, on a

$$\mathbb{E}[f(X_1)g(X_2)] = \mathbb{E}[f(X_1)]\mathbb{E}[g(X_2)]$$

et la même chose pour f et g réelles et bornées.

Démonstration. 1. Partie nécessaire.

$$\int_{\Omega} f(X_1)g(X_2)d\mathbb{P} = \iint_{\mathbb{R}^2} f(x_1)g(x_2)d_{X_1X_2}P(x_1, x_2). \tag{3.3}$$

Or si les variables sont indépendantes, la loi $P_{X_1X_2}$ se factorise dans les marginales. Donc 3.3 devient :

$$\iint_{\mathbb{R}^2} f(x_1)g(x_2)dP_{X_1}(x_1)dP_{X_2}(x_2) = \int_{\mathbb{R}} f(x_1)dP_{X_1}(x_1) \int_{\mathbb{R}} g(x_2)dP_{X_2}(x_2) = \mathbb{E}[X_1]\mathbb{E}[X_2].$$

2. Partie suffisante. On considère $f = \mathbb{1}_{(-\infty,b_1]}$ et $g = \mathbb{1}_{(-\infty,b_2]}$. On a

$$\int \mathbb{1}_{(-\infty,b_1]} \circ X_1 \mathbb{1}_{(-\infty,b_2]} \circ X_2 d\mathbb{P} = \mathbb{E}[f(X_1)g(X_2)] = \mathbb{E}[f(X_1)]\mathbb{E}[g(X_2)] = \mathbb{P}(X_1 \leq b_1)\mathbb{P}(X_2 \leq b_2).$$

Proposition 3.4.3 (Indépendance et fonctions de répartition). Les variables aléatoires X_1 et X_2 sont indépendantes si et seulement si

$$F_{X_1,X_2}(t_1,t_2) = F_{X_1}(t_1)F_{X_2}(t_2).$$

Démonstration. 1. Partie nécessaire. Si les variables aléatoires X_1, X_2 sont indépendantes, alors

$$F_{X_1,X_2}(t_1,t_2) = \mathbb{P}(X_1 \le t_1, X_2 \le t_2) = \mathbb{P}(X_1 \le t_1)\mathbb{P}(X_2 \le t_1) = F_{X_1}(t_1)F_{X_2}(t_2).$$

2. Partie suffisante. Point de départ : on écrit la condition

$$\mathbb{P}(X_1 \leq t_1, X_2 \leq t_2) = F_{X_1 X_2}(t_1, t_2) = F_{X_1}(t_1) F_{X_2}(t_2) = \mathbb{P}(X_1 \leq t_1) \mathbb{P}(X_2 \leq t_2),$$

avec t_1, t_2 quelconques et on obtient que X_1 et X_2 sont indépendantes comme c'est dit dans la définition 3.1.

Proposition 3.4.4 (Indépendance et densités).

1. Soient X_1, X_2 deux variables aléatoires avec les densités f_{X_1} et f_{X_2} et supposons que X_1 et X_2 sont indépendantes. Alors le couple (X_1, X_2) et sa densité vérifient :

$$f_{X_1,X_2}(x_1,x_2) = f_{X_1}(x_1)f_{X_2}(x_2).$$

2. Supposons que (X_1, X_2) admet la densité $f_{X_1, X_2}(x_1, x_2)$ qui est le produit entre deux fonctions intégrables non-négatives $\tilde{f}_1(x_1)$, $\tilde{f}_2(x_2)$. Alors $\hat{f}_1(x_1)$ et $\tilde{f}_2(x_2)$ sont à des facteurs multiplicatifs près, les densités de X_1 et X_2 sont **indépendantes**.

Démonstration.

1. Loi de $X_1 \implies f_{X_1}(x_1)dx_1: P_{X_1}$ et loi de $X_2 \implies f_{X_2}(x_2)dx_2: P_{X_2}$.

$$f_{X_1,X_2}(x_1,x_2)dx_1dx_2 = P_{X_1X_2} = P_{X_1}P_{X_2} = f_{X_1}(x_1)f_{X_2}(x_2)dx_1dx_2.$$

2. On sait que

$$\begin{split} f_{X_1}(x_1) &= \int f_{X_1X_2}(x_1,x_2) dx_2 = \tilde{f}_{X_1}(x_1) \int \tilde{f}_{X_2}(x_2) dx_2 \\ f_{X_2}(x_2) &= \int f_{X_1X_2}(x_1,x_2) dx_1 = \tilde{f}_{X_2}(x_2) \int \tilde{f}_{X_1}(x_1) dx_1. \end{split}$$

Ensuite,

$$\iint_{\mathbb{R}^2} f_{X_1 X_2}(x_1, x_2) dx_1 dx_2 = 1 = \iint_{\mathbb{R}^2} \tilde{f}_{X_1}(x_1) \tilde{f}_{X_2}(x_2) dx_1 dx_2 = \int_{\mathbb{R}} \tilde{f}(x_1) dx_1 \int_{\mathbb{R}} \tilde{f}_{X_2}(x_2) dx_2.$$

On a

$$f_{X_1}(x_1)f_{X_2}(x_2) = \tilde{f}_{X_1}(x_1)\tilde{f}_{X_2}(x_2)\underbrace{\int \tilde{f}_{X_2}(x_2)dx_2 \int \tilde{f}_{X_1}(x_1)dx_1}_{=1}.$$

En conclusion, on a

$$f_{X_1}(x_1)f_{X_2}(x_2) = \tilde{f}_{X_1}(x_1)\tilde{f}_{X_2}(x_2).$$

Pour que f_{X_1} et f_{X_2} deviennent des densités, on pose :

$$f_{X_1}(x_1) = \frac{\tilde{f}_{X_1}(x_1)}{\int f_{X_1}(x_1)dx_1} \text{ et } f_{X_2}(x_2) = \frac{\tilde{f}_{X_2}(x_2)}{\int f_{X_2}(x_2)dx_2}.$$

26-09-2023

3.5 Changement de variables

On considère (X_1, X_2) un vecteur aléatoire à densité $f_{X_1, X_2}(x_1, x_2)$. On construit deux autres variables aléatoires U_1, U_2 telles que

$$\begin{cases} U_1 = g_1(X_1, X_2) \\ U_2 = g_2(X_1, X_2). \end{cases}$$

On veut trouver la loi de U_1, U_2 , à savoir la densité du couple.

Soit $h: \mathbb{R}^2 \to \mathbb{R}$ une fonction mesurable positive quelconque que l'on appelle "fonction test".

$$\int_{\Omega} h(U_1, U_2) d\mathbb{P} = \int_{\Omega} h(g_1(X_1, X_2), g_2(X_1, X_2)) d\mathbb{P}
\stackrel{\text{transfert}}{=} \iint_{\mathbb{P}^2} h(g_1(x_1, x_2), g_2(x_1, x_2)) dP_{X_1 X_2}$$
(3.4)

$$\stackrel{\text{transfert}}{=} \iint_{\mathbb{R}^2} h(g_1(x_1, x_2), g_2(x_1, x_2)) dP_{X_1 X_2}$$
(3.5)

$$= \iint_{\mathbb{R}^2} h(g_1(x_1, x_2), g_2(x_1, x_2)) f_{X_1, X_2}(x_1, x_2) dx_1 dx_2. \tag{3.6}$$

On pose

$$\begin{cases} u_1 = g_1(x_1, x_2) \\ u_2 = g_2(x_1, x_2). \end{cases}$$

On sait que (X_1, X_2) ne sont pas forcément définies sur \mathbb{R}^2 , mais sur un certain domaine $A \subset \mathbb{R}^2$. On pose $G = (g_1, g_2) : \mathbb{R}^2 \to \mathbb{R}^2$.

On doit avoir G^{-1} : $\begin{cases} x_1 = d_1(u_1, u_2) \\ x_2 = d_2(u_1, u_2) \end{cases}$, donc il faut que ${\cal G}$ soit inversible. De plus, on devrait calculer la matrice jacobier

$$J_{U_1U_2} = \begin{pmatrix} \frac{\partial d_1}{\partial u_1} & \frac{\partial d_1}{\partial u_2} \\ \frac{\partial d_2}{\partial u_2} & \frac{\partial d_2}{\partial u_2} \end{pmatrix}.$$

3.6 devient:

$$\iint_{\mathbb{R}^2 \cap G(A)} h(u_1, u_2) f_{X_1 X_2}(d_1(u_1, u_2), d_2(u_1, u_2)) |\det(J_{U_1 U_2}(u_1, u_2))| du_1 du_2.$$

Comme h est quelconque, on peut choisir $h(x) = \mathbb{1}_{\{q > f\}}(x)$ et puis $h(x) = \mathbb{1}_{\{q < f\}}$. On obtient la formule de changement de variable :

Théorème 3.5.1.

$$f_{U_1U_2}(u_1, u_2) = f_{X_1X_2}(d_1(u_1, u_2), d_2(u_1, u_2)) |\det J_{U_1U_2}(u_1, u_2)| \mathbb{1}_{G(A)}(u_1, u_2).$$

Si on a deux variables aléatoires X_1 et X_2 , quelle est la loi de $(X_1 + X_2)$? On introduit

$$\left\{ U_1 = X_1 + X_2, U_2 = X_2 \quad \implies \begin{cases} X_1 = U_1 - U_2 \\ X_2 = U_2 \end{cases} \right.$$

De plus,

$$J_{U_1U_2} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}.$$

On calcule

$$f_{U_1U_2}(u_1, u_2) = f_{X_1X_2}(u_1 - u_2, u_2)$$

et on obtient

$$f_{U_1}(u_1) = \int f_{U_1,U_2}(u_1,u_2)du_2 = \int f_{X_1X_2}(u_1 - u_2, u_2)du_2 = \int_{\mathbb{R}} f_{X_1}(u_1 - u_2)f_{X_2}(u_2)du_2.$$

Il s'agit du **produit de convolution**.

Chapitre 4

Dénombrement

15-09-2023

On a 3 objets $\{a, b, c\}$.

4.1 Dispositions sans répétition

Eléments	Combinaisons sans ordre	Combinaisons avec ordre
1 à 1	$\{a\}, \{b\}, \{c\}$	$\{a\},\{b\},\{c\}$
2 à 2	$\{a,b\},\{a,c\},\{b,c\}$	$\{a,b\},\{b,a\},\{a,c\},\{c,a\},\{b,c\},\{c,b\}$
3 à 3	$\{a,b,c\}$	${a,b,c},{a,c,b},{b,a,c},{c,a,b},{c,b,a},{b,c,a}$

4.2 Dispositions avec répétition

Eléments	Dispositions sans ordre	Dispositions avec ordre
1 à 1	$\{a\}, \{b\}, \{c\}$	$\{a\},\{b\},\{c\}$
2 à 2	${a,a},{b,a},{b,b},{a,c},{b,c},{c,c}$	$\{a,a\},\{a,b\},\{b,a\},\{b,b\},\{a,c\},\{c,a\},\{b,c\},\{c,b\}\{c,c\}$
3 à 3	$\{a, a, a\}, \{a, a, c\}, \dots $ (10 éléments)	${a, a, a}, {a, c}, {a, c, a}, {c, a, a}, \dots$ (3 ³ = 27 éléments)

FIGURE 4.1 – Permutations dans le cas de 3 objets (dispositions sans répétition et avec ordre)

Arrangements de n objets pris k à k (dispositions avec ordre et sans répétition) Si on a 4 objets pris 2 à $2 : \{a, b, c, d\}$.

Si a et b sont fixés, alors $\{a, b\}$ engendrera $\{a, b, c, d\}$ et $\{a, b, d, c\}$.

On a

$$A_n^k = \frac{n!}{(n-k)!}$$

Combinaisons de n objets pris k à k (dispositions sans ordre et sans répétition)

$$C_n^k = \frac{n!}{k!(n-k)!} = \binom{n}{k}.$$
 (4.1)

En fait,

$$C_n^k = \frac{A_n^k}{k!},$$

avec k! le nombre de permutations des k éléments.

Si on a n objets à combiner k à k avec répétition, mais sans ordre, il y a

$$C_k^{n+1-k} = \frac{(n+1-k)!}{k!(n-1)!}$$
 combinaisons possibles. (4.2)

4.3 Tirage des urnes sans remise

N boules de type N_a , N_b tels que $N_a + N_b = N$.

On tire n < N boules.

Soit E l'événement suivant : $\{k \text{ boules parmi } n \text{ sont de type } a\}$.

Calculer la probabilité de E.

$$\mathbb{P}(E) = \frac{C_{N_a}^k C_{N_b}^{n-k}}{C_N^n} \text{ (formule hypergéométrique)}.$$

Démonstration. $\Omega =$ combinaisons de N objets pris n à n sans les répéter.

On a
$$\sharp(\Omega) = C_N^n$$
.

Cas favorables: $C_{N_a}^k C_{N_b}^{n-k}$.

Cette formule est utilisée pour calculer la probabilité de gagner au loto. On a une grille de 49 numéros et on tire 6 numéros.

 $N_a =$ les 6 numéros cochés par le joueur, $N_b = 49 - 6 = 43$ et $n = N_a$.

$$\begin{split} \mathbb{P}(\text{avoir 3 numéros gagnants}) &= \frac{C_6^3 C_{43}^3}{C_{49}^6} \approx 0.018 \\ \mathbb{P}(\text{avoir 6 numéros gagnants}) &= \frac{C_6^6 C_{43}^0}{C_{49}^6} \approx 7,15 \times 10^{-8}. \end{split}$$

4.4 Tirage des urnes avec remise

N boules, N_a de type a, N_b de type b. On en tire n (avec n quelconque) et

 $E = \{k \text{ boules parmi les } n \text{ tirées sont de type } a\}.$

On a $\sharp(\Omega) = N^n$.

Cas favorables : $N_a^k N_b^{n-k} \binom{n}{k}$.

Donc

$$\mathbb{P}(E) = \frac{N_a^k N_b^{n-k} \binom{n}{k}}{N^n} = \frac{N_a^k N_b^{n-k} \binom{n}{k}}{N^k N^{n-k}} = \left(\frac{N_a^k}{N}\right)^k \left(\frac{N_b}{N}\right)^{n-k} \binom{n}{k} = p_a^k p_b^{n-k} \binom{n}{k},$$

où p_a et p_b sont les pourcentages de a et de b.

Il s'agit de la **loi binomiale**.

Chapitre 5

Travaux dirigés

Exercice 4. Dans une bibliothèque, il y a n livres sur une étagère repartis au hasard. Parmi ces n livres, k sont d'un même auteur A, les autres d'auteurs différents. Calculer la probabilité qu'au moins p livres de A se retrouvent côte à côte dans les cas suivants :

1.
$$n = 20, k = 3, p = 3$$
;

2.
$$n = 20, k = 5, p = 2$$
 (au moins 2 livres).

Démonstration.

3! On peut permuter les livres $A_1 A_2 A_1$ 10 11 12

On peut déplacer les livres dans différentes cases

Si l'on prend
$$\sharp \Omega = A_{20}^3, \text{ on obtient aussi } \frac{3! \cdot 18 \cdot 17!}{20!}$$

Figure 5.1 – Solution pour (1)

1.

Exercice 5. On lance 10 fois une pièce de monnaie. Calculer la probabilité qu'au cinquième lancer on obtient pile en sachant que le nombre total des piles obtenus est 3.

Exercice 6. On a deux variables aléatoires X_1 et X_2 de même densité $f(x) = \frac{1}{X^2} \mathbb{1}_{[1,\infty)}(x)$ et elles sont indépendantes. On pose

$$U = X_1 X_2$$
$$V = \frac{X_1}{X_2}.$$

1. Calculer la loi du couple (U, V).

2. U et V sont-elles indépendantes?

Exercice 7. On place six boules de manière aléatoire et indépendante dans 3 boîtes. Calculer la probabilité que la première boîte contienne deux boules.

Exercice 8. Un robinet a été installé le jour J et il fuit, les fuites se produisent chaque heure de manière indépendante et avec la probabilité p.

- 1. Calculer la loi de la variable aléatoire F égale au nombre de fuites qui se sont produites tout au long de la journée (en 24 heures), ie $\mathbb{P}(F=k), k \in \{0, \dots, 24\}$.
- 2. On dénote T(1) la variable aléatoire égale à l'heure de la première fuite. Calculer la loi de T(1), ie $\mathbb{P}(T(1)=k), k=1,\ldots,24$.
- 3. On dénote T(2) la variable aléatoire égale à l'heure de la deuxième fuite. Montrer que T(1) et T(2) T(1) sont indépendantes et ont la même loi.