

Universidade Federal do Pará – UFPA

Campus Universitário de Tucuruí – CAMTUC

Faculdade de Engenharia Elétrica

Laboratório de Eletrônica Analógica I

Experimento: Amplificador Operacional Configuração Não Inversora

1. Objetivo

Mostrar ao discente na prática o real funcionamento de um amplificador operacional disposto na configuração não inversora, analisando parâmetros

importantes como: ganho de tensão e distorções no sinal de saída.

2. Introdução Teórica

Diferentemente da configuração inversora, na não inversora teremos o sinal de entrada diretamente aplicado no terminal positivo do amplificador operacional. No terminal negativo teremos a resistência R_1 conectada ao referencial terra e a realimentação através de R_f .

A análise começa pelo sinal de saída v_o , que através da realimentação irá produzir uma tensão v_1 no terminal negativo do amp op através do divisor de tensão entre R_1 e R_f , da forma: $v_1 = \frac{v_o(R_1)}{R_1 + R_f}$. Como há um curto-circuito virtual entre o terminal positivo e o negativo, $v_1 = v_i$ o que resulta em: $v_i = \frac{R_1}{R_1 + R_f} v_o$. Por fim chega-se a: $\frac{v_o}{v_i} = 1 + \left(\frac{R_f}{R_1}\right)$. Onde vemos pelos sinais que não haverá defasagem da saída em relação à entrada, como no caso da

Pró-Reitoria de Ensino de Graduação | UFPA

configuração inversora.

Universidade Federal do Pará – UFPA

Campus Universitário de Tucuruí - CAMTUC

Faculdade de Engenharia Elétrica

Laboratório de Eletrônica Analógica I

Figura 01: Circuito Amplificador Operacional Não Inversor.

Para um sinal senoidal de entrada V_i igual a $1V_p$ de amplitude e $1{\rm k}Hz$ de frequência, o sinal de saída V_0 será:

Figura 02: Gráfico da tensão de entrada V_i e tensão de saída V_o em relação ao tempo

3. Material Necessário

1 Resistor de 27kΩ;

Universidade Federal do Pará – UFPA Campus Universitário de Tucuruí – CAMTUC Faculdade de Engenharia Elétrica Laboratório de Eletrônica Analógica I

- 1 Resistor de 10kΩ;
- 1 Potenciômetro de 100kΩ;
- 1 Amp Op CI 741;
- 1 Protoboard;
- 1 Osciloscópio;
- 1 Gerador de Funções;
- 2 Fontes de Alimentação DC;

4. Procedimentos Experimentais

- 4.1 Monte o circuito da figura 01 na protoboard
- **4.2** Alimente a placa com a fonte de tensão simétrica +12V e -12V. Configure o gerador de função para um sinal senoidal V_i de $1V_p$ de amplitude e 1kHz de frequência.
- **4.3** Após aplicar V_i na entrada do amplificador, medir o valor de pico da tensão de saída
- **4.4** Compare os dois sinais V_i e V_o . Qual a diferença entre eles?
- **4.5** Calcular o Ganho de Tensão a partir dos valores medidos do sinal de entrada e saída do circuito.

Λ.	
n_v .	

- **4.6** Substitua o resistor R_f da figura 01 por um potenciômetro de $100 \mathrm{k}\Omega$. aumente a resistência desse potenciômetro para valores especificados, meça o sinal de saída v_0 e anote. Qual o efeito da inserção do potenciômetro no circuito?
- **4.7** Reduza o sinal de entrada em caso de distorção no sinal de saída.

Universidade Federal do Pará – UFPA
Campus Universitário de Tucuruí – CAMTUC
Faculdade de Engenharia Elétrica

Laboratório de Eletrônica Analógica I

5. Informações Adicionais

- Verificar as conexões do CI 741, conforme mostrado nas figuras 03 e 04 antes de alimentar a protoboard. (para evitar queimar o CI).
- Quando montar a fonte simétrica, deixar sempre o botão de corrente das fontes de tensão DC no mínimo (você usará baixas corrente).
- Evitar mexer desnecessariamente nos botões que não serão usados do osciloscópio.

Figura 03: Conexão da fonte simétrica para o CI741.

Figura 04: Amp Op Comum.

