CSC236 Fall 2023 Problem Set 1

1 Question 1

(a) According to the definition of P:

$$(\forall g \in G_1, \exists t \in T_1, t \ tiles \ g) \implies (\forall g \in G_2, \exists t \in T_2, t \ tiles \ g)$$

(b) Firstly, assume

$$\forall g_1 \in G_1, \exists t_1 \in T_1, t_1 \text{ tiles } g_1, \text{ which is the antecedent.}$$

Secondly, I will do the consequent part, which:

Let
$$g_2 \in G_2$$
. Let $t_2 = [a \text{ tiling that satisfies the condition}]$

Then, I want to prove that

$$t_2 \in T_2$$
 and t_2 tiles g_2

by selecting a satisfying element t_2 from T_2 and prove the element t_2 satisfies t_2 tiles g_2 .

(c) The diagram above illustrates one instance of G_2 grids, which being tiled by triominoes.

Firstly, we already know that for P(1), the statement $\forall g_1 \in G_1, \exists t_1 \in T_1, t_1 \text{ tiles } g$ is true which is the antecedent of this direct proof.

Secondly, the above diagram is an element of the set of all $2^2 \times 2^2$ grid with one square removed, which is an element of G_2 . By visulising those colorful triominoes, we see a combination triominoes, t_2 , which is an element of the set of all tilings of elements of G_2 using triominoes, belonging to T_2 , exists and tiles g_2 .

Therefore, the diagram above illustrates an instance of that direct proof.

(d) Given the statement to prove: $\forall n \in \mathbb{N}, P(n)$, which any $2^n \times 2^n$ grid with one cell missing can be tiled using only triominoes.

Proof: We prove this by Simple Induction on n.

Base Case: Let $0 \le n \le 1$.

When n = 0, since G_0 is the set of $2^0 \times 2^0$ grid with one cell removed, which G_0 does not contain any grid. This is actually an edge case, which $g \in G_0$ is empty, so g can definitely be tiled by a $t \in T_0$, which is empty as well. P(0) is True.

When n = 1, since G_1 is the set of all $2^1 \times 2^1$ grids with one cell removed, which by definition is a single triominoe. P(1) is True.

I've shown the base case is true.

Induction Step: Let $n \in \mathbb{N}$.

Induction Hypothesis: Assume that P(n) is true.

Since $g_{n+1} \in G_{n+1}$ is a $2^{n+1} \times 2^{n+1}$ grid with one cell missing, I will siplit it into four $2^n \times 2^n$ quadrants.

By Induction Hypothesis, we know that P(n) is true, which $\forall g_n \in G_n, \exists t_n \in T_n, t_n \text{ tiles } g_n$ is true. I will take 3 different g_n s, the first with right button corner square missing, the

CSC236 Fall 2023 Problem Set 1

second with right top corner square missing, and the third with left top corner square missing. I will make the missing corners in these 3 g_n s face inwards and add a triomino which will result in getting a 'L' shape. The remaining $\frac{1}{4}$ place is missing a cell to form a g_{n+1} , which can actually be an arbitraty element from G_n . By Induction Hypothesis, since $\forall g_n \in G_n$, $\exists t_n \in T_n$, t_n tiles g_n is true, the remaining G_n place can be covered by trimonoes, proving the P(n+1) is true.

Therefore, we've proved $\forall n \in \mathbb{N}, P(n)$ is true.

2