Тема «Аппроксимация функций»

Пусть в результате эксперимента получена табличная зависимость между значениями x и Y в виде

x_i	x_1	x_2	x_3	• • •	\mathcal{X}_n
y_i	\mathcal{Y}_1	\mathcal{Y}_2	\mathcal{Y}_3	• • •	\mathcal{Y}_n

Найдем теоретическую зависимость (например, физический закон), который достаточно близко описывал экспериментальные данные

$$Y = f(x; a_0, a_1, ..., a_k)$$

При этом функция содержит параметры $a_0, a_1, ..., a_k$.

Подбирают параметры таким образом, чтобы график функции $f(x,a_0,a_1,...,a_k)$ наиболее близко подходил к известным (экспериментальным) точкам

$$(x_i, y_i)$$
, где $i = 1, 2, ... n$.

Такой подход называется **аппроксимацией (приближением)**. Одним из методов, используемых для аппроксимации функций, является **метод наименьших квадратов**.

Задача подбора экспериментальной зависимости методом наименьших квадратов состоит из двух этапов: на первом этапе по экспериментальным данным выбирается вид зависимости (прямая, парабола, показательная функция и т.д.), а на втором — подбираются числовые параметры $a_0, a_1, ..., a_k$ выбранной зависимости.

Основная идея метода наименьших квадратов заключается в том, что сумма расхождений (**невязок**) между теоретическими значениями $f(x_i, a_0, a_1, ..., a_k)$ и экспериментальными данными y_i была наименьшей из возможных. При этом, чтобы знак расхождения (невязки)

$$e_i = y_i - f(x_i, a_0, a_1, ..., a_k)$$

не влиял на результат, его берут в квадрате.

Таким образом, сумма невязок берется как характеристика близости эмпирических данных и предложенной теоретической формулы

$$R(a_0, a_1, ..., a_k) = \sum_{i=1}^n (y_i - f(x_i, a_0, a_1, ..., a_k))^2 \rightarrow \min$$
.

Необходимым условием минимума функции $R(a_0, a_1, ..., a_k)$ является наличие стационарной точки — получаем систему уравнений для нахождения $a_0, a_1, ..., a_k$

$$\begin{cases} \frac{\partial R(a_0, a_1, ..., a_k)}{\partial a_0} = 0 \\ \frac{\partial R(a_0, a_1, ..., a_k)}{\partial a_1} = 0 \\ ... \\ \frac{\partial R(a_0, a_1, ..., a_k)}{\partial a_1} = 0 \end{cases} \qquad \begin{cases} \sum_{i=1}^n (y_i - f(x_i, a_0, a_1, ..., a_k)) \frac{\partial f(x_i, a_0, a_1, ..., a_k)}{\partial a_0} = 0 \\ \sum_{i=1}^n (y_i - f(x_i, a_0, a_1, ..., a_k)) \frac{\partial f(x_i, a_0, a_1, ..., a_k)}{\partial a_1} = 0 \\ ... \\ \sum_{i=1}^n (y_i - f(x_i, a_0, a_1, ..., a_k)) \frac{\partial f(x_i, a_0, a_1, ..., a_k)}{\partial a_k} = 0 \end{cases}$$

Для линейной функции

$$Y = a_0 + a_1 x$$
 (уравнение регрессии у на x)

параметры a_0, a_1 (коэффициенты регрессии) находятся из системы уравнений:

$$\begin{cases} a_0 n + a_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i, \\ a_0 \sum_{i=1}^n x_i + a_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n y_i x_i. \end{cases}$$

Действительно, составим суммарную невязку

$$R(a_0, a_1) = \sum_{i=1}^{n} (y_i - a_0 - a_1 x_i)^2 \rightarrow \min$$

Для достижения минимума функции двух переменных $R(a_0, a_1)$ необходимым условием является наличие стационарной точки

$$\begin{cases} \frac{\partial R(a_0, a_1)}{\partial a_0} = 0\\ \frac{\partial R(a_0, a_1)}{\partial a_1} = 0 \end{cases}$$

Подставим в эти формулы

$$R(a_0, a_1) = \sum_{i=1}^{n} (y_i - a_0 - a_1 x_i)^2$$

Тогда вычисляя частные производные получаем

$$\begin{cases} -2\sum_{i=1}^{n} (y_i - a_0 - a_1 x_i) = 0\\ -2\sum_{i=1}^{n} (y_i - a_0 - a_1 x_i) x_i = 0 \end{cases}$$

Сокращая на (-2) и раскрывая знак суммы находим

$$\begin{cases} \sum_{i=1}^{n} y_i - na_0 - a_1 \sum_{i=1}^{n} x_i = 0 \\ \sum_{i=1}^{n} y_i x_i - a_0 \sum_{i=1}^{n} x_i - a_1 \sum_{i=1}^{n} x_i^2 = 0 \end{cases}$$

Откуда получаем систему для нахождения параметров a_0, a_1

$$\begin{cases} a_0 n + a_1 \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i, \\ a_0 \sum_{i=1}^{n} x_i + a_1 \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} y_i x_i. \end{cases}$$

Аналогичные формулы можно найти и для других типов аппроксимирующих функций.

Так, для квадратичной функции

$$Y = a_0 + a_1 x + a_2 x^2$$

параметры a_0, a_1, a_2 определяются из системы уравнений:

$$\begin{cases} a_0 n + a_1 \sum_{i=1}^{n} x_i + a_2 \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} y_i, \\ a_0 \sum_{i=1}^{n} x_i + a_1 \sum_{i=1}^{n} x_i^2 + a_2 \sum_{i=1}^{n} x_i^3 = \sum_{i=1}^{n} y_i x_i, \\ a_0 \sum_{i=1}^{n} x_i^2 + a_1 \sum_{i=1}^{n} x_i^3 + a_2 \sum_{i=1}^{n} x_i^4 = \sum_{i=1}^{n} y_i x_i^2. \end{cases}$$

Для **показательной функции** $Y = ab^x$ логарифмируется левая и правая части $\ln Y = \ln a + x \ln b$ с последующей заменой $\ln a = a_0$, $\ln b = a_1$, $\ln Y = Z$

Таким образом, для показательной функции исследование сводится к линейной функции, единственно, в таблице нужно перейти к $\ln y_i = z_i$

$$Z = a_0 + a_1 x$$

Для степенной функции $y = ax^b$ можно использовать тот же подход.

Прологарифмируем

$$ln y = ln a + b ln x$$

обозначим

$$\ln a = a_0, \quad \ln y = Z, \quad \ln x = t$$

Получаем задачу на линейную аппроксимацию для

$$Z = a_0 + bt$$

При этом исходную таблицу данных (x_i, y_i) следует пересчитать для новых величин

t_i	$\ln x_1$	$\ln x_2$	$\ln x_3$	• • •	$\ln x_n$
$\overline{z_i}$	$\ln y_1$	$\ln y_2$	$\ln y_3$	• • •	$\ln y_n$

ПРИМЕР

В результате исследования взаимосвязи двух показателей, получены следующие пары чисел:

x_i	1	2	3	4	5
y_i	5,3	6,3	4,8	3,8	3,3

Методом наименьших квадратов найти линейную функцию, которая наилучшим образом приближает эмпирические данные. Сделать чертеж, на котором в декартовой прямоугольной системе координат построить экспериментальные точки (x_i, y_i) и график аппроксимирующей функции $Y = a_0 + a_1 x$.

Коэффициенты оптимальной функции найдём как решение системы:

$$\begin{cases} a_0 n + a_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i, \\ a_0 \sum_{i=1}^n x_i + a_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n y_i x_i. \end{cases}$$

Расчёт нужных сумм удобнее оформить в табличном виде:

x_i	1	2	3	4	5	$\sum x_i =$	15
y_i	5,3	6,3	4,8	3,8	3,3	$\sum y_i =$	23,5
x_i^2	1	4	9	16	25	$\sum x_i^2 =$	55
$x_i y_i$	5,3	12,6	14,4	15,2	16,5	$\sum x_i y_i =$	64

Таким образом, получаем следующую систему:

$$\begin{cases} 55a_0 + 15a_1 = 64 \\ 15a_0 + 5a_1 = 23,5 \end{cases}$$

Для решения используем метод Крамера:

$$\Delta = \begin{vmatrix} 55 & 15 \\ 15 & 5 \end{vmatrix} = 55 \cdot 5 - 15 \cdot 15 = 275 - 225 = 50 \neq 0$$

значит, система имеет единственное решение.

$$\Delta_{a0} = \begin{vmatrix} 64 & 15 \\ 23,5 & 5 \end{vmatrix} = 64 \cdot 5 - 15 \cdot 23, 5 = 320 - 352, 2 = -32, 5$$

$$\Delta_{a1} = \begin{vmatrix} 55 & 64 \\ 15 & 23, 5 \end{vmatrix} = 55 \cdot 23, 5 - 15 \cdot 64 = 1292, 5 - 960 = 332, 5$$

$$a_0 = \frac{\Delta_{a0}}{\Delta} = \frac{-32,5}{50} = -0,65$$

$$a_1 = \frac{\Delta_{a1}}{\Delta} = \frac{332,5}{50} = 6,65$$

Таким образом, искомая аппроксимирующая функция:

$$y = -0.65x + 6.65$$

из всех линейных функций экспериментальные данные наилучшим образом приближает именно она.

Для построения графика аппроксимирующей функции найдём два её значения:

$$f(0) = -0.65 \cdot 0 + 6.65 = 6.65$$

 $f(6) = -0.65 \cdot 6 + 6.65 = -3.9 + 6.65 = 2.75$

и выполним чертёж:

Построенная прямая называется также линией тренда

Вычислим сумму квадратов отклонений между эмпирическими и теоретическими значениями. Геометрически — это сумма квадратов длин отклонений отрезков

Вычисления сведём в таблицу:

x_i	1	2	3	4	5		
y_i	5,3	6,3	4,8	3,8	3,3		
$f(x_i)$	6	5,35	4,7	4,05	3,4		
$(y_i - f(x_i))^2$	0,49	0,9025	0,01	0,0625	0,01	$\sum e_i^2 =$	1,475

Еще раз повторим: в чём смысл полученного результата

Из всех линейных функций у функции y = -0.65x + 6.65 показатель суммарного отклонения $\sum e_i^2$ является наименьшим, то есть в своём семействе это наилучшее приближение.