Kernel methods

Course of Machine Learning Master Degree in Computer Science University of Rome "Tor Vergata"

Giorgio Gambosi

a.a. 2017-2018

Dual representation

Many linear models for regression and classification can be reformulated in terms of a dual representation.

Example: regularized sum of squares

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} \left(\mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}_{i}) - t_{i} \right)^{2} + \frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}$$
$$= \frac{1}{2} (\mathbf{\Phi} \mathbf{w} - \mathbf{t})^{T} (\mathbf{\Phi} \mathbf{w} - \mathbf{t}) + \frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}$$

setting
$$\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = \sum_{i=1}^{n} \left(\mathbf{w}^{T} \phi(\mathbf{x}_{i}) - t_{i} \right) \phi(\mathbf{x}_{i}) + \lambda \mathbf{w} = \mathbf{0}$$
, the resulting solution is

$$\mathbf{w} = -rac{1}{\lambda} \sum_{i=1}^n \left(\mathbf{w}^T oldsymbol{\phi}(\mathbf{x}_i) - t_i
ight) oldsymbol{\phi}(\mathbf{x}_i) = \sum_{i=1}^n a_i oldsymbol{\phi}(\mathbf{x}_i) = oldsymbol{\Phi}^T \mathbf{a}$$

where

$$a_i = -\frac{1}{\lambda} \left(\mathbf{w}^T \phi(\mathbf{x}_i) - t_i \right)$$

Dual representation

By substituting $\Phi^T \mathbf{a}$ to \mathbf{w} we express the cost function in terms of \mathbf{a} , instead of \mathbf{w} , introducing a dual representation of J.

$$\begin{split} J(\mathbf{a}) &= \frac{1}{2} (\mathbf{\Phi} \mathbf{\Phi}^T \mathbf{a} - \mathbf{t})^T (\mathbf{\Phi} \mathbf{\Phi}^T \mathbf{a} - \mathbf{t}) + \frac{\lambda}{2} (\mathbf{\Phi}^T \mathbf{a})^T \mathbf{\Phi}^T \mathbf{a} \\ &= \frac{1}{2} (\mathbf{a}^T \mathbf{\Phi} \mathbf{\Phi}^T - \mathbf{t}^T) (\mathbf{\Phi} \mathbf{\Phi}^T \mathbf{a} - \mathbf{t}) + \frac{\lambda}{2} \mathbf{a}^T \mathbf{\Phi} \mathbf{\Phi}^T \mathbf{a} \\ &= \frac{1}{2} \left(\mathbf{a}^T \mathbf{\Phi} \mathbf{\Phi}^T \mathbf{\Phi} \mathbf{\Phi}^T \mathbf{a} + \mathbf{t}^T \mathbf{t} - \mathbf{a}^T \mathbf{\Phi} \mathbf{\Phi}^T \mathbf{t} - \mathbf{t}^T \mathbf{\Phi} \mathbf{\Phi}^T \mathbf{a} \right) + \frac{\lambda}{2} \mathbf{a}^T \mathbf{\Phi} \mathbf{\Phi}^T \mathbf{a} \\ &= \frac{1}{2} \mathbf{a}^T \mathbf{\Phi} \mathbf{\Phi}^T \mathbf{\Phi} \mathbf{\Phi}^T \mathbf{a} + \frac{1}{2} \mathbf{t}^T \mathbf{t} - \mathbf{a}^T \mathbf{\Phi} \mathbf{\Phi}^T \mathbf{t} + \frac{\lambda}{2} \mathbf{a}^T \mathbf{\Phi} \mathbf{\Phi}^T \mathbf{a} \end{split}$$

- · Given Φ , let us define the Gram matrix as the symmetric matrix $\mathbf{K} = \mathbf{\Phi} \mathbf{\Phi}^T$
- The elements of the Gram matrix are the dot products

$$k_{ij} = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j) = \sum_{l=1}^m \phi_l(\mathbf{x}_i) \phi_l(\mathbf{x}_j) = \kappa(\mathbf{x}_i, \mathbf{x}_j)$$

• $\kappa(\mathbf{x}_i, \mathbf{x}_j)$ is a kernel function corresponding to the base functions ϕ .

• The cost function can be written in terms of the Gram matrix as

$$J(\mathbf{a}) = \frac{1}{2}\mathbf{a}^T\mathbf{K}\mathbf{K}\mathbf{a} + \frac{1}{2}\mathbf{t}^T\mathbf{t} - \mathbf{a}^T\mathbf{K}\mathbf{t} + \frac{\lambda}{2}\mathbf{a}^T\mathbf{K}\mathbf{a}$$

• setting the gradient of $J(\mathbf{a})$ wrt \mathbf{a} to $\mathbf{0}$ it results

$$\frac{\partial J(\mathbf{a})}{\partial \mathbf{a}} = \mathbf{K}\mathbf{K}\mathbf{a} - \mathbf{K}\mathbf{t} + \lambda \mathbf{K}\mathbf{a} = \mathbf{K}(\mathbf{K}\mathbf{a} - \mathbf{t} + \lambda \mathbf{a}) = \mathbf{K}((\mathbf{K} + \mathbf{I}\lambda)\mathbf{a} - \mathbf{t}) = \mathbf{0}$$
 that is,

$$\mathbf{a} = (\mathbf{K} + \mathbf{I}\lambda)^{-1}\mathbf{t}$$

By substituting in the linear regression model, the prediction corresponding to a given in put ${\bf x}$ can be written as

$$y(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) = \mathbf{a}^T \Phi \phi(\mathbf{x}) = \mathbf{t}^T (\mathbf{K} + \mathbf{I}\lambda)^{-1} \Phi \phi(\mathbf{x}) = \mathbf{t}^T \mathbf{H} \mathbf{k}(\mathbf{x})$$

where

$$\mathbf{k}(\mathbf{x}) = (\phi(\mathbf{x}_1)^T \phi(\mathbf{x}), \dots, \phi(\mathbf{x}_n)^T \phi(\mathbf{x}))^T$$
$$= (\kappa(\mathbf{x}_1, \mathbf{x}), \dots, \kappa(\mathbf{x}_n, \mathbf{x}))^T$$

and

$$\mathbf{H} = (\mathbf{K} + \mathbf{I}\lambda)^{-1}$$

 The prediction for a new element x can be expressed just in terms of a linear combination of dot products of base functions (or, equivalently, of kernel functions)

$$y(\mathbf{x}) = \sum_{i=1}^{n} \mathbf{a}_i \phi(\mathbf{x})^T \phi(\mathbf{x}_i) = \sum_{i=1}^{n} \mathbf{a}_i \kappa(\mathbf{x}, \mathbf{x}_i)$$

where

$$\mathbf{a}_i = \sum_{j=1}^n h_{ji} t_j$$

- observe that knowing the base functions ϕ is sufficient to compute $y(\mathbf{x})$, but not necessary
- \cdot $y(\mathbf{x})$ can be computed also by just knowing the kernel function κ
- the kernel function can be derived from ϕ (since $\kappa(\mathbf{x}_1, \mathbf{x}_2) = \phi(\mathbf{x}_1)^T \phi(\mathbf{x}_2)$), but it is strictly less informative than the set of base functions, since it is not possible to derive Φ from κ

Why referring to the dual representation?

- While in the original formulation of linear regression \mathbf{w} can be derived by inverting the $m \times m$ matrix $\mathbf{\Phi}^T \mathbf{\Phi}$, in the dual formulation computing \mathbf{a} requires inverting the $n \times n$ matrix $\mathbf{K} + \mathbf{I}\lambda$.
- Since usually $n \gg m$, this seems to lead to a loss of efficiency.
- However, the dual approach makes it possible to refer only to the kernel function κ , and not to the set of m base functions Φ : this makes it possible to implicitly use feature space of very high dimension (much larger than n, even infinite).

First approach

Choose a mapping of the feature space, in terms of a set of m base functions ϕ . Derive a kernel function as

$$\kappa(\mathbf{x}_1, \mathbf{x}_2) = \phi(\mathbf{x}_1)^T \phi(\mathbf{x}_2) = \sum_{i=1}^m \phi_i(\mathbf{x}_1) \phi_i(\mathbf{x}_2)$$

Second approach

Construct a kernel function directly: we must ensure that our function is a valid kernel function, that is it may be expressed as a scalar product in some (whatever high-dimensional) feature space resulting from the application of a set fo base functions.

That is, given κ , there must exist some mapping ϕ such that $\kappa(\mathbf{x}_1, \mathbf{x}_2) = \phi(\mathbf{x}_1)^T \phi(\mathbf{x}_2)$

Kernel functions from different types of base functions.

Example

Let $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^2$: $\kappa(\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{x}_1^T \mathbf{x}_2)^2$ is a valid kernel function?

This can be verified by observing that

$$\kappa(\mathbf{x}_{1}, \mathbf{x}_{2}) = (x_{11}x_{21} + x_{12}x_{22})^{2}$$

$$= x_{11}^{2}x_{21}^{2} + x_{12}^{2}x_{22}^{2} + 2x_{11}x_{12}x_{21}x_{22}$$

$$= (x_{11}^{2}, x_{12}^{2}, x_{11}x_{12}, x_{11}x_{12}) \cdot (x_{21}^{2}, x_{22}^{2}, x_{21}x_{22}, x_{21}x_{22})$$

$$= \phi(\mathbf{x}_{1}) \cdot \phi(\mathbf{x}_{2})$$

and by defining the base functions as $\phi(\mathbf{x}) = (x_1^2, x_2^2, x_1x_2, x_1x_2)^T$.

• In general, if $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^d$ then $\kappa(\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{x}_1 \cdot \mathbf{x}_2)^2 = \phi(\mathbf{x}_1)^T \phi(\mathbf{x}_2)$, where

$$\phi(\mathbf{x}) = (x_1^2, \dots, x_d^2, x_1 x_2, \dots, x_1 x_d, x_2 x_1, \dots, x_d x_{d-1})^T$$

- the d-dimensional input space is mapped onto a space with dimension $m=d^2$
- observe that computing $\kappa(\mathbf{x}_1, \mathbf{x}_2)$ requires time O(d), while deriving it from $\phi(\mathbf{x}_1)^T \phi(\mathbf{x}_2)$ requires $O(d^2)$ steps

The function $\kappa(\mathbf{x}_1,\mathbf{x}_2)=(\mathbf{x}_1\cdot\mathbf{x}_2+c)^2$ is a kernel function. In fact,

$$\kappa(\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{x}_1 \cdot \mathbf{x}_2 + c)^2$$

$$= \sum_{i=1}^n \sum_{j=1}^n x_{1i} x_{1j} x_{2i} x_{2j} + \sum_{i=1}^n (\sqrt{2}cx_{1i})(\sqrt{2}cx_{2i}) + c^2$$

$$= \phi(\mathbf{x}_1)^T \phi(\mathbf{x}_2)$$

for

$$\phi(\mathbf{x}) = (x_1^2, \dots, x_d^2, x_1 x_2, \dots, x_1 x_d, x_2 x_1, \dots, x_d x_{d-1}, \sqrt{2c} x_1, \dots, \sqrt{2c} x_d, c)^T$$

This implies a mapping from a d-dimensional to a $(d+1)^2$ -dimensional space.

Function $\kappa(\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{x}_1 \cdot \mathbf{x}_2 + c)^t$ is a kernel function corresponding to a mapping from a d-dimensional space to a space of dimension

$$m = \sum_{i=0}^{t} d^{i} = \frac{d^{t+1} - 1}{d - 1}$$

corresponding to all products $x_{i_1}x_{i_2}...x_{i_l}$ with $0 \le l \le t$.

Observe that, even if the space has dimension $O(d^t)$, evaluating the kernel function requires just time O(d).

Verifying a given function is a kernel

A necessary and sufficient condition for a function $\kappa: \mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}^n$ to be a kernel is that, for all sets $(\mathbf{x}_1, \dots, \mathbf{x}_n)$, the Gram matrix \mathbf{K} such that $k_{ij} = \kappa(\mathbf{x}_i, \mathbf{x}_j)$ is semidefinite positive, that is

$$\mathbf{v}^T \mathbf{K} \mathbf{v} \ge 0$$

for all vectors \mathbf{v} .

Techniques for constructing kernel functions

Given kernel functions $\kappa_1(\mathbf{x}_1, \mathbf{x}_2)$, $\kappa_2(\mathbf{x}_1, \mathbf{x}_2)$, the function $\kappa(\mathbf{x}_1, \mathbf{x}_2)$ is a kernel in all the following cases

- $\kappa(\mathbf{x}_1, \mathbf{x}_2) = e^{\kappa_1(\mathbf{x}_1, \mathbf{x}_2)}$
- $\cdot \kappa(\mathbf{x}_1, \mathbf{x}_2) = \kappa_1(\mathbf{x}_1, \mathbf{x}_2) + \kappa_2(\mathbf{x}_1, \mathbf{x}_2)$
- $\cdot \kappa(\mathbf{x}_1, \mathbf{x}_2) = \kappa_1(\mathbf{x}_1, \mathbf{x}_2) \kappa_2(\mathbf{x}_1, \mathbf{x}_2)$
- $\kappa(\mathbf{x}_1, \mathbf{x}_2) = c\kappa_1(\mathbf{x}_1, \mathbf{x}_2)$, for any c > 0
- $\kappa(\mathbf{x}_1, \mathbf{x}_2) = \mathbf{x}_1^T \mathbf{A} \mathbf{x}_2$, with \mathbf{A} positive definite
- $\kappa(\mathbf{x}_1,\mathbf{x}_2) = f(\mathbf{x}_1)\kappa_1(\mathbf{x}_1,\mathbf{x}_2)g(\mathbf{x}_2)$, for any $f,g:\mathbb{R}^n\mapsto\mathbb{R}$
- $\kappa(\mathbf{x}_1, \mathbf{x}_2) = p(\kappa_1(\mathbf{x}_1, \mathbf{x}_2))$, for any polynomial $p: \mathbb{R}^q \mapsto \mathbb{R}$ with non-negative coefficients
- $\kappa(\mathbf{x}_1, \mathbf{x}_2) = \kappa_3(\phi(\mathbf{x}_1), \phi(\mathbf{x}_2))$, for any vector ϕ of m functions $\phi_i : \mathbb{R}^n \to \mathbb{R}$ and for any kernel function $\kappa_3(\mathbf{x}_1, \mathbf{x}_2)$ in \mathbb{R}^m

$$\kappa(\mathbf{x}_1,\mathbf{x}_2)=(\mathbf{x}_1\cdot\mathbf{x}_2+c)^d$$
 is a kernel function. In fact,

- 1. $\mathbf{x}_1 \cdot \mathbf{x}_2 = \mathbf{x}_1^T \mathbf{x}_2$ is a kernel function corresponding to the base functions $\phi = (\phi_1, \dots, \phi_n)$, with $\phi_i(\mathbf{x}) = \mathbf{x}$
- 2. c is a kernel function corresponding to the base functions $\phi = (\phi_1, \dots, \phi_n)$, with $\phi_i(\mathbf{x}) = \frac{\sqrt{c}}{m}$
- 3. $\mathbf{x}_1 \cdot \mathbf{x}_2 + c$ is a kernel function since it is the sum of two kernel functions
- 4. $(\mathbf{x}_1 \cdot \mathbf{x}_2 + c)^d$ is a kernel function since it is a polynomial with non negative coefficients (in particular $p(z) = z^d$) of a kernel function

$$\kappa(\mathbf{x}_1, \mathbf{x}_2) = e^{-\frac{||\mathbf{x}_1 - \mathbf{x}_2||^2}{2\sigma^2}}$$

is a kernel function. In fact,

1. since $||\mathbf{x}_1 - \mathbf{x}_2||^2 = \mathbf{x}_1^T \mathbf{x}_1 + \mathbf{x}_2^T \mathbf{x}_2 - 2\mathbf{x}_1^T \mathbf{x}_2$, it results

$$\kappa(\mathbf{x}_1, \mathbf{x}_2) = e^{-\frac{\mathbf{x}_1^T \mathbf{x}_1}{2\sigma^2}} e^{-\frac{\mathbf{x}_2^T \mathbf{x}_2}{2\sigma^2}} e^{\frac{\mathbf{x}_1^T \mathbf{x}_2}{\sigma^2}}$$

- 2. $\mathbf{x}_1^T \mathbf{x}_2$ is a kernel function (see above)
- 3. then, $\frac{\mathbf{x}_1^T\mathbf{x}_2}{\sigma^2}$ is a kernel function, being the product of a kernel function with a constant $c=\frac{1}{\sigma^2}$
- 4. $e^{\frac{\mathbf{x}_1^T \mathbf{x}_2}{\sigma^2}}$ is the exponential of a kernel function, and as a consequence a kernel function itself
- 5. $e^{-\frac{\mathbf{x}_1^T\mathbf{x}_1}{\sigma^2}}e^{-\frac{\mathbf{x}_1^T\mathbf{x}_1}{2\sigma^2}}e^{\frac{\mathbf{x}_1^T\mathbf{x}_2}{\sigma^2}}$ is a kernel function, being the product of a kernel function with two functions $f(\mathbf{x}_1)=e^{-\frac{\mathbf{x}_1^T\mathbf{x}_1}{2\sigma^2}}$ and $g(\mathbf{x}_2)=e^{-\frac{\mathbf{x}_2^T\mathbf{x}_2}{2\sigma^2}}$

Relevant kernel functions

1. Polynomial kernel

$$\kappa(\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{x}_1 \cdot \mathbf{x}_2 + 1)^d$$

2. Sigmoidal kernel

$$\kappa(\mathbf{x}_1, \mathbf{x}_2) = \tanh(c_1\mathbf{x}_1 \cdot \mathbf{x}_2 + c_2)$$

3. Gaussian kernel

$$\kappa(\mathbf{x}_1, \mathbf{x}_2) = \exp\left(-\frac{||\mathbf{x}_1 - \mathbf{x}_2||^2}{2\sigma^2}\right)$$

where $\sigma \in {\rm I\!R}$

Observe that a gaussian kernel can be derived also starting from a non linear kernel function $\kappa(\mathbf{x}_1, \mathbf{x}_2)$ instead of $\mathbf{x}_1^T \mathbf{x}_2$.