

UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA III

<u>**DEFINICION**</u>: Sea L : $\mathbf{v} \to \mathbf{v}$ un operador lineal sobre el espacio vectorial \mathbf{v} . Un escalar α se dice un valor propio de L si existe un vector \mathbf{v} <u>**no nulo**</u>, tal que

$$L(\nabla) = \alpha \nabla \dots (1)$$

OBSERVACION : La relación (1) puede reescribirse de la manera siguiente:

 $L(V) - \alpha V = 0$, o, equivalentemente,

$$(L - \alpha id_{\mathbf{V}})(V) = V, \text{ con } V \neq V.$$

Vemos así, que α es un valor propio de L, si y sólo si , el operador L - α id $_{\boldsymbol{V}}$ no es inyectivo. Si fijamos una base en el espacio vectorial \boldsymbol{v} y si denotamos por [L - α id $_{\boldsymbol{V}}$] a la matriz asociada al operador L - α id $_{\boldsymbol{V}}$, entonces α es un valor propio de L, si y sólo si ,

$$\det ([L - \alpha id_{\mathbf{V}}]) = 0....(2)$$

<u>DEFINICION</u>: Un vector, no nulo, que satisface la relación (1), se dice un <u>vector</u> <u>propio asociado al valor propio α</u> y al subespacio Ker (L - α id_V) se le llama el <u>Subespacio</u> <u>propio</u> asociado al valor propio α .

<u>OBSERVACION</u>: La relación (2) es equivalente a det ([α id_V - L]) = 0 y, si reemplazamos aquí α por x, obtenemos un polinomio en x, a saber:

$$c(x) = det([xid_{V} - L])$$
(3)

El polinomio definido en (3) se llama el <u>polinomio característico de L</u> y observamos que los valores propios de L no son más que las raíces que el polinomio característico, c(x), tenga en el cuerpo de escalares del espacio vectorial \mathbf{V} .

EJERCICIOS:

1.- Encuentre todos los valores propios del operador lineal $L: IR^3 \rightarrow IR^3$ definido por:

$$L(x, y, z) = (2x + 3y, 5y, 2z)$$

- 2.- Encuentre una base de IR³ formada por vectores propios del operador lineal L dado en el ejercicio 1.
- 3.-Encuentre la matriz asociada al operador lineal L según la base determinada en el ejercicio 2.
- 4.-Pruebe que si α y β , con $\alpha \neq \beta$, son valores propios de un operador lineal $T: \mathbf{v} \to \mathbf{v}$ y si \mathbf{v} y son vectores propios asociados a α y β , respectivamente, entonces \mathbf{v} y \mathbf{v} son linealmente independientes.
- 5.-Sea L : $IR^3 \rightarrow IR^3$ un operador lineal tal que

$$Ker(L-I) = < \{ (1,-1,0), (1,1,0) \} >$$

$$Ker(L-2I) = < \{(0,0,1)\} >$$

- i) Encuentre los valores propios de L.
- ii) Para cada valor propio de L, caracterice sus vectores propios asociados.
- iii) Encuentre L ($\overset{\vee}{X}$), $\forall \overset{\vee}{X} \in IR^3$.
- 1.-Sea T : $IR^3 \rightarrow IR^3$ el operador lineal cuya matriz asociada, respecto de la base canónica,

es la matriz
$$A = \begin{bmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{bmatrix}$$
.

- 6.1.- ¿Cuál es el polinomio característico de T?
- 6.2.- Encuentre todos los valores propios del operador T.
- 6.3.- Encuentre una base para cada uno de los subespacios propios de T.
- 6.4.- Dado el polinomio p (x) = $x^3 + 2x^2 3x + 7$, encuentre una fórmula de definición para el operador p (T).
- 7.-Sea A una matriz simétrica, 2 x 2, de números reales, tal que 2 y 3 son valores propios de A y el vector (1, 2) es un vector propio asociado a 2.

2

- a) Encuentre un vector propio de A asociado a 3 .
- b) Encuentre la matriz A.

8.-Sean : L : $\mathbf{v} \to \mathbf{v}$ un operador lineal sobre el espacio vectorial \mathbf{v} , α un valor propio de L y p (x) un polinomio a coeficientes en el cuerpo de escalares del espacio vectorial \mathbf{v} . Bajo estas estas condiciones, pruebe que p (α) es un valor propio del operador lineal p (L).

♣ ♥ ♦

<u>OBSERVACION</u>: Sea \mathbf{v} un espacio vectorial de dimensión finita, n, sobre un cuerpo IK. Si consideramos el espacio vectorial de todos los operadores lineales de \mathbf{v} en \mathbf{v} , \mathbf{L}_{IK} (\mathbf{v} , \mathbf{v}), entonces, como sabemos que este espacio tiene dimensión finita \mathbf{n}^2 , podemos afirmar que si $L: \mathbf{v} \rightarrow \mathbf{v}$ es un operador lineal cualquiera en \mathbf{L}_{IK} (\mathbf{v} , \mathbf{v}), existe un número natural r tal que los operadores lineales I, L, L², L³, L^{r-1}, son l.i. y L^r es combinación lineal de I, L, L², L³, L^{r-1}.

Así, existen escalares a_0 , a_1 , a_2 ,...... a_{r-1} , tales que

$$L^{r} = a_{r-1} L^{r-1} + a_{r-2} L^{r-2} + \dots + a_1 L + a_0 I$$
.

Esta última relación podemos interpretarla diciendo que el polinomio

$$p(x) = x^{r} + (-a_{r-1}x^{r-1}) + (-a_{r-2}x^{r-2}) + \dots + (-a_{1}x) + (-a_{0})$$
 se anula en L.

Resumiendo: Nos hemos convencido que, si **v** es un espacio vectorial de dimensión finita, entonces, para cada operador lineal L en **v**, existe un polinomio no nulo que se anula en L.

<u>DEFINICION</u>: Dado un operador lineal L, llamamos <u>polinomio minimal de L</u> al polinomio mónico de menor grado entre los polinomios que se anulan en L.

<u>OBSERVACION</u>: Si denotamos por m (x) al polinomio minimal de un operador L , haciendo uso del algoritmo de división, podemos probar que si p (x) es un polinomio que se anula en L, entonces m (x) divide a p (x).

TEOREMA DE CAYLEY-HAMILTON : Si L es un operador lineal sobre un espacio vectorial \mathbf{v} de dimensión finita sobre un cuerpo IK, entonces su polinomio característico se anula en L.

<u>COROLARIO:</u> El polinomio minimal de un operador lineal divide a su polinomio característico. **Aún más:** El polinomio minimal y el polinomio característico de un operador lineal **tienen las mismas raíces** (aúnque no, necesariamente, con las mismas multiplicidades).

EJERCICIOS:

1.-Encuentre el polinomio minimal del operador lineal $L: IR^4 \to IR^4$, cuya matriz asociada, según la base canónica de IR^4 , es la matriz

$$\begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 3 & 0 & 4 & 0 \\ 0 & 3 & 0 & 4 \end{bmatrix}.$$

2.- Encuentre el polinomio minimal del operador de derivación definido por:

$$D: IR_4[x] \rightarrow IR_4[x]$$

$$D(p(x)) = p'(x).$$

3.- Muestre que la matriz $\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \text{ y la matriz } \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \text{ tienen el mismo}$

polinomio minimal.

- 4.- Sea $\mathbf{v} = \mathbf{M}_{2 \times 2}$ (IR) y A = $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. Pruebe que el operador lineal T: $\mathbf{v} \to \mathbf{v}$ definido por
 - T(B) = AB tiene el mismo polinomio minimal que la matriz A.
- 5.- Pruebe que si $T : \mathbf{v} \to \mathbf{v}$ es un operador lineal, dim (\mathbf{v}) = n, entonces T es invertible si y sólo si el término libre del polinomio minimal de T es distinto de cero. Describa como computar T^{-1} usando el polinomio minimal. En particular muestre que T^{-1} puede siempre expresarse como un polinomio en T.
- 6.- Pruebe que matrices semejantes tienen el mismo determinante, la misma traza, el mismo polinomio característico y el mismo polinomio minimal .
- 7.- a) ¿Qué forma tiene el polinomio característico de una matriz nilpotente?
 - b) ¿Qué forma tiene el polinomio minimal de una matriz idempotente?

4

<u>DEFINICION</u>: Sean: \mathbf{V} un espacio vectorial sobre un cuerpo IK, \mathbf{W} un subespacio de \mathbf{V} y $L: \mathbf{V} \to \mathbf{V}$ un operador lineal . Decimos que \mathbf{W} es <u>L-invariante o invariante por L</u> si $L(\mathbf{W}) \subseteq \mathbf{W}$.

Observamos que si ${\bf w}$ es L-invariante entonces la aplicación lineal restrcción de L a ${\bf w}$, ${\rm Res}_{\mathbb W}$ L, es un operador lineal sobre ${\bf w}$.

EJERCICIOS:

- 1. Si L: $IR^2 \rightarrow IR^2$ es el operador lineal representado, según la base canónica, por la matriz $\begin{bmatrix} 2 & 5 \\ 1 & -2 \end{bmatrix}$, entonces encuentre todos los subespacios de IR^2 que son invariantes por L.
- 2. Sea T el operador lineal sobre IR^2 cuya matriz, respecto de la base canónica, es $\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$.

Si W_1 es el subespacio de IR^2 generado por $\stackrel{\omega}{e_1} = (1, 0)$, pruebe que

- a) W_1 es invariante por T.
- b) No existe subespacio W_2 de IR^2 , invariante por T y tal que $IR^2 = W_1 \oplus W_2$.
- 3. Sea T: $\mathbf{v} \rightarrow \mathbf{v}$ un operador lineal. Si $U = Ker(T^i)$ y $W = Ker(T^{i+1})$, entonces pruebe que
- a) $U \subseteq W y$
- b) $T(W) \subseteq U$.
- 4. Sea L: $IR^3 \rightarrow IR^3$ el operador lineal cuya matriz asociada, según la base canónica, es la matriz

$$B = \begin{bmatrix} 6 & -3 & -2 \\ 4 & -1 & -2 \\ 10 & -5 & -3 \end{bmatrix}$$
 y considere los polinomios $p(x) = x - 2$, $q(x) = x^2 + 1$, que son los factores

irreducibles del polinomio minimal de L.

- a) Caracterice los elementos del subespacio Ker(p(L)).
- b) Caracterice los elementos del subespacio Ker(q(L)).
- c) Muestre que Ker(p(L)) y Ker(q(L)) son L invariantes.
- d) Muestre que $IR^3 = Ker(p(L)) \oplus Ker(q(L))$.

5. Sea T: $\mathbf{v} \rightarrow \mathbf{v}$ un operador lineal. Suponga que $\mathbf{v} \in \mathbf{v}$ es tal que $\mathbf{T}^k(\mathbf{v}) = \mathbf{0}$ pero $\mathbf{T}^{k-1}(\mathbf{v}) \neq \mathbf{0}$.

Pruebe que:

- a) El conjunto B = $\{ \overset{\mathbf{w}}{\mathbf{v}}, T(\overset{\mathbf{w}}{\mathbf{v}}), \dots, T^{k-1}(\overset{\mathbf{w}}{\mathbf{v}}) \}$ es l. i.
- b) Si $W = \langle B \rangle$, entonces W es T invariante.
- c) $T_0 = Res_W T$ es nilpotente.

* * * *

DEFINICION: Sean W_1 , W_2 , W_3 , W_k subespacios de un espacio vectorial \mathbf{v} . Se dice que \mathbf{v} suma directa de los subespacios W_1 , W_2 , W_3 , W_k , si cada vector $\mathbf{v} \in \mathbf{v}$ puede expresarse de una sola forma como resultado de vectores \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_k , tales que $\mathbf{v}_i \in W_i$, para cada $i \in \{1,2,...k\}$.

NOTACION: $\mathbf{v} = W_1 \oplus W_2 \oplus W_3 \oplus \dots \oplus W_k$.

LEMA: Sean W_1, W_2, W_3, W_k subespacios de un espacio vectorial \boldsymbol{v} . Entonces $\boldsymbol{v} = W_1 \oplus W_2 \oplus W_3 \oplus \oplus W_k, \text{ si y sólo si,}$

a)
$$\mathbf{v} = W_1 + W_2 + W_3 + \dots + W_k$$
 y

b) si
$$\mathring{\mathbf{w}}_{i} \in W_{i}$$
, $i \in \{1,2,...,k\}$, son vectores tales que $\mathring{\mathbf{w}}_{1} + \mathring{\mathbf{w}}_{2} + \dots + \mathring{\mathbf{w}}_{k} = \mathring{\mathbf{b}}$, entonces $\mathring{\mathbf{w}}_{1} = \mathring{\mathbf{w}}_{2} = \dots = \mathring{\mathbf{w}}_{k} = \mathring{\mathbf{b}}$.

LEMA: Sea \mathbf{v} un espacio vectorial sobre un cuerpo IK, y suponga que existen operadores lineales, no nulos, $E_1, E_2, E_3, \dots E_k$ sobre \mathbf{v} , tales que :

a)
$$I = E_1 + E_2 + E_3 + \dots + E_k$$
,

b)
$$E_i^{\circ} E_j = E_j^{\circ} E_i = \theta$$
, si $i \neq j$, $i, j \in \{1, 2, ... k\}$.

Entonces tendremos que $E_i^2 = E_i$, para cada $i \in \{1,2,...k\}$. Además,

 $\textbf{v} = Im(E_1) \oplus Im(E_2) \ \oplus Im(E_3) \ \oplus \oplus Im(E_k), \ y \ cada \ subespacio \ Im(E_i) \ es \ no \ nulo.$

<u>DEFINICION:</u> Un operador E_i , tal que $E_i^2 = E_i$, se dice un operador **idempotente.**

<u>Teorema de Descomposición Prima:</u> Sea L un operador lineal sobre un espacio vectorial **v** y sea $m(x) = p_1(x)^{r_1} \dots p_s(x)^{r_s}$ su polinomio minimal expresado como producto de potencias de factores irreducibles. Entonces existen polinomios $q_1(x)$,, $q_s(x)$, en IK[x], tales que los operadores lineales $E_i = q_i(L)$, $i \in \{1,2,...s\}$, satisfacen las siguientes relaciones:

$$E_i \neq \theta, i \in \{1,2,...s\},$$

$$I = E_1 + E_2 + E_3 + + E_s,$$

$$E_i^{\circ} E_j = E_j^{\circ} E_i = \theta, \text{ si } i \neq j, i, j \in \{1,2,...s\} \text{ y}$$

$$Im(E_i) = Ker(p_i(L)^r_i), i \in \{1,2,...s\}.$$

Los subespacios $Ker(p_i(L)^{r_i})$, $i \in \{1,2,...s\}$, son L - invariantes y se tiene que

$$\mathbf{v} = \mathrm{Ker}(\mathbf{p_1(L)}^{r_1}) \oplus \mathrm{Ker}(\mathbf{p_2(L)}^{r_2}) \oplus \mathrm{Ker}(\mathbf{p_3(L)}^{r_3}) \oplus \oplus \mathrm{Ker}(\mathbf{p_s(L)}^{r_s}).$$

COROLARIO: Un operador lineal L un operador lineal sobre un espacio vectorial **v**, es diagonalizable si y sólo si su polinomio minimal es un producto de factores lineales distintos.

EJERCICIOS:

1. Sea T: $IR^3 \rightarrow IR^3$ el operador lineal cuya matriz asociada, respecto de la base canónica, es la

$$\text{matriz A} = \begin{bmatrix} 1 & b & 1 \\ 0 & 1 & 0 \\ a & 0 & a \end{bmatrix}.$$

- a) ¿Bajo qué condiciones de a y de b es diagonalizable el operador T?
- b) ¿Bajo qué condiciones de a y de b es el subespacio $W = \{(x, y, z) \in IR^3 / x + z = 0 \}$ invariante por T?.
- 2. Sea L : $\mathbf{M}_{2\times 2}(IR) \to \mathbf{M}_{2\times 2}(IR)$ el operador lineal definido por L(M) = M + Tr(M)I. Entonces:
 - a) Encuentre los valores propios y el polinomio minimal de L.
 - b) ¿Es el operador L diagonalizable?. Justifique su respuesta.
- 3. Pruebe que si a,b,c y d son números reales tales que bc>0, entonces la matriz $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ es diagonalizable.

4. Sea $X = (x_1, x_2, \dots, x_n)$ un vector unitario en IR^n y denotemos por X a la matriz $X = \begin{bmatrix} x_1 \\ x_2 \\ . \\ . \\ x_n \end{bmatrix}$.

Definimos la matriz A como $A = I_n - 2xx^t$. Pruebe que :

- a) $A^t = A$.
- b) $A^{-1} = A^{t}$.
- c) x² 1 es el polinomio minimal de A.
- d) A es diagonalizable.
- e) tr(A) = n 2.
- f) det(A) = -1.
- 5. Sean X', $Y' \in IR^n \{b'\}$ y considere la matriz $A = XY^t \in \mathbf{M}_{n \times n}$ (IR).
 - a) Demuestre que $\frac{1}{x}$ es un vector propio de A. Pruebe, además, que todo vector no nulo de IR^n ortogonal a $\frac{1}{x}$, es también vector propio de A.
 - b) Demuestre que \ddot{x} es un vector propio de A. Pruebe, además, que todo vector no nulo de IR^n ortogonal a \ddot{y} , es también vector propio de A.
 - c) Suponga que $XY^t \neq 0$. Calcule, en este caso, todos los valores propios de A.
 - d) Demuestre que A es diagonalizable.

* * * *

TEOREMA DE DESCOMPOSICION DE JORDAN. Sea $T : \mathbf{V} \to \mathbf{V}$ un operador lineal sobre un espacio vectorial \mathbf{V} de dimensión finita sobre un cuerpo IK. Si \mathbf{T} es tal que todos sus valores propios son elementos de IK, entonces existen operadores D y N tales que:

$$1.-T = D + N$$
,

- 2.- D es diagonalizable y N es nilpotente.
- 3.-D y N conmutan (DN = ND),
- 4.-D y N están unívocamente determinados; es decir, si existen operadores D' y N' sobre \mathbf{v} tales que D' es diagonalizable y N' es nilpotente, T = D' + N' y D'N' = N'D', entonces D' = D y N' = N.

OBSERVACION 1: La descomposición de Jordan de un operador lineal T es útil para computar potencias de T: las potencias de T pueden computarse en términos de D y N, usando el Teorema de Binomio (puede usarse este Teorema porque D y N conmutan).

Así:

$$T^{k} = D^{k} + {k \choose 1} D^{k-1} N + \dots {k \choose k-1} D N^{k-1} + N^{k}$$

Observamos que las potencias de D son fácilmente calculables (basta tomar las potencias correspondientes de los elementos de la diagonal) y, a partir de un cierto valor t, las potencias de N se anulan.

Observe que la condición que T tenga todos sus valores propios en el cuerpo IK implica que el polinomio minimal de T sea un producto de potencias de polinomios mónicos de primer grado.

EJERCICIOS:

1.- Sea $T: IR^3 \rightarrow IR^3$ el operador lineal cuya matriz, según la base canónica, es la matriz

$$\mathbf{A} = \begin{bmatrix} -1 & 3 & 0 \\ 0 & 2 & 0 \\ 2 & 1 & -1 \end{bmatrix}.$$

- a) Encuentre la descomposición de Jordan de T.
- b) Usando la descomposición de Jordan de T, encuentre una matriz que represente a T¹⁰.

- 2.-Sea T = D + N la descomposición de Jordan de un operador lineal $T \in \mathbf{L}$ (\mathbf{v}). Pruebe que $S \in \mathbf{L}$ (\mathbf{v}) conmuta con T si y sólo si S conmuta con D y con N.
- 3.-<u>DEFINICION:</u> Sea \mathbf{v} un espacio vectorial de dimensión finita sobre un cuerpo algebraicamente cerrado IK. Un operador $T \in \mathbf{L}(\mathbf{v})$ se dice<u>unipotente</u> si T I es nilpotente.
 - a) Dé un ejemplo de un operador unipotente.

Pruebe que:

- b) T es unipotente si y sólo si su único valor propio es 1.
- c) Si T es invertible, entonces existen D, $U \in \mathbf{L}$ (\mathbf{v}) tales que T = DU, D es diagonalizable y U es unipotente.
- d) Los operadores D y U de la parte b) están unívocamente determinados.
- e) Para el operador que $T: C^3 \to C^3$ cuya matriz, según la base canónica, es la matriz

$$A = \begin{bmatrix} -1 & 3 & 0 \\ 0 & 2 & 0 \\ 2 & 1 & -1 \end{bmatrix}, \text{ encuentre su factorizacion como producto de un operador}$$

diagonalizable y un operador unipotente.

* * * *

Sea \mathbf{v} un espacio vectorial de dimensión finita sobre un cuerpo IK y sea $T: \mathbf{v} \to \mathbf{v}$ un operador lineal sobre $\mathbf{v} \neq \{ b \}$.

DEFINICION: Un subespacio \mathbf{w} de \mathbf{v} , T - invariante, se dice \underline{T} - $\underline{c\'{c}clico}$ si existe un vector $\overset{\boldsymbol{v}}{\boldsymbol{w}} \in \mathbf{w}$, $\overset{\boldsymbol{v}}{\boldsymbol{w}} \neq \overset{\boldsymbol{v}}{\boldsymbol{b}}$, tal que \mathbf{w} es generado por $\{\overset{\boldsymbol{v}}{\boldsymbol{w}}, T(\overset{\boldsymbol{v}}{\boldsymbol{w}}), T^2(\overset{\boldsymbol{v}}{\boldsymbol{w}}), \dots, T^k(\overset{\boldsymbol{v}}{\boldsymbol{w}})\}$, para algún $k \in IN$.

OBSERVACION: Es posible probar que un subespacio \mathbf{W} de \mathbf{V} es T - cíclico si para algún vector $\mathbf{W} \in \mathbf{W}$, $\mathbf{W} \neq \mathbf{0}$, se tiene que cada vector de \mathbf{W} puede escribirse en la forma $p(T)(\mathbf{W})$, para algún polinomio $p(x) \in IK[x]$.

<u>DEFINICION:</u> Sea $\stackrel{\top{V}}{w} \in \mathbf{V}$, $\stackrel{\top{V}}{w} \neq \stackrel{\top{U}}{v}$, y sea \mathbf{w} el subespacio de \mathbf{V} que consiste de todos los vectores de la forma p (T) ($\stackrel{\top{W}}{w}$), para algún polinomio p (x) \in IK[x]. Entonces \mathbf{w} se dice <u>el</u> <u>subespacio T - cíclico generado por $\stackrel{\top{W}}{w}$ </u> y se denotará por $Z(\stackrel{\top{W}}{w}, T)$.

DEFINICION: Como el espacio vectorial \mathbf{v} es de dimensión finita, es posible probar que si $\stackrel{\mathbf{v}}{\mathbf{v}} \in \mathbf{v}$, $\stackrel{\mathbf{v}}{\mathbf{v}} \neq \stackrel{\mathbf{b}}{\mathbf{v}}$, entonces existe un polinomio mónico m $\stackrel{\mathbf{v}}{\mathbf{v}}$ (x), único tal que

- ii) si p (x) \in IK[x] es tal que p(T)($\stackrel{\mbox{\sc w}}{\mbox{\sc w}}$) = $\stackrel{\mbox{\sc b}}{\mbox{\sc b}}$, entonces m $\stackrel{\mbox{\sc w}}{\mbox{\sc w}}$ (x)/p(x).

OBSERVACION: Es posible probar que $m_{W}^{\nu}(x)$ divide al polinomio minimal de T.

EJERCICIOS:

- 1.- Pruebe que $Z(\sqrt[6]{n}, T)$ es T invariante.
- 2.- Pruebe que $Z(w, T) = \bigcap \{S \mid S \text{ es subespacio } T \text{ invariante de } v \text{ y } w \in S \}.$

Observe que con esta igualdad está probando que $Z(\sqrt[\mathbf{v}]{v}, T)$ es el menor de los subespacios de \mathbf{v} , T - invariantes, que contienen a $\sqrt[\mathbf{v}]{v}$.

3.- Sea $T: IR^3 \rightarrow IR^3$ el operador lineal cuya matriz, según la base canónica, es la matriz

$$\mathbf{A} = \begin{bmatrix} -1 & 3 & 0 \\ 0 & 2 & 0 \\ 2 & 1 & -1 \end{bmatrix}.$$

Si a = (1, 0, 0), b = (-1, 0, 1) y b = (-1, 0, 1), caracterize los elementos de Z(a, T), de Z(b, T), de Z(b, T), y encuentre los órdenes de a, de b y de b.

Sea \mathbf{v} un espacio vectorial de dimensión finita sobre un cuerpo IK y sea $T: \mathbf{v} \to \mathbf{v}$ un operador lineal sobre $\mathbf{v} \neq \{ b \}$.

DEFINICION: Sea $p(x) = x^d - a_{d-1} x^{d-1} - a_{d-2} x^{d-2} - \dots a_1 x - a_0 \in IK[x]$ un polinomio

irreducible y suponga que Z(w, T) es un subespacio cíclico de v y que p(x) es el orden de w. Entonces la matriz de Res z(w, T) (T), respecto de la base

$$\{ \overset{\mathbf{V}}{\mathbf{W}}, \mathsf{T}(\overset{\mathbf{V}}{\mathbf{W}}), \mathsf{T}^{2}(\overset{\mathbf{V}}{\mathbf{W}}), \dots, \mathsf{T}^{d-1}(\overset{\mathbf{V}}{\mathbf{W}}) \} \text{ de } \mathsf{Z}(\overset{\mathbf{V}}{\mathbf{W}}, \mathsf{T}), \text{ es la matriz } \mathsf{A}_{\mathsf{p}(\mathsf{x})} = \begin{bmatrix} 0 & 0 & \dots & a_{0} \\ 1 & 0 & \dots & a_{1} \\ \dots & 1 & \dots & \dots \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & a_{d-1} \end{bmatrix}.$$

La matriz $A_{p(x)}$ se llama <u>la matriz compañera del polinomio p(x).</u>

DEFINICION: Sea $p(x) = x^d - a_{d-1} x^{d-1} - a_{d-2} x^{d-2} - \dots$ $a_1x - a_0 \in IK[x]$ un polinomio irreducible y suponga que $Z(\stackrel{\mathbf{V}}{\mathbf{W}}, T)$ es un subespacio cíclico de \mathbf{V} y que $[p(x)]^r$ es el orden de $\stackrel{\mathbf{V}}{\mathbf{W}}$. Entonces la matriz de Res $_{Z(\stackrel{\mathbf{V}}{\mathbf{W}}, T)}(T)$, respecto de la base $\{[p(T)]^{r-1}(\stackrel{\mathbf{V}}{\mathbf{W}}), (T \circ [p(T)]^{r-1}(\stackrel{\mathbf{V}}{\mathbf{W}}), (T \circ [p(T)]^{r-1}(\stackrel{\mathbf{V}}{\mathbf{W}}), (T \circ [p(T)]^{r-1}(\stackrel{\mathbf{V}}{\mathbf{W}}), (T \circ [p(T)]^{r-2}(\stackrel{\mathbf{V}}{\mathbf{W}}), (T$

 $La\ matriz\ A_{[p(x)]}^{\quad r}\quad se\ llama\ \underline{la\ matriz\ compa\~nera\ del\ polinomio\ [p(x)]\ ^r}\ .$

EJERCICIOS:

1.- Encuentre la matriz compañera de cada uno de los siguientes polinomios:

$$p_1(x) = x^2 + x + 1,$$

$$p_2(x) = x - 2$$
,

$$p_3(x) = (x - 1)^3$$

$$p_4(x) = (x^2 + x + 1)^5$$
.

* * * *

OBSERVACION: Los órdenes $[p(x)]^{r_1}$, $[p(x)]^{r_2}$, $[p(x)]^{r_m}$ están univocamente determinados y el operador T tiene una única representación matricial de la forma

$$\begin{bmatrix} A_1 & & & \\ & A_2 & & \\ & & \dots & \\ & & A_m \end{bmatrix} \text{ en la que las matrices } A_1, \ A_2, \dots A_m, \text{ son las matrices compañeras de los}$$

 $polinomios \left[p(x)\right]^{r_1}, \ \left[p(x)\right]^{r_2}, \left[p(x)\right]^{r_m} \ .$

TEOREMA: Sea $T: \mathbf{V} \to \mathbf{V}$ un operador lineal sobre \mathbf{V} . Si $m(x) = [p_1(x)]^{r_1}[p_2(x)]^{r_2}.....[p_k(x)]^{r_k}$

 $con \ \left[p_1(x)\right]^{r_1}, \ \left[p_2(x)\right]^{r_2},, \ \left[p_k(x)\right]^{r_k} irreducibles, \ es \ el \ polinomio \ minimal \ de \ T, \ entonces \ T \ tiene$

una única representación matricial diagonal por bloques :
$$\begin{bmatrix} A_1 & & & \\ & A_2 & & \\ & & \dots & \\ & & A_{mk} \end{bmatrix}.$$

Esta representación matricial se llama la forma canónica racional del operador T.

<u>OBSERVACION:</u> Si todos los polinomios irreducibles que participan en la factorización del polinomio minimal de T son de primer grado, entonces la forma canónica racional de T recibe el nombre de **forma de Jordan.**

EJERCICIOS:

- 1.-Encuentre la forma canónica racional de la matriz $\begin{bmatrix} 0 & 1 & 0 \\ 2 & -2 & 2 \\ 2 & -3 & 2 \end{bmatrix}.$
- 3.-Determine todas las posibles formas de Jordan para una matriz A cuyo polinomio característico es $c(x) = (x 3)^3 (x 2)^3$.
- 4.-Encuentre todas las formas canónicas racionales posibles para una matriz cuadrada, de números reales y de orden 2.
- 5.-Encuentre todas las formas canónicas racionales posibles para una matriz cuadrada, de números complejos y de orden 2.
- 6.-Encuentre todas las formas canónicas racionales posibles para una matriz cuadrada, de números reales y de orden 3.
- 7.-Encuentre todas las formas canónicas racionales posibles para una matriz cuadrada, de números reales, de orden 6 y cuyo polinomio minimal es:
- a) $(x^2+3)(x+1)^2$,
- b) $(x^2 + 2)^2(x + 3)^2$.

- 8.-Encuentre todas las formas canónicas racionales posibles para una matriz cuadrada, de números complejos, de orden 6 y cuyo polinomio minimal es:
 - a) $(x^2 + 3)(x + 1)^2$,
 - b) $(x^2 + 2)^2(x + 3)^2$.

<u>**DEFINICION:**</u> Si \mathbf{V} y \mathbf{W} son espacios vectoriales sobre un mismo cuerpo IK, entonces una función B : \mathbf{V} x \mathbf{W} \rightarrow IK se dice <u>una forma bilineal</u> si:

$$B(\overrightarrow{v}_1 + \overrightarrow{v}_2, \overrightarrow{w}) = B(\overrightarrow{v}_1, \overrightarrow{w}) + B(\overrightarrow{v}_2, \overrightarrow{w}) B(\overrightarrow{v}, \overrightarrow{w}_1 + \overrightarrow{w}_2) = B(\overrightarrow{v}, \overrightarrow{w}_1) + B(\overrightarrow{v}, \overrightarrow{w}_2) B(\overrightarrow{v}, \overrightarrow{w}_1) = B(\overrightarrow{v}, \overrightarrow{w}_1) = \alpha B(\overrightarrow{v}, \overrightarrow{w}_1) B(\overrightarrow{v}, \overrightarrow{w}_1) = B(\overrightarrow{v}, \overrightarrow{w}_1) = \alpha B(\overrightarrow{v}, \overrightarrow{w}_1) B(\overrightarrow{v}, \overrightarrow{w}_1) = B(\overrightarrow{v}, \overrightarrow{w}_1) = \alpha B(\overrightarrow{v}, \overrightarrow{w}_1) B(\overrightarrow{v}, \overrightarrow{w}_1) = B(\overrightarrow{v}, \overrightarrow{w}_1) = \alpha B(\overrightarrow{v}, \overrightarrow{w}_1) B(\overrightarrow{v}, \overrightarrow{w}_1) = B(\overrightarrow{v}, \overrightarrow{w}_1) = \alpha B(\overrightarrow{v}, \overrightarrow{w}_1) B(\overrightarrow{v}, \overrightarrow{w}_1) = B(\overrightarrow{v}, \overrightarrow{w}_1) = \alpha B(\overrightarrow{v}, \overrightarrow{w}_1) B(\overrightarrow{v}, \overrightarrow{w}_1) = B(\overrightarrow{v}, \overrightarrow{w}_1) = \alpha B(\overrightarrow{v}, \overrightarrow{w}_1) B(\overrightarrow{v}, \overrightarrow{w}_1) = B(\overrightarrow{v}, \overrightarrow{w}_1) = \alpha B(\overrightarrow{v}, \overrightarrow{w}_1) B(\overrightarrow{v}, \overrightarrow{w}_1) = B(\overrightarrow{v}, \overrightarrow{w}_1) = \alpha B(\overrightarrow{v}, \overrightarrow{w}_1) B(\overrightarrow{v}, \overrightarrow{w}_1) = B(\overrightarrow{v}, \overrightarrow{w}_1) = \alpha B(\overrightarrow{v}, \overrightarrow{w}_1) B(\overrightarrow{v}, \overrightarrow{w}_1) = B(\overrightarrow{v}, \overrightarrow{w}_1) = \alpha B(\overrightarrow{v}, \overrightarrow{w}_1) B(\overrightarrow{v}, \overrightarrow{w}_1) = B(\overrightarrow{v}, \overrightarrow{w}_1) + B(\overrightarrow{v}, \overrightarrow{w}_1) B(\overrightarrow{v}, \overrightarrow{w}_1) + B(\overrightarrow{v}, \overrightarrow{w}_1) B(\overrightarrow{v}, \overrightarrow{w}_1) = B(\overrightarrow{v}, \overrightarrow{w}_1) + B(\overrightarrow{v}, \overrightarrow{w}_1) B(\overrightarrow{v}, \overrightarrow{w}_1) B(\overrightarrow{v}, \overrightarrow{w}_1) - B(\overrightarrow{v}, \overrightarrow{w}_1) - B(\overrightarrow{v}, \overrightarrow{w}_1) B(\overrightarrow{v}, \overrightarrow{w}_1) - B(\overrightarrow{v}, \overrightarrow{w}_1)$$

<u>DEFINICION:</u> Una forma bilineal B se dice <u>no degenerada</u> si:

$$(\ \mathbf{B}(\mbox{$\rlap/$}\$$

TEOREMA: Sean \mathbf{v} y \mathbf{w} espacios vectoriales de dimensión finita sobre un cuerpo IK y sea $\phi: \mathbf{v} \times \mathbf{w} \to \mathrm{IK}$ una forma bilineal no degenerada. Para cada $\overset{\mathbf{v}}{\mathbf{w}} \in \mathbf{w}$ se define $\phi_{\overset{\mathbf{v}}{\mathbf{w}}} : \mathbf{v} \to \mathrm{IK}$ por $\phi_{\overset{\mathbf{v}}{\mathbf{w}}}(\overset{\mathbf{v}}{\mathbf{v}}) = \phi(\overset{\mathbf{v}}{\mathbf{v}}, \overset{\mathbf{v}}{\mathbf{w}})$, entonces $\phi_{\overset{\mathbf{v}}{\mathbf{w}}} \in \mathbf{v}^*$, $\forall \overset{\mathbf{v}}{\mathbf{w}} \in \mathbf{w}$ y la aplicación $\Phi: \mathbf{w} \to \mathbf{v}^*$, definida por $\Phi(\overset{\mathbf{v}}{\mathbf{w}}) = \phi_{\overset{\mathbf{v}}{\mathbf{w}}}$ es un isomorfismo.

OBSERVACION: De manera análoga se prueba que V es isomorfo a W.

<u>DEFINICION:</u> Dos espacios vectoriales \mathbf{v} y \mathbf{w} , de dimensión finita sobre un cuerpo IK, se dicen <u>duales respecto de una forma bilineal</u> $\phi : \mathbf{v} \times \mathbf{w} \to \mathbf{IK}$ si ϕ es no degenerada.

EJERCICIOS:

- 1. Sea \mathbf{v} un espacio vectorial de dimensión finita sobre un cuerpo IK . Pruebe que la función $\phi: \mathbf{v} \times \mathbf{v}^* \to \mathrm{IK}$ definida por $\phi(v',f) = f(v')$ es una forma bilineal.
- 2. Pruebe que $\varphi : IR^2 \times IR^3 \to IR$ definida por $\varphi ((x,y),(a,b,c)) = ax ay + 3yb + 2xc$ es una forma bilineal. ¿Es no degenerada esta forma bilineal?
- 3. $\varphi : \mathbf{V} \times \mathbf{W} \to \mathbf{IK}$ es una forma bilineal, si $\mathbf{B_1} = \{ \mathcal{E}_1, \dots, \mathcal{E}_m \} \text{ y } \mathbf{B_2} = \{ \mathcal{F}_1, \dots, \mathcal{F}_n \} \text{ son bases de } \mathbf{V} \text{ y } \mathbf{W} \text{ , respectivamente, y si ponemos :}$

$$a_{ij} = \varphi (\xi_i, f_j), i = 1,2,....m$$

 $j = 1,2,....n$

$$X = \sum_{i=1}^{m} x_i \, \mathcal{E}_i$$

$$\mathcal{Y} = \sum_{j=1}^n y_j \, \mathcal{F}_j \, ,$$

entonces:

a) verifique que $\varphi(x', y') = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}x_{i}y_{j}$. La matriz $A = (a_{ij})_{i=1,2,Km}$ se dice <u>la</u>

matriz asociada a la forma bilineal φ.

b) Encuentre la matriz asociada a la forma bilineal del ejercicio 2 cuando en IR² y IR³ se consideran las bases canónicas respectivas.

<u>DEFINICION:</u> Sea \mathbf{v} un espacio vectorial real de dimensión finita. Una <u>forma cuadrática en \mathbf{v} </u> es una función $\mathbf{Q}: \mathbf{v} \to \mathbf{IR}$ tal que $\mathbf{Q}(\mathbf{v}) = \mathbf{B}(\mathbf{v}, \mathbf{v})$, para alguna forma bilineal simétrica en \mathbf{v} .

OBSERVACION: Es fácil verificar que si Q es una forma cuadrática en **V**, entonces:

- (1) $Q(\alpha V) = \alpha^2 Q(V), \forall \in IR, \forall V \in \mathbf{V}$
- (2) $B(v, w) = \frac{1}{2} [Q(v + w) Q(v) Q(w)], \forall v, w \in \mathbf{v},$
- (3) Si $\{\xi_1,...,\xi_n\}$ es una base de \mathbf{v} y si ponemos

$$a_{ij} = B(\mathcal{E}_i, \mathcal{E}_j) = \frac{1}{2} [Q(\mathcal{E}_i + \mathcal{E}_j) - Q(\mathcal{E}_i) - Q(\mathcal{E}_j)], i,j = 1,2,...,n,$$

entonces la matriz $A = (a_{ij})_{i,j=1,2,...,n}$ es una matriz simétrica que se dice la matriz de la forma cuadrática Q, respecto de la base $\{\mathcal{E}_1,...,\mathcal{E}_n\}$. Si se tiene que $\mathcal{V} = \sum_{i=1}^n v_i \mathcal{E}_i$, entonces

$$Q(\mathcal{V}) = \sum_{i=1}^{n} \sum_{j=1}^{n} v_i v_j a_{ij} = \sum_{i=1}^{n} v_i^2 a_{ii} + 2 \sum_{i < j}^{n} v_i v_j a_{ij}.$$

TEOREMA: Sea Q una forma cuadrática en \mathbf{v} cuya matriz respecto de la base $\{ \mathcal{E}_1,, \mathcal{E}_n \}$ es $A = (a_{ij})_{i,j=1,2,...,n}$. Si $\{ \mathcal{F}_1,, \mathcal{F}_n \}$ es otra base de \mathbf{v} y si $B = (b_{ij})_{i,j=1,2,...,n}$ es la matriz de Q

respecto de la base $\{f_1, \dots, f_n\}$, entonces $B = P^t A P$, donde P es la matriz de cambio de base de $\{f_1, \dots, f_n\}$ a $\{f_1, \dots, f_n\}$.

<u>DEFINICION:</u> Un operador lineal T sobre un espacio vectorial real con producto interior <, > se dice un **<u>operador simétrico</u>** si < T(\checkmark), \checkmark 0, \checkmark 0, \checkmark 0, \checkmark 0, \checkmark 0.

TEOREMA: Si T es un operador simétrico sobre un espacio vectorial real con un producto interior <, >, entonces T es diagonalizable. Aún más: existe una base ortonormal de \mathbf{v} constituída por vectores propios de \mathbf{v} .

EJERCICIOS:

1.- Identifique y grafique las siguientes cónicas:

$$7 x^{2} + 9 y^{2} + 2\sqrt{8}xy + 5x = 10,$$

$$3 x^{2} + 3 y^{2} + 2xy + 6x + 10y - 3 = 0,$$

$$2 x^{2} + 4 y^{2} - 2xy + 7y = 8.$$

2.- Identifique y grafique las siguientes superficies:

$$xy - yz = 1$$
,
 $x^2 - 2xy + z = 2$.

<u>DEFINICION:</u> Sea \mathbf{v} un espacio vectorial complejo. Un **<u>producto escalar hermitiano</u>** es una función <, >: \mathbf{v} x \mathbf{v} \rightarrow \mathbf{c} que satisface:

$$\begin{split} \mathrm{i}) \quad &< \vec{\mathsf{V}}_1 + \vec{\mathsf{V}}_2 \,, \vec{\mathsf{W}}> \, = \, < \vec{\mathsf{V}}_1 \,, \vec{\mathsf{W}}> \, + \, < \vec{\mathsf{V}}_2 \,, \vec{\mathsf{W}}> \,, \, < \, \vec{\mathsf{V}} \,, \vec{\mathsf{W}}_1 \, + \, \vec{\mathsf{W}}_2> \, = \, < \, \vec{\mathsf{V}} \,, \vec{\mathsf{W}}_1> \, + \, < \, \vec{\mathsf{V}} \,, \, \vec{\mathsf{W}}_2> \,, \\ &< \alpha \, \vec{\mathsf{V}} \,, \vec{\mathsf{W}}> \, = \, \alpha < \vec{\mathsf{V}} \,, \vec{\mathsf{W}}> \,, \\ &< \vec{\mathsf{V}} \,, \vec{\mathsf{W}}> \, = \, < \vec{\mathsf{W}} \,, \vec{\mathsf{V}}> \,, \, \forall \, \vec{\mathsf{V}} \,, \, \vec{\mathsf{V}}_1 \,, \, \vec{\mathsf{V}}_2 \,, \vec{\mathsf{W}} \,, \, \vec{\mathsf{W}}_1 \,, \, \vec{\mathsf{W}}_2 \, \in \, \, \vec{\mathsf{V}} \,, \, \vec{\mathsf{W}}> \,, \\ &< \vec{\mathsf{V}} \,, \, \vec{\mathsf{W}}> \, = \, < \vec{\mathsf{W}} \,, \, \vec{\mathsf{V}}> \,, \, \forall \, \vec{\mathsf{V}} \,, \, \vec{\mathsf{V}}_1 \,, \, \vec{\mathsf{V}}_2 \,, \, \vec{\mathsf{W}} \,, \, \vec{\mathsf{W}}_1 \,, \, \vec{\mathsf{W}}_2 \, \in \, \, \vec{\mathsf{V}} \,, \, \vec{\mathsf{W}}> \,, \\ &< \vec{\mathsf{V}} \,, \, \vec{\mathsf{W}}> \, = \, < \vec{\mathsf{W}} \,, \, \vec{\mathsf{V}}> \,, \, \forall \, \vec{\mathsf{V}} \,, \, \vec{\mathsf{V}}_1 \,, \, \vec{\mathsf{V}}_2 \,, \, \vec{\mathsf{W}} \,, \, \vec{\mathsf{W}}_1 \,, \, \vec{\mathsf{W}}_2 \, \in \, \, \vec{\mathsf{V}} \,, \, \vec{\mathsf{W}}> \,, \\ &< \vec{\mathsf{V}} \,, \, \vec{\mathsf{W}}> \, = \, < \vec{\mathsf{W}} \,, \, \vec{\mathsf{V}} \,, \, \vec{\mathsf{V}} \,, \, \vec{\mathsf{V}}_1 \,, \, \vec{\mathsf{V}}_2 \,, \, \vec{\mathsf{W}} \,, \, \vec{\mathsf{W}}_1 \,, \, \vec{\mathsf{W}}_2 \, \in \, \, \vec{\mathsf{V}} \,, \, \vec{\mathsf{W}}> \,, \\ &< \vec{\mathsf{V}} \,, \, \vec{\mathsf{W}}> \,, \, \vec{\mathsf{V}} \,, \, \vec{\mathsf{V}}_1 \,, \, \vec{\mathsf{V}}_2 \,, \, \vec{\mathsf{W}} \,, \, \vec{\mathsf{V}}_1 \,, \, \vec{\mathsf{V}}_2 \,, \, \vec{\mathsf{W}} \,, \, \vec{\mathsf{V}}_2 \,, \, \vec{\mathsf{V}} \,, \, \vec{\mathsf{V}}_3 \,, \, \vec{\mathsf{V}}_4 \,, \, \vec{\mathsf{V}$$

ii)
$$\langle \mathcal{V}, \mathcal{V} \rangle \in \operatorname{IR}_{0}^{+}, \forall \mathcal{V} \in \mathbf{v}, \langle \mathcal{V}, \mathcal{V} \rangle = 0 \Leftrightarrow \mathcal{V} = \mathcal{V}.$$

Si <, >: $\mathbf{v} \times \mathbf{v} \to \mathbf{c}$ es un producto escalar hermitiano, entonces para cada $V \in \mathbf{v}$ definimos su norma o longitud como $||V|| = \sqrt{\langle v, v \rangle}$.

Dos vectores $\forall, \forall \in \mathbf{v}$, se dicen <u>ortogonales</u> si $< \forall, \forall > = 0$.

Un conjunto $\{ \mathcal{E}_1, \dots, \mathcal{E}_m \}$ de vectores de \mathbf{v} se dice un conjunto ortonormal si

$$||\xi_i|| = 1, i = 1,2,....n, y < \xi_i, \xi_j > = 0$$
, si $i \neq j$.

TEOREMA: Sea \mathbf{V} un espacio vectorial complejo con un producto escalar hermitiano <, >. Entonces cada subespacio $\mathbf{W} \neq \{ \vec{\mathbf{0}} \}$ de \mathbf{V} posee una base ortonormal. Si $\{ \vec{\mathbf{k}}_1, ..., \vec{\mathbf{k}}_n \}$ es una base ortonormal de \mathbf{V} , y si $\vec{\mathbf{k}} = \sum_{i=1}^n x_i \vec{\mathbf{k}}_i$, $\vec{\mathbf{y}} = \sum_{i=1}^n y_i \vec{\mathbf{k}}_i$, entonces $< \vec{\mathbf{k}}'$, $\vec{\mathbf{y}}' > = \sum_{i=1}^n x_i \overline{y}_i$.

<u>DEFINICION:</u> Sea \mathbf{v} un espacio vectorial complejo con un producto escalar hermitiano <, >. Un operador lineal U en \mathbf{v} se dice <u>unitario</u> si $||\mathbf{U}(\mathbf{v})|| = ||\mathbf{v}||$, $\forall \mathbf{v} \in \mathbf{v}$.

TEOREMA: Sea \mathbf{v} un espacio vectorial complejo con un producto escalar hermitiano <, > y sea U un operador lineal en \mathbf{v} . Son equivalentes:

- 1.- U es unitario.
- $2.-<U(v),U(v)>=<v,v>, \forall v,v \in v$
- 3.- Si $\{ \mathcal{E}_1, ..., \mathcal{E}_m \}$ es una base ortonormal de \mathbf{v} , entonces $\{ U(\mathcal{E}_1), ..., U(\mathcal{E}_m) \}$ es una base ortonormal de \mathbf{v} .
- 4.- Si $A = (a_{ij})$ es la matriz asociada a U, respecto de una base ortonormal de \mathbf{v} , entonces A es tal que $A \overline{A}^t = I$ (*)

OBSERVACION: Una matriz A que satisface la condición (*) se dice una **matriz unitaria.**

$\clubsuit \blacklozenge \checkmark \spadesuit$

<u>DEFINICION:</u> Sea \mathbf{v} un espacio vectorial complejo con un producto escalar hermitiano <, > y T un operador lineal en \mathbf{v} . Un operador lineal T^* se dice un <u>adjunto de T</u> Si < $T(\mathbf{w})$, $\mathbf{v}' > = < \mathbf{w}$, $T^*(\mathbf{v}') >$, \forall \mathbf{w}' , $\mathbf{v}' \in \mathbf{v}$.

TEOREMA: Cada operador lineal T en \mathbf{v} tiene un único operador adjunto \mathbf{T}^* . Si la matriz de T, respecto de una base ortonormal de \mathbf{v} es la matriz A, entonces la matriz de \mathbf{T}^* , respecto de esa misma base ortonormal, es la matriz \mathbf{w} .

T se dice <u>autoadjunto o hermitiano</u> si $T = T^*$.

T se dice **normal** si T $T^* = T^* T$.

OBSERVACIONES: Cada operador autoadjunto es normal.

Cada operador unitario es normal pero no, necesariamente, autoadjunto.

PROPOSICION: Si T es un operador normal entonces existen vectores en \mathbf{V} que son vectores propios, simultáneamente, para T y para T*. Aún más: si \mathbf{V} es un vector propio de T y de T*, entonces $T(\mathbf{V}) = \alpha \ \mathbf{V} \ \mathbf{V} \ \mathbf{T}^* (\mathbf{V}) = \overline{\alpha} \ \mathbf{V}$.

PROPOSICION: Si T es un operador normal y si $\sqrt[k]{1}$ y $\sqrt[k]{2}$ son vectores propios simultáneos de T y de T*, correspondientes a valores propios distintos, entonces $\sqrt[k]{1}$ y $\sqrt[k]{2}$ son ortogonales.

TEOREMA: Cada operador normal es diagonalizable.

EJERCICIOS

- 1. a) Averigüe si la matriz $A = \begin{bmatrix} 2 & i \\ i & 2 \end{bmatrix}$ es normal.
 - b) Encuentre una matriz unitaria P tal que P*AP sea diagonal y encuentre P*AP.
 - c) Si T es un operador normal y si $\sqrt[4]{1}$ y $\sqrt[4]{2}$ son vectores propios simultáneos de T y de T*, correspondientes a valores propios distintos, entonces pruebe que $\sqrt[4]{1}$ y $\sqrt[4]{2}$ son ortogonales.

- 2. Pruebe que los valores propios de un operador autoadjunto son números reales.
- 3. Sean \mathbf{v} un espacio vectorial complejo con un producto escalar hermitiano < , > y T un operador lineal en \mathbf{v} . Pruebe que:
 - a) Si T es unitario y W es un subespacio de ${\bf v}$ T-invariante, entonces W^{\perp} es también T-invariante.
 - b) Si T es normal y λ es un número complejo cualquiera, entonces T λI también es un operador normal.

