THYRISTORS

Lecture 7

OVERVIEW

- Basic structure of Thyristor
- Working principles of Thyristor
- Forward Breakover Voltage
- Holding and switching current
- The Silicon-Controlled Rectifier (SCR).
- SCR Characteristics and Rating
- SCR Applications

BASIC STRUCTURE

Definition: The device acts as a switch and remains off until the forward voltage reaches a certain value; then it turns on and conducts.
 Conduction continues until the current is reduced below a specified value.

• Basics:

- Two terminals: Anode & Cathode
- 4-layer device (4 semiconductor layers)
- pnpn structure
- Three *pn* junction
- Known as **Shokley** diode & SUS (Silicon Unilateral Switch)

BASIC STRUCTURE

- Tyristor equivalent circuit::
 - *pnp* and *npn* transistors
 - Upper pnp layer as Q_1 and lower npn layer from Q_2
 - Middle layer shared by both transistors

WORKING PRINCIPLE

Positive bias voltage applied to the anode with respect to cathode

- The base-emitter junction $Q_1 \& Q_2$ are forward-biased
- Common base-collector junction (pn) is reverse-biased
- ➤ At low-bias level → Anode current is little → It is in the **OFF** state or forward-blocking region

FORWARD-BREAKOVER VOLTAGE

- ☐ Forward-blocking region (forward bias):
 - Device has a very high forward resistance (ideally an open)
 - Device is in OFF state, acts as an open switch
 - Exist from: $V_{AK} = 0 V$ to value $V_{AK} = V_{BR(F)}$ (called forward-breakover voltage)
 - As V_{AK} is increased \rightarrow Anode current I_A gradually increases.
 - When I_A reaches I_S (Switching current) $\rightarrow V_{AK} = V_{BR(F)}$
- ☐ Forward-conduction region:
 - When internal transistor structures become saturated, V_{AK} suddenly decreases to low value
 - The device is **ON** state and acts as a closed switch

HOLDING AND SWITCHING CURRENT

- Holding Current (I_H)
 - When the 4-layer diode (Thyristor) in in the ON state, conduction continues till anode current is reduced below a specified level, called holding current " I_H "
 - Device switches to OFF state and enters the forward-blocking region, once I_A falls below I_H .
- Switching current (I_S)
 - Anode current value where the device switches from the forward-blocking-region (*OFF*) to the forward-conduction region (*ON*)
 - The value is always less than the holding current (I_H)

SHOCKLEY DIODE APPLICATION

Relaxation oscillator

- When the switch is closed, the capacitor charges through *R* until its voltage reaches the forward breakover voltage of the 4-layer diode.
- When voltage reaches $V_{BR(F)}$, the diode switches into conduction, and the capacitor rapidly discharges through the diode.
- Discharging continues until the current through the diode falls below the holding value.
- Once the current becomes below the holding value, the diode switches back to the *OFF* state, and the capacitor begins to charge again.

SCR (SILICON-CONTROLLED RECTIFIER)

- Three terminals:
 - Anode, Cathode, Gate
- Has two possible states of operation:
 - *OFF* state:
 - Acts as open circuit between anode & cathode
 - High resistance
 - *ON* state:
 - Acts ideally as a short from the anode to the cathode
 - * Small on (forward) resistance

SCR EQUIVALENT CIRCUIT

- 4-layer diode except for the gate connection
- The upper pnp layers act as a transistor, Q_1
- The lower npn layers act as a transistor, Q_2
- Two middle layers are "shared"

SCR "OFF" STATE

- * Gate current, I_G , is zero.
- ❖ The device acts as a 4-layer diode in the *OFF* state
- Very high resistance between anode and cathode

SCR "ON" STATE

- * Positive pulse of current (trigger) is applied to the gate
- * Both transistors, Q_1 and Q_2 are ON
- ❖ I_{B2} turns on Q_2 → provides path for I_{B1} , thus turning on Q_1
- * Q_1 collector's current provides additional base current for Q_2

SCR AFTER TRIGGER PULSE

- \diamond Q_2 stays in conduction after trigger pulse is removed from the gate
- ❖ Low resistance between Anode and Cathode
- Q_2 sustains the saturated conduction of Q_1 by providing path for I_{B1}
- Q_1 sustains the saturated conduction of Q_2 by providing path for I_{B2}
- ❖ Thus, the device stays on (latches) once it is triggered on

SCR CHARACTERISTIC CURVES

- An SCR can also be turned on without gate triggering by increasing the anode-to-cathode voltage to a value exceeding the forward-breakover voltage $V_{BR(F)}$.
- The forward-breakover voltage decreases as I_G is increased above 0 A.
- Eventually, a value of I_G is reached at which the SCR turns on at a very low anode-to-cathode voltage.
- The gate current controls the value of forward breakover voltage, $V_{BR(F)}$, required for turn-on.

TURNING THE SCR OFF

- Turning SCR off \rightarrow Dropping the Anode current below the holding current (I_H)
- When the gate returns to 0V after the trigger pulse is removed, the SCR cannot turn off; it stays in the forward-conduction region.
- Two basic methods for turning off the SCR:
 - 1. Anode current interruption
 - 2. Forced commutation

TURNING THE SCR OFF

Anode current interruption:

- Momentary series arrangement (a) simply reduces the anode current to zero and causes the SCR to turn off
- Parallel switching arrangement (**b**) routes part of the total current away from the SCR, thereby reducing the anode current to a value less than I_H .

TURNING THE SCR OFF

Forced Commutation

- Momentarily forcing current through SCR in the direction opposite to the forward-conduction \rightarrow Net forward current is reduced below the holding value (I_H)
- > The basic circuit consist of:
 - Transistor switch
 - Capacitor
- While SCR conducting the switch is open and C_c is charged to supply voltage through R_c (a)
- > To turn off the SCR
 - Switch is closed
 - Placing the capacitor across the SCR and forcing current through it opposite to the forward current (b)
 - Takes few microseconds up to 30 μ s

SCR CHARACTERISTICS AND RATING

■ Forward-breakover voltage $V_{BR(F)}$

- Voltage at which the SCR enters the forward-conduction region
- $V_{BR(F)}$ is maximum when $I_G = 0$ and is designated $V_{BR(F0)}$
- When the gate current is increased, $V_{BR(F)}$ decreases and is designed $V_{BR(F1)}$, $V_{BR(F2)}$ and so on, for increasing steps in gate current (I_{G1} , I_{G2} and so on)

\square Holding current I_H

- The value of anode current below which the SCR switches from forward-conduction region to the forward-blocking region
- The value increases with decreasing values of I_G and is maximum for $I_G = 0$

SCR CHARACTERISTICS AND RATING

\square Gate trigger current I_{GT}

• The value of gate current necessary to switch the SCR from the forward-blocking region to the forward-conduction region under specified conditions.

\square Average Forward current $I_{F(AVG)}$

• The maximum continuous anode current (DC) that the device can withstand in the conduction state under specified conditions.

SCR CHARACTERISTICS AND RATING

☐ Forward-blocking and reverse-blocking region

 These regions correspond to the off condition of the SCR where the forward current from anode to cathode is blocked by the effective open circuit of the SCR

\square Reverse breakdown voltage ($V_{BR(F)}$)

• This parameter specifies the value of reverse voltage from cathode to anode at which the device breaks into the avalanche region and begins to conduct heavily (the same as in a *pn* junction diode).

☐ Forward-conduction region

• This region corresponds to the *on* condition of the SCR where there is forward current from anode to cathode through the very low resistance (approximate short) of the SCR.

SCR APPLICATIONS ON-OFF CONTROL OF CURRENT

- Permits current to be switched to a load by the momentary closure of switch SW1 and removed from the load by the momentary closure of switch SW2.
- Assuming the SCR is initially off, momentary closure of SW1 provides a pulse of current out of the gate, thus triggering the SCR **on**, so that it conducts current through R_L .
- The SCR remains in conduction even after the momentary contact of SW1 is removed if the anode current is equal to or greater than the holding current, I_H .
- When SW2 is momentarily closed, current is shunted around the SCR, thus reducing its anode current below the holding value, I_H . \rightarrow This turns the SCR **off** and reduces the load current to zero.

SCR APPLICATIONS HALF-WAVE POWER CONTROL

- Control of AC power for lamp dimmers, electric heaters and electric motors
- R_L represents the resistance of the load
- Resistor R_1 limits the current, and potentiometer R_2 sets the trigger level for the SCR
- By adjusting R_2 , the SCR can be made to trigger at any point on the positive half-cycle of the AC waveform between 0° and 90° .

Half-wave, variable-resistance, phase-control circuit

SCR APPLICATIONS HALF-WAVE POWER CONTROL

- When the SCR triggers near the beginning of the cycle (approximately 0°), it conducts for approximately 180° and maximum power is delivered to the load.
- When it triggers near the peak of the positive half-cycle (90°), the SCR conducts for approximately 90° and less power is delivered to the load.
- By adjusting R_2 triggering can be made to occur anywhere between these two extremes, and therefore, a variable amount of power can be delivered to the load.
- Triggering at the 45° point:
 - When the AC input goes negative, the SCR turns off and does not conduct again until the trigger point on the next positive half-cycle.
 The diode prevents the negative AC voltage from being applied to the gate of the SCR

SCR APPLICATIONS OVER-VOLTAGE PROTECTION

- The DC output voltage from the regulator is monitored by the Zener diode (D_1) and the resistive voltage divider $(R_1 \text{ and } R_2)$.
- The upper limit of the output voltage is set by the zener voltage.
- If this voltage is exceeded, the zener conducts and the voltage divider produces an SCR trigger voltage.
- The trigger voltage turns on the SCR, which is connected across the line voltage.
- The SCR current causes the fuse to blow, thus disconnecting the line voltage from the power supply.

