Основания алгевры и геометрии, осенний семестр 2019 г.

Задачи для семинара 12

факультет математики, НИУ ВШЭ

Задача 1. (a) Задайте уравнением касательную в точке p к единичной окружности на комплексной плоскости. (b) Докажите, что прямые, касающихся единичной окружности в точках p и q, пересекаются в точке $\frac{2}{1/p+1/q}$ (если пересекаются).

(с) Докажите, что для описанного около окружности четырехугольника прямая, соединяющая середины диагоналей, проходит через центр окружности.

Дополним плоскость $\mathbb C$ бесконечно удаленной точкой ∞ и отождествим то, что получится, со сферой при помощи стереографической проекции и с $\mathbb CP^1$ следующим образом: в $\mathbb C^2=\{(z,w)\}$ отождествим комплексную прямую $\{(z,w)\mid w=0\}$ с ∞ , а любую другую проходящую через начало координат комплексную прямую (вида az+bw=0) — с точкой ее пересечения с комплексной прямой w=1. Дополненную плоскость будем называть сферой Римана и обозначать $\overline{\mathbb C}$. Дробно-линейным преобразованием сферы Римана называется отображение $f\colon \overline{\mathbb C}\to \overline{\mathbb C}$, имеющее на $\mathbb C$ вид $z\mapsto \frac{az+b}{cz+d}$, где $a,b,c,d\in\mathbb C$ и $ad-bc\neq 0$, и т.ч. $f(\infty)=\frac{a}{c}$, а $f(-\frac{d}{c})=\infty$.

Задача 2. (а) Любое дробно-линейное преобразование представляется в виде композиции преобразований вида $z\mapsto z+c,\ z\mapsto az,\ z\mapsto \frac{1}{z}.$

(b) Дробно-линейные преобразования образуют группу (с операцией композиции).

(c) ДЛП сохраняют двойное отношение $[x,y,z,w]=rac{z-x}{z-y}:rac{w-x}{w-y}.$

(d) Обобщенной окружностью на $\overline{\mathbb{C}}$ будем называть окружность на \mathbb{C} или прямую на \mathbb{C} , к которой добавлена точка ∞ . ДЛП переводит обобщенную окружность в обобщенную окружность.

(е) ДЛП сохраняют углы между обобщенными окружностями.

(f) Найдите ДЛП, переводящее верхнюю полуплоскость в единичный диск.

(g) ДЛП сохраняет верхнюю полуплоскость тогда и только тогда, когда оно представляется в виде $z\mapsto \frac{az+b}{cz+d}$, где $a,b,c,d\in\mathbb{R},\ ad-bc>0$. Группу таких преобразований будем называть $PSL(2,\mathbb{R})$ по причинам, которые прояснятся в процессе решения следующего пункта.

(h) Постройте гомоморфизм из $SL(2,\mathbb{R})$ в группу ДЛП, сохраняющих верхнюю полуплоскость, с ядром $\{\pm E\}$.

Задача 3. (а) Любую точку верхней полуплоскости можно перевести в любую другую преобразованием из $PSL(2,\mathbb{R})$.

(b) Любой луч модели геометрии Лобачевского в диске (или в верхней полуплоскости) можно перевести в любой другой луч движением плоскости Лобачевского.

(c) Любые три точки абсолюта можно перевести в любые три точки абсолюта с тем же циклическим порядком движениями плоскости Лобачевского, продолженными на абсолют.

Задача 4. (a) Докажите, что в любом треугольнике на плоскости Лобачевского сумма углов меньше π .

(b) Докажите признак равенства треугольников по трем углам.

(с) Убедитесь, что на стороне любого острого угла можно можно взять точку так, чтобы в ней перпендикуляр к стороне был (сверх)параллелен другой стороне.

(d) Убедитесь, что у тупоугольного треугольника высоты могут быть (сверх)параллельны.