· ·						rtment of Computer Science & ering/ Information Technology		
					: A, B, B1, G, H		Date:- 17.05.21	
TI	TIME: 75 min. SUBJECT: Mathematics IV Paper con					102	MM. 30	
READ ALL INSTRUCTIONS AND QUESTIONS VERY CAREFULLY								
SECTION A (Attempt ALL questions) Very short answer					[10]	СО	Bloom's Taxonomy Level	
1	а	Solve partial differential equation $xp + yq = z$.			[1]	1	Remember (L1)	
1	b	The complementary function of $(D^2 - 6DD' + 9D'^2)z = 0$ is			[1]	1	Remember (L1)	
1	С	Particular integral of $(D^2 - {D'}^2)z = cos(x + y)$ is			[1]	1	Understand (L2)	
1	d	Solve $(D + D')(D - D' + 2)z = 0$			[1]	1	Understand (L2)	
1	е	Solve $\frac{1}{(D-2D')}e^{-2x-y}$			[1]	1	Remember (L1)	
1	f	Classify the following partial differential equation $9u_{xx} - 6u_{xt} + u_{tt} = 0.$			[1]	2	Remember (L1)	
1	g	Solution of the one dimensional wave equation $a^2 \frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$ is			[1]	2	Remember (L1)	
1	h	Solve the pde using method of separation of variables $u_x = u_y$			[1]	2	Understand (L2)	
1	i	$u_x = u_y$ Classify the following partial differential equation $Z_{xx} + x^2 Z_{yy} = 0.$ Write the boundary and initial condition for vibration of string having			[1]	2	Remember (L1)	
1	j	Write the boundary and initial condition for vibration of string having length 2 released from rest having initial velocity y_0 .			[1]	2	Remember (L1)	
SECTION B (Attempt Any two questions) Short answer					[10]			
2			ortial differential equation $(x^2)p - 2xyq + 2zx = 0$		[5]	1	Analyze (L4)	
3		$(y^2 + z^2 - x^2)p - 2xyq + 2zx = 0$ Solve the following partial differential equation $(D^3 - 3DD'^2 + 2D'^3)z = (x + 2y)^{1/2}$		[5]	1	Apply (L3)		
4		Solve the following partial differential equation $x^2 \frac{\partial^2 z}{\partial x^2} - y^2 \frac{\partial^2 z}{\partial y^2} + x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} = x^2 y^4$		[5]	1	Remember (L1)		
	SECTION C (Attempt ANY ONE question) Long answer							
5		Solve the following equation by method of separation of variable $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ given that $u(x, 0) = 8e^{-3x}$.		variables	[10]	2	Understand (L2)	
6		A string is stretched and fastened to two points l apart. Motion is started by displacing the string into the form $y = kx(l-x)$ from which it is released at the time $t = 0$. Find the displacement of any point on the string at a distance of x from one end at time t .			[10]	2	Apply (L3)	

Bloom's Taxonomy Level: 1- Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Creating

CO -Course Outcome

