I. Introduction

A. Applications

Motivation for research and applications related to the subject.

B. Organization

Explain organization of the report, what is included, and what is not.

II. Literature Survey

A. Experimental Work

Literature describing experiments with something in common with my experiment. My experiment is subdivided into section relating to each aspect of the whole.

1. **Drop Delivery**

Literature relating to the production of droplets.

a. Continuous

Continuous drop production methods, i.e. jet methods.

b. Drop on Demand

Drop on demand methods, i.e. ink jet devices. Produce drops whenever needed, simplifies control of frequency.

c. Flexibility

Best methods in terms of flexible velocities, volumes, and frequencies.

d. Control Circuitry

Circuitry necessary to control the drops, may include control of generation, size, and frequency. Divertors and drop chargers.

e. Extensibility

Methods extensible to 2D applications.

f. Recirculation

Recirculation techniques, pump, none, capillary.

2. Instrumentation

Literature dealing with measurement of various parameters.

a. Temperature

- (1) Heater Surface
- (2) Fluid Temperature
- (3) Heat Flux
- (4) Heat Transfer Coefficient

b. Drop Characteristics

- (1) **Size**
- (2) Velocity
- (3) Frequency

3. Heating Element

Literature dealing with the heating element. Material properties, surface properties, heat sources.

- a. Material
- b. Heat Source
- B. Analytical Work
 - 1. Evaporation
 - 2. **Boiling**
 - 3. Leidenfrost Temperatures
 - 4. Heat Transfer
 - 5. Numerical Analysis
 - a. Drop Characteristics
 - b. Surface Wetting
 - c. Transient Temperatures

III. Proposed Research

- A. Experimental Work
- B. Analytical Work