

EXAMEN TIPO TEST

1.	Sea eps la separación entre 1 y el número máquina siguiente. Dada x = 0.45eps, ¿cuál sería el resultado de la
	operación $((1+x)+x)$?

- a. 1 + eps
- b. $1 + 0.9 \cdot eps$
- c. 1
- d. 0
- 2. En una representación en base 2 que usa mantisas normalizadas, ¿cuál es la mantisa (en binario) del número x = 0.75?
 - a. 0.50
 - b. 1.10
 - c. 0.11
 - d. 1.50
 - e. 1.11
- 3. El valor de π almacenado en MATLAB tiene 20 cifras significativas
 - a. FALSO
 - b. VERDADERO
- 4. La precisión de una representación en coma flotante será mayor cuanto mayor sea
 - a. El espacio dedicado al exponente
 - b. El espacio dedicado a la mantisa
 - c. El tamaño en bytes de sus variables
 - d. El tamaño en bits de sus variables
- 5. Se desea interpolar una función en 3 puntos (x0,x1,x2) usando polinomios, de forma que:
 - En x0 se interpole el valor de la función y su derivada
 - En x1 se interpole el valor de la función, derivada y 2ª derivada
 - En x2 se interpole el valor de la función

¿Cuál sería el grado del polinomio?

- a. 3
- b. 5
- c. 6
- d. 4
- e. 2

6.	Para ser única una interpolación de Hermite en 3 puntos requiere un polinomio de grado:		
	 a. 4 b. 3 c. 2 d. 6 e. 5 		
7.	En un problema de interpolación las funciones de interpolación deber ser una combinación lineal de los elementos de una base:		
	a. VERDADEROb. FALSO		
8.	¿A qué número decimal corresponde un número en coma flotante (base 2) con mantisa binaria 1.101 y exponente 2?		
	 a. 6.5 b. 1.625 c. 1.75 d. 3.25 e. 4.404 		
9.	Sea el problema de hallar un polinomio $h(x)$ que verifique las siguientes condiciones: $h(1) = 1$, $h(2) = 2$, $h'(2) = 3$. ¿Cuáles serían las diferencias divididas $f(1)$, $f(1,2)$, $f(1,2,2)$ obtenidas con el método de Newton?		
	a. 1, 1, 2 b. 1, 1, 3 c. 1, -2, 2 d. 1, 2, 3 e. 0, 1, 2		
10.	Queremos hallar la función $u(t)$ generada por la base $\{1, t, \sin(t)\}$ que verifica las siguientes condiciones: $ -u(0) = 1 $ $ -u(\pi) = 0 $ $ -u'(\pi) = -1 $ ¿Cuál sería la 3^a fila de la matriz H del correspondiente problema de interpolación?		
	 a. 0, 1, -1 b. 1, 0, -1 c. 1, 1, 1 d. 1, π, 0 e. 0, 1, 1 		

11.	En una representación base 2 con mantisa normalizada ¿cuál es la mantisa (en binario) del número 14.0000?			
	a.	1.75		
	b.	1.11		
	c.	0.00		
	d.	1.00		
	e.	0.11		
12.	ЬŞ	qué número decimal corresponde un número en coma flotante (base 2) con mantisa binaria 1.00 y		
	exp	onente 1?		
	a.	0.080		
	b.	10.000		
	c.	2.000		
	d.	1.000		
	e.	10.0		
13.		una representación en coma flotante con mantisa normalizada que dedica 4 bits para la mantisa		
	(m=	$=(1.m_1m_2m_3m_4)_2$), ¿cuál es la distancia entre 1.25 y el siguiente número máquina?		
	a.	2^-4		
	b.	2^-2		
	c.	2^-3		
	d.	2^-1		
14.	sepa	una representación de números máquina en binario que utiliza redondeo donde eps = eps(1) es la aración entre el 1 y el siguiente número máquina. Sea a = 0.45*eps, calcular el número máquina 6*a)-2:		
	a.	eps		
	b.	3*eps		
	c.	2*eps (1. b, b ₂ b ₃ b ₄)		
	d.	3*eps/2		
15.	Una	a representación en coma flotante (base 2) usa una mantisa normalizada con 4 bits () con un rango de		
	exp	onentes entre -3 y 3. ¿Cuál es la máxima separación entre números máquina consecutivos?		
	a.	1.9375		
	b.	0.5000		
	c.	1.0000		
	d.	0.2500		
	e.	15.5000		

- 16. Sea el problema de hallar el polinomio p(x) que verifica las siguientes condiciones:
 - p(0) = -3
 - p(2) = -5
 - p(3) = -6

¿Cuáles serían las diferencias divididas a usar como coeficientes del polinomio de Newton?

- a. -1 0 1
- b. -3 -1 0
- c. -3 2 1
- d. -3 3 -3
- e. -3 3 -3
- 17. Sea el polinomio de grado mínimo p(x) que verifica las siguientes condiciones
 - p(0) = 1
 - p(1) = -1
 - p'(0) = -1

Calculad sus coeficientes con el método de Newton y dad el valor de p(x) en x=2

Respuesta...

- 18. Queremos hallar $u(x) = a + bx^2$ que verifique u(-1) = 2, u(2) = -1. ¿Cuántas soluciones tiene este problema?
 - a. Existe una única solución
 - b. No tiene solución
 - c. Ninguna de las otras respuestas
 - d. Existen infinitas soluciones
- 19. Queremos calcular la función $u(x) = a + be^x$ que verifica que u(-1) = -1, u'(0) = -1. Calcular el valor de u(0.6) redondeado a 2 decimales (usad punto decimal, p.e. 1.23)

Respuesta...

20. Queremos interpolar una función en 3 puntos (x0,x1,x2) con un polinomio, de forma que:

En x0 se interpole el valor de la función

En x1 se interpole el valor de la función

En x2 se interpole el valor de la función

¿Cuál sería el grado del polinomio?

- a. 4
- b. 1
- c. 3
- d. 5
- e. 2

1. x = 0.45 eps ((1+x)+x) = 1 + x = 1con eps salta al signiente nº magnina. Como $x < \frac{eps}{2}$ ortorces no salta.

<u>C</u>

2. X = 0.75mantisa normalizada (base 2)

a) 0.50 — No esta en bose 2

(1+0.5) $\times 2^{-4} = 0.5 + 0.25 = 0.75$

c) 0.11 — No esta normalizado

a) 1.50 — No esta en base 2 e) 1.11 — $(1+0.5+0.25) \times 2^{-4} = 0.5 + 0.25.0.125 = 0.5 +$

1. m₁ m₂ m₃ ... <- nº normalizados

O. My me me En la degramatizada

3. Falso, la precisión móxima alcantada por MATZAB son 15 cilcos significativas.

3)

4. El exponente determina que se puede llegar a números mas grandes. La montisa determina el espocio (la separación) entre dos ne maquina consecutivos (mais o menos precisión). 1.00 × 2° -7 1 (P) 1.01 × 2° -7 1.25 1.0000 × 2° -> 1 1.0001 × 2° -> 1.0625 5. Xo -> gerción + derivada = 2 datos X1 -> furción + derivada + 2º derivada = 3 destas X2 - Jerción = 1 dato i grado? - 7 6 datos - 7 5 grados 6. Hermite -> 3 puntos L, tenemos los datos de la firción y de la 1º deci-vada para cada punto Tenemos 3 puntos, de cada una tenemos 2 dates (gurian + 1: derivado). Loego 6 datos, es decir, 5 grado

7. $\frac{1}{2}$, tan (x) \oint \iff base Falso, podemos hacerlo con el polinomio de grado mínimo son necesidad de que me proporcionen una base. 8. mantisa = 1.101 base = 2 exponente = 2 $(1.101) \times 2^2 = (1 + 0.5 + 0.125) \times 2^2 = 6.5$ q. h(1) = 1, h(2) = 2, h'(2) = 3Tabla Dis- Div. X | P(x) | P(·,·) | P(·,·/·) 10. { 1, £, sin(c)} - v(x) = a + bt + c sin(t) 2= sila = 0 (0) 2= fila= 0 (11) -0 2 3= gila de H? 3= fila = [v'(+1] - 3= sila U' (E) = b + C cos (TT) U'(#/ = b - C

Lorgo, a = 0, b = 1, c = -1

11. mantisa normalizada, base 2, ¿ 14?

a) 1.75 - No esta en base 2

(b) $2.11 - (1.11) \times 2^3 = (1 + 0.5 + 0.25) \times 2^3 = 14$ c) 0.00 - Esto es cero $14 \frac{12}{70 + 712}$

oftimo costo hosto el 1º.

2/ 1.00 - 14 no es potencia de 2

e) 0.11 — No esta gornalizado

12. mantisa = 1.00exponente = 1.00

$$(1.00) \times 2^{2} = 1 \times 2^{2} = 2$$

13. mantisa normalizada, 4 bits è eps (1.25)?

1.0100
$$\times 2^{\circ} = 3.25$$
] eps = 0.0001 $\times 2^{\circ} = 1.0101 \times 2^{\circ}$

(a)

14. eps = eps (1) - porto de la base de que es el mismo que (1)

$$a = 0.45 * eps$$
 $(2 + 6 * a) - 2 = (2 + 6 * 0.45 eps) - 2 = 6$
 $= (2 + 2.7 eps) - 2 = 2.7 eps = 3 eps$

15. mantisa normalizada, 4 bits (1. b₁ b₂b₃b₄), expanentes entre possente

La separación maxima estaral entre dos nº consecutios an el maximo exp. (3).

1. 0001 × 2³) 0.0001 × 2³ = 2-4 = 0.5

1. 0000 × 2³) $= 2^{-4} \times 2^3 = 2^{-4} = 0.5$

16. $p(0) = -3$

Tablo Dis. Div

 $p(2) = -5$
 $p(3) = -6$
 $p(3) = -6$
 $p(3) = -6$

Tablo Dis. Div

 $p(3) = -6$
 $p(3) = -6$

17.
$$\rho(0)=1$$
 $\rho(1)=-1$
 $\rho(1)=-1$
 $\rho(0)=1$
 $\rho(0)=1$
 $\rho(0)=-1$
 $\rho(0)=-1$