Laboratorio 5 - Inferencia Estadística Estimación puntual pt. 1 - Propiedades de estimadores

Laboratorista: Héctor Lira Talancón

Ago-Dic 2017

- 1. Si un estimador es consistente en error cuadrático medio, entonces
 - a) El estimador converge en probabilidad al parámetro estimado.
 - b) El estimador es insesgado.
 - c) La varianza del estimador es cero.
 - d) Ninguna de las anteriores.
- 2. Sean $\hat{p}_1 = \bar{X}_1$ y $\hat{p}_2 = \bar{X}_2$ estimadores de una misma proporción p que se obtuvieron a partir de dos muestras independientes de tamaños n_1 y n_2 de cierta población Bernoulli(p). Considere otro estimador de p dado por $\hat{p} = k\hat{p}_1 + (1-k)\hat{p}_2$. Encontrar el valor de $k \in [0,1]$, en términos de p, p, p, p, tal que la varianza de p sea mínima.
- 3. Sea $T_n(X_1,...,X_n)$ una sucesión de estimadores del parámetro θ . Se dice que esta sucesión de estimadores es una sucesión de estimadores consistentes de θ si se cumple que:
 - a) $\lim_{n\to\infty} E[T_n] = \theta$
 - b) $\lim_{n\to\infty} Var[T_n] = 0$
 - c) $\lim_{n\to\infty} E[T_n] = \theta$ y $\lim_{n\to\infty} Var[T_n] = 0$
 - d) $\lim_{n\to\infty} E[T_n] = 0$ y $\lim_{n\to\infty} Var[T_n] = 0$
- 4. Sea $X_1, ..., X_n$ una muestra aleatoria con densidad común $f_X(x;\theta)$ donde θ es un parámetro real. Si $\hat{\theta}$ denota al estimador de máxima verosimilitud de θ . ¿Cuál de las siguientes afirmaciones es cierta?
 - a) θ es insesgado.
 - b) θ es único.
 - c) El error cuadrático medio de θ es igual a su varianza.
 - d) Ninguna de las anteriores.
- 5. Sea $X_1, ..., X_n$ una muestra aleatoria con densidad común $f_X(x; \theta)$, donde θ es un parámetro real. Si $\hat{\theta}$ denota al estimador de máxima verosimilitud de θ . ¿Cuál de las siguientes afirmaciones es cierta?
 - a) θ se distribuye asintóticamente como una normal.
 - b) θ es consistente.
 - c) Alcanza asintóticamente la cota inferior de Cramér-Rao.

- d) Todas las anteriores.
- 6. Marque la opción que considera incorreta.
 - a) Sea $X_1,...,X_n$ una muestra aleatoria de una distribución cuya densidad es $f_X(X;\theta)$. Sea $\hat{\theta} = h(X_1,...,X_n)$ un estimador de θ tal que $E[\hat{\theta}] = \theta$ y $Var[\hat{\theta}]$ es menor que la varianza de cualquier otro estimador insesgado de θ para todos los posibles valores de θ . Se dice entonces que $\hat{\theta}$ es un estimador insesgado y de varianza mínima de θ .
 - b) Sea $X_1,...,X_n$ una muestra aleatoria de una distribución cuya densidad es $f_X(X;\theta)$. Sea $\hat{\theta} = h(X_1,...,X_n)$ y $\tilde{\theta} = u(X_1,...,X_n)$ cualesquiera dos estimadores insesgados de θ . Se dice que $\hat{\theta}$ es un estimador más eficiente de θ que $\tilde{\theta}$ si $Var[\hat{\theta}] \leq Var[\tilde{\theta}]$, cumpliéndose la desigualdad en el sentido estricto para algún valor de θ .
 - c) Sea $X_1,...,X_n$ una muestra aleatoria de una distribución cuya densidad es $f_X(X;\theta)$. Sea $\hat{\theta} = h(X_1,...,X_n)$ un estimador de θ tal que $E[\hat{\theta}] = \theta$, entonces la varianza de $\hat{\theta}$ debe satisfacer la siguiente designaldad:

$$Var[\hat{\theta}] \ge \frac{1}{nE\left[\left(\frac{\partial lnf(x;\theta)}{\partial \theta}\right)^{2}\right]}$$

- d) Sea $X_1, ..., X_n$ una muestra aleatoria de una distribución cuya densidad es $f_X(X; \theta)$. Sea $\hat{\theta} = h(X_1, ..., X_n)$ un estimador de θ tal que su error cuadrático medio coincide con la varianza de $\hat{\theta}$. Entonces $\hat{\theta}$ es un estimador de máxima verosimilitud para θ .
- 7. Indique cuál propiedad no corresponde a los estimadores máximo verosímiles:
 - a) Invarianza.
 - b) Insesgamiento asintótico.
 - c) Eficiencia.
 - d) Consistencia asintótica.
- 8. Si $X_1,...,X_n$ constituyen una muestra aleatoria de tamaño n de una población tal que para $\alpha>0$ y $\beta>0$

$$f(x) = \begin{cases} \frac{\alpha}{\beta^{\alpha}} x^{\alpha - 1} & \text{para } 0 \le x \le \beta \\ 0 & \text{e.o.c.} \end{cases}$$

Para $\alpha = 3$, se propone $\hat{\beta} = 2\bar{X}$. Determine el error cuadrático medio de $\hat{\beta}$.

9. Considera $\hat{\theta}_n$ un estimador de un parámetro de θ tal que $E[(\hat{\theta}_n - \theta)^2] \to 0$ cuando $n \to \infty$, y las siguientes afirmaciones:

2

A: $\hat{\theta}_n$ es un estimador consistente de θ .

B: $\hat{\theta}_n$ es necesariamente insesgado.

Entonces,

- a) A y B son falsas.
- b) A es falsa pero B no.
- c) B es falsa pero A no.

- d) Ninguna de las anteriores.
- 10. Considera $Y_1,...,Y_n$ una muestra aleatoria de una densidad Bernoulli con parámetro p. Se desea estimar Var[Y] = p(1-p) y se usa $\hat{\lambda} = \hat{p}(1-\hat{p})$, donde \hat{p} es la proporción muestral. Calcula el sesgo de $\hat{\lambda}$ si n=15 y p=0.33.
- 11. Considera $Y_1, ..., Y_n$ una muestra aleatoria de una población con densidad $f(y|\lambda) = \frac{1}{\lambda} \exp(-y/\lambda) \mathbbm{1}_{(0,\infty)}(y)$ con $\lambda > 0$, definimos $s^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i \bar{Y})^2$. Analiza las siguientes afirmaciones.

A: En este caso se cumple que $\frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{(n-1)}$ donde $\sigma^2 = Var(Y_i)$.

B: En este caso, por falta de normalidad, \bar{Y} no es un estimador consistente de $\mu=E[Y_i]$. Entonces

- a) A es verdadera y B es falsa.
- b) A es falsa y B es verdadera.
- c) A y B son falsas.
- d) Ninguna de las anteriores.
- 12. Considera $X_1, ..., X_n$ una muestra aleatoria de una densidad $f(x|p) = \binom{2}{x} p^x (1-p)^{2-x} \mathbb{1}_{\{0,1,2\}}(x)$ con $0 . Se desea estimar <math>p^2$, se propone $\hat{\theta} = (\bar{X})^2/4$. ¿Es este un estimador insesgado de p^2 ?
- 13. Sea $Y_1, ..., Y_n$ una muestra aleatoria de una población con media μ y varianza σ^2 , ambos parámetros desconocidos. Sea $\hat{\mu}_n = (1/2)(Y_1 + Y_n)$ un estimador de μ . De las siguientes afirmaciones, ¿cuál es falsa?
 - a) El estimador es insesgado.
 - b) El estimador es consistente.
 - c) El estimador no es de varianza mínima.
 - d) Ninguna de las anteriores.

- 14. Considera $Y_1, Y_2, ...$ una sucesión de variables aleatorias independientes e idénticamente distribuidas con tercer momento finito, $E[y_i] = \mu, Var[Y_i] = \sigma^2, \bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i \text{ y } s^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i \bar{Y})^2$. ¿Cuál de las siguientes expresiones es un estimador consistente de c_A , el coeficiente de asimetría?
 - a) $\frac{1}{n} \sum_{i=1}^{n} \left(\frac{Y_i \bar{Y}}{\sigma} \right)^3$
 - b) $\frac{1}{n} \sum_{i=1}^{n} (\frac{Y_i \bar{Y}}{s})^3$
 - c) $\frac{1}{n} \sum_{i=1}^{n} \left(\frac{Y_i \mu}{\sigma} \right)^3$
 - d) Ninguna de las anteriores.
- 15. Considera $\hat{\theta}_n$ un estimador consistente de θ y $F_n(x)$ su función de distribución acumulada. Considera las siguientes afirmaciones.
 - A: $P(|\hat{\theta}_n \theta| > 0.01) \to 1$ cuando $n \to \infty$.
 - B: Si $x < \theta$ entonces $F_n(x) \to 0$ cuando $n \to \infty$.

Entonces,

- a) A y B son falsas.
- b) A es falsa y B es verdadera.
- c) A y B son verdaderas.
- d) Ninguna de las anteriores.
- 16. Un estimador es consistente en probabilidad si se cumple que:
 - a) Tiene varianza mínima.
 - b) Es insesgado.
 - c) Es invariante.
 - d) El límite de su error cuadrático medio es cero.
- 17. Se dice que un estadístico es un estimador eficiente para un parámetro si:
 - a) Tiene la misma distribución que la variable original.
 - b) Es insesgado y tiene varianza mínima.
 - c) Se acerca al verdadero valor del parámetro conforme la muestra aumenta.
 - d) Converge en probabilidad al parámetro.
- 18. Sea $X_1,...,X_n$ una muestra aleatoria de una población cuya densidad es una Bernoulli (θ) . Demuestra que el estimador $\hat{\theta} = \sum_{i=1}^{n} X_i/n$ es un estimador eficiente de θ .

- 19. Suponga que $X_1, ..., X_n$ es una muestra aleatoria con densidad $f_{x_i}(x_i|\theta) = \theta x_i^{\theta-1} \mathbbm{1}_{(0,1)}(x_i)$, $\theta > 0$.
 - a) Se desea estimar θ . Si se usara el promedio muestral como su estimador, ¿sería un estimador insesgado? Responde encontrando el sesgo del promedio muestral como estimador de θ .
 - b) ¿Es el promedio muestral un estimador consistente en media cuadrática de θ ? (Nota: puedes dejar indicada $Var[X_i]$)
 - c) Se considera como estimador alternativo a $\tilde{\theta} = \frac{\bar{X}}{1-\bar{X}}$. ¿Es este un estimador consistente de θ ? Justifica tu respuesta.
- 20. Las lecturas de un volt
ímetro de un voltaje desconocido θ están uniformemente distribuidas en el intervalo $(\theta, \theta+1)$. Se
a $Y_1, ..., Y_n$ una muestra aleatoria de tales lecturas. ¿Cuál de las siguientes funciones de $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n}$ es un estimador insesgado de θ ?
 - a) $\bar{Y} 0.5$
 - b) \bar{Y}
 - c) $\bar{Y} + 0.5$
 - d) Ninguna de las anteriores.