计算机组成

CPU形式建模综合方法 一一单周期数据通路

高小鹏

北京航空航天大学计算机学院 系统结构研究所

π的启示: 图直观性与表达式精确性

- 刘徽(约公元225年—295年)提出了-"割圆术",计算到圆内接96边形,求 得π=3.14。
- 祖冲之(公元429年—公元500年)求 出π在3.1415926与3.1415927之间。计 算到圆内接16384边形。

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + \dots$$

当取10000000项, π/4=0.7853981634
 的前八位保持一致。

信念

 用形式逻辑的方法可以容易看出,存在某种[指令集] 在理论上足以控制和执行任意顺序的操作......从当前 的观点出发,选择一个[指令集]时考虑的更多更实际 的问题是:[指令集]要求的设备简单性,在实际重要 的问题中有明确应用和解决该类问题的速度。

Burks, Goldstine &von Neumann, 1947

方法论

▶ 系统论观点

- 贝塔朗菲提出"一般系统论"系统作为研究对象,以及功能与结构关系。
- □ 系统方法
 - ◆ 分析方法: 给出系统输入和结构,求取系统输出
 - ◆ 综合方法:给出系统功能,构建系统结构。

• 结构主义观点

- □ 皮亚杰提出结构主义
- □ 系统={子系统1, ..., 子系统N, 子系统间关系, 行为}
- □ 系统的2种描述方法: 结构描述、行为描述

必需的部件

• PC, NPC, IM

名称	功能	输入	输出
		NPC[31:2]	PC[31:2]
PC	指向指令存储器	Clk	
		Reset	
		Imm[15:0]	NPC[31:2]
NPC	计算下一个PC值	Br	
		Zero	
IM	指令存储器	PC[31:2]	IM[31:0]

部件描述与HDL建模

■ 示例: PC

4.1.1. 基本描述

PC 模块的主要功能是将 NPC[31:0]的值保存并输出。PC 的各种取值将根据 所执行的指令、外部状态(中断)及处理器控制器的当前状态的不同,由数据通路 其他部件生成。

4.1.2. 模块接口

表 4-1 PC 接口信号定义

信号名	方向	描述						
Clk	I	MIPS-C 处理器时钟						
Reset	I	复位信号						
NextPC[31:0]	I	下一个 PC 值						
PC[31:0]	О	PC 输出						

部件描述与HDL建模

• 示例: PC

4.1.3. 功能定义

PC 模块的核心是一个寄存器。该寄存器在 Clk上升沿 时将 NextPC[31:0]锁 存并输出。

表 4-2 PC 功能需求定义

编号	功能名称		功能描述		
1	初始化	当 Reset 信号有效后,P	PC 输出 0xBFC00000。		
2	PC 更新	当时钟上升沿到来时, 从 PC 端口输出。	将NextPC	写入 PC 内部,	并且

必需的部件: RF

■ RF: 寄存器文件

□ 32个寄存器; 0号寄存器永远为0

名称	功能	输入	输出
		A1[4:0]	RD1[31:0]
		A2[4:0]	RD2[31:0]
	寄存器文件	A3[4:0]	
RF		WD[31:0]	
		RegWr	
		Clk	
		Reset	

必需的部件: ALU、DM

· ALU: 各类运算、地址计算

■ DM: 数据存储器

名称	功能	输入	输出
AIII	+n /\=\; / =\;	A[31:0]	ALU[31:0]
ALU	加/减/或	B[31:0]	
	数据存储器	Ad[31:2]	DM[31:0]
DM		WrData[31:0]	
DM		DMWr	
		Clk	

数据通路设计表格

- 表格记录了部件输入端的输入来源
 - □ 忽略控制类信号
 - □ 只保留数据类信号

#L.A	NDC	PC	D.C.	DC	DC	DC	DC	DC	DC	IN A	RF ALU		AL	DM
指令	NPC	PC	IM	WD	A3	Α	В	DM						

单指令数据通路构造的一般性方法

- S1: 阅读每条指令→发现所有的新增需求
- S2:对每个新增需求(2种处理方法)
 - □ 合并至已有部件
 - ◆修改已有部件设计描述: {F', I', O'}
 - □ 需要新增部件
 - ◆建立新增部件设计描述: {F, I, O}
- S3: 对每个部件设置输入来源

原则:

- ◆来源相同/相近
- ◆目的相同/相近

ADDU

ADDIU

TE A NIDC		DC	10.4			RF	6 EVT		ALU		DN4	
指令	NPC		PC	IM		WD	A3	S_EX	K I	А	В	DM
ADDU			NPC	PC		ALU	IM[15:11]			RF.RD1	RF.RD2	
ADDIU												
					•				1			
31	26	25		21 2	20	16	5 15					0
ADDI	IU		rs			rt			ji n	mediate		
00100	01		15			10						
6			5	•		5				16		
<pre>Operation: temp ← GPR[rs] + sign_extend(immediate) GPR[rt]← temp</pre>												
						R	TL					

$$R[rt] \leftarrow R[rs] + sign_ext(imm16)$$

 $PC \leftarrow PC + 4$

S_EXT: 新增的部件

■ S_EXT: 有符号扩展

名称	功能	输入	输出
S_EXT	将16位补码扩展为32 位补码	Imm[15:0]	S_EXT[31:0]

```
HDL建模: sign_ext.v
```

ADDIU

#F. &	15 A NDC I		DC 1114		RF		ГVТ	ALU		DM	
指令	NPC	PC	IM	WD	A3	3_	EXT	Α	В	DM	
ADDU		NPC	PC	ALU	IM[15:11]	1		RF.RD1	RF.RD2		
ADDIU		NPC	PC	ALU	IM[20:16]	IM[5:0]	RF.RD1	S_EXT		
31	26	25	21 20		16 15		17			0	
ADDI							<u> </u>				
00100	01	rs		rt			ım	mediate			
6		5		5				16			
Operation:											

RTL

Operation:

 $R[rt] \leftarrow R[rs] + sign_ext(imm16);$ $PC \leftarrow PC + 4$

LW

北久 NDC		DC	DC	LD 4		RF	C EVT	Al	LU	DNA
指令	NPC	PC	IM	WD	A3	S_EXT	Α	В	- DM	
ADDU		NPC	PC	ALU	IM[15:11]		RF.RD1	RF.RD2		
ADDIU		NPC	PC	ALU	IM[20:16]	IM[15:0]	RF.RD1	S_EXT		
LW										

31 26	25 21	20 16	15 0
LW	base	**t	offset
100011	oase	Ιί	onset

5

vAddr ← sign_extend(offset) + GPR[base] if vAddr_{1..0} ≠ 0² then SignalException(AddressError)

endif

 $GPR[rt] \leftarrow memword$

6

16

LW

指今 NPC	DC	PC	DC	IN A		RF	C EVT	Al	LU	DM
指令	NPC	PC	IM	WD	A3	S_EXT	Α	В	- DM	
ADDU		NPC	PC	ALU	IM[15:11]		RF.RD1	RF.RD2		
ADDIU		NPC	PC	ALU	IM[20:16]	IM[15:0]	RF.RD1	S_EXT		
LW										

31 26	25 21	20 16	15 0
LW	base	1°t	offset
100011	base	Tt .	onset

6 5 5

```
vAddr ← sign_extend(offset) + GPR[base]
if vAddr<sub>1..0</sub> ≠ 0<sup>2</sup> then
    SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt]← memword
```

vAddr: 虚拟地址 全部忽略!

LW: 改写Operation

指令	NPC	РС	IM		RF		ALU		DM
指令				WD	A3	S_EXT	Α	В	DIVI
ADDU		NPC	PC	ALU	IM[15:11]		RF.RD1	RF.RD2	
ADDIU		NPC	PC	ALU	IM[20:16]	IM[15:0]	RF.RD1	S_EXT	
LW									

31 26 25 21 20 16 15 0

LW base rt offset

6 5 5 5 16

GPR[rt]← memword

LW: 改写Operation

七人	NPC	PC	IM		RF	S EXT	Al	_U	DM
指令	INFC	FC	IIVI	WD	A3	J_LX1	А	В	DIVI
ADDU		NPC	PC	ALU	IM[15:11]		PERD1	RF.RD2	
ADDIU		NPC	PC	ALU	IM[20:16]	1M[15:0]	RF.RD1	S_EXT	
LW		NPC	PC	DM	IM[20:16]	IM[15:0]	RF.RD1	S EXT	
31	26	25	21 20	0	16 15		\ /	1	0
LW 1000		base		rt			offset		
6		5	L	5			16		
Addr ← memword	← Mem	ory[Addr		+ GPR[l	oase]			\bigwedge	
GPR[rt] PC ← PC		word			RTI				
					R[rt]←M	EM[R[rs	s]+sign	_ext(in	nm16)]
				PC←PC+	4				

SW

#E.A	NPC	DC	LD 4	RF		C EVT	ALU		DM
指令	NFC	PC	IM	WD	A3	S_EXT	Α	В	DIVI
ADDU		NPC	PC	ALU	IM[15:11]		RF.RD1	RF.RD2	
ADDIU		NPC	PC	ALU	IM[20:16]	IM[15:0]	RF.RD1	S_EXT	
LW		NPC	PC	DM	IM[20:16]	IM[15:0]	RF.RD1	S_EXT	
SW		NPC	PC			IM[15:0]	RF.RD1	S_EXT	RF.RD2
31	26 2	:5	21 20)	16 15				0

RTL描述
MEM[R[rs]+sign_ext(imm16)] ←R[rt]
PC←PC+4

JAL: 跳转并链接

华会	NPC	PC	IM	RF		C EVT	Al	- DM	
指令	指令 NPC			WD	A3	S_EXT	Α	В	DIVI
ADDU		NPC	PC	ALU	IM[15:11]		RF.RD1	RF.RD2	
ADDIU		NPC	PC	ALU	IM[20:16]	IM[15:0]	RF.RD1	S_EXT	
LW		NPC	PC	DM	IM[20:16]	IM[15:0]	RF.RD1	S_EXT	
SW		NPC	PC			IM[15:0]	RF.RD1	S_EXT	RF.RD2
JAL									

31 26 25

JAL
000011

instr_index

26

Operation:

I: $GPR[31] \leftarrow PC + 8$ I+1: $PC \leftarrow PC_{GPRLEN-1...28} \mid \mid instr_index \mid \mid 0^2$

RTL描述

 $R[31] \leftarrow PC + 4$

PC ← PC[31:28] || instr_index || 00

JAL: 跳转并链接

指令 NPC	NDC	PC	IM	RF		C EVT	ALU		- DM
	PC	IIVI	WD	A3	S_EXT	Α	В	DIVI	
ADDU		NPC	PC	ALU	IM[15:11]		RF.RD1	RF.RD2	
ADDIU		NPC	PC	ALU	IM[20:16]	IM[15:0]	RF.RD1	S_EXT	
LW		NPC	PC	DM	IM[20:16]	IM[15:0]	RF.RD1	S_EXT	
SW		NPC	PC			IM[15:0]	RF.RD1	S_EXT	RF.RD2
JAL									

PC+4在NPC中已经计算了 需要修改NPC的定义

Operation:

E PC计算方法发生变化 需要修改NPC的定义

RTL描述

26

 $R[31] \leftarrow PC + 4$

PC ← PC[31:28] || instr_index || 00

修改: NPC的部件定义、HDL建模

- 需要修改输入: Imm[15:0] → Imm[25:0]
- 需要增加输出: PC4[31:0]
- Br不合适了,用更通用的Op[1:0]代替
 - □ 3个功能,至少需要2位控制信号
 - □ Op: 控制器要根据指令输出对应的编码
- 需要重新修改: npc.v

Op编码	编码含义
00	PC + 4
01	BEQ指令
10	JAL指令
11	未定义

名称	功能	输入	输出
		Imm[25:0]	NPC[31:2]
NPC	1、计算下一个PC值 2、输出PC+4	Op[1:0]	PC4[31:0]
		Zero	

JAL: 跳转并链接

北人	NDC	PC PC	IM		RF		Al	_U	DM
指令	INPC	FC	IIVI	WD	RD	S_EXT	Α	В	ואוט
ADDU		NPC	PC	ALU	IM[15:11]		RF.RD1	RF.RD2	
ADDIU		NPC	PC	ALU	IM[20:16]	IM[15:0]	RF.RD1	S_EXT	
LW		NPC	PC	DM	IM[20:16]	IM[15:0]	RF.RD1	S_EXT	
SW		NPC	PC			IM[15:0]	RF.RD1	S_EXT	RF.RD2
JAL	IM[25:0]	NPC.NPC	PC	NPC.PC4	0x1F				
31	26 25								0

JAL instr_index 000011 6

Operation:

I: GPR[31]← PC + 8

I+1:PC \leftarrow PC_{GPRLEN-1..28} || instr_index $R[31] \leftarrow PC + 4$

RTL描述

PC ← PC[31:28] || instr_index || 00

多指令数据通路合并

北人	NDC	DC	ID 4		RF	C EVT	ALU		DNA
指令	NPC	PC	IM	WD	RD	S_EXT	А	В	- DM
ADDU		NPC.NPC	PC	ALU	IM[15:11]		RF.RD1	RF.RD2	
ADDIU		NPC.NPC	PC	ALU	IM[20:16]	IM[15:0]	RF.RD1	S_EXT	
LW		NPC.NPC	PC	DM	IM[20:16]	IM[15:0]	RF.RD1	S_EXT	
SW		NPC.NPC	PC			IM[15:0]	RF.RD1	S_EXT	RF.RD2
JAL	IM[25:0]	NPC.NPC	PC	NPC.PC4	0x1F				
合并	IM[25:0]	NPC.NPC	PC			IM[15:0]	RF.RD1	RF.RD2 S_EXT	RF.RD2

- 合并:垂直方向归并,去除相同项
- 增加MUX:输入源多余1个的需设置MUX
 - □ 需要MUX部件描述及HDL建模
 - · MUX控制信号由控制器产生

数据通路设计的一般性方法

单指令数 据通路构 造

```
for each 指令
for each 新增需求
case 可以合并至已有部件:
    修改部件设计描述、HDL建模: {F', I', O'}
case 需要新增部件:
    建立新部件设计描述、HDL建模: {F, I, O}
增加新部件

for each 部件
```

多数据通 路综合 按垂直方向合并数据通路,并去除相同项 for each 输入来源多余1个的输入端 部署1个MUX(MUX的输入规模为输入来源数) MUX设计定义、HDL建模

系统实现

HDL建模: 连接所有的部件及所有的MUX

设置输入来源

数据通路设计的一般性方法

固定复杂度 (单指令,对 每条指令理 解正确)

```
for each 指令
for each 新增需求
case 可以合并至已有部件:
    修改部件设计描述、HDL建模: {F', I', O'}
case 需要新增部件:
    建立新部件设计描述、HDL建模: {F, I, O}
增加新部件

for each 部件
设置输入来源
```

极低复杂度

按垂直方向合并数据通路,并去除相同项 for each 输入来源多余1个的输入端 部署1个MUX(MUX的输入规模为输入来源数) MUX设计定义、HDL建模

较低复杂度

HDL建模: 连接所有的部件及所有的MUX

数据通路设计的一般性方法

VerilogHDL工程注意事项

- 文件层次清晰
- 文件名易懂
- 模块名易懂
- 端口命名易懂
- 要有注释

什么是创新?

- ▶ 要能让多数人形成普遍能力
 - □ 不是仅有少数人依靠聪明能够完成达成挑战
- 要能发现一般性方法
 - □ 不是依靠无法描述或者难以推广的技巧

