Übung Automatentheorie, Aufgabenblatt 11

Abgabe bis: Mittwoch, 21. Januar 2015, 13:15 Uhr

Hausaufgabe 11.1

Sei $A = \{a, b\}$ und S ein beliebiger Semiring. Berechnen Sie jeweils die Reihen $s = ((1_S a + 1_S b)^*)^2$ und $t = ((1_S a + 1_S b)^2)^*$ für die folgenden Semiringe S:

(a)
$$S = (\mathbb{N}, +, \cdot, 0, 1)$$

(b)
$$S = (\mathbb{Z} \cup \{-\infty\}, \max, +, -\infty, 0)$$

Beachten Sie dabei die jeweilige 1 bzw. 0 im Semiring.

Hausaufgabe 11.2

Sei A ein Alphabet und $(\mathbb{R}, +, \cdot, 0, 1)$ der Körper der reellen Zahlen.

- (a) Zeigen Sie die folgende Aussage: Ist $s \in \mathbb{R}\langle\!\langle A^* \rangle\!\rangle$ erkennbar, dann gibt es ein K > 0 mit $|(s, w)| \le K^{|w|+2}$ für alle $w \in A^*$.
- (b) Geben Sie eine Reihe $s \in \mathbb{R}\langle\langle A^* \rangle\rangle$ an, welche nicht erkennbar ist. Begründen Sie Ihre Wahl!

Hausaufgabe 11.3

Die Fibonacci-Folge $(f_n)_{n\geq 0}$ ist definiert durch:

$$f_n = \begin{cases} 0 & \text{falls } n = 0, \\ 1 & \text{falls } n = 1, \\ f_{n-1} + f_{n-2} & \text{falls } n \ge 2. \end{cases}$$
 (1)

Sei nun $A = \{a\}$ und $\mathbb N$ der Semiring der natürlichen Zahlen mit den üblichen Operationen. Zeigen Sie, das die Reihe $s \in \mathbb N\langle\!\langle A^* \rangle\!\rangle$, welche definiert ist durch

$$(s,a^n)=f_n,$$

rational ist — also mit den Operationen +, \cdot und * aus den Monomen konstruiert werden kann.

Finden Sie außerdem einen gewichteten Automaten über \mathbb{N} , welcher s erkennt.

Hinweis: Versuchen Sie die rekursive Gleichung (1) in eine rekursive Gleichung über s umzuformen und verwenden Sie dann die Aussage von Seminaraufgabe 11.1.

Seminaraufgabe 11.1

Beweisen Sie die folgende Aussage:

Sei S ein Semiring und $t, v \in S(\langle A^* \rangle)$ mit $(t, \varepsilon) = 0_S$. Dann ist $s = vt^*$ die eindeutige Lösung der Gleichung s = v + st.