MATH-F-427 students

Coxeter groups

Course notes

February 16, 2019

Contents

1	Inti	roduction
	1.1	Symmetric groups
	1.2	Presentation of groups

Coxeter groups

Introduction

This chapter is based on the first chapter of [MKS04]. This chapter will be an introduction of what groups are and how they are generated.

We recall in group theory that a group (G, \cdot) is a non-empty set G of elements with a binary operation \cdot for which the next axioms are satisfied:

- Closure: For all $a, b \in G$, c such that $a \cdot b = c$ implies that $c \in G$.
- Associativity: The operation \cdot is associative, which means that for any elements $a, b, c \in G$:

$$(ab)c = a(bc)$$

• Identity element: There exists an element of G noted 1 for which:

$$a \cdot 1 = 1 \cdot a = a$$

• Inverse element: For any $a \in G$ there exists an element a^{-1} for which:

$$a \cdot a^{-1} = a^{-1} \cdot a = 1$$

We know two ways of defining a group; defining a *symmetry* of a set and if it is presented by generators and relators.

1.1 Symmetric groups

Definition 1.1. The symmetric group on the set G is the group whose elements are permutations of the elements of G and its operation is the permutation composition. If $G = \{1, \ldots, n\}$ we call it S_n .

1.2 Presentation of groups

 $A \ group$

References

[MKS04] Wilhelm Magnus, Abraham Karrass, and Donald Solitar. Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations. Dover Publications, Mineola, NY, unabridged and unaltered republication of the 2. rev. dover ed edition, 2004. OCLC: 254445530.