TriangulatedCategoriesForCAP

framework for triangulated categories

1.0

14 April 2018

Kamal Saleh

Kamal Saleh

Email: kamal.saleh@uni-siegen.de Homepage: Kamal.saleh@uni-siegen.de

Address: Siegen

Contents

1	Introduction				
	1.1	What is this package			
	1.2	Definition of triangulated categories			
2	Triangulated Categories				
	2.1	GAP Categories			
	2.2	Constructors			
	2.3	Categorical Operations			
In	dev				

Chapter 1

Introduction

1.1 What is this package

bla bla

1.2 Definition of triangulated categories

A triangulated category consists of the following data.

Chapter 2

Triangulated Categories

2.1 GAP Categories

2.1.1 IsCapCategoryTriangle (for IsCapCategoryObject)

▷ IsCapCategoryTriangle(obj)

(filter)

Returns: true or false

The GAP category of triangles in a category. Let $\mathscr C$ be an additive category and $\Sigma:\mathscr C\to\mathscr C$ an additive automorphism. A triangle in $\mathscr C$ (w.r.t. Σ) is a diagram of the form

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X$$

such that the compositions of fg,gh and $h\Sigma f$ are zero. Such a triangle will be denoted by $\mathrm{Tr}(f,g,h)$.

2.1.2 IsCapCategoryTrianglesMorphism (for IsCapCategoryMorphism)

▷ IsCapCategoryTrianglesMorphism(mor)

(filter)

Returns: true or false

The GAP category of morphisms of triangles. Let T_1, T_2 be two triangles in the additive category \mathscr{C} . A morphism of triangles is a commutative diagram

The triangles and their morphisms define with obvious composition and identities an additive category. We denote this category by Triangles(\mathscr{C}) and called the category of triangles in \mathscr{C} .

2.1.3 IsCapCategoryExactTriangle (for IsCapCategoryTriangle)

▷ IsCapCategoryExactTriangle(obj)

(filter)

Returns: true or false

The GAP category of exact triangles. An exact triangle in a triangulated category $\mathscr C$ w.r.t. Σ : $\mathscr C \to \mathscr C$ is a triangle in $\mathscr C$ that belongs to the class of exact triangles in $\mathscr C$. I.e., a triangle that is isomorphismic to some standard exact triangle in $\mathscr C$.

2.1.4 IsCapCategoryStandardExactTriangle (for IsCapCategoryExactTriangle)

▷ IsCapCategoryStandardExactTriangle(obj)

(filter)

Returns: true or false

The GAP category of standard exact triangles. A standard exact triangle in a triangulated category \mathscr{C} w.r.t. $\Sigma:\mathscr{C}\to\mathscr{C}$ is a triangle in \mathscr{C} that belongs to the class of standard exact triangles the defines the triangulated structure of \mathscr{C} .

2.2 Constructors

2.2.1 CreateTriangle (for IsCapCategoryMorphism, IsCapCategoryMorphism) IsCapCategoryMorphism)

▷ CreateTriangle(f, g, h)

(operation)

The arguments are three morphisms f, g, h in a triangulated category $\mathscr C$ such that Range $(f) = \operatorname{Source}(g), \operatorname{Range}(g) = \operatorname{Source}(h), \operatorname{Range}(h) = \Sigma \operatorname{Source}(f)$. The output is the triangle $\operatorname{Tr}(f, g, h)$ as an object in $\operatorname{Triangles}(\mathscr C)$.

2.2.2 CreateExactTriangle (for IsCapCategoryMorphism, IsCapCategoryMorphism, IsCapCategoryMorphism)

▷ CreateExactTriangle(f, g, h)

(operation)

The arguments are three morphisms f,g,h in a triangulated category $\mathscr C$ such that $\operatorname{Range}(f) = \operatorname{Source}(g), \operatorname{Range}(g) = \operatorname{Source}(h), \operatorname{Range}(h) = \Sigma \operatorname{Source}(f)$. The output is the exact triangle $\operatorname{Tr}(f,g,h)$ as an object in $\operatorname{Triangles}(\mathscr C)$.

2.2.3 CreateStandardExactTriangle (for IsCapCategoryMorphism, IsCapCategoryMorphism) Morphism, IsCapCategoryMorphism)

▷ CreateStandardExactTriangle(f, g, h)

(operation)

The arguments are three morphisms f,g,h in a triangulated category $\mathscr C$ such that $\operatorname{Range}(f) = \operatorname{Source}(g), \operatorname{Range}(g) = \operatorname{Source}(h), \operatorname{Range}(h) = \Sigma \operatorname{Source}(f)$. The output is the standard exact triangle $\operatorname{Tr}(f,g,h)$ as an object in $\operatorname{Triangles}(\mathscr C)$.

2.2.4 CreateTrianglesMorphism (for IsCapCategoryTriangle, IsCapCategoryMorphism, IsCapCategoryMorphism, IsCapCategoryMorphism)

▷ CreateTrianglesMorphism(T1, T2, u, v, w)

(operation)

The arguments are two triangles T_1, T_2 and three morphisms u, v and w. The output the triangles morphism $T_1 \to T_2$ given by these morphisms.

2.3 Categorical Operations

2.3.1 LiftColift (for IsCapCategoryMorphism, IsCapCategoryMorphism, IsCapCategoryMorphism)

▷ LiftColift(alpha, beta, gamma, delta)

(operation)

Returns: a morphism in $Hom(Y, W) + \{fail\}$

The arguments are four morphisms $\alpha: X \to Y, \beta: X \to W, \gamma: Y \to Z$ and $\delta: W \to Z$. Such that $\gamma \circ \alpha \sim_{X,Z} \delta \circ \beta$. The output is a morphism $\lambda: Y \to W$ that is a colift of β along α and is a lift of γ along δ . I.e., $\lambda \circ \alpha \sim_{X,W} \beta$ and $\delta \circ \lambda \sim_{Y,Z} \gamma$; or fail if such a morphism doesn't exist.

2.3.2 AddLiftColift (for IsCapCategory, IsFunction)

▷ AddLiftColift(C, F)

(operation)

Returns: nothing

The arguments are a category $\mathscr C$ and a function F. This operation adds the given function F to the category for the basic operation LiftColift. The function F maps a quadruple $\alpha, \beta, \gamma, \delta$ to a morphism λ as described above if it exists or to fail otherwise.

2.3.3 ShiftOfObject (for IsCapCategoryObject)

▷ ShiftOfObject(X)

(operation)

Returns: an object

The argument is an object X in a triangulated category \mathscr{C} w.r.t. $\Sigma : \mathscr{C} \to \mathscr{C}$. The output is ΣX .

2.3.4 AddShiftOfObject (for IsCapCategory, IsFunction)

▷ AddShiftOfObject(C, F)

(operation)

Returns: nothing

The arguments are a triangulated category $\mathscr C$ w.r.t. $\Sigma:\mathscr C\to\mathscr C$ and a function F. This operation adds the given function F to the category for the basic operation ShiftOfObject. The function F maps an object X to ΣX .

2.3.5 ShiftOfMorphism (for IsCapCategoryMorphism)

▷ ShiftOfMorphism(f)

(operation)

Returns: a morphism

The argument is a morphism f in a triangulated category \mathscr{C} w.r.t. $\Sigma : \mathscr{C} \to \mathscr{C}$. The output is Σf .

2.3.6 AddShiftOfMorphism (for IsCapCategory, IsFunction)

▷ AddShiftOfMorphism(C, F)

(operation)

Returns: nothing

The arguments are a triangulated category $\mathscr C$ w.r.t. $\Sigma:\mathscr C\to\mathscr C$ and a function F. This operation adds the given function F to the category for the basic operation ShiftOfMorphism. The function F maps a morphism f to Σf .

2.3.7 ReverseShiftOfObject (for IsCapCategoryObject)

▷ ReverseShiftOfObject(X)

(operation)

Returns: an object

The argument is an object X in a triangulated category \mathscr{C} w.r.t. $\Sigma : \mathscr{C} \to \mathscr{C}$. The output is $\Sigma^{-1}X$.

2.3.8 AddReverseShiftOfObject (for IsCapCategory, IsFunction)

▷ AddReverseShiftOfObject(C, F)

(operation)

Returns: nothing

The arguments are a triangulated category $\mathscr C$ w.r.t. $\Sigma:\mathscr C\to\mathscr C$ and a function F. This operation adds the given function F to the category for the basic operation ReverseShiftOfObject. The function F maps an object X to $\Sigma^{-1}X$.

2.3.9 ReverseShiftOfMorphism (for IsCapCategoryMorphism)

▷ ReverseShiftOfMorphism(f)

(operation)

Returns: a morphism

The argument is a morphism f in a triangulated category \mathscr{C} w.r.t. $\Sigma : \mathscr{C} \to \mathscr{C}$. The output is $\Sigma^{-1} f$.

2.3.10 AddReverseShiftOfMorphism (for IsCapCategory, IsFunction)

▷ AddReverseShiftOfMorphism(C, F)

(operation)

Returns: nothing

The arguments are a triangulated category $\mathscr C$ w.r.t. $\Sigma:\mathscr C\to\mathscr C$ and a function F. This operation adds the given function F to the category for the basic operation ShiftOfMorphism. The function F maps a morphism f to $\Sigma^{-1}f$.

2.3.11 ShiftExpandingIsomorphismWithGivenObjects (for IsCapCategoryObject, Is-List, IsCapCategoryObject)

▷ ShiftExpandingIsomorphismWithGivenObjects(X, L, Y)

(operation)

Returns: a morphism

The arguments are list $L = [A_1, \dots, A_n]$ and two objects $X = \Sigma \bigoplus_i A_i, Y = \bigoplus_i \Sigma A_i$. The output is the isomorphism $X \to Y$ associated to Σ .

2.3.12 AddShiftExpandingIsomorphismWithGivenObjects (for IsCapCategory, IsFunction)

▷ AddShiftExpandingIsomorphismWithGivenObjects(C, F)

(operation)

Returns: nothing

The arguments are a triangulated category $\mathscr C$ w.r.t. $\Sigma:\mathscr C\to\mathscr C$ and a function F. This operation adds the given function F to the category for the basic operation ShiftExpandingIsomorphismWith-GivenObjects.

2.3.13 ShiftExpandingIsomorphism (for IsList)

▷ ShiftExpandingIsomorphism(L)

(operation)

Returns: a morphism

The argument is a list $L = [A_1, ..., A_n]$. The output is the isomorphism $X \to Y$ associated to Σ , where $X = \Sigma \bigoplus_i A_i$ and $Y = \bigoplus_i \Sigma A_i$

2.3.14 ShiftFactoringIsomorphismWithGivenObjects (for IsCapCategoryObject, Is-List, IsCapCategoryObject)

 ${\tt \triangleright} \ {\tt ShiftFactoringIsomorphismWithGivenObjects(Y,\ L,\ X)}$

(operation)

Returns: a morphism

The arguments are list $L = [A_1, \dots, A_n]$ and two objects $Y = \bigoplus_i \Sigma A_i, X = \Sigma \bigoplus_i A_i$. The output is the isomorphism $Y \to X$ associated to Σ .

2.3.15 AddShiftFactoringIsomorphismWithGivenObjects (for IsCapCategory, IsFunction)

▷ AddShiftFactoringIsomorphismWithGivenObjects(C, F)

(operation)

Returns: nothing

The arguments are a triangulated category $\mathscr C$ w.r.t. $\Sigma:\mathscr C\to\mathscr C$ and a function F. This operation adds the given function F to the category for the basic operation AddShiftFactoringIsomorphismWith-GivenObjects.

2.3.16 ShiftFactoringIsomorphism (for IsList)

 ${\scriptstyle \rhd} \ {\tt ShiftFactoringIsomorphism}({\it L})$

(operation)

Returns: a morphism

The argument is a list $L = [A_1, \dots, A_n]$. The output is the isomorphism $Y \to X$ associated to Σ , where $Y = \bigoplus_i \Sigma A_i$ and $X = \Sigma \bigoplus_i A_i$.

2.3.17 ReverseShiftExpandingIsomorphismWithGivenObjects (for IsCapCategory-Object, IsList, IsCapCategoryObject)

(operation)

Returns: a morphism

The arguments are list $L = [A_1, ..., A_n]$ and two objects $X = \Sigma^{-1} \bigoplus_i A_i, Y = \bigoplus_i \Sigma^{-1} A_i$. The output is the isomorphism $X \to Y$ associated to Σ^{-1} .

2.3.18 AddReverseShiftExpandingIsomorphismWithGivenObjects (for IsCapCategory, IsFunction)

 ${\tt \hspace*{0.5cm}} {\tt \hspace*{0.5cm}} {\tt \hspace*{0.5cm}} {\tt \hspace*{0.5cm}} {\tt \hspace*{0.5cm}} {\tt AddReverseShiftExpandingIsomorphismWithGivenObjects(\it{C}, \it{F})} \\$

(operation)

Returns: nothing

The arguments are a triangulated category $\mathscr C$ w.r.t. $\Sigma:\mathscr C\to\mathscr C$ and a function F. This operation adds the given function F to the category for the basic operation ReverseShiftExpandingIsomorphismWithGivenObjects.

2.3.19 ReverseShiftExpandingIsomorphism (for IsList)

(operation)

Returns: a morphism

The argument is a list $L = [A_1, ..., A_n]$. The output is the isomorphism $X \to Y$ associated to Σ , where $X = \Sigma \bigoplus_i A_i$ and $Y = \bigoplus_i \Sigma A_i$

2.3.20 ReverseShiftFactoringIsomorphismWithGivenObjects (for IsCapCategoryObject, IsList, IsCapCategoryObject)

(operation)

Returns: a morphism

The arguments are list $L = [A_1, \dots, A_n]$ and two objects $Y = \bigoplus_i \Sigma^{-1} A_i, X = \Sigma^{-1} \bigoplus_i A_i$. The output is the isomorphism $Y \to X$ associated to Σ^{-1} .

2.3.21 AddReverseShiftFactoringIsomorphismWithGivenObjects (for IsCapCategory, IsFunction)

▷ AddReverseShiftFactoringIsomorphismWithGivenObjects(C, F)

(operation)

Returns: nothing

The arguments are a triangulated category $\mathscr C$ w.r.t. $\Sigma:\mathscr C\to\mathscr C$ and a function F. This operation adds the given function F to the category for the basic operation ReverseShiftFactoringIsomorphismWithGivenObjects.

2.3.22 ReverseShiftFactoringIsomorphism (for IsList)

(operation)

Returns: a morphism

The argument is a list $L = [A_1, ..., A_n]$. The output is the isomorphism $Y \to X$ associated to Σ^{-1} , where $Y = \bigoplus_i \Sigma^{-1} A_i$ and $X = \Sigma^{-1} \bigoplus_i A_i$.

2.3.23 IsomorphismIntoShiftOfReverseShift (for IsCapCategoryObject)

▷ IsomorphismIntoShiftOfReverseShift(X)

(operation)

Returns: a morphism

The argument is an object X. The output is the isomorphism $X \to (\Sigma \circ \Sigma^{-1})X$.

2.3.24 AddIsomorphismIntoShiftOfReverseShift (for IsCapCategory, IsFunction)

▷ AddIsomorphismIntoShiftOfReverseShift(C, F)

(operation)

Returns: nothing

The arguments are a triangulated category $\mathscr C$ w.r.t. $\Sigma:\mathscr C\to\mathscr C$ and a function F. This operation adds the given function F to the category for the basic operation IsomorphismIntoShiftOfReverseShift.

2.3.25 IsomorphismIntoReverseShiftOfShift (for IsCapCategoryObject)

▷ IsomorphismIntoReverseShiftOfShift(X)

(operation)

Returns: a morphism

The argument is an object *X*. The output is the isomorphism $X \to (\Sigma^{-1} \circ \Sigma)X$.

2.3.26 AddIsomorphismIntoReverseShiftOfShift (for IsCapCategory, IsFunction)

▷ AddIsomorphismIntoReverseShiftOfShift(C, F)

(operation)

Returns: nothing

The arguments are a triangulated category $\mathscr C$ w.r.t. $\Sigma:\mathscr C\to\mathscr C$ and a function F. This operation adds the given function F to the category for the basic operation IsomorphismIntoReverseShiftOfShift.

2.3.27 IsomorphismFromShiftOfReverseShift (for IsCapCategoryObject)

▷ IsomorphismFromShiftOfReverseShift(X)

(operation)

Returns: a morphism

The argument is an object *X*. The output is the isomorphism $(\Sigma \circ \Sigma^{-1})X \to X$.

2.3.28 AddIsomorphismFromShiftOfReverseShift (for IsCapCategory, IsFunction)

▷ AddIsomorphismFromShiftOfReverseShift(C, F)

(operation)

Returns: nothing

The arguments are a triangulated category $\mathscr C$ w.r.t. $\Sigma:\mathscr C\to\mathscr C$ and a function F. This operation adds the given function F to the category for the basic operation IsomorphismFromShiftOfReverse-Shift.

2.3.29 IsomorphismFromReverseShiftOfShift (for IsCapCategoryObject)

▷ IsomorphismFromReverseShiftOfShift(X)

(operation)

Returns: a morphism

The argument is an object X. The output is the isomorphism $(\Sigma^{-1} \circ \Sigma)X \to X$.

2.3.30 AddIsomorphismFromReverseShiftOfShift (for IsCapCategory, IsFunction)

▷ AddIsomorphismFromReverseShiftOfShift(C, F)

(operation)

Returns: nothing

The arguments are a triangulated category $\mathscr C$ w.r.t. $\Sigma:\mathscr C\to\mathscr C$ and a function F. This operation adds the given function F to the category for the basic operation IsomorphismFromReverseShiftOf-Shift.

2.3.31 IsStandardExactTriangle (for IsCapCategoryTriangle)

▷ IsStandardExactTriangle(T)

(property)

Returns: true or false

The argument is a triangle $T \in \text{Triangles}(\mathscr{C})$, where \mathscr{C} a triangulated category \mathscr{C} . The output is true if T is standard exact triangle, otherwise the output is false.

2.3.32 AddIsStandardExactTriangle (for IsCapCategory, IsFunction)

▷ AddIsStandardExactTriangle(C, F)

(operation)

Returns: nothing

The arguments are a triangulated category $\mathscr C$ w.r.t. $\Sigma:\mathscr C\to\mathscr C$ and a function F. This operation adds the given function F to the category for the basic operation IsStandardExactTriangle.

2.3.33 IsExactTriangle (for IsCapCategoryTriangle)

▷ IsExactTriangle(T)

(property)

Returns: true or false

The argument is a triangle $T \in \text{Triangles}(\mathscr{C})$, where \mathscr{C} a triangulated category \mathscr{C} . The output is true if T is exact triangle, otherwise the output is false.

2.3.34 AddIsExactTriangle (for IsCapCategory, IsFunction)

▷ AddIsExactTriangle(C, F)

(operation)

Returns: nothing

The arguments are a triangulated category $\mathscr C$ w.r.t. $\Sigma:\mathscr C\to\mathscr C$ and a function F. This operation adds the given function F to the category for the basic operation IsExactTriangle.

2.3.35 CompleteMorphismToStandardExactTriangle (for IsCapCategoryMorphism)

▷ CompleteMorphismToStandardExactTriangle(T)

(operation)

The argument is morphism f in a triangulated category \mathscr{C} . The output is a standard exact triangle which exists by the axioms of triangulated structure. We denote this standard exact triangle by Tr(f).

$$X \xrightarrow{f} Y \xrightarrow{\alpha(f)} C(f) \xrightarrow{\beta(f)} \Sigma X$$

2.3.36 AddCompleteMorphismToStandardExactTriangle (for IsCapCategory, IsFunction)

▷ AddCompleteMorphismToStandardExactTriangle(C, F)

(operation)

Returns: nothing

The arguments are a triangulated category $\mathscr C$ w.r.t. $\Sigma:\mathscr C\to\mathscr C$ and a function F. This operation adds the given function F to the category for the basic operation CompleteMorphismToStandardExactTriangle.

2.3.37 IsomorphismIntoStandardExactTriangle (for IsCapCategoryExactTriangle)

▷ IsomorphismIntoStandardExactTriangle(T)

(attribute)

Returns: morphism in Hom(T, Tr(f))

The argument is an exact triangle $T = \text{Tr}(f, g, h) \in \text{Triangles}(\mathscr{C})$, where \mathscr{C} a triangulated category. The output is a triangles isomorphism into the standard exact triangle Tr(f). The first two morphisms of the output should be identity morphisms.

2.3.38 AddIsomorphismIntoStandardExactTriangle (for IsCapCategory, IsFunction)

▷ AddIsomorphismIntoStandardExactTriangle(C, F)

(operation)

Returns: nothing

The arguments are a triangulated category \mathscr{C} w.r.t. $\Sigma : \mathscr{C} \to \mathscr{C}$ and a function F. This operation adds the given function F to the category for the basic operation IsomorphismIntoStandardExactTriangle.

2.3.39 IsomorphismFromStandardExactTriangle (for IsCapCategoryExactTriangle)

▷ IsomorphismFromStandardExactTriangle(T)

(attribute)

Returns: morphism in Hom(Tr(f), T)

The argument is an exact triangle $T = \text{Tr}(f, g, h) \in \text{Triangles}(\mathscr{C})$, where \mathscr{C} a triangulated category. The output is a triangles isomorphism from the standard exact triangle Tr(f). The first two morphisms of the output should be identity morphisms.

$$T: \qquad X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X$$

$$\operatorname{id}_{X} \uparrow \qquad \uparrow \operatorname{id}_{Y} \qquad \uparrow \lambda \qquad \uparrow \operatorname{id}_{\Sigma X}$$

$$\operatorname{Tr}(f): \qquad X \xrightarrow{f} Y \xrightarrow{\alpha(f)} C(f) \xrightarrow{\beta(f)} \Sigma X$$

2.3.40 AddIsomorphismFromStandardExactTriangle (for IsCapCategory, IsFunction)

▷ AddIsomorphismFromStandardExactTriangle(C, F)

(operation)

Returns: nothing

The arguments are a triangulated category \mathscr{C} w.r.t. $\Sigma : \mathscr{C} \to \mathscr{C}$ and a function F. This operation adds the given function F to the category for the basic operation IsomorphismFromStandardExactTriangle.

$\textbf{2.3.41} \quad \textbf{RotationOfStandardExactTriangle} \quad \textbf{(for IsCapCategoryStandardExactTriangle)}$

▷ RotationOfStandardExactTriangle(T)

(attribute)

Returns: an exact triangle

The argument is a standard exact triangle $T = \operatorname{Tr}(f, \alpha(f), \beta(f)) \in \operatorname{Triangles}(\mathscr{C})$, where \mathscr{C} a triangulated category \mathscr{C} . The output is the exact triangle $\operatorname{Tr}(\alpha(f), \beta(f), -\Sigma f)$. If no methods for IsomorphismFromStandardExactTriangle and IsomorphismIntoStandardExactTriangle are installed for the category, then the two attributes IsomorphismFromStandardExactTriangle and IsomorphismIntoStandardExactTriangle should be set for the output $\operatorname{Tr}(\alpha(f), \beta(f), -\Sigma f)$.

2.3.42 AddRotationOfStandardExactTriangle (for IsCapCategory, IsFunction)

▷ AddRotationOfStandardExactTriangle(C, F)

(operation)

Returns: nothing

The arguments are a triangulated category \mathscr{C} w.r.t. $\Sigma : \mathscr{C} \to \mathscr{C}$ and a function F. This operation adds the given function F to the category for the basic operation RotationOfStandardExactTriangle.

2.3.43 RotationOfExactTriangle (for IsCapCategoryExactTriangle)

▷ RotationOfExactTriangle(T)

(attribute)

Returns: an exact triangle

The argument is a exact triangle $T = \text{Tr}(f, g, h) \in \text{Triangles}(\mathscr{C})$, where \mathscr{C} a triangulated category \mathscr{C} . The output is the exact triangle $\text{Tr}(g, h, -\Sigma f)$.

2.3.44 AddRotationOfExactTriangle (for IsCapCategory, IsFunction)

▷ AddRotationOfExactTriangle(C, F)

(operation)

Returns: nothing

The arguments are a triangulated category $\mathscr C$ w.r.t. $\Sigma:\mathscr C\to\mathscr C$ and a function F. This operation adds the given function F to the category for the basic operation RotationOfExactTriangle.

2.3.45 CompleteToMorphismOfStandardExactTriangles (for IsCapCategoryStandardExactTriangle, IsCapCategoryStandardExactTriangle, IsCapCategoryMorphism) Morphism, IsCapCategoryMorphism)

▷ CompleteToMorphismOfStandardExactTriangles(T)

(operation)

Returns: a triangles morphism

The arguments are two standard exact triangles $T_1 = \operatorname{Tr}(f_1), T_2 = \operatorname{Tr}(f_2) \in \operatorname{Triangles}(\mathscr{C})$ and two morphisms u, v in a triangulated category \mathscr{C} with $v \circ f_1 \sim_{X_1, Y_2} f_2 \circ u$. The output is a triangles morphism $T_1 \to T_2$

$$\begin{array}{ccccc} X_1 & \stackrel{f_1}{\longrightarrow} & Y_1 & \stackrel{\alpha(f_1)}{\longrightarrow} & C(f_1) & \stackrel{\beta(f_1)}{\longrightarrow} & \Sigma X_1 \\ \downarrow u & & \downarrow v & & \downarrow w & & \downarrow \Sigma u \\ X_2 & \stackrel{f_2}{\longrightarrow} & Y_2 & \stackrel{\alpha(f_2)}{\longrightarrow} & C(f_2) & \stackrel{\beta(f_2)}{\longrightarrow} & \Sigma X_2 \end{array}$$

2.3.46 AddCompleteToMorphismOfStandardExactTriangles (for IsCapCategory, IsFunction)

▷ AddCompleteToMorphismOfStandardExactTriangles(C, F)

(operation)

Returns: nothing

The arguments are a triangulated category $\mathscr C$ w.r.t. $\Sigma:\mathscr C\to\mathscr C$ and a function F. This operation adds the given function F to the category for the basic operation CompleteToMorphismOfStandard-ExactTriangles.

2.3.47 OctahedralAxiom (for IsCapCategoryMorphism, IsCapCategoryMorphism)

□ OctahedralAxiom(T)

(operation)

Returns: a triangle

The arguments are morphisms $f: X \to Y, g: Y \to Z$ in the triangulated category \mathscr{C} . The output is an exact triangle T = Tr(u, v, w) such that the following diagram is commutative.

$$X \xrightarrow{f} Y \xrightarrow{\alpha(f)} C(f) \xrightarrow{\beta(f)} \Sigma X$$

$$\downarrow^{g} \qquad \downarrow^{u} \qquad \downarrow^{\text{id}_{\Sigma X}}$$

$$\downarrow^{h:=g\circ f} Z \xrightarrow{\alpha(h)} C(h) \xrightarrow{\beta(h)} \Sigma X$$

$$\alpha(g) \downarrow \qquad \downarrow^{\nu} \qquad \downarrow^{\Sigma f}$$

$$C(g) \xrightarrow{\text{id}_{C(g)}} C(g) \xrightarrow{\beta(g)} \Sigma Y$$

$$\beta(g) \downarrow \qquad \downarrow^{w}$$

$$\Sigma Y \xrightarrow{\Sigma \alpha(f)} \Sigma C(f)$$

If no methods for IsomorphismFromStandardExactTriangle and IsomorphismIntoStandardExactTriangle are installed for the category, then the two attributes IsomorphismFromStandardExactTriangle and IsomorphismIntoStandardExactTriangle should be set for the output T.

Index

Addoomple tenor philamios tandardixact-	for iscapcategory, isrunction, 15
Triangle	${\tt AddShiftExpandingIsomorphismWithGiven-}$
for IsCapCategory, IsFunction, 11	Objects
${\tt AddCompleteToMorphismOfStandardExact-}$	for IsCapCategory, IsFunction, 7
Triangles	${\tt AddShiftFactoringIsomorphismWithGiven-}$
for IsCapCategory, IsFunction, 13	Objects
AddIsExactTriangle	for IsCapCategory, IsFunction, 8
for IsCapCategory, IsFunction, 11	AddShiftOfMorphism
${\tt AddIsomorphismFromReverseShiftOfShift}$	for IsCapCategory, IsFunction, 7
for IsCapCategory, IsFunction, 10	AddShiftOfObject
${\tt AddIsomorphismFromShiftOfReverseShift}$	for IsCapCategory, IsFunction, 6
for IsCapCategory, IsFunction, 10	Complete Marshin and Chander design
AddIsomorphismFromStandardExact-	CompleteMorphismToStandardExact-
Triangle	Triangle
for IsCapCategory, IsFunction, 12	for IsCapCategoryMorphism, 11
${\tt AddIsomorphismIntoReverseShiftOfShift}$	CompleteToMorphismOfStandardExact-
for IsCapCategory, IsFunction, 10	Triangles for IsCapCategoryStandardExactTriangle,
${\tt AddIsomorphismIntoShiftOfReverseShift}$	IsCapCategoryStandardExactTriangle,
for IsCapCategory, IsFunction, 9	IsCapCategoryMorphism, IsCapCate-
${\tt AddIsomorphismIntoStandardExact-}$	goryMorphism, 13
Triangle	CreateExactTriangle
for IsCapCategory, IsFunction, 12	for IsCapCategoryMorphism, IsCapCatego-
AddIsStandardExactTriangle	ryMorphism, IsCapCategoryMorphism,
for IsCapCategory, IsFunction, 11	5
AddLiftColift	CreateStandardExactTriangle
for IsCapCategory, IsFunction, 6	for IsCapCategoryMorphism, IsCapCatego-
${\tt AddReverseShiftExpandingIsomorphism-}$	ryMorphism, IsCapCategoryMorphism,
WithGivenObjects	5
for IsCapCategory, IsFunction, 8	CreateTriangle
${\tt AddReverseShiftFactoringIsomorphism-}$	for IsCapCategoryMorphism, IsCapCatego-
WithGivenObjects	ryMorphism, IsCapCategoryMorphism,
for IsCapCategory, IsFunction, 9	5
AddReverseShiftOfMorphism	CreateTrianglesMorphism
for IsCapCategory, IsFunction, 7	for IsCapCategoryTriangle, IsCapCategory-
AddReverseShiftOfObject	Triangle, IsCapCategoryMorphism, Is-
for IsCapCategory, IsFunction, 7	CapCategoryMorphism, IsCapCatego-
AddRotationOfExactTriangle	ryMorphism, 5
for IsCapCategory, IsFunction, 13	Tymorphism, 5
AddRotationOfStandardExactTriangle	IsCapCategoryExactTriangle

for IsCapCategoryTriangle, 4	for IsCapCategoryObject, 7
IsCapCategoryStandardExactTriangle	RotationOfExactTriangle
for IsCapCategoryExactTriangle, 5	for IsCapCategoryExactTriangle, 13
IsCapCategoryTriangle	RotationOfStandardExactTriangle
for IsCapCategoryObject, 4	for IsCapCategoryStandardExactTriangle,
IsCapCategoryTrianglesMorphism	12
for IsCapCategoryMorphism, 4	
IsExactTriangle	${\tt ShiftExpandingIsomorphism}$
for IsCapCategoryTriangle, 11	for IsList, 8
IsomorphismFromReverseShiftOfShift	${\tt ShiftExpandingIsomorphismWithGiven-}$
for IsCapCategoryObject, 10	Objects
IsomorphismFromShiftOfReverseShift	for IsCapCategoryObject, IsList, IsCapCate-
for IsCapCategoryObject, 10	goryObject, 7
IsomorphismFromStandardExactTriangle	ShiftFactoringIsomorphism
for IsCapCategoryExactTriangle, 12	for IsList, 8
IsomorphismIntoReverseShiftOfShift	ShiftFactoringIsomorphismWithGiven-
for IsCapCategoryObject, 10	Objects
IsomorphismIntoShiftOfReverseShift	for IsCapCategoryObject, IsList, IsCapCate-
for IsCapCategoryObject, 9	goryObject, 8
IsomorphismIntoStandardExactTriangle	ShiftOfMorphism
for IsCapCategoryExactTriangle, 11	for IsCapCategoryMorphism, 6
IsStandardExactTriangle	ShiftOfObject
for IsCapCategoryTriangle, 10	for IsCapCategoryObject, 6
Tot is cup cutogoty Tituing 10, 10	
LiftColift	
for IsCapCategoryMorphism, IsCapCatego-	
ryMorphism, IsCapCategoryMorphism,	
IsCapCategoryMorphism, 6	
OctahedralAxiom	
for IsCapCategoryMorphism, IsCapCatego-	
ryMorphism, 14	
ReverseShiftExpandingIsomorphism	
for IsList, 9	
ReverseShiftExpandingIsomorphismWith-	
GivenObjects	
for IsCapCategoryObject, IsList, IsCapCate-	
goryObject, 8	
ReverseShiftFactoringIsomorphism	
for IsList, 9	
ReverseShiftFactoringIsomorphismWith-	
GivenObjects	
for IsCapCategoryObject, IsList, IsCapCate-	
goryObject, 9	
ReverseShiftOfMorphism for IsCanCategoryMorphism 7	
for IsCapCategoryMorphism, 7	
ReverseShiftOfObject	