Raport

Przemysław Lis 229940 Wojciech Majchrzak 229947

1. Zasada działania programu

Nasz algorytm tworzy obiekt przyjmujący wartości na podstawie których generuje rój, w którym każda cząstka posiada swoją pozycję w przestrzeni rozwiązań i a jej kierunek w jakim się porusza zależy od pomiaru przystosowania. Na naszym obiekcie wykonujemy metodę find_local_minimum, w której literujemy algorytm x razy oraz a w pętli dodatkowo po wszystkich cząstkach roju aktualizując na bieżąco ich lokalizację w przestrzeni. W wyniku otrzymujemy przybliżone współrzędne punktu x i y które to definiują punkty lokalnego minimum zadanej wyżej w mainie funkcji.

2. Wybrane miejsca implementacji rozwiązania

Metoda generująca rój tworzy pustą listę i dodanie do niej cząstki o losowo generowanych koordynatach

```
def update_adaptation(self):
    self.adaptation = self.__calculate_adaptation()
    if self.adaptation < self.best_adaptation:
        self.best_adaptation = self.adaptation
        self.best_x = self.x
        self.best y = self.y</pre>
```

Funkcja obliczająca przystosowanie cząstek sprawdza, czy nowe przystosowanie jest wyższe niż poprzednie najlepsze przystosowanie. Jeżeli tak to nadpisuję koordynaty do best_x i best_y

```
def get_best(self):
    best_adaptation = math.inf
    for particle in self.population:
        particle.update_adaptation()
        if particle.best_adaptation < best_adaptation:
            best_adaptation = particle.best_adaptation
            self.best_particle = particle</pre>
```

Funkcja do określania najlepszej cząstki w roju iteracyjnie sprawdza wszystkie cząstki aktualizuje ich przystosowanie na podstawie nowych pozycji i znajduję cząstkę o najniższej wartości.

```
def find_local_minimum(self):
    for i in range(self.iteration):
        self.get_best()
        for particle in self.population:
            particle.update_coordinates()
```

Funkcja która jest odpowiedzialna za literowania po wszystkich cząstkach roju i znalezienia lokalnego minimum aktualizując ich współrzędne

3. Wyniki

Funkcję na których zostały przeprowadzone obliczenia metodą optymalizacji przedstawione są poniżej:

```
def booth_function(x, y):
    return pow(x + 2 * y - 7, 2) + pow(2 * x + y - 5, 2)

def matyas_function(x, y):
    return 0.26 * (x ** 2 + y ** 2) - 0.48 * x * y
```

Lokalne minimum funkcji booth_function wynosi: (1, 3)

Natomiast funkcji matyas_function wynosi: (0, 0)

Wartości startowe:

Inercja	Stała poznawcza	Stała społeczna	Liczba iteracji	Liczba cząstek
0.2	0.35	0.45	100	100

Wynik matyas:

х	у
0.14642632186886573	0.0720975529714103

Wynik booth:

х	у
0.6212689641736109	3.3038906958865315

Zmieniamy inercje:

Inercja	Stała poznawcza	Stała społeczna	Liczba iteracji	Liczba cząstek
0.1	0.35	0.45	100	100

Wynik matyas:

х	у
-2.135492352805617	-1.9088222837015003

Wynik booth:

х	у
1.2488893234936498	2.8435512687645055

Zmieniamy inercje:

Inercja	Stała poznawcza	Stała społeczna	Liczba iteracji	Liczba cząstek
0.4	0.35	0.45	100	100

Wynik matyas:

х	у	
0.5364550579027956	0.7150895491469775	

Wynik booth:

х	У	
0.8900231811215349	2.6607908848255875	

Zmieniamy stałą poznawczą:

Inercja	Stała poznawcza	Stała społeczna	Liczba iteracji	Liczba cząstek
0.2	0.65	0.45	100	100

Wynik matyas:

х	у		
-0.10172865513523988	-0.9023043050239394		

Wynik booth:

х	у	
1.1234952045586954	3.374133388788918	

Zmieniamy stałą poznawczą:

Inercja	Stała poznawcza	Stała społeczna	Liczba iteracji	Liczba cząstek
0.2	0.15	0.45	100	100

Wynik matyas:

х	у
-0.3353914849200006	-0.03146511382280437

Wynik booth:

x	у
0.8178646421474962	3.6321718740712416

Zmieniamy stałą społeczną:

Inercja	Stała poznawcza	Stała społeczna	Liczba iteracji	Liczba cząstek
0.2	0.35	0.15	100	100

Wynik matyas:

х	у
-1.4712016412396185	-1.2731814755365356

Wynik booth:

x	у
-0.4988782211329692	3.957349517837825

Zmieniamy stałą społeczną:

Inercja	Stała poznawcza	Stała społeczna	Liczba iteracji	Liczba cząstek
0.2	0.35	0.75	100	100

Wynik matyas:

x	у
-2.45844319271177	-2.8356030215405603

Wynik booth:

X	у
2.1593145875489643	0.9663813077503924

Zmieniamy ilość iteracji:

Inercja	Stała poznawcza	Stała społeczna	Liczba iteracji	Liczba cząstek
0.2	0.35	0.75	10	100

Wynik matyas:

x	у
1.4287933792338148	1.0944690965354802

Wynik booth:

х	у
2.0623576654084648	1.2082571732313045

Zmieniamy ilość iteracji:

Inercja	Stała poznawcza	Stała społeczna	Liczba iteracji	Liczba cząstek
0.2	0.35	0.75	1000	100

Wynik matyas:

x	у
0.4591914666164634	0.34275596150146725

Wynik booth:

х	у
1.242740591229003	2.7097584971283606

Zmieniamy liczbę czastek:

Inercja	Stała poznawcza	Stała społeczna	Liczba iteracji	Liczba cząstek
0.2	0.35	0.45	100	10

Wynik matyas:

x	у
-1.1699633743091926	-1.5431652795632917

Wynik booth:

X	у
-1.01549882376802	5.027559287833586

Zmieniamy liczbę czastek:

Inercja	Stała poznawcza	Stała społeczna	Liczba iteracji	Liczba cząstek
0.2	0.35	0.45	100	1000

Wynik matyas:

x	у
0.19857237560221286	0.06410722262560675

Wynik booth:

х	у
1.6496663204403959	2.4171382653863844

4. Wnioski

- Zmniejszenie wartości inercji znacząco wpłynęło na dokładność wyniku w szczególności dla funkcji matyas mocno zaniżyło współrzędne natomiast inkrementacje tego współczynnika zawyżyła wartości funkcji matyas. Jeżeli chodzi o funkcję booth to utrzymuje ona dość dobrą dokładność wraz ze zmieniającym się współczynnikiem inercji
- Przy zmianie stałej poznawczej nie zaobserwowaliśmy znacznego odchylenia wraz z dekrementowaną jak i inkrementowaną wartością tego współczynnika wyniki są dość losowe ale nadal bliskie realnym wraz przy znaczących zmianach stałej poznawczej
- Wariacja wartością stałej społecznej inkrementacja jak i dekrementacja przy wielu próbach wykazała znaczące odchylenia od realnych wyników.
- Dekrementacja ilości iteracji algorytmy wykazała znaczne większe odchylenia wyników względem jej inkrementacji. Po zwiększeniu liczby wykonywania się algorytmu wyniki były znacząco zbliżone do tych realnych
- Liczba cząstek w naszym odczuciu to najważniejszy parametr wpływający na dokładność wyników. Na podstawie powyższych analiz widać, że zwiększenie liczby cząstek znacząco pozytywnie wpływa na otrzymane wyniki i ich dokładność. Zbyt mała liczba cząstek powoduje bardzo duże odchylenia