Time-series Analytics

Giacomo Ziffer Politecnico di Milano

Time Series Forecasting

Let's change perspective again

Thinking ...

- If
 - stationary **implies** predictable
- and by removing
 - the trend (a.k.a., the change in mean)
 - the seasonality
- I obtain a stationary time-series

Thinking ...

- If
 - stationary **implies** predictable
- and by removing
 - the trend (a.k.a., the change in mean)
 - the seasonality
- I obtain a stationary time-series
- Then, I can predict the time-series!

Then, I can **predict** the time-series!

Definition

Time series forecasting occurs when you make predictions based on historical time stamped data.

Fact

If a time series is stationary,... ... it is predictable

Stationary

White noise: the perfect time series

• A sequence of random numbers with zero mean and finite variance

- NOTE: indeed it is perfectly predictable
 - If you predict 0 (the mean), you minimize the error (which is proportional to the variance)

Thinking

- How far can we predict?
 - short-term
 - A **one-step-ahead** is a forecast for the next observation only
 - medium- and long-term (no line of demarcation)
 - A multi-step-ahead forecast is for 2,3,..., n steps ahead
- What can we predict?
 - Trend: long-term, the easiest to predict
 - Seasonal repetition: medium-term, does it really repeat identically?
 - Residual: short-term, the harder to predict

Let's build the intuition of **forecasting**

Two simplified time series models

Non-seasonal Decomposition Model with Trend

 $X_t = m_t \otimes Y_t$ Time-series trend residual

components

Decomposition Model with Trend and Seasonal Components

We can recomposed time series

this charather is a placeholder for various mathematical operation used to assemble the components

How do we measure accuracy?

• mean absolute error (MAE)

$$MAE = \sum_{i} \frac{|Y_i - \hat{Y}_i|}{n}$$

• mean absolute percent error (MAPE)

$$MAPE = \frac{100}{n} \sum_{i=1}^{n} \frac{\left| Y_i - \hat{Y}_i \right|}{Y_i}$$

• the mean square error (MSE)

$$MSE = \sum_{i=1}^{n} \frac{\left(Y_{i} - \hat{Y}_{i}\right)^{2}}{n}$$

• root mean square error (RMSE)

$$RMSE = \sqrt{MSE}$$

Let's focus on predicting stationary time-series

Two simplified time series models

Non-seasonal Decomposition Model with Trend

Decomposition Model with Trend and Seasonal Components

Base line forecasting methods

"Naïve" approach

 The only important value to make predictions is the last one

$$\hat{y}_{t+1} = y_t$$

"Average" approach

 All the previous values are equally important to make predictions

$$\hat{y}_{t+1} = \frac{1}{N} \sum y_i$$

Base line forecasting methods

- 1. Load the airline time series
- 2. Make it stationary as in the previous lab
- 3. Predict using both the "Naïve" approach and the "Average" approach
- 4. Compute the accuracy metrics for both predictions
- 5. Which prediction is better?

Thinking ...

- When shall we forget?
 - Never, i.e., we use a landmark window
 - the initial estimation date is fixed
 - the additional observations are added one by one to the estimation time span
 - After a "while", i.e., using sliding window
 - the estimation time period is fixed
 - the start and end dates successively increase by 1

More sophisticated forecasting methods Last-k average approach

• Only the Last-k previous values are important to make predictions

$$\hat{y}_{t+1} = \frac{1}{k} \sum_{i=0}^{k-1} y_{t-i}$$

PROBLEM: how do we choose k?

Last-k average forecasting methods

Continuing from previous

- 1. Predict using "Last-k average" approach
- 2. Which is the best k?
- 3. Does the "Last-k average" approach outperform the two previous one for at least a value of k?

Thinking

- The last-k appears to be in the middle way between the «Naive» approach and «Average» approach
- but it is hard to find a k that clearly separates
 - the data to "forget" (older than k)
 - from those to use
- Is there any other way to consider all the values and still introduce a notion of "forgetting"?
- Are all values equally important?

More sophisticated forecasting methods Exponential Smoothing

- Middle way between Naive approach and Average approach:
 - Not only the last one (Naive)
 - Not all equally important (Average)

$$\hat{y}_{t+1} = \alpha y_t + (1-\alpha)\hat{y}_t$$
 Where $0 < \alpha < 1$ is the smoothing level

- Notes:
 - α close to 1 indicates fast forgetting (only the most recent values influence the forecasts)
 - α close to 0 indicates slow forgetting (past observations have a large influence on forecasts)

More sophisticated forecasting methods Why is it call exponential smoothing?

• Starting with $\hat{y}_{t+1} = \alpha y_t + (1 - \alpha)\hat{y}_t$ we can substitute for \hat{y}_t and get

$$\hat{y}_{t+1} = \alpha y_t + (1 - \alpha)[\alpha y_{t-1} + (1 - \alpha)\hat{y}_{t-1}]$$

= $\alpha y_t + \alpha (1 - \alpha)y_{t-1} + (1 - \alpha)^2\hat{y}_{t-1}$

Continuing to substitute until the first element of the time-series leads to

$$\hat{y}_{t+1} = \alpha y_t + \alpha (1 - \alpha) y_{t-1} + \alpha (1 - \alpha)^2 y_{t-2} + \dots + \alpha (1 - \alpha)^{t-1} y_1 + (1 - \alpha)^t l_0$$

where l_0 represents the first fitted values at time 1 (the process has to start somewhere) Hence, the forecasts are weighted averages of past observations, with the weights decaying exponentially as the observations get older.

More sophisticated forecasting methods Exponential Smoothing is a streaming algorithm

$$\hat{y}_{t+1} = \alpha y_t + (1 - \alpha)\hat{y}_t$$

$$= \alpha y_t + \hat{y}_t - \alpha \hat{y}_t$$

$$= \hat{y}_t + \alpha y_t - \alpha \hat{y}_t$$

$$= \hat{y}_t + \alpha (y_t - \hat{y}_t)$$

$$= \hat{y}_t + \alpha (e_t)$$

 The next prediction is the sum of the current prediction and alpha times the current error (i.e., the error of the current prediction)

Exponential smoothing forecasting methods

Continuing from previous

- 1. Predict using "exponential smoothing" approach
- 2. Which is the best smoothing level?
- 3. Does the "exponential smoothing" approach outperform the three previous ones for at least a value of the smoothing level?

(-: we can predict a stationary time series :-)

What about directly forecasting a time series with trend and seasonality?

Forecasting a time series with trend using the Holt method

More sophisticated forecasting methods Double Exponential Smoothing (a.k.a., Holt's linear method)

- an extension to Exponential Smoothing that adds support for trends using an additional smoothing factor (called β) to control the decay of the influence of the change in trend
- The method supports trends that change in different ways:
 - additive when the trend is linear

• Forecast equation
$$\hat{y}_{t+h} = l_t + hb_t$$

• Level equation $l_t = \alpha v_t + (1 - \alpha)(l_t + 1)$

• Level equation $l_t = \alpha y_t + (1 - \alpha)(l_{t-1} + b_{t-1})$

• Trend equation $b_t = \beta(l_t - l_{t-1}) + (1 - \beta)b_{t-1}$

• multiplicative when the trend is exponential

• Forecast equation
$$\hat{y}_{t+h} = l_t(b_t)^h$$

More sophisticated forecasting methods Double Exponential Smoothing (a.k.a., Holt's linear method)

Zooming a bit more on the equations

- Forecast equation
- Level equation
- Trend equation

The simple exponential smoothing equation

The trend gets updated based on the most recent error

More sophisticated forecasting methods Double Exponential Smoothing (a.k.a., Holt's linear method)

- Conclusions
 - The trend can vary adaptively over time
 - The trend smoothing parameter β controls the speed of adjusting the trend

Double Exponential smoothing forecasting methods

Continuing from previous

- Pick the original data without detrending and deseasonazing them
- 2. Predict the test using the "double exponential smoothing" approach
- 3. Which are the best smoothing levels?

Forecasting a time series with trend and seasonality using the Holt-Winters method

More sophisticated forecasting methods Triple Exponential Smoothing (a.k.a. Holt-Winters method)

- an extension to Exponential Smoothing that adds support for seasonality using a new parameter gamma that controls the influence on the seasonal component
- As with the trend, the seasonality may be modeled as an additive or multiplicative process for a linear or exponential change in the seasonality.
- Additive equations
 - Forecast equation
 - Level equation
 - Trend equation
 - Seasonality equation

$$\hat{y}_{t+h} = l_t + hb_t + s_{t+h-d}$$

$$l_t = \alpha(y_t - s_{t-d}) + (1 - \alpha)(l_{t-1} + b_{t-1})$$

$$b_t = \beta(l_t - l_{t-1}) + (1 - \beta)b_{t-1}$$

$$s_t = \gamma(y_t - l_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-d}$$

More sophisticated forecasting methods Triple Exponential Smoothing (a.k.a. Holt-Winters method)

Zooming a bit more on the equations

- Forecast equation
- Level equation
- Trend equation
- Seasonality equation

More sophisticated forecasting methods Triple Exponential Smoothing (a.k.a. Holt-Winters method)

Conclusions

- Both the trend and the seasonality can vary adaptively over time
- The trend smoothing level β and the seasonality smoothing level γ control the speed of adjusting the trend and the seasonality, respectively
- The only fixed parameter is the period d of the seasonality

Triple Exponential smoothing forecasting methods

Continuing from previous

- 1. Pick the original data without detrending and deseasonazing them
- 2. Predict the test using the "triple exponential smoothing" approach
- 3. Which are the best smoothing levels?
- 4. Does the "triple exponential smoothing" approach outperform the previous ones?

Time Series Forecasting

Quiz

Time-series Analytics

Giacomo Ziffer Politecnico di Milano

