Homework 1

1. History of Probability

It is said that de Mere had been betting that, in four rolls of a die, at least one six would turn up. He was winning consistently and, to get more people to play, he changed the game to bet that, in 24 rolls of two dice, a pair of sixes would turn up. It is claimed that de Mere lost with 24 and felt that 25 rolls were necessary to make the game favorable.

In [1]:

```
#1. Write function to sample from die
sample die <- function()</pre>
{
    # randomly choose a number between 1 and 6
    sample(1:6,1, replace=T)
}
#2. Write a loop function to tally sucesses vs failures (define
sucesses?)
suc fail <- function(n)</pre>
    success <- 0
    failure <- 0
    for (i in 1:n){
        a <- sample die()</pre>
        b <- sample_die()</pre>
        if (a == 6 \& b == 6){
             success <- success + 1
        } else {
             failure <- failure + 1
        }
    result <- list(success, failure)
    return (result)
}
#3. Run 10000 trials (24 throws 10000 times - 25 throws 10000 ti
```

```
mes) keeping track of successes vs faiures (from function 2)
trials <- function(times, throws)</pre>
    successes <- 0
    failures <- 0
    for (k in 1:times){
        trial res <- suc_fail(throws)</pre>
        if (trial res[[1]] >= 1){
            successes <- successes + 1
        } else{
            failures <- failures + 1
        }
    }
    final result <- list(successes, failures)</pre>
    return (final result)
}
a <- trials(10000,24)
b < - trials(10000, 25)
cat("Number of successes for 24 throws: ", a[[1]], " ")
cat("Number of failures for 24 throws: ", a[[2]], " ")
cat("Number of successes for 25 throws: ", b[[1]], " ")
cat("Number of failures for 25 throws: ", b[[2]], " \n")
#4. Calculate probabilities for 24 rolls and 25 rolls
prob t4 = 1 - ((35/36)**24)
cat("Probability for 24 rolls: ", prob_t4, " ")
prob t5 = 1 - ((35/36)**25)
cat("Probability for 25 rolls: ", prob t5, " ")
#5. Answer if de Mere was right and that we will win with 25 thr
ows, give a mathematical explanation.
# de Mere was right that we have a better chance of winning the
game with 25 throws. The chance of winning
# is slightly over 50% when there are 25 throws. When there are
only 24 throws, the chance of winning
# is slightly under 50%.
# Mathematically, it makes sense that there's a higher chance of
```

The probability formula creates larger probabilities for more
throws.

The number of throws is equal to the exponent that is applied to the fraction of failures over possible outcomes.

After this term is evaluated, it is subtracted from 1 to obtain the probability.

Therefore, larger exponents makes the term smaller. As a result, a smaller value is subtracted from 1, and the # probability is larger.

Number of successes for 24 throws: 4871 Number of failures for 24 throws: 5129 Number of successes f or 25 throws: 5118 Number of failures for 25 throws: 4882

Probability for 24 rolls: 0.4914039 Probability fo

r 25 rolls: 0.5055315

2. Addition rule

Find the probabilities using the table

- 1. Type O or AB.
- 2. Type A or AB.
- 3. Type AB or Rh negative.
- 4. Type O and Negative.
- 5. Type AB

Туре	0	Α	В	AB	Total
Positive	163	662	1513	1603	3941
Negative	224	933	2400	2337	5894
Total	387	1595	3913	3940	9835

```
In [2]:
```

```
#1 Type O or AB
o_ab = (387+3940)/(9835)
cat("Probability of Type O or AB: ", o_ab, " \n")

#2 Type A or AB
a_ab = (1595+3940)/(9835)
cat("Probability of Type A or AB: ", a_ab, " \n")

#3 Type AB or Rh negative
ab_rhn = (224+933+2400+2337+1603)/(9835)
cat("Probability of Type AB or Rh negative: ", ab_rhn, " \n")

#4 Type O or negative
o_neg = (163+224+933+2400+2337)/(9835)
cat("Probability of Type O or Negative: ", o_neg, " \n")

#5 Type AB
ab = (3940)/(9835)
cat("Probability of Type AB: ", ab, " \n")
```

```
Probability of Type O or AB: 0.4399593
Probability of Type A or AB: 0.562786
Probability of Type AB or Rh negative: 0.7622776
Probability of Type O or Negative: 0.6158617
Probability of Type AB: 0.4006101
```

3. Multiplication Rule

Answer questions below using this exercise: If I roll 5 dice, what is the chance of getting all sixes? What is the chance of getting no sixes?

Write a simulation in R to obtain the probabilities for each of these two exercises running 10000 trials

Hint.

Remember that the change to get all 6 in 5 rolls is $(1/6)^5$ and to get no sixes is $(5/6)^5$

```
In [3]:
#All sixes
#1. Write function to sample from die
sample die <- function()</pre>
{
    # randomly choose a number between 1 and 6
    sample(1:6,1, replace=T)
}
#2. Write function to determine if in each 5 rolls we get all si
xes (6*5)
allsixes <- function(n) {</pre>
    suc = 0
    for (k in 1:5){
        one d = sample die()
        if (one d == 6){
             suc = suc + 1
        }
    }
    if (suc == 5){
        return("success")
    }
    else{
        return("failure")
    }
}
#3. Run 10000 trials - Hint check sapply function
vec <- 1:10000
a <- sapply(vec, allsixes)</pre>
#print(a)
succ = 0
for (p in 1:length(a)){
    if (a[[p]] == 'success'){
        succ = succ + 1
    }
}
```

```
cat("Number of trials that had all sixes: ", succ, " \n")
#4. Calculate probabilities
allsixes = ((1/6)**5)
cat("Probability of getting all sixes: ", allsixes, " \n")
#No sixes
#Repeat 1
sample die <- function()</pre>
{
    # randomly choose a number between 1 and 6
    sample(1:6,1, replace=T)
}
#Repeat 2
nosixes <- function(n) {</pre>
    suc = 0
    for (k in 1:5){
        one d = sample die()
        if (one d != 6){
             suc = suc + 1
        }
    }
    if (suc == 5){
        return("success")
    else{
        return("failure")
    }
}
#Repeat 3
vec2 <- 1:10000
b <- sapply(vec2, nosixes)</pre>
#print(b)
succ2 = 0
for (k in 1:length(b)){
    if (b[[k]] == 'success'){
        succ2 = succ2 + 1
```

```
cat("Number of trials that had no sixes: ", succ2, " \n")

#Repeat 4
nosixes = ((5/6)**5)
cat("Probability of getting no sixes: ", nosixes, " \n")
```

```
Number of trials that had all sixes: 0
Probability of getting all sixes: 0.0001286008
Number of trials that had no sixes: 4057
Probability of getting no sixes: 0.4018776
```

4. Conditional Probability

Consider a family that has three children. We are interested in the children's genders. Our sample space is S={(G,G,G),(G,G,B),(G,B,G),(G,B,B),(B,G,G),(B,G,B),(B,B,G),(B,B,B)}. Also assume that all eight possible outcomes are equally likely.

- 1. What is the probability that the three children are girls given that the first child is a girl?
- 2. What is the probability that At least two children are boys given that the first child is a boy?

In [4]:

```
#1. Three children are girls given that the first child is a gir
1
prob = (1/8)/(0.5)
cat("Probability of having three girls given the first child is a girl: ", prob, " \n")

#2 Probability that At least two children are boys given that the first child is a boy
prob2 = (3/8)/0.5
cat("Probability of having at least two boys given the first child is a boy: ", prob2, " \n")
```

Probability of having three girls given the first child is a girl: 0.25
Probability of having at least two boys given the first child is a boy: 0.75

5. Markov Chains

As explained in class, create a function that simulates the following random walk based on the conditional probabilities from the transition matrix:

Once the function is created, simulate 500 random walks of 10 steps each (you choose the initial state - can be a constant or a user defined variable).

Example of ONE random walk 2,3,2,3,4,4,4,4,4 (remember that 0 and 4 are absorbing states).

Plot the 500 simulations.

Capture each one of the 500 walks last state (at step 10) and create a table of frequencies for each one of the states. it should looks something like

State	Count	Frequency	
0	100	0.2	
1	100	0.2	
2	100	0.2	
3	100	0.2	
4	100	0.2	
total	500	1.0	

In [5]:

##This is an example of the code, but you can create the functions and the plots anyway you want (even in python)

```
library(markovchain)
#1. create function that produces a random walk of size N
####Random Walk function
#N = number of steps in the walk
#Ini prob = initial state
Sim Markov=function(N,Ini prob) {
  #write function that generates one random walk sampling from t
he initial state....
posStates <- c("0", "1", "2", "3", "4")
byRow <- TRUE
## transitional matrix
0.5, 0, 0.5, 0, 0,
                             0, 0.5, 0, 0.5, 0,
                             0, 0, 0.5, 0, 0.5,
                             0, 0, 0, 1), \text{ byrow} = \text{byRow}, \text{nrow}
= 5,
                        dimnames = list(posStates, posStates))
##make the matrix a markovchain class
mcPos <- new("markovchain", states = posStates, byrow = byRow,</pre>
                 transitionMatrix = posMatrix, name = "State")
##define the initial state
initialState <- sample(c(0, 1:4),1,replace=TRUE, prob = Ini prob</pre>
result <- c(as.character(initialState))
     for (k in 1:(N-1))
        pos matrix row = posMatrix[(initialState+1),]
        initialState <- sample(c(0, 1:4),1, replace=TRUE, prob =</pre>
pos_matrix row)
        result <- c(result, ",", as.character(initialState))</pre>
    return(result)
}
```

```
#2. Define the initial state Ini prob - different examples
Ini prob1=c(0.0005, 0.4, 0.199, 0.4, 0.0005)
Ini prob2=c(0.2,0.2,0.2,0.2,0.2)
Ini prob3=c(0,0,1,0,0)
#3. Define the transition probabilities matrix
P mat=matrix(0,5,5)
P \text{ mat}[1,]=c(1,0,0,0,0)
P \text{ mat}[2,]=c(0.5, 0, 0.5, 0, 0)
P_{\text{mat}}[3,]=c(0, 0.5, 0, 0.5, 0)
P_{\text{mat}}[4,]=c(0, 0, 0.5, 0, 0.5)
P \text{ mat}[5,]=c(0, 0, 0, 0, 1)
#Number of steps
Nst<-10
X<-Sim Markov(Nst,Ini prob1)</pre>
Y<-Sim Markov(Nst,Ini prob2)
Z<-Sim Markov(Nst,Ini prob3)</pre>
cat("Simulation1: ", as.character(X), " \n")
cat("Simulation2: ", as.character(Y), " \n")
cat("Simulation3: ", as.character(Z), " ")
#e.g. 3,2,1,1,1,1,1,1,1,1
```

Package: markovchain

Version: 0.8.2

Date: 2020-01-10

BugReport: http://github.com/spedygiorgio/markovchai

n/issues

```
Simulation1: 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Simulation2: 2, 1, 2, 1, 0, 0, 0, 0, 0, 0
Simulation3: 2, 1, 0, 0, 0, 0, 0, 0, 0
```

```
##plot the 500 simulations
options(warn = -1)
array_sim <- c(1,2,3,4,5,6,7,8,9,10)
array <- c()
Ini prob <-c(0,0,1,0,0)
for (k in 1:501){
    a <- runif(1)
    Ini prob=c(0.1, sample(1:100, 1, replace=T)/100, sample(1:100, 1)
, replace=T)/100,
               sample(1:100,1, replace=T)/100,sample(1:100,1, re
place=T)/100)
    Nst = 10
    array <- as.numeric(Sim Markov(Nst, Ini prob))</pre>
    array sim <- c(array sim, array[!is.na(array)])</pre>
}
matrix sim <- matrix(array sim, nrow= 501, ncol = 10, byrow = TR
UE)
matrix sim.df <- as.data.frame(matrix sim)</pre>
plot(matrix sim[1,], matrix sim[2,], main = "500 Simulations", x
lab = "Steps in Random Walk", ylab="States",
    type = "l", xlim=c(0, 10), ylim=c(0, 4), col = "red")
for (p in 3:501) {
    if (('0' %in% matrix sim[p,]) | ('4' %in% matrix sim[p,])){
        lines(matrix sim[1,],matrix sim[p,], col="red", type = "
1")
    else{
        lines(matrix sim[1,],matrix sim[p,], col="green", type =
"1")
    }
}
##an option is to look something like this, where I am plotting
each random walk and change the color to red
##if the state is 0 or 5, green for the others.
```

500 Simulations

In [7]:

```
###Create table of frequencies
library("data.table")
data <- matrix sim.df[,10]</pre>
table <- data[-1]
count0 <- length(which(table == 0))</pre>
count1 <- length(which(table == 1))</pre>
count2 <- length(which(table == 2))</pre>
count3 <- length(which(table == 3))</pre>
count4 <- length(which(table == 4))</pre>
total <- length(table)</pre>
frequency0 <- count0/(length(table))</pre>
frequency1 <- count1/(length(table))</pre>
frequency2 <- count2/(length(table))</pre>
frequency3 <- count3/(length(table))</pre>
frequency4 <- count4/(length(table))</pre>
totalf <- 1
table <- data.table("States" = c("0","1","2","3","4", "total"),
"Count" = c(count0, count1, count2, count3, count4, total),
                      "Frequency" = c(frequency0, frequency1, freq
uency2, frequency3, frequency4, totalf))
table
```

A data.table: 6 × 3

States Count Frequency

<chr></chr>	<int></int>	<dbl></dbl>
0	192	0.384
1	3	0.006
2	6	0.012
3	8	0.016
4	291	0.582
total	500	1.000